From 1c112b450640a2bf244c7255804f48742e2a0215 Mon Sep 17 00:00:00 2001 From: Tiago Grego Date: Thu, 30 May 2024 17:55:50 +0100 Subject: [PATCH] update cdd mini data with extract from cdd 3.21 --- .../data/cdd/3.21/data/bitscore_specific.txt | 42515 +----------- .../data/cdd/3.21/data/cddannot.dat | 33968 +-------- .../data/cdd/3.21/data/cddannot_generic.dat | 23382 +------ .../data/cdd/3.21/data/cddid.tbl | 57238 +--------------- .../data/cdd/3.21/data/cdtrack.txt | 14892 +--- .../cdd/3.21/data/family_superfamily_links | 52918 +------------- .../data/cdd/3.21/db/Cdd_NCBI.aux | 18 +- .../data/cdd/3.21/db/Cdd_NCBI.freq | Bin 71704 -> 166140 bytes .../data/cdd/3.21/db/Cdd_NCBI.loo | Bin 561360 -> 534788 bytes .../data/cdd/3.21/db/Cdd_NCBI.pdb | Bin 0 -> 32768 bytes .../data/cdd/3.21/db/Cdd_NCBI.phr | Bin 2794 -> 8526 bytes .../data/cdd/3.21/db/Cdd_NCBI.pin | Bin 96 -> 160 bytes .../data/cdd/3.21/db/Cdd_NCBI.pos | Bin 0 -> 160 bytes .../data/cdd/3.21/db/Cdd_NCBI.pot | Bin 0 -> 104 bytes .../data/cdd/3.21/db/Cdd_NCBI.psd | 3 - .../data/cdd/3.21/db/Cdd_NCBI.psi | Bin 69 -> 0 bytes .../data/cdd/3.21/db/Cdd_NCBI.psq | Bin 641 -> 1484 bytes .../data/cdd/3.21/db/Cdd_NCBI.ptf | Bin 0 -> 16384 bytes .../data/cdd/3.21/db/Cdd_NCBI.pto | Bin 0 -> 40 bytes .../data/cdd/3.21/db/Cdd_NCBI.rps | Bin 71704 -> 166140 bytes 20 files changed, 41 insertions(+), 224893 deletions(-) create mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pdb create mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pos create mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pot delete mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psd delete mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psi create mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.ptf create mode 100644 core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pto diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/bitscore_specific.txt b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/bitscore_specific.txt index 9ca23aa211..0efae4dc55 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/bitscore_specific.txt +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/bitscore_specific.txt @@ -1,42519 +1,8 @@ -214330 CHL00001 1654.26 -214331 CHL00002 547.58 -176948 CHL00003 504.419 -176949 CHL00004 656.924 -176950 CHL00005 103.181 -176951 CHL00008 53.5585 -176952 CHL00009 36.6122 -214332 CHL00010 119.713 -176954 CHL00011 782.208 -176955 CHL00012 315.097 -214333 CHL00013 105.815 -214334 CHL00014 305.915 -176958 CHL00015 103.159 -214335 CHL00016 141.581 -176960 CHL00017 794.286 -214336 CHL00018 586.1 -176962 CHL00019 166.579 -176963 CHL00020 57.3925 -176964 CHL00022 177.102 -214337 CHL00023 387.91 -176966 CHL00024 43.1207 -214338 CHL00025 961.272 -214339 CHL00027 67.6759 -214340 CHL00028 166.957 -176970 CHL00029 22.9164 -176971 CHL00030 109.622 -176972 CHL00031 41.9771 -214341 CHL00032 578.443 -176974 CHL00033 174.04 -214342 CHL00034 127.739 -214343 CHL00035 848.24 -176977 CHL00036 203.514 -176978 CHL00037 332.27 -176979 CHL00038 63.1772 -176980 CHL00039 59.3695 -176981 CHL00040 974.181 -176982 CHL00041 110.348 -214344 CHL00042 150.32 -214345 CHL00043 225.468 -176985 CHL00044 207.826 -214346 CHL00045 324.492 -176987 CHL00046 267.185 -214347 CHL00047 43.1213 -214348 CHL00048 141.115 -176990 CHL00049 674.411 -176991 CHL00050 80.7358 -176992 CHL00051 149.022 -176993 CHL00052 245.544 -176994 CHL00053 108.818 -176995 CHL00054 1366.72 -176996 CHL00056 1415.66 -176997 CHL00057 151.576 -176998 CHL00058 245.681 -176999 CHL00059 734.846 -214349 CHL00060 777.681 -177001 CHL00061 99.4023 -214350 CHL00062 798.516 -214351 CHL00063 151.941 -177004 CHL00064 67.4487 -177005 CHL00065 93.6723 -177006 CHL00066 80.0681 -177007 CHL00067 114.176 -214352 CHL00068 91.0344 -177009 CHL00070 381.761 -177010 CHL00071 697.091 -177011 CHL00072 484.24 -214353 CHL00073 885.869 -214354 CHL00074 140.327 -177014 CHL00075 120.361 -214355 CHL00076 795.765 -177016 CHL00077 83.0949 -214356 CHL00078 225.879 -214357 CHL00079 153.897 -177019 CHL00080 36.6794 -177020 CHL00081 589.262 -177021 CHL00082 44.2409 -214358 CHL00083 135.484 -177023 CHL00084 109.249 -214359 CHL00085 672.112 -164492 CHL00086 331.568 -164493 CHL00088 302.292 -100206 CHL00089 251.639 -164494 CHL00090 301.7 -164495 CHL00091 1466.59 -177025 CHL00093 994.227 -214360 CHL00094 1130.6 -214361 CHL00095 758.051 -214362 CHL00098 298.13 -214363 CHL00099 1124.4 -214364 CHL00100 247.315 -214365 CHL00101 282.005 -214366 CHL00102 76.3376 -214367 CHL00103 58.1724 -177033 CHL00104 75.3957 -177034 CHL00105 59.2829 -177035 CHL00106 24.5641 -177036 CHL00108 41.8849 -177037 CHL00112 75.7355 -177038 CHL00113 173.478 -100224 CHL00114 33.6695 -177039 CHL00115 42.4506 -214368 CHL00117 1024.88 -214369 CHL00118 145.515 -177042 CHL00119 204.064 -177043 CHL00120 208.359 -214370 CHL00121 128.59 -214371 CHL00122 995.27 -177046 CHL00123 106.24 -177047 CHL00124 85.8428 -177048 CHL00125 92.5359 -177049 CHL00127 127.102 -177050 CHL00128 194.89 -177051 CHL00129 403.232 -177052 CHL00130 168.014 -214372 CHL00131 427.136 -177054 CHL00132 332.779 -177055 CHL00133 267.706 -177056 CHL00134 168.36 -177057 CHL00135 147.057 -177058 CHL00136 117.059 -177059 CHL00137 160.573 -177060 CHL00138 118.169 -214373 CHL00139 157.878 -177062 CHL00140 238.269 -214374 CHL00141 67.7477 -177064 CHL00142 79.7049 -177065 CHL00143 221.038 -177066 CHL00144 615.981 -177067 CHL00145 219.246 -214375 CHL00147 271.502 -214376 CHL00148 358.26 -177069 CHL00149 640.376 -164542 CHL00151 401.478 -214377 CHL00152 47.7127 -177071 CHL00154 62.4753 -177072 CHL00159 206.377 -214378 CHL00160 177.273 -214379 CHL00161 298.836 -214380 CHL00162 458.018 -214381 CHL00163 105.523 -164550 CHL00164 103.741 -214382 CHL00165 189.265 -214383 CHL00168 373.735 -100270 CHL00170 291.906 -100271 CHL00171 293.058 -133617 CHL00172 327.412 -100273 CHL00173 286.252 -214384 CHL00174 401.204 -214385 CHL00175 414.938 -214386 CHL00176 751.882 -214387 CHL00177 315.818 -177082 CHL00180 421.736 -177083 CHL00181 543.542 -177084 CHL00182 197.509 -177085 CHL00183 178.045 -177086 CHL00184 35.762 -177087 CHL00185 599.401 -177088 CHL00186 27.2449 -214388 CHL00187 291.533 -214389 CHL00188 346.487 -177089 CHL00189 888.796 -177090 CHL00190 32.0712 -214390 CHL00191 106.401 -214391 CHL00192 800.843 -177092 CHL00193 164.794 -177093 CHL00194 467.556 -177094 CHL00195 845.455 -177095 CHL00196 44.8231 -214392 CHL00197 637.61 -214393 CHL00198 564.436 -164575 CHL00199 263.645 -214394 CHL00200 396.443 -164576 CHL00201 775.615 -133644 CHL00202 470.043 -164577 CHL00203 586.526 -214395 CHL00204 1875.56 -214396 CHL00206 1897.33 -214397 CHL00207 887.128 -223080 COG0001 388.863 -223081 COG0002 314.976 -223082 COG0003 95.5046 -223083 COG0004 31.3953 -223084 COG0005 106.212 -223085 COG0006 108.668 -223086 COG0007 66.1149 -223087 COG0008 290.376 -223088 COG0009 121.182 -223089 COG0010 56.6095 -223090 COG0011 79.6443 -223091 COG0012 336.459 -223092 COG0013 746.008 -223093 COG0014 561.796 -223094 COG0015 281.428 -223095 COG0016 271.407 -223096 COG0017 261.757 -223097 COG0018 494.85 -223098 COG0019 257.205 -223099 COG0020 82.721 -223100 COG0021 639.257 -223101 COG0022 406.151 -223102 COG0023 45.3695 -223103 COG0024 113.839 -223104 COG0025 146.672 -223105 COG0026 450.537 -223106 COG0027 551.563 -223107 COG0028 108.889 -223108 COG0029 546.468 -223109 COG0030 139.663 -223110 COG0031 239.745 -223111 COG0033 262.303 -223112 COG0034 359.606 -223113 COG0035 192.011 -223114 COG0036 201.245 -223115 COG0037 68.3522 -223116 COG0038 67.7413 -223117 COG0039 233.214 -223118 COG0040 196.692 -223119 COG0041 175.911 -223120 COG0042 65.4204 -223121 COG0043 345.005 -223122 COG0044 160.959 -223123 COG0045 309.917 -223124 COG0046 707.073 -223125 COG0047 281.763 -223126 COG0048 147.764 -223127 COG0049 156.976 -223128 COG0050 402.446 -223129 COG0051 99.1996 -223130 COG0052 171.694 -223131 COG0053 145.089 -223132 COG0054 121.557 -223133 COG0055 683.189 -223134 COG0056 608.819 -223135 COG0057 49.0915 -223136 COG0058 432.495 -223137 COG0059 392.343 -223138 COG0060 1024.45 -223139 COG0061 99.697 -223140 COG0062 125.07 -223141 COG0063 144.738 -223142 COG0064 138.473 -223143 COG0065 102.665 -223144 COG0066 172.391 -223145 COG0067 214.895 -223146 COG0068 258.467 -223147 COG0069 385.454 -223148 COG0070 151.703 -223149 COG0071 49.6826 -223150 COG0072 114.285 -223151 COG0073 53.1131 -223152 COG0074 241.723 -223153 COG0075 117.342 -223154 COG0076 165.237 -223155 COG0077 281.808 -223156 COG0078 307.974 -223157 COG0079 152.467 -223158 COG0080 94.1903 -223159 COG0081 164.708 -223160 COG0082 218.595 -223161 COG0083 220.549 -223162 COG0084 165.078 -223163 COG0085 435.077 -223164 COG0086 85.3658 -223165 COG0087 167.755 -223166 COG0088 148.901 -223167 COG0089 64.5382 -223168 COG0090 258.68 -223169 COG0091 81.9229 -223170 COG0092 190.552 -223171 COG0093 141.95 -223172 COG0094 171.243 -223173 COG0095 51.2322 -223174 COG0096 121.486 -223175 COG0097 149.221 -223176 COG0098 119.596 -223177 COG0099 96.8254 -223178 COG0100 102.704 -223179 COG0101 201.341 -223180 COG0102 106.188 -223181 COG0103 123.418 -223182 COG0104 376.966 -223183 COG0105 142.696 -223184 COG0106 231.31 -223185 COG0107 349.936 -223186 COG0108 204.726 -223187 COG0109 231.363 -223188 COG0110 38.3286 -223189 COG0111 42.3007 -223190 COG0112 389.259 -223191 COG0113 472.042 -223192 COG0114 137.736 -223193 COG0115 67.8028 -223194 COG0116 281.505 -223195 COG0117 131.991 -223196 COG0118 244.035 -223197 COG0119 209.026 -223198 COG0120 228.218 -223199 COG0121 104.393 -223200 COG0122 103.671 -223201 COG0123 147.906 -223202 COG0124 198.989 -223203 COG0125 129.332 -223204 COG0126 434.28 -223205 COG0127 129.654 -223206 COG0128 351.517 -223207 COG0129 600.676 -223208 COG0130 84.2729 -223209 COG0131 230.555 -223210 COG0132 105.44 -223211 COG0133 651.189 -223212 COG0134 214.763 -223213 COG0135 151.257 -223214 COG0136 264.474 -223215 COG0137 500.185 -223216 COG0138 176.287 -223217 COG0139 125.111 -223218 COG0140 49.5387 -223219 COG0141 368.439 -223220 COG0142 152.142 -223221 COG0143 408.204 -223222 COG0144 155.626 -223223 COG0145 228.822 -223224 COG0146 630.43 -223225 COG0147 271.521 -223226 COG0148 254.086 -223227 COG0149 151.624 -223228 COG0150 305.285 -223229 COG0151 460.488 -223230 COG0152 177.78 -223231 COG0153 350.452 -223232 COG0154 138.581 -223233 COG0155 158.658 -223234 COG0156 83.0715 -223235 COG0157 296.789 -223236 COG0158 335.052 -223237 COG0159 204.76 -223238 COG0160 377.713 -223239 COG0161 87.2169 -223240 COG0162 79.9644 -223241 COG0163 240.567 -223242 COG0164 141.59 -223243 COG0165 429.751 -223244 COG0166 82.3611 -223245 COG0167 191.263 -223246 COG0168 76.9705 -223247 COG0169 186.705 -223248 COG0170 75.112 -223249 COG0171 192.472 -223250 COG0172 267.927 -223251 COG0173 667.344 -223252 COG0174 220.589 -223253 COG0175 124.844 -223254 COG0176 161.667 -223255 COG0177 178.53 -223256 COG0178 741.323 -223257 COG0179 145.163 -223258 COG0180 269.06 -223259 COG0181 154.654 -223260 COG0182 433.627 -223261 COG0183 62.7009 -223262 COG0184 78.766 -223263 COG0185 103.42 -223264 COG0186 84.1852 -223265 COG0187 599.884 -223266 COG0188 237.17 -223267 COG0189 142.889 -223268 COG0190 74.9089 -223269 COG0191 307.946 -223270 COG0192 569.519 -223271 COG0193 176.98 -223272 COG0194 101.839 -223273 COG0195 43.7582 -223274 COG0196 130.845 -223275 COG0197 140.028 -223276 COG0198 28.8251 -223277 COG0199 35.2946 -223278 COG0200 61.5103 -223279 COG0201 105.381 -223280 COG0202 130.928 -223281 COG0203 143.47 -223282 COG0204 57.6136 -223283 COG0205 245.986 -223284 COG0206 124.32 -223285 COG0207 197.132 -223286 COG0208 234.118 -223287 COG0209 73.5538 -223288 COG0210 56.3582 -223289 COG0211 113.447 -223290 COG0212 119.7 -223291 COG0213 446.679 -223292 COG0214 500.672 -223293 COG0215 427.8 -223294 COG0216 463.99 -223295 COG0217 179.699 -223296 COG0218 166.638 -223297 COG0219 160.062 -223298 COG0220 175.178 -223299 COG0221 93.4563 -223300 COG0222 54.6279 -223301 COG0223 187.053 -223302 COG0224 224.406 -223303 COG0225 196.291 -223304 COG0226 89.0239 -223305 COG0227 51.1585 -223306 COG0228 98.4631 -223307 COG0229 188.602 -223308 COG0230 25.7226 -223309 COG0231 88.7746 -223310 COG0232 388.215 -223311 COG0233 164.673 -223312 COG0234 92.6289 -223313 COG0235 66.1922 -223314 COG0236 26.8736 -223315 COG0237 92.7345 -223316 COG0238 58.8089 -223317 COG0239 66.052 -223318 COG0240 323.366 -223319 COG0241 73.0926 -223320 COG0242 144.243 -223321 COG0243 64.4354 -223322 COG0244 86.5233 -223323 COG0245 153.119 -223324 COG0246 249.589 -223325 COG0247 43.779 -223326 COG0248 235.28 -223327 COG0249 215.997 -223328 COG0250 64.2667 -223329 COG0251 59.582 -223330 COG0252 149.361 -223331 COG0253 199.808 -223332 COG0254 74.2694 -223333 COG0255 35.7524 -223334 COG0256 92.2837 -223335 COG0257 33.048 -223336 COG0258 68.5061 -223337 COG0259 293.815 -223338 COG0260 442.847 -223339 COG0261 113.469 -223340 COG0262 81.2178 -223341 COG0263 318.387 -223342 COG0264 233.329 -223343 COG0265 32.9451 -223344 COG0266 173.984 -223345 COG0267 41.0956 -223346 COG0268 54.9963 -223347 COG0269 193.235 -223348 COG0270 32.7886 -223349 COG0271 67.3786 -223350 COG0272 451.267 -223351 COG0274 188.99 -223352 COG0275 366.145 -223353 COG0276 288.77 -223354 COG0277 32.5592 -223355 COG0278 138.187 -223356 COG0279 202.93 -223357 COG0280 155.471 -223358 COG0281 126.535 -223359 COG0282 82.2422 -223360 COG0283 207.425 -223361 COG0284 116.611 -223362 COG0285 340.779 -223363 COG0286 32.0033 -223364 COG0287 78.9104 -223365 COG0288 110.949 -223366 COG0289 255.27 -223367 COG0290 178.189 -223368 COG0291 53.0063 -223369 COG0292 138.13 -223370 COG0293 131.577 -223371 COG0294 52.7004 -223372 COG0295 139.725 -223373 COG0296 476.806 -223374 COG0297 323.459 -223375 COG0298 88.1999 -223376 COG0299 211.671 -223377 COG0300 228.286 -223378 COG0301 233.321 -223379 COG0302 96.1425 -223380 COG0303 193.595 -223381 COG0304 152.8 -223382 COG0305 60.7074 -223383 COG0306 127.315 -223384 COG0307 239.812 -223385 COG0308 316.727 -223386 COG0309 237.939 -223387 COG0310 40.037 -223388 COG0311 250.615 -223389 COG0312 146.33 -223390 COG0313 217.458 -223391 COG0314 121.236 -223392 COG0315 118.48 -223393 COG0316 67.9807 -223394 COG0317 61.4975 -223395 COG0318 70.1828 -223396 COG0319 118.153 -223397 COG0320 321.525 -223398 COG0321 242.947 -223399 COG0322 90.0346 -223400 COG0323 392.087 -223401 COG0324 189.775 -223402 COG0325 229.027 -223403 COG0326 518.749 -223404 COG0327 140.521 -223405 COG0328 107.828 -223406 COG0329 134.289 -223407 COG0330 62.4605 -223408 COG0331 61.1484 -223409 COG0332 151.224 -223410 COG0333 38.7814 -223411 COG0334 121.193 -223412 COG0335 83.0335 -223413 COG0336 323.766 -223414 COG0337 314.139 -223415 COG0338 48.4743 -223416 COG0339 790.703 -223417 COG0340 116.644 -223418 COG0341 155.051 -223419 COG0342 82.8249 -223420 COG0343 190.551 -223421 COG0344 116.584 -223422 COG0345 191.64 -223423 COG0346 27.8072 -223424 COG0347 58.347 -223425 COG0348 128.731 -223426 COG0349 221.787 -223427 COG0350 45.1456 -223428 COG0351 191.647 -223429 COG0352 139.308 -223430 COG0353 181.618 -223431 COG0354 135.953 -223432 COG0355 88.0942 -223433 COG0356 155.502 -223434 COG0357 121.251 -223435 COG0358 131.078 -223436 COG0359 94.5804 -223437 COG0360 80.0019 -223438 COG0361 66.4531 -223439 COG0362 696.677 -223440 COG0363 134.309 -223441 COG0364 436.681 -223442 COG0365 54.9875 -223443 COG0366 30.3439 -223444 COG0367 141.775 -223445 COG0368 85.0179 -223446 COG0369 274.295 -223447 COG0370 132.03 -223448 COG0371 326.136 -223449 COG0372 71.9379 -223450 COG0373 296.466 -223451 COG0374 189.927 -223452 COG0375 110.066 -223453 COG0376 468.055 -223454 COG0377 251.54 -223455 COG0378 208.608 -223456 COG0379 377.359 -223457 COG0380 123.196 -223458 COG0381 337.677 -223459 COG0382 64.6212 -223460 COG0383 192.664 -223461 COG0384 40.76 -223462 COG0385 112.326 -223463 COG0386 224.044 -223464 COG0387 248.744 -223465 COG0388 46.3217 -223466 COG0389 76.965 -223467 COG0390 139.765 -223468 COG0391 255.65 -223469 COG0392 46.6227 -223470 COG0393 67.3134 -223471 COG0394 74.9932 -223472 COG0395 65.6592 -223473 COG0396 232.084 -223474 COG0397 222.967 -223475 COG0398 49.6311 -223476 COG0399 49.9364 -223477 COG0400 155.155 -223478 COG0401 49.5886 -223479 COG0402 119.473 -223480 COG0403 503.316 -223481 COG0404 68.0464 -223482 COG0405 401.609 -223483 COG0406 40.5468 -223484 COG0407 247.162 -223485 COG0408 440.619 -223486 COG0409 151.719 -223487 COG0410 244.686 -223488 COG0411 135.777 -223489 COG0412 123.26 -223490 COG0413 279.085 -223491 COG0414 269.482 -223492 COG0415 285.754 -223493 COG0416 372.296 -223494 COG0417 82.0871 -223495 COG0418 466.417 -223496 COG0419 98.2938 -223497 COG0420 132.647 -223498 COG0421 134.807 -223499 COG0422 613.487 -223500 COG0423 567.384 -223501 COG0424 188.133 -223502 COG0425 55.768 -223503 COG0426 65.7865 -223504 COG0427 203.389 -223505 COG0428 82.404 -223506 COG0429 380.918 -223507 COG0430 319.987 -223508 COG0431 74.3476 -223509 COG0432 157.004 -223510 COG0433 31.8893 -223511 COG0434 282.683 -223512 COG0435 433.682 -223513 COG0436 137.021 -223514 COG0437 112.143 -223515 COG0438 35.6943 -223516 COG0439 248.721 -223517 COG0440 84.6169 -223518 COG0441 143.168 -223519 COG0442 373.122 -223520 COG0443 192.173 -223521 COG0444 140.402 -223522 COG0445 295.61 -223523 COG0446 39.8982 -223524 COG0447 466.895 -223525 COG0448 390.464 -223526 COG0449 217.822 -223527 COG0450 65.3355 -223528 COG0451 31.451 -223529 COG0452 83.9429 -223530 COG0454 25.5629 -223531 COG0455 104.278 -223532 COG0456 43.8319 -223533 COG0457 27.5029 -223534 COG0458 227.587 -223535 COG0459 162.776 -223536 COG0460 224.767 -223537 COG0461 162.424 -223538 COG0462 76.4717 -223539 COG0463 30.0513 -223540 COG0464 60.2224 -223541 COG0465 248.773 -223542 COG0466 1004 -223543 COG0467 67.876 -223544 COG0468 49.9751 -223545 COG0469 347.617 -223546 COG0470 31.5447 -223547 COG0471 63.1098 -223548 COG0472 73.8423 -223549 COG0473 262.893 -223550 COG0474 57.3439 -223551 COG0475 76.1243 -223552 COG0476 51.6313 -223553 COG0477 28.5027 -223554 COG0478 342.761 -223555 COG0479 119.313 -223556 COG0480 80.7558 -223557 COG0481 967.805 -223558 COG0482 84.5993 -223559 COG0483 133.624 -223560 COG0484 88.8363 -223561 COG0486 485.912 -223562 COG0488 86.9205 -223563 COG0489 50.4932 -223564 COG0490 110.54 -223565 COG0491 31.6897 -223566 COG0492 50.7537 -223567 COG0493 193.66 -223568 COG0494 28.2758 -223569 COG0495 358.516 -223570 COG0496 212.872 -223571 COG0497 395.044 -223572 COG0498 212.565 -223573 COG0499 397.012 -223574 COG0500 28.7117 -223575 COG0501 65.3336 -223576 COG0502 90.0114 -223577 COG0503 70.7606 -223578 COG0504 284.797 -223579 COG0505 468.207 -223580 COG0506 224.174 -223581 COG0507 133 -223582 COG0508 64.3403 -223583 COG0509 110.441 -223584 COG0510 120.963 -223585 COG0511 62.7853 -223586 COG0512 192.382 -223587 COG0513 49.4034 -223588 COG0514 164.777 -223589 COG0515 30.8656 -223590 COG0516 74.5893 -223591 COG0517 29.7469 -223592 COG0518 138.93 -223593 COG0519 399.254 -223594 COG0520 174.424 -223595 COG0521 147.409 -223596 COG0522 75.809 -223597 COG0523 170.939 -223598 COG0524 47.106 -223599 COG0525 655.085 -223600 COG0526 26.4001 -223601 COG0527 99.6516 -223602 COG0528 173.173 -223603 COG0529 238.718 -223604 COG0530 100.755 -223605 COG0531 31.2878 -223606 COG0532 356.09 -223607 COG0533 311.045 -223608 COG0534 80.3463 -223609 COG0535 46.9341 -223610 COG0536 300.24 -223611 COG0537 56.9978 -223612 COG0538 451.334 -223613 COG0539 89.2846 -223614 COG0540 339.574 -223615 COG0541 525.175 -223616 COG0542 80.0162 -223617 COG0543 92.4707 -223618 COG0544 108.522 -223619 COG0545 148.717 -223620 COG0546 42.0553 -223621 COG0547 240.561 -223622 COG0548 156.974 -223623 COG0549 413.194 -223624 COG0550 38.357 -223625 COG0551 39.0773 -223626 COG0552 306.875 -223627 COG0553 50.5036 -223628 COG0554 108.464 -223629 COG0555 123.137 -223630 COG0556 181.25 -223631 COG0557 310.477 -223632 COG0558 48.5225 -223633 COG0559 103.406 -223634 COG0560 91.9669 -223635 COG0561 64.3552 -223636 COG0562 537.295 -223637 COG0563 80.7823 -223638 COG0564 137.827 -223639 COG0565 202.849 -223640 COG0566 120.469 -223641 COG0567 82.3081 -223642 COG0568 179.417 -223643 COG0569 61.5138 -223644 COG0571 82.299 -223645 COG0572 160.525 -223646 COG0573 193.22 -223647 COG0574 66.6193 -223648 COG0575 54.2444 -223649 COG0576 100.867 -223650 COG0577 32.0093 -223651 COG0578 282.244 -223652 COG0579 237.554 -223653 COG0580 103.857 -223654 COG0581 192.431 -223655 COG0582 27.1621 -223656 COG0583 29.5539 -223657 COG0584 66.3967 -223658 COG0585 267.352 -223659 COG0586 78.8631 -223660 COG0587 398.581 -223661 COG0588 207.128 -223662 COG0589 30.6883 -223663 COG0590 63.4851 -223664 COG0591 180.19 -223665 COG0592 53.4387 -223666 COG0593 60.7617 -223667 COG0594 40.3365 -223668 COG0595 173.99 -223669 COG0596 29.5959 -223670 COG0597 60.3171 -223671 COG0598 56.5644 -223672 COG0599 47.3489 -223673 COG0600 144.673 -223674 COG0601 96.0191 -223675 COG0602 77.811 -223676 COG0603 117.722 -223677 COG0604 43.1051 -223678 COG0605 131.62 -223679 COG0606 78.815 -223680 COG0607 39.5353 -223681 COG0608 52.8341 -223682 COG0609 86.9348 -223683 COG0610 77.0657 -223684 COG0611 192.529 -223685 COG0612 44.7581 -223686 COG0613 52.8673 -223687 COG0614 38.7163 -223688 COG0615 106.601 -223689 COG0616 128.685 -223690 COG0617 74.3662 -223691 COG0618 158.703 -223692 COG0619 53.1354 -223693 COG0620 172.859 -223694 COG0621 390.779 -223695 COG0622 116.3 -223696 COG0623 307.218 -223697 COG0624 104.859 -223698 COG0625 44.4154 -223699 COG0626 64.1461 -223700 COG0627 135.649 -223701 COG0628 92.6997 -223702 COG0629 50.9367 -223703 COG0630 92.0517 -223704 COG0631 106.287 -223705 COG0632 165.493 -223706 COG0633 47.8354 -223707 COG0634 205.834 -223708 COG0635 227.539 -223709 COG0636 26.0654 -223710 COG0637 50.1199 -223711 COG0638 80.4196 -223712 COG0639 34.6311 -223713 COG0640 25.1645 -223714 COG0641 90.9665 -223715 COG0642 30.8775 -223716 COG0643 394.775 -223717 COG0644 98.6843 -223718 COG0645 112.502 -223719 COG0646 323.875 -223720 COG0647 163.531 -223721 COG0648 238.322 -223722 COG0649 187.414 -223723 COG0650 206.004 -223724 COG0651 153.277 -223725 COG0652 107.305 -223726 COG0653 48.3778 -223727 COG0654 80.9049 -223728 COG0655 44.4144 -223729 COG0656 86.9253 -223730 COG0657 59.5636 -223731 COG0658 49.42 -223732 COG0659 60.7534 -223733 COG0661 82.7439 -223734 COG0662 62.0186 -223735 COG0663 126.164 -223736 COG0664 40.2 -223737 COG0665 34.1048 -223738 COG0666 29.7924 -223739 COG0667 50.0187 -223740 COG0668 35.2814 -223741 COG0669 174.277 -223742 COG0670 40.3674 -223743 COG0671 29.3655 -223744 COG0672 123.66 -223745 COG0673 78.7484 -223746 COG0674 66.5652 -223747 COG0675 26.9302 -223748 COG0676 309.322 -223749 COG0677 550.721 -223750 COG0678 206.823 -223751 COG0679 108.535 -223752 COG0680 89.6877 -223753 COG0681 29.5805 -223754 COG0682 178.232 -223755 COG0683 38.189 -223756 COG0684 148.958 -223757 COG0685 106.681 -223758 COG0686 422.51 -223759 COG0687 74.0125 -223760 COG0688 98.129 -223761 COG0689 149.36 -223762 COG0690 33.1103 -223763 COG0691 163.506 -223764 COG0692 268.702 -223765 COG0693 41.7478 -223766 COG0694 85.812 -223767 COG0695 41.9158 -223768 COG0696 483.329 -223769 COG0697 27.5233 -223770 COG0698 97.3195 -223771 COG0699 62.6151 -223772 COG0700 163.699 -223773 COG0701 150.507 -223774 COG0702 28.3319 -223775 COG0703 138.496 -223776 COG0704 48.195 -223777 COG0705 43.6073 -223778 COG0706 123.715 -223779 COG0707 90.4625 -223780 COG0708 208.992 -223781 COG0709 359.367 -223782 COG0710 166.376 -223783 COG0711 57.3083 -223784 COG0712 78.4363 -223785 COG0713 51.4524 -223786 COG0714 83.639 -223787 COG0715 53.6726 -223788 COG0716 31.5827 -223789 COG0717 122.39 -223790 COG0718 71.1261 -223791 COG0719 188.296 -223792 COG0720 81.1869 -223793 COG0721 45.2921 -223794 COG0722 507.531 -223795 COG0723 72.554 -223796 COG0724 33.767 -223797 COG0725 106.635 -223798 COG0726 57.706 -223799 COG0727 27.3166 -223800 COG0728 232.944 -223801 COG0729 273.098 -223802 COG0730 27.7143 -223803 COG0731 234.119 -223804 COG0732 28.859 -223805 COG0733 68.3993 -223806 COG0735 75.4021 -223807 COG0736 88.0777 -223808 COG0737 112.941 -223809 COG0738 291.141 -223810 COG0739 54.0271 -223811 COG0740 140.456 -223812 COG0741 29.6824 -223813 COG0742 176.262 -223814 COG0743 473.622 -223815 COG0744 150.971 -223816 COG0745 32.2689 -223817 COG0746 108.54 -223818 COG0747 56.8778 -223819 COG0748 112.868 -223820 COG0749 514.12 -223821 COG0750 43.6499 -223822 COG0751 780.247 -223823 COG0752 550.755 -223824 COG0753 377.063 -223825 COG0754 299.278 -223826 COG0755 101.713 -223827 COG0756 125.798 -223828 COG0757 217.467 -223829 COG0758 112.402 -223830 COG0759 95.0826 -223831 COG0760 37.3687 -223832 COG0761 299.144 -223833 COG0762 31.8242 -223834 COG0763 385.072 -223835 COG0764 66.1232 -223836 COG0765 141.873 -223837 COG0766 433.082 -223838 COG0767 188.566 -223839 COG0768 237.306 -223840 COG0769 199.856 -223841 COG0770 199.45 -223842 COG0771 305.743 -223843 COG0772 76.5016 -223844 COG0773 417.752 -223845 COG0774 373.516 -223846 COG0775 65.0568 -223847 COG0776 67.9237 -223848 COG0777 229.122 -223849 COG0778 32.2205 -223850 COG0779 121.999 -223851 COG0780 81.5882 -223852 COG0781 86.599 -223853 COG0782 58.465 -223854 COG0783 68.8369 -223855 COG0784 29.0424 -223856 COG0785 71.9616 -223857 COG0786 328.051 -223858 COG0787 288.721 -223859 COG0788 348.437 -223860 COG0789 36.6476 -223861 COG0790 36.9459 -223862 COG0791 34.5697 -223863 COG0792 100.384 -223864 COG0793 242.623 -223865 COG0794 147.798 -223866 COG0795 123.602 -223867 COG0796 266.372 -223868 COG0797 136.087 -223869 COG0798 89.2758 -223870 COG0799 110.018 -223871 COG0800 169.322 -223872 COG0801 73.8353 -223873 COG0802 125.053 -223874 COG0803 103.608 -223875 COG0804 1062.72 -223876 COG0805 140.063 -223877 COG0806 138.504 -223878 COG0807 100.111 -223879 COG0809 270.995 -223880 COG0810 61.34 -223881 COG0811 72.7302 -223882 COG0812 259.453 -223883 COG0813 267.191 -223884 COG0814 163.976 -223885 COG0815 149.482 -223886 COG0816 96.1473 -223887 COG0817 180.503 -223888 COG0818 59.918 -223889 COG0819 193.686 -223890 COG0820 254.16 -223891 COG0821 384.26 -223892 COG0822 99.7502 -223893 COG0823 107.537 -223894 COG0824 79.21 -223895 COG0825 274.526 -223896 COG0826 129.342 -223897 COG0827 50.9627 -223898 COG0828 30.7529 -223899 COG0829 243.344 -223900 COG0830 176.735 -223901 COG0831 150.557 -223902 COG0832 165.939 -223903 COG0833 209.019 -223904 COG0834 38.4453 -223905 COG0835 89.6619 -223906 COG0836 188.982 -223907 COG0837 362.354 -223908 COG0838 73.0209 -223909 COG0839 41.4905 -223910 COG0840 34.196 -223911 COG0841 38.3588 -223912 COG0842 29.9 -223913 COG0843 328.87 -223914 COG0845 27.3666 -223915 COG0846 154.352 -223916 COG0847 42.1393 -223917 COG0848 70.3387 -223918 COG0849 224.034 -223919 COG0850 120.888 -223920 COG0851 86.1892 -223921 COG0852 152.091 -223922 COG0853 163.202 -223923 COG0854 328.076 -223924 COG0855 650.111 -223925 COG0856 259.692 -223926 COG0857 110.095 -223927 COG0858 69.1826 -223928 COG0859 62.0041 -223929 COG0860 100.92 -223930 COG0861 117.31 -223931 COG0863 32.6045 -223932 COG0864 75.7875 -223933 COG1001 123.948 -223934 COG1002 29.0772 -223935 COG1003 625.474 -223936 COG1004 138.869 -223937 COG1005 108.106 -223938 COG1006 53.4097 -223939 COG1007 183.244 -223940 COG1008 434.329 -223941 COG1009 258.38 -223942 COG1010 318.803 -223943 COG1011 50.2863 -223944 COG1012 49.2168 -223945 COG1013 82.7444 -223946 COG1014 53.5291 -223947 COG1015 483.696 -223948 COG1017 201.389 -223949 COG1018 145.118 -223950 COG1019 195.598 -223951 COG1020 33.3879 -223952 COG1021 854.418 -223953 COG1022 448.305 -223954 COG1023 464.556 -223955 COG1024 29.2913 -223956 COG1025 790.804 -223957 COG1026 1066.95 -223958 COG1027 715.996 -223959 COG1028 35.5638 -223960 COG1029 565.112 -223961 COG1030 198.347 -223962 COG1031 788.883 -223963 COG1032 108.874 -223964 COG1033 290.744 -223965 COG1034 276.563 -223966 COG1035 258.833 -223967 COG1036 244.631 -223968 COG1038 1836.59 -223969 COG1039 180.595 -223970 COG1040 65.4897 -223971 COG1041 199.531 -223972 COG1042 104.747 -223973 COG1043 351.528 -223974 COG1044 180.957 -223975 COG1045 147.074 -223976 COG1047 121.207 -223977 COG1048 643.999 -223978 COG1049 1259.27 -223979 COG1051 41.2247 -223980 COG1052 175.113 -223981 COG1053 79.7178 -223982 COG1054 330.007 -223983 COG1055 211.317 -223984 COG1056 113.203 -223985 COG1057 114.692 -223986 COG1058 40.299 -223987 COG1059 251.556 -223988 COG1060 262.612 -223989 COG1061 164.535 -223990 COG1062 152.376 -223991 COG1063 59.3175 -223992 COG1064 66.4571 -223993 COG1066 278.335 -223994 COG1067 423.69 -223995 COG1069 617.029 -223996 COG1070 176.799 -223997 COG1071 283.765 -223998 COG1072 133.151 -223999 COG1073 36.6119 -224000 COG1074 496.985 -224001 COG1075 113.756 -224002 COG1076 91.6359 -224003 COG1077 271.025 -224004 COG1078 211.476 -224005 COG1079 133.481 -224006 COG1080 233.252 -224007 COG1082 44.4519 -224008 COG1083 286.57 -224009 COG1084 368.169 -224010 COG1085 210.352 -224011 COG1086 210.206 -224012 COG1087 160.803 -224013 COG1088 413.546 -224014 COG1089 298.888 -224015 COG1090 383.154 -224016 COG1091 160.534 -224017 COG1092 184.051 -224018 COG1093 296.918 -224019 COG1094 185.572 -224020 COG1095 167.085 -224021 COG1096 180.225 -224022 COG1097 191.787 -224023 COG1098 88.8804 -224024 COG1099 335.916 -224025 COG1100 31.8547 -224026 COG1101 348.931 -224027 COG1102 193.306 -224028 COG1103 664.547 -224029 COG1104 320.273 -224030 COG1105 226.329 -224031 COG1106 103.369 -224032 COG1107 764.657 -224033 COG1108 74.8806 -224034 COG1109 60.0512 -224035 COG1110 450.683 -224036 COG1111 655.18 -224037 COG1112 28.7737 -224038 COG1113 88.0647 -224039 COG1114 340.752 -224040 COG1115 43.7184 -224041 COG1116 132.295 -224042 COG1117 312.167 -224043 COG1118 282.316 -224044 COG1119 253.388 -224045 COG1120 77.2184 -224046 COG1121 187.051 -224047 COG1122 103.105 -224048 COG1123 238.245 -224049 COG1124 264.127 -224050 COG1125 289.197 -224051 COG1126 87.1782 -224052 COG1127 353.051 -224053 COG1129 128.012 -224054 COG1131 130.89 -224055 COG1132 26.2374 -224056 COG1133 495.065 -224057 COG1134 73.4187 -224058 COG1135 277.593 -224059 COG1136 149.197 -224060 COG1137 361.52 -224061 COG1138 322.776 -224062 COG1139 83.9234 -224063 COG1140 862.512 -224064 COG1141 35.4514 -224065 COG1142 106.806 -224066 COG1143 118.305 -224067 COG1144 77.0466 -224068 COG1145 27.9576 -224069 COG1146 28.202 -224070 COG1148 138.372 -224071 COG1149 228.393 -224072 COG1150 179.143 -224073 COG1151 563.959 -224074 COG1152 298.659 -224075 COG1153 174.533 -224076 COG1154 617.675 -224077 COG1155 332.315 -224078 COG1156 455.253 -224079 COG1157 551.436 -224080 COG1158 625.453 -224081 COG1159 279.076 -224082 COG1160 364.202 -224083 COG1161 148.3 -224084 COG1162 139.347 -224085 COG1163 419.76 -224086 COG1164 129.381 -224087 COG1165 613.176 -224088 COG1166 901.297 -224089 COG1167 155.951 -224090 COG1168 410.137 -224091 COG1169 417.88 -224092 COG1171 226.328 -224093 COG1172 52.5375 -224094 COG1173 115.051 -224095 COG1174 125.778 -224096 COG1175 34.8911 -224097 COG1176 138.898 -224098 COG1177 157.733 -224099 COG1178 108.882 -224100 COG1179 210.232 -224101 COG1180 117.014 -224102 COG1181 173.618 -224103 COG1182 221.742 -224104 COG1183 135.101 -224105 COG1184 184.497 -224106 COG1185 389.628 -224107 COG1186 117.336 -224108 COG1187 107.713 -224109 COG1188 78.8815 -224110 COG1189 200.168 -224111 COG1190 257.903 -224112 COG1191 84.6889 -224113 COG1192 45.5879 -224114 COG1193 326.6 -224115 COG1194 229.538 -224116 COG1195 97.2916 -224117 COG1196 270.432 -224118 COG1197 1071.89 -224119 COG1198 348.165 -224120 COG1199 179.616 -224121 COG1200 650.815 -224122 COG1201 480.99 -224123 COG1202 922.643 -224124 COG1203 275.492 -224125 COG1204 426.798 -224126 COG1205 144.857 -224127 COG1206 741.085 -224128 COG1207 323.748 -224129 COG1208 70.8259 -224130 COG1209 94.9494 -224131 COG1210 267.479 -224132 COG1211 200.135 -224133 COG1212 324.236 -224134 COG1213 224.138 -224135 COG1214 84.3967 -224136 COG1215 45.6986 -224137 COG1216 63.6571 -224138 COG1217 977.103 -224139 COG1218 256.853 -224140 COG1219 543.734 -224141 COG1220 649.71 -224142 COG1221 266.557 -224143 COG1222 85.0094 -224144 COG1223 576.764 -224145 COG1224 596.641 -224146 COG1225 130.844 -224147 COG1226 28.5329 -224148 COG1227 69.673 -224149 COG1228 162.539 -224150 COG1229 969.259 -224151 COG1230 58.8632 -224152 COG1231 261.986 -224153 COG1232 315.04 -224154 COG1233 90.1864 -224155 COG1234 81.6918 -224156 COG1235 84.4258 -224157 COG1236 166.444 -224158 COG1237 157.944 -224159 COG1238 58.4622 -224160 COG1239 327.826 -224161 COG1240 188.338 -224162 COG1241 55.815 -224163 COG1242 430.206 -224164 COG1243 362.833 -224165 COG1244 417.186 -224166 COG1245 960.6 -224167 COG1246 127.049 -224168 COG1247 89.2988 -224169 COG1249 78.7895 -224170 COG1250 127.744 -224171 COG1251 193.688 -224172 COG1252 290.305 -224173 COG1253 202.527 -224174 COG1254 74.533 -224175 COG1255 168.37 -224176 COG1256 300.879 -224177 COG1257 424.056 -224178 COG1258 338.183 -224179 COG1259 129.361 -224180 COG1260 362.417 -224181 COG1261 125.934 -224182 COG1262 80.3024 -224183 COG1263 35.6799 -224184 COG1264 28.0298 -224185 COG1266 28.7288 -224186 COG1267 94.7147 -224187 COG1268 104.248 -224188 COG1269 295.809 -224189 COG1270 177.504 -224190 COG1271 242.158 -224191 COG1272 161.251 -224192 COG1273 127.82 -224193 COG1274 859.386 -224194 COG1275 104.71 -224195 COG1276 97.8663 -224196 COG1277 29.3555 -224197 COG1278 35.5962 -224198 COG1279 167.435 -224199 COG1280 71.886 -224200 COG1281 151.265 -224201 COG1282 342.037 -224202 COG1283 70.3563 -224203 COG1284 68.3809 -224204 COG1285 105.481 -224205 COG1286 76.1701 -224206 COG1287 292.421 -224207 COG1288 199.448 -224208 COG1289 100.953 -224209 COG1290 96.2639 -224210 COG1291 224.78 -224211 COG1292 310.369 -224212 COG1293 201.467 -224213 COG1294 202.47 -224214 COG1295 95.0712 -224215 COG1296 136.27 -224216 COG1297 450.689 -224217 COG1298 127.754 -224218 COG1299 174.312 -224219 COG1300 82.7482 -224220 COG1301 63.7804 -224221 COG1302 83.0946 -224222 COG1303 253.024 -224223 COG1304 158.218 -224224 COG1305 43.5039 -224225 COG1306 545.3 -224226 COG1307 162.42 -224227 COG1308 84.7315 -224228 COG1309 32.603 -224229 COG1310 61.3422 -224230 COG1311 436.832 -224231 COG1312 370.159 -224232 COG1313 395.209 -224233 COG1314 33.0071 -224234 COG1315 511.992 -224235 COG1316 56.6629 -224236 COG1317 127.9 -224237 COG1318 112.662 -224238 COG1319 193.671 -224239 COG1320 58.0998 -224240 COG1321 69.6902 -224241 COG1322 328.967 -224242 COG1323 68.9387 -224243 COG1324 74.228 -224244 COG1325 140.601 -224245 COG1326 184.198 -224246 COG1327 199.383 -224247 COG1328 211.442 -224248 COG1329 214.517 -224249 COG1330 862.076 -224250 COG1331 119.01 -224251 COG1332 285.501 -224252 COG1333 399.48 -224253 COG1334 110.523 -224254 COG1335 55.6354 -224255 COG1336 229.251 -224256 COG1337 174.142 -224257 COG1338 117.344 -224258 COG1339 158.305 -224259 COG1340 151.372 -224260 COG1341 314.338 -224261 COG1342 124.008 -224262 COG1343 71.9362 -224263 COG1344 70.9297 -224264 COG1345 228.064 -224265 COG1346 204.727 -224266 COG1347 295.862 -224267 COG1348 379.362 -224268 COG1349 58.0139 -224269 COG1350 676.429 -224270 COG1351 152.176 -224271 COG1352 185.176 -224272 COG1353 137.999 -224273 COG1354 87.7558 -224274 COG1355 272.272 -224275 COG1356 173.44 -224276 COG1357 40.2436 -224277 COG1358 59.638 -224278 COG1359 61.2194 -224279 COG1360 120.946 -224280 COG1361 83.7657 -224281 COG1362 557.713 -224282 COG1363 295.666 -224283 COG1364 472.491 -224284 COG1365 333.699 -224285 COG1366 32.3849 -224286 COG1367 325.016 -224287 COG1368 235.792 -224288 COG1369 115.14 -224289 COG1370 114.359 -224290 COG1371 109.753 -224291 COG1372 31.9056 -224292 COG1373 36.9969 -224293 COG1374 152.569 -224294 COG1376 56.8007 -224295 COG1377 383.885 -224296 COG1378 80.9425 -224297 COG1379 455.781 -224298 COG1380 84.9719 -224299 COG1381 159.82 -224300 COG1382 75.4219 -224301 COG1383 78.9421 -224302 COG1384 588.912 -224303 COG1385 173.222 -224304 COG1386 78.142 -224305 COG1387 115.519 -224306 COG1388 37.2041 -224307 COG1389 649.847 -224308 COG1390 42.7455 -224309 COG1391 894.779 -224310 COG1392 109.306 -224311 COG1393 83.022 -224312 COG1394 169.769 -224313 COG1395 263.825 -224314 COG1396 25.7666 -224315 COG1397 236.505 -224316 COG1398 305.082 -224317 COG1399 117.482 -224318 COG1400 87.4041 -224319 COG1401 204.278 -224320 COG1402 182.594 -224321 COG1403 28.3772 -224322 COG1404 32.2152 -224323 COG1405 79.6687 -224324 COG1406 181.843 -224325 COG1407 98.9874 -224326 COG1408 60.8973 -224327 COG1409 34.1689 -224328 COG1410 65.445 -224329 COG1411 264.34 -224330 COG1412 100.87 -224331 COG1413 47.6047 -224332 COG1414 129.65 -224333 COG1415 178.338 -224334 COG1416 113.578 -224335 COG1417 130.978 -224336 COG1418 82.876 -224337 COG1419 365.515 -224338 COG1420 213.654 -224339 COG1421 119.11 -224340 COG1422 162.138 -224341 COG1423 461.82 -224342 COG1424 316.024 -224343 COG1426 93.2958 -224344 COG1427 208.397 -224345 COG1428 215.25 -224346 COG1429 110.957 -224347 COG1430 111.658 -224348 COG1431 526.379 -224349 COG1432 34.3086 -224350 COG1433 45.4131 -224351 COG1434 35.9317 -224352 COG1435 205.157 -224353 COG1436 63.0823 -224354 COG1437 125.916 -224355 COG1438 153.923 -224356 COG1439 113.659 -224357 COG1440 110.811 -224358 COG1441 550.571 -224359 COG1442 43.0751 -224360 COG1443 250.757 -224361 COG1444 102.455 -224362 COG1445 123.945 -224363 COG1446 160.599 -224364 COG1447 101.921 -224365 COG1448 469.421 -224366 COG1449 301.29 -224367 COG1450 159.852 -224368 COG1451 45.8788 -224369 COG1452 57.427 -224370 COG1453 397.88 -224371 COG1454 243.274 -224372 COG1455 78.4039 -224373 COG1456 753.162 -224374 COG1457 251.846 -224375 COG1458 245.43 -224376 COG1459 165.847 -224377 COG1460 87.7994 -224378 COG1461 65.3754 -224379 COG1462 165.304 -224380 COG1463 88.2897 -224381 COG1464 289.137 -224382 COG1465 457.748 -224383 COG1466 149.052 -224384 COG1467 201.075 -224385 COG1468 61.6586 -224386 COG1469 275.782 -224387 COG1470 452.7 -224388 COG1471 325.416 -224389 COG1472 87.8393 -224390 COG1473 91.188 -224391 COG1474 44.6489 -224392 COG1475 32.167 -224393 COG1476 61.85 -224394 COG1477 148.232 -224395 COG1478 245.363 -224396 COG1479 37.6219 -224397 COG1480 620.941 -224398 COG1481 254.173 -224399 COG1482 254.916 -224400 COG1483 86.7446 -224401 COG1484 55.489 -224402 COG1485 337.731 -224403 COG1486 326.526 -224404 COG1487 35.1642 -224405 COG1488 214.472 -224406 COG1489 222.931 -224407 COG1490 209.773 -224408 COG1491 228.032 -224409 COG1492 397.366 -224410 COG1493 141.256 -224411 COG1494 373.952 -224412 COG1495 69.3947 -224413 COG1496 194.457 -224414 COG1497 325.859 -224415 COG1498 194.54 -224416 COG1499 233.05 -224417 COG1500 231.052 -224418 COG1501 206.868 -224419 COG1502 34.0597 -224420 COG1503 272.702 -224421 COG1504 146.098 -224422 COG1505 67.4188 -224423 COG1506 135.735 -224424 COG1507 200.837 -224425 COG1508 262.272 -224426 COG1509 441.724 -224427 COG1510 147.518 -224428 COG1511 166.527 -224429 COG1512 188.33 -224430 COG1513 169.188 -224431 COG1514 116.657 -224432 COG1515 162.101 -224433 COG1516 125.114 -224434 COG1517 121.759 -224435 COG1518 94.3256 -224436 COG1519 402.819 -224437 COG1520 29.8504 -224438 COG1521 155.568 -224439 COG1522 31.9717 -224440 COG1523 536.156 -224441 COG1524 86.0733 -224442 COG1525 52.9365 -224443 COG1526 212.162 -224444 COG1527 249.958 -224445 COG1528 173.24 -224446 COG1529 74.2981 -224447 COG1530 194.43 -224448 COG1531 73.5592 -224449 COG1532 54.7754 -224450 COG1533 131.356 -224451 COG1534 60.3297 -224452 COG1535 286.713 -224453 COG1536 206.352 -224454 COG1537 108.55 -224455 COG1538 42.0815 -224456 COG1539 73.8061 -224457 COG1540 345.009 -224458 COG1541 105.093 -224459 COG1542 691.616 -224460 COG1543 409.847 -224461 COG1544 60.7362 -224462 COG1545 90.4803 -224463 COG1546 139.659 -224464 COG1547 79.8172 -224465 COG1548 450.008 -224466 COG1549 217.675 -224467 COG1550 124.797 -224468 COG1551 70.518 -224469 COG1552 45.1609 -224470 COG1553 129.031 -224471 COG1554 128.994 -224472 COG1555 75.5601 -224473 COG1556 125.188 -224474 COG1558 168.242 -224475 COG1559 324.616 -224476 COG1560 190.185 -224477 COG1561 134.682 -224478 COG1562 124.416 -224479 COG1563 54.7133 -224480 COG1564 173.225 -224481 COG1565 341.629 -224482 COG1566 112.422 -224483 COG1567 277.036 -224484 COG1568 465.406 -224485 COG1569 145.577 -224486 COG1570 164.735 -224487 COG1571 271.137 -224488 COG1572 113.011 -224489 COG1573 91.2919 -224490 COG1574 302.336 -224491 COG1575 264.119 -224492 COG1576 164.705 -224493 COG1577 228.733 -224494 COG1578 300.436 -224495 COG1579 151.364 -224496 COG1580 97.3953 -224497 COG1581 95.126 -224498 COG1582 85.5543 -224499 COG1583 176.769 -224500 COG1584 190.246 -224501 COG1585 52.3517 -224502 COG1586 159.022 -224503 COG1587 104.781 -224504 COG1588 81.9846 -224505 COG1589 141.76 -224506 COG1590 230.704 -224507 COG1591 144.433 -224508 COG1592 46.1692 -224509 COG1593 194.3 -224510 COG1594 63.2439 -224511 COG1595 60.1045 -224512 COG1596 89.807 -224513 COG1597 172.116 -224514 COG1598 35.836 -224515 COG1599 77.1479 -224516 COG1600 88.2211 -224517 COG1601 105.137 -224518 COG1602 90.8585 -224519 COG1603 132.913 -224520 COG1604 265.086 -224521 COG1605 55.8108 -224522 COG1606 273.472 -224523 COG1607 126.617 -224524 COG1608 226.096 -224525 COG1609 41.5258 -224526 COG1610 150.547 -224527 COG1611 97.7649 -224528 COG1612 103.233 -224529 COG1613 433.713 -224530 COG1614 779.382 -224531 COG1615 355.199 -224532 COG1617 127.576 -224533 COG1618 186.755 -224534 COG1619 242.6 -224535 COG1620 63.0329 -224536 COG1621 327.796 -224537 COG1622 92.4308 -224538 COG1623 503.46 -224539 COG1624 159.758 -224540 COG1625 336.295 -224541 COG1626 566.678 -224542 COG1627 347.697 -224543 COG1628 177.126 -224544 COG1629 35.6339 -224545 COG1630 209.206 -224546 COG1631 70.5277 -224547 COG1632 89.7339 -224548 COG1633 61.2908 -224549 COG1634 231.902 -224550 COG1635 315.033 -224551 COG1636 254.601 -224552 COG1637 267.278 -224553 COG1638 202.878 -224554 COG1639 238.465 -224555 COG1640 85.8736 -224556 COG1641 172.142 -224557 COG1643 271.501 -224558 COG1644 98.1733 -224559 COG1645 94.8313 -224560 COG1646 232.559 -224561 COG1647 312.347 -224562 COG1648 109.325 -224563 COG1649 356.726 -224564 COG1650 198.823 -224565 COG1651 67.5809 -224566 COG1652 51.4936 -224567 COG1653 61.553 -224568 COG1654 68.8882 -224569 COG1655 260.627 -224570 COG1656 58.6262 -224571 COG1657 238.145 -224572 COG1658 78.9148 -224573 COG1659 407.73 -224574 COG1660 395.062 -224575 COG1661 114.338 -224576 COG1662 27.3372 -224577 COG1663 272.276 -224578 COG1664 89.6795 -224579 COG1665 379.119 -224580 COG1666 204.524 -224581 COG1667 139.62 -224582 COG1668 62.4585 -224583 COG1669 76.5407 -224584 COG1670 35.309 -224585 COG1671 169.003 -224586 COG1672 35.9202 -224587 COG1673 87.1018 -224588 COG1674 123.805 -224589 COG1675 82.392 -224590 COG1676 73.968 -224591 COG1677 75.0739 -224592 COG1678 202.904 -224593 COG1679 448.746 -224594 COG1680 56.9273 -224595 COG1681 106.632 -224596 COG1682 134.631 -224597 COG1683 149.773 -224598 COG1684 131.943 -224599 COG1685 261.505 -224600 COG1686 97.8271 -224601 COG1687 97.3914 -224602 COG1688 145.667 -224603 COG1689 391.153 -224604 COG1690 97.0379 -224605 COG1691 237.293 -224606 COG1692 343.864 -224607 COG1693 358.27 -224608 COG1694 30.7763 -224609 COG1695 38.3251 -224610 COG1696 134.776 -224611 COG1697 330.863 -224612 COG1698 114.405 -224613 COG1699 146.747 -224614 COG1700 479.435 -224615 COG1701 289.668 -224616 COG1702 339.627 -224617 COG1703 342.768 -224618 COG1704 133.193 -224619 COG1705 167.565 -224620 COG1706 289.987 -224621 COG1707 316.38 -224622 COG1708 27.2535 -224623 COG1709 326.6 -224624 COG1710 106.172 -224625 COG1711 156.909 -224626 COG1712 273.124 -224627 COG1713 112.39 -224628 COG1714 30.5465 -224629 COG1715 194.529 -224630 COG1716 34.161 -224631 COG1717 151.363 -224632 COG1718 231.825 -224633 COG1719 58.5545 -224634 COG1720 145.565 -224635 COG1721 118.387 -224636 COG1722 39.6097 -224637 COG1723 308.898 -224638 COG1724 77.04 -224639 COG1725 117.363 -224640 COG1726 698.013 -224641 COG1727 121.278 -224642 COG1728 154.892 -224643 COG1729 182.645 -224644 COG1730 77.4 -224645 COG1731 226.95 -224646 COG1732 271.86 -224647 COG1733 44.6639 -224648 COG1734 57.4128 -224649 COG1735 160.206 -224650 COG1736 253.031 -224651 COG1737 60.3879 -224652 COG1738 87.7962 -224653 COG1739 135.902 -224654 COG1740 354.807 -224655 COG1741 107.777 -224656 COG1742 98.1601 -224657 COG1743 166.127 -224658 COG1744 100.114 -224659 COG1745 87.8238 -224660 COG1746 505.333 -224661 COG1747 738.657 -224662 COG1748 292.7 -224663 COG1749 89.3363 -224664 COG1750 244.686 -224665 COG1751 295.171 -224666 COG1752 88.6381 -224667 COG1753 54.8435 -224668 COG1754 213.413 -224669 COG1755 165.966 -224670 COG1756 199.492 -224671 COG1757 198.671 -224672 COG1758 49.2291 -224673 COG1759 485.291 -224674 COG1760 146.598 -224675 COG1761 48.8745 -224676 COG1762 28.8302 -224677 COG1763 93.1735 -224678 COG1764 94.7065 -224679 COG1765 70.4892 -224680 COG1766 251.921 -224681 COG1767 196.835 -224682 COG1768 351.033 -224683 COG1769 415.468 -224684 COG1770 309.611 -224685 COG1771 479.415 -224686 COG1772 272.038 -224687 COG1773 55.3783 -224688 COG1774 220.351 -224689 COG1775 348.252 -224690 COG1776 124.362 -224691 COG1777 169.535 -224692 COG1778 233.323 -224693 COG1779 210.657 -224694 COG1780 172.107 -224695 COG1781 182.866 -224696 COG1782 973.333 -224697 COG1783 428.055 -224698 COG1784 302.77 -224699 COG1785 391.774 -224700 COG1786 120.142 -224701 COG1787 154.234 -224702 COG1788 121.199 -224703 COG1790 220.539 -224704 COG1791 215.364 -224705 COG1792 65.0716 -224706 COG1793 37.7403 -224707 COG1794 257.561 -224708 COG1795 198.836 -224709 COG1796 315.43 -224710 COG1797 385.041 -224711 COG1798 281.104 -224712 COG1799 115.955 -224713 COG1800 262.803 -224714 COG1801 164.486 -224715 COG1802 54.3089 -224716 COG1803 216.422 -224717 COG1804 107.399 -224718 COG1805 216.55 -224719 COG1806 340.391 -224720 COG1807 134.905 -224721 COG1808 78.9749 -224722 COG1809 372.957 -224723 COG1810 241.131 -224724 COG1811 63.0753 -224725 COG1812 559.611 -224726 COG1813 71.3133 -224727 COG1814 61.2504 -224728 COG1815 108.193 -224729 COG1816 297.303 -224730 COG1817 361.727 -224731 COG1818 97.8063 -224732 COG1819 200.349 -224733 COG1820 106.197 -224734 COG1821 374.157 -224735 COG1822 163.306 -224736 COG1823 501.512 -224737 COG1824 122.096 -224738 COG1825 52.2568 -224739 COG1826 28.1196 -224740 COG1827 95.8839 -224741 COG1828 80.3575 -224742 COG1829 190.293 -224743 COG1830 250.253 -224744 COG1831 322.016 -224745 COG1832 147.45 -224746 COG1833 131.715 -224747 COG1834 252.248 -224748 COG1835 47.8607 -224749 COG1836 199.447 -224750 COG1837 60.6587 -224751 COG1838 128.187 -224752 COG1839 241.127 -224753 COG1840 54.7493 -224754 COG1841 41.7491 -224755 COG1842 63.1054 -224756 COG1843 113.65 -224757 COG1844 156.061 -224758 COG1845 108.155 -224759 COG1846 30.642 -224760 COG1847 163.615 -224761 COG1848 39.7695 -224762 COG1849 77.4861 -224763 COG1850 544.258 -224764 COG1851 363.403 -224765 COG1852 199.569 -224766 COG1853 76.5707 -224767 COG1854 230.312 -224768 COG1855 748.422 -224769 COG1856 379.185 -224770 COG1857 89.056 -224771 COG1858 308.191 -224772 COG1859 149.02 -224773 COG1860 137.528 -224774 COG1861 319.714 -224775 COG1862 58.7975 -224776 COG1863 88.1075 -224777 COG1864 126.399 -224778 COG1865 151.003 -224779 COG1866 615.52 -224780 COG1867 289.629 -224781 COG1868 164.383 -224782 COG1869 163.642 -224783 COG1871 185.95 -224784 COG1872 78.5309 -224785 COG1873 58.4448 -224786 COG1874 370.211 -224787 COG1875 299.27 -224788 COG1876 146.056 -224789 COG1877 231.482 -224790 COG1878 132.451 -224791 COG1879 34.3665 -224792 COG1880 171.131 -224793 COG1881 126.725 -224794 COG1882 205.273 -224795 COG1883 498.053 -224796 COG1884 54.2625 -224797 COG1885 162.964 -224798 COG1886 84.3723 -224799 COG1887 122.132 -224800 COG1888 87.0073 -224801 COG1889 284.219 -224802 COG1890 218.364 -224803 COG1891 368 -224804 COG1892 574.762 -224805 COG1893 95.8404 -224806 COG1894 592.65 -224807 COG1895 144.928 -224808 COG1896 98.6067 -224809 COG1897 433.698 -224810 COG1898 62.6858 -224811 COG1899 359.635 -224812 COG1900 399.086 -224813 COG1901 165.229 -224814 COG1902 276.82 -224815 COG1903 247.245 -224816 COG1904 142.103 -224817 COG1905 89.6224 -224818 COG1906 382.226 -224819 COG1907 329.693 -224820 COG1908 202.972 -224821 COG1909 170.581 -224822 COG1910 162.908 -224823 COG1911 117.438 -224824 COG1912 289.182 -224825 COG1913 208 -224826 COG1914 62.3024 -224827 COG1915 697.26 -224828 COG1916 241.102 -224829 COG1917 54.8833 -224830 COG1918 66.8344 -224831 COG1920 204.589 -224832 COG1921 273.084 -224833 COG1922 225.24 -224834 COG1923 83.5919 -224835 COG1924 296.546 -224836 COG1925 67.9787 -224837 COG1926 229.5 -224838 COG1927 431.179 -224839 COG1928 323.673 -224840 COG1929 140.837 -224841 COG1930 82.0673 -224842 COG1931 150.6 -224843 COG1932 362.738 -224844 COG1933 414.902 -224845 COG1934 136.341 -224846 COG1935 148.762 -224847 COG1936 118.954 -224848 COG1937 62.6562 -224849 COG1938 104.326 -224850 COG1939 159.018 -224851 COG1940 27.4537 -224852 COG1941 189.127 -224853 COG1942 55.7428 -224854 COG1943 59.2264 -224855 COG1944 195.659 -224856 COG1945 134.446 -224857 COG1946 266.866 -224858 COG1947 256.033 -224859 COG1948 207.582 -224860 COG1949 297.713 -224861 COG1950 63.4609 -224862 COG1951 255.644 -224863 COG1952 167.864 -224864 COG1953 356.976 -224865 COG1954 216.028 -224866 COG1955 404.03 -224867 COG1956 130.488 -224868 COG1957 59.5531 -224869 COG1958 41.1331 -224870 COG1959 67.7271 -224871 COG1960 29.3926 -224872 COG1961 29.003 -224873 COG1962 446.521 -224874 COG1963 152.173 -224875 COG1964 150.995 -224876 COG1965 129.385 -224877 COG1966 134.779 -224878 COG1967 192.934 -224879 COG1968 98.029 -224880 COG1969 237.364 -224881 COG1970 90.8191 -224882 COG1971 113.485 -224883 COG1972 430.502 -224884 COG1973 639.104 -224885 COG1974 122.743 -224886 COG1975 110.528 -224887 COG1976 264.511 -224888 COG1977 49.6134 -224889 COG1978 204.698 -224890 COG1979 561.153 -224891 COG1980 695.702 -224892 COG1981 154.413 -224893 COG1982 422.902 -224894 COG1983 59.613 -224895 COG1984 210.933 -224896 COG1985 88.1371 -224897 COG1986 207.922 -224898 COG1987 74.1619 -224899 COG1988 43.9823 -224900 COG1989 37.3817 -224901 COG1990 150.181 -224902 COG1991 28.9614 -224903 COG1992 165.972 -224904 COG1993 110.853 -224905 COG1994 55.0761 -224906 COG1995 354.64 -224907 COG1996 41.2005 -224908 COG1997 85.8899 -224909 COG1998 61.3128 -224910 COG1999 94.0146 -224911 COG2000 247.462 -224912 COG2001 155.098 -224913 COG2002 29.2712 -224914 COG2003 95.7715 -224915 COG2004 106.993 -224916 COG2005 104.704 -224917 COG2006 263.102 -224918 COG2007 106.994 -224919 COG2008 325.385 -224920 COG2009 31.5398 -224921 COG2010 29.2005 -224922 COG2011 171.595 -224923 COG2012 71.2284 -224924 COG2013 127.792 -224925 COG2014 333.719 -224926 COG2015 1121.4 -224927 COG2016 172.476 -224928 COG2017 40.4562 -224929 COG2018 110.85 -224930 COG2019 186.834 -224931 COG2020 57.8323 -224932 COG2021 310.032 -224933 COG2022 373.123 -224934 COG2023 72.4069 -224935 COG2024 892.227 -224936 COG2025 107.306 -224937 COG2026 48.4154 -224938 COG2027 263.508 -224939 COG2028 139.577 -224940 COG2029 227.341 -224941 COG2030 55.1614 -224942 COG2031 120.923 -224943 COG2032 142.16 -224944 COG2033 136.833 -224945 COG2034 35.3258 -224946 COG2035 175.556 -224947 COG2036 63.8863 -224948 COG2037 474.22 -224949 COG2038 179.411 -224950 COG2039 286.145 -224951 COG2040 156.743 -224952 COG2041 95.967 -224953 COG2042 243.786 -224954 COG2043 184.868 -224955 COG2044 112.433 -224956 COG2045 235.32 -224957 COG2046 298.5 -224958 COG2047 284.274 -224959 COG2048 168.265 -224960 COG2049 217.484 -224961 COG2050 50.4585 -224962 COG2051 80.1256 -224963 COG2052 147.276 -224964 COG2053 66.67 -224965 COG2054 290.569 -224966 COG2055 335.371 -224967 COG2056 536.894 -224968 COG2057 204.434 -224969 COG2058 56.2564 -224970 COG2059 91.5426 -224971 COG2060 192.073 -224972 COG2061 168.806 -224973 COG2062 127.023 -224974 COG2063 186.003 -224975 COG2064 49.1035 -224976 COG2065 211.754 -224977 COG2066 173.973 -224978 COG2067 223.037 -224979 COG2068 102.033 -224980 COG2069 646.118 -224981 COG2070 160.957 -224982 COG2071 141.312 -224983 COG2072 89.8252 -224984 COG2073 66.2667 -224985 COG2074 271.936 -224986 COG2075 69.71 -224987 COG2076 73.3362 -224988 COG2077 173.652 -224989 COG2078 184.457 -224990 COG2079 182.907 -224991 COG2080 161.625 -224992 COG2081 429.7 -224993 COG2082 166.692 -224994 COG2083 144.523 -224995 COG2084 39.4937 -224996 COG2085 148.257 -224997 COG2086 140.098 -224998 COG2087 159.756 -224999 COG2088 136.797 -225000 COG2089 386.688 -225001 COG2090 172.52 -225002 COG2091 175.255 -225003 COG2092 71.1815 -225004 COG2093 72.4638 -225005 COG2094 210.638 -225006 COG2095 50.6535 -225007 COG2096 152.416 -225008 COG2097 82.7821 -225009 COG2098 94.8127 -225010 COG2099 264.581 -225011 COG2100 398.381 -225012 COG2101 120.57 -225013 COG2102 197.88 -225014 COG2103 351.212 -225015 COG2104 36.8467 -225016 COG2105 98.1922 -225017 COG2106 236.508 -225018 COG2107 314.259 -225019 COG2108 372.127 -225020 COG2109 181.294 -225021 COG2110 118.987 -225022 COG2111 33.9064 -225023 COG2112 113.271 -225024 COG2113 178.285 -225025 COG2114 39.8314 -225026 COG2115 751.173 -225027 COG2116 184.008 -225028 COG2117 286.232 -225029 COG2118 80.4868 -225030 COG2119 73.1309 -225031 COG2120 105.978 -225032 COG2121 150.583 -225033 COG2122 292.105 -225034 COG2123 212.608 -225035 COG2124 71.6909 -225036 COG2125 120.12 -225037 COG2126 62.8461 -225038 COG2127 103.191 -225039 COG2128 47.9179 -225040 COG2129 178.714 -225041 COG2130 406.296 -225042 COG2131 144.079 -225043 COG2132 91.3899 -225044 COG2133 230.766 -225045 COG2134 384.161 -225046 COG2135 127.161 -225047 COG2136 134.447 -225048 COG2137 100.852 -225049 COG2138 91.3352 -225050 COG2139 127.427 -225051 COG2140 145.278 -225052 COG2141 45.2265 -225053 COG2142 63.0387 -225054 COG2143 192.404 -225055 COG2144 328.61 -225056 COG2145 270.675 -225057 COG2146 76.2303 -225058 COG2147 149.765 -225059 COG2148 177.813 -225060 COG2149 119.081 -225061 COG2150 208.33 -225062 COG2151 74.2333 -225063 COG2152 335.107 -225064 COG2153 189.078 -225065 COG2154 100.493 -225066 COG2155 66.5591 -225067 COG2156 174.04 -225068 COG2157 63.1599 -225069 COG2158 99.9053 -225070 COG2159 122.538 -225071 COG2160 658.754 -225072 COG2161 45.8411 -225073 COG2162 58.1327 -225074 COG2163 74.3725 -225075 COG2164 201.318 -225076 COG2165 28.0594 -225077 COG2166 141.638 -225078 COG2167 42.7893 -225079 COG2168 102.064 -225080 COG2169 117.454 -225081 COG2170 396.369 -225082 COG2171 227.188 -225083 COG2172 82.8064 -225084 COG2173 258.925 -225085 COG2174 93.2395 -225086 COG2175 110.155 -225087 COG2176 2009.91 -225088 COG2177 140.472 -225089 COG2178 187.54 -225090 COG2179 193.291 -225091 COG2180 170.227 -225092 COG2181 161.717 -225093 COG2182 303.903 -225094 COG2183 723.281 -225095 COG2184 181.066 -225096 COG2185 109.303 -225097 COG2186 55.0637 -225098 COG2187 452.264 -225099 COG2188 69.225 -225100 COG2189 60.2224 -225101 COG2190 98.0524 -225102 COG2191 203.043 -225103 COG2192 600.106 -225104 COG2193 152.86 -225105 COG2194 120.567 -225106 COG2195 251.463 -225107 COG2197 34.5869 -225108 COG2198 37.04 -225109 COG2199 36.6596 -225110 COG2200 71.5518 -225111 COG2201 174.404 -225112 COG2202 28.2764 -225113 COG2203 30.715 -225114 COG2204 147.844 -225115 COG2205 507.21 -225116 COG2206 189.237 -225117 COG2207 29.8337 -225118 COG2208 150.245 -225119 COG2209 286.622 -225120 COG2210 82.7632 -225121 COG2211 317.654 -225122 COG2212 42.5758 -225123 COG2213 162.882 -225124 COG2214 29.4069 -225125 COG2215 156.786 -225126 COG2216 1063.8 -225127 COG2217 69.1629 -225128 COG2218 264.625 -225129 COG2219 204.991 -225130 COG2220 37.8844 -225131 COG2221 243.408 -225132 COG2222 203.31 -225133 COG2223 195.562 -225134 COG2224 282.31 -225135 COG2225 229.956 -225136 COG2226 158.196 -225137 COG2227 200.251 -225138 COG2229 154.926 -225139 COG2230 153.174 -225140 COG2231 237.64 -225141 COG2232 411.928 -225142 COG2233 281.425 -225143 COG2234 102.292 -225144 COG2235 239.532 -225145 COG2236 111.687 -225146 COG2237 288.095 -225147 COG2238 195.629 -225148 COG2239 67.6836 -225149 COG2240 260.67 -225150 COG2241 165.109 -225151 COG2242 166.265 -225152 COG2243 169.01 -225153 COG2244 67.8555 -225154 COG2245 126.712 -225155 COG2246 41.5281 -225156 COG2247 217.785 -225157 COG2248 423.785 -225158 COG2249 123.557 -225159 COG2250 34.6707 -225160 COG2251 309.05 -225161 COG2252 126.575 -225162 COG2253 123.794 -225163 COG2254 115.991 -225164 COG2255 150.785 -225165 COG2256 518.328 -225166 COG2257 113.214 -225167 COG2258 102.797 -225168 COG2259 33.4809 -225169 COG2260 70.17 -225170 COG2261 33.6239 -225171 COG2262 145.49 -225172 COG2263 170.187 -225173 COG2264 163.625 -225174 COG2265 142.069 -225175 COG2266 177.504 -225176 COG2267 81.6499 -225177 COG2268 248.979 -225178 COG2269 426.372 -225179 COG2270 257.236 -225180 COG2271 341.557 -225181 COG2272 174.926 -225182 COG2273 123.733 -225183 COG2274 379.265 -225184 COG2301 152.839 -225185 COG2302 269.576 -225186 COG2303 55.1525 -225187 COG2304 39.1645 -225188 COG2306 190.047 -225189 COG2307 298.904 -225190 COG2308 610.479 -225191 COG2309 244.922 -225192 COG2310 73.964 -225193 COG2311 140.933 -225194 COG2312 232.37 -225195 COG2313 399.508 -225196 COG2314 45.079 -225197 COG2315 103.187 -225198 COG2316 290.661 -225199 COG2317 695.971 -225200 COG2318 129.435 -225201 COG2319 30.8271 -225202 COG2320 173.423 -225203 COG2321 308.169 -225204 COG2322 133.29 -225205 COG2323 76.5578 -225206 COG2324 209.299 -225207 COG2326 335.462 -225208 COG2327 231.949 -225209 COG2329 45.4366 -225210 COG2331 115.328 -225211 COG2332 156.341 -225212 COG2333 201.796 -225213 COG2334 204.88 -225214 COG2335 114.405 -225215 COG2336 89.7662 -225216 COG2337 37.7421 -225217 COG2339 108.242 -225218 COG2340 101.488 -225219 COG2342 218.876 -225220 COG2343 130.182 -225221 COG2344 264.555 -225222 COG2345 161.354 -225223 COG2346 133.991 -225224 COG2348 264.649 -225225 COG2350 80.0545 -225226 COG2351 169.043 -225227 COG2352 1088.52 -225228 COG2353 104.338 -225229 COG2354 309.739 -225230 COG2355 162.531 -225231 COG2356 288.26 -225232 COG2357 206.431 -225233 COG2358 256.497 -225234 COG2359 127.993 -225235 COG2360 229.116 -225236 COG2361 102.837 -225237 COG2362 364.418 -225238 COG2363 71.5558 -225239 COG2364 165.16 -225240 COG2365 138.346 -225241 COG2366 226.59 -225242 COG2367 178.398 -225243 COG2368 511.501 -225244 COG2369 205.15 -225245 COG2370 140.635 -225246 COG2371 131.281 -225247 COG2372 103.236 -225248 COG2373 648.713 -225249 COG2374 641.879 -225250 COG2375 185.682 -225251 COG2376 127.006 -225252 COG2377 171.716 -225253 COG2378 151.779 -225254 COG2379 389.368 -225255 COG2380 430.135 -225256 COG2382 95.5376 -225257 COG2383 95.6044 -225258 COG2384 232.19 -225259 COG2385 275.455 -225260 COG2386 153.233 -225261 COG2388 72.76 -225262 COG2389 147.27 -225263 COG2390 262.518 -225264 COG2391 52.45 -225265 COG2401 303.687 -225266 COG2402 46.6001 -225267 COG2403 483.505 -225268 COG2404 270.904 -225269 COG2405 158 -225270 COG2406 137.218 -225271 COG2407 297.845 -225272 COG2409 191.479 -225273 COG2410 180.002 -225274 COG2411 124.424 -225275 COG2412 119.359 -225276 COG2413 201.951 -225277 COG2414 471.409 -225278 COG2419 367.542 -225279 COG2421 276.532 -225280 COG2423 143.987 -225281 COG2425 317.779 -225282 COG2426 99.042 -225283 COG2427 36.9642 -225284 COG2428 250.881 -225285 COG2429 292.056 -225286 COG2430 221.967 -225287 COG2431 166.732 -225288 COG2433 180.285 -225289 COG2440 117.492 -225290 COG2441 396.245 -225291 COG2442 63.5213 -225292 COG2443 50.0165 -225293 COG2445 61.1904 -225294 COG2450 83.166 -225295 COG2451 121.794 -225296 COG2452 54.3575 -225297 COG2453 70.5581 -225298 COG2454 90.5064 -225299 COG2456 120.996 -225300 COG2457 200.361 -225301 COG2461 138.319 -225302 COG2469 248.161 -225303 COG2501 86.5433 -225304 COG2502 520.837 -225305 COG2503 214.251 -225306 COG2508 115.247 -225307 COG2509 499.154 -225308 COG2510 85.8238 -225309 COG2511 833.537 -225310 COG2512 106.365 -225311 COG2513 220.232 -225312 COG2514 233.761 -225313 COG2515 191.414 -225314 COG2516 337.531 -225315 COG2517 263.26 -225316 COG2518 143.539 -225317 COG2519 229.873 -225318 COG2520 236.454 -225319 COG2521 412.595 -225320 COG2522 106.292 -225321 COG2524 264.989 -225322 COG2602 125.171 -225323 COG2603 238.184 -225324 COG2604 39.2708 -225325 COG2605 419.861 -225326 COG2606 102.709 -225327 COG2607 268.818 -225328 COG2608 35.4346 -225329 COG2609 1016.91 -225330 COG2610 67.2626 -225331 COG2703 117.122 -225332 COG2704 524.547 -225333 COG2706 385.929 -225334 COG2707 128.578 -225335 COG2710 179.521 -225336 COG2715 268.146 -225337 COG2716 178.338 -225338 COG2717 135.537 -225339 COG2718 496.192 -225340 COG2719 593.641 -225341 COG2720 378.342 -225342 COG2721 88.4761 -225343 COG2723 85.7636 -225344 COG2730 129.527 -225345 COG2731 158.181 -225346 COG2732 104.041 -225347 COG2733 452.998 -225348 COG2738 328.964 -225349 COG2739 75.8816 -225350 COG2740 68.5374 -225351 COG2746 157.94 -225352 COG2747 41.194 -225353 COG2755 51.0586 -225354 COG2759 780.322 -225355 COG2761 98.997 -225356 COG2764 87.3756 -225357 COG2766 715.365 -225358 COG2768 155.728 -225359 COG2770 29.6511 -225360 COG2771 28.8603 -225361 COG2801 26.4565 -225362 COG2802 185.696 -225363 COG2804 344.314 -225364 COG2805 452.489 -225365 COG2807 301.51 -225366 COG2808 215.746 -225367 COG2810 350.355 -225368 COG2811 50.8778 -225369 COG2812 201.478 -225370 COG2813 140.1 -225371 COG2814 38.7489 -225372 COG2815 149.485 -225373 COG2816 217.584 -225374 COG2818 175.233 -225375 COG2819 82.4541 -225376 COG2820 238.01 -225377 COG2821 368.205 -225378 COG2822 357.608 -225379 COG2823 83.1791 -225380 COG2824 82.4522 -225381 COG2825 77.8197 -225382 COG2826 77.8066 -225383 COG2827 87.7688 -225384 COG2828 513.91 -225385 COG2829 408.784 -225386 COG2830 308.775 -225387 COG2831 89.7161 -225388 COG2832 70.3896 -225389 COG2833 161.073 -225390 COG2834 58.5725 -225391 COG2835 61.5428 -225392 COG2836 145.595 -225393 COG2837 273.88 -225394 COG2838 1327.49 -225395 COG2839 100.909 -225396 COG2840 156.345 -225397 COG2841 63.1702 -225398 COG2842 194.179 -225399 COG2843 177.257 -225400 COG2844 719.144 -225401 COG2845 372.193 -225402 COG2846 246.554 -225403 COG2847 122.07 -225404 COG2848 354.472 -225405 COG2849 78.9909 -225406 COG2850 153.307 -225407 COG2851 476.414 -225408 COG2852 144.043 -225409 COG2853 282.668 -225410 COG2854 190.283 -225411 COG2855 227.495 -225412 COG2856 105.971 -225413 COG2857 70.8984 -225414 COG2859 83.7215 -225415 COG2860 133.489 -225416 COG2861 285.016 -225417 COG2862 110.855 -225418 COG2863 81.6754 -225419 COG2864 189.867 -225420 COG2865 307.728 -225421 COG2866 200.021 -225422 COG2867 176.315 -225423 COG2868 92.4214 -225424 COG2869 372.144 -225425 COG2870 175.177 -225426 COG2871 728.528 -225427 COG2872 117.087 -225428 COG2873 95.0458 -225429 COG2874 279.966 -225430 COG2875 341.924 -225431 COG2876 335.488 -225432 COG2877 426.719 -225433 COG2878 130.27 -225434 COG2879 90.9498 -225435 COG2880 39.0231 -225436 COG2881 93.2067 -225437 COG2882 88.5663 -225438 COG2884 325.324 -225439 COG2885 76.0409 -225440 COG2886 48.9205 -225441 COG2887 142.622 -225442 COG2888 69.0136 -225443 COG2890 81.6138 -225444 COG2891 84.2277 -225445 COG2892 88.6345 -225446 COG2893 106.585 -225447 COG2894 381.585 -225448 COG2895 636.264 -225449 COG2896 158.154 -225450 COG2897 140.545 -225451 COG2898 325.82 -225452 COG2899 411.778 -225453 COG2900 72.8179 -225454 COG2901 117.964 -225455 COG2902 1245.34 -225456 COG2904 217.263 -225457 COG2905 443.356 -225458 COG2906 67.729 -225459 COG2907 542.863 -225460 COG2908 169.398 -225461 COG2909 741.911 -225462 COG2910 232.636 -225463 COG2911 497.263 -225464 COG2912 221.049 -225465 COG2913 60.8821 -225466 COG2914 107.85 -225467 COG2915 245.733 -225468 COG2916 88.287 -225469 COG2917 151.695 -225470 COG2918 634.87 -225471 COG2919 63.1292 -225472 COG2920 166.035 -225473 COG2921 125.935 -225474 COG2922 199.957 -225475 COG2923 127.827 -225476 COG2924 129.903 -225477 COG2925 732.673 -225478 COG2926 114.139 -225479 COG2927 143.631 -225480 COG2928 185.592 -225481 COG2929 108.619 -225482 COG2930 190.075 -225483 COG2931 33.8167 -225484 COG2932 46.6437 -225485 COG2933 587.125 -225486 COG2935 281.541 -225487 COG2936 486.557 -225488 COG2937 689.151 -225489 COG2938 71.9108 -225490 COG2939 472.315 -225491 COG2940 108.757 -225492 COG2941 245.416 -225493 COG2942 322.402 -225494 COG2943 972.744 -225495 COG2944 102.081 -225496 COG2945 222.28 -225497 COG2946 427.261 -225498 COG2947 241.981 -225499 COG2948 93.3037 -225500 COG2949 337.433 -225501 COG2951 165.229 -225502 COG2952 201.23 -225503 COG2954 73.1712 -225504 COG2956 549.692 -225505 COG2957 484.947 -225506 COG2958 412.693 -225507 COG2959 307.889 -225508 COG2960 94.0925 -225509 COG2961 167.469 -225510 COG2962 208.633 -225511 COG2963 31.8165 -225512 COG2964 235.294 -225513 COG2965 144.139 -225514 COG2966 163.61 -225515 COG2967 197.935 -225516 COG2968 191.817 -225517 COG2969 203.069 -225518 COG2971 250.674 -225519 COG2972 164.161 -225520 COG2973 126.392 -225521 COG2974 438.34 -225522 COG2975 99.8566 -225523 COG2976 179.916 -225524 COG2977 212.988 -225525 COG2978 264.162 -225526 COG2979 203.865 -225527 COG2980 172.556 -225528 COG2981 216.439 -225529 COG2982 233.486 -225530 COG2983 157.997 -225531 COG2984 201.426 -225532 COG2985 325.141 -225533 COG2986 313.024 -225534 COG2987 873.197 -225535 COG2988 345.952 -225536 COG2989 580.567 -225537 COG2990 323.885 -225538 COG2991 93.3418 -225539 COG2992 251.393 -225540 COG2993 262.393 -225541 COG2994 206.501 -225542 COG2995 281.541 -225543 COG2996 348.936 -225544 COG2998 394.191 -225545 COG2999 340.219 -225546 COG3000 51.6849 -225547 COG3001 320.115 -225548 COG3002 1188.93 -225549 COG3004 64.2572 -225550 COG3005 101.716 -225551 COG3006 781.741 -225552 COG3007 136.833 -225553 COG3008 635.136 -225554 COG3009 194.63 -225555 COG3010 304.208 -225556 COG3011 132.097 -225557 COG3012 146.024 -225558 COG3013 242.389 -225559 COG3014 590.006 -225560 COG3015 209.02 -225561 COG3016 344.969 -225562 COG3017 206.875 -225563 COG3018 153.109 -225564 COG3019 157.23 -225565 COG3021 209.22 -225566 COG3022 216.42 -225567 COG3023 131.33 -225568 COG3024 71.7656 -225569 COG3025 216.153 -225570 COG3026 394.855 -225571 COG3027 76.9515 -225572 COG3028 221.906 -225573 COG3029 142.597 -225574 COG3030 106.584 -225575 COG3031 327.25 -225576 COG3033 679.181 -225577 COG3034 193.803 -225578 COG3036 63.6797 -225579 COG3037 424.028 -225580 COG3038 92.752 -225581 COG3039 33.7142 -225582 COG3040 200.706 -225583 COG3041 100.861 -225584 COG3042 64.0449 -225585 COG3043 206.928 -225586 COG3044 589.557 -225587 COG3045 211.527 -225588 COG3046 785.87 -225589 COG3047 55.8253 -225590 COG3048 803.981 -225591 COG3049 366.755 -225592 COG3050 174.583 -225593 COG3051 896.029 -225594 COG3052 135.256 -225595 COG3053 505.02 -225596 COG3054 307.496 -225597 COG3055 149.831 -225598 COG3056 264.399 -225599 COG3057 299.077 -225600 COG3058 413.415 -225601 COG3059 126.92 -225602 COG3060 215.628 -225603 COG3061 228.286 -225604 COG3062 102.446 -225605 COG3063 223.841 -225606 COG3064 206.338 -225607 COG3065 191.484 -225608 COG3066 414.249 -225609 COG3067 693.816 -225610 COG3068 324.488 -225611 COG3069 104.063 -225612 COG3070 65.0524 -225613 COG3071 375.941 -225614 COG3072 1258.15 -225615 COG3073 143.026 -225616 COG3074 66.9146 -225617 COG3075 495.783 -225618 COG3076 161.526 -225619 COG3077 67.3637 -225620 COG3078 155.391 -225621 COG3079 184.58 -225622 COG3080 108.67 -225623 COG3081 548.2 -225624 COG3082 100.724 -225625 COG3083 736.93 -225626 COG3084 143.445 -225627 COG3085 163.892 -225628 COG3086 137.894 -225629 COG3087 175.029 -225630 COG3088 152.893 -225631 COG3089 83.3335 -225632 COG3090 76.9871 -225633 COG3091 172.53 -225634 COG3092 181.554 -225635 COG3093 94.7385 -225636 COG3094 110.963 -225637 COG3095 404.621 -225638 COG3096 2411.16 -225639 COG3097 160.735 -225640 COG3098 139.123 -225641 COG3099 148.056 -225642 COG3100 149.176 -225643 COG3101 335.259 -225644 COG3102 77.4798 -225645 COG3103 102.474 -225646 COG3104 401.663 -225647 COG3105 178.461 -225648 COG3106 732.301 -225649 COG3107 608.344 -225650 COG3108 77.0253 -225651 COG3109 70.2697 -225652 COG3110 274.333 -225653 COG3111 113.671 -225654 COG3112 180.77 -225655 COG3113 95.4816 -225656 COG3114 76.7073 -225657 COG3115 252.095 -225658 COG3116 100.561 -225659 COG3117 97.469 -225660 COG3118 248.428 -225661 COG3119 125.283 -225662 COG3120 221.672 -225663 COG3121 42.7497 -225664 COG3122 194.019 -225665 COG3123 160.773 -225666 COG3124 291.3 -225667 COG3125 84.3089 -225668 COG3126 131.85 -225669 COG3127 709.519 -225670 COG3128 272.461 -225671 COG3129 420.741 -225672 COG3130 89.1789 -225673 COG3131 780.817 -225674 COG3132 276.318 -225675 COG3133 142.989 -225676 COG3134 215.102 -225677 COG3135 377.866 -225678 COG3136 116.377 -225679 COG3137 343.787 -225680 COG3138 460.693 -225681 COG3139 138.082 -225682 COG3140 68.7437 -225683 COG3141 100.752 -225684 COG3142 193.678 -225685 COG3143 297.832 -225686 COG3144 136.844 -225687 COG3145 82.4762 -225688 COG3146 591.262 -225689 COG3147 122.303 -225690 COG3148 251.592 -225691 COG3149 132.266 -225692 COG3150 274.675 -225693 COG3151 210.051 -225694 COG3152 57.3067 -225695 COG3153 72.3175 -225696 COG3154 169.88 -225697 COG3155 386.906 -225698 COG3156 258.909 -225699 COG3157 140.937 -225700 COG3158 714.026 -225701 COG3159 218.386 -225702 COG3160 228.935 -225703 COG3161 146.771 -225704 COG3162 102.075 -225705 COG3164 1380.62 -225706 COG3165 180.24 -225707 COG3166 117.099 -225708 COG3167 241.237 -225709 COG3168 233.931 -225710 COG3169 159.544 -225711 COG3170 237.889 -225712 COG3171 133.367 -225713 COG3172 231.179 -225714 COG3173 173.391 -225715 COG3174 51.1892 -225716 COG3175 253.491 -225717 COG3176 234.214 -225718 COG3177 70.9412 -225719 COG3178 417.97 -225720 COG3179 138.041 -225721 COG3180 194.066 -225722 COG3181 158.624 -225723 COG3182 132.921 -225724 COG3183 331.801 -225725 COG3184 170.785 -225726 COG3185 405.568 -225727 COG3186 429.568 -225728 COG3187 100.577 -225729 COG3188 138.979 -225730 COG3189 153.655 -225731 COG3190 77.0477 -225732 COG3191 246.902 -225733 COG3192 477.37 -225734 COG3193 109.692 -225735 COG3194 222.622 -225736 COG3195 236.892 -225737 COG3196 314.907 -225738 COG3197 50.0606 -225739 COG3198 237.522 -225740 COG3199 240.004 -225741 COG3200 607.51 -225742 COG3201 52.7611 -225743 COG3202 361.63 -225744 COG3203 39.2959 -225745 COG3204 88.24 -225746 COG3205 75.6334 -225747 COG3206 141.427 -225748 COG3207 508.702 -225749 COG3208 102.765 -225750 COG3209 39.1458 -225751 COG3210 37.7852 -225752 COG3211 445.037 -225753 COG3212 67.439 -225754 COG3213 273.867 -225755 COG3214 145.27 -225756 COG3215 201.568 -225757 COG3216 211.866 -225758 COG3217 244.255 -225759 COG3218 225.764 -225760 COG3219 271.29 -225761 COG3220 326.622 -225762 COG3221 191.805 -225763 COG3222 258.595 -225764 COG3223 116.655 -225765 COG3224 255.484 -225766 COG3225 540.952 -225767 COG3226 232.444 -225768 COG3227 243.471 -225769 COG3228 373.331 -225770 COG3230 211.985 -225771 COG3231 301.318 -225772 COG3232 141.731 -225773 COG3233 268.572 -225774 COG3234 353.036 -225775 COG3235 245.533 -225776 COG3236 116.479 -225777 COG3237 41.5515 -225778 COG3238 91.5613 -225779 COG3239 140.303 -225780 COG3240 271.702 -225781 COG3241 214.067 -225782 COG3242 56.9734 -225783 COG3243 75.8731 -225784 COG3245 69.8896 -225785 COG3246 153.341 -225786 COG3247 71.1195 -225787 COG3248 344.959 -225788 COG3249 379.647 -225789 COG3250 253.105 -225790 COG3251 99.4858 -225791 COG3252 421.091 -225792 COG3253 238.016 -225793 COG3254 119.739 -225794 COG3255 78.6139 -225795 COG3256 540.896 -225796 COG3257 378.728 -225797 COG3258 307.895 -225798 COG3259 275.825 -225799 COG3260 186.805 -225800 COG3261 415.963 -225801 COG3262 178.408 -225802 COG3263 629.049 -225803 COG3264 300.45 -225804 COG3265 177.112 -225805 COG3266 185.541 -225806 COG3267 145.247 -225807 COG3268 399.901 -225808 COG3269 65.4648 -225809 COG3270 151.029 -225810 COG3271 66.2687 -225811 COG3272 209.185 -225812 COG3273 212.243 -225813 COG3274 249.985 -225814 COG3275 488.777 -225815 COG3276 286.988 -225816 COG3277 58.1451 -225817 COG3278 567.4 -225818 COG3279 74.3194 -225819 COG3280 1000.45 -225820 COG3281 425.893 -225821 COG3283 576.697 -225822 COG3284 216.073 -225823 COG3285 303.168 -225824 COG3286 190.381 -225825 COG3287 344.743 -225826 COG3288 109.397 -225827 COG3290 320.005 -225828 COG3291 49.1164 -225829 COG3292 413.896 -225830 COG3293 27.8254 -225831 COG3294 413.407 -225832 COG3295 212.745 -225833 COG3296 111.893 -225834 COG3297 312.918 -225835 COG3298 113.829 -225836 COG3299 80.172 -225837 COG3300 179.832 -225838 COG3301 187.619 -225839 COG3302 191.768 -225840 COG3303 732.475 -225841 COG3304 152.608 -225842 COG3305 133.884 -225843 COG3306 65.0883 -225844 COG3307 44.0313 -225845 COG3308 144.598 -225846 COG3309 67.5077 -225847 COG3310 293.281 -225848 COG3311 69.3413 -225849 COG3312 81.2587 -225850 COG3313 72.4783 -225851 COG3314 176.401 -225852 COG3315 93.1779 -225853 COG3316 41.7404 -225854 COG3317 266.213 -225855 COG3318 108.785 -225856 COG3319 113.304 -225857 COG3320 333.205 -225858 COG3321 171.483 -225859 COG3322 186.022 -225860 COG3323 136.696 -225861 COG3324 104.346 -225862 COG3325 469.987 -225863 COG3326 73.0963 -225864 COG3327 301.01 -225865 COG3328 43.5306 -225866 COG3329 299.421 -225867 COG3330 239.366 -225868 COG3331 155.218 -225869 COG3332 355.734 -225870 COG3333 580.746 -225871 COG3334 71.3485 -225872 COG3335 26.1987 -225873 COG3336 146.053 -225874 COG3337 166.689 -225875 COG3338 295.496 -225876 COG3339 61.6171 -225877 COG3340 254.63 -225878 COG3341 79.6167 -225879 COG3342 206.503 -225880 COG3343 122.171 -225881 COG3344 29.4217 -225882 COG3345 533.288 -225883 COG3346 175.628 -225884 COG3347 98.9996 -225885 COG3349 305.499 -225886 COG3350 63.9798 -225887 COG3351 178.505 -225888 COG3352 89.9228 -225889 COG3353 144.584 -225890 COG3354 154.153 -225891 COG3355 102.352 -225892 COG3356 441.5 -225893 COG3357 125.698 -225894 COG3358 224.796 -225895 COG3359 291.722 -225896 COG3360 69.06 -225897 COG3361 351.2 -225898 COG3363 267.885 -225899 COG3364 109.627 -225900 COG3365 151.863 -225901 COG3366 113.598 -225902 COG3367 330.128 -225903 COG3368 232.718 -225904 COG3369 87.5691 -225905 COG3370 136.013 -225906 COG3371 97.8378 -225907 COG3372 405.986 -225908 COG3373 159.61 -225909 COG3374 172.151 -225910 COG3375 330.627 -225911 COG3376 303.485 -225912 COG3377 131.009 -225913 COG3378 412.599 -225914 COG3379 585.996 -225915 COG3380 354.879 -225916 COG3381 131.731 -225917 COG3382 225.307 -225918 COG3383 1159.12 -225919 COG3384 286.124 -225920 COG3385 31.5082 -225921 COG3386 70.4907 -225922 COG3387 143.708 -225923 COG3388 99.034 -225924 COG3389 225.459 -225925 COG3390 230.826 -225926 COG3391 59.1517 -225927 COG3392 242.815 -225928 COG3393 247.755 -225929 COG3394 276.215 -225930 COG3395 122.114 -225931 COG3396 257.294 -225932 COG3397 312.952 -225933 COG3398 242.403 -225934 COG3399 139.233 -225935 COG3400 555.678 -225936 COG3401 123.457 -225937 COG3402 129.452 -225938 COG3403 326.055 -225939 COG3404 215.73 -225940 COG3405 440.843 -225941 COG3407 307.73 -225942 COG3408 294.349 -225943 COG3409 42.7045 -225944 COG3410 282.083 -225945 COG3411 83.9999 -225946 COG3412 137.49 -225947 COG3413 114.454 -225948 COG3414 77.6639 -225949 COG3415 55.8506 -225950 COG3416 167.757 -225951 COG3417 168.128 -225952 COG3418 149.98 -225953 COG3419 679.241 -225954 COG3420 441.171 -225955 COG3421 525.988 -225956 COG3422 80.9363 -225957 COG3423 116.066 -225958 COG3424 483.056 -225959 COG3425 103.151 -225960 COG3426 501.945 -225961 COG3427 132.845 -225962 COG3428 442.258 -225963 COG3429 342.621 -225964 COG3430 94.0661 -225965 COG3431 63.3962 -225966 COG3432 66.9491 -225967 COG3433 85.9228 -225968 COG3434 453.789 -225969 COG3435 274.679 -225970 COG3436 29.3373 -225971 COG3437 355.513 -225972 COG3439 119.759 -225973 COG3440 267.452 -225974 COG3442 323.967 -225975 COG3443 132.538 -225976 COG3444 168.191 -225977 COG3445 235.632 -225978 COG3447 151.778 -225979 COG3448 265.919 -225980 COG3449 143.233 -225981 COG3450 108.592 -225982 COG3451 97.4499 -225983 COG3452 363.38 -225984 COG3453 171.781 -225985 COG3454 490.711 -225986 COG3455 139.033 -225987 COG3456 387.23 -225988 COG3457 415.287 -225989 COG3458 240.804 -225990 COG3459 1076.66 -225991 COG3460 153.159 -225992 COG3461 135.823 -225993 COG3462 82.1276 -225994 COG3463 369.827 -225995 COG3464 38.9828 -225996 COG3465 145.832 -225997 COG3466 69.3812 -225998 COG3467 97.4701 -225999 COG3468 91.4435 -226000 COG3469 459.728 -226001 COG3470 224.292 -226002 COG3471 263.707 -226003 COG3472 263.629 -226004 COG3473 323.608 -226005 COG3474 131.358 -226006 COG3475 233.821 -226007 COG3476 125.541 -226008 COG3477 207.707 -226009 COG3478 76.0118 -226010 COG3479 318.401 -226011 COG3480 244.623 -226012 COG3481 183.76 -226013 COG3482 127.17 -226014 COG3483 312.884 -226015 COG3484 438.116 -226016 COG3485 155.646 -226017 COG3486 529.191 -226018 COG3487 685.879 -226019 COG3488 836.843 -226020 COG3489 442.756 -226021 COG3490 524.378 -226022 COG3491 59.3015 -226023 COG3492 135.791 -226024 COG3493 471.042 -226025 COG3494 315.063 -226026 COG3495 175.9 -226027 COG3496 319.443 -226028 COG3497 71.2761 -226029 COG3498 250.441 -226030 COG3499 169.95 -226031 COG3500 57.8297 -226032 COG3501 143.239 -226033 COG3502 144.471 -226034 COG3503 210.339 -226035 COG3504 161.804 -226036 COG3505 43.1446 -226037 COG3506 295.168 -226038 COG3507 283.564 -226039 COG3508 508.6 -226040 COG3509 282.411 -226041 COG3510 341.434 -226042 COG3511 377.525 -226043 COG3512 175.054 -226044 COG3513 1126.15 -226045 COG3514 80.6126 -226046 COG3515 106.395 -226047 COG3516 208.335 -226048 COG3517 671.374 -226049 COG3518 121.355 -226050 COG3519 592.784 -226051 COG3520 84.3261 -226052 COG3521 152.126 -226053 COG3522 438.677 -226054 COG3523 776.2 -226055 COG3524 438.497 -226056 COG3525 405.385 -226057 COG3526 188.538 -226058 COG3527 185.624 -226059 COG3528 400.016 -226060 COG3529 92.1854 -226061 COG3530 112.946 -226062 COG3531 241.932 -226063 COG3533 101.758 -226064 COG3534 548.907 -226065 COG3535 354.345 -226066 COG3536 139.868 -226067 COG3537 983.531 -226068 COG3538 706.867 -226069 COG3539 29.4205 -226070 COG3540 633.704 -226071 COG3541 120.958 -226072 COG3542 104.847 -226073 COG3543 157.249 -226074 COG3544 113.754 -226075 COG3545 84.6876 -226076 COG3546 179.894 -226077 COG3547 31.0536 -226078 COG3548 169.808 -226079 COG3549 115.175 -226080 COG3550 92.1318 -226081 COG3551 340.823 -226082 COG3552 258.158 -226083 COG3553 138.796 -226084 COG3554 247.831 -226085 COG3555 101.783 -226086 COG3556 179.201 -226087 COG3557 182.622 -226088 COG3558 275.257 -226089 COG3559 589.482 -226090 COG3560 293.559 -226091 COG3561 120.961 -226092 COG3562 428.11 -226093 COG3563 185.425 -226094 COG3564 193.15 -226095 COG3565 219.314 -226096 COG3566 433.604 -226097 COG3567 628.842 -226098 COG3568 205.327 -226099 COG3569 101.805 -226100 COG3570 350.678 -226101 COG3571 287.553 -226102 COG3572 563.642 -226103 COG3573 966.598 -226104 COG3575 109.042 -226105 COG3576 106.002 -226106 COG3577 197.974 -226107 COG3579 711.567 -226108 COG3580 385.638 -226109 COG3581 397.588 -226110 COG3582 131.903 -226111 COG3583 358.73 -226112 COG3584 103.641 -226113 COG3585 72.0868 -226114 COG3586 149.091 -226115 COG3587 1081.35 -226116 COG3588 381.078 -226117 COG3589 424.492 -226118 COG3590 889.463 -226119 COG3591 126.731 -226120 COG3592 109.519 -226121 COG3593 317.422 -226122 COG3594 158.305 -226123 COG3595 93.3346 -226124 COG3596 255.486 -226125 COG3597 156.533 -226126 COG3598 448.588 -226127 COG3599 58.9887 -226128 COG3600 109.476 -226129 COG3601 153.635 -226130 COG3602 139.568 -226131 COG3603 193.436 -226132 COG3604 604.331 -226133 COG3605 1099.77 -226134 COG3607 181.046 -226135 COG3608 226.125 -226136 COG3609 46.6176 -226137 COG3610 83.4853 -226138 COG3611 325.502 -226139 COG3612 159.262 -226140 COG3613 118.286 -226141 COG3614 213.947 -226142 COG3615 134.879 -226143 COG3616 132.147 -226144 COG3617 133.647 -226145 COG3618 246.516 -226146 COG3619 88.5434 -226147 COG3620 258.901 -226148 COG3621 409.288 -226149 COG3622 346.954 -226150 COG3623 476.879 -226151 COG3624 199.135 -226152 COG3625 248.424 -226153 COG3626 657.6 -226154 COG3627 575.593 -226155 COG3628 107.115 -226156 COG3629 184.929 -226157 COG3630 59.3497 -226158 COG3631 75.8862 -226159 COG3633 583.971 -226160 COG3634 881.012 -226161 COG3635 496.071 -226162 COG3636 123.617 -226163 COG3637 45.0657 -226164 COG3638 287.997 -226165 COG3639 92.7403 -226166 COG3640 283.379 -226167 COG3641 175.27 -226168 COG3642 217.92 -226169 COG3643 490.436 -226170 COG3644 244.485 -226171 COG3645 132.564 -226172 COG3646 129.907 -226173 COG3647 285.647 -226174 COG3648 440.845 -226175 COG3649 402.814 -226176 COG3650 174.337 -226177 COG3651 136.6 -226178 COG3652 53.3047 -226179 COG3653 626.974 -226180 COG3654 98.6065 -226181 COG3655 75.4292 -226182 COG3656 239.149 -226183 COG3657 102.082 -226184 COG3658 207.068 -226185 COG3659 417.708 -226186 COG3660 419.657 -226187 COG3661 1169.67 -226188 COG3662 334.44 -226189 COG3663 175.304 -226190 COG3664 333.314 -226191 COG3665 291.278 -226192 COG3666 39.3539 -226193 COG3667 384.229 -226194 COG3668 26.2474 -226195 COG3669 64.5204 -226196 COG3670 584.731 -226197 COG3671 134.438 -226198 COG3672 160.978 -226199 COG3673 566.129 -226200 COG3675 333.797 -226201 COG3676 60.9525 -226202 COG3677 34.691 -226203 COG3678 100.166 -226204 COG3679 97.4124 -226205 COG3680 369.669 -226206 COG3681 160.852 -226207 COG3682 116.662 -226208 COG3683 196.863 -226209 COG3684 432.282 -226210 COG3685 60.0581 -226211 COG3686 124.434 -226212 COG3687 289.368 -226213 COG3688 235.734 -226214 COG3689 271.599 -226215 COG3691 109.858 -226216 COG3692 159.702 -226217 COG3693 380.634 -226218 COG3694 245.369 -226219 COG3695 117.844 -226220 COG3696 85.8084 -226221 COG3697 253.138 -226222 COG3698 340.947 -226223 COG3700 416.216 -226224 COG3701 318.68 -226225 COG3702 94.3684 -226226 COG3703 203.74 -226227 COG3704 193.45 -226228 COG3705 233.429 -226229 COG3706 310.408 -226230 COG3707 207.571 -226231 COG3708 88.2297 -226232 COG3709 267.702 -226233 COG3710 100.911 -226234 COG3711 117.923 -226235 COG3712 212.217 -226236 COG3713 59.2891 -226237 COG3714 94.4026 -226238 COG3715 144.677 -226239 COG3716 109.249 -226240 COG3717 494.642 -226241 COG3718 403.656 -226242 COG3719 274.733 -226243 COG3720 551.317 -226244 COG3721 237.032 -226245 COG3722 219.264 -226246 COG3723 325.253 -226247 COG3724 676.91 -226248 COG3725 248.589 -226249 COG3726 155.389 -226250 COG3727 215.464 -226251 COG3728 58.2761 -226252 COG3729 35.1454 -226253 COG3730 50.5599 -226254 COG3731 154.494 -226255 COG3732 96.3311 -226256 COG3733 474.256 -226257 COG3734 335.132 -226258 COG3735 325.088 -226259 COG3736 204.916 -226260 COG3737 159.511 -226261 COG3738 302.901 -226262 COG3739 246.634 -226263 COG3740 161.466 -226264 COG3741 258.053 -226265 COG3742 114.493 -226266 COG3743 99.8894 -226267 COG3744 88.5451 -226268 COG3745 173.388 -226269 COG3746 445.878 -226270 COG3747 153.851 -226271 COG3748 245.481 -226272 COG3749 185.678 -226273 COG3750 85.9757 -226274 COG3751 225.385 -226275 COG3752 304.726 -226276 COG3753 101.795 -226277 COG3754 452.663 -226278 COG3755 100.598 -226279 COG3756 166.197 -226280 COG3757 194.191 -226281 COG3758 217.634 -226282 COG3759 100.119 -226283 COG3760 235.787 -226284 COG3761 147.39 -226285 COG3762 184.646 -226286 COG3763 72.0252 -226287 COG3764 110.571 -226288 COG3765 110.227 -226289 COG3766 132.878 -226290 COG3767 49.9606 -226291 COG3768 419.882 -226292 COG3769 369.177 -226293 COG3770 444.21 -226294 COG3771 103.299 -226295 COG3772 72.0255 -226296 COG3773 134.487 -226297 COG3774 226.555 -226298 COG3775 472.548 -226299 COG3776 69.3916 -226300 COG3777 382.244 -226301 COG3778 182.719 -226302 COG3779 148.515 -226303 COG3780 156.527 -226304 COG3781 427.248 -226305 COG3782 345.004 -226306 COG3783 130.394 -226307 COG3784 110.329 -226308 COG3785 169.992 -226309 COG3786 231.973 -226310 COG3787 191.969 -226311 COG3788 119.09 -226312 COG3789 203.54 -226313 COG3790 107.929 -226314 COG3791 72.8575 -226315 COG3792 68.1959 -226316 COG3793 27.3638 -226317 COG3794 87.8628 -226318 COG3795 117.461 -226319 COG3797 137.528 -226320 COG3798 94.9182 -226321 COG3799 108.804 -226322 COG3800 478.386 -226323 COG3801 169.286 -226324 COG3802 584.81 -226325 COG3803 233.422 -226326 COG3804 426.241 -226327 COG3805 168.526 -226328 COG3806 125.745 -226329 COG3807 236.261 -226330 COG3808 810.109 -226331 COG3809 110.724 -226332 COG3811 131.463 -226333 COG3812 285.21 -226334 COG3813 122.629 -226335 COG3814 205.025 -226336 COG3815 104.153 -226337 COG3816 306.756 -226338 COG3817 395.658 -226339 COG3818 234.386 -226340 COG3819 283.53 -226341 COG3820 348.051 -226342 COG3821 300.165 -226343 COG3822 228.608 -226344 COG3823 359.1 -226345 COG3824 160.763 -226346 COG3825 560.195 -226347 COG3826 320.665 -226348 COG3827 114.563 -226349 COG3828 359.589 -226350 COG3829 561.924 -226351 COG3830 95.8019 -226352 COG3831 82.4437 -226353 COG3832 52.8601 -226354 COG3833 245.621 -226355 COG3835 449.505 -226356 COG3836 263.395 -226357 COG3837 204.175 -226358 COG3838 50.0476 -226359 COG3839 78.8409 -226360 COG3840 369.758 -226361 COG3842 160.909 -226362 COG3843 74.7902 -226363 COG3844 512.788 -226364 COG3845 500.919 -226365 COG3846 278.176 -226366 COG3847 42.301 -226367 COG3848 119.409 -226368 COG3850 657.112 -226369 COG3851 657.227 -226370 COG3852 458.758 -226371 COG3853 279.653 -226372 COG3854 404.986 -226373 COG3855 1104.42 -226374 COG3856 123.308 -226375 COG3857 976.516 -226376 COG3858 261.6 -226377 COG3859 180.309 -226378 COG3860 131.449 -226379 COG3861 111.443 -226380 COG3862 110.27 -226381 COG3863 266.102 -226382 COG3864 518.711 -226383 COG3865 159.862 -226384 COG3866 356.444 -226385 COG3867 524.056 -226386 COG3868 195.8 -226387 COG3869 485.002 -226388 COG3870 158.367 -226389 COG3871 173.365 -226390 COG3872 401.482 -226391 COG3874 100.625 -226392 COG3875 515.162 -226393 COG3876 656.097 -226394 COG3877 181.208 -226395 COG3878 112.598 -226396 COG3879 244.234 -226397 COG3880 203.865 -226398 COG3881 226.656 -226399 COG3882 387.621 -226400 COG3883 157.958 -226401 COG3884 224.29 -226402 COG3885 358.309 -226403 COG3886 200.331 -226404 COG3887 744.157 -226405 COG3888 389.984 -226406 COG3889 851.461 -226407 COG3890 426.993 -226408 COG3892 449.582 -226409 COG3893 480.12 -226410 COG3894 666.075 -226411 COG3895 127.617 -226412 COG3896 281.803 -226413 COG3897 96.7233 -226414 COG3898 495.529 -226415 COG3899 337.448 -226416 COG3900 383.054 -226417 COG3901 260.958 -226418 COG3903 337.077 -226419 COG3904 261.407 -226420 COG3905 62.8631 -226421 COG3906 60.5822 -226422 COG3907 317.967 -226423 COG3908 86.0875 -226424 COG3909 159.25 -226425 COG3910 348.657 -226426 COG3911 232.066 -226427 COG3913 223.719 -226428 COG3914 612.939 -226429 COG3915 209.286 -226430 COG3916 235.698 -226431 COG3917 232.786 -226432 COG3918 175.467 -226433 COG3919 646.989 -226434 COG3920 44.1739 -226435 COG3921 299.776 -226436 COG3923 101.8 -226437 COG3924 128.318 -226438 COG3925 125.692 -226439 COG3926 139.169 -226440 COG3930 599.162 -226441 COG3931 337.834 -226442 COG3932 198.394 -226443 COG3933 557.381 -226444 COG3934 613.058 -226445 COG3935 138.711 -226446 COG3936 249.358 -226447 COG3937 74.431 -226448 COG3938 439.872 -226449 COG3940 628.127 -226450 COG3941 445.864 -226451 COG3942 48.612 -226452 COG3943 273.748 -226453 COG3944 266.527 -226454 COG3945 167.677 -226455 COG3946 250.459 -226456 COG3947 464.716 -226457 COG3948 420.015 -226458 COG3949 279.192 -226459 COG3950 535.667 -226460 COG3951 102.213 -226461 COG3952 135.301 -226462 COG3953 212.026 -226463 COG3954 540.989 -226464 COG3955 281.745 -226465 COG3956 621.867 -226466 COG3957 875.573 -226467 COG3958 385.485 -226468 COG3959 296.153 -226469 COG3960 1190.08 -226470 COG3961 284.22 -226471 COG3962 421.802 -226472 COG3963 255.027 -226473 COG3964 567.899 -226474 COG3965 386.421 -226475 COG3966 555.154 -226476 COG3967 124.078 -226477 COG3968 1263.69 -226478 COG3969 603.251 -226479 COG3970 469.293 -226480 COG3971 249.572 -226481 COG3972 162.76 -226482 COG3973 602.998 -226483 COG3975 215.768 -226484 COG3976 151.22 -226485 COG3977 714.231 -226486 COG3978 107.974 -226487 COG3979 61.3975 -226488 COG3980 345.235 -226489 COG3981 155.228 -226490 COG4001 133.472 -226491 COG4002 316.765 -226492 COG4003 98.461 -226493 COG4004 119.962 -226494 COG4006 301.421 -226495 COG4007 421.528 -226496 COG4008 221.687 -226497 COG4009 108.735 -226498 COG4010 247.885 -226499 COG4012 406.162 -226500 COG4013 91.0188 -226501 COG4014 88.0059 -226502 COG4015 334.515 -226503 COG4016 263.302 -226504 COG4017 386.524 -226505 COG4018 864.198 -226506 COG4019 245.544 -226507 COG4020 476.606 -226508 COG4021 205.845 -226509 COG4022 416.483 -226510 COG4023 60.5455 -226511 COG4024 219.759 -226512 COG4025 273.651 -226513 COG4026 251.754 -226514 COG4027 264.051 -226515 COG4028 160.029 -226516 COG4029 206.21 -226517 COG4030 413.502 -226518 COG4031 196.604 -226519 COG4032 277.862 -226520 COG4033 128.34 -226521 COG4034 377.597 -226522 COG4035 101.103 -226523 COG4036 272.482 -226524 COG4037 279.843 -226525 COG4038 72.1996 -226526 COG4039 97.5611 -226527 COG4040 98.3641 -226528 COG4041 241.318 -226529 COG4042 105.413 -226530 COG4043 137.18 -226531 COG4044 295.599 -226532 COG4046 461.919 -226533 COG4047 292.113 -226534 COG4048 169.248 -226535 COG4049 75.0432 -226536 COG4050 266.671 -226537 COG4051 240.14 -226538 COG4052 449.648 -226539 COG4053 324.501 -226540 COG4054 756.664 -226541 COG4055 213.837 -226542 COG4056 323.32 -226543 COG4057 429.631 -226544 COG4058 99.5334 -226545 COG4059 452.013 -226546 COG4060 264.78 -226547 COG4061 289.78 -226548 COG4062 136.062 -226549 COG4063 304.022 -226550 COG4064 108.664 -226551 COG4065 828.696 -226552 COG4066 208.935 -226553 COG4067 137.555 -226554 COG4068 89.5185 -226555 COG4069 491.972 -226556 COG4070 707.356 -226557 COG4071 428.137 -226558 COG4072 220.502 -226559 COG4073 258.955 -226560 COG4074 630.421 -226561 COG4075 144.929 -226562 COG4076 317.227 -226563 COG4077 212.425 -226564 COG4078 292.495 -226565 COG4079 280.95 -226566 COG4080 156.043 -226567 COG4081 209.688 -226568 COG4083 173.852 -226569 COG4084 148.127 -226570 COG4085 124.613 -226571 COG4086 297.476 -226572 COG4087 32.916 -226573 COG4088 307.542 -226574 COG4089 199.21 -226575 COG4090 230.061 -226576 COG4091 640.265 -226577 COG4092 364.664 -226578 COG4093 414.598 -226579 COG4094 170.013 -226580 COG4095 65.0612 -226581 COG4096 876.385 -226582 COG4097 512.417 -226583 COG4098 489.285 -226584 COG4099 340.735 -226585 COG4100 724.989 -226586 COG4101 207.822 -226587 COG4102 440.435 -226588 COG4103 156.806 -226589 COG4104 58.9588 -226590 COG4105 193.684 -226591 COG4106 354.377 -226592 COG4107 384.875 -226593 COG4108 803.005 -226594 COG4109 645.197 -226595 COG4110 324.889 -226596 COG4111 482.378 -226597 COG4112 274.082 -226598 COG4113 78.1333 -226599 COG4114 312.929 -226600 COG4115 102.869 -226601 COG4116 261.557 -226602 COG4117 164.185 -226603 COG4118 58.6069 -226604 COG4119 270.628 -226605 COG4120 296.517 -226606 COG4121 119.041 -226607 COG4122 134.374 -226608 COG4123 222.892 -226609 COG4124 323.651 -226610 COG4125 183.377 -226611 COG4126 253.45 -226612 COG4127 269.053 -226613 COG4128 505.675 -226614 COG4129 105.122 -226615 COG4130 414.226 -226616 COG4132 310.134 -226617 COG4133 223.707 -226618 COG4134 401.545 -226619 COG4135 480.563 -226620 COG4136 351.057 -226621 COG4137 235.697 -226622 COG4138 399.607 -226623 COG4139 377.251 -226624 COG4143 325.858 -226625 COG4145 461.466 -226626 COG4146 151.128 -226627 COG4147 502.644 -226628 COG4148 343.939 -226629 COG4149 185.513 -226630 COG4150 564.083 -226631 COG4152 372.85 -226632 COG4154 205.687 -226633 COG4158 414.975 -226634 COG4160 244.843 -226635 COG4161 455.833 -226636 COG4166 158.338 -226637 COG4167 471.999 -226638 COG4168 464.582 -226639 COG4170 648.827 -226640 COG4171 444.579 -226641 COG4172 340.792 -226642 COG4174 556.238 -226643 COG4175 459.153 -226644 COG4176 318.028 -226645 COG4177 49.1673 -226646 COG4178 291.521 -226647 COG4181 304.324 -226648 COG4185 197.3 -226649 COG4186 226.688 -226650 COG4187 803.623 -226651 COG4188 236.194 -226652 COG4189 550.209 -226653 COG4190 163.874 -226654 COG4191 333.514 -226655 COG4192 870.782 -226656 COG4193 204.724 -226657 COG4194 248.102 -226658 COG4195 252.032 -226659 COG4196 1152.43 -226660 COG4197 90.7118 -226661 COG4198 547.126 -226662 COG4199 251.592 -226663 COG4200 187.21 -226664 COG4206 73.2285 -226665 COG4208 252.308 -226666 COG4209 152.448 -226667 COG4211 469.635 -226668 COG4213 150.991 -226669 COG4214 332.726 -226670 COG4215 252.954 -226671 COG4218 86.0199 -226672 COG4219 272.471 -226673 COG4220 97.5838 -226674 COG4221 171.667 -226675 COG4222 158.025 -226676 COG4223 190.951 -226677 COG4224 58.1694 -226678 COG4225 400.248 -226679 COG4226 72.4492 -226680 COG4227 482.429 -226681 COG4228 182.362 -226682 COG4229 346.42 -226683 COG4230 912.937 -226684 COG4231 283.488 -226685 COG4232 350.518 -226686 COG4233 289.733 -226687 COG4235 154.457 -226688 COG4237 186.924 -226689 COG4238 62.9704 -226690 COG4239 329.728 -226691 COG4240 382.297 -226692 COG4241 193.833 -226693 COG4242 331.751 -226694 COG4243 73.2477 -226695 COG4244 85.8815 -226696 COG4245 266.626 -226697 COG4246 443.516 -226698 COG4247 562.992 -226699 COG4248 642.823 -226700 COG4249 166.91 -226701 COG4250 292.233 -226702 COG4251 992.71 -226703 COG4252 186.446 -226704 COG4253 124.798 -226705 COG4254 361.924 -226706 COG4255 393.188 -226707 COG4256 75.6203 -226708 COG4257 438.937 -226709 COG4258 758.639 -226710 COG4259 188.954 -226711 COG4260 435.86 -226712 COG4261 421.526 -226713 COG4262 674.982 -226714 COG4263 442.033 -226715 COG4264 459.143 -226716 COG4266 564.797 -226717 COG4267 476.507 -226718 COG4268 409.539 -226719 COG4269 355.144 -226720 COG4270 146.493 -226721 COG4271 215.54 -226722 COG4272 106.378 -226723 COG4273 158.434 -226724 COG4274 109.459 -226725 COG4275 193.846 -226726 COG4276 203.26 -226727 COG4277 588.693 -226728 COG4278 244.839 -226729 COG4279 292.086 -226730 COG4280 183.88 -226731 COG4281 138.86 -226732 COG4282 245.181 -226733 COG4283 212.364 -226734 COG4284 320.113 -226735 COG4285 387.572 -226736 COG4286 405.673 -226737 COG4287 656.192 -226738 COG4288 176.2 -226739 COG4289 562.981 -226740 COG4290 208.176 -226741 COG4291 243.554 -226742 COG4292 372.947 -226743 COG4293 259.451 -226744 COG4294 443.882 -226745 COG4295 469.014 -226746 COG4296 238.623 -226747 COG4297 259.772 -226748 COG4298 135.447 -226749 COG4299 393.091 -226750 COG4300 170.622 -226751 COG4301 198.101 -226752 COG4302 389.15 -226753 COG4303 800.156 -226754 COG4304 219.012 -226755 COG4305 425.495 -226756 COG4306 297.649 -226757 COG4307 474.344 -226758 COG4308 178.848 -226759 COG4309 130.711 -226760 COG4310 711.592 -226761 COG4311 130.222 -226762 COG4312 300.925 -226763 COG4313 337.449 -226764 COG4314 240.896 -226765 COG4315 176.246 -226766 COG4316 148.591 -226767 COG4317 70.9917 -226768 COG4318 347.207 -226769 COG4319 137.552 -226770 COG4320 517.599 -226771 COG4321 106.744 -226772 COG4322 294.644 -226773 COG4323 181.219 -226774 COG4324 563.819 -226775 COG4325 570.259 -226776 COG4326 431.593 -226777 COG4327 109.55 -226778 COG4328 347.269 -226779 COG4329 202.791 -226780 COG4330 170.329 -226781 COG4331 185.802 -226782 COG4332 297.13 -226783 COG4333 242.519 -226784 COG4334 190.967 -226785 COG4335 223.64 -226786 COG4336 464.268 -226787 COG4337 344.626 -226788 COG4338 65.8507 -226789 COG4339 284.921 -226790 COG4340 329.162 -226791 COG4341 113.409 -226792 COG4342 299.853 -226793 COG4343 324.424 -226794 COG4344 218.979 -226795 COG4345 167.336 -226796 COG4346 400.045 -226797 COG4347 238.13 -226798 COG4352 107.951 -226799 COG4353 220.864 -226800 COG4354 811.026 -226801 COG4357 140.718 -226802 COG4359 272.048 -226803 COG4360 422.742 -226804 COG4362 606.076 -226805 COG4365 510.948 -226806 COG4367 114.666 -226807 COG4370 492.855 -226808 COG4371 333.818 -226809 COG4372 377.443 -226810 COG4373 771.43 -226811 COG4374 179.337 -226812 COG4377 305.617 -226813 COG4378 157.312 -226814 COG4379 485.505 -226815 COG4380 265.629 -226816 COG4381 151.602 -226817 COG4382 187.036 -226818 COG4383 149.237 -226819 COG4384 243.205 -226820 COG4385 253.191 -226821 COG4386 611.838 -226822 COG4387 197.348 -226823 COG4388 465.13 -226824 COG4389 1017.12 -226825 COG4390 161.62 -226826 COG4391 70.2332 -226827 COG4392 62.6984 -226828 COG4393 411.518 -226829 COG4394 543.28 -226830 COG4395 151.471 -226831 COG4396 253.724 -226832 COG4397 578.831 -226833 COG4398 558.672 -226834 COG4399 233.441 -226835 COG4401 206.557 -226836 COG4402 471.847 -226837 COG4403 260.857 -226838 COG4405 161.809 -226839 COG4408 706.545 -226840 COG4409 414.249 -226841 COG4412 904.367 -226842 COG4413 266.27 -226843 COG4416 60.0157 -226844 COG4420 183.383 -226845 COG4421 319.872 -226846 COG4422 465.915 -226847 COG4423 49.6953 -226848 COG4424 330.33 -226849 COG4425 856.42 -226850 COG4427 493.599 -226851 COG4430 245.044 -226852 COG4443 102.642 -226853 COG4445 294.814 -226854 COG4446 216.635 -226855 COG4447 406.222 -226856 COG4448 514.767 -226857 COG4449 288.425 -226858 COG4451 161.154 -226859 COG4452 584.795 -226860 COG4453 60.81 -226861 COG4454 94.8565 -226862 COG4455 375.356 -226863 COG4456 72.0262 -226864 COG4457 1553.28 -226865 COG4458 984.392 -226866 COG4459 82.5547 -226867 COG4460 201.72 -226868 COG4461 140.405 -226869 COG4463 188.739 -226870 COG4464 353.647 -226871 COG4465 269.638 -226872 COG4466 102.101 -226873 COG4467 135.302 -226874 COG4468 867.917 -226875 COG4469 378.694 -226876 COG4470 155.704 -226877 COG4471 97.8094 -226878 COG4472 136.411 -226879 COG4473 252.675 -226880 COG4474 224.212 -226881 COG4475 310.922 -226882 COG4476 136.074 -226883 COG4477 634.799 -226884 COG4478 192.256 -226885 COG4479 100.23 -226886 COG4481 93.3324 -226887 COG4483 76.6884 -226888 COG4485 902.625 -226889 COG4487 85.6394 -226890 COG4492 191.137 -226891 COG4493 302.884 -226892 COG4495 108.742 -226893 COG4496 168.055 -226894 COG4499 471.972 -226895 COG4502 275.235 -226896 COG4506 166.481 -226897 COG4508 216.652 -226898 COG4509 339.465 -226899 COG4512 199.284 -226900 COG4517 176.994 -226901 COG4518 170.865 -226902 COG4519 157.756 -226903 COG4520 130.32 -226904 COG4521 501.324 -226905 COG4525 353.292 -226906 COG4529 436.445 -226907 COG4530 90.3204 -226908 COG4531 412.2 -226909 COG4533 575.051 -226910 COG4535 408.698 -226911 COG4536 423.63 -226912 COG4537 115.966 -226913 COG4538 154.685 -226914 COG4539 209.283 -226915 COG4540 124.908 -226916 COG4541 70.9145 -226917 COG4542 353.32 -226918 COG4544 238.135 -226919 COG4545 138.785 -226920 COG4547 771.322 -226921 COG4548 739.333 -226922 COG4549 225.114 -226923 COG4550 81.7701 -226924 COG4551 152.298 -226925 COG4552 425.744 -226926 COG4553 120.272 -226927 COG4555 344.397 -226928 COG4558 311.636 -226929 COG4559 354.354 -226930 COG4564 705.049 -226931 COG4565 279.522 -226932 COG4566 140.887 -226933 COG4567 214.209 -226934 COG4568 77.9565 -226935 COG4569 518.731 -226936 COG4570 122.151 -226937 COG4571 223.132 -226938 COG4572 82.3915 -226939 COG4573 691.864 -226940 COG4574 128.468 -226941 COG4575 102.018 -226942 COG4576 117.478 -226943 COG4577 110.539 -226944 COG4578 147.201 -226945 COG4579 998.168 -226946 COG4580 461.223 -226947 COG4581 793.518 -226948 COG4582 372.203 -226949 COG4583 160.64 -226950 COG4584 37.4364 -226951 COG4585 139.929 -226952 COG4586 317.018 -226953 COG4587 262.335 -226954 COG4588 344.518 -226955 COG4589 219.204 -226956 COG4590 1024.85 -226957 COG4591 88.8897 -226958 COG4592 431.96 -226959 COG4594 425.745 -226960 COG4597 426.127 -226961 COG4598 453.418 -226962 COG4603 46.053 -226963 COG4604 420.175 -226964 COG4605 323.454 -226965 COG4606 365.463 -226966 COG4607 313.139 -226967 COG4608 109.608 -226968 COG4615 735.455 -226969 COG4618 659.739 -226970 COG4619 356.092 -226971 COG4623 585.202 -226972 COG4624 302.116 -226973 COG4625 369.14 -226974 COG4626 234.562 -226975 COG4627 256.34 -226976 COG4628 145.082 -226977 COG4630 725.769 -226978 COG4631 1281.63 -226979 COG4632 395.81 -226980 COG4633 209.856 -226981 COG4634 131.803 -226982 COG4635 193.06 -226983 COG4636 33.3222 -226984 COG4637 453.102 -226985 COG4638 121.445 -226986 COG4639 168.799 -226987 COG4640 490.584 -226988 COG4641 300.905 -226989 COG4642 119.458 -226990 COG4643 369.944 -226991 COG4644 83.6536 -226992 COG4645 470.067 -226993 COG4646 332.649 -226994 COG4647 302.603 -226995 COG4648 174.708 -226996 COG4649 276.329 -226997 COG4650 965.164 -226998 COG4651 445.353 -226999 COG4652 294.686 -227000 COG4653 60.2299 -227001 COG4654 113.865 -227002 COG4655 482.435 -227003 COG4656 436.417 -227004 COG4657 240.746 -227005 COG4658 295.46 -227006 COG4659 206.855 -227007 COG4660 260.793 -227008 COG4662 219.598 -227009 COG4663 421.88 -227010 COG4664 512.696 -227011 COG4665 191.022 -227012 COG4666 223.722 -227013 COG4667 397.115 -227014 COG4668 78.4847 -227015 COG4669 264.619 -227016 COG4670 725.635 -227017 COG4671 461.842 -227018 COG4672 254.663 -227019 COG4674 382.453 -227020 COG4675 150.335 -227021 COG4676 419.244 -227022 COG4677 429.749 -227023 COG4678 249.715 -227024 COG4679 137.145 -227025 COG4680 133.373 -227026 COG4681 277.105 -227027 COG4682 119.093 -227028 COG4683 179.275 -227029 COG4684 132.601 -227030 COG4685 755.595 -227031 COG4687 160.345 -227032 COG4688 668.661 -227033 COG4689 462.76 -227034 COG4690 489.287 -227035 COG4691 90.2862 -227036 COG4692 496.365 -227037 COG4693 472.788 -227038 COG4694 957.847 -227039 COG4695 187.615 -227040 COG4696 172.477 -227041 COG4697 210.877 -227042 COG4698 236.19 -227043 COG4699 146.878 -227044 COG4700 316.842 -227045 COG4701 157.803 -227046 COG4702 234.287 -227047 COG4703 107.962 -227048 COG4704 176.243 -227049 COG4705 301.75 -227050 COG4706 207.801 -227051 COG4707 124.213 -227052 COG4708 147.632 -227053 COG4709 196.862 -227054 COG4710 98.8425 -227055 COG4711 137.187 -227056 COG4712 292.678 -227057 COG4713 504.41 -227058 COG4714 470.937 -227059 COG4715 143.08 -227060 COG4716 930.811 -227061 COG4717 936.571 -227062 COG4718 151.379 -227063 COG4719 225.279 -227064 COG4720 135.986 -227065 COG4721 208.11 -227066 COG4722 191.065 -227067 COG4723 60.8968 -227068 COG4724 826.879 -227069 COG4725 181.689 -227070 COG4726 119.161 -227071 COG4727 371.249 -227072 COG4728 117.741 -227073 COG4729 167.694 -227074 COG4731 82.5151 -227075 COG4732 171.543 -227076 COG4733 325.939 -227077 COG4734 187.894 -227078 COG4735 52.8778 -227079 COG4736 48.5214 -227080 COG4737 134.506 -227081 COG4738 153.353 -227082 COG4739 285.605 -227083 COG4740 209.395 -227084 COG4741 209.237 -227085 COG4742 183.96 -227086 COG4743 382.731 -227087 COG4744 120.748 -227088 COG4745 544.458 -227089 COG4746 110.303 -227090 COG4747 216.551 -227091 COG4748 448.878 -227092 COG4749 230.205 -227093 COG4750 322.853 -227094 COG4752 329.868 -227095 COG4753 257.673 -227096 COG4754 197.275 -227097 COG4755 200.547 -227098 COG4756 399.598 -227099 COG4757 322.159 -227100 COG4758 196.82 -227101 COG4759 379.455 -227102 COG4760 309.127 -227103 COG4762 222.857 -227104 COG4763 425.114 -227105 COG4764 303.32 -227106 COG4765 186.587 -227107 COG4766 218.994 -227108 COG4767 77.015 -227109 COG4768 111.374 -227110 COG4769 168.375 -227111 COG4770 793.418 -227112 COG4771 817.031 -227113 COG4772 750.034 -227114 COG4773 412.602 -227115 COG4774 1061.75 -227116 COG4775 330.854 -227117 COG4776 1149.13 -227118 COG4778 417.982 -227119 COG4779 335.114 -227120 COG4781 305.477 -227121 COG4782 310.507 -227122 COG4783 281.982 -227123 COG4784 688.888 -227124 COG4785 436.941 -227125 COG4786 150.518 -227126 COG4787 340.596 -227127 COG4789 947.532 -227128 COG4790 300.03 -227129 COG4791 73.4727 -227130 COG4792 487.705 -227131 COG4794 79.3023 -227132 COG4795 96.7116 -227133 COG4796 291.675 -227134 COG4797 273.212 -227135 COG4798 105.306 -227136 COG4799 513.685 -227137 COG4800 225.189 -227138 COG4801 316.782 -227139 COG4802 136.871 -227140 COG4803 201.866 -227141 COG4804 33.225 -227142 COG4805 647.966 -227143 COG4806 841.044 -227144 COG4807 236.599 -227145 COG4808 152.667 -227146 COG4809 617.543 -227147 COG4810 191.217 -227148 COG4811 189.157 -227149 COG4812 329.948 -227150 COG4813 462.781 -227151 COG4814 363.327 -227152 COG4815 249.005 -227153 COG4816 280.615 -227154 COG4817 125.256 -227155 COG4818 123.277 -227156 COG4819 771.346 -227157 COG4820 462.019 -227158 COG4821 340.228 -227159 COG4822 382.592 -227160 COG4823 362.22 -227161 COG4824 125.587 -227162 COG4825 603.002 -227163 COG4826 495.531 -227164 COG4827 248.194 -227165 COG4828 125.246 -227166 COG4829 153.145 -227167 COG4830 121.868 -227168 COG4831 154.231 -227169 COG4832 267.861 -227170 COG4833 488.743 -227171 COG4834 477.149 -227172 COG4835 162.272 -227173 COG4836 92.1379 -227174 COG4837 163.861 -227175 COG4838 136.505 -227176 COG4839 119.441 -227177 COG4840 92.6063 -227178 COG4841 102.936 -227179 COG4842 64.6777 -227180 COG4843 160.37 -227181 COG4844 133.019 -227182 COG4845 298.596 -227183 COG4846 201.916 -227184 COG4847 141.541 -227185 COG4848 456.583 -227186 COG4849 340.789 -227187 COG4850 379.976 -227188 COG4851 576.375 -227189 COG4852 151.86 -227190 COG4853 340.662 -227191 COG4854 141.49 -227192 COG4855 111.832 -227193 COG4856 262.386 -227194 COG4857 601.85 -227195 COG4858 295.202 -227196 COG4859 111.577 -227197 COG4860 260.213 -227198 COG4861 480.208 -227199 COG4862 215.342 -227200 COG4863 585.295 -227201 COG4864 471.318 -227202 COG4865 812.191 -227203 COG4866 342.96 -227204 COG4867 635.48 -227205 COG4868 886.877 -227206 COG4869 352.58 -227207 COG4870 290.971 -227208 COG4871 294.091 -227209 COG4872 364.55 -227210 COG4873 91.5137 -227211 COG4874 505.213 -227212 COG4875 236.423 -227213 COG4876 99.0241 -227214 COG4877 78.1164 -227215 COG4878 358.453 -227216 COG4879 328.801 -227217 COG4880 853.059 -227218 COG4881 433.127 -227219 COG4882 665.502 -227220 COG4883 980.598 -227221 COG4884 275.631 -227222 COG4885 377.761 -227223 COG4886 33.0178 -227224 COG4887 274.877 -227225 COG4888 98.3465 -227226 COG4889 709.666 -227227 COG4890 54.9697 -227228 COG4891 105.281 -227229 COG4892 133.474 -227230 COG4893 162.78 -227231 COG4894 212.324 -227232 COG4895 99.9504 -227233 COG4896 72.3177 -227234 COG4897 74.8469 -227235 COG4898 208.229 -227236 COG4899 218.299 -227237 COG4900 188.157 -227238 COG4901 94.2062 -227239 COG4902 267.53 -227240 COG4903 231.389 -227241 COG4904 181.348 -227242 COG4905 290.62 -227243 COG4906 758.219 -227244 COG4907 694.755 -227245 COG4908 469.275 -227246 COG4909 1023.34 -227247 COG4910 232.971 -227248 COG4911 162.765 -227249 COG4912 127.966 -227250 COG4913 677.51 -227251 COG4914 265.907 -227252 COG4915 264.372 -227253 COG4916 269.174 -227254 COG4917 175.057 -227255 COG4918 165.867 -227256 COG4919 55.8608 -227257 COG4920 261.356 -227258 COG4921 178.128 -227259 COG4922 173.121 -227260 COG4923 326.537 -227261 COG4924 527.606 -227262 COG4925 207.916 -227263 COG4926 454.34 -227264 COG4927 474.822 -227265 COG4928 167.644 -227266 COG4929 201.571 -227267 COG4930 768.324 -227268 COG4932 287.51 -227269 COG4933 154.172 -227270 COG4934 456.913 -227271 COG4935 133.783 -227272 COG4936 272.544 -227273 COG4937 199.747 -227274 COG4938 529.109 -227275 COG4939 192.442 -227276 COG4940 129.4 -227277 COG4941 399.501 -227278 COG4942 292.011 -227279 COG4943 443.024 -227280 COG4944 183.822 -227281 COG4945 417.049 -227282 COG4946 985.848 -227283 COG4947 181.606 -227284 COG4948 52.0075 -227285 COG4949 547.189 -227286 COG4950 202.74 -227287 COG4951 461.751 -227288 COG4952 671.245 -227289 COG4953 795.054 -227290 COG4954 275.666 -227291 COG4955 425.433 -227292 COG4956 374.757 -227293 COG4957 227.635 -227294 COG4959 210.03 -227295 COG4960 105.134 -227296 COG4961 46.6873 -227297 COG4962 127.075 -227298 COG4963 280.457 -227299 COG4964 275.003 -227300 COG4965 170.595 -227301 COG4966 185.766 -227302 COG4967 100.568 -227303 COG4968 97.1125 -227304 COG4969 51.6526 -227305 COG4970 119.467 -227306 COG4972 370.181 -227307 COG4973 426.043 -227308 COG4974 332.246 -227309 COG4975 308.106 -227310 COG4976 370.263 -227311 COG4977 261.053 -227312 COG4978 67.7932 -227313 COG4980 63.9506 -227314 COG4981 1062.53 -227315 COG4982 1072.95 -227316 COG4983 455.161 -227317 COG4984 475.9 -227318 COG4985 462.079 -227319 COG4986 483.906 -227320 COG4987 407.871 -227321 COG4988 424.752 -227322 COG4989 449.894 -227323 COG4990 218.951 -227324 COG4991 118.701 -227325 COG4992 210.487 -227326 COG4993 720.431 -227327 COG4994 163.955 -227328 COG4995 315.095 -227329 COG4996 247.859 -227330 COG4997 67.1678 -227331 COG4998 234.142 -227332 COG4999 216.666 -227333 COG5000 532.037 -227334 COG5001 1010.2 -227335 COG5002 342.487 -227336 COG5003 181.589 -227337 COG5004 105.303 -227338 COG5005 170.807 -227339 COG5006 237.264 -227340 COG5007 98.2084 -227341 COG5008 636.03 -227342 COG5009 885.503 -227343 COG5010 150.663 -227344 COG5011 260.985 -227345 COG5012 207.57 -227346 COG5013 499.613 -227347 COG5014 355.724 -227348 COG5015 184.615 -227349 COG5016 647.48 -227350 COG5017 213.554 -227351 COG5018 315.321 -227352 COG5019 351.626 -227353 COG5020 339.357 -227354 COG5021 436.891 -227355 COG5022 1184.49 -227356 COG5023 631.727 -227357 COG5024 232.358 -227358 COG5025 234.319 -227359 COG5026 486.912 -227360 COG5027 410.317 -227361 COG5028 861.02 -227362 COG5029 402.564 -227363 COG5030 132.149 -227364 COG5031 302.066 -227365 COG5032 319.806 -227366 COG5033 205.038 -227367 COG5034 229.053 -227368 COG5035 371.896 -227369 COG5036 720.429 -227370 COG5037 234.758 -227371 COG5038 1133.32 -227372 COG5039 419.971 -227373 COG5040 408.19 -227374 COG5041 324.459 -227375 COG5042 490.886 -227376 COG5043 817.584 -227377 COG5044 435.368 -227378 COG5045 145.068 -227379 COG5046 266.096 -227380 COG5047 859.184 -227381 COG5048 36.5974 -227382 COG5049 911.999 -227383 COG5050 377.192 -227384 COG5051 109.277 -227385 COG5052 207.732 -227386 COG5053 261.75 -227387 COG5054 242.857 -227388 COG5055 301.828 -227389 COG5056 473.911 -227390 COG5057 378.797 -227391 COG5058 363.775 -227392 COG5059 161.06 -227393 COG5061 420.448 -227394 COG5062 460.838 -227395 COG5063 276.933 -227396 COG5064 743.633 -227397 COG5065 250.185 -227398 COG5066 242.947 -227399 COG5067 254.873 -227400 COG5068 144.003 -227401 COG5069 785.285 -227402 COG5070 97.6512 -227403 COG5071 558.023 -227404 COG5072 526.029 -227405 COG5073 246.712 -227406 COG5074 322.606 -227407 COG5075 375.751 -227408 COG5076 126.073 -227409 COG5077 1317.18 -227410 COG5078 137.394 -227411 COG5079 613.859 -227412 COG5080 230.433 -227413 COG5081 222.426 -227414 COG5082 119.955 -227415 COG5083 506.34 -227416 COG5084 93.7823 -227417 COG5085 248.668 -227418 COG5086 214.83 -227419 COG5087 395.528 -227420 COG5088 166.981 -227421 COG5090 344.255 -227422 COG5091 243.458 -227423 COG5092 574.234 -227424 COG5093 246.34 -227425 COG5094 222.936 -227426 COG5095 569.606 -227427 COG5096 602.873 -227428 COG5097 268.384 -227429 COG5098 1224.84 -227430 COG5099 450.353 -227431 COG5100 818.473 -227432 COG5101 1551.06 -227433 COG5102 216.707 -227434 COG5103 1908.98 -227435 COG5104 504.615 -227436 COG5105 434.467 -227437 COG5106 383.188 -227438 COG5107 651.699 -227439 COG5108 1392.02 -227440 COG5109 465.252 -227441 COG5110 1244.43 -227442 COG5111 372.375 -227443 COG5112 151.771 -227444 COG5113 1166.29 -227445 COG5114 514.234 -227446 COG5116 1201.69 -227447 COG5117 627.435 -227448 COG5118 265.808 -227449 COG5119 134.431 -227450 COG5120 91.0018 -227451 COG5122 175.088 -227452 COG5123 165.126 -227453 COG5124 197.87 -227454 COG5125 180.969 -227455 COG5126 67.3341 -227456 COG5127 519.49 -227457 COG5128 245.603 -227458 COG5129 343.18 -227459 COG5130 219 -227460 COG5131 96.8428 -227461 COG5132 249.84 -227462 COG5133 247.602 -227463 COG5134 246.53 -227464 COG5135 267.692 -227465 COG5136 202.234 -227466 COG5137 288.048 -227467 COG5138 238.268 -227468 COG5139 300.078 -227469 COG5140 389.686 -227470 COG5141 638.951 -227471 COG5142 299.5 -227472 COG5143 114.448 -227473 COG5144 610.791 -227474 COG5145 286.132 -227475 COG5146 350.828 -227476 COG5147 159.183 -227477 COG5148 299.605 -227478 COG5149 244.587 -227479 COG5150 197.88 -227480 COG5151 548.059 -227481 COG5152 193.753 -227482 COG5153 454.047 -227483 COG5154 318.486 -227484 COG5155 1112.77 -227485 COG5156 221.386 -227486 COG5157 399.447 -227487 COG5158 430.301 -227488 COG5159 621.553 -227489 COG5160 390.809 -227490 COG5161 1581.9 -227491 COG5162 220.694 -227492 COG5163 590.123 -227493 COG5164 747.22 -227494 COG5165 588.51 -227495 COG5166 788.79 -227496 COG5167 854.671 -227497 COG5169 174.542 -227498 COG5170 542.698 -227499 COG5171 266.115 -227500 COG5173 917.025 -227501 COG5174 375.1 -227502 COG5175 353.216 -227503 COG5176 327.697 -227504 COG5177 731.112 -227505 COG5178 3522.94 -227506 COG5179 1120.91 -227507 COG5180 476.138 -227508 COG5181 1475.19 -227509 COG5182 502.982 -227510 COG5183 1123.89 -227511 COG5184 354.915 -227512 COG5185 632.402 -227513 COG5186 872.335 -227514 COG5187 575.713 -227515 COG5188 464.1 -227516 COG5189 305.489 -227517 COG5190 168.408 -227518 COG5191 376.224 -227519 COG5192 1071.67 -227520 COG5193 212.599 -227521 COG5194 120.324 -227522 COG5195 150.143 -227523 COG5196 284.397 -227524 COG5197 296.843 -227525 COG5198 229.021 -227526 COG5199 287.201 -227527 COG5200 361.976 -227528 COG5201 220.201 -227529 COG5202 502.578 -227530 COG5204 179.389 -227531 COG5206 408.208 -227532 COG5207 843.19 -227533 COG5208 301.203 -227534 COG5209 486.344 -227535 COG5210 204.651 -227536 COG5211 342.217 -227537 COG5212 496.766 -227538 COG5213 213.75 -227539 COG5214 634.325 -227540 COG5215 1227.88 -227541 COG5216 109.161 -227542 COG5217 447.907 -227543 COG5218 932.853 -227544 COG5219 1184.08 -227545 COG5220 329.666 -227546 COG5221 1934.32 -227547 COG5222 436.1 -227548 COG5223 187.929 -227549 COG5224 213.897 -227550 COG5225 189.898 -227551 COG5226 577.638 -227552 COG5227 160.478 -227553 COG5228 477.875 -227554 COG5229 574.843 -227555 COG5230 269.125 -227556 COG5231 506.418 -227557 COG5232 367.319 -227558 COG5233 473.465 -227559 COG5234 1176.27 -227560 COG5235 347.732 -227561 COG5236 439.456 -227562 COG5237 365.744 -227563 COG5238 468.638 -227564 COG5239 393.752 -227565 COG5240 1105.06 -227566 COG5241 293.83 -227567 COG5242 294.644 -227568 COG5243 469.836 -227569 COG5244 327.027 -227570 COG5245 2689.37 -227571 COG5246 274.242 -227572 COG5247 130.467 -227573 COG5248 155.504 -227574 COG5249 251.701 -227575 COG5250 160.924 -227576 COG5251 233.779 -227577 COG5252 302.778 -227578 COG5253 429.751 -227579 COG5254 263.3 -227580 COG5255 346.055 -227581 COG5256 414.388 -227582 COG5257 665.581 -227583 COG5258 681.887 -227584 COG5259 556.422 -227585 COG5260 378.346 -227586 COG5261 949.711 -227587 COG5262 163.494 -227588 COG5263 92.2271 -227589 COG5264 79.728 -227590 COG5265 104.746 -227591 COG5266 213.523 -227592 COG5267 572.577 -227593 COG5268 121.888 -227594 COG5269 417.126 -227595 COG5270 248.906 -227596 COG5271 4222.09 -319244 COG5272 64.0061 -227598 COG5273 159.531 -227599 COG5274 106.832 -227600 COG5275 189.564 -227601 COG5276 410.819 -227602 COG5277 163.746 -227603 COG5278 139.043 -227604 COG5279 204.032 -227605 COG5280 563.306 -227606 COG5281 39.2374 -227607 COG5282 390.427 -227608 COG5283 528.729 -227609 COG5285 277.056 -227610 COG5290 1588.49 -227611 COG5291 291.89 -227612 COG5293 729.789 -227613 COG5294 90.1678 -227614 COG5295 86.4641 -227615 COG5296 352.036 -227616 COG5297 560.823 -227617 COG5298 642.038 -227618 COG5301 658.579 -227619 COG5302 83.4312 -227620 COG5304 114.21 -227621 COG5305 309.711 -227622 COG5306 373.059 -227623 COG5307 400.262 -227624 COG5308 1091.15 -227625 COG5309 335.661 -227626 COG5310 495.135 -227627 COG5314 155.795 -227628 COG5316 192.769 -227629 COG5317 241.316 -227630 COG5319 161.51 -227631 COG5321 239.014 -227632 COG5322 527.921 -227633 COG5323 101.18 -227634 COG5324 411.682 -227635 COG5325 232.809 -227636 COG5328 287.889 -227637 COG5329 347.455 -227638 COG5330 239.673 -227639 COG5331 147.658 -227640 COG5333 221.915 -227641 COG5336 96.386 -227642 COG5337 536.078 -227643 COG5338 566.815 -227644 COG5339 354.087 -227645 COG5340 275.656 -227646 COG5341 134.132 -227647 COG5342 159.509 -227648 COG5343 261.696 -227649 COG5345 515.175 -227650 COG5346 167.392 -227651 COG5347 191.531 -227652 COG5349 147.505 -227653 COG5350 179.626 -227654 COG5351 556.463 -227655 COG5352 210.943 -227656 COG5353 146.145 -227657 COG5354 606.102 -227658 COG5360 761.662 -227659 COG5361 131.404 -227660 COG5362 255.283 -227661 COG5366 262.585 -227662 COG5368 646.162 -227663 COG5369 799.185 -227664 COG5371 380.41 -227665 COG5373 187.724 -227666 COG5374 202.73 -227667 COG5375 238.876 -227668 COG5377 468.986 -227669 COG5378 150.467 -227670 COG5379 518.304 -227671 COG5380 306.15 -227672 COG5381 287.581 -227673 COG5383 94.5302 -227674 COG5384 214.554 -227675 COG5385 286.775 -227676 COG5386 229.79 -227677 COG5387 317.905 -227678 COG5388 250.852 -227679 COG5389 203.942 -227680 COG5391 119.517 -227681 COG5393 123.755 -227682 COG5394 251.268 -227683 COG5395 152.661 -227684 COG5397 435.024 -227685 COG5398 268.606 -227686 COG5399 153.93 -227687 COG5400 330.242 -227688 COG5401 197.712 -227689 COG5402 300.561 -227690 COG5403 202.141 -227691 COG5404 198.242 -227692 COG5405 217.151 -227693 COG5406 1063.09 -227694 COG5407 790.697 -227695 COG5408 260.149 -227696 COG5409 83.6962 -227697 COG5410 313.06 -227698 COG5411 401.854 -227699 COG5412 449.226 -227700 COG5413 204.224 -227701 COG5414 254.626 -227702 COG5415 279.955 -227703 COG5416 71.6504 -227704 COG5417 106.783 -227705 COG5418 203.173 -227706 COG5419 69.8327 -227707 COG5420 61.5269 -227708 COG5421 185.316 -227709 COG5422 1068.74 -227710 COG5423 176.955 -227711 COG5424 130.643 -227712 COG5425 160.299 -227713 COG5426 465.467 -227714 COG5427 277.593 -227715 COG5428 65.5611 -227716 COG5429 297.865 -227717 COG5430 72.5122 -227718 COG5431 122.309 -227719 COG5432 177.972 -227720 COG5433 25.0608 -227721 COG5434 207.727 -227722 COG5435 181.039 -227723 COG5436 204.721 -227724 COG5437 199.693 -227725 COG5438 204.901 -227726 COG5439 178.152 -227727 COG5440 195.01 -227728 COG5441 596.79 -227729 COG5442 143.42 -227730 COG5443 223.922 -227731 COG5444 121.422 -227732 COG5445 104.588 -227733 COG5446 196.625 -227734 COG5447 138.046 -227735 COG5448 274.059 -227736 COG5449 104.269 -227737 COG5450 39.3853 -227738 COG5451 163.546 -227739 COG5452 249.328 -227740 COG5453 144.612 -227741 COG5454 117.542 -227742 COG5455 119.906 -227743 COG5456 212.01 -227744 COG5457 51.2095 -227745 COG5458 220.102 -227746 COG5459 483.723 -227747 COG5460 79.0949 -227748 COG5461 227.502 -227749 COG5462 166.935 -227750 COG5463 186.579 -227751 COG5464 39.6863 -227752 COG5465 242.767 -227753 COG5466 63.2663 -227754 COG5467 128.86 -227755 COG5468 193.158 -227756 COG5469 133.371 -227757 COG5470 106.276 -227758 COG5471 120.746 -227759 COG5472 79.5353 -227760 COG5473 220.379 -227761 COG5474 216.331 -227762 COG5475 96.5443 -227763 COG5476 110.933 -227764 COG5477 112.672 -227765 COG5478 125.979 -227766 COG5479 125.683 -227767 COG5480 195.083 -227768 COG5481 80.2901 -227769 COG5482 379.622 -227770 COG5483 262.17 -227771 COG5484 226.381 -227772 COG5485 178.034 -227773 COG5486 242.435 -227774 COG5487 34.6371 -227775 COG5488 173.795 -227776 COG5489 139.438 -227777 COG5490 128.519 -227778 COG5491 69.0667 -227779 COG5492 51.3404 -227780 COG5493 233.6 -227781 COG5494 354.597 -227782 COG5495 311.468 -227783 COG5496 93.6192 -227784 COG5497 84.8458 -227785 COG5498 990.519 -227786 COG5499 172.704 -227787 COG5500 183.162 -227788 COG5501 192.456 -227789 COG5502 157.16 -227790 COG5503 70.9468 -227791 COG5504 230.127 -227792 COG5505 176.915 -227793 COG5506 178.041 -227794 COG5507 207.021 -227795 COG5508 67.6006 -227796 COG5509 68.3617 -227797 COG5510 44.413 -227798 COG5511 124.033 -227799 COG5512 133.038 -227800 COG5513 121.435 -227801 COG5514 325.387 -227802 COG5515 98.4376 -227803 COG5516 237.135 -227804 COG5517 195.348 -227805 COG5518 487.945 -227806 COG5519 108.657 -227807 COG5520 564.908 -227808 COG5521 339.515 -227809 COG5522 234.31 -227810 COG5523 216.222 -227811 COG5524 208.448 -227812 COG5525 148.738 -227813 COG5526 318.426 -227814 COG5527 356.92 -227815 COG5528 155.028 -227816 COG5529 198.332 -227817 COG5530 306.859 -227818 COG5531 120.627 -227819 COG5532 396.614 -227820 COG5533 453.326 -227821 COG5534 380.903 -227822 COG5535 487.436 -227823 COG5536 337.227 -227824 COG5537 640.018 -227825 COG5538 222.913 -227826 COG5539 289.464 -227827 COG5540 389.74 -227828 COG5541 220.584 -227829 COG5542 331.687 -227830 COG5543 1211.38 -227831 COG5544 108.43 -227832 COG5545 742.929 -227833 COG5546 96.4003 -227834 COG5547 59.3244 -227835 COG5548 118.824 -227836 COG5549 286.816 -227837 COG5550 110.57 -227838 COG5551 107.531 -227839 COG5552 115.091 -227840 COG5553 261.437 -227841 COG5554 100.004 -227842 COG5555 564.584 -227843 COG5556 84.2893 -227844 COG5557 379.959 -227845 COG5558 99.2128 -227846 COG5559 69.939 -227847 COG5560 1054.48 -227848 COG5561 96.925 -227849 COG5562 179.95 -227850 COG5563 163.782 -227851 COG5564 298.693 -227852 COG5565 80.7943 -227853 COG5566 115.707 -227854 COG5567 62.9913 -227855 COG5568 97.9449 -227856 COG5569 110.362 -227857 COG5570 66.435 -227858 COG5571 248.948 -227859 COG5572 92.0937 -227860 COG5573 186.559 -227861 COG5574 195.112 -227862 COG5575 350.908 -227863 COG5576 116.382 -227864 COG5577 70.502 -227865 COG5578 138.556 -227866 COG5579 252.495 -227867 COG5580 219.773 -227868 COG5581 241.541 -227869 COG5582 231.606 -227870 COG5583 51.7691 -227871 COG5584 124.53 -227872 COG5585 168.889 -227873 COG5586 128.475 -227874 COG5587 373.077 -227875 COG5588 284.696 -227876 COG5589 206.37 -227877 COG5590 282.497 -227878 COG5591 101.189 -227879 COG5592 173.895 -227880 COG5593 620.906 -227881 COG5594 770.819 -227882 COG5595 108.454 -227883 COG5596 126.125 -227884 COG5597 374.214 -227885 COG5598 508.462 -227886 COG5599 299.065 -227887 COG5600 391.082 -227888 COG5601 211.761 -227889 COG5602 964.379 -227890 COG5603 193.203 -227891 COG5604 335.321 -227892 COG5605 155.424 -227893 COG5606 70.2633 -227894 COG5607 153.82 -227895 COG5608 152.599 -227896 COG5609 107.51 -227897 COG5610 758.707 -227898 COG5611 168.147 -227899 COG5612 128.558 -227900 COG5613 397.802 -227901 COG5614 81.3806 -227902 COG5615 143.816 -227903 COG5616 168.681 -227904 COG5617 672.619 -227905 COG5618 168.167 -227906 COG5619 312.285 -227907 COG5620 200.462 -227908 COG5621 419.246 -227909 COG5622 179.19 -227910 COG5623 547.618 -227911 COG5624 532.731 -227912 COG5625 68.3792 -227913 COG5626 125.062 -227914 COG5627 351.632 -227915 COG5628 147.717 -227916 COG5629 317.747 -227917 COG5630 249.538 -227918 COG5631 263.758 -227919 COG5632 188.496 -227920 COG5633 126.474 -227921 COG5634 268.706 -227922 COG5635 251.632 -227923 COG5636 165.706 -227924 COG5637 232.855 -227925 COG5638 329.051 -227926 COG5639 68.7206 -227927 COG5640 367.664 -227928 COG5641 143.473 -227929 COG5642 165.839 -227930 COG5643 243.192 -227931 COG5644 415.255 -227932 COG5645 89.83 -227933 COG5646 134.154 -227934 COG5647 803.249 -227935 COG5648 98.781 -227936 COG5649 153.905 -227937 COG5650 315.535 -227938 COG5651 69.5721 -227939 COG5652 117.873 -227940 COG5653 269.715 -227941 COG5654 153.765 -227942 COG5655 80.3284 -227943 COG5656 1267.47 -227944 COG5657 718.132 -227945 COG5658 75.878 -227946 COG5659 161.539 -227947 COG5660 150.028 -227948 COG5661 299.83 -227949 COG5662 70.974 -227950 COG5663 263.242 -227951 COG5664 297.126 -227952 COG5665 363.993 -177099 MTH00001 52.7586 -214398 MTH00004 678.808 -164583 MTH00005 287.4 -133649 MTH00007 870.761 -164584 MTH00008 423.498 -177101 MTH00009 423.864 -164586 MTH00010 431.897 -164587 MTH00011 291.684 -164588 MTH00012 163.876 -133655 MTH00013 88.2694 -214399 MTH00014 482.318 -164590 MTH00015 126.895 -177102 MTH00016 562.376 -164592 MTH00018 141.738 -214400 MTH00020 805.837 -214401 MTH00021 106.735 -164595 MTH00022 567.022 -214402 MTH00023 361.375 -214403 MTH00024 373.319 -214404 MTH00025 56.6099 -164599 MTH00026 865.094 -214405 MTH00027 457.95 -214406 MTH00028 512.305 -177108 MTH00029 563.872 -164603 MTH00030 178.203 -214407 MTH00032 1129.29 -133672 MTH00033 628.891 -177109 MTH00034 634.822 -177110 MTH00035 230.245 -214408 MTH00036 27.7338 -177112 MTH00037 842.184 -177113 MTH00038 385.979 -177114 MTH00039 421.444 -214409 MTH00040 407.439 -177116 MTH00041 261.404 -177117 MTH00042 120.086 -214410 MTH00043 41.4423 -214411 MTH00044 483.709 -177120 MTH00045 87.2683 -177121 MTH00046 446.352 -214412 MTH00047 277.991 -177123 MTH00048 759.984 -177124 MTH00049 177.03 -177125 MTH00050 152.731 -177126 MTH00051 355.628 -164623 MTH00052 394.93 -164624 MTH00053 584.747 -177127 MTH00054 422.599 -177128 MTH00055 152.171 -177129 MTH00057 171.722 -177130 MTH00058 312.629 -177131 MTH00059 121.19 -177132 MTH00060 79.5562 -177133 MTH00061 52.1688 -214413 MTH00062 230.58 -214414 MTH00063 388.853 -177136 MTH00064 88.3835 -214415 MTH00065 146.917 -214416 MTH00066 797.194 -177139 MTH00067 102.374 -214417 MTH00068 575.712 -177141 MTH00069 155.152 -177142 MTH00070 410.466 -214418 MTH00071 526.881 -164642 MTH00072 50.7431 -177144 MTH00073 279.159 -177145 MTH00074 664.073 -177146 MTH00075 443.417 -164646 MTH00076 428.044 -214419 MTH00077 885.052 -177148 MTH00079 666.769 -177149 MTH00080 256.861 -177150 MTH00083 157.425 -177151 MTH00086 354.246 -177152 MTH00087 100.053 -177153 MTH00090 239.415 -177154 MTH00091 122.286 -177155 MTH00092 45.6554 -177156 MTH00093 33.6778 -177157 MTH00094 203.6 -177158 MTH00095 262.931 -177159 MTH00097 47.9626 -177160 MTH00098 369.047 -177161 MTH00099 440.317 -177162 MTH00100 685.601 -177163 MTH00101 274.522 -214420 MTH00102 47.1462 -177165 MTH00103 901.172 -177166 MTH00104 496.069 -177167 MTH00105 383.813 -177168 MTH00106 148.164 -177169 MTH00107 116.569 -177170 MTH00108 973.56 -214421 MTH00109 155.73 -177172 MTH00110 674.3 -214422 MTH00111 492.873 -214423 MTH00112 318.69 -177175 MTH00113 101.496 -214424 MTH00115 79.7924 -177177 MTH00116 886.744 -177178 MTH00117 384.266 -177179 MTH00118 424.364 -214425 MTH00119 574.927 -177181 MTH00120 229.326 -214426 MTH00123 26.3867 -214427 MTH00124 552.495 -177184 MTH00125 69.4897 -177185 MTH00126 126.233 -177186 MTH00127 32.6201 -177187 MTH00129 427.208 -177188 MTH00130 450.37 -177189 MTH00131 717.202 -177190 MTH00132 265.198 -177191 MTH00133 54.1095 -177192 MTH00134 555.757 -177193 MTH00135 371.83 -177194 MTH00136 135.817 -214428 MTH00137 1018.99 -177196 MTH00138 134.883 -214429 MTH00139 352.097 -214430 MTH00140 207.484 -177199 MTH00141 288.713 -214431 MTH00142 837.84 -177201 MTH00143 339.154 -214432 MTH00144 166.6 -177203 MTH00145 497.12 -177204 MTH00147 23.1432 -214433 MTH00148 82.598 -214434 MTH00149 38.2874 -214435 MTH00150 366.087 -214436 MTH00151 464.316 -214437 MTH00152 53.7373 -177210 MTH00153 769.805 -214438 MTH00154 213.922 -214439 MTH00155 207.34 -214440 MTH00156 385.289 -214441 MTH00157 114.495 -177215 MTH00158 23.5658 -214442 MTH00160 108.757 -177217 MTH00161 40.1451 -177218 MTH00162 27.0407 -214443 MTH00163 185.743 -214444 MTH00165 220.784 -214445 MTH00166 35.1671 -177222 MTH00167 826.623 -177223 MTH00168 351.975 -214446 MTH00169 58.8341 -177225 MTH00171 51.2059 -214447 MTH00172 227.232 -214448 MTH00173 129.6 -133799 MTH00174 333.83 -177228 MTH00175 260.324 -214449 MTH00176 159.813 -177230 MTH00179 148.558 -177231 MTH00180 76.9945 -214450 MTH00181 35.6899 -214451 MTH00182 810.974 -177234 MTH00183 893.124 -177235 MTH00184 830.239 -164736 MTH00185 435.083 -177236 MTH00186 40.1089 -177237 MTH00188 48.0469 -177238 MTH00189 343.109 -177239 MTH00191 531.028 -177240 MTH00192 76.4983 -177241 MTH00193 156.083 -214452 MTH00195 417.991 -214453 MTH00196 315.431 -177244 MTH00197 206.447 -214454 MTH00198 869.947 -177245 MTH00199 441.763 -177246 MTH00200 138.178 -214455 MTH00202 124.72 -214456 MTH00203 61.4521 -164750 MTH00204 531.176 -214457 MTH00205 422.851 -214458 MTH00206 242.152 -164753 MTH00207 766.62 -177251 MTH00208 672.452 -177252 MTH00209 568.893 -177253 MTH00210 918.246 -214459 MTH00211 395.859 -214460 MTH00212 91.9911 -177256 MTH00213 306.826 -214461 MTH00214 34.194 -164761 MTH00216 461.126 -214462 MTH00217 548.884 -214463 MTH00218 262.539 -214464 MTH00219 387.99 -164765 MTH00222 79.8934 -177260 MTH00223 805.738 -164767 MTH00224 622.711 -214465 MTH00225 371.675 -214466 MTH00226 825.712 -164770 MTH00260 35.588 -177263 MTH00261 45.6457 -222768 PHA00002 829.179 -222769 PHA00003 183.544 -164773 PHA00006 289.915 -164774 PHA00007 73.8447 -222770 PHA00008 26.4349 -164775 PHA00009 857.626 -164776 PHA00010 229.281 -222771 PHA00012 642.261 -222772 PHA00019 504.732 -164777 PHA00022 33.1989 -106880 PHA00024 31.6079 -222773 PHA00025 65.0363 -133846 PHA00026 240.328 -133847 PHA00027 88.5316 -222774 PHA00028 691.534 -222775 PHA00080 69.7806 -106886 PHA00094 91.4207 -164779 PHA00097 56.4106 -222776 PHA00098 147.838 -164781 PHA00099 198.65 -177266 PHA00101 198.158 -222777 PHA00144 499.419 -133855 PHA00147 430.388 -222778 PHA00148 189.778 -222779 PHA00149 355.228 -177267 PHA00159 176.517 -222780 PHA00198 133.86 -177268 PHA00201 598.366 -164786 PHA00202 677.859 -164787 PHA00212 94.4255 -222781 PHA00276 167.264 -106901 PHA00280 117.962 -164789 PHA00327 107.098 -222782 PHA00330 382.67 -222783 PHA00350 467.796 -177271 PHA00360 840.846 -222784 PHA00363 876.49 -222785 PHA00368 1743.89 -164794 PHA00369 465.6 -164795 PHA00370 306.073 -222786 PHA00371 509.765 -133872 PHA00380 996.734 -164796 PHA00404 44.5875 -222787 PHA00405 79.6622 -164797 PHA00406 38.2485 -164798 PHA00407 119.645 -222788 PHA00415 178.657 -133878 PHA00422 109.118 -164800 PHA00425 117.596 -164801 PHA00426 70.2397 -222789 PHA00428 220.269 -222790 PHA00430 574.147 -222791 PHA00431 901.083 -177277 PHA00432 186.801 -222792 PHA00435 335.267 -222793 PHA00437 45.7002 -133887 PHA00438 122.955 -222794 PHA00439 323.653 -133889 PHA00440 154.616 -222795 PHA00441 66.5459 -222796 PHA00442 60.8281 -177281 PHA00446 118.417 -177282 PHA00447 213.871 -133894 PHA00448 74.9837 -164812 PHA00450 134.511 -177283 PHA00451 580.979 -222797 PHA00452 747.233 -164815 PHA00453 46.5343 -222798 PHA00454 382.074 -133900 PHA00455 121.413 -164817 PHA00456 42.1394 -222799 PHA00457 78.0436 -222800 PHA00458 277.831 -222801 PHA00476 129.177 -133905 PHA00489 119.718 -133906 PHA00490 395.063 -222802 PHA00497 918.844 -133907 PHA00510 202.095 -222803 PHA00514 121.645 -133909 PHA00515 80.2552 -222804 PHA00520 317.966 -222805 PHA00527 221.38 -133910 PHA00540 1216.4 -106954 PHA00542 52.8777 -164822 PHA00547 477.899 -177288 PHA00616 61.3196 -177289 PHA00617 83.8808 -177290 PHA00619 274.049 -106959 PHA00626 90.5529 -222806 PHA00645 108.659 -133916 PHA00646 59.8474 -106962 PHA00649 162.926 -106963 PHA00650 169.542 -106964 PHA00652 261.548 -164824 PHA00653 640.678 -106966 PHA00657 4188.76 -106967 PHA00658 1470.82 -133918 PHA00660 308.32 -106970 PHA00661 1126.18 -222807 PHA00662 317.642 -106972 PHA00663 115.289 -106973 PHA00664 153.133 -106974 PHA00665 599.942 -222808 PHA00666 276.15 -106976 PHA00667 47.7131 -222809 PHA00669 162.379 -106978 PHA00670 761.313 -106979 PHA00671 146.73 -133920 PHA00672 85.9741 -106981 PHA00673 278.137 -106982 PHA00675 147.967 -106983 PHA00676 211.924 -106984 PHA00679 93.2123 -106985 PHA00680 237.315 -222810 PHA00684 186.21 -106987 PHA00687 77.6302 -106988 PHA00689 122.463 -106989 PHA00691 71.75 -106990 PHA00692 148.296 -222811 PHA00724 91.7319 -177293 PHA00725 86.057 -177294 PHA00726 99.0209 -222812 PHA00727 426.588 -177296 PHA00728 246.38 -177297 PHA00729 329.827 -222813 PHA00730 467.747 -222814 PHA00731 108.364 -177300 PHA00732 132.589 -177301 PHA00733 190.857 -177302 PHA00734 110.97 -177303 PHA00735 1038.31 -177304 PHA00736 82.53 -177305 PHA00738 99.6549 -177306 PHA00739 80.6374 -222815 PHA00742 316.023 -177308 PHA00743 51.7237 -164842 PHA00771 299.254 -107010 PHA00780 108.171 -133939 PHA00781 99.7306 -164843 PHA00821 517.363 -222816 PHA00911 221.114 -222817 PHA00965 807.593 -177310 PHA00979 50.8127 -222818 PHA01075 715.247 -107017 PHA01076 568.859 -222819 PHA01077 297.012 -164848 PHA01078 385.936 -164849 PHA01079 61.6456 -164850 PHA01080 136.197 -133945 PHA01081 145.407 -222820 PHA01082 145.167 -164851 PHA01083 267.648 -107025 PHA01159 150.734 -107026 PHA01160 38.3459 -222821 PHA01327 55.4721 -164853 PHA01346 73.5297 -107029 PHA01351 1695.52 -107030 PHA01365 138.046 -222822 PHA01366 353.926 -133949 PHA01399 194.472 -164854 PHA01474 80.1816 -107034 PHA01486 33.834 -107035 PHA01511 851.366 -164855 PHA01513 150.131 -107037 PHA01514 810.361 -107038 PHA01516 186.322 -107039 PHA01519 150.033 -177311 PHA01547 206.815 -222823 PHA01548 189.123 -164858 PHA01622 326.162 -222824 PHA01623 66.9481 -222825 PHA01624 104.24 -164860 PHA01625 353.771 -222826 PHA01627 138.62 -164861 PHA01630 453.09 -164862 PHA01631 263.334 -133953 PHA01632 97.621 -107050 PHA01633 645.496 -133954 PHA01634 248.998 -222827 PHA01635 320.552 -107053 PHA01707 295.692 -222828 PHA01732 35.1002 -107055 PHA01733 267.141 -222829 PHA01735 133.552 -133956 PHA01740 315.163 -222830 PHA01745 434.751 -107059 PHA01746 171.654 -222831 PHA01747 595.658 -222832 PHA01748 65.5751 -177316 PHA01749 229.998 -107063 PHA01750 84.2697 -222833 PHA01751 151.235 -177317 PHA01752 870.527 -133958 PHA01753 208.206 -133959 PHA01754 86.3865 -222834 PHA01755 811.147 -107069 PHA01756 413.984 -222835 PHA01757 147.1 -222836 PHA01769 125.035 -177318 PHA01782 211.613 -164869 PHA01790 622.56 -222837 PHA01794 146.254 -177320 PHA01795 474.461 -222838 PHA01806 203.96 -222839 PHA01807 190.53 -164872 PHA01808 94.6834 -107079 PHA01809 103.579 -177323 PHA01810 178.398 -177324 PHA01811 137.042 -177325 PHA01812 182.598 -107083 PHA01813 65.3308 -107084 PHA01814 168.516 -107085 PHA01815 48.6828 -107086 PHA01816 230.715 -177326 PHA01817 869.81 -107088 PHA01818 694.129 -107089 PHA01819 88.5074 -222840 PHA01886 88.1026 -177328 PHA01929 314.686 -222841 PHA01971 174.328 -222842 PHA01972 1161.22 -177330 PHA01976 110.431 -177331 PHA02004 584.517 -222843 PHA02030 357.752 -222844 PHA02031 368.751 -222845 PHA02046 110.319 -222846 PHA02047 118.579 -177336 PHA02053 203.257 -177337 PHA02054 182.518 -177338 PHA02057 554.993 -164889 PHA02067 391.342 -177339 PHA02078 69.1634 -164890 PHA02085 139.755 -107108 PHA02086 88.2158 -107109 PHA02087 129.302 -107110 PHA02088 116.369 -177340 PHA02090 127.813 -177341 PHA02091 129.257 -177342 PHA02092 209.13 -177343 PHA02094 161.71 -107115 PHA02095 154.362 -107116 PHA02096 156.035 -177344 PHA02097 104.247 -107118 PHA02098 61.4101 -107119 PHA02099 105.104 -107120 PHA02100 224.178 -177345 PHA02101 199.419 -222847 PHA02102 111.601 -222848 PHA02103 237.168 -177347 PHA02104 142.894 -133990 PHA02105 80.581 -177348 PHA02106 96.7234 -164900 PHA02107 373.181 -177349 PHA02108 53.4235 -222849 PHA02109 367.846 -107130 PHA02110 143.53 -107131 PHA02114 241.024 -164902 PHA02115 189.126 -177351 PHA02117 534.084 -107134 PHA02118 330.543 -107135 PHA02119 116.347 -177352 PHA02122 112.284 -107137 PHA02123 217.283 -133998 PHA02125 151.669 -222850 PHA02126 244.12 -107140 PHA02127 89.3648 -107141 PHA02128 311.225 -107142 PHA02130 157.878 -107143 PHA02131 135.59 -107144 PHA02132 138.519 -107145 PHA02135 117.132 -177353 PHA02141 139.068 -134000 PHA02142 509.487 -107148 PHA02145 409.352 -107149 PHA02146 94.7326 -107150 PHA02148 82.595 -134001 PHA02150 128.586 -177354 PHA02151 450.946 -107153 PHA02152 89.0262 -107154 PHA02239 484.884 -107155 PHA02241 113.278 -107156 PHA02243 112.501 -107157 PHA02244 568.98 -177355 PHA02246 163.199 -134004 PHA02248 396.003 -177356 PHA02256 126.161 -107161 PHA02264 127.15 -164905 PHA02265 83.2422 -107163 PHA02275 94.4127 -107164 PHA02277 186.09 -177357 PHA02278 125.61 -107166 PHA02283 275.478 -107167 PHA02284 175.735 -107168 PHA02290 146.123 -177358 PHA02291 93.6478 -177359 PHA02310 220.905 -164907 PHA02324 46.1401 -177360 PHA02325 119.604 -164909 PHA02334 89.1236 -164910 PHA02335 190.018 -177361 PHA02337 56.1318 -164912 PHA02357 79.1922 -222851 PHA02358 257.922 -107178 PHA02360 99.5617 -107179 PHA02414 142.708 -177362 PHA02415 2002.21 -107181 PHA02416 365.581 -164914 PHA02417 126.32 -107183 PHA02436 80.1666 -177363 PHA02446 319.335 -164916 PHA02447 126.781 -107186 PHA02448 379.016 -134010 PHA02450 92.3238 -177364 PHA02451 76.1154 -164918 PHA02456 244.861 -164919 PHA02458 601.894 -177365 PHA02503 83.2681 -107192 PHA02508 68.4118 -222852 PHA02510 131.727 -177367 PHA02513 186.969 -107197 PHA02515 788.203 -134016 PHA02516 150.619 -222853 PHA02517 421.966 -222854 PHA02518 273.264 -107201 PHA02519 813.86 -164924 PHA02523 718.799 -164925 PHA02524 980.254 -177369 PHA02528 1319.31 -222855 PHA02529 338.259 -222856 PHA02530 398.627 -222857 PHA02531 500.327 -222858 PHA02533 724.917 -222859 PHA02535 979.945 -222860 PHA02536 512.316 -222861 PHA02537 249.234 -164934 PHA02538 431.837 -222862 PHA02539 659.837 -222863 PHA02540 415.544 -177376 PHA02541 700.024 -222864 PHA02542 676.78 -222865 PHA02543 177.521 -222866 PHA02544 445.203 -177380 PHA02545 276.484 -222867 PHA02546 470.636 -222868 PHA02547 218.807 -177383 PHA02548 561.277 -222869 PHA02550 316.629 -177385 PHA02551 246.109 -222870 PHA02552 206.048 -222871 PHA02553 666.742 -177388 PHA02554 303.601 -222872 PHA02555 226.435 -222873 PHA02556 306.977 -222874 PHA02557 236.537 -222875 PHA02558 681.35 -222876 PHA02559 231.455 -164955 PHA02560 489.222 -222877 PHA02561 384.821 -222878 PHA02562 791.522 -222879 PHA02563 482.353 -222880 PHA02564 231.678 -177395 PHA02565 199.583 -222881 PHA02566 780.078 -222882 PHA02567 414.07 -164963 PHA02568 428.759 -177398 PHA02569 931.089 -177399 PHA02570 364.003 -177400 PHA02571 112.518 -222883 PHA02572 1253.85 -222884 PHA02573 240.033 -177403 PHA02574 213.022 -222885 PHA02575 265.405 -177405 PHA02576 249.612 -222886 PHA02577 161.119 -177407 PHA02578 216.884 -177408 PHA02579 1511.17 -177409 PHA02580 577.073 -222887 PHA02581 333.194 -222888 PHA02582 777.329 -222889 PHA02583 214.925 -222890 PHA02584 1242.33 -222891 PHA02585 200.776 -222892 PHA02586 128.316 -222893 PHA02587 468.802 -222894 PHA02588 236.962 -222895 PHA02589 558.518 -164985 PHA02590 84.6157 -164986 PHA02591 144.822 -222896 PHA02592 586.253 -222897 PHA02593 278.912 -222898 PHA02594 628.985 -222899 PHA02595 219.173 -222900 PHA02596 913.371 -222901 PHA02597 244.208 -222902 PHA02598 178.028 -222903 PHA02599 104.843 -164995 PHA02600 246.548 -222904 PHA02601 532.766 -177427 PHA02602 284.336 -222905 PHA02603 460.771 -177429 PHA02604 133.369 -177430 PHA02605 423.871 -222906 PHA02606 236.316 -177432 PHA02607 417.502 -177433 PHA02608 49.4001 -165004 PHA02609 95.1822 -165005 PHA02610 70.1987 -222907 PHA02611 335.909 -222908 PHA02612 510.454 -222909 PHA02613 522.451 -222910 PHA02614 460.611 -222911 PHA02616 337.029 -177439 PHA02620 471.031 -177440 PHA02621 69.1852 -222912 PHA02624 817.685 -177442 PHA02627 67.0126 -165015 PHA02629 76.275 -165016 PHA02633 99.6701 -165017 PHA02634 81.356 -165018 PHA02635 67.9501 -165019 PHA02636 29.2261 -222913 PHA02637 157.609 -165021 PHA02638 485.287 -165022 PHA02639 568.911 -165023 PHA02641 306.162 -165024 PHA02642 414.128 -165025 PHA02643 89.5384 -165026 PHA02644 105.85 -165027 PHA02646 253.009 -165029 PHA02649 135.056 -165030 PHA02650 109.682 -165031 PHA02651 277.683 -165032 PHA02652 85.7622 -177443 PHA02653 744.491 -165034 PHA02655 96.1899 -165035 PHA02656 362.768 -165036 PHA02657 147.865 -165037 PHA02658 132.113 -165038 PHA02659 109.741 -165039 PHA02660 674.049 -177444 PHA02661 134.748 -177445 PHA02662 249.202 -177446 PHA02663 291.081 -177447 PHA02664 827.717 -177448 PHA02665 608.056 -222914 PHA02666 265.261 -177450 PHA02668 461.729 -177451 PHA02669 281.143 -222915 PHA02670 469.853 -177453 PHA02671 351.892 -177454 PHA02672 304.12 -177455 PHA02673 240.966 -177456 PHA02674 89.4009 -177457 PHA02675 165.962 -177458 PHA02676 786.418 -222916 PHA02677 149.263 -177460 PHA02678 136.277 -177461 PHA02679 71.1636 -177462 PHA02680 138.141 -222917 PHA02681 144.425 -177464 PHA02682 296.387 -177465 PHA02683 103.65 -177466 PHA02684 285.84 -177467 PHA02685 263.017 -177468 PHA02686 214.83 -222918 PHA02687 314.642 -222919 PHA02688 316.629 -177471 PHA02689 192.843 -222920 PHA02690 78.6933 -177473 PHA02691 182.517 -177474 PHA02692 111.251 -177475 PHA02693 1353.92 -177476 PHA02694 481.934 -177477 PHA02695 1458.3 -222921 PHA02696 114.998 -222922 PHA02697 413.939 -177480 PHA02698 91.1215 -165075 PHA02699 894.753 -177481 PHA02700 170.918 -177482 PHA02701 320.356 -177483 PHA02702 113.091 -165079 PHA02703 320.392 -165080 PHA02705 94.364 -165081 PHA02706 75.7852 -165082 PHA02707 49.2097 -177484 PHA02708 103.065 -165084 PHA02709 45.9711 -165085 PHA02711 321.956 -165086 PHA02713 987.969 -165087 PHA02714 136.302 -165088 PHA02715 337.446 -165089 PHA02716 1003.28 -165090 PHA02718 108.182 -165092 PHA02723 115.872 -165093 PHA02724 58.4457 -165094 PHA02725 250.294 -165095 PHA02726 127.672 -165096 PHA02728 316.626 -165097 PHA02729 116.817 -165098 PHA02730 1152.08 -177485 PHA02731 262.403 -165099 PHA02732 1773.13 -165101 PHA02734 200.833 -165102 PHA02735 1283.51 -165103 PHA02736 285.617 -165104 PHA02737 107.844 -222923 PHA02738 585.351 -222924 PHA02739 143.833 -165107 PHA02740 549.184 -165108 PHA02741 289.25 -165109 PHA02742 571.561 -222925 PHA02743 279.778 -165111 PHA02744 184.067 -222926 PHA02745 406.256 -165113 PHA02746 621.663 -165114 PHA02747 538.818 -165115 PHA02748 518.029 -165116 PHA02749 390.862 -165117 PHA02750 299.85 -165118 PHA02751 350.531 -177486 PHA02752 261.178 -165120 PHA02753 267.176 -165121 PHA02754 80.8074 -165122 PHA02755 175.985 -165123 PHA02756 240.992 -165124 PHA02757 122.438 -165125 PHA02758 313.103 -165126 PHA02759 235.609 -165127 PHA02762 95.7806 -177487 PHA02763 170.442 -165129 PHA02764 509.878 -165130 PHA02765 163.329 -165131 PHA02766 112.454 -165132 PHA02767 164.413 -165133 PHA02768 90.8771 -165134 PHA02769 293.452 -165135 PHA02770 138.982 -165136 PHA02771 151.295 -165137 PHA02772 153.221 -165138 PHA02773 164.345 -222927 PHA02774 668.135 -165140 PHA02775 247.998 -165141 PHA02776 161.758 -165142 PHA02777 788.071 -222928 PHA02778 772.834 -222929 PHA02779 264.467 -177490 PHA02780 90.8815 -165146 PHA02781 77.0023 -165147 PHA02782 1095.48 -165148 PHA02783 290.736 -165149 PHA02785 634.747 -222930 PHA02786 337.406 -165152 PHA02789 323.478 -165153 PHA02790 885.154 -165154 PHA02791 464.13 -165155 PHA02792 1014.1 -165156 PHA02793 78.2185 -165157 PHA02795 712.537 -222931 PHA02798 575.245 -165159 PHA02800 245.23 -165161 PHA02807 244.096 -222932 PHA02809 90.0899 -165163 PHA02811 282.335 -165164 PHA02813 495.159 -165165 PHA02815 78.8175 -222933 PHA02816 140.163 -165167 PHA02817 298.393 -165168 PHA02818 105.435 -165169 PHA02819 73.4336 -222934 PHA02820 693.663 -222935 PHA02823 345.021 -177491 PHA02825 195.4 -165173 PHA02826 302.604 -177492 PHA02827 242.029 -165175 PHA02828 120.906 -165176 PHA02831 425.946 -165177 PHA02834 445.118 -165178 PHA02835 259.207 -165179 PHA02836 240.561 -165180 PHA02837 313.799 -165181 PHA02838 68.1465 -165182 PHA02839 222.938 -165183 PHA02840 75.5837 -165184 PHA02841 176.006 -165185 PHA02843 64.8227 -165186 PHA02844 113.21 -165187 PHA02845 83.6221 -165188 PHA02849 118.486 -165189 PHA02851 298.57 -165190 PHA02852 232.952 -165191 PHA02854 250.964 -222936 PHA02855 151.096 -165193 PHA02857 450.492 -165194 PHA02858 117.896 -165195 PHA02859 278.626 -165196 PHA02861 293.448 -165197 PHA02862 238.309 -222937 PHA02864 287.123 -165199 PHA02865 567.955 -165200 PHA02866 655.128 -165201 PHA02867 139.047 -165202 PHA02869 877.1 -165203 PHA02871 349.301 -222938 PHA02872 183.888 -165205 PHA02874 675.526 -165206 PHA02875 690.962 -165207 PHA02876 1246.88 -222939 PHA02878 663.116 -222940 PHA02880 193.59 -165210 PHA02881 276.022 -165211 PHA02882 549.939 -165212 PHA02884 365.845 -165213 PHA02885 199.106 -165214 PHA02887 187.442 -165215 PHA02888 189.45 -165216 PHA02889 291.55 -165217 PHA02890 456.325 -165218 PHA02891 184.362 -165219 PHA02892 83.9713 -165220 PHA02893 126.804 -165221 PHA02894 156.246 -165222 PHA02896 1074.28 -165223 PHA02898 130.014 -222941 PHA02901 109.85 -165225 PHA02902 110.033 -165226 PHA02907 343.248 -165227 PHA02909 108.109 -165228 PHA02910 348.621 -177496 PHA02911 308.274 -177497 PHA02913 188.305 -165230 PHA02914 728.44 -165231 PHA02917 1187.49 -165232 PHA02919 249.876 -165233 PHA02920 199.457 -165234 PHA02922 278.064 -165235 PHA02923 427 -222942 PHA02924 266.149 -165237 PHA02926 397.511 -222943 PHA02927 507.268 -165239 PHA02928 355.484 -222944 PHA02929 284.749 -165241 PHA02930 110.855 -165242 PHA02931 120.197 -222945 PHA02932 252.079 -165244 PHA02933 246.844 -165245 PHA02934 355.102 -222946 PHA02935 594.355 -165247 PHA02937 279.157 -165248 PHA02938 487.544 -222947 PHA02939 194.008 -165250 PHA02940 376.974 -222948 PHA02941 608.893 -165252 PHA02942 747.614 -165253 PHA02943 262.88 -165254 PHA02944 290.764 -165255 PHA02945 137.062 -165256 PHA02946 846.26 -222949 PHA02947 315.513 -165258 PHA02948 709.507 -165259 PHA02949 89.9381 -177499 PHA02951 322.205 -222950 PHA02952 641.318 -165262 PHA02953 258.14 -165263 PHA02954 563.556 -165264 PHA02955 372.381 -165265 PHA02956 346.175 -165266 PHA02957 328.955 -165267 PHA02961 1132.71 -165268 PHA02962 1221.32 -165269 PHA02963 270.266 -165270 PHA02965 725.252 -165271 PHA02966 87.4074 -165272 PHA02967 227.592 -165273 PHA02968 641.68 -165274 PHA02969 130.925 -222951 PHA02970 158.469 -165276 PHA02972 74.5934 -165277 PHA02973 150.461 -165278 PHA02974 103.063 -165279 PHA02975 83.1127 -165280 PHA02976 286.929 -165281 PHA02977 410.134 -165282 PHA02978 208.973 -165283 PHA02979 190.936 -165284 PHA02980 161.106 -165285 PHA02982 400.24 -222952 PHA02983 236.878 -165287 PHA02984 332.872 -165288 PHA02985 280.038 -222953 PHA02986 207.03 -165290 PHA02987 156.563 -165291 PHA02988 332.477 -222954 PHA02989 637.939 -222955 PHA02991 154.572 -222956 PHA02992 1038.88 -165295 PHA02993 233.776 -222957 PHA02994 252.284 -165297 PHA02995 136.926 -177503 PHA02996 730.3 -222958 PHA02998 303.971 -222959 PHA02999 386.036 -177505 PHA03000 859.71 -222960 PHA03001 178.331 -165303 PHA03002 791.239 -177506 PHA03003 463.752 -177507 PHA03004 437.613 -222961 PHA03005 126.707 -165307 PHA03006 313.121 -165308 PHA03007 589.996 -165309 PHA03008 275.285 -165310 PHA03010 692.56 -165311 PHA03011 109.259 -165312 PHA03012 307.27 -165313 PHA03013 114.952 -165314 PHA03014 180.539 -165315 PHA03016 383.925 -165316 PHA03017 239.505 -165317 PHA03018 168.721 -165318 PHA03019 80.8475 -165319 PHA03020 498.347 -165320 PHA03022 522.976 -165321 PHA03023 175.437 -165322 PHA03024 177.044 -165323 PHA03025 93.8903 -165324 PHA03026 526.458 -165325 PHA03027 407.124 -165326 PHA03028 212.985 -165327 PHA03029 116.908 -165328 PHA03030 121.616 -165329 PHA03031 378.966 -165330 PHA03033 137.416 -165331 PHA03034 177.429 -165332 PHA03035 175.79 -222962 PHA03036 1139.36 -222963 PHA03041 163.827 -222964 PHA03042 188.001 -165336 PHA03043 176.172 -165337 PHA03044 89.5763 -177510 PHA03045 155.597 -165339 PHA03046 168.395 -165340 PHA03047 56.7229 -165341 PHA03048 151.16 -165342 PHA03049 69.4157 -165343 PHA03050 207.563 -165344 PHA03051 101.705 -165345 PHA03052 111.644 -165346 PHA03054 98.1168 -165347 PHA03055 94.2636 -165348 PHA03056 321.618 -222965 PHA03057 138.659 -222966 PHA03058 147.632 -222967 PHA03060 62.2834 -177511 PHA03061 447.959 -177512 PHA03062 77.0731 -222968 PHA03065 511.072 -165355 PHA03066 125.985 -222969 PHA03067 509.54 -177515 PHA03068 322.766 -165358 PHA03069 215.371 -177516 PHA03070 333.567 -165360 PHA03071 422.264 -222970 PHA03072 281.549 -177518 PHA03073 235.674 -165363 PHA03074 234.641 -177519 PHA03075 177.941 -222971 PHA03078 228.72 -165366 PHA03079 81.492 -222972 PHA03080 418.303 -222973 PHA03081 873.163 -222974 PHA03082 105.993 -222975 PHA03083 347.4 -222976 PHA03087 341.373 -222977 PHA03089 131.47 -222978 PHA03091 103.448 -165374 PHA03092 53.0397 -222979 PHA03093 188.829 -165376 PHA03094 248.142 -222980 PHA03095 338.923 -222981 PHA03096 159.2 -222982 PHA03097 116.118 -222983 PHA03098 227.728 -165381 PHA03099 252.251 -222984 PHA03100 205.669 -222985 PHA03101 346.2 -222986 PHA03102 151.362 -222987 PHA03103 196.906 -222988 PHA03105 120.531 -165387 PHA03108 513.467 -222989 PHA03111 669.471 -222990 PHA03112 68.1904 -177532 PHA03115 597.74 -165391 PHA03118 853.596 -222991 PHA03119 1822.21 -165393 PHA03120 481.956 -165395 PHA03123 709.834 -165396 PHA03124 784.902 -222992 PHA03125 657.392 -165398 PHA03126 701.78 -222993 PHA03127 373.175 -165400 PHA03128 670.507 -222994 PHA03129 755.942 -222995 PHA03130 582.245 -222996 PHA03131 377.41 -222997 PHA03132 598.285 -165405 PHA03133 622.331 -177537 PHA03134 421.517 -165407 PHA03135 677.804 -177538 PHA03136 658.705 -165410 PHA03138 681.7 -165411 PHA03139 1694.4 -222998 PHA03140 1004.08 -177540 PHA03141 146.819 -222999 PHA03142 1288.81 -223000 PHA03144 649.11 -165416 PHA03145 1860.43 -177543 PHA03146 1385.82 -165418 PHA03147 455.173 -223001 PHA03148 332.768 -165420 PHA03149 123.608 -223002 PHA03150 751.285 -177546 PHA03151 254.312 -165423 PHA03152 269.96 -165425 PHA03154 633.649 -165426 PHA03155 164.126 -165427 PHA03156 135.881 -165429 PHA03158 459.968 -165430 PHA03159 307.316 -165431 PHA03160 988.818 -165432 PHA03161 252.724 -165433 PHA03162 184.61 -165434 PHA03163 129.316 -177547 PHA03164 96.5845 -165436 PHA03165 88.5812 -177548 PHA03166 624.147 -223003 PHA03169 321.535 -165441 PHA03170 488.277 -165442 PHA03171 829.323 -165443 PHA03172 1661 -223004 PHA03173 952.569 -177551 PHA03175 807.272 -223005 PHA03176 639.649 -177552 PHA03178 290.618 -223006 PHA03179 384.254 -165451 PHA03180 1867.59 -165452 PHA03181 1510.59 -177553 PHA03185 325.441 -223007 PHA03187 488.748 -165458 PHA03188 366.31 -223008 PHA03189 399.25 -165460 PHA03190 322.428 -165461 PHA03191 346.25 -177555 PHA03193 1082.44 -177556 PHA03195 1163.24 -165466 PHA03199 618.559 -165467 PHA03200 472.29 -165468 PHA03201 496.723 -165469 PHA03202 679.495 -165471 PHA03204 627.758 -165473 PHA03207 686.192 -177557 PHA03209 545.626 -165476 PHA03210 927.562 -223009 PHA03211 818.365 -165478 PHA03212 827.711 -165479 PHA03214 423.201 -223010 PHA03215 393.107 -177558 PHA03216 452.927 -223011 PHA03218 477.872 -165484 PHA03219 574.096 -165485 PHA03222 667.804 -165486 PHA03225 222.629 -223012 PHA03229 240.297 -223013 PHA03230 200.723 -223014 PHA03231 1010.63 -223015 PHA03232 676.39 -223016 PHA03233 800.076 -177562 PHA03234 540.295 -223017 PHA03235 593.712 -223018 PHA03236 203.085 -223019 PHA03237 449.969 -177565 PHA03239 615.095 -165499 PHA03240 333.622 -177566 PHA03242 396.52 -177567 PHA03244 664.731 -223020 PHA03246 5057.18 -223021 PHA03247 4070.65 -223022 PHA03248 652.861 -223023 PHA03249 1000.29 -165509 PHA03250 734.63 -223024 PHA03252 858.633 -223025 PHA03253 969.799 -165513 PHA03255 167.003 -165514 PHA03256 147.568 -177569 PHA03257 444.076 -165516 PHA03258 502.29 -165517 PHA03259 503.111 -165518 PHA03260 557.811 -223026 PHA03261 452.203 -223027 PHA03262 398.681 -223028 PHA03263 457.926 -223029 PHA03264 506.85 -165523 PHA03265 861.671 -165527 PHA03269 947.627 -165528 PHA03270 700.534 -223030 PHA03271 1025.72 -223031 PHA03273 731.8 -177573 PHA03275 411.104 -165533 PHA03276 592.262 -177574 PHA03278 369.845 -165536 PHA03279 552.73 -165538 PHA03281 1131.72 -165539 PHA03282 786.052 -223032 PHA03283 609.636 -177576 PHA03286 879.251 -165546 PHA03289 582.649 -165547 PHA03290 618.188 -223033 PHA03291 475.984 -177577 PHA03292 437.852 -223034 PHA03293 580.874 -223035 PHA03294 563.95 -223036 PHA03295 884.785 -165553 PHA03296 1387.05 -165554 PHA03297 385.153 -165555 PHA03298 251.602 -165556 PHA03299 343.404 -223037 PHA03301 355.716 -223038 PHA03302 313.541 -165560 PHA03303 309.592 -223039 PHA03307 762.404 -165563 PHA03308 2920.7 -165564 PHA03309 3532.83 -223040 PHA03311 1156.97 -177582 PHA03312 1516.54 -223041 PHA03321 752.946 -223042 PHA03322 1054.98 -223043 PHA03323 317.016 -165570 PHA03324 501.915 -223044 PHA03325 405.421 -223045 PHA03326 372.141 -223046 PHA03328 400.243 -165574 PHA03330 1274.29 -223047 PHA03332 1586.91 -223048 PHA03333 1141.84 -223049 PHA03334 2002.43 -223050 PHA03335 476.041 -223051 PHA03336 702.474 -165582 PHA03338 541.454 -165586 PHA03342 952.905 -165587 PHA03343 926.358 -165588 PHA03344 1156.71 -223052 PHA03346 622.561 -177588 PHA03347 467.99 -177589 PHA03348 571.955 -177590 PHA03349 356.656 -177591 PHA03351 435.964 -223053 PHA03352 492.691 -177593 PHA03354 135.016 -177594 PHA03356 133.85 -177595 PHA03357 100.066 -177596 PHA03358 112.715 -223054 PHA03359 699.079 -177598 PHA03360 779.867 -223055 PHA03361 361.219 -223056 PHA03362 1274.59 -223057 PHA03364 287.585 -177602 PHA03365 535.798 -223058 PHA03366 1213.71 -223059 PHA03367 1569.61 -223060 PHA03368 1200.63 -223061 PHA03369 654.761 -177607 PHA03370 430.842 -177608 PHA03371 226.24 -177609 PHA03372 1206.17 -223062 PHA03373 299.8 -223063 PHA03374 998.029 -223064 PHA03375 732.793 -177613 PHA03376 352.474 -177614 PHA03377 1266.9 -223065 PHA03378 1254.58 -223066 PHA03379 1142.87 -223067 PHA03380 486.09 -177618 PHA03381 280.744 -177619 PHA03383 370.769 -223068 PHA03384 478.811 -177621 PHA03385 124.963 -177622 PHA03386 94.273 -177623 PHA03387 382.433 -177624 PHA03388 543.774 -177625 PHA03389 433.042 -223069 PHA03390 376.504 -223070 PHA03391 475.117 -223071 PHA03392 112.743 -223072 PHA03393 622.696 -223073 PHA03394 1046.8 -177631 PHA03395 70.9382 -223074 PHA03396 605.378 -177633 PHA03397 376.221 -223075 PHA03398 317.204 -223076 PHA03399 213.612 -223077 PHA03402 69.2618 -177637 PHA03405 178.65 -223078 PHA03410 230.529 -177639 PHA03411 588.221 -177640 PHA03412 488.76 -177641 PHA03413 2199.49 -177642 PHA03414 2506.54 -177643 PHA03415 1722.18 -177644 PHA03416 107.756 -177645 PHA03417 129.815 -177646 PHA03418 320.532 -223079 PHA03419 170.129 -177648 PHA03420 115.48 -177649 PLN00009 587.94 -215027 PLN00010 134.296 -177651 PLN00011 587.74 -215028 PLN00012 611.099 -177653 PLN00014 252.088 -177654 PLN00015 499.232 -215029 PLN00016 477.269 -177656 PLN00017 134.125 -215030 PLN00019 278.253 -215031 PLN00020 486.527 -177659 PLN00021 390.949 -215032 PLN00022 496.239 -177661 PLN00023 451.626 -215033 PLN00025 475.005 -177663 PLN00026 263.261 -177664 PLN00027 294.772 -177665 PLN00028 497.912 -215034 PLN00032 111.772 -215035 PLN00033 552.884 -215036 PLN00034 576.775 -177669 PLN00035 101.062 -177670 PLN00036 218.43 -177671 PLN00037 412.302 -215037 PLN00038 190.408 -177673 PLN00039 198.825 -215038 PLN00040 209.63 -215039 PLN00041 269.143 -177676 PLN00042 385.313 -165621 PLN00043 861.319 -165622 PLN00044 1117.05 -177677 PLN00045 112.003 -215040 PLN00046 162.686 -177679 PLN00047 318.702 -177680 PLN00048 209.323 -177681 PLN00049 624.453 -165628 PLN00050 463.351 -177682 PLN00051 387.192 -177683 PLN00052 645.185 -215041 PLN00053 155.304 -215042 PLN00054 163.057 -177686 PLN00055 82.1983 -177687 PLN00056 570.532 -177688 PLN00057 342.011 -177689 PLN00058 140.313 -177690 PLN00059 522.781 -177691 PLN00060 608.416 -215043 PLN00061 197.363 -177693 PLN00062 285.051 -215044 PLN00063 116.586 -215045 PLN00064 191.336 -215046 PLN00066 351.42 -177697 PLN00067 413.148 -177698 PLN00068 978.261 -215047 PLN00070 1745.45 -177700 PLN00071 106.954 -177701 PLN00072 337.216 -215048 PLN00074 726.842 -215049 PLN00075 50.2308 -215050 PLN00077 110.51 -165653 PLN00078 211.867 -165655 PLN00081 212.665 -215051 PLN00082 69.1273 -177706 PLN00083 149.824 -177707 PLN00084 340.126 -177708 PLN00085 174.534 -177709 PLN00088 102.403 -177710 PLN00089 327.795 -165663 PLN00090 142.942 -215052 PLN00091 264.871 -177712 PLN00092 188.948 -177713 PLN00093 736.946 -215053 PLN00094 1698.58 -165668 PLN00095 609.758 -177715 PLN00096 821.201 -165670 PLN00097 468.718 -177716 PLN00098 489.038 -177717 PLN00099 490.694 -215054 PLN00100 420.436 -215055 PLN00101 483.647 -177720 PLN00103 839.491 -215056 PLN00104 522.392 -215057 PLN00105 495.14 -215058 PLN00106 474.825 -165679 PLN00107 522.617 -177724 PLN00108 511.921 -177725 PLN00110 987.041 -215059 PLN00111 455.245 -215060 PLN00112 783.249 -215061 PLN00113 1620.69 -177729 PLN00115 133.374 -177730 PLN00116 1539.67 -215062 PLN00118 664.271 -177732 PLN00119 871.53 -215063 PLN00120 308.981 -177733 PLN00121 229.556 -215064 PLN00122 92.0849 -215065 PLN00123 519.806 -177736 PLN00124 711.518 -215066 PLN00125 123.154 -165695 PLN00126 188.054 -177738 PLN00127 164.281 -177739 PLN00128 1233.19 -215067 PLN00129 451.936 -177741 PLN00130 392.201 -165700 PLN00131 452.957 -215068 PLN00133 1146.15 -215069 PLN00134 736.884 -177744 PLN00135 537.434 -215070 PLN00136 869.312 -215071 PLN00137 520.022 -165706 PLN00138 134.03 -165707 PLN00139 659.327 -165708 PLN00140 795.977 -215072 PLN00141 456.631 -215073 PLN00142 1460.58 -165711 PLN00143 865.863 -177748 PLN00144 352.082 -215074 PLN00145 759.691 -215075 PLN00146 190.979 -215076 PLN00147 425.831 -215077 PLN00148 1487 -177753 PLN00149 1458.14 -215078 PLN00150 1240.14 -215079 PLN00151 1412.96 -177755 PLN00152 132.3 -165721 PLN00153 202.642 -177756 PLN00154 204.023 -165723 PLN00155 82.0629 -215080 PLN00156 219.454 -177758 PLN00157 202.773 -215081 PLN00158 172.182 -165727 PLN00160 169.458 -215082 PLN00161 210.241 -215083 PLN00162 1220.18 -165730 PLN00163 62.0134 -215084 PLN00164 736.096 -165732 PLN00165 149.079 -165733 PLN00166 374.659 -215085 PLN00167 390.803 -215086 PLN00168 64.5862 -177765 PLN00169 356.426 -215087 PLN00170 407.009 -215088 PLN00171 569.435 -177768 PLN00172 273.934 -177769 PLN00174 188.747 -215089 PLN00175 804.084 -215090 PLN00176 574.719 -177772 PLN00177 832.962 -177773 PLN00178 1088.25 -215091 PLN00179 569.708 -177775 PLN00180 262.46 -177776 PLN00181 1517.7 -165748 PLN00182 483.257 -215092 PLN00183 407.706 -177778 PLN00184 547.312 -177779 PLN00185 601.021 -215093 PLN00186 141.049 -177781 PLN00187 504.324 -215094 PLN00188 1292.85 -177783 PLN00189 277.401 -177784 PLN00190 209.581 -215095 PLN00191 215.727 -215096 PLN00192 305.872 -215097 PLN00193 463.227 -215098 PLN00194 607.832 -165762 PLN00196 801.44 -215099 PLN00197 1187.52 -215100 PLN00198 630.38 -177791 PLN00200 725.768 -177792 PLN00202 800.979 -215101 PLN00203 675.31 -215102 PLN00204 173.999 -177795 PLN00205 296.378 -215103 PLN00206 834.438 -215104 PLN00207 1385.76 -177798 PLN00208 143.784 -165774 PLN00209 131.854 -177799 PLN00210 212.276 -215105 PLN00211 93.3349 -215106 PLN00212 781.306 -165778 PLN00213 196.768 -177800 PLN00214 179.304 -165780 PLN00215 200.046 -165781 PLN00216 82.1958 -165782 PLN00217 385.733 -165783 PLN00218 237.964 -165784 PLN00219 107.297 -215107 PLN00220 319.846 -177802 PLN00221 901.868 -215108 PLN00222 888.423 -165788 PLN00223 387.015 -215109 PLN00410 233.928 -177805 PLN00411 571.514 -215110 PLN00412 838.643 -165792 PLN00413 1026.88 -177807 PLN00414 954.085 -177808 PLN00415 894.046 -177809 PLN00416 558.882 -177810 PLN00417 670.126 -177811 PLN02150 174.271 -177812 PLN02151 745.727 -177813 PLN02152 962.205 -177814 PLN02153 699.431 -215111 PLN02154 473.85 -165802 PLN02155 685.261 -177816 PLN02156 685.962 -177817 PLN02157 813.148 -177818 PLN02159 597.306 -177819 PLN02160 286.211 -177820 PLN02161 1145.93 -177821 PLN02162 897.867 -177822 PLN02164 667.008 -177823 PLN02165 522.849 -165812 PLN02166 922.872 -215112 PLN02167 877.593 -215113 PLN02168 1064.98 -177826 PLN02169 981.418 -215114 PLN02170 899.727 -215115 PLN02171 1070.58 -215116 PLN02172 876.113 -177830 PLN02173 968.731 -177831 PLN02174 890.935 -177832 PLN02175 896.379 -215117 PLN02176 641.611 -215118 PLN02177 932.003 -177834 PLN02178 717.574 -177835 PLN02179 479.092 -177836 PLN02180 1186.79 -177837 PLN02182 655.203 -165828 PLN02183 963.542 -177838 PLN02184 379.091 -215119 PLN02187 873.281 -215120 PLN02188 695.826 -215121 PLN02189 2260.67 -215122 PLN02190 1375.33 -177843 PLN02191 1238.35 -215123 PLN02192 1079.99 -177844 PLN02193 952.091 -177845 PLN02194 462.21 -215124 PLN02195 2011.02 -177847 PLN02196 950.53 -177848 PLN02197 1094.28 -177849 PLN02198 178.345 -177850 PLN02199 557.003 -215125 PLN02200 423.534 -177852 PLN02201 954.714 -177853 PLN02202 558.519 -165847 PLN02203 880.986 -215126 PLN02204 118.834 -177855 PLN02205 1858.53 -177856 PLN02206 896.648 -177857 PLN02207 994.16 -177858 PLN02208 950.227 -177859 PLN02209 876.273 -215127 PLN02210 974.128 -215128 PLN02211 502.113 -165857 PLN02213 669.891 -177862 PLN02214 637.954 -215129 PLN02216 679.66 -215130 PLN02217 1378.64 -177865 PLN02218 765.34 -165863 PLN02219 1670.54 -177866 PLN02220 525.522 -177867 PLN02221 1207.13 -177868 PLN02222 1191.37 -165867 PLN02223 1170.18 -177869 PLN02224 1220.72 -177870 PLN02225 1404.07 -177871 PLN02226 812.834 -177872 PLN02227 757.794 -177873 PLN02228 1151.32 -177874 PLN02229 815.326 -177875 PLN02230 1219.94 -177876 PLN02231 995.218 -165876 PLN02232 340.128 -177877 PLN02233 467.831 -177878 PLN02234 1239.59 -177879 PLN02235 775.098 -177880 PLN02236 600.108 -215131 PLN02237 682.397 -215132 PLN02238 225.687 -177883 PLN02240 598.871 -215133 PLN02241 494.374 -215134 PLN02242 681.491 -177886 PLN02243 638.405 -215135 PLN02244 500.426 -215136 PLN02245 658.41 -215137 PLN02246 960.976 -165890 PLN02247 1232.51 -215138 PLN02248 1884.35 -177891 PLN02249 1276.91 -215139 PLN02250 591.901 -215140 PLN02251 1148.38 -215141 PLN02252 1382.47 -177895 PLN02253 489.719 -215142 PLN02254 582.425 -215143 PLN02255 684.259 -215144 PLN02256 413.29 -177899 PLN02257 722.296 -215145 PLN02258 939.509 -177901 PLN02259 779.288 -215146 PLN02260 1264.66 -215147 PLN02262 597.944 -177904 PLN02263 482.009 -215148 PLN02264 1869.61 -215149 PLN02265 1011.91 -215150 PLN02266 1011.72 -215151 PLN02267 355.946 -177909 PLN02268 649.056 -215152 PLN02269 655.631 -165912 PLN02270 1769.47 -215153 PLN02271 1067.89 -177912 PLN02272 790.98 -215154 PLN02274 828.925 -215155 PLN02275 212.996 -215156 PLN02276 604.27 -177916 PLN02277 1179.97 -215157 PLN02278 753.834 -177918 PLN02279 1420.81 -215158 PLN02280 866.199 -177920 PLN02281 1033.53 -165923 PLN02282 755.653 -177921 PLN02283 1014.69 -177922 PLN02284 630.956 -215159 PLN02285 332.428 -215160 PLN02286 889.76 -215161 PLN02287 632.955 -215162 PLN02288 555.05 -215163 PLN02289 315.65 -215164 PLN02290 929.608 -177928 PLN02291 897.533 -215165 PLN02292 1218.95 -177930 PLN02293 204.907 -177931 PLN02294 269.425 -215166 PLN02295 822.793 -215167 PLN02296 454.583 -177934 PLN02297 471.096 -165939 PLN02298 619.1 -215168 PLN02299 618.711 -215169 PLN02300 455.394 -215170 PLN02301 1014.42 -215171 PLN02302 783.132 -215172 PLN02303 1533.92 -215173 PLN02304 702.003 -215174 PLN02305 1739.01 -177941 PLN02306 676.576 -177942 PLN02307 967.969 -177943 PLN02308 952.427 -215175 PLN02309 654.551 -215176 PLN02310 784.56 -215177 PLN02311 340.783 -215178 PLN02312 1320.54 -177947 PLN02313 1106.68 -215179 PLN02314 1017.44 -177949 PLN02315 985.482 -215180 PLN02316 1797.9 -215181 PLN02317 424.915 -177952 PLN02318 808.7 -177953 PLN02319 665.656 -177954 PLN02320 945.895 -215182 PLN02321 189.026 -177956 PLN02322 284.648 -215183 PLN02323 602.381 -177958 PLN02324 772.65 -215184 PLN02325 247.082 -215185 PLN02326 526.227 -215186 PLN02327 82.7668 -215187 PLN02328 1531.47 -215188 PLN02329 742.275 -215189 PLN02330 1019.91 -177965 PLN02331 340.517 -215190 PLN02332 580.087 -215191 PLN02333 1234.08 -215192 PLN02334 279.579 -177969 PLN02335 393.008 -177970 PLN02336 921.456 -215193 PLN02337 1461.05 -177972 PLN02338 767.758 -177973 PLN02339 1169.84 -215194 PLN02340 1114.56 -215195 PLN02341 554.056 -177976 PLN02342 562.489 -177977 PLN02343 302.859 -177978 PLN02344 386.272 -177979 PLN02345 797.801 -215196 PLN02346 277.859 -215197 PLN02347 945.657 -215198 PLN02348 652.296 -215199 PLN02349 506.601 -215200 PLN02350 913.33 -215201 PLN02351 352.288 -215202 PLN02352 1482.47 -177986 PLN02353 765.375 -177987 PLN02354 213.499 -215203 PLN02355 1487.83 -215204 PLN02356 808.448 -215205 PLN02357 611.501 -165999 PLN02358 654.482 -166000 PLN02359 691.133 -166001 PLN02360 521.341 -177990 PLN02361 765.129 -215206 PLN02362 866.889 -215207 PLN02363 165.033 -166005 PLN02364 516.941 -177993 PLN02365 525.896 -215208 PLN02366 433.688 -177995 PLN02367 455.998 -177996 PLN02368 812.109 -215209 PLN02369 390.209 -215210 PLN02370 828.491 -215211 PLN02371 738.021 -215212 PLN02372 555.222 -178001 PLN02373 345.934 -215213 PLN02374 747.922 -178003 PLN02375 491.198 -178004 PLN02376 1004.99 -166018 PLN02377 1055.39 -166019 PLN02378 411.027 -178005 PLN02379 632.596 -178006 PLN02380 200.737 -215214 PLN02381 2082.21 -178008 PLN02382 661.68 -178009 PLN02383 549.373 -215215 PLN02384 476.241 -215216 PLN02385 579.786 -166027 PLN02386 248.284 -215217 PLN02387 1369.42 -215218 PLN02388 320.359 -215219 PLN02389 569.483 -178014 PLN02390 135.971 -178015 PLN02392 453.113 -215220 PLN02393 683.304 -215221 PLN02394 909.881 -166036 PLN02395 410.409 -178018 PLN02396 633.694 -215222 PLN02397 699.789 -215223 PLN02398 598.366 -178021 PLN02399 402.356 -215224 PLN02400 2227.51 -215225 PLN02401 809.768 -178024 PLN02402 518.267 -178025 PLN02403 579.504 -178026 PLN02404 231.172 -215226 PLN02405 937.33 -215227 PLN02406 217.628 -178029 PLN02407 559.024 -215228 PLN02408 550.594 -178031 PLN02409 598.278 -178032 PLN02410 951.02 -178033 PLN02411 753.227 -166053 PLN02412 335.035 -215229 PLN02413 500.242 -178035 PLN02414 1753.5 -178036 PLN02415 499.702 -178037 PLN02416 1005.61 -178038 PLN02417 422.514 -215230 PLN02418 1155.63 -166060 PLN02419 1217.67 -178040 PLN02420 1087.76 -215231 PLN02421 585.548 -215232 PLN02422 288.952 -178043 PLN02423 449.938 -215233 PLN02424 236.166 -215234 PLN02425 833.514 -215235 PLN02426 831.644 -178047 PLN02427 795.988 -215236 PLN02428 572.464 -166070 PLN02429 542.845 -178049 PLN02430 1353.71 -178050 PLN02431 768.174 -178051 PLN02432 548.282 -215237 PLN02433 442.845 -178053 PLN02434 303.102 -215238 PLN02435 879.205 -215239 PLN02436 2184.64 -178056 PLN02437 144.887 -178057 PLN02438 978.06 -215240 PLN02439 789.653 -215241 PLN02440 742.265 -215242 PLN02441 703.596 -178061 PLN02442 446.531 -178062 PLN02443 1311.75 -215243 PLN02444 1155.44 -215244 PLN02445 865.145 -215245 PLN02446 459.556 -215246 PLN02447 1169.06 -215247 PLN02448 700.608 -178068 PLN02449 487.422 -178069 PLN02450 920.302 -215248 PLN02451 475.821 -178071 PLN02452 562.006 -178072 PLN02453 125.318 -215249 PLN02454 752.057 -178074 PLN02455 678.395 -215250 PLN02456 522.277 -215251 PLN02457 1142.89 -215252 PLN02458 628.478 -215253 PLN02459 98.7662 -215254 PLN02460 200.774 -215255 PLN02461 842.332 -215256 PLN02462 489.242 -178082 PLN02463 547.775 -215257 PLN02464 822.105 -215258 PLN02465 121.88 -215259 PLN02466 1052.48 -215260 PLN02467 840.16 -178087 PLN02468 995.926 -178088 PLN02469 444.975 -215261 PLN02470 1146.01 -215262 PLN02471 447.818 -215263 PLN02472 277.999 -166114 PLN02473 440.58 -178092 PLN02474 890.764 -215264 PLN02475 1143.36 -178094 PLN02476 557.752 -178095 PLN02477 380.645 -215265 PLN02478 408.906 -178097 PLN02479 551.758 -178098 PLN02480 638.787 -215266 PLN02481 724.928 -178100 PLN02482 887.548 -178101 PLN02483 189.973 -178102 PLN02484 1109.59 -215267 PLN02485 614.826 -178104 PLN02486 611.748 -215268 PLN02487 980.441 -178106 PLN02488 1031.47 -215269 PLN02489 418.262 -215270 PLN02490 556.428 -215271 PLN02491 1079.12 -215272 PLN02492 613.979 -166134 PLN02493 697.635 -178111 PLN02494 932.352 -215273 PLN02495 712.765 -215274 PLN02496 430.548 -178113 PLN02497 584.155 -215275 PLN02498 875.307 -178115 PLN02499 811.338 -215276 PLN02500 870.337 -215277 PLN02501 1597.33 -215278 PLN02502 794.58 -215279 PLN02503 1010.55 -178120 PLN02504 532.415 -178121 PLN02505 613.998 -215280 PLN02506 1037.97 -215281 PLN02507 930.766 -178124 PLN02508 676.476 -178125 PLN02509 945.231 -178126 PLN02510 645.601 -215282 PLN02511 552.464 -178128 PLN02512 386.35 -178129 PLN02513 692.154 -166155 PLN02514 635.298 -178130 PLN02515 772.626 -178131 PLN02516 539.865 -178132 PLN02517 1150.27 -215283 PLN02518 983.205 -215284 PLN02519 702.403 -178135 PLN02520 930.715 -215285 PLN02521 793.912 -178137 PLN02522 1139.93 -215286 PLN02523 920.809 -215287 PLN02524 398.226 -215288 PLN02525 492.716 -178141 PLN02526 806.768 -178142 PLN02527 490.414 -215289 PLN02528 624.436 -178144 PLN02529 1378.83 -178145 PLN02530 766.982 -215290 PLN02531 488.128 -215291 PLN02532 963.947 -215292 PLN02533 759.603 -215293 PLN02534 886.126 -215294 PLN02535 697.355 -178151 PLN02536 120.259 -178152 PLN02537 771.655 -215295 PLN02538 832.786 -178154 PLN02539 911.799 -215296 PLN02540 1017.74 -215297 PLN02541 349.853 -215298 PLN02542 752.862 -215299 PLN02543 908.901 -178159 PLN02544 572.151 -215300 PLN02545 488.856 -215301 PLN02546 1030.59 -215302 PLN02547 238.925 -178163 PLN02548 565.496 -178164 PLN02549 183.042 -178165 PLN02550 266.016 -178166 PLN02551 753.102 -215303 PLN02552 370.988 -178168 PLN02553 397.908 -215304 PLN02554 880.275 -178170 PLN02555 892.999 -178171 PLN02556 623.135 -178172 PLN02557 600.254 -166199 PLN02558 344.321 -178173 PLN02559 382.269 -178174 PLN02560 496.168 -178175 PLN02561 467.377 -215305 PLN02562 850.324 -178177 PLN02563 1600.25 -178178 PLN02564 937.631 -166206 PLN02565 584.964 -215306 PLN02566 1213.17 -215307 PLN02567 657.107 -215308 PLN02568 773.618 -178182 PLN02569 645.716 -215309 PLN02571 765.202 -215310 PLN02572 710.414 -215311 PLN02573 1021.17 -215312 PLN02574 911.532 -215313 PLN02575 672.348 -215314 PLN02576 651.693 -178189 PLN02577 694.566 -215315 PLN02578 539.043 -215316 PLN02579 579.772 -215317 PLN02580 669.98 -215318 PLN02581 334.361 -178194 PLN02582 1383.07 -178195 PLN02583 486.917 -178196 PLN02584 370.876 -215319 PLN02585 444.3 -166227 PLN02586 708.953 -178198 PLN02587 586.359 -215320 PLN02588 987.551 -166230 PLN02589 542.277 -178200 PLN02590 1040.83 -178201 PLN02591 393.264 -215321 PLN02592 1386.89 -178203 PLN02593 144.477 -215322 PLN02594 454.09 -178205 PLN02595 165 -178206 PLN02596 782.524 -178207 PLN02597 914.569 -215323 PLN02598 597.961 -178209 PLN02599 513.145 -178210 PLN02600 411.12 -178211 PLN02601 591.66 -178212 PLN02602 509.312 -178213 PLN02603 1037.24 -215324 PLN02604 1129.57 -215325 PLN02605 348.112 -215326 PLN02606 577.326 -215327 PLN02607 814.51 -178218 PLN02608 544.744 -215328 PLN02609 825.915 -215329 PLN02610 1373.71 -178221 PLN02611 285.078 -215330 PLN02612 1069.08 -215331 PLN02613 898.122 -166255 PLN02614 1403.23 -178224 PLN02615 662.708 -215332 PLN02616 693.671 -178226 PLN02617 952.232 -215333 PLN02618 767.379 -178228 PLN02619 400.379 -166261 PLN02620 1296.05 -178229 PLN02621 353.316 -166263 PLN02622 457.937 -215334 PLN02623 978.258 -215335 PLN02624 737.744 -178232 PLN02625 266.112 -215336 PLN02626 973.479 -178234 PLN02627 863.281 -215337 PLN02628 611.03 -215338 PLN02629 743.652 -178237 PLN02630 447.716 -178238 PLN02631 1315.81 -215339 PLN02632 354.793 -178240 PLN02633 606.1 -215340 PLN02634 690.517 -215341 PLN02635 284.342 -215342 PLN02636 97.6213 -215343 PLN02638 2210.12 -178245 PLN02639 666.094 -215344 PLN02640 1179.42 -215345 PLN02641 540.476 -178248 PLN02642 292.371 -215346 PLN02643 381.029 -215347 PLN02644 638.677 -178251 PLN02645 528.128 -215348 PLN02646 793.543 -215349 PLN02647 754.317 -215350 PLN02648 633.509 -215351 PLN02649 696.4 -178256 PLN02650 669.997 -178257 PLN02651 452.186 -215352 PLN02652 670.833 -178259 PLN02653 622.179 -215353 PLN02654 1348.79 -215354 PLN02655 802.035 -178262 PLN02656 832.648 -178263 PLN02657 514.313 -215355 PLN02658 729.968 -215356 PLN02659 1107.79 -178266 PLN02660 408.277 -178267 PLN02661 525.162 -178268 PLN02662 661.407 -166304 PLN02663 925.129 -178269 PLN02664 499.043 -215357 PLN02665 661.729 -215358 PLN02666 2040.42 -215359 PLN02667 384.077 -178273 PLN02668 700.081 -178274 PLN02669 146.839 -178275 PLN02670 871.147 -178276 PLN02671 628.47 -215360 PLN02672 1989.64 -215361 PLN02673 1410.17 -178279 PLN02674 478.226 -215362 PLN02676 785.83 -215363 PLN02677 634.948 -215364 PLN02678 757.7 -178283 PLN02679 574.095 -215365 PLN02680 214.663 -215366 PLN02681 312.791 -215367 PLN02682 663.78 -215368 PLN02683 620.684 -166325 PLN02684 1533.72 -215369 PLN02685 457.542 -215370 PLN02686 580.2 -215371 PLN02687 938.08 -178291 PLN02688 286.082 -215372 PLN02689 364.798 -178293 PLN02690 441.078 -215373 PLN02691 428.425 -178295 PLN02692 808.494 -178296 PLN02693 835.088 -178297 PLN02694 580.446 -178298 PLN02695 668.439 -215374 PLN02696 775.892 -215375 PLN02697 926.141 -178301 PLN02698 892.757 -215376 PLN02699 1118.74 -215377 PLN02700 632.577 -178304 PLN02701 1784.73 -215378 PLN02702 654.924 -178306 PLN02703 1312.33 -166345 PLN02704 633.745 -178307 PLN02705 1290.66 -178308 PLN02706 161.026 -178309 PLN02707 412.996 -215379 PLN02708 809.441 -178311 PLN02709 416.822 -215380 PLN02710 723.497 -215381 PLN02711 1513.15 -215382 PLN02712 1292.25 -215383 PLN02713 975.425 -178316 PLN02714 288.452 -178317 PLN02715 666.372 -178318 PLN02716 397.551 -178319 PLN02717 441.739 -178320 PLN02718 1094.55 -178321 PLN02719 1050.45 -178322 PLN02720 175.37 -178323 PLN02721 547.75 -166363 PLN02722 769.44 -178324 PLN02723 549.019 -215384 PLN02724 1418.87 -178326 PLN02725 513.862 -215385 PLN02726 420.643 -215386 PLN02727 1821.03 -215387 PLN02728 409.121 -215388 PLN02729 403.478 -178331 PLN02730 523.954 -178332 PLN02731 622.049 -215389 PLN02732 311.862 -215390 PLN02733 784.975 -178335 PLN02734 1154.5 -215391 PLN02735 2083.63 -178337 PLN02736 1208.39 -215392 PLN02737 535.535 -215393 PLN02738 1078.01 -215394 PLN02739 665.198 -178341 PLN02740 748.162 -178342 PLN02741 284.239 -215395 PLN02742 941.894 -215396 PLN02743 405.662 -215397 PLN02744 750.53 -178346 PLN02745 1072.17 -178347 PLN02746 131.065 -215398 PLN02747 523.947 -215399 PLN02748 794.857 -178350 PLN02749 285.123 -178351 PLN02750 650.886 -215400 PLN02751 916.145 -215401 PLN02752 378.336 -178354 PLN02753 1026.19 -215402 PLN02754 702.344 -178356 PLN02755 105.521 -166397 PLN02756 854.161 -215403 PLN02757 218.076 -215404 PLN02758 690.414 -178359 PLN02759 918.779 -215405 PLN02760 888.005 -215406 PLN02761 975.678 -215407 PLN02762 941.095 -215408 PLN02763 203.968 -178364 PLN02764 905.205 -215409 PLN02765 840.868 -215410 PLN02766 979.306 -215411 PLN02768 1472.02 -215412 PLN02769 960.69 -215413 PLN02770 450.061 -178370 PLN02771 836.94 -215414 PLN02772 537.114 -178372 PLN02773 560.239 -178373 PLN02774 898.754 -178374 PLN02775 368.594 -215415 PLN02776 420.69 -178376 PLN02777 228.342 -178377 PLN02778 547.829 -215416 PLN02779 348.237 -166421 PLN02780 611.485 -215417 PLN02781 448.111 -215418 PLN02782 780.956 -178380 PLN02783 400.15 -215419 PLN02784 1197.9 -215420 PLN02785 1055.17 -178383 PLN02786 858.316 -215421 PLN02787 847.34 -215422 PLN02788 651.444 -215423 PLN02789 357.903 -215424 PLN02790 994.529 -215425 PLN02791 1481.99 -178389 PLN02792 1083.85 -215426 PLN02793 783.297 -178391 PLN02794 473.177 -178392 PLN02795 448.071 -215427 PLN02796 457.664 -178394 PLN02797 258.927 -215428 PLN02798 451.506 -215429 PLN02799 107.4 -215430 PLN02800 276.715 -215431 PLN02801 991.629 -215432 PLN02802 699.986 -178400 PLN02803 935.426 -178401 PLN02804 292.096 -178402 PLN02805 1085.81 -178403 PLN02806 92.5303 -215433 PLN02807 517.018 -166449 PLN02808 754.875 -178405 PLN02809 446.445 -178406 PLN02810 344.881 -178407 PLN02811 378.717 -178408 PLN02812 266.512 -215434 PLN02813 490.476 -215435 PLN02814 1019.11 -215436 PLN02815 885.98 -215437 PLN02816 991.846 -166458 PLN02817 464.466 -215438 PLN02818 446.059 -215439 PLN02819 1629.89 -178415 PLN02820 994.701 -215440 PLN02821 746.632 -178417 PLN02822 751.188 -178418 PLN02823 455.294 -178419 PLN02824 532.006 -215441 PLN02825 181.124 -178421 PLN02826 407.586 -215442 PLN02827 720.533 -178422 PLN02828 505.05 -215443 PLN02829 1186.19 -215444 PLN02830 863.61 -215445 PLN02831 552.774 -215446 PLN02832 344.771 -215447 PLN02833 638.742 -215448 PLN02834 588.277 -178429 PLN02835 1057.27 -215449 PLN02836 646.08 -215450 PLN02837 1220.13 -166479 PLN02838 345.242 -178432 PLN02839 766.105 -215451 PLN02840 698.108 -178434 PLN02841 627.591 -178435 PLN02842 946.219 -215452 PLN02843 1593.26 -215453 PLN02844 1218.93 -215454 PLN02845 397.463 -166487 PLN02846 940.014 -178439 PLN02847 1059.1 -178440 PLN02848 897.176 -215455 PLN02849 964.433 -215456 PLN02850 841.675 -178443 PLN02851 841.563 -215457 PLN02852 564.707 -215458 PLN02853 922.149 -215459 PLN02854 1083.06 -215460 PLN02855 763.135 -215461 PLN02856 669.091 -215462 PLN02857 590.28 -215463 PLN02858 2253.19 -178450 PLN02859 1368.68 -215464 PLN02860 771.276 -178452 PLN02861 1309.44 -178453 PLN02862 289.078 -215465 PLN02863 874.966 -178455 PLN02864 489.297 -215466 PLN02865 547.478 -215467 PLN02866 1941.09 -178458 PLN02867 974.38 -178459 PLN02868 614.806 -166510 PLN02869 1161.53 -215468 PLN02870 1048.76 -215469 PLN02871 599.389 -215470 PLN02872 752.854 -215471 PLN02873 428.667 -178462 PLN02874 658.798 -215472 PLN02875 618.229 -215473 PLN02876 1618.33 -215474 PLN02877 1647.57 -178466 PLN02878 461.863 -178467 PLN02879 503.824 -215475 PLN02880 989.794 -215476 PLN02881 748.796 -215477 PLN02882 1899.84 -178471 PLN02883 745.384 -178472 PLN02884 833.306 -178473 PLN02885 682.539 -215478 PLN02886 615.672 -215479 PLN02887 990.53 -215480 PLN02888 399.897 -215481 PLN02889 1749.73 -178478 PLN02890 754.455 -178479 PLN02891 1016.25 -215482 PLN02892 952.346 -215483 PLN02893 1345.52 -215484 PLN02894 566.461 -215485 PLN02895 702.551 -178484 PLN02896 636.479 -178485 PLN02897 679.373 -215486 PLN02898 672.634 -178487 PLN02899 985.44 -215487 PLN02900 1197.52 -215488 PLN02901 384.852 -215489 PLN02902 1410.8 -215490 PLN02903 949.998 -178492 PLN02904 698.233 -178493 PLN02905 1395.88 -215491 PLN02906 2164.06 -215492 PLN02907 1270.03 -178496 PLN02908 1170.7 -178497 PLN02909 960.489 -215493 PLN02910 1259.47 -178499 PLN02911 404.487 -178500 PLN02912 747.241 -178501 PLN02913 782.853 -178502 PLN02914 864.966 -215494 PLN02915 2106.51 -178504 PLN02916 955.953 -215495 PLN02917 516.311 -215496 PLN02918 982.503 -215497 PLN02919 1932.32 -215498 PLN02920 646.9 -178509 PLN02921 531.285 -215499 PLN02922 403.347 -178511 PLN02923 934.673 -178512 PLN02924 185.697 -178513 PLN02925 1233.47 -215500 PLN02926 562.508 -178515 PLN02927 1322.79 -215501 PLN02928 499.592 -215502 PLN02929 409.812 -178518 PLN02930 524.308 -215503 PLN02931 307.136 -178520 PLN02932 991.844 -178521 PLN02933 1013 -215504 PLN02934 914.169 -215505 PLN02935 841.416 -178524 PLN02936 862.561 -215506 PLN02937 582.209 -178526 PLN02938 668.451 -215507 PLN02939 1725.52 -178528 PLN02940 641.884 -215508 PLN02941 439.005 -178530 PLN02942 873.013 -215509 PLN02943 1794.12 -178531 PLN02945 362.851 -178532 PLN02946 1059.92 -215510 PLN02947 624.842 -178534 PLN02948 900.194 -215511 PLN02949 647.18 -215512 PLN02950 1543.14 -215513 PLN02951 529.712 -178538 PLN02952 1210.22 -178539 PLN02953 732.234 -215514 PLN02954 295.448 -178541 PLN02955 971.841 -215515 PLN02956 255.522 -215516 PLN02957 268.158 -215517 PLN02958 931.581 -215518 PLN02959 1801.19 -215519 PLN02960 1446.56 -178546 PLN02961 287.75 -178547 PLN02962 492.39 -215520 PLN02964 1023.64 -178549 PLN02965 467.088 -178550 PLN02966 776.617 -215521 PLN02967 414.058 -215522 PLN02968 426.935 -215523 PLN02969 997.378 -215524 PLN02970 488.419 -166612 PLN02971 1104.71 -215525 PLN02972 821.825 -178556 PLN02973 1220.71 -215526 PLN02974 901.39 -166616 PLN02975 133.092 -215527 PLN02976 1904.6 -215528 PLN02977 646.342 -215529 PLN02978 457.28 -166620 PLN02979 676.44 -215530 PLN02980 2953.87 -215531 PLN02981 1246.56 -215532 PLN02982 1566.72 -215533 PLN02983 343.745 -215534 PLN02984 569.886 -178566 PLN02985 960.896 -178567 PLN02986 626.276 -166628 PLN02987 949.419 -178568 PLN02988 741.149 -178569 PLN02989 521.896 -215535 PLN02990 1090.06 -215536 PLN02991 1132.43 -178572 PLN02992 969.064 -215537 PLN02993 1599.57 -166635 PLN02994 307.319 -178574 PLN02995 1061.21 -215538 PLN02996 794.68 -178576 PLN02997 684.029 -215539 PLN02998 945.692 -178577 PLN02999 314.829 -178578 PLN03000 1721.78 -166642 PLN03001 569.299 -178579 PLN03002 662.942 -178580 PLN03003 888.642 -178581 PLN03004 882.105 -178582 PLN03005 1111.64 -178583 PLN03006 609.049 -178584 PLN03007 870.332 -178585 PLN03008 1769.62 -166650 PLN03009 989.483 -215540 PLN03010 719.472 -166653 PLN03012 1700.98 -178587 PLN03013 710.778 -178588 PLN03014 656.808 -178589 PLN03015 923.324 -178590 PLN03016 850.863 -178591 PLN03017 726.821 -178592 PLN03018 1128.57 -166660 PLN03019 579.024 -215541 PLN03020 663.296 -178593 PLN03021 754.115 -215542 PLN03023 446.569 -178595 PLN03024 240.701 -178596 PLN03025 579.762 -178597 PLN03026 548.914 -215543 PLN03028 1151.83 -215544 PLN03029 358.962 -215545 PLN03030 619.281 -215546 PLN03031 137.972 -166673 PLN03032 730.857 -178601 PLN03033 537.135 -178602 PLN03034 861.229 -178603 PLN03036 873.528 -215547 PLN03037 948.622 -166679 PLN03039 623.943 -215548 PLN03042 298.271 -178606 PLN03043 1093.75 -215549 PLN03044 293.705 -178608 PLN03046 802.205 -215550 PLN03049 717.785 -215551 PLN03050 358.804 -215552 PLN03051 755.115 -215553 PLN03052 1320.47 -178613 PLN03055 1026.35 -166697 PLN03058 266.476 -166698 PLN03059 1825.39 -215554 PLN03060 308.02 -215555 PLN03063 1496.68 -215556 PLN03064 1614.48 -178617 PLN03065 910.417 -215557 PLN03069 2322.08 -178619 PLN03070 152.431 -178620 PLN03071 382.562 -178621 PLN03072 207.353 -215558 PLN03073 1326.41 -215559 PLN03074 697.63 -178624 PLN03075 386.719 -215560 PLN03076 3276.64 -215561 PLN03077 1550.97 -215562 PLN03078 832.24 -178628 PLN03079 98.4659 -178629 PLN03080 1540.58 -215563 PLN03081 1176.96 -215564 PLN03082 279.504 -215565 PLN03083 1186.16 -178633 PLN03084 656.183 -215566 PLN03085 344.277 -178635 PLN03086 1079.12 -215567 PLN03087 770.515 -215568 PLN03088 514.721 -215569 PLN03089 438.238 -178639 PLN03090 191.521 -215570 PLN03091 746.031 -178641 PLN03093 501.305 -178642 PLN03094 451.155 -215571 PLN03095 166.597 -215572 PLN03096 620.795 -178645 PLN03097 1756.04 -215573 PLN03098 741.319 -215574 PLN03099 168.592 -215575 PLN03100 384.545 -215576 PLN03102 1229.88 -215577 PLN03103 488.794 -215578 PLN03104 245.041 -178652 PLN03105 535.603 -215579 PLN03106 446.061 -215580 PLN03107 250.397 -178655 PLN03108 413.183 -215581 PLN03109 979.697 -178657 PLN03110 431.66 -215582 PLN03111 255.208 -215583 PLN03112 859.511 -215584 PLN03113 1350.8 -178661 PLN03114 664.632 -215585 PLN03115 631.266 -215586 PLN03116 516.574 -178664 PLN03117 700.917 -215587 PLN03118 422.542 -178666 PLN03119 1226.24 -215588 PLN03120 311.592 -215589 PLN03121 342.563 -178669 PLN03122 1312.48 -215590 PLN03123 1611 -215591 PLN03124 980.093 -215592 PLN03126 752.603 -178673 PLN03127 750.887 -215593 PLN03128 1615.16 -215594 PLN03129 589.575 -215595 PLN03130 401.424 -178677 PLN03131 1291.66 -178678 PLN03132 898.463 -215596 PLN03133 1197.31 -178680 PLN03134 209.894 -178681 PLN03136 246.969 -215597 PLN03137 2123.04 -215598 PLN03138 1302.52 -178684 PLN03139 740.511 -215599 PLN03140 2868.73 -215600 PLN03141 813.204 -215601 PLN03142 1699.61 -215602 PLN03143 497.423 -178689 PLN03144 907.182 -215603 PLN03145 623.86 -178691 PLN03146 679.816 -178692 PLN03147 148.207 -178693 PLN03148 255.955 -178694 PLN03149 367.238 -178695 PLN03150 1023.6 -215604 PLN03151 1108.29 -178697 PLN03152 382.281 -215605 PLN03153 947.814 -215606 PLN03154 674.248 -178700 PLN03155 94.9544 -178701 PLN03156 652.579 -178702 PLN03157 860.252 -215607 PLN03158 741.269 -215608 PLN03159 1017.89 -215609 PLN03160 321.695 -178706 PLN03161 581.474 -178707 PLN03162 1006.23 -215610 PLN03164 184.248 -178709 PLN03165 198.888 -178710 PLN03166 141.99 -215611 PLN03167 987.499 -178712 PLN03168 687.157 -215612 PLN03169 706.078 -178714 PLN03170 792.762 -178715 PLN03171 778.414 -178716 PLN03172 782.701 -178717 PLN03173 768.472 -215613 PLN03174 339.52 -178719 PLN03175 655.308 -178720 PLN03176 256.957 -215614 PLN03178 530.911 -215615 PLN03180 390.235 -215616 PLN03181 622.558 -215617 PLN03182 473.019 -178725 PLN03183 834.121 -215618 PLN03184 1184.26 -215619 PLN03185 1326.38 -178728 PLN03186 554.728 -215620 PLN03187 545.528 -215621 PLN03188 2144.26 -215622 PLN03189 688.508 -215623 PLN03190 2297.54 -215624 PLN03191 1113.44 -215625 PLN03192 1479.73 -178735 PLN03193 786.085 -215626 PLN03194 307.518 -215627 PLN03195 352.93 -215628 PLN03196 659.864 -178739 PLN03198 1090.11 -178740 PLN03199 998.012 -215629 PLN03200 3201.42 -215630 PLN03201 511.55 -215631 PLN03202 1660.62 -178744 PLN03205 1105.19 -178745 PLN03206 2239.63 -215632 PLN03207 152.704 -178747 PLN03208 387.52 -178748 PLN03209 668.555 -215633 PLN03210 2086.04 -215634 PLN03211 1166.57 -178751 PLN03212 490.359 -178752 PLN03213 1148.05 -215635 PLN03214 447.404 -178754 PLN03215 675.513 -178755 PLN03216 282.2 -178756 PLN03217 127.239 -215636 PLN03218 1439.68 -178758 PLN03219 191.502 -178759 PLN03220 205.364 -178760 PLN03221 218.387 -178761 PLN03222 196.496 -215637 PLN03223 2371.15 -178763 PLN03224 934.102 -215638 PLN03225 856.013 -215639 PLN03226 688.256 -178766 PLN03227 616.146 -178767 PLN03228 756.376 -178768 PLN03229 1219.7 -178769 PLN03230 698.231 -178770 PLN03231 709.053 -215640 PLN03232 2955.15 -178772 PLN03233 1124.72 -178773 PLN03234 1023.09 -178774 PLN03236 1444.09 -215641 PLN03237 2272.85 -215642 PLN03238 490.905 -178777 PLN03239 747.25 -178778 PLN03240 859.898 -215643 PLN03241 1844.13 -178780 PLN03242 627.594 -215644 PLN03243 515.352 -178782 PLN03244 1954.04 -215645 PLN03246 510.438 -234564 PRK00001 136.013 -234565 PRK00002 322.082 -234566 PRK00004 75.9394 -234567 PRK00005 332.473 -234568 PRK00006 176.074 -234569 PRK00007 1253.87 -234570 PRK00009 1003.12 -178791 PRK00010 229.193 -234571 PRK00011 492.284 -234572 PRK00012 461.894 -234573 PRK00013 731.155 -134031 PRK00014 392.081 -234574 PRK00015 143.762 -234575 PRK00016 116.885 -234576 PRK00019 87.6716 -134035 PRK00020 484.139 -234577 PRK00021 141.433 -234578 PRK00022 145.086 -234579 PRK00023 222.306 -178801 PRK00024 252.302 -234580 PRK00025 413.742 -234581 PRK00026 312.797 -234582 PRK00028 150.314 -234583 PRK00029 571.337 -178806 PRK00030 434.507 -178807 PRK00031 142.79 -234584 PRK00032 272.516 -178809 PRK00033 115.049 -178810 PRK00034 39.7987 -234585 PRK00035 230.451 -134050 PRK00036 173.682 -234586 PRK00037 249.68 -134052 PRK00038 152.952 -234587 PRK00039 157.97 -234588 PRK00040 96.3426 -178815 PRK00041 110.442 -234589 PRK00042 156.048 -234590 PRK00043 151.874 -234591 PRK00044 433.482 -234592 PRK00045 267.049 -234593 PRK00046 457.3 -234594 PRK00047 855.275 -234595 PRK00048 198.442 -234596 PRK00049 657.262 -234597 PRK00050 341.288 -234598 PRK00051 163.14 -234599 PRK00052 122.994 -234600 PRK00053 326.363 -234601 PRK00054 270.976 -234602 PRK00055 192.703 -234603 PRK00056 289.803 -234604 PRK00058 343.392 -234605 PRK00059 380.211 -234606 PRK00061 112.912 -234607 PRK00062 611.686 -234608 PRK00064 295.914 -178836 PRK00066 484.01 -234609 PRK00068 1114.29 -234610 PRK00070 87.108 -234611 PRK00071 141.51 -234612 PRK00072 290.816 -234613 PRK00073 404.053 -234614 PRK00074 655.194 -234615 PRK00075 186.954 -234616 PRK00076 195.311 -234617 PRK00077 506.161 -234618 PRK00078 312.431 -234619 PRK00080 365.608 -234620 PRK00081 146.774 -234621 PRK00082 216.957 -178850 PRK00083 196.08 -178851 PRK00084 129.077 -234622 PRK00085 124.221 -234623 PRK00087 669.731 -234624 PRK00089 286.173 -234625 PRK00090 106.818 -234626 PRK00091 250.047 -234627 PRK00092 111.433 -234628 PRK00093 455.278 -234629 PRK00094 308.151 -234630 PRK00095 495.891 -234631 PRK00098 381.86 -234632 PRK00099 90.1996 -234633 PRK00102 219.212 -234634 PRK00103 137.165 -234635 PRK00104 232.397 -234636 PRK00105 264.688 -178867 PRK00106 891.528 -234637 PRK00107 136.8 -234638 PRK00108 258.914 -234639 PRK00109 107.158 -234640 PRK00110 291.214 -234641 PRK00111 318.367 -234642 PRK00112 550.091 -234643 PRK00114 289.755 -234644 PRK00115 376.394 -234645 PRK00116 128.718 -234646 PRK00117 63.752 -234647 PRK00118 98.3928 -234648 PRK00120 219.57 -234649 PRK00121 156.475 -234650 PRK00122 120.633 -178882 PRK00124 206.25 -234651 PRK00125 314.874 -234652 PRK00128 382.203 -234653 PRK00129 231.516 -178886 PRK00130 423.193 -234654 PRK00131 154.962 -178888 PRK00132 142.539 -234655 PRK00133 792.43 -234656 PRK00134 111.043 -234657 PRK00135 227.462 -234658 PRK00136 169.847 -234659 PRK00137 105.936 -234660 PRK00139 332.867 -234661 PRK00140 173.785 -234662 PRK00141 632.188 -234663 PRK00142 319.871 -234664 PRK00143 408.305 -234665 PRK00145 304.741 -234666 PRK00147 432.193 -178901 PRK00148 257.824 -234667 PRK00149 317.847 -234668 PRK00150 154.51 -234669 PRK00153 70.5975 -234670 PRK00155 204.597 -234671 PRK00157 88.7061 -178907 PRK00159 118.202 -178908 PRK00162 189.077 -234672 PRK00164 337.114 -234673 PRK00166 290.529 -234674 PRK00168 190.677 -234675 PRK00170 259.441 -234676 PRK00172 38.1904 -178914 PRK00173 330.918 -234677 PRK00174 1044.34 -234678 PRK00175 481.227 -166839 PRK00178 741.147 -234679 PRK00179 642.994 -234680 PRK00180 518.514 -234681 PRK00182 205.445 -166842 PRK00183 294.4 -166843 PRK00187 587.867 -234682 PRK00188 296.604 -234683 PRK00191 93.0971 -234684 PRK00192 274.896 -178923 PRK00194 94.4914 -234685 PRK00197 531.181 -178925 PRK00199 154.261 -234686 PRK00202 107.186 -178927 PRK00203 185.03 -178928 PRK00207 173.511 -234687 PRK00208 338.959 -178930 PRK00211 148.088 -234688 PRK00215 255.041 -234689 PRK00216 276.649 -234690 PRK00218 208.136 -234691 PRK00220 127.204 -234692 PRK00222 214.697 -234693 PRK00226 132.924 -178937 PRK00227 1014.3 -234694 PRK00228 171.194 -234695 PRK00230 248.512 -234696 PRK00232 409.168 -166864 PRK00234 335.562 -234697 PRK00235 119.169 -234698 PRK00236 295.525 -178943 PRK00239 43.6131 -234699 PRK00241 272.11 -178945 PRK00247 637.278 -234700 PRK00249 206.248 -234701 PRK00252 885.199 -178948 PRK00253 113.128 -234702 PRK00254 1346.78 -166874 PRK00257 536.156 -234703 PRK00258 200.799 -234704 PRK00259 141.504 -234705 PRK00260 503.871 -234706 PRK00269 398.385 -234707 PRK00270 26.3717 -234708 PRK00274 220.758 -234709 PRK00275 1545.01 -178954 PRK00276 74.0349 -178955 PRK00277 270.112 -234710 PRK00278 180.352 -234711 PRK00279 196.909 -234712 PRK00281 151.802 -234713 PRK00283 331.001 -178960 PRK00284 37.5906 -178961 PRK00285 128.8 -234714 PRK00286 250.496 -234715 PRK00290 932.207 -234716 PRK00292 384.901 -234717 PRK00293 627.623 -166894 PRK00294 264.792 -166895 PRK00295 98.3068 -234718 PRK00296 84.9033 -178967 PRK00299 136.305 -234719 PRK00300 189.145 -234720 PRK00301 188.87 -234721 PRK00302 313.355 -166901 PRK00304 128.006 -178971 PRK00306 40.6067 -234722 PRK00310 288.591 -234723 PRK00311 353.599 -178974 PRK00312 283.248 -234724 PRK00315 228.623 -234725 PRK00317 153.033 -234726 PRK00321 291.744 -234727 PRK00325 315.879 -234728 PRK00326 123.38 -178979 PRK00329 121.567 -234729 PRK00331 692.94 -234730 PRK00339 363.711 -166914 PRK00341 157.254 -234731 PRK00343 343.255 -234732 PRK00346 225.364 -234733 PRK00347 196.955 -234734 PRK00349 1629 -178985 PRK00357 99.8705 -234735 PRK00358 139.878 -234736 PRK00359 54.0785 -178988 PRK00364 85.9383 -234737 PRK00366 458.382 -234738 PRK00369 561.305 -178991 PRK00373 192.346 -234739 PRK00376 104.116 -234740 PRK00377 301.331 -178993 PRK00378 450.471 -234741 PRK00380 114.829 -234742 PRK00389 417.981 -234743 PRK00390 900.216 -178997 PRK00391 86.0137 -234744 PRK00392 27.188 -234745 PRK00393 278.263 -234746 PRK00394 159.245 -179001 PRK00395 123.878 -179002 PRK00396 188.824 -234747 PRK00398 46.4331 -179004 PRK00399 25.8959 -179005 PRK00400 83.6682 -234748 PRK00402 559.024 -166942 PRK00404 143.43 -234749 PRK00405 1603.99 -179008 PRK00407 156.334 -234750 PRK00409 810.594 -234751 PRK00411 405.001 -234752 PRK00413 954.914 -179012 PRK00414 298.573 -179013 PRK00415 81.1031 -234753 PRK00416 138.359 -234754 PRK00418 96.2575 -234755 PRK00419 270.336 -234756 PRK00420 94.7009 -234757 PRK00421 398.337 -234758 PRK00423 459.474 -179020 PRK00430 140.199 -234759 PRK00431 184.66 -234760 PRK00432 60.774 -179023 PRK00435 78.3646 -234761 PRK00436 294.724 -234762 PRK00439 227.788 -234763 PRK00440 518.274 -179027 PRK00441 207.214 -234764 PRK00442 118.441 -179028 PRK00443 249.361 -234765 PRK00446 132.698 -234766 PRK00447 185.256 -234767 PRK00448 1757.81 -234768 PRK00450 201.566 -234769 PRK00451 511.991 -179034 PRK00453 71.3839 -234770 PRK00454 201.113 -234771 PRK00455 147.611 -234772 PRK00458 203.723 -234773 PRK00461 61.6611 -234774 PRK00464 174.158 -179039 PRK00465 34.9277 -166979 PRK00466 515.873 -179040 PRK00468 80.9336 -179041 PRK00474 163.114 -234775 PRK00476 709.913 -234776 PRK00478 648.913 -234777 PRK00481 264.734 -234778 PRK00484 640.984 -234779 PRK00485 537.753 -234780 PRK00488 383.298 -234781 PRK00489 189.537 -234782 PRK00499 136.067 -234783 PRK00504 47.6038 -234784 PRK00507 237.765 -234785 PRK00509 536.95 -179052 PRK00513 222.011 -234786 PRK00517 199.608 -234787 PRK00521 84.0133 -179055 PRK00522 246.351 -179056 PRK00523 90.5378 -179057 PRK00528 91.1683 -234788 PRK00529 201.049 -134311 PRK00536 379.203 -179059 PRK00539 190.874 -234789 PRK00549 458.099 -234790 PRK00550 183.77 -179062 PRK00553 588.809 -179063 PRK00555 520.187 -234791 PRK00556 181.041 -234792 PRK00558 415.286 -167003 PRK00560 278.951 -100598 PRK00561 417.355 -179066 PRK00564 159.233 -234793 PRK00565 106.333 -234794 PRK00566 1514.98 -234795 PRK00567 105.319 -134322 PRK00568 107.656 -234796 PRK00571 109.08 -100605 PRK00573 264.47 -234797 PRK00575 75.1616 -234798 PRK00576 232 -234799 PRK00578 472.446 -234800 PRK00587 95.7841 -179073 PRK00588 163.414 -234801 PRK00591 470.714 -179075 PRK00595 45.1874 -179076 PRK00596 107.56 -234802 PRK00601 186.138 -100616 PRK00611 190.006 -234803 PRK00615 804.022 -167014 PRK00624 196.974 -134335 PRK00625 248.903 -234804 PRK00629 370.655 -234805 PRK00630 227.748 -234806 PRK00635 3298.6 -179080 PRK00642 354.342 -100624 PRK00647 161.573 -234807 PRK00648 272.935 -134340 PRK00650 512.087 -234808 PRK00652 211.225 -234809 PRK00654 486.548 -179084 PRK00665 47.7419 -179085 PRK00668 213.43 -234810 PRK00676 551.773 -179086 PRK00683 772.06 -234811 PRK00685 285.552 -234812 PRK00694 1176.93 -234813 PRK00696 481.897 -234814 PRK00698 157.654 -234815 PRK00701 448.907 -234816 PRK00702 234.957 -234817 PRK00704 162.871 -234818 PRK00708 153.429 -234819 PRK00711 457.724 -234820 PRK00714 169.566 -234821 PRK00719 687.843 -234822 PRK00720 83.938 -179097 PRK00723 464.778 -234823 PRK00724 297.091 -234824 PRK00725 651.906 -234825 PRK00726 259.678 -234826 PRK00730 198.236 -179101 PRK00732 100.208 -234827 PRK00733 573.241 -179103 PRK00736 92.5894 -179104 PRK00737 112.786 -179105 PRK00741 894.104 -234828 PRK00742 378.723 -179107 PRK00745 92.8594 -179108 PRK00748 280.799 -234829 PRK00750 508.198 -134373 PRK00753 33.5702 -179110 PRK00754 115.192 -179111 PRK00756 368.267 -179112 PRK00758 286.363 -179113 PRK00762 180.314 -234830 PRK00766 289.627 -179115 PRK00767 245.522 -234831 PRK00768 425.71 -179117 PRK00770 593.681 -179118 PRK00771 576.389 -234832 PRK00772 392.157 -234833 PRK00773 71.5174 -234834 PRK00777 185.036 -234835 PRK00779 419.112 -234836 PRK00782 368.915 -234837 PRK00783 303.345 -234838 PRK00784 571.642 -179126 PRK00790 90.4888 -179127 PRK00794 147.3 -234839 PRK00801 336.647 -234840 PRK00802 201.979 -234841 PRK00805 550.039 -179131 PRK00807 81.1769 -179132 PRK00808 216.474 -179133 PRK00809 179.445 -234842 PRK00810 136.332 -234843 PRK00811 307.468 -234844 PRK00816 480.92 -179136 PRK00819 161.55 -234845 PRK00823 76.0304 -179138 PRK00831 31.5017 -179139 PRK00843 513.672 -234846 PRK00844 644.188 -179141 PRK00846 116.134 -234847 PRK00847 213.932 -234848 PRK00854 784.744 -179143 PRK00855 388.74 -234849 PRK00856 360.157 -234850 PRK00861 421.723 -234851 PRK00865 260.804 -179147 PRK00870 414.751 -234852 PRK00871 303.245 -179149 PRK00872 156.744 -179150 PRK00876 467.125 -234853 PRK00877 473.799 -234854 PRK00881 677.579 -234855 PRK00884 299.205 -234856 PRK00885 501.125 -234857 PRK00886 225.895 -179156 PRK00888 125.799 -179157 PRK00889 333.527 -234858 PRK00892 330.563 -234859 PRK00893 159.563 -234860 PRK00901 270.384 -179161 PRK00907 180.114 -179162 PRK00910 458.736 -234861 PRK00911 833.17 -234862 PRK00912 296.921 -234863 PRK00913 429.967 -234864 PRK00915 492.319 -179167 PRK00919 494.835 -234865 PRK00923 153.11 -179169 PRK00924 447.742 -234866 PRK00927 369.417 -234867 PRK00933 140.965 -234868 PRK00934 350.367 -179173 PRK00939 130.813 -179174 PRK00941 1261.43 -234869 PRK00942 134.08 -234870 PRK00943 536.739 -234871 PRK00944 252.652 -179177 PRK00945 167.122 -234872 PRK00950 507.157 -234873 PRK00951 196.103 -234874 PRK00955 1040.68 -179181 PRK00956 283.027 -234875 PRK00957 388.194 -234876 PRK00960 711.79 -179184 PRK00961 574.028 -179185 PRK00962 218.351 -234877 PRK00964 185.263 -179187 PRK00965 113.897 -179188 PRK00967 134.366 -234878 PRK00968 210.996 -234879 PRK00969 591.5 -234880 PRK00971 368.326 -234881 PRK00972 398.572 -179193 PRK00973 489.119 -234882 PRK00976 401.253 -179195 PRK00977 48.3623 -234883 PRK00979 283.755 -179197 PRK00982 53.2516 -234884 PRK00984 239.341 -179199 PRK00989 432.736 -234885 PRK00994 381.659 -234886 PRK00996 312.967 -234887 PRK01001 1256.24 -179203 PRK01002 225.317 -179204 PRK01005 282.829 -134464 PRK01008 678.852 -179205 PRK01018 132.396 -167141 PRK01021 1091.76 -234888 PRK01022 158.931 -179207 PRK01024 845.599 -179208 PRK01026 83.8515 -234889 PRK01029 690.732 -234890 PRK01030 246.01 -234891 PRK01033 346.169 -234892 PRK01037 668.448 -234893 PRK01045 323.232 -234894 PRK01059 366.071 -179214 PRK01060 225.065 -234895 PRK01061 380.283 -179216 PRK01064 105.007 -167150 PRK01066 363.304 -179217 PRK01076 752.536 -234896 PRK01077 492.34 -234897 PRK01096 567.239 -179220 PRK01099 66.4909 -234898 PRK01100 252.757 -234899 PRK01103 313.171 -234900 PRK01109 864.667 -234901 PRK01110 24.9256 -234902 PRK01112 417.199 -234903 PRK01115 202.746 -234904 PRK01117 578.151 -179228 PRK01119 179.707 -234905 PRK01122 991.232 -234906 PRK01123 298.337 -234907 PRK01130 238.124 -234908 PRK01143 198.58 -234909 PRK01146 68.3522 -179234 PRK01151 73.3678 -179235 PRK01153 235.152 -100796 PRK01156 1059.51 -234910 PRK01158 261.446 -234911 PRK01160 221.943 -234912 PRK01170 510.9 -100801 PRK01172 1161.57 -234913 PRK01175 433.419 -167170 PRK01177 184.18 -179239 PRK01178 108.811 -234914 PRK01184 247.553 -179241 PRK01185 420.373 -100807 PRK01189 151.146 -234915 PRK01191 129.251 -234916 PRK01192 69.9365 -100810 PRK01194 209.01 -234917 PRK01198 276.754 -234918 PRK01202 143.761 -100813 PRK01203 173.195 -100814 PRK01207 670.86 -234919 PRK01209 238.549 -179247 PRK01211 673.109 -234920 PRK01212 186.507 -234921 PRK01213 824.738 -179250 PRK01215 372.038 -179251 PRK01216 544.384 -179252 PRK01217 171.851 -179253 PRK01220 141.651 -234922 PRK01221 479.063 -234923 PRK01222 153.809 -234924 PRK01229 211.681 -179257 PRK01231 453.261 -234925 PRK01233 679.919 -234926 PRK01236 201.127 -234927 PRK01237 350.411 -179261 PRK01242 54.2287 -179262 PRK01250 269.818 -179263 PRK01253 46.4507 -234928 PRK01254 1409.82 -234929 PRK01259 388.707 -234930 PRK01261 287.168 -234931 PRK01265 449.58 -234932 PRK01269 529 -179269 PRK01271 113.715 -179270 PRK01278 477.793 -234933 PRK01285 217.037 -234934 PRK01286 483.902 -234935 PRK01287 532.785 -234936 PRK01293 209.76 -234937 PRK01294 209.148 -167205 PRK01295 400.989 -234938 PRK01297 670.467 -234939 PRK01305 255.904 -167208 PRK01310 134.017 -234940 PRK01313 146.002 -234941 PRK01315 428.773 -234942 PRK01318 342.622 -179280 PRK01322 298.349 -179281 PRK01326 406.892 -234943 PRK01343 79.367 -234944 PRK01345 476.048 -234945 PRK01346 352.695 -234946 PRK01355 299.306 -167217 PRK01356 228.608 -234947 PRK01362 321.725 -179286 PRK01368 682.337 -179287 PRK01371 106.719 -234948 PRK01372 355.188 -134546 PRK01379 177.819 -179289 PRK01381 127.334 -234949 PRK01388 610.244 -234950 PRK01390 524.793 -234951 PRK01392 208.392 -179293 PRK01395 145.463 -179294 PRK01397 133.925 -234952 PRK01402 460.18 -234953 PRK01406 389.452 -167229 PRK01415 505.248 -234954 PRK01424 641.576 -234955 PRK01433 868.017 -179297 PRK01438 471.096 -167232 PRK01441 372.126 -179298 PRK01470 52.55 -100879 PRK01474 177.372 -134562 PRK01482 126.074 -234956 PRK01490 248.154 -100883 PRK01492 155.821 -234957 PRK01526 329.146 -179300 PRK01528 575.761 -134567 PRK01530 120.301 -134568 PRK01533 757.266 -234958 PRK01544 857.242 -100891 PRK01546 102.801 -234959 PRK01550 511.446 -179302 PRK01558 240.816 -234960 PRK01565 369.905 -179304 PRK01574 196.806 -234961 PRK01581 583.465 -234962 PRK01584 1048.21 -234963 PRK01610 612.166 -234964 PRK01611 344.447 -234965 PRK01614 90.7231 -234966 PRK01617 270.365 -179310 PRK01622 329.405 -179311 PRK01625 111.715 -167247 PRK01631 111.742 -179312 PRK01636 167.632 -179313 PRK01637 371.547 -179314 PRK01641 236.177 -234967 PRK01642 551.694 -179316 PRK01655 228.803 -167253 PRK01658 122.447 -234968 PRK01663 597.269 -234969 PRK01678 89.5607 -234970 PRK01683 388.147 -234971 PRK01686 250.818 -234972 PRK01688 593.453 -179322 PRK01699 143.61 -167260 PRK01706 218.138 -179323 PRK01710 731.857 -234973 PRK01712 84.9598 -167263 PRK01713 739.876 -234974 PRK01722 373.124 -234975 PRK01723 275.994 -179327 PRK01732 153.575 -234976 PRK01736 220.96 -234977 PRK01741 366.757 -179329 PRK01742 728.972 -234978 PRK01747 618.785 -234979 PRK01749 229.057 -179332 PRK01752 240.841 -234980 PRK01759 1511.18 -234981 PRK01766 480.079 -179334 PRK01770 155.365 -179335 PRK01773 246.194 -234982 PRK01777 98.1272 -167278 PRK01792 425.461 -179337 PRK01810 733.757 -179338 PRK01816 180.196 -234983 PRK01821 129.348 -234984 PRK01827 314.779 -167284 PRK01833 86.4708 -179341 PRK01839 323.633 -234985 PRK01842 218.908 -100947 PRK01844 60.7993 -234986 PRK01851 457.894 -234987 PRK01862 683.011 -179345 PRK01885 237.825 -234988 PRK01889 466.718 -234989 PRK01903 103.936 -234990 PRK01904 275.937 -179348 PRK01905 136.859 -179349 PRK01906 475.067 -179350 PRK01908 303.72 -234991 PRK01909 518.525 -179352 PRK01911 460.161 -179353 PRK01917 184.225 -234992 PRK01919 212.145 -179355 PRK01964 80.6119 -234993 PRK01966 309.744 -234994 PRK01973 384.846 -179358 PRK02001 205.982 -234995 PRK02006 575.068 -179360 PRK02047 173.058 -179361 PRK02048 1079.85 -179362 PRK02079 130.842 -234996 PRK02083 267.7 -234997 PRK02090 250.14 -234998 PRK02098 237.302 -234999 PRK02101 173.867 -179366 PRK02102 448.181 -179367 PRK02103 165.216 -235000 PRK02106 875.698 -235001 PRK02107 791.345 -235002 PRK02110 218.007 -179371 PRK02113 456.937 -235003 PRK02114 415.771 -179373 PRK02118 781.526 -235004 PRK02119 88.7246 -235005 PRK02122 791.15 -235006 PRK02126 360.77 -235007 PRK02134 330.753 -235008 PRK02135 226.293 -235009 PRK02141 292.429 -179379 PRK02155 494.845 -167325 PRK02166 280.505 -235010 PRK02186 1204.67 -235011 PRK02190 383.042 -179381 PRK02193 370.238 -179382 PRK02195 218.268 -235012 PRK02201 331.206 -235013 PRK02220 95.9852 -179385 PRK02224 934.457 -235014 PRK02227 168.168 -179387 PRK02228 133.132 -179388 PRK02230 322.774 -167337 PRK02231 531.688 -235015 PRK02234 178.532 -235016 PRK02237 73.7458 -179391 PRK02240 391.272 -179392 PRK02249 265.293 -179393 PRK02250 264.817 -179394 PRK02251 88.2405 -179395 PRK02253 224.83 -235017 PRK02255 595.886 -235018 PRK02256 693.494 -235019 PRK02259 374.597 -179399 PRK02260 122.985 -179400 PRK02261 184.383 -235020 PRK02264 374.543 -179402 PRK02265 336.124 -235021 PRK02268 192.162 -167353 PRK02269 525.127 -235022 PRK02271 429.744 -235023 PRK02277 251.712 -235024 PRK02287 185.853 -179406 PRK02289 108.869 -235025 PRK02290 306.012 -235026 PRK02292 165.556 -235027 PRK02301 533.068 -179410 PRK02302 126.308 -235028 PRK02304 136.745 -235029 PRK02308 331.518 -235030 PRK02315 211.632 -235031 PRK02318 370.688 -235032 PRK02362 1116.57 -235033 PRK02363 60.793 -179417 PRK02382 671.363 -179418 PRK02391 429.352 -235034 PRK02395 305.088 -179420 PRK02399 370.361 -235035 PRK02406 462.281 -235036 PRK02412 237.874 -235037 PRK02427 272.016 -235038 PRK02436 290.352 -235039 PRK02458 589.017 -235040 PRK02463 456.5 -179427 PRK02471 1022.17 -235041 PRK02472 567.555 -167380 PRK02478 326.694 -235042 PRK02484 503.754 -179430 PRK02487 192.045 -179431 PRK02491 426.15 -235043 PRK02492 657.886 -179433 PRK02496 322.855 -235044 PRK02504 747.646 -235045 PRK02506 486.384 -235046 PRK02507 477.508 -235047 PRK02509 1455.99 -235048 PRK02515 165.62 -134722 PRK02529 41.002 -235049 PRK02534 455.891 -179440 PRK02539 110.75 -179441 PRK02542 252.556 -235050 PRK02546 855.928 -179443 PRK02551 260.348 -167396 PRK02553 40.4371 -179444 PRK02557 146.359 -235051 PRK02561 68.5228 -179446 PRK02565 34.629 -167400 PRK02576 50.0504 -235052 PRK02597 2266.05 -179448 PRK02603 281.175 -235053 PRK02610 562.414 -235054 PRK02615 416.206 -179451 PRK02624 69.7443 -235055 PRK02625 1280.07 -235056 PRK02627 530.859 -235057 PRK02628 765.948 -179455 PRK02645 493.275 -179456 PRK02649 563.063 -179457 PRK02651 107.042 -235058 PRK02654 587.719 -179459 PRK02655 41.2395 -179460 PRK02693 463.693 -235059 PRK02705 661.986 -235060 PRK02710 140.56 -235061 PRK02714 404.396 -235062 PRK02724 167.608 -235063 PRK02726 279.997 -235064 PRK02731 459.227 -235065 PRK02733 62.7856 -235066 PRK02746 545.272 -179468 PRK02749 92.8645 -179469 PRK02755 460.234 -235067 PRK02759 288.982 -235068 PRK02769 500.724 -235069 PRK02770 241.122 -179472 PRK02793 89.5844 -179473 PRK02794 606.929 -235070 PRK02797 329.964 -235071 PRK02801 145.819 -235072 PRK02812 623.688 -235073 PRK02813 533.229 -179478 PRK02816 371.544 -179479 PRK02821 96.2454 -235074 PRK02830 290.7 -235075 PRK02833 93.3652 -235076 PRK02842 604.213 -235077 PRK02853 220.529 -179484 PRK02854 257.427 -235078 PRK02858 511.906 -179486 PRK02862 716.279 -235079 PRK02866 186.177 -235080 PRK02868 180.884 -235081 PRK02870 422.591 -179490 PRK02877 168.799 -179491 PRK02886 130.949 -235082 PRK02888 970.602 -235083 PRK02889 674.011 -179494 PRK02898 80.7385 -179495 PRK02899 289.595 -235084 PRK02901 362.363 -179497 PRK02909 114.234 -235085 PRK02910 556.802 -179499 PRK02913 142.686 -235086 PRK02919 87.4191 -179501 PRK02922 107.968 -235087 PRK02925 462.34 -179503 PRK02929 836.791 -179504 PRK02935 132.065 -179505 PRK02936 608.12 -179506 PRK02939 372.903 -235088 PRK02943 135.077 -179508 PRK02944 383.35 -235089 PRK02946 649.631 -179510 PRK02947 250.942 -179511 PRK02948 660.269 -235090 PRK02951 325.357 -179513 PRK02955 97.7278 -235091 PRK02958 67.6808 -235092 PRK02963 528.09 -235093 PRK02967 164.426 -235094 PRK02971 119.715 -179518 PRK02975 560.401 -235095 PRK02983 1494.46 -179520 PRK02984 49.5768 -235096 PRK02991 426.993 -179522 PRK02998 420.532 -235097 PRK02999 1248.14 -179524 PRK03001 407.488 -101162 PRK03002 445.149 -179525 PRK03003 783.003 -235098 PRK03007 509.103 -235099 PRK03011 399.919 -235100 PRK03031 132.817 -179529 PRK03057 249.361 -235101 PRK03059 1366.51 -179531 PRK03065 268.531 -235102 PRK03072 435.626 -235103 PRK03080 380.686 -179534 PRK03081 56.4585 -179535 PRK03092 470.97 -179536 PRK03094 112.107 -179537 PRK03095 349.678 -179538 PRK03100 177.121 -235104 PRK03103 682.499 -179540 PRK03113 226.122 -179541 PRK03114 276.902 -235105 PRK03124 187.445 -179543 PRK03137 831.888 -179544 PRK03140 414.386 -179545 PRK03147 281.506 -235106 PRK03158 542.265 -235107 PRK03170 261.563 -179548 PRK03174 91.4782 -235108 PRK03180 650.49 -235109 PRK03187 403.986 -235110 PRK03188 305.661 -179552 PRK03195 232.755 -235111 PRK03202 389.825 -179554 PRK03204 502.464 -235112 PRK03244 546.815 -235113 PRK03287 370.376 -235114 PRK03298 349.159 -235115 PRK03317 550.238 -179559 PRK03321 510.279 -179560 PRK03333 355.853 -235116 PRK03341 231.45 -235117 PRK03343 474.693 -235118 PRK03348 572.263 -179564 PRK03352 502.245 -235119 PRK03353 320.431 -179566 PRK03354 718.922 -179567 PRK03355 1005.39 -179568 PRK03356 713.817 -179569 PRK03359 423.42 -235120 PRK03363 599.269 -179571 PRK03369 624.077 -179572 PRK03371 666.525 -235121 PRK03372 425.1 -235122 PRK03378 502.935 -179575 PRK03379 434.498 -235123 PRK03381 777.632 -235124 PRK03427 428.3 -235125 PRK03430 229.899 -179579 PRK03437 544.136 -179580 PRK03449 442.198 -235126 PRK03459 168.822 -235127 PRK03467 242.234 -179583 PRK03482 389.087 -179584 PRK03501 422.464 -179585 PRK03511 404.806 -179586 PRK03512 397.502 -179587 PRK03515 662.18 -235128 PRK03522 252.097 -179589 PRK03525 718.845 -235129 PRK03537 245.62 -179591 PRK03545 429.696 -179592 PRK03554 92.4331 -235130 PRK03557 472.694 -235131 PRK03562 858.911 -179595 PRK03564 534.998 -179596 PRK03573 239.521 -235132 PRK03577 29.2252 -235133 PRK03578 231.447 -179599 PRK03580 395.987 -235134 PRK03584 881.054 -235135 PRK03592 407.458 -235136 PRK03598 420.522 -179603 PRK03600 156.529 -235137 PRK03601 433.674 -235138 PRK03604 293.386 -179606 PRK03606 188.164 -179607 PRK03609 792.428 -235139 PRK03612 537.499 -235140 PRK03619 290.864 -235141 PRK03620 379.16 -235142 PRK03624 185.517 -179612 PRK03625 85.9748 -235143 PRK03629 736.578 -179614 PRK03633 555.037 -179615 PRK03634 302.29 -235144 PRK03635 322.108 -235145 PRK03636 263.751 -235146 PRK03640 764.506 -179619 PRK03641 258.14 -179620 PRK03642 785.905 -235147 PRK03643 625.334 -179622 PRK03646 612.12 -235148 PRK03655 467.282 -235149 PRK03657 252.506 -179625 PRK03659 986.062 -179626 PRK03660 195.151 -179627 PRK03661 279.593 -179628 PRK03669 446.768 -167581 PRK03670 481.991 -179629 PRK03673 726.878 -179630 PRK03681 166.882 -179631 PRK03692 416.309 -235150 PRK03695 360.402 -235151 PRK03699 367.329 -235152 PRK03705 1233.74 -179635 PRK03708 426.434 -179636 PRK03715 691.043 -167589 PRK03717 226.626 -179637 PRK03719 233.341 -235153 PRK03731 244.466 -167593 PRK03732 173.581 -179639 PRK03735 367.885 -235154 PRK03739 873.718 -179641 PRK03743 595.824 -235155 PRK03745 153.756 -179642 PRK03757 302.232 -235156 PRK03759 216.759 -235157 PRK03760 168.333 -235158 PRK03761 1001.75 -179646 PRK03762 117.053 -179647 PRK03767 307.233 -179648 PRK03776 1282.74 -235159 PRK03784 348.098 -235160 PRK03803 618.862 -179651 PRK03806 768.723 -235161 PRK03814 92.9289 -235162 PRK03815 584.245 -235163 PRK03817 524.946 -179654 PRK03818 712.791 -179655 PRK03822 687.19 -235164 PRK03824 191.836 -235165 PRK03826 239.516 -179658 PRK03830 51.555 -235166 PRK03837 306.564 -179660 PRK03839 225.755 -179661 PRK03846 371.966 -235167 PRK03854 326.593 -179663 PRK03858 568.464 -235168 PRK03868 589.982 -235169 PRK03879 95.0029 -235170 PRK03881 539.848 -167628 PRK03887 270.451 -179667 PRK03892 373.378 -179668 PRK03893 631.733 -179669 PRK03902 224.49 -235171 PRK03903 381.25 -235172 PRK03906 549.428 -235173 PRK03907 129.968 -179673 PRK03910 320.24 -235174 PRK03911 322.745 -235175 PRK03918 681.019 -179676 PRK03922 158.556 -179677 PRK03926 479.164 -235176 PRK03932 564.733 -235177 PRK03934 363.88 -235178 PRK03941 258.874 -179681 PRK03946 450.599 -235179 PRK03947 93.8345 -235180 PRK03954 162.318 -179684 PRK03955 184.792 -179685 PRK03957 116.628 -235181 PRK03958 286.459 -167649 PRK03963 143.358 -167650 PRK03967 469.218 -235182 PRK03968 518.113 -179688 PRK03971 553.567 -179689 PRK03972 280.643 -179690 PRK03975 153.122 -235183 PRK03976 103.124 -235184 PRK03979 655.515 -235185 PRK03980 367.609 -235186 PRK03982 429.038 -235187 PRK03983 301.938 -235188 PRK03987 248.585 -235189 PRK03988 182.42 -235190 PRK03991 821.81 -179699 PRK03992 576.399 -235191 PRK03995 263.351 -235192 PRK03996 323.709 -235193 PRK03999 143.512 -235194 PRK04000 594.137 -235195 PRK04004 788.606 -235196 PRK04005 128.044 -235197 PRK04007 88.1089 -235198 PRK04011 434.306 -179708 PRK04012 100.798 -101376 PRK04013 707.457 -235199 PRK04015 104.663 -235200 PRK04016 88.7906 -179711 PRK04017 137.784 -179712 PRK04019 292.926 -235201 PRK04020 306.04 -167678 PRK04021 128.387 -235202 PRK04023 1601.87 -235203 PRK04024 630.406 -179716 PRK04025 215.872 -235204 PRK04027 280.248 -235205 PRK04028 735.856 -235206 PRK04031 446.952 -235207 PRK04032 151.915 -179721 PRK04034 191.208 -235208 PRK04036 512.189 -235209 PRK04038 196.625 -235210 PRK04040 192.415 -235211 PRK04042 290.97 -235212 PRK04043 532.262 -235213 PRK04044 316.087 -179728 PRK04046 152.654 -235214 PRK04049 146.515 -179730 PRK04051 218.201 -235215 PRK04053 189.263 -179732 PRK04056 245.642 -235216 PRK04057 206.266 -179734 PRK04059 102.396 -235217 PRK04069 243.294 -179736 PRK04073 797.393 -235218 PRK04081 181.844 -235219 PRK04098 116.366 -179739 PRK04099 417.052 -179740 PRK04101 235.611 -235220 PRK04115 134.296 -235221 PRK04123 671.171 -235222 PRK04125 172.147 -167709 PRK04128 338.67 -235223 PRK04132 1056.36 -179745 PRK04135 639.66 -179746 PRK04136 56.0829 -235224 PRK04140 355.319 -235225 PRK04143 388.955 -179749 PRK04147 430.569 -235226 PRK04148 189.834 -235227 PRK04149 508.632 -179752 PRK04151 255.642 -235228 PRK04155 432.502 -235229 PRK04156 704.689 -235230 PRK04158 307.866 -235231 PRK04160 215.112 -235232 PRK04161 595.631 -235233 PRK04163 200.117 -235234 PRK04164 180.027 -235235 PRK04165 626.503 -235236 PRK04168 502.206 -235237 PRK04169 186.554 -235238 PRK04171 240.178 -235239 PRK04172 517.077 -235240 PRK04173 605.97 -179766 PRK04175 150.431 -235241 PRK04176 295.18 -235242 PRK04179 62.339 -179769 PRK04180 475.014 -235243 PRK04181 241.789 -235244 PRK04182 203.499 -235245 PRK04183 506.689 -235246 PRK04184 585.703 -179774 PRK04190 247.635 -235247 PRK04191 255.561 -235248 PRK04192 871.796 -235249 PRK04194 357.555 -235250 PRK04195 410.081 -235251 PRK04196 686.945 -235252 PRK04199 166.941 -179781 PRK04200 590.692 -235253 PRK04201 294.836 -235254 PRK04203 256.705 -235255 PRK04204 239.338 -179785 PRK04205 339.807 -179786 PRK04207 392.657 -179787 PRK04208 605.747 -235256 PRK04210 664.225 -235257 PRK04211 244.475 -179790 PRK04213 252.145 -179791 PRK04214 554.745 -235258 PRK04217 158.891 -235259 PRK04219 233.194 -179793 PRK04220 407.814 -179794 PRK04223 174.282 -235260 PRK04231 444.289 -235261 PRK04233 225.96 -235262 PRK04235 200.52 -179798 PRK04239 84.546 -235263 PRK04243 206.306 -235264 PRK04247 283.337 -235265 PRK04250 544.748 -179802 PRK04257 94.7491 -179803 PRK04260 709.294 -235266 PRK04262 428.171 -235267 PRK04266 260.2 -179806 PRK04270 393.454 -179807 PRK04280 267.641 -235268 PRK04282 273.676 -235269 PRK04284 599.036 -235270 PRK04286 255.663 -179810 PRK04288 315.108 -235271 PRK04290 143.064 -179812 PRK04293 497.096 -235272 PRK04296 187.246 -235273 PRK04301 451.254 -235274 PRK04302 221.28 -235275 PRK04306 134.571 -235276 PRK04307 349.423 -167786 PRK04308 687.003 -235277 PRK04309 472.023 -235278 PRK04311 369.158 -179820 PRK04313 270.93 -235279 PRK04319 1018.29 -235280 PRK04322 156.141 -179823 PRK04323 115.834 -179824 PRK04325 83.0275 -179825 PRK04326 488.333 -235281 PRK04328 459.157 -235282 PRK04330 109.223 -235283 PRK04333 99.3685 -235284 PRK04334 130.408 -235285 PRK04335 456.179 -179831 PRK04337 103.951 -235286 PRK04338 361.925 -235287 PRK04342 370.383 -235288 PRK04346 530.794 -235289 PRK04350 577.531 -235290 PRK04351 177.734 -235291 PRK04358 209.001 -235292 PRK04366 640.622 -179839 PRK04374 1494.46 -235293 PRK04375 240.042 -179841 PRK04387 114.673 -235294 PRK04388 245.516 -179843 PRK04390 166.799 -235295 PRK04405 360.637 -235296 PRK04406 115.807 -235297 PRK04423 1483.2 -179847 PRK04424 215.843 -167814 PRK04425 337.219 -179848 PRK04435 164.98 -235298 PRK04439 397.62 -235299 PRK04443 502.949 -235300 PRK04447 285.55 -235301 PRK04452 399.288 -235302 PRK04456 477.254 -179854 PRK04457 404.422 -179855 PRK04460 210.618 -179856 PRK04516 328.082 -235303 PRK04517 358.784 -235304 PRK04523 498.504 -235305 PRK04527 706.984 -235306 PRK04531 511.132 -235307 PRK04537 935.523 -179862 PRK04539 546.378 -179863 PRK04542 309.201 -179864 PRK04561 82.2701 -235308 PRK04570 418.516 -235309 PRK04596 433.61 -179867 PRK04598 124.583 -179868 PRK04612 722.505 -179869 PRK04635 548.104 -179870 PRK04642 478.961 -135173 PRK04654 228.158 -179871 PRK04663 791.284 -179872 PRK04690 476.231 -179873 PRK04694 314.592 -235310 PRK04750 824.156 -179875 PRK04758 233.213 -179876 PRK04761 380.318 -179877 PRK04778 496.666 -235311 PRK04781 556.041 -235312 PRK04792 778.427 -179880 PRK04804 331.949 -235313 PRK04813 736.705 -179882 PRK04820 190.532 -179883 PRK04833 853.126 -235314 PRK04837 808.042 -235315 PRK04841 1128.5 -179886 PRK04860 225.944 -235316 PRK04863 1260.64 -179888 PRK04870 547.942 -235317 PRK04885 435.787 -235318 PRK04897 394.316 -235319 PRK04914 1169.61 -179892 PRK04922 685.633 -179893 PRK04923 578.806 -235320 PRK04926 576.878 -179895 PRK04930 341.983 -179896 PRK04940 336.181 -235321 PRK04946 249.461 -179898 PRK04949 276.79 -235322 PRK04950 200.923 -235323 PRK04960 152.066 -179901 PRK04964 94.7521 -179902 PRK04965 601.136 -179903 PRK04966 112.357 -235324 PRK04968 217.056 -179905 PRK04972 902.554 -235325 PRK04974 926.559 -235326 PRK04976 213.28 -179908 PRK04980 123.059 -179909 PRK04984 403.867 -235327 PRK04987 143.2 -235328 PRK04989 45.8373 -179912 PRK04998 141.967 -235329 PRK05007 1585.76 -179914 PRK05014 235.573 -235330 PRK05015 687.371 -235331 PRK05022 731.589 -235332 PRK05031 469.695 -235333 PRK05033 408.837 -235334 PRK05035 739.839 -179920 PRK05054 957.405 -235335 PRK05057 296.239 -179922 PRK05066 232.583 -179923 PRK05070 306.763 -235336 PRK05074 269.808 -235337 PRK05077 610.759 -235338 PRK05082 427.407 -235339 PRK05084 425.101 -235340 PRK05086 525.715 -179929 PRK05087 85.7836 -235341 PRK05089 222.46 -179931 PRK05090 156.626 -235342 PRK05092 1228.58 -179933 PRK05093 719.011 -179934 PRK05094 130.85 -235343 PRK05096 613.102 -235344 PRK05097 216.75 -179937 PRK05101 653.529 -235345 PRK05105 396.9 -235346 PRK05111 620.687 -235347 PRK05113 287.227 -179941 PRK05114 45.4012 -235348 PRK05122 401.186 -235349 PRK05124 739.419 -235350 PRK05134 281.273 -235351 PRK05137 579.179 -235352 PRK05151 243.748 -235353 PRK05157 353.434 -235354 PRK05159 589.468 -235355 PRK05163 92.6568 -179950 PRK05166 615.223 -179951 PRK05168 283.241 -235356 PRK05170 128.891 -179953 PRK05174 232.025 -235357 PRK05177 290.697 -235358 PRK05179 181.046 -235359 PRK05182 267.734 -235360 PRK05183 884.903 -235361 PRK05184 345.263 -179959 PRK05185 135.974 -235362 PRK05192 417.522 -235363 PRK05198 394.838 -235364 PRK05201 620.556 -235365 PRK05205 199.968 -179964 PRK05208 180.804 -235366 PRK05218 589.775 -235367 PRK05222 938.767 -235368 PRK05225 876.21 -235369 PRK05231 364.501 -179969 PRK05234 182.724 -235370 PRK05244 97.296 -235371 PRK05246 323.201 -235372 PRK05248 123.821 -235373 PRK05249 688.431 -235374 PRK05250 473.796 -235375 PRK05253 399.126 -235376 PRK05254 223.491 -235377 PRK05255 145.76 -235378 PRK05256 299.976 -179979 PRK05257 448.814 -179980 PRK05260 529.938 -235379 PRK05261 700.403 -179982 PRK05264 152.586 -235380 PRK05265 249.573 -235381 PRK05269 453.078 -235382 PRK05270 568.339 -235383 PRK05273 175.266 -235384 PRK05274 213.991 -235385 PRK05277 391.562 -235386 PRK05279 571.709 -179990 PRK05282 310.272 -235387 PRK05283 386.252 -235388 PRK05286 362.557 -235389 PRK05287 244.319 -235390 PRK05289 312.803 -235391 PRK05290 771.974 -235392 PRK05291 366.743 -179997 PRK05293 644.229 -235393 PRK05294 1397.91 -235394 PRK05297 1765.86 -235395 PRK05298 1035 -235396 PRK05299 288.986 -235397 PRK05301 590.271 -235398 PRK05302 206.109 -235399 PRK05303 362.167 -235400 PRK05305 204.259 -235401 PRK05306 734.733 -180007 PRK05309 154.937 -235402 PRK05312 455.887 -180009 PRK05313 572.879 -235403 PRK05318 597.241 -235404 PRK05319 203.784 -235405 PRK05320 430.602 -235406 PRK05321 484.65 -235407 PRK05322 587.595 -235408 PRK05324 369.125 -235409 PRK05325 219.706 -235410 PRK05326 450.422 -235411 PRK05327 234.999 -235412 PRK05329 264.79 -235413 PRK05330 391.039 -235414 PRK05331 290.845 -235415 PRK05333 459.142 -235416 PRK05335 568.623 -235417 PRK05337 416.095 -235418 PRK05338 139.076 -235419 PRK05339 286.998 -235420 PRK05340 267.055 -235421 PRK05341 698.937 -235422 PRK05342 457.313 -235423 PRK05346 215.089 -235424 PRK05347 857.48 -235425 PRK05349 525.576 -180033 PRK05350 99.2937 -235426 PRK05352 507.024 -235427 PRK05354 834.769 -235428 PRK05355 492.69 -235429 PRK05359 232.353 -235430 PRK05362 572.83 -235431 PRK05363 434.256 -180040 PRK05365 249.73 -235432 PRK05367 1038.55 -235433 PRK05368 316.353 -235434 PRK05370 857.737 -235435 PRK05371 592.364 -180045 PRK05377 490.926 -235436 PRK05379 358.554 -235437 PRK05380 689.065 -235438 PRK05382 326.62 -235439 PRK05385 286.988 -235440 PRK05387 568.268 -235441 PRK05388 421.045 -235442 PRK05389 445.904 -235443 PRK05395 181.021 -180054 PRK05396 530.553 -180055 PRK05398 708.275 -235444 PRK05399 977.654 -235445 PRK05402 805.937 -235446 PRK05406 214.593 -180059 PRK05408 98.3653 -235447 PRK05409 264.745 -180061 PRK05412 186.068 -235448 PRK05414 782.396 -235449 PRK05415 260.965 -235450 PRK05416 321.663 -235451 PRK05417 322.352 -235452 PRK05419 140.384 -235453 PRK05420 330.391 -235454 PRK05421 243.695 -235455 PRK05422 139.015 -180070 PRK05423 132.423 -180071 PRK05424 199.203 -235456 PRK05425 399.956 -235457 PRK05426 129.449 -235458 PRK05427 341.807 -235459 PRK05428 220.812 -235460 PRK05429 368.639 -235461 PRK05431 456.067 -235462 PRK05433 873.975 -235463 PRK05434 566.267 -235464 PRK05435 110.503 -235465 PRK05437 382.579 -235466 PRK05439 265.514 -235467 PRK05441 279.361 -235468 PRK05442 466.193 -235469 PRK05443 519.677 -235470 PRK05444 580.885 -180087 PRK05445 194.032 -235471 PRK05446 589.069 -235472 PRK05447 375.571 -180090 PRK05449 142.684 -235473 PRK05450 240.789 -235474 PRK05451 404.508 -235475 PRK05452 916.07 -235476 PRK05454 449.716 -235477 PRK05456 250.353 -235478 PRK05457 398.007 -235479 PRK05458 561.113 -180098 PRK05461 156.075 -235480 PRK05462 387.71 -180100 PRK05463 414.613 -235481 PRK05464 660.021 -235482 PRK05465 268.617 -235483 PRK05467 263.227 -235484 PRK05469 562.823 -180105 PRK05470 91.9455 -235485 PRK05471 285.35 -235486 PRK05472 207.276 -180108 PRK05473 123.4 -235487 PRK05474 661.134 -235488 PRK05476 308.976 -235489 PRK05477 484.188 -235490 PRK05478 794.324 -235491 PRK05479 466.487 -235492 PRK05480 259.321 -235493 PRK05481 430.278 -235494 PRK05482 474.643 -180117 PRK05483 149.903 -235495 PRK05498 182.954 -180119 PRK05500 812.376 -180120 PRK05506 960.154 -180121 PRK05508 240.774 -235496 PRK05518 245.142 -235497 PRK05528 288.45 -135428 PRK05529 304.151 -180124 PRK05537 916.754 -235498 PRK05541 262.684 -235499 PRK05550 425.465 -235500 PRK05557 251.266 -235501 PRK05559 736.525 -235502 PRK05560 1159.79 -235503 PRK05561 820.505 -235504 PRK05562 245.326 -235505 PRK05563 628.824 -180132 PRK05564 423.674 -235506 PRK05565 308.695 -235507 PRK05567 766.663 -235508 PRK05568 226.999 -135442 PRK05569 242.432 -235509 PRK05571 187.677 -180137 PRK05572 402.428 -235510 PRK05573 80.917 -235511 PRK05574 257.427 -180140 PRK05575 351.016 -235512 PRK05576 188.587 -180142 PRK05578 185.5 -235513 PRK05579 396.814 -235514 PRK05580 679.956 -235515 PRK05581 203.492 -235516 PRK05582 747.795 -235517 PRK05583 137.104 -180148 PRK05584 229.237 -235518 PRK05585 89.5702 -180150 PRK05586 838.984 -235519 PRK05588 350.488 -235520 PRK05589 602.18 -235521 PRK05590 236.791 -235522 PRK05591 131.364 -235523 PRK05592 107.101 -235524 PRK05593 94.0651 -235525 PRK05595 841.797 -235526 PRK05597 554.868 -235527 PRK05599 426.224 -235528 PRK05600 557.957 -235529 PRK05601 515.919 -235530 PRK05602 201.034 -235531 PRK05605 918.623 -180161 PRK05609 158.815 -235532 PRK05610 69.0275 -180163 PRK05611 46.6326 -168128 PRK05613 828.358 -180164 PRK05614 680.832 -235533 PRK05617 394.957 -235534 PRK05618 140.339 -180167 PRK05620 1037.82 -235535 PRK05621 249.258 -180169 PRK05625 286.754 -180170 PRK05626 89.7886 -235536 PRK05627 270.867 -180172 PRK05628 606.156 -180173 PRK05629 502.867 -180174 PRK05630 731.645 -235537 PRK05632 872.169 -235538 PRK05634 214.546 -180177 PRK05636 858.371 -180178 PRK05637 375.336 -235539 PRK05638 681.153 -168145 PRK05639 901.997 -101884 PRK05640 187.722 -235540 PRK05641 176.206 -168147 PRK05642 415.419 -235541 PRK05643 203.053 -235542 PRK05644 1029.65 -135493 PRK05645 585.717 -235543 PRK05646 545.949 -235544 PRK05647 231.917 -235545 PRK05650 422.912 -235546 PRK05653 176.889 -235547 PRK05654 473.546 -168156 PRK05656 701.26 -235548 PRK05657 460.576 -235549 PRK05658 640.689 -168159 PRK05659 105.203 -235550 PRK05660 660.84 -180188 PRK05664 457.94 -168162 PRK05665 387.244 -235551 PRK05667 518.63 -235552 PRK05670 227.32 -168165 PRK05671 538.159 -235553 PRK05672 1463.54 -235554 PRK05673 1541.59 -168168 PRK05674 462.74 -180193 PRK05675 1168.43 -168170 PRK05677 1043.19 -180194 PRK05678 413.799 -235555 PRK05679 262.849 -180196 PRK05680 141.165 -235556 PRK05681 160.76 -235557 PRK05682 287.502 -235558 PRK05683 923.36 -235559 PRK05684 391.935 -235560 PRK05685 135.787 -235561 PRK05686 247.79 -235562 PRK05687 133.902 -168181 PRK05688 811.654 -235563 PRK05689 142.376 -180204 PRK05690 366.092 -235564 PRK05691 7762.63 -180206 PRK05692 411.973 -168186 PRK05693 447.315 -180207 PRK05696 190.937 -235565 PRK05697 157.008 -168189 PRK05698 207.731 -235566 PRK05699 221.605 -235567 PRK05700 69.8804 -235568 PRK05701 142.213 -235569 PRK05702 310.933 -235570 PRK05703 321.843 -235571 PRK05704 541.347 -180215 PRK05707 421.034 -235572 PRK05708 442.23 -235573 PRK05710 309.474 -235574 PRK05711 359.173 -235575 PRK05713 493.089 -168201 PRK05714 760.906 -180218 PRK05715 85.6139 -235576 PRK05716 322.469 -168204 PRK05717 439.324 -235577 PRK05718 275.581 -235578 PRK05720 378.392 -235579 PRK05722 393.727 -168208 PRK05723 258.188 -235580 PRK05724 457.297 -235581 PRK05728 109.538 -235582 PRK05729 999.235 -235583 PRK05731 252.06 -235584 PRK05732 432.741 -235585 PRK05733 265.254 -235586 PRK05738 74.3549 -235587 PRK05740 67.5417 -180230 PRK05742 494.74 -235588 PRK05743 1109.78 -180232 PRK05748 672.821 -235589 PRK05749 351.062 -180234 PRK05751 161.93 -235590 PRK05752 404.102 -180236 PRK05753 167.817 -235591 PRK05755 935.279 -235592 PRK05756 356.101 -235593 PRK05758 133.373 -180240 PRK05759 107.94 -180241 PRK05760 95.5284 -235594 PRK05761 578.566 -235595 PRK05762 671.951 -235596 PRK05764 404.892 -235597 PRK05765 377.972 -235598 PRK05766 61.8329 -180247 PRK05767 101.911 -235599 PRK05769 663.537 -235600 PRK05771 359.626 -168237 PRK05772 608.297 -235601 PRK05773 354.365 -235602 PRK05776 1014.53 -235603 PRK05777 225.47 -235604 PRK05778 380.763 -235605 PRK05782 427.684 -235606 PRK05783 119.067 -180256 PRK05784 710.654 -235607 PRK05785 338.586 -235608 PRK05786 285.117 -235609 PRK05787 174.287 -235610 PRK05788 268.668 -180261 PRK05790 528.954 -235611 PRK05793 844.314 -180263 PRK05799 586.181 -235612 PRK05800 242.388 -235613 PRK05802 376.625 -180266 PRK05803 321.51 -180267 PRK05805 468.419 -235614 PRK05807 205.365 -180269 PRK05808 499.875 -180270 PRK05809 432.248 -235615 PRK05812 310.233 -235616 PRK05813 362.031 -235617 PRK05815 98.3278 -235618 PRK05818 320.627 -180275 PRK05819 343.763 -180276 PRK05820 526.317 -235619 PRK05826 522.791 -180278 PRK05828 91.8519 -180279 PRK05834 236.058 -180280 PRK05835 630.467 -180281 PRK05839 661.383 -235620 PRK05841 930.793 -235621 PRK05842 466.394 -180284 PRK05844 331.352 -235622 PRK05846 288.254 -180286 PRK05848 473.775 -235623 PRK05849 1074.23 -235624 PRK05850 903.928 -180289 PRK05851 822.475 -235625 PRK05852 769.823 -235626 PRK05853 228.567 -235627 PRK05854 487.266 -235628 PRK05855 729.086 -180293 PRK05857 896.29 -235629 PRK05858 826.282 -180295 PRK05862 450.263 -135627 PRK05863 91.0292 -168278 PRK05864 487.033 -235630 PRK05865 1416.73 -235631 PRK05866 439.947 -135631 PRK05867 465.278 -180297 PRK05868 757.596 -235632 PRK05869 316.781 -180298 PRK05870 267.362 -235633 PRK05872 275.31 -102036 PRK05874 440.619 -180300 PRK05875 423.83 -135637 PRK05876 511.423 -235634 PRK05877 533.127 -235635 PRK05878 743.873 -180303 PRK05880 78.3232 -180304 PRK05883 131.501 -135642 PRK05884 346.412 -235636 PRK05886 156.136 -235637 PRK05888 119.986 -180306 PRK05889 66.7558 -180307 PRK05892 162.252 -235638 PRK05896 607.613 -135648 PRK05898 1374.16 -235639 PRK05899 454.591 -235640 PRK05901 434.423 -235641 PRK05904 457.348 -235642 PRK05905 279.81 -168292 PRK05906 790.519 -235643 PRK05907 495.493 -168293 PRK05910 925.732 -235644 PRK05911 485.663 -235645 PRK05912 414.499 -102059 PRK05917 416.504 -180312 PRK05920 255.158 -102061 PRK05922 813.368 -235646 PRK05925 757.037 -168296 PRK05926 720.48 -135660 PRK05927 735.92 -235647 PRK05928 116.605 -235648 PRK05932 389.939 -180315 PRK05933 659.999 -168300 PRK05934 477.42 -235649 PRK05935 338.331 -102071 PRK05937 632.587 -235650 PRK05939 706.066 -235651 PRK05940 800.867 -180317 PRK05942 785.833 -180318 PRK05943 107.294 -180319 PRK05945 1076.29 -180320 PRK05948 333.149 -180321 PRK05949 556.379 -235652 PRK05950 287.46 -180323 PRK05951 294.766 -235653 PRK05952 553.121 -180325 PRK05953 350.56 -180326 PRK05954 319.694 -235654 PRK05957 705.295 -235655 PRK05958 346.76 -168315 PRK05962 501.616 -180328 PRK05963 454.949 -235656 PRK05964 609.128 -180330 PRK05965 848.956 -235657 PRK05967 750.87 -168320 PRK05968 618.634 -235658 PRK05972 1171.22 -168322 PRK05973 293.095 -235659 PRK05974 92.9591 -168324 PRK05975 436.408 -235660 PRK05976 663.143 -180334 PRK05978 216.788 -180335 PRK05980 412.23 -235661 PRK05981 388.322 -180337 PRK05985 489.443 -235662 PRK05986 239.288 -180339 PRK05988 254.113 -235663 PRK05989 1057.19 -180341 PRK05990 422.858 -180342 PRK05991 397.966 -180343 PRK05993 515.346 -180344 PRK05994 762.33 -235664 PRK05995 311.474 -235665 PRK05996 538.515 -235666 PRK06002 751.059 -168340 PRK06003 203.317 -235667 PRK06004 161.413 -180347 PRK06005 191.435 -235668 PRK06007 324.14 -235669 PRK06008 344.291 -235670 PRK06009 133.295 -235671 PRK06010 100.071 -235672 PRK06012 701.878 -168348 PRK06015 326.385 -235673 PRK06018 1013.9 -235674 PRK06019 381.038 -168351 PRK06023 416.886 -235675 PRK06025 765.86 -180353 PRK06026 340.487 -235676 PRK06027 399.482 -235677 PRK06029 249.816 -180356 PRK06030 158.402 -235678 PRK06031 345.97 -235679 PRK06032 131.648 -180359 PRK06033 121.409 -235680 PRK06034 263.494 -180361 PRK06035 527.136 -180362 PRK06036 578.984 -180363 PRK06038 705.358 -235681 PRK06039 1240.01 -235682 PRK06041 487.114 -180366 PRK06043 308.999 -180367 PRK06046 575.85 -180368 PRK06048 1064 -235683 PRK06049 166.521 -235684 PRK06052 467.284 -180371 PRK06057 426.839 -235685 PRK06058 701.397 -180373 PRK06059 568.626 -180374 PRK06060 1269.19 -235686 PRK06061 611.703 -235687 PRK06062 686.376 -180377 PRK06063 429.121 -235688 PRK06064 559.899 -180379 PRK06065 769.375 -180380 PRK06066 630.631 -180381 PRK06067 308.439 -235689 PRK06069 916.369 -168377 PRK06072 386.056 -235690 PRK06073 86.9707 -235691 PRK06074 163.54 -180385 PRK06075 470.407 -235692 PRK06076 277.458 -235693 PRK06077 383.687 -180387 PRK06078 750.377 -235694 PRK06079 456.877 -235695 PRK06080 237.731 -180390 PRK06082 702.63 -180391 PRK06083 117.719 -180392 PRK06084 831.47 -180393 PRK06087 985.011 -180394 PRK06090 531.687 -180395 PRK06091 899.794 -235696 PRK06092 354.918 -180397 PRK06096 520.821 -235697 PRK06099 119.304 -180398 PRK06100 218.935 -180399 PRK06101 468.194 -235698 PRK06102 577.371 -180401 PRK06105 756.067 -180402 PRK06106 466.03 -180403 PRK06107 702.647 -180404 PRK06108 563.027 -235699 PRK06110 380.879 -180406 PRK06111 788.454 -235700 PRK06112 901.436 -135765 PRK06113 455.461 -180408 PRK06114 404.934 -180409 PRK06115 848.368 -235701 PRK06116 676.49 -180411 PRK06123 386.056 -235702 PRK06124 337.455 -235703 PRK06125 354.35 -235704 PRK06126 634.724 -235705 PRK06127 348.233 -180413 PRK06128 569.877 -235706 PRK06129 409.432 -235707 PRK06130 468.868 -235708 PRK06131 889.533 -235709 PRK06132 295.044 -235710 PRK06133 565.026 -180419 PRK06134 850.934 -235711 PRK06136 295.585 -235712 PRK06138 316.708 -235713 PRK06139 472.283 -180421 PRK06141 411.607 -235714 PRK06142 426.698 -180423 PRK06143 415.202 -180424 PRK06144 344.283 -102207 PRK06145 934.302 -235715 PRK06147 340.074 -180426 PRK06148 1446.76 -235716 PRK06149 1284.56 -180428 PRK06151 681.383 -235717 PRK06153 350.425 -235718 PRK06154 936.925 -235719 PRK06155 772.391 -235720 PRK06156 697.874 -180433 PRK06157 624.745 -180434 PRK06158 636.303 -180435 PRK06161 92.6048 -235721 PRK06163 355.678 -235722 PRK06164 721.53 -180437 PRK06169 623.198 -235723 PRK06170 615.506 -180439 PRK06171 394.378 -180440 PRK06172 401.052 -180441 PRK06173 864.457 -180442 PRK06175 679.099 -180443 PRK06176 683.935 -235724 PRK06178 972.207 -235725 PRK06179 396.196 -180446 PRK06180 423.557 -235726 PRK06181 286.874 -180448 PRK06182 432.847 -235727 PRK06183 472.854 -235728 PRK06184 620.078 -235729 PRK06185 391.145 -180452 PRK06186 334.625 -235730 PRK06187 624.903 -235731 PRK06188 752.203 -235732 PRK06189 776.572 -235733 PRK06190 295.73 -235734 PRK06193 251.915 -180458 PRK06194 397.849 -235735 PRK06195 488.136 -235736 PRK06196 474.556 -235737 PRK06197 466.81 -180462 PRK06198 297.302 -235738 PRK06199 611.714 -235739 PRK06200 368.899 -180465 PRK06201 225.215 -180466 PRK06202 267.251 -235740 PRK06203 576.848 -235741 PRK06205 654.75 -235742 PRK06207 756.22 -235743 PRK06208 356.606 -180471 PRK06209 738.392 -180472 PRK06210 407.554 -235744 PRK06213 276.47 -235745 PRK06214 834.338 -235746 PRK06215 325.203 -168472 PRK06217 251.123 -235747 PRK06222 341.782 -180477 PRK06223 369.073 -235748 PRK06224 252.484 -235749 PRK06225 605.209 -235750 PRK06228 179.743 -180481 PRK06231 152.304 -180482 PRK06233 707.635 -168478 PRK06234 776.697 -235751 PRK06241 831.072 -180484 PRK06242 173.562 -180485 PRK06245 415.833 -180486 PRK06246 351.392 -180487 PRK06247 767.937 -180488 PRK06249 462.123 -235752 PRK06251 71.311 -235753 PRK06252 442.396 -235754 PRK06253 857.711 -235755 PRK06256 360.666 -235756 PRK06259 698.296 -235757 PRK06260 524.878 -235758 PRK06263 895.493 -235759 PRK06264 295.844 -235760 PRK06265 129.182 -235761 PRK06266 229.123 -235762 PRK06267 413.375 -235763 PRK06270 437.373 -180501 PRK06271 178.462 -235764 PRK06273 264.65 -235765 PRK06274 225.313 -235766 PRK06276 1000.04 -235767 PRK06277 566.583 -180505 PRK06278 658.265 -180506 PRK06279 137.875 -235768 PRK06280 75.4634 -180508 PRK06281 228.487 -180509 PRK06285 99.7253 -235769 PRK06286 79.6972 -180511 PRK06287 87.0521 -235770 PRK06288 428.337 -235771 PRK06289 585.884 -235772 PRK06290 723.365 -235773 PRK06291 653.533 -235774 PRK06292 403.789 -180517 PRK06293 195.892 -180518 PRK06294 600.209 -180519 PRK06298 561.394 -235775 PRK06299 559.011 -235776 PRK06300 528.234 -235777 PRK06302 174.601 -180523 PRK06305 706.537 -180524 PRK06309 364.902 -180525 PRK06310 455.443 -180526 PRK06315 806.821 -235778 PRK06319 1562.88 -180528 PRK06321 906.909 -235779 PRK06327 639.664 -180530 PRK06328 308.259 -235780 PRK06330 1153.73 -235781 PRK06333 647.056 -180533 PRK06334 1031.69 -235782 PRK06341 265.898 -180535 PRK06342 215.732 -180536 PRK06347 704.147 -180537 PRK06348 663.342 -235783 PRK06349 441.819 -180539 PRK06352 674.076 -235784 PRK06354 909.69 -180541 PRK06357 330.199 -180542 PRK06358 484.893 -180543 PRK06361 220.601 -235785 PRK06365 722.082 -102340 PRK06366 771.102 -235786 PRK06369 108.412 -235787 PRK06370 492.795 -180547 PRK06371 612.289 -235788 PRK06372 385.031 -180548 PRK06380 699.328 -235789 PRK06381 489.602 -180550 PRK06382 697.791 -235790 PRK06386 575.699 -102351 PRK06388 827.247 -235791 PRK06389 656.197 -235792 PRK06390 827.627 -102354 PRK06392 502.864 -102355 PRK06393 127.862 -235793 PRK06394 190.851 -102357 PRK06395 730.166 -135898 PRK06397 95.3827 -235794 PRK06398 442.349 -235795 PRK06402 64.9757 -102361 PRK06404 548.316 -235796 PRK06406 1422.7 -180556 PRK06407 507.174 -235797 PRK06411 239.11 -235798 PRK06416 483.494 -180559 PRK06418 194.833 -235799 PRK06419 109.532 -102368 PRK06423 114.602 -102369 PRK06424 214.806 -102370 PRK06425 445.066 -180561 PRK06427 311.675 -102372 PRK06432 210.824 -180562 PRK06433 66.5515 -102374 PRK06434 674.309 -235800 PRK06436 442.014 -135906 PRK06437 99.9042 -102377 PRK06438 430.821 -102378 PRK06439 82.1822 -235801 PRK06443 215.154 -102381 PRK06444 298.301 -180563 PRK06445 695.7 -235802 PRK06446 713.837 -180565 PRK06450 532.774 -235803 PRK06451 695.039 -180567 PRK06452 1103.79 -235804 PRK06455 224.821 -180569 PRK06456 1042.11 -180570 PRK06457 988.945 -235805 PRK06458 408.549 -235806 PRK06459 610.639 -235807 PRK06460 628.4 -180574 PRK06461 144.795 -235808 PRK06462 243.003 -180576 PRK06463 434.211 -235809 PRK06464 1020.45 -180578 PRK06466 1101.34 -180579 PRK06467 752.171 -235810 PRK06473 687.204 -235811 PRK06474 245.431 -180582 PRK06475 666.912 -235812 PRK06476 356.249 -180584 PRK06481 840.648 -235813 PRK06482 441.091 -180586 PRK06483 319.956 -168574 PRK06484 744.362 -235814 PRK06486 357.87 -180588 PRK06487 546.991 -168577 PRK06488 104.414 -235815 PRK06489 576.932 -180590 PRK06490 418.98 -180591 PRK06494 406.349 -168580 PRK06495 433.737 -180592 PRK06498 965.659 -235816 PRK06500 393.938 -235817 PRK06501 732.588 -180595 PRK06504 696.092 -180596 PRK06505 502.739 -180597 PRK06508 162.679 -180598 PRK06512 332.795 -235818 PRK06518 228.578 -235819 PRK06519 480.605 -180601 PRK06520 648.317 -235820 PRK06521 655.035 -235821 PRK06522 200.462 -180604 PRK06523 291.037 -180605 PRK06524 868.673 -180606 PRK06525 474.848 -180607 PRK06526 441.615 -180608 PRK06529 870.293 -235822 PRK06531 161.508 -180610 PRK06539 1565.68 -235823 PRK06541 706.755 -180612 PRK06543 445.766 -235824 PRK06545 274.091 -180614 PRK06546 1039.18 -235825 PRK06547 185.716 -75628 PRK06548 322.534 -235826 PRK06549 159.977 -180617 PRK06550 328.46 -180618 PRK06552 326.567 -235827 PRK06553 470.611 -180620 PRK06555 759.158 -235828 PRK06556 1433.22 -235829 PRK06557 343.143 -235830 PRK06558 157.845 -235831 PRK06559 497.208 -180625 PRK06563 383.157 -180626 PRK06565 863.694 -235832 PRK06567 1935.46 -168615 PRK06568 211.693 -180627 PRK06569 230.156 -180628 PRK06580 161.573 -235833 PRK06581 306.001 -180630 PRK06582 673.49 -235834 PRK06585 316.83 -168619 PRK06588 669.181 -235835 PRK06589 384.168 -235836 PRK06590 670.328 -235837 PRK06591 448.461 -235838 PRK06596 428.44 -235839 PRK06598 408.831 -235840 PRK06599 913.859 -180638 PRK06602 153.866 -168626 PRK06603 511.09 -235841 PRK06606 398.751 -235842 PRK06608 515.476 -168629 PRK06617 684.731 -168630 PRK06620 331.807 -102471 PRK06628 565.711 -168631 PRK06630 162.058 -168632 PRK06633 782.678 -235843 PRK06635 325.531 -235844 PRK06638 121.096 -135984 PRK06642 279.683 -180643 PRK06645 755.928 -102480 PRK06646 272.617 -235845 PRK06647 880.259 -180645 PRK06649 143.32 -235846 PRK06654 241.243 -235847 PRK06655 175.905 -168637 PRK06661 425.4 -180648 PRK06663 593.201 -235848 PRK06664 749.671 -180650 PRK06665 973.761 -235849 PRK06666 260.542 -180652 PRK06667 395.702 -235850 PRK06669 163.263 -180654 PRK06672 572.476 -135998 PRK06673 702.965 -235851 PRK06676 423.517 -180656 PRK06680 430.506 -136002 PRK06683 135.206 -180657 PRK06687 859.693 -235852 PRK06688 246.703 -180659 PRK06690 588.658 -180660 PRK06696 274.931 -136007 PRK06698 896.679 -235853 PRK06701 555.028 -102505 PRK06702 814.673 -235854 PRK06703 231.571 -180663 PRK06704 434.068 -180664 PRK06705 912.83 -235855 PRK06707 744.038 -180666 PRK06710 1126.28 -168652 PRK06714 428.571 -180667 PRK06718 305.031 -180668 PRK06719 286.862 -180669 PRK06720 267.993 -136018 PRK06721 621.322 -180670 PRK06722 506.513 -180671 PRK06724 208.253 -180672 PRK06725 1113.12 -136022 PRK06728 680.622 -75717 PRK06731 483.48 -235856 PRK06732 304.217 -180674 PRK06733 223.774 -180675 PRK06737 108.244 -180676 PRK06739 610.023 -180677 PRK06740 580.946 -102525 PRK06742 417.541 -136027 PRK06743 418.224 -75726 PRK06746 639.472 -180678 PRK06748 125.75 -168658 PRK06749 739.455 -168659 PRK06751 307.881 -168660 PRK06752 221.062 -168661 PRK06753 570.862 -180679 PRK06754 378.624 -102532 PRK06755 410.962 -168663 PRK06756 232.847 -136035 PRK06758 211.042 -235857 PRK06759 216.223 -180681 PRK06760 326.389 -180682 PRK06761 371.783 -235858 PRK06762 107.363 -136040 PRK06763 261.323 -102540 PRK06764 194.008 -235859 PRK06765 647.145 -180685 PRK06767 750.517 -180686 PRK06769 310.507 -180687 PRK06770 143.762 -180688 PRK06771 90.2886 -102546 PRK06772 875.987 -180689 PRK06774 384.213 -180690 PRK06777 815.589 -235860 PRK06778 410.474 -136048 PRK06781 988.358 -235861 PRK06782 675.398 -180693 PRK06788 150.03 -180694 PRK06789 88.7734 -180695 PRK06792 247.62 -180696 PRK06793 764.521 -180697 PRK06797 151.322 -180698 PRK06798 528.196 -180699 PRK06799 604.569 -180700 PRK06800 252.487 -180701 PRK06801 504.285 -180702 PRK06802 216.202 -235862 PRK06803 594.827 -235863 PRK06804 410.811 -180705 PRK06806 500.822 -235864 PRK06807 446.182 -180707 PRK06811 192.462 -168683 PRK06813 532.518 -235865 PRK06814 1564.95 -180709 PRK06815 448.373 -235866 PRK06816 522.162 -235867 PRK06819 459.243 -180712 PRK06820 782.847 -136070 PRK06823 475.417 -168689 PRK06824 153.687 -235868 PRK06826 1904.62 -180714 PRK06827 507.568 -180715 PRK06828 742.79 -235869 PRK06830 700.854 -180717 PRK06833 376.396 -235870 PRK06834 824.269 -235871 PRK06835 385.792 -180720 PRK06836 561.736 -180721 PRK06837 672.483 -168698 PRK06839 895.757 -235872 PRK06840 492.598 -180723 PRK06841 361.669 -180724 PRK06842 310.179 -180725 PRK06843 800.791 -235873 PRK06846 627.424 -235874 PRK06847 441.234 -235875 PRK06848 196.118 -235876 PRK06849 514.213 -235877 PRK06850 633.168 -235878 PRK06851 384.7 -180731 PRK06852 503.753 -180732 PRK06853 167.349 -235879 PRK06854 621.942 -180734 PRK06855 794.154 -180735 PRK06856 145.459 -235880 PRK06860 526.402 -136097 PRK06863 275.308 -235881 PRK06870 24.7948 -180738 PRK06871 542.789 -180739 PRK06876 46.8557 -168717 PRK06882 1188.95 -180740 PRK06886 518.622 -168719 PRK06893 395.696 -235882 PRK06895 362.132 -235883 PRK06901 496.176 -136106 PRK06904 934.411 -180742 PRK06911 164.468 -180743 PRK06912 823.19 -180744 PRK06914 421.354 -180745 PRK06915 773.48 -180746 PRK06916 835.552 -235884 PRK06917 819.355 -235885 PRK06918 812.892 -180749 PRK06920 2070.55 -180750 PRK06921 389.523 -180751 PRK06922 1153.08 -235886 PRK06923 646.792 -180753 PRK06924 373.249 -235887 PRK06925 367.552 -180755 PRK06926 429.904 -235888 PRK06928 436.122 -180757 PRK06930 194.948 -235889 PRK06931 880.24 -235890 PRK06932 601.789 -235891 PRK06933 406.814 -180760 PRK06934 364.617 -180761 PRK06935 460.741 -180762 PRK06936 755.051 -180763 PRK06937 236.867 -235892 PRK06938 825.817 -235893 PRK06939 599.104 -180766 PRK06940 363.571 -235894 PRK06943 783.952 -180768 PRK06944 75.5956 -235895 PRK06945 708.32 -180770 PRK06946 496.513 -180771 PRK06947 366.437 -180772 PRK06948 920.73 -180773 PRK06949 389.892 -180774 PRK06953 313.932 -180775 PRK06954 678.151 -235896 PRK06955 335.213 -180777 PRK06958 242.007 -235897 PRK06959 480.714 -235898 PRK06964 517.391 -180780 PRK06965 1189.22 -180781 PRK06973 343.69 -235899 PRK06975 720.349 -235900 PRK06978 455.357 -235901 PRK06986 248.224 -235902 PRK06988 493.827 -235903 PRK06991 247.785 -235904 PRK06995 579.229 -235905 PRK06996 454.916 -180789 PRK06997 464.68 -235906 PRK07003 1108.76 -235907 PRK07004 913.527 -180792 PRK07006 844.727 -235908 PRK07008 1008.85 -180794 PRK07018 198.226 -235909 PRK07021 149.665 -180796 PRK07023 284.983 -235910 PRK07024 342.68 -235911 PRK07027 110.157 -235912 PRK07028 701.391 -180800 PRK07030 860.973 -180801 PRK07033 571.994 -168775 PRK07034 1080.58 -180802 PRK07035 446.77 -235913 PRK07036 766.931 -180803 PRK07037 244.98 -235914 PRK07041 229.924 -235915 PRK07042 639.712 -235916 PRK07044 317.945 -136171 PRK07045 640.801 -235917 PRK07046 652.424 -235918 PRK07048 528.05 -180809 PRK07049 746.111 -180810 PRK07050 634.841 -180811 PRK07051 111.643 -235919 PRK07053 319.968 -235920 PRK07054 689.58 -235921 PRK07056 569.184 -180814 PRK07057 1196.96 -235922 PRK07058 639.789 -235923 PRK07059 1103.54 -180817 PRK07060 256.951 -180818 PRK07062 367.445 -235924 PRK07063 424.078 -180820 PRK07064 697.124 -168796 PRK07066 634.952 -235925 PRK07067 398.246 -180822 PRK07069 412.566 -180823 PRK07074 364.091 -136191 PRK07075 157.587 -235926 PRK07077 233.39 -235927 PRK07078 1153.37 -235928 PRK07079 663.922 -235929 PRK07080 462.17 -180828 PRK07081 100.031 -180829 PRK07084 625.983 -235930 PRK07085 814.155 -180831 PRK07088 1360.26 -180832 PRK07090 443.309 -235931 PRK07092 764.884 -235932 PRK07093 493.232 -180835 PRK07094 411.53 -235933 PRK07097 469.158 -235934 PRK07101 227.901 -180838 PRK07102 332.659 -180839 PRK07103 493.78 -180840 PRK07105 386.193 -180841 PRK07106 595.489 -180842 PRK07107 874.793 -180843 PRK07108 731.186 -235935 PRK07109 344.983 -235936 PRK07110 331.162 -235937 PRK07111 1066.1 -235938 PRK07112 407.532 -235939 PRK07114 363.959 -235940 PRK07115 417.826 -180850 PRK07116 263.457 -180851 PRK07117 103.249 -235941 PRK07118 228.664 -235942 PRK07119 575.273 -180854 PRK07121 404.654 -168831 PRK07122 428.81 -180855 PRK07132 238.083 -235943 PRK07133 657.276 -235944 PRK07135 1221.46 -235945 PRK07139 681.389 -235946 PRK07143 255.695 -235947 PRK07152 366.579 -235948 PRK07157 676.845 -235949 PRK07159 116.917 -235950 PRK07164 240.071 -235951 PRK07165 695.951 -180864 PRK07168 990.262 -180865 PRK07178 898.31 -180866 PRK07179 662.09 -75964 PRK07182 234.393 -235952 PRK07187 1424.49 -235953 PRK07188 497.548 -235954 PRK07189 370.772 -235955 PRK07190 938.853 -180871 PRK07191 610.671 -235956 PRK07192 321.967 -235957 PRK07193 699.814 -235958 PRK07194 474.867 -180875 PRK07196 755.96 -235959 PRK07198 824.679 -235960 PRK07199 391.994 -235961 PRK07200 767.364 -235962 PRK07201 931.671 -235963 PRK07203 662.016 -235964 PRK07204 571.009 -235965 PRK07205 772.327 -180883 PRK07206 598.55 -235966 PRK07207 1598.85 -235967 PRK07208 568.752 -235968 PRK07209 573.095 -180887 PRK07211 626.015 -235969 PRK07213 511.12 -235970 PRK07217 430.209 -180890 PRK07218 576.961 -235971 PRK07219 1038.04 -180892 PRK07220 1157.59 -235972 PRK07225 1047.24 -235973 PRK07226 323.683 -180895 PRK07228 717.549 -235974 PRK07229 926.474 -235975 PRK07231 223.168 -235976 PRK07232 1011.17 -235977 PRK07233 431.618 -235978 PRK07234 381.222 -235979 PRK07235 744.903 -235980 PRK07236 449.372 -180903 PRK07238 519.535 -235981 PRK07239 410.139 -180905 PRK07246 1402.12 -180906 PRK07247 342.915 -168880 PRK07248 115.545 -180907 PRK07251 773.538 -180908 PRK07252 175.66 -235982 PRK07259 360.619 -180910 PRK07260 426.848 -180911 PRK07261 278.139 -235983 PRK07269 719.681 -235984 PRK07272 956.838 -180914 PRK07274 208.459 -180915 PRK07275 274.458 -180916 PRK07276 443.689 -180917 PRK07279 1737.21 -180918 PRK07281 548.294 -180919 PRK07282 1059.43 -180920 PRK07283 161.143 -180921 PRK07306 1372.47 -180922 PRK07308 226.596 -235985 PRK07309 711.495 -235986 PRK07313 251.02 -235987 PRK07314 601.393 -180926 PRK07315 507.886 -235988 PRK07318 658.069 -180928 PRK07322 238.339 -235989 PRK07324 638.906 -235990 PRK07326 340.835 -235991 PRK07327 374.358 -235992 PRK07328 420.195 -180933 PRK07329 339.32 -235993 PRK07331 422.899 -180935 PRK07333 623.54 -235994 PRK07334 556.814 -180937 PRK07337 649.043 -235995 PRK07338 497.178 -235996 PRK07340 321.526 -235997 PRK07342 601.483 -235998 PRK07349 1000.38 -180941 PRK07352 167.439 -235999 PRK07353 140.909 -180942 PRK07354 82.9615 -236000 PRK07360 537.939 -180944 PRK07362 1007.32 -180945 PRK07363 715.335 -236001 PRK07364 590.838 -180947 PRK07366 550.436 -236002 PRK07369 575.012 -180949 PRK07370 436.068 -236003 PRK07373 800.43 -168927 PRK07374 2265.39 -236004 PRK07375 66.0615 -236005 PRK07376 1068.1 -236006 PRK07377 185.599 -236007 PRK07379 639.749 -180954 PRK07380 847.407 -236008 PRK07390 820.308 -236009 PRK07392 522.285 -168934 PRK07394 482.106 -236010 PRK07395 889.009 -180958 PRK07396 535.243 -236011 PRK07399 389.26 -180960 PRK07400 582.914 -180961 PRK07402 312.315 -180962 PRK07403 631.942 -180963 PRK07405 544.354 -236012 PRK07406 584.824 -180965 PRK07408 383.116 -236013 PRK07409 594.869 -180967 PRK07411 735.774 -180968 PRK07413 761.183 -168945 PRK07414 300.502 -180969 PRK07415 799.334 -180970 PRK07417 377.696 -236014 PRK07418 1243.78 -236015 PRK07419 355.368 -236016 PRK07424 691.049 -236017 PRK07428 494.18 -180975 PRK07429 409.013 -236018 PRK07431 782.182 -180977 PRK07432 541.292 -180978 PRK07440 120.998 -236019 PRK07445 554.989 -236020 PRK07449 550.189 -236021 PRK07451 182.285 -180982 PRK07452 391.179 -180983 PRK07453 576.171 -180984 PRK07454 316.516 -180985 PRK07455 298.493 -180986 PRK07459 204.535 -180987 PRK07468 392.886 -180988 PRK07470 919.82 -236022 PRK07471 351.639 -168961 PRK07473 655.702 -236023 PRK07474 157.483 -236024 PRK07475 262.173 -236025 PRK07476 388.94 -180993 PRK07478 358.858 -180994 PRK07480 772.148 -168967 PRK07481 789.258 -236026 PRK07482 874.339 -236027 PRK07483 727.132 -236028 PRK07486 680.199 -236029 PRK07487 539.94 -236030 PRK07488 546.107 -236031 PRK07490 369.819 -181000 PRK07492 772.216 -181001 PRK07494 516.378 -236032 PRK07495 765.831 -236033 PRK07500 437.545 -236034 PRK07502 449.805 -181005 PRK07503 710.803 -168979 PRK07504 778.551 -181006 PRK07505 538.026 -236035 PRK07508 497.612 -181008 PRK07509 354.572 -181009 PRK07511 307.309 -236036 PRK07512 593.426 -181011 PRK07514 812.955 -236037 PRK07515 509.805 -181013 PRK07516 603.092 -236038 PRK07521 442.065 -236039 PRK07522 554.414 -236040 PRK07523 467.708 -236041 PRK07524 712.131 -236042 PRK07525 906.295 -236043 PRK07529 789.922 -181018 PRK07530 566.559 -236044 PRK07531 813.588 -181020 PRK07533 421.27 -236045 PRK07534 512.373 -181022 PRK07535 359.166 -236046 PRK07538 500.963 -181024 PRK07539 192.294 -181025 PRK07544 513.755 -169002 PRK07546 208.679 -181026 PRK07550 530.686 -181027 PRK07558 56.5162 -181028 PRK07559 543.743 -236047 PRK07560 1171.95 -236048 PRK07561 1002.78 -236049 PRK07562 2201.69 -236050 PRK07564 434.564 -236051 PRK07565 411.568 -236052 PRK07566 398.915 -181035 PRK07567 340.767 -181036 PRK07568 529.423 -181037 PRK07569 399.797 -181038 PRK07570 348.36 -236053 PRK07571 282.411 -181039 PRK07572 752.237 -236054 PRK07573 1117.97 -181041 PRK07574 538.105 -236055 PRK07575 801.968 -236056 PRK07576 384.692 -181044 PRK07577 384.464 -236057 PRK07578 241.641 -236058 PRK07579 405.826 -236059 PRK07580 302.141 -236060 PRK07581 549.538 -236061 PRK07582 486.041 -236062 PRK07583 639.337 -236063 PRK07586 514.394 -169028 PRK07588 625.222 -236064 PRK07589 509.044 -181053 PRK07590 606.094 -236065 PRK07591 682.842 -136438 PRK07594 799.165 -236066 PRK07597 32.1985 -236067 PRK07598 554.865 -181057 PRK07608 452.871 -181058 PRK07609 432.372 -181059 PRK07627 620.541 -236068 PRK07630 395.529 -181061 PRK07631 969.681 -236069 PRK07632 1236.23 -181063 PRK07634 415.306 -236070 PRK07636 452.676 -236071 PRK07638 727.344 -181065 PRK07639 103.287 -181066 PRK07649 393.786 -181067 PRK07650 464.826 -236072 PRK07656 744.418 -181069 PRK07657 417.599 -181070 PRK07658 431.75 -236073 PRK07659 401.719 -181072 PRK07661 704.203 -236074 PRK07666 362.084 -169051 PRK07667 282.004 -181074 PRK07668 219.492 -181075 PRK07670 399.034 -181076 PRK07671 700.324 -181077 PRK07677 462.996 -181078 PRK07678 782.662 -181079 PRK07679 462.702 -181080 PRK07680 432.088 -181081 PRK07681 674.598 -181082 PRK07682 743.863 -236075 PRK07683 722.281 -181084 PRK07688 593.893 -181085 PRK07691 613.494 -181086 PRK07695 301.554 -169065 PRK07696 106.353 -181087 PRK07701 407.457 -181088 PRK07708 319.287 -169068 PRK07709 565.835 -236076 PRK07710 1096.35 -236077 PRK07714 169.189 -181090 PRK07718 164.804 -181091 PRK07720 134.043 -181092 PRK07721 850.936 -236078 PRK07726 795.138 -236079 PRK07729 669.521 -236080 PRK07734 421.843 -236081 PRK07735 323.47 -236082 PRK07737 688.849 -236083 PRK07738 154.457 -236084 PRK07739 588.138 -236085 PRK07740 342.419 -236086 PRK07742 457.631 -236087 PRK07748 323.563 -169084 PRK07756 187.257 -236088 PRK07757 223.533 -181104 PRK07758 127.729 -236089 PRK07761 448.538 -236090 PRK07764 796.887 -181107 PRK07765 390.179 -236091 PRK07768 667.084 -181109 PRK07769 1077.83 -236092 PRK07772 206.038 -236093 PRK07773 1442.63 -236094 PRK07774 340.954 -181113 PRK07775 409.144 -236095 PRK07777 660.578 -181115 PRK07785 354.296 -169098 PRK07786 873.332 -236096 PRK07787 623.165 -236097 PRK07788 740.589 -236098 PRK07789 1070.76 -236099 PRK07791 407.137 -181120 PRK07792 436.135 -236100 PRK07798 650.024 -181122 PRK07799 436.071 -181123 PRK07801 719.567 -236101 PRK07803 962.572 -236102 PRK07804 654.347 -181126 PRK07806 270.438 -181127 PRK07807 716.684 -236103 PRK07810 718.439 -236104 PRK07811 679.83 -236105 PRK07812 792.8 -181131 PRK07814 382.59 -236106 PRK07818 862.792 -181133 PRK07819 422.088 -236107 PRK07823 419.489 -236108 PRK07824 526.921 -181136 PRK07825 282.985 -236109 PRK07827 353.988 -236110 PRK07831 403.26 -181139 PRK07832 419.833 -236111 PRK07843 914.036 -236112 PRK07845 686.208 -181142 PRK07846 645.086 -236113 PRK07847 942.091 -236114 PRK07849 321.138 -181145 PRK07850 636.764 -181146 PRK07851 675.566 -236115 PRK07854 311.573 -181147 PRK07855 576.93 -236116 PRK07856 317.261 -236117 PRK07857 110.936 -236118 PRK07860 1253.69 -236119 PRK07865 489.812 -236120 PRK07867 715.689 -236121 PRK07868 1592.44 -181154 PRK07869 638.953 -169138 PRK07874 99.485 -236122 PRK07877 865.456 -181156 PRK07878 726.502 -236123 PRK07883 480.955 -236124 PRK07889 420.887 -181159 PRK07890 337.315 -236125 PRK07896 342.426 -236126 PRK07899 806.96 -181162 PRK07904 453.78 -181163 PRK07906 624.568 -236127 PRK07907 556.056 -236128 PRK07908 414.015 -236129 PRK07910 707.264 -169151 PRK07912 707.326 -236130 PRK07914 433.057 -236131 PRK07920 319.185 -181169 PRK07921 569.364 -236132 PRK07922 273.335 -181171 PRK07928 182.179 -236133 PRK07933 242.961 -181173 PRK07937 488.815 -181174 PRK07938 375.849 -236134 PRK07940 400.827 -181176 PRK07942 288.028 -236135 PRK07945 482.557 -236136 PRK07946 170.998 -181179 PRK07948 91.2873 -181180 PRK07952 382.965 -236137 PRK07956 916.435 -181182 PRK07960 857.93 -181183 PRK07963 225.823 -181184 PRK07967 776.926 -181185 PRK07979 1176.94 -181186 PRK07983 394.471 -181187 PRK07984 520.229 -181188 PRK07985 572.709 -181189 PRK07986 883.246 -181190 PRK07993 549.283 -236138 PRK07994 733.208 -181192 PRK07998 439.966 -169179 PRK08005 388.241 -181193 PRK08006 942.898 -181194 PRK08007 384.654 -181195 PRK08008 954.9 -181196 PRK08010 825.419 -236139 PRK08013 734.929 -181198 PRK08017 503.464 -181199 PRK08020 654.745 -181200 PRK08025 594.023 -236140 PRK08026 580.931 -181202 PRK08027 500.818 -236141 PRK08032 542.743 -181204 PRK08035 445.8 -181205 PRK08040 542.365 -181206 PRK08042 724.31 -181207 PRK08043 1353.99 -169193 PRK08044 809.853 -169194 PRK08045 764.823 -181208 PRK08049 142.865 -236142 PRK08051 346.842 -181210 PRK08053 94.302 -236143 PRK08055 220.335 -181212 PRK08056 663.714 -236144 PRK08057 222.394 -181214 PRK08058 447.065 -181215 PRK08059 188.717 -181216 PRK08061 89.1614 -236145 PRK08063 413.346 -236146 PRK08064 678.8 -181219 PRK08068 626.952 -236147 PRK08071 803.439 -181221 PRK08072 457.563 -181222 PRK08073 379.711 -236148 PRK08074 1381.59 -181224 PRK08084 416.772 -181225 PRK08085 493.888 -181226 PRK08087 399.115 -236149 PRK08088 798.237 -169215 PRK08091 393.088 -236150 PRK08097 781.796 -236151 PRK08099 473.76 -181230 PRK08105 233.626 -181231 PRK08114 833.198 -236152 PRK08115 1594.88 -236153 PRK08116 296.932 -181234 PRK08117 736.457 -181235 PRK08118 258 -236154 PRK08119 496.691 -236155 PRK08123 371.162 -181238 PRK08124 380.073 -236156 PRK08125 1076.92 -236157 PRK08126 694.13 -181241 PRK08130 292.934 -181242 PRK08131 669.947 -236158 PRK08132 742.07 -181244 PRK08133 660.926 -236159 PRK08134 753.111 -236160 PRK08136 384.985 -236161 PRK08137 720.399 -236162 PRK08138 414.449 -181249 PRK08139 386.99 -236163 PRK08140 374.25 -236164 PRK08142 627.115 -236165 PRK08147 708.751 -236166 PRK08149 760.301 -181254 PRK08150 318.886 -181255 PRK08153 598.904 -236167 PRK08154 286.08 -181257 PRK08155 989.208 -236168 PRK08156 540.752 -181259 PRK08158 440.073 -181260 PRK08159 512.374 -236169 PRK08162 911.252 -181262 PRK08163 588.93 -236170 PRK08166 796.859 -236171 PRK08168 399.073 -181265 PRK08170 737.982 -181266 PRK08172 109.977 -236172 PRK08173 1317.74 -181268 PRK08175 794.685 -181269 PRK08176 417.518 -236173 PRK08177 328.528 -236174 PRK08178 164.87 -181271 PRK08179 304.286 -236175 PRK08180 748.244 -136670 PRK08181 496.759 -169261 PRK08182 168.707 -236176 PRK08183 174.79 -181274 PRK08184 925.158 -181275 PRK08185 522.364 -236177 PRK08186 616.084 -236178 PRK08187 698.69 -236179 PRK08188 1441.78 -236180 PRK08190 524.444 -169269 PRK08192 660.267 -236181 PRK08193 412.306 -181281 PRK08194 626.363 -181282 PRK08195 377.251 -181283 PRK08197 513.779 -236182 PRK08198 496.974 -181285 PRK08199 804.094 -169276 PRK08201 845.566 -236183 PRK08202 314.05 -236184 PRK08203 627.265 -181288 PRK08204 548.064 -236185 PRK08205 998.754 -236186 PRK08206 508.264 -236187 PRK08207 495.938 -181292 PRK08208 650.534 -236188 PRK08210 599.531 -236189 PRK08211 1137.89 -181295 PRK08213 352.326 -181296 PRK08215 437.842 -181297 PRK08217 395.098 -181298 PRK08219 281.051 -236190 PRK08220 342.249 -181300 PRK08221 442.843 -181301 PRK08222 273.552 -181302 PRK08223 447.978 -236191 PRK08224 417.374 -181304 PRK08225 104.484 -181305 PRK08226 454.644 -181306 PRK08227 419.824 -236192 PRK08228 353.978 -236193 PRK08229 443.675 -181309 PRK08230 492.685 -181310 PRK08233 237.334 -181311 PRK08235 666.415 -236194 PRK08236 183.338 -236195 PRK08238 450.482 -236196 PRK08241 390.452 -236197 PRK08242 654.645 -236198 PRK08243 488.539 -236199 PRK08244 782.006 -236200 PRK08245 283.715 -181319 PRK08246 322.675 -181320 PRK08247 750.379 -236201 PRK08248 803.677 -236202 PRK08249 735.394 -181323 PRK08250 420.142 -181324 PRK08251 364.642 -181325 PRK08252 349.288 -236203 PRK08255 1302.22 -181327 PRK08256 641.563 -236204 PRK08257 521.011 -181329 PRK08258 348.88 -236205 PRK08259 349.195 -236206 PRK08260 407.855 -236207 PRK08261 536.342 -236208 PRK08262 569.577 -181334 PRK08263 418.672 -181335 PRK08264 265.985 -236209 PRK08265 375.501 -181337 PRK08266 686.359 -236210 PRK08267 344.614 -236211 PRK08268 634.578 -181340 PRK08269 433.329 -236212 PRK08270 973.94 -181342 PRK08271 872.023 -236213 PRK08272 443.329 -181344 PRK08273 915.837 -236214 PRK08274 552.559 -181346 PRK08275 896.334 -236215 PRK08276 695.882 -236216 PRK08277 358.058 -181349 PRK08278 392.73 -236217 PRK08279 828.746 -236218 PRK08284 271.72 -181352 PRK08285 282.928 -181353 PRK08286 343.195 -181354 PRK08287 283.046 -236219 PRK08289 688.967 -236220 PRK08290 371.987 -236221 PRK08291 476.378 -236222 PRK08292 681.594 -181359 PRK08293 426.664 -236223 PRK08294 1068.45 -181361 PRK08295 225.173 -181362 PRK08296 620.519 -236224 PRK08297 677.833 -236225 PRK08298 176.913 -236226 PRK08299 742.443 -236227 PRK08300 317.538 -236228 PRK08301 385.748 -236229 PRK08303 478.34 -236230 PRK08304 455.455 -181370 PRK08305 297.576 -181371 PRK08306 369.167 -181372 PRK08307 179.661 -236231 PRK08308 692.548 -236232 PRK08309 194.196 -181375 PRK08310 515.303 -236233 PRK08311 235.535 -236234 PRK08312 564.606 -181378 PRK08313 553.185 -236235 PRK08314 900.864 -236236 PRK08315 916.508 -181381 PRK08316 837.279 -181382 PRK08317 275.662 -236237 PRK08318 504.093 -181384 PRK08319 270.183 -236238 PRK08320 502.864 -181386 PRK08321 539.226 -236239 PRK08322 874.153 -236240 PRK08323 682.283 -236241 PRK08324 692.357 -236242 PRK08326 314.63 -236243 PRK08327 612.005 -169382 PRK08328 384.533 -236244 PRK08329 598.349 -169384 PRK08330 371.384 -181392 PRK08332 2032.77 -181393 PRK08333 336.024 -169386 PRK08334 709.809 -169387 PRK08335 499.689 -181394 PRK08338 313.793 -169389 PRK08339 449.306 -169390 PRK08340 437.699 -181395 PRK08341 857.204 -236245 PRK08343 416.198 -236246 PRK08344 122.193 -236247 PRK08345 495.866 -181399 PRK08348 158.845 -169396 PRK08349 307.049 -169397 PRK08350 572.52 -181400 PRK08351 106.563 -169399 PRK08354 431.845 -169400 PRK08356 325.966 -169401 PRK08359 262.115 -181401 PRK08360 778.568 -236248 PRK08361 762.495 -181402 PRK08363 677.296 -236249 PRK08364 97.9725 -169406 PRK08366 799.21 -181403 PRK08367 680.069 -236250 PRK08373 504.588 -169409 PRK08374 515.511 -236251 PRK08375 345.711 -236252 PRK08376 697.616 -181406 PRK08377 583.266 -236253 PRK08378 75.2136 -169414 PRK08381 107.517 -169415 PRK08382 354.478 -181407 PRK08383 273.988 -236254 PRK08384 732.533 -236255 PRK08385 437.988 -236256 PRK08386 154.102 -169420 PRK08387 151.498 -236257 PRK08388 182.791 -236258 PRK08389 128.312 -169423 PRK08392 405.706 -181411 PRK08393 711.187 -169425 PRK08395 271.685 -236259 PRK08401 889.15 -169427 PRK08402 604.871 -169428 PRK08404 79.4487 -181413 PRK08406 157.687 -181414 PRK08410 460.991 -236260 PRK08411 671.7 -236261 PRK08412 857.969 -181416 PRK08415 486.558 -181417 PRK08416 488.897 -236262 PRK08417 540.06 -181419 PRK08418 534.934 -181420 PRK08419 390.927 -236263 PRK08425 986.501 -236264 PRK08432 388.984 -181423 PRK08433 155.676 -236265 PRK08439 738.468 -181425 PRK08441 335.159 -181426 PRK08444 678.338 -181427 PRK08445 700.329 -181428 PRK08446 527.218 -236266 PRK08447 1604.39 -236267 PRK08451 833.914 -236268 PRK08452 134.777 -181432 PRK08453 956.212 -181433 PRK08455 206.846 -181434 PRK08456 386.774 -181435 PRK08457 351.711 -236269 PRK08462 824.765 -169452 PRK08463 868.746 -181437 PRK08470 831.71 -236270 PRK08471 805.424 -181439 PRK08472 809.683 -236271 PRK08474 179.789 -236272 PRK08475 161.334 -181442 PRK08476 134.817 -236273 PRK08477 292.245 -181444 PRK08482 93.3125 -236274 PRK08485 203.341 -236275 PRK08486 259.393 -236276 PRK08487 289.16 -181448 PRK08489 178.707 -181449 PRK08491 402.514 -236277 PRK08493 1098.22 -236278 PRK08506 714.093 -181452 PRK08507 404.663 -236279 PRK08508 498.764 -236280 PRK08515 202.158 -236281 PRK08517 341.231 -181456 PRK08525 854.394 -181457 PRK08526 661.409 -181458 PRK08527 1114.79 -181459 PRK08533 327.026 -181460 PRK08534 300.418 -236282 PRK08535 442.032 -181462 PRK08537 282.326 -236283 PRK08540 712.881 -236284 PRK08541 230.897 -236285 PRK08554 706.923 -181465 PRK08557 617.537 -181466 PRK08558 286.503 -181467 PRK08559 168.122 -236286 PRK08560 421.581 -236287 PRK08561 210.099 -236288 PRK08562 134.282 -236289 PRK08563 205.059 -236290 PRK08564 504.563 -236291 PRK08565 1772.95 -236292 PRK08566 1348.75 -236293 PRK08568 410.384 -236294 PRK08569 190.528 -236295 PRK08570 139.224 -181478 PRK08571 180.875 -236296 PRK08572 143.132 -236297 PRK08573 729.989 -236298 PRK08574 583.179 -236299 PRK08575 404.119 -236300 PRK08576 568.171 -236301 PRK08577 152.841 -236302 PRK08578 215.951 -236303 PRK08579 1045.87 -236304 PRK08581 567.495 -236305 PRK08582 190.629 -236306 PRK08583 414.092 -181490 PRK08588 523.678 -181491 PRK08589 479.274 -236307 PRK08591 696.165 -181493 PRK08593 821.639 -236308 PRK08594 448.408 -181495 PRK08596 800.791 -236309 PRK08599 636.908 -181497 PRK08600 158.581 -236310 PRK08601 539.237 -181499 PRK08605 557.05 -236311 PRK08609 962.493 -181501 PRK08610 569.235 -181502 PRK08611 1007.22 -236312 PRK08617 875.336 -236313 PRK08618 480.327 -181505 PRK08621 223.435 -181506 PRK08622 300.41 -236314 PRK08624 455.547 -181507 PRK08626 1076.92 -181508 PRK08628 398.178 -181509 PRK08629 664.449 -236315 PRK08633 1472.46 -236316 PRK08636 842.828 -181512 PRK08637 566.506 -236317 PRK08638 526.996 -236318 PRK08639 588.314 -181515 PRK08640 399.747 -236319 PRK08641 1066.51 -181517 PRK08642 414.487 -181518 PRK08643 467.666 -236320 PRK08644 242.455 -236321 PRK08645 705.453 -236322 PRK08649 511.667 -236323 PRK08651 305.761 -236324 PRK08652 418.009 -236325 PRK08654 869.302 -236326 PRK08655 426.326 -181526 PRK08659 551.389 -181527 PRK08660 261.43 -236327 PRK08661 530.093 -236328 PRK08662 480.527 -236329 PRK08664 419.229 -236330 PRK08665 1288.73 -169548 PRK08666 499.235 -236331 PRK08667 869.049 -236332 PRK08668 648.21 -181534 PRK08671 347.943 -181535 PRK08673 401.577 -181536 PRK08674 262.225 -181537 PRK08676 579.017 -169553 PRK08690 518.755 -236333 PRK08691 956.467 -181538 PRK08699 510.182 -169556 PRK08703 445.53 -169557 PRK08706 536.372 -236334 PRK08719 226.281 -181539 PRK08722 749.524 -236335 PRK08724 996.69 -181541 PRK08727 367.632 -181542 PRK08733 574.159 -181543 PRK08734 563.737 -181544 PRK08737 547.492 -236336 PRK08742 855.428 -136958 PRK08745 411.33 -181546 PRK08751 1080.67 -181547 PRK08760 832.255 -236337 PRK08762 588.519 -181549 PRK08763 241.767 -181550 PRK08764 225.955 -181551 PRK08769 566.125 -181552 PRK08773 609.941 -181553 PRK08775 418.809 -181554 PRK08776 758.369 -181555 PRK08780 1429.16 -136970 PRK08787 626.3 -236338 PRK08788 344.202 -181557 PRK08808 311.378 -181558 PRK08811 295.581 -236339 PRK08813 579.274 -236340 PRK08815 486.954 -181561 PRK08818 657.707 -181562 PRK08840 935.56 -181563 PRK08841 602.895 -181564 PRK08849 730.417 -236341 PRK08850 679.956 -181566 PRK08857 400.407 -181567 PRK08861 762.512 -236342 PRK08862 365.201 -236343 PRK08868 178.087 -236344 PRK08869 343.065 -236345 PRK08870 369.625 -181572 PRK08871 1096.43 -181573 PRK08878 498.076 -181574 PRK08881 113.322 -181575 PRK08883 451.385 -181576 PRK08887 306.268 -236346 PRK08898 683.634 -236347 PRK08903 269.925 -236348 PRK08905 403.602 -181580 PRK08912 632.01 -236349 PRK08913 188.066 -236350 PRK08916 159.917 -236351 PRK08927 713.291 -181584 PRK08931 543.836 -181585 PRK08936 482.304 -236352 PRK08937 28.4558 -236353 PRK08939 424.28 -236354 PRK08942 244.729 -236355 PRK08943 499.78 -236356 PRK08944 358.168 -236357 PRK08945 379.987 -181592 PRK08947 724.063 -181593 PRK08951 258.413 -169599 PRK08955 676.449 -181594 PRK08958 1223.81 -181595 PRK08960 590.103 -236358 PRK08961 1428.32 -181597 PRK08963 694.421 -181598 PRK08965 116.807 -181599 PRK08972 845.521 -236359 PRK08974 1179.84 -181601 PRK08978 956.253 -181602 PRK08979 1240.47 -236360 PRK08983 191.502 -181604 PRK08990 381.694 -181605 PRK08993 483.222 -181606 PRK08997 587.456 -236361 PRK08999 398.092 -181608 PRK09004 235.882 -181609 PRK09009 402.519 -236362 PRK09010 258.623 -181611 PRK09014 258.282 -181612 PRK09016 574.718 -181613 PRK09019 145.121 -181614 PRK09027 333.724 -181615 PRK09028 793.938 -236363 PRK09029 645.003 -236364 PRK09034 586.768 -181618 PRK09038 371.266 -181619 PRK09039 306.893 -181620 PRK09040 329.285 -236365 PRK09041 410.489 -236366 PRK09045 726.32 -236367 PRK09047 191.72 -181624 PRK09050 684.761 -181625 PRK09051 651.254 -181626 PRK09052 698.677 -181627 PRK09053 593.916 -181628 PRK09054 1032.8 -181629 PRK09057 591.492 -236368 PRK09058 584.216 -181631 PRK09059 744.548 -181632 PRK09060 735.188 -236369 PRK09061 663.701 -236370 PRK09064 564.867 -181635 PRK09065 327.304 -236371 PRK09070 686.435 -181637 PRK09071 383.878 -236372 PRK09072 319.965 -236373 PRK09076 378.493 -236374 PRK09077 948.969 -236375 PRK09078 1202.46 -181642 PRK09082 662.767 -236376 PRK09084 577.542 -169652 PRK09087 369.774 -181644 PRK09088 811.345 -236377 PRK09094 131.153 -181646 PRK09098 177.305 -169656 PRK09099 753.911 -181647 PRK09101 696.711 -236378 PRK09102 856.179 -181649 PRK09103 1442.87 -236379 PRK09104 795.646 -181651 PRK09105 541.941 -236380 PRK09107 1187.59 -236381 PRK09108 498.436 -181654 PRK09109 406.636 -181655 PRK09110 344.455 -236382 PRK09111 734.014 -169667 PRK09112 546.943 -181657 PRK09116 569.62 -236383 PRK09120 420.184 -181659 PRK09121 627.482 -236384 PRK09123 768.673 -181661 PRK09124 1021.85 -181662 PRK09125 381.52 -236385 PRK09126 504.09 -236386 PRK09129 1093.02 -236387 PRK09130 1081.41 -236388 PRK09133 577.723 -236389 PRK09134 348.07 -181668 PRK09135 373.494 -236390 PRK09136 412.041 -181670 PRK09140 255.521 -236391 PRK09145 265.227 -236392 PRK09146 377.729 -236393 PRK09147 681.6 -181674 PRK09148 772.312 -181675 PRK09162 265.187 -181676 PRK09165 722.055 -236394 PRK09169 2179.48 -169691 PRK09173 162.217 -169692 PRK09174 242.395 -236395 PRK09177 239.378 -236396 PRK09181 739.425 -236397 PRK09182 398.965 -181681 PRK09183 403.317 -181682 PRK09184 143.269 -236398 PRK09185 508.613 -236399 PRK09186 357.763 -236400 PRK09188 524.714 -169701 PRK09189 231.084 -236401 PRK09190 217.906 -236402 PRK09191 275.574 -236403 PRK09192 908.999 -236404 PRK09193 1324.84 -236405 PRK09194 682.195 -181690 PRK09195 469.222 -181691 PRK09196 653.177 -236406 PRK09197 544.39 -236407 PRK09198 514.444 -236408 PRK09200 1073.02 -236409 PRK09201 542.636 -236410 PRK09202 261.343 -236411 PRK09203 166.429 -236412 PRK09204 287.02 -181699 PRK09206 846.26 -181700 PRK09209 1362.49 -236413 PRK09210 632.791 -169719 PRK09212 594.779 -236414 PRK09213 315.19 -181703 PRK09216 151.375 -181704 PRK09218 234.432 -181705 PRK09219 249.701 -236415 PRK09220 298.004 -181707 PRK09221 722.799 -236416 PRK09222 739.782 -236417 PRK09224 830.551 -236418 PRK09225 403.759 -236419 PRK09228 580.609 -236420 PRK09229 435.048 -181713 PRK09230 820.484 -236421 PRK09231 999.149 -236422 PRK09234 1196.36 -181716 PRK09236 809.097 -236423 PRK09237 344.912 -236424 PRK09238 1050.15 -181719 PRK09239 143.24 -236425 PRK09240 463.509 -181721 PRK09242 425.315 -236426 PRK09243 440.362 -181723 PRK09245 417.835 -236427 PRK09246 765.875 -236428 PRK09247 778.252 -236429 PRK09248 347.597 -236430 PRK09249 557.04 -236431 PRK09250 421.62 -236432 PRK09255 513.257 -181730 PRK09256 102.537 -181731 PRK09257 476.93 -181732 PRK09258 448.56 -236433 PRK09259 929.395 -236434 PRK09260 493.153 -236435 PRK09261 334.83 -181735 PRK09262 355.778 -236436 PRK09263 1027.9 -236437 PRK09264 659.555 -181738 PRK09265 612.586 -236438 PRK09266 301.899 -236439 PRK09267 200.442 -236440 PRK09268 672.381 -236441 PRK09269 149.75 -236442 PRK09270 245.613 -181744 PRK09271 232.773 -181745 PRK09272 66.8143 -181746 PRK09273 264.902 -236443 PRK09274 623.074 -236444 PRK09275 786.365 -181749 PRK09276 690.882 -236445 PRK09277 1226.91 -236446 PRK09279 981.522 -236447 PRK09280 639.484 -236448 PRK09281 791.188 -236449 PRK09282 860.301 -236450 PRK09283 414.442 -236451 PRK09284 753.62 -236452 PRK09285 584.022 -236453 PRK09287 558.971 -236454 PRK09288 501.975 -236455 PRK09289 198.753 -236456 PRK09290 322.491 -181762 PRK09291 423.255 -236457 PRK09292 275.617 -236458 PRK09293 192.757 -181765 PRK09294 366.728 -181766 PRK09295 772.384 -181767 PRK09296 246.846 -236459 PRK09297 210.499 -236460 PRK09300 276.082 -181770 PRK09301 169.212 -236461 PRK09302 595.707 -236462 PRK09303 539.153 -236463 PRK09304 297.416 -137204 PRK09310 792.075 -181774 PRK09311 719.377 -181775 PRK09314 575.771 -236464 PRK09318 565.898 -236465 PRK09319 970.964 -236466 PRK09325 358.905 -181779 PRK09326 658.838 -236467 PRK09328 159.172 -236468 PRK09330 325.183 -236469 PRK09331 644.292 -236470 PRK09333 203.549 -181784 PRK09334 83.9277 -181785 PRK09335 144.847 -181786 PRK09336 47.8578 -181787 PRK09343 113.626 -236471 PRK09344 357.607 -236472 PRK09347 191.141 -236473 PRK09348 469.593 -236474 PRK09350 385.051 -236475 PRK09352 365.165 -236476 PRK09354 459.259 -236477 PRK09355 258.192 -236478 PRK09356 453.474 -236479 PRK09357 351.42 -236480 PRK09358 243.931 -236481 PRK09360 471.389 -236482 PRK09361 274.047 -181800 PRK09362 244.245 -236483 PRK09364 218.907 -236484 PRK09367 667.211 -236485 PRK09368 167.93 -236486 PRK09369 498.016 -181805 PRK09371 77.1359 -236487 PRK09372 223.476 -236488 PRK09374 345.884 -236489 PRK09375 271.581 -236490 PRK09376 481.177 -236491 PRK09377 236.168 -181811 PRK09379 515.811 -181812 PRK09381 209.15 -236492 PRK09382 532.501 -236493 PRK09389 776.423 -181815 PRK09390 300.766 -236494 PRK09391 304.655 -181817 PRK09392 372.434 -181818 PRK09393 548.411 -236495 PRK09395 786.477 -236496 PRK09398 44.3772 -181821 PRK09399 46.1265 -236497 PRK09400 42.1463 -236498 PRK09401 1349.21 -236499 PRK09404 1125.98 -236500 PRK09405 1326.31 -181826 PRK09406 832.462 -236501 PRK09407 686.997 -181828 PRK09408 245.436 -181829 PRK09409 570.504 -236502 PRK09410 314.501 -181831 PRK09411 542.082 -236503 PRK09412 426.952 -181833 PRK09413 200.799 -181834 PRK09414 681.463 -181835 PRK09415 244.657 -181836 PRK09416 157.642 -181837 PRK09417 272.212 -236504 PRK09418 1469.17 -236505 PRK09419 1400.71 -236506 PRK09420 997.136 -181841 PRK09421 308.774 -181842 PRK09422 580.452 -181843 PRK09423 442.332 -236507 PRK09424 694.653 -181845 PRK09425 727.825 -236508 PRK09426 1076.04 -236509 PRK09427 533.239 -236510 PRK09428 647.637 -236511 PRK09429 329.15 -236512 PRK09430 324.843 -236513 PRK09431 670.078 -181852 PRK09432 529.211 -181853 PRK09433 445.433 -236514 PRK09434 483.284 -236515 PRK09435 467.761 -181856 PRK09436 1116.77 -181857 PRK09437 280.671 -236516 PRK09438 206.283 -181859 PRK09439 245.269 -236517 PRK09440 475.113 -236518 PRK09441 471.681 -236519 PRK09442 494.392 -236520 PRK09444 855.935 -236521 PRK09448 245.282 -181865 PRK09449 387.334 -236522 PRK09450 536.418 -181867 PRK09451 914.413 -236523 PRK09452 631.982 -181869 PRK09453 219.35 -236524 PRK09454 319.577 -236525 PRK09455 470.943 -181872 PRK09456 381.694 -181873 PRK09457 746.398 -236526 PRK09458 98.8036 -181875 PRK09459 37.2893 -181876 PRK09461 650.496 -236527 PRK09462 250.803 -236528 PRK09463 1022.06 -181879 PRK09464 399.01 -236529 PRK09465 611.56 -236530 PRK09466 1078.41 -236531 PRK09467 614.612 -181883 PRK09468 429.394 -181884 PRK09469 967.693 -236532 PRK09470 608.855 -181886 PRK09471 511.534 -181887 PRK09472 772.801 -181888 PRK09473 686.843 -236533 PRK09474 602.772 -236534 PRK09476 381.28 -236535 PRK09477 329.168 -181892 PRK09478 414.47 -236536 PRK09479 336.67 -181894 PRK09480 279.004 -236537 PRK09481 424.893 -181896 PRK09482 382.725 -236538 PRK09483 416.814 -181898 PRK09484 309.94 -181899 PRK09485 321.036 -181900 PRK09487 181.108 -181901 PRK09488 144.88 -181902 PRK09489 574.193 -236539 PRK09490 2125.63 -181904 PRK09491 253.313 -181905 PRK09492 499.843 -181906 PRK09493 488.449 -181907 PRK09494 328.553 -236540 PRK09495 392.185 -236541 PRK09496 358.666 -181910 PRK09497 386.736 -181911 PRK09498 703.699 -137339 PRK09499 627.409 -236542 PRK09500 356.602 -181913 PRK09501 702.828 -181914 PRK09502 198.556 -181915 PRK09504 243.491 -236543 PRK09505 728.772 -236544 PRK09506 1401.43 -169931 PRK09507 127.461 -181918 PRK09508 527.669 -181919 PRK09509 544.653 -236545 PRK09510 185.78 -181921 PRK09511 209.502 -181922 PRK09512 468.813 -181923 PRK09513 567.402 -181924 PRK09514 208.669 -169939 PRK09517 907.812 -236546 PRK09518 1090.6 -77219 PRK09519 1660.23 -236547 PRK09521 196.734 -181927 PRK09522 1052.7 -236548 PRK09525 1743.65 -181929 PRK09526 520.706 -181930 PRK09527 427.498 -236549 PRK09528 475.925 -236550 PRK09529 1053.39 -181933 PRK09532 1710.72 -236551 PRK09533 1344.63 -236552 PRK09534 408.143 -236553 PRK09535 421.467 -236554 PRK09536 472.019 -236555 PRK09537 723.167 -236556 PRK09539 112.309 -137367 PRK09541 180.934 -236557 PRK09542 731.398 -181938 PRK09543 357.846 -181939 PRK09544 451.876 -236558 PRK09545 461.399 -181941 PRK09546 502.613 -181942 PRK09547 735.158 -236559 PRK09548 646.415 -236560 PRK09549 608.546 -236561 PRK09550 418.104 -236562 PRK09552 381.633 -181947 PRK09553 484.587 -236563 PRK09554 1438.36 -181949 PRK09555 107.533 -236564 PRK09556 682.543 -236565 PRK09557 516.501 -236566 PRK09558 670.837 -236567 PRK09559 548.511 -236568 PRK09560 472.449 -181955 PRK09561 513.27 -236569 PRK09562 299.386 -236570 PRK09563 263.956 -181958 PRK09564 699.485 -236571 PRK09565 779.379 -236572 PRK09566 940.587 -236573 PRK09567 956.388 -236574 PRK09568 386.837 -181961 PRK09569 596.347 -236575 PRK09570 67.9416 -181963 PRK09573 252.573 -236576 PRK09575 633.185 -169981 PRK09577 1929.62 -169982 PRK09578 569.811 -169983 PRK09579 1725.07 -181965 PRK09580 471.968 -236577 PRK09581 616.143 -181967 PRK09582 106.186 -236578 PRK09583 233.026 -181969 PRK09584 765.458 -236579 PRK09585 302.04 -181971 PRK09586 814.682 -181972 PRK09588 518.758 -181973 PRK09589 988.145 -181974 PRK09590 165.341 -181975 PRK09591 154.573 -181976 PRK09592 669.873 -236580 PRK09593 942.76 -181978 PRK09597 260.978 -236581 PRK09598 782.428 -236582 PRK09599 413.761 -236583 PRK09601 361.305 -236584 PRK09602 530.15 -181983 PRK09603 5796.71 -236585 PRK09604 362.85 -236586 PRK09605 836.85 -236587 PRK09606 682.061 -236588 PRK09607 178.659 -181988 PRK09609 166.756 -236589 PRK09612 341.062 -236590 PRK09613 644.166 -236591 PRK09614 299.433 -181992 PRK09615 1108.05 -236592 PRK09616 551.731 -236593 PRK09617 292.418 -236594 PRK09618 162.09 -181996 PRK09619 311.333 -181997 PRK09620 378.851 -236595 PRK09621 147.202 -181999 PRK09622 728.872 -170016 PRK09623 202.869 -170017 PRK09624 210.655 -236596 PRK09625 205.752 -236597 PRK09626 165.278 -182002 PRK09627 739.212 -182003 PRK09628 534.696 -104071 PRK09629 1186.07 -170022 PRK09630 907.348 -236598 PRK09631 1028.11 -236599 PRK09632 1120.47 -182006 PRK09633 1021.13 -182007 PRK09634 245.56 -182008 PRK09635 442.483 -236600 PRK09636 348.449 -236601 PRK09637 253.369 -182010 PRK09638 249.937 -236602 PRK09639 171.671 -236603 PRK09640 289.917 -182012 PRK09641 312.015 -170031 PRK09642 161.036 -236604 PRK09643 258.486 -170033 PRK09644 223.602 -236605 PRK09645 214.943 -182015 PRK09646 266.921 -236606 PRK09647 332.521 -236607 PRK09648 244.879 -137458 PRK09649 291.944 -182018 PRK09651 298.647 -236608 PRK09652 159.972 -236609 PRK09653 403.842 -182021 PRK09662 519.689 -182022 PRK09664 687.008 -182023 PRK09665 252.416 -236610 PRK09669 704.178 -236611 PRK09672 315.217 -182026 PRK09674 419.942 -137467 PRK09677 305.647 -137468 PRK09678 135.891 -182027 PRK09681 517.383 -236612 PRK09685 413.658 -170047 PRK09687 335.174 -182029 PRK09689 84.256 -170049 PRK09692 844.305 -236613 PRK09693 714.251 -182031 PRK09694 1306.71 -182032 PRK09695 903.278 -182033 PRK09697 220.738 -182034 PRK09698 420.928 -182035 PRK09699 426.881 -182036 PRK09700 844.45 -182037 PRK09701 455.487 -77355 PRK09702 331.291 -236614 PRK09705 507.04 -182039 PRK09706 167.723 -182040 PRK09707 2010.77 -236615 PRK09709 1320.35 -182042 PRK09710 90.1597 -137485 PRK09713 447.585 -182043 PRK09716 665.946 -182044 PRK09717 309.025 -182045 PRK09718 543.485 -182046 PRK09719 152.97 -182047 PRK09720 156.165 -236616 PRK09722 386.658 -236617 PRK09723 478.897 -182049 PRK09726 136.649 -137493 PRK09727 25.1301 -182050 PRK09729 113.99 -182051 PRK09730 462.782 -182052 PRK09731 332.793 -170072 PRK09732 212.325 -182053 PRK09733 303.024 -236618 PRK09736 442.473 -236619 PRK09737 761.729 -182055 PRK09738 70.9751 -236620 PRK09739 324.348 -182057 PRK09741 219.202 -137503 PRK09744 144.721 -182058 PRK09750 93.8369 -137505 PRK09751 2626.52 -182059 PRK09752 2081.21 -170080 PRK09754 647.753 -182060 PRK09755 1081.32 -182061 PRK09756 290.954 -236621 PRK09757 337.973 -182063 PRK09759 86.5197 -182064 PRK09762 377.633 -182065 PRK09764 423.47 -182066 PRK09765 994.627 -182067 PRK09767 204.493 -170086 PRK09772 506.551 -236622 PRK09774 458.467 -236623 PRK09775 496.024 -182070 PRK09776 1676.37 -182071 PRK09777 372.457 -170091 PRK09778 149.735 -170092 PRK09781 371.753 -236624 PRK09782 1150.43 -236625 PRK09783 766.722 -182074 PRK09784 859.306 -182075 PRK09786 199.328 -182076 PRK09790 149.861 -182077 PRK09791 547.823 -182078 PRK09792 800.013 -182079 PRK09793 897.894 -182080 PRK09795 712.479 -182081 PRK09796 722.353 -182082 PRK09798 147.16 -182083 PRK09799 377.94 -182084 PRK09800 1799.79 -182085 PRK09801 667.894 -182086 PRK09802 405.007 -182087 PRK09804 659.4 -77417 PRK09806 40.0374 -182088 PRK09807 204.546 -137533 PRK09810 51.1718 -182089 PRK09812 196.983 -182090 PRK09813 440.713 -236626 PRK09814 286.099 -77423 PRK09816 25.2078 -182092 PRK09818 297.244 -182093 PRK09819 1445.17 -182094 PRK09821 553.11 -182095 PRK09822 481.281 -170114 PRK09823 177.755 -236627 PRK09824 1048.53 -182097 PRK09825 376.674 -182098 PRK09828 1429.92 -182099 PRK09831 254.112 -182100 PRK09834 310.385 -182101 PRK09835 856.378 -182102 PRK09836 442.826 -182103 PRK09837 776.743 -182104 PRK09838 174.67 -182105 PRK09840 1116.42 -182106 PRK09841 1371.91 -236628 PRK09846 374.018 -182108 PRK09847 918.52 -182109 PRK09848 610.249 -236629 PRK09849 1154.81 -182111 PRK09850 661.298 -182112 PRK09852 993.568 -236630 PRK09853 1474.06 -182114 PRK09854 259.154 -182115 PRK09855 414.506 -182116 PRK09856 501.674 -182117 PRK09857 556.193 -137559 PRK09859 733.828 -182118 PRK09860 712.496 -182119 PRK09861 532.674 -182120 PRK09862 1012.59 -182121 PRK09863 802.532 -182122 PRK09864 711.864 -182123 PRK09866 1279.4 -182124 PRK09867 384.234 -182125 PRK09870 396.231 -182126 PRK09871 353.133 -182127 PRK09874 677.023 -182128 PRK09875 540.185 -182129 PRK09877 231.35 -182130 PRK09880 574.326 -182131 PRK09881 454.275 -236631 PRK09885 208.882 -77467 PRK09890 137.589 -170147 PRK09891 131.27 -182133 PRK09894 387.115 -182134 PRK09897 953.029 -182135 PRK09898 341.816 -182136 PRK09902 406.366 -104216 PRK09903 516.513 -182137 PRK09906 490.822 -182138 PRK09907 203.129 -182139 PRK09908 287.197 -182140 PRK09912 721.391 -182141 PRK09913 257.507 -182142 PRK09915 742.47 -182143 PRK09917 245.063 -236632 PRK09918 301.188 -236633 PRK09919 165.617 -182146 PRK09920 337.495 -182147 PRK09921 703.442 -182148 PRK09922 483.444 -137592 PRK09925 34.19 -236634 PRK09926 402.176 -236635 PRK09928 1153.68 -182151 PRK09929 124.638 -182152 PRK09932 638.121 -182153 PRK09934 268.682 -182154 PRK09935 347.248 -182155 PRK09936 388.784 -77494 PRK09937 157.2 -182156 PRK09939 1596.23 -182157 PRK09940 487.671 -182158 PRK09943 266.275 -137602 PRK09945 696.463 -182159 PRK09946 428.445 -182160 PRK09947 224.673 -236636 PRK09950 768.185 -182162 PRK09951 417.332 -182163 PRK09952 724.601 -182164 PRK09953 378.861 -182165 PRK09954 757.156 -182166 PRK09955 628.129 -182167 PRK09956 565.513 -182168 PRK09958 375.387 -182169 PRK09959 2246.91 -182170 PRK09961 567.843 -170182 PRK09965 135.675 -182171 PRK09966 786.121 -182172 PRK09967 273.393 -182173 PRK09968 387.712 -236637 PRK09970 1384.8 -182175 PRK09971 456.423 -170188 PRK09973 133.969 -236638 PRK09974 165.993 -182177 PRK09975 399.113 -182178 PRK09977 324.353 -137624 PRK09978 479.807 -77522 PRK09979 40.0208 -182179 PRK09980 339.562 -182180 PRK09981 130.408 -137627 PRK09982 271.11 -182181 PRK09983 1483.53 -182182 PRK09984 526.503 -182183 PRK09986 459.188 -182184 PRK09987 539.491 -182185 PRK09989 512.657 -182186 PRK09990 400.296 -182187 PRK09993 211.997 -182188 PRK09997 554.182 -182189 PRK10001 808.449 -236639 PRK10002 559.886 -236640 PRK10003 1227.81 -182192 PRK10005 331.316 -182193 PRK10014 590.143 -182194 PRK10015 794.951 -182195 PRK10016 234.18 -182196 PRK10017 780.105 -182197 PRK10018 583.107 -236641 PRK10019 391.463 -182199 PRK10022 239.397 -182200 PRK10026 279.783 -182201 PRK10027 1067.91 -236642 PRK10030 278.892 -182203 PRK10034 624.186 -182204 PRK10037 423.517 -170217 PRK10039 152.956 -182205 PRK10040 68.6452 -236643 PRK10044 1273.15 -182207 PRK10045 341.463 -182208 PRK10046 398.237 -236644 PRK10049 1177.97 -182210 PRK10050 175.546 -182211 PRK10051 162.719 -182212 PRK10053 199.608 -182213 PRK10054 605.199 -182214 PRK10057 62.6305 -236645 PRK10060 1239.95 -182216 PRK10061 165.306 -182217 PRK10062 508.923 -182218 PRK10063 374.526 -236646 PRK10064 1021.36 -236647 PRK10069 232.611 -182221 PRK10070 729.139 -182222 PRK10072 145.318 -182223 PRK10073 579.309 -182224 PRK10076 391.437 -182225 PRK10077 742.665 -236648 PRK10078 302.437 -182227 PRK10079 419.95 -170240 PRK10081 68.9492 -182228 PRK10082 525.389 -182229 PRK10083 606.738 -236649 PRK10084 760.482 -182231 PRK10086 443.674 -182232 PRK10089 136.114 -182233 PRK10090 778.147 -182234 PRK10091 547.384 -182235 PRK10092 386.476 -182236 PRK10093 218.184 -182237 PRK10094 561.35 -236650 PRK10095 525.953 -182239 PRK10096 485.586 -182240 PRK10098 519.593 -182241 PRK10100 329.524 -182242 PRK10101 207.405 -182243 PRK10102 140.004 -236651 PRK10106 85.5799 -182245 PRK10110 838.619 -182246 PRK10113 92.2677 -182247 PRK10115 1426.2 -182248 PRK10116 245.769 -182249 PRK10117 905.278 -236652 PRK10118 378.054 -182251 PRK10119 419.523 -182252 PRK10122 588.781 -182253 PRK10123 866.835 -182254 PRK10124 780.442 -182255 PRK10125 559.505 -182256 PRK10126 276.405 -182257 PRK10128 532.986 -182258 PRK10130 660.843 -182259 PRK10132 184.295 -182260 PRK10133 729.384 -236653 PRK10137 1374.47 -182262 PRK10139 802.624 -182263 PRK10140 327.323 -236654 PRK10141 192.723 -182265 PRK10144 177.753 -182266 PRK10146 224.025 -236655 PRK10147 163.532 -236656 PRK10148 259.062 -236657 PRK10150 987.964 -182270 PRK10151 350.984 -236658 PRK10153 691.783 -182272 PRK10154 245.293 -182273 PRK10157 812.219 -236659 PRK10158 450.597 -182275 PRK10159 619.253 -182276 PRK10160 408.019 -182277 PRK10161 448.783 -236660 PRK10162 523.898 -182279 PRK10163 554.619 -182280 PRK10167 241.363 -182281 PRK10170 1250.69 -182282 PRK10171 443.269 -182283 PRK10172 745.031 -182284 PRK10173 676.432 -182285 PRK10174 110.366 -182286 PRK10175 131.418 -236661 PRK10177 745.807 -236662 PRK10178 298.09 -182289 PRK10179 370.719 -182290 PRK10183 88.3376 -182291 PRK10187 437.25 -182292 PRK10188 443.073 -182293 PRK10189 779.687 -182294 PRK10190 579.128 -182295 PRK10191 273.304 -182296 PRK10194 305.409 -182297 PRK10197 709.467 -182298 PRK10198 235.026 -182299 PRK10199 542.02 -182300 PRK10200 426.26 -182301 PRK10201 318.993 -182302 PRK10202 261.22 -182303 PRK10203 167.526 -182304 PRK10204 65.7039 -182305 PRK10206 688.098 -182306 PRK10207 822.143 -182307 PRK10208 128.14 -182308 PRK10209 170.943 -182309 PRK10213 608.841 -182310 PRK10214 26.9546 -236663 PRK10215 242.762 -182312 PRK10216 556.741 -182313 PRK10217 774.976 -104396 PRK10218 1189.51 -182314 PRK10219 194.759 -182315 PRK10220 228.753 -182316 PRK10222 169.449 -236664 PRK10224 59.1561 -182318 PRK10225 504.554 -182319 PRK10226 585.76 -182320 PRK10227 281.54 -236665 PRK10229 328.974 -182322 PRK10234 172.921 -182323 PRK10236 402.029 -182324 PRK10238 839.998 -182325 PRK10239 318.663 -182326 PRK10240 478.709 -182327 PRK10241 493.958 -236666 PRK10244 85.732 -182329 PRK10245 692.725 -182330 PRK10246 1492.76 -182331 PRK10247 387.533 -236667 PRK10249 819.614 -182333 PRK10250 241.265 -182334 PRK10251 351.085 -236668 PRK10252 1730.28 -182336 PRK10253 544.581 -182337 PRK10254 267.237 -182338 PRK10255 1100.31 -182339 PRK10257 257.397 -182340 PRK10258 382.184 -137782 PRK10259 100.18 -182341 PRK10260 649.016 -182342 PRK10261 1142.67 -182343 PRK10262 609.755 -236669 PRK10263 2192.56 -182345 PRK10264 374.737 -182346 PRK10265 161.059 -182347 PRK10266 542.875 -182348 PRK10270 589.968 -182349 PRK10271 286.259 -182350 PRK10276 244.323 -182351 PRK10278 181.146 -182352 PRK10279 592.456 -182353 PRK10280 1240.48 -182354 PRK10281 477.234 -182355 PRK10286 326.826 -182356 PRK10287 182.737 -182357 PRK10290 284.04 -182358 PRK10291 236.458 -182359 PRK10292 94.1651 -182360 PRK10293 224.505 -182361 PRK10294 538.215 -182362 PRK10296 484.646 -182363 PRK10297 734.713 -182364 PRK10299 56.3233 -182365 PRK10301 179.712 -182366 PRK10302 509.179 -182367 PRK10304 332.395 -182368 PRK10306 357.547 -236670 PRK10307 534.171 -236671 PRK10308 500.056 -182371 PRK10309 651.13 -182372 PRK10310 157.724 -182373 PRK10314 275.954 -182374 PRK10316 258.292 -236672 PRK10318 124.862 -182376 PRK10319 487.36 -182377 PRK10323 304.872 -182378 PRK10324 211.88 -182379 PRK10325 329.326 -182380 PRK10328 218.592 -182381 PRK10329 150.443 -182382 PRK10330 300.653 -182383 PRK10331 800.396 -182384 PRK10332 149.164 -182385 PRK10333 341.912 -182386 PRK10334 484.423 -182387 PRK10336 422.382 -182388 PRK10337 704.102 -182389 PRK10339 585.57 -236673 PRK10340 1592.01 -182391 PRK10341 474.351 -182392 PRK10342 675.862 -182393 PRK10343 162.595 -182394 PRK10344 168.218 -182395 PRK10345 290.5 -182396 PRK10347 343.712 -182397 PRK10348 243.01 -137836 PRK10349 484.521 -182398 PRK10350 69.6609 -182399 PRK10351 286.344 -182400 PRK10352 449.533 -182401 PRK10353 404.703 -182402 PRK10354 130.096 -182403 PRK10355 572.457 -182404 PRK10356 371.512 -182405 PRK10357 367.508 -182406 PRK10358 328.493 -182407 PRK10359 248.513 -182408 PRK10360 378.166 -182409 PRK10361 850.812 -182410 PRK10363 241.474 -236674 PRK10364 629.125 -182412 PRK10365 879.749 -182413 PRK10367 611.743 -236675 PRK10369 660.724 -182415 PRK10370 319.54 -182416 PRK10371 504.354 -182417 PRK10372 303.82 -236676 PRK10376 511.822 -182419 PRK10377 224.602 -236677 PRK10378 605.225 -182421 PRK10380 63.7049 -182422 PRK10381 449.899 -182423 PRK10382 402.443 -236678 PRK10386 178.428 -236679 PRK10387 265.975 -182426 PRK10391 138.407 -236680 PRK10396 292.42 -182428 PRK10397 218.066 -236681 PRK10401 642.982 -236682 PRK10402 357.885 -182431 PRK10403 356.47 -182432 PRK10404 134.587 -182433 PRK10406 767.048 -182434 PRK10408 129.34 -182435 PRK10409 146.484 -236683 PRK10410 93.8572 -236684 PRK10411 414.588 -182438 PRK10413 130.634 -236685 PRK10414 387.697 -182440 PRK10415 681.697 -236686 PRK10416 301.632 -236687 PRK10417 362.063 -236688 PRK10418 369.414 -236689 PRK10419 411.388 -182445 PRK10420 866.076 -236690 PRK10421 338.28 -182447 PRK10422 590.594 -182448 PRK10423 681.039 -170429 PRK10424 25.9341 -182449 PRK10425 513.448 -236691 PRK10426 846.2 -182451 PRK10427 188.516 -182452 PRK10428 101.878 -182453 PRK10429 639.45 -182454 PRK10430 423.75 -236692 PRK10431 754.001 -236693 PRK10433 340.041 -182457 PRK10434 430.263 -182458 PRK10435 701.891 -236694 PRK10436 777.568 -182460 PRK10437 455.546 -182461 PRK10438 504.66 -236695 PRK10439 523.809 -182463 PRK10440 373.277 -182464 PRK10441 326.664 -182465 PRK10443 528.084 -182466 PRK10444 463.11 -182467 PRK10445 427.523 -182468 PRK10446 534.866 -182469 PRK10447 291.744 -182470 PRK10449 209.253 -182471 PRK10452 156.857 -182472 PRK10454 187.404 -182473 PRK10455 177.685 -182474 PRK10456 633.311 -182475 PRK10457 87.5528 -236696 PRK10458 862.449 -236697 PRK10459 494.167 -182478 PRK10461 644.887 -182479 PRK10463 487.392 -182480 PRK10465 256.073 -182481 PRK10466 252.695 -182482 PRK10467 1169.94 -182483 PRK10468 711.202 -182484 PRK10470 168.549 -182485 PRK10472 639.107 -182486 PRK10473 461.798 -170468 PRK10474 119.216 -236698 PRK10475 538.933 -182488 PRK10476 457.181 -182489 PRK10477 346.309 -182490 PRK10478 488.531 -182491 PRK10481 235.606 -182492 PRK10483 663.005 -236699 PRK10484 660.423 -182494 PRK10486 177.612 -236700 PRK10489 421.695 -236701 PRK10490 1671.34 -236702 PRK10494 402.848 -182498 PRK10497 69.3824 -182499 PRK10499 155.073 -236703 PRK10502 272.593 -182501 PRK10503 1830.89 -182502 PRK10504 778.528 -236704 PRK10506 183.272 -182504 PRK10507 1128.22 -182505 PRK10508 632.975 -182506 PRK10509 105.204 -182507 PRK10510 311.038 -182508 PRK10512 959.506 -182509 PRK10513 499.219 -182510 PRK10514 263.016 -170492 PRK10515 97.6626 -236705 PRK10517 1724.92 -236706 PRK10518 610.564 -182513 PRK10519 160.521 -182514 PRK10520 304.715 -236707 PRK10522 816.517 -236708 PRK10523 353.99 -182517 PRK10524 1173.96 -182518 PRK10525 555.179 -182519 PRK10526 552.819 -182520 PRK10527 108.625 -182521 PRK10528 345.979 -182522 PRK10529 417.668 -182523 PRK10530 516.499 -236709 PRK10531 460.02 -182525 PRK10532 435.264 -182526 PRK10533 235.398 -236710 PRK10534 604.062 -182528 PRK10535 1206.09 -182529 PRK10536 450.003 -236711 PRK10537 451.783 -182531 PRK10538 491.579 -182532 PRK10540 41.4444 -182533 PRK10542 361.692 -182534 PRK10543 360.806 -182535 PRK10545 424.855 -182536 PRK10546 226.161 -236712 PRK10547 1280.44 -182538 PRK10548 142.051 -182539 PRK10549 803.082 -236713 PRK10550 668.824 -182541 PRK10551 830.019 -182542 PRK10553 127.607 -182543 PRK10554 583.721 -182544 PRK10555 1999.32 -182545 PRK10556 121.312 -236714 PRK10557 285.333 -182547 PRK10558 440.715 -182548 PRK10559 456.125 -182549 PRK10560 668.061 -182550 PRK10561 418.46 -236715 PRK10562 248.829 -182552 PRK10563 384.817 -236716 PRK10564 358.192 -182554 PRK10565 799.657 -182555 PRK10566 432.875 -182556 PRK10568 218.113 -182557 PRK10569 297.672 -236717 PRK10572 409.748 -182559 PRK10573 517.133 -236718 PRK10574 223.757 -182561 PRK10575 523.196 -236719 PRK10576 476.427 -236720 PRK10577 297.135 -182564 PRK10578 299.805 -182565 PRK10579 179.607 -182566 PRK10580 728.925 -182567 PRK10581 499.298 -182568 PRK10582 141.432 -182569 PRK10584 404.161 -182570 PRK10586 614.041 -236721 PRK10588 118.687 -236722 PRK10590 776.678 -182573 PRK10591 82.7851 -182574 PRK10592 448.532 -182575 PRK10593 441.039 -236723 PRK10594 938.777 -182577 PRK10595 163.634 -182578 PRK10597 146.528 -182579 PRK10598 256.506 -182580 PRK10599 510.932 -182581 PRK10600 922.146 -182582 PRK10602 394.011 -236724 PRK10604 651.669 -182584 PRK10605 635.998 -182585 PRK10606 347.146 -170568 PRK10610 242.187 -236725 PRK10611 533.544 -182587 PRK10612 261.283 -182588 PRK10613 109.405 -182589 PRK10614 1857.47 -182590 PRK10617 388.112 -236726 PRK10618 1230.57 -182592 PRK10619 463.672 -182593 PRK10621 389.055 -182594 PRK10622 739.62 -182595 PRK10624 675.174 -236727 PRK10625 715.092 -182597 PRK10626 354.734 -182598 PRK10628 462.649 -236728 PRK10629 137.056 -182600 PRK10631 969.151 -182601 PRK10632 517.006 -182602 PRK10633 107.087 -182603 PRK10634 386.774 -182604 PRK10635 275.558 -236729 PRK10636 1154.92 -182606 PRK10637 863.682 -182607 PRK10638 164.993 -182608 PRK10639 364.482 -182609 PRK10640 915.261 -236730 PRK10641 1030.71 -182611 PRK10642 805.856 -182612 PRK10643 353.956 -182613 PRK10644 601.009 -182614 PRK10645 170.341 -182615 PRK10646 296.677 -182616 PRK10647 387.495 -182617 PRK10649 744.989 -182618 PRK10650 129.008 -182619 PRK10651 313.504 -182620 PRK10653 510.401 -182621 PRK10654 597.069 -182622 PRK10655 694.083 -182623 PRK10657 478.932 -236731 PRK10658 1227.07 -182625 PRK10659 288.571 -182626 PRK10660 699.453 -236732 PRK10662 448.327 -182628 PRK10663 330.205 -170612 PRK10664 140.956 -182629 PRK10665 193.222 -182630 PRK10666 625.233 -182631 PRK10667 147.056 -182632 PRK10668 398.995 -182633 PRK10669 878.276 -182634 PRK10670 274.315 -182635 PRK10671 1495.01 -236733 PRK10672 410.608 -182637 PRK10673 500.027 -236734 PRK10674 858.938 -182639 PRK10675 703.111 -182640 PRK10676 441.011 -182641 PRK10677 469.535 -182642 PRK10678 292.033 -182643 PRK10680 812.4 -182644 PRK10681 458.007 -182645 PRK10682 748.6 -182646 PRK10683 514.644 -236735 PRK10684 605.165 -182648 PRK10687 207.051 -182649 PRK10689 2322.42 -182650 PRK10691 449.158 -182651 PRK10692 108.917 -182652 PRK10693 484.879 -236736 PRK10694 260.946 -182654 PRK10695 1009.04 -236737 PRK10696 370.341 -182656 PRK10697 177.833 -182657 PRK10698 307.469 -182658 PRK10699 290.392 -182659 PRK10700 537.426 -236738 PRK10701 433.294 -182661 PRK10702 444.46 -236739 PRK10703 675.287 -182663 PRK10707 325.406 -182664 PRK10708 116.719 -182665 PRK10710 445.284 -182666 PRK10711 366.721 -236740 PRK10712 901.416 -182668 PRK10713 148.723 -182669 PRK10714 589.784 -182670 PRK10715 363.612 -236741 PRK10716 791.989 -182672 PRK10717 439.297 -236742 PRK10718 297.668 -236743 PRK10719 509.41 -236744 PRK10720 582.758 -170660 PRK10721 120.743 -236745 PRK10722 263.009 -182677 PRK10723 483.367 -182678 PRK10724 287.978 -182679 PRK10725 365.937 -236746 PRK10726 114.7 -182681 PRK10727 647.97 -182682 PRK10729 387.554 -182683 PRK10733 1303.47 -182684 PRK10734 451.022 -182685 PRK10735 939.985 -236747 PRK10736 667.807 -236748 PRK10737 264.883 -182688 PRK10738 259.41 -170674 PRK10739 260.407 -182689 PRK10740 484.812 -236749 PRK10742 409.548 -182691 PRK10743 264.751 -182692 PRK10744 527.657 -182693 PRK10745 1053.54 -182694 PRK10746 751.265 -182695 PRK10747 652.925 -182696 PRK10748 429.54 -182697 PRK10749 580.031 -182698 PRK10750 817.533 -236750 PRK10751 338.205 -182700 PRK10752 639.149 -138142 PRK10753 138.372 -182701 PRK10754 620.983 -236751 PRK10755 474.071 -236752 PRK10756 304.738 -236753 PRK10757 564.432 -182705 PRK10759 124.1 -236754 PRK10760 583.624 -236755 PRK10762 948.673 -182708 PRK10763 458.082 -236756 PRK10764 338.848 -182710 PRK10765 404.356 -182711 PRK10766 372.834 -236757 PRK10767 457.684 -182713 PRK10768 494.043 -182714 PRK10769 315.14 -236758 PRK10770 742.328 -182716 PRK10771 431.313 -182717 PRK10772 161.053 -182718 PRK10773 825.437 -182719 PRK10774 653 -182720 PRK10775 459.964 -182721 PRK10776 231.798 -182722 PRK10778 262.378 -182723 PRK10779 832.79 -182724 PRK10780 207.4 -182725 PRK10781 193.361 -182726 PRK10782 305.504 -182727 PRK10783 685.698 -236759 PRK10785 952.528 -182729 PRK10786 671.477 -182730 PRK10787 1569.93 -182731 PRK10788 934.811 -182732 PRK10789 1042.76 -182733 PRK10790 1068.57 -182734 PRK10791 302.144 -236760 PRK10792 484.42 -182736 PRK10793 787.509 -182737 PRK10794 543.174 -236761 PRK10795 1180.71 -236762 PRK10796 300.464 -236763 PRK10797 596.845 -182741 PRK10799 478.093 -182742 PRK10800 230.017 -182743 PRK10801 411.182 -182744 PRK10802 300.248 -182745 PRK10803 327.91 -182746 PRK10805 487.42 -182747 PRK10807 1074.68 -236764 PRK10808 490.357 -182749 PRK10809 372.149 -236765 PRK10810 106.301 -236766 PRK10811 1546.54 -236767 PRK10812 501.209 -182753 PRK10814 719.567 -182754 PRK10815 808.089 -182755 PRK10816 415.677 -182756 PRK10818 542.223 -236768 PRK10819 191.049 -236769 PRK10820 1011.14 -182759 PRK10824 235.953 -236770 PRK10826 316.119 -182761 PRK10828 323.949 -236771 PRK10829 680.957 -182763 PRK10832 284.818 -236772 PRK10833 846.496 -182765 PRK10834 442.998 -182766 PRK10835 473.693 -182767 PRK10836 876.071 -182768 PRK10837 448.368 -236773 PRK10838 306.691 -236774 PRK10839 459.188 -182771 PRK10840 369.933 -182772 PRK10841 1530.68 -182773 PRK10845 266.271 -182774 PRK10846 750.754 -182775 PRK10847 398.324 -182776 PRK10848 272.373 -182777 PRK10850 149.895 -182778 PRK10851 704.151 -236775 PRK10852 677.242 -182780 PRK10853 217.608 -182781 PRK10854 1010.8 -236776 PRK10856 474.13 -236777 PRK10857 278.303 -182784 PRK10858 160.154 -236778 PRK10859 577.981 -182786 PRK10860 306.732 -182787 PRK10861 622.844 -182788 PRK10862 211.748 -182789 PRK10863 308.523 -236779 PRK10864 489.29 -182791 PRK10865 1662.29 -182792 PRK10866 429.963 -236780 PRK10867 507.309 -236781 PRK10869 925.102 -182795 PRK10870 275.088 -236782 PRK10871 473.168 -182797 PRK10872 1446.14 -182798 PRK10873 171.422 -182799 PRK10874 727.988 -236783 PRK10875 907.778 -236784 PRK10876 2102.31 -182802 PRK10877 444.923 -182803 PRK10878 134.074 -182804 PRK10879 857.101 -182805 PRK10880 709.17 -236785 PRK10881 465.204 -236786 PRK10882 387.488 -182808 PRK10883 919.869 -182809 PRK10884 281.927 -182810 PRK10885 610.318 -182811 PRK10886 386.593 -236787 PRK10887 697.655 -182813 PRK10888 636.885 -182814 PRK10892 619.046 -236788 PRK10893 295.03 -182816 PRK10894 276.635 -182817 PRK10895 452.425 -182818 PRK10896 253.523 -182819 PRK10897 138.806 -182820 PRK10898 578.494 -236789 PRK10899 1595.73 -236790 PRK10901 488.16 -236791 PRK10902 409.538 -182824 PRK10903 341.437 -182825 PRK10904 546.627 -236792 PRK10905 373.119 -182827 PRK10906 490.525 -182828 PRK10907 390.132 -182829 PRK10908 402.716 -236793 PRK10909 359.034 -182831 PRK10910 121.65 -182832 PRK10911 1389.16 -182833 PRK10913 490.064 -182834 PRK10914 575.993 -182835 PRK10916 714.525 -236794 PRK10917 579.028 -182837 PRK10918 640.722 -182838 PRK10919 1387.25 -236795 PRK10920 551.624 -182840 PRK10921 420.314 -236796 PRK10922 1094.58 -182842 PRK10923 914.642 -182843 PRK10925 418.171 -182844 PRK10926 515.789 -236797 PRK10927 437.96 -236798 PRK10929 1681.37 -236799 PRK10930 669.997 -182848 PRK10931 457.232 -182849 PRK10933 1099.42 -236800 PRK10935 732.81 -236801 PRK10936 394.7 -182852 PRK10938 834.28 -182853 PRK10939 879.724 -182854 PRK10941 504.926 -236802 PRK10942 814.385 -170841 PRK10943 118.632 -182856 PRK10945 120.356 -236803 PRK10946 994.883 -182858 PRK10947 205.536 -236804 PRK10948 662.499 -182860 PRK10949 1058.12 -236805 PRK10952 582.436 -182862 PRK10953 1171.42 -182863 PRK10954 376.746 -182864 PRK10955 414.585 -236806 PRK10957 359.672 -236807 PRK10958 257.884 -182867 PRK10959 375.871 -236808 PRK10963 300.703 -236809 PRK10964 573.077 -236810 PRK10965 747.234 -182871 PRK10966 642.375 -182872 PRK10969 109.464 -182873 PRK10971 412.61 -182874 PRK10972 175.425 -182875 PRK10973 474.995 -182876 PRK10974 794.775 -182877 PRK10975 274.499 -182878 PRK10976 507.664 -182879 PRK10977 782.584 -182880 PRK10982 876.751 -182881 PRK10983 502.228 -182882 PRK10984 155.482 -182883 PRK10985 582.302 -236811 PRK10987 283.351 -182885 PRK10991 1125.86 -236812 PRK10992 381.654 -236813 PRK10993 286.918 -236814 PRK10995 229.074 -182889 PRK10996 251.527 -236815 PRK10997 622.319 -182891 PRK10998 428.743 -236816 PRK10999 683.612 -182893 PRK11000 718.349 -236817 PRK11001 217.839 -182895 PRK11006 786.125 -182896 PRK11007 838.573 -236818 PRK11009 366.652 -182898 PRK11010 821.196 -236819 PRK11013 504.141 -236820 PRK11014 273.476 -236821 PRK11017 501.756 -236822 PRK11018 119.764 -182903 PRK11019 100.716 -182904 PRK11020 120.512 -236823 PRK11021 425.477 -182906 PRK11022 626.384 -182907 PRK11023 277.701 -236824 PRK11024 208.791 -182909 PRK11025 595.172 -182910 PRK11026 432.096 -236825 PRK11027 112.748 -182912 PRK11028 520.672 -182913 PRK11029 589.019 -236826 PRK11031 786.459 -182915 PRK11032 249.913 -236827 PRK11033 1083.87 -236828 PRK11034 1492.41 -182918 PRK11036 472.141 -182919 PRK11037 143.931 -182920 PRK11038 63.4934 -182921 PRK11039 244.994 -182922 PRK11040 867.529 -182923 PRK11041 628.18 -182924 PRK11043 514.827 -236829 PRK11045 182.559 -236830 PRK11049 709.193 -182927 PRK11050 180.978 -236831 PRK11052 1166.19 -182929 PRK11053 337.713 -182930 PRK11054 1006.01 -182931 PRK11055 580.726 -236832 PRK11056 152.414 -182933 PRK11057 1236.51 -182934 PRK11058 821.656 -236833 PRK11059 821.801 -182936 PRK11060 200.627 -182937 PRK11061 1318.07 -182938 PRK11062 535.358 -182939 PRK11063 438.427 -182940 PRK11064 786.098 -236834 PRK11067 1501.87 -182942 PRK11068 239.191 -236835 PRK11069 1854.21 -182944 PRK11070 1118.62 -182945 PRK11071 324.224 -236836 PRK11072 1131.86 -182947 PRK11073 586.662 -182948 PRK11074 555.708 -236837 PRK11081 416.316 -236838 PRK11083 346.179 -182951 PRK11085 556.257 -236839 PRK11086 795.658 -236840 PRK11087 311.092 -236841 PRK11088 431.258 -182955 PRK11089 778.125 -236842 PRK11091 1079.58 -236843 PRK11092 1393.31 -182958 PRK11096 592.462 -236844 PRK11097 427.435 -182960 PRK11098 632.419 -236845 PRK11099 354.612 -236846 PRK11100 541.358 -236847 PRK11101 1003.77 -182964 PRK11102 499.826 -182965 PRK11103 467.659 -182966 PRK11104 305.342 -182967 PRK11106 475.721 -236848 PRK11107 1352.98 -236849 PRK11109 484.836 -236850 PRK11111 272.969 -182971 PRK11112 455.661 -182972 PRK11113 669.742 -236851 PRK11114 587.285 -182974 PRK11115 417.518 -182975 PRK11118 133.911 -236852 PRK11119 409.33 -236853 PRK11121 310.385 -182978 PRK11122 320.367 -182979 PRK11123 316.234 -182980 PRK11124 477.969 -236854 PRK11125 756.065 -236855 PRK11126 364.546 -182983 PRK11127 124.185 -236856 PRK11128 477.471 -182985 PRK11130 151.273 -182986 PRK11131 2581.98 -182987 PRK11132 502.69 -182988 PRK11133 519.89 -236857 PRK11138 536.822 -182990 PRK11139 371.098 -236858 PRK11142 477.054 -236859 PRK11143 486.873 -182993 PRK11144 596.856 -182994 PRK11145 496.472 -236860 PRK11146 629.628 -236861 PRK11147 1128.51 -182997 PRK11148 451.311 -182998 PRK11150 640.982 -182999 PRK11151 586.611 -236862 PRK11152 56.0371 -236863 PRK11153 498.557 -236864 PRK11154 1058.35 -236865 PRK11160 734.708 -183004 PRK11161 448.007 -236866 PRK11162 525.25 -236867 PRK11165 716.302 -236868 PRK11166 304.155 -236869 PRK11168 547.931 -183009 PRK11169 269.323 -183010 PRK11170 673.996 -183011 PRK11171 314.914 -183012 PRK11172 470.66 -183013 PRK11173 440.606 -236870 PRK11174 809.842 -236871 PRK11175 478.604 -183016 PRK11176 1065.4 -183017 PRK11177 1036.12 -183018 PRK11178 477.227 -183019 PRK11179 278.517 -183020 PRK11180 605.518 -183021 PRK11181 480.233 -236872 PRK11183 869.93 -236873 PRK11186 1130.76 -236874 PRK11187 246.705 -183025 PRK11188 412.204 -236875 PRK11189 379.619 -183027 PRK11190 389.375 -236876 PRK11191 137.016 -236877 PRK11192 627.74 -236878 PRK11193 249.407 -183031 PRK11194 746.159 -236879 PRK11195 378.408 -183033 PRK11197 608.177 -236880 PRK11198 174.718 -183035 PRK11199 580.296 -183036 PRK11200 130.923 -236881 PRK11202 303.08 -236882 PRK11204 574.575 -236883 PRK11205 519.955 -183040 PRK11207 335.936 -183041 PRK11212 283.745 -183042 PRK11228 357.853 -183043 PRK11230 985.81 -183044 PRK11231 470.265 -183045 PRK11233 488.038 -236884 PRK11234 721.911 -183047 PRK11235 106.25 -183048 PRK11239 363.679 -183049 PRK11240 1327.41 -183050 PRK11241 961.672 -183051 PRK11242 432.458 -183052 PRK11244 429.383 -183053 PRK11245 193.264 -236885 PRK11246 354.384 -183055 PRK11247 472.625 -183056 PRK11248 403.697 -236886 PRK11249 1395.93 -183058 PRK11251 145.202 -183059 PRK11253 471.768 -236887 PRK11259 474.324 -183061 PRK11260 428.757 -236888 PRK11263 541.46 -183063 PRK11264 480.402 -183064 PRK11267 252.354 -183065 PRK11268 485.728 -183066 PRK11269 981.391 -183067 PRK11272 283.403 -236889 PRK11273 804.699 -236890 PRK11274 667.347 -183070 PRK11275 502.303 -236891 PRK11278 867.196 -183072 PRK11280 172.503 -236892 PRK11281 1354.97 -236893 PRK11282 460.843 -183075 PRK11283 697.667 -183076 PRK11285 420.623 -183077 PRK11288 864.222 -236894 PRK11289 380.777 -236895 PRK11295 182.186 -183080 PRK11300 499.516 -236896 PRK11301 602.728 -183082 PRK11302 489.891 -236897 PRK11303 495.937 -236898 PRK11308 600.798 -183085 PRK11316 743.957 -183086 PRK11320 506.36 -183087 PRK11325 241.451 -183088 PRK11331 939.125 -183089 PRK11337 475.019 -183090 PRK11339 780.926 -236899 PRK11340 377.268 -183092 PRK11342 456.977 -183093 PRK11346 331.1 -183094 PRK11347 172.155 -183095 PRK11352 138.809 -236900 PRK11354 104.962 -183096 PRK11357 599.534 -183097 PRK11359 1344.04 -236901 PRK11360 786.468 -183099 PRK11361 804.068 -183100 PRK11365 440.526 -183101 PRK11366 480.167 -183102 PRK11367 862.37 -183103 PRK11370 158.979 -183104 PRK11371 160.028 -236902 PRK11372 195.833 -183106 PRK11375 720.025 -183107 PRK11376 502.299 -183108 PRK11377 725.388 -183109 PRK11379 606.804 -236903 PRK11380 467.074 -183111 PRK11382 670.942 -105206 PRK11383 265.357 -183112 PRK11385 413.376 -236904 PRK11387 727.415 -183114 PRK11388 972.615 -138553 PRK11391 300.782 -183115 PRK11394 410.286 -236905 PRK11396 356.856 -183117 PRK11397 732.007 -105214 PRK11401 240.353 -183118 PRK11402 443.122 -183119 PRK11403 158.003 -183120 PRK11404 827.974 -236906 PRK11408 186.393 -171099 PRK11409 123.498 -236907 PRK11410 610.158 -183123 PRK11411 500.74 -183124 PRK11412 574.804 -183125 PRK11413 1434.8 -183126 PRK11414 379.985 -183127 PRK11415 90.2463 -236908 PRK11423 400.557 -236909 PRK11424 119.315 -183129 PRK11425 278.694 -183130 PRK11426 211.508 -183131 PRK11427 758.241 -183132 PRK11430 793.418 -171110 PRK11431 123.815 -183133 PRK11432 708.024 -236910 PRK11433 384.124 -183135 PRK11436 139.768 -236911 PRK11439 396.057 -183137 PRK11440 320.909 -183138 PRK11443 195.347 -183139 PRK11445 565.455 -183140 PRK11447 1508.45 -236912 PRK11448 1616.56 -171118 PRK11449 503.342 -183142 PRK11453 422.309 -183143 PRK11459 698.621 -183144 PRK11460 269.601 -183145 PRK11462 863.862 -236913 PRK11463 68.3405 -183147 PRK11465 1099.06 -236914 PRK11466 1473.22 -183149 PRK11467 157.665 -183150 PRK11468 702.928 -183151 PRK11469 281.854 -183152 PRK11470 346.406 -236915 PRK11475 322.849 -183154 PRK11476 165.01 -183155 PRK11477 691.503 -183156 PRK11478 256.36 -183157 PRK11479 382.673 -183158 PRK11480 518.005 -183159 PRK11482 481.144 -183160 PRK11486 119.547 -236916 PRK11492 250.258 -236917 PRK11493 524.657 -236918 PRK11498 1449.07 -236919 PRK11504 911.204 -183165 PRK11505 155.228 -183166 PRK11507 121.151 -183167 PRK11508 222.599 -183168 PRK11509 239.474 -236920 PRK11511 240.774 -183170 PRK11512 259.445 -236921 PRK11513 268.967 -183172 PRK11517 405.821 -183173 PRK11519 1225.01 -183174 PRK11521 149.129 -183175 PRK11522 773.145 -183176 PRK11523 453.148 -183177 PRK11524 503.1 -183178 PRK11525 319.311 -236922 PRK11528 330.534 -236923 PRK11530 204.102 -183181 PRK11534 392.335 -183182 PRK11536 418.753 -183183 PRK11537 574.729 -183184 PRK11538 191.546 -236924 PRK11539 1096.96 -183186 PRK11543 599.445 -236925 PRK11544 238.332 -236926 PRK11545 333.99 -183189 PRK11546 185.054 -183190 PRK11548 181.496 -236927 PRK11551 336.934 -236928 PRK11552 347.425 -236929 PRK11553 490.452 -183194 PRK11556 661.1 -183195 PRK11557 416.859 -236930 PRK11558 159.424 -183197 PRK11559 471.073 -183198 PRK11560 984.148 -183199 PRK11561 1043.95 -183200 PRK11562 467.763 -236931 PRK11563 1019.03 -236932 PRK11564 631.274 -183203 PRK11565 534.652 -183204 PRK11566 146.875 -183205 PRK11568 385.141 -183206 PRK11569 488.548 -183207 PRK11570 397.631 -183208 PRK11572 397.454 -236933 PRK11573 756.59 -183210 PRK11574 339.832 -183211 PRK11578 562.088 -183212 PRK11579 701.475 -183213 PRK11582 288.483 -183214 PRK11586 273.333 -183215 PRK11587 396.288 -236934 PRK11588 618.94 -236935 PRK11589 352.928 -183218 PRK11590 323.917 -183219 PRK11593 208.116 -183220 PRK11594 72.0528 -183221 PRK11595 338.166 -183222 PRK11596 402.072 -183223 PRK11597 271.62 -183224 PRK11598 988.02 -183225 PRK11602 467.691 -183226 PRK11607 741.652 -236936 PRK11608 644.032 -183228 PRK11609 381.262 -183229 PRK11611 419.481 -183230 PRK11613 485.795 -183231 PRK11614 429.684 -183232 PRK11615 257.742 -183233 PRK11616 159.565 -236937 PRK11617 321.113 -183235 PRK11618 399.712 -183236 PRK11619 1122.84 -236938 PRK11621 297.295 -183238 PRK11622 443.628 -236939 PRK11623 821.689 -183240 PRK11624 427.907 -183241 PRK11625 153.329 -183242 PRK11627 310.889 -183243 PRK11628 195.386 -183244 PRK11629 423.073 -183245 PRK11630 421.588 -236940 PRK11633 253.387 -236941 PRK11634 1092.58 -183248 PRK11636 1666.04 -236942 PRK11637 624.024 -236943 PRK11638 539.244 -183251 PRK11639 323.248 -183252 PRK11640 316.935 -236944 PRK11642 1543.16 -236945 PRK11644 622.768 -183255 PRK11646 581.248 -183256 PRK11648 264.174 -236946 PRK11649 743.023 -236947 PRK11650 596.055 -183259 PRK11652 528.324 -236948 PRK11653 275.848 -236949 PRK11655 267.629 -183262 PRK11657 276.077 -183263 PRK11658 732.981 -183264 PRK11659 237.625 -183265 PRK11660 697.082 -183266 PRK11663 727.66 -236950 PRK11664 1303.75 -236951 PRK11667 109.002 -236952 PRK11669 530.408 -183270 PRK11670 716.822 -183271 PRK11671 619.375 -183272 PRK11675 114.688 -236953 PRK11677 202.593 -236954 PRK11678 725.501 -236955 PRK11679 503.72 -183276 PRK11688 224.725 -183277 PRK11689 281.756 -236956 PRK11697 334.122 -236957 PRK11700 204.674 -183280 PRK11701 440.902 -183281 PRK11702 161.63 -183282 PRK11705 563.703 -183283 PRK11706 572.164 -236958 PRK11709 634.729 -183285 PRK11712 930.962 -236959 PRK11713 130.003 -236960 PRK11715 385.008 -236961 PRK11716 402.66 -236962 PRK11718 165.436 -236963 PRK11720 541.422 -236964 PRK11727 456.635 -183292 PRK11728 578.314 -183293 PRK11730 1038.28 -236965 PRK11742 1079.56 -236966 PRK11747 869.145 -236967 PRK11749 471.586 -236968 PRK11750 2793.26 -183298 PRK11752 469.023 -236969 PRK11753 341.576 -236970 PRK11756 444.337 -236971 PRK11760 424.247 -236972 PRK11761 522.897 -183303 PRK11762 259.737 -236973 PRK11767 867.623 -236974 PRK11768 364.488 -236975 PRK11770 121.099 -236976 PRK11773 1259.4 -236977 PRK11776 705.024 -236978 PRK11778 407.68 -236979 PRK11779 651.513 -236980 PRK11780 251.244 -236981 PRK11783 962.339 -236982 PRK11784 345.661 -236983 PRK11788 356.811 -236984 PRK11789 285.931 -236985 PRK11790 644.539 -236986 PRK11792 403.756 -183318 PRK11797 180.031 -236987 PRK11798 174.621 -236988 PRK11805 384.132 -236989 PRK11809 2226.35 -236990 PRK11814 935.425 -236991 PRK11815 411.45 -236992 PRK11819 966.507 -236993 PRK11820 237.353 -236994 PRK11823 463.797 -236995 PRK11824 834.314 -183328 PRK11827 118.554 -183329 PRK11829 1201.3 -236996 PRK11830 307.119 -236997 PRK11831 522.789 -183332 PRK11832 405.035 -183333 PRK11835 179.003 -183334 PRK11836 793.102 -183335 PRK11837 298.85 -236998 PRK11840 503.896 -236999 PRK11854 717.552 -237000 PRK11855 576.389 -237001 PRK11856 250.864 -237002 PRK11857 492.772 -183341 PRK11858 501.627 -237003 PRK11860 1085.08 -183343 PRK11861 1206.46 -237004 PRK11863 449.612 -237005 PRK11864 529.663 -183346 PRK11865 474.587 -183347 PRK11866 485.801 -237006 PRK11867 349.911 -183349 PRK11869 525.886 -183350 PRK11872 664.906 -237007 PRK11873 356.951 -183352 PRK11874 26.0085 -183353 PRK11875 41.5957 -183354 PRK11876 27.6765 -183355 PRK11877 42.3573 -183356 PRK11878 23.098 -237008 PRK11880 195.75 -237009 PRK11883 440.054 -237010 PRK11886 302.091 -183360 PRK11889 791.189 -183361 PRK11890 481.027 -183362 PRK11891 663.486 -237011 PRK11892 818.004 -237012 PRK11893 313.742 -183365 PRK11895 189.132 -237013 PRK11898 331.787 -237014 PRK11899 401.955 -237015 PRK11901 265.008 -183369 PRK11902 601.455 -237016 PRK11903 706.853 -237017 PRK11904 1447.7 -237018 PRK11905 1720.86 -183373 PRK11906 840.871 -237019 PRK11907 1415 -183375 PRK11908 609.791 -183376 PRK11909 317.035 -183377 PRK11910 1143.99 -138812 PRK11911 213.546 -237020 PRK11913 296.779 -237021 PRK11914 515.491 -237022 PRK11915 1027.58 -183380 PRK11916 610.385 -183381 PRK11917 454.766 -171344 PRK11920 261.251 -237023 PRK11921 751.524 -237024 PRK11922 255.274 -171347 PRK11923 356.034 -183384 PRK11924 138.565 -237025 PRK11929 1044.29 -237026 PRK11930 1151.63 -183387 PRK11933 814.913 -237027 PRK12266 698.433 -237028 PRK12267 938.454 -237029 PRK12268 613.766 -105491 PRK12269 1820.09 -237030 PRK12270 1640.76 -183392 PRK12271 140.846 -237031 PRK12273 655.658 -237032 PRK12274 373.853 -183395 PRK12275 110.725 -237033 PRK12276 351.948 -183397 PRK12277 90.209 -237034 PRK12278 193.151 -138835 PRK12279 492.283 -237035 PRK12280 96.754 -183399 PRK12281 66.9866 -183400 PRK12282 411.17 -183401 PRK12283 744.464 -237036 PRK12284 757.614 -237037 PRK12285 449.7 -237038 PRK12286 52.9289 -183405 PRK12287 472.704 -237039 PRK12288 506.315 -237040 PRK12289 586.212 -237041 PRK12290 654.556 -237042 PRK12291 453.665 -237043 PRK12292 284.066 -183411 PRK12293 390.511 -237044 PRK12294 411.895 -183413 PRK12295 298.771 -237045 PRK12296 494.772 -237046 PRK12297 431.832 -237047 PRK12298 429.673 -237048 PRK12299 363.236 -237049 PRK12300 1052.54 -183419 PRK12301 156.785 -183420 PRK12302 208.151 -183421 PRK12303 352.424 -237050 PRK12305 825.571 -183423 PRK12306 832.038 -237051 PRK12307 654.69 -183425 PRK12308 1116.01 -183426 PRK12309 670.289 -183427 PRK12310 695.123 -183428 PRK12311 598.677 -237052 PRK12313 894.257 -183430 PRK12314 235.134 -237053 PRK12315 965.238 -237054 PRK12316 4425.44 -237055 PRK12317 743.669 -183434 PRK12318 550.577 -183435 PRK12319 451.153 -138873 PRK12320 1184.4 -237056 PRK12321 1336.95 -183437 PRK12322 681.43 -237057 PRK12323 893.847 -237058 PRK12324 255.557 -237059 PRK12325 524.423 -237060 PRK12326 1184.75 -237061 PRK12327 434.674 -237062 PRK12328 519.549 -237063 PRK12329 699.615 -183445 PRK12330 993.883 -183446 PRK12331 890.591 -183447 PRK12332 245.579 -237064 PRK12333 292.094 -237065 PRK12334 192.193 -183450 PRK12335 422.044 -183451 PRK12336 264.116 -183452 PRK12337 641.053 -237066 PRK12338 463.076 -105560 PRK12339 297.086 -183454 PRK12341 627.526 -183455 PRK12342 414.899 -237067 PRK12343 196.285 -237068 PRK12344 788.899 -183458 PRK12346 543.158 -183459 PRK12347 455.819 -183460 PRK12348 434.999 -237069 PRK12349 716.884 -237070 PRK12350 397.027 -183463 PRK12351 745.207 -183464 PRK12352 470.436 -237071 PRK12353 350.224 -183466 PRK12354 441.963 -237072 PRK12355 254.729 -237073 PRK12356 512.589 -237074 PRK12357 616.349 -183470 PRK12358 365.999 -183471 PRK12359 307.264 -237075 PRK12360 435.698 -183473 PRK12361 845.056 -237076 PRK12362 341.053 -171438 PRK12363 1113.44 -237077 PRK12364 1676.06 -171440 PRK12365 2173.17 -237078 PRK12366 518.834 -237079 PRK12367 333.902 -171443 PRK12369 469.55 -237080 PRK12370 944.669 -171444 PRK12371 354.771 -237081 PRK12372 560.291 -237082 PRK12373 587.154 -237083 PRK12374 402.633 -183481 PRK12376 343.07 -183482 PRK12377 453.522 -237084 PRK12378 261.274 -183484 PRK12379 701.107 -183485 PRK12380 192.869 -183486 PRK12381 775.822 -183487 PRK12382 425.629 -237085 PRK12383 516.829 -183489 PRK12384 430.996 -183490 PRK12385 477.271 -237086 PRK12386 459.935 -183492 PRK12387 275.758 -171459 PRK12388 657.858 -183493 PRK12389 784.972 -183494 PRK12390 598.169 -237087 PRK12391 532.831 -171463 PRK12392 542.36 -237088 PRK12393 734.95 -183497 PRK12394 646.048 -183498 PRK12395 795.317 -183499 PRK12396 745.89 -183500 PRK12397 775.554 -237089 PRK12398 269.679 -183502 PRK12399 557.033 -171470 PRK12400 645.534 -237090 PRK12402 437.113 -171472 PRK12403 882.685 -183504 PRK12404 519.171 -237091 PRK12405 234.755 -183506 PRK12406 847.83 -183507 PRK12407 388.063 -237092 PRK12408 463.072 -237093 PRK12409 761.485 -237094 PRK12410 701.768 -183511 PRK12411 267.213 -183512 PRK12412 506.815 -183513 PRK12413 406.371 -183514 PRK12414 755.857 -183515 PRK12415 520.901 -183516 PRK12416 814.061 -237095 PRK12417 436.737 -183518 PRK12418 567.637 -237096 PRK12419 226.831 -237097 PRK12420 691.857 -237098 PRK12421 513.363 -183521 PRK12422 774.394 -171489 PRK12423 334.05 -171490 PRK12425 867.699 -183522 PRK12426 309.467 -183523 PRK12427 376.894 -237099 PRK12428 324.262 -237100 PRK12429 323.376 -237101 PRK12430 543.709 -171495 PRK12434 411.075 -183526 PRK12435 601.576 -171497 PRK12436 606.621 -183527 PRK12437 285.317 -171499 PRK12438 1809.45 -171500 PRK12439 542.453 -183528 PRK12440 753.234 -237102 PRK12442 139.953 -183530 PRK12444 1188.4 -171504 PRK12445 981.473 -171505 PRK12446 629.196 -237103 PRK12447 536.015 -237104 PRK12448 1116.46 -183533 PRK12449 112.105 -138982 PRK12450 471.496 -183534 PRK12451 975.806 -171510 PRK12452 911.224 -183535 PRK12454 462.545 -84141 PRK12456 307.295 -237105 PRK12457 534.326 -183536 PRK12458 490.302 -237106 PRK12459 512.613 -183538 PRK12460 323.486 -183539 PRK12461 407.486 -183540 PRK12462 697.331 -171518 PRK12463 705.346 -237107 PRK12464 649.538 -183542 PRK12465 875.894 -183543 PRK12466 660.06 -237108 PRK12467 6261.12 -171522 PRK12468 751.478 -237109 PRK12469 498.961 -171524 PRK12470 658.111 -237110 PRK12472 606.868 -183546 PRK12473 236.299 -139002 PRK12474 857.249 -183547 PRK12475 614.817 -171527 PRK12476 1034.69 -183548 PRK12478 559.187 -183549 PRK12479 612.344 -183550 PRK12480 626.555 -171531 PRK12481 443.963 -171532 PRK12482 453.436 -237111 PRK12483 884.908 -237112 PRK12484 656.819 -171535 PRK12485 750.639 -237113 PRK12486 666.839 -183553 PRK12487 269.907 -237114 PRK12488 788.612 -237115 PRK12489 462.432 -237116 PRK12490 487.713 -105695 PRK12491 451.063 -171539 PRK12492 1190.01 -237117 PRK12493 2064.53 -183557 PRK12494 311.12 -183558 PRK12495 148.093 -237118 PRK12496 199.846 -237119 PRK12497 78.6875 -183561 PRK12504 177.07 -237120 PRK12505 194.258 -237121 PRK12507 417.527 -183563 PRK12508 174.416 -237122 PRK12509 143.194 -237123 PRK12511 233.139 -171551 PRK12512 250.77 -183566 PRK12513 212.627 -105710 PRK12514 302.51 -183567 PRK12515 315.903 -183568 PRK12516 378.539 -183569 PRK12517 271.175 -237124 PRK12518 256.954 -237125 PRK12519 271.549 -237126 PRK12520 282.39 -183571 PRK12522 231.682 -183572 PRK12523 305.622 -183573 PRK12524 257.511 -139037 PRK12525 312.265 -237127 PRK12526 349.099 -171560 PRK12527 242.373 -171561 PRK12528 280.577 -183574 PRK12529 318.033 -237128 PRK12530 302.07 -105726 PRK12531 375.423 -171564 PRK12532 341.139 -237129 PRK12533 279.693 -183576 PRK12534 362.065 -237130 PRK12535 289.105 -237131 PRK12536 271.154 -171568 PRK12537 324.038 -139048 PRK12538 393.068 -237132 PRK12539 278.537 -183579 PRK12540 327.307 -183580 PRK12541 282.21 -183581 PRK12542 277.704 -183582 PRK12543 249.65 -183583 PRK12544 333.307 -183584 PRK12545 376.989 -139055 PRK12546 308.307 -139056 PRK12547 311.04 -183585 PRK12548 499.651 -183586 PRK12549 355.744 -183587 PRK12550 457.879 -139060 PRK12551 387.648 -183588 PRK12552 307.817 -237133 PRK12553 261.039 -237134 PRK12554 284.021 -237135 PRK12555 437.005 -183592 PRK12556 607.489 -237136 PRK12557 426.427 -183594 PRK12558 659.238 -79035 PRK12559 218.817 -183595 PRK12560 220.041 -237137 PRK12561 756.486 -105755 PRK12562 702.586 -237138 PRK12563 509.715 -237139 PRK12564 402.531 -171585 PRK12566 1879.23 -237140 PRK12567 172.771 -139075 PRK12568 1339.98 -237141 PRK12569 332.667 -237142 PRK12570 468.787 -183601 PRK12571 785.453 -183602 PRK12573 157.74 -183603 PRK12574 167.527 -171592 PRK12575 479.069 -237143 PRK12576 446.503 -183605 PRK12577 601.684 -183606 PRK12578 736.27 -183607 PRK12579 360.571 -79055 PRK12580 595.954 -79056 PRK12581 900.637 -237144 PRK12582 954.493 -237145 PRK12583 961.153 -237146 PRK12584 667.767 -183610 PRK12585 234.191 -237147 PRK12586 198.075 -183612 PRK12587 156.866 -183613 PRK12592 178.518 -183614 PRK12595 591.18 -105779 PRK12596 308.44 -183615 PRK12597 686.198 -237148 PRK12599 69.9382 -183617 PRK12600 91.1434 -183618 PRK12603 87.8842 -183619 PRK12604 91.7466 -237149 PRK12606 318.233 -183621 PRK12607 497.488 -237150 PRK12608 525.035 -237151 PRK12612 53.7759 -171609 PRK12613 255.624 -171610 PRK12615 351.251 -183624 PRK12616 535.01 -183625 PRK12617 307.222 -183626 PRK12618 177.967 -183627 PRK12619 219.269 -183628 PRK12620 244.535 -171613 PRK12621 233.105 -183629 PRK12622 230.197 -183630 PRK12623 146.857 -139107 PRK12624 253.836 -183631 PRK12625 235.124 -183632 PRK12626 265.254 -237152 PRK12627 171.066 -79089 PRK12628 265.937 -183634 PRK12629 250.38 -183635 PRK12630 232.414 -183636 PRK12631 230.23 -183637 PRK12632 215.056 -183638 PRK12633 397.421 -183639 PRK12634 319.953 -183640 PRK12636 419.544 -183641 PRK12637 829.396 -183642 PRK12640 278.663 -105809 PRK12641 309.18 -237153 PRK12642 379.392 -139117 PRK12643 375.722 -237154 PRK12644 1121.93 -237155 PRK12645 1117.7 -183646 PRK12646 1189.17 -237156 PRK12647 977.478 -237157 PRK12648 1084.45 -183649 PRK12649 1224.69 -237158 PRK12650 1080.45 -237159 PRK12651 133.817 -237160 PRK12652 504.67 -183653 PRK12653 342.915 -237161 PRK12654 203.226 -183655 PRK12655 377.175 -183656 PRK12656 390.254 -183657 PRK12657 118.711 -183658 PRK12658 146.362 -183659 PRK12659 179.857 -183660 PRK12660 140.256 -237162 PRK12661 199.228 -183662 PRK12662 627.146 -237163 PRK12663 554.945 -237164 PRK12664 576.297 -237165 PRK12665 623.529 -237166 PRK12666 423.492 -237167 PRK12667 534.936 -237168 PRK12668 590.328 -183669 PRK12670 117.127 -183670 PRK12671 108.959 -183671 PRK12672 155.643 -237169 PRK12674 59.4554 -171652 PRK12675 162.263 -183673 PRK12676 340.346 -237170 PRK12677 667.04 -237171 PRK12678 723.616 -183676 PRK12679 595.251 -183677 PRK12680 614.708 -183678 PRK12681 594.183 -183679 PRK12682 472.169 -237172 PRK12683 535.008 -237173 PRK12684 534.556 -183682 PRK12685 193.479 -183683 PRK12686 466.824 -105853 PRK12687 384.402 -171664 PRK12688 826.439 -183684 PRK12689 422.234 -183685 PRK12690 368.627 -183686 PRK12691 381.554 -139158 PRK12692 489.358 -183687 PRK12693 389.993 -183688 PRK12694 419.932 -237174 PRK12696 370.622 -237175 PRK12697 359.571 -183690 PRK12698 378.682 -105864 PRK12699 386.603 -139164 PRK12700 360.909 -183691 PRK12701 478.885 -105866 PRK12702 586.655 -237176 PRK12703 622.273 -237177 PRK12704 564.018 -237178 PRK12705 519.266 -183694 PRK12706 353.77 -139168 PRK12708 124.566 -237179 PRK12709 497.139 -139170 PRK12710 526.668 -237180 PRK12711 551.876 -139172 PRK12712 607.773 -139173 PRK12713 601.734 -183697 PRK12714 989.45 -183698 PRK12715 1200.71 -171679 PRK12717 691.482 -79176 PRK12718 945.009 -183699 PRK12720 1121.73 -183700 PRK12721 569.306 -237181 PRK12722 295.31 -183702 PRK12723 628.085 -183703 PRK12724 752.952 -183704 PRK12726 753.109 -237182 PRK12727 793.809 -237183 PRK12728 108.891 -183707 PRK12729 236.086 -183708 PRK12735 745.122 -237184 PRK12736 687.448 -183710 PRK12737 475.337 -183711 PRK12738 622.44 -237185 PRK12739 1221.99 -237186 PRK12740 625.227 -183714 PRK12742 362.538 -237187 PRK12743 380.533 -183716 PRK12744 424.923 -237188 PRK12745 289.939 -183718 PRK12746 425.602 -183719 PRK12747 465.318 -237189 PRK12748 382.115 -183721 PRK12749 549.605 -183722 PRK12750 187.743 -171704 PRK12751 233.117 -183723 PRK12753 1327.02 -183724 PRK12754 1420.94 -237190 PRK12755 463.94 -183726 PRK12756 578.807 -237191 PRK12757 292.332 -237192 PRK12758 1417.08 -139206 PRK12759 830.824 -237193 PRK12764 770.076 -237194 PRK12765 627.308 -183731 PRK12766 333.352 -237195 PRK12767 302.959 -237196 PRK12768 293.415 -183733 PRK12769 1166.05 -237197 PRK12770 447.514 -237198 PRK12771 670.045 -237199 PRK12772 884.789 -183737 PRK12773 1244.95 -183738 PRK12775 2026.4 -237200 PRK12778 1195.32 -183740 PRK12779 1705.42 -183741 PRK12780 311.633 -139219 PRK12781 99.5296 -139220 PRK12782 234.657 -171720 PRK12783 371.899 -183742 PRK12784 138.131 -183743 PRK12785 197.584 -237201 PRK12786 307.74 -183745 PRK12787 117.415 -237202 PRK12788 424.339 -183746 PRK12789 586.343 -237203 PRK12790 183.089 -237204 PRK12791 187.248 -237205 PRK12792 1189.53 -237206 PRK12793 150.499 -237207 PRK12794 125.832 -237208 PRK12795 491.501 -237209 PRK12796 336.953 -237210 PRK12797 192.778 -237211 PRK12798 345.891 -183756 PRK12799 657.559 -183757 PRK12800 974.51 -139237 PRK12802 266.744 -183758 PRK12803 521.677 -183759 PRK12804 451.375 -183760 PRK12805 408.489 -183761 PRK12806 528.876 -171737 PRK12807 321.771 -237212 PRK12808 532.607 -183762 PRK12809 1328.89 -237213 PRK12810 441.525 -139245 PRK12812 335.305 -237214 PRK12813 305.491 -139246 PRK12814 1182.6 -237215 PRK12815 1550.32 -183766 PRK12816 482.77 -183767 PRK12817 369.406 -183768 PRK12818 362.48 -183769 PRK12819 423.135 -105955 PRK12820 1421.3 -237216 PRK12821 605.352 -237217 PRK12822 634.559 -183772 PRK12823 407.409 -183773 PRK12824 347.523 -237218 PRK12825 250.171 -183775 PRK12826 242.13 -237219 PRK12827 221.902 -237220 PRK12828 290.545 -183778 PRK12829 207.988 -183779 PRK12830 657.698 -183780 PRK12831 767.258 -183781 PRK12833 755.054 -183782 PRK12834 897.336 -237221 PRK12835 924.593 -237222 PRK12837 901.116 -183784 PRK12838 499.803 -237223 PRK12839 1057.12 -237224 PRK12842 836.269 -237225 PRK12843 885.233 -183787 PRK12844 867.146 -237226 PRK12845 996.97 -237227 PRK12846 185.009 -237228 PRK12847 326.13 -237229 PRK12848 371.467 -237230 PRK12849 662.658 -237231 PRK12850 864.029 -171770 PRK12851 772.375 -237232 PRK12852 883.8 -237233 PRK12853 487.87 -237234 PRK12854 660.189 -171774 PRK12855 153.294 -105987 PRK12856 148.975 -237235 PRK12857 509.653 -237236 PRK12858 415.187 -183797 PRK12859 463.874 -237237 PRK12860 287.809 -183798 PRK12861 1350.32 -183799 PRK12862 1119.97 -183800 PRK12863 100.361 -183801 PRK12864 165.126 -171782 PRK12865 163.465 -237238 PRK12866 137.164 -237239 PRK12869 315.876 -237240 PRK12870 329.619 -106000 PRK12871 435.784 -237241 PRK12872 179.753 -171787 PRK12873 424.844 -237242 PRK12874 416.715 -237243 PRK12875 336.241 -237244 PRK12876 399.506 -183808 PRK12878 360.411 -237245 PRK12879 395.386 -171793 PRK12880 639.321 -237246 PRK12881 1352.68 -183811 PRK12882 297.269 -171796 PRK12883 442.246 -183812 PRK12884 269.904 -237247 PRK12886 373.256 -183813 PRK12887 390.099 -183814 PRK12888 340.93 -237248 PRK12890 428.553 -237249 PRK12891 548.649 -183817 PRK12892 473.809 -237250 PRK12893 474.754 -237251 PRK12895 321.762 -237252 PRK12896 383.418 -171806 PRK12897 514.583 -237253 PRK12898 770.332 -237254 PRK12899 1818.68 -237255 PRK12900 1900.26 -237256 PRK12901 1705.61 -237257 PRK12902 1809.25 -237258 PRK12903 1323.52 -237259 PRK12904 1075.1 -237260 PRK12906 1310.47 -183828 PRK12907 718.678 -171815 PRK12911 2685.01 -183829 PRK12921 252.086 -237261 PRK12928 450.144 -183831 PRK12933 967.23 -183832 PRK12935 443.292 -171820 PRK12936 462.848 -171821 PRK12937 329.395 -171822 PRK12938 486.442 -183833 PRK12939 249.503 -171824 PRK12996 669.322 -237262 PRK12997 335.361 -237263 PRK12999 1508.89 -183836 PRK13004 488.681 -237264 PRK13007 435.041 -237265 PRK13009 483.434 -139334 PRK13010 508.567 -237266 PRK13011 487.953 -237267 PRK13012 1546.82 -237268 PRK13013 730.406 -237269 PRK13014 265.338 -237270 PRK13015 214.832 -237271 PRK13016 998.086 -237272 PRK13017 863.5 -237273 PRK13018 364.331 -183845 PRK13019 133.136 -183846 PRK13020 276.372 -237274 PRK13021 403.467 -237275 PRK13022 178.78 -171842 PRK13023 1281.87 -237276 PRK13024 538.278 -237277 PRK13026 1235.21 -183850 PRK13027 618.607 -183851 PRK13028 617.649 -237278 PRK13029 1686.11 -237279 PRK13030 1553.8 -106068 PRK13031 274.355 -171848 PRK13032 251.613 -171849 PRK13033 239.546 -237280 PRK13034 737.538 -171851 PRK13035 380.944 -171852 PRK13036 366.965 -106074 PRK13037 403.202 -171853 PRK13038 377.435 -171854 PRK13039 391.365 -106077 PRK13040 323.214 -106078 PRK13041 443.307 -183854 PRK13042 492.611 -171855 PRK13043 444.537 -237281 PRK13054 381.913 -237282 PRK13055 490.657 -183857 PRK13057 293.747 -183858 PRK13059 380.922 -183859 PRK13103 1855.38 -183860 PRK13104 1707.95 -183861 PRK13105 363.628 -237283 PRK13106 350.951 -183863 PRK13107 1813.81 -237284 PRK13108 581.553 -183864 PRK13109 590.235 -237285 PRK13111 262.351 -237286 PRK13125 330.08 -171868 PRK13128 865.707 -237287 PRK13130 68.1142 -237288 PRK13141 265.071 -171871 PRK13142 361.063 -237289 PRK13143 262.496 -183870 PRK13145 453.906 -237290 PRK13146 240.455 -183872 PRK13149 54.1297 -139376 PRK13150 286.5 -171876 PRK13152 341.434 -183873 PRK13159 256.849 -183874 PRK13165 275.723 -237291 PRK13168 632.962 -183876 PRK13169 110.719 -183877 PRK13170 309.865 -183878 PRK13181 249.782 -237292 PRK13182 159.831 -171884 PRK13183 55.818 -183880 PRK13184 1461.14 -237293 PRK13185 460.584 -237294 PRK13186 314.74 -237295 PRK13187 449.29 -237296 PRK13188 635.82 -237297 PRK13189 361.222 -106159 PRK13190 377.271 -183885 PRK13191 415.784 -183886 PRK13192 251.826 -237298 PRK13193 371.564 -183887 PRK13194 363.05 -171894 PRK13195 409.811 -171895 PRK13196 372.786 -237299 PRK13197 285.994 -171897 PRK13198 261.931 -237300 PRK13199 1408.77 -237301 PRK13200 1349.44 -237302 PRK13201 227.405 -106171 PRK13202 200.303 -237303 PRK13203 176.173 -171902 PRK13204 321.723 -106174 PRK13205 296.714 -237304 PRK13206 1037.36 -237305 PRK13207 756.246 -237306 PRK13208 992.775 -237307 PRK13209 417.47 -237308 PRK13210 437.031 -237309 PRK13211 642.443 -106181 PRK13213 495.017 -183899 PRK13214 81.2715 -183900 PRK13216 118.422 -237310 PRK13222 232.392 -171912 PRK13223 486.293 -106187 PRK13225 552.396 -237311 PRK13226 383.047 -183903 PRK13230 490.823 -183904 PRK13231 475.827 -106194 PRK13232 507.999 -183905 PRK13233 556.355 -183906 PRK13234 577.542 -183907 PRK13235 506.271 -237312 PRK13236 598.161 -237313 PRK13237 927.967 -237314 PRK13238 636.088 -183911 PRK13239 237.219 -183912 PRK13240 31.2081 -183913 PRK13241 158.504 -139420 PRK13242 177.961 -183914 PRK13243 569.041 -183915 PRK13244 126.177 -183916 PRK13245 505.977 -106208 PRK13246 420.118 -237315 PRK13247 402.856 -139425 PRK13248 461.327 -139426 PRK13249 488.463 -139427 PRK13250 458.558 -183917 PRK13251 125.597 -183918 PRK13252 765.965 -237316 PRK13253 112.256 -237317 PRK13254 140.776 -183921 PRK13255 307.175 -237318 PRK13256 453.72 -237319 PRK13257 315.742 -237320 PRK13258 129.487 -237321 PRK13259 149.75 -183926 PRK13260 538.533 -237322 PRK13261 91.5496 -183928 PRK13262 379.808 -237323 PRK13263 219.278 -183930 PRK13264 296.056 -183931 PRK13265 219.212 -237324 PRK13266 264.465 -237325 PRK13267 216.427 -183934 PRK13270 1034.37 -237326 PRK13271 1038.35 -183936 PRK13272 957.054 -237327 PRK13273 510.179 -237328 PRK13274 545.25 -183939 PRK13275 57.689 -183940 PRK13276 415.759 -183941 PRK13277 480.242 -237329 PRK13278 325.697 -237330 PRK13279 708.596 -237331 PRK13280 248.79 -237332 PRK13281 612.603 -183946 PRK13282 161.751 -183947 PRK13283 205.049 -237333 PRK13284 208.082 -237334 PRK13285 148.846 -237335 PRK13286 683.776 -183950 PRK13287 600.141 -237336 PRK13288 333.536 -237337 PRK13289 591.387 -183953 PRK13290 154.616 -183954 PRK13291 201.356 -183955 PRK13292 1452.67 -183956 PRK13293 323.431 -183957 PRK13294 531.898 -171961 PRK13295 859.356 -106256 PRK13296 605.827 -139469 PRK13297 611.615 -237338 PRK13298 641.01 -237339 PRK13299 481.262 -237340 PRK13300 344.182 -106261 PRK13301 437.616 -237341 PRK13302 422.341 -237342 PRK13303 230.593 -237343 PRK13304 336.191 -183962 PRK13305 369.912 -237344 PRK13306 300.691 -183964 PRK13307 534.592 -183965 PRK13308 1003.84 -183966 PRK13309 1103.01 -183967 PRK13310 531.871 -106271 PRK13311 561.573 -139480 PRK13312 194.177 -183968 PRK13313 188.997 -183969 PRK13314 163.898 -237345 PRK13315 168.436 -183970 PRK13316 214.617 -237346 PRK13317 241.398 -237347 PRK13318 297.44 -237348 PRK13320 295.617 -237349 PRK13321 358.415 -237350 PRK13322 232.533 -106284 PRK13324 461.402 -183976 PRK13325 1136.74 -237351 PRK13326 353.321 -183977 PRK13327 369.162 -237352 PRK13328 231.442 -183979 PRK13329 317.707 -237353 PRK13331 327.389 -183981 PRK13333 294.143 -139494 PRK13335 579.774 -183982 PRK13337 480.7 -183983 PRK13339 954.912 -183984 PRK13340 502.617 -237354 PRK13341 883.24 -237355 PRK13342 460.321 -183987 PRK13343 751.362 -183988 PRK13344 249.111 -106303 PRK13345 393.217 -106304 PRK13346 417.484 -237356 PRK13347 695.996 -237357 PRK13348 394.338 -106307 PRK13349 421.007 -171995 PRK13350 366.211 -237358 PRK13351 633.527 -237359 PRK13352 523.153 -183992 PRK13353 706.747 -237360 PRK13354 487.486 -237361 PRK13355 951.102 -237362 PRK13356 469.05 -237363 PRK13357 419.167 -183997 PRK13358 400.253 -183998 PRK13359 693.056 -183999 PRK13360 764.667 -237364 PRK13361 487.602 -184001 PRK13362 334.299 -184002 PRK13363 527.421 -184003 PRK13364 526.968 -184004 PRK13365 541.783 -184005 PRK13366 566.347 -184006 PRK13367 819.367 -184007 PRK13368 336.551 -237365 PRK13369 694.019 -237366 PRK13370 312.273 -237367 PRK13371 571.106 -106330 PRK13372 926.738 -106331 PRK13373 684.905 -237368 PRK13374 399.473 -172015 PRK13375 432.234 -237369 PRK13376 925.702 -184013 PRK13377 231.994 -139527 PRK13378 180.702 -184014 PRK13379 173.586 -237370 PRK13380 189.057 -237371 PRK13381 604.22 -172019 PRK13382 856.75 -139531 PRK13383 961.377 -172020 PRK13384 582.081 -184017 PRK13385 344.161 -237372 PRK13386 283.451 -237373 PRK13387 355.249 -237374 PRK13388 734.525 -184021 PRK13389 592.65 -139538 PRK13390 1067.32 -184022 PRK13391 842.43 -184023 PRK13392 753.226 -184024 PRK13393 750.381 -184025 PRK13394 412.752 -237375 PRK13395 225.841 -237376 PRK13396 669.543 -172030 PRK13397 518.031 -184028 PRK13398 446.068 -184029 PRK13399 648.764 -184030 PRK13400 224.893 -184031 PRK13401 95.2177 -184032 PRK13402 524.595 -106361 PRK13403 622.923 -184033 PRK13404 810.851 -237377 PRK13405 2168.65 -237378 PRK13406 516.115 -184036 PRK13407 556.404 -184037 PRK13409 913.424 -184038 PRK13410 1228.72 -184039 PRK13411 1176.08 -237379 PRK13412 1403.04 -184041 PRK13413 320.126 -139556 PRK13414 217.391 -184042 PRK13415 283.175 -237380 PRK13417 494.024 -237381 PRK13419 388.332 -237382 PRK13420 252.356 -237383 PRK13421 262.324 -184046 PRK13422 531.549 -237384 PRK13423 465.301 -172047 PRK13424 525.851 -139564 PRK13425 539.399 -237385 PRK13426 459.244 -172049 PRK13427 460.177 -184048 PRK13428 587.471 -237386 PRK13429 157.674 -237387 PRK13430 247.937 -184051 PRK13431 290.44 -139571 PRK13434 282.207 -184052 PRK13435 153.669 -184053 PRK13436 162.527 -184054 PRK13441 258.529 -184055 PRK13442 110.878 -237388 PRK13443 198.223 -139576 PRK13444 206.267 -184056 PRK13446 169.752 -184057 PRK13447 170.96 -139579 PRK13448 215.793 -184058 PRK13449 124.884 -184059 PRK13450 190.744 -172059 PRK13451 134.53 -106409 PRK13452 235.025 -184060 PRK13453 219.78 -184061 PRK13454 180.408 -184062 PRK13455 185.773 -237389 PRK13456 310.881 -139585 PRK13460 230.297 -184064 PRK13461 168.305 -139587 PRK13462 366.464 -172065 PRK13463 339.332 -184065 PRK13464 127.772 -172066 PRK13466 57.6525 -237390 PRK13467 84.8285 -184067 PRK13468 89.7574 -184068 PRK13469 52.739 -184069 PRK13471 91.0814 -237391 PRK13473 715.148 -237392 PRK13474 277.688 -184072 PRK13475 720.353 -184073 PRK13476 264.276 -237393 PRK13477 771.358 -184075 PRK13478 348.775 -184076 PRK13479 636.956 -237394 PRK13480 580.081 -184078 PRK13481 376.451 -237395 PRK13482 388.751 -184080 PRK13483 1130.26 -139605 PRK13484 1365.08 -139606 PRK13486 1372.41 -237396 PRK13487 325.357 -237397 PRK13488 198.2 -237398 PRK13489 337.947 -184084 PRK13490 277.047 -184085 PRK13491 413.214 -184086 PRK13493 415.112 -184087 PRK13494 317.254 -184088 PRK13495 266.348 -237399 PRK13497 346.122 -237400 PRK13498 272.823 -237401 PRK13499 302.252 -184091 PRK13500 580.52 -184092 PRK13501 568.767 -184093 PRK13502 570.843 -184094 PRK13503 424.089 -237402 PRK13504 810.566 -237403 PRK13505 828.669 -237404 PRK13506 968.701 -184098 PRK13507 1159.85 -237405 PRK13508 583.223 -184100 PRK13509 375.112 -184101 PRK13510 142.426 -184102 PRK13511 813.462 -184103 PRK13512 744.296 -184104 PRK13513 1147.2 -237406 PRK13515 425.896 -237407 PRK13516 581.884 -237408 PRK13517 411.571 -184108 PRK13518 654.134 -237409 PRK13520 530.996 -184110 PRK13523 593.984 -237410 PRK13524 1052.32 -237411 PRK13525 249.69 -184113 PRK13526 363.117 -237412 PRK13527 257.508 -237413 PRK13528 1201.12 -237414 PRK13529 693.029 -237415 PRK13530 270.079 -184118 PRK13531 867.023 -237416 PRK13532 1594.55 -237417 PRK13533 700.861 -237418 PRK13534 927.494 -184122 PRK13535 666.375 -237419 PRK13536 616.458 -237420 PRK13537 555.956 -184125 PRK13538 236.239 -237421 PRK13539 188.159 -184127 PRK13540 394.317 -184128 PRK13541 303.716 -184129 PRK13543 349.147 -184130 PRK13545 833.77 -184131 PRK13546 460.052 -184132 PRK13547 364.148 -237422 PRK13548 290.52 -184134 PRK13549 873.099 -184135 PRK13551 583.452 -184136 PRK13552 452.48 -237423 PRK13553 342.755 -237424 PRK13554 399.123 -184139 PRK13555 382.55 -184140 PRK13556 377.95 -237425 PRK13557 980.311 -237426 PRK13558 742.81 -237427 PRK13559 520.531 -106506 PRK13560 1377.45 -184143 PRK13561 940.679 -184144 PRK13562 104.648 -237428 PRK13564 716.228 -184146 PRK13565 883.474 -237429 PRK13566 1114.61 -184148 PRK13567 865.996 -237430 PRK13568 661.428 -184150 PRK13569 878.984 -237431 PRK13570 739.847 -184152 PRK13571 773.811 -237432 PRK13572 701.108 -184154 PRK13573 877.953 -184155 PRK13574 724.299 -184156 PRK13575 404.109 -237433 PRK13576 299.362 -184158 PRK13577 399.064 -237434 PRK13578 1385.07 -237435 PRK13579 564.959 -184161 PRK13580 919.82 -237436 PRK13581 511.923 -237437 PRK13582 294.913 -237438 PRK13583 359.338 -172153 PRK13584 348.749 -184165 PRK13585 349.591 -237439 PRK13586 346.342 -172156 PRK13587 429.636 -237440 PRK13588 694.304 -172158 PRK13589 875.509 -184168 PRK13590 1021.99 -184169 PRK13591 403.701 -139690 PRK13592 396.915 -172161 PRK13595 332.595 -237441 PRK13596 829.615 -184171 PRK13598 344.096 -106544 PRK13599 426.052 -184172 PRK13600 136.132 -184173 PRK13601 114.308 -184174 PRK13602 116.033 -172166 PRK13603 181.401 -184175 PRK13604 574.831 -237442 PRK13605 176.199 -237443 PRK13606 332.489 -237444 PRK13607 584.935 -184179 PRK13608 720.426 -237445 PRK13609 641.005 -139699 PRK13610 195.739 -106556 PRK13611 182.218 -237446 PRK13612 199.433 -237447 PRK13613 747.388 -237448 PRK13614 824.505 -184183 PRK13615 786.899 -237449 PRK13616 707.538 -106562 PRK13617 303.312 -184185 PRK13618 316.41 -172177 PRK13619 311.373 -139707 PRK13620 447.636 -237450 PRK13621 255.126 -106567 PRK13622 329.735 -184186 PRK13623 172.418 -184187 PRK13625 473.036 -184188 PRK13626 1017.26 -184189 PRK13627 369.907 -184190 PRK13628 513.257 -184191 PRK13629 699.291 -237451 PRK13631 464.324 -237452 PRK13632 428.255 -237453 PRK13633 526.193 -237454 PRK13634 529.207 -184195 PRK13635 507.631 -184196 PRK13636 533.657 -237455 PRK13637 492.255 -184198 PRK13638 569.255 -184199 PRK13639 466.862 -184200 PRK13640 516.66 -237456 PRK13641 531.712 -184202 PRK13642 506.168 -184203 PRK13643 547.795 -106587 PRK13644 560.375 -184204 PRK13645 557.699 -184205 PRK13646 535.129 -237457 PRK13647 470.757 -184207 PRK13648 505.441 -184208 PRK13649 523.924 -184209 PRK13650 516.207 -184210 PRK13651 500.768 -172200 PRK13652 507.033 -237458 PRK13654 502.118 -237459 PRK13655 546.076 -237460 PRK13656 522.094 -184214 PRK13657 899.325 -184215 PRK13658 90.1958 -184216 PRK13659 142.066 -237461 PRK13660 231.242 -184218 PRK13661 185.489 -184219 PRK13662 272.185 -184220 PRK13663 793.705 -184221 PRK13664 49.3076 -237462 PRK13665 396.57 -184223 PRK13666 127.346 -184224 PRK13667 90.8001 -237463 PRK13668 304.247 -184226 PRK13669 122.394 -237464 PRK13670 477.001 -184228 PRK13671 454.155 -184229 PRK13672 87.6207 -237465 PRK13673 76.9075 -237466 PRK13674 301.721 -184232 PRK13675 321.111 -237467 PRK13676 109.64 -184234 PRK13677 188.308 -184235 PRK13678 58.4252 -184236 PRK13679 270.659 -184237 PRK13680 179.913 -184238 PRK13681 35.4646 -184239 PRK13682 25.5982 -184240 PRK13683 116.969 -237468 PRK13684 413.585 -184242 PRK13685 446.455 -237469 PRK13686 29.2631 -184244 PRK13687 127.364 -237470 PRK13688 254.938 -237471 PRK13689 100.827 -237472 PRK13690 255.514 -139768 PRK13691 284.027 -237473 PRK13692 281.3 -184249 PRK13693 232.03 -237474 PRK13694 83.1909 -237475 PRK13695 171.635 -237476 PRK13696 44.6368 -184253 PRK13697 173.818 -184254 PRK13698 516.71 -184255 PRK13699 433.491 -184256 PRK13700 1450.93 -237477 PRK13701 217.691 -184258 PRK13702 114.047 -184259 PRK13703 391.018 -184260 PRK13704 273.479 -184261 PRK13705 832.317 -184262 PRK13706 411.29 -184263 PRK13707 137.842 -184264 PRK13708 167.326 -237478 PRK13709 2472.7 -184266 PRK13710 113.441 -184267 PRK13711 150.917 -184268 PRK13712 143.85 -184269 PRK13713 144.812 -184270 PRK13715 121.239 -106657 PRK13716 37.9614 -184271 PRK13717 180.374 -172260 PRK13718 99.4826 -237479 PRK13719 178.772 -172262 PRK13720 106.893 -237480 PRK13721 1463.79 -184274 PRK13722 329.349 -237481 PRK13723 682.635 -237482 PRK13724 77.6795 -184277 PRK13725 282.302 -184278 PRK13726 289.367 -237483 PRK13727 104.127 -237484 PRK13728 250.024 -184281 PRK13729 624.924 -184282 PRK13730 366.524 -184283 PRK13731 423.702 -184284 PRK13732 299.339 -184285 PRK13733 196.536 -237485 PRK13734 112.714 -184287 PRK13735 1295.48 -237486 PRK13736 322.824 -237487 PRK13737 611.788 -184290 PRK13738 335.553 -237488 PRK13739 225.521 -184292 PRK13740 82.5223 -172283 PRK13741 188.79 -184293 PRK13742 397.018 -184294 PRK13743 186.127 -139817 PRK13744 151.054 -237489 PRK13745 828.732 -184296 PRK13746 414.037 -184297 PRK13747 135.391 -184298 PRK13748 876.018 -184299 PRK13749 172.017 -184300 PRK13750 457.083 -184301 PRK13751 133.246 -184302 PRK13752 292.965 -184303 PRK13753 515.789 -184304 PRK13754 180.835 -237490 PRK13755 196.823 -172294 PRK13756 380.392 -172295 PRK13757 396.92 -172296 PRK13758 675.093 -237491 PRK13759 786.939 -237492 PRK13760 279.793 -184308 PRK13761 292.867 -237493 PRK13762 432.389 -237494 PRK13763 147.322 -184311 PRK13764 697.743 -237495 PRK13765 982.568 -237496 PRK13766 807.559 -237497 PRK13767 1370.73 -237498 PRK13768 276.365 -172307 PRK13769 616.514 -172308 PRK13770 730.892 -184316 PRK13771 461.429 -172310 PRK13772 481.17 -237499 PRK13773 461.908 -184317 PRK13774 535.549 -172313 PRK13775 695.954 -237500 PRK13776 499.156 -237501 PRK13777 300.807 -184320 PRK13778 447.864 -237502 PRK13779 783.678 -237503 PRK13780 136.366 -237504 PRK13781 153.195 -172320 PRK13782 139.532 -237505 PRK13783 684.91 -172322 PRK13784 824.269 -237506 PRK13785 787.029 -184325 PRK13786 794.389 -172324 PRK13787 856.559 -184326 PRK13788 766.661 -184327 PRK13789 809.514 -237507 PRK13790 740.464 -237508 PRK13791 151.959 -106733 PRK13792 271.204 -184329 PRK13793 361.228 -237509 PRK13794 689.097 -237510 PRK13795 628.948 -237511 PRK13796 559.478 -106738 PRK13797 812.665 -184333 PRK13798 124.683 -106740 PRK13799 1140.51 -237512 PRK13800 1451.2 -184335 PRK13802 1425.96 -237513 PRK13803 840.624 -237514 PRK13804 1190.91 -237515 PRK13805 1227.74 -237516 PRK13806 782.758 -237517 PRK13807 1277.92 -172341 PRK13808 352.653 -184340 PRK13809 333.343 -184341 PRK13810 269.404 -237518 PRK13811 248.591 -237519 PRK13812 249.7 -237520 PRK13813 282.641 -139876 PRK13814 618.272 -172345 PRK13815 212 -184344 PRK13816 225.911 -139879 PRK13817 182.64 -184345 PRK13818 231.799 -237521 PRK13820 688.974 -184347 PRK13821 680.719 -237522 PRK13822 852.72 -184348 PRK13823 115.464 -184349 PRK13824 431.193 -237523 PRK13825 327.742 -237524 PRK13826 1896.04 -184351 PRK13828 211.345 -184352 PRK13829 219.231 -237525 PRK13830 1431.55 -172358 PRK13831 714.588 -184353 PRK13832 747.301 -172360 PRK13833 521.665 -172361 PRK13834 376.328 -172362 PRK13835 169.122 -172363 PRK13836 435.836 -237526 PRK13837 868.225 -172365 PRK13838 271.866 -237527 PRK13839 483.924 -237528 PRK13840 859.364 -237529 PRK13841 442.353 -172369 PRK13842 376.074 -237530 PRK13843 335.836 -139904 PRK13844 378.21 -172371 PRK13845 819.432 -139906 PRK13846 562.125 -172372 PRK13847 96.8015 -172373 PRK13848 85.9861 -139909 PRK13849 377.261 -237531 PRK13850 1046.38 -172375 PRK13851 643.874 -139912 PRK13852 342.607 -139913 PRK13853 1388.81 -139914 PRK13854 145.352 -172376 PRK13855 692.414 -172377 PRK13856 403.04 -172378 PRK13857 167.733 -237532 PRK13858 188.86 -172380 PRK13859 88.3673 -172381 PRK13860 300.73 -172382 PRK13861 468.191 -172383 PRK13862 274.81 -237533 PRK13863 670.501 -237534 PRK13864 431.976 -172386 PRK13865 371.933 -172387 PRK13866 558.032 -172388 PRK13867 108.064 -237535 PRK13868 1071.86 -139929 PRK13869 831.243 -172390 PRK13870 403.991 -172391 PRK13871 183.553 -184356 PRK13872 312.264 -237536 PRK13873 1269.84 -184358 PRK13874 208.223 -237537 PRK13875 428.943 -237538 PRK13876 1118.08 -184361 PRK13877 141.693 -237539 PRK13878 1043.93 -184363 PRK13879 294.314 -237540 PRK13880 1054.34 -237541 PRK13881 618.713 -237542 PRK13882 206.076 -184367 PRK13883 175.651 -184368 PRK13884 260.726 -237543 PRK13885 509.283 -184370 PRK13886 430.691 -237544 PRK13887 389.878 -237545 PRK13888 314.072 -237546 PRK13889 1251.13 -237547 PRK13890 173.4 -184375 PRK13891 1594.01 -184376 PRK13892 175.711 -237548 PRK13893 301.699 -184377 PRK13894 614.441 -184378 PRK13895 177.558 -184379 PRK13896 722.701 -237549 PRK13897 1104.86 -172418 PRK13898 1523.54 -237550 PRK13899 138.351 -184381 PRK13900 604.443 -139961 PRK13901 286.719 -237551 PRK13902 1168.47 -237552 PRK13903 467.514 -184384 PRK13904 385.044 -237553 PRK13905 339.78 -184386 PRK13906 552.117 -139967 PRK13907 272.695 -184387 PRK13908 308.012 -237554 PRK13909 944.787 -172427 PRK13910 515.727 -139971 PRK13911 496.524 -184389 PRK13912 146.075 -184390 PRK13913 352.614 -237555 PRK13914 607.954 -237556 PRK13915 313.778 -139976 PRK13916 43.2453 -184393 PRK13917 450.885 -237557 PRK13918 326.006 -184395 PRK13919 302.988 -237558 PRK13920 189.257 -237559 PRK13921 226.281 -237560 PRK13922 90.4228 -237561 PRK13923 70.2345 -184399 PRK13925 307.705 -184400 PRK13926 232.064 -237562 PRK13927 376.737 -237563 PRK13928 579.165 -184403 PRK13929 621.156 -237564 PRK13930 325.164 -184405 PRK13931 493.509 -172445 PRK13932 521.64 -184406 PRK13933 381.407 -237565 PRK13934 405.692 -237566 PRK13935 439.559 -237567 PRK13936 343.565 -184408 PRK13937 255.936 -139997 PRK13938 381.006 -172450 PRK13940 744.143 -184409 PRK13942 358.56 -237568 PRK13943 553.3 -140001 PRK13944 338.326 -184410 PRK13945 480.58 -184411 PRK13946 260.627 -184412 PRK13947 267.343 -184413 PRK13948 283.218 -140006 PRK13949 285.855 -172457 PRK13951 803.738 -237569 PRK13952 173.151 -184415 PRK13953 173.445 -172460 PRK13954 137.683 -184416 PRK13955 154.593 -184417 PRK13956 276.292 -140013 PRK13957 443.17 -184418 PRK13958 344.401 -237570 PRK13959 349.749 -184420 PRK13960 706.468 -237571 PRK13961 383.396 -237572 PRK13962 1058.95 -237573 PRK13963 331.743 -184424 PRK13964 196.888 -184425 PRK13965 589.821 -140022 PRK13966 600.554 -140023 PRK13967 654.875 -184426 PRK13968 891.906 -184427 PRK13969 655.772 -172473 PRK13970 606.634 -184428 PRK13971 595.393 -172475 PRK13972 425.643 -184429 PRK13973 336.147 -172477 PRK13974 343.182 -184430 PRK13975 277.79 -237574 PRK13976 341.712 -237575 PRK13977 767.836 -184433 PRK13978 401.839 -237576 PRK13979 1641.36 -184435 PRK13980 344.5 -237577 PRK13981 756.611 -172484 PRK13982 759.289 -237578 PRK13983 563.703 -172486 PRK13984 1069.77 -184438 PRK13985 1094.94 -184439 PRK13986 418.461 -237579 PRK13987 116.689 -184441 PRK13988 138.743 -184442 PRK13989 125.195 -172492 PRK13990 135.639 -172493 PRK13991 143.484 -237580 PRK13992 294.715 -237581 PRK13994 378.495 -184445 PRK13995 339.869 -172497 PRK13996 340.706 -172498 PRK13997 369.309 -172499 PRK13998 361.342 -172500 PRK13999 333.638 -184446 PRK14000 357.003 -172502 PRK14001 376.745 -172503 PRK14002 320.514 -184447 PRK14003 335.164 -172505 PRK14004 374.24 -184448 PRK14010 1108.61 -237582 PRK14011 134.503 -184450 PRK14012 723.655 -237583 PRK14013 280.544 -237584 PRK14014 374.573 -237585 PRK14015 1091.32 -237586 PRK14016 1039.35 -184455 PRK14017 576.462 -184456 PRK14018 848.777 -237587 PRK14019 648.948 -184458 PRK14021 1019.79 -237588 PRK14022 664.429 -184460 PRK14023 294.403 -237589 PRK14024 402.029 -184462 PRK14025 574.389 -172521 PRK14027 512.276 -172522 PRK14028 650.522 -172523 PRK14029 311.571 -184463 PRK14030 879.554 -184464 PRK14031 906.231 -184465 PRK14032 733.247 -237590 PRK14033 659.72 -184467 PRK14034 693.047 -184468 PRK14035 677.633 -237591 PRK14036 687.076 -184470 PRK14037 617.145 -172532 PRK14038 745.06 -184471 PRK14039 620.279 -237592 PRK14040 1145.05 -237593 PRK14041 822.877 -172536 PRK14042 1238.06 -172537 PRK14045 593.789 -237594 PRK14046 711.482 -184475 PRK14047 535.865 -172540 PRK14048 665.061 -172541 PRK14049 1162.74 -237595 PRK14050 1241.99 -184476 PRK14051 207.156 -184477 PRK14052 658.57 -237596 PRK14053 333.723 -237597 PRK14054 217.761 -172547 PRK14055 697.962 -237598 PRK14056 727.237 -172549 PRK14057 497.669 -237599 PRK14058 292.96 -184482 PRK14059 220.993 -172552 PRK14061 1188.37 -184483 PRK14063 95.6643 -172554 PRK14064 102.991 -184484 PRK14065 132.559 -172556 PRK14066 94.9049 -172557 PRK14067 105.668 -184485 PRK14068 77.605 -172559 PRK14069 97.0142 -184486 PRK14070 77.7547 -184487 PRK14071 649.055 -237600 PRK14072 463.177 -172564 PRK14074 466.742 -184489 PRK14075 401.417 -237601 PRK14076 760.42 -172567 PRK14077 498.537 -184491 PRK14079 440.761 -237602 PRK14081 918.661 -184493 PRK14082 75.273 -237603 PRK14083 782.975 -184495 PRK14084 384.103 -237604 PRK14085 586.56 -237605 PRK14086 908.819 -172577 PRK14087 650.084 -172578 PRK14088 771.307 -237606 PRK14089 538.408 -184499 PRK14090 1111.08 -237607 PRK14091 304.43 -172582 PRK14092 249.878 -184501 PRK14093 700.76 -172584 PRK14094 63.4527 -237608 PRK14095 862.399 -237609 PRK14096 888.848 -184504 PRK14097 545.59 -172588 PRK14098 937.618 -237610 PRK14099 806.634 -184506 PRK14100 304.069 -184507 PRK14101 964.763 -184508 PRK14102 150.618 -184509 PRK14103 366.321 -172594 PRK14104 901.705 -237611 PRK14105 530.116 -184511 PRK14106 716.75 -237612 PRK14108 1442.11 -237613 PRK14109 1161.53 -184514 PRK14110 476.568 -184515 PRK14111 431.526 -172602 PRK14112 243.025 -237614 PRK14113 264.477 -172604 PRK14114 464.486 -184516 PRK14115 398.078 -172606 PRK14116 467.083 -184517 PRK14117 487.224 -172608 PRK14118 478.313 -184518 PRK14119 450.881 -184519 PRK14120 439.089 -237615 PRK14121 490.241 -184521 PRK14122 435.374 -184522 PRK14123 591.755 -172614 PRK14124 493.472 -184523 PRK14125 132.848 -172616 PRK14126 138.746 -237616 PRK14127 150.162 -184525 PRK14128 120.362 -184526 PRK14129 193.769 -237617 PRK14131 522.268 -237618 PRK14132 163.611 -184529 PRK14133 605.943 -184530 PRK14134 323.681 -237619 PRK14135 289.035 -237620 PRK14136 287.282 -172626 PRK14137 226.399 -172627 PRK14138 421.924 -237621 PRK14139 227.55 -237622 PRK14140 202.922 -172630 PRK14141 320.849 -237623 PRK14142 340.439 -237624 PRK14143 308.58 -184535 PRK14144 363.661 -184536 PRK14145 211.317 -172635 PRK14146 294.333 -237625 PRK14147 301.868 -172637 PRK14148 298.975 -184538 PRK14149 255.567 -184539 PRK14150 259.466 -172640 PRK14151 243.916 -184540 PRK14153 263.24 -237626 PRK14154 385.703 -237627 PRK14155 285.706 -237628 PRK14156 245.898 -184543 PRK14157 338.469 -172646 PRK14158 300.309 -172647 PRK14159 228.419 -237629 PRK14160 233.879 -237630 PRK14161 281.477 -237631 PRK14162 258.227 -184546 PRK14163 369.455 -237632 PRK14164 224.295 -184548 PRK14165 329.332 -172654 PRK14166 550.013 -184549 PRK14167 509.318 -237633 PRK14168 533.299 -184550 PRK14169 492.153 -172658 PRK14170 477.26 -172659 PRK14171 525.292 -172660 PRK14172 434.594 -184551 PRK14173 455.828 -172662 PRK14174 578.312 -184552 PRK14175 488.271 -184553 PRK14176 498.947 -172665 PRK14177 578.081 -172666 PRK14178 492.436 -237634 PRK14179 513.916 -172668 PRK14180 524.209 -172669 PRK14181 525.581 -172670 PRK14182 491.844 -184555 PRK14183 497.429 -237635 PRK14184 515.481 -184556 PRK14185 526.704 -237636 PRK14186 477.634 -172675 PRK14187 507.444 -184558 PRK14188 499.099 -184559 PRK14189 492.665 -184560 PRK14190 462.559 -172679 PRK14191 496.596 -184561 PRK14192 535.967 -237637 PRK14193 468.724 -172682 PRK14194 529.032 -184563 PRK14195 107.814 -184564 PRK14196 109.539 -172685 PRK14197 156.84 -172686 PRK14198 146.816 -172687 PRK14199 158.786 -237638 PRK14200 183.459 -184566 PRK14201 160.257 -172690 PRK14202 146.398 -237639 PRK14203 170.379 -172692 PRK14204 182.043 -172693 PRK14205 159.581 -172694 PRK14206 189.247 -172695 PRK14207 178.785 -172696 PRK14208 162.437 -237640 PRK14209 145.851 -172698 PRK14210 107.785 -172699 PRK14211 132.748 -184569 PRK14212 144.57 -184570 PRK14213 119.155 -184571 PRK14214 170.816 -172703 PRK14215 134.18 -184572 PRK14216 144.211 -172705 PRK14217 193.296 -184573 PRK14218 178.156 -172707 PRK14219 193.908 -237641 PRK14220 167.643 -184575 PRK14221 153.031 -172710 PRK14222 156.796 -184576 PRK14223 115.551 -237642 PRK14224 154.168 -172713 PRK14225 207.946 -172714 PRK14226 133.079 -172715 PRK14227 170.403 -237643 PRK14228 104.441 -172717 PRK14229 148.447 -172718 PRK14230 164.474 -184579 PRK14231 186.21 -237644 PRK14232 141.072 -172721 PRK14233 165.055 -172722 PRK14234 153.776 -237645 PRK14235 542.017 -184582 PRK14236 524.203 -237646 PRK14237 498.86 -184584 PRK14238 511.322 -184585 PRK14239 497.376 -184586 PRK14240 516.169 -184587 PRK14241 507.72 -172730 PRK14242 507.396 -184588 PRK14243 511.25 -172732 PRK14244 505.134 -172733 PRK14245 530.746 -172734 PRK14246 490.714 -172735 PRK14247 490.58 -237647 PRK14248 542.632 -184590 PRK14249 511.534 -237648 PRK14250 408.043 -172739 PRK14251 524.211 -172740 PRK14252 547.687 -172741 PRK14253 491.279 -237649 PRK14254 512.037 -172743 PRK14255 521.072 -172744 PRK14256 515.716 -172745 PRK14257 642.163 -184593 PRK14258 555.802 -172747 PRK14259 551.326 -172748 PRK14260 544.232 -172749 PRK14261 528.245 -172750 PRK14262 494.827 -172751 PRK14263 546.919 -184594 PRK14264 582.178 -237650 PRK14265 588.517 -237651 PRK14266 503.329 -184596 PRK14267 472.405 -172756 PRK14268 571.565 -172757 PRK14269 457.182 -184597 PRK14270 511.419 -172759 PRK14271 570.499 -172760 PRK14272 542.681 -172761 PRK14273 463.741 -172762 PRK14274 528.326 -237652 PRK14275 598.03 -237653 PRK14276 614.404 -184599 PRK14277 617.198 -237654 PRK14278 583.552 -237655 PRK14279 612.893 -237656 PRK14280 628.675 -237657 PRK14281 697.327 -184603 PRK14282 621.427 -184604 PRK14283 681.165 -237658 PRK14284 623.018 -172773 PRK14285 639.731 -172774 PRK14286 634.721 -237659 PRK14287 677.113 -172776 PRK14288 685.267 -237660 PRK14289 591.806 -172778 PRK14290 698.606 -237661 PRK14291 618.323 -237662 PRK14292 572.989 -237663 PRK14293 628.558 -237664 PRK14294 629.103 -237665 PRK14295 616.476 -237666 PRK14296 610.025 -184611 PRK14297 636.826 -184612 PRK14298 697.753 -237667 PRK14299 443.996 -172788 PRK14300 759.165 -237668 PRK14301 617.139 -184614 PRK14314 786.442 -237669 PRK14315 810.676 -237670 PRK14316 762.064 -237671 PRK14317 768.759 -237672 PRK14318 616.946 -172795 PRK14319 789.837 -172796 PRK14320 871.245 -172797 PRK14321 858.778 -184619 PRK14322 781.092 -184620 PRK14323 682.297 -184621 PRK14324 861.638 -237673 PRK14325 650.654 -237674 PRK14326 879.787 -184624 PRK14327 1011.94 -237675 PRK14328 707.904 -237676 PRK14329 835.087 -184627 PRK14330 741.57 -184628 PRK14331 810.553 -172808 PRK14332 890.102 -237677 PRK14333 900.954 -184630 PRK14334 857.208 -237678 PRK14335 809.509 -184632 PRK14336 789.489 -172813 PRK14337 848.632 -184633 PRK14338 755.494 -184634 PRK14339 794.624 -237679 PRK14340 831.699 -237680 PRK14341 321.858 -237681 PRK14342 337.624 -237682 PRK14343 339.843 -237683 PRK14344 370.939 -184638 PRK14345 338.494 -237684 PRK14346 425.323 -172823 PRK14347 393.916 -172824 PRK14348 460.646 -172825 PRK14349 405.124 -172826 PRK14350 1141.87 -184640 PRK14351 1158.74 -184641 PRK14352 681.278 -184642 PRK14353 608.015 -184643 PRK14354 737.797 -237685 PRK14355 806.274 -237686 PRK14356 796.624 -237687 PRK14357 751.21 -237688 PRK14358 887.401 -237689 PRK14359 735.644 -184646 PRK14360 798.369 -172837 PRK14361 321.11 -172838 PRK14362 274.817 -184647 PRK14363 327.623 -184648 PRK14364 368.56 -237690 PRK14365 359.133 -237691 PRK14366 344.859 -237692 PRK14367 391.351 -237693 PRK14368 346.766 -184650 PRK14369 222.241 -184651 PRK14370 181.586 -172847 PRK14371 159.708 -172848 PRK14372 167.419 -172849 PRK14373 133.975 -237694 PRK14374 181.422 -172851 PRK14375 115.086 -237695 PRK14376 186.698 -172853 PRK14377 161.475 -237696 PRK14378 155.496 -237697 PRK14379 148.049 -184654 PRK14380 132.38 -172857 PRK14381 193.536 -172858 PRK14382 121.03 -237698 PRK14383 148.183 -172860 PRK14384 117.466 -172861 PRK14385 111.065 -172862 PRK14386 219.518 -184655 PRK14387 145.47 -172864 PRK14388 151.967 -184656 PRK14389 171.271 -172866 PRK14390 116.644 -172867 PRK14391 150.565 -237699 PRK14392 321.686 -172869 PRK14393 268.499 -172870 PRK14394 243.182 -172871 PRK14395 164.407 -184657 PRK14396 253.204 -237700 PRK14397 346.841 -237701 PRK14398 274.857 -237702 PRK14399 380.751 -237703 PRK14400 193.543 -184658 PRK14401 139.494 -237704 PRK14402 274.76 -172879 PRK14403 332.298 -237705 PRK14404 233.346 -237706 PRK14405 271.985 -172882 PRK14406 283.629 -172883 PRK14407 341.496 -172884 PRK14408 364.686 -172885 PRK14409 286.344 -237707 PRK14410 289.716 -184663 PRK14411 298.233 -184664 PRK14412 278.645 -172889 PRK14413 248.571 -184665 PRK14414 344.18 -184666 PRK14415 311.047 -184667 PRK14416 228.212 -184668 PRK14417 322.905 -237708 PRK14418 257.427 -237709 PRK14419 223.699 -237710 PRK14420 166.519 -237711 PRK14421 163.439 -237712 PRK14422 152.585 -237713 PRK14423 154.836 -184674 PRK14424 149.219 -172901 PRK14425 157.711 -184675 PRK14426 150.561 -172903 PRK14427 153.879 -172904 PRK14428 177.244 -184676 PRK14429 145.25 -172906 PRK14430 145.448 -184677 PRK14431 163.046 -184678 PRK14432 132.721 -184679 PRK14433 147.647 -184680 PRK14434 154.531 -184681 PRK14435 150.443 -172912 PRK14436 161.285 -172913 PRK14437 181.462 -172914 PRK14438 168.865 -237714 PRK14439 264.256 -172916 PRK14440 158.053 -172917 PRK14441 142.426 -172918 PRK14442 124.989 -172919 PRK14443 175.635 -172920 PRK14444 168.91 -172921 PRK14445 156.928 -172922 PRK14446 134.074 -172923 PRK14447 159.331 -172924 PRK14448 157.999 -184682 PRK14449 138.423 -184683 PRK14450 149.995 -237715 PRK14451 158.164 -237716 PRK14452 158.853 -184685 PRK14453 651.425 -184686 PRK14454 595.434 -237717 PRK14455 685.22 -172932 PRK14456 666.191 -184688 PRK14457 630.88 -184689 PRK14459 609.624 -172935 PRK14460 646.794 -237718 PRK14461 658.114 -237719 PRK14462 630.922 -237720 PRK14463 663.422 -184691 PRK14464 628.678 -172940 PRK14465 691.325 -237721 PRK14466 606.761 -184693 PRK14467 649.916 -184694 PRK14468 605.669 -172944 PRK14469 604.429 -172945 PRK14470 562.628 -184695 PRK14471 191.928 -172947 PRK14472 245.103 -172948 PRK14473 207.468 -184696 PRK14474 317.143 -184697 PRK14475 143.157 -237722 PRK14476 546.378 -172952 PRK14477 1455.33 -184699 PRK14478 729.897 -237723 PRK14479 563.666 -237724 PRK14481 456.197 -172956 PRK14483 485.322 -184702 PRK14484 122.308 -184703 PRK14485 1229.17 -184704 PRK14486 488.56 -237725 PRK14487 288.684 -237726 PRK14488 687.797 -237727 PRK14489 418.387 -237728 PRK14490 617.831 -237729 PRK14491 872.013 -237730 PRK14493 330.038 -237731 PRK14494 266.075 -172967 PRK14495 841.26 -172968 PRK14497 876.06 -237732 PRK14498 710.059 -237733 PRK14499 473.578 -237734 PRK14500 664.286 -184712 PRK14501 918.932 -184713 PRK14502 1324.17 -237735 PRK14503 619.041 -237736 PRK14504 442.965 -172976 PRK14505 1144.4 -184716 PRK14506 368.651 -237737 PRK14507 2489.57 -237738 PRK14508 460.048 -237739 PRK14510 1393.46 -237740 PRK14511 898.186 -237741 PRK14512 324.439 -237742 PRK14513 375.423 -184722 PRK14514 417.011 -237743 PRK14515 936.342 -184724 PRK14520 197.994 -237744 PRK14521 216.952 -172988 PRK14522 180.191 -172989 PRK14523 223.945 -172990 PRK14524 150.406 -172991 PRK14525 157.856 -172992 PRK14526 344.912 -237745 PRK14527 281.678 -172994 PRK14528 346.614 -237746 PRK14529 395.242 -237747 PRK14530 335.99 -172997 PRK14531 311.36 -184729 PRK14532 331.401 -184730 PRK14533 108.03 -173000 PRK14534 896.904 -173001 PRK14535 982.669 -184731 PRK14536 915.078 -237748 PRK14537 271.475 -173004 PRK14538 1292.1 -184732 PRK14539 278.362 -184733 PRK14540 223.16 -173007 PRK14541 268.354 -173008 PRK14542 278.862 -237749 PRK14543 314.909 -173010 PRK14544 288.635 -184734 PRK14545 243.274 -184735 PRK14547 364.673 -237750 PRK14548 98.3907 -237751 PRK14549 46.1324 -173015 PRK14550 366.197 -237752 PRK14551 282.788 -237753 PRK14552 509.894 -184740 PRK14553 76.0975 -237754 PRK14554 262.184 -237755 PRK14555 115.415 -173021 PRK14556 452.566 -173022 PRK14557 460.515 -173023 PRK14558 399.471 -237756 PRK14559 878.234 -237757 PRK14560 166.18 -184745 PRK14561 291.73 -184746 PRK14562 189.719 -184747 PRK14563 88.1915 -237758 PRK14565 403.756 -184749 PRK14566 434.712 -173031 PRK14567 493.006 -184750 PRK14568 673.372 -173033 PRK14569 572.389 -173034 PRK14570 666.535 -184751 PRK14571 473.541 -173036 PRK14572 609.214 -184752 PRK14573 1569.81 -173038 PRK14574 1579.72 -173039 PRK14575 853.231 -173040 PRK14576 793.064 -173042 PRK14578 341.431 -184753 PRK14581 1399.71 -184754 PRK14582 1225.78 -184755 PRK14583 871.226 -184756 PRK14584 200.056 -173049 PRK14585 235.26 -173050 PRK14586 453.85 -173051 PRK14587 437.722 -173052 PRK14588 460.507 -237759 PRK14589 439.599 -173054 PRK14590 280.202 -173055 PRK14591 336.627 -173056 PRK14592 249.254 -237760 PRK14593 340.075 -173058 PRK14594 258.944 -184757 PRK14595 259.745 -184758 PRK14596 309.044 -237761 PRK14597 268.914 -237762 PRK14598 335.153 -173063 PRK14599 438.978 -173064 PRK14600 282.792 -173065 PRK14601 308.295 -173066 PRK14602 286.222 -237763 PRK14603 243.149 -184760 PRK14604 285.128 -184761 PRK14605 302.618 -184762 PRK14606 339.317 -237764 PRK14607 788.913 -237765 PRK14608 296.38 -237766 PRK14609 436.333 -184766 PRK14610 427.599 -184767 PRK14611 416.462 -237767 PRK14612 335.584 -173077 PRK14613 515.218 -173078 PRK14614 499.276 -237768 PRK14615 396.421 -237769 PRK14616 539.289 -237770 PRK14618 486.301 -237771 PRK14619 464.46 -173083 PRK14620 519.005 -173084 PRK14621 145.355 -173085 PRK14622 146.021 -184771 PRK14623 153.424 -173087 PRK14624 183.998 -184772 PRK14625 151.616 -173089 PRK14626 133.828 -173090 PRK14627 144.557 -173091 PRK14628 149.007 -173092 PRK14629 155.529 -173093 PRK14630 210.037 -237772 PRK14631 277.158 -173095 PRK14632 209.538 -173096 PRK14633 272.996 -173097 PRK14634 273.209 -184774 PRK14635 219.399 -237773 PRK14636 276.664 -237774 PRK14637 233.22 -184777 PRK14638 234.756 -173102 PRK14639 228.167 -173103 PRK14640 323.884 -173104 PRK14641 265.1 -237775 PRK14642 337.603 -173106 PRK14643 239.404 -184779 PRK14644 143.054 -184780 PRK14645 232.736 -173109 PRK14646 229.831 -173110 PRK14647 277.784 -173111 PRK14648 720.354 -173112 PRK14649 526.716 -173113 PRK14650 497.83 -237776 PRK14651 417.297 -237777 PRK14652 468.197 -237778 PRK14653 513.229 -173117 PRK14654 487.865 -173118 PRK14655 502.916 -237779 PRK14656 203.072 -173120 PRK14657 172.265 -173121 PRK14658 157.486 -237780 PRK14659 198.444 -173123 PRK14660 166.206 -184782 PRK14661 295.681 -184783 PRK14662 182.298 -237781 PRK14663 201.213 -173127 PRK14664 749.86 -173128 PRK14665 742.52 -237782 PRK14666 1150.02 -237783 PRK14667 925.676 -184785 PRK14668 906.448 -237784 PRK14669 1137.33 -173133 PRK14670 885.792 -237785 PRK14671 1007.31 -173135 PRK14672 1451.86 -237786 PRK14673 157.529 -184788 PRK14674 256.821 -173138 PRK14675 245.515 -173139 PRK14676 181.682 -184789 PRK14677 169.702 -173141 PRK14678 186.619 -173142 PRK14679 137.727 -173143 PRK14680 205.836 -237787 PRK14681 234.044 -173145 PRK14682 211.835 -173146 PRK14683 204.734 -173147 PRK14684 177.922 -173148 PRK14685 267.033 -184791 PRK14686 193.056 -237788 PRK14687 269.963 -184792 PRK14688 203.741 -173152 PRK14689 134.856 -237789 PRK14690 729.793 -173154 PRK14691 697.633 -173155 PRK14692 1000.63 -173156 PRK14693 1014.3 -237790 PRK14694 875.806 -173158 PRK14695 485.324 -184793 PRK14696 1450.41 -184794 PRK14697 445.995 -184795 PRK14698 2017.23 -173162 PRK14699 938.654 -173163 PRK14700 611.633 -237791 PRK14701 2433.89 -237792 PRK14702 496.177 -237793 PRK14703 1143.69 -184798 PRK14704 1164.95 -237794 PRK14705 2558.8 -237795 PRK14706 1343.48 -173170 PRK14707 5067.78 -173171 PRK14708 1098.42 -173172 PRK14709 676.819 -173173 PRK14710 113.55 -173174 PRK14711 370.899 -237796 PRK14712 2191.18 -237797 PRK14713 670.344 -237798 PRK14714 2221.06 -237799 PRK14715 2887.99 -237800 PRK14716 531.555 -184803 PRK14717 144.089 -173181 PRK14718 701.553 -237801 PRK14719 636.98 -184804 PRK14720 1162.61 -173184 PRK14721 722.892 -173185 PRK14722 779.673 -237802 PRK14723 830.984 -237803 PRK14724 1893.52 -237804 PRK14725 765.264 -237805 PRK14726 1310.86 -237806 PRK14727 828.431 -173191 PRK14729 540.979 -184807 PRK14730 296.442 -173193 PRK14731 339.324 -237807 PRK14732 328.042 -173195 PRK14733 343.925 -237808 PRK14734 297.141 -173197 PRK14735 210.625 -173198 PRK14736 216.199 -173199 PRK14737 353.914 -237809 PRK14738 334.392 -173201 PRK14740 29.538 -173202 PRK14741 36.7502 -173203 PRK14742 34.0381 -173204 PRK14743 26.626 -173205 PRK14744 42.9649 -173206 PRK14745 42.2749 -173207 PRK14746 37.2408 -184810 PRK14747 33.3025 -173209 PRK14748 30.6294 -173210 PRK14749 34.1907 -173211 PRK14750 26.3606 -173212 PRK14751 47.3188 -173213 PRK14752 34.5683 -184811 PRK14753 32.4004 -173215 PRK14754 27.1793 -173216 PRK14755 33.2268 -173218 PRK14757 36.4573 -173219 PRK14758 28.6507 -173220 PRK14759 34.8377 -173221 PRK14760 28.8167 -173222 PRK14761 43.6425 -173223 PRK14762 27.1183 -184813 PRK14763 32.0164 -237810 PRK14764 220.302 -173227 PRK14766 288.306 -237811 PRK14767 201.858 -173229 PRK14768 198.205 -173230 PRK14769 175.11 -173231 PRK14770 234.714 -184816 PRK14771 235.477 -237812 PRK14772 280.989 -173234 PRK14773 302.15 -173235 PRK14774 272.277 -237813 PRK14775 259.053 -173237 PRK14776 304.165 -237814 PRK14777 220.493 -173239 PRK14778 265.138 -184818 PRK14779 196.466 -173241 PRK14780 270.252 -237815 PRK14781 200.421 -173243 PRK14782 242.367 -173244 PRK14783 295.236 -184819 PRK14784 219.726 -184820 PRK14785 272.467 -173247 PRK14786 150.514 -173248 PRK14787 220.258 -237816 PRK14788 204.429 -173250 PRK14789 285.777 -173251 PRK14790 254.783 -237817 PRK14791 148.938 -237818 PRK14792 148.974 -184823 PRK14793 202.283 -173255 PRK14794 218.368 -173256 PRK14795 191.361 -184824 PRK14796 178.287 -184825 PRK14797 170.881 -184826 PRK14799 1030.56 -173265 PRK14804 627.054 -237819 PRK14805 562.002 -237820 PRK14806 1118.15 -184829 PRK14807 614.943 -173269 PRK14808 617.01 -184830 PRK14809 626.783 -173271 PRK14810 452.054 -184831 PRK14811 443.083 -173273 PRK14812 232.689 -173274 PRK14813 381.923 -173275 PRK14814 385.534 -237821 PRK14815 335.336 -173277 PRK14816 374.248 -173278 PRK14817 382.77 -173279 PRK14818 333.072 -237822 PRK14819 399.359 -184833 PRK14820 369.927 -184834 PRK14821 289.159 -184835 PRK14822 302.577 -237823 PRK14823 357.069 -237824 PRK14824 314.775 -173286 PRK14825 306.477 -173287 PRK14826 389.026 -173288 PRK14827 606.182 -237825 PRK14828 410.292 -237826 PRK14829 400.699 -184840 PRK14830 411.577 -184841 PRK14831 477.517 -237827 PRK14832 508.001 -237828 PRK14833 409.973 -237829 PRK14834 375.246 -237830 PRK14835 485.501 -237831 PRK14836 410.615 -173298 PRK14837 424.622 -184846 PRK14838 469.354 -237832 PRK14839 372.937 -173301 PRK14840 490.511 -173302 PRK14841 423.247 -173303 PRK14842 474.476 -184847 PRK14843 618.073 -173305 PRK14844 5918.14 -237833 PRK14845 1052.56 -237834 PRK14846 619.738 -184849 PRK14847 683.663 -184850 PRK14848 640.538 -184851 PRK14849 3002.67 -237835 PRK14850 1286.33 -184853 PRK14851 1269.4 -184854 PRK14852 2014.6 -184855 PRK14853 498.397 -184856 PRK14854 478.571 -237836 PRK14855 507.869 -184858 PRK14856 658.41 -184859 PRK14857 127.144 -184860 PRK14858 91.8504 -184861 PRK14859 58.9678 -184862 PRK14860 68.6074 -237837 PRK14861 63.8347 -237838 PRK14862 769.021 -184865 PRK14863 378.876 -184866 PRK14864 110.516 -237839 PRK14865 185.852 -237840 PRK14866 483.734 -237841 PRK14867 1198.48 -237842 PRK14868 1370.26 -237843 PRK14869 526.707 -184872 PRK14872 477.725 -237844 PRK14873 657.78 -237845 PRK14874 503.922 -184875 PRK14875 346.931 -237846 PRK14876 1251.31 -184877 PRK14877 2081.65 -184878 PRK14878 514.855 -237847 PRK14879 223.63 -237848 PRK14886 99.6872 -237849 PRK14887 91.5293 -237850 PRK14888 47.9769 -184883 PRK14889 91.3004 -184884 PRK14890 58.4394 -184885 PRK14891 81.1489 -184886 PRK14892 113.61 -184887 PRK14893 136.138 -237851 PRK14894 1144.35 -184889 PRK14895 1003.46 -237852 PRK14896 209.757 -237853 PRK14897 643.015 -237854 PRK14898 1357.64 -237855 PRK14900 1763.74 -237856 PRK14901 665.862 -237857 PRK14902 526.282 -184896 PRK14903 666.19 -237858 PRK14904 782.707 -184898 PRK14905 709.492 -184899 PRK14906 2680.78 -184900 PRK14907 314.58 -237859 PRK14908 1502.98 -184902 PRK14938 418.094 -237860 PRK14939 1166.02 -184904 PRK14940 640.374 -184905 PRK14941 620.992 -184906 PRK14942 657.024 -184907 PRK14943 644.666 -184908 PRK14944 468.946 -184909 PRK14945 496.567 -184910 PRK14946 447.384 -237861 PRK14947 703.767 -237862 PRK14948 854.643 -237863 PRK14949 1416.8 -237864 PRK14950 781.687 -237865 PRK14951 925.657 -237866 PRK14952 827.596 -237867 PRK14953 656.511 -184918 PRK14954 1169.33 -184919 PRK14955 777.148 -184920 PRK14956 913.947 -184921 PRK14957 1000.37 -184922 PRK14958 1004.25 -184923 PRK14959 1032.71 -237868 PRK14960 1215.27 -184925 PRK14961 584.465 -237869 PRK14962 675.328 -184927 PRK14963 613 -237870 PRK14964 765.87 -237871 PRK14965 737.706 -184930 PRK14966 830.109 -184931 PRK14967 269.23 -237872 PRK14968 213.222 -237873 PRK14969 929.927 -184934 PRK14970 649.629 -237874 PRK14971 1022.02 -184936 PRK14973 1748.96 -237875 PRK14974 376.235 -237876 PRK14975 470.238 -237877 PRK14976 187.462 -184940 PRK14977 2327.32 -237878 PRK14979 329.884 -184942 PRK14980 189.232 -184943 PRK14981 80.6801 -184944 PRK14982 634.754 -237879 PRK14983 413.254 -237880 PRK14984 681.903 -237881 PRK14985 1555.41 -184948 PRK14986 1654.57 -184949 PRK14987 627.053 -237882 PRK14988 417.58 -184951 PRK14989 1684.13 -184952 PRK14990 1786.12 -237883 PRK14991 1739.09 -184954 PRK14992 412.28 -184955 PRK14993 474.748 -184956 PRK14994 524.395 -184957 PRK14995 652.178 -184958 PRK14996 299.315 -184959 PRK14997 561.919 -184960 PRK14998 149.43 -184961 PRK14999 455.931 -184962 PRK15000 408.294 -184963 PRK15001 812.721 -184964 PRK15002 281.482 -184965 PRK15003 714.814 -184966 PRK15004 318.534 -184967 PRK15005 243.172 -184968 PRK15006 302.443 -184969 PRK15007 478.757 -184970 PRK15008 405.081 -184971 PRK15009 376.488 -184972 PRK15010 459.471 -184973 PRK15011 648.087 -184974 PRK15012 784.803 -184975 PRK15014 1038.05 -184976 PRK15015 1154.27 -184977 PRK15016 708.563 -184978 PRK15017 1227.49 -184979 PRK15018 486.443 -184980 PRK15019 294.593 -237884 PRK15020 427.03 -184982 PRK15021 651.278 -184983 PRK15022 300.261 -184984 PRK15023 884.409 -184985 PRK15025 674.115 -184986 PRK15026 952.205 -184987 PRK15027 974.83 -184988 PRK15028 620.381 -184989 PRK15029 1461.21 -184990 PRK15030 679.514 -184991 PRK15031 256.71 -184992 PRK15032 747.572 -237885 PRK15033 579.301 -184994 PRK15034 732.458 -184995 PRK15035 984.909 -184996 PRK15036 268.392 -184997 PRK15037 1021.51 -184998 PRK15038 498.2 -184999 PRK15039 140.891 -185000 PRK15040 944.861 -185001 PRK15041 947.853 -237886 PRK15042 324.313 -185003 PRK15043 448.612 -185004 PRK15044 554.258 -185005 PRK15045 1070.66 -237887 PRK15046 509.998 -185007 PRK15047 539.818 -185008 PRK15048 882.806 -185009 PRK15049 845.44 -237888 PRK15050 295.759 -185011 PRK15051 130.316 -237889 PRK15052 824.866 -185013 PRK15053 972.384 -185014 PRK15054 461.698 -237890 PRK15055 530.305 -185016 PRK15056 513.662 -185017 PRK15057 815.028 -185018 PRK15058 215.653 -185019 PRK15059 571.58 -185020 PRK15060 645.114 -237891 PRK15061 1276.61 -237892 PRK15062 349.389 -237893 PRK15063 718.173 -237894 PRK15064 1062.97 -237895 PRK15065 287.506 -237896 PRK15066 346.836 -237897 PRK15067 590.283 -237898 PRK15068 414.255 -185029 PRK15069 377.854 -237899 PRK15070 293.263 -237900 PRK15071 520.195 -237901 PRK15072 737.103 -185033 PRK15074 833.503 -237902 PRK15075 609.251 -185035 PRK15076 628.787 -237903 PRK15078 649.774 -185037 PRK15079 669.491 -237904 PRK15080 268.623 -185039 PRK15081 535.834 -185040 PRK15082 509.655 -237905 PRK15083 1160.58 -185042 PRK15084 182.084 -237906 PRK15086 339.932 -185044 PRK15087 283.135 -185045 PRK15088 496.054 -185046 PRK15090 438.682 -185047 PRK15091 478.416 -237907 PRK15092 512.651 -185049 PRK15093 683.839 -185050 PRK15094 509.734 -237908 PRK15095 275.818 -185052 PRK15097 1062.14 -185053 PRK15098 1458.36 -185054 PRK15099 595.843 -185055 PRK15100 328.632 -185056 PRK15101 1470.21 -237909 PRK15102 1507.26 -237910 PRK15103 701.394 -185059 PRK15104 1078.65 -185060 PRK15105 1176.53 -237911 PRK15106 389.888 -185062 PRK15107 361.454 -185063 PRK15108 703.115 -185064 PRK15109 1136.73 -185065 PRK15110 489.2 -185066 PRK15111 461.093 -185067 PRK15112 518.191 -185068 PRK15113 263.743 -185069 PRK15114 487.339 -185070 PRK15115 823.701 -185071 PRK15116 530.146 -237912 PRK15117 380.226 -185073 PRK15118 265.593 -237913 PRK15119 548.521 -185075 PRK15120 602.071 -185076 PRK15121 556.544 -237914 PRK15122 1752.22 -237915 PRK15123 374.676 -185079 PRK15124 300.051 -185080 PRK15126 491.902 -185081 PRK15127 2029.83 -185082 PRK15128 765.921 -185083 PRK15129 563.217 -237916 PRK15130 344.473 -185085 PRK15131 729.847 -185086 PRK15132 593.585 -185087 PRK15133 672.612 -237917 PRK15134 907.543 -185089 PRK15135 366.041 -185090 PRK15136 697.213 -185091 PRK15137 450.082 -185092 PRK15138 743.152 -185093 PRK15171 598.274 -237918 PRK15172 488.168 -185095 PRK15173 686.065 -185096 PRK15174 417.994 -185097 PRK15175 699.961 -185098 PRK15176 431.355 -185099 PRK15177 420.62 -185100 PRK15178 835.159 -185101 PRK15179 1090.84 -185102 PRK15180 1649.46 -185103 PRK15181 742.297 -185104 PRK15182 893.272 -185105 PRK15183 259.639 -185106 PRK15184 544.249 -185107 PRK15185 514.929 -185108 PRK15186 529.638 -185109 PRK15187 238.95 -185110 PRK15188 398.367 -185111 PRK15189 631.769 -185112 PRK15190 321.261 -185113 PRK15191 286.229 -185114 PRK15192 324.733 -237919 PRK15193 1490.55 -237920 PRK15194 244.478 -185117 PRK15195 423.888 -185118 PRK15196 638.205 -185119 PRK15197 507.545 -185120 PRK15198 1621.14 -237921 PRK15199 611.138 -185122 PRK15200 306.398 -185123 PRK15201 385.937 -237922 PRK15202 159.232 -185125 PRK15203 874.761 -185126 PRK15204 956.378 -237923 PRK15205 279.044 -237924 PRK15206 585.395 -185129 PRK15207 1635.78 -237925 PRK15208 410.07 -185131 PRK15209 283.785 -185132 PRK15210 355.93 -185133 PRK15211 374.159 -185134 PRK15212 460.021 -237926 PRK15213 1137.16 -185136 PRK15214 207.204 -185137 PRK15215 117.814 -185138 PRK15216 657.125 -185139 PRK15217 1484.26 -185140 PRK15218 432.098 -237927 PRK15219 391.502 -237928 PRK15220 229.698 -185143 PRK15221 254.712 -185144 PRK15222 249.971 -185145 PRK15223 1551.9 -185146 PRK15224 423.77 -185147 PRK15228 254.019 -185148 PRK15231 305.466 -185149 PRK15233 468.82 -185150 PRK15235 1591.3 -237929 PRK15238 656.243 -185152 PRK15239 284.314 -185153 PRK15240 370.581 -185154 PRK15241 262.401 -185155 PRK15243 570.457 -185156 PRK15244 1090.92 -185157 PRK15245 366.929 -185158 PRK15246 380.46 -185159 PRK15247 722.068 -185160 PRK15248 1571.38 -237930 PRK15249 406.493 -185162 PRK15250 395.238 -237931 PRK15251 400.6 -237932 PRK15252 530.687 -185165 PRK15253 459.517 -185166 PRK15254 471.951 -185167 PRK15255 1644.49 -185168 PRK15260 351.302 -185169 PRK15261 228.124 -237933 PRK15262 216.092 -185171 PRK15263 180.718 -185172 PRK15265 67.8176 -185173 PRK15266 242.559 -185174 PRK15267 226.924 -185175 PRK15272 490.315 -185176 PRK15273 1847.88 -185177 PRK15274 528.581 -185178 PRK15275 261.215 -185179 PRK15276 293.552 -185180 PRK15278 473.541 -185181 PRK15279 439.586 -185182 PRK15280 312.445 -185183 PRK15283 286.281 -185184 PRK15284 1682.72 -185185 PRK15285 499.306 -185186 PRK15286 280.092 -185187 PRK15287 303.935 -185188 PRK15288 295.019 -185189 PRK15289 316.515 -237934 PRK15290 444.433 -185191 PRK15291 751.189 -237935 PRK15292 495.624 -185193 PRK15293 289.653 -185194 PRK15294 1627.52 -237936 PRK15295 389.689 -185196 PRK15296 222.273 -185197 PRK15297 691.857 -185198 PRK15298 1646.79 -185199 PRK15299 468.105 -185200 PRK15300 298.932 -185201 PRK15301 289.029 -185202 PRK15302 330.115 -185203 PRK15303 269.937 -237937 PRK15304 1295.48 -185205 PRK15305 569.663 -237938 PRK15306 274.619 -185207 PRK15307 238.018 -237939 PRK15308 366.152 -185209 PRK15309 331.724 -185210 PRK15310 1549.97 -185211 PRK15311 726.471 -185212 PRK15312 546.738 -237940 PRK15313 1668.02 -185214 PRK15314 4656.05 -237941 PRK15315 3479.87 -185216 PRK15316 5131.99 -237942 PRK15317 721.945 -237943 PRK15318 1014.49 -185219 PRK15319 2991.85 -185220 PRK15320 496.476 -185221 PRK15321 234.2 -185222 PRK15322 293.734 -185223 PRK15323 266.077 -185224 PRK15324 415.205 -185225 PRK15325 134.764 -185226 PRK15326 132.214 -237944 PRK15327 621.45 -185228 PRK15328 259.027 -237945 PRK15329 187.702 -185230 PRK15330 632.952 -185231 PRK15331 322.779 -185232 PRK15332 383.816 -185233 PRK15333 111.62 -185234 PRK15334 555.173 -185235 PRK15335 130.952 -185236 PRK15336 231.656 -237946 PRK15337 1048.04 -237947 PRK15338 548.274 -237948 PRK15339 814.005 -185240 PRK15340 365.456 -185241 PRK15341 83.305 -185242 PRK15344 110.817 -237949 PRK15345 445.087 -237950 PRK15346 757.301 -237951 PRK15347 1346.99 -185246 PRK15348 426.298 -185247 PRK15349 357.724 -185248 PRK15350 116.243 -185249 PRK15351 207.571 -185250 PRK15352 159.885 -185251 PRK15353 197.817 -185252 PRK15354 353.622 -185253 PRK15355 115.966 -185254 PRK15356 93.5049 -185255 PRK15357 374.385 -185256 PRK15358 438.342 -185257 PRK15359 267.25 -185258 PRK15360 203.582 -185259 PRK15361 294.231 -237952 PRK15362 535.547 -185261 PRK15363 267.616 -185262 PRK15364 372.462 -185263 PRK15365 177.954 -185264 PRK15366 110.454 -185265 PRK15367 700.515 -185266 PRK15368 209.793 -185267 PRK15369 355.926 -185268 PRK15370 1521.16 -185269 PRK15371 429.898 -185270 PRK15372 608.273 -185271 PRK15373 420.252 -185272 PRK15374 687.082 -185273 PRK15375 1011.26 -185274 PRK15376 935.999 -185275 PRK15377 1171 -237953 PRK15378 700.501 -185277 PRK15379 665.212 -185278 PRK15380 497.526 -185279 PRK15381 886.698 -185280 PRK15382 635.771 -185281 PRK15383 646.294 -185282 PRK15384 668.299 -185283 PRK15385 388.141 -237954 PRK15386 532.138 -185285 PRK15387 1600.2 -185286 PRK15388 253.077 -237955 PRK15389 1028.7 -185288 PRK15390 1138.61 -185289 PRK15391 1192.15 -185290 PRK15392 1194.43 -185291 PRK15393 289.778 -185292 PRK15394 516.02 -185293 PRK15395 609.422 -185294 PRK15396 110.751 -185295 PRK15397 341.21 -237956 PRK15398 593.803 -185297 PRK15399 1208.8 -185298 PRK15400 1459.29 -237957 PRK15401 341.458 -185300 PRK15402 448.234 -237958 PRK15403 648.425 -237959 PRK15404 601.625 -185303 PRK15405 332.045 -185304 PRK15406 486.265 -237960 PRK15407 730.145 -237961 PRK15408 537.457 -185307 PRK15409 608.291 -185308 PRK15410 478.076 -185309 PRK15411 309.754 -185310 PRK15412 370.091 -185311 PRK15413 999.789 -185312 PRK15414 993.683 -185313 PRK15415 352.486 -185314 PRK15416 307.492 -185315 PRK15417 627.459 -237962 PRK15418 565.886 -185317 PRK15419 871.26 -185318 PRK15420 248.248 -185319 PRK15421 635.134 -185320 PRK15422 90.1426 -185321 PRK15423 326.589 -237963 PRK15424 806.25 -185323 PRK15425 622.139 -237964 PRK15426 639.754 -185325 PRK15427 718.822 -185326 PRK15428 194.094 -237965 PRK15429 1203.5 -185328 PRK15430 512.925 -185329 PRK15431 121.903 -185330 PRK15432 471.137 -185331 PRK15433 725.575 -237966 PRK15434 295.896 -185333 PRK15435 586.375 -185334 PRK15437 499.558 -185335 PRK15438 729.012 -185336 PRK15439 788.477 -185337 PRK15440 736.538 -185338 PRK15441 184.457 -185339 PRK15442 517.869 -185340 PRK15443 133.176 -185341 PRK15444 919.43 -185342 PRK15445 508.173 -237967 PRK15446 323.284 -237968 PRK15447 369.938 -185345 PRK15448 179.404 -185346 PRK15449 195.915 -185347 PRK15450 121.553 -185348 PRK15451 493.006 -237969 PRK15452 775.556 -237970 PRK15453 484.32 -185351 PRK15454 696.006 -185352 PRK15455 1323.84 -185353 PRK15456 246.004 -185354 PRK15457 411.637 -185355 PRK15458 823.219 -185356 PRK15459 222.887 -185357 PRK15460 988.703 -185358 PRK15461 444.299 -237971 PRK15462 930.128 -185360 PRK15463 131.562 -185361 PRK15464 137.152 -185362 PRK15465 908.527 -185363 PRK15466 230.255 -185364 PRK15467 319.993 -185365 PRK15468 179.035 -185366 PRK15469 587.149 -185367 PRK15470 352.345 -185368 PRK15471 430.711 -185369 PRK15472 176.092 -185370 PRK15473 488.495 -185371 PRK15474 134.783 -185372 PRK15475 581.921 -185373 PRK15476 585.005 -185374 PRK15477 591.551 -185375 PRK15478 470.134 -185376 PRK15479 383.688 -185377 PRK15480 572.773 -185378 PRK15481 673.683 -185379 PRK15482 518.484 -237972 PRK15483 1229.9 -185381 PRK15484 743.918 -185382 PRK15485 313.188 -185383 PRK15486 362.051 -185384 PRK15487 533.893 -237973 PRK15488 1250.33 -237974 PRK15489 1126.76 -185387 PRK15490 1191.82 -185388 PRK15491 615.739 -185389 PRK15492 544.972 -185390 PRK15493 850.116 -185391 PRK15494 639.063 -240225 PTZ00004 548.986 -173310 PTZ00005 694.892 -240226 PTZ00007 418.428 -185394 PTZ00008 246.263 -240227 PTZ00009 1214.64 -240228 PTZ00010 737.741 -140051 PTZ00013 878.551 -240229 PTZ00014 1201 -185397 PTZ00015 89.7982 -240230 PTZ00016 326.312 -185399 PTZ00017 196.89 -185400 PTZ00018 217.85 -240231 PTZ00019 605.936 -240232 PTZ00021 831.725 -173322 PTZ00023 615.306 -240233 PTZ00024 553.986 -185402 PTZ00026 295.083 -240234 PTZ00027 309.777 -185404 PTZ00028 379.539 -185405 PTZ00029 331.318 -185406 PTZ00030 160.968 -173329 PTZ00031 518.629 -240235 PTZ00032 255.557 -140068 PTZ00033 140.145 -173331 PTZ00034 162.116 -185407 PTZ00035 437.122 -173333 PTZ00036 909.414 -240236 PTZ00037 686.939 -240237 PTZ00038 225.101 -173336 PTZ00039 188.484 -240238 PTZ00040 335.243 -240239 PTZ00041 144.831 -240240 PTZ00043 434.632 -185411 PTZ00044 119.545 -240241 PTZ00045 493.74 -240242 PTZ00046 266.044 -240243 PTZ00047 312.525 -185414 PTZ00048 228.204 -240244 PTZ00049 1150.08 -240245 PTZ00050 567.014 -173347 PTZ00051 160.812 -185416 PTZ00052 919.217 -240246 PTZ00053 609.793 -185418 PTZ00054 229.225 -240247 PTZ00055 812.093 -240248 PTZ00056 292.527 -173353 PTZ00057 339.651 -185420 PTZ00058 781.108 -185421 PTZ00059 174.61 -240249 PTZ00060 344.906 -173356 PTZ00061 295.201 -240250 PTZ00062 296.707 -240251 PTZ00063 819.438 -173359 PTZ00064 1069.25 -240252 PTZ00065 198.829 -173361 PTZ00066 861.761 -185422 PTZ00067 236.564 -240253 PTZ00068 261.91 -240254 PTZ00069 424.481 -240255 PTZ00070 413.703 -240256 PTZ00071 137.468 -185427 PTZ00072 257.285 -240257 PTZ00073 96.774 -185429 PTZ00074 122.104 -240258 PTZ00075 804.258 -173371 PTZ00076 394.558 -185431 PTZ00077 870.958 -185432 PTZ00078 306.715 -185433 PTZ00079 808.959 -240259 PTZ00081 782.311 -173376 PTZ00082 503.838 -185434 PTZ00083 91.2701 -240260 PTZ00084 315.065 -240261 PTZ00085 90.1973 -185437 PTZ00086 216.48 -185438 PTZ00087 637.373 -240262 PTZ00088 385.306 -173383 PTZ00089 1033.47 -173384 PTZ00090 272.168 -185439 PTZ00091 225.417 -240263 PTZ00092 1626.25 -173387 PTZ00093 270.441 -240264 PTZ00094 701.354 -140127 PTZ00095 262.79 -185442 PTZ00096 197.554 -185443 PTZ00097 183.738 -173391 PTZ00098 490.252 -185444 PTZ00099 326.701 -240265 PTZ00100 161.557 -185445 PTZ00101 451.613 -240266 PTZ00102 719.226 -240267 PTZ00103 667.563 -240268 PTZ00104 656.32 -240269 PTZ00105 193.324 -185450 PTZ00106 143.294 -240270 PTZ00107 645.578 -240271 PTZ00108 1627.05 -240272 PTZ00109 1222.43 -240273 PTZ00110 937.272 -173403 PTZ00111 1370.07 -240274 PTZ00112 1596.18 -240275 PTZ00113 411.528 -185455 PTZ00114 641.963 -240276 PTZ00115 392.282 -173408 PTZ00116 312.37 -173409 PTZ00117 476.521 -240277 PTZ00118 475.904 -240278 PTZ00119 509.491 -185458 PTZ00120 238.746 -173412 PTZ00121 2547.77 -240279 PTZ00122 273.99 -240280 PTZ00123 377.461 -173415 PTZ00124 602.625 -240281 PTZ00125 591.269 -240282 PTZ00126 615.547 -240283 PTZ00127 496.884 -185464 PTZ00128 237.7 -185465 PTZ00129 211.258 -185466 PTZ00130 1467.19 -185467 PTZ00131 717.32 -240284 PTZ00132 372.488 -173423 PTZ00133 352.228 -185469 PTZ00134 224.138 -240285 PTZ00135 370.502 -185471 PTZ00136 420.679 -173427 PTZ00137 475.591 -185472 PTZ00138 141.016 -240286 PTZ00139 1122.52 -173430 PTZ00140 553.627 -185474 PTZ00141 857.509 -240287 PTZ00142 705.011 -240288 PTZ00143 268.911 -240289 PTZ00144 595.124 -240290 PTZ00145 759.408 -240291 PTZ00146 421.834 -140176 PTZ00147 818.722 -240292 PTZ00148 236.426 -240293 PTZ00149 374.874 -240294 PTZ00150 993.806 -173440 PTZ00151 263.136 -173441 PTZ00152 202.49 -173442 PTZ00153 899.663 -240295 PTZ00154 163.275 -185484 PTZ00155 279.656 -185485 PTZ00156 293.871 -240296 PTZ00157 97.578 -185487 PTZ00158 212.272 -240297 PTZ00159 166.715 -185489 PTZ00160 224.901 -240298 PTZ00162 265.415 -185490 PTZ00163 398.708 -240299 PTZ00164 817.757 -240300 PTZ00165 708.449 -240301 PTZ00166 1695.21 -185493 PTZ00167 237.752 -185494 PTZ00168 482.887 -240302 PTZ00169 527.029 -240303 PTZ00170 328.098 -240304 PTZ00171 155.627 -185497 PTZ00172 113.675 -185498 PTZ00173 367.05 -240305 PTZ00174 398.941 -185500 PTZ00175 381.23 -140204 PTZ00176 2496.82 -240306 PTZ00178 216.859 -140206 PTZ00179 338.832 -173464 PTZ00180 444.176 -140208 PTZ00181 117.895 -185502 PTZ00182 530.709 -185503 PTZ00183 223.413 -185504 PTZ00184 233.115 -140212 PTZ00185 1043.85 -140213 PTZ00186 1313.14 -240307 PTZ00187 441.847 -240308 PTZ00188 803.717 -240309 PTZ00189 147.066 -140217 PTZ00190 80.487 -185507 PTZ00191 112.101 -173472 PTZ00192 236.36 -140220 PTZ00193 290.01 -185508 PTZ00194 164.922 -140222 PTZ00195 329.685 -185509 PTZ00196 77.3814 -185510 PTZ00197 213.296 -173474 PTZ00198 138.257 -185511 PTZ00199 104.167 -240310 PTZ00200 636.352 -240311 PTZ00201 281.264 -240312 PTZ00202 737.75 -185513 PTZ00203 657.544 -140231 PTZ00204 170.941 -140232 PTZ00205 1215.25 -240313 PTZ00206 734.365 -140234 PTZ00207 940.41 -240314 PTZ00208 597.72 -140236 PTZ00209 1414.79 -140237 PTZ00210 715.131 -240315 PTZ00211 592.513 -185514 PTZ00212 904.785 -185515 PTZ00213 503.574 -173479 PTZ00214 1221.31 -185516 PTZ00215 170.97 -240316 PTZ00216 1250.64 -240317 PTZ00217 532.276 -185518 PTZ00218 83.9661 -185519 PTZ00219 716.015 -173484 PTZ00220 249.35 -140248 PTZ00221 393.851 -140249 PTZ00222 438.363 -140250 PTZ00223 528.415 -240318 PTZ00224 679.571 -140252 PTZ00225 368.605 -240319 PTZ00226 1013.04 -140254 PTZ00227 689.349 -240320 PTZ00228 465.835 -140256 PTZ00229 468.251 -240321 PTZ00230 442.368 -140258 PTZ00231 640.01 -240322 PTZ00232 537.544 -240323 PTZ00233 701.728 -240324 PTZ00234 641.684 -185521 PTZ00235 557.308 -173487 PTZ00236 222.996 -240325 PTZ00237 1090.55 -140265 PTZ00238 587.08 -173488 PTZ00239 619.524 -140267 PTZ00240 587.314 -240326 PTZ00241 237.291 -185524 PTZ00242 248.399 -240327 PTZ00243 2686.47 -140271 PTZ00244 594.576 -140272 PTZ00245 446.427 -173491 PTZ00246 456.622 -240328 PTZ00247 520.354 -240329 PTZ00248 390.948 -140276 PTZ00249 912.492 -140277 PTZ00250 567.295 -140278 PTZ00251 420.027 -240330 PTZ00252 166.676 -140280 PTZ00253 406.598 -240331 PTZ00254 366.306 -240332 PTZ00255 131.753 -173495 PTZ00256 274.329 -240333 PTZ00257 1241.51 -240334 PTZ00258 504.865 -240335 PTZ00259 309.1 -240336 PTZ00260 446.906 -240337 PTZ00261 459.356 -240338 PTZ00262 885.848 -140289 PTZ00263 654.58 -173500 PTZ00264 177.038 -240339 PTZ00265 2635.87 -173502 PTZ00266 1594.39 -140293 PTZ00267 1005.31 -140294 PTZ00268 629.227 -140295 PTZ00269 879.241 -240340 PTZ00270 566.851 -140297 PTZ00271 429.828 -240341 PTZ00272 1302.34 -140299 PTZ00273 593.273 -140300 PTZ00274 641.199 -185536 PTZ00275 456.591 -140302 PTZ00276 458.176 -240342 PTZ00278 267.761 -240343 PTZ00280 759.268 -173506 PTZ00281 745.369 -240344 PTZ00283 972.806 -140307 PTZ00284 893.551 -140308 PTZ00285 463.46 -185539 PTZ00286 671.754 -240345 PTZ00287 2989.11 -240346 PTZ00288 479.424 -240347 PTZ00290 863.747 -185541 PTZ00292 413.364 -185542 PTZ00293 340.163 -240348 PTZ00294 704.427 -240349 PTZ00295 927.89 -240350 PTZ00296 752.491 -140318 PTZ00297 2752.8 -240351 PTZ00298 604.924 -140320 PTZ00299 593.405 -140321 PTZ00300 905.192 -140322 PTZ00301 384.353 -240352 PTZ00302 638.237 -140324 PTZ00303 2360.13 -185547 PTZ00304 903.77 -140326 PTZ00305 553.106 -140327 PTZ00306 2202.66 -140328 PTZ00307 645.738 -140329 PTZ00308 605.242 -240353 PTZ00309 848.267 -240354 PTZ00310 2302.07 -185549 PTZ00311 917.894 -140333 PTZ00312 592.635 -140334 PTZ00313 611.482 -240355 PTZ00314 701.34 -240356 PTZ00315 942.784 -140337 PTZ00316 299.58 -240357 PTZ00317 820.794 -185553 PTZ00318 673.018 -173521 PTZ00319 510.914 -140341 PTZ00320 346.254 -240358 PTZ00321 707.897 -140343 PTZ00322 1210.5 -185554 PTZ00323 514.711 -240359 PTZ00324 1414.56 -240360 PTZ00325 420.993 -240361 PTZ00326 773.371 -240362 PTZ00327 743.747 -140349 PTZ00328 337.411 -185558 PTZ00329 205.429 -140351 PTZ00330 230.499 -240363 PTZ00331 313.542 -240364 PTZ00332 902.023 -240365 PTZ00333 321.864 -240366 PTZ00334 1414.66 -185562 PTZ00335 739.984 -185563 PTZ00337 1187.39 -240367 PTZ00338 448.298 -240368 PTZ00339 572.84 -240369 PTZ00340 568.129 -173534 PTZ00341 1696.51 -240370 PTZ00342 1131.74 -240371 PTZ00343 501.573 -240372 PTZ00344 399.84 -240373 PTZ00345 597.773 -240374 PTZ00346 851.63 -240375 PTZ00347 781.455 -173541 PTZ00348 1286.39 -185571 PTZ00349 566.162 -240376 PTZ00350 644.004 -173544 PTZ00351 1429.83 -240377 PTZ00352 243.091 -173546 PTZ00353 548.322 -173547 PTZ00354 460.652 -173548 PTZ00355 626.107 -185573 PTZ00356 164.043 -173550 PTZ00357 2159.04 -240378 PTZ00358 396.379 -173552 PTZ00359 646.474 -240379 PTZ00360 755.429 -185575 PTZ00361 784.73 -240380 PTZ00362 434.186 -185577 PTZ00363 700.589 -240381 PTZ00364 824.91 -240382 PTZ00365 463.937 -240383 PTZ00366 489.942 -240384 PTZ00367 680.806 -173561 PTZ00368 131.853 -240385 PTZ00369 315.265 -240386 PTZ00370 353.951 -240387 PTZ00371 621.993 -240388 PTZ00372 490.383 -185582 PTZ00373 118.475 -240389 PTZ00374 1692.75 -185583 PTZ00375 726.222 -240390 PTZ00376 573.793 -240391 PTZ00377 738.7 -173571 PTZ00378 750.937 -173572 PTZ00380 189.17 -240392 PTZ00381 732.986 -173574 PTZ00382 101.56 -240393 PTZ00383 768.133 -173576 PTZ00384 598.686 -185588 PTZ00385 1343.15 -240394 PTZ00386 1116.44 -240395 PTZ00387 697.628 -240396 PTZ00388 393.697 -185592 PTZ00389 181.327 -240397 PTZ00390 298.259 -240398 PTZ00391 285.934 -240399 PTZ00393 391.218 -173585 PTZ00394 1136.14 -185594 PTZ00395 2991.46 -240400 PTZ00396 239.536 -240401 PTZ00397 186.957 -173589 PTZ00398 1116.01 -240402 PTZ00399 754.943 -240403 PTZ00400 1217.75 -173592 PTZ00401 1090.03 -240404 PTZ00402 1204.02 -173594 PTZ00403 590.286 -173595 PTZ00404 713.035 -173596 PTZ00405 218.369 -173597 PTZ00407 1393.9 -240405 PTZ00408 395.73 -173599 PTZ00409 507.536 -185600 PTZ00410 616.11 -240406 PTZ00411 367.526 -240407 PTZ00412 913.971 -240408 PTZ00413 601.048 -173604 PTZ00414 185.199 -185603 PTZ00415 4672.06 -240409 PTZ00416 1537.3 -173607 PTZ00417 1192.9 -240410 PTZ00418 847.161 -240411 PTZ00419 1533.02 -240412 PTZ00420 999.851 -173611 PTZ00421 890.397 -185607 PTZ00422 458.136 -240413 PTZ00423 279.685 -185609 PTZ00424 675.774 -240414 PTZ00425 1202.54 -173616 PTZ00426 661.29 -173617 PTZ00427 2334.58 -185611 PTZ00428 572.784 -240415 PTZ00429 1170.09 -185612 PTZ00430 927.886 -173621 PTZ00431 504.101 -240416 PTZ00432 1526.27 -185613 PTZ00433 726.195 -185614 PTZ00434 761.903 -240417 PTZ00435 710.604 -185616 PTZ00436 273.75 -240418 PTZ00437 1239.86 -185618 PTZ00438 581.249 -240419 PTZ00440 2012.42 -240420 PTZ00441 838.466 -185621 PTZ00442 549.51 -185622 PTZ00443 422.497 -185623 PTZ00444 246.259 -240421 PTZ00445 261.175 -240422 PTZ00446 216.515 -185626 PTZ00447 822.308 -185627 PTZ00448 699.864 -185628 PTZ00449 1588.56 -185629 PTZ00450 232.984 -185630 PTZ00451 388.85 -185631 PTZ00452 786.64 -185632 PTZ00453 143.174 -240423 PTZ00454 711.534 -240424 PTZ00455 656.581 -185635 PTZ00456 1059.86 -185636 PTZ00457 912.341 -185637 PTZ00458 140.342 -185638 PTZ00459 399.931 -185639 PTZ00460 1139.19 -185640 PTZ00461 816.868 -185641 PTZ00462 1592.4 -185642 PTZ00463 179.216 -240425 PTZ00464 248.193 -185644 PTZ00465 1204.58 -240426 PTZ00466 785.673 -185646 PTZ00467 74.42 -185647 PTZ00468 2396.22 -185648 PTZ00469 299.267 -240427 PTZ00470 730.37 -240428 PTZ00471 178.894 -240429 PTZ00472 711.592 -240430 PTZ00473 373.799 -240431 PTZ00474 353.957 -185654 PTZ00475 471.043 -240432 PTZ00477 662.253 -185656 PTZ00478 134.84 -185657 PTZ00479 622.936 -185658 PTZ00480 657.117 -185659 PTZ00481 861.393 -240433 PTZ00482 1248.61 -185661 PTZ00483 456.247 -240434 PTZ00484 321.037 -240435 PTZ00485 531.114 -240436 PTZ00486 423.269 -240437 PTZ00487 1286.8 -185666 PTZ00488 518.39 -240438 PTZ00489 482.592 -185668 PTZ00490 242.078 -240439 PTZ00491 1222.95 -240440 PTZ00493 576.561 -185671 PTZ00494 1242.29 -272847 TIGR00001 52.6654 -272848 TIGR00002 109.638 -188014 TIGR00003 78.7369 -129116 TIGR00004 170.553 -161659 TIGR00005 335.832 -272849 TIGR00006 405.25 -272850 TIGR00007 244.031 -188015 TIGR00008 106.265 -272851 TIGR00009 53.7993 -272852 TIGR00010 263.737 -272853 TIGR00011 158.549 -272854 TIGR00012 32.9778 -129125 TIGR00013 80.1591 -272855 TIGR00014 176.489 -272856 TIGR00016 607.105 -129128 TIGR00017 291.254 -272857 TIGR00018 446.134 -129130 TIGR00019 542.747 -272858 TIGR00020 571.333 -272859 TIGR00021 233.267 -129133 TIGR00022 205.774 -272860 TIGR00023 211.829 -129135 TIGR00024 253.24 -272861 TIGR00025 189.263 -211538 TIGR00026 92.0846 -272862 TIGR00027 248.383 -272863 TIGR00028 124.802 -211539 TIGR00029 63.3309 -129141 TIGR00030 31.4701 -272864 TIGR00031 567.489 -199987 TIGR00032 603.245 -272865 TIGR00033 464.917 -129145 TIGR00034 614.429 -213495 TIGR00035 316.76 -129147 TIGR00036 342.082 -272866 TIGR00037 201.591 -272867 TIGR00038 220.795 -272868 TIGR00039 133.641 -272869 TIGR00040 162.155 -161676 TIGR00041 192.193 -272870 TIGR00042 229.945 -272871 TIGR00043 108.118 -129155 TIGR00044 320.636 -272872 TIGR00045 453.285 -272873 TIGR00046 241.914 -272874 TIGR00048 557.508 -272875 TIGR00049 125.77 -272876 TIGR00050 293.922 -129161 TIGR00051 152.188 -129162 TIGR00052 268.613 -272877 TIGR00053 85.2187 -272878 TIGR00054 398.808 -129165 TIGR00055 319.349 -129166 TIGR00056 290.421 -272879 TIGR00057 228.751 -129168 TIGR00058 166.086 -272880 TIGR00059 141.032 -272881 TIGR00060 121.083 -129171 TIGR00061 122.889 -272882 TIGR00062 113.29 -129173 TIGR00063 297.824 -272883 TIGR00064 319.202 -272884 TIGR00065 387.44 -129176 TIGR00066 694.976 -272885 TIGR00067 317.427 -272886 TIGR00068 234.7 -272887 TIGR00069 354.132 -272888 TIGR00070 179.279 -272889 TIGR00071 238.368 -272890 TIGR00072 71.7769 -272891 TIGR00073 306.632 -129184 TIGR00074 91.2782 -272892 TIGR00075 609.08 -272893 TIGR00077 129.785 -272894 TIGR00078 333.839 -272895 TIGR00079 189.903 -272896 TIGR00080 346.043 -272897 TIGR00081 234.985 -129191 TIGR00082 117.859 -272898 TIGR00083 347.127 -129193 TIGR00084 190.275 -129194 TIGR00086 163.941 -272899 TIGR00087 293.505 -129196 TIGR00088 377.133 -272900 TIGR00089 427.429 -272901 TIGR00090 78.6579 -161703 TIGR00091 231.867 -129200 TIGR00092 493.524 -272902 TIGR00093 173.668 -272903 TIGR00094 411.867 -188022 TIGR00095 225.752 -129204 TIGR00096 325.238 -272904 TIGR00097 308.452 -272905 TIGR00099 190.942 -272906 TIGR00100 126.335 -129208 TIGR00101 375.357 -211546 TIGR00103 75.1659 -129210 TIGR00104 185.364 -272907 TIGR00105 86.1881 -272908 TIGR00106 118.323 -188024 TIGR00107 366.79 -272909 TIGR00109 423.402 -272910 TIGR00110 897.93 -129217 TIGR00111 461.978 -272911 TIGR00112 215.971 -272912 TIGR00113 324.791 -211550 TIGR00114 169.466 -272913 TIGR00115 195.082 -272914 TIGR00116 334.054 -129223 TIGR00117 1617.29 -272915 TIGR00118 951.089 -272916 TIGR00119 224.547 -161718 TIGR00120 600.648 -272917 TIGR00121 231.137 -272918 TIGR00122 95.2228 -272919 TIGR00123 307.116 -129230 TIGR00124 518.607 -272920 TIGR00125 41.9089 -272921 TIGR00126 279.733 -129233 TIGR00127 788.299 -272922 TIGR00128 434.973 -272923 TIGR00129 258.938 -161726 TIGR00130 207.671 -272924 TIGR00131 566.761 -272925 TIGR00132 600.094 -272926 TIGR00133 653.706 -213509 TIGR00134 994.388 -129241 TIGR00135 87.7386 -272927 TIGR00136 1033.47 -129243 TIGR00137 761.753 -272928 TIGR00138 163.58 -129245 TIGR00139 1351.63 -129246 TIGR00140 174.798 -129247 TIGR00142 215.091 -272929 TIGR00143 1050.51 -129249 TIGR00144 502.094 -272930 TIGR00145 262.747 -161732 TIGR00147 449.647 -129252 TIGR00148 441.434 -129253 TIGR00149 202.681 -129254 TIGR00150 171.471 -129255 TIGR00151 207.913 -272931 TIGR00152 184.131 -272932 TIGR00153 218.446 -188029 TIGR00154 362.984 -272933 TIGR00155 584.873 -129260 TIGR00156 178.957 -272934 TIGR00157 333.227 -129262 TIGR00158 159.088 -129263 TIGR00159 265.524 -272935 TIGR00160 222.361 -129265 TIGR00161 364.938 -129266 TIGR00162 277.492 -272936 TIGR00163 322.936 -129268 TIGR00164 262.431 -272937 TIGR00165 93.6402 -129270 TIGR00166 104.754 -272938 TIGR00167 384.748 -129272 TIGR00168 201.088 -272939 TIGR00169 571.653 -272940 TIGR00170 916.938 -129275 TIGR00171 346.032 -129276 TIGR00172 260.408 -272941 TIGR00173 375.788 -213512 TIGR00174 407.159 -272942 TIGR00175 541.587 -272943 TIGR00176 147.139 -272944 TIGR00177 94.6909 -129282 TIGR00178 1388.83 -272945 TIGR00179 364.851 -272946 TIGR00180 186.046 -272947 TIGR00181 663.232 -129286 TIGR00182 444.969 -272948 TIGR00183 748.966 -272949 TIGR00184 465.482 -211559 TIGR00185 259.271 -129290 TIGR00186 266.902 -272950 TIGR00187 271.216 -211560 TIGR00188 97.7696 -272951 TIGR00189 264.989 -129294 TIGR00190 697.27 -129295 TIGR00191 342.844 -129296 TIGR00192 180.407 -272952 TIGR00193 170.823 -272953 TIGR00194 713.759 -272954 TIGR00195 390.976 -272955 TIGR00196 296.603 -272956 TIGR00197 224.598 -272957 TIGR00198 1345.35 -129303 TIGR00199 214.191 -161761 TIGR00200 636.179 -272958 TIGR00201 252.825 -272959 TIGR00202 83.275 -129307 TIGR00203 474.74 -129308 TIGR00204 1048.98 -272960 TIGR00205 97.3073 -129310 TIGR00206 666.202 -272961 TIGR00207 463.905 -188033 TIGR00208 172.421 -129313 TIGR00209 668.975 -129314 TIGR00210 555.157 -272962 TIGR00211 1022.04 -272963 TIGR00212 337.324 -129317 TIGR00213 298.761 -272964 TIGR00214 267.817 -129319 TIGR00215 537.17 -272965 TIGR00216 337.019 -129321 TIGR00217 742.45 -272966 TIGR00218 308.594 -129323 TIGR00219 345.692 -272967 TIGR00220 119.974 -272968 TIGR00221 596.045 -272969 TIGR00222 426.528 -129327 TIGR00223 184.733 -161774 TIGR00224 926.198 -272970 TIGR00225 430.628 -129330 TIGR00227 274.647 -129331 TIGR00228 239.448 -272971 TIGR00229 86.576 -272972 TIGR00230 291.351 -272973 TIGR00231 128.258 -272974 TIGR00232 1031.2 -272975 TIGR00233 359.722 -272976 TIGR00234 312.409 -272977 TIGR00235 273.11 -272978 TIGR00236 546.284 -272979 TIGR00237 255.436 -272980 TIGR00238 497.051 -161785 TIGR00239 1555.23 -272981 TIGR00240 203.485 -129344 TIGR00241 347.549 -129345 TIGR00242 230.062 -161787 TIGR00243 545.571 -129347 TIGR00244 245.117 -272982 TIGR00245 286.315 -129349 TIGR00246 235.974 -272983 TIGR00247 480.493 -129351 TIGR00249 202.761 -129352 TIGR00250 198.126 -129353 TIGR00251 98.3486 -129354 TIGR00252 173.551 -129355 TIGR00253 113.839 -272984 TIGR00254 228.761 -129357 TIGR00255 388.816 -129358 TIGR00256 228.196 -129359 TIGR00257 229.685 -272985 TIGR00258 243.566 -129361 TIGR00259 352.961 -272986 TIGR00260 318.942 -129363 TIGR00261 502.074 -161792 TIGR00262 367.826 -272987 TIGR00263 644.801 -272988 TIGR00264 100.025 -272989 TIGR00266 326.381 -129368 TIGR00267 177.741 -129369 TIGR00268 324.057 -129370 TIGR00269 161.902 -129371 TIGR00270 177.411 -129372 TIGR00271 169.487 -272990 TIGR00272 717.871 -129374 TIGR00273 564.109 -272991 TIGR00274 484.731 -272992 TIGR00275 390.418 -272993 TIGR00276 472.011 -272994 TIGR00277 77.3759 -272995 TIGR00278 108.7 -129380 TIGR00279 275.584 -272996 TIGR00280 120.36 -213521 TIGR00281 199.665 -161802 TIGR00282 423.472 -161803 TIGR00283 168.483 -272997 TIGR00284 634.646 -129386 TIGR00285 102.985 -211565 TIGR00286 217.762 -272998 TIGR00287 219.521 -272999 TIGR00288 264.048 -129390 TIGR00289 368.808 -273000 TIGR00290 302.856 -129392 TIGR00291 332.57 -273001 TIGR00292 377.64 -129394 TIGR00293 82.3272 -129395 TIGR00294 419.265 -129396 TIGR00295 239.755 -273002 TIGR00296 293.26 -213522 TIGR00297 257.021 -273003 TIGR00298 261.586 -129400 TIGR00299 564.045 -129401 TIGR00300 695.027 -129402 TIGR00302 103.66 -273004 TIGR00303 468.148 -213523 TIGR00304 43.9705 -129405 TIGR00305 142.609 -273005 TIGR00306 410.322 -129407 TIGR00307 165.018 -273006 TIGR00308 528.643 -129409 TIGR00309 231.637 -273007 TIGR00310 264.753 -129411 TIGR00311 222.417 -273008 TIGR00312 539.85 -129413 TIGR00313 767.418 -129414 TIGR00314 1379.93 -273009 TIGR00315 168.134 -129416 TIGR00316 771.716 -213524 TIGR00317 222.319 -273010 TIGR00318 143.403 -200008 TIGR00319 45.1451 -273011 TIGR00320 222.419 -273012 TIGR00321 409.113 -273013 TIGR00322 203.201 -211569 TIGR00323 297.105 -129424 TIGR00324 166.107 -273014 TIGR00325 455.445 -273015 TIGR00326 410.374 -273016 TIGR00327 52.0744 -129428 TIGR00328 412.814 -129429 TIGR00329 426 -129430 TIGR00330 510.148 -273017 TIGR00331 293.032 -273018 TIGR00332 123.931 -188042 TIGR00333 171.557 -273019 TIGR00334 183.487 -273020 TIGR00335 313.755 -129436 TIGR00336 175.309 -273021 TIGR00337 858.939 -273022 TIGR00338 294.649 -273023 TIGR00339 518.863 -129440 TIGR00340 211.199 -273024 TIGR00341 328.001 -273025 TIGR00342 479.212 -129443 TIGR00343 477.725 -273026 TIGR00344 990.342 -273027 TIGR00345 363.721 -129446 TIGR00346 296.349 -129447 TIGR00347 220.693 -273028 TIGR00348 658.322 -273029 TIGR00350 204.913 -273030 TIGR00351 316.03 -129451 TIGR00353 725.889 -273031 TIGR00354 1947.77 -273032 TIGR00355 789.022 -129454 TIGR00357 231.966 -273033 TIGR00358 897.537 -273034 TIGR00359 520.858 -273035 TIGR00360 125.565 -273036 TIGR00361 929.692 -273037 TIGR00362 371.092 -129460 TIGR00363 437.025 -129461 TIGR00364 299.694 -188046 TIGR00365 161.864 -273038 TIGR00366 599.51 -273039 TIGR00367 245.311 -129465 TIGR00368 794.433 -161843 TIGR00369 123.994 -129467 TIGR00370 347.225 -273040 TIGR00372 132.918 -129469 TIGR00373 233.983 -129470 TIGR00374 175.648 -161657 TIGR00375 558.758 -273041 TIGR00376 851.414 -273042 TIGR00377 96.1337 -273043 TIGR00378 427.738 -273044 TIGR00379 755.487 -273045 TIGR00380 390.739 -273046 TIGR00381 648.152 -273047 TIGR00382 664.544 -273048 TIGR00383 357.469 -273049 TIGR00384 303.968 -129481 TIGR00385 267.028 -273050 TIGR00387 604.845 -129483 TIGR00388 562.924 -273051 TIGR00389 627.259 -273052 TIGR00390 656.887 -273053 TIGR00391 588.035 -273054 TIGR00392 1081.63 -129488 TIGR00393 401.878 -273055 TIGR00394 663.095 -273056 TIGR00395 1453.49 -273057 TIGR00396 1268.52 -129492 TIGR00397 353.066 -273058 TIGR00398 600.905 -273059 TIGR00399 170.301 -129495 TIGR00400 615.681 -129496 TIGR00401 243.504 -273060 TIGR00402 153.178 -129498 TIGR00403 352.294 -129499 TIGR00405 213.214 -273061 TIGR00406 412.691 -161862 TIGR00407 611.791 -273062 TIGR00408 701.102 -273063 TIGR00409 809.041 -273064 TIGR00410 520.858 -129505 TIGR00411 124.224 -129506 TIGR00412 101.52 -273065 TIGR00413 181.725 -273066 TIGR00414 555.436 -129509 TIGR00415 962.873 -273067 TIGR00416 762.802 -188048 TIGR00417 410.279 -273068 TIGR00418 680.588 -129513 TIGR00419 265.899 -273069 TIGR00420 469.559 -129515 TIGR00421 307.096 -273070 TIGR00422 1214.9 -273071 TIGR00423 500.384 -273072 TIGR00424 946.759 -273073 TIGR00425 562.854 -129520 TIGR00426 94.9975 -129521 TIGR00427 219.197 -129522 TIGR00430 597.087 -129523 TIGR00431 308.144 -273074 TIGR00432 638.887 -273075 TIGR00433 383.758 -129526 TIGR00434 337.53 -273076 TIGR00435 575.486 -129528 TIGR00436 340.52 -273077 TIGR00437 628.694 -273078 TIGR00438 307.517 -129531 TIGR00439 468.18 -273079 TIGR00440 915.849 -129533 TIGR00441 284.449 -273080 TIGR00442 312.49 -273081 TIGR00443 271.795 -273082 TIGR00444 384.944 -161884 TIGR00445 394.89 -188051 TIGR00446 413.786 -213531 TIGR00447 219.145 -129540 TIGR00448 266.265 -129541 TIGR00449 454.941 -273083 TIGR00450 563.262 -129543 TIGR00451 134.098 -273084 TIGR00452 456.645 -213532 TIGR00453 228.711 -200016 TIGR00454 252.908 -129547 TIGR00455 272.034 -273085 TIGR00456 559.652 -273086 TIGR00457 639.041 -273087 TIGR00458 664.986 -211576 TIGR00459 794.324 -273088 TIGR00460 371.734 -273089 TIGR00461 1735.55 -273090 TIGR00462 341.838 -273091 TIGR00463 847.955 -273092 TIGR00464 592.019 -273093 TIGR00465 443.358 -129558 TIGR00466 381.57 -273094 TIGR00467 821.845 -273095 TIGR00468 372.03 -129561 TIGR00469 804.294 -129562 TIGR00470 937.377 -273096 TIGR00471 788.565 -273097 TIGR00472 572.312 -273098 TIGR00473 150.672 -273099 TIGR00474 487.843 -129567 TIGR00475 582.988 -273100 TIGR00476 272.062 -188054 TIGR00477 362.655 -129570 TIGR00478 234.699 -129571 TIGR00479 634.553 -129572 TIGR00481 189.617 -273101 TIGR00482 183.289 -129574 TIGR00483 744.76 -129575 TIGR00484 1191.92 -129576 TIGR00485 723.875 -213534 TIGR00486 253.467 -273102 TIGR00487 934.185 -273103 TIGR00488 245.857 -129580 TIGR00489 81.4712 -129581 TIGR00490 1358.8 -273104 TIGR00491 862.97 -129583 TIGR00492 487.632 -188055 TIGR00493 357.947 -129585 TIGR00494 106.702 -273105 TIGR00495 552.572 -129587 TIGR00496 236.972 -211578 TIGR00497 640.078 -273106 TIGR00498 287.767 -273107 TIGR00499 622.079 -129591 TIGR00500 373.992 -129592 TIGR00501 465.029 -129593 TIGR00502 427.307 -129594 TIGR00503 980.161 -129595 TIGR00504 314.86 -129596 TIGR00505 300.542 -273108 TIGR00506 276.954 -161904 TIGR00507 353.259 -273109 TIGR00508 537.079 -273110 TIGR00509 1159.52 -273111 TIGR00510 552.137 -188057 TIGR00511 448.788 -273112 TIGR00512 432.061 -273113 TIGR00513 540.164 -129605 TIGR00514 800.513 -129606 TIGR00515 501.254 -273114 TIGR00516 171.795 -213536 TIGR00517 92.8449 -129609 TIGR00518 605.369 -129610 TIGR00519 510.13 -273115 TIGR00520 538.198 -273116 TIGR00521 473.011 -273117 TIGR00522 370.684 -273118 TIGR00523 150.399 -273119 TIGR00524 419.154 -213537 TIGR00525 111.644 -273120 TIGR00526 117.8 -200024 TIGR00527 190.047 -273121 TIGR00528 597.961 -273122 TIGR00529 409.987 -129621 TIGR00530 159.049 -273123 TIGR00531 177.721 -129623 TIGR00532 613.578 -129624 TIGR00533 663.108 -213538 TIGR00534 381.552 -273124 TIGR00535 512.856 -273125 TIGR00536 291.564 -129628 TIGR00537 228.972 -129629 TIGR00538 806.704 -129630 TIGR00539 537.184 -273126 TIGR00540 289.188 -129632 TIGR00541 610.865 -129633 TIGR00542 498.606 -273127 TIGR00543 369.389 -273128 TIGR00544 267.351 -161920 TIGR00545 404.587 -273129 TIGR00546 285.792 -129638 TIGR00547 370.92 -129639 TIGR00548 281.091 -273130 TIGR00549 247.974 -129641 TIGR00550 421.103 -273131 TIGR00551 668.044 -273132 TIGR00552 328.964 -273133 TIGR00553 457.225 -273134 TIGR00554 581.572 -273135 TIGR00555 295.852 -273136 TIGR00556 122.16 -273137 TIGR00557 339.074 -273138 TIGR00558 277.842 -188064 TIGR00559 353.704 -273139 TIGR00560 167.143 -273140 TIGR00561 1036.55 -213540 TIGR00562 573.706 -273141 TIGR00563 624.584 -273142 TIGR00564 656.715 -273143 TIGR00565 865.746 -273144 TIGR00566 272.817 -273145 TIGR00567 240.871 -129659 TIGR00568 268.635 -129660 TIGR00569 385.727 -129661 TIGR00570 431.921 -273146 TIGR00571 251.91 -129663 TIGR00573 238.504 -273147 TIGR00574 519.18 -273148 TIGR00575 772.993 -273149 TIGR00576 176.271 -273150 TIGR00577 318.089 -273151 TIGR00578 962.43 -273152 TIGR00580 1147.1 -129670 TIGR00581 185.328 -273153 TIGR00583 685.799 -273154 TIGR00584 455.283 -273155 TIGR00585 296.089 -200031 TIGR00586 113.43 -273156 TIGR00587 340.104 -211589 TIGR00588 450.132 -273157 TIGR00589 114.334 -273158 TIGR00590 346.274 -129679 TIGR00591 471.193 -273159 TIGR00592 508.057 -273160 TIGR00593 1106.64 -273161 TIGR00594 1484.94 -273162 TIGR00595 737.655 -273163 TIGR00596 1183.84 -129685 TIGR00597 185.038 -273164 TIGR00598 199.634 -273165 TIGR00599 473.721 -273166 TIGR00600 1370.75 -273167 TIGR00601 470.917 -129690 TIGR00602 809.954 -273168 TIGR00603 1255.86 -273169 TIGR00604 715.726 -273170 TIGR00605 802.558 -129694 TIGR00606 1596.24 -129695 TIGR00607 310.201 -273171 TIGR00608 293.191 -273172 TIGR00609 1026.99 -273173 TIGR00611 353.583 -273174 TIGR00612 401.802 -273175 TIGR00613 190.218 -129701 TIGR00614 767.01 -273176 TIGR00615 292.704 -129703 TIGR00616 355.057 -273177 TIGR00617 837.076 -129705 TIGR00618 817.285 -273178 TIGR00619 317.826 -273179 TIGR00621 156.04 -129709 TIGR00622 183.213 -129710 TIGR00623 281.83 -129711 TIGR00624 300.648 -273180 TIGR00625 739.028 -273181 TIGR00627 417.312 -273182 TIGR00628 252.519 -273183 TIGR00629 514.104 -273184 TIGR00630 1442.89 -273185 TIGR00631 1108.52 -211591 TIGR00632 171.956 -273186 TIGR00633 325.388 -273187 TIGR00634 568.596 -129721 TIGR00635 447.517 -213544 TIGR00636 232.225 -273188 TIGR00637 111.763 -273189 TIGR00638 84.7143 -161973 TIGR00639 260.381 -129726 TIGR00640 203.028 -273190 TIGR00641 947.676 -273191 TIGR00642 840.367 -273192 TIGR00643 745.703 -273193 TIGR00644 543.435 -129731 TIGR00645 208.143 -129732 TIGR00646 386.998 -273194 TIGR00647 332.032 -129734 TIGR00648 244.092 -273195 TIGR00649 590.479 -273196 TIGR00651 468.07 -273197 TIGR00652 272.285 -273198 TIGR00653 650.191 -129739 TIGR00654 455.853 -273199 TIGR00655 440.329 -273200 TIGR00656 464.939 -273201 TIGR00657 432.163 -129743 TIGR00658 496.104 -273202 TIGR00659 288.643 -273203 TIGR00661 452.792 -273204 TIGR00663 360.881 -273205 TIGR00664 85.5805 -273206 TIGR00665 360.201 -200042 TIGR00666 401.488 -273207 TIGR00667 240.913 -273208 TIGR00668 513.28 -129752 TIGR00669 641.188 -273209 TIGR00670 388.641 -273210 TIGR00671 231.977 -129755 TIGR00672 495.224 -213549 TIGR00673 230.89 -129757 TIGR00674 387.84 -273211 TIGR00675 335.45 -273212 TIGR00676 354.247 -129760 TIGR00677 479.614 -273213 TIGR00678 179.746 -273214 TIGR00679 330.975 -273215 TIGR00680 838.389 -129764 TIGR00681 289.121 -273216 TIGR00682 382.975 -273217 TIGR00683 499.092 -273218 TIGR00684 207.767 -273219 TIGR00685 317.932 -273220 TIGR00686 175.872 -273221 TIGR00687 470.466 -129771 TIGR00688 309.419 -129772 TIGR00689 222.254 -188073 TIGR00690 74.8122 -213552 TIGR00691 826.644 -129775 TIGR00692 603.771 -273222 TIGR00693 212.879 -188074 TIGR00694 348.576 -129778 TIGR00695 619.299 -129779 TIGR00696 281.679 -129780 TIGR00697 184.849 -129781 TIGR00698 374.622 -129782 TIGR00699 862.594 -129783 TIGR00700 667.738 -273223 TIGR00701 197.726 -273224 TIGR00702 509.772 -129786 TIGR00703 351.459 -273225 TIGR00704 357.693 -273226 TIGR00705 860.286 -273227 TIGR00706 296.974 -273228 TIGR00707 553.897 -129791 TIGR00708 269.338 -129792 TIGR00709 735.218 -273229 TIGR00710 387.51 -129794 TIGR00711 560.074 -129795 TIGR00712 745.512 -273230 TIGR00713 667.142 -211601 TIGR00714 173.146 -273231 TIGR00715 332.194 -129799 TIGR00716 376.971 -273232 TIGR00717 578.612 -129801 TIGR00718 463.703 -129802 TIGR00719 338.826 -273233 TIGR00720 726.446 -129804 TIGR00721 187.392 -273234 TIGR00722 423.026 -129806 TIGR00723 235.795 -129807 TIGR00724 447.694 -129808 TIGR00725 181.201 -273235 TIGR00726 249.229 -129810 TIGR00727 1032.13 -273236 TIGR00728 326.705 -129812 TIGR00729 267.024 -129813 TIGR00730 270.539 -273237 TIGR00731 204.136 -273238 TIGR00732 252.249 -273239 TIGR00733 724.351 -273240 TIGR00734 300.684 -273241 TIGR00735 388.647 -129819 TIGR00736 321.848 -129820 TIGR00737 473.004 -273242 TIGR00738 135.452 -273243 TIGR00739 96.2155 -273244 TIGR00740 516.869 -129824 TIGR00741 105.49 -129825 TIGR00742 531.321 -273245 TIGR00743 121.494 -273246 TIGR00744 446.269 -273247 TIGR00745 220.25 -273248 TIGR00746 447.288 -273249 TIGR00747 481.113 -273250 TIGR00748 659.403 -129832 TIGR00749 506.728 -129833 TIGR00750 449.994 -129834 TIGR00751 344.941 -273251 TIGR00752 277.933 -129836 TIGR00753 235.36 -162022 TIGR00754 248.187 -273252 TIGR00755 237.514 -273253 TIGR00756 28.5751 -273254 TIGR00757 521.112 -129841 TIGR00758 290.087 -273255 TIGR00759 1573.23 -129843 TIGR00760 439.647 -273256 TIGR00761 232.172 -273257 TIGR00762 173.039 -273258 TIGR00763 1057.29 -273259 TIGR00764 759.383 -273260 TIGR00765 256.525 -188082 TIGR00766 324.547 -162030 TIGR00767 669.857 -273261 TIGR00768 321.218 -273262 TIGR00769 635.26 -273263 TIGR00770 566.288 -129854 TIGR00771 321.466 -273264 TIGR00773 501.611 -129856 TIGR00774 860.325 -129857 TIGR00775 518.292 -273265 TIGR00776 266.548 -129859 TIGR00777 229.467 -273266 TIGR00778 43.1282 -129861 TIGR00779 229.69 -129862 TIGR00780 705.862 -129863 TIGR00781 364.235 -129864 TIGR00782 356.127 -129865 TIGR00783 366.703 -162036 TIGR00784 606.08 -273267 TIGR00785 334.312 -129868 TIGR00786 354.665 -129869 TIGR00787 272.704 -273268 TIGR00788 438.832 -129871 TIGR00789 116.776 -273269 TIGR00790 203.676 -129873 TIGR00791 502.272 -273270 TIGR00792 443.231 -273271 TIGR00793 463.586 -129876 TIGR00794 810.93 -162041 TIGR00795 515.4 -273272 TIGR00796 395.141 -273273 TIGR00797 184.756 -129880 TIGR00798 389.031 -273274 TIGR00799 250.283 -273275 TIGR00800 197.968 -273276 TIGR00801 316.929 -273277 TIGR00802 374.071 -129885 TIGR00803 183.71 -273278 TIGR00804 422.866 -273279 TIGR00805 769.281 -129888 TIGR00806 655.027 -129889 TIGR00807 154.188 -129890 TIGR00808 333.774 -213561 TIGR00809 226.613 -273280 TIGR00810 25.1538 -273281 TIGR00811 1116.58 -273282 TIGR00813 285.351 -273283 TIGR00814 444.09 -273284 TIGR00815 433.683 -273285 TIGR00816 278.519 -129898 TIGR00817 297.793 -273286 TIGR00819 1e+06 -273287 TIGR00820 419.874 -129901 TIGR00821 306.76 -129902 TIGR00822 290.937 -129903 TIGR00823 124.857 -129904 TIGR00824 174.958 -129905 TIGR00825 536.385 -273288 TIGR00826 61.6054 -129907 TIGR00827 567.147 -129908 TIGR00828 388.012 -129909 TIGR00829 130.287 -273289 TIGR00830 161.26 -129911 TIGR00831 573.37 -213563 TIGR00832 334.671 -129913 TIGR00833 528.772 -273290 TIGR00834 1357.13 -273291 TIGR00835 449.84 -273292 TIGR00836 351.187 -273293 TIGR00837 397.827 -129918 TIGR00838 640.556 -213564 TIGR00839 800.584 -273294 TIGR00840 665.712 -188087 TIGR00841 251.101 -213565 TIGR00842 530.388 -129923 TIGR00843 526.446 -273295 TIGR00844 1413.91 -273296 TIGR00845 1365.63 -273297 TIGR00846 320.557 -129927 TIGR00847 73.9969 -273298 TIGR00848 150.888 -129929 TIGR00849 199.715 -129930 TIGR00851 557.896 -273299 TIGR00852 239.142 -273300 TIGR00853 128.282 -129933 TIGR00854 211.174 -273301 TIGR00855 100.992 -129935 TIGR00856 516.676 -273302 TIGR00857 498.121 -273303 TIGR00858 390.86 -273304 TIGR00859 592.859 -273305 TIGR00860 488.454 -273306 TIGR00861 167.476 -129941 TIGR00862 443.533 -273307 TIGR00863 597.481 -188093 TIGR00864 4865.46 -273308 TIGR00865 152.279 -273309 TIGR00867 624.176 -129946 TIGR00868 1665.79 -273310 TIGR00869 363.461 -273311 TIGR00870 797.752 -273312 TIGR00871 672.108 -273313 TIGR00872 500.528 -273314 TIGR00873 862.863 -162081 TIGR00874 533.956 -129953 TIGR00875 316.032 -129954 TIGR00876 525.839 -273315 TIGR00877 543.826 -273316 TIGR00878 449.862 -273317 TIGR00879 270.75 -273318 TIGR00880 97.7205 -273319 TIGR00881 399.828 -211613 TIGR00882 525.851 -273320 TIGR00883 430.156 -273321 TIGR00884 489.543 -211614 TIGR00885 591.057 -273322 TIGR00886 279.957 -129965 TIGR00887 725.367 -129966 TIGR00888 294.222 -129967 TIGR00889 535.607 -273323 TIGR00890 305.525 -273324 TIGR00891 541.782 -273325 TIGR00892 646.799 -273326 TIGR00893 298.482 -129972 TIGR00894 565.524 -273327 TIGR00895 330.858 -129974 TIGR00896 379.099 -162096 TIGR00897 559.068 -273328 TIGR00898 480.667 -129977 TIGR00899 396.449 -162098 TIGR00900 301.162 -273329 TIGR00901 333.971 -129980 TIGR00902 537.592 -129981 TIGR00903 491.764 -129982 TIGR00904 533.91 -129983 TIGR00905 445.656 -273330 TIGR00906 737.01 -273331 TIGR00907 590.565 -129986 TIGR00908 613.001 -129987 TIGR00909 435.72 -129988 TIGR00910 809.132 -273332 TIGR00911 660.287 -273333 TIGR00912 204.441 -273334 TIGR00913 579.624 -129992 TIGR00914 1676.84 -273335 TIGR00915 1570.88 -273336 TIGR00916 124.291 -273337 TIGR00917 1687.01 -273338 TIGR00918 1894.99 -273339 TIGR00920 1464.69 -273340 TIGR00921 901.512 -273341 TIGR00922 196.369 -273342 TIGR00924 602.596 -273343 TIGR00926 819.388 -273344 TIGR00927 1608.9 -273345 TIGR00928 523.063 -273346 TIGR00929 727.191 -273347 TIGR00930 1219.56 -188097 TIGR00931 603.713 -273348 TIGR00932 182.079 -273349 TIGR00933 306.12 -130009 TIGR00934 419.388 -213571 TIGR00935 599.829 -213572 TIGR00936 696.845 -273350 TIGR00937 276.561 -273351 TIGR00938 525.135 -273352 TIGR00939 360.958 -273353 TIGR00940 1000.9 -273354 TIGR00941 140.327 -130017 TIGR00942 198.136 -130018 TIGR00943 130.642 -130019 TIGR00944 514.335 -273355 TIGR00945 163.544 -273356 TIGR00946 194.132 -273357 TIGR00947 470.709 -130023 TIGR00948 164.46 -273358 TIGR00949 195.244 -273359 TIGR00950 160.552 -130026 TIGR00951 209.326 -130027 TIGR00952 93.9277 -273360 TIGR00954 895.26 -273361 TIGR00955 715.285 -273362 TIGR00956 1857.08 -188098 TIGR00957 2948.19 -273363 TIGR00958 871.737 -273364 TIGR00959 579.244 -273365 TIGR00962 924.482 -273366 TIGR00963 1097.31 -273367 TIGR00964 31.4175 -130038 TIGR00965 485.171 -273368 TIGR00966 207.51 -273369 TIGR00967 296.892 -130041 TIGR00968 440.39 -273370 TIGR00969 308.898 -273371 TIGR00970 1015.22 -130044 TIGR00971 573.836 -273372 TIGR00972 350.827 -130046 TIGR00973 839.799 -273373 TIGR00974 227.504 -273374 TIGR00975 407.214 -273375 TIGR00976 528.989 -130050 TIGR00977 999.799 -273376 TIGR00978 465.77 -130052 TIGR00979 907.57 -130053 TIGR00980 275.564 -130054 TIGR00981 195.39 -273377 TIGR00982 223.982 -130056 TIGR00983 193.131 -130057 TIGR00984 530.217 -273378 TIGR00985 148.916 -273379 TIGR00986 155.508 -130060 TIGR00987 158.517 -130061 TIGR00988 166.238 -130062 TIGR00989 283.318 -273380 TIGR00990 887.021 -130064 TIGR00991 597.651 -130065 TIGR00992 979.444 -273381 TIGR00993 1343.07 -273382 TIGR00994 419.33 -273383 TIGR00995 379.716 -273384 TIGR00996 232.177 -130070 TIGR00997 150.177 -273385 TIGR00998 414.577 -273386 TIGR00999 292.806 -273387 TIGR01000 499.615 -130074 TIGR01001 488.586 -273388 TIGR01002 369.504 -273389 TIGR01003 73.4518 -273390 TIGR01004 203.623 -273391 TIGR01005 1198.38 -130079 TIGR01006 274.339 -273392 TIGR01007 276.626 -273393 TIGR01008 279.692 -130082 TIGR01009 291.143 -130083 TIGR01010 444.161 -130084 TIGR01011 352.778 -273394 TIGR01012 329.39 -162157 TIGR01013 227.436 -273395 TIGR01015 799.737 -273396 TIGR01016 526.948 -200066 TIGR01017 227.957 -273397 TIGR01018 232.315 -130091 TIGR01019 459.575 -273398 TIGR01020 357.17 -130093 TIGR01021 195.597 -130094 TIGR01022 37.4636 -273399 TIGR01023 53.608 -130096 TIGR01024 148.227 -273400 TIGR01025 196.604 -273401 TIGR01026 688.338 -162163 TIGR01027 468.326 -273402 TIGR01028 285.123 -273403 TIGR01029 174.792 -130102 TIGR01030 38.6491 -273404 TIGR01031 45.7851 -130104 TIGR01032 135.585 -273405 TIGR01033 294.6 -273406 TIGR01034 618.996 -273407 TIGR01035 473.413 -273408 TIGR01036 501.237 -130109 TIGR01037 484.239 -273409 TIGR01038 218.095 -211621 TIGR01039 880.978 -273410 TIGR01040 922.197 -200071 TIGR01041 856.732 -273411 TIGR01042 1176.45 -130115 TIGR01043 1088.22 -130116 TIGR01044 132.254 -273412 TIGR01045 65.6752 -273413 TIGR01046 158.005 -273414 TIGR01047 625.652 -273415 TIGR01048 516.843 -130121 TIGR01049 115.81 -130122 TIGR01050 117.848 -273416 TIGR01051 878.252 -273417 TIGR01052 733.934 -130125 TIGR01053 48.9931 -273418 TIGR01054 1231.62 -130127 TIGR01055 1079.94 -273419 TIGR01056 992.425 -273420 TIGR01057 955.044 -130130 TIGR01058 1106.85 -273421 TIGR01059 721.835 -213580 TIGR01060 664.058 -273422 TIGR01061 1161.87 -130134 TIGR01062 1221.68 -273423 TIGR01063 1276.09 -273424 TIGR01064 540.716 -273425 TIGR01065 190.228 -162186 TIGR01066 199.07 -273426 TIGR01067 152.473 -200072 TIGR01068 131.257 -130141 TIGR01069 879.923 -273427 TIGR01070 1195.74 -273428 TIGR01071 152.866 -162190 TIGR01072 596.132 -273429 TIGR01073 1089.03 -130146 TIGR01074 1105.96 -130147 TIGR01075 1195 -130148 TIGR01076 172.673 -162192 TIGR01077 184.173 -273430 TIGR01078 578.197 -273431 TIGR01079 80.7757 -273432 TIGR01080 165.022 -130153 TIGR01081 801.36 -273433 TIGR01082 494.517 -273434 TIGR01083 289.28 -130156 TIGR01084 375.595 -273435 TIGR01085 539.596 -188107 TIGR01086 432.829 -273436 TIGR01087 411.734 -130160 TIGR01088 227.994 -130161 TIGR01089 1218.64 -273437 TIGR01090 227.93 -273438 TIGR01091 251.781 -130164 TIGR01092 1253.27 -273439 TIGR01093 228.036 -273440 TIGR01096 212.217 -273441 TIGR01097 192.757 -273442 TIGR01098 264.211 -273443 TIGR01099 434.09 -130170 TIGR01100 139.059 -130171 TIGR01101 185.417 -130172 TIGR01102 271.908 -211625 TIGR01103 137.127 -273444 TIGR01104 786.291 -130175 TIGR01105 587.384 -273445 TIGR01106 1953.83 -273446 TIGR01107 453.357 -273447 TIGR01108 825.966 -130179 TIGR01109 319.42 -273448 TIGR01110 1047.9 -130181 TIGR01111 360.667 -273449 TIGR01112 255.163 -130183 TIGR01113 397.686 -273450 TIGR01114 536.712 -273451 TIGR01115 410.645 -273452 TIGR01116 1461.92 -130187 TIGR01117 947.352 -130188 TIGR01118 242.926 -130189 TIGR01119 352.732 -130190 TIGR01120 246.75 -130191 TIGR01121 470.373 -130192 TIGR01122 443.339 -233278 TIGR01123 481.565 -130194 TIGR01124 899.869 -273453 TIGR01125 664.138 -273454 TIGR01126 150.131 -130197 TIGR01127 563.6 -273455 TIGR01128 200.949 -273456 TIGR01129 346.197 -273457 TIGR01130 545.81 -273458 TIGR01131 127.322 -273459 TIGR01132 985.104 -273460 TIGR01133 316.923 -273461 TIGR01134 598.15 -273462 TIGR01135 834.982 -273463 TIGR01136 371.999 -273464 TIGR01137 713.112 -130208 TIGR01138 503.292 -273465 TIGR01139 472.622 -273466 TIGR01140 249.801 -273467 TIGR01141 368.52 -130212 TIGR01142 547.8 -273468 TIGR01143 426.682 -130214 TIGR01144 124.823 -130215 TIGR01145 178.661 -273469 TIGR01146 306.143 -130217 TIGR01147 103.756 -130218 TIGR01148 312.487 -130219 TIGR01149 98.6274 -273470 TIGR01150 408.088 -130221 TIGR01151 698.612 -130222 TIGR01152 686.25 -213589 TIGR01153 732.006 -130224 TIGR01156 263.196 -130225 TIGR01157 374.908 -273471 TIGR01158 112.061 -273472 TIGR01159 213.969 -130228 TIGR01160 174.636 -273473 TIGR01161 447.17 -273474 TIGR01162 155.854 -273475 TIGR01163 295.339 -273476 TIGR01164 185.27 -273477 TIGR01165 87.1833 -130234 TIGR01166 304.731 -273478 TIGR01167 25.5138 -273479 TIGR01168 38.2323 -211630 TIGR01169 325.011 -273480 TIGR01170 155.742 -273481 TIGR01171 446.755 -200082 TIGR01172 247.207 -273482 TIGR01173 580.386 -273483 TIGR01174 445.925 -273484 TIGR01175 418.805 -273485 TIGR01176 1046.79 -273486 TIGR01177 365.607 -130246 TIGR01178 782.035 -273487 TIGR01179 510.73 -273488 TIGR01180 955.888 -273489 TIGR01181 530.415 -273490 TIGR01182 255.7 -130251 TIGR01183 312.118 -130252 TIGR01184 454.231 -130253 TIGR01185 715.14 -130254 TIGR01186 576.419 -162242 TIGR01187 502.409 -130256 TIGR01188 436.051 -273491 TIGR01189 231.093 -200083 TIGR01190 143.295 -273492 TIGR01191 214.537 -130260 TIGR01192 1057.57 -130261 TIGR01193 1102.87 -130262 TIGR01194 938.226 -273493 TIGR01195 38.5752 -130264 TIGR01196 1116.05 -162246 TIGR01197 449.173 -273494 TIGR01198 256.147 -273495 TIGR01200 116.689 -273496 TIGR01201 144.811 -130269 TIGR01202 493.986 -273497 TIGR01203 219.036 -130271 TIGR01204 349.215 -273498 TIGR01205 338.49 -273499 TIGR01206 56.8347 -130274 TIGR01207 552.769 -273500 TIGR01208 537.37 -273501 TIGR01209 473.05 -273502 TIGR01210 477.747 -273503 TIGR01211 870.605 -130279 TIGR01212 459.226 -273504 TIGR01213 533.568 -273505 TIGR01214 381.747 -188120 TIGR01215 93.5765 -273506 TIGR01216 131.222 -273507 TIGR01217 1114.19 -273508 TIGR01218 108.091 -273509 TIGR01219 697.852 -130287 TIGR01220 576.084 -273510 TIGR01221 288.139 -273511 TIGR01222 168.353 -130290 TIGR01223 168.72 -273512 TIGR01224 483.067 -200086 TIGR01225 677.961 -130293 TIGR01226 993.924 -273513 TIGR01227 357.941 -130295 TIGR01228 1026.7 -162262 TIGR01229 402.968 -273514 TIGR01230 360.997 -273515 TIGR01231 578.769 -130299 TIGR01232 689.866 -273516 TIGR01233 935.171 -130301 TIGR01234 880.798 -130302 TIGR01235 2097.16 -273517 TIGR01236 957.313 -200087 TIGR01237 922.341 -273518 TIGR01238 873.851 -273519 TIGR01239 879.549 -130307 TIGR01240 400.094 -273520 TIGR01241 769.144 -130309 TIGR01242 638.383 -273521 TIGR01243 1206.27 -130311 TIGR01244 183.611 -273522 TIGR01245 369.674 -162269 TIGR01246 577.444 -130314 TIGR01247 293.602 -130315 TIGR01248 211.37 -130316 TIGR01249 542.891 -188121 TIGR01250 402.914 -273523 TIGR01251 297.268 -273524 TIGR01252 359.435 -130320 TIGR01253 764.848 -130321 TIGR01254 446.228 -273525 TIGR01255 1317.23 -273526 TIGR01256 240.777 -130324 TIGR01257 4924.71 -213596 TIGR01258 423.357 -213597 TIGR01259 172.78 -130327 TIGR01260 60.8855 -130328 TIGR01261 284.682 -273527 TIGR01262 289.611 -273528 TIGR01263 422.459 -273529 TIGR01264 693.065 -188123 TIGR01265 619.356 -162276 TIGR01266 700.449 -130334 TIGR01267 430.832 -130335 TIGR01268 832.944 -130336 TIGR01269 793.366 -130337 TIGR01270 810.624 -273530 TIGR01271 2853.78 -273531 TIGR01272 393.107 -273532 TIGR01273 856.64 -130341 TIGR01274 592.197 -273533 TIGR01275 472.371 -130343 TIGR01276 611.26 -130344 TIGR01277 377.665 -273534 TIGR01278 777.821 -273535 TIGR01279 607.554 -273536 TIGR01280 26.6185 -130348 TIGR01281 480.463 -162284 TIGR01282 768.452 -188126 TIGR01283 708.355 -188127 TIGR01284 816.386 -273537 TIGR01285 714.236 -130353 TIGR01286 956.988 -273538 TIGR01287 434.893 -130355 TIGR01288 611.164 -200089 TIGR01289 573.35 -273539 TIGR01290 781.721 -130358 TIGR01291 377.309 -273540 TIGR01292 391.22 -213602 TIGR01293 549.151 -273541 TIGR01294 53.3793 -273542 TIGR01295 162.8 -273543 TIGR01296 543.25 -273544 TIGR01297 181.65 -188129 TIGR01298 372.245 -130366 TIGR01299 1409.34 -130367 TIGR01300 75.8226 -273545 TIGR01301 772.822 -273546 TIGR01302 631.69 -130370 TIGR01303 853.818 -273547 TIGR01304 547.898 -130372 TIGR01305 682.802 -130373 TIGR01306 643.147 -130374 TIGR01307 786.958 -130375 TIGR01308 56.1666 -130376 TIGR01309 209.938 -273548 TIGR01310 271.542 -273549 TIGR01311 717.095 -273550 TIGR01312 528.039 -273551 TIGR01313 257.331 -130381 TIGR01314 935.482 -273552 TIGR01315 960.888 -130383 TIGR01316 750.547 -162300 TIGR01317 824.849 -273553 TIGR01318 872.973 -130386 TIGR01319 795.777 -130387 TIGR01320 912.678 -130388 TIGR01321 124.159 -273554 TIGR01322 690.278 -188130 TIGR01323 321.634 -130391 TIGR01324 641.927 -188131 TIGR01325 644.207 -273555 TIGR01326 672.917 -273556 TIGR01327 717.951 -130395 TIGR01328 695.481 -273557 TIGR01329 663.45 -273558 TIGR01330 534.444 -130398 TIGR01331 394.51 -130399 TIGR01332 162.372 -130400 TIGR01333 58.8638 -130401 TIGR01334 490.183 -130402 TIGR01335 1472.88 -130403 TIGR01336 1422.04 -273559 TIGR01337 239.719 -130405 TIGR01338 265.272 -273560 TIGR01339 302.671 -273561 TIGR01340 1416.95 -273562 TIGR01341 1529.74 -130409 TIGR01342 1231.77 -273563 TIGR01343 623.699 -188132 TIGR01344 887.616 -130412 TIGR01345 1400.81 -273564 TIGR01346 686.421 -273565 TIGR01347 576.685 -273566 TIGR01348 743.618 -273567 TIGR01349 605.635 -273568 TIGR01350 569.583 -273569 TIGR01351 220.569 -273570 TIGR01352 36.5123 -273571 TIGR01353 397.509 -273572 TIGR01354 165.906 -273573 TIGR01355 382.64 -273574 TIGR01356 454.426 -273575 TIGR01357 365.417 -130425 TIGR01358 792.812 -273576 TIGR01359 293.123 -130427 TIGR01360 344.877 -273577 TIGR01361 431.768 -130429 TIGR01362 431.399 -273578 TIGR01363 563.427 -130431 TIGR01364 517.987 -130432 TIGR01365 725.205 -130433 TIGR01366 705.925 -273579 TIGR01367 306.713 -273580 TIGR01368 475.963 -273581 TIGR01369 1641.26 -273582 TIGR01370 458.669 -273583 TIGR01371 1170.59 -273584 TIGR01372 1442.61 -273585 TIGR01373 747.026 -130441 TIGR01374 132.542 -273586 TIGR01375 175.004 -273587 TIGR01376 27.4258 -130444 TIGR01377 626.472 -273588 TIGR01378 168.231 -273589 TIGR01379 260.726 -130447 TIGR01380 474.553 -273590 TIGR01381 1086.12 -273591 TIGR01382 233.849 -213612 TIGR01383 225.274 -130451 TIGR01384 138.82 -273592 TIGR01385 373.405 -273593 TIGR01386 529.652 -130454 TIGR01387 374.906 -130455 TIGR01388 489.281 -273594 TIGR01389 921.007 -130457 TIGR01390 1026.35 -273595 TIGR01391 429.719 -273596 TIGR01392 490.282 -130460 TIGR01393 1066.56 -273597 TIGR01394 993.346 -130462 TIGR01395 171.771 -273598 TIGR01396 124.81 -130464 TIGR01397 372.809 -273599 TIGR01398 891.229 -273600 TIGR01399 912.115 -130467 TIGR01400 127.727 -130468 TIGR01401 212.906 -130469 TIGR01402 73.0674 -130470 TIGR01403 74.2839 -130471 TIGR01404 408.203 -273601 TIGR01405 1909.04 -130473 TIGR01406 338.6 -273602 TIGR01407 1091.38 -273603 TIGR01408 1810.25 -273604 TIGR01409 25.9397 -130477 TIGR01410 78.8957 -273605 TIGR01411 40.284 -273606 TIGR01412 584.056 -273607 TIGR01413 211.832 -273608 TIGR01414 200.303 -273609 TIGR01415 691.151 -273610 TIGR01416 165.634 -273611 TIGR01417 805.167 -273612 TIGR01418 1040.85 -162350 TIGR01419 171.055 -273613 TIGR01420 533.052 -273614 TIGR01421 776.71 -188140 TIGR01422 365.517 -200098 TIGR01423 1029.92 -213618 TIGR01424 734.309 -273615 TIGR01425 728.94 -273616 TIGR01426 517.7 -273617 TIGR01427 452.257 -130495 TIGR01428 202.183 -273618 TIGR01429 1008.22 -273619 TIGR01430 449.115 -273620 TIGR01431 813.262 -273621 TIGR01432 413.154 -213620 TIGR01433 397.273 -213621 TIGR01434 865.332 -273622 TIGR01435 1176.24 -130503 TIGR01436 818.752 -273623 TIGR01437 559.687 -273624 TIGR01438 844.132 -273625 TIGR01439 31.8413 -130507 TIGR01440 296.715 -273626 TIGR01441 525.665 -273627 TIGR01442 38.2226 -213622 TIGR01443 26.6142 -273628 TIGR01444 115.1 -273629 TIGR01445 40.7646 -273630 TIGR01446 67.3245 -273631 TIGR01447 542.814 -273632 TIGR01448 980.425 -130516 TIGR01449 282.865 -273633 TIGR01450 1207.65 -273634 TIGR01451 39.5196 -273635 TIGR01452 458.56 -273636 TIGR01453 134.821 -130521 TIGR01454 328.375 -130522 TIGR01455 633.25 -200106 TIGR01456 519.818 -130524 TIGR01457 421.956 -162372 TIGR01458 436.601 -130526 TIGR01459 366.14 -273637 TIGR01460 215.268 -130528 TIGR01461 265.201 -273638 TIGR01462 157.781 -273639 TIGR01463 496.654 -273640 TIGR01464 425.155 -200107 TIGR01465 367.035 -273641 TIGR01466 346.211 -273642 TIGR01467 246.068 -273643 TIGR01469 302.607 -130536 TIGR01470 270.043 -273644 TIGR01472 609.144 -273645 TIGR01473 223.277 -130539 TIGR01474 329.664 -273646 TIGR01475 297.723 -130541 TIGR01476 408.012 -273647 TIGR01477 318.99 -130543 TIGR01478 376.114 -273648 TIGR01479 769.567 -273649 TIGR01480 972.816 -130546 TIGR01481 560.565 -273650 TIGR01482 242.754 -273651 TIGR01484 104.385 -130549 TIGR01485 415.366 -130550 TIGR01486 269.657 -273652 TIGR01487 236.561 -273653 TIGR01488 116.685 -213629 TIGR01489 202.277 -273654 TIGR01490 197.178 -273655 TIGR01491 264.055 -130556 TIGR01492 61.6479 -130557 TIGR01493 183.88 -273656 TIGR01494 306.936 -130559 TIGR01495 59.6554 -273657 TIGR01496 263.349 -130561 TIGR01497 1144.62 -273658 TIGR01498 132.012 -273659 TIGR01499 352.356 -273660 TIGR01500 388.501 -130565 TIGR01501 185.08 -213632 TIGR01502 646.166 -130567 TIGR01503 812.136 -213633 TIGR01504 1151.25 -130569 TIGR01505 421.22 -130570 TIGR01506 225.54 -273661 TIGR01507 1119.59 -130572 TIGR01508 299.799 -273662 TIGR01509 104.424 -273663 TIGR01510 193.258 -273664 TIGR01511 648.566 -273665 TIGR01512 523.425 -273666 TIGR01513 510.364 -130578 TIGR01514 558.22 -273667 TIGR01515 1093.33 -273668 TIGR01517 1438.81 -130581 TIGR01518 208.951 -130582 TIGR01519 81.7483 -130583 TIGR01520 536.327 -130584 TIGR01521 677.416 -130585 TIGR01522 1570.21 -130586 TIGR01523 1924.78 -130587 TIGR01524 1480.5 -273669 TIGR01525 462.486 -273670 TIGR01526 482.038 -273671 TIGR01527 285.943 -273672 TIGR01528 171.055 -130592 TIGR01529 174.823 -211667 TIGR01530 1047.64 -273673 TIGR01531 2309.03 -130595 TIGR01532 622.299 -273674 TIGR01533 354.899 -273675 TIGR01534 395.878 -130598 TIGR01535 946.974 -273676 TIGR01536 414.424 -273677 TIGR01537 275.026 -273678 TIGR01538 536.356 -273679 TIGR01539 620.743 -273680 TIGR01540 408.908 -273681 TIGR01541 308.692 -130605 TIGR01542 771.389 -273682 TIGR01543 182.31 -273683 TIGR01544 481.276 -130608 TIGR01545 380.44 -130609 TIGR01546 567.577 -273684 TIGR01547 316.273 -273685 TIGR01548 244.063 -273686 TIGR01549 62.4133 -273687 TIGR01550 129.511 -233464 TIGR01551 482.139 -273688 TIGR01552 48.8191 -273689 TIGR01553 1833.77 -273690 TIGR01554 141.714 -130618 TIGR01555 602.296 -130619 TIGR01556 390.693 -130620 TIGR01557 70.1253 -273691 TIGR01558 130.616 -188157 TIGR01559 616.376 -130623 TIGR01560 81.2738 -130624 TIGR01561 936.01 -130625 TIGR01562 466.334 -273692 TIGR01563 89.7308 -273693 TIGR01564 682.082 -130628 TIGR01565 91.0835 -130629 TIGR01566 96.0763 -273694 TIGR01567 287.853 -130631 TIGR01568 101.29 -273695 TIGR01569 148.701 -273696 TIGR01570 241.586 -273697 TIGR01571 79.7779 -273698 TIGR01572 392.667 -273699 TIGR01573 85.1082 -273700 TIGR01574 718.518 -273701 TIGR01575 168.276 -273702 TIGR01577 974.782 -273703 TIGR01578 612.553 -273704 TIGR01579 544.662 -162434 TIGR01580 2400.06 -130643 TIGR01581 209.561 -273705 TIGR01582 519.466 -130645 TIGR01583 266.676 -130646 TIGR01584 861.452 -273706 TIGR01586 151.488 -273707 TIGR01587 381.802 -130649 TIGR01588 493.576 -130650 TIGR01589 91.0345 -130651 TIGR01590 207.343 -130652 TIGR01591 1056.68 -130653 TIGR01592 102.934 -273708 TIGR01593 96.222 -273709 TIGR01594 97.4852 -273710 TIGR01595 371.966 -273711 TIGR01596 56.4414 -130658 TIGR01597 301.429 -130659 TIGR01598 94.8891 -273712 TIGR01599 248.858 -130661 TIGR01600 392.382 -213640 TIGR01601 104.698 -130663 TIGR01602 40.5272 -273713 TIGR01603 189.942 -130665 TIGR01604 141.65 -130666 TIGR01605 72.9869 -200119 TIGR01606 33.9864 -162444 TIGR01607 481.974 -130669 TIGR01608 119.179 -273714 TIGR01609 189.025 -273715 TIGR01610 150.764 -130672 TIGR01611 274.002 -130673 TIGR01612 3880.86 -273716 TIGR01613 367.049 -273717 TIGR01614 117.136 -273718 TIGR01615 195.735 -273719 TIGR01616 234.063 -273720 TIGR01617 147.962 -130679 TIGR01618 317.123 -130680 TIGR01619 452.119 -130681 TIGR01620 441.629 -130682 TIGR01621 402.356 -273721 TIGR01622 515.624 -130684 TIGR01623 82.2549 -273722 TIGR01624 95.291 -130686 TIGR01625 117.818 -130687 TIGR01626 318 -130688 TIGR01627 388.108 -130689 TIGR01628 688.081 -273723 TIGR01629 470.875 -130691 TIGR01630 165.372 -273724 TIGR01631 1120.68 -233500 TIGR01632 192.948 -188159 TIGR01633 127.068 -130695 TIGR01634 233.23 -130696 TIGR01635 141.927 -130697 TIGR01636 183.566 -273725 TIGR01637 122.506 -130699 TIGR01638 136.87 -130700 TIGR01639 55.724 -273726 TIGR01640 152.899 -213641 TIGR01641 120.951 -273727 TIGR01642 646.951 -273728 TIGR01643 32.5621 -273729 TIGR01644 164.883 -130706 TIGR01645 822.779 -273730 TIGR01646 580.97 -273731 TIGR01647 1108.16 -273732 TIGR01648 627.798 -273733 TIGR01649 655.349 -130711 TIGR01650 714.102 -130712 TIGR01651 1019.87 -273734 TIGR01652 1375.16 -273735 TIGR01653 78.0302 -273736 TIGR01654 492.337 -130716 TIGR01655 117.209 -273737 TIGR01656 141.382 -273738 TIGR01657 1265.36 -273739 TIGR01658 411.168 -273740 TIGR01659 503.781 -211677 TIGR01660 980.894 -273741 TIGR01661 544.535 -273742 TIGR01662 83.6072 -130724 TIGR01663 983.362 -211680 TIGR01664 194.208 -273743 TIGR01665 259.262 -130727 TIGR01666 1164.62 -130728 TIGR01667 857.217 -273744 TIGR01668 222.665 -273745 TIGR01669 51.3949 -130731 TIGR01670 236.653 -273746 TIGR01671 185.904 -273747 TIGR01672 411.619 -130734 TIGR01673 85.2829 -273748 TIGR01674 190.906 -273749 TIGR01675 355.216 -130737 TIGR01676 1155.2 -273750 TIGR01677 973.568 -273751 TIGR01678 728.233 -130740 TIGR01679 710.117 -130741 TIGR01680 546.248 -273752 TIGR01681 86.3295 -273753 TIGR01682 77.724 -273754 TIGR01683 64.5059 -273755 TIGR01684 402.618 -273756 TIGR01685 210.088 -273757 TIGR01686 465.094 -273758 TIGR01687 94.4314 -130749 TIGR01688 104.54 -273759 TIGR01689 241.732 -162489 TIGR01690 100.506 -273760 TIGR01691 352.225 -130753 TIGR01692 390.313 -273761 TIGR01693 796.233 -273762 TIGR01694 337.773 -273763 TIGR01695 346.233 -162494 TIGR01696 683.544 -130758 TIGR01697 346.258 -130759 TIGR01698 305.211 -130760 TIGR01699 371.698 -273764 TIGR01700 404.927 -273765 TIGR01701 1125.67 -130763 TIGR01702 930.701 -130764 TIGR01703 710.813 -130765 TIGR01704 249.637 -130766 TIGR01705 405.135 -273766 TIGR01706 1567.93 -273767 TIGR01707 101.442 -130769 TIGR01708 160.038 -273768 TIGR01709 204.992 -130771 TIGR01710 179.544 -130772 TIGR01711 282.573 -273769 TIGR01712 250.639 -273770 TIGR01713 288.261 -130775 TIGR01714 168.438 -273771 TIGR01715 148.094 -273772 TIGR01716 188.247 -273773 TIGR01717 779.796 -130779 TIGR01718 397.343 -130780 TIGR01719 456.144 -273774 TIGR01720 159.361 -130782 TIGR01721 448.987 -130783 TIGR01722 802.945 -130784 TIGR01723 628.494 -130785 TIGR01724 632.723 -273775 TIGR01725 72.8393 -130787 TIGR01726 90.2843 -213647 TIGR01727 130.175 -130789 TIGR01728 311.218 -130790 TIGR01729 487.923 -273776 TIGR01730 279.2 -273777 TIGR01731 28.2607 -273778 TIGR01732 23.862 -273779 TIGR01733 342.323 -273780 TIGR01734 829.015 -188163 TIGR01735 2185.72 -273781 TIGR01736 930.174 -273782 TIGR01737 319.709 -273783 TIGR01738 354.508 -273784 TIGR01739 1387.49 -273785 TIGR01740 215.297 -130802 TIGR01741 228.241 -273786 TIGR01742 347.984 -130804 TIGR01743 435.752 -130805 TIGR01744 325.991 -130806 TIGR01745 725.928 -273787 TIGR01746 305.493 -130808 TIGR01747 692.019 -130809 TIGR01748 833.771 -130810 TIGR01749 330.993 -130811 TIGR01750 207.554 -188164 TIGR01751 637.611 -273788 TIGR01752 228.398 -273789 TIGR01753 146.714 -130815 TIGR01754 242.474 -130816 TIGR01755 339.95 -130817 TIGR01756 582.225 -130818 TIGR01757 786.474 -130819 TIGR01758 543.284 -130820 TIGR01759 506.866 -273790 TIGR01760 240.336 -273791 TIGR01761 463.529 -130823 TIGR01762 544.109 -273792 TIGR01763 528.671 -200128 TIGR01764 52.9886 -130826 TIGR01765 74.7383 -273793 TIGR01766 73.5198 -130828 TIGR01767 637.698 -273794 TIGR01768 301.71 -130830 TIGR01769 256.262 -273795 TIGR01770 313.808 -273796 TIGR01771 386.94 -130833 TIGR01772 455.327 -273797 TIGR01773 666.572 -273798 TIGR01774 1357.66 -273799 TIGR01776 956.576 -273800 TIGR01777 344.623 -273801 TIGR01778 989.755 -273802 TIGR01779 910.014 -188167 TIGR01780 802.031 -273803 TIGR01781 513.75 -273804 TIGR01782 667.501 -273805 TIGR01783 410.65 -273806 TIGR01784 185.678 -273807 TIGR01785 632.12 -273808 TIGR01786 521.203 -273809 TIGR01787 855.97 -130848 TIGR01788 716.107 -130849 TIGR01789 621.885 -130850 TIGR01790 435.707 -130851 TIGR01791 74.771 -273810 TIGR01792 1044.35 -130853 TIGR01793 851.494 -130854 TIGR01795 145.868 -130855 TIGR01796 174.222 -130856 TIGR01797 118.381 -273811 TIGR01798 825.185 -130858 TIGR01799 151.588 -130859 TIGR01800 550.43 -130860 TIGR01801 172.015 -273812 TIGR01802 399.506 -130862 TIGR01803 105.367 -200131 TIGR01804 763.198 -130864 TIGR01805 78.664 -130865 TIGR01806 111.751 -130866 TIGR01807 113.699 -130867 TIGR01808 72.6337 -273813 TIGR01809 420.861 -273814 TIGR01810 1000.17 -130870 TIGR01811 1039.81 -273815 TIGR01812 890.141 -273816 TIGR01813 595.86 -130873 TIGR01814 552.032 -130874 TIGR01815 1252.48 -130875 TIGR01816 990.034 -273817 TIGR01817 821.654 -273818 TIGR01818 725.762 -130878 TIGR01819 410.673 -273819 TIGR01820 552.356 -273820 TIGR01821 695.706 -130881 TIGR01822 715.044 -273821 TIGR01823 1186.63 -130883 TIGR01824 403.384 -130884 TIGR01825 671.146 -211689 TIGR01826 378.962 -130886 TIGR01827 78.0615 -273822 TIGR01828 1484.13 -273823 TIGR01829 394.108 -273824 TIGR01830 321.85 -273825 TIGR01831 395.429 -188170 TIGR01832 401.83 -273826 TIGR01833 790.507 -273827 TIGR01834 338.46 -213655 TIGR01835 549.35 -130895 TIGR01836 550.879 -130896 TIGR01837 126.794 -213656 TIGR01838 874.787 -130898 TIGR01839 1115 -273828 TIGR01840 288.232 -130900 TIGR01841 64.3 -200134 TIGR01842 760.347 -130902 TIGR01843 449.075 -273829 TIGR01844 382.876 -273830 TIGR01845 417.968 -273831 TIGR01846 1103.65 -130906 TIGR01847 23.9802 -130907 TIGR01848 169.893 -130908 TIGR01849 686.117 -273832 TIGR01850 356.505 -273833 TIGR01851 532.88 -188173 TIGR01852 360.422 -273834 TIGR01853 399.358 -273835 TIGR01854 384.485 -273836 TIGR01855 255.327 -273837 TIGR01856 299.697 -130916 TIGR01857 2201.56 -130917 TIGR01858 529.815 -130918 TIGR01859 424.467 -130919 TIGR01860 1029.9 -130920 TIGR01861 1132.38 -273838 TIGR01862 710.373 -273839 TIGR01863 568.556 -273840 TIGR01865 725.372 -273841 TIGR01866 146.61 -273842 TIGR01868 220.826 -273843 TIGR01869 409.2 -273844 TIGR01870 68.9488 -233610 TIGR01873 126.458 -273845 TIGR01874 200.089 -273846 TIGR01875 197.663 -273847 TIGR01876 308.74 -273848 TIGR01877 49.6605 -273849 TIGR01878 58.6483 -200138 TIGR01879 657.654 -273850 TIGR01880 706.17 -273851 TIGR01881 99.4771 -130937 TIGR01882 734.394 -162579 TIGR01883 564.56 -273852 TIGR01884 167.918 -273853 TIGR01885 718.337 -130941 TIGR01886 789.851 -273854 TIGR01887 580.489 -273855 TIGR01888 195.334 -130944 TIGR01889 82.3023 -273856 TIGR01890 688.069 -273857 TIGR01891 359.351 -130947 TIGR01892 556.742 -273858 TIGR01893 708.367 -273859 TIGR01894 102.479 -273860 TIGR01895 226.976 -273861 TIGR01896 334.446 -273862 TIGR01897 294.317 -213662 TIGR01898 186.839 -273863 TIGR01899 324.803 -273864 TIGR01900 404.743 -273865 TIGR01901 76.1609 -130957 TIGR01902 506.699 -273866 TIGR01903 260.443 -273867 TIGR01904 29.4932 -213663 TIGR01905 50.8662 -273868 TIGR01906 145.564 -273869 TIGR01907 267.159 -162595 TIGR01908 315.972 -213664 TIGR01909 118.391 -273870 TIGR01910 404.474 -188182 TIGR01911 118.428 -162597 TIGR01912 186.835 -273871 TIGR01913 196.587 -273872 TIGR01914 428.465 -273873 TIGR01915 257.803 -273874 TIGR01916 224.996 -130972 TIGR01917 891.703 -130973 TIGR01918 799.127 -273875 TIGR01919 319.597 -273876 TIGR01920 265.037 -273877 TIGR01921 493.69 -273878 TIGR01922 262.097 -162605 TIGR01923 607.524 -273879 TIGR01924 257.803 -130980 TIGR01925 222.106 -130981 TIGR01926 235.382 -273880 TIGR01927 386.085 -213667 TIGR01928 473.558 -200143 TIGR01929 471.26 -273881 TIGR01930 356.923 -273882 TIGR01931 926.409 -273883 TIGR01932 376.817 -130988 TIGR01933 375.201 -273884 TIGR01934 283.384 -130990 TIGR01935 237.229 -273885 TIGR01936 704.213 -130992 TIGR01937 589.449 -273886 TIGR01938 283.51 -130994 TIGR01939 293.563 -130995 TIGR01940 294.748 -130996 TIGR01941 719.656 -130997 TIGR01942 514.347 -130998 TIGR01943 222.613 -273887 TIGR01944 191.164 -273888 TIGR01945 686.769 -131001 TIGR01946 381.328 -273889 TIGR01947 172.539 -162619 TIGR01948 272.293 -273890 TIGR01949 361.1 -131005 TIGR01950 231.217 -273891 TIGR01951 78.6872 -273892 TIGR01952 188.773 -273893 TIGR01953 345.396 -273894 TIGR01954 54.9995 -131010 TIGR01955 238.515 -273895 TIGR01956 183.24 -273896 TIGR01957 269.222 -131013 TIGR01958 219.554 -131014 TIGR01959 725.28 -131015 TIGR01960 895.242 -273897 TIGR01961 151.23 -273898 TIGR01962 672.515 -211705 TIGR01963 358.991 -213671 TIGR01964 650.344 -273899 TIGR01965 81.23 -131021 TIGR01966 401.356 -273900 TIGR01967 2109.43 -131023 TIGR01968 407.109 -131024 TIGR01969 357.504 -273901 TIGR01970 1127.17 -273902 TIGR01971 164.511 -273903 TIGR01972 448.234 -273904 TIGR01973 738.785 -273905 TIGR01974 685.167 -131030 TIGR01975 613.331 -273906 TIGR01976 534.717 -131032 TIGR01977 567.004 -273907 TIGR01978 372.749 -131034 TIGR01979 594.634 -131035 TIGR01980 728.009 -273908 TIGR01981 223.263 -273909 TIGR01982 606.601 -273910 TIGR01983 324.248 -273911 TIGR01984 461.783 -131040 TIGR01985 101.309 -273912 TIGR01986 731.247 -131042 TIGR01987 156.917 -273913 TIGR01988 371.536 -273914 TIGR01989 660.296 -213672 TIGR01990 284.971 -273915 TIGR01991 939.772 -273916 TIGR01992 679.142 -273917 TIGR01993 273.072 -273918 TIGR01994 204.099 -273919 TIGR01995 713.741 -131051 TIGR01996 563.847 -131052 TIGR01997 189.27 -273920 TIGR01998 590.204 -188192 TIGR01999 226.168 -273921 TIGR02000 485.915 -273922 TIGR02001 199.977 -273923 TIGR02002 728.887 -131058 TIGR02003 966.735 -273924 TIGR02004 854.137 -273925 TIGR02005 913.047 -131061 TIGR02006 751.644 -131062 TIGR02007 178.831 -273926 TIGR02008 141.438 -213673 TIGR02009 228.766 -273927 TIGR02010 224.18 -213674 TIGR02011 194.657 -162659 TIGR02012 551.976 -273928 TIGR02013 1811.18 -131069 TIGR02014 805.313 -131070 TIGR02015 677.805 -273929 TIGR02016 449.311 -131072 TIGR02017 451.532 -188194 TIGR02018 345.457 -131074 TIGR02019 272.141 -131075 TIGR02020 196.956 -273930 TIGR02021 330.222 -273931 TIGR02022 565.151 -273932 TIGR02023 611.796 -131079 TIGR02024 492.737 -273933 TIGR02025 1864.45 -131081 TIGR02026 795.269 -273934 TIGR02027 371.989 -131083 TIGR02028 703.588 -131084 TIGR02029 575.981 -131085 TIGR02030 561.43 -273935 TIGR02031 639.163 -273936 TIGR02032 256.862 -273937 TIGR02033 724.561 -213679 TIGR02034 625.552 -211710 TIGR02035 797.512 -131091 TIGR02036 598.036 -273938 TIGR02037 480.951 -273939 TIGR02038 512.833 -131094 TIGR02039 515.825 -273940 TIGR02040 629.544 -273941 TIGR02041 961.505 -131097 TIGR02042 1107.99 -131098 TIGR02043 217.807 -131099 TIGR02044 220.011 -131100 TIGR02045 714.283 -131101 TIGR02046 210.796 -131102 TIGR02047 210.043 -131103 TIGR02048 740.215 -273942 TIGR02049 649.221 -273943 TIGR02050 332.783 -131106 TIGR02051 198.374 -131107 TIGR02052 115.519 -273944 TIGR02053 597.867 -131109 TIGR02054 176.609 -273945 TIGR02055 308.233 -131111 TIGR02056 584.63 -131112 TIGR02057 354.525 -131113 TIGR02058 155.334 -131114 TIGR02059 80.3229 -131115 TIGR02060 225.629 -273946 TIGR02061 1116.88 -131117 TIGR02062 1158.43 -273947 TIGR02063 821.902 -273948 TIGR02064 604.138 -131120 TIGR02065 385.641 -131121 TIGR02066 559.072 -273949 TIGR02067 301.531 -273950 TIGR02068 1364.46 -131124 TIGR02069 316.22 -273951 TIGR02070 340.593 -273952 TIGR02071 1166.03 -273953 TIGR02072 193.272 -273954 TIGR02073 766.968 -273955 TIGR02074 667.04 -213681 TIGR02075 281.436 -273956 TIGR02076 273.416 -200156 TIGR02077 1e+06 -131133 TIGR02078 502.014 -273957 TIGR02079 650.658 -131135 TIGR02080 661.496 -273958 TIGR02081 308.912 -273959 TIGR02082 1818.61 -131138 TIGR02083 752.032 -131139 TIGR02084 293.237 -131140 TIGR02085 693.121 -273960 TIGR02086 594.047 -273961 TIGR02087 257.35 -273962 TIGR02088 490.815 -273963 TIGR02089 633.025 -273964 TIGR02090 583.294 -273965 TIGR02091 511.035 -273966 TIGR02092 524.253 -273967 TIGR02093 1105.41 -273968 TIGR02094 841.607 -273969 TIGR02095 440.934 -273970 TIGR02096 149.836 -131152 TIGR02097 140.971 -131153 TIGR02098 53.1399 -273971 TIGR02099 1195.29 -131155 TIGR02100 1038.46 -273972 TIGR02101 289.493 -273973 TIGR02102 1888.03 -273974 TIGR02103 1372.21 -273975 TIGR02104 926.722 -131160 TIGR02105 78.6271 -211715 TIGR02106 43.7071 -273976 TIGR02107 34.5036 -273977 TIGR02108 488.094 -162708 TIGR02109 634.463 -273978 TIGR02110 746.695 -131166 TIGR02111 427.72 -131167 TIGR02112 100.122 -131168 TIGR02113 311.361 -131169 TIGR02114 339.867 -131170 TIGR02115 23.2413 -131171 TIGR02116 98.9752 -273979 TIGR02117 299.873 -131173 TIGR02118 113.634 -131174 TIGR02119 656.416 -273980 TIGR02120 440.997 -273981 TIGR02121 670.231 -273982 TIGR02122 303.098 -273983 TIGR02123 497.576 -273984 TIGR02124 417.811 -273985 TIGR02125 228.399 -273986 TIGR02126 131.765 -273987 TIGR02127 296.626 -273988 TIGR02128 321.696 -162719 TIGR02129 431.515 -131185 TIGR02130 525.702 -131186 TIGR02131 187.253 -131187 TIGR02132 238.574 -273989 TIGR02133 183.042 -131189 TIGR02134 412.366 -273990 TIGR02135 163.582 -273991 TIGR02136 307.058 -162723 TIGR02137 384.279 -273992 TIGR02138 240.247 -131194 TIGR02139 331.597 -162725 TIGR02140 344.372 -273993 TIGR02141 188.221 -131197 TIGR02142 522.75 -131198 TIGR02143 578.599 -273994 TIGR02144 387.524 -273995 TIGR02145 175.566 -162728 TIGR02146 431.523 -273996 TIGR02147 363.212 -162730 TIGR02148 150.933 -273997 TIGR02149 671.539 -273998 TIGR02150 172.14 -273999 TIGR02151 441.705 -274000 TIGR02152 349.592 -274001 TIGR02153 567.778 -131209 TIGR02154 383.603 -131210 TIGR02155 766.291 -131211 TIGR02156 518.633 -274002 TIGR02157 149.242 -131213 TIGR02158 347.177 -131214 TIGR02159 230.06 -131215 TIGR02160 591.412 -131216 TIGR02161 347.143 -274003 TIGR02162 658.113 -274004 TIGR02163 326.23 -131219 TIGR02164 1581.8 -274005 TIGR02165 315.167 -274006 TIGR02166 1329.79 -274007 TIGR02167 29.3688 -274008 TIGR02168 802.35 -274009 TIGR02169 1043.88 -274010 TIGR02170 219.53 -274011 TIGR02171 1465.42 -162743 TIGR02172 359.47 -274012 TIGR02173 233.084 -274013 TIGR02174 72.7003 -274014 TIGR02175 214.908 -131231 TIGR02176 2154.88 -274015 TIGR02177 441.125 -131233 TIGR02178 326.069 -131234 TIGR02179 100.485 -274016 TIGR02180 117.731 -274017 TIGR02181 121.983 -274018 TIGR02182 324.799 -131238 TIGR02183 142.659 -213689 TIGR02184 33.2511 -274019 TIGR02185 125.471 -274020 TIGR02186 378.015 -274021 TIGR02187 290.115 -274022 TIGR02188 1041.44 -274023 TIGR02189 119.481 -131245 TIGR02190 150.76 -274024 TIGR02191 195.115 -131247 TIGR02192 377.297 -274025 TIGR02193 367.817 -131249 TIGR02194 117.905 -274026 TIGR02195 499.211 -274027 TIGR02196 107.08 -274028 TIGR02197 396.266 -274029 TIGR02198 383.892 -131254 TIGR02199 225.645 -131255 TIGR02200 124.185 -131256 TIGR02201 578.398 -131257 TIGR02202 100.347 -131258 TIGR02203 896.769 -131259 TIGR02204 856.692 -274030 TIGR02205 281.793 -131261 TIGR02206 164.017 -274031 TIGR02207 478.756 -274032 TIGR02208 524.754 -131264 TIGR02209 57.6604 -274033 TIGR02210 261.677 -131266 TIGR02211 356.662 -274034 TIGR02212 416.678 -131268 TIGR02213 683.106 -131269 TIGR02214 1047.48 -274035 TIGR02215 236.238 -274036 TIGR02216 79.2013 -274037 TIGR02217 230.907 -274038 TIGR02218 266.324 -131274 TIGR02219 212.029 -274039 TIGR02220 118.708 -274040 TIGR02221 230.453 -131277 TIGR02222 174.912 -274041 TIGR02223 169.487 -274042 TIGR02224 351.139 -274043 TIGR02225 346.491 -131281 TIGR02226 39.6385 -274044 TIGR02227 98.455 -131283 TIGR02228 105.599 -131284 TIGR02229 94.4521 -131285 TIGR02230 152.393 -274045 TIGR02231 628.306 -200169 TIGR02232 53.5304 -274046 TIGR02234 155.14 -131289 TIGR02235 384.864 -131290 TIGR02236 546.264 -274047 TIGR02237 290.472 -131292 TIGR02238 574.803 -274048 TIGR02239 576.676 -131294 TIGR02240 553.835 -274049 TIGR02241 172.18 -274050 TIGR02242 141.873 -274051 TIGR02243 537.149 -274052 TIGR02244 430.589 -131299 TIGR02245 306.359 -274053 TIGR02246 125.953 -274054 TIGR02247 300.587 -131302 TIGR02248 386.501 -131303 TIGR02249 508.086 -131304 TIGR02250 212.139 -274055 TIGR02251 203.294 -274056 TIGR02252 239.493 -274057 TIGR02253 255.405 -162788 TIGR02254 324.058 -131309 TIGR02256 195.904 -131310 TIGR02257 1643.67 -274058 TIGR02258 131.638 -131312 TIGR02259 835.443 -131313 TIGR02260 925.169 -131314 TIGR02261 507.262 -274059 TIGR02262 908.447 -131316 TIGR02263 822.326 -131317 TIGR02264 362.556 -131318 TIGR02265 192.147 -274060 TIGR02266 85.8584 -131320 TIGR02267 115.338 -131321 TIGR02268 308.338 -131322 TIGR02269 283.663 -131323 TIGR02270 474.74 -131324 TIGR02271 117.235 -131325 TIGR02272 609.475 -274061 TIGR02273 134.643 -274062 TIGR02274 200.234 -274063 TIGR02275 984.67 -213697 TIGR02276 33.8088 -274064 TIGR02277 367.986 -131331 TIGR02278 1090.25 -188207 TIGR02279 793.373 -274065 TIGR02280 395.76 -131334 TIGR02281 158.591 -274066 TIGR02282 417.178 -274067 TIGR02283 303.529 -131337 TIGR02284 184.653 -131338 TIGR02285 356.405 -131339 TIGR02286 146.026 -131340 TIGR02287 357.655 -131341 TIGR02288 990.537 -274068 TIGR02289 789.335 -274069 TIGR02290 692.919 -274070 TIGR02291 584.509 -274071 TIGR02292 138.271 -131346 TIGR02293 172.255 -274072 TIGR02294 814.809 -213698 TIGR02295 464.581 -131349 TIGR02296 269.708 -131350 TIGR02297 461.581 -131351 TIGR02298 498.221 -131352 TIGR02299 828.293 -131353 TIGR02300 91.974 -131354 TIGR02301 158.792 -274073 TIGR02302 1131.62 -131356 TIGR02303 429.232 -274074 TIGR02304 701.655 -131358 TIGR02305 320.53 -274075 TIGR02306 522.939 -274076 TIGR02307 466.223 -213699 TIGR02308 589.864 -131362 TIGR02309 878.077 -213700 TIGR02310 1136.19 -131364 TIGR02311 417.25 -131365 TIGR02312 488.464 -131366 TIGR02313 533.782 -131367 TIGR02314 656.57 -131368 TIGR02315 375.483 -131369 TIGR02316 1224.38 -131370 TIGR02317 437.594 -131371 TIGR02318 491.079 -131372 TIGR02319 568.977 -274077 TIGR02320 391.298 -131374 TIGR02321 459.19 -274078 TIGR02322 252.671 -188208 TIGR02323 460.837 -131377 TIGR02324 338.982 -131378 TIGR02325 344.845 -131379 TIGR02326 665.714 -131380 TIGR02327 58.8914 -131381 TIGR02328 215.083 -274079 TIGR02329 754.004 -131383 TIGR02330 876.484 -131384 TIGR02331 78.3797 -131385 TIGR02332 746.425 -131386 TIGR02333 1834.23 -131387 TIGR02334 730.482 -131388 TIGR02335 723.227 -213701 TIGR02336 1294.09 -188209 TIGR02337 167.944 -131391 TIGR02338 81.6273 -274080 TIGR02339 713.768 -274081 TIGR02340 866.342 -274082 TIGR02341 904.231 -274083 TIGR02342 857.16 -274084 TIGR02343 901.092 -274085 TIGR02344 941.473 -274086 TIGR02345 859.832 -274087 TIGR02346 843.611 -274088 TIGR02347 899.483 -274089 TIGR02348 791.493 -274090 TIGR02349 407.372 -274091 TIGR02350 948.287 -131404 TIGR02351 592.411 -274092 TIGR02352 312.377 -274093 TIGR02353 822.459 -162819 TIGR02354 344.16 -131408 TIGR02355 426.533 -274094 TIGR02356 263.835 -274095 TIGR02357 164.823 -274096 TIGR02358 370.631 -131412 TIGR02359 148.702 -131413 TIGR02360 725.783 -274097 TIGR02361 711.841 -213706 TIGR02362 584.839 -274098 TIGR02363 520.376 -131417 TIGR02364 122.436 -274099 TIGR02365 223.381 -274100 TIGR02366 215.4 -188213 TIGR02367 438.081 -131421 TIGR02368 944.834 -131422 TIGR02369 978.791 -131423 TIGR02370 276.681 -131424 TIGR02371 577.638 -131425 TIGR02372 566.851 -131426 TIGR02373 216.224 -162827 TIGR02374 1208.12 -131428 TIGR02375 163.792 -131429 TIGR02376 472.73 -131430 TIGR02377 185.843 -131431 TIGR02378 139.759 -131432 TIGR02379 733.935 -131433 TIGR02380 487.666 -131434 TIGR02381 128.043 -131435 TIGR02382 313.831 -274101 TIGR02383 90.0823 -274102 TIGR02384 80.0528 -211740 TIGR02385 51.1553 -274103 TIGR02386 1885.91 -131440 TIGR02387 1270.67 -274104 TIGR02388 2207.74 -274105 TIGR02389 508.054 -274106 TIGR02390 1483.04 -162834 TIGR02391 147.208 -274107 TIGR02392 388.947 -274108 TIGR02393 363.157 -131447 TIGR02394 459.191 -274109 TIGR02395 358.529 -274110 TIGR02396 211.066 -274111 TIGR02397 423.516 -131451 TIGR02398 902.726 -131452 TIGR02399 716.624 -274112 TIGR02400 608.502 -274113 TIGR02401 986.9 -274114 TIGR02402 666.349 -274115 TIGR02403 816.581 -274116 TIGR02404 348.584 -131458 TIGR02405 552.955 -131459 TIGR02406 238.081 -274117 TIGR02407 734.855 -131461 TIGR02408 516.369 -274118 TIGR02409 591.362 -274119 TIGR02410 556.7 -274120 TIGR02411 1010.46 -274121 TIGR02412 1169.95 -131466 TIGR02413 48.2084 -274122 TIGR02414 1346.59 -131468 TIGR02415 403.756 -131469 TIGR02416 1474.39 -131470 TIGR02417 499.277 -131471 TIGR02418 953.811 -274123 TIGR02419 56.2497 -274124 TIGR02420 137.761 -274125 TIGR02421 461.438 -131475 TIGR02422 394.405 -274126 TIGR02423 237.275 -274127 TIGR02424 399.859 -131478 TIGR02425 189.576 -274128 TIGR02426 345.578 -131480 TIGR02427 305.82 -188219 TIGR02428 325.781 -131482 TIGR02429 386.427 -131483 TIGR02430 646.071 -131484 TIGR02431 336.925 -274129 TIGR02432 143.541 -274130 TIGR02433 32.5147 -131487 TIGR02434 371.72 -274131 TIGR02435 327.908 -274132 TIGR02436 78.2871 -131490 TIGR02437 1284.77 -274133 TIGR02438 461.169 -274134 TIGR02439 498.102 -131493 TIGR02440 1284.76 -131494 TIGR02441 1298.65 -274135 TIGR02442 640.583 -131496 TIGR02443 90.5818 -274136 TIGR02444 150.339 -131498 TIGR02445 706.321 -131499 TIGR02446 811.529 -131500 TIGR02447 200.272 -274137 TIGR02448 70.1905 -131502 TIGR02449 56.7601 -131503 TIGR02450 73.6057 -131504 TIGR02451 290.875 -131505 TIGR02452 367.631 -274138 TIGR02453 238.775 -274139 TIGR02454 115.837 -131508 TIGR02455 1494.47 -274140 TIGR02456 961.515 -274141 TIGR02457 698.388 -274142 TIGR02458 226.607 -131512 TIGR02459 65.6158 -162866 TIGR02460 612.567 -131514 TIGR02461 277.814 -274143 TIGR02462 894.606 -131516 TIGR02463 330.958 -274144 TIGR02464 211.853 -131518 TIGR02465 418.019 -274145 TIGR02466 291.314 -274146 TIGR02467 179.048 -274147 TIGR02468 1793.58 -274148 TIGR02469 127.831 -274149 TIGR02470 1379.79 -131524 TIGR02471 370.251 -131525 TIGR02472 810.88 -131526 TIGR02473 50.3914 -274150 TIGR02474 434.588 -274151 TIGR02475 499.661 -162875 TIGR02476 295.503 -131530 TIGR02477 834.301 -274152 TIGR02478 1189.84 -274153 TIGR02479 234.475 -131533 TIGR02480 89.9641 -274154 TIGR02481 93.1703 -213713 TIGR02482 467.211 -274155 TIGR02483 457.534 -274156 TIGR02484 401.233 -274157 TIGR02485 609.955 -274158 TIGR02486 359.826 -274159 TIGR02487 639.764 -131541 TIGR02488 380.931 -131542 TIGR02489 969.034 -274160 TIGR02490 68.039 -274161 TIGR02491 213.365 -274162 TIGR02492 209.124 -131546 TIGR02493 351.286 -274163 TIGR02494 392.467 -274164 TIGR02495 249.203 -131549 TIGR02497 47.8353 -131550 TIGR02498 72.5414 -274165 TIGR02499 84.2687 -274166 TIGR02500 214.613 -274167 TIGR02501 63.5205 -131554 TIGR02502 178.058 -131555 TIGR02503 116.028 -274168 TIGR02504 619.34 -274169 TIGR02505 982.872 -274170 TIGR02506 643.667 -131559 TIGR02507 84.1088 -131560 TIGR02508 136.903 -131561 TIGR02509 143.816 -188230 TIGR02510 954.366 -131563 TIGR02511 55.797 -274171 TIGR02512 520.339 -131565 TIGR02513 183.092 -274172 TIGR02514 127.173 -274173 TIGR02515 506.466 -274174 TIGR02516 505.758 -274175 TIGR02517 544.674 -131570 TIGR02518 832.202 -274176 TIGR02519 323.95 -274177 TIGR02520 606.503 -131573 TIGR02521 195.634 -274178 TIGR02522 222.771 -131575 TIGR02523 131.428 -131576 TIGR02524 705.616 -131577 TIGR02525 654.566 -131578 TIGR02526 254.804 -274179 TIGR02527 277.745 -131580 TIGR02528 214.231 -274180 TIGR02529 369.849 -274181 TIGR02530 131.036 -188231 TIGR02531 148.344 -274182 TIGR02532 26.884 -131585 TIGR02533 755.755 -162905 TIGR02534 601.783 -274183 TIGR02535 628.638 -274184 TIGR02536 143.072 -274185 TIGR02537 25.7176 -274186 TIGR02538 890.905 -274187 TIGR02539 676.542 -131592 TIGR02540 305.992 -274188 TIGR02541 422.338 -211749 TIGR02542 237.061 -274189 TIGR02543 32.5955 -274190 TIGR02544 232.926 -274191 TIGR02546 650.534 -274192 TIGR02547 411.417 -274193 TIGR02548 86.7461 -274194 TIGR02549 35.4454 -274195 TIGR02550 233.78 -274196 TIGR02551 127.141 -274197 TIGR02552 105.069 -274198 TIGR02553 388.215 -131605 TIGR02554 553.365 -131606 TIGR02555 192.697 -274199 TIGR02556 594.538 -274200 TIGR02557 171.611 -131609 TIGR02558 120.796 -131610 TIGR02559 94.6255 -131611 TIGR02560 182.777 -131612 TIGR02561 189.673 -274201 TIGR02562 1672.72 -274202 TIGR02563 240.795 -274203 TIGR02564 565.994 -274204 TIGR02565 378.787 -274205 TIGR02566 497.03 -131618 TIGR02567 156.156 -274206 TIGR02568 173.753 -131620 TIGR02569 413.609 -274207 TIGR02570 203.57 -131622 TIGR02571 296.385 -131623 TIGR02572 234.705 -131624 TIGR02573 103.69 -131625 TIGR02574 54.7131 -274208 TIGR02577 314.387 -274209 TIGR02578 603.624 -131628 TIGR02579 136.828 -274210 TIGR02580 245.447 -274211 TIGR02581 312.581 -274212 TIGR02582 255.381 -274213 TIGR02583 335.593 -274214 TIGR02584 310.982 -274215 TIGR02585 239.295 -131635 TIGR02586 319.705 -131636 TIGR02587 361.833 -131637 TIGR02588 185.425 -274216 TIGR02589 386.432 -274217 TIGR02590 407.396 -188234 TIGR02591 291.659 -131641 TIGR02592 296.404 -274218 TIGR02593 31.6177 -131643 TIGR02594 133.737 -131644 TIGR02595 26.3826 -274219 TIGR02596 251.625 -274220 TIGR02597 398.802 -131647 TIGR02598 198.456 -274221 TIGR02599 432.263 -274222 TIGR02600 872.66 -274223 TIGR02601 28.5342 -131651 TIGR02602 250.375 -274224 TIGR02603 183.329 -274225 TIGR02604 478.475 -274226 TIGR02605 47.3393 -274227 TIGR02606 62.3198 -274228 TIGR02607 94.221 -274229 TIGR02608 44.9227 -274230 TIGR02609 66.6323 -131659 TIGR02610 138.914 -131660 TIGR02611 129.496 -274231 TIGR02612 215.832 -131662 TIGR02613 311.769 -274232 TIGR02614 259.034 -131664 TIGR02615 484.664 -274233 TIGR02616 32.257 -131666 TIGR02617 938.587 -131667 TIGR02618 932.406 -274234 TIGR02619 193.927 -200203 TIGR02620 161.569 -274235 TIGR02621 1120.4 -274236 TIGR02622 582.725 -131672 TIGR02623 499.282 -131673 TIGR02624 506.626 -131674 TIGR02625 183.098 -274237 TIGR02627 803.584 -131676 TIGR02628 838.011 -131677 TIGR02629 874.352 -274238 TIGR02630 762.248 -131679 TIGR02631 675.79 -131680 TIGR02632 1097.98 -131681 TIGR02633 916.137 -188237 TIGR02634 473.952 -274239 TIGR02635 723.155 -274240 TIGR02636 471.463 -131685 TIGR02637 480.897 -131686 TIGR02638 614.06 -274241 TIGR02639 1107.4 -131688 TIGR02640 435.76 -274242 TIGR02641 29.9161 -274243 TIGR02642 215.507 -131691 TIGR02643 658.742 -274244 TIGR02644 559.545 -274245 TIGR02645 759.317 -131694 TIGR02646 182.712 -131695 TIGR02647 111.116 -131696 TIGR02648 524.391 -131697 TIGR02649 627.814 -188239 TIGR02650 530.35 -274246 TIGR02651 307.609 -131700 TIGR02652 287.5 -131701 TIGR02653 1219.7 -211759 TIGR02654 159.743 -131703 TIGR02655 1006.78 -274247 TIGR02656 149.573 -131705 TIGR02657 114.51 -131706 TIGR02658 671.571 -131707 TIGR02659 333.824 -274248 TIGR02660 483.709 -131709 TIGR02661 331.054 -131710 TIGR02662 503.558 -131711 TIGR02663 177.154 -131712 TIGR02664 181.589 -274249 TIGR02665 195.578 -274250 TIGR02666 388.123 -131715 TIGR02667 270.446 -274251 TIGR02668 368.553 -274252 TIGR02669 169.169 -274253 TIGR02670 541.03 -131719 TIGR02671 705.918 -131720 TIGR02672 479.034 -131721 TIGR02673 328.054 -131722 TIGR02674 532.903 -131723 TIGR02675 57.3088 -131724 TIGR02677 523.617 -274254 TIGR02678 376.871 -274255 TIGR02679 396.887 -274256 TIGR02680 1286.29 -131728 TIGR02681 165.374 -274257 TIGR02682 589.935 -162974 TIGR02683 125.009 -188241 TIGR02684 127.447 -131732 TIGR02685 471.72 -274258 TIGR02686 372.941 -274259 TIGR02687 1239.71 -131735 TIGR02688 639.836 -131736 TIGR02689 252.9 -274260 TIGR02690 356.397 -131738 TIGR02691 243.921 -131739 TIGR02692 755.41 -274261 TIGR02693 1419.69 -131741 TIGR02694 236.707 -131742 TIGR02695 203.852 -131743 TIGR02696 1338.3 -131744 TIGR02697 53.6722 -131745 TIGR02698 191.093 -131746 TIGR02699 302.117 -131747 TIGR02700 403.099 -274262 TIGR02701 778.975 -131749 TIGR02702 336.031 -131750 TIGR02703 135.813 -131751 TIGR02704 146.535 -131752 TIGR02705 231.495 -162980 TIGR02706 450.356 -162981 TIGR02707 616.716 -131755 TIGR02708 698.588 -131756 TIGR02709 516.622 -274263 TIGR02710 470.906 -131758 TIGR02711 953.986 -274264 TIGR02712 1995.29 -274265 TIGR02713 767.272 -274266 TIGR02714 596.156 -274267 TIGR02715 612.946 -131763 TIGR02716 308.133 -131764 TIGR02717 612.007 -131765 TIGR02718 490.175 -131766 TIGR02719 251.474 -213733 TIGR02720 985.099 -274268 TIGR02721 343.997 -274269 TIGR02722 166.838 -131770 TIGR02723 994.598 -131771 TIGR02724 983.048 -131772 TIGR02725 156.763 -131773 TIGR02726 279.628 -274270 TIGR02727 128.548 -131775 TIGR02728 142.344 -274271 TIGR02729 362.125 -131777 TIGR02730 944.239 -131778 TIGR02731 915.773 -131779 TIGR02732 970.851 -274272 TIGR02733 855.16 -274273 TIGR02734 591.174 -131782 TIGR02735 730.939 -131783 TIGR02736 85.9673 -131784 TIGR02737 409.502 -131785 TIGR02738 141.095 -274274 TIGR02739 325.122 -274275 TIGR02740 333.226 -131788 TIGR02741 131.549 -131789 TIGR02742 159.478 -274276 TIGR02743 281.913 -274277 TIGR02744 124.88 -274278 TIGR02745 549.217 -274279 TIGR02746 940.213 -274280 TIGR02747 141.993 -131795 TIGR02748 558.18 -131796 TIGR02749 541.262 -274281 TIGR02750 688.857 -131798 TIGR02751 613.254 -131799 TIGR02752 474.677 -131800 TIGR02753 205.19 -274282 TIGR02754 125.645 -131802 TIGR02755 275.226 -274283 TIGR02756 292.104 -274284 TIGR02757 267.793 -131805 TIGR02758 75.6109 -131806 TIGR02759 819.716 -274285 TIGR02760 2193.92 -163004 TIGR02761 205.303 -274286 TIGR02762 83.5765 -131810 TIGR02763 143.586 -274287 TIGR02764 269.978 -274288 TIGR02765 637.879 -131813 TIGR02766 893.063 -131814 TIGR02767 1051 -274289 TIGR02768 1033.99 -131816 TIGR02769 412.277 -131817 TIGR02770 330.485 -131818 TIGR02771 178.057 -274290 TIGR02772 324.232 -213736 TIGR02773 1682.59 -274291 TIGR02774 1732 -274292 TIGR02775 324.392 -274293 TIGR02776 683.281 -131824 TIGR02777 260.363 -274294 TIGR02778 330.413 -274295 TIGR02779 306.92 -131827 TIGR02780 171.086 -274296 TIGR02781 244.544 -274297 TIGR02782 470.763 -131830 TIGR02783 221.889 -274298 TIGR02784 1404.43 -274299 TIGR02785 1502.67 -274300 TIGR02786 1108.27 -131834 TIGR02787 378.304 -274301 TIGR02788 422.917 -131836 TIGR02789 479.642 -131837 TIGR02790 362.858 -274302 TIGR02791 212.826 -131839 TIGR02792 222.892 -131840 TIGR02793 176.567 -274303 TIGR02794 30.1987 -188247 TIGR02795 133.175 -131843 TIGR02796 254.865 -131844 TIGR02797 323.197 -131845 TIGR02798 341.439 -274304 TIGR02799 170.856 -274305 TIGR02800 395.487 -274306 TIGR02801 121.178 -274307 TIGR02802 152.33 -131850 TIGR02803 181.183 -131851 TIGR02804 165.821 -131852 TIGR02805 195 -131853 TIGR02806 939.462 -274308 TIGR02807 252.318 -131855 TIGR02808 58.3315 -131856 TIGR02809 157.067 -274309 TIGR02810 687.941 -274310 TIGR02811 58.3068 -163028 TIGR02812 415.605 -274311 TIGR02813 4255.23 -274312 TIGR02814 712.23 -131862 TIGR02815 612.186 -131863 TIGR02816 988.437 -274313 TIGR02817 603.269 -131865 TIGR02818 696.193 -274314 TIGR02819 745.135 -131867 TIGR02820 354.083 -131868 TIGR02821 498.533 -131869 TIGR02822 559.923 -274315 TIGR02823 457.405 -274316 TIGR02824 455.952 -131872 TIGR02825 653.987 -274317 TIGR02826 196.415 -274318 TIGR02827 878.369 -131875 TIGR02828 246.697 -213743 TIGR02829 358.567 -274319 TIGR02830 169.838 -131878 TIGR02831 179.379 -131879 TIGR02832 238.758 -131880 TIGR02833 203.7 -274320 TIGR02834 240.654 -131882 TIGR02835 402.662 -131883 TIGR02836 843.306 -131884 TIGR02837 231.544 -131885 TIGR02838 194.443 -131886 TIGR02839 131.326 -274321 TIGR02840 152.81 -131888 TIGR02841 248.767 -131889 TIGR02842 216.739 -131890 TIGR02843 1034.24 -131891 TIGR02844 129.229 -188254 TIGR02845 559.695 -131893 TIGR02846 392.93 -131894 TIGR02847 87.2922 -131895 TIGR02848 56.1764 -131896 TIGR02849 100.052 -131897 TIGR02850 482.022 -131898 TIGR02851 284.352 -188255 TIGR02852 319.395 -131900 TIGR02853 446.462 -131901 TIGR02854 204.512 -274322 TIGR02855 464.512 -131903 TIGR02856 100.065 -274323 TIGR02857 427.858 -274324 TIGR02858 443.323 -131906 TIGR02859 351.409 -274325 TIGR02860 538.462 -274326 TIGR02861 70.8442 -163046 TIGR02862 50.3603 -131910 TIGR02863 60.4637 -274327 TIGR02864 44.3353 -274328 TIGR02865 768.087 -274329 TIGR02866 234.582 -274330 TIGR02867 233.734 -274331 TIGR02868 390.183 -213747 TIGR02869 319.705 -274332 TIGR02870 457.258 -274333 TIGR02871 338.938 -274334 TIGR02872 293.4 -131920 TIGR02873 499.395 -131921 TIGR02874 189.179 -131922 TIGR02875 446.162 -274335 TIGR02876 407.5 -274336 TIGR02877 545.101 -131925 TIGR02878 322.879 -200217 TIGR02880 544.433 -163057 TIGR02881 459.573 -131928 TIGR02882 1079.88 -274337 TIGR02883 273.043 -131930 TIGR02884 388.293 -131931 TIGR02885 358.644 -131932 TIGR02886 149.334 -274338 TIGR02887 242.926 -274339 TIGR02888 81.1871 -131935 TIGR02889 579.724 -274340 TIGR02890 211.821 -213748 TIGR02891 655.833 -274341 TIGR02892 105.478 -131939 TIGR02893 86.949 -274342 TIGR02894 203.844 -131941 TIGR02895 268.169 -131942 TIGR02896 56.1396 -131943 TIGR02897 269.802 -131944 TIGR02898 155.603 -131945 TIGR02899 75.6035 -274343 TIGR02900 452.133 -200218 TIGR02901 90.9553 -131948 TIGR02902 945.362 -274344 TIGR02903 1080.99 -274345 TIGR02904 418.014 -131951 TIGR02905 481.183 -131952 TIGR02906 318.071 -274346 TIGR02907 337.631 -131954 TIGR02908 138.464 -131955 TIGR02909 224.235 -131956 TIGR02910 575.623 -131957 TIGR02911 487.377 -131958 TIGR02912 546.771 -131959 TIGR02913 47.2175 -274347 TIGR02914 128.631 -274348 TIGR02915 761.596 -274349 TIGR02916 844.772 -274350 TIGR02917 914.085 -131964 TIGR02918 835.5 -274351 TIGR02919 614.714 -131966 TIGR02920 412.977 -131967 TIGR02921 1637.84 -131968 TIGR02922 117.983 -274352 TIGR02923 443.81 -274353 TIGR02924 827.863 -131971 TIGR02925 312.898 -131972 TIGR02926 41.7547 -200219 TIGR02927 759.163 -274354 TIGR02928 370.81 -131975 TIGR02929 195.528 -131976 TIGR02930 190.422 -131977 TIGR02931 939.322 -131978 TIGR02932 871.466 -131979 TIGR02933 355.693 -274355 TIGR02934 87.9275 -131981 TIGR02935 204.89 -274356 TIGR02936 94.0102 -274357 TIGR02937 32.3192 -131984 TIGR02938 856.895 -131985 TIGR02939 332.184 -274358 TIGR02940 278.24 -131987 TIGR02941 427.009 -274359 TIGR02943 305.536 -131989 TIGR02944 197.337 -131990 TIGR02945 152.455 -274360 TIGR02946 363.549 -131992 TIGR02947 368.531 -131993 TIGR02948 338.407 -188261 TIGR02949 96.3668 -274361 TIGR02950 202.685 -131996 TIGR02951 268.909 -131997 TIGR02952 250.877 -131998 TIGR02953 48.6884 -213752 TIGR02954 234.219 -132000 TIGR02955 466.166 -274362 TIGR02956 1196.9 -132002 TIGR02957 380.931 -132004 TIGR02959 254.213 -132005 TIGR02960 459.711 -274363 TIGR02961 467.952 -274364 TIGR02962 131.902 -274365 TIGR02963 648.951 -274366 TIGR02964 283.809 -274367 TIGR02965 1319.3 -274368 TIGR02966 412.372 -132012 TIGR02967 535.682 -274369 TIGR02968 56.4208 -132014 TIGR02969 2895.48 -274370 TIGR02970 77.609 -213754 TIGR02971 275.552 -132017 TIGR02972 72.1675 -132018 TIGR02973 58.5558 -274371 TIGR02974 533.028 -132020 TIGR02975 54.3482 -132021 TIGR02976 46.214 -274372 TIGR02977 255.284 -132023 TIGR02978 152.019 -132024 TIGR02979 79.5731 -274373 TIGR02980 310.697 -132026 TIGR02981 209.103 -274374 TIGR02982 366.651 -132028 TIGR02983 112.098 -274375 TIGR02984 219.5 -274376 TIGR02985 143.856 -132031 TIGR02986 614.129 -274377 TIGR02987 609.077 -274378 TIGR02988 74.8926 -274379 TIGR02989 173.276 -132035 TIGR02990 410.877 -132036 TIGR02991 483.586 -132037 TIGR02992 527.896 -274380 TIGR02993 816.444 -132039 TIGR02994 625.668 -132040 TIGR02995 418.939 -274381 TIGR02996 59.1842 -274382 TIGR02997 434.366 -132043 TIGR02998 273.22 -132044 TIGR02999 190.607 -274383 TIGR03000 82.8457 -188267 TIGR03001 266.167 -274384 TIGR03002 105.769 -132048 TIGR03003 297.535 -132049 TIGR03004 296.76 -132050 TIGR03005 428.094 -274385 TIGR03006 462.182 -274386 TIGR03007 528.468 -163100 TIGR03008 192.309 -274387 TIGR03009 323.017 -200229 TIGR03010 138.443 -274388 TIGR03011 88.4484 -274389 TIGR03012 142.006 -274390 TIGR03013 669.864 -132059 TIGR03014 523.584 -132060 TIGR03015 471.859 -274391 TIGR03016 333.254 -132062 TIGR03017 667.669 -274392 TIGR03018 269.166 -132064 TIGR03019 479.542 -274393 TIGR03020 324.812 -274394 TIGR03021 84.7537 -274395 TIGR03022 561.21 -274396 TIGR03023 457.431 -274397 TIGR03024 34.0316 -274398 TIGR03025 299.504 -274399 TIGR03026 412.776 -132072 TIGR03027 221.03 -132073 TIGR03028 432.684 -132074 TIGR03029 452.78 -274400 TIGR03030 999.954 -274401 TIGR03031 1051.51 -274402 TIGR03032 518.437 -200235 TIGR03033 194.949 -132079 TIGR03034 427.309 -132080 TIGR03035 359.809 -188272 TIGR03036 394.002 -132082 TIGR03037 291.676 -274403 TIGR03038 40.7089 -163117 TIGR03039 852.975 -213761 TIGR03041 403.613 -274404 TIGR03042 152.937 -274405 TIGR03043 46.1579 -274406 TIGR03044 160.592 -274407 TIGR03045 239.956 -274408 TIGR03046 254.029 -274409 TIGR03047 122.371 -132092 TIGR03048 133.483 -274410 TIGR03049 73.5233 -188274 TIGR03050 99.9692 -132095 TIGR03051 122.239 -132096 TIGR03052 34.625 -274411 TIGR03053 23.5588 -213764 TIGR03054 171.924 -188275 TIGR03055 324.803 -132100 TIGR03056 439.326 -274412 TIGR03057 26.1444 -132102 TIGR03058 37.7637 -132103 TIGR03059 116.863 -213765 TIGR03060 268.448 -274413 TIGR03061 166.995 -274414 TIGR03062 204.345 -213766 TIGR03063 31.411 -211782 TIGR03064 269.215 -132109 TIGR03065 57.5977 -132110 TIGR03066 88.6001 -274415 TIGR03067 94.3593 -132112 TIGR03068 69.385 -132113 TIGR03069 361.234 -213767 TIGR03070 54.2024 -274416 TIGR03071 126.258 -213768 TIGR03072 309.395 -274417 TIGR03073 575.559 -274418 TIGR03074 1108.14 -274419 TIGR03075 724.082 -213771 TIGR03076 1234.37 -132121 TIGR03077 199.341 -274420 TIGR03078 362.203 -132123 TIGR03079 696.669 -132124 TIGR03080 386.887 -213772 TIGR03081 184.065 -274421 TIGR03082 72.5363 -274422 TIGR03083 55.1533 -274423 TIGR03084 342 -132129 TIGR03085 232.649 -274424 TIGR03086 155.651 -274425 TIGR03087 603.619 -132132 TIGR03088 543.163 -274426 TIGR03089 178.451 -163133 TIGR03090 51.3413 -274427 TIGR03091 41.0837 -132136 TIGR03092 94.864 -132137 TIGR03093 38.0415 -132138 TIGR03094 220.891 -132139 TIGR03095 222.455 -132140 TIGR03096 258.379 -132141 TIGR03097 532.781 -211788 TIGR03098 755.851 -132143 TIGR03099 580.16 -132144 TIGR03100 317.91 -274428 TIGR03101 301.736 -274429 TIGR03102 165.335 -132147 TIGR03103 934.922 -274430 TIGR03104 1079.72 -274431 TIGR03105 667.533 -132150 TIGR03106 587.479 -132151 TIGR03107 628.381 -132152 TIGR03108 1083.61 -274432 TIGR03109 258.747 -188282 TIGR03110 182.575 -132155 TIGR03111 693.409 -132156 TIGR03112 137.886 -274433 TIGR03113 355.247 -274434 TIGR03114 333.011 -274435 TIGR03115 474.832 -132160 TIGR03116 333.468 -274436 TIGR03117 906.632 -132162 TIGR03118 492.093 -132163 TIGR03119 468.031 -274437 TIGR03120 482.223 -274438 TIGR03121 782.291 -274439 TIGR03122 282.689 -163144 TIGR03123 426.774 -163145 TIGR03124 194.013 -132169 TIGR03125 384.293 -132170 TIGR03126 229.932 -132171 TIGR03127 201.382 -132172 TIGR03128 260.765 -132173 TIGR03129 457.91 -188283 TIGR03130 117.388 -132175 TIGR03131 241.833 -274440 TIGR03132 263.015 -188285 TIGR03133 356.994 -274441 TIGR03134 257.562 -274442 TIGR03135 132.779 -188287 TIGR03136 602.557 -211789 TIGR03137 366.726 -274443 TIGR03138 445.181 -213775 TIGR03139 189.844 -274444 TIGR03140 831.239 -274445 TIGR03141 28.726 -274446 TIGR03142 66.1282 -132187 TIGR03143 862.933 -274447 TIGR03144 259.467 -274448 TIGR03145 843.628 -132190 TIGR03146 217.393 -274449 TIGR03147 169.543 -274450 TIGR03148 398.273 -274451 TIGR03149 409.945 -274452 TIGR03150 525.512 -132195 TIGR03151 448.044 -200248 TIGR03152 828.719 -274453 TIGR03153 157.894 -132198 TIGR03154 822.729 -274454 TIGR03155 297.105 -274455 TIGR03156 424.962 -274456 TIGR03157 350.721 -274457 TIGR03158 425.08 -274458 TIGR03159 268.992 -274459 TIGR03160 324.498 -274460 TIGR03161 150.673 -274461 TIGR03162 160.48 -132208 TIGR03164 233.793 -274462 TIGR03165 29.9955 -132210 TIGR03166 155.972 -274463 TIGR03167 366.149 -274464 TIGR03168 254.808 -274465 TIGR03169 481.701 -274466 TIGR03170 92.2092 -132215 TIGR03171 560.65 -274467 TIGR03172 189.787 -274468 TIGR03173 345.662 -274469 TIGR03174 1171.23 -274470 TIGR03175 649.229 -274471 TIGR03176 727.034 -274472 TIGR03177 167.448 -163175 TIGR03178 592.05 -188295 TIGR03180 169.945 -213783 TIGR03181 428.101 -274473 TIGR03182 473.597 -163177 TIGR03183 692.248 -274474 TIGR03184 120.525 -274475 TIGR03185 803.903 -132230 TIGR03186 1595.3 -274476 TIGR03187 173.226 -274477 TIGR03188 47.4819 -132233 TIGR03189 449.396 -132234 TIGR03190 826.204 -132235 TIGR03191 971.018 -132236 TIGR03192 554.314 -132237 TIGR03193 261.735 -132238 TIGR03194 1302.49 -132239 TIGR03195 516.696 -132240 TIGR03196 1164.81 -274478 TIGR03197 246.794 -132242 TIGR03198 262.094 -274479 TIGR03199 387.341 -132244 TIGR03200 655.441 -132245 TIGR03201 581.477 -132246 TIGR03202 298.654 -132247 TIGR03203 734.115 -132248 TIGR03204 878.199 -132249 TIGR03205 1119.66 -132250 TIGR03206 428.571 -132251 TIGR03207 719.007 -132252 TIGR03208 1007.52 -132253 TIGR03209 167.29 -132254 TIGR03210 467.5 -274480 TIGR03211 384.289 -211797 TIGR03212 508.877 -132257 TIGR03213 420.64 -200251 TIGR03214 381.353 -132259 TIGR03215 455.235 -132260 TIGR03216 882.522 -274481 TIGR03217 527.297 -132262 TIGR03218 442.674 -274482 TIGR03219 730.096 -132264 TIGR03220 465.353 -213786 TIGR03221 167.236 -213787 TIGR03222 991.996 -274483 TIGR03223 218.759 -132268 TIGR03224 822.974 -200253 TIGR03225 968.912 -274484 TIGR03226 348.089 -132271 TIGR03227 570.512 -132272 TIGR03228 959.44 -132273 TIGR03229 935.035 -132274 TIGR03230 912.355 -132275 TIGR03231 299.895 -132276 TIGR03232 289.79 -163189 TIGR03233 613.304 -163190 TIGR03234 361.655 -163191 TIGR03235 572.897 -274485 TIGR03236 536.796 -132281 TIGR03237 1839.9 -132282 TIGR03238 658.518 -132283 TIGR03239 432.336 -274486 TIGR03240 749.236 -132285 TIGR03241 833.639 -132286 TIGR03242 471.851 -274487 TIGR03243 428.99 -274488 TIGR03244 581.982 -274489 TIGR03245 559.421 -274490 TIGR03246 751.191 -211799 TIGR03247 871.434 -274491 TIGR03248 940.365 -132293 TIGR03249 498.466 -132294 TIGR03250 852.966 -274492 TIGR03251 744.665 -132296 TIGR03252 306.351 -211800 TIGR03253 746.25 -132298 TIGR03254 1005.12 -132299 TIGR03255 297.292 -132300 TIGR03256 1034.86 -132301 TIGR03257 752.116 -132302 TIGR03258 584.65 -132303 TIGR03259 428.139 -274493 TIGR03260 215.7 -274494 TIGR03261 540.177 -274495 TIGR03262 701.437 -213788 TIGR03263 199.256 -132308 TIGR03264 299.35 -274496 TIGR03265 558.114 -132310 TIGR03266 475.383 -132311 TIGR03267 540.558 -132312 TIGR03268 683.778 -132313 TIGR03269 915.344 -274497 TIGR03270 253.82 -132315 TIGR03271 245.01 -274498 TIGR03272 176.45 -132317 TIGR03274 439.159 -132318 TIGR03275 385.228 -132319 TIGR03276 229.172 -132320 TIGR03277 204.212 -132321 TIGR03278 698.392 -132322 TIGR03279 801.638 -213789 TIGR03280 421.081 -132324 TIGR03281 430.338 -274499 TIGR03282 564.387 -132326 TIGR03283 277.393 -213790 TIGR03284 538.951 -274500 TIGR03285 724.679 -132329 TIGR03286 742.806 -274501 TIGR03287 603.682 -132331 TIGR03288 530.845 -274502 TIGR03289 500.526 -132333 TIGR03290 237.733 -274503 TIGR03291 216.537 -274504 TIGR03292 155.514 -274505 TIGR03293 125.069 -132337 TIGR03294 343.376 -274506 TIGR03295 663.826 -274507 TIGR03296 158.727 -274508 TIGR03297 443.72 -274509 TIGR03298 369.245 -274510 TIGR03299 378.691 -274511 TIGR03300 374.654 -274512 TIGR03301 517.7 -274513 TIGR03302 185.063 -274514 TIGR03303 539.476 -274515 TIGR03304 1e+06 -132348 TIGR03305 901.114 -132349 TIGR03306 337.482 -163212 TIGR03307 419.511 -132351 TIGR03308 346.375 -132352 TIGR03309 398.226 -274516 TIGR03310 228.378 -132354 TIGR03311 1555.97 -132355 TIGR03312 412.368 -132356 TIGR03313 2064.57 -132357 TIGR03314 733.507 -132358 TIGR03315 1804.76 -274517 TIGR03316 800.092 -274518 TIGR03317 64.4845 -132361 TIGR03318 114.54 -188306 TIGR03319 687.815 -132364 TIGR03321 313.141 -132365 TIGR03322 112.643 -274519 TIGR03323 457.318 -132367 TIGR03324 911.841 -132368 TIGR03325 458.87 -188307 TIGR03326 701.142 -274520 TIGR03327 761.151 -274521 TIGR03328 251.031 -274522 TIGR03329 834.048 -274523 TIGR03330 162.007 -274524 TIGR03331 485.358 -132375 TIGR03332 724.701 -213797 TIGR03333 377.197 -274525 TIGR03334 278.199 -132378 TIGR03335 918.118 -274526 TIGR03336 920.274 -132380 TIGR03337 396.884 -132381 TIGR03338 320.178 -132382 TIGR03339 381.005 -274527 TIGR03340 276.669 -132384 TIGR03341 344.305 -213798 TIGR03342 151.656 -132386 TIGR03343 575.328 -213799 TIGR03344 168.667 -274528 TIGR03345 1135.05 -274529 TIGR03346 1451.7 -274530 TIGR03347 252.525 -274531 TIGR03348 1097.77 -274532 TIGR03349 129.698 -274533 TIGR03350 143.211 -274534 TIGR03351 240.09 -274535 TIGR03352 147.012 -274536 TIGR03353 288.765 -274537 TIGR03354 352.828 -274538 TIGR03355 771.457 -274539 TIGR03356 668.55 -274540 TIGR03357 103.072 -132401 TIGR03358 173.617 -274541 TIGR03359 575.71 -132403 TIGR03360 233.57 -274542 TIGR03361 674.685 -274543 TIGR03362 231.112 -274544 TIGR03363 270.762 -132407 TIGR03364 397.826 -274545 TIGR03365 397.499 -274546 TIGR03366 285.595 -274547 TIGR03367 79.9369 -132411 TIGR03368 745.313 -274548 TIGR03369 371.65 -132413 TIGR03370 27.4794 -274549 TIGR03371 250.34 -132415 TIGR03372 952.546 -132416 TIGR03373 112.429 -132417 TIGR03374 1003.37 -274550 TIGR03375 818.338 -274551 TIGR03376 389.779 -274552 TIGR03377 769.955 -213807 TIGR03378 626.276 -132422 TIGR03379 767.776 -132423 TIGR03380 655.531 -274553 TIGR03381 512.623 -213808 TIGR03382 32.4506 -274554 TIGR03383 334.163 -132427 TIGR03384 229.848 -163244 TIGR03385 577.076 -274555 TIGR03388 1004.66 -274556 TIGR03389 929.533 -132431 TIGR03390 954.674 -274557 TIGR03391 256.31 -274558 TIGR03392 764.766 -274559 TIGR03393 943.955 -274560 TIGR03394 944.326 -132436 TIGR03395 488.589 -274561 TIGR03396 883.203 -274562 TIGR03397 780.917 -132439 TIGR03398 168.168 -274563 TIGR03399 433.239 -274564 TIGR03400 403.527 -188314 TIGR03401 362.502 -132443 TIGR03402 627.333 -132444 TIGR03403 757.849 -274565 TIGR03404 605.469 -274566 TIGR03405 484.361 -213809 TIGR03406 275.372 -132448 TIGR03407 626.684 -132449 TIGR03408 352.723 -200272 TIGR03409 324.583 -274567 TIGR03410 331.797 -274568 TIGR03411 373.816 -132453 TIGR03412 91.9638 -274569 TIGR03413 334.504 -188316 TIGR03414 488.724 -188317 TIGR03415 573.262 -188318 TIGR03416 363.974 -274570 TIGR03417 894.047 -188320 TIGR03418 391.79 -132460 TIGR03419 202.279 -274571 TIGR03420 222.45 -274572 TIGR03421 105.754 -132463 TIGR03422 139.678 -274573 TIGR03423 547.122 -132465 TIGR03424 375.918 -163257 TIGR03425 313.86 -274574 TIGR03426 41.0521 -213811 TIGR03427 531.648 -132469 TIGR03428 653.447 -274575 TIGR03429 210.246 -132471 TIGR03430 807.911 -132472 TIGR03431 355.51 -163260 TIGR03432 1139.53 -163261 TIGR03433 133.45 -274576 TIGR03434 618.372 -132476 TIGR03435 245.273 -274577 TIGR03436 237.206 -274578 TIGR03437 105.816 -274579 TIGR03438 406.179 -274580 TIGR03439 408.954 -274581 TIGR03440 381.291 -163267 TIGR03441 325.042 -132483 TIGR03442 317.052 -274582 TIGR03443 2347.39 -274583 TIGR03444 461.6 -274584 TIGR03445 357.165 -132487 TIGR03446 463.823 -132488 TIGR03447 703.022 -132489 TIGR03448 328.977 -132490 TIGR03449 661.819 -132491 TIGR03450 713.628 -132492 TIGR03451 614.888 -132493 TIGR03452 820.926 -274585 TIGR03453 618.917 -274586 TIGR03454 303.867 -274587 TIGR03455 84.9147 -132497 TIGR03457 1017.87 -274588 TIGR03458 800.316 -274589 TIGR03459 599.458 -132500 TIGR03460 190.424 -132501 TIGR03461 367.683 -274590 TIGR03462 42.589 -274591 TIGR03463 1141.65 -274592 TIGR03464 298.822 -163278 TIGR03465 303.048 -163279 TIGR03466 487.2 -274593 TIGR03467 388.261 -274594 TIGR03468 185.232 -213815 TIGR03469 512.676 -274595 TIGR03470 590.167 -132511 TIGR03471 895.999 -132512 TIGR03472 463.773 -132513 TIGR03473 397.575 -132514 TIGR03474 491.085 -132515 TIGR03475 28.6982 -274596 TIGR03476 296.94 -274597 TIGR03477 260.841 -132518 TIGR03478 608.327 -132519 TIGR03479 1420.34 -274598 TIGR03480 989.883 -274599 TIGR03481 224.952 -274600 TIGR03482 224.241 -274601 TIGR03483 121.925 -132524 TIGR03485 417.313 -132525 TIGR03486 200.868 -132526 TIGR03487 873.938 -132527 TIGR03488 445.565 -132528 TIGR03489 585.841 -274602 TIGR03490 361.454 -274603 TIGR03491 447.93 -274604 TIGR03492 355.041 -274605 TIGR03493 54.0003 -132533 TIGR03494 679.193 -274606 TIGR03495 103.636 -274607 TIGR03496 516.644 -274608 TIGR03497 701.755 -163293 TIGR03498 643.201 -274609 TIGR03499 139.392 -274610 TIGR03500 38.9872 -274611 TIGR03501 29.1144 -274612 TIGR03502 903.791 -274613 TIGR03503 478.379 -274614 TIGR03504 53.3436 -274615 TIGR03505 107.806 -274616 TIGR03506 81.9144 -274617 TIGR03507 521.703 -274618 TIGR03508 295.477 -274619 TIGR03509 597.855 -274620 TIGR03510 33.6649 -274621 TIGR03511 243.597 -132551 TIGR03512 284.123 -274622 TIGR03513 229.393 -274623 TIGR03514 381.696 -132554 TIGR03515 156.132 -132555 TIGR03516 267.398 -274624 TIGR03517 535.159 -132557 TIGR03518 281.119 -274625 TIGR03519 199.032 -274626 TIGR03520 587.391 -274627 TIGR03521 783.08 -132561 TIGR03522 505.848 -274628 TIGR03523 298.966 -132563 TIGR03524 956.327 -274629 TIGR03525 828.733 -132565 TIGR03526 705.792 -274630 TIGR03527 224.426 -274631 TIGR03528 744.619 -274632 TIGR03529 650.834 -132569 TIGR03530 793.077 -211833 TIGR03531 645.949 -132571 TIGR03532 356.756 -274633 TIGR03533 423.462 -274634 TIGR03534 192.299 -274635 TIGR03535 481.165 -211834 TIGR03536 612.578 -274636 TIGR03537 603.355 -274637 TIGR03538 644.837 -132578 TIGR03539 533.929 -274638 TIGR03540 686.023 -132580 TIGR03541 355.246 -163316 TIGR03542 697.244 -188337 TIGR03543 251.239 -274639 TIGR03544 33.5532 -274640 TIGR03545 459.181 -200289 TIGR03546 147.415 -274641 TIGR03547 508.018 -274642 TIGR03548 483.139 -132588 TIGR03549 1418.05 -132589 TIGR03550 513.764 -132590 TIGR03551 524.919 -274643 TIGR03552 153.983 -132592 TIGR03553 241.232 -213827 TIGR03554 694.798 -132594 TIGR03555 557.904 -274644 TIGR03556 895.086 -274645 TIGR03557 498.061 -274646 TIGR03558 339.077 -274647 TIGR03559 481.064 -274648 TIGR03560 281.127 -274649 TIGR03561 168.122 -274650 TIGR03562 180.48 -132602 TIGR03563 210.402 -274651 TIGR03564 314.291 -274652 TIGR03565 645.916 -211840 TIGR03566 235.305 -274653 TIGR03567 222.918 -274654 TIGR03568 413.075 -274655 TIGR03569 468.6 -274656 TIGR03570 181.152 -274657 TIGR03571 380.072 -132611 TIGR03572 317.289 -274658 TIGR03573 374.336 -132613 TIGR03574 312.504 -188340 TIGR03575 568.747 -213830 TIGR03576 480.799 -132616 TIGR03577 183.101 -213831 TIGR03578 145.242 -132618 TIGR03579 258.197 -274659 TIGR03580 394.213 -188342 TIGR03581 357.139 -132621 TIGR03582 158.412 -132622 TIGR03583 615.567 -274660 TIGR03584 355.487 -274661 TIGR03585 182.559 -163337 TIGR03586 533.807 -132626 TIGR03587 334.462 -274662 TIGR03588 557.711 -132628 TIGR03589 610.169 -274663 TIGR03590 295.033 -274664 TIGR03591 1019.74 -274665 TIGR03592 106.412 -274666 TIGR03593 155.567 -274667 TIGR03594 429.948 -274668 TIGR03595 70.9974 -274669 TIGR03596 240.874 -213834 TIGR03597 333.818 -274670 TIGR03598 209.252 -274671 TIGR03599 414.654 -274672 TIGR03600 556.632 -274673 TIGR03601 27.8383 -132641 TIGR03602 34.6444 -200298 TIGR03603 290.217 -274674 TIGR03604 271.892 -188352 TIGR03605 175.184 -274675 TIGR03606 777.173 -274676 TIGR03607 501.968 -188353 TIGR03608 265.633 -132648 TIGR03609 266.05 -274677 TIGR03610 240.522 -211851 TIGR03611 369.836 -163355 TIGR03612 659.215 -274678 TIGR03613 327.234 -163356 TIGR03614 436.955 -132654 TIGR03615 263.582 -132655 TIGR03616 661.161 -132656 TIGR03617 477.264 -274679 TIGR03618 90.8167 -274680 TIGR03619 213.273 -274681 TIGR03620 311.612 -200301 TIGR03621 338.193 -132661 TIGR03622 391.919 -274682 TIGR03623 870.901 -274683 TIGR03624 318.172 -274684 TIGR03625 206.565 -274685 TIGR03626 493.004 -132666 TIGR03627 185.624 -274686 TIGR03628 169.579 -213839 TIGR03629 206.742 -274687 TIGR03630 143.982 -274688 TIGR03631 155.734 -274689 TIGR03632 148.92 -163366 TIGR03633 354.264 -274690 TIGR03634 246.737 -274691 TIGR03635 83.7423 -274692 TIGR03636 86.8818 -132676 TIGR03637 507.787 -274693 TIGR03638 335.401 -274694 TIGR03639 318.431 -188360 TIGR03640 496.375 -274695 TIGR03641 412.382 -274696 TIGR03642 154.541 -132682 TIGR03643 97.061 -274697 TIGR03644 569.682 -132684 TIGR03645 315.956 -132685 TIGR03646 228.076 -132686 TIGR03647 67.9918 -274698 TIGR03648 562.642 -274699 TIGR03649 402.11 -132689 TIGR03650 361.917 -274700 TIGR03651 34.0012 -274701 TIGR03652 257.935 -274702 TIGR03653 231.02 -274703 TIGR03654 188.796 -274704 TIGR03655 52.8464 -274705 TIGR03656 279.481 -213844 TIGR03657 984.428 -132697 TIGR03658 1534.81 -274706 TIGR03659 402.037 -132699 TIGR03660 122.777 -274707 TIGR03661 42.3307 -274708 TIGR03662 590.143 -274709 TIGR03663 401.815 -274710 TIGR03664 164.015 -274711 TIGR03665 162.734 -274712 TIGR03666 146.716 -132706 TIGR03667 198.46 -132707 TIGR03668 179.649 -132708 TIGR03669 679.958 -274713 TIGR03670 1060.4 -274714 TIGR03671 390.058 -274715 TIGR03672 320.716 -274716 TIGR03673 194.876 -274717 TIGR03674 451.319 -274718 TIGR03675 931.277 -274719 TIGR03676 452.126 -188367 TIGR03677 153.76 -163391 TIGR03678 58.145 -188368 TIGR03679 266.048 -274720 TIGR03680 616.294 -274721 TIGR03682 290.361 -274722 TIGR03683 1290.33 -274723 TIGR03684 140.82 -274724 TIGR03685 65.069 -274725 TIGR03686 702.633 -200311 TIGR03687 30.8715 -274726 TIGR03688 734.655 -200312 TIGR03689 790.831 -163402 TIGR03690 352.858 -163403 TIGR03691 382.541 -274727 TIGR03692 242.055 -163405 TIGR03693 1181.72 -274728 TIGR03694 270.748 -274729 TIGR03695 282.953 -274730 TIGR03696 65.214 -163409 TIGR03697 319.487 -163410 TIGR03698 110.143 -274731 TIGR03699 494.464 -213851 TIGR03700 594.735 -163413 TIGR03701 632.003 -163414 TIGR03702 433.768 -274732 TIGR03703 1118.1 -274733 TIGR03704 351.393 -274734 TIGR03705 915.759 -274735 TIGR03706 260.941 -213852 TIGR03707 363.101 -274736 TIGR03708 769.588 -274737 TIGR03709 401.187 -274738 TIGR03710 580.638 -163423 TIGR03711 192.58 -274739 TIGR03712 727.228 -274740 TIGR03713 594.758 -163426 TIGR03714 1237.22 -274741 TIGR03715 26.5829 -274742 TIGR03716 212.519 -163429 TIGR03717 163.488 -274743 TIGR03718 344.119 -274744 TIGR03719 933.967 -274745 TIGR03720 25.6183 -274746 TIGR03721 155.822 -274747 TIGR03722 495.238 -274748 TIGR03723 384.855 -274749 TIGR03724 213.611 -274750 TIGR03725 86.9377 -274751 TIGR03726 38.5046 -274752 TIGR03727 457.396 -163440 TIGR03728 360.457 -163441 TIGR03729 259.161 -163442 TIGR03730 416.393 -274753 TIGR03731 43.97 -274754 TIGR03732 180.58 -163445 TIGR03733 206.398 -274755 TIGR03734 710.711 -163447 TIGR03735 287.339 -163448 TIGR03736 362.841 -274756 TIGR03737 310.474 -163450 TIGR03738 113.691 -274757 TIGR03739 484.705 -163452 TIGR03740 323.197 -274758 TIGR03741 58.9351 -274759 TIGR03742 318.237 -274760 TIGR03743 723.681 -274761 TIGR03744 1456.02 -274762 TIGR03745 95.0502 -163458 TIGR03746 311.947 -163459 TIGR03747 233.329 -163460 TIGR03748 139.326 -163461 TIGR03749 272.645 -274763 TIGR03750 98.0634 -274764 TIGR03751 114.031 -274765 TIGR03752 481.449 -274766 TIGR03753 74.9908 -274767 TIGR03754 1090.86 -274768 TIGR03755 484.511 -274769 TIGR03756 391.737 -163469 TIGR03757 110.457 -163470 TIGR03758 49.6664 -274770 TIGR03759 251.089 -163472 TIGR03760 247.224 -274771 TIGR03761 255.315 -274772 TIGR03762 233.579 -163475 TIGR03763 330.142 -213858 TIGR03764 403.224 -274773 TIGR03765 111.53 -274774 TIGR03766 385.095 -213859 TIGR03767 752.475 -163480 TIGR03768 791.014 -274775 TIGR03769 48.4997 -163482 TIGR03770 327.889 -163483 TIGR03771 354.542 -163484 TIGR03772 775.962 -274776 TIGR03773 476.371 -163486 TIGR03774 64.8478 -163487 TIGR03775 58.5426 -163488 TIGR03776 54.4733 -274777 TIGR03777 38.6115 -274778 TIGR03778 35.2316 -274779 TIGR03779 315.132 -163492 TIGR03780 320.109 -200324 TIGR03781 312.836 -274780 TIGR03782 472.282 -163495 TIGR03783 1724.29 -163496 TIGR03784 251.14 -163497 TIGR03785 827.075 -274781 TIGR03786 42.6754 -163499 TIGR03787 421.854 -274782 TIGR03788 892.89 -274783 TIGR03789 245.871 -274784 TIGR03790 310.868 -163503 TIGR03791 591.233 -274785 TIGR03792 99.2869 -274786 TIGR03793 99.6927 -274787 TIGR03794 494.363 -163507 TIGR03795 126.443 -274788 TIGR03796 1041.45 -274789 TIGR03797 880.445 -274790 TIGR03798 56.9701 -274791 TIGR03799 945.331 -274792 TIGR03800 295.494 -163513 TIGR03801 895.512 -274793 TIGR03802 594.666 -274794 TIGR03803 29.7726 -274795 TIGR03804 29.0155 -163517 TIGR03805 408.682 -163518 TIGR03806 405.246 -213864 TIGR03807 28.4224 -163520 TIGR03808 763.2 -163521 TIGR03809 160.39 -163522 TIGR03810 602.426 -163523 TIGR03811 1175.78 -274796 TIGR03812 607.81 -163525 TIGR03813 717.755 -274797 TIGR03814 401.478 -274798 TIGR03815 217.591 -274799 TIGR03816 34.64 -274800 TIGR03817 1152.17 -274801 TIGR03818 344.495 -200328 TIGR03819 388.23 -163532 TIGR03820 752.684 -163533 TIGR03821 516.867 -163534 TIGR03822 493.89 -163535 TIGR03823 293.655 -274802 TIGR03824 42.7119 -274803 TIGR03825 290.17 -163538 TIGR03826 155.619 -163539 TIGR03827 369.271 -274804 TIGR03828 263.681 -163541 TIGR03829 133.058 -274805 TIGR03830 108.102 -274806 TIGR03831 28.8413 -163544 TIGR03832 850.312 -274807 TIGR03833 86.5409 -213869 TIGR03834 44.4439 -274808 TIGR03835 796.715 -163548 TIGR03836 125.754 -274809 TIGR03837 394.714 -274810 TIGR03838 339.132 -274811 TIGR03839 1156.46 -213871 TIGR03840 271.727 -274812 TIGR03841 286.327 -163554 TIGR03842 587.451 -274813 TIGR03843 262.155 -163556 TIGR03844 664.508 -163557 TIGR03845 252.961 -274814 TIGR03846 269.561 -213872 TIGR03847 230.729 -163560 TIGR03848 308.522 -163561 TIGR03849 382.901 -274815 TIGR03850 612.076 -274816 TIGR03851 642.15 -163564 TIGR03852 885.617 -163565 TIGR03853 69.9323 -163566 TIGR03854 415.786 -163567 TIGR03855 295.088 -213873 TIGR03856 401.377 -213874 TIGR03857 399.562 -274817 TIGR03858 512.555 -274818 TIGR03859 85.4405 -274819 TIGR03860 522.452 -163573 TIGR03861 376.076 -274820 TIGR03862 555.588 -274821 TIGR03863 439.439 -274822 TIGR03864 309.993 -274823 TIGR03865 190.686 -274824 TIGR03866 521.523 -274825 TIGR03867 35.9923 -274826 TIGR03868 441.586 -163581 TIGR03869 340.679 -274827 TIGR03870 369.056 -274828 TIGR03871 324.218 -274829 TIGR03872 251.951 -163585 TIGR03873 351.809 -163586 TIGR03874 249.727 -163587 TIGR03875 222.568 -274830 TIGR03876 433.976 -163589 TIGR03877 455.367 -274831 TIGR03878 448.022 -163591 TIGR03879 88.2485 -163592 TIGR03880 332.827 -163593 TIGR03881 368.3 -274832 TIGR03882 86.6417 -274833 TIGR03883 353.591 -163596 TIGR03884 101.083 -274834 TIGR03885 498.842 -188401 TIGR03886 612.144 -188402 TIGR03887 392.307 -274835 TIGR03888 269.316 -188404 TIGR03889 94.4098 -188405 TIGR03890 292.836 -274836 TIGR03891 110.534 -200334 TIGR03892 25.0338 -274837 TIGR03893 43.6322 -188409 TIGR03894 118.389 -274838 TIGR03895 839.372 -274839 TIGR03896 499.807 -274840 TIGR03897 682.832 -274841 TIGR03898 43.1567 -274842 TIGR03899 301.46 -274843 TIGR03900 1334.42 -274844 TIGR03901 28.2975 -274845 TIGR03902 90.3232 -274846 TIGR03903 1597.57 -274847 TIGR03904 891.071 -188420 TIGR03905 135.327 -274848 TIGR03906 772.019 -211887 TIGR03907 529.34 -274849 TIGR03908 765.507 -188424 TIGR03909 607.993 -188425 TIGR03910 595.968 -188426 TIGR03911 418.822 -188427 TIGR03912 124.127 -188428 TIGR03913 1029.52 -274850 TIGR03914 343.516 -274851 TIGR03915 203.556 -188431 TIGR03916 683.66 -274852 TIGR03917 42.6374 -274853 TIGR03918 529.392 -274854 TIGR03919 352.749 -274855 TIGR03920 194.511 -274856 TIGR03921 280.365 -188437 TIGR03922 766.699 -274857 TIGR03923 126.403 -274858 TIGR03924 679.773 -274859 TIGR03925 621.242 -188441 TIGR03926 422.099 -200340 TIGR03927 93.9798 -274860 TIGR03928 1736.78 -274861 TIGR03929 240.392 -274862 TIGR03930 41.4356 -274863 TIGR03931 117.189 -188447 TIGR03932 71.6964 -188448 TIGR03933 413.452 -274864 TIGR03934 51.4809 -188450 TIGR03935 514.896 -274865 TIGR03936 135.784 -274866 TIGR03937 624.279 -274867 TIGR03938 581.197 -274868 TIGR03939 824.68 -188455 TIGR03940 134.039 -274869 TIGR03941 78.4111 -188457 TIGR03942 511.772 -274870 TIGR03943 119.3 -274871 TIGR03944 383.492 -274872 TIGR03945 458.205 -188461 TIGR03946 505.143 -188462 TIGR03947 577.132 -188463 TIGR03948 909.604 -274873 TIGR03949 24.1705 -274874 TIGR03950 254.498 -274875 TIGR03951 190.252 -274876 TIGR03952 418.804 -274877 TIGR03953 203.882 -274878 TIGR03954 60.1939 -274879 TIGR03955 992.69 -274880 TIGR03956 580.669 -188472 TIGR03957 589.478 -274881 TIGR03958 843.258 -274882 TIGR03959 91.3988 -188475 TIGR03960 1109.27 -188476 TIGR03961 641.481 -188477 TIGR03962 658.844 -188478 TIGR03963 380.193 -274883 TIGR03964 332.809 -274884 TIGR03965 431.491 -274885 TIGR03966 669.547 -274886 TIGR03967 73.1856 -188483 TIGR03968 245.301 -274887 TIGR03969 24.3584 -274888 TIGR03970 670.754 -274889 TIGR03971 282.053 -274890 TIGR03972 434.759 -274891 TIGR03973 49.633 -274892 TIGR03974 784.515 -274893 TIGR03975 733.747 -274894 TIGR03976 80.4222 -274895 TIGR03977 410.092 -274896 TIGR03978 591.154 -274897 TIGR03979 162.355 -274898 TIGR03980 69.078 -188496 TIGR03981 710.872 -188497 TIGR03982 224.391 -274899 TIGR03983 560.152 -274900 TIGR03984 132.076 -274901 TIGR03985 369.766 -274902 TIGR03986 397.529 -274903 TIGR03987 165.549 -274904 TIGR03988 80.8115 -274905 TIGR03989 600.072 -274906 TIGR03990 430.781 -274907 TIGR03991 390.132 -274908 TIGR03992 522.155 -274909 TIGR03993 145.482 -274910 TIGR03994 627.724 -274911 TIGR03995 134.922 -188511 TIGR03996 938.196 -274912 TIGR03997 872.474 -274913 TIGR03998 541.092 -274914 TIGR03999 602.671 -188515 TIGR04000 367.514 -274915 TIGR04001 300.326 -188517 TIGR04002 184.921 -188518 TIGR04003 645.01 -188519 TIGR04004 896.911 -188520 TIGR04005 834.179 -188521 TIGR04006 839.574 -188522 TIGR04007 872.373 -188523 TIGR04008 365.437 -188524 TIGR04009 496.741 -188525 TIGR04010 647.747 -274916 TIGR04011 117.394 -188527 TIGR04012 516.491 -274917 TIGR04013 483.687 -274918 TIGR04014 666.446 -274919 TIGR04015 884.703 -188531 TIGR04016 276.44 -274920 TIGR04017 607.801 -188533 TIGR04018 479.369 -274921 TIGR04019 123.062 -274922 TIGR04020 519.505 -274923 TIGR04021 622.919 -274924 TIGR04022 569.205 -274925 TIGR04023 176.373 -188539 TIGR04024 528.607 -274926 TIGR04025 281.681 -274927 TIGR04026 252.62 -274928 TIGR04027 473.407 -274929 TIGR04028 895.971 -213885 TIGR04029 170.07 -188545 TIGR04030 263.182 -188546 TIGR04031 113.097 -274930 TIGR04032 119.033 -274931 TIGR04033 377.28 -274932 TIGR04034 209.343 -274933 TIGR04035 54.8326 -274934 TIGR04036 659.911 -274935 TIGR04037 251.815 -274936 TIGR04038 275.266 -188554 TIGR04039 548.908 -274937 TIGR04040 840.846 -274938 TIGR04041 414.724 -274939 TIGR04042 120.446 -274940 TIGR04043 526.166 -188559 TIGR04044 281.698 -274941 TIGR04045 249.916 -274942 TIGR04046 712.566 -274943 TIGR04047 382.13 -188563 TIGR04048 580.924 -188564 TIGR04049 457.183 -274944 TIGR04050 446.186 -188566 TIGR04051 643.271 -188567 TIGR04052 264.296 -274945 TIGR04053 564.604 -274946 TIGR04054 724.597 -274947 TIGR04055 645.244 -274948 TIGR04056 710.128 -274949 TIGR04057 34.8633 -188573 TIGR04058 641.394 -274950 TIGR04059 426.084 -274951 TIGR04060 250.743 -274952 TIGR04061 243.877 -274953 TIGR04062 163.669 -274954 TIGR04063 640.479 -274955 TIGR04064 754.33 -274956 TIGR04065 33.6 -274957 TIGR04066 304.232 -188582 TIGR04067 71.9462 -274958 TIGR04068 658.991 -274959 TIGR04069 71.5354 -213890 TIGR04070 554.601 -274960 TIGR04071 38.7203 -188587 TIGR04072 242.246 -274961 TIGR04073 77.6177 -274962 TIGR04074 641.664 -274963 TIGR04075 1290.34 -274964 TIGR04076 36.1509 -188592 TIGR04077 70.3621 -188593 TIGR04078 484.401 -188594 TIGR04079 38.1597 -188595 TIGR04080 805.71 -188596 TIGR04081 30.1194 -274965 TIGR04082 801.194 -274966 TIGR04083 684.149 -274967 TIGR04084 603.661 -274968 TIGR04085 33.3186 -274969 TIGR04086 36.7148 -274970 TIGR04087 188.424 -274971 TIGR04088 26.3519 -274972 TIGR04089 78.2393 -274973 TIGR04090 247.93 -274974 TIGR04091 444.675 -274975 TIGR04092 314.536 -274976 TIGR04093 495.02 -274977 TIGR04094 480.328 -274978 TIGR04095 722.208 -274979 TIGR04096 694.437 -274980 TIGR04098 228.004 -274981 TIGR04099 266.544 -188615 TIGR04100 351.302 -200352 TIGR04101 60.7486 -200353 TIGR04102 156.699 -200354 TIGR04103 871.188 -274982 TIGR04104 58.1464 -274983 TIGR04105 604.2 -274984 TIGR04106 336.837 -274985 TIGR04107 549.508 -274986 TIGR04108 227.13 -200360 TIGR04109 331.311 -200361 TIGR04110 302.475 -274987 TIGR04111 74.1153 -274988 TIGR04112 380.005 -274989 TIGR04113 683.357 -274990 TIGR04114 26.3128 -200366 TIGR04115 638.085 -274991 TIGR04116 67.8032 -274992 TIGR04117 101.136 -200369 TIGR04118 42.9992 -200370 TIGR04119 263.402 -274993 TIGR04120 762.63 -274994 TIGR04121 1117.63 -274995 TIGR04122 507.127 -274996 TIGR04123 211.258 -274997 TIGR04124 129.762 -274998 TIGR04125 256.068 -274999 TIGR04126 24.7546 -275000 TIGR04127 114.635 -275001 TIGR04128 205.25 -275002 TIGR04129 51.1354 -275003 TIGR04130 719.478 -275004 TIGR04131 104.512 -275005 TIGR04132 427.32 -200384 TIGR04133 653.72 -200385 TIGR04134 132.507 -200386 TIGR04135 48.1855 -200387 TIGR04136 938.233 -275006 TIGR04137 63.09 -275007 TIGR04138 140.819 -200390 TIGR04139 75.3081 -275008 TIGR04140 61.284 -275009 TIGR04141 452.862 -200393 TIGR04142 333.665 -200394 TIGR04143 40.6462 -200395 TIGR04144 238.269 -200396 TIGR04145 57.3055 -275010 TIGR04146 344.76 -275011 TIGR04147 403.468 -200399 TIGR04148 530.803 -275012 TIGR04149 26.4649 -275013 TIGR04150 427.507 -200402 TIGR04151 476.741 -275014 TIGR04152 613.176 -275015 TIGR04153 153.754 -275016 TIGR04154 632.421 -275017 TIGR04155 38.5848 -275018 TIGR04156 453.755 -275019 TIGR04157 504.529 -275020 TIGR04158 609.405 -200410 TIGR04159 163.073 -275021 TIGR04160 120.869 -275022 TIGR04161 26.7404 -200413 TIGR04162 579.074 -200414 TIGR04163 641.466 -200415 TIGR04164 42.9206 -275023 TIGR04165 65.1704 -275024 TIGR04166 110.059 -275025 TIGR04167 440.026 -275026 TIGR04168 345.807 -200420 TIGR04169 180.033 -211905 TIGR04170 1169.53 -275027 TIGR04171 466.261 -275028 TIGR04172 533.542 -200424 TIGR04173 33.5001 -275029 TIGR04174 29.7532 -200426 TIGR04175 119.096 -275030 TIGR04176 150.1 -200428 TIGR04177 210.856 -275031 TIGR04178 29.4963 -275032 TIGR04179 350.26 -275033 TIGR04180 565.39 -275034 TIGR04181 512.476 -275035 TIGR04182 463.687 -275036 TIGR04183 30.4511 -275037 TIGR04184 553.169 -275038 TIGR04185 500.781 -275039 TIGR04186 40.1039 -275040 TIGR04187 410.593 -275041 TIGR04188 414.833 -275042 TIGR04189 1761.12 -211913 TIGR04190 878.696 -275043 TIGR04191 197.839 -275044 TIGR04192 422.658 -211916 TIGR04193 503.587 -211917 TIGR04194 26.7441 -211918 TIGR04195 668.609 -211919 TIGR04196 58.6963 -275045 TIGR04197 49.9556 -275046 TIGR04198 297.868 -275047 TIGR04199 763.276 -211923 TIGR04200 70.1412 -275048 TIGR04201 27.1509 -275049 TIGR04202 52.1979 -275050 TIGR04203 27.9742 -275051 TIGR04204 201.933 -275052 TIGR04205 69.5754 -275053 TIGR04206 93.2462 -275054 TIGR04207 31.8083 -275055 TIGR04209 188.74 -211933 TIGR04210 174.049 -275056 TIGR04211 118.572 -275057 TIGR04212 930.714 -275058 TIGR04213 114.639 -211937 TIGR04214 33.6616 -275059 TIGR04215 111.164 -275060 TIGR04216 834.146 -211940 TIGR04217 278.557 -211941 TIGR04218 48.4975 -275061 TIGR04219 166.333 -211943 TIGR04220 101.831 -275062 TIGR04221 1166.9 -275063 TIGR04222 65.0348 -275064 TIGR04223 27.092 -275065 TIGR04224 31.4489 -275066 TIGR04225 61.0842 -275067 TIGR04226 38.3987 -211950 TIGR04227 36.5288 -275068 TIGR04228 114.318 -275069 TIGR04229 28.9534 -275070 TIGR04230 221.352 -275071 TIGR04231 669.35 -211955 TIGR04232 1190.85 -211956 TIGR04233 428.195 -275072 TIGR04234 1764.35 -211958 TIGR04235 1022.91 -275073 TIGR04236 1502.87 -211960 TIGR04237 303.051 -275074 TIGR04238 260.263 -275075 TIGR04239 334.2 -213897 TIGR04240 117.354 -211964 TIGR04241 70.492 -275076 TIGR04242 694.558 -211966 TIGR04243 326.285 -275077 TIGR04244 1107.13 -211968 TIGR04245 342.839 -275078 TIGR04246 1029.23 -275079 TIGR04247 424.298 -211971 TIGR04248 156.949 -275080 TIGR04249 466.691 -211973 TIGR04250 675.034 -211974 TIGR04251 670.008 -211975 TIGR04252 1e+06 -211976 TIGR04253 832.301 -275081 TIGR04254 114.053 -275082 TIGR04255 87.5341 -275083 TIGR04256 113.262 -275084 TIGR04257 81.603 -275085 TIGR04258 39.4635 -275086 TIGR04259 528.184 -275087 TIGR04260 30.4844 -211984 TIGR04261 674.829 -275088 TIGR04262 394.42 -275089 TIGR04263 348.16 -275090 TIGR04264 3599.45 -211988 TIGR04265 785.907 -211989 TIGR04266 899.012 -275091 TIGR04267 219.192 -275092 TIGR04268 25.9952 -275093 TIGR04269 542.013 -211993 TIGR04270 891.422 -275094 TIGR04271 131.144 -275095 TIGR04272 56.4383 -275096 TIGR04273 271.643 -211997 TIGR04274 228.422 -275097 TIGR04275 35.5243 -275098 TIGR04276 193.077 -212000 TIGR04277 1130.12 -212001 TIGR04278 717.273 -275099 TIGR04279 404.497 -275100 TIGR04280 739.213 -275101 TIGR04281 350.504 -275102 TIGR04282 141.1 -275103 TIGR04283 189.645 -275104 TIGR04284 783.185 -275105 TIGR04285 337.948 -275106 TIGR04286 1030.43 -213900 TIGR04287 133.224 -213901 TIGR04288 33.4883 -275107 TIGR04289 54.0099 -275108 TIGR04290 396.377 -275109 TIGR04291 944.905 -275110 TIGR04292 501.983 -213906 TIGR04293 239.081 -213907 TIGR04294 25.6919 -275111 TIGR04295 763.941 -275112 TIGR04296 28.9707 -213910 TIGR04297 527.604 -213911 TIGR04298 716.349 -213912 TIGR04299 683.157 -213913 TIGR04300 215.453 -275113 TIGR04301 1468.41 -213915 TIGR04302 175.037 -213916 TIGR04303 641.964 -213917 TIGR04304 519.041 -275114 TIGR04305 332.4 -213919 TIGR04306 317.211 -213920 TIGR04307 31.3794 -275115 TIGR04308 36.7365 -213922 TIGR04309 49.3084 -213923 TIGR04310 37.6898 -275116 TIGR04311 695.994 -275117 TIGR04312 517.273 -275118 TIGR04313 105.938 -213927 TIGR04314 865.317 -275119 TIGR04315 639.374 -275120 TIGR04316 355.056 -275121 TIGR04317 498.421 -275122 TIGR04318 1307.81 -275123 TIGR04319 64.8905 -275124 TIGR04320 104.424 -275125 TIGR04321 558.476 -275126 TIGR04322 404.74 -213936 TIGR04323 137.824 -275127 TIGR04324 275.014 -275128 TIGR04325 219.84 -275129 TIGR04326 788.571 -275130 TIGR04327 218.529 -213941 TIGR04328 291.013 -213942 TIGR04329 473.092 -275131 TIGR04330 1416.14 -275132 TIGR04331 559.699 -275133 TIGR04332 316.87 -213946 TIGR04333 28.6224 -213947 TIGR04334 753.238 -275134 TIGR04335 187.791 -275135 TIGR04336 221.675 -275136 TIGR04337 706.371 -275137 TIGR04338 197.578 -213952 TIGR04339 276.321 -213953 TIGR04340 624.153 -213954 TIGR04341 39.7363 -275138 TIGR04342 112.815 -275139 TIGR04343 458.168 -275140 TIGR04344 670.143 -275141 TIGR04345 283.724 -275142 TIGR04346 452.622 -275143 TIGR04347 637.255 -275144 TIGR04348 368.967 -275145 TIGR04349 405.835 -275146 TIGR04350 577.347 -213964 TIGR04351 73.2952 -275147 TIGR04352 411.317 -275148 TIGR04353 48.8121 -275149 TIGR04354 34.3988 -275150 TIGR04355 594.749 -213969 TIGR04356 485.694 -275151 TIGR04357 568.041 -275152 TIGR04358 104.77 -275153 TIGR04359 61.7837 -275154 TIGR04360 52.3365 -275155 TIGR04361 60.8989 -275156 TIGR04362 130.948 -275157 TIGR04363 31.5327 -275158 TIGR04364 503.052 -213978 TIGR04365 226.606 -275159 TIGR04366 151.558 -275160 TIGR04367 915.64 -275161 TIGR04368 776.836 -275162 TIGR04369 892.079 -275163 TIGR04370 37.9087 -275164 TIGR04371 184.157 -275165 TIGR04372 181.695 -275166 TIGR04373 90.5187 -275167 TIGR04374 91.7251 -275168 TIGR04375 107.09 -275169 TIGR04376 196.755 -275170 TIGR04377 912.745 -275171 TIGR04378 356.255 -275172 TIGR04379 463.282 -275173 TIGR04380 393.123 -275174 TIGR04381 94.7327 -275175 TIGR04382 348.819 -275176 TIGR04383 353.168 -275177 TIGR04384 595.09 -275178 TIGR04385 844.134 -275179 TIGR04386 746.982 -275180 TIGR04387 154.82 -275181 TIGR04388 896.175 -275182 TIGR04389 309.002 -275183 TIGR04390 138.996 -275184 TIGR04391 30.5001 -275185 TIGR04392 310.546 -275186 TIGR04393 28.9667 -275187 TIGR04394 1650.69 -275188 TIGR04395 537.38 -275189 TIGR04396 265.293 -275190 TIGR04397 1375.2 -275191 TIGR04398 101.449 -275192 TIGR04399 457.968 -275193 TIGR04400 648.131 -275194 TIGR04401 96.7711 -275195 TIGR04402 208.881 -275196 TIGR04403 784.114 -275197 TIGR04404 83.9577 -275198 TIGR04405 583.711 -275199 TIGR04406 405.504 -275200 TIGR04407 222.057 -275201 TIGR04408 258.253 -275202 TIGR04409 98.4731 -275203 TIGR04410 152.968 -275204 TIGR04411 145.515 -275205 TIGR04412 121.987 -275206 TIGR04413 657.553 -275207 TIGR04414 670.535 -275208 TIGR04415 29.3508 -275209 TIGR04416 351.375 -275210 TIGR04417 500.059 -275211 TIGR04418 91.1096 -275212 TIGR04419 536.306 -275213 TIGR04420 225.555 -275214 TIGR04421 561.115 -275215 TIGR04422 643.991 -275216 TIGR04423 126.333 -275217 TIGR04424 243.777 -275218 TIGR04425 463.59 -275219 TIGR04426 835.551 -275220 TIGR04427 713.085 -275221 TIGR04428 1088.72 -275222 TIGR04429 24.7186 -275223 TIGR04430 132.599 -275224 TIGR04431 390.784 -275225 TIGR04432 671.055 -275226 TIGR04433 37.6988 -275227 TIGR04434 880.374 -275228 TIGR04435 621.685 -275229 TIGR04436 420.411 -275230 TIGR04437 403.369 -275231 TIGR04438 72.3749 -275232 TIGR04439 884.814 -275233 TIGR04440 194.824 -275234 TIGR04441 497.758 -275235 TIGR04442 961.125 -275236 TIGR04443 457.294 -275237 TIGR04444 491.169 -275238 TIGR04445 384.314 -275239 TIGR04446 68.1826 -275240 TIGR04447 48.4936 -275241 TIGR04448 399.794 -275242 TIGR04449 42.8146 -275243 TIGR04450 238.244 -275244 TIGR04451 90.8411 -275245 TIGR04452 78.1995 -275246 TIGR04453 72.7885 -275247 TIGR04454 111.856 -275248 TIGR04455 290.502 -275249 TIGR04456 194.769 -275250 TIGR04457 266.759 -275251 TIGR04458 742.459 -275252 TIGR04459 29.3398 -275253 TIGR04460 409.687 -275254 TIGR04461 478.664 -275255 TIGR04462 500.609 -275256 TIGR04463 794.47 -275257 TIGR04464 153.512 -275258 TIGR04465 628.881 -275259 TIGR04466 630.359 -275260 TIGR04467 494.381 -275261 TIGR04468 677.222 -275262 TIGR04469 182.791 -275263 TIGR04470 579.956 -275264 TIGR04471 450.892 -275265 TIGR04472 260.588 -275266 TIGR04473 1383.28 -275267 TIGR04474 167.49 -275268 TIGR04475 974.961 -275269 TIGR04476 409.027 -275270 TIGR04477 1063.51 -275271 TIGR04478 655.531 -275272 TIGR04479 739.584 -275273 TIGR04480 971.504 -275274 TIGR04481 662.849 -275275 TIGR04482 399.294 -275276 TIGR04483 449.242 -275277 TIGR04484 242.502 -275278 TIGR04485 89.1821 -275279 TIGR04486 859.224 -275280 TIGR04487 209.728 -275281 TIGR04488 131.981 -275282 TIGR04489 600.581 -275283 TIGR04490 88.4405 -275284 TIGR04491 968.296 -275285 TIGR04492 1918.05 -275286 TIGR04493 166.254 -275287 TIGR04494 208.79 -275288 TIGR04495 79.1927 -275289 TIGR04496 743.978 -275290 TIGR04497 65.3716 -275291 TIGR04498 73.4969 -275292 TIGR04499 550.803 -275293 TIGR04500 276.391 -275294 TIGR04501 381.67 -275295 TIGR04502 335.033 -275296 TIGR04503 200.428 -275297 TIGR04504 248.007 -275298 TIGR04505 402.685 -275299 TIGR04506 1076.4 -275300 TIGR04507 580.02 -275301 TIGR04508 380.201 -275302 TIGR04509 66.2211 -275303 TIGR04510 1098.57 -275304 TIGR04511 519.236 -275305 TIGR04512 1218.75 -275306 TIGR04513 51.3033 -275307 TIGR04514 92.2994 -275308 TIGR04515 219.903 -275309 TIGR04516 574.206 -275310 TIGR04517 511.476 -275311 TIGR04518 86.0849 -275312 TIGR04519 32.5292 -275313 TIGR04520 373.689 -275314 TIGR04521 306.3 -275315 TIGR04522 93.5458 -275316 TIGR04523 431.752 -275317 TIGR04524 255.857 -275318 TIGR04525 539.505 -275319 TIGR04526 522.272 -275320 TIGR04527 179.137 -275321 TIGR04528 787.637 -275322 TIGR04529 35.7255 -275323 TIGR04530 153.535 -275324 TIGR04531 526.456 -275325 TIGR04532 202.466 -275326 TIGR04533 254.137 -275327 TIGR04534 46.2796 -275328 TIGR04535 93.8984 -275329 TIGR04536 235.369 -275330 TIGR04537 25.8605 -275331 TIGR04538 672.205 -275332 TIGR04539 184.347 -275333 TIGR04540 74.1032 -275334 TIGR04541 620.404 -275335 TIGR04542 483.431 -275336 TIGR04543 503.814 -275337 TIGR04544 536.661 -275338 TIGR04545 657.293 -275339 TIGR04546 809.042 -275340 TIGR04547 383.697 -275341 TIGR04548 165.969 -275342 TIGR04549 316.403 -275343 TIGR04550 112.889 -275344 TIGR04551 642.923 -275345 TIGR04552 377.778 -275346 TIGR04553 443.057 -275347 TIGR04554 84.8426 -275348 TIGR04555 651.292 -275349 TIGR04556 295.821 -275350 TIGR04557 235.921 -275351 TIGR04558 405.115 -275352 TIGR04559 397.723 -275353 TIGR04560 24.6959 -275354 TIGR04561 53.4358 -275355 TIGR04562 385.138 -275356 TIGR04563 90.329 -275357 TIGR04564 28.2081 -275358 TIGR04565 84.2729 -275359 TIGR04566 419.167 -275360 TIGR04567 64.5157 -275361 TIGR04568 345.292 -275362 TIGR04569 336.422 -275363 TIGR04570 104.158 -275364 TIGR04571 404.563 -237975 cd00001 168.178 -237976 cd00002 159.925 -237977 cd00003 295.179 -320674 cd00004 57.2065 -187674 cd00005 232.126 -237978 cd00006 84.9644 -99707 cd00009 36.3551 -237980 cd00010 28.1615 -153270 cd00011 245.218 -212657 cd00012 30.6348 -200435 cd00013 47.0736 -237981 cd00014 59.6319 -237982 cd00015 149.783 -293732 cd00016 76.3053 -237984 cd00017 47.839 -237985 cd00018 56.1259 -237986 cd00019 171.349 -237988 cd00021 32.2592 -237989 cd00022 66.5203 -237990 cd00023 34.273 -237992 cd00025 136.35 -237993 cd00026 172.1 -237995 cd00028 73.1151 -237996 cd00029 43.2496 -175973 cd00030 31.6535 -206635 cd00031 106.274 -237997 cd00032 208.609 -153056 cd00033 27.8124 -211311 cd00035 33.8982 -213175 cd00036 43.904 -153057 cd00037 27.9694 -237999 cd00038 43.0834 -119409 cd00039 122.238 -238000 cd00040 218.508 -238001 cd00041 47.4071 -238002 cd00042 37.0684 -238003 cd00043 30.2845 -238004 cd00044 207.184 -260016 cd00045 53.7452 -238007 cd00048 38.4075 -199811 cd00049 173.928 -199819 cd00050 281.802 -238008 cd00051 42.5349 -238009 cd00052 61.0815 -238010 cd00053 25.1298 -238011 cd00054 28.7566 -238012 cd00055 29.2446 -238013 cd00056 64.9554 -238014 cd00057 92.03 -238015 cd00058 100.766 -238016 cd00059 113.803 -238017 cd00060 32.7434 -238018 cd00061 36.1561 -238019 cd00062 53.0782 -238020 cd00063 29.7719 -238021 cd00064 28.6388 -277249 cd00065 27.4965 -206639 cd00066 227.409 -238023 cd00067 31.865 -238024 cd00068 52.2914 -200450 cd00069 64.6109 -238025 cd00070 74.978 -238026 cd00071 103.381 -238027 cd00072 65.7912 -238028 cd00073 54.1643 -238029 cd00074 152.104 -238031 cd00076 116.832 -238032 cd00077 32.3113 -238033 cd00078 302.562 -188616 cd00080 30.0356 -238035 cd00081 35.3226 -119399 cd00082 30.2584 -238036 cd00083 34.8823 -238037 cd00084 32.976 -238038 cd00085 27.8212 -238039 cd00086 31.4449 -238040 cd00087 200.93 -238041 cd00088 40.8278 -212008 cd00089 51.5588 -238042 cd00090 37.2782 -238043 cd00091 140.198 -238044 cd00092 48.0457 -238045 cd00093 31.7546 -238046 cd00094 111.249 -238047 cd00095 183.691 -319273 cd00096 27.5917 -319274 cd00098 58.9911 -319275 cd00099 89.3792 -238048 cd00100 171.849 -238049 cd00101 29.5204 -238050 cd00102 30.5072 -238051 cd00103 90.4281 -238052 cd00104 27.6194 -238053 cd00105 27.9096 -276812 cd00106 292.237 -238055 cd00107 23.4625 -238056 cd00108 75.4923 -238057 cd00109 49.5558 -238058 cd00110 47.7981 -238059 cd00111 30.3898 -238060 cd00112 31.023 -238061 cd00113 72.3716 -238062 cd00114 299.121 -319970 cd00115 181.534 -238064 cd00116 155.206 -238065 cd00117 41.3256 -212030 cd00118 28.2201 -238067 cd00120 52.5162 -238068 cd00121 35.0475 -238069 cd00122 54.2525 -238070 cd00123 230.359 -276950 cd00124 281.402 -153091 cd00125 83.068 -238072 cd00126 42.2563 -238074 cd00129 67.722 -238075 cd00130 29.1384 -238076 cd00131 222.294 -238077 cd00132 35.1069 -99904 cd00133 27.9906 -238079 cd00135 80.8764 -238080 cd00136 36.5145 -176497 cd00137 325.373 -197200 cd00138 37.111 -238082 cd00140 196.192 -143386 cd00141 199.344 -270621 cd00142 206.415 -238083 cd00143 83.1446 -277316 cd00144 78.5669 -99912 cd00145 239.579 -238084 cd00146 32.4686 -132835 cd00147 293.768 -238085 cd00148 85.0696 -119410 cd00150 30.8087 -238086 cd00152 236.396 -206640 cd00154 97.9118 -238087 cd00155 170.896 -238088 cd00156 41.4073 -206641 cd00157 144.609 -238089 cd00158 37.279 -238090 cd00159 56.5413 -238091 cd00160 77.338 -238092 cd00161 33.2479 -319361 cd00162 40.9118 -119386 cd00163 109.001 -238094 cd00164 28.1151 -238095 cd00165 29.1398 -238096 cd00167 29.0806 -238098 cd00169 47.3326 -238099 cd00170 43.5278 -238100 cd00171 137.354 -238101 cd00172 194.394 -198173 cd00173 32.8127 -212690 cd00174 28.9679 -238102 cd00175 113.138 -238103 cd00176 54.374 -176851 cd00177 76.9933 -238104 cd00178 119.369 -238105 cd00179 91.577 -270622 cd00180 48.4207 -206638 cd00181 42.4016 -238106 cd00182 269.072 -238107 cd00183 55.007 -238108 cd00184 83.5484 -276900 cd00185 42.1963 -238110 cd00186 257.148 -238111 cd00187 407.338 -173773 cd00188 27.7764 -238113 cd00190 124.696 -238114 cd00191 42.0657 -270623 cd00192 238.978 -277192 cd00193 42.7594 -270455 cd00194 27.7613 -238117 cd00195 93.8061 -238119 cd00198 32.5378 238120 cd00199 40.5111 -238121 cd00200 141.318 -238122 cd00201 29.8034 -238123 cd00202 43.9006 -238124 cd00203 82.1847 -119412 cd00205 63.9544 -119411 cd00206 46.2485 -238126 cd00207 29.6705 -100038 cd00208 49.1697 -238127 cd00209 79.8745 -238128 cd00210 185.569 -238129 cd00211 86.8463 -238130 cd00212 72.566 -238131 cd00213 61.737 -238132 cd00214 131.267 -238133 cd00215 97.6594 -199833 cd00216 397.363 -271174 cd00217 553.222 -132995 cd00218 236.038 -119405 cd00219 140.242 -238135 cd00220 160.633 -238136 cd00221 102.071 -212461 cd00222 53.8368 -173774 cd00223 104.644 -238137 cd00224 224.252 -119406 cd00225 165.514 -238138 cd00226 399.508 -238139 cd00227 237.415 -238140 cd00228 706.828 -238141 cd00229 31.2286 -238142 cd00231 204.138 -238144 cd00233 171.43 -119413 cd00235 114.754 -238145 cd00236 134.637 -107218 cd00237 172.685 -238146 cd00238 68.8686 -119414 cd00239 296.731 -238147 cd00240 218.598 -187675 cd00241 32.925 -153074 cd00242 221.198 -119415 cd00243 118.523 -238148 cd00244 513.289 -238149 cd00245 509.228 -238150 cd00246 131.914 -238151 cd00247 288.848 -238152 cd00248 69.9682 -238153 cd00249 289.647 -238154 cd00250 163.337 -119403 cd00251 190.581 -320009 cd00252 102.45 -238156 cd00253 56.9901 -238158 cd00255 226.034 -238159 cd00256 499.62 -238160 cd00257 79.2412 -238161 cd00258 286.006 -119404 cd00259 280.989 -271229 cd00260 363.93 -238163 cd00261 36.9971 -238164 cd00264 80.8936 -238165 cd00265 107.638 -238166 cd00266 66.1295 -213179 cd00267 30.2907 -238168 cd00270 160.466 -238169 cd00271 110.33 -238170 cd00272 56.484 -238171 cd00273 58.8125 -238172 cd00274 143.284 -175974 cd00275 71.0332 -175975 cd00276 103.432 -238173 cd00279 78.9115 -238174 cd00280 288.961 -176449 cd00281 390.416 -238175 cd00283 97.1582 -238176 cd00284 154.834 -276954 cd00286 225.75 -238177 cd00287 55.1788 -238178 cd00288 674.414 -238179 cd00290 118.517 -238180 cd00291 43.6974 -238181 cd00292 64.1548 -238182 cd00293 34.2678 -238183 cd00295 477.617 -238184 cd00296 60.0498 -107219 cd00298 27.5535 -198286 cd00299 30.5447 -133418 cd00300 268.368 -133136 cd00303 41.9384 -238185 cd00304 48.8864 -238186 cd00305 110.428 -173787 cd00306 40.646 -238187 cd00307 108.516 -238188 cd00308 112.036 -238189 cd00309 249.268 -238190 cd00311 111.474 -238191 cd00312 440.23 -173823 cd00314 45.9926 -238192 cd00315 227.118 -238193 cd00316 149.735 -238194 cd00317 84.6228 -238195 cd00318 517.192 -238196 cd00319 68.9653 -238197 cd00320 39.0275 -238198 cd00321 103.033 -99778 cd00322 79.4132 -271245 cd00323 78.0676 -238200 cd00326 103.517 -238201 cd00327 160.302 -163705 cd00328 400.684 -238202 cd00329 31.0774 -153075 cd00330 364.219 -238203 cd00331 172.648 -176460 cd00332 279.399 -238204 cd00333 170.897 -238205 cd00336 66.3602 -238206 cd00338 59.9669 -238207 cd00340 151.129 -238208 cd00342 73.9447 -188629 cd00344 425.37 -238209 cd00347 28.0981 -100101 cd00349 109.848 -238210 cd00350 32.1396 -238211 cd00351 139.719 -238212 cd00352 36.6577 -238213 cd00353 64.0614 -238214 cd00354 271.348 -100098 cd00355 35.4595 -238215 cd00361 257.097 -238216 cd00363 421.707 -153080 cd00365 472.933 -212658 cd00366 281.495 -238217 cd00367 51.7401 -238218 cd00368 40.389 -238219 cd00371 30.6517 -238220 cd00374 74.8 -238221 cd00375 892.837 -119340 cd00377 115.278 -99733 cd00378 393.106 -238222 cd00379 63.7381 -240504 cd00380 31.0355 -238223 cd00381 232.023 -238224 cd00382 67.1402 -294013 cd00383 53.2517 -238226 cd00384 454.259 -173830 cd00385 32.4668 -238227 cd00386 79.9401 -100102 cd00387 69.8769 -238228 cd00389 56.0876 -238229 cd00390 97.2695 -238230 cd00392 76.7745 -132923 cd00394 133.672 -173893 cd00395 333.116 -100027 cd00396 172.581 -271175 cd00397 38.2299 -238232 cd00398 221.855 -259843 cd00399 567.832 -238233 cd00400 75.6782 -240619 cd00401 510.846 -293928 cd00402 131.356 -238235 cd00403 80.3059 -238236 cd00404 57.8633 -238237 cd00405 114.979 -238238 cd00407 126.096 -188630 cd00408 78.7438 -199205 cd00411 385.714 -238239 cd00412 158.794 -185683 cd00413 55.5196 -185672 cd00418 263.949 -238240 cd00419 92.9779 -238241 cd00421 89.2276 -238242 cd00423 152.812 -176453 cd00424 245.348 -238243 cd00427 33.6151 -238244 cd00429 173.82 -143481 cd00430 251.647 -238245 cd00431 66.9086 -238246 cd00432 46.7643 -238247 cd00433 317.566 -238248 cd00435 122.434 -188631 cd00439 252.657 -238250 cd00443 216.83 -238251 cd00445 376.32 -271355 cd00446 102.969 -238253 cd00447 54.6663 -100004 cd00448 31.3747 -238254 cd00449 125.792 -212095 cd00451 273.717 -188632 cd00452 85.2625 -238255 cd00453 450.798 -271265 cd00454 76.4061 -238257 cd00455 185.996 -176642 cd00457 90.148 -238258 cd00458 101.661 -132901 cd00460 50.4966 -238259 cd00462 109.486 -199209 cd00463 76.0688 -238260 cd00464 114.575 -238261 cd00465 258.968 -238262 cd00466 137.182 -238263 cd00468 97.5386 -238264 cd00470 185.902 -100103 cd00472 61.4342 -275385 cd00473 54.7637 -211317 cd00474 79.3921 -259850 cd00475 161.772 -133468 cd00476 268.178 -238267 cd00480 454.767 -238268 cd00481 138.501 -238269 cd00483 91.0007 -238270 cd00484 806.832 -238271 cd00487 116.817 -238272 cd00488 60.6112 -238273 cd00489 95.4881 -119402 cd00490 200.925 -238274 cd00491 73.5768 -238275 cd00493 63.4576 -270213 cd00494 258.374 -198379 cd00495 41.687 -238277 cd00496 238.984 -211322 cd00497 266.559 -238278 cd00498 200.921 -238279 cd00501 135.088 -188633 cd00502 83.5431 -238280 cd00503 120.063 -238281 cd00504 79.9206 -132996 cd00505 213.457 -211323 cd00506 242.83 -238282 cd00508 96.8075 -238283 cd00512 498.883 -238284 cd00513 115.32 -238285 cd00515 117.237 -238286 cd00516 82.6733 -173895 cd00517 393.922 -99872 cd00518 66.03 -238287 cd00519 77.9018 -238288 cd00520 160.888 -213981 cd00522 109.312 -238289 cd00523 122.839 -238290 cd00524 80.4425 -238291 cd00525 29.641 -238292 cd00527 250.665 -238293 cd00528 159.221 -238295 cd00530 307.654 -238296 cd00531 29.02 -238297 cd00532 104.515 -238298 cd00534 96.1705 -238299 cd00537 157.007 -238300 cd00538 45.1994 -238301 cd00539 427.68 -187726 cd00540 172.323 -238302 cd00541 237.567 -238303 cd00542 302.983 -238304 cd00544 187.814 -238305 cd00545 380.902 -238306 cd00546 127.057 -238307 cd00547 103.577 -200451 cd00551 45.242 -238308 cd00552 54.8285 -238309 cd00553 198.155 -100025 cd00554 122.168 -238310 cd00555 150.32 -238311 cd00556 36.9382 -238312 cd00557 173.471 -238313 cd00559 118.407 -185673 cd00560 332.191 -238314 cd00561 203.194 -238315 cd00562 58.7972 -238316 cd00563 206.356 -238317 cd00564 59.8395 -173838 cd00567 122.007 -238318 cd00568 35.309 -259851 cd00569 45.3941 -238319 cd00570 27.9213 -238320 cd00571 105.767 -238321 cd00575 509.51 -153083 cd00576 171.947 -238322 cd00577 102.322 -238323 cd00578 249.119 -238324 cd00580 94.9389 -238325 cd00581 205.641 -238326 cd00583 208.726 -238327 cd00584 76.8847 -238328 cd00585 494.033 -238329 cd00586 51.4529 -238330 cd00587 168.927 -238331 cd00588 65.3728 -240668 cd00590 26.8841 -259852 cd00591 54.1122 -133378 cd00592 42.2315 -238333 cd00593 51.0743 -238334 cd00594 109.669 -238335 cd00595 197.962 -119349 cd00598 78.1884 -119373 cd00599 90.8708 -212462 cd00600 27.2128 -238336 cd00602 87.7226 -238337 cd00603 34.7378 -238338 cd00604 77.7695 -238339 cd00606 114.466 -238340 cd00607 152.149 -238341 cd00608 364.317 -99734 cd00609 93.56 -99735 cd00610 268.668 -99736 cd00611 549.974 -99737 cd00613 404.691 -99738 cd00614 379.624 -99739 cd00615 342.691 -99740 cd00616 284.048 -99741 cd00617 663.671 -153092 cd00618 43.3225 -238342 cd00619 127.01 -238343 cd00620 137.086 -143482 cd00622 343.707 -238344 cd00625 115.039 -132719 cd00630 174.143 -238345 cd00632 65.8713 -238346 cd00633 54.997 -143483 cd00635 201.929 -238347 cd00636 30.9899 -107202 cd00640 79.0961 -238348 cd00641 188.478 -238349 cd00642 271.947 -153081 cd00643 392.301 -153082 cd00644 477.756 -238350 cd00645 541.162 -270214 cd00648 43.331 -173824 cd00649 737.964 -133419 cd00650 163.259 -238351 cd00651 38.964 -238352 cd00652 159.634 -238353 cd00653 442.008 -238354 cd00655 111.792 -259791 cd00656 56.9372 -153097 cd00657 35.5497 -271176 cd00659 214.063 -238356 cd00660 290.32 -238357 cd00667 109.656 -185674 cd00668 212.664 -238358 cd00669 334.06 -238359 cd00670 164.101 -185675 cd00671 193.935 -173899 cd00672 242.87 -238360 cd00673 221.08 -173900 cd00674 491.839 -238361 cd00677 27.4733 -176852 cd00680 56.4204 -173831 cd00683 171.264 -173832 cd00684 419.678 -173833 cd00685 166.573 -173834 cd00686 806.212 -173835 cd00687 281.175 -238362 cd00688 51.3973 -173825 cd00691 362.292 -173826 cd00692 408.323 -173827 cd00693 300.584 -133420 cd00704 438.63 -238363 cd00707 257.942 -100039 cd00710 221.345 -238364 cd00712 151.556 -238365 cd00713 413.845 -238366 cd00714 245.434 -238367 cd00715 323.643 -153076 cd00716 573.516 -238368 cd00717 374.557 -198380 cd00719 29.6403 -238369 cd00727 709.406 -238370 cd00728 1324.73 -238371 cd00729 53.3515 -238372 cd00730 53.0786 -238373 cd00731 115.353 -238374 cd00732 134.236 -238375 cd00733 513.817 -238379 cd00738 95.9284 -238380 cd00739 247.905 -238381 cd00740 332.82 -238382 cd00741 44.4136 -238383 cd00751 222.354 -238384 cd00755 204.761 -238385 cd00756 97.973 -238386 cd00757 172.277 -238387 cd00758 90.8656 -132997 cd00761 30.9374 -133442 cd00762 277.176 -238388 cd00763 494.236 -238389 cd00764 1278.99 -238390 cd00765 993.223 -238391 cd00768 96.0326 -238392 cd00769 132.382 -238393 cd00770 406.946 -238394 cd00771 355.319 -238395 cd00772 338.189 -238396 cd00773 157.379 -238397 cd00774 274.468 -238398 cd00775 442.024 -238399 cd00776 374.981 -238400 cd00777 396.175 -238401 cd00778 386.951 -238402 cd00779 326.456 -238403 cd00780 77.7081 -238404 cd00781 152.195 -238405 cd00782 59.0921 -238406 cd00786 115.725 -238407 cd00788 175.546 -238408 cd00789 301.765 -238409 cd00794 558.59 -238410 cd00795 729.102 -271177 cd00796 87.7674 -271178 cd00797 236.434 -271179 cd00798 208.134 -271180 cd00799 154.379 -271181 cd00800 164.053 -271182 cd00801 128.542 -173901 cd00802 84.8389 -173902 cd00805 244.823 -173903 cd00806 257.897 -185676 cd00807 402.785 -173905 cd00808 282.168 -173906 cd00812 220.967 -173907 cd00814 349.138 -185677 cd00817 425.893 -173909 cd00818 269.872 -238417 cd00819 714.788 -238418 cd00820 92.3585 -275388 cd00821 28.2774 -238419 cd00822 145.396 -238420 cd00823 152.825 -238421 cd00825 190.539 -238422 cd00826 485.46 -238423 cd00827 99.4295 -238424 cd00828 142.193 -238425 cd00829 147.795 -238426 cd00830 212.4 -238427 cd00831 242.515 -238428 cd00832 503.431 -238429 cd00833 167.35 -238430 cd00834 285.201 -269907 cd00835 89.5786 -275389 cd00836 53.918 -269909 cd00837 127.963 -277317 cd00838 30.313 -277318 cd00839 165.935 -277319 cd00840 99.2655 -277320 cd00841 120.452 -277321 cd00842 225.256 -277322 cd00844 381.214 -277323 cd00845 169.023 -238431 cd00851 77.3115 -238432 cd00852 110.014 -238433 cd00853 104.995 -238434 cd00854 351.881 -238435 cd00858 160.031 -238436 cd00859 78.7356 -238437 cd00860 90.2557 -238438 cd00861 82.6374 -238439 cd00862 198.29 -238440 cd00864 107.301 -176643 cd00865 83.0338 -176644 cd00866 80.4952 -173836 cd00867 61.2055 -173837 cd00868 92.4288 -238441 cd00869 260.852 -238442 cd00870 189.079 -238443 cd00871 273.463 -238444 cd00872 266.486 -238445 cd00873 177.097 -238446 cd00874 396.589 -238447 cd00875 399.764 -206642 cd00876 187.348 -206643 cd00877 239.511 -206644 cd00878 144.256 -206645 cd00879 257.592 -206646 cd00880 102.709 -206647 cd00881 117.396 -206648 cd00882 34.7396 -238448 cd00883 208.574 -238449 cd00884 238.98 -238450 cd00885 157.646 -238451 cd00886 132.601 -238452 cd00887 224.295 -238453 cd00890 28.0653 -270624 cd00891 393.475 -270625 cd00892 302.888 -270626 cd00893 319.592 -270627 cd00894 696.612 -119421 cd00895 704.453 -270628 cd00896 344.515 -132998 cd00897 415.106 -132999 cd00899 270.222 -275390 cd00900 38.9193 -153098 cd00904 229.07 -153099 cd00907 150.389 -238454 cd00912 96.8163 -238455 cd00913 108.085 -238456 cd00914 120.025 -238457 cd00915 207.03 -238458 cd00916 110.091 -238459 cd00917 112.419 -238460 cd00918 174.919 -238461 cd00919 201.22 -259860 cd00920 39.907 -238462 cd00922 109.283 -238463 cd00923 117.03 -238464 cd00924 107.385 -238465 cd00925 119.4 -238466 cd00926 74.2667 -238467 cd00927 105.504 -238468 cd00928 72.6837 -238469 cd00929 60.7832 -238470 cd00930 59.2984 -238471 cd00933 180.397 -269911 cd00934 35.1771 -238472 cd00935 82.9194 -238473 cd00936 63.7936 -238474 cd00938 72.117 -238475 cd00939 52.8598 -188634 cd00945 32.6853 -238476 cd00946 492.269 -238477 cd00947 262.848 -188635 cd00948 522.195 -188636 cd00949 542.001 -188637 cd00950 268.593 -188638 cd00951 411.715 -188639 cd00952 467.308 -188640 cd00953 421.02 -188641 cd00954 380.117 -188642 cd00955 359.33 -188643 cd00956 212.821 -188644 cd00957 334.972 188645 cd00958 208.987 -188646 cd00959 187.353 -238478 cd00974 45.7862 -238480 cd00980 194.105 -238481 cd00981 277.258 -238482 cd00982 357.608 -238483 cd00983 462.477 -238484 cd00984 262.089 -238485 cd00985 57.1258 -238486 cd00986 106.39 -238487 cd00987 46.864 -238488 cd00988 60.3172 -238489 cd00989 51.0804 -238490 cd00990 92.1102 -238491 cd00991 74.3279 -238492 cd00992 40.6279 -270215 cd00993 218.745 -270216 cd00994 330.006 -173853 cd00995 152.077 -270217 cd00996 249.417 -270218 cd00997 269.591 -270219 cd00998 200.678 -270220 cd00999 319.27 -270221 cd01000 239.902 -270222 cd01001 271.475 -270223 cd01002 290.335 -270224 cd01003 363.893 -270225 cd01004 192.841 -270226 cd01005 381.276 -270227 cd01006 307.651 -270228 cd01007 129.19 -270229 cd01008 111.611 -270230 cd01009 148.128 -238493 cd01011 215.976 -238494 cd01012 173.164 -238495 cd01013 350.485 -238496 cd01014 144.271 -238497 cd01015 241.537 -238498 cd01016 419.846 -238499 cd01017 333.105 -238500 cd01018 372.465 -238501 cd01019 278.486 -238502 cd01020 319 -212096 cd01022 239.644 -173775 cd01025 125.709 -173776 cd01026 53.0542 -173777 cd01027 63.0451 -173778 cd01028 66.095 -173779 cd01029 33.3978 -173780 cd01030 141.489 -238504 cd01031 256.7 -238505 cd01033 315.387 -238506 cd01034 216.325 -238507 cd01036 433.309 -238508 cd01037 27.2563 -238509 cd01038 104.242 -271266 cd01040 38.9967 -153100 cd01041 89.9486 -153101 cd01042 149.6 -153102 cd01043 98.0009 -153103 cd01044 97.6957 -153104 cd01045 61.2101 -153105 cd01046 120.104 -153106 cd01047 467.161 -153107 cd01048 99.2768 -153108 cd01049 129.282 -153109 cd01050 295.33 -153110 cd01051 188.939 -153111 cd01052 174.786 -153112 cd01053 245.58 -153113 cd01055 121.055 -153114 cd01056 116.874 -153115 cd01057 581.177 -153116 cd01058 289.165 -153121 cd01059 38.3616 -238511 cd01060 29.7454 -238512 cd01061 154.027 -238513 cd01062 164.087 -133443 cd01065 97.3419 -238514 cd01066 36.2776 -271267 cd01067 49.3639 -271268 cd01068 61.0359 -270231 cd01069 348.561 -270232 cd01071 188.624 -270233 cd01072 305.341 -133444 cd01075 175.473 -133445 cd01076 230.501 -133446 cd01078 164.874 -133447 cd01079 295.489 -133448 cd01080 168.888 -185695 cd01081 98.3047 -238517 cd01083 436.824 -238518 cd01085 288.306 -238519 cd01086 269.363 -238520 cd01087 263.279 -238521 cd01088 365.034 -238522 cd01089 178.679 -238523 cd01090 430.036 -238524 cd01091 274.609 -238525 cd01092 269.379 -238526 cd01093 61.5171 -238527 cd01094 204.431 -238528 cd01095 300.778 -238529 cd01096 474.948 -238530 cd01097 45.8516 -238531 cd01098 53.5942 -238532 cd01099 42.4569 -238533 cd01100 47.0442 -238534 cd01102 95.1786 -133379 cd01104 82.2888 -133380 cd01105 84.589 -133381 cd01106 85.2304 -133382 cd01107 112.997 -133383 cd01108 192.006 -133384 cd01109 107.157 -133385 cd01110 208.972 -133386 cd01111 141.755 -238535 cd01115 170.844 -238536 cd01116 279.137 -238537 cd01117 263.369 -238538 cd01118 288.395 -238539 cd01119 89.7712 -238540 cd01120 47.4944 -238541 cd01121 521.802 -238542 cd01122 290.452 -238543 cd01123 191.258 -238544 cd01124 182.142 -238545 cd01125 236.927 -238546 cd01126 417.569 -238547 cd01127 543.49 -238548 cd01128 445.229 -238549 cd01129 343.491 -238550 cd01130 211.373 -238551 cd01131 325.44 -238552 cd01132 501.021 -238553 cd01133 454.379 -238554 cd01134 415.468 -238555 cd01135 370.456 -238556 cd01136 496.033 -238557 cd01137 346.187 -238558 cd01138 215.276 -238559 cd01139 405.152 -238560 cd01140 245.245 -238561 cd01141 132.93 -238562 cd01142 245.727 -238563 cd01143 171.307 -238564 cd01144 195.981 -238565 cd01145 187.322 -238566 cd01146 157.833 -238567 cd01147 214.121 -238568 cd01148 287.697 -238569 cd01149 255.268 -173839 cd01150 773.425 -173840 cd01151 624.767 -173841 cd01152 462.973 -173842 cd01153 589.36 -173843 cd01154 561.222 -173844 cd01155 721.869 -173845 cd01156 632.524 -173846 cd01157 732.851 -173847 cd01158 546.096 -173848 cd01159 374.378 -173849 cd01160 604.108 -173850 cd01161 627.959 -173851 cd01162 654.898 -173852 cd01163 416.724 -238570 cd01164 220.867 -238571 cd01166 164.671 -238572 cd01167 194.007 -238573 cd01168 153.153 -238574 cd01169 165.754 -238575 cd01170 193.525 -238576 cd01171 106.928 -238577 cd01172 248.244 -238578 cd01173 184.325 -238579 cd01174 212.025 -238580 cd01175 167.44 -238581 cd01176 181.502 -238582 cd01177 151.702 -238583 cd01178 163.81 -238584 cd01179 99.9912 -238585 cd01180 102.779 -238586 cd01181 108.658 -271183 cd01182 234.094 -271184 cd01184 145.527 -271185 cd01185 110.817 -271186 cd01186 277.375 -271187 cd01187 120.613 -271188 cd01188 187.449 -271189 cd01189 86.844 -271190 cd01190 166.369 -271191 cd01191 315.133 -271192 cd01192 180.181 -271193 cd01193 227.543 -271194 cd01194 239.969 -271195 cd01195 160.714 -271196 cd01196 300.551 -271197 cd01197 312.905 -238605 cd01200 44.8381 -275391 cd01201 80.3568 -269913 cd01202 128.081 -269914 cd01203 160.846 -269915 cd01204 152.791 -269916 cd01205 104.147 -269917 cd01206 175.615 -269918 cd01207 157.855 -269919 cd01208 215.232 -269920 cd01209 187.417 -269921 cd01210 137.678 -269922 cd01211 170.122 -269923 cd01212 175.541 -269924 cd01213 138.529 -269925 cd01214 198.669 -269926 cd01215 212.114 -241252 cd01217 304.393 -269927 cd01218 168.204 -275392 cd01219 224.13 -269928 cd01220 155.551 -269929 cd01221 106.185 -269930 cd01223 142.773 -269931 cd01224 158.577 -269932 cd01225 136.287 -269933 cd01226 108.898 -269934 cd01227 217.45 -269935 cd01228 222.608 -269936 cd01229 168.606 -269937 cd01230 220.408 -269938 cd01231 141.7 -269939 cd01233 131.561 -269940 cd01234 203.755 -269941 cd01235 149.404 -269942 cd01236 221.928 -269943 cd01237 219.955 -269944 cd01238 158.16 -269945 cd01239 104.774 -269946 cd01240 169.452 -269947 cd01241 139.69 -269948 cd01242 134.019 -269949 cd01243 205.994 -269950 cd01244 148.976 -269951 cd01247 194.546 -269952 cd01248 93.5405 -269953 cd01249 93.55 -241281 cd01250 164.416 -241282 cd01251 153.129 -269954 cd01252 192.144 -269955 cd01253 149.443 -269956 cd01254 115.437 -269957 cd01255 268.479 -269958 cd01256 155.172 -269959 cd01257 136.265 -269960 cd01258 89.2716 -269961 cd01259 122.73 -269962 cd01260 206.49 -269963 cd01261 154.439 -241293 cd01262 136.576 -269964 cd01263 109.288 -269965 cd01264 183.045 -269966 cd01265 133.217 -241297 cd01266 272.205 -241298 cd01268 216.402 -269967 cd01269 158.998 -269968 cd01270 291.879 -269969 cd01271 152.756 -269970 cd01272 206.385 -269971 cd01273 227.161 -269972 cd01274 217.918 -238606 cd01275 117.392 -238607 cd01276 134.997 -238608 cd01277 137.353 -238609 cd01278 138.287 -133387 cd01279 124.632 -133388 cd01282 123.871 -238610 cd01283 39.2467 -238611 cd01284 119.261 -238612 cd01285 72.6496 -238613 cd01286 126.62 -238614 cd01287 178.603 -238615 cd01288 101.851 -238616 cd01289 150.493 -211324 cd01291 28.6844 -238617 cd01292 45.0169 -238618 cd01293 303.785 -238619 cd01294 442.492 -238620 cd01295 477.872 -238621 cd01296 454.024 -238622 cd01297 339.273 -238623 cd01298 345.341 -238624 cd01299 236.421 -238625 cd01300 302.306 -238626 cd01301 269.118 -238627 cd01302 361.709 -238628 cd01303 561.514 -238629 cd01304 780.443 -238630 cd01305 280.056 -238631 cd01306 397.422 -238632 cd01307 464.109 -238633 cd01308 602.842 -238634 cd01309 367.407 -238635 cd01310 147.72 -238636 cd01311 267.773 -238637 cd01312 508.913 -238638 cd01313 513.542 -238639 cd01314 527.171 -238640 cd01315 628.935 -238641 cd01316 483.106 -238642 cd01317 297.611 -238643 cd01318 377.445 -238644 cd01319 838.947 -238645 cd01320 363.832 -238646 cd01321 441.711 -238647 cd01324 40.7875 -238648 cd01327 64.9978 -238649 cd01328 123.357 -238650 cd01330 63.4773 -176461 cd01334 146.108 -100105 cd01335 40.7798 -133421 cd01336 524.112 -133422 cd01337 401.097 -133423 cd01338 493.643 -133424 cd01339 328.664 -238651 cd01341 76.0591 -293888 cd01342 44.5627 -238653 cd01343 105.515 -238654 cd01344 80.8066 -238655 cd01345 223.849 -238656 cd01346 295.44 -238657 cd01347 191.125 -153129 cd01351 225.839 -153130 cd01355 395.583 -238658 cd01356 104.711 -176462 cd01357 679.245 -176463 cd01359 344.145 -176464 cd01360 440.065 -176465 cd01362 688.853 -276814 cd01363 143.254 -276815 cd01364 502.626 -276816 cd01365 527.306 -276817 cd01366 472.078 -276818 cd01367 386.266 -276819 cd01368 465.715 -276820 cd01369 442.539 -276821 cd01370 490.704 -276822 cd01371 595.595 -276823 cd01372 468.734 -276824 cd01373 528.232 -276825 cd01374 424.052 -276826 cd01375 574.913 -276827 cd01376 418.83 -276951 cd01377 879.104 -276829 cd01378 960.078 -276830 cd01379 1072.29 -276831 cd01380 988.577 -276832 cd01381 964.024 -276833 cd01382 1057.62 -276834 cd01383 1000.68 -276835 cd01384 1124.69 -276836 cd01385 1132.86 -276837 cd01386 806.533 -276838 cd01387 1196.88 -238684 cd01388 97.3689 -238685 cd01389 105.418 -238686 cd01390 39.5334 -107248 cd01391 44.49 -143331 cd01392 35.8469 -238687 cd01393 161.974 -238688 cd01394 309.786 -238689 cd01395 69.7159 -238690 cd01396 65.8569 -238691 cd01397 114.809 -238692 cd01398 124.507 -238693 cd01399 203.871 -238694 cd01400 155.028 -238695 cd01401 520.652 -238696 cd01403 101.791 -238697 cd01406 179.905 -238698 cd01407 195.48 -238699 cd01408 353.474 -238700 cd01409 381.26 -238701 cd01410 298.061 -238702 cd01411 341.268 -238703 cd01412 287.179 -238704 cd01413 352.442 -133469 cd01414 209.327 -133470 cd01415 283.574 -133471 cd01416 330.409 -238705 cd01417 196.417 -238706 cd01418 150.942 -238707 cd01419 204.903 -238708 cd01420 185.058 -238709 cd01421 160.457 -238710 cd01422 152.78 -238711 cd01423 110.852 -238712 cd01424 118.736 -100106 cd01425 79.9333 -319763 cd01427 29.2862 -238713 cd01428 86.907 -319764 cd01431 82.1143 -238714 cd01433 54.0348 -238715 cd01434 161.065 -259844 cd01435 629.601 -238716 cd01436 42.2484 -238717 cd01437 243.331 -238718 cd01438 375.007 -238719 cd01439 126.665 -238720 cd01443 139.078 -238721 cd01444 89.2424 -238722 cd01445 179.217 -238723 cd01446 81.9446 -238724 cd01447 137.558 -238725 cd01448 89.2157 -238726 cd01449 101.171 -238727 cd01450 51.5234 -238728 cd01451 171.69 -238729 cd01452 279.634 -238730 cd01453 247.629 -238731 cd01454 123.205 -238732 cd01455 358.765 -238733 cd01456 172.229 -238734 cd01457 256.265 -238735 cd01458 149.051 -238736 cd01459 324.325 -238737 cd01460 379.387 -238738 cd01461 201.29 -238739 cd01462 128.234 -238740 cd01463 250.389 -238741 cd01464 235.697 -238742 cd01465 200.577 -238743 cd01466 177.197 -238744 cd01467 209.108 -238745 cd01468 193.231 -238746 cd01469 239.18 -238747 cd01470 287.262 -238748 cd01471 254.617 -238749 cd01472 140.826 -238750 cd01473 228.356 -238751 cd01474 250.505 -238752 cd01475 369.406 -238753 cd01476 199.548 -238754 cd01477 252.343 -238755 cd01478 446.817 -238756 cd01479 300.729 -238757 cd01480 203.771 -238758 cd01481 260.334 -238759 cd01482 240.266 -238760 cd01483 83.0864 -238761 cd01484 330.31 -238762 cd01485 209.97 -238763 cd01486 476.865 -238764 cd01487 246.139 -238765 cd01488 489.174 -238766 cd01489 520.014 -238767 cd01490 632.017 -238768 cd01491 380.46 -238769 cd01492 229.87 -238770 cd01493 523.406 -99742 cd01494 88.9787 -275447 cd01513 48.9284 -238772 cd01514 48.6323 -238773 cd01515 328.183 -238774 cd01516 373.861 -238775 cd01517 211.787 -238776 cd01518 135.015 -238777 cd01519 138.942 -238778 cd01520 165.16 -238779 cd01521 169.07 -238780 cd01522 139 -238781 cd01523 146.871 -238782 cd01524 130.849 -238783 cd01525 150.682 -238784 cd01526 163.634 -238785 cd01527 153.025 -238786 cd01528 147.156 -238787 cd01529 93.8945 -238788 cd01530 165.47 -238789 cd01531 166.05 -238790 cd01532 136.849 -238791 cd01533 196.142 -238792 cd01534 129.125 -238793 cd01535 174.616 -107249 cd01536 54.9955 -107250 cd01537 89.7382 -107251 cd01538 235.953 -107252 cd01539 325.71 -107253 cd01540 382.927 -107254 cd01541 338.386 -107255 cd01542 244.787 -107256 cd01543 302.189 -107257 cd01544 282.876 -107258 cd01545 309.871 -238794 cd01553 179.398 -238795 cd01554 552.211 -238796 cd01555 380.281 -238797 cd01556 315.266 -238798 cd01557 276.384 -238799 cd01558 316.462 -238800 cd01559 219.488 -107203 cd01560 509.858 -107204 cd01561 231.249 -107205 cd01562 277.446 -107206 cd01563 302.59 -238801 cd01567 164.75 -238802 cd01568 212.335 -238803 cd01569 547.644 -238804 cd01570 396.944 -238805 cd01571 392.022 -238806 cd01572 275.509 -238807 cd01573 315.008 -107259 cd01574 215.523 -107260 cd01575 264.743 -238808 cd01576 182.289 -238809 cd01577 97.6592 -238810 cd01578 307.088 -238811 cd01579 214.609 -238812 cd01580 294.954 -153131 cd01581 639.93 -153132 cd01582 646.209 -153133 cd01583 485.927 -153134 cd01584 773.151 -153135 cd01585 694.964 -153136 cd01586 682.878 -176466 cd01594 32.1952 -176467 cd01595 252.425 -176468 cd01596 616.358 -176469 cd01597 388.14 -176470 cd01598 666.245 -259845 cd01609 918.064 -238813 cd01610 29.3507 -133473 cd01614 82.9566 -119367 cd01615 97.6086 -240620 cd01619 379.723 -240621 cd01620 340.54 -319765 cd01624 188.908 -319766 cd01625 201.04 -319767 cd01627 174.014 -319768 cd01629 249.767 -319769 cd01630 173.862 -238814 cd01636 123.657 -238815 cd01637 103.548 -238816 cd01638 170.099 -238817 cd01639 204.308 -238818 cd01640 283.83 -238819 cd01641 269.509 -238820 cd01642 243.51 -238821 cd01643 254.567 -238822 cd01644 222.18 -238823 cd01645 348.118 -238824 cd01646 61.1911 -238825 cd01647 94.5845 -238826 cd01648 59.2002 -238827 cd01650 108.147 -238828 cd01651 103.82 -153210 cd01653 28.3331 -100099 cd01657 123.406 -100100 cd01658 49.7271 -238829 cd01659 26.1222 -238830 cd01660 568.071 -238831 cd01661 630.542 -238832 cd01662 718.978 -238833 cd01663 647.619 -238834 cd01665 126.862 -260017 cd01670 29.1721 -260018 cd01671 35.9553 -238835 cd01672 82.7016 -238836 cd01673 134.278 -238837 cd01674 183.258 -153084 cd01675 532.642 -153085 cd01676 875.301 -153086 cd01677 930.921 -153087 cd01678 1243.02 -153088 cd01679 532.504 -238838 cd01680 85.3722 -238839 cd01681 103.419 -238840 cd01683 214.461 -238841 cd01684 159.374 -238842 cd01693 156.787 -238843 cd01699 129.711 -176454 cd01700 301.774 -176455 cd01701 472.569 -176456 cd01702 420.952 -176457 cd01703 494.296 -238844 cd01709 523.007 -238845 cd01712 171.994 -238846 cd01713 84.7638 -238847 cd01714 170.035 -238848 cd01715 111.879 -212463 cd01716 71.0207 -212464 cd01717 87.2213 -212465 cd01718 88.7648 -212466 cd01719 96.8169 -212467 cd01720 109.728 -212468 cd01721 91.0433 -212469 cd01722 88.038 -212470 cd01723 85.7053 -212471 cd01724 122.719 -212472 cd01725 109.6 -212473 cd01726 89.503 -212474 cd01727 81.0328 -212475 cd01728 90.6532 -212476 cd01729 108.442 -212477 cd01730 108.852 -212478 cd01731 82.623 -212479 cd01732 97.3151 -212480 cd01733 88.3658 -212481 cd01734 47.0564 -212482 cd01735 93.5782 -212483 cd01736 97.2735 -212484 cd01737 62.7213 -212485 cd01739 81.9214 -153211 cd01740 256.003 -153212 cd01741 110.413 -153213 cd01742 212.396 -153214 cd01743 108.391 -153215 cd01744 204.652 -153216 cd01745 155.426 -153217 cd01746 230.133 -153218 cd01747 404.78 -153219 cd01748 222.758 -153220 cd01749 223.556 -153221 cd01750 115.806 -238849 cd01751 141.29 -238850 cd01752 168.608 -238851 cd01753 151.692 -238852 cd01754 206.623 -238853 cd01755 105.07 -238854 cd01756 134.99 -238855 cd01757 165.019 -238856 cd01758 187.984 -238857 cd01759 181.794 -132836 cd01819 71.6775 -238858 cd01820 250.284 -238859 cd01821 187.805 -238860 cd01822 178.861 -238861 cd01823 109.85 -238862 cd01824 227.225 -238863 cd01825 175.155 -238864 cd01826 504.641 -238865 cd01827 294.737 -238866 cd01828 200.584 -238867 cd01829 215.989 -238868 cd01830 226.74 -238869 cd01831 100.111 -238870 cd01832 105.043 -238871 cd01833 123.114 -238872 cd01834 124.713 -238873 cd01835 228.376 -238874 cd01836 108.507 -238875 cd01837 264.863 -238876 cd01838 170.511 -238877 cd01839 204.039 -238878 cd01840 165.105 -238879 cd01841 151.713 -238880 cd01842 321.372 -238881 cd01844 213.723 -238882 cd01846 139.051 -238883 cd01847 129.09 -206746 cd01849 106.7 -206649 cd01850 279.816 -206650 cd01851 151.321 -206651 cd01852 222.411 -206652 cd01853 345.072 -206747 cd01854 190.302 -206748 cd01855 142.018 -206749 cd01856 152.297 -206750 cd01857 119.259 -206751 cd01858 271.094 -206752 cd01859 200.237 -206653 cd01860 240.531 -206654 cd01861 209.786 -206655 cd01862 286.098 -206656 cd01863 255.699 -133267 cd01864 309.364 -206657 cd01865 329.566 -206658 cd01866 318.213 -206659 cd01867 292.635 -206660 cd01868 283.682 -206661 cd01869 298.088 -206662 cd01870 318.218 -206663 cd01871 362.207 -133275 cd01873 286.864 -206664 cd01874 335.305 -133277 cd01875 422.11 -206665 cd01876 133.405 -206666 cd01878 187.667 -206667 cd01879 185.737 -206668 cd01881 169.497 -206669 cd01882 348.945 -206670 cd01883 312.888 -206671 cd01884 312.596 -206672 cd01885 318.021 -206673 cd01886 394.166 -206674 cd01887 166.108 -206675 cd01888 288.397 -206676 cd01889 253.827 -206677 cd01890 294.056 -206678 cd01891 301.05 -206679 cd01892 197.466 -206680 cd01893 249.947 -206681 cd01894 164.916 -206682 cd01895 184.173 -206683 cd01896 264.023 -206684 cd01897 188.923 -206685 cd01898 176.461 -206686 cd01899 377.724 -206687 cd01900 317.864 -238884 cd01901 29.6706 -238885 cd01902 325.445 -238886 cd01903 295.721 -238887 cd01906 64.4385 -238888 cd01907 250.648 -238889 cd01908 116.334 -238890 cd01909 206.962 -238891 cd01910 373.183 -238892 cd01911 216.925 -238893 cd01912 125.634 -238894 cd01913 260.973 -238895 cd01914 658.962 -238896 cd01915 839.228 -238897 cd01916 1268.1 -238898 cd01917 413.479 -238899 cd01918 84.5939 -238900 cd01919 757.541 -238901 cd01920 222.318 -238902 cd01921 214.512 -238903 cd01922 290.975 -238904 cd01923 271.211 -238905 cd01924 215.385 -238906 cd01925 290.408 -238907 cd01926 289.157 -238908 cd01927 276.265 -238909 cd01928 240.031 -238910 cd01935 97.0408 -238911 cd01936 452.086 -238912 cd01937 230.366 -238913 cd01938 492.686 -238914 cd01939 260.417 -238915 cd01940 298.884 -238916 cd01941 183.669 -238917 cd01942 192.526 -238918 cd01943 371.673 -238919 cd01944 376.762 -238920 cd01945 248.363 -238921 cd01946 497.373 -238922 cd01947 281.999 -238923 cd01948 89.1419 -143635 cd01949 80.2932 -173886 cd01951 85.9438 -238924 cd01958 59.2645 -238925 cd01959 73.887 -238926 cd01960 69.3009 -238927 cd01965 312.191 -238928 cd01966 531.824 -238929 cd01967 338.04 -238930 cd01968 680.197 -238931 cd01971 574.748 -238932 cd01972 580.915 -238933 cd01973 889.528 -238934 cd01974 731.771 -238935 cd01976 716.807 -238936 cd01977 738.098 -238937 cd01979 634.786 -238938 cd01980 622.648 -238939 cd01981 629.033 -238940 cd01982 648.823 -238942 cd01984 27.7802 -238943 cd01985 71.8556 -238944 cd01986 32.0908 -238945 cd01987 77.5988 -238946 cd01988 113.146 -238947 cd01989 95.8061 -238948 cd01990 188.989 -238949 cd01991 65.9034 -238950 cd01992 113.816 -238951 cd01993 134.682 -238952 cd01994 156.228 -238953 cd01995 161.992 -238954 cd01996 130.483 -238955 cd01997 333.334 -238956 cd01998 223.938 -238957 cd01999 467.011 -238958 cd02000 208.504 -238959 cd02001 215.815 -238960 cd02002 118.467 -238961 cd02003 315.399 -238962 cd02004 168.48 -238963 cd02005 191.594 -238964 cd02006 438.638 -238965 cd02007 238.985 -238966 cd02008 175.928 -238967 cd02009 155.446 -238968 cd02010 294.196 -238969 cd02011 425.595 -238970 cd02012 265.137 -238971 cd02013 300.966 -238972 cd02014 215.858 -238973 cd02015 239.707 -238974 cd02016 390.736 -238975 cd02017 479.493 -238976 cd02018 336.38 -238977 cd02019 30.7674 -238978 cd02020 98.3276 -238979 cd02021 90.3896 -238980 cd02022 72.9372 -238981 cd02023 173.51 -238982 cd02024 163.65 -238983 cd02025 266.485 -238984 cd02026 318.513 -238985 cd02027 134.143 -238986 cd02028 133.97 -238987 cd02029 543.237 -238988 cd02030 329.317 -185678 cd02039 83.2585 -238998 cd02043 497.331 -238999 cd02044 593.337 -239000 cd02045 699.3 -239001 cd02046 723.659 -239002 cd02047 782.87 -239003 cd02048 632.646 -239004 cd02049 480.705 -239005 cd02050 559.825 -239006 cd02051 679.653 -239007 cd02052 612.999 -239008 cd02053 546.703 -239009 cd02054 594.118 -239010 cd02055 683.193 -239011 cd02056 483.291 -239012 cd02057 675.082 -239013 cd02058 646.807 -239014 cd02059 605.953 -239015 cd02062 54.94 -185679 cd02064 133.049 -239016 cd02065 38.5223 -239017 cd02066 43.2246 -239018 cd02067 80.6269 -239019 cd02068 69.6543 -239020 cd02069 317.669 -239021 cd02070 212.097 -239022 cd02071 148.509 -239023 cd02072 178.426 -319770 cd02073 683.899 -319771 cd02076 878.868 -319772 cd02077 965.173 -319773 cd02078 1050.32 -319774 cd02079 539.109 -319775 cd02080 1130.44 -319776 cd02081 914.282 -319777 cd02082 1138.47 -319778 cd02083 1527.61 -319779 cd02085 1402.91 -319780 cd02086 1423.77 -319781 cd02089 976.709 -319782 cd02092 814.284 -319783 cd02094 701.542 -259797 cd02106 60.8405 -239025 cd02107 416.468 -239026 cd02108 283.123 -239027 cd02109 254.476 -239028 cd02110 283.037 -239029 cd02111 482.661 -239030 cd02112 672.171 -239031 cd02113 592.066 -239032 cd02114 666.137 -239033 cd02115 121.01 -153139 cd02116 25.7156 -239035 cd02120 45.4823 -239036 cd02121 194.046 -239037 cd02122 128.956 -239038 cd02123 120.137 -239039 cd02124 120.512 -239040 cd02125 213.497 -239041 cd02126 205.672 -239042 cd02127 181.033 -239043 cd02128 265.032 -239044 cd02129 178.739 -239045 cd02130 129.3 -239046 cd02131 267.956 -239047 cd02132 228.848 -239048 cd02133 102.751 -239049 cd02134 32.9161 -239050 cd02135 143.491 -239051 cd02136 212.808 -239052 cd02137 140.408 -239053 cd02138 217.537 -239054 cd02139 195.941 -239055 cd02140 218.287 -239056 cd02142 62.4272 -239057 cd02143 155.496 -239058 cd02144 240.741 -239059 cd02145 258.309 -239060 cd02146 209.732 -239061 cd02148 258.747 -239062 cd02149 126.158 -239063 cd02150 142.785 -239064 cd02151 233.387 -239065 cd02152 394.14 -239066 cd02153 55.988 -173912 cd02156 67.949 -173914 cd02163 204.236 -173915 cd02164 164.375 -185680 cd02165 103.091 -173917 cd02166 254.143 -173918 cd02167 212.349 -173919 cd02168 279.648 -173920 cd02169 421.288 -173921 cd02170 140.119 -173922 cd02171 209.263 -173923 cd02172 209.58 -173924 cd02173 208.267 -173925 cd02174 208.19 -185684 cd02175 291.097 -185685 cd02176 366.139 -185686 cd02177 430.17 -185687 cd02178 237.633 -185688 cd02179 372.87 -185689 cd02180 419.793 -185690 cd02181 333.427 -185691 cd02182 317.719 -185692 cd02183 265.953 -100026 cd02185 137.67 -276955 cd02186 522.099 -276956 cd02187 404.256 -276957 cd02188 441.98 -276958 cd02189 288.781 -276959 cd02190 561.861 -276960 cd02191 331.832 -100028 cd02192 304.904 -100029 cd02193 350.829 -100030 cd02194 157.715 -100031 cd02195 266.309 -100032 cd02196 260.485 -100033 cd02197 350.596 -100005 cd02198 129.689 -100006 cd02199 72.4927 -276961 cd02201 205.711 -276962 cd02202 299.156 -100034 cd02203 336.366 -100035 cd02204 148.067 -239068 cd02248 129.281 -239069 cd02249 45.8883 -239070 cd02252 198.602 -239071 cd02253 398.872 -187736 cd02255 98.6975 -239072 cd02257 44.3963 -199210 cd02258 226.447 -239073 cd02259 55.0827 -187535 cd02266 151.9 -100064 cd02325 29.5046 -239074 cd02334 88.9521 -239075 cd02335 58.458 -239076 cd02336 70.4248 -239077 cd02337 68.3587 -239078 cd02338 54.2752 -239079 cd02339 90.2103 -239080 cd02340 53.0326 -239081 cd02341 68.6139 -239082 cd02342 97.6504 -239083 cd02343 111.253 -239084 cd02344 94.188 -239085 cd02345 58.3698 -239086 cd02393 64.4802 -239087 cd02394 41.7285 -239088 cd02395 129.671 -239089 cd02396 56.7159 -239090 cd02406 361.026 -239091 cd02407 97.997 -239092 cd02409 27.6138 -239093 cd02410 202.541 -239094 cd02411 71.5173 -239095 cd02412 111.79 -239096 cd02413 98.4485 -239097 cd02414 57.5331 -239098 cd02417 118.886 -239099 cd02418 136.57 -239100 cd02419 203.641 -239101 cd02420 226.928 -239102 cd02421 127.744 -239103 cd02423 125.458 -239104 cd02424 113.2 -239105 cd02425 142.788 -239106 cd02426 186.085 -239107 cd02429 155.64 -239108 cd02430 146.514 -153122 cd02431 146.689 -153123 cd02432 203.207 -153124 cd02433 248.861 -153125 cd02434 224.922 -153126 cd02435 239.531 -153127 cd02436 162.423 -153128 cd02437 115.209 -143332 cd02439 138.004 -100107 cd02440 29.3203 -133000 cd02503 103.424 -133001 cd02507 134.688 -133002 cd02508 182.742 -133003 cd02509 275.995 -133004 cd02510 385.789 -133005 cd02511 127.405 -133006 cd02513 157.7 -133007 cd02514 469.502 -133008 cd02515 413.261 -133009 cd02516 177.33 -133010 cd02517 245.076 -133011 cd02518 230.151 -133012 cd02520 205.524 -133013 cd02522 208.579 -133014 cd02523 155.083 -133015 cd02524 355.341 -133016 cd02525 228.27 -133017 cd02526 190.187 -133018 cd02537 195.173 -133019 cd02538 383.464 -133020 cd02540 236.643 -133021 cd02541 328.723 -239109 cd02549 100.56 -211325 cd02550 151.756 -211326 cd02552 131.556 -211327 cd02553 204.676 -211328 cd02554 259.549 -211329 cd02555 219.199 -211330 cd02556 236.436 -211331 cd02557 229.439 -211332 cd02558 371.991 -211333 cd02563 346.245 -211334 cd02566 278.111 -211335 cd02568 204.384 -211336 cd02569 366.996 -211337 cd02570 217.726 -211338 cd02572 288.391 -211339 cd02573 248.898 -211340 cd02575 296.043 -211341 cd02576 214.783 -211342 cd02577 330.443 -259846 cd02582 1365.39 -259847 cd02583 1066.4 -132720 cd02584 474.001 -319784 cd02585 274.923 -319785 cd02586 349.291 -319786 cd02587 178.35 -319787 cd02588 168.986 -319788 cd02598 155.528 -319789 cd02601 365.276 -319790 cd02603 117.446 -319791 cd02604 231.753 -319792 cd02605 241.099 -319793 cd02607 344.259 -319794 cd02608 1650.54 -319795 cd02609 863.899 -319796 cd02612 141.675 -319797 cd02616 249.889 -239110 cd02619 76.7845 -239111 cd02620 255.658 -239112 cd02621 333.584 -100065 cd02636 79.2948 -100066 cd02637 56.1787 -100067 cd02638 111.392 -100068 cd02639 84.6559 -100069 cd02640 79.7481 -100070 cd02641 85.0962 -100071 cd02642 51.4493 -100072 cd02643 114.377 -100073 cd02644 69.8078 -100074 cd02645 70.7707 -100075 cd02646 67.9807 -239113 cd02647 256.576 -239114 cd02648 510.967 -239115 cd02649 309.96 -239116 cd02650 262.213 -239117 cd02651 311.788 -239118 cd02652 190.019 -239119 cd02653 402.524 -239120 cd02654 374.198 -132721 cd02655 167.704 -239121 cd02656 63.0969 -239122 cd02657 353.559 -239123 cd02658 271.889 -239124 cd02659 378.524 -239125 cd02660 410.225 -239126 cd02661 388.172 -239127 cd02662 138.653 -239128 cd02663 403.614 -239129 cd02664 364.891 -239130 cd02665 201.633 -239131 cd02666 193.862 -239132 cd02667 171.801 -239133 cd02668 334.774 -239134 cd02669 496.841 -239135 cd02670 196.594 -239136 cd02671 316.835 -239137 cd02672 201.587 -239138 cd02673 202.759 -239139 cd02674 170.546 -259861 cd02675 146.275 -239140 cd02677 73.1484 -239141 cd02678 111.203 -239142 cd02679 89.6442 -239143 cd02680 156.698 -239144 cd02681 123.088 -239145 cd02682 112.237 -239146 cd02683 99.4208 -239147 cd02684 117.997 -239148 cd02685 197.462 -199878 cd02688 32.9011 -100036 cd02691 439.902 -119407 cd02696 64.099 -239149 cd02698 353.257 -259848 cd02733 1028.25 -132722 cd02735 261.743 -132723 cd02736 403.522 -132724 cd02737 479.225 -119331 cd02742 309.365 -239150 cd02749 99.7476 -239151 cd02750 584.282 -239152 cd02751 625.793 -239153 cd02752 850.15 -239154 cd02753 655.823 -239155 cd02754 700.904 -239156 cd02755 514.539 -239157 cd02756 898.383 -239158 cd02757 650.657 -239159 cd02758 983.372 -239160 cd02759 555.379 -239161 cd02760 1100.79 -239162 cd02761 389.77 -239163 cd02762 716.483 -239164 cd02763 1311.36 -239165 cd02764 586.378 -239166 cd02765 856.008 -239167 cd02766 499.467 -239168 cd02767 737.195 -239169 cd02768 210.987 -239170 cd02769 930.135 -239171 cd02770 846.606 -239172 cd02771 403.308 -239173 cd02772 539.248 -239174 cd02773 528.373 -239175 cd02774 257.68 -239176 cd02775 32.2918 -239177 cd02776 189.125 -239178 cd02777 168.917 -239179 cd02778 120.842 -239180 cd02779 199.222 -239181 cd02780 139.351 -239182 cd02781 116.639 -239183 cd02782 174.118 -239184 cd02783 233.89 -239185 cd02784 135.275 -239186 cd02785 181.025 -239187 cd02786 142.42 -239188 cd02787 133.17 -239189 cd02788 71.5721 -239190 cd02789 160.669 -239191 cd02790 177.43 -239192 cd02791 134.238 -239193 cd02792 162.008 -239194 cd02793 197.858 -239195 cd02794 195.588 -271143 cd02795 30.6181 -239196 cd02796 86.7934 -239197 cd02798 123.12 -239198 cd02799 142.367 -239199 cd02800 125.692 -239200 cd02801 113.744 -239201 cd02803 248.641 -239202 cd02808 213.557 -239203 cd02809 224.634 -239204 cd02810 244.186 -239205 cd02811 353.341 -239206 cd02812 176.662 -239207 cd02825 82.8934 -239208 cd02826 234.589 -239209 cd02843 191.119 -239210 cd02844 180.695 -239211 cd02845 105.035 -239212 cd02846 47.697 -199879 cd02847 56.8128 -199880 cd02848 101.282 -199881 cd02850 51.4789 -199882 cd02851 69.9603 -199883 cd02853 76.0178 -199884 cd02854 111.085 -199885 cd02855 81.7703 -199886 cd02856 81.924 -199887 cd02857 39.9982 -199888 cd02858 101.893 -199889 cd02859 43.3565 -199890 cd02860 79.509 -199891 cd02861 78.1257 -239213 cd02862 183.205 -239214 cd02863 216.723 -239215 cd02864 263.208 -239216 cd02865 144.82 -211343 cd02866 296.21 -211344 cd02867 334.405 -211345 cd02868 288.512 -211346 cd02869 66.9773 -211347 cd02870 147.641 -119350 cd02871 279.991 -119351 cd02872 486.681 -119352 cd02873 664.013 -119353 cd02874 314.203 -119354 cd02875 511.978 -119355 cd02876 345.447 -119356 cd02877 288.369 -119357 cd02878 485.276 -119358 cd02879 344.733 -239217 cd02883 34.0214 -239218 cd02885 188.157 -153089 cd02888 350.382 -239219 cd02889 264.467 -239220 cd02890 163.138 -239221 cd02891 86.2881 -239222 cd02892 640.013 -239223 cd02893 338.826 -239224 cd02894 251.033 -239225 cd02895 346.959 -239226 cd02896 289.559 -239227 cd02897 357.273 -239228 cd02899 189.211 -239229 cd02900 210.002 -239230 cd02901 101.202 -239231 cd02903 167.823 -239232 cd02904 262.863 -239233 cd02905 203.386 -239234 cd02906 249.239 -239235 cd02907 209.434 -239236 cd02908 215.834 -239237 cd02911 296.933 -239238 cd02922 475.549 -239239 cd02929 629 -239240 cd02930 475.623 -239241 cd02931 758.966 -239242 cd02932 437.31 -239243 cd02933 390.295 -239244 cd02940 415.915 239245 cd02947 37.5377 -239246 cd02948 147.482 -239247 cd02949 191.945 -239248 cd02950 213.737 -239249 cd02951 110.096 -239250 cd02952 136.321 -239251 cd02953 107.303 -239252 cd02954 157.071 -239253 cd02955 184.718 -239254 cd02956 90.0235 -239255 cd02957 63.7276 -239256 cd02958 88.0473 -239257 cd02959 175.009 -239258 cd02960 251.263 -239259 cd02961 39.9014 -239260 cd02962 203.382 -239261 cd02963 161.773 -239262 cd02964 138.129 -239263 cd02965 109.704 -239264 cd02966 55.3201 -239265 cd02967 173.74 -239266 cd02968 76.1026 -239267 cd02969 166.26 -239268 cd02970 87.4143 -239269 cd02971 49.4688 -239270 cd02972 27.7552 -239271 cd02973 75.2988 -239272 cd02974 86.8629 -239273 cd02975 134.44 -239274 cd02976 49.916 -239275 cd02977 79.0731 -239276 cd02978 73.7771 -239277 cd02979 93.8918 -239278 cd02980 29.9029 -239279 cd02981 36.9318 -239280 cd02982 45.3402 -239281 cd02983 177.543 -239282 cd02984 106.972 -239283 cd02985 171.513 -239284 cd02986 201.984 -239285 cd02987 120.474 -239286 cd02988 201.725 -239287 cd02989 139.631 -239288 cd02990 245.094 -239289 cd02991 211.184 -239290 cd02992 140.481 -239291 cd02993 170.326 -239292 cd02994 195.676 -239293 cd02995 118.813 -239294 cd02996 181.434 -239295 cd02997 132.827 -239296 cd02998 145.471 -239297 cd02999 133.253 -239298 cd03000 189.202 -239299 cd03001 158.989 -239300 cd03002 167.924 -239301 cd03003 189.273 -239302 cd03004 143.586 -239303 cd03005 172.854 -239304 cd03006 194.226 -239305 cd03007 189.285 -239306 cd03008 238.949 -239307 cd03009 179.789 -239308 cd03010 169.295 -239309 cd03011 128.185 -239310 cd03012 208.699 -239311 cd03013 146.938 -239312 cd03014 141.568 -239313 cd03015 183.475 -239314 cd03016 293.677 -239315 cd03017 94.537 -239316 cd03018 179.392 -239317 cd03019 115.463 -239318 cd03020 103.936 -239319 cd03021 265.755 -239320 cd03022 148.16 -239321 cd03023 144.273 -239322 cd03024 148.112 -239323 cd03025 104.712 -239324 cd03026 125.486 -239325 cd03027 124.446 -239326 cd03028 132.232 -239327 cd03029 137.262 -239328 cd03030 117.757 -239329 cd03031 174.347 -239330 cd03032 121.196 -239331 cd03033 187.488 -239332 cd03034 131.17 -239333 cd03035 150.052 -239334 cd03036 147.003 -239335 cd03037 122.504 -239336 cd03038 108.588 -239337 cd03039 62.5664 -239338 cd03040 135.999 -239339 cd03041 124.77 -239340 cd03042 111.508 -239341 cd03043 103.06 -239342 cd03044 73.0571 -239343 cd03045 110.003 -239344 cd03046 68.6823 -239345 cd03047 110.097 -239346 cd03048 98.3851 -239347 cd03049 104.265 -239348 cd03050 109.64 -239349 cd03051 90.0496 -239350 cd03052 149.233 -239351 cd03053 111.974 -239352 cd03054 56.0818 -239353 cd03055 152.122 -239354 cd03056 99.1855 -239355 cd03057 65.6361 -239356 cd03058 111.216 -239357 cd03059 124.748 -239358 cd03060 126.704 -239359 cd03061 115.932 -239360 cd03062 86.9154 -239361 cd03063 102.047 -239362 cd03064 54.832 -239363 cd03065 166.457 -239364 cd03066 146.413 -239365 cd03067 178.436 -239366 cd03068 156.877 -239367 cd03069 144.008 -239368 cd03070 116.66 -239369 cd03071 256.517 -239370 cd03072 203.773 -239371 cd03073 118.978 -239372 cd03074 163.039 -239373 cd03075 113.635 -239374 cd03076 111.635 -239375 cd03077 152.299 -239376 cd03078 74.9987 -239377 cd03079 122.534 -239378 cd03080 98.0798 -239379 cd03081 96.2976 -239380 cd03082 83.9922 -239381 cd03083 134.844 -100086 cd03084 309.287 -100087 cd03085 943.191 -100088 cd03086 571.845 -100089 cd03087 468.974 -100090 cd03088 601.113 -100091 cd03089 379.165 -239391 cd03117 314.207 -239392 cd03118 487.429 -239393 cd03119 508.903 -239394 cd03120 497.456 -239395 cd03121 359.034 -239396 cd03122 301.966 -239397 cd03123 407.078 -239398 cd03124 106.202 -239399 cd03125 451.162 -239400 cd03126 468.548 -239401 cd03127 46.3435 -153222 cd03128 27.9354 -153223 cd03129 71.566 -153224 cd03130 206.679 -153225 cd03131 204.032 -153226 cd03132 86.1615 -153227 cd03133 289.137 -153228 cd03134 188.522 -153229 cd03135 123.433 -153230 cd03136 122.694 -153231 cd03137 164.211 -153232 cd03138 175.912 -153233 cd03139 145.763 -153234 cd03140 195.517 -153235 cd03141 153.096 -153236 cd03142 413.083 -153237 cd03143 34.6966 -153238 cd03144 79.9868 -153239 cd03145 111.61 -153240 cd03146 138.951 -153241 cd03147 348.545 -153242 cd03148 431.603 -239402 cd03149 469.317 -239403 cd03150 473.289 -239404 cd03151 92.0967 -239405 cd03152 117.489 -239406 cd03153 120.708 -239407 cd03154 117.139 -239408 cd03155 103.582 -239409 cd03156 69.0987 -239410 cd03157 186.285 -239411 cd03158 159.391 -239412 cd03159 172.995 -239413 cd03160 125.958 -239414 cd03161 135.952 -239415 cd03162 166.455 -239416 cd03163 163.749 -239417 cd03164 141.078 -239418 cd03165 114.001 -239419 cd03166 144.155 -239420 cd03167 164.557 -153243 cd03169 214.049 -239421 cd03171 124.417 -239422 cd03172 115.165 -176264 cd03173 117.198 -163674 cd03174 100.993 -198287 cd03177 88.7439 -198288 cd03178 128.134 -198289 cd03180 152.048 -198290 cd03181 103.795 -198291 cd03182 147.854 -198292 cd03183 135.419 -198293 cd03184 139.763 -198294 cd03185 77.6041 -198295 cd03186 147.812 -198296 cd03187 151.226 -198297 cd03188 85.3764 -198298 cd03189 122.8 -198299 cd03190 156.58 -198300 cd03191 140.795 -198301 cd03192 53.7806 -198302 cd03193 54.9396 -198303 cd03194 121.893 -198304 cd03195 157.153 -198305 cd03196 134.587 -198306 cd03197 155.072 -198307 cd03198 164.704 -198308 cd03199 149.234 -198309 cd03200 158.833 -198310 cd03201 210.351 -198311 cd03202 165.513 -198312 cd03203 187.566 -198313 cd03204 154.915 -198314 cd03205 92.6503 -198315 cd03206 144.289 -198316 cd03207 68.8612 -198317 cd03208 209.879 -198318 cd03209 178.211 -198319 cd03210 195.999 -198320 cd03211 182.466 -198321 cd03212 179.752 -213180 cd03213 221.271 -213181 cd03214 162.99 -213182 cd03215 161.831 -213183 cd03216 158.746 -213184 cd03217 245.514 -213185 cd03218 342.986 -213186 cd03219 256.21 -213187 cd03220 213.163 -213188 cd03221 98.6748 -213189 cd03222 255.96 -213190 cd03223 179.657 -213191 cd03224 244.651 -213192 cd03225 131.435 -213193 cd03226 241.777 -213194 cd03227 70.0812 -213195 cd03228 130.196 -213196 cd03229 181.616 -213197 cd03230 135.988 -213198 cd03231 237.006 -213199 cd03232 273.35 -213200 cd03233 227.145 -213201 cd03234 284.549 -213202 cd03235 228.957 -213203 cd03236 431.791 -213204 cd03237 436.454 -213205 cd03238 170.196 -213206 cd03239 117.024 -213207 cd03240 101.53 -213208 cd03241 123.081 -213209 cd03242 261.078 -213210 cd03243 197.472 -213211 cd03244 265.511 -213212 cd03245 319.15 -213213 cd03246 234.418 -213214 cd03247 236.441 -213215 cd03248 380.278 -213216 cd03249 358.776 -213217 cd03250 240.064 -213218 cd03251 386.201 -213219 cd03252 428.829 -213220 cd03253 414.32 -213221 cd03254 316.475 -213222 cd03255 227.373 -213223 cd03256 279.838 -213224 cd03257 204.662 -213225 cd03258 355.736 -213226 cd03259 238.573 -213227 cd03260 212.426 -213228 cd03261 330.233 -213229 cd03262 328.72 -213230 cd03263 218.913 -213231 cd03264 282.93 -213232 cd03265 365.925 -213233 cd03266 300.824 -213234 cd03267 375.132 -213235 cd03268 277.561 -213236 cd03269 331.167 -213237 cd03270 207.881 -213238 cd03271 396.215 -213239 cd03272 215.587 -213240 cd03273 225.64 -213241 cd03274 200.215 -213242 cd03275 195.869 -213243 cd03276 130.411 -213244 cd03277 140.809 -213245 cd03278 117.181 -213246 cd03279 126.615 -213247 cd03280 314.956 -213248 cd03281 280.727 -213249 cd03282 291.215 -213250 cd03283 256.072 -213251 cd03284 350.028 -213252 cd03285 401.755 -213253 cd03286 346.337 -213254 cd03287 379.524 -213255 cd03288 460.915 -213256 cd03289 513.633 -213257 cd03290 443.696 -213258 cd03291 537.518 -213259 cd03292 346.317 -213260 cd03293 273.193 -213261 cd03294 422.052 -213262 cd03295 417.087 -213263 cd03296 412.503 -213264 cd03297 318.855 -213265 cd03298 347.558 -213266 cd03299 348.556 -213267 cd03300 407.008 -213268 cd03301 325.749 -176471 cd03302 599.303 -239423 cd03307 400.124 -239424 cd03308 466.783 -239425 cd03309 324.755 -239426 cd03310 165.677 -239427 cd03311 188.205 -239428 cd03312 420.015 -239429 cd03313 484.678 -239430 cd03314 492.299 -239431 cd03315 221.061 -239432 cd03316 195.908 -239433 cd03317 457.852 -239434 cd03318 438.289 -239435 cd03319 243.635 -239436 cd03320 168.592 -239437 cd03321 566.726 -239438 cd03322 621.381 -239439 cd03323 522.654 -239440 cd03324 750.326 -239441 cd03325 517.264 -239442 cd03326 578.579 -239443 cd03327 480.292 -239444 cd03328 472.667 -239445 cd03329 491.912 -239446 cd03330 171.852 -239447 cd03331 267.042 -239448 cd03332 551.888 -239449 cd03333 58.2464 -239450 cd03334 295.67 -239451 cd03335 826.538 -239452 cd03336 798.848 -239453 cd03337 703.285 -239454 cd03338 650.504 -239455 cd03339 850.435 -239456 cd03340 803.814 -239457 cd03341 546.434 -239458 cd03342 649.705 -239459 cd03343 696.704 -239460 cd03344 555.144 -239461 cd03345 582.089 -239462 cd03346 560.192 -239463 cd03347 571.312 -239464 cd03348 324.222 -100040 cd03349 126.505 -100041 cd03350 144.831 -100042 cd03351 313.215 -100043 cd03352 184.534 -100044 cd03353 246.563 -100045 cd03354 104.059 -100046 cd03356 78.0522 -100047 cd03357 179.54 -100048 cd03358 110.283 -100049 cd03359 173.169 -100050 cd03360 137.231 -173781 cd03361 249.153 -173782 cd03362 114.638 -173783 cd03363 163.501 -173784 cd03364 54.0572 -173785 cd03365 211.775 -173786 cd03366 222.916 -239465 cd03367 185.936 -239466 cd03368 134.568 -213269 cd03369 358.263 -239467 cd03370 167.205 -239468 cd03371 245.3 -239469 cd03372 217.541 -239470 cd03375 245.898 -239471 cd03376 323.036 -239472 cd03377 562.61 -239473 cd03378 188.117 -239474 cd03379 115.041 -239475 cd03380 85.1781 -239476 cd03381 274.259 -239477 cd03382 123.923 -239478 cd03383 100.866 -239479 cd03384 141.999 -239480 cd03385 111.196 -239481 cd03386 76.5822 -239482 cd03388 147.762 -239483 cd03389 178.283 -239484 cd03390 152.759 -239485 cd03391 149.005 -239486 cd03392 87.6645 -239487 cd03393 139.814 -239488 cd03394 88.1566 -239489 cd03395 137.781 -239490 cd03396 98.1402 -239491 cd03397 139.778 -239492 cd03398 101.344 -259798 cd03399 80.2408 -259799 cd03401 118.385 -259800 cd03402 243.999 -259801 cd03403 367.646 -259802 cd03404 166.534 -259803 cd03405 191.547 -259804 cd03406 465.232 -259805 cd03407 276.773 -259806 cd03408 102.248 -239503 cd03409 69.3247 -239504 cd03411 101.878 -239505 cd03412 136.586 -239506 cd03413 118.113 -239507 cd03414 89.5854 -239508 cd03415 185.427 -239509 cd03416 55.6557 -239510 cd03418 104.593 -239511 cd03419 88.7508 -239512 cd03420 116.707 -239513 cd03421 78.0134 -239514 cd03422 126.387 -239515 cd03423 120.541 -239516 cd03424 67.1297 -239517 cd03425 114.511 -239518 cd03426 93.3605 -239519 cd03427 116.135 -239520 cd03428 138.92 -239521 cd03429 118.023 -239522 cd03430 203.727 -239523 cd03431 43.8647 -239524 cd03440 27.4395 -239525 cd03441 41.0955 -239526 cd03442 69.1349 -239527 cd03443 47.5526 -239528 cd03444 59.1842 -239529 cd03445 72.6535 -239530 cd03446 196.371 -239531 cd03447 150.123 -239532 cd03448 151.988 -239533 cd03449 116.105 -239534 cd03450 148.866 -239535 cd03451 110.372 -239536 cd03452 244.232 -239537 cd03453 150.549 -239538 cd03454 171.212 -239539 cd03455 134.367 -239540 cd03457 194.023 -239541 cd03458 309.103 -239542 cd03459 133.16 -239543 cd03460 454.519 -239544 cd03461 411.243 -239545 cd03462 406.723 -239546 cd03463 227.146 -239547 cd03464 393.989 -239548 cd03465 187.543 -239549 cd03466 695.291 -239550 cd03467 51.3355 -176458 cd03468 107.467 -239551 cd03469 96.5037 -239552 cd03470 124.209 -239553 cd03471 221.855 -239554 cd03472 263.627 -239555 cd03473 191.546 -239556 cd03474 135.543 -239557 cd03475 230.077 -239558 cd03476 207.623 -239559 cd03477 132.044 -239560 cd03478 128.509 -239561 cd03479 216.728 -239562 cd03480 223.738 -239563 cd03481 150.9 -239564 cd03482 152.737 -239565 cd03483 183.59 -239566 cd03484 124.687 -239567 cd03485 128.156 -239568 cd03486 145.537 -239569 cd03487 135.008 -239570 cd03488 330.456 -239571 cd03489 378.836 -239572 cd03490 356.904 -239573 cd03493 26.86 -239574 cd03494 78.0316 -239575 cd03495 73.3989 -239576 cd03496 107.709 -239577 cd03497 198.692 -239578 cd03498 128.526 -239579 cd03499 57.5447 -239580 cd03500 93.8774 -239581 cd03501 90.0228 -239582 cd03505 112.649 -239583 cd03506 113.891 -239584 cd03507 168.173 -239585 cd03508 395.474 -239586 cd03509 318.151 -239587 cd03510 122.008 -239588 cd03511 323.555 -239589 cd03512 226.773 -239590 cd03513 298.845 -239591 cd03514 238.034 -239592 cd03515 173.419 -239593 cd03516 155.696 -239594 cd03517 139.08 -239595 cd03518 178.389 -239596 cd03519 136.014 -239597 cd03520 162.867 -239598 cd03521 165.488 -239599 cd03522 260.942 -239600 cd03523 74.8134 -239601 cd03524 28.8675 -239602 cd03526 205.533 -239603 cd03527 141.24 -239604 cd03528 100.64 -239605 cd03529 132.634 -239606 cd03530 126.566 -239607 cd03531 234.615 -239608 cd03532 205.678 -239609 cd03535 239.254 -239610 cd03536 268.34 -239611 cd03537 253.316 -239612 cd03538 291.673 -239613 cd03539 286.055 -239614 cd03541 245.923 -239615 cd03542 263.537 -239616 cd03545 295.507 -239617 cd03548 257.735 -239618 cd03556 1154.97 -239619 cd03557 864.679 -239629 cd03574 135.214 -239630 cd03575 204.959 -239631 cd03576 161.015 -239632 cd03577 82.0214 -239633 cd03578 206.258 -239634 cd03579 116.192 -239635 cd03580 111.232 -239636 cd03581 184.211 -239637 cd03582 256.281 -239638 cd03583 222.228 -239639 cd03584 248.423 -239640 cd03585 266.978 -176459 cd03586 233.567 -239641 cd03587 39.7609 -153058 cd03588 244.409 -153059 cd03589 186.024 -153060 cd03590 119.717 -153061 cd03591 175.177 -153062 cd03592 151.759 -153063 cd03593 89.3137 -153064 cd03594 158.304 -153065 cd03595 284.86 -153066 cd03596 207.241 -153067 cd03597 252.888 -153068 cd03598 161.85 -153069 cd03599 316.088 -153070 cd03600 171.845 -153071 cd03601 157.696 -153072 cd03602 118.63 -153073 cd03603 90.5616 -239642 cd03670 271.301 -239643 cd03671 137.337 -239644 cd03672 172.422 -239645 cd03673 115.829 -239646 cd03674 117.452 -239647 cd03675 165.06 -239648 cd03676 232.155 -239649 cd03677 416.625 -239650 cd03678 1017.45 -239651 cd03679 924.451 -239652 cd03680 923.606 -239653 cd03681 822.21 -239654 cd03682 446.64 -239655 cd03683 454.782 -239656 cd03684 447.053 -239657 cd03685 554.185 -239658 cd03687 941.545 -293889 cd03688 125.757 -293890 cd03689 163.597 -293891 cd03690 101.16 -293892 cd03691 96.1025 -293893 cd03692 79.0741 -293894 cd03693 124.608 -293895 cd03694 93.0533 -293896 cd03695 101.103 -293897 cd03696 101.449 -293898 cd03697 121.857 -293899 cd03698 121.069 -293900 cd03699 116.364 -293901 cd03700 167.406 -293902 cd03701 108.141 -293903 cd03702 105.969 -293904 cd03703 119.567 -294003 cd03704 118.427 -294004 cd03705 137.709 -294005 cd03706 137.362 -294006 cd03707 129.169 -294007 cd03708 103.367 -239680 cd03709 101.029 -239681 cd03710 93.3382 -239682 cd03711 94.9973 -239683 cd03713 66.3972 -239684 cd03714 88.5547 -239685 cd03715 304.271 -239686 cd03716 41.3271 -239687 cd03717 47.9766 -239688 cd03718 78.1126 -239689 cd03719 83.9167 -239690 cd03720 75.5344 -239691 cd03721 93.0062 -239692 cd03722 72.5169 -239693 cd03723 63.9988 -239694 cd03724 90.3219 -239695 cd03725 77.87 -239696 cd03726 89.5212 -239697 cd03727 76.8008 -239698 cd03728 77.5237 -239699 cd03729 80.2141 -239700 cd03730 123.803 -239701 cd03731 114.159 -239702 cd03733 75.9227 -239703 cd03734 82.3185 -239704 cd03735 89.2051 -239705 cd03736 79.1218 -239706 cd03737 88.8579 -239707 cd03738 125.486 -239708 cd03739 124.334 -239709 cd03740 75.532 -239710 cd03741 76.6745 -239711 cd03742 81.8386 -239712 cd03743 92.3265 -239713 cd03744 91.5813 -239714 cd03745 76.0873 -239715 cd03746 84.8629 -239716 cd03747 229.054 -239717 cd03748 792.817 -239718 cd03749 332.718 -239719 cd03750 341.994 -239720 cd03751 315.759 -239721 cd03752 370.139 -239722 cd03753 344.706 -239723 cd03754 313.402 -239724 cd03755 339.339 -239725 cd03756 312.343 -239726 cd03757 301.1 -239727 cd03758 224.772 -239728 cd03759 268.342 -239729 cd03760 251.336 -239730 cd03761 288.759 -239731 cd03762 257.153 -239732 cd03763 274.074 -239733 cd03764 273.745 -239734 cd03765 373.837 -239735 cd03766 174.783 -239736 cd03767 190.998 -239737 cd03768 77.9051 -239738 cd03769 143.556 -239739 cd03770 193.739 -239740 cd03771 260.024 -239741 cd03772 215.395 -239742 cd03773 156.421 -239743 cd03774 254.779 -239744 cd03775 214.528 -239745 cd03776 233.368 -239746 cd03777 391.618 -239747 cd03778 343.137 -239748 cd03779 307.972 -239749 cd03780 330.445 -239750 cd03781 291.712 -239751 cd03782 329.13 -239752 cd03783 321.042 -239753 cd03829 187.209 -175976 cd04009 161.637 -175977 cd04010 162.952 -175978 cd04011 130.774 -175979 cd04012 115.148 -175980 cd04013 176.344 -175981 cd04014 175.539 -175982 cd04015 160.162 -175983 cd04016 213.346 -175984 cd04017 135.363 -175985 cd04018 177.825 -175986 cd04019 187.876 -175987 cd04020 176.359 -175988 cd04021 118.919 -175989 cd04022 188.7 -175990 cd04024 157.971 -175991 cd04025 233.146 -175992 cd04026 188.24 -175993 cd04027 252.489 -175994 cd04028 249.612 -175995 cd04029 233.87 -175996 cd04030 162.057 -175997 cd04031 174.743 -175998 cd04032 191.706 -175999 cd04033 189.872 -176000 cd04035 180.941 -176001 cd04036 167.054 -176002 cd04037 113.414 -176003 cd04038 203.712 -176004 cd04039 175.135 -176005 cd04040 143.092 -176006 cd04041 143.556 -176007 cd04042 174.001 -176008 cd04043 162.432 -176009 cd04044 127.286 -176010 cd04045 135.024 -176011 cd04046 134.713 -176012 cd04047 84.1542 -176013 cd04048 98.0253 -176014 cd04049 183.303 -176015 cd04050 108.035 -176016 cd04051 99.6126 -176017 cd04052 101.14 -176018 cd04054 239.725 -173788 cd04056 179.049 -173789 cd04059 223.976 -173790 cd04077 216.613 -271144 cd04078 183.069 -271145 cd04079 129.3 -271146 cd04080 74.9582 -271147 cd04081 74.6392 -271148 cd04082 124.21 -271149 cd04083 111.578 -271150 cd04084 49.5486 -271151 cd04085 85.3572 -271152 cd04086 114.237 -239754 cd04087 308.31 -293905 cd04088 105.682 -293906 cd04089 114.119 -293907 cd04090 115.026 -293908 cd04091 120.085 -293909 cd04092 135.137 -294008 cd04093 121.113 -294009 cd04094 76.1976 -294010 cd04095 91.7285 -239763 cd04096 99.152 -239764 cd04097 148.237 -239765 cd04098 124.666 -239766 cd04100 45.2493 -206688 cd04101 284.805 -206689 cd04102 277.551 -133303 cd04103 282.845 -206690 cd04104 319.658 -206691 cd04105 159.409 -133306 cd04106 265.459 -206692 cd04107 242.986 -206693 cd04108 311.427 -206694 cd04109 359.111 -133310 cd04110 370.724 -133311 cd04111 344.821 -206695 cd04112 290.999 -206696 cd04113 304.743 -133314 cd04114 338.41 -133315 cd04115 287.412 -206697 cd04116 320.282 -206698 cd04117 320.001 -133318 cd04118 313.34 -133319 cd04119 239.565 -206699 cd04120 397.076 -133321 cd04121 358.478 -133322 cd04122 327.178 -133323 cd04123 254.456 -133324 cd04124 301.393 -133326 cd04126 351.902 -206700 cd04127 332.157 -206701 cd04128 315.873 -206702 cd04129 351.828 -133330 cd04130 294.695 -206703 cd04131 299.734 -206704 cd04132 308.116 -206705 cd04133 291.75 -206706 cd04134 327.587 -206707 cd04135 350.086 -206708 cd04136 257.873 -206709 cd04137 275.279 -133338 cd04138 285.082 -206710 cd04139 228.464 -206711 cd04140 289.035 -206712 cd04141 319.107 -133342 cd04142 360.722 -133343 cd04143 391.034 -133344 cd04144 343.752 -133345 cd04145 294.7 -206713 cd04146 226.775 -206714 cd04147 321.402 -206715 cd04148 246.162 -206716 cd04149 315.561 -206717 cd04150 285.84 -206718 cd04151 281.99 -206719 cd04152 309.809 -133353 cd04153 299.65 -206720 cd04154 284.603 -206721 cd04155 270.037 -133356 cd04156 264.277 -206722 cd04157 256.587 -206723 cd04158 327.371 -206724 cd04159 213.719 -206725 cd04160 241.093 -133361 cd04161 249.232 -133362 cd04162 250.443 -206726 cd04163 129.889 -206727 cd04164 131.077 -206728 cd04165 290.731 -206729 cd04166 312.197 -206730 cd04167 272.219 -206731 cd04168 319.567 -206732 cd04169 438.954 -206733 cd04170 285.641 -206734 cd04171 210.925 -206735 cd04172 392.494 -206736 cd04173 469.891 -206737 cd04174 482.25 -133375 cd04175 309.062 -133376 cd04176 290.97 -133377 cd04177 297.087 -206753 cd04178 210.895 -133022 cd04179 87.6289 -133023 cd04180 322.968 -133024 cd04181 129.623 -133025 cd04182 122.284 -133026 cd04183 214.04 -133027 cd04184 249.427 -133028 cd04185 203.251 -133029 cd04186 127.29 -133030 cd04187 157.639 -133031 cd04188 205.879 -133032 cd04189 301.795 -133033 cd04190 250.688 -133034 cd04191 381.626 -133035 cd04192 278.788 -133036 cd04193 380.413 -133037 cd04194 150.828 -133038 cd04195 288.83 -133039 cd04196 217.498 -133040 cd04197 220.942 -133041 cd04198 196.341 -259862 cd04199 259.26 -259863 cd04200 171.054 -259864 cd04201 182.69 -259865 cd04202 103.102 -259866 cd04203 105.003 -259867 cd04204 106.112 -259868 cd04205 75.4726 -259869 cd04206 82.7189 -259870 cd04207 80.5818 -259871 cd04208 154.637 -259872 cd04210 192.68 -259873 cd04211 140.123 -259874 cd04212 144.998 -259875 cd04213 160.863 -259876 cd04214 120.56 -259877 cd04215 133.954 -259878 cd04216 92.7084 -259879 cd04217 128.056 -259880 cd04218 149.372 -259881 cd04219 129.026 -259882 cd04220 91.6798 -259883 cd04221 92.4341 -259884 cd04222 355.188 -259885 cd04223 168.953 -259886 cd04224 352.546 -259887 cd04225 307.472 -259888 cd04226 319.112 -259889 cd04227 328.812 -259890 cd04228 322.221 -259891 cd04229 256.96 -259892 cd04230 221.968 -259893 cd04231 139.893 -259894 cd04232 182.773 -259895 cd04233 115.424 -239767 cd04234 164.954 -239768 cd04235 322.152 -239769 cd04236 462.775 -239770 cd04237 321.427 -239771 cd04238 156.901 -239772 cd04239 155.388 -239773 cd04240 207.6 -239774 cd04241 200.95 239775 cd04242 262.765 -239776 cd04243 305.249 -239777 cd04244 445.664 -239778 cd04245 428.23 -239779 cd04246 284.386 -239780 cd04247 550.5 -239781 cd04248 493.121 -239782 cd04249 371.746 -239783 cd04250 331.778 -239784 cd04251 284.646 -239785 cd04252 359.769 -239786 cd04253 251.398 -239787 cd04254 255.878 -239788 cd04255 387.134 -239789 cd04256 437.634 -239790 cd04257 342.639 -239791 cd04258 416.38 -239792 cd04259 486.275 -239793 cd04260 409.085 -239794 cd04261 295.594 -176265 cd04263 130.519 -176266 cd04264 130.178 -176267 cd04265 145.978 -176268 cd04266 186.508 -239795 cd04267 129.848 -239796 cd04268 69.0623 -239797 cd04269 123.88 -239798 cd04270 332.801 -239799 cd04271 299.722 -239800 cd04272 234.168 -239801 cd04273 231.359 -239802 cd04275 175.22 -239803 cd04276 168.272 -239804 cd04277 100.183 -239805 cd04278 150.432 -239806 cd04279 82.1191 -239807 cd04280 169.289 -239808 cd04281 386.797 -239809 cd04282 431.896 -239810 cd04283 318.052 -173926 cd04301 27.2401 -319798 cd04302 279.861 -319799 cd04303 274.619 -319800 cd04305 130.74 -319801 cd04309 257.981 -239811 cd04316 155.165 -239812 cd04317 123.785 -239813 cd04318 64.1237 -239814 cd04319 162.308 -239815 cd04320 93.0116 -239816 cd04321 99.6998 -239817 cd04322 84.8362 -239818 cd04323 81.8968 -239819 cd04327 237.663 -239820 cd04328 85.7442 -239821 cd04329 79.9187 -239822 cd04330 94.9678 -239823 cd04331 91.5007 -239824 cd04332 50.2341 -239825 cd04333 121.841 -239826 cd04334 136.488 -239827 cd04335 159.606 -239828 cd04336 199.108 -239829 cd04337 241.24 -239830 cd04338 274.403 -239831 cd04365 45.3893 -239832 cd04366 37.6062 -239833 cd04367 64.3844 -239834 cd04368 99.3754 -99922 cd04369 42.3594 -239835 cd04370 52.3941 -239836 cd04371 35.0089 -239837 cd04372 337.567 -239838 cd04373 283.193 -239839 cd04374 362.096 -239840 cd04375 368.669 -239841 cd04376 312.453 -239842 cd04377 318.228 -239843 cd04378 377.919 -239844 cd04379 322.879 -239845 cd04380 166.747 -239846 cd04381 290.491 -239847 cd04382 263 -239848 cd04383 314.359 -239849 cd04384 319.834 -239850 cd04385 257.622 -239851 cd04386 315.165 -239852 cd04387 277.579 -239853 cd04388 236.694 -239854 cd04389 306.625 -239855 cd04390 360.605 -239856 cd04391 295.024 -239857 cd04392 296.295 -239858 cd04393 300.533 -239859 cd04394 305.551 -239860 cd04395 362.873 -239861 cd04396 327.445 -239862 cd04397 379.402 -239863 cd04398 313.186 -239864 cd04399 244.164 -239865 cd04400 303.126 -239866 cd04401 208.356 -239867 cd04402 219.863 -239868 cd04403 310.477 -239869 cd04404 296.942 -239870 cd04405 172.9 -239871 cd04406 355.848 -239872 cd04407 398.211 -239873 cd04408 373.382 -239874 cd04409 389.552 -319870 cd04410 60.8658 -100108 cd04411 64.2049 -239875 cd04412 150.092 -239876 cd04413 159.556 -239877 cd04414 226.512 -239878 cd04415 238.113 -239879 cd04416 145.816 -239880 cd04418 242.73 -271198 cd04434 158.435 -239882 cd04435 124.787 -239883 cd04436 141.325 -239884 cd04437 164.824 -239885 cd04438 98.569 -239886 cd04439 164.662 -239887 cd04440 178.579 -239888 cd04441 162.601 -239889 cd04442 173.542 -239890 cd04443 124.366 -239891 cd04444 197.449 -239892 cd04445 187.367 -239893 cd04446 144.813 -239894 cd04447 191.597 -239895 cd04448 147.589 -239896 cd04449 98.5021 -239897 cd04450 65.7745 -239898 cd04451 84.4946 -239899 cd04452 86.484 -239900 cd04453 71.4713 -239901 cd04454 112.258 -239902 cd04455 62.8448 -239903 cd04456 118.423 -239904 cd04457 77.6755 -239905 cd04458 44.877 -239906 cd04459 89.6068 -239907 cd04460 114.307 -239908 cd04461 101.125 -239909 cd04462 115.821 -239910 cd04463 54.9352 -239911 cd04465 57.0836 -239912 cd04466 71.0546 -239913 cd04467 68.4746 -239914 cd04468 83.3556 -239915 cd04469 124.077 -239916 cd04470 65.5571 -239917 cd04471 76.2853 -239918 cd04472 99.5392 -239919 cd04473 99.2185 -239920 cd04474 79.2127 -239921 cd04475 67.9946 -239922 cd04476 72.3407 -239923 cd04477 87.638 -239924 cd04478 81.1065 -239925 cd04479 79.2293 -239926 cd04480 57.262 -239927 cd04481 49.1965 -239928 cd04482 88.0829 -239929 cd04483 103.667 -239930 cd04484 59.1496 -239931 cd04485 43.2675 -239932 cd04486 51.1072 -239933 cd04487 95.4412 -239934 cd04488 33.7073 -239935 cd04489 52.9072 -239936 cd04490 90.0585 -239937 cd04491 56.8625 -239938 cd04492 73.7794 -239939 cd04493 114.631 -239940 cd04494 258.919 -239941 cd04495 135.226 -239942 cd04496 53.385 -239943 cd04497 87.3306 -239944 cd04498 129.846 -239945 cd04501 198.32 -239946 cd04502 217.541 -239947 cd04506 217.886 -119391 cd04508 31.7996 -107261 cd04509 72.1407 -239948 cd04511 229.076 -271334 cd04512 252.488 -271335 cd04513 291.002 -271336 cd04514 163.211 -239952 cd04516 244.436 -239953 cd04517 216.046 -239954 cd04518 224.434 -213328 cd04519 52.8788 -100051 cd04645 128.298 -100052 cd04646 151.324 -100053 cd04647 79.8079 -100054 cd04649 199.947 -100055 cd04650 253.261 -100056 cd04651 82.5113 -100057 cd04652 101.885 -240015 cd04657 430.881 -240016 cd04658 325.374 -240017 cd04659 209.932 -240018 cd04660 55.453 -240019 cd04661 201.441 -240020 cd04662 225.457 -240021 cd04663 159.63 -240022 cd04664 98.578 -240023 cd04665 115.532 -240024 cd04666 104.234 -240025 cd04667 144.003 -240026 cd04669 159.902 -240027 cd04670 191.75 -240028 cd04671 213.467 -240029 cd04672 163.918 -240030 cd04673 120.437 -240031 cd04674 191.946 -240032 cd04676 121.283 -240033 cd04677 156.616 -240034 cd04678 160.89 -240035 cd04679 200.002 -240036 cd04680 123.956 -240037 cd04681 218.798 -240038 cd04682 111.641 -240039 cd04683 174.473 -240040 cd04684 114.269 -240041 cd04685 154.843 -240042 cd04686 189.111 -240043 cd04687 192.267 -240044 cd04688 122.79 -240045 cd04689 175.672 -240046 cd04690 98.5019 -240047 cd04691 158.815 -240048 cd04692 163.241 -240049 cd04693 150.207 -240050 cd04694 221.585 -240051 cd04695 222.333 -240052 cd04696 204.217 -240053 cd04697 165.277 -240054 cd04699 120.163 -240055 cd04700 250.197 -271337 cd04701 285.124 -271338 cd04702 291.782 -271339 cd04703 206.341 -153093 cd04704 137.818 -153094 cd04705 96.4403 -153095 cd04706 132.943 -153096 cd04707 140.304 -240059 cd04708 184.587 -240060 cd04709 194.147 -240061 cd04710 203.372 -240062 cd04711 233.928 -240063 cd04712 125.595 -240064 cd04713 232.741 -240065 cd04714 168.734 -240066 cd04715 223.92 -240067 cd04716 181.489 -240068 cd04717 146.575 -240069 cd04718 253.278 -240070 cd04719 169.094 -240071 cd04720 158.734 -240072 cd04721 201.903 -240073 cd04722 42.9588 -240074 cd04723 163.98 -240075 cd04724 127.978 -240076 cd04725 114.195 -240077 cd04726 194.336 -240078 cd04727 477.123 -240079 cd04728 337.924 -240080 cd04729 235.933 -240081 cd04730 97.9392 -240082 cd04731 249.69 -240083 cd04732 206.562 -240084 cd04733 428.927 -240085 cd04734 435.889 -240086 cd04735 431.635 -240087 cd04736 652.668 -240088 cd04737 501.972 -240089 cd04738 228.537 -240090 cd04739 434.35 -240091 cd04740 314.102 -240092 cd04741 297.699 -240093 cd04742 633.519 -240094 cd04743 524.769 -100058 cd04745 231.103 -240095 cd04747 504.93 -240096 cd04748 74.2675 -240097 cd04749 213.912 -240098 cd04750 174.039 -240099 cd04751 87.7892 -240100 cd04752 278.159 -240101 cd04753 159.532 -240102 cd04754 159.702 -240103 cd04755 264.696 -240104 cd04756 223.059 -240105 cd04757 165.045 -240106 cd04758 186.432 -212498 cd04759 262.995 -240107 cd04760 119.489 -133389 cd04761 49.5124 -133390 cd04762 54.5126 -133391 cd04763 99.1462 -133392 cd04764 76.9853 -133393 cd04765 99.2485 -133394 cd04766 113.514 -133395 cd04767 187.703 -133396 cd04768 120.92 -133397 cd04769 150.979 -133398 cd04770 131.916 -133399 cd04772 122.886 -133400 cd04773 122.471 -133401 cd04774 123.391 -133402 cd04775 141.907 -133403 cd04776 120.328 -133404 cd04777 148.714 -133405 cd04778 214.949 -133406 cd04779 138.793 -133407 cd04780 101.25 -133408 cd04781 151.667 -133409 cd04782 119.257 -133410 cd04783 157.387 -133411 cd04784 161.199 -133412 cd04785 145.768 -133413 cd04786 226.631 -133414 cd04787 194.444 -133415 cd04788 127.879 -133416 cd04789 142.626 -133417 cd04790 257.359 -271199 cd04791 148.573 -271200 cd04792 420.567 -271201 cd04793 189.098 -271202 cd04794 149.784 -240112 cd04795 40.4353 -240117 cd04813 142.912 -240118 cd04814 178.624 -240119 cd04815 145.85 -240120 cd04816 108.182 -240121 cd04817 122.593 -240122 cd04818 75.0578 -240123 cd04819 113.643 -240124 cd04820 116.238 -240125 cd04821 240.271 -240126 cd04822 179.574 -240127 cd04823 512.873 -240128 cd04824 568.919 -173791 cd04842 167.122 -173792 cd04843 294.991 -173793 cd04847 148.606 -173794 cd04848 140.537 -173795 cd04852 296.432 -173796 cd04857 646.264 -240129 cd04859 72.4368 -240130 cd04860 193.984 -240131 cd04861 247.42 -240132 cd04862 328.798 -240133 cd04863 307.015 -240134 cd04864 364.116 -240135 cd04865 332.273 -240136 cd04866 383.695 -153140 cd04868 27.8472 -153141 cd04869 77.6467 -153142 cd04870 70.3496 -153143 cd04871 77.7284 -153144 cd04872 98.4583 -153145 cd04873 30.9793 -153146 cd04874 79.6511 -153147 cd04875 59.881 -153148 cd04876 54.7637 -153149 cd04877 99.6574 -153150 cd04878 71.0048 -153151 cd04879 53.2381 -153152 cd04880 46.3342 -153153 cd04881 59.8368 -153154 cd04882 59.5384 -153155 cd04883 91.5465 -153156 cd04884 95.6302 -153157 cd04885 62.9085 -153158 cd04886 54.0862 -153159 cd04887 96.9729 -153160 cd04888 94.9529 -153161 cd04889 49.0411 -153162 cd04890 37.9126 -153163 cd04891 38.3069 -153164 cd04892 40.5581 -153165 cd04893 110.875 -153166 cd04894 130.334 -153167 cd04895 124.489 -153168 cd04896 144.142 -153169 cd04897 115.211 -153170 cd04898 133.145 -153171 cd04899 65.1682 -153172 cd04900 51.7097 -153173 cd04901 81.0148 -153174 cd04902 73.6581 -153175 cd04903 69.8694 -153176 cd04904 86.4585 -153177 cd04905 64.0581 -153178 cd04906 112.256 -153179 cd04907 94.1557 -153180 cd04908 91.104 -153181 cd04909 86.133 -153182 cd04910 92.7403 -153183 cd04911 101.921 -153184 cd04912 89.182 -153185 cd04913 52.91 -153186 cd04914 81.2058 -153187 cd04915 96.936 -153188 cd04916 88.8507 -153189 cd04917 97.649 -153190 cd04918 120.761 -153191 cd04919 124.169 -153192 cd04920 112.541 -153193 cd04921 79.5631 -153194 cd04922 98.9645 -153195 cd04923 69.0818 -153196 cd04924 76.3876 -153197 cd04925 119.072 -153198 cd04926 123.999 -153199 cd04927 138.369 -153200 cd04928 108.027 -153201 cd04929 116.314 -153202 cd04930 140.226 -153203 cd04931 149.192 -153204 cd04932 112.124 -153205 cd04933 147.057 -153206 cd04934 121.794 -153207 cd04935 130.711 -153208 cd04936 69.0962 -153209 cd04937 107.093 -240137 cd04939 201.034 -319276 cd04967 177.021 -319277 cd04968 171.189 -319278 cd04969 124.869 -319279 cd04970 139.61 -143172 cd04971 129.049 -143173 cd04972 71.7788 -143174 cd04973 145.416 -319280 cd04974 122.9 -319281 cd04975 177.41 -319282 cd04976 114.96 -319283 cd04977 159.339 -319284 cd04978 106.772 -319285 cd04979 105.228 -143181 cd04980 168.428 -319286 cd04981 166.744 -143183 cd04982 148.277 -319287 cd04983 122.762 -143185 cd04984 145.663 -319288 cd04985 96.9751 -319289 cd04986 154.05 -240138 cd05005 188.938 -240139 cd05006 119.922 -240140 cd05007 259.762 -240141 cd05008 73.3002 -240142 cd05009 86.9325 -240143 cd05010 204.784 -240144 cd05013 53.3868 -240145 cd05014 145.763 -240146 cd05015 128.027 -240147 cd05016 72.2469 -240148 cd05017 122.759 -176853 cd05018 114.218 -240149 cd05022 94.7193 -240150 cd05023 147.607 -240151 cd05024 160.393 -240152 cd05025 155.046 -240153 cd05026 164.661 -240154 cd05027 138.065 -240155 cd05029 140.746 -240156 cd05030 122.071 -240157 cd05031 129.08 -173625 cd05032 467.205 -270629 cd05033 494.969 -270630 cd05034 470.226 -270631 cd05035 512.08 -270632 cd05036 563.935 -270633 cd05037 369.502 -270634 cd05038 406.382 -270635 cd05039 483.391 -270636 cd05040 455.263 -270637 cd05041 490.803 -270638 cd05042 545.646 -270639 cd05043 476.558 -270640 cd05044 521.592 -173631 cd05045 558.425 -133178 cd05046 448.067 -270641 cd05047 588.933 -270642 cd05048 499.979 -270643 cd05049 505.463 -133181 cd05050 533.641 -270644 cd05051 456.414 -270645 cd05052 544.708 -270646 cd05053 560.883 -270647 cd05054 572.897 -133186 cd05055 582.907 -133187 cd05056 512.738 -270648 cd05057 478.063 -270649 cd05058 523.575 -173637 cd05059 501.978 -270650 cd05060 461.434 -133192 cd05061 631.619 -133193 cd05062 543.472 -133194 cd05063 590.407 -133195 cd05064 556.845 -173638 cd05065 574.125 -270651 cd05066 568.343 -270652 cd05067 538.703 -270653 cd05068 566.265 -270654 cd05069 582.416 -270655 cd05070 570.086 -270656 cd05071 562.771 -270657 cd05072 603.186 -270658 cd05073 529.983 -270659 cd05074 606.53 -270660 cd05075 611.627 -270661 cd05076 544.504 -270662 cd05077 558.398 -270663 cd05078 571.121 -173644 cd05079 604.615 -270664 cd05080 557.206 -270665 cd05081 574.919 -133213 cd05082 557.673 -270666 cd05083 514.037 -270667 cd05084 540.288 -270668 cd05085 552.305 -270669 cd05086 553.321 -270670 cd05087 601.207 -133219 cd05088 599.676 -270671 cd05089 643.59 -270672 cd05090 599.305 -270673 cd05091 650.158 -270674 cd05092 623.912 -270675 cd05093 598.948 -270676 cd05094 568.488 -270677 cd05095 650.517 -133227 cd05096 621.954 -133228 cd05097 629.7 -270678 cd05098 647.84 -133230 cd05099 697.484 -173652 cd05100 701.777 -270679 cd05101 663.636 -270680 cd05102 704.432 -270681 cd05103 691.722 -270682 cd05104 771.766 -173653 cd05105 881.284 -133237 cd05106 774.404 -133238 cd05107 885.122 -270683 cd05108 645.154 -270684 cd05109 614.725 -173655 cd05110 637.494 -173656 cd05111 608.108 -133243 cd05112 531.448 -173657 cd05113 512.503 -270685 cd05114 522.5 -270686 cd05115 568.808 -133247 cd05116 532.231 -270687 cd05117 283.213 -270688 cd05118 193.605 -270689 cd05119 252.637 -270690 cd05120 76.5733 -270691 cd05121 146.486 -270692 cd05122 265.22 -270693 cd05123 229.711 -270694 cd05124 189.482 -240161 cd05125 125.39 -240162 cd05126 109.733 -213329 cd05127 445.492 -213330 cd05128 267.194 -213331 cd05129 351.645 -213332 cd05130 458.71 -213333 cd05131 710.613 -213334 cd05132 513.824 -213335 cd05133 774.989 -213336 cd05134 578.516 -213337 cd05135 530.54 -213338 cd05136 399.266 -213339 cd05137 318.354 -240163 cd05140 116.686 -240164 cd05141 78.1063 -240165 cd05142 91.2303 -240166 cd05143 131.403 -270695 cd05144 213.135 -270696 cd05145 216.264 -270697 cd05146 350.896 -270698 cd05147 321.827 -133248 cd05148 474.616 -270699 cd05150 176.618 -270700 cd05151 104.944 -270701 cd05152 237.143 -270702 cd05153 176.68 -270703 cd05154 116.946 -270704 cd05155 209.014 -270705 cd05156 412.02 -270706 cd05157 258.28 -176646 cd05160 161.754 -99894 cd05162 80.5151 -270707 cd05163 188.885 -270708 cd05164 271.452 -270709 cd05165 567.263 -270710 cd05166 573.467 -270711 cd05167 402.742 -270712 cd05168 428.438 -270713 cd05169 406.483 -270714 cd05170 483.681 -270715 cd05171 391.517 -270716 cd05172 296.794 -270717 cd05173 743.704 -270718 cd05174 786.55 -270719 cd05175 745.727 -270720 cd05176 735.247 -270721 cd05177 696.641 -176178 cd05188 84.2955 -133449 cd05191 38.5125 -187536 cd05193 349.223 -176179 cd05195 129.997 -133425 cd05197 587.953 -240622 cd05198 209.793 -240623 cd05199 358.084 -133450 cd05211 223.197 -133451 cd05212 183.862 -133452 cd05213 242.557 -187537 cd05226 105.562 -187538 cd05227 278.769 -187539 cd05228 320.001 -187540 cd05229 339.689 -187541 cd05230 470.195 -187542 cd05231 253.018 -187543 cd05232 339.711 -212491 cd05233 52.286 -187545 cd05234 420.553 -187546 cd05235 229.845 -187547 cd05236 244.9 -187548 cd05237 291.83 -187549 cd05238 301.996 -187550 cd05239 344.95 -187551 cd05240 266.156 -187552 cd05241 410.669 -187553 cd05242 341.901 -187554 cd05243 143.53 -187555 cd05244 168.188 -187556 cd05245 384.005 -187557 cd05246 390.757 -187558 cd05247 401.913 -187559 cd05248 390.127 -187560 cd05250 230.259 -187561 cd05251 185.17 -187562 cd05252 471.031 -187563 cd05253 522.667 -187564 cd05254 176.278 -187565 cd05255 596.676 -187566 cd05256 399.287 -187567 cd05257 317.319 -187568 cd05258 440.959 -187569 cd05259 184.814 -187570 cd05260 296.431 -187571 cd05261 364.757 -187572 cd05262 267.678 -187573 cd05263 208.76 -187574 cd05264 395.532 -187575 cd05265 249.9 -187576 cd05266 195.232 -187577 cd05267 255.362 -187578 cd05269 225.227 -187579 cd05271 199.009 -187580 cd05272 510.316 -187581 cd05273 486.987 -187582 cd05274 135.974 -176180 cd05276 337.877 -176181 cd05278 388.556 -176182 cd05279 495.421 -176183 cd05280 335.28 -176184 cd05281 562.24 -176645 cd05282 224.079 -176186 cd05283 305.96 -176187 cd05284 351.478 -176188 cd05285 362.967 -176189 cd05286 321.697 -176190 cd05288 208.875 -176191 cd05289 177.367 -133426 cd05290 452.554 -133427 cd05291 372.185 -133428 cd05292 438.463 -133429 cd05293 398.901 -133430 cd05294 504.631 -133431 cd05295 724.167 -133432 cd05296 504.372 -133433 cd05297 488.613 -133434 cd05298 701.316 -240624 cd05299 287.488 -240625 cd05300 253.983 -240626 cd05301 324.348 -240627 cd05302 589.297 -240628 cd05303 372.256 -240629 cd05304 426.822 -240630 cd05305 368.271 -133453 cd05311 236.395 -133454 cd05312 348.769 -133455 cd05313 369.253 -187583 cd05322 448.067 -187584 cd05323 226.028 -187585 cd05324 243.298 -187586 cd05325 186.347 -187587 cd05326 332.113 -212492 cd05327 258.308 -187589 cd05328 295.942 -187590 cd05329 426.865 -187591 cd05330 438.493 -187592 cd05331 379.121 -187593 cd05332 304.509 -187594 cd05333 317.182 -187595 cd05334 229.133 -187596 cd05337 384.507 -187597 cd05338 299.308 -187598 cd05339 238.296 -187599 cd05340 351.879 -187600 cd05341 346.293 -187601 cd05343 382.631 -187602 cd05344 256.432 -187603 cd05345 391.753 -187604 cd05346 378.932 -187605 cd05347 327.778 -187606 cd05348 384.011 -187607 cd05349 382.191 -187608 cd05350 293.082 -187609 cd05351 396.841 -187610 cd05352 347.011 -187611 cd05353 334.676 -187612 cd05354 326.286 -187613 cd05355 433.257 -187614 cd05356 196.67 -187615 cd05357 276.08 -187616 cd05358 390.591 -187617 cd05359 256.125 -187618 cd05360 299.298 -187619 cd05361 349.953 -187620 cd05362 307.664 -187621 cd05363 439.361 -187622 cd05364 381.374 -187623 cd05365 369.976 -187624 cd05366 378.257 -187625 cd05367 225.243 -187626 cd05368 339.06 -187627 cd05369 285.635 -187628 cd05370 285.74 -187629 cd05371 357.754 -187630 cd05372 288.326 -187631 cd05373 332.81 -187632 cd05374 219.024 -213340 cd05391 566.346 -213341 cd05392 276.858 -213342 cd05394 523.688 -213343 cd05395 512.494 -188647 cd05396 248.881 -143387 cd05397 29.5981 -143388 cd05398 102.286 -143389 cd05399 55.0459 -143390 cd05400 59.3357 -143391 cd05401 66.979 -143392 cd05402 59.4931 -143393 cd05403 35.4703 -176102 cd05466 48.3653 -119437 cd05467 67.7078 -176472 cd05468 77.5097 -100112 cd05469 158.469 -133137 cd05470 58.9307 -133138 cd05471 68.9912 -133139 cd05472 368.908 -133140 cd05473 647.944 -133141 cd05474 226.678 -133142 cd05475 416.387 -133143 cd05476 153.573 -133144 cd05477 561.817 -133145 cd05478 561.682 -133146 cd05479 155.788 -133147 cd05480 147.311 -133148 cd05481 68.8279 -133149 cd05482 69.9877 -133150 cd05483 50.7057 -133151 cd05484 106.522 -133152 cd05485 630.344 -133153 cd05486 596.481 -133154 cd05487 613.323 -133155 cd05488 606.356 -133156 cd05489 362.054 -133157 cd05490 643.381 -99923 cd05491 112.545 -99924 cd05492 144.831 -99925 cd05493 134.485 -99926 cd05494 78.6398 -99927 cd05495 198.822 -99928 cd05496 226.185 -99929 cd05497 191.481 -99930 cd05498 164.759 -99931 cd05499 161.684 -99932 cd05500 157.09 -99933 cd05501 157.975 -99934 cd05502 153.986 -99935 cd05503 180.263 -99936 cd05504 197.618 -99937 cd05505 174.262 -99938 cd05506 179.063 -99939 cd05507 155.215 -99940 cd05508 149.841 -99941 cd05509 138.842 -99942 cd05510 184.182 -99943 cd05511 147.796 -99944 cd05512 186.451 -99945 cd05513 173.75 -99946 cd05515 168.252 -99947 cd05516 181.857 -99948 cd05517 144.889 -99949 cd05518 186.882 -99950 cd05519 180.999 -99951 cd05520 155.575 -99952 cd05521 155.173 -99953 cd05522 146.617 -99954 cd05524 176.37 -99955 cd05525 140.217 -99956 cd05526 155.988 -99957 cd05528 158.675 -99958 cd05529 117.438 -99913 cd05530 637.857 -99914 cd05531 381.691 -99915 cd05532 467.826 -99916 cd05533 678.988 -99917 cd05534 624.624 -99918 cd05535 956.742 -99919 cd05536 518.032 -99920 cd05537 569.977 -99921 cd05538 413.035 -240187 cd05560 129.623 -173797 cd05561 170.162 -173798 cd05562 158.61 -99905 cd05563 63.6993 -99906 cd05564 101.041 -99907 cd05565 155.639 -99908 cd05566 83.3555 -99909 cd05567 88.7822 -99910 cd05568 55.9727 -99911 cd05569 69.8235 -270722 cd05570 519.079 -270723 cd05571 622.068 -270724 cd05572 362.313 -270725 cd05573 462.91 -270726 cd05574 452.462 -270727 cd05575 621.259 -270728 cd05576 359.938 -270729 cd05577 486.649 -270730 cd05578 367.352 -270731 cd05579 276.79 -270732 cd05580 433.544 -270733 cd05581 330.716 -270734 cd05582 632.128 -270735 cd05583 515.791 -270736 cd05584 618.265 -270737 cd05585 643.855 -270738 cd05586 647.321 -270739 cd05587 584.74 -270740 cd05588 659.883 -270741 cd05589 622.783 -270742 cd05590 664.299 -270743 cd05591 666.117 -270744 cd05592 637.12 -270745 cd05593 705.689 -270746 cd05594 709.489 -173686 cd05595 717.555 -270747 cd05596 698.359 -270748 cd05597 641.32 -270749 cd05598 597.762 -270750 cd05599 544.516 -270751 cd05600 592.006 -270752 cd05601 582.347 -270753 cd05602 715.64 -270754 cd05603 692.48 -270755 cd05604 687.081 -270756 cd05605 521.531 -270757 cd05606 532.784 -270758 cd05607 559.137 -270759 cd05608 539.854 -270760 cd05609 523.892 -270761 cd05610 359.963 -270762 cd05611 393.77 -270763 cd05612 565.138 -270764 cd05613 618.554 -270765 cd05614 693.971 -270766 cd05615 722.169 -270767 cd05616 730.645 -270768 cd05617 729.897 -270769 cd05618 732.219 -270770 cd05619 684.346 -173710 cd05620 694.766 -270771 cd05621 819.241 -270772 cd05622 843.13 -270773 cd05623 898.994 -270774 cd05624 939.048 -270775 cd05625 799.259 -173715 cd05626 838.514 -270776 cd05627 741.49 -270777 cd05628 760.731 -270778 cd05629 755.918 -270779 cd05630 603.168 -173720 cd05631 592.352 -270780 cd05632 632.007 -270781 cd05633 705.284 -100059 cd05635 170.921 -100060 cd05636 210.907 -240188 cd05637 87.0206 -240189 cd05684 94.9985 -240190 cd05685 89.5996 -240191 cd05686 127.597 -240192 cd05687 59.8503 -240193 cd05688 87.2991 -240194 cd05689 129.234 -240195 cd05690 124.143 -240196 cd05691 88.8668 -240197 cd05692 99.6673 -240198 cd05693 83.4203 -240199 cd05694 90.772 -240200 cd05695 85.7917 -240201 cd05696 89.6291 -240202 cd05697 89.2197 -240203 cd05698 106.541 -240204 cd05699 136.063 -240205 cd05700 107.246 -240206 cd05701 109.587 -240207 cd05702 85.7202 -240208 cd05703 83.3903 -240209 cd05704 110.519 -240210 cd05705 127.128 -240211 cd05706 88.0782 -240212 cd05707 101.603 -240213 cd05708 112.808 -100078 cd05709 42.6102 -240214 cd05710 111.899 -319290 cd05711 136.8 -143189 cd05712 172.215 -319291 cd05713 151.577 -319292 cd05714 185.865 -319293 cd05715 194.958 -143193 cd05716 73.2469 -319294 cd05717 156.905 -319295 cd05718 128.315 -319296 cd05719 127.708 -143197 cd05720 157.267 -143198 cd05721 173.447 -143199 cd05722 148.395 -212460 cd05723 154.733 -143201 cd05724 150.238 -143202 cd05725 125.597 -143203 cd05726 168.98 -143204 cd05727 170.043 -143205 cd05728 172.4 -319297 cd05729 145.053 -143207 cd05730 175.891 -319298 cd05731 131.398 -143209 cd05732 173.096 -319299 cd05733 136.029 -143211 cd05734 115.797 -143212 cd05735 204.109 -143213 cd05736 144.677 -319300 cd05737 175.857 -319301 cd05738 139.029 -143216 cd05739 123.46 -143217 cd05740 132.4 -319302 cd05741 66.943 -319303 cd05742 140.119 -143220 cd05743 138.392 -319304 cd05744 161.237 -143222 cd05745 154.326 -143223 cd05746 148.484 -143224 cd05747 168.688 -319305 cd05748 78.4152 -143226 cd05749 143.382 -143227 cd05750 119.941 -319306 cd05751 121.005 -143229 cd05752 108.971 -319307 cd05753 106.645 -143231 cd05754 140.376 -143232 cd05755 147.254 -319308 cd05756 131.438 -319309 cd05757 105.12 -319310 cd05758 169.635 -143236 cd05759 141.431 -143237 cd05760 163.931 -319311 cd05761 133.07 -143239 cd05762 192.095 -143240 cd05763 150.085 -143241 cd05764 142.239 -143242 cd05765 158.475 -143243 cd05766 151.015 -143244 cd05767 143.635 -319312 cd05768 127.041 -143246 cd05769 169.862 -143247 cd05770 147.242 -319313 cd05771 179.255 -319314 cd05772 140.913 -143250 cd05773 213.253 -319315 cd05774 125.846 -319316 cd05775 82.7918 -99819 cd05776 167.404 -99820 cd05777 333.389 -99821 cd05778 165.486 -99822 cd05779 366.585 -99823 cd05780 258.824 -99824 cd05781 232.987 -99825 cd05782 173.58 -99826 cd05783 296.538 -99827 cd05784 252.488 -99828 cd05785 281.222 -100061 cd05787 117.294 -240215 cd05789 72.5822 -240216 cd05790 107.345 -240217 cd05791 131.214 -240218 cd05792 147.576 -240219 cd05793 84.4974 -240220 cd05794 65.623 -240221 cd05795 189.322 -240222 cd05796 178.155 -240223 cd05797 92.9526 -240224 cd05798 221.943 -100092 cd05799 402.27 -100093 cd05800 551.773 -100094 cd05801 900.074 -100095 cd05802 551.32 -100096 cd05803 625.872 -100115 cd05804 245.271 -100097 cd05805 475.968 -99881 cd05806 164.997 -99882 cd05807 183.146 -99883 cd05808 132.103 -99884 cd05809 130.828 -99885 cd05810 150.251 -99886 cd05811 127.387 -99887 cd05813 168.83 -99888 cd05814 138.225 -99889 cd05815 166.851 -99890 cd05816 110.879 -99891 cd05817 147.621 -99892 cd05818 176.155 -271320 cd05819 97.3893 -99893 cd05820 167.391 -100113 cd05821 221.268 -100114 cd05822 127.657 -100062 cd05824 150.381 -100063 cd05825 145.056 -320675 cd05826 80.5922 -320676 cd05827 132.136 -320677 cd05828 109.893 -320678 cd05829 55.7038 -320679 cd05830 78.0183 -100109 cd05831 59.6427 -100110 cd05832 60.9737 -100111 cd05833 61.5105 -99895 cd05834 105.83 -99896 cd05835 94.358 -99897 cd05836 149.142 -99898 cd05837 144.451 -99899 cd05838 135.522 -99900 cd05839 156.513 -99901 cd05840 116.263 -99902 cd05841 140.231 -320682 cd05843 64.7784 -143253 cd05845 185.044 -319317 cd05846 134.785 -143255 cd05847 132.529 -143256 cd05848 199.39 -143257 cd05849 206.347 -143258 cd05850 194.384 -143259 cd05851 192.929 -143260 cd05852 154.795 -143261 cd05853 174.416 -143262 cd05854 176.007 -143263 cd05855 161.545 -143264 cd05856 151.139 -143265 cd05857 170.426 -143266 cd05858 150.084 -143267 cd05859 168.507 -319318 cd05860 171.979 -143269 cd05861 141.149 -143270 cd05862 144.958 -143271 cd05863 125.822 -143272 cd05864 129.665 -143273 cd05865 181.374 -143274 cd05866 193.323 -143275 cd05867 141.561 -143276 cd05868 167.098 -143277 cd05869 189.036 -143278 cd05870 204.826 -143279 cd05871 123.636 -143280 cd05872 106.356 -143281 cd05873 146.503 -143282 cd05874 168.98 -143283 cd05875 157.445 -143284 cd05876 128.505 -143285 cd05877 154.413 -319319 cd05878 187.827 -143287 cd05879 227.84 -143288 cd05880 212.775 -143289 cd05881 202.556 -143290 cd05882 197.963 -143291 cd05883 155.501 -319320 cd05884 151.69 -143293 cd05885 163.604 -143294 cd05886 193.682 -143295 cd05887 189.392 -143296 cd05888 175.849 -143297 cd05889 168.498 -143298 cd05890 189.816 -143299 cd05891 183.572 -143300 cd05892 159.729 -143301 cd05893 172.549 -143302 cd05894 134.206 -143303 cd05895 132.818 -143304 cd05896 210.557 -143305 cd05897 163.012 -143306 cd05898 185.929 -143307 cd05899 127.406 -143308 cd05900 199.789 -143309 cd05901 207.906 -143310 cd05902 191.997 -99716 cd05992 40.3389 -100076 cd06006 95.5152 -100077 cd06007 95.4579 -100116 cd06008 39.2508 -276963 cd06059 290.643 -276964 cd06060 375.889 -100037 cd06061 285.259 -99873 cd06062 141.053 -99874 cd06063 226.507 -99875 cd06064 186.293 -99876 cd06066 139.269 -99877 cd06067 127.668 -99878 cd06068 167.512 -99879 cd06070 154.125 -100117 cd06071 219.422 -99903 cd06080 90.1876 -240505 cd06081 47.0782 -240506 cd06082 54.4303 -240507 cd06083 57.5353 -240508 cd06084 43.6625 -240509 cd06085 66.3541 -240510 cd06086 70.2378 -240511 cd06087 46.3547 -240512 cd06088 55.9446 -240513 cd06089 34.0274 -240514 cd06090 81.4608 -240515 cd06091 40.9036 -132768 cd06093 31.5591 -133158 cd06094 134.671 -133159 cd06095 92.3961 -133160 cd06096 338.199 -133161 cd06097 249.91 -133162 cd06098 599.358 -99853 cd06099 229.917 -99854 cd06100 146.173 -99855 cd06101 263.79 -99856 cd06102 214.047 -99857 cd06103 727.557 -99858 cd06105 857.821 -99859 cd06106 824.446 -99860 cd06107 613.674 -99861 cd06108 655.53 -99862 cd06109 440.589 -99863 cd06110 564.978 -99864 cd06111 662.954 -99865 cd06112 689.16 -99866 cd06113 694.012 -99867 cd06114 666.206 -99868 cd06115 745.802 -99869 cd06116 736.638 -99870 cd06117 758.226 -99871 cd06118 408.914 -176647 cd06125 53.9819 -176648 cd06127 63.4736 -176649 cd06128 120.162 -176650 cd06129 223.159 -99834 cd06130 186.563 -99835 cd06131 233.578 -99836 cd06133 92.6685 -99837 cd06134 340.039 -99838 cd06135 173.116 -99839 cd06136 211.808 -99840 cd06137 166.302 -99841 cd06138 245.251 -176651 cd06139 130.333 -176652 cd06140 70.7563 -176653 cd06141 110.746 -176654 cd06142 129.19 -99846 cd06143 254.463 -99847 cd06144 196.968 -99848 cd06145 169.974 -176655 cd06146 197.901 -99850 cd06147 298.743 -99851 cd06148 192.114 -99852 cd06149 276.626 -100007 cd06150 107.238 -100008 cd06151 153.63 -100009 cd06152 166.328 -100010 cd06153 126.988 -100011 cd06154 140.767 -100012 cd06155 91.1645 -100013 cd06156 87.3847 -132726 cd06157 86.2032 -100079 cd06158 77.9721 -100080 cd06159 158.232 -100081 cd06160 89.5966 -100082 cd06161 122.265 -100083 cd06162 270.052 -100084 cd06163 105.573 -100085 cd06164 179.657 -320680 cd06165 96.4181 -320681 cd06166 120.661 -212486 cd06168 64.8857 -132884 cd06169 40.7062 -99777 cd06170 47.5292 -100119 cd06171 43.6322 -198409 cd06181 165.278 -99779 cd06182 241.087 -99780 cd06183 114.586 -99781 cd06184 222.433 -99782 cd06185 151.096 -99783 cd06186 72.3374 -99784 cd06187 205.905 -99785 cd06188 298.449 -99786 cd06189 234.751 -99787 cd06190 262.574 -99788 cd06191 303.294 -99789 cd06192 157.874 -99790 cd06193 84.6223 -99791 cd06194 219.833 -99792 cd06195 210.114 -99793 cd06196 328.816 -99794 cd06197 236.904 -99795 cd06198 181.686 -99796 cd06199 454.378 -99797 cd06200 268.377 -99798 cd06201 364.728 -99799 cd06202 666.727 -99800 cd06203 456.013 -99801 cd06204 532.218 -99802 cd06206 410.496 -99803 cd06207 423.993 -99804 cd06208 359.713 -99805 cd06209 304.902 -99806 cd06210 358.193 -99807 cd06211 378.205 -99808 cd06212 362.804 -99809 cd06213 357.006 -99810 cd06214 214.715 -99811 cd06215 267.919 -99812 cd06216 246.753 -99813 cd06217 244.098 -99814 cd06218 228.584 -99815 cd06219 235.163 -99816 cd06220 306.097 -99817 cd06221 235.194 -259998 cd06222 48.8496 -206754 cd06223 28.5156 -100121 cd06224 53.1852 -100122 cd06225 28.3698 -99751 cd06257 36.3693 -99750 cd06259 58.4791 -99749 cd06260 41.6461 -119394 cd06261 33.0209 -293792 cd06262 36.4949 -99706 cd06263 78.1885 -119387 cd06265 97.0376 -259999 cd06266 204.36 -107262 cd06267 46.8394 -107263 cd06268 54.3495 -153137 cd06269 45.1988 -107265 cd06270 333.695 -107266 cd06271 217.063 -107267 cd06272 289.252 -107268 cd06273 319.157 -107269 cd06274 309.513 -107270 cd06275 429.381 -107271 cd06276 163.216 -107272 cd06277 302.272 -107273 cd06278 271.74 -107274 cd06279 259.097 -107275 cd06280 377.861 -107276 cd06281 311.175 -107277 cd06282 341.189 -107278 cd06283 256.743 -107279 cd06284 317.966 -107280 cd06285 344.775 -107281 cd06286 262.882 -107282 cd06287 361.669 -107283 cd06288 295.648 -107284 cd06289 295.612 -107285 cd06290 400.944 -107286 cd06291 292.159 -107287 cd06292 334.673 -107288 cd06293 425.307 -107289 cd06294 270.602 -107290 cd06295 269.815 -107291 cd06296 323.803 -107292 cd06297 372.237 -107293 cd06298 341.53 -107294 cd06299 333.149 -107295 cd06300 244.462 -107296 cd06301 246.371 -107297 cd06302 321.074 -107298 cd06303 368.613 -107299 cd06304 184.25 -107300 cd06305 278.057 -107301 cd06306 348.523 -107302 cd06307 222.039 -107303 cd06308 358.864 -107304 cd06309 337.67 -107305 cd06310 281.797 -107306 cd06311 354.356 -107307 cd06312 240.24 -107308 cd06313 393.425 -107309 cd06314 367.121 -107310 cd06315 431.768 -107311 cd06316 428.379 -107312 cd06317 368.688 -107313 cd06318 350.243 -107314 cd06319 416.119 -107315 cd06320 383.013 -107316 cd06321 313.87 -107317 cd06322 386.032 -107318 cd06323 287.977 -107319 cd06324 341.264 -107320 cd06325 213.973 -107321 cd06326 227.079 -107322 cd06327 287.528 -107323 cd06328 425.668 -107324 cd06329 318.468 -107325 cd06330 339.243 -107326 cd06331 252.459 -107327 cd06332 318.38 -107328 cd06333 283.684 -107329 cd06334 324.592 -107330 cd06335 388.145 -107331 cd06336 281.118 -107332 cd06337 348.628 -107333 cd06338 326.918 -107334 cd06339 159.008 -107335 cd06340 387.403 -107336 cd06341 199.118 -107337 cd06342 243.99 -107338 cd06343 376.928 -107339 cd06344 213.313 -107340 cd06345 322.007 -107341 cd06346 337.694 -107342 cd06347 346.083 -107343 cd06348 506.237 -107344 cd06349 493.441 -153138 cd06350 90.8932 -107346 cd06351 50.1997 -107347 cd06352 223.727 -107348 cd06353 200.108 -107349 cd06354 207.366 -107350 cd06355 494.502 -107351 cd06356 523.827 -107352 cd06357 448.612 -107353 cd06358 362.723 -107354 cd06359 375.45 -107355 cd06360 388.213 -107356 cd06361 688.146 -107357 cd06362 560.709 -107358 cd06363 561.921 -107359 cd06364 1056.94 -107360 cd06365 499.075 -107361 cd06366 214.818 -107362 cd06367 227.568 -107363 cd06368 168.997 -107364 cd06369 632.489 -107365 cd06370 498.779 -107366 cd06371 529.161 -107367 cd06372 646.917 -107368 cd06373 432.827 -107369 cd06374 842.25 -107370 cd06375 855.22 -107371 cd06376 942.393 -107372 cd06377 518.2 -107373 cd06378 343.538 -107374 cd06379 535.885 -107375 cd06380 369.717 -107376 cd06381 450.413 -107377 cd06382 252.963 -107378 cd06383 385.696 -107379 cd06384 756.251 -107380 cd06385 760.798 -107381 cd06386 719.654 -107382 cd06387 781.14 -107383 cd06388 777.665 -107384 cd06389 762.249 -107385 cd06390 748.304 -107386 cd06391 857.016 -107387 cd06392 821.557 -107388 cd06393 811.176 -107389 cd06394 577.983 -99717 cd06395 165.044 -99718 cd06396 124.188 -99719 cd06397 109.556 -99720 cd06398 116.741 -99721 cd06399 157.343 -99722 cd06401 105.673 -99723 cd06402 130.531 -99724 cd06403 130.521 -99725 cd06404 133.625 -99726 cd06405 127.503 -99727 cd06406 123.338 -99728 cd06407 112.802 -99729 cd06408 137.196 -99730 cd06409 109.711 -99731 cd06410 103.454 -99732 cd06411 127.316 -119374 cd06412 293.844 -119375 cd06413 271.075 -119376 cd06414 196.635 -119377 cd06415 234.985 -119378 cd06416 181.751 -119379 cd06417 281.637 -119380 cd06418 149.793 -119381 cd06419 214.568 -133042 cd06420 218.601 -133043 cd06421 236.315 -133044 cd06422 191.245 -133045 cd06423 87.6678 -133046 cd06424 477.719 -133047 cd06425 339.187 -133048 cd06426 279.782 -133049 cd06427 396.626 -133050 cd06428 342.697 -133051 cd06429 276.192 -133052 cd06430 542.826 -133053 cd06431 459.247 -133054 cd06432 449.147 -133055 cd06433 179.663 -133056 cd06434 253.331 -133057 cd06435 441.069 -133058 cd06436 276.957 -133059 cd06437 383.199 -133060 cd06438 120.784 -133061 cd06439 259.437 -133062 cd06442 214.319 -176473 cd06444 269.289 -119438 cd06445 50.5578 -107207 cd06446 478.569 -107208 cd06447 668.283 -107209 cd06448 395.514 -107210 cd06449 392.94 -99743 cd06450 312.6 -99744 cd06451 408.988 -99745 cd06452 626.726 -99746 cd06453 396.836 -99747 cd06454 382.679 -119396 cd06462 29.1543 -107220 cd06463 34.955 -107221 cd06464 27.9037 -107222 cd06465 93.8132 -107223 cd06466 60.2931 -107224 cd06467 59.8686 -107225 cd06468 83.0815 -107226 cd06469 90.7936 -107227 cd06470 106.848 -107228 cd06471 103.327 -107229 cd06472 125.495 -107230 cd06475 160.784 -107231 cd06476 166.256 -107232 cd06477 154.196 -107233 cd06478 151.446 -107234 cd06479 135.432 -107235 cd06480 170.515 -107236 cd06481 100.17 -107237 cd06482 130.386 -107238 cd06488 142.436 -107239 cd06489 132.116 -107240 cd06490 115.507 -107241 cd06492 147.487 -107242 cd06493 158.842 -107243 cd06494 161.855 -107244 cd06495 187.002 -107245 cd06497 175.179 -107246 cd06498 172.894 -133460 cd06499 142.055 -99748 cd06502 320.434 -119382 cd06522 242.276 -119383 cd06523 210.296 -119384 cd06524 233.391 -119385 cd06525 226.409 -107247 cd06526 48.6703 -132725 cd06528 442.075 -119397 cd06529 40.62 -119398 cd06530 37.5651 -133474 cd06532 69.5529 -119439 cd06533 99.0807 -143395 cd06534 169.717 -119368 cd06535 135.238 -119369 cd06536 147.638 -119370 cd06537 155.844 -119371 cd06538 153.048 -119372 cd06539 145.472 -119343 cd06541 99.6624 -119359 cd06542 188.741 -119360 cd06543 265.31 -119361 cd06544 306.22 -119362 cd06545 355.992 -119363 cd06546 402.096 -119364 cd06547 327.332 -119365 cd06548 286.834 -119366 cd06549 345.165 -119348 cd06550 96.8572 -153244 cd06551 76.6841 -119344 cd06552 75.355 -119345 cd06553 139.235 -119346 cd06554 81.9935 -119347 cd06555 108.097 -119341 cd06556 217.481 -119342 cd06557 284.697 -119339 cd06558 65.6596 -143472 cd06559 168.062 -143473 cd06560 45.4578 -132880 cd06561 72.345 -119332 cd06562 429.325 -119333 cd06563 384.62 -119334 cd06564 217.539 -119335 cd06565 267.15 -143475 cd06567 84.269 -119336 cd06568 404.793 -119337 cd06569 676.703 -119338 cd06570 531.602 -119330 cd06571 56.754 -119329 cd06572 327.092 -119325 cd06573 59.6493 -119320 cd06574 128.164 -119326 cd06575 49.7581 -119327 cd06576 49.4298 -119328 cd06577 32.501 -119440 cd06578 79.6587 -119321 cd06579 119.821 -119322 cd06580 85.1834 -119323 cd06581 84.4177 -119324 cd06582 87.4864 -133475 cd06583 51.5206 -132915 cd06586 121.683 -319898 cd06587 28.645 -319899 cd06588 94.2608 -269876 cd06589 204.508 -260000 cd06590 165.001 -269877 cd06591 393.846 -269878 cd06592 250.214 -269879 cd06593 404.643 -269880 cd06594 447.415 -269881 cd06595 333.399 -269882 cd06596 536.157 -269883 cd06597 352.771 -269884 cd06598 511.074 -269885 cd06599 476.322 -269886 cd06600 415.351 -269887 cd06601 537.765 -269888 cd06602 429.624 -269889 cd06603 567.922 -269890 cd06604 464.289 -270782 cd06605 420.983 -270783 cd06606 276.324 -270784 cd06607 527.018 -270785 cd06608 475.254 -270786 cd06609 438.602 -270787 cd06610 448.73 -132942 cd06611 518.529 -132943 cd06612 434.386 -270788 cd06613 457.152 -270789 cd06614 374.625 -132946 cd06615 552.042 -270790 cd06616 515.377 -173729 cd06617 521.6 -270791 cd06618 486.882 -132950 cd06619 540.236 -270792 cd06620 478.087 -270793 cd06621 513.509 -132953 cd06622 513.242 -132954 cd06623 323.775 -270794 cd06624 548.933 -270795 cd06625 488.404 -270796 cd06626 437.119 -270797 cd06627 391.588 -270798 cd06628 535.192 -270799 cd06629 510.001 -270800 cd06630 504.271 -270801 cd06631 544.339 -270802 cd06632 465.339 -270803 cd06633 688.697 -270804 cd06634 632.058 -270805 cd06635 648.264 -270806 cd06636 585.048 -270807 cd06637 606.716 -132969 cd06638 646.299 -270808 cd06639 638.961 -132971 cd06640 523.076 -270809 cd06641 503.451 -270810 cd06642 533.096 -270811 cd06643 611.646 -132975 cd06644 632.837 -270812 cd06645 568.907 -270813 cd06646 584.299 -270814 cd06647 546.063 -270815 cd06648 494.269 -132980 cd06649 655.581 -270816 cd06650 621.304 -270817 cd06651 548.529 -270818 cd06652 575.07 -270819 cd06653 581.214 -270820 cd06654 595.166 -132986 cd06655 577.446 -132987 cd06656 604.022 -132988 cd06657 574.663 -132989 cd06658 578.531 -270821 cd06659 620.079 -119408 cd06660 90.311 -119400 cd06661 35.3983 -119401 cd06662 78.9247 -133456 cd06663 69.7779 -143480 cd06664 46.4737 -143484 cd06808 135.524 -143485 cd06810 294.596 -143486 cd06811 532.621 -143487 cd06812 572.369 -143488 cd06813 515.293 -143489 cd06814 519.586 -143490 cd06815 410.397 -143491 cd06817 493.389 -143492 cd06818 449.817 -143493 cd06819 373.475 -143494 cd06820 425.19 -143495 cd06821 411.302 -143496 cd06822 287.173 -143497 cd06824 315.284 -143498 cd06825 590.865 -143499 cd06826 558.497 -143500 cd06827 496.248 -143501 cd06828 316.733 -143502 cd06829 441.99 -143503 cd06830 425.446 -143504 cd06831 718.553 -143505 cd06836 589.749 -143506 cd06839 464.76 -143507 cd06840 644.489 -143508 cd06841 419.36 -143509 cd06842 477.524 -143510 cd06843 467.913 -132911 cd06844 123.36 -132900 cd06845 75.8324 -185704 cd06846 128.69 -133457 cd06848 70.255 -133458 cd06849 43.9323 -133459 cd06850 48.1812 -133461 cd06851 264.746 -133462 cd06852 203.488 -133463 cd06853 97.5592 -133464 cd06854 187.836 -133465 cd06855 184.372 -133466 cd06856 194.389 -271356 cd06857 194.497 -132769 cd06859 153.889 -132770 cd06860 187.158 -132771 cd06861 190.641 -132772 cd06862 197.924 -132773 cd06863 167.465 -132774 cd06864 202.984 -132775 cd06865 169.524 -132776 cd06866 151.612 -132777 cd06867 105.025 -132778 cd06868 162.579 -132779 cd06869 86.5675 -132780 cd06870 182.222 -132781 cd06871 204.131 -132782 cd06872 175.787 -132783 cd06873 172.453 -132784 cd06874 192.211 -132785 cd06875 183.25 -132786 cd06876 170.953 -132787 cd06877 152.145 -132788 cd06878 172.944 -132789 cd06879 221.048 -132790 cd06880 155.895 -132791 cd06881 161.719 -132792 cd06882 186.872 -132793 cd06883 147.118 -132794 cd06884 188.781 -132795 cd06885 152.099 -132796 cd06886 183.381 -132797 cd06887 207.38 -132798 cd06888 215.75 -132799 cd06889 188.753 -132800 cd06890 94.2777 -132801 cd06891 165.988 -132802 cd06892 196.885 -132803 cd06893 200.846 -132804 cd06894 171.102 -132805 cd06895 142.906 -132806 cd06896 194.359 -132807 cd06897 105.817 -132808 cd06898 175.597 -173887 cd06899 143.138 -173888 cd06900 353.262 -173889 cd06901 457.241 -173890 cd06902 398.621 -173891 cd06903 243.735 -132874 cd06911 52.5838 -133467 cd06912 93.8458 -133063 cd06913 400.68 -133064 cd06914 325.918 -133065 cd06915 238.992 -143512 cd06916 96.0916 -270822 cd06917 518.954 -132994 cd06919 149.194 -132993 cd06920 48.0743 -211312 cd06921 47.484 -211313 cd06922 62.44 -211314 cd06923 99.7476 -132902 cd06926 93.8109 -132903 cd06927 64.1444 -132904 cd06928 174.195 -132727 cd06929 145.443 -132728 cd06930 121.949 -132729 cd06931 342.047 -132730 cd06932 302.023 -132731 cd06933 449.808 -132732 cd06934 361.353 -132733 cd06935 359.898 -132734 cd06936 369.543 -132735 cd06937 401.498 -132736 cd06938 361.369 -132737 cd06939 367.076 -132738 cd06940 314.815 -132739 cd06941 270.033 -132740 cd06942 181.394 -132741 cd06943 293.04 -132742 cd06944 325.775 -132743 cd06945 271.967 -132744 cd06946 320.081 -132745 cd06947 466.068 -132746 cd06948 320.942 -132747 cd06949 326.691 -132748 cd06950 264.927 -132749 cd06951 333.701 -132750 cd06952 331.99 -132751 cd06953 261.542 -132752 cd06954 379.866 -143513 cd06955 184.377 -143514 cd06956 124.197 -143515 cd06957 154.543 -143516 cd06958 130.35 -143517 cd06959 114.465 -143518 cd06960 77.2296 -143519 cd06961 144.481 -143520 cd06962 176.695 -143521 cd06963 115.43 -143522 cd06964 138.893 -143523 cd06965 165.338 -143524 cd06966 179.178 -143525 cd06967 188.048 -143526 cd06968 161.933 -143527 cd06969 125.25 -143528 cd06970 179.753 -133477 cd06971 56.3923 -132992 cd06974 49.602 -270234 cd07012 167.261 -132924 cd07013 232.157 -132925 cd07014 188.597 -132926 cd07015 258.477 -132927 cd07016 108.391 -132928 cd07017 106.372 -132929 cd07018 149.613 -132930 cd07019 258.033 -132931 cd07020 193.54 -132932 cd07021 113.837 -132933 cd07022 153.102 -132934 cd07023 123.752 -132882 cd07025 158.883 -197305 cd07026 76.3689 -132905 cd07027 118.382 -132906 cd07028 295.631 -132907 cd07029 86.1318 -132908 cd07030 301.109 -132909 cd07031 308.379 -132910 cd07032 277.553 -132916 cd07033 92.8901 -132917 cd07034 69.8378 -132918 cd07035 45.6004 -132919 cd07036 210.798 -132920 cd07037 181.928 -132921 cd07038 170.753 -132922 cd07039 215.878 -132716 cd07040 30.0745 -132912 cd07041 65.1648 -132913 cd07042 49.5474 -132914 cd07043 43.2784 -132871 cd07044 319.142 -132885 cd07045 54.0861 -132886 cd07046 159.341 -132887 cd07047 191.9 -132888 cd07048 107.43 -132889 cd07049 174.136 -132890 cd07050 130.374 -132891 cd07051 151.68 -132892 cd07052 87.7721 -132893 cd07053 79.1326 -132894 cd07054 64.4971 -132895 cd07055 102.542 -132896 cd07056 114.039 -132897 cd07057 106.61 -132898 cd07058 132.415 -132899 cd07059 110.337 -132717 cd07061 58.9248 -132883 cd07062 230.535 -132881 cd07064 220.543 -143549 cd07066 45.9607 -132718 cd07067 47.702 -132753 cd07068 262.158 -132754 cd07069 486.457 -132755 cd07070 420.513 -132756 cd07071 478.756 -132757 cd07072 446.195 -132758 cd07073 486.753 -132759 cd07074 492.149 -132760 cd07075 501.393 -132761 cd07076 500.615 -143396 cd07077 427.795 -143397 cd07078 260.603 -143398 cd07079 401.812 -143399 cd07080 357.358 -143400 cd07081 580.376 -143401 cd07082 619.587 -143402 cd07083 780.608 -143403 cd07084 468.256 -143404 cd07085 647.653 -143405 cd07086 575.667 -143406 cd07087 488.574 -143407 cd07088 674.365 -143408 cd07089 558.397 -143409 cd07090 732.569 -143410 cd07091 742.489 -143411 cd07092 671.73 -143412 cd07093 586.454 -143413 cd07094 625.227 -143414 cd07095 541.092 -143415 cd07097 690.142 -143416 cd07098 727.557 -143417 cd07099 486.729 -143418 cd07100 607.535 -143419 cd07101 716.781 -143420 cd07102 585.364 -143421 cd07103 553.579 -143422 cd07104 577.56 -143423 cd07105 585.31 -143424 cd07106 571.009 -143425 cd07107 737.262 -143426 cd07108 763.441 -143427 cd07109 634.658 -143428 cd07110 676.377 -143429 cd07111 766.173 -143430 cd07112 697.043 -143431 cd07113 862.133 -143432 cd07114 614.945 -143433 cd07115 743.489 -143434 cd07116 942.651 -143435 cd07117 870.235 -143436 cd07118 742.617 -143437 cd07119 808.46 -143438 cd07120 724.519 -143439 cd07121 611.934 -143440 cd07122 517.815 -143441 cd07123 861.123 -143442 cd07124 692.812 -143443 cd07125 631.153 -143444 cd07126 963.11 -143445 cd07127 910.705 -143446 cd07128 678.607 -143447 cd07129 506.309 -143448 cd07130 759.05 -143449 cd07131 700.255 -143450 cd07132 776.399 -143451 cd07133 626.82 -143452 cd07134 676.637 -143453 cd07135 617.695 -143454 cd07136 690.397 -143455 cd07137 757.714 -143456 cd07138 573.295 -143457 cd07139 586.464 -143458 cd07140 968.117 -143459 cd07141 863.966 -143460 cd07142 900.706 -143461 cd07143 928.475 -143462 cd07144 859.403 -143463 cd07145 665.203 -143464 cd07146 647.109 -143465 cd07147 673.189 -143466 cd07148 775.055 -143467 cd07149 655.05 -143468 cd07150 670.577 -143469 cd07151 773.015 -143470 cd07152 625.858 -133478 cd07153 78.7752 -143529 cd07154 150.413 -143530 cd07155 115.262 -143531 cd07156 121.72 -143532 cd07157 149.169 -143533 cd07158 111.885 -143534 cd07160 197.413 -143535 cd07161 148.486 -143536 cd07162 169.336 -143537 cd07163 195.793 -143538 cd07164 120.647 -143539 cd07165 158.872 -143540 cd07166 144.232 -143541 cd07167 178.032 -143542 cd07168 184.685 -143543 cd07169 179.684 -143544 cd07170 173.892 -143545 cd07171 145.025 -143546 cd07172 126.869 -143547 cd07173 139.671 -143580 cd07176 49.9146 -143581 cd07177 28.0957 -143582 cd07178 75.6767 -143548 cd07179 102.581 -260001 cd07180 192.379 -260002 cd07181 257.832 -260003 cd07182 143.28 -199892 cd07184 76.1264 -143586 cd07185 67.5782 -132872 cd07186 358.448 -132873 cd07187 202.026 -143587 cd07197 73.8979 -132837 cd07198 93.1748 -132838 cd07199 111.269 -132839 cd07200 721.927 -132840 cd07201 916.726 -132841 cd07202 703.853 -132842 cd07203 734.171 -132843 cd07204 319.297 -132844 cd07205 171.19 -132845 cd07206 398.123 -132846 cd07207 155.13 -132847 cd07208 172.794 -132848 cd07209 145.127 -132849 cd07210 223.377 -132850 cd07211 373.129 -132851 cd07212 434.837 -132852 cd07213 319.233 -132853 cd07214 479.625 -132854 cd07215 521.966 -132855 cd07216 280.728 -132856 cd07217 540.544 -132857 cd07218 406.346 -132858 cd07219 623.068 -132859 cd07220 426.467 -132860 cd07221 507.392 -132861 cd07222 378.597 -132862 cd07223 844.577 -132863 cd07224 238.392 -132864 cd07225 513.488 -132865 cd07227 554.411 -132866 cd07228 255.276 -132867 cd07229 414.006 -132868 cd07230 631.565 -132869 cd07231 494.278 -132870 cd07232 472.521 -319900 cd07233 127.828 -319901 cd07235 193.484 -319902 cd07237 180.547 -319903 cd07238 179.98 -319904 cd07239 248.266 -319905 cd07241 204.951 -319906 cd07242 142.242 -319907 cd07243 245.393 -319908 cd07244 202.127 -319909 cd07245 114.722 -319910 cd07246 100.449 -319911 cd07247 80.3861 -319912 cd07249 111.514 -319913 cd07250 198.163 -319914 cd07251 143.204 -319915 cd07252 105.371 -319916 cd07253 145.447 -319917 cd07254 187.669 -319918 cd07255 162.096 -319919 cd07256 270.527 -319920 cd07257 248.407 -319921 cd07258 237.097 -319922 cd07261 171.815 -319923 cd07262 101.536 -319924 cd07263 123.561 -319925 cd07264 106.647 -319926 cd07265 206.814 -319927 cd07266 182.223 -319928 cd07267 145.5 -319929 cd07268 230.051 -132809 cd07276 206.491 -132810 cd07277 182.162 -132811 cd07278 186.929 -132812 cd07279 169.816 -132813 cd07280 100.094 -132814 cd07281 260.761 -132815 cd07282 266.151 -132816 cd07283 225.35 -132817 cd07284 234.101 -132818 cd07285 269.201 -132819 cd07286 290.417 -132820 cd07287 256.429 -132821 cd07288 251.813 -132822 cd07289 229.818 -132823 cd07290 221.721 -132824 cd07291 310.839 -132825 cd07292 280.063 -132826 cd07293 252.991 -132827 cd07294 258.432 -132828 cd07295 194.639 -132829 cd07296 250.997 -132830 cd07297 247.909 -132831 cd07298 253.364 -132832 cd07299 205.857 -132833 cd07300 204.28 -132834 cd07301 214.283 -143636 cd07302 68.3747 -132765 cd07303 333.472 -143612 cd07304 345.172 -132766 cd07305 195.12 -132767 cd07306 129.636 -153271 cd07307 46.6687 -173892 cd07308 95.1122 -213985 cd07309 43.5696 -143583 cd07311 207.696 -143584 cd07313 72.5519 -143585 cd07316 82.1855 -153371 cd07320 234.695 -153390 cd07321 79.6605 -143474 cd07322 306.496 -153396 cd07323 69.8681 -320683 cd07324 85.6943 -320684 cd07325 110.007 -320685 cd07326 76.5765 -320686 cd07327 138.926 -320687 cd07328 67.1935 -320688 cd07329 56.3054 -320689 cd07330 253.135 -320690 cd07331 131.16 -320691 cd07332 108.814 -320692 cd07333 188.085 -320693 cd07334 297.959 -320694 cd07335 223.228 -320695 cd07336 346.403 -320696 cd07337 187.906 -320697 cd07338 206.278 -320698 cd07339 194.704 -320699 cd07340 243.173 -320700 cd07341 86.2296 -320701 cd07342 149.331 -320702 cd07343 240.461 -320703 cd07344 32.8003 -320704 cd07345 160.139 -259818 cd07347 66.4564 -132762 cd07348 473.161 -132763 cd07349 384.556 -132764 cd07350 297.504 -259819 cd07353 120.64 -259820 cd07354 109.298 -259821 cd07355 136.396 -259822 cd07356 140.314 -259823 cd07357 105.078 -259824 cd07358 120.946 -153372 cd07359 237.945 -153373 cd07361 110.744 -153374 cd07362 414.609 -153375 cd07363 116.472 -153376 cd07364 535.821 -153377 cd07365 476.394 -153378 cd07366 389.828 -153379 cd07367 425.696 -153380 cd07368 464.712 -153381 cd07369 604.959 -153382 cd07370 374.74 -153383 cd07371 449.995 -153384 cd07372 620.845 -153385 cd07373 536.406 -143620 cd07374 62.0855 -153408 cd07375 69.0715 -143511 cd07376 252.385 -153418 cd07377 58.6128 -277324 cd07378 245.312 -277325 cd07379 110.413 -277326 cd07380 93.1342 -277327 cd07381 158.607 -277328 cd07382 349.963 -277329 cd07383 137.039 -277330 cd07384 154.044 -277331 cd07385 170.153 -277332 cd07386 391.667 -277333 cd07387 309.571 -277334 cd07388 358.12 -277335 cd07389 102.86 -277336 cd07390 178.324 -277337 cd07391 136.286 -277338 cd07392 219.107 -277339 cd07393 312.117 -163637 cd07394 239.418 -277340 cd07395 366.259 -277341 cd07396 274.209 -277342 cd07397 330.409 -277343 cd07398 92.4209 -277344 cd07399 295.171 -277345 cd07400 102.372 -277346 cd07401 226.478 -277347 cd07402 196.73 -277348 cd07403 181.166 -277349 cd07404 217.973 -277350 cd07405 414.726 -277351 cd07406 327.695 -277352 cd07407 348.944 -277353 cd07408 381.92 -277354 cd07409 321.833 -277355 cd07410 305.407 -277356 cd07411 331.227 -277357 cd07412 396.357 -277358 cd07413 361.097 -277359 cd07414 563.502 -277360 cd07415 483.241 -277361 cd07416 521.097 -277362 cd07417 499.476 -163661 cd07418 649.169 -277363 cd07419 552.817 -277364 cd07420 552.015 -163664 cd07421 593.711 -277365 cd07422 351.461 -277366 cd07423 279.785 -277367 cd07424 307.321 -277368 cd07425 231.804 -143631 cd07429 104.343 -143632 cd07430 227.488 -213986 cd07431 86.8733 -213987 cd07432 43.3821 -213988 cd07433 341.765 -213989 cd07434 298.986 -213990 cd07435 198.851 -213991 cd07436 260.429 -213992 cd07437 287.802 -213993 cd07438 120.575 -143633 cd07439 221.438 -188659 cd07440 48.5414 -143550 cd07441 257.671 -143551 cd07442 277.293 -143552 cd07443 250.201 -143553 cd07444 266.812 -143554 cd07445 204.396 -143555 cd07446 252.908 -143556 cd07447 257.375 -143557 cd07448 243.138 -143558 cd07449 293.068 -143559 cd07450 231.193 -143560 cd07451 210.687 -143561 cd07452 256.732 -143562 cd07453 252.169 -143563 cd07454 169.962 -143564 cd07455 181.938 -143565 cd07456 233.059 -143566 cd07457 234.31 -143567 cd07458 226.909 -143568 cd07459 116.725 -143569 cd07460 297.699 -143570 cd07461 279.174 -143571 cd07462 294.619 -143572 cd07463 269.971 -143573 cd07464 275.812 -143574 cd07465 274.238 -143575 cd07466 270.419 -143576 cd07467 318.135 -143577 cd07468 310.408 -143578 cd07469 249.245 -143621 cd07470 77.0631 -213030 cd07472 88.3199 -173799 cd07473 258.277 -173800 cd07474 184.841 -173801 cd07475 293.788 -173802 cd07476 306.948 -173803 cd07477 232.422 -173804 cd07478 323.03 -173805 cd07479 512.384 -173806 cd07480 298.134 -173807 cd07481 353.99 -173808 cd07482 255.368 -173809 cd07483 363.607 -173810 cd07484 286.08 -173811 cd07485 320.586 -173812 cd07487 259.825 -173813 cd07488 221.959 -173814 cd07489 282.57 -173815 cd07490 305.627 -173816 cd07491 235.307 -173817 cd07492 216.051 -173818 cd07493 341.207 -173819 cd07494 430.36 -173820 cd07496 296.512 -173821 cd07497 318.645 -173822 cd07498 227.996 -319802 cd07499 318.594 -319803 cd07500 247.076 -319804 cd07501 146.723 -319805 cd07502 199.291 -319806 cd07503 165.398 -319807 cd07504 388.98 -319808 cd07505 58.7815 -319809 cd07506 131.342 -319810 cd07507 259.603 -319811 cd07508 303.902 -319812 cd07509 319.225 -319813 cd07510 406.388 -319814 cd07511 137.52 -319815 cd07512 257.244 -319816 cd07514 119.231 -319817 cd07515 168.366 -319818 cd07516 181.254 -319819 cd07517 243.284 -319820 cd07518 160.827 -319821 cd07519 138.634 -319822 cd07520 177.255 -319823 cd07521 83.4137 -319824 cd07522 378.152 -319825 cd07523 228.03 -319826 cd07524 258.802 -319827 cd07525 237.609 -319828 cd07526 157.095 -319829 cd07527 214.9 -319830 cd07528 254.227 -319831 cd07529 271.913 -319832 cd07530 305.671 -319833 cd07531 379.221 -319834 cd07532 398.986 -319835 cd07533 265.801 -319836 cd07534 236.846 -319837 cd07535 230.341 -319838 cd07536 1271.37 -319839 cd07538 951.5 -319840 cd07539 719.199 -319841 cd07541 1351.69 -319842 cd07542 452.088 -319843 cd07543 1175.63 -319844 cd07544 707.933 -319845 cd07545 821.28 -319846 cd07546 794.686 -319847 cd07548 871.557 -319848 cd07550 665.9 -319849 cd07551 719.416 -319850 cd07552 939.806 -319851 cd07553 856.428 -143637 cd07556 114.376 -143638 cd07557 53.6521 -143471 cd07559 848.939 -143476 cd07560 135.232 -143477 cd07561 167.431 -143478 cd07562 117.301 -143479 cd07563 122.786 -143588 cd07564 297.862 -143589 cd07565 428.629 -143590 cd07566 354.337 -143591 cd07567 344.998 -143592 cd07568 505.108 -143593 cd07569 470.638 -143594 cd07570 155.32 -143595 cd07571 164.309 -143596 cd07572 299.342 -143597 cd07573 377.673 -143598 cd07574 300.657 -143599 cd07575 391.902 -143600 cd07576 265.983 -143601 cd07577 409.381 -143602 cd07578 459.69 -143603 cd07579 375.357 -143604 cd07580 347.411 -143605 cd07581 277.535 -143606 cd07582 376.684 -143607 cd07583 302.15 -143608 cd07584 393.658 -143609 cd07585 333.899 -143610 cd07586 325.397 -143611 cd07587 749.194 -153272 cd07588 308.513 -153273 cd07589 167.11 -153274 cd07590 268.082 -153275 cd07591 348.948 -153276 cd07592 316.558 -153277 cd07593 264.597 -153278 cd07594 315.1 -153279 cd07595 239.93 -153280 cd07596 107.057 -153281 cd07597 185.972 -153282 cd07598 276.118 -153283 cd07599 154.72 -153284 cd07600 233.015 -153285 cd07601 363.46 -153286 cd07602 290.756 -153287 cd07603 242.979 -153288 cd07604 275.831 -153289 cd07605 227.249 -153290 cd07606 238.544 -153291 cd07607 342.537 -153292 cd07608 163.294 -153293 cd07609 204.055 -153294 cd07610 96.2546 -153295 cd07611 391.223 -153296 cd07612 384.592 -153297 cd07613 382.43 -153298 cd07614 409.488 -153299 cd07615 396.31 -153300 cd07616 456.843 -153301 cd07617 408.648 -153302 cd07618 496.864 -153303 cd07619 494.95 -153304 cd07620 391.998 -153305 cd07621 288.074 -153306 cd07622 273.492 -153307 cd07623 277.618 -153308 cd07624 265.783 -153309 cd07625 356.307 -153310 cd07626 247.176 -153311 cd07627 258.774 -153312 cd07628 207.12 -153313 cd07629 233.824 -153314 cd07630 295.185 -153315 cd07631 444.915 -153316 cd07632 423.67 -153317 cd07633 397.067 -153318 cd07634 426.754 -153319 cd07635 414.395 -153320 cd07636 402.515 -153321 cd07637 421.332 -153322 cd07638 380.886 -153323 cd07639 325.33 -153324 cd07640 377.031 -153325 cd07641 406.752 -153326 cd07642 419.823 -153327 cd07643 413.769 -153328 cd07644 339.976 -153329 cd07645 437.041 -153330 cd07646 411.631 -153331 cd07647 346.386 -153332 cd07648 363.97 -153333 cd07649 362.41 -153334 cd07650 229.132 -153335 cd07651 324.641 -153336 cd07652 290.403 -153337 cd07653 271.434 -153338 cd07654 393.873 -153339 cd07655 315.408 -153340 cd07656 275.363 -153341 cd07657 251.919 -153342 cd07658 275.414 -153343 cd07659 313.493 -153344 cd07660 274.2 -153345 cd07661 331.363 -153346 cd07662 395.178 -153347 cd07663 373.117 -153348 cd07664 461.442 -153349 cd07665 457.992 -153350 cd07666 444.731 -153351 cd07667 501.067 -153352 cd07668 456.793 -153353 cd07669 413.989 -153354 cd07670 427.046 -153355 cd07671 436.699 -153356 cd07672 402.791 -153357 cd07673 490.725 -153358 cd07674 509.1 -153359 cd07675 516.14 -153360 cd07676 469.527 -153361 cd07677 497.729 -153362 cd07678 434.05 -153363 cd07679 502.673 -153364 cd07680 496.491 -153365 cd07681 468.263 -153366 cd07682 527.338 -153367 cd07683 488.807 -153368 cd07684 485.363 -153369 cd07685 315.35 -153370 cd07686 439.11 -319321 cd07687 110.712 -319322 cd07688 54.4924 -143313 cd07689 120.38 -143314 cd07690 163.502 -143315 cd07691 99.9472 -143316 cd07692 86.0282 -143317 cd07693 170.416 -143318 cd07694 124.708 -143319 cd07695 145.194 -319323 cd07696 117.907 -319324 cd07697 145.05 -143322 cd07698 109.685 -319325 cd07699 108.696 -319326 cd07700 160.685 -319327 cd07701 196.47 -143326 cd07702 143.1 -319328 cd07703 144.876 -319329 cd07704 150.427 -143329 cd07705 157.845 -319330 cd07706 185.78 -293793 cd07707 277.503 -293794 cd07708 383.049 -293795 cd07709 176.138 -293796 cd07710 194.642 -293797 cd07711 160.058 -293798 cd07712 212.104 -293799 cd07713 125.042 -293800 cd07714 181.451 -293801 cd07715 181.155 -293802 cd07716 164.923 -293803 cd07717 218.087 -293804 cd07718 185.444 -293805 cd07719 159.989 -293806 cd07720 183.134 -293807 cd07721 148.524 -293808 cd07722 217.401 -293809 cd07723 144.525 -293810 cd07724 150.628 -293811 cd07725 157.075 -293812 cd07726 175.759 -293813 cd07727 201.27 -293814 cd07728 410.497 -293815 cd07729 150.443 -293816 cd07730 163.978 -293817 cd07731 116.079 -293818 cd07732 195.909 -293819 cd07733 195.56 -293820 cd07734 213.347 -293821 cd07735 157.758 -293822 cd07736 244.839 -293823 cd07737 276.741 -293824 cd07738 275.328 -293825 cd07739 204.658 -293826 cd07740 214.045 -293827 cd07741 255.962 -293828 cd07742 252.931 -293829 cd07743 160.389 -143394 cd07749 207.414 -143622 cd07750 115.875 -143623 cd07751 324.314 -143624 cd07756 155.469 -143625 cd07758 168.324 -143626 cd07761 163.556 -143627 cd07762 142.335 -143639 cd07765 39.8402 -163686 cd07767 103.745 -198346 cd07768 492.038 -198347 cd07769 599.204 -212659 cd07770 348.051 -198349 cd07771 528.614 -198350 cd07772 497.244 -198351 cd07773 804.77 -198352 cd07774 443.748 -198353 cd07775 647.959 -212660 cd07776 652.336 -212661 cd07777 436.742 -198356 cd07778 832.715 -212662 cd07779 461.329 -198358 cd07781 667.406 -212663 cd07782 626.149 -198360 cd07783 711.813 -198361 cd07786 701.169 -198362 cd07789 886.772 -198363 cd07791 604.81 -212664 cd07792 955.256 -212665 cd07793 774.557 -198366 cd07794 766.695 -198367 cd07795 836.329 -198368 cd07796 1019.13 -198369 cd07798 818.398 -212666 cd07802 379.992 -198371 cd07803 484.561 -198372 cd07804 541.406 -198373 cd07805 459.409 -198374 cd07808 542.472 -198375 cd07809 560.392 -198376 cd07810 853.231 -198377 cd07811 839.891 -176854 cd07812 34.9916 -176855 cd07813 104.861 -176856 cd07814 45.8176 -176857 cd07815 366.653 -176858 cd07816 93.7932 -176859 cd07817 109.231 -176860 cd07818 110.434 -176861 cd07819 127.74 -176862 cd07820 97.6754 -176863 cd07821 62.3415 -176864 cd07822 82.3747 -176865 cd07823 116.572 -176866 cd07824 149.391 -176867 cd07825 179.853 -176868 cd07826 160.493 -143640 cd07827 147.9 -143652 cd07828 96.52 -270823 cd07829 356.022 -270824 cd07830 406.92 -270825 cd07831 475.994 -270826 cd07832 434.064 -270827 cd07833 457.164 -270828 cd07834 378.406 -270829 cd07835 530.71 -143341 cd07836 560.176 -270830 cd07837 588.342 -270831 cd07838 479.464 -143344 cd07839 536.246 -270832 cd07840 404.254 -270833 cd07841 445.093 -270834 cd07842 469.844 -173741 cd07843 482.109 -270835 cd07844 567.78 -173742 cd07845 530.787 -270836 cd07846 531.998 -270837 cd07847 560.452 -270838 cd07848 579.259 -270839 cd07849 579.645 -270840 cd07850 614.037 -143356 cd07851 539.573 -270841 cd07852 547.156 -173748 cd07853 653.735 -143359 cd07854 606.776 -270842 cd07855 558.906 -270843 cd07856 659.649 -173750 cd07857 587.449 -143363 cd07858 659.447 -143364 cd07859 619.105 -270844 cd07860 588.704 -270845 cd07861 556.263 -270846 cd07862 571.591 -143368 cd07863 616.204 -270847 cd07864 576.754 -270848 cd07865 557.753 -270849 cd07866 532.276 -270850 cd07867 657.526 -270851 cd07868 678.702 -143374 cd07869 606.305 -270852 cd07870 616.588 -270853 cd07871 636.282 -143377 cd07872 642.427 -270854 cd07873 647.06 -143379 cd07874 729.964 -143380 cd07875 749.565 -143381 cd07876 735.297 -143382 cd07877 771.517 -143383 cd07878 765.748 -143384 cd07879 685.095 -143385 cd07880 694.004 -143641 cd07881 367.6 -143642 cd07882 294.806 -143643 cd07883 354.862 -143644 cd07884 225.772 -143645 cd07885 330.679 -143646 cd07886 290.222 -143647 cd07887 305.181 -143579 cd07888 246.466 -143628 cd07890 70.7609 -143629 cd07891 160.746 -143630 cd07892 471.079 -153435 cd07893 170.607 -185705 cd07894 373.823 -185706 cd07895 125.434 -185707 cd07896 118.052 -185708 cd07897 271.347 -185709 cd07898 204.492 -185710 cd07900 228.979 -185711 cd07901 228.578 -185712 cd07902 347.787 -185713 cd07903 167.756 -185714 cd07905 194.388 -185715 cd07906 176.574 -153117 cd07908 154.357 -153118 cd07909 158.891 -153119 cd07910 202.405 -153120 cd07911 317.362 -143653 cd07912 431.366 -153419 cd07914 225.742 -153420 cd07920 286.41 -153391 cd07921 165.329 -153392 cd07922 137.547 -153393 cd07923 157.213 -153394 cd07924 204.934 -153395 cd07925 171.833 -143648 cd07927 251.424 -153077 cd07930 233.941 -153078 cd07931 366.216 -153079 cd07932 554.617 -143649 cd07933 361.5 -143650 cd07934 359.981 -143651 cd07935 394.26 -153421 cd07936 96.5606 -163675 cd07937 258.13 -163676 cd07938 294.3 -163677 cd07939 347.956 -163678 cd07940 340.195 -163679 cd07941 401.062 -163680 cd07942 481.3 -163681 cd07943 310.585 -163682 cd07944 265.966 -163683 cd07945 515.773 -163684 cd07947 413.641 -163685 cd07948 361.264 -153386 cd07949 521.994 -153387 cd07950 508.124 -153388 cd07951 135.097 -153389 cd07952 293.057 -271157 cd07954 207.643 -153409 cd07955 108.294 -153410 cd07956 168.162 -153411 cd07957 103.724 -153412 cd07958 94.594 -153413 cd07959 117.307 -153414 cd07960 127.641 -153415 cd07961 154.246 -153416 cd07962 101.864 -153417 cd07963 145.783 -176481 cd07964 51.2834 -153436 cd07967 220.697 -153437 cd07968 148.862 -153438 cd07969 188.069 -153439 cd07970 116.648 -153440 cd07971 82.9928 -153441 cd07972 169.266 -153422 cd07973 86.9089 -199899 cd07976 71.4016 -153423 cd07977 61.8717 -173962 cd07978 86.0451 -173963 cd07979 94.9911 -259828 cd07980 69.278 -173964 cd07981 56.0671 -187739 cd07982 135.431 -153245 cd07983 170.857 -153246 cd07984 86.1144 -153247 cd07985 354.822 -153248 cd07986 204.788 -153249 cd07987 113.537 -153250 cd07988 219.782 -153251 cd07989 67.296 -153252 cd07990 84.2123 -153253 cd07991 136.582 -153254 cd07992 175.143 -153255 cd07993 181.232 -153424 cd07994 94.6505 -153431 cd07995 106.86 -153425 cd07996 41.0497 -153426 cd07997 79.6559 -153427 cd07998 98.154 -153432 cd07999 417.211 -193574 cd08000 54.6321 -153428 cd08001 104.599 -153429 cd08002 135.61 -153430 cd08003 157.489 -153433 cd08010 239.403 -185693 cd08023 100.777 -185694 cd08024 450.929 -153090 cd08025 563.07 -153434 cd08026 63.8607 -153397 cd08028 120.097 -153398 cd08029 123.95 -153399 cd08030 114.794 -153400 cd08031 137.572 -153401 cd08032 153.172 -153402 cd08033 123.932 -153403 cd08034 141.41 -153404 cd08035 155.204 -153405 cd08036 139.772 -153406 cd08037 154.676 -153407 cd08038 149.717 -185716 cd08039 320.117 -153442 cd08040 103.488 -153443 cd08041 62.1508 -176269 cd08044 89.5598 -173965 cd08045 81.9918 -173966 cd08047 100.806 -173967 cd08048 75.6807 -176263 cd08049 44.5711 -173968 cd08050 229.903 -153444 cd08051 108.961 -153445 cd08053 83.1801 -153446 cd08054 32.6679 -153447 cd08055 80.8317 -163687 cd08056 279.512 -163688 cd08057 85.5724 -163689 cd08058 171.223 -163690 cd08059 123.441 -163691 cd08060 132.419 -163692 cd08061 165.61 -163693 cd08062 394.642 -163694 cd08063 217.891 -163695 cd08064 262.912 -163696 cd08065 193.637 -163697 cd08066 232.486 -163698 cd08067 225.224 -163699 cd08068 285.011 -163700 cd08069 260.648 -163701 cd08070 87.6974 -163702 cd08071 112.47 -163703 cd08072 148.173 -163704 cd08073 95.4415 -173969 cd08148 506.964 -163706 cd08150 359.565 -163707 cd08151 450.723 -163708 cd08152 288.776 -163709 cd08153 292.983 -163710 cd08154 683.256 -163711 cd08155 889.41 -163712 cd08156 742.812 -163713 cd08157 698.714 -176482 cd08159 189.605 -277369 cd08162 431.571 -277370 cd08163 393.694 -277371 cd08164 206.184 -277372 cd08165 202.689 -277373 cd08166 286.258 -173979 cd08168 33.7512 -173828 cd08200 496.366 -173829 cd08201 430.351 -188876 cd08203 71.5866 -173970 cd08205 323.716 -173971 cd08206 488.284 -173972 cd08207 591.206 -173973 cd08208 831.078 -173974 cd08209 598.535 -173975 cd08210 424.729 -173976 cd08211 703.876 -173977 cd08212 870.206 -173978 cd08213 670.637 -270855 cd08215 329.038 -270856 cd08216 442.119 -270857 cd08217 364.94 -270858 cd08218 532.85 -173759 cd08219 562.673 -270859 cd08220 453.035 -270860 cd08221 467.677 -270861 cd08222 495.405 -270862 cd08223 500.041 -270863 cd08224 464.437 -173765 cd08225 554.953 -270864 cd08226 602.244 -173767 cd08227 654.704 -270865 cd08228 581.216 -270866 cd08229 574.286 -176192 cd08230 348.441 -176193 cd08231 299.56 -176194 cd08232 353.464 -176195 cd08233 379.192 -176196 cd08234 373.4 -176197 cd08235 412.374 -176198 cd08236 343.825 -176199 cd08237 526.161 -176200 cd08238 570.92 -176201 cd08239 373.193 -176202 cd08240 385.045 -176203 cd08241 269.754 -176204 cd08242 379.281 -176205 cd08243 445.515 -176206 cd08244 312.766 -176207 cd08245 396.692 -176208 cd08246 627.522 -176209 cd08247 377.379 -176210 cd08248 379.645 -176211 cd08249 202.814 -176212 cd08250 481.757 -176213 cd08251 501.572 -176214 cd08252 344.894 -176215 cd08253 239.023 -176216 cd08254 256.02 -176217 cd08255 130.083 -176218 cd08256 650.24 -176219 cd08258 327.735 -176220 cd08259 388.983 -176221 cd08260 463.997 -176222 cd08261 370.751 -176223 cd08262 387.819 -176224 cd08263 508.064 -176225 cd08264 465.288 -176226 cd08265 648.421 -176227 cd08266 452.096 -176228 cd08267 165.467 -176229 cd08268 277.558 -176230 cd08269 318.532 -176231 cd08270 268.471 -176232 cd08271 328.466 -176233 cd08272 375.744 -176234 cd08273 317.668 -176235 cd08274 450.981 -176236 cd08275 383.089 -176237 cd08276 234.353 -176238 cd08277 489.928 -176239 cd08278 402.648 -176240 cd08279 418.483 -176241 cd08281 506.53 -176242 cd08282 450.12 -176243 cd08283 508.615 -176244 cd08284 413.577 -176245 cd08285 495.223 -176246 cd08286 521.041 -176247 cd08287 498.372 -176248 cd08288 397.293 -176249 cd08289 531.133 -176250 cd08290 210.154 -176251 cd08291 354.604 -176252 cd08292 375.903 -176253 cd08293 582.425 -176254 cd08294 418.59 -176255 cd08295 526.502 -176256 cd08296 479.433 -176257 cd08297 333.732 -176258 cd08298 428.91 -176259 cd08299 645.523 -176260 cd08300 623.867 -176261 cd08301 627.015 -176720 cd08304 54.0977 -260019 cd08305 63.8628 -260020 cd08306 121.634 -260021 cd08307 130.878 -260022 cd08308 157.882 -260023 cd08309 93.1805 -260024 cd08310 79.2084 -260025 cd08311 96.5861 -260026 cd08312 87.6571 -176729 cd08313 110.172 -260027 cd08315 99.2672 -260028 cd08316 129.721 -260029 cd08317 92.3273 -260030 cd08318 140.349 -260031 cd08319 123.59 -260032 cd08320 70.7332 -260033 cd08321 80.2607 -260034 cd08323 156.512 -260035 cd08324 145.696 -260036 cd08325 88.0339 -176740 cd08326 110.978 -260037 cd08327 155.698 -260038 cd08329 162.229 -260039 cd08330 84.576 -260040 cd08332 129.851 -260041 cd08333 122.118 -260042 cd08334 93.4166 -260043 cd08336 71.0617 -260044 cd08337 85.5465 -260045 cd08338 117.56 -176750 cd08339 102.842 -260046 cd08340 99.7339 -260047 cd08341 132.559 -319930 cd08342 82.6423 -319931 cd08343 112.025 -319932 cd08344 177.993 -319933 cd08345 144.624 -319934 cd08346 185.184 -319935 cd08347 172.813 -319936 cd08348 189.268 -319937 cd08349 91.5185 -319938 cd08350 170.151 -319939 cd08351 139.179 -319940 cd08352 169.646 -319941 cd08353 192.02 -319942 cd08354 177.943 -319943 cd08355 156.811 -319944 cd08356 191.746 -319945 cd08357 179.502 -319946 cd08358 236.876 -319947 cd08359 163.338 -319948 cd08360 236.639 -319949 cd08361 168.927 -319950 cd08362 145.47 -319951 cd08363 221.456 -319952 cd08364 226.002 -176483 cd08365 221.224 -176484 cd08366 153.482 -176262 cd08367 145.104 -259829 cd08368 34.6007 -187712 cd08369 104.293 -187727 cd08370 53.1931 -187740 cd08371 137.543 -197306 cd08372 127.598 -176019 cd08373 121.592 -176020 cd08374 122.002 -176021 cd08375 222.645 -176022 cd08376 135.461 -176023 cd08377 187.892 -176024 cd08378 157.86 -176025 cd08379 160.265 -176026 cd08380 96.2764 -176027 cd08381 160.921 -176028 cd08382 150.15 -176029 cd08383 153.574 -176030 cd08384 212.208 -176031 cd08385 220.985 -176032 cd08386 224.902 -176033 cd08387 210.723 -176034 cd08388 201.81 -176035 cd08389 163.181 -176036 cd08390 157.033 -176037 cd08391 154.757 -176038 cd08392 212.766 -176039 cd08393 221.538 -176040 cd08394 201.909 -176041 cd08395 218.035 -176042 cd08397 123.898 -176043 cd08398 278.213 -176044 cd08399 274.096 -176045 cd08400 216.465 -176046 cd08401 209.599 -176047 cd08402 228.825 -176048 cd08403 225.08 -176049 cd08404 213.829 -176050 cd08405 245.405 -176051 cd08406 233.144 -176052 cd08407 256.831 -176053 cd08408 208.762 -176054 cd08409 213.736 -176055 cd08410 229.006 -176103 cd08411 168.472 -176104 cd08412 218.182 -176105 cd08413 277.196 -176106 cd08414 89.4887 -176107 cd08415 173.517 -176108 cd08416 322.373 -176109 cd08417 104.989 -176110 cd08418 270.764 -176111 cd08419 267.836 -176112 cd08420 205.033 -176113 cd08421 208.915 -176114 cd08422 128.712 -176115 cd08423 150.056 -176116 cd08425 284.607 -176117 cd08426 232.584 -176118 cd08427 207.427 -176119 cd08428 291.845 -176120 cd08429 308.86 -176121 cd08430 282.931 -176122 cd08431 284.547 -176123 cd08432 141.564 -176124 cd08433 189.343 -176125 cd08434 215.093 -176126 cd08435 184.399 -176127 cd08436 173.171 -176128 cd08437 253.024 -176129 cd08438 225.514 -176130 cd08439 242.624 -176131 cd08440 157.687 -176132 cd08441 252.487 -176133 cd08442 203.223 -176134 cd08443 359.569 -176135 cd08444 348.725 -176136 cd08445 274.875 -176137 cd08446 254.128 -176138 cd08447 263.738 -176139 cd08448 271.833 -176140 cd08449 241.792 -176141 cd08450 294.67 -176142 cd08451 228.216 -176143 cd08452 328.692 -176144 cd08453 300.047 -176145 cd08456 305.497 -176146 cd08457 251.64 -176147 cd08458 141.387 -176148 cd08459 175.843 -176149 cd08460 205.517 -176150 cd08461 275.699 -176151 cd08462 257.558 -176152 cd08463 304.621 -176153 cd08464 207.471 -176154 cd08465 265.327 -176155 cd08466 192.852 -176156 cd08467 245.81 -176157 cd08468 280.093 -176158 cd08469 265.038 -176159 cd08470 342.753 -176160 cd08471 240.505 -176161 cd08472 234.714 -176162 cd08473 256.714 -176163 cd08474 263.168 -176164 cd08475 238.609 -176165 cd08476 243.691 -176166 cd08477 284.123 -176167 cd08478 328.914 -176168 cd08479 271.778 -176169 cd08480 313.889 -176170 cd08481 264.158 -176171 cd08482 270.042 -176172 cd08483 287.319 -176173 cd08484 335.88 -176174 cd08485 348.992 -176175 cd08486 374.047 -176176 cd08487 351.847 -176177 cd08488 340.278 -173854 cd08489 521.402 -173855 cd08490 423.553 -173856 cd08491 669.084 -173857 cd08492 452.837 -173858 cd08493 465.114 -173859 cd08494 514.871 -173860 cd08495 463.348 -173861 cd08496 462.963 -173862 cd08497 369.543 -173863 cd08498 483.603 -173864 cd08499 542.581 -173865 cd08500 343.454 -173866 cd08501 302.342 -173867 cd08502 469.362 -173868 cd08503 353.801 -173869 cd08504 274.817 -173870 cd08505 596.949 -173871 cd08506 359.266 -173872 cd08507 392.018 -173873 cd08508 578.953 -173874 cd08509 263.799 -173875 cd08510 625.833 -173876 cd08511 603.502 -173877 cd08512 299.128 -173878 cd08513 273.005 -173879 cd08514 477.882 -173880 cd08515 471.7 -173881 cd08516 551.855 -173882 cd08517 506.706 -173883 cd08518 459.746 -173884 cd08519 567.248 -173885 cd08520 573.882 -176056 cd08521 130.838 -260080 cd08523 80.7952 -197341 cd08524 199.192 -197342 cd08525 180.258 -197343 cd08526 190.516 -270867 cd08528 503.958 -270868 cd08529 465.347 -270869 cd08530 410.244 -188877 cd08531 137.542 -188878 cd08532 136.338 -188879 cd08533 125.174 -176084 cd08534 149.81 -176085 cd08535 123.652 -176086 cd08536 106.644 -188880 cd08537 140.364 -188881 cd08538 177.52 -188882 cd08539 162.893 -176090 cd08540 165.136 -188883 cd08541 196.81 -176092 cd08542 192.503 -188884 cd08543 177.358 -260081 cd08544 58.5487 -260082 cd08545 106.231 -260083 cd08546 82.2315 -260084 cd08547 40.8512 -260085 cd08548 57.2842 -176489 cd08554 61.5303 -176498 cd08555 98.2766 -176499 cd08556 65.7476 -176500 cd08557 79.0588 -176501 cd08558 194.977 -176502 cd08559 262.21 -176503 cd08560 631.379 -176504 cd08561 236 -176505 cd08562 280.263 -176506 cd08563 262.493 -176507 cd08564 294.38 -176508 cd08565 217.657 -176509 cd08566 100.069 -176510 cd08567 293.45 -176511 cd08568 266.471 -176512 cd08570 284.113 -176513 cd08571 343.114 -176514 cd08572 254.897 -176515 cd08573 309.959 -176516 cd08574 390.129 -176517 cd08575 225.174 -176518 cd08576 237.989 -176519 cd08577 235.612 -176520 cd08578 341.224 -176521 cd08579 252.852 -176522 cd08580 402.86 -176523 cd08581 253.409 -176524 cd08582 232.205 -176525 cd08583 216.012 -176526 cd08584 249.552 -176527 cd08585 272.274 -176528 cd08586 213.3 -176529 cd08587 165.593 -176530 cd08588 264.577 -176531 cd08589 220.729 -176532 cd08590 275.824 -176533 cd08591 323.135 -176534 cd08592 279.311 -176535 cd08593 472.207 -176536 cd08594 390.702 -176537 cd08595 496.766 -176538 cd08596 405.002 -176539 cd08597 442.63 -176540 cd08598 306.096 -176541 cd08599 349.748 -176542 cd08600 449.919 -176543 cd08601 313.484 -176544 cd08602 406.299 -176545 cd08603 421.024 -176546 cd08604 420.976 -176547 cd08605 410.264 -176548 cd08606 491.961 -176549 cd08607 412.458 -176550 cd08608 680.029 -176551 cd08609 573.793 -176552 cd08610 593.774 -176553 cd08612 353.829 -176554 cd08613 516.143 -176555 cd08616 270.267 -176556 cd08619 449.31 -176557 cd08620 365.18 -176558 cd08621 308.537 -176559 cd08622 337.378 -176560 cd08623 486.513 -176561 cd08624 535.792 -176562 cd08625 528.086 -176563 cd08626 305.921 -176564 cd08627 320.052 -176565 cd08628 305.826 -176566 cd08629 435.618 -176567 cd08630 499.933 -176568 cd08631 543.772 -176569 cd08632 496.089 -176570 cd08633 486.855 -176474 cd08637 479.225 -176475 cd08638 324.179 -176476 cd08639 412.444 -176477 cd08640 501.541 -176478 cd08641 679.041 -176479 cd08642 584.587 -176480 cd08643 593.256 -187713 cd08644 352.804 -187714 cd08645 199.15 -187715 cd08646 165.694 -187716 cd08647 395.663 -187717 cd08648 306.796 -187718 cd08649 261.039 -187719 cd08650 218.256 -187720 cd08651 223.297 -187721 cd08653 118.083 -176450 cd08663 250.159 -176485 cd08664 227.257 -176486 cd08665 290.288 -176487 cd08666 235.382 -176488 cd08667 251.363 -176571 cd08674 124.73 -176057 cd08675 143.282 -176058 cd08676 162.541 -176059 cd08677 188.581 -176060 cd08678 176.018 -176061 cd08679 90.0824 -176062 cd08680 155.467 -176063 cd08681 166.27 -176064 cd08682 191.127 -176065 cd08683 211.13 -176066 cd08684 183.92 -176067 cd08685 186.505 -176068 cd08686 186.174 -176069 cd08687 143.683 -176070 cd08688 164.788 -176071 cd08689 162.157 -176072 cd08690 229.886 -176073 cd08691 220.353 -176074 cd08692 252.156 -176075 cd08693 229.506 -176076 cd08694 345.542 -176077 cd08695 335.119 -176078 cd08696 269.607 -176079 cd08697 273.043 -187728 cd08700 94.9917 -187729 cd08701 113.914 -187730 cd08702 93.8437 -187731 cd08703 136.707 -187732 cd08704 49.837 -188660 cd08705 202.083 -188661 cd08706 193.693 -188662 cd08707 182.66 -188663 cd08708 145.599 -188664 cd08709 216.073 -188665 cd08710 224.176 -188666 cd08711 214.217 -188667 cd08712 206.711 -188668 cd08713 170.049 -188669 cd08714 198.567 -188670 cd08715 215.585 -188671 cd08716 217.871 -188672 cd08717 211.776 -188673 cd08718 230.428 -188674 cd08719 200.332 -188675 cd08720 182.228 -188676 cd08721 179.464 -188677 cd08722 183.311 -188678 cd08723 212.995 -188679 cd08724 124.226 -188680 cd08725 196.459 -188681 cd08726 217.735 -188682 cd08727 164.914 -188683 cd08728 250.528 -188684 cd08729 188.06 -188685 cd08730 140.173 -188686 cd08731 105.882 -188687 cd08732 138.757 -188688 cd08734 95.9957 -188689 cd08735 230.032 -188690 cd08736 155.872 -188691 cd08737 261.105 -188692 cd08738 239.619 -188693 cd08739 251.87 -188694 cd08740 263.311 -188695 cd08741 196.8 -188696 cd08742 230.718 -188697 cd08743 253.798 -188698 cd08744 227.304 -188699 cd08745 257.293 -188700 cd08746 318.084 -188701 cd08747 280.014 -188702 cd08748 225.421 -188703 cd08749 243.988 -188704 cd08750 267.914 -188705 cd08751 311.902 -188706 cd08752 282.668 -188707 cd08753 252.098 -188708 cd08754 455.995 -188709 cd08755 333.011 -188710 cd08756 196.84 -188885 cd08757 94.3248 -260086 cd08759 115.235 -176490 cd08760 58.8954 -176491 cd08761 99.2861 -176492 cd08762 281.756 -176493 cd08763 229.702 -176494 cd08764 304.639 -176495 cd08765 260.984 -176496 cd08766 181.736 -176572 cd08767 88.8785 -176573 cd08768 58.0163 -176451 cd08769 338.061 -176452 cd08770 320.043 -206738 cd08771 175.896 -176798 cd08773 69.3139 -206755 cd08774 131.929 -176753 cd08775 103.782 -176754 cd08776 86.4215 -260048 cd08777 161.445 -176756 cd08778 165.632 -260049 cd08779 117.801 -260050 cd08780 157.356 -260051 cd08781 109.288 -260052 cd08782 110.51 -260053 cd08783 125.22 -260054 cd08784 118.449 -260055 cd08785 97.828 -176764 cd08786 148.918 -176765 cd08787 150.453 -260056 cd08788 124.129 -260057 cd08789 101.767 -260058 cd08790 156.431 -176769 cd08791 178.885 -260059 cd08792 81.1028 -260060 cd08793 167.213 -260061 cd08794 153.401 -176773 cd08795 153.543 -260062 cd08796 153.48 -260063 cd08797 131.953 -176776 cd08798 106.443 -260064 cd08799 184.827 -260065 cd08800 172.765 -176779 cd08801 196.815 -176780 cd08802 164.81 -176781 cd08803 155.987 -260066 cd08804 145.612 -260067 cd08805 149.738 -260068 cd08806 161.966 -260069 cd08807 175.485 -260070 cd08808 179.047 -260071 cd08809 175.107 -260072 cd08810 131.315 -260073 cd08811 135.177 -176791 cd08813 134.545 -260074 cd08814 110.194 -176793 cd08815 148.625 -260075 cd08816 143.74 -260076 cd08817 127.564 -260077 cd08818 150.919 -260078 cd08819 148.251 -187722 cd08820 262.762 -187723 cd08821 260.715 -187724 cd08822 269.715 -187725 cd08823 250.44 -193585 cd08824 44.1469 -259807 cd08825 192.441 -259808 cd08826 243.575 -259809 cd08827 393.87 -259810 cd08828 269.595 -259811 cd08829 104.093 -176869 cd08860 216.963 -176870 cd08861 91.6147 -176871 cd08862 115.53 -176872 cd08863 136.693 -176873 cd08864 183.773 -176874 cd08865 132.023 -176875 cd08866 157.007 -176876 cd08867 330.193 -176877 cd08868 300.426 -176878 cd08869 307.313 -176879 cd08870 236.892 -176880 cd08871 293.779 -176881 cd08872 376.681 -176882 cd08873 427.784 -176883 cd08874 358.456 -176884 cd08875 217.909 -176885 cd08876 183.627 -176886 cd08877 219.479 -176887 cd08878 99.8097 -176888 cd08879 215.286 -176889 cd08880 326.908 -176890 cd08881 204.018 -176891 cd08882 188.315 -176892 cd08883 237.629 -176893 cd08884 219.835 -176894 cd08885 199.139 -176895 cd08886 241.244 -176896 cd08887 201.767 -176897 cd08888 439.953 -176898 cd08889 522.782 -176899 cd08890 455.417 -176900 cd08891 136.716 -176901 cd08892 133.841 -176902 cd08893 144.308 -176903 cd08894 177.082 -176904 cd08895 180.558 -176905 cd08896 195.145 -176906 cd08897 219.086 -176907 cd08898 132.819 -176908 cd08899 111.23 -176909 cd08900 155.515 -176910 cd08901 167.837 -176911 cd08902 442.471 -176912 cd08903 425.79 -176913 cd08904 407.371 -176914 cd08905 374.172 -176915 cd08906 365.339 -176916 cd08907 430.882 -176917 cd08908 439.833 -176918 cd08909 435.885 -176919 cd08910 381.454 -176920 cd08911 316.924 -176921 cd08913 489.763 -176922 cd08914 453.201 -185746 cd08915 248.411 -271269 cd08916 72.9581 -271270 cd08917 121.996 -271271 cd08919 101.612 -271272 cd08920 271.712 -271273 cd08922 165.774 -271274 cd08923 224.293 -271275 cd08924 287.508 -271276 cd08925 177.065 -271277 cd08926 236.584 -271278 cd08927 188.165 -187633 cd08928 366.228 -187634 cd08929 331.779 -187635 cd08930 329.68 -187636 cd08931 349.828 -212493 cd08932 238.417 -187638 cd08933 453.915 -187639 cd08934 347.218 -187640 cd08935 373.717 -187641 cd08936 462.011 -187642 cd08937 357.608 -187643 cd08939 224.439 -187644 cd08940 417.619 -187645 cd08941 387.898 -187646 cd08942 413.801 -187647 cd08943 329.353 -187648 cd08944 289.776 -187649 cd08945 427.339 -212494 cd08946 75.4146 -187651 cd08947 289.06 -187652 cd08948 272.582 -187653 cd08950 368.441 -187654 cd08951 405.338 -187655 cd08952 237.839 -187656 cd08953 196.434 -187657 cd08954 191.123 -187658 cd08955 251.435 -187659 cd08956 240.246 -187660 cd08957 560.583 -187661 cd08958 296.023 -185752 cd08961 158.557 -199206 cd08962 510.238 -199207 cd08963 250.188 199208 cd08964 236.253 -176799 cd08965 205.67 -176800 cd08966 92.1744 -176801 cd08967 223.107 -176802 cd08968 208.46 -176803 cd08969 154.494 -176804 cd08970 127.757 -176805 cd08971 114.222 -176806 cd08972 156.313 -176807 cd08973 126.979 -176808 cd08974 160.183 -176809 cd08975 175.976 -176810 cd08976 160.979 -185760 cd08977 125.995 -319953 cd09011 184.597 -319954 cd09012 168.33 -319955 cd09013 174.845 -319956 cd09014 258.077 -212511 cd09015 335.938 -176656 cd09018 207.477 -185696 cd09019 268.22 -185697 cd09020 238.663 -185698 cd09021 218.703 -185699 cd09022 302.95 -185700 cd09023 236.358 -185701 cd09024 279.429 -185702 cd09025 313.031 -193601 cd09027 101.344 -176923 cd09030 59.2413 -185761 cd09034 209.128 -176924 cd09071 55.2543 -197307 cd09073 301.129 -197308 cd09074 296.936 -197309 cd09075 310.87 -197310 cd09076 110.134 -197311 cd09077 152.831 -197312 cd09078 146.718 -197313 cd09079 220.598 -197314 cd09080 152.498 -197315 cd09081 240.377 -197316 cd09082 111.673 -197317 cd09083 212.847 -197318 cd09084 178.259 -197319 cd09085 424.767 -197320 cd09086 307.134 -197321 cd09087 237.45 -197322 cd09088 350.464 -197323 cd09089 574.724 -197324 cd09090 498.403 -197325 cd09091 640.84 -197326 cd09092 582.12 -197327 cd09093 435.589 -197328 cd09094 432.564 -197329 cd09095 516.976 -197330 cd09096 443.788 -197331 cd09097 412.082 -197332 cd09098 754.954 -197333 cd09099 756.86 -197334 cd09100 650.51 -197335 cd09101 659.357 -197201 cd09102 260.215 -197202 cd09103 211.7 -197203 cd09104 103.247 -197204 cd09105 118.172 -197205 cd09106 151.63 -197206 cd09107 148.94 -197207 cd09108 177.241 -197208 cd09109 252.596 -197209 cd09110 124.125 -197210 cd09111 156.155 -197211 cd09112 127.209 -197212 cd09113 146.596 -197213 cd09114 290.973 -197214 cd09115 287.139 -197215 cd09116 98.1368 -197216 cd09117 44.3079 -197217 cd09118 187.519 -197218 cd09119 414.853 -197219 cd09120 111.232 -197220 cd09121 160.477 -197221 cd09122 96.1693 -197222 cd09123 117.452 -197223 cd09124 58.8768 -197224 cd09126 86.1568 -197225 cd09127 160.507 -197226 cd09128 120.458 -197227 cd09129 284.892 -197228 cd09130 219.037 -197229 cd09131 155.962 -197230 cd09132 111.983 -197231 cd09133 109.341 -197232 cd09134 265.267 -197233 cd09135 205.475 -197234 cd09136 328.407 -197235 cd09137 148.494 -197236 cd09138 236.689 -197237 cd09139 263.103 -197238 cd09140 154.627 -197239 cd09141 194.701 -197240 cd09142 364.055 -197241 cd09143 167.703 -197242 cd09144 338.462 -197243 cd09145 318.005 -197244 cd09146 271.736 -197245 cd09147 379.698 -197246 cd09148 348.374 -197247 cd09149 344.53 -197248 cd09150 416.517 -197249 cd09151 524.505 -197250 cd09152 220.156 -197251 cd09154 232.805 -197252 cd09155 263.719 -197253 cd09156 230.609 -197254 cd09157 216.663 -197255 cd09158 235.162 -197256 cd09159 168.101 -197257 cd09160 249.721 -197258 cd09161 293.041 -197259 cd09162 250.256 -197260 cd09163 259.409 -197261 cd09164 249.442 -197262 cd09165 281.387 -197263 cd09166 293.133 -197264 cd09167 260.187 -197265 cd09168 251.222 -197266 cd09169 281.032 -197267 cd09170 163.072 -197268 cd09171 159.697 -197269 cd09172 116.687 -197270 cd09173 129.781 -197271 cd09174 113.566 -197272 cd09175 319.458 -197273 cd09176 62.7456 -197274 cd09177 209.927 -197275 cd09178 116.882 -197276 cd09179 174.731 -197277 cd09180 186.003 -197278 cd09181 451.964 -197279 cd09182 513.614 -197280 cd09183 510.162 -197281 cd09184 527.515 -197282 cd09186 494.028 -197283 cd09187 536.366 -197284 cd09188 505.926 -197285 cd09189 293.367 -197286 cd09190 311.032 -197287 cd09191 255.241 -197288 cd09192 260.105 -197289 cd09193 216.401 -197290 cd09194 207.138 -197291 cd09195 295.743 -197292 cd09196 227.257 -197293 cd09197 375.027 -197294 cd09198 363.827 -197295 cd09199 441.75 -197296 cd09200 446.689 -197297 cd09203 240.22 -197298 cd09204 181.203 -197299 cd09205 195.918 -187741 cd09208 230.765 -187742 cd09209 121.398 -187743 cd09210 204.545 -187744 cd09211 160.184 -198416 cd09212 40.4432 -188873 cd09213 209.27 -185753 cd09214 236.481 -185754 cd09215 191.124 -185755 cd09216 465.776 -185756 cd09217 182.588 -185757 cd09218 259.866 -185758 cd09219 338.136 -185759 cd09220 473.718 -187745 cd09223 202.683 -198423 cd09224 291.158 -185717 cd09232 163.192 -187750 cd09233 168.205 -185747 cd09234 406.291 -185748 cd09235 515.674 -185749 cd09236 496.879 -185750 cd09237 337.341 -185751 cd09238 476.579 -185762 cd09239 552.805 -185763 cd09240 477.944 -185764 cd09241 351.569 -185765 cd09242 386.251 -185766 cd09243 581.222 -185767 cd09244 541.933 -185768 cd09245 431.444 -185769 cd09246 355.937 -185770 cd09247 250.002 -185771 cd09248 714.733 -185772 cd09249 748.986 -271158 cd09250 314.541 -271159 cd09251 348.429 -271160 cd09252 225.158 -271161 cd09253 322.983 -271162 cd09254 139.286 -271163 cd09255 481.526 -271164 cd09256 275.417 -271165 cd09257 195.665 -271166 cd09258 524.447 -271167 cd09259 566.957 -211371 cd09260 516.578 -211372 cd09261 533.851 -271168 cd09262 621.191 -271169 cd09263 638.986 -271170 cd09264 233.822 -271171 cd09265 420.745 -271172 cd09266 558.903 -211378 cd09267 576.59 -271173 cd09268 485.241 -185703 cd09269 434.035 -187751 cd09270 99.686 -187752 cd09271 49.2916 -260004 cd09272 72.1157 -260005 cd09273 117.054 -260006 cd09274 101.415 -260007 cd09275 60.3747 -260008 cd09276 75.7172 -260009 cd09277 144.164 -260010 cd09278 122.591 -260011 cd09279 97.9284 -260012 cd09280 122.674 -187753 cd09281 109.504 -185681 cd09286 304.996 -185682 cd09287 378.617 -187746 cd09288 675.545 -187747 cd09289 656.954 -187748 cd09290 389.108 -187749 cd09291 441.866 -187754 cd09293 264.96 -187755 cd09294 105.895 -200495 cd09295 361.137 -187756 cd09299 158.26 -212512 cd09301 291.646 -187706 cd09302 65.8865 -187757 cd09317 245.625 -187758 cd09318 273.685 -187759 cd09319 131.665 -187760 cd09320 226.051 -187761 cd09321 234.506 -187762 cd09322 91.0644 -187763 cd09323 196.999 -187764 cd09324 318.055 -187765 cd09325 170.036 -188712 cd09326 66.4646 -188713 cd09327 73.8296 -188714 cd09328 92.4088 -188715 cd09329 93.5377 -188716 cd09330 107.06 -188717 cd09331 88.9288 -188718 cd09332 87.7769 -188719 cd09333 76.6429 -188720 cd09334 77.3952 -188721 cd09335 81.2405 -259830 cd09336 104.007 -188723 cd09337 104.008 -188724 cd09338 81.2274 -188725 cd09339 73.5273 -188726 cd09340 86.5012 -188727 cd09341 86.8898 -188728 cd09342 82.8264 -188729 cd09343 90.5739 -188730 cd09344 84.8063 -188731 cd09345 61.5392 -188732 cd09346 84.3017 -188733 cd09347 90.8663 -188734 cd09348 106.386 -188735 cd09349 141.915 -188736 cd09350 76.6733 -188737 cd09351 105.2 -188738 cd09352 101.355 -188739 cd09353 118.109 -188740 cd09354 120.727 -188741 cd09355 87.7834 -188742 cd09356 96.4752 -188743 cd09357 105.968 -188744 cd09358 66.1381 -188745 cd09359 121.99 -188746 cd09360 92.8207 -188747 cd09361 73.9348 -188748 cd09362 112.956 -188749 cd09363 98.6614 -188750 cd09364 113.738 -188751 cd09365 87.8058 -188752 cd09366 97.8005 -188753 cd09367 83.6316 -188754 cd09368 94.794 -188755 cd09369 93.9427 -188756 cd09370 90.9849 -188757 cd09371 80.1144 -188758 cd09372 86.7091 -188759 cd09373 87.8169 -188760 cd09374 98.6607 -188761 cd09375 95.5051 -188762 cd09376 104.739 -188763 cd09377 111.596 -188764 cd09378 105.993 -188765 cd09379 113.287 -188766 cd09380 100.484 -188767 cd09381 111.991 -188768 cd09382 100.931 -188769 cd09383 104.734 -188770 cd09384 95.6868 -188771 cd09385 93.1552 -188772 cd09386 93.2577 -188773 cd09387 98.3251 -188774 cd09388 94.1548 -188775 cd09389 90.0985 -188776 cd09390 94.5389 -188777 cd09391 94.2912 -188778 cd09392 87.0289 -188779 cd09393 86.2185 -188780 cd09394 88.9567 -188781 cd09395 62.4936 -188782 cd09396 56.107 -188783 cd09397 92.7105 -188784 cd09400 86.328 -188785 cd09401 61.5876 -188786 cd09402 93.1076 -188787 cd09403 92.2537 -188788 cd09404 89.4682 -188789 cd09405 121.269 -188790 cd09406 116.508 -188791 cd09407 120.832 -188792 cd09408 106.828 -188793 cd09409 104.539 -188794 cd09410 98.7421 -188795 cd09411 113.892 -188796 cd09412 87.8659 -188797 cd09413 114.093 -188798 cd09414 106.714 -188799 cd09415 109.654 -188800 cd09416 111.102 -188801 cd09417 104.92 -188802 cd09418 97.883 -188803 cd09419 100.73 -188804 cd09420 112.917 -188805 cd09421 103.804 -188806 cd09422 107.299 -188807 cd09423 95.3733 -188808 cd09424 91.7469 -188809 cd09425 85.1823 -188810 cd09426 105.132 -188811 cd09427 94.1472 -188812 cd09428 90.2849 -188813 cd09429 88.7171 -188814 cd09430 87.9164 -188815 cd09431 104.302 -188816 cd09432 97.5465 -188817 cd09433 109.309 -188818 cd09434 80.5753 -188819 cd09435 125.368 -188820 cd09436 147.461 -188821 cd09437 130.279 -188822 cd09438 110.944 -188823 cd09439 111.234 -188824 cd09440 119.107 -188825 cd09441 117.571 -188826 cd09442 91.0034 -188827 cd09443 77.845 -188828 cd09444 115.585 -188829 cd09445 108.705 -188830 cd09446 99.9933 -188831 cd09447 106.306 -188832 cd09448 103.844 -188833 cd09449 106.886 -188834 cd09450 107.683 -188835 cd09451 123.116 -188836 cd09452 106.422 -188837 cd09453 110.875 -188838 cd09454 105.061 -188839 cd09455 90.208 -188840 cd09456 116.635 -188841 cd09457 120.903 -188842 cd09458 110.514 -188843 cd09459 127.39 -188844 cd09460 120.143 -188845 cd09461 98.7772 -188846 cd09462 135.014 -188847 cd09463 118.051 -188848 cd09464 117.667 -188849 cd09465 113.493 -188850 cd09466 113.334 -188851 cd09467 109.255 -188852 cd09468 111.986 -188853 cd09469 110.481 -188854 cd09470 104.749 -188855 cd09471 109.633 -188856 cd09472 105.156 -188857 cd09473 110.111 -188858 cd09474 113.254 -188859 cd09475 107.096 -188860 cd09476 101.195 -188861 cd09477 107.021 -188862 cd09478 94.1748 -188863 cd09479 106.254 -188864 cd09480 96.2115 -188865 cd09481 88.6588 -188866 cd09482 103.939 -188867 cd09483 138.515 -188868 cd09484 123.908 -188869 cd09485 102.265 -188870 cd09486 98.5003 -188886 cd09487 26.8185 -188887 cd09488 93.8339 -188888 cd09489 85.6798 -188889 cd09490 99.6771 -188890 cd09491 106.837 -188891 cd09492 106.441 -188892 cd09493 92.5665 -188893 cd09494 105 -188894 cd09495 107.62 -188895 cd09496 113.019 -188896 cd09497 111.967 -188897 cd09498 102.373 -188898 cd09499 105.073 -188899 cd09500 113.939 -188900 cd09501 108.929 -188901 cd09502 103.528 -188902 cd09503 110.87 -188903 cd09504 126.679 -188904 cd09505 121.27 -188905 cd09506 110.101 -188906 cd09507 123.677 -188907 cd09508 84.6738 -188908 cd09509 71.7416 -188909 cd09510 110.856 -188910 cd09511 105.451 -188911 cd09512 87.7091 -188912 cd09513 107.579 -188913 cd09514 130.68 -188914 cd09515 91.9274 -188915 cd09516 118.284 -188916 cd09517 96.2516 -188917 cd09518 131.536 -188918 cd09519 105.268 -188919 cd09520 112.774 -188920 cd09521 74.2453 -188921 cd09522 126.034 -188922 cd09523 94.6621 -188923 cd09524 105.872 -188924 cd09525 113.785 -188925 cd09526 147.118 -188926 cd09527 101.754 -188927 cd09528 102.494 -188928 cd09529 106.436 -188929 cd09530 115.88 -188930 cd09531 107.384 -188931 cd09532 120.583 -188932 cd09533 98.9264 -188933 cd09534 80.3315 -188934 cd09535 79.5217 -188935 cd09536 117.916 -188936 cd09537 126.319 -188937 cd09538 113.667 -188938 cd09539 79.9309 -188939 cd09540 108.184 -188940 cd09541 81.5748 -188941 cd09542 139.372 -188942 cd09543 142.282 -188943 cd09544 134.411 -188944 cd09545 130.072 -188945 cd09546 139.681 -188946 cd09547 135.015 -188947 cd09548 139.007 -188948 cd09549 134.991 -188949 cd09550 111.111 -188950 cd09551 130.544 -188951 cd09552 140.912 -188952 cd09553 145.946 -188953 cd09554 128.444 -188954 cd09555 140.064 -188955 cd09556 117.016 -188956 cd09557 111.265 -188957 cd09558 137.139 -188958 cd09559 115.116 -188959 cd09560 126.358 -188960 cd09561 90.6929 -188961 cd09562 138.466 -188962 cd09563 93.0611 -188963 cd09564 132.576 -188964 cd09565 123.737 -188965 cd09566 107.01 -188966 cd09567 117.125 -188967 cd09568 124.738 -188968 cd09569 138.744 -188969 cd09570 142.196 -188970 cd09571 137.025 -188971 cd09572 137.028 -188972 cd09573 155.971 -188973 cd09574 158.225 -188974 cd09575 126.989 -188975 cd09576 140.106 -188976 cd09577 109.799 -188977 cd09578 112.129 -188978 cd09579 119.861 -188979 cd09580 116.316 -188980 cd09581 151.445 -188981 cd09582 119.303 -188982 cd09583 117.371 -188983 cd09584 124.155 -188984 cd09585 123.712 -188985 cd09586 107.571 -188986 cd09587 112.227 -188987 cd09588 138.969 -188988 cd09589 150.9 -188989 cd09590 146.971 -188990 cd09591 121.667 -188991 cd09592 140.548 -198424 cd09593 67.4138 -187707 cd09611 128.979 -187708 cd09612 91.0886 -187709 cd09613 200.337 -187710 cd09614 115.187 -187711 cd09615 163.337 -187737 cd09616 229.06 -187738 cd09617 272.192 -187676 cd09618 138.157 -187677 cd09619 129.094 -187678 cd09620 72.8012 -187679 cd09621 134.753 -187680 cd09622 211.482 -187681 cd09623 186.823 -187682 cd09624 246.819 -187683 cd09625 210.738 -187684 cd09626 155.554 -187685 cd09627 120.502 -187686 cd09628 111.366 -187687 cd09629 165.128 -187688 cd09630 65 -187689 cd09631 47.4972 -193606 cd09632 88.2223 -193607 cd09633 178.149 -187766 cd09634 87.6708 -187767 cd09636 214.083 -187768 cd09637 131.786 -187769 cd09638 76.2641 -187770 cd09639 382.933 -187771 cd09640 365.348 -193608 cd09641 54.2025 -187773 cd09642 580.508 -187774 cd09643 695.706 -213407 cd09644 173.156 -187776 cd09645 103.39 -187777 cd09646 411.901 -187778 cd09647 65.4628 -187779 cd09648 134.557 -187780 cd09649 81.258 -187781 cd09650 169.492 -187782 cd09651 252.14 -187783 cd09652 51.6764 -187784 cd09653 72.9539 -187785 cd09654 98.6964 -187786 cd09655 157.156 -187787 cd09656 203.036 -187788 cd09657 90.8901 -187789 cd09658 202.691 -187790 cd09659 322.45 -187791 cd09660 281.593 -187792 cd09661 210.703 -187793 cd09662 337.907 -187794 cd09663 270.858 -187795 cd09664 228.222 -187796 cd09665 337.536 -187797 cd09666 430 -187798 cd09667 482.836 -187799 cd09668 229.705 -187800 cd09669 331.311 -187801 cd09670 95.2127 -187802 cd09671 187.706 -187803 cd09672 554.46 -187804 cd09673 1658.46 -187805 cd09674 250.419 -187806 cd09675 571.771 -187807 cd09676 377.581 -187808 cd09677 495.099 -187809 cd09678 228.685 -187810 cd09679 236.578 -187811 cd09680 465.644 -187812 cd09681 136.828 -187813 cd09682 232.668 -187814 cd09683 309.106 -187815 cd09684 274.61 -187816 cd09685 326.708 -187817 cd09686 322.539 -187818 cd09687 234.645 -187819 cd09688 257.753 -187820 cd09689 395.264 -187821 cd09690 407.024 -187822 cd09691 264.705 -187823 cd09692 193.883 -187824 cd09693 29.3714 -187825 cd09694 221.274 -187826 cd09695 123.376 -187827 cd09696 1184.82 -187828 cd09697 540.644 -187829 cd09698 705.918 -187830 cd09699 483.267 -187831 cd09700 507.102 -187832 cd09701 846.704 -187833 cd09702 442.415 -187834 cd09703 249.233 -187835 cd09704 1029.17 -187836 cd09705 331.47 -187837 cd09706 473.674 -187838 cd09707 333.856 -187839 cd09708 859.276 -187840 cd09709 331.078 -187841 cd09710 451.633 -187842 cd09711 232.764 -187843 cd09712 1110.74 -187844 cd09713 417.704 -187845 cd09714 200.865 -187846 cd09715 812.231 -187847 cd09716 167.155 -187848 cd09717 391.032 -187849 cd09718 497.764 -187850 cd09719 334.628 -187851 cd09720 319.968 -187852 cd09721 495.99 -187853 cd09722 413.532 -187854 cd09723 164.174 -187855 cd09724 454.774 -187856 cd09725 29.3757 -187857 cd09726 31.9887 -187858 cd09727 120.876 -187859 cd09728 217.65 -187860 cd09729 259.593 -187861 cd09730 379.787 -187862 cd09731 62.3537 -187863 cd09732 166.676 -187864 cd09733 222.946 -320705 cd09734 510.685 -187866 cd09735 449.083 -187867 cd09736 240.294 -187868 cd09737 403.199 -187869 cd09738 221.707 -187870 cd09739 140.842 -187871 cd09740 88.2324 -187872 cd09741 176.378 -187873 cd09742 146.265 -187874 cd09743 132.153 -187875 cd09744 544.495 -187876 cd09745 705.918 -187877 cd09746 438.58 -187878 cd09747 308.138 -187879 cd09748 235.352 -187880 cd09749 95.8541 -187881 cd09750 138.789 -187882 cd09751 307.524 -187534 cd09752 252.911 -187883 cd09753 117.837 -187884 cd09754 77.8538 -187885 cd09755 65.2943 -187886 cd09756 101.85 -187887 cd09757 428.987 -213408 cd09758 307.35 -187889 cd09759 306.63 -187890 cd09760 611.274 -187662 cd09761 374.994 -187663 cd09762 410.683 -187664 cd09763 392.195 -187733 cd09764 426.176 -187734 cd09765 422.431 -187735 cd09766 112.025 -187705 cd09767 733.463 -188874 cd09768 360.175 -188875 cd09769 227.2 -197361 cd09803 82.0119 -197362 cd09804 120.711 -187665 cd09805 398.575 -187666 cd09806 439.203 -212495 cd09807 471.951 -187668 cd09808 473.235 -187669 cd09809 499.816 -187670 cd09810 434.252 -187671 cd09811 519.371 -187672 cd09812 648.024 -187673 cd09813 487.251 -212499 cd09815 105.159 -188648 cd09816 649.711 -188649 cd09817 637.843 -188650 cd09818 596.574 -188651 cd09819 410.581 -188652 cd09820 826.168 -188653 cd09821 596.319 -188654 cd09822 477.573 -188655 cd09823 408.116 -188656 cd09824 655.644 -188657 cd09825 877.92 -188658 cd09826 763.386 -193602 cd09827 156.36 -193603 cd09828 140.073 -193604 cd09829 125.439 -193605 cd09830 119.347 -188871 cd09840 99.0268 -188872 cd09841 110.735 -197300 cd09842 326.985 -197301 cd09843 299.604 -197302 cd09844 374.661 -197303 cd09845 373.828 -197363 cd09846 73.436 -197367 cd09850 111.813 -197368 cd09851 98.0808 -193575 cd09886 93.2016 -193576 cd09887 84.5147 -193577 cd09888 75.2597 -193578 cd09889 114.341 -193579 cd09890 128.239 -193580 cd09891 80.598 -193581 cd09892 112.269 -193582 cd09893 125.882 -193583 cd09894 113.533 -193584 cd09895 62.9804 -188617 cd09897 30.6434 -188618 cd09898 62.8017 -188619 cd09899 52.1126 -188620 cd09900 32.4572 -188621 cd09901 71.7958 -188622 cd09902 65.3939 -188623 cd09903 82.6419 -188624 cd09904 100.018 -188625 cd09905 147.499 -188626 cd09906 113.94 -188627 cd09907 90.6838 -188628 cd09908 99.1869 -197369 cd09909 95.9271 -197364 cd09910 85.7564 -197365 cd09911 88.6738 -206739 cd09912 123.811 -206740 cd09913 313.441 -206741 cd09914 227.989 -206742 cd09915 226.675 -197366 cd09916 58.7651 -198174 cd09918 75.737 -198175 cd09919 97.2698 -198176 cd09920 162.99 -198177 cd09921 112.378 -198178 cd09923 85.7147 -198179 cd09925 163.286 -198180 cd09926 156.865 -198181 cd09927 201.502 -198182 cd09928 68.4057 -198183 cd09929 202.544 -198184 cd09930 193.014 -198185 cd09931 128.551 -198186 cd09932 173.22 -199827 cd09933 159.67 -198188 cd09934 186.837 -198189 cd09935 156.394 -198190 cd09937 176.327 -198191 cd09938 180.283 -198192 cd09939 170.031 -198193 cd09940 165.159 -199828 cd09941 122.764 -198195 cd09942 183.294 -198196 cd09943 174.24 -198197 cd09944 188.014 -198198 cd09945 162.597 -198199 cd09946 204.354 -197370 cd09947 73.8006 -197371 cd09948 95.2275 -197372 cd09949 114.21 -197373 cd09950 132.713 -197374 cd09951 134.61 -197375 cd09966 150.652 -197376 cd09967 207.844 -197377 cd09968 211.471 -197378 cd09969 238.058 -197379 cd09970 335.413 -197380 cd09971 185.133 -193586 cd09972 76.382 -193587 cd09973 119.072 -193588 cd09974 108.651 -193589 cd09975 97.6403 -193590 cd09976 109.817 -193591 cd09977 128.852 -193592 cd09978 145.899 -193593 cd09979 142.61 -193594 cd09980 124.779 -193595 cd09981 131.778 -193596 cd09982 139.24 -193597 cd09983 119.854 -193598 cd09984 159.305 -193599 cd09985 171.497 -193600 cd09986 164.208 -212513 cd09987 142.129 -212514 cd09988 189.267 -212515 cd09989 245.482 -212516 cd09990 222.431 -212517 cd09991 383.857 -212518 cd09992 215.824 -212519 cd09993 231.618 -212520 cd09994 351.863 -212521 cd09996 417.732 -212522 cd09998 480.026 -212523 cd09999 121.966 -212524 cd10000 615.503 -212525 cd10001 295.216 -212526 cd10002 480.654 -212527 cd10003 643.237 -212528 cd10004 742.78 -212529 cd10005 750.381 -212530 cd10006 900.941 -212531 cd10007 890.106 -212532 cd10008 841.593 -212533 cd10009 788.828 -212534 cd10010 732.638 -212535 cd10011 752.28 -193609 cd10013 87.8585 -199900 cd10014 41.4643 -197381 cd10015 112.343 -197382 cd10016 181.418 -197383 cd10017 43.4705 -197384 cd10018 282.509 206756 cd10019 476.059 -206757 cd10020 457.622 -206758 cd10022 464.541 -206759 cd10023 462.613 -206760 cd10024 431.125 -206761 cd10025 408.348 -206762 cd10026 476.448 -198425 cd10027 177.308 -198426 cd10028 137.653 -198427 cd10029 383.178 -198428 cd10030 148.756 -198429 cd10031 265.967 -198430 cd10032 97.5823 -198431 cd10033 286.36 -198432 cd10034 128.566 -198433 cd10035 100.129 -197344 cd10036 186.523 -197345 cd10037 269.422 -197346 cd10038 314.934 -197347 cd10039 285.175 -197348 cd10040 321.859 -197349 cd10041 263.188 -197350 cd10042 294.506 -197351 cd10043 258.711 -197352 cd10044 294.438 -197353 cd10045 271.675 -197354 cd10046 250.535 -197355 cd10047 263.217 -197356 cd10048 240.94 -197357 cd10049 268.688 -197358 cd10050 265.16 -197359 cd10051 254.319 -197360 cd10052 264.35 -199901 cd10145 62.9684 -199214 cd10146 43.3049 -199902 cd10147 49.6666 -197385 cd10148 60.9769 -197397 cd10149 61.2459 -199903 cd10150 490.546 -197386 cd10151 89.6968 -197387 cd10152 101.292 -197388 cd10153 84.136 -197389 cd10154 122.875 -197390 cd10155 94.629 -197391 cd10156 135.142 -197392 cd10157 136.856 -197393 cd10158 109.258 -197394 cd10159 101.901 -197395 cd10160 135.235 -197396 cd10161 100.62 -197398 cd10162 77.16 -197399 cd10163 76.3308 -197400 cd10164 71.3935 -212667 cd10170 139.67 -212668 cd10225 286.632 -212669 cd10227 94.7918 -212670 cd10228 521.7 -212671 cd10229 296.111 -212672 cd10230 384.224 -212673 cd10231 346.444 -212674 cd10232 505.771 -212675 cd10233 754.563 -212676 cd10234 595.4 -212677 cd10235 507.043 -212678 cd10236 475.161 -212679 cd10237 699.994 -212680 cd10238 577.413 -212681 cd10241 692.899 -199834 cd10276 299.247 -199835 cd10277 742.192 -199836 cd10278 877.042 -199837 cd10279 772.2 -199838 cd10280 666.973 -197336 cd10281 331.114 -197337 cd10282 304.161 -197338 cd10283 133.678 -198434 cd10284 218.905 -198435 cd10285 191.122 -198436 cd10286 362.253 -198437 cd10287 314.891 -198438 cd10288 191.323 -198322 cd10289 60.019 -198323 cd10290 109.072 -198324 cd10291 182.082 -198325 cd10292 194.602 -198326 cd10293 170.687 -198327 cd10294 201.99 -198328 cd10295 138.014 -198329 cd10296 317.35 -198330 cd10297 262.207 -198331 cd10298 248.641 -198332 cd10299 235.435 -198333 cd10300 249.088 -198334 cd10301 300.781 -198335 cd10302 234.903 -198336 cd10303 236.832 -198337 cd10304 97.828 -198338 cd10305 115.465 -198339 cd10306 124.001 -198340 cd10307 138.401 -198341 cd10308 91.3312 -198342 cd10309 98.9306 -198343 cd10310 97.6559 -197304 cd10311 153.962 -197339 cd10312 760.327 -197340 cd10313 733.002 -198457 cd10314 311.506 -199215 cd10315 56.1865 -199904 cd10316 59.1847 -199905 cd10317 117.376 -199906 cd10318 603.868 -198439 cd10319 224.204 -199907 cd10320 140.987 -199216 cd10321 107.497 -271357 cd10322 159.643 -271358 cd10323 278.01 -271359 cd10324 288.269 -271360 cd10325 628.951 -271361 cd10326 364.574 -212037 cd10327 489.41 -271362 cd10328 462.391 -271363 cd10329 494.787 -271364 cd10332 826.523 -271365 cd10333 571.181 -271366 cd10334 535.924 -271367 cd10336 257.369 -198200 cd10337 174.06 -198201 cd10338 182.418 -198202 cd10339 158.854 -198203 cd10340 150.242 -199829 cd10341 148.653 -198205 cd10342 84.6902 -198206 cd10343 180.715 -198207 cd10344 199.64 -198208 cd10345 107.079 -198209 cd10346 186.473 -198210 cd10347 135.198 -198211 cd10348 133.316 -199830 cd10349 147.285 -198213 cd10350 216.721 -198214 cd10351 202.427 -198215 cd10352 139.807 -198216 cd10353 194.281 -198217 cd10354 135.243 -198218 cd10355 154.944 -198219 cd10356 212.467 -198220 cd10357 131.091 -198221 cd10358 157.216 -198222 cd10359 138.959 -198223 cd10360 169.752 -198224 cd10361 77.953 -198225 cd10362 173.132 -198226 cd10363 225.229 -198227 cd10364 228.33 -198228 cd10365 217.996 -198229 cd10366 204.097 -198230 cd10367 219.392 -198231 cd10368 222.982 -199831 cd10369 194.712 -198233 cd10370 205.817 -198234 cd10371 221.819 -198235 cd10372 303.366 -198236 cd10373 281.012 -198237 cd10374 355.878 -198238 cd10375 295.253 -198239 cd10376 294.191 -198240 cd10377 257.796 -198241 cd10378 212.402 -198242 cd10379 185.768 -198243 cd10380 179.21 -198244 cd10381 180.477 -198245 cd10382 166.768 -198246 cd10383 201.264 -198247 cd10384 181.861 -198248 cd10385 213.79 -198249 cd10386 173.726 -198250 cd10387 190.049 -198251 cd10388 149.041 -198252 cd10389 196.468 -198253 cd10390 196.072 -198254 cd10391 198.256 -198255 cd10392 218.4 -198256 cd10393 181.205 -198257 cd10394 195.031 -198258 cd10395 198.841 -198259 cd10396 194.625 -198260 cd10397 208.92 -198261 cd10398 207.876 -198262 cd10399 215.589 -198263 cd10400 208.929 -198264 cd10401 198.192 -198265 cd10402 226.726 -198266 cd10403 152.568 -198267 cd10404 163.143 -198268 cd10405 214.107 -198269 cd10406 221.48 -198270 cd10407 223.344 -198271 cd10408 214.509 -198272 cd10409 213.744 -198273 cd10410 195.235 -198274 cd10411 200.229 -198275 cd10412 206.284 -198276 cd10413 217.083 -198277 cd10414 227.504 -198278 cd10415 199.863 -198279 cd10416 203.732 -199832 cd10417 190.49 -198281 cd10418 228.348 -198282 cd10419 207.219 -198283 cd10420 302.767 -198284 cd10421 290.405 -199217 cd10422 156.977 -199218 cd10423 168.803 -198344 cd10424 135.575 -259896 cd10425 169.799 -259897 cd10426 266.234 -198378 cd10427 753.755 -198410 cd10428 203.157 -198411 cd10429 269.087 -198412 cd10430 209.386 -198413 cd10431 340.127 -198414 cd10432 102.639 -198415 cd10433 196.267 -198381 cd10434 65.1984 -198382 cd10435 153.716 -198383 cd10436 73.9225 -198384 cd10437 84.2462 -198385 cd10438 112.567 -198386 cd10439 80.3658 -198387 cd10440 62.7869 -198388 cd10441 94.6023 -198389 cd10442 68.9314 -198390 cd10443 67.7051 -198391 cd10444 72.0336 -198392 cd10445 78.4216 -198393 cd10446 107.318 -198394 cd10447 67.2456 -198395 cd10448 104.885 -198396 cd10449 71.4692 -198397 cd10450 83.4945 -198398 cd10451 67.9673 -198399 cd10452 386.821 -198400 cd10453 271.207 -198401 cd10454 131.655 -198402 cd10455 115.022 -198403 cd10456 72.8292 -198404 cd10457 134.213 -198405 cd10458 117.65 -198417 cd10459 145.494 -198418 cd10460 116.964 -198419 cd10461 166.84 -198420 cd10462 135.692 -198421 cd10463 111.71 -198422 cd10464 188.8 -198456 cd10466 128.231 -198458 cd10467 185.922 -198459 cd10468 452.317 -198460 cd10469 461.348 -198461 cd10470 346.661 -198462 cd10471 467.138 -198440 cd10472 352.257 -198441 cd10473 307.828 -198442 cd10474 350.8 -198443 cd10475 317.64 -198444 cd10476 380.171 -198445 cd10477 384.025 -198446 cd10478 378.198 -198447 cd10479 376.681 -198448 cd10480 321.794 -198449 cd10481 373.236 -198450 cd10482 353.964 -198451 cd10483 381.299 -198452 cd10484 373.969 -198453 cd10485 368.977 -198454 cd10486 394.399 -198455 cd10487 378.214 -199812 cd10488 203.19 -199813 cd10489 96.6831 -199814 cd10490 242.023 -199815 cd10491 227.413 -199816 cd10492 199.216 -199817 cd10493 169.18 -199818 cd10494 190.858 -199820 cd10495 318.169 -199821 cd10496 262.675 -199822 cd10497 432.766 -199823 cd10498 336.364 -199824 cd10499 346.424 -199825 cd10500 361.279 -259849 cd10506 932.973 -259792 cd10507 67.228 -259793 cd10508 61.8854 -259794 cd10509 70.6922 -259795 cd10511 73.9231 -240598 cd10546 46.2579 -319871 cd10549 81.6744 -319872 cd10550 114.981 -319873 cd10551 180.036 -319874 cd10552 311.567 -319875 cd10553 223.78 -319876 cd10554 148.947 -319877 cd10555 554.22 -319878 cd10556 486.197 -319879 cd10557 726.078 -319880 cd10558 345.912 -319881 cd10559 298.579 -319882 cd10560 342.058 -319883 cd10561 255.985 -319884 cd10562 237.201 -319885 cd10563 158.958 -319886 cd10564 129.286 -269973 cd10569 112.05 -275393 cd10570 44.2945 -269975 cd10571 122.337 -269976 cd10572 216.462 -269977 cd10573 154.79 -269978 cd10574 136.297 -276901 cd10575 249.631 -276902 cd10576 188.717 -276903 cd10577 250.855 -276904 cd10578 231.582 -276905 cd10579 181.806 -276906 cd10580 131.615 -276907 cd10581 262.407 -276908 cd10582 97.8797 -276909 cd10583 266.617 -213020 cd10585 47.8272 -198285 cd10718 153.761 -199908 cd10719 45.3243 -199909 cd10747 89.0214 -199910 cd10748 98.8477 -212097 cd10785 123.137 -212098 cd10786 218.424 -212099 cd10787 243.494 -212100 cd10788 187.226 -212101 cd10789 254.353 -212102 cd10790 415.322 -212103 cd10791 174.042 -212104 cd10792 503.968 -212105 cd10793 383.466 -212106 cd10794 269.237 -212107 cd10795 322.964 -212108 cd10796 265.23 -212109 cd10797 451.329 -212110 cd10798 407.262 -212111 cd10800 369.016 -212112 cd10801 255.177 -212113 cd10802 224.872 -212114 cd10803 254.02 -212115 cd10804 343.078 -212116 cd10805 297.196 -212117 cd10806 368.582 -212118 cd10807 201.301 -212119 cd10808 261.809 -212120 cd10809 567.664 -212121 cd10810 391.96 -212122 cd10811 657.729 -212123 cd10812 467.685 -212124 cd10813 484.203 -212125 cd10814 366.584 -212126 cd10815 381.495 -212127 cd10816 659.571 -211315 cd10909 67.3993 -199211 cd10913 365.573 -199212 cd10914 424.964 -199213 cd10915 503.32 -213021 cd10916 207.164 -213022 cd10917 66.1033 -213023 cd10918 65.6954 -200545 cd10919 248.045 -200546 cd10920 351.446 -200547 cd10921 317.414 -200548 cd10922 276.895 -200549 cd10923 232.241 -200550 cd10924 314.279 -200551 cd10925 347.398 -200552 cd10926 407.863 -200553 cd10927 311.28 -200554 cd10928 194.093 -200555 cd10929 271.45 -200556 cd10930 434.217 -200557 cd10931 179.346 -200558 cd10932 358.541 -200559 cd10933 285.738 -200560 cd10934 459.653 -200561 cd10935 313.807 -200562 cd10936 113.461 -200563 cd10938 273.664 -200564 cd10939 429.784 -200565 cd10940 310.479 -200566 cd10941 194.048 -200567 cd10942 309.024 -200568 cd10943 353.767 -200569 cd10944 203.548 -200570 cd10946 271.199 -200571 cd10947 305.463 -200572 cd10948 304.591 -200573 cd10949 333.995 -200574 cd10950 255.279 -200575 cd10951 224.071 -200576 cd10952 252.287 -200577 cd10953 271.369 -200578 cd10954 241.336 -200579 cd10955 240.681 -200580 cd10956 321.983 -200581 cd10958 225.638 -200582 cd10959 170.866 -200583 cd10960 260.24 -200584 cd10962 276.865 -200585 cd10963 273.409 -200586 cd10964 298.103 -200587 cd10965 250.768 -213024 cd10966 177.855 -200589 cd10967 124.028 -213025 cd10968 200.553 -213026 cd10969 152.441 -213027 cd10970 118.187 -200593 cd10971 224.88 -200594 cd10972 290.387 -213028 cd10973 140.485 -200596 cd10974 424.057 -200597 cd10975 381.665 -200598 cd10976 444.879 -200599 cd10977 395.926 -200600 cd10978 505.45 -200601 cd10979 326.12 -200602 cd10980 535.205 -211380 cd10981 165.693 -199826 cd10985 427.808 -199911 cd11005 191.342 -199912 cd11006 185.329 -199913 cd11007 102.922 -199914 cd11008 102.824 -211381 cd11009 89.7459 -211382 cd11010 109.782 -259898 cd11012 291.002 -259899 cd11013 120.152 -259900 cd11014 158.326 -259901 cd11015 257.912 -259902 cd11016 279.831 -259903 cd11017 150.619 -259904 cd11018 301.029 -259905 cd11019 142.407 -259906 cd11020 152.365 -259907 cd11021 277.815 -259908 cd11022 273.204 -259909 cd11023 207.462 -259910 cd11024 157.432 -199893 cd11234 116.167 -200496 cd11235 530.059 -200497 cd11236 257.644 -200498 cd11237 725.277 -200499 cd11238 696.866 -200500 cd11239 887.86 -200501 cd11240 653.709 -200502 cd11241 760.168 -200503 cd11242 898.031 -200504 cd11243 669.63 -200505 cd11244 908.818 -200506 cd11245 739.822 -200507 cd11246 622.693 -200508 cd11247 702.761 -200509 cd11248 695.32 -200510 cd11249 1109.3 -200511 cd11250 1011.37 -200512 cd11251 970.13 -200513 cd11252 1018.68 -200514 cd11253 936.196 -200515 cd11254 953.885 -200516 cd11255 988.641 -200517 cd11256 854.59 -200518 cd11257 921.566 -200519 cd11258 801.325 -200520 cd11259 930.421 -200521 cd11260 916.989 -200522 cd11261 857.262 -200523 cd11262 885.259 -200524 cd11263 950.625 -200525 cd11264 962.519 -200526 cd11265 728.116 -200527 cd11266 1030.75 -200528 cd11267 963.524 -200529 cd11268 940.281 -200530 cd11269 1036.14 -200531 cd11270 760.8 -200532 cd11271 1010.65 -200533 cd11272 1088.81 -200534 cd11273 967.093 -200535 cd11274 1011.41 -200536 cd11275 845.782 -200537 cd11276 764.32 -200538 cd11277 760.116 -200539 cd11278 959.32 -200540 cd11279 790.133 -200436 cd11280 63.9262 -200437 cd11281 155.102 -200438 cd11282 92.314 -200439 cd11283 132.746 -200440 cd11284 120.799 -200441 cd11285 94.2367 -200442 cd11286 109.183 -200443 cd11287 201.833 -200444 cd11288 90.7537 -200445 cd11289 105.397 -200446 cd11290 141.592 -200447 cd11291 114.317 -200448 cd11292 101.942 -200449 cd11293 115.061 -199894 cd11294 89.1638 -199917 cd11295 231.381 -211383 cd11296 57.4272 -211384 cd11298 329.231 -211385 cd11299 320.666 -211386 cd11300 315.342 -211387 cd11301 98.3023 -211388 cd11302 346.911 -206636 cd11303 82.0237 -206637 cd11304 34.9818 -206765 cd11305 142.853 -199915 cd11306 220.399 -199916 cd11307 280.725 -200604 cd11308 66.3936 -206763 cd11309 443.669 -206764 cd11310 459.931 -200452 cd11313 329.124 -200453 cd11314 307.225 -200454 cd11315 358.129 -200455 cd11316 464.748 -200456 cd11317 356.488 -200457 cd11318 422.695 -200458 cd11319 490.539 -200459 cd11320 487.949 -200460 cd11321 652.375 -200461 cd11322 325.633 -200462 cd11323 1005.67 -200463 cd11324 752.48 -200464 cd11325 304.47 -200465 cd11326 538.977 -200466 cd11327 621.567 -200467 cd11328 678.182 -200468 cd11329 603.604 -200469 cd11330 688.613 -200470 cd11331 667.876 -200471 cd11332 647.41 -200472 cd11333 536.655 -200473 cd11334 616.499 -200474 cd11335 736.808 -200475 cd11336 690 -200476 cd11337 445.43 -200477 cd11338 369.121 -200478 cd11339 358.104 -200479 cd11340 611.138 -200480 cd11341 372.997 -200481 cd11343 516.277 -200482 cd11344 621.16 -200483 cd11345 440.724 -200484 cd11346 332.514 -200485 cd11347 503.694 -200486 cd11348 721.401 -200487 cd11349 707.129 -200488 cd11350 407.045 -200489 cd11352 553.462 -200490 cd11353 541.766 -200491 cd11354 542.303 -200492 cd11355 709.768 -200493 cd11356 693.869 -206766 cd11358 132.065 -200494 cd11359 741.483 -206767 cd11362 351.144 -206768 cd11363 317.922 -206769 cd11364 321.418 -206770 cd11365 335.726 -206771 cd11366 300.404 -206772 cd11367 215.923 -206773 cd11368 257.456 -206774 cd11369 284.45 -206775 cd11370 270.568 -206776 cd11371 192.01 -206777 cd11372 170.053 -200603 cd11374 147.896 -213029 cd11375 95.8264 -271138 cd11376 234.045 -206778 cd11377 69.5822 -211390 cd11378 45.269 -211391 cd11379 139.22 -211392 cd11380 96.0494 -211393 cd11381 412.402 -211394 cd11382 121.444 -206743 cd11383 130.153 -206744 cd11384 403.516 -206745 cd11385 232.883 -206779 cd11386 156.628 -211395 cd11473 55.9455 -271368 cd11474 300.21 -271369 cd11475 302.121 -271370 cd11476 319.532 -271371 cd11477 336.09 -271372 cd11478 551.508 -271373 cd11479 482.103 -271374 cd11480 267.448 -271375 cd11482 532.861 -271376 cd11483 575.152 -271377 cd11484 215.168 -271378 cd11485 453.178 -271379 cd11486 1211.31 -212056 cd11487 1054.13 -271380 cd11488 1099.99 -212058 cd11489 1039.52 -271381 cd11490 1067.6 -271382 cd11491 947.765 -271383 cd11492 493.926 -271384 cd11493 396.584 -271385 cd11494 470.543 -271386 cd11495 417.327 -271387 cd11496 759.424 -271388 cd11497 876.258 -212067 cd11498 1105.36 -271389 cd11499 1219.47 -271390 cd11500 901.811 -271391 cd11501 1009.41 -271392 cd11502 750.8 -271393 cd11503 876.095 -271394 cd11504 853.016 -271395 cd11505 928.141 -212075 cd11506 1221.37 -271396 cd11507 1075.76 -212077 cd11508 1024.92 -271397 cd11509 1012.46 -271398 cd11510 989.739 -212080 cd11511 1041.04 -212081 cd11512 1105.79 -271399 cd11513 948.881 -212083 cd11514 1073.79 -271400 cd11515 1047.61 -212085 cd11516 1119.59 -212086 cd11517 1028.22 -271401 cd11518 1094.62 -271402 cd11519 878.41 -212089 cd11520 954.295 -271403 cd11521 1177.07 -212091 cd11522 1129.25 -212133 cd11523 36.5969 -211400 cd11524 79.1717 -211401 cd11525 250.256 -211402 cd11526 251.369 -212134 cd11527 56.0705 -212135 cd11528 97.1987 -212136 cd11529 77.5105 -212137 cd11530 53.4326 -212138 cd11531 102.001 -212139 cd11532 62.1755 -212140 cd11533 47.342 -212141 cd11534 47.068 -212142 cd11535 93.4271 -212143 cd11536 110.612 -212144 cd11537 90.2728 -212145 cd11538 118.961 -212146 cd11539 60.7159 -212147 cd11540 70.7334 -212148 cd11541 73.0291 -212149 cd11542 84.6828 -212150 cd11543 112.021 -212151 cd11544 144.214 -212152 cd11545 166.739 -212153 cd11546 100.82 -212154 cd11547 106.416 -211389 cd11548 241.505 -211403 cd11549 167.002 -211404 cd11550 300.628 -211405 cd11551 277.882 -211406 cd11552 217.852 -212092 cd11554 476.04 -271404 cd11555 487.455 -271405 cd11556 976.949 -211407 cd11557 558.54 -211396 cd11558 69.2099 -211397 cd11559 86.1846 -211398 cd11560 246.356 -211399 cd11561 96.5313 -211408 cd11564 145.839 -211318 cd11566 88.7458 -211319 cd11567 60.5725 -211409 cd11568 226.653 -211410 cd11569 267.626 -211411 cd11570 250.214 -211412 cd11571 219.718 -211413 cd11572 57.0872 -211414 cd11573 258.964 -211415 cd11574 315.794 -211416 cd11575 345.478 -211417 cd11576 354.64 -211418 cd11577 148.582 -211419 cd11578 295.859 -211420 cd11579 286.356 -211421 cd11580 53.1264 -212547 cd11581 62.8977 -211424 cd11582 61.2956 -211425 cd11583 68.0883 -211426 cd11585 145.166 -212155 cd11586 30.5375 -212536 cd11587 414.964 -212537 cd11589 338.427 -212538 cd11592 349.851 -212539 cd11593 257.404 -212540 cd11598 574.018 -212541 cd11599 324.465 -212542 cd11600 589.315 -211427 cd11602 463.011 -211428 cd11603 236.267 -211429 cd11604 54.9876 -212156 cd11606 318.608 -211320 cd11607 81.8348 -211321 cd11608 78.3739 -211422 cd11609 88.7456 -211423 cd11610 58.823 -212157 cd11611 40.9133 -212158 cd11613 73.6159 -212159 cd11614 28.9766 -212160 cd11615 40.0162 -212161 cd11616 77.5404 -212162 cd11617 88.6748 -211316 cd11618 48.5304 -212009 cd11619 83.0452 -212010 cd11620 106.676 -212011 cd11621 109 -212012 cd11622 74.6098 -212013 cd11623 88.0584 -212014 cd11624 117.303 -212015 cd11625 92.3531 -212016 cd11626 93.1904 -212017 cd11627 102.069 -212018 cd11628 108.843 -212019 cd11629 149.731 -212020 cd11630 119.744 -212021 cd11631 154.465 -212022 cd11632 135.821 -212023 cd11633 132.265 -212024 cd11634 158.259 -212025 cd11635 153.271 -212026 cd11636 153.207 -212027 cd11637 110.72 -212028 cd11638 98.0806 -212029 cd11639 96.6184 -212163 cd11640 112.304 -212500 cd11641 301.285 -212501 cd11642 218.425 -212502 cd11643 219.774 -212503 cd11644 105.292 -212504 cd11645 137.643 -212505 cd11646 216.56 -212506 cd11647 184.623 -212507 cd11648 223.025 -212508 cd11649 231.684 -212164 cd11650 171.067 -212165 cd11651 75.1519 -212166 cd11652 326.991 -212167 cd11653 87.3833 -212553 cd11654 50.8345 -212554 cd11655 43.7614 -212555 cd11656 337.157 -240667 cd11657 116.238 -212556 cd11658 73.5962 -212557 cd11659 77.3497 -212558 cd11660 43.3247 -212559 cd11661 78.4251 -212560 cd11662 53.62 -212128 cd11663 704.017 -212129 cd11664 421.088 -212130 cd11665 376.652 -212131 cd11666 752.951 -212132 cd11667 815.378 -212168 cd11669 67.808 -212561 cd11670 52.099 -212562 cd11671 30.5533 -277250 cd11672 126.137 -212563 cd11673 109.385 -212564 cd11674 1867.91 -212565 cd11675 150.287 -212487 cd11676 71.9104 -212488 cd11677 109.273 -212489 cd11678 108.364 -212490 cd11679 82.7011 -212543 cd11680 408.577 -212544 cd11681 670.592 -212545 cd11682 655.383 -212546 cd11683 668.876 -212566 cd11684 186.35 -212582 cd11687 692.146 -212583 cd11688 134.538 -212588 cd11689 340.241 -212589 cd11690 81.1395 -212590 cd11691 34.0089 -212591 cd11692 107.818 -212592 cd11693 43.4927 -212567 cd11694 636.305 -212568 cd11695 584.648 -212569 cd11696 716.531 -212570 cd11697 698.695 -212571 cd11698 863.184 -212572 cd11699 929.84 -212573 cd11700 854.291 -212574 cd11701 911.725 -212575 cd11702 937.89 -212576 cd11703 937.964 -212577 cd11704 803.073 -212578 cd11705 788.071 -212579 cd11706 890.878 -212580 cd11707 899.401 -212581 cd11708 862.33 -293931 cd11709 28.1655 -212548 cd11710 76.5248 -212549 cd11711 77.6506 -212550 cd11712 68.0199 -212551 cd11713 56.5055 -212552 cd11714 46.5559 -212584 cd11715 37.1745 -212585 cd11716 97.1321 -212586 cd11717 66.0678 -212587 cd11718 184.792 -212593 cd11719 35.6671 -212594 cd11720 1048.83 -212595 cd11721 981.413 -212596 cd11722 102.323 -212509 cd11723 296.017 -212510 cd11724 313.469 -277251 cd11725 77.8142 -277252 cd11726 105.466 -277253 cd11727 248.999 -277254 cd11728 245.921 -277255 cd11729 209.863 -212496 cd11730 180.411 -212497 cd11731 162.366 -212682 cd11732 628.979 -212683 cd11733 728.02 -212684 cd11734 648.797 -212685 cd11735 1010.34 -212686 cd11736 1017.22 -212687 cd11737 799.208 -212688 cd11738 731.064 -212689 cd11739 762.185 -213038 cd11740 176.781 -240666 cd11741 73.7035 -213039 cd11743 106.975 -213354 cd11744 376.542 -213372 cd11745 138.575 -213062 cd11746 103.74 -213063 cd11747 195.654 -213064 cd11748 544.221 -213065 cd11749 337.292 -213066 cd11750 557.48 -213067 cd11751 295.812 -213068 cd11752 404.215 -213069 cd11753 339.499 -213070 cd11754 546.451 -213071 cd11755 415.865 -213072 cd11756 304.812 -212691 cd11757 123.979 -212692 cd11758 106.293 -212693 cd11759 107.573 -212694 cd11760 125.671 -212695 cd11761 80.1 -212696 cd11762 102.09 -212697 cd11763 85.8415 -212698 cd11764 96.1764 -212699 cd11765 94.0221 -212700 cd11766 94.2543 -212701 cd11767 93.53 -212702 cd11768 91.9511 -212703 cd11769 107.389 -212704 cd11770 90.0647 -212705 cd11771 97.732 -212706 cd11772 94.6741 -212707 cd11773 79.7758 -212708 cd11774 92.5281 -212709 cd11775 90.8408 -212710 cd11776 124.542 -212711 cd11777 83.0417 -212712 cd11778 93.7169 -212713 cd11779 85.8368 -212714 cd11780 111.239 -212715 cd11781 92.4028 -212716 cd11782 91.6426 -212717 cd11783 109.406 -212718 cd11784 111.408 -212719 cd11785 111.019 -212720 cd11786 104.366 -212721 cd11787 86.2338 -212722 cd11788 91.6712 -212723 cd11789 106.247 -212724 cd11790 105.487 -212725 cd11791 99.6826 -212726 cd11792 73.7807 -212727 cd11793 86.6209 -212728 cd11794 91.0376 -212729 cd11795 89.4301 -212730 cd11796 91.6474 -212731 cd11797 102.502 -212732 cd11798 117.782 -212733 cd11799 104.92 -212734 cd11800 102.45 -212735 cd11801 102.003 -212736 cd11802 76.9429 -212737 cd11803 105.034 -212738 cd11804 93.5753 -212739 cd11805 92.3058 -212740 cd11806 94.3799 -212741 cd11807 107.08 -212742 cd11808 91.3925 -212743 cd11809 97.0869 -212744 cd11810 86.7285 -212745 cd11811 112.986 -212746 cd11812 106.826 -212747 cd11813 112.207 -212748 cd11814 91.1523 -212749 cd11815 114.586 -212750 cd11816 96.7076 -212751 cd11817 106.023 -212752 cd11818 99.8651 -212753 cd11819 80.4351 -212754 cd11820 111.403 -212755 cd11821 103.163 -212756 cd11822 106.519 -212757 cd11823 97.4133 -212758 cd11824 92.4358 -212759 cd11825 103.951 -212760 cd11826 93.1548 -212761 cd11827 108.271 -212762 cd11828 92.4442 -212763 cd11829 105.673 -212764 cd11830 100.397 -212765 cd11831 97.2921 -212766 cd11832 104.44 -212767 cd11833 107.203 -212768 cd11834 97.206 -212769 cd11835 101.757 -212770 cd11836 98.5842 -212771 cd11837 83.9544 -212772 cd11838 99.026 -212773 cd11839 91.6309 -212774 cd11840 104.035 -212775 cd11841 104.011 -212776 cd11842 97.109 -212777 cd11843 97.8754 -212778 cd11844 104.35 -212779 cd11845 67.2224 -212780 cd11846 103.703 -212781 cd11847 102.251 -212782 cd11848 92.6381 -212783 cd11849 86.215 -212784 cd11850 76.6823 -212785 cd11851 90.4532 -212786 cd11852 100.548 -212787 cd11853 111.763 -212788 cd11854 86.2192 -212789 cd11855 83.6236 -212790 cd11856 56.1055 -212791 cd11857 83.4898 -212792 cd11858 84.7444 -212793 cd11859 104.679 -212794 cd11860 97.4102 -212795 cd11861 98.935 -212796 cd11862 92.2585 -212797 cd11863 100.815 -212798 cd11864 75.7443 -212799 cd11865 97.9723 -212800 cd11866 102.895 -212801 cd11867 111.46 -212802 cd11869 97.179 -212803 cd11870 90.2809 -212804 cd11871 113.843 -212805 cd11872 77.6229 -212806 cd11873 88.8629 -212807 cd11874 96.2485 -212808 cd11875 93.184 -212809 cd11876 111.065 -212810 cd11877 99.3109 -212811 cd11878 86.1881 -212812 cd11879 103.565 -212813 cd11880 127.286 -212814 cd11881 131.095 -212815 cd11882 96.5937 -212816 cd11883 76.9367 -212817 cd11884 90.0775 -212818 cd11885 83.5195 -212819 cd11886 102.025 -212820 cd11887 94.3319 -212821 cd11888 91.2748 -212822 cd11889 99.4949 -212823 cd11890 202.417 -212824 cd11891 151.932 -212825 cd11892 152.3 -212826 cd11893 146.147 -212827 cd11894 113.11 -212828 cd11895 121.612 -212829 cd11896 93.4868 -212830 cd11897 122.407 -212831 cd11898 109.179 -212832 cd11899 101.746 -212833 cd11900 101.722 -212834 cd11901 116.288 -212835 cd11902 100.078 -212836 cd11903 125.94 -212837 cd11904 133.615 -212838 cd11905 114.911 -212839 cd11906 110.3 -212840 cd11907 124.296 -212841 cd11908 115.882 -212842 cd11909 142.663 -212843 cd11910 145.813 -212844 cd11911 71.907 -212845 cd11912 76.4934 -212846 cd11913 118.864 -212847 cd11914 112.6 -212848 cd11915 128.593 -212849 cd11916 138.972 -212850 cd11917 138.972 -212851 cd11918 128.151 -212852 cd11919 120.453 -212853 cd11920 125.123 -212854 cd11921 108.472 -212855 cd11922 119.326 -212856 cd11923 124.644 -212857 cd11924 116.987 -212858 cd11925 128.191 -212859 cd11926 128.163 -212860 cd11927 127.374 -212861 cd11928 126.575 -212862 cd11929 116.963 -212863 cd11930 120.482 -212864 cd11931 120.41 -212865 cd11932 116.478 -212866 cd11933 116.645 -212867 cd11934 116.25 -212868 cd11935 128.583 -212869 cd11936 135.938 -212870 cd11937 140.538 -212871 cd11938 94.1401 -212872 cd11939 121.975 -212873 cd11940 107.185 -212874 cd11941 111.927 -212875 cd11942 120.801 -212876 cd11943 109.691 -212877 cd11944 117.402 -212878 cd11945 118.59 -212879 cd11946 104.337 -212880 cd11947 101.025 -212881 cd11948 111.446 -212882 cd11949 101.839 -212883 cd11950 100.67 -212884 cd11951 111.431 -212885 cd11952 122.73 -212886 cd11953 135.079 -212887 cd11954 136.303 -212888 cd11955 113.115 -212889 cd11956 112.626 -212890 cd11957 111.16 -212891 cd11958 101.063 -212892 cd11959 109.044 -212893 cd11960 84.373 -212894 cd11961 84.8831 -212895 cd11962 81.7656 -212896 cd11963 125.131 -212897 cd11964 105.416 -212898 cd11965 110.098 -212899 cd11966 131.232 -212900 cd11967 113.217 -212901 cd11968 120.364 -212902 cd11969 114.166 -212903 cd11970 117.782 -212904 cd11971 128.985 -212905 cd11972 113.181 -212906 cd11973 130.908 -212907 cd11974 131.34 -212908 cd11975 101.325 -212909 cd11976 113.885 -212910 cd11977 102.013 -212911 cd11978 121.284 -212912 cd11979 110.458 -212913 cd11980 138.145 -212914 cd11981 124.587 -212915 cd11982 119.347 -212916 cd11983 119.648 -212917 cd11984 118.9 -212918 cd11985 121.593 -212919 cd11986 116.162 -212920 cd11987 128.193 -212921 cd11988 119.592 -212922 cd11989 114.041 -212923 cd11990 111.672 -212924 cd11991 119.703 -212925 cd11992 104.708 -212926 cd11993 135.631 -212927 cd11994 108.48 -212928 cd11995 121.985 -212929 cd11996 117.774 -212930 cd11997 117.368 -212931 cd11998 108.114 -212932 cd11999 121.584 -212933 cd12000 113.05 -212934 cd12001 139.406 -212935 cd12002 131.646 -212936 cd12003 116.913 -212937 cd12004 115.476 -212938 cd12005 110.684 -212939 cd12006 116.302 -212940 cd12007 120.91 -212941 cd12008 107.504 -212942 cd12009 108.749 -212943 cd12010 103.354 -212944 cd12011 102.899 -212945 cd12012 119.319 -212946 cd12013 117.095 -212947 cd12014 115.913 -212948 cd12015 97.4902 -212949 cd12016 96.3718 -212950 cd12017 97.5236 -212951 cd12018 119.61 -212952 cd12019 97.3583 -212953 cd12020 123.533 -212954 cd12021 107.735 -212955 cd12022 105.306 -212956 cd12023 113.039 -212957 cd12024 87.0072 -212958 cd12025 113.822 -212959 cd12026 137.519 -212960 cd12027 129.268 -212961 cd12028 127.294 -212962 cd12029 143.304 -212963 cd12030 143.144 -212964 cd12031 142.907 -212965 cd12032 154.083 -212966 cd12033 143.624 -212967 cd12034 127.704 -212968 cd12035 124.467 -212969 cd12036 120.981 -212970 cd12037 136.235 -212971 cd12038 137.887 -212972 cd12039 142.404 -212973 cd12040 139.398 -212974 cd12041 160.525 -212975 cd12042 145.938 -212976 cd12043 153.982 -212977 cd12044 113.03 -212978 cd12045 120.776 -212979 cd12046 97.1802 -212980 cd12047 110.293 -212981 cd12048 120.389 -212982 cd12049 114.965 -212983 cd12050 104.926 -212984 cd12051 121.079 -212985 cd12052 102.28 -212986 cd12053 89.5158 -212987 cd12054 98.8859 -212988 cd12055 116.634 -212989 cd12056 107.988 -212990 cd12057 119.233 -212991 cd12058 131.216 -212992 cd12059 112.167 -212993 cd12060 117.796 -212994 cd12061 105.923 -212995 cd12062 140.136 -212996 cd12063 136.254 -212997 cd12064 113.671 -212998 cd12065 124.329 -212999 cd12066 132.878 -213000 cd12067 159.972 -213001 cd12068 109.965 -213002 cd12069 117.994 -213003 cd12070 102.36 -213004 cd12071 123.167 -213005 cd12072 127.033 -213006 cd12073 116.084 -213007 cd12074 100.942 -213008 cd12075 122.105 -213009 cd12076 124.374 -213010 cd12077 105.114 -213011 cd12078 113.633 -213012 cd12079 119.767 -213013 cd12080 131.229 -213014 cd12081 132.333 -240527 cd12082 59.2596 -213373 cd12083 39.0884 -213043 cd12084 49.1957 -213374 cd12085 51.5057 -213375 cd12086 52.7296 -213052 cd12087 25.9538 -277187 cd12088 61.7166 -277188 cd12089 87.6506 -277189 cd12090 138.99 -277190 cd12091 56.5328 -213053 cd12092 64.0232 -213054 cd12093 50.575 -213055 cd12094 37.1777 -213056 cd12095 40.8869 -213044 cd12097 75.7695 -213045 cd12098 61.9527 -213046 cd12099 63.8039 -213047 cd12100 66.4901 -213048 cd12101 85.4803 -213049 cd12102 93.8417 -213050 cd12103 74.9371 -213051 cd12104 88.0346 -213031 cd12105 37.2858 -213061 cd12106 190.353 -213982 cd12107 51.5824 -213983 cd12108 51.6624 -213984 cd12109 138.964 -213994 cd12110 179.68 -213995 cd12111 372.14 -213996 cd12112 343.542 -213997 cd12113 352.898 -213376 cd12120 113.8 -213377 cd12121 69.175 -213378 cd12122 94.8374 -271279 cd12124 278.801 -271280 cd12125 241.804 -271281 cd12126 246.482 -271282 cd12127 276.749 -271283 cd12128 254.942 -271284 cd12129 261.39 -271285 cd12130 216.766 -271286 cd12131 160.788 -271287 cd12137 217.937 -213015 cd12139 134.272 -213016 cd12140 136.179 -213017 cd12141 113.363 -213018 cd12142 88.2911 -213019 cd12143 115.786 -213387 cd12144 93.3619 -213388 cd12145 98.8836 -213389 cd12146 171.318 -213390 cd12147 737.982 -213391 cd12148 30.8757 -213392 cd12149 128.191 -213393 cd12150 185.919 -213394 cd12151 161.591 -213395 cd12152 62.144 -213396 cd12153 41.8598 -240631 cd12154 226.728 -240632 cd12155 390.404 -240633 cd12156 339.445 -240634 cd12157 447.505 -240635 cd12158 304.068 -240636 cd12159 318.826 -240637 cd12160 432.955 -240638 cd12161 499.439 -240639 cd12162 397.208 -240640 cd12163 435.935 -240641 cd12164 322.523 -240642 cd12165 267.572 -240643 cd12166 332.632 -240644 cd12167 267.505 -240645 cd12168 304.085 -240646 cd12169 322.539 -240647 cd12170 488.735 -240648 cd12171 354.537 -240649 cd12172 322.515 -240650 cd12173 315.895 -240651 cd12174 310.262 -240652 cd12175 295.636 -240653 cd12176 444.714 -240654 cd12177 397.077 -240655 cd12178 474.802 -240656 cd12179 471.393 -240657 cd12180 393.246 -240658 cd12181 370.022 -240659 cd12183 431.098 -240660 cd12184 525.705 -240661 cd12185 450.507 -240662 cd12186 416.937 -240663 cd12187 442.485 -240664 cd12188 420.87 -240665 cd12189 518.653 -213397 cd12190 86.5805 -213398 cd12191 60.8378 -213399 cd12192 30.0563 -269833 cd12193 45.6347 -213379 cd12194 91.1592 -213380 cd12195 76.0716 -213381 cd12196 196.899 -213382 cd12197 145.048 -213383 cd12198 117.715 -213384 cd12199 190.683 -213385 cd12200 175.265 -213386 cd12201 222.998 -213401 cd12202 98.594 -213402 cd12203 63.8383 -213176 cd12204 55.41 -213344 cd12205 284.885 -213345 cd12206 201.788 -213346 cd12207 657.287 -213403 cd12208 122.668 -213404 cd12211 212.097 -276936 cd12212 93.3863 -213406 cd12213 75.0893 -213177 cd12214 41.5529 -213178 cd12215 31.3885 -213409 cd12216 127.529 -213410 cd12217 297.296 -213411 cd12218 166.254 -240617 cd12220 296.663 -240616 cd12221 155.853 -240615 cd12222 54.3086 -240669 cd12223 138.551 -240670 cd12224 112.738 -240671 cd12225 105.128 -240672 cd12226 84.1463 -240673 cd12227 115.9 -240674 cd12228 162.572 -240675 cd12229 99.392 -240676 cd12230 106.856 -240677 cd12231 106.931 -240678 cd12232 64.1143 -240679 cd12233 102.908 -240680 cd12234 124.548 -240681 cd12235 146.639 -240682 cd12236 130.829 -240683 cd12237 137.39 -240684 cd12238 97.3044 -240685 cd12239 100.716 -240686 cd12240 102.625 -240687 cd12241 115.021 -240688 cd12242 112.394 -240689 cd12243 82.6834 -240690 cd12244 125.923 -240691 cd12245 124.239 -240692 cd12246 104.148 -240693 cd12247 66.8235 -240694 cd12248 114.617 -240695 cd12249 102.638 -240696 cd12250 85.0204 -240697 cd12251 108.866 -240698 cd12252 35.9558 -240699 cd12253 142.974 -240700 cd12254 53.7151 -240701 cd12255 107.744 -240702 cd12256 118.208 -240703 cd12257 82.9797 -240704 cd12258 111.978 -240705 cd12259 98.5004 -240706 cd12260 126.253 -240707 cd12261 74.1772 -240708 cd12262 128.861 -240709 cd12263 100.745 -240710 cd12264 140.875 -240711 cd12265 97.466 -240712 cd12266 97.4196 -240713 cd12267 117.903 -240714 cd12268 101.841 -240715 cd12269 107.531 -240716 cd12270 105.499 -240717 cd12271 107.44 -240718 cd12272 106.707 -240719 cd12273 103.661 -240720 cd12274 114.218 -240721 cd12275 118.815 -240722 cd12276 66.4694 -240723 cd12277 88.4339 -240724 cd12278 86.8604 -240725 cd12279 88.9862 -240726 cd12280 106.628 -240727 cd12281 117.635 -240728 cd12282 115.782 -240729 cd12283 110.773 -240730 cd12284 115.818 -240731 cd12285 81.822 -240732 cd12286 137.443 -240733 cd12287 109.655 -240734 cd12288 125.322 -240735 cd12289 108.124 -240736 cd12290 85.1042 -240737 cd12291 58.751 -240738 cd12292 70.4111 -240739 cd12293 81.6853 -240740 cd12294 112.788 -240741 cd12295 111.3 -240742 cd12296 81.1415 -240743 cd12297 114.2 -240744 cd12298 88.466 -240745 cd12299 76.881 -240746 cd12300 71.6633 -240747 cd12301 71.5645 -240748 cd12302 91.655 -240749 cd12303 95.5047 -240750 cd12304 134.733 -240751 cd12305 115.058 -240752 cd12306 110.459 -240753 cd12307 96.1044 -240754 cd12308 101.183 -240755 cd12309 140.999 -240756 cd12310 69.9273 -240757 cd12311 102.759 -240758 cd12312 138.661 -240759 cd12313 78.7503 -240760 cd12314 144.582 -240761 cd12315 95.0197 -240762 cd12316 85.812 -240763 cd12317 106.537 -240764 cd12318 93.8232 -240765 cd12319 156.165 -240766 cd12320 110.782 -240767 cd12321 135.207 -240768 cd12322 106.583 -240769 cd12323 140.648 -240770 cd12324 141.201 -240771 cd12325 121.924 -240772 cd12326 133.378 -240773 cd12327 145.201 -240774 cd12328 123.907 -240775 cd12329 127.482 -240776 cd12330 128.257 -240777 cd12331 135.773 -240778 cd12332 110.059 -240779 cd12333 140.904 -240780 cd12334 116.154 -240781 cd12335 124.715 -240782 cd12336 118.959 -240783 cd12337 112.035 -240784 cd12338 111.33 -240785 cd12339 91.5271 -240786 cd12340 96.7316 -240787 cd12341 102.301 -240788 cd12342 124.863 -240789 cd12343 105.772 -240790 cd12344 95.4072 -240791 cd12345 128.165 -240792 cd12346 120.871 -240793 cd12347 106.538 -240794 cd12348 88.6598 -240795 cd12349 115.098 -240796 cd12350 127.903 -240797 cd12351 124.306 -240798 cd12352 113.937 -240799 cd12353 131.727 -240800 cd12354 105.395 -240801 cd12355 102.354 -240802 cd12356 128.813 -240803 cd12357 135.141 -240804 cd12358 85.1163 -240805 cd12359 106.655 -240806 cd12360 112.743 -240807 cd12361 102.24 -240808 cd12362 116.967 -240809 cd12363 107.71 -240810 cd12364 109.422 -240811 cd12365 103.404 -240812 cd12366 111.655 -240813 cd12367 141.382 -240814 cd12368 115.116 -240815 cd12369 119.337 -240816 cd12370 142.569 -240817 cd12371 114.287 -240818 cd12372 91.2027 -240819 cd12373 96.1502 -240820 cd12374 87.6662 -240821 cd12375 133.625 -240822 cd12376 151.241 -240823 cd12377 137.452 -240824 cd12378 106.464 -240825 cd12379 113.03 -240826 cd12380 123.453 -240827 cd12381 140.447 -240828 cd12382 125.799 -240829 cd12383 128.494 -240830 cd12384 102.693 -240831 cd12385 139.093 -240832 cd12386 137.121 -240833 cd12387 120.834 -240834 cd12388 110.649 -240835 cd12389 88.8668 -240836 cd12390 126.609 -240837 cd12391 102.733 -240838 cd12392 137.543 -240839 cd12393 124.735 -240840 cd12394 91.9378 -240841 cd12395 100.313 -240842 cd12396 124.958 -240843 cd12397 111.769 -240844 cd12398 123.503 -240845 cd12399 106.544 -240846 cd12400 97.8049 -240847 cd12401 135.15 -240848 cd12402 124.801 -240849 cd12403 124.912 -240850 cd12404 122.646 -240851 cd12405 120.777 -240852 cd12406 119.696 -240853 cd12407 142.547 -240854 cd12408 94.9138 -240855 cd12409 114.789 -240856 cd12410 109.648 -240857 cd12411 165.504 -240858 cd12412 125.849 -240859 cd12413 95.7612 -240860 cd12414 100.408 -240861 cd12415 85.3402 -240862 cd12416 79.9548 -240863 cd12417 104.735 -240864 cd12418 82.2627 -240865 cd12419 85.5031 -240866 cd12420 102.348 -240867 cd12421 80.7037 -240868 cd12422 80.287 -240869 cd12423 126.219 -240870 cd12424 100.73 -240871 cd12425 90.0282 -240872 cd12426 135.694 -240873 cd12427 111.947 -240874 cd12428 78.4828 -240875 cd12429 69.2214 -240876 cd12430 95.0916 -240877 cd12431 102.692 -240878 cd12432 78.7989 -240879 cd12433 114.681 -240880 cd12434 78.4063 -240881 cd12435 110.149 -240882 cd12436 72.291 -240883 cd12437 100.053 -240884 cd12438 117.64 -240885 cd12439 93.472 -240886 cd12440 104.152 -240887 cd12441 70.7182 -240888 cd12442 160.536 -240889 cd12443 102.846 -240890 cd12444 151.665 -240891 cd12445 118.232 -240892 cd12446 75.7234 -240893 cd12447 115.178 -240894 cd12448 117.088 -240895 cd12449 152.695 -240896 cd12450 114.33 -240897 cd12451 123.27 -240898 cd12452 139.539 -240899 cd12453 147.562 -240900 cd12454 106.645 -240901 cd12455 58.418 -240902 cd12456 132.064 -240903 cd12457 110.154 -240904 cd12458 115.627 -240905 cd12459 149.879 -240906 cd12460 169.599 -240907 cd12461 176.395 -240908 cd12462 173.299 -240909 cd12463 165.482 -240910 cd12464 166.296 -240911 cd12465 169.402 -240912 cd12466 131.517 -240913 cd12467 116.44 -240914 cd12470 168.463 -240915 cd12471 128.335 -240916 cd12472 157.678 -240917 cd12473 165.659 -240918 cd12474 170.216 -240919 cd12475 183.765 -240920 cd12476 127.345 -240921 cd12477 148.271 -240922 cd12478 180.61 -240923 cd12479 150.628 -240924 cd12480 154.098 -240925 cd12481 172.121 -240926 cd12482 166.294 -240927 cd12483 167.483 -240928 cd12484 169.692 -240929 cd12485 170.146 -240930 cd12486 169.378 -240931 cd12487 158.429 -240932 cd12488 178.765 -240933 cd12489 176.458 -240934 cd12490 178.712 -240935 cd12491 175.261 -240936 cd12492 141.683 -240937 cd12493 141.871 -240938 cd12494 118.593 -240939 cd12495 129.734 -240940 cd12496 159.825 -240941 cd12497 162.895 -240942 cd12498 172.146 -240943 cd12499 103.037 -240944 cd12500 103.263 -240945 cd12501 95.3135 -240946 cd12502 125.557 -240947 cd12503 120.164 -240948 cd12504 140.98 -240949 cd12505 123.3 -240950 cd12506 132.073 -240951 cd12507 154.191 -240952 cd12508 121.26 -240953 cd12509 159.922 -240954 cd12510 120.829 -240955 cd12511 130.665 -240956 cd12512 212.87 -240957 cd12513 116.682 -240958 cd12514 103.178 -240959 cd12515 114.847 -240960 cd12516 165.21 -240961 cd12517 169.1 -240962 cd12518 160.997 -240963 cd12519 157.868 -240964 cd12520 142.194 -240965 cd12521 144.876 -240966 cd12522 137.945 -240967 cd12523 137.955 -240968 cd12524 111.592 -240969 cd12525 114.402 -240970 cd12526 107.041 -240971 cd12527 140.344 -240972 cd12528 113.352 -240973 cd12529 128.381 -240974 cd12530 175.032 -240975 cd12531 159.483 -240976 cd12532 173.889 -240977 cd12533 167.382 -240978 cd12534 127.921 -240979 cd12535 170.516 -240980 cd12536 160.221 -240981 cd12537 153.669 -240982 cd12538 172.535 -240983 cd12539 170.623 -240984 cd12540 153.942 -240985 cd12541 78.4499 -240986 cd12542 75.777 -240987 cd12543 102.519 -240988 cd12544 125.991 -240989 cd12545 125.277 -240990 cd12546 95.4716 -240991 cd12547 68.8332 -240992 cd12548 197.111 -240993 cd12549 205.655 -240994 cd12550 159.581 -240995 cd12551 153.482 -240996 cd12552 131.459 -240997 cd12553 154.762 -240998 cd12554 122.265 -240999 cd12555 167.816 -241000 cd12556 181.704 -241001 cd12557 158.964 -241002 cd12558 140.929 -241003 cd12559 165.912 -241004 cd12560 160.567 -241005 cd12561 126.725 -241006 cd12562 129.601 -241007 cd12563 143.033 -241008 cd12564 120.876 -241009 cd12565 113.85 -241010 cd12566 148.31 -241011 cd12567 156.796 -241012 cd12568 118.259 -241013 cd12569 143.285 -241014 cd12570 136.099 -241015 cd12571 148.313 -241016 cd12572 123.583 -241017 cd12573 165.233 -241018 cd12574 166.526 -241019 cd12575 136.541 -241020 cd12576 150.274 -241021 cd12577 147.73 -241022 cd12578 137.117 -241023 cd12579 152.366 -241024 cd12580 160.537 -241025 cd12581 151.768 -241026 cd12582 151.679 -241027 cd12583 145.149 -241028 cd12584 153.22 -241029 cd12585 159.411 -241030 cd12586 135.83 -241031 cd12587 144.676 -241032 cd12588 130.386 -241033 cd12589 172.914 -241034 cd12590 153.332 -241035 cd12591 174.027 -241036 cd12592 157.757 -241037 cd12593 160.13 -241038 cd12594 122.793 -241039 cd12595 123.53 -241040 cd12596 134.281 -241041 cd12597 133.367 -241042 cd12598 134.156 -241043 cd12599 136.821 -241044 cd12600 112.847 -241045 cd12601 141.851 -241046 cd12602 134.556 -241047 cd12603 123.96 -241048 cd12604 143.651 -241049 cd12605 144.389 -241050 cd12606 136.156 -241051 cd12607 143.241 -241052 cd12608 123.394 -241053 cd12609 127.283 -241054 cd12610 150.179 -241055 cd12611 101.726 -241056 cd12612 147.069 -241057 cd12613 159.224 -241058 cd12614 133.822 -241059 cd12615 150.964 -241060 cd12616 148.341 -241061 cd12617 156.784 -241062 cd12618 137.905 -241063 cd12619 138.024 -241064 cd12620 149.015 -241065 cd12621 153.68 -241066 cd12622 135.304 -241067 cd12623 197.853 -241068 cd12624 188.552 -241069 cd12625 174.066 -241070 cd12626 169.408 -241071 cd12627 165.155 -241072 cd12628 161.777 -241073 cd12629 162.164 -241074 cd12630 159.817 -241075 cd12631 165.353 -241076 cd12632 164.496 -241077 cd12633 173.613 -241078 cd12634 162.532 -241079 cd12635 164.145 -241080 cd12636 159.208 -241081 cd12637 153.848 -241082 cd12638 174.095 -241083 cd12639 156.94 -241084 cd12640 159.779 -241085 cd12641 154.424 -241086 cd12642 135.474 -241087 cd12643 141.416 -241088 cd12644 182.842 -241089 cd12645 159.051 -241090 cd12646 137.835 -241091 cd12647 155.123 -241092 cd12648 182.99 -241093 cd12649 152.169 -241094 cd12650 146.801 -241095 cd12651 148.505 -241096 cd12652 139.357 -241097 cd12653 176.798 -241098 cd12654 184.144 -241099 cd12655 181.061 -241100 cd12656 180.285 -241101 cd12657 162.506 -241102 cd12658 167.875 -241103 cd12659 141.296 -241104 cd12660 140.539 -241105 cd12661 159.351 -241106 cd12662 159.04 -241107 cd12663 146.998 -241108 cd12664 154.706 -241109 cd12665 171.675 -241110 cd12666 161.99 -241111 cd12667 160.023 -241112 cd12668 194.343 -241113 cd12669 112.491 -241114 cd12670 134.238 -241115 cd12671 151.488 -241116 cd12672 150.739 -241117 cd12673 158.816 -241118 cd12674 138.046 -241119 cd12675 145.01 -241120 cd12676 170.117 -241121 cd12677 232.949 -241122 cd12678 148.294 -241123 cd12679 161.816 -241124 cd12680 125.83 -241125 cd12681 100.805 -241126 cd12682 149.422 -241127 cd12683 148.26 -241128 cd12684 171.024 -241129 cd12685 152.492 -241130 cd12686 142.003 -241131 cd12687 149.709 -241132 cd12688 155.617 -241133 cd12689 131.338 -241134 cd12690 186.99 -241135 cd12691 171.182 -241136 cd12692 182.83 -241137 cd12693 184.552 -241138 cd12694 156.352 -241139 cd12695 185.992 -241140 cd12696 193.325 -241141 cd12697 153.176 -241142 cd12698 157.364 -241143 cd12699 155.91 -241144 cd12700 143.601 -241145 cd12701 154.822 -241146 cd12702 159.023 -241147 cd12703 177.56 -241148 cd12704 183.258 -241149 cd12705 181.742 -241150 cd12706 169.847 -241151 cd12707 167.538 -241152 cd12708 157.359 -241153 cd12709 155.921 -241154 cd12710 161.316 -241155 cd12711 170.632 -241156 cd12712 179.876 -241157 cd12713 166.823 -241158 cd12714 124.508 -241159 cd12715 147.367 -241160 cd12716 116.429 -241161 cd12717 127.859 -241162 cd12718 127.758 -241163 cd12719 113.272 -241164 cd12720 120.295 -241165 cd12721 96.3369 -241166 cd12722 145.702 -241167 cd12723 185.306 -241168 cd12724 171.476 -241169 cd12725 158.327 -241170 cd12726 161.113 -241171 cd12727 159.754 -241172 cd12728 179.778 -241173 cd12729 161.593 -241174 cd12730 144.565 -241175 cd12731 165.184 -241176 cd12732 195.961 -241177 cd12733 143.05 -241178 cd12734 150.226 -241179 cd12735 163.253 -241180 cd12736 178.294 -241181 cd12737 167.484 -241182 cd12738 175.872 -241183 cd12739 204.125 -241184 cd12740 227.177 -241185 cd12741 197.799 -241186 cd12742 169.984 -241187 cd12743 168.145 -241188 cd12744 149.622 -241189 cd12745 180.613 -241190 cd12746 151.864 -241191 cd12747 144.933 -241192 cd12748 145.685 -241193 cd12749 168.869 -241194 cd12750 143.899 -241195 cd12751 164.35 -241196 cd12752 185.972 -241197 cd12753 176.408 -241198 cd12754 139.376 -241199 cd12755 158.953 -241200 cd12756 134.73 -241201 cd12757 143.975 -241202 cd12758 147.839 -241203 cd12759 154.391 -241204 cd12760 159.476 -241205 cd12761 164.853 -241206 cd12762 156.037 -241207 cd12763 164.12 -241208 cd12764 114.807 -241209 cd12765 132.88 -241210 cd12766 123.186 -241211 cd12767 144.854 -241212 cd12768 160.916 -241213 cd12769 153.319 -241214 cd12770 162.21 -241215 cd12771 169.143 -241216 cd12772 165.291 -241217 cd12773 177.896 -241218 cd12774 160.658 -241219 cd12775 188.067 -241220 cd12776 170.566 -241221 cd12777 178.296 -241222 cd12778 171.406 -241223 cd12779 183.401 -241224 cd12780 171.363 -241225 cd12781 181.834 -241226 cd12782 201.865 -241227 cd12783 200.628 -241228 cd12784 202.156 -241229 cd12785 199.181 -241230 cd12786 199.084 -213347 cd12787 739.049 -213348 cd12788 846.197 -213349 cd12789 497.464 -213350 cd12790 491.939 -213351 cd12791 723.553 -213352 cd12792 759.931 -213353 cd12793 632.452 -240614 cd12794 314.968 -240613 cd12795 73.8922 -240609 cd12796 87.0689 -213998 cd12798 116.368 -213999 cd12800 178.183 -214000 cd12801 73.9381 -214001 cd12802 114.936 -214002 cd12803 96.3929 -214003 cd12804 53.2058 -214004 cd12805 36.6959 -214005 cd12806 349.524 -214006 cd12807 348.159 -214007 cd12808 413.948 -214008 cd12809 324.179 -214009 cd12810 315.312 -214010 cd12812 409.493 -240610 cd12813 51.394 -240611 cd12819 81.933 -240612 cd12820 64.4389 -213355 cd12821 174.814 -213356 cd12822 175.45 -213357 cd12823 173.199 -213358 cd12824 406.52 -213359 cd12825 335.825 -213360 cd12826 219.745 -213361 cd12827 151.501 -213362 cd12828 281.626 -213363 cd12829 202.881 -213364 cd12830 269.008 -213365 cd12831 374.962 -213366 cd12832 342.274 -213367 cd12833 320.595 -213368 cd12834 295.264 -213369 cd12835 348.477 -213370 cd12836 410.883 -213371 cd12837 354.914 -214011 cd12838 87.0425 -214012 cd12839 106.641 -214013 cd12840 132.567 -214014 cd12841 36.957 -240608 cd12843 74.9901 -240607 cd12869 106.929 -240606 cd12870 49.993 -214015 cd12871 53.5771 -293932 cd12872 97.9736 -293933 cd12873 199.337 -293934 cd12874 194.063 -293935 cd12875 283.963 -293936 cd12876 213.946 -240457 cd12877 214.869 -240458 cd12878 232.191 -293937 cd12879 185.201 -293938 cd12880 217.837 -293939 cd12881 209.127 -293940 cd12882 249.166 -293941 cd12883 222.993 -293942 cd12884 176.625 -293943 cd12885 66.9192 -293944 cd12886 87.5624 -293945 cd12887 133.788 -293946 cd12888 227.826 -293947 cd12889 239.065 -293948 cd12890 353.696 -293949 cd12891 194.388 -240472 cd12892 405.163 -293950 cd12893 227.129 -293951 cd12894 401.064 -293952 cd12895 401.165 -293953 cd12896 316.701 -293954 cd12897 344.211 -293955 cd12898 298.765 -293956 cd12899 361.024 -293957 cd12900 356.886 -293958 cd12901 384.564 -293959 cd12902 287.489 -293960 cd12903 334.8 -293961 cd12904 317.825 -293962 cd12905 344.781 -293963 cd12906 300.696 -293964 cd12907 366.716 -293965 cd12908 239.507 -293966 cd12909 231.257 -293967 cd12910 174.087 -240599 cd12916 77.2942 -240600 cd12917 99.9846 -240601 cd12918 70.8065 -240602 cd12919 215.309 -240603 cd12920 81.2016 -240604 cd12921 51.1695 -240605 cd12922 128.469 -214016 cd12923 157.771 -214017 cd12924 220.72 -214018 cd12925 327.782 -214019 cd12926 244.992 -240571 cd12927 39.5 -240592 cd12929 61.1871 -260087 cd12930 62.3124 -240579 cd12931 119.655 -240576 cd12932 88.8492 -240597 cd12933 117.771 -240585 cd12934 39.3098 -240596 cd12935 41.2212 -240593 cd12936 117.935 -240594 cd12937 73.7551 -240595 cd12938 66.5528 -240586 cd12939 72.4433 -240587 cd12940 41.5209 -240588 cd12941 76.099 -240589 cd12942 94.7787 -240590 cd12943 65.2411 -240591 cd12944 75.9272 -240580 cd12945 134.027 -240581 cd12946 185.312 -240582 cd12947 191.45 -240583 cd12948 192.271 -240584 cd12949 184.45 -240577 cd12950 128.936 -240578 cd12951 118.92 -240572 cd12952 84.0977 -240573 cd12953 121.181 -240574 cd12954 59.1952 -214020 cd12955 138.734 -240562 cd12956 58.5247 -240570 cd12957 149.087 -214021 cd12958 110.152 -214022 cd12959 175.925 -240575 cd12960 27.3634 -240569 cd12961 183.642 -240568 cd12962 90.3813 -240567 cd12963 123.41 -240563 cd12964 95.5529 -240564 cd12965 76.6102 -240565 cd12966 98.9227 -240566 cd12967 72.7085 -240556 cd13112 84.3979 -240557 cd13114 128.922 -240558 cd13115 137.814 -240559 cd13116 84.5642 -240560 cd13117 62.5996 -240561 cd13118 58.1011 -240524 cd13119 37.1458 -240525 cd13120 31.8793 -240526 cd13121 33.6845 -240555 cd13122 54.7038 -240528 cd13123 265.085 -240529 cd13124 251.233 -240530 cd13125 228.965 -240531 cd13126 199.451 -240532 cd13127 244.317 -240533 cd13128 145.763 -240534 cd13129 458.492 -240535 cd13130 534.228 -240536 cd13131 286.318 -240537 cd13132 280.228 -240538 cd13133 223.943 -240539 cd13134 279.772 -240540 cd13135 381.255 -240541 cd13136 255.949 -240542 cd13137 248.966 -240543 cd13138 292.441 -240544 cd13139 466.319 -240545 cd13140 354.909 -240546 cd13141 556.545 -240547 cd13142 439.32 -240548 cd13143 286.714 -240549 cd13144 454.383 -240550 cd13145 489.416 -240551 cd13146 459.174 -240552 cd13147 384.201 -240553 cd13148 442.096 -240554 cd13149 455.225 -240523 cd13150 200.541 -240522 cd13151 82.9245 -240516 cd13152 75.3018 -240517 cd13153 63.34 -240518 cd13154 150.417 -240519 cd13155 65.2501 -240520 cd13156 143.072 -269979 cd13157 161.013 -269980 cd13158 199.497 -269981 cd13159 154.412 -269982 cd13160 163.661 -269983 cd13161 117.734 -269984 cd13162 166.419 -269985 cd13163 194.98 -241318 cd13164 193.413 -269986 cd13165 162.297 -269987 cd13166 273.606 -269988 cd13167 285.73 -269989 cd13168 170.201 -269990 cd13169 161.463 -269991 cd13170 83.8061 -269992 cd13171 201.156 -269993 cd13172 212.696 -269994 cd13173 225.825 -269995 cd13174 208.03 -269996 cd13175 180.423 -269997 cd13176 213.292 -269998 cd13177 246.112 -269999 cd13178 247.56 -270000 cd13179 164.664 -270001 cd13180 110.399 -270002 cd13181 157.984 -270003 cd13182 115.309 -270004 cd13183 167.573 -270005 cd13184 159.027 -270006 cd13185 137.439 -270007 cd13186 120.466 -270008 cd13187 156.33 -270009 cd13188 110.455 -270010 cd13189 162.48 -270011 cd13190 119.269 -270012 cd13191 163.286 -270013 cd13192 188.756 -270014 cd13193 177.535 -270015 cd13194 155.124 -270016 cd13195 148.936 -275394 cd13196 131.777 -270018 cd13197 173.956 -270019 cd13198 111.537 -270020 cd13199 150.1 -270021 cd13200 217.006 -270022 cd13201 124.255 -270023 cd13202 145.995 -270024 cd13203 164.134 -270025 cd13204 165.679 -270026 cd13205 168.29 -241360 cd13206 166.837 -275395 cd13207 168.66 -275396 cd13208 179.858 -275397 cd13209 189.657 -270030 cd13210 157.444 -275398 cd13211 139.332 -275399 cd13212 197.455 -275400 cd13213 166.738 -275401 cd13214 85.3038 -275402 cd13215 141.605 -275403 cd13216 113.063 -275404 cd13217 136.798 -275405 cd13218 161.99 -270039 cd13219 197.304 -275406 cd13220 114.14 -270041 cd13221 140.553 -270042 cd13222 184.853 -275407 cd13223 131.207 -270044 cd13224 284.874 -270045 cd13225 91.8947 -275408 cd13226 196.401 -275409 cd13227 156.336 -270048 cd13228 141.924 -270049 cd13229 49.5773 -270050 cd13230 149.602 -270051 cd13231 108.347 -270052 cd13232 197.73 -270053 cd13233 131.635 -270054 cd13234 115.257 -270055 cd13235 164.414 -270056 cd13236 139.408 -270057 cd13237 127.145 -270058 cd13238 163.201 -270059 cd13239 247.072 -270060 cd13240 179.503 -270061 cd13241 200.95 -270062 cd13242 220.241 -270063 cd13243 169.839 -270064 cd13244 107.312 -270065 cd13245 159.363 -270066 cd13246 141.227 -270067 cd13247 179.104 -270068 cd13248 149.345 -270069 cd13249 150.611 -270070 cd13250 115.78 -270071 cd13251 170.235 -270072 cd13252 142.784 -270073 cd13253 144.067 -270074 cd13254 154.496 -270075 cd13255 197.636 -270076 cd13256 177.263 -270077 cd13257 162.329 -270078 cd13258 138.996 -270079 cd13259 193.03 -270080 cd13260 162.129 -270081 cd13261 245.412 -270082 cd13262 138.717 -270083 cd13263 197.606 -270084 cd13264 233.5 -270085 cd13265 152.842 -270086 cd13266 170.781 -270087 cd13267 168.659 -270088 cd13268 208.087 -241423 cd13269 156.784 -270089 cd13270 233.555 -270090 cd13271 169.458 -270091 cd13272 245.006 -270092 cd13273 144.745 -270093 cd13274 151.78 -270094 cd13275 158.265 -270095 cd13276 157.479 -270096 cd13277 145.12 -241432 cd13278 178.17 -270097 cd13279 115.806 -270098 cd13280 136.235 -270099 cd13281 213.724 -241436 cd13282 133.192 -270100 cd13283 167.464 -270101 cd13284 170.251 -270102 cd13285 213.796 -270103 cd13286 230.706 -270104 cd13287 175.594 -270105 cd13288 173.578 -241443 cd13289 121.982 -241444 cd13290 194.586 -270106 cd13291 167.086 -241446 cd13292 164.018 -241447 cd13293 126.674 -241448 cd13294 165.361 -270107 cd13295 193.7 -270108 cd13296 134.517 -270109 cd13297 202.665 -270110 cd13298 135.061 -270111 cd13299 130.825 -270112 cd13300 203.477 -270113 cd13301 179.49 -270114 cd13302 190.802 -241457 cd13303 227.203 -241458 cd13304 139.007 -270115 cd13305 135.398 -270116 cd13306 186.15 -270117 cd13307 140.207 -270118 cd13308 131.759 -270119 cd13309 139.052 -270120 cd13310 173.982 -270121 cd13311 131.309 -270122 cd13312 134.742 -270123 cd13313 196.18 -270124 cd13314 135.089 -270125 cd13315 168.632 -270126 cd13316 133.267 -270127 cd13317 143.038 -270128 cd13318 185.208 -270129 cd13319 126.585 -270130 cd13320 139.565 -241475 cd13321 232.808 -270131 cd13322 195.896 -270132 cd13323 198.465 -270133 cd13324 184.152 -270134 cd13325 150.965 -270135 cd13326 143.253 -270136 cd13327 199.88 -275410 cd13328 128.761 -275411 cd13329 102.341 -241484 cd13330 139.843 -270139 cd13331 154.099 -275412 cd13332 225.109 -270141 cd13333 209.281 -275413 cd13334 193.453 -275414 cd13335 267.064 -275415 cd13336 210.131 -270145 cd13337 144.412 -270146 cd13338 139.032 -275416 cd13339 195.964 -275417 cd13340 224.741 -270149 cd13341 200.999 -270150 cd13342 250.28 -270151 cd13343 203.708 -270152 cd13344 210.933 -270153 cd13345 212.511 -270154 cd13346 376.961 -275418 cd13348 328.737 -270156 cd13349 191.607 -275419 cd13350 202.467 -275420 cd13351 174.888 -270159 cd13352 170.799 -270160 cd13353 182.347 -270161 cd13354 144.326 -270162 cd13355 215.874 -270163 cd13356 249.221 -270164 cd13357 208.895 -270165 cd13358 203.596 -270166 cd13359 194.835 -241514 cd13360 124.601 -270167 cd13361 104.96 -270168 cd13362 157.823 -270169 cd13363 177.511 -270170 cd13364 165.918 -270171 cd13365 113.148 -270172 cd13366 388.979 -270173 cd13367 381.662 -270174 cd13368 274.404 -270175 cd13369 287.145 -241521 cd13370 266.038 -241522 cd13371 264.975 -241523 cd13372 240.928 -270176 cd13373 261.201 -270177 cd13374 269.577 -270178 cd13375 394.449 -270179 cd13376 355.936 -241529 cd13378 250.634 -241530 cd13379 266.452 -270180 cd13380 201.239 -270181 cd13381 224.834 -270182 cd13382 169.996 -270183 cd13383 172.392 -241535 cd13384 191.502 -270184 cd13385 254.508 -275421 cd13386 208.614 -275422 cd13387 217.142 -275423 cd13388 110.106 -275424 cd13389 160.128 -275425 cd13390 256.45 -275426 cd13391 247.251 -275427 cd13392 190.891 -275428 cd13393 226.687 -240521 cd13394 305 -259831 cd13404 199.67 -276910 cd13405 138.612 -276911 cd13406 171.042 -276912 cd13407 239.227 -276913 cd13408 193.101 -276914 cd13409 160.166 -276915 cd13410 162.211 -276916 cd13411 244.698 -276917 cd13412 211.963 -276918 cd13413 135.678 -276919 cd13414 198.018 -276920 cd13415 246.99 -276921 cd13416 181.346 -276922 cd13417 129.427 -276923 cd13418 186.992 -276924 cd13419 97.8702 -276925 cd13420 148.023 -276926 cd13421 259.421 -276927 cd13422 228.466 -276928 cd13423 142.951 -276929 cd13424 183.877 -240448 cd13425 199.511 -240449 cd13426 89.3111 -240450 cd13427 165.679 -259832 cd13428 177.483 -259833 cd13429 164.417 -240445 cd13430 102.795 -240446 cd13431 81.2052 -240447 cd13432 121.085 -240441 cd13433 54.4932 -259812 cd13434 123.071 -259813 cd13435 400.607 -259814 cd13436 217.653 -259815 cd13437 328.42 -259816 cd13438 175.802 -240442 cd13439 63.2749 -240443 cd13440 96.8376 -240444 cd13441 143.127 -259835 cd13442 91.1658 -259836 cd13443 92.0683 -259837 cd13444 110.84 -259838 cd13445 108.859 -259825 cd13516 121.212 -270235 cd13517 236.736 -270236 cd13518 225.643 -270237 cd13519 279.582 -270238 cd13520 230.198 -270239 cd13521 491.971 -270240 cd13522 392.161 -270241 cd13523 291.263 -270242 cd13524 462.398 -270243 cd13525 274.333 -270244 cd13526 274.191 -270245 cd13527 360.582 -270246 cd13528 243.274 -270247 cd13529 145.623 -270248 cd13530 118.121 -270249 cd13531 376.421 -270250 cd13532 176.183 -270251 cd13533 281.475 -270252 cd13534 251.184 -270253 cd13535 297.925 -270254 cd13536 257.731 -270255 cd13537 269.155 -270256 cd13538 241.051 -270257 cd13539 228.22 -270258 cd13540 180.96 -270259 cd13541 332.733 -270260 cd13542 417.507 -270261 cd13543 355.073 -270262 cd13544 286.806 -270263 cd13545 298.059 -270264 cd13546 318.047 -270265 cd13547 259.462 -270266 cd13548 501.707 -270267 cd13549 423.401 -270268 cd13550 451.216 -270269 cd13551 350.165 -270270 cd13552 420.321 -270271 cd13553 160.822 -270272 cd13554 258.597 -270273 cd13555 320.822 -270274 cd13556 466.176 -270275 cd13557 355.447 -270276 cd13558 246.425 -270277 cd13559 399.874 -270278 cd13560 282.271 -270279 cd13561 263.462 -270280 cd13562 357.198 -270281 cd13563 227.888 -270282 cd13564 272.453 -270283 cd13565 168.949 -270284 cd13566 173.926 -270285 cd13567 304.519 -270286 cd13568 329.27 -270287 cd13569 295.721 -270288 cd13570 407.21 -270289 cd13571 247.172 -270290 cd13572 316.177 -270291 cd13573 419.575 -270292 cd13574 302.31 -270293 cd13575 412.635 -270294 cd13576 411.764 -270295 cd13577 369.75 -270296 cd13578 333.315 -270297 cd13579 342.331 -270298 cd13580 334.296 -270299 cd13581 507.244 -270300 cd13582 492.22 -270301 cd13583 482.241 -270302 cd13584 660.67 -270303 cd13585 180.679 -270304 cd13586 300.751 -270305 cd13587 415.294 -270306 cd13588 291.892 -270307 cd13589 208.234 -270308 cd13590 200.923 -270309 cd13591 283.509 -270310 cd13592 298.75 -270311 cd13593 235.583 -270312 cd13594 296.923 -270313 cd13595 223.558 -270314 cd13596 283.869 -270315 cd13597 308.05 -270316 cd13598 246.877 -270317 cd13599 367.493 -270318 cd13600 292.316 -270319 cd13601 252.629 -270320 cd13602 247.911 -270321 cd13603 152.299 -270322 cd13604 290.248 -270323 cd13605 329.328 -270324 cd13606 201.64 -270325 cd13607 333.012 -270326 cd13608 388.905 -270327 cd13609 384.262 -270328 cd13610 290.647 -270329 cd13611 353.427 -270330 cd13612 444.373 -270331 cd13613 397.094 -270332 cd13614 437.588 -270333 cd13615 373.316 -270334 cd13616 400.554 -270335 cd13617 550.081 -270336 cd13618 490.401 -270337 cd13619 325.425 -270338 cd13620 283.077 -270339 cd13621 345.571 -270340 cd13622 221.022 -270341 cd13623 265.302 -270342 cd13624 231.615 -270343 cd13625 311.616 -270344 cd13626 238.757 -270345 cd13627 300.857 -270346 cd13628 316.718 -270347 cd13629 244.018 -270348 cd13630 174.174 -270349 cd13631 159.113 -270350 cd13632 190.446 -270351 cd13633 213.52 -270352 cd13634 172.737 -270353 cd13635 304.053 -270354 cd13636 390.427 -270355 cd13637 356.879 -270356 cd13638 408.988 -270357 cd13639 232.428 -270358 cd13640 341.106 -270359 cd13641 296.083 -270360 cd13642 304.311 -270361 cd13643 281.103 -270362 cd13644 335.048 -270363 cd13645 375.806 -270364 cd13646 363.095 -270365 cd13647 277.249 -270366 cd13648 439.925 -270367 cd13649 369.169 -270368 cd13650 425.729 -270369 cd13651 319.686 -270370 cd13652 206.855 -270371 cd13653 197.407 -270372 cd13654 282.221 -270373 cd13655 428.302 -270374 cd13656 648.887 -270375 cd13657 400.6 -270376 cd13658 540.919 -270377 cd13659 422.127 -270378 cd13660 517.521 -270379 cd13661 337.082 -270380 cd13662 466.995 -270381 cd13663 264.924 -270382 cd13664 445.65 -270383 cd13665 238.634 -270384 cd13666 232.126 -270385 cd13667 417.133 -270386 cd13668 415.125 -270387 cd13669 318.738 -270388 cd13670 308.747 -270389 cd13671 319.114 -270390 cd13672 341.533 -270391 cd13673 387.765 -270392 cd13674 420.151 -270393 cd13675 398.163 -270394 cd13676 391.587 -270395 cd13677 369.698 -270396 cd13678 410.912 -270397 cd13679 381.556 -270398 cd13680 346.603 -270399 cd13681 472.434 -270400 cd13682 515.749 -270401 cd13683 295.747 -270402 cd13684 461.407 -270403 cd13685 196.637 -270404 cd13686 227.403 -270405 cd13687 259.877 -270406 cd13688 192.468 -270407 cd13689 285.28 -270408 cd13690 227.151 -270409 cd13691 338.273 -270410 cd13692 272.583 -270411 cd13693 301.156 -270412 cd13694 327.001 -270413 cd13695 370.352 -270414 cd13696 312.775 -270415 cd13697 382.263 -270416 cd13698 372.785 -270417 cd13699 303.14 -270418 cd13700 322.857 -270419 cd13701 383.736 -270420 cd13702 347.77 -270421 cd13703 331.906 -270422 cd13704 163.524 -270423 cd13705 160.836 -270424 cd13706 221.666 -270425 cd13707 198.212 -270426 cd13708 230.861 -270427 cd13709 282.701 -270428 cd13710 254.142 -270429 cd13711 311.538 -270430 cd13712 351.303 -270431 cd13713 286.103 -270432 cd13714 248.991 -270433 cd13715 443.336 -270434 cd13716 440.433 -270435 cd13717 514.926 -270436 cd13718 446.784 -270437 cd13719 408.287 -270438 cd13720 392.293 -270439 cd13721 487.992 -270440 cd13722 450.657 -270441 cd13723 761.922 -270442 cd13724 638.981 -270443 cd13725 423.732 -270444 cd13726 486.839 -270445 cd13727 477.989 -270446 cd13728 464.55 -270447 cd13729 509.182 -270448 cd13730 504.105 -270449 cd13731 478.756 -293968 cd13733 185.76 -293969 cd13734 163.992 -293970 cd13735 220.858 -293971 cd13736 336.854 -293972 cd13737 343.392 -293973 cd13738 315.572 -293974 cd13739 362.022 -293975 cd13740 338.084 -240499 cd13741 339.431 -293976 cd13742 369.958 -293977 cd13743 386.849 -293978 cd13744 431.733 -293979 cd13745 333.823 -259839 cd13746 113.529 -259834 cd13747 159.402 -259840 cd13748 111.519 -259796 cd13749 63.779 -259841 cd13768 43.5274 -259842 cd13769 94.3137 -259817 cd13775 249.08 -260099 cd13777 62.3086 -260100 cd13778 49.9863 -260101 cd13783 325.619 -260102 cd13784 82.6839 -260079 cd13785 146.461 -259853 cd13831 82.0538 -259854 cd13832 61.3536 -259855 cd13833 80.7953 -259856 cd13834 77.6443 -259857 cd13835 104.835 -259858 cd13836 79.0382 -260013 cd13838 386.317 -260103 cd13839 40.4452 -260104 cd13840 40.7715 -260105 cd13841 260.891 -259911 cd13842 86.9665 -259912 cd13843 153.089 -259913 cd13844 153.988 -259914 cd13845 235.033 -259915 cd13846 218.045 -259916 cd13847 206.226 -259917 cd13848 208.289 -259918 cd13849 166.281 -259919 cd13850 152.452 -259920 cd13851 195.949 -259921 cd13852 178.251 -259922 cd13853 140.081 -259923 cd13854 192.457 -259924 cd13855 216.573 -259925 cd13856 229.531 -259926 cd13857 195.555 -259927 cd13858 161.553 -259928 cd13859 205.79 -259929 cd13860 177.388 -259930 cd13861 153.929 -259931 cd13862 227.4 -259932 cd13864 206.232 -259933 cd13865 158.628 -259934 cd13866 205.568 -259935 cd13867 168.144 -259936 cd13868 183.989 -259937 cd13869 235.928 -259938 cd13870 167.51 -259939 cd13871 322.571 -259940 cd13872 240.768 -259941 cd13873 220.622 -259942 cd13874 166.315 -259943 cd13875 171.627 -259944 cd13876 155.824 -259945 cd13877 142.691 -259946 cd13879 211.754 -259947 cd13880 169.352 -259948 cd13881 158.543 -259949 cd13882 251.944 -259950 cd13883 246.482 -259951 cd13884 131.971 -259952 cd13885 149.402 -259953 cd13886 201.347 -259954 cd13887 184.836 -259955 cd13888 218.974 -259956 cd13889 174.809 -259957 cd13890 154.329 -259958 cd13891 181.721 -259959 cd13892 229.339 -259960 cd13893 211.51 -259961 cd13894 213.06 -259962 cd13895 263.023 -259963 cd13896 147.403 -259964 cd13897 225.601 -259965 cd13898 187.465 -259966 cd13899 224.825 -259967 cd13900 139.688 -259968 cd13901 164.706 -259969 cd13902 189.148 -259970 cd13903 177.472 -259971 cd13904 224.481 -259972 cd13905 153.219 -259973 cd13906 176.42 -259974 cd13907 216.964 -259975 cd13908 203.452 -259976 cd13909 218.157 -259977 cd13910 176.718 -259978 cd13911 195.457 -259979 cd13912 205.112 -259980 cd13913 145.79 -259981 cd13914 177.985 -259982 cd13915 154.324 -259983 cd13916 164.862 -259984 cd13917 157.148 -259985 cd13918 222.716 -259986 cd13919 140.468 -259987 cd13920 143.607 -259988 cd13921 100.865 -259989 cd13922 160.028 -260106 cd13929 199.434 -260107 cd13930 400.19 -260108 cd13931 288.419 -259826 cd13932 88.4836 -259827 cd13933 128.339 -260014 cd13934 151.967 -260015 cd13935 220.855 -260110 cd13936 122.445 -260111 cd13937 209.077 -260112 cd13938 232.6 -260113 cd13939 352.301 -260114 cd13940 265.286 -260115 cd13941 319.829 -260116 cd13944 236.538 -260117 cd13945 110.737 -260118 cd13946 58.8181 -260119 cd13956 77.3883 -260120 cd13957 145.66 -260121 cd13958 306.848 -260122 cd13959 151.08 -260123 cd13960 312.576 -260124 cd13961 147.265 -260125 cd13962 68.3087 -260126 cd13963 178.051 -260127 cd13964 165.061 -260128 cd13965 160.118 -260129 cd13966 192.476 -260130 cd13967 192.825 -270870 cd13968 90.194 -270871 cd13969 286.305 -270872 cd13970 223.928 -270873 cd13971 300.293 -270874 cd13972 341.874 -270875 cd13973 128.606 -270876 cd13974 507.329 -270877 cd13975 530.14 -270878 cd13976 411.437 -270879 cd13977 628.047 -270880 cd13978 360.23 -270881 cd13979 340.13 -270882 cd13980 353.482 -270883 cd13981 305.435 -270884 cd13982 400.495 -270885 cd13983 417.012 -270886 cd13984 504.378 -270887 cd13985 370.126 -270888 cd13986 379.332 -270889 cd13987 412.103 -270890 cd13988 621.048 -270891 cd13989 512.379 -270892 cd13990 437.906 -270893 cd13991 480.085 -270894 cd13992 327.04 -270895 cd13993 336.63 -270896 cd13994 291.133 -270897 cd13995 555.39 -270898 cd13996 236.806 -270899 cd13997 390.591 -270900 cd13998 490.798 -270901 cd13999 244.369 -270902 cd14000 431.653 -270903 cd14001 435.675 -270904 cd14002 460.18 -270905 cd14003 297.892 -270906 cd14004 404.461 -270907 cd14005 371.955 -270908 cd14006 334.621 -270909 cd14007 312.872 -270910 cd14008 238.992 -270911 cd14009 396.208 -270912 cd14010 407.45 -270913 cd14011 214.493 -270914 cd14012 171.003 -270915 cd14013 473.078 -270916 cd14014 143.111 -270917 cd14015 243.342 -270918 cd14016 307.847 -270919 cd14017 313.04 -270920 cd14018 497.787 -270921 cd14019 260.232 -270922 cd14020 547.996 -270923 cd14021 175.534 -270924 cd14022 522.675 -270925 cd14023 511.515 -270926 cd14024 450.485 -270927 cd14025 480.068 -270928 cd14026 588.04 -270929 cd14027 510.504 -270930 cd14028 565.245 -270931 cd14029 549.854 -270932 cd14030 544.26 -270933 cd14031 555.486 -270934 cd14032 566.628 -270935 cd14033 530.731 -270936 cd14034 537.408 -270937 cd14035 527.956 -270938 cd14036 517.448 -270939 cd14037 437.87 -270940 cd14038 596.944 -270941 cd14039 600.366 -270942 cd14040 587.794 -270943 cd14041 610.139 -270944 cd14042 397.736 -270945 cd14043 457.639 -270946 cd14044 554.11 -270947 cd14045 517.489 -270948 cd14046 296.973 -270949 cd14047 444.241 -270950 cd14048 360.729 -270951 cd14049 366.062 -270952 cd14050 397.835 -270953 cd14051 530.824 -270954 cd14052 398.718 -270955 cd14053 478.746 -270956 cd14054 470.69 -270957 cd14055 506.144 -270958 cd14056 470.986 -270959 cd14057 495.855 -270960 cd14058 444.572 -270961 cd14059 493.936 -270962 cd14060 508.729 -270963 cd14061 474.574 -270964 cd14062 469.567 -270965 cd14063 427.921 -270966 cd14064 490.503 -270967 cd14065 449.249 -270968 cd14066 266.831 -270969 cd14067 587.702 -270970 cd14068 511.805 -270971 cd14069 412.88 -270972 cd14070 489.714 -270973 cd14071 525.805 -270974 cd14072 535.562 -270975 cd14073 513.474 -270976 cd14074 515.425 -270977 cd14075 477.215 -270978 cd14076 494.695 -270979 cd14077 466.539 -270980 cd14078 528.492 -270981 cd14079 481.383 -270982 cd14080 402.332 -270983 cd14081 433.218 -270984 cd14082 487.305 -270985 cd14083 524.629 -270986 cd14084 451.847 -270987 cd14085 552.124 -270988 cd14086 526.22 -270989 cd14087 460.462 -270990 cd14088 571.969 -270991 cd14089 458.676 -270992 cd14090 592.852 -270993 cd14091 502.164 -270994 cd14092 522.631 -270995 cd14093 509.588 -270996 cd14094 557.926 -270997 cd14095 470.269 -270998 cd14096 495.033 -270999 cd14097 497.456 -271000 cd14098 453.47 -271001 cd14099 391.146 -271002 cd14100 566.521 -271003 cd14101 520.947 -271004 cd14102 513.349 -271005 cd14103 460.925 -271006 cd14104 510.558 -271007 cd14105 505.869 -271008 cd14106 487.629 -271009 cd14107 525.224 -271010 cd14108 498.273 -271011 cd14109 443.106 -271012 cd14110 503.296 -271013 cd14111 510.135 -271014 cd14112 415.777 -271015 cd14113 571.534 -271016 cd14114 533.315 -271017 cd14115 490.627 -271018 cd14116 556.878 -271019 cd14117 540.607 -271020 cd14118 489.563 -271021 cd14119 438.229 -271022 cd14120 489.957 -271023 cd14121 460.602 -271024 cd14122 588.779 -271025 cd14123 589.894 -271026 cd14124 574.483 -271027 cd14125 559.678 -271028 cd14126 584.774 -271029 cd14127 546.707 -271030 cd14128 543.253 -271031 cd14129 546.574 -271032 cd14130 545.007 -271033 cd14131 369.621 -271034 cd14132 337.977 -271035 cd14133 328.458 -271036 cd14134 422.744 -271037 cd14135 494.819 -271038 cd14136 277.535 -271039 cd14137 334.856 -271040 cd14138 579.671 -271041 cd14139 535.278 -271042 cd14140 662.111 -271043 cd14141 637.853 -271044 cd14142 602.508 -271045 cd14143 548.582 -271046 cd14144 567.876 -271047 cd14145 592.016 -271048 cd14146 556.959 -271049 cd14147 576.981 -271050 cd14148 575.012 -271051 cd14149 584.687 -271052 cd14150 590.065 -271053 cd14151 566.227 -271054 cd14152 592.713 -271055 cd14153 580.427 -271056 cd14154 526.691 -271057 cd14155 488.139 -271058 cd14156 471.233 -271059 cd14157 513.616 -271060 cd14158 468.902 -271061 cd14159 542.109 -271062 cd14160 520.982 -271063 cd14161 557.646 -271064 cd14162 445.588 -271065 cd14163 555.371 -271066 cd14164 490.911 -271067 cd14165 480.818 -271068 cd14166 610.841 -271069 cd14167 592.387 -271070 cd14168 593.177 -271071 cd14169 557.197 -271072 cd14170 604.72 -271073 cd14171 550.142 -271074 cd14172 591.578 -271075 cd14173 623.203 -271076 cd14174 636.302 -271077 cd14175 644.774 -271078 cd14176 707.94 -271079 cd14177 650.154 -271080 cd14178 650.154 -271081 cd14179 656.343 -271082 cd14180 587.608 -271083 cd14181 601.96 -271084 cd14182 581.874 -271085 cd14183 548.441 -271086 cd14184 575.057 -271087 cd14185 560.336 -271088 cd14186 498.231 -271089 cd14187 546.839 -271090 cd14188 539.214 -271091 cd14189 547.218 -271092 cd14190 549.522 -271093 cd14191 547.295 -271094 cd14192 558.809 -271095 cd14193 528.33 -271096 cd14194 563.103 -271097 cd14195 533.812 -271098 cd14196 543.781 -271099 cd14197 555.701 -271100 cd14198 544.902 -271101 cd14199 600.029 -271102 cd14200 576.516 -271103 cd14201 558.856 -271104 cd14202 563.865 -271105 cd14203 549.519 -271106 cd14204 614.636 -271107 cd14205 622.806 -271108 cd14206 601.171 -271109 cd14207 737.968 -271110 cd14208 516.379 -271111 cd14209 530.824 -271112 cd14210 440.443 -271113 cd14211 587.493 -271114 cd14212 541.071 -271115 cd14213 626.878 -271116 cd14214 706.773 -271117 cd14215 674.424 -271118 cd14216 395.552 -271119 cd14217 408.265 -271120 cd14218 779.2 -271121 cd14219 631.699 -271122 cd14220 623.602 -271123 cd14221 541.469 -271124 cd14222 572.273 -271125 cd14223 660.973 -271126 cd14224 764.675 -271127 cd14225 684.51 -271128 cd14226 539.599 -271129 cd14227 746.144 -271130 cd14228 739.21 -271131 cd14229 723.356 -260088 cd14230 95.3553 -260089 cd14231 100.831 -260090 cd14232 48.3525 -260091 cd14233 119.595 -260092 cd14234 91.1564 -260093 cd14235 98.0625 -260094 cd14236 160.59 -260095 cd14237 162.301 -260096 cd14238 196.042 -260097 cd14239 149.11 -260098 cd14240 141.934 -260131 cd14241 198.646 -260109 cd14243 421.321 -271203 cd14244 267.984 -271204 cd14245 180.932 -271205 cd14246 71.6377 -271206 cd14247 165.576 -271207 cd14248 63.543 -271208 cd14249 40.4827 -271209 cd14250 41.2622 -271210 cd14251 228.649 -271211 cd14252 41.9024 -271212 cd14253 43.5649 -271213 cd14254 50.2811 -271214 cd14255 68.5137 -271215 cd14256 44.0693 -271221 cd14257 129.62 -271222 cd14259 120.114 -271223 cd14260 185.053 -271224 cd14261 211.242 -271354 cd14262 74.6902 -260132 cd14263 53.9942 -260133 cd14264 80.9465 -260134 cd14265 51.6165 -260135 cd14266 117.268 -270456 cd14270 25.7745 -270457 cd14271 68.1856 -270458 cd14272 32.5892 -270459 cd14273 29.2909 -270460 cd14274 78.3397 -270461 cd14275 40.8387 -270462 cd14276 57.8187 -270463 cd14277 50.6377 -270464 cd14278 43.6246 -270465 cd14279 27.8178 -270466 cd14280 62.247 -270467 cd14281 48.2763 -270468 cd14282 61.0259 -270469 cd14283 63.2937 -270470 cd14284 69.7392 -270471 cd14285 57.9996 -270472 cd14286 69.0142 -270473 cd14287 51.235 -270474 cd14288 63.1879 -270475 cd14289 81.4406 -270476 cd14290 78.6372 -270477 cd14291 37.4282 -270478 cd14292 58.5723 -270479 cd14293 59.3877 -270480 cd14294 62.3299 -270481 cd14295 65.8565 -270482 cd14296 54.9444 -270483 cd14297 50.942 -270484 cd14298 49.3773 -270485 cd14300 58.706 -270486 cd14301 70.9334 -270487 cd14302 64.62 -270488 cd14303 75.1208 -270489 cd14304 64.9722 -270490 cd14305 62.3633 -270491 cd14306 50.1338 -270492 cd14307 60.7724 -270493 cd14308 54.041 -270494 cd14309 51.3778 -270495 cd14310 50.9967 -270496 cd14311 46.1156 -270497 cd14312 61.5899 -270498 cd14313 57.7168 -270499 cd14314 62.3396 -270500 cd14315 80.2834 -270501 cd14316 47.1373 -270502 cd14317 60.4018 -270503 cd14318 57.7465 -270504 cd14319 52.8183 -270505 cd14320 64.9047 -270506 cd14321 53.5805 -270507 cd14322 55.9442 -270508 cd14323 58.1792 -270509 cd14324 72.0997 -270510 cd14325 93.7937 -270511 cd14326 45.7839 -270512 cd14327 52.6876 -270513 cd14328 64.1519 -270514 cd14329 53.8548 -270515 cd14330 56.298 -270516 cd14331 57.8131 -270517 cd14332 28.5715 -270518 cd14333 73.3476 -270519 cd14334 59.5276 -270520 cd14335 51.439 -270521 cd14336 82.2689 -270522 cd14337 57.9128 -270523 cd14338 50.984 -270524 cd14339 62.2355 -270525 cd14340 81.9081 -270526 cd14341 60.6768 -270527 cd14342 51.8114 -270528 cd14343 64.0374 -270529 cd14344 59.0194 -270530 cd14345 53.414 -270531 cd14346 67.3195 -270532 cd14347 89.6239 -270533 cd14348 41.3702 -270534 cd14349 55.6918 -270535 cd14350 56.4936 -270536 cd14351 52.8606 -270537 cd14352 44.9676 -270538 cd14353 49.8716 -270539 cd14354 77.8261 -270540 cd14355 74.5066 -270541 cd14358 58.7887 -270542 cd14359 47.9874 -270543 cd14360 50.7388 -270544 cd14361 39.7991 -270545 cd14362 68.098 -270546 cd14363 74.2775 -270547 cd14364 50.4345 -270548 cd14365 57.6821 -270549 cd14366 64.9404 -270550 cd14367 57.6356 -270551 cd14368 57.9808 -270552 cd14369 49.5295 -270553 cd14370 61.8088 -270554 cd14371 56.1141 -270555 cd14372 64.1971 -270556 cd14373 49.4917 -270557 cd14374 51.9936 -270558 cd14375 59.3538 -270559 cd14376 38.9973 -270560 cd14377 77.0542 -270561 cd14378 86.7431 -270562 cd14379 106.542 -270563 cd14380 69.4821 -270564 cd14381 76.7912 -270565 cd14382 89.6084 -270566 cd14383 97.4326 -270567 cd14384 95.0887 -270568 cd14385 85.5408 -270569 cd14386 63.121 -270570 cd14387 57.7693 -270571 cd14388 72.6003 -270572 cd14389 77.7775 -270573 cd14390 81.3328 -270574 cd14391 60.392 -270575 cd14392 63.7606 -270576 cd14393 61.5428 -270577 cd14394 76.4919 -270578 cd14395 89.8966 -270579 cd14396 78.2029 -270580 cd14397 93.1752 -270581 cd14398 63.9735 -270582 cd14399 61.7781 -270583 cd14400 61.8805 -270584 cd14401 72.032 -270585 cd14402 69.7089 -270586 cd14403 112.055 -270587 cd14404 146.375 -270588 cd14405 86.8823 -270589 cd14406 82.3498 -270590 cd14407 85.6965 -270591 cd14408 101.998 -270592 cd14409 83.1468 -270593 cd14410 100.091 -270594 cd14411 97.918 -270595 cd14412 104.775 -270596 cd14413 56.1904 -270597 cd14414 71.2792 -270598 cd14415 67.6696 -270599 cd14416 83.9726 -270600 cd14417 64.9909 -270601 cd14418 91.9038 -270602 cd14419 81.3966 -270603 cd14420 73.0252 -270604 cd14421 63.4415 -270605 cd14422 75.7916 -270606 cd14423 77.893 -270607 cd14424 45.582 -270608 cd14425 65.5276 -270609 cd14426 89.0372 -270610 cd14427 66.1663 -270611 cd14428 89.0067 -259859 cd14435 110.853 -271226 cd14436 325.722 -271227 cd14437 188.809 -271228 cd14438 49.469 -270205 cd14439 223.484 -270206 cd14440 239.18 -270207 cd14441 283.433 -270208 cd14442 357.768 -270209 cd14443 470.742 -270210 cd14444 334.282 -271220 cd14445 74.1673 -271219 cd14446 179.512 -269894 cd14447 39.0873 -259990 cd14448 164.014 -259991 cd14449 193.252 -259992 cd14450 322.982 -259993 cd14451 351.835 -259994 cd14452 326.55 -259995 cd14453 234.752 -259996 cd14454 257.108 -259997 cd14455 270.968 -271218 cd14456 503.705 -271217 cd14458 84.1612 -270615 cd14472 191.413 -271216 cd14473 30.6775 -269895 cd14474 117.334 -269896 cd14475 78.3752 -269897 cd14476 114.278 -269898 cd14477 180.563 -269899 cd14478 119.564 -269900 cd14479 127.788 -269901 cd14480 116.103 -269902 cd14481 165.519 -269903 cd14482 208.742 -269904 cd14483 170.895 -269905 cd14484 136.506 -270618 cd14485 74.2061 -270619 cd14486 82.4217 -271153 cd14487 98.5755 -271154 cd14488 132.041 -271155 cd14489 202.945 -271156 cd14490 178.986 -271236 cd14651 49.788 -271237 cd14653 28.4668 -271238 cd14654 46.0573 -271239 cd14655 32.3415 -271139 cd14656 95.3948 -271140 cd14657 331.931 -271141 cd14658 165.895 -271142 cd14659 135.958 -271137 cd14660 93.3512 -271136 cd14661 478.821 -271132 cd14662 545.905 -271133 cd14663 465.726 -271134 cd14664 464.276 -271135 cd14665 572.314 -270620 cd14667 59.0739 -270616 cd14668 142.665 -270617 cd14669 112.127 -270614 cd14670 63.1277 -269821 cd14671 45.7779 -270612 cd14672 60.0127 -270192 cd14673 205.116 -270193 cd14674 183.98 -270194 cd14675 77.641 -270195 cd14676 167.196 -270196 cd14677 172.665 -270197 cd14678 173.394 -275429 cd14679 210.853 -275430 cd14680 191.75 -270200 cd14681 237.538 -270201 cd14682 209.655 -270202 cd14683 124.675 -270203 cd14684 249.176 -270204 cd14685 256.047 -269834 cd14686 26.3541 -269835 cd14687 45.5972 -269836 cd14688 31.9214 -269837 cd14689 77.5753 -269838 cd14690 57.6411 -269839 cd14691 63.7663 -269840 cd14692 55.6602 -269841 cd14693 62.9598 -269842 cd14694 86.6153 -269843 cd14695 55.2509 -269844 cd14696 65.2941 -269845 cd14697 71.2601 -269846 cd14698 88.463 -269847 cd14699 53.0328 -269848 cd14700 83.4831 -269849 cd14701 83.2898 -269850 cd14702 42.9062 -269851 cd14703 49.4956 -269852 cd14704 49.1098 -269853 cd14705 56.7707 -269854 cd14706 68.0499 -269855 cd14707 59.634 -269856 cd14708 83.5027 -269857 cd14709 63.8897 -269858 cd14710 77.6058 -269859 cd14711 70.4746 -269860 cd14712 95.544 -269861 cd14713 79.4343 -269862 cd14714 130.503 -269863 cd14715 116.34 -269864 cd14716 96.0491 -269865 cd14717 86.2638 -269866 cd14718 90.0334 -269867 cd14719 115.285 -269868 cd14720 110.083 -269869 cd14721 71.623 -269870 cd14722 82.125 -271240 cd14723 35.8185 -271241 cd14724 32.301 -271242 cd14725 44.2569 -269830 cd14730 494.185 -269831 cd14731 657.376 -269832 cd14732 688.299 -269822 cd14737 75.009 -269823 cd14738 86.5319 -269824 cd14739 85.4879 -269825 cd14740 38.5639 -269826 cd14741 98.6186 -269827 cd14742 79.9408 -269828 cd14743 52.304 -269829 cd14744 52.9419 -270613 cd14745 290.297 -270450 cd14747 331.97 -270451 cd14748 233.338 -270452 cd14749 335.889 -270453 cd14750 304.603 -270454 cd14751 519.629 -270212 cd14752 32.1577 -271288 cd14755 163.946 -271289 cd14756 137.512 -271290 cd14757 157.377 -271291 cd14758 224.051 -271292 cd14759 118.158 -271293 cd14760 240.758 -271294 cd14761 183.619 -271295 cd14762 169.771 -271296 cd14763 192.134 -271297 cd14764 220.359 -271298 cd14765 176.005 -271299 cd14766 174.795 -271300 cd14767 305.279 -271301 cd14768 290.582 -271302 cd14769 262.915 -271303 cd14770 286.743 -271304 cd14771 171.681 -271305 cd14772 193.667 -271306 cd14773 130.708 -271307 cd14774 152.414 -271308 cd14775 131.964 -271309 cd14776 226.194 -271310 cd14777 222.21 -271311 cd14778 209.986 -271312 cd14779 219.631 -271313 cd14780 240.004 -271314 cd14781 231.579 -271315 cd14782 204.123 -271316 cd14783 252.381 -271317 cd14784 238.928 -270211 cd14785 148.535 -269891 cd14790 229.816 -269892 cd14791 146.6 -269893 cd14792 181.214 -269816 cd14793 67.234 -269817 cd14794 97.3913 -269818 cd14795 112.466 -269819 cd14796 65.7366 -269820 cd14797 55.6347 -271353 cd14798 48.7723 -269812 cd14803 97.1159 -271351 cd14804 123.909 -271348 cd14805 275.531 -269813 cd14806 88.9737 -269814 cd14807 121.505 -269815 cd14808 88.495 -269871 cd14809 49.1661 -269872 cd14810 69.5971 -269873 cd14811 61.4676 -269874 cd14812 54.1424 -269875 cd14813 53.9131 -271352 cd14815 166.407 -271349 cd14819 128.803 -271350 cd14820 96.0941 -275438 cd14859 55.5149 -271246 cd14867 256.712 -271247 cd14868 163.898 -271248 cd14869 163.388 -271249 cd14870 240.222 -271250 cd14871 196.343 -276839 cd14872 1085.96 -276840 cd14873 1216.56 -276841 cd14874 1107.63 -276842 cd14875 1360.26 -276843 cd14876 1163.21 -276844 cd14878 1226.6 -276845 cd14879 675.42 -276846 cd14880 1299.05 -276847 cd14881 1031.22 -276848 cd14882 1142.55 -276849 cd14883 1095.83 -276850 cd14884 895.418 -276851 cd14886 1128.44 -276852 cd14887 923.665 -276853 cd14888 1083.18 -276854 cd14889 1259.05 -276855 cd14890 1150.67 -276856 cd14891 1089.31 -276857 cd14892 993.497 -276858 cd14893 1288 -276859 cd14894 1763.49 -276860 cd14895 1167.42 -276861 cd14896 1168.4 -276862 cd14897 1018.85 -276863 cd14898 985.161 -276864 cd14899 1255.77 -276865 cd14900 1068.39 -276866 cd14901 1154.15 -276867 cd14902 1025.6 -276868 cd14903 1176.1 -276869 cd14904 1268.71 -276870 cd14905 1312 -276871 cd14906 1017.6 -276872 cd14907 837.377 -276873 cd14908 1215.14 -276874 cd14909 1222 -276875 cd14910 1253.09 -276876 cd14911 1394.71 -276877 cd14912 1271.97 -276878 cd14913 1404.03 -276879 cd14915 1290.84 -276880 cd14916 1289.63 -276881 cd14917 1309.32 -276882 cd14918 1310.11 -276883 cd14919 1282.34 -276952 cd14920 1419.39 -276885 cd14921 1311.93 -276887 cd14923 1031.17 -276953 cd14927 1431.66 -276892 cd14929 1414.35 -276893 cd14930 1282.35 -276895 cd14932 1367.02 -276896 cd14934 1336.59 -276897 cd14937 1089.28 -276898 cd14938 837.953 -271344 cd14941 186.514 -271345 cd14942 157.672 -271346 cd14943 131.502 -271347 cd14944 101.177 -271253 cd14945 288.529 -271343 cd14947 65.7753 -271342 cd14948 33.3913 -271340 cd14949 399.675 -271341 cd14950 289.094 -271321 cd14951 358.043 -271322 cd14952 265.996 -271323 cd14953 306.764 -271324 cd14954 340.294 -271325 cd14955 361.894 -271326 cd14956 301.509 -271327 cd14957 297.64 -271328 cd14958 229.072 -271329 cd14959 381.233 -271330 cd14960 336.239 -271331 cd14961 239.1 -271332 cd14962 329.933 -271333 cd14963 294.969 -271319 cd15457 53.0017 -271230 cd15464 419.542 -275386 cd15465 69.8689 -271318 cd15466 75.4683 -271231 cd15467 713.472 -271232 cd15468 661.545 -271233 cd15469 417.075 -271254 cd15470 357.292 -271255 cd15471 364.325 -271256 cd15472 467.519 -271257 cd15473 285.218 -271258 cd15474 341.705 -271259 cd15475 532.149 -271260 cd15476 614.098 -271261 cd15477 750.538 -271262 cd15478 708.334 -271263 cd15479 632.01 -271264 cd15480 463.588 -271252 cd15481 135.43 -271234 cd15482 33.9686 -271235 cd15483 601.791 -271251 cd15484 178.729 -271243 cd15485 43.3069 -271244 cd15486 38.8102 -275387 cd15487 113.457 -276966 cd15489 24.9702 -294011 cd15490 107.215 -294012 cd15491 80.9503 -276967 cd15492 66.8747 -276968 cd15493 47.6932 -276969 cd15494 91.3569 -276970 cd15495 68.5553 -276971 cd15496 82.8505 -276972 cd15497 82.3571 -276973 cd15498 76.7435 -276974 cd15499 72.9178 -276975 cd15500 75.2535 -276976 cd15501 73.1481 -276977 cd15502 76.321 -276978 cd15503 110.955 -276979 cd15504 77.0899 -276980 cd15505 69.2495 -276981 cd15506 52.3617 -276982 cd15507 80.9747 -276983 cd15508 75.5599 -276984 cd15509 63.0965 -276985 cd15510 75.5481 -276986 cd15511 58.268 -276987 cd15512 71.3399 -276988 cd15513 82.9093 -276989 cd15514 78.866 -276990 cd15515 73.9659 -276991 cd15516 81.9759 -276992 cd15517 37.5279 -276993 cd15518 71.9965 -276994 cd15519 76.3503 -276995 cd15520 58.7683 -276996 cd15521 87.2574 -276997 cd15522 61.9194 -276998 cd15523 73.969 -276999 cd15524 93.419 -277000 cd15525 74.7131 -277001 cd15526 63.9138 -277002 cd15527 75.4922 -277003 cd15528 73.9848 -277004 cd15529 75.4203 -277005 cd15530 85.5131 -277006 cd15531 79.1831 -277007 cd15532 68.4611 -277008 cd15533 81.6339 -277009 cd15534 63.9047 -277010 cd15535 76.6885 -277011 cd15536 80.9215 -277012 cd15537 64.6733 -277013 cd15538 62.7292 -277014 cd15539 69.4018 -277015 cd15540 47.2037 -277016 cd15541 53.8873 -277017 cd15542 60.0739 -277018 cd15543 67.2944 -277019 cd15544 69.3619 -277020 cd15545 73.1139 -277021 cd15546 78.6393 -277022 cd15547 65.8948 -277023 cd15548 78.2764 -277024 cd15549 90.9977 -277025 cd15550 78.1286 -277026 cd15551 60.4557 -277027 cd15552 68.5799 -277028 cd15553 86.2766 -277029 cd15554 90.9053 -277030 cd15555 69.7393 -277031 cd15556 77.4198 -277032 cd15557 46.4912 -277033 cd15558 95.5895 -277034 cd15559 81.308 -277035 cd15560 88.9425 -277036 cd15561 77.8631 -277037 cd15562 92.8542 -277038 cd15563 75.5081 -277039 cd15564 56.1894 -277040 cd15565 46.6515 -277041 cd15566 40.8754 -277042 cd15567 61.8786 -277043 cd15568 60.4208 -277044 cd15569 134.655 -277045 cd15570 68.2556 -277046 cd15571 66.4544 -277047 cd15572 96.146 -277048 cd15573 89.3902 -277049 cd15574 94.5019 -277050 cd15575 190.499 -277051 cd15576 189.733 -277052 cd15577 186.96 -277053 cd15578 94.383 -277054 cd15579 104.962 -277055 cd15580 117.689 -277056 cd15581 116.158 -277057 cd15582 113.124 -277058 cd15583 82.0121 -277059 cd15584 86.3467 -277060 cd15585 90.2036 -277061 cd15586 85.3179 -277062 cd15587 86.3149 -277063 cd15588 117.747 -277064 cd15589 97.6197 -277065 cd15590 100.487 -277066 cd15591 111.183 -277067 cd15592 96.9805 -277068 cd15593 119.953 -277069 cd15594 83.0643 -277070 cd15595 107.774 -277071 cd15596 132.446 -277072 cd15597 118.984 -277073 cd15600 115.412 -277074 cd15601 115.388 -277075 cd15602 115.047 -277076 cd15603 79.2253 -277077 cd15604 53.692 -277078 cd15605 89.4308 -277079 cd15606 85.9524 -277080 cd15607 86.0423 -277081 cd15608 109.507 -277082 cd15609 90.6018 -277083 cd15610 62.73 -277084 cd15612 75.3465 -277085 cd15613 82.1581 -277086 cd15614 104.742 -277087 cd15615 68.2753 -277088 cd15616 78.856 -277089 cd15617 83.08 -277090 cd15618 98.7146 -277091 cd15619 100.228 -277092 cd15622 89.7404 -277093 cd15623 66.3667 -277094 cd15624 96.2698 -277095 cd15625 110.434 -277096 cd15626 63.2145 -277097 cd15627 111.715 -277098 cd15628 75.9361 -277099 cd15629 81.051 -277100 cd15630 80.4025 -277101 cd15631 99.2217 -277102 cd15632 83.1652 -277103 cd15633 112.806 -277104 cd15634 108.881 -277105 cd15635 99.7852 -277106 cd15636 109.379 -277107 cd15637 90.6978 -277108 cd15638 111.555 -277109 cd15639 100.81 -277110 cd15640 126.255 -277111 cd15641 94.3143 -277112 cd15642 113.58 -277113 cd15643 99.7075 -277114 cd15644 105.057 -277115 cd15645 130.437 -277116 cd15646 80.6764 -277117 cd15647 68.4713 -277118 cd15648 83.2907 -277119 cd15649 72.8778 -277120 cd15650 101.118 -277121 cd15651 89.1318 -277122 cd15652 92.2409 -277123 cd15653 113.093 -277124 cd15654 103.002 -277125 cd15655 108.432 -277126 cd15656 87.3775 -277127 cd15657 89.2932 -277128 cd15658 76.8782 -277129 cd15659 97.3207 -277130 cd15660 99.2385 -277131 cd15661 84.2483 -277132 cd15662 178.437 -277133 cd15663 206.212 -277134 cd15664 197.628 -277135 cd15665 126.28 -277136 cd15666 189.435 -277137 cd15667 193.367 -277138 cd15668 156.699 -277139 cd15669 136.996 -277140 cd15670 209.884 -277141 cd15671 209.607 -277142 cd15672 212.706 -277143 cd15673 157.169 -277144 cd15674 194.139 -277145 cd15675 203.746 -277146 cd15676 127.865 -277147 cd15677 97.3908 -277148 cd15678 121.28 -277149 cd15679 111.704 -277150 cd15680 103.548 -277151 cd15681 114.298 -277152 cd15682 88.1417 -277153 cd15683 90.0807 -277154 cd15684 86.6617 -277155 cd15685 88.1827 -277156 cd15686 77.4182 -277157 cd15687 89.2348 -277158 cd15688 100.159 -277159 cd15689 122.84 -277160 cd15690 117.456 -277161 cd15691 122.823 -277162 cd15692 109.39 -277163 cd15693 253.769 -277164 cd15694 228.772 -277165 cd15695 172.793 -277166 cd15696 170.51 -277167 cd15697 231.09 -277168 cd15698 244.577 -277169 cd15699 186.66 -277170 cd15700 178.532 -277171 cd15701 275.418 -277172 cd15702 266.141 -277173 cd15703 278.092 -277174 cd15704 240.743 -277175 cd15705 248.087 -277176 cd15706 248.484 -277177 cd15707 230.558 -277178 cd15708 253.847 -277179 cd15709 258.84 -277180 cd15710 219.062 -277181 cd15711 222.652 -277182 cd15712 218.228 -277183 cd15713 243.727 -277184 cd15714 244.847 -277185 cd15715 247.949 -277256 cd15716 96.6439 -277257 cd15717 118.623 -277258 cd15718 133.601 -277259 cd15719 120.954 -277260 cd15720 118.643 -277261 cd15721 100.535 -277262 cd15723 78.309 -277263 cd15724 81.7929 -277264 cd15725 111.263 -277265 cd15726 90.3116 -277266 cd15727 92.0557 -277267 cd15728 125.613 -277268 cd15729 115.913 -277269 cd15730 90.5356 -277270 cd15731 114.364 -277271 cd15732 113.841 -277272 cd15733 104.05 -277273 cd15734 89.6993 -277274 cd15735 131.112 -277275 cd15736 71.4457 -277276 cd15737 76.0053 -277277 cd15738 86.9978 -277278 cd15739 128.614 -277279 cd15740 90.0599 -277280 cd15741 120.284 -277281 cd15742 151.625 -277282 cd15743 133.331 -277283 cd15744 68.2133 -277284 cd15745 52.119 -277285 cd15746 71.9085 -277286 cd15747 50.7607 -277287 cd15748 52.7191 -277288 cd15749 67.5308 -277289 cd15750 53.5186 -277290 cd15751 69.0165 -277291 cd15752 120.674 -277292 cd15753 68.1978 -277293 cd15754 136.24 -277294 cd15755 142.096 -277295 cd15756 176.798 -277296 cd15757 149.062 -277297 cd15758 128.644 -277298 cd15759 149.405 -277299 cd15760 44.21 -277300 cd15761 115.061 -277301 cd15762 159.351 -277302 cd15763 101.964 -277303 cd15764 70.5811 -277304 cd15765 93.3324 -277305 cd15766 99.1287 -277306 cd15767 118.47 -277307 cd15768 220.151 -277308 cd15769 87.7395 -277309 cd15770 82.9698 -277310 cd15771 139.367 -277311 cd15772 129.38 -277312 cd15773 151.389 -277313 cd15774 147.87 -277314 cd15775 146.601 -277315 cd15776 128.647 -276940 cd15777 74.9711 -275446 cd15778 77.0225 -294014 cd15783 132.124 -275431 cd15784 204.105 -276946 cd15785 71.9567 -276947 cd15786 108.844 -276948 cd15787 46.5514 -276949 cd15788 141.698 -275432 cd15789 137.588 -275433 cd15790 199.617 -275434 cd15791 191.747 -275435 cd15792 227.028 -275436 cd15793 260.731 -275437 cd15794 190.887 -275439 cd15795 83.5686 -275440 cd15796 119.777 -275441 cd15797 74.7661 -275442 cd15798 63.9965 -275443 cd15799 70.1315 -275444 cd15800 78.1705 -275445 cd15801 129.374 -276805 cd15802 65.3893 -276941 cd15803 91.8111 -276942 cd15804 121.653 -276943 cd15805 161.672 -276944 cd15806 210.739 -276945 cd15807 207.341 -293980 cd15808 399.643 -293981 cd15809 399.977 -293982 cd15810 302.477 -293983 cd15811 365.434 -293984 cd15812 349.184 -293985 cd15813 354.834 -293986 cd15814 395.597 -293987 cd15815 349.343 -293988 cd15816 342.156 -293989 cd15817 295.227 -293990 cd15818 387.622 -293991 cd15819 306.845 -293992 cd15820 342.102 -293993 cd15821 269.567 -293994 cd15822 323.794 -293995 cd15823 362.643 -293996 cd15824 414.244 -293997 cd15825 345.285 -293998 cd15826 289.46 -293999 cd15827 337.573 -294000 cd15828 333.871 -294001 cd15829 306.523 -276939 cd15830 164.733 -276938 cd15831 81.881 -276937 cd15832 208.587 -276930 cd15834 218.898 -276931 cd15835 182.25 -276932 cd15836 187.705 -276933 cd15837 147.512 -276934 cd15838 210.905 -276935 cd15839 148.863 -277193 cd15840 50.5901 -277194 cd15841 32.5304 -277195 cd15842 50.9512 -277196 cd15843 35.5556 -277197 cd15844 88.7235 -277198 cd15845 63.2466 -277199 cd15846 78.1005 -277200 cd15847 79.156 -277201 cd15848 59.0865 -277202 cd15849 69.866 -277203 cd15850 72.7155 -277204 cd15851 64.8145 -277205 cd15852 69.1816 -277206 cd15853 52.1199 -277207 cd15854 94.9284 -277208 cd15855 77.9375 -277209 cd15856 56.0282 -277210 cd15857 65.2858 -277211 cd15858 66.7566 -277212 cd15859 57.1642 -277213 cd15860 53.3372 -277214 cd15861 54.1164 -277215 cd15862 54.4573 -277216 cd15863 76.0277 -277217 cd15864 89.4201 -277218 cd15865 104.625 -277219 cd15866 81.7971 -277220 cd15867 108.225 -277221 cd15868 98.9285 -277222 cd15869 107.086 -277223 cd15870 91.6781 -277224 cd15871 112.89 -277225 cd15872 85.9212 -277226 cd15873 44.5549 -277227 cd15874 84.7263 -277228 cd15875 95.97 -277229 cd15876 111.678 -277230 cd15877 90.8553 -277231 cd15878 101.077 -277232 cd15879 92.2071 -277233 cd15880 114.53 -277234 cd15881 122.827 -277235 cd15882 120.919 -277236 cd15883 99.2514 -277237 cd15884 94.834 -277238 cd15885 90.4869 -277239 cd15886 73.0547 -277240 cd15887 86.5554 -277241 cd15888 90.1208 -277242 cd15889 78.4459 -277243 cd15890 61.0512 -277244 cd15891 81.9607 -277245 cd15892 127.575 -277246 cd15893 100.111 -277247 cd15894 91.9835 -277248 cd15895 108.983 -276899 cd15896 1270.38 -320054 cd15897 228.469 -320029 cd15898 66.5372 -320021 cd15899 293.579 -320080 cd15900 106.159 -319999 cd15901 158.589 -320075 cd15902 184.479 -277191 cd15903 53.0582 -320706 cd15904 51.3437 -320655 cd15989 533.108 -293733 cd16009 315.544 -293734 cd16010 499.634 -293735 cd16011 293.223 -293736 cd16012 171.072 -293737 cd16013 296.895 -293738 cd16014 380.836 -293739 cd16015 132.036 -293740 cd16016 401.91 -293741 cd16017 178.971 -293742 cd16018 140.413 -293743 cd16019 273.467 -293744 cd16020 262.91 -293745 cd16021 217.388 -293746 cd16022 163.377 -293747 cd16023 306.794 -293748 cd16024 342.237 -293749 cd16025 463.068 -293750 cd16026 495.545 -293751 cd16027 322.535 -293752 cd16028 552.25 -293753 cd16029 351.467 -293754 cd16030 380.765 -293755 cd16031 486.651 -293756 cd16032 488.242 -293757 cd16033 479.024 -293758 cd16034 407.339 -293759 cd16035 326.857 -293760 cd16037 380.35 -277186 cd16039 80.5983 -294002 cd16040 245.473 -293880 cd16074 44.9679 -293922 cd16075 40.0144 -293923 cd16076 37.4174 -293924 cd16077 61.7666 -293925 cd16079 91.9448 -293926 cd16080 87.5939 -293927 cd16081 48.8757 -319331 cd16082 163.775 -319332 cd16083 170.331 -319333 cd16084 190.73 -319334 cd16085 190.32 -319335 cd16086 193.051 -319336 cd16087 171.745 -319337 cd16088 190.881 -319338 cd16089 182.295 -319339 cd16090 168.952 -319340 cd16091 145.545 -319341 cd16092 201.606 -319342 cd16093 183.671 -319343 cd16094 188.907 -319344 cd16095 208.565 -319345 cd16096 160.117 -319346 cd16097 212.028 -294015 cd16098 71.0375 -293761 cd16142 451.988 -293762 cd16143 407.742 -293763 cd16144 428.886 -293764 cd16145 485.176 -293765 cd16146 483.591 -293766 cd16147 329.126 -293767 cd16148 175.044 -293768 cd16149 374.268 -293769 cd16150 504.846 -293770 cd16151 433.179 -293771 cd16152 586.117 -293772 cd16153 299.291 -293773 cd16154 560.43 -293774 cd16155 478.212 -293775 cd16156 838.192 -293776 cd16157 877.182 -293777 cd16158 863.292 -293778 cd16159 813.059 -293779 cd16160 802.416 -293780 cd16161 577.884 -293881 cd16162 75.8147 -293882 cd16163 65.4473 -293883 cd16164 71.1555 -293884 cd16165 75.5045 -293885 cd16166 72.7145 -293886 cd16167 89.3512 -293887 cd16168 134.078 -320085 cd16169 60.6753 -320084 cd16170 61.9992 -293781 cd16171 676.567 -293930 cd16172 145.417 -320081 cd16173 241.466 -320082 cd16174 231.683 -320083 cd16175 170.774 -320076 cd16176 436.962 -320077 cd16177 447.784 -320078 cd16178 364.031 -320079 cd16179 409.877 -320055 cd16180 183.113 -320056 cd16181 298.131 -320057 cd16182 162.778 -320058 cd16183 299.17 -320059 cd16184 264.897 -320060 cd16185 204.37 -320061 cd16186 351.476 -320062 cd16187 330.716 -320063 cd16188 310.134 -320064 cd16189 300.425 -320065 cd16190 341.839 -320066 cd16191 299.004 -320067 cd16192 300.946 -320068 cd16193 319.943 -320069 cd16194 305.263 -320070 cd16195 203.205 -320071 cd16196 212.062 -320072 cd16197 333.307 -320073 cd16198 325.988 -320074 cd16199 330.325 -320030 cd16200 146.622 -320031 cd16201 153.496 -320032 cd16202 145.832 -320033 cd16203 216.422 -320034 cd16204 256.275 -320035 cd16205 234.968 -320036 cd16206 192.04 -320037 cd16207 142.388 -320038 cd16208 274.063 -320039 cd16209 280.226 -320040 cd16210 295.289 -320041 cd16211 283.928 -320042 cd16212 292.531 -320043 cd16213 260.697 -320044 cd16214 296.737 -320045 cd16215 287.131 -320046 cd16216 318.414 -320047 cd16217 239.255 -320048 cd16218 245.811 -320049 cd16219 272.488 -320050 cd16220 272.668 -320051 cd16221 297.614 -320052 cd16222 261.336 -320053 cd16223 290.655 -320022 cd16224 426.079 -320023 cd16225 269.169 -320024 cd16226 296.802 -320025 cd16227 309.247 -320026 cd16228 462.104 -320027 cd16229 449.716 -320028 cd16230 488.329 -320010 cd16231 175.231 -320011 cd16232 148.287 -320012 cd16233 181.503 -320013 cd16234 110.062 -320014 cd16235 184.056 -320015 cd16236 190.197 -320016 cd16237 238.404 -320017 cd16238 230.979 -320018 cd16239 231.446 -320019 cd16240 238.393 -320020 cd16241 219.171 -320000 cd16242 211.325 -320001 cd16243 211.476 -320002 cd16244 229.816 -320003 cd16245 209.46 -320004 cd16246 351.257 -320005 cd16247 332.246 -320006 cd16248 280.529 -320007 cd16249 274.853 -320008 cd16250 328.138 -319994 cd16251 153.072 -319995 cd16252 196.597 -319996 cd16253 145.396 -319997 cd16254 144.966 -319998 cd16255 134.088 -293929 cd16256 234.614 -293914 cd16257 76.6187 -293915 cd16258 107.031 -293916 cd16259 113.12 -293917 cd16260 129.156 -293918 cd16261 101.11 -293919 cd16262 94.0594 -293920 cd16263 129.738 -293921 cd16264 127.614 -293910 cd16265 80.4163 -293911 cd16266 101.854 -293912 cd16267 91.4208 -293913 cd16268 83.0339 -293879 cd16269 231.697 -293878 cd16270 70.7345 -293830 cd16272 79.6146 -293831 cd16273 161.939 -293832 cd16274 284.511 -293833 cd16275 209.315 -293834 cd16276 208.978 -293835 cd16277 188.115 -293836 cd16278 165.742 -293837 cd16279 129.901 -293838 cd16280 267.914 -293839 cd16281 291.706 -293840 cd16282 135.386 -293841 cd16283 294.57 -293842 cd16284 329.812 -293843 cd16285 282.635 -293844 cd16286 408.073 -293845 cd16287 295.877 -293846 cd16288 391.684 -293847 cd16289 438.866 -293848 cd16290 381.311 -293849 cd16291 314.199 -293850 cd16292 327.62 -293851 cd16293 218.929 -293852 cd16294 263.972 -293853 cd16295 161.088 -293854 cd16296 302.261 -293855 cd16297 332.164 -293856 cd16298 330.632 -293857 cd16299 364.073 -293858 cd16300 352.585 -293859 cd16301 350.814 -293860 cd16302 326.124 -293861 cd16303 391.917 -293862 cd16304 331.171 -293863 cd16305 487.967 -293864 cd16306 452.48 -293865 cd16307 464.611 -293866 cd16308 455.006 -293867 cd16309 454.635 -293868 cd16310 446.127 -293869 cd16311 486.802 -293870 cd16312 461.764 -293871 cd16313 470.114 -293872 cd16314 446.646 -293873 cd16315 380.156 -293874 cd16316 376.419 -293875 cd16317 455.246 -293876 cd16318 461.433 -293782 cd16319 80.0284 -293783 cd16320 35.5567 -293784 cd16321 39.7699 -293877 cd16322 248.033 -319993 cd16323 129.172 -319982 cd16324 84.4478 -319983 cd16325 49.3605 -319984 cd16326 81.1166 -319985 cd16327 91.4698 -319992 cd16328 49.1115 -319986 cd16329 65.4142 -319987 cd16330 276.29 -319991 cd16331 73.2592 -319990 cd16332 54.4123 -319989 cd16333 92.1091 -319988 cd16334 104.224 -319981 cd16335 308.807 -319980 cd16336 254.131 -319979 cd16337 63.4791 -319976 cd16338 95.4584 -319977 cd16339 87.7686 -319978 cd16340 164.416 -319975 cd16341 118.246 -319974 cd16342 183.074 -319971 cd16343 129.865 -319972 cd16344 165.685 -319973 cd16345 123.713 -319957 cd16347 193.295 -319958 cd16348 385.389 -319959 cd16349 481.416 -319960 cd16350 231.659 -319750 cd16351 308.726 -319352 cd16352 76.3533 -319961 cd16354 137.196 -319962 cd16355 134.927 -319963 cd16356 139.866 -319964 cd16357 149.244 -319965 cd16358 200.7 -319966 cd16359 111.308 -319967 cd16360 127.818 -319968 cd16361 163.656 -319969 cd16362 118.471 -319897 cd16363 66.7664 -319887 cd16365 349.188 -319888 cd16366 234.986 -319889 cd16367 165.558 -319890 cd16368 352.879 -319891 cd16369 270.028 -319892 cd16370 156.279 -319893 cd16371 157.339 -319894 cd16372 152.49 -319895 cd16373 129.683 -319896 cd16374 141.643 -319867 cd16375 120.858 -319868 cd16376 54.0788 -319869 cd16377 89.7569 -319866 cd16378 55.6126 -319863 cd16379 44.3536 -319864 cd16380 63.1649 -319865 cd16381 63.2209 -319862 cd16383 116.875 -319760 cd16384 186.768 -319861 cd16385 72.6772 -319860 cd16386 51.9213 -319246 cd16387 27.9375 -319247 cd16388 96.0347 -319248 cd16389 157.429 -319249 cd16390 69.5149 -319250 cd16392 83.9624 -319251 cd16393 123.748 -319252 cd16394 63.3777 -319253 cd16395 88.4384 -319254 cd16396 105.767 -319255 cd16397 137.704 -319256 cd16398 105.813 -319257 cd16400 82.2113 -319258 cd16401 89.5872 -319259 cd16402 136.977 -319260 cd16403 97.1424 -319261 cd16404 72.3083 -319262 cd16405 57.1688 -319263 cd16406 64.8461 -319264 cd16407 116.078 -319265 cd16408 98.0827 -319266 cd16409 81.9624 -319267 cd16410 99.5826 -319268 cd16411 138.887 -319269 cd16412 141.694 -319270 cd16413 106.273 -319271 cd16414 90.536 -319852 cd16415 117.007 -319853 cd16416 124.303 -319854 cd16417 250.615 -319855 cd16418 177.91 -319856 cd16419 175.892 -319857 cd16421 152.996 -319858 cd16422 367.533 -319859 cd16423 173.595 -319761 cd16424 56.1458 -319762 cd16425 61.483 -319754 cd16426 36.7469 -319758 cd16427 76.8584 -319759 cd16428 47.9918 -319755 cd16429 101.424 -319756 cd16430 114.141 -319757 cd16431 99.1894 -319751 cd16432 132.103 -319752 cd16433 152.918 -319753 cd16434 171.397 -319740 cd16435 172.722 -319744 cd16436 262.866 -319745 cd16437 423.839 -319746 cd16438 254.83 -319747 cd16439 327.478 -319748 cd16440 281.684 -319749 cd16441 322.123 -319741 cd16442 115.438 -319742 cd16443 130.068 -319743 cd16444 191.165 -319362 cd16448 30.4979 -319363 cd16449 25.8909 -319364 cd16450 76.9313 -319365 cd16451 59.1261 -319366 cd16452 48.4925 -319367 cd16453 44.8009 -319368 cd16454 65.0157 -319369 cd16455 85.884 -319370 cd16456 83.4762 -319371 cd16457 61.5276 -319372 cd16458 97.9487 -319373 cd16459 65.1019 -319374 cd16460 102.411 -319375 cd16461 62.3275 -319376 cd16462 59.1647 -319377 cd16463 76.5848 -319378 cd16464 62.9832 -319379 cd16465 82.0421 -319380 cd16466 91.425 -319381 cd16467 82.5625 -319382 cd16468 89.7989 -319383 cd16469 85.1971 -319384 cd16470 81.6668 -319385 cd16471 67.2455 -319386 cd16472 85.9946 -319387 cd16473 83.4962 -319388 cd16474 74.6553 -319389 cd16475 61.5373 -319390 cd16476 80.5927 -319391 cd16477 90.3462 -319392 cd16478 78.6273 -319393 cd16479 81.5755 -319394 cd16480 83.3729 -319395 cd16481 68.9129 -319396 cd16482 65.4417 -319397 cd16483 118.631 -319398 cd16484 50.5723 -319399 cd16485 103.988 -319400 cd16486 63.7849 -319401 cd16487 91.9621 -319402 cd16488 74.5239 -319403 cd16489 63.4524 -319404 cd16490 70.7664 -319405 cd16491 81.9403 -319406 cd16492 73.3896 -319407 cd16493 46.2689 -319408 cd16494 65.7863 -319409 cd16495 51.9444 -319410 cd16496 81.2581 -319411 cd16497 91.3997 -319412 cd16498 71.2789 -319413 cd16499 56.4475 -319414 cd16500 69.7838 -319415 cd16501 53.6413 -319416 cd16502 84.3285 -319417 cd16503 77.8356 -319418 cd16504 61.1202 -319419 cd16505 82.5251 -319420 cd16506 77.1763 -319421 cd16507 80.3278 -319422 cd16508 65.0911 -319423 cd16509 70.7892 -319424 cd16510 51.3507 -319425 cd16511 91.3067 -319426 cd16512 64.4573 -319427 cd16513 33.1925 -319428 cd16514 85.0695 -319429 cd16515 63.4589 -319430 cd16516 71.788 -319431 cd16517 87.4292 -319432 cd16518 55.8357 -319433 cd16519 62.1624 -319434 cd16520 69.7214 -319435 cd16521 63.875 -319436 cd16522 68.1947 -319437 cd16523 52.1327 -319438 cd16524 82.1024 -319439 cd16525 68.8108 -319440 cd16526 42.3735 -319441 cd16527 59.9228 -319442 cd16528 62.1138 -319443 cd16529 70.7543 -319444 cd16530 77.4815 -319445 cd16531 65.9163 -319446 cd16532 81.5613 -319447 cd16533 85.5878 -319448 cd16534 62.8348 -319449 cd16535 80.1614 -319450 cd16536 58.7297 -319451 cd16537 79.854 -319452 cd16538 106.977 -319453 cd16539 53.3883 -319454 cd16540 78.7231 -319455 cd16541 67.3481 -319456 cd16542 70.5906 -319457 cd16543 66.7088 -319458 cd16544 80.2286 -319459 cd16545 69.3553 -319460 cd16546 55.0831 -319461 cd16547 62.5278 -319462 cd16548 90.0779 -319463 cd16549 78.7165 -319464 cd16550 71.5547 -319465 cd16551 50.9775 -319466 cd16552 89.2646 -319467 cd16553 68.4683 -319468 cd16554 72.3932 -319469 cd16555 87.1167 -319470 cd16556 89.4533 -319471 cd16557 88.7364 -319472 cd16558 84.3706 -319473 cd16559 77.5185 -319474 cd16560 65.2091 -319475 cd16561 73.2862 -319476 cd16562 64.7051 -319477 cd16563 78.9891 -319478 cd16564 65.9668 -319479 cd16565 71.419 -319480 cd16566 71.2348 -319481 cd16567 82.8785 -319482 cd16568 73.3034 -319483 cd16569 96.6578 -319484 cd16570 90.6281 -319485 cd16571 50.7462 -319486 cd16572 66.8418 -319487 cd16573 102.24 -319488 cd16574 66.888 -319489 cd16575 71.0262 -319490 cd16576 58.1652 -319491 cd16577 87.492 -319492 cd16578 67.6312 -319493 cd16579 30.4123 -319494 cd16580 89.6328 -319495 cd16581 84.4291 -319496 cd16582 47.8452 -319497 cd16583 71.85 -319498 cd16584 73.9655 -319499 cd16585 78.6945 -319500 cd16586 90.9379 -319501 cd16587 68.9827 -319502 cd16588 79.8989 -319503 cd16589 107.77 -319504 cd16590 84.8343 -319505 cd16591 72.5189 -319506 cd16592 83.6822 -319507 cd16593 96.6145 -319508 cd16594 89.8342 -319509 cd16595 84.0455 -319510 cd16596 89.9402 -319511 cd16597 89.9456 -319512 cd16598 73.7662 -319513 cd16599 90.7655 -319514 cd16600 92.2505 -319515 cd16601 70.468 -319516 cd16602 69.8955 -319517 cd16603 83.2959 -319518 cd16604 70.2331 -319519 cd16605 83.7193 -319520 cd16606 110.111 -319521 cd16607 98.5111 -319522 cd16608 108.225 -319523 cd16609 78.3008 -319524 cd16610 105.784 -319525 cd16611 85.5849 -319526 cd16612 91.4815 -319527 cd16613 93.9998 -319528 cd16614 53.7249 -319529 cd16615 59.2179 -319530 cd16616 87.1238 -319531 cd16617 91.6973 -319532 cd16618 66.0989 -319533 cd16619 61.2105 -319534 cd16620 47.6238 -319535 cd16621 89.6099 -319536 cd16622 78.792 -319537 cd16623 58.8915 -319538 cd16624 106.854 -319539 cd16625 72.1296 -319540 cd16626 80.1087 -319541 cd16627 74.2417 -319542 cd16628 79.6081 -319543 cd16629 95.5682 -319544 cd16630 72.3141 -319545 cd16631 87.0028 -319546 cd16632 62.3631 -319547 cd16633 88.9035 -319548 cd16634 82.0874 -319549 cd16635 94.0399 -319550 cd16636 81.3756 -319551 cd16637 74.6846 -319552 cd16638 83.9347 -319553 cd16639 69.8549 -319554 cd16640 65.6733 -319555 cd16641 80.537 -319556 cd16642 73.2585 -319557 cd16643 99.3695 -319558 cd16644 64.2308 -319559 cd16645 84.8113 -319560 cd16646 51.9529 -319561 cd16647 65.3962 -319562 cd16648 70.516 -319563 cd16649 55.6405 -319564 cd16650 68.0546 -319565 cd16651 73.0476 -319566 cd16652 83.4574 -319567 cd16653 55.3247 -319568 cd16654 85.7598 -319569 cd16655 69.1699 -319570 cd16656 79.5466 -319571 cd16657 120.022 -319572 cd16658 127.416 -319573 cd16659 61.4165 -319574 cd16660 79.6188 -319575 cd16661 65.8283 -319576 cd16662 111.682 -319577 cd16663 116.126 -319578 cd16664 67.6439 -319579 cd16665 81.2999 -319580 cd16666 95.2005 -319581 cd16667 83.136 -319582 cd16668 103.965 -319583 cd16669 78.9517 -319584 cd16670 106.52 -319585 cd16671 142.323 -319586 cd16672 139.589 -319587 cd16673 110.115 -319588 cd16674 101.292 -319589 cd16675 81.971 -319590 cd16676 85.458 -319591 cd16677 70.4358 -319592 cd16678 69.3314 -319593 cd16679 85.1124 -319594 cd16680 95.1257 -319595 cd16681 78.9664 -319596 cd16682 96.3049 -319597 cd16683 98.5261 -319598 cd16684 100.517 -319599 cd16685 235.537 -319600 cd16686 263.45 -319601 cd16687 80.1435 -319602 cd16688 61.9371 -319603 cd16689 61.6781 -319604 cd16690 82.4105 -319605 cd16691 64.4033 -319606 cd16692 74.6689 -319607 cd16693 63.8261 -319608 cd16694 91.1863 -319609 cd16695 88.542 -319610 cd16696 66.1827 -319611 cd16697 68.5578 -319612 cd16698 95.2017 -319613 cd16699 88.9823 -319614 cd16700 111.952 -319615 cd16701 114.881 -319616 cd16702 81.9264 -319617 cd16703 124.659 -319618 cd16704 81.805 -319619 cd16705 89.6187 -319620 cd16706 73.8135 -319621 cd16707 73.8688 -319622 cd16708 99.3506 -319623 cd16709 110.183 -319624 cd16710 105.551 -319625 cd16711 74.7761 -319626 cd16712 75.9499 -319627 cd16713 82.5103 -319628 cd16714 96.416 -319629 cd16715 130.885 -319630 cd16716 119.038 -319631 cd16717 101.68 -319632 cd16718 105.837 -319633 cd16719 76.5219 -319634 cd16720 96.1181 -319635 cd16721 101.116 -319636 cd16722 89.2806 -319637 cd16723 95.7294 -319638 cd16724 55.9045 -319639 cd16725 55.5349 -319640 cd16726 51.3403 -319641 cd16727 67.4786 -319642 cd16728 103.377 -319643 cd16729 78.2495 -319644 cd16730 121.834 -319645 cd16731 114.227 -319646 cd16732 120.764 -319647 cd16733 84.2687 -319648 cd16734 95.0225 -319649 cd16735 74.8176 -319650 cd16736 95.8417 -319651 cd16737 76.6937 -319652 cd16738 75.274 -319653 cd16739 88.6424 -319654 cd16740 81.646 -319655 cd16741 93.8443 -319656 cd16742 92.192 -319657 cd16743 106.57 -319658 cd16744 99.5973 -319659 cd16745 78.1148 -319660 cd16746 86.7603 -319661 cd16747 59.7622 -319662 cd16748 107.417 -319663 cd16749 100.782 -319664 cd16750 89.7883 -319665 cd16751 83.4363 -319666 cd16752 75.4162 -319667 cd16753 116.306 -319668 cd16754 121.682 -319669 cd16755 93.9558 -319670 cd16756 77.5433 -319671 cd16757 70.238 -319672 cd16758 91.2865 -319673 cd16759 136.697 -319674 cd16760 129.375 -319675 cd16761 136.32 -319676 cd16762 114.694 -319677 cd16763 111.1 -319678 cd16764 121.268 -319679 cd16765 78.55 -319680 cd16766 116.895 -319681 cd16767 103.19 -319682 cd16768 106.243 -319683 cd16769 94.6234 -319684 cd16770 92.3946 -319685 cd16771 58.6498 -319686 cd16772 73.7465 -319687 cd16773 77.4227 -319688 cd16774 117.539 -319689 cd16775 106.763 -319690 cd16776 108.135 -319691 cd16777 95.495 -319692 cd16778 85.5935 -319693 cd16779 91.7927 -319694 cd16780 85.3133 -319695 cd16781 100.037 -319696 cd16782 98.1828 -319697 cd16783 98.4617 -319698 cd16784 98.3177 -319699 cd16785 95.726 -319700 cd16786 98.0684 -319701 cd16787 60.0219 -319702 cd16788 86.718 -319703 cd16789 85.8582 -319704 cd16790 93.6369 -319705 cd16791 103.708 -319706 cd16792 114.303 -319707 cd16793 98.6771 -319708 cd16794 107.822 -319709 cd16795 107.796 -319710 cd16796 103.586 -319711 cd16797 114.756 -319712 cd16798 105.405 -319713 cd16799 97.0179 -319714 cd16800 107.769 -319715 cd16801 97.3261 -319716 cd16802 110.682 -319717 cd16803 120.077 -319718 cd16804 112.295 -319719 cd16805 105.489 -319720 cd16806 104.402 -319721 cd16807 90.1044 -319722 cd16808 100.561 -319723 cd16809 97.0711 -319724 cd16810 106.636 -319725 cd16811 116.673 -319726 cd16812 130.839 -319727 cd16813 123.225 -319728 cd16814 92.0906 -319729 cd16815 120.946 -319730 cd16816 86.6599 -319731 cd16817 83.5739 -319732 cd16818 104.38 -319733 cd16819 100.498 -319734 cd16820 100.91 -319735 cd16821 98.6037 -319736 cd16822 117.066 -319737 cd16823 116.682 -319738 cd16824 109.372 -319739 cd16825 109.725 -319356 cd16827 162.18 -319357 cd16828 216.27 -319358 cd16829 164.595 -319359 cd16830 159.931 -319360 cd16831 159.182 -319353 cd16832 146.773 -319354 cd16833 81.0916 -319355 cd16834 99.7043 -319351 cd16837 65.254 -319350 cd16839 323.692 -319349 cd16840 87.3463 -319245 cd16841 72.4921 -319347 cd16842 103.563 -319348 cd16843 128.752 -319272 cd16844 81.1588 -306537 pfam00040 41.0163 -306553 pfam00063 974.45 -306563 pfam00077 98.1779 -306620 pfam00143 118.039 -306633 pfam00159 42.634 -306642 pfam00173 45.6874 -306651 pfam00182 403.795 -306653 pfam00184 85.4107 -306663 pfam00195 366.478 -306664 pfam00196 61.4298 -278624 pfam00201 481.908 -306687 pfam00223 1084.4 -306704 pfam00243 145.913 -306707 pfam00246 93.131 -278668 pfam00248 178.276 -306715 pfam00257 52.096 -306718 pfam00262 443.52 -306721 pfam00265 231.067 -306722 pfam00267 354.058 -306724 pfam00269 48.2142 -306728 pfam00273 128.14 -306729 pfam00274 445.041 -306732 pfam00277 144.365 -278701 pfam00284 70.3544 -278720 pfam00304 36.8745 -278724 pfam00308 314.266 -306755 pfam00310 665.827 -278729 pfam00313 67.2672 -278739 pfam00324 192.535 -278740 pfam00325 49.0738 -278741 pfam00326 159.704 -278755 pfam00340 116.391 -306779 pfam00341 79.2326 -278757 pfam00342 760.089 -306782 pfam00345 78.0096 -278762 pfam00347 44.9231 -306787 pfam00351 537.098 -306791 pfam00356 61.1139 -306794 pfam00360 179.373 -306811 pfam00379 37.6207 -278795 pfam00383 69.638 -306820 pfam00390 126.607 -306822 pfam00392 63.7878 -306828 pfam00398 239.177 -306829 pfam00399 27.0385 -306834 pfam00404 27.2268 -278817 pfam00405 520.482 -306835 pfam00406 208.701 -278819 pfam00407 142.07 -306838 pfam00411 117.942 -278825 pfam00414 31.7524 -306840 pfam00415 31.3287 -306841 pfam00416 128.335 -306842 pfam00418 37.3614 -278832 pfam00423 584.093 -278833 pfam00424 106.581 -306846 pfam00425 172.731 -306848 pfam00427 105.217 -306850 pfam00429 358.338 -278838 pfam00430 87.7423 -278839 pfam00431 105.07 -306851 pfam00432 30.9424 -278842 pfam00434 561.229 -306855 pfam00437 240.638 -306857 pfam00439 48.0837 -278853 pfam00446 30.196 -278858 pfam00451 23.7816 -306869 pfam00454 133.219 -278867 pfam00460 34.4405 -278869 pfam00463 998.964 -278870 pfam00464 680.261 -109527 pfam00474 397.481 -278883 pfam00480 283.462 -306885 pfam00481 156.352 -306887 pfam00483 197.466 -278888 pfam00485 248.083 -306894 pfam00493 348.366 -306895 pfam00494 149.354 -306900 pfam00502 124.145 -306901 pfam00503 116.162 -278911 pfam00510 308.956 -278912 pfam00511 98.1737 -278914 pfam00513 383.022 -278917 pfam00516 887.202 -306907 pfam00518 114.316 -278920 pfam00519 756.497 -278923 pfam00522 101.305 -278925 pfam00524 153.805 -306912 pfam00526 28.6082 -306914 pfam00529 122.144 -306915 pfam00530 40.7997 -306916 pfam00531 49.6714 -306921 pfam00539 58.3483 -249943 pfam00540 220.581 -306922 pfam00541 357.211 -306924 pfam00544 244.424 -278950 pfam00551 190.966 -306929 pfam00552 68.9366 -306932 pfam00556 25.1488 -109608 pfam00558 57.7362 -278957 pfam00559 328.223 -306936 pfam00562 317.924 -278962 pfam00564 48.0423 -144235 pfam00568 142.203 -278966 pfam00569 47.0788 -306944 pfam00573 92.9298 -306948 pfam00577 530.31 -306950 pfam00579 231.403 -306953 pfam00582 50.4774 -278982 pfam00585 107.742 -278984 pfam00587 129.839 -306960 pfam00594 76.7846 -278993 pfam00598 283.795 -278994 pfam00599 209.892 -278995 pfam00600 441.733 -278997 pfam00602 1024.43 -306962 pfam00605 114.551 -306963 pfam00608 36.7365 -306964 pfam00609 158.141 -279008 pfam00614 30.4648 -306968 pfam00615 80.3475 -306969 pfam00616 89.2472 -306973 pfam00621 77.7086 -306975 pfam00623 217.17 -306976 pfam00624 23.9382 -279019 pfam00625 202.226 -306978 pfam00630 38.8317 -306979 pfam00631 36.5433 -306980 pfam00632 131.563 -306982 pfam00634 38.1819 -306985 pfam00637 42.2067 -306988 pfam00640 124.398 -279035 pfam00641 34.6351 -279036 pfam00642 31.408 -306989 pfam00643 35.5365 -307000 pfam00654 86.0551 -307002 pfam00657 41.852 -307004 pfam00659 40.9321 -307005 pfam00660 83.8149 -279054 pfam00661 488.832 -307007 pfam00664 127.761 -307009 pfam00666 154.194 -279062 pfam00670 305.811 -307014 pfam00674 90.4484 -307016 pfam00676 335.842 -279070 pfam00680 382.875 -307019 pfam00681 36.947 -279072 pfam00682 240.672 -307023 pfam00686 81.1999 -307025 pfam00688 111.207 -307026 pfam00689 51.082 -279081 pfam00691 43.4938 -279083 pfam00693 436.16 -307028 pfam00694 159.444 -279085 pfam00695 676.827 -307030 pfam00697 187.926 -279088 pfam00698 342.53 -279090 pfam00700 79.6407 -279091 pfam00701 384.796 -307033 pfam00703 40.5447 -279095 pfam00705 179.924 -109750 pfam00706 45.9257 -307038 pfam00710 113.801 -307040 pfam00713 80.6831 -307042 pfam00715 169.91 -279105 pfam00716 359.558 -307047 pfam00721 125.048 -307049 pfam00723 200.36 -307050 pfam00725 72.2482 -307052 pfam00728 358.924 -279118 pfam00729 191.903 -279119 pfam00730 75.0151 -307054 pfam00732 192.109 -307055 pfam00733 103.834 -307057 pfam00735 385.11 -109783 pfam00739 195.946 -279128 pfam00740 552.305 -307061 pfam00741 33.5214 -109787 pfam00743 1028.6 -279133 pfam00747 1394.47 -307065 pfam00748 62.7122 -279135 pfam00749 431.358 -279136 pfam00750 529.833 -307072 pfam00757 105.596 -307073 pfam00758 164.943 -279145 pfam00760 412.624 -279148 pfam00764 627.452 -307077 pfam00765 264.714 -279151 pfam00767 396.205 -307082 pfam00773 153.206 -307083 pfam00775 211.516 -307084 pfam00777 166.215 -307087 pfam00780 161.653 -307088 pfam00781 54.8953 -307092 pfam00787 46.5917 -307093 pfam00788 62.3451 -279169 pfam00789 72.7187 -279172 pfam00793 273.039 -307097 pfam00794 102 -279175 pfam00796 26.7363 -279177 pfam00798 812.607 -144411 pfam00802 186.042 -307103 pfam00807 32.3604 -279185 pfam00808 61.0742 -307104 pfam00809 175.924 -307106 pfam00811 100.007 -307107 pfam00812 155.878 -307113 pfam00818 1e+06 -109859 pfam00819 65.4398 -307114 pfam00820 302.451 -307116 pfam00823 78.3934 -307117 pfam00827 241.636 -307122 pfam00832 31.77 -279207 pfam00834 245.703 -307125 pfam00836 102.779 -279210 pfam00837 401.165 -307127 pfam00839 43.4945 -279214 pfam00841 43.376 -307130 pfam00844 169.789 -307131 pfam00845 459.498 -307134 pfam00849 66.2909 -279223 pfam00851 614.31 -307136 pfam00852 191.978 -307137 pfam00853 235.325 -279226 pfam00854 279.589 -307142 pfam00859 266.384 -279232 pfam00860 231.032 -307143 pfam00861 123.629 -307144 pfam00862 858.831 -279235 pfam00863 410.251 -307145 pfam00864 550.226 -307146 pfam00865 284.445 -307150 pfam00870 367.647 -279243 pfam00871 434.515 -307151 pfam00872 502.297 -279246 pfam00874 32.6107 -307156 pfam00878 67.5209 -307157 pfam00879 39.5341 -307159 pfam00881 51.2374 -307168 pfam00890 154.753 -307169 pfam00891 267.329 -307170 pfam00892 39.871 -279265 pfam00893 76.9314 -279266 pfam00894 227.9 -279267 pfam00895 33.4636 -279268 pfam00897 718.069 -307171 pfam00898 1080.07 -279270 pfam00899 84.6887 -307172 pfam00900 74.3887 -279272 pfam00901 1057.8 -307175 pfam00904 1e+06 -279277 pfam00906 241.48 -307177 pfam00907 157.706 -307179 pfam00909 272.631 -279280 pfam00910 59.1717 -307181 pfam00913 160.656 -307182 pfam00915 390.031 -279284 pfam00916 269.889 -307183 pfam00918 106.055 -307186 pfam00921 233.939 -279290 pfam00922 534.794 -307188 pfam00924 123.088 -307191 pfam00927 81.2273 -279297 pfam00929 78.1556 -307193 pfam00930 271.107 -307194 pfam00931 251.152 -307196 pfam00933 328.983 -307197 pfam00934 28.6376 -307199 pfam00936 28.9569 -279305 pfam00937 436.781 -279306 pfam00938 121.064 -279307 pfam00939 394.432 -307202 pfam00942 39.8681 -279311 pfam00943 734.049 -279312 pfam00944 330.812 -279313 pfam00945 648.144 -307203 pfam00946 923.259 -279315 pfam00947 215.706 -279316 pfam00948 728.761 -109986 pfam00951 116.402 -279319 pfam00952 439.025 -307206 pfam00954 125.506 -307212 pfam00960 78.7766 -279329 pfam00962 370.157 -307214 pfam00963 38.1473 -307215 pfam00964 57.4013 -307216 pfam00965 180.69 -307217 pfam00967 173.171 -250265 pfam00971 782.304 -279337 pfam00974 700.179 -307222 pfam00976 33.3602 -279340 pfam00977 116.04 -250270 pfam00978 318.05 -144537 pfam00979 517.506 -279341 pfam00980 714.089 -144538 pfam00981 753.014 -279342 pfam00982 572.69 -279343 pfam00983 289.81 -144541 pfam00985 210.522 -307227 pfam00990 132.756 -307228 pfam00992 49.4657 -307230 pfam00994 69.5907 -307232 pfam00996 777.369 -307233 pfam00997 168.798 -279355 pfam00999 114.647 -307235 pfam01000 45.7081 -110032 pfam01001 201.835 -307236 pfam01003 101.634 -307237 pfam01004 141.283 -279359 pfam01005 297.909 -307238 pfam01006 41.304 -307239 pfam01007 464.751 -279363 pfam01010 116.942 -307241 pfam01012 50.298 -307247 pfam01019 455.13 -279373 pfam01021 181.432 -279374 pfam01022 48.9992 -307249 pfam01023 28.0415 -307252 pfam01026 84.2368 -307259 pfam01033 33.8636 -307260 pfam01034 63.8396 -307263 pfam01037 38.6787 -307264 pfam01039 362.331 -307266 pfam01041 366.584 -279393 pfam01042 91.1936 -279395 pfam01044 961.493 -307269 pfam01049 81.0754 -307270 pfam01050 264.978 -307273 pfam01053 474.018 -279403 pfam01054 685.291 -307275 pfam01056 327.928 -307276 pfam01057 171.726 -279408 pfam01059 32.8817 -307278 pfam01060 58.323 -279417 pfam01068 138.957 -307287 pfam01071 255.284 -279420 pfam01073 350.503 -307289 pfam01075 199.092 -307290 pfam01076 170.962 -307292 pfam01078 239.354 -307296 pfam01083 175.231 -307298 pfam01085 235.343 -307300 pfam01087 122.769 -307302 pfam01090 140.245 -307303 pfam01091 56.6449 -307305 pfam01093 443.913 -307307 pfam01095 499.858 -279443 pfam01097 32.0799 -279444 pfam01098 274.534 -307309 pfam01099 51.8408 -307310 pfam01101 30.0142 -307311 pfam01102 146.524 -307312 pfam01103 132.095 -279449 pfam01104 85.9108 -279452 pfam01107 191.843 -307315 pfam01108 83.5732 -144630 pfam01109 218.178 -307316 pfam01110 268.634 -279458 pfam01114 69.0509 -307320 pfam01115 194.289 -307322 pfam01117 387.377 -307323 pfam01118 61.7692 -307324 pfam01119 66.3585 -279465 pfam01121 187.132 -279467 pfam01123 70.2736 -307329 pfam01126 113.611 -307330 pfam01127 41.2073 -279473 pfam01129 278.947 -307334 pfam01133 117.242 -250388 pfam01134 129.594 -250389 pfam01135 291.579 -307335 pfam01136 114.616 -307339 pfam01140 130.321 -279483 pfam01141 132.951 -307340 pfam01142 347.619 -307341 pfam01145 66.5891 -307342 pfam01146 165.466 -279489 pfam01148 156.221 -307345 pfam01151 106.185 -307346 pfam01152 147.172 -307347 pfam01153 625.937 -307348 pfam01154 350.767 -307351 pfam01157 83.6653 -307353 pfam01159 82.1804 -307354 pfam01160 59.2005 -307356 pfam01163 190.137 -279509 pfam01170 198.348 -279510 pfam01171 203.616 -307362 pfam01172 50.0894 -279518 pfam01183 147.489 -307369 pfam01184 164.565 -250427 pfam01187 181.094 -279522 pfam01189 258.122 -307380 pfam01198 67.9294 -307381 pfam01199 80.6326 -307382 pfam01200 57.2376 -279535 pfam01202 92.2558 -307387 pfam01206 39.0679 -307388 pfam01207 326.969 -307389 pfam01208 182.779 -307390 pfam01210 141.945 -307394 pfam01215 173.692 -307395 pfam01216 650.929 -250451 pfam01217 167.15 -250456 pfam01222 615.603 -307401 pfam01225 29.1015 -307403 pfam01227 196.201 -307404 pfam01228 89.1224 -279558 pfam01229 663.491 -307406 pfam01231 386.088 -307407 pfam01232 97.0928 -250464 pfam01234 319.366 -250467 pfam01238 338.363 -307412 pfam01241 44.6174 -307413 pfam01242 80.3203 -279569 pfam01244 284.909 -307416 pfam01246 59.8452 -307417 pfam01247 97.5469 -307419 pfam01249 113.356 -279579 pfam01254 96.2621 -279581 pfam01256 225.321 -307425 pfam01257 141.445 -307428 pfam01261 72.8074 -279586 pfam01262 176.521 -307433 pfam01267 206.241 -307435 pfam01269 329.553 -279594 pfam01270 422.781 -279595 pfam01271 251.875 -307437 pfam01273 90.8271 -307442 pfam01278 312.35 -307443 pfam01279 119.88 -307444 pfam01280 130.658 -307447 pfam01283 127.369 -307449 pfam01285 366.225 -307450 pfam01286 46.7505 -250510 pfam01291 217.808 -307455 pfam01292 39.0424 -307456 pfam01293 680.28 -307458 pfam01295 650.834 -307459 pfam01296 64.2118 -307464 pfam01301 369.277 -307466 pfam01303 100.86 -279626 pfam01304 29.2927 -279627 pfam01307 95.1842 -279628 pfam01308 753.432 -279629 pfam01309 405.641 -279630 pfam01310 299.621 -279637 pfam01318 356.393 -279643 pfam01325 74.7174 -307477 pfam01327 120.377 -279646 pfam01328 631.801 -279649 pfam01331 228.831 -307480 pfam01333 160.39 -307484 pfam01338 231.701 -279656 pfam01340 190.912 -307488 pfam01345 31.7098 -279663 pfam01347 350.421 -279664 pfam01348 134.519 -279665 pfam01349 425.595 -279666 pfam01350 253.286 -279667 pfam01351 190.291 -307491 pfam01353 309.912 -110363 pfam01356 101.806 -279672 pfam01358 233.473 -279673 pfam01361 57.3011 -307496 pfam01364 123.628 -307497 pfam01365 147.296 -279677 pfam01366 720.739 -307502 pfam01371 100.011 -279683 pfam01372 41.9608 -307503 pfam01373 662.026 -307504 pfam01374 248.704 -307505 pfam01375 313.376 -279687 pfam01376 210.41 -144825 pfam01378 78.1622 -307508 pfam01382 90.0805 -307509 pfam01383 52.9089 -307511 pfam01385 76.9325 -307513 pfam01387 87.7602 -307515 pfam01389 184.953 -189968 pfam01391 30.9202 -279706 pfam01398 93.9478 -279708 pfam01400 255.673 -307523 pfam01401 713.576 -279714 pfam01406 489.186 -279715 pfam01407 175.467 -279716 pfam01408 64.1469 -307526 pfam01409 236.696 -307527 pfam01410 329.278 -307528 pfam01412 104.249 -307531 pfam01415 93.2263 -307534 pfam01419 88.8714 -279728 pfam01420 88.1811 -307535 pfam01421 241.026 -279733 pfam01425 338.888 -279735 pfam01427 265.631 -307541 pfam01429 59.2955 -279739 pfam01431 254.261 -307543 pfam01432 273.879 -307544 pfam01434 281.025 -307545 pfam01435 103.641 -279744 pfam01436 30.0627 -279747 pfam01440 189.81 -307548 pfam01441 277.413 -307549 pfam01442 41.5147 -307550 pfam01443 103.609 -279751 pfam01445 82.822 -307551 pfam01446 426.475 -307555 pfam01451 95.1344 -279757 pfam01452 321.308 -250634 pfam01456 43.3129 -279761 pfam01457 612.628 -279764 pfam01462 33.7454 -279765 pfam01463 29.7122 -279766 pfam01464 89.2883 -279770 pfam01468 35.2029 -279771 pfam01469 32.144 -279772 pfam01470 290.851 -279774 pfam01472 45.5604 -307565 pfam01473 25.8117 -279776 pfam01475 108.857 -307571 pfam01481 142.444 -307574 pfam01485 32.1131 -307577 pfam01488 109.972 -279788 pfam01490 271.872 -279790 pfam01492 125.621 -307580 pfam01494 310.787 -307583 pfam01498 63.0222 -279796 pfam01499 524.709 -279798 pfam01501 155.558 -307588 pfam01506 34.8673 -307589 pfam01507 136.663 -279805 pfam01508 31.68 -279809 pfam01513 177.172 -279811 pfam01515 303.072 -279812 pfam01516 467.708 -250679 pfam01518 540.222 -279814 pfam01519 66.3929 -279819 pfam01524 83.4972 -144935 pfam01525 137.032 -307599 pfam01527 55.0575 -279822 pfam01528 385.981 -250689 pfam01531 390.771 -307602 pfam01532 337.599 -279826 pfam01533 493.851 -307603 pfam01534 203.216 -307604 pfam01535 29.3557 -307606 pfam01537 119.74 -201846 pfam01538 207.91 -110536 pfam01539 363.43 -110537 pfam01540 456.854 -144947 pfam01543 139.061 -307607 pfam01544 130.12 -307608 pfam01545 66.8875 -279840 pfam01552 193.316 -279841 pfam01553 70.3851 -110557 pfam01560 706.999 -307617 pfam01561 875.689 -307619 pfam01563 105.034 -279853 pfam01567 1115.56 -307622 pfam01568 38.7816 -307625 pfam01571 133.087 -279858 pfam01573 457.268 -307627 pfam01576 1280.5 -307628 pfam01578 94.7331 -279863 pfam01580 158.695 -110576 pfam01581 1e+06 -307630 pfam01582 122.074 -307631 pfam01583 222.956 -279866 pfam01584 45.2836 -307633 pfam01586 67.7757 -279869 pfam01588 77.6676 -279870 pfam01589 1050.02 -279875 pfam01594 148.92 -307637 pfam01595 41.806 -307638 pfam01596 324.85 -307639 pfam01597 148.24 -279880 pfam01600 502.237 -279881 pfam01601 902.655 -307641 pfam01602 359.243 -250739 pfam01606 265.687 -307643 pfam01607 30.8414 -307648 pfam01613 60.7393 -279892 pfam01616 384.542 -307650 pfam01617 200.77 -279896 pfam01620 179.25 -279897 pfam01621 454.292 -250753 pfam01623 106.312 -307653 pfam01624 98.0435 -307657 pfam01629 101.906 -307658 pfam01630 207.734 -307660 pfam01633 159.758 -279907 pfam01635 299.803 -279908 pfam01636 50.2032 -307662 pfam01637 142.854 -279910 pfam01639 147.705 -307666 pfam01643 288.844 -279916 pfam01645 489.531 -307668 pfam01646 207.204 -307671 pfam01650 170.161 -307673 pfam01653 466.807 -279928 pfam01659 136.973 -307679 pfam01660 119.315 -307680 pfam01661 76.4484 -307682 pfam01664 343.472 -279933 pfam01665 432.683 -307683 pfam01666 55.0066 -279935 pfam01667 84.8148 -307685 pfam01669 81.1717 -307686 pfam01670 250.157 -279939 pfam01671 322.889 -307687 pfam01672 74.5125 -279941 pfam01673 613.801 -307688 pfam01676 154.572 -279943 pfam01677 198.73 -307689 pfam01678 81.9602 -307691 pfam01680 333.661 -307692 pfam01681 27.4881 -307695 pfam01684 35.779 -279951 pfam01686 788.306 -279953 pfam01688 195.425 -279954 pfam01690 750.97 -279955 pfam01691 141.634 -279956 pfam01692 358.002 -307700 pfam01696 467.159 -307701 pfam01697 112.839 -279964 pfam01700 1817.39 -307704 pfam01701 31.8627 -307706 pfam01704 331.387 -307707 pfam01705 58.829 -279970 pfam01707 380.457 -307709 pfam01708 85.9712 -279973 pfam01710 156.184 -279974 pfam01712 204.859 -307713 pfam01716 304.545 -279978 pfam01717 272.385 -279979 pfam01718 1191.8 -279981 pfam01721 41.2918 -279983 pfam01723 44.6284 -201938 pfam01726 94.7575 -307720 pfam01732 120.295 -250824 pfam01733 303.991 -279993 pfam01736 98.6797 -307728 pfam01742 442.397 -280000 pfam01743 125.47 -307729 pfam01744 23.9093 -280002 pfam01745 349.384 -280003 pfam01746 181.389 -280006 pfam01750 101.586 -307733 pfam01752 270.365 -307739 pfam01758 130.099 -280016 pfam01761 258.188 -250845 pfam01762 207.948 -280017 pfam01763 668.692 -280020 pfam01766 683.906 -280021 pfam01767 295.077 -280022 pfam01768 348.917 -307744 pfam01770 375.056 -280025 pfam01771 498.045 -307747 pfam01775 52.9623 -307751 pfam01779 40.9884 -307755 pfam01783 32.5639 -307756 pfam01784 136.996 -250863 pfam01785 204.125 -307758 pfam01787 189.501 -307759 pfam01788 36.9686 -280041 pfam01791 129.432 -307762 pfam01793 422.99 -307764 pfam01795 414.038 -307765 pfam01796 37.5703 -307766 pfam01797 72.22 -280049 pfam01801 288.72 -280050 pfam01802 266.945 -307769 pfam01803 108.873 -280054 pfam01806 484.75 -280055 pfam01807 141.607 -280058 pfam01810 112.771 -280059 pfam01812 153.223 -307776 pfam01815 37.1023 -250888 pfam01816 29.7692 -280064 pfam01818 237.591 -280065 pfam01819 208.431 -307779 pfam01821 30.2934 -307780 pfam01822 70.2061 -280070 pfam01824 345.215 -307786 pfam01829 654.536 -280076 pfam01830 528.508 -280077 pfam01831 535.771 -307788 pfam01833 31.2863 -307790 pfam01835 57.6639 -307793 pfam01840 127.899 -307799 pfam01847 135.225 -307800 pfam01848 39.165 -280096 pfam01852 164.501 -280099 pfam01856 93.495 -307805 pfam01858 156.184 -280102 pfam01861 356.753 -307806 pfam01862 99.1596 -280105 pfam01864 205.032 -280106 pfam01865 195.679 -280110 pfam01869 203.809 -307811 pfam01870 84.2969 -280116 pfam01875 279.27 -307818 pfam01878 198.679 -307821 pfam01882 37.6536 -280124 pfam01884 232.414 -307824 pfam01886 87.2342 -307827 pfam01889 230.504 -307829 pfam01891 74.8884 -307830 pfam01893 88.0514 -307833 pfam01896 41.0506 -307835 pfam01900 43.6476 -307836 pfam01901 146.632 -280139 pfam01902 309.425 -307837 pfam01903 54.563 -307839 pfam01905 196.031 -307841 pfam01907 57.5827 -307842 pfam01909 37.405 -307843 pfam01910 72.5445 -280149 pfam01914 163.994 -307848 pfam01917 64.6175 -307851 pfam01921 414.732 -307852 pfam01922 63.6293 -307855 pfam01925 39.8714 -307858 pfam01928 56.7772 -307859 pfam01929 61.3361 -307863 pfam01934 52.7625 -307865 pfam01936 37.6562 -280171 pfam01938 44.1292 -307868 pfam01941 468.082 -280175 pfam01943 136.272 -307870 pfam01947 179.777 -307872 pfam01949 152.244 -307875 pfam01954 27.9894 -307876 pfam01955 114.549 -307877 pfam01956 81.1606 -280186 pfam01957 83.518 -307882 pfam01964 557.762 -307885 pfam01968 165.133 -110924 pfam01972 474.334 -307889 pfam01974 48.4083 -307897 pfam01982 120.66 -251014 pfam01983 284.083 -280215 pfam01991 112.473 -307906 pfam01993 386.686 -307907 pfam01994 168.012 -307908 pfam01995 191.937 -307909 pfam01996 111.395 -307911 pfam01998 34.0987 -280223 pfam02001 132.351 -280225 pfam02005 458.384 -280227 pfam02007 436.555 -251032 pfam02008 41.1776 -307914 pfam02010 143.792 -307915 pfam02011 908.203 -251036 pfam02013 31.9499 -307916 pfam02014 58.1403 -280233 pfam02015 340.12 -307920 pfam02019 122.316 -307923 pfam02022 48.4865 -307925 pfam02024 211.518 -307929 pfam02028 438.108 -307930 pfam02029 242.467 -307931 pfam02030 589.618 -280248 pfam02031 262.358 -307933 pfam02035 330.069 -307936 pfam02038 52.1883 -307937 pfam02040 713.303 -280254 pfam02041 335.369 -307939 pfam02043 72.1412 -280257 pfam02044 36.9423 -307941 pfam02046 123.965 -307942 pfam02048 52.2764 -307944 pfam02050 34.9513 -110996 pfam02052 87.0331 -251060 pfam02053 215.526 -307945 pfam02055 658.928 -280263 pfam02056 250.008 -307947 pfam02058 104.973 -307948 pfam02059 137.603 -307949 pfam02060 104.464 -280268 pfam02061 71.5166 -307950 pfam02063 110.948 -307951 pfam02064 101.8 -307952 pfam02065 568.563 -280272 pfam02066 31.9206 -280273 pfam02067 39.3733 -307953 pfam02068 55.5847 -307954 pfam02069 46.1453 -307955 pfam02070 36.7153 -307956 pfam02071 1e+06 -307957 pfam02072 126.943 -280280 pfam02074 1060.46 -111019 pfam02077 347.848 -307960 pfam02078 130.801 -280284 pfam02079 58.2548 -307961 pfam02080 41.4397 -280288 pfam02083 33.4326 -251078 pfam02084 129.616 -307964 pfam02085 49.8629 -307965 pfam02086 148.28 -111029 pfam02087 278.018 -145317 pfam02088 58.0099 -307966 pfam02089 607.475 -280292 pfam02090 123.126 -307969 pfam02093 410.852 -307970 pfam02095 1e+06 -280298 pfam02097 563.983 -307974 pfam02101 716.155 -251087 pfam02102 543.746 -307976 pfam02106 733.382 -280307 pfam02110 338.2 -280308 pfam02112 438.555 -251094 pfam02114 433.726 -307981 pfam02115 215.571 -111054 pfam02117 422.906 -307983 pfam02118 158.129 -307986 pfam02121 195.843 -111059 pfam02122 162.548 -280316 pfam02123 225.803 -280317 pfam02124 249.356 -280318 pfam02126 472.045 -280319 pfam02127 550.48 -251109 pfam02133 253.465 -307991 pfam02136 65.8287 -307994 pfam02140 55.0074 -307995 pfam02141 151.957 -307996 pfam02142 54.7994 -308000 pfam02149 45.1703 -280336 pfam02150 42.0735 -308001 pfam02151 30.8276 -280339 pfam02153 280.815 -111086 pfam02154 257.305 -308003 pfam02155 458.155 -308004 pfam02156 382.719 -280342 pfam02157 599.366 -308005 pfam02158 508.58 -308006 pfam02159 151.64 -280345 pfam02160 311.261 -308007 pfam02161 719.009 -145362 pfam02162 1e+06 -308008 pfam02163 35.138 -308009 pfam02165 452.837 -308010 pfam02166 570.33 -308011 pfam02167 275.601 -308014 pfam02171 231.831 -280354 pfam02172 123.372 -308015 pfam02173 45.8507 -308016 pfam02174 116.167 -111105 pfam02175 280.546 -280357 pfam02176 63.245 -308018 pfam02178 1e+06 -308020 pfam02180 42.9086 -280362 pfam02181 261.432 -111114 pfam02184 55.2644 -308025 pfam02187 74.8841 -308027 pfam02189 33.1085 -308028 pfam02190 95.4738 -308030 pfam02192 77.5477 -308031 pfam02194 42.0889 -308034 pfam02198 91.1958 -308035 pfam02199 38.6864 -308036 pfam02200 190.59 -280381 pfam02202 23.5429 -308040 pfam02205 30.554 -308043 pfam02208 71.0306 -308045 pfam02210 45.8879 -308048 pfam02213 43.765 -308049 pfam02214 95.7321 -280395 pfam02217 147.457 -308050 pfam02218 55.202 -280397 pfam02219 328.504 -308051 pfam02221 65.4325 -280399 pfam02222 206.712 -280400 pfam02223 132.041 -280401 pfam02224 261.47 -308053 pfam02226 128.645 -280404 pfam02228 190.174 -280407 pfam02232 586.863 -308056 pfam02234 40.9628 -280410 pfam02236 119.644 -308057 pfam02238 44.4547 -308059 pfam02240 451.791 -308060 pfam02241 438.005 -308063 pfam02246 99.6278 -308064 pfam02247 549.776 -251180 pfam02248 304.008 -308065 pfam02249 227.329 -308066 pfam02250 288.706 -308070 pfam02254 62.557 -280428 pfam02258 144.097 -308074 pfam02259 117.072 -308077 pfam02262 146.933 -308078 pfam02263 370.936 -308081 pfam02267 257.167 -308082 pfam02268 56.2923 -190265 pfam02269 122.152 -308083 pfam02270 78.0747 -111194 pfam02273 547.118 -308087 pfam02275 237.796 -280447 pfam02282 121.554 -308091 pfam02283 154.941 -308093 pfam02285 49.1847 -308094 pfam02286 901.674 -308095 pfam02287 167.014 -308096 pfam02288 85.6954 -280458 pfam02294 73.8889 -280459 pfam02295 94.8804 -308101 pfam02296 126.295 -308102 pfam02297 42.7262 -280462 pfam02298 88.9435 -280467 pfam02304 233.172 -308107 pfam02305 569.51 -280468 pfam02306 364.828 -308113 pfam02313 65.7163 -308115 pfam02316 162.84 -308117 pfam02318 135.941 -308120 pfam02321 44.4404 -145463 pfam02323 280.519 -308123 pfam02326 51.2484 -308124 pfam02327 591.877 -280487 pfam02329 499.361 -280489 pfam02331 537.001 -280492 pfam02334 192.98 -308127 pfam02335 531.137 -280494 pfam02336 712.999 -111251 pfam02340 339.601 -280497 pfam02341 144.683 -308130 pfam02343 93.5483 -280501 pfam02346 82.8235 -280502 pfam02347 648.664 -308132 pfam02348 188.315 -280508 pfam02353 402.09 -280510 pfam02355 147.753 -280512 pfam02358 200.236 -280514 pfam02361 107.033 -308140 pfam02363 1e+06 -308141 pfam02364 966.633 -308144 pfam02368 46.6186 -280522 pfam02369 70.5739 -111279 pfam02370 1e+06 -308146 pfam02372 128.407 -280525 pfam02374 338.559 -308148 pfam02376 81.8709 -308149 pfam02377 42.194 -308150 pfam02378 44.6449 -308151 pfam02380 100.533 -280530 pfam02381 83.1405 -308152 pfam02382 980.906 -280533 pfam02384 385.136 -280534 pfam02386 390.246 -280535 pfam02387 331.679 -280537 pfam02389 132.484 -308156 pfam02392 227.426 -308157 pfam02393 41.1939 -308158 pfam02394 111.605 -280543 pfam02395 1121.6 -280545 pfam02398 106.56 -280546 pfam02399 1059.05 -308161 pfam02402 84.6825 -308163 pfam02404 456.591 -308165 pfam02406 69.0683 -280553 pfam02407 125.758 -280554 pfam02408 80.1129 -111318 pfam02411 170.821 -308167 pfam02412 33.4977 -308168 pfam02414 87.4756 -280560 pfam02416 48.4399 -308171 pfam02419 40.8986 -111326 pfam02420 1e+06 -308173 pfam02422 71.311 -308174 pfam02423 397.2 -280567 pfam02425 38.0628 -308176 pfam02426 74.1189 -308177 pfam02427 88.5349 -308178 pfam02428 44.5841 -308180 pfam02430 607.244 -308181 pfam02431 310.563 -308185 pfam02435 514.353 -308188 pfam02438 943.985 -111345 pfam02439 35.0115 -308189 pfam02440 99.3582 -308190 pfam02441 78.5736 -280581 pfam02442 107.46 -308191 pfam02443 234.607 -280583 pfam02444 160.683 -308194 pfam02447 443.26 -308195 pfam02448 56.6061 -308196 pfam02449 347.336 -308198 pfam02451 334.8 -111360 pfam02454 140.051 -308201 pfam02455 794.384 -280594 pfam02456 589.928 -280596 pfam02458 488.493 -280597 pfam02459 669.661 -308203 pfam02460 975.296 -308204 pfam02461 323.539 -308205 pfam02462 158.45 -308210 pfam02467 45.3144 -280606 pfam02468 48.7998 -308211 pfam02469 63.4263 -280609 pfam02471 156.621 -308213 pfam02472 51.111 -280611 pfam02474 233.495 -280612 pfam02475 246.495 -280613 pfam02476 82.49 -280614 pfam02477 934.837 -280615 pfam02478 434.168 -280616 pfam02479 169.356 -280617 pfam02480 507.09 -308214 pfam02481 192.746 -280620 pfam02484 222.997 -280624 pfam02488 453.35 -280627 pfam02492 127.749 -308220 pfam02493 27.7572 -280629 pfam02494 78.1971 -308222 pfam02496 47.0598 -111400 pfam02497 267.205 -280633 pfam02499 560.848 -280634 pfam02500 376.715 -308227 pfam02504 299.659 -308228 pfam02505 169.264 -308229 pfam02507 265.442 -280642 pfam02509 569.655 -280643 pfam02510 686.58 -280645 pfam02512 197.753 -308233 pfam02514 567.128 -308234 pfam02515 250.593 -280649 pfam02516 344.755 -308238 pfam02520 64.5173 -280656 pfam02524 1e+06 -280658 pfam02526 82.8039 -280659 pfam02527 153.975 -308242 pfam02529 44.6519 -308243 pfam02530 123.055 -308244 pfam02531 224.509 -308245 pfam02532 36.2103 -308246 pfam02533 38.8584 -308248 pfam02535 98.6026 -280670 pfam02540 308.156 -280671 pfam02541 270.349 -280673 pfam02543 422.344 -251363 pfam02544 138.694 -251367 pfam02550 257.466 -308256 pfam02551 59.5628 -251369 pfam02552 138.017 -308257 pfam02553 47.1177 -308258 pfam02554 370.361 -308260 pfam02557 121.173 -308261 pfam02558 60.3183 -308267 pfam02565 60.4855 -308268 pfam02566 43.0769 -280691 pfam02568 272.38 -308277 pfam02579 47.2442 -308281 pfam02585 52.6853 -308284 pfam02589 140.44 -308288 pfam02593 219.914 -308297 pfam02602 93.1546 -308299 pfam02604 33.3889 -308300 pfam02605 141.955 -308304 pfam02610 399.161 -280735 pfam02616 201.995 -308312 pfam02621 168.876 -308318 pfam02627 32.6741 -308319 pfam02628 132.786 -308320 pfam02629 60.6666 -251433 pfam02630 206.904 -308324 pfam02634 180.792 -308326 pfam02636 138.933 -251441 pfam02638 437.028 -308328 pfam02639 108.33 -308331 pfam02645 189.344 -280762 pfam02652 499.981 -280763 pfam02653 89.6001 -280765 pfam02655 138.287 -308338 pfam02659 109.872 -308341 pfam02662 83.3067 -308345 pfam02666 71.9201 -280776 pfam02667 615.284 -308356 pfam02679 218.516 -308358 pfam02681 113.681 -280792 pfam02683 159.106 -280793 pfam02684 426.085 -280794 pfam02685 278.285 -280797 pfam02689 1185.66 -111576 pfam02691 1697.99 -111577 pfam02694 133.36 -308368 pfam02701 91.9577 -308370 pfam02703 515.1 -308372 pfam02705 501.65 -280810 pfam02707 313.283 -280812 pfam02710 197.999 -308375 pfam02711 30.3222 -308376 pfam02713 110.416 -308377 pfam02714 196.197 -308378 pfam02718 311.615 -308379 pfam02719 382.242 -308380 pfam02720 184.465 -145722 pfam02721 68.8613 -280820 pfam02723 70.9963 -280822 pfam02725 309.072 -308383 pfam02728 99.7097 -308392 pfam02737 152.701 -308395 pfam02740 73.9911 -308396 pfam02741 187.3 -308398 pfam02743 34.0964 -308399 pfam02745 525.464 -308400 pfam02746 112.95 -280843 pfam02747 198.076 -308403 pfam02750 454.902 -308405 pfam02752 43.471 -308407 pfam02754 64.2606 -308409 pfam02756 31.1362 -308410 pfam02757 1e+06 -308412 pfam02759 90.7851 -308416 pfam02765 53.1186 -308417 pfam02767 141.674 -280863 pfam02768 125.108 -308418 pfam02769 64.2843 -308419 pfam02770 60.7453 -308425 pfam02776 83.4388 -308427 pfam02778 42.9537 -308430 pfam02782 78.9043 -308431 pfam02783 249.842 -280881 pfam02786 266.093 -308435 pfam02788 159.286 -308436 pfam02789 50.3901 -280885 pfam02790 86.6096 -308438 pfam02792 215.903 -308440 pfam02794 128.525 -308442 pfam02797 232.737 -308445 pfam02800 140.423 -308446 pfam02801 85.3129 -280904 pfam02813 147.615 -111689 pfam02819 36.7363 -308460 pfam02821 80.4292 -308462 pfam02823 52.4165 -308466 pfam02827 69.6266 -308469 pfam02830 57.279 -280921 pfam02831 64.8132 -280922 pfam02832 184.852 -280925 pfam02836 395.649 -308472 pfam02837 220.193 -308475 pfam02841 267.619 -280935 pfam02854 79.327 -308483 pfam02864 243.276 -280941 pfam02866 142.488 -308486 pfam02868 150.083 -308487 pfam02870 59.2998 -308488 pfam02872 66.8953 -308491 pfam02875 40.4007 -280949 pfam02876 115.541 -308493 pfam02878 101.921 -308497 pfam02882 159.933 -280959 pfam02886 250.739 -308502 pfam02888 88.4422 -308503 pfam02889 131.54 -308504 pfam02890 136.306 -308505 pfam02891 73.8242 -308507 pfam02893 64.6669 -280967 pfam02894 63.6188 -308508 pfam02895 40.293 -308509 pfam02897 355.462 -308511 pfam02899 56.532 -308514 pfam02902 117.181 -308516 pfam02905 254.548 -308517 pfam02906 188.981 -111760 pfam02907 235.016 -280983 pfam02913 132.433 -251616 pfam02914 455.998 -308522 pfam02915 64.6865 -111768 pfam02917 345.979 -280986 pfam02918 187.439 -308524 pfam02920 62.5888 -308526 pfam02922 56.8703 -280991 pfam02923 268.217 -308527 pfam02924 37.648 -280993 pfam02925 285.081 -308529 pfam02927 59.5131 -308533 pfam02932 98.1171 -281005 pfam02938 92.3265 -281007 pfam02940 140.936 -308540 pfam02941 69.9131 -281009 pfam02942 540.473 -308542 pfam02944 30.4243 -308543 pfam02945 70.2003 -308544 pfam02946 96.8404 -281014 pfam02947 193.031 -308545 pfam02948 116.69 -251636 pfam02949 169.775 -308546 pfam02950 29.6711 -281020 pfam02954 38.1262 -308550 pfam02955 240.532 -281022 pfam02956 236.009 -251643 pfam02957 67.9164 -308551 pfam02958 234.083 -281025 pfam02960 241.564 -308552 pfam02961 116.5 -281027 pfam02962 263.879 -281029 pfam02964 213.958 -308554 pfam02966 189.797 -281032 pfam02969 86.2947 -145886 pfam02972 93.8081 -281035 pfam02973 232.532 -251652 pfam02977 47.1527 -308562 pfam02980 201.947 -281042 pfam02981 231.643 -202497 pfam02982 305.685 -308563 pfam02983 29.5597 -308566 pfam02986 29.103 -111833 pfam02987 32.2805 -190495 pfam02988 122.594 -281047 pfam02989 256.696 -281049 pfam02991 147.116 -281051 pfam02993 312.707 -308570 pfam02995 452.568 -281054 pfam02996 69.9692 -111843 pfam02998 134.949 -308571 pfam02999 128.322 -308573 pfam03002 37.8471 -281058 pfam03003 91.6114 -308574 pfam03004 79.4048 -281060 pfam03007 195.67 -281063 pfam03010 302.342 -281064 pfam03011 134.547 -308578 pfam03012 497.838 -308579 pfam03013 110.48 -281067 pfam03014 1213.12 -281073 pfam03021 296.957 -308585 pfam03022 262.293 -281075 pfam03023 334.259 -145918 pfam03025 35.7268 -281077 pfam03026 496.977 -308588 pfam03029 109.379 -308590 pfam03031 64.1783 -281082 pfam03032 27.7166 -281083 pfam03033 86.5676 -308592 pfam03035 143.274 -308593 pfam03036 382.017 -281087 pfam03037 107.962 -281088 pfam03038 384.539 -308594 pfam03039 333.711 -308595 pfam03040 252.437 -281091 pfam03041 248.537 -281092 pfam03042 221.128 -281093 pfam03043 621.113 -281094 pfam03044 322.436 -281098 pfam03049 353.587 -281100 pfam03051 661.731 -308597 pfam03052 99.8561 -251695 pfam03053 307.105 -281101 pfam03054 452.871 -251699 pfam03058 83.178 -308600 pfam03059 299.292 -308601 pfam03060 307.131 -281107 pfam03062 158.761 -281109 pfam03064 246.089 -308604 pfam03065 204.933 -308605 pfam03066 103.045 -308608 pfam03069 175.472 -281116 pfam03071 712.782 -281117 pfam03072 177.935 -281120 pfam03076 293.513 -281121 pfam03077 65.3756 -251715 pfam03078 321.188 -281122 pfam03079 180.63 -281125 pfam03082 424.553 -281126 pfam03083 77.6244 -281128 pfam03085 282.443 -281129 pfam03086 150.579 -281131 pfam03088 130.637 -308614 pfam03089 651.413 -308617 pfam03092 430.229 -308618 pfam03094 582.673 -308622 pfam03099 83.2528 -281150 pfam03109 135.01 -308631 pfam03110 84.1672 -281152 pfam03112 296.987 -281153 pfam03113 238.457 -281155 pfam03115 876.488 -281157 pfam03117 283.244 -281161 pfam03121 35.8542 -281162 pfam03122 1863.21 -251743 pfam03125 236.834 -308640 pfam03128 29.0427 -281168 pfam03129 37.5352 -308644 pfam03135 190.253 -308645 pfam03136 283.593 -308649 pfam03142 910.67 -308650 pfam03143 106.575 -308654 pfam03147 76.3569 -308657 pfam03151 306.138 -308659 pfam03153 125.102 -308661 pfam03155 298.238 -281191 pfam03157 940.723 -281192 pfam03158 230.724 -308663 pfam03160 78.0602 -111998 pfam03162 164.079 -308665 pfam03164 271.666 -308666 pfam03165 83.9629 -308670 pfam03169 187.137 -308672 pfam03171 30.5254 -308675 pfam03174 83.7849 -281206 pfam03175 236.091 -308677 pfam03177 271.86 -281211 pfam03180 182.45 -112017 pfam03183 1e+06 -308681 pfam03184 180.645 -308682 pfam03185 225.968 -281216 pfam03187 396 -308686 pfam03190 224.717 -308687 pfam03192 212.16 -281224 pfam03196 163.026 -281225 pfam03197 204.132 -308692 pfam03200 650.572 -308693 pfam03201 125.537 -308694 pfam03202 141.335 -308697 pfam03206 108.364 -308698 pfam03207 317.173 -308700 pfam03209 348.964 -281237 pfam03210 165.413 -308702 pfam03212 140.612 -281240 pfam03213 390.238 -308703 pfam03214 526.223 -251803 pfam03215 603.255 -281242 pfam03216 727.247 -308704 pfam03219 602.394 -281245 pfam03220 332.122 -308705 pfam03221 35.2852 -308706 pfam03222 356.21 -308708 pfam03224 159.355 -251809 pfam03225 410.581 -281252 pfam03228 129.418 -251813 pfam03229 84.7692 -251815 pfam03231 500.038 -251817 pfam03233 183.462 -308713 pfam03234 69.1444 -308714 pfam03235 47.9457 -281258 pfam03238 401.411 -251822 pfam03239 170.611 -308716 pfam03241 167.685 -308719 pfam03244 179.644 -281263 pfam03245 68.6053 -308720 pfam03246 694.423 -308721 pfam03247 29.5062 -281267 pfam03249 1087.13 -281269 pfam03251 602.936 -308725 pfam03254 777.129 -308727 pfam03256 241.957 -281275 pfam03257 115.491 -281276 pfam03258 396.765 -308728 pfam03259 51.0771 -308729 pfam03260 362.075 -308730 pfam03261 404.66 -281280 pfam03262 428.675 -281281 pfam03263 204.259 -308731 pfam03264 139.727 -308732 pfam03265 112.374 -308733 pfam03266 162.031 -308735 pfam03269 278.073 -308738 pfam03272 84.2535 -281290 pfam03273 917.621 -281291 pfam03274 375.201 -308739 pfam03275 181.193 -281293 pfam03276 1206.56 -281294 pfam03277 188.245 -281295 pfam03278 186.395 -281296 pfam03279 323.142 -308741 pfam03281 150.478 -308743 pfam03284 282.879 -308744 pfam03285 276.977 -281302 pfam03286 166.912 -308745 pfam03287 184.829 -281305 pfam03289 468.81 -281306 pfam03290 474.183 -281307 pfam03291 389.098 -281308 pfam03292 1057.86 -281309 pfam03293 259.66 -281310 pfam03294 645.641 -281311 pfam03295 102.076 -281312 pfam03296 167.22 -308748 pfam03298 312.48 -308749 pfam03299 246.347 -281316 pfam03300 593.267 -281317 pfam03301 350.406 -146106 pfam03302 346.572 -281318 pfam03303 174.798 -308750 pfam03304 109.15 -308751 pfam03305 176.797 -281322 pfam03307 238.095 -281323 pfam03308 359.056 -308754 pfam03311 63.2564 -308755 pfam03312 115.015 -308757 pfam03314 347.377 -308759 pfam03318 149.465 -308760 pfam03319 50.1379 -281336 pfam03324 77.3811 -281337 pfam03325 674.484 -308764 pfam03326 547.375 -281339 pfam03327 234.608 -281343 pfam03332 357.848 -281347 pfam03336 348.693 -281348 pfam03337 690.311 -281349 pfam03338 156.324 -281350 pfam03339 497.001 -281351 pfam03340 714.975 -281352 pfam03341 472.683 -281353 pfam03342 446.573 -308770 pfam03343 124.338 -308771 pfam03344 170.327 -281357 pfam03347 322.862 -308773 pfam03348 217.407 -308774 pfam03349 378.259 -308776 pfam03351 51.9733 -281364 pfam03354 630.088 -146143 pfam03355 440.387 -281365 pfam03356 290.845 -308780 pfam03359 269.284 -281370 pfam03361 195.013 -281371 pfam03362 580.444 -281372 pfam03363 127.142 -308782 pfam03364 32.4804 -281377 pfam03369 248.31 -308786 pfam03370 98.4518 -281383 pfam03376 99.633 -308790 pfam03377 40.3198 -308791 pfam03378 619.703 -281385 pfam03379 159.047 -308792 pfam03380 49.972 -308794 pfam03382 115.041 -251914 pfam03383 191.839 -146165 pfam03384 38.569 -308796 pfam03386 82.9276 -281391 pfam03387 665.872 -308797 pfam03389 220.998 -308798 pfam03390 289.761 -251920 pfam03391 202.226 -308800 pfam03393 433.624 -281397 pfam03394 379.444 -281398 pfam03395 1550.99 -281399 pfam03396 439.893 -281400 pfam03397 349.874 -281403 pfam03400 251.043 -281404 pfam03401 387.219 -112227 pfam03402 427.464 -308804 pfam03405 353.454 -281409 pfam03408 2127.1 -308807 pfam03409 281.465 -281411 pfam03410 912.546 -308809 pfam03412 119.246 -308811 pfam03414 520.449 -281416 pfam03415 341.057 -281418 pfam03417 187.15 -308813 pfam03418 634.754 -308814 pfam03419 133.472 -281421 pfam03420 329.025 -308816 pfam03422 58.5188 -281424 pfam03423 140.232 -308818 pfam03425 187.388 -281427 pfam03426 270.76 -112252 pfam03427 93.6099 -308820 pfam03429 1182 -281430 pfam03430 1140.65 -308821 pfam03431 742.04 -308822 pfam03432 167.937 -308823 pfam03433 210.805 -308824 pfam03434 453.639 -308825 pfam03435 58.3706 -308826 pfam03436 46.9423 -281436 pfam03437 359.862 -281437 pfam03438 259.978 -308828 pfam03440 129.693 -308830 pfam03442 62.5764 -281443 pfam03444 127.833 -308832 pfam03445 89.5747 -281446 pfam03447 67.3303 -308837 pfam03451 73.0239 -308840 pfam03454 45.683 -308843 pfam03457 38.3357 -281458 pfam03459 30.992 -308849 pfam03464 118.929 -251981 pfam03470 42.507 -281474 pfam03476 84.334 -281480 pfam03482 46.6115 -281484 pfam03486 441.627 -308867 pfam03487 146.772 -112313 pfam03488 48.5462 -281488 pfam03491 64.0955 -308871 pfam03494 73.2871 -308872 pfam03496 134.415 -281494 pfam03497 245.478 -308873 pfam03498 257.412 -281496 pfam03500 243.835 -308874 pfam03501 115.296 -308875 pfam03502 170.632 -308876 pfam03503 76.2361 -281500 pfam03504 198.348 -308877 pfam03505 275.696 -281501 pfam03506 359.8 -281502 pfam03507 341.399 -308878 pfam03508 50.3561 -308879 pfam03509 92.8976 -281505 pfam03510 131.131 -308880 pfam03511 76.6502 -308881 pfam03512 630.535 -281508 pfam03513 129.14 -308883 pfam03516 32.476 -308886 pfam03520 334.048 -308887 pfam03521 465.918 -308889 pfam03523 81.3234 -281518 pfam03525 340.58 -112349 pfam03526 68.0053 -308892 pfam03528 755.829 -308893 pfam03529 66.8008 -281524 pfam03532 436.137 -308896 pfam03533 65.1993 -308897 pfam03534 375.021 -308898 pfam03535 185.461 -281528 pfam03536 414.65 -281530 pfam03538 394.942 -112362 pfam03539 306.39 -308902 pfam03543 150.702 -281534 pfam03544 57.293 -281535 pfam03545 104.205 -308904 pfam03547 165.257 -308905 pfam03548 136.284 -308908 pfam03551 56.1016 -281541 pfam03552 1290.1 -281542 pfam03553 125.874 -281543 pfam03554 61.67 -281544 pfam03555 101.509 -281546 pfam03557 1671.71 -281547 pfam03558 399.471 -308911 pfam03561 176.472 -281551 pfam03563 557.274 -281552 pfam03564 195.742 -281553 pfam03566 736.832 -281556 pfam03569 449.18 -308916 pfam03572 72.2499 -281560 pfam03574 268.315 -281561 pfam03575 180.949 -281565 pfam03579 89.7392 -281566 pfam03580 200.478 -281567 pfam03581 88.1729 -281568 pfam03583 330.904 -281570 pfam03585 601.985 -281571 pfam03586 331.438 -308924 pfam03592 56.9229 -281578 pfam03594 379.773 -281580 pfam03596 176.47 -308927 pfam03598 223.93 -252048 pfam03599 318.715 -281584 pfam03601 229.467 -281585 pfam03602 190.904 -281589 pfam03606 341.977 -308932 pfam03608 210.494 -308936 pfam03612 218.537 -281597 pfam03614 300.762 -281598 pfam03615 270.01 -308938 pfam03616 395.909 -281600 pfam03617 66.9522 -281603 pfam03620 187.187 -281605 pfam03622 128.247 -308942 pfam03623 158.545 -308943 pfam03625 35.5372 -112444 pfam03627 383.047 -190694 pfam03628 194.35 -308954 pfam03639 602.23 -281621 pfam03641 97.6729 -281622 pfam03642 105.119 -146336 pfam03643 297.043 -281627 pfam03648 109.303 -308961 pfam03650 150.84 -308963 pfam03653 128.882 -252088 pfam03656 157.431 -281632 pfam03657 215.485 -308965 pfam03659 302.523 -308966 pfam03660 121.941 -308968 pfam03662 491.704 -308969 pfam03663 148.988 -112483 pfam03668 488.168 -112485 pfam03670 98.4847 -308973 pfam03671 105.935 -308974 pfam03672 45.6195 -308975 pfam03673 338.274 -281647 pfam03677 293.247 -308978 pfam03682 176.18 -308979 pfam03683 55.9705 -308980 pfam03684 110.749 -308981 pfam03685 102.233 -281653 pfam03686 183.876 -146364 pfam03688 121.668 -308982 pfam03689 91.1686 -308985 pfam03692 36.4487 -281658 pfam03693 108.777 -308988 pfam03698 60.2108 -308989 pfam03699 709.24 -308990 pfam03700 73.7789 -281665 pfam03702 488.433 -281667 pfam03704 72.3189 -308994 pfam03706 50.8021 -281671 pfam03708 554.713 -281673 pfam03710 236.028 -308999 pfam03713 114.706 -309001 pfam03715 202.356 -202737 pfam03716 31.1058 -309004 pfam03720 46.801 -309005 pfam03721 220.188 -309008 pfam03724 56.96 -309009 pfam03725 28.6717 -281690 pfam03728 98.6309 -309012 pfam03730 31.8743 -309013 pfam03731 153.276 -309014 pfam03732 61.5816 -309018 pfam03736 26.236 -309021 pfam03739 115.459 -309023 pfam03741 127.981 -309024 pfam03742 33.9074 -309033 pfam03752 31.2566 -281713 pfam03753 2080.54 -281714 pfam03754 140.187 -309035 pfam03756 118.971 -309036 pfam03759 558.697 -309038 pfam03761 297.029 -309039 pfam03762 152.434 -281721 pfam03764 98.4273 -309042 pfam03766 33.1584 -309043 pfam03767 129.018 -309044 pfam03768 67.0829 -309045 pfam03769 111.664 -309047 pfam03771 29.9657 -309048 pfam03772 73.4089 -281730 pfam03773 218.37 -309051 pfam03777 30.3358 -112584 pfam03778 28.6839 -202766 pfam03784 24.269 -281740 pfam03786 463.803 -309062 pfam03792 241.45 -309064 pfam03795 67.3827 -252175 pfam03803 278.084 -281756 pfam03804 152.547 -281758 pfam03806 651.732 -281759 pfam03807 49.5556 -281762 pfam03811 52.2084 -309078 pfam03815 90.421 -309079 pfam03816 159.28 -281770 pfam03819 54.5094 -309082 pfam03820 246.656 -309083 pfam03821 336.417 -309085 pfam03823 65.5867 -309086 pfam03824 195.235 -281776 pfam03825 481.964 -309087 pfam03826 23.8955 -309088 pfam03827 77.9306 -309090 pfam03829 106.779 -309093 pfam03832 30.6449 -309094 pfam03833 1203.13 -309095 pfam03834 86.3514 -281786 pfam03835 76.6556 -309098 pfam03838 129.059 -309099 pfam03839 172.857 -309101 pfam03841 571.206 -146463 pfam03842 864.553 -281794 pfam03845 241.384 -112650 pfam03847 85.8834 -281796 pfam03848 342.214 -309105 pfam03850 294.953 -252205 pfam03851 353.321 -281799 pfam03852 121.083 -281800 pfam03853 61.8605 -281801 pfam03854 71.8161 -281802 pfam03855 38.1578 -309107 pfam03857 134.201 -309108 pfam03858 46.8086 -281809 pfam03863 634.596 -309113 pfam03864 174.454 -146478 pfam03866 144.681 -309114 pfam03867 258.523 -281814 pfam03869 73.7939 -309117 pfam03871 62.5273 -281820 pfam03875 56.6126 -309123 pfam03879 41.4059 -309126 pfam03882 189.533 -309130 pfam03886 72.336 -309131 pfam03887 171.295 -309133 pfam03889 47.6638 -309135 pfam03892 153.585 -309136 pfam03893 62.1315 -309139 pfam03896 341.681 -146498 pfam03898 281.378 -281841 pfam03900 63.0963 -281842 pfam03901 299.279 -281844 pfam03903 441.879 -112704 pfam03904 434.056 -146503 pfam03905 54.2262 -309141 pfam03907 181.216 -112708 pfam03908 98.2627 -309143 pfam03910 504.001 -309145 pfam03912 120.322 -112713 pfam03913 52.6494 -309148 pfam03916 139.853 -309149 pfam03917 552.502 -309152 pfam03920 201.116 -252248 pfam03921 128.414 -281864 pfam03930 109.437 -281865 pfam03931 72.7178 -281866 pfam03932 288.111 -309161 pfam03935 675.151 -281873 pfam03940 1e+06 -309173 pfam03949 332.977 -309177 pfam03953 109.618 -309178 pfam03954 130.518 -309180 pfam03957 193.905 -309182 pfam03959 163.219 -309183 pfam03960 100.353 -309186 pfam03963 38.4384 -281897 pfam03964 28.8497 -309189 pfam03967 186.28 -281901 pfam03968 78.4288 -281903 pfam03970 407.8 -252288 pfam03973 184.382 -112775 pfam03976 343.964 -309195 pfam03978 163.872 -309198 pfam03981 59.9461 -112781 pfam03982 390.636 -309199 pfam03983 96.8917 -309200 pfam03984 33.5571 -309201 pfam03985 249.948 -309204 pfam03988 27.4433 -309205 pfam03989 31.688 -309206 pfam03990 26.2157 -112790 pfam03991 1e+06 -309207 pfam03992 44.9775 -309210 pfam03995 42.7096 -281925 pfam03996 554.648 -309211 pfam03997 157.293 -309213 pfam03999 427.534 -309215 pfam04001 143.208 -309219 pfam04005 229.836 -309220 pfam04006 315.368 -281936 pfam04007 584.995 -309222 pfam04009 139.286 -309223 pfam04010 61.8247 -281941 pfam04012 120.176 -281942 pfam04013 227.79 -309225 pfam04014 27.4879 -309228 pfam04017 198.923 -309230 pfam04019 94.5078 -309232 pfam04021 28.4088 -281951 pfam04022 54.8015 -309236 pfam04026 70.5288 -309237 pfam04027 160.718 -281959 pfam04030 271.053 -309240 pfam04031 63.7208 -309242 pfam04033 132.954 -309245 pfam04038 137.288 -309247 pfam04042 136.274 -309249 pfam04045 257.854 -281972 pfam04048 158.212 -309251 pfam04049 101.145 -309254 pfam04052 61.8512 -309255 pfam04053 357.3 -309257 pfam04056 298.957 -281980 pfam04057 115.879 -112856 pfam04059 193.546 -309259 pfam04061 143.844 -309268 pfam04071 87.3116 -309270 pfam04073 62.6093 -281996 pfam04076 124.966 -309276 pfam04081 139.541 -309277 pfam04082 59.806 -309278 pfam04083 44.4378 -309283 pfam04088 111.088 -309285 pfam04091 263.225 -282013 pfam04093 79.6199 -282014 pfam04094 1191.52 -309289 pfam04098 110.866 -282019 pfam04099 169.417 -282020 pfam04100 478.868 -282021 pfam04101 119.734 -309291 pfam04103 48.7899 -282024 pfam04104 65.1176 -309292 pfam04106 90.6816 -282026 pfam04107 231.516 -309293 pfam04108 237.893 -252381 pfam04110 130.994 -309297 pfam04113 320.764 -309299 pfam04115 157.738 -309303 pfam04119 59.1382 -309306 pfam04122 28.3088 -309307 pfam04123 196.986 -252394 pfam04124 297.43 -309308 pfam04126 145.189 -282044 pfam04129 636.817 -309311 pfam04133 56.7118 -309312 pfam04134 55.0045 -309313 pfam04135 59.8685 -309316 pfam04138 44.8579 -309317 pfam04139 289.574 -309318 pfam04140 90.8516 -282054 pfam04142 420.598 -309319 pfam04143 106.909 -309323 pfam04147 555.31 -309324 pfam04148 204.696 -309325 pfam04149 27.0813 -309326 pfam04151 31.8491 -309330 pfam04156 41.3015 -282069 pfam04159 171.384 -282070 pfam04160 197.099 -282072 pfam04162 927.659 -282073 pfam04163 752.43 -282074 pfam04165 443.628 -309335 pfam04167 35.1985 -282080 pfam04173 174.55 -309339 pfam04174 506.524 -309347 pfam04182 65.7271 -309349 pfam04184 854.478 -309350 pfam04185 189.583 -282094 pfam04188 454.369 -309355 pfam04191 57.5801 -309357 pfam04193 32.49 -282102 pfam04196 753.153 -282103 pfam04197 1412.04 -309359 pfam04198 211.32 -309361 pfam04200 30.5086 -309362 pfam04201 163.769 -112992 pfam04202 64.9835 -309363 pfam04203 48.3877 -309366 pfam04206 372.041 -309367 pfam04207 217.539 -282114 pfam04209 772.287 -309369 pfam04210 83.4664 -309370 pfam04211 255.653 -309372 pfam04213 85.0126 -282122 pfam04218 62.8527 -282127 pfam04224 134.241 -282128 pfam04225 114.374 -309379 pfam04226 25.8421 -282131 pfam04228 416.884 -282134 pfam04231 213.881 -309383 pfam04233 107.081 -309386 pfam04236 89.4433 -309388 pfam04238 52.0813 -309390 pfam04240 94.1872 -309392 pfam04242 59.9328 -309398 pfam04250 70.7967 -309399 pfam04252 126.871 -309401 pfam04254 109.21 -309403 pfam04256 62.5362 -282158 pfam04258 278.032 -309405 pfam04259 54.9207 -282161 pfam04261 367.09 -282168 pfam04268 145.733 -309415 pfam04272 54.5346 -282172 pfam04273 121.464 -309416 pfam04275 113.832 -309419 pfam04278 278.618 -309420 pfam04279 148.047 -309421 pfam04280 109.634 -309422 pfam04281 110.34 -309423 pfam04282 70.5775 -309424 pfam04283 174.06 -309427 pfam04286 141.982 -309430 pfam04289 153.549 -309431 pfam04290 47.2699 -309433 pfam04294 63.5793 -282193 pfam04297 104.388 -309438 pfam04300 131.155 -113085 pfam04301 457.524 -218016 pfam04303 534.776 -309442 pfam04307 39.7264 -282203 pfam04310 327.501 -309445 pfam04312 162.692 -282211 pfam04318 76.259 -309453 pfam04321 320.358 -309454 pfam04322 115.356 -309457 pfam04326 45.3616 -309460 pfam04332 389.836 -113117 pfam04334 74.755 -309462 pfam04335 106.22 -309466 pfam04339 500.87 -282228 pfam04340 240.812 -113128 pfam04345 247.922 -309471 pfam04346 306.72 -282235 pfam04348 609.886 -309474 pfam04350 141.933 -309481 pfam04357 139.825 -309484 pfam04360 203.102 -309487 pfam04363 130.943 -113152 pfam04369 79.7148 -282256 pfam04370 204.34 -282261 pfam04378 353.653 -309500 pfam04382 60.9349 -252557 pfam04385 29.7101 -309505 pfam04388 673.314 -282274 pfam04392 321.673 -282276 pfam04394 29.7023 -282277 pfam04395 203.037 -309512 pfam04400 44.1697 -309515 pfam04404 84.3571 -309518 pfam04407 260.671 -282289 pfam04409 442.591 -309521 pfam04411 143.692 -282295 pfam04415 350.85 -309526 pfam04418 75.0695 -309527 pfam04419 26.4163 -309528 pfam04420 114.187 -309529 pfam04421 73.8515 -309531 pfam04423 37.5269 -309541 pfam04435 62.1511 -309542 pfam04437 309.167 -309545 pfam04440 131.442 -282317 pfam04441 711.49 -282319 pfam04443 634.016 -309548 pfam04445 306.01 -309549 pfam04446 83.2917 -282327 pfam04451 122.478 -309554 pfam04452 142.746 -309559 pfam04457 38.319 -309560 pfam04458 514.234 -309561 pfam04459 187.582 -282338 pfam04464 320.448 -282339 pfam04465 936.925 -309564 pfam04467 145.695 -282345 pfam04473 124.871 -309569 pfam04475 131.642 -282351 pfam04480 123.636 -113257 pfam04481 333.256 -309572 pfam04483 30.9349 -309574 pfam04485 42.1484 -309575 pfam04486 172.517 -309576 pfam04487 195.396 -309577 pfam04488 74.2901 -282358 pfam04489 773.134 -309581 pfam04495 172.43 -282365 pfam04496 120.181 -282366 pfam04497 352.188 -282367 pfam04498 302.433 -309582 pfam04499 232.137 -309583 pfam04500 43.4605 -282370 pfam04501 657.933 -309587 pfam04505 47.4759 -309588 pfam04506 399.671 -282376 pfam04507 305.866 -282377 pfam04508 29.8375 -309589 pfam04509 39.7569 -309590 pfam04510 178.98 -282383 pfam04514 753.113 -309593 pfam04516 281.213 -309594 pfam04518 411.915 -282390 pfam04521 188.144 -282392 pfam04523 811.722 -309597 pfam04525 120.249 -309599 pfam04527 35.2198 -282396 pfam04528 279.622 -309600 pfam04529 417.597 -282398 pfam04530 184.09 -309601 pfam04531 79.6505 -282400 pfam04532 400.158 -282401 pfam04533 257.615 -282402 pfam04534 253.508 -309602 pfam04535 33.0509 -282405 pfam04537 232.595 -309604 pfam04538 58.8363 -282408 pfam04540 253.377 -309606 pfam04541 228.93 -282411 pfam04544 175.445 -309612 pfam04549 80.3786 -309615 pfam04552 190.134 -252669 pfam04554 33.9724 -309617 pfam04555 315.907 -309619 pfam04557 56.5575 -309621 pfam04559 240.416 -309623 pfam04561 130.933 -252675 pfam04564 104.315 -309632 pfam04573 131.521 -309634 pfam04575 287.295 -309638 pfam04579 89.0778 -282445 pfam04580 271.183 -113356 pfam04582 512.926 -309639 pfam04583 237.693 -282447 pfam04584 181.037 -309640 pfam04586 155.212 -309641 pfam04587 282.198 -309643 pfam04589 153.947 -309644 pfam04591 76.5918 -252691 pfam04595 239.935 -282455 pfam04596 209.541 -282458 pfam04599 534.638 -282459 pfam04601 277.902 -309650 pfam04604 56.2502 -309651 pfam04606 46.5943 -309653 pfam04608 84.1398 -309654 pfam04609 376.163 -282467 pfam04611 302.126 -309658 pfam04614 132.392 -309659 pfam04615 206.766 -309661 pfam04617 66.6462 -309663 pfam04619 172.27 -309664 pfam04620 229.255 -309667 pfam04624 30.8296 -282479 pfam04625 524.214 -282480 pfam04626 203.949 -309670 pfam04629 155.57 -309671 pfam04630 238.397 -309672 pfam04632 188.24 -282486 pfam04633 351.322 -309673 pfam04634 149.717 -309674 pfam04636 548.389 -282489 pfam04637 790.483 -282490 pfam04639 432.379 -309676 pfam04641 198.353 -282493 pfam04642 509.432 -309677 pfam04643 79.0173 -309678 pfam04644 38.731 -282496 pfam04645 335.137 -309680 pfam04647 60.699 -309681 pfam04648 30.6773 -68229 pfam04649 1e+06 -282501 pfam04651 241.48 -309683 pfam04652 78.7407 -309685 pfam04655 235.884 -282505 pfam04656 880.935 -309686 pfam04657 61.3756 -309687 pfam04658 170.73 -309688 pfam04659 99.6018 -282509 pfam04660 258.093 -282510 pfam04661 331.728 -252728 pfam04662 223.037 -309689 pfam04663 91.614 -309690 pfam04664 309.227 -282513 pfam04665 274.317 -309691 pfam04666 329.249 -309692 pfam04667 61.1599 -309693 pfam04668 135.927 -309694 pfam04669 94.4904 -309695 pfam04670 241.345 -309696 pfam04671 1e+06 -252734 pfam04672 356.645 -309697 pfam04673 119.629 -309703 pfam04679 42.9636 -282527 pfam04680 36.0794 -113449 pfam04681 301.169 -282528 pfam04682 361.441 -282530 pfam04684 972.36 -309705 pfam04685 289.519 -309706 pfam04686 79.1025 -282533 pfam04687 575.269 -309707 pfam04688 64.6358 -282535 pfam04689 49.8084 -309708 pfam04690 212.894 -309709 pfam04691 75.6188 -309710 pfam04692 81.2259 -147046 pfam04693 469.403 -282539 pfam04694 101.978 -309712 pfam04696 58.056 -309713 pfam04697 113.144 -309714 pfam04698 1138.06 -282545 pfam04700 275.647 -282546 pfam04701 166.809 -252749 pfam04702 47.7885 -309716 pfam04703 79.0539 -309717 pfam04704 331.421 -309719 pfam04706 37.3149 -309720 pfam04707 165.552 -282551 pfam04708 288.562 -309723 pfam04711 111.763 -309724 pfam04712 370.432 -282556 pfam04713 68.8978 -309725 pfam04714 57.4547 -309726 pfam04715 82.7365 -309728 pfam04717 140.088 -309732 pfam04721 181.7 -309733 pfam04722 201.519 -309734 pfam04723 206.494 -309735 pfam04724 492.942 -309736 pfam04725 135.725 -282569 pfam04726 45.9138 -282573 pfam04730 1611.8 -309740 pfam04731 68.2406 -309741 pfam04732 46.9992 -252768 pfam04733 350.626 -282577 pfam04735 1799.74 -282578 pfam04736 104.043 -309744 pfam04739 48.3103 -309745 pfam04740 120.072 -282582 pfam04741 281.354 -282584 pfam04745 467.663 -113513 pfam04746 165.302 -282585 pfam04747 416.387 -309749 pfam04750 143.617 -282591 pfam04753 216.879 -309752 pfam04755 159.589 -309753 pfam04756 123.484 -309754 pfam04757 75.4671 -309755 pfam04758 57.2589 -282599 pfam04761 91.0472 -309758 pfam04762 866.209 -309759 pfam04763 194.57 -252787 pfam04764 91.2317 -309760 pfam04765 420.906 -309761 pfam04766 189.029 -282602 pfam04767 89.076 -309762 pfam04768 175.914 -282606 pfam04771 198.593 -282607 pfam04772 203.373 -309770 pfam04778 129.588 -309771 pfam04780 467.164 -309772 pfam04781 93.4362 -282619 pfam04785 452.129 -282620 pfam04786 207.158 -282621 pfam04787 120.185 -309777 pfam04789 358.185 -282626 pfam04792 478.027 -282627 pfam04793 339.542 -309781 pfam04795 31.783 -309782 pfam04796 238.25 -309783 pfam04797 333.57 -282632 pfam04798 182.322 -309784 pfam04799 187.453 -309786 pfam04801 146.293 -309788 pfam04803 94.9982 -282638 pfam04805 96.3577 -309789 pfam04806 54.0084 -147122 pfam04807 45.0916 -113574 pfam04808 427.952 -282647 pfam04816 223.723 -113583 pfam04817 332.248 -309796 pfam04819 79.1865 -309799 pfam04822 58.0459 -309800 pfam04823 125.344 -309802 pfam04826 296.631 -203098 pfam04827 268.005 -309803 pfam04828 66.6065 -309804 pfam04829 32.2499 -309805 pfam04830 62.0001 -309807 pfam04832 83.4451 -282664 pfam04835 62.3735 -309810 pfam04836 56.8413 -113603 pfam04837 57.8331 -282666 pfam04838 220.966 -282667 pfam04839 78.9308 -282668 pfam04840 485.105 -252829 pfam04841 471.601 -309811 pfam04842 350.344 -309812 pfam04843 193.486 -282672 pfam04845 303.676 -282673 pfam04846 115.81 -282674 pfam04847 195.872 -282675 pfam04848 145.604 -282677 pfam04850 726.041 -309815 pfam04851 66.5416 -282682 pfam04856 111.2 -309820 pfam04858 689.541 -309824 pfam04863 73.9165 -252841 pfam04864 598.989 -309825 pfam04865 154.361 -282690 pfam04866 147.172 -282691 pfam04867 137.011 -309826 pfam04868 106.231 -309828 pfam04870 344.736 -282696 pfam04872 98.9919 -309830 pfam04873 322.87 -282699 pfam04875 78.3498 -282700 pfam04876 368.232 -309832 pfam04877 147.72 -282702 pfam04878 441.244 -309833 pfam04880 139.903 -282705 pfam04881 264.249 -309835 pfam04883 31.509 -309837 pfam04885 104.39 -282710 pfam04886 37.4568 -282711 pfam04887 237.185 -309839 pfam04889 111.171 -309840 pfam04890 263.236 -309841 pfam04891 168.159 -309842 pfam04892 29.7069 -309843 pfam04893 34.3119 -309844 pfam04894 257.839 -309845 pfam04895 112.223 -309846 pfam04896 323.508 -309849 pfam04901 152.335 -309850 pfam04902 224.374 -282724 pfam04904 132.135 -309852 pfam04906 436.772 -252868 pfam04908 146.84 -309853 pfam04909 76.0331 -309855 pfam04911 64.957 -309859 pfam04916 529.979 -309860 pfam04917 498.367 -282736 pfam04919 226.944 -282737 pfam04920 271.121 -282741 pfam04924 524.234 -309866 pfam04926 88.4071 -282746 pfam04929 454.753 -309872 pfam04934 69.8469 -282752 pfam04936 293.591 -282757 pfam04941 1054.13 -282758 pfam04942 34.5241 -282759 pfam04943 476.418 -309878 pfam04945 55.093 -282761 pfam04947 113.161 -282762 pfam04948 466.585 -309879 pfam04949 180.32 -309884 pfam04955 75.3249 -309885 pfam04956 28.7633 -309888 pfam04959 210.475 -309893 pfam04964 28.6927 -282780 pfam04967 68.7906 -309895 pfam04968 66.3888 -309896 pfam04969 32.2351 -309897 pfam04970 74.6426 -282784 pfam04971 131.338 -113736 pfam04976 226.503 -309900 pfam04977 45.2755 -309901 pfam04978 113.131 -309905 pfam04983 59.9634 -309907 pfam04985 109.918 -309910 pfam04988 224.176 -309911 pfam04989 254.585 -309916 pfam04994 72.5723 -309919 pfam04997 270.7 -309920 pfam04998 371.686 -309922 pfam05000 52.3611 -309923 pfam05001 31.7428 -309926 pfam05004 140.083 -309927 pfam05005 96.8319 -252941 pfam05007 313.579 -309928 pfam05008 29.8669 -282817 pfam05009 385.068 -309929 pfam05010 219.508 -309932 pfam05014 81.6096 -282822 pfam05015 114.45 -309935 pfam05018 85.6994 -309936 pfam05019 216.179 -309938 pfam05021 466.341 -309939 pfam05022 35.5756 -309941 pfam05024 132.982 -309944 pfam05028 275.575 -252956 pfam05029 333.233 -309949 pfam05034 182.76 -309952 pfam05037 118.732 -309953 pfam05038 276.679 -309954 pfam05039 75.6072 -282847 pfam05043 59.1299 -309961 pfam05048 100.134 -309962 pfam05049 566.344 -309964 pfam05051 54.106 -309966 pfam05053 915.865 -252976 pfam05055 381.439 -282861 pfam05058 1145.47 -282862 pfam05059 1384.39 -309969 pfam05060 405.099 -282864 pfam05061 434.249 -309970 pfam05062 77.0356 -309972 pfam05064 142.058 -309974 pfam05066 41.5298 -252986 pfam05067 300.712 -309976 pfam05069 122.475 -282873 pfam05072 385.827 -309978 pfam05073 176.352 -309979 pfam05075 354.72 -282877 pfam05077 57.4699 -252995 pfam05079 44.1377 -113835 pfam05080 182.941 -282879 pfam05081 232.585 -309982 pfam05082 60.6444 -309983 pfam05083 103.001 -282883 pfam05085 453.725 -252996 pfam05086 1099.11 -282884 pfam05087 1561.9 -309986 pfam05090 427.359 -282889 pfam05092 697.787 -309988 pfam05093 106.965 -282891 pfam05094 939.79 -309989 pfam05095 596.33 -253004 pfam05097 292.825 -282893 pfam05098 576.06 -309991 pfam05099 59.9414 -282895 pfam05100 343.736 -309993 pfam05102 41.0215 -309994 pfam05103 72.2234 -309995 pfam05104 56.5469 -309999 pfam05108 274.107 -282904 pfam05109 1405.05 -310000 pfam05110 828.974 -282906 pfam05111 414.211 -282907 pfam05112 374.261 -310001 pfam05113 591.62 -282910 pfam05115 25.1844 -310003 pfam05116 277.211 -310007 pfam05120 75.2223 -310008 pfam05121 55.2426 -310009 pfam05122 69.872 -310010 pfam05123 184.984 -310011 pfam05124 175.784 -310013 pfam05127 101.091 -310014 pfam05128 59.8721 -310019 pfam05133 177.904 -282928 pfam05134 167.948 -310021 pfam05136 236.764 -310023 pfam05138 243.256 -310026 pfam05141 260.139 -310028 pfam05144 295.021 -253044 pfam05148 341.411 -282941 pfam05150 571.612 -282943 pfam05152 419.246 -310034 pfam05154 25.9152 -282946 pfam05155 122.143 -310036 pfam05158 319.297 -282949 pfam05159 280.966 -310039 pfam05162 43.8229 -253054 pfam05163 129.826 -147379 pfam05165 319.908 -310042 pfam05167 301.723 -310043 pfam05168 49.5623 -282957 pfam05170 502.003 -310044 pfam05171 126.467 -113924 pfam05172 100.935 -282961 pfam05175 164.278 -310046 pfam05176 189.357 -310047 pfam05177 78.1773 -310048 pfam05178 37.1605 -310051 pfam05181 56.7786 -310057 pfam05187 153.161 -310066 pfam05196 81.3064 -310069 pfam05199 149.46 -282986 pfam05202 511.208 -310072 pfam05204 95.8335 -310073 pfam05205 51.7965 -310076 pfam05208 290.897 -282993 pfam05209 92.4572 -282997 pfam05213 427.583 -282998 pfam05214 334.148 -253093 pfam05215 320.763 -310081 pfam05217 42.3544 -310082 pfam05218 170.466 -253097 pfam05219 448.184 -283002 pfam05220 471.5 -310084 pfam05222 89.4018 -310085 pfam05223 119.033 -283007 pfam05225 48.4547 -310090 pfam05229 56.9253 -310091 pfam05230 68.3852 -283013 pfam05231 126.752 -113985 pfam05234 149.58 -310098 pfam05240 91.0047 -310100 pfam05242 150.935 -113995 pfam05244 331.787 -283023 pfam05246 285.757 -310102 pfam05248 197.965 -310103 pfam05250 219.101 -310107 pfam05255 121.547 -283034 pfam05259 133.877 -310111 pfam05261 187.743 -114011 pfam05262 594.288 -283036 pfam05263 165.816 -310112 pfam05264 114.913 -283037 pfam05265 89.4855 -310114 pfam05267 78.9122 -147458 pfam05268 238.168 -147459 pfam05271 216.635 -283041 pfam05272 278.976 -283042 pfam05273 307.041 -283043 pfam05274 290.035 -283046 pfam05277 451.063 -253129 pfam05278 309.076 -191249 pfam05279 106.171 -310120 pfam05281 317.268 -310121 pfam05282 190.176 -310122 pfam05283 123.387 -283053 pfam05287 108.365 -283054 pfam05288 100.139 -283055 pfam05289 206.086 -310125 pfam05290 197.639 -114041 pfam05293 113.473 -253137 pfam05294 25.1271 -253138 pfam05295 124.534 -283060 pfam05297 424.056 -114046 pfam05298 254.907 -310129 pfam05300 67.3046 -310131 pfam05302 112.099 -310132 pfam05303 103.791 -283066 pfam05304 276.221 -310133 pfam05305 35.3067 -310134 pfam05306 44.1482 -310135 pfam05307 97.5557 -310136 pfam05308 201.715 -310137 pfam05309 144.714 -191255 pfam05310 227.414 -253146 pfam05311 250.762 -283071 pfam05313 226.588 -283072 pfam05314 419.117 -283073 pfam05315 434.784 -283074 pfam05316 177.404 -310138 pfam05317 207.114 -253150 pfam05318 70.7128 -283076 pfam05320 211.931 -310139 pfam05321 87.1315 -283078 pfam05322 89.0449 -283079 pfam05323 127.478 -310140 pfam05324 84.5148 -114071 pfam05325 185.737 -310141 pfam05326 139.459 -310143 pfam05328 121.195 -283084 pfam05331 109.72 -283085 pfam05332 142.559 -310144 pfam05334 127.438 -310147 pfam05337 266.537 -283089 pfam05338 73.649 -283090 pfam05339 124.574 -283093 pfam05342 343.287 -283095 pfam05344 93.6341 -310150 pfam05345 29.479 -310153 pfam05348 93.799 -310154 pfam05349 83.2617 -310155 pfam05350 280.681 -310156 pfam05351 149.64 -310157 pfam05353 47.5619 -283102 pfam05354 205.149 -310158 pfam05355 124.125 -147508 pfam05356 129.432 -283104 pfam05357 85.7385 -283105 pfam05358 122.136 -283108 pfam05361 179.628 -283110 pfam05363 134.438 -283111 pfam05364 156.55 -310163 pfam05366 36.8618 -310164 pfam05367 252.844 -310165 pfam05368 229.535 -310166 pfam05369 715.746 -310167 pfam05370 96.9791 -253168 pfam05371 59.6378 -283118 pfam05372 31.9462 -283119 pfam05373 152.673 -310168 pfam05374 32.9548 -253170 pfam05375 34.2863 -310169 pfam05377 49.4805 -310170 pfam05378 115.453 -283122 pfam05379 129.954 -283124 pfam05381 163.741 -283125 pfam05382 234.805 -283128 pfam05385 212.628 -310174 pfam05386 52.4075 -310175 pfam05387 159.119 -310178 pfam05390 142.455 -310179 pfam05391 32.828 -310180 pfam05392 129.041 -283135 pfam05393 179.555 -310181 pfam05394 473.971 -310182 pfam05395 160.748 -147533 pfam05396 160.014 -310184 pfam05398 96.8178 -310185 pfam05399 307.924 -283141 pfam05401 323.314 -253181 pfam05403 41.8282 -310188 pfam05404 135.102 -310189 pfam05406 40.3009 -283146 pfam05407 349.86 -283147 pfam05408 446.425 -283148 pfam05409 473.082 -147544 pfam05410 210.553 -191270 pfam05411 193.145 -114153 pfam05412 200.141 -147545 pfam05413 184.992 -283149 pfam05414 168.663 -283150 pfam05415 223.831 -283151 pfam05417 352.868 -283152 pfam05418 130.821 -310190 pfam05419 147.707 -310192 pfam05421 51.4287 -310193 pfam05422 80.2016 -283157 pfam05423 192.669 -310196 pfam05426 106.769 -310197 pfam05427 485.288 -310198 pfam05428 520.831 -283163 pfam05430 155.138 -310199 pfam05431 232.982 -310200 pfam05432 153.887 -310202 pfam05434 147.518 -310203 pfam05435 524.305 -310205 pfam05437 30.9689 -310206 pfam05438 155.718 -310207 pfam05439 124 -310208 pfam05440 111.569 -310210 pfam05444 61.3763 -283176 pfam05445 394.501 -310213 pfam05450 274.809 -283180 pfam05451 650.535 -147565 pfam05452 114.992 -147566 pfam05453 24.8112 -310214 pfam05454 424.794 -310215 pfam05455 209.134 -310216 pfam05456 113.449 -283184 pfam05458 212.87 -310217 pfam05459 215.688 -310219 pfam05461 351.909 -283188 pfam05462 541.299 -253205 pfam05463 320.318 -310220 pfam05465 30.2365 -310221 pfam05466 60.3741 -283192 pfam05467 1108.42 -283193 pfam05470 727.325 -310223 pfam05473 134.175 -283196 pfam05474 738.967 -310224 pfam05475 252.542 -283198 pfam05476 371.716 -310225 pfam05477 184.12 -310226 pfam05478 761.77 -310227 pfam05479 129.965 -310228 pfam05480 46.9299 -310230 pfam05482 854.494 -310231 pfam05484 46.9126 -283209 pfam05489 74.3279 -310239 pfam05496 380.68 -310241 pfam05498 43.4526 -310243 pfam05501 48.9483 -310244 pfam05502 667.114 -283219 pfam05503 463.485 -283221 pfam05505 1227.33 -310248 pfam05508 300.187 -310250 pfam05510 483.232 -310252 pfam05512 68.4387 -283228 pfam05513 152.899 -283229 pfam05514 159.913 -283230 pfam05515 189.83 -310253 pfam05517 106.192 -253234 pfam05518 867.576 -114252 pfam05520 290.451 -114254 pfam05522 37.832 -310255 pfam05523 129.228 -283235 pfam05525 419.717 -310257 pfam05526 188.51 -283238 pfam05528 173.791 -310259 pfam05529 146.518 -310260 pfam05531 55.1159 -283241 pfam05532 32.5066 -114264 pfam05533 111.331 -310261 pfam05534 59.6109 -310262 pfam05535 118.762 -283245 pfam05537 671.393 -310263 pfam05538 454.77 -114270 pfam05539 508.049 -310264 pfam05540 402.587 -253243 pfam05541 1210.49 -283249 pfam05543 324.533 -310269 pfam05547 928.843 -253247 pfam05549 374.499 -283256 pfam05551 97.5701 -310271 pfam05553 42.3506 -147629 pfam05554 212.187 -283259 pfam05555 308.417 -310273 pfam05557 537.021 -310274 pfam05558 148.504 -310275 pfam05559 391.891 -114291 pfam05560 314.298 -310276 pfam05561 253.381 -310277 pfam05562 182.931 -310279 pfam05565 104.604 -283269 pfam05566 253.428 -283270 pfam05567 547.146 -114299 pfam05568 263.268 -310280 pfam05569 201.547 -114301 pfam05570 39.4873 -310281 pfam05571 318.018 -310282 pfam05572 205.911 -114305 pfam05575 550.823 -283275 pfam05576 971.929 -310284 pfam05577 517.316 -283276 pfam05578 456.886 -253263 pfam05579 442.298 -310285 pfam05580 255.364 -310286 pfam05582 324.449 -283279 pfam05584 92.3178 -147642 pfam05585 244.068 -310287 pfam05586 171.352 -310288 pfam05587 105.739 -283282 pfam05588 204.426 -283283 pfam05589 67.0645 -283284 pfam05590 398.919 -310292 pfam05594 31.7443 -283289 pfam05595 83.893 -283290 pfam05596 82.0078 -191311 pfam05599 128.161 -310295 pfam05600 299.948 -310297 pfam05603 149.633 -310298 pfam05604 222.038 -310300 pfam05606 330.109 -310301 pfam05608 62.2568 -283302 pfam05611 53.9462 -283304 pfam05613 187.521 -114342 pfam05614 195.333 -283306 pfam05616 1009.24 -310306 pfam05617 38.5915 -283308 pfam05618 91.0511 -310307 pfam05619 586.628 -310312 pfam05624 38.9623 -310313 pfam05625 303.349 -310314 pfam05626 346.454 -310316 pfam05628 166.965 -283319 pfam05629 282.222 -283321 pfam05631 564.969 -310318 pfam05632 413.302 -310319 pfam05634 312.343 -310323 pfam05639 57.744 -253298 pfam05642 918.305 -310326 pfam05643 274.864 -310327 pfam05644 228.435 -310328 pfam05647 31.3556 -310329 pfam05648 141.229 -310332 pfam05651 100.604 -283340 pfam05653 380.25 -283341 pfam05655 444.246 -283343 pfam05657 160.262 -310336 pfam05659 144.337 -283346 pfam05660 271.904 -147685 pfam05663 190.769 -310340 pfam05666 52.3074 -310342 pfam05669 101.414 -310344 pfam05671 33.926 -310346 pfam05673 287.878 -283357 pfam05674 250.737 -253315 pfam05677 543.611 -310351 pfam05680 52.4892 -114410 pfam05684 347.07 -283365 pfam05685 58.9512 -310354 pfam05686 403.781 -310355 pfam05687 129.432 -283368 pfam05688 61.2368 -310356 pfam05689 191.449 -283371 pfam05691 1294.05 -283373 pfam05693 1159.14 -310358 pfam05694 719.08 -283375 pfam05695 2900.53 -283376 pfam05696 148.82 -310360 pfam05698 78.4402 -310362 pfam05700 149.669 -310364 pfam05702 89.499 -310366 pfam05704 214.449 -310367 pfam05705 157.903 -283385 pfam05707 196.166 -310368 pfam05708 142.149 -310369 pfam05709 88.6124 -283388 pfam05710 27.0736 -310370 pfam05711 357.739 -310371 pfam05712 116.164 -310373 pfam05714 112.131 -310375 pfam05716 1237.86 -283396 pfam05718 577.005 -310377 pfam05719 52.2799 -283398 pfam05720 110.633 -114448 pfam05722 418.83 -310379 pfam05724 201.884 -191356 pfam05725 35.2255 -283402 pfam05727 144.469 -283403 pfam05728 234.612 -310381 pfam05729 109.701 -310383 pfam05731 265.773 -253356 pfam05732 208.967 -310384 pfam05733 244.562 -283407 pfam05734 288.967 -310386 pfam05736 250.522 -283410 pfam05737 117.848 -310391 pfam05743 111.969 -283416 pfam05744 337.043 -283418 pfam05748 1019.67 -283419 pfam05749 536.6 -283420 pfam05750 595.706 -310393 pfam05751 84.6688 -283422 pfam05752 337.989 -310394 pfam05753 169.063 -310395 pfam05755 234.862 -283426 pfam05756 147.54 -310396 pfam05757 150.275 -283428 pfam05758 1374.6 -310397 pfam05760 234 -283431 pfam05762 162.916 -310399 pfam05763 107.307 -283434 pfam05766 244.738 -283435 pfam05767 93.6941 -283436 pfam05768 50.7479 -253378 pfam05770 496.985 -283438 pfam05771 132.976 -310402 pfam05772 148.657 -310403 pfam05773 41.1549 -283441 pfam05774 155.099 -283442 pfam05775 232.725 -147756 pfam05776 58.2325 -283443 pfam05777 149.867 -310404 pfam05778 93.7342 -310405 pfam05781 640.773 -310406 pfam05782 892.263 -310407 pfam05783 794.829 -310408 pfam05786 429.466 -253386 pfam05787 351.865 -283451 pfam05788 2719.14 -283452 pfam05789 569.812 -283453 pfam05790 62.3636 -310411 pfam05793 397.783 -310413 pfam05795 122.233 -283458 pfam05796 237.999 -283460 pfam05798 141.729 -310414 pfam05800 79.9971 -283462 pfam05801 204.603 -283464 pfam05803 62.6261 -253396 pfam05804 1201.25 -310416 pfam05805 103.416 -310417 pfam05806 283.888 -310418 pfam05808 187.723 -283468 pfam05810 84.4289 -310419 pfam05811 93.1119 -283470 pfam05812 109.218 -283471 pfam05813 144.377 -283472 pfam05815 542.842 -310420 pfam05816 196.578 -310421 pfam05817 393.957 -283476 pfam05819 1525.11 -310423 pfam05821 244.794 -310424 pfam05822 374.775 -310426 pfam05824 166.239 -283482 pfam05825 131.976 -310429 pfam05829 29.1156 -283486 pfam05830 555.997 -310430 pfam05831 88.1988 -310433 pfam05834 410.27 -310434 pfam05835 54.7086 -283492 pfam05836 163.999 -310438 pfam05841 76.6692 -191385 pfam05842 37.0435 -283498 pfam05844 405.157 -283500 pfam05846 119.816 -283501 pfam05847 680.688 -283503 pfam05849 390.951 -147807 pfam05851 366.489 -283504 pfam05852 167.67 -310443 pfam05854 127.157 -310444 pfam05856 164.28 -310445 pfam05857 157.859 -147812 pfam05858 542.744 -147815 pfam05862 70.1779 -283512 pfam05864 106.02 -310449 pfam05865 508.896 -310451 pfam05867 295.852 -114586 pfam05868 424.296 -310452 pfam05869 237.701 -310453 pfam05870 250.719 -310454 pfam05871 99.5194 -283518 pfam05872 745.379 -310455 pfam05873 162.405 -283520 pfam05874 346.249 -310457 pfam05876 527.26 -283523 pfam05878 538.573 -310458 pfam05879 929.922 -283524 pfam05880 1156.76 -310459 pfam05881 353.282 -283526 pfam05883 201.78 -310460 pfam05884 290.19 -283528 pfam05886 99.9931 -114603 pfam05887 61.8988 -283530 pfam05891 321.629 -283531 pfam05892 286.457 -310462 pfam05893 439.162 -310464 pfam05895 676.203 -310465 pfam05896 275.966 -114618 pfam05906 57.513 -310471 pfam05908 160.882 -310472 pfam05910 173.52 -310474 pfam05912 92.3575 -310477 pfam05915 92.1068 -283549 pfam05917 571.798 -310479 pfam05918 550.043 -253459 pfam05919 440.67 -310480 pfam05920 49.8307 -283555 pfam05925 946.474 -147854 pfam05927 72.8889 -114639 pfam05928 337.092 -283558 pfam05930 68.8899 -283559 pfam05931 58.9974 -283561 pfam05933 47.0158 -310487 pfam05934 1040.68 -283569 pfam05941 315.83 -310494 pfam05942 60.3583 -283573 pfam05946 201.794 -310498 pfam05949 81.4229 -283576 pfam05950 224.274 -283577 pfam05951 248.071 -283578 pfam05952 71.2178 -283579 pfam05953 28.6568 -310500 pfam05955 320.862 -310501 pfam05956 297.941 -310502 pfam05957 51.4166 -310503 pfam05958 577.078 -283584 pfam05959 288.15 -283586 pfam05961 69.8151 -283588 pfam05963 262.021 -283591 pfam05966 265.34 -310508 pfam05968 97.0888 -283594 pfam05971 436.176 -310510 pfam05973 59.8654 -310511 pfam05974 108.053 -310512 pfam05975 167.369 -283599 pfam05977 626.712 -310513 pfam05978 179.848 -310514 pfam05979 47.8553 -310515 pfam05980 37.4089 -283605 pfam05984 183.945 -310520 pfam05986 136.98 -310522 pfam05988 212.915 -283610 pfam05989 221.445 -310523 pfam05990 226.497 -310524 pfam05991 138.844 -283613 pfam05992 471.489 -283614 pfam05993 880.138 -310525 pfam05994 701.686 -283616 pfam05995 215.577 -310526 pfam05996 212.858 -283619 pfam05999 681.501 -310528 pfam06002 424.311 -310529 pfam06003 361.626 -310532 pfam06006 109.188 -310533 pfam06007 458.599 -310534 pfam06008 297.787 -283628 pfam06009 160.731 -310537 pfam06013 36.0917 -283633 pfam06015 65.1934 -283634 pfam06016 2085.72 -283636 pfam06018 214.047 -147919 pfam06019 184.911 -310540 pfam06020 565.957 -310541 pfam06021 208.988 -283639 pfam06022 107.55 -283644 pfam06027 395.668 -283645 pfam06028 271.934 -310545 pfam06029 109.966 -310546 pfam06030 94.5322 -310548 pfam06032 175.74 -283650 pfam06033 300.035 -114740 pfam06034 61.0974 -253527 pfam06040 183.553 -283656 pfam06043 681.448 -283657 pfam06044 373.16 -283658 pfam06045 353.785 -310555 pfam06047 137.344 -310557 pfam06049 1e+06 -310559 pfam06051 119.611 -283665 pfam06052 274.728 -253538 pfam06053 174.584 -283666 pfam06054 418.595 -310561 pfam06056 76.248 -310562 pfam06057 189.097 -310565 pfam06060 893.078 -310566 pfam06061 451.508 -283675 pfam06064 174.084 -310568 pfam06066 109.194 -283678 pfam06068 569.635 -310570 pfam06069 131.159 -283680 pfam06070 1350.37 -283682 pfam06072 80.4039 -310573 pfam06074 470.182 -114778 pfam06076 95.5417 -310575 pfam06078 38.4241 -253548 pfam06080 307.076 -283688 pfam06081 146.15 -310578 pfam06083 59.1614 -283691 pfam06084 247.623 -283693 pfam06086 429.434 -310581 pfam06088 108.981 -310583 pfam06090 88.9065 -310585 pfam06093 36.1664 -283700 pfam06096 73.1959 -310589 pfam06099 88.1163 -310590 pfam06100 525.475 -310594 pfam06105 151.156 -283713 pfam06110 158.027 -310597 pfam06112 130.195 -283718 pfam06116 62.6913 -283719 pfam06117 115.147 -283721 pfam06120 316.894 -310602 pfam06121 287.155 -310606 pfam06125 80.0372 -147993 pfam06126 766.111 -283728 pfam06128 553.491 -283729 pfam06129 68.939 -283731 pfam06131 32.1896 -283733 pfam06134 823.706 -310611 pfam06136 252.36 -283736 pfam06138 158.749 -283737 pfam06139 167.234 -310612 pfam06140 31.0732 -310613 pfam06141 176.042 -114838 pfam06143 63.4604 -148007 pfam06145 42.6521 -310615 pfam06147 322.922 -310616 pfam06148 127.768 -310617 pfam06149 212.71 -310619 pfam06152 281.9 -283747 pfam06153 147.883 -310620 pfam06154 184.527 -283751 pfam06157 159.491 -283754 pfam06161 164.092 -310625 pfam06162 227.884 -310626 pfam06163 179.963 -310628 pfam06166 291.335 -310630 pfam06168 98.8305 -114868 pfam06175 296.694 -283765 pfam06176 389.962 -283767 pfam06178 275.972 -283769 pfam06180 357.848 -253605 pfam06182 143.587 -310640 pfam06184 138.505 -283775 pfam06188 210.492 -283778 pfam06193 204.059 -283779 pfam06194 135.99 -310646 pfam06195 44.0611 -310648 pfam06197 36.1628 -114890 pfam06198 237.212 -310649 pfam06199 92.7719 -283786 pfam06202 491.086 -310653 pfam06206 132.31 -283790 pfam06208 1100.16 -310655 pfam06209 640.543 -283793 pfam06211 210.595 -310659 pfam06214 195.748 -283797 pfam06215 843.196 -283798 pfam06216 843.608 -310660 pfam06217 346.625 -310661 pfam06218 527.466 -310662 pfam06219 512.668 -310664 pfam06221 61.5172 -283804 pfam06223 166.18 -310668 pfam06227 45.7703 -283809 pfam06229 211.127 -283811 pfam06231 97.0322 -310672 pfam06233 139.277 -310673 pfam06234 84.6453 -148066 pfam06235 58.7969 -310674 pfam06236 103.004 -310675 pfam06237 82.9886 -283817 pfam06238 149.086 -310676 pfam06239 314.266 -283819 pfam06240 135.943 -310677 pfam06241 150.157 -310679 pfam06243 86.9139 -310682 pfam06246 125.392 -310683 pfam06247 29.2537 -310684 pfam06248 649.899 -114941 pfam06249 247.486 -283829 pfam06251 263.074 -310686 pfam06252 71.8927 -310687 pfam06253 547.198 -310688 pfam06254 116.93 -283834 pfam06256 357.496 -310690 pfam06258 224.015 -283837 pfam06259 202.385 -283838 pfam06260 116.019 -310691 pfam06261 299.692 -310696 pfam06268 86.2366 -283844 pfam06269 52.806 -114962 pfam06270 67.6707 -310698 pfam06273 473.6 -114966 pfam06275 115.922 -310700 pfam06277 655.857 -310701 pfam06278 95.4113 -253656 pfam06281 32.2982 -283854 pfam06284 1196.91 -253659 pfam06286 240.311 -283855 pfam06287 67.3789 -310708 pfam06290 231.695 -310709 pfam06292 114.259 -283861 pfam06293 224.945 -310711 pfam06295 78.0502 -310712 pfam06296 133.153 -310713 pfam06297 120.783 -310714 pfam06298 26.8229 -283868 pfam06300 427.313 -310716 pfam06301 67.8006 -310717 pfam06304 125.505 -114995 pfam06306 620.126 -253668 pfam06307 270.26 -283873 pfam06308 40.9377 -310720 pfam06312 251.277 -310721 pfam06313 101.249 -115004 pfam06316 409.448 -283883 pfam06322 103.071 -310727 pfam06323 327.122 -283885 pfam06324 30.5782 -283886 pfam06325 269.895 -283887 pfam06326 345.266 -310728 pfam06327 130.677 -310729 pfam06328 76.8929 -310731 pfam06331 54.3864 -283893 pfam06334 416.373 -310733 pfam06335 247.886 -283895 pfam06336 90.4403 -310734 pfam06337 32.7604 -310735 pfam06338 142.782 -283899 pfam06340 686.86 -283900 pfam06341 67.1315 -115027 pfam06342 443.813 -283901 pfam06344 49.0594 -283902 pfam06345 33.7014 -283903 pfam06346 37.1851 -310737 pfam06347 56.1908 -310739 pfam06350 353.081 -310740 pfam06351 291.999 -310742 pfam06355 108.951 -283910 pfam06356 141.077 -253691 pfam06357 50.4536 -283911 pfam06358 207.57 -310743 pfam06360 26.047 -283912 pfam06361 216.638 -115044 pfam06362 134.285 -283913 pfam06363 208.034 -310744 pfam06364 224.894 -310745 pfam06365 200.311 -310748 pfam06368 876.578 -310749 pfam06369 305.667 -191504 pfam06370 402.22 -310750 pfam06371 187.913 -148150 pfam06372 283.125 -310751 pfam06373 104.773 -310753 pfam06375 99.4041 -310754 pfam06376 28.5572 -310755 pfam06377 58.2218 -310756 pfam06378 210.785 -115061 pfam06379 589.638 -148156 pfam06380 34.3326 -283927 pfam06382 110.065 -283928 pfam06384 77.749 -283929 pfam06385 115.004 -310758 pfam06386 109.962 -310759 pfam06387 258.164 -310760 pfam06388 134.895 -283933 pfam06389 379.769 -115071 pfam06390 246.701 -310762 pfam06392 27.8777 -310763 pfam06393 269.611 -310764 pfam06394 105.277 -310765 pfam06395 133.556 -310766 pfam06396 182.166 -283940 pfam06397 49.3546 -310767 pfam06398 151.416 -310768 pfam06399 120.972 -310769 pfam06400 119.76 -310770 pfam06401 186.71 -115083 pfam06403 44.6344 -310771 pfam06404 45.0782 -283948 pfam06407 787.387 -310774 pfam06409 403.665 -310777 pfam06413 301.458 -310783 pfam06419 381.914 -283968 pfam06431 854.265 -310793 pfam06432 140.383 -283970 pfam06433 659.685 -283972 pfam06435 41.2913 -283973 pfam06436 221.088 -310795 pfam06437 608.374 -310797 pfam06439 62.3736 -310800 pfam06442 132.247 -115120 pfam06443 226.075 -310802 pfam06446 25.8167 -283983 pfam06449 69.2374 -283984 pfam06450 836.429 -283985 pfam06451 60.3193 -310805 pfam06454 308.112 -310806 pfam06455 95.3043 -253740 pfam06456 232.632 -115133 pfam06457 44.2844 -283991 pfam06460 564.052 -310809 pfam06461 216.458 -310811 pfam06463 104.212 -283995 pfam06464 68.9897 -310815 pfam06468 235.153 -310816 pfam06469 270.92 -284002 pfam06471 1027.78 -284003 pfam06472 265.633 -310818 pfam06473 181.735 -284005 pfam06474 40.2776 -310821 pfam06477 35.7073 -284009 pfam06478 592.118 -310822 pfam06479 75.1943 -310826 pfam06483 234.502 -310827 pfam06484 563.419 -310828 pfam06485 307.946 -310829 pfam06486 44.1572 -115164 pfam06488 584.768 -310831 pfam06489 221.807 -310833 pfam06491 188.869 -284022 pfam06493 45.2003 -253769 pfam06495 72.3799 -284024 pfam06497 109.537 -284025 pfam06500 762.843 -253772 pfam06501 618.078 -115174 pfam06502 114.026 -284026 pfam06503 719.563 -284027 pfam06504 473.937 -284031 pfam06508 260.626 -310838 pfam06510 155.579 -284033 pfam06511 474.203 -115185 pfam06513 173.127 -115187 pfam06515 126.407 -284037 pfam06517 310.413 -310841 pfam06519 115.987 -310842 pfam06521 226.868 -115195 pfam06523 179.054 -310844 pfam06524 427.286 -310845 pfam06525 215.845 -310846 pfam06526 80.2951 -310847 pfam06527 64.1184 -310848 pfam06528 50.7754 -310849 pfam06529 496.65 -284048 pfam06530 241.88 -284049 pfam06531 112.553 -310851 pfam06533 175.011 -310852 pfam06534 190.877 -310853 pfam06535 183.286 -310855 pfam06537 650.378 -310856 pfam06540 96.3224 -310857 pfam06541 70.5319 -310858 pfam06542 438.043 -284059 pfam06543 74.1962 -310861 pfam06546 244.767 -310862 pfam06547 98.5879 -310863 pfam06549 82.0474 -284066 pfam06550 288.276 -284067 pfam06551 133.505 -284068 pfam06552 313.379 -310865 pfam06554 263.542 -284071 pfam06556 256.117 -310866 pfam06557 222.261 -284075 pfam06560 242.849 -284076 pfam06563 98.538 -310869 pfam06564 288.053 -310871 pfam06566 168.952 -284080 pfam06567 245.725 -310873 pfam06569 74.5832 -310876 pfam06573 176.027 -310877 pfam06574 155.028 -284087 pfam06575 149.884 -284089 pfam06578 207.415 -310879 pfam06579 125.913 -310883 pfam06583 278.695 -310884 pfam06584 109.174 -310886 pfam06586 137.088 -310887 pfam06587 332.387 -284099 pfam06588 326.777 -115260 pfam06590 247.653 -148289 pfam06591 247.635 -284102 pfam06593 574.81 -284104 pfam06595 373.791 -253815 pfam06598 31.7043 -115269 pfam06599 436.62 -284107 pfam06600 140.087 -284108 pfam06601 112.841 -310893 pfam06605 133.595 -148298 pfam06607 124.494 -284112 pfam06608 266.879 -115279 pfam06609 1208.35 -310894 pfam06610 174.113 -310896 pfam06612 25.4416 -310897 pfam06613 90.1748 -310898 pfam06614 107.934 -115285 pfam06615 89.3366 -310899 pfam06616 271.817 -310900 pfam06617 298.154 -115288 pfam06618 206.465 -310901 pfam06619 125.843 -310902 pfam06620 83.4169 -310904 pfam06623 44.5336 -310905 pfam06624 38.2901 -310907 pfam06626 250.985 -310908 pfam06627 129.676 -284130 pfam06630 349.513 -310912 pfam06632 441.839 -115303 pfam06633 78.2527 -310913 pfam06634 81.2771 -115305 pfam06635 364.737 -253836 pfam06636 323.675 -310914 pfam06637 624.9 -310915 pfam06638 716.044 -310916 pfam06639 89.4703 -284141 pfam06646 416.169 -148323 pfam06648 142.387 -310922 pfam06650 214.473 -284144 pfam06651 109.828 -310923 pfam06652 199.781 -284146 pfam06653 36.8557 -284147 pfam06656 1657.13 -310924 pfam06657 43.7186 -284150 pfam06661 587.801 -284151 pfam06662 181.76 -310926 pfam06663 218.116 -310927 pfam06664 140.451 -310930 pfam06668 162.719 -115333 pfam06670 573.821 -310931 pfam06671 1e+06 -310932 pfam06672 271.235 -115336 pfam06673 622.177 -310933 pfam06674 265.777 -310936 pfam06677 36.7581 -310937 pfam06678 117.355 -310938 pfam06679 82.619 -284166 pfam06680 217.63 -284167 pfam06681 289.872 -310939 pfam06682 227.906 -310940 pfam06683 330.7 -310942 pfam06685 368.648 -310943 pfam06686 26.9159 -115351 pfam06688 101.297 -310947 pfam06691 99.9717 -115355 pfam06692 106.657 -310949 pfam06694 574.936 -310950 pfam06695 39.7433 -310952 pfam06697 180.88 -310954 pfam06699 150.394 -310955 pfam06701 67.5964 -310957 pfam06703 37.9216 -115368 pfam06706 72.6818 -310958 pfam06707 199.764 -284189 pfam06709 81.6018 -115374 pfam06712 71.4754 -310961 pfam06713 49.555 -310962 pfam06715 29.1734 -284193 pfam06716 77.7125 -284194 pfam06717 591.998 -284198 pfam06721 371.028 -284199 pfam06722 139.953 -310967 pfam06725 78.4017 -310968 pfam06726 51.6376 -310969 pfam06727 524.019 -310971 pfam06729 186.138 -284207 pfam06730 345.122 -310972 pfam06732 315.344 -284210 pfam06734 317.716 -310974 pfam06736 49.4608 -115400 pfam06739 34.8785 -310977 pfam06740 32.6112 -310979 pfam06742 50.7535 -284219 pfam06745 203.246 -310982 pfam06746 97.5754 -310987 pfam06751 571.345 -310988 pfam06752 188.871 -70231 pfam06753 40.5206 -284228 pfam06755 216.643 -310990 pfam06756 105.838 -310992 pfam06758 29.9606 -284235 pfam06763 158.866 -310996 pfam06764 189.341 -148397 pfam06767 639.234 -284239 pfam06770 420.202 -284240 pfam06771 135.712 -284242 pfam06773 54.235 -310999 pfam06775 63.304 -311000 pfam06776 107.777 -284247 pfam06779 270.769 -311003 pfam06780 194.711 -284250 pfam06782 595.034 -311005 pfam06783 78.2197 -311007 pfam06785 833.977 -311008 pfam06786 97.8786 -311009 pfam06787 197.94 -311010 pfam06788 358.729 -311011 pfam06789 218.513 -284258 pfam06790 166.446 -311014 pfam06793 212.385 -284263 pfam06795 140.989 -284265 pfam06797 638.555 -311017 pfam06798 153.508 -284268 pfam06800 299.956 -284269 pfam06802 603.956 -311019 pfam06803 28.8455 -284272 pfam06805 81.4611 -284273 pfam06806 104.412 -284275 pfam06808 239.079 -284276 pfam06809 472.757 -311022 pfam06810 84.6988 -284279 pfam06813 279.612 -284281 pfam06815 125.252 -311024 pfam06816 57.5354 -311025 pfam06817 79.6939 -311027 pfam06819 114.769 -148432 pfam06820 104.234 -284286 pfam06821 164.414 -284287 pfam06822 290.144 -311028 pfam06823 57.194 -311030 pfam06825 48.2965 -284291 pfam06826 96.4867 -311031 pfam06827 32.5659 -284295 pfam06832 60.4508 -284296 pfam06833 277.069 -311035 pfam06835 90.4157 -284300 pfam06837 387.853 -311036 pfam06838 704.467 -284302 pfam06839 56.2707 -311037 pfam06840 187.445 -311038 pfam06841 62.6246 -311041 pfam06847 82.6444 -311042 pfam06848 301.578 -311043 pfam06849 157.27 -311044 pfam06850 365.146 -284311 pfam06851 327.029 -311045 pfam06852 213.424 -311047 pfam06854 149.748 -311048 pfam06855 54.5194 -311049 pfam06856 140.518 -311051 pfam06858 51.6421 -115513 pfam06861 299.623 -311053 pfam06862 507.178 -115518 pfam06866 184.398 -311057 pfam06868 90.7219 -284323 pfam06869 443.083 -311058 pfam06870 192.055 -284325 pfam06871 343.415 -284327 pfam06873 242.911 -115526 pfam06875 384.868 -311061 pfam06876 46.227 -284331 pfam06878 150.146 -311068 pfam06887 83.9838 -284339 pfam06888 336.268 -311070 pfam06890 159.366 -311071 pfam06891 101.534 -311072 pfam06892 211.056 -284344 pfam06894 158.547 -311073 pfam06896 74.5552 -311075 pfam06898 193.129 -284349 pfam06900 56.9359 -284350 pfam06901 509.728 -284351 pfam06902 72.7571 -284352 pfam06903 117.791 -311078 pfam06905 203.576 -311080 pfam06907 328.111 -284358 pfam06910 321.85 -311085 pfam06917 1160.16 -311086 pfam06918 216.294 -284364 pfam06919 267.321 -115570 pfam06922 225.654 -311088 pfam06923 88.3326 -311089 pfam06924 191.452 -284368 pfam06925 142.12 -284370 pfam06929 1137.86 -284372 pfam06931 178.659 -115579 pfam06933 1093.66 -284374 pfam06934 961.651 -311092 pfam06935 76.1469 -311093 pfam06936 205.432 -284377 pfam06937 469.439 -311095 pfam06939 104.774 -284381 pfam06941 240.972 -284382 pfam06942 130.17 -311099 pfam06946 135.573 -311100 pfam06947 60.9493 -311101 pfam06949 27.4834 -284388 pfam06950 246.077 -311102 pfam06951 240.811 -311103 pfam06952 326.018 -311105 pfam06954 92.741 -311108 pfam06957 507.95 -311109 pfam06958 75.4676 -311110 pfam06959 292.929 -311113 pfam06963 428.26 -284403 pfam06966 246.887 -311116 pfam06967 127.201 -311118 pfam06969 42.9953 -284407 pfam06970 95.7753 -311121 pfam06973 238.946 -115620 pfam06975 75.0912 -311123 pfam06977 281.059 -311124 pfam06978 118.128 -284416 pfam06983 148.977 -311127 pfam06984 110.989 -311131 pfam06989 75.8562 -254007 pfam06990 562.617 -284423 pfam06992 477.743 -311134 pfam06994 29.744 -311135 pfam06995 82.9655 -311140 pfam07001 91.6012 -284432 pfam07002 283.07 -311141 pfam07004 23.5709 -311143 pfam07006 132.449 -311145 pfam07009 69.452 -311146 pfam07010 177.379 -311147 pfam07011 102.344 -284441 pfam07013 288.986 -148565 pfam07015 386.155 -284443 pfam07016 27.9443 -115660 pfam07020 28.8877 -254024 pfam07021 318.598 -284449 pfam07026 112.145 -284451 pfam07028 136.184 -311156 pfam07029 300.78 -311157 pfam07030 72.2729 -311158 pfam07032 129.768 -284455 pfam07033 103.267 -311159 pfam07034 273.04 -311161 pfam07037 182.32 -70500 pfam07038 85.5676 -311162 pfam07039 106.475 -311164 pfam07041 154.938 -115680 pfam07042 615.885 -311167 pfam07045 75.6617 -115686 pfam07048 46.97 -311170 pfam07051 116.244 -311171 pfam07052 32.9813 -311172 pfam07054 33.1604 -284470 pfam07056 225.843 -311174 pfam07057 192.746 -311175 pfam07058 717.341 -311177 pfam07061 56.4039 -311178 pfam07062 236.631 -311181 pfam07065 255.135 -284478 pfam07066 278.795 -115703 pfam07067 463.702 -284479 pfam07068 922.94 -115705 pfam07069 105.404 -311182 pfam07070 206.946 -311185 pfam07074 202.926 -311188 pfam07078 335.802 -284489 pfam07079 930.162 -115718 pfam07082 463.557 -311191 pfam07083 134.023 -311192 pfam07084 197.52 -311195 pfam07087 99.2778 -311196 pfam07088 568.505 -284498 pfam07090 391.024 -311198 pfam07092 365.964 -311199 pfam07093 695.534 -284502 pfam07094 314.452 -284504 pfam07096 145.31 -284505 pfam07097 135.129 -311203 pfam07100 152.012 -115736 pfam07101 220.366 -284512 pfam07106 142.066 -284513 pfam07107 148.834 -284514 pfam07108 417.507 -311207 pfam07109 121.82 -311208 pfam07110 34.7343 -284517 pfam07111 1012.36 -254061 pfam07112 318.433 -311209 pfam07114 204.391 -311210 pfam07117 235.508 -284521 pfam07118 82.9086 -311211 pfam07119 52.2526 -284524 pfam07122 48.9759 -311213 pfam07123 99.3886 -284526 pfam07124 744.893 -311215 pfam07127 34.1395 -311216 pfam07128 186.952 -311217 pfam07129 50.0724 -284532 pfam07131 102.579 -284533 pfam07133 82.688 -254068 pfam07134 272.242 -311220 pfam07138 632.449 -311221 pfam07139 280.454 -284538 pfam07140 145.697 -284539 pfam07141 321.35 -311222 pfam07142 24.8623 -254076 pfam07146 266.878 -311224 pfam07147 472.664 -311225 pfam07148 204.014 -284545 pfam07149 357.037 -284546 pfam07150 254.432 -284547 pfam07151 97.0582 -284549 pfam07153 759.649 -284550 pfam07154 228.844 -311229 pfam07157 100.358 -115789 pfam07158 153.759 -311230 pfam07159 337.263 -311231 pfam07160 197.471 -311234 pfam07163 409.888 -311236 pfam07166 153.615 -311237 pfam07167 251.769 -311238 pfam07168 550.014 -254089 pfam07172 39.3557 -311240 pfam07173 86.1649 -311241 pfam07174 298.343 -311242 pfam07175 251.308 -311243 pfam07176 71.7267 -311245 pfam07178 69.58 -311247 pfam07180 211.403 -284572 pfam07181 345.474 -311249 pfam07183 257.712 -115814 pfam07184 581.603 -311250 pfam07185 128.539 -284577 pfam07188 478.574 -148663 pfam07190 81.725 -311253 pfam07191 61.4746 -284580 pfam07192 112.868 -284581 pfam07193 140.614 -311257 pfam07198 29.1058 -311258 pfam07199 273.352 -311260 pfam07201 60.0557 -311261 pfam07202 224.796 -311262 pfam07203 91.0951 -115833 pfam07204 143.144 -311263 pfam07205 58.8437 -284592 pfam07206 92.7693 -311264 pfam07207 156.201 -311267 pfam07210 124.695 -284597 pfam07212 514.645 -284598 pfam07213 115.783 -311269 pfam07215 185.658 -284601 pfam07216 104.852 -311270 pfam07217 760.242 -284603 pfam07218 1194.12 -115849 pfam07220 1084.18 -284605 pfam07221 297.768 -311272 pfam07222 368.235 -254111 pfam07224 482.803 -311274 pfam07225 141.728 -284611 pfam07228 73.0554 -311277 pfam07230 830.409 -284614 pfam07231 220.49 -115861 pfam07232 623.274 -284618 pfam07236 753.062 -284621 pfam07239 478.874 -311282 pfam07240 94.3532 -311284 pfam07243 819.077 -311285 pfam07244 29.6262 -148700 pfam07245 891.498 -148701 pfam07246 179.699 -254122 pfam07247 444.563 -311286 pfam07248 99.3225 -284626 pfam07249 205.105 -284628 pfam07252 109.876 -254125 pfam07253 559.857 -284630 pfam07255 244.201 -311291 pfam07259 182.553 -311292 pfam07260 705.212 -311295 pfam07263 156.184 -311297 pfam07265 147.046 -311298 pfam07267 774.496 -284641 pfam07268 212.912 -284642 pfam07270 243.349 -284643 pfam07271 228.193 -148716 pfam07272 150.398 -311303 pfam07278 225.428 -115904 pfam07279 335.336 -284650 pfam07282 74.5595 -311306 pfam07284 172.805 -311307 pfam07285 423.947 -311311 pfam07289 381.92 -284659 pfam07291 195.852 -311313 pfam07292 95.1651 -311314 pfam07293 89.9715 -284662 pfam07294 376.214 -254144 pfam07296 283.461 -311316 pfam07297 66.8511 -311317 pfam07298 116.948 -311319 pfam07301 96.0986 -311322 pfam07304 229.281 -284672 pfam07306 207.7 -311324 pfam07307 215.252 -284676 pfam07310 131.312 -311328 pfam07312 58.3963 -311329 pfam07313 245.281 -311331 pfam07315 135.04 -311332 pfam07316 249.539 -311334 pfam07318 357.579 -284686 pfam07321 76.2642 -284687 pfam07322 494.984 -311337 pfam07324 231.602 -148753 pfam07325 225.692 -311338 pfam07326 260.876 -115951 pfam07327 142.373 -284691 pfam07328 249.521 -284695 pfam07333 37.0821 -284696 pfam07334 71.1265 -311342 pfam07335 78.8459 -284699 pfam07337 35.5995 -115962 pfam07339 159.76 -284701 pfam07340 807.434 -115964 pfam07341 216.426 -284702 pfam07342 175.683 -311345 pfam07343 413.978 -311346 pfam07344 84.576 -311347 pfam07345 77.6089 -311348 pfam07346 94.3319 -284709 pfam07349 271.196 -311351 pfam07350 481.79 -284713 pfam07353 297.335 -311354 pfam07355 514.367 -311356 pfam07357 366.112 -284717 pfam07358 83.6047 -284718 pfam07359 134.29 -311357 pfam07361 73.8596 -284721 pfam07363 102.556 -191732 pfam07365 50.8761 -254173 pfam07368 323.937 -311363 pfam07370 148.836 -311364 pfam07371 72.0632 -284729 pfam07373 261.951 -284730 pfam07376 227.767 -311367 pfam07377 122.148 -284733 pfam07379 263.453 -284734 pfam07380 160.629 -284735 pfam07381 103.547 -311370 pfam07383 75.8448 -284738 pfam07384 78.3843 -254182 pfam07387 400.749 -311373 pfam07388 553.005 -284742 pfam07389 184.824 -311374 pfam07390 433.085 -311375 pfam07391 1e+06 -311376 pfam07392 49.836 -254185 pfam07394 171.728 -284747 pfam07395 445.471 -311378 pfam07396 224.197 -116019 pfam07397 40.4413 -311379 pfam07398 28.9626 -284751 pfam07400 285.475 -116023 pfam07401 362.391 -284752 pfam07402 442.09 -254188 pfam07404 609.421 -284754 pfam07405 229.504 -284756 pfam07407 891.722 -311383 pfam07408 121.541 -311384 pfam07409 118.938 -311385 pfam07410 177.633 -284761 pfam07413 419.014 -284762 pfam07415 930.22 -284763 pfam07416 429.459 -284765 pfam07418 304.246 -311389 pfam07419 138.678 -284767 pfam07420 727.396 -311390 pfam07421 220.422 -311391 pfam07422 33.178 -311392 pfam07423 182.594 -116046 pfam07425 43.9234 -311394 pfam07426 146.991 -311395 pfam07428 718.636 -311397 pfam07430 103.675 -311398 pfam07431 349.185 -311399 pfam07432 63.9705 -311400 pfam07433 295.313 -284778 pfam07434 661.857 -284779 pfam07435 478.902 -284780 pfam07436 163.335 -284781 pfam07437 248.643 -311401 pfam07438 98.1639 -116061 pfam07440 30.3751 -311402 pfam07441 26.5975 -116063 pfam07442 27.6453 -311403 pfam07443 60.3254 -311404 pfam07444 74.5153 -311406 pfam07447 445.329 -311407 pfam07448 118.383 -311408 pfam07449 156.764 -311409 pfam07450 168.556 -311410 pfam07451 520.977 -284793 pfam07453 32.4844 -311412 pfam07454 207.895 -311413 pfam07455 244.163 -311415 pfam07457 57.2111 -311416 pfam07458 101.514 -284799 pfam07459 255.786 -311417 pfam07460 29.1124 -284801 pfam07461 907.201 -284802 pfam07462 697.419 -311418 pfam07463 40.3498 -311419 pfam07464 116.306 -311420 pfam07465 28.6317 -311421 pfam07467 285.678 -116089 pfam07468 223.349 -311422 pfam07469 40.8754 -284809 pfam07470 242.656 -284811 pfam07472 151.032 -311423 pfam07473 40.0515 -311424 pfam07474 188.122 -311425 pfam07475 225.435 -284814 pfam07476 371.678 -311427 pfam07478 244.909 -311429 pfam07481 261.379 -284819 pfam07482 96.6952 -311430 pfam07483 102.069 -311432 pfam07485 121.857 -284824 pfam07487 344.051 -311434 pfam07488 470.43 -254231 pfam07490 351.565 -311436 pfam07491 40.5913 -311437 pfam07492 54.074 -311438 pfam07494 28.8178 -284830 pfam07495 33.4838 -311442 pfam07499 29.3653 -311448 pfam07505 272.511 -311449 pfam07506 113.338 -311450 pfam07507 393.293 -311451 pfam07508 52.0032 -311452 pfam07509 202.56 -311453 pfam07510 41.65 -311454 pfam07511 112.796 -311456 pfam07515 110.075 -284851 pfam07519 546.294 -311459 pfam07520 1019.87 -284855 pfam07523 57.308 -311462 pfam07524 85.453 -284860 pfam07528 362.662 -148888 pfam07530 77.7744 -311470 pfam07534 66.8742 -311471 pfam07535 48.271 -311473 pfam07537 287.158 -311474 pfam07538 31.5572 -311475 pfam07539 319.102 -311479 pfam07543 104.727 -311482 pfam07546 35.0838 -311483 pfam07547 100.107 -311484 pfam07548 136.124 -311486 pfam07550 46.1461 -148905 pfam07551 55.7752 -311487 pfam07553 52.9246 -311490 pfam07556 149.842 -311492 pfam07558 34.8971 -116179 pfam07560 145.579 -311496 pfam07563 68.0966 -311498 pfam07565 346.593 -311500 pfam07571 57.4899 -311501 pfam07572 67.5835 -311503 pfam07574 145.393 -311504 pfam07575 378.9 -284902 pfam07577 63.5147 -311506 pfam07578 70.213 -311507 pfam07579 196.505 -311509 pfam07581 30.0059 -311511 pfam07583 171.149 -311512 pfam07584 31.3351 -284909 pfam07585 298.139 -311513 pfam07586 110.424 -311514 pfam07587 136.851 -284912 pfam07588 127.516 -311515 pfam07589 26.5271 -284914 pfam07590 47.3439 -284915 pfam07591 176.674 -311516 pfam07592 382.763 -311517 pfam07593 32.1611 -284919 pfam07596 129.14 -284920 pfam07597 94.8149 -284921 pfam07598 963.902 -203693 pfam07599 61.9102 -284922 pfam07600 168.733 -284923 pfam07602 205.844 -311519 pfam07606 177.217 -284926 pfam07607 185.87 -311520 pfam07608 243.355 -311521 pfam07609 264.59 -311523 pfam07611 253.85 -311524 pfam07613 129.204 -311525 pfam07614 233.84 -284933 pfam07615 111.68 -284935 pfam07618 85.3638 -284936 pfam07619 121.352 -284937 pfam07621 35.004 -284938 pfam07622 559.07 -284939 pfam07623 44.3096 -284941 pfam07625 32.3371 -311528 pfam07626 58.6929 -311529 pfam07627 90.6551 -284944 pfam07628 280.971 -116246 pfam07629 59.7527 -311530 pfam07631 89.091 -311531 pfam07632 180.405 -311533 pfam07635 41.5855 -311534 pfam07637 59.8718 -254323 pfam07638 202.264 -284950 pfam07639 37.6924 -311535 pfam07642 181.736 -284953 pfam07643 123.66 -311536 pfam07645 38.8731 -311537 pfam07646 28.4773 -284962 pfam07652 227.603 -311544 pfam07655 38.8018 -311546 pfam07659 54.8549 -311548 pfam07661 25.9143 -284971 pfam07663 128.168 -254342 pfam07666 43.1435 -284973 pfam07667 33.8941 -284974 pfam07668 304.174 -284975 pfam07669 99.6735 -311551 pfam07670 28.7609 -311552 pfam07671 42.3665 -284977 pfam07672 265.068 -284979 pfam07675 238.656 -284980 pfam07676 29.8075 -311554 pfam07678 268.749 -311555 pfam07680 105.013 -311556 pfam07681 30.2259 -311559 pfam07684 46.103 -311560 pfam07685 147.791 -311563 pfam07688 209.801 -284992 pfam07689 92.3693 -311565 pfam07691 99.778 -254362 pfam07692 412.856 -284995 pfam07693 168.71 -311566 pfam07694 67.238 -311567 pfam07695 50.7184 -311571 pfam07699 53.8817 -285007 pfam07705 65.3762 -311577 pfam07706 32.7452 -311578 pfam07707 67.9556 -285010 pfam07708 30.1781 -116323 pfam07709 1e+06 -311579 pfam07710 55.3679 -311580 pfam07711 153.351 -311581 pfam07712 507.979 -311585 pfam07716 32.5741 -311587 pfam07718 93.7708 -311588 pfam07719 26.7248 -311589 pfam07720 37.4742 -285026 pfam07725 31.5334 -285027 pfam07726 240.918 -285037 pfam07737 213.698 -311604 pfam07739 38.703 -311610 pfam07745 381.753 -311611 pfam07746 81.0774 -311612 pfam07747 74.5397 -254404 pfam07750 198.095 -311616 pfam07752 180.858 -285051 pfam07753 338.3 -285052 pfam07754 29.5924 -254409 pfam07757 210.899 -311619 pfam07759 426.654 -311620 pfam07760 162.404 -285058 pfam07761 212.165 -311622 pfam07763 223.343 -311623 pfam07764 117.849 -311624 pfam07765 88.4384 -285065 pfam07768 137.776 -311628 pfam07771 130.054 -311629 pfam07773 143.765 -285070 pfam07775 474.365 -311631 pfam07776 33.8913 -311632 pfam07777 92.793 -311633 pfam07778 898.861 -311635 pfam07780 155.094 -285076 pfam07781 978.315 -311637 pfam07784 47.0449 -285079 pfam07785 70.8864 -311638 pfam07786 119.227 -285082 pfam07788 79.6978 -116403 pfam07789 166.528 -311640 pfam07790 38.3148 -311641 pfam07791 151.867 -116408 pfam07794 922.748 -311644 pfam07795 158 -311645 pfam07796 101.893 -311647 pfam07798 111.042 -311650 pfam07801 174.329 -311652 pfam07803 136.213 -116420 pfam07806 35.5728 -311655 pfam07807 200.325 -285104 pfam07813 40.4139 -311662 pfam07815 100.443 -311663 pfam07816 62.5572 -311666 pfam07819 156.756 -311669 pfam07823 203.46 -116439 pfam07825 118.598 -311671 pfam07829 33.0754 -311672 pfam07830 89.8555 -254458 pfam07832 357.646 -311673 pfam07833 46.8183 -311681 pfam07842 116.399 -311682 pfam07843 29.7044 -311683 pfam07845 78.7737 -285130 pfam07846 27.439 -311686 pfam07850 102.323 -311687 pfam07851 321.077 -311689 pfam07853 33.5269 -285138 pfam07854 360.215 -311691 pfam07856 111.961 -285141 pfam07857 469.991 -285142 pfam07858 163.422 -285144 pfam07860 278.271 -311693 pfam07861 360.331 -311695 pfam07863 60.0323 -311696 pfam07864 62.346 -311697 pfam07865 71.2154 -311699 pfam07867 82.1063 -285151 pfam07868 91.1976 -311701 pfam07870 32.0685 -285154 pfam07871 26.8827 -311702 pfam07872 32.0052 -285157 pfam07874 56.1757 -311705 pfam07876 46.5408 -285160 pfam07877 37.084 -311706 pfam07878 46.4928 -311707 pfam07879 75.2452 -311709 pfam07882 313.735 -311715 pfam07888 627.261 -311718 pfam07891 266.748 -311721 pfam07894 310.23 -311722 pfam07895 120.307 -311723 pfam07896 42.6563 -311724 pfam07897 32.5681 -285183 pfam07900 301.62 -285184 pfam07901 334.514 -285186 pfam07903 193.189 -311729 pfam07905 70.9616 -285189 pfam07906 327.94 -116521 pfam07909 223.537 -311731 pfam07910 185.163 -285193 pfam07913 266.818 -311733 pfam07914 462.135 -311736 pfam07918 31.4544 -311737 pfam07919 722.854 -311738 pfam07920 116.837 -311739 pfam07922 223.438 -311747 pfam07931 219.984 -311750 pfam07935 75.6013 -285213 pfam07937 214.258 -311751 pfam07939 73.7614 -311753 pfam07941 35.8003 -285218 pfam07942 326.199 -285220 pfam07944 494.529 -311756 pfam07947 64.5838 -285223 pfam07948 1101.6 -311758 pfam07950 40.3712 -285226 pfam07951 308.523 -311759 pfam07952 489.391 -311760 pfam07953 168.714 -285229 pfam07954 128.113 -311761 pfam07955 128.175 -311762 pfam07956 106.525 -311763 pfam07957 237.179 -311765 pfam07959 310.709 -311766 pfam07960 112.743 -254545 pfam07961 288.953 -311769 pfam07964 643.762 -311772 pfam07967 115.925 -311774 pfam07969 96.0689 -311775 pfam07970 161.217 -285248 pfam07974 28.9249 -311781 pfam07978 65.0333 -311782 pfam07979 104.803 -285255 pfam07981 1e+06 -285256 pfam07982 857.144 -311784 pfam07983 63.0015 -311785 pfam07984 488.631 -311787 pfam07986 100.753 -311788 pfam07987 109.611 -311789 pfam07988 65.9545 -311790 pfam07989 34.796 -285265 pfam07991 249.385 -311792 pfam07992 103.552 -311794 pfam07994 378.052 -191923 pfam07998 257.809 -191924 pfam07999 676.665 -285273 pfam08001 234.316 -285275 pfam08003 536.977 -311800 pfam08004 154.272 -285278 pfam08006 192.133 -285280 pfam08008 139.315 -311803 pfam08009 28.9825 -285282 pfam08010 244.833 -311804 pfam08011 77.6785 -311805 pfam08012 400.058 -285287 pfam08015 25.6299 -285288 pfam08016 441.016 -311808 pfam08017 418.499 -285289 pfam08018 25.3061 -311811 pfam08021 109.299 -285293 pfam08022 106.266 -254589 pfam08023 25.0184 -116634 pfam08024 24.6677 -116635 pfam08025 48.4539 -285294 pfam08026 52.6768 -285295 pfam08027 54.2281 -311812 pfam08028 81.9789 -311816 pfam08032 43.3753 -311818 pfam08034 50.763 -311819 pfam08035 53.567 -285304 pfam08036 47.2344 -311820 pfam08037 39.1718 -285306 pfam08039 102.872 -311822 pfam08040 81.6948 -311824 pfam08043 31.4189 -311825 pfam08044 31.9794 -285313 pfam08046 31.4519 -285314 pfam08047 1e+06 -311827 pfam08049 1e+06 -254601 pfam08050 26.1221 -285316 pfam08051 23.5496 -285317 pfam08052 75.3758 -285318 pfam08053 42.7171 -285319 pfam08054 26.7718 -116663 pfam08055 29.307 -285320 pfam08056 49.4288 -71493 pfam08057 1e+06 -311828 pfam08058 81.5576 -285323 pfam08061 53.7111 -285324 pfam08062 30.5303 -311832 pfam08065 69.1221 -311834 pfam08067 44.909 -311836 pfam08069 66.7088 -311837 pfam08070 40.1169 -311838 pfam08071 54.8721 -311839 pfam08072 70.3479 -311841 pfam08074 233.026 -285338 pfam08076 46.9565 -71513 pfam08077 1e+06 -285339 pfam08078 38.5392 -311844 pfam08080 75.3464 -285343 pfam08083 660.221 -116691 pfam08086 52.2085 -191941 pfam08087 41.8641 -254615 pfam08088 29.0244 -285346 pfam08089 29.5187 -116695 pfam08090 46.3119 -311849 pfam08091 23.9007 -149265 pfam08092 63.0147 -116698 pfam08093 30.159 -311850 pfam08094 33.8525 -71530 pfam08095 32.3334 -71531 pfam08096 1e+06 -71532 pfam08097 1e+06 -116700 pfam08098 30.4075 -311851 pfam08099 36.5318 -311853 pfam08101 306.494 -116704 pfam08102 48.06 -116705 pfam08103 1e+06 -71539 pfam08104 26.1032 -311854 pfam08105 56.1214 -71541 pfam08106 23.5167 -116706 pfam08107 49.3966 -71543 pfam08108 1e+06 -71544 pfam08109 54.2402 -149268 pfam08110 23.9501 -71546 pfam08111 25.5395 -116708 pfam08112 52.4246 -285350 pfam08113 41.3053 -285351 pfam08114 61.1009 -285352 pfam08115 51.0633 -149271 pfam08116 39.8693 -311856 pfam08118 519.4 -71554 pfam08119 48.1786 -71555 pfam08120 45.065 -71556 pfam08121 34.2303 -311858 pfam08124 336.626 -311859 pfam08125 250.761 -71564 pfam08129 100.204 -116721 pfam08130 85.5438 -254625 pfam08131 55.7744 -311861 pfam08132 70.0985 -285360 pfam08133 37.3989 -311862 pfam08134 65.8954 -285362 pfam08135 48.7101 -311863 pfam08136 61.5986 -285365 pfam08138 69.622 -285366 pfam08139 28.0932 -311865 pfam08140 51.8314 -311866 pfam08141 57.1614 -311868 pfam08143 38.6849 -311870 pfam08145 234.331 -311882 pfam08157 104.755 -311888 pfam08165 54.8399 -149302 pfam08166 38.4201 -285391 pfam08168 61.7392 -311892 pfam08171 70.7397 -311896 pfam08175 45.3321 -285399 pfam08176 50.5587 -285400 pfam08177 48.233 -285401 pfam08178 74.9804 -285402 pfam08179 40.6121 -311897 pfam08180 32.1357 -285404 pfam08181 55.4043 -285405 pfam08182 39.4991 -311898 pfam08183 30.4722 -116772 pfam08184 56.9845 -311899 pfam08186 52.7919 -71621 pfam08187 1e+06 -71622 pfam08188 44.4706 -285408 pfam08189 54.2011 -311900 pfam08190 315.474 -285410 pfam08191 70.8584 -311901 pfam08192 847.774 -311903 pfam08194 36.174 -285415 pfam08197 99.9002 -311905 pfam08198 81.2483 -285417 pfam08199 41.8214 -285418 pfam08200 27.3105 -311906 pfam08201 67.5268 -311908 pfam08203 76.5766 -311909 pfam08204 67.4829 -311910 pfam08205 68.587 -285424 pfam08206 38.6719 -311917 pfam08214 300.881 -285434 pfam08218 294.993 -285436 pfam08220 68.8255 -311921 pfam08221 66.1 -116808 pfam08222 100.427 -311922 pfam08223 70.4013 -116811 pfam08225 30.701 -311925 pfam08227 30.2196 -254674 pfam08228 158.06 -311932 pfam08236 62.1124 -311933 pfam08237 206.798 -311934 pfam08239 29.902 -285452 pfam08240 96.13 -311936 pfam08242 40.8165 -311937 pfam08243 33.0225 -285457 pfam08245 104.283 -116832 pfam08247 24.0368 -116833 pfam08248 1e+06 -116834 pfam08249 1e+06 -116835 pfam08250 1e+06 -116836 pfam08251 1e+06 -285459 pfam08252 35.9136 -285460 pfam08253 31.2571 -285461 pfam08254 1e+06 -285462 pfam08255 1e+06 -116841 pfam08256 1e+06 -116842 pfam08257 1e+06 -116843 pfam08258 1e+06 -254691 pfam08259 1e+06 -116845 pfam08260 1e+06 -87473 pfam08261 1e+06 -116846 pfam08262 1e+06 -311942 pfam08265 31.9447 -311944 pfam08267 394.254 -285468 pfam08268 84.2629 -285470 pfam08270 206.893 -311948 pfam08274 31.8504 -311949 pfam08275 121.091 -285479 pfam08279 37.4111 -311953 pfam08280 45.6808 -311954 pfam08281 37.0502 -311955 pfam08282 155.081 -285483 pfam08283 156.226 -311959 pfam08288 151.636 -285488 pfam08289 144.579 -285489 pfam08290 56.2344 -311960 pfam08291 120.159 -311961 pfam08292 118.927 -311963 pfam08294 176.713 -311965 pfam08297 31.8773 -116881 pfam08298 528.181 -311967 pfam08300 145.596 -149382 pfam08301 105.522 -285499 pfam08303 226.516 -311969 pfam08305 88.7266 -311970 pfam08306 362.318 -285502 pfam08307 418.001 -285503 pfam08308 75.405 -285504 pfam08309 49.6421 -311971 pfam08310 25.2354 -311977 pfam08316 178.882 -311981 pfam08321 84.8266 -311984 pfam08325 209.496 -285524 pfam08332 178.484 -311990 pfam08333 31.4884 -311992 pfam08335 88.007 -311993 pfam08336 79.2288 -311996 pfam08339 155.671 -312003 pfam08347 191.067 -312006 pfam08350 46.2884 -312007 pfam08351 99.1612 -312008 pfam08352 63.5698 -254756 pfam08357 99.7772 -149427 pfam08358 68.7864 -285548 pfam08359 221.48 -285549 pfam08360 170.104 -285550 pfam08361 181.786 -312013 pfam08362 208.307 -285554 pfam08365 69.7855 -312019 pfam08369 30.1203 -312021 pfam08373 41.8039 -312022 pfam08374 240.802 -312023 pfam08375 62.2076 -312025 pfam08377 1636.26 -312029 pfam08383 44.7142 -312030 pfam08384 70.8715 -312032 pfam08386 71.608 -312035 pfam08389 57.2448 -312037 pfam08391 126.273 -285580 pfam08394 67.881 -285581 pfam08395 85.5334 -254775 pfam08396 66.8352 -285582 pfam08397 304.46 -285583 pfam08398 117.652 -312040 pfam08399 57.365 -285585 pfam08400 226.385 -312042 pfam08402 44.9408 -312043 pfam08403 100.2 -285589 pfam08404 520.55 -285590 pfam08405 761.175 -312046 pfam08408 144.794 -312052 pfam08416 241.861 -312054 pfam08418 137.81 -312056 pfam08423 330.405 -312058 pfam08426 312.97 -312060 pfam08428 64.7841 -312062 pfam08430 32.7035 -312064 pfam08433 244.894 -312066 pfam08435 279.122 -312069 pfam08438 86.4185 -285618 pfam08440 393.006 -312072 pfam08443 272.457 -117021 pfam08444 166.468 -117022 pfam08445 92.0074 -312073 pfam08446 116.573 -312076 pfam08449 259.528 -312078 pfam08451 92.7487 -285628 pfam08452 43.9311 -312079 pfam08453 188.208 -312080 pfam08454 68.6922 -285632 pfam08456 204.576 -312082 pfam08457 408.23 -285636 pfam08460 78.1411 -285637 pfam08461 69.3529 -117039 pfam08462 198.405 -312086 pfam08464 65.8661 -312087 pfam08466 61.205 -285641 pfam08467 708.052 -285643 pfam08469 191.429 -312089 pfam08470 185.28 -312090 pfam08471 116.193 -312092 pfam08473 676.799 -312093 pfam08474 297.457 -285649 pfam08475 230.153 -285650 pfam08476 65.1104 -312094 pfam08477 88.7165 -312095 pfam08478 46.7705 -312096 pfam08479 68.7274 -285654 pfam08480 281.357 -254827 pfam08488 136.782 -312104 pfam08489 128.964 -285664 pfam08491 445.622 -312106 pfam08492 39.2363 -285666 pfam08493 258.778 -312112 pfam08499 43.4656 -149522 pfam08500 152.656 -312113 pfam08501 89.1951 -312115 pfam08504 106.507 -312116 pfam08505 174.287 -312117 pfam08507 66.8776 -312118 pfam08508 71.0135 -312119 pfam08509 71.63 -312125 pfam08515 33.2222 -312128 pfam08518 42.3628 -312130 pfam08520 57.8907 -312137 pfam08527 178.839 -285702 pfam08530 146.021 -312140 pfam08531 195.594 -285704 pfam08532 204.82 -312141 pfam08533 34.2801 -285706 pfam08534 76.2238 -312143 pfam08536 150.13 -285709 pfam08537 284.682 -254864 pfam08538 395.628 -312144 pfam08539 100.314 -312147 pfam08543 190 -312150 pfam08546 59.561 -312151 pfam08547 119.625 -285719 pfam08548 307.316 -312155 pfam08553 930.841 -312156 pfam08555 28.1737 -312157 pfam08557 59.8319 -312160 pfam08560 193.342 -312161 pfam08561 46.5864 -312163 pfam08563 48.1758 -312164 pfam08564 69.9714 -312165 pfam08565 108.044 -312174 pfam08574 29.1013 -312176 pfam08577 33.4766 -312177 pfam08578 86.4376 -149581 pfam08579 149.903 -312178 pfam08580 521.66 -312181 pfam08584 189.804 -312182 pfam08585 123.531 -312183 pfam08586 140.933 -312184 pfam08587 59.1166 -312186 pfam08589 57.6649 -312190 pfam08593 46.9699 -312191 pfam08594 274.553 -312192 pfam08595 92.6151 -312193 pfam08596 413.658 -312194 pfam08597 65.7824 -312195 pfam08598 95.4904 -312196 pfam08599 88.5133 -312197 pfam08600 107.558 -312198 pfam08601 345.666 -312199 pfam08602 523.086 -312201 pfam08604 290.744 -254915 pfam08605 159.862 -312203 pfam08608 41.4465 -312205 pfam08610 103.802 -312206 pfam08611 75.2947 -285777 pfam08613 155.298 -312209 pfam08615 70.8555 -312210 pfam08616 96.1932 -312212 pfam08618 498.783 -312218 pfam08624 161.518 -312220 pfam08626 998.673 -312221 pfam08627 399.792 -285793 pfam08629 86.5815 -312225 pfam08632 102.5 -312227 pfam08634 284.375 -117208 pfam08635 279.381 -312228 pfam08636 35.605 -312231 pfam08639 199.531 -312238 pfam08646 148.524 -312242 pfam08650 76.114 -312243 pfam08651 68.7037 -312244 pfam08652 51.7259 -312246 pfam08654 78.0197 -312247 pfam08655 86.4075 -312248 pfam08656 34.0582 -312249 pfam08657 110.239 -312250 pfam08658 135.034 -312251 pfam08659 149.632 -312253 pfam08661 102.729 -312254 pfam08663 42.6036 -312255 pfam08664 136.914 -312256 pfam08665 194.867 -285830 pfam08667 186.138 -285831 pfam08668 146.587 -312260 pfam08671 33.9287 -312262 pfam08673 77.6185 -285838 pfam08675 122.451 -312264 pfam08678 137.047 -312266 pfam08680 107.781 -312267 pfam08681 53.773 -285845 pfam08682 381.589 -312269 pfam08684 166.747 -312273 pfam08688 156.692 -312274 pfam08689 639.841 -312275 pfam08690 162.904 -312276 pfam08691 185.089 -312277 pfam08692 122.181 -312278 pfam08693 31.0698 -312279 pfam08694 268.766 -312280 pfam08695 81.8856 -312286 pfam08702 149.994 -312287 pfam08703 165.607 -312288 pfam08704 366.431 -312289 pfam08705 31.8116 -312290 pfam08706 47.079 -312291 pfam08707 44.2323 -312292 pfam08708 56.9031 -312293 pfam08709 253.149 -285872 pfam08710 179.212 -312297 pfam08714 144.616 -312298 pfam08715 449.442 -285878 pfam08716 119.093 -285879 pfam08717 301.765 -72144 pfam08720 324.68 -312301 pfam08721 45.3447 -72147 pfam08723 188.105 -312303 pfam08724 227.699 -312305 pfam08726 129.734 -312306 pfam08727 102.118 -312309 pfam08730 208.319 -312310 pfam08732 212.172 -312311 pfam08733 169.651 -312316 pfam08738 56.6354 -312318 pfam08741 264.54 -285901 pfam08744 562.167 -312321 pfam08745 212.063 -312324 pfam08748 74.8083 -312327 pfam08752 122.227 -312330 pfam08756 279.518 -255023 pfam08762 176.973 -312335 pfam08764 432.268 -312338 pfam08767 283.353 -312340 pfam08769 82.1766 -312343 pfam08772 79.4627 -312344 pfam08773 144.34 -312345 pfam08774 54.7654 -285931 pfam08778 53.1507 -285932 pfam08779 166.467 -285937 pfam08784 91.6695 -312356 pfam08788 96.4882 -285942 pfam08789 35.5058 -312357 pfam08790 35.4676 -285944 pfam08792 34.5045 -285945 pfam08793 44.0663 -285946 pfam08794 278.045 -312358 pfam08795 143.643 -312359 pfam08796 85.3205 -312365 pfam08802 39.723 -285956 pfam08804 174.123 -285957 pfam08805 129.198 -312367 pfam08806 76.0683 -312368 pfam08807 101.164 -312371 pfam08810 155.853 -312373 pfam08812 132.611 -312374 pfam08813 146.039 -312375 pfam08814 180.736 -312376 pfam08815 63.5868 -312378 pfam08817 40.2821 -312380 pfam08819 138.116 -312382 pfam08822 157.09 -255058 pfam08823 60.9748 -312383 pfam08824 68.7946 -312385 pfam08827 66.0261 -312388 pfam08830 167.774 -312389 pfam08831 87.4683 -312390 pfam08832 70.4994 -312391 pfam08833 45.2689 -312393 pfam08838 111.536 -312394 pfam08839 117.003 -312395 pfam08840 200.205 -312396 pfam08841 336.505 -285990 pfam08844 162.992 -312400 pfam08846 91.0559 -312402 pfam08848 127.715 -312405 pfam08852 146.471 -312406 pfam08853 160.457 -312407 pfam08854 124.632 -286000 pfam08855 124.403 -312408 pfam08856 136.642 -312410 pfam08858 39.6514 -312412 pfam08860 93.053 -312413 pfam08861 60.2642 -312414 pfam08862 80.794 -312416 pfam08864 106.876 -312417 pfam08865 84.527 -312419 pfam08867 79.9758 -312420 pfam08868 180.14 -312421 pfam08869 99.0467 -312423 pfam08872 98.8896 -312424 pfam08873 179.583 -312425 pfam08874 80.3853 -286019 pfam08875 215.974 -312427 pfam08877 164.267 -312432 pfam08882 145.949 -312434 pfam08884 33.5511 -312437 pfam08887 125.957 -312440 pfam08890 203.211 -312444 pfam08894 305.44 -312446 pfam08896 117.089 -312448 pfam08898 64.6409 -312450 pfam08900 214.778 -312453 pfam08903 771.618 -312454 pfam08904 246.397 -312455 pfam08905 64.8431 -312456 pfam08906 72.2611 -312460 pfam08910 129.013 -312463 pfam08913 198.183 -286058 pfam08914 104.138 -312464 pfam08915 154.213 -312466 pfam08917 152.089 -312470 pfam08921 117.79 -312471 pfam08922 41.7242 -312472 pfam08923 125.922 -312473 pfam08924 66.8175 -312475 pfam08926 354.354 -312476 pfam08928 77.3716 -312477 pfam08929 110.459 -286073 pfam08930 130.696 -286074 pfam08931 336.05 -255115 pfam08933 448.813 -312478 pfam08934 256.384 -286076 pfam08935 86.0431 -312479 pfam08936 650.85 -312480 pfam08937 70.4143 -312481 pfam08938 51.4344 -312483 pfam08940 70.2449 -312484 pfam08941 262.616 -312485 pfam08942 217.956 -312486 pfam08943 499.906 -312487 pfam08944 35.867 -312488 pfam08945 55.9985 -312490 pfam08947 82.1957 -286089 pfam08948 195.973 -312491 pfam08949 397.548 -312492 pfam08950 462.853 -286093 pfam08952 213.133 -312494 pfam08953 56.3294 -286095 pfam08954 88.0948 -312495 pfam08955 72.9882 -312496 pfam08956 85.6333 -286098 pfam08958 130.967 -312497 pfam08960 97.0215 -312498 pfam08961 232.819 -312499 pfam08962 79.5238 -312500 pfam08963 140.937 -312501 pfam08964 117.091 -286104 pfam08965 139.942 -286106 pfam08967 106.145 -312503 pfam08968 189.154 -312505 pfam08970 43.3755 -286110 pfam08971 93.3559 -312506 pfam08972 89.4847 -312508 pfam08974 102.316 -312509 pfam08976 188.772 -286116 pfam08977 72.7207 -117544 pfam08978 474.533 -312510 pfam08979 92.9909 -312511 pfam08980 130.543 -312513 pfam08983 64.4609 -312517 pfam08987 149.904 -286125 pfam08988 49.2127 -312519 pfam08991 51.1265 -312520 pfam08992 133.718 -286130 pfam08993 163.593 -286131 pfam08994 151.725 -117561 pfam08995 134.743 -312522 pfam08997 59.2603 -312523 pfam08998 135.267 -286135 pfam08999 152.127 -312524 pfam09000 119.91 -312525 pfam09001 158.175 -312526 pfam09002 443.49 -117570 pfam09004 51.7515 -312528 pfam09005 49.7354 -286141 pfam09006 84.1366 -312529 pfam09007 116.774 -312530 pfam09008 174.701 -312531 pfam09009 491.185 -286145 pfam09010 113.957 -312532 pfam09012 66.5498 -286148 pfam09013 224.269 -312533 pfam09014 133.239 -286150 pfam09015 450.406 -312534 pfam09016 113.846 -117583 pfam09017 836.603 -312535 pfam09018 814.769 -286153 pfam09019 277.706 -286154 pfam09020 227.903 -312536 pfam09021 114.507 -286156 pfam09022 163.238 -286157 pfam09023 199.16 -286158 pfam09025 191.385 -286161 pfam09028 528.599 -312539 pfam09030 39.5863 -312540 pfam09032 65.0547 -312541 pfam09033 207.579 -312542 pfam09034 157.86 -286167 pfam09035 106.238 -312543 pfam09036 140.003 -286169 pfam09037 327.116 -286171 pfam09039 107.373 -312544 pfam09040 56.1921 -312545 pfam09041 104.513 -312546 pfam09042 36.1011 -312549 pfam09045 123.623 -286177 pfam09046 248.957 -312550 pfam09047 65.4879 -286179 pfam09048 100.99 -312551 pfam09049 56.5416 -312552 pfam09050 60.112 -286182 pfam09051 42.5348 -286183 pfam09052 820.526 -72471 pfam09053 342.817 -312553 pfam09055 129.336 -312554 pfam09056 100.756 -312555 pfam09057 295.964 -312556 pfam09058 69.917 -312557 pfam09060 61.1815 -286190 pfam09061 168.315 -286191 pfam09062 204.776 -312558 pfam09063 215.784 -312559 pfam09064 51.8098 -255160 pfam09067 128.308 -312562 pfam09069 106.995 -286197 pfam09071 103.007 -312564 pfam09072 25.6904 -312565 pfam09073 59.7854 -286200 pfam09074 189.634 -286201 pfam09075 74.3612 -312566 pfam09076 92.9165 -286206 pfam09080 120.242 -286207 pfam09081 94.2083 -312570 pfam09082 80.9054 -72501 pfam09083 141.016 -286213 pfam09088 317.056 -312576 pfam09092 196.412 -312578 pfam09094 132.551 -312579 pfam09095 272.648 -286219 pfam09096 377.55 -286220 pfam09097 420.646 -312580 pfam09098 296.024 -286222 pfam09099 93.265 -312581 pfam09100 164.47 -286224 pfam09101 464.214 -312582 pfam09102 287.473 -312584 pfam09104 166.637 -255184 pfam09105 122.626 -286230 pfam09108 277.285 -286231 pfam09109 327.457 -312587 pfam09110 56.7811 -312588 pfam09111 76.0019 -312591 pfam09114 172.98 -286237 pfam09116 138.566 -286240 pfam09119 139.011 -312595 pfam09121 49.2315 -117679 pfam09122 98.8421 -312596 pfam09123 118.863 -255195 pfam09125 80.0936 -312598 pfam09126 383.681 -286245 pfam09128 237.695 -286246 pfam09129 522.691 -117687 pfam09131 368.6 -312601 pfam09132 36.0976 -312603 pfam09134 93.177 -117692 pfam09136 134.57 -312605 pfam09138 107.707 -312607 pfam09140 412.618 -286255 pfam09142 50.3162 -149995 pfam09143 252.489 -72561 pfam09144 224.588 -286256 pfam09145 63.1238 -286257 pfam09147 328.864 -286261 pfam09151 76.1329 -286262 pfam09152 148.431 -286263 pfam09153 118.006 -286264 pfam09154 77.5743 -312612 pfam09155 216.197 -286266 pfam09156 560.481 -312613 pfam09157 42.5495 -286268 pfam09158 192.539 -312618 pfam09164 105.936 -312620 pfam09166 179.531 -312621 pfam09167 139.768 -312623 pfam09169 259.222 -312624 pfam09170 207.156 -312625 pfam09171 254.988 -312627 pfam09173 81.757 -312629 pfam09175 196.317 -286287 pfam09178 108.552 -286290 pfam09181 75.6689 -312634 pfam09182 75.1719 -312635 pfam09183 51.1234 -312636 pfam09184 130.653 -286294 pfam09185 276.616 -312637 pfam09186 30.8533 -286297 pfam09188 178.352 -286298 pfam09189 63.1591 -286299 pfam09190 41.4047 -312638 pfam09191 138.209 -312640 pfam09193 67.9977 -312641 pfam09194 514.278 -286305 pfam09196 131.631 -312643 pfam09197 99.0213 -72614 pfam09198 76.5842 -286307 pfam09199 96.6061 -312644 pfam09200 58.4142 -312645 pfam09201 196.07 -312646 pfam09202 95.6986 -312647 pfam09203 89.6708 -286312 pfam09204 80.8977 -312648 pfam09205 228.111 -312649 pfam09206 266.765 -312650 pfam09207 130.206 -286315 pfam09208 356.467 -312651 pfam09209 85.0302 -117765 pfam09212 316.151 -117766 pfam09213 640.536 -286319 pfam09214 1161.03 -286321 pfam09216 239.517 -286322 pfam09217 193.808 -312654 pfam09218 142.496 -286324 pfam09220 870.485 -312656 pfam09222 320.144 -312658 pfam09224 385.936 -286328 pfam09225 238.17 -312659 pfam09226 478.67 -286330 pfam09227 85.4795 -312660 pfam09228 113.632 -312662 pfam09230 283.396 -286334 pfam09231 1732.9 -286335 pfam09232 172.668 -312663 pfam09233 331.284 -312665 pfam09236 129.476 -150045 pfam09237 91.1707 -312666 pfam09238 100.874 -312667 pfam09239 158.856 -312668 pfam09240 82.8031 -286342 pfam09241 214.937 -286344 pfam09243 363.364 -312671 pfam09245 360.057 -204178 pfam09246 178.11 -312672 pfam09247 58.7998 -312674 pfam09249 137.605 -312675 pfam09250 50.0809 -312676 pfam09251 683.369 -312677 pfam09252 130.148 -312678 pfam09253 55.6519 -286354 pfam09254 270.081 -286355 pfam09255 265.45 -312679 pfam09256 48.2105 -312680 pfam09257 55.1365 -312682 pfam09260 78.8606 -312685 pfam09263 118.991 -286363 pfam09264 424.174 -286365 pfam09266 64.7246 -312687 pfam09267 173.474 -312690 pfam09270 182.513 -312691 pfam09271 86.588 -312692 pfam09272 197.593 -117819 pfam09274 135.579 -286372 pfam09275 212.275 -286373 pfam09276 213.786 -312695 pfam09279 136.613 -312697 pfam09281 146.07 -312701 pfam09286 80.7207 -192243 pfam09287 368.96 -117832 pfam09288 85.6165 -312702 pfam09289 31.3022 -312704 pfam09291 104.799 -312705 pfam09292 82.0716 -286386 pfam09293 225.27 -312706 pfam09294 66.9868 -286388 pfam09295 554.647 -312707 pfam09296 45.4445 -312708 pfam09297 35.2638 -286393 pfam09300 143.791 -286394 pfam09301 238.555 -286396 pfam09303 49.8327 -312712 pfam09304 151.309 -312713 pfam09305 64.0234 -286399 pfam09306 529.74 -312714 pfam09307 99.8466 -286401 pfam09308 276.132 -312715 pfam09309 300.479 -312716 pfam09310 384.266 -312717 pfam09311 346.1 -312718 pfam09312 155.503 -312720 pfam09316 236.863 -312723 pfam09321 284.508 -312725 pfam09323 101.181 -312733 pfam09331 129.343 -312739 pfam09338 483.951 -286429 pfam09339 40.05 -286432 pfam09342 201.622 -312743 pfam09344 328.424 -312747 pfam09348 95.7344 -312751 pfam09353 103.113 -312752 pfam09354 48.0272 -286444 pfam09355 127.238 -312754 pfam09357 213.567 -286453 pfam09364 694.18 -312763 pfam09367 167.406 -286461 pfam09372 44.1633 -286462 pfam09374 82.5256 -312769 pfam09376 43.7572 -312771 pfam09378 30.2041 -286467 pfam09379 57.2238 -286469 pfam09381 572.404 -312775 pfam09384 107.182 -286473 pfam09385 177.87 -286474 pfam09386 147.976 -312776 pfam09387 192.857 -312778 pfam09390 164.982 -312781 pfam09393 119.578 -312783 pfam09396 71.9483 -286484 pfam09399 181.579 -286486 pfam09401 207.305 -286488 pfam09403 87.908 -286489 pfam09404 730.9 -312787 pfam09405 72.8872 -312788 pfam09406 47.4358 -312789 pfam09407 101.378 -312790 pfam09408 292.437 -312791 pfam09409 44.9273 -312796 pfam09415 47.4898 -312798 pfam09418 576.045 -286502 pfam09419 200.629 -286507 pfam09424 147.354 -312804 pfam09426 195.19 -312806 pfam09428 65.332 -312808 pfam09430 105.505 -312809 pfam09431 98.6872 -286515 pfam09432 162.457 -312810 pfam09435 136.486 -312811 pfam09436 98.1601 -117976 pfam09437 160.095 -312812 pfam09438 121.894 -312813 pfam09439 221.919 -312815 pfam09441 254.089 -312817 pfam09443 48.7731 -312818 pfam09444 50.6098 -312821 pfam09447 57.1999 -312822 pfam09448 150.461 -312824 pfam09450 134.094 -286530 pfam09452 100.843 -312826 pfam09453 31.3169 -312827 pfam09454 52.8465 -312830 pfam09457 51.1814 -312832 pfam09459 102.089 -286537 pfam09460 239.302 -312833 pfam09461 56.0696 -312834 pfam09462 302.919 -312835 pfam09463 46.5483 -312836 pfam09465 93.269 -312837 pfam09466 88.8174 -286543 pfam09467 134.859 -312839 pfam09469 139.21 -312841 pfam09471 334.028 -312842 pfam09472 63.7779 -286549 pfam09474 139.966 -286550 pfam09475 245.23 -286552 pfam09477 140.023 -286553 pfam09478 75.8156 -312848 pfam09483 112.96 -312849 pfam09484 327.737 -286561 pfam09486 81.7167 -312851 pfam09487 105.58 -312852 pfam09488 475.957 -312853 pfam09489 35.8732 -312855 pfam09491 320.65 -312856 pfam09492 421.006 -312857 pfam09493 48.4109 -286574 pfam09499 349.963 -312864 pfam09501 38.0337 -286577 pfam09502 119.976 -312865 pfam09504 231.744 -312866 pfam09505 785.145 -312867 pfam09506 628.134 -312868 pfam09507 246.657 -312870 pfam09509 94.1846 -312871 pfam09510 129.854 -312872 pfam09511 86.4953 -312873 pfam09512 119.256 -312874 pfam09514 28.8833 -312875 pfam09515 133.127 -312876 pfam09516 246.413 -312877 pfam09517 232.616 -286590 pfam09518 394.628 -312878 pfam09519 466.822 -312879 pfam09520 197.882 -312880 pfam09521 342.04 -312882 pfam09524 82.2989 -312883 pfam09526 85.5609 -312885 pfam09528 56.0013 -286602 pfam09533 237.69 -312889 pfam09534 41.8261 -312890 pfam09535 308.44 -312891 pfam09536 140.443 -312892 pfam09537 83.409 -312894 pfam09539 82.6996 -312895 pfam09543 108.162 -312896 pfam09544 167.129 -286611 pfam09545 707.852 -312897 pfam09546 139.888 -312898 pfam09547 704.913 -312899 pfam09548 55.6069 -312900 pfam09549 283.555 -312901 pfam09550 46.9569 -312902 pfam09551 122.147 -286618 pfam09552 552.323 -312903 pfam09553 265.698 -286620 pfam09554 599.576 -312904 pfam09556 513.434 -312905 pfam09557 58.6192 -286623 pfam09558 105.272 -312906 pfam09559 200.848 -312907 pfam09560 62.8222 -312908 pfam09561 342.305 -312909 pfam09562 515.046 -312910 pfam09563 435.836 -286628 pfam09564 485.281 -312911 pfam09565 267.741 -312912 pfam09566 296.273 -312913 pfam09567 258.33 -312914 pfam09568 185.977 -312915 pfam09569 399.916 -312916 pfam09570 414.07 -286631 pfam09571 482.054 -312917 pfam09572 262.845 -286633 pfam09573 503.469 -286634 pfam09574 55.5568 -286635 pfam09575 50.3972 -312918 pfam09577 268.763 -312919 pfam09578 31.2851 -312920 pfam09579 28.1594 -312921 pfam09580 79.2764 -312922 pfam09581 51.0586 -312923 pfam09582 193.555 -312926 pfam09585 106.091 -312930 pfam09589 161.177 -150302 pfam09590 906.989 -286649 pfam09591 166.741 -286650 pfam09592 182.89 -150305 pfam09593 131.909 -312932 pfam09595 207.526 -312933 pfam09596 71.555 -312935 pfam09598 30.3633 -286655 pfam09599 321.931 -286658 pfam09602 158.173 -312941 pfam09606 416.717 -286662 pfam09607 75.4348 -312943 pfam09609 652.704 -312944 pfam09610 31.7487 -312947 pfam09613 123.979 -312950 pfam09617 153.242 -312953 pfam09620 79.6373 -286674 pfam09621 228.937 -312954 pfam09622 235.162 -312955 pfam09623 166.461 -312957 pfam09625 109.435 -312958 pfam09626 132.857 -286680 pfam09627 198.412 -255461 pfam09628 99.7194 -286681 pfam09629 144.056 -312959 pfam09630 110.781 -312961 pfam09633 153.409 -255464 pfam09635 143.867 -255465 pfam09636 140.147 -286688 pfam09638 273.754 -286689 pfam09639 94.7368 -312964 pfam09640 163.127 -286691 pfam09641 338.661 -286692 pfam09642 111.029 -312965 pfam09643 110.133 -286694 pfam09644 138.639 -286695 pfam09645 182.308 -312966 pfam09646 167.477 -312967 pfam09648 122.85 -312968 pfam09649 31.4629 -312970 pfam09651 128.916 -286701 pfam09652 81.5716 -312971 pfam09654 273.811 -312972 pfam09655 139.612 -312973 pfam09656 35.6947 -286705 pfam09657 616.712 -286706 pfam09658 714.109 -312974 pfam09659 377.18 -312975 pfam09660 204.028 -312976 pfam09661 212.854 -286710 pfam09662 169.012 -312978 pfam09664 129.401 -286713 pfam09665 1109.78 -312979 pfam09666 79.1385 -312980 pfam09667 242.915 -312981 pfam09668 200.656 -312982 pfam09669 57.1731 -312983 pfam09670 320.111 -286721 pfam09675 175.677 -286725 pfam09679 178.728 -312989 pfam09680 24.7355 -312991 pfam09682 66.5889 -312992 pfam09683 57.7209 -312993 pfam09684 158.201 -312997 pfam09688 146.408 -286735 pfam09689 33.5495 -286736 pfam09690 40.8836 -312998 pfam09692 326.5 -286739 pfam09693 37.1031 -286740 pfam09694 263.614 -286741 pfam09695 182.142 -312999 pfam09696 62.9743 -313000 pfam09697 86.596 -286744 pfam09698 29.2617 -313001 pfam09699 30.4104 -313002 pfam09700 194.193 -313003 pfam09701 60.724 -286748 pfam09702 120.019 -286749 pfam09703 321.062 -313004 pfam09704 79.3715 -313005 pfam09706 84.1901 -313006 pfam09707 84.4529 -286754 pfam09710 475.232 -313008 pfam09711 159.013 -313009 pfam09712 260.853 -313012 pfam09716 33.7659 -313026 pfam09730 797.128 -313029 pfam09733 142.414 -313031 pfam09735 1170.49 -313032 pfam09736 95.7306 -313033 pfam09737 455.536 -313037 pfam09741 197.508 -313038 pfam09742 190.209 -313042 pfam09746 337.102 -313043 pfam09747 80.4305 -313046 pfam09750 82.3614 -313047 pfam09751 178.727 -286795 pfam09752 431.856 -313048 pfam09753 198.62 -313050 pfam09755 406.495 -313051 pfam09756 145.188 -313053 pfam09758 145.741 -313054 pfam09759 89.8095 -313056 pfam09763 513.03 -313057 pfam09764 204.729 -313058 pfam09765 265.661 -313060 pfam09767 204.002 -313063 pfam09770 835.042 -313064 pfam09771 166.641 -313065 pfam09772 320.504 -313066 pfam09773 705.223 -313068 pfam09775 103.911 -313069 pfam09776 131.357 -313070 pfam09777 248.413 -313072 pfam09779 92.7662 -313073 pfam09781 253.405 -286822 pfam09782 150.661 -313074 pfam09783 133.808 -313077 pfam09786 543.613 -313078 pfam09787 308.578 -313079 pfam09788 345.946 -313080 pfam09789 290.362 -313081 pfam09790 170.266 -313084 pfam09793 41.3747 -313085 pfam09794 435.91 -313086 pfam09795 148.268 -313087 pfam09796 65.1932 -313088 pfam09797 236.815 -313089 pfam09798 260.32 -313090 pfam09799 53.3262 -313092 pfam09802 171.986 -313095 pfam09805 39.9077 -313096 pfam09806 142.296 -313097 pfam09807 307.336 -313098 pfam09808 118.452 -286847 pfam09809 109.338 -313099 pfam09810 232.938 -313100 pfam09811 31.2408 -313101 pfam09812 141.099 -286851 pfam09813 160.955 -313102 pfam09814 145.21 -313103 pfam09815 123.074 -313104 pfam09816 68.4267 -313106 pfam09818 419.341 -313108 pfam09820 269.768 -313110 pfam09822 97.7103 -286861 pfam09823 190.241 -313111 pfam09824 193.555 -313113 pfam09826 349.97 -313119 pfam09832 31.7964 -313120 pfam09834 42.576 -313123 pfam09837 84.1836 -313126 pfam09840 127.389 -313128 pfam09843 245.275 -313129 pfam09844 115.743 -313130 pfam09845 131.735 -313131 pfam09846 131.611 -286883 pfam09847 226.158 -313132 pfam09848 252.956 -313136 pfam09852 246.497 -313137 pfam09853 64.3216 -313138 pfam09855 108.819 -313140 pfam09858 49.5125 -313143 pfam09861 272.146 -313145 pfam09863 438.233 -286903 pfam09868 199.466 -313150 pfam09869 193.687 -313151 pfam09870 57.2852 -313152 pfam09871 68.9089 -313153 pfam09872 321.013 -313154 pfam09873 201.5 -255617 pfam09874 227.331 -313155 pfam09875 92.2422 -313156 pfam09876 100.816 -286911 pfam09877 85.8312 -313157 pfam09878 205.59 -313158 pfam09879 214.518 -313159 pfam09880 78.4769 -313160 pfam09881 53.7453 -313161 pfam09882 69.236 -313162 pfam09883 217.111 -313163 pfam09884 104.193 -313164 pfam09885 180.858 -313165 pfam09886 187.417 -313166 pfam09887 650.489 -313167 pfam09888 141.209 -286923 pfam09889 78.5977 -313168 pfam09890 218.65 -313169 pfam09891 166.414 -313170 pfam09892 209.026 -313171 pfam09893 160.901 -313172 pfam09894 223.719 -313173 pfam09895 56.4933 -313174 pfam09897 183.553 -313177 pfam09900 43.2896 -313182 pfam09906 30.7619 -313184 pfam09909 644.865 -313185 pfam09910 557.734 -313192 pfam09919 46.397 -313193 pfam09920 129.275 -313194 pfam09921 176.769 -313197 pfam09924 281.445 -313199 pfam09926 62.4368 -313201 pfam09929 127.334 -313202 pfam09930 99.9964 -313211 pfam09940 108.033 -313212 pfam09941 109.243 -313213 pfam09943 105.133 -313215 pfam09946 56.9185 -286972 pfam09947 92.8376 -313219 pfam09951 83.0394 -286977 pfam09952 148.347 -313220 pfam09953 62.0549 -313221 pfam09954 25.6956 -313223 pfam09956 34.1303 -313224 pfam09957 40.2683 -313225 pfam09958 244.051 -313226 pfam09959 762.261 -286986 pfam09961 136.043 -313229 pfam09963 69.6759 -313230 pfam09964 68.4589 -313231 pfam09965 168.253 -286992 pfam09967 143.297 -313233 pfam09968 250.809 -313234 pfam09969 88.4044 -313235 pfam09970 184.482 -313236 pfam09971 220.34 -313238 pfam09973 154.735 -313239 pfam09974 138.639 -313241 pfam09977 34.7175 -313242 pfam09979 183.996 -313246 pfam09983 119.712 -313248 pfam09985 172.865 -313249 pfam09986 189.032 -255677 pfam09987 200.199 -313250 pfam09988 126.561 -313252 pfam09990 56.08 -313253 pfam09991 129.261 -313260 pfam09999 155.544 -313262 pfam10002 205.074 -313264 pfam10004 115.504 -313265 pfam10005 112.366 -313266 pfam10006 35.2071 -287028 pfam10007 92.7344 -313268 pfam10009 295.322 -313270 pfam10012 108.472 -313273 pfam10015 89.6217 -287036 pfam10016 144.868 -287038 pfam10018 127.561 -313275 pfam10020 91.1953 -313276 pfam10021 183.931 -313277 pfam10022 415.735 -313279 pfam10025 33.2953 -313281 pfam10027 89.2611 -313283 pfam10029 110.363 -313284 pfam10030 267.894 -313286 pfam10032 132.327 -313291 pfam10037 347.83 -313292 pfam10038 67.2069 -287057 pfam10039 136.632 -313296 pfam10043 127.184 -313297 pfam10044 121.137 -313299 pfam10046 48.3523 -313301 pfam10048 57.6367 -313303 pfam10050 104.597 -313304 pfam10051 146.304 -313306 pfam10053 279.03 -313308 pfam10055 37.8338 -313310 pfam10057 78.6912 -313311 pfam10058 61.9202 -313312 pfam10060 231.813 -313313 pfam10061 115.822 -313314 pfam10062 96.7876 -313315 pfam10063 139.982 -313316 pfam10065 259.176 -313318 pfam10067 84.7525 -313319 pfam10069 85.7336 -313321 pfam10071 299.159 -313323 pfam10074 58.7828 -313324 pfam10075 98.4906 -313325 pfam10076 116.632 -313326 pfam10077 162.493 -313327 pfam10078 113.538 -313328 pfam10079 492.041 -313331 pfam10082 331.94 -287097 pfam10083 216.521 -313332 pfam10084 126.181 -313337 pfam10091 196.378 -313338 pfam10092 317.954 -313340 pfam10094 167.411 -313341 pfam10095 417.444 -313342 pfam10096 103.943 -313348 pfam10102 57.355 -313353 pfam10107 192.554 -287120 pfam10108 200.136 -313356 pfam10111 331.164 -313357 pfam10112 99.6483 -313358 pfam10113 812.385 -313362 pfam10117 259.914 -313365 pfam10120 111.476 -287133 pfam10122 77.7094 -313366 pfam10123 269.971 -313367 pfam10124 414.695 -313368 pfam10125 264.675 -313369 pfam10126 128.943 -313370 pfam10127 197.916 -313371 pfam10128 123.12 -313372 pfam10129 219.768 -287141 pfam10130 109.033 -287142 pfam10131 471.126 -313373 pfam10133 43.2733 -313374 pfam10134 221.768 -313379 pfam10139 1004.9 -313381 pfam10141 162.416 -313387 pfam10147 178.877 -287158 pfam10148 286.046 -313388 pfam10149 246.749 -313390 pfam10151 820.504 -313393 pfam10154 326.999 -313398 pfam10160 205.632 -313399 pfam10161 114.038 -313400 pfam10162 43.3691 -313402 pfam10164 67.1853 -313406 pfam10168 851.251 -313408 pfam10170 110.006 -313410 pfam10172 62.3838 -313411 pfam10173 91.4972 -313412 pfam10174 784.51 -313413 pfam10175 49.6792 -313414 pfam10176 240.616 -313415 pfam10177 186.367 -313420 pfam10182 90.0563 -313421 pfam10183 85.6196 -313422 pfam10184 122.372 -313423 pfam10185 238.513 -313425 pfam10187 53.3845 -313426 pfam10188 195.882 -313428 pfam10190 88.4423 -313429 pfam10192 164.339 -313430 pfam10193 51.692 -313431 pfam10195 55.7468 -313434 pfam10199 40.9325 -313435 pfam10203 67.6137 -313437 pfam10205 97.9356 -313439 pfam10208 195.929 -313440 pfam10209 146.11 -313443 pfam10212 777.067 -287217 pfam10213 140.979 -313446 pfam10216 541.037 -313447 pfam10217 100.799 -313448 pfam10218 125.861 -313449 pfam10220 881.287 -313450 pfam10221 769.975 -287225 pfam10222 825.646 -313452 pfam10224 78.8991 -313453 pfam10225 110.751 -313454 pfam10226 179.964 -313456 pfam10229 267.361 -313457 pfam10230 235.263 -313458 pfam10231 145.079 -313461 pfam10234 223.982 -313462 pfam10235 52.712 -313465 pfam10238 111.57 -313466 pfam10239 315.719 -313468 pfam10241 56.3704 -313469 pfam10243 286.757 -313470 pfam10244 121.988 -313471 pfam10245 306.391 -313472 pfam10246 186.932 -313473 pfam10247 81.8404 -313474 pfam10248 98.5099 -313478 pfam10252 42.9437 -313479 pfam10253 36.1712 -313480 pfam10254 416.696 -313481 pfam10255 286.025 -313483 pfam10257 224.125 -313484 pfam10258 63.3032 -313485 pfam10259 135.832 -313487 pfam10261 179.824 -313491 pfam10265 583.99 -313493 pfam10267 341.967 -313494 pfam10268 647.751 -313495 pfam10269 112.506 -313496 pfam10270 71.1205 -313497 pfam10271 473.818 -313498 pfam10272 363.107 -255872 pfam10274 168.241 -313500 pfam10275 202.123 -313502 pfam10277 82.2942 -287279 pfam10278 183.879 -192511 pfam10279 31.3294 -118808 pfam10284 124.94 -118809 pfam10285 661.284 -313510 pfam10291 240.295 -313511 pfam10292 346.176 -313513 pfam10294 184.843 -313515 pfam10296 502.496 -287292 pfam10297 31.0104 -313516 pfam10298 56.0163 -287294 pfam10300 444.471 -313517 pfam10302 84.2587 -313518 pfam10303 118.419 -313519 pfam10304 27.7213 -313521 pfam10306 75.3062 -313522 pfam10307 194.706 -313523 pfam10309 46.7615 -313525 pfam10311 122.303 -313527 pfam10313 54.2908 -313528 pfam10315 100.446 -313532 pfam10319 348.398 -313534 pfam10322 224.33 -313535 pfam10323 197.072 -313537 pfam10325 140.023 -313539 pfam10327 257.088 -313541 pfam10329 164.291 -313542 pfam10330 116.503 -313543 pfam10332 91.8057 -287322 pfam10333 157.475 -313544 pfam10334 199.085 -313545 pfam10335 99.9613 -313546 pfam10336 113.039 -313547 pfam10337 353.199 -313548 pfam10338 34.4844 -313549 pfam10340 421.166 -313550 pfam10341 59.2335 -313551 pfam10342 42.2788 -313552 pfam10343 250.103 -313553 pfam10344 292.807 -313554 pfam10345 353.204 -313557 pfam10348 83.0734 -118874 pfam10353 191.321 -313561 pfam10355 254.769 -287343 pfam10356 156.871 -313565 pfam10360 113.967 -313566 pfam10361 294.551 -287350 pfam10364 153.776 -287351 pfam10365 266.419 -313568 pfam10366 114.636 -313569 pfam10367 125.442 -313570 pfam10368 134.339 -313573 pfam10371 60.2015 -313574 pfam10372 98.1433 -313577 pfam10375 30.7257 -313578 pfam10376 141.455 -313580 pfam10378 65.162 -287365 pfam10379 390.721 -313581 pfam10380 97.1629 -287372 pfam10386 194.292 -313588 pfam10388 266.923 -313589 pfam10389 26.6221 -192566 pfam10392 88.1303 -313592 pfam10393 59.2484 -313594 pfam10395 465.254 -313597 pfam10398 107.135 -313598 pfam10399 36.4405 -313599 pfam10400 35.6359 -313605 pfam10407 81.0487 -313606 pfam10408 287.161 -313610 pfam10412 421.309 -313614 pfam10416 42.7257 -313618 pfam10420 70.461 -313619 pfam10421 296.692 -255978 pfam10422 112.433 -313621 pfam10425 101.3 -313622 pfam10427 31.9616 -287410 pfam10429 196.596 -313624 pfam10430 114.566 -313626 pfam10432 100.331 -313627 pfam10433 158.544 -313633 pfam10439 26.1785 -313637 pfam10443 533.41 -313639 pfam10445 47.7744 -151025 pfam10450 255.356 -313642 pfam10451 275.62 -313643 pfam10452 373.23 -313644 pfam10453 30.2964 -313645 pfam10454 134.735 -256002 pfam10455 287.813 -313646 pfam10456 382.976 -313648 pfam10458 68.8164 -313650 pfam10460 564.873 -313651 pfam10461 51.6968 -287440 pfam10462 342.116 -287441 pfam10463 267.933 -287442 pfam10464 418.771 -287443 pfam10465 301.256 -287444 pfam10466 63.5151 -313652 pfam10467 197.841 -313653 pfam10468 105.841 -313654 pfam10469 125.839 -313655 pfam10470 84.5956 -313657 pfam10472 581.386 -313658 pfam10473 73.8751 -313660 pfam10475 355.512 -313661 pfam10476 216.496 -313662 pfam10477 356.581 -313663 pfam10479 1314.73 -119000 pfam10480 373.256 -313664 pfam10481 359.573 -313666 pfam10483 145.419 -313668 pfam10486 1271.56 -313669 pfam10487 628.161 -313670 pfam10488 283.374 -313671 pfam10490 85.1691 -313673 pfam10492 39.4072 -313674 pfam10493 703.375 -313675 pfam10494 134.688 -313676 pfam10495 51.4364 -313678 pfam10497 125.034 -313680 pfam10500 139.255 -313682 pfam10502 121.998 -313683 pfam10503 320.853 -313684 pfam10504 228.732 -313685 pfam10505 224.096 -313688 pfam10508 545.099 -313690 pfam10510 157.819 -287482 pfam10511 28.9591 -313693 pfam10514 164.012 -313694 pfam10515 65.7868 -287487 pfam10516 49.7689 -313700 pfam10523 35.0543 -313702 pfam10525 53.9256 -313703 pfam10529 1e+06 -287498 pfam10530 73.2748 -119052 pfam10532 132.99 -313706 pfam10534 98.446 -119058 pfam10538 45.52 -313710 pfam10540 74.6016 -313715 pfam10545 58.8341 -313716 pfam10546 107.403 -313717 pfam10547 131.987 -287513 pfam10548 93.9313 -287514 pfam10549 80.1857 -119070 pfam10550 29.0387 -313719 pfam10552 100.792 -287517 pfam10553 114.726 -313721 pfam10555 29.1822 -313725 pfam10561 313.175 -313726 pfam10562 37.083 -313727 pfam10563 264.832 -313729 pfam10565 698.105 -313731 pfam10567 319.696 -287532 pfam10570 100.893 -313734 pfam10571 37.9338 -313735 pfam10572 279.75 -287535 pfam10573 191.329 -313736 pfam10574 330.849 -313738 pfam10577 951.109 -287539 pfam10578 1e+06 -313739 pfam10579 145.818 -313740 pfam10580 33.2736 -313741 pfam10581 58.802 -313742 pfam10583 74.4887 -313745 pfam10587 23.5965 -313749 pfam10591 113.95 -313750 pfam10592 125.909 -313751 pfam10593 179.689 -287553 pfam10595 217.344 -313752 pfam10596 233.128 -313753 pfam10597 239.175 -287556 pfam10598 121.934 -313754 pfam10599 61.6533 -313755 pfam10600 96.6995 -313757 pfam10602 110.743 -313758 pfam10604 38.2179 -313759 pfam10605 972.234 -313760 pfam10606 54.7903 -313765 pfam10611 154.399 -313766 pfam10612 153.398 -313770 pfam10616 116.616 -313772 pfam10618 94.9982 -313774 pfam10622 125.189 -151143 pfam10623 140.969 -287579 pfam10624 344.338 -313778 pfam10628 181.199 -313779 pfam10629 48.5185 -313780 pfam10630 168.768 -313781 pfam10631 138.132 -313782 pfam10632 55.6822 -287588 pfam10633 53.1376 -313786 pfam10637 304.613 -313787 pfam10638 151.398 -313788 pfam10639 115.072 -287595 pfam10640 269.237 -313789 pfam10642 37.1918 -313791 pfam10644 106.572 -313792 pfam10645 59.9726 -313793 pfam10646 32.3985 -313794 pfam10647 134.798 -313795 pfam10648 63.7815 -313796 pfam10649 145.383 -313798 pfam10651 85.0491 -313799 pfam10652 201.572 -287607 pfam10653 114.8 -287608 pfam10654 217.706 -313800 pfam10655 145.145 -287609 pfam10656 104.057 -287610 pfam10657 277.125 -287611 pfam10658 56.5565 -287612 pfam10659 51.6418 -313801 pfam10660 56.1525 -287614 pfam10661 141.179 -287615 pfam10662 212.131 -313802 pfam10664 189.364 -313803 pfam10665 114.781 -313804 pfam10666 228.482 -313805 pfam10667 186.755 -313806 pfam10668 94.685 -287621 pfam10669 189.172 -287624 pfam10672 575.29 -313809 pfam10673 157.432 -313812 pfam10676 48.0103 -313813 pfam10677 65.8559 -313817 pfam10681 403.47 -287634 pfam10682 445.704 -119203 pfam10683 127.67 -313818 pfam10684 127.935 -313819 pfam10685 23.4464 -151186 pfam10690 97.7212 -313825 pfam10693 88.4329 -313828 pfam10697 62.6033 -313829 pfam10698 62.6528 -313831 pfam10702 142.726 -313833 pfam10704 42.5396 -313834 pfam10705 163.325 -287651 pfam10706 167.52 -313835 pfam10707 213.737 -313836 pfam10708 31.4131 -287654 pfam10709 103.344 -313837 pfam10710 108.521 -313838 pfam10711 81.9301 -287657 pfam10712 482.326 -313841 pfam10716 75.417 -287662 pfam10717 47.7667 -313842 pfam10718 112.366 -313844 pfam10720 415.872 -287666 pfam10721 76.842 -313845 pfam10722 47.7777 -287668 pfam10723 120.114 -313846 pfam10724 79.8803 -313848 pfam10726 157.74 -287672 pfam10727 156.946 -313850 pfam10729 144.016 -313851 pfam10730 192.495 -287676 pfam10731 117.957 -313852 pfam10733 82.5225 -313853 pfam10734 43.3598 -287680 pfam10735 96.5492 -119256 pfam10736 53.9882 -313855 pfam10738 179.74 -313856 pfam10739 124.216 -313857 pfam10740 177.816 -287685 pfam10741 82.341 -313858 pfam10742 81.8779 -313859 pfam10743 120.746 -313861 pfam10745 58.4541 -287690 pfam10746 74.939 -313862 pfam10747 101.51 -313863 pfam10748 214.391 -313864 pfam10749 113.694 -313866 pfam10751 133.284 -313867 pfam10752 117.471 -313870 pfam10755 228.756 -313871 pfam10756 33.0266 -313872 pfam10758 590.089 -313873 pfam10759 195.659 -313874 pfam10761 150.928 -313875 pfam10763 99.6823 -313876 pfam10764 45.6343 -313877 pfam10765 79.8195 -313880 pfam10768 61.0856 -313882 pfam10771 69.2071 -313883 pfam10772 223.389 -287715 pfam10774 101.305 -313884 pfam10775 59.1709 -313885 pfam10776 398.845 -313887 pfam10778 93.7607 -313888 pfam10779 41.0999 -313892 pfam10783 97.4137 -313893 pfam10785 93.8355 -313895 pfam10787 193.463 -256166 pfam10789 110.627 -287728 pfam10790 140.56 -313897 pfam10791 99.227 -313898 pfam10792 96.92 -287731 pfam10793 298.869 -287732 pfam10794 194.536 -287733 pfam10795 97.5271 -313900 pfam10797 410.875 -313902 pfam10799 215.196 -313903 pfam10800 129.106 -313904 pfam10801 41.875 -313905 pfam10802 100.631 -313906 pfam10803 82.8726 -287742 pfam10804 290.629 -313907 pfam10805 107.44 -313908 pfam10806 130.491 -287745 pfam10807 184.794 -151258 pfam10808 121.849 -313909 pfam10809 66.2647 -287747 pfam10810 87.9723 -287748 pfam10811 260.834 -287749 pfam10812 219.666 -287750 pfam10813 52.3911 -313910 pfam10814 112.218 -313911 pfam10815 72.8625 -313912 pfam10816 160.408 -287754 pfam10817 140.852 -313913 pfam10818 74.0106 -287756 pfam10819 85.141 -313914 pfam10820 131.931 -313915 pfam10821 123.304 -313916 pfam10823 32.8999 -313917 pfam10824 60.0376 -313918 pfam10825 28.2136 -313919 pfam10826 94.1575 -287763 pfam10827 138.401 -313920 pfam10828 92.5824 -313921 pfam10829 144.472 -313923 pfam10831 91.6643 -287769 pfam10833 241.57 -287770 pfam10834 106.176 -313925 pfam10835 109.477 -287772 pfam10836 157.431 -287773 pfam10837 119.674 -313926 pfam10838 339.716 -287774 pfam10839 113.981 -287776 pfam10841 80.1654 -313928 pfam10842 66.4786 -313929 pfam10843 338.303 -313930 pfam10844 64.1931 -313931 pfam10845 100.966 -313932 pfam10846 246.741 -287781 pfam10847 175.278 -287782 pfam10848 160.286 -287783 pfam10849 104.384 -313933 pfam10850 114.357 -313934 pfam10851 152.817 -313935 pfam10852 53.9159 -313936 pfam10853 44.1952 -287788 pfam10854 76.5454 -287789 pfam10855 55.081 -287790 pfam10856 186.544 -287791 pfam10857 75.1402 -313937 pfam10858 358.666 -313938 pfam10859 138.345 -287794 pfam10860 180.5 -313940 pfam10862 216.755 -313941 pfam10863 108.585 -313942 pfam10864 131.27 -313943 pfam10865 99.2815 -313944 pfam10866 320.083 -287800 pfam10867 112.511 -313946 pfam10869 143.029 -287802 pfam10870 102.008 -313947 pfam10871 927.178 -287804 pfam10872 75.5038 -313948 pfam10873 199.67 -313949 pfam10874 165.038 -287807 pfam10875 271.593 -313951 pfam10877 166.475 -313952 pfam10878 101.202 -287811 pfam10879 120.981 -313953 pfam10880 139.623 -313955 pfam10882 69.9748 -313956 pfam10883 91.7693 -287815 pfam10884 104.225 -287816 pfam10885 187.992 -287817 pfam10886 90.5096 -287818 pfam10887 508.879 -287819 pfam10888 128.843 -313957 pfam10890 104.823 -151339 pfam10891 136.923 -287821 pfam10892 105.93 -313958 pfam10894 119.447 -313959 pfam10896 121.961 -313960 pfam10897 488.459 -313961 pfam10898 151.711 -313962 pfam10899 174.351 -313963 pfam10901 78.6992 -313965 pfam10903 184.133 -287827 pfam10904 188.74 -313966 pfam10905 72.7356 -313967 pfam10906 67.9935 -151356 pfam10909 70.0791 -287830 pfam10910 160.4 -151358 pfam10911 124.535 -313970 pfam10912 93.4505 -313971 pfam10913 95.8844 -313972 pfam10914 44.465 -313973 pfam10915 400.009 -313974 pfam10916 147.292 -287835 pfam10917 29.8009 -313975 pfam10918 128.629 -287836 pfam10920 227.396 -287837 pfam10921 179.516 -313977 pfam10923 612.96 -287839 pfam10924 358.356 -313978 pfam10925 61.859 -313979 pfam10926 289.105 -287842 pfam10927 323.775 -287843 pfam10928 93.3499 -313980 pfam10929 64.8973 -287845 pfam10930 95.5155 -313981 pfam10931 46.6526 -313983 pfam10933 443.595 -313984 pfam10934 44.4872 -313985 pfam10935 50.6149 -313986 pfam10936 141.246 -313987 pfam10937 62.2966 -313988 pfam10938 81.1787 -313989 pfam10939 76.8845 -287855 pfam10940 62.4803 -313990 pfam10941 129.669 -313991 pfam10942 64.0879 -287858 pfam10943 424.891 -313992 pfam10944 74.5221 -287860 pfam10945 66.6167 -313993 pfam10946 271.085 -313994 pfam10947 33.7492 -313995 pfam10948 58.0649 -313996 pfam10949 204.849 -313997 pfam10950 123.845 -287867 pfam10952 230.834 -313999 pfam10953 124.668 -314000 pfam10954 146.477 -314002 pfam10956 63.5018 -314004 pfam10958 41.4766 -314005 pfam10960 68.5055 -314006 pfam10961 31.1052 -314007 pfam10962 297.415 -314008 pfam10963 93.5449 -287878 pfam10964 118.084 -314009 pfam10965 81.7736 -314010 pfam10966 32.9687 -314011 pfam10967 41.967 -314012 pfam10968 28.4685 -314013 pfam10969 103.864 -287884 pfam10970 173.413 -287885 pfam10971 120.95 -314016 pfam10974 164.688 -314018 pfam10976 76.1731 -314021 pfam10979 28.1554 -314025 pfam10983 79.1863 -314026 pfam10984 97.6792 -314028 pfam10986 128.944 -314030 pfam10988 93.8348 -314031 pfam10989 86.4757 -314032 pfam10990 48.2723 -314034 pfam10992 62.0657 -314037 pfam10995 322.276 -314040 pfam10998 71.3796 -314041 pfam10999 47.683 -314043 pfam11001 124.218 -314044 pfam11002 68.8674 -314045 pfam11003 34.0607 -314047 pfam11005 127.771 -314048 pfam11006 65.4019 -314049 pfam11007 33.8302 -314050 pfam11008 128.592 -314051 pfam11009 110.295 -314052 pfam11010 248.362 -314053 pfam11011 68.3917 -314054 pfam11012 113.51 -314056 pfam11014 84.6328 -314057 pfam11015 105.796 -314058 pfam11016 180.443 -314060 pfam11018 109.402 -314061 pfam11019 257.664 -314062 pfam11020 119.356 -314063 pfam11021 28.051 -314064 pfam11022 54.1159 -314065 pfam11023 183.368 -314067 pfam11025 314.486 -314069 pfam11027 57.3011 -314071 pfam11029 53.597 -287945 pfam11031 358.684 -314072 pfam11032 380.496 -314073 pfam11033 171.1 -314074 pfam11034 53.0859 -314075 pfam11035 263.887 -151483 pfam11036 80.4732 -314076 pfam11037 182.662 -287951 pfam11038 492.603 -314077 pfam11039 231.247 -287956 pfam11043 193.804 -287957 pfam11044 76.9752 -314080 pfam11045 98.5327 -314081 pfam11046 236.177 -287960 pfam11047 606.584 -287961 pfam11049 140.651 -287962 pfam11050 441.12 -314082 pfam11051 185.101 -287965 pfam11053 249.274 -287966 pfam11054 356.908 -314084 pfam11055 510.274 -314085 pfam11056 150.186 -314086 pfam11057 97.1647 -287970 pfam11058 115.275 -314087 pfam11059 282.32 -314088 pfam11060 230.026 -314092 pfam11065 101.799 -314095 pfam11068 90.2606 -314097 pfam11070 111.093 -314098 pfam11071 212.499 -314099 pfam11072 123.936 -314100 pfam11073 500.364 -314103 pfam11076 166.532 -314104 pfam11077 139.441 -314106 pfam11079 380.857 -314108 pfam11081 77.7394 -287992 pfam11082 130.284 -314109 pfam11083 114.124 -314110 pfam11084 252.581 -314111 pfam11085 236.445 -151532 pfam11087 50.2911 -287997 pfam11088 132.117 -151535 pfam11090 137.616 -314113 pfam11091 343.761 -314114 pfam11092 106.425 -314115 pfam11093 80.8482 -288002 pfam11094 36.3964 -314116 pfam11095 113.421 -288004 pfam11097 141.37 -288005 pfam11098 175.832 -314117 pfam11099 128.753 -314118 pfam11100 89.6737 -314121 pfam11103 176.545 -314122 pfam11104 376.212 -314123 pfam11105 173.915 -314124 pfam11106 30.2761 -288014 pfam11108 116.461 -314126 pfam11109 133.266 -314127 pfam11110 328.903 -314128 pfam11111 219.473 -314129 pfam11112 81.128 -288018 pfam11113 69.3198 -314130 pfam11114 127.941 -288020 pfam11115 138.705 -314131 pfam11116 69.5774 -288024 pfam11119 88.7279 -314134 pfam11120 45.4637 -288026 pfam11121 46.6669 -314135 pfam11122 65.3908 -288028 pfam11123 160.221 -314136 pfam11124 290.69 -288030 pfam11125 81.2525 -288031 pfam11126 93.1223 -314137 pfam11127 27.9966 -288033 pfam11128 300.801 -151573 pfam11129 226.446 -288035 pfam11131 33.8541 -256308 pfam11133 330.85 -288037 pfam11134 926.581 -288038 pfam11135 313.96 -314142 pfam11138 121.822 -314143 pfam11139 90.024 -314144 pfam11140 151.343 -314145 pfam11141 55.6947 -314148 pfam11144 535.922 -314152 pfam11149 109.198 -314153 pfam11150 117.715 -314154 pfam11151 44.8666 -314156 pfam11153 154.519 -314158 pfam11155 61.8552 -314161 pfam11159 50.6711 -314162 pfam11160 72.5113 -314165 pfam11163 196.374 -314167 pfam11165 52.8694 -288067 pfam11166 135.054 -314168 pfam11167 30.239 -314170 pfam11169 99.3074 -314171 pfam11170 349.037 -314178 pfam11177 68.9565 -314179 pfam11178 36.6254 -314180 pfam11179 351.248 -314182 pfam11181 68.3912 -314183 pfam11182 255.875 -314184 pfam11183 122.244 -288086 pfam11186 237.715 -314189 pfam11189 77.9752 -314190 pfam11190 57.6284 -314191 pfam11191 84.2324 -288092 pfam11192 72.4572 -314192 pfam11193 47.2421 -314193 pfam11195 61.9272 -314194 pfam11196 62.1699 -314196 pfam11198 123.513 -314197 pfam11199 356.832 -288099 pfam11200 636.779 -314200 pfam11203 49.2149 -314201 pfam11204 82.5619 -314205 pfam11209 45.9259 -314206 pfam11210 158.531 -314207 pfam11211 49.0817 -288110 pfam11212 122.282 -314208 pfam11213 36.6672 -314209 pfam11214 102.386 -288114 pfam11216 54.6588 -314212 pfam11218 225.83 -314214 pfam11220 165.096 -314216 pfam11222 32.4653 -314217 pfam11223 34.5202 -288122 pfam11224 134.842 -288124 pfam11226 101.015 -314220 pfam11228 260.159 -314221 pfam11229 923.732 -314222 pfam11230 761.74 -314224 pfam11232 152.833 -314226 pfam11235 135.636 -314227 pfam11236 73.3065 -314228 pfam11237 133.825 -314229 pfam11238 82.6732 -314230 pfam11239 44.4901 -314231 pfam11240 46.5018 -314232 pfam11241 133.416 -288139 pfam11242 69.7789 -288140 pfam11243 173.362 -314233 pfam11244 69.9817 -288142 pfam11245 441.91 -314235 pfam11247 188.44 -314236 pfam11248 67.9202 -151694 pfam11252 348.93 -314240 pfam11253 96.472 -314242 pfam11255 35.3154 -314243 pfam11256 85.6866 -314245 pfam11259 42.1808 -314247 pfam11261 95.5447 -314249 pfam11263 485.447 -314250 pfam11264 202.428 -314251 pfam11265 280.352 -288160 pfam11266 335.858 -314252 pfam11267 112.259 -314253 pfam11268 115.373 -314254 pfam11269 142.932 -288164 pfam11270 29.1781 -314255 pfam11271 144.33 -314256 pfam11272 80.4882 -314257 pfam11273 61.8316 -314259 pfam11275 109.189 -314261 pfam11277 1434.88 -314264 pfam11281 504.591 -314265 pfam11282 66.7512 -314266 pfam11283 82.1882 -314267 pfam11284 108.919 -314268 pfam11285 407.391 -314269 pfam11286 185.122 -314271 pfam11288 157.826 -288183 pfam11289 582.423 -314272 pfam11290 153.527 -151732 pfam11291 109.747 -314273 pfam11292 86.8655 -314274 pfam11293 74.0821 -314276 pfam11295 27.5672 -314277 pfam11296 376.51 -314279 pfam11298 56.803 -314281 pfam11300 187.823 -314282 pfam11301 512.762 -288195 pfam11302 109.473 -314285 pfam11305 55.1833 -314288 pfam11308 410.636 -314289 pfam11309 172.476 -288203 pfam11310 98.8979 -288206 pfam11313 173.691 -288207 pfam11314 77.3486 -314292 pfam11315 124.01 -314293 pfam11316 250.757 -314294 pfam11317 89.1568 -314295 pfam11318 186.24 -314297 pfam11320 146.588 -288220 pfam11328 100.075 -314305 pfam11329 318.029 -288222 pfam11330 266.955 -314307 pfam11332 63.0065 -314308 pfam11333 95.745 -288226 pfam11334 106.718 -288228 pfam11336 816.524 -314310 pfam11337 34.583 -314311 pfam11338 80.3261 -314312 pfam11339 937.88 -314314 pfam11341 78.7536 -314315 pfam11342 76.8715 -288235 pfam11343 206.656 -314316 pfam11344 131.948 -288237 pfam11345 98.6051 -314317 pfam11346 26.3144 -314319 pfam11348 240.629 -314320 pfam11349 128.822 -314321 pfam11350 268.934 -314322 pfam11351 75.9669 -314323 pfam11352 153.853 -314326 pfam11355 226.254 -314327 pfam11356 82.7434 -314328 pfam11357 138.133 -314329 pfam11358 221.937 -288251 pfam11359 514.391 -314330 pfam11360 139.219 -314331 pfam11361 165.14 -314332 pfam11362 132.337 -314333 pfam11363 272.616 -314335 pfam11365 85.7713 -314336 pfam11367 48.9112 -314339 pfam11371 184.759 -314340 pfam11372 81.1117 -314343 pfam11375 224.794 -314344 pfam11376 233.75 -314345 pfam11377 45.22 -314346 pfam11378 95.2897 -314350 pfam11382 123.892 -288272 pfam11383 374.78 -314351 pfam11384 33.8164 -314352 pfam11385 115.721 -151826 pfam11386 128.539 -314353 pfam11387 36.9786 -288276 pfam11388 235.833 -314357 pfam11393 227.58 -288282 pfam11394 862.816 -288283 pfam11395 46.8464 -314358 pfam11396 53.3605 -314359 pfam11397 377.937 -314360 pfam11398 467.547 -151840 pfam11401 70.3778 -314363 pfam11404 45.0649 -314364 pfam11405 52.2787 -151845 pfam11406 64.6566 -288291 pfam11407 357.276 -151847 pfam11408 117.554 -314365 pfam11409 42.5066 -314366 pfam11410 40.976 -314368 pfam11412 50.8062 -314369 pfam11413 55.0073 -314370 pfam11414 63.8002 -151854 pfam11415 45.1283 -314371 pfam11416 32.1542 -288299 pfam11417 76.7088 -314372 pfam11418 161.513 -314373 pfam11419 64.2333 -288302 pfam11420 53.8636 -314374 pfam11421 32.9382 -288304 pfam11422 205.342 -288305 pfam11423 44.2814 -288306 pfam11424 172.129 -314375 pfam11426 76.3709 -192757 pfam11427 83.1568 -288308 pfam11428 296.744 -314376 pfam11429 99.8344 -288310 pfam11430 31.9145 -314377 pfam11431 49.2802 -288312 pfam11432 138.291 -314378 pfam11433 65.9149 -151873 pfam11434 168.375 -314379 pfam11435 274.536 -288315 pfam11436 143.391 -288316 pfam11437 86.1313 -288317 pfam11438 42.62 -314380 pfam11439 144.607 -288318 pfam11440 769.278 -288319 pfam11441 208.006 -288320 pfam11442 291.151 -314382 pfam11444 217.89 -314384 pfam11446 36.5315 -288325 pfam11447 199.297 -314385 pfam11448 121.35 -314386 pfam11449 379.681 -314387 pfam11450 45.8456 -314388 pfam11452 195.436 -314392 pfam11456 95.8645 -288335 pfam11458 151.104 -314395 pfam11460 86.4996 -314396 pfam11461 30.3527 -314397 pfam11462 90.5801 -314398 pfam11463 342.989 -288342 pfam11465 185.167 -288343 pfam11466 33.1663 -314401 pfam11468 370.302 -288346 pfam11469 148.52 -256473 pfam11472 210.971 -314404 pfam11473 127.882 -151913 pfam11474 303.572 -288349 pfam11475 65.9755 -151915 pfam11476 102.117 -288350 pfam11477 535.247 -314405 pfam11478 52.6934 -288351 pfam11479 334.005 -288352 pfam11480 158.965 -314406 pfam11482 131.38 -288355 pfam11485 134.349 -288356 pfam11486 180.468 -288357 pfam11487 496.547 -314409 pfam11489 180.168 -288361 pfam11491 112.707 -288362 pfam11492 63.7742 -288364 pfam11494 176.098 -314412 pfam11495 193.65 -314414 pfam11497 199.607 -151935 pfam11498 423.99 -288369 pfam11501 236.49 -314416 pfam11502 40.4628 -314417 pfam11503 95.8007 -314418 pfam11504 143.398 -288373 pfam11505 108.425 -288374 pfam11506 200.667 -288376 pfam11508 447.618 -288377 pfam11510 403.638 -314421 pfam11512 123.999 -314422 pfam11513 167.258 -314423 pfam11514 136.127 -151953 pfam11516 207.369 -314425 pfam11517 161.076 -288383 pfam11518 87.1071 -288384 pfam11519 139.839 -314426 pfam11520 70.2191 -314427 pfam11521 61.1453 -314428 pfam11522 65.3969 -314430 pfam11524 109.982 -151966 pfam11529 281.564 -288394 pfam11530 270.417 -314435 pfam11531 190.474 -314436 pfam11532 63.2262 -314437 pfam11533 198.311 -314439 pfam11535 103.546 -151973 pfam11536 319.442 -288400 pfam11537 121.822 -314440 pfam11538 26.0804 -288404 pfam11542 89.3765 -288406 pfam11544 93.7073 -288407 pfam11545 293.942 -288408 pfam11546 127.714 -288409 pfam11547 87.5426 -288412 pfam11550 402.986 -314446 pfam11551 156.348 -314447 pfam11553 174.744 -314448 pfam11554 168.833 -314449 pfam11555 102.957 -314450 pfam11557 475.018 -314452 pfam11559 92.3867 -314453 pfam11560 438.346 -314454 pfam11561 159.027 -314456 pfam11564 387.971 -288422 pfam11565 107.458 -314459 pfam11570 282.17 -288429 pfam11572 131.586 -314461 pfam11573 1531.11 -314462 pfam11574 48.9731 -314465 pfam11577 62.5087 -314467 pfam11579 371.569 -314468 pfam11580 132.389 -288441 pfam11584 180.171 -152021 pfam11585 45.8386 -288442 pfam11586 158.013 -288443 pfam11587 46.0013 -314472 pfam11589 71.1976 -314473 pfam11590 41.1633 -288446 pfam11592 196.213 -314474 pfam11593 290.497 -314475 pfam11594 105.762 -288450 pfam11596 88.5885 -314477 pfam11597 207.364 -288452 pfam11598 47.3948 -314478 pfam11599 504.207 -314479 pfam11600 73.143 -288455 pfam11601 31.2797 -288456 pfam11602 407.835 -314480 pfam11603 93.0567 -314482 pfam11605 91.2123 -288460 pfam11607 146.875 -288461 pfam11608 146.621 -288462 pfam11609 79.7706 -288463 pfam11610 39.4431 -288467 pfam11615 87.9646 -314486 pfam11616 53.614 -314488 pfam11618 99.258 -314489 pfam11619 121.128 -288473 pfam11621 96.8486 -288474 pfam11622 225.87 -314493 pfam11625 71.4953 -314495 pfam11627 36.2018 -314497 pfam11629 65.694 -152066 pfam11630 135.584 -288482 pfam11631 255.523 -204695 pfam11632 49.9433 -314498 pfam11633 294.739 -288483 pfam11634 144.876 -314499 pfam11635 527.399 -314500 pfam11636 43.3756 -288485 pfam11637 72.057 -314501 pfam11638 41.0964 -288487 pfam11639 185.978 -314502 pfam11640 77.7302 -152077 pfam11641 334.515 -288489 pfam11642 147.957 -288491 pfam11645 316.267 -314504 pfam11646 130.427 -288494 pfam11649 394.396 -314506 pfam11650 220.912 -314507 pfam11651 389.91 -314508 pfam11652 106.238 -314509 pfam11653 123.065 -314510 pfam11654 51.7609 -314511 pfam11655 121.34 -314514 pfam11658 581.506 -314516 pfam11660 55.724 -314517 pfam11661 29.62 -314518 pfam11662 68.7299 -288509 pfam11665 38.3362 -288512 pfam11668 342.488 -314522 pfam11669 54.4089 -314523 pfam11670 91.9939 -152107 pfam11671 115.204 -314524 pfam11672 170.206 -288515 pfam11673 127.482 -288517 pfam11675 328.192 -314526 pfam11676 73.2055 -314527 pfam11677 274.189 -288520 pfam11678 382.684 -314528 pfam11679 255.869 -314530 pfam11681 208.838 -288524 pfam11682 214.509 -314531 pfam11683 108.94 -314532 pfam11684 110.835 -314533 pfam11685 516.286 -288527 pfam11686 87.484 -314534 pfam11687 79.2502 -314535 pfam11688 50.3858 -314536 pfam11690 134.318 -314537 pfam11691 118.064 -314539 pfam11693 72.823 -314541 pfam11695 143.494 -314542 pfam11696 841.515 -314545 pfam11700 321.135 -314548 pfam11703 49.6227 -314554 pfam11709 184.081 -314555 pfam11710 198.275 -314557 pfam11712 56.8117 -152150 pfam11714 105.933 -314558 pfam11715 211.537 -314559 pfam11716 43.9619 -314562 pfam11719 182.724 -288556 pfam11720 91.1876 -314564 pfam11722 34.8044 -314565 pfam11723 382.269 -314569 pfam11727 236.544 -314570 pfam11728 124.551 -288565 pfam11729 727.343 -314571 pfam11730 138.549 -314574 pfam11733 404.232 -314575 pfam11734 56.4191 -314582 pfam11741 37.2678 -314583 pfam11742 87.0772 -314585 pfam11744 345.57 -314586 pfam11745 92.4955 -314587 pfam11746 81.9456 -314588 pfam11747 52.3074 -314589 pfam11748 69.0055 -314592 pfam11751 133.512 -314596 pfam11755 41.4979 -152193 pfam11757 196.995 -314598 pfam11758 42.5639 -314599 pfam11759 29.7977 -288596 pfam11763 155.349 -314605 pfam11766 170.062 -314607 pfam11768 966.936 -314609 pfam11770 220.361 -314610 pfam11771 252.675 -314613 pfam11774 71.3965 -288608 pfam11775 367.432 -314616 pfam11778 144.639 -314618 pfam11780 73.8858 -314619 pfam11781 24.855 -288615 pfam11782 146.467 -314622 pfam11785 32.8329 -314623 pfam11786 67.1808 -314624 pfam11787 31.946 -314625 pfam11788 52.9387 -314626 pfam11789 75.4063 -314627 pfam11790 181.014 -288625 pfam11792 64.9526 -314629 pfam11793 110.6 -314631 pfam11795 82.7499 -314632 pfam11796 96.5192 -314633 pfam11797 99.1931 -288631 pfam11798 30.0752 -314637 pfam11802 211.462 -314638 pfam11803 68.7863 -314640 pfam11805 386.907 -314641 pfam11806 82.8059 -314642 pfam11807 113.694 -288642 pfam11809 140.936 -314644 pfam11810 143.203 -288644 pfam11811 127.638 -314646 pfam11813 396.726 -314650 pfam11817 206.885 -314652 pfam11819 151.702 -314653 pfam11820 67.1939 -314654 pfam11821 163.069 -314655 pfam11822 149.537 -314656 pfam11823 37.1265 -314657 pfam11824 97.4115 -314658 pfam11825 101.032 -288659 pfam11826 477.164 -314659 pfam11827 151.348 -314661 pfam11829 76.4167 -314662 pfam11830 68.3093 -314663 pfam11831 133.14 -314664 pfam11832 216.755 -314665 pfam11833 100.729 -314668 pfam11837 56.6991 -288673 pfam11840 854.076 -314673 pfam11843 383.919 -314676 pfam11846 125.496 -314677 pfam11847 677.847 -314680 pfam11850 413.474 -314681 pfam11851 28.45 -314684 pfam11854 477.604 -314685 pfam11855 256.009 -314686 pfam11856 269.195 -314687 pfam11857 58.0366 -314688 pfam11858 72.2882 -314696 pfam11866 211.278 -314698 pfam11868 291.241 -314699 pfam11869 96.999 -314702 pfam11872 105.316 -314709 pfam11879 67.382 -314711 pfam11881 189.892 -314713 pfam11883 58.0511 -314714 pfam11884 277.71 -314717 pfam11887 217.87 -288721 pfam11889 126.177 -314724 pfam11895 100.467 -314728 pfam11899 264.8 -314732 pfam11903 71.6189 -314736 pfam11907 158.124 -314737 pfam11909 268.332 -314738 pfam11910 79.1943 -256719 pfam11912 36.3266 -314740 pfam11913 153.081 -288743 pfam11914 74.3512 -314742 pfam11916 158.805 -314743 pfam11917 384.412 -314744 pfam11918 120.466 -314746 pfam11920 348.161 -288750 pfam11921 173.601 -314750 pfam11925 383.189 -314754 pfam11929 33.9797 -314755 pfam11931 153.832 -314760 pfam11936 39.5088 -314761 pfam11937 115.166 -314763 pfam11939 111.175 -314769 pfam11945 330.941 -314770 pfam11946 137.321 -314772 pfam11948 172.592 -314774 pfam11950 48.884 -314776 pfam11952 124.293 -314780 pfam11956 125.682 -314781 pfam11957 243.807 -314782 pfam11958 127.39 -314784 pfam11960 161.86 -152398 pfam11963 583.824 -314788 pfam11965 141.514 -314789 pfam11967 59.4914 -314790 pfam11968 266.812 -288797 pfam11970 79.2891 -314792 pfam11971 88.5121 -288799 pfam11972 84.703 -288800 pfam11973 59.0427 -314793 pfam11974 76.083 -314795 pfam11976 59.0999 -314796 pfam11977 110.496 -314798 pfam11979 388.516 -314799 pfam11980 155.404 -314801 pfam11982 205.639 -314803 pfam11984 78.2353 -314804 pfam11985 112.326 -314807 pfam11990 104.219 -314811 pfam11994 66.544 -314813 pfam11996 1438.8 -314815 pfam11998 53.337 -314816 pfam11999 106.16 -314818 pfam12001 97.0178 -314821 pfam12005 112.695 -314823 pfam12007 202.794 -314826 pfam12010 81.4853 -288834 pfam12011 228.787 -314827 pfam12012 152.044 -288838 pfam12015 221.503 -314830 pfam12016 509.58 -288840 pfam12017 284.006 -314833 pfam12020 136.075 -314836 pfam12023 61.0925 -314837 pfam12024 273.393 -288848 pfam12025 130.195 -314839 pfam12027 385.686 -314840 pfam12028 63.4758 -314841 pfam12029 729.29 -314842 pfam12030 290.633 -152468 pfam12033 76.1239 -314848 pfam12037 249.485 -152474 pfam12039 776.184 -314851 pfam12041 100.549 -314854 pfam12044 449.5 -314856 pfam12046 160.742 -314858 pfam12048 212.258 -314859 pfam12049 193.159 -314860 pfam12051 470.633 -314863 pfam12054 249.438 -314864 pfam12055 250.139 -314867 pfam12058 116.101 -314869 pfam12060 287.356 -314870 pfam12061 550.973 -314871 pfam12062 728.307 -314872 pfam12063 121.195 -314873 pfam12064 278.79 -314875 pfam12066 92.2948 -314876 pfam12067 41.4838 -314880 pfam12071 47.0042 -314881 pfam12072 148.465 -314882 pfam12073 67.67 -314885 pfam12076 231.286 -314886 pfam12077 877.377 -314887 pfam12078 82.7219 -314888 pfam12079 29.7934 -288903 pfam12085 61.6758 -288904 pfam12086 61.0031 -314893 pfam12087 161.719 -314894 pfam12088 99.6762 -314895 pfam12089 81.0402 -314896 pfam12090 68.2502 -314898 pfam12092 105.089 -152528 pfam12093 202.987 -314900 pfam12095 82.5461 -288914 pfam12097 535.696 -314904 pfam12100 110.794 -314906 pfam12102 180.526 -314907 pfam12103 252.814 -288921 pfam12104 51.1591 -314909 pfam12106 119.913 -152542 pfam12107 1e+06 -314911 pfam12109 60.957 -314913 pfam12111 39.2136 -288929 pfam12113 29.1472 -314915 pfam12114 142.155 -314916 pfam12115 57.3978 -314917 pfam12116 118.624 -288933 pfam12117 281.422 -288934 pfam12118 282.283 -288936 pfam12120 158.897 -314919 pfam12121 27.2798 -314920 pfam12122 91.2162 -288939 pfam12124 142.527 -314922 pfam12126 424.213 -314923 pfam12127 457.804 -314924 pfam12128 1248.44 -314925 pfam12129 195.594 -314928 pfam12132 173.312 -288948 pfam12133 104.683 -314929 pfam12134 360.886 -288950 pfam12135 30.2006 -152571 pfam12136 26.2501 -314931 pfam12138 117.763 -314932 pfam12139 137.911 -314933 pfam12140 99.19 -314934 pfam12141 512.511 -314936 pfam12143 100.062 -314937 pfam12144 183.491 -288961 pfam12147 522.287 -314940 pfam12148 162.376 -288963 pfam12149 34.1416 -314941 pfam12150 439.541 -314942 pfam12151 38.1055 -314943 pfam12152 57.2193 -288967 pfam12153 25.2452 -152589 pfam12154 38.2077 -152590 pfam12155 74.994 -314945 pfam12157 405.772 -314946 pfam12158 47.0498 -314947 pfam12159 82.2189 -314948 pfam12160 78.6646 -314950 pfam12162 40.1936 -314952 pfam12164 61.7035 -314957 pfam12169 116.203 -314960 pfam12172 26.5438 -288986 pfam12175 197.865 -314962 pfam12176 678.222 -314963 pfam12177 62.4703 -314965 pfam12179 33.037 -314966 pfam12180 47.8843 -288992 pfam12181 224.592 -314968 pfam12183 268.247 -288997 pfam12187 149.825 -314971 pfam12188 78.6495 -288999 pfam12189 116.27 -314972 pfam12190 121.355 -314973 pfam12191 192.875 -314974 pfam12192 49.165 -289003 pfam12193 118.619 -314975 pfam12194 260.647 -314976 pfam12196 50.1359 -289006 pfam12198 34.2733 -289007 pfam12199 70.8495 -314979 pfam12201 181.588 -314982 pfam12204 172.078 -314983 pfam12205 127.406 -289014 pfam12206 171.94 -289015 pfam12207 235.925 -314984 pfam12208 105.713 -314985 pfam12209 75.7316 -314987 pfam12211 481.174 -314988 pfam12212 266.975 -314989 pfam12213 98.6144 -314992 pfam12216 191.155 -152652 pfam12217 861.173 -314994 pfam12220 31.3934 -314997 pfam12223 43.0318 -314998 pfam12224 144.033 -314999 pfam12225 100.71 -315000 pfam12226 356.746 -315001 pfam12227 340.842 -315002 pfam12228 710.575 -315003 pfam12229 47.7461 -315004 pfam12230 145.284 -315006 pfam12232 28.4514 -289037 pfam12233 105.067 -315008 pfam12235 83.6783 -315009 pfam12236 313.463 -315010 pfam12237 180.542 -289042 pfam12238 246.971 -315015 pfam12243 154.905 -315018 pfam12246 135.387 -315021 pfam12249 250.629 -315022 pfam12250 436.295 -315026 pfam12255 142.087 -315027 pfam12256 209.82 -315029 pfam12258 366.73 -315030 pfam12259 437.853 -315031 pfam12260 190.578 -315034 pfam12263 112.656 -152699 pfam12264 338.084 -289069 pfam12266 63.8518 -152702 pfam12267 178.565 -289070 pfam12268 379.525 -315036 pfam12269 266.819 -315037 pfam12270 122.274 -315038 pfam12271 266.686 -315039 pfam12273 42.0601 -315041 pfam12275 387.68 -315042 pfam12276 69.0117 -315046 pfam12280 145.924 -315048 pfam12282 87.2509 -289084 pfam12283 86.2388 -315049 pfam12284 81.4538 -204871 pfam12285 56.3135 -315050 pfam12286 77.0931 -315051 pfam12287 322.172 -315052 pfam12288 475.027 -289089 pfam12289 534.57 -315053 pfam12290 146.712 -315054 pfam12291 195.976 -315055 pfam12292 64.7045 -315057 pfam12294 480.663 -315060 pfam12297 466.441 -315061 pfam12298 167.882 -315062 pfam12299 63.885 -315063 pfam12300 110.521 -315064 pfam12301 92.1898 -289102 pfam12302 482.834 -315065 pfam12304 173.203 -315066 pfam12305 95.0953 -315067 pfam12306 124.349 -315068 pfam12307 198.986 -315069 pfam12308 145.652 -315071 pfam12310 112.201 -152747 pfam12312 214.057 -315074 pfam12314 31.1128 -315076 pfam12316 59.5021 -315078 pfam12318 148.198 -315081 pfam12321 73.8737 -289120 pfam12322 95.066 -315083 pfam12325 68.6893 -315084 pfam12326 105.455 -315085 pfam12327 125.011 -315086 pfam12328 66.5569 -289131 pfam12334 382.927 -315092 pfam12336 31.2824 -289134 pfam12337 151.436 -289135 pfam12338 54.2286 -152777 pfam12342 41.0256 -315096 pfam12343 35.7049 -315098 pfam12345 193.434 -315099 pfam12346 145.277 -315100 pfam12347 52.3076 -315103 pfam12350 48.3824 -315104 pfam12351 79.2867 -289148 pfam12352 61.4709 -289150 pfam12354 39.2412 -315106 pfam12355 107.419 -315107 pfam12356 299.836 -289156 pfam12360 59.1092 -289157 pfam12361 611.643 -315111 pfam12362 76.4291 -315112 pfam12363 95.4503 -315113 pfam12364 110.476 -315115 pfam12366 186.878 -315117 pfam12368 39.1897 -315118 pfam12369 79.0799 -315121 pfam12373 44.9153 -315122 pfam12374 63.2042 -315123 pfam12375 55.1859 -289169 pfam12376 146.698 -315125 pfam12378 86.3728 -289172 pfam12379 168.452 -289173 pfam12380 622.504 -152816 pfam12381 437.382 -152817 pfam12382 287.76 -289174 pfam12383 202.304 -152819 pfam12384 363.961 -315126 pfam12385 129.152 -152821 pfam12386 193.607 -289175 pfam12387 431.428 -315127 pfam12388 278.226 -315128 pfam12389 281.934 -152828 pfam12393 34.6866 -315132 pfam12394 53.3711 -315133 pfam12395 97.2916 -315136 pfam12398 34.3669 -315138 pfam12400 69.8241 -315139 pfam12401 82.5398 -315141 pfam12403 90.6026 -289191 pfam12406 201.641 -289192 pfam12407 48.9492 -315143 pfam12408 50.2147 -289195 pfam12410 209.591 -315145 pfam12411 74.148 -315147 pfam12413 55.8901 -315148 pfam12414 71.0023 -289200 pfam12415 56.6609 -315149 pfam12416 242.218 -315150 pfam12417 35.3571 -315152 pfam12419 76.4139 -315153 pfam12420 60.4343 -289206 pfam12421 158.591 -289211 pfam12426 92.5089 -289212 pfam12427 47.1097 -315161 pfam12432 48.39 -315162 pfam12433 123.587 -289219 pfam12434 53.8747 -315165 pfam12438 66.991 -315166 pfam12439 120.344 -315167 pfam12440 30.6728 -315168 pfam12441 81.6221 -315170 pfam12443 88.1603 -315171 pfam12444 76.6245 -289231 pfam12446 57.5506 -315174 pfam12448 147.423 -315178 pfam12452 244.69 -315179 pfam12453 41.3841 -315180 pfam12454 32.4221 -315183 pfam12457 50.0171 -315187 pfam12461 1211.43 -315189 pfam12463 387.86 -315192 pfam12466 99.7485 -289250 pfam12467 276.045 -315193 pfam12468 56.7494 -315194 pfam12469 70.7242 -315197 pfam12472 35.0806 -289258 pfam12475 68.8005 -315200 pfam12476 42.2156 -289260 pfam12477 28.97 -315201 pfam12478 41.2551 -289262 pfam12479 72.9372 -315202 pfam12480 33.8457 -315205 pfam12483 94.7813 -315206 pfam12484 28.0467 -315207 pfam12485 121.694 -289271 pfam12488 42.1867 -315210 pfam12489 63.9274 -315211 pfam12490 172.106 -315212 pfam12491 82.4095 -289275 pfam12493 48.3706 -315213 pfam12494 108.992 -315214 pfam12495 294.606 -315215 pfam12496 88.583 -315216 pfam12497 129.126 -315217 pfam12498 75.5805 -315221 pfam12502 149.974 -289285 pfam12503 150.816 -289287 pfam12506 99.5407 -315223 pfam12507 61.3717 -315225 pfam12509 60.3241 -289298 pfam12518 44.2375 -315234 pfam12519 390.356 -315235 pfam12520 502.169 -152955 pfam12521 34.7232 -315236 pfam12522 1e+06 -152957 pfam12523 127.659 -315237 pfam12524 53.0348 -315239 pfam12526 76.2707 -315240 pfam12527 60.6547 -315242 pfam12529 149.372 -315243 pfam12530 127.387 -315244 pfam12531 279.847 -315245 pfam12532 217.88 -315247 pfam12534 422.786 -315253 pfam12540 42.1019 -315256 pfam12543 102.671 -315258 pfam12545 104.688 -315259 pfam12546 94.8425 -315260 pfam12547 55.068 -315261 pfam12548 104.727 -315262 pfam12549 26.5892 -315263 pfam12550 74.4903 -315264 pfam12551 52.9597 -315268 pfam12555 29.7962 -315273 pfam12560 418.347 -289338 pfam12561 172.707 -289339 pfam12562 32.5825 -289340 pfam12563 289.9 -315275 pfam12565 201.283 -315277 pfam12567 68.9192 -315279 pfam12570 105.42 -315280 pfam12571 113.796 -315281 pfam12572 69.6171 -315283 pfam12574 518.57 -289352 pfam12575 66.236 -315285 pfam12577 111.78 -315286 pfam12578 90.1342 -315289 pfam12581 33.994 -315290 pfam12582 82.6354 -315292 pfam12584 129.028 -315293 pfam12585 39.1431 -315294 pfam12586 51.5365 -315295 pfam12587 114.52 -315296 pfam12588 136.129 -315297 pfam12589 68.8118 -315298 pfam12590 166.54 -153025 pfam12591 163.356 -289369 pfam12593 76.2896 -289370 pfam12594 120.666 -315299 pfam12595 262.847 -257152 pfam12596 50.033 -315301 pfam12598 62.1199 -315302 pfam12599 105.346 -315303 pfam12600 434.703 -289375 pfam12601 134.446 -315304 pfam12602 30.8747 -289377 pfam12603 279.193 -315305 pfam12604 129.656 -315306 pfam12605 62.5472 -315307 pfam12606 36.9026 -289381 pfam12608 79.5462 -315310 pfam12610 50.1571 -315311 pfam12611 25.4552 -289386 pfam12613 31.1919 -315313 pfam12614 151.374 -315315 pfam12616 75.2888 -315316 pfam12617 211.627 -315317 pfam12618 109.518 -315321 pfam12622 31.0938 -315322 pfam12623 301.395 -289400 pfam12628 268.688 -289401 pfam12629 177.956 -289402 pfam12630 128.638 -315331 pfam12635 220.317 -315332 pfam12636 69.8988 -315334 pfam12638 166.964 -315335 pfam12639 79.0135 -315336 pfam12640 117.154 -315337 pfam12641 195.939 -315340 pfam12644 61.0575 -315341 pfam12645 36.4198 -315343 pfam12647 89.1918 -315344 pfam12648 67.3096 -289422 pfam12651 53.449 -315346 pfam12652 70.9646 -315347 pfam12653 176.872 -315348 pfam12654 93.3508 -315349 pfam12655 58.4657 -315350 pfam12656 49.2266 -315352 pfam12658 62.0054 -289430 pfam12659 117.353 -315356 pfam12663 101.915 -315357 pfam12664 36.0052 -315358 pfam12666 33.7666 -315361 pfam12669 24.1657 -315362 pfam12670 27.8226 -315363 pfam12671 117.454 -315364 pfam12672 119.071 -315365 pfam12673 27.1239 -315368 pfam12676 64.3209 -289447 pfam12677 68.2981 -315369 pfam12678 51.1617 -315370 pfam12679 87.0677 -315372 pfam12681 159.499 -289452 pfam12682 300.43 -315373 pfam12683 301.115 -315374 pfam12684 192.881 -315377 pfam12687 46.5049 -315378 pfam12688 140.706 -315379 pfam12689 185.126 -315381 pfam12691 120.568 -289462 pfam12692 256.948 -289463 pfam12693 90.9129 -315382 pfam12694 169.263 -315383 pfam12695 236.195 -315384 pfam12696 84.6151 -289469 pfam12699 194.544 -289470 pfam12700 351.299 -289473 pfam12703 96.5288 -289477 pfam12707 223.359 -315393 pfam12709 70.3889 -315394 pfam12710 38.269 -315395 pfam12712 302.351 -315397 pfam12714 55.382 -315399 pfam12716 29.0927 -315404 pfam12721 30.0948 -315405 pfam12722 800.453 -315406 pfam12723 136.347 -315412 pfam12729 103.474 -315413 pfam12730 96.4751 -257256 pfam12731 76.1952 -315415 pfam12733 33.8929 -315417 pfam12735 182.102 -315418 pfam12736 127.08 -315419 pfam12737 436.34 -315420 pfam12738 66.8266 -315423 pfam12741 811.895 -289511 pfam12742 75.878 -315424 pfam12743 48.6331 -315425 pfam12744 252.836 -315426 pfam12745 221.321 -315428 pfam12747 155.787 -315429 pfam12749 45.4684 -315430 pfam12750 84.4138 -315433 pfam12754 151.04 -315434 pfam12755 129.213 -315437 pfam12758 26.1749 -289525 pfam12759 86.1354 -315439 pfam12761 172.07 -289529 pfam12763 161.772 -315441 pfam12764 43.6806 -315447 pfam12770 93.2086 -289537 pfam12771 630.491 -315448 pfam12772 300.967 -315449 pfam12773 29.2707 -289540 pfam12774 490.739 -289541 pfam12775 584.21 -289543 pfam12777 692.156 -315451 pfam12778 28.0655 -289546 pfam12780 567.264 -315454 pfam12782 412.626 -315456 pfam12784 182.826 -315457 pfam12785 649.004 -193262 pfam12786 582.914 -315458 pfam12787 111.576 -315459 pfam12788 97.7309 -205071 pfam12789 81.4382 -315461 pfam12791 31.3378 -315470 pfam12800 31.1672 -289567 pfam12803 382.944 -315478 pfam12809 89.3577 -315479 pfam12810 42.2662 -315480 pfam12811 104.915 -315482 pfam12813 174.855 -315483 pfam12814 172.901 -289579 pfam12818 400.677 -315487 pfam12820 168.349 -315491 pfam12824 121.654 -315492 pfam12825 248.222 -315493 pfam12826 52.119 -315494 pfam12827 37.2604 -315496 pfam12829 92.6626 -315498 pfam12831 236.723 -315499 pfam12832 261.78 -315501 pfam12834 123.279 -315502 pfam12835 157.54 -315507 pfam12841 41.2474 -315511 pfam12845 65.1291 -315512 pfam12846 406.012 -315515 pfam12849 53.3391 -315517 pfam12851 144.06 -315519 pfam12853 138.778 -315520 pfam12854 39.6272 -315521 pfam12855 40.8165 -315522 pfam12856 79.5096 -289620 pfam12861 132.223 -315526 pfam12862 94.9804 -315527 pfam12863 44.3586 -315529 pfam12866 159.298 -315533 pfam12870 94.8057 -315536 pfam12873 214.454 -315538 pfam12875 237.182 -289633 pfam12876 421.927 -315539 pfam12877 843.618 -315540 pfam12878 114.588 -315541 pfam12879 209.824 -315542 pfam12881 625.72 -315543 pfam12883 103.27 -315547 pfam12887 34.5429 -315550 pfam12890 192.008 -315551 pfam12891 201.021 -315554 pfam12894 110.06 -289652 pfam12897 732.436 -315560 pfam12901 25.3349 -315561 pfam12902 137.552 -315562 pfam12903 167.144 -315563 pfam12904 71.8534 -289661 pfam12906 46.9939 -289662 pfam12907 54.0088 -315565 pfam12910 164.126 -315571 pfam12916 215.769 -315572 pfam12917 368.286 -315579 pfam12924 58.4369 -315581 pfam12926 129.198 -315588 pfam12933 310.867 -315589 pfam12934 262.323 -315590 pfam12935 142.594 -315591 pfam12936 64.8152 -315593 pfam12938 124.251 -315594 pfam12939 88.8605 -289693 pfam12941 544.534 -315596 pfam12943 468.385 -289696 pfam12944 331.974 -289698 pfam12946 53.5848 -315598 pfam12947 27.8727 -315601 pfam12950 94.6284 -315603 pfam12952 122.739 -315604 pfam12953 146.052 -315605 pfam12954 419.834 -289708 pfam12956 381.143 -315607 pfam12957 81.503 -315608 pfam12958 61.5606 -315609 pfam12959 116.27 -315610 pfam12960 151.663 -315611 pfam12961 88.4065 -289714 pfam12962 228.747 -315612 pfam12963 97.7934 -315613 pfam12964 130.706 -315614 pfam12965 114.965 -315615 pfam12966 43.7925 -289719 pfam12967 310.458 -289722 pfam12970 152.485 -315619 pfam12973 92.6687 -315622 pfam12976 138.322 -315623 pfam12977 89.1995 -289729 pfam12978 228.595 -315624 pfam12979 524.547 -289731 pfam12980 174.783 -315625 pfam12982 647.656 -315626 pfam12983 203.379 -315628 pfam12985 75.5716 -315629 pfam12986 79.5436 -315630 pfam12987 525.425 -289742 pfam12991 93.1178 -315633 pfam12992 126.714 -315634 pfam12993 195.446 -289745 pfam12994 427.255 -289746 pfam12995 309.542 -315636 pfam12997 381.427 -193472 pfam12999 283.988 -315638 pfam13000 632.476 -315640 pfam13002 282.899 -289756 pfam13008 82.089 -315645 pfam13009 328.611 -289758 pfam13010 240.786 -289759 pfam13011 133.633 -289761 pfam13013 94.5042 -205196 pfam13015 217.395 -315648 pfam13017 158.224 -315652 pfam13021 52.2267 -315653 pfam13022 123.371 -315655 pfam13025 29.2443 -315656 pfam13026 55.3516 -315657 pfam13027 54.2335 -315658 pfam13028 102.026 -289775 pfam13029 103.571 -315659 pfam13030 214.427 -315660 pfam13031 39.5515 -315661 pfam13032 45.1395 -289778 pfam13033 53.4372 -315662 pfam13034 117.806 -315663 pfam13035 88.5985 -315665 pfam13037 143.624 -315666 pfam13038 39.5342 -315667 pfam13039 415.291 -315668 pfam13040 25.2063 -289787 pfam13042 210.972 -315670 pfam13043 65.905 -289789 pfam13044 943.352 -315671 pfam13045 130.342 -289791 pfam13046 87.1022 -315672 pfam13047 216.758 -315673 pfam13048 154.823 -315674 pfam13049 191.08 -315675 pfam13050 151.449 -315676 pfam13051 127.063 -315677 pfam13052 108.603 -289798 pfam13053 143.792 -315678 pfam13054 155.571 -315679 pfam13055 90.0159 -289801 pfam13056 25.0343 -315680 pfam13057 192.605 -289803 pfam13058 186.224 -315681 pfam13059 141.765 -289805 pfam13060 98.9821 -289806 pfam13061 46.1371 -289807 pfam13062 95.2534 -315682 pfam13063 108.112 -315683 pfam13064 84.6528 -315684 pfam13065 153.692 -315685 pfam13066 119.363 -315686 pfam13067 93.1784 -315687 pfam13068 138.402 -315688 pfam13069 88.5948 -289815 pfam13070 29.6244 -315689 pfam13071 97.2874 -289817 pfam13072 53.547 -315690 pfam13073 123.875 -315691 pfam13074 203.747 -289820 pfam13075 169.07 -315692 pfam13076 27.1954 -315693 pfam13077 180.98 -289823 pfam13078 176.05 -315694 pfam13079 166.812 -315695 pfam13080 72.1944 -289826 pfam13081 29.6392 -289827 pfam13082 126.316 -315697 pfam13084 100.727 -315701 pfam13088 167.104 -315704 pfam13091 53.8306 -315707 pfam13094 43.4313 -289841 pfam13096 307.562 -315709 pfam13097 147.168 -315710 pfam13098 42.8056 -289844 pfam13099 49.2332 -315711 pfam13100 234.317 -315712 pfam13101 44.891 -289849 pfam13104 60.3213 -315715 pfam13105 466.454 -315716 pfam13106 69.9756 -289852 pfam13107 176.666 -315717 pfam13108 108.958 -315718 pfam13109 217.921 -315719 pfam13110 90.6459 -289856 pfam13111 360.887 -289857 pfam13112 525.375 -289858 pfam13113 59.0288 -315720 pfam13114 91.194 -315721 pfam13115 50.4545 -315723 pfam13117 125.265 -315725 pfam13119 71.0346 -315726 pfam13120 245.017 -315727 pfam13121 41.7358 -289867 pfam13122 128.181 -289868 pfam13123 239.555 -289869 pfam13124 47.9682 -315728 pfam13125 120.304 -315729 pfam13126 110.099 -315731 pfam13128 88.6392 -315732 pfam13129 25.5002 -315733 pfam13130 150.068 -315734 pfam13131 45.231 -289877 pfam13132 48.3819 -315735 pfam13133 73.6896 -315736 pfam13134 37.2515 -289880 pfam13135 47.5218 -315737 pfam13136 206.47 -289882 pfam13137 40.0494 -315738 pfam13138 57.5702 -289884 pfam13139 179.013 -289885 pfam13140 135.83 -315739 pfam13141 226.121 -289887 pfam13142 191.036 -315740 pfam13143 90.2569 -315743 pfam13146 74.5617 -315746 pfam13150 87.8466 -289896 pfam13152 34.7642 -289897 pfam13153 27.8846 -315748 pfam13154 49.5404 -315750 pfam13156 91.9434 -315751 pfam13157 83.7543 -315752 pfam13158 155.473 -315753 pfam13159 106.549 -315754 pfam13160 34.1878 -315755 pfam13161 102.17 -315756 pfam13162 125.352 -315758 pfam13164 73.1309 -289912 pfam13168 288.872 -289913 pfam13169 100.926 -315762 pfam13170 219.075 -315763 pfam13171 231.333 -315764 pfam13173 69.1516 -315769 pfam13178 51.0044 -315771 pfam13180 52.657 -315774 pfam13183 26.1309 -315775 pfam13184 52.9632 -315778 pfam13187 25.6043 -315781 pfam13190 53.3089 -315786 pfam13195 54.4447 -315787 pfam13196 174.666 -315788 pfam13197 39.6032 -315789 pfam13199 521.872 -315790 pfam13200 365.761 -289946 pfam13203 282.862 -315793 pfam13204 186.69 -315795 pfam13206 88.7625 -315797 pfam13208 121.303 -289952 pfam13209 79.0338 -315798 pfam13210 350.421 -315800 pfam13212 227.494 -289956 pfam13213 52.8759 -289957 pfam13214 86.5423 -315801 pfam13215 32.0772 -315802 pfam13216 57.6758 -315803 pfam13217 30.1434 -315805 pfam13219 57.3214 -289962 pfam13220 121.396 -289963 pfam13221 138.139 -289964 pfam13222 220.892 -315807 pfam13224 189.686 -315808 pfam13225 127.008 -315810 pfam13227 72.5307 -315811 pfam13228 57.932 -315812 pfam13229 32.0025 -315813 pfam13230 319.258 -315815 pfam13232 49.7057 -315818 pfam13236 130.72 -315820 pfam13238 55.8856 -315822 pfam13240 23.6403 -315825 pfam13243 522.268 -315827 pfam13245 75.3198 -315830 pfam13248 35.6533 -315831 pfam13249 242.39 -315837 pfam13255 157.119 -315838 pfam13256 166.363 -315839 pfam13257 204.649 -289998 pfam13258 557.721 -315841 pfam13260 81.1689 -315842 pfam13261 266.329 -315843 pfam13262 55.4208 -315844 pfam13263 50.2412 -315847 pfam13266 362.188 -315848 pfam13267 291.081 -315850 pfam13269 95.6551 -315851 pfam13270 80.7431 -315853 pfam13272 84.325 -315859 pfam13279 40.0098 -315863 pfam13283 181.407 -290024 pfam13285 304.206 -315865 pfam13287 48.3871 -315867 pfam13289 63.4859 -315868 pfam13290 33.0098 -315871 pfam13293 85.6755 -290033 pfam13294 87.6218 -290034 pfam13295 267.971 -315873 pfam13297 92.5223 -315874 pfam13298 82.1319 -315876 pfam13300 67.2191 -315877 pfam13301 57.5711 -315878 pfam13302 36.9391 -315879 pfam13303 178.521 -315880 pfam13304 35.1052 -315882 pfam13306 59.4793 -315884 pfam13308 63.1062 -315887 pfam13311 151.57 -315888 pfam13312 64.9053 -290053 pfam13314 42.4266 -290054 pfam13315 241.706 -315890 pfam13316 145.978 -290056 pfam13317 357.555 -315891 pfam13318 37.5625 -290058 pfam13319 162.183 -290060 pfam13321 456.718 -290061 pfam13322 339.575 -315893 pfam13323 108.454 -315894 pfam13324 153.587 -315895 pfam13325 200.188 -315897 pfam13327 151.348 -315898 pfam13328 91.921 -315899 pfam13329 78.8289 -315900 pfam13330 40.3373 -315907 pfam13338 25.1648 -315910 pfam13341 139.154 -315914 pfam13346 41.8848 -315915 pfam13347 207.138 -290090 pfam13352 230.025 -315921 pfam13355 59.9419 -315923 pfam13358 89.2469 -315926 pfam13361 115.276 -315927 pfam13362 63.135 -315929 pfam13364 37.6166 -315932 pfam13367 86.9401 -315937 pfam13372 282.694 -315938 pfam13373 97.6929 -315939 pfam13374 24.3983 -315942 pfam13377 56.9565 -315947 pfam13383 205.265 -315952 pfam13388 769.04 -315953 pfam13389 252.378 -290126 pfam13390 184.461 -315955 pfam13392 41.8017 -315957 pfam13394 87.3611 -315960 pfam13397 115.34 -315961 pfam13398 87.2257 -315962 pfam13399 28.1244 -315963 pfam13400 27.4446 -315964 pfam13401 40.7714 -315966 pfam13403 141.997 -315969 pfam13406 147.315 -315970 pfam13407 57.7025 -315971 pfam13408 25.2896 -315977 pfam13414 40.1477 -315982 pfam13419 126.541 -315983 pfam13420 133.235 -315984 pfam13421 322.391 -315985 pfam13422 70.0215 -315986 pfam13423 215.74 -315987 pfam13424 26.5812 -315988 pfam13425 243.752 -315992 pfam13429 231.078 -315996 pfam13433 463.974 -315999 pfam13436 1e+06 -316003 pfam13440 269.078 -316006 pfam13443 36.7362 -316009 pfam13446 30.1323 -290183 pfam13447 531.331 -316012 pfam13450 27.0933 -316019 pfam13457 30.7686 -316021 pfam13459 37.7135 -316023 pfam13462 122.08 -316024 pfam13463 30.338 -316027 pfam13466 37.9729 -316032 pfam13471 63.1269 -316034 pfam13473 66.4487 -316036 pfam13475 24.6721 -316038 pfam13477 72.7312 -316040 pfam13479 108.889 -316041 pfam13480 46.0916 -316042 pfam13481 77.0357 -316043 pfam13482 92.2802 -316044 pfam13483 99.5748 -290220 pfam13485 439.465 -316046 pfam13486 311.56 -316054 pfam13494 98.353 -316057 pfam13498 346.073 -316059 pfam13500 116.966 -316067 pfam13509 50.2138 -316068 pfam13510 61.3769 -316078 pfam13520 90.4512 -316079 pfam13521 61.5006 -316080 pfam13522 48.8244 -316084 pfam13526 178.25 -316085 pfam13527 78.3823 -316086 pfam13528 480.781 -316087 pfam13529 68.6277 -316088 pfam13530 56.1021 -316093 pfam13535 153.978 -316101 pfam13543 204.959 -316104 pfam13547 395.455 -316110 pfam13553 194.755 -316111 pfam13554 119.397 -316113 pfam13556 37.4465 -316116 pfam13559 25.5944 -316117 pfam13560 28.6573 -316119 pfam13562 90.3287 -316121 pfam13564 46.7775 -290306 pfam13573 24.4366 -316130 pfam13574 193.994 -316131 pfam13575 135.111 -316133 pfam13577 57.3268 -316135 pfam13579 39.3307 -316136 pfam13580 104.98 -316138 pfam13582 64.2912 -316139 pfam13583 245.219 -316141 pfam13585 66.8109 -290319 pfam13586 79.7132 -316143 pfam13589 97.3861 -316147 pfam13595 286.116 -316151 pfam13599 44.1798 -316153 pfam13601 95.7717 -290339 pfam13608 619.733 -316161 pfam13610 154.055 -316162 pfam13611 153.06 -316165 pfam13614 176.563 -316166 pfam13616 98.5598 -316171 pfam13621 125.549 -316175 pfam13625 92.9422 -316177 pfam13628 65.6938 -316180 pfam13631 132.749 -316183 pfam13635 60.7146 -316185 pfam13637 27.6321 -316190 pfam13642 106.199 -316193 pfam13645 161.497 -205824 pfam13647 618.998 -316198 pfam13651 436.746 -316206 pfam13661 109.345 -316207 pfam13662 36.8219 -316214 pfam13670 35.7362 -316219 pfam13676 54.5214 -316221 pfam13678 360.181 -316222 pfam13679 107.319 -316228 pfam13686 168.643 -316229 pfam13687 89.2242 -316236 pfam13694 134.651 -316240 pfam13699 51.8204 -316242 pfam13701 373.079 -316243 pfam13702 200.943 -316244 pfam13704 54.1762 -316247 pfam13708 133.584 -316251 pfam13712 165.085 -316253 pfam13714 156.186 -316256 pfam13717 51.8021 -316257 pfam13718 204.787 -316258 pfam13719 63.4195 -316263 pfam13724 40.8124 -316265 pfam13726 57.9553 -316266 pfam13727 78.0675 -316269 pfam13730 39.3943 -316270 pfam13731 70.097 -316271 pfam13732 37.5588 -316272 pfam13733 131.837 -316274 pfam13735 105.034 -290455 pfam13737 143.216 -316275 pfam13738 239.037 -316278 pfam13741 225.188 -316280 pfam13743 202.501 -316281 pfam13744 64.5553 -316282 pfam13746 211.466 -316283 pfam13747 58.0876 -316284 pfam13748 253.392 -316288 pfam13753 47.2588 -316289 pfam13754 179.774 -316291 pfam13756 63.0529 -316292 pfam13757 115.205 -316293 pfam13758 131.694 -316295 pfam13761 83.0987 -316296 pfam13762 117.74 -316298 pfam13764 878.493 -316302 pfam13769 73.021 -316305 pfam13772 82.3118 -316308 pfam13775 91.973 -316310 pfam13777 88.3213 -316315 pfam13782 85.9036 -316316 pfam13783 36.8927 -316319 pfam13786 30.3722 -316321 pfam13788 93.7621 -316322 pfam13789 46.1481 -316323 pfam13790 43.9012 -205967 pfam13794 282.964 -316327 pfam13796 45.2526 -316328 pfam13797 84.5803 -316329 pfam13798 242.341 -316330 pfam13799 41.2065 -316331 pfam13800 51.8262 -290518 pfam13804 346.736 -316336 pfam13806 91.4596 -316339 pfam13809 226.836 -316341 pfam13811 159.597 -316342 pfam13812 80.0947 -316343 pfam13813 50.7591 -316344 pfam13814 100.944 -290529 pfam13815 155.508 -316347 pfam13820 131.392 -316349 pfam13822 26.0811 -316350 pfam13823 33.5006 -316351 pfam13824 71.8524 -316352 pfam13826 118.481 -316355 pfam13829 243.936 -316356 pfam13830 92.7281 -316358 pfam13833 27.543 -316359 pfam13834 80.7345 -316361 pfam13836 128.7 -316363 pfam13838 53.6985 -316366 pfam13841 25.0105 -316367 pfam13842 39.7267 -316368 pfam13843 234.495 -316369 pfam13844 841.62 -316370 pfam13845 105.113 -316371 pfam13846 81.4014 -316372 pfam13847 64.7526 -316373 pfam13848 87.4021 -290564 pfam13853 382.223 -316379 pfam13856 120.709 -316380 pfam13857 25.0231 -316382 pfam13859 85.3282 -316388 pfam13865 33.801 -316389 pfam13866 103.646 -316393 pfam13870 87.2564 -316394 pfam13871 300.595 -316395 pfam13872 255.159 -316396 pfam13873 63.0406 -316399 pfam13876 96.9509 -316400 pfam13877 31.3945 -316404 pfam13881 98.1466 -316405 pfam13882 46.1407 -316406 pfam13883 142.367 -316408 pfam13885 25.0125 -316410 pfam13887 42.3767 -316411 pfam13888 131.253 -316413 pfam13890 155.098 -316418 pfam13895 32.3419 -316420 pfam13897 224.658 -316421 pfam13898 338.405 -316422 pfam13899 40.7571 -316424 pfam13902 41.5317 -316425 pfam13903 115.595 -316426 pfam13904 104.83 -316430 pfam13908 78.6731 -316431 pfam13909 33.3303 -316432 pfam13910 76.5026 -316433 pfam13911 33.039 -316435 pfam13913 26.3707 -316436 pfam13914 133.802 -316437 pfam13915 62.6849 -316438 pfam13916 73.7262 -316439 pfam13917 40.0468 -316440 pfam13918 299.62 -316444 pfam13922 76.8637 -316445 pfam13923 54.7348 -316448 pfam13926 101.575 -316450 pfam13928 27.1386 -316451 pfam13929 298.856 -316452 pfam13930 125.118 -316453 pfam13931 103.613 -316455 pfam13933 319.641 -316456 pfam13934 91.4851 -316461 pfam13939 27.9609 -290651 pfam13940 55.0063 -316464 pfam13943 92.8436 -316466 pfam13945 145.411 -290659 pfam13948 30.8386 -206126 pfam13956 1e+06 -316474 pfam13957 118.571 -316475 pfam13958 106.895 -316481 pfam13964 25.7586 -316484 pfam13967 94.8956 -316486 pfam13969 163.702 -316487 pfam13970 209.113 -316488 pfam13971 196.011 -290685 pfam13978 82.9315 -290686 pfam13979 310.166 -290688 pfam13981 178.497 -316496 pfam13982 139.984 -316497 pfam13983 121.138 -316499 pfam13985 98.4019 -316504 pfam13990 403.885 -316506 pfam13992 103.982 -316513 pfam13999 88.7044 -290707 pfam14000 135.973 -316514 pfam14001 109.447 -316516 pfam14003 72.6357 -316518 pfam14005 158.218 -316519 pfam14006 51.9002 -316520 pfam14007 72.2304 -316524 pfam14011 73.079 -316525 pfam14012 26.7222 -316526 pfam14013 30.1831 -316528 pfam14015 39.9829 -316529 pfam14016 61.9549 -316530 pfam14017 52.1721 -316531 pfam14018 28.7554 -316532 pfam14019 36.3761 -316533 pfam14020 32.8725 -316537 pfam14024 88.4588 -316538 pfam14025 59.1724 -316541 pfam14028 146.41 -316542 pfam14029 31.4199 -316543 pfam14030 81.5071 -316545 pfam14032 31.68 -316547 pfam14034 89.494 -316548 pfam14035 62.1405 -316550 pfam14037 100.141 -316551 pfam14038 51.4916 -316553 pfam14040 121.094 -316554 pfam14041 59.6249 -316555 pfam14042 78.5622 -316556 pfam14043 118.946 -316557 pfam14044 69.249 -316558 pfam14045 358.026 -316560 pfam14047 87.0788 -316562 pfam14049 108.731 -316563 pfam14050 56.3789 -316567 pfam14054 82.9079 -316568 pfam14055 48.1157 -316570 pfam14057 619.809 -316571 pfam14058 73.8666 -316575 pfam14062 69.5278 -316578 pfam14065 81.6008 -316581 pfam14068 93.4724 -316584 pfam14071 91.2506 -316586 pfam14073 168.936 -316589 pfam14076 33.0247 -316590 pfam14077 87.5257 -316591 pfam14078 53.9207 -316593 pfam14080 55.6338 -316595 pfam14082 93.5651 -290790 pfam14083 134.188 -316596 pfam14084 61.0291 -316597 pfam14085 86.1372 -316601 pfam14089 159.336 -316603 pfam14091 165.025 -316606 pfam14094 142.419 -316608 pfam14097 235.872 -316610 pfam14099 92.7785 -316611 pfam14100 243.328 -316612 pfam14101 206.489 -316613 pfam14102 65.2407 -316616 pfam14105 38.4323 -316618 pfam14107 48.8666 -316619 pfam14108 61.8574 -316623 pfam14112 83.5242 -316625 pfam14114 57.5407 -316626 pfam14115 28.2391 -316627 pfam14116 54.1857 -316628 pfam14117 67.9677 -290824 pfam14118 125.332 -316629 pfam14119 63.8057 -316630 pfam14120 80.4405 -316632 pfam14122 123.675 -316635 pfam14125 148.147 -316640 pfam14130 142.526 -316641 pfam14131 71.9002 -316647 pfam14137 51.658 -316649 pfam14139 60.1433 -290845 pfam14140 47.1064 -290847 pfam14142 69.2078 -316653 pfam14145 34.0325 -316654 pfam14146 26.4013 -290852 pfam14147 48.0923 -290853 pfam14148 110.186 -316655 pfam14149 47.9973 -316657 pfam14151 30.8136 -290857 pfam14152 33.2168 -316658 pfam14153 178.099 -316659 pfam14154 85.5164 -316660 pfam14155 53.7338 -316661 pfam14156 66.6926 -290862 pfam14157 70.7592 -316662 pfam14158 224.857 -316666 pfam14162 63.2513 -316667 pfam14163 42.2854 -316668 pfam14164 82.4588 -316669 pfam14165 83.9269 -316671 pfam14167 359.02 -316672 pfam14168 53.8011 -316673 pfam14169 80.4704 -316674 pfam14171 253.066 -316675 pfam14172 75.8048 -316676 pfam14173 85.4872 -316677 pfam14174 62.8706 -316678 pfam14175 250.723 -316679 pfam14176 126.097 -316680 pfam14177 177.2 -290882 pfam14178 81.2085 -316681 pfam14179 72.1184 -316682 pfam14181 126.622 -316683 pfam14182 73.2014 -316684 pfam14183 152.357 -316685 pfam14184 71.119 -290888 pfam14185 69.9853 -316686 pfam14186 173.654 -316687 pfam14188 324.071 -316689 pfam14190 112.408 -316690 pfam14191 104.147 -316691 pfam14192 101.816 -316692 pfam14193 63.1022 -316693 pfam14194 68.125 -316694 pfam14195 47.6921 -316696 pfam14197 58.4678 -316697 pfam14198 79.826 -316698 pfam14199 418.801 -316699 pfam14200 31.1783 -316700 pfam14201 76.0288 -316701 pfam14202 36.3146 -316702 pfam14203 55.6567 -316704 pfam14205 73.509 -316705 pfam14206 98.8565 -316706 pfam14207 41.808 -316707 pfam14208 89.2373 -316708 pfam14209 29.3015 -290912 pfam14210 126.596 -316712 pfam14216 71.9121 -316713 pfam14217 83.6687 -316714 pfam14218 102.722 -316715 pfam14219 56.5637 -316716 pfam14220 90.4632 -316717 pfam14221 48.0053 -316723 pfam14228 2161.95 -316724 pfam14229 91.8923 -316725 pfam14230 39.9805 -316728 pfam14233 91.5566 -316729 pfam14234 353.056 -316731 pfam14236 251.482 -316733 pfam14238 70.1614 -316735 pfam14240 109.063 -316736 pfam14242 47.9492 -316737 pfam14243 111.163 -316738 pfam14244 62.7515 -290944 pfam14245 178.455 -316739 pfam14246 37.5544 -316740 pfam14247 253.31 -316742 pfam14249 439.709 -316743 pfam14250 81.0921 -316744 pfam14251 176.97 -316746 pfam14253 121.68 -316749 pfam14256 38.7034 -316750 pfam14257 90.7497 -316751 pfam14258 29.1008 -316753 pfam14261 40.1366 -316756 pfam14264 71.5299 -316757 pfam14265 46.1551 -316758 pfam14266 435.904 -316759 pfam14267 33.6875 -316760 pfam14268 57.5621 -316761 pfam14269 177.605 -316762 pfam14270 42.5813 -316764 pfam14272 188.463 -316765 pfam14273 85.0218 -316766 pfam14274 87.8152 -316767 pfam14275 97.5932 -316768 pfam14276 56.0505 -316769 pfam14277 107.56 -316770 pfam14278 41.043 -316774 pfam14282 28.8936 -316777 pfam14285 43.8483 -290984 pfam14286 568.412 -316778 pfam14287 56.7114 -316781 pfam14290 389.167 -316786 pfam14295 40.8396 -316787 pfam14296 152.866 -291003 pfam14305 279.38 -316802 pfam14312 38.6607 -316803 pfam14313 71.986 -316804 pfam14314 1100.67 -316805 pfam14315 489.336 -316808 pfam14318 221.87 -291018 pfam14320 640.721 -316812 pfam14323 161.719 -316814 pfam14325 79.1111 -316818 pfam14329 55.6367 -316821 pfam14332 32.9327 -316822 pfam14333 47.1221 -316825 pfam14336 164.35 -316828 pfam14339 158.134 -316835 pfam14346 31.0855 -316836 pfam14347 82.6148 -316837 pfam14348 94.3088 -316839 pfam14350 195.669 -316841 pfam14352 36.8476 -316842 pfam14353 88.9474 -316845 pfam14356 268.367 -316850 pfam14362 113.098 -316854 pfam14366 77.0275 -316855 pfam14367 155.921 -316858 pfam14370 79.4972 -316859 pfam14371 181.767 -316861 pfam14373 25.9825 -316866 pfam14378 70.7247 -316871 pfam14383 45.1774 -316874 pfam14386 167.853 -316875 pfam14387 59.5672 -316878 pfam14390 192.965 -316882 pfam14394 103.849 -316883 pfam14395 309.597 -316884 pfam14396 332.065 -316885 pfam14397 257.641 -316886 pfam14398 205.477 -316888 pfam14400 137.327 -316892 pfam14404 87.1955 -316893 pfam14406 24.6706 -316894 pfam14407 62.0837 -316895 pfam14408 32.0643 -291106 pfam14409 55.2101 -316896 pfam14410 57.0082 -316897 pfam14411 85.8337 -316899 pfam14413 153.471 -316900 pfam14414 46.6395 -316901 pfam14415 318.895 -316904 pfam14418 71.1539 -316905 pfam14419 224.122 -316907 pfam14421 161.094 -316908 pfam14423 170.696 -291120 pfam14424 155.379 -316909 pfam14425 148.363 -316911 pfam14427 182 -316912 pfam14428 132.98 -316914 pfam14430 50.0974 -316915 pfam14431 117.192 -316916 pfam14432 111.447 -316917 pfam14433 89.2836 -316918 pfam14434 126.689 -316919 pfam14435 65.0077 -316921 pfam14437 121.063 -206605 pfam14439 148.062 -316923 pfam14440 84.4976 -291134 pfam14442 126.671 -316927 pfam14445 65.0893 -316928 pfam14446 65.7523 -316929 pfam14447 53.5186 -291139 pfam14448 126.489 -291142 pfam14451 87.387 -316933 pfam14453 62.9486 -316934 pfam14454 79.2041 -291146 pfam14455 339.954 -316935 pfam14456 246.284 -316936 pfam14457 148.721 -291149 pfam14459 231.085 -316937 pfam14460 155.567 -291151 pfam14461 119.07 -206628 pfam14463 199.91 -316939 pfam14464 38.3055 -316940 pfam14465 163.989 -291157 pfam14468 229.892 -316943 pfam14469 126.609 -316944 pfam14470 58.4527 -316946 pfam14472 63.4519 -316947 pfam14473 93.0643 -316949 pfam14475 46.0662 -316950 pfam14476 375.522 -316951 pfam14477 41.2046 -316955 pfam14481 236.618 -316956 pfam14484 45.9356 -316957 pfam14485 45.6946 -316958 pfam14486 301.839 -316959 pfam14487 100.09 -316961 pfam14489 115.02 -316966 pfam14494 216.476 -316967 pfam14495 178.302 -316970 pfam14498 145.473 -316971 pfam14499 265.471 -291188 pfam14502 79.3644 -316974 pfam14503 239.069 -316975 pfam14504 114.965 -291192 pfam14506 191.936 -316981 pfam14511 209.889 -316982 pfam14512 173.237 -316983 pfam14513 123.574 -291200 pfam14514 211.745 -316984 pfam14516 359.526 -316985 pfam14517 232.652 -258659 pfam14519 473.63 -316988 pfam14521 80.8108 -316989 pfam14522 29.964 -316993 pfam14526 74.3076 -291211 pfam14527 91.1142 -316996 pfam14530 75.4161 -316998 pfam14532 145.534 -317002 pfam14536 46.7669 -317003 pfam14537 41.2947 -317006 pfam14540 127.32 -291228 pfam14544 207.561 -291231 pfam14549 75.8708 -317012 pfam14550 108.995 -317015 pfam14553 42.7106 -317016 pfam14554 78.8729 -291237 pfam14556 89.5305 -317018 pfam14557 231.661 -317023 pfam14562 606.694 -291243 pfam14563 73.7314 -317024 pfam14564 95.0426 -291245 pfam14565 265.675 -317027 pfam14568 57.3168 -317028 pfam14569 99.7747 -291252 pfam14572 262.391 -317034 pfam14576 301.921 -317035 pfam14577 258.345 -317040 pfam14582 294.891 -291262 pfam14583 808.785 -317041 pfam14584 131.387 -291264 pfam14585 116.92 -291265 pfam14586 386.807 -317042 pfam14587 613.308 -258726 pfam14588 255.249 -317043 pfam14589 213.022 -317044 pfam14590 330.817 -317046 pfam14592 532.404 -317047 pfam14593 89.2284 -317048 pfam14594 169.035 -317049 pfam14595 103.096 -317050 pfam14597 377.683 -317053 pfam14600 113.761 -317054 pfam14601 77.9323 -317055 pfam14602 37.4126 -317056 pfam14603 127.413 -291278 pfam14604 45.6695 -317057 pfam14605 51.0939 -317058 pfam14606 189.057 -317060 pfam14608 23.5856 -291283 pfam14609 815.806 -317063 pfam14612 192.148 -291288 pfam14614 302.878 -317065 pfam14615 48.2464 -317066 pfam14616 97.8305 -291291 pfam14617 325.293 -317069 pfam14620 335.719 -317070 pfam14621 266.377 -317071 pfam14622 113.423 -317075 pfam14626 197.743 -291301 pfam14627 138.381 -317076 pfam14628 283.39 -317079 pfam14631 2316.64 -317080 pfam14632 26.735 -291309 pfam14635 184.67 -317084 pfam14637 222.118 -317085 pfam14638 183.585 -258777 pfam14639 223.59 -317086 pfam14640 144.283 -317087 pfam14641 89.9344 -317088 pfam14642 372.779 -317089 pfam14643 348.485 -317090 pfam14644 114.665 -317091 pfam14645 79.6684 -317094 pfam14648 449.412 -317096 pfam14650 289.588 -258789 pfam14651 252.979 -317097 pfam14652 338.493 -317098 pfam14653 100.181 -317099 pfam14654 123.116 -317100 pfam14655 341.58 -317103 pfam14658 85.5154 -317104 pfam14659 32.8844 -317106 pfam14661 160.514 -317107 pfam14662 203.815 -317110 pfam14665 172.76 -317111 pfam14666 70.9595 -317113 pfam14668 50.8954 -291341 pfam14669 508.454 -317116 pfam14672 29.0424 -317117 pfam14673 313.914 -317125 pfam14681 161.49 -317131 pfam14687 89.2549 -317133 pfam14689 55.3415 -317136 pfam14692 48.5634 -317138 pfam14694 307.676 -317139 pfam14695 49.0742 -317140 pfam14696 225.652 -317147 pfam14703 51.5165 -317148 pfam14704 75.3962 -317150 pfam14706 75.7713 -317151 pfam14707 80.423 -317152 pfam14709 80.0998 -317160 pfam14717 132.79 -317162 pfam14719 258.481 -317165 pfam14722 180.615 -317166 pfam14723 153.907 -317167 pfam14724 1261.26 -317168 pfam14725 411.806 -317171 pfam14728 358.897 -291399 pfam14729 82.9497 -291401 pfam14731 240.262 -317174 pfam14733 65.3302 -317175 pfam14734 83.0699 -317176 pfam14735 230.618 -317177 pfam14736 298.754 -317180 pfam14739 82.3719 -317182 pfam14741 126.822 -317188 pfam14747 56.4389 -317191 pfam14750 1053.04 -317192 pfam14751 368.876 -317194 pfam14753 207.172 -291424 pfam14754 544.648 -317195 pfam14755 271.899 -258893 pfam14756 303.488 -317196 pfam14757 421.553 -317197 pfam14758 317.975 -317200 pfam14761 170.928 -317201 pfam14762 363.246 -317202 pfam14763 586.634 -317204 pfam14765 128.631 -317205 pfam14766 42.8779 -317206 pfam14767 47.3732 -317209 pfam14770 195.881 -317210 pfam14771 39.4436 -317211 pfam14772 46.0638 -317213 pfam14774 76.2082 -317216 pfam14777 54.0462 -317217 pfam14778 217.537 -317218 pfam14779 221.686 -317219 pfam14780 146.6 -317222 pfam14784 138.174 -317223 pfam14785 161.99 -317224 pfam14786 213.217 -317225 pfam14788 89.7326 -317232 pfam14795 91.4992 -317234 pfam14797 32.2583 -317235 pfam14798 204.37 -317236 pfam14799 97.3531 -317237 pfam14800 400.562 -317238 pfam14801 78.3026 -317243 pfam14806 124.207 -317244 pfam14807 98.1078 -317245 pfam14808 170.496 -317246 pfam14810 60.1932 -317247 pfam14811 157.322 -317252 pfam14816 459.103 -317253 pfam14817 548.081 -317254 pfam14818 107.479 -291486 pfam14820 33.0549 -317257 pfam14822 379.337 -317259 pfam14824 24.2544 -317264 pfam14829 114.018 -317265 pfam14830 140.423 -317267 pfam14832 135.877 -317269 pfam14834 221.806 -291501 pfam14835 117.022 -317270 pfam14836 129.979 -317273 pfam14839 154.909 -317276 pfam14843 88.585 -317277 pfam14844 96.5313 -317279 pfam14846 59.9682 -317280 pfam14847 77.2056 -317281 pfam14848 125.875 -317284 pfam14851 118.521 -317286 pfam14853 55.2158 -317287 pfam14854 154.905 -258992 pfam14855 309.909 -317289 pfam14857 583.643 -317290 pfam14858 867.44 -258996 pfam14859 429.085 -291524 pfam14860 223.956 -317291 pfam14861 25.9443 -317292 pfam14862 48.7634 -317294 pfam14864 75.2977 -317295 pfam14865 64.095 -259003 pfam14866 57.8525 -291529 pfam14867 38.4192 -317297 pfam14869 140.561 -317298 pfam14870 462.923 -317299 pfam14871 161.412 -317300 pfam14872 1403.62 -317302 pfam14874 156.902 -317303 pfam14875 137.083 -291538 pfam14876 707.641 -291539 pfam14877 153.944 -317305 pfam14879 114.004 -317306 pfam14880 34.5718 -317307 pfam14881 262.311 -317308 pfam14882 56.5146 -291546 pfam14884 687.421 -317310 pfam14885 221.902 -317312 pfam14887 132.979 -317313 pfam14888 255.386 -317314 pfam14889 214.504 -317316 pfam14891 110.537 -317317 pfam14892 110.88 -317318 pfam14893 301.933 -317319 pfam14894 68.0614 -317320 pfam14895 310.865 -317321 pfam14896 453.163 -317322 pfam14897 51.1668 -317329 pfam14904 98.5491 -317331 pfam14906 389.302 -317333 pfam14908 74.6498 -317335 pfam14910 1179.12 -317339 pfam14914 204.906 -317340 pfam14915 268.337 -317341 pfam14916 65.3699 -317342 pfam14917 147.617 -317343 pfam14918 192.603 -317344 pfam14919 486.07 -317345 pfam14920 275.506 -317346 pfam14921 257.985 -317347 pfam14922 164.317 -317348 pfam14923 468.517 -317350 pfam14925 904.196 -317351 pfam14926 372.729 -317352 pfam14927 101.59 -317353 pfam14929 229.919 -317354 pfam14930 122.456 -317356 pfam14932 163.67 -317360 pfam14936 242.358 -317361 pfam14937 113.919 -317362 pfam14938 258.258 -317363 pfam14939 235.268 -317364 pfam14940 209.191 -317365 pfam14941 370.492 -317366 pfam14942 99.6278 -317367 pfam14943 140.056 -317368 pfam14944 201.814 -317369 pfam14945 127.432 -317370 pfam14946 230.059 -317372 pfam14948 82.5106 -317374 pfam14950 465.895 -317375 pfam14951 567.337 -317378 pfam14954 407.237 -317379 pfam14955 196.295 -317381 pfam14957 35.8386 -317382 pfam14958 116.981 -317383 pfam14959 112.682 -317385 pfam14961 2000.02 -317386 pfam14962 173.871 -317387 pfam14963 414.582 -317389 pfam14965 154.42 -317390 pfam14966 74.1725 -317391 pfam14967 491.199 -317393 pfam14969 131.628 -317394 pfam14970 106.666 -317395 pfam14971 178.816 -317396 pfam14972 224.093 -317397 pfam14973 170.481 -317398 pfam14975 81.0503 -317399 pfam14976 236.956 -317400 pfam14977 178.606 -317401 pfam14978 80.3619 -317402 pfam14979 169.204 -317403 pfam14980 80.3454 -317404 pfam14981 50.2338 -291643 pfam14982 148.351 -291644 pfam14983 273.006 -317405 pfam14984 42.605 -317406 pfam14985 222.258 -317407 pfam14986 79.1136 -317408 pfam14987 97.5975 -291649 pfam14988 137.147 -317409 pfam14989 139.836 -317410 pfam14990 52.7219 -317411 pfam14991 135.959 -317412 pfam14992 195.284 -317413 pfam14993 109.136 -317414 pfam14994 244.313 -317415 pfam14995 79.574 -317416 pfam14996 162.159 -317417 pfam14997 172.455 -317418 pfam14998 76.7163 -317419 pfam14999 86.8971 -317420 pfam15000 135.184 -317421 pfam15001 203.717 -317422 pfam15002 132.822 -317423 pfam15003 226.665 -317424 pfam15004 48.6397 -317426 pfam15006 143.988 -317427 pfam15007 145.413 -317429 pfam15009 269.899 -317430 pfam15010 349.206 -317434 pfam15014 538.167 -317435 pfam15015 975.144 -317436 pfam15016 84.2463 -317437 pfam15017 38.165 -317439 pfam15019 206.369 -317440 pfam15020 985.382 -317441 pfam15021 289.804 -291682 pfam15022 192.262 -317442 pfam15023 251.999 -317443 pfam15024 853.497 -317444 pfam15025 120.847 -317445 pfam15027 235.926 -317446 pfam15028 176.62 -317447 pfam15029 343.645 -317448 pfam15030 260.553 -317449 pfam15031 220.25 -317450 pfam15032 496.287 -317451 pfam15033 177.812 -291693 pfam15034 100.68 -317453 pfam15036 220.354 -317454 pfam15037 379.582 -317455 pfam15038 127.417 -317456 pfam15039 123.029 -291699 pfam15040 33.9296 -317457 pfam15041 313.716 -317458 pfam15042 50.3792 -317459 pfam15043 177.881 -317460 pfam15044 65.7128 -317462 pfam15046 473.894 -317463 pfam15047 184.123 -317464 pfam15048 103.668 -317465 pfam15049 199.366 -317466 pfam15050 207.336 -317467 pfam15051 510.079 -317468 pfam15052 214.126 -317469 pfam15053 616.784 -317471 pfam15055 57.317 -317472 pfam15056 127.856 -317473 pfam15057 106.958 -317474 pfam15059 161.283 -317475 pfam15060 111.043 -317477 pfam15062 123.407 -317478 pfam15063 90.1949 -317479 pfam15064 1879.2 -317480 pfam15065 254.912 -317481 pfam15066 643.013 -317482 pfam15067 205.921 -317483 pfam15068 235.29 -317484 pfam15069 192.93 -317485 pfam15070 701.409 -317486 pfam15071 46.5445 -317488 pfam15073 157.957 -291734 pfam15075 97.823 -317490 pfam15076 132.339 -317491 pfam15077 406.954 -317492 pfam15078 554.876 -317493 pfam15079 291.018 -291739 pfam15080 362.712 -317494 pfam15081 263.694 -317495 pfam15082 185.668 -317496 pfam15083 65.6725 -317498 pfam15085 146.547 -317499 pfam15086 79.8811 -317500 pfam15087 687.658 -291747 pfam15088 90.9661 -317501 pfam15089 584.487 -317502 pfam15090 252.831 -317503 pfam15091 617.341 -317504 pfam15092 115.428 -317505 pfam15093 395.299 -317506 pfam15094 375.685 -317507 pfam15095 421.918 -317508 pfam15096 260.481 -317509 pfam15097 165.322 -317510 pfam15098 230.488 -317511 pfam15099 165.829 -317512 pfam15100 290.386 -317513 pfam15101 176.091 -317514 pfam15102 117.683 -317515 pfam15103 130.539 -317516 pfam15104 82.3756 -317517 pfam15105 270.174 -317518 pfam15106 258.531 -317519 pfam15107 136.819 -291767 pfam15108 243.878 -317520 pfam15109 121.778 -317521 pfam15110 112.063 -291770 pfam15111 307.015 -317522 pfam15112 315.552 -317523 pfam15113 665.264 -317525 pfam15115 129.878 -291775 pfam15116 38.7305 -317526 pfam15117 146.254 -317527 pfam15118 100.676 -317528 pfam15119 164.209 -317530 pfam15121 174.966 -317531 pfam15122 567.114 -317532 pfam15123 170.209 -317533 pfam15124 280.913 -317534 pfam15125 53.7726 -317535 pfam15127 112.572 -317536 pfam15128 132.67 -317537 pfam15129 138.315 -291788 pfam15130 428.538 -291789 pfam15131 124.278 -317538 pfam15132 304.868 -317539 pfam15133 310.491 -317540 pfam15134 101.665 -317541 pfam15135 236.639 -317542 pfam15136 87.7264 -317543 pfam15137 307.428 -317544 pfam15138 195.321 -317545 pfam15139 173.673 -317546 pfam15140 137.638 -317547 pfam15141 74.7946 -317548 pfam15142 285.93 -291801 pfam15143 169.16 -317549 pfam15144 104.916 -317550 pfam15145 196.163 -317551 pfam15146 480.724 -317552 pfam15147 203.121 -317553 pfam15148 275.008 -317554 pfam15149 721.116 -317555 pfam15150 82.6155 -317556 pfam15151 134.266 -317557 pfam15152 91.813 -317558 pfam15153 183.357 -317559 pfam15155 124.709 -317560 pfam15156 420.691 -317561 pfam15157 263.134 -317562 pfam15158 223.457 -317563 pfam15159 44.5573 -317564 pfam15160 400.428 -317565 pfam15161 108.5 -317566 pfam15162 264.638 -317567 pfam15163 111.396 -317568 pfam15164 311.357 -317569 pfam15165 295.846 -291823 pfam15167 267.667 -317570 pfam15168 92.5205 -317571 pfam15169 204.866 -317572 pfam15170 128.785 -317574 pfam15172 63.2396 -317575 pfam15173 162.077 -291830 pfam15174 88.6642 -317576 pfam15175 181.979 -317577 pfam15176 151.826 -317578 pfam15177 138.588 -291834 pfam15178 85.3785 -317579 pfam15179 206.104 -317580 pfam15180 97.4588 -317581 pfam15181 479.185 -317582 pfam15182 125.327 -317583 pfam15183 100.269 -291840 pfam15184 106.748 -291841 pfam15185 290.687 -317584 pfam15186 189.34 -317585 pfam15187 172.3 -317586 pfam15188 62.6432 -317587 pfam15189 255.351 -291846 pfam15190 205.91 -317588 pfam15191 121.657 -317589 pfam15192 123.028 -317590 pfam15193 80.0796 -291850 pfam15194 150.699 -317591 pfam15195 161.14 -259330 pfam15196 88.5888 -291852 pfam15198 138.071 -291853 pfam15199 149.694 -317592 pfam15200 134.242 -291855 pfam15201 102.01 -317593 pfam15202 109.269 -317594 pfam15203 242.811 -317595 pfam15204 113.021 -317596 pfam15205 102.664 -317597 pfam15206 225.342 -317598 pfam15207 315.037 -317599 pfam15208 419.51 -317600 pfam15209 149.149 -291864 pfam15210 71.0122 -317601 pfam15211 131.934 -291866 pfam15212 203.643 -317602 pfam15213 189.95 -317603 pfam15214 71.0007 -291869 pfam15215 43.3914 -317604 pfam15216 180.771 -291871 pfam15217 321.326 -317605 pfam15218 339.212 -317606 pfam15219 164.874 -291874 pfam15220 107.302 -317607 pfam15221 85.7953 -259356 pfam15222 134.893 -317608 pfam15223 382.803 -317609 pfam15224 142.271 -291878 pfam15225 143.464 -317610 pfam15226 140.143 -317611 pfam15227 57.0297 -317613 pfam15229 189.109 -317614 pfam15230 37.4636 -291884 pfam15231 98.2819 -317615 pfam15232 75.8424 -317616 pfam15233 99.8028 -317617 pfam15234 257.499 -317618 pfam15235 127.677 -317619 pfam15236 105.218 -317620 pfam15237 233.359 -317621 pfam15238 249.908 -317622 pfam15239 179.09 -291893 pfam15240 31.4978 -317623 pfam15241 142.907 -317624 pfam15242 191.514 -317626 pfam15244 571.385 -317627 pfam15245 186.976 -317628 pfam15246 322.834 -317630 pfam15248 65.168 -317632 pfam15250 585.161 -317633 pfam15251 174.642 -317634 pfam15252 151.53 -317635 pfam15253 635.544 -317636 pfam15254 1039.37 -317637 pfam15255 180.72 -317638 pfam15256 220.319 -317639 pfam15257 146.715 -317640 pfam15258 665.404 -317641 pfam15259 113.543 -317642 pfam15260 148.751 -317643 pfam15261 84.3885 -317644 pfam15262 65.9352 -317646 pfam15265 464.608 -317647 pfam15266 125.267 -317648 pfam15268 552.34 -259402 pfam15269 117.812 -259403 pfam15270 88.6489 -291920 pfam15271 141.427 -291921 pfam15272 177.963 -317649 pfam15273 556.271 -317650 pfam15274 423.92 -317651 pfam15275 64.3858 -317652 pfam15276 75.4032 -259411 pfam15278 149.799 -317654 pfam15279 211.558 -317655 pfam15280 169.589 -317656 pfam15281 151.717 -317657 pfam15282 157.338 -317659 pfam15284 63.0019 -291932 pfam15285 44.3213 -317660 pfam15286 68.1849 -317661 pfam15287 33.5765 -317662 pfam15288 57.7531 -317663 pfam15289 129.224 -317664 pfam15290 258.601 -291937 pfam15291 169.922 -317665 pfam15292 1074.69 -317666 pfam15293 779.81 -317667 pfam15294 364.02 -317668 pfam15295 110.881 -317670 pfam15297 455.34 -317671 pfam15298 304.128 -317672 pfam15299 123.624 -317674 pfam15301 348.248 -317675 pfam15302 413.381 -317676 pfam15303 214.825 -317677 pfam15304 91.9049 -317678 pfam15305 79.7559 -317679 pfam15306 102.426 -317681 pfam15308 707.642 -317682 pfam15309 113.986 -317683 pfam15310 278.278 -317684 pfam15311 88.9373 -317685 pfam15312 57.0528 -317686 pfam15313 73.5774 -317687 pfam15314 43.4873 -317688 pfam15315 195.511 -317689 pfam15316 150.831 -317690 pfam15317 89.1028 -317691 pfam15318 220.951 -317692 pfam15319 240.368 -317694 pfam15321 72.5144 -317695 pfam15322 257.848 -317696 pfam15323 170.02 -317697 pfam15324 1301.36 -317698 pfam15325 57.4965 -317699 pfam15326 376.443 -317700 pfam15327 90.6452 -317701 pfam15328 126.797 -317702 pfam15330 56.5884 -317703 pfam15331 183.041 -317704 pfam15332 270.183 -317705 pfam15333 223.483 -317706 pfam15334 411.163 -317708 pfam15336 101.432 -317709 pfam15337 100.313 -317710 pfam15338 208.113 -317711 pfam15339 274.028 -291985 pfam15340 181.262 -317713 pfam15342 80.2454 -317714 pfam15343 259.761 -317715 pfam15344 207.934 -317716 pfam15345 147.514 -317718 pfam15347 397.664 -317719 pfam15348 148.294 -291994 pfam15349 399.577 -317720 pfam15350 705.392 -317721 pfam15351 1748.84 -317722 pfam15352 760.022 -317723 pfam15353 157.921 -259486 pfam15354 135.654 -317724 pfam15355 112.715 -292000 pfam15356 64.2377 -292001 pfam15357 238.941 -317725 pfam15358 831.586 -317727 pfam15360 51.7199 -317729 pfam15362 841.413 -317730 pfam15363 51.3588 -317731 pfam15364 126.383 -317733 pfam15366 122.089 -317734 pfam15367 500.916 -317735 pfam15368 215.394 -317736 pfam15369 412.275 -317737 pfam15370 72.3038 -317738 pfam15371 64.5325 -317739 pfam15372 105.878 -317740 pfam15373 766.313 -317741 pfam15374 453.515 -317742 pfam15375 52.3454 -317743 pfam15376 2000.85 -317745 pfam15378 34.4371 -317746 pfam15379 145.536 -317747 pfam15380 356.495 -317748 pfam15382 101.439 -317750 pfam15384 214.222 -317751 pfam15385 402.622 -317752 pfam15386 40.0699 -317753 pfam15387 70.1984 -317754 pfam15388 240.343 -317755 pfam15389 89.967 -317757 pfam15391 135.195 -317758 pfam15392 253.859 -317760 pfam15394 680.543 -317761 pfam15395 868.661 -317762 pfam15396 229.537 -317763 pfam15397 237.931 -317764 pfam15398 370.336 -292042 pfam15399 163.331 -317765 pfam15400 174.231 -317766 pfam15401 32.4986 -317767 pfam15402 791.252 -317768 pfam15403 32.8168 -317769 pfam15404 188.209 -317770 pfam15405 139.288 -317772 pfam15407 54.8386 -317776 pfam15413 78.6542 -292056 pfam15414 615.211 -292057 pfam15415 477.891 -317777 pfam15416 722.757 -292059 pfam15417 238.791 -317779 pfam15419 179.623 -292063 pfam15421 770.534 -317781 pfam15423 146.529 -317782 pfam15424 332.203 -317784 pfam15427 532.527 -317786 pfam15429 345.985 -317787 pfam15430 40.4637 -292071 pfam15431 250.687 -317789 pfam15433 217.664 -317790 pfam15434 74.4408 -317791 pfam15435 352.257 -292077 pfam15437 58.566 -292078 pfam15438 327.868 -317793 pfam15439 239.974 -317794 pfam15440 233.116 -317795 pfam15441 591.041 -317796 pfam15442 134.411 -317797 pfam15443 217.088 -317798 pfam15444 374.625 -317799 pfam15445 623.752 -292088 pfam15448 111.398 -317802 pfam15449 1488.13 -317803 pfam15450 498.589 -317804 pfam15451 91.55 -317805 pfam15452 303.414 -317806 pfam15453 407.785 -317807 pfam15454 39.1697 -317808 pfam15455 360.718 -259588 pfam15457 529.87 -317810 pfam15458 105.088 -317811 pfam15459 38.3798 -317814 pfam15462 278.956 -317816 pfam15464 99.1741 -317817 pfam15465 177.335 -317818 pfam15466 160.371 -317819 pfam15467 721.193 -292107 pfam15468 447.414 -317821 pfam15470 232.123 -317822 pfam15471 485.008 -317823 pfam15472 387.212 -317824 pfam15473 149.983 -317826 pfam15475 67.6091 -317827 pfam15476 249.375 -317829 pfam15478 138.694 -317830 pfam15479 765.127 -317831 pfam15480 292.842 -317833 pfam15482 281.418 -317834 pfam15483 464.227 -317835 pfam15484 196.184 -317836 pfam15485 166.735 -317837 pfam15486 285.413 -317838 pfam15487 304.364 -317839 pfam15488 406.543 -317840 pfam15489 1620.99 -317841 pfam15490 104.621 -317843 pfam15492 567.635 -317845 pfam15494 65.841 -317847 pfam15496 77.3296 -317848 pfam15497 52.6577 -317849 pfam15498 799.532 -317850 pfam15499 443.277 -259631 pfam15500 135.889 -317852 pfam15502 42.0513 -317853 pfam15503 96.6635 -317854 pfam15504 609.919 -317855 pfam15505 230.567 -292144 pfam15506 73.498 -317858 pfam15509 466.501 -317859 pfam15510 134.652 -317860 pfam15511 142.565 -317861 pfam15512 198.121 -292152 pfam15514 380.01 -317863 pfam15515 179.383 -292154 pfam15516 355.594 -292155 pfam15517 170.402 -317864 pfam15518 102.012 -317865 pfam15519 30.2118 -292158 pfam15520 279.566 -317866 pfam15521 296.005 -259653 pfam15522 346.335 -317867 pfam15523 125.33 -317868 pfam15524 163.592 -317869 pfam15525 193.568 -292164 pfam15527 216.541 -317871 pfam15528 182.65 -317872 pfam15529 100.356 -317873 pfam15530 259.044 -317874 pfam15531 190.624 -317875 pfam15532 107.361 -292170 pfam15533 88.4102 -317876 pfam15534 79.2138 -317877 pfam15535 38.726 -292173 pfam15536 263.805 -292174 pfam15537 214.521 -317878 pfam15539 360.014 -292177 pfam15540 160.446 -292178 pfam15541 162.115 -317879 pfam15542 88.5932 -292180 pfam15543 220.394 -292181 pfam15544 551.003 -292182 pfam15545 101.232 -317880 pfam15546 272.201 -317881 pfam15547 175.379 -317882 pfam15548 409.636 -317883 pfam15549 120.312 -317884 pfam15550 399.2 -317885 pfam15551 494.873 -317886 pfam15552 365.29 -317887 pfam15553 213.877 -317888 pfam15554 323.961 -317889 pfam15555 57.8314 -317890 pfam15556 324.246 -317891 pfam15557 350.356 -317892 pfam15558 198.677 -317893 pfam15559 93.2884 -292197 pfam15560 255.245 -317894 pfam15561 200.71 -292200 pfam15563 350.092 -259695 pfam15564 236.383 -292201 pfam15565 144.093 -292202 pfam15566 56.8359 -317896 pfam15567 77.7902 -259699 pfam15568 215.208 -292204 pfam15569 114.562 -292205 pfam15570 122.215 -292206 pfam15571 131.19 -317898 pfam15573 422.366 -317899 pfam15574 164.059 -317900 pfam15575 59.6999 -317901 pfam15576 336.45 -317903 pfam15578 409.29 -317905 pfam15580 89.2789 -292215 pfam15581 178.6 -292216 pfam15582 680.635 -317906 pfam15583 178.33 -292218 pfam15584 129.228 -317907 pfam15585 192.96 -317908 pfam15586 108.922 -292221 pfam15587 179.68 -317909 pfam15588 113.271 -317910 pfam15589 184.511 -317911 pfam15590 96.9702 -292225 pfam15591 119.661 -317912 pfam15592 99.5406 -317915 pfam15595 96.5818 -292230 pfam15596 209.953 -317916 pfam15598 139.477 -317917 pfam15599 84.6919 -292234 pfam15600 259.412 -317918 pfam15601 147.519 -292237 pfam15603 84.3589 -317920 pfam15604 176.99 -317921 pfam15605 156.158 -292240 pfam15606 127.953 -317922 pfam15607 85.0784 -317923 pfam15608 92.1697 -317925 pfam15610 294.631 -317927 pfam15613 45.989 -317928 pfam15615 97.05 -317930 pfam15617 315.26 -317932 pfam15620 223.875 -317933 pfam15621 41.3273 -317935 pfam15623 165.804 -317936 pfam15624 106.627 -317938 pfam15626 33.6247 -317942 pfam15630 93.3853 -317943 pfam15631 78.529 -292266 pfam15633 107.992 -292267 pfam15634 570.53 -317946 pfam15637 246.218 -259768 pfam15638 244.723 -292270 pfam15639 161.182 -317947 pfam15640 216.172 -317948 pfam15641 225.372 -292272 pfam15642 632.762 -317949 pfam15643 124.418 -317950 pfam15644 47.4231 -317951 pfam15646 137.346 -317952 pfam15647 140.116 -317954 pfam15649 91.3034 -317955 pfam15650 131.48 -292281 pfam15651 147.557 -317956 pfam15652 134.219 -317957 pfam15653 73.353 -292283 pfam15654 81.3725 -317958 pfam15655 148.369 -317959 pfam15656 177.053 -317960 pfam15657 47.0213 -317961 pfam15658 274.232 -317963 pfam15660 139.031 -317964 pfam15661 811.797 -317965 pfam15662 197.049 -317966 pfam15663 189.645 -317967 pfam15664 191.129 -317968 pfam15665 124.392 -317969 pfam15666 93.9178 -317970 pfam15667 278.669 -317971 pfam15668 370.46 -317972 pfam15669 141.298 -317973 pfam15670 176.131 -317974 pfam15671 284.955 -317975 pfam15672 352.196 -317976 pfam15673 519.461 -317977 pfam15674 57.2422 -317978 pfam15675 31.609 -317979 pfam15676 775.933 -317980 pfam15677 83.8691 -317981 pfam15678 213.445 -317983 pfam15680 138.812 -317984 pfam15681 499.675 -317985 pfam15682 78.0327 -317986 pfam15683 141.844 -317987 pfam15684 40.0691 -317988 pfam15685 455.275 -317989 pfam15686 331.406 -317990 pfam15687 391.12 -317991 pfam15688 282.798 -317992 pfam15689 118.032 -317993 pfam15690 443.851 -317994 pfam15691 533.9 -317997 pfam15694 332.577 -292323 pfam15695 122.278 -317998 pfam15696 33.0318 -317999 pfam15697 69.3397 -318000 pfam15698 345.427 -318001 pfam15699 50.1913 -318002 pfam15700 50.8104 -292329 pfam15701 182.216 -318003 pfam15702 1006.11 -318004 pfam15703 231.281 -318005 pfam15704 154.923 -318006 pfam15705 102.698 -318007 pfam15706 75.0505 -318008 pfam15707 94.6835 -318009 pfam15708 232.926 -318010 pfam15709 576.565 -318011 pfam15710 735.207 -318014 pfam15713 121.092 -318016 pfam15715 60.2864 -318017 pfam15716 252.18 -318019 pfam15718 1285.92 -318020 pfam15719 112.152 -318021 pfam15720 231.258 -292349 pfam15721 177.021 -318022 pfam15722 208.184 -318024 pfam15724 299.405 -292353 pfam15725 105.683 -292354 pfam15726 348.644 -318025 pfam15727 445.14 -318026 pfam15728 430.806 -318027 pfam15729 677.282 -318028 pfam15730 154.755 -292359 pfam15731 215.704 -318029 pfam15732 167.13 -318031 pfam15734 344.832 -318032 pfam15735 449.227 -318033 pfam15736 185.164 -318034 pfam15737 116.406 -318035 pfam15738 69.7895 -318037 pfam15740 750.016 -318038 pfam15741 874.553 -318039 pfam15742 251.529 -318040 pfam15743 44.6809 -318041 pfam15744 430.753 -318042 pfam15745 429.739 -318043 pfam15746 370.684 -318044 pfam15747 155.41 -318045 pfam15748 203.394 -318047 pfam15750 65.5874 -318048 pfam15751 93.6919 -292380 pfam15752 512.928 -318049 pfam15753 136.727 -318050 pfam15754 467.779 -318051 pfam15755 273.275 -318052 pfam15756 92.9465 -318053 pfam15757 217.027 -292386 pfam15758 27.1357 -318054 pfam15759 526.882 -318055 pfam15760 250.609 -318056 pfam15761 49.6517 -318058 pfam15763 143.807 -318059 pfam15764 359.881 -318060 pfam15765 202.488 -318061 pfam15766 83.8855 -318062 pfam15767 402.629 -318063 pfam15768 305.509 -318064 pfam15769 565.955 -318065 pfam15770 251.533 -318067 pfam15772 223.48 -318068 pfam15773 613.798 -318069 pfam15774 624.532 -318070 pfam15775 226.2 -318071 pfam15776 367.694 -318072 pfam15777 80.3328 -318073 pfam15778 299.627 -318074 pfam15779 30.6975 -318076 pfam15781 95.4076 -318077 pfam15782 3109.85 -318078 pfam15783 1486.92 -318079 pfam15784 95.6435 -318080 pfam15785 751.577 -318083 pfam15788 35.9491 -292417 pfam15789 32.4037 -318084 pfam15790 667.811 -318085 pfam15791 125.711 -318086 pfam15792 44.8257 -318087 pfam15793 266.854 -318088 pfam15794 206.542 -318090 pfam15796 91.5078 -318091 pfam15797 92.3457 -318092 pfam15798 161.559 -318093 pfam15799 737.548 -318094 pfam15800 295.125 -318096 pfam15802 180.624 -318097 pfam15803 51.9943 -318098 pfam15804 104.891 -318099 pfam15805 56.6093 -318100 pfam15806 744.02 -318101 pfam15807 80.5633 -318102 pfam15808 103.06 -318103 pfam15809 257.083 -318104 pfam15810 158.816 -318105 pfam15811 26.5586 -318106 pfam15812 206.82 -318107 pfam15813 353.995 -318108 pfam15814 581.293 -318109 pfam15815 106.538 -318110 pfam15816 324.322 -318111 pfam15817 244.047 -318112 pfam15818 1326.77 -318113 pfam15819 324.002 -292448 pfam15820 141.433 -318115 pfam15822 156.3 -318116 pfam15823 385.691 -292452 pfam15824 475.622 -318117 pfam15825 50.3148 -318118 pfam15826 218.198 -318119 pfam15827 81.6538 -318120 pfam15828 52.4408 -318121 pfam15829 280.9 -318122 pfam15830 291.5 -318123 pfam15831 39.2873 -318124 pfam15832 47.3842 -318125 pfam15833 200.149 -318126 pfam15834 274.852 -318127 pfam15835 254.265 -318128 pfam15836 178.611 -318129 pfam15837 117.121 -318130 pfam15838 102.948 -318131 pfam15839 120.251 -318132 pfam15840 98.2569 -292469 pfam15841 116.656 -292470 pfam15842 288.737 -292471 pfam15843 165.28 -318133 pfam15844 252.807 -292473 pfam15845 60.9327 -318134 pfam15846 149.251 -292475 pfam15847 36.6603 -318135 pfam15848 100.679 -292477 pfam15849 273.741 -318136 pfam15851 126.133 -318137 pfam15852 125.123 -318138 pfam15854 45.5801 -318139 pfam15855 131.096 -318140 pfam15856 386.518 -318141 pfam15858 98.9755 -292484 pfam15859 125.146 -318142 pfam15860 61.0868 -318143 pfam15861 83.9644 -318144 pfam15862 68.5918 -318147 pfam15866 106.246 -318148 pfam15867 44.9089 -318150 pfam15869 328.233 -318151 pfam15870 139.802 -318152 pfam15871 436.385 -318153 pfam15872 88.9395 -292498 pfam15873 50.5885 -318154 pfam15874 119.62 -318155 pfam15875 99.0905 -292501 pfam15876 300.81 -318156 pfam15877 629.816 -318157 pfam15878 100.75 -318159 pfam15880 45.8972 -318160 pfam15881 87.3342 -318161 pfam15882 226.782 -318162 pfam15883 139.435 -318163 pfam15884 77.6721 -318166 pfam15888 105.689 -318169 pfam15891 66.0648 -318170 pfam15892 171.668 -318171 pfam15893 344.796 -292518 pfam15894 74.9721 -292519 pfam15895 235.827 -292520 pfam15897 349.385 -292522 pfam15899 30.5855 -318175 pfam15903 447.268 -318176 pfam15904 113.659 -318177 pfam15905 215.099 -318178 pfam15906 163.66 -318179 pfam15907 414.09 -318181 pfam15909 184.12 -318182 pfam15910 168.406 -318184 pfam15912 261.752 -318185 pfam15913 152.922 -318186 pfam15914 90.2809 -318187 pfam15915 84.5068 -318189 pfam15917 212.914 -318190 pfam15918 58.6735 -318191 pfam15919 155.064 -318192 pfam15920 72.4934 -318193 pfam15921 1944.14 -292544 pfam15922 460.486 -318194 pfam15923 156.669 -318196 pfam15925 83.358 -318197 pfam15926 295.196 -318199 pfam15928 264.277 -318200 pfam15929 197.871 -318201 pfam15930 98.956 -292553 pfam15931 232.293 -318202 pfam15932 62.3411 -318203 pfam15933 71.9313 -318204 pfam15934 349.259 -292557 pfam15935 181.045 -318206 pfam15937 137.087 -292561 pfam15939 146.735 -318208 pfam15940 120.658 -292564 pfam15942 238.064 -318212 pfam15945 66.5141 -318213 pfam15946 154.45 -318214 pfam15947 225.338 -292570 pfam15948 281.32 -318217 pfam15951 103.643 -318218 pfam15952 112.366 -292575 pfam15953 174.861 -318220 pfam15955 42.1089 -318221 pfam15956 145.253 -318222 pfam15957 125.286 -318225 pfam15960 189.836 -318226 pfam15961 1009.32 -318227 pfam15962 1806.71 -318229 pfam15964 774.078 -318230 pfam15965 124.741 -318231 pfam15966 133.122 -318232 pfam15967 676.767 -292591 pfam15969 577.81 -292592 pfam15970 145.964 -318233 pfam15971 182.345 -318234 pfam15972 279.385 -318235 pfam15973 30.1946 -318236 pfam15974 131.613 -318239 pfam15977 93.4255 -292600 pfam15978 300.856 -292603 pfam15981 162.549 -318242 pfam15982 213.96 -318243 pfam15983 152.523 -318244 pfam15984 116.593 -318246 pfam15989 138.635 -318247 pfam15990 112.482 -318248 pfam15991 135.775 -318249 pfam15992 421.578 -318251 pfam15994 180.205 -318252 pfam15995 150.861 -318257 pfam16000 186.851 -318258 pfam16001 233.36 -318259 pfam16002 273.439 -318260 pfam16003 477.274 -318262 pfam16005 82.2699 -318263 pfam16006 214.949 -318264 pfam16007 70.3649 -318265 pfam16008 237.801 -318269 pfam16012 120.176 -318271 pfam16014 598.087 -318274 pfam16017 166.694 -318275 pfam16018 88.5711 -292643 pfam16024 728.369 -318281 pfam16025 51.5951 -318285 pfam16029 63.4591 -318288 pfam16032 212.948 -318290 pfam16034 121.478 -318291 pfam16035 133.849 -318293 pfam16037 98.5322 -318294 pfam16038 105.132 -318295 pfam16039 208.256 -318298 pfam16042 28.648 -318299 pfam16043 54.535 -318301 pfam16045 42.0204 -318302 pfam16046 271.561 -292666 pfam16047 24.5806 -292667 pfam16048 38.6101 -292668 pfam16049 31.0279 -318303 pfam16050 530.39 -318304 pfam16051 46.4445 -318306 pfam16054 169.87 -318307 pfam16055 111.221 -318308 pfam16056 350.251 -318309 pfam16057 285.014 -318310 pfam16058 30.3979 -292677 pfam16059 85.1273 -318311 pfam16060 70.2259 -318313 pfam16062 705.217 -318315 pfam16064 60.6975 -292685 pfam16067 183.431 -318318 pfam16068 93.7852 -318319 pfam16069 110.834 -318322 pfam16072 184.137 -318325 pfam16075 777.734 -318326 pfam16076 51.4234 -318329 pfam16079 43.2652 -318330 pfam16080 55.7728 -292699 pfam16081 111.042 -292702 pfam16084 320.08 -318333 pfam16085 154.334 -318335 pfam16087 67.7053 -318339 pfam16091 237.008 -318342 pfam16094 396.386 -318343 pfam16095 151.963 -318344 pfam16096 87.6307 -318345 pfam16097 69.0522 -318346 pfam16098 135.466 -318349 pfam16101 155.009 -318350 pfam16102 26.7002 -318351 pfam16103 142.475 -292722 pfam16104 208.012 -318353 pfam16106 262.74 -318354 pfam16107 68.4263 -318357 pfam16110 98.4411 -318358 pfam16111 90.5075 -318359 pfam16112 53.7218 -318361 pfam16114 223.638 -318364 pfam16117 123.485 -318366 pfam16119 337.555 -318369 pfam16122 46.4308 -318374 pfam16127 190.333 -318376 pfam16129 89.4706 -318379 pfam16132 200.277 -318380 pfam16133 159.607 -318383 pfam16136 66.6386 -292760 pfam16142 262.556 -318389 pfam16143 177.72 -292762 pfam16144 123.692 -318390 pfam16145 147.12 -318391 pfam16146 98.6155 -318392 pfam16147 334.988 -318393 pfam16148 408.315 -318396 pfam16151 82.7562 -318397 pfam16152 81.4732 -318399 pfam16154 345.085 -318401 pfam16156 108.92 -318404 pfam16159 93.876 -318405 pfam16160 354.561 -318406 pfam16161 232.424 -318407 pfam16162 128.177 -318408 pfam16163 169.378 -292782 pfam16164 103.391 -318409 pfam16165 158.415 -318410 pfam16166 148.708 -292785 pfam16167 239.223 -318411 pfam16168 48.0922 -318413 pfam16170 96.5006 -318414 pfam16171 355.336 -318417 pfam16174 83.7627 -292793 pfam16175 195.773 -318418 pfam16176 243.571 -318422 pfam16180 100.972 -292799 pfam16181 303.446 -318423 pfam16182 204.247 -318424 pfam16183 238.613 -318435 pfam16195 98.0077 -318442 pfam16202 318.257 -318443 pfam16203 364.247 -318444 pfam16204 154.59 -318446 pfam16206 1467.28 -318447 pfam16207 54.8346 -318448 pfam16208 41.184 -318450 pfam16210 49.5579 -318451 pfam16211 38.1821 -318454 pfam16214 705.229 -318455 pfam16215 187.483 -318456 pfam16216 162.826 -318458 pfam16218 427.885 -318459 pfam16219 127.584 -318461 pfam16221 98.0843 -318463 pfam16224 100.024 -318464 pfam16225 82.9761 -292843 pfam16226 519.122 -318466 pfam16228 60.0305 -292846 pfam16229 278.16 -292847 pfam16230 96.8641 -318467 pfam16231 104.595 -318468 pfam16232 118.993 -318469 pfam16233 181.405 -318470 pfam16234 305.957 -318471 pfam16235 121.376 -292856 pfam16239 77.4035 -292858 pfam16241 132.263 -318476 pfam16242 169.004 -318477 pfam16243 130.209 -318478 pfam16244 353.031 -292862 pfam16245 143.373 -318479 pfam16246 337.224 -292864 pfam16247 220.119 -292865 pfam16248 108.571 -318481 pfam16250 89.55 -292868 pfam16251 67.2238 -318482 pfam16252 329.131 -292870 pfam16253 254.994 -318483 pfam16254 538.359 -318484 pfam16255 385.016 -318486 pfam16257 607.343 -318488 pfam16259 105.131 -318489 pfam16260 1129.65 -318490 pfam16261 300.988 -318491 pfam16262 259.113 -318492 pfam16263 435.813 -318494 pfam16265 314.976 -318496 pfam16267 120.047 -318497 pfam16268 861.183 -318501 pfam16272 432.684 -318503 pfam16274 84.4007 -318504 pfam16275 83.3876 -318505 pfam16276 75.5661 -318506 pfam16277 52.4917 -318508 pfam16279 100.214 -292897 pfam16280 457.102 -292899 pfam16283 507.787 -292900 pfam16284 194.309 -318510 pfam16285 395.632 -318511 pfam16286 339.406 -292903 pfam16287 851.277 -318512 pfam16288 181.783 -292905 pfam16289 541.207 -292906 pfam16290 75.603 -318513 pfam16291 110.161 -292908 pfam16292 597.824 -292909 pfam16293 90.9411 -318514 pfam16294 59.8132 -292911 pfam16295 219.275 -318515 pfam16296 92.75 -318516 pfam16297 192.377 -292914 pfam16298 216.229 -292915 pfam16299 336.753 -292918 pfam16302 193.52 -292919 pfam16303 175.097 -318518 pfam16304 221.664 -292923 pfam16307 176.664 -292924 pfam16308 247.06 -292926 pfam16310 121.945 -292927 pfam16311 143.041 -318523 pfam16314 809.954 -318525 pfam16316 95.2682 -292933 pfam16317 596.829 -318526 pfam16318 103.556 -318529 pfam16322 98.3768 -318530 pfam16323 123.509 -292944 pfam16328 483.787 -318535 pfam16329 820.862 -318539 pfam16334 139.796 -318541 pfam16338 63.6874 -318542 pfam16339 113.689 -318543 pfam16341 93.048 -292954 pfam16342 179.714 -318544 pfam16343 200.625 -292959 pfam16348 148.048 -318548 pfam16349 282.753 -318554 pfam16356 146.63 -318555 pfam16357 240.32 -292975 pfam16365 94.766 -318563 pfam16366 70.747 -318564 pfam16367 146.29 -318565 pfam16368 499.051 -318566 pfam16369 90.3142 -292984 pfam16374 260.308 -318571 pfam16375 87.695 -292986 pfam16376 249.53 -292987 pfam16377 165.813 -318574 pfam16381 87.255 -318575 pfam16383 237.717 -318576 pfam16384 529.1 -318580 pfam16389 199.425 -318581 pfam16391 115.882 -318582 pfam16394 434.291 -318583 pfam16395 120.386 -293005 pfam16396 796.075 -318584 pfam16397 367.603 -318585 pfam16398 448.088 -318587 pfam16400 171.539 -293010 pfam16401 394.934 -318588 pfam16402 582.828 -293013 pfam16404 216.634 -318590 pfam16405 136.347 -293015 pfam16406 133.089 -318591 pfam16407 156.777 -318592 pfam16408 187.451 -318593 pfam16409 198.729 -318598 pfam16415 218.508 -293025 pfam16416 98.9237 -318599 pfam16417 177.049 -318601 pfam16419 227.119 -293031 pfam16422 444.255 -318605 pfam16424 214.55 -293034 pfam16425 453.836 -318606 pfam16426 394.546 -318607 pfam16427 124.182 -318608 pfam16428 177.355 -293038 pfam16429 145.828 -318609 pfam16430 331.23 -293040 pfam16431 262.737 -293041 pfam16432 447.331 -293042 pfam16433 587.419 -293043 pfam16434 750.052 -293044 pfam16435 457.636 -318610 pfam16436 218.262 -293046 pfam16437 195.933 -318611 pfam16438 193.937 -293048 pfam16439 333.361 -293049 pfam16440 493.909 -293050 pfam16441 218.863 -293052 pfam16443 473.646 -318613 pfam16444 291.661 -293054 pfam16445 934.866 -293055 pfam16446 235.505 -318614 pfam16447 247.94 -318616 pfam16449 223.691 -318617 pfam16450 116.826 -318618 pfam16451 476.277 -318620 pfam16453 178.61 -318622 pfam16455 136.551 -293065 pfam16456 132.421 -318624 pfam16458 181.116 -293069 pfam16460 211.422 -318627 pfam16462 171.674 -318628 pfam16463 283.834 -318629 pfam16464 111.905 -293074 pfam16465 370.036 -293075 pfam16466 192.965 -293076 pfam16467 166.537 -318630 pfam16468 85.4486 -318631 pfam16469 86.1994 -318633 pfam16471 65.7127 -318634 pfam16472 188.963 -318636 pfam16474 240.679 -318637 pfam16475 244.538 -318638 pfam16476 76.5002 -318639 pfam16477 282.752 -318640 pfam16478 186.758 -293089 pfam16480 267.421 -318641 pfam16481 165.791 -318643 pfam16483 200.124 -318644 pfam16484 61.8634 -318647 pfam16487 105.378 -318650 pfam16490 479.513 -318653 pfam16493 140.86 -318654 pfam16494 148.196 -318656 pfam16496 549.634 -318657 pfam16497 299.636 -318658 pfam16498 59.9839 -318660 pfam16500 137.564 -318661 pfam16502 610.677 -293114 pfam16505 703.71 -318663 pfam16506 91.4928 -318666 pfam16509 108.71 -293119 pfam16510 1072.67 -318670 pfam16515 84.9885 -318672 pfam16517 29.0271 -293126 pfam16518 164.602 -318673 pfam16519 75.7915 -293128 pfam16520 199.146 -318676 pfam16523 108.982 -318678 pfam16525 78.0052 -318680 pfam16527 197.96 -318681 pfam16528 211.306 -318684 pfam16532 255.887 -318685 pfam16533 112.304 -293143 pfam16535 95.0556 -318687 pfam16536 77.6606 -318691 pfam16540 129.721 -318693 pfam16542 407.708 -318694 pfam16543 51.0545 -318696 pfam16545 146.41 -318698 pfam16547 88.8237 -318699 pfam16548 41.4709 -293157 pfam16549 130.561 -293159 pfam16551 60.5061 -318702 pfam16553 161.343 -318704 pfam16555 192.317 -318705 pfam16556 258.079 -318707 pfam16558 59.5839 -318708 pfam16559 80.5076 -318709 pfam16560 381.678 -318711 pfam16562 182.236 -318713 pfam16564 93.9076 -318714 pfam16565 161.898 -318715 pfam16566 152.367 -293175 pfam16567 381.702 -318716 pfam16568 48.9835 -318717 pfam16569 106.289 -318718 pfam16570 172.087 -318719 pfam16571 113.448 -318720 pfam16572 67.9913 -318722 pfam16574 113.202 -318723 pfam16575 102.699 -318725 pfam16577 129.01 -318726 pfam16578 162.528 -318727 pfam16579 197.959 -293188 pfam16580 457.814 -318728 pfam16581 276.232 -293191 pfam16583 295.175 -293192 pfam16584 275.785 -318732 pfam16587 120.736 -318733 pfam16588 38.7028 -318734 pfam16589 50.7698 -318735 pfam16590 86.3538 -318736 pfam16591 207.219 -318737 pfam16594 43.6057 -318739 pfam16596 114.565 -318740 pfam16597 67.2176 -318741 pfam16598 185.164 -318742 pfam16599 225.023 -318743 pfam16600 45.3449 -318744 pfam16601 168.835 -318745 pfam16602 195.469 -318746 pfam16605 110.648 -318747 pfam16606 110.566 -318748 pfam16607 223.262 -318749 pfam16608 256.388 -318750 pfam16609 472.367 -318751 pfam16610 116.548 -318752 pfam16611 90.3123 -318753 pfam16612 113.09 -318754 pfam16613 182.782 -318755 pfam16614 183.292 -318756 pfam16615 47.4888 -318757 pfam16616 64.8802 -318758 pfam16617 93.0017 -318759 pfam16618 212.842 -318760 pfam16619 53.0431 -318761 pfam16620 159.934 -318762 pfam16621 66.9882 -318763 pfam16622 52.4405 -318764 pfam16623 164.632 -318765 pfam16624 58.4209 -318766 pfam16625 81.3935 -318767 pfam16626 123.728 -318769 pfam16628 215.391 -318770 pfam16629 477.567 -318771 pfam16630 153.15 -318772 pfam16631 124.529 -318773 pfam16632 85.161 -318774 pfam16633 115.369 -318775 pfam16634 85.998 -318776 pfam16635 133.819 -318777 pfam16636 76.8484 -318778 pfam16637 86.8698 -318779 pfam16638 134.946 -318780 pfam16639 219.465 -318783 pfam16642 90.6488 -318784 pfam16643 139.091 -318785 pfam16644 132.872 -318786 pfam16645 65.5769 -318787 pfam16646 91.6191 -318788 pfam16648 79.2219 -318789 pfam16649 291.871 -293256 pfam16650 92.1849 -318790 pfam16652 203.759 -318792 pfam16654 248.624 -318793 pfam16655 77.1735 -318794 pfam16656 27.7491 -318797 pfam16660 123.053 -318798 pfam16661 177.005 -318799 pfam16662 119.192 -318800 pfam16663 68.3539 -318801 pfam16664 143.005 -318802 pfam16665 74.4377 -318803 pfam16666 112.875 -318804 pfam16667 51.2989 -293273 pfam16668 551.277 -318805 pfam16669 105.727 -318806 pfam16670 438.159 -293276 pfam16671 766.83 -318807 pfam16672 74.9604 -318808 pfam16673 92.0897 -318809 pfam16674 124.251 -318810 pfam16675 65.1219 -318811 pfam16676 51.9013 -318816 pfam16681 97.7512 -318817 pfam16682 58.9837 -318818 pfam16683 702.478 -293289 pfam16684 237.503 -318820 pfam16686 69.6029 -318821 pfam16687 945.089 -293293 pfam16688 233.746 -318822 pfam16690 198.628 -318823 pfam16691 103.647 -318824 pfam16692 213.38 -293298 pfam16693 432.343 -318827 pfam16696 123.966 -318828 pfam16697 81.0986 -318831 pfam16700 88.1476 -293306 pfam16701 194.885 -318832 pfam16702 101.931 -318833 pfam16703 142.803 -293309 pfam16704 99.7205 -318834 pfam16705 242.727 -293312 pfam16707 348.974 -318836 pfam16708 146.735 -318837 pfam16709 344.308 -293315 pfam16710 251.115 -293318 pfam16713 48.788 -318840 pfam16714 150.009 -318841 pfam16715 197.915 -318842 pfam16716 95.1754 -318844 pfam16718 200.657 -293325 pfam16720 106.25 -293326 pfam16721 192.251 -318846 pfam16722 63.2181 -318847 pfam16723 179.092 -318848 pfam16724 433.281 -318850 pfam16726 159.514 -318851 pfam16727 108.257 -293333 pfam16728 352.651 -318852 pfam16729 61.9261 -318854 pfam16731 87.029 -293338 pfam16733 90.8949 -318856 pfam16734 73.5049 -318858 pfam16736 111.71 -318859 pfam16737 60.372 -318862 pfam16740 76.1194 -318863 pfam16741 61.9475 -318864 pfam16742 228.933 -318865 pfam16743 148.726 -293349 pfam16744 115.211 -318866 pfam16745 44.3819 -318867 pfam16746 176.202 -318868 pfam16747 188.033 -318869 pfam16748 82.6428 -318870 pfam16749 147.936 -293355 pfam16750 113.507 -293356 pfam16751 53.0532 -318871 pfam16752 58.8366 -318872 pfam16754 226.13 -293360 pfam16755 547.797 -318873 pfam16756 602.562 -293363 pfam16758 325.424 -318878 pfam16762 94.4423 -293370 pfam16765 154.074 -318881 pfam16766 85.0681 -318882 pfam16767 121.678 -318883 pfam16768 260.954 -318884 pfam16769 676.753 -318886 pfam16771 103.139 -318887 pfam16772 63.947 -318888 pfam16773 237.346 -293379 pfam16774 200.839 -293380 pfam16775 166.899 -318890 pfam16777 66.7944 -318891 pfam16778 65.4386 -293384 pfam16779 200.709 -318892 pfam16780 52.4623 -318893 pfam16781 217.148 -318894 pfam16782 245.668 -318895 pfam16783 171.417 -293389 pfam16784 352.37 -318896 pfam16785 71.612 -293391 pfam16786 140.4 -318897 pfam16787 320.839 -318898 pfam16788 139.559 -318899 pfam16789 128.428 -293395 pfam16790 185.81 -318900 pfam16791 75.5757 -318901 pfam16792 686.84 -318902 pfam16793 153.05 -318904 pfam16795 204.538 -318905 pfam16796 122.293 -318907 pfam16798 160.562 -318908 pfam16799 61.4481 -318909 pfam16800 129.376 -318910 pfam16802 297.729 -318911 pfam16803 109.954 -318912 pfam16804 137.806 -318913 pfam16805 75.3287 -293411 pfam16806 286.389 -293412 pfam16807 176.306 -293414 pfam16809 179.272 -318914 pfam16810 84.882 -318915 pfam16811 269.564 -318916 pfam16812 242.419 -293419 pfam16814 404.089 -293422 pfam16817 213.223 -318919 pfam16818 115.925 -318920 pfam16819 83.9088 -318921 pfam16820 80.8166 -293426 pfam16821 119.822 -318922 pfam16822 210.64 -318923 pfam16823 135.707 -318924 pfam16824 223.528 -318925 pfam16825 259.968 -318926 pfam16826 92.3797 -318927 pfam16827 73.6745 -293434 pfam16829 196.43 -318929 pfam16830 79.4077 -318930 pfam16831 255.877 -318931 pfam16832 44.6951 -318932 pfam16833 35.9021 -318933 pfam16834 209.871 -318934 pfam16835 61.397 -318935 pfam16836 181.044 -318938 pfam16839 76.1347 -293445 pfam16840 106.835 -318939 pfam16841 77.7074 -318940 pfam16842 91.7896 -318941 pfam16843 69.2905 -318942 pfam16844 71.5792 -293452 pfam16847 164.097 -318945 pfam16848 171.881 -293454 pfam16849 657.052 -318946 pfam16850 142.899 -318947 pfam16851 77.6133 -293457 pfam16852 66.2963 -318949 pfam16854 265.36 -293460 pfam16855 154.945 -318950 pfam16857 48.9391 -318951 pfam16858 222.58 -318953 pfam16860 42.3022 -318955 pfam16862 36.7936 -293470 pfam16865 152.709 -318960 pfam16868 281.054 -318961 pfam16869 77.9962 -318963 pfam16871 205.178 -318964 pfam16872 65.7365 -318969 pfam16877 187.647 -318972 pfam16880 35.4346 -318973 pfam16881 124.954 -293487 pfam16882 173.131 -293488 pfam16883 183.604 -318975 pfam16885 429.72 -318977 pfam16887 279.783 -318985 pfam16895 151.446 -318986 pfam16896 211.791 -318992 pfam16902 106.003 -293508 pfam16903 217.348 -293509 pfam16904 146.645 -318995 pfam16907 77.1349 -318997 pfam16909 135.335 -318999 pfam16911 61.9515 -319000 pfam16912 245.703 -293519 pfam16914 114.483 -319001 pfam16915 116.677 -319003 pfam16917 192.07 -319004 pfam16918 350.106 -319005 pfam16919 154.102 -319006 pfam16920 64.2118 -319009 pfam16923 159.68 -293530 pfam16925 155.841 -293531 pfam16926 223.233 -319011 pfam16927 72.2937 -293533 pfam16928 285.253 -319013 pfam16930 590.046 -293539 pfam16934 83.5879 -319017 pfam16935 76.8942 -293541 pfam16936 68.1899 -319018 pfam16937 339.136 -293543 pfam16938 68.9137 -293544 pfam16939 363.436 -319019 pfam16940 637.903 -293546 pfam16941 647.887 -293547 pfam16942 150.994 -293548 pfam16943 110.276 -319020 pfam16944 174.235 -293550 pfam16945 44.3361 -319022 pfam16947 80.9013 -319024 pfam16949 600.965 -293556 pfam16951 85.3645 -293557 pfam16952 166.646 -319027 pfam16954 27.2805 -319028 pfam16955 243.139 -319030 pfam16957 1048.83 -319031 pfam16958 120.939 -319032 pfam16959 199.376 -319033 pfam16960 511.124 -319034 pfam16961 278.65 -319035 pfam16962 228.284 -293568 pfam16963 102.381 -319036 pfam16964 201.432 -319037 pfam16965 466.108 -293573 pfam16968 226.884 -319040 pfam16969 343.862 -293576 pfam16971 238.96 -319041 pfam16972 787.302 -319044 pfam16975 159.072 -319046 pfam16977 157.458 -319047 pfam16978 155.342 -319048 pfam16979 93.0249 -319049 pfam16980 503.238 -293586 pfam16981 65.3123 -319050 pfam16982 25.5058 -319052 pfam16984 257.837 -293590 pfam16985 175.569 -319053 pfam16986 96.2782 -319054 pfam16987 58.076 -293595 pfam16990 151.911 -293596 pfam16991 127.13 -319057 pfam16992 142.539 -293598 pfam16993 820.685 -319058 pfam16994 136.82 -319059 pfam16995 165.131 -319060 pfam16996 94.6724 -293602 pfam16997 313.863 -319064 pfam17001 76.2366 -319065 pfam17002 136.734 -319066 pfam17003 361.796 -319067 pfam17004 116.309 -319068 pfam17005 340.495 -319069 pfam17006 250.801 -319070 pfam17007 417.627 -319071 pfam17008 243.513 -319072 pfam17009 132.86 -319073 pfam17010 122.121 -319074 pfam17011 132.117 -319075 pfam17012 193.727 -319076 pfam17013 189.075 -319077 pfam17014 166.369 -319078 pfam17015 130.684 -319079 pfam17016 196.803 -319080 pfam17017 185.041 -319081 pfam17018 231.034 -319082 pfam17019 175.997 -319083 pfam17020 134.764 -319084 pfam17021 129.064 -319085 pfam17022 161.506 -319086 pfam17023 473.142 -319087 pfam17024 128.996 -319088 pfam17025 104.03 -319089 pfam17026 81.7368 -319090 pfam17027 131.407 -319091 pfam17028 158.017 -319092 pfam17029 96.3318 -319093 pfam17030 245.821 -319094 pfam17031 97.8661 -319095 pfam17032 46.1178 -319096 pfam17033 472.947 -293639 pfam17034 196.809 -319099 pfam17037 240.622 -293643 pfam17038 546.756 -319100 pfam17039 86.153 -319101 pfam17040 457.011 -293646 pfam17041 71.4772 -319104 pfam17044 225.267 -319105 pfam17045 242.013 -319106 pfam17046 36.6228 -293652 pfam17047 365.506 -293654 pfam17049 332.374 -319108 pfam17050 43.0176 -293656 pfam17051 103.029 -319109 pfam17052 127.156 -319110 pfam17053 176.025 -293659 pfam17054 263.447 -293660 pfam17055 507.689 -319111 pfam17056 53.3888 -293662 pfam17057 274.321 -293663 pfam17058 631.526 -293664 pfam17059 24.1324 -293665 pfam17060 425.899 -319112 pfam17061 239.74 -319113 pfam17062 75.8064 -293668 pfam17063 1e+06 -293669 pfam17064 333.988 -293670 pfam17065 318.692 -319114 pfam17066 284.399 -293672 pfam17067 179.683 -293673 pfam17068 341.039 -293674 pfam17069 124.117 -319115 pfam17070 35.0875 -293676 pfam17071 406.82 -293677 pfam17072 3342.03 -319116 pfam17073 77.3676 -293679 pfam17074 211.1 -293680 pfam17075 125.97 -293681 pfam17076 1318.47 -293682 pfam17077 373.534 -293683 pfam17078 212.678 -293684 pfam17079 160.323 -293685 pfam17080 174.984 -293686 pfam17081 319.243 -293687 pfam17082 253.361 -293688 pfam17083 299.658 -293689 pfam17084 639.329 -293690 pfam17085 207.525 -293691 pfam17086 141.067 -293692 pfam17087 67.7714 -319117 pfam17088 709.824 -293694 pfam17089 181.549 -293695 pfam17090 58.5455 -293696 pfam17091 38.5781 -293698 pfam17093 179.631 -319120 pfam17096 66.9847 -293702 pfam17097 405.737 -319121 pfam17098 90.8112 -293704 pfam17099 165.423 -319127 pfam17105 45.0369 -319131 pfam17109 122.347 -319132 pfam17110 123.129 -319133 pfam17111 239.824 -319134 pfam17112 62.4692 -319136 pfam17114 196.113 -319137 pfam17115 115.571 -319139 pfam17117 70.3272 -293723 pfam17118 177.188 -319140 pfam17119 322.066 -293725 pfam17120 78.9833 -319141 pfam17121 110.217 -293727 pfam17122 69.9268 -319143 pfam17124 196.038 -319145 pfam17126 58.2108 -319147 pfam17128 441.236 -319148 pfam17129 180.499 -319149 pfam17130 134.309 -319151 pfam17132 1091.99 -319152 pfam17133 277.498 -319153 pfam17134 155.604 -319161 pfam17142 362.688 -319162 pfam17144 155.724 -319166 pfam17148 99.5766 -319167 pfam17149 172.774 -319169 pfam17151 246.169 -319171 pfam17153 174.63 -319173 pfam17155 444.295 -319174 pfam17156 424.477 -319178 pfam17160 129.713 -319180 pfam17162 33.6312 -319181 pfam17163 282.99 -319182 pfam17164 31.6384 -319183 pfam17165 134.004 -319184 pfam17166 115.401 -319185 pfam17167 653.029 -319186 pfam17168 132.636 -319187 pfam17169 130.977 -319188 pfam17170 276.124 -319191 pfam17173 429.295 -319192 pfam17174 191.023 -319196 pfam17178 158.677 -319198 pfam17180 83.6937 -319199 pfam17181 38.9828 -319200 pfam17182 272.285 -319201 pfam17183 78.9332 -319208 pfam17190 92.4352 -319209 pfam17191 243.488 -319210 pfam17192 278.898 -319211 pfam17193 266.114 -319213 pfam17195 40.9057 -319214 pfam17196 48.0039 -319221 pfam17203 85.1284 -319222 pfam17204 108.04 -319227 pfam17209 75.5719 -319228 pfam17210 99.9858 -319229 pfam17211 87.4256 -319231 pfam17213 229.606 -319233 pfam17215 107.99 -319234 pfam17216 313.224 -319235 pfam17217 217.61 -319236 pfam17218 29.0942 -319237 pfam17219 27.222 -319238 pfam17220 64.3609 -319240 pfam17222 688.376 -319241 pfam17223 29.0798 -275365 sd00001 54.9338 -275366 sd00002 46.3848 -275367 sd00003 53.6559 -276811 sd00004 35.6508 -276810 sd00005 28.6958 -276809 sd00006 29.9622 -276808 sd00008 51.3375 -276807 sd00010 73.0712 -276806 sd00016 109.276 -275368 sd00017 36.8005 -275369 sd00018 24.5771 -275370 sd00019 29.8919 -275371 sd00020 25.8069 -275375 sd00025 101.673 -275376 sd00029 26.9632 -275377 sd00030 27.4249 -275378 sd00031 29.7776 -275379 sd00032 110.418 -275380 sd00033 62.1721 -275381 sd00034 101.573 -275382 sd00035 191.941 -275383 sd00036 57.2857 -275384 sd00037 45.0297 -276965 sd00038 59.0946 -293791 sd00039 73.5357 -293790 sd00041 79.037 -293789 sd00042 73.6819 -293788 sd00043 54.9248 -293787 sd00044 34.3903 -293786 sd00045 64.1292 -293785 sd00046 49.9723 -128322 smart00002 74.8287 -128323 smart00003 76.6884 -197463 smart00004 41.9282 -214467 smart00005 39.3166 -128326 smart00006 302.115 -214468 smart00008 53.2872 -197466 smart00010 233.991 -214469 smart00012 43.5015 -214470 smart00013 33.4451 -214471 smart00014 66.9861 -197470 smart00015 29.6011 -214472 smart00017 189.047 -197472 smart00018 32.7426 -128335 smart00019 328.09 -214473 smart00020 120.09 -197474 smart00021 103.646 -214474 smart00022 478.46 -128339 smart00023 60.6167 -214475 smart00025 28.5539 -128341 smart00026 324.892 -197477 smart00027 95.8071 -197478 smart00028 27.0256 -214476 smart00029 29.5499 -128345 smart00030 278.242 -214477 smart00031 43.4259 -214478 smart00032 28.6465 -214479 smart00033 39.9915 -214480 smart00034 42.2018 -128350 smart00035 325.964 -214481 smart00036 233.011 -128352 smart00037 80.5703 -197483 smart00038 299 -128354 smart00039 33.9179 -128355 smart00040 204.285 -214482 smart00041 53.9465 -214483 smart00042 56.2444 -214484 smart00043 56.6677 -214485 smart00044 149.715 -214486 smart00045 234.152 -214487 smart00046 79.263 -214488 smart00047 113.3 -128363 smart00048 26.5271 -214489 smart00049 37.6486 -214490 smart00050 65.7896 -128366 smart00051 77.37 -214491 smart00052 188.195 -197491 smart00053 373.06 -197492 smart00054 26.1873 -214492 smart00055 66.9808 -214493 smart00057 73.3455 -214494 smart00058 40.7972 -128373 smart00059 57.3093 -214495 smart00060 29.1197 -214496 smart00061 30.3448 -214497 smart00062 77.7537 -214498 smart00063 112.019 -214499 smart00064 58.9837 -214500 smart00065 45.8352 -214501 smart00066 35.0282 -128381 smart00067 133.02 -214502 smart00068 110.837 -214503 smart00069 75.0388 -128384 smart00070 38.6484 -128385 smart00071 181.228 -214504 smart00072 123.557 -197502 smart00073 68.4294 -214505 smart00075 33.2265 -197503 smart00076 149.769 -128390 smart00077 31.1998 -214506 smart00078 42.793 -197504 smart00079 86.1893 -197505 smart00080 176.933 -214507 smart00082 40.8764 -197507 smart00084 36.3474 -214508 smart00085 94.193 -197509 smart00086 28.3029 -128398 smart00087 62.9735 -214509 smart00088 41.8439 -214510 smart00089 29.3414 -214511 smart00090 230.264 -214512 smart00091 28.519 -128403 smart00092 93.5122 -214513 smart00093 287.155 -214514 smart00094 325.412 -128406 smart00095 238.244 -128407 smart00096 108.379 -128408 smart00097 378.971 -214515 smart00098 440.33 -128410 smart00099 191.19 -197516 smart00100 43.1583 -128412 smart00101 399.675 -214516 smart00102 84.6429 -214517 smart00103 152.463 -197517 smart00104 30.3796 -214518 smart00105 134.777 -128417 smart00107 59.3173 -214519 smart00108 68.4915 -197519 smart00109 40.1436 -128420 smart00110 158.62 -128421 smart00111 175.271 -214520 smart00112 43.1071 -128423 smart00113 64.084 -128424 smart00114 69.674 -214521 smart00115 259.093 -214522 smart00116 35.1812 -214523 smart00119 367.715 -214524 smart00120 28.7478 -197525 smart00121 35.1339 -128430 smart00125 174.105 -128431 smart00126 172.964 -128432 smart00127 234.562 -214525 smart00128 282.321 -214526 smart00129 302.954 -214527 smart00130 77.4306 -197529 smart00131 42.2511 -214528 smart00132 38.5189 -214529 smart00133 40.8068 -214530 smart00134 45.6034 -214531 smart00135 29.8773 -214532 smart00136 272.311 -214533 smart00137 139.401 -214534 smart00138 271.852 -214535 smart00139 133.255 -128445 smart00140 160.731 -197537 smart00141 96.7212 -214536 smart00142 65.831 -197539 smart00143 117.197 -197540 smart00144 105.489 -214537 smart00145 154.338 -214538 smart00146 196.75 -214539 smart00147 170.889 -197543 smart00148 146.657 -128454 smart00149 154.704 -197544 smart00150 33.4573 -128456 smart00151 80.0484 -128457 smart00152 44.1212 -128458 smart00153 56.1733 -197545 smart00154 42.7617 -197546 smart00155 31.9765 -197547 smart00156 266.001 -197548 smart00157 270.586 -128463 smart00159 266.055 -197549 smart00160 144.838 -128465 smart00162 64.0753 -214540 smart00164 56.5461 -197551 smart00165 32.0732 -197552 smart00166 60.3947 -128469 smart00167 141.439 -214541 smart00173 233.217 -197554 smart00174 240.208 -197555 smart00175 226.235 -128473 smart00176 420.572 -128474 smart00177 374.643 -197556 smart00178 370.419 -214542 smart00179 29.1372 -214543 smart00180 30.7423 -214544 smart00181 26.3257 -214545 smart00182 173.66 -128480 smart00183 44.6282 -214546 smart00184 27.4734 -214547 smart00185 29.705 -214548 smart00186 203.663 -197563 smart00187 597.765 -128485 smart00188 235.143 -128486 smart00189 175.448 -197564 smart00190 136.815 -214549 smart00191 30.4213 -197566 smart00192 29.1386 -128490 smart00193 139.63 -214550 smart00194 138.946 -214551 smart00195 118.539 -214552 smart00197 186.184 -214553 smart00198 107.09 -197570 smart00199 39.9212 -214554 smart00200 83.6148 -197571 smart00201 51.9905 -214555 smart00202 39.2474 -197573 smart00203 22.8197 -214556 smart00204 100.813 -128501 smart00205 314.394 -128502 smart00206 293.989 -214557 smart00207 90.0989 -214558 smart00208 25.8917 -214559 smart00209 26.7807 -214560 smart00210 151.741 -214561 smart00211 39.2831 -214562 smart00212 81.5715 -214563 smart00213 49.9501 -214564 smart00214 39.4216 -214565 smart00215 39.8533 -214566 smart00216 74.3605 -197580 smart00217 40.8155 -128514 smart00218 136.712 -197581 smart00219 281.342 -214567 smart00220 121.098 -214568 smart00221 279.434 -214569 smart00222 130.488 -128519 smart00223 64.3245 -128520 smart00224 60.3682 -197585 smart00225 42.6781 -197586 smart00226 174.968 -128523 smart00227 26.6596 -214570 smart00228 32.3508 -214571 smart00229 65.0482 -128526 smart00230 366.651 -214572 smart00231 52.8967 -214573 smart00232 92.8226 -214574 smart00233 29.4389 -214575 smart00234 144.881 -214576 smart00235 46.9599 -197593 smart00236 36.9041 -197594 smart00237 73.4427 -197595 smart00238 75.8168 -214577 smart00239 34.0002 -214578 smart00240 29.4536 -214579 smart00241 86.2866 -214580 smart00242 566.789 -128539 smart00243 122.942 -214581 smart00244 57.2852 -214582 smart00245 144.32 -128542 smart00246 26.7789 -214583 smart00247 59.0587 -197603 smart00248 26.7818 -214584 smart00249 30.643 -197605 smart00250 31.2985 -128547 smart00251 85.0071 -214585 smart00252 47.9939 -128549 smart00253 47.2906 -214586 smart00254 24.6473 -214587 smart00255 65.8076 -197608 smart00256 31.6382 -197609 smart00257 31.6472 -128554 smart00258 93.9482 -128555 smart00259 32.9434 -214588 smart00260 52.2449 -214589 smart00261 27.089 -214590 smart00262 50.3689 -197612 smart00263 153.984 -214591 smart00264 50.3855 -128561 smart00265 41.1054 -128562 smart00266 111.652 -128563 smart00267 82.6805 -214592 smart00268 202.488 -197615 smart00269 34.2646 -214593 smart00270 39.6573 -197617 smart00271 34.1325 -197618 smart00272 29.9959 -214594 smart00273 102.708 -128570 smart00274 26.8573 -214595 smart00275 301.034 -214596 smart00276 80.3495 -197621 smart00277 50.4052 -197622 smart00278 24.1744 -197623 smart00279 28.9518 -197624 smart00280 39.1998 -214597 smart00281 139.318 -214598 smart00282 40.0154 -214599 smart00283 173.626 -128580 smart00284 423.86 -197628 smart00285 36.0308 -128582 smart00286 32.4279 -214600 smart00287 36.542 -197630 smart00288 117.012 -214601 smart00289 29.1142 -197632 smart00290 53.1383 -197633 smart00291 48.9744 -214602 smart00292 29.651 -214603 smart00293 62.7476 -128590 smart00294 37.5054 -214604 smart00295 68.4758 -197636 smart00297 61.9109 -214605 smart00298 28.7188 -128594 smart00299 73.8475 -197638 smart00300 84.345 -214606 smart00301 61.9942 -128597 smart00302 74.5795 -197639 smart00303 52.775 -197640 smart00304 28.3679 -197641 smart00305 32.1454 -197642 smart00306 44.1832 -214607 smart00307 231.102 -214608 smart00308 81.5337 -197643 smart00309 40.7823 -197644 smart00310 127.912 -214609 smart00311 65.4443 -214610 smart00312 37.7084 -214611 smart00313 208.042 -214612 smart00314 46.5224 -214613 smart00315 49.5753 -197648 smart00316 29.4939 -214614 smart00317 40.3955 -214615 smart00318 108.888 -128614 smart00319 116.026 -197651 smart00320 26.8914 -214616 smart00321 81.7477 -197652 smart00322 28.03 -214617 smart00323 291.905 -214618 smart00324 64.9802 -214619 smart00325 75.415 -214620 smart00326 33.2805 -214621 smart00327 37.8192 -214622 smart00328 125.968 -128624 smart00329 167.103 -214623 smart00330 313.549 -214624 smart00331 82.7812 -214625 smart00332 34.2729 -197660 smart00333 39.1793 -197661 smart00335 52.4095 -197662 smart00336 27.6867 -214626 smart00337 74.6661 -197664 smart00338 37.5436 -214627 smart00339 78.0459 -128634 smart00340 69.7884 -128635 smart00341 71.1742 -197666 smart00342 64.1113 -197667 smart00343 25.4816 -214628 smart00344 92.5789 -197669 smart00345 58.3553 -214629 smart00346 83.0181 -197670 smart00347 74.5527 -128642 smart00348 93.1659 -214630 smart00349 68.0027 -214631 smart00350 701.71 -128645 smart00351 175.588 -197673 smart00352 137.57 -197674 smart00353 30.6498 -197675 smart00354 81.8646 -197676 smart00355 25.119 -214632 smart00356 26.0529 -214633 smart00357 44.8971 -214634 smart00358 31.0793 -214635 smart00359 33.7695 -214636 smart00360 29.484 -214637 smart00361 40.0818 -214638 smart00363 30.639 -214639 smart00364 28.4005 -197684 smart00365 28.3931 -197685 smart00367 28.141 -197686 smart00368 28.1422 -197687 smart00369 24.6196 -197688 smart00370 24.6196 -197689 smart00380 63.8233 -214640 smart00382 29.649 -197691 smart00384 30.2895 -214641 smart00385 32.1791 -214642 smart00386 29.0542 -214643 smart00387 29.5391 -214644 smart00388 30.6122 -197696 smart00389 30.2961 -214645 smart00390 30.9323 -128673 smart00391 85.8858 -214646 smart00392 103.943 -214647 smart00393 58.8504 -197697 smart00394 51.9495 -197698 smart00396 60.1473 -197699 smart00397 34.0965 -197700 smart00398 27.2799 -197701 smart00399 49.0612 -128681 smart00400 93.8962 -214648 smart00401 55.1167 -214649 smart00404 43.5015 -214650 smart00406 28.8873 -214651 smart00407 63.1015 -197706 smart00408 40.468 -214652 smart00409 28.2401 -214653 smart00410 28.2401 -197709 smart00411 60.6569 -128690 smart00412 67.8298 -197710 smart00413 101.961 -197711 smart00414 118.975 -214654 smart00415 71.5484 -128694 smart00417 81.0489 -197713 smart00418 36.0342 -128696 smart00419 41.2715 -197714 smart00420 62.625 -197715 smart00421 47.907 -197716 smart00422 60.6117 -214655 smart00423 25.5833 -128701 smart00424 231.237 -214656 smart00425 156.659 -128703 smart00426 119.29 -197718 smart00427 147.278 -128705 smart00428 161.462 -214657 smart00429 38.5556 -214658 smart00430 46.5898 -128708 smart00431 175.571 -197721 smart00432 62.1896 -214659 smart00433 596.461 -214660 smart00434 409.262 -214661 smart00435 515.361 -214662 smart00436 70.6892 -214663 smart00437 207.869 -128715 smart00438 29.5482 -214664 smart00439 49.5981 -128717 smart00440 60.4207 -128718 smart00441 34.0865 -214665 smart00442 118.902 -197727 smart00443 40.9914 -214666 smart00444 68.1282 -214667 smart00445 102.035 -197729 smart00446 28.8121 -214668 smart00448 27.1478 -214669 smart00449 42.2817 -197731 smart00450 31.2758 -197732 smart00451 33.3799 -214670 smart00452 133.223 -197734 smart00453 58.7462 -197735 smart00454 33.8086 -128731 smart00455 79.635 -197736 smart00456 31.8023 -214671 smart00457 124.467 -214672 smart00458 39.4168 -128735 smart00459 68.0317 -214673 smart00460 36.2067 -214674 smart00461 120.153 -214675 smart00462 76.9688 -214676 smart00463 58.8487 -197740 smart00464 45.1208 -214677 smart00465 32.008 -197742 smart00466 206.45 -197743 smart00467 46.0023 -128744 smart00468 83.6197 -128745 smart00469 205.021 -214678 smart00470 39.9803 -214679 smart00471 30.7274 -197746 smart00472 36.1651 -214680 smart00473 29.4692 -214681 smart00474 64.2996 -214682 smart00475 204.751 -128752 smart00476 447.274 -214683 smart00477 189.494 -214684 smart00478 64.5923 -214685 smart00479 73.1031 -214686 smart00480 297.582 -197753 smart00481 40.3274 -214687 smart00482 160.868 -214688 smart00483 291.963 -214689 smart00484 81.4747 -214690 smart00485 86.9031 -214691 smart00486 48.2957 -214692 smart00487 32.0787 -214693 smart00488 285.812 -197757 smart00490 37.1913 -214694 smart00491 95.0384 -214695 smart00493 31.8477 -214696 smart00494 28.949 -197760 smart00495 24.5293 -128772 smart00496 26.7773 -197761 smart00497 28.3026 -214697 smart00498 211.44 -214698 smart00499 25.8014 -128776 smart00500 52.3591 -128777 smart00501 86.56 -128778 smart00502 103.113 -214699 smart00503 64.6745 -128780 smart00504 66.4897 -214700 smart00505 24.3516 -214701 smart00506 72.7232 -214702 smart00507 27.0369 -214703 smart00508 28.1401 -197766 smart00509 58.4764 -128786 smart00510 95.8429 -128787 smart00511 44.4697 -214704 smart00512 85.808 -128789 smart00513 30.5324 -214705 smart00515 77.7144 -214706 smart00516 66.1689 -197769 smart00517 88.109 -214707 smart00518 219.095 -128794 smart00520 120.252 -128795 smart00521 92.4835 -214708 smart00523 113.242 -197770 smart00524 190.599 -197771 smart00525 29.8261 -197772 smart00526 44.1054 -197773 smart00527 30.2999 -128801 smart00528 50.5029 -197774 smart00529 89.1996 -197775 smart00530 28.2526 -128804 smart00531 152.914 -214709 smart00532 388.136 -214710 smart00533 106.999 -197777 smart00534 159.259 -197778 smart00535 73.4068 -197779 smart00536 180.374 -214711 smart00537 99.6399 -197780 smart00538 99.6504 -214712 smart00539 119.839 -128813 smart00540 46.9429 -128814 smart00541 48.8192 -197781 smart00542 97.3652 -214713 smart00543 60.4519 -214714 smart00544 79.9813 -128818 smart00545 60.3542 -214715 smart00546 35.5441 -197784 smart00547 31.5193 -214716 smart00548 33.3191 -197785 smart00549 121.8 -128823 smart00550 73.1393 -214717 smart00551 72.7828 -214718 smart00552 332.806 -197786 smart00553 118.277 -214719 smart00554 40.8083 -128828 smart00555 37.9118 -214720 smart00557 64.9323 -214721 smart00558 28.7572 -128831 smart00559 117.008 -214722 smart00560 94.795 -214723 smart00561 81.1418 -197791 smart00562 163.105 -214724 smart00563 48.5054 -128836 smart00564 28.6538 -128837 smart00567 26.9948 -214725 smart00568 39.1136 -197794 smart00569 41.3396 -197795 smart00570 31.6011 -214726 smart00571 49.9386 -128842 smart00572 342.048 -214727 smart00573 65.4966 -214728 smart00574 168.318 -128845 smart00575 29.8325 -128846 smart00576 78.9055 -214729 smart00577 76.8804 -214730 smart00579 39.0499 -197798 smart00580 55.7721 -128850 smart00581 85.8695 -214731 smart00582 114.681 -214732 smart00583 82.9981 -214733 smart00584 108.178 -128854 smart00586 84.0669 -214734 smart00587 113.579 -128856 smart00588 153.62 -128857 smart00589 54.5042 -214735 smart00591 56.2115 -197800 smart00592 43.1051 -214736 smart00593 44.1418 -214737 smart00594 102.021 -214738 smart00595 54.6723 -128863 smart00596 75.8513 -214739 smart00597 93.324 -214740 smart00602 614.8 -128866 smart00603 108.633 -214741 smart00604 98.0187 -214742 smart00605 51.2724 -128869 smart00606 68.5137 -128870 smart00607 202.402 -214743 smart00608 75.4743 -197803 smart00609 165.994 -214744 smart00611 186.311 -128874 smart00612 31.76 -214745 smart00613 85.3964 -214746 smart00614 29.7033 -128877 smart00615 171.699 -214747 smart00630 166.004 -214748 smart00631 111.66 -214749 smart00632 37.2173 -214750 smart00633 208.627 -214751 smart00634 58.1068 -214752 smart00635 30.0598 -214753 smart00636 85.0375 -214754 smart00637 30.839 -214755 smart00638 247.253 -214756 smart00639 28.2722 -214757 smart00640 193.695 -128889 smart00641 79.7699 -214758 smart00642 86.229 -214759 smart00643 48.9023 -214760 smart00644 72.3907 -214761 smart00645 96.1126 -214762 smart00646 34.5722 -214763 smart00647 43.9428 -197818 smart00648 40.2633 -197819 smart00649 99.9078 -128898 smart00650 128.783 -197820 smart00651 39.0154 -128900 smart00652 89.6179 -214764 smart00653 138.919 -128902 smart00654 224.455 -214765 smart00656 132.401 -128904 smart00657 96.2671 -197821 smart00658 151.784 -128906 smart00659 48.1196 -197822 smart00661 44.2981 -214766 smart00662 166.634 -214767 smart00663 228.557 -214768 smart00664 74.7665 -214769 smart00665 78.0419 -214770 smart00666 49.508 -128913 smart00667 29.3248 -128914 smart00668 31.0022 -214771 smart00670 33.5513 -214772 smart00671 27.5232 -214773 smart00672 276.61 -197827 smart00673 29.4081 -197828 smart00674 57.6873 -128920 smart00675 221.563 -128921 smart00676 106.242 -128922 smart00678 58.1201 -128923 smart00679 32.0391 -197829 smart00680 36.7169 -214774 smart00682 312.455 -128926 smart00683 86.1484 -128927 smart00684 58.1515 -128928 smart00685 58.4648 -128929 smart00686 128.629 -128930 smart00688 156.867 -214775 smart00689 128.734 -214776 smart00690 91.6308 -128933 smart00692 55.0064 -214777 smart00693 48.29 -128935 smart00694 32.5666 -197831 smart00695 78.1689 -128937 smart00696 83.466 -214778 smart00697 72.0306 -197832 smart00698 26.9196 -214779 smart00700 158.222 -128941 smart00701 131.263 -214780 smart00702 79.3542 -214781 smart00703 89.3235 -197836 smart00704 50.0333 -128945 smart00705 27.5044 -214782 smart00706 29.3874 -128947 smart00707 37.0711 -214783 smart00708 43.1843 -128949 smart00709 161.28 -214784 smart00710 29.0707 -197839 smart00711 32.0635 -197840 smart00712 64.5514 -128953 smart00713 31.9733 -197841 smart00714 55.7912 -128955 smart00715 83.4368 -197842 smart00717 27.5733 -214785 smart00718 81.6073 -197843 smart00719 105.463 -214786 smart00720 83.1835 -214787 smart00721 112.863 -214788 smart00722 29.782 -128962 smart00723 155.061 -214789 smart00724 86.5785 -214790 smart00725 75.0792 -197845 smart00726 27.8758 -128966 smart00727 28.3874 -214791 smart00728 51.8751 -214792 smart00729 58.182 -214793 smart00730 111.574 -214794 smart00731 101.633 -128971 smart00732 62.1992 -197848 smart00733 27.397 -128973 smart00734 39.1278 -128974 smart00735 46.442 -214795 smart00736 45.0256 -214796 smart00737 62.7697 -197850 smart00738 47.3678 -128978 smart00739 24.5961 -197851 smart00740 34.5884 -214797 smart00741 27.4561 -128981 smart00742 49.4943 -214798 smart00743 41.1553 -128983 smart00744 60.0002 -197854 smart00745 58.0886 -214799 smart00746 26.956 -128986 smart00747 58.2848 -214800 smart00748 54.6136 -197856 smart00749 29.9655 -214801 smart00750 162.955 -128990 smart00751 39.4787 -214802 smart00752 138.999 -214803 smart00753 41.8439 -214804 smart00754 54.6596 -197860 smart00755 49.1408 -214805 smart00756 57.7283 -214806 smart00757 41.5122 -214807 smart00758 72.4346 -128998 smart00759 143.4 -197863 smart00760 57.9031 -214808 smart00761 96.997 -214809 smart00762 255.711 -214810 smart00763 382.793 -129003 smart00764 293.767 -129004 smart00765 83.6538 -197866 smart00766 71.5235 -214811 smart00767 202.113 -197867 smart00768 46.4792 -214812 smart00769 70.3709 -214813 smart00770 142.169 -129010 smart00771 98.887 -214814 smart00773 44.9709 -214815 smart00774 48.2516 -197870 smart00775 151.656 -214816 smart00776 126.711 -214817 smart00777 120.792 -129016 smart00778 46.1714 -197872 smart00780 227.66 -129018 smart00782 81.0039 -129019 smart00783 103.336 -214818 smart00784 41.5943 -129021 smart00785 86.0705 -129022 smart00786 223.799 -197874 smart00787 288.455 -197875 smart00788 276.283 -129025 smart00789 49.2894 -129026 smart00790 173.472 -129027 smart00791 204.373 -197876 smart00792 106.9 -214819 smart00793 102.329 -129030 smart00794 58.8151 -129031 smart00795 1456.68 -214820 smart00796 182.337 -214821 smart00797 247.782 -214822 smart00798 78.688 -214823 smart00799 106.126 -214824 smart00800 49.6405 -129037 smart00801 39.9658 -214825 smart00802 101.512 -129039 smart00803 57.63 -197882 smart00804 73.4904 -197883 smart00805 216.265 -214826 smart00806 493.032 -214827 smart00807 1087.36 -197885 smart00808 151.494 -197886 smart00809 44.1563 -129046 smart00810 93.509 -214828 smart00811 133.249 -214829 smart00812 330.022 -214830 smart00813 97.3278 -129050 smart00814 453.364 -214831 smart00815 33.1828 -129052 smart00816 53.8061 -214832 smart00817 411.591 -197891 smart00818 103.331 -214833 smart00822 83.3005 -214834 smart00823 33.3777 -214835 smart00824 155.846 -214836 smart00825 241.079 -214837 smart00826 76.8814 -214838 smart00827 201.477 -214839 smart00828 133.695 -214840 smart00829 250.768 -214841 smart00830 30.6245 -214842 smart00831 39.8734 -214843 smart00832 38.4756 -214844 smart00833 41.4286 -197903 smart00834 32.5272 -214845 smart00835 60.3719 -214846 smart00836 51.4255 -129070 smart00837 144.894 -197906 smart00838 113.753 -214847 smart00839 59.534 -214848 smart00840 29.0726 -214849 smart00841 52.0729 -214850 smart00842 79.057 -197911 smart00843 69.3642 -197912 smart00844 30.6046 -197913 smart00845 45.1877 -214851 smart00846 47.5464 -214852 smart00847 29.9289 -214853 smart00848 31.0598 -214854 smart00849 34.0662 -197918 smart00850 38.3254 -214855 smart00851 37.0683 -214856 smart00852 35.6423 -214857 smart00853 38.8747 -214858 smart00854 135.414 -214859 smart00855 32.8181 -214860 smart00856 65.0835 -214861 smart00857 35.2917 -214862 smart00858 27.1454 -214863 smart00859 35.9872 -214864 smart00860 27.2198 -214865 smart00861 39.0064 -214866 smart00862 27.9018 -197931 smart00863 30.043 -214867 smart00864 76.3721 -214868 smart00865 30.2105 -214869 smart00866 41.5101 -214870 smart00867 33.1194 -214871 smart00868 28.6352 -214872 smart00869 37.9342 -214873 smart00870 107.219 -214874 smart00871 36.3004 -214875 smart00872 74.8969 -214876 smart00873 41.0906 -197942 smart00874 42.0969 -197943 smart00875 34.6245 -214877 smart00876 34.7646 -197945 smart00877 27.151 -214878 smart00878 68.5939 -214879 smart00879 55.4331 -214880 smart00880 36.2169 -214881 smart00881 34.4078 -214882 smart00882 34.874 -197951 smart00883 67.8416 -214883 smart00884 50.6178 -197953 smart00885 41.195 -214884 smart00886 53.0599 -214885 smart00887 93.7264 -214886 smart00888 71.7767 -214887 smart00889 47.9241 -197958 smart00890 61.8638 -214888 smart00891 45.8027 -214889 smart00892 49.7137 -214890 smart00893 36.4763 -214891 smart00894 34.9413 -214892 smart00895 28.0946 -214893 smart00896 55.8946 -214894 smart00897 59.6336 -214895 smart00898 34.4664 -214896 smart00899 26.7654 -214897 smart00900 33.4738 -214898 smart00901 69.6635 -214899 smart00902 48.4033 -214900 smart00903 34.8269 -214901 smart00904 55.5222 -214902 smart00905 48.6487 -214903 smart00906 29.3445 -197975 smart00907 27.991 -214904 smart00908 56.8304 -214905 smart00909 40.3715 -214906 smart00910 39.5738 -214907 smart00911 57.2098 -214908 smart00912 36.874 -197981 smart00913 32.9857 -197982 smart00914 35.0757 -214909 smart00915 70.3361 -197984 smart00916 52.1359 -214910 smart00917 30.1451 -214911 smart00918 35.3022 -214912 smart00919 188.777 -214913 smart00920 75.3569 -197989 smart00921 62.6208 -214914 smart00922 32.2534 -197991 smart00923 66.0536 -214915 smart00924 46.7375 -214916 smart00925 135.384 -197994 smart00926 35.688 -214917 smart00927 94.5914 -197996 smart00928 31.3447 -214918 smart00929 32.5551 -197998 smart00930 41.3413 -197999 smart00931 44.0768 -214919 smart00932 72.1719 -214920 smart00933 42.9146 -214921 smart00934 79.904 -214922 smart00935 49.5042 -198004 smart00936 39.1215 -214923 smart00937 73.6512 -198006 smart00938 44.0055 -214924 smart00939 45.855 -198008 smart00940 170.151 -214925 smart00941 50.9987 -214926 smart00942 43.8606 -214927 smart00943 71.991 -214928 smart00944 71.9031 -198013 smart00945 70.4661 -198014 smart00946 44.4827 -214929 smart00947 65.6042 -198016 smart00948 36.3206 -198017 smart00949 57.2967 -214930 smart00950 109.732 -214931 smart00951 37.127 -214932 smart00952 33.7457 -214933 smart00953 47.0576 -214934 smart00954 47.5636 -214935 smart00955 39.943 -214936 smart00956 46.3147 -214937 smart00957 370.601 -214938 smart00958 95.5974 -198027 smart00959 29.265 -214939 smart00960 31.7787 -198029 smart00961 113.014 -214940 smart00962 102.487 -214941 smart00963 28.6712 -214942 smart00964 113.539 -198033 smart00965 28.2384 -198034 smart00966 27.0863 -214943 smart00967 29.0412 -214944 smart00968 34.8992 -198037 smart00969 28.9136 -214945 smart00970 41.696 -198039 smart00971 93.3728 -198040 smart00972 34.1331 -214946 smart00973 70.4651 -214947 smart00974 32.6875 -214948 smart00975 100.795 -214949 smart00976 85.8326 -198045 smart00977 32.927 -214950 smart00978 67.3486 -198047 smart00979 50.3375 -214951 smart00980 35.1034 -214952 smart00981 32.2471 -198050 smart00982 63.253 -214953 smart00983 40.6284 -214954 smart00984 38.2554 -214955 smart00985 124.679 -214956 smart00986 30.0477 -214958 smart00988 34.896 -198057 smart00989 41.1115 -214959 smart00990 40.5704 -214960 smart00991 31.9285 -214961 smart00992 72.2694 -198061 smart00993 45.5789 -198062 smart00994 41.7837 -214962 smart00995 94.2924 -214963 smart00996 684.658 -198065 smart00997 120.248 -198066 smart00998 43.9775 -198067 smart00999 539.092 -214964 smart01000 71.1435 -214965 smart01001 101.069 -214966 smart01002 62.9097 -214967 smart01003 88.2406 -214968 smart01004 407.925 -214969 smart01005 55.1512 -198074 smart01006 33.3097 -214970 smart01007 56.4917 -214971 smart01008 49.0536 -214972 smart01009 79.9294 -214973 smart01010 85.8344 -198079 smart01011 74.1982 -198080 smart01012 31.2945 -198081 smart01013 53.0629 -198082 smart01014 43.7588 -214974 smart01015 217.139 -214975 smart01016 37.1798 -214976 smart01017 43.1011 -198086 smart01018 52.0874 -214977 smart01019 51.5277 -198088 smart01020 85.438 -214978 smart01021 116.224 -214979 smart01022 30.7709 -198091 smart01023 150.579 -214980 smart01024 125.805 -214981 smart01025 43.5066 -214982 smart01026 230.573 -214983 smart01027 44.0677 -198096 smart01028 65.592 -198097 smart01029 165.609 -214984 smart01030 51.8421 -214985 smart01031 59.623 -198100 smart01032 66.0394 -198101 smart01033 111.549 -198102 smart01034 72.9901 -214986 smart01035 293.846 -214987 smart01036 117.784 -198105 smart01037 112.855 -214988 smart01038 221.691 -198107 smart01039 63.0577 -214989 smart01040 60.2805 -214990 smart01041 91.2593 -198110 smart01042 105.408 -198111 smart01043 35.7408 -214991 smart01044 84.0367 -214992 smart01045 365.007 -198114 smart01046 158.685 -214993 smart01047 51.5935 -214994 smart01048 40.5584 -214995 smart01049 37.2344 -214996 smart01050 130.936 -198119 smart01051 112.836 -214997 smart01052 42.1872 -198121 smart01053 104.033 -214998 smart01054 101.323 -214999 smart01055 76.5479 -198124 smart01056 318.637 -215000 smart01057 82.7468 -215001 smart01058 58.2335 -215002 smart01059 208.989 -215003 smart01060 526.652 -215004 smart01061 51.7054 -198130 smart01062 45.2905 -215005 smart01063 47.6524 -198132 smart01064 37.7942 -215006 smart01065 40.7947 -198134 smart01066 75.4704 -215007 smart01067 65.7768 -215008 smart01068 64.1352 -215009 smart01069 69.7377 -215010 smart01070 139.822 -198139 smart01071 82.0801 -215011 smart01072 33.7266 -215012 smart01073 42.2112 -215013 smart01074 54.1775 -215014 smart01075 113.264 -198144 smart01076 187.611 -198145 smart01077 107.732 -198146 smart01078 104.299 -215015 smart01079 45.0183 -215016 smart01080 67.7794 -215017 smart01081 162.884 -198150 smart01082 29.3011 -198151 smart01083 29.0459 -198152 smart01084 70.444 -198153 smart01085 201.647 -198154 smart01086 38.1935 -215018 smart01087 417.108 -198156 smart01088 38.2169 -198157 smart01089 66.7427 -215019 smart01090 58.5051 -215020 smart01091 34.3384 -215021 smart01092 37.2106 -198161 smart01093 70.5062 -215022 smart01094 43.724 -198163 smart01095 60.2186 -198164 smart01096 80.9565 -198165 smart01097 141.358 -215023 smart01098 112.891 -198167 smart01099 41.9534 -215024 smart01100 28.6695 -215025 smart01101 150.548 -198170 smart01102 186.424 -198171 smart01103 54.0072 -215026 smart01104 37.116 +410909 cd19501 267.946 +409299 cd21157 76.3513 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot.dat b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot.dat index d342b4458f..ae1cb7a529 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot.dat +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot.dat @@ -1,33980 +1,16 @@ -237975 cd00001 PTS_IIB_man 1 active site 0 0 1 1 4,8,11 1 -237975 cd00001 PTS_IIB_man 2 phosphorylation site 0 0 1 1 11 6 -237976 cd00002 YbaK_deacylase 1 putative deacylase active site 0 0 1 1 44,97,98,125 1 -237977 cd00003 PNPsynthase 1 active site 0 1 1 1 4,6,7,15,40,42,46,47,67,97,98,101,128,148,188,189,210,211 1 -237977 cd00003 PNPsynthase 2 catalytic residues 0 0 1 0 40,67,148,188 1 -237977 cd00003 PNPsynthase 3 hydrophilic channel 0 1 1 1 4,38,63,65,67,85,87,126,128,146,148,185,188,205,206,208 0 -237977 cd00003 PNPsynthase 4 active site lid 0 1 1 1 91,92,93,94,95,96,97,98,99,100,101 1 -237977 cd00003 PNPsynthase 5 dimerization interface 0 0 1 1 15,155,156 2 -320674 cd00004 Sortase 1 catalytic site 0 0 1 1 49,110,118 1 -320674 cd00004 Sortase 2 active site 0 1 1 0 33,34,45,47,106,108,118 1 -320674 cd00004 Sortase 3 ligand binding site 0 1 1 0 110,118 5 -187674 cd00005 CBM9_like_1 1 carbohydrate binding site 0 1 1 0 68,74,93,95,148,169,172 5 -187674 cd00005 CBM9_like_1 2 Ca binding site 0 1 1 1 11,15,57,71,78,80,88,90,91,127,151 4 -237978 cd00006 PTS_IIA_man 1 active site 0 0 1 1 7,64,69 1 -237978 cd00006 PTS_IIA_man 2 phosphorylation site 0 0 1 1 7 6 -237978 cd00006 PTS_IIA_man 3 active pocket/dimerization site 0 0 1 1 7,21,22,33,69,100 0 -350199 cd00008 PIN_53EXO-like 1 active site 0 1 1 1 2,5,6,8,9,10,12,13,32,33,35,36,37,39,40,51,53,59,80,84,88,108,110,111,132,133,134,135,152,153,156 1 -350199 cd00008 PIN_53EXO-like 2 metal binding site 1 [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,51,108,110 4 -350199 cd00008 PIN_53EXO-like 3 metal binding site 2 [DENQ][DENQ] 1 1 1 133,135 4 -350199 cd00008 PIN_53EXO-like 4 helical arch 0 0 1 1 64,65,66,67,68,80,81,82,83,84 0 -350199 cd00008 PIN_53EXO-like 5 5' ssDNA interaction site 0 1 1 0 5,8,9,12,53,59,84,88,132,133,134,153,156 3 -99707 cd00009 AAA 1 ATP binding site 0 1 1 0 26,27,28,29,30,31,32,33,90,127 5 -99707 cd00009 AAA 2 Walker A motif 0 0 1 1 25,26,27,28,29,30,31,32 0 -99707 cd00009 AAA 3 Walker B motif 0 0 1 1 86,87,88,89,90,91 0 -99707 cd00009 AAA 4 arginine finger 0 0 1 1 141 0 -153270 cd00011 BAR_Arfaptin_like 1 dimer interface 0 1 1 0 16,17,23,27,30,33,34,37,40,41,45,47,48,51,54,55,59,60,62,63,66,70,170,174,175,178,179,181,182,189,190,192,193 2 -153270 cd00011 BAR_Arfaptin_like 2 Rac binding site 0 1 1 1 22,25,28,29,32,33,35,36,37,39,40,75,78,82,85,86 2 -212657 cd00012 NBD_sugar-kinase_HSP70_actin 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,107,129,130,131,132,177 5 -237981 cd00014 CH 1 putative actin binding surface 0 0 1 0 0,1,3,4,5,8,11,67,68,71,74,76,92,93,96,97,99,100,103,104 2 -237982 cd00015 ALBUMIN 1 binding site 0 1 0 0 134,137,138,141,157,160 0 -237982 cd00015 ALBUMIN 2 binding site 0 1 0 0 22,26,41,62,66,69,94,97,98 0 -293732 cd00016 ALP_like 1 active site 0 1 1 0 8,49,130,177,178 1 -293732 cd00016 ALP_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,49,177,178 4 -293732 cd00016 ALP_like 3 substrate binding site 0 1 1 0 8,49,130,178 5 -237985 cd00018 AP2 1 DNA binding site 0 1 1 0 3,4,6,8,10,12,16,18,25,27,30 3 -237986 cd00019 AP2Ec 1 Metal-binding active site 0 1 1 1 64,104,141,175,178,212,225,227,257 0 -237986 cd00019 AP2Ec 2 AP (apurinic/apyrimidinic) site pocket 0 1 1 1 3,29,67,257,268 0 -237986 cd00019 AP2Ec 3 DNA interaction 0 1 0 1 32,33,34,35,36,67,68,70,73 0 -237988 cd00021 BBOX 1 Zn2+ binding site 0 1 1 1 2,5,25,30 4 -237989 cd00022 BIR 1 Zn2+ binding site 0 1 1 0 36,39,56,63 4 -237989 cd00022 BIR 2 peptide binding groove 0 1 1 1 28,33,35,42,43,44,46,50,55,59,60 0 -237990 cd00023 BBI 1 reactive loops 0 0 1 1 6,7,8,14,32,33,34,39,40 0 -237990 cd00023 BBI 2 protease binding site 0 1 1 0 7,8 0 -349274 cd00024 CD_CSD 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -237992 cd00025 BPI1 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,72,113,115,125,172,176,180,213 0 -237992 cd00025 BPI1 2 BPI dimerizatation interface 0 1 1 1 0,1,2,3,4,5,6 2 -237993 cd00026 BPI2 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,78,111,113,122,158,162,166,170,192 0 -237993 cd00026 BPI2 2 BPI dimerization interface 0 1 1 1 1,2,3,4,5,183,184,185,186,187,188,194,195,196,197,198,199 2 -349339 cd00027 BRCT 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -237995 cd00028 B_lectin 1 mannose binding site 0 1 1 1 26,29,31,33,35,61,63,65,67,69,93,95,97,99,101 5 -237995 cd00028 B_lectin 2 dimerization interface 0 1 1 1 1,2,4,7,34,43,44,77,79,87,89,91,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 2 -237996 cd00029 C1 1 zinc binding sites 0 1 1 1 0,13,16,30,33,38,41,49 4 -237996 cd00029 C1 2 putative DAG/PE binding site 0 0 1 1 7,10,11,20,21,22,23,24,25,26 0 -237996 cd00029 C1 3 putative RAS interaction site 0 0 1 0 10,12 2 -206635 cd00031 CA_like 1 Ca2+ binding site 0 1 1 1 7,8,60,62,93,95,96 4 -237997 cd00032 CASc 1 active site 0 1 1 1 83,126 1 -237997 cd00032 CASc 2 substrate pocket 0 1 1 1 26,84,124,131,176,177,178,179,180,181,185,186 5 -237997 cd00032 CASc 3 proteolytic cleavage site 0 0 1 1 133,160 0 -237997 cd00032 CASc 4 dimer interface 0 1 1 1 132,161,162,169,172,175,198,206,212,226,231,232,234,237,238 2 -153056 cd00033 CCP 1 receptor-ligand interactions 0 1 1 1 10,29 0 -349275 cd00034 CSD 1 putative binding pit 0 0 1 1 8,46,47,48,50,51 2 -349275 cd00034 CSD 2 homodimer interface 0 1 1 1 10,15,32,33,40,41,43,44,47,48,50,51 2 -349275 cd00034 CSD 3 putative peptide binding site 0 1 1 0 4,6,7,8,9,10,18,27,47,50,51 2 -211311 cd00035 ChtBD1 1 carbohydrate binding site 0 1 1 1 17,19,20,21,23,28 5 -213175 cd00036 ChtBD3 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 24,25 5 -153057 cd00037 CLECT 1 ligand binding surface 0 1 1 1 87,91,93,99,101,102,103,104,107,108,109 5 -237999 cd00038 CAP_ED 1 ligand binding site 0 1 1 1 69,70,79,80,81 5 -237999 cd00038 CAP_ED 2 flexible hinge region 0 1 1 1 101,102,103,107,108,109 0 -119409 cd00039 COLIPASE 1 lipase interaction site 0 1 1 1 14,15,37,44,63,64,65,88 2 -119409 cd00039 COLIPASE 2 lipid-binding surface 0 0 1 1 6,7,8,15,17,35,53,54,55,56,57,58,75,78,83 0 -238000 cd00040 CSF2 1 glycosylation sites 0 0 1 1 26,36 6 -238001 cd00041 CUB 1 heterodimerization interface 0 1 1 1 9,11,13,40,45,83,107,109,111,112 2 -238002 cd00042 CY 1 putative proteinase inhibition site 0 1 1 1 0,43,44,45,47 0 -238003 cd00043 CYCLIN 1 binding site 1 0 1 1 1 0,1,7,8,10,11,33,43,44 0 -238003 cd00043 CYCLIN 2 binding site 2 0 1 1 0 52,56,63,79,82,83 0 -238004 cd00044 CysPc 1 catalytic site 0 0 1 1 76,236,258 1 -260016 cd00045 DED 1 charge triad [ED]RD 0 1 1 15,68,70 1 -350668 cd00046 SF2-N 1 ATP binding site 0 1 1 0 8,9,10,11,12,13,14,15,48,110,111 5 -350668 cd00046 SF2-N 2 DEAD box helicase motif D[DE]x[DH] 0 1 1 110,111,112,113 0 -350343 cd00047 PTPc 1 active site xxCxxxxxRx 1 1 1 113,114,145,146,147,148,149,150,151,189 1 -350343 cd00047 PTPc 2 catalytic site CR 0 1 1 145,151 1 -238007 cd00048 DSRM 1 dsRNA binding site 0 1 1 1 0,6,7,50,51,52,53,56 3 -199811 cd00049 MH1 1 DNA binding site 0 1 1 1 20,24,27,62,63,88 3 -199811 cd00049 MH1 2 Zn binding site 0 1 1 1 52,97,109,114 4 -199819 cd00050 MH2 1 trimer interface 0 1 1 1 6,14,15,17,28,29,30,31,32,36,40,41,42,43,45,52,56,57,59,132,135,158,165,167,169 2 -238008 cd00051 EFh 1 Ca2+ binding site 0 1 1 1 9,11,13,20,45,47,49,56 4 -238009 cd00052 EH 1 Ca2+ binding site 0 1 1 1 42,44,46,53 4 -238009 cd00052 EH 2 peptide binding pocket 0 1 1 1 24,34,38 0 -238009 cd00052 EH 3 pseudo EF-hand loop 0 0 1 1 6,7,8,15,16,17,18,19 0 -238011 cd00054 EGF_CA 1 Ca2+ binding site 0 1 1 1 0,3,18 4 -238012 cd00055 EGF_Lam 1 EGF-like motif 0 0 1 1 1,3,13,20,22,31 0 -238013 cd00056 ENDO3c 1 active site 0 1 1 1 111 1 -238013 cd00056 ENDO3c 2 substrate binding pocket 0 1 1 1 97,150,154 5 -238013 cd00056 ENDO3c 3 minor groove reading motif 0 1 1 1 11,12,13,16,55 0 -238013 cd00056 ENDO3c 4 helix-hairpin-helix signature motif 0 1 1 1 87,88,89,90,91,92,93,94 0 -238014 cd00057 FA58C 1 sugar binding site 0 1 1 1 37,65,72 5 -238015 cd00058 FGF 1 heparin binding site (glycine box) 0 1 1 1 98,99,104,108,114 5 -238015 cd00058 FGF 2 receptor interaction site 0 1 1 1 0,3,34,36,38,66,74,77,78,79,80,81,82,84,117,119,121 0 -238016 cd00059 FH 1 DNA binding site 0 1 1 1 36,37,46,49,50,70 3 -238017 cd00060 FHA 1 phosphopeptide binding site 0 1 1 1 27,40,42,43,64,65,66 0 -238019 cd00062 FN2 1 putative gelatin-binding site 0 0 1 0 10,12,17,31,38,44,46 0 -238020 cd00063 FN3 1 Interdomain contacts 0 1 1 0 0,65,80 0 -238020 cd00063 FN3 2 Cytokine receptor motif 0 0 1 1 81,82,84,85 0 -277249 cd00065 FYVE_like_SF 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 13,14,15,16,17,18,23,45 5 -277249 cd00065 FYVE_like_SF 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,17,20,25,28,47,50 4 -206639 cd00066 G-alpha 1 GTP/Mg2+ binding site 0 1 1 1 6,11,12,13,147,166,169,235,236,238,291,292 5 -206639 cd00066 G-alpha 2 adenylyl cyclase interaction site 0 1 1 1 150,175,178,179,182 2 -206639 cd00066 G-alpha 3 beta - gamma complex interaction site 0 1 1 1 148,150,152,163,165,169,170,171,173,176,177,179,180,181,182 2 -206639 cd00066 G-alpha 4 GoLoco binding site 0 0 1 1 7,8,9,37,41,45,48,51,52,70,73,115,144,169,177,181 0 -206639 cd00066 G-alpha 5 putative receptor binding site 0 0 1 1 283,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299 0 -206639 cd00066 G-alpha 6 Switch I region 0 0 1 1 142,143,144,145,146,147,148,149,150 0 -206639 cd00066 G-alpha 7 Switch II region 0 0 1 1 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 0 -206639 cd00066 G-alpha 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206639 cd00066 G-alpha 9 G2 box 0 0 1 1 147 0 -206639 cd00066 G-alpha 10 G3 box 0 0 1 1 166,167,168,169 0 -206639 cd00066 G-alpha 11 G4 box 0 0 1 1 235,236,237,238 0 -206639 cd00066 G-alpha 12 G5 box 0 0 1 1 291,292,293 0 -238023 cd00067 GAL4 1 Zn2+ binding site 0 1 1 1 5,8,15,22,25,32 4 -238023 cd00067 GAL4 2 DNA binding site 0 1 1 1 0,4,9,10,11,12,14,17,27 3 -238024 cd00068 GGL 1 beta subunit binding site 0 1 1 0 0,3,7,10,14,19,21,24,25,28,29,32,41,42,52 2 -200450 cd00069 GHB_like 1 receptor binding site 0 1 1 0 37,87,88,91,93,94,95 2 -200450 cd00069 GHB_like 2 dimer interface 0 1 1 0 7,10,24,25,26,27,28,29,30,31,32,33,34,35,36,37,48,49,85,87,90,91,92,93,94,95 2 -200450 cd00069 GHB_like 3 cysteine knot motif 0 0 0 1 0,25,29,49,80,82 0 -238025 cd00070 GLECT 1 sugar binding pocket 0 1 1 0 42,44,46,53,55,62,65,67 5 -238025 cd00070 GLECT 2 dimerization interface 0 1 1 1 1,2,3,4,5,121,122,123,124,125,126 2 -238025 cd00070 GLECT 3 dimerization swap strand 0 1 1 1 1,2,3,4,5 0 -238025 cd00070 GLECT 4 putative alternate dimerization interface 0 1 1 1 10,11,12,15,18,84,85,86,91,93,96 2 -238026 cd00071 GMPK 1 catalytic site 0 1 1 1 5,11,28,35,38,47,70,75 1 -238026 cd00071 GMPK 2 G-X2-G-X-G-K 0 0 1 1 5,11 0 -238027 cd00072 GYF 1 proline binding motif 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 0 -238027 cd00072 GYF 2 proline interaction residues 0 0 1 1 24,29,30 0 -238028 cd00073 H15 1 DNA-binding site 0 0 1 1 7,19,50,64 3 -238028 cd00073 H15 2 DNA-binding site 0 0 1 1 45,46,47,48,49,50,51,52,53,54,55,56 3 -238028 cd00073 H15 3 AKP helix motif (fragment) 0 0 1 1 76,77,78,79,80,81,82,83,84,85,86,87 0 -238029 cd00074 H2A 1 DNA binding site 0 1 1 1 24,27,30,31,37,69,72 3 -238029 cd00074 H2A 2 homodimerization interface 0 1 1 1 33,34,35,36 2 -238029 cd00074 H2A 3 acetylation sites 0 0 1 1 0,4 6 -238029 cd00074 H2A 4 ubiquitination site 0 0 1 1 114 0 -238029 cd00074 H2A 5 H2A-H2B dimerization interface 0 1 1 1 46,49,50,53,54,57,58 2 -340391 cd00075 HATPase 1 ATP binding site 0 1 1 1 6,10,13,36,38,40,42,68,69,70,71,87,89,94,95,97 5 -340391 cd00075 HATPase 2 Mg binding site N 1 1 1 10 4 -340391 cd00075 HATPase 3 ATP-lid 0 0 1 1 52,71 0 -340391 cd00075 HATPase 4 G-X-G motif GGGG 0 1 1 40,42,68,70 0 -238031 cd00076 H4 1 H2A-H2B docking site 0 1 1 1 80,81,82,83,84 2 -238031 cd00076 H4 2 H2A interaction site 0 1 1 1 24,26,28 0 -238031 cd00076 H4 3 H2B interaction site 0 1 1 1 52,55,56,59,60,61,62,68,69,72,75,76 2 -238031 cd00076 H4 4 H4 interaction site 0 1 1 0 17,21,25,27,31,34,37,38,41,42,45,46,49,50,70,74 0 -238031 cd00076 H4 5 DNA-binding site 0 1 1 1 28,29,31,57,61,62,64,66,80 3 -238031 cd00076 H4 6 acetylation site 0 0 1 1 0 6 -238032 cd00077 HDc 1 Zn2+ binding site 0 1 1 0 5,37,38,119 4 -238032 cd00077 HDc 2 Mg2+ binding site 0 1 1 0 38 4 -238033 cd00078 HECTc 1 E2 interaction site 0 1 1 1 136,139,140,142,143,146,153,155,159,160,162,168,173,190,194 0 -238033 cd00078 HECTc 2 catalytic cleft 0 0 1 1 6,36,47,108,284,315,316,319,320,321,322,323,343,350 1 -188616 cd00080 H3TH_StructSpec-5'-nucleases 1 DNA binding site 0 1 1 1 9,10,12,21,22,23,32 3 -188616 cd00080 H3TH_StructSpec-5'-nucleases 2 metal binding site 0 1 1 1 12 4 -238035 cd00081 Hint 1 protein-splicing catalytic site 0 0 1 1 0,71,134,135 0 -238035 cd00081 Hint 2 thioester formation/cholesterol transfer 0 0 1 1 0,68,71 0 -119399 cd00082 HisKA 1 phosphorylation site 0 0 1 1 12 6 -119399 cd00082 HisKA 2 dimer interface 0 1 1 0 6,10,14,17,21,24,41,45,48,52,55,59 2 -238036 cd00083 HLH 1 DNA binding region 0 1 1 1 3,4,10,11,12,14,37,40 3 -238036 cd00083 HLH 2 E-box/N-box specificity site 0 1 1 1 11 0 -238036 cd00083 HLH 3 dimerization interface 0 1 1 0 17,18,21,22,24,25,41,44,48,50,51,55,57,58 2 -238037 cd00084 HMG-box 1 DNA binding site 0 1 1 1 2,4,5,7,8,11,12,15,19,32,35,38,57 3 -238038 cd00085 HNHc 1 active site 0 1 1 1 26,28,29,30,32,43,44,48,49,52,56 1 -238039 cd00086 homeodomain 1 specific DNA base contacts 0 1 1 1 2,5,45,48,49,52 3 -238039 cd00086 homeodomain 2 DNA binding site 0 1 1 0 0,1,2,3,4,6,23,29,42,44,45,48,49,51,52,53,55,56 3 -238040 cd00087 FReD 1 Ca2+ binding site 0 1 1 0 149,151,153 4 -238040 cd00087 FReD 2 polymerization pocket 0 1 1 0 157,160,161,170,171 0 -238040 cd00087 FReD 3 gamma-gamma dimer interface 0 1 1 1 121 2 -238041 cd00088 HPT 1 active site 0 0 1 1 39 1 -238041 cd00088 HPT 2 putative binding surface 0 0 1 1 39,42,43,58,61 0 -212008 cd00089 HR1 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,46,47,50,53,54,57 2 -212008 cd00089 HR1 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,41,42,44 2 -238042 cd00090 HTH_ARSR 1 dimerization interface 0 1 1 0 0,1,3,6,9,10,13,14,17,47,67,68,70,71,72,74,75,76 2 -238042 cd00090 HTH_ARSR 2 putative DNA binding site 0 0 1 1 1,2,6,7,8,21,22,23,32,33,34,35,37,38,41,42,44,45,51,52,53,58,59,60 3 -238042 cd00090 HTH_ARSR 3 putative Zn2+ binding site 0 0 1 1 21,24,67 4 -238043 cd00091 NUC 1 active site 0 1 1 0 77,78,80,111,119,123 1 -238043 cd00091 NUC 2 Mg2+ binding site 0 1 1 0 111 4 -238043 cd00091 NUC 3 substrate binding site 0 0 1 1 77,78,123 5 -238044 cd00092 HTH_CRP 1 DNA binding site 0 1 1 1 37,38,39,40,41,42,43 3 -238044 cd00092 HTH_CRP 2 sequence specific DNA binding site 0 1 1 0 38,39,43 3 -238044 cd00092 HTH_CRP 3 non-specific DNA interactions 0 1 1 1 24,26,27,28,37 3 -238044 cd00092 HTH_CRP 4 putative cAMP binding site 0 1 1 1 38,39 5 -238044 cd00092 HTH_CRP 5 putative switch regulator 0 0 1 1 3,4 0 -238045 cd00093 HTH_XRE 1 non-specific DNA binding site 0 1 1 1 4,8,33 3 -238045 cd00093 HTH_XRE 2 sequence-specific DNA binding site 0 1 1 0 14,15,26,29,33,34 3 -238045 cd00093 HTH_XRE 3 salt bridge 0 1 1 1 7,32 0 -238046 cd00094 HX 1 Metal binding sites 0 1 1 1 9,11,53,55,101,103,150,152 4 -238047 cd00095 IFab 1 putative IFNAR-1 binding site 0 0 1 1 2,3,6,9,10,13,16,17,74,75,77,78,80,81,84,87,88,91,92,95 0 -238047 cd00095 IFab 2 putative IFNAR-2 binding site 0 0 1 1 27,28,29,30,31,32,33,34,36,37,38,44,45,114,115,117,118,121,122,124,125,128,129,130,131,132,133 0 -238047 cd00095 IFab 3 N-glycosylation site 0 1 1 1 75 6 -319274 cd00098 IgC 1 dimer interface 0 1 1 1 1,2,3,4,16,18,20,22,57,58,59,60,62,64,65,92,93,94 2 -319275 cd00099 IgV 1 heterodimer interface 0 1 1 0 22,24,26,28,34,36,77,79,81,94,95,96 2 -319275 cd00099 IgV 2 antigen binding site 0 1 1 1 21,22,24,83 2 -319275 cd00099 IgV 3 L1 hypervariable region 0 0 1 1 14,21 0 -319275 cd00099 IgV 4 L2 hypervariable region 0 0 1 1 57,62 0 -319275 cd00099 IgV 5 L3 hypervariable region 0 0 1 1 83,93 0 -238048 cd00100 IL1 1 receptor binding site 0 1 1 0 7,8,18,20,23,25,28,31,39,85,86,87,97,99,101,102,103,124 0 -238048 cd00100 IL1 2 receptor activation site 0 1 1 1 2,4,139 0 -238051 cd00103 IRF 1 DNA sequence recognition sites 0 1 1 0 35,73,75,76,79 3 -238051 cd00103 IRF 2 metal binding site 0 1 1 0 78,79,81,84 0 -238053 cd00105 KH-I 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -238053 cd00105 KH-I 2 nucleic acid binding region 0 1 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,31,32,33,34 3 -276812 cd00106 KISc 1 ATP binding site 0 1 1 1 6,8,9,84,85,86,87,88,89,90,91,92,232 5 -276812 cd00106 KISc 2 microtubule interaction site 0 0 1 1 280,283,286 2 -238055 cd00107 Knot1 1 knottin fold 0 0 1 1 2,8,12,22,29,31 0 -238055 cd00107 Knot1 2 putative receptor binding site 0 0 1 1 21,30 0 -238056 cd00108 KR 1 ligand binding site 0 1 1 0 27,37,63,65,73 5 -238056 cd00108 KR 2 putative domain interaction site 0 1 1 0 12 0 -238057 cd00109 KU 1 trypsin interaction site 0 1 1 1 10,11,12,13,14,16 0 -238059 cd00111 Trefoil 1 putative ligand binding site 0 0 1 1 15,37,38 5 -238059 cd00111 Trefoil 2 putative binding specificity loop 0 0 1 1 30,37 0 -238060 cd00112 LDLa 1 calcium-binding site 0 1 1 1 17,20,24,30,31 4 -238060 cd00112 LDLa 2 putative binding surface 0 0 1 0 5,13,24,25 0 -238060 cd00112 LDLa 3 D-X-S-D-E motif 0 0 1 1 27,28,29,30,31 0 -238062 cd00114 LIGANc 1 catalytic site 0 1 1 1 107 1 -238062 cd00114 LIGANc 2 nucleotide binding pocket 0 1 1 1 76,105,107,128,163,215,277,279 5 -238062 cd00114 LIGANc 3 K-X-D-G motif 0 0 1 1 107,109,110 0 -319970 cd00115 LMWP 1 active site 0 1 1 1 5,7,8,9,10,11,12,111,113 1 -238064 cd00116 LRR_RI 1 Substrate binding site 0 1 1 1 30,31,89,145,173,229,255,257,283,312 5 -238064 cd00116 LRR_RI 2 Leucine-rich repeats 0 0 1 1 2,4,7,9,24,27,29,32,34,52,55,57,60,62,82,85,87,90,92,109,112,114,117,119,138,141,143,146,148,166,169,171,174,176,194,197,199,202,204,222,225,227,230,232,251,254,256,259,261,279,282,284,287,289,308,311,313,316,318 0 -340357 cd00119 LYZ 1 catalytic residue E 0 1 1 32 1 -340357 cd00119 LYZ 2 sugar binding site 0 1 1 0 49,54,55,56,60,98,99,103,104,105 5 -340357 cd00119 LYZ 3 Ca binding site 0 1 1 1 82,87,88 4 -238067 cd00120 MADS 1 DNA binding site 0 1 1 1 0,1,2,3,4,6,11,13,17,18,20,21,22,24,25,28,29,31,32,36 3 -238067 cd00120 MADS 2 putative phosphorylation site 0 0 1 1 57 6 -238067 cd00120 MADS 3 dimerization interface 0 1 1 1 19,22,26,27,30,31,33,34,35,36,37,42,44,46,52,54,56 2 -238067 cd00120 MADS 4 protein interaction site 0 1 1 0 27,28,31,35,51,52,53,54,55,56,57,58 2 -238068 cd00121 MATH 1 putative substrate binding site 0 1 1 1 48,95,96,97 5 -238069 cd00122 MBD 1 DNA binding site 0 1 1 0 12,14,16,23,25,34,37,41 3 -238070 cd00123 DmpA_OAT 1 active site pocket 0 1 1 0 98,99,100,165,167,199,237,238 1 -238070 cd00123 DmpA_OAT 2 cleavage site 0 0 1 1 198,199 0 -276950 cd00124 MYSc 1 ATP binding site 0 1 1 1 27,28,35,80,81,82,83,84,85,86,87,132,133,139,140,141,142,368,369,370,371,372,373 5 -276950 cd00124 MYSc 2 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276950 cd00124 MYSc 3 purine-binding loop 0 0 0 1 27,28,35 0 -276950 cd00124 MYSc 4 switch I region 0 0 1 1 132,133,139,140,141,142 0 -276950 cd00124 MYSc 5 switch II region 0 0 1 1 368,369,370,371,372,373 0 -276950 cd00124 MYSc 6 converter subdomain 0 0 1 1 576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,621,622,623,624,625,626,627,628,629,630,631,632 0 -276950 cd00124 MYSc 7 relay loop 0 0 1 1 397,398,399,400,401,402,403,404,405,406,407,408,411,412,413,414,415,416 0 -276950 cd00124 MYSc 8 SH1 helix 0 0 1 1 564,565,566,567,568,569,570,571,572,573 0 -153091 cd00125 PLA2c 1 catalytic network 0 1 1 1 27,45,46,49,64,90 1 -153091 cd00125 PLA2c 2 primary metal binding site 0 1 1 1 25,27,29,46 0 -153091 cd00125 PLA2c 3 putative hydrophobic channel 0 0 1 1 1,4,8,17,28,60 0 -238072 cd00126 PAH 1 receptor binding site 0 0 1 1 19,23,26,30,31,32,34,35 0 -238072 cd00126 PAH 2 dimerization interface 0 0 1 1 16,20,23,27,29,30,31 2 -350200 cd00128 PIN_FEN1_EXO1-like 1 active site 0 1 1 1 1,2,24,26,27,30,31,32,34,35,51,52,55,56,59,72,73,79,82,83,84,85,108,110,128,129,130,131,142,143,144,145 1 -350200 cd00128 PIN_FEN1_EXO1-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 24,72,108,110 4 -350200 cd00128 PIN_FEN1_EXO1-like 3 metal binding site 2 [DEQN][DEQN] 1 1 1 129,131 4 -350200 cd00128 PIN_FEN1_EXO1-like 4 helical arch 0 0 1 1 78,79,80,84,85 0 -238074 cd00129 PAN_APPLE 1 putative binding site 0 1 1 1 19,21,32 0 -238075 cd00130 PAS 1 putative active site 0 1 1 1 16,20,26,39,40,41,42,68,73 1 -238075 cd00130 PAS 2 heme pocket 0 1 1 1 36,40,48,51,52,80,82 5 -238076 cd00131 PAX 1 DNA binding site 0 1 1 1 5,6,11,13,14,15,17,22,34,36,45,48,50,51,55,64,65,66,67,68,69,70,72,73,74,75,94,95,96,115,117,118,121,124 3 -238077 cd00132 CRIB 1 GTPase interaction site 0 1 1 1 2,5,8,10,13,30,34 2 -99904 cd00133 PTS_IIB 1 active site 0 0 1 1 5,7,8,11,12 1 -99904 cd00133 PTS_IIB 2 P-loop 0 0 1 0 5,6,7,8,10,11,12 0 -99904 cd00133 PTS_IIB 3 phosphorylation site 0 0 1 1 5 6 -238079 cd00135 PDGF 1 cysteine knot motif 0 0 1 1 2,33,37,44,80,82 0 -238079 cd00135 PDGF 2 receptor binding interface 0 1 1 1 0,1,2,3,37,39,40,41,42,57,58,59,60 0 -238079 cd00135 PDGF 3 dimerization interface 0 1 1 0 27,36 2 -238080 cd00136 PDZ 1 protein binding site 0 1 1 1 1,2,3,4,6,53,56,57 2 -176497 cd00137 PI-PLCc 1 catalytic site 0 1 1 1 16,66 1 -176497 cd00137 PI-PLCc 2 active site 0 1 1 1 16,17,53,99,150,216 1 -197200 cd00138 PLDc_SF 1 putative active site 0 1 1 1 85,87,100,102,113 1 -197200 cd00138 PLDc_SF 2 catalytic site 0 1 1 1 85 1 -340436 cd00139 PIPKc 1 catalytic core residues KDD 0 1 1 61,190,208 1 -340436 cd00139 PIPKc 2 ATP binding site 0 1 1 0 50,59,61,112,113,114,115,127,149,194,207,208 5 -238082 cd00140 beta_clamp 1 dimer interface 0 1 1 1 73,76,101,103,271,302,303 2 -238082 cd00140 beta_clamp 2 putative DNA binding surface 0 1 1 1 23,72,79,197 3 -238082 cd00140 beta_clamp 3 beta-clamp/clamp loader binding surface 0 1 1 1 170,172,173,174,175,319,361,362,363,364 0 -238082 cd00140 beta_clamp 4 beta-clamp/translesion DNA polymerase binding surface 0 1 1 1 170,172,173,246,281,294,295,322,361,362,363,364 0 -143386 cd00141 NT_POLXc 1 active site 0 1 1 1 87,89,91,92,93,94,95,96,99,122,136,166,167,170,172,174,175,176,177,179,216,218,231,233,248,249,250,251,252,253,256,272 1 -143386 cd00141 NT_POLXc 2 metal binding triad 0 1 1 1 177,179,233 4 -143386 cd00141 NT_POLXc 3 NTP binding site 0 1 1 1 136,166,167,170,172,174,175,176,177,179,216,233,248,249,250,251,253,256,272 5 -143386 cd00141 NT_POLXc 4 primer binding site 0 1 1 0 87,89,91,92,93,94,95,96,99,122,166,170,176,177,179,216,218,231,233,248,249,250,251,252,253,256 3 -270621 cd00142 PI3Kc_like 1 ATP binding site 0 1 1 0 10,12,13,14,16,32,34,37,68,80,81,82,83,88,136,138,148,149 5 -270621 cd00142 PI3Kc_like 2 catalytic loop 0 0 1 1 128,129,130,131,132,133,134,135,136 1 -270621 cd00142 PI3Kc_like 3 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,166,167,168,169,170,171 0 -238083 cd00143 PP2Cc 1 Active site 0 1 1 1 11,15,16,36,37,38,202,244 1 -277316 cd00144 MPP_PPP_family 1 active site 0 1 1 0 4,6,32,36,64,65,117,149,191 1 -277316 cd00144 MPP_PPP_family 2 metal binding site 0 1 1 1 4,6,32,64,117,191 4 -99912 cd00145 POLBc 1 active site 0 1 1 1 22,25,26,27,79,107,111,161 1 -99912 cd00145 POLBc 2 metal-binding site 0 1 1 1 159,161,162 0 -132835 cd00147 cPLA2_like 1 active site 0 0 1 1 50,51,53,81,292 1 -132835 cd00147 cPLA2_like 2 flexible lid region 0 0 1 1 257,258 0 -132835 cd00147 cPLA2_like 3 nucleophile elbow 0 0 1 1 79,80,81,82,83 0 -238085 cd00148 PROF 1 actin interaction site 0 1 1 1 57,71,72,74,81,86,106,107,108,112,116 2 -238085 cd00148 PROF 2 poly-proline binding site 0 1 1 1 1,4,27,29,120,126 0 -238085 cd00148 PROF 3 putative PIP2-interaction site 0 0 1 1 67,81 0 -119410 cd00150 PlantTI 1 inhibitory residue 0 1 1 1 2 0 -238086 cd00152 PTX 1 intermolecular salt bridges 0 1 1 1 99,116,153,200 0 -238086 cd00152 PTX 2 calcium mediated ligand binding site 0 1 1 0 59,136,138,145,148 0 -340449 cd00153 RA_RalGDS_like 1 RA-Ras interaction site 0 1 1 1 3,5,18,19,20,21,22,35,38,39 2 -340449 cd00153 RA_RalGDS_like 2 key conserved lysine k33 [KR] 0 1 1 39 0 -206640 cd00154 Rab 1 GTP/Mg2+ binding site 0 1 1 1 8,9,10,11,12,13,14,24,31,57,112,113,115,142,143,144 5 -206640 cd00154 Rab 2 effector interaction site 0 1 1 0 32,34,35,36,51,53,60,61,64,68,73 0 -206640 cd00154 Rab 3 GDI interaction site 0 1 1 1 32,33,35,53,54,61,65,66,67 0 -206640 cd00154 Rab 4 GEF interaction site 0 0 1 1 33,34,35,36,37,38,39,40,47,49 2 -206640 cd00154 Rab 5 Switch I region 0 0 1 1 24,31,32,33,34,35,36,37 0 -206640 cd00154 Rab 6 Switch II region 0 0 1 1 57,59,60,61,62,64,65,66,67,68,69 0 -206640 cd00154 Rab 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206640 cd00154 Rab 8 G2 box 0 0 1 1 31 0 -206640 cd00154 Rab 9 G3 box 0 0 1 1 54,55,56,57 0 -206640 cd00154 Rab 10 G4 box 0 0 1 1 112,113,114,115 0 -206640 cd00154 Rab 11 G5 box 0 0 1 1 142,143,144 0 -206640 cd00154 Rab 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206640 cd00154 Rab 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206640 cd00154 Rab 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,64,65 0 -206640 cd00154 Rab 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69 0 -206640 cd00154 Rab 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206640 cd00154 Rab 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206640 cd00154 Rab 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24 0 -206640 cd00154 Rab 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109 0 -206640 cd00154 Rab 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 158 0 -238087 cd00155 RasGEF 1 Ras interaction site 0 1 1 0 33,34,35,46,47,49,50,51,53,54,57,58,61,94,97,98,100,101,102,104,105,106,107,109,110,130,133,138,139,140,143,158,159,160,163,164,165,167,168,169,171,172,173,174,189,193,228,231,232 2 -238088 cd00156 REC 1 active site 0 1 1 1 3,4,47,55,75,94,97,98 1 -238088 cd00156 REC 2 phosphorylation site 0 1 1 1 47 6 -238088 cd00156 REC 3 intermolecular recognition site 0 0 1 1 50,51,53,54,55 0 -238088 cd00156 REC 4 dimerization interface 0 1 1 1 97,98,99 2 -206641 cd00157 Rho 1 GTP/Mg2+ binding site 0 1 1 1 9,10,11,12,13,14,31,53,54,112,114,154,155 5 -206641 cd00157 Rho 2 GAP (GTPase-activating protein) interaction site 0 1 1 1 30,32,33,57,63,66 2 -206641 cd00157 Rho 3 GEF (guanine nucleotide exchange factor) interaction site 0 1 1 1 1,31,32,34,35,37,39,48,52,53,54,55,56,57,63,66 2 -206641 cd00157 Rho 4 GDI (guanine nucleotide dissociation inhibitor) interaction site 0 1 1 1 31,32,55,63,65,66 2 -206641 cd00157 Rho 5 effector interaction site 0 1 1 1 33,63,66 0 -206641 cd00157 Rho 6 Switch I region 0 0 1 1 32,33,34,35,36 0 -206641 cd00157 Rho 7 Switch II region 0 0 1 1 55,56,57,63,64,65,66,71,72,73 0 -206641 cd00157 Rho 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206641 cd00157 Rho 9 G2 box 0 0 1 1 31 0 -206641 cd00157 Rho 10 G3 box 0 0 1 1 53,54,55,56 0 -206641 cd00157 Rho 11 G4 box 0 0 1 1 111,112,113,114 0 -206641 cd00157 Rho 12 G5 box 0 0 1 1 153,154,155 0 -238089 cd00158 RHOD 1 active site residue 0 0 1 1 56 1 -238090 cd00159 RhoGAP 1 GTPase interaction site 0 1 1 0 22,59,63,132,135,136,159 0 -238090 cd00159 RhoGAP 2 catalytic residue 0 1 1 1 22 1 -238091 cd00160 RhoGEF 1 GTPase interaction site 0 1 1 1 6,10,105,131,132,135,136,138,139,142,143,146,147,150,176,180 2 -238092 cd00161 RICIN 1 Q-X-W motif 0 0 1 1 35,36,37,77,78,79,119,120,121 0 -238092 cd00161 RICIN 2 putative sugar binding sites 0 1 1 1 13,24,26,34,35,55,66,68,76,77,97,109,111,119 5 -319361 cd00162 RING_Ubox 1 cross-brace motif 0 0 0 1 0,3,16,18,21,24,36,39 0 -119386 cd00163 RNase_A 1 catalytic site 0 1 1 1 9,38,42,68,80,116,117 1 -119386 cd00163 RNase_A 2 dimerization interface 0 1 1 0 39,71,82,97,99,101,102,104 2 -238094 cd00164 S1_like 1 RNA binding site 0 0 1 1 5,13,23,25 3 -238095 cd00165 S4 1 RNA binding surface 0 1 1 0 1,13,14,16,17,19,20,23,24,26,33,34,35,36,37,38,39,40,42 3 -238096 cd00167 SANT 1 DNA binding site 0 1 1 1 1,31,32,34,35,37,38,39,41,42,43 3 -238098 cd00169 Chemokine 1 putative receptor binding site 0 0 1 1 0,1,2,3,4,9,10,11,12,13,14,49,50,51,52,53,54,55,56,57,58 0 -238098 cd00169 Chemokine 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 11,12,13,37,39 5 -238098 cd00169 Chemokine 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 19,28,46,48,51,52,55 5 -238098 cd00169 Chemokine 4 N-loop 0 0 1 1 2,3,4,9,10,11,12,13 0 -238098 cd00169 Chemokine 5 30s-loop 0 0 1 1 20,28 0 -238098 cd00169 Chemokine 6 40s-loop 0 0 1 1 35,37 0 -238099 cd00170 SEC14 1 phospholipid binding pocket 0 1 1 1 21,23,25,52,67,69,84,88,92,96,99,102,104,111,118,130 5 -238099 cd00170 SEC14 2 salt bridge 0 0 1 1 97,129 0 -238100 cd00171 Sec7 1 active site/putative ARF binding site 0 1 1 1 91,92,93,94,95,96,97,98,128,129,130,131,132,133,134,135,136,137,138,139,140,141 1 -238101 cd00172 SERPIN 1 reactive center loop 0 1 1 1 317,318,319,320,339,340,341,342,343,344 0 -198173 cd00173 SH2 1 phosphotyrosine binding pocket 0 1 1 1 8,26,48,50 2 -198173 cd00173 SH2 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -212690 cd00174 SH3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -238102 cd00175 SNc 1 Catalytic site 0 1 1 1 5,19,25,28,69,70,72 0 -238103 cd00176 SPEC 1 linker region 0 0 1 1 104,105,106,107,108,109 0 -176851 cd00177 START 1 lipid binding site 0 1 1 1 19,20,27,40,42,53,57,63,66,67,69,70,89,91,92,93,94,96,99,101,103,119,136,138,140,141,143,155,157,159,161,163,165,172,174,175,176,178,179,183,184,187 5 -238104 cd00178 STI 1 reactive site loop 0 1 1 1 59,65 0 -238105 cd00179 SynN 1 interdomain interaction site 0 1 0 1 31,42,45,46,53,57,60,67,89,94,97,103,110,111,114,115,117,118,121,147 0 -238105 cd00179 SynN 2 nSec1 interaction sites 0 1 1 1 0,4,11,83,84,87,88,91,94,95,101,104,135 0 -238105 cd00179 SynN 3 linker region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137,146,147,148,149,150 0 -270622 cd00180 PKc 1 active site 0 1 1 0 0,1,2,3,4,8,21,23,53,69,70,71,72,76,78,116,118,120,121,123,134,137 1 -270622 cd00180 PKc 2 ATP binding site 0 1 1 0 0,1,2,3,4,8,21,23,53,69,70,71,72,76,116,118,120,121,123,134 5 -270622 cd00180 PKc 3 polypeptide substrate binding site 0 1 1 0 4,76,78,116,118,120,137 2 -270622 cd00180 PKc 4 activation loop (A-loop) 0 1 1 1 133,134,135,136,137,138,139 0 -206638 cd00181 Tar_Tsr_LBD 1 ligand binding site 0 1 1 1 20,25,29,104,105,107,109 5 -206638 cd00181 Tar_Tsr_LBD 2 dimer interface 0 1 1 0 0,3,13,14,17,18,20,21,24,25,28,29,31,32,104,105,107,109,110,113 2 -238106 cd00182 TBOX 1 dimerization interface 0 1 1 0 46,89,90,91,135 2 -238106 cd00182 TBOX 2 DNA binding site 0 1 1 1 22,24,25,26,27,28,29,31,60,110,122,160,161,162,168,172,175,176,177,178,179,180,181,182,183 3 -238107 cd00183 TFIIS_I 1 putative RNA polymerase binding site 0 0 1 1 8,9,12,52,53 2 -238108 cd00184 TNF 1 trimer interface 0 1 1 1 3,47,49,101,106,132,136 2 -238108 cd00184 TNF 2 receptor binding sites 0 1 1 1 19,20,25,65,72,77 0 -276900 cd00185 TNFRSF 1 CRD2 0 0 1 0 25,26,27,29,30,31,32,33,34,35,39,40,41,42,43,44,45,46,47,52,53,54,55,56,57,58,63,64,65 7 -238110 cd00186 TOP1Ac 1 nucleotide binding site 0 1 1 1 93,97,98,99,171,195,198,202,298,300,322 5 -238110 cd00186 TOP1Ac 2 phosphate binding site 0 1 1 0 45,49,336 4 -238110 cd00186 TOP1Ac 3 catalytic site 0 1 1 1 121,123,171 1 -238110 cd00186 TOP1Ac 4 DNA binding groove 0 1 1 1 9,10,13,17,21,111,115,123,300,301,304,305,307,311,312 3 -238110 cd00186 TOP1Ac 5 domain I 0 1 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -238110 cd00186 TOP1Ac 6 domain II 0 1 0 1 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,267,268,269,270,271,272,273,274,275,276,277 0 -238110 cd00186 TOP1Ac 7 domain III 0 1 0 1 82,83,84,85,86,87,88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,170,171,172,173,174,175,176,177,178,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 0 -238110 cd00186 TOP1Ac 8 domain IV 0 1 0 1 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380 0 -238111 cd00187 TOP4c 1 Active site 0 0 1 1 92 1 -238111 cd00187 TOP4c 2 primary dimer interface 0 0 1 1 357,358,359,362,363,364,365,373,374,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407 2 -238111 cd00187 TOP4c 3 CAP-like domain 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,129 0 -173773 cd00188 TOPRIM 1 active site 0 1 1 1 6,7,10,54,56,58 1 -173773 cd00188 TOPRIM 2 metal binding site 0 1 1 0 6,54 4 -238113 cd00190 Tryp_SPc 1 active site 0 0 1 1 41,89,185 1 -238113 cd00190 Tryp_SPc 2 cleavage site 0 0 1 1 0 0 -238113 cd00190 Tryp_SPc 3 substrate binding sites 0 1 1 1 179,204,206 5 -238114 cd00191 TY 1 protease interaction site 0 1 1 1 5,20,38,42 0 -270623 cd00192 PTKc 1 active site 0 1 1 1 2,3,4,5,6,10,26,28,74,75,76,77,80,81,129,133,134,136,147,165,166,167,168,169,178,212 1 -270623 cd00192 PTKc 2 ATP binding site 0 1 1 0 2,3,5,6,10,26,28,74,75,76,77,80,81,133,134,136,147 5 -270623 cd00192 PTKc 3 polypeptide substrate binding site 0 1 1 0 129,133,165,166,167,168,169,178,212 2 -270623 cd00192 PTKc 4 activation loop (A-loop) 0 1 1 1 146,147,148,149,150,151,152,153,165,166,167,168,169,170,171 0 -277192 cd00193 SNARE 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277192 cd00193 SNARE 2 zero layer 0 1 1 1 26 0 -238117 cd00195 UBCc 1 active site cysteine 0 0 1 1 82 0 -238117 cd00195 UBCc 2 Ub thioester intermediate interaction residues 0 1 1 0 69,70,74,75,77,81,82,83,85,86,91,92,95,100,103,106,109,110,112,114,115 0 -238117 cd00195 UBCc 3 E3 interaction residues 0 1 1 0 1,58,59,93,94 0 -238119 cd00198 vWFA 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,79,109 0 238120 cd00199 WAP 1 inhibitory loop 0 1 1 1 16,17,18,19,20,21,22 0 -238121 cd00200 WD40 1 structural tetrad 0 0 1 1 7,25,29,35,36,48,49,67,71,77,78,90,91,108,113,119,120,133,150,155,161,162,174,175,193,197,203,204,216,217,234,239,245,246,258,259,277,281,287,288 0 -238122 cd00201 WW 1 binding pocket 0 1 1 1 14,25 0 -238123 cd00202 ZnF_GATA 1 zinc binding site 0 1 1 1 1,4,23,26 4 -238123 cd00202 ZnF_GATA 2 DNA-binding region 0 1 1 1 10,11,13,23,24,25,26,27,28,29,30,31,32,33,50,52,53 3 -238124 cd00203 ZnMc 1 active site 0 1 1 1 101,102,105,111 1 -119412 cd00205 rhv_like 1 drug-binding pocket 0 1 1 1 31,57,59,61,77,100,123,136,163 5 -119411 cd00206 snake_toxin 1 receptor binding site 0 1 1 1 5,12,27,28,33,34,35,36,37,38 0 -238126 cd00207 fer2 1 iron binding site 0 1 1 1 34,39,42,72 4 -238126 cd00207 fer2 2 catalytic loop 0 0 1 1 30,31,34,37,39,40,41,42,71,72 1 -100038 cd00208 LbetaH 1 putative trimer interface 0 1 1 1 7,9,13,15,25,31,33,51,56,57,59,69,73,75,77 2 -100038 cd00208 LbetaH 2 putative CoA binding site 0 1 1 1 51,53,54,59,71,77 5 -238127 cd00209 DHFR 1 folate binding site 0 1 1 0 3,20,25,56,96,102,115 5 -238127 cd00209 DHFR 2 NADP+ binding site 0 1 1 0 5,12,42,43,44,63,97,98,99,100 5 -238128 cd00210 PTS_IIA_glc 1 HPr interaction site 0 1 1 1 16,17,18,19,23,24,46,47,49,50,56,57,58,64,65,66,68,72,74,75,87,119,122 0 -238128 cd00210 PTS_IIA_glc 2 phosphorylation site 0 1 1 1 68 6 -238128 cd00210 PTS_IIA_glc 3 active site 0 0 1 1 51,53,68,70 1 -238128 cd00210 PTS_IIA_glc 4 glycerol kinase (GK) interaction site 0 1 1 1 16,18,19,21,23,24,47,49,53,66,68,72,74,75,77,119 2 -238129 cd00211 PTS_IIA_fru 1 phosphorylation site 0 0 1 1 58 6 -238129 cd00211 PTS_IIA_fru 2 active site 0 1 1 1 42,58 1 -238130 cd00212 PTS_IIB_glc 1 phosphorylation site 0 0 1 1 22 6 -238130 cd00212 PTS_IIB_glc 2 active site turn 0 0 1 1 21,22,23,24,25,26,27 1 -238131 cd00213 S-100 1 Ca2+ binding site 0 1 1 1 17,22,25,30,31,60,62,64,66,68,71 4 -238131 cd00213 S-100 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,24,25,34,35,37,38,39,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -238132 cd00214 Calpain_III 1 acidic loop 0 1 1 1 38,39,40,47 0 -238133 cd00215 PTS_IIA_lac 1 phosphorylation site 0 0 1 1 72 6 -238133 cd00215 PTS_IIA_lac 2 metal binding site 0 1 1 1 75 4 -238133 cd00215 PTS_IIA_lac 3 methionine cluster 0 1 1 1 0,54,70,71,78 0 -238133 cd00215 PTS_IIA_lac 4 active site 0 1 1 1 15,72,74,75,76 1 -199833 cd00216 PQQ_DH_like 1 active site 0 1 1 1 23,69,74,118,133,134,195,284,345 1 -199833 cd00216 PQQ_DH_like 2 Trp docking motif 0 0 1 1 5,6,7,10,44,46,49,50,51,54,94,96,99,100,101,104,145,147,150,151,152,155,236,238,241,242,243,246,290,292,295,296,297,300,326,328,331,332,333,336,367,369,372,373,374,377,431,433 2 -271174 cd00217 INT_Flp_C 1 active site 0 0 1 1 212,316,331,333 1 -271174 cd00217 INT_Flp_C 2 DNA binding site 0 1 1 1 100,180,212,291,294,316,331,333 3 -271174 cd00217 INT_Flp_C 3 tetramerization interface 0 1 1 1 2,4,5,6,37,85,88,130,134,137,291,294,295,299,302,303,307,311,317,332 2 -132995 cd00218 GlcAT-I 1 active site 0 1 1 1 9,38,102,103,104,105,135,151,155,160,189,217 0 -132995 cd00218 GlcAT-I 2 DXD motif 0 1 1 1 102,103,104 0 -132995 cd00218 GlcAT-I 3 putative dimerization interface 0 1 1 1 12,13,15,16,17,19,20,23,24,26,27,106,108,109,110,128,133,134,148,150,213,216,218,220,221 0 -119405 cd00219 ToxGAP 1 GTP binding residues 0 1 1 0 41,81,82,83 5 -119405 cd00219 ToxGAP 2 Rac1 P-loop interaction site 0 1 1 1 36,41 2 -119405 cd00219 ToxGAP 3 switch I binding region 0 1 1 0 41,45,78 0 -119405 cd00219 ToxGAP 4 switch II binding region 0 1 1 0 14,35,36,37,42,45 0 -238135 cd00220 VMO-I 1 putative carbohydrate binding site 0 0 1 1 10,33,40,41,95,102,103,156,163,164 5 -238136 cd00221 Vsr 1 active site 0 1 1 1 20,46,64,92 1 -238136 cd00221 Vsr 2 mismatch recognition site 0 1 1 1 9,12,88 0 -238136 cd00221 Vsr 3 DNA intercalation site 0 1 1 1 62,63 3 -238136 cd00221 Vsr 4 additional DNA contacts 0 1 1 1 5,6,7,8,17,18,43,60,88,91,94,111 3 -238136 cd00221 Vsr 5 zinc binding site 0 1 1 1 61,112 4 -212461 cd00222 CollagenBindB 1 domain interaction interfaces 0 1 1 1 1,3,5,29,30,46,48,50,63,65,67,70,75,77,78 2 -173774 cd00223 TOPRIM_TopoIIB_SPO 1 active site 0 0 1 1 6,7,58,60,66 1 -173774 cd00223 TOPRIM_TopoIIB_SPO 2 metal binding site 0 1 1 0 6,58 4 -173774 cd00223 TOPRIM_TopoIIB_SPO 3 interdomain interaction site 0 1 1 0 8,13,31,36,148,150,154 0 -238137 cd00224 Mog1 1 putative Ran binding site 0 0 1 1 2,5,6,21,22,28,29 2 -119406 cd00225 API3 1 protease binding region 0 1 1 0 3,4,5,6,7,148,149,150,151,152,153 0 -238138 cd00226 PRCH 1 subunit L interaction residues 0 1 1 0 38,42,61,64,67,77,93,96,108,123,171 2 -238138 cd00226 PRCH 2 subunit M interaction residues 0 1 1 0 10,19,31,34,37,61,109,111,115,116,120,139,141,144,173,176,194,196,198,230,231 2 -238138 cd00226 PRCH 3 subunit C interaction residues 0 1 1 0 0,2 0 -238138 cd00226 PRCH 4 putative proton transfer pathway, P1 0 1 1 1 67,69,120,128 0 -238138 cd00226 PRCH 5 putative proton transfer pathway, P2 0 1 1 1 172,173 0 -238139 cd00227 CPT 1 ATP binding site 0 1 1 0 10,11,13,14,15,90,126,130,133,160,162 5 -238139 cd00227 CPT 2 Chloramphenicol (Cm) binding site 0 1 1 0 34,35,38,52,92,133,137,141 5 -238139 cd00227 CPT 3 catalytic residue 0 1 1 1 35 1 -238139 cd00227 CPT 4 P-loop motif 0 0 1 1 8,9,10,11,12,13,14,15 0 -238140 cd00228 eu-GS 1 active site residues 0 0 1 1 119,144,365,446 1 -238140 cd00228 eu-GS 2 ATP binding pocket 0 1 1 0 123,136,302,358,360,366,369,371,394,395,396,397,421,448 5 -238140 cd00228 eu-GS 3 magnesium binding site 0 1 0 1 137,139,364 4 -238140 cd00228 eu-GS 4 glutathione (GSH) binding pocket 0 1 1 0 119,142,144,209,211,215,263,266,446,457,458 5 -238140 cd00228 eu-GS 5 dimerization unit 0 0 1 1 0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,25,26,27,28,37,38,39,40,41 0 -238140 cd00228 eu-GS 6 glycine rich loop 0 0 1 1 362,363,364,365,366,367,368,369,370,371,372 0 -238140 cd00228 eu-GS 7 alanine rich loop 0 0 1 1 450,451,452,453,454,455,456,457,458,459,460,461,462 0 -238141 cd00229 SGNH_hydrolase 1 active site 0 1 1 1 6,44,75,167,170 1 -238141 cd00229 SGNH_hydrolase 2 catalytic triad 0 1 1 1 6,167,170 1 -238141 cd00229 SGNH_hydrolase 3 oxyanion hole 0 1 1 1 6,44,75 1 -238142 cd00231 ZipA 1 FtsZ protein binding site 0 1 1 1 2,4,34,36,54,56,57,58,76,78,114 2 -350855 cd00232 HemeO-like 1 heme binding site 0 1 1 0 5,12,15,16,43,120,121,122,124,125,129,133,163,167,191,194,198 5 -350855 cd00232 HemeO-like 2 heme ligand H 1 1 1 12 5 -350855 cd00232 HemeO-like 3 kinked helix 0 1 1 1 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140 7 -238144 cd00233 VIP2 1 active site 0 1 1 1 37,50,87,129,130,131,141,169,178 1 -238144 cd00233 VIP2 2 ADP-ribosylating toxin turn-turn motif 0 0 1 1 164,167,169 0 -238144 cd00233 VIP2 3 conformational flexibility of ligand binding pocket 0 1 0 1 50 0 -238145 cd00236 FinO_conjug_rep 1 putative RNA binding sites 0 0 1 1 4,8,11,18,19,23,63,81,82,106,134,139 3 -238145 cd00236 FinO_conjug_rep 2 putative kissing complex interaction region 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11 0 -107218 cd00237 p23 1 putative Hsp90 binding site 0 0 1 1 5,49,83,84,85,86,95,99,102 2 -107218 cd00237 p23 2 putative dimer interface 0 1 1 1 52,54,84,87,88,89 2 -119414 cd00239 PapG_CBD 1 receptor/carbohydrate binding site 0 1 1 1 56,57,58,88,99,100,101,102,103,104,167,169,172 0 -119414 cd00239 PapG_CBD 2 putative membrane interaction site 0 0 1 1 24,78,82,87,134 0 -238147 cd00240 TFIIFa 1 transcription initiation complex contacts 0 0 1 1 42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 0 -187675 cd00241 DOMON_like 1 putative ligand binding site 0 1 1 1 57,80,142 5 -153074 cd00242 Ecotin 1 primary substrate binding site 0 1 1 0 77,78,79,80 0 -153074 cd00242 Ecotin 2 secondary substrate binding site 0 1 1 0 61,62,63,64,65,102,103,104,105,106,107 0 -153074 cd00242 Ecotin 3 dimerization interface 0 1 1 0 124,125,126,127,128,129,130,131,132,133,134 2 -153074 cd00242 Ecotin 4 inhibition loop 0 1 1 0 79,80 0 -238148 cd00244 AlgLyase 1 active site 0 1 1 1 55,63,116,120,123,178,179,232,233,236,291,298,329 1 -238149 cd00245 Glm_e 1 B12 cofactor binding site 0 1 1 1 48,134,174,248,249,250,251,283,284,287,288,425 5 -238149 cd00245 Glm_e 2 substrate binding site 0 1 1 1 20,48,54,103,104,125,131,135,170 5 -238149 cd00245 Glm_e 3 heterodimer (sigma-epsilon) interface 0 1 1 1 51,52,55,76,77,134,135,137,285,286,421 2 -238149 cd00245 Glm_e 4 homodimer (epsilon-epsilon) interface 0 1 1 1 210,212,254,256,257,263,264,267,296,299,300,303,306,379,427 2 -238150 cd00246 RabGEF 1 zinc binding site 0 1 1 0 4,7,73,76 4 -238150 cd00246 RabGEF 2 putative Rab GTPase interaction site 0 0 1 1 52,53,54,58,75 2 -238151 cd00247 Endostatin-like 1 putative ligand binding site 0 0 1 1 31,40,46,55,56,59,121,122,132 5 -238153 cd00249 AGE 1 putative active cleft 0 0 1 1 52,56,59,114,118,121,172,175,176,179,239,242,245,246,300,301,305,363,367,368,371 1 -238153 cd00249 AGE 2 dimerization interface 0 1 1 0 9,16,65,78,378,382 2 -238154 cd00250 CAS_like 1 iron coordination sites 0 1 1 0 98,100,238 4 -238154 cd00250 CAS_like 2 active site 0 1 1 1 98,100,125,238,251 0 -238154 cd00250 CAS_like 3 substrate binding pocket 0 1 1 0 67,68,101,103,108,158,255,257 5 -119403 cd00251 Mth_Ecto 1 N-linked glycosylation sites 0 1 1 1 16,92,139 6 -119403 cd00251 Mth_Ecto 2 putative ligand binding site 0 0 1 0 113 5 -119403 cd00251 Mth_Ecto 3 putative transmembrane domain interaction surface 0 0 1 1 41,146,147 0 -320009 cd00252 EFh_SPARC_EC 1 Ca binding site 0 1 1 1 54,58,65,88,90,92,99 4 -320009 cd00252 EFh_SPARC_EC 2 EF-hand motif 0 0 0 1 42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320009 cd00252 EFh_SPARC_EC 3 EF-hand motif 0 0 0 1 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -340358 cd00254 LT_GEWL_like 1 sugar binding site 0 1 1 1 10,28,29,30,33,58,77,78 5 -340358 cd00254 LT_GEWL_like 2 catalytic residue E 0 1 1 10 1 -238158 cd00255 nidG2 1 collagen/perlecan interaction surface 0 1 1 1 4,28,30,37,39,41,204,209,213,215 2 -238159 cd00256 VATPase_H 1 putative peptide binding site 0 1 1 1 81,121,162,166 0 -238159 cd00256 VATPase_H 2 putative peptide binding site 0 0 1 1 230,271,272,273,278,312,316,317,321,326,327,329,334 0 -238159 cd00256 VATPase_H 3 armadillo-like superhelical repeats 0 0 1 1 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,100,101,102,103,104,105,106,107,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,146,147,148,149,150,151,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,186,187,188,189,190,191,192,193,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,243,244,245,246,247,248,249,250,251,252,253,254,255,256,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 0 -238160 cd00257 Fascin 1 PKC phosphorylation site 0 0 1 1 28 6 -238161 cd00258 GM2-AP 1 putative lipid binding cavity 0 0 1 1 2,4,14,16,19,21,26,32,34,36,50,52,54,71,76,79,85,86,87,94,96,108,115,120,123,125,136,138,140,142,149,152,154,156,158 5 -119404 cd00259 STNV 1 Ca2+ binding site 0 1 1 1 24,54 4 -119404 cd00259 STNV 2 putative RNA binding site 0 0 1 0 6,7,8,13,16,17 3 -271229 cd00260 Sialidase 1 catalytic site RDERRYE 1 1 1 15,39,195,210,287,318,339 1 -271229 cd00260 Sialidase 2 Sialidase propeller 1 0 0 0 1 14,15,16,17,18,19,20,21,22,26,27,28,29,30,31,32,33,36,37,38,39,40,42,43,44,45,46,47,48,49,50,62,63,64,66,67,68,69,70 7 -271229 cd00260 Sialidase 3 Sialidase propeller 2 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,108,109,110,111,112,113,114,115,121,122,123,124,125,126 7 -271229 cd00260 Sialidase 4 Sialidase propeller 3 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,167,168,169,170,171,172,173,174,179,180,181,182,183,184,185,186 7 -271229 cd00260 Sialidase 5 Sialidase propeller 4 0 0 0 1 194,195,196,197,198,199,200,201,203,204,205,206,207,208,209,210,211,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233 7 -271229 cd00260 Sialidase 6 Sialidase propeller 5 0 0 0 1 260,261,262,263,264,265,266,267,268,275,276,277,278,279,280,281,282,283,286,287,288,289,290,291,292,293,294,295,296,302,303,304,305,306,307,308,309 7 -271229 cd00260 Sialidase 7 Sialidase propeller 6 0 0 0 1 317,318,319,320,321,322,323,324,333,334,335,336,337,338,339,340,353,354,355,356,357,358,359,360 7 -238163 cd00261 AAI_SS 1 alpha-amylase binding site 0 1 1 0 1,54,55,56,63,109 2 -238163 cd00261 AAI_SS 2 dimer interface 0 1 1 1 43,90,94,100,106 2 -238164 cd00264 BPI 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,75,109,111,120,159,163,167,200 0 -238164 cd00264 BPI 2 BPI dimerizatation interface 0 1 1 1 0,1,2,3,4,5,6 2 -238165 cd00265 MADS_MEF2_like 1 DNA binding site 0 1 1 0 0,1,2,4,6,11,13,17,18,21,22,24,25,28,29,31,32,36 3 -238165 cd00265 MADS_MEF2_like 2 putative phosphorylation site 0 0 1 1 57 6 -238165 cd00265 MADS_MEF2_like 3 dimerization interface 0 1 1 1 19,26,27,30,31,33,34,37,42,44,46,52,54,60,63,64,67,70,71 2 -238166 cd00266 MADS_SRF_like 1 DNA binding site 0 1 1 0 1,3,17,20,21,22,25,28,29 3 -238166 cd00266 MADS_SRF_like 2 putative phosphorylation site 0 0 1 1 57 6 -238166 cd00266 MADS_SRF_like 3 dimerization interface 0 1 1 1 19,22,26,27,30,33,35,36,42,44,46,52,56,63,64,70,73,74,78 2 -238166 cd00266 MADS_SRF_like 4 protein interaction site 0 1 1 0 27,28,31,35,51,52,53,54,55,56,57,58,65,71,74,75,78,79 2 -213179 cd00267 ABC_ATPase 1 ATP binding site 0 1 1 1 34,35,37,38,39,79,104,105,137 5 -213179 cd00267 ABC_ATPase 2 ABC transporter signature motif 0 0 1 1 80,81,82,83,84,85,86,87,88,89 0 -213179 cd00267 ABC_ATPase 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213179 cd00267 ABC_ATPase 4 Walker B 0 0 1 1 100,101,102,103,104,105 0 -213179 cd00267 ABC_ATPase 5 D-loop 0 0 1 1 108,109,110,111 0 -213179 cd00267 ABC_ATPase 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213179 cd00267 ABC_ATPase 7 H-loop/switch region 0 0 1 1 133,134,135,136,137,138,139 0 -350669 cd00268 DEADc 1 ATP binding site 0 1 1 0 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350669 cd00268 DEADc 2 DEAD box helicase motif DEx[HD] 0 1 1 142,143,144,145 0 -238168 cd00270 MATH_TRAF_C 1 TNFR binding site 0 1 1 1 41,43,58,99,117,118,119,120 0 -238168 cd00270 MATH_TRAF_C 2 trimer interface 0 1 1 1 3,5,33,34,65,68,85 2 -238169 cd00271 Chemokine_C 1 putative receptor binding site 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,30,31,32,33,34,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 0 -238169 cd00271 Chemokine_C 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 22,24,41,42,65,69 5 -238169 cd00271 Chemokine_C 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 34,56,60,64 5 -238169 cd00271 Chemokine_C 4 C-terminal tail 0 0 1 1 66,67,68,69,70,71 0 -238169 cd00271 Chemokine_C 5 N-loop 0 0 1 1 11,12,13,14,15,16,17,18,19,20,21,22,23 0 -238169 cd00271 Chemokine_C 6 30s-loop 0 0 1 1 30,31,32,33,34 0 -238169 cd00271 Chemokine_C 7 40s-loop 0 0 1 1 41,42 0 -238170 cd00272 Chemokine_CC 1 tetramer interface 0 0 1 1 2,4,17,19,24,29,30,31,39,40,41,47,48,51,52,55,56 2 -238170 cd00272 Chemokine_CC 2 dimer interface (I form) 0 1 1 1 4,17,19,29,31,39,41,47,48,51,52,55,56 2 -238170 cd00272 Chemokine_CC 3 dimer interface (P form) 0 1 1 1 2,4,21,23,24,30,38,40 2 -238170 cd00272 Chemokine_CC 4 putative receptor binding cleft 0 0 1 1 2,30,39 0 -238170 cd00272 Chemokine_CC 5 putative receptor binding site 0 0 1 1 0,1,2,3,4,6,7,8,9,10,11,12,13,23,24,46,47,48,49,50,51,52,53,54,55,56 0 -238170 cd00272 Chemokine_CC 6 putative glycosaminoglycan (GAG) binding site 0 0 1 1 6,7,8,11,12,13,35,37 5 -238170 cd00272 Chemokine_CC 7 putative glycosaminoglycan (GAG) binding site 0 0 1 1 19,26,44,46,49,50,53 5 -238170 cd00272 Chemokine_CC 8 N-loop 0 0 1 1 2,3,4,6,7,8,9,10,11,12,13 0 -238170 cd00272 Chemokine_CC 9 30s-loop 0 0 1 1 23,24 0 -238170 cd00272 Chemokine_CC 10 40s-loop 0 0 1 1 33,35 0 -238171 cd00273 Chemokine_CXC 1 tetramer interface 0 1 1 1 1,4,18,19,22,23,24,34,35,36,37,39,43,44,47,54,58,61,62 2 -238171 cd00273 Chemokine_CXC 2 dimer interface (I form) 0 1 1 1 18,19,23,35,37,47,54,58,61,62 2 -238171 cd00273 Chemokine_CXC 3 dimer interface 0 1 1 1 1,4,22,24,34,36,39,43,44 2 -238171 cd00273 Chemokine_CXC 4 receptor binding cleft 0 1 1 1 6,7,9,13,17,36,39,43,45 0 -238171 cd00273 Chemokine_CXC 5 receptor binding site 0 0 1 1 0,1,2,8,13,14,15,16,17,18,27,28,29,39,40,43,44,45,51,56 0 -238171 cd00273 Chemokine_CXC 6 glycosaminoglycan (GAG) binding site 0 0 1 1 14,16,50,53,55,56,57,58,60,63 5 -238171 cd00273 Chemokine_CXC 7 putative glycosaminoglycan (GAG) binding site 0 0 1 1 16,19,38,40,43,44 5 -238171 cd00273 Chemokine_CXC 8 ELR motif 0 0 1 1 0,1,2 0 -238171 cd00273 Chemokine_CXC 9 GPH motif 0 0 1 1 27,28,29 0 -238171 cd00273 Chemokine_CXC 10 RCXC motif 0 0 1 1 2,3,5 0 -238171 cd00273 Chemokine_CXC 11 N-loop 0 0 1 1 4,5,6,7,8,9,10,13,14,15,16,17,18 0 -238171 cd00273 Chemokine_CXC 12 30s-loop 0 0 1 1 27,28,29 0 -238171 cd00273 Chemokine_CXC 13 40s-loop 0 0 1 1 40,41,42 0 -238172 cd00274 Chemokine_CX3C 1 dimer interface 0 1 1 1 7,8,9,10,11,12,13,25,26,27,45,46,47 2 -238172 cd00274 Chemokine_CX3C 2 putative receptor binding site 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,35,36,37,56,57,58,59,60,61,62,63,64,65 0 -238172 cd00274 Chemokine_CX3C 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 13,17,43,46,73 5 -238172 cd00274 Chemokine_CX3C 4 putative glycosaminoglycan (GAG) binding site 0 0 1 1 35,36,53,58,66 5 -238172 cd00274 Chemokine_CX3C 5 putative N-linked glycosylation site 0 0 1 1 8,9,10 6 -238172 cd00274 Chemokine_CX3C 6 N-loop 0 0 1 1 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 0 -238172 cd00274 Chemokine_CX3C 7 30s-loop 0 0 1 1 29,30,31,32,33,34,35,36,37 0 -238172 cd00274 Chemokine_CX3C 8 40s-loop 0 0 1 1 42,43,44,45,46 0 -175974 cd00275 C2_PLC_like 1 Ca2+ binding pocket 0 1 1 0 25,50,79,81,86,88 4 -238173 cd00279 YlxR 1 putative RNA binding cleft 0 0 1 1 2,18,41 3 -238174 cd00280 TRFH 1 dimer interface 0 1 0 0 39,42,56,60,64,74,75,76,77,78,86,89,90,93 2 -176449 cd00281 DAP_dppA 1 metal binding site 0 1 1 0 7,9,59,103,133 4 -176449 cd00281 DAP_dppA 2 active site 0 1 1 1 7,9,59,103,115,133 1 -176449 cd00281 DAP_dppA 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,80,81,82,83,177,178,181,182,183,184,189 2 -176449 cd00281 DAP_dppA 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -238175 cd00283 GIY-YIG_Cterm 1 DNA binding site 0 1 1 0 38,39,40,41,45,49,53,54,58,59,63,64,66,83,87,92,95,97,98,99,110 3 -238176 cd00284 Cytochrome_b_N 1 heme bL binding site 0 1 1 1 32,35,36,39,40,42,43,46,57,71,74,75,78,119,120,123,124,126,127,175,176,179 5 -238176 cd00284 Cytochrome_b_N 2 heme bH binding site 0 1 1 1 22,25,26,28,29,81,85,88,89,91,105,106,109,110,112,113,186,189,190,193,198,199 5 -238176 cd00284 Cytochrome_b_N 3 Qo binding site 0 1 1 1 114,117,118,121,122,135,138,139,143,171,174 0 -238176 cd00284 Cytochrome_b_N 4 Qi binding site 0 1 1 1 8,9,26,29,190,198 0 -238176 cd00284 Cytochrome_b_N 5 interchain domain interface 0 1 0 0 10,11,13,16,37,41,44,45,54,55,58,59,62,63,64,65,66,68,69,70,73,101,194,195 2 -238176 cd00284 Cytochrome_b_N 6 intrachain domain interface 0 1 0 0 9,10,14,15,16,22,23,26,27,30,54,69,72,73,76,77,79,80,82,83,86,93,94,95,96,97,98,102,103,106,107,110,113,114,124,128,129,130,131,132,133,134,138,139,147,199 0 -276954 cd00286 Tubulin_FtsZ_Cetz-like 1 nucleotide binding site 0 1 1 1 7,8,9,12,98,101,103,104,129,131,163,181,184,185 5 -238177 cd00287 ribokinase_pfkB_like 1 ATP binding site 0 1 1 0 115,151,179,182,183,186 5 -238177 cd00287 ribokinase_pfkB_like 2 substrate binding site 0 1 1 0 40,181,184 5 -238178 cd00288 Pyruvate_Kinase 1 active site 0 1 1 0 31,33,65,194,220,222,246,278 1 -238178 cd00288 Pyruvate_Kinase 2 domain interfaces 0 1 1 1 2,3,59,61,69,70,71,72,159,160,166,169,170,171,172,173,188,196,203,214,250,268,269,273,305,307,336,338,339,393,395,397,408,411,412,414,416,417,418 0 -238179 cd00290 cytochrome_b_C 1 Qo binding site 0 1 1 1 61,63,64,67,70,71,87 0 -238179 cd00290 cytochrome_b_C 2 Qi binding site 0 1 1 1 13,21 0 -238179 cd00290 cytochrome_b_C 3 interchain domain interface 0 1 0 0 0,1,2,4,5,6,7,8,9,10,11,12,15,16,17,19,20,23,26,27,30,33,34,37,38,40,46,49,50,104,105,109,110 2 -238179 cd00290 cytochrome_b_C 4 intrachain domain interface 0 1 0 0 0,1,6,9,10,11,13,17,20,21,24,25,28,32,33,35,36,37,40,45,47,48,50,51,52,53,54,56,57,58,61,63,64,65,66,81,91,94,95,97,98,99,101 0 -238180 cd00291 SirA_YedF_YeeD 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -238181 cd00292 EF1B 1 EF1A interaction surface 0 1 1 1 2,6,10,11,12,36,37,42,45,53,55,58,61,64,65,80,85,86 2 -238182 cd00293 USP_Like 1 Ligand Binding Site 0 1 0 1 4,5,6,34,98,99,101,102,112,113,114,115 5 -238183 cd00295 RNA_Cyclase 1 putative active site 0 1 1 1 8,9,13,32,35,37,43,44,96,291,314 1 -238183 cd00295 RNA_Cyclase 2 adenylation catalytic residue 0 0 1 1 314 1 -198286 cd00299 GST_C_family 1 dimer interface 0 1 1 1 1,2,5,6,9,46 2 -198286 cd00299 GST_C_family 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,72,75 5 -198286 cd00299 GST_C_family 3 N-terminal domain interface 0 1 1 0 1,8,64,67,68,71,75 2 -133418 cd00300 LDH_like 1 NAD(P) binding site 0 1 1 0 6,7,8,29,31,72,73,74,75,76,113,115,138,142,170,220,224 5 -133418 cd00300 LDH_like 2 substrate binding site 0 1 1 0 77,83,115,146,170,210,220 5 -133418 cd00300 LDH_like 3 dimer interface 0 1 1 1 10,14,34,38,40,41,43,44,45,145,146,148,149,155,226,230 2 -133418 cd00300 LDH_like 4 tetramer (dimer of dimers) interface 0 1 1 0 51,156,161,163,180,184,185,186,237,239,240,241,242,265,268,275,276,277 2 -133136 cd00303 retropepsin_like 1 inhibitor binding site 0 1 1 0 14,16,18,43,44,45,84 0 -133136 cd00303 retropepsin_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133136 cd00303 retropepsin_like 3 Catalytic residue 0 1 1 0 14 1 -133136 cd00303 retropepsin_like 4 Active site flap 0 0 1 1 43,44,45,46,50,51,52,53 1 -238185 cd00304 RT_like 1 active site 0 1 1 1 1,2,3,4,5,6,13,14,45,47,48,93,94 1 -238185 cd00304 RT_like 2 nucleic acid binding site 0 1 1 1 14 3 -238185 cd00304 RT_like 3 NTP binding site 0 1 1 1 1,2,3,4,5,6,13,47 5 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 1 active site 0 1 1 0 43,45,60,77,80,117 1 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 2 Cu2+ binding site 0 1 1 0 43,45,60,117 4 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 3 Zn2+ binding site 0 1 1 0 60,68,77,80 4 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 4 E-class dimer interface 0 1 1 0 3,5,16,18,47,48,49,110,111 2 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 5 P-class dimer interface 0 1 1 0 27,85 2 -173787 cd00306 Peptidases_S8_S53 1 active site 0 1 1 1 45,108,208 1 -173787 cd00306 Peptidases_S8_S53 2 catalytic residues 0 0 1 1 45,208 1 -238187 cd00307 RuBisCO_small_like 1 putative multimerization interface 0 1 0 1 6,9,20,26,27,29,30,57,72,74,75 2 -238188 cd00308 enolase_like 1 metal binding site 0 1 1 0 99,125,150 4 -238188 cd00308 enolase_like 2 substrate binding pocket 0 1 1 0 174,227 5 -238189 cd00309 chaperonin_type_I_II 1 ATP/Mg binding site 0 1 1 0 27,28,29,79,83,144,333,351,391,434,436 5 -238189 cd00309 chaperonin_type_I_II 2 hinge regions 0 1 1 1 135,195,200,310,344,345,346 0 -238189 cd00309 chaperonin_type_I_II 3 ring oligomerisation interface 0 1 0 1 0,4,32,33,34,35,37,55,57,61,65,68,321,457,458,459,460,461,462,463 2 -238189 cd00309 chaperonin_type_I_II 4 stacking interactions 0 1 0 1 371,389,398,400,401,404 0 -238190 cd00311 TIM 1 catalytic triad 0 1 1 0 7,91,161 1 -238190 cd00311 TIM 2 substrate binding site 0 1 1 0 5,7,91,161,167,206,225,227,228 5 -238190 cd00311 TIM 3 dimer interface 0 1 1 0 5,8,40,41,42,44,47,60,78,81,82,93,94 2 -238191 cd00312 Esterase_lipase 1 catalytic triad 0 1 1 0 183,308,420 1 -238191 cd00312 Esterase_lipase 2 substrate binding pocket 0 1 0 0 102,103,104,182,183,184,187,334,338,339,372,421,424 5 -173823 cd00314 plant_peroxidase_like 1 heme binding site 0 0 1 1 18,19,21,22,25,120,121,122,140,153,154,157,158,160,162,163,164,165,166,215,217,245,249 5 -238192 cd00315 Cyt_C5_DNA_methylase 1 cofactor binding site 0 1 1 1 6,7,8,9,10,11,27,28,29,30,48,49,50,51,68,70 0 -238192 cd00315 Cyt_C5_DNA_methylase 2 substrate interaction site 0 1 0 0 68,71,75,109,111,153,155,258 5 -238192 cd00315 Cyt_C5_DNA_methylase 3 DNA binding site 0 1 1 1 68,71,72,75,76,77,78,81,87,109,111,112,153,155,188,190,197,198,200,201,258 3 -238194 cd00317 cyclophilin 1 active site 0 1 1 0 40,42,45,46,48,85,86,95,97,105,106,110 1 -238195 cd00318 Phosphoglycerate_kinase 1 substrate binding site 0 1 1 0 15,17,30,53,112 5 -238195 cd00318 Phosphoglycerate_kinase 2 catalytic site 0 1 1 0 355 1 -238195 cd00318 Phosphoglycerate_kinase 3 ADP binding site 0 1 1 0 221,293,317,319,321,322,323,324,354,355,356 5 -238195 cd00318 Phosphoglycerate_kinase 4 hinge regions 0 0 1 1 183,184,185,186,372,373,374 0 -238196 cd00319 Ribosomal_S12_like 1 aminoacyl-tRNA interaction site (A-site) 0 1 1 1 29,30,31,32,33,34,54,55,56,57,58,59,60,61,62 3 -238196 cd00319 Ribosomal_S12_like 2 16S/18S rRNA interaction site 0 1 1 0 1,4,10,12,13,14,15,27,28,30,31,32,33,34,35,42,50,53,54,67,68,72,73,85 3 -238196 cd00319 Ribosomal_S12_like 3 23S/28S rRNA interaction site 0 1 1 1 28,29 3 -238196 cd00319 Ribosomal_S12_like 4 streptomycin interaction site 0 1 1 0 27,28,72 5 -238197 cd00320 cpn10 1 oligomerisation interface 0 1 0 1 0,2,4,7,34,35,56,66,71,73,89,90,91 2 -238197 cd00320 cpn10 2 roof hairpin 0 0 1 1 43,54 0 -238197 cd00320 cpn10 3 mobile loop 0 1 1 1 16,17,18,19,20,21,22,23,24,25,26,27,28,29 0 -238198 cd00321 SO_family_Moco 1 Moco binding site 0 1 1 0 0,2,4,49,98,127,132,140,143,145,146 0 -238198 cd00321 SO_family_Moco 2 metal coordination site 0 1 1 0 49 4 -99778 cd00322 FNR_like 1 FAD binding pocket 0 1 1 1 27,41,42,43,44,58,59,60,65,66,67,68,106 5 -99778 cd00322 FNR_like 2 NAD binding pocket 0 1 1 0 106,107,132,133,134,197,198 5 -99778 cd00322 FNR_like 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99778 cd00322 FNR_like 4 phosphate binding motif 0 0 1 1 65,68,71,77 4 -99778 cd00322 FNR_like 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -271245 cd00323 uS7 1 rRNA binding site 0 1 1 1 8,9,10,14,15,16,17,18,21,22,56,61,65,74,75,78,82,89,95,96,99 3 -271245 cd00323 uS7 2 S11 interface 0 1 1 1 129 2 -271245 cd00323 uS7 3 S9 interface 0 1 1 1 17,20,21,24 2 -340359 cd00325 chitinase_GH19 1 catalytic residues EES 0 1 1 58,79,111 1 -340359 cd00325 chitinase_GH19 2 sugar binding site 0 1 1 0 57,58,76,78,79,80,108,109,110,111,112,114,115,149,190,191,195,203,207 5 -238200 cd00326 alpha_CA 1 active site 0 1 1 1 39,65,67,69,79,92,172 1 -238200 cd00326 alpha_CA 2 zinc binding site 0 1 1 0 67,69,92 4 -238201 cd00327 cond_enzymes 1 active site 0 1 1 1 67,205 1 -163705 cd00328 catalase 1 heme binding pocket 0 1 1 1 7,46,80,85,93,286,290 5 -163705 cd00328 catalase 2 NADPH binding site 0 1 1 0 83,126,130,133,135,145,167,169,234,235,236,237,377,380,381 5 -163705 cd00328 catalase 3 tetramer interface 0 1 1 0 0,5,53,54,73,74,89,90,91,92,93,95,98,104,105,106,107,108,109,113,116,180,183,186,187,191,194,195,198,221,222,227,229,255,257,258,260,263,270,271,279,281,284,287,288,289,292,293,296,297,298,300,301,303,304,305,306,310,314,315,317,320,322,323,324,333,334,335,336,337,338,402,403,406,408,412 2 -238202 cd00329 TopoII_MutL_Trans 1 ATP binding site 0 1 1 1 102 5 -153075 cd00330 phosphagen_kinases 1 ADP binding site 0 1 1 0 2,4,6,65,101,109,160,162,163,164,189,191,204 5 -153075 cd00330 phosphagen_kinases 2 phosphagen binding site 0 1 1 0 105,151,153 0 -153075 cd00330 phosphagen_kinases 3 substrate specificity loop 0 0 1 1 186,187,188,189,190,191,202,203,204,205,206,207 0 -238203 cd00331 IGPS 1 active site 0 1 1 1 15,17,20,21,22,56,77,79,100,126,147,149,151,178,179,200,201 1 -238203 cd00331 IGPS 2 phosphate binding site 0 1 1 0 17,179,200,201 4 -238203 cd00331 IGPS 3 ribulose/triose binding site 0 1 1 0 15,17,77,126,147 5 -238203 cd00331 IGPS 4 substrate (anthranilate) binding pocket 0 1 1 0 21,56,149,151 5 -238203 cd00331 IGPS 5 product (indole) binding pocket 0 1 1 0 56,77,79,100,151 5 -176460 cd00332 PAL-HAL 1 active sites 0 1 1 1 45,46,47,49,51,68,71,179,180,181,182,183,187,271,274,304,316 1 -176460 cd00332 PAL-HAL 2 tetramer interface 0 1 1 0 50,51,70,73,74,75,76,77,78,79,80,101,129,130,143,146,231,232,235,236,238,241,268,270,271,272,274,275,278,279,285,286,289,292,293,296,297,300,301,306,307,308,313,315,316,317,318,319,320,321,323,324,327,331,338,341,345,349,352,355,367,368,370,371,373,374,375,376,378,380,381,382,383,384,385,387,388,389,390,401,402,403,404,405,406,407,410,416,417,420,423,424 2 -238204 cd00333 MIP 1 Asn-Pro-Ala signature motifs 0 0 1 1 60,61,62,186,187,188 0 -238204 cd00333 MIP 2 amphipathic channel 0 1 1 1 40,58,59,60,182,183,186,189 0 -238205 cd00336 Ribosomal_L22 1 protein-rRNA interface 0 1 1 1 3,5,8,10,11,12,15,19,22,50,54,57,70,72,73,74,76,79,91,92,93,94,95,96 3 -238205 cd00336 Ribosomal_L22 2 putative translocon binding site 0 1 1 1 0,1,23,24,25,27,28,30,31,52,53,54,55,56,57,66,67,68,69,70,71,103,104 0 -238206 cd00338 Ser_Recombinase 1 catalytic nucleophile 0 1 1 1 5 1 -238206 cd00338 Ser_Recombinase 2 catalytic residues 0 0 1 1 3,5,74,75,78 1 -238207 cd00340 GSH_Peroxidase 1 catalytic residues 0 0 1 1 33,67,121 1 -238207 cd00340 GSH_Peroxidase 2 dimer interface 0 1 1 1 66,69,71,74,77,81 2 -238208 cd00342 gram_neg_porins 1 trimer interface 0 1 0 0 0,2,8,10,11,12,40,41,42,43,44,50,52,53,54,56,58,59,60,61,73,74,76,77,78,79,80,90,91,92,127,129,130,282,283,286,324,326,328 2 -238208 cd00342 gram_neg_porins 2 eyelet of channel 0 1 1 1 7,35,74,105,127 0 -188629 cd00344 FBP_aldolase_I 1 active site 0 1 1 1 21,22,23,26,95,134,136,175,217,258,259,260,288,290,291 1 -188629 cd00344 FBP_aldolase_I 2 catalytic residue 0 1 1 1 217 1 -100101 cd00349 Ribosomal_L11 1 23S rRNA interface 0 1 1 1 1,21,65,66,67,71,78,103,108,109,110,114,117,118,121,122,124,125,126 3 -100101 cd00349 Ribosomal_L11 2 L7/L12 interface 0 1 1 0 1,48,50,51,52,53,57,59,60,104,105,108,109 2 -100101 cd00349 Ribosomal_L11 3 L25 interface 0 1 1 0 84,87 2 -100101 cd00349 Ribosomal_L11 4 putative thiostrepton binding site 0 1 1 1 17,21 0 -238210 cd00350 rubredoxin_like 1 iron binding site 0 1 1 0 3,6,19,22 4 -238211 cd00351 TS_Pyrimidine_HMase 1 active site 0 1 1 1 19,56,78,81,92,143,144,162,163,164,166,173,174,204,206 1 -238211 cd00351 TS_Pyrimidine_HMase 2 dimerization interface 0 1 0 1 13,18,26,28,123,124,131,132,146,148,152,161,163,164,201,202 2 -238212 cd00352 Gn_AT_II 1 active site 0 1 1 0 0,75,102,103,104,127 1 -238213 cd00353 Ribosomal_S15p_S13e 1 16S/18S rRNA binding site 0 1 1 0 1,18,21,28,32,35,39,41,42,44,45,58,62 3 -238213 cd00353 Ribosomal_S15p_S13e 2 25S rRNA binding site 0 1 1 0 53,57,78,79 3 -238213 cd00353 Ribosomal_S15p_S13e 3 S13e-L30e interaction site 0 1 1 0 23,26,27,30,33,73,77 2 -238214 cd00354 FBPase 1 active site 0 1 0 1 104,106,107,198,226,227,231,247,257 1 -238214 cd00354 FBPase 2 metal binding site 0 1 1 1 57,80,81,101,103,263 4 -238214 cd00354 FBPase 3 AMP binding site 0 1 1 1 0,3,10,12,13,14,95,96,123 5 -100098 cd00355 Ribosomal_L30_like 1 23S rRNA binding site - archaea 0 1 0 0 4,5,6,12,13,14,16,17,19,20,21,22,24,25,26,27,28,36,37,38,39,40,41,43,44,46,47,48 3 -100098 cd00355 Ribosomal_L30_like 2 5S rRNA binding site - archaea 0 1 1 0 43,44,46,47,48 0 -100098 cd00355 Ribosomal_L30_like 3 23S rRNA binding site - prokaryotes 0 1 0 0 5,6,12,13,16,17,20,21,22,24,27,32,33,36,37,38,40,41 3 -238215 cd00361 arom_aa_hydroxylase 1 metal binding site 0 1 1 0 106,111,152 4 -238215 cd00361 arom_aa_hydroxylase 2 cofactor binding site 0 1 1 1 68,70,75,144,147 0 -238216 cd00363 PFK 1 active site 0 1 1 0 9,39,70,101,102,103,105,106,129,131,133,173,174,175,229,263,266 1 -238216 cd00363 PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 129,131,133,166,173,174,175,229,257,263,266 0 -238216 cd00363 PFK 3 ADP/pyrophosphate binding site 0 1 1 1 9,39,70,101,102,103,105,106 5 -238216 cd00363 PFK 4 allosteric effector site 0 1 1 1 19,23,52,53,56,57,158,189,191,218,220,221,222 0 -238216 cd00363 PFK 5 dimerization interface 0 1 0 1 19,23,52,57,60,139,151,155,158,186,187,189,220,275,276,280,287,302,337 2 -153080 cd00365 HMG-CoA_reductase 1 catalytic residues 0 0 1 1 75,274,370 1 -153080 cd00365 HMG-CoA_reductase 2 NADH/NADPH cofactor binding site 0 1 1 1 170,171,172,173,174,175,176,177,179,274,317,318,319 5 -153080 cd00365 HMG-CoA_reductase 3 substrate binding pocket 0 1 1 0 75,80,81,84,87,259,262,356,357,360,366,369,373 5 -153080 cd00365 HMG-CoA_reductase 4 homodimer interface 0 1 1 0 2,11,12,36,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,72,73,74,75,76,77,78,79,80,105,107,109,162,164,199,200,201,202,203,236,239,240,241,243,248,249,261,262,265,269,270,274,275,276,277,279,280,283,320,324,326,327,361,364,365,366,367,371,373,374 2 -153080 cd00365 HMG-CoA_reductase 5 helix swapped region 0 1 0 1 0,1,2,3,10,11,12,13,14,15,16,23,24,25,26,27,28 0 -212658 cd00366 FGGY 1 active site 0 1 1 1 5,7,8,9,10,12,75,77,95,235,236,255,256,257,260,296,300,312,397,398,399,402,426 1 -212658 cd00366 FGGY 2 MgATP binding site 0 1 1 1 5,7,8,9,10,12,235,255,256,257,296,297,299,300,312,313,315,397,398,399,402 5 -212658 cd00366 FGGY 3 carbohydrate binding site 0 1 1 1 7,8,75,77,95,127,235,236,257,260 5 -212658 cd00366 FGGY 4 catalytic site [DE][TS]D 0 1 1 5,8,235 1 -212658 cd00366 FGGY 5 metal binding site [DE]D 1 1 1 5,235 4 -212658 cd00366 FGGY 6 N- and C-terminal domain interface 0 1 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,68,69,70,71,72,73,74,75,95,101,127,128,168,169,170,173,178,180,183,205,206,208,209,228,229,230,231,235,236,237,238,257,260,269,270,271,275,276,277,278,279,280,286,289,291,300,426,427,428,430,431,433,434 2 -238217 cd00367 PTS-HPr_like 1 active site 0 1 1 1 10 1 -238217 cd00367 PTS-HPr_like 2 regulatory protein interface 0 1 1 0 9,11,12,14,15,19,22,40,41,42,43,46,47 2 -238217 cd00367 PTS-HPr_like 3 regulatory phosphorylation site 0 1 1 1 41 6 -238217 cd00367 PTS-HPr_like 4 dimerization domain swap beta strand 0 1 1 1 0,1,2,3 2 -238218 cd00368 Molybdopterin-Binding 1 molybdopterin cofactor binding site 0 1 1 1 40,127,129,130,131,162,163,165,168,169,190,191,192,212,250,286,287,288,312,313,314,317,329,330,335 0 -238219 cd00371 HMA 1 metal-binding site 0 1 1 1 6,7,8,11 4 -238220 cd00374 RNase_T2 1 active site 0 0 1 0 33,36,84,85,88,89 1 -238220 cd00374 RNase_T2 2 CAS motifs 0 0 1 1 30,31,32,33,34,35,36,37,81,82,83,84,85,86,87,88,89,90,91,92 0 -238221 cd00375 Urease_alpha 1 active site 0 1 1 1 134,136,167,217,219,246,272,277,320,360,363,364 1 -238221 cd00375 Urease_alpha 2 subunit interactions 0 1 0 1 0,1,3,10,16,17,19,21,36,37,38,39,41,47,50,51,52,100,101,102,103,104,123,438,460,461,462,463,464,465,467,468,469,474,562,563,564,565,566 2 -238221 cd00375 Urease_alpha 3 flap region 0 1 1 1 315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331 0 -119340 cd00377 ICL_PEPM 1 active site 0 1 1 0 33,35,36,37,47,74,76,103,147,179,201,203,225 1 -119340 cd00377 ICL_PEPM 2 Mg2+/Mn2+ binding site 0 1 1 1 47,74,76,103 4 -119340 cd00377 ICL_PEPM 3 tetramer interface 0 1 1 0 2,9,11,12,13,14,16,17,18,19,20,22,23,26,28,29,30,37,41,42,45,46,49,50,51,52,54,55,58,59,61,62,65,66,80,86,87,91,94,123,124,127,130,131,134,231,232,233,235,236,237,239,240,241 2 -99733 cd00378 SHMT 1 active site 0 1 1 1 26,117,223,355 1 -99733 cd00378 SHMT 2 glycine-pyridoxal phosphate binding site 0 1 1 1 26,46,56,89,90,117,169,194,197,222,223,229,355 5 -99733 cd00378 SHMT 3 folate binding site 0 1 1 1 48,55,112,116,118,249,339 5 -99733 cd00378 SHMT 4 dimer interface 0 1 0 0 3,5,12,13,22,27,45,63,64,72,87,94,131,132,257,275 2 -238222 cd00379 Ribosomal_L10_P0 1 23S rRNA interface 0 1 1 0 2,3,6,50,51,52,53,56 3 -238222 cd00379 Ribosomal_L10_P0 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 84,107,110,126,129,130,133,134,136,137,138,139,143,144,145,148,149,151,152,154 2 -238223 cd00381 IMPDH 1 active site 0 1 1 0 39,167,168,169,202,204,225,226,249,251,252,253,277,278 1 -238224 cd00382 beta_CA 1 zinc binding site 0 1 1 0 9,11,65,68 4 -238224 cd00382 beta_CA 2 dimer interface 0 1 0 1 10,11,12,13,20,25,26,27,29,31,45,46,49,50,108,110,111,113,115 2 -238224 cd00382 beta_CA 3 active site clefts 0 1 1 1 0,2,9,11,12,13,25,28,50,55,65,68,108 1 -294013 cd00383 trans_reg_C 1 DNA binding site 0 1 1 0 19,38,39,57,60,68,69,80,85 3 -238226 cd00384 ALAD_PBGS 1 active site 0 1 1 1 109,111,113,121,156,186,192,195,196,201,208,212,239,262,265,304 1 -238226 cd00384 ALAD_PBGS 2 Schiff base residues 0 1 1 0 186,239 0 -238226 cd00384 ALAD_PBGS 3 dimer interface 0 1 1 1 0,3,4,15,39,42,131,132,159,160,189,190,191,211,214,220,223,224,242,243,244,245,246,270,288,292,295 2 -173830 cd00385 Isoprenoid_Biosyn_C1 1 substrate binding pocket 0 1 1 0 1,22,25,26,29,33,123,155,156,159,163,167 5 -173830 cd00385 Isoprenoid_Biosyn_C1 2 substrate-Mg2+ binding site 0 1 1 1 29,30,33,159,160,163,167 0 -173830 cd00385 Isoprenoid_Biosyn_C1 3 aspartate-rich region 1 0 1 1 1 29,30,31,32,33 0 -173830 cd00385 Isoprenoid_Biosyn_C1 4 aspartate-rich region 2 0 1 1 1 159,160,161,162,163,164,165,166,167 0 -238227 cd00386 Heme_Cu_Oxidase_III_like 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,114,115,118,122 2 -100102 cd00387 Ribosomal_L7_L12 1 core dimer interface 0 1 1 1 0,13,14,15,18,19,22,25,40,43,44,46,47,48,58,59,81,83,84,86,88,89,103,104,106,109 2 -100102 cd00387 Ribosomal_L7_L12 2 peripheral dimer interface 0 1 1 1 3,6,10,23,28 2 -100102 cd00387 Ribosomal_L7_L12 3 L10 interface 0 0 1 1 17,20,21,25,28 2 -100102 cd00387 Ribosomal_L7_L12 4 L11 interface 0 1 1 1 72,73,76,77,80,87,88,91 2 -100102 cd00387 Ribosomal_L7_L12 5 putative EF-G interaction site 0 0 1 1 73,76,77,80 2 -100102 cd00387 Ribosomal_L7_L12 6 putative EF-Tu interaction site 0 0 1 1 73,77,80,87,88,91 2 -238228 cd00389 microbial_RNases 1 active site 0 1 1 0 22,39,54,69 1 -238229 cd00390 Urease_gamma 1 alpha-gamma subunit interface 0 1 1 0 5,6,15,19,27,28,29,36,67,72,77,79 2 -238229 cd00390 Urease_gamma 2 beta-gamma subunit interface 0 1 1 1 67 2 -238230 cd00392 Ribosomal_L13 1 23S rRNA interface 0 1 0 0 9,11,12,15,18,22,50,52,80,81,87,88,89,91,92,93,95,96,97,99,101,105,108,109 3 -238230 cd00392 Ribosomal_L13 2 L3 interface 0 1 1 1 81 2 -132923 cd00394 Clp_protease_like 1 active site 0 1 1 1 69 1 -173893 cd00395 Tyr_Trp_RS_core 1 active site 0 1 0 0 2,3,4,5,6,13,15,16,19,20,36,41,90,136,140,143,156,158,159,161,162,165,189,197,198,200 1 -173893 cd00395 Tyr_Trp_RS_core 2 dimer interface 0 1 0 0 40,43,44,99,100,102,103,104,107,108,110,111,112,113,115,116,132,134,135,138,139 2 -173893 cd00395 Tyr_Trp_RS_core 3 HIGH motif 0 0 1 1 13,14,15,16 0 -173893 cd00395 Tyr_Trp_RS_core 4 KMSKS motif 0 0 1 1 197,198,199,200,201 0 -100027 cd00396 PurM-like 1 ATP binding site 0 1 1 1 26,30,76,77,78 5 -100027 cd00396 PurM-like 2 dimerization interface 0 1 1 0 0,1,2,3,5,30,40,43,46,78,90,91,95 2 -271175 cd00397 DNA_BRE_C 1 active site 0 0 1 0 31,130,133,156,165 1 -271175 cd00397 DNA_BRE_C 2 DNA binding site 0 1 1 0 17,31,32,111,113,130,165 3 -238232 cd00398 Aldolase_II 1 active site 0 1 1 1 25,41,42,69,70,71,90,92,156 1 -238232 cd00398 Aldolase_II 2 Zn2+ binding site 0 1 1 1 90,92,156 4 -238232 cd00398 Aldolase_II 3 intersubunit interface 0 1 1 1 8,12,20,44,46,47,92,94,95,100,101,102,110,112,113,127,155,166,173,177,184,204 2 -259843 cd00399 RNAP_largest_subunit_N 1 active site region 0 1 1 1 146,151,158,164,197,198,199,232,234,236,509,510 1 -259843 cd00399 RNAP_largest_subunit_N 2 large subunit interface 0 1 1 1 0,4,7,8,55,56,57,59,70,88,92,97,98,119,139,142,143,153,156,158,159,160,161,162,163,164,165,170,171,172,181,182,183,184,187,188,194,196,198,202,203,206,215,217,218,220,223,232,233,234,235,237,239,241,244,245,246,247,248,250,251,253,254,255,256,261,276,277,280,289,290,328,329,330,368,369,370,371,416,420,425,426,431,434,435,444,445,475,476,478,479,480,481,482,483,484,487,488,490,491,492,495,496,498,499,513,516,520,525,526,527 2 -259843 cd00399 RNAP_largest_subunit_N 3 Zn-binding 0 1 1 1 45,48,55,58 4 -259843 cd00399 RNAP_largest_subunit_N 4 clamp 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,112,113,114,115,116,117,118,119,120,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160 0 -259843 cd00399 RNAP_largest_subunit_N 5 catalytic site DDD 1 1 1 232,234,236 1 -238233 cd00400 Voltage_gated_ClC 1 Cl- selectivity filter 0 0 1 1 67,68,69,70,71,102,103,104,105,106,304,305,306,307,308 0 -238233 cd00400 Voltage_gated_ClC 2 pore gating glutamate residue 0 0 1 1 104 0 -238233 cd00400 Voltage_gated_ClC 3 Cl- binding residues 0 1 1 1 68,70,104,105,304,305,306 4 -238233 cd00400 Voltage_gated_ClC 4 dimer interface 0 1 1 0 149,158,173,180,352,355,363,371,378,379 2 -240619 cd00401 SAHH 1 NAD binding site 0 1 1 1 138,139,140,172,176,201,203,204,205,223,224,225,226,229,256,257,258,259,262,280,281,282,325,327,334 5 -240619 cd00401 SAHH 2 ligand binding site 0 1 1 0 39,41,43,44,112,137,138,167,171,328,333,334,339,343 5 -240619 cd00401 SAHH 3 homotetramer interface 0 1 1 0 1,4,8,11,12,143,146,147,163,165,169,170,174,177,178,182,185,186,189,190,191,192,193,194,195,203,204,207,216,217,219,224,225,226,227,228,229,230,231,232,234,235,236,237,239,240,241,242,245,258,259,260,261,262,272,273,274,285,302,303,308,332,335,337,338,341,366,372,373,376,377,380,383,384,386,387,388,390,393,394,397,398 2 -240619 cd00401 SAHH 4 catalytic site HDED 0 1 1 39,112,137,171 1 -293928 cd00402 Riboflavin_synthase_like 1 active site 0 1 1 1 39,45,46,47,48,60,61,62,69,99,100,101 1 -293928 cd00402 Riboflavin_synthase_like 2 trimer interface 0 1 1 0 0,85,86,94,116,134,135,136,145,148,157,158,159,160,161 2 -238235 cd00403 Ribosomal_L1 1 mRNA/rRNA interface 0 1 1 1 15,16,17,20,22,24,26,152,154,156,201,202,204 3 -238236 cd00404 Aconitase_swivel 1 substrate binding site 0 1 1 1 28,29,30 5 -238237 cd00405 PRAI 1 active site 0 1 1 0 1,3,25,77,79,126,178,180,181 1 -238238 cd00407 Urease_beta 1 alpha-beta subunit interface 0 1 1 0 1,2,3,4,5,6,7,8,10,11,12,13,14,15,38,59,61,63,64,65,84,85,86,87,88,90,91,92 2 -238238 cd00407 Urease_beta 2 gamma-beta subunit interface 0 1 1 1 0 2 -188630 cd00408 DHDPS-like 1 active site 0 1 1 0 35,38,39,40,128,156,198 1 -188630 cd00408 DHDPS-like 2 catalytic residue 0 1 0 1 156 1 -188630 cd00408 DHDPS-like 3 inhibitor site 0 1 1 1 3,35,38,39,40,128,156 0 -188630 cd00408 DHDPS-like 4 dimer interface 0 1 1 1 39,44,45,76,77,101,102,109,113,263,264 2 -199205 cd00411 L-asparaginase_like 1 active site 0 1 1 1 9,10,56,57,87,88,89,113,161 1 -199205 cd00411 L-asparaginase_like 2 homodimer interface 0 1 1 1 55,57,58,59,60,61,64,89,90,93,114,161,162,163,164,165,213,214,215,217,218,219,223,225,226,229,230,233,241,243,244,245,247,249,270,275,276,298,299,302 2 -238239 cd00412 pyrophosphatase 1 metal binding sites 0 1 1 0 17,51,56,83,88 4 -238239 cd00412 pyrophosphatase 2 substrate binding site 0 1 1 0 15,29,41,125,126 5 -238239 cd00412 pyrophosphatase 3 dimer interface 0 1 1 1 10,11,63,64 2 -185683 cd00413 Glyco_hydrolase_16 1 active site 0 1 1 0 82,84,86,99,101,103,113,115,132,181,183 1 -185683 cd00413 Glyco_hydrolase_16 2 catalytic residues 0 0 0 0 99,101,103 1 -185672 cd00418 GlxRS_core 1 active site 0 1 1 1 4,5,6,7,8,14,16,17,19,20,40,42,43,96,100,113,114,115,118,121,139,144,145,155 1 -185672 cd00418 GlxRS_core 2 HIGH motif 0 0 1 1 14,15,16,17 0 -185672 cd00418 GlxRS_core 3 KMSKS motif 0 0 1 1 152,153,154,155,156 0 -238240 cd00419 Ferrochelatase_C 1 active site 0 1 1 1 25,30,73,106 1 -238240 cd00419 Ferrochelatase_C 2 N-terminal domain interface 0 1 1 0 36,37,38,41,45,99,101,102,103,105,109,134 2 -238241 cd00421 intradiol_dioxygenase 1 Active site 0 1 1 0 33,41,77,81,84,86,114 1 -238242 cd00423 Pterin_binding 1 substrate binding pocket 0 1 1 1 7,81,100,102,125,171,204,208,242,244 5 -238242 cd00423 Pterin_binding 2 inhibitor binding site 0 1 1 1 206,207,208 0 -238242 cd00423 Pterin_binding 3 dimer interface 0 1 1 1 184,188,189,228,232,236,251,252 2 -176453 cd00424 PolY 1 active site 0 1 1 0 3,4,7,8,41,44,98,99,153 1 -176453 cd00424 PolY 2 DNA binding site 0 1 1 0 96,99,178,179,180,181,182,183,184,214,238,239,240,241,242,243,270,298,299,300,301,302,304 3 -238243 cd00427 Ribosomal_L29_HIP 1 23S rRNA interface 0 1 1 1 0,3,37,47,48,50,51,55 3 -238243 cd00427 Ribosomal_L29_HIP 2 L23 interface 0 1 0 1 22,25,26 2 -238243 cd00427 Ribosomal_L29_HIP 3 trigger factor interaction site 0 1 1 1 29,30 0 -238243 cd00427 Ribosomal_L29_HIP 4 signal recognition particle (SRP54) interaction site 0 1 1 1 16,20,23,27,42 0 -238243 cd00427 Ribosomal_L29_HIP 5 putative translocon interaction site 0 0 1 1 0,1,2,4,8,9,11,12,15,16,19,20,23,26,27,35,38,42,45,46,49,50,53 0 -238244 cd00429 RPE 1 metal binding site 0 1 1 0 29,31,62,171 4 -238244 cd00429 RPE 2 substrate binding site 0 1 1 0 4,6,31,64,137,138,140,141,171,173,193,194 5 -238244 cd00429 RPE 3 hexamer interface 0 1 1 1 11,14,34,36,37,39,41,42,43,44,67,71,92,94,95,113,116,118,122,136,145,147,151 2 -143481 cd00430 PLPDE_III_AR 1 active site 0 1 1 1 30,32,36,78,123,130,159,199,200,215,216,217,218,259,278,306,307,351 1 -143481 cd00430 PLPDE_III_AR 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 30,32,36,78,130,159,199,200,215,216,217,218,351 5 -143481 cd00430 PLPDE_III_AR 3 catalytic residues 0 1 1 1 32,259 1 -143481 cd00430 PLPDE_III_AR 4 substrate binding site 0 1 1 1 32,36,130,159,259,278,306,307,351 5 -143481 cd00430 PLPDE_III_AR 5 dimer interface 0 1 1 0 32,33,58,61,62,99,100,128,129,130,131,159,161,246,247,248,249,251,255,256,258,259,260,273,278,284,308,309,347,348,351,352,360 2 -238245 cd00431 cysteine_hydrolases 1 catalytic triad 0 0 1 1 5,89,122 1 -238245 cd00431 cysteine_hydrolases 2 conserved cis-peptide bond 0 0 1 1 117,118 0 -238246 cd00432 Ribosomal_L18_L5e 1 5S rRNA interface 0 1 1 1 2,4,5,7,12,16,17,18,19,20,21,23,25,32,33,34,37,78,89 3 -238246 cd00432 Ribosomal_L18_L5e 2 23S rRNA interface 0 1 1 1 0,3,4,79,82,98 3 -238246 cd00432 Ribosomal_L18_L5e 3 L21e interface 0 1 1 0 0 2 -238246 cd00432 Ribosomal_L18_L5e 4 L27 interface 0 1 1 0 2,5,6 2 -238246 cd00432 Ribosomal_L18_L5e 5 L5 interface 0 1 1 0 84 2 -238247 cd00433 Peptidase_M17 1 Substrate-binding/catalytic site 0 1 1 1 239,244,251,262,321,323,325,349 0 -238247 cd00433 Peptidase_M17 2 Zn-binding sites 0 1 1 0 239,244,262,321,323 4 -238247 cd00433 Peptidase_M17 3 interface (dimer of trimers) 0 1 0 0 35,36,49,57,72,164,166,167,168,212,214,243,249,254,257,260,261,293,295,296,297,298,300,302,303,304,305,306,312,314,318,354,355,356,357,358,361,387,388,390,395,397,398,403,405,415,416,418,453 2 -238248 cd00435 ACBP 1 acyl-CoA binding pocket 0 1 0 0 8,11,12,14,17,18,20,23,24,26,27,30,31,48,49,52,53,72 5 -238248 cd00435 ACBP 2 CoA binding site 0 1 0 1 12,27,30,31,53,72 5 -350155 cd00436 UP_TbUP-like 1 active site 0 1 1 1 11,27,28,31,49,70,106,108,109,110,111,195,199,201,229,230,231,232,254,255 1 -350155 cd00436 UP_TbUP-like 2 homodimer interface 0 1 1 1 0,1,2,10,11,28,49,50,69,70,71,73,74,76,77,80,81,83,131,132,133,134,136,137,138,139,193,194,195,196,197,198,201,202,203,204,206,207,208,212,231,239,242,243 2 -350155 cd00436 UP_TbUP-like 3 purine base binding site 0 1 1 1 109,110,111,195,199,201,229,230,231,254,255 5 -350155 cd00436 UP_TbUP-like 4 ribose-1-phosphate binding site 0 1 1 1 11,27,28,31,49,70,106,108,109,195,230,231,232 5 -188631 cd00439 Transaldolase 1 active site 0 1 1 0 4,26,89,120,142,144,164,169 1 -188631 cd00439 Transaldolase 2 catalytic residue 0 1 1 0 120 1 -340360 cd00442 Lyz_like 1 catalytic residue E 0 1 1 8 1 -238250 cd00443 ADA_AMPD 1 active site 0 1 0 0 6,8,172,175,195,252,253 1 -238251 cd00445 Uricase 1 active site 0 1 1 1 49,50,152,169,221,223,249,251 1 -238251 cd00445 Uricase 2 tetramer interface 0 0 1 1 2,3,4,5,7,9,11,13,18,20,22,24,26,36,38,39,40,49,50,54,99,102,104,112,114,115,254,255,256,257,258,259,260,268,269,270,271,272,273,274 2 -271355 cd00446 GrpE 1 dimer interface 0 1 1 0 2,5,6,9,10,12,13,16,17,18,20,23,24,27,28,31,32,34,35,38,39,40,42,43,44,45,46,48,49,65,66,68,69,70,73,79,80 2 -271355 cd00446 GrpE 2 Hsp70 (ATPase domain) interactions 0 1 1 0 18,26,48,51,92,94,95,97,98,99,100,101,117,126,130,132,135 2 -271355 cd00446 GrpE 3 2-helical coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50 7 -271355 cd00446 GrpE 4 2-helical coiled coil 0 0 0 0 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -238253 cd00447 NusB_Sun 1 putative RNA binding site 0 1 1 1 0,1,2 3 -100004 cd00448 YjgF_YER057c_UK114_family 1 homotrimer interaction site 0 1 1 0 0,1,4,6,9,11,13,14,53,55,56,58,60,71,74,84,85,86,87,88,89,90,91,101,103,105 2 -100004 cd00448 YjgF_YER057c_UK114_family 2 putative active site 0 1 1 0 0,67,71,86,101 1 -238254 cd00449 PLPDE_IV 1 catalytic residue 0 0 1 1 127 1 -238254 cd00449 PLPDE_IV 2 substrate-cofactor binding pocket 0 1 0 1 10,29,127,160,187,188,224 0 -238254 cd00449 PLPDE_IV 3 pyridoxal 5'-phosphate binding site 0 1 1 0 29,127,160 5 -238254 cd00449 PLPDE_IV 4 homodimer interface 0 1 1 0 2,3,5,6,8,10,36,67,69,90,129,133,135,139,153 2 -212095 cd00451 GH38N_AMII_euk 1 active site 0 1 1 1 9,11,14,123,125,147,234,235,237 1 -212095 cd00451 GH38N_AMII_euk 2 catalytic site DD 1 1 1 123,235 1 -188632 cd00452 KDPG_aldolase 1 active site 0 1 1 1 8,33,37,61,121,123,148 1 -188632 cd00452 KDPG_aldolase 2 catalytic residue 0 0 1 1 121 1 -188632 cd00452 KDPG_aldolase 3 intersubunit interface 0 1 0 0 37,61,63,82,83,84,85,105,106,107,108,110,114,123,124,135,139,140 2 -238255 cd00453 FTBP_aldolase_II 1 active site 0 1 1 1 18,92,93,127,157,159,162,163,164,165,208,209,210,212,247,248,250,269,271,272 0 -238255 cd00453 FTBP_aldolase_II 2 zinc binding site 0 1 1 1 93,127,157,164,209,247 4 -238255 cd00453 FTBP_aldolase_II 3 Na+ binding site 0 1 1 1 208,210,212,248,250 4 -238255 cd00453 FTBP_aldolase_II 4 intersubunit interface 0 1 0 1 21,22,23,26,47,50,51,52,71,75,78,79,165,272,273,275,276,279,283,286 2 -271265 cd00454 TrHb1_N 1 heme binding site 0 1 1 0 16,25,28,29,32,36,37,40,41,43,44,45,47,55,57,58,59,60,63,64,67,69,73,74,77,102,105,109 5 -271265 cd00454 TrHb1_N 2 putative homodimer interface 0 1 1 1 18,21,22,80,83,87,88,89 2 -271265 cd00454 TrHb1_N 3 apolar tunnel 0 0 1 1 2,7,8,11,12,15,45,46,49,78,81,85,88,99,102 0 -238257 cd00455 nuc_hydro 1 active site 0 1 1 1 5,9,10,34,118,153,159,161,234 0 -176642 cd00457 PEBP 1 substrate binding site 0 1 1 0 47,55,57,103,104,105,106,112,114 5 -238258 cd00458 SugarP_isomerase 1 active site 0 1 1 0 27,29,30,55,120,121 1 -132901 cd00460 RNAP_RPB11_RPB3 1 dimer interface 0 1 1 1 0,2,14,18,20,21,24,27,72,75,79,81,82,83,84,85 2 -238259 cd00462 PTH 1 catalytic residue 0 0 1 0 16 1 -238259 cd00462 PTH 2 putative active site 0 0 1 0 6,16,61,62,88,108 1 -199209 cd00463 Ribosomal_L31e 1 23S rRNA binding site 0 1 1 0 11,20,21,22,24,25,26,28,29,32,37,38,44,45,46,47,51,52,54,55,56,57,58,59,60,64,65 3 -238260 cd00464 SK 1 ADP binding site 0 1 0 0 8,9,10,11,12,13,107,114,151 5 -238260 cd00464 SK 2 magnesium binding site 0 1 1 0 12,28,30 4 -238260 cd00464 SK 3 putative shikimate binding site 0 0 1 0 30,54,57,75,76,77,132 0 -238262 cd00466 DHQase_II 1 active site 0 1 1 1 15,20,71,73,74,77,84,97,98,99,108 1 -238262 cd00466 DHQase_II 2 trimer interface 0 1 1 0 8,10,49,50,51,52,53,56,59,74,81,84,85,88,108 2 -238262 cd00466 DHQase_II 3 dimer interface 0 1 1 1 100,102,103,114,115,117,118,119,120,122,123,124,127,131,135,138 2 -238263 cd00468 HIT_like 1 nucleotide binding site/active site 0 1 0 0 9,11,19,21,67,76,80,82 1 -238263 cd00468 HIT_like 2 HIT family signature motif 0 0 1 1 78,80,82,83,84 0 -238263 cd00468 HIT_like 3 catalytic residue 0 1 0 0 80 1 -238264 cd00470 PTPS 1 pterin binding site 0 1 1 1 13,15,32,38,40,78,79,96,97 0 -238264 cd00470 PTPS 2 homohexamer interface 0 1 1 1 0,52,53,54,55,56,57,58,59,60,61,62,95,96,97,98,99,100,101,131,133 2 -238264 cd00470 PTPS 3 putative substrate stabilizing pore 0 0 1 1 2,4,6,8,43,45,47,117,118,120,122,128,130,132 0 -100103 cd00472 Ribosomal_L24e_L24 1 23S rRNA interface 0 1 1 0 16,17,33,34,36,37,41,43,49,50 3 -100103 cd00472 Ribosomal_L24e_L24 2 L14 interface 0 1 1 1 15,17,18,19,21,23,24 2 -100103 cd00472 Ribosomal_L24e_L24 3 L3 interface 0 1 1 1 13,14,15 2 -100103 cd00472 Ribosomal_L24e_L24 4 zinc binding site 0 1 0 1 5,8,31,35 4 -275385 cd00473 bS6 1 rRNA binding site 0 1 1 1 1,47,51,66,69,70,77,84,87,88,89 3 -275385 cd00473 bS6 2 S18 interface 0 1 1 1 2,4,43,45,46,47,57,59,84,88 2 -211317 cd00474 eIF1_SUI1_like 1 putative rRNA binding site 0 1 1 0 8,11,12,14,31,34,35,36,38,39,40,42,53,56 3 -259850 cd00475 Cis_IPPS 1 active site 0 1 1 0 5,6,7,8,9,10,19,23,27,30,49,57,61,68,69,72,121,174,180,182 1 -259850 cd00475 Cis_IPPS 2 dimer interface 0 1 1 0 128,129,131,132,135,136,152,153,154,157,168,179,180,181,182,183,186,187,188,190,191,192,193,194,196 2 -133468 cd00476 SAICAR_synt 1 active site 0 1 1 0 2,4,5,6,7,9,17,29,63,74,75,76,77,79,83,85,87,91,92,93,115,117,123,169,170,171,173,186,191,192,193,194 1 -133468 cd00476 SAICAR_synt 2 ATP binding site 0 1 1 0 1,2,4,5,7,9,10,17,19,62,75,77,79,117,173,185,186 5 -133468 cd00476 SAICAR_synt 3 substrate binding site 0 1 1 1 29,83,85,87,91,92,93,115,123,169,170,171,191,192,193,194 5 -349750 cd00477 FTHFS 1 active site 0 1 0 0 53,54,55,56,57,78,92,94,284,285,363,364,365,366,393 1 -349750 cd00477 FTHFS 2 dimer interface 0 1 0 0 11,14,15,16,17,18,19,27,82,86,108,109,115,116,119,122,123,126,127,129,130,149,151,153,155,156,157,158,159,160,161,162,163,164,178,196,200,222,223,224,226,227,230,231,233,519,520,521,525,526,528,529,530,536 2 -238267 cd00480 malate_synt 1 active site 0 1 1 0 142,226,252,254,424 1 -238268 cd00481 Ribosomal_L19e 1 putative intersubunit bridge 0 1 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144 0 -238268 cd00481 Ribosomal_L19e 2 putative translocon docking site 0 1 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238268 cd00481 Ribosomal_L19e 3 protein-rRNA interface 0 1 0 0 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,127,130,131 3 -238269 cd00483 HPPK 1 catalytic center binding site 0 1 1 1 5,39,40,42,50,52,67,71,74,79,81,85,88,91,93,94,108,111,112,117,119 1 -238269 cd00483 HPPK 2 ATP binding site 0 1 1 1 67,71,74,79,81,88,93,94,108,111,112,117 5 -238270 cd00484 PEPCK_ATP 1 active site 0 1 1 0 39,174,176,179,180,199,217,218,219,220,221,222,223,235,236,253,255,264,301,420,423,426 1 -238270 cd00484 PEPCK_ATP 2 ATP binding site 0 1 1 0 217,218,219,220,221,222,223,264,420,426 5 -238270 cd00484 PEPCK_ATP 3 metal-binding site 0 1 1 0 180,199,222,235,236,253 4 -238270 cd00484 PEPCK_ATP 4 substrate-binding site 0 1 1 1 39,174,176,179,180,253,301 5 -238271 cd00487 Pep_deformylase 1 active site 0 1 1 0 38,39,40,45,87,88,89,130,131,134 1 -238271 cd00487 Pep_deformylase 2 metal binding site 0 1 0 1 88,130,134 4 -238271 cd00487 Pep_deformylase 3 catalytic residues 0 0 1 1 40,45,89,131 1 -238272 cd00488 PCD_DCoH 1 substrate binding site 0 1 1 1 36,37,38,53,55,56 5 -238272 cd00488 PCD_DCoH 2 DCoH dimer interaction site 0 1 1 0 18,22,26,33,38,39,40,41,42,43,44,45 2 -238272 cd00488 PCD_DCoH 3 DCoH /HNF-1 dimer interaction site 0 1 1 1 19,20,26,27,30,33,34 2 -238272 cd00488 PCD_DCoH 4 DCoH tetramer interaction site 0 1 1 1 19,26,27,30,34 2 -238272 cd00488 PCD_DCoH 5 aromatic arch 0 1 1 1 18,22,38,41,55 0 -238273 cd00489 Barstar_like 1 RNAase interaction site 0 1 1 0 26,28,30,31,32,36,73 2 -119402 cd00490 Met_repressor_MetJ 1 corepressor binding sites 0 1 0 0 38,41,42,55,58,59,60,62,63,64,66,69,70 0 -119402 cd00490 Met_repressor_MetJ 2 DNA binding site 0 1 1 0 16,20,21,22,23,24,26,39,51,52,53 3 -119402 cd00490 Met_repressor_MetJ 3 dimerization interface 0 1 0 0 8,9,11,18,19,20,21,22,23,24,25,26,27,28,29,31,32,34,35,38,53,56,57,59,60,62,63,64,69 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 1 dimer interface 0 1 0 0 0,1,2,3,4,5,6,18,21,22,25,29,30 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 2 hexamer interface 0 1 0 0 3,5,15,16,19,20,23,34,35,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 3 active site 1 0 1 0 0 0,1,36 1 -238274 cd00491 4Oxalocrotonate_Tautomerase 4 active site 2 0 1 0 0 5,49 1 -238275 cd00493 FabA_FabZ 1 active site 1 0 1 0 0 50,53,54,57,75,76,77 1 -238275 cd00493 FabA_FabZ 2 active site 2 0 1 0 0 43,44,45,84,85,86,87 1 -238275 cd00493 FabA_FabZ 3 dimer interface 0 1 0 0 46,50,75,76,77,78,79,82,84,86,87 2 -270213 cd00494 PBP2_HMBS 1 ligand binding site 0 1 1 0 6,10,57,78,79,122,123,124,126,127,143,144,145,146,147,150,190,237 5 -270213 cd00494 PBP2_HMBS 2 dimer interface 0 1 1 0 96,170,179,181,247,248 2 -198379 cd00495 Ribosomal_L25_TL5_CTC 1 5S rRNA interface 0 1 1 0 6,14,15,16,18,28,29,30,34,71,72,74,84,86,88 3 -198379 cd00495 Ribosomal_L25_TL5_CTC 2 L16 interface 0 1 1 0 69,70,73,80,88 2 -198379 cd00495 Ribosomal_L25_TL5_CTC 3 CTC domain interface 0 1 1 0 30,55,67,71,88,89 2 -238277 cd00496 PheRS_alpha_core 1 active site 0 1 0 0 46,47,48,64,66,69,90,92,97,98,99,102,104,106,144,146,147,165,166,167,168,169,170,191,192,193,194,197,208 1 -238277 cd00496 PheRS_alpha_core 2 dimer interface 0 1 0 1 0,3,6,7,14,19,20,22,23,24,41,46,50,51,52,53,54,55,72,79,80,81,85,87,89,91,99,116,117,118,120,121,141,148,149,150,152,173,174,212,214,215,216 2 -238277 cd00496 PheRS_alpha_core 3 motif 1 0 0 1 1 18,19,20,21,22,23,24 0 -238277 cd00496 PheRS_alpha_core 4 motif 2 0 0 1 1 89,90,91,92 0 -238277 cd00496 PheRS_alpha_core 5 motif 3 0 0 1 1 192,193,194,195,196,197 0 -211322 cd00497 PseudoU_synth_TruA_like 1 dimerization interface 3.5A 0 1 1 1 1,68,71,72,73,74,75,76,77,78 2 -211322 cd00497 PseudoU_synth_TruA_like 2 active site 0 1 1 1 41,42,43,44,167 1 -238278 cd00498 Hsp33 1 redox-dependent activation switch 0 0 1 1 231,233,264,267 0 -238278 cd00498 Hsp33 2 dimerization interface 0 0 1 1 11,141,145,146,147,173,231 2 -238278 cd00498 Hsp33 3 domain crossover interface 0 0 1 1 11,167,169,173,174,175,176 0 -238279 cd00501 Peptidase_C15 1 catalytic triad 0 1 1 0 78,141,165 1 -238279 cd00501 Peptidase_C15 2 AB domain interface 0 1 1 1 79,80,84,86,88,98,99,108,109,110,111,117,134,135,138 0 -238279 cd00501 Peptidase_C15 3 AC domain interface 0 1 1 0 72,73,74,124,127,128,129,130,131,170,171,173,179,180,182 0 -238279 cd00501 Peptidase_C15 4 interchain disulfide 0 1 0 0 182 0 -238279 cd00501 Peptidase_C15 5 putative substrate binding pocket 0 0 1 1 7,10,42,139,140,141 5 -188633 cd00502 DHQase_I 1 active site 0 1 1 1 4,28,30,62,120,147,189,208,209,212 1 -188633 cd00502 DHQase_I 2 catalytic residue 0 0 1 1 147 1 -188633 cd00502 DHQase_I 3 dimer interface 0 1 0 0 159,163,166,190,191,195,217,221,224 2 -238280 cd00503 Frataxin 1 putative iron binding site 0 0 1 1 2,10,11,14,18,21,22,28,30 4 -238281 cd00504 GXGXG 1 domain_subunit interface 0 1 1 1 4,5,28,31,32,36,47,48,49,54,57,73,74,77,80,83,92,93,94,95,96,99,100,102,111,112,113,114,115,118,119,121,134,137,140 0 -132996 cd00505 Glyco_transf_8 1 ligand binding site 0 1 1 1 5,6,7,10,11,85,100,102,103,104,129,153,154,155,188,189,214,215,235,237,238,241 0 -132996 cd00505 Glyco_transf_8 2 oligomer interfaces 0 1 1 0 49,65,66,128,129,189,205,207,208,212,216 0 -132996 cd00505 Glyco_transf_8 3 metal binding site 0 1 0 0 102,104,235 0 -211323 cd00506 PseudoU_synth_TruB_like 1 RNA binding site 0 1 1 1 11,13,16,28,29,30,32,33,34,35,36,50,53,54,57,61,63,114,115,116,117,118,139,166,167,168,169,170,171,192 3 -211323 cd00506 PseudoU_synth_TruB_like 2 active site 0 1 1 1 32,33,34,35,171 1 -238282 cd00508 MopB_CT_Fdh-Nap-like 1 molybdopterin cofactor binding site 0 1 1 1 8,9,10,11,12,14,15,16,17,82,94,110,111 0 -238284 cd00513 Ribosomal_L32_L32e 1 23S rRNA interface 0 1 1 1 0,1,2,4,5,6,8,9,10,11,12,13,16,17,18,19,21,22,23,24,25,26,28,29,30,31,32,33,34,38,39,40,41,42,43,44,46,49,50,52,53,60,62,63,80,82,83,84,85,86,87,88,89,91,105,106 3 -238285 cd00515 HAM1 1 active site 0 1 1 0 6,8,9,12,64,65,66,79,80,109,143,145,146,171,172 1 -238285 cd00515 HAM1 2 dimerization interface 0 1 0 0 35,36,37,71,72,75,78,81 2 -238286 cd00516 PRTase_typeII 1 active site 0 1 1 1 117,118,119,140,141,211,244,245,264,266,267,270 1 -173895 cd00517 ATPS 1 active site 0 1 1 0 161,162,163,164,165,171,174,232,257,258,259,261,262,295,296,297 1 -173895 cd00517 ATPS 2 flexible loop 0 1 1 1 194,195,196,197,198,199,200,201,202,203,204 0 -173895 cd00517 ATPS 3 HXXH motif 0 0 1 1 168,169,170,171 0 -99872 cd00518 H2MP 1 nickel binding site 0 1 1 1 12,57,86 4 -238287 cd00519 Lipase_3 1 catalytic triad 0 0 1 1 135,191,218 1 -238287 cd00519 Lipase_3 2 active site flap/lid 0 1 1 0 71,72,74,75,76,77,78,79,80,81,82 1 -238287 cd00519 Lipase_3 3 nucleophilic elbow 0 0 1 1 133,134,135,136,137 0 -238288 cd00520 RRF 1 hinge region 0 0 1 1 24,25,26,27,97,98,99,100 0 -213981 cd00522 Hemerythrin-like 1 Fe binding site HHEHH[ED] 1 1 1 6,36,40,59,92,97 4 -238289 cd00523 archeal_HJR 1 active site 0 0 1 1 8,37,50,52 1 -238289 cd00523 archeal_HJR 2 dimer interface 0 1 1 1 19,20,21,23,24,25,26,39,41,42,43,46,72,75,76,77 2 -238289 cd00523 archeal_HJR 3 DNA-binding cleft 0 1 1 1 1,2,3,9,24,29,30,31,32,33,34,35 3 -238290 cd00524 SORL 1 non-heme iron binding site 0 1 1 1 1,3,27,33,78,81 4 -238291 cd00525 AE_Prim_S_like 1 nucleotide binding site 0 1 1 0 41,59,61,94,97,98,100,107,116 5 -238292 cd00527 IF6 1 "Velcro" closure 0 0 1 1 0,1,2,199,200,201,202,203 0 -238293 cd00528 MoaC 1 putative active site 0 0 1 1 36,52,59,61,62,94,97,98,99,102,113,116 1 -238293 cd00528 MoaC 2 dimer interface 0 0 1 0 36,37,38,54,55,56,57,58,119,120,121 2 -238293 cd00528 MoaC 3 trimer interface 0 0 1 0 0,1,2,3,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,124,125,126,127,128,129,130,131,132,133,134,135 2 -340812 cd00529 RuvC_like 1 active site DE[DH][DNS] 0 1 1 4,65,102,105 1 -340812 cd00529 RuvC_like 2 nucleic acid substrate binding site 0 1 1 0 6,7,8,32,67,68,69,79 3 -340812 cd00529 RuvC_like 3 dimer interface 0 1 1 0 47,80,81,83,84,85,87,88 2 -238295 cd00530 PTE 1 active site 0 1 1 1 5,7,121,154,183,243 1 -238295 cd00530 PTE 2 substrate binding pocket 0 1 1 0 7,81,154,243 5 -238295 cd00530 PTE 3 homodimer interaction site 0 1 1 0 12,54,93,97,104,111 2 -238297 cd00532 MGS-like 1 substrate binding site 0 1 0 0 4,10,30,32,33,73 5 -238298 cd00534 DHNA_DHNTPE 1 active site 0 1 1 0 15,16,17,20,69,70,71,72,98,112 1 -238298 cd00534 DHNA_DHNTPE 2 homooctamer interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,21,22,23,24,25,100,101,106,107,108,109,110,111,112,113,114 2 -238299 cd00537 MTHFR 1 FAD binding site 0 1 1 0 35,63,92,93,94,112,113,133,135,139,141,148,151,154,155,164,166,258 5 -238300 cd00538 PA 1 PA/protease or protease-like domain interface 0 1 1 0 84,85,86 2 -238301 cd00539 MCR_gamma 1 cofactor binding site 0 1 1 0 114,115,116,117,150,151,152,153,155 0 -238301 cd00539 MCR_gamma 2 multimer interface 0 1 1 0 0,1,2,3,12,49,53,56,58,61,62,63,64,66,67,68,69,70,73,79,80,81,89,94,95,96,99,100,103,104,106,107,108,109,110,111,112,113,115,117,121,123,149,151,153,155,156,157,158,159,161,166,167,170,214,216,221,222,226,228,231,232,233,234,235,236,238,239,241,242,243,244,245 2 -187726 cd00540 AAG 1 DNA binding site 0 1 1 0 36,43,45,50,52,54,67,70,73,77,90,92,103,118,119,120,121,130,162,163 3 -187726 cd00540 AAG 2 active site 0 1 1 1 34,36,45,65,70,77,90,92,162 1 -238302 cd00541 OMPLA 1 active site 0 0 1 1 109,111,123 1 -238302 cd00541 OMPLA 2 calcium binding site 0 1 1 1 116,119,153 4 -238302 cd00541 OMPLA 3 substrate binding site 0 1 1 1 10,38,40,42,44,59,65,73,76,109,111,113,205 5 -238302 cd00541 OMPLA 4 dimerization interface 0 1 1 1 2,38,40,61,76 2 -238303 cd00542 Ntn_PVA 1 active site 0 0 1 0 0,16,18,24,59,66,131,135,140 1 -238304 cd00544 CobU 1 GTP binding site 0 1 1 1 8,9,10,11,12,32,47,50,58,79,80 5 -238304 cd00544 CobU 2 Walker A motif 0 0 1 1 6,7,8,9,10,11,12 0 -238304 cd00544 CobU 3 Walker B motif 0 0 0 1 75,76,77,78,79 0 -238304 cd00544 CobU 4 homotrimer interface 0 1 1 0 6,7,8,10,124,125,126,127,129,140,144,145,147,148,151,162,164 2 -238305 cd00545 MCH 1 trimer interface I 0 0 1 0 43,47,62,73,170,171,211 2 -238305 cd00545 MCH 2 trimer interface II 0 0 1 0 201,203,233,291 2 -238305 cd00545 MCH 3 putative substrate binding pocket 0 0 1 0 106,180,183,187,219,227,262,266,273,274 5 -238306 cd00546 QFR_TypeD_subunitC 1 proximal quinone binding site 0 1 1 1 24,25,82,85 5 -238306 cd00546 QFR_TypeD_subunitC 2 distal quinone binding site 0 1 1 1 123 5 -238306 cd00546 QFR_TypeD_subunitC 3 Iron-sulfur protein interface 0 1 1 0 0,1,3,5,7,15,17,18,21,24,85,88,91 0 -238306 cd00546 QFR_TypeD_subunitC 4 D-subunit interface 0 1 1 1 0,1,2,3,5,7,9,11,15,17,18,21,24,25,27,29,34,35,39,43,45,46,52,60,68,72,78,79,82,85,88,89,91,119,123 2 -238307 cd00547 QFR_TypeD_subunitD 1 proximal quinone binding site 0 1 1 1 10,13,14 5 -238307 cd00547 QFR_TypeD_subunitD 2 distal quinone binding site 0 1 1 1 27,31,48,49,52 0 -238307 cd00547 QFR_TypeD_subunitD 3 Iron-sulfur protein interface 0 1 1 0 3,4,7,10,83 0 -238307 cd00547 QFR_TypeD_subunitD 4 C-subunit interface 0 1 1 1 17,21,36,46,48,50,53,66,76,77,83,84,85,107,114 0 -349426 cd00548 NrfA-like 1 heme binding site 0 1 1 0 4,8,11,12,15,55,56,58,59,60,61,63,64,67,68,71,73,79,83,86,87,118,119,120,123,124,131,154,158,161,162,165,166,169,171,217,219,223,227,228,235,238,239,240,242,250,251,253,257,258,259,265,266,269,270,277,281,284,340,344,345 5 -349426 cd00548 NrfA-like 2 homodimer interface 0 1 1 0 227,230,231,271,276,280,283,287,291,294,298,346,347,348,349,351,352,354,355,356,358,359,360,362,363,365,366,369 2 -349426 cd00548 NrfA-like 3 active site 0 1 0 0 58,59,60,61,63,64,67,86,87,118,161,162,165,166,235,239,240 1 -349426 cd00548 NrfA-like 4 heme-binding motif CXXC[HK] 0 1 1 83,84,85,86,87 0 -349426 cd00548 NrfA-like 5 heme-binding motif CxxCH 0 1 1 120,121,122,123,124 0 -349426 cd00548 NrfA-like 6 heme-binding motif CxxCH 0 1 1 162,163,164,165,166 0 -349426 cd00548 NrfA-like 7 heme-binding motif CxxCH 0 1 1 235,236,237,238,239 0 -349426 cd00548 NrfA-like 8 heme-binding motif CxxCH 0 1 1 266,267,268,269,270 0 -349426 cd00548 NrfA-like 9 coiled coil 0 0 1 1 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309 7 -349426 cd00548 NrfA-like 10 coiled coil 0 0 1 1 319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336 7 -349426 cd00548 NrfA-like 11 coiled coil 0 0 1 1 354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369 7 -200451 cd00551 AmyAc_family 1 active site 0 0 1 1 99,114,116,149,213,214 1 -200451 cd00551 AmyAc_family 2 catalytic site 0 0 1 1 116,149,214 1 -238308 cd00552 RaiA 1 30S subunit binding site 0 1 1 1 2,4,6,24,27,33,34,38,42,54,57,58,59,60,63,65,68,70,73,87,88,92 0 -238309 cd00553 NAD_synthase 1 active-site loop 0 0 1 1 63,182,183,184,185,186,187,188,189,192,193,194,195,196,197,198,199 1 -238309 cd00553 NAD_synthase 2 ATP binding pocket 0 0 1 1 28,29,30,34,35,55,56,117,135,164,185,186 5 -238309 cd00553 NAD_synthase 3 NAD binding pocket 0 1 0 0 27,28,29,30,35,54,55,56,107,111,114,115,117,135,140,145,146,147,148,151,186,187,189,198,245,246 5 -238309 cd00553 NAD_synthase 4 homodimer interface 0 1 0 0 8,9,12,15,16,79,80,81,82,85,86,89,90,108,112,115,116,118,119,120,122,123,124,126,127,148,149,152,153,154,155,156,157,160,161,245,247 2 -238309 cd00553 NAD_synthase 5 Mg binding site 0 1 0 1 30,34,140,186 4 -100025 cd00554 MECDP_synthase 1 CDP-binding sites 0 1 1 1 54,56,98,99,101,102,103,104,129,130,131 0 -100025 cd00554 MECDP_synthase 2 zinc binding site 0 1 1 0 6,8,40 4 -100025 cd00554 MECDP_synthase 3 homotrimer interaction site 0 1 1 0 0,1,3,5,7,8,9,13,48,50,51,53,54,91,93,95,102,104,126,128,129,132,133,134,147,149,151 2 -238310 cd00555 Maf 1 active site 0 1 1 1 4,9,29,48,66,78 1 -238310 cd00555 Maf 2 dimer interface 0 1 1 0 42,111,112,113,114,115,116 2 -238311 cd00556 Thioesterase_II 1 active site 0 1 1 0 22,25,26,44,47,94 1 -238311 cd00556 Thioesterase_II 2 dimer interface 0 1 0 0 45,46,47,48,49,50,52,69,78,93,97 2 -238312 cd00557 Translocase_SecB 1 SecA binding site 0 0 1 1 9,13,66,68 0 -238312 cd00557 Translocase_SecB 2 Preprotein binding site 0 0 1 1 65,67,69,71 0 -238313 cd00559 Cyanase_C 1 active site 0 1 1 1 9,35,36 1 -238313 cd00559 Cyanase_C 2 oligomer interface 0 1 1 1 3,4,5,6,8,9,11,12,14,17,22,24,26,27,28,29,31,32,33,34,37,38,43,45,53,54,56,58,60,61,62,65,68 2 -185673 cd00560 PanC 1 active site 0 1 1 0 27,28,29,30,33,35,36,39,57,60,70,128,131,132,146,147,149,150,153,174,175,176,184,185,186,187 1 -185673 cd00560 PanC 2 pantoate-binding site 0 1 1 0 27,29,57,60,131,132,135,153 0 -185673 cd00560 PanC 3 ATP-binding site 0 1 1 0 27,28,29,33,36,39,60,131,132,146,147,149,150,153,175,176,183,184 5 -185673 cd00560 PanC 4 HXXH motif 0 0 1 1 33,34,35,36 0 -238314 cd00561 CobA_CobO_BtuR 1 ATP binding site 0 1 1 1 12,14,15,16,24,102 5 -238314 cd00561 CobA_CobO_BtuR 2 Walker A motif 0 0 0 1 9,10,11,12,13,14,15 0 -238314 cd00561 CobA_CobO_BtuR 3 Walker B motif 0 0 0 1 97,98,99,100,101 0 -238314 cd00561 CobA_CobO_BtuR 4 hydroxycobalamin binding site 0 1 1 1 39,42,67,105,109,135,158 5 -238314 cd00561 CobA_CobO_BtuR 5 homodimer interface 0 1 0 0 1,12,16,20,21,23,24,25,26,27,28,43,45,46,48,49,129,142,143,145,146,147,148,149,150,151,152,154,155,157 2 -238316 cd00563 Dtyr_deacylase 1 dimerization interface 0 1 1 0 43,46,47,48,50,51,52,53,76,77,79,80,82,83,84,86,87,88,89,90,92,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 2 -238316 cd00563 Dtyr_deacylase 2 putative tRNAtyr binding site 0 0 1 1 47,52,86,89 3 -238316 cd00563 Dtyr_deacylase 3 putative active site 0 0 1 1 6,76,77,78,79,80,92,140 1 -238317 cd00564 TMP_TenI 1 active site 0 1 1 0 29,31,33,61,62,81,100,126,128,129,157,177,178 1 -238317 cd00564 TMP_TenI 2 thiamine phosphate binding site 0 1 1 0 1,3,29,31,76,100,117,119,126,128,153,157,175,176,177,178 5 -238317 cd00564 TMP_TenI 3 pyrophosphate binding site 0 1 1 0 31,33,61,62,78,81,100,129 4 -340451 cd00565 Ubl_ThiS 1 heterodimer interface 0 1 1 1 4,28,29,30,55,57,58,59,60,61,62 2 -340451 cd00565 Ubl_ThiS 2 thiS-thiF interaction site 0 1 1 1 4,28,29,30,35,36,37,39,55,57,58,59,60,61,62,63 2 -340451 cd00565 Ubl_ThiS 3 thiS-thiG interaction site 0 1 1 0 2,3,4,5,7,22,24,28,29,30,32,37,55,56,57,58,59,60,61,62 2 -173838 cd00567 ACAD 1 active site 0 1 1 1 42,72,74,105,107,312,313,314,316,318 1 -238318 cd00568 TPP_enzymes 1 TPP-binding site 0 1 1 1 47,71,72,73,74,99,101 5 -259851 cd00569 HTH_Hin_like 1 DNA-binding interface 0 1 1 1 1,2,3,35,36,38,39,40 3 -238319 cd00570 GST_N_family 1 GSH binding site (G-site) 0 1 1 1 10,48,49,50,61,62 5 -238319 cd00570 GST_N_family 2 dimer interface 0 1 1 1 48,60,61,63,64,67 2 -238319 cd00570 GST_N_family 3 C-terminal domain interface 0 1 1 0 10,12,13,15,16,19,20,63,66,67 2 -238320 cd00571 UreE 1 catalytic residues 0 0 1 1 99,114 1 -238320 cd00571 UreE 2 dimer interface 0 1 1 0 92,93,94,96,97,99,100,106 2 -238321 cd00575 NOS_oxygenase 1 active site 0 1 1 1 62,125,209,231,232,234,235,239,243,244,324,325,353 1 -238321 cd00575 NOS_oxygenase 2 dimer interface 0 1 1 0 247,249,269,274,275,279,285,298,299,329,331,332,333,339,341,342,343,344,345 2 -238322 cd00577 PCNA 1 trimer interface 0 1 1 1 73,76,77,78,106,107,108,109,110,111,112,138,141,142,144,145,168,171,172,174,175,176,177,178 2 -238322 cd00577 PCNA 2 putative DNA binding site 0 1 1 1 9,10,16,73,76,141,144,201,208 3 -238322 cd00577 PCNA 3 PCNA/WAF1-CIP1 protein binding site 0 1 1 1 23,25,36,63,65,114,115,116,117,243,244,245,246 2 -238322 cd00577 PCNA 4 PCNA/RFCL protein interaction site 0 0 1 1 199,243,244,245 2 -238322 cd00577 PCNA 5 PCNA/FEN-1 protein interaction site 0 0 1 1 36,43,241 2 -238323 cd00578 L-fuc_L-ara-isomerases 1 Mn binding site 0 1 1 0 289,313,427 4 -238323 cd00578 L-fuc_L-ara-isomerases 2 substrate binding site 0 1 1 1 73,262,289,313,426,427 5 -238323 cd00578 L-fuc_L-ara-isomerases 3 trimer interface 0 1 1 0 73,75,76,77,119,122,123,132,134,135,143,170,171,173,262,263,315,317,319,375,413,416,424,451 2 -238323 cd00578 L-fuc_L-ara-isomerases 4 hexamer (dimer of trimers) interface 0 1 1 0 52,56,59,78,124,125,161,168,180,183,190,191,192,193,194,195,196,200,253,263,264 2 -238324 cd00580 CHMI 1 trimer interface 0 1 1 0 1,5,21,24,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,57,61,65,75,76,83,87,99,100,101,102,103,104,105,106,112 2 -238324 cd00580 CHMI 2 putative substrate binding pocket 0 1 1 0 0,37,39,67,70 5 -238325 cd00581 QFR_TypeB_TM 1 proximal heme binding site 0 1 1 1 4,5,8,11,67,68,71,100,107,156,160,164,167 5 -238325 cd00581 QFR_TypeB_TM 2 distal heme binding site 0 1 1 1 14,18,117,121,133,136,146,194,198 5 -238325 cd00581 QFR_TypeB_TM 3 Iron-sulfur protein interface 0 1 1 0 1,74,88,91,92,100,163,167,168,176 0 -238325 cd00581 QFR_TypeB_TM 4 dimer interface 0 1 1 1 72,73,83,87,91,111,112,115,116,119,123,140,141,145 2 -238326 cd00583 MutH_Sau3AI 1 putative DNA clevage site 0 0 1 1 39,53,60,62,99 0 -238326 cd00583 MutH_Sau3AI 2 putative DNA-binding cleft 0 0 1 1 31,62,74,77,80,95,98,99,102,169 3 -238326 cd00583 MutH_Sau3AI 3 molecular lever 0 0 1 1 199,200,201,202,203,204,205,206,207,208,209 0 -238327 cd00584 Prefoldin_alpha 1 prefoldin alpha/beta subunit interface 0 1 1 1 48,49,50,51,52,53,59,61,71,74,75,78,80,81,82 2 -238328 cd00585 Peptidase_C1B 1 active site 0 0 1 1 59,65,359,381 1 -238328 cd00585 Peptidase_C1B 2 trimer interface 0 1 1 1 37,44,46,47,48,157,158,222,224,226,232,376 2 -238328 cd00585 Peptidase_C1B 3 G bulge 0 0 1 1 436 0 -238329 cd00586 4HBT 1 active site 0 1 1 0 27,51,53,80,81,82,83 1 -238330 cd00587 HCP_like 1 metal cluster binding site 0 1 1 1 102,131,160,196,198 4 -238330 cd00587 HCP_like 2 ACS interaction site 0 1 1 0 0,2,3,6,7,197,198 0 -238330 cd00587 HCP_like 3 CODH interaction site 0 1 1 0 3,6,10,13,196,197,198 0 -259852 cd00591 HU_IHF 1 dimer interface 0 1 1 0 3,6,7,10,19,20,21,22,24,25,26,28,29,30,32,33,37,38,39,40,41,44,72,73,74,76,78,82,83 2 -259852 cd00591 HU_IHF 2 DNA binding site 0 1 1 0 0,1,38,40,41,42,44,46,50,52,53,71,73,75,76,77,78,79,80,83 3 -133378 cd00592 HTH_MerR-like 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133378 cd00592 HTH_MerR-like 2 dimer interface 0 1 1 0 47,50,54,55,64,81,85,91,95,98,99 2 -238333 cd00593 RIBOc 1 active site 0 0 1 0 21,24,28,97,100 1 -238333 cd00593 RIBOc 2 metal binding site 0 1 1 0 24,97,100 4 -238333 cd00593 RIBOc 3 dimerization interface 0 1 1 0 21,22,25,26,29,32,33,36,37,39,40,41,51,107,116 2 -238334 cd00594 KU 1 DNA binding site 0 1 1 1 1,21,31,46,147 3 -238334 cd00594 KU 2 heterodimer interface 0 1 1 1 14,21,23,24,25,26,31,32,33,34,39,42,43,44,45,47,48,49,56,60,61,62,64,66,67,70,71,74,93,95,96,106,124,143,176,177,178,180,210,215,220,221,222,235,268,271 2 -238335 cd00595 NDPk 1 active site 0 1 1 1 7,47,55,83,89,103,113,116,118,119,127 1 -238335 cd00595 NDPk 2 multimer interface 0 1 1 1 11,16,17,18,21,24,33,34,35 2 -349427 cd00596 Peptidase_M14_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,121 4 -349427 cd00596 Peptidase_M14_like 2 active site 0 1 1 1 7,10,62,71,72,121,122,128,191 1 -119349 cd00598 GH18_chitinase-like 1 active site 0 1 1 1 2,30,108,110,112,175,176,184,204 1 -119373 cd00599 GH25_muramidase 1 active site 0 0 1 0 3,27,56,58,88,90,123,144,166,181 1 -212462 cd00600 Sm_like 1 RNA binding site 0 1 1 0 29,30,54,56 3 -212462 cd00600 Sm_like 2 heptamer interface 0 1 1 0 5,23,34,50,51,52,53,54,55,56,57,58,59,60,61,62 2 -212462 cd00600 Sm_like 3 hexamer interface 0 1 1 0 11,12,16,18,24,25,30,32,50,51,52,53,54,55,56,57,58,59,60 2 -212462 cd00600 Sm_like 4 Sm1 motif 0 0 1 1 8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,30,31,32,33,34 0 -212462 cd00600 Sm_like 5 Sm2 motif 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61 0 -238336 cd00602 IPT_TF 1 DNA binding site 0 1 1 1 23,24,26,88 3 -238336 cd00602 IPT_TF 2 ankyrin protein binding site 0 1 1 1 1,3,4,5,7,8,9,49,50,51,63,75,94,97,99 2 -238336 cd00602 IPT_TF 3 dimerization interface 0 1 1 1 3,4,6,19,21,23 2 -238339 cd00606 fungal_RNase 1 active site 0 1 1 1 33,35,53,72,87 1 -238340 cd00607 RNase_Sa 1 active site 0 1 1 0 35,39,52,67,86,87 1 -238340 cd00607 RNase_Sa 2 barstar interaction site 0 1 1 0 38,39,62,63,64,65,67,86 0 -238341 cd00608 GalT 1 active site 0 1 1 0 64,65,142,148,150,157 1 -238341 cd00608 GalT 2 dimer interface 0 1 0 0 0,1,2,3,5,9,10,14,17,20,22,23,24,40,68,142,145,146,147,148,150,151,159,161,163,165,166,167,178,193,200,214,215,218,266,270,287,300,301,305 2 -99734 cd00609 AAT_like 1 catalytic residue 0 1 1 1 203 1 -99734 cd00609 AAT_like 2 pyridoxal 5'-phosphate binding site 0 1 1 0 66,67,68,92,142,173,200,202,203,211 5 -99734 cd00609 AAT_like 3 homodimer interface 0 1 0 0 69,102,166,209,210,211,241,244 2 -99735 cd00610 OAT_like 1 catalytic residue 0 1 0 1 259 1 -99735 cd00610 OAT_like 2 pyridoxal 5'-phosphate binding site 0 1 1 0 104,105,131,132,197,230,233,259 5 -99735 cd00610 OAT_like 3 inhibitor-cofactor binding pocket 0 1 1 1 103,104,105,131,132,134,197,230,232,233,259 0 -99736 cd00611 PSAT_like 1 catalytic residue 0 1 0 1 192 1 -99736 cd00611 PSAT_like 2 pyridoxal 5'-phosphate binding site 0 1 0 1 70,71,72,97,148,168,170,191,192 5 -99736 cd00611 PSAT_like 3 substrate-cofactor binding pocket 0 1 1 1 4,71,72,97,148,168,191,192,323 0 -99736 cd00611 PSAT_like 4 homodimer interface 0 1 0 0 1,6,7,9,68,69,72,104,107,108,197,233,234,235 2 -99737 cd00613 GDC-P 1 catalytic residue 0 1 0 1 220 1 -99737 cd00613 GDC-P 2 pyridoxal 5'-phosphate binding site 0 1 1 1 26,90,91,94,117,119,194,217,219,220 5 -99737 cd00613 GDC-P 3 tetramer interface 0 1 1 1 0,1,5,6,7,10,11,12,13,14,27,29,31,32,33,34,35,38,41,48,49,50,52,53,54,56,59,60,61,63,91,92,102,116,117,118,119,122,123,125,126,137,173,219,224,225,226,227,228,229,230,286,287,288,294,298,299,307,310,315,317,325,335,357,383,384,387,388 2 -99738 cd00614 CGS_like 1 catalytic residue 0 1 1 1 185 1 -99738 cd00614 CGS_like 2 pyridoxal 5'-phosphate binding site 0 1 1 1 62,63,64,88,160,163,182,184,185 5 -99738 cd00614 CGS_like 3 substrate-cofactor binding pocket 0 1 1 1 62,63,64,88,131,160,182,184,185,194 0 -99738 cd00614 CGS_like 4 homodimer interface 0 1 0 0 8,9,10,11,13,14,33,35,61,62,64,65,88,93,96,184,192,194,211,221,223,224,303 2 -99739 cd00615 Orn_deC_like 1 catalytic residue 0 1 0 1 219 1 -99739 cd00615 Orn_deC_like 2 pyridoxal 5'-phosphate binding site 0 1 0 1 82,83,84,108,110,160,188,190,191,216,218,219 5 -99739 cd00615 Orn_deC_like 3 homodimer interface 0 1 1 0 43,47,55,80,81,82,84,85,88,92,93,94,96,97,108,109,218,219,222,223,224,225,226,244,245,247,248,249,251,258,261,264,276,277 2 -99740 cd00616 AHBA_syn 1 catalytic residue 0 1 0 1 167 1 -99740 cd00616 AHBA_syn 2 pyridoxal 5'-phosphate binding site 0 1 0 0 41,42,66,138,141,162,167 5 -99740 cd00616 AHBA_syn 3 inhibitor-cofactor binding pocket 0 1 1 1 41,42,138,141,162,166,167,298 0 -99741 cd00617 Tnase_like 1 catalytic residue 0 1 0 1 234 1 -99741 cd00617 Tnase_like 2 substrate binding site 0 1 1 1 26,234,381 5 -99741 cd00617 Tnase_like 3 tetramer interface 0 1 0 1 35,38,42,44,45,50,74,75,77,233,239,240,257,354,389,390,391,392,393 2 -153092 cd00618 PLA2_like 1 catalytic residues 0 1 1 0 29,72 1 -153092 cd00618 PLA2_like 2 primary metal binding site 0 1 1 1 5,7,9,30 0 -238342 cd00619 Terminator_NusB 1 putative RNA binding site 0 1 1 1 0,4 3 -238343 cd00620 Methyltransferase_Sun 1 putative RNA binding site 0 0 1 0 0,1,2,3 3 -143482 cd00622 PLPDE_III_ODC 1 active site 0 1 1 1 30,32,51,117,160,163,199,200,237,238,239,240,284,312,342 1 -143482 cd00622 PLPDE_III_ODC 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 30,32,51,117,160,163,199,200,237,238,239,240,312,342 5 -143482 cd00622 PLPDE_III_ODC 3 catalytic residues 0 1 1 1 32,312 1 -143482 cd00622 PLPDE_III_ODC 4 substrate binding site 0 1 1 1 283,284,312,313,342,350 5 -143482 cd00622 PLPDE_III_ODC 5 dimer interface 0 1 1 0 1,32,53,54,56,57,79,84,97,100,104,131,132,133,254,256,257,267,269,271,274,275,283,285,309,311,313,316,346,348,350,351,352,354 2 -238344 cd00625 ArsB_NhaD_permease 1 transmembrane helices 0 0 1 1 0,1,2,3,10,11,12,13,14,15,16,17,18,19,20,21,22,23,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,209,210,211,212,213,214,215,216,217,218,219,220,221,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,381,382,383,384,385,386,387,388,389,390,391,392,393 0 -132719 cd00630 RNAP_largest_subunit_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 2,5,127,137,138,139,145,146,148,150,155 2 -132719 cd00630 RNAP_largest_subunit_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 54,55,57,58,59,60,62,82,93,94 2 -132719 cd00630 RNAP_largest_subunit_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 1,155 2 -132719 cd00630 RNAP_largest_subunit_C 4 DNA binding site 0 1 1 1 47,103,120,121,124 3 -132719 cd00630 RNAP_largest_subunit_C 5 cleft 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,112 0 -132719 cd00630 RNAP_largest_subunit_C 6 clamp 0 0 1 1 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 0 -238345 cd00632 Prefoldin_beta 1 Prefoldin subunit interaction site 0 1 0 1 1,48,51,53,55,57,62 2 -238346 cd00633 Secretoglobin 1 Hydrophobic pocket - steroid binding site 0 1 1 0 3,10,18,35,38,53,56,57 5 -238346 cd00633 Secretoglobin 2 Dimer interface 0 1 1 0 2,3,6,18,22,25,30,31,32,33,34,35,37,38,41,49,51,52,53,55,56,59 2 -143483 cd00635 PLPDE_III_YBL036c_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,53,75,159,198,214,216,217 5 -143483 cd00635 PLPDE_III_YBL036c_like 2 catalytic residue 0 1 1 0 32 1 -238347 cd00636 TroA-like 1 intersubunit interface 0 1 0 1 76,77,80,108 2 -341313 cd00637 7tm_classA_rhodopsin-like 1 putative ligand binding pocket 0 1 1 1 54,57,58,70,71,72,73,74,75,77,78,81,126,128,129,130,131,132,157,160,161,162,164,165,166,168,169,228,231,232,234,235,238,248,249,251,252,253,256,259,260 5 -341313 cd00637 7tm_classA_rhodopsin-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -341313 cd00637 7tm_classA_rhodopsin-like 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55,56,57,58 7 -341313 cd00637 7tm_classA_rhodopsin-like 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341313 cd00637 7tm_classA_rhodopsin-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341313 cd00637 7tm_classA_rhodopsin-like 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -341313 cd00637 7tm_classA_rhodopsin-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -341313 cd00637 7tm_classA_rhodopsin-like 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -107202 cd00640 Trp-synth-beta_II 1 catalytic residue 0 1 1 1 30 1 -107202 cd00640 Trp-synth-beta_II 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 29,30,59,161,162,163,164,165,215,241,242 5 -238348 cd00641 GTP_cyclohydro2 1 active site 0 1 1 0 47,48,49,50,51,52,54,63,65,68,89,90,91,92,99,103,106,112,124,126,147,148,149,152 1 -238348 cd00641 GTP_cyclohydro2 2 dimerization interface 0 1 1 0 4,5,6,7,8,9,10,18,20,21,22,29,31,33,51,53,54,56,57,58,59,60,62,69,70,73,86,88,96,97,100,101,103,104,107 2 -238349 cd00642 GTP_cyclohydro1 1 active site 0 1 1 1 31,34,75,77,78,97,99,100,104,115,116,117,144,146,150 1 -238349 cd00642 GTP_cyclohydro1 2 putative catalytic site residues 0 0 1 1 75,77,78,144,146 1 -238349 cd00642 GTP_cyclohydro1 3 homodecamer interface 0 1 0 1 0,1,4,5,8,12,15,16,18,20,22,24,25,26,28,29,31,35,38,43,54,56,60,61,62,63,65,66,67,68,70,72,76,77,80,81,83,85,92,93,95,99,100,101,104,114,115,116,118,121,131,144,145,146,149,150,155,156,158,159,160,162,163,164,169,170,173,175,176,177 2 -238349 cd00642 GTP_cyclohydro1 4 GTP-CH-I/GFRP interaction surface 0 1 1 1 125,128,134,136,165,166,167,169,170,171,172,173 0 -238349 cd00642 GTP_cyclohydro1 5 zinc binding site 0 0 1 1 75,77,78,146 4 -153081 cd00643 HMG-CoA_reductase_classI 1 catalytic residues 0 0 1 0 96,226,301,397 1 -153081 cd00643 HMG-CoA_reductase_classI 2 NADP(H) binding site 0 1 1 1 127,161,162,163,186,187,188,189,190,191,192,193,194,196,225,226,301,337,338,339 5 -153081 cd00643 HMG-CoA_reductase_classI 3 substrate binding pocket 0 1 1 0 96,98,99,101,102,104,105,108,257,286,289,383,384,387,393,396,397,400 5 -153081 cd00643 HMG-CoA_reductase_classI 4 inhibitor binding sites 0 1 0 1 96,99,102,270,285,286,289,384,388 0 -153081 cd00643 HMG-CoA_reductase_classI 5 tetramerization interface 0 1 1 0 41,42,44,45,50,55,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,89,94,95,96,97,98,99,100,101,117,119,121,132,140,170,173,175,176,177,179,216,218,219,220,221,222,224,226,227,228,229,230,231,233,234,235,242,244,246,265,266,268,269,270,271,272,273,274,275,276,277,282,283,284,285,288,289,292,296,297,301,302,303,305,306,314,316,324,326,328,340,345,346,348,349,351,352,388 2 -153082 cd00644 HMG-CoA_reductase_classII 1 catalytic residues 0 0 1 0 75,258,274,371 1 -153082 cd00644 HMG-CoA_reductase_classII 2 NAD binding site 0 1 1 1 75,141,144,173,174,175,176,177,178,179,180,182,205,207,255,258,274,277,318,319,320,371 5 -153082 cd00644 HMG-CoA_reductase_classII 3 substrate binding pocket 0 1 1 0 75,252,255,256,258,259,262,358,362,367 5 -153082 cd00644 HMG-CoA_reductase_classII 4 homodimer interface 0 1 1 0 2,7,10,11,28,36,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,72,73,74,75,76,77,78,79,80,105,107,109,156,165,167,201,202,203,204,205,206,207,237,240,241,242,244,245,248,249,251,252,254,255,258,261,262,265,269,270,274,275,276,277,279,280,283,287,290,292,321,325,327,328,362,365,366,367,368,372,374,375,377,378,381,382,406 2 -153082 cd00644 HMG-CoA_reductase_classII 5 flexible flap 0 0 1 1 368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383 0 -238350 cd00645 AsnA 1 active site 0 1 1 0 65,68,91,106,108,110,217,230,233,237,281 1 -238350 cd00645 AsnA 2 dimer interface 0 1 0 0 0,1,4,23,24,47,49,51,58,71,75,88,92,93,95,295,299,305 2 -173824 cd00649 catalase_peroxidase_1 1 active site 0 1 1 1 70,71,73,74,77,201,203,223,236,237,240,241,243,244,245,246,247,285,286,292,350,352,380,384 1 -173824 cd00649 catalase_peroxidase_1 2 heme binding site 0 1 1 1 70,71,73,74,77,201,203,223,236,237,240,241,243,244,245,246,247,285,286,292,350,352,380,384 5 -173824 cd00649 catalase_peroxidase_1 3 dimer interface 0 1 1 1 0,1,2,3,4,5,7,8,9,12,14,19,60,98,99,100,101,103,104,116,119,123,126,127,131,161,162,163,165,167,168,173,174,175,258,260,264,265,267,268,269 2 -133419 cd00650 LDH_MDH_like 1 NAD(P) binding site 0 1 1 0 7,8,9,32,33,76,77,97,117,118,119,142,145,173,186 5 -133419 cd00650 LDH_MDH_like 2 substrate binding site 0 1 1 0 119,149,173 5 -133419 cd00650 LDH_MDH_like 3 LDH/MDH dimer interface 0 1 1 1 11,15,37,41,43,44,46,47,48,148,149,151,152,158,188,192 2 -238351 cd00651 TFold 1 active site 0 1 1 1 25,27,95,118 1 -238352 cd00652 TBP_TLF 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,91,96,98,127,128,133,144,146,148,152 3 -238352 cd00652 TBP_TLF 2 TFIIA interaction surface 0 1 1 1 19,26,27,28,30,35,41,43 2 -238352 cd00652 TBP_TLF 3 TFIIB interaction surface 0 1 1 1 108,109,121,122,123,124,125,128,133 2 -238352 cd00652 TBP_TLF 4 NC2 interaction surface 0 1 1 1 34,132,133,138,169,170 2 -238353 cd00653 RNA_pol_B_RPB2 1 RPB1 interaction site 0 1 1 0 344,346,347,348,350,353,358,398,416,417,418,420,483,484,485,486,489,491,492,493,642,644,646,668,670,673,676,681,685,702,729,737,738,739,741,754,757,758,759,761,762,783,784,785,789,791,792,794,796,797,798,799,800,801,803,804,805,806,807,808,812,845,849,851,853,854,856,858,859,860,861,863,865 2 -238353 cd00653 RNA_pol_B_RPB2 2 RPB3 interaction site 0 1 1 0 503,504,508,624,626,651,652,653,656,658,659,730,731,732,733,734,735,736,737,739 2 -238353 cd00653 RNA_pol_B_RPB2 3 RPB10 interaction site 0 1 1 0 456,457,478,480,501,504,651,664,691,692,694,725,742 2 -238353 cd00653 RNA_pol_B_RPB2 4 RPB11 interaction site 0 1 1 0 489,503,650,731 2 -238353 cd00653 RNA_pol_B_RPB2 5 RPB12 interaction site 0 1 1 0 66,508,546,548,552,553,554,556 2 -238354 cd00655 RNAP_Rpb7_N_like 1 protein interaction surface 0 1 1 1 0,1,2,3,4,6,33,40,44,45,46,71,76,78 2 -259791 cd00656 Zn-ribbon 1 Zn binding site 0 1 1 1 8,11,36,39 4 -153097 cd00657 Ferritin_like 1 dinuclear metal binding motif 0 0 1 1 9,39,42,88,118,121 4 -271176 cd00659 Topo_IB_C 1 active site 0 0 1 0 51,88,146,149,191,200 1 -271176 cd00659 Topo_IB_C 2 DNA binding site 0 1 1 0 1,5,51,52,53,54,56,63,87,88,133,144,145,146,199,200 3 -238356 cd00660 Topoisomer_IB_N 1 DNA binding 0 1 1 0 0,50,140,141,146,148,151,158,194,195,196,209,210,212 0 -238357 cd00667 ring_hydroxylating_dioxygenases_beta 1 inter-subunit interface 0 1 0 0 41,42,54,55,56,58,59,67,70,73,114,115,149,151,154,155,156,157 0 -185674 cd00668 Ile_Leu_Val_MetRS_core 1 active site 0 1 1 0 7,15,18,46,200,231,234,235,239,262,264,273,275 1 -185674 cd00668 Ile_Leu_Val_MetRS_core 2 HIGH motif 0 0 0 1 15,16,17,18 0 -185674 cd00668 Ile_Leu_Val_MetRS_core 3 KMSKS motif 0 0 0 1 272,273,274,275,276 0 -238358 cd00669 Asp_Lys_Asn_RS_core 1 active site 0 1 0 0 57,60,79,81,82,84,85,87,88,91,93,161,166,167,191,193,194,198,239,240,241,243,246,258,266,267 1 -238358 cd00669 Asp_Lys_Asn_RS_core 2 homodimer interface 0 1 0 0 3,4,5,8,11,12,15,18,19,20,21,23,24,25,26,27,28,29,37,40,41,42,43,44,47,48,49,50,65,66,69,70,76,80,90,100,105,228,229,231,232,233,234,262,263,265 2 -238358 cd00669 Asp_Lys_Asn_RS_core 3 motif 1 0 0 0 1 25,26,27,28,29 0 -238358 cd00669 Asp_Lys_Asn_RS_core 4 motif 2 0 0 0 1 78,79,80,81 0 -238358 cd00669 Asp_Lys_Asn_RS_core 5 motif 3 0 0 0 1 243,244,245,246 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 1 active site 0 1 0 0 67,69,98,100,109,110,113,115,117,189,196,221,223,225,228 1 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 2 dimer interface 0 1 0 0 1,4,5,8,16,17,21,22,23,24,26,27,28,48,49,50,74,75,78,79,89,90,97,99,111,112,129,130,133,140 2 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 3 motif 1 0 0 0 1 20,21,22,23,24,25,26 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 4 motif 2 0 0 0 1 97,98,99,100 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 5 motif 3 0 0 0 1 225,228 0 -185675 cd00671 ArgRS_core 1 active site 0 1 1 1 4,7,9,15,18,141,145,168,171 1 -185675 cd00671 ArgRS_core 2 HIGH motif 0 0 0 1 15,16,17,18 0 -185675 cd00671 ArgRS_core 3 KMSK motif region 0 0 0 1 206,207,208,209 0 -173899 cd00672 CysRS_core 1 active site 0 1 1 0 25,26,27,28,34,36,37,40,41,63,65,112,116,133,134,136,137,141,165,166,167 1 -173899 cd00672 CysRS_core 2 HIGH motif 0 0 0 1 34,35,36,37 0 -173899 cd00672 CysRS_core 3 KMSKS motif 0 0 1 1 173,174,175,176,177 0 -238360 cd00673 AlaRS_core 1 active site 0 0 0 1 45,47,65,82,84,86,87,88,190,191,195,214,215,219,220,223 0 -238360 cd00673 AlaRS_core 2 motif 1 0 0 0 1 18,19,20,21,22 0 -238360 cd00673 AlaRS_core 3 motif 2 0 0 0 1 64,65,66 0 -238360 cd00673 AlaRS_core 4 motif 3 0 0 0 1 218,219,220,221,222,223 0 -173900 cd00674 LysRS_core_class_I 1 active site 0 0 1 1 25,27,33,36,39,64,70,214,218,236,264,276 1 -173900 cd00674 LysRS_core_class_I 2 HIGH motif 0 0 0 1 33,34,35,36 0 -173900 cd00674 LysRS_core_class_I 3 KMSKS motif 0 0 0 1 274,275,276,277,278 0 -238361 cd00677 S15_NS1_EPRS_RNA-bind 1 RNA binding site 0 1 1 1 2,9,16,28,39,43 3 -176852 cd00680 RHO_alpha_C 1 active site 0 1 1 1 16,17,19,20,22,23,27,79,80,82,90,92,99,101,133,143,144,147 1 -176852 cd00680 RHO_alpha_C 2 substrate binding site 0 1 1 1 16,17,19,20,22,23,27,79,80,82,90,92,99,101,133,143,144 5 -176852 cd00680 RHO_alpha_C 3 Fe binding site 0 1 1 1 22,27,147 4 -176852 cd00680 RHO_alpha_C 4 alpha subunit interface 0 1 1 1 7,8,12,15,16,19,21,22,26,109,110,149,150,151,153,154,155,156,157,168,169,170,171,175,178,182 2 -173831 cd00683 Trans_IPPS_HH 1 substrate binding pocket 0 1 1 0 11,13,32,36,39,43,119,124,128,151,154,161,162,165,166,171,229,230 5 -173831 cd00683 Trans_IPPS_HH 2 substrate-Mg2+ binding site 0 0 1 1 39,40,41,42,43,162,163,164,165,166 0 -173831 cd00683 Trans_IPPS_HH 3 active site lid residues 0 1 1 0 9,10,11,12,13,256,257,258,259 1 -173831 cd00683 Trans_IPPS_HH 4 catalytic residues 0 1 1 1 13,32,39,43,119,127,131,154,161,162,166,171,229,230,234 1 -173831 cd00683 Trans_IPPS_HH 5 aspartate-rich region 1 0 0 1 1 39,40,41,42,43 0 -173831 cd00683 Trans_IPPS_HH 6 aspartate-rich region 2 0 0 1 1 162,163,164,165,166 0 -173832 cd00684 Terpene_cyclase_plant_C1 1 substrate binding pocket 0 1 1 0 259,268,289,291,292,293,296,300,371,437,438,440,441,444,448,517,521,523 5 -173832 cd00684 Terpene_cyclase_plant_C1 2 substrate-Mg2+ binding site 0 1 1 1 296,300,440,444,448 0 -173832 cd00684 Terpene_cyclase_plant_C1 3 active site lid residues 0 1 1 0 0,1,2,3,4,5,6,7,447,448,450,451,452,453,455,456,457,458,520,521,522,523 1 -173832 cd00684 Terpene_cyclase_plant_C1 4 aspartate-rich region 1 0 1 1 1 296,297,298,299,300 0 -173832 cd00684 Terpene_cyclase_plant_C1 5 aspartate-rich region 2 0 1 1 1 440,441,442,443,444,445,446,447,448 0 -173833 cd00685 Trans_IPPS_HT 1 substrate binding pocket 0 1 1 1 50,53,54,55,57,58,59,61,62,67,68,123,126,147,148,151,188,189,192,202,207,212 5 -173833 cd00685 Trans_IPPS_HT 2 substrate-Mg2+ binding site 0 0 1 1 58,59,62,67,68,126,147,188,189,192,202,207,212 0 -173833 cd00685 Trans_IPPS_HT 3 active site lid residues 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,195,196,202,203,204,205,206,207,210,211,212,213,214 1 -173833 cd00685 Trans_IPPS_HT 4 chain length determination region 0 0 1 1 53,54,55,56,57,58,59,60,61,62 0 -173833 cd00685 Trans_IPPS_HT 5 catalytic residues 0 1 1 0 58,59,62,67,68,147,188,189 1 -173833 cd00685 Trans_IPPS_HT 6 aspartate-rich region 1 0 1 1 1 58,59,62,67,68,126,147 0 -173833 cd00685 Trans_IPPS_HT 7 aspartate-rich region 2 0 0 1 1 188,189,192,202,207,212 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 1 substrate binding pocket 0 1 1 0 96,99,100,163,181,184,185,220,224,225,228,231,232,237,238,294,303,304 5 -173834 cd00686 Terpene_cyclase_cis_trans_C1 2 substrate-Mg2+ binding site 0 1 1 1 99,224,228,232 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 3 active site lid residues 0 1 1 1 99,100,101,102,228,229,230,231,232,233,234,235,236,237,238,239,240,241,303,304 1 -173834 cd00686 Terpene_cyclase_cis_trans_C1 4 dimer interface 0 1 1 0 104,106,109,113,116,117,131,134,138,143,147,148,151,155,158,165,167,170,172,173,174,175,179,182,183,188,203,206,211,214,215,218,267,271,275 2 -173834 cd00686 Terpene_cyclase_cis_trans_C1 5 catalytic residues 0 1 1 1 99,100,181,224,228,231,232,303,304 1 -173834 cd00686 Terpene_cyclase_cis_trans_C1 6 aspartate-rich region 1 0 1 1 1 99,100,101,102,103 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 7 aspartate-rich region 2 0 1 1 1 224,225,226,227,228,229,230,231,232 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 1 substrate binding pocket 0 1 1 1 45,49,65,68,69,72,73,140,151,162,166,171,172,175,178,212,213,216,219,297 5 -173835 cd00687 Terpene_cyclase_nonplant_C1 2 substrate-Mg2+ binding site 0 0 1 1 72,73,76,212,213,216,219,220 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 3 active site lid residues 0 1 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,220,221,222,223,224,225,226,228,229,301,302 1 -173835 cd00687 Terpene_cyclase_nonplant_C1 4 aspartate-rich region 1 0 0 1 1 72,73,74,75,76 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 5 aspartate-rich region 2 0 0 1 1 212,213,214,215,216,217,218,219,220 0 -173825 cd00691 ascorbate_peroxidase 1 heme binding site 0 1 1 0 30,31,34,37,131,132,133,144,157,158,160,161,163,164,165,166,167,170,171,177,207,209,237,241 5 -173825 cd00691 ascorbate_peroxidase 2 substrate binding site 0 0 1 0 107,161,163,164,166,191,204,205 5 -173825 cd00691 ascorbate_peroxidase 3 K+ binding site 0 1 1 1 162,178,180,183,185,187 4 -173826 cd00692 ligninase 1 heme binding site 0 1 1 0 38,39,41,42,45,143,144,145,152,169,170,172,173,175,176,177,178,179,180,181,190,232,234,266 5 -173826 cd00692 ligninase 2 substrate binding site 0 1 1 1 42,45,46 5 -173826 cd00692 ligninase 3 Mn binding site 0 1 1 1 35,39,179 4 -173826 cd00692 ligninase 4 Ca binding sites 0 1 1 1 47,64,66,68,174,191,193,196,198 4 -173827 cd00693 secretory_peroxidase 1 heme binding site 0 1 1 0 30,33,34,36,37,40,69,71,73,136,137,138,145,149,159,162,163,165,166,168,169,170,171,172,175,217,240,242,274 5 -173827 cd00693 secretory_peroxidase 2 active site 0 1 1 0 30,33,34,36,37,40,41,71,73,136,137,138,139,145,149,159,162,163,165,166,168,169,170,171,172,174,175,217,240,242,274 1 -173827 cd00693 secretory_peroxidase 3 substrate binding site 0 1 1 0 37,67,68,136,137,138,139,172,174,175 5 -173827 cd00693 secretory_peroxidase 4 calcium binding sites 0 1 1 1 42,45,49,51,167,218,221,224,226 4 -133420 cd00704 MDH 1 NAD(P) binding site 0 1 1 0 6,8,9,10,11,37,38,82,83,84,124,125,126,150,182 5 -133420 cd00704 MDH 2 malate binding site 0 1 1 0 87,93,126,153,157,182,229,236 5 -133420 cd00704 MDH 3 dimer interface 0 1 1 0 13,50,51,53,156,157,160,236,237,238,239,242 2 -238363 cd00707 Pancreat_lipase_like 1 catalytic triad 0 0 1 1 119,143,212 1 -238363 cd00707 Pancreat_lipase_like 2 active site flap/lid 0 1 1 1 198,199,209,210 0 -238363 cd00707 Pancreat_lipase_like 3 nucleophilic elbow 0 0 1 1 117,118,119,120,121 0 -100039 cd00710 LbH_gamma_CA 1 active site 0 1 1 1 57,74,79 1 -100039 cd00710 LbH_gamma_CA 2 trimer interface 0 1 1 0 9,11,13,14,17,29,32,33,35,37,52,53,57,74,75,76,77,79,92 2 -238364 cd00712 AsnB 1 active site 0 1 1 0 0,47,72,73,74,97 1 -238364 cd00712 AsnB 2 dimer interface 0 1 1 0 15,23,26,29,30,31,32,33,46 2 -238365 cd00713 GltS 1 active site 0 1 1 0 0,30,208,229,230,231,271 1 -238365 cd00713 GltS 2 dimer interface 0 1 1 0 86,89,93,106,108,113,124,128,214 2 -238366 cd00714 GFAT 1 glutaminase active site 0 1 1 0 0,25,71,72,74,75,84,98,99,123,124 1 -238367 cd00715 GPATase_N 1 active site 0 1 1 0 0,25,26,71,100,101,125 1 -238367 cd00715 GPATase_N 2 tetramer interface 0 1 0 0 16,17,20,27,88,127,130,131,134,135 2 -153076 cd00716 creatine_kinase_like 1 ADP binding site 0 1 1 0 111,113,115,174,211,219,275,277,278,279,303,305,307,308,318 5 -153076 cd00716 creatine_kinase_like 2 creatine binding site 0 1 1 0 56,184,215,266,268 5 -153076 cd00716 creatine_kinase_like 3 substrate specificity loop 0 0 1 1 300,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,320,321 0 -238368 cd00717 URO-D 1 active site 0 1 1 1 17,21,66,143,198,314 1 -238368 cd00717 URO-D 2 substrate binding site 0 1 1 0 16,17,18,19,20,21,26,30,35,62,63,64,65,66,67,68,80,85,133,143,149,196,198,199,235,314 5 -198380 cd00719 GIY-YIG_SF 1 active site 0 1 1 1 2,13,15,23,27,61 1 -198380 cd00719 GIY-YIG_SF 2 catalytic site 0 1 1 1 23,61 1 -198380 cd00719 GIY-YIG_SF 3 metal binding site 0 1 1 1 61 4 -198380 cd00719 GIY-YIG_SF 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -238369 cd00727 malate_synt_A 1 active site 0 0 1 0 142,226,252,254,423 1 -238370 cd00728 malate_synt_G 1 active site 0 1 1 0 331,423,449,451,622 1 -238371 cd00729 rubredoxin_SM 1 iron binding site 0 1 1 0 4,7,20,23 4 -238372 cd00730 rubredoxin 1 iron binding site 0 1 1 0 3,6,36,39 4 -238374 cd00732 CheW 1 putative CheA interaction surface 0 0 1 0 44,45,46,47,48,49,77,79,132,133,134,135,136,137,138,139 0 -238375 cd00733 GlyRS_alpha_core 1 active site 0 0 0 1 29,31,56,72,74,76,77,78,133,134,138,154,155,157,158,160,161 1 -238375 cd00733 GlyRS_alpha_core 2 dimer interface 0 1 0 1 2,6,10,18,19,21,23,24,25,26,42,51,55,71,177,190,193,194,201,203,206,209,210,213,214,217,220,224,226,227,228,229,232,236 2 -238375 cd00733 GlyRS_alpha_core 3 motif 1 0 0 0 1 17,18,19,20,21,22,23,24 0 -238375 cd00733 GlyRS_alpha_core 4 motif 2 0 0 0 1 55,56,57,58 0 -238375 cd00733 GlyRS_alpha_core 5 motif 3 0 0 0 1 158,159,160,161 0 -340361 cd00735 T4_like_lys 1 catalytic residues EDT 0 1 0 9,18,24 1 -340361 cd00735 T4_like_lys 2 sugar binding site 0 1 1 0 6,7,8,9,10,11,12,13,14,27,55,58,59 5 -340362 cd00736 lambda_lys_like 1 sugar binding site 0 1 1 1 58,59,60,63,66,67,88,91,112,113,114,115,122 5 -340362 cd00736 lambda_lys_like 2 catalytic residue E 0 1 1 13 1 -340363 cd00737 lyz_endolysin_autolysin 1 catalytic residues E[DC]T 0 1 1 8,17,23 1 -238379 cd00738 HGTP_anticodon 1 anticodon binding site 0 1 1 0 8,9,47,53,61,71,73 0 -238380 cd00739 DHPS 1 substrate binding pocket 0 1 1 1 7,81,100,102,125,171,203,207,241,243 5 -238380 cd00739 DHPS 2 inhibitor binding site 0 1 1 1 205,206,207 0 -238380 cd00739 DHPS 3 dimer interface 0 1 1 1 184,188,189,227,231,235,250,251 2 -238381 cd00740 MeTr 1 substrate binding pocket 0 0 1 1 8,75,96,98,124,163,202,206,235,237 5 -238382 cd00741 Lipase 1 catalytic triad 0 1 1 1 35,148 0 -238382 cd00741 Lipase 2 nucleophilic elbow 0 0 1 1 33,34,35,36,37 0 -238383 cd00751 thiolase 1 active site 0 1 0 0 83,342,372 1 -238383 cd00751 thiolase 2 dimer interface 0 1 0 1 18,45,59,62,66,77,78,79,80,88,95,96,99,114,272,274,276,296,375,376 2 -340452 cd00754 Ubl_MoaD 1 ATP binding site 0 1 1 1 78 5 -340452 cd00754 Ubl_MoaD 2 heterodimer interface 0 1 1 1 5,6,54,55,74,75,76,77,78 2 -340452 cd00754 Ubl_MoaD 3 MoaD-MoeB interaction site 0 1 1 1 5,6,46,48,49,51,54,55,56,57,72,73,74,75,76,77,78 2 -340452 cd00754 Ubl_MoaD 4 MoaD-MoaE interaction site 0 1 1 1 5,6,53,54,55,68,73,74,75,76,77,78 2 -238384 cd00755 YgdL_like 1 putative substrate interface 0 0 0 1 21,115,133,134,140 5 -238384 cd00755 YgdL_like 2 putative ATP binding site 0 0 0 1 17,19,21,41,43,52,65,108,114 5 -238385 cd00756 MoaE 1 active site residues 0 1 1 0 105,112 1 -238385 cd00756 MoaE 2 MoaE homodimer interface 0 1 1 1 6,10,15,17,18,19,20,21,23,25,79,88,90,98,102 2 -238385 cd00756 MoaE 3 MoaD interaction 0 1 1 1 39,41,44,47,51,69,105,106,108,110,111,112,122 2 -238386 cd00757 ThiF_MoeB_HesA_family 1 ATP binding site 0 1 1 0 27,29,31,51,53,62,75,117,123 5 -238386 cd00757 ThiF_MoeB_HesA_family 2 substrate interface 0 1 1 0 31,118,119,120,124,142,143,147,149,212,216,223,225,226 5 -238387 cd00758 MoCF_BD 1 MPT binding site 0 1 1 0 66,67,68,114,115,119,122 0 -132997 cd00761 Glyco_tranf_GTA_type 1 active site 0 1 1 0 3,5,31,84,86 0 -133442 cd00762 NAD_bind_malic_enz 1 NAD(P) binding site 0 1 1 1 32,33,34,35,65,66,112,113,118,139,140,141,166,184,186 5 -238388 cd00763 Bacterial_PFK 1 active site 0 1 1 0 9,39,70,101,102,103,105,106,123,125,127,167,168,169,220,247,250 1 -238388 cd00763 Bacterial_PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 123,125,127,160,167,168,169,220,241,247,250 0 -238388 cd00763 Bacterial_PFK 3 ADP/pyrophosphate binding site 0 1 1 1 9,39,70,101,102,103,105,106 5 -238388 cd00763 Bacterial_PFK 4 allosteric effector site 0 1 1 1 19,23,52,53,56,57,152,183,185,209,211,212,213 0 -238388 cd00763 Bacterial_PFK 5 dimerization interface 0 1 0 1 19,23,52,57,60,133,145,149,152,180,181,183,211,259,260,264,271,286,314,315,316 2 -238390 cd00765 Pyrophosphate_PFK 1 active site 0 0 1 0 81,113,145,175,176,177,179,180,203,205,207,250,251,252,311,425,428 1 -238390 cd00765 Pyrophosphate_PFK 2 fructose-6-phosphate binding site 0 0 1 1 203,205,207,243,250,251,252,311,419,425,428 0 -238390 cd00765 Pyrophosphate_PFK 3 pyrophosphate binding site 0 0 1 0 81,113,145,175,176,177,179,180,377,378,379,380,381,382,383,384,385,386,387 4 -238390 cd00765 Pyrophosphate_PFK 4 dimerization interface 0 0 0 1 91,95,126,131,134,215,227,231,234,263,264,266,302,437,438,442,449,464,513,514,515 2 -238391 cd00768 class_II_aaRS-like_core 1 active site 0 1 0 0 57,59,85,99,101,103,104,105,169,170,174,202,203,205,206,209 0 -238391 cd00768 class_II_aaRS-like_core 2 dimer interface 0 1 0 1 18,19,21,64,65,84,86,125 2 -238391 cd00768 class_II_aaRS-like_core 3 motif 1 0 0 0 1 17,18,19,20,21 0 -238391 cd00768 class_II_aaRS-like_core 4 motif 2 0 0 0 1 84,85,86 0 -238391 cd00768 class_II_aaRS-like_core 5 motif 3 0 0 0 1 206,209 0 -238392 cd00769 PheRS_beta_core 1 dimer interface 0 1 1 0 2,3,10,13,17,19,21,22,23,42,43,44,45,56,70,80,85,87,89,96,128 2 -238392 cd00769 PheRS_beta_core 2 motif 1 0 0 0 1 17,18,19,20,21,22,23 0 -238392 cd00769 PheRS_beta_core 3 motif 2 0 0 0 1 87,88,89 0 -238392 cd00769 PheRS_beta_core 4 motif 3 0 0 0 1 62,63,64,65 0 -238393 cd00770 SerRS_core 1 active site 0 1 0 0 41,110,112,141,143,149,152,155,157,160,162,164,228,229,230,231,262,264,270 1 -238393 cd00770 SerRS_core 2 dimer interface 0 1 0 0 34,35,36,37,38,39,42,43,44,45,46,47,48,52,54,56,59,71,72,73,74,76,77,78,80,98,99,101,105,114,118,122,138,159,295,296 2 -238393 cd00770 SerRS_core 3 motif 1 0 0 0 1 71,72,73,74,75,76,77,78 0 -238393 cd00770 SerRS_core 4 motif 2 0 0 0 1 140,141,142,143 0 -238393 cd00770 SerRS_core 5 motif 3 0 0 0 1 265,266,267,270 0 -238394 cd00771 ThrRS_core 1 active site 0 1 1 0 3,16,67,71,74,75,89,121,123,125,126,127,132,133,134,137,139,234,237,238,242,274,275,278 1 -238394 cd00771 ThrRS_core 2 dimer interface 0 1 0 0 7,13,15,16,17,19,21,23,24,26,29,44,45,49,50,52,54,55,56,58,76,77,78,80,81,82,83,85,97,98,101,102,103,105,106,107,120,122,125,135,136,163,205,206,207,256,258 2 -238394 cd00771 ThrRS_core 3 motif 1 0 0 0 1 49,50,51,52,53,54,55,56 0 -238394 cd00771 ThrRS_core 4 motif 2 0 0 0 1 120,121,122,123 0 -238394 cd00771 ThrRS_core 5 motif 3 0 0 0 1 274,275,276,277,278 0 -238395 cd00772 ProRS_core 1 active site 0 1 0 1 98,100,129,131,139,140,141,144,146,148,213,215,216,218,248,249,250,252,255 1 -238395 cd00772 ProRS_core 2 dimer interface 0 1 0 0 16,17,25,26,27,28,35,52,53,54,56,57,78,80,81,82,83,84,106,126,143 2 -238395 cd00772 ProRS_core 3 motif 1 0 0 0 1 50,51,52,53,54,55,56,57 0 -238395 cd00772 ProRS_core 4 motif 2 0 0 0 1 128,129,130,131 0 -238395 cd00772 ProRS_core 5 motif 3 0 0 0 1 250,251,252,255 0 -238396 cd00773 HisRS-like_core 1 active site 0 1 0 0 62,64,92,94,101,104,106,110,202,204,206,207,224,229,248,251,254 1 -238396 cd00773 HisRS-like_core 2 dimer interface 0 1 0 0 5,17,22,23,24,25,26,27,28,49,50,62,64,69,70,73,74,102,103,110,118,122,125,229,247,248 2 -238396 cd00773 HisRS-like_core 3 motif 1 0 0 0 1 20,21,22,23,24,25,26,27,28 0 -238396 cd00773 HisRS-like_core 4 motif 2 0 0 0 1 91,92,93,94,95 0 -238396 cd00773 HisRS-like_core 5 motif 3 0 0 0 1 247,248,249,250,251,254 0 -238397 cd00774 GlyRS-like_core 1 active site 0 1 0 1 85,87,117,119,127,128,129,132,134,136,201,202,208,240,242,244,247 1 -238397 cd00774 GlyRS-like_core 2 dimer interface 0 1 0 0 8,34,42,48,54,55,58,59,60,62,66,67,68,69,96,100,131,215 2 -238397 cd00774 GlyRS-like_core 3 motif 1 0 0 0 1 53,54,55,56,57,58,59,60 0 -238397 cd00774 GlyRS-like_core 4 motif 2 0 0 0 1 116,117,118,119 0 -238397 cd00774 GlyRS-like_core 5 motif 3 0 0 0 1 244,245,246,247 0 -238398 cd00775 LysRS_core 1 active site 0 1 1 0 64,86,88,94,98,240,247,250,254,306 1 -238398 cd00775 LysRS_core 2 motif 1 0 0 0 1 32,33,34,35,36 0 -238398 cd00775 LysRS_core 3 motif 2 0 0 0 1 85,86,87,88 0 -238398 cd00775 LysRS_core 4 motif 3 0 0 0 1 303,304,305,306 0 -238399 cd00776 AsxRS_core 1 active site 0 1 0 0 99,101,107,108,248,251,296,299 1 -238399 cd00776 AsxRS_core 2 homodimer interface 0 1 0 0 9,11,15,20,26,27,30,34,41,44,46,48,49,50,52,63,64,66,67,68,80,83,86,87,88,89,110,111,120,121,127,281,284,285,286,287,318,319,320 2 -238399 cd00776 AsxRS_core 3 motif 1 0 0 0 1 48,49,50,51,52 0 -238399 cd00776 AsxRS_core 4 motif 2 0 0 0 1 98,99,100,101 0 -238399 cd00776 AsxRS_core 5 motif 3 0 0 0 1 296,297,298,299 0 -238400 cd00777 AspRS_core 1 active site 0 1 0 0 33,34,35,55,57,60,79,81,86,87,88,91,93,168,169,202,205,209,251,252,254,257 1 -238400 cd00777 AspRS_core 2 homodimer interface 0 1 0 0 3,4,5,8,11,12,15,18,19,20,21,23,24,25,26,27,28,29,36,39,40,41,42,43,47,48,49,50,65,66,69,70,76,80,90,100,105,236,239,240,242,243,244,245,273,274,276 2 -238400 cd00777 AspRS_core 3 motif 1 0 0 0 1 25,26,27,28,29 0 -238400 cd00777 AspRS_core 4 motif 2 0 0 0 1 78,79,80,81 0 -238400 cd00777 AspRS_core 5 motif 3 0 0 0 1 254,255,256,257 0 -238401 cd00778 ProRS_core_arch_euk 1 active site 0 1 0 1 98,100,129,131,139,140,141,144,146,148,213,215,216,218,246,247,248,250,252 1 -238401 cd00778 ProRS_core_arch_euk 2 dimer interface 0 1 0 0 16,17,25,26,27,28,35,52,53,54,56,57,78,80,81,82,83,84,106,126,143 2 -238401 cd00778 ProRS_core_arch_euk 3 motif 1 0 0 0 1 50,51,52,53,54,55,56,57 0 -238401 cd00778 ProRS_core_arch_euk 4 motif 2 0 0 0 1 128,129,130,131 0 -238401 cd00778 ProRS_core_arch_euk 5 motif 3 0 0 0 1 248,249,250,251,252 0 -238402 cd00779 ProRS_core_prok 1 active site 0 0 0 1 92,94,123,125,133,134,135,138,140,142,204,206,207,209,239,240,241,243,246 1 -238402 cd00779 ProRS_core_prok 2 dimer interface 0 0 0 1 16,17,24,25,26,27,34,51,52,53,55,56,76,78,79,80,81,82,100,120,137 2 -238402 cd00779 ProRS_core_prok 3 motif 1 0 0 0 1 49,50,51,52,53,54,55,56 0 -238402 cd00779 ProRS_core_prok 4 motif 2 0 0 0 1 122,123,124,125 0 -238402 cd00779 ProRS_core_prok 5 motif 3 0 0 0 1 241,242,243,244,245,246 0 -238403 cd00780 NTF2 1 RanGDP-NTF2 interaction 0 1 0 0 35,36,54,59,82,84,86,87,89,92,114,116,118 0 -238403 cd00780 NTF2 2 dimer interface 0 1 0 0 32,34,35,64,65,67,69,70,77,81,82,83,87,89,90,91,92,95,101,111,112,113,115,116,117,118 2 -238403 cd00780 NTF2 3 TAP/p15 interaction 0 1 0 0 28,34,42,67,69,70,79,101,111,112,113,115,117 0 -238404 cd00781 ketosteroid_isomerase 1 active site/substrate binding site 0 1 0 0 11,35,52,97,112 1 -238404 cd00781 ketosteroid_isomerase 2 dimer interface 0 1 0 0 5,37,65,68,69,70,71,80,94,95,100,113,114,115 2 -238405 cd00782 MutL_Trans 1 ATP binding site 0 1 1 1 98 5 -238406 cd00786 cytidine_deaminase-like 1 active site 0 1 1 0 48,49,50,74,75,78 1 -238406 cd00786 cytidine_deaminase-like 2 Zn binding site 0 1 1 1 48,50,75,78 4 -238407 cd00788 KU70 1 DNA binding site 0 1 1 0 0,1,2,3,4,23,26,30,33,51,89,154 3 -238407 cd00788 KU70 2 heterodimer interface 0 1 1 1 15,23,26,27,28,33,34,35,36,37,41,42,47,48,49,50,52,53,54,66,67,68,70,71,72,73,76,77,79,80,84,88,92,99,101,102,108,112,120,130,131,139,143,148,150,169,184,189,190,191,192,193,194,195,203,209,210,214,218,225,226,230,235,236,237,241,246,248,250,262,265,266,268,283,286 2 -238408 cd00789 KU_like 1 putative DNA binding site 0 0 1 1 1,20,29,44,141 3 -238408 cd00789 KU_like 2 putative homodimer interface 0 0 1 1 13,20,21,22,23,24,29,30,31,32,37,40,41,42,43,45,46,47,53,57,58,59,61,63,64,68,69,72,91,93,94,104,118,137,164,165,166,168,197,201,206,207,208,221,248,251 2 -238409 cd00794 NOS_oxygenase_prok 1 active site 0 1 1 0 54,60,123,126,228,230,231,232,236,240,241,321,322,348,350 1 -238409 cd00794 NOS_oxygenase_prok 2 dimer interface 0 0 1 1 239,244,246,266,271,272,276,282,295,296,326,328,329,330,336,338,339,340,341,342 2 -238410 cd00795 NOS_oxygenase_euk 1 active site 0 1 1 1 115,178,262,284,285,287,288,292,296,297,377,378,406 1 -238410 cd00795 NOS_oxygenase_euk 2 dimer interface 0 1 1 0 6,7,18,20,24,26,27,28,29,30,31,32,34,36,300,302,322,327,328,332,338,351,352,382,384,385,386,392,394,395,396,397,398 2 -271177 cd00796 INT_Rci_Hp1_C 1 active site 0 0 1 1 37,124,127,128,159 1 -271177 cd00796 INT_Rci_Hp1_C 2 dimer interface 0 1 1 0 9,10,13,29,32,33,68,70,72,129,130,133,134,136,137,147,157,160 2 -271178 cd00797 INT_RitB_C_like 1 active site 0 0 0 1 39,139,142,143,182 1 -271179 cd00798 INT_XerDC_C 1 active site 0 0 1 1 33,128,131,132,163 1 -271180 cd00799 INT_Cre_C 1 active site 0 0 1 0 30,58,137,140,172 1 -271180 cd00799 INT_Cre_C 2 DNA binding site 0 1 1 0 16,30,31,32,99,100,101,115,117,135,136,137,172 3 -271180 cd00799 INT_Cre_C 3 dimer interface 0 1 1 0 25,26,143,147 2 -271181 cd00800 INT_Lambda_C 1 active site 0 0 1 0 26,117,120,142,151 1 -271181 cd00800 INT_Lambda_C 2 dimer interface 0 1 1 0 0,3,4,6,7,14 2 -271182 cd00801 INT_P4_C 1 active site 0 0 0 1 33,123,126,127,159 1 -173901 cd00802 class_I_aaRS_core 1 active site 0 1 0 1 12,13,14,15,138,139,140,141 1 -173901 cd00802 class_I_aaRS_core 2 HIGH motif 0 0 0 1 12,13,14,15 0 -173901 cd00802 class_I_aaRS_core 3 KMSKS motif 0 0 0 1 138,139,140,141 0 -173902 cd00805 TyrRS_core 1 active site 0 1 0 0 3,5,6,7,14,16,17,138,142,145,154,156,157,160,186,187,194,195,196,197 1 -173902 cd00805 TyrRS_core 2 dimer interface 0 1 0 0 41,44,45,100,101,103,104,105,107,108,110,111,112,113,115,116,134,136,137,140,141 2 -173902 cd00805 TyrRS_core 3 HIGH motif 0 0 1 1 14,15,16,17 0 -173902 cd00805 TyrRS_core 4 KMSKS motif 0 0 1 1 194,195,196,197,198 0 -173903 cd00806 TrpRS_core 1 active site 0 1 0 0 2,3,4,5,6,12,14,15,18,36,41,79,124,128,131,140,142,143,145,146,149,180,190,191,193 1 -173903 cd00806 TrpRS_core 2 HIGH motif 0 0 1 1 12,13,14,15 0 -173903 cd00806 TrpRS_core 3 KMSKS motif 0 0 1 1 190,191,192,193,194 0 -173903 cd00806 TrpRS_core 4 dimer interface 0 0 0 1 40,43,44,85,86,88,89,90,93,94,96,97,98,99,101,102,120,122,123,126,127 2 -185676 cd00807 GlnRS_core 1 active site 0 1 1 1 4,5,6,7,8,14,16,17,19,20,40,42,43,108,112,125,126,127,130,133,151,156,157,166 1 -185676 cd00807 GlnRS_core 2 HIGH motif 0 0 1 1 14,15,16,17 0 -185676 cd00807 GlnRS_core 3 KMSKS motif 0 0 1 1 163,164,165,166,167 0 -173905 cd00808 GluRS_core 1 active site 0 1 1 1 4,6,7,8,16,17,19,20,40,105,109,123,124,126,127,152,153,161,162 1 -173905 cd00808 GluRS_core 2 HIGH motif 0 0 1 1 14,15,16,17 0 -173905 cd00808 GluRS_core 3 KMSKS motif 0 0 1 1 161,162,163,164,165 0 -173906 cd00812 LeuRS_core 1 active site 0 1 1 0 7,9,15,18,46,54,230,232,233,237,265,268,275,277 1 -173906 cd00812 LeuRS_core 2 HIGH motif 0 0 0 1 15,16,17,18 0 -173906 cd00812 LeuRS_core 3 KMSKS motif 0 0 0 1 274,275,276,277,278 0 -173907 cd00814 MetRS_core 1 active site 0 1 1 0 6,7,9,46,205,208,209,212,244,248 1 -173907 cd00814 MetRS_core 2 HIGH motif 0 0 0 1 15,16,17,18 0 -173907 cd00814 MetRS_core 3 KMSKS motif 0 0 0 1 279,280,281,282,283 0 -185677 cd00817 ValRS_core 1 active site 0 1 1 0 7,8,9,10,16,18,19,22,47,270,273,301,302,304,305,309,332,333,334,335,343 1 -185677 cd00817 ValRS_core 2 HIGH motif 0 0 0 1 16,17,18,19 0 -185677 cd00817 ValRS_core 3 KMSKS motif 0 0 0 1 342,343,344,345,346 0 -173909 cd00818 IleRS_core 1 active site 0 1 1 1 8,9,10,16,18,19,22,180,226,229,257,258,259,260,261,263,265,288,289,290,291,292,296,297,298,299,300,301,334 1 -173909 cd00818 IleRS_core 2 HIGH motif 0 0 0 1 16,17,18,19 0 -173909 cd00818 IleRS_core 3 KMSKS motif 0 0 0 1 298,299,300,301,302 0 -238417 cd00819 PEPCK_GTP 1 active site 0 1 1 0 60,198,200,206,207,227,249,250,251,252,253,254,255,273,274,296,298,307,368,490,493,496 1 -238417 cd00819 PEPCK_GTP 2 GTP binding site 0 0 1 0 250,252,399,479,480,490,493,496 5 -238417 cd00819 PEPCK_GTP 3 metal-binding site 0 1 1 0 207,227,254,273,274,296 4 -238417 cd00819 PEPCK_GTP 4 substrate-binding site 0 0 1 1 60,198,200,206,207,296,368 5 -238418 cd00820 PEPCK_HprK 1 active site 0 1 1 0 5,23,24,25,26,27,28,29,44,45,67,69,84,98 1 -238418 cd00820 PEPCK_HprK 2 nucleotide-binding site 0 1 1 0 23,24,26,27,28,29,84,98 5 -238418 cd00820 PEPCK_HprK 3 metal-binding site 0 1 1 0 5,28,44,45,67 4 -238419 cd00822 TopoII_Trans_DNA_gyrase 1 ATP binding site 0 1 1 1 115,117 5 -238419 cd00822 TopoII_Trans_DNA_gyrase 2 dimer interface 0 1 1 0 109,112,113,115,160,161,165,169 2 -238419 cd00822 TopoII_Trans_DNA_gyrase 3 anchoring element 0 0 1 1 51 0 -238420 cd00823 TopoIIB_Trans 1 ATP binding site 0 1 1 1 110 5 -238420 cd00823 TopoIIB_Trans 2 dimer interface 0 1 1 0 64,102,106,107 2 -238420 cd00823 TopoIIB_Trans 3 anchoring element 0 0 1 1 57 0 -238421 cd00825 decarbox_cond_enzymes 1 active site 0 1 1 1 95,230,265 1 -238421 cd00825 decarbox_cond_enzymes 2 dimer interface 0 1 0 0 76,80,86,87,88,89,90,94,103,104,107,110,187,189,190,191,325 2 -238422 cd00826 nondecarbox_cond_enzymes 1 active site 0 1 0 0 84,344,379 1 -238423 cd00827 init_cond_enzymes 1 active site 0 1 0 0 108,247,282 1 -238423 cd00827 init_cond_enzymes 2 dimer interface 0 1 0 0 77,79,88,91,99,100,101,102,103,104,113,116,117,120,121,140,177,178,179,180,192,193,315 2 -238424 cd00828 elong_cond_enzymes 1 active site 0 1 0 0 161,299,336 1 -238425 cd00829 SCP-x_thiolase 1 active site 0 0 0 0 76,276,326 1 -238426 cd00830 KAS_III 1 active site 0 1 0 0 110,248,278 1 -238426 cd00830 KAS_III 2 CoA binding pocket 0 1 1 0 251 5 -238426 cd00830 KAS_III 3 dimer interface 0 1 0 0 79,81,90,93,101,102,103,104,105,106,107,115,118,119,122,123,142,178,179,180,181,182,183,189,190,311 2 -238427 cd00831 CHS_like 1 active site 0 1 0 0 146,286,319 1 -238427 cd00831 CHS_like 2 product binding site 0 1 0 0 174,175,176,196,235,236,237,245,246,321,351 0 -238427 cd00831 CHS_like 3 malonyl-CoA binding site 0 1 0 0 39,42,43,195,246,289,290,291 5 -238427 cd00831 CHS_like 4 dimer interface 0 1 0 0 73,74,77,118,119,124,128,134,135,136,137,138,139,140,144,145,154,155,158,161,162,163,223,225,226,227,237,238,239,240,354 2 -238428 cd00832 CLF 1 active site 0 0 1 0 160,295,330 1 -238429 cd00833 PKS 1 active site 0 0 0 0 169,304,344 1 -238430 cd00834 KAS_I_II 1 dimer interface 0 1 0 0 104,111,112,116,118,119,131,137,141,145,151,153,155,156,157,169,172,173,176,197,198,201,202,260,261,262,263,264,278,397,399 2 -238430 cd00834 KAS_I_II 2 active site 0 1 0 1 160,300,337 1 -269907 cd00835 RanBD_family 1 putative RAN binding site 0 1 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,54,55,56,59,61,69,79,81,95,99 2 -275389 cd00836 FERM_C-lobe 1 putative peptide binding site 0 1 1 1 41,46,47,48,49,81,85,88,89 2 -275389 cd00836 FERM_C-lobe 2 putative actin binding site 2 0 0 1 1 81,82,83,84,85,86,87,88,89,90,91,92 2 -275389 cd00836 FERM_C-lobe 3 putative phosphoinositide binding site 0 0 1 0 8,27,29,37 5 -269909 cd00837 EVH1_family 1 proline-rich peptide binding site 0 1 1 1 9,18,71,73 2 -277317 cd00838 MPP_superfamily 1 active site 0 1 1 1 4,6,34,65,66,72,109 1 -277317 cd00838 MPP_superfamily 2 metal binding site 0 1 1 0 4,6,34,65,72,109 4 -277318 cd00839 MPP_PAPs 1 active site 0 1 1 0 11,41,44,76,77,161,200,202 1 -277318 cd00839 MPP_PAPs 2 metal binding site 0 1 1 0 11,41,44,76,161,200,202 4 -277318 cd00839 MPP_PAPs 3 homotrimer interface 0 1 1 1 0,1,83,84,85,87,88,90,103,104,105,106,107,127,129,136,146,147,148,149,150,162,177,178,179 2 -277318 cd00839 MPP_PAPs 4 homotetramer interface 0 1 1 1 79,81,88,90,105,125,126,127,136,175,176,178,179,182,183,254 2 -277319 cd00840 MPP_Mre11_N 1 active site 0 1 1 0 6,8,47,82,83,127,159,160,161 1 -277319 cd00840 MPP_Mre11_N 2 metal binding site 0 1 1 1 6,8,47,82,127,159,161 4 -277319 cd00840 MPP_Mre11_N 3 DNA binding site 0 1 1 0 10,11,12,13,14,15,16,50,85,87,88,97,98 3 -277319 cd00840 MPP_Mre11_N 4 homodimer interface 0 1 1 1 56,59,60,63,67,85,86 2 -277319 cd00840 MPP_Mre11_N 5 heterodimer interface 0 1 1 1 53,87,88,98,184 2 -277320 cd00841 MPP_YfcE 1 active site 0 1 1 0 6,8,33,56,57,87,112,114 1 -277320 cd00841 MPP_YfcE 2 metal binding site 0 1 1 0 6,8,33,56,87,112,114 4 -277320 cd00841 MPP_YfcE 3 homotetramer interface 0 1 1 0 26,27,51,54,55,56,57,58,71,72,73,74,75,76,77,78,79,80,81,82,89 2 -277321 cd00842 MPP_ASMase 1 putative active site 0 0 1 1 5,7,77,117,118,220,254,256 1 -277321 cd00842 MPP_ASMase 2 putative metal binding site 0 0 1 1 5,7,77,117,220,254,256 4 -277322 cd00844 MPP_Dbr1_N 1 active site 0 1 1 0 5,7,36,81,82,171,223,225,243 1 -277322 cd00844 MPP_Dbr1_N 2 metal binding site 0 1 1 0 36,81,171,223 4 -277323 cd00845 MPP_UshA_N_like 1 active site 0 1 1 1 7,9,47,79,80,181,204,206 1 -277323 cd00845 MPP_UshA_N_like 2 metal binding site 0 1 1 1 7,9,47,79,181,204,206 4 -238434 cd00854 NagA 1 active site 0 1 1 0 56,58,125,136,191,212,215,216,247,270,303 1 -238434 cd00854 NagA 2 dimer interface 0 1 0 0 214,220,222,223,225,232,233,246,247,248,249,251,252,254,255,258 2 -349487 cd00855 SWIB-MDM2 1 peptide binding site 0 1 1 0 17,20,21,23,24,27,28,33,38,39,41,61,62 2 -238435 cd00858 GlyRS_anticodon 1 anticodon binding site 0 0 1 1 33,34,70,76,84,94,96 0 -238436 cd00859 HisRS_anticodon 1 anticodon binding site 0 0 1 1 8,9,44,50,58,68,70 0 -238437 cd00860 ThrRS_anticodon 1 anticodon binding site 0 1 1 0 8,9,44,50,58,68,70 0 -238438 cd00861 ProRS_anticodon_short 1 anticodon binding site 0 0 1 1 8,9,47,53,61,71,73 0 -238439 cd00862 ProRS_anticodon_zinc 1 anticodon binding site 0 1 1 0 17,18,60,66,74,84,86 0 -238439 cd00862 ProRS_anticodon_zinc 2 zinc-binding site 0 1 1 0 151,156,184,187 4 -176643 cd00865 PEBP_bact_arch 1 substrate binding site 0 1 1 0 47,48,56,58,98,99,100,101,102,105,107,109 5 -176644 cd00866 PEBP_euk 1 substrate binding site 0 1 1 0 47,61,63,91,92,93,94,100,102 5 -173836 cd00867 Trans_IPPS 1 substrate binding pocket 0 1 1 0 1,30,33,34,37,41,128,161,162,165,169,173 5 -173836 cd00867 Trans_IPPS 2 substrate-Mg2+ binding site 0 0 1 1 37,38,41,103,165,166,169,188 0 -173836 cd00867 Trans_IPPS 3 aspartate-rich region 1 0 1 1 1 37,38,41,103 0 -173836 cd00867 Trans_IPPS 4 aspartate-rich region 2 0 0 1 1 165,166,169,188 0 -173837 cd00868 Terpene_cyclase_C1 1 substrate binding pocket 0 1 1 1 34,59,62,206,207,210 5 -173837 cd00868 Terpene_cyclase_C1 2 substrate-Mg2+ binding site 0 1 1 1 62,206,210,214 0 -173837 cd00868 Terpene_cyclase_C1 3 aspartate-rich region 1 0 1 1 1 62,63,64,65,66 0 -173837 cd00868 Terpene_cyclase_C1 4 aspartate-rich region 2 0 1 1 1 206,207,208,209,210,211,212,213,214 0 -238445 cd00873 KU80 1 DNA binding site 0 1 1 0 21,31,32,50,84,96,117,154,155,156,157,158,159,188 3 -238445 cd00873 KU80 2 heterodimer interface 0 1 1 1 11,14,21,23,24,25,26,30,32,33,35,41,47,48,49,50,51,52,53,54,64,68,70,71,72,74,75,76,77,78,89,91,101,102,103,104,108,111,112,114,115,118,127,129,132,135,137,146,151,159,170,174,181,184,185,186,188,191,192,193,194,213,217,219,221,233,236,238,239,240,245,250,253,254,269,272,273,274,286,295,296,297,298 2 -238446 cd00874 RNA_Cyclase_Class_II 1 putative active site 0 1 1 1 8,9,13,32,35,37,43,44,96,283,305 1 -238446 cd00874 RNA_Cyclase_Class_II 2 adenylation catalytic residue 0 0 1 1 305 1 -238447 cd00875 RNA_Cyclase_Class_I 1 putative active site 0 0 1 1 13,32,35,37,43,44,96,293,319 1 -206642 cd00876 Ras 1 GTP/Mg2+ binding site 0 1 1 0 7,8,9,10,11,12,13,27,30,55,111,112,114,115,141,142 5 -206642 cd00876 Ras 2 effector interaction site 0 1 1 0 31,33,34,35,36 0 -206642 cd00876 Ras 3 GEF interaction site 0 1 1 0 12,13,27,29,35,36,49,50,52,54,55,62,64,65,66,68,97,143 2 -206642 cd00876 Ras 4 GDI interaction site 0 1 1 1 6,7,54,55,63,66,81,83,86,87,90,91,94 0 -206642 cd00876 Ras 5 Switch I region 0 0 1 1 28,29,30,31,33,34,35 0 -206642 cd00876 Ras 6 Switch II region 0 0 1 1 54,55,71,72 0 -206642 cd00876 Ras 7 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206642 cd00876 Ras 8 G2 box 0 0 1 1 30 0 -206642 cd00876 Ras 9 G3 box 0 0 1 1 52,53,54,55 0 -206642 cd00876 Ras 10 G4 box 0 0 1 1 111,112,113,114 0 -206642 cd00876 Ras 11 G5 box 0 0 1 1 141,142,143 0 -206643 cd00877 Ran 1 GTP/Mg2+ binding site 0 1 1 0 9,11,12,13,14,111,114,140,141 5 -206643 cd00877 Ran 2 GAP interaction site 0 1 1 0 7,28,30,32,33,58,59,64,68,83,84,85,117,119 2 -206643 cd00877 Ran 3 GEF interaction site 0 1 1 0 8,56,60,61,62,65,83,84,85,86,87,88,89,91,92,95,96,99,123,126,129 2 -206643 cd00877 Ran 4 Co-activator interaction site 0 1 0 1 18,21,22,23,40,41,44,45,103,128,129,132,147,156,157,158 0 -206643 cd00877 Ran 5 Importin (transport factor) interaction site 0 1 1 1 36,53,63,66,67,70,71,99,123,129,130,142,143,144,145,147 2 -206643 cd00877 Ran 6 Exportin interaction site in Cse1p/Kap60p/RanGTP complex 0 1 1 1 26,53,63,64,65,66,68,70,71,82,99,100,112,114,115,117,121,123,132,141,142 2 -206643 cd00877 Ran 7 Switch I region 0 0 1 1 20,21,22,23,24,29,30,31,32,33,34,35,36,37 0 -206643 cd00877 Ran 8 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206643 cd00877 Ran 9 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206643 cd00877 Ran 10 G2 box 0 0 1 1 31 0 -206643 cd00877 Ran 11 G3 box 0 0 1 1 54,55,56,57 0 -206643 cd00877 Ran 12 G4 box 0 0 1 1 111,112,113,114 0 -206643 cd00877 Ran 13 G5 box 0 0 1 1 139,140,141 0 -206644 cd00878 Arf_Arl 1 GTP/Mg2+ binding site 0 1 1 0 7,8,9,10,11,12,13,28,29,51,107,108,110,140,141,142 5 -206644 cd00878 Arf_Arl 2 effector interaction site 0 1 1 0 19,20,30,31,32,33,34,35,36,37,47,58,61,62 0 -206644 cd00878 Arf_Arl 3 GEF interaction site 0 1 1 0 29,30,31,32,33,38,48,52,58,60,61,62 2 -206644 cd00878 Arf_Arl 4 GAP interaction site 0 1 1 0 7,8,12,16,24,25,26,27,28,29,30,31,32,33,34,35,57,62 2 -206644 cd00878 Arf_Arl 5 Switch I region 0 1 1 1 17,18,19,20,24,25,26,27,28,29,30,31,32 0 -206644 cd00878 Arf_Arl 6 Switch II region 0 0 1 1 48,49,50,51,52,53,58,59,60,61,62,63,64,65 0 -206644 cd00878 Arf_Arl 7 interswitch region 0 0 1 1 32,33,34,35,36,37,38,39,42,43,44,45,46,47 0 -206644 cd00878 Arf_Arl 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206644 cd00878 Arf_Arl 9 G2 box 0 0 1 1 29 0 -206644 cd00878 Arf_Arl 10 G3 box 0 0 1 1 48,49,50,51 0 -206644 cd00878 Arf_Arl 11 G4 box 0 0 1 1 107,108,109,110 0 -206644 cd00878 Arf_Arl 12 G5 box 0 0 1 1 140,141,142 0 -206645 cd00879 Sar1 1 GTP/Mg2+ binding site 0 1 1 0 27,28,29,30,31,32,33,49,71,127,128,130,172,173,174 5 -206645 cd00879 Sar1 2 GAP interaction site 0 1 1 0 27,28,32,36,43,44,45,46,47,48,49,50,51,52,53,54,55,77,82 2 -206645 cd00879 Sar1 3 putative effector interaction site 0 0 1 1 50,51,52,53,54,55,56,57,67,78,81,82 0 -206645 cd00879 Sar1 4 putative GEF interaction site 0 0 1 1 49,50,51,52,53,58,68,72,78,80,81,82 2 -206645 cd00879 Sar1 5 Switch I region 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 0 -206645 cd00879 Sar1 6 Switch II region 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 0 -206645 cd00879 Sar1 7 interswitch region 0 0 1 1 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 0 -206645 cd00879 Sar1 8 G1 box 0 0 1 1 25,26,27,28,29,30,31,32 0 -206645 cd00879 Sar1 9 G2 box 0 0 1 1 49 0 -206645 cd00879 Sar1 10 G3 box 0 0 1 1 68,69,70,71 0 -206645 cd00879 Sar1 11 G4 box 0 0 1 1 127,128,129,130 0 -206645 cd00879 Sar1 12 G5 box 0 0 1 1 172,173,174 0 -206645 cd00879 Sar1 13 STAR motif 0 0 1 1 0,1,2 0 -206646 cd00880 Era_like 1 GTP/Mg2+ binding site 0 1 1 0 6,7,8,9,10,11,111,112,114,142,143 5 -206646 cd00880 Era_like 2 Switch I region 0 0 1 1 30,31,32,33,34 0 -206646 cd00880 Era_like 3 Switch II region 0 0 1 1 50,51,52,53,54,55,75 0 -206646 cd00880 Era_like 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206646 cd00880 Era_like 5 G2 box 0 0 1 1 31 0 -206646 cd00880 Era_like 6 G3 box 0 0 1 1 51,52,53,54 0 -206646 cd00880 Era_like 7 G4 box 0 0 1 1 111,112,113,114 0 -206646 cd00880 Era_like 8 G5 box 0 0 1 1 142,143,144 0 -206647 cd00881 GTP_translation_factor 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,121,122,124,161,162,163 5 -206647 cd00881 GTP_translation_factor 2 GEF interaction site 0 1 1 0 6,8,12,13,16,19,20,52,53,71,72,95,96,101,104,133,137 2 -206647 cd00881 GTP_translation_factor 3 Switch I region 0 0 1 1 47,48,49,52 0 -206647 cd00881 GTP_translation_factor 4 Switch II region 0 0 1 1 69,70,71,72,74,75,76,77,78,79,80,81,82,85,86,87 0 -206647 cd00881 GTP_translation_factor 5 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206647 cd00881 GTP_translation_factor 6 G2 box 0 0 1 1 48 0 -206647 cd00881 GTP_translation_factor 7 G3 box 0 0 1 1 67,68,69,70 0 -206647 cd00881 GTP_translation_factor 8 G4 box 0 0 1 1 121,122,123,124 0 -206647 cd00881 GTP_translation_factor 9 G5 box 0 0 1 1 161,162,163 0 -206648 cd00882 Ras_like_GTPase 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,55,113,114,116,144,145,146 5 -206648 cd00882 Ras_like_GTPase 2 Switch I region 0 0 1 1 35,36,37 0 -206648 cd00882 Ras_like_GTPase 3 Switch II region 0 0 1 1 54,55,76,77 0 -206648 cd00882 Ras_like_GTPase 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206648 cd00882 Ras_like_GTPase 5 G2 box 0 0 1 1 31 0 -206648 cd00882 Ras_like_GTPase 6 G3 box 0 0 1 1 52,53,54,55 0 -206648 cd00882 Ras_like_GTPase 7 G4 box 0 0 1 1 113,114,115,116 0 -206648 cd00882 Ras_like_GTPase 8 G5 box 0 0 1 1 144,145,146 0 -238448 cd00883 beta_CA_cladeA 1 zinc binding site 0 1 1 0 31,33,87,90 4 -238448 cd00883 beta_CA_cladeA 2 dimer interface 0 0 0 1 32,33,34,35,37,39,40,42,47,48,49,51,53,67,68,71,72,108,171,173,174,176,178 2 -238448 cd00883 beta_CA_cladeA 3 active site clefts 0 1 1 1 22,24,31,33,34,35,47,50,72,77,87,90,171 1 -238449 cd00884 beta_CA_cladeB 1 zinc binding site 0 0 1 0 32,34,93,96 4 -238449 cd00884 beta_CA_cladeB 2 dimer interface 0 1 0 1 33,34,35,36,38,40,41,42,43,48,49,50,52,54,73,74,77,78,118,179,181,182,184,186 2 -238449 cd00884 beta_CA_cladeB 3 active site clefts 0 0 1 1 23,25,32,34,35,36,48,51,78,83,93,96,179 1 -238450 cd00885 cinA 1 putative MPT binding site 0 0 1 1 66,67,68,148,149,153,156 0 -238451 cd00886 MogA_MoaB 1 MPT binding site 0 1 1 0 69,70,71,101,127,128,132,135 0 -238451 cd00886 MogA_MoaB 2 trimer interface 0 1 1 0 71,73,74,76,80,88,89,90,95,98,99,109,112,151 2 -238452 cd00887 MoeA 1 dimer interface 0 1 1 0 22,132,147,148,149,150,152,155,156,158,192,194,197,321,361,389 2 -238452 cd00887 MoeA 2 putative MPT binding site 0 0 1 1 242,243,244,289,290,294,297 0 -238452 cd00887 MoeA 3 putative functional site 0 1 1 0 175,176,178,218,242 0 -270624 cd00891 PI3Kc 1 ATP binding site 0 1 1 0 66,68,69,70,72,90,92,95,126,138,139,140,141,146,149,210,212,222,223 5 -270624 cd00891 PI3Kc 2 catalytic loop 0 0 1 1 202,203,204,205,206,207,208,209,210 1 -270624 cd00891 PI3Kc 3 activation loop (A-loop) 0 0 1 1 223,224,225,226,227,228,229,230,231,232,233,234,242,243,244,245,246,247 0 -270625 cd00892 PIKKc_ATR 1 ATP binding site 0 0 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,149,151,162,163 5 -270625 cd00892 PIKKc_ATR 2 catalytic loop 0 0 1 1 141,142,143,144,145,146,147,148,149 1 -270625 cd00892 PIKKc_ATR 3 activation loop (A-loop) 0 0 1 1 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270626 cd00893 PI4Kc_III 1 ATP binding site 0 0 1 1 10,12,13,15,17,30,32,35,66,78,79,80,81,86,89,146,148,158,159 5 -270626 cd00893 PI4Kc_III 2 catalytic loop 0 0 1 1 138,139,140,141,142,143,144,145,146 1 -270626 cd00893 PI4Kc_III 3 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,176,177,178,179,180,181 0 -270627 cd00894 PI3Kc_IB_gamma 1 ATP binding site 0 1 1 0 75,77,78,79,81,102,104,107,138,150,151,152,153,158,161,222,224,234,235 5 -270627 cd00894 PI3Kc_IB_gamma 2 Ras binding site 0 1 1 1 191 2 -270627 cd00894 PI3Kc_IB_gamma 3 catalytic loop 0 0 1 1 214,215,216,217,218,219,220,221,222 1 -270627 cd00894 PI3Kc_IB_gamma 4 activation loop (A-loop) 0 0 1 1 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 0 -270627 cd00894 PI3Kc_IB_gamma 5 putative regulatory subunit interface 0 0 1 1 145,146,246,247,249,251,317,320 2 -119421 cd00895 PI3Kc_C2_beta 1 ATP binding site 0 0 1 1 70,72,73,74,76,94,96,99,130,142,143,144,145,150,153,213,215,225,226 5 -119421 cd00895 PI3Kc_C2_beta 2 catalytic loop 0 0 1 1 205,206,207,208,209,210,211,212,213 1 -119421 cd00895 PI3Kc_C2_beta 3 activation loop (A-loop) 0 0 1 1 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 0 -270628 cd00896 PI3Kc_III 1 ATP binding site 0 1 1 1 73,75,76,77,79,95,97,100,131,143,144,145,146,151,154,210,212,222,223 5 -270628 cd00896 PI3Kc_III 2 catalytic loop 0 0 1 1 202,203,204,205,206,207,208,209,210 1 -270628 cd00896 PI3Kc_III 3 activation loop (A-loop) 0 0 1 1 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 0 -132998 cd00897 UGPase_euk 1 substrate binding site 0 1 1 0 8,9,10,11,22,57,85,112,114,115,143,179,180,181,194,216,284 0 -132998 cd00897 UGPase_euk 2 active site 0 1 1 0 8,9,10,11,22,57,85,112,114,115,143,179,180,181,194,216,284 0 -132999 cd00899 b4GalT 1 ligand binding site 0 1 1 1 8,10,12,47,73,74,75 0 -132999 cd00899 b4GalT 2 metal binding site 0 1 1 0 73,75,168 0 -153098 cd00904 Ferritin 1 ferroxidase diiron center 0 1 1 1 14,48,49,52,94,127,130,131 4 -153099 cd00907 Bacterioferritin 1 ferroxidase diiron center 0 1 1 1 16,23,49,52,92,99,125,128 4 -153099 cd00907 Bacterioferritin 2 heme binding site 0 1 1 1 13,21,28,43,50,54 5 -153099 cd00907 Bacterioferritin 3 ferroxidase pore 0 1 1 1 15,16,18,19,23,49,52,91,92,95,99,124,125 0 -238454 cd00912 ML 1 putative lipid binding cavity 0 0 1 1 0,10,13,15,25,31,33,35,48,50,52,68,81,89,106,108,110,112,119,122,124,126 5 -238455 cd00913 PCD_DCoH_subfamily_a 1 substrate binding site 0 0 1 1 37,38,39,54,56,57 5 -238455 cd00913 PCD_DCoH_subfamily_a 2 DCoH dimer interaction site 0 1 1 0 19,20,23,27,34,39,41,42,43,44,45 2 -238455 cd00913 PCD_DCoH_subfamily_a 3 DCoH /HNF-1 dimer interaction site 0 0 1 1 20,21,27,28,31,34,35 2 -238455 cd00913 PCD_DCoH_subfamily_a 4 DCoH tetramer interaction site 0 0 1 1 20,27,28,31,35 2 -238455 cd00913 PCD_DCoH_subfamily_a 5 aromatic arch 0 0 1 1 19,23,39,42,56 0 -238456 cd00914 PCD_DCoH_subfamily_b 1 substrate binding site 0 1 1 1 37,38,39,54,56,57 5 -238456 cd00914 PCD_DCoH_subfamily_b 2 DCoH dimer interaction site 0 1 1 0 19,34,39,40,41,42,43,44,45,46 2 -238456 cd00914 PCD_DCoH_subfamily_b 3 DCoH /HNF-1 dimer interaction site 0 1 1 1 20,21,27,28,31,34,35 2 -238456 cd00914 PCD_DCoH_subfamily_b 4 DCoH tetramer interaction site 0 1 1 1 20,27,28,31,35 2 -238456 cd00914 PCD_DCoH_subfamily_b 5 aromatic arch 0 1 1 1 19,23,39,42,56 0 -238457 cd00915 MD-1_MD-2 1 putative lipid binding cavity 0 0 1 1 0,8,10,12,30,36,38,40,53,55,57,71,84,92,109,111,113,115,122,125,127,129 5 -238458 cd00916 Npc2_like 1 putative cholesterol/lipid binding site 0 0 1 0 61,92,96 5 -238459 cd00917 PG-PI_TP 1 putative lipid binding cavity 0 0 1 1 0,13,16,18,23,29,31,33,47,49,51,65,78,85,100,102,104,106,114,117,119,121 5 -238460 cd00918 Der-p2_like 1 putative lipid binding cavity 0 0 1 1 8,11,13,31,33,35,46,48,50,60,82,84,86,89,93,98,100,102,104,111,113,115 5 -238461 cd00919 Heme_Cu_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 227,276,277,362 1 -238461 cd00919 Heme_Cu_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 22,26,42,49,53,54,58,113,357,364,367,368,424,425,454 5 -238461 cd00919 Heme_Cu_Oxidase_I 3 D-pathway 0 1 1 1 7,68,78,85,88,143,144,150,154 0 -238461 cd00919 Heme_Cu_Oxidase_I 4 K-pathway 0 1 1 1 227,231,242,276,277,302,305 0 -238461 cd00919 Heme_Cu_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 277,354,355,424,425 0 -238461 cd00919 Heme_Cu_Oxidase_I 6 Putative water exit pathway 0 1 1 0 214,219,220,350,354,355,424 0 -238462 cd00922 Cyt_c_Oxidase_IV 1 Subunit IV/I interface 0 1 1 0 15,16,17,72,79,83,87,91,100,102,105,106 2 -238462 cd00922 Cyt_c_Oxidase_IV 2 Subunit IV/II interface 0 1 1 0 16,117,118,121,125,127,128,129 2 -238462 cd00922 Cyt_c_Oxidase_IV 3 Subunit IV/Va interface 0 1 1 0 14,16,18,19,20,21,39,41,43,51,55,56,58,59,61,62,63,64,67 2 -238462 cd00922 Cyt_c_Oxidase_IV 4 Subunit IV/Vb interface 0 1 1 0 8 2 -238462 cd00922 Cyt_c_Oxidase_IV 5 Subunit IV/VIc interface 0 1 1 0 122,127 2 -238462 cd00922 Cyt_c_Oxidase_IV 6 Subunit IV/VIIb interface 0 1 1 0 74,75,81,82,84,85,86,88,89,106,109,112,113,116,120,129,133 2 -238462 cd00922 Cyt_c_Oxidase_IV 7 Subunit IV/VIIIb interface 0 1 1 0 4,86,97 2 -238462 cd00922 Cyt_c_Oxidase_IV 8 putative ATP/ADP binding site 0 0 1 0 16,68,70,72,73 5 -238463 cd00923 Cyt_c_Oxidase_Va 1 Subunit Va/II interface 0 1 1 0 34,36,70 2 -238463 cd00923 Cyt_c_Oxidase_Va 2 Subunit Va/IV interface 0 1 1 0 26,30,52,55,56,57,58,59,62,65,66,69,93,95,102 2 -238463 cd00923 Cyt_c_Oxidase_Va 3 Subunit Va/Vb interface 0 1 1 0 23,27 2 -238463 cd00923 Cyt_c_Oxidase_Va 4 Subunit Va/VIc interface 0 1 1 0 4,7,8,36,37,38,39,40,74,77,80,83 2 -238464 cd00924 Cyt_c_Oxidase_Vb 1 Zinc binding site 0 1 1 1 59,61,81,84 4 -238464 cd00924 Cyt_c_Oxidase_Vb 2 Subunit Vb/I interface 0 1 0 0 32,35,46,50,51,55,56,57,58,60,66,67,70,72,88 2 -238464 cd00924 Cyt_c_Oxidase_Vb 3 Subunit Vb/III interface 0 1 0 0 0,3,4,5,6,8,11,13,16,30,31,93 2 -238464 cd00924 Cyt_c_Oxidase_Vb 4 Subunit Vb/IV interface 0 1 0 0 74 2 -238464 cd00924 Cyt_c_Oxidase_Vb 5 Subunit Vb/Va interface 0 1 0 0 80,81 2 -238464 cd00924 Cyt_c_Oxidase_Vb 6 Subunit Vb/VIa interface 0 1 0 0 0 2 -238464 cd00924 Cyt_c_Oxidase_Vb 7 Subunit Vb/VIIa interface 0 1 0 0 11,13 2 -238464 cd00924 Cyt_c_Oxidase_Vb 8 Subunit Vb/Va (of dimer complex) interface 0 1 0 0 0 2 -238464 cd00924 Cyt_c_Oxidase_Vb 9 Subunit Vb/VIa (of dimer complex) interface 0 1 0 0 66 2 -238465 cd00925 Cyt_c_Oxidase_VIa 1 Subunit VIa/I interface 0 1 0 0 54,58,59,60,62 2 -238465 cd00925 Cyt_c_Oxidase_VIa 2 Subunit VIa/III interface 0 1 0 0 12,16,19,31,33,34,40,41,54,56,57,58,60,63,73,74,78 2 -238465 cd00925 Cyt_c_Oxidase_VIa 3 Subunit VIa/Vb interface 0 1 0 0 16 2 -238465 cd00925 Cyt_c_Oxidase_VIa 4 Subunit VIa/VIb interface 0 1 0 0 50,51,52,53 2 -238465 cd00925 Cyt_c_Oxidase_VIa 5 Subunit VIa/I (of dimer complex) interface 0 1 0 0 2,3,4,6,13,14,17,21 2 -238466 cd00926 Cyt_c_Oxidase_VIb 1 Subunit VIb/I interface 0 1 1 0 16 2 -238466 cd00926 Cyt_c_Oxidase_VIb 2 Subunit VIb/II interface 0 1 1 0 4,5,6,7,16,17,18,19,48,51,52,53,54,55,56,57 2 -238466 cd00926 Cyt_c_Oxidase_VIb 3 Subunit VIb/III interface 0 1 1 0 20,23,72 2 -238466 cd00926 Cyt_c_Oxidase_VIb 4 Subunit VIb/VIa interface 0 1 1 0 65,68,69,70 2 -238466 cd00926 Cyt_c_Oxidase_VIb 5 Subunit VIb/VIb interface 0 1 1 1 36,38,39,40,41,42,43 2 -238467 cd00927 Cyt_c_Oxidase_VIc 1 Subunit VIc/I interface 0 1 1 0 10 2 -238467 cd00927 Cyt_c_Oxidase_VIc 2 Subunit VIc/II interface 0 1 1 0 1,3,4,6,7,9,10,13,17,21,25,32,40,43,44,48,51,53,56,57,59,63,65,66,67,68,69 2 -238467 cd00927 Cyt_c_Oxidase_VIc 3 Subunit VIc/IV interface 0 1 1 0 43,44,48,56,59 2 -238467 cd00927 Cyt_c_Oxidase_VIc 4 Subunit VIc/Va interface 0 1 1 0 1,3,4,6,7 2 -238467 cd00927 Cyt_c_Oxidase_VIc 5 Subunit VIc/VIIb interface 0 1 1 0 63 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 1 Subunit VIIa/I interface 0 1 1 0 49,53 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 2 Subunit VIIa/III interface 0 1 1 0 4,7,8,11,12,19,20,27,30,34 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 3 Subunit VIIa/Vb interface 0 1 1 0 2,4,8,12 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 4 Subunit VIIa/VIIc interface 0 1 1 0 53 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 1 Subunit VIIc/I interface 0 1 1 0 2,3,4,6,8,9,11,14,15,17,27,30,31,32,35,36,38,41,42,45 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 2 Subunit VIIc/VIIa interface 0 1 1 0 41,45 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 3 Subunit VIIc/VIIIb interface 0 1 1 0 17,32,36,40 2 -238470 cd00930 Cyt_c_Oxidase_VIII 1 Subunit VIIIb/I interface 0 1 1 0 0,1,2,3,5,6,7,9,14,21,22,25,40 2 -238470 cd00930 Cyt_c_Oxidase_VIII 2 Subunit VIIIb/IV interface 0 1 1 0 3,22 2 -238470 cd00930 Cyt_c_Oxidase_VIII 3 Subunit VIIIb/VIIc interface 0 1 1 0 7,8,9,13,24,25,29,31,32,39 2 -238471 cd00933 barnase 1 active site 0 1 1 0 52,69,83,98 1 -269911 cd00934 PTB 1 peptide binding site 0 1 1 1 70,71,72,73,74,75,88,112,116 2 -269911 cd00934 PTB 2 phosphoinositide binding site 0 1 1 1 5,81,101 5 -238472 cd00935 GlyRS_RNA 1 tRNA binding site 0 0 1 1 10,12,15,20,25,29,37,45 3 -238473 cd00936 WEPRS_RNA 1 tRNA binding site 0 1 1 0 7,9,12,17,22,26,34,42 3 -238474 cd00938 HisRS_RNA 1 tRNA binding site 0 0 1 1 9,11,14,19,24,28,36,44 3 -238475 cd00939 MetRS_RNA 1 tRNA binding site 0 0 1 1 7,9,12,17,22,26,34,42 3 -188634 cd00945 Aldolase_Class_I 1 catalytic residue 0 1 1 1 146 1 -238476 cd00946 FBP_aldolase_IIA 1 active site 0 1 1 1 21,94,95,129,159,161,164,165,166,167,210,211,212,214,250,251,253,272,274,275 0 -238476 cd00946 FBP_aldolase_IIA 2 zinc binding site 0 1 1 1 95,129,159,166,211,250 4 -238476 cd00946 FBP_aldolase_IIA 3 Na+ binding site 0 1 1 1 210,212,214,251,253 4 -238476 cd00946 FBP_aldolase_IIA 4 intersubunit interface 0 1 0 1 24,25,26,29,50,53,54,55,73,77,80,81,167,275,276,278,279,282,286,289 2 -238477 cd00947 TBP_aldolase_IIB 1 active site 0 1 1 1 76,77,171,172,173,175,201,202,204,223,225,226 0 -238477 cd00947 TBP_aldolase_IIB 2 zinc binding site 0 1 1 1 77,172,201 4 -238477 cd00947 TBP_aldolase_IIB 3 Na+ binding site 0 1 1 1 171,173,175,202,204 4 -238477 cd00947 TBP_aldolase_IIB 4 intersubunit interface 0 1 0 1 21,22,23,26,46,49,50,51,55,59,62,63,136,226,227,229,230,233,237,240 2 -188635 cd00948 FBP_aldolase_I_a 1 active site 0 1 1 0 21,22,23,26,94,133,135,174,216,257,258,259,287,289,290 1 -188635 cd00948 FBP_aldolase_I_a 2 catalytic residue 0 1 1 1 216 1 -188635 cd00948 FBP_aldolase_I_a 3 intersubunit interface 0 1 0 0 97,148,151,152,155,159,162,190,194,197,204,205,207,211,244,245,247 2 -188636 cd00949 FBP_aldolase_I_bact 1 putative active site 0 0 1 0 17,18,19,22,99,136,138,173,210,235,236,237,257,259,260 1 -188636 cd00949 FBP_aldolase_I_bact 2 catalytic residue 0 0 1 1 210 1 -188637 cd00950 DHDPS 1 active site 0 0 1 0 42,43,131,136,159,184,186 1 -188637 cd00950 DHDPS 2 catalytic residue 0 0 1 1 159 1 -188637 cd00950 DHDPS 3 dimer interface 0 1 1 0 41,42,43,44,45,78,80,103,104,105,134,136,246,247,265,267 2 -188638 cd00951 KDGDH 1 putative active site 0 0 1 0 42,43,130,132,156,181 1 -188638 cd00951 KDGDH 2 catalytic residue 0 0 1 1 156 1 -188639 cd00952 CHBPH_aldolase 1 putative active site 0 0 1 0 46,49,50,51,140,168,211 1 -188639 cd00952 CHBPH_aldolase 2 catalytic residue 0 0 1 1 168 1 -188640 cd00953 KDG_aldolase 1 putative active site 0 0 1 0 41,42,126,155,179,181 1 -188640 cd00953 KDG_aldolase 2 catalytic residue 0 0 1 1 155 1 -188641 cd00954 NAL 1 active site 0 1 1 0 39,42,43,44,133,161,203 1 -188641 cd00954 NAL 2 catalytic residue 0 1 0 1 161 1 -188641 cd00954 NAL 3 inhibitor site 0 1 1 1 6,39,42,43,44,133,161 0 -188641 cd00954 NAL 4 dimer interface 0 1 1 1 43,48,49,80,81,105,106,113,117,268,269 2 -188642 cd00955 Transaldolase_like 1 putative active site 0 0 1 0 4,31,95,126,148,150,187,192 1 -188642 cd00955 Transaldolase_like 2 catalytic residue 0 0 1 1 126 1 -188643 cd00956 Transaldolase_FSA 1 active site 0 1 1 0 4,25,26,82,128,162 1 -188643 cd00956 Transaldolase_FSA 2 catalytic residue 0 1 1 0 82 1 -188643 cd00956 Transaldolase_FSA 3 intersubunit interactions 0 1 0 1 15,18,27,28,31,34,38,56,62,68,88,90,91,94,113,128,130,133,135,152,153,166,168,174,175,178,194,196,197,200,204,205,207,208 0 -188644 cd00957 Transaldolase_TalAB 1 active site 0 0 1 0 14,30,32,33,91,93,129,151,153,173,178 1 -188644 cd00957 Transaldolase_TalAB 2 catalytic residue 0 0 1 1 129 1 -188644 cd00957 Transaldolase_TalAB 3 dimer interface 0 1 0 0 101,278,281,285,286,292,295,299 2 188645 cd00958 DhnA 1 putative active site 0 0 1 0 176,179,201,202,203,223,224,225 0 188645 cd00958 DhnA 2 catalytic residue 0 0 1 1 176 1 -188646 cd00959 DeoC 1 active site 0 1 1 0 148,151,179,180,181,200,201,202 0 -188646 cd00959 DeoC 2 catalytic residue 0 0 1 1 148 1 -188646 cd00959 DeoC 3 intersubunit interface 0 1 0 0 9,11,13,37,38,39,60,68,73,78,79,80,81,90,92,111,112,126 2 -238478 cd00974 DSRD 1 non-heme iron binding site 0 1 1 1 6,9,25,26 4 -238478 cd00974 DSRD 2 dimer interface 0 1 1 0 11,12,13,14,16,17,19,21,22,23,24 2 -340364 cd00978 chitosanase_GH46 1 sugar binding site 0 1 1 0 13,14,15,16,26,30,32,34,37,41,42,43,44,49,116,143,144,145,146 5 -340364 cd00978 chitosanase_GH46 2 catalytic residues ED 0 1 1 14,32 1 -238480 cd00980 FwdC/FmdC 1 putative subunit interface 0 0 1 1 34,35,46,49,50,54,65,66,67,72,75,91,92,95,98,101,110,111,112,113,114,117,118,120,129,130,131,136,137,139,152,155,158 0 -238481 cd00981 arch_gltB 1 putative subunit interface 0 0 1 1 32,33,53,56,57,61,72,73,74,79,82,91,92,95,98,101,110,111,112,113,114,117,118,120,134,135,136,137,141,142,144,163,166,169 0 -238482 cd00982 gltB_C 1 domain interface 0 1 1 1 34,35,38,41,42,61,64,65,69,81,82,83,88,91,110,111,112,113,116,119,122,131,132,133,134,135,138,139,141,150,151,152,153,156,157,159,172,175,178,193,194,195,196 0 -238483 cd00983 recA 1 ATP binding site 0 1 1 1 63,64,65,66,67,68,69,91,95,98,139,189,222,235,257,258,259,260 5 -238483 cd00983 recA 2 Walker A motif 0 0 1 1 61,62,63,64,65,66,67,68 0 -238483 cd00983 recA 3 Walker B motif 0 0 0 1 135,136,137,138,139 0 -238483 cd00983 recA 4 hexamer interface 0 1 1 0 8,9,11,12,15,19,20,21,22,23,92,93,95,96,97,98,99,100,101,106,107,208,212,260,306 2 -238484 cd00984 DnaB_C 1 ATP binding site 0 0 1 1 25,26,129,170,206,228,239 5 -238484 cd00984 DnaB_C 2 Walker A motif 0 0 0 1 20,21,22,23,24,25,26 0 -238484 cd00984 DnaB_C 3 Walker B motif 0 0 0 1 126,127,128,129 0 -238484 cd00984 DnaB_C 4 DNA binding loops 0 0 1 0 134,135,142,143,144,169,170,171,172,173,174,175,176,177,205,206,218,219 3 -238485 cd00985 Maf_Ham1 1 putative active site 0 1 1 0 4,9,30,48,65 1 -238486 cd00986 PDZ_LON_protease 1 protein binding site 0 0 1 1 1,2,3,4,6,41,42,45,46 2 -238487 cd00987 PDZ_serine_protease 1 protein binding site 0 0 1 1 1,2,3,4,6,57,58,61,62 2 -238488 cd00988 PDZ_CTP_protease 1 protein binding site 0 0 1 1 2,3,4,5,7,52,53,56,57 2 -238489 cd00989 PDZ_metalloprotease 1 protein binding site 0 0 1 1 1,2,3,4,6,49,50,53,54 2 -238490 cd00990 PDZ_glycyl_aminopeptidase 1 protein binding site 0 0 1 1 1,2,3,4,50 2 -238491 cd00991 PDZ_archaeal_metalloprotease 1 protein binding site 0 0 1 1 8,9,10,11,13,46,47,50,51 2 -238492 cd00992 PDZ_signaling 1 protein binding site 0 1 1 1 12,13,14,15,17,65,66,69,70 2 -270215 cd00993 PBP2_ModA_like 1 chemical substrate binding site 0 1 1 0 6,7,35,54,116,117,143,144,162 5 -270216 cd00994 PBP2_GlnH 1 chemical substrate binding site 0 1 1 0 6,9,46,63,64,66,71,111,114,115,152,153 5 -270218 cd00997 PBP2_GluR0 1 peptide binding site 0 1 1 0 10,11,49,67,68,69,74,116,117,152,153,181 2 -270218 cd00997 PBP2_GluR0 2 dimer interface 0 1 1 0 51,109,123,128,129,130,131,132,133,137 2 -270219 cd00998 PBP2_iGluR_ligand_binding 1 peptide binding site 0 1 1 0 83,84,90,128,131,132,133,180,207 2 -270219 cd00998 PBP2_iGluR_ligand_binding 2 ligand binding site 0 1 1 0 98,99,100,101,102,226,234,235,238 5 -270219 cd00998 PBP2_iGluR_ligand_binding 3 dimer interface 0 1 1 0 38,87,88,91,96,97,98,99,204,222,223,226,227,228,233,236 2 -270220 cd00999 PBP2_ArtJ 1 chemical substrate binding site 0 1 1 0 10,12,13,17,51,68,69,70,71,76,116,119,120,121,157 5 -270221 cd01000 PBP2_Cys_DEBP_like 1 ligand binding site 0 1 1 0 14,17,61,76,83,125,126,163,164,191 5 -270221 cd01000 PBP2_Cys_DEBP_like 2 dimer interface 0 1 1 0 23,27,145,148 2 -270222 cd01001 PBP2_HisJ_LAO_like 1 ligand binding site 0 1 1 0 8,11,49,66,68,69,74,115,118,119,120,157 5 -270223 cd01002 PBP2_Ehub_like 1 chemical substrate binding site 0 1 0 0 18,21,57,74,75,77,82,126,129,130,131,169 5 -270224 cd01003 PBP2_YckB 1 ligand binding site 0 0 1 1 7,10,49,66,67,74,115,119,120,156 5 -270226 cd01005 PBP2_CysP 1 chemical substrate binding site 0 1 1 0 9,10,11,42,43,44,63,129,130,131,170,171,190 5 -270227 cd01006 PBP2_phosphate_binding 1 chemical substrate binding site 0 1 1 0 8,56,134,138,139,140,141,176 5 -270229 cd01008 PBP2_NrtA_SsuA_CpmA_like 1 chemical substrate binding site 0 1 1 0 7,40,85,109,114,156,157,160,185 5 -238493 cd01011 nicotinamidase 1 catalytic triad 0 0 1 0 7,105,150 1 -238493 cd01011 nicotinamidase 2 metal binding site 0 1 1 0 47,49,80 4 -238493 cd01011 nicotinamidase 3 conserved cis-peptide bond 0 0 1 1 145,146 0 -238494 cd01012 YcaC_related 1 catalytic triad 0 0 1 0 5,67,100 1 -238494 cd01012 YcaC_related 2 conserved cis-peptide bond 0 0 1 1 95,96 0 -238494 cd01012 YcaC_related 3 dimer interface 0 1 0 0 8,11,54 2 -238495 cd01013 isochorismatase 1 active site 0 1 1 0 35,77,86,121,150,154 1 -238495 cd01013 isochorismatase 2 hydrophobic substrate binding pocket 0 0 1 0 1,40,93,124,150,153,179 0 -238495 cd01013 isochorismatase 3 conserved cis-peptide bond 0 0 0 1 149,150 0 -238496 cd01014 nicotinamidase_related 1 catalytic triad 0 0 1 0 5,78,111 1 -238496 cd01014 nicotinamidase_related 2 conserved cis-peptide bond 0 0 1 1 106,107 0 -238497 cd01015 CSHase 1 catalytic triad 0 0 1 0 5,93,126 1 -238497 cd01015 CSHase 2 substrate binding site 0 1 1 1 5,10,93,126 5 -238497 cd01015 CSHase 3 domain interfaces 0 1 0 0 87,107,122,124,128,129,132,133,136,137,138,158,159,162,164 0 -238497 cd01015 CSHase 4 conserved cis-peptide bond 0 0 0 1 121,122 0 -238498 cd01016 TroA 1 metal binding site 0 1 1 1 35,101,167,247 4 -238498 cd01016 TroA 2 intersubunit interface 0 1 0 1 65,66,69,82,97,118,122,123 2 -238499 cd01017 AdcA 1 metal binding site 0 0 1 1 37,113,177,252 4 -238500 cd01018 ZntC 1 putative metal binding residues 0 0 1 1 36,112,176,246 4 -238501 cd01019 ZnuA 1 metal binding site 0 0 1 1 37,121,185,257 4 -238502 cd01020 TroA_b 1 metal binding site 0 0 1 1 37,95,159,235 4 -340365 cd01021 GEWL 1 sugar binding site 0 1 1 0 61,84,85,86,89,90,108,112,136,137,139 5 -340365 cd01021 GEWL 2 catalytic residues ED 0 1 1 61,86 1 -212096 cd01022 GH57N_like 1 active site 0 1 1 0 4,6,139,247,301,310 1 -212096 cd01022 GH57N_like 2 catalytic site ED 1 1 1 139,247 1 -173775 cd01025 TOPRIM_recR 1 putative active site 0 0 1 0 6,7,10,64,66,68 1 -173775 cd01025 TOPRIM_recR 2 putative metal-binding site 0 0 1 0 6,64 4 -173775 cd01025 TOPRIM_recR 3 tetramer interface 0 1 1 0 12,13,14,16,17,58,60,62,65,77,87,88,89,90,91,92,93,94,95,96,97,98,100,105,107,109,110,111 2 -173776 cd01026 TOPRIM_OLD 1 putative active site 0 0 1 0 9,10,13,62,64 1 -173776 cd01026 TOPRIM_OLD 2 putative metal-binding site 0 0 1 0 9,62 4 -173777 cd01027 TOPRIM_RNase_M5_like 1 putative active site 0 0 1 1 7,8,11,52,54,56 1 -173777 cd01027 TOPRIM_RNase_M5_like 2 putative metal binding site 0 0 1 1 7,52 4 -173778 cd01028 TOPRIM_TopoIA 1 active site 0 1 1 1 6,7,10,98,100,102 1 -173778 cd01028 TOPRIM_TopoIA 2 putative metal-binding site 0 0 1 1 98,100 4 -173778 cd01028 TOPRIM_TopoIA 3 nucleotide binding site 0 1 1 1 101 5 -173778 cd01028 TOPRIM_TopoIA 4 interdomain interaction site 0 1 1 0 13,99,101,108,109,111,112 0 -173779 cd01029 TOPRIM_primases 1 active site 0 0 1 1 6,7,10,50,52,54 1 -173779 cd01029 TOPRIM_primases 2 metal binding site 0 1 1 0 6,50 4 -173779 cd01029 TOPRIM_primases 3 interdomain interaction site 0 1 1 0 8,9,15,16,26 0 -173780 cd01030 TOPRIM_TopoIIA_like 1 active site 0 0 1 1 6,7,10,80,82,84 1 -173780 cd01030 TOPRIM_TopoIIA_like 2 putative metal-binding site 0 0 1 1 6,80 4 -238504 cd01031 EriC 1 Cl- selectivity filter 0 0 1 1 63,64,65,66,67,103,104,105,106,107,306,307,308,309,310,396 0 -238504 cd01031 EriC 2 Cl- binding residues 0 1 1 1 64,66,105,106,306,307,308,396 4 -238504 cd01031 EriC 3 pore gating glutamate residue 0 0 1 1 105 0 -238504 cd01031 EriC 4 dimer interface 0 1 1 0 150,159,170,177,354,357,365,377,384,385,388 2 -238504 cd01031 EriC 5 H+/Cl- coupling transport residue 0 0 1 1 159 0 -238505 cd01033 ClC_like 1 putative ion selectivity filter 0 0 1 1 63,64,65,66,67,102,103,104,105,106,302,303,304,305,306,385 0 -238505 cd01033 ClC_like 2 putative pore gating glutamate residue 0 0 1 1 104 0 -238506 cd01034 EriC_like 1 putative ion selectivity filter 0 0 1 1 52,53,54,55,56,97,98,99,100,101,304,305,306,307,308,388 0 -238506 cd01034 EriC_like 2 putative pore gating glutamate residue 0 0 1 1 99 0 -238506 cd01034 EriC_like 3 putative H+/Cl- coupling transport residue 0 0 1 1 154 0 -238507 cd01036 ClC_euk 1 putative Cl- selectivity filter 0 0 1 1 63,64,65,66,67,105,106,107,108,109,317,318,319,320,321,414 0 -238507 cd01036 ClC_euk 2 putative pore gating glutamate residue 0 0 1 1 107 0 -238508 cd01037 Restriction_endonuclease_like 1 putative active site 0 1 1 1 2,31,42,44 1 -238509 cd01038 Endonuclease_DUF559 1 putative active site 0 0 1 1 16,45,62,69 1 -271266 cd01040 Mb_like 1 heme binding site 0 1 1 0 32,33,51,54,55,58,79,82,83,88,92,93,96 5 -153100 cd01041 Rubrerythrin 1 binuclear metal center 0 1 1 1 12,15,19,45,48,83,84,87,118,121 4 -153101 cd01042 DMQH 1 diiron binding motif 0 0 1 1 11,41,44,93,126,129 4 -153102 cd01043 DPS 1 DPS ferroxidase diiron center 0 1 1 1 20,32,36,47,51 4 -153102 cd01043 DPS 2 ion pore 0 1 1 1 114,121,122 0 -153102 cd01043 DPS 3 dimerization interface 0 1 1 0 13,14,18,20,21,32,43,47,50,51 2 -153103 cd01044 Ferritin_CCC1_N 1 diiron binding motif 0 0 1 1 9,39,42,87,111,114 4 -153104 cd01045 Ferritin_like_AB 1 diiron binding motif 0 0 1 1 9,39,42,97,127,130 4 -153105 cd01046 Rubrerythrin_like 1 diiron binding motif 0 0 1 1 12,45,48,74,107,110 4 -153106 cd01047 ACSF 1 diiron binding motif 0 0 1 1 74,106,109,151,187,190 4 -153107 cd01048 Ferritin_like_AB2 1 diiron binding motif 0 0 1 1 11,38,41,93,123,126 4 -153108 cd01049 RNRR2 1 diiron center 0 1 1 1 58,89,92,155,189,192 4 -153108 cd01049 RNRR2 2 tyrosyl radical 0 1 1 1 96 0 -153108 cd01049 RNRR2 3 putative radical transfer pathway 0 1 1 1 22,58,89,92,96,187,188,192 0 -153108 cd01049 RNRR2 4 dimer interface 0 1 1 0 0,11,18,83,84,87,90,91,94,97,113,114,117 2 -153109 cd01050 Acyl_ACP_Desat 1 diiron center 0 1 1 1 70,105,108,158,190,193 4 -153109 cd01050 Acyl_ACP_Desat 2 homodimer interface 0 1 1 0 24,26,28,29,30,31,34,36,49,74,77,78,81,99,103,107,113,114,117,120,123,124,125,128,129,131,132,133,136,137,138,139,145 2 -153109 cd01050 Acyl_ACP_Desat 3 putative substrate binding pocket 0 0 1 1 69,76,79,80,101,153,154,157,161,225,226,234,238,247 5 -153110 cd01051 Mn_catalase 1 dimanganese center 0 1 1 1 34,65,68,110,143 4 -153111 cd01052 DPSL 1 diiron binding motif 0 0 1 1 17,50,53,104,136,139 4 -153112 cd01053 AOX 1 diiron binding motif 0 0 1 1 12,51,54,102,153,156 4 -153113 cd01055 Nonheme_Ferritin 1 ferroxidase diiron center 0 1 1 1 14,46,47,50,91,123,126,127 4 -153114 cd01056 Euk_Ferritin 1 ferroxidase diiron center 0 1 1 1 14,21,48,49,52,94,128 4 -153114 cd01056 Euk_Ferritin 2 ferrihydrite nucleation center 0 1 1 1 44,47,48,51 0 -153114 cd01056 Euk_Ferritin 3 iron ion channel 0 1 1 1 105,118,121 0 -153115 cd01057 AAMH_A 1 diiron center 0 1 1 1 89,119,122,181,215,218 4 -153115 cd01057 AAMH_A 2 dimerization interface 0 1 1 1 52,53,56,57,59,60,63,69,202,206,209 2 -153115 cd01057 AAMH_A 3 putative path to active site cavity 0 1 1 1 80,84,85,156,188,258,261,262,318,330,332 1 -153116 cd01058 AAMH_B 1 dimerization interface 0 1 1 1 67,68,71,72,74,75,78,79,85,86,88,210,214,217,221,226,230,233,234,236,239,240,243,292,296,297,299,300,301 2 -238511 cd01060 Membrane-FADS-like 1 putative di-iron ligands 0 0 1 1 19,23,55,58,59,114,117,118 4 -238512 cd01061 RNase_T2_euk 1 Active site 0 1 1 0 32,35,37,84,85,88,89 1 -238512 cd01061 RNase_T2_euk 2 CAS motifs 0 0 1 1 29,30,31,32,33,34,35,36,81,82,83,84,85,86,87,88,89,90,91,92 0 -238512 cd01061 RNase_T2_euk 3 B1 nucleotide binding pocket 0 0 1 0 4,35,166 5 -238512 cd01061 RNase_T2_euk 4 B2 nucleotide binding pocket 0 1 1 1 8,13,81,164 5 -238513 cd01062 RNase_T2_prok 1 Active site 0 0 1 1 37,40,42,80,81,84,85 1 -238513 cd01062 RNase_T2_prok 2 CAS motifs 0 0 1 1 34,35,36,37,38,39,40,41,77,78,79,80,81,82,83,84,85,86,87,88 0 -238513 cd01062 RNase_T2_prok 3 B1 nucleotide binding pocket 0 0 1 1 4,40,156 5 -238513 cd01062 RNase_T2_prok 4 B2 nucleotide binding pocket 0 0 1 1 8,13,77,154 5 -133443 cd01065 NAD_bind_Shikimate_DH 1 NAD(P) binding site 0 1 1 0 26,29,49,50,87,88,89,114,137,140,141 5 -133443 cd01065 NAD_bind_Shikimate_DH 2 shikimate binding site 0 1 1 0 1,116,141,144 0 -238514 cd01066 APP_MetAP 1 active site 0 1 0 0 61,78,89,153,182,196 1 -271267 cd01067 Globin_like 1 cofactor binding site 0 1 1 1 19,35,38,39,42,66,69,70,80,83 5 -271268 cd01068 globin_sensor 1 heme binding site 0 1 1 1 45,48,58,61,62,65,85,88,89,94,98,102,103,143 5 -271268 cd01068 globin_sensor 2 homodimer interface 0 1 1 0 6,7,8,38,96,97,98,100,101,104,107,129,130,133,134,137,141 2 -270232 cd01071 PBP2_PhnD_like 1 chemical substrate binding site 0 1 1 0 45,61,63,90,120,121,122,151,169,199 5 -270233 cd01072 PBP2_SMa0082_like 1 putative peptide binding site 0 0 1 1 19,22,63,78,85,127,128,166,167,194 2 -270233 cd01072 PBP2_SMa0082_like 2 putative dimer interface 0 0 1 1 28,32,148,151 2 -133444 cd01075 NAD_bind_Leu_Phe_Val_DH 1 NAD binding site 0 1 1 0 34,36,37,38,57,58,62,91,92,113,115 5 -133444 cd01075 NAD_bind_Leu_Phe_Val_DH 2 Phe binding site 0 1 1 0 145 0 -133445 cd01076 NAD_bind_1_Glu_DH 1 NAD(P) binding site 0 1 1 0 39,40,41,61,62,113,114,134,135,136 5 -133446 cd01078 NAD_bind_H4MPT_DH 1 NADP binding site 0 1 1 0 1,6,36,37,38,39,59,63,103,104,105,106,108,127,162 5 -133447 cd01079 NAD_bind_m-THF_DH 1 NAD binding site 0 1 1 1 68,69,70,92,93,132,133,134,154,156,175 5 -133447 cd01079 NAD_bind_m-THF_DH 2 putative homodimer interface 0 0 1 0 95,96,97,98,99,100,110,111,112,113,114 2 -133448 cd01080 NAD_bind_m-THF_DH_Cyclohyd 1 NADP binding site 0 1 1 1 26,51,52,74,75,94,96,99,114,116,151,154 5 -133448 cd01080 NAD_bind_m-THF_DH_Cyclohyd 2 substrate binding site 0 1 1 0 147,148,155 5 -133448 cd01080 NAD_bind_m-THF_DH_Cyclohyd 3 homodimer interface 0 1 1 1 9,10,13,43,45,51,60,61,64,67,68,69,70,71,72,74,76,77,86 2 -185695 cd01081 Aldose_epim 1 active site 0 1 1 0 50,75,146,148,201,239,252 1 -185695 cd01081 Aldose_epim 2 catalytic residues 0 1 1 0 146,252 1 -238517 cd01083 GAG_Lyase 1 substrate binding site 0 1 1 0 67,70,74,114,116,117,121,124,128,172,178,222,231,234,237,241,285,286,289,397,398 5 -238517 cd01083 GAG_Lyase 2 catalytic residues 0 0 1 1 172,222,231 1 -238518 cd01085 APP 1 active site 0 0 0 1 67,87,98,165,194,208 1 -238519 cd01086 MetAP1 1 active site 0 1 0 0 67,84,95,158,191,222 1 -238520 cd01087 Prolidase 1 active site 0 1 0 0 61,78,89,172,203,227 1 -238521 cd01088 MetAP2 1 active site 0 1 0 0 59,79,90,150,183,275 1 -238522 cd01089 PA2G4-like 1 active site 0 0 0 1 70,91,102,180,195,212 1 -238523 cd01090 Creatinase 1 active site 0 1 0 0 68,85,96,160,194,212 1 -238524 cd01091 CDC68-like 1 active site 0 0 0 1 69,89,107,172,202,226 1 -238525 cd01092 APP-like 1 active site 0 0 0 1 62,79,90,154,183,197 1 -238526 cd01093 CRIB_PAK_like 1 GTPase interaction site 0 1 1 1 2,5,8,10,13,30,34 2 -238527 cd01094 Alkanesulfonate_monoxygenase 1 active site 0 1 0 0 5,9,52,105,125,178,179,193,225,227 1 -238527 cd01094 Alkanesulfonate_monoxygenase 2 non-prolyl cis peptide bond 0 0 0 1 74,75 0 -238527 cd01094 Alkanesulfonate_monoxygenase 3 insertion regions 0 0 1 1 107,108,109,110,111,112,113,114,115,122,123,124,154,155,156,157,158,159,160,161,162,163,164,165,166,167,228,229,230,231,238,239,240,241,242,243 0 -238527 cd01094 Alkanesulfonate_monoxygenase 4 dimer interface 0 0 0 1 49,50,51,52,53,54,57,60,61,64,81,83,84,87,88,91,94,111,114,115,154,156,157,158,159,161,162 2 -238528 cd01095 Nitrilotriacetate_monoxgenase 1 active site 0 0 0 1 5,9,65,118,140,213,214 1 -238528 cd01095 Nitrilotriacetate_monoxgenase 2 non-prolyl cis peptide bond 0 0 0 1 87,88 0 -238529 cd01096 Alkanal_monooxygenase 1 active site 0 0 1 1 105,112,193,226,249 1 -238529 cd01096 Alkanal_monooxygenase 2 dimer interface 0 1 0 1 16,17,46,50,53,59,60,63,79,84,87,88,94,115,116,152,153,155,156,158,159,160 2 -238529 cd01096 Alkanal_monooxygenase 3 non-prolyl cis peptide bond 0 1 0 0 73,74 0 -238531 cd01098 PAN_AP_plant 1 putative binding site 0 0 1 1 22,24,39 0 -238532 cd01099 PAN_AP_HGF 1 putative binding site 0 1 1 1 18,20,32 0 -238533 cd01100 APPLE_Factor_XI_like 1 putative binding site 0 0 1 1 19,21,32 0 -238534 cd01102 Link_Domain 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -133379 cd01104 HTH_MlrA-CarA 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133380 cd01105 HTH_GlnR-like 1 DNA binding residues 0 0 1 1 2,3,4,18,35,36,37 3 -133380 cd01105 HTH_GlnR-like 2 putative dimer interface 0 0 1 1 49,52,56,57,66,69,73,79,83,86,87 2 -133381 cd01106 HTH_TipAL-Mta 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133381 cd01106 HTH_TipAL-Mta 2 dimer interface 0 0 1 1 48,51,55,56,65,77,81,87,91,94,95 2 -133382 cd01107 HTH_BmrR 1 DNA binding residues 0 1 1 1 1,2,3,17,35,36,37 3 -133382 cd01107 HTH_BmrR 2 drug binding residues 0 1 1 0 38 5 -133382 cd01107 HTH_BmrR 3 dimer interface 0 0 1 1 49,52,56,57,66,79,83,89,93,96,97 2 -133383 cd01108 HTH_CueR 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133383 cd01108 HTH_CueR 2 dimer interface 0 1 1 0 48,51,55,56,65,69,76,77,80,83,87,93,97,100,101,108,113,114,115,116,117,119,121,124,125 2 -133383 cd01108 HTH_CueR 3 copper binding site 0 1 1 1 76,111,119 4 -133384 cd01109 HTH_YyaN 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133384 cd01109 HTH_YyaN 2 putative dimer interface 0 0 1 1 48,51,55,56,65,83,87,93,97,100,101 2 -133385 cd01110 HTH_SoxR 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133385 cd01110 HTH_SoxR 2 dimer interface 0 0 1 1 48,51,55,56,65,84,88,94,98,101,102 2 -133385 cd01110 HTH_SoxR 3 [2Fe-2S] cluster binding site 0 0 1 1 108,111,113,119 4 -133386 cd01111 HTH_MerD 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133386 cd01111 HTH_MerD 2 putative dimer interface 0 0 1 1 48,51,55,56,65,84,88,94,98,101,102 2 -238535 cd01115 SLC13_permease 1 transmembrane helices 0 0 1 1 7,8,9,10,17,18,19,20,21,22,23,24,25,26,27,28,29,30,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,189,190,191,192,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,363,364,365,366,367,368,369,370,371,372,373,374,375 0 -238536 cd01116 P_permease 1 transmembrane helices 0 0 1 1 4,5,6,7,14,15,16,17,18,19,20,21,22,23,24,25,26,27,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,216,217,218,219,220,221,222,223,224,225,226,227,228,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,397,398,399,400,401,402,403,404,405,406,407,408,409 0 -238537 cd01117 YbiR_permease 1 transmembrane helices 0 0 1 1 0,1,2,3,12,13,14,15,16,17,18,19,20,21,22,23,24,25,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,209,210,211,212,213,214,215,216,217,218,219,220,221,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,369,370,371,372,373,374,375,376,377,378,379,380,381 0 -238538 cd01118 ArsB_permease 1 transmembrane helices 0 0 1 1 11,12,13,14,21,22,23,24,25,26,27,28,29,30,31,32,33,34,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,223,224,225,226,227,228,229,230,231,232,233,234,235,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,400,401,402,403,404,405,406,407,408,409,410,411,412 0 -238539 cd01119 Chemokine_CC_DCCL 1 DCCL motif 0 0 1 1 1,2,3,4 0 -238539 cd01119 Chemokine_CC_DCCL 2 tetramer interface 0 0 1 1 4,6,19,21,28,33,34,35,43,44,45,51,52,55,56,59,60 2 -238539 cd01119 Chemokine_CC_DCCL 3 dimer interface (I form) 0 0 1 1 6,19,21,33,35,43,45,51,52,55,56,59,60 2 -238539 cd01119 Chemokine_CC_DCCL 4 dimer interface (P form) 0 0 1 1 4,6,23,27,28,34,42,44 2 -238539 cd01119 Chemokine_CC_DCCL 5 putative receptor binding cleft 0 0 1 1 4,34,43 0 -238539 cd01119 Chemokine_CC_DCCL 6 putative receptor binding site 0 0 1 1 2,3,4,5,6,8,9,10,11,12,13,14,15,27,28,50,51,52,53,54,55,56,57,58,59,60 0 -238539 cd01119 Chemokine_CC_DCCL 7 putative glycosaminoglycan (GAG) binding site 0 0 1 1 8,9,10,13,14,15,39,41 5 -238539 cd01119 Chemokine_CC_DCCL 8 putative glycosaminoglycan (GAG) binding site 0 0 1 1 21,30,48,50,53,54,57 5 -238539 cd01119 Chemokine_CC_DCCL 9 N-loop 0 0 1 1 4,5,6,8,9,10,11,12,13,14,15 0 -238539 cd01119 Chemokine_CC_DCCL 10 30s-loop 0 0 1 1 27,28 0 -238539 cd01119 Chemokine_CC_DCCL 11 40s-loop 0 0 1 1 37,39 0 -238540 cd01120 RecA-like_NTPases 1 ATP binding site 0 1 1 1 6,10,11,12,31,33,34,91,92 5 -238540 cd01120 RecA-like_NTPases 2 Walker A motif 0 1 1 1 5,6,10,11,12 0 -238540 cd01120 RecA-like_NTPases 3 Walker B motif 0 0 0 1 87,88,89,90,91 0 -238541 cd01121 Sms 1 ATP binding site 0 0 1 1 89,93,94,95,114,116,164,165 5 -238541 cd01121 Sms 2 Walker A motif/ATP binding site 0 0 0 1 88,89,90,91,92,93,94,95 0 -238541 cd01121 Sms 3 Walker B motif 0 0 0 1 161,162,163,164 0 -238542 cd01122 GP4d_helicase 1 NTP binding site 0 1 1 1 42,43,146,188,227 5 -238542 cd01122 GP4d_helicase 2 Walker A motif 0 0 0 1 37,38,39,40,41,42,43 0 -238542 cd01122 GP4d_helicase 3 Walker B motif 0 0 0 1 143,144,145,146 0 -238542 cd01122 GP4d_helicase 4 DNA binding loops 0 0 1 0 151,152,160,161,162,189,190,191,192,193,203,226,227,237 3 -238543 cd01123 Rad51_DMC1_radA 1 ATP binding site 0 1 1 1 27,31,32,57,59,61,121 5 -238543 cd01123 Rad51_DMC1_radA 2 Walker A motif 0 0 0 1 25,26,27,28,29,30,31,32 0 -238543 cd01123 Rad51_DMC1_radA 3 Walker B motif 0 0 0 1 117,118,119,120,121 0 -238543 cd01123 Rad51_DMC1_radA 4 multimer (BRC) interface 0 1 1 1 56,58,66,69,84,87,88,90,101,102,103,104,105,106,108,150,153,154,157,158 0 -238544 cd01124 KaiC 1 ATP binding site 0 0 1 1 6,10,11,12,31,33,34,101,102 5 -238544 cd01124 KaiC 2 Walker A motif 0 0 1 1 5,6,7,8,9,10,11,12 0 -238544 cd01124 KaiC 3 Walker B motif 0 0 0 1 97,98,99,100,101 0 -238545 cd01125 repA 1 NTP binding site 0 0 1 1 10,12,13,14,49,58,117,156 5 -238545 cd01125 repA 2 Walker A motif 0 0 1 1 7,8,9,10,11,12,13,14 0 -238545 cd01125 repA 3 Walker B motif 0 0 0 1 113,114,115,116,117 0 -238545 cd01125 repA 4 hexamer interface 0 1 0 0 49,50,51,54,57,59,60,80,82,83,84,86,87,120,121,124,126,127,130,131,137,138,141,142,156,180,182 2 -238546 cd01126 TraG_VirD4 1 ATP binding site 0 0 1 1 7,8,9,10,11,12,29,31,32,269,270 5 -238546 cd01126 TraG_VirD4 2 Walker A motif 0 0 1 1 5,6,7,8,9,10,11,12 0 -238546 cd01126 TraG_VirD4 3 Walker B motif 0 0 0 1 265,266,267,268,269 0 -238547 cd01127 TrwB 1 ATP binding site 0 1 1 1 51,52,53,54,55,56,57,295 5 -238547 cd01127 TrwB 2 Walker A motif 0 0 1 1 48,49,50,51,52,53,54,55 0 -238547 cd01127 TrwB 3 Walker B motif 0 0 0 1 272,273,274,275,276 0 -238547 cd01127 TrwB 4 multimer interface 0 1 0 0 3,4,5,50,51,114,130,134,135,170,188,195,198,199,295,306,309,312,313,318,319,321,322,324,325,339,340,347,350,355,376,377,381,382,384,386,387,390,400 2 -238548 cd01128 rho_factor 1 ATP binding site 0 1 1 1 25,27,28,29,30,199 5 -238548 cd01128 rho_factor 2 Walker A motif 0 0 1 1 22,23,24,25,26,27,28,29 0 -238548 cd01128 rho_factor 3 Walker B motif 0 0 0 1 105,106,107,108,109 0 -238548 cd01128 rho_factor 4 multimer interface 0 1 0 0 17,128,139,142,143,146,149,152,177,178,180,181,182,183,184,186,210,211,225,229 2 -238549 cd01129 PulE-GspE 1 ATP binding site 0 0 1 1 87,91,92,93,112,114,115,155,156 5 -238549 cd01129 PulE-GspE 2 Walker A motif 0 0 1 1 86,87,88,89,90,91,92,93 0 -238549 cd01129 PulE-GspE 3 Walker B motif 0 0 1 1 151,152,153,154,155,156 0 -238550 cd01130 VirB11-like_ATPase 1 ATP binding site 0 1 1 1 3,34,35,36,37,38,39,178 5 -238550 cd01130 VirB11-like_ATPase 2 Walker A motif 0 0 1 1 31,32,36,37,38 0 -238550 cd01130 VirB11-like_ATPase 3 Walker B motif 0 0 1 1 102,103,104,105,106,107 0 -238550 cd01130 VirB11-like_ATPase 4 hexamer interface 0 1 0 0 33,34,53,61,68,69,70,71,73,74,97,98,99,101,114,118,121,122,132,133,134,138,141,173 2 -238551 cd01131 PilT 1 ATP binding site 0 0 0 1 10,12,13,14,15,81 5 -238551 cd01131 PilT 2 Walker A motif 0 0 1 1 7,8,9,10,11,12,13,14 0 -238551 cd01131 PilT 3 Walker B motif 0 0 1 1 76,77,78,79,80,81 0 -238552 cd01132 F1_ATPase_alpha 1 ATP binding site 0 1 1 1 77,81,82,83,101,106,167,168,171,226,242,255,260,261,271 5 -238552 cd01132 F1_ATPase_alpha 2 Walker A motif 0 0 0 1 75,76,77,78,79,80,81,82 0 -238552 cd01132 F1_ATPase_alpha 3 Walker B motif 0 0 0 1 163,164,165,166,167 0 -238552 cd01132 F1_ATPase_alpha 4 beta subunit interaction interface 0 1 0 1 21,22,38,39,41,42,45,47,77,78,107,108,109,110,112,113,116,177,178,184,185,186,188,189,194,198,201,205,242,245,256,257,260,271 2 -238553 cd01133 F1-ATPase_beta 1 ATP binding site 0 1 1 1 78,81,82,83,107,108,111,169,173,257,258 5 -238553 cd01133 F1-ATPase_beta 2 Walker A motif 0 0 0 1 76,77,78,79,80,81,82 0 -238553 cd01133 F1-ATPase_beta 3 Walker B motif 0 0 0 1 165,166,167,168,169 0 -238553 cd01133 F1-ATPase_beta 4 inhibitor binding site 0 1 1 1 255,257,263,264 0 -238553 cd01133 F1-ATPase_beta 5 alpha subunit interaction interface 0 1 0 1 23,40,42,43,45,47,108,109,110,113,135,136,137,142,173,176,180,186,187,188,190,191,196,200,207,224,227,228,232,239,241,242,243,254,255,264,265,267,269 2 -238554 cd01134 V_A-ATPase_A 1 Walker A motif/ATP binding site 0 0 0 1 163,164,165,166,167,168,169,170 0 -238554 cd01134 V_A-ATPase_A 2 Walker B motif 0 0 0 1 256,257,258,259,260 0 -238555 cd01135 V_A-ATPase_B 1 Walker A motif homologous position 0 0 0 1 75,76,77,78,79,80,81,82 0 -238555 cd01135 V_A-ATPase_B 2 Walker B motif 0 0 0 1 170,171,172,173 0 -238556 cd01136 ATPase_flagellum-secretory_path_III 1 Walker A motif/ATP binding site 0 0 0 1 76,77,78,79,80,81,82 0 -238556 cd01136 ATPase_flagellum-secretory_path_III 2 Walker B motif 0 0 0 1 161,162,163,164,165 0 -238557 cd01137 PsaA 1 metal binding site 0 1 1 1 51,117,183,258 4 -238558 cd01138 FeuA 1 putative ligand binding residues 0 0 1 1 16,17,34,53,72,74,153,187 5 -238559 cd01139 TroA_f 1 putative ligand binding residues 0 0 1 1 24,25,49,77,96,98,169,205 5 -238560 cd01140 FatB 1 putative ligand binding residues 0 0 1 1 19,20,38,59,78,80,160,190 5 -238561 cd01141 TroA_d 1 putative ligand binding site 0 0 1 1 45 5 -238562 cd01142 TroA_e 1 putative ligand binding residues 0 0 1 1 13,14,37,75,94,96,172,206 5 -238563 cd01143 YvrC 1 putative binding site residues 0 0 1 1 37 0 -238564 cd01144 BtuF 1 cobalamin binding residues 0 1 1 0 7,8,28,63,65,146,173 5 -238564 cd01144 BtuF 2 dimer interface 0 1 1 0 64,73,76,82,86,89,91,92,95,98,99 2 -238564 cd01144 BtuF 3 putative BtuC binding residues 0 1 1 1 50,179 0 -238565 cd01145 TroA_c 1 putative ligand binding site 0 0 1 1 36 5 -238566 cd01146 FhuD 1 siderophore binding site 0 1 1 0 35,52,53,74,155 0 -238567 cd01147 HemV-2 1 putative metal binding site 0 0 1 1 50 4 -238568 cd01148 TroA_a 1 putative ligand binding residues 0 0 1 1 54 5 -238569 cd01149 HutB 1 putative hemin binding site 0 0 1 1 35 0 -173839 cd01150 AXO 1 active site 0 1 1 1 107,137,138,139,140,177,178,179,233,283,291,407,426,427 1 -173839 cd01150 AXO 2 catalytic residue 0 0 1 1 427 1 -173839 cd01150 AXO 3 homodimer interface 0 1 1 1 54,55,59,63,142,143,144,145,146,147,149,176,177,183,184,211,225,226,227,228,229,230,232,233,313,315,324,329,330,331,336,396,399,404,405,407,409,417,418,421,431,484,488,489,491,492,600,606,607 2 -173839 cd01150 AXO 4 end of homology with other ACAD's 0 0 0 0 443 0 -173840 cd01151 GCD 1 FAD binding site 0 0 0 1 129,131,132,137,138,162,164,360,367,369 5 -173840 cd01151 GCD 2 substrate binding pocket 0 0 0 1 138,234,241,242,245,364,365 5 -173840 cd01151 GCD 3 catalytic base 0 0 1 1 365 1 -173841 cd01152 ACAD_fadE6_17_26 1 FAD binding site 0 0 0 1 120,122,123,128,129,153,155 5 -173841 cd01152 ACAD_fadE6_17_26 2 substrate binding site 0 0 0 0 129,177,363,364,375 5 -173841 cd01152 ACAD_fadE6_17_26 3 catalytic base 0 0 1 1 238 1 -173842 cd01153 ACAD_fadE5 1 FAD binding site 0 0 0 0 120,122,123,128,129,154,156,385,392,394 5 -173842 cd01153 ACAD_fadE5 2 substrate binding site 0 0 0 0 129,182,390,391 5 -173842 cd01153 ACAD_fadE5 3 catalytic residues 0 0 1 1 390,391 1 -173843 cd01154 AidB 1 FAD binding site 0 0 0 1 150,152,153,158,159,184,186,396,403,405 5 -173843 cd01154 AidB 2 substrate binding site 0 0 0 0 159,207,401,402,413 5 -173843 cd01154 AidB 3 catalytic residues 0 0 1 1 401,402 1 -173844 cd01155 ACAD_FadE2 1 FAD binding site 0 0 0 1 131,133,140,141,174,176 5 -173844 cd01155 ACAD_FadE2 2 substrate binding site 0 0 0 1 164,244,251,252,255,376,377 5 -173844 cd01155 ACAD_FadE2 3 catalytic base 0 0 1 1 377 1 -173845 cd01156 IVD 1 FAD binding site 0 1 1 0 119,121,122,127,128,152,154,361,363 5 -173845 cd01156 IVD 2 substrate binding site 0 1 1 1 81,85,89,128,154,175,229,236,239,242,354,355,358,359,360 5 -173845 cd01156 IVD 3 catalytic base 0 0 1 1 238 1 -173846 cd01157 MCAD 1 active site 0 1 1 0 83,87,117,119,120,125,126,150,152,229,236,237,240,308,310,355,358,359,360,362,364 1 -173846 cd01157 MCAD 2 catalytic base 0 0 1 1 360 1 -173846 cd01157 MCAD 3 homotetramer interface 0 1 0 0 0,1,2,62,123,150,197,198,199,200,256,259,265,268,273,275,276,277,279,280,283,284,286,290,294,295,297,298,301,311,312,329,333,340,341,342,351,354,357,358,367,368,371,374 2 -173847 cd01158 SCAD_SBCAD 1 FAD binding site 0 1 1 0 116,119,125,149,151,329,333,356 5 -173847 cd01158 SCAD_SBCAD 2 substrate binding pocket 0 1 1 0 125,126,229,232,233,236,264,356 5 -173847 cd01158 SCAD_SBCAD 3 homotetramer interface 0 1 0 1 121,126,149,192,193,194,195,196,261,264,273,277,278,280,283,291,314,325,329,334,336,338,339,343,346,347,350,351,353,360,363,366 2 -173847 cd01158 SCAD_SBCAD 4 catalytic base 0 0 1 1 356 1 -173848 cd01159 NcnH 1 Flavin binding site 0 0 0 1 127,129,351,359,361 5 -173849 cd01160 LCAD 1 FAD binding site 0 0 0 1 115,117,118,123,124,148,150,350,357,359 5 -173849 cd01160 LCAD 2 substrate binding pocket 0 0 0 1 124,225,232,236,354,355 5 -173849 cd01160 LCAD 3 catalytic base 0 0 1 1 235 1 -173850 cd01161 VLCAD 1 FAD binding site 0 0 0 1 141,143,144,149,150,176,178,384,391,393 5 -173850 cd01161 VLCAD 2 substrate binding pocket 0 0 0 1 150,256,263,264,267,388,389 5 -173850 cd01161 VLCAD 3 catalytic base 0 0 1 1 389 1 -173851 cd01162 IBD 1 FAD binding site 0 0 0 1 117,119,120,125,126,150,152,194,352,359,361 5 -173851 cd01162 IBD 2 substrate binding pocket 0 0 0 1 83,87,126,225,232,233,236,305,307,356,357 5 -173851 cd01162 IBD 3 catalytic base 0 0 1 1 357 1 -173852 cd01163 DszC 1 Flavin binding site 0 0 0 1 138,140 5 -238570 cd01164 FruK_PfkB_like 1 putative ATP binding site 0 0 1 1 163,181,183,219,225,249,251 5 -238570 cd01164 FruK_PfkB_like 2 putative substrate binding site 0 0 1 1 42,46,52,54,134 5 -238571 cd01166 KdgK 1 substrate binding site 0 1 1 1 31,32,35,87,101,103,132,165,253,256,292 5 -238571 cd01166 KdgK 2 ATP binding site 0 1 1 0 224,229,244,253,254,255,258,280,284 5 -238572 cd01167 bac_FRK 1 putative ATP binding site 0 0 1 1 187,218,245,248,249,252 5 -238572 cd01167 bac_FRK 2 putative substrate binding site 0 0 1 1 32,247,250 5 -238573 cd01168 adenosine_kinase 1 substrate binding site 0 1 1 0 8,10,12,32,54,55,56,59,110,122,124,126,153,184,268,269,272 5 -238573 cd01168 adenosine_kinase 2 ATP binding site 0 1 1 1 239,241,242,245,256,258,264,267,270,271,274,299,303 5 -238574 cd01169 HMPP_kinase 1 substrate binding site 0 1 1 0 6,18,39,75,207 5 -238574 cd01169 HMPP_kinase 2 ATP binding site 0 1 1 0 100,137,170,204,206 5 -238574 cd01169 HMPP_kinase 3 dimer interface 0 1 0 0 0,7,9,10,12,16,19,20,23,26,27,28,29,30,31,33,36,37,38,39,40,45,46,48,50,51,54,57,61,62 2 -238575 cd01170 THZ_kinase 1 ATP binding site 0 1 1 0 84,111,113,116,158,160,162,180,186,188 5 -238575 cd01170 THZ_kinase 2 substrate binding site 0 1 1 1 15,17,23,27,33,35,55,57,58 5 -238575 cd01170 THZ_kinase 3 multimerization interface 0 1 0 0 16,17,18,19,20,21,23,24,27,35,36,37,38,40,41,44,45,57,58,59,60,93,94,181,182,183,184,230,231,233,234,235,237,238,241 2 -238576 cd01171 YXKO-related 1 putative ATP binding site 0 0 1 1 134,171,199,200,203,229 5 -238576 cd01171 YXKO-related 2 putative substrate binding site 0 0 1 1 25,198,201 5 -238577 cd01172 RfaE_like 1 putative ribose interaction site 0 0 1 0 6,8,39,40,43,62,64,254,256,257 5 -238577 cd01172 RfaE_like 2 putative ADP binding site 0 0 1 0 187,190,224,226,245,247,282,284,288 5 -238578 cd01173 pyridoxal_pyridoxamine_kinase 1 pyridoxal binding site 0 1 1 0 6,13,14,37,40,41,46,79,81,213,214,217 5 -238578 cd01173 pyridoxal_pyridoxamine_kinase 2 ATP binding site 0 1 1 0 108,113,140,142,145,178,179,188,203,205,206,212,215,216,217,219,244,248 5 -238578 cd01173 pyridoxal_pyridoxamine_kinase 3 dimer interface 0 1 0 0 0,7,9,10,12,16,20,23,28,29,30,31,32,33,36,39,48,49,51,58,59,66 2 -238579 cd01174 ribokinase 1 substrate binding site 0 1 1 0 8,10,35,36,37,40,92,94,104,106,137,245,246,249,285 5 -238579 cd01174 ribokinase 2 ATP binding site 0 1 1 0 181,217,218,219,222,235,241,244,247,248,251,273,276,277,280 5 -238579 cd01174 ribokinase 3 dimer interface 0 1 1 0 11,13,18,19,20,21,22,23,24,37,91,93,94,95,101,102,103,104,105,106,107,108,163 2 -238582 cd01177 IPT_NFkappaB 1 DNA binding site 0 1 1 0 24,26,57,58 3 -238582 cd01177 IPT_NFkappaB 2 ankyrin protein binding site 0 1 1 1 1,3,4,5,7,8,9,49,50,51,64,76,95,98,100 2 -238582 cd01177 IPT_NFkappaB 3 dimerization interface 0 1 1 0 3,4,6,19,21,23,56,57,60,62 2 -238583 cd01178 IPT_NFAT 1 DNA binding sites 0 1 1 1 24,88 3 -271183 cd01182 INT_RitC_C_like 1 active site 0 0 0 1 35,135,138,139,170 1 -271184 cd01184 INT_C_like_1 1 active site 0 0 0 1 37,141,144,145,177 1 -271185 cd01185 INTN1_C_like 1 active site 0 0 0 1 32,117,120,121,152 1 -271186 cd01186 INT_tnpA_C_Tn554 1 active site 0 0 0 1 31,136,139,140,172 1 -271187 cd01187 INT_tnpB_C_Tn554 1 active site 0 0 0 1 27,104,107,108,139 1 -271188 cd01188 INT_RitA_C_like 1 active site 0 0 0 1 34,130,133,134,165 1 -271189 cd01189 INT_ICEBs1_C_like 1 active site 0 0 0 1 30,108,111,112,144 1 -271189 cd01189 INT_ICEBs1_C_like 2 dimer interface 0 1 0 0 3,4,7,23,78,80,117,118,121,122,131 2 -271190 cd01190 INT_StrepXerD_C_like 1 active site 0 0 0 1 31,113,116,117,148 1 -271191 cd01191 INT_C_like_2 1 active site 0 0 0 1 34,122,125,126,157 1 -271192 cd01192 INT_C_like_3 1 active site 0 0 0 1 38,131,134,135,166 1 -271193 cd01193 INT_IntI_C 1 active site 0 0 1 1 35,137,140,141,172 1 -271193 cd01193 INT_IntI_C 2 DNA binding site 0 1 1 0 0,35,36,37,60,61,63,118,133,135,136,137,140,141,163,164,165,167,168,172 3 -271193 cd01193 INT_IntI_C 3 tetramer interface 0 1 1 0 7,11,30,31,48,50,51,52,55,56,57,62,63,64,65,66,68,69,70,71,73,143,147,150,153,154,155,156,159,160,167,170 2 -271194 cd01194 INT_C_like_4 1 active site 0 0 0 1 36,136,139,140,171 1 -271195 cd01195 INT_C_like_5 1 active site 0 0 0 1 34,128,131,132,164 1 -271196 cd01196 INT_C_like_6 1 active site 0 0 0 1 34,135,138,139,170 1 -271197 cd01197 INT_FimBE_like 1 active site 0 0 0 1 40,134,137,138,169 1 -238605 cd01200 WHEPGMRS_RNA 1 putative tRNA binding site 0 1 1 0 6,8,11,16,21,25,33,41 3 -269913 cd01202 PTB_FRS2 1 phosphopeptide binding site 0 1 1 1 10,11,12,13,18,21,32,34,35,40,42,45,47,48,49,50,51,52,53,54,56,58,59,67,70,71,72,73,74,83,87,90 2 -269914 cd01203 PTB_DOK1_DOK2_DOK3 1 phosphopeptide binding site 0 1 1 0 48,49,50,51,52,53,54,55,56,62,66,67,87,94,97 2 -269914 cd01203 PTB_DOK1_DOK2_DOK3 2 putative phosphoinositide binding site 0 0 1 1 10,16 5 -269915 cd01204 PTB_IRS 1 phosphopeptide binding site 0 1 1 0 50,51,52,53,54,55,56,57,58,59,60,64,68,69,79,89,92,96,99,100,102,103 2 -269915 cd01204 PTB_IRS 2 phosphoinositide binding site 0 0 1 0 9,11,17 5 -269916 cd01205 EVH1_WASP-like 1 proline-rich peptide binding site 0 1 1 1 9,11,18,69,71 2 -269916 cd01205 EVH1_WASP-like 2 WAS mutation hotspots 0 1 1 0 0,2,7,11,28,30,37,39,41,54,66,74,80 0 -269917 cd01206 EVH1_Homer_Vesl 1 proline-rich peptide binding site 0 1 1 1 21,67,71,86 2 -269918 cd01207 EVH1_Ena_VASP-like 1 proline-rich peptide binding site 0 1 1 1 11,18,64,66,72,74,76 2 -269919 cd01208 PTB_X11 1 peptide binding site 0 1 1 1 30,79,82,83,84,85,86,87,138,149,152 2 -269919 cd01208 PTB_X11 2 putative phosphoinositide binding site 0 0 1 1 12,90,130 5 -269920 cd01209 PTB_Shc 1 phosphopeptide binding site 0 1 1 1 30,31,32,33,38,111,112,113,114,115,116,117,118,119,131,137,150,153,154,156,157,160,161,164,165,166,167,169 2 -269920 cd01209 PTB_Shc 2 phosphoinositide binding site 0 0 1 0 74,78,101 5 -269921 cd01210 PTB_EPS8 1 putative phosphoinositide binding site 0 0 1 1 7,86,106 5 -269921 cd01210 PTB_EPS8 2 putative peptide binding site 0 0 1 1 72,73,74,75,76,77,93,116,120 2 -269922 cd01211 PTB_Rab6GAP 1 putative phosphoinositide binding site 0 0 1 1 6,84,104 5 -269922 cd01211 PTB_Rab6GAP 2 putative peptide binding site 0 0 1 1 70,71,72,73,74,75,91,112,116 2 -269923 cd01212 PTB_JIP 1 putative phosphoinositide binding site 0 0 1 1 7,92,112 5 -269923 cd01212 PTB_JIP 2 putative peptide binding site 0 0 1 1 81,82,83,84,85,86,99,121,125 2 -269924 cd01213 PTB_tensin 1 putative phosphoinositide binding site 0 0 1 1 6,94,115 5 -269924 cd01213 PTB_tensin 2 putative peptide binding site 0 0 1 1 70,71,72,73,74,75,101,124,128 2 -269925 cd01214 PTB_FAM43A 1 putative phosphoinositide binding site 0 0 1 1 10,84,107 5 -269925 cd01214 PTB_FAM43A 2 putative peptide binding site 0 0 1 1 73,74,75,76,77,78,91,118,122 2 -269926 cd01215 PTB_Dab 1 phosphoinositide binding site 0 1 1 0 20,51,53,54,96,114 5 -269926 cd01215 PTB_Dab 2 peptide binding site 0 1 1 1 31,82,83,84,85,86,103,123,126,127,130 2 -241252 cd01217 PTB_CG12581 1 putative phosphoinositide binding site 0 0 1 1 10,118,139 5 -241252 cd01217 PTB_CG12581 2 putative peptide binding site 0 0 1 1 78,79,80,81,82,83,125,150,154 2 -269933 cd01226 PH_RalBD_exo84 1 RalA binding site 0 1 1 0 18,19,21,59,60,61,62,63,64,65,66,67,68,70,78,80,81,82,104,107,111,114 2 -269933 cd01226 PH_RalBD_exo84 2 homodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 2 -269934 cd01227 PH_Dbs 1 heterodimer interface 0 1 1 0 64,66 2 -269943 cd01237 PH_fermitin 1 phosphoinositide binding site 0 1 1 0 8,10,12,16,17,18,20,33,35,46 5 -269944 cd01238 PH_Btk 1 phosphoinositide binding site 0 1 1 1 6,8,9,11,12,18,22,45 5 -269944 cd01238 PH_Btk 2 Zn binding site 0 1 1 1 112,123,124,134 4 -269944 cd01238 PH_Btk 3 homodimer interface 0 1 1 1 2,3,21,22,23,36,85 2 -269946 cd01240 PH_GRK2_subgroup 1 G-beta gamma binding site 0 1 1 1 0,3,4,5,32,33,34,47,49,51,101,104,105,108,109,110,111,112,114,115 2 -269947 cd01241 PH_PKB 1 phosphoinositide binding site 0 1 1 1 10,12,13,14,15,19,21,47,48,50,81 5 -241282 cd01251 PH2_ADAP 1 putative phosphoinositide binding site 0 0 1 1 9,17,19,21,32,42,79 5 -269954 cd01252 PH_GRP1-like 1 phosphoinositide binding site 0 1 1 0 10,13,17,19,21,32,42,79,90,91 5 -269954 cd01252 PH_GRP1-like 2 heterodimer interface 0 1 1 0 0,27,29,31,41,44,46,76,77,78,80,83,84,85,86,87,88,118 2 -269955 cd01253 PH_ARHGAP21-like 1 ARF1 binding site 0 1 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 2 -269958 cd01256 PH_dynamin 1 homodimer interface 0 1 1 1 2,4,5,7,24,93,94,97,100,101,104 2 -269960 cd01258 PHsplit_syntrophin 1 phosphoinositide binding residues 0 0 1 1 6,15,68 5 -241293 cd01262 PH_PDK1 1 phosphoinositide binding site 0 1 1 1 24,26,31,33,45,54,80 5 -241298 cd01268 PTB_Numb 1 peptide binding site 0 1 1 1 32,82,83,84,85,121,125,128,132 2 -241298 cd01268 PTB_Numb 2 putative phosphoinositide binding site 0 0 1 1 19,91,111 5 -269967 cd01269 PTB_TBC1D1_like 1 putative phosphoinositide binding site 0 0 1 1 12,101,124 5 -269967 cd01269 PTB_TBC1D1_like 2 putative peptide binding site 0 0 1 1 90,91,92,93,94,95,108,135,139 2 -269968 cd01270 PTB_CAPON-like 1 putative phosphoinositide binding site 0 0 1 1 33,120,140 5 -269968 cd01270 PTB_CAPON-like 2 putative peptide binding site 0 0 1 1 109,110,111,112,113,114,127,151,155 2 -269969 cd01271 PTB2_Fe65 1 peptide binding site 0 1 1 1 22,24,72,73,75,76,77,78,79,80,81,82,84,92,98,108,110,113,117,120,121,123,124 2 -269969 cd01271 PTB2_Fe65 2 putative phosphoinositide binding site 0 0 1 1 11,85,104 5 -269970 cd01272 PTB1_Fe65 1 phosphoinositide binding site 0 1 1 0 15,83,100 5 -269970 cd01272 PTB1_Fe65 2 putative peptide binding site 0 0 1 1 82,83,84,85,86,87,100,122,126 2 -269971 cd01273 PTB_CED-6 1 putative phosphoinositide binding site 0 0 1 1 16,95,115 5 -269971 cd01273 PTB_CED-6 2 putative peptide binding site 0 0 1 1 84,85,86,87,88,89,102,124,128 2 -269972 cd01274 PTB_Anks 1 putative phosphoinositide binding site 0 0 1 1 19,94,114 5 -269972 cd01274 PTB_Anks 2 putative peptide binding site 0 0 1 1 83,84,85,86,87,88,101,125,129 2 -238606 cd01275 FHIT 1 nucleotide binding site/active site 0 1 1 0 25,27,28,35,37,83,90,92,96,98 1 -238606 cd01275 FHIT 2 HIT family signature motif 0 0 1 1 94,96,98,99,100 0 -238606 cd01275 FHIT 3 catalytic residue 0 1 1 0 96 1 -238607 cd01276 PKCI_related 1 nucleotide binding site/active site 0 1 1 0 25,27,28,35,37,84,91,93,97,99 1 -238607 cd01276 PKCI_related 2 HIT family signature motif 0 0 1 1 95,97,99,100,101 0 -238607 cd01276 PKCI_related 3 catalytic residue 0 0 1 0 97 1 -238608 cd01277 HINT_subgroup 1 HIT family signature motif 0 0 1 1 94,96,98,99,100 0 -238608 cd01277 HINT_subgroup 2 catalytic residue 0 0 1 0 96 1 -238609 cd01278 aprataxin_related 1 HIT family signature motif 0 0 1 1 96,98,100,101,102 0 -238609 cd01278 aprataxin_related 2 catalytic residue 0 0 1 0 98 1 -133387 cd01279 HTH_HspR-like 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133387 cd01279 HTH_HspR-like 2 putative dimer interface 0 0 1 1 48,51,56,57,66,76,80,86,90,93,94 2 -133388 cd01282 HTH_MerR-like_sg3 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133388 cd01282 HTH_MerR-like_sg3 2 putative dimer interface 0 0 1 1 47,50,54,55,64,85,89,95,99,102,103 2 -238610 cd01283 cytidine_deaminase 1 active site 0 1 0 0 17,19,35,37,46,47,48,79,82 1 -238610 cd01283 cytidine_deaminase 2 catalytic motif 0 0 1 0 46,47,48,78,79,82 1 -238610 cd01283 cytidine_deaminase 3 Zn binding site 0 1 1 1 46,48,79,82 4 -238611 cd01284 Riboflavin_deaminase-reductase 1 catalytic motif 0 0 1 0 44,45,46,69,70,79 1 -238611 cd01284 Riboflavin_deaminase-reductase 2 Zn binding site 0 0 1 1 44,46,70,79 4 -238612 cd01285 nucleoside_deaminase 1 nucleoside/Zn binding site 0 1 0 0 18,35,46,47,48,76,79 0 -238612 cd01285 nucleoside_deaminase 2 dimer interface 0 1 1 0 44,49,53,77,78,81,82,85,86 2 -238612 cd01285 nucleoside_deaminase 3 catalytic motif 0 0 1 0 46,47,48,75,76,79 1 -238613 cd01286 deoxycytidylate_deaminase 1 catalytic motif 0 0 1 0 38,69,71,96,97,100 1 -238613 cd01286 deoxycytidylate_deaminase 2 Zn binding site 0 0 1 1 69,71,97,100 4 -238614 cd01287 FabA 1 active site 1 0 1 0 0 0,1,2,58,61,62,65,66,84,85,86,87 1 -238614 cd01287 FabA 2 active site 2 0 1 0 0 51,52,53,94,95,96,97 1 -238614 cd01287 FabA 3 dimer interface 0 1 0 0 1,3,54,58,84,85,86,87,88,89,90,91,92,94,96,97 2 -238616 cd01289 FabA_like 1 putative active site 1 0 0 1 1 4,5,6,53,56,57,60,61,78,79,80,81 1 -211324 cd01291 PseudoU_synth 1 active site 0 1 1 1 29,30,31,32,79 1 -238617 cd01292 metallo-dependent_hydrolases 1 active site 0 1 0 0 4,6,151,179,233 1 -238618 cd01293 Bact_CD 1 active site 0 1 1 0 54,56,207,210,239,306 1 -238619 cd01294 DHOase 1 active site 0 1 1 0 9,11,94,131,168,241 1 -238619 cd01294 DHOase 2 substrate binding pocket 0 1 1 0 13,212,213,243,245,257,258 5 -238619 cd01294 DHOase 3 dimer interface 0 1 1 0 141,142,143,144,198,199,211,218,253,254,255 2 -238620 cd01295 AdeC 1 active site 0 0 0 1 14,16,139,160,209 1 -238621 cd01296 Imidazolone-5PH 1 active site 0 0 0 1 42,44,211,214,234,285 1 -238622 cd01297 D-aminoacylase 1 active site 0 1 1 1 58,60,87,217,247,305 1 -238622 cd01297 D-aminoacylase 2 putative substrate binding pocket 0 1 0 0 249,281,287,305 5 -238623 cd01298 ATZ_TRZ_like 1 active site 0 1 0 0 61,63,212,215,249,300 1 -238623 cd01298 ATZ_TRZ_like 2 putative substrate binding pocket 0 1 0 0 87,90,120,121,143,144 5 -238624 cd01299 Met_dep_hydrolase_A 1 active site 0 0 0 1 18,20,178,198,270 1 -238625 cd01300 YtcJ_like 1 active site 0 0 0 1 43,45,313,345,409 1 -238626 cd01301 rDP_like 1 active site 0 1 0 0 5,7,46,106,173,194,205,263,266 1 -238626 cd01301 rDP_like 2 dimer interface 0 1 0 0 48,60,61,62,64,65,68,72,116,117,119,120,123,124 2 -238627 cd01302 Cyclic_amidohydrolases 1 active site 0 1 0 0 10,12,98,133,152,225 1 -238627 cd01302 Cyclic_amidohydrolases 2 tetramer interface 0 1 0 0 136,139,281 2 -238628 cd01303 GDEase 1 active site 0 0 0 1 70,72,227,230,266,317 1 -238629 cd01304 FMDH_A 1 active site 0 0 0 1 54,56,229,265,379 1 -238630 cd01305 archeal_chlorohydrolases 1 active site 0 0 0 1 9,11,143,169,220 1 -238631 cd01306 PhnM 1 active site 0 0 0 1 7,9,181,253 1 -238632 cd01307 Met_dep_hydrolase_B 1 active site 0 0 0 1 39,41,167,190,250 1 -238633 cd01308 Isoaspartyl-dipeptidase 1 active site 0 1 1 0 59,61,65,66,68,97,153,193,222,283,287 1 -238633 cd01308 Isoaspartyl-dipeptidase 2 dimer interface 0 1 1 1 22,23,27,28,30,105,108,112,135,141,145,147,349 2 -238634 cd01309 Met_dep_hydrolase_C 1 active site 0 0 0 1 34,36,197,222,278 1 -238635 cd01310 TatD_DNAse 1 active site 0 0 0 1 4,6,126,150,200 1 -238636 cd01311 PDC_hydrolase 1 active site 0 0 0 1 5,7,124,152,219 1 -238637 cd01312 Met_dep_hydrolase_D 1 active site 0 0 0 1 36,38,181,236,287 1 -238638 cd01313 Met_dep_hydrolase_E 1 active site 0 0 0 1 47,49,224,261,312 1 -238639 cd01314 D-HYD 1 active site 0 1 1 0 56,58,147,180,236,312 1 -238639 cd01314 D-HYD 2 tetramer interface 0 1 1 0 11,12,14,27,28,162,183,186,189,212,216,220,223,250,251,253,254,370,375,380 2 -238640 cd01315 L-HYD_ALN 1 active site 0 1 0 0 57,59,180,236,309 1 -238641 cd01316 CAD_DHOase 1 active site 0 0 0 1 11,13,96,130,154,223 1 -238642 cd01317 DHOase_IIa 1 active site 0 0 0 1 19,21,138,191,264 1 -238643 cd01318 DHOase_IIb 1 active site 0 0 0 1 11,13,126,177,247 1 -238644 cd01319 AMPD 1 active site 0 0 0 1 63,65,331,334,353,408,409 1 -238645 cd01320 ADA 1 active site 0 1 1 0 7,9,191,194,215,272,273 1 -238645 cd01320 ADA 2 purine riboside binding site 0 1 1 0 9,11,164,194,272,273 5 -238646 cd01321 ADGF 1 active site 0 0 0 1 30,32,199,202,227,284,285 1 -238648 cd01327 KAZAL_PSTI 1 protease interaction site 0 1 0 1 6 0 -238648 cd01327 KAZAL_PSTI 2 protease cleavage site 0 0 1 0 6,7 0 -238649 cd01328 FSL_SPARC 1 N-glycosylation site 0 1 1 1 43 6 -176461 cd01334 Lyase_I 1 active sites 0 1 1 1 79,80,125,126,257 1 -176461 cd01334 Lyase_I 2 tetramer interface 0 1 1 0 124,125,126,127,128,129,131,137,144,152,170,205,209,223,227,256,262,266,269,270,273,277,280,295 2 -100105 cd01335 Radical_SAM 1 FeS/SAM binding site 0 1 1 0 6,8,10,12,13,14,50,52,53,79,80,81,104,145,176,177 0 -133421 cd01336 MDH_cytoplasmic_cytosolic 1 NAD binding site 0 1 1 0 8,10,11,12,13,39,84,85,86,87,105,126,128,152,184,238 5 -133421 cd01336 MDH_cytoplasmic_cytosolic 2 malate binding site 0 1 1 0 89,95,128,155,159,184,232,239 5 -133421 cd01336 MDH_cytoplasmic_cytosolic 3 dimer interface 0 1 1 0 15,52,53,55,56,57,158,159,162,227,230,234,235,239,240,241,242,245 2 -133422 cd01337 MDH_glyoxysomal_mitochondrial 1 NAD binding site 0 1 1 0 8,9,10,11,32,74,76,77,88,92,95,115,117,144,147,175,222,226 5 -133422 cd01337 MDH_glyoxysomal_mitochondrial 2 dimerization interface 0 1 1 0 13,41,42,44,45,46,150,151,154,208,211,215,216,222,223,224,225,228 2 -133422 cd01337 MDH_glyoxysomal_mitochondrial 3 Substrate binding site 0 1 1 0 79,85,117,151,175,209 5 -133423 cd01338 MDH_choloroplast_like 1 NAD(P) binding site 0 1 1 0 8,11,12,13,39,40,86,126,128,152,184 5 -133423 cd01338 MDH_choloroplast_like 2 malate binding site 0 0 1 1 89,95,156,159,184,235 5 -133423 cd01338 MDH_choloroplast_like 3 dimer interface 0 1 1 0 15,19,20,23,25,45,46,49,52,53,55,56,57,158,159,162,166,223,229,230,231,235,236,237,238,241 2 -133424 cd01339 LDH-like_MDH 1 NAD(P) binding site 0 1 1 1 6,7,8,28,29,72,73,74,75,93,113,115,138,142,170 5 -133424 cd01339 LDH-like_MDH 2 substrate binding site 0 1 1 0 83,115,146,170,208,220 5 -133424 cd01339 LDH-like_MDH 3 dimer interface 0 1 1 1 10,15,18,32,33,36,39,40,42,43,47,49,50,51,145,146,148,150,214,221,222,223,226,227,230 2 -133424 cd01339 LDH-like_MDH 4 tetramer (dimer of dimers) interface 0 1 1 0 49,51,156,161,163,165,182,184,185,186,237,239,240,241,242,268,277 2 -238651 cd01341 ADP_ribosyl 1 nad+ binding pocket 0 1 0 0 2,3,4,5,6,9,13,17,18,19,21,36,37,38,48,122 5 -238656 cd01346 Maltoporin-like 1 trimer interface 0 1 0 0 2,8,10,11,12,39,40,41,57,59,63,64,65,67,84,85,87,88,89,91,103,105,106,107,109,126,127,128,129,130,146,147,148,149,150,163,165,303,338,339,348,350,385,387,389,391 0 -238656 cd01346 Maltoporin-like 2 sugar binding site 0 1 0 0 7,40,42,85,109,112,119,121,124 5 -238657 cd01347 ligand_gated_channel 1 N-terminal plug 0 0 0 1 0,1,2,3,4,5,6,7,8,9,19,20,21,22,23,24,25,26,27,28,40,41,42,43,44,45,52,53,54,55,56,57,58,59,75,76,77,78,79,80,81,82,83,84,85,97,98,99,100,101,102,103,104,105 0 -238657 cd01347 ligand_gated_channel 2 ligand-binding site 0 1 0 0 267,294 5 -153129 cd01351 Aconitase 1 ligand binding site 0 1 1 0 92,275,335,338,339,357 5 -153129 cd01351 Aconitase 2 substrate binding site 0 1 1 0 4,7,90,91,339,358,363 5 -153130 cd01355 AcnX 1 ligand binding site 0 0 1 1 131,285,342,345,346,357 5 -153130 cd01355 AcnX 2 substrate binding site 0 0 1 1 4,7,129,130,346,358,363 5 -238658 cd01356 AcnX_swivel 1 substrate binding site 0 0 1 1 54,55,56 5 -176462 cd01357 Aspartase 1 active sites 0 1 1 1 92,93,94,95,134,135,136,181,182,318,320,325 1 -176462 cd01357 Aspartase 2 tetramer interface 0 1 1 0 180,181,182,183,187,193,194,200,204,208,226,256,257,260,263,264,266,269,270,273,276,277,280,281,283,284,287,288,338,346,349,350,351,404 2 -176463 cd01359 Argininosuccinate_lyase 1 active sites 0 1 1 1 0,4,60,62,85,86,87,90,132,133,209,252,254,262,264,267,294,296,299,301,302 1 -176463 cd01359 Argininosuccinate_lyase 2 tetramer interface 0 1 1 0 75,78,81,82,131,132,133,134,135,136,137,138,144,148,149,155,158,159,162,166,177,178,179,180,181,183,186,200,201,202,203,204,207,208,210,214,217,221,224,225,227,228,231,232,237,238,241,249,255,256,257,258,260,261,262,264,267,268,270,271,272,273,274,275,277,278,279,282,284,285,286,294,295,296,297,300,303,314,317,344,349,353,359,360,363,366,412,414,415,416,417,418,426 2 -176464 cd01360 Adenylsuccinate_lyase_1 1 active site 0 1 1 1 64,85,137,208,264,266,271 1 -176464 cd01360 Adenylsuccinate_lyase_1 2 tetramer interface 0 1 1 0 11,12,65,74,83,84,86,87,135,136,137,138,139,140,142,148,149,152,155,156,162,163,169,179,180,181,182,185,187,203,205,206,213,217,224,231,235,237,238,240,241,265,266,271,275,278,279,281,282,285,286,289,290,291,293,294,295,296,297,298,299,300,303,304,306,307,311,351,355,358,359,364,365,377,379,383 2 -176465 cd01362 Fumarase_classII 1 active site 0 1 1 1 93,95,121,124,125,126,127,134,135,136,183,319,321,326 1 -176465 cd01362 Fumarase_classII 2 tetramer interface 0 0 1 1 181,182,183,184,188,194,195,201,205,209,227,257,258,261,264,265,267,270,271,274,277,278,281,282,284,285,288,289,339,347,350,351,352,405 2 -276814 cd01363 Motor_domain 1 ATP binding site 0 1 1 1 5,6,58,59,60,61,62,63,64,65,118,119,138,139,140,141,142,143 5 -276815 cd01364 KISc_BimC_Eg5 1 ATP binding site 0 1 1 1 10,89,92,94,95,96,97,249 5 -276815 cd01364 KISc_BimC_Eg5 2 microtubule interaction site 0 0 1 1 296,299,302 2 -276816 cd01365 KISc_KIF1A_KIF1B 1 ATP binding site 0 1 1 1 9,99,102,104,105,106,107,251 5 -276816 cd01365 KISc_KIF1A_KIF1B 2 microtubule interaction site 0 0 1 1 306,309,312 2 -276817 cd01366 KISc_C_terminal 1 ATP binding site 0 1 1 1 10,84,87,89,90,91,92,232 5 -276817 cd01366 KISc_C_terminal 2 microtubule interaction site 0 0 1 1 279,282,285 2 -276818 cd01367 KISc_KIF2_like 1 ATP binding site 0 0 1 1 8,90,93,95,96,97,98,233 5 -276818 cd01367 KISc_KIF2_like 2 microtubule interaction site 0 0 1 1 281,284,287 2 -276819 cd01368 KISc_KIF23_like 1 ATP binding site 0 0 1 1 9,95,98,100,101,102,103,247 5 -276819 cd01368 KISc_KIF23_like 2 microtubule interaction site 0 0 1 1 299,302,305 2 -276820 cd01369 KISc_KHC_KIF5 1 ATP binding site 0 1 1 1 10,83,86,88,89,90,91,229 5 -276820 cd01369 KISc_KHC_KIF5 2 microtubule interaction site 0 1 1 0 155,156,157,159,235,236,237,246,250,254,273,278 2 -276820 cd01369 KISc_KHC_KIF5 3 beta tubulin interaction site 0 1 1 0 154,155,156,159,273,277,278 2 -276820 cd01369 KISc_KHC_KIF5 4 alpha tubulin interaction site 0 1 1 0 233,235,236,250,253,254,257 2 -276821 cd01370 KISc_KIP3_like 1 ATP binding site 0 1 1 1 8,101,104,106,107,108,109,247 5 -276821 cd01370 KISc_KIP3_like 2 microtubule interaction site 0 0 1 1 297,300,303 2 -276822 cd01371 KISc_KIF3 1 ATP binding site 0 1 1 1 9,88,91,93,94,95,96,238 5 -276822 cd01371 KISc_KIF3 2 microtubule interaction site 0 0 1 1 286,289,292 2 -276823 cd01372 KISc_KIF4 1 ATP binding site 0 1 1 1 9,80,83,85,86,87,88,242 5 -276823 cd01372 KISc_KIF4 2 microtubule interaction site 0 0 1 1 292,295,298 2 -276824 cd01373 KISc_KLP2_like 1 ATP binding site 0 1 1 1 9,81,84,86,87,88,89,238 5 -276824 cd01373 KISc_KLP2_like 2 microtubule interaction site 0 0 1 1 289,292,295 2 -276825 cd01374 KISc_CENP_E 1 ATP binding site 0 1 1 1 8,79,82,84,85,86,87,224 5 -276825 cd01374 KISc_CENP_E 2 microtubule interaction site 0 0 1 1 273,276,279 2 -276826 cd01375 KISc_KIF9_like 1 ATP binding site 0 1 1 1 8,87,90,92,93,94,95,240 5 -276826 cd01375 KISc_KIF9_like 2 microtubule interaction site 0 0 1 1 288,291,294 2 -276827 cd01376 KISc_KID_like 1 ATP binding site 0 1 1 1 8,84,87,89,90,91,92,226 5 -276827 cd01376 KISc_KID_like 2 microtubule interaction site 0 0 1 1 273,276,279 2 -276951 cd01377 MYSc_class_II 1 ATP binding site 0 1 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,133,134,135,136,137,138,139,140,141,142,143,361,362,363,364,365,366 5 -276951 cd01377 MYSc_class_II 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276951 cd01377 MYSc_class_II 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276951 cd01377 MYSc_class_II 4 switch I region 0 0 1 1 133,134,135,136,137,138,139,140,141,142,143 0 -276951 cd01377 MYSc_class_II 5 switch II region 0 0 1 1 361,362,363,364,365,366 0 -276951 cd01377 MYSc_class_II 6 converter subdomain 0 0 1 1 605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,650,651,652,653,654,655,656,657,658,659,660,661 0 -276951 cd01377 MYSc_class_II 7 relay loop 0 0 1 1 390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413 0 -276951 cd01377 MYSc_class_II 8 SH1 helix 0 0 1 1 593,594,595,596,597,598,599,600,601,602 0 -276829 cd01378 MYSc_Myo1 1 ATP binding site 0 1 1 1 27,28,29,30,35,79,80,81,82,83,84,85,86,127,128,129,130,131,132,133,134,135,136,137,358,359,360,361,362,363 5 -276829 cd01378 MYSc_Myo1 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276829 cd01378 MYSc_Myo1 3 purine-binding loop 0 0 0 1 27,28,29,30,35 0 -276829 cd01378 MYSc_Myo1 4 switch I region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137 0 -276829 cd01378 MYSc_Myo1 5 switch II region 0 0 1 1 358,359,360,361,362,363 0 -276829 cd01378 MYSc_Myo1 6 converter subdomain 0 0 1 1 595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,638,639,640,641,642,643,644,645,646,647,648,649,650,651 0 -276829 cd01378 MYSc_Myo1 7 relay loop 0 0 1 1 387,388,389,390,391,392,393,394,395,396,397,398,401,402,403,404,405,406,407,408,410 0 -276829 cd01378 MYSc_Myo1 8 SH1 helix 0 0 1 1 583,584,585,586,587,588,589,590,591,592,593 0 -276830 cd01379 MYSc_Myo3 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,124,125,126,127,128,129,130,131,132,133,134,363,364,365,366,367,368 5 -276830 cd01379 MYSc_Myo3 2 putative phosphorylation site E 0 1 1 308 6 -276830 cd01379 MYSc_Myo3 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276830 cd01379 MYSc_Myo3 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276830 cd01379 MYSc_Myo3 5 switch I region 0 0 1 1 124,125,126,127,128,129,130,131,132,133,134 0 -276830 cd01379 MYSc_Myo3 6 switch II region 0 0 1 1 363,364,365,366,367,368 0 -276830 cd01379 MYSc_Myo3 7 converter subdomain 0 0 1 1 579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632 0 -276830 cd01379 MYSc_Myo3 8 relay loop 0 0 1 1 392,393,394,395,396,397,398,399,400,401,402,403,406,407,408,409,410,411,412,413,414,415 0 -276830 cd01379 MYSc_Myo3 9 SH1 helix 0 0 1 1 567,568,569,570,571,572,573,574,575,576 0 -276831 cd01380 MYSc_Myo5 1 ATP binding site 0 1 1 1 28,29,30,31,32,33,34,35,36,80,81,82,83,84,85,86,87,127,128,129,130,131,132,133,134,135,136,137,357,358,359,360,361,362 5 -276831 cd01380 MYSc_Myo5 2 putative phosphorylation site [ED] 0 1 1 303 6 -276831 cd01380 MYSc_Myo5 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276831 cd01380 MYSc_Myo5 4 purine-binding loop 0 0 1 1 28,29,30,31,32,33,34,35,36 0 -276831 cd01380 MYSc_Myo5 5 switch I region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137 0 -276831 cd01380 MYSc_Myo5 6 switch II region 0 0 1 1 357,358,359,360,361,362,363,364,365 0 -276831 cd01380 MYSc_Myo5 7 converter subdomain 0 0 1 1 582,583,584,585,586,587,588,589,590,591,592,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628 0 -276831 cd01380 MYSc_Myo5 8 relay loop 0 0 1 1 386,387,388,389,390,391,392,393,394,395,396,397,400,401,402,403,404,405,406,407,408,409 0 -276831 cd01380 MYSc_Myo5 9 SH1 helix 0 0 1 1 561,562,563,564,565,566,567,568,569,570,571 0 -276832 cd01381 MYSc_Myo7 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,123,124,125,126,127,128,129,130,131,132,133,356,357,358,359,360,361 5 -276832 cd01381 MYSc_Myo7 2 putative phosphorylation site [ED] 0 1 1 301 6 -276832 cd01381 MYSc_Myo7 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276832 cd01381 MYSc_Myo7 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276832 cd01381 MYSc_Myo7 5 switch I region 0 0 1 1 123,124,125,126,127,128,129,130,131,132,133 0 -276832 cd01381 MYSc_Myo7 6 switch II region 0 0 1 1 356,357,358,359,360,361 0 -276832 cd01381 MYSc_Myo7 7 converter subdomain 0 0 1 1 591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,635,636,637,638,639,640,641,642,643,644,645,646,647 0 -276832 cd01381 MYSc_Myo7 8 relay loop 0 0 1 1 385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408 0 -276832 cd01381 MYSc_Myo7 9 SH1 helix 0 0 1 1 579,580,581,582,583,584,585,586,587,588 0 -276833 cd01382 MYSc_Myo6 1 ATP binding site 0 1 1 1 27,28,29,31,32,33,34,35,36,80,81,82,83,84,85,86,87,125,126,127,128,129,130,131,132,133,134,135,345,346,347,348,349,350 5 -276833 cd01382 MYSc_Myo6 2 putative phosphorylation site T 0 1 1 294 6 -276833 cd01382 MYSc_Myo6 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276833 cd01382 MYSc_Myo6 4 purine-binding loop 0 0 1 1 27,28,29,31,32,33,34,35,36 0 -276833 cd01382 MYSc_Myo6 5 switch I region 0 0 1 1 125,126,127,128,129,130,131,132,133,134,135 0 -276833 cd01382 MYSc_Myo6 6 switch II region 0 0 1 1 345,346,347,348,349,350 0 -276833 cd01382 MYSc_Myo6 7 converter subdomain 0 0 1 1 594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648 0 -276833 cd01382 MYSc_Myo6 8 relay loop 0 0 1 1 374,375,376,377,378,379,380,381,382,383,384,385,388,389,390,391,392,393,394,395,396,397 0 -276833 cd01382 MYSc_Myo6 9 SH1 helix 0 0 1 1 582,583,584,585,586,587,588,589,590,591,592 0 -276834 cd01383 MYSc_Myo8 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,77,78,79,80,81,82,83,84,121,122,123,124,125,126,127,128,129,130,131,350,351,352,353,354,355 5 -276834 cd01383 MYSc_Myo8 2 putative phosphorylation site [ED] 0 1 1 297 6 -276834 cd01383 MYSc_Myo8 3 P-loop 0 0 1 1 77,78,79,80,81,82,83,84 0 -276834 cd01383 MYSc_Myo8 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276834 cd01383 MYSc_Myo8 5 switch I region 0 0 1 1 121,122,123,124,125,126,127,128,129,130,131 0 -276834 cd01383 MYSc_Myo8 6 switch II region 0 0 1 1 350,351,352,353,354,355 0 -276834 cd01383 MYSc_Myo8 7 converter subdomain 0 0 1 1 591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646 0 -276834 cd01383 MYSc_Myo8 8 relay loop 0 0 1 1 379,380,381,382,383,384,385,386,387,388,389,390,393,394,395,396,397,398,399,400,401,402 0 -276834 cd01383 MYSc_Myo8 9 SH1 helix 0 0 1 1 579,580,581,582,583,584,585,586,587,588 0 -276835 cd01384 MYSc_Myo11 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,80,81,82,83,84,85,86,87,128,129,130,131,132,133,134,135,136,137,138,359,360,361,362,363,364 5 -276835 cd01384 MYSc_Myo11 2 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276835 cd01384 MYSc_Myo11 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276835 cd01384 MYSc_Myo11 4 switch I region 0 0 1 1 128,129,130,131,132,133,134,135,136,137,138 0 -276835 cd01384 MYSc_Myo11 5 switch II region 0 0 1 1 359,360,361,362,363,364 0 -276835 cd01384 MYSc_Myo11 6 converter subdomain 0 0 1 1 593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,635,636,637,638,639,640,641,642,643,644,645,646 0 -276835 cd01384 MYSc_Myo11 7 relay loop 0 0 1 1 388,389,390,391,392,393,394,395,396,397,398,399,402,403,404,405,406,407,408,409,410,411 0 -276835 cd01384 MYSc_Myo11 8 SH1 helix 0 0 1 1 581,582,583,584,585,586,587,588,589,590 0 -276836 cd01385 MYSc_Myo9 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,125,126,127,128,129,130,131,132,133,134,135,359,360,361,362,363,364 5 -276836 cd01385 MYSc_Myo9 2 putative phosphorylation site 0 0 1 1 303 6 -276836 cd01385 MYSc_Myo9 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276836 cd01385 MYSc_Myo9 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276836 cd01385 MYSc_Myo9 5 switch I region 0 0 1 1 125,126,127,128,129,130,131,132,133,134,135 0 -276836 cd01385 MYSc_Myo9 6 switch II region 0 0 1 1 359,360,361,362,363,364 0 -276836 cd01385 MYSc_Myo9 7 converter subdomain 0 0 1 1 637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689 0 -276836 cd01385 MYSc_Myo9 8 relay loop 0 0 1 1 388,389,390,391,392,393,394,395,396,397,398,399,402,403,404,405,406,407,408,409,410,411 0 -276836 cd01385 MYSc_Myo9 9 SH1 helix 0 0 1 1 625,626,627,628,629,630,631,632,633,634 0 -276837 cd01386 MYSc_Myo18 1 ATP binding site 0 0 1 1 28,35,79,80,81,82,83,84,85,86,125,126,127,128,129,130,131,132,133,134,135,366,367,368,369,370,371 5 -276837 cd01386 MYSc_Myo18 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276837 cd01386 MYSc_Myo18 3 purine-binding loop 0 0 1 1 28,35 0 -276837 cd01386 MYSc_Myo18 4 switch I region 0 0 1 1 125,126,127,128,129,130,131,132,133,134,135 0 -276837 cd01386 MYSc_Myo18 5 switch II region 0 0 1 1 366,367,368,369,370,371 0 -276837 cd01386 MYSc_Myo18 6 converter subdomain 0 0 1 1 627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688 0 -276837 cd01386 MYSc_Myo18 7 relay loop 0 0 1 1 401,402,403,404,405,406,407,408,409,410,411,412,415,416,417,418,419,420,421,422,423,424 0 -276837 cd01386 MYSc_Myo18 8 SH1 helix 0 0 1 1 615,616,617,618,619,620,621,622,623,624 0 -276838 cd01387 MYSc_Myo15 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,124,125,130,131,132,133,134,354,355,356,357,358,359 5 -276838 cd01387 MYSc_Myo15 2 putative phosphorylation site 0 0 1 1 302 6 -276838 cd01387 MYSc_Myo15 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276838 cd01387 MYSc_Myo15 4 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276838 cd01387 MYSc_Myo15 5 switch I region 0 0 1 1 124,125,126,127,128,129,130,131,132,133,134 0 -276838 cd01387 MYSc_Myo15 6 switch II region 0 0 1 1 354,355,356,357,358,359 0 -276838 cd01387 MYSc_Myo15 7 converter subdomain 0 0 1 1 600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656 0 -276838 cd01387 MYSc_Myo15 8 relay loop 0 0 1 1 383,384,385,386,387,388,389,390,391,392,393,394,397,398,399,400,401,402,403,404,405,406 0 -276838 cd01387 MYSc_Myo15 9 SH1 helix 0 0 1 1 588,589,590,591,592,593,594,595,596,597 0 -238684 cd01388 SOX-TCF_HMG-box 1 DNA binding site 0 1 1 1 3,5,6,8,9,12,13,16,20,28,33,36,39,58 3 -238685 cd01389 MATA_HMG-box 1 DNA binding site 0 0 1 1 3,5,6,8,9,12,13,16,20,33,36,39,58 3 -238686 cd01390 HMGB-UBF_HMG-box 1 DNA binding site 0 1 1 1 2,4,5,7,8,11,12,15,19,32,35,38,57 3 -143331 cd01392 HTH_LacI 1 DNA binding site 0 1 1 1 0,8,9,10,11,12,14,15,18,23,24,27,40,43,46,47,49,50 3 -143331 cd01392 HTH_LacI 2 domain linker motif 0 0 1 1 40,41,42,43,44,45,46,47,48,49 0 -238687 cd01393 recA_like 1 ATP binding site 0 1 1 1 27,28,29,30,31,32,33,61,65,68,120,166,199 5 -238687 cd01393 recA_like 2 Walker A motif 0 0 1 1 25,26,27,28,29,30,31,32 0 -238687 cd01393 recA_like 3 Walker B motif 0 0 0 1 116,117,118,119,120 0 -238687 cd01393 recA_like 4 hexamer interface 0 1 1 0 62,63,65,66,68,69,70,71,185,189 2 -238688 cd01394 radB 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,55,59,61,109,155,185 5 -238688 cd01394 radB 2 Walker A motif 0 0 1 1 25,26,27,28,29,30,31,32 0 -238688 cd01394 radB 3 Walker B motif 0 0 0 1 105,106,107,108,109 0 -238689 cd01395 HMT_MBD 1 DNA binding site 0 0 1 1 12,14,16,22,24,33,36,40 3 -238690 cd01396 MeCP2_MBD 1 DNA binding site 0 1 1 0 13,15,17,24,26,35,38,42 3 -238691 cd01397 HAT_MBD 1 DNA binding site 0 0 1 1 12,14,16,23,25,34,37,41 3 -238692 cd01398 RPI_A 1 active site 0 1 1 0 22,24,25,78,79,81,91,92,93,94,100,118 1 -238692 cd01398 RPI_A 2 dimer interface 0 1 1 0 67,71,99,106,134,135,137,138,139,142,190,191,196 2 -238692 cd01398 RPI_A 3 tetramer (dimer of dimers) interface 0 1 1 1 22,51,54,55,64,66,93,94,154,155,164,166,170 2 -238693 cd01399 GlcN6P_deaminase 1 active site 0 1 1 0 26,27,28,29,56,57,122,123,128,130,157,192 1 -238693 cd01399 GlcN6P_deaminase 2 allosteric site 0 1 1 1 136,137,143,144,145,146 0 -238693 cd01399 GlcN6P_deaminase 3 active site lid 0 1 1 1 148,151,152,153,154,155,156,157,158,159,160,161,164,165,166 1 -238693 cd01399 GlcN6P_deaminase 4 trimer interface 0 1 1 0 135,137,138,146,200,201,202,203,204,205,206,214,215,216 2 -238693 cd01399 GlcN6P_deaminase 5 hexamer (dimer of trimers) interface 0 1 1 0 153,190,194,225,228,229,230,231 2 -238694 cd01400 6PGL 1 putative active site 0 1 0 1 32,33,60,131,163,186 1 -238695 cd01401 PncB_like 1 active site 0 0 1 1 170,171,172,197,198,279,309,310,333,335,336,339 1 -238696 cd01403 Cyt_c_Oxidase_VIIb 1 Subunit I/VIIb interfae 0 1 1 0 35,36 2 -238696 cd01403 Cyt_c_Oxidase_VIIb 2 Subunit IV/VIIb interface 0 1 1 0 5,6,10,19,20,24,34,39,41,43,45,46,47,48 2 -238696 cd01403 Cyt_c_Oxidase_VIIb 3 Subunit VIc/VIIb interface 0 1 1 0 48 2 -238698 cd01407 SIR2-fam 1 substrate binding site 0 1 1 1 87,103,147,149,150,151,152,153,178,179,180 5 -238698 cd01407 SIR2-fam 2 NAD+ binding site 0 1 1 0 9,11,12,19,20,67,85,86,88,103,174,179,201,202,217 5 -238698 cd01407 SIR2-fam 3 Zn binding site 0 1 1 1 111,114,135,138 4 -238699 cd01408 SIRT1 1 substrate binding site 0 0 1 1 92,110,154,156,157,158,159,160,186,187,188 5 -238699 cd01408 SIRT1 2 NAD+ binding site 0 0 1 1 9,11,12,19,20,72,90,91,93,110,182,187,208,209,226 5 -238699 cd01408 SIRT1 3 Zn binding site 0 1 1 1 118,121,142,145 4 -238700 cd01409 SIRT4 1 substrate binding site 0 0 1 1 96,112,183,185,186,187,188,189,215,216,217 5 -238700 cd01409 SIRT4 2 NAD+ binding site 0 0 1 1 17,19,20,27,28,76,94,95,97,112,211,216,238,239,258 5 -238700 cd01409 SIRT4 3 Zn binding site 0 0 1 1 120,123,171,174 4 -238701 cd01410 SIRT7 1 substrate binding site 0 0 1 1 71,89,134,136,137,138,139,140,166,167,168 5 -238701 cd01410 SIRT7 2 NAD+ binding site 0 0 1 1 9,11,12,19,20,51,69,70,72,89,162,167,189,190,205 5 -238701 cd01410 SIRT7 3 Zn binding site 0 0 1 1 97,100,122,125 4 -238702 cd01411 SIR2H 1 substrate binding site 0 0 1 1 96,112,150,152,153,154,155,156,182,183,184 5 -238702 cd01411 SIR2H 2 NAD+ binding site 0 0 1 1 17,19,20,27,28,77,94,95,97,112,178,183,204,205,219 5 -238702 cd01411 SIR2H 3 putative Zn binding site 0 0 1 1 120,123,138,141 4 -238703 cd01412 SIRT5_Af1_CobB 1 substrate binding site 0 0 1 1 87,103,144,146,147,148,149,150,175,176,177 5 -238703 cd01412 SIRT5_Af1_CobB 2 NAD+ binding site 0 1 1 0 9,11,12,19,20,67,85,86,88,103,171,176,198,199,214 5 -238703 cd01412 SIRT5_Af1_CobB 3 Zn binding site 0 1 1 1 111,114,132,135 4 -238704 cd01413 SIR2_Af2 1 substrate binding site 0 1 1 1 91,107,150,152,153,154,155,156,182,183,184 5 -238704 cd01413 SIR2_Af2 2 NAD+ binding site 0 0 1 1 13,15,16,23,24,71,89,90,92,107,178,183,205,206,221 5 -238704 cd01413 SIR2_Af2 3 Zn binding site 0 1 1 1 115,118,138,141 4 -133469 cd01414 SAICAR_synt_Sc 1 active site 0 0 1 1 2,4,5,6,7,9,17,29,62,86,87,88,89,91,95,97,99,103,104,105,139,141,147,191,192,193,195,208,214,215,216,217 1 -133469 cd01414 SAICAR_synt_Sc 2 ATP binding site 0 1 1 0 1,2,4,5,7,9,10,17,19,61,87,89,91,141,195,207,208 5 -133469 cd01414 SAICAR_synt_Sc 3 substrate binding site 0 0 1 1 29,95,97,99,103,104,105,139,147,191,192,193,214,215,216,217 5 -133470 cd01415 SAICAR_synt_PurC 1 active site 0 1 1 0 2,4,5,6,7,9,18,30,64,75,76,77,78,80,84,86,88,92,93,94,115,117,123,169,170,171,173,186,191,192,193,194 1 -133470 cd01415 SAICAR_synt_PurC 2 ATP binding site 0 1 1 1 1,2,4,5,7,9,10,18,20,63,76,78,80,117,173,185,186 5 -133470 cd01415 SAICAR_synt_PurC 3 substrate binding site 0 1 1 1 30,84,86,88,92,93,94,115,123,169,170,171,191,192,193,194 5 -133471 cd01416 SAICAR_synt_Ade5 1 active site 0 0 1 1 7,9,10,11,12,14,24,36,70,81,82,83,84,86,90,92,94,98,99,100,122,124,130,182,183,184,186,200,205,206,207,208 1 -133471 cd01416 SAICAR_synt_Ade5 2 ATP binding site 0 0 1 1 6,7,9,10,12,14,15,24,26,69,82,84,86,124,186,199,200 5 -133471 cd01416 SAICAR_synt_Ade5 3 substrate binding site 0 0 1 1 36,90,92,94,98,99,100,122,130,182,183,184,205,206,207,208 5 -238705 cd01417 Ribosomal_L19e_E 1 putative intersubunit bridge 0 0 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144,145 0 -238705 cd01417 Ribosomal_L19e_E 2 putative translocon docking site 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238705 cd01417 Ribosomal_L19e_E 3 protein-rRNA interface 0 0 0 1 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,80,81,82,83,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,122,125,127,130,131 3 -238706 cd01418 Ribosomal_L19e_A 1 putative intersubunit bridge 0 1 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144 0 -238706 cd01418 Ribosomal_L19e_A 2 putative translocon docking site 0 1 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238706 cd01418 Ribosomal_L19e_A 3 protein-rRNA interface 0 1 0 0 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,122,125,127,130,131 3 -238707 cd01419 MoaC_A 1 putative active site 0 0 1 1 36,52,59,61,62,92,95,96,97,100,111,114 1 -238708 cd01420 MoaC_PE 1 putative active site 0 0 1 1 36,52,59,61,62,94,97,98,99,102,113,116 1 -238708 cd01420 MoaC_PE 2 dimer interface 0 0 1 0 36,37,38,54,55,56,57,58,119,120,121 2 -238708 cd01420 MoaC_PE 3 trimer interface 0 0 1 0 0,1,2,3,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,124,125,126,127,128,129,130,131,132,133,134,135 2 -238709 cd01421 IMPCH 1 purine monophosphate binding site 0 1 1 0 7,9,29,32,61,62,97,120 5 -238709 cd01421 IMPCH 2 dimer interface 0 1 0 0 52,55,56,59,60,63,64,65,68,69,72,119,120,121,124,128,129,132,165,168,169,170,178,179,180,182,183,186 2 -238709 cd01421 IMPCH 3 putative catalytic residues 0 1 1 0 61,120 1 -238710 cd01422 MGS 1 active site 0 1 0 0 4,10,32,34,35,52,53,58,85 1 -238710 cd01422 MGS 2 catalytic residues 0 0 1 1 58,85 1 -238710 cd01422 MGS 3 dimer interfaces 0 1 0 0 7,34,51,52,54,55,59,60,66,79,88,91,94,95,96,98,99,100,101,102,103,106,107,108,109,112 2 -238711 cd01423 MGS_CPS_I_III 1 probable substrate binding site 0 0 0 1 5,11,31,33,34,76,77,79 5 -238712 cd01424 MGS_CPS_II 1 IMP binding site 0 1 1 1 5,11,31,33,34,50,72,73,74 0 -238712 cd01424 MGS_CPS_II 2 dimer interface 0 1 0 0 32,36,44,46,47,49,61 2 -238712 cd01424 MGS_CPS_II 3 interdomain contacts 0 1 0 0 97,102,106 0 -238712 cd01424 MGS_CPS_II 4 partial ornithine binding site 0 1 0 1 97,98,99 0 -100106 cd01425 RPS2 1 rRNA interaction site 0 1 1 0 16,17,26,27,28,86,88,89,90,93,94,144,147 3 -100106 cd01425 RPS2 2 S8 interaction site 0 1 1 0 146,147,149,163,164,165,166 0 -100106 cd01425 RPS2 3 putative laminin-1 binding site 0 0 1 1 181,182,183,184,185,186 0 -319763 cd01427 HAD_like 1 active site 0 1 1 0 4,5,6,7,8,29,30,66,86,87,90,91 1 -319763 cd01427 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319763 cd01427 HAD_like 3 HAD signature motif II [ST] 0 1 1 29 0 -319763 cd01427 HAD_like 4 HAD signature motif III [KR] 0 1 1 66 0 -319763 cd01427 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 86,87,91 0 -238713 cd01428 ADK 1 ATP-AMP (Ap5A)-binding site 0 1 1 0 34,82,86,124,160,164 5 -238713 cd01428 ADK 2 AMP-binding site 0 1 1 0 29,34,57,82,83,85,86,90 5 -319764 cd01431 P-type_ATPases 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 4,5,6,7,8,9,10 0 -319764 cd01431 P-type_ATPases 2 ATP binding site 0 1 1 1 4,5,6,26,48,49,50,85,139,140,141,188,191,194,213,216 5 -319764 cd01431 P-type_ATPases 3 phosphorylation site D 0 1 1 4 6 -319764 cd01431 P-type_ATPases 4 putative cation binding site 0 1 1 1 274,278,279,281,282,307,310,311 4 -238714 cd01433 Ribosomal_L16_L10e 1 23S rRNA interface 0 1 1 0 0,2,3,6,22,23,26,29,33,36,43,44,45,47,49,53,54,61,62,63,64,65,79,98,99,102,103 3 -238714 cd01433 Ribosomal_L16_L10e 2 5S rRNA interface 0 1 1 0 15,16 3 -238714 cd01433 Ribosomal_L16_L10e 3 L25 interface 0 1 1 0 36,40,41,43,85 2 -238714 cd01433 Ribosomal_L16_L10e 4 L27 interface 0 1 1 0 59,60,63,64 2 -238714 cd01433 Ribosomal_L16_L10e 5 putative antibiotic binding site 0 0 1 1 27,28,29,32,33 5 -259844 cd01435 RNAP_I_RPA1_N 1 putative active site region 0 0 1 1 236,241,248,254,364,365,366,400,402,404,760,761 1 -259844 cd01435 RNAP_I_RPA1_N 2 Zn-binding 0 0 1 1 48,51,58,61 4 -259844 cd01435 RNAP_I_RPA1_N 3 catalytic site DDD 0 1 1 400,402,404 1 -238716 cd01436 Dipth_tox_like 1 nad+ binding pocket 0 1 0 0 2,3,4,5,6,9,13,16,17,18,35,36,37,47,130,135 5 -238717 cd01437 parp_like 1 parp regulatory domain 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,125,126,127,128,129,130,131,132 0 -238717 cd01437 parp_like 2 nad+ contact residues 0 0 1 1 105,109,199,200,201,209,213,214,215,233,241,244,328 5 -238717 cd01437 parp_like 3 Inhibitor contact residues 0 1 0 0 105,108,109,199,200,205,215,216,217,233,234,235,241,244,328 0 -238719 cd01439 TCCD_inducible_PARP_like 1 nad+ binding pocket 0 0 0 0 2,3,4,5,6,9,13,17,18,19,21,34,35,36,46,103 5 -238720 cd01443 Cdc25_Acr2p 1 oxyanion binding site 0 1 1 1 72,73,74,75,76,77,78 0 -238720 cd01443 Cdc25_Acr2p 2 active site residue 0 0 1 1 72 1 -238721 cd01444 GlpE_ST 1 active site residue 0 0 1 1 62 1 -238722 cd01445 TST_Repeats 1 active site residue 0 0 1 1 101 1 -238723 cd01446 DSP_MapKP 1 putative substrate binding residues 0 1 1 1 46,47,48 0 -238724 cd01447 Polysulfide_ST 1 active site 0 1 1 0 67,68,69,70,71,72 1 -238724 cd01447 Polysulfide_ST 2 catalytic residue 0 0 1 1 67 1 -238725 cd01448 TST_Repeat_1 1 active site residue 0 0 1 1 85 1 -238726 cd01449 TST_Repeat_2 1 active site residue 0 0 1 1 84 1 -238727 cd01450 vWFA_subfamily_ECM 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,9,11,79,111 0 -238727 cd01450 vWFA_subfamily_ECM 2 integrin-collagen binding site 0 1 1 1 9,10,11,13,79 0 -238727 cd01450 vWFA_subfamily_ECM 3 integrin inhibitor binding pocket 0 1 1 1 0,2,23,105,107,135,160 0 -238727 cd01450 vWFA_subfamily_ECM 4 putative vWF-collagen binding site 0 1 1 1 39,54,55,66,67 0 -238727 cd01450 vWFA_subfamily_ECM 5 glycoprotein Ib (GpIb) binding site 0 1 1 1 48,49,51,83,86,90,91 2 -238728 cd01451 vWA_Magnesium_chelatase 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,75,106 0 -238729 cd01452 VWA_26S_proteasome_subunit 1 partial signature motif 0 0 0 1 10,12,63 0 -238730 cd01453 vWA_transcription_factor_IIH_type 1 partial metal ion-dependent adhesion site (MIDAS) 0 0 0 1 10,12,86,120 0 -238731 cd01454 vWA_norD_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,83,111 0 -238732 cd01455 vWA_F11C1-5a_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,92,119 0 -238733 cd01456 vWA_ywmD_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 27,29,31,116,142 0 -238734 cd01457 vWA_ORF176_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 9,11,13,81,115 0 -238735 cd01458 vWA_ku 1 interface residues 0 0 0 1 40,43,45,76,78,212,213,215,216,217 0 -238736 cd01459 vWA_copine_like 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 38,40,42,134,164 0 -238737 cd01460 vWA_midasin 1 metal ion dependent adhesion site (MIDAS) 0 0 0 1 67,69,71,138,172 0 -238738 cd01461 vWA_interalpha_trypsin_inhibitor 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 9,11,13,79,107 0 -238739 cd01462 VWA_YIEM_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,74,102 0 -238740 cd01463 vWA_VGCC_like 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 20,22,24,94,131 0 -238741 cd01464 vWA_subfamily 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 10,12,14,78,115 0 -238742 cd01465 vWA_subgroup 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,78,104 0 -238743 cd01466 vWA_C3HC4_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,76,106 0 -238744 cd01467 vWA_BatA_type 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 9,11,13,82,110 0 -238746 cd01469 vWA_integrins_alpha_subunit 1 integrin-collagen binding site 0 1 1 1 9,10,11,13,78 0 -238746 cd01469 vWA_integrins_alpha_subunit 2 integrin inhibitor binding pocket 0 1 1 1 0,2,23,105,107,135,165 0 -238746 cd01469 vWA_integrins_alpha_subunit 3 metal ion-dependent adhesion site (MIDAS) 0 1 1 1 7,9,11,78,111 0 -238747 cd01470 vWA_complement_factors 1 metal ion-dependent adhesion site (MIDAS) 0 1 1 1 7,9,11,84,120 0 -238748 cd01471 vWA_micronemal_protein 1 metal ion-dependent adhesion site (MIDAS) 0 0 1 1 7,9,11,84,116 0 -238749 cd01472 vWA_collagen 1 integrin-collagen binding site 0 0 1 1 9,10,11,13,78 0 -238749 cd01472 vWA_collagen 2 metal ion-dependent adhesion site (MIDAS) 0 0 1 1 7,9,11,78,111 0 -238749 cd01472 vWA_collagen 3 putative vWF-collagen binding site 0 0 1 1 39,54,55,66,67,69,70 0 -238750 cd01473 vWA_CTRP 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,84,116 0 -238751 cd01474 vWA_ATR 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 11,13,15,79,111 0 -238752 cd01475 vWA_Matrilin 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 9,11,13,80,116 0 -238753 cd01476 VWA_integrin_invertebrates 1 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,79,111 0 -238754 cd01477 vWA_F09G8-8_type 1 partial midas motif 0 0 0 1 26,28 0 -238755 cd01478 Sec23-like 1 vWA-Sar 1 interaction 0 1 0 0 135,184,185,187,188,190,192,193,198,229,230,231 0 -238755 cd01478 Sec23-like 2 VWA-helical domain interaction 0 1 0 0 189,190,191,232,239,242,243,247,249 0 -238755 cd01478 Sec23-like 3 vWA-Gelsolin like domain 0 1 0 0 33,161,163,221,222,243,244,245,246 0 -238755 cd01478 Sec23-like 4 dimer interface 0 1 0 0 56,57,58,59,60,61,62,63 2 -238756 cd01479 Sec24-like 1 partial metal ion-dependent adhesion site (MIDAS) 0 0 0 1 10,12 0 -238756 cd01479 Sec24-like 2 VWA-helical domain interaction 0 1 0 0 200,201,208,216 0 -238756 cd01479 Sec24-like 3 vWA-Gelsolin like domain 0 1 0 0 215,230,234,237,238,241 0 -238756 cd01479 Sec24-like 4 heterodimer interface 0 1 0 0 54,67,68,69,70,71,72,75,77,78,79,80,101,104 2 -238756 cd01479 Sec24-like 5 vWA-rubredoxin like domain interaction 0 1 0 0 241,242,243 0 -238756 cd01479 Sec24-like 6 vWA-beta sandwich domain interaction 0 1 0 0 0,1,2,38,41,42,179,185,186,187,208,209,211,212,213 0 -238757 cd01480 vWA_collagen_alpha_1-VI-type 1 integrin-collagen binding site 0 0 1 1 11,12,13,15,87 0 -238757 cd01480 vWA_collagen_alpha_1-VI-type 2 metal ion-dependent adhesion site (MIDAS) 0 0 1 1 9,11,13,87,117 0 -238758 cd01481 vWA_collagen_alpha3-VI-like 1 integrin-collagen binding site 0 0 1 1 9,10,11,13,79 0 -238758 cd01481 vWA_collagen_alpha3-VI-like 2 partial metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11 0 -238759 cd01482 vWA_collagen_alphaI-XII-like 1 integrin-collagen binding site 0 0 1 1 9,10,11,13,78 0 -238759 cd01482 vWA_collagen_alphaI-XII-like 2 metal ion-dependent adhesion site (MIDAS) 0 0 0 1 7,9,11,78,111 0 -238760 cd01483 E1_enzyme_family 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,53,95,101 5 -238760 cd01483 E1_enzyme_family 2 substrate interface 0 1 1 0 9,102,120,121,127 5 -238761 cd01484 E1-2_like 1 catalytic residue 0 0 0 1 155 1 -238761 cd01484 E1-2_like 2 putative ATP binding site 0 0 0 1 5,7,9,29,31,40,53,97,103 5 -238761 cd01484 E1-2_like 3 dimer interaction 0 1 0 0 12,15,19,36,38,39,40,42,43,45,60,61,63,64,126,204,207,208,213,214,215,216,217,218,222 2 -238761 cd01484 E1-2_like 4 substrate interface 0 1 0 0 7,9,98,99,104,123,124,128,129,143,147,148 5 -238762 cd01485 E1-1_like 1 dimer interaction 0 1 0 0 0,2,3,4,5,6,7,8,10,32,35,36,39,55,56,58,59,60,62,71,82,85,86,148,160,164,168,190 2 -238763 cd01486 Apg7 1 putative ATP binding site 0 0 0 1 5,7,9,29,31,40,55,117,120 5 -238764 cd01487 E1_ThiF_like 1 putative ATP binding site 0 0 1 1 5,7,9,29,31,40,52,94,100 5 -238764 cd01487 E1_ThiF_like 2 putative substrate interface 0 0 1 1 9,101,120,121,127 5 -238765 cd01488 Uba3_RUB 1 catalytic residue 0 0 0 1 162 1 -238765 cd01488 Uba3_RUB 2 putative ATP binding site 0 0 0 1 5,7,9,29,31,40,53,94,100 5 -238765 cd01488 Uba3_RUB 3 substrate interface 0 1 0 0 7,9,95,96,101,128,129,133,134,148,151,154,155,264,266,268,274,276,278,279,281 5 -238765 cd01488 Uba3_RUB 4 dimer interaction 0 1 1 0 12,15,19,36,38,39,40,42,43,45,60,61,63,64,131,222,225,226,231,232,233,234,235,236,240 2 -238765 cd01488 Uba3_RUB 5 zinc binding site 0 1 1 0 145,148,286,289 4 -238766 cd01489 Uba2_SUMO 1 catalytic residue 0 0 0 1 154 1 -238766 cd01489 Uba2_SUMO 2 putative ATP binding site 0 0 0 1 5,7,9,29,31,40,53,96,102 5 -238766 cd01489 Uba2_SUMO 3 putative substrate interface 0 0 0 1 7,9,97,98,103,122,123,127,128,142,146,147 5 -238766 cd01489 Uba2_SUMO 4 putative zinc binding site 0 0 0 1 139,142,308,311 4 -238767 cd01490 Ube1_repeat2 1 catalytic residue 0 0 0 1 162 1 -238767 cd01490 Ube1_repeat2 2 putative ATP binding site 0 0 0 1 5,7,9,34,36,45,58,104,110 5 -238767 cd01490 Ube1_repeat2 3 putative substrate interface 0 0 0 1 7,9,105,106,111,130,131,135,136,150,154,155 5 -238768 cd01491 Ube1_repeat1 1 interdomain dimer interaction 0 0 0 1 0,2,3,4,5,6,7,8,10,32,35,36,39,55,56,58,59,60,62,69,80,83,84,140,248,252,256,278 0 -238769 cd01492 Aos1_SUMO 1 dimer interaction 0 0 0 1 2,4,5,6,7,8,9,10,12,34,37,38,41,57,58,60,61,62,64,71,82,85,86,145,159,163,167,189 2 -238770 cd01493 APPBP1_RUB 1 dimer interaction 0 1 0 0 0,1,3,4,5,6,7,8,9,11,33,36,37,40,56,57,59,60,61,63,70,81,84,85,147,387,391,395,417 2 -99742 cd01494 AAT_I 1 catalytic residue 0 1 1 1 156 1 -99742 cd01494 AAT_I 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 25,26,29,98,127,130,153,156 5 -238773 cd01515 Arch_FBPase_1 1 active site 0 1 1 0 41,63,64,81,82,83,84,86,203,206 1 -238774 cd01516 FBPase_glpX 1 putative active site 0 0 1 1 31,54,55,83,84,85,86,87,186,211 1 -238775 cd01517 PAP_phosphatase 1 active site 0 1 1 0 35,41,64,65,77,78,79,80,82,83,166,188,218,219 1 -238775 cd01517 PAP_phosphatase 2 substrate binding site 0 1 1 1 166,192,206,215,219 5 -238775 cd01517 PAP_phosphatase 3 putative lithium-binding site 0 0 1 1 77,219 4 -238776 cd01518 RHOD_YceA 1 active site residue 0 0 0 1 67 1 -238777 cd01519 RHOD_HSP67B2 1 active site residue 0 0 0 1 72 1 -238778 cd01520 RHOD_YbbB 1 active site residue 0 0 0 1 92 1 -238779 cd01521 RHOD_PspE2 1 active site residue 0 0 0 1 70 1 -238780 cd01522 RHOD_1 1 active site residue 0 0 0 1 70 1 -238781 cd01523 RHOD_Lact_B 1 active site residue 0 0 0 1 67 1 -238782 cd01524 RHOD_Pyr_redox 1 active site residue 0 0 0 1 57 1 -238783 cd01525 RHOD_Kc 1 active site residue 0 0 0 1 71 1 -238784 cd01526 RHOD_ThiF 1 active site residue 0 0 1 1 78 1 -238785 cd01527 RHOD_YgaP 1 active site residue 0 0 0 1 60 1 -238786 cd01528 RHOD_2 1 active site residue 0 0 0 1 64 1 -238787 cd01529 4RHOD_Repeats 1 active site residue 0 0 0 1 62 1 -238788 cd01530 Cdc25 1 oxyanion binding site 0 1 1 1 74,75,76,77,78,79,80 0 -238788 cd01530 Cdc25 2 active site residue 0 0 1 1 74 1 -238789 cd01531 Acr2p 1 active site 0 0 1 1 68,69,70,71,72,73,74 0 -238790 cd01532 4RHOD_Repeat_1 1 active site residue 0 0 0 1 56 1 -238791 cd01533 4RHOD_Repeat_2 1 active site residue 0 0 0 1 72 1 -238792 cd01534 4RHOD_Repeat_3 1 active site residue 0 0 0 1 62 1 -238793 cd01535 4RHOD_Repeat_4 1 active site residue 0 0 0 1 55 1 -107249 cd01536 PBP1_ABC_sugar_binding_like 1 ligand binding site 0 1 1 0 12,86,138,214,234 5 -107250 cd01537 PBP1_Repressors_Sugar_Binding_like 1 ligand binding site 0 1 1 0 12,13,16,61,85,99,132,133,135,213,230 0 -107251 cd01538 PBP1_ABC_xylose_binding 1 putative ligand binding site 0 0 0 1 12,86,142,223,243 5 -107252 cd01539 PBP1_GGBP 1 ligand binding site 0 1 1 0 12,13,63,88,89,152,156,181,208,239,259 5 -107252 cd01539 PBP1_GGBP 2 calcium binding site 0 1 1 0 132,134,136,138,140,202 4 -107253 cd01540 PBP1_arabinose_binding 1 ligand binding site 0 1 1 0 85,147,200,201,228 5 -107254 cd01541 PBP1_AraR 1 putative ligand binding site 0 0 0 1 12,13,16,61,89,102,137,164,218,235 5 -107254 cd01541 PBP1_AraR 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,167,195,199,202,203 2 -107255 cd01542 PBP1_TreR_like 1 ligand binding site 0 1 1 0 12,13,61,132,180,182,227 5 -107255 cd01542 PBP1_TreR_like 2 dimerization interface 0 1 1 0 0,9,14,21,30,32,33,35,46,52,53,54,189,215,216 2 -107256 cd01543 PBP1_XylR 1 putative ligand binding site 0 0 0 1 11,12,15,56,77,90,125,152,206,224 5 -107256 cd01543 PBP1_XylR 2 putative dimerization interface 0 0 0 1 0,12,13,14,17,18,20,21,29,30,31,32,33,35,41,44,47,48,49,155,183,187,190,191 2 -107257 cd01544 PBP1_GalR 1 putative ligand binding site 0 0 0 1 17,18,21,58,80,93,134,158,214,231 5 -107257 cd01544 PBP1_GalR 2 putative dimerization interface 0 0 0 1 0,18,19,20,23,24,26,27,32,33,34,35,36,38,43,46,49,50,51,161,191,195,198,199 2 -107258 cd01545 PBP1_SalR 1 putative ligand binding site 0 0 0 1 12,13,16,62,86,99,135,160,214,231 5 -107258 cd01545 PBP1_SalR 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,47,50,53,54,55,163,191,195,198,199 2 -238794 cd01553 EPT_RTPC-like 1 putative active site 0 1 1 1 13,96,176,199 1 -238795 cd01554 EPT-like 1 active site 0 1 1 0 10,11,15,83,110,156,157,183,296,369,395 1 -238795 cd01554 EPT-like 2 hinge 0 1 1 1 6,7,8,9,221,222,223,224 0 -238796 cd01555 UdpNAET 1 active site 0 1 0 0 11,81,85,110,111,112,113,114,115,150,153,154,295 1 -238796 cd01555 UdpNAET 2 hinge 0 1 1 1 6,7,8,9,218,219,220,221 0 -238797 cd01556 EPSP_synthase 1 active site 0 1 1 0 10,11,15,79,81,82,109,154,155,156,181,184,296,319,323,324,327,369,370,396 1 -238797 cd01556 EPSP_synthase 2 hinge 0 1 1 1 6,7,8,9,222,223,224,225 0 -238798 cd01557 BCAT_beta_family 1 catalytic residue 0 0 1 1 140 1 -238798 cd01557 BCAT_beta_family 2 substrate-cofactor binding pocket 0 1 0 1 10,15,39,95,140,145,175,202,203,239 0 -238798 cd01557 BCAT_beta_family 3 homodimer interface 0 1 1 0 0,1,2,3,4,7,8,9,10,11,13,15,46,83,85,91,92,93,97,104,142,147,149,153,167 2 -238799 cd01558 D-AAT_like 1 catalytic residue 0 0 1 1 141 1 -238799 cd01558 D-AAT_like 2 substrate-cofactor binding pocket 0 1 0 1 22,27,46,141,145,174,201,202,238 0 -238799 cd01558 D-AAT_like 3 pyridoxal 5'-phosphate binding site 0 1 1 0 27,46,141,202,238 5 -238799 cd01558 D-AAT_like 4 homodimer interface 0 1 1 0 12,13,15,16,17,18,19,20,21,22,23,24,27,84,86,88,105,109,142,143,144,145,146,148,149,152,153,157,177 2 -238800 cd01559 ADCL_like 1 catalytic residue 0 0 1 1 123 1 -238800 cd01559 ADCL_like 2 pyridoxal 5'-phosphate binding site 0 1 1 0 29,123,156 5 -107203 cd01560 Thr-synth_2 1 catalytic residue 0 1 1 1 110 1 -107203 cd01560 Thr-synth_2 2 pyridoxal 5'-phosphate binding site 0 1 1 1 110,255,256,411 5 -107204 cd01561 CBS_like 1 catalytic residue 0 1 1 1 32 1 -107204 cd01561 CBS_like 2 pyridoxal 5'-phosphate binding site 0 1 1 1 32,62,167,168,169,170,171,172,212,256,282,283 5 -107204 cd01561 CBS_like 3 dimer interface 0 1 1 0 4,5,6,19,25,27,69,72,88,89,92,93,96,97,154,155,246,247,248,250,251,252,276,286,289 2 -107205 cd01562 Thr-dehyd 1 catalytic residue 0 1 0 1 47 1 -107205 cd01562 Thr-dehyd 2 pyridoxal 5'-phosphate binding site 0 1 0 1 47,74,173,174,175,176,177,298 5 -107205 cd01562 Thr-dehyd 3 tetramer interface 0 1 1 0 0,1,4,7,8,39,40,186,187,256,259,260,263,267,268,269,300,301,302,303 2 -107206 cd01563 Thr-synth_1 1 catalytic residue 0 1 0 1 53 1 -107206 cd01563 Thr-synth_1 2 pyridoxal 5'-phosphate binding site 0 1 0 1 53,79,179,180,181,182,183,317 5 -107206 cd01563 Thr-synth_1 3 homodimer interface 0 1 1 0 18,23,24,47,70,86,89,90,96,112,113,114,115,116,117,118,120,121,122,134,135,165,279,280,281,283,284,319 2 -238801 cd01567 NAPRTase_PncB 1 active site 0 0 1 1 162,163,164,186,187,269,299,300,323,325,326,329 1 -238802 cd01568 QPRTase_NadC 1 active site 0 1 1 1 122,123,124,145,146,207,232,233,252,254,255,258 1 -238802 cd01568 QPRTase_NadC 2 dimerization interface 0 1 0 0 17,18,88,89,93,123,125,129,130,149,150,154,156,158,159,162,173,258 2 -238803 cd01569 PBEF_like 1 active site 0 0 1 1 177,178,179,202,203,291,330,331,359,361,362,365 1 -238804 cd01570 NAPRTase_A 1 active site 0 0 1 1 151,152,153,175,176,255,283,284,305,307,308,311 1 -238805 cd01571 NAPRTase_B 1 active site 0 0 1 1 117,118,119,140,141,217,250,251,270,272,273,276 1 -238806 cd01572 QPRTase 1 active site 0 1 1 1 123,124,125,146,147,208,231,232,251,253,254,257 1 -238806 cd01572 QPRTase 2 dimerization interface 0 1 0 0 17,18,89,90,94,124,126,130,131,150,151,155,157,159,160,163,174,257 2 -238807 cd01573 modD_like 1 active site 0 0 1 1 123,124,125,146,147,209,235,236,255,257,258,261 1 -238807 cd01573 modD_like 2 dimerization interface 0 0 0 1 17,18,87,88,92,124,126,130,131,150,151,155,157,159,160,163,176,261 2 -107259 cd01574 PBP1_LacI 1 ligand binding site 0 1 1 0 6,12,13,16,62,85,97,129,133,181,209 5 -107259 cd01574 PBP1_LacI 2 dimerization interface (closed form) 0 1 1 0 9,15,21,55,183,190 2 -107259 cd01574 PBP1_LacI 3 dimerization interface (open form) 0 1 1 0 7,11,14,18,21,30,33,35,54,159,183,186,190 2 -107260 cd01575 PBP1_GntR 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,97,133,158,212,229 5 -107260 cd01575 PBP1_GntR 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,161,189,193,196,197 2 -238808 cd01576 AcnB_Swivel 1 substrate binding site 0 1 1 1 63,64,65 5 -238809 cd01577 IPMI_Swivel 1 substrate binding site 0 0 0 1 30,31,32 5 -238810 cd01578 AcnA_Mitochon_Swivel 1 substrate binding site 0 1 1 1 20,82,83,84 5 -238811 cd01579 AcnA_Bact_Swivel 1 substrate binding site 0 0 0 1 61,62,63 5 -238812 cd01580 AcnA_IRP_Swivel 1 substrate binding site 0 0 0 1 109,110,111 5 -153131 cd01581 AcnB 1 ligand binding site 0 1 1 0 115,326,384,387,388,405 5 -153131 cd01581 AcnB 2 substrate binding site 0 1 1 0 30,33,113,114,388,406,411 5 -153132 cd01582 Homoaconitase 1 ligand binding site 0 0 1 1 91,242,309,312,313,331 5 -153132 cd01582 Homoaconitase 2 substrate binding site 0 0 1 1 4,7,89,90,313,332,337 5 -153133 cd01583 IPMI 1 ligand binding site 0 0 0 1 93,268,328,331,332,350 5 -153133 cd01583 IPMI 2 substrate binding site 0 0 0 1 4,7,91,92,332,351,356 5 -153134 cd01584 AcnA_Mitochondrial 1 ligand binding site 0 1 1 0 99,291,354,357,358,379 5 -153134 cd01584 AcnA_Mitochondrial 2 substrate binding site 0 1 1 0 4,7,97,98,358,380,385 5 -153135 cd01585 AcnA_Bact 1 ligand binding site 0 0 1 1 91,267,327,330,331,348 5 -153135 cd01585 AcnA_Bact 2 substrate binding site 0 0 1 1 5,8,89,90,331,349,354 5 -153136 cd01586 AcnA_IRP 1 ligand binding site 0 0 1 1 129,274,340,343,344,372 5 -153136 cd01586 AcnA_IRP 2 substrate binding site 0 0 1 1 4,7,127,128,344,373,378 5 -176466 cd01594 Lyase_I_like 1 tetramer interface 0 1 1 0 104,111,114,115,118,123,133,134,137,140,141,174,177,180,183,184 2 -176467 cd01595 Adenylsuccinate_lyase_like 1 active site 0 1 1 1 61,83,135,209,265,267,272 1 -176467 cd01595 Adenylsuccinate_lyase_like 2 tetramer interface 0 1 1 0 5,6,62,71,81,82,84,85,133,134,135,136,137,138,140,146,147,150,153,154,160,161,177,178,179,180,183,204,206,207,214,218,225,232,236,238,239,241,242,266,267,272,276,279,280,282,283,286,287,290,291,294,295,296,297,298,299,300,304,305,307,312,378,380 2 -176468 cd01596 Aspartase_like 1 active sites 0 1 1 1 92,93,94,95,134,135,136,181,182,318,320,325 1 -176468 cd01596 Aspartase_like 2 tetramer interface 0 1 1 0 180,181,182,183,187,193,194,200,204,208,226,256,257,260,263,264,266,269,270,273,276,277,280,281,283,284,287,288,338,346,349,350,351,404 2 -176469 cd01597 pCLME 1 active site 0 1 1 1 71,72,97,98,99,144,145,187,273,274,276,307 1 -176469 cd01597 pCLME 2 tetramer interface 0 1 1 0 14,15,16,19,20,63,66,67,90,91,143,144,145,147,148,150,151,157,159,164,167,170,171,174,188,189,190,193,198,199,214,215,220,221,223,224,226,227,230,233,234,241,244,245,250,251,253,275,276,281,288,289,294,298,303,304,305,306,307,313,314,316,318,357,424,425,429,432 2 -176470 cd01598 PurB 1 active site 0 0 1 1 68,95,148,224,278,280,285 1 -176470 cd01598 PurB 2 tetramer interface 0 0 1 1 5,6,69,78,93,94,96,97,146,147,148,149,150,151,153,159,160,163,166,167,173,174,190,191,192,193,196,219,221,222,229,233,240,247,251,253,254,256,257,279,280,285,289,292,293,295,296,299,300,303,304,308,309,310,311,312,313,314,318,319,321,326,422,424 2 -259845 cd01609 RNAP_beta'_N 1 active site region 0 1 1 1 106,215,238,243,250,256,329,330,331,364,366,368,635,636,639,640 1 -259845 cd01609 RNAP_beta'_N 2 beta and beta' interface 0 1 1 1 0,1,2,3,4,5,6,7,8,10,14,17,18,19,20,32,34,51,62,81,82,84,85,86,87,98,100,143,147,149,152,153,155,157,160,161,211,231,234,235,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,263,275,276,279,280,283,284,286,287,302,328,332,335,336,338,339,349,350,355,364,365,366,369,373,374,375,376,377,378,379,380,383,387,388,393,407,408,409,412,416,421,487,488,490,491,492,493,494,495,496,497,498,499,500,501,564,570,576,581,584,585,589,594,595,602,608,609,610,611,612,613,614,615,617,618,621,622,624,625,626,628,629,630,632,633,643,646 2 -259845 cd01609 RNAP_beta'_N 3 beta' and sigma factor interface 0 1 1 1 27,28,29,31,50,52,62,64,80,125,126,155,156,159,163,164,165,166,167,168,171,174,178,179,182,184,185,186,187,191,192,193,194,195,196,197,198,199,201,202,205,216,226,229,238,239,301,303,304 2 -259845 cd01609 RNAP_beta'_N 4 Zn-binding CCCC 1 1 1 55,57,70,73 4 -259845 cd01609 RNAP_beta'_N 5 catalytic site DDD 1 1 1 364,366,368 1 -238813 cd01610 PAP2_like 1 active site 0 1 1 0 22,29,54,55,56,95,101,105 1 -340453 cd01611 Ubl_Autophagy_like 1 Atg8-Atg7 interaction site 0 1 1 1 18,21,30,31,33,34,35,37,38,39,47,48,49,51,58,59,60 2 -340453 cd01611 Ubl_Autophagy_like 2 Atg8/LC3-Atg4 interaction site 0 1 1 1 33,37,47,48,49,51,58,59,80,82,83 2 -340453 cd01611 Ubl_Autophagy_like 3 key conserved lysine K33 [KR] 0 1 1 39 0 -340454 cd01612 Ubl_ATG12 1 Atg5 conjugation site 0 1 1 1 54,55,57,58,59,60,61,64,67,68,69,85 2 -340454 cd01612 Ubl_ATG12 2 Atg12~Atg5-Atg16-Atg3 interaction site 0 1 1 1 0,2,3,5,14,16,18,19,20,21,22,25,29,30,33,34,36,37,39 2 -340454 cd01612 Ubl_ATG12 3 key conserved lysines 0 0 1 1 6,15 0 -133473 cd01614 EutN_CcmL 1 central pore 0 1 1 0 1,27,30,39,63,69,74 0 -133473 cd01614 EutN_CcmL 2 Hexamer/Pentamer interface 0 1 1 0 0,2,6,7,8,10,11,12,13,41,46,57,63,73,74,75,78,80,82 2 -119367 cd01615 CIDE_N 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,47,49,50,55,56,75,77 2 -240620 cd01619 LDH_like 1 NAD binding site 0 1 1 1 98,103,149,151,152,153,154,171,172,173,202,203,204,205,209,212,230,231,232,256,257,293,295,296 5 -240620 cd01619 LDH_like 2 ligand binding site 0 1 1 0 74,75,76,98,232,293,296 5 -240620 cd01619 LDH_like 3 homodimer interface 0 1 1 0 51,99,101,102,105,106,109,112,113,116,121,122,125,136,137,139,140,141,142,160,163,164,264,265,290,292,293,294,295,296,297,298,299,300,302 2 -240620 cd01619 LDH_like 4 catalytic site R[QE]H 0 1 1 232,261,293 1 -240621 cd01620 Ala_dh_like 1 NAD(P) binding site 0 1 1 1 130,133,168,170,171,172,191,192,193,229,230,231,258,290,291,292 5 -240621 cd01620 Ala_dh_like 2 putative ligand binding site 0 1 1 0 13,73,92,94,129,291 5 -319765 cd01624 HAD_VSP_like 1 active site 0 0 1 1 18,19,20,21,22,77,78,118,137,138,141,142 1 -319765 cd01624 HAD_VSP_like 2 HAD signature motif I Dxxx[TV] 0 1 1 18,19,20,21,22 0 -319765 cd01624 HAD_VSP_like 3 HAD signature motif II [ST] 0 1 1 77 0 -319765 cd01624 HAD_VSP_like 4 HAD signature motif III [KR] 0 1 1 118 0 -319765 cd01624 HAD_VSP_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 137,138,142 0 -319766 cd01625 HAD_PNP 1 active site 0 1 1 1 5,6,7,8,9,51,52,53,54,55,93,94,122,123,131,134,135 1 -319766 cd01625 HAD_PNP 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319766 cd01625 HAD_PNP 3 HAD signature motif II [ST] 0 1 1 51 0 -319766 cd01625 HAD_PNP 4 HAD signature motif III [KR] 0 1 1 94 0 -319766 cd01625 HAD_PNP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 122,123,135 0 -319767 cd01627 HAD_TPP 1 active site 0 1 1 1 4,5,6,7,8,11,12,16,44,45,46,66,110,112,117,119,121,152,154,156,164,186,187,190,191 1 -319767 cd01627 HAD_TPP 2 active site pocket 0 1 1 1 4,5,6,7,8,12,16,44,45,46,48,53,54,65,66,110,112,117,119,152,154,156,158,164,186,187,188,190,191 1 -319767 cd01627 HAD_TPP 3 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319767 cd01627 HAD_TPP 4 HAD signature motif II [ST] 0 1 1 44 0 -319767 cd01627 HAD_TPP 5 HAD signature motif III [KR] 0 1 1 164 0 -319767 cd01627 HAD_TPP 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 186,187,191 0 -319768 cd01629 HAD_EP 1 active site 0 1 1 1 4,5,6,7,8,15,19,20,87,122,123,124,128,156,180,181,185,186 1 -319768 cd01629 HAD_EP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319768 cd01629 HAD_EP 3 HAD signature motif II [ST] 0 1 1 122 0 -319768 cd01629 HAD_EP 4 HAD signature motif III [KR] 0 1 1 156 0 -319768 cd01629 HAD_EP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 180,181,185 0 -319769 cd01630 HAD_KDO-like 1 active site 0 1 1 1 6,7,8,9,10,50,51,76,98,99,102,103 1 -319769 cd01630 HAD_KDO-like 2 tetramer interface 0 1 1 0 8,13,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31,34,38,52,55,56,59,60,63,74,99,100,101,102,104,105,118,122,137,141,145 2 -319769 cd01630 HAD_KDO-like 3 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319769 cd01630 HAD_KDO-like 4 HAD signature motif II [ST] 0 1 1 50 0 -319769 cd01630 HAD_KDO-like 5 HAD signature motif III [KR] 0 1 1 76 0 -319769 cd01630 HAD_KDO-like 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 98,99,103 0 -238814 cd01636 FIG 1 active site 0 1 1 0 40,63,64,83,84,85,86,87,165 1 -238815 cd01637 IMPase_like 1 active site 0 1 1 0 38,61,62,79,80,81,82,83,84,202,203 1 -238816 cd01638 CysQ 1 active site 0 0 1 1 38,61,62,79,80,81,82,83,84,86,154,157,182,194,203,204 1 -238817 cd01639 IMPase 1 active site 0 1 1 0 29,34,40,63,64,80,81,82,83,84,85,208,209 1 -238817 cd01639 IMPase 2 dimerization interface 0 1 1 0 33,35,86,87,89,90,91,92,93,94,146,147,148,150,152,153,161,162,165,168,169,172,177,178,179,180,181,182,183,191,195,196,197,198 2 -238818 cd01640 IPPase 1 active site 0 1 1 0 45,68,69,111,112,113,114,115,116,118,190,212,213,214,215,218,230,232,236,237,240,241 1 -238819 cd01641 Bacterial_IMPase_like_1 1 active site 0 0 1 1 38,61,62,77,78,79,80,82,203,204 1 -238820 cd01642 Arch_FBPase_2 1 putative active site 0 0 1 1 39,62,63,79,80,81,82,84,203,206 1 -238821 cd01643 Bacterial_IMPase_like_2 1 active site 0 0 1 1 37,60,61,76,77,78,79,81,199,200 1 -238822 cd01644 RT_pepA17 1 putative active site 0 0 1 1 64,65,66,67,68,69,105,106,139,141,142,203,204 1 -238822 cd01644 RT_pepA17 2 putative nucleic acid binding site 0 0 1 1 106 3 -238822 cd01644 RT_pepA17 3 putative NTP binding site 0 0 1 1 64,65,66,67,68,69,105,141 5 -238823 cd01645 RT_Rtv 1 active site 0 1 1 0 6,7,41,45,51,53,54,55,57,60,68,70,71,73,89,90,91,92,93,94,130,131,133,136,162,164,165,208,209 1 -238823 cd01645 RT_Rtv 2 DNA binding site 0 1 1 0 6,7,53,54,55,57,60,68,70,71,73,131,133,136,162,208,209 3 -238823 cd01645 RT_Rtv 3 dNTP binding site 0 1 1 1 45,51,89,90,91,92,93,94,130,164 5 -238823 cd01645 RT_Rtv 4 NNRTI binding site 0 1 1 1 79,80,81,82,158,160,167,169,205 0 -238824 cd01646 RT_Bac_retron_I 1 putative active site 0 0 1 1 1,2,3,4,5,6,55,56,87,89,90,139,140 1 -238824 cd01646 RT_Bac_retron_I 2 putative nucleic acid binding site 0 0 1 1 56 3 -238824 cd01646 RT_Bac_retron_I 3 putative NTP binding site 0 0 1 1 1,2,3,4,5,6,55,89 5 -238825 cd01647 RT_LTR 1 putative active site 0 0 1 1 63,64,65,66,67,68,97,98,125,127,128,172,173 1 -238825 cd01647 RT_LTR 2 putative nucleic acid binding site 0 0 1 1 98 3 -238825 cd01647 RT_LTR 3 putative NTP binding site 0 0 1 1 63,64,65,66,67,68,97,127 5 -238826 cd01648 TERT 1 putative active site 0 0 1 1 1,2,3,4,5,6,21,22,57,59,60,113,114 1 -238826 cd01648 TERT 2 putative nucleic acid binding site 0 0 1 1 22 3 -238826 cd01648 TERT 3 putative NTP binding site 0 0 1 1 1,2,3,4,5,6,21,59 5 -238827 cd01650 RT_nLTR_like 1 putative active site 0 0 1 1 87,88,89,90,91,92,108,109,146,148,149,215,216 1 -238827 cd01650 RT_nLTR_like 2 putative nucleic acid binding site 0 0 1 1 109 3 -238827 cd01650 RT_nLTR_like 3 putative NTP binding site 0 0 1 1 87,88,89,90,91,92,108,148 5 -238828 cd01651 RT_G2_intron 1 putative active site 0 0 1 1 75,76,77,78,79,80,128,129,171,173,174,221,222 1 -238828 cd01651 RT_G2_intron 2 putative nucleic acid binding site 0 0 1 1 129 3 -238828 cd01651 RT_G2_intron 3 putative NTP binding site 0 0 1 1 75,76,77,78,79,80,128,173 5 -153210 cd01653 GATase1 1 conserved cys residue 0 0 1 0 85 1 -100099 cd01657 Ribosomal_L7_archeal_euk 1 23S rRNA binding site 0 1 1 0 6,7,8,14,15,16,18,19,21,22,23,24,26,27,28,29,30,38,39,40,41,42,43,45,46,48,49,50,68,122,123,124,125,126,127,128,129,138,139,143,158 3 -100099 cd01657 Ribosomal_L7_archeal_euk 2 5S rRNA binding site 0 1 1 0 45,46,48,49,50,137,138,139,140 3 -100100 cd01658 Ribosomal_L30 1 23S rRNA binding site 0 1 0 0 6,7,9,10,12,13,14,17,18,21,22,23,25,28,33,34,37,38,39,41,42 3 -238830 cd01660 ba3-like_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 212,261,262,363 1 -238830 cd01660 ba3-like_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 23,26,30,43,50,54,55,364,365,369,409,426,427,428,456 5 -238830 cd01660 ba3-like_Oxidase_I 3 Electron transfer pathway 0 1 1 0 364,426,427 0 -238830 cd01660 ba3-like_Oxidase_I 4 Putative alternate electron transfer pathway 0 1 1 0 115,172,262 0 -238830 cd01660 ba3-like_Oxidase_I 5 Putative Q-pathway 0 1 1 1 59,233,345,351,363,366,367,370,371,373,375 0 -238830 cd01660 ba3-like_Oxidase_I 6 Putative K-pathway homolog 0 1 1 1 216,223,227,240,281,288,291 0 -238830 cd01660 ba3-like_Oxidase_I 7 Putative D-pathway homolog 0 1 1 1 1,5,59,60,64,69,88,134,135,176,210,214,373 0 -238830 cd01660 ba3-like_Oxidase_I 8 Putative proton exit pathway 0 0 1 1 262,355,356,426,427 0 -238830 cd01660 ba3-like_Oxidase_I 9 Putative water exit pathway 0 0 1 1 199,204,205,351,355,356,426 0 -238830 cd01660 ba3-like_Oxidase_I 10 Subunit I/II interface 0 1 1 1 44,111,116,199,237,239,243,265,266,267,289,293,294,349,352,355,356,423,425,427,429 2 -238830 cd01660 ba3-like_Oxidase_I 11 Subunit I/IIa interface 0 1 1 1 300,343,353,421,423 2 -238831 cd01661 cbb3_Oxidase_I 1 Binuclear center (active site) 0 0 1 1 241,291,292,379 1 -238831 cd01661 cbb3_Oxidase_I 2 Low-spin heme binding site 0 0 1 1 48,381,385,428,465 5 -238831 cd01661 cbb3_Oxidase_I 3 Putative proton exit pathway 0 0 1 1 292,371,372,443,444 0 -238831 cd01661 cbb3_Oxidase_I 4 Putative water exit pathway 0 0 1 1 228,233,234,367,371,372,443 0 -238832 cd01662 Ubiquinol_Oxidase_I 1 Putative ubiquinol binding site 0 1 1 1 23,27,30,31,47,50,51,52 5 -238832 cd01662 Ubiquinol_Oxidase_I 2 Binuclear center (heme o3/CuB) 0 1 0 1 233,282,283,368 4 -238832 cd01662 Ubiquinol_Oxidase_I 3 Low-spin heme (heme b) binding site 0 1 1 1 55,370,374,416,455 5 -238832 cd01662 Ubiquinol_Oxidase_I 4 D-pathway 0 0 1 1 13,74,84,91,94,149,150,156,160 0 -238832 cd01662 Ubiquinol_Oxidase_I 5 K-pathway 0 1 1 1 233,237,248,282,283,308,311 0 -238832 cd01662 Ubiquinol_Oxidase_I 6 Putative proton exit pathway 0 0 1 1 283,360,361,430,431 0 -238832 cd01662 Ubiquinol_Oxidase_I 7 Putative water exit pathway 0 0 1 1 220,225,226,356,360,361,430 0 -238833 cd01663 Cyt_c_Oxidase_I 1 Binuclear center (heme a3/CuB) 0 1 1 1 230,280,281,366 4 -238833 cd01663 Cyt_c_Oxidase_I 2 Low-spin heme (heme a) binding site 0 1 1 1 51,368,372,414,451 5 -238833 cd01663 Cyt_c_Oxidase_I 3 D-pathway 0 1 1 1 9,70,81,88,91,146,147,153,157 0 -238833 cd01663 Cyt_c_Oxidase_I 4 K-pathway 0 1 1 1 230,234,245,280,281,306,309 0 -238833 cd01663 Cyt_c_Oxidase_I 5 Electron transfer pathway 0 0 1 1 367,428,429 0 -238833 cd01663 Cyt_c_Oxidase_I 6 Putative proton exit pathway 0 1 1 1 281,358,359,428,429 0 -238833 cd01663 Cyt_c_Oxidase_I 7 Putative water exit pathway 0 1 1 1 217,222,223,354,358,359,428 0 -238833 cd01663 Cyt_c_Oxidase_I 8 Subunit I/II interface 0 1 1 1 45,217,255,258,259,284,285,286,289,292,300,308,311,318,319,320,332,350,351,353,355,356,357,358,359,423,424,428,429,430,439,440 2 -238833 cd01663 Cyt_c_Oxidase_I 9 Subunit I/III interface 0 1 0 0 0,80,84,86,93,134,138,156,160,180,187,190,198,207,208,209,214,215,217,227,265,268,271,272,276 2 -238833 cd01663 Cyt_c_Oxidase_I 10 Subunit I/IV interface 0 1 0 0 29,32,33,398,401,402,435,453 2 -238833 cd01663 Cyt_c_Oxidase_I 11 Subunit I/Vb interface 0 1 0 0 256,260,486 2 -238833 cd01663 Cyt_c_Oxidase_I 12 Subunit I/VIa interface 0 1 0 0 125,203,204,205,206 2 -238833 cd01663 Cyt_c_Oxidase_I 13 Subunit I/VIb interface 0 1 0 0 286 0 -238833 cd01663 Cyt_c_Oxidase_I 14 Subunit I/VIc interface 0 1 0 0 319 2 -238833 cd01663 Cyt_c_Oxidase_I 15 Subunit I/VIIa interface 0 1 0 0 104,107 2 -238833 cd01663 Cyt_c_Oxidase_I 16 Subunit I/VIIb interface 0 1 0 0 435,439 2 -238833 cd01663 Cyt_c_Oxidase_I 17 Subunit I/VIIc interface 0 1 0 0 15,19,22,26,106,107,390,463,466 2 -238833 cd01663 Cyt_c_Oxidase_I 18 Subunit I/VIIIb interface 0 1 0 0 399,456 2 -238833 cd01663 Cyt_c_Oxidase_I 19 Dimer interface 0 1 0 1 180,187,227,265,268,271,272,276 0 -238834 cd01665 Cyt_c_Oxidase_III 1 Subunit I/III interface 0 1 0 1 57,60,61,72,75,79,80,86,174,175,178,182 2 -238834 cd01665 Cyt_c_Oxidase_III 2 Subunit III/Vb interface 0 1 0 0 141 2 -238834 cd01665 Cyt_c_Oxidase_III 3 Subunit III/VIa interface 0 1 0 0 110,111,112,129,155,165,166,167,172,173,174 0 -238834 cd01665 Cyt_c_Oxidase_III 4 Subunit III/VIb interface 0 1 0 0 102 2 -238834 cd01665 Cyt_c_Oxidase_III 5 Subunit III/VIIa interface 0 1 0 0 39,42,43,46,49,50,51 2 -238834 cd01665 Cyt_c_Oxidase_III 6 Phospholipid binding site 0 1 1 1 40,41,44,45,48,54,65,66,69,197,204,216,217 5 -340457 cd01666 TGS_DRG 1 polypeptide substrate binding site 0 1 1 0 6,7,16,18,23,34,36,39,42,49,50,51,53,69,71,74,75,76 2 -340457 cd01666 TGS_DRG 2 key conserved lysine K6 [KR] 0 1 1 8 0 -238835 cd01672 TMPK 1 ATP-binding site 0 0 1 0 14,141,182 5 -238835 cd01672 TMPK 2 TMP-binding site 0 1 1 0 13,66,70,91,92,100,145 0 -238836 cd01673 dNK 1 Substrate-binding site 0 1 1 0 9,11,12,45,55,56,93,144,149 5 -238836 cd01673 dNK 2 Substrate specificity 0 0 1 1 63 5 -238837 cd01674 Homoaconitase_Swivel 1 substrate binding site 0 0 0 1 58,59,60 5 -153084 cd01675 RNR_III 1 active site 0 0 1 1 56,103,156,263,264,290,418,421 1 -153084 cd01675 RNR_III 2 effector binding site 0 1 1 1 43,45,46,76,77,78,79,80,84,87,88,91,123,420,421,422,423,426 0 -153084 cd01675 RNR_III 3 Zn binding site 0 1 1 0 520,523,534,537 4 -153084 cd01675 RNR_III 4 glycine loop 0 0 1 1 547,548,549,550,551 0 -153085 cd01676 RNR_II_monomer 1 putative active site 0 0 1 1 92,116,263,367,473 1 -153086 cd01677 PFL2_DhaB_BssA 1 active site 0 1 1 0 154,271,272,326,332,425,426,428,440,636,638 1 -153086 cd01677 PFL2_DhaB_BssA 2 dimer interface 0 1 1 1 33,34,35,36,117,118,119,123,124,127,128,129,130,189,190,192,193,502,506,511,622,623,624,626 2 -153086 cd01677 PFL2_DhaB_BssA 3 glycine loop 0 0 1 1 756,757,758,759,760 0 -153087 cd01678 PFL1 1 active site 0 1 1 0 166,258,259,313,319,404,418,421,590,592 1 -153087 cd01678 PFL1 2 catalytic residues 0 1 1 0 404,405,715 1 -153087 cd01678 PFL1 3 coenzyme A binding site 0 1 1 0 106,107,135,136,139,140,142,147,150,151 5 -153087 cd01678 PFL1 4 glycine loop 0 0 1 1 712,713,714,715,716 0 -153088 cd01679 RNR_I 1 active site 0 1 1 0 35,36,50,51,79,215,217,219,239,349,350,351,352,353,354 1 -153088 cd01679 RNR_I 2 catalytic residues 0 1 1 0 51,215,217,219,237,455,456 1 -153088 cd01679 RNR_I 3 effector binding site 0 1 1 1 58,59,60,63,75,88,102,107 0 -153088 cd01679 RNR_I 4 R2 peptide binding site 0 1 1 1 167,170,171,173,174,175,179,186,435,436,437,439,440,444,445,447,448 0 -153088 cd01679 RNR_I 5 dimer interface 0 1 1 0 47,60,61,64,67,68,71,72,75,90,102,106,107,109,110,113,114,117,118,119,120,121 2 -238843 cd01699 RNA_dep_RNAP 1 active site 0 1 1 1 101,102,103,104,105,106,161,162,199,201,202,249,250 1 -238843 cd01699 RNA_dep_RNAP 2 metal ion binding site 0 1 1 0 101,102,201,202 4 -238843 cd01699 RNA_dep_RNAP 3 putative nucleic acid binding site 0 0 1 1 162 3 -176454 cd01700 PolY_Pol_V_umuC 1 active site 0 0 1 1 3,4,7,8,39,42,98,99,151 1 -176454 cd01700 PolY_Pol_V_umuC 2 DNA binding site 0 0 1 1 96,99,181,182,183,184,185,186,187,216,241,242,243,244,245,246,273,292,293,294,295,296,298 3 -176455 cd01701 PolY_Rev1 1 active site 0 1 1 0 9,52,53,54,55,56,57,86,87,90,93,99,147,148,202 1 -176455 cd01701 PolY_Rev1 2 DNA binding site 0 1 1 0 3,4,5,7,8,9,10,11,13,14,21,52,53,54,55,56,57,77,86,87,90,93,99,100,102,144,145,147,148,202,226,227,228,229,230,231,232,233,236,264,265,289,290,291,292,293,294,295,296,297,331,352,353,354,358,359,360,361,362,364 3 -176456 cd01702 PolY_Pol_eta 1 active site 0 1 1 0 3,4,5,7,8,33,34,37,40,46,117,118,162 1 -176456 cd01702 PolY_Pol_eta 2 DNA binding site 0 1 1 0 28,29,46,115,191,192,250,251,252,253,254,255,283,310,312 3 -176457 cd01703 PolY_Pol_iota 1 active site 0 1 1 0 3,4,5,7,8,33,34,37,40,46,97,98,149 1 -176457 cd01703 PolY_Pol_iota 2 DNA binding site 0 1 1 0 28,29,33,66,68,72,94,95,96,98,142,177,178,179,180,181,182,183,252,253,254,255,256,257,258,260,262,286,322,323 3 -238844 cd01709 RT_like_1 1 putative active site 0 0 1 1 55,56,57,58,59,60,85,86,117,119,120,183,184 1 -238844 cd01709 RT_like_1 2 putative nucleic acid binding site 0 0 1 1 86 3 -238844 cd01709 RT_like_1 3 putative NTP binding site 0 0 1 1 27,28,29,30,31,32,85,119 5 -238845 cd01712 ThiI 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,30,32 5 -238846 cd01713 PAPS_reductase 1 Active Sites 0 1 1 1 92,120,133,137 1 -238847 cd01714 ETF_beta 1 Ligand binding site 0 1 0 0 4,5,33,36,59,113,114,116,117,122,123,124,125 5 -212463 cd01716 Hfq 1 RNA binding site 0 1 1 0 19,23,24,25,26,27,40,47,55,56,58 3 -212463 cd01716 Hfq 2 hexamer interface 0 1 1 0 0,1,2,5,20,21,22,23,24,32,33,34,36,37,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 2 -212463 cd01716 Hfq 3 Sm1 motif 0 0 1 1 16,17,18,19,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 0 -212463 cd01716 Hfq 4 Sm2 motif 0 0 1 1 46,47,48,49,50,51,52,53,54,55,56,57 0 -212464 cd01717 Sm_B 1 heptamer interface 0 1 1 0 3,9,17,18,27,31,38,39,65,66,67,68,69,70,71,72,73,74,75,76,77,78 2 -212464 cd01717 Sm_B 2 putative hexamer interface 0 1 1 1 15,16,17,18,19,20,22,28,29,32,34,36,56,61,63,65,66,67,68,69,70,71,72,73,74,75 2 -212464 cd01717 Sm_B 3 RNA binding site 0 1 1 0 31,32,33,34,44,55,56,57,69,71 3 -212464 cd01717 Sm_B 4 Sm1 motif 0 0 1 1 12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38 0 -212464 cd01717 Sm_B 5 Sm2 motif 0 0 1 1 65,66,67,68,69,70,71,72,73,74,75,76 0 -212465 cd01718 Sm_E 1 heptamer interface 0 1 1 0 13,25,27,30,37,38,39,40,44,52,61,63,65,66,67,68,69,72,73,74,75,76,77,78 2 -212465 cd01718 Sm_E 2 RNA binding site 0 1 1 0 40,42,43,44,69,71 3 -212465 cd01718 Sm_E 3 Sm1 motif 0 0 1 1 22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48 0 -212465 cd01718 Sm_E 4 Sm2 motif 0 0 1 1 65,66,67,68,69,70,71,72,73,74,75,76 0 -212466 cd01719 Sm_G 1 heptamer interface 0 1 1 0 3,7,15,20,33,54,56,57,59,62,63,64,65,66,68 2 -212466 cd01719 Sm_G 2 RNA binding site 0 1 1 0 32,34,58,60 3 -212466 cd01719 Sm_G 3 Sm1 motif 0 0 1 1 12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38 0 -212466 cd01719 Sm_G 4 Sm2 motif 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65 0 -212467 cd01720 Sm_D2 1 heptamer interface 0 1 1 0 7,15,21,22,23,24,25,32,33,36,37,38,39,40,44,45,48,49,67,68,69,71,73,74,75,76,77,78,79,81,82,83,84,85,86,87 2 -212467 cd01720 Sm_D2 2 RNA binding site 0 1 1 0 1,4,5,23,24,25,37,38,40,77,79 3 -212467 cd01720 Sm_D2 3 Sm1 motif 0 0 1 1 18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42,43,44 0 -212467 cd01720 Sm_D2 4 Sm2 motif 0 0 1 1 73,74,75,76,77,78,79,80,81,82,83,84 0 -212468 cd01721 Sm_D3 1 heptamer interface 0 1 1 0 20,22,30,33,36,44,52,54,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212468 cd01721 Sm_D3 2 RNA binding site 0 1 1 0 32,34,45,58,59,60 3 -212468 cd01721 Sm_D3 3 putative hexamer interface 0 1 1 1 15,16,17,18,20,22,28,29,34,36,54,55,56,57,58,59,60,61,62,63,64 2 -212468 cd01721 Sm_D3 4 Sm1 motif 0 0 1 1 12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38 0 -212468 cd01721 Sm_D3 5 Sm2 motif 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65 0 -212469 cd01722 Sm_F 1 heptamer interface 0 1 1 0 0,1,5,16,17,18,19,23,31,33,34,35,36,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 2 -212469 cd01722 Sm_F 2 RNA binding site 0 1 1 0 16,18,19,22,32,33,34,35,59,60,61,62 3 -212469 cd01722 Sm_F 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212469 cd01722 Sm_F 4 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212470 cd01723 LSm4 1 putative RNA binding site 0 0 1 1 31,33,60 3 -212470 cd01723 LSm4 2 putative oligomer interface 0 0 1 0 5,8,9,14,16,17,18,21,23,28,29,30,31,34,35,37,56,57,58,59,60,61,62,63,64,65,66,67,68 2 -212470 cd01723 LSm4 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212470 cd01723 LSm4 4 Sm2 motif 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67 0 -212471 cd01724 Sm_D1 1 heptamer interface 0 1 1 0 1,4,5,16,17,18,19,28,29,31,32,33,34,37,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,72,77,85,86 2 -212471 cd01724 Sm_D1 2 RNA binding site 0 1 1 0 0,2,33,34,35,59,60,61 3 -212471 cd01724 Sm_D1 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212471 cd01724 Sm_D1 4 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212472 cd01725 LSm2 1 putative RNA binding site 0 0 1 1 31,33,61 3 -212472 cd01725 LSm2 2 putative oligomer interface 0 0 1 0 5,8,9,14,16,17,18,21,23,28,29,30,31,34,35,37,57,58,59,60,61,62,63,64,65,66,67,68,69 2 -212472 cd01725 LSm2 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212472 cd01725 LSm2 4 Sm2 motif 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68 0 -212473 cd01726 LSm6 1 hexamer interface 0 1 1 1 5,8,9,14,16,17,18,21,23,28,29,30,31,34,35,37,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212473 cd01726 LSm6 2 putative RNA binding site 0 0 1 1 31,33,59 3 -212473 cd01726 LSm6 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212473 cd01726 LSm6 4 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212474 cd01727 LSm8 1 putative RNA binding site 0 0 1 1 29,31,61 3 -212474 cd01727 LSm8 2 putative oligomer interface 0 0 1 0 3,6,7,12,14,15,16,19,21,26,27,28,29,32,33,35,57,58,59,60,61,62,63,64,65,66,67,68,69 2 -212474 cd01727 LSm8 3 Sm1 motif 0 0 1 1 11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37 0 -212474 cd01727 LSm8 4 Sm2 motif 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68 0 -212475 cd01728 LSm1 1 putative RNA binding site 0 0 1 1 32,34,63 3 -212475 cd01728 LSm1 2 putative oligomer interface 0 0 1 0 6,9,10,15,17,18,19,22,24,29,30,31,32,35,36,38,59,60,61,62,63,64,65,66,67,68,69,70,71 2 -212475 cd01728 LSm1 3 Sm1 motif 0 0 1 1 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40 0 -212475 cd01728 LSm1 4 Sm2 motif 0 0 1 1 59,60,61,62,63,64,65,66,67,68,69,70 0 -212476 cd01729 LSm7 1 hexamer interface 0 1 1 1 4,6,9,10,15,17,18,19,22,24,29,30,31,32,33,34,35,36,38,60,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77 2 -212476 cd01729 LSm7 2 putative RNA binding site 0 0 1 1 32,34,68 3 -212476 cd01729 LSm7 3 Sm1 motif 0 0 1 1 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40 0 -212476 cd01729 LSm7 4 Sm2 motif 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75 0 -212477 cd01730 LSm3 1 putative RNA binding site 0 0 1 1 31,33,72 3 -212477 cd01730 LSm3 2 putative oligomer interface 0 0 1 0 5,8,9,14,16,17,18,21,23,28,29,30,31,34,35,37,68,69,70,71,72,73,74,75,76,77,78,79,80 2 -212477 cd01730 LSm3 3 Sm1 motif 0 0 1 0 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212477 cd01730 LSm3 4 Sm2 motif 0 0 1 0 68,69,70,71,72,73,74,75,76,77,78,79 0 -212478 cd01731 archaeal_Sm1 1 heptamer interface 0 1 1 0 0,1,4,7,14,16,17,18,21,28,29,30,31,33,34,35,37,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68 2 -212478 cd01731 archaeal_Sm1 2 RNA binding site 0 1 1 0 0,2,3,6,29,30,31,33 3 -212478 cd01731 archaeal_Sm1 3 Sm1 motif 0 0 1 1 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39 0 -212478 cd01731 archaeal_Sm1 4 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212479 cd01732 LSm5 1 oligomer interface 0 1 1 1 7,10,11,16,18,19,20,23,25,30,31,32,33,36,37,39,60,61,62,63,64,65,66,67,68,69,70,71,72 2 -212479 cd01732 LSm5 2 putative RNA binding site 0 0 1 1 33,35,64 3 -212479 cd01732 LSm5 3 Sm1 motif 0 0 1 1 15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41 0 -212479 cd01732 LSm5 4 Sm2 motif 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71 0 -212480 cd01733 LSm10 1 putative RNA binding site 0 0 1 1 39,41,67 3 -212480 cd01733 LSm10 2 Sm1 motif 0 0 1 1 21,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47 0 -212480 cd01733 LSm10 3 Sm2 motif 0 0 1 1 63,64,65,66,67,68,69,70,71,72,73,74 0 -212481 cd01734 YlxS_C 1 putative RNA binding site 0 0 1 1 41,43,58 3 -212481 cd01734 YlxS_C 2 putative oligomer interface 0 0 1 1 22,24,31,33,39,46,54,55,56,58,59,61,62,63,64,65,66 2 -212482 cd01735 LSm12_N 1 putative RNA binding site 0 0 1 1 26,28,52 3 -212482 cd01735 LSm12_N 2 Sm1 motif 0 0 1 1 8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35 0 -212482 cd01735 LSm12_N 3 Sm2 motif 0 0 1 1 48,49,50,51,52,53,54,55,56,57,58,59 0 -212483 cd01736 LSm14_N 1 putative RNA binding site 0 0 1 1 26,28,64 3 -212483 cd01736 LSm14_N 2 Sm1 motif 0 0 1 1 8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35 0 -212483 cd01736 LSm14_N 3 Sm2 motif 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71 0 -212484 cd01737 LSm16_N 1 putative RNA binding site 0 0 1 1 27,53 3 -212484 cd01737 LSm16_N 2 heterodimer interface 0 1 1 0 0,3,26,31,54,57,58,59,60,61,62 2 -212484 cd01737 LSm16_N 3 Sm1 motif 0 0 1 1 8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34 0 -212484 cd01737 LSm16_N 4 Sm2 motif 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59,60 0 -212485 cd01739 LSm11_M 1 putative RNA binding site 0 0 1 1 32,34,54 3 -212485 cd01739 LSm11_M 2 Sm1 motif 0 0 1 1 10,11,12,13,14,15,16,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40 0 -212485 cd01739 LSm11_M 3 Sm2 motif 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61 0 -153211 cd01740 GATase1_FGAR_AT 1 catalytic triad 0 0 1 1 88,210,212 1 -153211 cd01740 GATase1_FGAR_AT 2 putative active site 0 0 1 0 51,52,56,88,92,147,148,208,210,211,212,213 1 -153212 cd01741 GATase1_1 1 catalytic triad 0 0 1 1 87,177,179 1 -153213 cd01742 GATase1_GMP_Synthase 1 catalytic triad 0 0 1 1 76,163,165 1 -153213 cd01742 GATase1_GMP_Synthase 2 candidate oxyanion hole 0 0 1 1 49,77 0 -153213 cd01742 GATase1_GMP_Synthase 3 AMP/PPi binding site 0 1 1 0 7,8,48,49,50,76,77,124,163 5 -153213 cd01742 GATase1_GMP_Synthase 4 potential glutamine specificity residues 0 0 1 1 80,125,161 5 -153214 cd01743 GATase1_Anthranilate_Synthase 1 catalytic triad 0 0 1 1 77,166,168 1 -153214 cd01743 GATase1_Anthranilate_Synthase 2 glutamine binding 0 1 1 0 49,50,52,77,78,81,125,126,127,128 5 -153215 cd01744 GATase1_CPSase 1 catalytic site 0 0 1 1 75,159,161 1 -153215 cd01744 GATase1_CPSase 2 subunit interface 0 1 1 1 100,102,109,111,138,164,165,167,168 2 -153216 cd01745 GATase1_2 1 catalytic triad 0 0 1 1 106,169,171 1 -153217 cd01746 GATase1_CTP_Synthase 1 catalytic triad 0 0 1 1 90,216,218 1 -153217 cd01746 GATase1_CTP_Synthase 2 active site 0 1 1 1 61,62,63,64,65,90,91,94,114,169,170,171,172,216,218 1 -153217 cd01746 GATase1_CTP_Synthase 3 putative oxyanion hole 0 0 1 0 63,91 0 -153218 cd01747 GATase1_Glutamyl_Hydrolase 1 catalytic triad 0 0 1 1 98,210,212 1 -153218 cd01747 GATase1_Glutamyl_Hydrolase 2 active site 0 0 1 0 24,98,102,160,208,210,212,213 1 -153218 cd01747 GATase1_Glutamyl_Hydrolase 3 substrate binding cleft 0 0 1 0 24,98,160,162,210,212,213 5 -153219 cd01748 GATase1_IGP_Synthase 1 catalytic triad 0 0 1 1 77,181,183 1 -153219 cd01748 GATase1_IGP_Synthase 2 putative active site 0 0 1 0 38,39,40,41,42,43,44,45,75,76,77,78,79,181,183 1 -153219 cd01748 GATase1_IGP_Synthase 3 oxyanion strand 0 0 1 1 38,39,40,41,42,43,44,45 0 -153220 cd01749 GATase1_PB 1 catalytic triad 0 0 1 1 75,168,170 1 -153220 cd01749 GATase1_PB 2 predicted active site 0 0 1 0 42,43,44,75,103,132,133,168,170 1 -153221 cd01750 GATase1_CobQ 1 catalytic triad 0 0 1 1 78,140,142 1 -340461 cd01760 RBD 1 key conserved lysines 0 0 1 1 29,33,50 0 -340465 cd01766 Ubl_UFM1 1 polypeptide substrate binding site 0 1 1 0 15,16,17,18,19,20,24,27,28,31 2 -340466 cd01767 UBX 1 key conserved lysines [KR][KR] 0 1 1 4,48 0 -340467 cd01768 RA_FERM_F0_F1_like 1 7 key residues 0 0 0 0 4,13,29,31,35,80 0 -340468 cd01770 UBX_UBXN2 1 UBX-p97 interaction site 0 1 1 1 0,2,4,5,8,9,11,44,45,47,63,64,65,66,68,70 2 -340468 cd01770 UBX_UBXN2 2 key conserved lysine K27 [KR] 0 1 1 25 0 -340468 cd01770 UBX_UBXN2 3 key conserved lysines [KR][KR][KR][KR] 0 1 1 4,25,32,48 0 -340469 cd01771 UBX_UBXN3A 1 UBX-p97 interaction site 0 1 1 1 5,7,9,16,49,72,73 2 -340469 cd01771 UBX_UBXN3A 2 key conserved lysines [KR][KR][KR] 0 1 1 9,36,52 0 -340470 cd01772 UBX_UBXN1 1 key conserved lysines [KR][KR][KR] 0 1 1 11,32,55 0 -340471 cd01773 UBX_UBXN7 1 putative UBX-p97 interaction site 0 0 1 1 2,4,6,7,10,11,13,45,46,48,67,68,69,70,72,74 2 -340471 cd01773 UBX_UBXN7 2 key conserved lysines [KR][KR] 0 1 1 6,49 0 -340472 cd01774 UBX_UBXN8 1 putative UBX-p97 interaction site 0 0 1 1 3,5,7,8,11,12,14,46,47,49,67,68,69,70,72,74 2 -340472 cd01774 UBX_UBXN8 2 key conserved lysine K6 [KR] 0 1 1 7 0 -340474 cd01776 RA_Rin 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340475 cd01777 FERM_F1_SNX27 1 key conserved lysines [KR][KR] 0 1 1 34,57 0 -340476 cd01778 RA_RASSF1_like 1 RA-Ras interaction site 0 1 1 1 5,48,50,51,52,53,54,55,57,74,75 2 -340476 cd01778 RA_RASSF1_like 2 key conserved lysines [KR][KR] 0 1 1 74,100 0 -340477 cd01779 RA_Myosin-IX 1 key conserved lysines [KR][KR] 0 1 1 35,60 0 -340478 cd01780 RA2_PLC-epsilon 1 RA-Ras interaction site 0 1 1 1 4,12,13,14,15,16,17,18,19,20,37,40,41 2 -340478 cd01780 RA2_PLC-epsilon 2 key conserved lysines [KR][KR] 0 1 1 37,75 0 -340479 cd01781 RA2_Afadin 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340480 cd01782 RA1_Afadin 1 RA - Ras interaction site 0 0 1 1 24,37,57 2 -340480 cd01782 RA1_Afadin 2 key conserved lysines [KR][KR][KR] 0 1 1 57,82,102 0 -340481 cd01783 RA2_DAGK-theta 1 key conserved lysine K48 [KR] 0 1 1 61 0 -340482 cd01784 RA_RASSF2_like 1 key conserved lysines [KR][KR] 0 1 1 34,56 0 -340483 cd01785 RA_PDZ-GEF1 1 key conserved lysine K48 [KR] 0 1 1 60 0 -340484 cd01786 RA_STE50 1 key conserved lysines [KR][KR] 0 1 1 50,71 0 -340485 cd01787 RA_MRL 1 RA-PH-RAP1 interaction site 0 1 1 0 4,9,10,11,12,13,14,15,16,32,33,34,35,50,68,69,72 2 -340485 cd01787 RA_MRL 2 key conserved lysines [KR][KR] 0 1 1 33,55 0 -340486 cd01788 Ubl_ElonginB 1 elongin C interaction site 0 1 1 1 2,4,6,9,10,11,12,13,14,15,32,41,43,45,46,47,57,59,64,66,67,68,69,70,71,72,78,83,84,86,89,90,91,92,93,94,95,96,97 2 -340486 cd01788 Ubl_ElonginB 2 oligomer interface 0 1 1 1 2,4,6,9,10,11,12,13,14,15,32,41,43,45,46,47,57,59,64,66,67,68,69,70,71,72,78,83,84,86,89,90,91,92,93,94,95,96,97 2 -340486 cd01788 Ubl_ElonginB 3 key conserved lysine K27 [KR] 0 1 1 26 0 -340486 cd01788 Ubl_ElonginB 4 key conserved lysines [KR][KR] 0 1 1 6,26 0 -340487 cd01789 Ubl_TBCB 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340487 cd01789 Ubl_TBCB 2 key conserved lysines [KR][KR] 0 1 1 28,30 0 -340488 cd01790 Ubl_HERP 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340488 cd01790 Ubl_HERP 2 key conserved lysines [KR][KR][KR] 0 1 1 5,28,51 0 -340489 cd01791 Ubl_UBL5 1 HIND interaction site 0 1 1 1 0,14,16,17,18,21,25,28,29,32,33 2 -340489 cd01791 Ubl_UBL5 2 key conserved lysine K27 [KR] 0 1 1 27 0 -340489 cd01791 Ubl_UBL5 3 key conserved lysines [KR][KR] 0 1 1 11,27 0 -340490 cd01792 Ubl1_ISG15 1 NS1B interaction site 0 1 1 1 5,6,7,8,9,33,35,39,43,45,69,70,71,72,74 2 -340490 cd01792 Ubl1_ISG15 2 key conserved lysine K27 [KR] 0 1 1 26 0 -340490 cd01792 Ubl1_ISG15 3 key conserved lysines [KR][KR][KR] 0 1 1 5,26,32 0 -340491 cd01793 Ubl_FUBI 1 key conserved lysine K27 [KR] 0 1 1 24 0 -340491 cd01793 Ubl_FUBI 2 key conserved lysines [KR][KR] 0 1 1 5,24 0 -340492 cd01794 Ubl_UBTD 1 key conserved lysine K27 [KR] 0 1 1 24 0 -340492 cd01794 Ubl_UBTD 2 key conserved lysines [KR][KR][KR][KR][KR][KR] 0 1 1 3,8,24,26,45,60 0 -340493 cd01795 Ubl_USP48 1 key conserved lysine K27 [KR] 0 1 1 21 0 -340493 cd01795 Ubl_USP48 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 3,7,21,42 0 -340494 cd01796 Ubl_Ddi1_like 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340495 cd01797 Ubl_UHRF 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340495 cd01797 Ubl_UHRF 2 key conserved lysines [KR][KR][KR][KR][KR] 0 1 1 5,11,28,30,49 0 -340496 cd01798 Ubl_parkin 1 Ring1 interaction site 0 1 1 1 3,5,6,7,8,11,41,42,43,44,65,67,69 2 -340496 cd01798 Ubl_parkin 2 SH3 interaction site 0 1 1 1 3,5,39,41,44,46,65,67,68,69,70,71,72,73 2 -340496 cd01798 Ubl_parkin 3 Arg42Pro mutation site 0 0 1 1 39 0 -340496 cd01798 Ubl_parkin 4 key conserved lysine K27 [KR] 0 1 1 24 0 -340496 cd01798 Ubl_parkin 5 key conserved lysines [KR][KR][KR] 0 1 1 3,24,45 0 -340497 cd01799 Ubl_HOIL1 1 UBA interaction site 0 1 1 1 3,8,9,10,12,13,14,16,17,18,19,38,39,41,42,78,79,80 2 -340497 cd01799 Ubl_HOIL1 2 key conserved lysine K27 [KR] 0 1 1 32 0 -340498 cd01800 Ubl_SF3a120 1 key conserved lysine K27 [KR] 0 1 1 37 0 -340499 cd01801 Ubl_TECR_like 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340499 cd01801 Ubl_TECR_like 2 key conserved lysines [KR][KR] 0 1 1 10,27 0 -340500 cd01802 Ubl_ZFAND4 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340500 cd01802 Ubl_ZFAND4 2 key conserved lysines [KR][KR] 0 1 1 26,28 0 -340501 cd01803 Ubl_ubiquitin 1 E1 interaction site 0 1 1 1 7,8,9,10,11,30,31,32,33,34,39,41,43,45,46,47,48,67,69,70,71,72,73,74,75 2 -340501 cd01803 Ubl_ubiquitin 2 oligomer interface 0 1 1 1 5,6,7,8,10,33,34,35,36,39,41,43,45,46,47,48,67,68,69,70,71,72,73,74,75 2 -340501 cd01803 Ubl_ubiquitin 3 key conserved lysine K27 [KR] 0 1 1 26 0 -340501 cd01803 Ubl_ubiquitin 4 key conserved lysines [KR][KR][KR][KR][KR][KR][KR] 0 1 1 5,10,26,28,32,47,62 0 -340502 cd01804 Ubl_midnolin 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340502 cd01804 Ubl_midnolin 2 key conserved lysines [KR][KR][KR] 0 1 1 26,28,32 0 -340503 cd01805 Ubl_Rad23 1 Ufd2P interaction site 0 1 1 1 7,46,47,48,49,51,70 2 -340503 cd01805 Ubl_Rad23 2 Sgt2 interaction site 0 1 1 1 5,7,42,44,45,46,47,48,49,51,68,70 2 -340503 cd01805 Ubl_Rad23 3 T1 interaction site 0 1 1 1 5,7,42,44,47,48,49,68,70,71 2 -340503 cd01805 Ubl_Rad23 4 UIM interaction site 0 1 1 1 5,6,7,42,44,45,46,47,48,49,65,66,67,68,70 2 -340503 cd01805 Ubl_Rad23 5 key conserved lysine K27 [KR] 0 1 1 26 0 -340503 cd01805 Ubl_Rad23 6 key conserved lysines 0 0 1 1 5,10,26,28,48,63 0 -340504 cd01806 Ubl_NEDD8 1 E1/E2/E3 interaction site 0 1 1 1 3,4,5,6,7,25,26,28,29,31,32,33,34,37,39,41,44,45,46,65,67,68,69,70,71,72,73 2 -340504 cd01806 Ubl_NEDD8 2 NEDP1 interaction site 0 1 1 1 3,5,6,37,39,41,42,43,44,45,46,47,48,49,50,51,56,65,67,68,69,70,71,72,73 2 -340504 cd01806 Ubl_NEDD8 3 bacterial deamidase effectors interaction site 0 1 1 1 3,4,5,6,7,8,28,29,30,31,32,33,34,36,37,44,65,67,68,69,70,71 2 -340504 cd01806 Ubl_NEDD8 4 key conserved lysine K27 [KR] 0 1 1 24 0 -340504 cd01806 Ubl_NEDD8 5 key conserved lysines 0 0 1 1 3,8,24,26,45 0 -340505 cd01807 Ubl_UBL4A_like 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340505 cd01807 Ubl_UBL4A_like 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 5,10,26,47 0 -340506 cd01808 Ubl_PLICs 1 putative S5a binding site 0 0 1 1 37,40,44,46,47,48,49,51,68,70,71,72 0 -340506 cd01808 Ubl_PLICs 2 Pru interaction site 0 1 1 1 7,44,45,46,47,48,49,65,66,67,68,70,72 2 -340506 cd01808 Ubl_PLICs 3 key conserved lysine K27 [KR] 0 1 1 27 0 -340506 cd01808 Ubl_PLICs 4 key conserved lysines [KR][KR][KR][KR] 0 1 1 7,27,33,48 0 -340507 cd01809 Ubl_BAG6 1 ZF interaction site 0 1 1 1 5,6,7,8,41,43,45,46,47,48,66,67,68,69,70 2 -340507 cd01809 Ubl_BAG6 2 key conserved lysine K27 [KR] 0 1 1 26 0 -340507 cd01809 Ubl_BAG6 3 key conserved lysines [KR][KR][KR] 0 1 1 5,26,47 0 -340508 cd01810 Ubl2_ISG15 1 OTU interaction site 0 1 1 1 7,8,9,26,38,40,41,43,46,48,49,50,51,67,69,71,72,73 2 -340508 cd01810 Ubl2_ISG15 2 key conserved lysine K27 [KR] 0 1 1 26 0 -340508 cd01810 Ubl2_ISG15 3 key conserved lysines [KR][KR][KR] 0 1 1 5,26,47 0 -340509 cd01811 Ubl1_OASL 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340510 cd01812 Ubl_BAG1 1 key conserved lysine K48 [KR] 0 1 1 50 0 -340511 cd01813 Ubl_UBLCP1 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340511 cd01813 Ubl_UBLCP1 2 key conserved lysines [KR][KR][KR] 0 1 1 5,25,49 0 -340512 cd01814 Ubl_MUBs_plant 1 E2 interaction site 0 1 0 1 6,8,10,23,25,46,47,52,53,54,55,57,61,80,82,84,86 2 -340512 cd01814 Ubl_MUBs_plant 2 key conserved lysine K27 [KR] 0 1 1 28 0 -340512 cd01814 Ubl_MUBs_plant 3 key conserved lysines [KR][KR][KR] 0 1 1 6,28,56 0 -340513 cd01815 Ubl_UBL7 1 key conserved lysine K27 [KR] 0 1 1 37 0 -340513 cd01815 Ubl_UBL7 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 4,37,43,61 0 -340514 cd01816 RBD_RAF 1 RBD_Raf-KRas interaction site 0 1 1 1 1,8,10,11,12,13,28,31,32,33,34 2 -340514 cd01816 RBD_RAF 2 RBD_Raf-Ras interaction site 0 1 1 1 1,3,8,9,10,11,12,13,15,28,32,33,34 2 -340514 cd01816 RBD_RAF 3 Ca binding site 0 1 1 1 64 4 -340514 cd01816 RBD_RAF 4 key conserved lysine K29 [KR] 0 1 1 28 0 -340515 cd01817 RBD1_RGS12_like 1 key conserved lysines 0 0 1 1 32,49 0 -132836 cd01819 Patatin_and_cPLA2 1 active site 0 0 1 1 5,6,8,35,129 1 -132836 cd01819 Patatin_and_cPLA2 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -238858 cd01820 PAF_acetylesterase_like 1 active site 0 1 1 1 40,69,99,189,192 1 -238858 cd01820 PAF_acetylesterase_like 2 catalytic triad 0 0 1 1 40,189,192 1 -238858 cd01820 PAF_acetylesterase_like 3 oxyanion hole 0 1 1 1 40,69,99 1 -238858 cd01820 PAF_acetylesterase_like 4 specificity pocket 0 0 1 0 41,98,191 0 -238859 cd01821 Rhamnogalacturan_acetylesterase_like 1 active site 0 1 1 1 8,43,75,180 1 -238859 cd01821 Rhamnogalacturan_acetylesterase_like 2 catalytic triad 0 0 1 1 8,177,180 1 -238860 cd01822 Lysophospholipase_L1_like 1 active site 0 1 1 1 8,45,74,155,158 1 -238860 cd01822 Lysophospholipase_L1_like 2 catalytic triad 0 0 1 0 8,155,158 1 -238860 cd01822 Lysophospholipase_L1_like 3 oxyanion hole 0 0 1 0 8,45,74 1 -238860 cd01822 Lysophospholipase_L1_like 4 switch loop 0 0 1 1 76,77,78,79,80,81 0 -238861 cd01823 SEST_like 1 active site 0 1 1 0 8,55,90,239,242 1 -238861 cd01823 SEST_like 2 catalytic triad 0 0 1 1 8,239,242 1 -238861 cd01823 SEST_like 3 oxyanion hole 0 1 1 1 8,55,90 1 -238862 cd01824 Phospholipase_B_like 1 active site 0 0 1 1 18,69,129,262,265 1 -238862 cd01824 Phospholipase_B_like 2 catalytic triad 0 0 1 1 18,262,265 1 -238862 cd01824 Phospholipase_B_like 3 oxyanion hole 0 0 1 1 18,69,129 1 -238863 cd01825 SGNH_hydrolase_peri1 1 active site 0 0 1 1 7,33,66,164,167 1 -238863 cd01825 SGNH_hydrolase_peri1 2 catalytic triad 0 0 1 1 7,164,167 1 -238863 cd01825 SGNH_hydrolase_peri1 3 oxyanion hole 0 0 1 1 7,33,66 1 -238864 cd01826 acyloxyacyl_hydrolase_like 1 active site 0 0 1 1 19,100,132,285,288 1 -238864 cd01826 acyloxyacyl_hydrolase_like 2 catalytic triad 0 0 1 1 19,285,288 1 -238864 cd01826 acyloxyacyl_hydrolase_like 3 oxyanion hole 0 0 1 1 19,100,132 1 -238865 cd01827 sialate_O-acetylesterase_like1 1 active site 0 0 1 1 8,39,77,166,169 1 -238865 cd01827 sialate_O-acetylesterase_like1 2 catalytic triad 0 0 1 1 8,166,169 1 -238865 cd01827 sialate_O-acetylesterase_like1 3 oxyanion hole 0 0 1 1 8,42,77 1 -238866 cd01828 sialate_O-acetylesterase_like2 1 active site 0 0 1 1 7,30,58,147,150 1 -238866 cd01828 sialate_O-acetylesterase_like2 2 catalytic triad 0 0 1 1 7,147,150 1 -238866 cd01828 sialate_O-acetylesterase_like2 3 oxyanion hole 0 0 1 1 7,30,58 1 -238867 cd01829 SGNH_hydrolase_peri2 1 active site 0 0 1 1 7,35,69,177,180 1 -238867 cd01829 SGNH_hydrolase_peri2 2 catalytic triad 0 0 1 1 7,177,180 1 -238867 cd01829 SGNH_hydrolase_peri2 3 oxyanion hole 0 0 1 1 7,35,69 1 -238868 cd01830 XynE_like 1 active site 0 0 1 1 7,48,84,183,186 1 -238868 cd01830 XynE_like 2 catalytic triad 0 0 1 1 7,183,186 1 -238868 cd01830 XynE_like 3 oxyanion hole 0 0 1 1 7,48,84 1 -238869 cd01831 Endoglucanase_E_like 1 active site 0 0 1 1 7,148,150 1 -238869 cd01831 Endoglucanase_E_like 2 catalytic triad 0 0 1 1 7,147,150 1 -238869 cd01831 Endoglucanase_E_like 3 oxyanion hole 0 0 1 1 7,52,65 1 -238870 cd01832 SGNH_hydrolase_like_1 1 active site 0 0 1 1 7,165,168 1 -238870 cd01832 SGNH_hydrolase_like_1 2 catalytic triad 0 0 1 1 7,165,168 1 -238870 cd01832 SGNH_hydrolase_like_1 3 oxyanion hole 0 0 1 1 7,48,77 1 -238871 cd01833 XynB_like 1 active site 0 0 1 1 8,18,50,136,139 1 -238871 cd01833 XynB_like 2 catalytic triad 0 0 1 1 8,136,139 1 -238871 cd01833 XynB_like 3 oxyanion hole 0 0 1 1 8,21,50 1 -238872 cd01834 SGNH_hydrolase_like_2 1 active site 0 0 1 1 9,42,71,171,174 1 -238872 cd01834 SGNH_hydrolase_like_2 2 catalytic triad 0 0 1 1 9,171,174 1 -238872 cd01834 SGNH_hydrolase_like_2 3 oxyanion hole 0 0 1 1 9,42,71 1 -238873 cd01835 SGNH_hydrolase_like_3 1 active site 0 0 1 1 9,46,79,172,175 1 -238873 cd01835 SGNH_hydrolase_like_3 2 catalytic triad 0 0 1 1 9,172,175 1 -238873 cd01835 SGNH_hydrolase_like_3 3 oxyanion hole 0 1 1 1 9,46,79 1 -238874 cd01836 FeeA_FeeB_like 1 active site 0 0 1 1 10,49,77,168,171 1 -238874 cd01836 FeeA_FeeB_like 2 catalytic triad 0 0 1 1 10,168,171 1 -238874 cd01836 FeeA_FeeB_like 3 oxyanion hole 0 0 1 1 10,31,77 1 -238875 cd01837 SGNH_plant_lipase_like 1 active site 0 0 1 1 8,83,138,294,297 1 -238875 cd01837 SGNH_plant_lipase_like 2 catalytic triad 0 0 1 1 8,294,297 1 -238875 cd01837 SGNH_plant_lipase_like 3 oxyanion hole 0 0 1 1 8,83,138 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 1 active site 0 0 1 1 9,48,77,165,168 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 2 catalytic triad 0 0 1 1 7,178,181 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 3 oxyanion hole 0 0 1 1 7,41,73 1 -238877 cd01839 SGNH_arylesterase_like 1 active site 0 0 1 1 7,50,89,184,187 1 -238877 cd01839 SGNH_arylesterase_like 2 catalytic triad 0 0 1 1 7,184,187 1 -238877 cd01839 SGNH_arylesterase_like 3 oxyanion hole 0 0 1 1 7,50,89 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 1 catalytic triad 0 0 1 1 7,31,60,129,132 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 2 catalytic triad 0 0 1 1 7,129,132 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 3 oxyanion hole 0 0 1 1 7,31,60 1 -238879 cd01841 NnaC_like 1 active site 0 0 1 1 8,32,61,153,156 1 -238879 cd01841 NnaC_like 2 catalytic triad 0 0 1 1 8,153,156 1 -238879 cd01841 NnaC_like 3 oxyanion hole 0 0 1 1 8,32,61 1 -238880 cd01842 SGNH_hydrolase_like_5 1 active site 0 0 1 1 7,47,56,161,164 1 -238880 cd01842 SGNH_hydrolase_like_5 2 catalytic triad 0 0 1 1 7,161,164 1 -238880 cd01842 SGNH_hydrolase_like_5 3 oxyanion hole 0 0 1 1 7,47,60 1 -238881 cd01844 SGNH_hydrolase_like_6 1 active site 0 0 1 1 7,40,67,156,159 1 -238881 cd01844 SGNH_hydrolase_like_6 2 catalytic triad 0 0 1 1 7,156,159 1 -238881 cd01844 SGNH_hydrolase_like_6 3 oxyanion hole 0 0 1 1 7,40,67 1 -238882 cd01846 fatty_acyltransferase_like 1 active site 0 0 1 1 7,63,109,250,253 1 -238882 cd01846 fatty_acyltransferase_like 2 catalytic triad 0 0 1 1 7,250,253 1 -238882 cd01846 fatty_acyltransferase_like 3 oxyanion hole 0 0 1 1 7,63,109 1 -238883 cd01847 Triacylglycerol_lipase_like 1 active site 0 0 1 1 9,66,112,260,263 1 -238883 cd01847 Triacylglycerol_lipase_like 2 catalytic triad 0 0 1 1 9,260,263 1 -238883 cd01847 Triacylglycerol_lipase_like 3 oxyanion hole 0 0 1 1 9,66,112 1 -206746 cd01849 YlqF_related_GTPase 1 GTP/Mg2+ binding site 0 1 1 0 35,36,38,39,64,65,99,100,101,102,103,104,105,144 5 -206746 cd01849 YlqF_related_GTPase 2 G1 box 0 0 1 1 97,98,99,100,101,102,103,104 0 -206746 cd01849 YlqF_related_GTPase 3 G2 box 0 0 1 1 125 0 -206746 cd01849 YlqF_related_GTPase 4 G3 box 0 0 1 1 141,142,143,144 0 -206746 cd01849 YlqF_related_GTPase 5 G4 box 0 0 1 1 35,36,37,38 0 -206746 cd01849 YlqF_related_GTPase 6 G5 box 0 0 1 1 64,65,66 0 -206746 cd01849 YlqF_related_GTPase 7 Switch I region 0 0 1 1 122,123,124,125,126,127,128,129 0 -206746 cd01849 YlqF_related_GTPase 8 Switch II region 0 0 1 1 143,144,145 0 -206649 cd01850 CDC_Septin 1 GTP/Mg2+ binding site 0 1 1 0 12,13,14,15,16,17,18,67,70,149,150,152,206,207 5 -206649 cd01850 CDC_Septin 2 Switch I region 0 0 1 1 42,43,44,45,46,47,48,49,50 0 -206649 cd01850 CDC_Septin 3 Switch II region 0 0 1 1 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 0 -206649 cd01850 CDC_Septin 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206649 cd01850 CDC_Septin 5 G2 box 0 0 1 1 44 0 -206649 cd01850 CDC_Septin 6 G3 box 0 0 1 1 67,68,69,70 0 -206649 cd01850 CDC_Septin 7 G4 box 0 0 1 1 149,150,151,152 0 -206649 cd01850 CDC_Septin 8 G5 box 0 0 1 1 206,207,208 0 -206650 cd01851 GBP 1 GTP/Mg2+ binding site 0 1 1 0 15,16,17,18,19,20,21,35,36,37,42,43,70,143,144,189 5 -206650 cd01851 GBP 2 Switch I region 0 0 1 1 32,33,34,35,36,37,42,43,44,45,46,47,48,49 0 -206650 cd01851 GBP 3 Switch II region 0 0 1 1 69,70,71,72,73,84,85,86,87,88,89,90,93,94,95 0 -206650 cd01851 GBP 4 G1 box 0 0 1 1 13,14,15,16,17,18,19,20 0 -206650 cd01851 GBP 5 G2 box 0 0 1 1 43 0 -206650 cd01851 GBP 6 G3 box 0 0 1 1 67,68,69,70 0 -206650 cd01851 GBP 7 G4 box 0 0 1 1 143,144,145,146 0 -206650 cd01851 GBP 8 G5 box 0 0 1 1 187,188,189 0 -206651 cd01852 AIG1 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,27,124,126,160,161 5 -206651 cd01852 AIG1 2 Switch I region 0 0 1 1 34,35,36,37,38,39,40,41 0 -206651 cd01852 AIG1 3 Switch II region 0 0 1 1 56,57,58,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 0 -206651 cd01852 AIG1 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206651 cd01852 AIG1 5 G2 box 0 0 1 1 35 0 -206651 cd01852 AIG1 6 G3 box 0 0 1 1 54,55,56,57 0 -206651 cd01852 AIG1 7 G4 box 0 0 1 1 123,124,125,126 0 -206651 cd01852 AIG1 8 G5 box 0 0 1 1 152,153,154 0 -206652 cd01853 Toc34_like 1 GTP/Mg2+ binding site 0 1 1 0 40,41,42,43,44,45,58,59,60,64,156,204,205 5 -206652 cd01853 Toc34_like 2 homodimer interface 0 1 1 1 40,54,59,60,61,62,91,121,123,125,126,128,130,156,160,163,173,208 2 -206652 cd01853 Toc34_like 3 Switch I region 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 0 -206652 cd01853 Toc34_like 4 Switch II region 0 0 1 1 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113 0 -206652 cd01853 Toc34_like 5 G1 box 0 0 1 1 37,38,39,40,41,42,43,44 0 -206652 cd01853 Toc34_like 6 G2 box 0 0 1 1 63 0 -206652 cd01853 Toc34_like 7 G3 box 0 0 1 1 84,85,86,87 0 -206652 cd01853 Toc34_like 8 G4 box 0 0 1 1 155,156,157,158 0 -206652 cd01853 Toc34_like 9 G5 box 0 0 1 1 204,205,206 0 -206747 cd01854 YjeQ_EngC 1 GTP/Mg2+ binding site 0 1 1 0 40,41,43,44,68,69,94,95,96,97,98,99 5 -206747 cd01854 YjeQ_EngC 2 GTPase/Zn-binding domain interface 0 1 1 0 18,19,22,23,25,26,29,30,62,158,162,164,201,204,208 2 -206747 cd01854 YjeQ_EngC 3 G1 box 0 0 1 1 91,92,93,94,95,96,97,98 0 -206747 cd01854 YjeQ_EngC 4 G2 box 0 0 1 1 126 0 -206747 cd01854 YjeQ_EngC 5 G3 box 0 0 1 1 142,143,144,145 0 -206747 cd01854 YjeQ_EngC 6 G4 box 0 0 1 1 40,41,42,43 0 -206747 cd01854 YjeQ_EngC 7 G5 box 0 0 1 1 68,69,70 0 -206747 cd01854 YjeQ_EngC 8 Switch I region 0 0 1 1 123,124,125,126,127,128,129,130 0 -206747 cd01854 YjeQ_EngC 9 Switch II region 0 0 1 1 144,145,146 0 -206748 cd01855 YqeH 1 GTP/Mg2+ binding site 0 0 0 1 67,68,70,71,103,104,105,133,134,135,136,137,138,139,189 5 -206748 cd01855 YqeH 2 G1 box 0 0 1 1 131,132,133,134,135,136,137,138 0 -206748 cd01855 YqeH 3 G2 box 0 0 1 1 169 0 -206748 cd01855 YqeH 4 G3 box 0 0 1 1 186,187,188,189 0 -206748 cd01855 YqeH 5 G4 box 0 0 1 1 67,68,69,70 0 -206748 cd01855 YqeH 6 G5 box 0 0 1 1 103,104,105 0 -206748 cd01855 YqeH 7 Switch I region 0 0 1 1 167,168,169,170,171,172,173,174 0 -206748 cd01855 YqeH 8 Switch II region 0 0 1 1 188,189,190 0 -206749 cd01856 YlqF 1 GTP/Mg2+ binding site 0 1 0 0 53,54,56,57,81,82,83,123,124,125,126,127,128,129,168 5 -206749 cd01856 YlqF 2 G1 box 0 0 1 1 121,122,123,124,125,126,127,128 0 -206749 cd01856 YlqF 3 G2 box 0 0 1 1 149 0 -206749 cd01856 YlqF 4 G3 box 0 0 1 1 165,166,167,168 0 -206749 cd01856 YlqF 5 G4 box 0 0 1 1 53,54,55,56 0 -206749 cd01856 YlqF 6 G5 box 0 0 1 1 81,82,83 0 -206749 cd01856 YlqF 7 Switch I region 0 0 1 1 146,147,148,149,150,151,152,153 0 -206749 cd01856 YlqF 8 Switch II region 0 0 1 1 167,168,169 0 -206750 cd01857 HSR1_MMR1 1 GTP/Mg2+ binding site 0 0 0 1 49,50,52,53,77,78,79,90,91,92,93,94,95,96,135 5 -206750 cd01857 HSR1_MMR1 2 G1 box 0 0 1 1 88,89,90,91,92,93,94,95 0 -206750 cd01857 HSR1_MMR1 3 G2 box 0 0 1 1 116 0 -206750 cd01857 HSR1_MMR1 4 G3 box 0 0 1 1 132,133,134,135 0 -206750 cd01857 HSR1_MMR1 5 G4 box 0 0 1 1 49,50,51,52 0 -206750 cd01857 HSR1_MMR1 6 G5 box 0 0 1 1 77,78,79 0 -206750 cd01857 HSR1_MMR1 7 Switch I region 0 0 1 1 113,114,115,116,117,118,119,120 0 -206750 cd01857 HSR1_MMR1 8 Switch II region 0 0 1 1 134,135,136 0 -206751 cd01858 NGP_1 1 GTP/Mg2+ binding site 0 0 0 1 46,47,49,50,75,76,77,110,111,112,113,114,115,116,155 5 -206751 cd01858 NGP_1 2 G1 box 0 0 1 1 108,109,110,111,112,113,114,115 0 -206751 cd01858 NGP_1 3 G2 box 0 0 1 1 136 0 -206751 cd01858 NGP_1 4 G3 box 0 0 1 1 152,153,154,155 0 -206751 cd01858 NGP_1 5 G4 box 0 0 1 1 46,47,48,49 0 -206751 cd01858 NGP_1 6 G5 box 0 0 1 1 75,76,77 0 -206751 cd01858 NGP_1 7 Switch I region 0 0 1 1 133,134,135,136,137,138,139,140 0 -206751 cd01858 NGP_1 8 Switch II region 0 0 1 1 154,155,156 0 -206752 cd01859 MJ1464 1 GTP/Mg2+ binding site 0 0 0 1 47,48,50,51,75,76,77,107,108,109,110,111,112,113,155 5 -206752 cd01859 MJ1464 2 G1 box 0 0 1 1 105,106,107,108,109,110,111,112 0 -206752 cd01859 MJ1464 3 G2 box 0 0 1 1 136 0 -206752 cd01859 MJ1464 4 G3 box 0 0 1 1 152,153,154,155 0 -206752 cd01859 MJ1464 5 G4 box 0 0 1 1 47,48,49,50 0 -206752 cd01859 MJ1464 6 G5 box 0 0 1 1 75,76,77 0 -206752 cd01859 MJ1464 7 Switch I region 0 0 1 1 133,134,135,136,137,138,139,140 0 -206752 cd01859 MJ1464 8 Switch II region 0 0 1 1 154,155,156 0 -206653 cd01860 Rab5_related 1 GTP/Mg2+ binding site 0 1 1 1 9,10,11,12,13,14,15,25,26,31,32,58,113,114,116,143,144,145 5 -206653 cd01860 Rab5_related 2 effector interaction site 0 1 1 0 35,36,37,39,61,68,69 0 -206653 cd01860 Rab5_related 3 putative GEF interaction site 0 0 1 1 30,34,35,36,37,38,39,40,41,48,50 2 -206653 cd01860 Rab5_related 4 putative GDI interaction site 0 0 1 1 33,34,36,54,55,62,64,66,67,68 2 -206653 cd01860 Rab5_related 5 Switch I region 0 0 1 1 25,30,31,32,33,34,35,36,37,38 0 -206653 cd01860 Rab5_related 6 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -206653 cd01860 Rab5_related 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206653 cd01860 Rab5_related 8 G2 box 0 0 1 1 32 0 -206653 cd01860 Rab5_related 9 G3 box 0 0 1 1 55,56,57,58 0 -206653 cd01860 Rab5_related 10 G4 box 0 0 1 1 113,114,115,116 0 -206653 cd01860 Rab5_related 11 G5 box 0 0 1 1 143,144,145 0 -206653 cd01860 Rab5_related 12 Rab family motif 1 (RabF1) 0 0 1 1 33,34,35,36,37 0 -206653 cd01860 Rab5_related 13 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -206653 cd01860 Rab5_related 14 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -206653 cd01860 Rab5_related 15 Rab family motif 4 (RabF4) 0 0 1 1 69,70 0 -206653 cd01860 Rab5_related 16 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -206653 cd01860 Rab5_related 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2 0 -206653 cd01860 Rab5_related 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 15,16,17,18,19,20,21,22,23,24,25,26,30,31 0 -206653 cd01860 Rab5_related 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109,110 0 -206653 cd01860 Rab5_related 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 159,160,161 0 -206654 cd01861 Rab6 1 GTP/Mg2+ binding site 0 1 1 1 8,9,10,11,12,13,14,28,30,112,113,115,142,143,144 5 -206654 cd01861 Rab6 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206654 cd01861 Rab6 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206654 cd01861 Rab6 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,160 0 -206654 cd01861 Rab6 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206654 cd01861 Rab6 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206654 cd01861 Rab6 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206654 cd01861 Rab6 8 G2 box 0 0 1 1 31 0 -206654 cd01861 Rab6 9 G3 box 0 0 1 1 54,55,56,57 0 -206654 cd01861 Rab6 10 G4 box 0 0 1 1 112,113,114,115 0 -206654 cd01861 Rab6 11 G5 box 0 0 1 1 142,143,144 0 -206654 cd01861 Rab6 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206654 cd01861 Rab6 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206654 cd01861 Rab6 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206654 cd01861 Rab6 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206654 cd01861 Rab6 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206654 cd01861 Rab6 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206654 cd01861 Rab6 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206654 cd01861 Rab6 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109 0 -206654 cd01861 Rab6 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 158,159,160 0 -206655 cd01862 Rab7 1 GTP/Mg2+ binding site 0 1 1 1 8,9,10,11,12,13,14,24,26,31,57,116,117,119,147,148,149 5 -206655 cd01862 Rab7 2 GDI interaction site 0 1 1 1 8,33,35,36,54,58,60,61,62,63,66,67,70 0 -206655 cd01862 Rab7 3 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206655 cd01862 Rab7 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,165 0 -206655 cd01862 Rab7 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206655 cd01862 Rab7 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206655 cd01862 Rab7 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206655 cd01862 Rab7 8 G2 box 0 0 1 1 31 0 -206655 cd01862 Rab7 9 G3 box 0 0 1 1 54,55,56,57 0 -206655 cd01862 Rab7 10 G4 box 0 0 1 1 116,117,118,119 0 -206655 cd01862 Rab7 11 G5 box 0 0 1 1 147,148,149 0 -206655 cd01862 Rab7 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206655 cd01862 Rab7 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206655 cd01862 Rab7 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206655 cd01862 Rab7 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206655 cd01862 Rab7 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206655 cd01862 Rab7 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206655 cd01862 Rab7 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30 0 -206655 cd01862 Rab7 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 108,109,110,111,112,113 0 -206655 cd01862 Rab7 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 163,164,165,166,167,168,169,170,171 0 -206656 cd01863 Rab18 1 GTP/Mg2+ binding site 0 1 1 1 8,9,10,11,12,13,14,24,25,31,57,113,114,116,117,142,143,144 5 -206656 cd01863 Rab18 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206656 cd01863 Rab18 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206656 cd01863 Rab18 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,160 0 -206656 cd01863 Rab18 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206656 cd01863 Rab18 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206656 cd01863 Rab18 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206656 cd01863 Rab18 8 G2 box 0 0 1 1 31 0 -206656 cd01863 Rab18 9 G3 box 0 0 1 1 54,55,56,57 0 -206656 cd01863 Rab18 10 G4 box 0 0 1 1 113,114,115,116 0 -206656 cd01863 Rab18 11 G5 box 0 0 1 1 142,143,144 0 -206656 cd01863 Rab18 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206656 cd01863 Rab18 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206656 cd01863 Rab18 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206656 cd01863 Rab18 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206656 cd01863 Rab18 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206656 cd01863 Rab18 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206656 cd01863 Rab18 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206656 cd01863 Rab18 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109,110 0 -206656 cd01863 Rab18 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 158,159,160 0 -133267 cd01864 Rab19 1 GTP/Mg2+ binding site 0 1 1 1 11,12,13,14,15,16,17,27,28,33,34,60,115,116,118,146,147,148 5 -133267 cd01864 Rab19 2 putative GEF interaction site 0 0 1 1 32,36,37,38,39,40,41,42,43,50,52 2 -133267 cd01864 Rab19 3 putative GDI interaction site 0 0 1 1 35,36,38,56,57,64,66,68,69,70 2 -133267 cd01864 Rab19 4 putative effector interaction site 0 0 1 1 35,37,38,39,54,56,63,64,67,71,73,74,75,76,164 0 -133267 cd01864 Rab19 5 Switch I region 0 0 1 1 27,32,33,34,35,36,37,38,39,40 0 -133267 cd01864 Rab19 6 Switch II region 0 0 1 1 60,62,63,64,65,66,67,68,69,70,71,72 0 -133267 cd01864 Rab19 7 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -133267 cd01864 Rab19 8 G2 box 0 0 1 1 34 0 -133267 cd01864 Rab19 9 G3 box 0 0 1 1 57,58,59,60 0 -133267 cd01864 Rab19 10 G4 box 0 0 1 1 115,116,117,118 0 -133267 cd01864 Rab19 11 G5 box 0 0 1 1 146,147,148 0 -133267 cd01864 Rab19 12 Rab family motif 1 (RabF1) 0 0 1 1 35,36,37,38,39 0 -133267 cd01864 Rab19 13 Rab family motif 2 (RabF2) 0 0 1 1 52,53,54,55,56 0 -133267 cd01864 Rab19 14 Rab family motif 3 (RabF3) 0 0 1 1 63,64,65,66,67,68 0 -133267 cd01864 Rab19 15 Rab family motif 4 (RabF4) 0 0 1 1 71,72,73,74,75 0 -133267 cd01864 Rab19 16 Rab family motif 5 (RabF5) 0 0 1 1 80,81,82,83,84,85 0 -133267 cd01864 Rab19 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 3,4 0 -133267 cd01864 Rab19 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,32,33 0 -133267 cd01864 Rab19 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 107,108,109,110,111,112 0 -133267 cd01864 Rab19 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 162,163,164 0 -206657 cd01865 Rab3 1 GTP/Mg2+ binding site 0 1 1 1 9,10,11,12,13,14,15,25,26,29,31,32,58,113,114,116,117,143,144,145 5 -206657 cd01865 Rab3 2 effector interaction site 0 1 1 0 0,33,35,36,37,52,54,61,62,65,69,71,72,73,74,103,104,105,161,164 0 -206657 cd01865 Rab3 3 putative GEF interaction site 0 0 1 1 30,34,35,36,37,38,39,40,41,48,50 2 -206657 cd01865 Rab3 4 putative GDI interaction site 0 0 1 1 33,34,36,54,55,62,64,66,67,68 2 -206657 cd01865 Rab3 5 Switch I region 0 0 1 1 25,30,31,32,33,34,35,36,37,38 0 -206657 cd01865 Rab3 6 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -206657 cd01865 Rab3 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206657 cd01865 Rab3 8 G2 box 0 0 1 1 32 0 -206657 cd01865 Rab3 9 G3 box 0 0 1 1 55,56,57,58 0 -206657 cd01865 Rab3 10 G4 box 0 0 1 1 113,114,115,116 0 -206657 cd01865 Rab3 11 G5 box 0 0 1 1 143,144,145 0 -206657 cd01865 Rab3 12 Rab family motif 1 (RabF1) 0 0 1 1 33,34,35,36,37 0 -206657 cd01865 Rab3 13 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -206657 cd01865 Rab3 14 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -206657 cd01865 Rab3 15 Rab family motif 4 (RabF4) 0 0 1 1 69,70,71,72,73 0 -206657 cd01865 Rab3 16 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -206657 cd01865 Rab3 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2 0 -206657 cd01865 Rab3 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 15,16,17,18,19,20,21,22,23,24,25,26,29,30,31 0 -206657 cd01865 Rab3 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 101,102,103,104,105,106,107,108,109,110 0 -206657 cd01865 Rab3 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 159,160,161,162,163,164 0 -206658 cd01866 Rab2 1 GTP/Mg2+ binding site 0 1 1 1 13,14,15,16,17,18,30,116,117,119,146,147,148 5 -206658 cd01866 Rab2 2 putative GEF interaction site 0 0 1 1 33,37,38,39,40,41,42,43,44,51,53 2 -206658 cd01866 Rab2 3 putative GDI interaction site 0 0 1 1 36,37,39,57,58,65,67,69,70,71 2 -206658 cd01866 Rab2 4 putative effector interaction site 0 0 1 1 36,38,39,40,55,57,64,65,68,72,74,75,76,77,164 0 -206658 cd01866 Rab2 5 Switch I region 0 0 1 1 28,33,34,35,36,37,38,39,40,41 0 -206658 cd01866 Rab2 6 Switch II region 0 0 1 1 61,63,64,65,66,67,68,69,70,71,72,73 0 -206658 cd01866 Rab2 7 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206658 cd01866 Rab2 8 G2 box 0 0 1 1 35 0 -206658 cd01866 Rab2 9 G3 box 0 0 1 1 58,59,60,61 0 -206658 cd01866 Rab2 10 G4 box 0 0 1 1 116,117,118,119 0 -206658 cd01866 Rab2 11 G5 box 0 0 1 1 146,147,148 0 -206658 cd01866 Rab2 12 Rab family motif 1 (RabF1) 0 0 1 1 36,37,38,39,40 0 -206658 cd01866 Rab2 13 Rab family motif 2 (RabF2) 0 0 1 1 53,54,55,56,57 0 -206658 cd01866 Rab2 14 Rab family motif 3 (RabF3) 0 0 1 1 64,65,66,67,68,69 0 -206658 cd01866 Rab2 15 Rab family motif 4 (RabF4) 0 0 1 1 72,73,74,75,76 0 -206658 cd01866 Rab2 16 Rab family motif 5 (RabF5) 0 0 1 1 81,82,83,84,85,86 0 -206658 cd01866 Rab2 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2,3,4,5 0 -206658 cd01866 Rab2 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 18,19,20,21,22,23,24,25,26,27,28,29,32,33,34 0 -206658 cd01866 Rab2 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 108,109,110,111,112,113 0 -206658 cd01866 Rab2 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 162,163,164,165,166,167 0 -206659 cd01867 Rab8_Rab10_Rab13_like 1 GTP/Mg2+ binding site 0 1 1 1 11,12,13,14,15,16,17,27,28,29,30,33,34,60,115,116,118,119,146,147 5 -206659 cd01867 Rab8_Rab10_Rab13_like 2 GEF interaction site 0 1 1 1 30,32,36,37,38,39,40,41,42,43,50,52 2 -206659 cd01867 Rab8_Rab10_Rab13_like 3 putative GDI interaction site 0 0 1 1 35,36,38,56,57,64,66,68,69,70 2 -206659 cd01867 Rab8_Rab10_Rab13_like 4 putative effector interaction site 0 0 1 1 35,37,38,39,54,56,63,64,67,71,73,74,75,76,163 0 -206659 cd01867 Rab8_Rab10_Rab13_like 5 Switch I region 0 0 1 1 27,32,33,34,35,36,37,38,39,40 0 -206659 cd01867 Rab8_Rab10_Rab13_like 6 Switch II region 0 0 1 1 60,62,63,64,65,66,67,68,69,70,71,72 0 -206659 cd01867 Rab8_Rab10_Rab13_like 7 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206659 cd01867 Rab8_Rab10_Rab13_like 8 G2 box 0 0 1 1 34 0 -206659 cd01867 Rab8_Rab10_Rab13_like 9 G3 box 0 0 1 1 57,58,59,60 0 -206659 cd01867 Rab8_Rab10_Rab13_like 10 G4 box 0 0 1 1 115,116,117,118 0 -206659 cd01867 Rab8_Rab10_Rab13_like 11 G5 box 0 0 1 1 145,146,147 0 -206659 cd01867 Rab8_Rab10_Rab13_like 12 Rab family motif 1 (RabF1) 0 0 1 1 35,36,37,38,39 0 -206659 cd01867 Rab8_Rab10_Rab13_like 13 Rab family motif 2 (RabF2) 0 0 1 1 52,53,54,55,56 0 -206659 cd01867 Rab8_Rab10_Rab13_like 14 Rab family motif 3 (RabF3) 0 0 1 1 63,64,65,66,67,68 0 -206659 cd01867 Rab8_Rab10_Rab13_like 15 Rab family motif 4 (RabF4) 0 0 1 1 71,72,73,74,75 0 -206659 cd01867 Rab8_Rab10_Rab13_like 16 Rab family motif 5 (RabF5) 0 0 1 1 80,81,82,83,84,85 0 -206659 cd01867 Rab8_Rab10_Rab13_like 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2,3,4 0 -206659 cd01867 Rab8_Rab10_Rab13_like 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33 0 -206659 cd01867 Rab8_Rab10_Rab13_like 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 103,104,105,106,107,108,109,110,111,112 0 -206659 cd01867 Rab8_Rab10_Rab13_like 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 161,162,163,164,165,166 0 -206660 cd01868 Rab11_like 1 GTP/Mg2+ binding site 0 1 1 0 11,12,13,14,15,16,17,28,31,34,60,115,116,118,145,146,147 5 -206660 cd01868 Rab11_like 2 putative GEF interaction site 0 0 1 1 32,36,37,38,39,40,41,42,43,50,52 2 -206660 cd01868 Rab11_like 3 putative GDI interaction site 0 0 1 1 35,36,38,56,57,64,66,68,69,70 2 -206660 cd01868 Rab11_like 4 putative effector interaction site 0 0 1 1 35,37,38,39,54,56,63,64,67,71,73,74,75,76,163 0 -206660 cd01868 Rab11_like 5 Switch I region 0 0 1 1 27,32,33,34,35,36,37,38,39,40 0 -206660 cd01868 Rab11_like 6 Switch II region 0 0 1 1 60,62,63,64,65,66,67,68,69,70,71,72 0 -206660 cd01868 Rab11_like 7 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206660 cd01868 Rab11_like 8 G2 box 0 0 1 1 34 0 -206660 cd01868 Rab11_like 9 G3 box 0 0 1 1 57,58,59,60 0 -206660 cd01868 Rab11_like 10 G4 box 0 0 1 1 115,116,117,118 0 -206660 cd01868 Rab11_like 11 G5 box 0 0 1 1 145,146,147 0 -206660 cd01868 Rab11_like 12 Rab family motif 1 (RabF1) 0 0 1 1 35,36,37,38,39 0 -206660 cd01868 Rab11_like 13 Rab family motif 2 (RabF2) 0 0 1 1 52,53,54,55,56 0 -206660 cd01868 Rab11_like 14 Rab family motif 3 (RabF3) 0 0 1 1 63,64,65,66,67,68 0 -206660 cd01868 Rab11_like 15 Rab family motif 4 (RabF4) 0 0 1 1 71,72,73,74,75 0 -206660 cd01868 Rab11_like 16 Rab family motif 5 (RabF5) 0 0 1 1 80,81,82,83,84,85 0 -206660 cd01868 Rab11_like 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2,3,4 0 -206660 cd01868 Rab11_like 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33 0 -206660 cd01868 Rab11_like 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 108,109,110,111,112 0 -206660 cd01868 Rab11_like 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 161,162,163,164 0 -206661 cd01869 Rab1_Ypt1 1 GTP/Mg2+ binding site 0 1 1 1 9,11,12,13,14,15,16,26,114,115,117,144,145,146 5 -206661 cd01869 Rab1_Ypt1 2 GDI interaction site 0 1 0 1 34,35,37,55,56,63,65,67,68,69,72 0 -206661 cd01869 Rab1_Ypt1 3 putative GEF interaction site 0 0 1 1 31,35,36,37,38,39,40,41,42,49,51 2 -206661 cd01869 Rab1_Ypt1 4 putative effector interaction site 0 0 1 1 34,36,37,38,53,55,62,63,66,70,72,73,74,75,162 0 -206661 cd01869 Rab1_Ypt1 5 Switch I region 0 0 1 1 26,31,32,33,34,35,36,37,38,39 0 -206661 cd01869 Rab1_Ypt1 6 Switch II region 0 0 1 1 59,61,62,63,64,65,66,67,68,69,70,71 0 -206661 cd01869 Rab1_Ypt1 7 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206661 cd01869 Rab1_Ypt1 8 G2 box 0 0 1 1 33 0 -206661 cd01869 Rab1_Ypt1 9 G3 box 0 0 1 1 56,57,58,59 0 -206661 cd01869 Rab1_Ypt1 10 G4 box 0 0 1 1 114,115,116,117 0 -206661 cd01869 Rab1_Ypt1 11 G5 box 0 0 1 1 144,145,146 0 -206661 cd01869 Rab1_Ypt1 12 Rab family motif 1 (RabF1) 0 0 1 1 34,35,36,37,38 0 -206661 cd01869 Rab1_Ypt1 13 Rab family motif 2 (RabF2) 0 0 1 1 51,52,53,54,55 0 -206661 cd01869 Rab1_Ypt1 14 Rab family motif 3 (RabF3) 0 0 1 1 62,63,64,65,66,67 0 -206661 cd01869 Rab1_Ypt1 15 Rab family motif 4 (RabF4) 0 0 1 1 70,71,72,73,74 0 -206661 cd01869 Rab1_Ypt1 16 Rab family motif 5 (RabF5) 0 0 1 1 79,80,81,82,83,84 0 -206661 cd01869 Rab1_Ypt1 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2,3 0 -206661 cd01869 Rab1_Ypt1 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 16,17,18,19,20,21,22,23,24,25,26,27,30,31,32 0 -206661 cd01869 Rab1_Ypt1 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109,110,111 0 -206661 cd01869 Rab1_Ypt1 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 160,161,162,163,164,165 0 -206662 cd01870 RhoA_like 1 GTP/Mg2+ binding site 0 1 1 1 10,11,12,13,14,15,29,30,32,54,55,113,115,156,157 5 -206662 cd01870 RhoA_like 2 GAP (GTPase-activating protein) interaction site 0 0 1 1 29,31,33,34,58,59,60,61,64,67,89 2 -206662 cd01870 RhoA_like 3 GEF (guanine nucleotide exchange factor) interaction site 0 1 1 1 0,29,32,33,36,38,40,49,53,54,56,57,58,61,63,67 2 -206662 cd01870 RhoA_like 4 GDI (guanine nucleotide dissociation inhibitor) interaction site 0 1 1 1 32,33,56,61,63,64,66,67,70,100,101,103 2 -206662 cd01870 RhoA_like 5 Rho kinase (ROCK) effector interaction site 0 1 1 0 34,35,60,61,63,64,67 2 -206662 cd01870 RhoA_like 6 PKN/PRK1 effector interaction site 0 1 1 1 18,20,21,22,23,24,37,38,40,41,42,47,48,49,158,159,163,164,167 0 -206662 cd01870 RhoA_like 7 Mdia effector interaction site 0 1 1 1 34,60,61,62,63,64,67,92,96,100 0 -206662 cd01870 RhoA_like 8 Switch I region 0 0 1 1 29,30,31,32,33,34,35,36,37 0 -206662 cd01870 RhoA_like 9 Switch II region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206662 cd01870 RhoA_like 10 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206662 cd01870 RhoA_like 11 G2 box 0 0 1 1 32 0 -206662 cd01870 RhoA_like 12 G3 box 0 0 1 1 54,55,56,57 0 -206662 cd01870 RhoA_like 13 G4 box 0 0 1 1 112,113,114,115 0 -206662 cd01870 RhoA_like 14 G5 box 0 0 1 1 155,156,157 0 -206663 cd01871 Rac1_like 1 GTP/Mg2+ binding site 0 1 1 1 10,12,13,14,15,113,115,116,156 5 -206663 cd01871 Rac1_like 2 GAP (GTPase-activating protein) interaction site 0 1 1 1 29,31,33,34,35,58,59,60,61,64,67 2 -206663 cd01871 Rac1_like 3 GEF (guanine nucleotide exchange factor) interaction site 0 1 1 1 0,2,28,29,32,33,35,36,38,40,49,53,54,55,56,57,58,61,62,63,64,67,68,70,71 2 -206663 cd01871 Rac1_like 4 GDI (guanine nucleotide dissociation inhibitor) interaction site 0 1 1 1 32,33,56,61,63,64,66,67,70,100,101,103 2 -206663 cd01871 Rac1_like 5 p67PhoxTPR effector interaction site 0 1 1 1 19,22,23,25,27,28,157,159 0 -206663 cd01871 Rac1_like 6 Arfaptin/Por effector interaction site 0 1 1 1 32,33,34,36,53,54,55,61,64,67,68,70,71 2 -206663 cd01871 Rac1_like 7 Switch I region 0 0 1 1 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -206663 cd01871 Rac1_like 8 Switch II region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206663 cd01871 Rac1_like 9 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206663 cd01871 Rac1_like 10 G2 box 0 0 1 1 32 0 -206663 cd01871 Rac1_like 11 G3 box 0 0 1 1 54,55,56,57 0 -206663 cd01871 Rac1_like 12 G4 box 0 0 1 1 112,113,114,115 0 -206663 cd01871 Rac1_like 13 G5 box 0 0 1 1 155,156,157 0 -133275 cd01873 RhoBTB 1 GTP/Mg2+ binding site 0 0 1 1 11,12,13,14,15,16,71,72,74,128,130,177,178 5 -133275 cd01873 RhoBTB 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 40,41,75,81 2 -133275 cd01873 RhoBTB 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 3,39,40,44,45,47,49,66,70,71,73,74,75,81,84 2 -133275 cd01873 RhoBTB 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 40,73,81,83 0 -133275 cd01873 RhoBTB 5 putative effector interaction site 0 0 1 1 41,42,81,84 0 -133275 cd01873 RhoBTB 6 Switch I region 0 0 1 1 38,39,40,41,42,43,44 0 -133275 cd01873 RhoBTB 7 Switch II region 0 0 1 1 74,75,81,82,83,84,87,88,89 0 -133275 cd01873 RhoBTB 8 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133275 cd01873 RhoBTB 9 G2 box 0 0 1 1 39 0 -133275 cd01873 RhoBTB 10 G3 box 0 0 1 1 71,72,73,74 0 -133275 cd01873 RhoBTB 11 G4 box 0 0 1 1 127,128,129,130 0 -133275 cd01873 RhoBTB 12 G5 box 0 0 1 1 176,177,178 0 -206664 cd01874 Cdc42 1 GTP/Mg2+ binding site 0 1 1 1 10,11,12,13,14,15,26,29,30,32,54,55,57,113,115,156,157 5 -206664 cd01874 Cdc42 2 GAP (GTPase-activating protein) interaction site 0 1 1 1 29,31,33,34,58,59,60,61,64,67 2 -206664 cd01874 Cdc42 3 GEF (guanine nucleotide exchange factor) interaction site 0 1 1 1 0,2,28,29,32,33,35,36,38,40,49,53,54,55,56,57,58,61,62,63,64,67,68,70,71,100,101 2 -206664 cd01874 Cdc42 4 GDI (guanine nucleotide dissociation inhibitor) interaction site 0 1 1 1 32,33,56,61,63,64,66,67,70,100,101,103 2 -206664 cd01874 Cdc42 5 CRIB effector interaction site 0 1 1 1 17,18,33,35,37,43,64,67,170,171,174 0 -206664 cd01874 Cdc42 6 Par6 cell polarity protein interaction site 0 1 1 0 20,21,22,34,36,37,38,40,42,43,44,61,163 0 -206664 cd01874 Cdc42 7 ACK tyrosine kinase interaction site 0 1 1 0 1,4,5,6,7,8,9,10,13,17,18,20,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,49,50,54,55,56,57,58,59,60,64,65,67,113,117,163,167,170,171,174 0 -206664 cd01874 Cdc42 8 Switch I region 0 0 1 1 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -206664 cd01874 Cdc42 9 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206664 cd01874 Cdc42 10 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206664 cd01874 Cdc42 11 G2 box 0 0 1 1 32 0 -206664 cd01874 Cdc42 12 G3 box 0 0 1 1 54,55,56,57 0 -206664 cd01874 Cdc42 13 G4 box 0 0 1 1 112,113,114,115 0 -206664 cd01874 Cdc42 14 G5 box 0 0 1 1 155,156,157 0 -133277 cd01875 RhoG 1 GTP/Mg2+ binding site 0 0 1 1 12,13,14,15,16,17,56,57,59,115,117,158,159 5 -133277 cd01875 RhoG 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 35,36,60,66 2 -133277 cd01875 RhoG 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 4,34,35,37,38,40,42,51,55,56,58,59,60,66,69 2 -133277 cd01875 RhoG 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 35,58,66,68 0 -133277 cd01875 RhoG 5 putative effector interaction site 0 0 1 1 36,37,66,69 0 -133277 cd01875 RhoG 6 putative lipid modification site 0 0 0 1 187,188,189,190 6 -133277 cd01875 RhoG 7 Switch I region 0 0 1 1 33,34,35,36,37,38,39 0 -133277 cd01875 RhoG 8 Switch II region 0 0 1 1 59,60,66,67,68,69,74,75,76 0 -133277 cd01875 RhoG 9 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -133277 cd01875 RhoG 10 G2 box 0 0 1 1 34 0 -133277 cd01875 RhoG 11 G3 box 0 0 1 1 56,57,58,59 0 -133277 cd01875 RhoG 12 G4 box 0 0 1 1 114,115,116,117 0 -133277 cd01875 RhoG 13 G5 box 0 0 1 1 157,158,159 0 -206665 cd01876 YihA_EngB 1 GTP/Mg2+ binding site 0 1 1 0 7,8,9,10,11,12,13,27,28,29,32,33,34,50,118,120,151,152 5 -206665 cd01876 YihA_EngB 2 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206665 cd01876 YihA_EngB 3 Switch II region 0 0 1 1 53,54,55,56,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,80,81 0 -206665 cd01876 YihA_EngB 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206665 cd01876 YihA_EngB 5 G2 box 0 0 1 1 34 0 -206665 cd01876 YihA_EngB 6 G3 box 0 0 1 1 50,51,52,53 0 -206665 cd01876 YihA_EngB 7 G4 box 0 0 1 1 117,118,119,120 0 -206665 cd01876 YihA_EngB 8 G5 box 0 0 1 1 151,152,153 0 -206666 cd01878 HflX 1 GTP/Mg2+ binding site 0 1 1 0 50,52,53,54,55,160,161,163,185,186,187 5 -206666 cd01878 HflX 2 Switch I region 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78,79,80,81 0 -206666 cd01878 HflX 3 Switch II region 0 0 1 1 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 0 -206666 cd01878 HflX 4 G1 box 0 0 1 1 47,48,49,50,51,52,53,54 0 -206666 cd01878 HflX 5 G2 box 0 0 1 1 78 0 -206666 cd01878 HflX 6 G3 box 0 0 1 1 94,95,96,97 0 -206666 cd01878 HflX 7 G4 box 0 0 1 1 160,161,162,163 0 -206666 cd01878 HflX 8 G5 box 0 0 1 1 185,186,187 0 -206667 cd01879 FeoB 1 GTP/Mg2+ binding site 0 1 1 0 6,8,9,10,11,109,110,112,138,139,140 5 -206667 cd01879 FeoB 2 Switch I region 0 0 1 1 29,30,31,32,33 0 -206667 cd01879 FeoB 3 Switch II region 0 0 1 1 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,74,75 0 -206667 cd01879 FeoB 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206667 cd01879 FeoB 5 G2 box 0 0 1 1 30 0 -206667 cd01879 FeoB 6 G3 box 0 0 1 1 49,50,51,52 0 -206667 cd01879 FeoB 7 G4 box 0 0 1 1 109,110,111,112 0 -206667 cd01879 FeoB 8 G5 box 0 0 1 1 138,139,140 0 -206668 cd01881 Obg_like 1 GTP/Mg2+ binding site 0 1 1 0 6,7,8,9,10,11,120,121,123,148,149 5 -206668 cd01881 Obg_like 2 Switch I region 0 0 1 1 28,29,30,31,32,33 0 -206668 cd01881 Obg_like 3 Switch II region 0 0 1 1 49,50,51,52,53,54,55,56,57,58,74 0 -206668 cd01881 Obg_like 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206668 cd01881 Obg_like 5 G2 box 0 0 1 1 30 0 -206668 cd01881 Obg_like 6 G3 box 0 0 1 1 50,51,52,53 0 -206668 cd01881 Obg_like 7 G4 box 0 0 1 1 120,121,122,123 0 -206668 cd01881 Obg_like 8 G5 box 0 0 1 1 148,149,150 0 -206669 cd01882 BMS1 1 GTP/Mg2+ binding site 0 0 0 1 48,50,51,52,53,140,141,143,176,177,178 5 -206669 cd01882 BMS1 2 Switch I region 0 0 1 1 62,63,64,65,66,67,68,69 0 -206669 cd01882 BMS1 3 Switch II region 0 0 1 1 91,92,93,94,95,96,97,98,99,100,101,102,103 0 -206669 cd01882 BMS1 4 G1 box 0 0 1 1 45,46,47,48,49,50,51,52 0 -206669 cd01882 BMS1 5 G2 box 0 0 1 1 66 0 -206669 cd01882 BMS1 6 G3 box 0 0 1 1 88,89,90,91 0 -206669 cd01882 BMS1 7 G4 box 0 0 1 1 140,141,142,143 0 -206669 cd01882 BMS1 8 G5 box 0 0 1 1 176,177,178 0 -206670 cd01883 EF1_alpha 1 GTP/Mg2+ binding site 0 1 1 0 8,10,11,12,13,144,145,147,185,186,187 5 -206670 cd01883 EF1_alpha 2 EF1Balpha binding site 0 1 1 0 12,55,58,59,61,63,65,66,67,69,80,82,84,85,86,88,91 2 -206670 cd01883 EF1_alpha 3 putative GEF interaction site 0 0 1 1 6,8,12,13,16,19,20,67,68,86,87,110,111,160,164 2 -206670 cd01883 EF1_alpha 4 Switch I region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67 0 -206670 cd01883 EF1_alpha 5 Switch II region 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 0 -206670 cd01883 EF1_alpha 6 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206670 cd01883 EF1_alpha 7 G2 box 0 0 1 1 63 0 -206670 cd01883 EF1_alpha 8 G3 box 0 0 1 1 82,83,84,85 0 -206670 cd01883 EF1_alpha 9 G4 box 0 0 1 1 144,145,146,147 0 -206670 cd01883 EF1_alpha 10 G5 box 0 0 1 1 185,186,187 0 -206671 cd01884 EF_Tu 1 GTP/Mg2+ binding site 0 1 1 0 11,12,13,14,15,16,36,125,126,128,163,164,165 5 -206671 cd01884 EF_Tu 2 GEF interaction site 0 1 1 0 9,11,15,16,19,22,23,27,55,56,74,75,98,99,101,102,103,104,107,138,142,168,169 2 -206671 cd01884 EF_Tu 3 Switch I region 0 0 1 1 45,46,47,48,49,50,51,52,53,54,55 0 -206671 cd01884 EF_Tu 4 Switch II region 0 0 1 1 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 0 -206671 cd01884 EF_Tu 5 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206671 cd01884 EF_Tu 6 G2 box 0 0 1 1 51 0 -206671 cd01884 EF_Tu 7 G3 box 0 0 1 1 70,71,72,73 0 -206671 cd01884 EF_Tu 8 G4 box 0 0 1 1 125,126,127,128 0 -206671 cd01884 EF_Tu 9 G5 box 0 0 1 1 163,164,165 0 -206672 cd01885 EF2 1 GTP/Mg2+ binding site 0 0 0 1 9,10,11,12,13,14,131,132,134,188,189,190 5 -206672 cd01885 EF2 2 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,53,54,81,82,105,106,149,153 2 -206672 cd01885 EF2 3 Switch I region 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -206672 cd01885 EF2 4 Switch II region 0 0 1 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -206672 cd01885 EF2 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206672 cd01885 EF2 6 G2 box 0 0 1 1 49 0 -206672 cd01885 EF2 7 G3 box 0 0 1 1 77,78,79,80 0 -206672 cd01885 EF2 8 G4 box 0 0 1 1 131,132,133,134 0 -206672 cd01885 EF2 9 G5 box 0 0 1 1 188,189,190 0 -206673 cd01886 EF-G 1 GTP/Mg2+ binding site 0 1 1 0 8,10,11,12,13,123,124,126,248,249,250 5 -206673 cd01886 EF-G 2 putative GEF interaction site 0 0 1 1 6,8,12,13,16,19,20,54,55,73,74,97,98,134,138 2 -206673 cd01886 EF-G 3 Switch I region 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -206673 cd01886 EF-G 4 Switch II region 0 0 1 1 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 0 -206673 cd01886 EF-G 5 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206673 cd01886 EF-G 6 G2 box 0 0 1 1 50 0 -206673 cd01886 EF-G 7 G3 box 0 0 1 1 69,70,71,72 0 -206673 cd01886 EF-G 8 G4 box 0 0 1 1 123,124,125,126 0 -206673 cd01886 EF-G 9 G5 box 0 0 1 1 248,249,250 0 -206674 cd01887 IF2_eIF5B 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,14,59,108,109,111,112,147,148,149 5 -206674 cd01887 IF2_eIF5B 2 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,37,38,58,59,82,83,121,125 2 -206674 cd01887 IF2_eIF5B 3 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206674 cd01887 IF2_eIF5B 4 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206674 cd01887 IF2_eIF5B 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206674 cd01887 IF2_eIF5B 6 G2 box 0 0 1 1 33 0 -206674 cd01887 IF2_eIF5B 7 G3 box 0 0 1 1 54,55,56,57 0 -206674 cd01887 IF2_eIF5B 8 G4 box 0 0 1 1 108,109,110,111 0 -206674 cd01887 IF2_eIF5B 9 G5 box 0 0 1 1 147,148,149 0 -206675 cd01888 eIF2_gamma 1 GTP/Mg2+ binding site 0 1 1 0 9,11,12,13,14,138,139,141,173,174,175 5 -206675 cd01888 eIF2_gamma 2 zinc binding site 0 1 1 1 49,52,65,68 4 -206675 cd01888 eIF2_gamma 3 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,40,41,86,87,110,111,150,154 2 -206675 cd01888 eIF2_gamma 4 Switch I region 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40 0 -206675 cd01888 eIF2_gamma 5 Switch II region 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 0 -206675 cd01888 eIF2_gamma 6 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206675 cd01888 eIF2_gamma 7 G2 box 0 0 1 1 36 0 -206675 cd01888 eIF2_gamma 8 G3 box 0 0 1 1 82,83,84,85 0 -206675 cd01888 eIF2_gamma 9 G4 box 0 0 1 1 138,139,140,141 0 -206675 cd01888 eIF2_gamma 10 G5 box 0 0 1 1 173,174,175 0 -206676 cd01889 SelB_euk 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,127,128,130,166,167,168 5 -206676 cd01889 SelB_euk 2 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,44,45,77,78,101,102,139,143 2 -206676 cd01889 SelB_euk 3 Switch I region 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 0 -206676 cd01889 SelB_euk 4 Switch II region 0 0 1 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 0 -206676 cd01889 SelB_euk 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206676 cd01889 SelB_euk 6 G2 box 0 0 1 1 40 0 -206676 cd01889 SelB_euk 7 G3 box 0 0 1 1 73,74,75,76 0 -206676 cd01889 SelB_euk 8 G4 box 0 0 1 1 127,128,129,130 0 -206676 cd01889 SelB_euk 9 G5 box 0 0 1 1 166,167,168 0 -206677 cd01890 LepA 1 GTP/Mg2+ binding site 0 0 0 1 9,10,11,12,13,14,126,127,129,157,158,159 5 -206677 cd01890 LepA 2 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,52,53,76,77,100,101,137,141 2 -206677 cd01890 LepA 3 Switch I region 0 0 1 1 41,42,43,44,45,46,47,48,49,50,51,52 0 -206677 cd01890 LepA 4 Switch II region 0 0 1 1 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 0 -206677 cd01890 LepA 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206677 cd01890 LepA 6 G2 box 0 0 1 1 48 0 -206677 cd01890 LepA 7 G3 box 0 0 1 1 72,73,74,75 0 -206677 cd01890 LepA 8 G4 box 0 0 1 1 126,127,128,129 0 -206677 cd01890 LepA 9 G5 box 0 0 1 1 157,158,159 0 -206678 cd01891 TypA_BipA 1 GTP/Mg2+ binding site 0 0 0 1 11,12,13,14,15,16,124,125,127,162,163,164 5 -206678 cd01891 TypA_BipA 2 putative GEF interaction site 0 0 1 1 9,11,15,16,19,22,23,55,56,74,75,98,99,135,139 2 -206678 cd01891 TypA_BipA 3 Switch I region 0 0 1 1 44,45,46,47,48,49,50,51,52,53,54,55 0 -206678 cd01891 TypA_BipA 4 Switch II region 0 0 1 1 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 0 -206678 cd01891 TypA_BipA 5 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206678 cd01891 TypA_BipA 6 G2 box 0 0 1 1 51 0 -206678 cd01891 TypA_BipA 7 G3 box 0 0 1 1 70,71,72,73 0 -206678 cd01891 TypA_BipA 8 G4 box 0 0 1 1 124,125,126,127 0 -206678 cd01891 TypA_BipA 9 G5 box 0 0 1 1 162,163,164 0 -206679 cd01892 Miro2 1 GTP/Mg2+ binding site 0 0 1 1 13,14,15,16,17,18,58,59,61,116,118,147,148 5 -206679 cd01892 Miro2 2 Switch I region 0 0 1 1 33,34,35,36,37,38,39,40,41 0 -206679 cd01892 Miro2 3 Switch II region 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71,77,78,79 0 -206679 cd01892 Miro2 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206679 cd01892 Miro2 5 G2 box 0 0 1 1 34 0 -206679 cd01892 Miro2 6 G3 box 0 0 1 1 58,59,60,61 0 -206679 cd01892 Miro2 7 G4 box 0 0 1 1 115,116,117,118 0 -206679 cd01892 Miro2 8 G5 box 0 0 1 1 146,147,148 0 -206680 cd01893 Miro1 1 GTP/Mg2+ binding site 0 0 1 1 11,12,13,14,15,16,54,55,57,113,115,147,148 5 -206680 cd01893 Miro1 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 33,34,58,65 2 -206680 cd01893 Miro1 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 3,32,33,35,36,38,40,49,53,54,56,57,58,65,68 2 -206680 cd01893 Miro1 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 33,56,65,67 0 -206680 cd01893 Miro1 5 putative effector interaction site 0 0 1 1 34,35,65,68 0 -206680 cd01893 Miro1 6 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206680 cd01893 Miro1 7 Switch II region 0 0 1 1 57,58,65,66,67,68,72,73,74 0 -206680 cd01893 Miro1 8 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206680 cd01893 Miro1 9 G2 box 0 0 1 1 32 0 -206680 cd01893 Miro1 10 G3 box 0 0 1 1 54,55,56,57 0 -206680 cd01893 Miro1 11 G4 box 0 0 1 1 112,113,114,115 0 -206680 cd01893 Miro1 12 G5 box 0 0 1 1 146,147,148 0 -206681 cd01894 EngA1 1 GTP/Mg2+ binding site 0 1 1 0 6,8,9,10,11,112,113,115,138,139,140 5 -206681 cd01894 EngA1 2 Switch I region 0 0 1 1 21,22,23,24,25,26,27,31,32,33,34 0 -206681 cd01894 EngA1 3 Switch II region 0 0 1 1 49,50,51,52,53,54,75,76 0 -206681 cd01894 EngA1 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206681 cd01894 EngA1 5 G2 box 0 0 1 1 31 0 -206681 cd01894 EngA1 6 G3 box 0 0 1 1 50,51,52,53 0 -206681 cd01894 EngA1 7 G4 box 0 0 1 1 112,113,114,115 0 -206681 cd01894 EngA1 8 G5 box 0 0 1 1 138,139,140 0 -206682 cd01895 EngA2 1 GTP/Mg2+ binding site 0 1 1 0 11,13,14,15,16,120,121,123,155,156,157 5 -206682 cd01895 EngA2 2 Switch I region 0 0 1 1 23,26,27,28,29,30,31,32,33,34,35,36,37,38,39 0 -206682 cd01895 EngA2 3 Switch II region 0 0 1 1 58,59,83,84 0 -206682 cd01895 EngA2 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206682 cd01895 EngA2 5 G2 box 0 0 1 1 36 0 -206682 cd01895 EngA2 6 G3 box 0 0 1 1 55,56,57,58 0 -206682 cd01895 EngA2 7 G4 box 0 0 1 1 120,121,122,123 0 -206682 cd01895 EngA2 8 G5 box 0 0 1 1 155,156,157 0 -206683 cd01896 DRG 1 GTP/Mg2+ binding site 0 0 0 1 9,11,12,13,14,108,109,111,136,137,138 5 -206683 cd01896 DRG 2 Switch I region 0 0 1 1 28,29,30,31,32,33,34,35,36 0 -206683 cd01896 DRG 3 Switch II region 0 0 1 1 51,52,53,54,55,56,57,58,59,60,63,64,65,66,67,68,69,70,71,72,73,74,75,76 0 -206683 cd01896 DRG 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206683 cd01896 DRG 5 G2 box 0 0 1 1 33 0 -206683 cd01896 DRG 6 G3 box 0 0 1 1 52,53,54,55 0 -206683 cd01896 DRG 7 G4 box 0 0 1 1 183,184,185,186 0 -206683 cd01896 DRG 8 G5 box 0 0 1 1 206,207,208 0 -206684 cd01897 NOG 1 GTP/Mg2+ binding site 0 1 0 0 9,11,12,13,14,119,120,122,147,148,149 5 -206684 cd01897 NOG 2 Switch I region 0 0 1 1 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 0 -206684 cd01897 NOG 3 Switch II region 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 0 -206684 cd01897 NOG 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206684 cd01897 NOG 5 G2 box 0 0 1 1 33 0 -206684 cd01897 NOG 6 G3 box 0 0 1 1 52,53,54,55 0 -206684 cd01897 NOG 7 G4 box 0 0 1 1 119,120,121,122 0 -206684 cd01897 NOG 8 G5 box 0 0 1 1 147,148,149 0 -206685 cd01898 Obg 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,121,122,124,151,152 5 -206685 cd01898 Obg 2 Switch I region 0 0 1 1 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 0 -206685 cd01898 Obg 3 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,78 0 -206685 cd01898 Obg 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206685 cd01898 Obg 5 G2 box 0 0 1 1 33 0 -206685 cd01898 Obg 6 G3 box 0 0 1 1 53,54,55,56 0 -206685 cd01898 Obg 7 G4 box 0 0 1 1 121,122,123,124 0 -206685 cd01898 Obg 8 G5 box 0 0 1 1 151,152,153 0 -206686 cd01899 Ygr210 1 GTP/Mg2+ binding site 0 0 0 1 7,9,10,11,12,221,222,224,248,249,250 5 -206686 cd01899 Ygr210 2 Switch I region 0 0 1 1 19,20,21,22,24,25,26,27,28,29,30,31,32,33,34 0 -206686 cd01899 Ygr210 3 Switch II region 0 0 1 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -206686 cd01899 Ygr210 4 G1 box 0 0 1 1 4,5,6,7,8,9,10,11 0 -206686 cd01899 Ygr210 5 G2 box 0 0 1 1 31 0 -206686 cd01899 Ygr210 6 G3 box 0 0 1 1 74,75,76,77 0 -206686 cd01899 Ygr210 7 G4 box 0 0 1 1 221,222,223,224 0 -206686 cd01899 Ygr210 8 G5 box 0 0 1 1 248,249,250 0 -206687 cd01900 YchF 1 GTP/Mg2+ binding site 0 1 1 0 7,9,10,11,12,202,203,205,233,234,235 5 -206687 cd01900 YchF 2 Switch I region 0 0 1 1 27,28,29,30,31,32,33,34 0 -206687 cd01900 YchF 3 Switch II region 0 0 1 1 66,67,68,69,70,71,72,73,74,75,82,83,84,85,86,87,88,89,90,91 0 -206687 cd01900 YchF 4 G1 box 0 0 1 1 4,5,6,7,8,9,10,11 0 -206687 cd01900 YchF 5 G2 box 0 0 1 1 31 0 -206687 cd01900 YchF 6 G3 box 0 0 1 1 67,68,69,70 0 -206687 cd01900 YchF 7 G4 box 0 0 1 1 202,203,204,205 0 -206687 cd01900 YchF 8 G5 box 0 0 1 1 233,234,235 0 -238884 cd01901 Ntn_hydrolase 1 active site 0 1 1 0 0,16,18,32 1 -238887 cd01906 proteasome_protease_HslV 1 active site 0 0 1 0 0,16,18,32,132 1 -238888 cd01907 GlxB 1 putative active site 0 0 1 0 0,84,85,109,110,134 1 -238889 cd01908 YafJ 1 putative active site 0 0 1 0 1,87,112,113,114,138 1 -238889 cd01908 YafJ 2 putative dimer interface 0 1 0 0 54,57,58,104,124,125,151 2 -238890 cd01909 betaLS_CarA_N 1 putative active site 0 0 1 0 0,56,57,58,81 1 -238890 cd01909 betaLS_CarA_N 2 CarA subunit interaction site 0 1 1 0 91,95,173,191,192,194,196,197 0 -238890 cd01909 betaLS_CarA_N 3 betaLS subunit interaction site 0 1 1 0 65,91,92,95,98,195,196 2 -238891 cd01910 Wali7 1 putative active site 0 0 1 0 4,57,77,78,79,102 1 -238892 cd01911 proteasome_alpha 1 active site 0 0 1 0 27,43,45,58,160 1 -238892 cd01911 proteasome_alpha 2 alpha subunit interaction site 0 1 1 0 2,3,4,5,7,8,10,11,15,18,21,22,25,33,48,74,75,76,78,79,110,113,116,117,120,121,122,123,124,142,147,148,150,152,153,155 2 -238893 cd01912 proteasome_beta 1 active site 0 0 1 0 0,16,18,32,130,167,170,171 1 -238893 cd01912 proteasome_beta 2 beta subunit interaction site 0 1 1 0 18,21,48,50,65,77,80,81,83,84,87,115,117,119,120,121,122,125,133,134,136,137,140,141,142,158,165,166,167,168,171,172 2 -238894 cd01913 protease_HslV 1 active site 0 0 1 0 0,16,18,32,123 1 -238894 cd01913 protease_HslV 2 HslU subunit interaction site 0 1 1 0 23,24,25,82,109,113,126,127,130,138,149,153,156,157,159 2 -238895 cd01914 HCP 1 cubane metal cluster 0 1 1 0 2,5,14,20 4 -238895 cd01914 HCP 2 hybrid metal cluster 0 1 1 0 124,148,192,279,307,332,366 0 -238896 cd01915 CODH 1 cubane metal cluster (B-cluster) 0 0 1 1 38,41,46,59 4 -238896 cd01915 CODH 2 Ni-Fe-S cluster (C-cluster) 0 1 0 0 251,287,325,432,433,463,504,539,541 4 -238896 cd01915 CODH 3 ACS interaction site 0 1 1 0 16,21,24,25,28,37,41,42,43,44,45,46,47,49,57,58,59,60,70,74,76,77,80,81,163,166,167,168,169,176,180,181,184,185,187,188,189,190,191,192,193,197,324,325,326,327,328,329,335,346,347,349,351,353,354,355,538,540,541,569,572,576,580,581,605,608 0 -238896 cd01915 CODH 4 CODH interaction site 0 1 1 0 16,21,22,24,25,27,28,32,35,37,40,41,42,43,44,45,46,47,57,58,59,60,70,73,77,80,84,87,180,181,184,185,187,188,189,190,191,192,193,194,195,197,324,325,326,327,328,332,346,347,348,349,351,538,539,540,541 0 -238898 cd01917 ACS_2 1 CODH interaction site 0 1 1 0 3,7,10,11,13,15,60,96,135,161,164,167,168,230,231,232,233 0 -238899 cd01918 HprK_C 1 active site 0 1 1 1 5,23,25,26,27,43,44,68,70 1 -238899 cd01918 HprK_C 2 Hpr binding site 0 1 1 0 3,5,22,23,26,31,35,44,45,47,62,68,72,73,74,79,109,110,111,128,139,142 0 -238899 cd01918 HprK_C 3 homohexamer subunit interaction site 0 1 1 0 29,31,35,36,39,62,66,72,74,75,76,79,80,81,127,143,144,146 2 -238900 cd01919 PEPCK 1 active site 0 1 1 0 40,182,184,187,188,207,225,226,227,228,229,230,231,243,244,261,263,272,308,427,430,433 1 -238900 cd01919 PEPCK 2 nucleotide-binding site 0 1 1 0 225,226,228,229,230,231,272,416,417,427,430,433 5 -238900 cd01919 PEPCK 3 metal-binding site 0 1 1 0 187,188,207,229,230,243,244,261,263,308,388 4 -238900 cd01919 PEPCK 4 substrate-binding site 0 1 1 0 40,182,187,188,261,306,308,388 5 -238901 cd01920 cyclophilin_EcCYP_like 1 substrate binding site 0 1 1 0 40,42,45,46,48,83,84,85,86,87,88,96,104,105,114 5 -238902 cd01921 cyclophilin_RRM 1 active site 0 0 1 1 39,40,45,103,105,114 1 -238903 cd01922 cyclophilin_SpCYP2_like 1 active site 0 0 1 1 39,40,45,96,98,106 1 -238904 cd01923 cyclophilin_RING 1 active site 0 0 1 1 41,42,47,98,100,108 1 -238905 cd01924 cyclophilin_TLP40_like 1 active site 0 0 1 1 39,40,45,123,125,140 1 -238906 cd01925 cyclophilin_CeCYP16-like 1 active site 0 0 1 1 47,48,53,104,106,114 1 -238907 cd01926 cyclophilin_ABH_like 1 active site 0 1 1 0 55,56,61,112,114,122 1 -238908 cd01927 cyclophilin_WD40 1 active site 0 0 1 1 39,40,45,96,98,106 1 -238909 cd01928 Cyclophilin_PPIL3_like 1 putative active site 0 0 1 1 42,43,48,99,101,109 1 -238910 cd01935 Ntn_CGH_like 1 active site 0 0 1 0 0,16,18,64,138 1 -238911 cd01936 Ntn_CA 1 active site 0 0 1 0 61,83,130,307 1 -238912 cd01937 ribokinase_group_D 1 ATP binding site 0 0 1 1 161,189,216,219,220,223,245,248 5 -238912 cd01937 ribokinase_group_D 2 substrate binding site 0 0 1 1 28,218,221 5 -238913 cd01938 ADPGK_ADPPFK 1 substrate binding site 0 1 1 0 27,31,78,106,107,158,429,433 5 -238913 cd01938 ADPGK_ADPPFK 2 ADP binding site 0 1 1 0 276,334,335,420,422,425,431,432,435 5 -238913 cd01938 ADPGK_ADPPFK 3 intradomain hinge region 0 0 1 1 26,27,28,105,106,153,154,155,156,184,185,186,187 0 -238913 cd01938 ADPGK_ADPPFK 4 Mg2+ binding site 0 1 1 0 107,249,276,279,433 4 -238914 cd01939 Ketohexokinase 1 substrate binding site 0 0 1 1 40,248,251 5 -238914 cd01939 Ketohexokinase 2 ATP binding site 0 0 1 1 185,217,246,249,250,253,276,279 5 -238915 cd01940 Fructoselysine_kinase_like 1 substrate binding site 0 0 1 1 26,222,225 5 -238915 cd01940 Fructoselysine_kinase_like 2 ATP binding site 0 0 1 1 166,193,220,223,224,227,250,253 5 -238916 cd01941 YeiC_kinase_like 1 substrate binding site 0 0 1 1 39,251,254 5 -238916 cd01941 YeiC_kinase_like 2 ATP binding site 0 0 1 1 182,218,249,252,253,256,278,281 5 -238917 cd01942 ribokinase_group_A 1 substrate binding site 0 0 1 1 40,238,241 5 -238917 cd01942 ribokinase_group_A 2 ATP binding site 0 0 1 1 180,208,236,239,240,243,265,268 5 -238918 cd01943 MAK32 1 substrate binding site 0 0 1 1 29,264,267 5 -238918 cd01943 MAK32 2 ATP binding site 0 0 1 1 186,230,262,265,266,269,291,294 5 -238919 cd01944 YegV_kinase_like 1 substrate binding site 0 0 1 1 39,250,253 5 -238919 cd01944 YegV_kinase_like 2 ATP binding site 0 0 1 1 187,220,248,251,252,255,277,280 5 -238920 cd01945 ribokinase_group_B 1 substrate binding site 0 0 1 1 40,238,241 5 -238920 cd01945 ribokinase_group_B 2 ATP binding site 0 0 1 1 178,208,236,239,240,243,265,268 5 -238921 cd01946 ribokinase_group_C 1 substrate binding site 0 0 1 1 29,230,233 5 -238921 cd01946 ribokinase_group_C 2 ATP binding site 0 0 1 1 169,200,228,231,232,235,262,265 5 -238922 cd01947 Guanosine_kinase_like 1 substrate binding site 0 0 1 1 40,224,227 5 -238922 cd01947 Guanosine_kinase_like 2 ATP binding site 0 0 1 1 171,195,222,225,226,229,251,254 5 -143635 cd01949 GGDEF 1 active site 0 1 1 1 42,45,46,50,54,76,78,79,80,81 1 -143635 cd01949 GGDEF 2 metal binding site 0 1 1 0 37,80 4 -143635 cd01949 GGDEF 3 I-site 0 1 1 1 72,100 0 -173886 cd01951 lectin_L-type 1 metal binding site 0 1 1 0 107,109,123 4 -173886 cd01951 lectin_L-type 2 carbohydrate binding site 0 1 1 0 72,207 5 -173886 cd01951 lectin_L-type 3 homodimer interaction site 0 1 1 0 0,1,2,3,14,45,47 2 -173886 cd01951 lectin_L-type 4 homotetramer interaction site 0 1 1 1 0,1,3,14,45,48,142,159,170,172,173,185 2 -238925 cd01959 nsLTP2 1 hydrophobic cavity 0 1 1 1 5,33,38,40,42,45,46,47,62,64 0 -238926 cd01960 nsLTP1 1 hydrophobic cavity 0 1 1 1 5,9,13,16,31,34,35,44,47,50,51,54,66,69,70,77,78,79,81,82 0 -238934 cd01974 Nitrogenase_MoFe_beta 1 Beta subunit P cluster binding residues 0 1 1 1 11,13,33,35,36,39,40,93,94,129 0 -238934 cd01974 Nitrogenase_MoFe_beta 2 MoFe protein beta/alpha subunit interactions 0 1 1 1 0,1,2,3,4,5,6,7,9,10,11,14,27,33,34,38,39,40,41,42,43,45,46,49,50,51,53,54,55,56,57,60,61,71,74,75,78,79,81,82,83,94,95,98,99,129,130,201,202,203,204,207,209,260,264,268,271,272,275,277,283,286,290,291,294,295,301,323,366,385,388,418 0 -238934 cd01974 Nitrogenase_MoFe_beta 3 MoFe protein beta subunit/Fe protein contacts 0 1 1 0 61,64,65,66,97,99,100,102,104,105,126,130 0 -238934 cd01974 Nitrogenase_MoFe_beta 4 MoFe protein dimer/ dimer interactions 0 1 1 1 398,427,430,431 0 -238935 cd01976 Nitrogenase_MoFe_alpha 1 Alpha subunit P cluster binding residues 0 1 1 1 16,18,39,41,42,108,139 0 -238935 cd01976 Nitrogenase_MoFe_alpha 2 FeMoco binding residues 0 1 1 1 24,50,149,180,182,226,306,307,308,310,332,393 5 -238935 cd01976 Nitrogenase_MoFe_alpha 3 MoFe protein alpha/beta subunit interactions 0 1 1 1 5,6,8,9,10,11,14,15,19,30,39,44,45,46,47,49,51,53,54,66,67,69,71,72,73,74,77,84,91,92,94,95,96,139,140,142,143,183,184,187,200,201,211,212,285,357,358,361,376,377,380,381,383,384,390,399,405,408,409,412,417,420 0 -238935 cd01976 Nitrogenase_MoFe_alpha 4 MoFe protein dimer/ dimer interactions 0 1 1 1 280,281,283,284,285,288,289,291,379,382,404,416,417 0 -238935 cd01976 Nitrogenase_MoFe_alpha 5 MoFe protein alpha subunit/Fe protein contacts 0 1 1 1 74,75,77,78,111,113,114,115,116,138,140,147 0 -349751 cd01983 SIMIBI 1 active site 0 1 1 0 10,11,12,13,14,15,37,43,105,106 1 -238942 cd01984 AANH_like 1 Ligand Binding Site 0 1 0 0 3,4,7,8,9,10,31,33 5 -238943 cd01985 ETF 1 Ligand binding site 0 1 0 0 4,5,17,20,42,96,97,99,100,102,103,104,105 5 -238944 cd01986 Alpha_ANH_like 1 Ligand Binding Site 0 1 0 0 3,4,5,7,8,9,10,28,30 5 -238945 cd01987 USP_OKCHK 1 Ligand Binding Site 0 0 0 1 4,5,6,34,90,91,93,94,104,105,106,107 5 -238946 cd01988 Na_H_Antiporter_C 1 Ligand Binding Site 0 0 0 1 4,5,6,34,99,100,102,103,113,114,115,116 5 -238947 cd01989 STK_N 1 Ligand Binding Site 0 0 0 1 4,5,6,34,108,109,111,112,123,124,125,126 5 -238948 cd01990 Alpha_ANH_like_I 1 Ligand Binding Site 0 0 0 1 3,4,5,7,8,9,10,29,31 5 -238949 cd01991 Asn_Synthase_B_C 1 Ligand Binding Site 0 1 0 0 20,21,22,47,48,49,107,121,122,123 5 -238949 cd01991 Asn_Synthase_B_C 2 Molecular Tunnel 0 0 1 1 20,21,22,47,48,49,107,121,122,123 0 -238950 cd01992 PP-ATPase 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,33,35 5 -238951 cd01993 Alpha_ANH_like_II 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,35,37 5 -238952 cd01994 Alpha_ANH_like_IV 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,29,31 5 -238953 cd01995 ExsB 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,33,35 5 -238954 cd01996 Alpha_ANH_like_III 1 Ligand Binding Site 0 0 0 1 6,7,8,10,11,12,13,32,34 5 -238955 cd01997 GMP_synthase_C 1 ATP Binding subdomain 0 1 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,126,127,128,129,130,131,132,133,134,135,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 5 -238955 cd01997 GMP_synthase_C 2 Dimerization subdomain 0 1 0 1 193,194,195,196,197,198,199,200,201,202,203,204,205,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,262,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 0 -238955 cd01997 GMP_synthase_C 3 Ligand Binding sites 0 1 0 0 4,5,6,8,9,10,11,29,31,151 5 -238956 cd01998 tRNA_Me_trans 1 Ligand Binding Site 0 0 0 1 4,5,6,8,9,10,11,29,31 5 -238957 cd01999 Argininosuccinate_Synthase 1 ANP binding site 0 1 1 1 3,10,28,30,34,90,112,123,171,172 5 -238957 cd01999 Argininosuccinate_Synthase 2 Substrate Binding Site I 0 1 1 0 113,114,117,118,119 5 -238957 cd01999 Argininosuccinate_Synthase 3 Substrate Binding Site II 0 1 1 0 82,86,87,118,122,171,172,173,180,182,256,268,308 5 -238958 cd02000 TPP_E1_PDC_ADC_BCADC 1 TPP-binding site 0 1 1 1 54,55,103,105,133,134,135,136,163,165,232 5 -238958 cd02000 TPP_E1_PDC_ADC_BCADC 2 heterodimer interface 0 1 1 0 98,100,102,107,110,111,114,115,117,118,121,140,141,147,148,151 2 -238958 cd02000 TPP_E1_PDC_ADC_BCADC 3 tetramer interface 0 1 1 1 24,76,103,104,135,137,138,139,140,143,147,151,166,167,168,169,183,188,236,240 2 -238958 cd02000 TPP_E1_PDC_ADC_BCADC 4 phosphorylation loop region 0 0 1 1 227,228,229,230,231,232,233,235,236,237,238,239,240,241,242,243,244,245,253,254,255 6 -238959 cd02001 TPP_ComE_PpyrDC 1 TPP-binding site 0 0 1 1 43,66,67,68,69,95,97 5 -238960 cd02002 TPP_BFDC 1 TPP-binding site 0 1 1 1 24,25,48,50,74,75,76,77,80,102,104,106,107 5 -238960 cd02002 TPP_BFDC 2 dimer interface 0 1 1 1 46,79,80,86,90,105,128,129,133,135,136,143,144 2 -238961 cd02003 TPP_IolD 1 TPP-binding site 0 0 1 1 49,73,74,75,76,101,103 0 -238962 cd02004 TPP_BZL_OCoD_HPCL 1 TPP-binding site 0 1 1 1 0,21,22,23,24,47,49,73,74,75,76,101,103,105 0 -238962 cd02004 TPP_BZL_OCoD_HPCL 2 dimer interface 0 1 1 1 46,74,78,79,82,85,109,120,122,126,129,130,132,136,137 2 -238963 cd02005 TPP_PDC_IPDC 1 TPP-binding site 0 1 1 1 26,49,51,75,76,77,78,103,105,106,107,108,109 5 -238963 cd02005 TPP_PDC_IPDC 2 dimer interface 0 1 1 1 47,48,49,80,81,84,87,91,109,113,118,119,123,125,126,133,134 2 -238964 cd02006 TPP_Gcl 1 TPP-binding site 0 0 1 1 58,82,83,84,85,110,112 5 -238965 cd02007 TPP_DXS 1 TPP-binding site 0 0 1 1 76,104,105,106,107,134,136 0 -238966 cd02008 TPP_IOR_alpha 1 TPP-binding site 0 0 1 1 52,76,77,78,79,105,107 0 -238967 cd02009 TPP_SHCHC_synthase 1 TPP-binding site 0 0 1 1 52,75,76,77,78,103,105 0 -238968 cd02010 TPP_ALS 1 TPP-binding site 0 1 1 1 21,22,23,24,47,49,74,75,76,101,103,105,106,170 5 -238968 cd02010 TPP_ALS 2 dimer interface 0 1 1 1 46,74,75,78,79,82,85,89,104,110,114,117,119,120,123,124,127,131,134,135 2 -238969 cd02011 TPP_PK 1 TPP-binding site 0 0 1 1 63,87,88,89,90,121,123 0 -238970 cd02012 TPP_TK 1 TPP-binding site 0 1 1 1 57,104,106,135,136,140,165,167,169,241 5 -238970 cd02012 TPP_TK 2 dimer interface 0 1 1 1 81,89,90,92,105,106,108,138,139,140,141,144,145,148,152,168,169,185 2 -238971 cd02013 TPP_Xsc_like 1 TPP-binding site 0 0 1 1 54,78,79,80,81,106,108 0 -238972 cd02014 TPP_POX 1 TPP-binding site 0 1 1 1 26,50,52,77,78,79,104,106,108,109 5 -238973 cd02015 TPP_AHAS 1 TPP-binding site 0 1 1 1 23,24,25,26,49,51,76,77,78,81,103 5 -238973 cd02015 TPP_AHAS 2 dimer interface 0 1 1 1 46,49,51,80,81,83,84,91,130,131,135,138 2 -238974 cd02016 TPP_E1_OGDC_like 1 TPP-binding site 0 0 1 1 114,147,148,149,150,181,183 5 -238975 cd02017 TPP_E1_EcPDC_like 1 TPP-binding site 0 1 1 1 34,65,67,117,119,155,156,157,160,185,187,317 5 -238975 cd02017 TPP_E1_EcPDC_like 2 dimer interface 0 1 1 1 26,27,28,91,92,93,94,101,102,104,106,115,117,118,119,159,160,161,162,165,168,172,188,189,190,194,202,205,206,209 2 -238976 cd02018 TPP_PFOR 1 TPP-binding site 0 1 1 1 12,37,59,60,94,95,96,97,123,125,127,128,129 5 -238976 cd02018 TPP_PFOR 2 dimer interface 0 1 1 1 28,29,43,53,54,55,56,57,58,61,64,65,68,69,71,72,75,87,103,107,108,114,129,130,135,142,144,147,151,155,159,160,163,204,205,210,211,212,213 2 -238977 cd02019 NK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238978 cd02020 CMPK 1 CMP-binding site 0 0 1 0 51,72,73,129 0 -238978 cd02020 CMPK 2 The sites determining sugar specificity 0 0 1 0 122,126 0 -238979 cd02021 GntK 1 ATP-binding site 0 1 1 0 5,6,7,8,9,10,11,12,28,30,113,117 5 -238979 cd02021 GntK 2 Gluconate-6-phosphate binding site 0 0 1 0 7,8,117 5 -238980 cd02022 DPCK 1 ATP-binding 0 1 1 0 5,6,7,10,11,137,172 5 -238980 cd02022 DPCK 2 CoA-binding site 0 0 1 0 4,29,85,110,111,156 5 -238981 cd02023 UMPK 1 ATP-binding site 0 1 1 0 12,134,182 5 -238981 cd02023 UMPK 2 Pyrimidine base specificity 0 0 1 1 36,52,81,83,86,143 0 -238981 cd02023 UMPK 3 Sugar specificity 0 0 1 1 33,55,135 0 -238982 cd02024 NRK1 1 Active site 0 0 1 1 5,10,11,12,13 1 -238983 cd02025 PanK 1 ATP-binding site 0 1 1 0 8,11,12,13,14,144,148,208,212 5 -238983 cd02025 PanK 2 Mg2+-binding site 0 0 1 0 12,109 4 -238983 cd02025 PanK 3 CoA-binding site 0 0 1 0 11,12,16,87,148,152,212 5 -238984 cd02026 PRK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238985 cd02027 APSK 1 ligand-binding site 0 1 1 0 7,8,10,11,12,13,38,47,52,55,78,79,80,112,129,130 5 -238986 cd02028 UMPK_like 1 Active site 0 0 1 1 5,10,11,12,13 1 -238987 cd02029 PRK_like 1 Active site 0 0 1 1 5,10,11,12,13 1 -349752 cd02032 Bchl-like 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,36,38,40,179,180,202,203,204,205,208,209,212 1 -349752 cd02032 Bchl-like 2 Fe-S cluster binding site 0 1 1 1 94,128 4 -349752 cd02032 Bchl-like 3 dimer interface 0 1 1 1 37,38,88,91,92,93,125,127,128,129,132,153,165,214,215,216 2 -349753 cd02033 BchX 1 putative active site 0 0 1 1 38,39,40,41,42,43,44,45,67,69,71,214,215,237,238,239,243,244,247 1 -349753 cd02033 BchX 2 putative Fe-S cluster binding site 0 0 1 1 125,160 4 -349753 cd02033 BchX 3 putative dimer interface 0 0 1 1 68,69,119,122,123,124,157,159,160,161,164,187,199,249,250,251 2 -349754 cd02034 CooC1 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,39,190,191,215,216,217,220,224 1 -349754 cd02034 CooC1 2 Zn binding site 0 1 1 0 111,113 4 -349754 cd02034 CooC1 3 dimer interface 0 1 1 0 147,179,186 2 -349755 cd02035 ArsA 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,36,40,130,133 1 -349755 cd02035 ArsA 2 heterotrimer interface 0 1 1 1 8,9,37,38,40,43,44,68,103,104,105,106,107,108,132,133,134,135,136,139,169,172,173,175,176,179,182,197,234,235,236,237,238 2 -349755 cd02035 ArsA 3 polypeptide substrate binding site 0 1 1 0 7,8,9,13,36,37,38,40,42,43,44,68,103,104,105,106,107,108,109,110,112,113,114,116,117,120,132,133,134,135,136,139,140,142,143,169,171,172,173,175,176,178,179,182,197,198,227,234,235,236,238 2 -349756 cd02036 MinD 1 active site 0 1 1 0 9,10,11,12,13,14,15,37,42,116,142,169,170,199,200,201,202,205,206,209 1 -349756 cd02036 MinD 2 homodimer interface 0 1 1 0 7,9,10,39,40,42,45,120,122,123,124,142,143,144,147,148,151,155,170,203,206,207 2 -349756 cd02036 MinD 3 heterodimer interface 1 0 1 1 0 184,185,188,189,192,193,194 2 -349756 cd02036 MinD 4 heterodimer interface 2 0 1 1 0 143,146,147,150,151,179,181,182,186,189,190 2 -349757 cd02037 Mrp_NBP35 1 active site 0 1 1 0 8,9,10,11,12,13,14,15,141,143,168,169,205,206,207,210,211 1 -349757 cd02037 Mrp_NBP35 2 dimer interface 0 1 1 0 8,9,10,39,40,42,45,46,87,88,118,120,123,147,150,206,208,209,211 2 -349758 cd02038 FlhG-like 1 active site 0 1 1 0 8,9,10,11,12,13,14,15,37,142,170,171,203,204,205,206,209,210,213 1 -349758 cd02038 FlhG-like 2 dimer interface 0 1 1 0 7,8,9,10,39,40,42,45,83,84,121,142,143,144,147,148,154,155,213 2 -185678 cd02039 cytidylyltransferase_like 1 active site 0 1 1 0 3,4,5,6,7,8,11,13,14,17,34,35,97,98,99,134 1 -185678 cd02039 cytidylyltransferase_like 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -349759 cd02040 NifH 1 active site 0 1 1 1 7,8,9,10,11,12,13,38,39 1 -349759 cd02040 NifH 2 Fe-S cluster binding site 0 1 1 0 92,127,129 4 -349759 cd02040 NifH 3 dimer interface 0 1 1 0 37,38,86,87,88,89,90,91,124,126,127,128,131,154,166,218,219,220,225,226 2 -349760 cd02042 ParAB_family 1 active site 0 1 1 1 8,9,10,11,12,13,14,15,37,39,53,56,77,79,81,113 1 -349760 cd02042 ParAB_family 2 dimer interface 0 1 1 1 7,8,9,10,18,39,41,81 2 -238998 cd02043 plant_SERPIN 1 reactive center loop 0 0 1 1 329,330,331,332,333,334,335,336,337,338,339,340,341,349,350,351,352,353,354,355,356,357,358 0 -238999 cd02044 ov-serpin 1 reactive center loop 0 1 0 1 322,323,324,325,326,327,328,329,330,331,332,342,343,344,345,346,347 0 -239000 cd02045 antithrombin-III_like 1 reactive center loop 0 1 1 1 333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,356,357,358,359,360,361 0 -239001 cd02046 hsp47 1 reactive center loop 0 0 1 1 322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346 0 -239002 cd02047 HCII 1 reactive center loop 0 1 1 1 387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412 0 -239003 cd02048 neuroserpin 1 reactive center loop 0 0 1 1 325,326,327,328,329,330,331,332,333,334,335,340,341,342,343,344,345,346,347,348,349,350,351,352 0 -239004 cd02049 bacterial_SERPIN 1 reactive center loop 0 0 1 1 315,316,317,318,319,320,321,322,323,324,325,339,340,341,342,343,344 0 -239005 cd02050 C1_inh 1 reactive center loop 0 0 1 1 309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332 0 -239006 cd02051 PAI-1_nexin-1 1 reactive center loop 0 1 1 1 329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354 0 -239007 cd02052 PEDF 1 reactive center loop 0 0 1 1 327,328,329,330,346,347,348,349,350,351 0 -239007 cd02052 PEDF 2 putative receptor binding site 0 0 0 0 37,38,39,40,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,79,80,81,82,83 0 -239008 cd02053 alpha2AP 1 reactive center loop 0 0 1 1 308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331 0 -239010 cd02055 PZI 1 reactive center loop 0 0 1 1 320,321,322,323,324,325,326,327,328,329,330,340,341,342,343,344,345 0 -239011 cd02056 alpha-1-antitrypsin_like 1 reactive center loop 0 1 1 1 315,316,317,318,319,320,321,322,323,324,325,336,337,338,339,340,341 0 -239012 cd02057 maspin_like 1 reactive center loop 0 0 1 1 326,327,328,329,344,345,346,347,348,349 0 -239012 cd02057 maspin_like 2 hinge residues 0 0 1 1 325,326 0 -239012 cd02057 maspin_like 3 shutter residues 0 0 1 1 159,160,161,162,163,164,165,166,316,317,318,319,320,321,322,323 0 -239012 cd02057 maspin_like 4 gate residues 0 0 1 1 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,189,190,191,192,193,194,195,196,197 0 -239013 cd02058 PAI-2 1 reactive center loop 0 1 1 1 330,331,332,333,334,335,336,337,338,339,340,352,353,354,355,356,357 0 -239014 cd02059 ovalbumin_like 1 reactive center loop 0 1 1 1 339,340,341,342,343,344,345,346,347,348,349,361,362,363,364,365,366 0 -239015 cd02062 Nitro_FMN_reductase 1 FMN binding site 0 1 1 1 3,5,7,33,92,93 5 -239015 cd02062 Nitro_FMN_reductase 2 dimer interface 0 1 0 0 69,71,72,75,76,79 2 -185679 cd02064 FAD_synthetase_N 1 active site 0 1 1 0 5,6,7,8,11,14,107,137,145,146,147 1 -239016 cd02065 B12-binding_like 1 B12 binding site 0 1 1 1 54,55,56,58,59,60,87,109,112,118 5 -239017 cd02066 GRX_family 1 GSH binding site 0 1 1 0 6,9,10,11,49,50 5 -239017 cd02066 GRX_family 2 catalytic residues 0 0 1 1 9,12 1 -239018 cd02067 B12-binding 1 B12 binding site 0 1 1 0 8,9,10,11,12,13,14,17,54,55,56,58,59,60,88,106,109,112 5 -239018 cd02067 B12-binding 2 cobalt ligand 0 1 1 0 11 4 -239020 cd02069 methionine_synthase_B12_BD 1 B12 binding site 0 1 1 0 35,39,56,59,97,98,99,100,101,102,103,106,143,144,145,147,148,149,176,198,201,204 5 -239020 cd02069 methionine_synthase_B12_BD 2 cobalt ligand 0 1 1 0 100 4 -239021 cd02070 corrinoid_protein_B12-BD 1 B12 binding site 0 0 1 0 91,92,93,94,95,96,97,100,137,138,139,141,142,143,172,188,191,194 5 -239021 cd02070 corrinoid_protein_B12-BD 2 cobalt ligand 0 0 1 0 94 4 -239022 cd02071 MM_CoA_mut_B12_BD 1 B12 binding site 0 1 1 0 8,9,10,11,12,13,14,17,54,55,56,58,59,60,88,106,109,115 5 -239022 cd02071 MM_CoA_mut_B12_BD 2 cobalt ligand 0 1 1 0 11 4 -239023 cd02072 Glm_B12_BD 1 B12 binding site 0 1 1 0 8,9,10,11,12,13,14,17,54,55,56,58,59,60,88,112,115,121 5 -239023 cd02072 Glm_B12_BD 2 cobalt ligand 0 1 1 0 11 4 -239023 cd02072 Glm_B12_BD 3 heterodimer interface 0 1 0 1 8,10,12,13,16,17,20,32,33,34,35,59,61,63,64,65,88,91,92,93,102,114 2 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 360,361,362,363,364,365,366 0 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 2 putative ATP binding site 0 0 1 1 360,361,362,455,478,479,480,545,592,593,594,651,654,657,677,680 5 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 3 phosphorylation site D 0 1 1 360 6 -319771 cd02076 P-type_ATPase_H 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 289,290,291,292,293,294,295 0 -319771 cd02076 P-type_ATPase_H 2 ATP binding site 0 1 1 1 289,290,291,331,332,357,362,364,380,381,413,414,459,460,461,462,512,518,537,540 5 -319771 cd02076 P-type_ATPase_H 3 phosphorylation site D 0 1 1 289 6 -319771 cd02076 P-type_ATPase_H 4 proton binding site 0 0 1 1 597,598,602,604,634,709 4 -319772 cd02077 P-type_ATPase_Mg 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 312,313,314,315,316,317,318 0 -319772 cd02077 P-type_ATPase_Mg 2 putative ATP binding site 0 0 1 1 312,313,314,384,407,408,409,452,508,509,510,555,558,561,580,583 5 -319772 cd02077 P-type_ATPase_Mg 3 phosphorylation site D 0 1 1 312 6 -319772 cd02077 P-type_ATPase_Mg 4 putative cation binding site 0 0 1 1 640,644,645,647,648,673,676,677 4 -319773 cd02078 P-type_ATPase_K 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 294,295,296,297,298,299,300 0 -319773 cd02078 P-type_ATPase_K 2 putative ATP binding site 0 0 1 1 294,295,296,363,382,383,384,418,458,459,460,480,483,486,505,508 5 -319773 cd02078 P-type_ATPase_K 3 phosphorylation site D 0 1 1 294 6 -319773 cd02078 P-type_ATPase_K 4 putative cation binding site 0 0 1 1 565,569,570,572,573,598,601,602 4 -319774 cd02079 P-type_ATPase_HM 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 322,323,324,325,326,327,328 0 -319774 cd02079 P-type_ATPase_HM 2 putative ATP binding site 0 0 1 1 322,323,324,387,403,404,405,430,470,471,472,492,495,498,517,520 5 -319774 cd02079 P-type_ATPase_HM 3 phosphorylation site D 0 1 1 322 6 -319774 cd02079 P-type_ATPase_HM 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 278,279,280 0 -319774 cd02079 P-type_ATPase_HM 5 putative HM ion binding site 0 0 1 1 278,280,581,582,603,607 4 -319775 cd02080 P-type_ATPase_cation 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 304,305,306,307,308,309,310 0 -319775 cd02080 P-type_ATPase_cation 2 putative ATP binding site 0 0 1 1 304,305,306,372,394,395,396,436,493,494,495,541,544,547,566,569 5 -319775 cd02080 P-type_ATPase_cation 3 phosphorylation site D 0 1 1 304 6 -319775 cd02080 P-type_ATPase_cation 4 putative cation binding site 0 0 1 1 627,631,632,634,635,660,663,664 4 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 320,321,322,323,324,325,326 0 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 2 putative ATP binding site 0 0 1 1 320,321,322,373,396,397,398,442,505,506,507,564,567,570,589,592 5 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 3 phosphorylation site D 0 1 1 320 6 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 4 putative cation binding site 0 0 1 1 650,654,655,657,658,683,686,687 4 -319777 cd02082 P-type_ATPase_cation 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 308,309,310,311,312,313,314 0 -319777 cd02082 P-type_ATPase_cation 2 putative ATP binding site 0 0 1 1 308,309,310,406,434,435,436,466,527,528,529,579,582,585,604,607 5 -319777 cd02082 P-type_ATPase_cation 3 phosphorylation site D 0 1 1 308 6 -319777 cd02082 P-type_ATPase_cation 4 putative cation binding site 0 0 1 1 661,665,666,668,669,696,699,700 4 -319778 cd02083 P-type_ATPase_SERCA 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 345,346,347,348,349,350,351 0 -319778 cd02083 P-type_ATPase_SERCA 2 ATP binding site 0 1 1 0 345,346,347,435,480,482,485,487,505,506,507,549,551,614,615,616,667,673,692,695 5 -319778 cd02083 P-type_ATPase_SERCA 3 phosphorylation site D 0 1 1 345 6 -319778 cd02083 P-type_ATPase_SERCA 4 Ca binding site 0 1 1 1 757,760,788,789,897 4 -319778 cd02083 P-type_ATPase_SERCA 5 Ca binding site 0 1 1 1 303,785,789 4 -319779 cd02085 P-type_ATPase_SPCA 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 296,297,298,299,300,301,302 0 -319779 cd02085 P-type_ATPase_SPCA 2 putative ATP binding site 0 0 1 1 296,297,298,360,386,387,388,432,477,478,479,526,529,532,551,554 5 -319779 cd02085 P-type_ATPase_SPCA 3 phosphorylation site D 0 1 1 296 6 -319779 cd02085 P-type_ATPase_SPCA 4 putative cation binding site 0 0 1 1 612,616,617,619,620,645,648,649 4 -319780 cd02086 P-type_ATPase_Na_ENA 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 333,334,335,336,337,338,339 0 -319780 cd02086 P-type_ATPase_Na_ENA 2 putative ATP binding site 0 0 1 1 333,334,335,410,434,435,436,479,544,545,546,603,606,609,628,631 5 -319780 cd02086 P-type_ATPase_Na_ENA 3 phosphorylation site D 0 1 1 333 6 -319780 cd02086 P-type_ATPase_Na_ENA 4 putative cation binding site 0 0 1 1 689,693,694,696,697,722,725,726 4 -319781 cd02089 P-type_ATPase_Ca_prok 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 304,305,306,307,308,309,310 0 -319781 cd02089 P-type_ATPase_Ca_prok 2 putative ATP binding site 0 0 1 1 304,305,306,356,378,379,380,423,479,480,481,528,531,534,553,556 5 -319781 cd02089 P-type_ATPase_Ca_prok 3 phosphorylation site D 0 1 1 304 6 -319781 cd02089 P-type_ATPase_Ca_prok 4 putative cation binding site 0 0 1 1 614,618,619,621,622,646,649,650 4 -319782 cd02092 P-type_ATPase_FixI-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 324,325,326,327,328,329,330 0 -319782 cd02092 P-type_ATPase_FixI-like 2 putative ATP binding site 0 0 1 1 324,325,326,382,398,399,400,416,456,457,458,478,481,484,503,506 5 -319782 cd02092 P-type_ATPase_FixI-like 3 phosphorylation site D 0 1 1 324 6 -319782 cd02092 P-type_ATPase_FixI-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 280,281,282 0 -319782 cd02092 P-type_ATPase_FixI-like 5 putative HM ion binding site 0 0 1 1 280,282,567,568,589,593 4 -319783 cd02094 P-type_ATPase_Cu-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 338,339,340,341,342,343,344 0 -319783 cd02094 P-type_ATPase_Cu-like 2 putative ATP binding site 0 0 1 1 338,339,340,403,419,420,421,450,490,491,492,512,515,518,537,540 5 -319783 cd02094 P-type_ATPase_Cu-like 3 phosphorylation site D 0 1 1 338 6 -319783 cd02094 P-type_ATPase_Cu-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 294,295,296 0 -319783 cd02094 P-type_ATPase_Cu-like 5 putative Cu binding site 0 0 1 1 602,630,634 4 -319783 cd02094 P-type_ATPase_Cu-like 6 putative Cu binding site 0 0 1 1 294,296,601 4 -239025 cd02107 YedY_like_Moco 1 Moco binding site 0 1 1 0 3,4,5,6,7,61,96,117,146,151,159,162,164 0 -239025 cd02107 YedY_like_Moco 2 metal coordination site 0 1 1 0 61 4 -239026 cd02108 bact_SO_family_Moco 1 metal coordination site 0 0 1 0 61 4 -239026 cd02108 bact_SO_family_Moco 2 Moco binding site 0 0 1 0 16,18,20,61,106,135,140,148,151,153,154 0 -239027 cd02109 arch_bact_SO_family_Moco 1 Moco binding site 0 0 1 0 10,12,14,59,99,128,133,141,144,146,147 0 -239027 cd02109 arch_bact_SO_family_Moco 2 metal coordination site 0 0 1 0 59 4 -239028 cd02110 SO_family_Moco_dimer 1 Moco binding site 0 1 0 0 1,2,4,6,50,114,143,148,156,159,161,162 0 -239028 cd02110 SO_family_Moco_dimer 2 metal coordination site 0 1 1 0 50 4 -239028 cd02110 SO_family_Moco_dimer 3 dimerization interface 0 1 1 0 204,235,239,241,250,252,284,289,290,291,295,311 2 -239029 cd02111 eukary_SO_Moco 1 Moco binding site 0 1 0 0 29,30,32,34,79,147,178,183,191,194,196,197 0 -239029 cd02111 eukary_SO_Moco 2 metal coordination site 0 1 1 0 79 4 -239029 cd02111 eukary_SO_Moco 3 dimerization interface 0 1 1 0 241,275,279,281,290,292,330,335,336,337,341,357 2 -239030 cd02112 eukary_NR_Moco 1 Moco binding site 0 0 1 0 44,45,47,49,94,163,194,199,207,210,212,213 0 -239030 cd02112 eukary_NR_Moco 2 metal coordination site 0 0 1 0 94 4 -239030 cd02112 eukary_NR_Moco 3 dimerization interface 0 0 1 0 262,299,303,305,314,316,355,360,361,362,366,380 2 -239031 cd02113 bact_SoxC_Moco 1 Moco binding site 0 0 1 0 14,15,17,19,63,122,150,155,163,166,168,169 0 -239031 cd02113 bact_SoxC_Moco 2 metal coordination site 0 0 1 0 63 4 -239031 cd02113 bact_SoxC_Moco 3 dimerization interface 0 0 1 0 206,237,241,243,252,254,285,290,291,292,296,312 2 -239032 cd02114 bact_SorA_Moco 1 Moco binding site 0 0 1 0 46,47,49,51,98,162,191,196,204,207,209,210 0 -239032 cd02114 bact_SorA_Moco 2 metal coordination site 0 0 1 0 98 4 -239032 cd02114 bact_SorA_Moco 3 putative dimerization interface 0 0 1 0 256,287,291,293,302,304,336,341,342,343,347,361 2 -239033 cd02115 AAK 1 nucleotide binding site 0 1 1 1 2,4,5,6,172,173,176,177 5 -239033 cd02115 AAK 2 substrate binding site 0 1 1 1 2,4,5,36,37,38,150,151,152 5 -349761 cd02117 NifH-like 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,36,38,40,181,182,206,207,208,212,213,216 1 -349761 cd02117 NifH-like 2 Fe-S cluster binding site 0 1 1 1 94,129 4 -349761 cd02117 NifH-like 3 dimer interface 0 1 1 1 37,38,88,91,92,93,126,128,129,130,133,156,168,218,219,220 2 -239035 cd02120 PA_subtilisin_like 1 PA/protease or protease-like domain interface 0 0 1 1 89,90,91 2 -239036 cd02121 PA_GCPII_like 1 substrate binding 0 1 1 1 83,133 5 -239036 cd02121 PA_GCPII_like 2 apical/protease domain interface 0 1 1 0 38,129,130,131,133,140,141,142,143,146 2 -239036 cd02121 PA_GCPII_like 3 dimer interface 0 1 1 0 149,150,152,154 2 -239037 cd02122 PA_GRAIL_like 1 PA/protease or protease-like domain interface 0 0 1 1 98,99,100 2 -239038 cd02123 PA_C_RZF_like 1 PA/protease or protease-like domain interface 0 0 1 1 105,106,107 2 -239039 cd02124 PA_PoS1_like 1 PA/protease or protease-like domain interface 0 0 1 1 91,92,93 2 -239040 cd02125 PA_VSR 1 PA/protease or protease-like domain interface 0 0 1 1 80,81,82 2 -239041 cd02126 PA_EDEM3_like 1 PA/protease or protease-like domain interface 0 0 1 1 84,85,86 2 -239042 cd02127 PA_hPAP21_like 1 PA/protease or protease-like domain interface 0 0 1 1 75,76,77 2 -239043 cd02128 PA_TfR 1 PA/protease-like domain interface 0 1 1 0 90,98,99,100,101,103,107,108,109,110,113,115,116,117 2 -239043 cd02128 PA_TfR 2 PA/helical domain interface 0 1 1 0 108,114 2 -239043 cd02128 PA_TfR 3 dimer interface 0 1 1 1 117,119,123,124 2 -239043 cd02128 PA_TfR 4 Ca2+ binding 0 1 1 0 113,116 4 -239044 cd02129 PA_hSPPL_like 1 PA/protease or protease-like domain interface 0 0 1 1 80,81,82 2 -239045 cd02130 PA_ScAPY_like 1 PA/protease or protease-like domain interface 0 0 1 1 80,81,82 2 -239046 cd02131 PA_hNAALADL2_like 1 PA/protease or protease-like domain interface 0 0 1 1 86,87,88 2 -239047 cd02132 PA_GO-like 1 PA/protease or protease-like domain interface 0 0 1 1 96,97,98 2 -239048 cd02133 PA_C5a_like 1 PA/protease domain interface 0 1 1 0 0,1,2,15,59,60,83,84,85,86,88 2 -239048 cd02133 PA_C5a_like 2 putative integrin binding motif 0 0 1 1 54,55,56 0 -239049 cd02134 NusA_KH 1 G-X-X-G motif 0 0 1 0 40,41,42,43 0 -239050 cd02135 Arsenite_oxidase 1 putative FMN binding site 0 0 1 1 7,9,11,36,130,131 5 -239051 cd02136 Nitroreductase 1 putative FMN binding site 0 0 1 1 7,9,11,37,127,128 5 -239052 cd02137 Nitroreductase_1 1 FMN binding site 0 1 1 1 6,8,34,35,36,38,65,83,100,101,102,103,104 5 -239052 cd02137 Nitroreductase_1 2 dimer interface 0 1 0 0 2,3,6,24,31,32,33,38,40,44,45,46,48,49,50,51,52,82,83,86,87,90,91,94,114,115,140,141,142,144,145,146,147 2 -239053 cd02138 Nitroreductase_2 1 putative FMN binding site 0 0 1 1 11,13,15,41,125,126 5 -239054 cd02139 Nitroreductase_3 1 putative FMN binding site 0 0 1 1 7,9,11,37,118,119 5 -239055 cd02140 Nitroreductase_4 1 FMN binding site 0 1 0 0 7,8,9,11,142,143,144,181 5 -239055 cd02140 Nitroreductase_4 2 dimer interface 0 1 0 0 0,4,5,7,21,29,31,33,34,36,40,42,44,45,46,47,48,49,50,53,117,119,120,124,127,128,135,144,157,182,183,184,186,189,190,191 2 -239056 cd02142 mcbC-like_oxidoreductase 1 putative FMN binding site 0 0 0 1 3,5,7,151,152,173 5 -239056 cd02142 mcbC-like_oxidoreductase 2 NADPH bind site 0 0 1 1 7,40 5 -239057 cd02143 NADH_nitroreductase 1 putative FMN binding site 0 0 1 1 4,6,8,34,100,101 5 -239058 cd02144 iodotyrosine_dehalogenase 1 putative FMN binding site 0 0 1 1 7,9,11,37,146,147 5 -239058 cd02144 iodotyrosine_dehalogenase 2 putative dimer interface 0 0 0 1 122,124,125,128,129,132 2 -239059 cd02145 BluB 1 putative FMN binding site 0 0 1 1 6,8,10,36,142,143 5 -239060 cd02146 NfsA_FRP 1 FMN binding site 0 1 1 0 7,9,11,63,65,131,132,134,135,154,168,170 5 -239060 cd02146 NfsA_FRP 2 NADPH bind site 0 1 1 0 11,38,134,135,166,168,201,202,205 5 -239060 cd02146 NfsA_FRP 3 dimer interface 0 1 0 0 0,4,5,7,29,31,32,33,34,38,40,42,44,45,46,48,49,52,78,104,111,114,115,118,122,134,144,169,170,171,176,177,178,194,214,223,224,225,228 2 -239061 cd02148 Nitroreductase_5 1 putative FMN binding site 0 0 1 1 8,10,12,38,138,139 5 -239062 cd02149 NfsB_like_nitroreductase 1 FMN binding site 0 1 1 1 8,9,10,12,68,109,111,112,148,150 5 -239062 cd02149 NfsB_like_nitroreductase 2 dimer interface 0 1 0 0 1,2,29,33,34,35,38,40,42,45,46,47,48,49,50,83,84,87,88,90,91,94,95,98,103,111,147,149,150,151,152,153,155,156 2 -239063 cd02150 NADPH_oxidoreductase_1 1 putative FMN binding site 0 0 1 1 6,8,10,36,113,114 5 -239064 cd02151 NADPH_oxidoreductase_2 1 putative FMN binding site 0 0 1 1 7,9,11,37,112,113 5 -239065 cd02152 OAT 1 active site pocket 0 1 1 0 102,103,139,140,165,168,176,384,388,389 1 -239065 cd02152 OAT 2 cleavage site 0 0 1 1 175,176 0 -239065 cd02152 OAT 3 heterotetramer interface 0 1 1 0 37,38,39,40,41,70,105,106,169,173,210,211,212,213,291,292,293,296,297,299,300,302,304,305,306,307,309,310,313,314,315,316,334,376,377,378 2 -239066 cd02153 tRNA_bindingDomain 1 putative tRNA-binding site 0 0 1 1 16,29,55,59,66,69 3 -173912 cd02156 nt_trans 1 active site 0 1 0 1 11,12,13,14,101,102,103,104 1 -173912 cd02156 nt_trans 2 nucleotide binding site 0 1 1 0 11,14,102 5 -173912 cd02156 nt_trans 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173912 cd02156 nt_trans 4 KMSKS motif 0 0 0 1 101,102,103,104 0 -173914 cd02163 PPAT 1 active site 0 1 0 0 3,4,5,6,7,13,14,17,33,38,68,69,70,84,85,87,94,95,98,102,116,120,123 1 -173914 cd02163 PPAT 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -173915 cd02164 PPAT_CoAS 1 active site 0 0 0 1 5,6,34,94 1 -173915 cd02164 PPAT_CoAS 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -185680 cd02165 NMNAT 1 active site 0 1 1 1 3,4,5,6,7,11,13,14,17,38,78,79,80,98,100,101,103,104,111,112,127,128,158 1 -185680 cd02165 NMNAT 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -173917 cd02166 NMNAT_Archaea 1 ATP binding site 0 1 1 0 122 5 -173917 cd02166 NMNAT_Archaea 2 active site 0 1 1 0 3,4,5,6,7,8,11,13,14,17,33,34,75,76,79,82,98,99,100,102,103,106,118,119,120,125 1 -173917 cd02166 NMNAT_Archaea 3 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -173918 cd02167 NMNAT_NadR 1 active site 0 1 1 0 4,5,6,7,11,14,17,33,38,71,74,75,76,77,79,80,81,84,105,106,107,134,136 1 -173918 cd02167 NMNAT_NadR 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -173919 cd02168 NMNAT_Nudix 1 active site 0 1 1 0 3,4,5,6,7,11,14,33,34,75,79,80,83,105,106,108,113,114,132,133,134,135,138 1 -173919 cd02168 NMNAT_Nudix 2 (T/H)XGH motif 0 0 1 1 11,12,13,14 0 -173920 cd02169 Citrate_lyase_ligase 1 putative active site 0 0 1 1 118,119,120,121,122,126,129,148,149,227,228,230,267,268,269,270,273 1 -173920 cd02169 Citrate_lyase_ligase 2 (T/H)XGH motif 0 0 1 1 126,127,128,129 0 -173921 cd02170 cytidylyltransferase 1 active site 0 1 1 0 6,7,8,9,13,15,16,19,35,39,43,70,76,89,90,92,103,119,120,123 1 -173922 cd02171 G3P_Cytidylyltransferase 1 active site 0 1 1 0 6,7,8,9,13,15,16,19,35,39,43,45,70,76,90,91,93,94,98,112,113,116 1 -173923 cd02172 RfaE_N 1 putative active site 0 0 1 1 8,9,10,11,12,16,19,38,39,92,93,95,129,130,131,132,135 1 -173923 cd02172 RfaE_N 2 (T/H)XGH motif 0 0 1 1 16,17,18,19 0 -173924 cd02173 ECT 1 putative active site 0 0 1 1 6,7,8,9,10,14,17,36,37,93,94,96,127,128,129,130,133 1 -173924 cd02173 ECT 2 (T/H)XGH motif 0 0 1 1 14,15,16,17 0 -173925 cd02174 CCT 1 active site 0 1 1 0 7,8,9,10,14,16,17,20,38,47,75,76,93,94,107,120,121,122,125 1 -173925 cd02174 CCT 2 (T/H)XGH motif 0 0 1 1 14,15,16,17 0 -185684 cd02175 GH16_lichenase 1 active site 0 1 1 0 18,20,24,58,60,83,85,87,89,98,100,102,104,178,180,182 1 -185684 cd02175 GH16_lichenase 2 active site 0 0 1 0 55,83,85,87,100,102,104,114,116,128,180,182 1 -185684 cd02175 GH16_lichenase 3 catalytic residues 0 0 0 0 100,102,104 1 -185685 cd02176 GH16_XET 1 active site 0 1 1 0 12,13,34,35,65,67,69,80,82,84,97,99,109,111,167,169,173,174 1 -185685 cd02176 GH16_XET 2 catalytic residues 0 0 0 0 80,82,84 1 -185686 cd02177 GH16_kappa_carrageenase 1 active site 0 0 1 0 79,108,110,112,131,133,136,152,154,180,229,231 1 -185686 cd02177 GH16_kappa_carrageenase 2 catalytic residues 0 0 0 0 131,133,136 1 -185687 cd02178 GH16_beta_agarase 1 active site 0 1 1 0 44,46,116,124,127,129,132,153,155,227,229 1 -185687 cd02178 GH16_beta_agarase 2 calcium binding site 0 1 1 0 3,29,251 4 -185687 cd02178 GH16_beta_agarase 3 catalytic residues 0 0 0 0 127,129,132 1 -185689 cd02180 GH16_fungal_KRE6_glucanase 1 active site 0 0 1 1 64,97,99,101,130,132,135,178,180,193,264,266 1 -185689 cd02180 GH16_fungal_KRE6_glucanase 2 catalytic residues 0 0 0 1 130,132,135 1 -185690 cd02181 GH16_fungal_Lam16A_glucanase 1 active site 0 1 1 0 24,25,26,70,96,100,106,111,113,116,129,157,158,248,249 1 -185690 cd02181 GH16_fungal_Lam16A_glucanase 2 catalytic residues 0 0 0 0 111,113,116 1 -185691 cd02182 GH16_Strep_laminarinase_like 1 active site 0 0 1 0 68,71,73,107,109,111,129,131,134,145,147,224,226,228 1 -185691 cd02182 GH16_Strep_laminarinase_like 2 catalytic residues 0 0 0 0 129,131,134 1 -185692 cd02183 GH16_fungal_CRH1_transglycosylase 1 active site 0 0 1 1 34,62,64,66,74,76,78,88,90,104,161,163 1 -185692 cd02183 GH16_fungal_CRH1_transglycosylase 2 catalytic residues 0 0 0 1 74,76,78 1 -100026 cd02185 AroH 1 active site 0 1 1 1 4,54,57,60,71,72,75,76,82,87,88,105,112 1 -100026 cd02185 AroH 2 homotrimer interaction site 0 1 1 0 0,1,2,4,39,40,41,50,51,54,55,60,69,70,72,74,75,76,77,78,79,91 2 -276955 cd02186 alpha_tubulin 1 nucleotide binding site 0 1 1 1 9,10,13,69,99,141,142,143,144,169,204,222,226 5 -276955 cd02186 alpha_tubulin 2 alpha/beta domain interface 0 1 1 1 70,71,98,99,100,103,179,181,222 2 -276955 cd02186 alpha_tubulin 3 beta/alpha domain interface 0 1 1 1 0,197,251,252,254,255,256,258,259,324,350 2 -276956 cd02187 beta_tubulin 1 nucleotide binding site 0 1 1 1 8,9,10,13,136,138,139,140,141,142,179,202,220,224 5 -276956 cd02187 beta_tubulin 2 Taxol binding site 0 1 1 0 20,21,24,25,213,222,225,226,232,268,270,271,272,356,357,358 5 -276956 cd02187 beta_tubulin 3 alpha/beta domain interface 0 1 1 1 68,69,96,97,98,101,177,179,220 2 -276956 cd02187 beta_tubulin 4 beta/alpha domain interface 0 1 1 1 0,129,243,244,245,249,254,256,257,258,320,321,322,325,345,346,347,348,349 2 -276957 cd02188 gamma_tubulin 1 nucleotide binding site 0 1 1 0 8,9,10,13,99,137,139,140,141,142,143,168,170,204,222,225,226 5 -276957 cd02188 gamma_tubulin 2 oligomer interface 0 1 1 0 0,44,130,249,251,255,258,259,261,262,324,325,327,328,331,332,335,347,348,351,352,424,427,428 2 -276958 cd02189 delta_zeta_tubulin-like 1 putative nucleotide binding site 0 0 1 1 7,8,9,12,13,58,59,60,63,90,91,92,131,132,133,134,135,136,137,162,164,165,172,173,196,200,215,218,219,222 5 -276959 cd02190 epsilon_tubulin 1 putative nucleotide binding site 0 0 1 1 8,9,10,13,14,72,73,74,77,102,103,104,143,144,145,146,148,149,174,176,177,185,208,248,251,252,255 5 -276960 cd02191 FtsZ_CetZ-like 1 nucleotide binding site 0 1 1 0 8,9,10,13,100,101,103,104,105,106,132,136,140,177,180,181,184 5 -276960 cd02191 FtsZ_CetZ-like 2 SulA interaction site 0 1 1 1 201,202,204,268,271 2 -100028 cd02192 PurM-like3 1 putative ATP binding site 0 0 1 1 77,120,121,122 5 -100028 cd02192 PurM-like3 2 dimerization interface 0 0 1 1 46,47,48,49,51,53,77,87,90,93,122,130,131,135,218 2 -100029 cd02193 PurL 1 ATP binding site 0 1 1 1 27,31,81,82,83 5 -100029 cd02193 PurL 2 dimerization interface 0 1 1 0 1,2,3,4,6,31,43,46,49,83,105,106,110 2 -100030 cd02194 ThiL 1 ATP binding site 0 1 1 0 5,23,24,25,69,82,99,115,116,117,142,208,210,211 5 -100030 cd02194 ThiL 2 dimerization interface 0 1 0 0 8,26,40,41,42,44,99,114,117,118,119,120,127,129 2 -100031 cd02195 SelD 1 putative ATP binding site 0 0 1 1 78,82,131,132,133 5 -100031 cd02195 SelD 2 dimerization interface 0 0 1 1 53,54,55,56,58,60,82,92,95,98,133,140,141,145,232 2 -100032 cd02196 PurM 1 putative ATP binding site 0 0 1 1 55,100,101,102 5 -100032 cd02196 PurM 2 dimerization interface 0 1 1 0 5,6,7,8,9,20,21,22,23,25,27,33,55,59,65,68,71,102,106,108,115,116,120,221 2 -100033 cd02197 HypE 1 ATP binding site 0 1 1 0 43,68,209,210 5 -100033 cd02197 HypE 2 dimerization interface 0 1 0 0 4,5,6,36,37,38,39,40,41,43,44,68,80,116,118,121,123,129,131,206,207,210 2 -100005 cd02198 YjgH_like 1 homotrimer interaction site 0 0 1 1 2,3,6,8,11,13,15,16,54,56,57,59,61,73,76,80,84,85,86,87,88,89,90,91,92,103,105,107 2 -100005 cd02198 YjgH_like 2 putative active site 0 0 1 1 2,69,73,87,103 1 -100006 cd02199 YjgF_YER057c_UK114_like_1 1 homotrimer interaction site 0 1 0 0 15,16,19,21,24,26,28,29,80,82,83,85,87,102,105,109,117,118,119,120,121,122,123,124,125,135,137,139 2 -100006 cd02199 YjgF_YER057c_UK114_like_1 2 putative active site 0 0 1 1 15,98,102,120,135 1 -276961 cd02201 FtsZ_type1 1 nucleotide binding site 0 1 1 0 8,9,10,13,92,93,95,96,97,98,123,127,131,154,171,174,175,178 5 -276961 cd02201 FtsZ_type1 2 SulA interaction site 0 1 1 1 195,196,198,258,259,260,263 2 -276962 cd02202 CetZ_tubulin-like 1 nucleotide binding site 0 1 1 0 8,9,10,13,67,68,69,108,109,110,111,135,137,141,168,182,185,186 5 -100034 cd02203 PurL_repeat1 1 ATP binding site 0 1 1 1 52,56,113,114,115 5 -100034 cd02203 PurL_repeat1 2 dimerization interface 0 1 1 0 26,27,28,29,31,56,66,69,72,115,126,127,131 2 -100035 cd02204 PurL_repeat2 1 ATP binding site 0 1 1 1 39,43,93,94,95 5 -100035 cd02204 PurL_repeat2 2 dimerization interface 0 1 1 0 13,14,15,16,18,43,55,58,61,95,109,110,114 2 -341358 cd02205 CBS_pair_SF 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341358 cd02205 CBS_pair_SF 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341358 cd02205 CBS_pair_SF 3 ligand binding site I 0 0 0 0 26,38,43,44,47,69,91,92,93,108 5 -341358 cd02205 CBS_pair_SF 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,91,104,106,108,109,112 5 -239068 cd02248 Peptidase_C1A 1 active site 0 1 1 1 17,23,159,179 1 -239068 cd02248 Peptidase_C1A 2 S2 subsite 0 0 1 1 66,67,132,157,160,205 0 -239069 cd02249 ZZ 1 Zinc-binding sites 0 1 1 1 2,5,16,19,25,28,36,40 4 -239069 cd02249 ZZ 2 zinc cluster 1 0 1 1 1 2,5,25,28 4 -239069 cd02249 ZZ 3 zinc cluster 2 0 1 1 1 16,19,36,40 4 -239069 cd02249 ZZ 4 putative hydrophobic binding surface 0 0 1 0 14,29,42,45 0 -239069 cd02249 ZZ 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239070 cd02252 nylC_like 1 putative active site pocket 0 0 1 1 101,102,103,174,176,181,220,221 1 -239070 cd02252 nylC_like 2 cleavage site 0 0 1 1 180,181 0 -239071 cd02253 DmpA 1 active site pocket 0 1 1 1 124,196,230,268,269 1 -239071 cd02253 DmpA 2 cleavage site 0 0 1 1 229,230 0 -239071 cd02253 DmpA 3 homodimer interface 0 1 1 1 55,75,76,244,248,251,292,293,294,295,296,298 2 -239071 cd02253 DmpA 4 homotetramer interface 0 1 1 1 60,61,62,63,65,66,67,69,71,72,75,89,92,100,124,251,252,263,264,265,266,267,297,301,304 2 -187736 cd02255 Peptidase_C12 1 catalytic site 0 1 1 0 83,89,163,178 1 -239072 cd02257 Peptidase_C19 1 Active Site 0 0 1 0 3,8,209,227 1 -199210 cd02258 Peptidase_C25_N 1 active site 0 1 1 1 248,249,250,251,282,284 1 -239073 cd02259 Peptidase_C39_like 1 putative active site 0 0 1 1 0,6,79,95 1 -187535 cd02266 SDR 1 active site 0 0 1 1 61,89,102,106 1 -187535 cd02266 SDR 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,37,38,39,87,88,89,102,106,132,133,134,135 5 -100064 cd02325 R3H 1 RxxxH motif 0 0 1 1 29,33 0 -239074 cd02334 ZZ_dystrophin 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,39,43 4 -239074 cd02334 ZZ_dystrophin 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239074 cd02334 ZZ_dystrophin 3 zinc cluster 2 0 0 1 1 17,20,39,43 4 -239074 cd02334 ZZ_dystrophin 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239074 cd02334 ZZ_dystrophin 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239075 cd02335 ZZ_ADA2 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,39,43 4 -239075 cd02335 ZZ_ADA2 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239075 cd02335 ZZ_ADA2 3 zinc cluster 2 0 0 1 1 17,20,39,43 4 -239075 cd02335 ZZ_ADA2 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239075 cd02335 ZZ_ADA2 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239076 cd02336 ZZ_RSC8 1 zinc binding site 0 0 1 1 2,5,25,28 4 -239076 cd02336 ZZ_RSC8 2 putative hydrophobic binding surface 0 0 1 0 14,29,41,44 0 -239076 cd02336 ZZ_RSC8 3 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239077 cd02337 ZZ_CBP 1 Zinc-binding sites 0 1 1 1 2,5,15,18,24,27,33,35 4 -239077 cd02337 ZZ_CBP 2 zinc cluster 1 0 1 1 1 2,5,24,27 4 -239077 cd02337 ZZ_CBP 3 zinc cluster 2 0 1 1 1 15,18,33,35 4 -239077 cd02337 ZZ_CBP 4 putative hydrophobic binding surface 0 0 1 0 13,28,37,40 0 -239077 cd02337 ZZ_CBP 5 putative charged binding surface 0 0 1 0 3,12,14,20,22 0 -239078 cd02338 ZZ_PCMF_like 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,39,43 4 -239078 cd02338 ZZ_PCMF_like 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239078 cd02338 ZZ_PCMF_like 3 zinc cluster 2 0 0 1 1 17,20,39,43 4 -239078 cd02338 ZZ_PCMF_like 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239078 cd02338 ZZ_PCMF_like 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239079 cd02339 ZZ_Mind_bomb 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,35,39 4 -239079 cd02339 ZZ_Mind_bomb 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239079 cd02339 ZZ_Mind_bomb 3 zinc cluster 2 0 0 1 1 17,20,35,39 4 -239079 cd02339 ZZ_Mind_bomb 4 putative hydrophobic binding surface 0 0 1 0 15,30,41,44 0 -239079 cd02339 ZZ_Mind_bomb 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239080 cd02340 ZZ_NBR1_like 1 Zinc-binding sites 0 0 1 1 2,5,16,19,25,28,34,37 4 -239080 cd02340 ZZ_NBR1_like 2 zinc cluster 1 0 0 1 1 2,5,25,28 4 -239080 cd02340 ZZ_NBR1_like 3 zinc cluster 2 0 0 1 1 16,19,34,37 4 -239080 cd02340 ZZ_NBR1_like 4 putative hydrophobic binding surface 0 0 1 0 14,39,42 0 -239080 cd02340 ZZ_NBR1_like 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239081 cd02341 ZZ_ZZZ3 1 Zinc-binding sites 0 0 1 1 2,5,17,20,28,31,38,42 4 -239081 cd02341 ZZ_ZZZ3 2 zinc cluster 1 0 0 1 1 2,5,28,31 4 -239081 cd02341 ZZ_ZZZ3 3 zinc cluster 2 0 0 1 1 17,20,38,42 4 -239081 cd02341 ZZ_ZZZ3 4 putative hydrophobic binding surface 0 0 1 0 15,32,44,47 0 -239081 cd02341 ZZ_ZZZ3 5 putative charged binding surface 0 0 1 0 3,14,16,24,26 0 -239082 cd02342 ZZ_UBA_plant 1 zinc binding site 0 0 1 1 2,5,26,29 4 -239082 cd02342 ZZ_UBA_plant 2 putative hydrophobic binding surface 0 0 1 0 15,30,39,42 0 -239082 cd02342 ZZ_UBA_plant 3 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239083 cd02343 ZZ_EF 1 Zinc-binding sites 0 0 1 1 2,5,16,19,25,28,38,42 4 -239083 cd02343 ZZ_EF 2 zinc cluster 1 0 0 1 1 2,5,25,28 4 -239083 cd02343 ZZ_EF 3 zinc cluster 2 0 0 1 1 16,19,38,42 4 -239083 cd02343 ZZ_EF 4 putative hydrophobic binding surface 0 0 1 0 14,29,44,47 0 -239083 cd02343 ZZ_EF 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239084 cd02344 ZZ_HERC2 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,35,39 4 -239084 cd02344 ZZ_HERC2 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239084 cd02344 ZZ_HERC2 3 zinc cluster 2 0 0 1 1 17,20,35,39 4 -239084 cd02344 ZZ_HERC2 4 putative hydrophobic binding surface 0 0 1 0 15,30,41,44 0 -239084 cd02344 ZZ_HERC2 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239085 cd02345 ZZ_dah 1 Zinc-binding sites 0 0 1 1 2,5,17,20,26,29,39,43 4 -239085 cd02345 ZZ_dah 2 zinc cluster 1 0 0 1 1 2,5,26,29 4 -239085 cd02345 ZZ_dah 3 zinc cluster 2 0 0 1 1 17,20,39,43 4 -239085 cd02345 ZZ_dah 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239085 cd02345 ZZ_dah 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239086 cd02393 PNPase_KH 1 G-X-X-G motif 0 0 1 0 17,18,19,20 0 -239086 cd02393 PNPase_KH 2 putative nucleic acid binding region 0 0 0 1 10,12,13,14,16,17,18,19,20,23,24,27,28,33,34,35,36 3 -239087 cd02394 vigilin_like_KH 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -239087 cd02394 vigilin_like_KH 2 putative nucleic acid binding region 0 0 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,31,32,33,34 3 -239088 cd02395 SF1_like-KH 1 G-X-X-G motif 0 0 1 0 21,22,23,24 0 -239088 cd02395 SF1_like-KH 2 RNA binding site 0 1 1 0 13,14,16,17,18,20,21,22,23,24,27,38,39,40,41,42,45,46,47,105,108,109,111,112,116,117,118,119 3 -239089 cd02396 PCBP_like_KH 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -239089 cd02396 PCBP_like_KH 2 nucleic acid binding region 0 0 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,29,30,31,32 3 -239090 cd02406 CRS2 1 catalytic residue 0 0 1 0 19 1 -239091 cd02407 PTH2_family 1 dimer interface 0 1 1 0 14,21,22,23,26,29,30,33,44,50,114 2 -239091 cd02407 PTH2_family 2 putative active site 0 1 1 0 16,20,23,50,92 1 -239092 cd02409 KH-II 1 G-X-X-G motif 0 0 1 0 40,41,42,43 0 -239093 cd02410 archeal_CPSF_KH 1 G-X-X-G motif 0 0 1 0 91,92,93,94 0 -239094 cd02411 archeal_30S_S3_KH 1 G-X-X-G motif 0 0 1 0 53,54,55,56 0 -239095 cd02412 30S_S3_KH 1 G-X-X-G motif 0 0 1 0 76,77,78,79 0 -239096 cd02413 40S_S3_KH 1 G-X-X-G motif 0 0 1 0 45,46,47,48 0 -239097 cd02414 jag_KH 1 G-X-X-G motif 0 0 1 0 39,40,41,42 0 -239099 cd02418 Peptidase_C39B 1 putative active site 0 0 1 1 5,11,90,106 1 -239100 cd02419 Peptidase_C39C 1 putative active site 0 0 1 1 5,11,84,100 1 -239101 cd02420 Peptidase_C39D 1 putative active site 0 0 1 1 5,11,84,100 1 -239103 cd02423 Peptidase_C39G 1 putative active site 0 0 1 1 5,11,88,104 1 -239104 cd02424 Peptidase_C39E 1 putative active site 0 0 1 1 5,11,88,104 1 -239105 cd02425 Peptidase_C39F 1 putative active site 0 0 1 1 5,11,85,101 1 -239106 cd02426 Pol_gamma_b_Cterm 1 dimerization interface 0 1 1 0 46,49,50,53,54,56,60,61,63,64,65,66 2 -239106 cd02426 Pol_gamma_b_Cterm 2 putative DNA-binding site 0 0 1 0 9,10,11 3 -239107 cd02429 PTH2_like 1 putative active site 0 0 0 0 20,24,27,56,93 1 -239107 cd02429 PTH2_like 2 dimer interface 0 0 1 0 18,25,26,27,30,33,34,37,50,56,115 2 -239107 cd02429 PTH2_like 3 putative active site 0 0 1 0 20,24,27,56,93 1 -239108 cd02430 PTH2 1 dimer interface 0 1 1 0 14,21,22,23,26,29,30,33,44,50,114 2 -239108 cd02430 PTH2 2 putative active site 0 1 1 0 16,20,23,50,92 1 -143332 cd02439 DMB-PRT_CobT 1 active site pocket 0 1 1 1 0,2,3,47,53,57,144,145,146,147,148,149,150,234,235,236,261,285,286,287,310 1 -143332 cd02439 DMB-PRT_CobT 2 putative cataytic base 0 0 1 0 287 1 -143332 cd02439 DMB-PRT_CobT 3 putative dimer interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,48,53,56,57,65,66,67,70,71,73,262,276,278,279,280,281,282,283,285,293,296,300,303,304,308,309,314 2 -100107 cd02440 AdoMet_MTases 1 S-adenosylmethionine binding site 0 1 1 0 4,5,6,7,8,9,10,27,28,53,54,55,72 5 -133000 cd02503 MobA 1 GTP binding site 0 1 1 0 5,6,7,9,17,45,63,69,70,73,90,92 0 -133002 cd02508 ADP_Glucose_PP 1 ligand binding site 0 1 1 0 3,5,6,92,94,118,119,172,174,175 0 -133002 cd02508 ADP_Glucose_PP 2 oligomer interface 0 1 0 0 56,59,78,81,84,101,103,107,108 0 -133003 cd02509 GDP-M1P_Guanylyltransferase 1 Substrate binding site 0 0 1 1 5,7,111 0 -133004 cd02510 pp-GalNAc-T 1 Mn binding site 0 1 1 0 90,92,223 0 -133004 cd02510 pp-GalNAc-T 2 ligand binding site 0 1 1 0 4,5,6,8,37,67,70,74,90,91,92,172,173,195,196,198,223,226,232 0 -133005 cd02511 Beta4Glucosyltransferase 1 putative metal binding site 0 0 1 1 78,80 0 -133006 cd02513 CMP-NeuAc_Synthase 1 ligand binding site 0 1 1 0 6,7,8,12,18,68,72,79,104,106,173,178,210 0 -133006 cd02513 CMP-NeuAc_Synthase 2 tetramer interface 0 1 1 1 21,23,24,131,135,136,170,171,172,173,178,196,198,210,213,214,217,220,221 0 -133007 cd02514 GT13_GLCNAC-TI 1 substrate binding site 0 1 1 0 6,7,8,10,38,39,79,80,83,84,104,105,106,161,182,183,212,214 0 -133008 cd02515 Glyco_transf_6 1 substrate binding site 0 1 1 0 40,41,42,45,103,107,130,131,132,264,266,270 0 -133008 cd02515 Glyco_transf_6 2 active site 0 1 1 0 40,41,42,45,130,131,132,152,153,154,155,164,183,219,222 0 -133009 cd02516 CDP-ME_synthetase 1 substrate binding site 0 1 0 0 5,7,8,9,10,11,12,19,76,77,78,79,82,102,103,104,207 0 -133009 cd02516 CDP-ME_synthetase 2 dimer interface 0 1 1 0 105,124,132,134,152,153,154,155,156,157,183,184,186,187,190,195,196,197,198,202,203 0 -133010 cd02517 CMP-KDO-Synthetase 1 Ligand binding site 0 1 1 0 6,7,8,47,74,96,98 0 -133010 cd02517 CMP-KDO-Synthetase 2 oligomer interface 0 1 0 0 121,138,144,145,146,152,153,155,156,157,158,159,160,161,170,195,196,199,200,201,208,209,210,211 0 -133011 cd02518 GT2_SpsF 1 ligand binding site 0 0 1 1 4,6,96 0 -133012 cd02520 Glucosylceramide_synthase 1 ligand binding site 0 0 1 1 7,9,95 0 -133013 cd02522 GT_2_like_a 1 Probable Catalytic site 0 0 1 1 35,80,81 0 -133014 cd02523 PC_cytidylyltransferase 1 active site 0 1 1 1 3,4,5,6,79,80,83,100,101,130,191,193,217,219 0 -133014 cd02523 PC_cytidylyltransferase 2 metal binding site 0 1 1 0 101,217,219 0 -133015 cd02524 G1P_cytidylyltransferase 1 substrate binding site 0 1 1 0 3,4,5,6,20,21,101,106,124,125,126,184,206,232 0 -133016 cd02525 Succinoglycan_BP_ExoA 1 Ligand binding site 0 0 1 1 6,8,90 0 -133017 cd02526 GT2_RfbF_like 1 Ligand binding site 0 0 1 1 3,5,84 0 -133018 cd02537 GT8_Glycogenin 1 substrate binding site 0 1 1 0 76,77,80,94,96,97,98,120,128,129,130,158,159,183,184,203,205,206,209 0 -133018 cd02537 GT8_Glycogenin 2 dimer interface 0 1 1 0 119,120,159,174,176,177,181,185 0 -133018 cd02537 GT8_Glycogenin 3 Manganese binding site 0 1 1 0 96,98,203 0 -133019 cd02538 G1P_TT_short 1 substrate binding site 0 1 1 0 5,7,8,79,82,83,84,85,107,143,158,159,169,197 0 -133019 cd02538 G1P_TT_short 2 tetramer interface 0 1 1 0 11,14,15,16,19,20,24,25,26,28,29,30,31,34,59,111,112,134,135,136,137,141,142,220,221,222,226,227,230,233,234,235,238,239 0 -133020 cd02540 GT2_GlmU_N_bac 1 Substrate binding site 0 1 1 0 3,4,5,46,74,77,96,98 0 -133020 cd02540 GT2_GlmU_N_bac 2 Mg++ binding site 0 1 1 0 98,223 0 -133021 cd02541 UGPase_prokaryotic 1 active site 0 1 1 0 5,6,7,8,22,23,99,102,103,104,105,125,127,128,165,166,185,186,198,226 0 -133021 cd02541 UGPase_prokaryotic 2 tetramer interface 0 1 1 1 9,12,13,14,15,16,18,19,20,24,25,26,28,29,30,34,58,60,61,62,64,68,69,97,98,100,102,164,222,246,252,253,254,256,257,258,260,261,262,265,266 0 -239109 cd02549 Peptidase_C39A 1 putative active site 0 0 1 1 6,94,111 1 -211325 cd02550 PseudoU_synth_Rsu_Rlu_like 1 active site 0 1 1 1 38,39,40,41,135 1 -211326 cd02552 PseudoU_synth_TruD_like 1 active site 0 1 1 1 65,66,67,68 1 -211326 cd02552 PseudoU_synth_TruD_like 2 Permutation of conserved domain. 0 0 1 1 9,10,11,12,13,14,15 0 -211327 cd02553 PseudoU_synth_RsuA 1 uracil binding 0 1 1 1 72,123,124,125,126 5 -211327 cd02553 PseudoU_synth_RsuA 2 active site 0 1 1 1 39,40,41,42,126 1 -211328 cd02554 PseudoU_synth_RluF 1 probable active site 0 0 1 1 36,37,38,39,122 1 -211329 cd02555 PSSA_1 1 active site 0 0 1 1 50,51,52,53,136 1 -211330 cd02556 PseudoU_synth_RluB 1 probable active site 0 0 1 1 39,40,41,42,129 1 -211331 cd02557 PseudoU_synth_ScRIB2 1 probable active site 0 0 1 1 63,64,65,66,168 1 -211332 cd02558 PSRA_1 1 probable active site 0 0 1 1 86,87,88,89,188 1 -211333 cd02563 PseudoU_synth_TruC 1 probable active site 0 0 1 1 49,50,51,52,163 1 -211334 cd02566 PseudoU_synth_RluE 1 probable active site 0 0 1 1 36,37,38,39,141 1 -211335 cd02568 PseudoU_synth_PUS1_PUS2 1 probable active site 0 0 1 1 53,54,55,56,198 1 -211336 cd02569 PseudoU_synth_ScPus3 1 probable active site 0 0 1 1 48,49,50,51,206 1 -211337 cd02570 PseudoU_synth_EcTruA 1 dimerization interface 3.5A 0 1 1 1 3,74,77,78,79,80,81,82,83,84 2 -211337 cd02570 PseudoU_synth_EcTruA 2 active site 0 1 1 1 43,44,45,46,191 1 -211338 cd02572 PseudoU_synth_hDyskerin 1 probable active site 0 0 1 1 34,35,36,37,138 1 -211339 cd02573 PseudoU_synth_EcTruB 1 active site 0 1 1 1 32,33,34,35,171 1 -211339 cd02573 PseudoU_synth_EcTruB 2 RNA binding site 0 1 1 1 11,13,16,28,29,30,32,33,34,35,36,50,53,54,57,61,63,114,115,116,117,118,139,166,167,168,169,170,171,192 3 -211340 cd02575 PseudoU_synth_EcTruD 1 Permutation of conserved domain. 0 0 1 1 9,10,11,12,13,14,15 0 -211340 cd02575 PseudoU_synth_EcTruD 2 active site 0 1 1 1 59,60,61,62 1 -211341 cd02576 PseudoU_synth_ScPUS7 1 probable active site 0 0 1 1 63,64,65,66,363 1 -211342 cd02577 PSTD1 1 active site 0 0 1 1 59,60,61,62,311 1 -259846 cd02582 RNAP_archeal_A' 1 active site region 0 1 1 1 279,302,307,418,419,452,454,456,809,810,814 1 -259846 cd02582 RNAP_archeal_A' 2 A', A" and B subunits interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,15,18,19,20,58,59,60,63,64,66,67,68,69,80,82,83,86,193,194,195,199,206,210,212,215,216,218,219,273,274,295,296,298,299,300,301,302,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,324,325,326,327,340,343,344,374,382,404,414,416,418,420,421,422,423,426,437,438,443,452,453,454,455,457,459,461,462,463,464,465,467,468,471,472,475,476,481,485,486,487,495,496,497,498,500,516,519,632,635,636,637,638,639,640,641,642,643,644,645,684,720,724,729,730,735,738,739,749,755,756,757,758,759,760,761,762,763,764,765,766,782,783,784,785,786,787,788,791,792,794,795,796,798,799,800,802,803,808,811,812,815,816,817,818,819,820,821,822,823,824,825,826 2 -259846 cd02582 RNAP_archeal_A' 3 Zn-binding CCCH 1 1 1 55,58,65,68 4 -259846 cd02582 RNAP_archeal_A' 4 catalytic site DDD 1 1 1 452,454,456 1 -259847 cd02583 RNAP_III_RPC1_N 1 putative active site region 0 0 1 1 275,280,287,293 1 -259847 cd02583 RNAP_III_RPC1_N 2 Zn-binding 0 0 1 1 45,48,55,58 4 -259847 cd02583 RNAP_III_RPC1_N 3 catalytic site DDD 0 1 1 426,428,430 1 -132720 cd02584 RNAP_II_Rpb1_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 28,31,227,231,373,383,384,385,391,392,394,396,401 2 -132720 cd02584 RNAP_II_Rpb1_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 281,287,288,290,300,301,302,303,304,305,306,308,328,339,340,342 2 -132720 cd02584 RNAP_II_Rpb1_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 19,20,24,27,401,404,405,406,407,409 2 -132720 cd02584 RNAP_II_Rpb1_C 4 DNA binding site 0 1 1 0 73,349,366,367,370 3 -132720 cd02584 RNAP_II_Rpb1_C 5 cleft 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,237,244,245,246,247,248,249,250,251,252,253,254,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358 0 -132720 cd02584 RNAP_II_Rpb1_C 6 clamp 0 0 1 1 358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399 0 -319784 cd02585 HAD_PMM 1 active site 0 1 1 1 4,5,6,7,8,13,37,38,39,43,116,121,127,134,169,170,171,172,174,182,201,202,209,210 1 -319784 cd02585 HAD_PMM 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319784 cd02585 HAD_PMM 3 HAD signature motif II [ST] 0 1 1 37 0 -319784 cd02585 HAD_PMM 4 HAD signature motif III [KR] 0 1 1 182 0 -319784 cd02585 HAD_PMM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 201,202,210 0 -319785 cd02586 HAD_PHN 1 active site 0 1 1 1 6,7,8,9,10,44,47,119,120,121,122,154,179,180,183,184 1 -319785 cd02586 HAD_PHN 2 homodimer interface 0 1 1 0 156,157,158,161,162,164,165,166,168,169,170,171,172,190 2 -319785 cd02586 HAD_PHN 3 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319785 cd02586 HAD_PHN 4 HAD signature motif II [ST] 0 1 1 120 0 -319785 cd02586 HAD_PHN 5 HAD signature motif III [KR] 0 1 1 154 0 -319785 cd02586 HAD_PHN 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 179,180,184 0 -319786 cd02587 HAD_5-3dNT 1 active site 0 1 1 1 5,6,7,8,9,13,14,39,40,41,42,58,64,91,92,93,94,104,126,136,137,140,141 1 -319786 cd02587 HAD_5-3dNT 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319786 cd02587 HAD_5-3dNT 3 HAD signature motif II [ST] 0 1 1 91 0 -319786 cd02587 HAD_5-3dNT 4 HAD signature motif III [KR] 0 1 1 126 0 -319786 cd02587 HAD_5-3dNT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 136,137,141 0 -319787 cd02588 HAD_L2-DEX 1 active site 0 1 1 1 5,6,7,8,9,35,55,112,113,114,146,170,171,172,174,175 1 -319787 cd02588 HAD_L2-DEX 2 homodimer interface 0 1 1 0 34,37,38,41,42,44,45,61,65,68,147,148,149,174,177,178,181 2 -319787 cd02588 HAD_L2-DEX 3 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319787 cd02588 HAD_L2-DEX 4 HAD signature motif II [ST] 0 1 1 113 0 -319787 cd02588 HAD_L2-DEX 5 HAD signature motif III [KR] 0 1 1 146 0 -319787 cd02588 HAD_L2-DEX 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 170,171,175 0 -319788 cd02598 HAD_BPGM 1 active site 0 1 1 1 4,5,6,7,8,16,20,71,72,73,74,75,76,102,126,127,130,131 1 -319788 cd02598 HAD_BPGM 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319788 cd02598 HAD_BPGM 3 HAD signature motif II [ST] 0 1 1 71 0 -319788 cd02598 HAD_BPGM 4 HAD signature motif III [KR] 0 1 1 102 0 -319788 cd02598 HAD_BPGM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 126,127,131 0 -319789 cd02601 HAD_Eya 1 active site 0 1 1 1 7,8,9,10,11,101,102,209,233,234,238,239 1 -319789 cd02601 HAD_Eya 2 HAD signature motif I Dxxx[TV] 0 1 1 7,8,9,10,11 0 -319789 cd02601 HAD_Eya 3 HAD signature motif II [ST] 0 1 1 101 0 -319789 cd02601 HAD_Eya 4 HAD signature motif III [KR] 0 1 1 209 0 -319789 cd02601 HAD_Eya 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 233,234,239 0 -319789 cd02601 HAD_Eya 6 SIX1 interface 0 1 1 0 2,228,230,246,248,249,250,251,257,260,263,264,267,268,269,270 2 -319790 cd02603 HAD_sEH-N_like 1 active site 0 1 1 1 6,7,8,9,10,106,107,140,164,165,168,169 1 -319790 cd02603 HAD_sEH-N_like 2 homodimer interface 0 1 1 0 135 2 -319790 cd02603 HAD_sEH-N_like 3 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319790 cd02603 HAD_sEH-N_like 4 HAD signature motif II [ST] 0 1 1 106 0 -319790 cd02603 HAD_sEH-N_like 5 HAD signature motif III [KR] 0 1 1 140 0 -319790 cd02603 HAD_sEH-N_like 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 164,165,169 0 -319791 cd02604 HAD_5NT 1 active site 0 1 1 1 4,5,6,7,8,20,47,52,102,103,104,136,160,161,164,165 1 -319791 cd02604 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319791 cd02604 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 102 0 -319791 cd02604 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 136 0 -319791 cd02604 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319792 cd02605 HAD_SPP 1 active site 0 1 1 1 4,5,6,7,8,41,42,43,67,120,122,153,159,161,191,192,193,195,196 1 -319792 cd02605 HAD_SPP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319792 cd02605 HAD_SPP 3 HAD signature motif II [ST] 0 1 1 41 0 -319792 cd02605 HAD_SPP 4 HAD signature motif III [KR] 0 1 1 169 0 -319792 cd02605 HAD_SPP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 191,192,196 0 -319793 cd02607 HAD_ThrH_like 1 active site 0 1 1 1 6,7,8,9,10,89,90,132,150,151,154,155 1 -319793 cd02607 HAD_ThrH_like 2 homodimer interface 0 1 1 0 0,80,81,84,85,86,93,97,101,104,105,106,107,108,109,110,111,112,125,127,128,134,135,138,141,142,143,144 2 -319793 cd02607 HAD_ThrH_like 3 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319793 cd02607 HAD_ThrH_like 4 HAD signature motif II [ST] 0 1 1 89 0 -319793 cd02607 HAD_ThrH_like 5 HAD signature motif III [KR] 0 1 1 132 0 -319793 cd02607 HAD_ThrH_like 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,155 0 -319794 cd02608 P-type_ATPase_Na-K_like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 314,315,316,317,318,319,320 0 -319794 cd02608 P-type_ATPase_Na-K_like 2 ATP-binding site 0 1 1 0 314,315,316,388,391,419,420,422,425,427,446,447,448,489,490,491,555,556,557,576,579,582,601,602,603,604,605 5 -319794 cd02608 P-type_ATPase_Na-K_like 3 phosphorylation site D 0 1 1 314 6 -319794 cd02608 P-type_ATPase_Na-K_like 4 phosphorylation site 0 0 1 1 827 6 -319794 cd02608 P-type_ATPase_Na-K_like 5 Na binding site 0 1 1 1 666,667,670,695 4 -319794 cd02608 P-type_ATPase_Na-K_like 6 Na binding site 0 1 1 1 272,667,670,695 4 -319794 cd02608 P-type_ATPase_Na-K_like 7 Na binding site 0 1 1 1 662,666,699,814 4 -319794 cd02608 P-type_ATPase_Na-K_like 8 K binding site 0 1 1 1 666,667,670,695,699 4 -319794 cd02608 P-type_ATPase_Na-K_like 9 K binding site 0 1 1 1 267,270,272,667,670,695 4 -319794 cd02608 P-type_ATPase_Na-K_like 10 alpha-subunit/beta-subunit interface 0 0 1 1 739,740,743,744,747,751,755,759,760,776,777,778,780,781,785,786,787,788,789,790,791,792,793,794,797,798,868,870,871,878,881,885,900,903,904 2 -319795 cd02609 P-type_ATPase 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 291,292,293,294,295,296,297 0 -319795 cd02609 P-type_ATPase 2 putative ATP binding site 0 0 1 1 291,292,293,356,375,376,377,404,456,457,458,502,505,508,527,530 5 -319795 cd02609 P-type_ATPase 3 phosphorylation site D 0 1 1 291 6 -319795 cd02609 P-type_ATPase 4 putative cation binding site 0 0 1 1 587,591,592,594,595,620,623,624 4 -319796 cd02612 HAD_PGPPase 1 active site 0 0 1 1 4,5,6,7,8,106,107,151,173,174,177,178 1 -319796 cd02612 HAD_PGPPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319796 cd02612 HAD_PGPPase 3 HAD signature motif II [ST] 0 1 1 106 0 -319796 cd02612 HAD_PGPPase 4 HAD signature motif III [KR] 0 1 1 151 0 -319796 cd02612 HAD_PGPPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 173,174,178 0 -319797 cd02616 HAD_PPase 1 active site 0 1 1 1 6,7,8,9,10,44,102,103,104,135,159,160,163,164 1 -319797 cd02616 HAD_PPase 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319797 cd02616 HAD_PPase 3 HAD signature motif II [ST] 0 1 1 102 0 -319797 cd02616 HAD_PPase 4 HAD signature motif III [KR] 0 1 1 135 0 -319797 cd02616 HAD_PPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 159,160,164 0 -239110 cd02619 Peptidase_C1 1 active site 0 1 1 1 14,20,172,194 1 -239111 cd02620 Peptidase_C1A_CathepsinB 1 active site 0 1 1 1 21,27,185,205 1 -239111 cd02620 Peptidase_C1A_CathepsinB 2 S2 subsite 0 0 1 1 72,73,159,183,186,231 0 -239112 cd02621 Peptidase_C1A_CathepsinC 1 active site 0 0 1 1 22,28,187,209 1 -239112 cd02621 Peptidase_C1A_CathepsinC 2 S2 subsite 0 0 1 1 76,77,148,185,188,235 0 -239112 cd02621 Peptidase_C1A_CathepsinC 3 exclusion domain interface 0 1 1 1 68,70,73,74,76,78,82,85,86,120,125,127,179,185 0 -100065 cd02636 R3H_sperm-antigen 1 RxxxH motif 0 0 1 1 29,33 0 -100066 cd02637 R3H_PARN 1 degenerate RxxxH motif 0 0 1 1 28,32 0 -100067 cd02638 R3H_unknown_1 1 RxxxH motif 0 0 1 1 30,34 0 -100068 cd02639 R3H_RRM 1 RxxxH motif 0 0 1 1 30,34 0 -100069 cd02640 R3H_NRF 1 RxxxH motif 0 0 1 1 30,34 0 -100070 cd02641 R3H_Smubp-2_like 1 RxxxH motif 0 0 1 1 30,34 0 -100070 cd02641 R3H_Smubp-2_like 2 putative nucleic acid binding site 0 0 1 0 30,34,44,53 3 -100071 cd02642 R3H_encore_like 1 RxxxH motif 0 0 1 1 33,37 0 -100072 cd02643 R3H_NF-X1 1 RxxxH motif 0 0 1 1 44,48 0 -100073 cd02644 R3H_jag 1 RxxxH motif 0 0 1 1 35,39 0 -100074 cd02645 R3H_AAA 1 RxxxH motif 0 0 1 1 30,34 0 -100075 cd02646 R3H_G-patch 1 RxxxH motif 0 0 1 1 28,32 0 -239113 cd02647 nuc_hydro_TvIAG 1 active site 0 1 1 1 7,11,12,38,78,127,162,173,175,249 1 -239113 cd02647 nuc_hydro_TvIAG 2 dimerization interface 0 1 1 1 84,85,88,90,93,208,216,219,230,234 2 -239114 cd02648 nuc_hydro_1 1 active site 0 0 1 1 8,12,13,38,157,192,198,200,299 0 -239115 cd02649 nuc_hydro_CeIAG 1 active site 0 0 1 1 7,11,12,36,123,158,164,166,241 0 -239116 cd02650 nuc_hydro_CaPnhB 1 active site 0 0 1 1 6,10,11,35,121,156,162,164,238 0 -239117 cd02651 nuc_hydro_IU_UC_XIUA 1 active site 0 1 1 1 6,10,11,35,77,120,154,160,162,235 0 -239117 cd02651 nuc_hydro_IU_UC_XIUA 2 tetramer interface 0 1 1 1 67,131,172,258,260,261,264 2 -239118 cd02652 nuc_hydro_2 1 active site 0 0 1 1 5,11,12,36,115,158,163,165,231 0 -239119 cd02653 nuc_hydro_3 1 active site 0 0 1 1 6,10,11,35,119,154,160,162,240 0 -239120 cd02654 nuc_hydro_CjNH 1 active site 0 0 1 1 6,14,15,39,135,173,181,252 0 -132721 cd02655 RNAP_beta'_C 1 Rpb1 (beta') - Rpb2 (beta) interaction site 0 1 1 1 10,14,181,187,193,196,197,201 2 -132721 cd02655 RNAP_beta'_C 2 Rpb1 (beta') - Rpb6 (omega) interaction site 0 1 1 1 0,3,4,6,201 2 -132721 cd02655 RNAP_beta'_C 3 DNA binding site 0 1 1 0 51,151,166,167 3 -132721 cd02655 RNAP_beta'_C 4 G-loop 0 0 1 1 25,26,27,28,29,30,31,32,33 0 -239122 cd02657 Peptidase_C19A 1 Active Site 0 0 1 0 3,8,257,275 1 -239123 cd02658 Peptidase_C19B 1 Active Site 0 0 1 0 3,8,268,288 1 -239124 cd02659 peptidase_C19C 1 Active Site 0 0 1 0 6,11,267,285 1 -239125 cd02660 Peptidase_C19D 1 Active Site 0 0 1 0 4,9,288,305 1 -239126 cd02661 Peptidase_C19E 1 Active Site 0 0 1 0 5,10,264,281 1 -239127 cd02662 Peptidase_C19F 1 Active Site 0 0 1 0 3,8,178,216 1 -239128 cd02663 Peptidase_C19G 1 Active Site 0 0 1 0 3,8,253,269 1 -239129 cd02664 Peptidase_C19H 1 Active Site 0 0 1 0 3,8,259,297 1 -239130 cd02665 Peptidase_C19I 1 Active Site 0 0 1 0 3,8,179,197 1 -239131 cd02666 Peptidase_C19J 1 Active Site 0 0 1 0 5,10,296,314 1 -239132 cd02667 Peptidase_C19K 1 Active Site 0 0 1 0 3,8,217,256 1 -239133 cd02668 Peptidase_C19L 1 Active Site 0 0 1 0 3,8,262,280 1 -239134 cd02669 Peptidase_C19M 1 Active Site 0 0 1 0 123,128,399,417 1 -239135 cd02670 Peptidase_C19N 1 Active Site 0 0 1 0 3,9,183,212 1 -239136 cd02671 Peptidase_C19O 1 Active Site 0 0 1 0 28,33,288,300 1 -239137 cd02672 Peptidase_C19P 1 Active Site 0 0 1 0 10,24,230,251 1 -239138 cd02673 Peptidase_C19Q 1 Active Site 0 0 1 0 3,8,200,219 1 -239139 cd02674 Peptidase_C19R 1 Active Site 0 0 1 0 3,8,189,207 1 -259861 cd02675 Ephrin_ectodomain 1 receptor binding site 0 1 1 0 26,28,66,67,68,73,79,80,81,83,85,87,88,89,90,93,94,95 2 -349868 cd02690 M28 1 metal binding site [HQR][DK]E[DE][ED][QH] 1 1 1 22,34,68,69,96,173 4 -100036 cd02691 PurM-like2 1 putative ATP binding site 0 0 1 1 77,123,124,125 5 -100036 cd02691 PurM-like2 2 dimerization interface 0 0 1 1 47,48,49,50,52,54,77,87,90,93,125,139,140,144,230 2 -119407 cd02696 MurNAc-LAA 1 active site 0 1 1 0 7,22,75,140 1 -119407 cd02696 MurNAc-LAA 2 metal binding site 0 1 1 0 7,22,75 4 -349869 cd02697 M20_like 1 putative metal binding site HDEER 0 1 1 80,115,145,146,359 4 -239149 cd02698 Peptidase_C1A_CathepsinX 1 active site 0 1 1 1 21,30,179,200 1 -239149 cd02698 Peptidase_C1A_CathepsinX 2 active site mini-loop 0 0 1 1 22,23,24,25,26 1 -239149 cd02698 Peptidase_C1A_CathepsinX 3 S2 subsite 0 0 1 1 74,75,153,177,180,231 0 -341048 cd02699 M4_M36 1 Zn binding site HHE 1 1 1 124,128,151 4 -341048 cd02699 M4_M36 2 active site 0 1 1 1 91,92,121,124,125,128,142,151,175,218 1 -259848 cd02733 RNAP_II_RPB1_N 1 active site region 0 1 1 1 84,85,225,230,237,243,339,340,341,374,376,378,732,733 1 -259848 cd02733 RNAP_II_RPB1_N 2 RPB1 - RPB2 interface 0 1 1 1 7,11,14,15,61,62,63,65,76,129,131,133,138,139,197,218,221,222,225,232,235,237,238,239,240,241,242,243,244,249,250,251,263,266,267,336,338,340,344,345,347,348,359,360,362,365,374,375,376,377,379,381,383,386,387,390,393,394,397,398,403,418,419,422,554,555,643,648,649,654,657,658,667,668,698,699,701,702,703,706,707,710,711,713,714,715,718,719,721,722,735,736,739,743 2 -259848 cd02733 RNAP_II_RPB1_N 3 RPB1-TFIIB interface 0 1 1 1 23,24,25,26,27,59,141,143,149,150,151,152,153,154,156,157,158,160,161,164,168,184,187,188,191,192,201,202,203,204,205,206,209,210,211,212,213,214,216,221,226,297,300,304,305,306,307,309,310,311 2 -259848 cd02733 RNAP_II_RPB1_N 4 clamp 0 1 1 1 7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238,239 0 -259848 cd02733 RNAP_II_RPB1_N 5 Zn-binding 0 1 1 1 51,54,61,64 4 -259848 cd02733 RNAP_II_RPB1_N 6 catalytic site DDD 1 1 1 374,376,378 1 -132722 cd02735 RNAP_I_Rpa1_C 1 Rpb1 (Rpa1) - Rpb2 (Rpa2) interaction site 0 0 1 1 11,14,274,284,285,286,292,293,295,297,302 2 -132722 cd02735 RNAP_I_Rpa1_C 2 Rpb1 (Rpa1) - Rpb5 interaction site 0 0 1 1 189,190,192,202,203,204,205,206,207,208,210,230,241,242,244 2 -132722 cd02735 RNAP_I_Rpa1_C 3 Rpb1 (Rpa1) - Rpb6 interaction site 0 0 1 1 2,3,7,10,302,305,306,307,308 2 -132722 cd02735 RNAP_I_Rpa1_C 4 DNA binding site 0 0 1 1 56,251,267,268,271 3 -132722 cd02735 RNAP_I_Rpa1_C 5 cleft 0 0 1 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,255,256,257,258,259 0 -132722 cd02735 RNAP_I_Rpa1_C 6 clamp 0 0 1 1 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300 0 -132723 cd02736 RNAP_III_Rpc1_C 1 Rpb1 (Rpc1) - Rpb2 (Rpc2) interaction site 0 0 1 1 11,14,268,278,279,280,286,287,289,291,296 2 -132723 cd02736 RNAP_III_Rpc1_C 2 Rpb1 (Rpc1) - Rpb5 interaction site 0 0 1 1 176,182,183,185,195,196,197,198,199,200,201,203,223,234,235,237 2 -132723 cd02736 RNAP_III_Rpc1_C 3 Rpb1 (Rpc1) - Rpb6 interaction site 0 0 1 1 2,3,7,10,296,299 2 -132723 cd02736 RNAP_III_Rpc1_C 4 DNA binding site 0 0 1 1 56,244,261,262,265 3 -132723 cd02736 RNAP_III_Rpc1_C 5 cleft 0 0 1 1 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,144,145,146,147,148,149,150,151,152,153,154,155,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,253 0 -132723 cd02736 RNAP_III_Rpc1_C 6 clamp 0 0 1 1 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 0 -132724 cd02737 RNAP_IV_NRPD1_C 1 putative Rpb1 (NRPD1) - Rpb2 interaction site 0 0 1 1 2,5,344,354,355,356,362,363,365,367,372 2 -132724 cd02737 RNAP_IV_NRPD1_C 2 putative Rpb1 (NRPD1) - Rpb5 interaction site 0 0 1 1 247,253,254,256,266,267,268,269,270,271,272,274,294,305,306,308 2 -132724 cd02737 RNAP_IV_NRPD1_C 3 Rpb1 (NRPD1) - Rpb6 interaction site 0 0 1 1 1,372,375,376,377,378,380 2 -132724 cd02737 RNAP_IV_NRPD1_C 4 cleft 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,218,219,220,221,222,223,224,225,226,227,228,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317 0 -132724 cd02737 RNAP_IV_NRPD1_C 5 clamp 0 0 1 1 329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370 0 -119331 cd02742 GH20_hexosaminidase 1 active site 0 1 1 1 9,96,156,157,189,208,275,277 1 -239150 cd02749 Macro 1 ADP-ribose binding site 0 1 1 0 7,22,29,31,32,120,122,123,124 5 -239151 cd02750 MopB_Nitrate-R-NarG-like 1 molybdopterin cofactor binding site 0 1 0 1 8,10,52,114,144,146,177,179,182,183,204,206,207,209,224,226,293,294,295,296,298,299,330,340,341,342,346,347,368,369,370,371,388,391,419 5 -239151 cd02750 MopB_Nitrate-R-NarG-like 2 [4Fe-4S] binding site 0 1 0 1 7,11,15,17,50 4 -239152 cd02751 MopB_DMSOR-like 1 molybdopterin cofactor binding site 0 1 1 1 138,176,181,182,211,212,213,231,232,234,313,314,317,413,415,419,421,439,440,444,462,492 5 -239153 cd02752 MopB_Formate-Dh-Na-like 1 molybdopterin cofactor binding site 0 1 0 1 40,138,142,176,178,181,182,205,206,207,224,226,278,279,280,283,284,316,317,339,340,341,345,365,366,367,370,396,428 0 -239153 cd02752 MopB_Formate-Dh-Na-like 2 [4Fe-4S] binding site 0 1 0 1 3,5,6,10,38,184,185 4 -239154 cd02753 MopB_Formate-Dh-H 1 molybdopterin cofactor binding site 0 1 0 1 40,100,128,129,162,163,164,165,168,169,190,191,193,210,212,285,286,287,290,291,323,324,351,353,357,377,378,379,380,382,394,395,427 0 -239154 cd02753 MopB_Formate-Dh-H 2 [4Fe-4S] binding site 0 1 0 1 3,5,6,8,10,38 4 -239155 cd02754 MopB_Nitrate-R-NapA-like 1 molybdopterin cofactor binding site 0 1 0 1 40,101,126,130,163,164,165,166,169,170,194,195,196,213,215,288,289,290,293,326,327,397,398,402,422,423,424,425,440,441,442,446,473 0 -239155 cd02754 MopB_Nitrate-R-NapA-like 2 [4Fe-4S] binding site 0 1 0 1 3,5,6,10,38,173 4 -239156 cd02755 MopB_Thiosulfate-R-like 1 putative molybdopterin cofactor binding site 0 0 0 1 41,102,127,129,130,131,162,163,165,168,169,191,192,193,194,211,213,288,289,290,291,293,325,326,337,338,339,343,363,364,365,368,380,381,386 5 -239156 cd02755 MopB_Thiosulfate-R-like 2 putative [Fe4-S4] binding site 0 0 0 1 4,7,11,39 4 -239157 cd02756 MopB_Arsenite-Ox 1 molybdopterin cofactor binding site 0 1 0 1 97,168,193,194,230,231,232,235,236,237,275,276,277,278,303,305,362,363,364,367,400,441,442,443,447,501,502,503,518,519,552 5 -239157 cd02756 MopB_Arsenite-Ox 2 [3Fe-4S] binding site 0 1 0 1 16,19,22,23,25,95,97,239 4 -239158 cd02757 MopB_Arsenate-R 1 putative molybdopterin cofactor binding site 0 0 0 1 42,108,134,136,137,138,168,169,171,174,175,198,199,200,201,218,220,317,318,319,320,322,355,356,365,366,367,371,391,392,393,396,408,409,414 5 -239158 cd02757 MopB_Arsenate-R 2 putative [Fe4-S4] binding site 0 0 0 1 5,8,12,40 4 -239159 cd02758 MopB_Tetrathionate-Ra 1 putative molybdopterin cofactor binding site 0 0 0 1 69,154,180,182,183,184,217,218,220,223,224,249,250,251,252,272,274,372,373,374,375,377,410,411,496,497,498,502,526,527,528,531,543,544,549 5 -239159 cd02758 MopB_Tetrathionate-Ra 2 putative [Fe4-S4] binding site 0 0 0 1 3,6,10,67 4 -239160 cd02759 MopB_Acetylene-hydratase 1 putative molybdopterin cofactor binding site 0 0 0 1 40,102,131,133,134,135,166,167,169,172,173,195,196,197,198,215,217,290,291,292,293,295,336,337,338,342,362,363,364,367,379,380,385 5 -239160 cd02759 MopB_Acetylene-hydratase 2 putative [Fe4-S4] binding site 0 0 0 1 3,6,10,38 4 -239161 cd02760 MopB_Phenylacetyl-CoA-OR 1 putative molybdopterin cofactor binding site 0 0 0 1 44,137,139,140,141,179,180,182,185,186,208,209,210,211,228,230,392,393,394,395,397,430,431,520,521,522,526,546,547,548,551,563,564,569 0 -239162 cd02761 MopB_FmdB-FwdB 1 putative molybdopterin cofactor binding site 0 0 0 1 31,78,103,105,106,107,137,138,140,143,144,173,174,175,176,193,195,242,243,244,245,247,278,279,324,325,326,330,354,355,356,359,371,372,378 5 -239162 cd02761 MopB_FmdB-FwdB 2 putative [4Fe-4S] binding site 0 0 0 1 3,6,10,29 4 -239163 cd02762 MopB_1 1 putative molybdopterin cofactor binding site 0 0 0 1 40,123,125,126,127,162,163,165,168,169,196,197,198,218,291,292,293,294,329,330,384,385,386,410,411,412,415,427,428,433 5 -239163 cd02762 MopB_1 2 putative [Fe4-S4] binding site 0 0 0 1 3,6,10,38 4 -239164 cd02763 MopB_2 1 putative molybdopterin cofactor binding site 0 0 0 1 40,125,127,128,129,161,162,165,168,169,189,190,191,211,304,305,306,307,342,343,428,429,430,463,464,465,468,480,481,486 5 -239164 cd02763 MopB_2 2 putative [Fe4-S4] binding site 0 0 0 1 3,6,10,38 4 -239166 cd02765 MopB_4 1 putative molybdopterin cofactor binding site 0 0 0 1 41,127,129,130,131,165,166,168,171,172,193,194,195,215,350,393,394,395,419,420,421,424,436,437,442 5 -239166 cd02765 MopB_4 2 putative [4Fe-4S] binding site 0 0 0 1 3,7,11,39 4 -239167 cd02766 MopB_3 1 putative molybdopterin cofactor binding site 0 0 0 1 41,128,130,131,132,163,164,166,169,170,191,192,193,213,286,287,288,289,324,325,335,336,337,362,363,364,367,379,380,385 5 -239167 cd02766 MopB_3 2 putative [4Fe-4S] binding site 0 0 0 1 3,7,11,39 4 -239168 cd02767 MopB_ydeP 1 putative molybdopterin cofactor binding site 0 0 0 1 45,133,135,136,137,169,170,172,175,176,197,198,199,236,314,315,316,317,352,353,411,412,413,437,438,439,442,457,458,477 5 -239170 cd02769 MopB_DMSOR-BSOR-TMAOR 1 molybdopterin cofactor binding site 0 1 0 1 105,106,107,108,109,138,177,182,183,213,214,215,233,234,236,315,316,319,415,417,421,423,441,442,446,464,492 5 -239170 cd02769 MopB_DMSOR-BSOR-TMAOR 2 substrate binding site 0 1 1 1 105,107,138 5 -239171 cd02770 MopB_DmsA-EC 1 putative molybdopterin cofactor binding site 0 0 0 1 139,173,178,179,203,204,205,223,224,226,319,320,323,415,417,421,423,446,447,451,469,500 5 -239171 cd02770 MopB_DmsA-EC 2 putative [Fe4-S4] binding site 0 0 0 1 3,7,11,43 4 -239172 cd02771 MopB_NDH-1_NuoG2-N7 1 [4Fe-4S] binding site 0 0 1 1 3,6,10,38 4 -239176 cd02775 MopB_CT 1 molybdopterin cofactor binding site 0 1 1 1 0,1,3,4,5,6,70,83,99,100 0 -239177 cd02776 MopB_CT_Nitrate-R-NarG-like 1 molybdopterin cofactor binding site 0 1 0 1 5,6,7,8,11,12,13,14,15,78,100,132,133 0 -239178 cd02777 MopB_CT_DMSOR-like 1 molybdopterin cofactor binding site 0 1 0 1 6,8,9,12,14,15,16,81,100,117,118 0 -239179 cd02778 MopB_CT_Thiosulfate-R-like 1 putative molybdopterin cofactor binding site 0 0 0 1 5,6,7,8,9,11,12,13,14,77,97,114,115 0 -239180 cd02779 MopB_CT_Arsenite-Ox 1 molybdopterin cofactor binding site 0 1 0 1 3,5,6,7,8,9,10,12,14,15,17,80,88,104,105 0 -239181 cd02780 MopB_CT_Tetrathionate_Arsenate-R 1 putative molybdopterin cofactor binding site 0 0 0 1 1,2,3,4,5,6,7,8,9,77,106,136,137 0 -239182 cd02781 MopB_CT_Acetylene-hydratase 1 putative molybdopterin cofactor binding site 0 0 0 1 8,9,10,11,12,14,15,16,17,80,103,120,121 0 -239183 cd02782 MopB_CT_1 1 putative molybdopterin cofactor binding site 0 0 0 1 7,8,9,10,11,13,14,15,16,80,101,121,122 0 -239184 cd02783 MopB_CT_2 1 putative molybdopterin cofactor binding site 0 0 0 1 7,8,9,10,11,13,14,15,16,79,104,132,133 0 -239186 cd02785 MopB_CT_4 1 putative molybdopterin cofactor binding site 0 0 0 1 7,8,9,10,11,13,14,15,16,79,92,113,114 0 -239187 cd02786 MopB_CT_3 1 putative molybdopterin cofactor binding site 0 0 0 1 6,7,8,9,10,12,13,14,15,78,92,108,109 0 -239188 cd02787 MopB_CT_ydeP 1 putative molybdopterin cofactor binding site 0 0 0 1 4,5,6,7,8,10,11,12,13,83,87,104,105 0 -239190 cd02789 MopB_CT_FmdC-FwdD 1 molybdopterin cofactor binding site 0 0 0 1 0,1,3,4,5,6,78,83,98,99 0 -239191 cd02790 MopB_CT_Formate-Dh_H 1 molybdopterin cofactor binding site 0 1 0 1 8,9,10,11,12,14,15,16,17,82,90,106,107 0 -239192 cd02791 MopB_CT_Nitrate-R-NapA-like 1 molybdopterin cofactor binding site 0 1 0 1 8,9,10,11,12,14,15,16,17,82,95,111,112 0 -239193 cd02792 MopB_CT_Formate-Dh-Na-like 1 molybdopterin cofactor binding site 0 1 0 1 8,9,10,11,12,14,15,16,17,82,96,112,113 0 -239194 cd02793 MopB_CT_DMSOR-BSOR-TMAOR 1 molybdopterin cofactor binding site 0 1 0 1 6,8,9,12,14,15,16,80,102,119,120 0 -239195 cd02794 MopB_CT_DmsA-EC 1 putative molybdopterin cofactor binding site 0 0 0 1 6,8,9,12,14,15,16,77,95,111,112 0 -271143 cd02795 CBM6-CBM35-CBM36_like 1 metal binding site [EQ]E[DN] 1 1 1 2,4,119 4 -239196 cd02796 tRNA_bind_bactPheRS 1 putative tRNA-binding site 0 0 1 1 16,29,50,63,70,73 3 -239197 cd02798 tRNA_bind_CsaA 1 putative tRNA-binding site 0 0 1 1 27,40,66,70,77,80 3 -239197 cd02798 tRNA_bind_CsaA 2 dimer interface 0 1 1 1 1,2,3,4,6,7,8,12,50,51,59,66,67,82,83,84,85,91,93,94,95,97,98,100,105,106 2 -239198 cd02799 tRNA_bind_EMAP-II_like 1 putative tRNA-binding site 0 0 1 1 23,36,62,66,73,76 3 -239198 cd02799 tRNA_bind_EMAP-II_like 2 cytokine-active heptapeptide 0 0 1 1 8,9,10,11,12,13,14 0 -239199 cd02800 tRNA_bind_EcMetRS_like 1 putative tRNA-binding site 0 0 1 1 26,38,64,68,75,78 3 -239199 cd02800 tRNA_bind_EcMetRS_like 2 dimer interface 0 1 1 0 1,48,64,65,66,69,81,82,83,84,90,92,94,97,101,102,103,104 2 -239200 cd02801 DUS_like_FMN 1 active site 0 1 1 1 59,89,90,128,130,156,157,159,160,189,190,213 1 -239200 cd02801 DUS_like_FMN 2 catalytic residues 0 0 1 0 89,130,157,159 1 -239200 cd02801 DUS_like_FMN 3 substrate binding site 0 1 1 1 90,128,156,160,189,190 5 -239200 cd02801 DUS_like_FMN 4 FMN binding site 0 1 1 0 4,5,6,30,59,86,128,157,188,190,212,213 5 -239201 cd02803 OYE_like_FMN_family 1 active site 0 1 1 1 18,20,53,95,165,213,310,311 1 -239201 cd02803 OYE_like_FMN_family 2 substrate binding site 0 1 1 1 163,165 5 -239201 cd02803 OYE_like_FMN_family 3 FMN binding site 0 1 1 0 18,20,53,95,213,310,311 5 -239201 cd02803 OYE_like_FMN_family 4 putative catalytic residue 0 0 1 1 165 1 -239202 cd02808 GltS_FMN 1 active site 0 1 1 0 82,83,84,85,112,129,151,157,177,219,249,250,251,290,292,313,314,322,328,333 1 -239202 cd02808 GltS_FMN 2 3Fe-4S cluster binding site 0 1 1 0 322,328,333 4 -239202 cd02808 GltS_FMN 3 FMN binding site 0 1 1 0 82,83,84,85,112,129,151,219,249,250,290,292,313,314 5 -239202 cd02808 GltS_FMN 4 substrate binding site 0 1 1 0 157,177,250,251 5 -239203 cd02809 alpha_hydroxyacid_oxid_FMN 1 active site 0 1 1 1 17,99,122,150,157,177,201,204,256 1 -239203 cd02809 alpha_hydroxyacid_oxid_FMN 2 substrate binding site 0 1 1 1 17,122,157,201,204 5 -239203 cd02809 alpha_hydroxyacid_oxid_FMN 3 FMN binding site 0 1 1 0 99,122,150,177,201,204,256 5 -239203 cd02809 alpha_hydroxyacid_oxid_FMN 4 putative catalytic residues 0 0 1 0 122,157,201 1 -239204 cd02810 DHOD_DHPD_FMN 1 active site 0 1 1 0 40,72,130,133,167,195,196,197,221,250,271,272 1 -239204 cd02810 DHOD_DHPD_FMN 2 substrate binding site 0 1 1 0 72,130,132,196,197 5 -239204 cd02810 DHOD_DHPD_FMN 3 FMN binding site 0 1 1 0 40,72,130,167,195,196,221,250,271,272 5 -239205 cd02811 IDI-2_FMN 1 FMN binding site 0 1 1 1 59,60,61,62,88,117,146,183,260,261,262,284 5 -239205 cd02811 IDI-2_FMN 2 homotetramer interface 0 1 1 1 27,28,29,30,33,147,184,187,188,192,239,247,267,268,303,306 2 -239205 cd02811 IDI-2_FMN 3 homodimer contacts 0 1 1 1 61,68,69 2 -239205 cd02811 IDI-2_FMN 4 putative active site 0 0 1 1 88,117,146,183,260,283,284 1 -239205 cd02811 IDI-2_FMN 5 putative substrate binding site 0 0 1 1 117,119,146 5 -239206 cd02812 PcrB_like 1 substrate binding site 0 1 1 0 4,152,154,157,180,181,182,204 5 -239206 cd02812 PcrB_like 2 putative active site 0 0 1 1 6,33,152,154,156 1 -239206 cd02812 PcrB_like 3 dimer interface 0 1 1 0 79,84,88,92,96,134,137,138,142,145,167 2 -239207 cd02825 PAZ 1 nucleic acid-binding interface 0 1 1 0 48,72,76,94,104,106 3 -239208 cd02826 Piwi-like 1 active site 0 1 1 1 177,179,250,384 1 -239208 cd02826 Piwi-like 2 5' RNA guide strand anchoring site 0 1 1 0 111,115,126,127,128,129,132,142,145,149,153 0 -239209 cd02843 PAZ_dicer_like 1 nucleic acid-binding interface 0 0 1 1 62,75,81,85,103,111,113 3 -239210 cd02844 PAZ_CAF_like 1 nucleic acid-binding interface 0 0 1 1 44,69,73,91,121,123 3 -239211 cd02845 PAZ_piwi_like 1 nucleic acid-binding interface 0 0 1 1 45,58,66,70,88,103,105 3 -239212 cd02846 PAZ_argonaute_like 1 nucleic acid-binding interface 0 1 1 0 48,63,74,78,96,103,105 3 -199887 cd02857 E_set_CDase_PDE_N 1 homodimer interface 0 1 1 1 3,71,73,89,90,107,108 2 -199889 cd02859 E_set_AMPKbeta_like_N 1 glycogen binding site 0 1 1 0 22,50,57,68,69,70,72,74 5 -239213 cd02862 NorE_like 1 Subunit I/III interface 0 0 1 1 6,7,11,14,21,22,25,26,29 2 -239214 cd02863 Ubiquinol_oxidase_III 1 Subunit I/III interface 0 1 1 1 6,7,11,14,21,22,25,26,29 2 -239214 cd02863 Ubiquinol_oxidase_III 2 Subunit III/IV interface 0 1 1 1 13,21,58,61,65,66,161,168 2 -239215 cd02864 Heme_Cu_Oxidase_III_1 1 Subunit I/III interface 0 0 1 1 6,7,21,25,26,132,133,136,140 2 -239216 cd02865 Heme_Cu_Oxidase_III_2 1 Subunit I/III interface 0 0 1 1 6,7,21,25,26,115,116,119,123 2 -211343 cd02866 PseudoU_synth_TruA_Archea 1 probable active site 0 0 1 1 45,46,47,48,171 1 -211344 cd02867 PseudoU_synth_TruB_4 1 probable active site 0 0 1 1 61,62,63,64,202 1 -211345 cd02868 PseudoU_synth_hTruB2_like 1 probable active site 0 0 1 1 37,38,39,40,178 1 -211346 cd02869 PseudoU_synth_RluCD_like 1 active site 0 1 1 0 43,44,45,46,146 1 -211347 cd02870 PseudoU_synth_RsuA_like 1 active site 0 1 1 1 37,38,39,40,127 1 -119350 cd02871 GH18_chitinase_D-like 1 putative active site 0 0 1 1 5,34,116,118,190,192,292 1 -119351 cd02872 GH18_chitolectin_chitotriosidase 1 active site 0 1 1 1 3,7,79,80,118,120,121,161,162,185,187,188,193,242,244,272,335 1 -119352 cd02873 GH18_IDGF 1 carbohydrate binding site 0 0 1 0 4,37,83,125,127,129,219,220,273,386 5 -119353 cd02874 GH18_CFLE_spore_hydrolase 1 active site 0 1 1 0 5,31,32,72,107,109,111,174,176,177,217,299 1 -119354 cd02875 GH18_chitobiase 1 putative active site 0 0 1 1 25,52,116,118,120,186,187,232,333 1 -119355 cd02876 GH18_SI-CLP 1 putative carbohydrate binding site 0 0 1 1 7,33,112,114,116,186,187,304 5 -119356 cd02877 GH18_hevamine_XipI_class_III 1 active site 0 1 1 0 5,31,127,129,162,185,187,262 1 -119356 cd02877 GH18_hevamine_XipI_class_III 2 catalytic residue 0 0 1 1 129 1 -119356 cd02877 GH18_hevamine_XipI_class_III 3 substrate-binding cleft 0 1 1 0 8,9,31,33,44,46,47,80,81,82,262,266 5 -119357 cd02878 GH18_zymocin_alpha 1 putative active site 0 0 1 1 4,34,111,113,115,184,185,240,339 1 -119358 cd02879 GH18_plant_chitinase_class_V 1 putative active site 0 0 1 1 7,32,112,114,116,188,189,238,287 1 -239217 cd02883 Nudix_Hydrolase 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -239218 cd02885 IPP_Isomerase 1 active site 0 1 1 0 18,22,29,33,48,52,64,66,80,84,101,111,113,158 1 -239218 cd02885 IPP_Isomerase 2 metal binding site 0 1 1 1 22,29,66,111,113 4 -239218 cd02885 IPP_Isomerase 3 nudix motif 0 0 1 1 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 0 -153089 cd02888 RNR_II_dimer 1 active site 0 1 1 0 15,16,32,60,61,62,107,108,110,221,222,223,225,236,388,389,390,391,392,393 1 -153089 cd02888 RNR_II_dimer 2 effector binding site 0 1 1 1 40,42,43,46,58,71,77,79,84,85,90,100,101,102 0 -153089 cd02888 RNR_II_dimer 3 dimer interface 0 1 1 0 27,43,44,47,48,50,51,54,55,58,76,79,80,81,82,85,90,93,96,97,100,102,103,104,106 2 -239219 cd02889 SQCY 1 catalytic residue 0 0 1 1 91 1 -239219 cd02889 SQCY 2 active center 0 1 1 0 21,25,80,91,92,138,169,213,219,328,330,332,335 1 -239220 cd02890 PTase 1 active site cavity 0 1 1 1 20,23,24,27,31,75,77,78,80,81,127,130,131,173,175,179,222,224,225,228,264,273,274 1 -239220 cd02890 PTase 2 Zn2+ binding site 0 1 1 1 222,224,274 4 -239220 cd02890 PTase 3 lipid binding pocket 0 1 1 1 27,30,127,130,173,175,179,216,219,225,228,273 5 -239220 cd02890 PTase 4 peptide binding pocket 0 1 1 1 23,24,27,77,78,127,222,264 0 -239220 cd02890 PTase 5 heterodimer interface 0 1 1 0 122,160,170,171,176,200,203,205,206,216,217,218 2 -239221 cd02891 A2M_like 1 thioester region 0 0 1 1 14,15,16,17 0 -239221 cd02891 A2M_like 2 specificity defining residues 0 0 1 0 113,117,119 0 -239221 cd02891 A2M_like 3 surface patch 0 0 1 1 14,16,17,20,60,70,73,124,265 0 -239222 cd02892 SQCY_1 1 catalytic acid 0 0 1 1 374 1 -239222 cd02892 SQCY_1 2 Active site cavity 0 1 1 0 21,26,27,30,79,113,115,119,155,156,159,258,259,263,302,303,308,363,372,374,375,421,436,437,439,443,454,498,504,611,614,616,618,621 1 -239223 cd02893 FTase 1 active site cavity 0 1 1 1 20,23,24,27,31,74,76,77,79,80,127,130,131,173,175,179,222,224,225,228,277,286,287 1 -239223 cd02893 FTase 2 Zn2+ binding site 0 1 1 1 222,224,287 4 -239223 cd02893 FTase 3 lipid binding pocket 0 1 1 1 27,30,127,130,173,175,179,216,219,225,228,286 5 -239223 cd02893 FTase 4 peptide binding pocket 0 1 1 1 23,24,27,76,77,127,222,277 0 -239223 cd02893 FTase 5 heterodimer interface 0 1 1 0 122,160,170,171,176,200,203,205,206,216,217,218 2 -239224 cd02894 GGTase-II 1 active site cavity 0 0 1 1 23,26,27,30,34,77,79,80,82,83,129,132,133,175,177,181,223,225,226,229,265,274,275 1 -239224 cd02894 GGTase-II 2 Zn2+ binding site 0 1 1 1 223,225,275 4 -239224 cd02894 GGTase-II 3 lipid binding pocket 0 1 1 1 30,33,129,132,175,177,181,217,220,226,229,274 5 -239224 cd02894 GGTase-II 4 peptide binding pocket 0 0 1 1 26,27,30,79,80,129,223,265 0 -239224 cd02894 GGTase-II 5 heterodimer interface 0 1 1 0 124,162,172,173,178,202,205,207,208,217,218,219 2 -239225 cd02895 GGTase-I 1 active site cavity 0 1 1 1 20,23,24,27,31,90,92,93,95,96,144,147,148,192,194,198,243,245,246,249,285,294,295 1 -239225 cd02895 GGTase-I 2 Zn2+ binding site 0 1 1 1 243,245,295 4 -239225 cd02895 GGTase-I 3 lipid binding pocket 0 1 1 1 27,30,144,147,192,194,198,237,240,246,249,294 5 -239225 cd02895 GGTase-I 4 peptide binding pocket 0 1 1 1 23,24,27,92,93,144,243,285 0 -239225 cd02895 GGTase-I 5 heterodimer interface 0 1 1 0 139,179,189,190,195,222,225,227,228,237,238,239 2 -239226 cd02896 complement_C3_C4_C5 1 active site 0 0 1 0 14,15,16,17,129 1 -239226 cd02896 complement_C3_C4_C5 2 thioester region 0 0 1 1 14,15,16,17 0 -239226 cd02896 complement_C3_C4_C5 3 surface patch 0 0 1 1 14,16,17,20,63,73,76,126,128,129,280 0 -239226 cd02896 complement_C3_C4_C5 4 specificity defining residues 0 0 1 0 115,119,121,129,134,135 0 -239227 cd02897 A2M_2 1 thioester region 0 0 1 1 14,15,16,17 0 -239227 cd02897 A2M_2 2 specificity defining residues 0 0 1 0 114,118,120,128 0 -239227 cd02897 A2M_2 3 surface patch 0 0 1 1 14,16,17,20,60,70,73,125,127,128,275 0 -239229 cd02900 Macro_Appr_pase 1 ADP-ribose binding site 0 1 1 0 4,26,27,28,48,49,50,57,58,59,60,121,122,160,162,163,164,165,166 5 -239229 cd02900 Macro_Appr_pase 2 putative active site 0 0 1 1 47,50,56,60,118 1 -239229 cd02900 Macro_Appr_pase 3 dimer interface 0 0 1 0 50,51,52,53,54,77,86,87,88,89,90,91,123,136,140 2 -239230 cd02901 Macro_Poa1p_like 1 ADP-ribose binding site 0 0 1 1 7,8,22,29,31,32,117,119,120,121 5 -239231 cd02903 Macro_BAL_like 1 putative ADP-ribose binding site 0 0 1 1 8,9,22,30,32,33,114,116,117,118 5 -239232 cd02904 Macro_H2A_like 1 OAADPR binding site 0 0 1 1 25,48,138,172 0 -239233 cd02905 Macro_GDAP2_like 1 putative ADP-ribose binding site 0 0 1 1 8,9,22,29,31,32,116,118,119,120 5 -239234 cd02906 Macro_1 1 putative ADP-ribose binding site 0 0 1 1 7,8,21,33,35,36,126,128,129,130 5 -239235 cd02907 Macro_Af1521_BAL_like 1 ADP-ribose binding site 0 1 1 0 9,10,23,30,32,33,121,123,124,125 5 -239236 cd02908 Macro_Appr_pase_like 1 putative ADP-ribose binding site 0 1 1 1 7,8,21,28,30,31,114,116,117,118 5 -239236 cd02908 Macro_Appr_pase_like 2 putative active site 0 0 1 1 18,21,27,31,72 1 -239237 cd02911 arch_FMN 1 putative active site 0 0 1 1 29,63,103,105,106,144,196,219,220 1 -239237 cd02911 arch_FMN 2 putative FMN binding site 0 0 1 1 29,63,103,105,106,144,196,219,220 5 -239237 cd02911 arch_FMN 3 phosphate binding site 0 0 1 1 164,165,195,196 4 -239238 cd02922 FCB2_FMN 1 active site 0 1 1 0 17,69,70,72,99,122,150,218,242,245,276,280,300 1 -239238 cd02922 FCB2_FMN 2 homodimer interface 0 1 1 1 0,1,4,8,23,24,151,155,160,199,200,219,221,222,225,246,247,249,251 2 -239238 cd02922 FCB2_FMN 3 substrate binding residues 0 1 1 0 17,124,152,159,242,245 5 -239238 cd02922 FCB2_FMN 4 FMN binding site 0 1 1 0 69,70,99,122,150,218,276,280,300 5 -239238 cd02922 FCB2_FMN 5 catalytic residues 0 0 1 0 124,159,242 1 -239239 cd02929 TMADH_HD_FMN 1 active site 0 1 1 0 26,28,31,58,66,67,87,101,168,169,171,172,174,222,318,319,342,345,348,351,352,356,359,360,362 1 -239239 cd02929 TMADH_HD_FMN 2 homodimer interface 0 1 1 0 45,74,76,77,80,82,83,86,119,137,183,184,351,354,368,369 2 -239239 cd02929 TMADH_HD_FMN 3 FMN binding site 0 1 1 0 25,26,27,28,57,58,101,169,172,222,294,296,318,319,320,349 5 -239239 cd02929 TMADH_HD_FMN 4 4Fe-4S cluster binding site 0 1 1 0 342,345,348,360 4 -239239 cd02929 TMADH_HD_FMN 5 putative catalytic residue 0 0 1 1 174 1 -239240 cd02930 DCR_FMN 1 active site 0 1 1 1 19,21,53,95,159,161,170,209,247,250,305,306,329,332,336,348 1 -239240 cd02930 DCR_FMN 2 2,4-decadienoyl-CoA binding site 0 1 1 0 159,161,170,247,250 0 -239240 cd02930 DCR_FMN 3 FMN binding site 0 1 1 0 19,21,53,95,209,305,306 5 -239240 cd02930 DCR_FMN 4 4Fe-4S cluster binding site 0 1 1 0 329,332,336,348 4 -239240 cd02930 DCR_FMN 5 catalytic residue 0 0 1 1 161 1 -239241 cd02931 ER_like_FMN 1 putative active site 0 0 1 1 19,21,55,101,175,227,334,335,358,361,365,377 1 -239241 cd02931 ER_like_FMN 2 putative substrate binding site 0 0 1 1 173,175 5 -239241 cd02931 ER_like_FMN 3 putative FMN binding site 0 0 1 1 19,21,55,101,227,334,335 5 -239241 cd02931 ER_like_FMN 4 putative 4Fe-4S cluster binding site 0 0 1 0 358,361,365,377 4 -239241 cd02931 ER_like_FMN 5 putative catalytic residue 0 0 1 1 175 1 -239242 cd02932 OYE_YqiM_FMN 1 active site 0 1 1 1 18,19,21,23,53,95,173,176,178,226,260,277,296,297,317,319,320,321,324 1 -239242 cd02932 OYE_YqiM_FMN 2 catalytic residue 0 0 1 1 178 1 -239242 cd02932 OYE_YqiM_FMN 3 homotetramer interface 0 1 1 1 22,32,33,35,36,39,43,276,278,297,303,326,327 2 -239242 cd02932 OYE_YqiM_FMN 4 substrate binding site 0 1 1 0 21,23,173,176,178 5 -239242 cd02932 OYE_YqiM_FMN 5 FMN binding site 0 1 1 0 18,19,21,53,95,173,176,226,260,277,296,297,317,319,320,321,324 5 -239243 cd02933 OYE_like_FMN 1 active site 0 1 1 0 20,22,53,95,97,104,171,174,176,223,230,291,311,313,314 1 -239243 cd02933 OYE_like_FMN 2 substrate binding site 0 1 1 0 22,97,171,174,176,314 5 -239243 cd02933 OYE_like_FMN 3 FMN binding site 0 1 1 0 20,22,53,95,223,291,311,313,314,315 5 -239243 cd02933 OYE_like_FMN 4 catalytic residue 0 0 1 1 176 1 -239244 cd02940 DHPD_FMN 1 active site 0 1 1 0 42,43,58,73,75,132,134,135,173,199,200,201 1 -239244 cd02940 DHPD_FMN 2 homodimer interface 0 1 1 0 20,21,25,26,27,29,30,51,52,53,55,56,57,58,59,60,74,76,79,80,81,84,87,91,178,179,203,204,224,225,231,235,239,242,243,268,271,284,285,287,288,289 2 -239244 cd02940 DHPD_FMN 3 substrate binding site 0 1 1 0 73,75,132,134,200,201 5 -239244 cd02940 DHPD_FMN 4 FMN binding site 0 1 1 0 42,58,73,75,132,173,200,201 5 239245 cd02947 TRX_family 1 catalytic residues 0 0 1 1 21,24 1 -239246 cd02948 TRX_NDPK 1 catalytic residues 0 0 1 1 28,31 1 -239247 cd02949 TRX_NTR 1 catalytic residues 0 0 1 1 24,27 1 -239248 cd02950 TxlA 1 catalytic residues 0 0 1 1 31,34 1 -239249 cd02951 SoxW 1 catalytic residues 0 0 1 1 25,28 1 -239250 cd02952 TRP14_like 1 catalytic residues 0 0 1 1 39,42 1 -239251 cd02953 DsbDgamma 1 catalytic residues 0 0 1 1 22,25 1 -239251 cd02953 DsbDgamma 2 DsbD alpha interface 0 1 1 0 20,21,22,24,26,30,31,71,72,73,84,86,87,90,91,92,101 2 -239252 cd02954 DIM1 1 first critical site 0 0 1 1 11,13,14,76,77,78 0 -239252 cd02954 DIM1 2 second critical site 0 0 1 1 30,31,32,33 0 -239253 cd02955 SSP411 1 catalytic residues 0 0 1 1 26,29 1 -239257 cd02959 ERp19 1 catalytic residues 0 0 1 1 30,33 1 -239258 cd02960 AGR 1 putative catalytic residues 0 0 1 1 34,37 1 -239259 cd02961 PDI_a_family 1 catalytic residues 0 0 1 1 26,29 1 -239261 cd02963 TRX_DnaJ 1 catalytic residues 0 0 1 1 35,38 1 -239262 cd02964 TryX_like_family 1 catalytic residues 0 1 1 1 28,31 1 -239264 cd02966 TlpA_like_family 1 catalytic residues 0 0 1 1 30,33 1 -239265 cd02967 mauD 1 catalytic residues 0 0 1 1 32,35 1 -239266 cd02968 SCO 1 Cu(I) binding site 0 0 1 0 33,37,122 4 -239267 cd02969 PRX_like1 1 putative catalytic residue 0 0 1 1 36 1 -239268 cd02970 PRX_like2 1 putative catalytic residues 0 0 1 1 35,38 1 -239269 cd02971 PRX_family 1 catalytic triad 0 0 1 1 34,37,110 1 -239270 cd02972 DsbA_family 1 catalytic residues 0 0 1 1 8,11 1 -239271 cd02973 TRX_GRX_like 1 catalytic residues 0 0 1 1 10,13 1 -239272 cd02974 AhpF_NTD_N 1 catalytic residue 0 0 1 1 84 1 -239273 cd02975 PfPDO_like_N 1 catalytic residues 0 0 1 1 33,36 1 -239274 cd02976 NrdH 1 catalytic residues 0 0 1 1 9,12 1 -239275 cd02977 ArsC_family 1 catalytic residue 0 0 1 1 8 1 -239276 cd02978 KaiB_like 1 dimer interface 0 1 1 0 41,44,45,46,47,50,51,52,54,57 2 -239276 cd02978 KaiB_like 2 tetramer interface 0 1 1 1 1,20,23,24,48,51,53,57,60,61,64,65 2 -239277 cd02979 PHOX_C 1 dimer interface 0 1 1 1 13,15,85,86,89,90,108 2 -239278 cd02980 TRX_Fd_family 1 [2Fe-2S] cluster binding site 0 1 1 0 5,10,42,46 4 -239278 cd02980 TRX_Fd_family 2 dimer interface 0 1 1 0 1,3,39,40,41 2 -239283 cd02985 TRX_CDSP32 1 catalytic residues 0 0 1 1 26,29 1 -239284 cd02986 DLP 1 first critical site 0 0 1 1 11,13,14,76,77,78 0 -239284 cd02986 DLP 2 second critical site 0 0 1 1 30,31,32,33 0 -239285 cd02987 Phd_like_Phd 1 G protein beta interface 0 1 1 1 0,3,4,5,6,9,11,12,14,43,47,142,145,146,147,148,149,172,173,174 2 -239286 cd02988 Phd_like_VIAF 1 putative G protein beta interface 0 0 1 1 0,3,4,5,6,9,11,12,14,64,68,159,162,163,164,165,166,189,190,191 2 -239290 cd02992 PDI_a_QSOX 1 catalytic residues 0 0 1 1 30,33 1 -239291 cd02993 PDI_a_APS_reductase 1 catalytic residues 0 0 1 1 32,35 1 -239292 cd02994 PDI_a_TMX 1 catalytic residues 0 0 1 1 27,30 1 -239293 cd02995 PDI_a_PDI_a'_C 1 catalytic residues 0 0 1 1 29,32,94 1 -239294 cd02996 PDI_a_ERp44 1 catalytic residue 0 0 1 1 29 1 -239295 cd02997 PDI_a_PDIR 1 catalytic residues 0 0 1 1 28,31 1 -239296 cd02998 PDI_a_ERp38 1 catalytic residues 0 0 1 1 29,32,95 1 -239297 cd02999 PDI_a_ERp44_like 1 catalytic residue 0 0 1 1 29 1 -239298 cd03000 PDI_a_TMX3 1 catalytic residues 0 0 1 1 26,29,90 1 -239299 cd03001 PDI_a_P5 1 catalytic residues 0 0 1 1 29,32,92 1 -239300 cd03002 PDI_a_MPD1_like 1 catalytic residues 0 0 1 1 29,32,98 1 -239301 cd03003 PDI_a_ERdj5_N 1 catalytic residues 0 0 1 1 29,32,91 1 -239302 cd03004 PDI_a_ERdj5_C 1 catalytic residues 0 0 1 1 30,33 1 -239303 cd03005 PDI_a_ERp46 1 catalytic residues 0 0 1 1 27,30,92 1 -239304 cd03006 PDI_a_EFP1_N 1 putative catalytic residue 0 0 1 1 40 1 -239305 cd03007 PDI_a_ERp29_N 1 dimer interface 0 1 1 0 0,1,3,6,8,16,18,48,49,50 2 -239306 cd03008 TryX_like_RdCVF 1 putative catalytic residues 0 0 1 1 36,39 1 -239307 cd03009 TryX_like_TryX_NRX 1 catalytic residues 0 1 1 1 29,32 1 -239308 cd03010 TlpA_like_DsbE 1 catalytic residues 0 0 1 1 36,39 1 -239308 cd03010 TlpA_like_DsbE 2 central insert 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 0 -239309 cd03011 TlpA_like_ScsD_MtbDsbE 1 catalytic residues 0 0 1 1 31,34 1 -239310 cd03012 TlpA_like_DipZ_like 1 catalytic residues 0 0 1 1 34,37 1 -239311 cd03013 PRX5_like 1 catalytic triad 0 0 1 1 41,44,122 1 -239311 cd03013 PRX5_like 2 dimer interface 0 1 1 1 42,74,76,97,98,119 2 -239312 cd03014 PRX_Atyp2cys 1 catalytic triad 0 0 1 1 38,41,110 1 -239312 cd03014 PRX_Atyp2cys 2 dimer interface 0 1 1 1 35,37,66,67,73,89,105,106 2 -239312 cd03014 PRX_Atyp2cys 3 peroxidatic and resolving cysteines 0 1 1 1 41,75 1 -239313 cd03015 PRX_Typ2cys 1 catalytic triad 0 0 1 1 41,44,120 1 -239313 cd03015 PRX_Typ2cys 2 dimer interface 0 1 1 1 0,42,43,46,109,119,132,133,134,136,137,138,142,143,150,165,166,167,168 2 -239313 cd03015 PRX_Typ2cys 3 decamer (pentamer of dimers) interface 0 1 1 1 40,74,75,100,102,114 2 -239313 cd03015 PRX_Typ2cys 4 peroxidatic and resolving cysteines 0 1 1 1 44,165 1 -239314 cd03016 PRX_1cys 1 catalytic triad 0 0 1 1 37,40,117 1 -239314 cd03016 PRX_1cys 2 dimer interface 0 1 1 1 0,38,41,42,43,46,78,81,104,115,129,130,131,133,134,135,137,138,139,140,141,142,144,147,151,152,161,162,164,165,197,200 2 -239314 cd03016 PRX_1cys 3 decamer (pentamer of dimers) interface 0 1 1 1 12,66,67,68,70,71,73,74,76,77,86,95,96,106,113,114,177,195 2 -239315 cd03017 PRX_BCP 1 catalytic triad 0 0 1 1 35,38,110 1 -239316 cd03018 PRX_AhpE_like 1 catalytic triad 0 0 1 1 40,43,114 1 -239316 cd03018 PRX_AhpE_like 2 dimer interface 0 1 1 1 22,23,25 2 -239317 cd03019 DsbA_DsbA 1 catalytic residues 0 0 1 1 26,28,29,144 1 -239317 cd03019 DsbA_DsbA 2 alpha helical domain 0 0 1 1 63,64,65,66,67,68,69,70,71,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,105,106,107,113,114,115,116,117,118,119,120,121,122 0 -239317 cd03019 DsbA_DsbA 3 hinge region 0 0 1 1 56,57,58 0 -239318 cd03020 DsbA_DsbC_DsbG 1 catalytic residues 0 1 1 1 88,91 1 -239318 cd03020 DsbA_DsbC_DsbG 2 dimer interface 0 1 1 0 31,32,33,34,35,36,37,38 2 -239318 cd03020 DsbA_DsbC_DsbG 3 dimerization domain 0 0 1 1 0,1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 2 -239319 cd03021 DsbA_GSTK 1 GSH binding site 0 1 1 1 10,11,12,47,56,177,178,179,195,197,198,199 5 -239319 cd03021 DsbA_GSTK 2 dimer interface 0 1 1 0 45,47,48,53,55,59,63,172,175,193,195,198,199,205 2 -239319 cd03021 DsbA_GSTK 3 catalytic residue 0 0 1 1 10 1 -239320 cd03022 DsbA_HCCA_Iso 1 putative catalytic residue 0 0 1 1 8 1 -239321 cd03023 DsbA_Com1_like 1 catalytic residues 0 0 1 1 16,19 1 -239322 cd03024 DsbA_FrnE 1 catalytic residues 0 0 1 1 8,11 1 -239323 cd03025 DsbA_FrnE_like 1 catalytic residues 0 0 1 1 10,13 1 -239324 cd03026 AhpF_NTD_C 1 catalytic residues 0 0 1 1 23,26 1 -239325 cd03027 GRX_DEP 1 putative GSH binding site 0 0 1 1 7,10,11,12,50,51 5 -239325 cd03027 GRX_DEP 2 catalytic residues 0 0 1 1 10,13 1 -239326 cd03028 GRX_PICOT_like 1 catalytic residues 0 0 1 1 22,25 1 -239326 cd03028 GRX_PICOT_like 2 putative GSH binding site 0 0 1 0 14,22,23,24,62,63 5 -239327 cd03029 GRX_hybridPRX5 1 GSH binding site 0 0 1 1 7,10,11,12,49,50 5 -239327 cd03029 GRX_hybridPRX5 2 catalytic residues 0 0 1 1 10,13 1 -239329 cd03031 GRX_GRX_like 1 catalytic residue 0 0 1 1 18 1 -239329 cd03031 GRX_GRX_like 2 putative GSH binding site 0 0 1 0 6,15,16,17,59,60 5 -239330 cd03032 ArsC_Spx 1 thiol/disulfide switch 0 0 1 1 9,12 0 -239330 cd03032 ArsC_Spx 2 putative catalytic residues 0 0 1 1 9,57,91,104 1 -239331 cd03033 ArsC_15kD 1 putative catalytic residues 0 0 1 1 9,55,89,102 1 -239332 cd03034 ArsC_ArsC 1 catalytic residues 0 1 1 1 8,56,90,103 1 -239333 cd03035 ArsC_Yffb 1 putative catalytic residues 0 0 1 1 8,54,89,102 1 -239334 cd03036 ArsC_like 1 putative ArsC-like catalytic residues 0 0 1 1 8,56,92,105 0 -239334 cd03036 ArsC_like 2 putative TRX-like catalytic residues 0 0 1 1 8,11 1 -239335 cd03037 GST_N_GRX2 1 catalytic residues 0 0 1 1 8,11 1 -239335 cd03037 GST_N_GRX2 2 GSH binding site (G-site) 0 0 1 1 8,10,46,47,48,60,61 5 -239335 cd03037 GST_N_GRX2 3 C-terminal domain interface 0 1 1 0 5,6,7,9,12,13,15,16,17,19,20,29,30,31,32,33,35,45,62,65,66,69,70 2 -239335 cd03037 GST_N_GRX2 4 putative dimer interface 0 0 1 1 46,59,60,62,63,66 2 -239336 cd03038 GST_N_etherase_LigE 1 putative GSH binding site (G-site) 0 0 1 1 17,56,57,58,70,71 5 -239336 cd03038 GST_N_etherase_LigE 2 putative dimer interface 0 0 1 1 56,69,70,72,73,76 2 -239336 cd03038 GST_N_etherase_LigE 3 putative C-terminal domain interface 0 0 1 1 17,19,20,22,23,26,27,72,75,76 2 -239337 cd03039 GST_N_Sigma_like 1 GSH binding site (G-site) 0 1 1 1 4,10,48,49,50,61,62 5 -239337 cd03039 GST_N_Sigma_like 2 dimer interface 0 1 1 1 47,60,61,63,67,71 2 -239337 cd03039 GST_N_Sigma_like 3 C-terminal domain interface 0 1 1 0 6,8,9,10,12,13,15,16,19,20,29,63,67,70 2 -239338 cd03040 GST_N_mPGES2 1 GRX-like active site 0 1 1 1 6,8,9,10,11,12 1 -239338 cd03040 GST_N_mPGES2 2 C-terminal domain interface 0 1 1 0 7,8,9,13,14,16,17,21,32,33,34,38,65,69 2 -239338 cd03040 GST_N_mPGES2 3 putative dimer interface 0 0 1 1 46,62,63,65,66,69 2 -239339 cd03041 GST_N_2GST_N 1 putative GSH binding site (G-site) 0 0 1 1 11,49,50,51,64,65 5 -239339 cd03041 GST_N_2GST_N 2 putative dimer interface 0 0 1 1 49,63,64,66,67,70 2 -239339 cd03041 GST_N_2GST_N 3 putative C-terminal domain interface 0 0 1 0 11,13,14,16,17,20,21,66,69,70 2 -239340 cd03042 GST_N_Zeta 1 GSH binding site (G-site) 0 1 1 1 8,10,13,37,50,51,63,64 5 -239340 cd03042 GST_N_Zeta 2 putative dimer interface 0 0 1 1 50,62,63,65,66,69 2 -239340 cd03042 GST_N_Zeta 3 C-terminal domain interface 0 1 1 0 6,12,13,15,27,65,69 2 -239341 cd03043 GST_N_1 1 putative GSH binding site (G-site) 0 0 1 1 11,50,51,52,63,64 5 -239341 cd03043 GST_N_1 2 putative dimer interface 0 0 1 1 50,62,63,65,66,69 2 -239341 cd03043 GST_N_1 3 putative C-terminal domain interface 0 0 1 1 11,13,14,16,17,20,21,65,68,69 2 -239342 cd03044 GST_N_EF1Bgamma 1 putative GSH binding site (G-site) 0 0 1 1 10,49,50,51,63,64 5 -239342 cd03044 GST_N_EF1Bgamma 2 putative dimer interface 0 0 1 1 49,62,63,65,66,69 2 -239342 cd03044 GST_N_EF1Bgamma 3 C-terminal domain interface 0 1 1 0 9,12,15,16,19,65 2 -239343 cd03045 GST_N_Delta_Epsilon 1 GSH binding site (G-site) 0 1 1 1 8,49,50,51,63,64 5 -239343 cd03045 GST_N_Delta_Epsilon 2 dimer interface 0 1 1 1 47,48,59,62,65,70 2 -239343 cd03045 GST_N_Delta_Epsilon 3 C-terminal domain interface 0 1 1 0 6,7,9,12,16,19,20,65,68 2 -239344 cd03046 GST_N_GTT1_like 1 putative GSH binding site (G-site) 0 0 1 1 9,49,50,51,62,63 5 -239344 cd03046 GST_N_GTT1_like 2 putative dimer interface 0 0 1 1 49,61,62,64,65,68 2 -239344 cd03046 GST_N_GTT1_like 3 putative C-terminal domain interface 0 0 1 1 9,11,12,14,15,18,19,64,67,68 2 -239345 cd03047 GST_N_2 1 putative GSH binding site (G-site) 0 0 1 1 10,50,51,52,63,64 5 -239345 cd03047 GST_N_2 2 putative dimer interface 0 0 1 1 50,62,63,65,66,69 2 -239345 cd03047 GST_N_2 3 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,65,68,69 2 -239346 cd03048 GST_N_Ure2p_like 1 GSH binding site (G-site) 0 1 1 1 10,50,51,52,66,67 5 -239346 cd03048 GST_N_Ure2p_like 2 dimer interface 0 1 1 1 47,48,50,63,65,66,69 2 -239346 cd03048 GST_N_Ure2p_like 3 C-terminal domain interface 0 1 1 0 9,10,13,16,19,20,72 2 -239347 cd03049 GST_N_3 1 putative GSH binding site (G-site) 0 0 1 1 10,49,50,51,63,64 5 -239347 cd03049 GST_N_3 2 putative dimer interface 0 0 1 1 49,62,63,65,66,69 2 -239347 cd03049 GST_N_3 3 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,65,68,69 2 -239348 cd03050 GST_N_Theta 1 GSH binding site (G-site) 0 1 1 1 8,9,37,38,50,51,63,64 5 -239348 cd03050 GST_N_Theta 2 dimer interface 0 1 1 1 47,59,60,62,63,66 2 -239348 cd03050 GST_N_Theta 3 C-terminal domain interface 0 1 1 0 6,7,9,12,13,15,16,17,20,34 2 -239348 cd03050 GST_N_Theta 4 sulfate binding site 0 1 1 1 9 0 -239349 cd03051 GST_N_GTT2_like 1 putative GSH binding site (G-site) 0 0 1 1 10,50,51,52,64,65 5 -239349 cd03051 GST_N_GTT2_like 2 putative dimer interface 0 0 1 1 50,63,64,66,67,70 2 -239349 cd03051 GST_N_GTT2_like 3 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,66,69,70 2 -239350 cd03052 GST_N_GDAP1 1 putative GSH binding site (G-site) 0 0 1 1 10,50,51,52,63,64 5 -239350 cd03052 GST_N_GDAP1 2 putative dimer interface 0 0 1 1 50,62,63,65,66,69 2 -239350 cd03052 GST_N_GDAP1 3 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,65,68,69 2 -239351 cd03053 GST_N_Phi 1 GSH binding site (G-site) 0 1 1 1 11,51,52,53,64,65 5 -239351 cd03053 GST_N_Phi 2 dimer interface 0 1 1 1 49,51,60,63,64,66,67,70,74 2 -239351 cd03053 GST_N_Phi 3 C-terminal domain interface 0 1 1 0 10,13,14,17,20,21,66,69,70 2 -239352 cd03054 GST_N_Metaxin 1 putative GSH binding site 0 0 1 1 17,47,48,49,60,61 5 -239352 cd03054 GST_N_Metaxin 2 putative dimer interface 0 0 1 1 47,59,60,62,63,66 2 -239352 cd03054 GST_N_Metaxin 3 putative C-terminal domain interface 0 0 1 1 17,19,20,22,23,26,27,62,65,66 2 -239353 cd03055 GST_N_Omega 1 GSH binding site (G-site) 0 1 1 1 26,28,53,65,66,67,79,80 5 -239353 cd03055 GST_N_Omega 2 active site cysteine 0 0 1 1 26 1 -239353 cd03055 GST_N_Omega 3 putative dimer interface 0 0 1 1 65,78,79,81,82,85 2 -239353 cd03055 GST_N_Omega 4 C-terminal domain interface 0 1 1 0 2,3,23,24,25,27,30,31,33,34,35,37,38,49,51 2 -239354 cd03056 GST_N_4 1 putative GSH binding site (G-site) 0 0 1 1 10,50,51,52,63,64 5 -239354 cd03056 GST_N_4 2 putative dimer interface 0 0 1 1 50,62,63,65,66,69 2 -239354 cd03056 GST_N_4 3 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,65,68,69 2 -239355 cd03057 GST_N_Beta 1 GSH binding site (G-site) 0 1 1 1 9,49,50,63,64 5 -239355 cd03057 GST_N_Beta 2 dimer interface 0 1 1 1 49,62,63,65,70,73 2 -239355 cd03057 GST_N_Beta 3 C-terminal domain interface 0 1 1 0 6,7,12,14,18,19,69,73 2 -239356 cd03058 GST_N_Tau 1 GSH binding site (G-site) 0 1 1 1 8,10,35,48,49,61,62 5 -239356 cd03058 GST_N_Tau 2 dimer interface 0 1 1 1 57,58,61,67,71 2 -239356 cd03058 GST_N_Tau 3 C-terminal domain interface 0 1 1 0 13,20,67 2 -239357 cd03059 GST_N_SspA 1 putative GSH binding site (G-site) 0 0 1 1 10,47,48,49,60,61 5 -239357 cd03059 GST_N_SspA 2 dimer interface 0 1 1 1 45,56,57,62,66,70 2 -239357 cd03059 GST_N_SspA 3 C-terminal domain interface 0 1 1 0 6,7,10,12,13,15,16,19,20,62,65,66 2 -239358 cd03060 GST_N_Omega_like 1 putative GSH binding site (G-site) 0 0 1 1 8,10,35,47,48,49,61,62 5 -239358 cd03060 GST_N_Omega_like 2 active site cysteine 0 0 1 1 8 1 -239358 cd03060 GST_N_Omega_like 3 putative dimer interface 0 0 1 1 47,60,61,63,64,67 2 -239358 cd03060 GST_N_Omega_like 4 putative C-terminal domain interface 0 0 1 1 10,12,13,15,16,19,20,63,66,67 2 -239359 cd03061 GST_N_CLIC 1 GSH binding site 0 1 1 1 10,21,23,61,74 5 -239359 cd03061 GST_N_CLIC 2 dimer interface of oxidized form 0 1 1 1 23,36,37,38,39,76,79,80,86,88,89,90 2 -239359 cd03061 GST_N_CLIC 3 C-terminal domain interface 0 1 1 0 12,13,17,20,25,26,29 2 -239360 cd03062 TRX_Fd_Sucrase 1 putative [2Fe-2S] cluster binding site 0 0 1 1 6,15,45,49 4 -239360 cd03062 TRX_Fd_Sucrase 2 putative dimer interface 0 0 1 1 2,4,42,43,44 2 -239361 cd03063 TRX_Fd_FDH_beta 1 putative dimer interface 0 0 1 1 1,3,37,38,39 2 -239362 cd03064 TRX_Fd_NuoE 1 [2Fe-2S] cluster binding site 0 0 1 1 6,11,47,51 4 -239362 cd03064 TRX_Fd_NuoE 2 putative dimer interface 0 0 1 1 2,4,44,45,46 2 -239363 cd03065 PDI_b_Calsequestrin_N 1 front-to-front dimer interface 0 1 1 1 0,2,4,5,6,7,8,41,44,45,47,54,63 2 -239372 cd03074 PDI_b'_Calsequestrin_C 1 front-to-front dimer interface 0 1 1 1 10,11,30,70 2 -239373 cd03075 GST_N_Mu 1 GSH binding site (G-site) 0 1 1 1 4,5,43,47,56,57,69,70 5 -239373 cd03075 GST_N_Mu 2 dimer interface 0 1 1 1 53,54,65,69,75,76,79 2 -239373 cd03075 GST_N_Mu 3 C-terminal domain interface 0 1 1 0 7,8,9,12,15,19,22,32,71,74,75 2 -239374 cd03076 GST_N_Pi 1 GSH binding site (G-site) 0 1 1 1 5,11,36,41,48,49,61,62 5 -239374 cd03076 GST_N_Pi 2 dimer interface 0 1 1 1 45,46,60,61,64,67,71 2 -239374 cd03076 GST_N_Pi 3 C-terminal domain interface 0 1 1 0 8,9,10,13,21,22,63,66,67 2 -239375 cd03077 GST_N_Alpha 1 GSH binding site (G-site) 0 1 1 1 41,50,51,63,64 5 -239375 cd03077 GST_N_Alpha 2 dimer interface 0 1 1 1 48,49,57,62,63,65,66,69,70,74 2 -239375 cd03077 GST_N_Alpha 3 C-terminal domain interface 0 1 1 0 7,9,11,13,14,17,20,21,28,32,65,68,69 2 -239376 cd03078 GST_N_Metaxin1_like 1 putative GSH binding site 0 0 1 1 17,47,48,49,60,61 5 -239376 cd03078 GST_N_Metaxin1_like 2 putative dimer interface 0 0 1 1 47,59,60,62,63,66 2 -239376 cd03078 GST_N_Metaxin1_like 3 putative C-terminal domain interface 0 0 1 1 17,19,20,22,23,26,27,62,65,66 2 -239377 cd03079 GST_N_Metaxin2 1 putative GSH binding site (G-site) 0 0 1 1 18,49,50,51,62,63 5 -239377 cd03079 GST_N_Metaxin2 2 putative dimer interface 0 0 1 1 49,61,62,64,65,68 2 -239377 cd03079 GST_N_Metaxin2 3 putative C-terminal domain interface 0 0 1 1 18,20,21,23,24,27,28,64,67,68 2 -239378 cd03080 GST_N_Metaxin_like 1 putative GSH binding site 0 0 1 1 18,48,49,50,61,62 5 -239378 cd03080 GST_N_Metaxin_like 2 putative dimer interface 0 0 1 1 48,60,61,63,64,67 2 -239378 cd03080 GST_N_Metaxin_like 3 putative C-terminal domain interface 0 0 1 1 18,20,21,23,24,27,28,63,66,67 2 -239379 cd03081 TRX_Fd_NuoE_FDH_gamma 1 [2Fe-2S] cluster binding site 0 0 1 1 6,11,47,51 4 -239379 cd03081 TRX_Fd_NuoE_FDH_gamma 2 putative dimer interface 0 0 1 1 2,4,44,45,46 2 -239380 cd03082 TRX_Fd_NuoE_W_FDH_beta 1 [2Fe-2S] cluster binding site 0 0 1 1 6,11,39,43 4 -239380 cd03082 TRX_Fd_NuoE_W_FDH_beta 2 putative dimer interface 0 0 1 1 2,4,36,37,38 2 -239381 cd03083 TRX_Fd_NuoE_hoxF 1 putative dimer interface 0 0 1 1 2,4,44,45,46 2 -100086 cd03084 phosphohexomutase 1 active site 0 1 1 0 2,4,7,37,38,39,47,181,183,185,186,225,246,247,248,265,267,269,323,325,326,327,332 1 -100086 cd03084 phosphohexomutase 2 metal binding site 0 1 1 0 37,181,183,185 4 -100086 cd03084 phosphohexomutase 3 substrate binding site 0 1 1 0 4,37,186,225,246,248,265,267,269,323,325,326,327,332 5 -100087 cd03085 PGM1 1 active site 0 1 1 0 111,112,113,277,279,281,282,347,377,488,490,491,492,500 1 -100087 cd03085 PGM1 2 metal binding site 0 1 1 0 111,277,279,281 4 -100087 cd03085 PGM1 3 substrate binding site 0 0 1 1 15,111,282,324,345,347,364,366,368,488,490,491,492,500 5 -100087 cd03085 PGM1 4 dimer interface 0 1 1 1 41,42,47,48,101,127,128,129,355 2 -100088 cd03086 PGM3 1 active site 0 1 1 0 7,43,44,260,262,264,265,337,338,339,356,358,360,481,483,484,485,490 1 -100088 cd03086 PGM3 2 metal binding site 0 1 1 0 260,262,264 4 -100088 cd03086 PGM3 3 substrate binding site 0 1 1 0 337,338,339,356,358,360,481,483,484,485,490 5 -100089 cd03087 PGM_like1 1 active site 0 0 1 1 2,4,7,91,92,93,101,232,234,236,237,274,295,296,297,314,316,318,407,409,410,411,416 1 -100089 cd03087 PGM_like1 2 metal binding site 0 1 1 0 91,232,234,236 4 -100089 cd03087 PGM_like1 3 substrate binding site 0 0 1 1 4,91,237,274,295,297,314,316,318,407,409,410,411,416 5 -100090 cd03088 ManB 1 active site 0 0 1 1 2,4,7,94,95,96,104,232,234,236,237,271,290,291,292,314,316,318,430,432,433,434,439 1 -100090 cd03088 ManB 2 metal binding site 0 0 1 1 94,232,234,236 4 -100090 cd03088 ManB 3 substrate binding site 0 0 1 1 4,94,237,271,290,292,314,316,318,430,432,433,434,439 5 -100091 cd03089 PMM_PGM 1 active site 0 1 1 0 2,4,7,95,96,97,105,232,234,236,237,275,296,297,298,315,317,319,411,413,414,415 1 -100091 cd03089 PMM_PGM 2 metal binding site 0 1 1 0 95,232,234,236 4 -100091 cd03089 PMM_PGM 3 substrate binding site 0 1 1 0 4,7,95,237,275,296,298,315,317,319,411,413,414,415 5 -349762 cd03108 AdSS 1 active site 0 1 1 1 9,10,11,12,13,14,15,16,36,37,38,39,40,125,126,127,173,174,178,188,189,223,224,248,249,250,251,253,255,281,283,284,305,306,307,308 1 -349762 cd03108 AdSS 2 dimer interface 0 1 1 0 68,100,102,115,124,132,135,136,137,138,139,140,141,142,143,145,155,156,159,180,181,182,183,185,186,188,190,196,197,199,200,203,204,267,270,271,272,273 2 -349763 cd03109 DTBS 1 active site 0 1 1 0 9,10,11,12,13,14,15,35,39,48,74,75,109,111,112,116,169,170 1 -349763 cd03109 DTBS 2 dimer interface 0 1 1 0 7,8,9,73,74,75,78,112,113,114,115,116,125,143,144,147,148,150,151,152,154,155,180,187 2 -349764 cd03110 SIMIBI_bact_arch 1 putative active site 0 0 1 1 7,8,9,10,11,12,13,14,32,165,168,217,218,220 1 -349765 cd03111 CpaE-like 1 active site 0 1 0 0 6,8,9,10,11,12,13,14,15,38,43,47,119,174,175,200,201,202,206,210 1 -349765 cd03111 CpaE-like 2 dimer interface 0 1 0 0 8,9,10,41,42,43,45,46,47,89,146,147,150,151,154,158,207,210,211 2 -349766 cd03112 CobW-like 1 Zn binding site 0 1 1 0 32,37,63 4 -349766 cd03112 CobW-like 2 putative active site 0 0 1 1 9,10,11,12,13,14,90,154,155 1 -349767 cd03113 CTPS_N 1 active site 0 1 1 0 10,11,12,13,14,15,16,36,68,138,145,146,147,209,236,237,238,239,242,245 1 -349767 cd03113 CTPS_N 2 dimer interface 0 1 1 0 8,9,10,11,142,143,144,145,185,187,188,191 2 -349768 cd03114 MMAA-like 1 active site 0 1 1 0 53,54,55,56,57,58,59,60,191,192,194,230,231,232 1 -349768 cd03114 MMAA-like 2 dimer interface 0 1 1 0 32,35,36,128,174,175,178,179,180,181,182,183,207,208,211,212,213,224 2 -349769 cd03115 SRP_G_like 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,18,36,39,45,88,91,93,146,147,149,172,173,174,175 1 -349769 cd03115 SRP_G_like 2 dimer interface 0 1 1 0 8,9,39,40,41,44,45,93,94,95,122,123,124,125,147,149,150,151,152,175 2 -349769 cd03115 SRP_G_like 3 activator binding site 0 1 1 0 14,21,175,178 2 -349769 cd03115 SRP_G_like 4 heterodimer interface 0 1 1 0 8,9,39,40,41,44,45,48,93,94,95,120,122,123,124,125,129,130,147,149,150,151,152,175 2 -349769 cd03115 SRP_G_like 5 RNA binding site 1 0 1 1 0 7,8,9,39,40,41,44,45,48,58,59,72,75,76,91,93,94,95,99,105,122,123,124,125,129,147,149,150,151,152,175 3 -349769 cd03115 SRP_G_like 6 RNA binding site 2 0 1 1 0 21,78,179,191 3 -349770 cd03116 MobB 1 putative active site 0 0 1 1 8,9,10,11,12,13,14,34,36,97,100,132,133 1 -349770 cd03116 MobB 2 dimer interface 0 1 1 0 17,20,21,24,30,31,32,33,34,35,36,51,52,55,56,57,58,59,60,61,62,65,66,67,68,69,70,71,72,81,82,85,86 2 -239391 cd03117 alpha_CA_IV_XV_like 1 active site 0 1 1 1 41,66,68,70,80,93,175 1 -239391 cd03117 alpha_CA_IV_XV_like 2 zinc binding site 0 0 1 0 68,70,93 4 -239392 cd03118 alpha_CA_V 1 active site 0 1 1 1 39,67,69,71,81,94,174 1 -239392 cd03118 alpha_CA_V 2 zinc binding site 0 0 1 0 69,71,94 4 -239393 cd03119 alpha_CA_I_II_III_XIII 1 active site 0 1 1 1 63,91,93,95,105,118,197 1 -239393 cd03119 alpha_CA_I_II_III_XIII 2 zinc binding site 0 1 1 0 93,95,118 4 -239397 cd03123 alpha_CA_VI_IX_XII_XIV 1 active site 0 0 1 1 55,79,81,83,94,107,189 1 -239397 cd03123 alpha_CA_VI_IX_XII_XIV 2 zinc binding site 0 1 1 0 81,83,107 4 -239398 cd03124 alpha_CA_prokaryotic_like 1 active site 0 1 1 1 54,78,80,82,86,99,166 1 -239398 cd03124 alpha_CA_prokaryotic_like 2 zinc binding site 0 0 1 0 80,82,99 4 -239399 cd03125 alpha_CA_VI 1 active site 0 0 1 1 54,78,80,82,94,107,189 1 -239399 cd03125 alpha_CA_VI 2 zinc binding site 0 0 1 0 80,82,107 4 -239400 cd03126 alpha_CA_XII_XIV 1 active site 0 1 1 1 55,78,80,82,93,106,187 1 -239400 cd03126 alpha_CA_XII_XIV 2 zinc binding site 0 0 1 0 80,82,106 4 -239401 cd03127 tetraspanin_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -153222 cd03128 GAT_1 1 conserved cys residue 0 0 1 0 85 1 -153223 cd03129 GAT1_Peptidase_E_like 1 active site nucleophile 0 0 1 1 120 1 -153223 cd03129 GAT1_Peptidase_E_like 2 catalytic triad 0 0 1 1 120,158,185 1 -153224 cd03130 GATase1_CobB 1 catalytic triad 0 0 1 1 81,185,187 1 -153225 cd03131 GATase1_HTS 1 conserved cys residue 0 0 1 0 104 1 -153225 cd03131 GATase1_HTS 2 proposed active site lysine 0 0 1 1 9 1 -153226 cd03132 GATase1_catalase 1 domain interactions 0 1 1 1 36,37,38,85,88 0 -153227 cd03133 GATase1_ES1 1 conserved cys residue 0 0 1 0 131 1 -153228 cd03134 GATase1_PfpI_like 1 conserved cys residue 0 0 1 0 100 1 -153228 cd03134 GATase1_PfpI_like 2 proposed catalytic triad 0 1 1 1 100,101 1 -153229 cd03135 GATase1_DJ-1 1 conserved cys residue 0 0 1 0 99 1 -153230 cd03136 GATase1_AraC_ArgR_like 1 conserved cys residue 0 0 1 0 101 1 -153231 cd03137 GATase1_AraC_1 1 conserved cys residue 0 0 1 0 102 1 -153232 cd03138 GATase1_AraC_2 1 conserved cys residue 0 0 1 0 110 1 -153233 cd03139 GATase1_PfpI_2 1 conserved cys residue 0 0 1 0 100 1 -153234 cd03140 GATase1_PfpI_3 1 conserved cys residue 0 0 1 0 97 1 -153235 cd03141 GATase1_Hsp31_like 1 conserved cys residue 0 0 1 0 129 1 -153235 cd03141 GATase1_Hsp31_like 2 potential catalytic triad 0 0 1 0 129,130,160 1 -153238 cd03144 GATase1_ScBLP_like 1 conserved cys residue 0 0 1 0 83 1 -153239 cd03145 GAT1_cyanophycinase 1 active site nucleophile 0 0 1 1 123 1 -153239 cd03145 GAT1_cyanophycinase 2 proposed catalytic triad 0 0 1 1 123,165,192 1 -153240 cd03146 GAT1_Peptidase_E 1 active site pocket 0 0 1 0 88,120,135,157,166,187 1 -153240 cd03146 GAT1_Peptidase_E 2 active site nucleophile 0 0 1 1 120 1 -153240 cd03146 GAT1_Peptidase_E 3 catalytic triad 0 0 1 1 120,157,187 1 -153240 cd03146 GAT1_Peptidase_E 4 oxyanion hole 0 0 1 0 88,121 1 -153241 cd03147 GATase1_Ydr533c_like 1 conserved cys residue 0 0 1 0 133 1 -153241 cd03147 GATase1_Ydr533c_like 2 potential catalytic triad 0 0 1 0 133,134,165 1 -153241 cd03147 GATase1_Ydr533c_like 3 potential oxyanion hole 0 0 1 0 102,134 0 -153241 cd03147 GATase1_Ydr533c_like 4 dimer interface 0 1 1 1 154,156,192,203,204,207,225 2 -153242 cd03148 GATase1_EcHsp31_like 1 conserved cys residue 0 0 1 0 135 1 -153242 cd03148 GATase1_EcHsp31_like 2 metal binding site 0 1 1 1 35,40,72 4 -153242 cd03148 GATase1_EcHsp31_like 3 potential catalytic triad 0 0 1 0 135,136,166 1 -153242 cd03148 GATase1_EcHsp31_like 4 potential oxyanion hole 0 0 1 0 104,105 0 -153242 cd03148 GATase1_EcHsp31_like 5 dimer interface 0 1 1 1 7,8,9,15,49,52,55,73,77 2 -239402 cd03149 alpha_CA_VII 1 active site 0 0 1 1 39,67,69,71,81,94,174 1 -239402 cd03149 alpha_CA_VII 2 zinc binding site 0 0 1 0 69,71,94 4 -239403 cd03150 alpha_CA_IX 1 active site 0 0 1 1 55,79,81,83,93,106,187 1 -239403 cd03150 alpha_CA_IX 2 zinc binding site 0 0 1 0 81,83,106 4 -239404 cd03151 CD81_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239405 cd03152 CD9_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239406 cd03153 PHEMX_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239407 cd03154 TM4SF3_like_LEL 1 dimer interface 0 0 1 1 5,10,14,16,17,20,35,38,39,42,43 2 -239408 cd03155 CD151_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,33,36,37,40,41 2 -239409 cd03156 uroplakin_I_like_LEL 1 dimer interface 0 0 1 1 2,7,11,13,14,17,33,36,37,40,41 2 -239410 cd03157 TM4SF12_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,33,36,37,40,41 2 -239411 cd03158 penumbra_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239412 cd03159 TM4SF9_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239413 cd03160 CD37_CD82_like_LEL 1 dimer interface 0 0 1 1 2,7,11,13,14,17,34,37,38,41,42 2 -239414 cd03161 TM4SF2_6_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239415 cd03162 peripherin_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,35,38,39,42,43 2 -239416 cd03163 TM4SF8_like_LEL 1 dimer interface 0 0 1 1 2,7,11,13,14,17,31,34,35,38,39 2 -239417 cd03164 CD53_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239418 cd03165 NET-5_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239419 cd03166 CD63_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239420 cd03167 oculospanin_like_LEL 1 dimer interface 0 0 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -153243 cd03169 GATase1_PfpI_1 1 conserved cys residue 0 0 1 0 114 1 -239421 cd03171 SORL_Dfx_classI 1 non-heme iron binding site 0 1 1 1 3,23,29,70,73 4 -239421 cd03171 SORL_Dfx_classI 2 dimer interface 0 1 1 0 32,40,41,42,44,45,46,58,60 2 -239422 cd03172 SORL_classII 1 non-heme iron binding site 0 1 1 1 5,7,35,41,93,96 4 -239422 cd03172 SORL_classII 2 tetramer interface 0 1 1 0 44,45,49,53,54,55,56,57,58,59,61,68,69,75,86,88,92,94,95,96,97,100,102 2 -163674 cd03174 DRE_TIM_metallolyase 1 active site 0 1 1 1 5,6,9,36,71,73,93,135,165,167,195,197,231 1 -163674 cd03174 DRE_TIM_metallolyase 2 catalytic residues 0 0 1 1 5,6,36 1 -163674 cd03174 DRE_TIM_metallolyase 3 metal binding site 0 1 1 0 6,165,195,197 4 -198287 cd03177 GST_C_Delta_Epsilon 1 dimer interface 0 1 1 1 0,2,7,10,15,48 2 -198287 cd03177 GST_C_Delta_Epsilon 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,21,22,25,29,74,77,115 5 -198287 cd03177 GST_C_Delta_Epsilon 3 N-terminal domain interface 0 1 1 0 9,12,13,66,69,73,77,108,111,115 2 -198288 cd03178 GST_C_Ure2p_like 1 dimer interface 0 1 1 1 2,3,6,7,9,10,12,13,21,24,25,29,33,35,39,40,46,50 2 -198288 cd03178 GST_C_Ure2p_like 2 N-terminal domain interface 0 1 1 0 5,11,12,72,75,76,104,106,109 2 -198289 cd03180 GST_C_2 1 putative dimer interface 0 0 1 1 6,7,10,11,14,53 2 -198289 cd03180 GST_C_2 2 putative substrate binding pocket (H-site) 0 0 1 1 13,17,18,21,22,79,82 5 -198289 cd03180 GST_C_2 3 putative N-terminal domain interface 0 0 1 1 6,13,71,74,75,78,82 2 -198290 cd03181 GST_C_EF1Bgamma_like 1 N-terminal domain interface 0 1 1 0 12,75,79,108,111,112,113 2 -198290 cd03181 GST_C_EF1Bgamma_like 2 putative dimer interface 0 0 1 1 5,6,9,10,13,50 2 -198291 cd03182 GST_C_GTT2_like 1 putative dimer interface 0 0 1 1 8,9,12,13,16,58 2 -198291 cd03182 GST_C_GTT2_like 2 putative substrate binding pocket (H-site) 0 0 1 1 15,19,20,23,24,84,87 5 -198291 cd03182 GST_C_GTT2_like 3 putative N-terminal domain interface 0 0 1 1 8,15,76,79,80,83,87 2 -198292 cd03183 GST_C_Theta 1 dimer interface 0 1 1 1 2,3,6,9,10 2 -198292 cd03183 GST_C_Theta 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,20,21,23,24,28,82,85 5 -198292 cd03183 GST_C_Theta 3 N-terminal domain interface 0 1 1 0 77,81,82,85,117,118,121,122 2 -198293 cd03184 GST_C_Omega 1 putative dimer interface 0 0 1 1 6,7,10,11,14,42 2 -198293 cd03184 GST_C_Omega 2 substrate binding pocket (H-site) 0 0 1 1 13,16,17,20,21,70,73,116 5 -198293 cd03184 GST_C_Omega 3 N-terminal domain interface 0 1 1 0 62,65,66,69,72,73,105,109,119,123 2 -198294 cd03185 GST_C_Tau 1 dimer interface 0 1 1 1 1,3,7,15 2 -198294 cd03185 GST_C_Tau 2 substrate binding pocket (H-site) 0 1 1 1 14,18,19,22,23,25,26,72,75,119,122,126 5 -198294 cd03185 GST_C_Tau 3 N-terminal domain interface 0 1 1 0 7,14,67,68,71,113 2 -198295 cd03186 GST_C_SspA 1 dimer interface 0 1 1 1 3,5,7,8,12,16 2 -198295 cd03186 GST_C_SspA 2 N-terminal domain interface 0 1 1 0 7,18,67,68,71,75,100,102,106 2 -198296 cd03187 GST_C_Phi 1 dimer interface 0 1 1 1 6,7,10,11,15 2 -198296 cd03187 GST_C_Phi 2 substrate binding pocket (H-site) 0 1 1 1 17,18,21,22,24,25,29,32,81,84 5 -198296 cd03187 GST_C_Phi 3 N-terminal domain interface 0 1 1 0 9,12,13,17,21,24,77,79,80,81,84,110,112,115,116 2 -198297 cd03188 GST_C_Beta 1 dimer interface 0 1 1 1 0,3,4,7,10,14,18,27,38,41,45 2 -198297 cd03188 GST_C_Beta 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,21,22,24,78,81,84 5 -198297 cd03188 GST_C_Beta 3 N-terminal domain interface 0 1 1 0 2,17,70,77,81,105,107,111 2 -198298 cd03189 GST_C_GTT1_like 1 putative dimer interface 0 0 1 1 11,12,15,16,19,68 2 -198298 cd03189 GST_C_GTT1_like 2 putative substrate binding pocket (H-site) 0 0 1 1 18,22,23,26,27,94,97 5 -198298 cd03189 GST_C_GTT1_like 3 putative N-terminal domain interface 0 0 1 1 11,18,86,89,90,93,97 2 -198299 cd03190 GST_C_Omega_like 1 putative dimer interface 0 0 1 1 8,9,12,13,16,47 2 -198299 cd03190 GST_C_Omega_like 2 putative substrate binding pocket (H-site) 0 0 1 1 18,19,73,76 5 -198299 cd03190 GST_C_Omega_like 3 N-terminal domain interface 0 1 0 0 15,19,20,23,24,27,65,68,69,72,76,81,109,119,120,123,124,135 2 -198300 cd03191 GST_C_Zeta 1 dimer interface 0 1 1 1 0,1,3,4,5,7,8,11,12,14,15,16,19,20,24,25,28,29,42,43,46,47,58 2 -198300 cd03191 GST_C_Zeta 2 maleylacetoacetate (MAA) substrate binding site (H site) 0 1 1 1 18,21,23,85,88 5 -198300 cd03191 GST_C_Zeta 3 N-terminal domain interface 0 1 1 0 7,11,23,77,80,85,88 2 -198301 cd03192 GST_C_Sigma_like 1 dimer interface 0 1 1 1 0,2,6,7,10,11,14 2 -198301 cd03192 GST_C_Sigma_like 2 substrate binding pocket (H-site) 0 1 1 1 13,16,17,20,21,77,80 5 -198301 cd03192 GST_C_Sigma_like 3 N-terminal domain interface 0 1 1 0 6,9,13,69,73,76,80 2 -198302 cd03193 GST_C_Metaxin 1 putative N-terminal domain interface 0 0 1 1 5,12,47,50,51,54,58 2 -198303 cd03194 GST_C_3 1 putative dimer interface 0 0 1 1 3,4,7,8,11,47 2 -198303 cd03194 GST_C_3 2 putative substrate binding pocket (H-site) 0 0 1 1 10,14,15,18,19,80,83 5 -198303 cd03194 GST_C_3 3 putative N-terminal domain interface 0 0 1 1 3,10,72,75,76,79,83 2 -198304 cd03195 GST_C_4 1 putative dimer interface 0 0 1 1 7,8,11,12,15,52 2 -198304 cd03195 GST_C_4 2 putative substrate binding pocket (H-site) 0 0 1 1 14,18,19,22,23,78,81 5 -198304 cd03195 GST_C_4 3 N-terminal domain interface 0 1 0 0 7,10,14,21,26,27,30,31,68,70,73,74,77,81,101,103,105,106,108,109,112,113 2 -198305 cd03196 GST_C_5 1 putative dimer interface 0 0 1 1 10,11,14,15,18,51 2 -198305 cd03196 GST_C_5 2 putative substrate binding pocket (H-site) 0 0 1 1 17,21,22,25,26,77,80 5 -198305 cd03196 GST_C_5 3 putative N-terminal domain interface 0 0 1 1 10,17,69,72,73,76,80 2 -198306 cd03197 GST_C_mPGES2 1 GRX-like active site 0 1 1 1 22,23,26,27,36,39,40,119,123 1 -198306 cd03197 GST_C_mPGES2 2 dimer interface 0 1 1 1 1,5,12,17,72,74 2 -198306 cd03197 GST_C_mPGES2 3 N-terminal domain interface 0 1 1 0 11,15,39,40,43,106,115,118,119 2 -198307 cd03198 GST_C_CLIC 1 N-terminal domain interface 0 1 1 0 62,63,66,70,102,103,106,107,112 2 -198308 cd03199 GST_C_GRX2 1 N-terminal domain interface 0 1 1 0 22,27,28,29,30,31,32,34,35,38,39,42,85,87,89,90,91,93,94,97,98,118,121,122,124 2 -198309 cd03200 GST_C_AIMP2 1 putative protein interface 1 0 0 1 1 17,18,19,21,22,23,24,25,26,28,29,42,45,51,52 2 -198309 cd03200 GST_C_AIMP2 2 putative protein interface 2 0 0 1 1 50,51,52,53,54,83,84,86,87,91,94,95 2 -198310 cd03201 GST_C_DHAR 1 putative N-terminal domain interface 0 0 1 1 1,8,59,62,63,66,70 2 -198311 cd03202 GST_C_etherase_LigE 1 putative dimer interface 0 0 1 1 2,3,6,7,10,68 2 -198311 cd03202 GST_C_etherase_LigE 2 putative N-terminal domain interface 0 0 1 1 2,9,86,89,90,93,97 2 -198311 cd03202 GST_C_etherase_LigE 3 putative substrate binding pocket (H-site) 0 0 1 1 9,13,14,17,18,94,97 5 -198312 cd03203 GST_C_Lambda 1 putative substrate binding pocket (H-site) 0 0 1 1 8,11,12,15,16,68,71 5 -198312 cd03203 GST_C_Lambda 2 putative N-terminal domain interface 0 0 1 1 1,8,60,63,64,67,71 2 -198313 cd03204 GST_C_GDAP1_like 1 putative dimer interface 0 0 1 1 1,2,5,6,9,39 2 -198313 cd03204 GST_C_GDAP1_like 2 putative N-terminal domain interface 0 0 1 1 1,8,67,70,71,74,78 2 -198314 cd03205 GST_C_6 1 dimer interface 0 1 0 1 1,2,4,5,6,8,9,12,19,20,25,27,28,29,30,33,36,40,43,44,47 2 -198314 cd03205 GST_C_6 2 putative substrate binding pocket (H-site) 0 0 1 1 8,12,13,16,17,70,73 5 -198314 cd03205 GST_C_6 3 N-terminal domain interface 0 1 0 0 4,8,11,12,19,62,65,66,69,73,98,102,103,105,106,107,108 2 -198315 cd03206 GST_C_7 1 putative dimer interface 0 0 1 1 1,2,5,6,9,43 2 -198315 cd03206 GST_C_7 2 putative substrate binding pocket (H-site) 0 0 1 1 8,12,13,16,17,69,72 5 -198315 cd03206 GST_C_7 3 putative N-terminal domain interface 0 0 1 1 1,8,61,64,65,68,72 2 -198316 cd03207 GST_C_8 1 dimer interface 0 1 0 1 2,3,5,6,8,9,10,11,17,32,35,43,46,50 2 -198316 cd03207 GST_C_8 2 putative substrate binding pocket (H-site) 0 0 1 1 8,12,13,16,17,72,75 5 -198316 cd03207 GST_C_8 3 N-terminal domain interface 0 1 0 0 4,8,12,16,62,63,64,67,68,70,71,74,75 2 -198317 cd03208 GST_C_Alpha 1 dimer interface 0 1 1 1 0,1,3,7,8,9,11,12,15,45 2 -198317 cd03208 GST_C_Alpha 2 substrate binding pocket (H-site) 0 1 1 1 15,21,25,45,122,130,134 5 -198317 cd03208 GST_C_Alpha 3 N-terminal domain interface 0 1 1 0 11,18,21,24,25,45,46,49,66,67,68,69,72,75,76,79,80,83,107,108,110,111,112,113,114,115 2 -198318 cd03209 GST_C_Mu 1 dimer interface 0 1 1 1 0,2,6,10,11,14,45,49 2 -198318 cd03209 GST_C_Mu 2 substrate binding pocket (H-site) 0 1 1 1 13,16,17,20,21,24,71,74,116,117,118 5 -198318 cd03209 GST_C_Mu 3 N-terminal domain interface 0 1 1 0 6,9,63,66,67,70,73,101,105 2 -198319 cd03210 GST_C_Pi 1 dimer interface 0 1 1 1 0,4,7,8,11,15,45 2 -198319 cd03210 GST_C_Pi 2 substrate binding pocket (H-site) 0 1 1 1 14,17,18,21,22,25,74,77,120,121 5 -198319 cd03210 GST_C_Pi 3 N-terminal domain interface 0 1 1 0 7,10,11,14,69,73,102,104,105,108,114,117,118,119 2 -198320 cd03211 GST_C_Metaxin2 1 putative N-terminal domain interface 0 0 1 1 5,12,85,88,89,92,96 2 -198321 cd03212 GST_C_Metaxin1_3 1 putative N-terminal domain interface 0 0 1 1 6,13,92,95,96,99,103 2 -213180 cd03213 ABCG_EPDR 1 ATP binding site 0 0 1 1 44,45,47,48,49,88,135,136,168 5 -213180 cd03213 ABCG_EPDR 2 ABC transporter signature motif 0 0 1 1 111,112,113,114,115,116,117,118,119,120 0 -213180 cd03213 ABCG_EPDR 3 Walker A/P-loop 0 0 1 1 41,42,43,44,45,46,47,48 0 -213180 cd03213 ABCG_EPDR 4 Walker B 0 0 1 1 131,132,133,134,135,136 0 -213180 cd03213 ABCG_EPDR 5 D-loop 0 0 1 1 139,140,141,142 0 -213180 cd03213 ABCG_EPDR 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213180 cd03213 ABCG_EPDR 7 H-loop/switch region 0 0 1 1 164,165,166,167,168,169,170 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 1 ATP binding site 0 1 1 1 34,35,37,38,39,79,121,122,155 5 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 2 ABC transporter signature motif 0 0 1 1 97,98,99,100,101,102,103,104,105,106 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 4 Walker B 0 0 1 1 117,118,119,120,121,122 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 5 D-loop 0 0 1 1 125,126,127,128 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 7 H-loop/switch region 0 0 1 1 151,152,153,154,155,156,157 0 -213183 cd03216 ABC_Carb_Monos_I 1 ATP binding site 0 0 1 1 35,36,38,39,40,81,106,107,139 5 -213183 cd03216 ABC_Carb_Monos_I 2 ABC transporter signature motif 0 0 1 1 82,83,84,85,86,87,88,89,90,91 0 -213183 cd03216 ABC_Carb_Monos_I 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213183 cd03216 ABC_Carb_Monos_I 4 Walker B 0 0 1 1 102,103,104,105,106,107 0 -213183 cd03216 ABC_Carb_Monos_I 5 D-loop 0 0 1 1 110,111,112,113 0 -213183 cd03216 ABC_Carb_Monos_I 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213183 cd03216 ABC_Carb_Monos_I 7 H-loop/switch region 0 0 1 1 135,136,137,138,139,140,141 0 -213184 cd03217 ABC_FeS_Assembly 1 ATP binding site 0 1 1 1 35,36,38,39,40,83,128,129,161 5 -213184 cd03217 ABC_FeS_Assembly 2 ABC transporter signature motif 0 0 1 1 104,105,106,107,108,109,110,111,112,113 0 -213184 cd03217 ABC_FeS_Assembly 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213184 cd03217 ABC_FeS_Assembly 4 Walker B 0 0 1 1 124,125,126,127,128,129 0 -213184 cd03217 ABC_FeS_Assembly 5 D-loop 0 0 1 1 132,133,134,135 0 -213184 cd03217 ABC_FeS_Assembly 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213184 cd03217 ABC_FeS_Assembly 7 H-loop/switch region 0 0 1 1 157,158,159,160,161,162,163 0 -213185 cd03218 ABC_YhbG 1 ATP binding site 0 0 1 1 35,36,38,39,40,81,157,158,190 5 -213185 cd03218 ABC_YhbG 2 ABC transporter signature motif 0 0 1 1 133,134,135,136,137,138,139,140,141,142 0 -213185 cd03218 ABC_YhbG 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213185 cd03218 ABC_YhbG 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213185 cd03218 ABC_YhbG 5 D-loop 0 0 1 1 161,162,163,164 0 -213185 cd03218 ABC_YhbG 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213185 cd03218 ABC_YhbG 7 H-loop/switch region 0 0 1 1 186,187,188,189,190,191,192 0 -213186 cd03219 ABC_Mj1267_LivG_branched 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,167,168,200 5 -213186 cd03219 ABC_Mj1267_LivG_branched 2 ABC transporter signature motif 0 0 1 1 143,144,145,146,147,148,149,150,151,152 0 -213186 cd03219 ABC_Mj1267_LivG_branched 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213186 cd03219 ABC_Mj1267_LivG_branched 4 Walker B 0 0 1 1 163,164,165,166,167,168 0 -213186 cd03219 ABC_Mj1267_LivG_branched 5 D-loop 0 0 1 1 171,172,173,174 0 -213186 cd03219 ABC_Mj1267_LivG_branched 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213186 cd03219 ABC_Mj1267_LivG_branched 7 H-loop/switch region 0 0 1 1 196,197,198,199,200,201,202 0 -213187 cd03220 ABC_KpsT_Wzt 1 ATP binding site 0 0 1 1 57,58,60,61,62,130,166,167,199 5 -213187 cd03220 ABC_KpsT_Wzt 2 ABC transporter signature motif 0 0 1 1 142,143,144,145,146,147,148,149,150,151 0 -213187 cd03220 ABC_KpsT_Wzt 3 Walker A/P-loop 0 0 1 1 54,55,56,57,58,59,60,61 0 -213187 cd03220 ABC_KpsT_Wzt 4 Walker B 0 0 1 1 162,163,164,165,166,167 0 -213187 cd03220 ABC_KpsT_Wzt 5 D-loop 0 0 1 1 170,171,172,173 0 -213187 cd03220 ABC_KpsT_Wzt 6 Q-loop/lid 0 0 1 1 127,128,129,130 0 -213187 cd03220 ABC_KpsT_Wzt 7 H-loop/switch region 0 0 1 1 195,196,197,198,199,200,201 0 -213189 cd03222 ABC_RNaseL_inhibitor 1 ATP binding site 0 1 1 1 34,35,37,38,39,67,95,96,129 5 -213189 cd03222 ABC_RNaseL_inhibitor 2 ABC transporter signature motif 0 0 1 1 71,72,73,74,75,76,77,78,79,80 0 -213189 cd03222 ABC_RNaseL_inhibitor 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213189 cd03222 ABC_RNaseL_inhibitor 4 Walker B 0 0 1 1 91,92,93,94,95,96 0 -213189 cd03222 ABC_RNaseL_inhibitor 5 D-loop 0 0 1 1 99,100,101,102 0 -213189 cd03222 ABC_RNaseL_inhibitor 6 Q-loop/lid 0 0 1 1 64,65,66,67 0 -213189 cd03222 ABC_RNaseL_inhibitor 7 H-loop/switch region 0 0 1 1 125,126,127,128,129,130,131 0 -213191 cd03224 ABC_TM1139_LivF_branched 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,156,157,189 5 -213191 cd03224 ABC_TM1139_LivF_branched 2 ABC transporter signature motif 0 0 1 1 132,133,134,135,136,137,138,139,140,141 0 -213191 cd03224 ABC_TM1139_LivF_branched 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213191 cd03224 ABC_TM1139_LivF_branched 4 Walker B 0 0 1 1 152,153,154,155,156,157 0 -213191 cd03224 ABC_TM1139_LivF_branched 5 D-loop 0 0 1 1 160,161,162,163 0 -213191 cd03224 ABC_TM1139_LivF_branched 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213191 cd03224 ABC_TM1139_LivF_branched 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 1 ATP binding site 0 0 1 1 36,37,39,40,41,81,158,159,191 5 -213192 cd03225 ABC_cobalt_CbiO_domain1 2 ABC transporter signature motif 0 0 1 1 134,135,136,137,138,139,140,141,142,143 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 4 Walker B 0 0 1 1 154,155,156,157,158,159 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 5 D-loop 0 0 1 1 162,163,164,165 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 7 H-loop/switch region 0 0 1 1 187,188,189,190,191,192,193 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 1 ATP binding site 0 0 1 1 35,36,38,39,40,77,150,151,183 5 -213193 cd03226 ABC_cobalt_CbiO_domain2 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 4 Walker B 0 0 1 1 146,147,148,149,150,151 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 5 D-loop 0 0 1 1 154,155,156,157 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 6 Q-loop/lid 0 0 1 1 74,75,76,77 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 7 H-loop/switch region 0 0 1 1 179,180,181,182,183,184,185 0 -213194 cd03227 ABC_Class2 1 ATP binding site 0 1 1 1 30,31,33,34,35,76,105,106,138 5 -213194 cd03227 ABC_Class2 2 ABC transporter signature motif 0 0 1 1 77,78,79,80,81,82,83,84,85,86 0 -213194 cd03227 ABC_Class2 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213194 cd03227 ABC_Class2 4 Walker B 0 0 1 1 101,102,103,104,105,106 0 -213194 cd03227 ABC_Class2 5 D-loop 0 0 1 1 109,110,111,112 0 -213194 cd03227 ABC_Class2 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213194 cd03227 ABC_Class2 7 H-loop/switch region 0 0 1 1 134,135,136,137,138,139,140 0 -213195 cd03228 ABCC_MRP_Like 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,120,121,152 5 -213195 cd03228 ABCC_MRP_Like 2 ABC transporter signature motif 0 0 1 1 96,97,98,99,100,101,102,103,104,105 0 -213195 cd03228 ABCC_MRP_Like 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213195 cd03228 ABCC_MRP_Like 4 Walker B 0 0 1 1 116,117,118,119,120,121 0 -213195 cd03228 ABCC_MRP_Like 5 D-loop 0 0 1 1 124,125,126,127 0 -213195 cd03228 ABCC_MRP_Like 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213195 cd03228 ABCC_MRP_Like 7 H-loop/switch region 0 0 1 1 148,149,150,151,152,153,154 0 -213196 cd03229 ABC_Class3 1 ATP binding site 0 1 1 1 35,36,38,39,40,82,124,125,158 5 -213196 cd03229 ABC_Class3 2 ABC transporter signature motif 0 0 1 1 100,101,102,103,104,105,106,107,108,109 0 -213196 cd03229 ABC_Class3 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213196 cd03229 ABC_Class3 4 Walker B 0 0 1 1 120,121,122,123,124,125 0 -213196 cd03229 ABC_Class3 5 D-loop 0 0 1 1 128,129,130,131 0 -213196 cd03229 ABC_Class3 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213196 cd03229 ABC_Class3 7 H-loop/switch region 0 0 1 1 154,155,156,157,158,159,160 0 -213197 cd03230 ABC_DR_subfamily_A 1 ATP binding site 0 0 1 1 35,36,38,39,40,79,119,120,152 5 -213197 cd03230 ABC_DR_subfamily_A 2 ABC transporter signature motif 0 0 1 1 95,96,97,98,99,100,101,102,103,104 0 -213197 cd03230 ABC_DR_subfamily_A 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213197 cd03230 ABC_DR_subfamily_A 4 Walker B 0 0 1 1 115,116,117,118,119,120 0 -213197 cd03230 ABC_DR_subfamily_A 5 D-loop 0 0 1 1 123,124,125,126 0 -213197 cd03230 ABC_DR_subfamily_A 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213197 cd03230 ABC_DR_subfamily_A 7 H-loop/switch region 0 0 1 1 148,149,150,151,152,153,154 0 -213198 cd03231 ABC_CcmA_heme_exporter 1 ATP binding site 0 0 1 1 35,36,38,39,40,79,149,150,182 5 -213198 cd03231 ABC_CcmA_heme_exporter 2 ABC transporter signature motif 0 0 1 1 125,126,127,128,129,130,131,132,133,134 0 -213198 cd03231 ABC_CcmA_heme_exporter 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213198 cd03231 ABC_CcmA_heme_exporter 4 Walker B 0 0 1 1 145,146,147,148,149,150 0 -213198 cd03231 ABC_CcmA_heme_exporter 5 D-loop 0 0 1 1 153,154,155,156 0 -213198 cd03231 ABC_CcmA_heme_exporter 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213198 cd03231 ABC_CcmA_heme_exporter 7 H-loop/switch region 0 0 1 1 178,179,180,181,182,183,184 0 -213201 cd03234 ABCG_White 1 ATP binding site 0 0 1 1 42,43,45,46,47,87,167,168,200 5 -213201 cd03234 ABCG_White 2 ABC transporter signature motif 0 0 1 1 143,144,145,146,147,148,149,150,151,152 0 -213201 cd03234 ABCG_White 3 Walker A/P-loop 0 0 1 1 39,40,41,42,43,44,45,46 0 -213201 cd03234 ABCG_White 4 Walker B 0 0 1 1 163,164,165,166,167,168 0 -213201 cd03234 ABCG_White 5 D-loop 0 0 1 1 171,172,173,174 0 -213201 cd03234 ABCG_White 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213201 cd03234 ABCG_White 7 H-loop/switch region 0 0 1 1 196,197,198,199,200,201,202 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 1 ATP binding site 0 1 1 1 35,36,38,39,40,93,163,164,196 5 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 5 D-loop 0 0 1 1 167,168,169,170 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 6 Q-loop/lid 0 0 1 1 90,91,92,93 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 7 H-loop/switch region 0 0 1 1 192,193,194,195,196,197,198 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 1 ATP binding site 0 1 1 1 34,35,37,38,39,67,139,140,173 5 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 2 ABC transporter signature motif 0 0 1 1 115,116,117,118,119,120,121,122,123,124 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 4 Walker B 0 0 1 1 135,136,137,138,139,140 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 5 D-loop 0 0 1 1 143,144,145,146 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 6 Q-loop/lid 0 0 1 1 64,65,66,67 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 7 H-loop/switch region 0 0 1 1 169,170,171,172,173,174,175 0 -213206 cd03239 ABC_SMC_head 1 ATP binding site 0 1 1 0 31,32,34,35,36,87,122,123,155 5 -213206 cd03239 ABC_SMC_head 2 ABC transporter signature motif 0 0 1 1 94,95,96,97,98,99,100,101,102,103 0 -213206 cd03239 ABC_SMC_head 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213206 cd03239 ABC_SMC_head 4 Walker B 0 0 1 1 118,119,120,121,122,123 0 -213206 cd03239 ABC_SMC_head 5 D-loop 0 0 1 1 126,127,128,129 0 -213206 cd03239 ABC_SMC_head 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213206 cd03239 ABC_SMC_head 7 H-loop/switch region 0 0 1 1 151,152,153,154,155,156,157 0 -213207 cd03240 ABC_Rad50 1 ATP binding site 0 0 1 1 31,32,34,35,36,100,145,146,180 5 -213207 cd03240 ABC_Rad50 2 ABC transporter signature motif 0 0 1 1 115,116,117,118,119,120,121,122,123,124 0 -213207 cd03240 ABC_Rad50 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213207 cd03240 ABC_Rad50 4 Walker B 0 0 1 1 141,142,143,144,145,146 0 -213207 cd03240 ABC_Rad50 5 D-loop 0 0 1 1 149,150,151,152 0 -213207 cd03240 ABC_Rad50 6 Q-loop/lid 0 0 1 1 97,98,99,100 0 -213207 cd03240 ABC_Rad50 7 H-loop/switch region 0 0 1 1 176,177,178,179,180,181,182 0 -213208 cd03241 ABC_RecN 1 ATP binding site 0 0 1 1 30,31,33,34,35,137,198,199,230 5 -213208 cd03241 ABC_RecN 2 ABC transporter signature motif 0 0 1 1 170,171,172,173,174,175,176,177,178,179 0 -213208 cd03241 ABC_RecN 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213208 cd03241 ABC_RecN 4 Walker B 0 0 1 1 194,195,196,197,198,199 0 -213208 cd03241 ABC_RecN 5 D-loop 0 0 1 1 202,203,204,205 0 -213208 cd03241 ABC_RecN 6 Q-loop/lid 0 0 1 1 134,135,136,137 0 -213208 cd03241 ABC_RecN 7 H-loop/switch region 0 0 1 1 226,227,228,229,230,231,232 0 -213209 cd03242 ABC_RecF 1 ATP binding site 0 0 1 1 30,31,33,34,35,99,216,217,245 5 -213209 cd03242 ABC_RecF 2 ABC transporter signature motif 0 0 1 1 183,184,185,186,187,188,189,190,191,192 0 -213209 cd03242 ABC_RecF 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213209 cd03242 ABC_RecF 4 Walker B 0 0 1 1 212,213,214,215,216,217 0 -213209 cd03242 ABC_RecF 5 D-loop 0 0 1 1 220,221,222,223 0 -213209 cd03242 ABC_RecF 6 Q-loop/lid 0 0 1 1 96,97,98,99 0 -213209 cd03242 ABC_RecF 7 H-loop/switch region 0 0 1 1 241,242,243,244,245,246,247 0 -213210 cd03243 ABC_MutS_homologs 1 ATP binding site 0 1 1 1 38,39,41,42,43,79,114,115,148 5 -213210 cd03243 ABC_MutS_homologs 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213210 cd03243 ABC_MutS_homologs 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213210 cd03243 ABC_MutS_homologs 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213210 cd03243 ABC_MutS_homologs 5 D-loop 0 0 1 1 118,119,120,121 0 -213210 cd03243 ABC_MutS_homologs 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213210 cd03243 ABC_MutS_homologs 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213212 cd03245 ABCC_bacteriocin_exporters 1 ATP binding site 0 0 1 1 39,40,42,43,44,84,164,165,196 5 -213212 cd03245 ABCC_bacteriocin_exporters 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213212 cd03245 ABCC_bacteriocin_exporters 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213212 cd03245 ABCC_bacteriocin_exporters 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213212 cd03245 ABCC_bacteriocin_exporters 5 D-loop 0 0 1 1 168,169,170,171 0 -213212 cd03245 ABCC_bacteriocin_exporters 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213212 cd03245 ABCC_bacteriocin_exporters 7 H-loop/switch region 0 0 1 1 192,193,194,195,196,197,198 0 -213213 cd03246 ABCC_Protease_Secretion 1 ATP binding site 0 0 1 1 37,38,40,41,42,82,120,121,153 5 -213213 cd03246 ABCC_Protease_Secretion 2 ABC transporter signature motif 0 0 1 1 96,97,98,99,100,101,102,103,104,105 0 -213213 cd03246 ABCC_Protease_Secretion 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213213 cd03246 ABCC_Protease_Secretion 4 Walker B 0 0 1 1 116,117,118,119,120,121 0 -213213 cd03246 ABCC_Protease_Secretion 5 D-loop 0 0 1 1 124,125,126,127 0 -213213 cd03246 ABCC_Protease_Secretion 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213213 cd03246 ABCC_Protease_Secretion 7 H-loop/switch region 0 0 1 1 149,150,151,152,153,154,155 0 -213214 cd03247 ABCC_cytochrome_bd 1 ATP binding site 0 0 1 1 37,38,40,41,42,81,122,123,154 5 -213214 cd03247 ABCC_cytochrome_bd 2 ABC transporter signature motif 0 0 1 1 98,99,100,101,102,103,104,105,106,107 0 -213214 cd03247 ABCC_cytochrome_bd 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213214 cd03247 ABCC_cytochrome_bd 4 Walker B 0 0 1 1 118,119,120,121,122,123 0 -213214 cd03247 ABCC_cytochrome_bd 5 D-loop 0 0 1 1 126,127,128,129 0 -213214 cd03247 ABCC_cytochrome_bd 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213214 cd03247 ABCC_cytochrome_bd 7 H-loop/switch region 0 0 1 1 150,151,152,153,154,155,156 0 -213215 cd03248 ABCC_TAP 1 ATP binding site 0 1 1 1 49,50,52,53,54,94,174,175,206 5 -213215 cd03248 ABCC_TAP 2 ABC transporter signature motif 0 0 1 1 150,151,152,153,154,155,156,157,158,159 0 -213215 cd03248 ABCC_TAP 3 Walker A/P-loop 0 0 1 1 46,47,48,49,50,51,52,53 0 -213215 cd03248 ABCC_TAP 4 Walker B 0 0 1 1 170,171,172,173,174,175 0 -213215 cd03248 ABCC_TAP 5 D-loop 0 0 1 1 178,179,180,181 0 -213215 cd03248 ABCC_TAP 6 Q-loop/lid 0 0 1 1 91,92,93,94 0 -213215 cd03248 ABCC_TAP 7 H-loop/switch region 0 0 1 1 202,203,204,205,206,207,208 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 1 ATP binding site 0 0 1 1 38,39,41,42,43,83,163,164,195 5 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 5 D-loop 0 0 1 1 167,168,169,170 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 7 H-loop/switch region 0 0 1 1 191,192,193,194,195,196,197 0 -213217 cd03250 ABCC_MRP_domain1 1 ATP binding site 0 1 1 1 40,41,43,44,45,72,151,152,185 5 -213217 cd03250 ABCC_MRP_domain1 2 ABC transporter signature motif 0 0 1 1 127,128,129,130,131,132,133,134,135,136 0 -213217 cd03250 ABCC_MRP_domain1 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213217 cd03250 ABCC_MRP_domain1 4 Walker B 0 0 1 1 147,148,149,150,151,152 0 -213217 cd03250 ABCC_MRP_domain1 5 D-loop 0 0 1 1 155,156,157,158 0 -213217 cd03250 ABCC_MRP_domain1 6 Q-loop/lid 0 0 1 1 69,70,71,72 0 -213217 cd03250 ABCC_MRP_domain1 7 H-loop/switch region 0 0 1 1 181,182,183,184,185,186,187 0 -213218 cd03251 ABCC_MsbA 1 ATP binding site 0 0 1 1 37,38,40,41,42,82,162,163,194 5 -213218 cd03251 ABCC_MsbA 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213218 cd03251 ABCC_MsbA 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213218 cd03251 ABCC_MsbA 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213218 cd03251 ABCC_MsbA 5 D-loop 0 0 1 1 166,167,168,169 0 -213218 cd03251 ABCC_MsbA 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213218 cd03251 ABCC_MsbA 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213219 cd03252 ABCC_Hemolysin 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,162,163,194 5 -213219 cd03252 ABCC_Hemolysin 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213219 cd03252 ABCC_Hemolysin 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213219 cd03252 ABCC_Hemolysin 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213219 cd03252 ABCC_Hemolysin 5 D-loop 0 0 1 1 166,167,168,169 0 -213219 cd03252 ABCC_Hemolysin 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213219 cd03252 ABCC_Hemolysin 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213220 cd03253 ABCC_ATM1_transporter 1 ATP binding site 0 0 1 1 36,37,39,40,41,81,161,162,193 5 -213220 cd03253 ABCC_ATM1_transporter 2 ABC transporter signature motif 0 0 1 1 137,138,139,140,141,142,143,144,145,146 0 -213220 cd03253 ABCC_ATM1_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213220 cd03253 ABCC_ATM1_transporter 4 Walker B 0 0 1 1 157,158,159,160,161,162 0 -213220 cd03253 ABCC_ATM1_transporter 5 D-loop 0 0 1 1 165,166,167,168 0 -213220 cd03253 ABCC_ATM1_transporter 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213220 cd03253 ABCC_ATM1_transporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213221 cd03254 ABCC_Glucan_exporter_like 1 ATP binding site 0 0 1 1 38,39,41,42,43,83,163,164,195 5 -213221 cd03254 ABCC_Glucan_exporter_like 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213221 cd03254 ABCC_Glucan_exporter_like 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213221 cd03254 ABCC_Glucan_exporter_like 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213221 cd03254 ABCC_Glucan_exporter_like 5 D-loop 0 0 1 1 167,168,169,170 0 -213221 cd03254 ABCC_Glucan_exporter_like 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213221 cd03254 ABCC_Glucan_exporter_like 7 H-loop/switch region 0 0 1 1 191,192,193,194,195,196,197 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 1 ATP binding site 0 1 1 1 39,40,42,43,44,88,164,165,198 5 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 5 D-loop 0 0 1 1 168,169,170,171 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 7 H-loop/switch region 0 0 1 1 194,195,196,197,198,199,200 0 -213223 cd03256 ABC_PhnC_transporter 1 ATP binding site 0 0 1 1 36,37,39,40,41,84,168,169,202 5 -213223 cd03256 ABC_PhnC_transporter 2 ABC transporter signature motif 0 0 1 1 144,145,146,147,148,149,150,151,152,153 0 -213223 cd03256 ABC_PhnC_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213223 cd03256 ABC_PhnC_transporter 4 Walker B 0 0 1 1 164,165,166,167,168,169 0 -213223 cd03256 ABC_PhnC_transporter 5 D-loop 0 0 1 1 172,173,174,175 0 -213223 cd03256 ABC_PhnC_transporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213223 cd03256 ABC_PhnC_transporter 7 H-loop/switch region 0 0 1 1 198,199,200,201,202,203,204 0 -213224 cd03257 ABC_NikE_OppD_transporters 1 ATP binding site 0 0 1 1 40,41,43,44,45,88,169,170,203 5 -213224 cd03257 ABC_NikE_OppD_transporters 2 ABC transporter signature motif 0 0 1 1 145,146,147,148,149,150,151,152,153,154 0 -213224 cd03257 ABC_NikE_OppD_transporters 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213224 cd03257 ABC_NikE_OppD_transporters 4 Walker B 0 0 1 1 165,166,167,168,169,170 0 -213224 cd03257 ABC_NikE_OppD_transporters 5 D-loop 0 0 1 1 173,174,175,176 0 -213224 cd03257 ABC_NikE_OppD_transporters 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213224 cd03257 ABC_NikE_OppD_transporters 7 H-loop/switch region 0 0 1 1 199,200,201,202,203,204,205 0 -213225 cd03258 ABC_MetN_methionine_transporter 1 ATP binding site 0 0 1 1 40,41,43,44,45,88,164,165,198 5 -213225 cd03258 ABC_MetN_methionine_transporter 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213225 cd03258 ABC_MetN_methionine_transporter 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213225 cd03258 ABC_MetN_methionine_transporter 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213225 cd03258 ABC_MetN_methionine_transporter 5 D-loop 0 0 1 1 168,169,170,171 0 -213225 cd03258 ABC_MetN_methionine_transporter 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213225 cd03258 ABC_MetN_methionine_transporter 7 H-loop/switch region 0 0 1 1 194,195,196,197,198,199,200 0 -213226 cd03259 ABC_Carb_Solutes_like 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,154,155,188 5 -213226 cd03259 ABC_Carb_Solutes_like 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213226 cd03259 ABC_Carb_Solutes_like 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213226 cd03259 ABC_Carb_Solutes_like 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213226 cd03259 ABC_Carb_Solutes_like 5 D-loop 0 0 1 1 158,159,160,161 0 -213226 cd03259 ABC_Carb_Solutes_like 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213226 cd03259 ABC_Carb_Solutes_like 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -213227 cd03260 ABC_PstB_phosphate_transporter 1 ATP binding site 0 0 1 1 35,36,38,39,40,87,165,166,197 5 -213227 cd03260 ABC_PstB_phosphate_transporter 2 ABC transporter signature motif 0 0 1 1 141,142,143,144,145,146,147,148,149,150 0 -213227 cd03260 ABC_PstB_phosphate_transporter 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213227 cd03260 ABC_PstB_phosphate_transporter 4 Walker B 0 0 1 1 161,162,163,164,165,166 0 -213227 cd03260 ABC_PstB_phosphate_transporter 5 D-loop 0 0 1 1 169,170,171,172 0 -213227 cd03260 ABC_PstB_phosphate_transporter 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213227 cd03260 ABC_PstB_phosphate_transporter 7 H-loop/switch region 0 0 1 1 193,194,195,196,197,198,199 0 -213228 cd03261 ABC_Org_Solvent_Resistant 1 ATP binding site 0 0 1 1 35,36,38,39,40,83,160,161,194 5 -213228 cd03261 ABC_Org_Solvent_Resistant 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213228 cd03261 ABC_Org_Solvent_Resistant 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213228 cd03261 ABC_Org_Solvent_Resistant 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213228 cd03261 ABC_Org_Solvent_Resistant 5 D-loop 0 0 1 1 164,165,166,167 0 -213228 cd03261 ABC_Org_Solvent_Resistant 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213228 cd03261 ABC_Org_Solvent_Resistant 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213229 cd03262 ABC_HisP_GlnQ 1 ATP binding site 0 1 1 1 35,36,38,39,40,82,159,160,192 5 -213229 cd03262 ABC_HisP_GlnQ 2 ABC transporter signature motif 0 0 1 1 135,136,137,138,139,140,141,142,143,144 0 -213229 cd03262 ABC_HisP_GlnQ 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213229 cd03262 ABC_HisP_GlnQ 4 Walker B 0 0 1 1 155,156,157,158,159,160 0 -213229 cd03262 ABC_HisP_GlnQ 5 D-loop 0 0 1 1 163,164,165,166 0 -213229 cd03262 ABC_HisP_GlnQ 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213229 cd03262 ABC_HisP_GlnQ 7 H-loop/switch region 0 0 1 1 188,189,190,191,192,193,194 0 -213230 cd03263 ABC_subfamily_A 1 ATP binding site 0 0 1 1 37,38,40,41,42,81,157,158,189 5 -213230 cd03263 ABC_subfamily_A 2 ABC transporter signature motif 0 0 1 1 133,134,135,136,137,138,139,140,141,142 0 -213230 cd03263 ABC_subfamily_A 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213230 cd03263 ABC_subfamily_A 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213230 cd03263 ABC_subfamily_A 5 D-loop 0 0 1 1 161,162,163,164 0 -213230 cd03263 ABC_subfamily_A 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213230 cd03263 ABC_subfamily_A 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213231 cd03264 ABC_drug_resistance_like 1 ATP binding site 0 0 1 1 34,35,37,38,39,78,154,155,186 5 -213231 cd03264 ABC_drug_resistance_like 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213231 cd03264 ABC_drug_resistance_like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213231 cd03264 ABC_drug_resistance_like 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213231 cd03264 ABC_drug_resistance_like 5 D-loop 0 0 1 1 158,159,160,161 0 -213231 cd03264 ABC_drug_resistance_like 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213231 cd03264 ABC_drug_resistance_like 7 H-loop/switch region 0 0 1 1 182,183,184,185,186,187,188 0 -213232 cd03265 ABC_DrrA 1 ATP binding site 0 0 1 1 35,36,38,39,40,79,155,156,189 5 -213232 cd03265 ABC_DrrA 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213232 cd03265 ABC_DrrA 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213232 cd03265 ABC_DrrA 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213232 cd03265 ABC_DrrA 5 D-loop 0 0 1 1 159,160,161,162 0 -213232 cd03265 ABC_DrrA 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213232 cd03265 ABC_DrrA 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213233 cd03266 ABC_NatA_sodium_exporter 1 ATP binding site 0 0 1 1 40,41,43,44,45,84,160,161,193 5 -213233 cd03266 ABC_NatA_sodium_exporter 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213233 cd03266 ABC_NatA_sodium_exporter 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213233 cd03266 ABC_NatA_sodium_exporter 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213233 cd03266 ABC_NatA_sodium_exporter 5 D-loop 0 0 1 1 164,165,166,167 0 -213233 cd03266 ABC_NatA_sodium_exporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213233 cd03266 ABC_NatA_sodium_exporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213234 cd03267 ABC_NatA_like 1 ATP binding site 0 0 1 1 56,57,59,60,61,101,177,178,211 5 -213234 cd03267 ABC_NatA_like 2 ABC transporter signature motif 0 0 1 1 153,154,155,156,157,158,159,160,161,162 0 -213234 cd03267 ABC_NatA_like 3 Walker A/P-loop 0 0 1 1 53,54,55,56,57,58,59,60 0 -213234 cd03267 ABC_NatA_like 4 Walker B 0 0 1 1 173,174,175,176,177,178 0 -213234 cd03267 ABC_NatA_like 5 D-loop 0 0 1 1 181,182,183,184 0 -213234 cd03267 ABC_NatA_like 6 Q-loop/lid 0 0 1 1 98,99,100,101 0 -213234 cd03267 ABC_NatA_like 7 H-loop/switch region 0 0 1 1 207,208,209,210,211,212,213 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 1 ATP binding site 0 0 1 1 35,36,38,39,40,78,150,151,183 5 -213235 cd03268 ABC_BcrA_bacitracin_resist 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 4 Walker B 0 0 1 1 146,147,148,149,150,151 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 5 D-loop 0 0 1 1 154,155,156,157 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 7 H-loop/switch region 0 0 1 1 179,180,181,182,183,184,185 0 -213236 cd03269 ABC_putative_ATPase 1 ATP binding site 0 0 1 1 35,36,38,39,40,76,152,153,185 5 -213236 cd03269 ABC_putative_ATPase 2 ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137 0 -213236 cd03269 ABC_putative_ATPase 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213236 cd03269 ABC_putative_ATPase 4 Walker B 0 0 1 1 148,149,150,151,152,153 0 -213236 cd03269 ABC_putative_ATPase 5 D-loop 0 0 1 1 156,157,158,159 0 -213236 cd03269 ABC_putative_ATPase 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213236 cd03269 ABC_putative_ATPase 7 H-loop/switch region 0 0 1 1 181,182,183,184,185,186,187 0 -213239 cd03272 ABC_SMC3_euk 1 ATP binding site 0 0 1 1 32,33,35,36,37,138,186,187,218 5 -213239 cd03272 ABC_SMC3_euk 2 ABC transporter signature motif 0 0 1 1 158,159,160,161,162,163,164,165,166,167 0 -213239 cd03272 ABC_SMC3_euk 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213239 cd03272 ABC_SMC3_euk 4 Walker B 0 0 1 1 182,183,184,185,186,187 0 -213239 cd03272 ABC_SMC3_euk 5 D-loop 0 0 1 1 190,191,192,193 0 -213239 cd03272 ABC_SMC3_euk 6 Q-loop/lid 0 0 1 1 135,136,137,138 0 -213239 cd03272 ABC_SMC3_euk 7 H-loop/switch region 0 0 1 1 214,215,216,217,218,219,220 0 -213240 cd03273 ABC_SMC2_euk 1 ATP binding site 0 0 1 1 34,35,37,38,39,146,194,195,226 5 -213240 cd03273 ABC_SMC2_euk 2 ABC transporter signature motif 0 0 1 1 166,167,168,169,170,171,172,173,174,175 0 -213240 cd03273 ABC_SMC2_euk 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213240 cd03273 ABC_SMC2_euk 4 Walker B 0 0 1 1 190,191,192,193,194,195 0 -213240 cd03273 ABC_SMC2_euk 5 D-loop 0 0 1 1 198,199,200,201 0 -213240 cd03273 ABC_SMC2_euk 6 Q-loop/lid 0 0 1 1 143,144,145,146 0 -213240 cd03273 ABC_SMC2_euk 7 H-loop/switch region 0 0 1 1 222,223,224,225,226,227,228 0 -213241 cd03274 ABC_SMC4_euk 1 ATP binding site 0 0 1 1 34,35,37,38,39,107,155,156,187 5 -213241 cd03274 ABC_SMC4_euk 2 ABC transporter signature motif 0 0 1 1 127,128,129,130,131,132,133,134,135,136 0 -213241 cd03274 ABC_SMC4_euk 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213241 cd03274 ABC_SMC4_euk 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213241 cd03274 ABC_SMC4_euk 5 D-loop 0 0 1 1 159,160,161,162 0 -213241 cd03274 ABC_SMC4_euk 6 Q-loop/lid 0 0 1 1 104,105,106,107 0 -213241 cd03274 ABC_SMC4_euk 7 H-loop/switch region 0 0 1 1 183,184,185,186,187,188,189 0 -213242 cd03275 ABC_SMC1_euk 1 ATP binding site 0 1 1 1 31,32,34,35,36,133,183,184,216 5 -213242 cd03275 ABC_SMC1_euk 2 ABC transporter signature motif 0 0 1 1 155,156,157,158,159,160,161,162,163,164 0 -213242 cd03275 ABC_SMC1_euk 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213242 cd03275 ABC_SMC1_euk 4 Walker B 0 0 1 1 179,180,181,182,183,184 0 -213242 cd03275 ABC_SMC1_euk 5 D-loop 0 0 1 1 187,188,189,190 0 -213242 cd03275 ABC_SMC1_euk 6 Q-loop/lid 0 0 1 1 130,131,132,133 0 -213242 cd03275 ABC_SMC1_euk 7 H-loop/switch region 0 0 1 1 212,213,214,215,216,217,218 0 -213243 cd03276 ABC_SMC6_euk 1 ATP binding site 0 0 1 1 30,31,33,34,35,89,137,138,172 5 -213243 cd03276 ABC_SMC6_euk 2 ABC transporter signature motif 0 0 1 1 109,110,111,112,113,114,115,116,117,118 0 -213243 cd03276 ABC_SMC6_euk 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213243 cd03276 ABC_SMC6_euk 4 Walker B 0 0 1 1 133,134,135,136,137,138 0 -213243 cd03276 ABC_SMC6_euk 5 D-loop 0 0 1 1 141,142,143,144 0 -213243 cd03276 ABC_SMC6_euk 6 Q-loop/lid 0 0 1 1 86,87,88,89 0 -213243 cd03276 ABC_SMC6_euk 7 H-loop/switch region 0 0 1 1 168,169,170,171,172,173,174 0 -213244 cd03277 ABC_SMC5_euk 1 ATP binding site 0 0 1 1 32,33,35,36,37,94,154,155,189 5 -213244 cd03277 ABC_SMC5_euk 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213244 cd03277 ABC_SMC5_euk 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213244 cd03277 ABC_SMC5_euk 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213244 cd03277 ABC_SMC5_euk 5 D-loop 0 0 1 1 158,159,160,161 0 -213244 cd03277 ABC_SMC5_euk 6 Q-loop/lid 0 0 1 1 91,92,93,94 0 -213244 cd03277 ABC_SMC5_euk 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213245 cd03278 ABC_SMC_barmotin 1 ATP binding site 0 0 1 1 31,32,34,35,36,93,141,142,173 5 -213245 cd03278 ABC_SMC_barmotin 2 ABC transporter signature motif 0 0 1 1 113,114,115,116,117,118,119,120,121,122 0 -213245 cd03278 ABC_SMC_barmotin 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213245 cd03278 ABC_SMC_barmotin 4 Walker B 0 0 1 1 137,138,139,140,141,142 0 -213245 cd03278 ABC_SMC_barmotin 5 D-loop 0 0 1 1 145,146,147,148 0 -213245 cd03278 ABC_SMC_barmotin 6 Q-loop/lid 0 0 1 1 90,91,92,93 0 -213245 cd03278 ABC_SMC_barmotin 7 H-loop/switch region 0 0 1 1 169,170,171,172,173,174,175 0 -213246 cd03279 ABC_sbcCD 1 ATP binding site 0 0 1 1 37,38,40,41,42,109,157,158,190 5 -213246 cd03279 ABC_sbcCD 2 ABC transporter signature motif 0 0 1 1 123,124,125,126,127,128,129,130,131,132 0 -213246 cd03279 ABC_sbcCD 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213246 cd03279 ABC_sbcCD 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213246 cd03279 ABC_sbcCD 5 D-loop 0 0 1 1 161,162,163,164 0 -213246 cd03279 ABC_sbcCD 6 Q-loop/lid 0 0 1 1 106,107,108,109 0 -213246 cd03279 ABC_sbcCD 7 H-loop/switch region 0 0 1 1 186,187,188,189,190,191,192 0 -213247 cd03280 ABC_MutS2 1 ATP binding site 0 0 1 1 37,38,40,41,42,79,114,115,148 5 -213247 cd03280 ABC_MutS2 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213247 cd03280 ABC_MutS2 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213247 cd03280 ABC_MutS2 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213247 cd03280 ABC_MutS2 5 D-loop 0 0 1 1 118,119,120,121 0 -213247 cd03280 ABC_MutS2 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213247 cd03280 ABC_MutS2 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213248 cd03281 ABC_MSH5_euk 1 ATP binding site 0 0 1 1 38,39,41,42,43,79,114,115,151 5 -213248 cd03281 ABC_MSH5_euk 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213248 cd03281 ABC_MSH5_euk 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213248 cd03281 ABC_MSH5_euk 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213248 cd03281 ABC_MSH5_euk 5 D-loop 0 0 1 1 118,119,120,121 0 -213248 cd03281 ABC_MSH5_euk 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213248 cd03281 ABC_MSH5_euk 7 H-loop/switch region 0 0 1 1 147,148,149,150,151,152,153 0 -213249 cd03282 ABC_MSH4_euk 1 ATP binding site 0 0 1 1 38,39,41,42,43,79,114,115,148 5 -213249 cd03282 ABC_MSH4_euk 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213249 cd03282 ABC_MSH4_euk 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213249 cd03282 ABC_MSH4_euk 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213249 cd03282 ABC_MSH4_euk 5 D-loop 0 0 1 1 118,119,120,121 0 -213249 cd03282 ABC_MSH4_euk 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213249 cd03282 ABC_MSH4_euk 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213250 cd03283 ABC_MutS-like 1 ATP binding site 0 0 1 1 34,35,37,38,39,74,111,112,145 5 -213250 cd03283 ABC_MutS-like 2 ABC transporter signature motif 0 0 1 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92 0 -213250 cd03283 ABC_MutS-like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213250 cd03283 ABC_MutS-like 4 Walker B 0 0 1 1 107,108,109,110,111,112 0 -213250 cd03283 ABC_MutS-like 5 D-loop 0 0 1 1 115,116,117,118 0 -213250 cd03283 ABC_MutS-like 6 Q-loop/lid 0 0 1 1 71,72,73,74 0 -213250 cd03283 ABC_MutS-like 7 H-loop/switch region 0 0 1 1 141,142,143,144,145,146,147 0 -213251 cd03284 ABC_MutS1 1 ATP binding site 0 1 1 1 39,40,42,43,44,80,115,116,150 5 -213251 cd03284 ABC_MutS1 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213251 cd03284 ABC_MutS1 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213251 cd03284 ABC_MutS1 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213251 cd03284 ABC_MutS1 5 D-loop 0 0 1 1 119,120,121,122 0 -213251 cd03284 ABC_MutS1 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213251 cd03284 ABC_MutS1 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213252 cd03285 ABC_MSH2_euk 1 ATP binding site 0 0 1 1 39,40,42,43,44,80,115,116,150 5 -213252 cd03285 ABC_MSH2_euk 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213252 cd03285 ABC_MSH2_euk 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213252 cd03285 ABC_MSH2_euk 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213252 cd03285 ABC_MSH2_euk 5 D-loop 0 0 1 1 119,120,121,122 0 -213252 cd03285 ABC_MSH2_euk 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213252 cd03285 ABC_MSH2_euk 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213253 cd03286 ABC_MSH6_euk 1 ATP binding site 0 0 1 1 39,40,42,43,44,80,115,116,150 5 -213253 cd03286 ABC_MSH6_euk 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213253 cd03286 ABC_MSH6_euk 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213253 cd03286 ABC_MSH6_euk 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213253 cd03286 ABC_MSH6_euk 5 D-loop 0 0 1 1 119,120,121,122 0 -213253 cd03286 ABC_MSH6_euk 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213253 cd03286 ABC_MSH6_euk 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213254 cd03287 ABC_MSH3_euk 1 ATP binding site 0 0 1 1 40,41,43,44,45,81,116,117,151 5 -213254 cd03287 ABC_MSH3_euk 2 ABC transporter signature motif 0 0 1 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99 0 -213254 cd03287 ABC_MSH3_euk 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213254 cd03287 ABC_MSH3_euk 4 Walker B 0 0 1 1 112,113,114,115,116,117 0 -213254 cd03287 ABC_MSH3_euk 5 D-loop 0 0 1 1 120,121,122,123 0 -213254 cd03287 ABC_MSH3_euk 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213254 cd03287 ABC_MSH3_euk 7 H-loop/switch region 0 0 1 1 147,148,149,150,151,152,153 0 -213255 cd03288 ABCC_SUR2 1 ATP binding site 0 0 1 1 56,57,59,60,61,101,180,181,212 5 -213255 cd03288 ABCC_SUR2 2 ABC transporter signature motif 0 0 1 1 156,157,158,159,160,161,162,163,164,165 0 -213255 cd03288 ABCC_SUR2 3 Walker A/P-loop 0 0 1 1 53,54,55,56,57,58,59,60 0 -213255 cd03288 ABCC_SUR2 4 Walker B 0 0 1 1 176,177,178,179,180,181 0 -213255 cd03288 ABCC_SUR2 5 D-loop 0 0 1 1 184,185,186,187 0 -213255 cd03288 ABCC_SUR2 6 Q-loop/lid 0 0 1 1 98,99,100,101 0 -213255 cd03288 ABCC_SUR2 7 H-loop/switch region 0 0 1 1 208,209,210,211,212,213,214 0 -213256 cd03289 ABCC_CFTR2 1 ATP binding site 0 0 1 1 39,40,42,43,44,83,162,163,194 5 -213256 cd03289 ABCC_CFTR2 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213256 cd03289 ABCC_CFTR2 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213256 cd03289 ABCC_CFTR2 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213256 cd03289 ABCC_CFTR2 5 D-loop 0 0 1 1 166,167,168,169 0 -213256 cd03289 ABCC_CFTR2 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213256 cd03289 ABCC_CFTR2 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213257 cd03290 ABCC_SUR1_N 1 ATP binding site 0 0 1 1 36,37,39,40,41,85,164,165,199 5 -213257 cd03290 ABCC_SUR1_N 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213257 cd03290 ABCC_SUR1_N 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213257 cd03290 ABCC_SUR1_N 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213257 cd03290 ABCC_SUR1_N 5 D-loop 0 0 1 1 168,169,170,171 0 -213257 cd03290 ABCC_SUR1_N 6 Q-loop/lid 0 0 1 1 82,83,84,85 0 -213257 cd03290 ABCC_SUR1_N 7 H-loop/switch region 0 0 1 1 195,196,197,198,199,200,201 0 -213258 cd03291 ABCC_CFTR1 1 ATP binding site 0 1 1 1 72,73,75,76,77,104,183,184,216 5 -213258 cd03291 ABCC_CFTR1 2 ABC transporter signature motif 0 0 1 1 159,160,161,162,163,164,165,166,167,168 0 -213258 cd03291 ABCC_CFTR1 3 Walker A/P-loop 0 0 1 1 69,70,71,72,73,74,75,76 0 -213258 cd03291 ABCC_CFTR1 4 Walker B 0 0 1 1 179,180,181,182,183,184 0 -213258 cd03291 ABCC_CFTR1 5 D-loop 0 0 1 1 187,188,189,190 0 -213258 cd03291 ABCC_CFTR1 6 Q-loop/lid 0 0 1 1 101,102,103,104 0 -213258 cd03291 ABCC_CFTR1 7 H-loop/switch region 0 0 1 1 212,213,214,215,216,217,218 0 -213259 cd03292 ABC_FtsE_transporter 1 ATP binding site 0 0 1 1 36,37,39,40,41,84,160,161,193 5 -213259 cd03292 ABC_FtsE_transporter 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213259 cd03292 ABC_FtsE_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213259 cd03292 ABC_FtsE_transporter 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213259 cd03292 ABC_FtsE_transporter 5 D-loop 0 0 1 1 164,165,166,167 0 -213259 cd03292 ABC_FtsE_transporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213259 cd03292 ABC_FtsE_transporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 1 ATP binding site 0 0 1 1 39,40,42,43,44,79,155,156,189 5 -213260 cd03293 ABC_NrtD_SsuB_transporters 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 5 D-loop 0 0 1 1 159,160,161,162 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213261 cd03294 ABC_Pro_Gly_Betaine 1 ATP binding site 0 0 1 1 59,60,62,63,64,108,184,185,218 5 -213261 cd03294 ABC_Pro_Gly_Betaine 2 ABC transporter signature motif 0 0 1 1 160,161,162,163,164,165,166,167,168,169 0 -213261 cd03294 ABC_Pro_Gly_Betaine 3 Walker A/P-loop 0 0 1 1 56,57,58,59,60,61,62,63 0 -213261 cd03294 ABC_Pro_Gly_Betaine 4 Walker B 0 0 1 1 180,181,182,183,184,185 0 -213261 cd03294 ABC_Pro_Gly_Betaine 5 D-loop 0 0 1 1 188,189,190,191 0 -213261 cd03294 ABC_Pro_Gly_Betaine 6 Q-loop/lid 0 0 1 1 105,106,107,108 0 -213261 cd03294 ABC_Pro_Gly_Betaine 7 H-loop/switch region 0 0 1 1 214,215,216,217,218,219,220 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 1 ATP binding site 0 0 1 1 36,37,39,40,41,81,159,160,193 5 -213262 cd03295 ABC_OpuCA_Osmoprotection 2 ABC transporter signature motif 0 0 1 1 135,136,137,138,139,140,141,142,143,144 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 4 Walker B 0 0 1 1 155,156,157,158,159,160 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 5 D-loop 0 0 1 1 163,164,165,166 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213263 cd03296 ABC_CysA_sulfate_importer 1 ATP binding site 0 0 1 1 37,38,40,41,42,80,160,161,194 5 -213263 cd03296 ABC_CysA_sulfate_importer 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213263 cd03296 ABC_CysA_sulfate_importer 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213263 cd03296 ABC_CysA_sulfate_importer 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213263 cd03296 ABC_CysA_sulfate_importer 5 D-loop 0 0 1 1 164,165,166,167 0 -213263 cd03296 ABC_CysA_sulfate_importer 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213263 cd03296 ABC_CysA_sulfate_importer 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 1 ATP binding site 0 0 1 1 32,33,35,36,37,81,155,156,189 5 -213264 cd03297 ABC_ModC_molybdenum_transporter 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 5 D-loop 0 0 1 1 159,160,161,162 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 1 ATP binding site 0 0 1 1 33,34,36,37,38,76,152,153,186 5 -213265 cd03298 ABC_ThiQ_thiamine_transporter 2 ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 3 Walker A/P-loop 0 0 1 1 30,31,32,33,34,35,36,37 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 4 Walker B 0 0 1 1 148,149,150,151,152,153 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 5 D-loop 0 0 1 1 156,157,158,159 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 7 H-loop/switch region 0 0 1 1 182,183,184,185,186,187,188 0 -213266 cd03299 ABC_ModC_like 1 ATP binding site 0 0 1 1 34,35,37,38,39,77,153,154,187 5 -213266 cd03299 ABC_ModC_like 2 ABC transporter signature motif 0 0 1 1 129,130,131,132,133,134,135,136,137,138 0 -213266 cd03299 ABC_ModC_like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213266 cd03299 ABC_ModC_like 4 Walker B 0 0 1 1 149,150,151,152,153,154 0 -213266 cd03299 ABC_ModC_like 5 D-loop 0 0 1 1 157,158,159,160 0 -213266 cd03299 ABC_ModC_like 6 Q-loop/lid 0 0 1 1 74,75,76,77 0 -213266 cd03299 ABC_ModC_like 7 H-loop/switch region 0 0 1 1 183,184,185,186,187,188,189 0 -213267 cd03300 ABC_PotA_N 1 ATP binding site 0 0 1 1 35,36,38,39,40,78,154,155,188 5 -213267 cd03300 ABC_PotA_N 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213267 cd03300 ABC_PotA_N 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213267 cd03300 ABC_PotA_N 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213267 cd03300 ABC_PotA_N 5 D-loop 0 0 1 1 158,159,160,161 0 -213267 cd03300 ABC_PotA_N 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213267 cd03300 ABC_PotA_N 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -213268 cd03301 ABC_MalK_N 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,154,155,188 5 -213268 cd03301 ABC_MalK_N 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213268 cd03301 ABC_MalK_N 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213268 cd03301 ABC_MalK_N 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213268 cd03301 ABC_MalK_N 5 D-loop 0 0 1 1 158,159,160,161 0 -213268 cd03301 ABC_MalK_N 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213268 cd03301 ABC_MalK_N 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -176471 cd03302 Adenylsuccinate_lyase_2 1 active site 0 0 1 1 69,90,142,224,278,280,285 1 -176471 cd03302 Adenylsuccinate_lyase_2 2 tetramer interface 0 0 1 1 14,15,70,79,88,89,91,92,140,141,142,143,144,145,147,153,154,157,160,161,167,168,184,185,186,187,190,219,221,222,229,233,240,247,251,253,254,256,257,279,280,285,289,292,293,295,296,299,300,303,304,308,309,310,311,312,313,314,318,319,321,326,366,370,373,379,380,433,435 2 -239427 cd03311 CIMS_C_terminal_like 1 zinc-binding site 0 1 1 0 213,215,247,308 4 -239427 cd03311 CIMS_C_terminal_like 2 substrate binding site 0 1 1 1 4,5,6,57,63,172,174,213,215,308,309 5 -239427 cd03311 CIMS_C_terminal_like 3 THF binding site 0 1 1 1 86,87,88,133,176 0 -239428 cd03312 CIMS_N_terminal_like 1 THF binding site 0 1 1 1 13,16,109,114,116 0 -239429 cd03313 enolase 1 metal binding site 0 1 1 0 36,238,282,309 4 -239429 cd03313 enolase 2 substrate binding pocket 0 1 1 1 149,201,334,362,363,364,385 5 -239429 cd03313 enolase 3 dimer interface 0 1 1 0 2,4,5,6,7,8,9,10,11,12,16,28,150,151,152,173,174,177,178,181,182,197,198,205,207,366,367,368,391,392,393,395,396,399,402,403,406 2 -239430 cd03314 MAL 1 active site 0 1 1 0 133,155,197,232,266,288,319,320 1 -239430 cd03314 MAL 2 dimer interface 0 1 1 0 3,7,8,15,22,27,140,143,144,147,148,181,347,348,349,351,352,355,359,362,363,366 2 -239431 cd03315 MLE_like 1 active site 0 1 1 0 104,106,134,160,185,209 1 -239432 cd03316 MR_like 1 active site pocket 0 1 1 0 158,160,194,220,246,269,296,321 1 -239433 cd03317 NAAAR 1 active site 0 1 1 0 13,15,50,156,158,183,208,233,257,285,286,287 1 -239433 cd03317 NAAAR 2 octamer interface 0 1 1 0 46,47,48,49,50,52,54,60,61,65,80,90,91,92,106,110,111,112,117,119,121,123,186,212,214,217,240,243,244,247,269,272,273 2 -239434 cd03318 MLE 1 active site 0 1 1 0 162,164,193,195,219,244,245,268,322 1 -239434 cd03318 MLE 2 octamer interface 0 1 1 1 56,58,60,65,69,80,81,83,92,93,94,96,121,124,125,126,225,251,283,313 2 -239435 cd03319 L-Ala-DL-Glu_epimerase 1 active site 0 1 1 0 19,128,153,155,182,208,233,285,287,308,310 1 -239436 cd03320 OSBS 1 active site 0 1 1 0 101,132,134,158,181,205,232,233,259 1 -239437 cd03321 mandelate_racemase 1 active site 0 1 1 0 160,162,191,217,243,266,293,313 1 -239438 cd03322 rpsA 1 putative metal binding site 0 0 0 1 168,194,220 4 -239438 cd03322 rpsA 2 putative active site pocket 0 0 0 1 118,145,147,168,192,194,220,243,270,297 1 -239439 cd03323 D-glucarate_dehydratase 1 active site 0 1 1 0 18,23,141,188,190,218,220,243,266,317,318,319,346 1 -239439 cd03323 D-glucarate_dehydratase 2 tetramer interface 0 1 1 0 73,74,77,119,120,126,127,128,129,249,250,254,256,257,272,273,277,302,305,309,310,311,312 2 -239440 cd03324 rTSbeta_L-fuconate_dehydratase 1 metal binding site 0 1 0 0 245,271,300 4 -239440 cd03324 rTSbeta_L-fuconate_dehydratase 2 putative active site pocket 0 0 0 1 185,215,217,245,269,271,300,323,350,381 1 -239441 cd03325 D-galactonate_dehydratase 1 putative metal binding site 0 0 0 1 181,207,233 4 -239441 cd03325 D-galactonate_dehydratase 2 putative active site pocket 0 0 0 1 115,142,144,181,205,207,233,256,283,308 1 -239442 cd03326 MR_like_1 1 metal binding site 0 1 0 0 210,236,262 4 -239442 cd03326 MR_like_1 2 putative active site pocket 0 0 0 1 148,179,181,210,234,236,262,289,319,338 1 -239443 cd03327 MR_like_2 1 putative metal binding site 0 0 0 1 176,202,228 4 -239443 cd03327 MR_like_2 2 putative active site pocket 0 0 0 1 111,139,141,176,200,202,228,251,278,298 1 -239444 cd03328 MR_like_3 1 putative metal binding site 0 0 0 1 187,213,241 4 -239444 cd03328 MR_like_3 2 putative active site pocket 0 0 0 1 128,157,159,187,211,213,241,264,291,311 1 -239445 cd03329 MR_like_4 1 metal binding site 0 1 0 0 194,220,246 4 -239445 cd03329 MR_like_4 2 putative active site pocket 0 0 0 1 128,162,164,194,218,220,246,270,297,317 1 -239446 cd03330 Macro_2 1 putative ADP-ribose binding site 0 0 1 1 7,21,28,30,31,112,114,115,116 5 -239447 cd03331 Macro_Poa1p_like_SNF2 1 putative ADP-ribose binding site 0 0 1 1 7,8,26,33,35,36,129,131,132,133 5 -239448 cd03332 LMO_FMN 1 putative active site 0 0 1 1 38,120,144,172,179,258,282,285,337 1 -239448 cd03332 LMO_FMN 2 putative substrate binding site 0 0 1 1 38,144,179,282,285 5 -239448 cd03332 LMO_FMN 3 putative FMN binding site 0 0 1 1 120,144,172,258,282,285,337 5 -239448 cd03332 LMO_FMN 4 putative catalytic residues 0 0 1 1 144,179,282 1 -239451 cd03335 TCP1_alpha 1 ATP/Mg binding site 0 0 1 1 27,28,29,79,83,145,385,403,443,494,496 5 -239451 cd03335 TCP1_alpha 2 ring oligomerisation interface 0 0 0 1 0,4,32,33,34,35,37,55,57,61,65,68,373,517,518,519,520,521,522,523 2 -239451 cd03335 TCP1_alpha 3 stacking interactions 0 0 0 1 423,441,450,452,453,456 0 -239452 cd03336 TCP1_beta 1 ATP/Mg binding site 0 0 1 1 32,33,34,86,90,154,381,399,439,482,484 5 -239452 cd03336 TCP1_beta 2 ring oligomerisation interface 0 0 0 1 5,9,37,38,39,40,42,62,64,68,72,75,369,505,506,507,508,509,510,511 2 -239452 cd03336 TCP1_beta 3 stacking interactions 0 0 0 1 419,437,446,448,449,452 0 -239453 cd03337 TCP1_gamma 1 stacking interactions 0 0 0 1 385,403,412,414,415,418 0 -239453 cd03337 TCP1_gamma 2 ring oligomerisation interface 0 0 0 1 8,12,40,41,42,43,45,63,65,69,73,76,335,472,473,474,475,476,477,478 2 -239453 cd03337 TCP1_gamma 3 ATP/Mg binding site 0 0 1 1 35,36,37,87,91,152,347,365,405,449,451 5 -239454 cd03338 TCP1_delta 1 stacking interactions 0 0 0 1 421,439,448,450,451,454 0 -239454 cd03338 TCP1_delta 2 ring oligomerisation interface 0 0 0 1 0,4,32,33,34,35,37,55,57,61,65,68,371,507,508,509,510,511,512,513 2 -239454 cd03338 TCP1_delta 3 ATP/Mg binding site 0 0 1 1 27,28,29,79,83,144,383,401,441,484,486 5 -239455 cd03339 TCP1_epsilon 1 stacking interactions 0 0 0 1 432,450,459,461,462,465 0 -239455 cd03339 TCP1_epsilon 2 ring oligomerisation interface 0 0 0 1 15,19,47,48,49,50,52,70,72,76,80,83,382,519,520,521,522,523,524,525 2 -239455 cd03339 TCP1_epsilon 3 ATP/Mg binding site 0 0 1 1 42,43,44,94,98,161,394,412,452,496,498 5 -239456 cd03340 TCP1_eta 1 stacking interactions 0 0 0 1 424,442,451,453,454,457 0 -239456 cd03340 TCP1_eta 2 ring oligomerisation interface 0 0 0 1 8,12,40,41,42,43,45,63,65,69,73,76,374,511,512,513,514,515,516,517 2 -239456 cd03340 TCP1_eta 3 ATP/Mg binding site 0 0 1 1 35,36,37,87,91,156,386,404,444,488,490 5 -239457 cd03341 TCP1_theta 1 stacking interactions 0 0 0 1 375,393,402,404,405,408 0 -239457 cd03341 TCP1_theta 2 ring oligomerisation interface 0 0 0 1 0,4,32,33,34,35,37,55,57,61,65,68,325,463,464,465,466,467,468,469 2 -239457 cd03341 TCP1_theta 3 ATP/Mg binding site 0 0 1 1 27,28,29,79,83,146,337,355,395,440,442 5 -239458 cd03342 TCP1_zeta 1 stacking interactions 0 0 0 1 388,406,415,417,418,421 0 -239458 cd03342 TCP1_zeta 2 ring oligomerisation interface 0 0 0 1 4,8,36,37,38,39,41,59,61,65,69,72,338,474,475,476,477,478,479,480 2 -239458 cd03342 TCP1_zeta 3 ATP/Mg binding site 0 0 1 1 31,32,33,83,87,149,350,368,408,451,453 5 -239459 cd03343 cpn60 1 ATP/Mg binding site 0 1 1 0 33,34,35,36,56,86,87,88,89,90,151,154,384,402,403,483,485,487 5 -239459 cd03343 cpn60 2 ring oligomerisation interface 0 1 1 0 1,2,4,22,25,29,32,39,40,41,42,44,50,63,64,67,68,71,75,83,111,198,218,220,239,244,245,246,247,248,249,250,251,257,259,260,262,263,264,289,294,298,323,328,329,345,370,371,373,445,447,508,509,510,511,512,513,515,516 2 -239459 cd03343 cpn60 3 stacking interactions 0 0 0 1 422,440,449,451,452,455 0 -239460 cd03344 GroEL 1 ATP/Mg binding site 0 1 1 0 27,28,29,83,87,146,394,411,450,489,491 5 -239460 cd03344 GroEL 2 hinge regions 0 1 1 1 137,182,189,371,405,406 0 -239460 cd03344 GroEL 3 ring oligomerisation interface 0 1 0 1 0,4,21,32,33,34,35,37,42,43,45,55,57,65,69,72,193,225,253,380,382,455,509,512,513,514,515,516,517,518 2 -239460 cd03344 GroEL 4 stacking interactions 0 1 0 1 105,430,448,457,459,460,463 0 -239461 cd03345 eu_TyrOH 1 metal binding site 0 1 1 0 165,170,210 4 -239461 cd03345 eu_TyrOH 2 cofactor binding site 0 1 1 1 128,129,134,144,161,166,205 0 -239462 cd03346 eu_TrpOH 1 metal binding site 0 1 1 0 166,171,211 4 -239462 cd03346 eu_TrpOH 2 cofactor binding site 0 1 1 1 128,130,135,203,206 0 -239463 cd03347 eu_PheOH 1 metal binding site 0 1 1 0 166,171,211 4 -239463 cd03347 eu_PheOH 2 cofactor binding site 0 1 1 1 128,130,135,203,206 0 -239463 cd03347 eu_PheOH 3 substrate binding pocket 0 1 1 0 19,151,158,159,160,161,166,207,227,230,231 5 -239464 cd03348 pro_PheOH 1 metal binding site 0 1 1 0 112,117,158 4 -239464 cd03348 pro_PheOH 2 cofactor binding site 0 1 1 1 72,74,75,76,78,81,133,153 0 -100040 cd03349 LbH_XAT 1 active site 0 1 1 1 8,10,40,41,43,52,53,80,83,100,101,106,114,116,117,119,123 1 -100040 cd03349 LbH_XAT 2 CoA binding site 0 1 1 1 41,43,70,80,83,88,100,101,106,114,116,117,119,123 5 -100040 cd03349 LbH_XAT 3 substrate binding site 0 1 1 1 8,10,40,52,53 5 -100040 cd03349 LbH_XAT 4 trimer interface 0 1 1 0 6,8,28,41,42,47,49,51,78,80,83,102,118,126 2 -100041 cd03350 LbH_THP_succinylT 1 active site 0 1 1 1 2,10,22,28,40,47,56,58,65,67,68,71,84,85,86,91,102,103 1 -100041 cd03350 LbH_THP_succinylT 2 CoA binding site 0 1 1 1 58,59,65,71,84,85,86,91,102,103 5 -100041 cd03350 LbH_THP_succinylT 3 substrate binding site 0 1 1 1 2,10,22,28,40,47,67 5 -100041 cd03350 LbH_THP_succinylT 4 trimer interface 0 1 1 0 2,3,6,7,24,26,42,43,44,60,86,88,106,133,134,135,136,138 2 -100042 cd03351 LbH_UDP-GlcNAc_AT 1 active site 0 1 1 1 66,69,92,115,118,137,153,154,166,191,197,198 1 -100043 cd03352 LbH_LpxD 1 active site 0 1 1 1 74,75,76,123,127,130,131,141,142,147,148,149,166,167,178 1 -100043 cd03352 LbH_LpxD 2 lipid binding site 0 1 1 1 123,127,141,142,147,178 5 -100043 cd03352 LbH_LpxD 3 UDP-GlcNAc binding site 0 1 1 1 74,75,76,130,131,148,149,166,167 5 -100043 cd03352 LbH_LpxD 4 trimer interface 0 1 1 0 12,16,17,35,48,50,52,64,66,72,74,85,86,87,99,103,105,107,110,111,112,121,123,124,125,127,131,137,139,143,144,145,155,161,162,163,167,179,180,181,198,202 2 -100044 cd03353 LbH_GlmU_C 1 active site 0 1 1 1 82,98,100,112,115,126,127,128,129,134,135,136,141,151,153,154,171,172,189 1 -100044 cd03353 LbH_GlmU_C 2 CoA binding site 0 1 1 1 129,134,136,153,154,171,172,189 5 -100044 cd03353 LbH_GlmU_C 3 substrate binding site 0 1 1 1 82,98,100,112,115,126,127,128,135,141 5 -100045 cd03354 LbH_SAT 1 active site 0 0 1 1 17,18,37,38,44,45,52,53,64,79,81,82,85,87,95,100 1 -100045 cd03354 LbH_SAT 2 CoA binding site 0 1 1 1 37,38,44,45,64,79,81,82,85,87,95,100 5 -100045 cd03354 LbH_SAT 3 substrate binding site 0 1 1 1 17,18,44,52,53 5 -100045 cd03354 LbH_SAT 4 trimer interface 0 1 1 0 1,3,18,52,82,85,87 2 -100047 cd03357 LbH_MAT_GAT 1 active site 0 1 1 1 3,12,57,69,71,77,79,89,91,97,99,101,103,110,111,113,125,127,128,133,145,146,149,151,152,161,162,163,164,166 1 -100047 cd03357 LbH_MAT_GAT 2 CoA binding site 0 1 1 1 97,99,101,103,125,127,128,133,145,146,151,152,161,162,164 5 -100047 cd03357 LbH_MAT_GAT 3 substrate binding site 0 1 1 1 3,12,57,69,71,77,79,89,99,101,110,111,113 5 -100047 cd03357 LbH_MAT_GAT 4 trimer interface 0 1 1 0 13,16,20,27,53,55,56,72,73,87,89,93,95,97,101,103,104,105,107,108,114,116,123,125,128,129,130,133,141,143,146,147,151,163 2 -100048 cd03358 LbH_WxcM_N_like 1 putative active site 0 0 1 1 23,25,53,55,74,76,77,82,94,95,100,101,110,111,113 1 -100048 cd03358 LbH_WxcM_N_like 2 putative CoA binding site 0 0 1 1 53,55,74,76,77,82,92,94,95,100,101,108,110,111,113,117 5 -100048 cd03358 LbH_WxcM_N_like 3 putative substrate binding site 0 0 1 1 23,25,53 5 -100048 cd03358 LbH_WxcM_N_like 4 putative trimer interface 0 0 1 1 21,23,31,39,41,47,53,54,55,72,74,77,96,112 2 -100050 cd03360 LbH_AT_putative 1 putative trimer interface 0 0 1 1 109,111,115,117,127,133,135,145,150,151,153,163,167,169,171 2 -100050 cd03360 LbH_AT_putative 2 putative CoA binding site 0 0 1 1 145,147,148,153,165,171 5 -173781 cd03361 TOPRIM_TopoIA_RevGyr 1 active site 0 0 1 1 6,7,10,126,128,130 1 -173781 cd03361 TOPRIM_TopoIA_RevGyr 2 putative metal-binding site 0 0 1 1 126,128 4 -173781 cd03361 TOPRIM_TopoIA_RevGyr 3 putative nucleotide binding site 0 0 1 1 129 5 -173781 cd03361 TOPRIM_TopoIA_RevGyr 4 putative interdomain interaction site 0 0 1 1 13,127,129,136,137,139,140 2 -173782 cd03362 TOPRIM_TopoIA_TopoIII 1 active site 0 1 1 1 6,7,10,106,108,110 1 -173782 cd03362 TOPRIM_TopoIA_TopoIII 2 putative metal-binding site 0 0 1 1 106,108 4 -173782 cd03362 TOPRIM_TopoIA_TopoIII 3 putative nucleotide binding site 0 0 1 1 109 5 -173782 cd03362 TOPRIM_TopoIA_TopoIII 4 putative interdomain interaction site 0 0 1 1 13,107,109,116,117,119,120 2 -173783 cd03363 TOPRIM_TopoIA_TopoI 1 active site 0 1 1 1 6,7,10,80,82,84 1 -173783 cd03363 TOPRIM_TopoIA_TopoI 2 putative metal-binding site 0 0 1 1 80,82 4 -173783 cd03363 TOPRIM_TopoIA_TopoI 3 nucleotide binding site 0 1 1 1 83 5 -173783 cd03363 TOPRIM_TopoIA_TopoI 4 interdomain interaction site 0 1 1 0 13,81,83,90,91,93,94 0 -173784 cd03364 TOPRIM_DnaG_primases 1 active site 0 0 1 1 6,7,10,50,52,54 1 -173784 cd03364 TOPRIM_DnaG_primases 2 metal binding site 0 1 1 0 6,50 4 -173784 cd03364 TOPRIM_DnaG_primases 3 interdomain interaction site 0 1 1 0 8,9,15,16,26 0 -173785 cd03365 TOPRIM_TopoIIA 1 active site 0 0 1 1 6,7,10,84,86,88 1 -173785 cd03365 TOPRIM_TopoIIA 2 putative metal-binding site 0 0 1 1 6,84 4 -173786 cd03366 TOPRIM_TopoIIA_GyrB 1 active site 0 0 1 1 6,7,10,79,81,83 1 -173786 cd03366 TOPRIM_TopoIIA_GyrB 2 putative metal-binding site 0 0 1 1 6,79 4 -239465 cd03367 Ribosomal_S23 1 aminoacyl-tRNA interaction site (A-site) 0 0 1 1 36,37,38,39,40,41,62,63,64,65,66,67,68,69,70 3 -239465 cd03367 Ribosomal_S23 2 18S rRNA interaction site 0 1 1 0 0,2,3,4,5,6,8,10,11,12,13,14,15,17,18,19,20,21,22,23,34,35,36,37,38,39,40,41,42,48,49,50,58,60,61,62,63,76,77,78,79,80,81,82,85,86,87,88,94,95,100,102,112,113,114 3 -239465 cd03367 Ribosomal_S23 3 eEF2 interaction site 0 1 1 0 71 2 -239465 cd03367 Ribosomal_S23 4 28S rRNA interaction site 0 0 1 1 35,36 3 -239465 cd03367 Ribosomal_S23 5 streptomycin interaction site 0 0 1 1 34,35,86 5 -239466 cd03368 Ribosomal_S12 1 aminoacyl-tRNA interaction site (A-site) 0 1 1 1 42,43,44,45,46,47,67,68,69,70,71,72,73,74,75 3 -239466 cd03368 Ribosomal_S12 2 16S rRNA interaction site 0 1 1 0 9,10,11,23,25,26,28,43,44,46,47,48,55,63,66,67,80,81,85,86,107 3 -239466 cd03368 Ribosomal_S12 3 23S rRNA interaction site 0 1 1 1 41,42 3 -239466 cd03368 Ribosomal_S12 4 S8 interaction site 0 1 1 0 1 0 -239466 cd03368 Ribosomal_S12 5 S17 interaction site 0 1 1 0 1,2,4,5,8,9 2 -239466 cd03368 Ribosomal_S12 6 streptomycin interaction site 0 1 1 0 40,41,85 5 -239467 cd03370 NADH_oxidase 1 FMN binding site 0 1 1 0 7,9,11,63,110,111,112,113 5 -239467 cd03370 NADH_oxidase 2 dimer interface 0 0 1 1 4,7,24,31,32,33,38,40,44,45,46,91,92,95,96,99,100,123,124,153,154,155 2 -239468 cd03371 TPP_PpyrDC 1 TPP-binding site 0 0 1 1 49,73,74,75,76,102,104 0 -239469 cd03372 TPP_ComE 1 TPP-binding site 0 0 1 1 43,66,67,68,69,95,97 0 -239470 cd03375 TPP_OGFOR 1 TPP-binding site 0 0 1 1 52,76,77,78,79,105,107 5 -239471 cd03376 TPP_PFOR_porB_like 1 TPP-binding site 0 0 1 1 12,35,57,58,87,88,89,90,116,118,120,121,122 5 -239471 cd03376 TPP_PFOR_porB_like 2 putative dimer interface 0 0 1 1 26,27,41,51,52,53,54,55,56,59,62,63,66,67,69,70,73,80,96,100,101,107,122,123,128,135,137,140,149,153,157,158,161,201,202,207,208,209,210 2 -239472 cd03377 TPP_PFOR_PNO 1 TPP-binding site 0 1 1 1 13,36,65,66,158,159,160,161,187,189,191,192,193 5 -239472 cd03377 TPP_PFOR_PNO 2 dimer interface 0 1 1 1 26,27,28,42,47,55,56,57,59,60,61,62,63,64,67,70,71,74,75,77,78,81,82,85,88,146,151,167,171,172,178,193,194,199,206,208,211,215,219,223,224,227,268,269,275,276,277,278,328,332,335,337,340,358 2 -239473 cd03378 beta_CA_cladeC 1 zinc binding site 0 0 1 0 45,47,98,101 4 -239473 cd03378 beta_CA_cladeC 2 dimer interface 0 0 0 1 46,47,48,49,51,53,54,55,56,61,62,63,65,67,78,79,82,83,143,145,146,148,150 2 -239473 cd03378 beta_CA_cladeC 3 active site clefts 0 0 1 1 36,38,45,47,48,49,61,64,83,88,98,101,143 1 -239474 cd03379 beta_CA_cladeD 1 zinc binding site 0 0 1 0 9,11,62,65 4 -239474 cd03379 beta_CA_cladeD 2 dimer interface 0 1 0 1 10,11,12,13,19,20,25,26,27,29,31,42,43,46,47,131,133,134,136,138 2 -239474 cd03379 beta_CA_cladeD 3 active site clefts 0 0 1 1 0,2,9,11,12,13,25,28,47,52,62,65,131 1 -239475 cd03380 PAP2_like_1 1 active site 0 1 1 0 112,119,146,147,148,181,187,191 1 -239476 cd03381 PAP2_glucose_6_phosphatase 1 active site 0 0 1 1 34,41,75,76,77,124,130,134 1 -239477 cd03382 PAP2_dolichyldiphosphatase 1 active site 0 0 1 1 61,68,84,85,86,132,138,142 1 -239478 cd03383 PAP2_diacylglycerolkinase 1 active site 0 0 1 1 27,34,42,43,44,79,85,89 1 -239479 cd03384 PAP2_wunen 1 active site 0 0 1 1 23,30,75,76,77,123,129,133 1 -239480 cd03385 PAP2_BcrC_like 1 active site 0 0 1 1 59,80,81,82,116,122,126 1 -239481 cd03386 PAP2_Aur1_like 1 active site 0 0 1 1 74,82,120,121,122,156,162,166 1 -239482 cd03388 PAP2_SPPase1 1 active site 0 0 1 1 52,59,81,82,83,124,130,134 1 -239483 cd03389 PAP2_lipid_A_1_phosphatase 1 active site 0 0 1 1 88,95,121,122,123,156,162,166 1 -239484 cd03390 PAP2_containing_1_like 1 active site 0 0 1 1 65,72,113,114,115,163,169,173 1 -239485 cd03391 PAP2_containing_2_like 1 active site 0 0 1 1 66,73,94,95,96,132,138,142 1 -239486 cd03392 PAP2_like_2 1 active site 0 0 1 1 81,88,104,105,106,149,155,159 1 -239487 cd03393 PAP2_like_3 1 active site 0 0 1 1 32,39,61,62,63,98,104,108 1 -239488 cd03394 PAP2_like_5 1 active site 0 0 1 1 22,29,42,43,44,79,85,89 1 -239489 cd03395 PAP2_like_4 1 active site 0 0 1 1 76,83,107,108,109,144,150,154 1 -239490 cd03396 PAP2_like_6 1 active site 0 0 1 1 86,93,125,126,127,167,173,177 1 -239491 cd03397 PAP2_acid_phosphatase 1 active site 0 1 1 0 120,127,153,154,155,188,194,198 1 -239492 cd03398 PAP2_haloperoxidase 1 active site 0 1 1 0 105,112,148,149,150,204,210,214 1 -239503 cd03409 Chelatase_Class_II 1 active site 0 1 1 1 6,73 1 -239504 cd03411 Ferrochelatase_N 1 active site 0 1 1 1 7,19,23,24,25,127,128 1 -239504 cd03411 Ferrochelatase_N 2 C-terminal domain interface 0 1 1 0 6,55,59,68,72,120,123,124,125,126,154,156 2 -239505 cd03412 CbiK_N 1 active site 0 1 1 1 7,11,84 1 -239505 cd03412 CbiK_N 2 C-terminal domain interface 0 1 1 0 11,16,17,79,82,83,115,119,123,125,126 2 -239506 cd03413 CbiK_C 1 active site 0 1 1 1 7,11,70 1 -239506 cd03413 CbiK_C 2 N-terminal domain interface 0 1 1 0 12,16,20,63,64,65,67,69,100,102 2 -239507 cd03414 CbiX_SirB_C 1 putative active site 0 0 1 1 7,72 1 -239508 cd03415 CbiX_CbiC 1 putative active site 0 0 1 1 7,72 1 -239509 cd03416 CbiX_SirB_N 1 putative active site 0 0 1 1 6,72 1 -239510 cd03418 GRX_GRXb_1_3_like 1 GSH binding site 0 1 1 0 6,9,10,11,47,50,51 5 -239510 cd03418 GRX_GRXb_1_3_like 2 catalytic residues 0 0 1 1 9,12 1 -239511 cd03419 GRX_GRXh_1_2_like 1 GSH binding site 0 1 1 0 6,9,11,51,52,53,54,65,66,67,68 5 -239511 cd03419 GRX_GRXh_1_2_like 2 catalytic residues 0 0 1 1 9,12 1 -239512 cd03420 SirA_RHOD_Pry_redox 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239513 cd03421 SirA_like_N 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239514 cd03422 YedF 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239515 cd03423 SirA 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239516 cd03424 ADPRase_NUDT5 1 active site 0 1 1 0 22,34,35,36,50,54,77,99 1 -239516 cd03424 ADPRase_NUDT5 2 dimer interface 0 1 1 0 0,2,19,21,23,28,67,68,69,70,72,74,75,76,77,78,99,100,102,115,116,124,128,131,135,136 2 -239516 cd03424 ADPRase_NUDT5 3 ADP-ribose binding site 0 1 1 0 3,22,36,50,54,77 5 -239516 cd03424 ADPRase_NUDT5 4 metal binding site 0 1 1 0 50,54,99 4 -239516 cd03424 ADPRase_NUDT5 5 nudix motif 0 0 1 1 35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -239517 cd03425 MutT_pyrophosphohydrolase 1 active site 0 1 1 0 0,2,34,35,37,49,52,53,76,94,115 1 -239517 cd03425 MutT_pyrophosphohydrolase 2 metal binding site 0 1 1 1 49,52,53 4 -239517 cd03425 MutT_pyrophosphohydrolase 3 8-oxo-dGMP binding site 0 1 1 0 0,2,34,35,74,76,115 5 -239517 cd03425 MutT_pyrophosphohydrolase 4 nudix motif 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 0 -239518 cd03426 CoAse 1 metal binding site 0 1 1 1 54 4 -239518 cd03426 CoAse 2 putative active site 0 0 1 1 22,32,39,53,54,81 1 -239518 cd03426 CoAse 3 putative CoA binding site 0 0 1 1 22,32,39,53,81 5 -239518 cd03426 CoAse 4 nudix motif 0 0 1 1 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 0 -239519 cd03427 MTH1 1 nucleotide binding site 0 0 1 1 0,2,4,28,33,46,47,50,51,67,76,78,113,115 5 -239519 cd03427 MTH1 2 putative metal binding site 0 0 1 1 95,96 4 -239519 cd03427 MTH1 3 putative active site 0 0 1 1 0,2,4,28,33,46,47,50,51,67,76,78,95,96,113,115 1 -239519 cd03427 MTH1 4 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -239520 cd03428 Ap4A_hydrolase_human_like 1 active site 0 1 1 0 27,29,32,48,52,70,72,79,81,83,99,115,117,120 1 -239520 cd03428 Ap4A_hydrolase_human_like 2 Ap4A binding cleft/pocket 0 1 1 1 27,32,70,72,79,99,117,119,120 5 -239520 cd03428 Ap4A_hydrolase_human_like 3 P4 phosphate binding site 0 1 1 1 32,34,48,52 0 -239520 cd03428 Ap4A_hydrolase_human_like 4 putative P2/P3 phosphate binding site 0 0 1 0 34,79 4 -239520 cd03428 Ap4A_hydrolase_human_like 5 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -239521 cd03429 NADH_pyrophosphatase 1 putative NADH binding site 0 1 1 1 1,30,31,32,66,69,71,73 5 -239521 cd03429 NADH_pyrophosphatase 2 putative active site 0 0 1 1 31,32,34,46,49,50,66,69,71,73 1 -239521 cd03429 NADH_pyrophosphatase 3 putative metal binding site 0 0 1 1 46,49,50,91 4 -239521 cd03429 NADH_pyrophosphatase 4 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -239522 cd03430 GDPMH 1 active site 0 1 1 0 2,13,15,30,32,40,43,44,45,63,81,83,87,96,116 1 -239522 cd03430 GDPMH 2 dimer interface 0 1 1 0 6,7,9,12,45,48,49,51,52,53,75,80,93,95 2 -239522 cd03430 GDPMH 3 metal binding site 0 1 1 1 63,116 4 -239522 cd03430 GDPMH 4 GDP-Mannose binding site 0 1 1 1 2,30,32,43,44,45,63,87,96,116 5 -239522 cd03430 GDPMH 5 modified nudix motif 0 0 1 1 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 0 -239523 cd03431 DNA_Glycosylase_C 1 DNA binding and oxoG recognition site 0 1 1 0 24,25,26,67,70,71 3 -239524 cd03440 hot_dog 1 active site 1 0 1 1 0 24,27,28,31,45,46,47 1 -239524 cd03440 hot_dog 2 active site 2 0 1 1 0 18,19,53,54,55,56 1 -239525 cd03441 R_hydratase_like 1 active site 0 0 1 0 18,23,25,28,43,46,47 1 -239525 cd03441 R_hydratase_like 2 catalytic site 0 0 1 0 23,25,28,46 1 -239527 cd03443 PaaI_thioesterase 1 CoenzymeA binding site 0 1 1 0 30,59,66,67,68,69 5 -239527 cd03443 PaaI_thioesterase 2 PHB binding site 0 1 1 0 32,40,41,44,45,59 0 -239527 cd03443 PaaI_thioesterase 3 subunit interaction site 0 1 0 0 31,33,36,60,61,62,63,64,66 2 -239528 cd03444 Thioesterase_II_repeat1 1 catalytic triad 0 0 1 1 22,25,26,49,52,99 1 -239528 cd03444 Thioesterase_II_repeat1 2 dimer interface 0 1 0 0 50,51,52,53,54,55,57,74,83,98,102 2 -239529 cd03445 Thioesterase_II_repeat2 1 active site 0 0 1 0 23,26,27,40,43,89 1 -239530 cd03446 MaoC_like 1 putative active site 0 0 1 1 26,31,33,36,51,54,55 1 -239530 cd03446 MaoC_like 2 putative catalytic site 0 0 1 1 31,33,36,54 1 -239530 cd03446 MaoC_like 3 homodimer interaction site 0 1 0 0 15,25,30,31,34,55,59,66,78,80,81,82,84,86 2 -239531 cd03447 FAS_MaoC 1 putative active site 0 0 1 1 18,23,25,28,43,46,47 1 -239531 cd03447 FAS_MaoC 2 putative catalytic site 0 0 1 1 23,25,28,46 1 -239532 cd03448 HDE_HSD 1 active site 0 0 1 0 20,24,25,27,30,45,48,49 1 -239532 cd03448 HDE_HSD 2 catalytic site 0 0 1 0 25,27,30,48 1 -239532 cd03448 HDE_HSD 3 dimer interaction site 0 1 1 0 15,18,21,22,26,28,32 2 -239532 cd03448 HDE_HSD 4 substrate binding site 0 0 1 1 56,59,69,71 5 -239532 cd03448 HDE_HSD 5 substrate-binding tunnel 0 0 1 0 19,25,27,30,47,49,52,55,59,71,74,76,78,92,101,103,112,118 0 -239533 cd03449 R_hydratase 1 active site 0 0 1 0 21,26,28,31,46,49,50 1 -239533 cd03449 R_hydratase 2 catalytic site 0 0 1 0 26,28,31,49 1 -239533 cd03449 R_hydratase 3 substrate binding site 0 0 1 1 57,60,69,71 5 -239533 cd03449 R_hydratase 4 dimer interaction site 0 1 1 0 10,12,20,22,23,25,26,27,54,57,58,69,70,72,73,74,76,78 2 -239533 cd03449 R_hydratase 5 substrate-binding tunnel 0 1 1 0 20,26,28,31,48,50,53,56,60,71,74,76,78,92,106,108,119,125 0 -239534 cd03450 NodN 1 putative active site 0 0 1 1 32,37,39,42,57,60,61 1 -239534 cd03450 NodN 2 putative catalytic site 0 0 1 1 37,39,42,60 1 -239535 cd03451 FkbR2 1 putative active site 0 0 1 1 29,34,36,39,54,57,58 1 -239535 cd03451 FkbR2 2 putative catalytic site 0 0 1 1 34,36,39,57 1 -239536 cd03452 MaoC_C 1 substrate binding site 0 0 1 1 95,98,117,119 5 -239537 cd03453 SAV4209_like 1 active site 0 0 1 0 20,25,27,30,45,48,49 1 -239537 cd03453 SAV4209_like 2 catalytic site 0 0 1 0 25,27,30,48 1 -239538 cd03454 YdeM 1 putative active site 0 0 1 1 25,29,31,34,49,52,53 1 -239538 cd03454 YdeM 2 putative catalytic site 0 0 1 1 29,31,34,52 1 -239539 cd03455 SAV4209 1 putative active site 0 0 1 1 19,24,26,29,44,47,48 1 -239539 cd03455 SAV4209 2 putative catalytic site 0 0 1 1 24,26,29,47 1 -239540 cd03457 intradiol_dioxygenase_like 1 putative active site 0 0 1 1 49,57,98,101,104,106,139 1 -239541 cd03458 Catechol_intradiol_dioxygenases 1 active site 0 1 1 0 80,134,168,189,192,194,222 1 -239541 cd03458 Catechol_intradiol_dioxygenases 2 dimer interface 0 1 1 0 0,2,4,6,7,13,17,18,19,25,26,51,52,59,64,185 2 -239543 cd03460 1,2-CTD 1 active site 0 1 1 0 95,98,99,146,154,188,190,209,212,214,241,242 1 -239543 cd03460 1,2-CTD 2 dimer interface 0 1 1 0 19,21,23,25,26,32,36,37,38,44,45,65,66,73,78,205 2 -239544 cd03461 1,2-HQD 1 active site 0 1 1 0 69,96,97,150,184,205,208,210 1 -239544 cd03461 1,2-HQD 2 dimer interface 0 1 1 0 17,19,21,23,24,30,34,35,36,42,43,68,69,76,81,201 2 -239545 cd03462 1,2-CCD 1 active site 0 1 1 0 76,129,163,184,187,189,217 1 -239545 cd03462 1,2-CCD 2 dimer interface 0 1 1 0 1,3,5,7,9,10,16,20,21,22,28,29,49,50,52,56,61,180 2 -239546 cd03463 3,4-PCD_alpha 1 active site 0 1 1 1 10,123 0 -239546 cd03463 3,4-PCD_alpha 2 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,8,11,13,14,15,16,44,45,46,52,56,58,66,68,69,70,85,112,115,123,124,127,132,154,174,175,179,182,183,184 2 -239547 cd03464 3,4-PCD_beta 1 active site 0 1 1 1 13,95,134,136,147,149,178 1 -239547 cd03464 3,4-PCD_beta 2 heterodimer interface 0 1 1 0 0,4,5,6,7,8,13,15,16,17,18,19,20,21,22,23,26,28,29,30,31,35,36,37,38,39,44,74,85,87,95,96,97,113,115,160,162,163,164,166,178,187,191,213,215 2 -239547 cd03464 3,4-PCD_beta 3 multimer interface 0 1 1 0 0,2,3,4,5,6,7,8,10,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,36,37,38,39,40,44,60,62,63,64,66,74,85,87,92,95,96,97,98,102,103,113,115,133,135,138,139,140,141,143,149,160,161,162,163,164,166,168,169,175,178,181,187,190,194,195,197,198,199,200,201,202,203,204,205,212,213,215 2 -239550 cd03467 Rieske 1 iron-sulfur cluster 0 1 1 0 41,43,44,60,62,63,65,67 4 -239550 cd03467 Rieske 2 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,60,63,65 4 -176458 cd03468 PolY_like 1 active site 0 0 1 1 3,4,7,8,40,43,97,98,150 1 -176458 cd03468 PolY_like 2 DNA binding site 0 0 1 1 95,98,175,176,177,178,179,180,181,210,236,237,238,239,240,241,270,296,297,298,299,300,302 3 -239551 cd03469 Rieske_RO_Alpha_N 1 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,62,65,67 4 -239552 cd03470 Rieske_cytochrome_bc1 1 [2Fe-2S] cluster binding site 0 1 1 1 68,70,71,87,90,92 4 -239553 cd03471 Rieske_cytochrome_b6f 1 [2Fe-2S] cluster binding site 0 1 1 1 54,56,57,59,72,75,77 4 -239553 cd03471 Rieske_cytochrome_b6f 2 cytochrome b subunit interaction site 0 1 1 0 31,32,60 2 -239554 cd03472 Rieske_RO_Alpha_BPDO_like 1 iron-sulfur cluster 0 1 1 0 50,52,53,70,72,73,75,77 4 -239554 cd03472 Rieske_RO_Alpha_BPDO_like 2 alpha subunit interaction site 0 1 1 0 30,31,49,51,52,53,54,55,56,59,70,71,72,73,74,75,86,87,91,92,93,97,102,103,105 2 -239554 cd03472 Rieske_RO_Alpha_BPDO_like 3 beta subunit interaction site 0 1 1 0 27,59,61,62,64,91 2 -239555 cd03473 Rieske_CMP_Neu5Ac_hydrolase_N 1 [2Fe-2S] cluster binding site 0 0 1 1 48,50,51,69,72,74 4 -239556 cd03474 Rieske_T4moC 1 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,60,63,65 4 -239557 cd03475 Rieske_SoxF_SoxL 1 [2Fe-2S] cluster binding site 0 1 1 1 83,85,86,88,117,119,120,121,122 4 -239558 cd03476 Rieske_ArOX_small 1 [2Fe-2S] cluster binding site 0 1 1 1 54,56,57,72,75,77 4 -239558 cd03476 Rieske_ArOX_small 2 subunit interaction site 0 1 1 0 55,56,57,59,67,68,75,76,80,82,86,87,88,89,90,91,92,93 2 -239559 cd03477 Rieske_YhfW_C 1 [2Fe-2S] cluster binding site 0 0 1 1 39,41,42,57,60,62 4 -239560 cd03478 Rieske_AIFL_N 1 [2Fe-2S] cluster binding site 0 0 1 1 39,41,42,58,61,63 4 -239563 cd03481 TopoIIA_Trans_ScTopoIIA 1 ATP binding 0 1 1 1 111,113 5 -239563 cd03481 TopoIIA_Trans_ScTopoIIA 2 dimer interface 0 1 1 1 90,94,109,110 2 -239564 cd03482 MutL_Trans_MutL 1 ATP binding site 0 1 1 1 98 5 -239565 cd03483 MutL_Trans_MLH1 1 ATP binding site 0 0 1 1 102 5 -239566 cd03484 MutL_Trans_hPMS_2_like 1 ATP binding site 0 0 1 1 117 5 -239567 cd03485 MutL_Trans_hPMS_1_like 1 ATP binding site 0 0 1 1 107 5 -239568 cd03486 MutL_Trans_MLH3 1 ATP binding site 0 0 1 1 116 5 -239569 cd03487 RT_Bac_retron_II 1 putative active site 0 0 1 1 62,63,64,65,66,67,105,106,139,141,142,190,191 1 -239569 cd03487 RT_Bac_retron_II 2 putative nucleic acid binding site 0 0 1 1 106 3 -239569 cd03487 RT_Bac_retron_II 3 putative NTP binding site 0 0 1 1 62,63,64,65,66,67,105,141 5 -239570 cd03488 Topoisomer_IB_N_htopoI_like 1 DNA binding 0 1 1 0 0,50,140,141,146,148,151,158,194,195,196,209,210,212 0 -239570 cd03488 Topoisomer_IB_N_htopoI_like 2 topo1 poison binding 0 1 1 1 148 0 -239571 cd03489 Topoisomer_IB_N_LdtopoI_like 1 DNA binding 0 0 1 1 0,48,137,138,143,145,148,155,191,192,193,206,207,209 0 -239572 cd03490 Topoisomer_IB_N_1 1 DNA binding 0 0 1 1 0,48,139,140,145,147,150,157,196,197,198,211,212,214 0 -239573 cd03493 SQR_QFR_TM 1 proximal heme binding site 0 1 1 1 9,56,60 5 -239573 cd03493 SQR_QFR_TM 2 Iron-sulfur protein interface 0 1 1 0 2,63 0 -239574 cd03494 SQR_TypeC_SdhD 1 proximal heme binding site 0 1 1 1 8,12,53,56,60 5 -239574 cd03494 SQR_TypeC_SdhD 2 proximal quinone binding site 0 1 1 1 68 5 -239574 cd03494 SQR_TypeC_SdhD 3 Iron-sulfur protein interface 0 1 1 0 63,66,67,70 0 -239574 cd03494 SQR_TypeC_SdhD 4 SdhC subunit interface 0 1 1 1 5,30,33,67,89,92 2 -239574 cd03494 SQR_TypeC_SdhD 5 cardiolipin binding site 0 1 1 1 22,26,28 0 -239575 cd03495 SQR_TypeC_SdhD_like 1 putative proximal heme binding site 0 0 1 1 9,57,61 5 -239575 cd03495 SQR_TypeC_SdhD_like 2 putative proximal quinone binding site 0 0 1 1 69 0 -239575 cd03495 SQR_TypeC_SdhD_like 3 putative Iron-sulfur protein interface 0 0 1 1 64,67,68,71 2 -239575 cd03495 SQR_TypeC_SdhD_like 4 putative SdhC subunit interface 0 0 1 1 6,68,69,90,93 2 -239576 cd03496 SQR_TypeC_CybS 1 proximal heme binding site 0 1 1 1 44,48 5 -239576 cd03496 SQR_TypeC_CybS 2 proximal quinone binding site 0 1 1 1 56 5 -239576 cd03496 SQR_TypeC_CybS 3 distal quinone binding site 0 1 1 1 23,24,99,102 5 -239576 cd03496 SQR_TypeC_CybS 4 Iron-sulfur protein interface 0 1 1 0 0,2,3,51,54,55,58 0 -239576 cd03496 SQR_TypeC_CybS 5 CybL subunit interface 0 1 1 1 10,55,56,80,83,86,91,97,102 2 -239577 cd03497 SQR_TypeB_1_TM 1 proximal heme binding site 0 0 1 1 9,10,13,17,66,67,70,92,99,160,164,168,171 5 -239577 cd03497 SQR_TypeB_1_TM 2 distal heme binding site 0 0 1 1 20,24,109,113,137,140,150,199,203 5 -239577 cd03497 SQR_TypeB_1_TM 3 putative Iron-sulfur protein interface 0 0 1 1 0,6,73,83,86,87,92,167,171,172,181 2 -239577 cd03497 SQR_TypeB_1_TM 4 putative dimer interface 0 0 1 1 71,72,78,82,86,103,104,107,108,111,115,144,145,149 2 -239578 cd03498 SQR_TypeB_2_TM 1 proximal heme binding site 0 0 1 1 4,5,8,11,60,61,64,92,99,159,163,167,170 5 -239578 cd03498 SQR_TypeB_2_TM 2 distal heme binding site 0 0 1 1 14,18,109,113,136,139,149,197,201 5 -239578 cd03498 SQR_TypeB_2_TM 3 putative Iron-sulfur protein interface 0 0 1 1 1,67,80,83,84,92,166,170,171,179 2 -239578 cd03498 SQR_TypeB_2_TM 4 putative dimer interface 0 0 1 1 65,66,75,79,83,103,104,107,108,111,115,143,144,148 2 -239579 cd03499 SQR_TypeC_SdhC 1 proximal heme binding site 0 1 1 1 22,28,29,75,76 5 -239579 cd03499 SQR_TypeC_SdhC 2 proximal quinone binding site 0 1 1 1 11,18,19,22 5 -239579 cd03499 SQR_TypeC_SdhC 3 Iron-sulfur protein interface 0 1 1 0 0,1,2,3,8,9,10,12,15,22,82,85,87 0 -239579 cd03499 SQR_TypeC_SdhC 4 SdhD (CybS) interface 0 1 1 1 22,33,36,39,40,49,65,86,114 2 -239580 cd03500 SQR_TypeA_SdhD_like 1 putative proximal heme binding site 0 0 1 1 4,11,62,66,70,73 5 -239580 cd03500 SQR_TypeA_SdhD_like 2 putative distal heme binding site 0 0 1 1 21,25,99,103 5 -239580 cd03500 SQR_TypeA_SdhD_like 3 putative Iron-sulfur protein interface 0 0 1 1 4,69,72,73,76 2 -239580 cd03500 SQR_TypeA_SdhD_like 4 putative SdhC-like subunit interface 0 0 1 1 8,36,73,96 2 -239581 cd03501 SQR_TypeA_SdhC_like 1 putative proximal heme binding site 0 0 1 1 6,7,10,60,61,64 5 -239581 cd03501 SQR_TypeA_SdhC_like 2 putative distal heme binding site 0 0 1 1 16,20 5 -239581 cd03501 SQR_TypeA_SdhC_like 3 putative Iron-sulfur protein interface 0 0 1 1 0,7,67,70,72,73 2 -239581 cd03501 SQR_TypeA_SdhC_like 4 putative SdhD-like interface 0 0 1 1 7,18,21,24,25,34,50,71 2 -239582 cd03505 Delta9-FADS-like 1 Di-iron ligands 0 0 1 1 23,28,60,63,64,138,141,142 4 -239583 cd03506 Delta6-FADS-like 1 putative di-iron ligands 0 0 1 1 18,22,54,57,58,173,176,177 4 -239584 cd03507 Delta12-FADS-like 1 putative di-iron ligands 0 0 1 1 51,55,87,90,91,207,210,211 4 -239585 cd03508 Delta4-sphingolipid-FADS-like 1 putative di-iron ligands 0 0 1 1 63,67,100,103,104,232,235,236 4 -239586 cd03509 DesA_FADS-like 1 putative di-iron ligands 0 0 1 1 45,49,80,83,84,231,234,235 4 -239587 cd03510 Rhizobitoxine-FADS-like 1 putative di-iron ligands 0 0 1 1 39,43,76,79,80,153,156,157 4 -239588 cd03511 Rhizopine-oxygenase-like 1 putative di-iron ligands 0 0 1 1 62,66,98,101,102,247,250,251 4 -239589 cd03512 Alkane-hydroxylase 1 Di-iron ligands 0 0 1 1 91,95,121,125,126,265,268,269 4 -239590 cd03513 CrtW_beta-carotene-ketolase 1 putative di-iron ligands 0 0 1 1 50,54,88,91,92,206,209,210 4 -239591 cd03514 CrtR_beta-carotene-hydroxylase 1 putative di-iron ligands 0 0 1 1 42,46,78,81,82,176,179,180 4 -239592 cd03515 Link_domain_TSG_6_like 1 putative hyaluronan binding site 0 0 1 1 10,11,58,69,77 5 -239593 cd03516 Link_domain_CD44_like 1 putative hyaluronan-binding site 0 0 1 1 12,15,16,42,52,53,75,76,80 5 -239594 cd03517 Link_domain_CSPGs_modules_1_3 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239595 cd03518 Link_domain_HAPLN_module_1 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239596 cd03519 Link_domain_HAPLN_module_2 1 putative hyaluronan binding site 0 0 1 1 7,8 5 -239597 cd03520 Link_domain_CSPGs_modules_2_4 1 putative hyaluronan binding site 0 0 1 1 7,8 5 -239598 cd03521 Link_domain_KIAA0527_like 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239599 cd03522 MoeA_like 1 putative MPT binding site 0 0 1 1 227,228,229,274,275,279,282 0 -239601 cd03524 RPA2_OBF_family 1 generic binding surface I 0 1 1 1 5,6,7,19,20,21,22,24,31,32,33,35,50,57,58,59,66,67,68 0 -239601 cd03524 RPA2_OBF_family 2 generic binding surface II 0 1 1 1 0,51,53,55,73 0 -239602 cd03526 SQR_QFR_TypeB_TM 1 proximal heme binding site 0 1 1 1 4,5,8,11,60,61,64,91,98,150,154,158,161 5 -239602 cd03526 SQR_QFR_TypeB_TM 2 distal heme binding site 0 1 1 1 14,18,108,112,127,130,140,192,196 5 -239602 cd03526 SQR_QFR_TypeB_TM 3 Iron-sulfur protein interface 0 1 1 0 1,67,80,91,157,161,162,174 0 -239602 cd03526 SQR_QFR_TypeB_TM 4 dimer interface 0 1 1 1 65,66,75,79,102,103,106,107,110,114,134,139 2 -239603 cd03527 RuBisCO_small 1 multimerization interface 0 1 0 1 0,1,3,4,5,6,7,9,11,19,22,33,42,43,44,46,47,72,87,89,90 2 -239604 cd03528 Rieske_RO_ferredoxin 1 [2Fe-2S] cluster binding site 0 1 1 1 40,42,59,62 4 -239606 cd03530 Rieske_NirD_small_Bacillus 1 [2Fe-2S] cluster binding site 0 0 1 1 41,43,44,60,63,65 4 -239609 cd03535 Rieske_RO_Alpha_NDO 1 iron-sulfur cluster 0 0 1 1 44,46,47,64,66,67,69,71 4 -239609 cd03535 Rieske_RO_Alpha_NDO 2 alpha subunit interaction site 0 1 1 0 21,25,26,42,43,45,46,47,48,50,53,63,64,65,66,67,68,81,85,96,99 2 -239609 cd03535 Rieske_RO_Alpha_NDO 3 beta subunit interaction site 0 1 1 0 21,53,54,55,56,57 2 -239617 cd03548 Rieske_RO_Alpha_OMO_CARDO 1 iron-sulfur cluster 0 0 1 1 54,56,57,75,77,78,80,82 4 -239617 cd03548 Rieske_RO_Alpha_OMO_CARDO 2 alpha subunit interaction site 0 1 1 0 55,56,57,58,68,75,76,77,78,91,95,98,99,100,103 2 -239618 cd03556 L-fucose_isomerase 1 Mn binding site 0 1 1 0 330,354,521 4 -239618 cd03556 L-fucose_isomerase 2 substrate binding site 0 1 1 1 11,83,178,295,330,354,386,433,492,520,521 5 -239618 cd03556 L-fucose_isomerase 3 trimer interface 0 1 1 0 11,13,83,85,86,87,106,107,119,122,123,132,134,135,136,138,151,178,179,181,295,296,356,358,360,366,433,435,458,460,461,487,511,514,518,545,562,563,564,565,566,568,572,573,577 2 -239618 cd03556 L-fucose_isomerase 4 hexamer (dimer of trimers) interface 0 1 1 0 10,12,58,62,66,69,124,169,188,191,198,201,202,203,204,208,279,280,286,296,297,301,460,577,583 2 -239619 cd03557 L-arabinose_isomerase 1 putative metal binding site 0 0 1 1 299,326,442 4 -239619 cd03557 L-arabinose_isomerase 2 putative substrate binding site 0 1 1 1 76,272,299,326,441,442 5 -239619 cd03557 L-arabinose_isomerase 3 trimer interface 0 1 1 0 76,78,79,80,81,97,99,102,104,106,109,110,111,114,120,121,124,125,128,131,132,134,139,141,152,180,181,182,183,327,328,329,330,331,332,390,391,392,411,413,414,416,431,432,435,438,441,459,482,483 2 -239619 cd03557 L-arabinose_isomerase 4 putative hexamer (dimer of trimers) interface 0 0 1 1 54,58,61,81,133,134,170,177,189,192,199,200,201,202,203,204,205,209,264,273,274 2 -349787 cd03558 LGIC_ECD 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,178 2 -349850 cd03559 LGIC_TM 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,31,32,34,35,36,38,39,42,43,49,50,52,72,76,79,83,100 2 -349850 cd03559 LGIC_TM 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349850 cd03559 LGIC_TM 3 TM2 helix 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -349850 cd03559 LGIC_TM 4 TM3 helix 0 0 0 0 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349850 cd03559 LGIC_TM 5 TM4 helix 0 0 0 0 94,95,96,97,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -340765 cd03561 VHS 1 putative intraprotein/interprotein binding site 0 1 1 1 17,18,21,25,65,66 2 -340766 cd03562 CID 1 CTD binding site 0 1 1 1 11,13,14,17,55,58,59,62,63,100,101,104 2 -340767 cd03564 ANTH_N 1 PtdIns(4,5)P2-binding site 0 1 1 1 6,16,18,19 5 -340768 cd03565 VHS_Tom1_like 1 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,69,70 2 -340768 cd03565 VHS_Tom1_like 2 putative membrane binding residues 0 0 1 0 36,40,43,44 0 -340769 cd03567 VHS_GGA_metazoan 1 acidic-cluster-dileucine motif interaction site 0 1 1 1 78,79,80,83,92,93,122,129,133 2 -340769 cd03567 VHS_GGA_metazoan 2 dimer interface 0 1 1 0 2,6,11,40,44,45,47,48,49,50,97 2 -340769 cd03567 VHS_GGA_metazoan 3 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,66,67 2 -340770 cd03568 VHS_STAM 1 ubiquitin binding site 0 1 1 0 14,15,16,17,18,21,22,25,62,65,66 2 -340771 cd03569 VHS_Hrs 1 FYVE domain interface 0 1 1 1 19,20,23,27,67,68 2 -340772 cd03571 ENTH 1 phosphoinositide binding site 0 1 1 1 5,9,10,43,49,53 5 -340773 cd03572 ENTH_like_Tepsin 1 putative phosphoinositide binding site 0 0 1 1 5,9,10,44,48,52 5 -239630 cd03575 NTR_WFIKKN 1 Metzincin-binding interface 0 0 1 1 23,77,84,86 0 -239632 cd03577 NTR_TIMP_like 1 Metzincin-binding interface 0 1 1 0 0,1,2,3,4,33,59,60,65,80,87,89,90,91 0 -239637 cd03582 NTR_complement_C5 1 putative convertase binding site 0 0 1 1 101,102,103,104,105,106 0 -239637 cd03582 NTR_complement_C5 2 putative C6/C7 interacting face 0 0 1 1 18,19,135,136,138,139,142,143,146,147 2 -239640 cd03585 NTR_TIMP 1 Metzincin-binding interface 0 1 1 0 0,1,2,3,4,39,40,66,67,68,69,70,71,72,89,96,98,99,100,131,133,134,150,156 0 -239640 cd03585 NTR_TIMP 2 Hemopexin-domain-binding interface 0 1 1 1 136,137,138,139,142,146,148,151,164,169,171,173,174,175,176,177,178,181 2 -176459 cd03586 PolY_Pol_IV_kappa 1 active site 0 1 1 0 3,4,6,7,8,36,37,40,43,97,151 1 -176459 cd03586 PolY_Pol_IV_kappa 2 DNA binding site 0 1 1 0 28,52,95,97,98,144,176,177,178,179,180,181,182,211,212,235,236,237,238,239,240,241,242,267,290,291,292,293,295,324,325,329,332 3 -239641 cd03587 SOCS 1 elongin B/C interaction 0 1 1 0 0,1,2,3,4,5,11,21,27 0 -153058 cd03588 CLECT_CSPGs 1 carbohydrate binding site 0 1 1 1 85,87,94,108,109 0 -153058 cd03588 CLECT_CSPGs 2 fibronectin type III repeats 3-5 binding site 0 1 1 1 18,50,51,52,53,82,92,100,102,108,111,113,114,115 0 -153058 cd03588 CLECT_CSPGs 3 calcium binding site 1 0 1 1 0 61,65,88,94,95 4 -153058 cd03588 CLECT_CSPGs 4 calcium binding site 3 0 1 1 0 65,95 4 -153059 cd03589 CLECT_CEL-1_like 1 carbohydrate binding 0 1 1 1 98,100,106,112,122,123 5 -153059 cd03589 CLECT_CEL-1_like 2 calcium binding site 3 0 1 1 0 78,107 4 -153059 cd03589 CLECT_CEL-1_like 3 calcium binding site 1 0 1 1 0 74,78,101,106,107 4 -153059 cd03589 CLECT_CEL-1_like 4 dimer interface 0 1 1 1 1,2,8,31,33 2 -153060 cd03590 CLECT_DC-SIGN_like 1 carbohydrate binding site 0 1 1 1 56,89,91,98,104,105,111,112,113,114 0 -153060 cd03590 CLECT_DC-SIGN_like 2 calcium binding site 1 0 1 1 0 63,67,92,98,99 4 -153060 cd03590 CLECT_DC-SIGN_like 3 calcium binding site 3 0 1 1 0 67,99 4 -153061 cd03591 CLECT_collectin_like 1 carbohydrate binding site 0 1 1 1 79,81,87,99,100 5 -153061 cd03591 CLECT_collectin_like 2 calcium binding site 3 0 1 1 1 59,82,88 4 -153061 cd03591 CLECT_collectin_like 3 calcium binding site 1 0 1 1 1 55,59,82,87,88 4 -153062 cd03592 CLECT_selectins_like 1 carbohydrate binding site 0 1 1 1 48,79,81,82,90,92,100,101,102 5 -153062 cd03592 CLECT_selectins_like 2 PSGL-1 peptide binding surface 0 1 1 0 48,79,81,86,90,92,100,101,102 0 -153063 cd03593 CLECT_NK_receptors_like 1 ligand binding surface 0 1 1 0 55,82,99,101,102 5 -153064 cd03594 CLECT_REG-1_like 1 ligand binding surface 0 1 1 1 99,114,115 5 -153065 cd03595 CLECT_chondrolectin_like 1 ligand binding surface 0 0 1 1 110,114,116,132,134,135,136,137,140,141,142 5 -153066 cd03596 CLECT_tetranectin_like 1 ligand binding surface 0 0 1 1 100,104,106,112,114,115,116,117,120,121,122 5 -153066 cd03596 CLECT_tetranectin_like 2 calcium binding site 1 0 1 1 0 66,70,97,100,101 4 -153066 cd03596 CLECT_tetranectin_like 3 calcium binding site 2 0 1 1 0 93,95,100,115 4 -153067 cd03597 CLECT_attractin_like 1 ligand binding surface 0 0 1 1 99,103,105,111,113,114,115,116,120,121,122 5 -153068 cd03598 CLECT_EMBP_like 1 carbohydrate binding site 0 1 1 1 84,102,105 5 -153069 cd03599 CLECT_DGCR2_like 1 ligand binding surface 0 0 1 1 116,120,122,136,138,139,140,141,144,145,146 5 -153070 cd03600 CLECT_thrombomodulin_like 1 ligand binding surface 0 0 1 1 105,109,111,121,123,124,125,126,130,131,132 5 -153071 cd03601 CLECT_TC14_like 1 carbohydrate binding site 0 1 1 1 83,85,86,104,105 5 -153071 cd03601 CLECT_TC14_like 2 dimer interface 0 1 1 1 0,1,2,3,4,6,7,17,21,38,41,42,46 2 -153072 cd03602 CLECT_1 1 ligand binding surface 0 0 1 1 81,85,87,91,93,94,95,96,99,100,101 5 -153073 cd03603 CLECT_VCBS 1 ligand binding surface 0 0 1 1 84,88,90,100,102,103,104,105,109,110,111 5 -239642 cd03670 ADPRase_NUDT9 1 active site 0 1 1 0 23,55,65,81,119,121,123,171,174 1 -239642 cd03670 ADPRase_NUDT9 2 nudix motif 0 0 1 1 66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 0 -239643 cd03671 Ap4A_hydrolase_plant_like 1 Ap4A binding site 0 1 1 1 4,21,24,29,32,33,72,74,78,81,82,90,132,134,135 5 -239643 cd03671 Ap4A_hydrolase_plant_like 2 putative metal binding site 0 0 1 0 48,51,52 4 -239643 cd03671 Ap4A_hydrolase_plant_like 3 putative active site 0 0 1 1 4,21,24,29,32,33,48,51,52,72,74,78,81,82,90,132,134,135 1 -239643 cd03671 Ap4A_hydrolase_plant_like 4 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -239644 cd03672 Dcp2p 1 putative catalytic site 0 0 1 0 46,49,50 1 -239644 cd03672 Dcp2p 2 putative metal binding site 0 0 1 0 46,50 4 -239644 cd03672 Dcp2p 3 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -239645 cd03673 Ap6A_hydrolase 1 active site 0 1 1 1 22,27,32,34,48,68,70,71,79,118,120 1 -239645 cd03673 Ap6A_hydrolase 2 Ap6A binding site 0 1 1 1 22,27,32,34,68,70,71,79,118,120 5 -239645 cd03673 Ap6A_hydrolase 3 metal binding site 0 1 1 1 48 4 -239645 cd03673 Ap6A_hydrolase 4 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -239646 cd03674 Nudix_Hydrolase_1 1 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -239647 cd03675 Nudix_Hydrolase_2 1 nudix motif 0 0 1 1 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 0 -239648 cd03676 Nudix_hydrolase_3 1 nudix motif 0 0 1 1 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 0 -239649 cd03677 MM_CoA_mutase_beta 1 substrate interaction site 0 1 1 1 17 5 -239649 cd03677 MM_CoA_mutase_beta 2 heterodimer interface 0 1 1 0 0,8,36,37,40,41,83,84,212,236,237,238,254,282,288,289,291,323,324,327,334,335,336,342,344,346,347,348,349,350,356,360,363,366,367,370,407 2 -239650 cd03678 MM_CoA_mutase_1 1 putative active site 0 0 1 1 82,84,86,112,115,117,120,138,165,167,208,219,220,258,261,297,299,301,339,341,343,346,347,374,383,386,387 1 -239650 cd03678 MM_CoA_mutase_1 2 putative substrate binding site 0 0 1 1 82,84,86,112,165,167,208,220,257,258,297,299,301,339,341,343,374 5 -239650 cd03678 MM_CoA_mutase_1 3 putative coenzyme B12 binding site 0 0 1 1 86,115,117,120,138,219,220,222,261,346,347,383,384,386,387 5 -239651 cd03679 MM_CoA_mutase_alpha_like 1 active site 0 1 1 1 58,60,61,65,68,70,72,97,100,102,105,122,147,149,178,189,190,227,230,266,268,270,309,311,313,316,317,344,353,356,357 1 -239651 cd03679 MM_CoA_mutase_alpha_like 2 substrate binding site 0 1 1 1 58,60,61,65,68,70,72,97,147,149,178,190,226,227,266,268,270,309,311,313,344 5 -239651 cd03679 MM_CoA_mutase_alpha_like 3 coenzyme B12 binding site 0 1 1 1 72,100,102,105,122,189,190,192,230,316,317,353,354,356,357 5 -239653 cd03681 MM_CoA_mutase_MeaA 1 putative active site 0 0 1 1 2,4,6,31,34,36,39,56,81,83,112,123,124,161,164,204,206,208,248,250,252,255,256,286,295,298,299 1 -239653 cd03681 MM_CoA_mutase_MeaA 2 putative substrate binding site 0 0 1 1 2,4,6,31,81,83,112,124,160,161,204,206,208,248,250,252,286 5 -239653 cd03681 MM_CoA_mutase_MeaA 3 putative coenzyme B12 binding site 0 0 1 1 6,34,36,39,56,123,124,126,164,255,256,295,296,298,299 5 -239654 cd03682 ClC_sycA_like 1 putative Cl- selectivity filter 0 0 1 1 60,61,62,63,64,95,96,97,98,99,297,298,299,300,301,375 0 -239654 cd03682 ClC_sycA_like 2 putative pore gating glutamate residue 0 0 1 1 97 0 -239655 cd03683 ClC_1_like 1 putative Cl- selectivity filter 0 0 1 1 71,72,73,74,75,113,114,115,116,117,316,317,318,319,320,411 0 -239655 cd03683 ClC_1_like 2 putative pore gating glutamate residue 0 0 1 1 115 0 -239656 cd03684 ClC_3_like 1 putative Cl- selectivity filter 0 0 1 1 54,55,56,57,58,96,97,98,99,100,328,329,330,331,332,432 0 -239656 cd03684 ClC_3_like 2 putative pore gating glutamate residue 0 0 1 1 98 0 -239656 cd03684 ClC_3_like 3 putative H+/Cl- coupling transport residue 0 0 1 1 155 0 -239657 cd03685 ClC_6_like 1 putative Cl- selectivity filter 0 0 1 1 104,105,106,107,108,146,147,148,149,150,357,358,359,360,361,446 0 -239657 cd03685 ClC_6_like 2 putative pore gating glutamate residue 0 0 1 1 148 0 -239657 cd03685 ClC_6_like 3 putative H+/Cl- coupling transport residue 0 0 1 1 215 0 -239658 cd03687 Dehydratase_LU 1 active site 0 1 1 1 133,135,162,164,194,197,213,214,226,259,260,288,327,328,354,365,366 1 -239658 cd03687 Dehydratase_LU 2 cobalamin binding site 0 1 1 1 164,194,197,214,226,259,260,328,365,366 5 -239658 cd03687 Dehydratase_LU 3 substrate and K+ binding site 0 1 1 1 133,135,162,213,214,288,327,328,354 0 -239658 cd03687 Dehydratase_LU 4 K+ binding site 0 1 1 1 133,162,213,288 4 -239658 cd03687 Dehydratase_LU 5 alpha-gamma subunit interface 0 1 1 1 53,61,196,197,221,225,228,229,230,232,233,235,239,243,244,280,281,282,283,319,463,475,485,486,489,490,491,492,495,496,505,506,508 2 -239658 cd03687 Dehydratase_LU 6 alpha-beta subunit interface 0 1 1 1 10,18,139,169,226,227,259,262,293,296,328,329,332,362,364,366,367,368 2 -239658 cd03687 Dehydratase_LU 7 alpha-alpha subunit/dimer interface 0 1 1 1 1,4,7,11,12,13,15,81,85,87,111,113,116,122,149,152,300,302,303,305,306,333,335,336,338,358,373,374,375,377,378,381,384,385,397,433,435,439,516,518,519,524,540,542 2 -293889 cd03688 eIF2_gamma_II 1 tRNA binding site 0 1 1 0 12,13,72,73,74,76,77,99,100 3 -293889 cd03688 eIF2_gamma_II 2 EF1alpha interface 0 1 1 0 31,69,70,88,99 2 -293889 cd03688 eIF2_gamma_II 3 GTP binding site 0 1 1 0 13,15,17,26,29,70,71,72,74,88,89,90 5 -293891 cd03690 Tet_II 1 16S rRNA binding site 0 1 1 0 16,32,43,45,70 3 -293893 cd03692 mtIF2_IVc 1 tRNA binding site 0 1 1 0 35,76,78,79 3 -293894 cd03693 EF1_alpha_II 1 18S rRNA binding site 0 1 1 0 12,13,14,15,16,17,18,20,48,69,71 3 -293894 cd03693 EF1_alpha_II 2 pelota interface 0 1 1 0 10,12,76,77,78,79,80 2 -293894 cd03693 EF1_alpha_II 3 EF1 beta interface 0 1 1 0 10,11,12,13,14,17,20,49,51,53,54,67,68,69,80 2 -293898 cd03697 EFTU_II 1 16S rRNA binding site 0 1 1 0 12,13,14,46,69 3 -293898 cd03697 EFTU_II 2 tRNA binding site 0 1 1 0 8,9,10,11,13,16,18,47,48,49,51,63,64,65,67,78 3 -293899 cd03698 eRF3_II_like 1 18S rRNA binding site 0 1 1 0 14,15,66,68 3 -293900 cd03699 EF4_II 1 tRNA binding site 0 1 1 0 13 3 -293902 cd03701 IF2_IF5B_II 1 18S rRNA binding site 0 1 1 0 12,15,47,48,79,84 3 -293903 cd03702 IF2_mtIF2_II 1 putative rRNA binding site 0 0 1 1 12,15,43,44,65,69 3 -293904 cd03703 aeIF5B_II 1 18S rRNA binding site 0 1 1 0 12,13,14,15,47,48,63,79,81,84 3 -294003 cd03704 eRF3_C_III 1 heterodimer interface 0 1 1 0 17,18,19,20,21,22,23,24,26,28,33,35,37,58,59,61,93,95 2 -294004 cd03705 EF1_alpha_III 1 heterodimer interface 0 1 1 0 95 2 -294004 cd03705 EF1_alpha_III 2 pelota interface 0 1 1 1 16,17,20,21,22,34,57,58,73,94,95 2 -294005 cd03706 mtEFTU_III 1 heterodimer interface 0 1 1 0 21,22,24,49,50,52,55 2 -294006 cd03707 EFTU_III 1 tRNA binding site 0 1 1 0 19,20,21,24,25,26,27,28,30,39,43,64,65,79,80,81 3 -294006 cd03707 EFTU_III 2 heterodimer interface 0 1 1 0 16,17,20,21,24,27,28,30,50,52,55,80,81,82 2 -294006 cd03707 EFTU_III 3 antibiotic binding site 0 1 1 1 15,16,17,32,34,74,75,76,86 5 -239684 cd03714 RT_DIRS1 1 putative active site 0 0 1 1 1,2,3,4,5,6,35,36,65,67,68,114,115 1 -239684 cd03714 RT_DIRS1 2 putative nucleic acid binding site 0 0 1 1 36 3 -239684 cd03714 RT_DIRS1 3 putative NTP binding site 0 0 1 1 1,2,3,4,5,6,35,67 5 -239685 cd03715 RT_ZFREV_like 1 DNA binding site 0 1 1 1 6,7,41,55,56,57,58,61,62,127 3 -239685 cd03715 RT_ZFREV_like 2 putative active site 0 0 1 1 92,93,94,95,96,97,126,127,158,160,161,205,206 1 -239685 cd03715 RT_ZFREV_like 3 putative NTP binding site 0 0 1 1 92,93,94,95,96,97,126,160 5 -239686 cd03716 SOCS_ASB_like 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239687 cd03717 SOCS_SOCS_like 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239688 cd03718 SOCS_SSB1_4 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239689 cd03719 SOCS_SSB2 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239690 cd03720 SOCS_ASB1 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239691 cd03721 SOCS_ASB2 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239692 cd03722 SOCS_ASB3 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,25,31,36 2 -239693 cd03723 SOCS_ASB4_ASB18 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239694 cd03724 SOCS_ASB5 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239695 cd03725 SOCS_ASB6 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,23,29,34 2 -239696 cd03726 SOCS_ASB7 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239697 cd03727 SOCS_ASB8 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,23,29,34 2 -239698 cd03728 SOCS_ASB_9_11 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239699 cd03729 SOCS_ASB13 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239700 cd03730 SOCS_ASB14 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,25,31,36 2 -239701 cd03731 SOCS_ASB15 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,25,31,36 2 -239702 cd03733 SOCS_WSB_SWIP 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239703 cd03734 SOCS_CIS1 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,17,23,28 2 -239704 cd03735 SOCS_SOCS1 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239705 cd03736 SOCS_SOCS2 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,17,23,28 0 -239706 cd03737 SOCS_SOCS3 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,18,24,29 2 -239707 cd03738 SOCS_SOCS4 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239708 cd03739 SOCS_SOCS5 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239709 cd03740 SOCS_SOCS6 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239710 cd03741 SOCS_SOCS7 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239711 cd03742 SOCS_Rab40 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239712 cd03743 SOCS_SSB4 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239713 cd03744 SOCS_SSB1 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,22,28,33 2 -239714 cd03745 SOCS_WSB2_SWIP2 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239715 cd03746 SOCS_WSB1_SWIP1 1 putative elongin B/C interaction 0 0 1 1 1,2,3,4,5,6,12,19,25,30 2 -239716 cd03747 Ntn_PGA_like 1 active site 0 1 1 0 0,23,56,68,70,153,177,242 1 -239717 cd03748 Ntn_PGA 1 active site 0 1 1 0 0,23,56,68,70,153,176,240 1 -239718 cd03749 proteasome_alpha_type_1 1 active site 0 0 1 0 27,43,45,56,157 1 -239718 cd03749 proteasome_alpha_type_1 2 alpha subunit interaction site 0 0 1 0 2,3,4,5,7,8,10,11,15,18,21,22,25,33,48,50,51,72,73,74,76,77,108,111,114,115,118,119,120,121,122,139,144,145,147,149,150,152 2 -239719 cd03750 proteasome_alpha_type_2 1 active site 0 0 1 0 27,43,45,58,159 1 -239719 cd03750 proteasome_alpha_type_2 2 alpha subunit interaction site 0 0 1 0 2,3,4,5,7,8,10,11,15,18,21,22,25,33,48,50,51,74,75,76,78,79,110,113,116,117,120,121,122,123,124,141,146,147,149,151,152,154 2 -239720 cd03751 proteasome_alpha_type_3 1 active site 0 0 1 0 30,46,48,61,162 1 -239720 cd03751 proteasome_alpha_type_3 2 alpha subunit interaction site 0 0 1 0 5,6,7,8,10,11,13,14,18,21,24,25,28,36,51,53,54,77,78,79,81,82,113,116,119,120,123,124,125,126,127,144,149,150,152,154,155,157 2 -239721 cd03752 proteasome_alpha_type_4 1 active site 0 0 1 0 29,45,47,61,163 1 -239721 cd03752 proteasome_alpha_type_4 2 alpha subunit interaction site 0 0 1 0 4,5,6,7,9,10,12,13,17,20,23,24,27,35,50,52,53,77,78,79,81,82,113,116,119,120,123,124,125,126,127,145,150,151,153,155,156,158 2 -239722 cd03753 proteasome_alpha_type_5 1 active site 0 0 1 0 27,43,45,58,164 1 -239722 cd03753 proteasome_alpha_type_5 2 alpha subunit interaction site 0 0 1 0 2,3,4,5,7,8,10,11,15,18,21,22,25,33,48,50,51,74,75,76,78,79,110,113,116,117,125,126,127,128,129,146,151,152,154,156,157,159 2 -239723 cd03754 proteasome_alpha_type_6 1 active site 0 0 1 0 29,45,47,60,162 1 -239723 cd03754 proteasome_alpha_type_6 2 alpha subunit interaction site 0 1 1 0 3,4,5,6,8,9,11,12,16,19,22,23,26,35,50,52,53,76,77,78,80,81,112,115,118,119,122,123,124,125,126,144,149,150,152,154,155,157 2 -239724 cd03755 proteasome_alpha_type_7 1 active site 0 0 1 0 27,43,45,58,160 1 -239724 cd03755 proteasome_alpha_type_7 2 alpha subunit interaction site 0 0 1 0 2,3,4,5,7,8,10,11,15,18,21,22,25,33,48,50,51,74,75,76,78,79,110,113,116,117,120,121,122,123,124,142,147,148,150,152,153,155 2 -239725 cd03756 proteasome_alpha_archeal 1 active site 0 0 1 0 28,44,46,59,160 1 -239726 cd03757 proteasome_beta_type_1 1 active site 0 0 1 0 8,24,26,40,138,184,187,188 1 -239726 cd03757 proteasome_beta_type_1 2 beta subunit interaction site 0 0 1 0 26,29,31,32,33,34,35,36,56,58,73,85,88,89,91,92,95,98,123,125,127,128,129,130,133,141,142,144,145,148,149,150,175,182,183,184,185,188,189 2 -239728 cd03759 proteasome_beta_type_3 1 active site 0 0 1 0 3,19,21,35,134,171,174,175 1 -239728 cd03759 proteasome_beta_type_3 2 beta subunit interaction site 0 0 1 0 21,24,26,27,28,29,30,31,51,53,68,80,83,84,86,87,90,93,118,120,122,123,124,125,129,137,138,140,141,144,145,146,162,169,170,171,172,175,176 2 -239729 cd03760 proteasome_beta_type_4 1 active site 0 0 1 0 2,18,20,34,135,174,177,178 1 -239729 cd03760 proteasome_beta_type_4 2 beta subunit interaction site 0 0 1 0 20,23,25,26,27,28,29,30,50,52,67,80,83,84,86,87,90,93,120,122,124,125,126,127,130,138,139,141,142,145,146,147,165,172,173,174,175,178,179 2 -239730 cd03761 proteasome_beta_type_5 1 active site 0 0 1 0 0,16,18,32,129,166,169,170 1 -239730 cd03761 proteasome_beta_type_5 2 beta subunit interaction site 0 0 1 0 18,21,23,24,25,26,27,28,48,50,65,77,80,81,83,84,87,90,114,116,118,119,120,121,124,132,133,135,136,139,140,141,157,164,165,166,167,170,171 2 -239731 cd03762 proteasome_beta_type_6 1 active site 0 0 1 0 0,16,18,32,129,166,169,170 1 -239731 cd03762 proteasome_beta_type_6 2 beta subunit interaction site 0 0 1 0 18,21,23,24,25,26,27,28,48,50,65,77,80,81,83,84,87,90,114,116,118,119,120,121,124,132,133,135,136,139,140,141,157,164,165,166,167,170,171 2 -239732 cd03763 proteasome_beta_type_7 1 active site 0 0 1 0 0,16,18,32,128,165,168,169 1 -239732 cd03763 proteasome_beta_type_7 2 beta subunit interaction site 0 1 1 0 18,21,23,24,25,26,27,28,48,50,65,77,80,81,83,84,87,90,113,115,117,118,119,120,123,131,132,134,135,138,139,140,156,163,164,165,166,169,170 2 -239733 cd03764 proteasome_beta_archeal 1 active site 0 0 1 0 0,16,18,32,129,166,169,170 1 -239733 cd03764 proteasome_beta_archeal 2 beta subunit interaction site 0 0 1 0 18,21,48,50,65,77,80,81,83,84,87,114,116,118,119,120,121,124,132,133,135,136,139,140,141,157,164,165,166,167,170,171 2 -239735 cd03766 Gn_AT_II_novel 1 active site 0 0 1 0 1,54,78,79,80,93 1 -239736 cd03767 SR_Res_par 1 catalytic nucleophile 0 0 1 1 7 1 -239736 cd03767 SR_Res_par 2 catalytic residues 0 0 1 1 5,7,68,69,72 1 -239737 cd03768 SR_ResInv 1 catalytic nucleophile 0 1 1 1 7 1 -239737 cd03768 SR_ResInv 2 catalytic residues 0 0 1 1 5,7,63,64,67 1 -239737 cd03768 SR_ResInv 3 DNA binding site 0 1 1 1 115,121,122 3 -239737 cd03768 SR_ResInv 4 Presynaptic Site I dimer interface 0 1 1 1 62,106,107,109,110,114 2 -239737 cd03768 SR_ResInv 5 Synaptic Site I dimer interface 0 1 1 1 91,107,110,114,117,121 2 -239737 cd03768 SR_ResInv 6 Synaptic Antiparallel dimer interface 0 1 1 1 68,73,74,102,105,106,109,110,113,116 2 -239737 cd03768 SR_ResInv 7 Synaptic Flat tetramer interface 0 1 1 1 91,92,93,102,103,106,107,110,114,117,121 2 -239738 cd03769 SR_IS607_transposase_like 1 catalytic nucleophile 0 0 1 1 7 1 -239738 cd03769 SR_IS607_transposase_like 2 catalytic residues 0 0 1 1 5,7,71,72,75 1 -239739 cd03770 SR_TndX_transposase 1 catalytic nucleophile 0 0 1 1 7 1 -239739 cd03770 SR_TndX_transposase 2 putative catalytic residues 0 0 1 1 5,7,77,78,81 1 -239740 cd03771 MATH_Meprin 1 putative substrate binding site 0 0 1 1 55,136,137,138 5 -239741 cd03772 MATH_HAUSP 1 substrate binding site 0 1 1 1 37,52,86,98,99,100,101,102,103 5 -239742 cd03773 MATH_TRIM37 1 Mulibrey nanism-associated mutation residue 0 0 1 1 49 0 -239742 cd03773 MATH_TRIM37 2 putative substrate binding site 0 0 1 1 55,97,98,99 5 -239743 cd03774 MATH_SPOP 1 putative substrate binding site 0 0 1 1 59,102,103,104 5 -239744 cd03775 MATH_Ubp21p 1 putative substrate binding site 0 0 1 1 46,97,98,99 5 -239745 cd03776 MATH_TRAF6 1 TNFR binding site 0 1 1 1 41,58,102,103,104,114,115,116,117,118 0 -239745 cd03776 MATH_TRAF6 2 trimer interface 0 0 1 1 3,5,33,34,65,68,85 2 -239746 cd03777 MATH_TRAF3 1 TNFR binding site 0 1 1 1 79,81,85,87,96,134,137,142,152,153,154,155 0 -239746 cd03777 MATH_TRAF3 2 trimer interface 0 0 1 1 21,24,32,34,41,43,71,72,103,106,123 2 -239747 cd03778 MATH_TRAF2 1 TNFR binding site 0 1 1 1 59,61,65,76,113,114,119,121,122,132,133,134 0 -239747 cd03778 MATH_TRAF2 2 trimer interface 0 1 1 1 1,4,12,14,21,23,51,52,83,86,103 2 -239747 cd03778 MATH_TRAF2 3 TRADD binding site 0 1 1 1 67,72,111,114,115,116,119,120,122,133,134,140 0 -239748 cd03779 MATH_TRAF1 1 TNFR binding site 0 0 1 1 41,43,47,58,95,96,113,114,115,116 0 -239748 cd03779 MATH_TRAF1 2 trimer interface 0 0 1 1 3,5,33,34,65,68,85 2 -239748 cd03779 MATH_TRAF1 3 putative TRADD binding site 0 0 1 1 49,54,93,96,97,98,101,102,104,115,116,122 2 -239749 cd03780 MATH_TRAF5 1 TNFR binding site 0 0 1 1 41,43,58,97,114,115,116,117 0 -239749 cd03780 MATH_TRAF5 2 trimer interface 0 0 1 1 3,5,33,34,65,68,85 2 -239750 cd03781 MATH_TRAF4 1 TNFR binding site 0 0 1 1 41,43,58,101,122,123,124,125 0 -239750 cd03781 MATH_TRAF4 2 trimer interface 0 0 1 1 3,5,33,34,65,68,85 2 -239751 cd03782 MATH_Meprin_Beta 1 putative substrate binding site 0 0 1 1 55,136,137,138 5 -239752 cd03783 MATH_Meprin_Alpha 1 putative substrate binding site 0 0 1 1 57,136,137,138 5 -340817 cd03784 GT1_Gtf-like 1 active site 0 1 1 0 11,12,14,154,157,158,162,189,247,313,315,317,318,321 1 -340817 cd03784 GT1_Gtf-like 2 homodimer interface 0 1 1 0 0,26,102,397,398,401 2 -340817 cd03784 GT1_Gtf-like 3 acceptor substrate-binding pocket 0 1 1 0 12 0 -340817 cd03784 GT1_Gtf-like 4 TDP-binding site 0 1 1 0 11,247,313,315,317,318 0 -340818 cd03785 GT28_MurG 1 active site 0 1 1 0 10,120,189,216,241,245,260,261,262,263,266,279,286,287,290 1 -340818 cd03785 GT28_MurG 2 homodimer interface 0 1 1 0 67,70,81,109,134 2 -340819 cd03786 GTB_UDP-GlcNAc_2-Epimerase 1 active site 0 1 1 0 8,266,268,271,287,291 1 -340819 cd03786 GTB_UDP-GlcNAc_2-Epimerase 2 homodimer interface 0 1 1 0 70,72,73,80,108,109,111,113,130,134,157 2 -340820 cd03788 GT20_TPS 1 active site 0 1 1 0 7,27,28,85,141,143,165,274,279,356,377,378,381 1 -340820 cd03788 GT20_TPS 2 homotetramer interface 0 1 1 0 267,268,269,270,271,272,273,274,275 2 -340821 cd03789 GT9_LPS_heptosyltransferase 1 putative active site 0 0 1 0 124,125,157,189,190,202,205,206,209 1 -340822 cd03791 GT5_Glycogen_synthase_DULL1-like 1 ADP-binding pocket 0 1 1 1 13,16,299,300,301,355,356,361,378,383 5 -340822 cd03791 GT5_Glycogen_synthase_DULL1-like 2 homodimer interface 0 1 1 0 220,398,403,404,406,431 2 -340826 cd03795 GT4_WfcD-like 1 putative ADP-binding pocket 0 0 1 1 14,196,197,198,254,278 5 -340827 cd03796 GT4_PIG-A-like 1 putative ADP-binding pocket 0 0 1 1 14,198,199,200,262,284 5 -340829 cd03799 GT4_AmsK-like 1 putative ADP-binding pocket 0 0 1 1 27,179,180,181,243,271 5 -340830 cd03800 GT4_sucrose_synthase 1 putative ADP-binding pocket 0 0 1 1 21,225,226,227,295,317 5 -340832 cd03802 GT4_AviGT4-like 1 putative ADP-binding pocket 0 0 1 1 18,174,175,176,232,255 5 -340833 cd03804 GT4_WbaZ-like 1 putative ADP-binding pocket 0 0 1 1 13,204,205,206,257,279 5 -340834 cd03805 GT4_ALG2-like 1 putative ADP-binding pocket 0 0 1 1 13,216,217,218,292,314 5 -340836 cd03807 GT4_WbnK-like 1 putative ADP-binding pocket 0 0 1 1 12,195,196,197,257,279 5 -340837 cd03808 GT4_CapM-like 1 putative ADP-binding pocket 0 0 1 1 26,194,195,196,256,278 5 -340839 cd03811 GT4_GT28_WabH-like 1 putative ADP-binding pocket 0 0 1 1 12,193,194,195,255,277 5 -340840 cd03812 GT4_CapH-like 1 putative ADP-binding pocket 0 0 1 1 12,196,197,198,258,280 5 -340844 cd03817 GT4_UGDG-like 1 putative ADP-binding pocket 0 0 1 1 14,206,207,208,268,291 5 -340845 cd03818 GT4_ExpC-like 1 putative ADP-binding pocket 0 0 1 1 11,218,219,220,293,315 5 -340846 cd03819 GT4_WavL-like 1 putative ADP-binding pocket 0 0 1 1 11,187,188,189,248,274 5 -340847 cd03820 GT4_AmsD-like 1 putative ADP-binding pocket 0 0 1 1 13,186,187,188,248,270 5 -340848 cd03821 GT4_Bme6-like 1 putative ADP-binding pocket 0 0 1 1 14,209,210,211,275,296 5 -239753 cd03829 Sina 1 substrate binding site 0 1 1 1 7,8,9,11,13,22,23 5 -239753 cd03829 Sina 2 dimer interface 0 1 1 0 64,76,77,78,79,80,81,82,84,99,100,107,111 2 -349428 cd03855 M14_ASTE 1 Zn binding site [H][ED][H] 1 1 1 52,55,146 4 -349428 cd03855 M14_ASTE 2 active site 0 0 1 1 52,55,95,102,103,146,159,192,196,210 1 -349429 cd03856 M14_Nna1-like 1 Zn binding site [H][ED][H] 0 1 1 52,55,149 4 -349429 cd03856 M14_Nna1-like 2 active site 0 0 1 1 52,55,102,111,112,149,150,157,220 1 -349430 cd03857 M14-like 1 Zn binding site [H][ED][H] 0 1 1 8,11,109 4 -349430 cd03857 M14-like 2 active site 0 0 1 1 8,11,70,79,80,109,110,115,189 1 -349431 cd03858 M14_CP_N-E_like 1 Zn binding site [H][ED][H] 1 1 1 61,64,171 4 -349431 cd03858 M14_CP_N-E_like 2 active site 0 1 1 1 61,64,122,131,132,171,172,178,182,236,240,242,262 1 -349432 cd03859 M14_CPT 1 Zn binding site [H][ED][H] 1 1 1 63,66,195 4 -349432 cd03859 M14_CPT 2 active site 0 1 1 1 63,66,123,142,143,195,196,202,243,265 1 -349433 cd03860 M14_CP_A-B_like 1 Zn binding site [H][ED][HR] 1 1 1 59,62,189 4 -349433 cd03860 M14_CP_A-B_like 2 active site 0 1 1 1 59,62,117,134,135,189,242,244,265 1 -349434 cd03862 M14-like 1 Zn binding site [H][ED][H] 0 1 1 9,12,130 4 -349434 cd03862 M14-like 2 active site 0 0 1 1 9,12,61,70,71,130,131,140,211 1 -349435 cd03863 M14_CPD_II 1 Zn binding site [H][ED][H] 1 1 1 68,71,175 4 -349435 cd03863 M14_CPD_II 2 active site 0 1 1 1 68,71,129,138,139,175,176,182,186,240,244,246,266 1 -349436 cd03864 M14_CPN 1 Zn binding site [H][ED][H] 0 1 1 61,64,191 4 -349436 cd03864 M14_CPN 2 active site 0 1 1 1 61,64,126,135,136,191,192,198,202,257,261,263,283 1 -349437 cd03865 M14_CPE 1 Zn binding site [H][ED][H] 0 1 1 61,64,195 4 -349437 cd03865 M14_CPE 2 active site 0 0 1 1 61,64,126,135,136,195,196,202,206,263,267,269,289 1 -349438 cd03866 M14_CPM 1 Zn binding site [H][ED][H] 1 1 1 61,64,168 4 -349438 cd03866 M14_CPM 2 active site 0 0 1 1 61,64,122,131,132,168,169,175,179,233,237,239,259 1 -349439 cd03867 M14_CPZ 1 Zn binding site [H][ED][H] 0 1 1 61,64,193 4 -349439 cd03867 M14_CPZ 2 active site 0 0 1 1 61,64,126,135,136,193,194,200,204,259,263,265,285 1 -349440 cd03868 M14_CPD_I 1 Zn binding site [H][ED][H] 1 1 1 61,64,175 4 -349440 cd03868 M14_CPD_I 2 active site 0 1 1 1 61,64,125,134,135,175,176,182,186,238,242,244,264 1 -349441 cd03869 M14_CPX_like 1 Zn binding site [H][ED][QH] 0 1 1 61,64,199 4 -349441 cd03869 M14_CPX_like 2 active site 0 0 1 1 61,64,126,135,136,199,200,206,210,266,270,272,292 1 -349442 cd03870 M14_CPA 1 Zn binding site [H][ED][H] 1 1 1 62,65,189 4 -349442 cd03870 M14_CPA 2 active site 0 1 1 1 62,65,120,137,138,189,241,243,263 1 -349442 cd03870 M14_CPA 3 inhibitor binding interface 0 1 1 1 64,65,120,156,189,190,191,232,237,239,240,241,242,263,272 1 -349443 cd03871 M14_CPB 1 Zn binding site [H][ED][H] 1 1 1 62,65,190 4 -349443 cd03871 M14_CPB 2 active site 0 1 1 1 62,65,137,190,244,247,249 1 -349444 cd03872 M14_CPA6 1 Zn binding site [H][ED][H] 0 1 1 59,62,187 4 -349444 cd03872 M14_CPA6 2 active site 0 0 1 1 59,62,117,134,135,187,188,194,261 1 -349870 cd03873 Zinc_peptidase_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 19,52,86,87,115,181 4 -349871 cd03874 M28_PMSA_TfR_like 1 putative metal binding site [HNRQ][KNED]E[EDRHQ][HD][HNDE] 1 1 1 78,88,126,127,155,236 4 -349871 cd03874 M28_PMSA_TfR_like 2 dimer interface 0 1 1 0 49,69,70,72,117,119,138,139,141,143,144,145,146,274 2 -349872 cd03875 M28_Fxna_like 1 metal binding site HD[QE]E[DE]H 0 1 1 101,113,147,148,174,248 4 -349873 cd03876 M28_SGAP_like 1 metal binding site HDE[ED][NH] 1 1 0 83,95,128,156,254 4 -349873 cd03876 M28_SGAP_like 2 active site 0 1 1 0 83,95,96,127,128,156,157,206,209,210,226,253,254 1 -349874 cd03877 M28_like 1 metal binding site HDEE[ED][NH] 0 1 1 22,43,76,77,104,177 4 -349875 cd03879 M28_AAP 1 metal binding site HD[HE]EDH 1 1 0 95,114,148,149,176,254 4 -349875 cd03879 M28_AAP 2 active site 0 1 1 0 95,114,148,149,176,177,221,223,225,242,246,249,254 1 -349876 cd03880 M28_QC_like 1 metal binding site D[NE]H 1 1 1 105,147,276 4 -349876 cd03880 M28_QC_like 2 active site 0 1 1 0 105,146,147,148,152,157,158,193,194,249,250,267,271,275,276 1 -349877 cd03881 M28_Nicastrin 1 DYIGS region 0 0 1 1 272,273,274,275,276 0 -349879 cd03883 M28_Pgcp_like 1 metal binding site HDEEDH 1 1 0 247,259,293,294,321,392 4 -349880 cd03884 M20_bAS 1 metal binding site HDEEHH 1 1 0 72,83,117,118,182,374 4 -349880 cd03884 M20_bAS 2 active site 0 1 1 0 72,83,84,117,118,125,182,185,205,207,280,348,349,374 1 -349880 cd03884 M20_bAS 3 dimer interface 0 1 1 0 185,186,187,188,191,192,207,218,219,220,221,222,224,227,231,232,234,235,236,238,239,240,242,243,245,246,253,254,255,256,257,258,259,260,264,265,267,268,269,270,278,280,347 2 -349881 cd03885 M20_CPDG2 1 metal binding site HDEEEH 1 1 0 67,96,130,131,155,338 4 -349881 cd03885 M20_CPDG2 2 dimer interface 0 1 1 0 184,185,186,193,195,199,200,202,203,218,219,220,221,222,223,224,225,228,229,230,232,240,242 2 -349882 cd03886 M20_Acy1 1 metal binding site CHEHH 1 1 1 87,89,123,149,347 4 -349882 cd03886 M20_Acy1 2 dimer interface 0 1 0 0 172,194,195,199,202,205,222,223,224,225,226,227,228,232,233,235,241,242,243 2 -349883 cd03887 M20_Acy1L2 1 metal binding site CHEH[KH] 1 1 1 81,83,119,143,330 4 -349884 cd03888 M20_PepV 1 metal binding site HDEEDH 1 1 0 78,109,143,144,167,423 4 -349884 cd03888 M20_PepV 2 active site 0 1 1 1 78,109,110,143,144,167,168,206,253,333,398,399,420,422,423 1 -349885 cd03890 M20_pepD 1 metal binding site HDEE[ND]H 1 1 1 67,106,136,137,160,448 4 -349885 cd03890 M20_pepD 2 dimer interface 0 1 1 1 214,224,277,281,313,314,316,317,324,327,328,365,368,369,372,373 2 -349886 cd03891 M20_DapE_proteobac 1 metal binding site HDEEEH 1 1 0 61,94,128,129,157,343 4 -349886 cd03891 M20_DapE_proteobac 2 dimer interface 0 1 1 0 177,188,189,190,191,197,199,200,203,204,206,207,210,225,227,228,229,230,231,232,233,234,241,242,250,252,317 2 -349887 cd03892 M20_peptT 1 metal binding site HDEEDH 1 1 0 74,136,170,171,193,375 4 -349887 cd03892 M20_peptT 2 dimer interface 0 1 1 0 80,220,221,222,224,225,226,228,230,232,233,236,239,248,249,250,251,252,257,259,260,261,262,263,264,265,266,267,349,375 2 -349888 cd03893 M20_Dipept_like 1 metal binding site HDEE[QND]H 1 1 0 70,103,137,138,164,401 4 -349888 cd03893 M20_Dipept_like 2 active site 0 1 1 0 70,103,137,138,164,179,302,370,372,373,374,401 1 -349888 cd03893 M20_Dipept_like 3 dimer interface 0 1 1 0 180,184,186,190,191,192,193,194,195,197,198,199,200,201,202,203,209,210,211,213,216,217,220,253,263,266,267,272,273,274,275,276,277,278,279,284,285,286,287,288,289,290,291,298,300,302,371,372,400,401,402,403 2 -349889 cd03894 M20_ArgE 1 metal binding site HDEEEH 1 1 0 64,96,128,129,156,343 4 -349889 cd03894 M20_ArgE 2 putative dimer interface 0 0 1 1 171,182,183,184,185,191,193,194,197,198,200,201,204,225,227,228,229,230,231,232,233,234,240,241,249,251,316 2 -349890 cd03895 M20_ArgE_DapE-like 1 metal binding site HDEE[DE]H 1 1 0 81,114,148,149,172,372 4 -349890 cd03895 M20_ArgE_DapE-like 2 dimer interface 0 1 1 0 85,86,89,149,187,196,197,198,199,200,209,210,213,216,217,220,244,246,247,248,249,250,251,252,253,254,255,256,257,258,259,261,262,267,268,345,346,371,372,373 2 -349891 cd03896 M20_PAAh_like 1 metal binding site H[DN]E[DE] 1 1 1 61,88,122,149 4 -349891 cd03896 M20_PAAh_like 2 active site 0 1 1 0 65,88,122,124,149,304,305,328,329 1 -175976 cd04009 C2B_Munc13-like 1 Ca2+ binding site 0 0 1 0 31,37,95,97,103 4 -175977 cd04010 C2B_RasA3 1 putative Ca2+ binding pocket 0 0 1 0 7,19,72,74,94,96 4 -175981 cd04014 C2_PKC_epsilon 1 metal binding pocket 0 1 1 0 35,82,88 4 -175983 cd04016 C2_Tollip 1 putative Ca2+ binding pocket 0 0 1 0 22,69,71,77 4 -175984 cd04017 C2D_Ferlin 1 putative Ca2+ binding site 0 0 1 0 16,22,78,80 4 -175985 cd04018 C2C_Ferlin 1 Ca2+ binding site 0 0 1 0 29,35,83,85,97,99 4 -175986 cd04019 C2C_MCTP_PRT_plant 1 putative Ca2+ binding site 0 0 1 0 15,21,69,71,77 4 -175990 cd04024 C2A_Synaptotagmin-like 1 putative Ca2+ binding pocket 0 0 1 0 16,24,71,73,79 4 -175991 cd04025 C2B_RasA1_RasA4 1 Ca2+ binding pocket 0 0 1 0 15,21,68,70,76 4 -175992 cd04026 C2_PKC_alpha_gamma 1 Ca2+ binding site 0 1 1 0 28,34,87,89,95 4 -175993 cd04027 C2B_Munc13 1 Ca2+ binding site 0 1 1 0 16,22,68,70,87 4 -175994 cd04028 C2B_RIM1alpha 1 homodimer interface 0 1 1 0 57,61,62,64,67,95,97,99,143,144 2 -175997 cd04031 C2A_RIM1alpha 1 Ca2+ binding site 0 0 1 0 31,37,92,94,100 4 -175998 cd04032 C2_Perforin 1 putative Ca2+ binding site 0 0 1 0 42,48,96,98,104 4 -175999 cd04033 C2_NEDD4_NEDD4L 1 Ca2+ binding site 0 1 0 0 21,74,76,81 4 -176000 cd04035 C2A_Rabphilin_Doc2 1 Ca2+ binding site 0 1 1 0 30,36,91,93,98 4 -176001 cd04036 C2_cPLA2 1 Ca2+ binding site 0 1 1 0 18,21,43,71,73 4 -176002 cd04037 C2E_Ferlin 1 Ca2+ binding site 0 0 1 0 15,21,70,72,77 4 -176003 cd04038 C2_ArfGAP 1 putative Ca2+ binding pocket 0 0 1 0 17,22,68,70,76 4 -176004 cd04039 C2_PSD 1 putative Ca2+ binding site 0 0 1 0 26,74,76,82 4 -176005 cd04040 C2D_Tricalbin-like 1 putative Ca2+ binding site 0 0 1 0 14,20,68,70,76 4 -176006 cd04041 C2A_fungal 1 putative Ca2+ binding site 0 0 1 0 16,23,76,78,84 4 -176007 cd04042 C2A_MCTP_PRT 1 putative Ca2+ binding site 0 0 1 0 15,21,68,70,76 4 -176009 cd04044 C2A_Tricalbin-like 1 putative Ca2+ binding site 0 0 1 0 24,72,74,79 4 -176010 cd04045 C2C_Tricalbin-like 1 putative Ca2+ binding site 0 0 1 0 16,22,69,71,76 4 -176012 cd04047 C2B_Copine 1 putative Ca2+ binding site 0 0 1 0 15,21,77,79,85 4 -176013 cd04048 C2A_Copine 1 putative Ca2+ binding site 0 0 1 0 15,21,75,77,87 4 -176014 cd04049 C2_putative_Elicitor-responsive_gene 1 putative Ca2+ binding site 0 0 1 0 16,22,73,75,81 4 -176018 cd04054 C2A_Rasal1_RasA4 1 Ca2+ binding pocket 0 0 1 0 15,21,68,70,76 4 -173788 cd04056 Peptidases_S53 1 active site 0 1 1 0 74,78,125,126,127,128,158,160,161,280 1 -173788 cd04056 Peptidases_S53 2 catalytic triad 0 0 1 0 74,78,280 1 -173788 cd04056 Peptidases_S53 3 calcium binding site 0 1 1 0 325,326,342,346 4 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 1 active site 0 1 1 0 46,47,82,85,127,145,155,186,197,262 1 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 2 catalytic triad 0 0 1 0 46,85,262 1 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 3 calcium binding site 1 0 1 1 0 2,55,99 4 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 4 calcium binding site 2 0 1 1 1 192,222 4 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 5 calcium binding site 3 0 1 1 0 200,202,205,207 4 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 1 active site 0 1 1 0 32,64,126,127,154,216,219 1 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 2 catalytic triad 0 0 1 0 32,64,219 1 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 3 calcium binding site 1 0 1 1 0 168,170,193 4 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 4 calcium binding site 2 0 1 1 0 3,6,7 4 -271144 cd04078 CBM36_xylanase-like 1 ligand binding site 0 1 1 1 28,104,108,109 5 -271144 cd04078 CBM36_xylanase-like 2 Ca binding site (active) YDWD 1 1 1 28,104,108,109 4 -271144 cd04078 CBM36_xylanase-like 3 Ca binding site [EQ]E[DN]D 1 1 0 4,6,23,113 4 -271145 cd04079 CBM6_agarase-like 1 ligand binding site 0 1 1 1 36,37,66,91,122,125 5 -271145 cd04079 CBM6_agarase-like 2 Ca binding site [EDQ]xxxxD[DEN] 1 1 1 6,8,33,37,39,42,127 4 -271146 cd04080 CBM6_cellulase-like 1 Ca binding site [EQ][EQ]xxxx[DE][DNQ] 1 1 1 5,7,20,47,51,53,56,138 4 -271146 cd04080 CBM6_cellulase-like 2 ligand binding site I 0 1 1 1 38,46,47,48,49,50,51,52,104,105,106,107,108,109,110,111,136 5 -271146 cd04080 CBM6_cellulase-like 3 ligand binding site II 0 1 1 1 17,55,57,59,88,89,129 5 -271147 cd04081 CBM35_galactosidase-like 1 Ca binding site [EQ]E[Dn] 1 1 0 3,5,120 4 -271148 cd04082 CBM35_pectate_lyase-like 1 ligand binding site 0 0 1 1 28,30,31,63,86,117 5 -271148 cd04082 CBM35_pectate_lyase-like 2 Ca binding site (active) [ND]xxN 1 1 1 28,31,63,117 4 -271148 cd04082 CBM35_pectate_lyase-like 3 Ca binding site 0 1 1 0 3,4,5,22,25,119 4 -271149 cd04083 CBM35_Lmo2446-like 1 metal binding site [EQ][EQ][DN] 1 0 0 3,5,120 4 -271149 cd04083 CBM35_Lmo2446-like 2 ligand binding site 0 1 0 0 19,29,30,32,86,118 5 -271150 cd04084 CBM6_xylanase-like 1 ligand binding site 0 1 1 0 16,26,27,85,116 5 -271150 cd04084 CBM6_xylanase-like 2 metal binding site [EQN]Ex[DNT] 1 1 1 3,5,23,118 4 -271152 cd04086 CBM35_mannanase-like 1 metal binding site [EQN]E[DN] 0 1 1 3,5,113 4 -239754 cd04087 PTPA 1 peptide binding pocket 0 1 1 1 162,163,226,227,230,231,234,243,244,254,255,256,257 0 -239754 cd04087 PTPA 2 peptide-induced dimer interface 0 1 1 1 47,55,101,153,154,156,159,160,162,168,216,218,219,223,260 2 -239754 cd04087 PTPA 3 ATP binding site 0 1 1 0 101,103,105,106,107,108,157,158,159,257,258,260,261 5 -239754 cd04087 PTPA 4 putative PP2A binding surface 0 0 1 1 162,223,234,243,247,255 2 -239754 cd04087 PTPA 5 putative interaction site 0 0 1 1 101,103,105,106,107,108,156,157,166,167,168,170,231,234,240,244,247,251,255,257,258,260,261 0 -293905 cd04088 EFG_mtEFG_II 1 16S rRNA binding site 0 1 1 0 12,13,29,42,45,52,56,69,72 3 -293906 cd04089 eRF3_II 1 18S rRNA binding site 0 1 1 0 11,12,13,14,64,66 3 -294008 cd04093 HBS1_C_III 1 heterodimer interface 0 1 1 1 18,19,20,21,22,23,25,26,27,34,35,36,38,42,43,75,96,97 2 -294010 cd04095 CysN_NoDQ_III 1 heterodimer interface 0 1 1 0 12,14,26,27,31,77,85,86,87,89,94,95,96,99,100 2 -239766 cd04100 Asp_Lys_Asn_RS_N 1 Dimer interface 0 1 1 0 6,24,52,83 2 -239766 cd04100 Asp_Lys_Asn_RS_N 2 anticodon binding site 0 1 1 1 9,11,12,18,29,31,48,62,73 0 -206688 cd04101 RabL4 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,32,33,61,117,118,120,147,148,149 5 -206688 cd04101 RabL4 2 putative effector interaction site 0 0 1 1 34,36,37,38,55,57,64,65,68,72,74,75,76,77 0 -206688 cd04101 RabL4 3 putative GEF interaction site 0 0 1 1 37,38,39,40,41,42,53 2 -206688 cd04101 RabL4 4 putative GDI interaction site 0 0 1 1 34,37,57,58 2 -206688 cd04101 RabL4 5 Switch I region 0 0 1 1 24,31,32,33,34,35,36,37,38,39,40 0 -206688 cd04101 RabL4 6 Switch II region 0 0 1 1 61,64,65,66,68,69,70,71,72,73,74,75,76 0 -206688 cd04101 RabL4 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206688 cd04101 RabL4 8 G2 box 0 0 1 1 33 0 -206688 cd04101 RabL4 9 G3 box 0 0 1 1 58,59,60,61 0 -206688 cd04101 RabL4 10 G4 box 0 0 1 1 117,118,119,120 0 -206688 cd04101 RabL4 11 G5 box 0 0 1 1 147,148,149 0 -206689 cd04102 RabL3 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,30,31,62,140,141,143,175 5 -206689 cd04102 RabL3 2 putative effector interaction site 0 0 1 1 32,35,36,56,58,82 0 -206689 cd04102 RabL3 3 putative GEF interaction site 0 0 1 1 35,36,37,38,39,40,54 2 -206689 cd04102 RabL3 4 putative GDI interaction site 0 0 1 1 32,35,58,59 2 -206689 cd04102 RabL3 5 Switch I region 0 0 1 1 30,31,32,35,36,37,38 0 -206689 cd04102 RabL3 6 Switch II region 0 0 1 1 62 0 -206689 cd04102 RabL3 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206689 cd04102 RabL3 8 G2 box 0 0 1 1 31 0 -206689 cd04102 RabL3 9 G3 box 0 0 1 1 59,60,61,62 0 -206689 cd04102 RabL3 10 G4 box 0 0 1 1 140,141,142,143 0 -206689 cd04102 RabL3 11 G5 box 0 0 1 1 175,176,177 0 -133303 cd04103 Centaurin_gamma 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,52,55,106,107,109,139,140 5 -133303 cd04103 Centaurin_gamma 2 Switch I region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -133303 cd04103 Centaurin_gamma 3 Switch II region 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67 0 -133303 cd04103 Centaurin_gamma 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133303 cd04103 Centaurin_gamma 5 G2 box 0 0 1 1 30 0 -133303 cd04103 Centaurin_gamma 6 G3 box 0 0 1 1 52,53,54,55 0 -133303 cd04103 Centaurin_gamma 7 G4 box 0 0 1 1 106,107,108,109 0 -133303 cd04103 Centaurin_gamma 8 G5 box 0 0 1 1 139,140,141 0 -206690 cd04104 p47_IIGP_like 1 GTP/Mg2+ binding site 0 1 1 0 10,11,12,13,14,15,33,34,115,117,118,162,163,164 5 -206690 cd04104 p47_IIGP_like 2 homodimer interface 0 1 1 1 99,100,103,104,106,109 2 -206690 cd04104 p47_IIGP_like 3 Switch I region 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45 0 -206690 cd04104 p47_IIGP_like 4 Switch II region 0 0 1 1 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,79,80,81,82 0 -206690 cd04104 p47_IIGP_like 5 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206690 cd04104 p47_IIGP_like 6 G2 box 0 0 1 1 39 0 -206690 cd04104 p47_IIGP_like 7 G3 box 0 0 1 1 57,58,59,60 0 -206690 cd04104 p47_IIGP_like 8 G4 box 0 0 1 1 114,115,116,117 0 -206690 cd04104 p47_IIGP_like 9 G5 box 0 0 1 1 162,163,164 0 -206691 cd04105 SR_beta 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,14,27,30,55,115,116,118,184,185 5 -206691 cd04105 SR_beta 2 dimer interface 0 1 1 0 19,26,27,28,29,30,32,33,38,56 2 -206691 cd04105 SR_beta 3 Switch I region 0 0 1 1 34,35,36,37,38,47 0 -206691 cd04105 SR_beta 4 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,72 0 -206691 cd04105 SR_beta 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206691 cd04105 SR_beta 6 G2 box 0 0 1 1 27 0 -206691 cd04105 SR_beta 7 G3 box 0 0 1 1 52,53,54,55 0 -206691 cd04105 SR_beta 8 G4 box 0 0 1 1 115,116,117,118 0 -206691 cd04105 SR_beta 9 G5 box 0 0 1 1 183,184,185 0 -133306 cd04106 Rab23_like 1 GTP/Mg2+ binding site 0 1 1 1 9,10,11,12,13,14,27,28,30,113,114,116,144,145 5 -133306 cd04106 Rab23_like 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,49,51 2 -133306 cd04106 Rab23_like 3 putative GDI interaction site 0 0 1 1 32,33,35,55,56,63,65,67,68,69 2 -133306 cd04106 Rab23_like 4 putative effector interaction site 0 0 1 1 32,34,35,36,53,55,62,63,66,70,72,73,74,75,161 0 -133306 cd04106 Rab23_like 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -133306 cd04106 Rab23_like 6 Switch II region 0 0 1 1 59,61,62,63,64,65,66,67,68,69,70,71 0 -133306 cd04106 Rab23_like 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133306 cd04106 Rab23_like 8 G2 box 0 0 1 1 31 0 -133306 cd04106 Rab23_like 9 G3 box 0 0 1 1 56,57,58,59 0 -133306 cd04106 Rab23_like 10 G4 box 0 0 1 1 113,114,115,116 0 -133306 cd04106 Rab23_like 11 G5 box 0 0 1 1 143,144,145 0 -133306 cd04106 Rab23_like 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -133306 cd04106 Rab23_like 13 Rab family motif 2 (RabF2) 0 0 1 1 51,52,53,54,55 0 -133306 cd04106 Rab23_like 14 Rab family motif 3 (RabF3) 0 0 1 1 62,63,64,65,66,67 0 -133306 cd04106 Rab23_like 15 Rab family motif 4 (RabF4) 0 0 1 1 70,71,72,73,74 0 -133306 cd04106 Rab23_like 16 Rab family motif 5 (RabF5) 0 0 1 1 79,80,81,82,83,84 0 -133306 cd04106 Rab23_like 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133306 cd04106 Rab23_like 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -133306 cd04106 Rab23_like 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 106,107,108,109,110 0 -133306 cd04106 Rab23_like 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 159,160,161 0 -206692 cd04107 Rab32_Rab38 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,25,30,31,58,117,118,120,149,150,151 5 -206692 cd04107 Rab32_Rab38 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,48,50 2 -206692 cd04107 Rab32_Rab38 3 putative GDI interaction site 0 0 1 1 32,33,35,54,55,62,64,66,67,68 2 -206692 cd04107 Rab32_Rab38 4 putative effector interaction site 0 0 1 1 32,34,35,36,52,54,61,62,65,69,71,72,73,74,167 0 -206692 cd04107 Rab32_Rab38 5 putative lipid modification site 0 0 1 1 198,199,200 6 -206692 cd04107 Rab32_Rab38 6 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206692 cd04107 Rab32_Rab38 7 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -206692 cd04107 Rab32_Rab38 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206692 cd04107 Rab32_Rab38 9 G2 box 0 0 1 1 31 0 -206692 cd04107 Rab32_Rab38 10 G3 box 0 0 1 1 55,56,57,58 0 -206692 cd04107 Rab32_Rab38 11 G4 box 0 0 1 1 117,118,119,120 0 -206692 cd04107 Rab32_Rab38 12 G5 box 0 0 1 1 149,150,151 0 -206692 cd04107 Rab32_Rab38 13 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206692 cd04107 Rab32_Rab38 14 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -206692 cd04107 Rab32_Rab38 15 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -206692 cd04107 Rab32_Rab38 16 Rab family motif 4 (RabF4) 0 0 1 1 69,70,71,72,73 0 -206692 cd04107 Rab32_Rab38 17 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -206692 cd04107 Rab32_Rab38 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206692 cd04107 Rab32_Rab38 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206692 cd04107 Rab32_Rab38 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 110,111,112,113,114 0 -206692 cd04107 Rab32_Rab38 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 165,166,167 0 -206693 cd04108 Rab36_Rab34 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,113,114,116,145,146,147 5 -206693 cd04108 Rab36_Rab34 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206693 cd04108 Rab36_Rab34 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206693 cd04108 Rab36_Rab34 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,163 0 -206693 cd04108 Rab36_Rab34 5 putative lipid modification site 0 0 1 1 166,167,168,169 6 -206693 cd04108 Rab36_Rab34 6 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206693 cd04108 Rab36_Rab34 7 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206693 cd04108 Rab36_Rab34 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206693 cd04108 Rab36_Rab34 9 G2 box 0 0 1 1 31 0 -206693 cd04108 Rab36_Rab34 10 G3 box 0 0 1 1 54,55,56,57 0 -206693 cd04108 Rab36_Rab34 11 G4 box 0 0 1 1 113,114,115,116 0 -206693 cd04108 Rab36_Rab34 12 G5 box 0 0 1 1 145,146,147 0 -206693 cd04108 Rab36_Rab34 13 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206693 cd04108 Rab36_Rab34 14 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206693 cd04108 Rab36_Rab34 15 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206693 cd04108 Rab36_Rab34 16 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206693 cd04108 Rab36_Rab34 17 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206693 cd04108 Rab36_Rab34 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206693 cd04108 Rab36_Rab34 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 0 -206693 cd04108 Rab36_Rab34 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 106,107,108,109,110 0 -206693 cd04108 Rab36_Rab34 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 161,162,163,164,165 0 -206694 cd04109 Rab28 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,58,116,117,119,146,147,148 5 -206694 cd04109 Rab28 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,48,50 2 -206694 cd04109 Rab28 3 putative GDI interaction site 0 0 1 1 32,33,35,54,55,62,64,66,67,68 2 -206694 cd04109 Rab28 4 putative effector interaction site 0 0 1 1 32,34,35,36,52,54,61,62,65,69,71,72,73,74,164 0 -206694 cd04109 Rab28 5 putative lipid modification site 0 0 0 1 209,210,211,212 6 -206694 cd04109 Rab28 6 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206694 cd04109 Rab28 7 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -206694 cd04109 Rab28 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206694 cd04109 Rab28 9 G2 box 0 0 1 1 31 0 -206694 cd04109 Rab28 10 G3 box 0 0 1 1 55,56,57,58 0 -206694 cd04109 Rab28 11 G4 box 0 0 1 1 116,117,118,119 0 -206694 cd04109 Rab28 12 G5 box 0 0 1 1 146,147,148 0 -206694 cd04109 Rab28 13 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206694 cd04109 Rab28 14 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -206694 cd04109 Rab28 15 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -206694 cd04109 Rab28 16 Rab family motif 4 (RabF4) 0 0 1 1 69,70,71,72,73 0 -206694 cd04109 Rab28 17 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -206694 cd04109 Rab28 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206694 cd04109 Rab28 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 0 -206694 cd04109 Rab28 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 109,110,111,112,113 0 -206694 cd04109 Rab28 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 162,163,164,165,166,167 0 -133310 cd04110 Rab35 1 GTP/Mg2+ binding site 0 0 1 1 14,15,16,17,18,19,20,30,36,37,63,117,118,120,147,148,149 5 -133310 cd04110 Rab35 2 putative GEF interaction site 0 0 1 1 35,39,40,41,42,43,44,45,46,53,55 2 -133310 cd04110 Rab35 3 putative GDI interaction site 0 0 1 1 38,39,41,59,60,67,69,71,72,73 2 -133310 cd04110 Rab35 4 putative effector interaction site 0 0 1 1 38,40,41,42,57,59,66,67,70,74,76,77,78,79,165 0 -133310 cd04110 Rab35 5 putative lipid modification site 0 0 1 1 196,197,198 6 -133310 cd04110 Rab35 6 Switch I region 0 0 1 1 30,35,36,37,38,39,40,41,42,43 0 -133310 cd04110 Rab35 7 Switch II region 0 0 1 1 63,65,66,67,68,69,70,71,72,73,74,75 0 -133310 cd04110 Rab35 8 G1 box 0 0 1 1 12,13,14,15,16,17,18,19 0 -133310 cd04110 Rab35 9 G2 box 0 0 1 1 37 0 -133310 cd04110 Rab35 10 G3 box 0 0 1 1 60,61,62,63 0 -133310 cd04110 Rab35 11 G4 box 0 0 1 1 117,118,119,120 0 -133310 cd04110 Rab35 12 G5 box 0 0 1 1 147,148,149 0 -133310 cd04110 Rab35 13 Rab family motif 1 (RabF1) 0 0 1 1 38,39,40,41,42 0 -133310 cd04110 Rab35 14 Rab family motif 2 (RabF2) 0 0 1 1 55,56,57,58,59 0 -133310 cd04110 Rab35 15 Rab family motif 3 (RabF3) 0 0 1 1 66,67,68,69,70,71 0 -133310 cd04110 Rab35 16 Rab family motif 4 (RabF4) 0 0 1 1 74,75,76,77,78 0 -133310 cd04110 Rab35 17 Rab family motif 5 (RabF5) 0 0 1 1 83,84,85,86,87,88 0 -133310 cd04110 Rab35 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 6,7 0 -133310 cd04110 Rab35 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 0 -133310 cd04110 Rab35 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 106,107,108,109,110,111,112,113,114 0 -133310 cd04110 Rab35 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 163,164,165 0 -133311 cd04111 Rab39 1 GTP/Mg2+ binding site 0 0 1 1 10,11,12,13,14,15,16,26,32,33,60,116,117,119,146,147,148 5 -133311 cd04111 Rab39 2 putative GEF interaction site 0 0 1 1 31,35,36,37,38,39,40,41,42,50,52 2 -133311 cd04111 Rab39 3 putative GDI interaction site 0 0 1 1 34,35,37,56,57,64,66,68,69,70 2 -133311 cd04111 Rab39 4 putative effector interaction site 0 0 1 1 34,36,37,38,54,56,63,64,67,71,73,74,75,76,164 0 -133311 cd04111 Rab39 5 putative lipid modification site 0 0 1 1 208,209,210 6 -133311 cd04111 Rab39 6 Switch I region 0 0 1 1 26,31,32,33,34,35,36,37,38,39 0 -133311 cd04111 Rab39 7 Switch II region 0 0 1 1 60,62,63,64,65,66,67,68,69,70,71,72 0 -133311 cd04111 Rab39 8 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133311 cd04111 Rab39 9 G2 box 0 0 1 1 33 0 -133311 cd04111 Rab39 10 G3 box 0 0 1 1 57,58,59,60 0 -133311 cd04111 Rab39 11 G4 box 0 0 1 1 116,117,118,119 0 -133311 cd04111 Rab39 12 G5 box 0 0 1 1 146,147,148 0 -133311 cd04111 Rab39 13 Rab family motif 1 (RabF1) 0 0 1 1 34,35,36,37,38 0 -133311 cd04111 Rab39 14 Rab family motif 2 (RabF2) 0 0 1 1 52,53,54,55,56 0 -133311 cd04111 Rab39 15 Rab family motif 3 (RabF3) 0 0 1 1 63,64,65,66,67,68 0 -133311 cd04111 Rab39 16 Rab family motif 4 (RabF4) 0 0 1 1 71,72,73,74,75 0 -133311 cd04111 Rab39 17 Rab family motif 5 (RabF5) 0 0 1 1 80,81,82,83,84,85 0 -133311 cd04111 Rab39 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 2,3 0 -133311 cd04111 Rab39 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 16,17,18,19,20,21,22,23,24,25,26,27,31,32 0 -133311 cd04111 Rab39 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 109,110,111,112,113 0 -133311 cd04111 Rab39 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 162,163,164 0 -206695 cd04112 Rab26 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,31,32,58,113,114,116,143,144,145 5 -206695 cd04112 Rab26 2 putative GEF interaction site 0 0 1 1 30,34,35,36,37,38,39,40,41,48,50 2 -206695 cd04112 Rab26 3 putative GDI interaction site 0 0 1 1 33,34,36,54,55,62,64,66,67,68 2 -206695 cd04112 Rab26 4 putative effector interaction site 0 0 1 1 33,35,36,37,52,54,61,62,65,69,71,72,73,74,161 0 -206695 cd04112 Rab26 5 putative lipid modification site 0 0 1 1 187,188,189,190 6 -206695 cd04112 Rab26 6 Switch I region 0 0 1 1 24,30,31,32,33,34,35,36,37,38 0 -206695 cd04112 Rab26 7 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -206695 cd04112 Rab26 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206695 cd04112 Rab26 9 G2 box 0 0 1 1 32 0 -206695 cd04112 Rab26 10 G3 box 0 0 1 1 55,56,57,58 0 -206695 cd04112 Rab26 11 G4 box 0 0 1 1 113,114,115,116 0 -206695 cd04112 Rab26 12 G5 box 0 0 1 1 143,144,145 0 -206695 cd04112 Rab26 13 Rab family motif 1 (RabF1) 0 0 1 1 33,34,35,36,37 0 -206695 cd04112 Rab26 14 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -206695 cd04112 Rab26 15 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -206695 cd04112 Rab26 16 Rab family motif 4 (RabF4) 0 0 1 1 69,70,71,72,73 0 -206695 cd04112 Rab26 17 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -206695 cd04112 Rab26 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206695 cd04112 Rab26 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,30,31 0 -206695 cd04112 Rab26 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 106,107,108,109,110 0 -206695 cd04112 Rab26 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 159,160,161,162,163 0 -206696 cd04113 Rab4 1 GTP/Mg2+ binding site 0 1 1 1 8,9,10,11,12,13,14,24,28,31,57,112,113,115,116,143,144 5 -206696 cd04113 Rab4 2 effector interaction site 0 1 1 0 32,33,34,35,36,37,38,49,51,60,68 0 -206696 cd04113 Rab4 3 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206696 cd04113 Rab4 4 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206696 cd04113 Rab4 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206696 cd04113 Rab4 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206696 cd04113 Rab4 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206696 cd04113 Rab4 8 G2 box 0 0 1 1 31 0 -206696 cd04113 Rab4 9 G3 box 0 0 1 1 54,55,56,57 0 -206696 cd04113 Rab4 10 G4 box 0 0 1 1 112,113,114,115 0 -206696 cd04113 Rab4 11 G5 box 0 0 1 1 142,143,144 0 -206696 cd04113 Rab4 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206696 cd04113 Rab4 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206696 cd04113 Rab4 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206696 cd04113 Rab4 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206696 cd04113 Rab4 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206696 cd04113 Rab4 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206696 cd04113 Rab4 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206696 cd04113 Rab4 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 100,101,102,103,104,105,106,107,108,109 0 -206696 cd04113 Rab4 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 158,159,160 0 -133314 cd04114 Rab30 1 GTP/Mg2+ binding site 0 1 1 1 15,16,17,18,19,20,21,31,37,38,64,119,120,122,150,151 5 -133314 cd04114 Rab30 2 putative GEF interaction site 0 0 1 1 36,40,41,42,43,44,45,46,47,54,56 2 -133314 cd04114 Rab30 3 putative GDI interaction site 0 0 1 1 39,40,42,60,61,68,70,72,73,74 2 -133314 cd04114 Rab30 4 putative effector interaction site 0 0 1 1 39,41,42,43,58,60,67,68,71,75,77,78,79,80,167 0 -133314 cd04114 Rab30 5 Switch I region 0 0 1 1 31,36,37,38,39,40,41,42,43,44 0 -133314 cd04114 Rab30 6 Switch II region 0 0 1 1 64,66,67,68,69,70,71,72,73,74,75,76 0 -133314 cd04114 Rab30 7 G1 box 0 0 1 1 13,14,15,16,17,18,19,20 0 -133314 cd04114 Rab30 8 G2 box 0 0 1 1 38 0 -133314 cd04114 Rab30 9 G3 box 0 0 1 1 61,62,63,64 0 -133314 cd04114 Rab30 10 G4 box 0 0 1 1 119,120,121,122 0 -133314 cd04114 Rab30 11 G5 box 0 0 1 1 149,150,151 0 -133314 cd04114 Rab30 12 Rab family motif 1 (RabF1) 0 0 1 1 39,40,41,42,43 0 -133314 cd04114 Rab30 13 Rab family motif 2 (RabF2) 0 0 1 1 56,57,58,59,60 0 -133314 cd04114 Rab30 14 Rab family motif 3 (RabF3) 0 0 1 1 67,68,69,70,71,72 0 -133314 cd04114 Rab30 15 Rab family motif 4 (RabF4) 0 0 1 1 75,76,77,78,79 0 -133314 cd04114 Rab30 16 Rab family motif 5 (RabF5) 0 0 1 1 84,85,86,87,88,89 0 -133314 cd04114 Rab30 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 3,4,5,6,7,8 0 -133314 cd04114 Rab30 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -133314 cd04114 Rab30 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 107,108,109,110,111,112,113,114,115,116 0 -133314 cd04114 Rab30 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 165,166,167,168 0 -133315 cd04115 Rab33B_Rab33A 1 GTP/Mg2+ binding site 0 1 1 1 10,11,12,13,14,15,16,26,30,33,59,116,117,119,120,146,147,148 5 -133315 cd04115 Rab33B_Rab33A 2 putative GEF interaction site 0 0 1 1 31,35,36,37,38,39,40,41,42,49,51 2 -133315 cd04115 Rab33B_Rab33A 3 putative GDI interaction site 0 0 1 1 34,35,37,55,56,63,66,68,69,70 2 -133315 cd04115 Rab33B_Rab33A 4 putative effector interaction site 0 0 1 1 34,36,37,38,53,55,62,63,67,71,73,74,75,76,167 0 -133315 cd04115 Rab33B_Rab33A 5 Switch I region 0 0 1 1 26,31,32,33,34,35,36,37,38,39 0 -133315 cd04115 Rab33B_Rab33A 6 Switch II region 0 0 1 1 59,61,62,63,64,65,66,67,68,69,70,71 0 -133315 cd04115 Rab33B_Rab33A 7 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133315 cd04115 Rab33B_Rab33A 8 G2 box 0 0 1 1 33 0 -133315 cd04115 Rab33B_Rab33A 9 G3 box 0 0 1 1 56,57,58,59 0 -133315 cd04115 Rab33B_Rab33A 10 G4 box 0 0 1 1 116,117,118,119 0 -133315 cd04115 Rab33B_Rab33A 11 G5 box 0 0 1 1 146,147,148 0 -133315 cd04115 Rab33B_Rab33A 12 Rab family motif 1 (RabF1) 0 0 1 1 34,35,36,37,38 0 -133315 cd04115 Rab33B_Rab33A 13 Rab family motif 2 (RabF2) 0 0 1 1 51,52,53,54,55 0 -133315 cd04115 Rab33B_Rab33A 14 Rab family motif 3 (RabF3) 0 0 1 1 62,63,64,65,66,67 0 -133315 cd04115 Rab33B_Rab33A 15 Rab family motif 4 (RabF4) 0 0 1 1 71,72,73,74,75 0 -133315 cd04115 Rab33B_Rab33A 16 Rab family motif 5 (RabF5) 0 0 1 1 80,81,82,83,84,85 0 -133315 cd04115 Rab33B_Rab33A 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 2,3 0 -133315 cd04115 Rab33B_Rab33A 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 16,17,18,19,20,21,22,23,24,25,26,27,31,32 0 -133315 cd04115 Rab33B_Rab33A 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 109,110,111,112,113 0 -133315 cd04115 Rab33B_Rab33A 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 165,166,167,168,169 0 -206697 cd04116 Rab9 1 GTP/Mg2+ binding site 0 1 1 1 14,15,16,17,18,19,29,30,31,35,36,62,121,122,124,151,152,153 5 -206697 cd04116 Rab9 2 putative GEF interaction site 0 0 1 1 34,38,39,40,41,42,43,44,45,52,54 2 -206697 cd04116 Rab9 3 putative GDI interaction site 0 0 1 1 37,38,40,58,59,66,68,70,71,72 2 -206697 cd04116 Rab9 4 putative effector interaction site 0 0 1 1 37,39,40,41,56,58,65,66,69,73,75,76,77,78,169 0 -206697 cd04116 Rab9 5 Switch I region 0 0 1 1 29,34,35,36,37,38,39,40,41,42 0 -206697 cd04116 Rab9 6 Switch II region 0 0 1 1 62,64,65,66,67,68,69,70,71,72,73,74 0 -206697 cd04116 Rab9 7 G1 box 0 0 1 1 11,12,13,14,15,16,17,18 0 -206697 cd04116 Rab9 8 G2 box 0 0 1 1 36 0 -206697 cd04116 Rab9 9 G3 box 0 0 1 1 59,60,61,62 0 -206697 cd04116 Rab9 10 G4 box 0 0 1 1 121,122,123,124 0 -206697 cd04116 Rab9 11 G5 box 0 0 1 1 151,152,153 0 -206697 cd04116 Rab9 12 Rab subfamily motif 1 (RabSF1) 0 0 1 1 1,2,3,4,5,6 0 -206697 cd04116 Rab9 13 Rab subfamily motif 2 (RabSF2) 0 0 1 1 19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35 0 -206697 cd04116 Rab9 14 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109,112,113,114,115,116,117,118 0 -206697 cd04116 Rab9 15 Rab subfamily motif 4 (RabSF4) 0 0 1 1 167,168,169 0 -206697 cd04116 Rab9 16 Rab family motif 1 (RabF1) 0 0 1 1 37,38,39,40,41 0 -206697 cd04116 Rab9 17 Rab family motif 2 (RabF2) 0 0 1 1 54,55,56,57,58 0 -206697 cd04116 Rab9 18 Rab family motif 3 (RabF3) 0 0 1 1 65,66,67,68,69,70 0 -206697 cd04116 Rab9 19 Rab family motif 4 (RabF4) 0 0 1 1 73,74,75,76,77 0 -206697 cd04116 Rab9 20 Rab family motif 5 (RabF5) 0 0 1 1 82,83,84,85,86,87 0 -206698 cd04117 Rab15 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,112,113,115,142,143,144 5 -206698 cd04117 Rab15 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206698 cd04117 Rab15 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206698 cd04117 Rab15 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,162 0 -206698 cd04117 Rab15 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206698 cd04117 Rab15 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206698 cd04117 Rab15 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206698 cd04117 Rab15 8 G2 box 0 0 1 1 31 0 -206698 cd04117 Rab15 9 G3 box 0 0 1 1 54,55,56,57 0 -206698 cd04117 Rab15 10 G4 box 0 0 1 1 112,113,114,115 0 -206698 cd04117 Rab15 11 G5 box 0 0 1 1 142,143,144 0 -206698 cd04117 Rab15 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206698 cd04117 Rab15 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206698 cd04117 Rab15 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206698 cd04117 Rab15 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206698 cd04117 Rab15 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206698 cd04117 Rab15 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206698 cd04117 Rab15 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206698 cd04117 Rab15 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109 0 -206698 cd04117 Rab15 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 160,161,162 0 -133318 cd04118 Rab24 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,31,32,58,112,113,115,146,147,148 5 -133318 cd04118 Rab24 2 putative GEF interaction site 0 0 1 1 30,34,35,36,37,38,39,40,41,48,50 2 -133318 cd04118 Rab24 3 putative GDI interaction site 0 0 1 1 33,34,36,54,55,62,64,66,67,68 2 -133318 cd04118 Rab24 4 putative effector interaction site 0 0 1 1 33,35,36,37,52,54,61,62,65,69,71,72,73,74,164 0 -133318 cd04118 Rab24 5 putative lipid modification site 0 0 1 1 191,192 6 -133318 cd04118 Rab24 6 Switch I region 0 0 1 1 24,30,31,32,33,34,35,36,37,38 0 -133318 cd04118 Rab24 7 Switch II region 0 0 1 1 58,60,61,62,63,64,65,66,67,68,69,70 0 -133318 cd04118 Rab24 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133318 cd04118 Rab24 9 G2 box 0 0 1 1 32 0 -133318 cd04118 Rab24 10 G3 box 0 0 1 1 55,56,57,58 0 -133318 cd04118 Rab24 11 G4 box 0 0 1 1 112,113,114,115 0 -133318 cd04118 Rab24 12 G5 box 0 0 1 1 146,147,148 0 -133318 cd04118 Rab24 13 Rab family motif 1 (RabF1) 0 0 1 1 33,34,35,36,37 0 -133318 cd04118 Rab24 14 Rab family motif 2 (RabF2) 0 0 1 1 50,51,52,53,54 0 -133318 cd04118 Rab24 15 Rab family motif 3 (RabF3) 0 0 1 1 61,62,63,64,65,66 0 -133318 cd04118 Rab24 16 Rab family motif 4 (RabF4) 0 0 1 1 69,70,71,72,73 0 -133318 cd04118 Rab24 17 Rab family motif 5 (RabF5) 0 0 1 1 78,79,80,81,82,83 0 -133318 cd04118 Rab24 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133318 cd04118 Rab24 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,30,31 0 -133318 cd04118 Rab24 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 101,102,105,106,107,108,109 0 -133318 cd04118 Rab24 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 162,163,164 0 -133319 cd04119 RJL 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,117,118,120,147,148,149 5 -133319 cd04119 RJL 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -133319 cd04119 RJL 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -133319 cd04119 RJL 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,165 0 -133319 cd04119 RJL 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -133319 cd04119 RJL 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -133319 cd04119 RJL 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133319 cd04119 RJL 8 G2 box 0 0 1 1 31 0 -133319 cd04119 RJL 9 G3 box 0 0 1 1 54,55,56,57 0 -133319 cd04119 RJL 10 G4 box 0 0 1 1 117,118,119,120 0 -133319 cd04119 RJL 11 G5 box 0 0 1 1 147,148,149 0 -133319 cd04119 RJL 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -133319 cd04119 RJL 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -133319 cd04119 RJL 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -133319 cd04119 RJL 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -133319 cd04119 RJL 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -133319 cd04119 RJL 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133319 cd04119 RJL 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -133319 cd04119 RJL 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 110,111,112,113,114 0 -133319 cd04119 RJL 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 163,164,165,166,167 0 -206699 cd04120 Rab12 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,112,113,115,143,144,145 5 -206699 cd04120 Rab12 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206699 cd04120 Rab12 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206699 cd04120 Rab12 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73,161 0 -206699 cd04120 Rab12 5 putative lipid modification site 0 0 1 1 199,200,201 6 -206699 cd04120 Rab12 6 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206699 cd04120 Rab12 7 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206699 cd04120 Rab12 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206699 cd04120 Rab12 9 G2 box 0 0 1 1 31 0 -206699 cd04120 Rab12 10 G3 box 0 0 1 1 54,55,56,57 0 -206699 cd04120 Rab12 11 G4 box 0 0 1 1 112,113,114,115 0 -206699 cd04120 Rab12 12 G5 box 0 0 1 1 143,144,145 0 -206699 cd04120 Rab12 13 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206699 cd04120 Rab12 14 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206699 cd04120 Rab12 15 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206699 cd04120 Rab12 16 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206699 cd04120 Rab12 17 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206699 cd04120 Rab12 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206699 cd04120 Rab12 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206699 cd04120 Rab12 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109 0 -206699 cd04120 Rab12 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 159,160,161,162,163 0 -133321 cd04121 Rab40 1 GTP/Mg2+ binding site 0 0 1 1 14,15,16,17,18,19,20,30,37,63,117,118,120,147,148,149 5 -133321 cd04121 Rab40 2 putative GEF interaction site 0 0 1 1 39,40,41,42,43,44,45,46,53,55 2 -133321 cd04121 Rab40 3 putative GDI interaction site 0 0 1 1 38,39,41,59,60,67,69,71,72,73 2 -133321 cd04121 Rab40 4 putative effector interaction site 0 0 1 1 38,40,41,42,57,59,66,67,70,74,79 0 -133321 cd04121 Rab40 5 putative lipid modification site 0 0 0 1 185,186,187,188 6 -133321 cd04121 Rab40 6 Switch I region 0 0 1 1 30,37,38,39,40,41,42,43 0 -133321 cd04121 Rab40 7 Switch II region 0 0 1 1 63,65,66,67,68,69,70,71,72,73,74,75 0 -133321 cd04121 Rab40 8 G1 box 0 0 1 1 12,13,14,15,16,17,18,19 0 -133321 cd04121 Rab40 9 G2 box 0 0 1 1 37 0 -133321 cd04121 Rab40 10 G3 box 0 0 1 1 60,61,62,63 0 -133321 cd04121 Rab40 11 G4 box 0 0 1 1 117,118,119,120 0 -133321 cd04121 Rab40 12 G5 box 0 0 1 1 147,148,149 0 -133321 cd04121 Rab40 13 Rab family motif 1 (RabF1) 0 0 1 1 38,39,40,41,42 0 -133321 cd04121 Rab40 14 Rab family motif 2 (RabF2) 0 0 1 1 55,56,57,58,59 0 -133321 cd04121 Rab40 15 Rab family motif 3 (RabF3) 0 0 1 1 66,67,68,69,70,71 0 -133321 cd04121 Rab40 16 Rab family motif 4 (RabF4) 0 0 1 1 74,75,76,77,78 0 -133321 cd04121 Rab40 17 Rab family motif 5 (RabF5) 0 0 1 1 83,84,85,86,87,88 0 -133321 cd04121 Rab40 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 6,7 0 -133321 cd04121 Rab40 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 20,21,22,23,24,25,26,27,28,29,30 0 -133321 cd04121 Rab40 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 106,107,108,109,110,111,112,113,114 0 -133321 cd04121 Rab40 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 163,164,165,166,167,168,169 0 -133322 cd04122 Rab14 1 GTP/Mg2+ binding site 0 1 1 1 11,12,13,14,15,16,26,56,114,115,117,118,145,146 5 -133322 cd04122 Rab14 2 putative GEF interaction site 0 0 1 1 31,35,36,37,38,39,40,41,42,49,51 2 -133322 cd04122 Rab14 3 putative GDI interaction site 0 0 1 1 34,35,37,55,56,63,65,67,68,69 2 -133322 cd04122 Rab14 4 putative effector interaction site 0 0 1 1 34,36,37,38,53,55,62,63,66,70,72,73,74,75 0 -133322 cd04122 Rab14 5 Switch I region 0 0 1 1 26,31,32,33,34,35,36,37,38,39 0 -133322 cd04122 Rab14 6 Switch II region 0 0 1 1 59,61,62,63,64,65,66,67,68,69,70,71 0 -133322 cd04122 Rab14 7 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133322 cd04122 Rab14 8 G2 box 0 0 1 1 33 0 -133322 cd04122 Rab14 9 G3 box 0 0 1 1 56,57,58,59 0 -133322 cd04122 Rab14 10 G4 box 0 0 1 1 114,115,116,117 0 -133322 cd04122 Rab14 11 G5 box 0 0 1 1 144,145,146 0 -133322 cd04122 Rab14 12 Rab family motif 1 (RabF1) 0 0 1 1 34,35,36,37,38 0 -133322 cd04122 Rab14 13 Rab family motif 2 (RabF2) 0 0 1 1 51,52,53,54,55 0 -133322 cd04122 Rab14 14 Rab family motif 3 (RabF3) 0 0 1 1 62,63,64,65,66,67 0 -133322 cd04122 Rab14 15 Rab family motif 4 (RabF4) 0 0 1 1 70,71,72,73,74 0 -133322 cd04122 Rab14 16 Rab family motif 5 (RabF5) 0 0 1 1 79,80,81,82,83,84 0 -133322 cd04122 Rab14 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 2,3 0 -133322 cd04122 Rab14 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 16,17,18,19,20,21,22,23,24,25,26,31,32 0 -133322 cd04122 Rab14 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 102,103,104,105,106,107,108,109,110,111 0 -133322 cd04122 Rab14 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 160,161,162,163,164,165 0 -133323 cd04123 Rab21 1 GTP/Mg2+ binding site 0 1 1 1 8,11,12,13,14,24,30,31,112,113,115,142,143,144 5 -133323 cd04123 Rab21 2 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73 0 -133323 cd04123 Rab21 3 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -133323 cd04123 Rab21 4 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -133323 cd04123 Rab21 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -133323 cd04123 Rab21 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -133323 cd04123 Rab21 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133323 cd04123 Rab21 8 G2 box 0 0 1 1 31 0 -133323 cd04123 Rab21 9 G3 box 0 0 1 1 54,55,56,57 0 -133323 cd04123 Rab21 10 G4 box 0 0 1 1 112,113,114,115 0 -133323 cd04123 Rab21 11 G5 box 0 0 1 1 142,143,144 0 -133323 cd04123 Rab21 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -133323 cd04123 Rab21 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -133323 cd04123 Rab21 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -133323 cd04123 Rab21 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -133323 cd04123 Rab21 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -133323 cd04123 Rab21 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133323 cd04123 Rab21 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,29,30 0 -133323 cd04123 Rab21 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 105,106,107,108,109 0 -133323 cd04123 Rab21 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 158,159,160,161 0 -133324 cd04124 RabL2 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,111,112,114,138,139,140 5 -133324 cd04124 RabL2 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -133324 cd04124 RabL2 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -133324 cd04124 RabL2 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73 0 -133324 cd04124 RabL2 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -133324 cd04124 RabL2 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -133324 cd04124 RabL2 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133324 cd04124 RabL2 8 G2 box 0 0 1 1 31 0 -133324 cd04124 RabL2 9 G3 box 0 0 1 1 54,55,56,57 0 -133324 cd04124 RabL2 10 G4 box 0 0 1 1 111,112,113,114 0 -133324 cd04124 RabL2 11 G5 box 0 0 1 1 138,139,140 0 -133324 cd04124 RabL2 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -133324 cd04124 RabL2 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -133324 cd04124 RabL2 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -133324 cd04124 RabL2 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -133324 cd04124 RabL2 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -133324 cd04124 RabL2 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133324 cd04124 RabL2 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,29,30 0 -133324 cd04124 RabL2 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 100,101,102,103,104,105,106,107,108 0 -133324 cd04124 RabL2 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 154,155,156,157,158,159,160 0 -133326 cd04126 Rab20 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,29,30,52,107,108,110,170,171,172 5 -133326 cd04126 Rab20 2 putative GEF interaction site 0 0 1 1 28,32,33,34,35,36,37,38,39,42,44 2 -133326 cd04126 Rab20 3 putative GDI interaction site 0 0 1 1 31,32,34,48,49,56,58,60,61,62 2 -133326 cd04126 Rab20 4 putative effector interaction site 0 0 1 1 31,33,34,35,46,48,55,56,59,63,68 0 -133326 cd04126 Rab20 5 putative lipid modification site 0 0 1 1 218,219 6 -133326 cd04126 Rab20 6 Switch I region 0 0 1 1 24,28,29,30,31,32,33,34,35,36 0 -133326 cd04126 Rab20 7 Switch II region 0 0 1 1 52,54,55,56,57,58,59,60,61,62,63,64 0 -133326 cd04126 Rab20 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133326 cd04126 Rab20 9 G2 box 0 0 1 1 30 0 -133326 cd04126 Rab20 10 G3 box 0 0 1 1 49,50,51,52 0 -133326 cd04126 Rab20 11 G4 box 0 0 1 1 107,108,109,110 0 -133326 cd04126 Rab20 12 G5 box 0 0 1 1 170,171,172 0 -133326 cd04126 Rab20 13 Rab family motif 1 (RabF1) 0 0 1 1 31,32,33,34,35 0 -133326 cd04126 Rab20 14 Rab family motif 2 (RabF2) 0 0 1 1 44,45,46,47,48 0 -133326 cd04126 Rab20 15 Rab family motif 3 (RabF3) 0 0 1 1 55,56,57,58,59,60 0 -133326 cd04126 Rab20 16 Rab family motif 4 (RabF4) 0 0 1 1 63,64,65,66,67 0 -133326 cd04126 Rab20 17 Rab family motif 5 (RabF5) 0 0 1 1 72,73,74,75,76,77 0 -133326 cd04126 Rab20 18 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -133326 cd04126 Rab20 19 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,28,29 0 -133326 cd04126 Rab20 20 Rab subfamily motif 3 (RabSF3) 0 0 1 1 100,101,102,103,104 0 -133326 cd04126 Rab20 21 Rab subfamily motif 4 (RabSF4) 0 0 1 1 186,187,188 0 -206700 cd04127 Rab27A 1 GTP/Mg2+ binding site 0 1 1 1 13,14,15,16,17,18,128,130,158,159 5 -206700 cd04127 Rab27A 2 putative GEF interaction site 0 0 1 1 33,37,38,39,40,41,42,43,44,61,63 2 -206700 cd04127 Rab27A 3 putative GDI interaction site 0 0 1 1 36,37,39,67,68,75,77,79,80,81 2 -206700 cd04127 Rab27A 4 putative effector interaction site 0 0 1 1 36,38,39,40,65,67,74,75,78,82,84,85,86,87 0 -206700 cd04127 Rab27A 5 Switch I region 0 0 1 1 28,33,34,35,36,37,38,39,40,41 0 -206700 cd04127 Rab27A 6 Switch II region 0 0 1 1 71,73,74,75,76,77,78,79,80,81,82,83 0 -206700 cd04127 Rab27A 7 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206700 cd04127 Rab27A 8 G2 box 0 0 1 1 35 0 -206700 cd04127 Rab27A 9 G3 box 0 0 1 1 68,69,70,71 0 -206700 cd04127 Rab27A 10 G4 box 0 0 1 1 127,128,129,130 0 -206700 cd04127 Rab27A 11 G5 box 0 0 1 1 157,158,159 0 -206700 cd04127 Rab27A 12 Rab family motif 1 (RabF1) 0 0 1 1 36,37,38,39,40 0 -206700 cd04127 Rab27A 13 Rab family motif 2 (RabF2) 0 0 1 1 63,64,65,66,67 0 -206700 cd04127 Rab27A 14 Rab family motif 3 (RabF3) 0 0 1 1 74,75,76,77,78,79 0 -206700 cd04127 Rab27A 15 Rab family motif 4 (RabF4) 0 0 1 1 82,83,84,85,86 0 -206700 cd04127 Rab27A 16 Rab family motif 5 (RabF5) 0 0 1 1 91,92,93,94,95,96 0 -206700 cd04127 Rab27A 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1,2,3,4,5 0 -206700 cd04127 Rab27A 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 18,19,20,21,22,23,24,25,26,27,28,33,34 0 -206700 cd04127 Rab27A 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 114,115,116,117,118,119,120,121,122,123,124 0 -206700 cd04127 Rab27A 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 173,174,175,176,177,178,179 0 -206701 cd04128 Spg1 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,24,30,31,57,111,112,114,146,147,148 5 -206701 cd04128 Spg1 2 putative GEF interaction site 0 0 1 1 29,33,34,35,36,37,38,39,40,47,49 2 -206701 cd04128 Spg1 3 putative GDI interaction site 0 0 1 1 32,33,35,53,54,61,63,65,66,67 2 -206701 cd04128 Spg1 4 putative effector interaction site 0 0 1 1 32,34,35,36,51,53,60,61,64,68,70,71,72,73 0 -206701 cd04128 Spg1 5 Switch I region 0 0 1 1 24,29,30,31,32,33,34,35,36,37 0 -206701 cd04128 Spg1 6 Switch II region 0 0 1 1 57,59,60,61,62,63,64,65,66,67,68,69 0 -206701 cd04128 Spg1 7 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206701 cd04128 Spg1 8 G2 box 0 0 1 1 31 0 -206701 cd04128 Spg1 9 G3 box 0 0 1 1 54,55,56,57 0 -206701 cd04128 Spg1 10 G4 box 0 0 1 1 111,112,113,114 0 -206701 cd04128 Spg1 11 G5 box 0 0 1 1 146,147,148 0 -206701 cd04128 Spg1 12 Rab family motif 1 (RabF1) 0 0 1 1 32,33,34,35,36 0 -206701 cd04128 Spg1 13 Rab family motif 2 (RabF2) 0 0 1 1 49,50,51,52,53 0 -206701 cd04128 Spg1 14 Rab family motif 3 (RabF3) 0 0 1 1 60,61,62,63,64,65 0 -206701 cd04128 Spg1 15 Rab family motif 4 (RabF4) 0 0 1 1 68,69,70,71,72 0 -206701 cd04128 Spg1 16 Rab family motif 5 (RabF5) 0 0 1 1 77,78,79,80,81,82 0 -206701 cd04128 Spg1 17 Rab subfamily motif 1 (RabSF1) 0 0 1 1 0,1 0 -206701 cd04128 Spg1 18 Rab subfamily motif 2 (RabSF2) 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,29,30 0 -206701 cd04128 Spg1 19 Rab subfamily motif 3 (RabSF3) 0 0 1 1 100,101,102,103,104,105,106,107,108 0 -206701 cd04128 Spg1 20 Rab subfamily motif 4 (RabSF4) 0 0 1 1 161,162,163 0 -206702 cd04129 Rho2 1 GTP/Mg2+ binding site 0 0 1 1 10,11,12,13,14,15,54,55,57,113,115,154,155 5 -206702 cd04129 Rho2 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 33,34,58,64 2 -206702 cd04129 Rho2 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 2,32,33,35,36,38,40,49,53,54,56,57,58,64,67 2 -206702 cd04129 Rho2 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 33,56,61,63,64,66 0 -206702 cd04129 Rho2 5 putative effector interaction site 0 0 1 1 34,35,64,67 0 -206702 cd04129 Rho2 6 putative lipid modification site 0 0 0 1 186,187,188,189 6 -206702 cd04129 Rho2 7 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206702 cd04129 Rho2 8 Switch II region 0 0 1 1 57,58,64,65,66,67,72,73,74 0 -206702 cd04129 Rho2 9 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206702 cd04129 Rho2 10 G2 box 0 0 1 1 32 0 -206702 cd04129 Rho2 11 G3 box 0 0 1 1 54,55,56,57 0 -206702 cd04129 Rho2 12 G4 box 0 0 1 1 112,113,114,115 0 -206702 cd04129 Rho2 13 G5 box 0 0 1 1 153,154,155 0 -133330 cd04130 Wrch_1 1 GTP/Mg2+ binding site 0 0 1 1 9,10,11,12,13,14,53,54,56,112,114,155,156 5 -133330 cd04130 Wrch_1 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 32,33,57,63 2 -133330 cd04130 Wrch_1 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 1,31,32,34,35,37,39,48,52,53,55,56,57,63,66 2 -133330 cd04130 Wrch_1 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 32,55,63,65 0 -133330 cd04130 Wrch_1 5 putative effector interaction site 0 0 1 1 33,34,63,66 0 -133330 cd04130 Wrch_1 6 Switch I region 0 0 1 1 30,31,32,33,34,35,36 0 -133330 cd04130 Wrch_1 7 Switch II region 0 0 1 1 56,57,63,64,65,66,71,72,73 0 -133330 cd04130 Wrch_1 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133330 cd04130 Wrch_1 9 G2 box 0 0 1 1 31 0 -133330 cd04130 Wrch_1 10 G3 box 0 0 1 1 53,54,55,56 0 -133330 cd04130 Wrch_1 11 G4 box 0 0 1 1 111,112,113,114 0 -133330 cd04130 Wrch_1 12 G5 box 0 0 1 1 154,155,156 0 -206703 cd04131 Rnd 1 GTP/Mg2+ binding site 0 1 1 1 10,11,12,13,14,15,54,55,57,113,115,156,157 5 -206703 cd04131 Rnd 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 33,34,58,64 2 -206703 cd04131 Rnd 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 2,32,33,35,36,38,40,49,53,54,56,57,58,64,67 2 -206703 cd04131 Rnd 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 33,56,64,66 0 -206703 cd04131 Rnd 5 putative effector interaction site 0 0 1 1 34,35,64,67 0 -206703 cd04131 Rnd 6 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206703 cd04131 Rnd 7 Switch II region 0 0 1 1 57,58,64,65,66,67,72,73,74 0 -206703 cd04131 Rnd 8 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206703 cd04131 Rnd 9 G2 box 0 0 1 1 32 0 -206703 cd04131 Rnd 10 G3 box 0 0 1 1 54,55,56,57 0 -206703 cd04131 Rnd 11 G4 box 0 0 1 1 112,113,114,115 0 -206703 cd04131 Rnd 12 G5 box 0 0 1 1 155,156,157 0 -206704 cd04132 Rho4_like 1 GTP/Mg2+ binding site 0 0 1 1 12,13,14,15,16,17,57,58,60,116,118,159,160 5 -206704 cd04132 Rho4_like 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 35,36,61,67 2 -206704 cd04132 Rho4_like 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 4,34,35,38,39,41,43,52,56,57,59,60,61,67,70 2 -206704 cd04132 Rho4_like 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 35,59,67,69 0 -206704 cd04132 Rho4_like 5 putative effector interaction site 0 0 1 1 36,37,67,70 0 -206704 cd04132 Rho4_like 6 putative lipid modification site 0 0 0 1 193,194,195,196 6 -206704 cd04132 Rho4_like 7 Switch I region 0 0 1 1 33,34,35,36,37,38,39 0 -206704 cd04132 Rho4_like 8 Switch II region 0 0 1 1 60,61,67,68,69,70,75,76,77 0 -206704 cd04132 Rho4_like 9 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206704 cd04132 Rho4_like 10 G2 box 0 0 1 1 34 0 -206704 cd04132 Rho4_like 11 G3 box 0 0 1 1 57,58,59,60 0 -206704 cd04132 Rho4_like 12 G4 box 0 0 1 1 115,116,117,118 0 -206704 cd04132 Rho4_like 13 G5 box 0 0 1 1 158,159,160 0 -206705 cd04133 Rop_like 1 GTP/Mg2+ binding site 0 1 1 1 10,11,12,13,14,15,54,55,57,113,115,154,155 5 -206705 cd04133 Rop_like 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 33,34,58,64 2 -206705 cd04133 Rop_like 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 2,32,33,35,36,38,40,49,53,54,56,57,58,64,67 2 -206705 cd04133 Rop_like 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 33,56,64,66 0 -206705 cd04133 Rop_like 5 putative effector interaction site 0 0 1 1 34,35,64,67 0 -206705 cd04133 Rop_like 6 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206705 cd04133 Rop_like 7 Switch II region 0 0 1 1 57,58,64,65,66,67,72,73,74 0 -206705 cd04133 Rop_like 8 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206705 cd04133 Rop_like 9 G2 box 0 0 1 1 32 0 -206705 cd04133 Rop_like 10 G3 box 0 0 1 1 54,55,56,57 0 -206705 cd04133 Rop_like 11 G4 box 0 0 1 1 112,113,114,115 0 -206705 cd04133 Rop_like 12 G5 box 0 0 1 1 153,154,155 0 -206706 cd04134 Rho3 1 GTP/Mg2+ binding site 0 0 1 1 9,10,11,12,13,14,53,54,56,112,114,151,152 5 -206706 cd04134 Rho3 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 32,33,57,63 2 -206706 cd04134 Rho3 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 1,31,32,35,36,38,40,48,52,53,55,56,57,63,66 2 -206706 cd04134 Rho3 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 32,55,63,65 0 -206706 cd04134 Rho3 5 putative effector interaction site 0 0 1 1 33,34,63,66 0 -206706 cd04134 Rho3 6 putative lipid modification site 0 0 0 1 181,182,183,184 6 -206706 cd04134 Rho3 7 Switch I region 0 0 1 1 30,31,32,33,34,35,36 0 -206706 cd04134 Rho3 8 Switch II region 0 0 1 1 56,57,63,64,65,66,71,72,73 0 -206706 cd04134 Rho3 9 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206706 cd04134 Rho3 10 G2 box 0 0 1 1 31 0 -206706 cd04134 Rho3 11 G3 box 0 0 1 1 53,54,55,56 0 -206706 cd04134 Rho3 12 G4 box 0 0 1 1 111,112,113,114 0 -206706 cd04134 Rho3 13 G5 box 0 0 1 1 150,151,152 0 -206707 cd04135 Tc10 1 GTP/Mg2+ binding site 0 1 1 1 9,10,11,12,13,14,53,54,56,112,114,155,156 5 -206707 cd04135 Tc10 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 32,33,57,63 2 -206707 cd04135 Tc10 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 1,31,32,35,36,38,40,48,52,53,55,56,57,63,66 2 -206707 cd04135 Tc10 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 32,55,63,65 0 -206707 cd04135 Tc10 5 putative effector interaction site 0 0 1 1 33,34,63,66 0 -206707 cd04135 Tc10 6 Switch I region 0 0 1 1 30,31,32,33,34,35,36 0 -206707 cd04135 Tc10 7 Switch II region 0 0 1 1 56,57,63,64,65,66,71,72,73 0 -206707 cd04135 Tc10 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206707 cd04135 Tc10 9 G2 box 0 0 1 1 31 0 -206707 cd04135 Tc10 10 G3 box 0 0 1 1 53,54,55,56 0 -206707 cd04135 Tc10 11 G4 box 0 0 1 1 111,112,113,114 0 -206707 cd04135 Tc10 12 G5 box 0 0 1 1 154,155,156 0 -206708 cd04136 Rap_like 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,15,25,26,27,113,114,116,144,145 5 -206708 cd04136 Rap_like 2 effector interaction site 0 1 1 0 22,28,30,33,34,35,36,37,38 0 -206708 cd04136 Rap_like 3 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,146 2 -206708 cd04136 Rap_like 4 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -206708 cd04136 Rap_like 5 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -206708 cd04136 Rap_like 6 Switch II region 0 0 1 1 56,57,58,59,60,61,62,65,66,67,68,69,70,73,74 0 -206708 cd04136 Rap_like 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206708 cd04136 Rap_like 8 G2 box 0 0 1 1 32 0 -206708 cd04136 Rap_like 9 G3 box 0 0 1 1 54,55,56,57 0 -206708 cd04136 Rap_like 10 G4 box 0 0 1 1 113,114,115,116 0 -206708 cd04136 Rap_like 11 G5 box 0 0 1 1 144,145,146 0 -206709 cd04137 RheB 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,15,25,26,29,32,57,113,114,116,117,143,144 5 -206709 cd04137 RheB 2 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,145 2 -206709 cd04137 RheB 3 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -206709 cd04137 RheB 4 putative effector interaction site 0 0 1 1 30,31,35,36,37,38 0 -206709 cd04137 RheB 5 putative lipid modification site 0 0 0 1 176,177,178,179 6 -206709 cd04137 RheB 6 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -206709 cd04137 RheB 7 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206709 cd04137 RheB 8 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206709 cd04137 RheB 9 G2 box 0 0 1 1 32 0 -206709 cd04137 RheB 10 G3 box 0 0 1 1 54,55,56,57 0 -206709 cd04137 RheB 11 G4 box 0 0 1 1 113,114,115,116 0 -206709 cd04137 RheB 12 G5 box 0 0 1 1 143,144,145 0 -133338 cd04138 H_N_K_Ras_like 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,15,25,26,27,29,32,57,113,114,116,117,142,143 5 -133338 cd04138 H_N_K_Ras_like 2 GEF interaction site 0 1 1 0 14,15,27,28,29,31,34,37,38,51,52,54,56,57,58,60,61,62,64,66,67,68,70,99,100,144 2 -133338 cd04138 H_N_K_Ras_like 3 effector interaction site 0 1 1 0 22,34,35,36,37,38 0 -133338 cd04138 H_N_K_Ras_like 4 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -133338 cd04138 H_N_K_Ras_like 5 Switch I region 0 1 1 1 30,31,32,33,34,35,36,37 0 -133338 cd04138 H_N_K_Ras_like 6 Switch II region 0 1 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -133338 cd04138 H_N_K_Ras_like 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133338 cd04138 H_N_K_Ras_like 8 G2 box 0 0 1 1 32 0 -133338 cd04138 H_N_K_Ras_like 9 G3 box 0 0 1 1 54,55,56,57 0 -133338 cd04138 H_N_K_Ras_like 10 G4 box 0 0 1 1 113,114,115,116 0 -133338 cd04138 H_N_K_Ras_like 11 G5 box 0 0 1 1 142,143,144 0 -206710 cd04139 RalA_RalB 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,14,24,25,31,56,112,113,115,142,143 5 -206710 cd04139 RalA_RalB 2 effector interaction site 0 1 1 1 21,23,32,33,34,35,36,37,41,45,46,145,146,147,148,150 0 -206710 cd04139 RalA_RalB 3 GDI interaction site 0 1 1 1 7,8,55,56,57,59,60,64,67,82,84,87,88,91,92,95 0 -206710 cd04139 RalA_RalB 4 alternate GDI interaction site 0 1 1 1 124,125,128,132,140 0 -206710 cd04139 RalA_RalB 5 putative GEF interaction site 0 0 1 1 13,14,28,30,36,37,50,51,53,55,56,144 2 -206710 cd04139 RalA_RalB 6 Switch I region 0 0 1 1 29,30,31,32,33,34,35,36 0 -206710 cd04139 RalA_RalB 7 Switch II region 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 0 -206710 cd04139 RalA_RalB 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206710 cd04139 RalA_RalB 9 G2 box 0 0 1 1 31 0 -206710 cd04139 RalA_RalB 10 G3 box 0 0 1 1 53,54,55,56 0 -206710 cd04139 RalA_RalB 11 G4 box 0 0 1 1 112,113,114,115 0 -206710 cd04139 RalA_RalB 12 G5 box 0 0 1 1 142,143,144 0 -206711 cd04140 ARHI_like 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,25,26,27,29,32,115,116,118,119,145,146,147 5 -206711 cd04140 ARHI_like 2 putative effector interaction site 0 0 1 1 30,31,35,36,37,38 0 -206711 cd04140 ARHI_like 3 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,147 2 -206711 cd04140 ARHI_like 4 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -206711 cd04140 ARHI_like 5 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -206711 cd04140 ARHI_like 6 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74 0 -206711 cd04140 ARHI_like 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206711 cd04140 ARHI_like 8 G2 box 0 0 1 1 32 0 -206711 cd04140 ARHI_like 9 G3 box 0 0 1 1 54,55,56,57 0 -206711 cd04140 ARHI_like 10 G4 box 0 0 1 1 115,116,117,118 0 -206711 cd04140 ARHI_like 11 G5 box 0 0 1 1 145,146,147 0 -206712 cd04141 Rit_Rin_Ric 1 GTP/Mg2+ binding site 0 0 1 1 10,11,12,13,14,15,16,55,58,114,115,117,144,145 5 -206712 cd04141 Rit_Rin_Ric 2 putative GEF interaction site 0 0 1 1 15,16,30,32,38,39,52,53,55,57,58,146 2 -206712 cd04141 Rit_Rin_Ric 3 putative GDI interaction site 0 0 1 1 9,10,57,58 2 -206712 cd04141 Rit_Rin_Ric 4 putative effector interaction site 0 0 1 1 31,32,36,37,38,39 0 -206712 cd04141 Rit_Rin_Ric 5 Switch I region 0 0 1 1 31,32,33,34,35,36,37,38 0 -206712 cd04141 Rit_Rin_Ric 6 Switch II region 0 0 1 1 57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75 0 -206712 cd04141 Rit_Rin_Ric 7 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206712 cd04141 Rit_Rin_Ric 8 G2 box 0 0 1 1 33 0 -206712 cd04141 Rit_Rin_Ric 9 G3 box 0 0 1 1 55,56,57,58 0 -206712 cd04141 Rit_Rin_Ric 10 G4 box 0 0 1 1 114,115,116,117 0 -206712 cd04141 Rit_Rin_Ric 11 G5 box 0 0 1 1 144,145,146 0 -133342 cd04142 RRP22 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,54,57,123,124,126,154,155 5 -133342 cd04142 RRP22 2 putative GEF interaction site 0 0 1 1 13,14,28,30,37,38,51,52,54,56,57,156 2 -133342 cd04142 RRP22 3 putative GDI interaction site 0 0 1 1 7,8,56,57 2 -133342 cd04142 RRP22 4 putative effector interaction site 0 0 1 1 29,30,35,36,37,38 0 -133342 cd04142 RRP22 5 putative lipid modification site 0 0 1 1 194,195,196,197 6 -133342 cd04142 RRP22 6 Switch I region 0 0 1 1 29,30,31,32,33,35,36,37 0 -133342 cd04142 RRP22 7 Switch II region 0 0 1 1 56,57,67,68,69,70,71,72,79,80,81,82 0 -133342 cd04142 RRP22 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133342 cd04142 RRP22 9 G2 box 0 0 1 1 31 0 -133342 cd04142 RRP22 10 G3 box 0 0 1 1 54,55,56,57 0 -133342 cd04142 RRP22 11 G4 box 0 0 1 1 123,124,125,126 0 -133342 cd04142 RRP22 12 G5 box 0 0 1 1 154,155,156 0 -133343 cd04143 Rhes_like 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,53,56,120,121,123,151,152 5 -133343 cd04143 Rhes_like 2 putative GEF interaction site 0 0 1 1 13,14,28,30,36,37,50,51,53,55,56,153 2 -133343 cd04143 Rhes_like 3 putative GDI interaction site 0 0 1 1 7,8,55,56 2 -133343 cd04143 Rhes_like 4 putative effector interaction site 0 0 1 1 29,30,34,35,36,37 0 -133343 cd04143 Rhes_like 5 putative lipid modification site 0 0 1 1 243,244,245,246 6 -133343 cd04143 Rhes_like 6 Switch I region 0 0 1 1 29,30,31,32,33,34,35,36 0 -133343 cd04143 Rhes_like 7 Switch II region 0 0 1 1 55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 0 -133343 cd04143 Rhes_like 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133343 cd04143 Rhes_like 9 G2 box 0 0 1 1 31 0 -133343 cd04143 Rhes_like 10 G3 box 0 0 1 1 53,54,55,56 0 -133343 cd04143 Rhes_like 11 G4 box 0 0 1 1 120,121,122,123 0 -133343 cd04143 Rhes_like 12 G5 box 0 0 1 1 151,152,153 0 -133344 cd04144 Ras2 1 GTP/Mg2+ binding site 0 0 1 1 7,8,9,10,11,12,13,52,55,113,114,116,143,144 5 -133344 cd04144 Ras2 2 putative GEF interaction site 0 0 1 1 12,13,27,29,35,36,49,50,52,54,55,145 2 -133344 cd04144 Ras2 3 putative GDI interaction site 0 0 1 1 6,7,54,55 2 -133344 cd04144 Ras2 4 putative effector interaction site 0 0 1 1 28,29,33,34,35,36 0 -133344 cd04144 Ras2 5 putative lipid modification site 0 0 0 1 186,187,188,189 6 -133344 cd04144 Ras2 6 Switch I region 0 0 1 1 28,29,30,31,32,33,34,35 0 -133344 cd04144 Ras2 7 Switch II region 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72 0 -133344 cd04144 Ras2 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133344 cd04144 Ras2 9 G2 box 0 0 1 1 30 0 -133344 cd04144 Ras2 10 G3 box 0 0 1 1 52,53,54,55 0 -133344 cd04144 Ras2 11 G4 box 0 0 1 1 113,114,115,116 0 -133344 cd04144 Ras2 12 G5 box 0 0 1 1 143,144,145 0 -133345 cd04145 M_R_Ras_like 1 GTP/Mg2+ binding site 0 1 1 0 11,12,13,14,15,16,28,29,114,115,117,144,145 5 -133345 cd04145 M_R_Ras_like 2 putative GEF interaction site 0 0 1 1 15,16,30,32,38,39,52,53,55,57,58,146 2 -133345 cd04145 M_R_Ras_like 3 putative GDI interaction site 0 0 1 1 9,10,57,58 2 -133345 cd04145 M_R_Ras_like 4 putative effector interaction site 0 0 1 1 31,32,36,37,38,39 0 -133345 cd04145 M_R_Ras_like 5 Switch I region 0 0 1 1 31,32,33,34,35,36,37,38 0 -133345 cd04145 M_R_Ras_like 6 Switch II region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 0 -133345 cd04145 M_R_Ras_like 7 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133345 cd04145 M_R_Ras_like 8 G2 box 0 0 1 1 33 0 -133345 cd04145 M_R_Ras_like 9 G3 box 0 0 1 1 55,56,57,58 0 -133345 cd04145 M_R_Ras_like 10 G4 box 0 0 1 1 114,115,116,117 0 -133345 cd04145 M_R_Ras_like 11 G5 box 0 0 1 1 144,145,146 0 -206713 cd04146 RERG_RasL11_like 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,26,114,115,117,144,145,146 5 -206713 cd04146 RERG_RasL11_like 2 putative GEF interaction site 0 0 1 1 12,13,27,29,35,36,49,50,52,54,55,146 2 -206713 cd04146 RERG_RasL11_like 3 putative GDI interaction site 0 0 1 1 6,7,54,55 2 -206713 cd04146 RERG_RasL11_like 4 putative effector interaction site 0 0 1 1 28,29,33,34,35,36 0 -206713 cd04146 RERG_RasL11_like 5 Switch I region 0 0 1 1 28,29,30,31,34,35,36 0 -206713 cd04146 RERG_RasL11_like 6 Switch II region 0 0 1 1 54,55,63,64,65,66,67,68,69,70,71,72,73,74 0 -206713 cd04146 RERG_RasL11_like 7 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206713 cd04146 RERG_RasL11_like 8 G2 box 0 0 1 1 30 0 -206713 cd04146 RERG_RasL11_like 9 G3 box 0 0 1 1 52,53,54,55 0 -206713 cd04146 RERG_RasL11_like 10 G4 box 0 0 1 1 114,115,116,117 0 -206713 cd04146 RERG_RasL11_like 11 G5 box 0 0 1 1 144,145,146 0 -206714 cd04147 Ras_dva 1 GTP/Mg2+ binding site 0 0 1 1 7,8,9,10,11,12,13,52,55,111,112,114,142,143 5 -206714 cd04147 Ras_dva 2 putative GEF interaction site 0 0 1 1 12,13,26,28,35,36,49,50,52,54,55,144 2 -206714 cd04147 Ras_dva 3 putative GDI interaction site 0 0 1 1 6,7,54,55 2 -206714 cd04147 Ras_dva 4 putative effector interaction site 0 0 1 1 27,28,33,34,35,36 0 -206714 cd04147 Ras_dva 5 putative lipid modification site 0 0 0 1 193,194,195,196 6 -206714 cd04147 Ras_dva 6 Switch I region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -206714 cd04147 Ras_dva 7 Switch II region 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67,71,72 0 -206714 cd04147 Ras_dva 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206714 cd04147 Ras_dva 9 G2 box 0 0 1 1 29 0 -206714 cd04147 Ras_dva 10 G3 box 0 0 1 1 52,53,54,55 0 -206714 cd04147 Ras_dva 11 G4 box 0 0 1 1 111,112,113,114 0 -206714 cd04147 Ras_dva 12 G5 box 0 0 1 1 142,143,144 0 -206715 cd04148 RGK 1 GTP/Mg2+ binding site 0 0 1 1 8,9,10,11,12,13,14,54,57,113,114,116,143,144 5 -206715 cd04148 RGK 2 putative GEF interaction site 0 0 1 1 13,14,27,29,37,38,51,52,54,56,57,145 2 -206715 cd04148 RGK 3 putative GDI interaction site 0 0 1 1 7,8,56,57 2 -206715 cd04148 RGK 4 putative effector interaction site 0 0 1 1 28,29,35,36,37,38 0 -206715 cd04148 RGK 5 putative lipid modification site 0 0 0 1 212,213,214,215 6 -206715 cd04148 RGK 6 Switch I region 0 0 1 1 28,29,30,31,32,33,34,35,36,37 0 -206715 cd04148 RGK 7 Switch II region 0 0 1 1 56,57,65,66,67,68,71,72,73,74 0 -206715 cd04148 RGK 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206715 cd04148 RGK 9 G2 box 0 0 1 1 30 0 -206715 cd04148 RGK 10 G3 box 0 0 1 1 54,55,56,57 0 -206715 cd04148 RGK 11 G4 box 0 0 1 1 113,114,115,116 0 -206715 cd04148 RGK 12 G5 box 0 0 1 1 143,144,145 0 -206716 cd04149 Arf6 1 GTP/Mg2+ binding site 0 1 1 0 18,19,20,21,22,23,36,39,61,117,118,120,150,151 5 -206716 cd04149 Arf6 2 putative effector interaction site 0 0 1 1 40,41,42,43,44,45,46,47,57,68,71,72 0 -206716 cd04149 Arf6 3 putative GAP interaction site 0 0 1 1 17,18,22,26,38,39,40,41,42,43,44,45,67,72 2 -206716 cd04149 Arf6 4 putative GEF interaction site 0 0 1 1 39,40,41,42,43,48,58,62,68,70,71,72 2 -206716 cd04149 Arf6 5 Switch I region 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 0 -206716 cd04149 Arf6 6 Switch II region 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 0 -206716 cd04149 Arf6 7 interswitch region 0 0 1 1 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -206716 cd04149 Arf6 8 G1 box 0 0 1 1 15,16,17,18,19,20,21,22 0 -206716 cd04149 Arf6 9 G2 box 0 0 1 1 39 0 -206716 cd04149 Arf6 10 G3 box 0 0 1 1 58,59,60,61 0 -206716 cd04149 Arf6 11 G4 box 0 0 1 1 117,118,119,120 0 -206716 cd04149 Arf6 12 G5 box 0 0 1 1 150,151,152 0 -206716 cd04149 Arf6 13 QS Arf6 conserved motif 0 0 1 1 32,33 0 -206717 cd04150 Arf1_5_like 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,14,108,109,111,141,142,143 5 -206717 cd04150 Arf1_5_like 2 effector interaction site 0 1 1 1 31,32,33,55,62 0 -206717 cd04150 Arf1_5_like 3 GEF interaction site 0 1 1 0 30,31,32,33,34,39,49,53,55,59,61,62,63 2 -206717 cd04150 Arf1_5_like 4 putative GAP interaction site 0 0 1 1 8,9,13,17,29,30,31,32,33,34,35,36,58,63 2 -206717 cd04150 Arf1_5_like 5 Switch I region 0 0 1 1 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 0 -206717 cd04150 Arf1_5_like 6 Switch II region 0 0 1 1 51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 0 -206717 cd04150 Arf1_5_like 7 interswitch region 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 0 -206717 cd04150 Arf1_5_like 8 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206717 cd04150 Arf1_5_like 9 G2 box 0 0 1 1 30 0 -206717 cd04150 Arf1_5_like 10 G3 box 0 0 1 1 49,50,51,52 0 -206717 cd04150 Arf1_5_like 11 G4 box 0 0 1 1 108,109,110,111 0 -206717 cd04150 Arf1_5_like 12 G5 box 0 0 1 1 141,142,143 0 -206718 cd04151 Arl1 1 GTP/Mg2+ binding site 0 1 1 0 7,8,9,10,11,12,13,26,29,51,107,108,110,140,141,142 5 -206718 cd04151 Arl1 2 effector interaction site 0 1 1 1 31,32,45,61,62,64,96 0 -206718 cd04151 Arl1 3 putative GEF interaction site 0 0 1 1 29,30,31,32,33,38,48,52,58,60,61,62 2 -206718 cd04151 Arl1 4 putative GAP interaction site 0 0 1 1 7,8,12,16,28,29,30,31,32,33,34,35,57,62 2 -206718 cd04151 Arl1 5 Switch I region 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32 0 -206718 cd04151 Arl1 6 Switch II region 0 0 1 1 48,49,50,51,52,53,54,55,56,58,59,60,61 0 -206718 cd04151 Arl1 7 interswitch region 0 0 1 1 32,33,34,35,36,37,38,39,42,43,44,45,46,47 0 -206718 cd04151 Arl1 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206718 cd04151 Arl1 9 G2 box 0 0 1 1 29 0 -206718 cd04151 Arl1 10 G3 box 0 0 1 1 48,49,50,51 0 -206718 cd04151 Arl1 11 G4 box 0 0 1 1 107,108,109,110 0 -206718 cd04151 Arl1 12 G5 box 0 0 1 1 140,141,142 0 -206719 cd04152 Arl4_Arl7 1 GTP/Mg2+ binding site 0 0 0 1 11,12,13,14,15,16,17,32,33,60,116,117,119,150,151,152 5 -206719 cd04152 Arl4_Arl7 2 putative effector interaction site 0 0 1 1 34,35,36,37,38,39,40,41,56,67,70,71 0 -206719 cd04152 Arl4_Arl7 3 putative GEF interaction site 0 0 1 1 33,34,35,36,37,42,57,61,67,69,70,71 2 -206719 cd04152 Arl4_Arl7 4 putative GAP interaction site 0 0 1 1 11,12,16,20,32,33,34,35,36,37,38,39,66,71 2 -206719 cd04152 Arl4_Arl7 5 Switch I region 0 0 1 1 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 0 -206719 cd04152 Arl4_Arl7 6 Switch II region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -206719 cd04152 Arl4_Arl7 7 interswitch region 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56 0 -206719 cd04152 Arl4_Arl7 8 putative nuclear localization signal 0 0 1 1 170,171,172,173,179,180,181,182 0 -206719 cd04152 Arl4_Arl7 9 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206719 cd04152 Arl4_Arl7 10 G2 box 0 0 1 1 33 0 -206719 cd04152 Arl4_Arl7 11 G3 box 0 0 1 1 57,58,59,60 0 -206719 cd04152 Arl4_Arl7 12 G4 box 0 0 1 1 116,117,118,119 0 -206719 cd04152 Arl4_Arl7 13 G5 box 0 0 1 1 150,151,152 0 -133353 cd04153 Arl5_Arl8 1 GTP/Mg2+ binding site 0 1 1 0 23,24,25,26,27,28,29,123,124,126,156,157 5 -133353 cd04153 Arl5_Arl8 2 putative effector interaction site 0 0 1 1 46,47,48,49,50,51,52,53,63,74,77,78 0 -133353 cd04153 Arl5_Arl8 3 putative GEF interaction site 0 0 1 1 45,46,47,48,49,54,64,68,74,76,77,78 2 -133353 cd04153 Arl5_Arl8 4 putative GAP interaction site 0 0 1 1 23,24,28,32,44,45,46,47,48,49,50,51,73,78 2 -133353 cd04153 Arl5_Arl8 5 Switch I region 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 0 -133353 cd04153 Arl5_Arl8 6 Switch II region 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 0 -133353 cd04153 Arl5_Arl8 7 interswitch region 0 0 1 1 49,50,51,52,53,54,55,58,59,60,61,62,63 0 -133353 cd04153 Arl5_Arl8 8 G1 box 0 0 1 1 21,22,23,24,25,26,27,28 0 -133353 cd04153 Arl5_Arl8 9 G2 box 0 0 1 1 45 0 -133353 cd04153 Arl5_Arl8 10 G3 box 0 0 1 1 64,65,66,67 0 -133353 cd04153 Arl5_Arl8 11 G4 box 0 0 1 1 123,124,125,126 0 -133353 cd04153 Arl5_Arl8 12 G5 box 0 0 1 1 156,157,158 0 -206720 cd04154 Arl2 1 GTP/Mg2+ binding site 0 1 1 0 22,23,24,25,26,27,28,43,44,66,122,123,125,155,156 5 -206720 cd04154 Arl2 2 effector interaction site 0 1 1 0 45,46,47,48,49,50,51,52,62,73,76,77 0 -206720 cd04154 Arl2 3 putative GEF interaction site 0 0 1 1 44,45,46,47,48,53,63,67,73,75,76,77 2 -206720 cd04154 Arl2 4 putative GAP interaction site 0 0 1 1 22,23,27,31,43,44,45,46,47,48,49,50,72,77 2 -206720 cd04154 Arl2 5 Switch I region 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 0 -206720 cd04154 Arl2 6 Switch II region 0 0 1 1 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 0 -206720 cd04154 Arl2 7 interswitch region 0 0 1 1 48,49,50,51,52,53,54,57,58,59,60,61,62 0 -206720 cd04154 Arl2 8 G1 box 0 0 1 1 20,21,22,23,24,25,26,27 0 -206720 cd04154 Arl2 9 G2 box 0 0 1 1 44 0 -206720 cd04154 Arl2 10 G3 box 0 0 1 1 63,64,65,66 0 -206720 cd04154 Arl2 11 G4 box 0 0 1 1 122,123,124,125 0 -206720 cd04154 Arl2 12 G5 box 0 0 1 1 155,156,157 0 -206721 cd04155 Arl3 1 GTP/Mg2+ binding site 0 1 1 0 24,25,26,27,28,29,123,124,126,127,156,157,158 5 -206721 cd04155 Arl3 2 putative effector interaction site 0 0 1 1 46,47,48,49,50,51,52,53,63,74,77,78 0 -206721 cd04155 Arl3 3 putative GEF interaction site 0 0 1 1 45,46,47,48,49,54,64,68,74,76,77,78 2 -206721 cd04155 Arl3 4 putative GAP interaction site 0 0 1 1 23,24,28,32,44,45,46,47,48,49,50,51,73,78 2 -206721 cd04155 Arl3 5 Switch I region 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 0 -206721 cd04155 Arl3 6 Switch II region 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 0 -206721 cd04155 Arl3 7 interswitch region 0 0 1 1 49,50,51,52,53,54,55,58,59,60,61,62,63 0 -206721 cd04155 Arl3 8 G1 box 0 0 1 1 21,22,23,24,25,26,27,28 0 -206721 cd04155 Arl3 9 G2 box 0 0 1 1 45 0 -206721 cd04155 Arl3 10 G3 box 0 0 1 1 64,65,66,67 0 -206721 cd04155 Arl3 11 G4 box 0 0 1 1 123,124,125,126 0 -206721 cd04155 Arl3 12 G5 box 0 0 1 1 156,157,158 0 -133356 cd04156 ARLTS1 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,28,29,52,108,109,111,142,143,144 5 -133356 cd04156 ARLTS1 2 putative effector interaction site 0 0 1 1 30,31,32,33,34,35,36,37,48,59,62,63 0 -133356 cd04156 ARLTS1 3 putative GEF interaction site 0 0 1 1 29,30,31,32,33,38,49,53,59,61,62,63 2 -133356 cd04156 ARLTS1 4 putative GAP interaction site 0 0 1 1 7,8,12,16,28,29,30,31,32,33,34,35,58,63 2 -133356 cd04156 ARLTS1 5 Switch I region 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32 0 -133356 cd04156 ARLTS1 6 Switch II region 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 0 -133356 cd04156 ARLTS1 7 interswitch region 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 0 -133356 cd04156 ARLTS1 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133356 cd04156 ARLTS1 9 G2 box 0 0 1 1 29 0 -133356 cd04156 ARLTS1 10 G3 box 0 0 1 1 49,50,51,52 0 -133356 cd04156 ARLTS1 11 G4 box 0 0 1 1 108,109,110,111 0 -133356 cd04156 ARLTS1 12 G5 box 0 0 1 1 142,143,144 0 -206722 cd04157 Arl6 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,30,31,53,111,112,114,144,145,146 5 -206722 cd04157 Arl6 2 putative effector interaction site 0 0 1 1 32,33,34,35,36,37,38,39,49,60,63,64 0 -206722 cd04157 Arl6 3 putative GEF interaction site 0 0 1 1 31,32,33,34,35,40,50,54,60,62,63,64 2 -206722 cd04157 Arl6 4 putative GAP interaction site 0 0 1 1 7,8,12,16,30,31,32,33,34,35,36,37,59,64 2 -206722 cd04157 Arl6 5 Switch I region 0 0 1 1 17,18,19,20,21,24,25,26,27,28,29,30,31,32,33,34 0 -206722 cd04157 Arl6 6 Switch II region 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 0 -206722 cd04157 Arl6 7 interswitch region 0 0 1 1 35,36,37,38,39,40,41,44,45,46,47,48,49 0 -206722 cd04157 Arl6 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206722 cd04157 Arl6 9 G2 box 0 0 1 1 31 0 -206722 cd04157 Arl6 10 G3 box 0 0 1 1 50,51,52,53 0 -206722 cd04157 Arl6 11 G4 box 0 0 1 1 111,112,113,114 0 -206722 cd04157 Arl6 12 G5 box 0 0 1 1 144,145,146 0 -206723 cd04158 ARD1 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,28,29,51,107,108,110,141,142,143 5 -206723 cd04158 ARD1 2 putative effector interaction site 0 0 1 1 30,31,32,33,34,35,36,37,47,58,61,62 0 -206723 cd04158 ARD1 3 putative GEF interaction site 0 0 1 1 29,30,31,32,33,38,48,52,58,60,61,62 2 -206723 cd04158 ARD1 4 putative GAP interaction site 0 0 1 1 7,8,12,16,28,29,30,31,32,33,34,35,57,62 2 -206723 cd04158 ARD1 5 Switch I region 0 0 1 1 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32 0 -206723 cd04158 ARD1 6 Switch II region 0 0 1 1 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 0 -206723 cd04158 ARD1 7 interswitch region 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 0 -206723 cd04158 ARD1 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206723 cd04158 ARD1 9 G2 box 0 0 1 1 29 0 -206723 cd04158 ARD1 10 G3 box 0 0 1 1 48,49,50,51 0 -206723 cd04158 ARD1 11 G4 box 0 0 1 1 107,108,109,110 0 -206723 cd04158 ARD1 12 G5 box 0 0 1 1 141,142,143 0 -206723 cd04158 ARD1 13 YxxL localization motifs 0 0 1 1 39,40,41,42,149,150,151,152 0 -206724 cd04159 Arl10_like 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,108,109,111,112,141,142,143 5 -206724 cd04159 Arl10_like 2 putative effector interaction site 0 0 1 1 31,32,33,34,35,36,37,38,48,59,62,63 0 -206724 cd04159 Arl10_like 3 putative GEF interaction site 0 0 1 1 30,31,32,33,34,39,49,53,59,61,62,63 2 -206724 cd04159 Arl10_like 4 putative GAP interaction site 0 0 1 1 7,8,12,16,29,30,31,32,33,34,35,36,58,63 2 -206724 cd04159 Arl10_like 5 Switch I region 0 0 1 1 17,18,19,20,23,24,25,26,27,28,29,30,31,32,33 0 -206724 cd04159 Arl10_like 6 Switch II region 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 0 -206724 cd04159 Arl10_like 7 interswitch region 0 0 1 1 34,35,36,37,38,39,40,41,43,44,45,46,47,48 0 -206724 cd04159 Arl10_like 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206724 cd04159 Arl10_like 9 G2 box 0 0 1 1 30 0 -206724 cd04159 Arl10_like 10 G3 box 0 0 1 1 49,50,51,52 0 -206724 cd04159 Arl10_like 11 G4 box 0 0 1 1 108,109,110,111 0 -206724 cd04159 Arl10_like 12 G5 box 0 0 1 1 141,142,143 0 -206725 cd04160 Arfrp1 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,36,37,59,115,116,118,150,151,152 5 -206725 cd04160 Arfrp1 2 putative effector interaction site 0 0 1 1 38,39,40,41,42,43,44,45,55,66,69,70 0 -206725 cd04160 Arfrp1 3 putative GEF interaction site 0 0 1 1 37,38,39,40,41,46,56,60,66,68,69,70 2 -206725 cd04160 Arfrp1 4 putative GAP interaction site 0 0 1 1 7,8,12,16,36,37,38,39,40,41,42,43,65,70 2 -206725 cd04160 Arfrp1 5 Switch I region 0 0 1 1 17,18,19,20,30,31,32,33,34,35,36,37,38,39,40 0 -206725 cd04160 Arfrp1 6 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 0 -206725 cd04160 Arfrp1 7 interswitch region 0 0 1 1 41,42,43,44,45,46,47,50,51,52,53,54,55 0 -206725 cd04160 Arfrp1 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206725 cd04160 Arfrp1 9 G2 box 0 0 1 1 37 0 -206725 cd04160 Arfrp1 10 G3 box 0 0 1 1 56,57,58,59 0 -206725 cd04160 Arfrp1 11 G4 box 0 0 1 1 115,116,117,118 0 -206725 cd04160 Arfrp1 12 G5 box 0 0 1 1 150,151,152 0 -133361 cd04161 Arl2l1_Arl13_like 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,28,29,51,107,108,110,143,144,145 5 -133361 cd04161 Arl2l1_Arl13_like 2 putative effector interaction site 0 0 1 1 30,31,32,33,34,35,36,37,47,58,61,62 0 -133361 cd04161 Arl2l1_Arl13_like 3 putative GEF interaction site 0 0 1 1 29,30,31,32,33,38,48,52,58,60,61,62 2 -133361 cd04161 Arl2l1_Arl13_like 4 putative GAP interaction site 0 0 1 1 7,8,12,16,28,29,30,31,32,33,34,35,57,62 2 -133361 cd04161 Arl2l1_Arl13_like 5 Switch I region 0 0 1 1 17,18,19,20,22,23,24,25,26,27,28,29,30,31,32 0 -133361 cd04161 Arl2l1_Arl13_like 6 Switch II region 0 0 1 1 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 0 -133361 cd04161 Arl2l1_Arl13_like 7 interswitch region 0 0 1 1 33,34,35,36,37,38,39,42,43,44,45,46,47 0 -133361 cd04161 Arl2l1_Arl13_like 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133361 cd04161 Arl2l1_Arl13_like 9 G2 box 0 0 1 1 29 0 -133361 cd04161 Arl2l1_Arl13_like 10 G3 box 0 0 1 1 48,49,50,51 0 -133361 cd04161 Arl2l1_Arl13_like 11 G4 box 0 0 1 1 107,108,109,110 0 -133361 cd04161 Arl2l1_Arl13_like 12 G5 box 0 0 1 1 143,144,145 0 -133362 cd04162 Arl9_Arfrp2_like 1 GTP/Mg2+ binding site 0 0 0 1 7,8,9,10,11,12,13,29,30,52,106,107,109,140,141,142 5 -133362 cd04162 Arl9_Arfrp2_like 2 putative effector interaction site 0 0 1 1 31,32,33,34,35,36,37,38,48,59,62,63 0 -133362 cd04162 Arl9_Arfrp2_like 3 putative GEF interaction site 0 0 1 1 30,31,32,33,34,39,49,53,59,61,62,63 2 -133362 cd04162 Arl9_Arfrp2_like 4 putative GAP interaction site 0 0 1 1 7,8,12,16,29,30,31,32,33,34,35,36,58,63 2 -133362 cd04162 Arl9_Arfrp2_like 5 Switch I region 0 0 1 1 17,18,19,20,23,24,25,26,27,28,29,30,31,32,33 0 -133362 cd04162 Arl9_Arfrp2_like 6 Switch II region 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 0 -133362 cd04162 Arl9_Arfrp2_like 7 interswitch region 0 0 1 1 34,35,36,37,38,39,40,43,44,45,46,47,48 0 -133362 cd04162 Arl9_Arfrp2_like 8 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133362 cd04162 Arl9_Arfrp2_like 9 G2 box 0 0 1 1 30 0 -133362 cd04162 Arl9_Arfrp2_like 10 G3 box 0 0 1 1 49,50,51,52 0 -133362 cd04162 Arl9_Arfrp2_like 11 G4 box 0 0 1 1 106,107,108,109 0 -133362 cd04162 Arl9_Arfrp2_like 12 G5 box 0 0 1 1 140,141,142 0 -206726 cd04163 Era 1 GTP/Mg2+ binding site 0 1 1 0 11,12,13,14,15,16,17,31,35,36,37,59,118,119,121,149,150 5 -206726 cd04163 Era 2 Switch I region 0 0 1 1 24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 0 -206726 cd04163 Era 3 Switch II region 0 0 1 1 55,56,57,58,59,60,80,81 0 -206726 cd04163 Era 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206726 cd04163 Era 5 G2 box 0 0 1 1 37 0 -206726 cd04163 Era 6 G3 box 0 0 1 1 56,57,58,59 0 -206726 cd04163 Era 7 G4 box 0 0 1 1 118,119,120,121 0 -206726 cd04163 Era 8 G5 box 0 0 1 1 149,150,151 0 -206727 cd04164 trmE 1 GTP/Mg2+ binding site 0 1 1 0 12,14,15,16,17,116,117,119,139,140,141 5 -206727 cd04164 trmE 2 Switch I region 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 0 -206727 cd04164 trmE 3 Switch II region 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 0 -206727 cd04164 trmE 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206727 cd04164 trmE 5 G2 box 0 0 1 1 37 0 -206727 cd04164 trmE 6 G3 box 0 0 1 1 56,57,58,59 0 -206727 cd04164 trmE 7 G4 box 0 0 1 1 116,117,118,119 0 -206727 cd04164 trmE 8 G5 box 0 0 1 1 139,140,141 0 -206728 cd04165 GTPBP1_like 1 GTP/Mg2+ binding site 0 0 0 1 8,9,10,11,12,13,145,146,148,203,204,205 5 -206728 cd04165 GTPBP1_like 2 Switch I region 0 0 1 1 20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -206728 cd04165 GTPBP1_like 3 Switch II region 0 0 1 1 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,108,109,110,111 0 -206728 cd04165 GTPBP1_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206728 cd04165 GTPBP1_like 5 G2 box 0 0 1 1 46 0 -206728 cd04165 GTPBP1_like 6 G3 box 0 0 1 1 89,90,91,92 0 -206728 cd04165 GTPBP1_like 7 G4 box 0 0 1 1 145,146,147,148 0 -206728 cd04165 GTPBP1_like 8 G5 box 0 0 1 1 203,204,205 0 -206729 cd04166 CysN_ATPS 1 GTP/Mg2+ binding site 0 1 1 0 8,10,11,12,13,56,138,139,141,142,175,176,177 5 -206729 cd04166 CysN_ATPS 2 CysD dimerization site 0 1 1 1 0,66,67,69,71,78,80,96,99 2 -206729 cd04166 CysN_ATPS 3 putative GEF interaction site 0 0 1 1 6,8,12,13,16,19,20,68,69,87,88,111,112,152,156 2 -206729 cd04166 CysN_ATPS 4 Switch I region 0 0 1 1 58,59,60,61,62,63,64,65,66,67,68 0 -206729 cd04166 CysN_ATPS 5 Switch II region 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 0 -206729 cd04166 CysN_ATPS 6 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206729 cd04166 CysN_ATPS 7 G2 box 0 0 1 1 64 0 -206729 cd04166 CysN_ATPS 8 G3 box 0 0 1 1 83,84,85,86 0 -206729 cd04166 CysN_ATPS 9 G4 box 0 0 1 1 138,139,140,141 0 -206729 cd04166 CysN_ATPS 10 G5 box 0 0 1 1 175,176,177 0 -206730 cd04167 Snu114p 1 GTP/Mg2+ binding site 0 0 0 1 9,10,11,12,13,14,130,131,133,183,184,185 5 -206730 cd04167 Snu114p 2 putative GEF interaction site 0 0 1 1 7,9,13,14,17,20,21,56,57,80,81,104,105,148,152 2 -206730 cd04167 Snu114p 3 Switch I region 0 0 1 1 46,47,48,49,50,51,52,53,54,55,56 0 -206730 cd04167 Snu114p 4 Switch II region 0 0 1 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 0 -206730 cd04167 Snu114p 5 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206730 cd04167 Snu114p 6 G2 box 0 0 1 1 52 0 -206730 cd04167 Snu114p 7 G3 box 0 0 1 1 76,77,78,79 0 -206730 cd04167 Snu114p 8 G4 box 0 0 1 1 130,131,132,133 0 -206730 cd04167 Snu114p 9 G5 box 0 0 1 1 183,184,185 0 -206731 cd04168 TetM_like 1 GTP/Mg2+ binding site 0 0 0 1 8,9,10,11,12,13,123,124,126,215,216,217 5 -206731 cd04168 TetM_like 2 putative GEF interaction site 0 0 1 1 6,8,12,13,16,19,20,54,55,73,74,97,98,134,138 2 -206731 cd04168 TetM_like 3 Switch I region 0 0 1 1 43,44,45,46,47,48,49,50,51,52,53,54 0 -206731 cd04168 TetM_like 4 Switch II region 0 0 1 1 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 0 -206731 cd04168 TetM_like 5 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206731 cd04168 TetM_like 6 G2 box 0 0 1 1 50 0 -206731 cd04168 TetM_like 7 G3 box 0 0 1 1 69,70,71,72 0 -206731 cd04168 TetM_like 8 G4 box 0 0 1 1 123,124,125,126 0 -206731 cd04168 TetM_like 9 G5 box 0 0 1 1 215,216,217 0 -206732 cd04169 RF3 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,130,131,133,246,247,248 5 -206732 cd04169 RF3 2 putative GEF interaction site 0 0 1 1 9,11,15,16,19,22,23,61,62,80,81,104,105,141,145 2 -206732 cd04169 RF3 3 Switch I region 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61 0 -206732 cd04169 RF3 4 Switch II region 0 0 1 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 0 -206732 cd04169 RF3 5 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206732 cd04169 RF3 6 G2 box 0 0 1 1 57 0 -206732 cd04169 RF3 7 G3 box 0 0 1 1 76,77,78,79 0 -206732 cd04169 RF3 8 G4 box 0 0 1 1 130,131,132,133 0 -206732 cd04169 RF3 9 G5 box 0 0 1 1 246,247,248 0 -206733 cd04170 EF-G_bact 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,49,50,72,124,126,127,246,248 5 -206733 cd04170 EF-G_bact 2 putative GEF interaction site 0 0 1 1 6,8,12,13,16,19,20,54,55,73,74,97,98,134,138 2 -206733 cd04170 EF-G_bact 3 Switch I region 0 0 1 1 48,49,50,51,52,54 0 -206733 cd04170 EF-G_bact 4 Switch II region 0 0 1 1 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 0 -206733 cd04170 EF-G_bact 5 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206733 cd04170 EF-G_bact 6 G2 box 0 0 1 1 49 0 -206733 cd04170 EF-G_bact 7 G3 box 0 0 1 1 69,70,71,72 0 -206733 cd04170 EF-G_bact 8 G4 box 0 0 1 1 123,124,125,126 0 -206733 cd04170 EF-G_bact 9 G5 box 0 0 1 1 246,247,248 0 -206734 cd04171 SelB 1 GTP/Mg2+ binding site 0 0 0 1 4,5,6,7,8,9,110,111,113,145,146,147 5 -206734 cd04171 SelB 2 putative GEF interaction site 0 0 1 1 2,4,8,9,12,15,16,39,40,59,60,83,84,122,126 2 -206734 cd04171 SelB 3 Switch I region 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 0 -206734 cd04171 SelB 4 Switch II region 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 0 -206734 cd04171 SelB 5 G1 box 0 0 1 1 1,2,3,4,5,6,7,8 0 -206734 cd04171 SelB 6 G2 box 0 0 1 1 35 0 -206734 cd04171 SelB 7 G3 box 0 0 1 1 55,56,57,58 0 -206734 cd04171 SelB 8 G4 box 0 0 1 1 110,111,112,113 0 -206734 cd04171 SelB 9 G5 box 0 0 1 1 145,146,147 0 -206735 cd04172 Rnd3_RhoE_Rho8 1 GTP/Mg2+ binding site 0 1 1 1 14,15,16,17,18,19,58,59,61,117,119,160,161 5 -206735 cd04172 Rnd3_RhoE_Rho8 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 37,38,62,68 2 -206735 cd04172 Rnd3_RhoE_Rho8 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 6,36,37,39,40,42,44,53,57,58,60,61,62,68,71 2 -206735 cd04172 Rnd3_RhoE_Rho8 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 37,60,68,70 0 -206735 cd04172 Rnd3_RhoE_Rho8 5 putative effector interaction site 0 0 1 1 38,39,68,71 0 -206735 cd04172 Rnd3_RhoE_Rho8 6 Switch I region 0 0 1 1 35,36,37,38,39,40,41 0 -206735 cd04172 Rnd3_RhoE_Rho8 7 Switch II region 0 0 1 1 61,62,68,69,70,71,76,77,78 0 -206735 cd04172 Rnd3_RhoE_Rho8 8 G1 box 0 0 1 1 11,12,13,14,15,16,17,18 0 -206735 cd04172 Rnd3_RhoE_Rho8 9 G2 box 0 0 1 1 36 0 -206735 cd04172 Rnd3_RhoE_Rho8 10 G3 box 0 0 1 1 58,59,60,61 0 -206735 cd04172 Rnd3_RhoE_Rho8 11 G4 box 0 0 1 1 116,117,118,119 0 -206735 cd04172 Rnd3_RhoE_Rho8 12 G5 box 0 0 1 1 159,160,161 0 -206736 cd04173 Rnd2_Rho7 1 GTP/Mg2+ binding site 0 0 1 1 10,11,12,13,14,15,54,55,57,113,115,156,157 5 -206736 cd04173 Rnd2_Rho7 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 33,34,58,64 2 -206736 cd04173 Rnd2_Rho7 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 2,32,33,35,36,38,40,49,53,54,56,57,58,64,67 2 -206736 cd04173 Rnd2_Rho7 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 33,56,64,66 0 -206736 cd04173 Rnd2_Rho7 5 putative effector interaction site 0 0 1 1 34,35,64,67 0 -206736 cd04173 Rnd2_Rho7 6 putative lipid modification site 0 0 0 1 217,218,219,220 6 -206736 cd04173 Rnd2_Rho7 7 Switch I region 0 0 1 1 31,32,33,34,35,36,37 0 -206736 cd04173 Rnd2_Rho7 8 Switch II region 0 0 1 1 57,58,64,65,66,67,72,73,74 0 -206736 cd04173 Rnd2_Rho7 9 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206736 cd04173 Rnd2_Rho7 10 G2 box 0 0 1 1 32 0 -206736 cd04173 Rnd2_Rho7 11 G3 box 0 0 1 1 54,55,56,57 0 -206736 cd04173 Rnd2_Rho7 12 G4 box 0 0 1 1 112,113,114,115 0 -206736 cd04173 Rnd2_Rho7 13 G5 box 0 0 1 1 155,156,157 0 -206737 cd04174 Rnd1_Rho6 1 GTP/Mg2+ binding site 0 0 1 1 22,23,24,25,26,27,66,67,69,125,127,168,169 5 -206737 cd04174 Rnd1_Rho6 2 putative GAP (GTPase-activating protein) interaction site 0 0 1 1 45,46,70,76 2 -206737 cd04174 Rnd1_Rho6 3 putative GEF (guanine nucleotide exchange factor) interaction site 0 0 1 1 14,44,45,47,48,50,52,61,65,66,68,69,70,76,79 2 -206737 cd04174 Rnd1_Rho6 4 putative GDI (guanine nucleotide dissociation inhibitor) interaction 0 0 1 1 45,68,76,78 0 -206737 cd04174 Rnd1_Rho6 5 putative effector interaction site 0 0 1 1 46,47,76,79 0 -206737 cd04174 Rnd1_Rho6 6 Switch I region 0 0 1 1 43,44,45,46,47,48,49 0 -206737 cd04174 Rnd1_Rho6 7 Switch II region 0 0 1 1 69,70,76,77,78,79,84,85,86 0 -206737 cd04174 Rnd1_Rho6 8 G1 box 0 0 1 1 19,20,21,22,23,24,25,26 0 -206737 cd04174 Rnd1_Rho6 9 G2 box 0 0 1 1 44 0 -206737 cd04174 Rnd1_Rho6 10 G3 box 0 0 1 1 66,67,68,69 0 -206737 cd04174 Rnd1_Rho6 11 G4 box 0 0 1 1 124,125,126,127 0 -206737 cd04174 Rnd1_Rho6 12 G5 box 0 0 1 1 167,168,169 0 -133375 cd04175 Rap1 1 GTP/Mg2+ binding site 0 1 1 0 9,10,11,12,13,14,15,25,26,27,29,31,32,57,113,114,116,143,144,145 5 -133375 cd04175 Rap1 2 effector interaction site 0 1 1 0 22,28,30,33,34,35,36,37,38 0 -133375 cd04175 Rap1 3 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,145 2 -133375 cd04175 Rap1 4 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -133375 cd04175 Rap1 5 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -133375 cd04175 Rap1 6 Switch II region 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 0 -133375 cd04175 Rap1 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133375 cd04175 Rap1 8 G2 box 0 0 1 1 32 0 -133375 cd04175 Rap1 9 G3 box 0 0 1 1 54,55,56,57 0 -133375 cd04175 Rap1 10 G4 box 0 0 1 1 113,114,115,116 0 -133375 cd04175 Rap1 11 G5 box 0 0 1 1 143,144,145 0 -133376 cd04176 Rap2 1 GTP/Mg2+ binding site 0 1 1 0 10,11,12,13,14,15,25,26,27,28,113,114,116,143,144 5 -133376 cd04176 Rap2 2 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,145 2 -133376 cd04176 Rap2 3 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -133376 cd04176 Rap2 4 putative effector interaction site 0 0 1 1 22,28,30,33,34,35,36,37,38 0 -133376 cd04176 Rap2 5 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -133376 cd04176 Rap2 6 Switch II region 0 0 1 1 56,57,58,59,60,61,62,65,66,67,68,69,70,73,74 0 -133376 cd04176 Rap2 7 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133376 cd04176 Rap2 8 G2 box 0 0 1 1 32 0 -133376 cd04176 Rap2 9 G3 box 0 0 1 1 54,55,56,57 0 -133376 cd04176 Rap2 10 G4 box 0 0 1 1 113,114,115,116 0 -133376 cd04176 Rap2 11 G5 box 0 0 1 1 143,144,145 0 -133377 cd04177 RSR1 1 GTP/Mg2+ binding site 0 0 1 1 9,10,11,12,13,14,15,54,57,113,114,116,144,145 5 -133377 cd04177 RSR1 2 putative GEF interaction site 0 0 1 1 14,15,29,31,37,38,51,52,54,56,57,146 2 -133377 cd04177 RSR1 3 putative GDI interaction site 0 0 1 1 8,9,56,57 2 -133377 cd04177 RSR1 4 putative effector interaction site 0 0 1 1 22,28,30,33,34,35,36,37,38 0 -133377 cd04177 RSR1 5 putative lipid modification site 0 0 1 1 164,165,166,167 6 -133377 cd04177 RSR1 6 Switch I region 0 0 1 1 30,31,32,33,34,35,36,37 0 -133377 cd04177 RSR1 7 Switch II region 0 0 1 1 56,57,58,59,60,61,62,65,66,67,68,69,70,73,74 0 -133377 cd04177 RSR1 8 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133377 cd04177 RSR1 9 G2 box 0 0 1 1 32 0 -133377 cd04177 RSR1 10 G3 box 0 0 1 1 54,55,56,57 0 -133377 cd04177 RSR1 11 G4 box 0 0 1 1 113,114,115,116 0 -133377 cd04177 RSR1 12 G5 box 0 0 1 1 144,145,146 0 -206753 cd04178 Nucleostemin_like 1 GTP/Mg2+ binding site 0 0 0 1 37,38,40,41,66,67,68,124,125,126,127,128,129,130,169 5 -206753 cd04178 Nucleostemin_like 2 G1 box 0 0 1 1 122,123,124,125,126,127,128,129 0 -206753 cd04178 Nucleostemin_like 3 G2 box 0 0 1 1 150 0 -206753 cd04178 Nucleostemin_like 4 G3 box 0 0 1 1 166,167,168,169 0 -206753 cd04178 Nucleostemin_like 5 G4 box 0 0 1 1 37,38,39,40 0 -206753 cd04178 Nucleostemin_like 6 G5 box 0 0 1 1 66,67,68 0 -206753 cd04178 Nucleostemin_like 7 Switch I region 0 0 1 1 147,148,149,150,151,152,153,154 0 -206753 cd04178 Nucleostemin_like 8 Switch II region 0 0 1 1 168,169,170 0 -133022 cd04179 DPM_DPG-synthase_like 1 Ligand binding site 0 0 1 1 3,5,88 0 -133022 cd04179 DPM_DPG-synthase_like 2 DXD motif 0 0 1 1 86,87,88 0 -133022 cd04179 DPM_DPG-synthase_like 3 Putative Catalytic site 0 0 1 1 35,87,88 0 -133023 cd04180 UGPase_euk_like 1 active site 0 1 1 0 5,6,7,8,19,58,86,110,112,113,141,224,264 0 -133023 cd04180 UGPase_euk_like 2 Substrate Binding Site 0 1 1 0 5,7,8,58,110,112,113,141,142,179,180 0 -133023 cd04180 UGPase_euk_like 3 dimerization interface 0 1 1 0 12,194,195,196,255 0 -133024 cd04181 NTP_transferase 1 active site 0 1 1 1 3,4,5,6,20,21,76,102,104,105,165 0 -133024 cd04181 NTP_transferase 2 Substrate binding site 0 1 1 0 3,4,5,49,102,104 0 -133024 cd04181 NTP_transferase 3 Mg++ binding site 0 1 1 0 104,214,216 0 -133025 cd04182 GT_2_like_f 1 Ligand binding site 0 0 1 1 5,7,99 0 -133025 cd04182 GT_2_like_f 2 metal binding site 0 0 1 1 99,177,179 0 -133026 cd04183 GT2_BcE_like 1 Ligand binding site 0 0 1 1 3,5,106 0 -133027 cd04184 GT2_RfbC_Mx_like 1 Probable Catalytic site 0 0 1 1 38,91,92,175 0 -133027 cd04184 GT2_RfbC_Mx_like 2 metal binding site 0 0 1 1 92,175,177 0 -133028 cd04185 GT_2_like_b 1 Probable Catalytic site 0 0 1 1 33,87,88 0 -133029 cd04186 GT_2_like_c 1 Probable Catalytic site 0 0 1 1 33,82,83 0 -133029 cd04186 GT_2_like_c 2 metal binding site 0 0 1 1 83,139,141 0 -133030 cd04187 DPM1_like_bac 1 Ligand binding site 0 0 1 1 3,5,89 0 -133030 cd04187 DPM1_like_bac 2 DXD motif 0 0 1 1 87,88,89 0 -133030 cd04187 DPM1_like_bac 3 Putative Catalytic site 0 0 1 1 36,88,89 0 -133031 cd04188 DPG_synthase 1 Ligand binding site 0 0 1 1 3,5,91 0 -133031 cd04188 DPG_synthase 2 Ligand binding site 0 0 1 1 3,5,91 0 -133031 cd04188 DPG_synthase 3 Ligand binding site 0 0 1 1 3,5,91 0 -133031 cd04188 DPG_synthase 4 DXD motif 0 0 1 1 89,90,91 0 -133031 cd04188 DPG_synthase 5 Putative Catalytic site 0 0 1 1 37,90,91 0 -133032 cd04189 G1P_TT_long 1 substrate binding site 0 0 1 1 5,7,8,80,83,84,106,141,155,156,194 0 -133032 cd04189 G1P_TT_long 2 Oligomer interface 0 0 0 1 110,132,133,134,135,140 0 -133032 cd04189 G1P_TT_long 3 metal binding site 0 0 1 1 106,218,220 0 -133033 cd04190 Chitin_synth_C 1 Ligand binding site 0 0 1 1 3,5,82 0 -133033 cd04190 Chitin_synth_C 2 DXD motif 0 0 1 1 80,81,82 0 -133034 cd04191 Glucan_BSP_ModH 1 Ligand binding site 0 0 1 1 5,7,104 0 -133034 cd04191 Glucan_BSP_ModH 2 DXD motif 0 0 1 1 102,103,104 0 -133036 cd04193 UDPGlcNAc_PPase 1 substrate binding site 0 1 1 0 20,22,23,77,108,132,134,135,163,164,201,202,215,216,239,295,319 0 -133036 cd04193 UDPGlcNAc_PPase 2 dimerization interface 0 1 1 0 27,197,215,216,217,285,310 0 -133037 cd04194 GT8_A4GalT_like 1 Ligand binding site 0 1 1 1 5,6,7,9,10,82,85,102,103,104,129,152,153,154,187,188,210,237,239,240,243 0 -133037 cd04194 GT8_A4GalT_like 2 metal binding site 0 1 0 0 102,104,237 0 -133039 cd04196 GT_2_like_d 1 Probable Catalytic site 0 0 1 1 34,87,88 0 -259862 cd04199 CuRO_1_ceruloplasmin_like 1 trinuclear Cu binding site HHHH 0 1 1 94,96,154,156 4 -259863 cd04200 CuRO_2_ceruloplasmin_like 1 Type 1 (T1) Cu binding site HCHX 1 1 1 81,124,129,134 4 -259864 cd04201 CuRO_1_CuNIR_like 1 Type 1 (T1) Cu binding site HCM 1 0 0 56,97,110 4 -259864 cd04201 CuRO_1_CuNIR_like 2 Type II Cu binding site HH 1 1 0 61,96 4 -259864 cd04201 CuRO_1_CuNIR_like 3 trimer interface 0 1 1 0 59,61,62,63,64,65,83,84,85,86,88,89,92,93,94,96,106 2 -259865 cd04202 CuRO_D2_2dMcoN_like 1 trinuclear Cu binding site HHHH 1 1 1 65,67,115,117 4 -259865 cd04202 CuRO_D2_2dMcoN_like 2 trimer interface 0 1 1 0 26,27,63,65,67,68,69,70,76,77,79,88,89,90,91,93,95,96,97,98,99,107,108,109,110,111,112,113,115,117,118,119,120,122 2 -259866 cd04203 Cupredoxin_like_3 1 Type 1 (T1) Cu binding site HCHX 1 0 0 36,70,73,77 4 -259867 cd04204 Pseudoazurin_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 36,78,81,86 4 -259868 cd04205 CuRO_2_LCC_like 1 Domain 3 interface 0 1 1 0 75,77,89,90,92,93,94,95,96,98,99,100,102,106,108,109,110,111,112,113 2 -259868 cd04205 CuRO_2_LCC_like 2 Domain 1 interface 0 1 1 0 0,1,2,3,7,32,35,36,37,38,56,66,68,70,93,94,95,110,112,145,147,148 2 -259869 cd04206 CuRO_1_LCC_like 1 trinuclear Cu binding site HHHH 1 1 1 56,58,101,103 4 -259869 cd04206 CuRO_1_LCC_like 2 Domain 3 interface 0 1 1 1 56,58,59,61,94,101,103,105,108 2 -259869 cd04206 CuRO_1_LCC_like 3 Domain 2 interface 0 1 1 0 28,31,58,59,94,95,97,98,99,109,110,113,115,117 2 -259870 cd04207 CuRO_3_LCC_like 1 Type 1 (T1) Cu binding site HCHX 1 1 1 58,116,121,126 4 -259870 cd04207 CuRO_3_LCC_like 2 trinuclear Cu binding site HHHH 1 1 1 61,63,115,117 4 -259870 cd04207 CuRO_3_LCC_like 3 Domain 1 interface 0 1 1 1 61,63,64,88,91,110,111,112,113,115,117,119,120,127,129 2 -259870 cd04207 CuRO_3_LCC_like 4 Domain 2 interface 0 1 1 0 19,57,59,88,89,90,91,93,95,115,116,117,119,120,121 2 -259871 cd04208 CuRO_2_CuNIR 1 Cu binding site 0 1 1 0 126 4 -259871 cd04208 CuRO_2_CuNIR 2 trimer interface 0 1 1 0 30,31,68,73,75,77,78,79,80,82,95,96,97,98,99,100,102,104,105,106,121,126,127,128,129,130,133 2 -259872 cd04210 Cupredoxin_like_1 1 putative Type 1 (T1) Cu binding site HCHM 0 1 1 40,94,99,104 4 -259873 cd04211 Cupredoxin_like_2 1 putative Type 1 (T1) Cu binding site HCHM 0 1 1 38,93,98,103 4 -259875 cd04213 CuRO_CcO_Caa3_II 1 CuA binuclear center HCCHM 1 1 1 49,84,88,92,95 4 -259875 cd04213 CuRO_CcO_Caa3_II 2 oligomer interface 0 1 1 0 46,47,48,52,54,57,58,59,60,61,63,64,65,66,68,81,83,84,85,86,87,88,89,90,92,93,94,96 2 -259877 cd04215 Nitrosocyanin 1 Cu binding site ECHH 1 1 0 56,91,94,99 4 -259877 cd04215 Nitrosocyanin 2 trimer interface 0 1 1 0 0,7,9,16,17,19,21,22,23,24,25,26,27,28,32,33,34,35,36,37,85,86,88,95,96,97,101,103,105 2 -259878 cd04216 Phytocyanin 1 Type 1 (T1) Cu binding site HCHX 1 1 1 40,81,86,91 4 -259880 cd04218 Pseudoazurin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 38,76,79,84 4 -259881 cd04219 Plastocyanin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 36,81,84,89 4 -259882 cd04220 Halocyanin 1 Type 1 (T1) Cu binding site HCHM 0 1 1 37,76,79,84 4 -259883 cd04221 MauL 1 putative Type 1 (T1) Cu binding site HCHX 0 1 1 33,70,73,76 4 -259884 cd04222 CuRO_1_ceruloplasmin 1 trinuclear Cu binding site HHHH 1 1 1 100,102,160,162 4 -259884 cd04222 CuRO_1_ceruloplasmin 2 Domain 6 interface 0 1 1 1 100,102,103,106,108,111,115,117,144,145,146,148,151,157,160,162,164,166 2 -259884 cd04222 CuRO_1_ceruloplasmin 3 Domain 2 interface 0 1 1 0 0,2,8,10,11,13,14,27,28,31,32,34,35,36,38,39,40,41,42,43,46,47,48,49,50,68,69,70,71,72,73,78,95,97,150,153,154,155,156,157,158,167,168,169,170,171,174,176 2 -259885 cd04223 N2OR_C 1 CuA binuclear site HCCHM 1 1 0 40,75,79,83,86 4 -259885 cd04223 N2OR_C 2 dimer interface 0 1 1 0 36,37,39,45,46,47,48,49,50,52,63,64,66,68,69,70,71,72,74,76,77,78,80,81,82,84,85,87,89,91,92,93 2 -259886 cd04224 CuRO_3_ceruloplasmin 1 Domain 4 interface 0 1 1 0 13,14,16,17,19,21,22,39,40,42,43,44,45,46,47,50,51,52,53,54,75,76,77,78,79,80,83,102,109,158,159,160,162,164,170,171,172,173,174,175,178,180,182,194,195,196 2 -259886 cd04224 CuRO_3_ceruloplasmin 2 Domain 2 interface 0 1 1 0 107,109,110,112,113,115,147,148,149,150,152,155,159,161,164,169,170,174 2 -259887 cd04225 CuRO_5_ceruloplasmin 1 Domain 4 interface 0 1 1 0 105,106,108,109,131,132,133,134,135,136,137,138,139,145,148,153,154,158 2 -259887 cd04225 CuRO_5_ceruloplasmin 2 Domain 6 interface 0 1 1 0 8,10,11,12,13,14,15,16,19,20,33,34,35,36,38,40,41,42,43,44,45,46,47,48,49,50,71,72,73,74,75,76,79,81,96,98,100,105,138,139,140,142,144,146,152,155,156,157,158,159,162,163,164,166 2 -259888 cd04226 CuRO_1_FV_like 1 metal binding site 0 1 1 0 89,104,107,108 4 -259888 cd04226 CuRO_1_FV_like 2 heterodimer interface 0 1 1 0 81,83,85,86,87,88,89,90,92,96,98,99,101,125,127,129,131,132,136,138,141,143,146,147 2 -259888 cd04226 CuRO_1_FV_like 3 Domain 2 interface 0 1 1 0 11,12,29,30,31,49,50,51,52,53,54,75,76,83,131,132,133,135,136,137,138,139,147,148,150,151,155,157,159 2 -259889 cd04227 CuRO_3_FVIII_like 1 Domain 4 interface 0 1 1 0 10,12,13,15,16,18,28,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,64,65,66,67,68,69,91,93,146,148,149,150,151,152,161,162,164,165,172 2 -259890 cd04228 CuRO_5_FVIII_like 1 homodimer interface 0 1 1 0 95,97,100,101,103,110,111,129,135,136,140,142,150,151 2 -259890 cd04228 CuRO_5_FVIII_like 2 Domain 6 interface 0 1 1 1 9,12,13,14,16,37,38,39,40,41,42,63,64,65,66,67,68,71,73,88,89,90,92,135,136,137,138,139,140,141,142,143,152,155,156,159,163,165 2 -259891 cd04229 CuRO_1_Ceruloplasmin_like_1 1 trinuclear Cu binding site HHHH 0 1 1 99,101,151,153 4 -259892 cd04230 Sulfocyanin 1 putative Type 1 (T1) Cu binding site HCHM 0 1 1 57,118,123,128 4 -259893 cd04231 Rusticyanin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 55,111,116,121 4 -259894 cd04232 CuRO_1_CueO_FtsP 1 trinuclear Cu binding site HHHH 1 1 1 56,58,96,98 4 -259894 cd04232 CuRO_1_CueO_FtsP 2 Domain 3 interface 0 1 1 1 56,58,59,61,62,63,64,65,67,70,71,94,96,98,100,101,102,103,104,107 2 -259894 cd04232 CuRO_1_CueO_FtsP 3 Domain 2 interface 0 1 1 0 17,18,19,20,21,28,29,32,58,59,90,91,92,93,94,104,105,107,108,109,114,116 2 -259895 cd04233 Auracyanin 1 Type 1 (T1) Cu binding site HCHM 1 1 0 39,105,110,114 4 -239767 cd04234 AAK_AK 1 putative catalytic residues 0 0 1 1 4,43,57,138,183,196 1 -239767 cd04234 AAK_AK 2 aspartate binding site 0 1 1 1 37,38,43,57,134,135,136,137 5 -239767 cd04234 AAK_AK 3 putative nucleotide binding site 0 1 1 1 4,6,7,157,158,163,166,168,193,194 5 -239768 cd04235 AAK_CK 1 putative substrate binding site 0 1 1 1 4,6,7,48,49,50,125,208,209,210 5 -239768 cd04235 AAK_CK 2 nucleotide binding site 0 1 1 1 7,229,230,235,238,263,267,268,271 5 -239768 cd04235 AAK_CK 3 homodimer interface 0 1 0 1 58,70,73,74,77,81,82,85,88,89,93,106,107,108,110,169,172,200,202 2 -239768 cd04235 AAK_CK 4 nucleotide binding site 0 1 1 1 7,229,230,235,238,263,267,268,271 5 -239769 cd04236 AAK_NAGS-Urea 1 putative nucleotide binding site 0 0 1 1 40,42,43,44,194,195,198,199 5 -239769 cd04236 AAK_NAGS-Urea 2 putative substrate binding site 0 0 1 1 40,42,43,74,75,76,173,174,175 5 -239770 cd04237 AAK_NAGS-ABP 1 putative nucleotide binding site 0 0 1 1 23,25,26,27,202,203,206,207 5 -239770 cd04237 AAK_NAGS-ABP 2 putative substrate binding site 0 0 1 1 23,25,26,56,57,58,180,181,182 5 -239770 cd04237 AAK_NAGS-ABP 3 putative feedback inhibition sensing region 0 0 1 1 4,5,6,7,8,9,10,11,12,13 0 -239771 cd04238 AAK_NAGK-like 1 N-acetyl-L-glutamate binding site 0 1 1 1 38,39,60,155,156,158 5 -239771 cd04238 AAK_NAGK-like 2 nucleotide binding site 0 1 1 1 3,5,6,38,39,178,184,207,209,215 5 -239772 cd04239 AAK_UMPK-like 1 uridine monophosphate binding site 0 1 1 1 45,65,68,129,131,132,133,136 5 -239772 cd04239 AAK_UMPK-like 2 nucleotide binding site 0 1 1 1 4,7,8,44,45,46,133,134,153,154,157,159,161,162 5 -239773 cd04240 AAK_UC 1 putative nucleotide binding site 0 0 1 1 2,4,5,6,136,137,140,141 5 -239773 cd04240 AAK_UC 2 putative substrate binding site 0 0 1 1 2,4,5,31,32,33,114,115,116 5 -239774 cd04241 AAK_FomA-like 1 putative nucleotide binding site 0 0 1 1 4,6,7,8,169,170,173,174 5 -239774 cd04241 AAK_FomA-like 2 putative substrate binding site 0 0 1 1 4,6,7,44,45,46,147,148,149 5 239775 cd04242 AAK_G5K_ProB 1 nucleotide binding site 0 1 0 1 8,163,164,165,168,169,205,207,211 5 239775 cd04242 AAK_G5K_ProB 2 putative phosphate binding site 0 0 1 1 45,46,47,48,49,50,51,52 4 239775 cd04242 AAK_G5K_ProB 3 putative allosteric binding site 0 0 1 1 46,131,142 0 239775 cd04242 AAK_G5K_ProB 4 homotetrameric interface 0 1 0 1 33,34,37,67,71,94,96,110,111,117,120,130,132,133 2 -239776 cd04243 AAK_AK-HSDH-like 1 putative catalytic residues 0 0 1 1 4,42,123,204,249,262 1 -239776 cd04243 AAK_AK-HSDH-like 2 aspartate binding site 0 1 1 1 36,42,123,200,201,202,203 5 -239776 cd04243 AAK_AK-HSDH-like 3 nucleotide binding site 0 1 1 1 4,6,7,223,224,229,232,234,259,260 5 -239777 cd04244 AAK_AK-LysC-like 1 putative catalytic residues 0 0 1 1 4,43,125,209,254,267 1 -239777 cd04244 AAK_AK-LysC-like 2 aspartate binding site 0 1 1 1 37,38,43,125 5 -239777 cd04244 AAK_AK-LysC-like 3 dimer interface 0 1 1 1 205,257,261,267,272 2 -239777 cd04244 AAK_AK-LysC-like 4 putative nucleotide binding site 0 0 1 1 4,6,7,8,229,230,233,234 5 -239778 cd04245 AAK_AKiii-YclM-BS 1 putative catalytic residues 0 0 1 1 4,48,119,199,244,257 1 -239778 cd04245 AAK_AKiii-YclM-BS 2 putative aspartate binding site 0 0 1 1 35,36,48,119 5 -239778 cd04245 AAK_AKiii-YclM-BS 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,219,220,223,224 5 -239779 cd04246 AAK_AK-DapG-like 1 putative catalytic residues 0 0 1 1 4,44,71,151,196,209 1 -239779 cd04246 AAK_AK-DapG-like 2 putative aspartate binding site 0 0 1 1 38,39,44,71 5 -239779 cd04246 AAK_AK-DapG-like 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,171,172,175,176 5 -239780 cd04247 AAK_AK-Hom3 1 putative catalytic residues 0 0 1 1 5,260,273 1 -239780 cd04247 AAK_AK-Hom3 2 putative aspartate binding site 0 0 1 1 37,38,43,132 5 -239780 cd04247 AAK_AK-Hom3 3 putative nucleotide binding site 0 0 1 1 5,7,8,9,235,236,239,240 5 -239781 cd04248 AAK_AK-Ectoine 1 putative catalytic residues 0 0 1 1 4,42,140,214,260,273 1 -239781 cd04248 AAK_AK-Ectoine 2 putative aspartate binding site 0 0 1 1 36,37,42,140 5 -239781 cd04248 AAK_AK-Ectoine 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,234,235,237,238 5 -239782 cd04249 AAK_NAGK-NC 1 N-acetyl-L-glutamate binding site 0 1 1 1 39,40,61,153,154,156 5 -239782 cd04249 AAK_NAGK-NC 2 nucleotide binding site 0 1 1 1 3,5,6,39,40,175,181,204,206,212 5 -239783 cd04250 AAK_NAGK-C 1 N-acetyl-L-glutamate binding site 0 1 1 1 53,54,75,76,175,177,178 5 -239783 cd04250 AAK_NAGK-C 2 nucleotide binding site 0 1 1 1 19,22,23,177,198,199,200,204,230,232,234,235,238 5 -239783 cd04250 AAK_NAGK-C 3 homohexameric interface 0 1 1 1 1,2,3,5,8,9,36,40,44,64,65,84,87,88,93,96,100,107,109,110,111,113,115,116,117,118,149,158,262,265,266,270 2 -239783 cd04250 AAK_NAGK-C 4 feedback inhibition sensing region 0 0 0 1 0,1,2,3,4,5,6,7,8,9 0 -239784 cd04251 AAK_NAGK-UC 1 putative N-acetyl-L-glutamate binding site 0 0 1 1 31,32,33,58,59,162,163,164,165 5 -239784 cd04251 AAK_NAGK-UC 2 putative nucleotide binding site 0 0 1 1 3,6,7,32,164,185,186,187,191,211,213,215,216,219 5 -239785 cd04252 AAK_NAGK-fArgBP 1 putative N-acetyl-L-glutamate binding site 0 0 1 1 35,36,37,57,58,147,148,149,150 5 -239785 cd04252 AAK_NAGK-fArgBP 2 putative nucleotide binding site 0 0 1 1 3,6,7,36,149,170,171,172,176,200,202,204,205,208 5 -239786 cd04253 AAK_UMPK-PyrH-Pf 1 uridine monophosphate binding site 0 1 1 1 41,63,66,109,110,112,114,115,116,119,174,175 5 -239786 cd04253 AAK_UMPK-PyrH-Pf 2 nucleotide binding site 0 1 1 1 4,7,8,40,41,42,116,117,136,137,140,142,144,145,177,178,179 5 -239786 cd04253 AAK_UMPK-PyrH-Pf 3 homodimeric interface 0 1 0 1 20,44,47,48,51,55,61,68,73,75,86 2 -239787 cd04254 AAK_UMPK-PyrH-Ec 1 uridine monophosphate binding site 0 1 1 1 46,47,48,52,53,67,70,71,128,130,131,133,134,135 5 -239787 cd04254 AAK_UMPK-PyrH-Ec 2 putative nucleotide binding site 0 0 1 1 5,8,9,46,47,48,135,136,155,156,159,161,163,164 5 -239787 cd04254 AAK_UMPK-PyrH-Ec 3 homohexameric interface 0 1 0 1 59,60,68,69,76,83,93,107,111,114,120,128,130,131,132,141,144,145,201 2 -239788 cd04255 AAK_UMPK-MosAB 1 putative nucleotide binding site 0 0 1 1 35,37,38,39,183,184,187,188 5 -239788 cd04255 AAK_UMPK-MosAB 2 putative substrate binding site 0 0 1 1 35,37,38,70,71,72,161,162,163 5 -239789 cd04256 AAK_P5CS_ProBA 1 putative nucleotide binding site 0 0 0 1 17,199,200,201,204,205,238,240,244 5 -239789 cd04256 AAK_P5CS_ProBA 2 putative phosphate binding site 0 0 1 1 55,56,57,58,59,60,61,62 4 -239789 cd04256 AAK_P5CS_ProBA 3 putative allosteric binding site 0 0 1 1 56,158,178 0 -239790 cd04257 AAK_AK-HSDH 1 putative catalytic residues 0 0 1 1 4,43,124,205,250,263 1 -239790 cd04257 AAK_AK-HSDH 2 putative aspartate binding site 0 0 1 1 37,38,43,124 5 -239790 cd04257 AAK_AK-HSDH 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,225,226,229,230 5 -239791 cd04258 AAK_AKiii-LysC-EC 1 putative catalytic residues 0 0 1 1 4,203 1 -239791 cd04258 AAK_AKiii-LysC-EC 2 aspartate binding site 0 1 1 1 35,41,120,199,200,201,202 5 -239791 cd04258 AAK_AKiii-LysC-EC 3 nucleotide binding site 0 1 1 1 4,6,7,222,223,228,231,233,258,259 5 -239792 cd04259 AAK_AK-DapDC 1 putative catalytic residues 0 0 1 1 4,44,118,206,251,264 1 -239792 cd04259 AAK_AK-DapDC 2 putative aspartate binding site 0 0 1 1 38,39,44,118 5 -239792 cd04259 AAK_AK-DapDC 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,226,227,230,231 5 -239793 cd04260 AAK_AKi-DapG-BS 1 putative catalytic residues 0 0 1 1 4,49,76,156,201,214 1 -239793 cd04260 AAK_AKi-DapG-BS 2 putative aspartate binding site 0 0 1 1 38,39,49,76 5 -239793 cd04260 AAK_AKi-DapG-BS 3 putative nucleotide binding site 0 0 1 1 4,6,7,8,176,177,180,181 5 -239794 cd04261 AAK_AKii-LysC-BS 1 putative catalytic residues 0 0 1 1 4,44,71 1 -239794 cd04261 AAK_AKii-LysC-BS 2 putative Mg ion binding site 0 0 1 1 38,44,151,179 4 -239794 cd04261 AAK_AKii-LysC-BS 3 putative aspartate binding site 0 0 1 1 38,39,44,71 5 -239794 cd04261 AAK_AKii-LysC-BS 4 putative nucleotide binding site 0 0 1 1 4,6,7,8,171,172,175,176 5 -239795 cd04267 ZnMc_ADAM_like 1 active site 0 1 1 1 138,139,142,148 1 -239796 cd04268 ZnMc_MMP_like 1 active site 0 0 1 1 99,100,103,109 1 -239797 cd04269 ZnMc_adamalysin_II_like 1 active site 0 1 1 1 136,137,140,146 1 -239798 cd04270 ZnMc_TACE_like 1 active site 0 1 1 1 172,173,176,182 1 -239799 cd04271 ZnMc_ADAM_fungal 1 active site 0 0 1 1 150,151,154,160 1 -239800 cd04272 ZnMc_salivary_gland_MPs 1 active site 0 0 1 1 150,151,154,156,157,158,160 1 -239801 cd04273 ZnMc_ADAMTS_like 1 active site 0 0 1 1 145,146,149,155 1 -239802 cd04275 ZnMc_pappalysin_like 1 active site 0 1 1 1 142,143,146,152 1 -239803 cd04276 ZnMc_MMP_like_2 1 active site 0 0 1 1 121,122,125,131 1 -239804 cd04277 ZnMc_serralysin_like 1 active site 0 1 1 1 118,119,122,128 1 -239805 cd04278 ZnMc_MMP 1 active site 0 1 1 1 112,113,116,122 1 -239805 cd04278 ZnMc_MMP 2 TIMP-binding surface 0 1 1 1 53,65,72,73,74,75,76,77,78,86,112,113,122,132,133,134 0 -239806 cd04279 ZnMc_MMP_like_1 1 active site 0 0 1 1 109,110,113,119 1 -239807 cd04280 ZnMc_astacin_like 1 active site 0 1 1 1 79,80,83,89,138 1 -239808 cd04281 ZnMc_BMP1_TLD 1 active site 0 0 1 1 92,93,96,102 1 -239809 cd04282 ZnMc_meprin 1 active site 0 0 1 1 125,126,129,135 1 -239809 cd04282 ZnMc_meprin 2 putative substrate specificity determinants 0 0 1 1 119,157,186 0 -239810 cd04283 ZnMc_hatching_enzyme 1 active site 0 0 1 1 82,83,86,92 1 -340852 cd04299 GT35_Glycogen_Phosphorylase-like 1 putative active site pocket 0 0 1 1 64,66,104,105,106,214,215,217,225,254,256,291,292,296,313,314,391,398,474,475,477,479,480,481,507,512,515,553,554,576,578,579,580,581,584 1 -340852 cd04299 GT35_Glycogen_Phosphorylase-like 2 putative homodimer interface 0 0 1 0 3,5,7,8,10,11,12,36,37,38,45,217 2 -340853 cd04300 GT35_Glycogen_Phosphorylase 1 active site pocket 0 1 1 1 60,62,106,107,108,256,259,261,268,307,309,345,346,350,450,457,534,535,537,538,539,540,574,579,581,615,616,638,640,641,642,643,646 1 -340853 cd04300 GT35_Glycogen_Phosphorylase 2 homodimer interface 0 1 1 0 0,2,4,5,7,8,9,32,33,34,165,258,261 2 -173926 cd04301 NAT_SF 1 Coenzyme A binding pocket 0 1 1 0 30,31,32,42,43 5 -319798 cd04302 HAD_5NT 1 active site 0 0 1 1 4,5,6,7,8,103,104,138,160,161,164,165 1 -319798 cd04302 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319798 cd04302 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 103 0 -319798 cd04302 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 138 0 -319798 cd04302 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319799 cd04303 HAD_PGPase 1 active site 0 0 1 1 4,5,6,7,8,101,102,132,154,155,158,159 1 -319799 cd04303 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319799 cd04303 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 101 0 -319799 cd04303 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 132 0 -319799 cd04303 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 154,155,159 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 1 active site 0 1 1 1 4,5,6,7,8,30,31,63,87,88,92,93 1 -319800 cd04305 HAD_Neu5Ac-Pase_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 3 HAD signature motif II [ST] 0 1 1 30 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 4 HAD signature motif III [KR] 0 1 1 63 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 87,88,93 0 -319801 cd04309 HAD_PSP_eu 1 active site 0 1 1 1 5,6,7,8,9,14,94,95,143,163,164,167,168 1 -319801 cd04309 HAD_PSP_eu 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319801 cd04309 HAD_PSP_eu 3 HAD signature motif II [ST] 0 1 1 94 0 -319801 cd04309 HAD_PSP_eu 4 HAD signature motif III [KR] 0 1 1 143 0 -319801 cd04309 HAD_PSP_eu 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -239811 cd04316 ND_PkAspRS_like_N 1 dimer interface 0 1 1 0 1,19,37,64,66,94,96,97,99,101 2 -239811 cd04316 ND_PkAspRS_like_N 2 putative anticodon binding site 0 0 1 1 22,24,25,31,42,44,62,76,84 0 -239812 cd04317 EcAspRS_like_N 1 anticodon binding site 0 1 1 1 24,26,27,28,33,44,62,76,82,91,107 0 -239812 cd04317 EcAspRS_like_N 2 dimer interface 0 1 1 0 0,3,21,39,101,103,104 2 -239813 cd04318 EcAsnRS_like_N 1 putative dimer interface 0 0 1 1 6,24,52,80 2 -239813 cd04318 EcAsnRS_like_N 2 putative anticodon binding site 0 0 1 1 9,11,12,18,31,33,48,62,70 0 -239814 cd04319 PhAsnRS_like_N 1 putative dimer interface 0 0 1 1 6,24,52,80 2 -239814 cd04319 PhAsnRS_like_N 2 putative anticodon binding site 0 0 1 1 9,11,12,18,29,31,48,62,70 0 -239815 cd04320 AspRS_cyto_N 1 anticodon binding site 0 1 1 0 11,12,13,17,19,30,32,68,69,79,96 0 -239815 cd04320 AspRS_cyto_N 2 dimer interface 0 1 1 0 4,6,25,56,89,91,92 2 -239816 cd04321 ScAspRS_mt_like_N 1 putative dimer interface 0 0 1 1 6,25,52,84 2 -239816 cd04321 ScAspRS_mt_like_N 2 putative anticodon binding site 0 0 1 1 9,11,12,19,31,33,48,62,74 0 -239817 cd04322 LysRS_N 1 dimer interface 0 1 1 0 5,6,23,24,54,80,83,84,85 2 -239817 cd04322 LysRS_N 2 putative anticodon binding site 0 0 1 1 9,11,12,18,29,31,50,64,70 0 -239818 cd04323 AsnRS_cyto_like_N 1 putative dimer interface 0 0 1 1 6,24,51,82 2 -239818 cd04323 AsnRS_cyto_like_N 2 putative anticodon binding site 0 0 1 1 9,11,12,18,29,31,47,61,72 0 -239819 cd04327 ZnMc_MMP_like_3 1 active site 0 0 1 1 97,98,101,107,165 1 -239820 cd04328 RNAP_I_Rpa43_N 1 putative Rpa14 interaction site 0 0 1 1 8,9,10,11,12,14,41,47,51,52,53,80,85,87 2 -239821 cd04329 RNAP_II_Rpb7_N 1 Rpb4 interaction site 0 1 1 0 0,1,3,6,33,34,40,44,46,69,71,73,76,78,79 2 -239821 cd04329 RNAP_II_Rpb7_N 2 Rpb1 interaction site 0 1 1 0 16,17,18,20,21,55,56,57,64 2 -239821 cd04329 RNAP_II_Rpb7_N 3 Rpb6 interaction site 0 1 1 0 14,16,54,61,62 2 -239822 cd04330 RNAP_III_Rpc25_N 1 Rpc17 interaction site 0 1 1 0 0,1,2,3,4,6,26,29,30,44,45,46,47,71,76,78 2 -239823 cd04331 RNAP_E_N 1 RpoF interaction site 0 1 1 0 0,1,2,3,4,6,8,32,33,40,44,45,78 2 -239824 cd04332 YbaK_like 1 putative deacylase active site 0 0 1 1 29,82,83,110 1 -239825 cd04333 ProX_deacylase 1 putative deacylase active site 0 0 1 1 42,93,94,121 1 -239826 cd04334 ProRS-INS 1 putative deacylase active site 0 0 1 1 53,107,108,134 1 -239827 cd04335 PrdX_deacylase 1 putative deacylase active site 0 0 1 1 41,94,95,126 1 -239828 cd04336 YeaK 1 putative deacylase active site 0 0 1 1 41,96,97,125 1 -239831 cd04365 IlGF_relaxin_like 1 receptor binding surface 0 0 1 1 6,10,13 0 -239833 cd04367 IlGF_insulin_like 1 putative receptor binding surface 0 0 1 1 6,9,11,76 0 -239834 cd04368 IlGF 1 IGFBP binding surface 0 1 1 1 2,11,19,20,21,22,23 0 -239834 cd04368 IlGF 2 type 1 IGF- and insulin-receptor binding surface 0 0 1 1 20,22,23,42 0 -239834 cd04368 IlGF 3 type 2 IGF-receptor binding surface 0 0 1 1 47,48,49,53,54 0 -99922 cd04369 Bromodomain 1 acetyllysine binding site 0 1 1 0 26,31,34,73,77,83 0 -239837 cd04372 RhoGAP_chimaerin 1 putative GTPase interaction site 0 0 1 1 38,78,82,151,154,155,179 2 -239837 cd04372 RhoGAP_chimaerin 2 catalytic residue 0 0 1 1 38 1 -239838 cd04373 RhoGAP_p190 1 putative GTPase interaction site 0 0 1 1 37,75,79,148,151,152,175 2 -239838 cd04373 RhoGAP_p190 2 catalytic residue 0 0 1 1 37 1 -239839 cd04374 RhoGAP_Graf 1 putative GTPase interaction site 0 0 1 1 50,93,97,166,169,170,193 2 -239839 cd04374 RhoGAP_Graf 2 catalytic residue 0 0 1 1 50 1 -239840 cd04375 RhoGAP_DLC1 1 putative GTPase interaction site 0 0 1 1 42,79,83,152,155,156,199 2 -239840 cd04375 RhoGAP_DLC1 2 catalytic residue 0 0 1 1 42 1 -239841 cd04376 RhoGAP_ARHGAP6 1 putative GTPase interaction site 0 0 1 1 31,68,72,151,154,155,185 2 -239841 cd04376 RhoGAP_ARHGAP6 2 catalytic residue 0 0 1 1 31 1 -239842 cd04377 RhoGAP_myosin_IX 1 putative GTPase interaction site 0 0 1 1 37,74,78,147,150,151,176 2 -239842 cd04377 RhoGAP_myosin_IX 2 catalytic residue 0 0 1 1 37 1 -239843 cd04378 RhoGAP_GMIP_PARG1 1 putative GTPase interaction site 0 0 1 1 38,75,79,162,165,166,193 2 -239843 cd04378 RhoGAP_GMIP_PARG1 2 catalytic residue 0 0 1 1 38 1 -239844 cd04379 RhoGAP_SYD1 1 putative GTPase interaction site 0 0 1 1 40,80,84,156,159,160,195 2 -239844 cd04379 RhoGAP_SYD1 2 catalytic residue 0 0 1 1 40 1 -239845 cd04380 RhoGAP_OCRL1 1 putative GTPase interaction site 0 0 1 1 72,111,115,180,183,184,210 2 -239845 cd04380 RhoGAP_OCRL1 2 catalytic residue 0 0 1 1 72 1 -239846 cd04381 RhoGap_RalBP1 1 putative GTPase interaction site 0 0 1 1 42,78,82,151,154,155,171 2 -239846 cd04381 RhoGap_RalBP1 2 catalytic residue 0 0 1 1 42 1 -239847 cd04382 RhoGAP_MgcRacGAP 1 putative GTPase interaction site 0 0 1 1 39,76,80,148,151,152,178 2 -239847 cd04382 RhoGAP_MgcRacGAP 2 catalytic residue 0 0 1 1 39 1 -239847 cd04382 RhoGAP_MgcRacGAP 3 activation site 0 0 1 1 41 0 -239848 cd04383 RhoGAP_srGAP 1 putative GTPase interaction site 0 0 1 1 40,79,83,152,155,156,178 2 -239848 cd04383 RhoGAP_srGAP 2 catalytic residue 0 0 1 1 40 1 -239849 cd04384 RhoGAP_CdGAP 1 putative GTPase interaction site 0 0 1 1 39,79,83,152,155,156,185 2 -239849 cd04384 RhoGAP_CdGAP 2 catalytic residue 0 0 1 1 39 1 -239850 cd04385 RhoGAP_ARAP 1 putative GTPase interaction site 0 0 1 1 37,76,80,149,152,153,173 2 -239850 cd04385 RhoGAP_ARAP 2 catalytic residue 0 0 1 1 37 1 -239851 cd04386 RhoGAP_nadrin 1 putative GTPase interaction site 0 0 1 1 42,81,85,154,157,158,184 2 -239851 cd04386 RhoGAP_nadrin 2 catalytic residue 0 0 1 1 42 1 -239852 cd04387 RhoGAP_Bcr 1 putative GTPase interaction site 0 0 1 1 38,77,81,150,153,154,186 2 -239852 cd04387 RhoGAP_Bcr 2 catalytic residue 0 0 1 1 38 1 -239853 cd04388 RhoGAP_p85 1 putative GTPase interaction site 0 0 1 1 37,73,77,149,152,153,173 2 -239853 cd04388 RhoGAP_p85 2 catalytic residue 0 0 1 1 37 1 -239854 cd04389 RhoGAP_KIAA1688 1 putative GTPase interaction site 0 0 1 1 44,80,84,149,152,153,177 2 -239854 cd04389 RhoGAP_KIAA1688 2 catalytic residue 0 0 1 1 44 1 -239855 cd04390 RhoGAP_ARHGAP22_24_25 1 putative GTPase interaction site 0 0 1 1 44,81,85,156,159,160,184 2 -239855 cd04390 RhoGAP_ARHGAP22_24_25 2 catalytic residue 0 0 1 1 44 1 -239856 cd04391 RhoGAP_ARHGAP18 1 putative GTPase interaction site 0 0 1 1 44,83,87,156,159,160,190 2 -239856 cd04391 RhoGAP_ARHGAP18 2 catalytic residue 0 0 1 1 44 1 -239857 cd04392 RhoGAP_ARHGAP19 1 putative GTPase interaction site 0 0 1 1 30,68,72,153,156,157,181 2 -239857 cd04392 RhoGAP_ARHGAP19 2 catalytic residue 0 0 1 1 30 1 -239858 cd04393 RhoGAP_FAM13A1a 1 putative GTPase interaction site 0 0 1 1 42,79,83,153,156,157,179 2 -239858 cd04393 RhoGAP_FAM13A1a 2 catalytic residue 0 0 1 1 42 1 -239859 cd04394 RhoGAP-ARHGAP11A 1 putative GTPase interaction site 0 0 1 1 41,76,80,149,152,153,180 2 -239859 cd04394 RhoGAP-ARHGAP11A 2 catalytic residue 0 0 1 1 41 1 -239860 cd04395 RhoGAP_ARHGAP21 1 putative GTPase interaction site 0 0 1 1 40,80,84,153,156,157,181 2 -239860 cd04395 RhoGAP_ARHGAP21 2 catalytic residue 0 0 1 1 40 1 -239861 cd04396 RhoGAP_fSAC7_BAG7 1 putative GTPase interaction site 0 0 1 1 54,94,98,184,187,188,210 2 -239861 cd04396 RhoGAP_fSAC7_BAG7 2 catalytic residue 0 0 1 1 54 1 -239862 cd04397 RhoGAP_fLRG1 1 putative GTPase interaction site 0 0 1 1 49,87,91,165,168,169,192 2 -239862 cd04397 RhoGAP_fLRG1 2 catalytic residue 0 0 1 1 49 1 -239863 cd04398 RhoGAP_fRGD1 1 putative GTPase interaction site 0 0 1 1 38,80,84,153,156,157,177 2 -239863 cd04398 RhoGAP_fRGD1 2 catalytic residue 0 0 1 1 38 1 -239864 cd04399 RhoGAP_fRGD2 1 putative GTPase interaction site 0 0 1 1 39,85,89,163,166,167,193 2 -239864 cd04399 RhoGAP_fRGD2 2 catalytic residue 0 0 1 1 39 1 -239865 cd04400 RhoGAP_fBEM3 1 putative GTPase interaction site 0 0 1 1 45,85,89,159,162,163,179 2 -239865 cd04400 RhoGAP_fBEM3 2 catalytic residue 0 0 1 1 45 1 -239866 cd04401 RhoGAP_fMSB1 1 putative GTPase interaction site 0 0 1 1 31,77,81,151,154,155,185 2 -239866 cd04401 RhoGAP_fMSB1 2 catalytic residue 0 0 1 1 31 1 -239867 cd04402 RhoGAP_ARHGAP20 1 putative GTPase interaction site 0 0 1 1 37,73,77,146,149,150,173 2 -239867 cd04402 RhoGAP_ARHGAP20 2 catalytic residue 0 0 1 1 37 1 -239868 cd04403 RhoGAP_ARHGAP27_15_12_9 1 putative GTPase interaction site 0 0 1 1 38,77,81,150,153,154,177 2 -239868 cd04403 RhoGAP_ARHGAP27_15_12_9 2 catalytic residue 0 0 1 1 38 1 -239869 cd04404 RhoGAP-p50rhoGAP 1 GTPase interaction site 0 1 1 0 45,82,86,154,157,158,180 0 -239869 cd04404 RhoGAP-p50rhoGAP 2 catalytic residue 0 1 1 1 45 1 -239870 cd04405 RhoGAP_BRCC3-like 1 putative GTPase interaction site 0 0 1 1 60,112,116,188,191,192,213 2 -239870 cd04405 RhoGAP_BRCC3-like 2 catalytic residue 0 0 1 1 60 1 -239871 cd04406 RhoGAP_myosin_IXA 1 putative GTPase interaction site 0 0 1 1 37,74,78,147,150,151,176 2 -239871 cd04406 RhoGAP_myosin_IXA 2 catalytic residue 0 0 1 1 37 1 -239872 cd04407 RhoGAP_myosin_IXB 1 catalytic residue 0 0 1 1 37 1 -239872 cd04407 RhoGAP_myosin_IXB 2 putative GTPase interaction site 0 0 1 1 37,74,78,147,150,151,176 2 -239873 cd04408 RhoGAP_GMIP 1 putative GTPase interaction site 0 0 1 1 38,75,79,160,163,164,190 2 -239873 cd04408 RhoGAP_GMIP 2 catalytic residue 0 0 1 1 38 1 -239874 cd04409 RhoGAP_PARG1 1 putative GTPase interaction site 0 0 1 1 38,75,79,170,173,174,201 2 -239874 cd04409 RhoGAP_PARG1 2 catalytic residue 0 0 1 1 38 1 -319870 cd04410 DMSOR_beta-like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,30,32,46,49,50,51,52,57,61,62,65,66,74,84,85,86,87,91,92,93,95,96,105,107,108,109,110,111,123,127,132 4 -239875 cd04412 NDPk7B 1 active site 0 0 1 1 7,47,56,84,90,104,114,117,119,120,128 1 -239875 cd04412 NDPk7B 2 multimer interface 0 0 1 1 11,16,17,18,21,24,33,34,35 2 -239876 cd04413 NDPk_I 1 active site 0 1 1 1 7,47,55,83,89,100,110,113,115,116,124 1 -239876 cd04413 NDPk_I 2 multimer interface 0 1 1 1 11,16,17,18,21,24,33,34,35 2 -239877 cd04414 NDPk6 1 active site 0 0 1 1 7,48,56,84,90,104,114,117,119,120,128 1 -239877 cd04414 NDPk6 2 multimer interface 0 0 1 1 11,17,18,19,22,25,34,35,36 2 -239878 cd04415 NDPk7A 1 active site 0 0 1 1 7,45,53,81,87,101,111,114,116,117,125 1 -239878 cd04415 NDPk7A 2 multimer interface 0 0 1 1 11,14,15,16,19,22,31,32,33 2 -239879 cd04416 NDPk_TX 1 active site 0 0 1 1 7,46,54,82,88,102,112,115,117,118,126 1 -239879 cd04416 NDPk_TX 2 multimer interface 0 0 1 1 11,15,16,17,20,23,32,33,34 2 -239880 cd04418 NDPk5 1 active site 0 0 1 1 7,45,53,81,87,101,111,114,116,117,125 1 -239880 cd04418 NDPk5 2 multimer interface 0 0 1 1 11,14,15,16,19,22,31,32,33 2 -341228 cd04433 AFD_class_I 1 active site 0 1 1 0 7,47,48,94,96,97,100,121,122,143,144,145,146,147,148,227,239,242,250,251,252,253,314 1 -341228 cd04433 AFD_class_I 2 AMP binding site 0 1 1 0 7,121,122,143,144,145,146,147,148,227,239,242,253,333 5 -341228 cd04433 AFD_class_I 3 CoA binding site 0 1 1 1 47,96,97,100,121,250,251,252,308,314 5 -341228 cd04433 AFD_class_I 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -271198 cd04434 LanC_like 1 zinc binding site CC[HC] 1 1 0 216,266,267 4 -271198 cd04434 LanC_like 2 active site HCC[HC] 1 1 0 157,216,266,267 1 -239898 cd04451 S1_IF1 1 rRNA binding site 0 1 1 0 8,9,10,16,28,31,32,37,38,39,40,57,59 3 -239898 cd04451 S1_IF1 2 predicted 30S ribosome binding site 0 0 1 1 28,32,63 0 -239899 cd04452 S1_IF2_alpha 1 protein synthesis regulator 0 0 1 1 38 0 -239899 cd04452 S1_IF2_alpha 2 eIF2B interation site 0 0 1 1 36,66,67,75 2 -239899 cd04452 S1_IF2_alpha 3 kinase interaction site 0 1 1 0 19,68,69,70 2 -239900 cd04453 S1_RNase_E 1 oligonucleotide binding site 0 1 1 0 35,68,71,74,75,85 5 -239900 cd04453 S1_RNase_E 2 homodimer interface 0 1 1 0 11,57,61 2 -239901 cd04454 S1_Rrp4_like 1 RNA binding site 0 0 1 1 14,22,32,34 3 -239901 cd04454 S1_Rrp4_like 2 subunit interface 0 1 1 0 0,12,14,16,18,29,52,53,54 2 -239902 cd04455 S1_NusA 1 homodimer interface 0 1 1 0 13,17,26,28,61 2 -239902 cd04455 S1_NusA 2 RNA binding site 0 0 1 1 11,19,28,30 3 -239903 cd04456 S1_IF1A_like 1 RNA binding site 0 0 1 1 8,9,13,27,28,29,30,33,38 3 -239904 cd04457 S1_S28E 1 RNA binding site 0 0 1 1 5,21,33,35 3 -239905 cd04458 CSP_CDS 1 DNA-binding site 0 0 1 1 6,15,26,55 3 -239905 cd04458 CSP_CDS 2 RNA-binding motif 0 0 1 1 12,13,14,15,16,17,18,25,26,27,28 0 -239906 cd04459 Rho_CSD 1 RNA binding site 0 1 1 1 5,7,11,13,15,27,29,54,57,58,59 3 -239907 cd04460 S1_RpoE 1 RNA binding site 0 0 1 1 7,15,24,26 3 -239907 cd04460 S1_RpoE 2 dimer interface 0 1 1 0 0,1,3,4,5,17,18,20,60,62,86,97 2 -239908 cd04461 S1_Rrp5_repeat_hs8_sc7 1 oligonucleotide binding site 0 0 1 1 40 5 -239909 cd04462 S1_RNAPII_Rpb7 1 RNA binding site 0 0 1 1 9,12,13,17,26,28,30,69,71,76 3 -239909 cd04462 S1_RNAPII_Rpb7 2 RPB7- RPB4 dimer interface 0 1 1 0 0,3,5,7,19,22,58,60,62,85 2 -239910 cd04463 S1_EF_like 1 RNA binding site 0 0 1 1 21,45,50,51 3 -239911 cd04465 S1_RPS1_repeat_ec2_hs2 1 RNA binding site 0 0 1 1 8,16,25,27 3 -239912 cd04466 S1_YloQ_GTPase 1 homodimer interface 0 1 1 0 10,25,26,36,37 2 -239912 cd04466 S1_YloQ_GTPase 2 RNA binding site 0 0 1 1 5,13,23,25 3 -239913 cd04467 S1_aIF5A 1 RNA binding site 0 0 1 1 2,24,47,52,53 3 -239914 cd04468 S1_eIF5A 1 RNA binding site 0 0 1 1 25,52,59,60 3 -239915 cd04469 S1_Hex1 1 RNA binding site 0 0 1 1 22,55,60,61 3 -239915 cd04469 S1_Hex1 2 Intermolecular binding site 0 0 1 1 3,19,23,25,32 0 -239915 cd04469 S1_Hex1 3 peroxisome targeting signal 0 0 1 1 72,73,74 0 -239916 cd04470 S1_EF-P_repeat_1 1 RNA binding site 0 0 1 1 23,48,53,54 3 -239917 cd04471 S1_RNase_R 1 RNA binding site 0 0 1 1 9,17,28,30 3 -239918 cd04472 S1_PNPase 1 RNA binding site 0 0 1 1 8,16,26,28 3 -239918 cd04472 S1_PNPase 2 domain interface 0 1 1 0 47,48 0 -239919 cd04473 S1_RecJ_like 1 RNA binding site 0 0 1 1 24,32,42,44 3 -239920 cd04474 RPA1_DBD_A 1 ssDNA binding site 0 1 1 1 24,49,51,53,56,78,84,92,94,95 3 -239920 cd04474 RPA1_DBD_A 2 DBD-A/DBD-B interface 0 1 1 0 19,47,86,88 2 -239920 cd04474 RPA1_DBD_A 3 generic binding surface II 0 0 1 1 12,69,71,73,102 0 -239921 cd04475 RPA1_DBD_B 1 ssDNA binding site 0 1 1 1 43,45,66,70,76,80 3 -239921 cd04475 RPA1_DBD_B 2 DBD-B/DBD-A interface 0 1 1 0 2,63,80,81,82 2 -239922 cd04476 RPA1_DBD_C 1 trimerization core interface 0 1 1 1 24,75,76,116,117,119,120,121,157,159,163,164 0 -239922 cd04476 RPA1_DBD_C 2 RPA1 DBD-C/RPA2 DBD-D interface 0 1 1 1 24,75,76,116,117,119,120,121,159,163 2 -239922 cd04476 RPA1_DBD_C 3 RPA1 DBD-C/RPA3 interface 0 1 1 1 157,164 2 -239922 cd04476 RPA1_DBD_C 4 Zinc binding site 0 1 1 0 36,39,53,56 4 -239922 cd04476 RPA1_DBD_C 5 generic binding surface I 0 0 1 1 23,24,25,70,71,72,73,75,81,82,83,85,121,128,129,130,141,142,143 0 -239922 cd04476 RPA1_DBD_C 6 generic binding surface II 0 0 1 1 18,122,124,126,148 0 -239923 cd04477 RPA1N 1 binding surface I 0 1 1 1 23,25,38,40,84 0 -239923 cd04477 RPA1N 2 generic binding surface II 0 0 1 1 16,70,72,74,93 0 -239924 cd04478 RPA2_DBD_D 1 trimerization core interface 0 1 1 1 8,22,24,52,71,72,74,78,80,81,82,83,84,86,88,90,91,94 0 -239924 cd04478 RPA2_DBD_D 2 RPA2 DBD-D/RPA1 DBD-C interface 0 1 1 1 71,72,74,81,84,88,91,94 2 -239924 cd04478 RPA2_DBD_D 3 RPA2 DBD-D/RPA3 interface 0 1 1 1 8,22,24,52,78,80,82,83,86,90,94 2 -239924 cd04478 RPA2_DBD_D 4 generic binding surface I 0 0 1 1 7,8,9,18,19,20,21,23,29,30,31,33,51,58,59,60,67,68,69 0 -239925 cd04479 RPA3 1 trimerization core interface 0 1 1 1 0,1,3,58,78,81,82,88,91,93,95,96,99,100 0 -239925 cd04479 RPA3 2 RPA3/RPA2 DBD-D interface 0 1 1 1 0,1,3,58,78,81,82,93,96,99,100 2 -239925 cd04479 RPA3 3 RPA3/RPA1 DBD-C interface 0 1 1 1 82,88,95 2 -239925 cd04479 RPA3 4 generic binding surface I 0 0 1 1 23,24,25,32,33,34,35,37,42,43,44,46,55,62,63,64,68,69,70 0 -239926 cd04480 RPA1_DBD_A_like 1 generic binding surface I 0 0 1 1 5,6,7,21,22,23,24,26,33,34,35,37,52,60,61,62,76,77,78 0 -239926 cd04480 RPA1_DBD_A_like 2 generic binding surface II 0 0 1 1 0,53,55,57,84 0 -239927 cd04481 RPA1_DBD_B_like 1 generic binding surface I 0 0 1 1 5,6,7,25,26,27,28,30,37,38,39,41,60,69,70,71,78,79,80 0 -239927 cd04481 RPA1_DBD_B_like 2 generic binding surface II 0 0 1 1 0,61,63,65,86 0 -239928 cd04482 RPA2_OBF_like 1 generic binding surface I 0 0 1 1 6,7,8,19,20,21,22,24,30,31,32,34,51,58,59,60,69,70,71 0 -239928 cd04482 RPA2_OBF_like 2 generic binding surface II 0 0 1 1 1,52,54,56,76 0 -239929 cd04483 hOBFC1_like 1 generic binding surface I 0 0 1 1 5,6,7,16,17,18,19,21,27,28,29,31,66,73,74,75,82,83,84 0 -239929 cd04483 hOBFC1_like 2 generic binding surface II 0 0 1 1 0,67,69,71,89 0 -239930 cd04484 polC_OBF 1 generic binding surface I 0 0 1 1 7,8,9,23,24,25,26,28,34,35,36,38,54,61,62,63,70,71,72 0 -239930 cd04484 polC_OBF 2 generic binding surface II 0 0 1 1 2,55,57,59,79 0 -239931 cd04485 DnaE_OBF 1 generic binding surface I 0 0 1 1 5,6,7,21,22,23,24,26,32,33,34,36,51,58,59,60,67,68,69 0 -239931 cd04485 DnaE_OBF 2 generic binding surface II 0 0 1 1 0,52,54,56,74 0 -239932 cd04486 YhcR_OBF_like 1 generic binding surface I 0 0 1 1 5,6,7,16,17,18,19,21,26,27,28,30,48,55,56,57,64,65,66 0 -239932 cd04486 YhcR_OBF_like 2 generic binding surface II 0 0 1 1 0,49,51,53,75 0 -239933 cd04487 RecJ_OBF2_like 1 generic binding surface I 0 0 1 1 6,7,8,17,18,19,20,22,28,29,30,32,47,54,55,56,63,64,65 0 -239933 cd04487 RecJ_OBF2_like 2 generic binding surface II 0 0 1 1 1,48,50,52,70 0 -239934 cd04488 RecG_wedge_OBF 1 ssDNA binding site 0 1 1 0 11,18,35,40,66 0 -239934 cd04488 RecG_wedge_OBF 2 generic binding surface II 0 0 1 1 0,50,52,54,73 0 -239935 cd04489 ExoVII_LU_OBF 1 generic binding surface I 0 0 1 1 7,8,9,19,20,21,22,24,30,31,32,34,49,56,57,58,67,68,69 0 -239935 cd04489 ExoVII_LU_OBF 2 generic binding surface II 0 0 1 1 2,50,52,54,74 0 -239936 cd04490 PolII_SU_OBF 1 generic binding surface I 0 0 1 1 7,8,9,19,20,21,22,24,30,31,32,34,51,58,59,60,66,67,68 0 -239936 cd04490 PolII_SU_OBF 2 generic binding surface II 0 0 1 1 2,52,54,56,73 0 -239937 cd04491 SoSSB_OBF 1 generic binding surface I 0 0 1 1 5,6,7,25,26,27,28,30,36,37,38,40,52,60,61,62,69,70,71 0 -239937 cd04491 SoSSB_OBF 2 generic binding surface II 0 0 1 1 0,53,55,57,79 0 -239938 cd04492 YhaM_OBF_like 1 generic binding surface I 0 0 1 1 5,6,7,21,22,23,24,26,32,33,34,36,50,57,58,59,66,67,68 0 -239938 cd04492 YhaM_OBF_like 2 generic binding surface II 0 0 1 1 0,51,53,55,73 0 -239939 cd04493 BRCA2DBD_OB1 1 generic binding surface I 0 0 1 1 8,9,10,23,24,25,26,28,34,35,36,38,54,62,63,64,80,81,82 0 -239939 cd04493 BRCA2DBD_OB1 2 binding surface II 0 1 1 1 30,41,44,49,52,55,87,88,89,90,92,93,96,97 0 -239940 cd04494 BRCA2DBD_OB2 1 ssDNA binding site 0 0 1 1 37,167,184,186,187,222,224 3 -239940 cd04494 BRCA2DBD_OB2 2 binding surface II 0 1 1 1 4,5,7,8,9,10,12 0 -239940 cd04494 BRCA2DBD_OB2 3 OB2/OB3 interface 0 1 1 1 22,23,25,37,42,169,246,248,249,250 2 -239941 cd04495 BRCA2DBD_OB3 1 ssDNA binding site 0 1 1 1 14,15,16,60,71,73,74 3 -239941 cd04495 BRCA2DBD_OB3 2 generic binding surface II 0 0 1 1 0,51,53,55,79 0 -239942 cd04496 SSB_OBF 1 ssDNA binding site 0 1 1 1 5,6,7,13,23,30,31,41,42,44,46,48,50,63,64,72,74,76,77,90,92 3 -239942 cd04496 SSB_OBF 2 dimer interface 0 1 1 1 0,1,2,3,28,29,30,43,45,66,75,86,89 2 -239942 cd04496 SSB_OBF 3 tetramer (dimer of dimers) interface 0 1 1 1 66,68,70,97 2 -239943 cd04497 hPOT1_OB1_like 1 ssDNA binding site 0 1 1 1 26,29,31,35,41,56,58,60,82,84,89 3 -239943 cd04497 hPOT1_OB1_like 2 OB1/OB2 interface 0 1 1 1 24,25,26,27,29,41,66,68,69,70,105 2 -239943 cd04497 hPOT1_OB1_like 3 generic binding surface II 0 0 1 1 17,73,75,77,100 0 -239944 cd04498 hPOT1_OB2 1 ssDNA binding 0 1 1 1 0,66,67,86,88,110,111,114,115,117 3 -239944 cd04498 hPOT1_OB2 2 binding surface II 0 1 1 1 83,85,113,116,120 0 -239945 cd04501 SGNH_hydrolase_like_4 1 active site 0 0 1 1 8,40,69,162,165 1 -239945 cd04501 SGNH_hydrolase_like_4 2 catalytic triad 0 0 1 1 8,162,165 1 -239945 cd04501 SGNH_hydrolase_like_4 3 oxyanion hole 0 0 1 1 8,40,69 1 -239946 cd04502 SGNH_hydrolase_like_7 1 active site 0 0 1 1 7,31,60,150,153 1 -239946 cd04502 SGNH_hydrolase_like_7 2 catalytic triad 0 0 1 1 7,150,153 1 -239946 cd04502 SGNH_hydrolase_like_7 3 oxyanion hole 0 0 1 1 7,31,60 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 1 active site 0 0 1 1 7,46,78,184,187 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 2 catalytic triad 0 0 1 1 7,184,187 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 3 oxyanion hole 0 0 1 1 7,46,78 1 -119391 cd04508 TUDOR 1 dimethylated arginine/lysine binding site 0 1 1 0 7,12,14,33,36 5 -239948 cd04511 Nudix_Hydrolase_4 1 nudix motif 0 0 1 1 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 0 -271334 cd04512 Ntn_Asparaginase_2_like 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 5,57,128,129,146,148,149,156,158,159,160,180,182 1 -271334 cd04512 Ntn_Asparaginase_2_like 2 catalytic nucleophile T 0 1 1 128 1 -271334 cd04512 Ntn_Asparaginase_2_like 3 dimer interface 0 1 1 0 116,155,156,157,168,183,186,192,193 2 -271335 cd04513 Glycosylasparaginase 1 active site xx[NDG]T[TS]R[TS] 1 1 0 5,168,169,170,188,198,221 1 -271335 cd04513 Glycosylasparaginase 2 catalytic nucleophile T 0 1 1 170 1 -271335 cd04513 Glycosylasparaginase 3 dimer interface 0 1 1 0 68,69,70,75,95,96,97,98,99,101,102,105,106,196,197,198,199,204,205,206,210,225,228,234,238,256 2 -271336 cd04514 Taspase1_like 1 active site XXXXT[VI] 1 1 0 6,7,57,58,140,141 1 -271336 cd04514 Taspase1_like 2 catalytic nucleophile T 0 1 1 140 1 -271336 cd04514 Taspase1_like 3 dimer interface 0 1 1 0 67,78,83,84,85,90,116,117,118,119,120,121,122,123,126,130,161,162,163,164,166,167,168,169,174,175,180,182,201,204,205,207,210,211 2 -341214 cd04515 Alpha_kinase 1 ATP binding site 0 1 1 0 30,31,32,33,34,35,37,51,53,102,123,124,125,126,168,170,178 5 -341214 cd04515 Alpha_kinase 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 190,191,192,193,194,195 1 -239952 cd04516 TBP_eukaryotes 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,90,95,97,126,127,132,143,145,147,151 3 -239952 cd04516 TBP_eukaryotes 2 TFIIA interaction surface 0 1 1 1 19,26,27,28,30,35,41,43 2 -239952 cd04516 TBP_eukaryotes 3 TFIIB interaction surface 0 0 1 1 107,108,120,121,122,123,124,127,132 2 -239952 cd04516 TBP_eukaryotes 4 NC2 interaction surface 0 1 1 1 34,131,132,137,168,169 2 -239953 cd04517 TLF 1 putative DNA interaction surface 0 0 1 1 5,6,8,34,35,39,41,48,50,54,56,58,60,91,96,98,127,128,133,144,146,148,152 3 -239953 cd04517 TLF 2 putative TFIIA interaction surface 0 0 1 1 20,27,28,29,31,35,41,43 2 -239953 cd04517 TLF 3 putative TFIIB interaction surface 0 0 1 1 108,109,121,122,123,124,125,128,133 2 -239954 cd04518 TBP_archaea 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,91,96,98,126,127,132,143,145,147,151 3 -239954 cd04518 TBP_archaea 2 TFIIA interaction surface 0 0 1 1 19,26,27,28,30,35,41,43 2 -239954 cd04518 TBP_archaea 3 TFIIB interaction surface 0 1 1 1 108,109,120,121,122,123,124,127,132 2 -213328 cd04519 RasGAP 1 RAS interface 0 1 1 0 29,65,67,69,70,72,75,79,173,181,182,185,186,189,210,213,214,217,221,223,228,229 2 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,55,56,57,58,59 7 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 3 putative ligand binding site I 0 0 0 0 29,42,46,47,50,64,86,87,88,103 5 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 4 putative ligand binding site II 0 0 0 0 2,4,5,6,29,30,31,86,99,101,103,104,107 5 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,55,56,57,58,59 7 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,64,86,87,88,103 5 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,86,99,101,103,104,107 5 -341361 cd04584 CBS_pair_AcuB_like 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,75,76,77,78,79 7 -341361 cd04584 CBS_pair_AcuB_like 2 CBS repeat 0 0 0 0 84,85,86,87,90,91,92,93,94,95,96,97,98,99,100,106,107,108,109,110,111,114,115,116,117,118,119,120,122,123,124,125,126 7 -341361 cd04584 CBS_pair_AcuB_like 3 putative ligand binding site I 0 0 0 0 32,44,48,49,52,84,106,107,108,122 5 -341361 cd04584 CBS_pair_AcuB_like 4 putative ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,106,118,120,122,123,126 5 -341362 cd04586 CBS_pair_BON_assoc 1 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,123,124,125,126,127,128,129,131,132,133,134,135 7 -341362 cd04586 CBS_pair_BON_assoc 2 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,84,85,86,87,88 7 -341362 cd04586 CBS_pair_BON_assoc 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,93,115,116,117,131 5 -341362 cd04586 CBS_pair_BON_assoc 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,115,127,129,131,132,135 5 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,36,37,38,39,40,41,44,45,46,47,48,49,61,62,63,64,65 7 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 putative ligand binding site I 0 0 0 0 28,40,44,45,48,70,92,93,94,108 5 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 putative ligand binding site II 0 0 0 0 3,5,6,7,28,29,30,92,104,106,108,109,112 5 -341364 cd04588 CBS_pair_archHTH_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,57,58,59,60,61 7 -341364 cd04588 CBS_pair_archHTH_assoc 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,97,98,99,100,101,102,103,105,106,107,108,109 7 -341364 cd04588 CBS_pair_archHTH_assoc 3 putative ligand binding site I 0 0 0 0 26,38,42,43,46,66,88,89,90,105 5 -341364 cd04588 CBS_pair_archHTH_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,88,101,103,105,106,109 5 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,99,100,101,102,103,104,105,107,108,109,110,111 7 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 putative ligand binding site I 0 0 0 0 27,39,43,44,47,69,91,92,93,107 5 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,91,103,105,107,108,111 5 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,44,45,46,47,48,49,52,53,54,55,56,57,67,68,69,70,71 7 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 2 CBS repeat 0 0 0 0 75,76,77,78,81,82,83,84,85,86,87,88,89,90,91,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 3 putative ligand binding site I 0 0 0 0 34,48,52,53,56,75,97,98,99,114 5 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 4 ligand binding site II 0 1 0 0 8,10,11,12,34,35,36,97,110,112,114,115,118 5 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,43,44,45,46,47,48,51,52,53,54,55,56,60,61,62,63,64 7 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 3 putative ligand binding site I 0 0 0 0 32,47,51,52,55,70,92,93,94,108 5 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 4 ligand binding site II 0 1 0 0 6,8,9,10,32,33,34,92,104,106,108,109,112 5 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,65,66,67,68,69 7 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 2 CBS repeat 0 0 0 0 80,81,82,83,86,87,88,89,90,91,92,93,94,95,96,102,103,104,105,106,107,116,117,118,119,120,121,122,123,124,125,126,127 7 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,80,102,103,104,123 5 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,102,120,122,123,124,127 5 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,53,54,55,56,57 7 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 2 CBS repeat 0 0 0 0 62,63,64,65,68,69,70,71,72,73,74,75,76,77,78,84,85,86,87,88,89,92,93,94,95,96,97,98,100,101,102,103,104 7 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,62,84,85,86,100 5 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 4 putative ligand binding site II 0 0 0 0 1,3,4,5,26,27,28,84,96,98,100,101,104 5 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,57,58,59,60,61 7 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,96,97,98,99,100,101,102,104,105,106,107,108 7 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 3 putative ligand binding site I 0 0 0 0 26,38,42,43,46,66,88,89,90,104 5 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,88,100,102,104,105,108 5 -341371 cd04596 CBS_pair_DRTGG_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341371 cd04596 CBS_pair_DRTGG_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341371 cd04596 CBS_pair_DRTGG_assoc 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,63,85,86,87,102 5 -341371 cd04596 CBS_pair_DRTGG_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,98,100,102,103,106 5 -341372 cd04597 CBS_pair_inorgPPase 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,52,53,54,55,56 7 -341372 cd04597 CBS_pair_inorgPPase 2 CBS repeat 0 0 0 0 62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,84,85,86,87,88,89,93,94,95,96,97,98,99,101,102,103,104,105 7 -341372 cd04597 CBS_pair_inorgPPase 3 ligand binding site I 0 1 1 0 29,42,46,47,50,62,84,85,86,101 5 -341372 cd04597 CBS_pair_inorgPPase 4 putative ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,84,97,99,101,102,105 5 -341373 cd04598 CBS_pair_GGDEF_EAL 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,28,29,30,31,32,33,36,37,38,39,40,41,44,45,46,47,48,49,64,65,66,67,68 7 -341373 cd04598 CBS_pair_GGDEF_EAL 2 CBS repeat 0 0 0 0 73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,98,99,100,101,102,103,107,108,109,110,111,112,113,115,116,117,118,119 7 -341373 cd04598 CBS_pair_GGDEF_EAL 3 putative ligand binding site I 0 0 0 0 28,40,44,45,48,73,98,99,100,115 5 -341373 cd04598 CBS_pair_GGDEF_EAL 4 putative ligand binding site II 0 0 0 0 1,3,4,5,28,29,30,98,111,113,115,116,119 5 -341374 cd04599 CBS_pair_GGDEF_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341374 cd04599 CBS_pair_GGDEF_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,84,85,86,87,88,89,93,94,95,96,97,98,99,101,102,103,104,105 7 -341374 cd04599 CBS_pair_GGDEF_assoc 3 putative ligand binding site I 0 0 0 0 27,39,43,44,47,63,84,85,86,101 5 -341374 cd04599 CBS_pair_GGDEF_assoc 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,84,97,99,101,102,105 5 -341375 cd04600 CBS_pair_HPP_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,76,77,78,79,80 7 -341375 cd04600 CBS_pair_HPP_assoc 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,116,117,118,119,120,121,122,124,125,126,127,128 7 -341375 cd04600 CBS_pair_HPP_assoc 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,85,107,108,109,124 5 -341375 cd04600 CBS_pair_HPP_assoc 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,107,120,122,124,125,128 5 -341376 cd04601 CBS_pair_IMPDH 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,55,56,57,58,59 7 -341376 cd04601 CBS_pair_IMPDH 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,97,98,99,100,101,102,103,105,106,107,108,109 7 -341376 cd04601 CBS_pair_IMPDH 3 ligand binding site I 0 1 1 0 39,41,42,43,44,60,65,66,86,87,88 5 -341376 cd04601 CBS_pair_IMPDH 4 ligand binding site II 0 1 1 0 0,2,3,4,26,27,28,88,101,103,105,106,109 5 -341377 cd04603 CBS_pair_KefB_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,58,59,60,61,62 7 -341377 cd04603 CBS_pair_KefB_assoc 2 CBS repeat 0 0 0 0 67,68,69,70,73,74,75,76,77,78,79,80,81,82,83,89,90,91,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110 7 -341377 cd04603 CBS_pair_KefB_assoc 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,67,89,90,91,106 5 -341377 cd04603 CBS_pair_KefB_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,89,102,104,106,107,110 5 -341378 cd04604 CBS_pair_SIS_assoc 1 CBS repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,37,38,39,40,41,42,46,47,48,49,50,51,54,55,56,57,58,59,71,72,73,74,75 7 -341378 cd04604 CBS_pair_SIS_assoc 2 CBS repeat 0 0 0 0 80,81,82,83,86,87,88,89,90,91,92,93,94,95,96,102,103,104,105,106,107,111,112,113,114,115,116,117,119,120,121,122,123 7 -341378 cd04604 CBS_pair_SIS_assoc 3 ligand binding site I 0 1 0 0 37,50,54,55,58,80,102,103,104,119 5 -341378 cd04604 CBS_pair_SIS_assoc 4 ligand binding site II 0 1 0 0 11,13,14,15,37,38,39,102,115,117,119,120,123 5 -341379 cd04605 CBS_pair_arch_MET2_assoc 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,41,42,43,44,45,46,49,50,51,52,53,54,62,63,64,65,66 7 -341379 cd04605 CBS_pair_arch_MET2_assoc 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341379 cd04605 CBS_pair_arch_MET2_assoc 3 ligand binding site I 0 1 1 0 32,45,49,50,53,71,93,94,95,110 5 -341379 cd04605 CBS_pair_arch_MET2_assoc 4 ligand binding site II 0 1 1 0 6,8,9,10,32,33,34,93,106,108,110,111,114 5 -341380 cd04606 CBS_pair_Mg_transporter 1 CBS repeat 0 0 0 0 7,8,9,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,38,39,40,41,42,43,47,48,49,50,51,52,55,56,57,58,59,60,66,67,68,69,70 7 -341380 cd04606 CBS_pair_Mg_transporter 2 CBS repeat 0 0 0 0 75,76,77,78,81,82,83,84,85,86,87,88,89,90,91,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341380 cd04606 CBS_pair_Mg_transporter 3 putative ligand binding site I 0 0 0 0 38,51,55,56,59,75,97,98,99,114 5 -341380 cd04606 CBS_pair_Mg_transporter 4 putative ligand binding site II 0 0 0 0 7,9,10,11,38,39,40,97,110,112,114,115,118 5 -341381 cd04607 CBS_pair_NTP_transferase_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,59,60,61,62,63 7 -341381 cd04607 CBS_pair_NTP_transferase_assoc 2 CBS repeat 0 0 0 0 68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,90,91,92,93,94,95,99,100,101,102,103,104,105,107,108,109,110,111 7 -341381 cd04607 CBS_pair_NTP_transferase_assoc 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,68,90,91,92,107 5 -341381 cd04607 CBS_pair_NTP_transferase_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,90,103,105,107,108,111 5 -341382 cd04608 CBS_pair_CBS 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,43,44,45,46,47,48,51,52,53,54,55,56,68,69,70,71,72 7 -341382 cd04608 CBS_pair_CBS 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341382 cd04608 CBS_pair_CBS 3 putative ligand binding site I 0 0 0 0 34,47,51,52,55,77,97,98,99,114 5 -341382 cd04608 CBS_pair_CBS 4 ligand binding site II 0 1 1 0 8,10,12,34,35,36,97,110,112,114,115,118 5 -341383 cd04610 CBS_pair_ParBc_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341383 cd04610 CBS_pair_ParBc_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341383 cd04610 CBS_pair_ParBc_assoc 3 putative ligand binding site I 0 0 0 0 27,39,43,44,47,63,85,86,87,102 5 -341383 cd04610 CBS_pair_ParBc_assoc 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,85,98,100,102,103,106 5 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 1 CBS repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,37,38,39,40,41,42,45,46,47,48,49,50,53,54,55,56,57,58,68,69,70,71,72 7 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 3 putative ligand binding site I 0 0 0 0 37,49,53,54,57,77,99,100,101,116 5 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 4 putative ligand binding site II 0 0 0 0 11,13,14,15,37,38,39,99,112,114,116,117,120 5 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,61,62,63,64,65 7 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 2 CBS repeat 0 0 0 0 70,71,72,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,103,104,105,106,107,108,109,111,112,113,114,115 7 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,70,92,93,94,111 5 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 4 putative ligand binding site II 0 0 0 0 0,2,3,4,27,28,29,92,107,109,111,112,115 5 -341386 cd04614 CBS_pair_arch2_repeat2 1 SAM binding site 0 1 0 0 27,41,43,45,46,49,101,103,104,105,123,124,125,126,127,128,129 5 -341386 cd04614 CBS_pair_arch2_repeat2 2 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,96,97,98,99,100 7 -341386 cd04614 CBS_pair_arch2_repeat2 3 CBS repeat 0 0 0 0 106,107,108,109,112,113,114,115,116,117,118,119,120,121,122,127,128,129,130,131,132,136,137,138,139,140,141,142,144,145,146,147,148 7 -341386 cd04614 CBS_pair_arch2_repeat2 4 ligand binding site I 0 0 0 0 28,41,45,46,49,106,127,128,129,144 5 -341386 cd04614 CBS_pair_arch2_repeat2 5 ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,127,140,142,144,145,148 5 -341387 cd04617 CBS_pair_CcpN 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341387 cd04617 CBS_pair_CcpN 2 CBS repeat 0 0 0 0 73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,95,96,97,98,99,100,107,108,109,110,111,112,113,115,116,117,118,119 7 -341387 cd04617 CBS_pair_CcpN 3 putative ligand binding site I 0 0 0 0 28,41,45,46,49,73,95,96,97,115 5 -341387 cd04617 CBS_pair_CcpN 4 putative ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,95,111,113,115,116,119 5 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,44,45,46,47,48,49,52,53,54,55,56,57,77,78,79,80,81 7 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 2 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137 7 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 3 ligand binding site I 0 1 1 0 34,48,52,53,56,93,115,116,117,133 5 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 4 ligand binding site II 0 1 1 0 8,10,11,12,34,35,36,115,129,131,133,134,137 5 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,47,48,49,50,51,52,55,56,57,58,59,60,63,64,65,66,67,68,80,81,82,83,84 7 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 2 CBS repeat 0 0 0 0 89,90,91,92,97,98,99,100,101,102,103,104,105,106,107,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134 7 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 3 putative ligand binding site I 0 0 0 0 47,59,63,64,67,89,113,114,115,130 5 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 4 putative ligand binding site II 0 0 0 0 5,7,8,9,47,48,49,113,126,128,130,131,134 5 -341390 cd04622 CBS_pair_HRP1_like 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341390 cd04622 CBS_pair_HRP1_like 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341390 cd04622 CBS_pair_HRP1_like 3 putative ligand binding site I 0 0 0 0 27,39,43,44,47,70,92,93,94,109 5 -341390 cd04622 CBS_pair_HRP1_like 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,92,105,107,109,110,113 5 -341391 cd04623 CBS_pair_bac_euk 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341391 cd04623 CBS_pair_bac_euk 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341391 cd04623 CBS_pair_bac_euk 3 ligand binding site I 0 1 0 0 26,39,43,44,47,70,92,93,94,108 5 -341391 cd04623 CBS_pair_bac_euk 4 ligand binding site II 0 1 0 0 0,2,3,4,26,27,28,92,104,106,108,109,112 5 -341392 cd04629 CBS_pair_bac 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,63,64,65,66,67 7 -341392 cd04629 CBS_pair_bac 2 CBS repeat 0 0 0 0 72,73,74,75,78,79,80,81,82,83,84,85,86,87,88,94,95,96,97,98,99,102,103,104,105,106,107,108,110,111,112,113,114 7 -341392 cd04629 CBS_pair_bac 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,72,94,95,96,110 5 -341392 cd04629 CBS_pair_bac 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,94,106,108,110,111,114 5 -341393 cd04630 CBS_pair_bac 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,41,42,43,44,45,46,49,50,51,52,53,54,67,68,69,70,71 7 -341393 cd04630 CBS_pair_bac 2 CBS repeat 0 0 0 0 76,77,78,79,82,83,84,85,86,87,88,89,90,91,92,98,99,100,101,102,103,106,107,108,109,110,111,112,114,115,116,117,118 7 -341393 cd04630 CBS_pair_bac 3 putative ligand binding site I 0 0 0 0 31,45,49,50,53,76,98,99,100,114 5 -341393 cd04630 CBS_pair_bac 4 putative ligand binding site II 0 0 0 0 5,7,8,9,31,32,33,98,110,112,114,115,118 5 -341394 cd04631 CBS_archAMPK_gamma-repeat2 1 CBS repeat 0 0 0 0 9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,76,77,78,79,80 7 -341394 cd04631 CBS_archAMPK_gamma-repeat2 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,115,116,117,118,119,120,121,123,124,125,126,127 7 -341394 cd04631 CBS_archAMPK_gamma-repeat2 3 ligand binding site I 0 1 1 0 32,44,48,49,52,85,107,108,109,123 5 -341394 cd04631 CBS_archAMPK_gamma-repeat2 4 ligand binding site II 0 1 1 0 6,8,9,10,32,33,34,107,119,121,123,124,127 5 -341395 cd04632 CBS_pair_arch1_repeat2 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,73,74,75,76,77 7 -341395 cd04632 CBS_pair_arch1_repeat2 2 CBS repeat 0 0 0 0 82,83,84,85,88,89,90,91,92,93,94,95,96,97,98,102,103,104,105,106,107,113,114,115,116,117,118,119,121,122,123,124,125 7 -341395 cd04632 CBS_pair_arch1_repeat2 3 ligand binding site I 0 0 0 0 26,39,43,44,47,82,102,103,104,121 5 -341395 cd04632 CBS_pair_arch1_repeat2 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,102,117,119,121,122,125 5 -341396 cd04638 CBS_pair_arch2_repeat1 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,37,38,39,40,41,42,45,46,47,48,49,50,56,57,58,59,60 7 -341396 cd04638 CBS_pair_arch2_repeat1 2 CBS repeat 0 0 0 0 65,66,67,68,71,72,73,74,75,76,77,78,79,80,81,87,88,89,90,91,92,95,96,97,98,99,100,101,103,104,105,106,107 7 -341396 cd04638 CBS_pair_arch2_repeat1 3 ligand binding site I 0 0 0 0 27,41,45,46,49,65,87,88,89,103 5 -341396 cd04638 CBS_pair_arch2_repeat1 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,87,99,101,103,104,107 5 -341397 cd04639 CBS_pair_peptidase_M50 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,63,64,65,66,67 7 -341397 cd04639 CBS_pair_peptidase_M50 2 CBS repeat 0 0 0 0 74,75,76,77,80,81,82,83,84,85,86,87,88,89,90,96,97,98,99,100,101,105,106,107,108,109,110,111,113,114,115,116,117 7 -341397 cd04639 CBS_pair_peptidase_M50 3 putative ligand binding site I 0 0 0 0 31,44,48,49,52,74,96,97,98,113 5 -341397 cd04639 CBS_pair_peptidase_M50 4 putative ligand binding site II 0 0 0 0 3,5,6,7,31,32,33,96,109,111,113,114,117 5 -341398 cd04640 CBS_pair_proteobact 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,69,70,71,72,73 7 -341398 cd04640 CBS_pair_proteobact 2 CBS repeat 0 0 0 0 80,81,82,83,90,91,92,93,94,95,96,97,98,99,100,106,107,108,109,110,111,119,120,121,122,123,124,125,127,128,129,130,131 7 -341398 cd04640 CBS_pair_proteobact 3 ligand binding site I 0 0 0 0 29,42,46,47,50,80,106,107,108,127 5 -341398 cd04640 CBS_pair_proteobact 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,106,123,125,127,128,131 5 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,62,63,64,65,66 7 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 3 ligand binding site I 0 1 1 0 27,40,44,45,48,77,99,100,101,116 5 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 4 ligand binding site II 0 1 1 0 1,3,4,5,27,28,29,99,112,114,116,117,120 5 -341400 cd04643 CBS_pair_bac 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,70,71,72,73,74 7 -341400 cd04643 CBS_pair_bac 2 CBS repeat 0 0 0 0 79,80,81,82,85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341400 cd04643 CBS_pair_bac 3 putative ligand binding site I 0 0 0 0 31,44,48,49,52,79,99,100,101,116 5 -341400 cd04643 CBS_pair_bac 4 putative ligand binding site II 0 0 0 0 5,7,8,9,31,32,33,99,112,114,116,117,120 5 -100051 cd04645 LbH_gamma_CA_like 1 putative metal binding site 0 1 1 1 53,70,75 4 -100051 cd04645 LbH_gamma_CA_like 2 trimer interface 0 1 1 0 6,8,10,11,14,26,29,30,32,34,48,49,53,70,71,72,73,75,87 2 -100053 cd04647 LbH_MAT_like 1 active site 0 1 1 1 8,10,40,42,65,67,68,73,85,86,91,92,101,102,104 1 -100053 cd04647 LbH_MAT_like 2 CoA binding site 0 1 1 1 40,42,65,67,68,73,83,85,86,91,92,99,101,102,104,108 5 -100053 cd04647 LbH_MAT_like 3 substrate binding site 0 1 1 1 8,10,40 5 -100053 cd04647 LbH_MAT_like 4 trimer interface 0 1 1 0 6,8,16,26,28,34,40,41,42,63,65,68,87,103 2 -100054 cd04649 LbH_THP_succinylT_putative 1 putative trimer interface 0 0 1 1 38,40,42,44,54,60,62,80,85,86,88,96,100,102,104 2 -100054 cd04649 LbH_THP_succinylT_putative 2 putative CoA binding site 0 0 1 1 80,82,83,88,98,104 5 -100055 cd04650 LbH_FBP 1 putative metal binding site 0 1 1 1 54,71,76 4 -100055 cd04650 LbH_FBP 2 putative trimer interface 0 0 1 1 7,9,11,12,15,27,30,31,33,35,49,50,54,71,72,73,74,76,88 2 -100056 cd04651 LbH_G1P_AT_C 1 dimer interface 0 1 1 1 0,2,3,4,5,6,7,8,9,10,11,12,13,14 2 -100056 cd04651 LbH_G1P_AT_C 2 sulfate 1 binding site 0 1 1 1 65,66,99 0 -100056 cd04651 LbH_G1P_AT_C 3 N-terminal domain interface 0 1 1 0 11,15,16,27,29,32,65,100 2 -240015 cd04657 Piwi_ago-like 1 active site 0 0 1 1 204,206,277,415 1 -240015 cd04657 Piwi_ago-like 2 5' RNA guide strand anchoring site 0 0 1 1 135,139,151,152,153,154,157,166,169,173,177 0 -240016 cd04658 Piwi_piwi-like_Euk 1 active site 0 0 1 1 234,236,305,439 1 -240016 cd04658 Piwi_piwi-like_Euk 2 5' RNA guide strand anchoring site 0 0 1 1 167,171,183,184,185,186,189,199,202,206,210 0 -240017 cd04659 Piwi_piwi-like_ProArk 1 active site 0 1 1 1 195,197,267,393 1 -240017 cd04659 Piwi_piwi-like_ProArk 2 5' RNA guide strand anchoring site 0 1 1 0 131,135,146,147,148,149,152,162,165,169,173,377 0 -240019 cd04661 MRP_L46 1 modified nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -240020 cd04662 Nudix_Hydrolase_5 1 nudix motif 0 0 1 1 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 0 -240021 cd04663 Nudix_Hydrolase_6 1 nudix motif 0 0 1 1 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 0 -240022 cd04664 Nudix_Hydrolase_7 1 nudix motif 0 0 1 1 34,35,36,37,38,39,40,41,44,45,46,47,48,49,50,51,52,53,54,55,56 0 -240023 cd04665 Nudix_Hydrolase_8 1 nudix motif 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 0 -240024 cd04666 Nudix_Hydrolase_9 1 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -240025 cd04667 Nudix_Hydrolase_10 1 nudix motif 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 0 -240026 cd04669 Nudix_Hydrolase_11 1 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -240027 cd04670 Nudix_Hydrolase_12 1 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -240028 cd04671 Nudix_Hydrolase_13 1 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -240029 cd04672 Nudix_Hydrolase_14 1 nudix motif 0 0 1 1 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 0 -240030 cd04673 Nudix_Hydrolase_15 1 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -240031 cd04674 Nudix_Hydrolase_16 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -240032 cd04676 Nudix_Hydrolase_17 1 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -240033 cd04677 Nudix_Hydrolase_18 1 nudix motif 0 0 1 1 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 0 -240034 cd04678 Nudix_Hydrolase_19 1 nudix motif 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 0 -240035 cd04679 Nudix_Hydrolase_20 1 nudix motif 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 0 -240036 cd04680 Nudix_Hydrolase_21 1 nudix motif 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 0 -240037 cd04681 Nudix_Hydrolase_22 1 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -240038 cd04682 Nudix_Hydrolase_23 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -240039 cd04683 Nudix_Hydrolase_24 1 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -240040 cd04684 Nudix_Hydrolase_25 1 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -240041 cd04685 Nudix_Hydrolase_26 1 nudix motif 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 0 -240042 cd04686 Nudix_Hydrolase_27 1 nudix motif 0 0 1 1 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50 0 -240043 cd04687 Nudix_Hydrolase_28 1 nudix motif 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 0 -240044 cd04688 Nudix_Hydrolase_29 1 nudix motif 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 0 -240045 cd04689 Nudix_Hydrolase_30 1 nudix motif 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 0 -240046 cd04690 Nudix_Hydrolase_31 1 nudix motif 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 0 -240047 cd04691 Nudix_Hydrolase_32 1 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -240048 cd04692 Nudix_Hydrolase_33 1 nudix motif 0 0 1 1 40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62 0 -240049 cd04693 Nudix_Hydrolase_34 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,45,46,47,48,49,50,51,52,53,54,55,56 0 -240050 cd04694 Nudix_Hydrolase_35 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -240051 cd04695 Nudix_Hydrolase_36 1 nudix motif 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 0 -240052 cd04696 Nudix_Hydrolase_37 1 nudix motif 0 0 1 1 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -240053 cd04697 Nudix_Hydrolase_38 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -240054 cd04699 Nudix_Hydrolase_39 1 nudix motif 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 0 -240055 cd04700 DR1025_like 1 active site 0 1 1 0 12,13,14,44,45,46,60,82,84,86,88,90 1 -240055 cd04700 DR1025_like 2 dimer interface 0 1 1 0 0,1,2,4,5,6,8,31,41,44,52,54,55,64,73,74,77,79,80,81,82,83,90,93,109,132 2 -240055 cd04700 DR1025_like 3 Mg2+ binding site 0 1 1 0 44,60 4 -240055 cd04700 DR1025_like 4 ATP binding site 0 1 1 0 12,14,46,82,84,86,88 5 -240055 cd04700 DR1025_like 5 nudix motif 0 0 1 1 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 0 -271337 cd04701 Asparaginase_2 1 active site [GA]NT[VILCTA]TG[MLIK]RGD[STAP]GG 0 1 1 5,62,138,139,156,158,159,166,168,169,170,190,192 1 -271337 cd04701 Asparaginase_2 2 catalytic nucleophile T 0 1 1 138 1 -271337 cd04701 Asparaginase_2 3 dimer interface 0 1 1 0 82,86,87,88,93,113,114,115,116,117,118,121,159,164,165,166,167,172,173,174,193,196,197,202,203,206,207,210,225 2 -271338 cd04702 ASRGL1_like 1 active site TTRDT 1 1 0 165,181,193,196,216 1 -271338 cd04702 ASRGL1_like 2 catalytic nucleophile T 0 1 1 165 1 -271338 cd04702 ASRGL1_like 3 dimer interface 0 1 1 0 79,81,83,84,109,111,112,113,114,115,116,117,118,121,122,189,190,191,192,193,194,200,201,205,207,220,224,225,226,229,233,237,251,255,256 2 -271339 cd04703 Asparaginase_2_like_1 1 active site TxRDT 0 1 1 127,142,154,157,176 1 -271339 cd04703 Asparaginase_2_like_1 2 catalytic nucleophile T 0 1 1 127 1 -271339 cd04703 Asparaginase_2_like_1 3 putative dimer interface 0 0 1 1 73,106,107,108,109,110,111,114,115,150,152,153,154,155,162,166,168,180,189,193,211 2 -153093 cd04704 PLA2_bee_venom_like 1 catalytic site 0 1 1 0 33,63,85 1 -153093 cd04704 PLA2_bee_venom_like 2 metal binding site 0 1 1 0 7,9,11,34 4 -153094 cd04705 PLA2_group_III_like 1 putative catalytic residues 0 0 1 1 40,70 1 -153094 cd04705 PLA2_group_III_like 2 putative metal binding site 0 0 1 1 7,9,11,41 0 -153095 cd04706 PLA2_plant 1 putative catalytic residues 0 0 1 1 50,91 0 -153095 cd04706 PLA2_plant 2 putative metal binding site 0 0 1 1 26,28,30,51 0 -153096 cd04707 otoconin_90 1 putative catalytic residues 0 0 1 1 42,87 1 -153096 cd04707 otoconin_90 2 putative metal binding site 0 0 1 1 22,24,26,43 0 -240071 cd04720 BAH_Orc1p_Yeast 1 Sir1p binding site 0 1 1 0 63,66,67,95 0 -240073 cd04722 TIM_phosphate_binding 1 phosphate binding site 0 1 1 0 176,177,198,199 4 -240074 cd04723 HisA_HisF 1 active site 0 1 1 1 6,52,132 1 -240075 cd04724 Tryptophan_synthase_alpha 1 active site 0 1 1 0 31,42,83,164 1 -240075 cd04724 Tryptophan_synthase_alpha 2 heterodimer interface 0 1 1 0 36,37,38,39,41,44,47,48,85,88,110,111,113,116,136,138,139,140,143 2 -240075 cd04724 Tryptophan_synthase_alpha 3 substrate binding site 0 1 1 0 31,42,46,156,164,165,193,194,214,215 5 -240075 cd04724 Tryptophan_synthase_alpha 4 catalytic residues 0 0 1 0 31,42,83 1 -240076 cd04725 OMP_decarboxylase_like 1 active site 0 1 1 0 3,5,27,29,54,56,110,111,168,199,200 1 -240076 cd04725 OMP_decarboxylase_like 2 dimer interface 0 1 1 0 29,31,32,55,56,58,59,62,63,66,67,82,83,84,95,110,129,200 2 -240077 cd04726 KGPDC_HPS 1 active site 0 1 1 0 5,7,29,58,60,132,163,165,185,186 1 -240077 cd04726 KGPDC_HPS 2 magnesium binding site 0 1 1 0 29,58 4 -240077 cd04726 KGPDC_HPS 3 dimer interface 0 1 1 0 9,36,39,40,63,64,65,71,85,90,111,117,132,134,135,136 2 -240078 cd04727 pdxS 1 active site 0 1 1 0 13,32,70,142,143,144,203,222 1 -240078 cd04727 pdxS 2 multimer interface 0 1 1 1 47,49,57,72,75,76,77,80,97,98,99,100,101,143,144,145,147,150,151,154,205,208,209,250 2 -240079 cd04728 ThiG 1 tetramer interface 0 1 1 0 99,102,105,106,107,130,132,133,134,137,138,156,157,158,161,167,171,185,186,187,191,194,195,204,209,210,211,214,215,218,225,228,229,231,232,233,234,235,237,238,240,242,243,244,246 2 -240079 cd04728 ThiG 2 ThiS interaction site 0 1 1 0 39,52,55 0 -240079 cd04728 ThiG 3 putative active site 0 0 1 0 94,96,180 1 -240080 cd04729 NanE 1 putative active site cavity 0 0 0 1 13,15,44,65,67,98,128,149,153,182,183,184,205 1 -240081 cd04730 NPD_like 1 FMN binding site 0 1 1 0 8,9,60,86,107,128,132,133,161,162,163,182,183,184,185 5 -240081 cd04730 NPD_like 2 substrate binding site 0 1 1 0 134,135,229 5 -240081 cd04730 NPD_like 3 putative catalytic residue 0 0 1 0 135 1 -240082 cd04731 HisF 1 substrate binding site 0 1 1 0 15,46,78,99,100,124,126,141,168,173,174,198,199,200,222,223 5 -240082 cd04731 HisF 2 glutamase interaction surface 0 1 1 0 36,41,63,67,70,72,91,94,95,119,164,192,217 2 -240083 cd04732 HisA 1 catalytic residues 0 0 1 1 6,46,128 1 -240084 cd04733 OYE_like_2_FMN 1 putative active site 0 0 1 1 20,22,55,100,173,225,321,322 1 -240084 cd04733 OYE_like_2_FMN 2 putative substrate binding site 0 0 1 1 171,173 5 -240084 cd04733 OYE_like_2_FMN 3 putative FMN binding site 0 0 1 1 20,22,55,100,225,321,322 5 -240084 cd04733 OYE_like_2_FMN 4 putative catalytic residue 0 0 1 1 173 1 -240085 cd04734 OYE_like_3_FMN 1 putative active site 0 0 1 1 19,21,53,95,165,213,314,315 1 -240085 cd04734 OYE_like_3_FMN 2 putative substrate binding site 0 0 1 1 163,165 5 -240085 cd04734 OYE_like_3_FMN 3 putative FMN binding site 0 0 1 1 19,21,53,95,213,314,315 5 -240085 cd04734 OYE_like_3_FMN 4 putative catalytic residue 0 0 1 1 165 1 -240086 cd04735 OYE_like_4_FMN 1 putative active site 0 0 1 1 20,22,54,96,168,224,312,313 1 -240086 cd04735 OYE_like_4_FMN 2 putative substrate binding site 0 0 1 1 166,168 5 -240086 cd04735 OYE_like_4_FMN 3 putative FMN binding site 0 0 1 1 20,22,54,96,224,312,313 5 -240086 cd04735 OYE_like_4_FMN 4 putative catalytic residue 0 0 1 1 168 1 -240087 cd04736 MDH_FMN 1 active site 0 1 1 0 17,72,99,122,149,156,241,265,268,318 1 -240087 cd04736 MDH_FMN 2 substrate binding site 0 1 1 0 17,122,156,265,268 5 -240087 cd04736 MDH_FMN 3 FMN binding site 0 1 1 0 72,99,122,149,241,265,268,318 5 -240087 cd04736 MDH_FMN 4 catalytic residues 0 0 1 0 122,156,265 1 -240088 cd04737 LOX_like_FMN 1 active site 0 0 1 1 25,107,131,159,166,226,250,253,305 1 -240088 cd04737 LOX_like_FMN 2 FMN binding site 0 1 1 0 78,80,129,157,226,248,250,251,281,283,285,304,305 5 -240088 cd04737 LOX_like_FMN 3 teramer interface 0 1 1 0 9,34,37,38,41,43,47,48,51,52,53,161,207,208,209,210,226,227,230,232,233,256,257,258,259,260,263,288,289,292,332,335,336,344 2 -240088 cd04737 LOX_like_FMN 4 catalytic residues 0 0 1 0 131,166,250 1 -240089 cd04738 DHOD_2_like 1 active site 0 1 1 0 55,59,79,104,106,107,108,166,169,171,207,235,236,237,258,287,308,309 1 -240089 cd04738 DHOD_2_like 2 substrate binding site 0 1 1 0 104,166,168,236,237 5 -240089 cd04738 DHOD_2_like 3 FMN binding site 0 1 1 0 79,104,166,207,235,236,258,287,308,309 5 -240089 cd04738 DHOD_2_like 4 quinone interaction residues 0 1 1 0 12,95 5 -240089 cd04738 DHOD_2_like 5 catalytic residues 0 0 0 0 59,169,207 1 -240090 cd04739 DHOD_like 1 putative active site 0 0 1 1 43,74,131,134,168,194,195,196,217,244,265,266 1 -240090 cd04739 DHOD_like 2 putative substrate binding site 0 0 1 1 74,131,133,195,196 5 -240090 cd04739 DHOD_like 3 putative FMN binding site 0 0 1 1 43,74,131,168,194,195,217,244,265,266 5 -240091 cd04740 DHOD_1B_like 1 active site 0 1 1 0 41,64,121,124,159,185,186,187,211,238,259,260 1 -240091 cd04740 DHOD_1B_like 2 substrate binding site 0 1 1 0 64,121,123,186,187 5 -240091 cd04740 DHOD_1B_like 3 FMN binding site 0 1 1 0 41,64,121,159,185,186,211,238,259,260 5 -240091 cd04740 DHOD_1B_like 4 heterodimer interface 0 1 1 0 24,25,28,40,48,54,55,57,69,212,264,266,267 2 -240091 cd04740 DHOD_1B_like 5 homodimer interface 0 0 1 1 58,59,60,136,164,189,190,191,192,193,194,195,198,199,200,212,215,216,217,219,220,247,250,251,291,294 2 -240092 cd04741 DHOD_1A_like 1 active site 0 1 1 0 15,39,40,63,65,66,67,125,128,130,162,192,193,194,221,250,271,272 1 -240092 cd04741 DHOD_1A_like 2 substrate binding site 0 1 1 0 39,63,65,66,67,125,128,130,193,194 5 -240092 cd04741 DHOD_1A_like 3 FMN binding site 0 1 1 0 15,39,40,63,65,125,162,192,221,250,271,272 5 -240092 cd04741 DHOD_1A_like 4 homodimer interface 0 1 1 0 135,136,167,168,170,195,197,199,201,203,205,206,207,208,211,216,223,226,230,263 2 -240092 cd04741 DHOD_1A_like 5 catalytic residues 0 0 0 0 39,128,162 1 -240093 cd04742 NPD_FabD 1 FMN binding site 0 0 1 1 19,20,74,101,135,183,186,187,224,225,226,245,246,247,248 5 -240093 cd04742 NPD_FabD 2 substrate binding site 0 0 1 1 188,189,394 5 -240093 cd04742 NPD_FabD 3 putative catalytic residue 0 0 1 0 189 1 -240094 cd04743 NPD_PKS 1 FMN binding site 0 0 1 1 8,9,62,89,109,129,133,134,170,171,172,199,200,201,202 5 -240094 cd04743 NPD_PKS 2 substrate binding site 0 0 1 1 135,136,313 5 -240094 cd04743 NPD_PKS 3 putative catalytic residue 0 0 1 0 136 1 -100058 cd04745 LbH_paaY_like 1 putative metal binding site 0 0 1 1 54,71,76 4 -100058 cd04745 LbH_paaY_like 2 putative trimer interface 0 0 1 1 7,9,11,12,15,27,30,31,33,35,49,50,54,71,72,73,74,76,88 2 -240095 cd04747 OYE_like_5_FMN 1 putative active site 0 0 1 1 19,21,53,96,168,220,327,328 1 -240095 cd04747 OYE_like_5_FMN 2 putative substrate binding site 0 0 1 1 166,168 5 -240095 cd04747 OYE_like_5_FMN 3 putative FMN binding site 0 0 1 1 19,21,53,96,220,327,328 5 -240095 cd04747 OYE_like_5_FMN 4 putative catalytic residue 0 0 1 1 168 1 -212498 cd04759 Rib_hydrolase 1 NAD binding site 0 1 1 0 71,72,73,76,92,93,102,135,168,173 5 -133389 cd04761 HTH_MerR-SF 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133390 cd04762 HTH_MerR-trunc 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133391 cd04763 HTH_MlrA-like 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133392 cd04764 HTH_MlrA-like_sg1 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133393 cd04765 HTH_MlrA-like_sg2 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133394 cd04766 HTH_HspR 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133394 cd04766 HTH_HspR 2 putative dimer interface 0 0 1 1 48,51,56,57,66,69,73,79,83,86,87 2 -133395 cd04767 HTH_HspR-like_MBC 1 DNA binding residues 0 0 1 1 2,3,4,18,33,34,35 3 -133395 cd04767 HTH_HspR-like_MBC 2 putative dimer interface 0 0 1 1 47,50,55,56,65,77,81,87,91,94,95 2 -133395 cd04767 HTH_HspR-like_MBC 3 putative metal binding residues 0 0 1 1 71,95,103,113,116 4 -133396 cd04768 HTH_BmrR-like 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133396 cd04768 HTH_BmrR-like 2 drug binding residues 0 1 1 0 37 5 -133396 cd04768 HTH_BmrR-like 3 dimer interface 0 0 1 1 48,51,55,56,65,77,81,87,91,94,95 2 -133397 cd04769 HTH_MerR2 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133397 cd04769 HTH_MerR2 2 putative dimer interface 0 0 1 1 47,50,54,55,64,83,87,93,97,100,101 2 -133398 cd04770 HTH_HMRTR 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133398 cd04770 HTH_HMRTR 2 dimer interface 0 1 1 0 48,51,55,56,65,76,77,80,83,87,93,97,100,101,108,113,114,119,121 2 -133398 cd04770 HTH_HMRTR 3 metal binding site 0 1 1 1 76,111,119 4 -133399 cd04772 HTH_TioE_rpt1 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133399 cd04772 HTH_TioE_rpt1 2 putative dimer interface 0 0 1 1 48,51,58,59,68,80,84,90,94,97,98 2 -133400 cd04773 HTH_TioE_rpt2 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133400 cd04773 HTH_TioE_rpt2 2 putative dimer interface 0 0 1 1 48,51,55,56,65,83,87,93,97,100,101 2 -133401 cd04774 HTH_YfmP 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133401 cd04774 HTH_YfmP 2 putative dimer interface 0 0 1 1 47,50,55,56,65,77,81,87,91,94,95 2 -133402 cd04775 HTH_Cfa-like 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133402 cd04775 HTH_Cfa-like 2 putative dimer interface 0 0 1 1 48,51,55,56,65,82,86,92,96,99,100 2 -133403 cd04776 HTH_GnyR 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133403 cd04776 HTH_GnyR 2 putative dimer interface 0 0 1 1 46,49,53,54,63,84,88,94,98,101,102 2 -133404 cd04777 HTH_MerR-like_sg1 1 DNA binding residues 0 0 1 1 1,2,3,17,32,33,34 3 -133404 cd04777 HTH_MerR-like_sg1 2 putative dimer interface 0 0 1 1 46,49,53,54,63,85,89,95,99,102,103 2 -133405 cd04778 HTH_MerR-like_sg2 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133405 cd04778 HTH_MerR-like_sg2 2 putative dimer interface 0 0 1 1 48,51,55,56,65,86,90,96,100,103,104 2 -133406 cd04779 HTH_MerR-like_sg4 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133406 cd04779 HTH_MerR-like_sg4 2 putative dimer interface 0 0 1 1 47,50,54,55,64,78,82,88,92,95,96 2 -133407 cd04780 HTH_MerR-like_sg5 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133407 cd04780 HTH_MerR-like_sg5 2 putative dimer interface 0 0 1 1 48,51,56,57,66,73,77,83,87,90,91 2 -133408 cd04781 HTH_MerR-like_sg6 1 DNA binding residues 0 0 1 1 1,2,3,17,33,34,35 3 -133408 cd04781 HTH_MerR-like_sg6 2 putative dimer interface 0 0 1 1 47,50,54,55,64,78,82,88,92,95,96 2 -133408 cd04781 HTH_MerR-like_sg6 3 putative metal binding residues 0 0 1 1 105,113 4 -133409 cd04782 HTH_BltR 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133409 cd04782 HTH_BltR 2 dimer interface 0 0 1 1 48,51,55,56,65,78,82,88,92,95,96 2 -133410 cd04783 HTH_MerR1 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133410 cd04783 HTH_MerR1 2 dimer interface 0 0 1 1 48,51,55,56,65,74,75,78,81,85,91,95,98,99,106,111,112,118,120 2 -133410 cd04783 HTH_MerR1 3 mercury binding site 0 0 1 1 74,109,118 4 -133411 cd04784 HTH_CadR-PbrR 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133411 cd04784 HTH_CadR-PbrR 2 dimer interface 0 0 1 1 48,51,55,56,65,76,77,80,83,87,93,97,100,101,108,113,114,120,122 2 -133411 cd04784 HTH_CadR-PbrR 3 putative metal binding site 0 0 1 1 76,111,120 4 -133412 cd04785 HTH_CadR-PbrR-like 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133412 cd04785 HTH_CadR-PbrR-like 2 dimer interface 0 0 1 1 48,51,55,56,65,76,77,80,83,87,93,97,100,101,108,113,114,119,121 2 -133412 cd04785 HTH_CadR-PbrR-like 3 putative metal binding site 0 0 1 1 76,111,119 4 -133413 cd04786 HTH_MerR-like_sg7 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133413 cd04786 HTH_MerR-like_sg7 2 putative dimer interface 0 0 1 1 48,51,55,56,65,82,86,92,96,99,100 2 -133414 cd04787 HTH_HMRTR_unk 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133414 cd04787 HTH_HMRTR_unk 2 dimer interface 0 0 1 1 48,51,55,56,65,76,77,80,83,87,93,97,100,101,108,117,118,125,127 2 -133415 cd04788 HTH_NolA-AlbR 1 DNA binding residues 0 0 1 1 1,2,3,17,34,35,36 3 -133415 cd04788 HTH_NolA-AlbR 2 putative dimer interface 0 0 1 1 48,51,55,56,65,77,81,87,91,94,95 2 -133416 cd04789 HTH_Cfa 1 DNA binding residues 0 0 1 1 2,3,4,18,34,35,36 3 -133416 cd04789 HTH_Cfa 2 putative dimer interface 0 0 1 1 48,51,55,56,65,82,86,92,96,99,100 2 -133417 cd04790 HTH_Cfa-like_unk 1 DNA binding residues 0 0 1 1 2,3,4,18,35,36,37 3 -133417 cd04790 HTH_Cfa-like_unk 2 putative dimer interface 0 0 1 1 49,52,56,57,66,85,89,95,99,102,103 2 -271199 cd04791 LanC_SerThrkinase 1 zinc binding site CC[HC] 0 1 1 200,244,245 4 -271199 cd04791 LanC_SerThrkinase 2 active site HCC[HC] 0 1 1 142,200,244,245 1 -271200 cd04792 LanM-like 1 zinc binding site CC[HC] 0 1 0 708,753,754 4 -271200 cd04792 LanM-like 2 active site HCC[HC] 0 1 0 650,708,753,754 1 -271201 cd04793 LanC 1 zinc binding site CC[HC] 1 1 0 242,291,292 4 -271201 cd04793 LanC 2 active site HCC[HC] 0 1 0 173,242,291,292 1 -271202 cd04794 euk_LANCL 1 zinc binding site CC[HC] 1 1 1 227,273,274 4 -271202 cd04794 euk_LANCL 2 active site HCC[HC] 1 1 1 168,227,273,274 1 -341401 cd04801 CBS_pair_peptidase_M50 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,37,38,39,40,41,42,45,46,47,48,49,50,60,61,62,63,64 7 -341401 cd04801 CBS_pair_peptidase_M50 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,99,100,101,102,103,104,105,107,108,109,110,111 7 -341401 cd04801 CBS_pair_peptidase_M50 3 putative ligand binding site I 0 0 0 0 29,41,45,46,49,69,91,92,93,107 5 -341401 cd04801 CBS_pair_peptidase_M50 4 putative ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,91,103,105,107,108,111 5 -240117 cd04813 PA_1 1 PA/protease or protease-like domain interface 0 0 1 1 74,75,76 2 -240118 cd04814 PA_M28_1 1 PA/protease or protease-like domain interface 0 0 1 1 102,103,104 2 -240119 cd04815 PA_M28_2 1 PA/protease or protease-like domain interface 0 0 1 1 93,94,95 2 -240120 cd04816 PA_SaNapH_like 1 PA/protease or protease-like domain interface 0 0 1 1 79,80,81 2 -240121 cd04817 PA_VapT_like 1 PA/subtilisin-like domain interface 0 1 1 0 9,10,12,97,98,99,100,101 2 -240122 cd04818 PA_subtilisin_1 1 PA/protease or protease-like domain interface 0 0 1 1 79,80,81 2 -240123 cd04819 PA_2 1 PA/protease or protease-like domain interface 0 0 1 1 84,85,86 2 -240124 cd04820 PA_M28_1_1 1 PA/protease or protease-like domain interface 0 0 1 1 96,97,98 2 -240125 cd04821 PA_M28_1_2 1 PA/protease or protease-like domain interface 0 0 1 1 107,108,109 2 -240126 cd04822 PA_M28_1_3 1 PA/protease or protease-like domain interface 0 0 1 1 108,109,110 2 -240127 cd04823 ALAD_PBGS_aspartate_rich 1 active site 0 1 1 1 114,116,118,126,161,191,197,200,201,206,213,217,244,267,270,309 1 -240127 cd04823 ALAD_PBGS_aspartate_rich 2 Schiff base residues 0 1 1 0 191,244 0 -240127 cd04823 ALAD_PBGS_aspartate_rich 3 aspartate-rich active site metal binding site 0 1 1 1 118,126,162 0 -240127 cd04823 ALAD_PBGS_aspartate_rich 4 allosteric magnesium binding site 0 1 1 1 1,165,229,233 4 -240127 cd04823 ALAD_PBGS_aspartate_rich 5 dimer interface 0 1 1 1 1,2,3,6,7,16,17,18,42,45,136,137,164,165,194,195,196,215,216,219,220,221,222,225,228,229,247,248,249,250,251,275,290,293,297,300 2 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 1 active site 0 1 1 1 112,114,116,124,160,191,197,200,201,206,213,217,244,268,271,310 1 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 2 Schiff base residues 0 1 1 0 191,244 0 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 3 Cysteine-rich active site metal binding 0 1 1 1 114,116,124 0 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 4 dimer interface 0 1 1 1 0,12,139,162,164,194,195,196,199,214,215,216,220,221,223,229,236,248,249,250,251,276,279,283,291,294,301,302 2 -173791 cd04842 Peptidases_S8_Kp43_protease 1 active site 0 1 1 1 14,55,121,122,123,124,152,153,154,155,156,250 1 -173791 cd04842 Peptidases_S8_Kp43_protease 2 catalytic triad 0 0 1 0 14,55,250 1 -173792 cd04843 Peptidases_S8_11 1 putative catalytic triad 0 0 1 0 21,52,237 1 -173792 cd04843 Peptidases_S8_11 2 putative active site 0 0 1 0 21,52,150,237 1 -173793 cd04847 Peptidases_S8_Subtilisin_like_2 1 active site 0 0 1 0 6,39,91,109,144,256 1 -173793 cd04847 Peptidases_S8_Subtilisin_like_2 2 catalytic triad 0 0 1 0 6,39,256 1 -173794 cd04848 Peptidases_S8_Autotransporter_serine_protease_like 1 catalytic triad 0 0 1 0 10,47,232 1 -173794 cd04848 Peptidases_S8_Autotransporter_serine_protease_like 2 putative active site 0 0 1 0 10,47,109,110,111,154,232 1 -173795 cd04852 Peptidases_S8_3 1 active site 0 0 1 0 37,109,161,180,212,272 1 -173795 cd04852 Peptidases_S8_3 2 catalytic triad 0 0 1 0 37,109,272 1 -173796 cd04857 Peptidases_S8_Tripeptidyl_Aminopeptidase_II 1 putative catalytic triad 0 0 1 0 30,186,371 1 -173796 cd04857 Peptidases_S8_Tripeptidyl_Aminopeptidase_II 2 putative active site 0 0 1 0 112,186,250,251,252,284,371 1 -240129 cd04859 Prim_Pol 1 nucleotide binding site 0 0 1 0 42,54,56,83,86,87,89,112,119 5 -240129 cd04859 Prim_Pol 2 primase nucleotide-binding site 0 0 1 1 54,56,89,112 3 -240129 cd04859 Prim_Pol 3 polymerase nucleotide-binding site 0 0 1 1 10,54,56,89,112 0 -240129 cd04859 Prim_Pol 4 DNA-binding residues 0 0 1 1 11,15,119,125 3 -240130 cd04860 AE_Prim_S 1 nucleotide binding site 0 1 1 0 82,84,86,133,136,137,139,193,202,203,205,211 5 -240130 cd04860 AE_Prim_S 2 zinc binding site 0 1 1 1 101,104 4 -240130 cd04860 AE_Prim_S 3 subunit interface 0 1 1 1 121,122,123,161,166,184,187 2 -240131 cd04861 LigD_Pol_like 1 nucleotide binding site 0 1 1 0 26,38,40,85,103,105,138,140,141,142,144,193,196,202,210,211,212 5 -240132 cd04862 PaeLigD_Pol_like 1 nucleotide binding site 0 1 1 0 38,85,103,105,138,141,142,144,193,196,202,210,211,212 5 -240133 cd04863 MtLigD_Pol_like 1 nucleotide binding site 0 1 1 0 26,38,40,86,107,109,142,144,145,146,148,200,206,214,216 5 -240134 cd04864 LigD_Pol_like_1 1 nucleotide binding site 0 0 1 0 38,40,87,105,107,139,141,142,143,145,194,197,203,211,212,213 5 -240135 cd04865 LigD_Pol_like_2 1 nucleotide binding site 0 0 1 0 38,40,86,104,106,139,141,142,143,145,194,197,203,211,212,213 5 -240136 cd04866 LigD_Pol_like_3 1 nucleotide binding site 0 0 1 0 38,40,81,98,100,133,135,136,137,139,189,192,198,206,207,208 5 -340516 cd04867 TGS_YchF_OLA1 1 key conserved lysine K48 [KR] 0 1 1 66 0 -153149 cd04877 ACT_TyrR 1 putative aromatic amino acid binding site 0 0 1 1 8,9 0 -153150 cd04878 ACT_AHAS 1 putative valine binding site 0 0 1 1 6,8,13,26,27,32,41 5 -153150 cd04878 ACT_AHAS 2 dimer interface 0 1 1 0 10,11,14,21,24,28,29,30,31,32,42 2 -153151 cd04879 ACT_3PGDH-like 1 L-serine binding site 0 1 1 1 5,7,25 5 -153152 cd04880 ACT_AAAH-PDT-like 1 putative amino acid binding site 0 0 1 1 10,11,12,13,30,31,32,33 5 -153157 cd04885 ACT_ThrD-I 1 putative Ile/Val binding site 0 0 1 1 9,10,11,12,13,14 5 -153162 cd04890 ACT_AK-like_1 1 allosteric regulatory binding residue 0 1 1 1 14,15,16,29,30,31,36 0 -153173 cd04901 ACT_3PGDH 1 L-serine binding site 0 1 1 1 5,7,25 5 -153173 cd04901 ACT_3PGDH 2 ACT domain interface 0 1 1 0 7,9,12,13,16,25,27,28,29,30,31,32,33 0 -153174 cd04902 ACT_3PGDH-xct 1 putative L-serine binding site 0 0 1 1 5,7,25 5 -153175 cd04903 ACT_LSD 1 putative L-serine binding site 0 0 0 1 5,7,25 5 -153176 cd04904 ACT_AAAH 1 putative amino acid binding site 0 0 1 1 11,12,13,14,31,32,33,34 5 -153177 cd04905 ACT_CM-PDT 1 putative L-Phe binding site 0 0 1 1 12,13,14,15,32,33,34,35 5 -153178 cd04906 ACT_ThrD-I_1 1 putative Ile/Val binding site 0 0 1 1 12,13,14,15,16,17 5 -153179 cd04907 ACT_ThrD-I_2 1 putative Ile/Val binding site 0 0 1 1 12,13,14,15,16,17 5 -153182 cd04910 ACT_AK-Ectoine_1 1 allosteric regulatory residue 0 0 1 1 35 0 -153183 cd04911 ACT_AKiii-YclM-BS_1 1 allosteric regulatory residue 0 0 1 1 37 0 -153184 cd04912 ACT_AKiii-LysC-EC-like_1 1 allosteric regulatory binding pocket 0 1 1 1 10,13,15,16,17,30,31,32,37,38 0 -153184 cd04912 ACT_AKiii-LysC-EC-like_1 2 dimer interface 0 1 1 1 8,11,12,13,18,21,30,33,34,35,36,37,38,39 2 -153185 cd04913 ACT_AKii-LysC-BS-like_1 1 putative allosteric regulatory site 0 0 1 1 37,38 0 -153189 cd04917 ACT_AKiii-LysC-EC_2 1 dimer interface 0 1 1 1 11,12,14,15,16,17,18,21,25,26,28,29,30,31,32,33,34,35,36,37 2 -153190 cd04918 ACT_AK1-AT_2 1 dimer interface 0 1 1 1 9,10,13,17,21,28,29,30,31,32,33,34,35,36,37,38,39,41 2 -153191 cd04919 ACT_AK-Hom3_2 1 putative threonine allosteric regulatory residues 0 0 1 1 15,35 0 -153193 cd04921 ACT_AKi-HSDH-ThrA-like_1 1 putative threonine allosteric regulatory site 0 0 1 1 36 0 -153193 cd04921 ACT_AKi-HSDH-ThrA-like_1 2 dimer interface 0 1 1 1 8,9,10,13,14,18,21,22,29,31,32,33,34,35,36,37,39,40,42,44 2 -153194 cd04922 ACT_AKi-HSDH-ThrA_2 1 putative threonine allosteric regulatory site 0 0 1 1 36 0 -153201 cd04929 ACT_TPH 1 putative amino acid binding site 0 0 1 1 11,12,13,14,31,32,33,34 5 -153202 cd04930 ACT_TH 1 putative amino acid binding site 0 0 1 1 52,53,54,55,72,73,74,75 5 -153203 cd04931 ACT_PAH 1 putative L-Phe binding site 0 0 1 1 25,26,27,28,45,46,47,48 5 -153203 cd04931 ACT_PAH 2 autoregulatory residues 0 0 1 1 0,1,2,3,4,5,6 0 -153204 cd04932 ACT_AKiii-LysC-EC_1 1 lysine allosteric regulatory site 0 1 1 1 10,13,16,17,30,31,32,37,38 0 -153204 cd04932 ACT_AKiii-LysC-EC_1 2 dimer interface 0 1 1 1 12,13,14,17,18,21,28,30,32,33,34,35,36,38,46,48 2 -153205 cd04933 ACT_AK1-AT_1 1 lysine allosteric regulatory site 0 1 1 1 10,13,15,16,30,31,32,37 0 -153205 cd04933 ACT_AK1-AT_1 2 S-adenosylmethionine binding site 0 1 1 1 28,30,46,51,52,53,55,59 5 -153205 cd04933 ACT_AK1-AT_1 3 dimer interface 0 1 1 1 4,8,9,11,12,13,18,21,30,33,34,35,36,37,38,39,40,42,51 2 -153206 cd04934 ACT_AK-Hom3_1 1 putative threonine allosteric regulatory residues 0 0 1 1 37,44 0 -153208 cd04936 ACT_AKii-LysC-BS-like_2 1 putative allosteric regulatory residue 0 0 1 1 0 0 -240137 cd04939 PA2301 1 putative deacylase active site 0 0 1 1 29,86,87,114 1 -340856 cd04950 GT4_TuaH-like 1 putative homodimer interface 0 0 1 0 307,312,313,315 2 -319276 cd04967 Ig1_Contactin 1 interdomain interface 0 1 1 1 0,1,82,83,84,85 2 -319277 cd04968 Ig3_Contactin 1 interdomain interface 0 1 1 1 21,23,24,25,26,27,29 2 -319277 cd04968 Ig3_Contactin 2 dimerization loop 0 0 1 1 38,39,40,41,42,43,44,45 0 -143172 cd04971 Ig_TrKABC_d5 1 receptor binding site 0 1 1 0 34,50,51,54 2 -143172 cd04971 Ig_TrKABC_d5 2 interdomain interface 0 1 1 0 9 2 -143173 cd04972 Ig_TrkABC_d4 1 interdomain interface 0 1 1 0 88,89 2 -319280 cd04974 Ig3_FGFR 1 polypeptide ligand binding site 0 1 1 1 9,14,15,16,45,46,50,54,75 2 -319281 cd04975 Ig4_SCFR_like 1 dimerization interface 0 1 1 0 68,69,70,71,74 2 -319283 cd04977 Ig1_NCAM-1_like 1 dimer interface 0 1 1 1 15,17,18 2 -319285 cd04979 Ig_Semaphorin_C 1 dimer interface 0 1 1 1 12,57 2 -143181 cd04980 IgV_L_kappa 1 heterodimer interface 0 1 1 1 33,35,37,42,45,49,86 2 -143181 cd04980 IgV_L_kappa 2 antigen binding site 0 1 1 0 30,31,48,91 2 -143181 cd04980 IgV_L_kappa 3 intrachain domain interface 0 1 0 0 10,102,104,105 2 -143181 cd04980 IgV_L_kappa 4 L1 hypervariable region 0 0 1 1 23,24,25,30 0 -143181 cd04980 IgV_L_kappa 5 L2 hypervariable region 0 0 1 1 65,66,67,68,69 0 -143181 cd04980 IgV_L_kappa 6 L3 hypervariable region 0 0 1 1 90,91,92,94,95,96 0 -319286 cd04981 IgV_H 1 heterodimer interface 0 1 1 0 35,39,43,91,107,108 2 -319286 cd04981 IgV_H 2 antigen binding site 0 1 1 1 29,46,95 2 -319286 cd04981 IgV_H 3 intrachain domain interface 0 1 1 0 5,7,112,114,116 2 -319286 cd04981 IgV_H 4 L1 hypervariable region 0 0 1 1 20,21,22,27,28 0 -319286 cd04981 IgV_H 5 L2 hypervariable region 0 0 1 1 69,70,71,72,73,74 0 -319286 cd04981 IgV_H 6 L3 hypervariable region 0 0 1 1 95,104,105,106 0 -143183 cd04982 IgV_TCR_gamma 1 IgV heterodimer interface 0 1 1 0 32,34,36,42,92,96,105,109 2 -143183 cd04982 IgV_TCR_gamma 2 antigen/MHC binding site 0 1 1 0 28,30,47,49,97 2 -143183 cd04982 IgV_TCR_gamma 3 intrachain IgC domain interface 0 1 1 0 3,5,6,7,8,16,18,20,112,114 2 -143183 cd04982 IgV_TCR_gamma 4 L1 hypervariable region 0 0 1 1 21,22,27,28,29 0 -143183 cd04982 IgV_TCR_gamma 5 L2 hypervariable region 0 0 1 1 70,75 0 -143183 cd04982 IgV_TCR_gamma 6 L3 hypervariable region 0 0 1 1 96,97,105,106 0 -319287 cd04983 IgV_TCR_alpha 1 IgV heterodimer interface 0 1 1 1 32,34,39,42,45,83,85,95,99,101 2 -319287 cd04983 IgV_TCR_alpha 2 antigen/MHC binding site 0 1 1 1 26,28,45,90 2 -319287 cd04983 IgV_TCR_alpha 3 intrachain IgC domain interface 0 1 1 0 10,11,108 2 -319287 cd04983 IgV_TCR_alpha 4 L1 hypervariable region 0 0 1 1 21,22,26,27 0 -319287 cd04983 IgV_TCR_alpha 5 L2 hypervariable region 0 0 1 1 61,62,63,67,68 0 -319287 cd04983 IgV_TCR_alpha 6 L3 hypervariable region 0 0 1 1 89,90,91,95,96,97,98 0 -143185 cd04984 IgV_L_lambda 1 heterodimer interface 0 1 1 1 27,29,76,89 2 -143185 cd04984 IgV_L_lambda 2 antigen binding site 0 1 1 1 21,22,23,25,82,83 2 -143185 cd04984 IgV_L_lambda 3 L1 hypervariable region 0 0 1 1 14,15,21,22 0 -143185 cd04984 IgV_L_lambda 4 L2 hypervariable region 0 0 1 1 57,58,61 0 -143185 cd04984 IgV_L_lambda 5 L3 hypervariable region 0 0 1 1 82,83,86,87,88 0 -319288 cd04985 IgC_CH1_IgAEGM 1 heterodimer interface 0 1 1 1 4,5,7,25,49,51,52,61,62,64 2 -319289 cd04986 IgC_CH2_IgA 1 heterodimer interface 0 0 1 1 6,7,8,9,22,24,26,28,61,62,63,64,66,68,69 2 -240138 cd05005 SIS_PHI 1 active site 0 1 1 0 43,82,83,84 1 -240138 cd05005 SIS_PHI 2 tetramer interface 0 1 1 1 2,3,4,7,42,45,48,49,52,53,55,61,67,68,69,70,88,89,93,96,145,149,156,157,160,161,174,175,176,177 2 -240139 cd05006 SIS_GmhA 1 active site 0 1 0 0 40,41,42,108,109,110,113,156,160 1 -240139 cd05006 SIS_GmhA 2 dimer interface 0 1 0 0 3,7,19,22,42,48,49,160,161,165,168,172,176 2 -240140 cd05007 SIS_Etherase 1 putative active site 0 0 1 0 59,125 1 -240141 cd05008 SIS_GlmS_GlmD_1 1 active site 0 1 1 0 8,9,53,54,55 1 -240141 cd05008 SIS_GlmS_GlmD_1 2 dimer interface 0 1 1 0 6,7,17,18,21,22,29,31,35,38,60 2 -240142 cd05009 SIS_GlmS_GlmD_2 1 active site 0 1 1 0 33,36 1 -240142 cd05009 SIS_GlmS_GlmD_2 2 dimer interface 0 1 1 0 21,35,39,41,43,45,49,51,52,53,55,56,57,58,75,76,80,82,83,145,146,151 2 -240143 cd05010 SIS_AgaS_like 1 putative active site 0 0 1 0 8,56 1 -240144 cd05013 SIS_RpiR 1 putative active site 0 0 1 0 23,67 1 -240145 cd05014 SIS_Kpsf 1 putative active site 0 0 1 0 10,54 1 -240146 cd05015 SIS_PGI_1 1 active site 0 1 1 1 27,29,30,80,81,82,85,141 1 -240146 cd05015 SIS_PGI_1 2 dimer interface 0 1 1 0 55,56,57,58,87,91,94 2 -240147 cd05016 SIS_PGI_2 1 active site 0 1 1 1 20,24 1 -240147 cd05016 SIS_PGI_2 2 dimer interface 0 1 1 0 0,8,20,24,27,28,46,48,49,50,53,54,57,58,61,89,91,99,102 2 -240148 cd05017 SIS_PGI_PMI_1 1 active site 0 1 1 1 6,8,9,50,52,55,101,102 1 -240148 cd05017 SIS_PGI_PMI_1 2 dimer interface 0 1 1 1 0,2,6,7,20,27,57,60 2 -176853 cd05018 CoxG 1 putative hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,25,29,35,41,43,45,47,49,54,58,62,63,64,67,73,75,77,88,89,90,92,94,103,105,107,109,123,124,125,126,127,129,130,131,133,134,135,138 5 -240149 cd05022 S-100A13 1 Ca2+ binding site 0 1 1 1 17,21,24,29,56,58,60,62,67 4 -240149 cd05022 S-100A13 2 putative FGF-1 binding site 0 0 1 1 80,81,82,83,84,85,86,87,88 0 -240149 cd05022 S-100A13 3 dimerization interface 0 1 1 0 0,1,2,3,5,6,8,9,12,33,37,40,65,69,72,75,76,77,79,80 2 -240150 cd05023 S-100A11 1 Ca2+ binding site 0 1 1 1 18,21,23,26,31,61,63,65,67,72 4 -240150 cd05023 S-100A11 2 annexin I binding site 0 1 1 1 40,42,43,46,47,52,80,83,84,87,88 0 -240150 cd05023 S-100A11 3 dimerization interface 0 1 1 0 1,3,4,6,7,8,9,10,11,13,14,15,25,35,39,40,41,42,43,70,71,74,75,77,78,79,81,82,85,86,87,88 2 -240151 cd05024 S-100A10 1 annexin 2 binding sites 0 1 1 1 3,7,10,39,42,43,80,83,88 0 -240151 cd05024 S-100A10 2 dimerization interface 0 1 1 1 0,2,5,6,9,14,35,36,70,73,74,81,84 2 -240152 cd05025 S-100A1 1 Ca2+ binding site 0 1 1 1 18,23,24,26,27,31,60,61,65,67,68,69,72 4 -240152 cd05025 S-100A1 2 CapZ binding site 0 0 1 1 4,42,43,45,47,48,50,55,70,71,74,78,79,80,81,82,84,85,86,87,88 0 -240152 cd05025 S-100A1 3 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,15,35,36,38,39,40,43,70,71,74,75,78,79,81,82,83,84,85,89 2 -240153 cd05026 S-100Z 1 Ca2+ binding site 0 0 1 1 19,24,27,32,62,64,66,68,73 4 -240154 cd05027 S-100B 1 Ca2+ binding site 0 1 1 1 17,20,22,25,30,60,62,64,66,71 4 -240154 cd05027 S-100B 2 TRTK-12 binding site 0 1 1 1 45,47,51,54,55,58,70,75,78,79,82,83,85,86 0 -240154 cd05027 S-100B 3 NDR kinase binding site 0 1 1 1 41,42,43,44,45,46,48,50,51,54,55,78,79,82,83,85,86 2 -240154 cd05027 S-100B 4 dimerization interface 0 1 1 1 0,1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,24,34,37,38,39,69,70,72,73,76,77,78,80,81,85,86,87 2 -240155 cd05029 S-100A6 1 Ca2+ binding site 0 1 1 1 19,22,24,27,32,60,62,64,66,71 4 -240155 cd05029 S-100A6 2 dimerization interface 0 1 1 0 0,3,4,7,8,10,11,12,15,26,27,68,69,70,73,74,77,78,80,81,84,86,87 2 -240156 cd05030 calgranulins 1 Ca2+ binding site 0 1 1 1 17,22,25,30,60,62,64,66,71 4 -240156 cd05030 calgranulins 2 dimerization interface 0 1 1 0 0,6,8,14,38,40,69,77,79 2 -240157 cd05031 S-100A10_like 1 annexin 2 binding sites 0 1 1 1 3,7,10,42,45,46,83,86,91 0 -240157 cd05031 S-100A10_like 2 dimerization interface 0 1 1 1 0,2,5,6,9,14,38,39,73,76,77,84,87 2 -173625 cd05032 PTKc_InsR_like 1 active site 0 1 1 1 13,15,16,17,21,39,41,88,90,94,143,147,148,150,161,178,179,180,182,183,192,194,226 1 -173625 cd05032 PTKc_InsR_like 2 ATP binding site 0 1 1 0 13,15,16,17,21,39,41,88,90,94,148,150,161 5 -173625 cd05032 PTKc_InsR_like 3 polypeptide substrate binding site 0 1 1 0 143,147,178,179,180,182,183,192,194,226 2 -173625 cd05032 PTKc_InsR_like 4 activation loop (A-loop) 0 1 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270629 cd05033 PTKc_EphR 1 active site 0 0 1 1 11,13,14,15,19,35,37,83,84,86,130,134,135,137,148,166,167,168,169,170,179,213 1 -270629 cd05033 PTKc_EphR 2 ATP binding site 0 1 1 0 11,14,15,35,37,83,84,86,135,137,148 5 -270629 cd05033 PTKc_EphR 3 polypeptide substrate binding site 0 0 1 1 130,134,166,167,168,169,170,179,213 2 -270629 cd05033 PTKc_EphR 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270630 cd05034 PTKc_Src_like 1 ATP binding site 0 1 1 0 2,5,10,22,24,68,69,70,71,75,116,118,121,123,134 5 -270630 cd05034 PTKc_Src_like 2 CSK binding interface 0 1 1 1 105,108,109,172,234,235,236,238,240,241,244 2 -270630 cd05034 PTKc_Src_like 3 activation loop (A-loop) 0 1 1 1 133,134,135,136,137,138,139,140,145,146,147,148,149,151,152,153,154,155,156,157 0 -270630 cd05034 PTKc_Src_like 4 SH3/SH2 domain interface 0 1 1 0 50,53,55,69,95,99,247 2 -270630 cd05034 PTKc_Src_like 5 active site 0 0 1 1 2,4,5,6,10,22,24,68,69,70,71,75,116,120,121,123,134,151,152,153,154,155,164,198 1 -270630 cd05034 PTKc_Src_like 6 polypeptide substrate binding site 0 0 1 1 116,120,151,152,153,154,155,164,198 2 -270631 cd05035 PTKc_TAM 1 ATP binding site 0 1 1 0 6,7,14,30,63,86,87,88,92,137,141,142,144,155 5 -270631 cd05035 PTKc_TAM 2 active site 0 0 1 1 6,7,8,9,10,14,30,32,63,86,87,88,92,137,141,142,144,155,173,174,175,176,177,186,220 1 -270631 cd05035 PTKc_TAM 3 polypeptide substrate binding site 0 0 1 1 137,141,173,174,175,176,177,186,220 2 -270631 cd05035 PTKc_TAM 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -270632 cd05036 PTKc_ALK_LTK 1 ATP binding site 0 1 1 0 13,15,16,21,39,41,87,88,89,90,91,93,94,144,145,147,160,161 5 -270632 cd05036 PTKc_ALK_LTK 2 active site 0 0 1 1 13,15,16,21,39,41,87,88,89,90,91,93,94,140,144,145,147,160,161,179,180,181,182,183,192,226 1 -270632 cd05036 PTKc_ALK_LTK 3 polypeptide substrate binding site 0 0 1 1 140,144,179,180,181,182,183,192,226 2 -270632 cd05036 PTKc_ALK_LTK 4 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270634 cd05038 PTKc_Jak_rpt2 1 ATP binding site 0 1 1 0 11,12,13,19,36,38,68,86,87,88,89,92,93,137,138,140,150,151 5 -270634 cd05038 PTKc_Jak_rpt2 2 active site 0 0 1 1 11,12,13,19,36,38,68,86,87,88,89,92,93,133,137,138,140,150,151,170,171,172,173,174,183,231 1 -270634 cd05038 PTKc_Jak_rpt2 3 polypeptide substrate binding site 0 0 1 1 133,137,170,171,172,173,174,183,231 2 -270634 cd05038 PTKc_Jak_rpt2 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,170,171,172,173,174,175,176 0 -270635 cd05039 PTKc_Csk_like 1 ATP binding site 0 1 1 0 13,14,15,21,32,34,62,78,79,80,81,84,85,130,131,133,143,144 5 -270635 cd05039 PTKc_Csk_like 2 SH3/SH2 domain interface 0 1 1 1 27,38,51,54,55,57,71 2 -270635 cd05039 PTKc_Csk_like 3 active site 0 0 1 1 13,14,15,21,32,34,62,78,79,80,81,84,85,126,130,131,133,143,144,157,158,159,160,161,170,204 1 -270635 cd05039 PTKc_Csk_like 4 polypeptide substrate binding site 0 0 1 1 126,130,157,158,159,160,161,170,204 2 -270635 cd05039 PTKc_Csk_like 5 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270636 cd05040 PTKc_Ack_like 1 ATP binding site 0 1 1 0 2,3,4,10,26,28,75,76,77,78,82,122,126,127,129,140 5 -270636 cd05040 PTKc_Ack_like 2 active site 0 0 1 1 2,3,4,10,26,28,75,76,77,78,82,122,126,127,129,140,159,160,161,162,163,172,206 1 -270636 cd05040 PTKc_Ack_like 3 polypeptide substrate binding site 0 0 1 1 122,126,159,160,161,162,163,172,206 2 -270636 cd05040 PTKc_Ack_like 4 activation loop (A-loop) 0 1 1 1 139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270637 cd05041 PTKc_Fes_like 1 active site 0 1 1 1 2,3,4,10,23,25,42,71,72,73,74,77,78,118,122,123,125,135,136,139,154,155,156,157,158,159,161,167,201,205 1 -270637 cd05041 PTKc_Fes_like 2 ATP binding site 0 1 1 0 2,3,4,10,23,25,42,71,72,73,74,77,78,122,123,125,135,136 5 -270637 cd05041 PTKc_Fes_like 3 polypeptide substrate binding site 0 1 1 0 118,122,123,139,154,155,156,157,158,159,161,167,201,205 2 -270637 cd05041 PTKc_Fes_like 4 activation loop (A-loop) 0 0 1 1 135,136,137,138,139,140,141,142,143,144,147,148,149,150,151,153,154,155,156,157,158,159,160 0 -270638 cd05042 PTKc_Aatyk 1 active site 0 0 1 1 2,3,4,5,6,10,25,27,73,74,75,76,79,80,124,128,129,131,142,160,161,162,163,164,173,214 1 -270638 cd05042 PTKc_Aatyk 2 ATP binding site 0 0 1 1 2,3,5,6,10,25,27,73,74,75,76,79,80,128,129,131,142 5 -270638 cd05042 PTKc_Aatyk 3 polypeptide substrate binding site 0 0 1 1 124,128,160,161,162,163,164,173,214 2 -270638 cd05042 PTKc_Aatyk 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166 0 -270640 cd05044 PTKc_c-ros 1 active site 0 0 1 1 2,3,4,5,6,10,29,31,77,78,79,80,83,84,130,134,135,137,152,170,171,172,173,174,183,217 1 -270640 cd05044 PTKc_c-ros 2 ATP binding site 0 0 1 1 2,3,5,6,10,29,31,77,78,79,80,83,84,134,135,137,152 5 -270640 cd05044 PTKc_c-ros 3 polypeptide substrate binding site 0 0 1 1 130,134,170,171,172,173,174,183,217 2 -270640 cd05044 PTKc_c-ros 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -173631 cd05045 PTKc_RET 1 ATP binding site 0 1 1 0 7,8,9,10,15,33,35,81,82,84,88,158,169 5 -173631 cd05045 PTKc_RET 2 active site 0 0 1 1 7,8,9,10,11,15,33,35,81,82,84,88,151,155,156,158,169,187,188,189,190,191,200,234 1 -173631 cd05045 PTKc_RET 3 polypeptide substrate binding site 0 0 1 1 151,155,187,188,189,190,191,200,234 2 -173631 cd05045 PTKc_RET 4 activation loop (A-loop) 0 0 1 1 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 0 -270641 cd05047 PTKc_Tie 1 ATP binding site 0 1 1 1 2,3,5,6,10,25,27,44,48,58,74,75,76,77,80,81,140,141,143,154 5 -270641 cd05047 PTKc_Tie 2 active site 0 0 1 1 2,3,4,5,6,10,25,27,44,48,51,58,74,75,76,77,80,81,132,134,136,140,141,143,152,153,154,155,169,170,171,172,173,182,216 1 -270641 cd05047 PTKc_Tie 3 polypeptide substrate binding site 0 0 1 1 136,140,169,170,171,172,173,182,216 2 -270641 cd05047 PTKc_Tie 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270642 cd05048 PTKc_Ror 1 active site 0 0 1 1 12,13,14,15,16,20,38,40,86,87,88,89,92,93,148,152,153,155,166,184,185,186,187,188,197,231 1 -270642 cd05048 PTKc_Ror 2 ATP binding site 0 0 1 1 12,13,15,16,20,38,40,86,87,88,89,92,93,152,153,155,166 5 -270642 cd05048 PTKc_Ror 3 polypeptide substrate binding site 0 0 1 1 148,152,184,185,186,187,188,197,231 2 -270642 cd05048 PTKc_Ror 4 activation loop (A-loop) 0 0 1 1 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -270643 cd05049 PTKc_Trk 1 ATP binding site 0 1 1 1 12,13,15,16,20,38,40,86,87,88,89,92,93,150,151,153,164 5 -270643 cd05049 PTKc_Trk 2 active site 0 0 1 1 12,13,14,15,16,20,38,40,86,87,88,89,92,93,146,150,151,153,164,182,183,184,185,186,195,229 1 -270643 cd05049 PTKc_Trk 3 polypeptide substrate binding site 0 0 1 1 146,150,182,183,184,185,186,195,229 2 -270643 cd05049 PTKc_Trk 4 activation loop (A-loop) 0 0 1 1 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -133181 cd05050 PTKc_Musk 1 active site 0 0 1 1 12,13,14,15,16,20,38,40,86,87,88,89,92,93,154,158,159,161,172,190,191,192,193,194,203,237 1 -133181 cd05050 PTKc_Musk 2 ATP binding site 0 0 1 1 12,13,15,16,20,38,40,86,87,88,89,92,93,158,159,161,172 5 -133181 cd05050 PTKc_Musk 3 polypeptide substrate binding site 0 0 1 1 154,158,190,191,192,193,194,203,237 2 -133181 cd05050 PTKc_Musk 4 activation loop (A-loop) 0 0 1 1 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 0 -270644 cd05051 PTKc_DDR 1 active site 0 0 1 1 12,13,14,15,16,20,49,51,97,98,99,100,103,104,155,159,160,162,173,191,192,193,194,195,204,239 1 -270644 cd05051 PTKc_DDR 2 ATP binding site 0 0 1 1 12,13,15,16,20,49,51,97,98,99,100,103,104,159,160,162,173 5 -270644 cd05051 PTKc_DDR 3 polypeptide substrate binding site 0 0 1 1 155,159,191,192,193,194,195,204,239 2 -270644 cd05051 PTKc_DDR 4 activation loop (A-loop) 0 0 1 1 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 0 -270645 cd05052 PTKc_Abl 1 active site 0 1 1 1 13,15,16,17,34,36,81,83,87,135,146,164,165,166,168,176,210,214 1 -270645 cd05052 PTKc_Abl 2 ATP binding site 0 1 1 0 13,15,18,34,36,51,55,64,80,81,83,87,135,145,146 5 -270645 cd05052 PTKc_Abl 3 polypeptide substrate binding site 0 1 1 0 164,165,166,168,176,210,214 2 -270645 cd05052 PTKc_Abl 4 activation loop (A-loop) 0 1 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270645 cd05052 PTKc_Abl 5 SH3/SH2 domain interface 0 1 1 0 28,29,59,60,61,65,107,139,140,258,259 2 -270645 cd05052 PTKc_Abl 6 myristoyl binding site 0 1 1 1 105,106,109,194,197,198,227,228 5 -270646 cd05053 PTKc_FGFR 1 ATP binding site 0 1 1 0 19,20,22,24,25,27,46,48,95,96,97,98,101,102,161,162,164,175 5 -270646 cd05053 PTKc_FGFR 2 activation loop (A-loop) 0 1 1 1 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 0 -270646 cd05053 PTKc_FGFR 3 active site 0 0 1 1 19,20,22,24,25,27,46,48,95,96,97,98,101,102,157,161,162,164,175,193,194,195,196,197,206,240 1 -270646 cd05053 PTKc_FGFR 4 polypeptide substrate binding site 0 0 1 1 157,161,193,194,195,196,197,206,240 2 -270647 cd05054 PTKc_VEGFR 1 ATP binding site 0 1 1 1 14,15,16,22,40,41,42,59,88,90,91,92,93,94,96,97,153,160,169,179,180,181 5 -270647 cd05054 PTKc_VEGFR 2 active site 0 0 1 1 14,15,16,17,18,22,40,41,42,59,88,90,91,92,93,94,96,97,153,160,162,166,167,169,179,180,181,198,199,200,201,202,211,246 1 -270647 cd05054 PTKc_VEGFR 3 polypeptide substrate binding site 0 0 1 1 162,166,198,199,200,201,202,211,246 2 -270647 cd05054 PTKc_VEGFR 4 activation loop (A-loop) 0 0 1 1 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 0 -133186 cd05055 PTKc_PDGFR 1 active site 0 0 1 1 42,43,45,46,47,48,50,68,70,118,120,124,165,169,170,172,183,201,202,203,204,205,214,249 1 -133186 cd05055 PTKc_PDGFR 2 ATP binding site 0 1 1 0 42,43,45,46,47,48,50,68,70,118,120,124,169,170,172,183 5 -133186 cd05055 PTKc_PDGFR 3 polypeptide substrate binding site 0 0 1 1 165,169,201,202,203,204,205,214,249 2 -133186 cd05055 PTKc_PDGFR 4 activation loop (A-loop) 0 0 1 1 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 0 -133187 cd05056 PTKc_FAK 1 ATP binding site 0 1 1 0 13,14,15,16,17,21,37,39,56,69,84,85,86,87,90,91,135,136,138,149 5 -133187 cd05056 PTKc_FAK 2 activation loop (A-loop) 0 1 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -133187 cd05056 PTKc_FAK 3 FERM domain interface 0 1 1 1 179,180,181,182,183,217,221,246 2 -133187 cd05056 PTKc_FAK 4 active site 0 0 1 1 13,14,15,16,17,21,37,39,56,69,84,85,86,87,90,91,131,135,136,138,149,166,167,168,169,170,179,213 1 -133187 cd05056 PTKc_FAK 5 polypeptide substrate binding site 0 0 1 1 131,135,166,167,168,169,170,179,213 2 -270648 cd05057 PTKc_EGFR_like 1 active site 0 1 1 1 14,15,18,19,41,87,89,93,137,138,151,172,173,174,175,176,181,185 1 -270648 cd05057 PTKc_EGFR_like 2 ATP binding site 0 1 1 0 14,15,22,39,41,62,86,87,89,137,138,140,151 5 -270648 cd05057 PTKc_EGFR_like 3 polypeptide substrate binding site 0 1 1 0 172,173,174,175,176,181,185 2 -270648 cd05057 PTKc_EGFR_like 4 activation loop (A-loop) 0 1 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270649 cd05058 PTKc_Met_Ron 1 ATP binding site 0 1 1 0 2,3,4,5,10,26,28,58,75,76,77,78,81,82,126,127,129,139,140 5 -270649 cd05058 PTKc_Met_Ron 2 activation loop (A-loop) 0 1 1 1 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166 0 -270649 cd05058 PTKc_Met_Ron 3 active site 0 0 1 1 2,3,4,5,10,26,28,58,75,76,77,78,81,82,122,126,127,129,139,140,160,161,162,163,164,173,207 1 -270649 cd05058 PTKc_Met_Ron 4 polypeptide substrate binding site 0 0 1 1 122,126,160,161,162,163,164,173,207 2 -173637 cd05059 PTKc_Tec_like 1 ATP binding site 0 1 1 0 11,12,19,31,33,52,75,77,78,79,80,81,83,128,131,141,142,145 5 -173637 cd05059 PTKc_Tec_like 2 activation loop (A-loop) 0 1 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -173637 cd05059 PTKc_Tec_like 3 active site 0 0 1 1 11,12,19,31,33,52,75,77,78,79,80,81,83,124,128,131,141,142,145,159,160,161,162,163,172,206 1 -173637 cd05059 PTKc_Tec_like 4 polypeptide substrate binding site 0 0 1 1 124,128,159,160,161,162,163,172,206 2 -270650 cd05060 PTKc_Syk_like 1 ATP binding site 0 1 1 0 2,3,4,5,6,7,10,26,28,58,73,74,75,76,77,79,80,123,124,126,136,137 5 -270650 cd05060 PTKc_Syk_like 2 active site 0 0 1 1 2,3,4,5,6,7,10,26,28,58,73,74,75,76,77,79,80,119,123,124,126,136,137,156,157,158,159,160,169,203 1 -270650 cd05060 PTKc_Syk_like 3 polypeptide substrate binding site 0 0 1 1 119,123,156,157,158,159,160,169,203 2 -270650 cd05060 PTKc_Syk_like 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -133192 cd05061 PTKc_InsR 1 active site 0 1 1 1 16,17,21,39,41,88,90,94,143,147,148,161,176,178,179,180,182,183,192,193,195,226 1 -133192 cd05061 PTKc_InsR 2 ATP binding site 0 1 1 0 16,17,21,39,41,88,90,94,147,148,150,161 5 -133192 cd05061 PTKc_InsR 3 polypeptide substrate binding site 0 1 1 1 147,176,178,179,180,182,183,192,193,195,226 2 -133192 cd05061 PTKc_InsR 4 activation loop (A-loop) 0 1 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -133192 cd05061 PTKc_InsR 5 APS (SH2 domain) interaction site 0 1 1 1 167,169,170,172,173 2 -133192 cd05061 PTKc_InsR 6 PTP1B noncatalytic binding site 0 1 1 1 30,31,32,33,111,113,153,154,279,284 2 -133193 cd05062 PTKc_IGF-1R 1 active site 0 1 1 1 13,15,16,17,21,39,88,90,143,147,150,161,178,179,180,181,182,183,191,192,194,195,226 1 -133193 cd05062 PTKc_IGF-1R 2 ATP binding site 0 1 1 0 13,15,16,17,21,39,88,90,150,161 5 -133193 cd05062 PTKc_IGF-1R 3 polypeptide substrate binding site 0 1 1 0 143,147,178,179,180,181,182,183,191,192,194,195,226 2 -133193 cd05062 PTKc_IGF-1R 4 activation loop (A-loop) 0 1 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -133194 cd05063 PTKc_EphR_A2 1 active site 0 0 1 1 12,14,15,16,20,36,38,84,85,87,131,135,136,138,149,168,169,170,171,172,181,215 1 -133194 cd05063 PTKc_EphR_A2 2 ATP binding site 0 1 1 0 12,15,16,36,38,84,85,87,136,138,149 5 -133194 cd05063 PTKc_EphR_A2 3 polypeptide substrate binding site 0 0 1 1 131,135,168,169,170,171,172,181,215 2 -133194 cd05063 PTKc_EphR_A2 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -133195 cd05064 PTKc_EphR_A10 1 active site 0 0 1 1 12,14,15,16,20,36,38,84,85,87,131,135,136,138,149,166,167,168,169,170,179,213 1 -133195 cd05064 PTKc_EphR_A10 2 ATP binding site 0 0 1 1 12,15,16,36,38,84,85,87,136,138,149 5 -133195 cd05064 PTKc_EphR_A10 3 polypeptide substrate binding site 0 0 1 1 131,135,166,167,168,169,170,179,213 2 -133195 cd05064 PTKc_EphR_A10 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -173638 cd05065 PTKc_EphR_B 1 active site 0 0 1 1 11,12,13,14,15,19,35,37,83,84,86,90,130,134,135,137,148,169,170,171,172,173,182,216 1 -173638 cd05065 PTKc_EphR_B 2 ATP binding site 0 1 1 0 11,12,13,15,19,35,37,83,84,86,90,135,137,148 5 -173638 cd05065 PTKc_EphR_B 3 polypeptide substrate binding site 0 0 1 1 130,134,169,170,171,172,173,182,216 2 -173638 cd05065 PTKc_EphR_B 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270651 cd05066 PTKc_EphR_A 1 active site 0 0 1 1 11,13,14,15,19,35,37,83,84,86,130,134,135,137,148,167,168,169,170,171,180,214 1 -270651 cd05066 PTKc_EphR_A 2 ATP binding site 0 1 1 0 11,12,13,14,15,19,35,37,83,84,85,86,89,90,134,135,137,148 5 -270651 cd05066 PTKc_EphR_A 3 polypeptide substrate binding site 0 0 1 1 130,134,167,168,169,170,171,180,214 2 -270651 cd05066 PTKc_EphR_A 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270652 cd05067 PTKc_Lck_Blk 1 ATP binding site 0 1 1 0 14,17,22,34,36,51,79,80,81,82,86,127,129,132,134,145 5 -270652 cd05067 PTKc_Lck_Blk 2 active site 0 0 1 1 14,16,17,18,22,34,36,51,79,80,81,82,86,127,131,132,134,145,162,163,164,165,166,175,209 1 -270652 cd05067 PTKc_Lck_Blk 3 polypeptide substrate binding site 0 0 1 1 127,131,162,163,164,165,166,175,209 2 -270652 cd05067 PTKc_Lck_Blk 4 SH3/SH2 domain interface 0 0 1 1 28,30,62,65,67,80,106,110,138,258 2 -270652 cd05067 PTKc_Lck_Blk 5 CSK binding interface 0 0 1 1 116,119,120,183,245,246,247,249,251,252,255,259,262,263 2 -270652 cd05067 PTKc_Lck_Blk 6 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270653 cd05068 PTKc_Frk_like 1 active site 0 0 1 1 15,17,18,19,23,35,37,81,82,83,84,88,128,132,133,135,146,164,165,166,167,168,177,211 1 -270653 cd05068 PTKc_Frk_like 2 ATP binding site 0 0 1 1 15,18,23,35,37,81,82,83,84,88,128,130,133,135,146 5 -270653 cd05068 PTKc_Frk_like 3 polypeptide substrate binding site 0 0 1 1 128,132,164,165,166,167,168,177,211 2 -270653 cd05068 PTKc_Frk_like 4 SH3/SH2 domain interface 0 0 1 1 29,31,63,66,68,82,107,111,139,260 2 -270653 cd05068 PTKc_Frk_like 5 CSK binding interface 0 0 1 1 117,120,121,185,247,248,249,251,253,254,257,261,264,265 2 -270653 cd05068 PTKc_Frk_like 6 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270654 cd05069 PTKc_Yes 1 active site 0 0 1 1 19,21,22,23,27,39,41,84,85,86,87,91,132,136,137,139,150,167,168,169,170,171,180,214 1 -270654 cd05069 PTKc_Yes 2 ATP binding site 0 0 1 1 19,22,27,39,41,84,85,86,87,91,132,134,137,139,150 5 -270654 cd05069 PTKc_Yes 3 polypeptide substrate binding site 0 0 1 1 132,136,167,168,169,170,171,180,214 2 -270654 cd05069 PTKc_Yes 4 SH3/SH2 domain interface 0 0 1 1 33,35,67,70,72,85,111,115,143,263 2 -270654 cd05069 PTKc_Yes 5 CSK binding interface 0 0 1 1 121,124,125,188,250,251,252,254,256,257,260,264,267,268,272 2 -270654 cd05069 PTKc_Yes 6 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270655 cd05070 PTKc_Fyn 1 ATP binding site 0 1 1 1 16,19,24,36,38,81,82,83,84,88,129,131,134,136,147 5 -270655 cd05070 PTKc_Fyn 2 active site 0 0 1 1 16,18,19,20,24,36,38,81,82,83,84,88,129,133,134,136,147,164,165,166,167,168,177,211 1 -270655 cd05070 PTKc_Fyn 3 polypeptide substrate binding site 0 0 1 1 129,133,164,165,166,167,168,177,211 2 -270655 cd05070 PTKc_Fyn 4 SH3/SH2 domain interface 0 0 1 1 30,32,64,67,69,82,108,112,140,260 2 -270655 cd05070 PTKc_Fyn 5 CSK binding interface 0 0 1 1 118,121,122,185,247,248,249,251,253,254,257,261,264,265,269 2 -270655 cd05070 PTKc_Fyn 6 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270656 cd05071 PTKc_Src 1 ATP binding site 0 1 1 0 16,17,24,36,38,81,82,83,84,87,129,131,133,134,136,147 5 -270656 cd05071 PTKc_Src 2 CSK binding interface 0 1 1 1 118,121,122,185,247,248,249,251,253,254,257,261,264,265,269 2 -270656 cd05071 PTKc_Src 3 SH3/SH2 domain interface 0 1 1 0 30,32,64,67,69,82,108,112,140,260 2 -270656 cd05071 PTKc_Src 4 activation loop (A-loop) 0 1 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270656 cd05071 PTKc_Src 5 active site 0 0 1 1 16,18,19,20,24,36,38,81,82,83,84,87,129,133,134,136,147,164,165,166,167,168,177,211 1 -270656 cd05071 PTKc_Src 6 polypeptide substrate binding site 0 0 1 1 129,133,164,165,166,167,168,177,211 2 -270657 cd05072 PTKc_Lyn 1 ATP binding site 0 1 1 0 14,22,34,36,80,81,82,83,86,87,90,132,135,146 5 -270657 cd05072 PTKc_Lyn 2 active site 0 0 1 1 14,16,17,18,22,34,36,80,81,82,83,87,128,132,133,135,146,163,164,165,166,167,176,210 1 -270657 cd05072 PTKc_Lyn 3 polypeptide substrate binding site 0 0 1 1 128,132,163,164,165,166,167,176,210 2 -270657 cd05072 PTKc_Lyn 4 SH3/SH2 domain interface 0 0 1 1 28,30,62,65,67,81,107,111,139,259 2 -270657 cd05072 PTKc_Lyn 5 CSK binding interface 0 0 1 1 117,120,121,184,246,247,248,250,252,253,256,260,263,264,268 2 -270657 cd05072 PTKc_Lyn 6 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270658 cd05073 PTKc_Hck 1 ATP binding site 0 1 1 1 18,21,40,55,83,84,86,133,136,138,149 5 -270658 cd05073 PTKc_Hck 2 SH3/SH2 domain interface 0 1 1 0 32,34,66,69,71,84,110,114,142,262 2 -270658 cd05073 PTKc_Hck 3 activation loop (A-loop) 0 1 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270658 cd05073 PTKc_Hck 4 active site 0 0 1 1 18,20,21,22,26,38,40,55,83,84,86,131,135,136,138,149,166,167,168,169,170,179,213 1 -270658 cd05073 PTKc_Hck 5 polypeptide substrate binding site 0 0 1 1 131,135,166,167,168,169,170,179,213 2 -270658 cd05073 PTKc_Hck 6 CSK binding interface 0 0 1 1 120,123,124,187,249,250,251,253,255,256,259,263 2 -270659 cd05074 PTKc_Tyro3 1 ATP binding site 0 1 1 1 16,17,24,40,73,96,97,98,102,147,151,152,154,165 5 -270659 cd05074 PTKc_Tyro3 2 active site 0 0 1 1 16,17,18,19,20,24,40,42,73,96,97,98,102,147,151,152,154,165,183,184,185,186,187,196,230 1 -270659 cd05074 PTKc_Tyro3 3 polypeptide substrate binding site 0 0 1 1 147,151,183,184,185,186,187,196,230 2 -270659 cd05074 PTKc_Tyro3 4 activation loop (A-loop) 0 0 1 1 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 0 -270660 cd05075 PTKc_Axl 1 active site 0 0 1 1 7,8,9,10,11,15,30,32,63,86,87,88,92,137,141,142,144,155,173,174,175,176,177,186,220 1 -270660 cd05075 PTKc_Axl 2 ATP binding site 0 0 1 1 7,8,15,30,63,86,87,88,92,137,141,142,144,155 5 -270660 cd05075 PTKc_Axl 3 polypeptide substrate binding site 0 0 1 1 137,141,173,174,175,176,177,186,220 2 -270660 cd05075 PTKc_Axl 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -270663 cd05078 PTK_Jak2_rpt1 1 ATP binding site 0 0 1 1 6,9,10,12,14,34,36,81,82,83,84,88,128,132,133,135 5 -270663 cd05078 PTK_Jak2_rpt1 2 V617F mutation site 0 0 1 1 72 0 -270663 cd05078 PTK_Jak2_rpt1 3 active site 0 0 1 1 6,9,10,12,14,34,36,81,82,83,84,88,128,132,133,135,154,166,167,168,169,170,179,214 1 -270663 cd05078 PTK_Jak2_rpt1 4 polypeptide substrate binding site 0 0 1 1 128,132,166,167,168,169,170,179,214 2 -270663 cd05078 PTK_Jak2_rpt1 5 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -173644 cd05079 PTKc_Jak1_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,18,19,36,38,86,87,88,89,93,137,138,140,150,151 5 -173644 cd05079 PTKc_Jak1_rpt2 2 active site 0 0 1 1 11,12,13,14,17,18,19,36,38,86,87,88,89,93,133,137,138,140,150,151,170,171,172,173,174,183,231 1 -173644 cd05079 PTKc_Jak1_rpt2 3 polypeptide substrate binding site 0 0 1 1 133,137,170,171,172,173,174,183,231 2 -173644 cd05079 PTKc_Jak1_rpt2 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -270664 cd05080 PTKc_Tyk2_rpt2 1 ATP binding site 0 1 1 0 11,12,14,19,36,38,68,86,87,88,89,90,92,135,136,138,148,149 5 -270664 cd05080 PTKc_Tyk2_rpt2 2 active site 0 0 1 1 11,12,14,19,36,38,68,86,87,88,89,90,92,131,135,136,138,148,149,168,169,170,171,172,181,229 1 -270664 cd05080 PTKc_Tyk2_rpt2 3 polypeptide substrate binding site 0 0 1 1 131,135,168,169,170,171,172,181,229 2 -270664 cd05080 PTKc_Tyk2_rpt2 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -270665 cd05081 PTKc_Jak3_rpt2 1 ATP binding site 0 1 1 0 11,12,19,36,38,67,85,86,87,88,92,94,136,137,139,149,150 5 -270665 cd05081 PTKc_Jak3_rpt2 2 active site 0 0 1 1 11,12,19,36,38,67,85,86,87,88,92,94,132,136,137,139,149,150,169,170,171,172,173,182,230 1 -270665 cd05081 PTKc_Jak3_rpt2 3 polypeptide substrate binding site 0 0 1 1 132,136,169,170,171,172,173,182,230 2 -270665 cd05081 PTKc_Jak3_rpt2 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -133213 cd05082 PTKc_Csk 1 ATP binding site 0 1 1 0 13,14,15,21,32,34,61,78,79,80,81,84,85,130,131,133,143,144 5 -133213 cd05082 PTKc_Csk 2 c-Src interface 0 1 1 1 91,92,93,94,95,163,196,197,200,201,202 2 -133213 cd05082 PTKc_Csk 3 SH3/SH2 domain interface 0 1 1 1 27,38,50,53,54,56,71 2 -133213 cd05082 PTKc_Csk 4 active site 0 0 1 1 13,14,15,21,32,34,61,78,79,80,81,84,85,126,130,131,133,143,144,157,158,159,160,161,170,204 1 -133213 cd05082 PTKc_Csk 5 polypeptide substrate binding site 0 0 1 1 126,130,157,158,159,160,161,170,204 2 -133213 cd05082 PTKc_Csk 6 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270666 cd05083 PTKc_Chk 1 active site 0 0 1 1 13,14,15,21,32,34,61,76,77,78,79,82,83,124,128,129,131,141,142,155,156,157,158,159,168,202 1 -270666 cd05083 PTKc_Chk 2 ATP binding site 0 0 1 1 13,14,15,21,32,34,61,76,77,78,79,82,83,128,129,131,141,142 5 -270666 cd05083 PTKc_Chk 3 polypeptide substrate binding site 0 0 1 1 124,128,155,156,157,158,159,168,202 2 -270666 cd05083 PTKc_Chk 4 SH3/SH2 domain interface 0 0 1 1 27,38,50,53,54,56,69 2 -270666 cd05083 PTKc_Chk 5 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270667 cd05084 PTKc_Fes 1 active site 0 1 1 1 3,4,5,11,24,26,43,72,73,74,75,78,79,119,123,124,126,136,137,140,155,156,157,158,159,160,162,168,202,206 1 -270667 cd05084 PTKc_Fes 2 ATP binding site 0 1 1 0 3,4,5,11,24,26,43,72,73,74,75,78,79,123,124,126,136,137 5 -270667 cd05084 PTKc_Fes 3 polypeptide substrate binding site 0 1 1 0 119,123,124,140,155,156,157,158,159,160,162,168,202,206 2 -270667 cd05084 PTKc_Fes 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270668 cd05085 PTKc_Fer 1 active site 0 0 1 1 3,4,5,11,23,25,42,71,72,73,74,77,78,118,122,123,125,135,136,153,154,155,156,157,158,160,200,204 1 -270668 cd05085 PTKc_Fer 2 ATP binding site 0 0 1 1 3,4,5,11,23,25,42,71,72,73,74,77,78,122,123,125,135,136 5 -270668 cd05085 PTKc_Fer 3 polypeptide substrate binding site 0 0 1 1 118,122,123,153,154,155,156,157,158,160,200,204 2 -270668 cd05085 PTKc_Fer 4 activation loop (A-loop) 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159 0 -270669 cd05086 PTKc_Aatyk2 1 active site 0 0 1 1 4,5,6,7,8,12,27,29,75,76,77,78,81,82,126,130,131,133,144,162,163,164,165,166,175,216 1 -270669 cd05086 PTKc_Aatyk2 2 ATP binding site 0 0 1 1 4,5,7,8,12,27,29,75,76,77,78,81,82,130,131,133,144 5 -270669 cd05086 PTKc_Aatyk2 3 polypeptide substrate binding site 0 0 1 1 126,130,162,163,164,165,166,175,216 2 -270669 cd05086 PTKc_Aatyk2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270670 cd05087 PTKc_Aatyk1 1 active site 0 0 1 1 4,5,6,7,8,12,27,29,75,76,77,78,81,82,126,130,131,133,144,162,163,164,165,166,175,216 1 -270670 cd05087 PTKc_Aatyk1 2 ATP binding site 0 0 1 1 4,5,7,8,12,27,29,75,76,77,78,81,82,130,131,133,144 5 -270670 cd05087 PTKc_Aatyk1 3 polypeptide substrate binding site 0 0 1 1 126,130,162,163,164,165,166,175,216 2 -270670 cd05087 PTKc_Aatyk1 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -133219 cd05088 PTKc_Tie2 1 ATP binding site 0 1 1 1 14,15,17,18,22,37,39,56,60,70,86,87,88,89,92,93,152,153,155,166 5 -133219 cd05088 PTKc_Tie2 2 active site 0 0 1 1 14,15,16,17,18,22,37,39,56,60,63,70,86,87,88,89,92,93,144,146,148,152,153,155,164,165,166,167,181,182,183,184,185,194,228 1 -133219 cd05088 PTKc_Tie2 3 polypeptide substrate binding site 0 0 1 1 148,152,181,182,183,184,185,194,228 2 -133219 cd05088 PTKc_Tie2 4 activation loop (A-loop) 0 0 1 1 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 0 -270671 cd05089 PTKc_Tie1 1 active site 0 0 1 1 9,10,11,12,13,17,32,34,51,55,58,65,81,82,83,84,87,88,139,141,143,147,148,150,159,160,161,162,176,177,178,179,180,189,223 1 -270671 cd05089 PTKc_Tie1 2 ATP binding site 0 0 1 1 9,10,12,13,17,32,34,51,55,65,81,82,83,84,87,88,147,148,150,161 5 -270671 cd05089 PTKc_Tie1 3 polypeptide substrate binding site 0 0 1 1 143,147,176,177,178,179,180,189,223 2 -270671 cd05089 PTKc_Tie1 4 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -270672 cd05090 PTKc_Ror1 1 active site 0 0 1 1 12,13,14,15,16,20,37,39,85,86,87,88,91,92,148,152,153,155,166,184,185,186,187,188,197,231 1 -270672 cd05090 PTKc_Ror1 2 ATP binding site 0 0 1 1 12,13,15,16,20,37,39,85,86,87,88,91,92,152,153,155,166 5 -270672 cd05090 PTKc_Ror1 3 polypeptide substrate binding site 0 0 1 1 148,152,184,185,186,187,188,197,231 2 -270672 cd05090 PTKc_Ror1 4 activation loop (A-loop) 0 0 1 1 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -270673 cd05091 PTKc_Ror2 1 active site 0 0 1 1 13,14,15,16,17,21,39,41,87,88,89,90,93,94,149,153,154,156,167,185,186,187,188,189,198,232 1 -270673 cd05091 PTKc_Ror2 2 ATP binding site 0 0 1 1 13,14,16,17,21,39,41,87,88,89,90,93,94,153,154,156,167 5 -270673 cd05091 PTKc_Ror2 3 polypeptide substrate binding site 0 0 1 1 149,153,185,186,187,188,189,198,232 2 -270673 cd05091 PTKc_Ror2 4 activation loop (A-loop) 0 0 1 1 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 0 -270674 cd05092 PTKc_TrkA 1 ATP binding site 0 1 1 1 12,13,15,16,20,38,40,85,86,87,88,91,92,150,151,153,164 5 -270674 cd05092 PTKc_TrkA 2 active site 0 0 1 1 12,13,14,15,16,20,38,40,85,86,87,88,91,92,146,150,151,153,164,182,183,184,185,186,195,229 1 -270674 cd05092 PTKc_TrkA 3 polypeptide substrate binding site 0 0 1 1 146,150,182,183,184,185,186,195,229 2 -270674 cd05092 PTKc_TrkA 4 activation loop (A-loop) 0 0 1 1 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -270675 cd05093 PTKc_TrkB 1 active site 0 0 1 1 12,13,14,15,16,20,38,40,85,86,87,88,91,92,144,148,149,151,162,180,181,182,183,184,193,227 1 -270675 cd05093 PTKc_TrkB 2 ATP binding site 0 0 1 1 12,13,15,16,20,38,40,85,86,87,88,91,92,148,149,151,162 5 -270675 cd05093 PTKc_TrkB 3 polypeptide substrate binding site 0 0 1 1 144,148,180,181,182,183,184,193,227 2 -270675 cd05093 PTKc_TrkB 4 activation loop (A-loop) 0 0 1 1 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -270676 cd05094 PTKc_TrkC 1 ATP binding site 0 1 1 1 12,13,15,16,20,38,40,85,86,87,88,91,92,151,152,154,165 5 -270676 cd05094 PTKc_TrkC 2 active site 0 0 1 1 12,13,14,15,16,20,38,40,85,86,87,88,91,92,147,151,152,154,165,183,184,185,186,187,196,230 1 -270676 cd05094 PTKc_TrkC 3 polypeptide substrate binding site 0 0 1 1 147,151,183,184,185,186,187,196,230 2 -270676 cd05094 PTKc_TrkC 4 activation loop (A-loop) 0 0 1 1 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 0 -270677 cd05095 PTKc_DDR2 1 active site 0 0 1 1 12,13,14,15,16,20,49,51,97,98,99,100,103,104,155,159,160,162,173,191,192,193,194,195,204,239 1 -270677 cd05095 PTKc_DDR2 2 ATP binding site 0 0 1 1 12,13,15,16,20,49,51,97,98,99,100,103,104,159,160,162,173 5 -270677 cd05095 PTKc_DDR2 3 polypeptide substrate binding site 0 0 1 1 155,159,191,192,193,194,195,204,239 2 -270677 cd05095 PTKc_DDR2 4 activation loop (A-loop) 0 0 1 1 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 0 -133227 cd05096 PTKc_DDR1 1 active site 0 0 1 1 12,13,14,15,16,20,49,51,97,98,99,100,103,104,162,166,167,169,180,198,199,200,201,202,211,246 1 -133227 cd05096 PTKc_DDR1 2 ATP binding site 0 0 1 1 12,13,15,16,20,49,51,97,98,99,100,103,104,166,167,169,180 5 -133227 cd05096 PTKc_DDR1 3 polypeptide substrate binding site 0 0 1 1 162,166,198,199,200,201,202,211,246 2 -133227 cd05096 PTKc_DDR1 4 activation loop (A-loop) 0 0 1 1 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 0 -133228 cd05097 PTKc_DDR_like 1 active site 0 0 1 1 12,13,14,15,16,20,47,49,95,96,97,98,101,102,153,157,158,160,171,189,190,191,192,193,202,237 1 -133228 cd05097 PTKc_DDR_like 2 ATP binding site 0 0 1 1 12,13,15,16,20,47,49,95,96,97,98,101,102,157,158,160,171 5 -133228 cd05097 PTKc_DDR_like 3 polypeptide substrate binding site 0 0 1 1 153,157,189,190,191,192,193,202,237 2 -133228 cd05097 PTKc_DDR_like 4 activation loop (A-loop) 0 0 1 1 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 0 -270678 cd05098 PTKc_FGFR1 1 ATP binding site 0 1 1 0 20,21,23,25,28,48,50,81,97,98,99,100,104,163,164,166,177 5 -270678 cd05098 PTKc_FGFR1 2 active site 0 0 1 1 20,21,23,25,28,48,50,81,97,98,99,100,104,159,163,164,166,177,195,196,197,198,199,208,242 1 -270678 cd05098 PTKc_FGFR1 3 polypeptide substrate binding site 0 0 1 1 159,163,195,196,197,198,199,208,242 2 -270678 cd05098 PTKc_FGFR1 4 activation loop (A-loop) 0 1 1 1 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 0 -133230 cd05099 PTKc_FGFR4 1 active site 0 0 1 1 19,20,22,24,25,27,47,49,96,97,98,99,102,103,158,162,163,165,176,194,195,196,197,198,207,241 1 -133230 cd05099 PTKc_FGFR4 2 ATP binding site 0 0 1 1 19,20,22,24,25,27,47,49,96,97,98,99,102,103,162,163,165,176 5 -133230 cd05099 PTKc_FGFR4 3 polypeptide substrate binding site 0 0 1 1 158,162,194,195,196,197,198,207,241 2 -133230 cd05099 PTKc_FGFR4 4 activation loop (A-loop) 0 0 1 1 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 0 -173652 cd05100 PTKc_FGFR3 1 active site 0 0 1 1 19,20,22,24,25,27,47,49,96,97,98,99,102,103,158,162,163,165,176,194,195,196,197,198,207,241 1 -173652 cd05100 PTKc_FGFR3 2 ATP binding site 0 0 1 1 19,20,22,24,25,27,47,49,96,97,98,99,102,103,162,163,165,176 5 -173652 cd05100 PTKc_FGFR3 3 polypeptide substrate binding site 0 0 1 1 158,162,194,195,196,197,198,207,241 2 -173652 cd05100 PTKc_FGFR3 4 activation loop (A-loop) 0 0 1 1 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 0 -270679 cd05101 PTKc_FGFR2 1 ATP binding site 0 1 1 0 31,32,34,39,59,61,78,108,109,110,111,115,174,175,177,188 5 -270679 cd05101 PTKc_FGFR2 2 activation loop (A-loop) 0 1 1 1 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 0 -270679 cd05101 PTKc_FGFR2 3 active site 0 0 1 1 31,32,34,39,59,61,78,108,109,110,111,115,170,174,175,177,188,206,207,208,209,210,219,253 1 -270679 cd05101 PTKc_FGFR2 4 polypeptide substrate binding site 0 0 1 1 170,174,206,207,208,209,210,219,253 2 -270680 cd05102 PTKc_VEGFR3 1 ATP binding site 0 0 1 1 14,15,16,22,40,41,42,59,88,90,91,92,93,94,96,97,187,194,203,213,214,215 5 -270680 cd05102 PTKc_VEGFR3 2 active site 0 0 1 1 14,15,16,17,18,22,40,41,42,59,88,90,91,92,93,94,96,97,187,194,196,200,201,203,213,214,215,232,233,234,235,236,245,280 1 -270680 cd05102 PTKc_VEGFR3 3 polypeptide substrate binding site 0 0 1 1 196,200,232,233,234,235,236,245,280 2 -270680 cd05102 PTKc_VEGFR3 4 activation loop (A-loop) 0 0 1 1 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 0 -270681 cd05103 PTKc_VEGFR2 1 ATP binding site 0 1 1 0 14,15,16,22,40,41,42,59,88,90,91,92,93,94,96,97,194,201,210,220,221,222 5 -270681 cd05103 PTKc_VEGFR2 2 active site 0 0 1 1 14,15,16,17,18,22,40,41,42,59,88,90,91,92,93,94,96,97,194,201,203,207,208,210,220,221,222,239,240,241,242,243,252,287 1 -270681 cd05103 PTKc_VEGFR2 3 polypeptide substrate binding site 0 0 1 1 203,207,239,240,241,242,243,252,287 2 -270681 cd05103 PTKc_VEGFR2 4 activation loop (A-loop) 0 0 1 1 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 0 -270682 cd05104 PTKc_Kit 1 active site 0 0 1 1 42,43,44,45,46,47,48,50,68,70,118,120,124,238,242,243,245,256,274,275,276,277,278,287,322 1 -270682 cd05104 PTKc_Kit 2 ATP binding site 0 0 1 1 42,43,45,46,47,48,50,68,70,118,120,124,242,243,245,256 5 -270682 cd05104 PTKc_Kit 3 polypeptide substrate binding site 0 0 1 1 238,242,274,275,276,277,278,287,322 2 -270682 cd05104 PTKc_Kit 4 activation loop (A-loop) 0 0 1 1 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 0 -173653 cd05105 PTKc_PDGFR_alpha 1 active site 0 0 1 1 44,45,47,48,49,50,52,70,72,120,122,126,261,265,266,268,279,297,298,299,300,301,310,345 1 -173653 cd05105 PTKc_PDGFR_alpha 2 ATP binding site 0 0 1 1 44,45,47,48,49,50,52,70,72,120,122,126,265,266,268,279 5 -173653 cd05105 PTKc_PDGFR_alpha 3 polypeptide substrate binding site 0 0 1 1 261,265,297,298,299,300,301,310,345 2 -173653 cd05105 PTKc_PDGFR_alpha 4 activation loop (A-loop) 0 0 1 1 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303 0 -133237 cd05106 PTKc_CSF-1R 1 active site 0 0 1 1 45,46,48,49,50,51,53,71,73,121,123,127,236,240,241,243,254,272,273,274,275,276,285,320 1 -133237 cd05106 PTKc_CSF-1R 2 ATP binding site 0 0 1 1 45,46,48,49,50,51,53,71,73,121,123,127,240,241,243,254 5 -133237 cd05106 PTKc_CSF-1R 3 polypeptide substrate binding site 0 0 1 1 236,240,272,273,274,275,276,285,320 2 -133237 cd05106 PTKc_CSF-1R 4 activation loop (A-loop) 0 0 1 1 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 0 -133238 cd05107 PTKc_PDGFR_beta 1 active site 0 0 1 1 44,45,47,48,49,50,52,70,72,120,122,126,263,267,268,270,281,299,300,301,302,303,312,347 1 -133238 cd05107 PTKc_PDGFR_beta 2 ATP binding site 0 0 1 1 44,45,47,48,49,50,52,70,72,120,122,126,267,268,270,281 5 -133238 cd05107 PTKc_PDGFR_beta 3 polypeptide substrate binding site 0 0 1 1 263,267,299,300,301,302,303,312,347 2 -133238 cd05107 PTKc_PDGFR_beta 4 activation loop (A-loop) 0 0 1 1 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 0 -270683 cd05108 PTKc_EGFR 1 active site 0 1 1 1 14,15,18,19,41,87,89,93,137,138,151,172,173,174,175,176,181,185 1 -270683 cd05108 PTKc_EGFR 2 ATP binding site 0 1 1 0 14,15,22,39,41,62,86,87,89,137,138,140,151 5 -270683 cd05108 PTKc_EGFR 3 polypeptide substrate binding site 0 1 1 0 172,173,174,175,176,181,185 2 -270683 cd05108 PTKc_EGFR 4 dimer interface 0 1 1 1 11,12,13,24,25,26,90,91,93,100,101,305,306 2 -270683 cd05108 PTKc_EGFR 5 activation loop (A-loop) 0 1 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270684 cd05109 PTKc_HER2 1 ATP binding site 0 1 1 1 14,15,17,22,39,41,62,86,87,89,137,138,140,151 5 -270684 cd05109 PTKc_HER2 2 active site 0 0 1 1 14,15,17,22,39,41,62,86,87,89,137,138,140,151,172,173,174,175,176,181,185 1 -270684 cd05109 PTKc_HER2 3 polypeptide substrate binding site 0 0 1 1 172,173,174,175,176,181,185 2 -270684 cd05109 PTKc_HER2 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -173655 cd05110 PTKc_HER4 1 ATP binding site 0 1 1 1 14,15,22,39,41,62,84,86,87,89,137,138,140,151 5 -173655 cd05110 PTKc_HER4 2 active site 0 0 1 1 14,15,22,39,41,62,84,86,87,89,137,138,140,151,172,173,174,175,176,181,185 1 -173655 cd05110 PTKc_HER4 3 polypeptide substrate binding site 0 0 1 1 172,173,174,175,176,181,185 2 -173655 cd05110 PTKc_HER4 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -173656 cd05111 PTK_HER3 1 ATP binding site 0 1 1 1 14,15,16,17,18,20,22,39,41,86,87,88,89,133,137,138,140,151 5 -133243 cd05112 PTKc_Itk 1 ATP binding site 0 1 1 0 11,12,19,31,33,61,77,78,79,80,83,84,128,129,131,141,142 5 -133243 cd05112 PTKc_Itk 2 active site 0 0 1 1 11,12,19,31,33,61,77,78,79,80,83,84,124,128,129,131,141,142,159,160,161,162,163,172,206 1 -133243 cd05112 PTKc_Itk 3 polypeptide substrate binding site 0 0 1 1 124,128,159,160,161,162,163,172,206 2 -133243 cd05112 PTKc_Itk 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -173657 cd05113 PTKc_Btk_Bmx 1 ATP binding site 0 1 1 0 11,19,31,33,52,75,77,78,79,80,81,83,131,141,142,145 5 -173657 cd05113 PTKc_Btk_Bmx 2 activation loop (A-loop) 0 1 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -173657 cd05113 PTKc_Btk_Bmx 3 active site 0 0 1 1 11,19,31,33,52,75,77,78,79,80,81,83,124,128,131,141,142,145,159,160,161,162,163,172,206 1 -173657 cd05113 PTKc_Btk_Bmx 4 polypeptide substrate binding site 0 0 1 1 124,128,159,160,161,162,163,172,206 2 -270685 cd05114 PTKc_Tec_Rlk 1 active site 0 0 1 1 11,12,19,31,33,52,75,77,78,79,80,81,83,124,128,131,141,142,145,159,160,161,162,163,172,206 1 -270685 cd05114 PTKc_Tec_Rlk 2 ATP binding site 0 0 1 1 11,12,19,31,33,52,75,77,78,79,80,81,83,128,131,141,142,145 5 -270685 cd05114 PTKc_Tec_Rlk 3 polypeptide substrate binding site 0 0 1 1 124,128,159,160,161,162,163,172,206 2 -270685 cd05114 PTKc_Tec_Rlk 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270686 cd05115 PTKc_Zap-70 1 ATP binding site 0 1 1 0 11,12,13,14,15,16,19,34,36,81,82,83,84,85,87,88,132,133,135,145,146 5 -270686 cd05115 PTKc_Zap-70 2 SH2 linker interface 0 1 1 1 29,61,62,63,64,67,69,82,107,110,111,114,138,140,141,261,264,265,268 2 -270686 cd05115 PTKc_Zap-70 3 active site 0 0 1 1 11,12,13,14,15,16,19,34,36,81,82,83,84,85,87,88,128,132,133,135,145,146,165,166,167,168,169,178,212 1 -270686 cd05115 PTKc_Zap-70 4 polypeptide substrate binding site 0 0 1 1 128,132,165,166,167,168,169,178,212 2 -270686 cd05115 PTKc_Zap-70 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -133247 cd05116 PTKc_Syk 1 ATP binding site 0 1 1 0 2,3,4,7,10,25,27,45,58,73,74,75,76,77,79,80,123,124,126,136,137 5 -133247 cd05116 PTKc_Syk 2 active site 0 0 1 1 2,3,4,7,10,25,27,45,58,73,74,75,76,77,79,80,119,123,124,126,136,137,156,157,158,159,160,169,203 1 -133247 cd05116 PTKc_Syk 3 polypeptide substrate binding site 0 0 1 1 119,123,156,157,158,159,160,169,203 2 -133247 cd05116 PTKc_Syk 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270687 cd05117 STKc_CAMK 1 active site 0 1 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,122,123,125,127,128,130,143,144,147,161,162,163,164,165,167 1 -270687 cd05117 STKc_CAMK 2 ATP binding site 0 1 1 0 7,8,9,10,15,28,30,61,77,78,79,80,84,127,128,130,143,144 5 -270687 cd05117 STKc_CAMK 3 polypeptide substrate binding site 0 1 1 0 11,84,86,122,123,125,127,147,161,162,163,164,165,167 2 -270687 cd05117 STKc_CAMK 4 activation loop (A-loop) 0 1 1 1 143,144,145,146,147,148,149,150,151,161,162,163,164,165 0 -270688 cd05118 STKc_CMGC 1 active site 0 1 1 1 6,7,8,9,10,14,27,29,43,61,79,80,81,82,85,87,88,125,127,129,130,132,144,147,157,159,160,161,162,164,202 1 -270688 cd05118 STKc_CMGC 2 ATP binding site 0 1 1 0 6,7,8,9,14,27,29,61,79,80,81,82,85,88,129,130,132,144 5 -270688 cd05118 STKc_CMGC 3 polypeptide substrate binding site 0 1 1 0 43,87,125,127,147,157,159,160,161,162,164,202 2 -270688 cd05118 STKc_CMGC 4 activation loop (A-loop) 0 1 1 1 143,144,145,146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,163,164 0 -270689 cd05119 RIO 1 ATP binding site 0 1 1 0 4,9,10,12,27,29,84,96,97,98,99,108,150,152,160,161 5 -270690 cd05120 APH_ChoK_like 1 ATP binding site 0 1 1 0 5,9,13,23,25,54,70,71,72,73,116,120,121,123,134,135 5 -270690 cd05120 APH_ChoK_like 2 substrate binding site 0 1 1 0 8,9,10,116,118,121,135,138,153,154,157 5 -270690 cd05120 APH_ChoK_like 3 active site 0 1 1 1 5,8,9,10,13,23,25,54,70,71,72,73,116,118,120,121,123,134,135,138,153,154,157 1 -270691 cd05121 ABC1_ADCK3-like 1 putative ATP binding site 0 0 1 1 50,51,52,53,54,56,66,68,130,149,150,151,152,194,198,199,201,211,212 5 -270692 cd05122 PKc_STE 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,28,30,59,75,76,77,78,81,82,85,126,127,129,140 5 -270692 cd05122 PKc_STE 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,59,75,76,77,78,81,82,85,122,124,125,126,127,129,139,140,143,156,157,158,159,161,188,197 1 -270692 cd05122 PKc_STE 3 polypeptide substrate binding site 0 1 1 1 10,11,122,124,125,126,143,156,157,158,159,161,188,197 2 -270692 cd05122 PKc_STE 4 activation loop (A-loop) 0 1 1 1 139,140,141,142,143,144,145,146,147,148,156,157,158,159,160,161 0 -270693 cd05123 STKc_AGC 1 active site 0 1 1 0 0,1,2,3,4,8,21,23,55,71,72,74,78,80,117,119,121,122,124,134,135,138,152,153,154,155,156,157,184,190,193 1 -270693 cd05123 STKc_AGC 2 ATP binding site 0 1 1 0 0,1,2,3,4,8,21,23,55,72,73,74,78,117,119,121,122,124,134,135 5 -270693 cd05123 STKc_AGC 3 polypeptide substrate binding site 0 1 1 0 4,78,80,117,119,121,138,152,153,154,155,156,157,184,190,193 2 -270693 cd05123 STKc_AGC 4 activation loop (A-loop) 0 1 1 1 134,135,136,137,138,139,140,141,151,152,153,154,155,156,157 0 -270694 cd05124 AFK 1 ATP binding site 0 1 1 0 7,9,10,12,14,26,28,96,97,98,99,103,106,155,169,170 5 -213329 cd05127 RasGAP_IQGAP_like 1 putative RAS interface 0 0 1 1 34,65,67,69,70,73,76,80,172,180,181,184,185,188,213,216,217,220,224,226,231,232 2 -213330 cd05128 RasGAP_GAP1_like 1 putative RAS interface 0 0 1 1 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,238,239 2 -213331 cd05129 RasGAP_RAP6 1 putative Rab5 interface 0 0 1 1 45,84,86,88,89,95,98,102,220,228,229,232,233,236,258,261,262,265,269,271,275,276 2 -213332 cd05130 RasGAP_Neurofibromin 1 putative RAS interface 0 0 1 1 38,74,76,78,79,81,84,88,182,190,191,194,195,198,219,222,223,226,230,232,236,237 2 -213333 cd05131 RasGAP_IQGAP2 1 putative RAS interface 0 0 1 1 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213334 cd05132 RasGAP_GAPA 1 putative RAS interface 0 0 1 1 49,80,82,84,85,88,91,95,187,195,196,199,200,203,224,227,228,231,235,237,241,242 2 -213335 cd05133 RasGAP_IQGAP1 1 putative RAS interface 0 0 1 1 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213336 cd05134 RasGAP_RASA3 1 putative RAS interface 0 0 1 1 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,237,238 2 -213337 cd05135 RasGAP_RASAL 1 putative RAS interface 0 0 1 1 39,75,77,79,80,82,85,89,200,208,209,212,213,216,237,240,241,244,248,250,257,258 2 -213338 cd05136 RasGAP_DAB2IP 1 putative RAS interface 0 0 1 1 39,75,77,79,80,82,85,89,182,190,191,194,195,198,219,222,223,226,230,232,237,238 2 -213339 cd05137 RasGAP_CLA2_BUD2 1 putative RAS interface 0 0 1 1 41,92,94,96,97,99,102,106,208,216,217,220,221,224,245,248,249,252,256,258,263,264 2 -240163 cd05140 Barstar_AU1054-like 1 putative RNAase interaction site 0 0 1 1 26,28,30,31,32,36,73 2 -240164 cd05141 Barstar_evA4336-like 1 putative RNAase interaction site 0 0 1 1 26,28,30,31,32,36,76 2 -240165 cd05142 Barstar 1 RNAase interaction site 0 1 1 0 27,29,31,32,33,37,74 2 -240166 cd05143 Barstar_SaI14_like 1 putative RNAase interaction site 0 0 1 1 27,29,31,32,33,37,77 2 -270695 cd05144 RIO2_C 1 ATP binding site 0 1 1 0 7,12,13,15,27,29,82,94,95,96,97,101,138,139,151,152 5 -270696 cd05145 RIO1_like 1 ATP binding site 0 1 1 0 4,9,10,12,24,26,82,94,95,96,97,106,146,148,157,158 5 -270697 cd05146 RIO3_euk 1 ATP binding site 0 0 1 1 4,9,10,12,30,32,89,101,102,103,104,113,153,155,164,165 5 -270698 cd05147 RIO1_euk 1 ATP binding site 0 0 1 1 4,9,10,12,24,26,83,95,96,97,98,107,147,149,158,159 5 -133248 cd05148 PTKc_Srm_Brk 1 active site 0 0 1 1 13,15,16,17,21,33,35,80,81,82,83,87,128,132,133,135,146,162,163,164,165,166,175,209 1 -133248 cd05148 PTKc_Srm_Brk 2 ATP binding site 0 0 1 1 13,16,21,33,35,80,81,82,83,87,128,130,133,135,146 5 -133248 cd05148 PTKc_Srm_Brk 3 polypeptide substrate binding site 0 0 1 1 128,132,162,163,164,165,166,175,209 2 -133248 cd05148 PTKc_Srm_Brk 4 SH3/SH2 domain interface 0 0 1 1 27,29,62,65,67,81,107,111,139,258 2 -133248 cd05148 PTKc_Srm_Brk 5 CSK binding interface 0 0 1 1 117,120,121,183,245,246,247,249,251,252,255,259 2 -133248 cd05148 PTKc_Srm_Brk 6 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270699 cd05150 APH 1 active site 0 1 1 0 5,7,8,9,14,25,27,54,70,71,72,73,77,134,135,136,137,138,168,172,173,175,185,186,204,205,208,240,241,243 1 -270699 cd05150 APH 2 ATP binding site 0 1 1 0 5,9,14,25,27,70,71,72,73,77,172,173,175,185,186 5 -270699 cd05150 APH 3 antibiotic binding site 0 1 1 0 134,135,136,137,138,168,204,205,208,240,241,243 5 -270700 cd05151 ChoK-like 1 ATP binding site 0 1 1 0 6,11,13,24,26,55,69,70,71,72,74,75,76,116,119,128,129 5 -270700 cd05151 ChoK-like 2 substrate binding site 0 1 1 0 8,9,10,112,114,117,132,148 5 -270700 cd05151 ChoK-like 3 active site 0 1 1 1 6,8,9,10,11,13,24,26,55,69,70,71,72,74,75,76,112,114,116,117,119,128,129,132,148 1 -270700 cd05151 ChoK-like 4 dimer interface 0 1 1 0 39,42,43,46,47,57,58,59,60,104 2 -270701 cd05152 MPH2' 1 ATP binding site 0 0 1 1 17,21,26,38,40,66,82,83,84,85,190,194,195,197,208,209 5 -270701 cd05152 MPH2' 2 putative active site 0 0 1 1 17,20,21,23,26,38,40,66,82,83,84,85,190,192,194,195,197,208,209,212,227,228,231 1 -270701 cd05152 MPH2' 3 putative substrate binding site 0 0 1 1 20,21,23,190,192,195,209,212,227,228,231 5 -270702 cd05153 HomoserineK_II 1 ATP binding site 0 0 1 1 21,25,29,40,42,71,93,94,95,96,184,188,189,191,201,202 5 -270702 cd05153 HomoserineK_II 2 putative active site 0 0 1 1 21,24,25,26,29,40,42,71,93,94,95,96,184,186,188,189,191,201,202,205,220,221,224 1 -270702 cd05153 HomoserineK_II 3 putative substrate binding site 0 0 1 1 24,25,26,184,186,189,202,205,220,221,224 5 -270703 cd05154 ACAD10_11_N-like 1 ATP binding site 0 0 1 1 5,9,13,28,30,62,81,82,83,84,182,186,187,189,200,201 5 -270703 cd05154 ACAD10_11_N-like 2 putative active site 0 0 1 1 5,8,9,10,13,28,30,62,81,82,83,84,182,184,186,187,189,200,201,204,219,220,223 1 -270703 cd05154 ACAD10_11_N-like 3 putative substrate binding site 0 0 1 1 8,9,10,182,184,187,201,204,219,220,223 5 -270704 cd05155 APH_ChoK_like_1 1 ATP binding site 0 0 1 1 5,9,13,21,23,53,72,73,74,75,168,172,173,175,185,186 5 -270704 cd05155 APH_ChoK_like_1 2 putative active site 0 0 1 1 5,8,9,10,13,21,23,53,72,73,74,75,168,170,172,173,175,185,186,189,204,205,208 1 -270704 cd05155 APH_ChoK_like_1 3 putative substrate binding site 0 0 1 1 8,9,10,168,170,173,186,189,204,205,208 5 -270705 cd05156 ChoK_euk 1 ATP binding site 0 1 1 0 6,11,13,33,35,64,76,77,78,79,81,82,83,182,185,201,202 5 -270705 cd05156 ChoK_euk 2 substrate binding site 0 1 1 0 8,10,178,180,183,205,221,226,292,295 5 -270705 cd05156 ChoK_euk 3 active site 0 1 1 1 6,8,10,11,13,33,35,64,76,77,78,79,81,82,83,178,180,182,183,185,201,202,205,221,226,292,295 1 -270705 cd05156 ChoK_euk 4 dimer interface 0 1 1 0 48,51,52,55,56,59,60,66,67,68,69,111,112,114,115 2 -270706 cd05157 ETNK_euk 1 ATP binding site 0 0 1 1 6,11,13,28,30,59,71,72,73,74,76,77,78,179,182,193,194 5 -270706 cd05157 ETNK_euk 2 dimer interface 0 1 0 0 143,144,145,146,149,150,156,160,269,293,294,297,300,301,304,305,306 2 -270706 cd05157 ETNK_euk 3 putative active site 0 0 1 1 6,8,10,11,13,28,30,59,71,72,73,74,76,77,78,175,177,179,180,182,193,194,197,213,218 1 -270706 cd05157 ETNK_euk 4 putative substrate binding site 0 0 1 1 8,10,175,177,180,197,213,218 5 -176646 cd05160 DEDDy_DNA_polB_exo 1 active site 0 1 1 1 4,5,6,7,84,85,88,89,90,149,150,185,189 1 -176646 cd05160 DEDDy_DNA_polB_exo 2 catalytic site 0 1 1 1 4,6,90,185,189 1 -176646 cd05160 DEDDy_DNA_polB_exo 3 substrate binding site 0 1 1 1 5,6,7,84,85,88,89,149,150,185,189 5 -99894 cd05162 PWWP 1 putative chromatin binding site 0 0 1 1 10,13,16,43,46,48 0 -270708 cd05164 PIKKc 1 ATP binding site 0 0 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,141,143,154,155 5 -270708 cd05164 PIKKc 2 catalytic loop 0 0 1 1 133,134,135,136,137,138,139,140,141 1 -270708 cd05164 PIKKc 3 activation loop (A-loop) 0 0 1 1 155,156,157,158,159,160,161,162,163,164,165,172,173,174,175,176,177 0 -270709 cd05165 PI3Kc_I 1 ATP binding site 0 1 1 0 71,73,74,75,77,98,100,103,134,146,147,148,149,154,157,219,221,231,232 5 -270709 cd05165 PI3Kc_I 2 regulatory subunit interface 0 1 1 0 141,142,243,244,246,248,315,318,327 2 -270709 cd05165 PI3Kc_I 3 Ras binding site 0 1 1 1 188 2 -270709 cd05165 PI3Kc_I 4 catalytic loop 0 0 1 1 211,212,213,214,215,216,217,218,219 1 -270709 cd05165 PI3Kc_I 5 activation loop (A-loop) 0 0 1 1 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 0 -270710 cd05166 PI3Kc_II 1 ATP binding site 0 0 1 1 69,71,72,73,75,93,95,98,129,141,142,143,144,149,152,212,214,224,225 5 -270710 cd05166 PI3Kc_II 2 catalytic loop 0 0 1 1 204,205,206,207,208,209,210,211,212 1 -270710 cd05166 PI3Kc_II 3 activation loop (A-loop) 0 0 1 1 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 0 -270711 cd05167 PI4Kc_III_alpha 1 ATP binding site 0 0 1 1 12,14,15,17,19,52,54,57,88,100,101,102,103,108,111,166,168,178,179 5 -270711 cd05167 PI4Kc_III_alpha 2 catalytic loop 0 0 1 1 158,159,160,161,162,163,164,165,166 1 -270711 cd05167 PI4Kc_III_alpha 3 activation loop (A-loop) 0 0 1 1 179,180,181,182,183,184,185,186,187,188,189,192,193,194,195,197,198,199,200,201,202 0 -270712 cd05168 PI4Kc_III_beta 1 ATP binding site 0 0 1 1 13,15,16,18,20,33,35,38,69,81,82,83,84,89,92,149,151,161,162 5 -270712 cd05168 PI4Kc_III_beta 2 catalytic loop 0 0 1 1 141,142,143,144,145,146,147,148,149 1 -270712 cd05168 PI4Kc_III_beta 3 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,183,184 0 -270713 cd05169 PIKKc_TOR 1 ATP binding site 0 1 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,190,192,203,204 5 -270713 cd05169 PIKKc_TOR 2 catalytic loop 0 0 1 1 182,183,184,185,186,187,188,189,190 1 -270713 cd05169 PIKKc_TOR 3 activation loop (A-loop) 0 0 1 1 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 0 -270713 cd05169 PIKKc_TOR 4 mLST8 interface 0 1 1 0 119,120,121,124,125,126,127,129,131,132,135 2 -270714 cd05170 PIKKc_SMG1 1 ATP binding site 0 0 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,216,218,229,230 5 -270714 cd05170 PIKKc_SMG1 2 catalytic loop 0 0 1 1 208,209,210,211,212,213,214,215,216 1 -270714 cd05170 PIKKc_SMG1 3 activation loop (A-loop) 0 0 1 1 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 0 -270715 cd05171 PIKKc_ATM 1 ATP binding site 0 0 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,194,196,207,208 5 -270715 cd05171 PIKKc_ATM 2 catalytic loop 0 0 1 1 186,187,188,189,190,191,192,193,194 1 -270715 cd05171 PIKKc_ATM 3 activation loop (A-loop) 0 0 1 1 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 0 -270716 cd05172 PIKKc_DNA-PK 1 ATP binding site 0 0 1 1 10,12,13,14,16,32,34,37,72,84,85,86,87,92,146,148,159,160 5 -270716 cd05172 PIKKc_DNA-PK 2 catalytic loop 0 0 1 1 138,139,140,141,142,143,144,145,146 1 -270716 cd05172 PIKKc_DNA-PK 3 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,172,173,174,175,176,177,178,179,180,181,182,183 0 -270717 cd05173 PI3Kc_IA_beta 1 ATP binding site 0 1 1 1 73,75,76,77,79,97,99,102,133,145,146,147,148,153,156,218,220,230,231 5 -270717 cd05173 PI3Kc_IA_beta 2 regulatory subunit interface 0 1 1 0 140,141,168,169,172,242,243,256,259,267,268,269,270,273,340,343,344,346,347 2 -270717 cd05173 PI3Kc_IA_beta 3 catalytic loop 0 0 1 1 210,211,212,213,214,215,216,217,218 1 -270717 cd05173 PI3Kc_IA_beta 4 activation loop (A-loop) 0 0 1 1 231,232,233,234,235,236,237,238,239,240,241,242,243,244,250,251,252,253,254,255 0 -270717 cd05173 PI3Kc_IA_beta 5 Ras binding site 0 0 1 1 187 2 -270718 cd05174 PI3Kc_IA_delta 1 ATP binding site 0 1 1 1 76,78,79,80,82,84,100,102,105,136,148,149,150,151,156,159,221,223,233,234 5 -270718 cd05174 PI3Kc_IA_delta 2 catalytic loop 0 0 1 1 213,214,215,216,217,218,219,220,221 1 -270718 cd05174 PI3Kc_IA_delta 3 activation loop (A-loop) 0 0 1 1 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 0 -270718 cd05174 PI3Kc_IA_delta 4 putative regulatory subunit interface 0 0 1 1 143,144,245,246,248,250,316,319 2 -270718 cd05174 PI3Kc_IA_delta 5 Ras binding site 0 0 1 1 190 2 -270719 cd05175 PI3Kc_IA_alpha 1 ATP binding site 0 1 1 1 77,79,80,81,83,85,105,107,110,141,153,154,155,156,161,164,225,227,237,238 5 -270719 cd05175 PI3Kc_IA_alpha 2 regulatory subunit interface 0 1 1 0 249,250,252,254,322,325,334 2 -270719 cd05175 PI3Kc_IA_alpha 3 catalytic loop 0 0 1 1 217,218,219,220,221,222,223,224,225 1 -270719 cd05175 PI3Kc_IA_alpha 4 activation loop (A-loop) 0 0 1 1 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 0 -270719 cd05175 PI3Kc_IA_alpha 5 Ras binding site 0 0 1 1 194 2 -270720 cd05176 PI3Kc_C2_alpha 1 ATP binding site 0 0 1 1 69,71,72,73,75,93,95,98,129,141,142,143,144,149,152,212,214,224,225 5 -270720 cd05176 PI3Kc_C2_alpha 2 catalytic loop 0 0 1 1 204,205,206,207,208,209,210,211,212 1 -270720 cd05176 PI3Kc_C2_alpha 3 activation loop (A-loop) 0 0 1 1 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 0 -270721 cd05177 PI3Kc_C2_gamma 1 ATP binding site 0 0 1 1 70,72,73,74,76,94,96,99,130,142,143,144,145,150,153,213,215,225,226 5 -270721 cd05177 PI3Kc_C2_gamma 2 catalytic loop 0 0 1 1 205,206,207,208,209,210,211,212,213 1 -270721 cd05177 PI3Kc_C2_gamma 3 activation loop (A-loop) 0 0 1 1 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 0 -176178 cd05188 MDR 1 NAD(P) binding site 0 1 1 0 11,12,13,16,116,120,141,142,143,144,145,146,164,165,169,184,207,208,230,231,255,256,257 5 -133449 cd05191 NAD_bind_amino_acid_DH 1 NAD(P) binding pocket 0 1 1 0 31,32,33,53,54,60,61,84 5 -187536 cd05193 AR_like_SDR_e 1 active site 0 0 1 1 94,119,156,160 1 -187536 cd05193 AR_like_SDR_e 2 NADP binding site 0 1 1 1 4,6,7,8,9,29,76,77,78,79,80,117,118,156,160,183,184,185,186 5 -187536 cd05193 AR_like_SDR_e 3 substrate binding site 0 1 0 0 80,82,119,120,121,124,156,183,184,185,201,215,223,286 5 -176179 cd05195 enoyl_red 1 NAD(P) binding site 0 1 1 0 13,94,115,117,118,119,120,139,140,144,161,162,185,207,232,233,234,281,282,284,286 5 -133425 cd05197 GH4_glycoside_hydrolases 1 NAD binding site 0 1 1 0 8,9,35,36,40,80,81,82,85,86,109,121,141,143,164 5 -133425 cd05197 GH4_glycoside_hydrolases 2 sugar binding site 0 1 1 0 89,105,143,165,166,195,252,276 5 -133425 cd05197 GH4_glycoside_hydrolases 3 divalent metal binding site 0 1 1 1 165,195 4 -133425 cd05197 GH4_glycoside_hydrolases 4 dimer interface 0 1 1 1 245,257,369,370,374,377,381,384,388,394,396,399,400,403,404,409,411,413,415 2 -133425 cd05197 GH4_glycoside_hydrolases 5 tetramer (dimer of dimers) interface 0 1 1 1 184,187,203,206,325,337,356,357,359,361,362,363,364 2 -240622 cd05198 formate_dh_like 1 NAD binding site 0 1 1 1 71,95,99,146,147,148,149,150,168,169,170,200,201,202,207,228,229,230,254,255,278,280,281 5 -240622 cd05198 formate_dh_like 2 catalytic site R[EQ]H 0 1 1 230,259,278 1 -240622 cd05198 formate_dh_like 3 ligand binding site 0 1 1 1 48,70,71,72,95,230,278 5 -240622 cd05198 formate_dh_like 4 dimerization interface 0 1 1 1 97,98,101,102,105,108,156,157,273,274,275,276,277,278,279,280,285,287,289 2 -240623 cd05199 SDH_like 1 NAD(P) binding site 0 1 1 1 182,184,185,205,206,207,217,218,219 5 -240623 cd05199 SDH_like 2 ligand binding site 0 1 1 0 86,123,127,128 5 -240623 cd05199 SDH_like 3 active site RKHRF[ST] 0 1 1 14,70,88,123,127,296 1 -133450 cd05211 NAD_bind_Glu_Leu_Phe_Val 1 NAD(P) binding site 0 1 1 1 31,32,33,53,54,104,105,125,127 5 -133451 cd05212 NAD_bind_m-THF_DH_Cyclohyd_like 1 NAD(P) binding site 0 1 1 1 35,36,58,59,78,98 5 -133452 cd05213 NAD_bind_Glutamyl_tRNA_reduct 1 putative NADP binding site 0 0 1 1 184,186,189 5 -133452 cd05213 NAD_bind_Glutamyl_tRNA_reduct 2 putative tRNA binding site 0 0 1 0 46,47,49,104,109,111,115 3 -133452 cd05213 NAD_bind_Glutamyl_tRNA_reduct 3 tRNA 0 1 0 0 16,46,111,114,118,121,125 0 -187537 cd05226 SDR_e_a 1 active site 0 0 1 1 82,106,125,129 1 -187537 cd05226 SDR_e_a 2 NAD(P) binding site 0 1 1 1 4,6,7,9,28,29,30,68,69,70,104,105,106,125,129,148,149,150,151 5 -187538 cd05227 AR_SDR_e 1 active site 0 0 1 1 122,157,161 1 -187538 cd05227 AR_SDR_e 2 NADP binding site 0 1 1 1 5,7,8,9,10,30,59,78,79,80,81,82,120,121,122,157,161,186,187,188,189,201,202 5 -187538 cd05227 AR_SDR_e 3 putative substrate binding site 0 0 0 1 82,84,122,123,124,127,157,186,187,188,205,217,224,290 5 -187539 cd05228 AR_FR_like_1_SDR_e 1 active site 0 0 1 1 86,110,137,141 1 -187539 cd05228 AR_FR_like_1_SDR_e 2 putative NADP binding site 0 0 1 1 4,6,7,8,9,29,68,69,70,71,72,108,109,137,141,163,164,165,166 5 -187539 cd05228 AR_FR_like_1_SDR_e 3 putative substrate binding site 0 0 0 1 72,74,110,111,112,115,137,163,164,165,171,191,197,265 5 -187540 cd05229 SDR_a3 1 putative active site 0 0 1 1 79,102,157,161 1 -187540 cd05229 SDR_a3 2 putative NAD(P) binding site 0 0 1 1 5,7,8,10,29,30,31,67,68,69,100,101,102,122,126,153,154,155,156 5 -187541 cd05230 UGD_SDR_e 1 active site 0 0 1 1 90,113,142,146 1 -187541 cd05230 UGD_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,33,34,35,54,55,56,70,71,72,73,74,89,111,112,113,142,146,169,170,171,172,183 5 -187541 cd05230 UGD_SDR_e 3 putative substrate binding site 1 0 1 0 0 76,139,171,182,183,184,187,188,199,200,201,206,208,243,269,273 5 -187541 cd05230 UGD_SDR_e 4 putative substrate binding site 2 0 1 0 1 59,60,95,96,99,100,102,103,156 5 -187542 cd05231 NmrA_TMR_like_1_SDR_a 1 putative NADP binding site 0 0 1 1 4,6,7,8,9,29,48,49,50,69,70,71,140,141,142 5 -187543 cd05232 UDP_G4E_4_SDR_e 1 active site 0 0 1 1 85,109,134,138 1 -187543 cd05232 UDP_G4E_4_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,29,30,31,63,64,65,84,107,108,109,134,138,161,162,163,164 5 -187543 cd05232 UDP_G4E_4_SDR_e 3 putative substrate binding site 0 0 1 1 109,134,163,176,186,195 5 -212491 cd05233 SDR_c 1 active site 0 0 1 1 104,132,145,149 1 -212491 cd05233 SDR_c 2 NAD(P) binding site 0 1 1 1 4,6,7,8,9,28,29,30,52,53,54,80,81,82,103,130,131,132,145,149,175,176,177,178,180,181 5 -187545 cd05234 UDP_G4E_2_SDR_e 1 active site 0 0 1 1 93,117,141,145 1 -187545 cd05234 UDP_G4E_2_SDR_e 2 NAD binding site 0 1 1 1 5,7,8,9,10,29,30,31,32,33,34,53,54,55,56,73,74,75,92,115,116,141,145,168,169,170,171 5 -187545 cd05234 UDP_G4E_2_SDR_e 3 putative substrate binding site 0 0 1 1 117,141,170,184,197,205 5 -187545 cd05234 UDP_G4E_2_SDR_e 4 homodimer interface 0 1 0 0 86,87,90,94,95,98,102,123,137,138,139,140,143,146,147,150,153,154,155,157,158,159,230 2 -187546 cd05235 SDR_e1 1 active site 0 0 1 1 112,136,167,171 1 -187546 cd05235 SDR_e1 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,31,32,33,95,96,97,111,134,135,136,167,171,193,194,195,196 5 -187546 cd05235 SDR_e1 3 putative substrate binding site 0 0 1 1 136,167,195,210,221 5 -187547 cd05236 FAR-N_SDR_e 1 active site 0 0 1 1 120,142,193,197 1 -187547 cd05236 FAR-N_SDR_e 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,33,34,35,100,101,102,119,140,141,142,193,197,218,219,220,221 5 -187547 cd05236 FAR-N_SDR_e 3 putative substrate binding site 0 0 1 1 142,193,220,232,248,254 5 -187548 cd05237 UDP_invert_4-6DH_SDR_e 1 active site 0 0 1 1 103,127,137,141 1 -187548 cd05237 UDP_invert_4-6DH_SDR_e 2 NAD(P) binding site 0 1 1 1 8,10,11,12,13,33,34,60,61,62,83,84,85,87,102,125,141,165,166,167,168,171,172 5 -187548 cd05237 UDP_invert_4-6DH_SDR_e 3 substrate binding site 0 1 1 0 87,127,128,129,137,166,167,173,174,175,178,179,190,191,192,196,198,233,260,263 5 -187548 cd05237 UDP_invert_4-6DH_SDR_e 4 homodimer interface 0 1 1 1 34,36,40,44,58,59,60,61,64,67,85,86,87,88,91,95,98,101,172,173,178 2 -187549 cd05238 Gne_like_SDR_e 1 active site 0 0 1 1 91,116,140,144 1 -187549 cd05238 Gne_like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,72,73,74,90,114,115,116,140,144,167,168,169,170 5 -187549 cd05238 Gne_like_SDR_e 3 putative substrate binding site 0 0 1 1 116,140,169,188,200 5 -187550 cd05239 GDP_FS_SDR_e 1 active site 0 0 1 1 78,102,131,135 1 -187550 cd05239 GDP_FS_SDR_e 2 NADP binding site 0 1 1 1 5,7,8,9,10,31,34,35,36,37,57,58,59,61,81,100,101,102,131,135,158,159,161 5 -187550 cd05239 GDP_FS_SDR_e 3 putative substrate binding site 0 0 1 1 102,131,160,179,196,204 5 -187551 cd05240 UDP_G4E_3_SDR_e 1 active site 0 0 1 1 85,109,137,141 1 -187551 cd05240 UDP_G4E_3_SDR_e 2 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,29,30,31,68,69,70,84,107,108,109,137,141,165,166,167,168 5 -187551 cd05240 UDP_G4E_3_SDR_e 3 putative substrate binding site 0 0 1 1 109,137,167,185,194 5 -187552 cd05241 3b-HSD-like_SDR_e 1 active site 0 0 1 1 89,113,140,144 1 -187552 cd05241 3b-HSD-like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,30,31,32,72,73,74,88,111,112,113,140,144,167,168,169,170 5 -187552 cd05241 3b-HSD-like_SDR_e 3 putative substrate binding site 0 0 1 1 113,140,169,182,193,198 5 -187553 cd05242 SDR_a8 1 putative active site 0 0 1 1 85,110,134,138 1 -187553 cd05242 SDR_a8 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,29,30,31,63,64,65,84,109,110,111,134,138,160,161,162,163 5 -187554 cd05243 SDR_a5 1 putative active site 0 0 1 1 84,108,124,128 1 -187554 cd05243 SDR_a5 2 NAD(P) binding site 0 1 1 1 5,7,8,9,10,30,49,50,70,71,83,107,108,128,147,148,149,150 5 -187555 cd05244 BVR-B_like_SDR_a 1 NAD binding site 0 1 1 1 5,7,8,9,10,30,34,49,68,69,70,80,81,103,104,105,135,154,155,156 5 -187555 cd05244 BVR-B_like_SDR_a 2 substrate binding site 0 1 1 0 72,73,105,106,107,110,128,131,132,135,154,155,156,179 5 -187555 cd05244 BVR-B_like_SDR_a 3 putative active site 0 0 1 1 81,105,131,135 1 -187556 cd05245 SDR_a2 1 putative active site 0 0 1 1 118,122 1 -187556 cd05245 SDR_a2 2 putative NAD(P) binding site 0 0 1 1 4,6,7,9,28,29,30,69,70,71,105,106,107,118,122,141,142,143,144 5 -187557 cd05246 dTDP_GD_SDR_e 1 active site 0 0 1 1 100,124,149,153 1 -187557 cd05246 dTDP_GD_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,32,33,34,35,37,38,57,58,59,80,81,82,84,99,122,123,124,149,153,176,177,178,179 5 -187557 cd05246 dTDP_GD_SDR_e 3 substrate binding site 0 1 1 0 84,85,86,124,125,126,149,176,177,178,187,188,189,192,193,204,205,206,211,213,248,272,275,279 5 -187557 cd05246 dTDP_GD_SDR_e 4 homodimer interface 0 1 1 0 88,90,93,94,97,101,102,105,109,112,130,140,142,143,145,146,147,148,151,154,155,158,159,162,163,165,166,167,276 2 -187558 cd05247 UDP_G4E_1_SDR_e 1 active site 0 0 1 1 95,119,143,147 1 -187558 cd05247 UDP_G4E_1_SDR_e 2 NAD binding site 0 1 1 1 5,7,8,9,10,29,30,31,32,33,34,52,53,54,75,76,77,79,94,117,118,119,143,147,170,171,173 5 -187558 cd05247 UDP_G4E_1_SDR_e 3 substrate binding site 0 1 1 0 119,120,121,143,170,171,172,190,191,192,207,208,209,210,221,223,225,261,284,287 5 -187558 cd05247 UDP_G4E_1_SDR_e 4 homodimer interface 0 1 1 0 85,87,88,89,92,93,96,97,100,101,103,104,107,142,145,149,152,153,155,156,157 2 -187559 cd05248 ADP_GME_SDR_e 1 active site 0 0 1 1 92,115,141,145 1 -187559 cd05248 ADP_GME_SDR_e 2 NADP binding site 0 1 1 1 4,5,8,9,10,29,30,31,37,52,74,75,76,78,87,91,95,113,114,115,141,145,168,169,171,178,179 5 -187559 cd05248 ADP_GME_SDR_e 3 substrate binding site 0 1 1 0 80,170,181,182,183,185,188,215,250 5 -187559 cd05248 ADP_GME_SDR_e 4 homopentamer interface 0 1 1 0 32,33,35,36,38,41,42,44,45,46,47,48,49,51,83,84,85,86,89,93,97,130,136,137,138,139,140,143,147,150,151,154 2 -187560 cd05250 CC3_like_SDR_a 1 active site 0 0 1 1 89,113,124,128 1 -187560 cd05250 CC3_like_SDR_a 2 NAD binding site 0 1 1 1 6,8,9,10,11,33,34,52,71,72,73,74,88,92,111,112,113,124,128,148,149,150,151 5 -187561 cd05251 NmrA_like_SDR_a 1 active site 0 0 1 1 118,122 1 -187561 cd05251 NmrA_like_SDR_a 2 NADP binding site 0 1 1 1 4,6,7,8,9,30,72,73,75,106,122,141,142,143,144,147 5 -187561 cd05251 NmrA_like_SDR_a 3 regulatory binding site 0 1 1 1 187 2 -187562 cd05252 CDP_GD_SDR_e 1 active site 0 0 1 1 101,126,151,155 1 -187562 cd05252 CDP_GD_SDR_e 2 NAD binding site 0 1 1 1 10,12,13,14,15,34,35,36,38,58,59,60,61,81,82,83,85,100,124,125,126,127,151,155,187,188,189,190,200 5 -187562 cd05252 CDP_GD_SDR_e 3 substrate binding site 0 1 1 0 85,86,87,126,127,128,151,189,199,200,201,204,216,217,218,219,222,224,226,266,293 5 -187562 cd05252 CDP_GD_SDR_e 4 homodimer interface 0 1 1 0 63,91,94,95,98,99,103,106,107,110,113,144,146,148,149,150,153,156,157,160,161,164,165,167,168,169,171 2 -187562 cd05252 CDP_GD_SDR_e 5 homotetramer interface 0 1 1 0 63,91,94,95,98,99,103,106,107,110,113,135,137,138,140,141,142,143,144,146,147,148,149,150,153,156,157,160,161,164,165,167,168,169,171,294,295,296,298,300,302,303,305,306 2 -187563 cd05253 UDP_GE_SDE_e 1 active site 0 0 1 1 102,126,151,155 1 -187563 cd05253 UDP_GE_SDE_e 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,82,83,84,101,124,125,126,151,155,178,179,180,181 5 -187563 cd05253 UDP_GE_SDE_e 3 putative substrate binding site 0 0 1 1 126,151,180,195,207,215 5 -187564 cd05254 dTDP_HR_like_SDR_e 1 active site 0 0 1 1 81,104,127,131 1 -187564 cd05254 dTDP_HR_like_SDR_e 2 NADP binding site 0 1 1 1 5,7,8,9,10,29,30,38,39,40,41,61,62,63,65,80,102,103,104,127,131,150,151,152,153 5 -187564 cd05254 dTDP_HR_like_SDR_e 3 putative substrate binding site 0 0 1 1 104,127,152,167,179,185 5 -187565 cd05255 SQD1_like_SDR_e 1 active site 0 0 1 1 118,143,180,184 1 -187565 cd05255 SQD1_like_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,33,34,72,73,74,95,96,97,99,117,141,180,184,207,208,210 5 -187565 cd05255 SQD1_like_SDR_e 3 substrate binding site 0 1 0 0 99,101,143,144,145,180,181,207,208,209,236,237,240,241,252,254,259,261,298,325,327 5 -187566 cd05256 UDP_AE_SDR_e 1 active site 0 0 1 1 92,116,140,144 1 -187566 cd05256 UDP_AE_SDR_e 2 NAD binding site 0 1 1 1 5,7,8,9,10,29,30,31,32,33,34,51,52,53,72,73,74,76,91,114,115,116,140,144,167,168,169,170,182 5 -187566 cd05256 UDP_AE_SDR_e 3 substrate binding site 0 1 1 0 76,77,116,117,118,140,167,169,183,184,187,188,199,200,201,206,208,243,266,269,270,273 5 -187566 cd05256 UDP_AE_SDR_e 4 homodimer interface 0 1 0 0 81,82,85,86,89,93,94,97,101,104,136,137,138,139,142,143,145,146,149,150,153,154,158 2 -187567 cd05257 Arna_like_SDR_e 1 active site 0 0 1 1 95,118,146,150 1 -187567 cd05257 Arna_like_SDR_e 2 NAD binding site 0 1 1 1 5,7,8,9,10,29,30,53,54,55,74,75,76,78,194 5 -187567 cd05257 Arna_like_SDR_e 3 substrate binding site 0 1 1 0 78,80,83,118,119,120,143,146,173,174,175,176,194,195,198,199,210,211,212,217,220,255,276,278,282 5 -187568 cd05258 CDP_TE_SDR_e 1 active site 0 0 1 1 99,124,169,173 1 -187568 cd05258 CDP_TE_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,33,34,58,59,60,79,80,81,83,98,122,123,169,173,196,197,198,199,210 5 -187568 cd05258 CDP_TE_SDR_e 3 substrate binding site 0 1 1 0 126,198,208,211,212,215,216,228,229,235,237,276,299,302 5 -187568 cd05258 CDP_TE_SDR_e 4 homodimer interface 0 1 1 0 63,89,92,96,100,108,111,159,160,161,162,163,164,166,167,168,171,172,175,178,179,182,183,185,187,300 2 -187568 cd05258 CDP_TE_SDR_e 5 homotetramer interface 0 1 1 1 31,32,33,38,57,59,61,62,63,64,65,68,89,91,92,93,94,96,97,100,108,111,159,160,161,162,163,164,166,167,168,171,172,175,178,179,182,183,185,187,300 2 -187569 cd05259 PCBER_SDR_a 1 NAD(P) binding site 0 1 1 1 5,7,8,10,31,71,72,73,76,77,98,99,100,101,119,141,142,143,147 5 -187569 cd05259 PCBER_SDR_a 2 active site lysine 0 0 1 1 119 0 -187570 cd05260 GDP_MD_SDR_e 1 active site 0 0 1 1 98,123,147,151 1 -187570 cd05260 GDP_MD_SDR_e 2 NADP-binding site 0 1 1 1 5,6,7,8,9,10,30,31,32,55,56,57,78,79,80,82,97,121,122,123,147,151,174,175,176,177,178 0 -187570 cd05260 GDP_MD_SDR_e 3 substrate binding site 0 1 1 0 82,83,84,123,124,125,147,176,185,186,187,190,207,208,209,210,213,215,249,274,276,279,280 5 -187570 cd05260 GDP_MD_SDR_e 4 homodimer interface 0 1 1 0 88,91,95,96,99,100,103,104,107,140,141,142,143,145,146,149,150,152,153,156,157,159,160,161,163,164,165,277,278 2 -187570 cd05260 GDP_MD_SDR_e 5 homotetramer interface 0 1 1 0 7,8,30,31,32,33,34,35,38,39,54,55,56,58,59,60,61,62,64,65,66,68,80,81,82,83,86,88,89,90,91,95,96,100,103,104,107,110,111,140,141,142,143,145,146,149,150,152,153,156,157,159,160,161,163,164,165,185,186,277,278 2 -187571 cd05261 CAPF_like_SDR_e 1 active site 0 0 1 1 68,93,102,106 1 -187571 cd05261 CAPF_like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,31,32,33,52,53,54,67,91,92,93,102,106,129,130,131,132 5 -187571 cd05261 CAPF_like_SDR_e 3 putative substrate binding site 0 0 1 1 93,102,131,148,160 5 -187572 cd05262 SDR_a7 1 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,70,71,72,85,107,108,109,131,135,158,159,160,161 5 -187573 cd05263 MupV_like_SDR_e 1 active site 0 0 1 1 99,123,149,153 1 -187573 cd05263 MupV_like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,28,29,30,82,83,84,98,121,122,123,149,153,174,175,176,177 5 -187573 cd05263 MupV_like_SDR_e 3 putative substrate binding site 0 0 1 1 123,149,176,192,208 5 -187574 cd05264 UDP_G4E_5_SDR_e 1 active site 0 0 1 1 88,113,137,141 1 -187574 cd05264 UDP_G4E_5_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,29,30,31,68,69,70,87,110,111,112,137,141,164,165,166,167 5 -187574 cd05264 UDP_G4E_5_SDR_e 3 putative substrate binding site 0 0 1 1 112,137,166,181,194,204 5 -187575 cd05265 SDR_a1 1 active site 0 0 1 1 77,97,128,132 1 -187575 cd05265 SDR_a1 2 putative NAD(P) binding site 0 0 1 1 6,8,9,11,30,31,32,59,60,61,95,96,97,128,132,152,153,154,155 5 -187576 cd05266 SDR_a4 1 putative NAD(P) binding site 0 0 1 1 4,6,7,8,27,28,29,63,64,65,98,99,100,124,128,148,149,150,151 5 -187577 cd05267 SDR_a6 1 putative NAD(P) binding site 0 0 1 1 6,8,9,11,31,32,33,71,72,73,99,100,101,123,127,146,147,148,149 5 -187578 cd05269 TMR_SDR_a 1 NADP binding site 0 1 1 0 4,6,7,8,9,29,30,33,47,48,49,50,68,69,70,71,135,136,137,168 5 -187579 cd05271 NDUFA9_like_SDR_a 1 active site 0 0 1 1 125,129 1 -187579 cd05271 NDUFA9_like_SDR_a 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,74,75,76,89,112,113,114,125,129,148,149,150,151 5 -187580 cd05272 TDH_SDR_e 1 active site 0 0 1 1 90,113,138,142 1 -187580 cd05272 TDH_SDR_e 2 NAD binding site 0 1 1 1 5,7,8,9,10,31,32,33,48,49,50,71,72,73,75,89,111,112,113,138,142,165,166 5 -187580 cd05272 TDH_SDR_e 3 putative substrate binding site 0 0 1 1 113,138,186,198 5 -187580 cd05272 TDH_SDR_e 4 homodimer interface 0 1 0 0 80,83,87,95,120,130,131,133,134,135,137,140,143,147,148,151,156 2 -187581 cd05273 GME-like_SDR_e 1 active site 0 0 1 1 91,115,146,150 1 -187581 cd05273 GME-like_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,49,50,51,52,70,71,72,73,74,94,113,114,115,146,150,173,175,176,189 5 -187581 cd05273 GME-like_SDR_e 3 substrate binding site 0 1 1 0 74,75,76,77,80,115,116,117,146,173,174,175,188,189,190,193,194,197,209,210,215,217,251,275,276,281 5 -187581 cd05273 GME-like_SDR_e 4 homodimer interface 0 1 1 0 54,84,88,89,92,93,96,97,100,103,122,138,139,140,141,145,148,152,155,156,159,160,163,164 2 -187582 cd05274 KR_FAS_SDR_x 1 active site 0 0 1 1 259,283,296,300 1 -187582 cd05274 KR_FAS_SDR_x 2 NADP binding site 0 1 1 1 158,159,161,181,182,183,184,208,209,210,211,235,236,237,258,259,281,282,296,323,324 5 -176180 cd05276 p53_inducible_oxidoreductase 1 NAD(P) binding site 0 1 1 0 39,40,121,125,128,146,149,150,151,170,171,175,190,214,215,236,237,239,261,262,263,311,316 5 -176181 cd05278 FDH_like 1 NAD(P) binding site 0 1 1 0 38,39,42,85,150,154,174,176,177,178,197,198,199,203,242,243,244,248,265,267,290,291,292,332 5 -176181 cd05278 FDH_like 2 catalytic Zn binding site 0 1 1 0 37,39,59,150 4 -176181 cd05278 FDH_like 3 structural Zn binding site 0 1 1 0 89,90,92,95,103 4 -176182 cd05279 Zn_ADH1 1 NAD binding site 0 1 1 0 37,38,39,42,165,169,190,191,192,193,194,214,215,219,259,260,265,283,284,285,308,309,310,360 5 -176182 cd05279 Zn_ADH1 2 substrate binding site 0 1 1 0 37,39,58,84,285,309 5 -176182 cd05279 Zn_ADH1 3 dimer interface 0 1 0 0 92,93,98,99,101,251,252,277,282,283,292,293,294,295,296,302,303,304,305,306,307,308,309 2 -176182 cd05279 Zn_ADH1 4 catalytic Zn binding site 0 1 1 1 37,58,165 4 -176182 cd05279 Zn_ADH1 5 structural Zn binding site 0 1 1 0 88,91,94,102 4 -176183 cd05280 MDR_yhdh_yhfp 1 NADP binding site 0 1 0 0 39,40,125,126,129,153,155,156,157,158,177,178,179,197,219,220,241,242,243,244,245,266,267,268,269,311,316 5 -176183 cd05280 MDR_yhdh_yhfp 2 dimer interface 0 1 0 0 207,234,240,241,242,243,249,251,252,253,254,256,257,258,261,262,263,264,265,266,267,270,271 2 -176184 cd05281 TDH 1 NADP binding site 0 1 1 0 151,170,172,173,174,193,194,195,199,214,237,238,240,243,260,261,262,285,286 5 -176184 cd05281 TDH 2 catalytic Zn binding site 0 1 1 0 37,62,63,147 4 -176184 cd05281 TDH 3 structural Zn binding site 0 1 1 0 11 4 -176184 cd05281 TDH 4 tetramer interface 0 1 1 1 96,102,105,244,253,254,259,260,261,262,263,266,267,268,269,271,272,276,277,278,279,280,281,282,283,284,285,286 2 -176645 cd05282 ETR_like 1 NADP binding site 0 1 1 0 39,120,121,124,145,147,148,149,150,170,213,214,235,236,238,260,261,262 5 -176645 cd05282 ETR_like 2 dimer interface 0 1 1 0 49,50,234,235,236,237,243,244,245,247,250,255,256,257,258,259,261 2 -176186 cd05283 CAD1 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,152,156,176,177,178,179,180,181,199,200,204,219,238,239,241,261,262,285,286,287 5 -176186 cd05283 CAD1 2 putative substrate binding site 0 0 1 1 36,38,58,84,152,287 5 -176186 cd05283 CAD1 3 dimer interface 0 1 1 1 102,159,163,255,260,261,262,264,273,275,276,279,280,281,282,283,284,285,286 2 -176186 cd05283 CAD1 4 catalytic Zn binding site 0 1 1 1 36,58,152 4 -176186 cd05283 CAD1 5 structural Zn binding site 0 1 1 0 89,92,95,103 4 -176187 cd05284 arabinose_DH_like 1 NAD binding site 0 1 1 0 37,38,39,42,148,152,174,176,177,178,198,199,241,242,247,264,265,266,287,288,289,326,334 5 -176187 cd05284 arabinose_DH_like 2 substrate binding site 0 1 1 1 37,39,62,111,148,289 5 -176187 cd05284 arabinose_DH_like 3 catalytic Zn binding site 0 1 1 1 37,62,148 4 -176187 cd05284 arabinose_DH_like 4 structural Zn binding site 0 1 1 1 92,95,98,106 4 -176188 cd05285 sorbitol_DH 1 NADP binding site 0 1 1 1 149,171,172,173,192,193,194,198,213,240,241,243,263,264,265,287,288,289 5 -176188 cd05285 sorbitol_DH 2 inhibitor binding site 0 1 1 1 34,36,40,46,49,59,108,111,145,265,288,289 0 -176188 cd05285 sorbitol_DH 3 tetramer interface 0 1 0 0 151,162,164,180,183,184,185,187,196,212,227,296,299,300,303 2 -176188 cd05285 sorbitol_DH 4 catalytic Zn binding site 0 1 1 1 34,36,59,60,145 4 -176188 cd05285 sorbitol_DH 5 structural Zn binding site 0 1 1 0 89,92,95,103 4 -176189 cd05286 QOR2 1 NADP binding site 0 1 0 0 38,39,43,118,122,125,143,146,147,148,167,168,172,187,211,212,233,234,235,236,237,257,258,259,260,307,309 5 -176189 cd05286 QOR2 2 dimer interface 0 1 0 0 130,226,227,240,241,242,243,244,245,252,253,254,255,256,257,258,259,262,263 2 -176190 cd05288 PGDH 1 NAD(P) binding site 0 1 1 0 45,127,131,155,156,157,176,177,181,197,220,221,242,243,244,245,246,248,272,273,274,317,318,320,322 5 -176190 cd05288 PGDH 2 substrate binding site 0 1 1 0 46,248,275 5 -176190 cd05288 PGDH 3 dimer interface 0 1 1 0 49,53,236,241,242,243,244,247,262,263,266,267,268,269,270,271,272,273,276 2 -176191 cd05289 MDR_like_2 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,126,130,152,153,154,155,156,157,176,177,179,193,214,215,236,237,256,257,258 5 -133426 cd05290 LDH_3 1 NAD binding site 0 0 1 1 7,8,9,30,32,74,75,76,77,78,117,119,142,146,174,227,231 5 -133426 cd05290 LDH_3 2 substrate binding site 0 0 1 1 80,85,119,146,150,174 5 -133426 cd05290 LDH_3 3 dimer interface 0 0 1 1 11,15,35,39,41,42,44,45,46,149,150,152,153,159,233,237 2 -133426 cd05290 LDH_3 4 tetramer (dimer of dimers) interface 0 0 1 1 54,160,165,167,184,188,189,190,244,246,247,248,249,272,275,282,283,284 2 -133427 cd05291 HicDH_like 1 NAD binding site 0 1 1 0 8,9,10,31,32,74,75,76,77,115,116,117,140,172 5 -133427 cd05291 HicDH_like 2 substrate binding site 0 1 1 0 85,117,148,172,215,225 5 -133427 cd05291 HicDH_like 3 dimer interface 0 1 1 1 12,13,16,20,21,40,42,43,44,45,46,49,50,147,148,150,162,221,222,226,227,228,231,235 2 -133427 cd05291 HicDH_like 4 tetramer (dimer of dimers) interface 0 1 1 0 0,25,54,158,160,163,182,187,188,241,242,243,244,245,247,273,281,282 2 -133428 cd05292 LDH_2 1 NAD binding site 0 1 1 0 8,9,10,31,32,36,75,91,116,225,226 5 -133428 cd05292 LDH_2 2 substrate binding site 0 1 1 0 116,171,216,220 5 -133428 cd05292 LDH_2 3 dimer interface 0 1 1 1 12,13,16,21,40,42,43,46,47,215,218,219,223,227,228,229,232 2 -133428 cd05292 LDH_2 4 tetramer (dimer of dimers) interface 0 1 1 0 159,162,164,166,183,185,186,245,246,248,278,279,281 2 -133429 cd05293 LDH_1 1 NAD binding site 0 1 1 0 11,12,13,34,36,39,77,78,79,80,81,118,120,143,147,175,230,234 5 -133429 cd05293 LDH_1 2 substrate binding site 0 1 1 0 82,88,120,151,175,220,230 5 -133429 cd05293 LDH_1 3 dimer interface 0 1 1 1 15,20,42,43,46,48,49,151,153,154,160,226,227,230,231,232,233 2 -133429 cd05293 LDH_1 4 tetramer (dimer of dimers) interface 0 1 1 0 0,2,163,166,168,185,190,247,248,249,252,279,280,283,285,286,287 2 -133430 cd05294 LDH-like_MDH_nadp 1 NADP binding site 0 1 1 1 6,8,10,11,33,78,81,83,103,119,120,121,217 5 -133430 cd05294 LDH-like_MDH_nadp 2 substrate binding site 0 0 1 1 89,121,152,176,216,226 5 -133430 cd05294 LDH-like_MDH_nadp 3 dimer interface 0 0 1 1 13,18,21,38,39,42,45,46,48,49,53,55,56,57,151,152,154,156,222,227,228,229,232,233,236 2 -133430 cd05294 LDH-like_MDH_nadp 4 tetramer (dimer of dimers) interface 0 0 1 1 55,57,162,167,169,171,188,190,191,192,243,245,246,247,248,275,284 2 -133431 cd05295 MDH_like 1 putative NAD binding site 0 0 1 1 129,131,132,133,134,160,161,205,206,207,247,249,250,274,306 5 -133431 cd05295 MDH_like 2 putative substrate binding site 0 0 1 1 210,216,250,276,280,306,353,365 5 -133431 cd05295 MDH_like 3 putative dimer interface 0 0 1 1 136,173,174,176,280,281,284,365,366,367,368,371 2 -133432 cd05296 GH4_P_beta_glucosidase 1 NAD binding site 0 1 1 0 8,9,11,35,36,41,81,82,83,106,126,142,144,273,295,300 5 -133432 cd05296 GH4_P_beta_glucosidase 2 sugar binding site 0 1 1 0 90,106,144,166,195,244,265,295,296,300 5 -133432 cd05296 GH4_P_beta_glucosidase 3 divalent metal binding site 0 0 1 1 165,195 4 -133432 cd05296 GH4_P_beta_glucosidase 4 dimer interface 0 1 1 1 230,232,235,236,237,249,251,252,358,359,366,370,377,385,388,389,399,400,402,404 2 -133432 cd05296 GH4_P_beta_glucosidase 5 tetramer (dimer of dimers) interface 0 1 1 1 184,187,203,206,314,326,345,346,348,350,351,352,353 2 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 1 NAD binding site 0 1 1 0 8,9,35,36,40,80,81,82,85,86,110,123,143,145,165 5 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 2 sugar binding site 0 1 1 0 110,145,166,196,246,249 5 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 3 divalent metal binding site 0 0 1 1 166,196 4 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 4 dimer interface 0 1 1 1 239,251,366,367,371,374,378,381,385,391,393,396,397,400,401,406,408,410,412 2 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 5 putative tetramer (dimer of dimers) interface 0 0 1 1 185,188,204,207,322,334,353,354,356,358,359,360,361 2 -133434 cd05298 GH4_GlvA_pagL_like 1 NAD binding site 0 1 1 0 8,9,10,11,35,36,80,81,82,86,105,114,141,143,164,165,166,287 5 -133434 cd05298 GH4_GlvA_pagL_like 2 sugar binding site 0 1 1 0 89,105,143,165,166,167,195,259,279,287 5 -133434 cd05298 GH4_GlvA_pagL_like 3 divalent metal binding site 0 1 1 1 165,195 4 -133434 cd05298 GH4_GlvA_pagL_like 4 dimer interface 0 0 1 1 252,264,372,373,377,380,384,387,391,397,399,402,403,406,407,412,414,416,418 2 -133434 cd05298 GH4_GlvA_pagL_like 5 putative tetramer (dimer of dimers) interface 0 0 1 1 184,187,203,207,328,340,359,360,362,364,365,366,367 2 -240624 cd05299 CtBP_dh 1 NAD binding site 0 1 1 1 73,101,147,148,150,151,152,170,171,172,173,174,202,203,204,206,209,230,231,232,256,257,280,282,283 5 -240624 cd05299 CtBP_dh 2 ligand binding site 0 1 1 0 70,73,74,232,280,283 5 -240624 cd05299 CtBP_dh 3 catalytic site R[QE]H 0 1 1 232,261,280 1 -240625 cd05300 2-Hacid_dh_1 1 NAD binding site 0 0 1 1 67,91,95,140,141,142,143,144,162,163,164,195,196,197,202,223,224,225,249,250,273,275,276 5 -240625 cd05300 2-Hacid_dh_1 2 ligand binding site 0 1 1 0 67,91,144,223,224,273,276 5 -240625 cd05300 2-Hacid_dh_1 3 catalytic site R[QE]H 0 1 1 225,254,273 1 -240626 cd05301 GDH 1 NADP binding site 0 1 1 1 73,74,101,150,151,152,153,154,172,173,174,177,204,205,206,210,211,232,233,234,258,259,282,284,285 5 -240626 cd05301 GDH 2 ligand binding site 0 1 1 0 50,72,73,74,97,234,282,285 5 -240626 cd05301 GDH 3 dimerization interface 0 1 1 0 6,7,9,49,50,51,71,99,100,103,104,106,107,110,114,116,124,126,128,130,131,132,133,134,135,136,138,139,140,141,142,160,161,164,165,263,264,272,278,279,280,281,282,283,284,286,287,288,289,291 2 -240626 cd05301 GDH 4 catalytic site R[QE]H 0 1 1 234,263,282 1 -240627 cd05302 FDH 1 NAD binding site 0 1 1 1 68,92,116,117,120,168,170,171,172,191,192,193,224,225,226,228,231,252,253,254,278,279,302,304,305 5 -240627 cd05302 FDH 2 ligand binding site PFGIN 1 1 1 67,68,91,92,116 5 -240627 cd05302 FDH 3 dimerization interface 0 1 1 0 7,8,9,19,118,119,122,123,125,126,129,130,133,135,136,138,139,140,141,142,143,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,162,178,179,182,183,280,283,284,285,287,292,293,297,298,299,300,301,302,303,304,306,307,308,309,311,313 2 -240627 cd05302 FDH 4 catalytic site R[QE]H 0 1 1 254,283,302 1 -240628 cd05303 PGDH_2 1 NAD binding site 0 1 1 1 95,99,145,147,148,149,167,168,169,170,199,200,201,227,228,229,253,276,278,279 5 -240628 cd05303 PGDH_2 2 putative ligand binding site 0 0 1 1 48,70,71,72,95,229,276 5 -240628 cd05303 PGDH_2 3 dimerization interface 0 1 1 0 97,98,101,102,104,105,108,112,114,118,119,121,122,126,127,128,133,134,135,136,137,139,156,159,160,259,260,266,268,271,272,273,274,275,276,277,278,280,281,283,287 2 -240628 cd05303 PGDH_2 4 catalytic site R[QE]H 0 1 1 229,258,276 1 -240629 cd05304 Rubrum_tdh 1 NAD(P) binding site 0 1 1 1 120,121,125,128,131,172,173,174,175,195,196,197,227,238,255,256,257,264,266 5 -240629 cd05304 Rubrum_tdh 2 ligand binding site 0 1 1 0 14,73,92,287,313,315 5 -240629 cd05304 Rubrum_tdh 3 homodimer interface 0 1 1 1 43,125,126,135,136,139,140,143,144,146,147,149,150,151,152,153,154,156,158,159,160,163,186,187,277,278,320,321,325,328,329 2 -240629 cd05304 Rubrum_tdh 4 trimer interface A 0 1 1 1 155,156,157,158,159,162,165,188,190 2 -240629 cd05304 Rubrum_tdh 5 trimer interface B 0 1 1 1 122,123,125,135,178,179,186,202,203,205,206,207,208 2 -240630 cd05305 L-AlaDH 1 NAD(P) binding site 0 1 1 1 129,132,133,136,173,174,176,177,178,196,197,198,202,219,237,238,239,248,266,269,270,297,298,299,300,301 5 -240630 cd05305 L-AlaDH 2 ligand binding site 0 1 1 0 14,74,93,299 5 -240630 cd05305 L-AlaDH 3 hexamer interface 0 1 1 0 11,13,19,20,41,43,134,135,138,139,142,145,146,147,149,155,156,157,158,159,160,161,162,163,164,165,167,180,184,185,188,189,192,200,203,204,207,208,209,210,211,213,215,216,217,218,282,303,304,305,306,307,310,311,314,317,318 2 -240630 cd05305 L-AlaDH 4 putative active site 0 0 1 1 95,269 1 -133453 cd05311 NAD_bind_2_malic_enz 1 putative NAD(P) binding site 0 0 1 1 32,33,34,35,57,58,103,104,108,126,127,128,149,157,159 5 -133454 cd05312 NAD_bind_1_malic_enz 1 NAD(P) binding site 0 1 1 1 32,33,34,35,65,66,112,113,138,139,140,165,183,185 5 -133455 cd05313 NAD_bind_2_Glu_DH 1 NAD(P) binding site 0 0 1 1 46,47,48,68,69,128,129,152,153,154 5 -187583 cd05322 SDH_SDR_c_like 1 active site 0 0 1 1 110,139,152,156 1 -187583 cd05322 SDH_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 8,10,11,12,13,32,33,34,58,59,60,86,87,88,109,137,138,139,152,156,182,183,184,185,187,188 5 -187584 cd05323 ADH_SDR_c_like 1 active site 0 0 1 1 109,140,153,157 1 -187584 cd05323 ADH_SDR_c_like 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,55,56,57,58,83,84,85,86,108,138,139,140,153,157,184,185,186,187,189,190,191,192 5 -187584 cd05323 ADH_SDR_c_like 3 homodimer interface 0 1 1 1 102,103,106,110,111,114,115,118,121,141,144,145,146,148,149,151,152,154,155,156,158,159,162,163,166,167,169,170,186,206,235,242,243 2 -187585 cd05324 carb_red_PTCR-like_SDR_c 1 active site 0 0 1 1 109,137,146,150 1 -187585 cd05324 carb_red_PTCR-like_SDR_c 2 NADP binding site 0 1 1 1 6,8,9,10,11,32,36,56,57,58,84,85,86,87,108,135,136,137,146,150,175,176,177,178,179,181,182,183,184 5 -187585 cd05324 carb_red_PTCR-like_SDR_c 3 substrate binding site 0 1 1 1 88,89,137,138,139,142,146,175,177,178,183,184 5 -187586 cd05325 carb_red_sniffer_like_SDR_c 1 active site 0 0 1 1 106,134,150,154 1 -187586 cd05325 carb_red_sniffer_like_SDR_c 2 NADP binding site 0 1 1 1 4,6,7,8,9,30,54,55,81,82,83,84,105,132,133,134,150,154,179,180,181,182,183,185,187,188 5 -187586 cd05325 carb_red_sniffer_like_SDR_c 3 homodimer interface 0 1 1 0 55,63,99,104,107,108,109,112,115,116,136,137,138,139,140,141,142,148,151,152,155,156,159,160,162,163,166,167,231,232 2 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 2 NAD binding site 0 1 1 1 10,13,14,15,34,35,57,58,59,85,86,87,88,110,137,138,139,152,156,182,183,184,185 5 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 3 substrate binding site 0 1 1 0 89,90,139,140,147,148,149,152,182,183,184,247 5 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 4 homodimer interface 0 1 1 1 62,95,96,97,99,100,101,104,105,108,112,113,116,117,120,123,124,127,144,145,150,153,154,157,158,161,162,164,165,166,168,169 2 -212492 cd05327 retinol-DH_like_SDR_c_like 1 active site 0 0 1 1 108,142,163,167 1 -212492 cd05327 retinol-DH_like_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,58,59,60,86,87,88,107,140,141,142,163,167,193,194,195,196,198,199 5 -187589 cd05328 3alpha_HSD_SDR_c 1 active site 0 0 1 1 82,110,150,154 1 -187589 cd05328 3alpha_HSD_SDR_c 2 NAD binding site 0 1 1 1 5,7,8,9,10,29,30,37,38,39,40,66,67,68,69,81,108,109,110,150,154,181,182,184,186 5 -187589 cd05328 3alpha_HSD_SDR_c 3 homodimer interface 0 1 1 0 155,158,159,162,163,165,166,169,208,209,211,217,220,221,224,232,233,234,235,236,239,240,241,242,243,245,246,247,249 2 -187590 cd05329 TR_SDR_c 1 active site 0 0 1 1 114,142,155,159 1 -187590 cd05329 TR_SDR_c 2 NADP binding site 0 1 1 1 12,14,15,16,17,36,37,38,41,61,62,63,90,91,92,140,141,142,155,159,185,186,187,188 5 -187590 cd05329 TR_SDR_c 3 substrate binding site 0 1 1 0 96,142,144,152,155,203,206 5 -187590 cd05329 TR_SDR_c 4 homodimer interface 0 1 1 0 66,98,99,100,102,104,107,111,115,116,119,123,126,144,145,146,147,148,153,156,157,160,161,164,167,168,169,171,172,173 2 -187591 cd05330 cyclohexanol_reductase_SDR_c 1 active site 0 0 1 1 113,141,154,158 1 -187591 cd05330 cyclohexanol_reductase_SDR_c 2 NAD binding site 0 1 1 1 9,11,12,13,14,33,34,60,61,62,88,89,90,91,112,139,141,154,158,184,185,189,190,191,192 5 -187591 cd05330 cyclohexanol_reductase_SDR_c 3 substrate binding site 0 1 1 0 151,154 5 -187591 cd05330 cyclohexanol_reductase_SDR_c 4 homodimer interface 0 1 0 0 65,96,97,98,99,101,102,103,106,107,114,115,118,122,126,129,145,147,149,150,151,152,155,156,159,160,163,164,166,167,168,170,171,172 2 -187591 cd05330 cyclohexanol_reductase_SDR_c 5 homotetramer interface 0 1 1 1 21,65,96,97,98,99,101,102,103,106,107,114,115,118,122,126,129,142,145,146,147,148,149,150,151,152,155,156,159,160,163,164,166,167,168,170,171,172,173,174,178,185,186,187,215,216,217,218,219,220,221,225,228,229,232,237,240,241,242,243,244,247,248,249,250,251,252,253,254,255,256 2 -187592 cd05331 DH-DHB-DH_SDR_c 1 active site 0 0 1 1 98,126,139,143 1 -187592 cd05331 DH-DHB-DH_SDR_c 2 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,28,29,30,46,47,48,74,75,76,97,124,125,126,139,143,169,170,171,172,174,175 5 -187593 cd05332 11beta-HSD1_like_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187593 cd05332 11beta-HSD1_like_SDR_c 2 NADP binding site 0 1 1 1 9,10,11,12,13,14,33,34,35,59,60,61,87,88,89,91,110,115,137,138,139,152,156,182,183,184,185,187,189,190 5 -187593 cd05332 11beta-HSD1_like_SDR_c 3 substrate binding site 0 1 1 0 89,92,139,140,141,146,149,152,182,183,184,189,190,193,194 5 -187593 cd05332 11beta-HSD1_like_SDR_c 4 homodimer interface 0 1 0 1 64,94,95,96,97,98,101,104,105,108,109,112,113,117,120,143,144,145,146,147,148,149,150,153,154,157,158,160,161,162,164,165,166,168,169,196,197,198,199,200,235,244,245,247,249,250,252,253,254,256 2 -187594 cd05333 BKR_SDR_c 1 active site 0 0 1 1 107,135,148,152 1 -187594 cd05333 BKR_SDR_c 2 NAD(P) binding site 0 1 1 1 6,8,9,10,11,30,31,55,56,57,83,84,85,86,106,133,134,135,148,152,178,179,181,183,184,185 5 -187594 cd05333 BKR_SDR_c 3 homodimer interface 0 1 1 0 91,92,93,95,97,100,101,104,108,109,112,113,116,119,120,123,138,139,140,141,142,143,144,145,146,149,150,153,154,157,158,160,161,162,164,165 2 -187594 cd05333 BKR_SDR_c 4 homotetramer interface 0 1 1 0 18,22,64,90,91,92,93,95,96,97,100,101,104,108,109,112,113,115,116,119,120,123,139,140,141,142,143,144,145,146,149,150,153,154,157,158,160,161,162,163,164,165,167,168,180,201,202,203,205,206,207,208,211,214,215,217,218,222,225,226,227,228,229,230,231,232,233,234,235,236,237,239 2 -187595 cd05334 DHPR_SDR_c_like 1 active site 0 0 1 1 138,142 1 -187595 cd05334 DHPR_SDR_c_like 2 NAD binding site 0 1 1 1 6,7,9,10,11,12,31,44,53,74,75,76,77,98,102,123,124,138,142,170,171,172,173,175,178 5 -187595 cd05334 DHPR_SDR_c_like 3 homodimer interface 0 1 1 0 54,82,83,84,85,88,89,90,92,93,104,108,111,128,130,131,132,133,136,139,140,144,147,148,150,151,152,154,155,156,157,158 2 -187596 cd05337 BKR_1_SDR_c 1 active site 0 0 1 1 145,158,162 1 -187596 cd05337 BKR_1_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,57,58,59,85,86,87,110,143,144,145,158,162,188,189,190,191,193,194 5 -187597 cd05338 DHRS1_HSDL2-like_SDR_c 1 active site 0 0 1 1 122,150,163,167 1 -187597 cd05338 DHRS1_HSDL2-like_SDR_c 2 NAD(P) binding site 0 1 1 1 9,11,12,13,14,33,34,35,47,70,71,72,98,99,100,121,148,163,167,192,196,197,199,201,202 5 -187597 cd05338 DHRS1_HSDL2-like_SDR_c 3 homodimer interface 0 1 0 0 75,110,112,115,116,119,124,127,131,134,152,154,156,161,165,172,173,175,176,177,179,180 2 -187598 cd05339 17beta-HSDXI-like_SDR_c 1 active site 0 0 1 1 106,134,147,151 1 -187598 cd05339 17beta-HSDXI-like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,29,30,31,54,55,56,82,83,84,105,132,133,134,147,151,180,181,182,183,185,186 5 -187598 cd05339 17beta-HSDXI-like_SDR_c 3 substrate binding site 0 1 0 0 115,118,161,164,170 5 -187598 cd05339 17beta-HSDXI-like_SDR_c 4 homodimer interface 0 1 0 0 59,63,95,96,99,100,103,107,108,111,112,115,144,145,146,148,149,152,153,156,157,159,160,161,163,164,186,187,188,230,231,234,238 2 -187599 cd05340 Ycik_SDR_c 1 active site 0 0 1 1 115,143,156,160 1 -187599 cd05340 Ycik_SDR_c 2 NADP binding site 0 1 1 1 10,12,13,14,15,35,60,61,62,63,90,91,92,114,141,142,143,156,160,186,187,188,189,191,193,194 5 -187599 cd05340 Ycik_SDR_c 3 homodimer interface 0 1 0 0 99,100,101,102,103,105,108,109,112,113,116,117,120,121,124,127,148,149,150,151,152,154,157,158,161,162,164,165,166,168,169,170,172,173,174 2 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 1 active site 0 0 1 1 109,137,150,154 1 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 2 NAD binding site 0 1 1 1 11,14,15,16,17,35,36,37,57,58,59,85,86,87,88,108,135,136,137,150,154,182,183,184,185,187,188,189 5 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 3 homodimer interface 0 1 1 0 62,94,95,97,99,102,103,106,110,111,114,115,117,118,121,122,125,140,141,143,144,145,148,151,152,155,156,158,159,160,162,163,164,166,167,168 2 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 4 homotetramer interface 0 1 1 0 0,1,62,94,95,97,99,102,103,106,110,111,114,115,117,118,121,122,125,140,141,142,143,144,145,148,151,152,155,156,158,159,160,162,163,164,165,166,167,168,169,184,206,207,208,209,210,211,212,213,216,219,220,223,228,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 2 -187601 cd05343 Mgc4172-like_SDR_c 1 active site 0 0 1 1 114,144,159,163 1 -187601 cd05343 Mgc4172-like_SDR_c 2 NADP binding site 0 1 1 1 12,14,15,16,17,36,37,38,62,63,64,65,90,91,92,113,142,143,144,159,163,191,192,193,194,196,197,198,201 5 -187601 cd05343 Mgc4172-like_SDR_c 3 homodimer interface 0 1 0 0 189 2 -187601 cd05343 Mgc4172-like_SDR_c 4 homotetramer interface 0 1 0 0 67,98,99,100,101,102,104,107,108,111,116,119,120,123,126,127,150,157,158,161,164,165,168,169,171,172,173,174,175,176,178,179,183,185,219,220,224,228,231,237,238,239,240,241,242,243,244,245,246,247,248,249 2 -187602 cd05344 BKR_like_SDR_like 1 putative active site 0 0 1 1 136,149,153 1 -187602 cd05344 BKR_like_SDR_like 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,56,57,58,84,85,86,107,134,135,136,149,153,179,180,181,182,184,185 5 -187603 cd05345 BKR_3_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187603 cd05345 BKR_3_SDR_c 2 putative NAD(P) binding site 0 0 1 1 11,13,14,15,16,35,36,37,57,58,59,85,86,87,109,136,137,138,151,155,181,182,183,184,186,187 5 -187604 cd05346 SDR_c5 1 active site 0 0 1 1 109,137,150,154 1 -187604 cd05346 SDR_c5 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,56,57,58,84,85,86,108,135,136,137,150,154,180,181,182,183,185,186 5 -187604 cd05346 SDR_c5 3 homodimer interface 0 1 0 0 61,93,94,99,100,102,103,106,107,110,111,114,115,118,121,125,139,140,141,142,143,144,145,146,147,148,149,151,152,153,155,156,159,160,163,164,166,167,169,170,248 2 -187604 cd05346 SDR_c5 4 homotetramer interface 0 1 0 0 61,94,99,100,102,103,107,111,115,118,140,141,142,143,145,146,147,148,152,153,155,156,159,162,163,165,166,167,213,220,227,229,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 2 -187605 cd05347 Ga5DH-like_SDR_c 1 active site 0 0 1 1 112,140,153,157 1 -187605 cd05347 Ga5DH-like_SDR_c 2 NADP binding site 0 1 1 1 11,13,14,15,16,35,36,37,60,61,62,88,89,90,91,111,138,139,140,153,157,183,184,185,186,188,189,190,191 5 -187605 cd05347 Ga5DH-like_SDR_c 3 homodimer interface 0 1 0 0 65,96,97,98,99,100,102,105,106,109,114,117,118,121,124,142,143,144,150,151,154,155,158,159,162,163,165,166,167,169,170,171 2 -187606 cd05348 BphB-like_SDR_c 1 active site 0 0 1 1 113,140,153,157 1 -187606 cd05348 BphB-like_SDR_c 2 NAD binding site 0 1 1 1 10,12,13,14,15,16,34,35,39,56,57,58,84,85,86,117,138,139,140,153,157,182,183,184,185,187,188,189 5 -187607 cd05349 BKR_2_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187607 cd05349 BKR_2_SDR_c 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,53,54,55,81,82,83,110,137,138,139,152,156,182,183,184,185,187,188 5 -187608 cd05350 SDR_c6 1 active site 0 0 1 1 105,133,146,150 1 -187608 cd05350 SDR_c6 2 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,28,29,30,50,51,52,81,82,83,104,131,132,133,146,150,176,177,178,179,181,182 5 -187609 cd05351 XR_like_SDR_c 1 active site 0 0 1 1 106,135,148,152 1 -187609 cd05351 XR_like_SDR_c 2 NADP binding site 0 1 1 1 13,15,16,17,18,37,38,39,42,58,59,60,61,82,83,84,85,101,105,133,134,135,148,152,178,179,180,181,183,184,185,186 5 -187609 cd05351 XR_like_SDR_c 3 homodimer interface 0 1 1 1 63,90,91,92,94,96,99,100,103,107,108,111,114,115,119,122,137,138,139,140,141,146,147,149,150,153,154,157,158,160,161,162,164,165 2 -187609 cd05351 XR_like_SDR_c 4 homotetramer interface 0 1 1 1 63,90,91,92,94,96,99,100,103,107,108,111,114,115,119,122,137,138,139,140,141,146,147,149,150,153,154,157,158,160,161,162,163,164,165,167,168,202,204,205,206,207,209,212,213,216,217,220,225,227,228,229,230,235,236,237,238,239,241,242,243 2 -187610 cd05352 MDH-like_SDR_c 1 active site 0 0 1 1 116,144,159,163 1 -187610 cd05352 MDH-like_SDR_c 2 NADP binding site 0 1 1 1 14,16,17,18,19,37,38,39,40,64,65,66,92,93,94,115,142,143,144,159,163,189,190,191,192,194,195 5 -187610 cd05352 MDH-like_SDR_c 3 homodimer interface 0 1 1 0 100,101,102,104,106,109,113,117,118,121,122,125,129,146,147,148,150,155,157,160,161,164,165,168,169,171,172,173,176,177 2 -187610 cd05352 MDH-like_SDR_c 4 homotetramer interface 0 1 1 0 0,2,3,29,30,100,101,102,104,106,109,113,117,118,121,122,125,129,146,147,148,149,150,152,155,157,160,161,164,165,168,169,171,172,173,175,176,177,178,191,210,211,212,213,214,216,217,218,219,221,222,224,225,226,228,229,234,236,237,238,239,241,243,244,245,246,247,248,251 2 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like 1 active site 0 0 1 1 118,146,159,163 1 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like 2 NAD binding site 0 1 1 1 11,14,15,16,34,35,36,38,70,71,94,95,96,97,117,118,144,145,146,159,163,189,190,191,193,194,195,196 5 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like 3 homodimer interface 0 1 1 1 0,27,102,103,104,106,107,108,111,112,115,119,120,123,126,127,130,131,147,148,149,150,151,152,153,154,155,157,160,161,164,165,167,168,169,171,172,173,175,176,178,179,181,204,207,208,212,215,216,218,219,220,227,231,232,233,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 2 -187612 cd05354 SDR_c7 1 active site 0 0 1 1 105,133,146,150 1 -187612 cd05354 SDR_c7 2 putative NAD(P) binding site 0 0 1 1 9,11,12,13,14,34,35,36,52,53,54,80,81,82,104,131,132,133,146,150,176,177,178,179,181,182 5 -187613 cd05355 SDR_c1 1 active site 0 0 1 1 136,162,175,179 1 -187613 cd05355 SDR_c1 2 NAD binding site 0 1 1 1 0,32,34,35,36,37,56,57,59,83,84,85,111,112,113,114,135,140,160,161,162,175,179,205,206,207,208,210,211,212,213,225 5 -187613 cd05355 SDR_c1 3 metal binding site 0 1 0 0 34,35,59 4 -187614 cd05356 17beta-HSD1_like_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187614 cd05356 17beta-HSD1_like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,56,57,58,84,85,86,109,136,137,138,151,155,181,182,183,184,186,187 5 -187615 cd05357 PR_SDR_c 1 active site 0 0 1 1 108,136,149,153 1 -187615 cd05357 PR_SDR_c 2 NADP binding site 0 1 1 0 6,9,10,11,29,30,31,32,33,56,57,58,84,85,86,87,103,107,134,135,136,149,153,178,179,180,181,182 5 -187615 cd05357 PR_SDR_c 3 substrate binding pocket 0 1 1 1 10,86,88,90,136,146,149,179,180,183,184 5 -187616 cd05358 GlcDH_SDR_c 1 active site 0 0 1 1 111,140,153,157 1 -187616 cd05358 GlcDH_SDR_c 2 NAD binding site 0 1 1 1 9,11,12,13,14,34,59,60,61,62,87,88,89,110,138,139,140,153,157,183,184,185,186,188,189,190,191 5 -187616 cd05358 GlcDH_SDR_c 3 homodimer interface 0 1 1 1 97,99,104,113,120,143,147,154,155,159,162,166,167,170,171 2 -187617 cd05359 ChcA_like_SDR_c 1 active site 0 0 1 1 106,134,147,151 1 -187617 cd05359 ChcA_like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,28,29,30,54,55,56,82,83,84,105,132,133,134,147,151,177,178,179,180,182,183 5 -187618 cd05360 SDR_c3 1 active site 0 0 1 1 107,135,148,152 1 -187618 cd05360 SDR_c3 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,55,56,57,83,84,85,106,133,134,135,148,152,180,181,182,183,185,186 5 -187619 cd05361 haloalcohol_DH_SDR_c-like 1 active site 0 0 1 1 103,131,144,148 1 -187619 cd05361 haloalcohol_DH_SDR_c-like 2 halogen binding site 0 1 1 1 11,174,175,176,177,183 0 -187619 cd05361 haloalcohol_DH_SDR_c-like 3 homodimer interface 0 1 1 0 88,89,91,96,97,100,101,105,108,111,112,115,119,137,139,142,146,149,150,153,154,156,157,160,161 2 -187619 cd05361 haloalcohol_DH_SDR_c-like 4 homotetramer interface 0 1 1 0 88,89,91,96,97,100,101,105,108,111,112,115,119,137,138,139,142,146,149,150,153,154,156,157,159,160,161,163,164,202,203,204,205,206,208,212,215,216,219,224,226,227,228,229,231,233,234,235,236,237,238,241 2 -187620 cd05362 THN_reductase-like_SDR_c 1 active site 0 0 1 1 111,137,150,154 1 -187620 cd05362 THN_reductase-like_SDR_c 2 NADP binding site 0 1 1 1 9,12,13,14,32,33,34,35,36,59,60,61,87,88,89,110,135,136,137,150,154,180,181,182,183,185,186,187 5 -187620 cd05362 THN_reductase-like_SDR_c 3 substrate binding site 0 1 1 1 137,138,150,182,187,188,192,195 5 -187620 cd05362 THN_reductase-like_SDR_c 4 homodimer interface 0 1 1 1 21,24,25,162,165,205,206,208,209,210,211,213,214,217,218,221,225,228,229,230,231,233,235,236,237,238,239,240,241 2 -187621 cd05363 SDH_SDR_c 1 active site 0 0 1 1 107,136,149,153 1 -187621 cd05363 SDH_SDR_c 2 putative NAD(P) binding site 0 0 1 1 9,11,12,13,14,33,34,35,55,56,57,83,84,85,106,134,135,136,149,153,179,180,181,182,184,185 5 -187622 cd05364 SDR_c11 1 active site 0 0 1 1 113,140,153,157 1 -187622 cd05364 SDR_c11 2 NADP binding site 0 1 1 1 9,10,11,12,13,14,33,34,35,38,61,62,63,64,89,90,91,112,138,139,140,153,157,183,184,185,186,188,189,190 5 -187622 cd05364 SDR_c11 3 homodimer interface 0 1 0 0 98,99,100,101,103,106,110,114,115,118,119,122,125,142,143,152,154,155,158,159,162,163,165,166,167,169,170,171 2 -187622 cd05364 SDR_c11 4 homotetramer interface 0 1 0 0 99,100,101,106,107,110,114,115,118,119,122,125,141,142,143,151,152,154,155,158,159,162,163,165,166,167,169,170,171,172,185,211,212,213,214,216,218,222,225,226,229,236,237,238,239,240,241,243,244,245,246,247,248,249,250,251,252 2 -187623 cd05365 7_alpha_HSDH_SDR_c 1 active site 0 0 1 1 107,135,148,152 1 -187623 cd05365 7_alpha_HSDH_SDR_c 2 NAD binding site 0 1 1 1 5,7,8,9,10,11,29,30,54,55,56,82,83,84,85,106,133,134,135,148,152,178,179,180,181,183,185,186 5 -187623 cd05365 7_alpha_HSDH_SDR_c 3 substrate binding site 0 1 1 0 85,86,87,88,135,137,140,148,178,185,186,198,241 5 -187623 cd05365 7_alpha_HSDH_SDR_c 4 homodimer interface 0 1 1 0 91,92,93,100,101,104,105,108,109,112,113,116,137,138,139,140,141,142,143,144,145,146,149,150,153,154,157,158,160,161,162,164,165,166 2 -187623 cd05365 7_alpha_HSDH_SDR_c 5 homotetramer interface 0 1 0 0 91,92,93,100,101,104,108,109,112,113,115,116,119,137,138,139,140,141,142,143,144,145,146,149,150,153,154,157,158,160,161,162,163,164,165,166,171,172,180,181,201,203,204,206,207,208,212,215,216,218,219,224,227,228,229,231,233,234,235,236,237,238,241 2 -187624 cd05366 meso-BDH-like_SDR_c 1 active site 0 0 1 1 110,139,152,156 1 -187624 cd05366 meso-BDH-like_SDR_c 2 NAD binding site 0 1 1 1 8,11,12,13,32,33,34,58,59,60,86,87,88,109,137,138,139,152,156,182,183,184,185,187,188,189,190 5 -187624 cd05366 meso-BDH-like_SDR_c 3 substrate binding site 0 1 1 0 139,140,152,182,183,190 5 -187624 cd05366 meso-BDH-like_SDR_c 4 homodimer interface 0 1 1 0 95,96,98,100,103,104,107,111,112,115,116,118,119,143,144,145,146,147,148,150,154,157,158,160,161,162,164,165,166,168,169 2 -187624 cd05366 meso-BDH-like_SDR_c 5 homotetramer interface 0 1 1 0 20,95,96,98,100,103,104,107,111,112,115,116,118,119,143,144,145,146,147,148,150,154,157,158,160,161,162,164,165,166,168,169,171,216,217,218,220,226,229,230,233,238,240,241,242,243,244,245,247,248,249,250,251,252,254,255,256 2 -187625 cd05367 SPR-like_SDR_c 1 active site 0 0 1 1 108,137,150,154 1 -187625 cd05367 SPR-like_SDR_c 2 NADP binding site 0 1 1 1 5,6,7,8,9,10,31,32,33,55,56,57,83,84,85,107,135,136,137,150,154,178,179,180,181,183,184,185,186 5 -187625 cd05367 SPR-like_SDR_c 3 homodimer interface 0 1 0 0 64,98,99,101,102,105,106,109,110,113,114,117,139,140,141,148,149,151,152,156,159,160,163,164,166,167,168 2 -187626 cd05368 DHRS6_like_SDR_c 1 active site 0 0 1 1 100,128,142,146 1 -187626 cd05368 DHRS6_like_SDR_c 2 NAD binding site 0 1 1 1 8,10,11,12,13,32,33,34,52,53,54,76,77,78,99,126,127,142,146,172,173,174,175,177,178,179,183 5 -187626 cd05368 DHRS6_like_SDR_c 3 homotetramer interface 0 1 0 0 57,84,85,86,88,89,90,93,94,97,101,102,105,108,109,112,113,116,131,133,134,135,137,138,140,143,144,147,148,150,151,152,154,155,157,158,159,160,161,174,202,203,205,206,207,211,215,218,226,227,228,230,233,234,235,236,237,240 2 -187626 cd05368 DHRS6_like_SDR_c 4 homodimer interface 0 1 0 0 57,84,85,86,88,89,90,93,94,97,101,102,105,108,109,112,113,116,131,133,135,137,138,140,143,144,147,148,150,151,152,154,155,158,159,160 2 -187627 cd05369 TER_DECR_SDR_a 1 active site 0 0 1 1 91,142,153,157 1 -187627 cd05369 TER_DECR_SDR_a 2 NAD(P) binding site 0 1 1 1 9,12,13,14,33,34,35,59,60,61,62,87,88,89,110,138,139,140,157,183,184,185,186,188 5 -187627 cd05369 TER_DECR_SDR_a 3 substrate binding site 0 1 1 0 34,62,89,90,91,92,100,102,103,106,140,142,153,185 5 -187627 cd05369 TER_DECR_SDR_a 4 homodimer interface 0 1 1 0 95,96,97,99,104,105,108,113,116,117,146,147,148,149,151,154,155,158,159,162,163,166,169,170 2 -187627 cd05369 TER_DECR_SDR_a 5 homotetramer interface 0 1 1 0 64,95,96,97,99,100,101,104,105,108,112,113,116,117,120,124,127,132,142,146,147,148,149,151,154,155,158,159,162,163,165,166,167,168,169,170,171,172,174,185,209,210,211,213,214,215,219,222,223,226,231,233,234,235,236,237,238,240,241,242,243,244,245,246,247,248 2 -187628 cd05370 SDR_c2 1 active site 0 0 1 1 110,138,151,155 1 -187628 cd05370 SDR_c2 2 putative NAD(P) binding site 0 0 1 1 11,13,14,15,16,35,36,37,56,57,58,84,85,86,109,136,137,138,151,155,181,182,183,184,186,187 5 -187629 cd05371 HSD10-like_SDR_c 1 active site 0 0 1 1 111,145,158,162 1 -187629 cd05371 HSD10-like_SDR_c 2 NAD binding site 0 1 1 1 8,11,12,13,32,33,53,54,55,81,82,83,110,143,144,145,158,162,188,189,190,191,193,194,195,196 5 -187629 cd05371 HSD10-like_SDR_c 3 homodimer interface 0 1 1 0 89,90,91,98,99,101,104,108,113,116,117,120,148,149,150,151,152,153,154,156,159,160,163,164,167,168,171,172,174,175,249,250,251 2 -187629 cd05371 HSD10-like_SDR_c 4 homotetramer interface 0 1 1 0 89,90,91,93,98,99,101,104,105,108,112,113,116,117,120,123,124,127,134,135,136,148,149,150,151,152,153,154,156,159,160,163,164,167,168,170,171,172,174,175,177,178,179,180,182,191,212,213,214,216,217,218,222,225,226,229,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,248,249,250,251 2 -187630 cd05372 ENR_SDR 1 active site 0 0 1 1 114,140,153,157 1 -187630 cd05372 ENR_SDR 2 NAD binding site 0 1 1 1 7,8,9,13,14,34,58,59,60,86,87,88,89,113,138,139,140,150,157,183,184,185,186,188,189,190,191 5 -187630 cd05372 ENR_SDR 3 substrate binding site 0 1 1 1 88,90,140,150,153,157,190,191,194,197 5 -187630 cd05372 ENR_SDR 4 homodimer interface 0 1 1 0 60,61,62,63,98,99,100,101,102,103,104,107,108,111,112,115,116,119,122,123,126,142,143,145,146,147,150,151,154,155,158,159,162,163,165,166,167,169,170,171 2 -187630 cd05372 ENR_SDR 5 homotetramer interface 0 1 1 0 24,60,61,62,63,66,98,99,100,101,102,103,104,107,108,111,112,115,116,119,123,126,142,143,145,146,147,148,150,151,154,155,158,159,162,163,165,166,167,168,169,170,172,173,200,203,209,210,211,212,218,221,222,225,230,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249 2 -187631 cd05373 SDR_c10 1 active site 0 0 1 1 148,152 1 -187631 cd05373 SDR_c10 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,30,31,32,55,56,57,83,84,85,106,133,134,135,148,152,179,180,181,182,184,185 5 -187632 cd05374 17beta-HSD-like_SDR_c 1 active site 0 0 1 1 104,132,145,149 1 -187632 cd05374 17beta-HSD-like_SDR_c 2 NADP binding site 0 1 1 1 6,8,9,10,11,31,52,53,54,80,81,82,83,103,130,131,132,145,149,178,180,181,182 5 -187632 cd05374 17beta-HSD-like_SDR_c 3 steroid binding site 0 1 1 0 132,133,134,139,145,176,177,183,199,202,246 0 -349771 cd05386 TraL 1 putative active site 0 0 1 1 8,9,10,11,12,13,14,15,37,84,87,150,151,153 1 -349772 cd05387 BY-kinase 1 active site 0 1 1 0 29,30,31,32,33,34,56,61,134,188,189 1 -349772 cd05387 BY-kinase 2 oligomer interface 0 1 1 0 0,3,4,6,7,8,28,56,58,59,101,110,113,136,137,139,140,141,142,145,146,149,161,162,164,166,167,170,174,177,178 2 -349773 cd05388 CobB_N 1 putative active site 0 0 1 1 9,10,11,12,13,14,15,37,84,87,148,149,151 1 -349774 cd05389 CobQ_N 1 putative active site 0 0 1 1 9,10,11,12,13,14,15,37,129,132,194,195,197 1 -349775 cd05390 HypB 1 active site 0 1 1 1 28,29,30,31,32,33,34,35,62,65,107,110,154,155,157,158,186,187,188 1 -349775 cd05390 HypB 2 Zn binding site 0 1 1 0 82,83,114 4 -349775 cd05390 HypB 3 dimer interface 0 1 1 1 28,29,30,56,57,58,61,62,82,111,113,114,117,132,133,139,140,155,158,161,162,188 2 -213340 cd05391 RasGAP_p120GAP 1 RAS interface 0 1 1 0 35,71,73,75,76,78,81,85,180,188,189,192,193,196,217,220,221,224,228,230,235,236 2 -213341 cd05392 RasGAP_Neurofibromin_like 1 putative RAS interface 0 0 1 1 31,67,69,71,72,74,77,81,172,180,181,184,185,188,209,212,213,216,220,222,227,228 2 -213342 cd05394 RasGAP_RASA2 1 putative RAS interface 0 0 1 1 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,240,241 2 -213343 cd05395 RasGAP_RASA4 1 putative RAS interface 0 0 1 1 39,75,77,79,80,82,85,89,200,208,209,212,213,216,237,240,241,244,248,250,257,258 2 -188647 cd05396 An_peroxidase_like 1 heme binding site 0 1 1 0 76,77,164,167,168,169,171,174,199,248,251,255 5 -188647 cd05396 An_peroxidase_like 2 substrate binding site 0 1 1 0 127,130,131,135,163,167,169,319,323,327,328,331,332,335 5 -143387 cd05397 NT_Pol-beta-like 1 metal binding triad 0 1 1 1 35,37,44 4 -143388 cd05398 NT_ClassII-CCAase 1 active site 0 1 1 1 22,23,26,27,36,38,67,80,85,109,110,111,112,115 1 -143388 cd05398 NT_ClassII-CCAase 2 metal binding triad 0 1 1 1 36,38,80 4 -143388 cd05398 NT_ClassII-CCAase 3 NTP binding site 0 1 1 0 22,23,26,36,38,109,110,111,115 5 -143389 cd05399 NT_Rel-Spo_like 1 synthetase active site 0 1 1 1 25,27,51,52,56,84,86,91,93,95,99,114,116,118,126,127 1 -143389 cd05399 NT_Rel-Spo_like 2 metal binding site 0 0 1 1 51,114 4 -143389 cd05399 NT_Rel-Spo_like 3 NTP binding site 0 1 1 1 25,84,86,91,93,95,99,114,116,126 5 -143390 cd05400 NT_2-5OAS_ClassI-CCAase 1 active site 0 1 1 1 32,33,34,37,39,40,41,46,48,87,88,91,104,128,132,135 1 -143390 cd05400 NT_2-5OAS_ClassI-CCAase 2 metal binding triad 0 1 1 1 46,48,104 4 -143390 cd05400 NT_2-5OAS_ClassI-CCAase 3 NTP binding site 0 1 1 1 33,34,46,48,88,128,132,135 5 -143391 cd05401 NT_GlnE_GlnD_like 1 metal binding triad 0 0 1 1 73,75,113 0 -143392 cd05402 NT_PAP_TUTase 1 active site 0 1 1 1 24,25,26,36,37,39,78,79,81,83,94,101,102,105,106 1 -143392 cd05402 NT_PAP_TUTase 2 metal binding triad 0 1 1 1 37,39,94 4 -143392 cd05402 NT_PAP_TUTase 3 putative primer-binding pocket 0 0 1 1 24,78,81,83,94,101,102 0 -143393 cd05403 NT_KNTase_like 1 active site 0 1 1 1 23,24,25,28,35,36,38,66,68 1 -143393 cd05403 NT_KNTase_like 2 metal binding triad 0 1 1 1 36,38,68 4 -143393 cd05403 NT_KNTase_like 3 NTP binding site 0 1 1 1 23,24,25,28,35,36,38 5 -143393 cd05403 NT_KNTase_like 4 antibiotic binding site 0 1 1 1 66,68 5 -176102 cd05466 PBP2_LTTR_substrate 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -119437 cd05467 CBM20 1 starch-binding site 1 0 1 1 1 27,61,73,74,78 5 -119437 cd05467 CBM20 2 starch-binding site 2 0 1 1 1 9,10,11,12,13,14,37,42,44 5 -176472 cd05468 pVHL 1 pVHL-HIF-1alpha interaction 0 1 1 1 3,5,11,13,14,15,24,27,34,35,41,42,43,44,45,46,47,48,51,53 2 -176472 cd05468 pVHL 2 pVHL-ElonginB-ElonginC (VBC) interface 0 1 1 1 15,89,95,97,98,99,101,102,109,112,113,121 2 -100112 cd05469 Transthyretin_like 1 active site 0 1 1 0 5,7,44,96,98,100,107,109 1 -100112 cd05469 Transthyretin_like 2 homotetramer interface 0 1 1 0 9,10,11,12,77,78,80,84,85,86,102,104,105,106,107,108,109,110 2 -133137 cd05470 pepsin_retropepsin_like 1 inhibitor binding site 0 1 1 0 16,18,20,57,58,59,105 0 -133137 cd05470 pepsin_retropepsin_like 2 catalytic motif 0 0 1 1 16,17,18 1 -133137 cd05470 pepsin_retropepsin_like 3 Catalytic residue 0 1 1 0 16 1 -133137 cd05470 pepsin_retropepsin_like 4 Active site flap 0 1 1 1 57,58,59,60,64,65,66,67 1 -133138 cd05471 pepsin_like 1 catalytic residue 0 1 1 1 18,207 1 -133138 cd05471 pepsin_like 2 catalytic motif 0 1 1 1 18,19,20,21,207,208,209,210 1 -133138 cd05471 pepsin_like 3 Active site flap 0 1 1 1 60,61,62,63,67,68,69,70 1 -133138 cd05471 pepsin_like 4 inhibitor binding site 0 1 1 0 18,63,104,207,209,211 0 -133139 cd05472 cnd41_like 1 catalytic residue 0 0 1 1 19,176 1 -133139 cd05472 cnd41_like 2 catalytic motif 0 0 0 1 19,20,21,22,176,177,178,179 1 -133139 cd05472 cnd41_like 3 Active site flap 0 0 1 1 35,36,37,38,42,43,44,45 1 -133140 cd05473 beta_secretase_like 1 catalytic residue 0 1 1 1 21,216 1 -133140 cd05473 beta_secretase_like 2 catalytic motif 0 1 1 1 21,22,23,24,216,217,218,219 1 -133140 cd05473 beta_secretase_like 3 inhibitor binding site 0 1 1 0 0,21,23,60,61,62,99,117,186,216,218,219,220,295,308 0 -133140 cd05473 beta_secretase_like 4 Active site flap 0 1 1 1 57,58,59,60,64,65,66,67 1 -133141 cd05474 SAP_like 1 catalytic residue 0 0 1 1 20,183 1 -133141 cd05474 SAP_like 2 inhibitor binding site 0 1 1 0 1,31,34,39,45,80,261,267 0 -133141 cd05474 SAP_like 3 catalytic motif 0 0 0 1 20,21,22,23,183,184,185,186 1 -133141 cd05474 SAP_like 4 Active site flap 0 0 1 1 32,33,34,35,36,37,39,40,41,42,43 1 -133142 cd05475 nucellin_like 1 catalytic motif 0 0 0 1 20,21,22,23,182,183,184,185 1 -133142 cd05475 nucellin_like 2 catalytic residue 0 0 1 1 20,182 1 -133142 cd05475 nucellin_like 3 Active site flap 0 0 1 1 41,42,43,44,45,48,49,50,51 1 -133143 cd05476 pepsin_A_like_plant 1 catalytic motif 0 0 0 1 19,20,21,22,181,182,183,184 1 -133143 cd05476 pepsin_A_like_plant 2 catalytic residue 0 0 1 1 19,181 1 -133143 cd05476 pepsin_A_like_plant 3 Active site flap 0 0 1 1 32,33,34,35,39,40,41,42 1 -133144 cd05477 gastricsin 1 catalytic residue 0 0 1 1 21,206 1 -133144 cd05477 gastricsin 2 catalytic motif 0 0 1 1 21,22,23,24,206,207,208,209 1 -133144 cd05477 gastricsin 3 Active site flap 0 0 1 1 61,62,63,64,65,66,67,68,69,70,71 1 -133144 cd05477 gastricsin 4 prosequence binding site 0 1 1 1 0,1,2,3,4,21,26,66,80,105,134,135,152,153,154,155,156,157,161,206,213,278,280,292 0 -133145 cd05478 pepsin_A 1 catalytic residue 0 0 1 1 28,211 1 -133145 cd05478 pepsin_A 2 catalytic motif 0 0 1 1 28,29,30,31,211,212,213,214 1 -133145 cd05478 pepsin_A 3 Active site flap 0 1 1 1 68,69,70,71,72,73,74,75,76,77,78 1 -133145 cd05478 pepsin_A 4 inhibitor binding site 0 1 1 0 8,9,28,30,71,72,73,107,108,116,211,213,214,215,283,292 0 -133146 cd05479 RP_DDI 1 catalytic motif 0 0 1 1 32,33,34 1 -133146 cd05479 RP_DDI 2 Catalytic residue 0 0 1 1 32 1 -133147 cd05480 NRIP_C 1 catalytic motif 0 0 1 1 14,15,16 1 -133147 cd05480 NRIP_C 2 Catalytic residue 0 0 1 1 14 1 -133148 cd05481 retropepsin_like_LTR_1 1 catalytic motif 0 0 1 1 15,16,17 1 -133148 cd05481 retropepsin_like_LTR_1 2 Catalytic residue 0 0 1 1 15 1 -133149 cd05482 HIV_retropepsin_like 1 catalytic motif 0 0 1 1 14,15,16 1 -133149 cd05482 HIV_retropepsin_like 2 Catalytic residue 0 1 1 0 14 1 -133149 cd05482 HIV_retropepsin_like 3 Active site flap 0 0 1 1 39,40,41,42,43,45,46,47,48,49 1 -133149 cd05482 HIV_retropepsin_like 4 inhibitor binding site 0 1 1 0 14,16,18,39,40,41,79 0 -133150 cd05483 retropepsin_like_bacteria 1 catalytic motif 0 0 1 1 18,19,20 1 -133150 cd05483 retropepsin_like_bacteria 2 Catalytic residue 0 0 1 1 18 1 -133151 cd05484 retropepsin_like_LTR_2 1 catalytic motif 0 0 1 1 16,17,18 1 -133151 cd05484 retropepsin_like_LTR_2 2 Catalytic residue 0 0 1 1 16 1 -133152 cd05485 Cathepsin_D_like 1 catalytic residue 0 0 1 1 29,215 1 -133152 cd05485 Cathepsin_D_like 2 catalytic motif 0 0 1 1 29,30,31,32,215,216,217,218 1 -133152 cd05485 Cathepsin_D_like 3 Active site flap 0 0 1 1 71,72,73,74,75,76,77,78,79,80,81 1 -133152 cd05485 Cathepsin_D_like 4 posttranlational cleavage site 0 0 1 1 86,87,88,89,90,97,98,99,100,101,102 6 -133153 cd05486 Cathespin_E 1 catalytic residue 0 0 1 1 18,203 1 -133153 cd05486 Cathespin_E 2 catalytic motif 0 0 1 1 18,19,20,21,203,204,205,206 1 -133153 cd05486 Cathespin_E 3 Active site flap 0 0 1 1 58,59,60,61,62,63,64,65,66,67,68 1 -133153 cd05486 Cathespin_E 4 Prosequence binding site 0 1 1 1 0,1,77,151,152,153,154,155,159 0 -133154 cd05487 renin_like 1 catalytic residue 0 0 1 1 26,212 1 -133154 cd05487 renin_like 2 catalytic motif 0 0 1 1 26,27,28,29,212,213,214,215 1 -133154 cd05487 renin_like 3 Active site flap 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78 1 -133154 cd05487 renin_like 4 Inhibitor binding site 0 1 1 0 7,26,28,71,73,106,112,212,214,216 0 -133155 cd05488 Proteinase_A_fungi 1 catalytic residue 0 0 1 1 28,210 1 -133155 cd05488 Proteinase_A_fungi 2 catalytic motif 0 0 1 1 28,29,30,31,210,211,212,213 1 -133155 cd05488 Proteinase_A_fungi 3 Active site flap 0 1 1 1 68,69,70,71,72,73,74,75,76,77,78 1 -133155 cd05488 Proteinase_A_fungi 4 inhibitor binding pocket 0 1 1 1 5,28,71,73,106,107,182,185,213,239,274,276,286 0 -133156 cd05489 xylanase_inhibitor_I_like 1 protein-protein interaction interface 0 1 1 0 343 0 -133157 cd05490 Cathepsin_D2 1 catalytic residue 0 0 1 1 24,211 1 -133157 cd05490 Cathepsin_D2 2 catalytic motif 0 0 1 1 24,25,26,27,211,212,213,214 1 -133157 cd05490 Cathepsin_D2 3 Active site flap 0 0 1 1 66,67,68,69,70,71,72,73,74,75,76 1 -133157 cd05490 Cathepsin_D2 4 posttranlational cleavage site 0 0 1 1 81,82,83,84,85,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 6 -99923 cd05491 Bromo_TBP7_like 1 putative acetyllysine binding site 0 0 1 1 46,53,56,95,99,103 5 -99924 cd05492 Bromo_ZMYND11 1 putative acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 5 -99925 cd05493 Bromo_ALL-1 1 putative acetyllysine binding site 0 0 1 1 41,48,51,90,94,112 5 -99927 cd05495 Bromo_cbp_like 1 acetyllysine binding site 0 1 1 0 28,35,38,77,81,87 0 -99928 cd05496 Bromo_WDR9_II 1 putative acetyllysine binding site 0 0 1 1 29,34,37,76,80,87 5 -99929 cd05497 Bromo_Brdt_I_like 1 acetyllysine binding site 0 0 1 1 29,36,39,78,82,88 0 -99930 cd05498 Bromo_Brdt_II_like 1 acetyllysine binding site 0 0 1 1 27,34,37,76,80,86 0 -99931 cd05499 Bromo_BDF1_2_II 1 putative acetyllysine binding site 0 0 1 1 27,34,37,76,80,86 5 -99932 cd05500 Bromo_BDF1_2_I 1 putative acetyllysine binding site 0 0 1 1 28,35,38,77,81,87 5 -99933 cd05501 Bromo_SP100C_like 1 putative acetyllysine binding site 0 0 1 1 26,29,32,71,75,80 5 -99934 cd05502 Bromo_tif1_like 1 putative acetyllysine binding site 0 0 1 1 28,32,35,77,81,87 5 -99935 cd05503 Bromo_BAZ2A_B_like 1 acetyllysine binding site 0 0 1 1 24,29,32,71,75,81 0 -99936 cd05504 Bromo_Acf1_like 1 putative acetyllysine binding site 0 0 1 1 36,41,44,83,87,93 5 -99937 cd05505 Bromo_WSTF_like 1 putative acetyllysine binding site 0 0 1 1 24,29,32,71,75,81 5 -99938 cd05506 Bromo_plant1 1 putative acetyllysine binding site 0 0 1 1 24,31,34,73,77,83 5 -99939 cd05507 Bromo_brd8_like 1 putative acetyllysine binding site 0 0 1 1 27,32,35,74,78,84 5 -99940 cd05508 Bromo_RACK7 1 putative acetyllysine binding site 0 0 1 1 26,31,34,73,77,83 5 -99941 cd05509 Bromo_gcn5_like 1 acetyllysine binding site 0 1 1 0 25,30,33,72,76,82 0 -99942 cd05510 Bromo_SPT7_like 1 putative acetyllysine binding site 0 0 1 1 32,37,40,79,83,90 5 -99943 cd05511 Bromo_TFIID 1 acetyllysine binding site 0 0 1 1 24,29,32,71,75,81 0 -99944 cd05512 Bromo_brd1_like 1 acetyllysine binding site 0 0 1 1 25,30,33,72,76,82 0 -99945 cd05513 Bromo_brd7_like 1 acetyllysine binding site 0 0 1 1 25,30,33,72,76,82 0 -99946 cd05515 Bromo_polybromo_V 1 acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 0 -99947 cd05516 Bromo_SNF2L2 1 acetyllysine binding site 0 0 1 1 31,36,39,78,82,88 0 -99948 cd05517 Bromo_polybromo_II 1 putative acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 5 -99949 cd05518 Bromo_polybromo_IV 1 putative acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 5 -99950 cd05519 Bromo_SNF2 1 putative acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 5 -99951 cd05520 Bromo_polybromo_III 1 putative acetyllysine binding site 0 0 1 1 30,35,38,77,81,87 5 -99952 cd05521 Bromo_Rsc1_2_I 1 putative acetyllysine binding site 0 0 1 1 31,36,39,76,80,86 5 -99953 cd05522 Bromo_Rsc1_2_II 1 putative acetyllysine binding site 0 0 1 1 31,36,39,78,82,88 5 -99954 cd05524 Bromo_polybromo_I 1 putative acetyllysine binding site 0 0 1 1 32,37,40,79,83,89 5 -99955 cd05525 Bromo_ASH1 1 putative acetyllysine binding site 0 0 1 1 32,37,40,79,83,89 5 -99956 cd05526 Bromo_polybromo_VI 1 putative acetyllysine binding site 0 0 1 1 33,36,39,78,82,88 5 -99957 cd05528 Bromo_AAA 1 putative acetyllysine binding site 0 0 1 1 27,32,35,74,78,88 5 -99958 cd05529 Bromo_WDR9_I_like 1 putative acetyllysine binding site 0 0 1 1 51,57,60,99,103,109 5 -99913 cd05530 POLBc_B1 1 active site 0 0 1 1 32,35,36,37,89,118,122,172 1 -99913 cd05530 POLBc_B1 2 metal-binding site 0 0 1 1 170,172,173 0 -99914 cd05531 POLBc_B2 1 metal-binding site 0 0 1 1 152,154,155 0 -99914 cd05531 POLBc_B2 2 active site 0 0 1 1 24,27,28,29,87,100,104,154 1 -99915 cd05532 POLBc_alpha 1 active site 0 0 1 1 28,31,32,33,83,110,114,164 1 -99915 cd05532 POLBc_alpha 2 metal-binding site 0 0 1 1 162,164,165 0 -99916 cd05533 POLBc_delta 1 active site 0 0 1 1 23,26,27,28,86,113,117,176 1 -99916 cd05533 POLBc_delta 2 metal-binding site 0 0 1 1 174,176,177 0 -99917 cd05534 POLBc_zeta 1 active site 0 0 1 1 56,59,60,61,141,169,173,227 1 -99917 cd05534 POLBc_zeta 2 metal-binding site 0 0 1 1 225,227,228 0 -99918 cd05535 POLBc_epsilon 1 active site 0 0 1 1 95,98,99,100,231,278,282,331 1 -99918 cd05535 POLBc_epsilon 2 metal-binding site 0 0 1 1 329,331,332 0 -99919 cd05536 POLBc_B3 1 active site 0 0 1 1 23,26,27,28,79,107,111,161 1 -99919 cd05536 POLBc_B3 2 metal-binding site 0 0 1 1 159,161,162 0 -99920 cd05537 POLBc_Pol_II 1 active site 0 0 1 1 22,25,26,27,80,96,100,150 1 -99920 cd05537 POLBc_Pol_II 2 metal-binding site 0 0 1 1 148,150 0 -99921 cd05538 POLBc_Pol_II_B 1 active site 0 0 1 1 22,25,26,27,57,84,88,138 1 -99921 cd05538 POLBc_Pol_II_B 2 metal-binding site 0 0 1 1 136,138 0 -349776 cd05540 UreG 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,35,96,143,144,146,175,176,177 1 -349776 cd05540 UreG 2 homodimer interface 0 1 0 0 7,8,9,37,38,41,44,63,64,65,66,70,98,99,100,101,102,103,121,122,125,128,129,144,147,150,151,177 2 -349776 cd05540 UreG 3 oligomer interface 0 1 0 0 37,38,60,61,62,63,64,67,68,71,72,74,75,77,78,81,105,107,108,109,128,129,130,136,165 2 -173797 cd05561 Peptidases_S8_4 1 active site 0 0 1 0 6,37,81,100,128,191 1 -173797 cd05561 Peptidases_S8_4 2 catalytic triad 0 0 1 0 6,37,191 1 -173798 cd05562 Peptidases_S53_like 1 putative active site 0 0 1 0 49,55,101,102,103,128,130,131,216 1 -173798 cd05562 Peptidases_S53_like 2 putative catalytic triad 0 0 1 0 49,55,216 1 -99905 cd05563 PTS_IIB_ascorbate 1 active site 0 0 1 1 5,7,8,11,12 1 -99905 cd05563 PTS_IIB_ascorbate 2 P-loop 0 0 1 0 5,6,7,8,10,11,12 0 -99905 cd05563 PTS_IIB_ascorbate 3 phosphorylation site 0 0 1 1 5 6 -99906 cd05564 PTS_IIB_chitobiose_lichenan 1 active site 0 0 1 1 5,7,8,10,11,54,81 1 -99906 cd05564 PTS_IIB_chitobiose_lichenan 2 P-loop 0 0 1 0 5,6,7,8,9,10,11 0 -99906 cd05564 PTS_IIB_chitobiose_lichenan 3 phosphorylation site 0 0 1 1 5 6 -99907 cd05565 PTS_IIB_lactose 1 active site 0 0 1 1 6,8,9,11,12 1 -99907 cd05565 PTS_IIB_lactose 2 P-loop 0 0 1 0 6,7,8,9,10,11,12 0 -99907 cd05565 PTS_IIB_lactose 3 phosphorylation site 0 0 1 1 6 6 -99908 cd05566 PTS_IIB_galactitol 1 active site 0 0 1 1 6,8,9,12,13 1 -99908 cd05566 PTS_IIB_galactitol 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99908 cd05566 PTS_IIB_galactitol 3 phosphorylation site 0 0 1 1 6 6 -99909 cd05567 PTS_IIB_mannitol 1 active site 0 0 1 1 5,6,7,8,9,10,11,12,13 1 -99909 cd05567 PTS_IIB_mannitol 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99909 cd05567 PTS_IIB_mannitol 3 phosphorylation site 0 0 1 1 6 6 -99910 cd05568 PTS_IIB_bgl_like 1 active site 0 0 1 1 6,8,9,12,13 1 -99910 cd05568 PTS_IIB_bgl_like 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99910 cd05568 PTS_IIB_bgl_like 3 phosphorylation site 0 0 1 1 6 6 -99911 cd05569 PTS_IIB_fructose 1 active site 0 0 1 1 6,8,9,12,13 1 -99911 cd05569 PTS_IIB_fructose 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99911 cd05569 PTS_IIB_fructose 3 phosphorylation site 0 0 1 1 6 6 -270722 cd05570 STKc_PKC 1 active site 0 1 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270722 cd05570 STKc_PKC 2 ATP binding site 0 1 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -270722 cd05570 STKc_PKC 3 polypeptide substrate binding site 0 1 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270722 cd05570 STKc_PKC 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160 0 -270722 cd05570 STKc_PKC 5 hydrophobic motif (HM) 0 0 1 1 311,312,313,314,315,316 0 -270722 cd05570 STKc_PKC 6 turn motif phosphorylation site 0 0 1 1 296 6 -270723 cd05571 STKc_PKB 1 active site 0 1 1 0 2,3,5,6,10,23,25,37,40,57,73,74,75,76,80,82,86,119,121,123,124,126,136,137,140,154,155,156,157,158,159,160,161,186,192,195,283,287 1 -270723 cd05571 STKc_PKB 2 ATP binding site 0 1 1 0 2,3,5,10,23,25,57,73,74,75,76,80,119,121,123,124,126,136,137,283 5 -270723 cd05571 STKc_PKB 3 polypeptide substrate binding site 0 1 1 0 6,37,40,80,82,86,119,121,123,140,154,155,156,157,158,159,160,161,186,192,195,287 2 -270723 cd05571 STKc_PKB 4 activation loop (A-loop) 0 1 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159 0 -270723 cd05571 STKc_PKB 5 hydrophobic motif (HM) 0 0 1 1 313,314,315,316,317,318 0 -270723 cd05571 STKc_PKB 6 turn motif phosphorylation site 0 0 1 1 295 6 -270724 cd05572 STKc_cGK 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,55,71,72,74,78,80,117,119,121,122,124,134,135,138,151,152,153,154,155,156,183,189,192 1 -270724 cd05572 STKc_cGK 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,55,72,73,74,78,117,119,121,122,124,134,135 5 -270724 cd05572 STKc_cGK 3 polypeptide substrate binding site 0 0 1 1 4,78,80,117,119,121,138,151,152,153,154,155,156,183,189,192 2 -270724 cd05572 STKc_cGK 4 activation loop (A-loop) 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144,148,149,150,151,152,153,154,155,156 0 -270725 cd05573 STKc_ROCK_NDR_like 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270725 cd05573 STKc_ROCK_NDR_like 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,189,190,191,192,193,194,221,227,230 1 -270725 cd05573 STKc_ROCK_NDR_like 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,189,190,191,192,193,194,221,227,230 2 -270725 cd05573 STKc_ROCK_NDR_like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,185,186,187,188,189,190,191,192,193,194 0 -270725 cd05573 STKc_ROCK_NDR_like 5 hydrophobic motif (HM) 0 0 1 1 343,344,345,346,347,348 0 -270726 cd05574 STKc_phototropin_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,127,129,131,132,134,144,145,148,191,192,193,194,195,196,223,229,232 1 -270726 cd05574 STKc_phototropin_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,127,129,131,132,134,144,145 5 -270726 cd05574 STKc_phototropin_like 3 substrate binding site 0 0 1 1 12,86,88,127,129,131,148,191,192,193,194,195,196,223,229,232 5 -270726 cd05574 STKc_phototropin_like 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,188,189,190,191,192,193,194,195,196 0 -270727 cd05575 STKc_SGK 1 active site 0 0 1 1 2,3,5,6,7,8,10,23,25,58,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270727 cd05575 STKc_SGK 2 ATP binding site 0 1 1 0 2,3,5,6,7,8,10,23,25,58,75,77,122,124,125,127,137 5 -270727 cd05575 STKc_SGK 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270727 cd05575 STKc_SGK 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270727 cd05575 STKc_SGK 5 hydrophobic motif (HM) 0 0 1 1 316,317,318,319,320,321 0 -270727 cd05575 STKc_SGK 6 turn motif phosphorylation site 0 0 1 1 295 6 -270728 cd05576 STKc_RPK118_like 1 active site 0 0 1 1 6,7,8,9,10,14,27,29,53,69,70,72,76,78,137,139,141,142,144,154,155,158,169,170,171,172,173,174,201,207,210 1 -270728 cd05576 STKc_RPK118_like 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,53,70,71,72,76,137,139,141,142,144,154,155 5 -270728 cd05576 STKc_RPK118_like 3 polypeptide substrate binding site 0 0 1 1 10,76,78,137,139,141,158,169,170,171,172,173,174,201,207,210 2 -270728 cd05576 STKc_RPK118_like 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -270729 cd05577 STKc_GRK 1 ATP binding site 0 1 1 0 0,1,2,3,4,8,21,23,72,73,74,126,137 5 -270729 cd05577 STKc_GRK 2 active site 0 0 1 1 0,1,2,3,4,8,21,23,55,71,72,74,78,80,119,121,123,124,126,136,137,140,153,154,155,156,157,158,186,192,195 1 -270729 cd05577 STKc_GRK 3 polypeptide substrate binding site 0 0 1 1 4,78,80,119,121,123,140,153,154,155,156,157,158,186,192,195 2 -270729 cd05577 STKc_GRK 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158 0 -270730 cd05578 STKc_Yank1 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,62,79,80,81,85,124,126,128,129,131,141,142 5 -270730 cd05578 STKc_Yank1 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,81,85,87,124,126,128,129,131,141,142,145,158,159,160,161,162,163,190,196,199 1 -270730 cd05578 STKc_Yank1 3 polypeptide substrate binding site 0 0 1 1 11,85,87,124,126,128,145,158,159,160,161,162,163,190,196,199 2 -270730 cd05578 STKc_Yank1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,155,156,157,158,159,160,161,162,163 0 -270731 cd05579 STKc_MAST_like 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,55,71,72,74,78,80,117,119,121,122,124,134,135,138,167,168,169,170,171,172,199,205,208 1 -270731 cd05579 STKc_MAST_like 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,55,72,73,74,78,117,119,121,122,124,134,135 5 -270731 cd05579 STKc_MAST_like 3 polypeptide substrate binding site 0 0 1 1 4,78,80,117,119,121,138,167,168,169,170,171,172,199,205,208 2 -270731 cd05579 STKc_MAST_like 4 activation loop (A-loop) 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144,164,165,166,167,168,169,170,171,172 0 -270732 cd05580 STKc_PKA_like 1 active site 0 1 1 0 9,10,11,12,13,14,16,29,31,41,63,79,80,82,86,88,92,125,127,128,129,130,132,142,143,146,157,159,160,161,162,189,193,194,195,198,199,200,202,205,286,289 1 -270732 cd05580 STKc_PKA_like 2 ATP binding site 0 1 1 0 8,9,10,11,12,13,14,16,29,31,63,79,80,81,82,86,125,127,129,130,132,142,143,286 5 -270732 cd05580 STKc_PKA_like 3 polypeptide substrate binding site 0 1 1 0 10,12,13,41,42,43,86,88,92,125,127,128,129,146,157,158,159,160,161,162,189,193,194,195,198,199,200,202,205,206,289 2 -270732 cd05580 STKc_PKA_like 4 regulatory subunit interface 0 1 1 1 12,42,43,45,46,86,88,92,127,128,129,146,155,156,157,158,159,160,163,170,171,189,202,203,206,207,210,289 2 -270732 cd05580 STKc_PKA_like 5 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161,162 0 -270733 cd05581 STKc_PDK1 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,177,178,179,180,181,182,209,215,218 1 -270733 cd05581 STKc_PDK1 2 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,50,63,79,80,81,82,85,86,129,130,132,142,143 5 -270733 cd05581 STKc_PDK1 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,177,178,179,180,181,182,209,215,218 2 -270733 cd05581 STKc_PDK1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,174,175,176,177,178,179,180,181,182 0 -270734 cd05582 STKc_RSK_N 1 active site 0 0 1 1 2,3,4,5,6,10,26,28,59,75,76,78,82,84,121,123,125,126,128,138,139,142,156,157,158,159,160,161,188,194,197 1 -270734 cd05582 STKc_RSK_N 2 ATP binding site 0 0 1 1 2,3,4,5,6,10,26,28,59,76,77,78,82,121,123,125,126,128,138,139 5 -270734 cd05582 STKc_RSK_N 3 polypeptide substrate binding site 0 0 1 1 6,82,84,121,123,125,142,156,157,158,159,160,161,188,194,197 2 -270734 cd05582 STKc_RSK_N 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161 0 -270734 cd05582 STKc_RSK_N 5 hydrophobic motif (HM) 0 0 1 1 310,311,312,313,314,315 0 -270734 cd05582 STKc_RSK_N 6 turn motif phosphorylation site 0 0 1 1 297 6 -270735 cd05583 STKc_MSK_N 1 active site 0 0 1 1 1,2,3,4,5,9,25,27,61,77,78,80,84,86,123,125,127,128,130,140,141,144,159,160,161,162,163,164,193,199,202 1 -270735 cd05583 STKc_MSK_N 2 ATP binding site 0 0 1 1 1,2,3,4,5,9,25,27,61,78,79,80,84,123,125,127,128,130,140,141 5 -270735 cd05583 STKc_MSK_N 3 polypeptide substrate binding site 0 0 1 1 5,84,86,123,125,127,144,159,160,161,162,163,164,193,199,202 2 -270735 cd05583 STKc_MSK_N 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,153,154,155,156,157,158,159,160,161,162,163,164 0 -270736 cd05584 STKc_p70S6K 1 active site 0 0 1 1 3,4,5,6,7,11,27,29,62,78,79,81,85,87,124,126,128,129,131,141,142,145,159,160,161,162,163,164,191,197,200 1 -270736 cd05584 STKc_p70S6K 2 ATP binding site 0 0 1 1 3,4,5,6,7,11,27,29,62,79,80,81,85,124,126,128,129,131,141,142 5 -270736 cd05584 STKc_p70S6K 3 polypeptide substrate binding site 0 0 1 1 7,85,87,124,126,128,145,159,160,161,162,163,164,191,197,200 2 -270736 cd05584 STKc_p70S6K 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270736 cd05584 STKc_p70S6K 5 hydrophobic motif (HM) 0 0 1 1 314,315,316,317,318,319 0 -270736 cd05584 STKc_p70S6K 6 turn motif phosphorylation site 0 0 1 1 300 6 -270737 cd05585 STKc_YPK1_like 1 active site 0 0 1 1 1,2,3,4,5,9,22,24,56,72,73,75,79,81,118,120,122,123,125,135,136,139,153,154,155,156,157,158,185,191,194 1 -270737 cd05585 STKc_YPK1_like 2 ATP binding site 0 0 1 1 1,2,3,4,5,9,22,24,56,73,74,75,79,118,120,122,123,125,135,136 5 -270737 cd05585 STKc_YPK1_like 3 polypeptide substrate binding site 0 0 1 1 5,79,81,118,120,122,139,153,154,155,156,157,158,185,191,194 2 -270737 cd05585 STKc_YPK1_like 4 activation loop (A-loop) 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 0 -270737 cd05585 STKc_YPK1_like 5 hydrophobic motif (HM) 0 0 1 1 307,308,309,310,311,312 0 -270737 cd05585 STKc_YPK1_like 6 turn motif phosphorylation site 0 0 1 1 292 6 -270738 cd05586 STKc_Sck1_like 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,188,194,197 1 -270738 cd05586 STKc_Sck1_like 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,58,75,76,77,81,120,122,124,125,127,137,138 5 -270738 cd05586 STKc_Sck1_like 3 polypeptide substrate binding site 0 0 1 1 4,81,83,120,122,124,141,155,156,157,158,159,160,188,194,197 2 -270738 cd05586 STKc_Sck1_like 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,152,153,154,155,156,157,158,159,160 0 -270738 cd05586 STKc_Sck1_like 5 hydrophobic motif (HM) 0 0 1 1 324,325,326,327,328,329 0 -270739 cd05587 STKc_cPKC 1 ATP binding site 0 1 1 1 3,4,5,6,7,11,24,26,59,76,77,78,82,121,123,125,126,128,138,139 5 -270739 cd05587 STKc_cPKC 2 active site 0 0 1 1 3,4,5,6,7,11,24,26,59,75,76,78,82,84,121,123,125,126,128,138,139,142,156,157,158,159,160,161,188,194,197 1 -270739 cd05587 STKc_cPKC 3 polypeptide substrate binding site 0 0 1 1 7,82,84,121,123,125,142,156,157,158,159,160,161,188,194,197 2 -270739 cd05587 STKc_cPKC 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270739 cd05587 STKc_cPKC 5 hydrophobic motif (HM) 0 0 1 1 312,313,314,315,316,317 0 -270739 cd05587 STKc_cPKC 6 turn motif phosphorylation site 0 0 1 1 297 6 -270740 cd05588 STKc_aPKC 1 active site 0 1 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270740 cd05588 STKc_aPKC 2 ATP binding site 0 1 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -270740 cd05588 STKc_aPKC 3 polypeptide substrate binding site 0 1 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270740 cd05588 STKc_aPKC 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270740 cd05588 STKc_aPKC 5 hydrophobic motif (HM) 0 0 1 1 321,322,323,324,325,326 0 -270740 cd05588 STKc_aPKC 6 turn motif phosphorylation site 0 0 1 1 306 6 -270741 cd05589 STKc_PKN 1 active site 0 0 1 1 6,7,8,9,10,14,27,29,64,80,81,83,87,89,125,127,129,130,132,142,143,146,160,161,162,163,164,165,192,198,201 1 -270741 cd05589 STKc_PKN 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,64,81,82,83,87,125,127,129,130,132,142,143 5 -270741 cd05589 STKc_PKN 3 polypeptide substrate binding site 0 0 1 1 10,87,89,125,127,129,146,160,161,162,163,164,165,192,198,201 2 -270741 cd05589 STKc_PKN 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270741 cd05589 STKc_PKN 5 hydrophobic motif (HM) 0 0 1 1 317,318,319,320,321,322 0 -270741 cd05589 STKc_PKN 6 turn motif phosphorylation site 0 0 1 1 301 6 -270742 cd05590 STKc_nPKC_eta 1 ATP binding site 0 1 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -270742 cd05590 STKc_nPKC_eta 2 active site 0 0 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270742 cd05590 STKc_nPKC_eta 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270742 cd05590 STKc_nPKC_eta 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270742 cd05590 STKc_nPKC_eta 5 hydrophobic motif (HM) 0 0 1 1 312,313,314,315,316,317 0 -270742 cd05590 STKc_nPKC_eta 6 turn motif phosphorylation site 0 0 1 1 297 6 -270743 cd05591 STKc_nPKC_epsilon 1 active site 0 0 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270743 cd05591 STKc_nPKC_epsilon 2 ATP binding site 0 0 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -270743 cd05591 STKc_nPKC_epsilon 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270743 cd05591 STKc_nPKC_epsilon 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270743 cd05591 STKc_nPKC_epsilon 5 hydrophobic motif (HM) 0 0 1 1 313,314,315,316,317,318 0 -270743 cd05591 STKc_nPKC_epsilon 6 turn motif phosphorylation site 0 0 1 1 298 6 -270744 cd05592 STKc_nPKC_theta_like 1 ATP binding site 0 1 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -270744 cd05592 STKc_nPKC_theta_like 2 active site 0 0 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270744 cd05592 STKc_nPKC_theta_like 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270744 cd05592 STKc_nPKC_theta_like 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160 0 -270744 cd05592 STKc_nPKC_theta_like 5 hydrophobic motif (HM) 0 0 1 1 311,312,313,314,315,316 0 -270744 cd05592 STKc_nPKC_theta_like 6 turn motif phosphorylation site 0 0 1 1 296 6 -270745 cd05593 STKc_PKB_gamma 1 active site 0 0 1 1 22,23,25,26,30,43,45,57,60,77,93,94,95,96,100,102,106,139,141,143,144,146,156,157,160,174,175,176,177,178,179,180,181,206,212,215,303,307 1 -270745 cd05593 STKc_PKB_gamma 2 ATP binding site 0 0 1 1 22,23,25,30,43,45,77,93,94,95,96,100,139,141,143,144,146,156,157,303 5 -270745 cd05593 STKc_PKB_gamma 3 polypeptide substrate binding site 0 0 1 1 26,57,60,100,102,106,139,141,143,160,174,175,176,177,178,179,180,181,206,212,215,307 2 -270745 cd05593 STKc_PKB_gamma 4 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -270745 cd05593 STKc_PKB_gamma 5 hydrophobic motif (HM) 0 0 1 1 336,337,338,339,340,341 0 -270745 cd05593 STKc_PKB_gamma 6 turn motif phosphorylation site 0 0 1 1 315 6 -270746 cd05594 STKc_PKB_alpha 1 active site 0 0 1 1 32,33,35,36,40,53,55,67,70,87,103,104,105,106,110,112,116,150,152,154,155,157,167,168,171,185,186,187,188,189,190,191,192,217,223,226,314,318 1 -270746 cd05594 STKc_PKB_alpha 2 ATP binding site 0 0 1 1 32,33,35,40,53,55,87,103,104,105,106,110,150,152,154,155,157,167,168,314 5 -270746 cd05594 STKc_PKB_alpha 3 polypeptide substrate binding site 0 0 1 1 36,67,70,110,112,116,150,152,154,171,185,186,187,188,189,190,191,192,217,223,226,318 2 -270746 cd05594 STKc_PKB_alpha 4 activation loop (A-loop) 0 0 1 1 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -270746 cd05594 STKc_PKB_alpha 5 hydrophobic motif (HM) 0 0 1 1 345,346,347,348,349,350 0 -270746 cd05594 STKc_PKB_alpha 6 turn motif phosphorylation site 0 0 1 1 326 6 -173686 cd05595 STKc_PKB_beta 1 active site 0 1 1 0 2,3,5,6,10,23,25,37,40,57,73,74,75,76,80,82,86,119,121,123,124,126,136,137,140,154,155,156,157,158,159,160,161,186,192,195,283,287 1 -173686 cd05595 STKc_PKB_beta 2 ATP binding site 0 1 1 0 2,3,5,10,23,25,57,73,74,75,76,80,119,121,123,124,126,136,137,283 5 -173686 cd05595 STKc_PKB_beta 3 polypeptide substrate binding site 0 1 1 0 6,37,40,80,82,86,119,121,123,140,154,155,156,157,158,159,160,161,186,192,195,287 2 -173686 cd05595 STKc_PKB_beta 4 activation loop (A-loop) 0 1 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159 0 -173686 cd05595 STKc_PKB_beta 5 hydrophobic motif (HM) 0 0 1 1 314,315,316,317,318,319 0 -173686 cd05595 STKc_PKB_beta 6 turn motif phosphorylation site 0 0 1 1 295 6 -270747 cd05596 STKc_ROCK 1 ATP binding site 0 1 1 1 33,34,35,36,37,41,54,56,88,105,106,107,111,149,151,153,154,156,166,167 5 -270747 cd05596 STKc_ROCK 2 dimer interface 0 1 1 1 0,2,6,9,10,13,19,20,21,22,23,26,92,339,340,341,343,344,346,351 2 -270747 cd05596 STKc_ROCK 3 active site 0 0 1 1 33,34,35,36,37,41,54,56,88,104,105,107,111,113,149,151,153,154,156,166,167,170,185,186,187,188,189,190,221,227,230 1 -270747 cd05596 STKc_ROCK 4 polypeptide substrate binding site 0 0 1 1 37,111,113,149,151,153,170,185,186,187,188,189,190,221,227,230 2 -270747 cd05596 STKc_ROCK 5 activation loop (A-loop) 0 0 1 1 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -270747 cd05596 STKc_ROCK 6 hydrophobic motif (HM) 0 0 1 1 345,346,347,348,349,350 0 -270748 cd05597 STKc_DMPK_like 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,126,128,130,131,133,143,144 5 -270748 cd05597 STKc_DMPK_like 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,126,128,130,131,133,143,144,147,162,163,164,165,166,167,199,205,208 1 -270748 cd05597 STKc_DMPK_like 3 polypeptide substrate binding site 0 0 1 1 12,86,88,126,128,130,147,162,163,164,165,166,167,199,205,208 2 -270748 cd05597 STKc_DMPK_like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,163,164,165,166,167 0 -270748 cd05597 STKc_DMPK_like 5 hydrophobic motif (HM) 0 0 1 1 324,325,326,327,328,329 0 -270749 cd05598 STKc_LATS 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,164,165,166,167,168,169,196,202,205 1 -270749 cd05598 STKc_LATS 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270749 cd05598 STKc_LATS 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,164,165,166,167,168,169,196,202,205 2 -270749 cd05598 STKc_LATS 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270749 cd05598 STKc_LATS 5 hydrophobic motif (HM) 0 0 1 1 323,324,325,326,327,328 0 -270750 cd05599 STKc_NDR_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,159,160,161,162,163,164,191,197,200 1 -270750 cd05599 STKc_NDR_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270750 cd05599 STKc_NDR_like 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,159,160,161,162,163,164,191,197,200 2 -270750 cd05599 STKc_NDR_like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270750 cd05599 STKc_NDR_like 5 hydrophobic motif (HM) 0 0 1 1 317,318,319,320,321,322 0 -270751 cd05600 STKc_Sid2p_like 1 active site 0 0 1 1 18,19,20,21,22,26,39,41,73,89,90,92,96,98,135,137,139,140,142,152,153,156,207,208,209,210,211,212,239,245,248 1 -270751 cd05600 STKc_Sid2p_like 2 ATP binding site 0 0 1 1 18,19,20,21,22,26,39,41,73,90,91,92,96,135,137,139,140,142,152,153 5 -270751 cd05600 STKc_Sid2p_like 3 polypeptide substrate binding site 0 0 1 1 22,96,98,135,137,139,156,207,208,209,210,211,212,239,245,248 2 -270751 cd05600 STKc_Sid2p_like 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,203,204,205,206,207,208,209,210,211,212 0 -270751 cd05600 STKc_Sid2p_like 5 hydrophobic motif (HM) 0 0 1 1 378,379,380,381,382,383 0 -270752 cd05601 STKc_CRIK 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,126,128,130,131,133,143,144,147,162,163,164,165,166,167,200,206,209 1 -270752 cd05601 STKc_CRIK 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,126,128,130,131,133,143,144 5 -270752 cd05601 STKc_CRIK 3 polypeptide substrate binding site 0 0 1 1 12,86,88,126,128,130,147,162,163,164,165,166,167,200,206,209 2 -270752 cd05601 STKc_CRIK 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270752 cd05601 STKc_CRIK 5 hydrophobic motif (HM) 0 0 1 1 321,322,323,324,325,326 0 -270753 cd05602 STKc_SGK1 1 active site 0 0 1 1 14,15,17,18,19,20,22,35,37,70,87,89,93,95,132,134,136,137,139,149,150,153,167,168,169,170,171,172,199,205,208 1 -270753 cd05602 STKc_SGK1 2 ATP binding site 0 1 1 0 14,15,17,18,19,20,22,35,37,70,87,89,134,136,137,139,149 5 -270753 cd05602 STKc_SGK1 3 polypeptide substrate binding site 0 0 1 1 18,93,95,132,134,136,153,167,168,169,170,171,172,199,205,208 2 -270753 cd05602 STKc_SGK1 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270753 cd05602 STKc_SGK1 5 hydrophobic motif (HM) 0 0 1 1 328,329,330,331,332,333 0 -270753 cd05602 STKc_SGK1 6 turn motif phosphorylation site 0 0 1 1 307 6 -270754 cd05603 STKc_SGK2 1 active site 0 0 1 1 2,3,5,6,7,8,10,23,25,58,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -270754 cd05603 STKc_SGK2 2 ATP binding site 0 0 1 1 2,3,5,6,7,8,10,23,25,58,75,77,122,124,125,127,137 5 -270754 cd05603 STKc_SGK2 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -270754 cd05603 STKc_SGK2 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270754 cd05603 STKc_SGK2 5 hydrophobic motif (HM) 0 0 1 1 313,314,315,316,317,318 0 -270754 cd05603 STKc_SGK2 6 turn motif phosphorylation site 0 0 1 1 295 6 -270755 cd05604 STKc_SGK3 1 active site 0 0 1 1 3,4,6,7,8,9,11,24,26,59,76,78,82,84,121,123,125,126,128,138,139,142,156,157,158,159,160,161,188,194,197 1 -270755 cd05604 STKc_SGK3 2 ATP binding site 0 0 1 1 3,4,6,7,8,9,11,24,26,59,76,78,123,125,126,128,138 5 -270755 cd05604 STKc_SGK3 3 polypeptide substrate binding site 0 0 1 1 7,82,84,121,123,125,142,156,157,158,159,160,161,188,194,197 2 -270755 cd05604 STKc_SGK3 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270755 cd05604 STKc_SGK3 5 hydrophobic motif (HM) 0 0 1 1 317,318,319,320,321,322 0 -270755 cd05604 STKc_SGK3 6 turn motif phosphorylation site 0 0 1 1 296 6 -270756 cd05605 STKc_GRK4_like 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,28,30,79,80,81,133,144 5 -270756 cd05605 STKc_GRK4_like 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,81,85,87,126,128,130,131,133,143,144,147,160,161,162,163,164,165,192,198,201 1 -270756 cd05605 STKc_GRK4_like 3 polypeptide substrate binding site 0 0 1 1 11,85,87,126,128,130,147,160,161,162,163,164,165,192,198,201 2 -270756 cd05605 STKc_GRK4_like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270757 cd05606 STKc_beta_ARK 1 ATP binding site 0 1 1 1 1,2,3,4,5,9,22,24,77,78,79,129,140 5 -270757 cd05606 STKc_beta_ARK 2 active site 0 0 1 1 1,2,3,4,5,9,22,24,60,76,77,79,83,85,122,124,126,127,129,139,140,143,155,156,157,158,159,160,188,194,197 1 -270757 cd05606 STKc_beta_ARK 3 polypeptide substrate binding site 0 0 1 1 5,83,85,122,124,126,143,155,156,157,158,159,160,188,194,197 2 -270757 cd05606 STKc_beta_ARK 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270758 cd05607 STKc_GRK7 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,64,80,81,83,87,89,128,130,132,133,135,145,146,149,162,163,164,165,166,167,194,200,203 1 -270758 cd05607 STKc_GRK7 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,30,32,81,82,83,135,146 5 -270758 cd05607 STKc_GRK7 3 polypeptide substrate binding site 0 0 1 1 13,87,89,128,130,132,149,162,163,164,165,166,167,194,200,203 2 -270758 cd05607 STKc_GRK7 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270759 cd05608 STKc_GRK1 1 ATP binding site 0 1 1 0 8,9,10,11,12,16,29,31,79,80,82,136,147 5 -270759 cd05608 STKc_GRK1 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,129,131,133,134,136,146,147,150,164,165,166,167,168,169,196,202,205 1 -270759 cd05608 STKc_GRK1 3 polypeptide substrate binding site 0 0 1 1 12,86,88,129,131,133,150,164,165,166,167,168,169,196,202,205 2 -270759 cd05608 STKc_GRK1 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270760 cd05609 STKc_MAST 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,81,85,87,124,126,128,129,131,141,142,145,174,175,176,177,178,179,206,212,215 1 -270760 cd05609 STKc_MAST 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,62,79,80,81,85,124,126,128,129,131,141,142 5 -270760 cd05609 STKc_MAST 3 polypeptide substrate binding site 0 0 1 1 11,85,87,124,126,128,145,174,175,176,177,178,179,206,212,215 2 -270760 cd05609 STKc_MAST 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,171,172,173,174,175,176,177,178,179 0 -270761 cd05610 STKc_MASTL 1 active site 0 0 1 1 11,12,13,14,15,19,32,34,66,82,83,85,89,91,128,130,132,133,135,145,146,149,216,217,218,219,220,221,248,254,257 1 -270761 cd05610 STKc_MASTL 2 ATP binding site 0 0 1 1 11,12,13,14,15,19,32,34,66,83,84,85,89,128,130,132,133,135,145,146 5 -270761 cd05610 STKc_MASTL 3 polypeptide substrate binding site 0 0 1 1 15,89,91,128,130,132,149,216,217,218,219,220,221,248,254,257 2 -270761 cd05610 STKc_MASTL 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,213,214,215,216,217,218,219,220,221 0 -270762 cd05611 STKc_Rim15_like 1 active site 0 0 1 1 3,4,5,6,7,11,24,26,59,75,76,78,82,84,121,123,125,126,128,138,139,142,155,156,157,158,159,160,187,193,196 1 -270762 cd05611 STKc_Rim15_like 2 ATP binding site 0 0 1 1 3,4,5,6,7,11,24,26,59,76,77,78,82,121,123,125,126,128,138,139 5 -270762 cd05611 STKc_Rim15_like 3 polypeptide substrate binding site 0 0 1 1 7,82,84,121,123,125,142,155,156,157,158,159,160,187,193,196 2 -270762 cd05611 STKc_Rim15_like 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,152,153,154,155,156,157,158,159,160 0 -270763 cd05612 STKc_PRKX_like 1 active site 0 0 1 1 9,10,11,12,13,14,16,29,31,41,63,79,80,82,86,88,92,125,127,128,129,130,132,142,143,146,157,159,160,161,162,189,193,194,195,198,199,200,202,205,286,289 1 -270763 cd05612 STKc_PRKX_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,13,14,16,29,31,63,79,80,81,82,86,125,127,129,130,132,142,143,286 5 -270763 cd05612 STKc_PRKX_like 3 polypeptide substrate binding site 0 0 1 1 10,12,13,41,42,43,86,88,92,125,127,128,129,146,157,158,159,160,161,162,189,193,194,195,198,199,200,202,205,206,289 2 -270763 cd05612 STKc_PRKX_like 4 regulatory subunit interface 0 0 1 1 12,42,43,45,46,86,88,92,127,128,129,146,155,156,157,158,159,160,163,170,171,189,202,203,206,207,210,289 2 -270763 cd05612 STKc_PRKX_like 5 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270764 cd05613 STKc_MSK1_N 1 active site 0 0 1 1 7,8,9,10,11,15,31,33,67,83,84,86,90,92,129,131,133,134,136,146,147,150,165,166,167,168,169,170,199,205,208 1 -270764 cd05613 STKc_MSK1_N 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,31,33,67,84,85,86,90,129,131,133,134,136,146,147 5 -270764 cd05613 STKc_MSK1_N 3 polypeptide substrate binding site 0 0 1 1 11,90,92,129,131,133,150,165,166,167,168,169,170,199,205,208 2 -270764 cd05613 STKc_MSK1_N 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,159,160,161,162,163,164,165,166,167,168,169,170 0 -270765 cd05614 STKc_MSK2_N 1 active site 0 0 1 1 7,8,9,10,11,15,31,33,67,83,84,86,90,92,129,131,133,134,136,146,147,150,165,166,167,168,169,170,198,204,207 1 -270765 cd05614 STKc_MSK2_N 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,31,33,67,84,85,86,90,129,131,133,134,136,146,147 5 -270765 cd05614 STKc_MSK2_N 3 polypeptide substrate binding site 0 0 1 1 11,90,92,129,131,133,150,165,166,167,168,169,170,198,204,207 2 -270765 cd05614 STKc_MSK2_N 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,159,160,161,162,163,164,165,166,167,168,169,170 0 -270765 cd05614 STKc_MSK2_N 5 hydrophobic motif (HM) 0 0 1 1 323,324,325,326,327,328 0 -270765 cd05614 STKc_MSK2_N 6 turn motif phosphorylation site 0 0 1 1 311 6 -270766 cd05615 STKc_cPKC_alpha 1 ATP binding site 0 1 1 1 17,18,19,20,21,25,38,40,73,90,91,92,96,135,137,139,140,142,152,153 5 -270766 cd05615 STKc_cPKC_alpha 2 active site 0 0 1 1 17,18,19,20,21,25,38,40,73,89,90,92,96,98,135,137,139,140,142,152,153,156,170,171,172,173,174,175,202,208,211 1 -270766 cd05615 STKc_cPKC_alpha 3 polypeptide substrate binding site 0 0 1 1 21,96,98,135,137,139,156,170,171,172,173,174,175,202,208,211 2 -270766 cd05615 STKc_cPKC_alpha 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270766 cd05615 STKc_cPKC_alpha 5 hydrophobic motif (HM) 0 0 1 1 325,326,327,328,329,330 0 -270766 cd05615 STKc_cPKC_alpha 6 turn motif phosphorylation site 0 0 1 1 310 6 -270767 cd05616 STKc_cPKC_beta 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,63,80,81,82,86,125,127,129,130,132,142,143 5 -270767 cd05616 STKc_cPKC_beta 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,63,79,80,82,86,88,125,127,129,130,132,142,143,146,160,161,162,163,164,165,192,198,201 1 -270767 cd05616 STKc_cPKC_beta 3 polypeptide substrate binding site 0 0 1 1 11,86,88,125,127,129,146,160,161,162,163,164,165,192,198,201 2 -270767 cd05616 STKc_cPKC_beta 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270767 cd05616 STKc_cPKC_beta 5 hydrophobic motif (HM) 0 0 1 1 315,316,317,318,319,320 0 -270767 cd05616 STKc_cPKC_beta 6 turn motif phosphorylation site 0 0 1 1 300 6 -270768 cd05617 STKc_aPKC_zeta 1 active site 0 0 1 1 22,23,24,25,26,30,43,45,78,94,95,97,101,103,140,142,144,145,147,157,158,161,175,176,177,178,179,180,207,213,216 1 -270768 cd05617 STKc_aPKC_zeta 2 ATP binding site 0 0 1 1 22,23,24,25,26,30,43,45,78,95,96,97,101,140,142,144,145,147,157,158 5 -270768 cd05617 STKc_aPKC_zeta 3 polypeptide substrate binding site 0 0 1 1 26,101,103,140,142,144,161,175,176,177,178,179,180,207,213,216 2 -270768 cd05617 STKc_aPKC_zeta 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -270768 cd05617 STKc_aPKC_zeta 5 hydrophobic motif (HM) 0 0 1 1 339,340,341,342,343,344 0 -270768 cd05617 STKc_aPKC_zeta 6 turn motif phosphorylation site 0 0 1 1 324 6 -270769 cd05618 STKc_aPKC_iota 1 active site 0 1 1 1 27,28,29,30,31,35,48,50,83,99,100,102,106,108,145,147,149,150,152,162,163,166,180,181,182,183,184,185,212,218,221 1 -270769 cd05618 STKc_aPKC_iota 2 ATP binding site 0 1 1 1 27,28,29,30,31,35,48,50,83,100,101,102,106,145,147,149,150,152,162,163 5 -270769 cd05618 STKc_aPKC_iota 3 polypeptide substrate binding site 0 1 1 1 31,106,108,145,147,149,166,180,181,182,183,184,185,212,218,221 2 -270769 cd05618 STKc_aPKC_iota 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270769 cd05618 STKc_aPKC_iota 5 hydrophobic motif (HM) 0 0 1 1 346,347,348,349,350,351 0 -270769 cd05618 STKc_aPKC_iota 6 turn motif phosphorylation site 0 0 1 1 331 6 -270770 cd05619 STKc_nPKC_theta 1 ATP binding site 0 1 1 1 12,13,14,15,16,20,33,35,68,85,86,87,91,130,132,134,135,137,147,148 5 -270770 cd05619 STKc_nPKC_theta 2 active site 0 0 1 1 12,13,14,15,16,20,33,35,68,84,85,87,91,93,130,132,134,135,137,147,148,151,165,166,167,168,169,170,197,203,206 1 -270770 cd05619 STKc_nPKC_theta 3 polypeptide substrate binding site 0 0 1 1 16,91,93,130,132,134,151,165,166,167,168,169,170,197,203,206 2 -270770 cd05619 STKc_nPKC_theta 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270770 cd05619 STKc_nPKC_theta 5 hydrophobic motif (HM) 0 0 1 1 317,318,319,320,321,322 0 -270770 cd05619 STKc_nPKC_theta 6 turn motif phosphorylation site 0 0 1 1 302 6 -173710 cd05620 STKc_nPKC_delta 1 active site 0 0 1 1 2,3,4,5,6,10,23,25,58,74,75,77,81,83,120,122,124,125,127,137,138,141,155,156,157,158,159,160,187,193,196 1 -173710 cd05620 STKc_nPKC_delta 2 ATP binding site 0 0 1 1 2,3,4,5,6,10,23,25,58,75,76,77,81,120,122,124,125,127,137,138 5 -173710 cd05620 STKc_nPKC_delta 3 polypeptide substrate binding site 0 0 1 1 6,81,83,120,122,124,141,155,156,157,158,159,160,187,193,196 2 -173710 cd05620 STKc_nPKC_delta 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -173710 cd05620 STKc_nPKC_delta 5 hydrophobic motif (HM) 0 0 1 1 307,308,309,310,311,312 0 -173710 cd05620 STKc_nPKC_delta 6 turn motif phosphorylation site 0 0 1 1 292 6 -270771 cd05621 STKc_ROCK2 1 ATP binding site 0 1 1 1 59,60,61,62,63,67,80,82,114,131,132,133,137,175,177,179,180,182,192,193 5 -270771 cd05621 STKc_ROCK2 2 active site 0 0 1 1 59,60,61,62,63,67,80,82,114,130,131,133,137,139,175,177,179,180,182,192,193,196,211,212,213,214,215,216,247,253,256 1 -270771 cd05621 STKc_ROCK2 3 polypeptide substrate binding site 0 0 1 1 63,137,139,175,177,179,196,211,212,213,214,215,216,247,253,256 2 -270771 cd05621 STKc_ROCK2 4 dimer interface 0 0 1 1 14,26,28,32,35,36,39,45,46,47,48,49,52,118,365,366,367,369,370,372,377 2 -270771 cd05621 STKc_ROCK2 5 activation loop (A-loop) 0 0 1 1 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 0 -270771 cd05621 STKc_ROCK2 6 hydrophobic motif (HM) 0 0 1 1 371,372,373,374,375,376 0 -270772 cd05622 STKc_ROCK1 1 ATP binding site 0 1 1 1 80,81,82,83,84,88,101,103,135,152,153,154,158,196,198,200,201,203,213,214 5 -270772 cd05622 STKc_ROCK1 2 dimer interface 0 1 1 1 35,47,49,53,56,57,60,66,67,68,69,70,73,139,386,387,388,390,391,393,398 2 -270772 cd05622 STKc_ROCK1 3 RhoE interface 0 1 1 1 230,231,232,244,245,247,248,279,280,282,283,286,287,289,293,294 2 -270772 cd05622 STKc_ROCK1 4 active site 0 0 1 1 80,81,82,83,84,88,101,103,135,151,152,154,158,160,196,198,200,201,203,213,214,217,232,233,234,235,236,237,268,274,277 1 -270772 cd05622 STKc_ROCK1 5 polypeptide substrate binding site 0 0 1 1 84,158,160,196,198,200,217,232,233,234,235,236,237,268,274,277 2 -270772 cd05622 STKc_ROCK1 6 activation loop (A-loop) 0 0 1 1 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 0 -270772 cd05622 STKc_ROCK1 7 hydrophobic motif (HM) 0 0 1 1 392,393,394,395,396,397 0 -270773 cd05623 STKc_MRCK_alpha 1 active site 0 0 1 1 79,80,81,82,83,87,100,102,134,150,151,153,157,159,197,199,201,202,204,214,215,218,233,234,235,236,237,238,270,276,279 1 -270773 cd05623 STKc_MRCK_alpha 2 ATP binding site 0 0 1 1 79,80,81,82,83,87,100,102,134,151,152,153,157,197,199,201,202,204,214,215 5 -270773 cd05623 STKc_MRCK_alpha 3 polypeptide substrate binding site 0 0 1 1 83,157,159,197,199,201,218,233,234,235,236,237,238,270,276,279 2 -270773 cd05623 STKc_MRCK_alpha 4 activation loop (A-loop) 0 0 1 1 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 0 -270773 cd05623 STKc_MRCK_alpha 5 hydrophobic motif (HM) 0 0 1 1 395,396,397,398,399,400 0 -270773 cd05623 STKc_MRCK_alpha 6 putative dimer interface 0 0 1 1 2,3,6,7,10,11,22,24,26,27,30,31,34,43,48,49,52,55,59,65,66,67,68,69,72,92,97,110,138,390,393,394,396,403,404,405,406 2 -270774 cd05624 STKc_MRCK_beta 1 ATP binding site 0 1 1 1 79,80,81,82,83,87,100,102,134,151,152,153,157,197,199,201,202,204,214,215 5 -270774 cd05624 STKc_MRCK_beta 2 dimer interface 0 1 1 1 0,1,3,4,7,8,11,12,21,22,24,26,27,30,31,34,43,48,49,52,55,59,62,65,66,67,68,69,72,92,95,97,110,138,390,393,394,396,403,404,405,406 2 -270774 cd05624 STKc_MRCK_beta 3 active site 0 0 1 1 79,80,81,82,83,87,100,102,134,150,151,153,157,159,197,199,201,202,204,214,215,218,233,234,235,236,237,238,270,276,279 1 -270774 cd05624 STKc_MRCK_beta 4 polypeptide substrate binding site 0 0 1 1 83,157,159,197,199,201,218,233,234,235,236,237,238,270,276,279 2 -270774 cd05624 STKc_MRCK_beta 5 activation loop (A-loop) 0 0 1 1 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 0 -270774 cd05624 STKc_MRCK_beta 6 hydrophobic motif (HM) 0 0 1 1 395,396,397,398,399,400 0 -270775 cd05625 STKc_LATS1 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,207,208,209,210,211,212,239,245,248 1 -270775 cd05625 STKc_LATS1 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270775 cd05625 STKc_LATS1 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,207,208,209,210,211,212,239,245,248 2 -270775 cd05625 STKc_LATS1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,202,203,204,205,206,207,208,209,210,211,212 0 -270775 cd05625 STKc_LATS1 5 hydrophobic motif (HM) 0 0 1 1 372,373,374,375,376,377 0 -173715 cd05626 STKc_LATS2 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,207,208,209,210,211,212,239,245,248 1 -173715 cd05626 STKc_LATS2 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -173715 cd05626 STKc_LATS2 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,207,208,209,210,211,212,239,245,248 2 -173715 cd05626 STKc_LATS2 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,202,203,204,205,206,207,208,209,210,211,212 0 -173715 cd05626 STKc_LATS2 5 hydrophobic motif (HM) 0 0 1 1 371,372,373,374,375,376 0 -270776 cd05627 STKc_NDR2 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,64,80,81,83,87,89,126,128,130,131,133,143,144,147,196,197,198,199,200,201,228,234,237 1 -270776 cd05627 STKc_NDR2 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,30,32,64,81,82,83,87,126,128,130,131,133,143,144 5 -270776 cd05627 STKc_NDR2 3 polypeptide substrate binding site 0 0 1 1 13,87,89,126,128,130,147,196,197,198,199,200,201,228,234,237 2 -270776 cd05627 STKc_NDR2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,192,193,194,195,196,197,198,199,200,201 0 -270776 cd05627 STKc_NDR2 5 hydrophobic motif (HM) 0 0 1 1 351,352,353,354,355,356 0 -270777 cd05628 STKc_NDR1 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,195,196,197,198,199,200,227,233,236 1 -270777 cd05628 STKc_NDR1 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270777 cd05628 STKc_NDR1 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,195,196,197,198,199,200,227,233,236 2 -270777 cd05628 STKc_NDR1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,191,192,193,194,195,196,197,198,199,200 0 -270777 cd05628 STKc_NDR1 5 hydrophobic motif (HM) 0 0 1 1 353,354,355,356,357,358 0 -270778 cd05629 STKc_NDR_like_fungal 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,125,127,129,130,132,142,143,146,207,208,209,210,211,212,239,245,248 1 -270778 cd05629 STKc_NDR_like_fungal 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,86,125,127,129,130,132,142,143 5 -270778 cd05629 STKc_NDR_like_fungal 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,207,208,209,210,211,212,239,245,248 2 -270778 cd05629 STKc_NDR_like_fungal 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,203,204,205,206,207,208,209,210,211,212 0 -270778 cd05629 STKc_NDR_like_fungal 5 hydrophobic motif (HM) 0 0 1 1 367,368,369,370,371,372 0 -270779 cd05630 STKc_GRK6 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,28,30,79,80,81,133,144 5 -270779 cd05630 STKc_GRK6 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,81,85,87,126,128,130,131,133,143,144,147,160,161,162,163,164,165,192,198,201 1 -270779 cd05630 STKc_GRK6 3 polypeptide substrate binding site 0 0 1 1 11,85,87,126,128,130,147,160,161,162,163,164,165,192,198,201 2 -270779 cd05630 STKc_GRK6 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -173720 cd05631 STKc_GRK4 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,81,85,87,126,128,130,131,133,143,144,147,160,161,162,163,164,165,192,198,201 1 -173720 cd05631 STKc_GRK4 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,79,80,81,133,144 5 -173720 cd05631 STKc_GRK4 3 polypeptide substrate binding site 0 0 1 1 11,85,87,126,128,130,147,160,161,162,163,164,165,192,198,201 2 -173720 cd05631 STKc_GRK4 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270780 cd05632 STKc_GRK5 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,64,80,81,83,87,89,128,130,132,133,135,145,146,149,162,163,164,165,166,167,194,200,203 1 -270780 cd05632 STKc_GRK5 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,30,32,81,82,83,135,146 5 -270780 cd05632 STKc_GRK5 3 polypeptide substrate binding site 0 0 1 1 13,87,89,128,130,132,149,162,163,164,165,166,167,194,200,203 2 -270780 cd05632 STKc_GRK5 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270781 cd05633 STKc_GRK3 1 active site 0 0 1 1 12,13,14,15,16,20,33,35,70,86,87,89,93,95,132,134,136,137,139,149,150,153,165,166,167,168,169,170,198,204,207 1 -270781 cd05633 STKc_GRK3 2 ATP binding site 0 0 1 1 12,13,14,15,16,20,33,35,87,88,89,139,150 5 -270781 cd05633 STKc_GRK3 3 polypeptide substrate binding site 0 0 1 1 16,93,95,132,134,136,153,165,166,167,168,169,170,198,204,207 2 -270781 cd05633 STKc_GRK3 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -240188 cd05637 SIS_PGI_PMI_2 1 active site 0 1 1 1 35 1 -240188 cd05637 SIS_PGI_PMI_2 2 dimer interface 0 1 1 1 15,27,30,31,34,35,44 2 -193517 cd05638 M42 1 metal binding site HDEEDH 1 1 1 58,172,204,205,227,310 4 -193517 cd05638 M42 2 active site 0 1 1 0 58,172,204,205,208,227,228,229,230,280,283,284,309,310 1 -193517 cd05638 M42 3 oligomer interface 0 1 1 1 12,13,14,19,23,35,36,39,65,66,67,78,90,91,92,103,104,106,130,132,133,134,148,149,159,161,165,167,209,212,213,241,242,243,249,265,279,291,307,308,311,315 2 -349892 cd05639 M18 1 metal binding site HDEEDH 1 1 1 76,237,266,267,312,406 4 -349892 cd05639 M18 2 active site 0 1 1 0 76,237,238,266,267,312,313,315,340,347,380,381,405,406 1 -349893 cd05640 M28_like 1 metal binding site [NH]DE[HE][DE]H 0 1 1 73,85,117,118,150,252 4 -349894 cd05642 M28_like 1 metal binding site H[ED]EEDH 0 1 1 109,129,161,162,189,295 4 -349895 cd05643 M28_like 1 putative metal binding site HDDH 0 1 1 90,100,159,239 4 -349896 cd05644 M28_like 1 metal binding site H[ND]H 1 1 1 171,177,308 4 -349896 cd05644 M28_like 2 active site 0 1 1 0 168,170,177,209,210,234,308 1 -349897 cd05645 M20_peptidase_T 1 metal binding site HDEEDH 1 1 0 74,136,169,170,192,375 4 -349897 cd05645 M20_peptidase_T 2 dimer interface 0 1 1 0 80,219,220,221,224,225,227,229,231,232,235,238,247,248,249,250,251,256,258,259,260,261,262,263,264,265,266,349,375 2 -349898 cd05646 M20_AcylaseI_like 1 metal binding site HDEE[DE]H 0 1 1 71,104,138,139,181,364 4 -349899 cd05647 M20_DapE_actinobac 1 metal binding site HDEEEH 0 1 1 60,87,119,120,148,324 4 -349899 cd05647 M20_DapE_actinobac 2 putative dimer interface 0 0 1 1 163,174,175,176,177,183,185,186,189,190,192,193,196,213,215,216,217,218,219,220,221,222,228,229,237,239,298 2 -349900 cd05649 M20_ArgE_DapE-like 1 metal binding site HDEEEH 0 1 1 59,92,127,128,153,355 4 -349900 cd05649 M20_ArgE_DapE-like 2 putative dimer interface 0 0 1 1 168,179,180,181,182,188,190,191,194,195,197,198,201,217,219,220,221,222,223,224,225,226,233,234,242,244,327 2 -349901 cd05650 M20_ArgE_DapE-like 1 metal binding site HDEEDH 0 1 1 76,109,143,144,171,366 4 -349902 cd05651 M20_ArgE_DapE-like 1 metal binding site HDEEEH 0 1 1 62,93,126,127,151,318 4 -349902 cd05651 M20_ArgE_DapE-like 2 dimer interface 0 1 1 0 166,178,179,180,185,187,188,191,194,198,213,215,216,217,218,219,220,221,222,223,225,226,227,229,235,237,239 2 -349903 cd05652 M20_ArgE_DapE-like_fungal 1 metal binding site HDEEEH 0 1 1 65,91,125,126,150,316 4 -349903 cd05652 M20_ArgE_DapE-like_fungal 2 putative dimer interface 0 0 1 1 165,176,177,178,179,185,187,188,191,192,194,195,198,212,214,215,216,217,218,219,220,221,227,228,236,238,290 2 -349904 cd05653 M20_ArgE_LysK 1 metal binding site HDEEEH 0 1 1 61,85,116,117,140,317 4 -349904 cd05653 M20_ArgE_LysK 2 dimer interface 0 1 1 0 66,67,68,81,174,176,177,180,183,184,204,205,206,207,209,210,226,228,289,290,314,316,317,318,319,320 2 -349905 cd05654 M20_ArgE_RocB 1 metal binding site HDEE[ED]H 0 1 1 78,132,165,166,197,506 4 -349905 cd05654 M20_ArgE_RocB 2 putative dimer interface 0 0 1 1 220,231,232,233,234,254,256,257,260,261,263,264,267,281,283,284,285,286,287,288,289,290,396,397,405,407,484 2 -349906 cd05656 M42_Frv 1 metal binding site HDEE[ED]H 1 1 1 59,172,204,205,227,314 4 -349906 cd05656 M42_Frv 2 active site 0 1 1 0 59,172,204,205,208,227,228,229,230,284,287,288,313,314 1 -349906 cd05656 M42_Frv 3 oligomer interface 0 1 1 1 12,13,14,19,23,35,36,39,66,67,68,75,79,87,90,91,92,93,103,104,106,130,132,133,134,148,149,159,161,165,167,209,212,213,216,217,245,246,247,253,256,269,283,295,296,311,312,315,317,319 2 -349907 cd05657 M42_glucanase_like 1 metal binding site HDEE[ED]H 0 1 1 62,180,214,215,235,315 4 -349907 cd05657 M42_glucanase_like 2 putative active site 0 0 1 1 62,180,214,215,218,235,236,237,238,285,288,289,314,315 1 -349907 cd05657 M42_glucanase_like 3 putative oligomer interface 0 0 1 1 15,16,17,22,26,38,39,42,69,70,71,82,94,95,96,107,108,110,136,138,139,140,156,157,167,169,173,175,219,222,223,246,247,248,254,270,284,296,312,313,316,319 2 -349908 cd05658 M18_DAP 1 metal binding site HDEEDH 1 1 0 76,241,275,276,321,415 4 -349908 cd05658 M18_DAP 2 active site 0 1 1 0 76,241,242,275,276,321,322,324,349,356,389,390,414,415 1 -349909 cd05659 M18_API 1 metal binding site HDEEDH 1 1 1 85,246,276,277,323,422 4 -349909 cd05659 M18_API 2 oligomer interface 0 1 1 1 23,61,63,92,94,95,96,98,99,101,104,107,108,109,110,111,112,113,114,116,117,118,119,122,124,132,133,134,143,144,146,147,149,150,151,152,153,155,156,157,158,159,160,161,162,163,176,177,178,180,182,183,184,185,186,199,201,205,206,214,215,216,218,219,220,221,228,231,232,233,234,235,236,237,238,239,277,278,281,282,283,284,287,288,289,293,296,297,308,310,311,314,315,326,328,329,330,331,332,333,340,343,352,353,358,359,360,361,365,366,367,368,370,371,374,375,378,384,386,389,390,391,392,393,396,402,405,408,409,410,419,420,421,422,423,425,427 2 -349909 cd05659 M18_API 3 putative active site 0 0 1 1 85,246,247,276,277,323,324,326,351,363,397,398,421,422 1 -349910 cd05660 M28_like_PA 1 metal binding site HDEE[ED]H 0 1 1 80,101,135,136,163,251 4 -349911 cd05661 M28_like_PA 1 metal binding site [QH]DEEDH 1 1 1 60,95,127,128,156,233 4 -349911 cd05661 M28_like_PA 2 active site 0 1 0 0 83,95,96,127,128,130,131,156,157,202,219,228,232,233 1 -349912 cd05662 M28_like 1 metal binding site HDEEDH 0 1 1 83,100,132,133,160,238 4 -349913 cd05663 M28_like_PA_PDZ_associated 1 metal binding site HDEED[NH] 0 1 1 77,103,139,140,167,237 4 -349914 cd05664 M20_Acy1-like 1 metal binding site CHEHH 0 1 1 97,99,133,160,371 4 -349914 cd05664 M20_Acy1-like 2 putative dimer interface 0 0 0 1 182,204,205,209,212,215,232,233,234,235,236,237,238,242,243,245,251,252,253 2 -349915 cd05665 M20_Acy1_IAAspH 1 metal binding site CHEHH 0 1 1 135,137,171,195,391 4 -349915 cd05665 M20_Acy1_IAAspH 2 dimer interface 0 1 0 0 217,218,219,240,241,245,248,251,262,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,284,285,286,288,322,358 2 -349916 cd05666 M20_Acy1-like 1 metal binding site 0 0 1 1 89,91,124,150,348 4 -349916 cd05666 M20_Acy1-like 2 putative dimer interface 0 0 0 1 173,195,196,200,203,206,223,224,225,226,227,228,229,233,234,236,242,243,244 2 -349917 cd05667 M20_Acy1-like 1 metal binding site 0 0 1 1 106,108,142,173,376 4 -349917 cd05667 M20_Acy1-like 2 putative dimer interface 0 0 0 1 196,218,219,223,226,229,247,248,249,250,251,252,253,257,258,260,266,267,268 2 -349918 cd05668 M20_Acy1-like 1 metal binding site CHEHH 0 1 1 91,93,126,152,344 4 -349918 cd05668 M20_Acy1-like 2 putative dimer interface 0 0 0 1 175,197,198,202,205,208,222,223,224,225,226,227,228,233,234,236,242,243,244 2 -349919 cd05669 M20_Acy1_YxeP-like 1 metal binding site CHEHH 1 1 1 90,92,126,150,342 4 -349919 cd05669 M20_Acy1_YxeP-like 2 dimer interface 0 1 0 0 173,193,195,196,199,200,202,203,206,223,224,225,226,227,228,229,230,231,232,234,236,242,243,244,282 2 -349920 cd05670 M20_Acy1_YkuR-like 1 metal binding site CHEHH 0 1 1 90,92,124,150,343 4 -349920 cd05670 M20_Acy1_YkuR-like 2 putative dimer interface 0 0 0 1 173,195,196,200,203,206,223,224,225,226,227,228,229,233,234,236,242,243,244 2 -349921 cd05672 M20_ACY1L2-like 1 metal binding site CHEH[KH] 1 1 1 81,83,119,143,330 4 -349922 cd05673 M20_Acy1L2_AbgB 1 metal binding site [DEC]H[KE]HH 0 1 1 97,99,135,159,391 4 -349923 cd05674 M20_yscS 1 metal binding site HDEEDH 0 1 1 76,111,145,146,174,447 4 -349924 cd05675 M20_yscS_like 1 putative metal binding site HDEEH 0 1 1 72,104,138,139,407 4 -349925 cd05676 M20_dipept_like_CNDP 1 metal binding site H[KD][HE]E[END][DH] 1 1 0 92,125,159,160,188,438 4 -349925 cd05676 M20_dipept_like_CNDP 2 active site 0 1 1 0 92,125,159,160,188,190,203,336,373,407,409,410,411,438 1 -349925 cd05676 M20_dipept_like_CNDP 3 dimer interface 0 1 1 0 96,102,204,206,208,210,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,233,237,240,241,244,245,246,280,283,284,285,288,289,297,300,301,306,307,308,309,310,311,312,313,317,318,319,320,321,322,323,324,326,327,332,336,361,362,364,373,408,409,437,438,439,440 2 -349926 cd05677 M20_dipept_like_DUG2_type 1 metal binding site HD[QE]ENH 0 1 1 78,111,144,145,172,410 4 -349926 cd05677 M20_dipept_like_DUG2_type 2 putative dimer interface 0 0 1 1 188,192,194,198,199,200,201,202,203,205,206,207,208,209,210,211,217,218,219,221,224,225,228,261,271,274,275,280,281,282,283,284,285,286,287,290,291,292,293,294,295,296,297,304,306,308,380,381,409,410,411,412 2 -349927 cd05678 M20_dipept_like 1 metal binding site [QH]DEEDH 0 1 1 67,122,156,157,183,441 4 -349927 cd05678 M20_dipept_like 2 putative dimer interface 0 0 1 1 199,203,205,209,210,211,212,213,214,216,217,218,219,220,221,222,228,229,230,232,235,236,239,271,289,292,293,298,299,300,301,302,303,304,305,310,311,312,313,314,315,316,317,324,326,328,412,413,440,441,442,443 2 -349928 cd05679 M20_dipept_like 1 metal binding site HDEEDH 0 1 1 79,113,148,149,175,416 4 -349928 cd05679 M20_dipept_like 2 putative dimer interface 0 0 1 1 191,195,197,201,202,203,204,205,206,208,209,210,211,212,213,214,220,221,222,224,227,228,231,273,280,283,284,289,290,291,292,293,294,295,296,300,301,302,303,304,305,306,307,314,316,318,387,388,415,416,417,418 2 -349929 cd05680 M20_dipept_like 1 metal binding site HDEEDH 0 1 1 70,103,137,138,164,411 4 -349929 cd05680 M20_dipept_like 2 putative dimer interface 0 0 1 1 180,184,186,190,191,192,193,194,195,197,198,199,200,201,202,203,209,210,211,213,216,217,220,246,273,276,277,282,283,284,285,286,287,288,289,294,295,296,297,298,299,300,301,308,310,312,381,382,410,411,412,413 2 -349930 cd05681 M20_dipept_Sso-CP2 1 metal binding site HDEEEH 1 1 1 66,99,133,134,159,404 4 -349930 cd05681 M20_dipept_Sso-CP2 2 dimer interface 0 1 1 0 180,186,187,188,189,190,192,193,194,195,196,197,198,199,200,205,206,208,209,211,212,215,255,268,271,272,277,278,279,280,281,282,283,284,285,289,291,292,293,294,295,296,297,303,305,307,332,375 2 -349931 cd05682 M20_dipept_dapE 1 metal binding site HDEEDH 1 1 0 80,113,146,147,174,425 4 -349931 cd05682 M20_dipept_dapE 2 putative dimer interface 0 0 1 1 190,194,196,200,201,202,203,204,205,207,208,209,210,211,212,213,219,220,221,223,226,227,230,269,285,288,289,294,295,296,297,298,299,300,301,306,307,308,309,310,311,312,313,320,322,324,394,395,424,425,426,427 2 -349932 cd05683 M20_peptT_like 1 metal binding site HDEEDH 1 1 0 74,105,138,139,162,343 4 -349932 cd05683 M20_peptT_like 2 dimer interface 0 1 1 0 80,190,191,192,195,196,198,200,202,203,206,209,213,214,215,216,217,222,224,225,226,227,228,229,230,231,238,317,343 2 -240189 cd05684 S1_DHX8_helicase 1 RNA binding site 0 0 1 1 8,16,29,31 3 -240190 cd05685 S1_Tex 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240191 cd05686 S1_pNO40 1 RNA binding site 0 0 1 1 11,19,30,32 3 -240192 cd05687 S1_RPS1_repeat_ec1_hs1 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240193 cd05688 S1_RPS1_repeat_ec3 1 RNA binding site 0 0 1 1 9,17,26,28 3 -240194 cd05689 S1_RPS1_repeat_ec4 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240195 cd05690 S1_RPS1_repeat_ec5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240196 cd05691 S1_RPS1_repeat_ec6 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240197 cd05692 S1_RPS1_repeat_hs4 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240198 cd05693 S1_Rrp5_repeat_hs1_sc1 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240199 cd05694 S1_Rrp5_repeat_hs2_sc2 1 RNA binding site 0 0 1 1 12,20,31,33 3 -240200 cd05695 S1_Rrp5_repeat_hs3 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240201 cd05696 S1_Rrp5_repeat_hs4 1 RNA binding site 0 0 1 1 8,18,28,30 3 -240202 cd05697 S1_Rrp5_repeat_hs5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240203 cd05698 S1_Rrp5_repeat_hs6_sc5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240204 cd05699 S1_Rrp5_repeat_hs7 1 RNA binding site 0 0 1 1 8,16,27,29 3 -240205 cd05700 S1_Rrp5_repeat_hs9 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240206 cd05701 S1_Rrp5_repeat_hs10 1 RNA binding site 0 0 1 1 8,19,28,30 3 -240207 cd05702 S1_Rrp5_repeat_hs11_sc8 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240208 cd05703 S1_Rrp5_repeat_hs12_sc9 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240209 cd05704 S1_Rrp5_repeat_hs13 1 RNA binding site 0 0 1 1 11,20,30,32 3 -240210 cd05705 S1_Rrp5_repeat_hs14 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240211 cd05706 S1_Rrp5_repeat_sc10 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240212 cd05707 S1_Rrp5_repeat_sc11 1 RNA binding site 0 0 0 0 26 3 -240212 cd05707 S1_Rrp5_repeat_sc11 2 RNA binding site 0 0 1 1 8,16,26,28 3 -240213 cd05708 S1_Rrp5_repeat_sc12 1 RNA binding site 0 0 1 1 10,18,29,31 3 -100078 cd05709 S2P-M50 1 active site 0 1 1 1 13,14,17,133,141 1 -100078 cd05709 S2P-M50 2 putative substrate binding region 0 0 1 1 133,134,135,136 5 -240214 cd05710 SIS_1 1 putative active site 0 0 1 0 9,54 1 -143189 cd05712 Ig_Siglec_N 1 ligand binding site 0 1 1 0 97,106,107 5 -319291 cd05713 Ig_MOG_like 1 Fab binding site 0 1 1 1 16,17,36,47,84,86,87,88,89,90,91 2 -319293 cd05715 Ig_P0-like 1 tetramer interface 0 0 1 1 0,2,14,22,24,66,69,84,85 2 -143193 cd05716 Ig_pIgR_like 1 CDR1-dIgA binding residues 0 0 1 1 22,23,24 2 -319294 cd05717 Ig1_Necl_like 1 dimer interface 0 1 1 0 26,29,34,35,37,43,45,81 2 -319295 cd05718 Ig1_PVR_like 1 polypeptide ligand binding site 0 1 1 1 0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,24,31,32,33,34,35,36,37,38,39,40,41,42,43,62,63,64,65,66,67,68,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98 2 -143197 cd05720 Ig_CD8_alpha 1 heterodimer interface 0 1 1 0 35,37,40,50,88,91,95,98 2 -143197 cd05720 Ig_CD8_alpha 2 antibody binding site 0 1 1 0 6,7,9,11,13 2 -143197 cd05720 Ig_CD8_alpha 3 homodimer interface 0 1 1 0 27,35,91,96,97,98 2 -143198 cd05721 IgV_CTLA-4 1 antigen binding site 0 1 1 1 95,96,99,100 2 -143198 cd05721 IgV_CTLA-4 2 homodimer interface 0 1 1 1 12,14,20,67,78 2 -143204 cd05727 Ig2_Contactin-2-like 1 domain-domain interface 0 1 1 1 20,50,53,55 2 -143205 cd05728 Ig4_Contactin-2-like 1 domain-domain interface 0 1 1 1 33,64,66,81 2 -319297 cd05729 Ig2_FGFR_like 1 FGF binding site 0 1 1 1 2,4,6 2 -319297 cd05729 Ig2_FGFR_like 2 ligand binding site 0 1 1 1 3,10,11,12,14 5 -143207 cd05730 Ig3_NCAM-1_like 1 Ig3-Ig interaction interface 0 0 1 1 11,28,29,31,55,58,66,90,92,93 2 -319300 cd05737 Ig_Myomesin_like_C 1 dimerization interface 0 1 1 0 5,6,7,8,9,10,11,12,13,16,17,18,19,21,23 2 -143226 cd05749 Ig2_Axl_Tyro3_like 1 ligand binding site 0 1 1 0 69,70,71,73 5 -143226 cd05749 Ig2_Axl_Tyro3_like 2 dimerization loop 0 1 1 0 66,67,68,69,70,71 0 -319306 cd05751 Ig1_LILR_KIR_like 1 putative ligand binding site 0 0 1 1 34,72,79 5 -143229 cd05752 Ig1_FcgammaR_like 1 pentraxin binding site 0 1 1 1 3,4,22,30,31,32,33 2 -319307 cd05753 Ig2_FcgammaR_like 1 Fc binding site 0 1 1 0 0,23,29,30,44,45 2 -319307 cd05753 Ig2_FcgammaR_like 2 pentraxin binding site 0 1 1 1 13,14,15,24,29,45,68,69 2 -143231 cd05754 Ig_Perlecan_like 1 ligand binding site 0 1 1 0 31,34,71,72,75,76 5 -319308 cd05756 Ig1_IL1R_like 1 antagonist binding site 0 1 1 1 2,4,5,6,7,8,9 2 -319309 cd05757 Ig2_IL1R_like 1 antagonist binding site 0 1 1 1 0,1,2,4,5,6,7,13,18,20,52,90 2 -143243 cd05766 IgC_MHC_II_beta 1 heterodimer interface 0 1 1 1 5,23,24,26,52,53,54,55,56,57,58,59 2 -143243 cd05766 IgC_MHC_II_beta 2 MHC binding domain interface 0 1 1 0 26,54,55,56,58 2 -143244 cd05767 IgC_MHC_II_alpha 1 heterodimer interface 0 1 1 1 4,6,7,8,10,62,64 2 -143244 cd05767 IgC_MHC_II_alpha 2 MHC binding domain interface 0 1 1 0 28,29,30,50,51,52,53,58,59,64 2 -319312 cd05768 IgC_CH3_IgAGD_CH4_IgAEM 1 receptor binding site 0 0 1 0 36,83,89,90,92,93,95 2 -319312 cd05768 IgC_CH3_IgAGD_CH4_IgAEM 2 dimer interface 0 0 1 0 5,20,24,64,68 2 -143246 cd05769 IgC_TCR_beta 1 IgC heterodimer interface 0 1 1 0 5,7,8,10,21,23,25,27,48,49,50,52,53,56,64,66,68,70,71 2 -143246 cd05769 IgC_TCR_beta 2 intrachain IgV domain interface 0 1 0 0 30,31,33,35,90,91 2 -143246 cd05769 IgC_TCR_beta 3 interchain IgV domain interface 0 1 1 0 53,54 2 -143247 cd05770 IgC_beta2m 1 MHC classI alpha interface 0 1 1 0 4,6,7,8,20,22,24,49,50,51,52,56,58,59 2 -143247 cd05770 IgC_beta2m 2 oligomer interface 0 1 1 1 4,8,9,10,17,22,29,30,49,50,51,52,53,55,56,59 2 -319313 cd05771 IgC_Tapasin_R 1 dimer interface 0 0 1 1 41,42,43,44,55,57,59,61,102,103,104,105,107,109,110,135,136,137 2 -319314 cd05772 IgC_SIRP_domain_2 1 homodimer interface 0 1 1 0 26,29,52,53,54,55,56,57,58,59,61,63 2 -319314 cd05772 IgC_SIRP_domain_2 2 SIRP-FabOX117 complex 0 1 1 0 30,32,55,86,90 2 -143250 cd05773 Ig_hNephrin_like 1 dimer interface 0 0 1 1 1,2,3,4,26,28,30,32,64,65,66,67,69,71,72,96,97,98 2 -99820 cd05777 DNA_polB_delta_exo 1 active site 0 0 1 1 12,13,14,15,92,93,96,97,98,169,170,207,211 1 -99820 cd05777 DNA_polB_delta_exo 2 catalytic site 0 0 1 1 12,14,98,207,211 1 -99820 cd05777 DNA_polB_delta_exo 3 substrate binding site 0 0 1 1 13,14,15,92,93,96,97,169,170,207,211 5 -99822 cd05779 DNA_polB_epsilon_exo 1 active site 0 0 1 1 7,8,9,10,94,95,98,99,100,155,156,190,194 1 -99822 cd05779 DNA_polB_epsilon_exo 2 catalytic site 0 0 1 1 7,9,100,190,194 1 -99822 cd05779 DNA_polB_epsilon_exo 3 substrate binding site 0 0 1 1 8,9,10,94,95,98,99,155,156,190,194 5 -99823 cd05780 DNA_polB_Kod1_like_exo 1 active site 0 0 1 1 8,9,10,11,77,78,81,82,83,142,143,179,183 1 -99823 cd05780 DNA_polB_Kod1_like_exo 2 catalytic site 0 1 1 1 8,10,83,179,183 1 -99823 cd05780 DNA_polB_Kod1_like_exo 3 substrate binding site 0 0 1 1 9,10,11,77,78,81,82,142,143,179,183 5 -99824 cd05781 DNA_polB_B3_exo 1 active site 0 0 1 1 8,9,10,11,69,70,73,74,75,132,133,172,176 1 -99824 cd05781 DNA_polB_B3_exo 2 catalytic site 0 0 1 1 8,10,75,172,176 1 -99824 cd05781 DNA_polB_B3_exo 3 substrate binding site 0 0 1 1 9,10,11,69,70,73,74,132,133,172,176 5 -99825 cd05782 DNA_polB_like1_exo 1 active site 0 0 1 1 4,5,6,7,98,99,102,103,104,157,158,193,197 1 -99825 cd05782 DNA_polB_like1_exo 2 catalytic site 0 0 1 1 4,6,104,193,197 1 -99825 cd05782 DNA_polB_like1_exo 3 substrate binding site 0 0 1 1 5,6,7,98,99,102,103,157,158,193,197 5 -99826 cd05783 DNA_polB_B1_exo 1 active site 0 0 1 1 10,11,12,13,92,93,96,97,98,157,158,188,192 1 -99826 cd05783 DNA_polB_B1_exo 2 catalytic site 0 1 1 1 10,12,98,188,192 1 -99826 cd05783 DNA_polB_B1_exo 3 substrate binding site 0 0 1 1 11,12,13,92,93,96,97,157,158,188,192 5 -99827 cd05784 DNA_polB_II_exo 1 active site 0 0 1 1 8,9,10,11,72,73,76,77,78,140,141,179,183 1 -99827 cd05784 DNA_polB_II_exo 2 catalytic site 0 0 1 1 8,10,78,179,183 1 -99827 cd05784 DNA_polB_II_exo 3 substrate binding site 0 0 1 1 9,10,11,72,73,76,77,140,141,179,183 5 -99828 cd05785 DNA_polB_like2_exo 1 active site 0 0 1 1 14,15,16,17,79,80,83,84,85,156,157,193,197 1 -99828 cd05785 DNA_polB_like2_exo 2 catalytic site 0 0 1 1 14,16,85,193,197 1 -99828 cd05785 DNA_polB_like2_exo 3 substrate binding site 0 0 1 1 15,16,17,79,80,83,84,156,157,193,197 5 -240215 cd05789 S1_Rrp4 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240215 cd05789 S1_Rrp4 2 subunit interface 0 1 1 0 0,12,14,28 2 -240216 cd05790 S1_Rrp40 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240216 cd05790 S1_Rrp40 2 subunit interface 0 1 1 0 0,24,28,29,51,52,53 2 -240217 cd05791 S1_CSL4 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240217 cd05791 S1_CSL4 2 subunit interface 0 1 1 0 16,17,18,20,26,57,62 0 -240218 cd05792 S1_eIF1AD_like 1 RNA binding site 0 0 1 1 8,9,13,27,28,29,30,33,38 3 -240219 cd05793 S1_IF1A 1 RNA binding site 0 0 1 1 8,9,13,27,28,29,30,33,38 3 -240220 cd05794 S1_EF-P_repeat_2 1 RNA binding site 0 0 1 1 29,46,51,52 3 -240221 cd05795 Ribosomal_P0_L10e 1 23S rRNA interface 0 1 1 0 2,3,6,49,50,51,52,55 3 -240221 cd05795 Ribosomal_P0_L10e 2 putative Interface with L7/L12 ribosomal proteins 0 0 1 1 88,108,112,131,134,135,138,139,141,142,143,144,162,163,164,167,168,170,171,173 2 -240222 cd05796 Ribosomal_P0_like 1 23S rRNA interface 0 0 1 1 2,3,6,48,49,50,51,54 3 -240222 cd05796 Ribosomal_P0_like 2 putative Interface with L7/L12 ribosomal proteins 0 0 1 1 89,109,113,131,134,135,138,139,141,142,143,144,147,148,149,152,153,155,156,158 2 -240223 cd05797 Ribosomal_L10 1 23S rRNA interface 0 0 1 1 4,5,8,52,53,54,55,58 3 -240223 cd05797 Ribosomal_L10 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 86,109,112,128,131,132,135,136,138,139,140,141,142,143,145,146,147,150,151,153,154,156 2 -100092 cd05799 PGM2 1 active site 0 0 1 1 4,6,9,105,106,107,115,259,261,263,264,313,334,335,336,358,360,362,454,456,457,458,463 1 -100092 cd05799 PGM2 2 metal binding site 0 0 1 1 105,259,261,263 4 -100092 cd05799 PGM2 3 substrate binding site 0 0 1 1 6,105,264,313,334,336,358,360,362,454,456,457,458,463 5 -100093 cd05800 PGM_like2 1 active site 0 0 1 1 3,5,8,99,100,101,109,241,243,245,246,285,306,307,308,325,327,329,429,431,432,433,438 1 -100093 cd05800 PGM_like2 2 metal binding site 0 0 1 1 99,241,243,245 4 -100093 cd05800 PGM_like2 3 substrate binding site 0 0 1 1 5,99,246,285,306,308,325,327,329,429,431,432,433,438 5 -100094 cd05801 PGM_like3 1 active site 0 0 1 1 23,25,28,127,128,129,137,285,287,289,290,332,353,354,355,372,374,376,489,491,492,493,498 1 -100094 cd05801 PGM_like3 2 metal binding site 0 1 1 0 127,285,287,289 4 -100094 cd05801 PGM_like3 3 substrate binding site 0 0 1 1 25,127,290,332,353,355,372,374,376,489,491,492,493,498 5 -100095 cd05802 GlmM 1 active site 0 0 1 1 2,4,7,96,97,98,106,235,237,239,240,280,301,302,303,320,322,324,405,407,408,409,414 1 -100095 cd05802 GlmM 2 metal binding site 0 0 1 1 96,235,237,239 4 -100095 cd05802 GlmM 3 substrate binding site 0 0 1 1 4,96,240,280,301,303,320,322,324,405,407,408,409,414 5 -100096 cd05803 PGM_like4 1 active site 0 0 1 1 2,4,7,96,97,98,106,240,242,244,245,284,305,306,307,324,326,328,416,418,419,420,425 1 -100096 cd05803 PGM_like4 2 metal binding site 0 0 1 1 96,240,242,244 4 -100096 cd05803 PGM_like4 3 substrate binding site 0 0 1 1 4,96,245,284,305,307,324,326,328,416,418,419,420,425 5 -99881 cd05806 CBM20_laforin 1 starch-binding site 1 0 0 1 1 29,70,81,82,86 5 -99881 cd05806 CBM20_laforin 2 starch-binding site 2 0 0 1 1 11,12,13,14,15,16,39,50,52 5 -99882 cd05807 CBM20_CGTase 1 starch-binding site 1 0 1 1 1 31,66,78,79,83 5 -99882 cd05807 CBM20_CGTase 2 starch-binding site 2 0 1 1 1 13,14,15,16,17,18,42,43,48,51 5 -99883 cd05808 CBM20_alpha_amylase 1 starch-binding site 1 0 0 1 1 28,59,71,72,76 5 -99883 cd05808 CBM20_alpha_amylase 2 starch-binding site 2 0 0 1 1 10,11,12,13,14,15,38,42,44 5 -99884 cd05809 CBM20_beta_amylase 1 starch-binding site 1 0 1 1 0 31,64,77,81 5 -99884 cd05809 CBM20_beta_amylase 2 starch-binding site 2 0 0 1 1 13,14,15,16,17,18,42,47,49 5 -99885 cd05810 CBM20_alpha_MTH 1 starch-binding site 1 0 0 1 1 29,60,75,76,80 5 -99885 cd05810 CBM20_alpha_MTH 2 starch-binding site 2 0 0 1 1 11,12,13,14,15,16,39,43,45 5 -99886 cd05811 CBM20_glucoamylase 1 starch-binding site 1 0 1 1 1 27,32,34,35,36,37,81 5 -99886 cd05811 CBM20_glucoamylase 2 starch-binding site 2 0 1 1 1 13,14,15,16,17,18,44,46,47,48,49,52,53 5 -99887 cd05813 CBM20_genethonin_1 1 starch binding site 1 0 0 1 1 29,58,70,71,75 5 -99887 cd05813 CBM20_genethonin_1 2 starch binding site 2 0 0 1 1 11,12,13,14,15,16,39,41,43 5 -99888 cd05814 CBM20_Prei4 1 starch binding site 1 0 0 1 1 29,62,82,83,88 5 -99888 cd05814 CBM20_Prei4 2 starch binding site 2 0 0 1 1 11,12,13,14,15,16,39,45,47 5 -99889 cd05815 CBM20_DPE2_repeat1 1 starch binding site 1 0 0 1 1 27,61,74,75,79 5 -99889 cd05815 CBM20_DPE2_repeat1 2 starch binding site 2 0 0 1 1 9,10,11,12,13,14,37,44,46 5 -99890 cd05816 CBM20_DPE2_repeat2 1 starch binding site 1 0 0 1 1 28,60,73,74,78 5 -99890 cd05816 CBM20_DPE2_repeat2 2 starch binding site 2 0 0 1 1 10,11,12,13,14,15,38,42,44 5 -99891 cd05817 CBM20_DSP 1 starch binding site 1 0 0 1 1 27,58,72,73,77 5 -99891 cd05817 CBM20_DSP 2 starch binding site 2 0 0 1 1 9,10,11,12,13,14,37,41,43 5 -99892 cd05818 CBM20_water_dikinase 1 starch binding site 1 0 0 1 1 29,57,69,70,74 5 -99892 cd05818 CBM20_water_dikinase 2 starch binding site 2 0 0 1 1 11,12,13,14,15,16,37,40,42 5 -271320 cd05819 NHL 1 NHL repeat 0 0 0 0 9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,44,45,46,47,48 7 -271320 cd05819 NHL 2 NHL repeat 0 0 0 0 56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,85,88,89,90,91,92,93,94,95 7 -271320 cd05819 NHL 3 NHL repeat 0 0 0 0 103,104,105,106,107,108,109,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139 7 -271320 cd05819 NHL 4 NHL repeat 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,168,169,170,171,172,173,174,175,176,181,182,183,184,185,186,187 7 -271320 cd05819 NHL 5 NHL repeat 0 0 0 0 196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,217,218,219,220,221,230,231,232,233 7 -271320 cd05819 NHL 6 NHL repeat 0 0 0 1 242,243,244,245,246,247,248,249,250,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268 7 -99893 cd05820 CBM20_novamyl 1 starch binding site 1 0 1 1 1 32,66,78,79,83 5 -99893 cd05820 CBM20_novamyl 2 starch binding site 2 0 0 1 1 14,15,16,17,18,19,45,49,51 5 -100113 cd05821 TLP_Transthyretin 1 active site 0 1 1 1 11,13,50,102,104,106,113,115 1 -100113 cd05821 TLP_Transthyretin 2 homotetramer interface 0 1 1 0 15,16,17,18,83,84,85,88,90,91,92,108,110,111,112,113,114,115,116,117,118 2 -100114 cd05822 TLP_HIUase 1 active site 0 1 1 1 5,7,43,95,97,99,108 1 -100114 cd05822 TLP_HIUase 2 homotetramer interface 0 1 1 0 9,10,11,12,77,78,80,84,85,86,101,103,104,105,106,107,108,109 2 -100063 cd05825 LbH_wcaF_like 1 putative active site 0 0 1 1 10,12,42,44,63,65,66,71,83,84,89,90,99,100,102 1 -100063 cd05825 LbH_wcaF_like 2 putative CoA binding site 0 0 1 1 42,44,63,65,66,71,81,83,84,89,90,97,99,100,102,106 5 -100063 cd05825 LbH_wcaF_like 3 putative substrate binding site 0 0 1 1 10,12,42 5 -100063 cd05825 LbH_wcaF_like 4 putative trimer interface 0 0 1 1 8,10,18,28,30,36,42,43,44,61,63,66,85,101 2 -320675 cd05826 Sortase_B 1 catalytic site 0 0 1 1 61,154,162 1 -320675 cd05826 Sortase_B 2 putative active site 0 0 1 1 44,45,57,59,150,152,160,162 1 -320675 cd05826 Sortase_B 3 ligand binding site 0 1 1 0 23,24,45,59,152,153,154,162 5 -320676 cd05827 Sortase_C 1 catalytic site 0 0 1 1 52,114,123 1 -320676 cd05827 Sortase_C 2 putative active site 0 0 1 1 22,33,34,48,50,100,103,110,112,123 1 -320677 cd05828 Sortase_D_1 1 catalytic site 0 0 1 1 50,107,119 1 -320677 cd05828 Sortase_D_1 2 putative active site 0 0 1 1 22,33,34,46,48,103,105,116,119 1 -320678 cd05829 Sortase_F 1 putative catalytic site 0 0 1 1 57,123,137 1 -320679 cd05830 Sortase_E 1 putative catalytic site 0 0 1 1 51,119,128 1 -99895 cd05834 HDGF_related 1 putative chromatin binding site 0 0 1 1 12,15,18,39,42,44 0 -99896 cd05835 Dnmt3b_related 1 putative chromatin binding site 0 0 1 1 10,13,16,40,43,45 0 -99897 cd05836 N_Pac_NP60 1 putative chromatin binding site 0 0 1 1 10,13,16,41,44,46 0 -99898 cd05837 MSH6_like 1 putative chromatin binding site 0 0 1 1 12,15,18,48,52,54 0 -99899 cd05838 WHSC1_related 1 putative chromatin binding site 0 0 1 1 10,13,16,44,47,49 0 -99900 cd05839 BR140_related 1 putative chromatin binding site 0 0 1 1 10,13,16,59,63,65 0 -99901 cd05840 SPBC215_ISWI_like 1 putative chromatin binding site 0 0 1 1 10,13,16,46,49,51 0 -99902 cd05841 BS69_related 1 putative chromatin binding site 0 0 1 1 16,19,22,38,42,44 0 -320682 cd05843 Peptidase_M48_M56 1 Zn binding site 0 1 1 0 60,64,69 4 -320682 cd05843 Peptidase_M48_M56 2 putative active site 0 1 1 1 60,61,64,69,73 1 -340860 cd05844 GT4-like 1 putative ADP-binding pocket 0 0 1 1 26,194,195,196,255,283 5 -143255 cd05847 IgC_CH2_IgE 1 IgC dimer interface 0 1 1 1 1,2,3,4,17,91,92,93 2 -143256 cd05848 Ig1_Contactin-5 1 interdomain interface 0 0 1 1 0,1,82,83,84,85 2 -143257 cd05849 Ig1_Contactin-1 1 interdomain interface 0 0 1 1 0,1,81,82,83,84 2 -143258 cd05850 Ig1_Contactin-2 1 interdomain interface 0 1 1 1 0,1,82,83,84,85 2 -143259 cd05851 Ig3_Contactin-1 1 interdomain interface 0 0 1 1 21,23,24,25,26,27,29 2 -143259 cd05851 Ig3_Contactin-1 2 dimerization loop 0 0 1 1 38,39,40,41,42,43,44,45 0 -143263 cd05855 Ig_TrkB_d5 1 receptor binding site 0 1 1 0 34,48,49,52 2 -143263 cd05855 Ig_TrkB_d5 2 interdomain interaction 0 0 1 1 9 2 -143264 cd05856 Ig2_FGFRL1-like 1 FGF binding site 0 0 1 1 2,4,6 2 -143264 cd05856 Ig2_FGFRL1-like 2 ligand binding site 0 0 1 1 3,10,11,12,14 5 -143265 cd05857 Ig2_FGFR 1 FGF binding site 0 1 1 1 2,4,6 2 -143265 cd05857 Ig2_FGFR 2 ligand binding site 0 1 1 1 3,10,11,12,14 5 -143266 cd05858 Ig3_FGFR-2 1 polypeptide ligand binding site 0 1 1 1 9,14,15,16,45,46,50,54,75 2 -319318 cd05860 Ig4_SCFR 1 dimerization interface 0 1 1 0 69,70,71,72,75 2 -143273 cd05865 Ig1_NCAM-1 1 dimer interface 0 1 1 1 15,17,18 2 -143274 cd05866 Ig1_NCAM-2 1 dimer interface 0 0 1 1 15,17,18 2 -143279 cd05871 Ig_Semaphorin_classIII 1 dimer interface 0 0 1 1 12,57 2 -143280 cd05872 Ig_Sema4B_like 1 dimer interface 0 0 1 1 12,51 2 -143281 cd05873 Ig_Sema4D_like 1 dimer interface 0 1 1 1 12,52 2 -143287 cd05879 Ig_P0 1 tetramer interface 0 0 1 1 0,2,14,22,24,66,69,84,85 2 -143289 cd05881 Ig1_Necl-2 1 putative dimer interface 0 0 1 1 26,29,34,35,37,43,45,81 2 -143290 cd05882 Ig1_Necl-1 1 dimer interface 0 1 1 0 26,29,34,35,37,43,45,81 2 -143294 cd05886 Ig1_Nectin-1_like 1 polypeptide ligand binding site 0 0 1 1 0,1,2,3,4,5,6,7,17,18,19,20,21,22,23,24,25,32,33,34,35,36,37,38,39,40,41,42,43,44,62,63,64,65,66,67,68,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98 2 -143295 cd05887 Ig1_Nectin-3_like 1 ligand binding site 0 0 1 1 0,1,2,3,4,5,6,7,14,15,16,17,18,19,20,21,22,29,30,31,32,33,34,35,36,37,38,39,40,41,59,60,61,62,63,64,65,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,87,88,89,90,91,92,93,94,95 5 -143296 cd05888 Ig1_Nectin-4_like 1 ligand binding site 0 0 1 1 0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,24,32,33,34,35,36,37,38,39,40,41,42,43,44,63,64,65,66,67,68,69,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,91,92,93,94,95,96,97,98,99 5 -143297 cd05889 Ig1_DNAM-1_like 1 ligand binding site 0 0 1 1 0,1,2,3,4,5,6,7,14,15,16,17,18,19,20,21,22,29,30,31,32,33,34,35,36,37,38,39,40,41,59,60,61,62,63,64,65,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,87,88,89,90,91,92,93,94,95 5 -143304 cd05896 Ig1_IL1RAPL-1_like 1 putative antagonist binding site 0 0 1 1 2,4,5,6,7,8,9 2 -143305 cd05897 Ig2_IL1R2_like 1 putative antagonist binding site 0 0 1 1 13,18,20,55 2 -143307 cd05899 IgV_TCR_beta 1 IgV heterodimer interface 0 1 1 1 31,33,41,44,86,88,101,102,103 2 -143307 cd05899 IgV_TCR_beta 2 antigen/MHC binding site 0 1 1 1 46,47,93 2 -143307 cd05899 IgV_TCR_beta 3 intrachain IgC domain interface 0 1 1 0 7,8,9,10,11,106,108,109 2 -143307 cd05899 IgV_TCR_beta 4 L1 hypervariable region 0 0 1 1 21,22,25,26 0 -143307 cd05899 IgV_TCR_beta 5 L2 hypervariable region 0 0 1 1 65,66,70 0 -143307 cd05899 IgV_TCR_beta 6 L3 hypervariable region 0 0 1 1 92,93,98,99 0 -341229 cd05903 CHC_CoA_lg 1 putative active site 0 0 1 1 100,140,141,188,190,191,194,215,216,237,238,239,240,241,242,321,333,336,344,345,346,347,409 1 -341229 cd05903 CHC_CoA_lg 2 putative AMP binding site 0 0 1 1 100,215,216,237,238,239,240,241,242,321,333,336,347,428 5 -341229 cd05903 CHC_CoA_lg 3 putative CoA binding site 0 0 1 1 140,190,191,194,215,344,345,346,402,409 5 -341229 cd05903 CHC_CoA_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341230 cd05904 4CL 1 active site 0 1 1 1 207,212,213,217,257,258,261,280,282,283,284,285,305,306,307,308,309,310,314,315,392,404,407,409,413,415,416,417,418,473,479 1 -341230 cd05904 4CL 2 AMP binding site 0 1 1 0 211,283,284,285,306,307,308,309,310,392,404,407,409,411,413,418 5 -341230 cd05904 4CL 3 putative CoA binding site 0 0 1 1 207,257,258,261,282,415,416,417,473,479 5 -341230 cd05904 4CL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 162,165,166,167,168,169,170,172,173 0 -341231 cd05905 Dip2 1 putative active site 0 0 1 0 156,197,198,248,250,251,254,282,283,300,301,302,303,304,305,434,456,459,467,468,469,470,531 1 -341231 cd05905 Dip2 2 putative AMP binding site 0 0 1 1 156,282,283,337,338,339,340,341,342,434,456,459,470,550 5 -341231 cd05905 Dip2 3 putative CoA binding site 0 0 1 1 197,250,251,254,282,467,468,469,518,531 5 -341231 cd05905 Dip2 4 putative acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341232 cd05906 A_NRPS_TubE_like 1 putative AMP binding site 0 0 1 1 174,296,297,324,325,326,327,328,329,414,425,428,439,526 5 -341232 cd05906 A_NRPS_TubE_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 171,174,175,176,177,178,179,181,182 0 -341233 cd05907 VL_LC_FACS_like 1 putative active site 0 0 1 1 94,134,135,180,182,183,186,207,208,239,240,241,242,243,244,312,324,327,336,337,338,339,420 1 -341233 cd05907 VL_LC_FACS_like 2 putative AMP binding site 0 0 1 1 94,207,208,239,240,241,242,243,244,312,324,327,339,443 5 -341233 cd05907 VL_LC_FACS_like 3 putative CoA binding site 0 0 1 1 134,182,183,186,207,336,337,338,407,420 5 -341233 cd05907 VL_LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 91,94,95,96,97,98,99,101,102 0 -341234 cd05908 A_NRPS_MycA_like 1 putative AMP binding site 0 0 1 1 113,235,236,263,264,265,266,267,268,374,385,388,399,483 5 -341234 cd05908 A_NRPS_MycA_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341235 cd05909 AAS_C 1 putative AMP binding site 0 0 1 1 154,268,269,290,291,292,293,294,295,374,386,389,400,479 5 -341235 cd05909 AAS_C 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 151,154,155,156,157,158,159,161,162 0 -341236 cd05910 FACL_like_1 1 putative active site 0 0 1 1 92,132,133,179,181,182,185,206,207,230,231,232,233,234,235,336,348,351,359,360,361,362,425 1 -341236 cd05910 FACL_like_1 2 putative AMP binding site 0 0 1 1 92,206,207,230,231,232,233,234,235,336,348,351,362,446 5 -341236 cd05910 FACL_like_1 3 putative CoA binding site 0 0 1 1 132,181,182,185,206,359,360,361,420,425 5 -341236 cd05910 FACL_like_1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 89,92,93,94,95,96,97,99,100 0 -341237 cd05911 Firefly_Luc_like 1 AMP binding site 0 1 1 1 199,270,271,272,293,294,295,296,297,376,388,391,393,395,397,402 5 -341237 cd05911 Firefly_Luc_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 150,153,154,155,156,157,158,160,161 0 -341238 cd05912 OSB_CoA_lg 1 putative active site 0 0 1 1 84,124,125,171,173,174,177,196,197,217,218,219,220,221,222,298,310,313,321,322,323,324,383 1 -341238 cd05912 OSB_CoA_lg 2 putative AMP binding site 0 0 1 1 84,196,197,217,218,219,220,221,222,298,310,313,324,402 5 -341238 cd05912 OSB_CoA_lg 3 putative CoA binding site 0 0 1 1 124,173,174,177,196,321,322,323,377,383 5 -341238 cd05912 OSB_CoA_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 81,84,85,86,87,88,89,91,92 0 -341239 cd05913 PaaK 1 active site 0 0 1 1 60,85,86,87,88,89,127,128,129,133,155,156,157,158,174,176,179,182,205,206,207,208,227,228,229,230,231,232,233,296,317,320,326,328,329,330,331,361,396,397,398,415 1 -341239 cd05913 PaaK 2 AMP binding site 0 1 1 0 60,85,86,87,88,89,133,205,206,207,208,227,228,229,230,231,232,233,296,317,320,415 5 -341239 cd05913 PaaK 3 CoA binding site 0 0 0 0 127,128,129,133,155,156,157,158,174,176,179,182,206,328,330,396,397,398 5 -341239 cd05913 PaaK 4 homodimer interface 0 1 1 0 67,68,69,79,80,81,82,83,94,123,130,131,132,137,140,141,144,148,149,150,152,153,164,167,168 2 -341239 cd05913 PaaK 5 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 82,85,86,87,88,89,90,92,93 0 -341240 cd05914 LC_FACL_like 1 putative active site 0 0 1 1 96,136,137,201,203,204,207,241,242,262,263,264,265,266,267,341,353,356,365,366,367,368,436 1 -341240 cd05914 LC_FACL_like 2 putative AMP binding site 0 0 1 1 96,241,242,262,263,264,265,266,267,341,353,356,368,456 5 -341240 cd05914 LC_FACL_like 3 putative CoA binding site 0 0 1 1 136,203,204,207,241,365,366,367,427,436 5 -341240 cd05914 LC_FACL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -213283 cd05915 ttLC_FACS_like 1 AMP binding site 0 1 1 0 160,278,279,280,298,299,300,301,302,303,394,409,411,415,420 5 -213283 cd05915 ttLC_FACS_like 2 putative active site 0 0 1 1 160,202,203,250,252,253,256,277,278,298,299,300,301,302,303,394,406,409,417,418,419,420,481 1 -213283 cd05915 ttLC_FACS_like 3 putative CoA binding site 0 0 1 1 202,252,253,256,277,417,418,419,474,481 5 -213283 cd05915 ttLC_FACS_like 4 dimer interface 0 1 1 0 1,2,6,7,10,50,74,151,152,154,157,170,171,172,173,175,176,179,182,218,219,306,336,337,338,341,364,365,366,367,368,369,370,371,372,373,374,388,390,402 2 -213283 cd05915 ttLC_FACS_like 5 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 157,160,161,162,163,164,165,167,168 0 -341241 cd05917 FACL_like_2 1 putative active site 0 0 1 1 9,49,50,98,100,101,104,125,126,148,149,150,151,152,153,235,247,250,258,259,260,261,322 1 -341241 cd05917 FACL_like_2 2 putative AMP binding site 0 0 1 1 9,125,126,148,149,150,151,152,153,235,247,250,261,341 5 -341241 cd05917 FACL_like_2 3 putative CoA binding site 0 0 1 1 49,100,101,104,125,258,259,260,316,322 5 -341241 cd05917 FACL_like_2 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 6,9,10,11,12,13,14,16,17 0 -341242 cd05918 A_NRPS_SidN3_like 1 AMP binding site 0 0 1 1 113,114,223,224,242,243,244,245,246,247,267,340,352,355,466 5 -341242 cd05918 A_NRPS_SidN3_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341243 cd05919 BCL_like 1 chemical substrate binding site 0 1 1 0 143,144,145,215,216,240,241,242,246,247,428 5 -341243 cd05919 BCL_like 2 dimer interface 0 1 1 0 30,32,34,35,81,90,91,292,293,295,300,301,302,303,307,311,312,313 2 -341243 cd05919 BCL_like 3 putative active site 0 0 1 1 98,139,140,143,144,145,188,190,191,194,215,216,237,238,239,240,241,242,246,247,319,331,334,342,343,344,345,409,428 1 -341243 cd05919 BCL_like 4 putative CoA binding site 0 0 1 1 139,190,191,194,215,342,343,344,403,409 5 -341243 cd05919 BCL_like 5 putative AMP binding site 0 0 1 1 98,215,216,237,238,239,240,241,242,319,331,334,345,428 5 -341243 cd05919 BCL_like 6 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 95,98,99,100,101,102,103,105,106 0 -341244 cd05920 23DHB-AMP_lg 1 AMP binding site 0 1 1 0 146,147,148,263,264,285,286,287,288,367,369,381,384,475 5 -341244 cd05920 23DHB-AMP_lg 2 substrate binding site 0 1 1 1 190,191,192,196,263,285,287,288,289,293,475 5 -341244 cd05920 23DHB-AMP_lg 3 active site 0 1 1 0 146,147,148,190,191,192,196,263,264,265,285,286,287,288,289,293,367,369,381,384,475 1 -341244 cd05920 23DHB-AMP_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 143,146,147,148,149,150,151,153,154 0 -341245 cd05921 FCS 1 putative active site 0 0 1 1 172,214,215,266,268,269,272,297,298,325,326,327,328,329,330,401,417,420,431,432,433,434,522 1 -341245 cd05921 FCS 2 putative AMP binding site 0 0 1 1 172,297,298,325,326,327,328,329,330,401,417,420,434,551 5 -341245 cd05921 FCS 3 putative CoA binding site 0 0 1 1 214,268,269,272,297,431,432,433,503,522 5 -341245 cd05921 FCS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 169,172,173,174,175,176,177,179,180 0 -341246 cd05922 FACL_like_6 1 putative active site 0 0 1 1 124,164,165,212,214,215,218,238,239,261,262,263,264,265,266,346,358,361,369,370,371,372,430 1 -341246 cd05922 FACL_like_6 2 putative AMP binding site 0 0 1 1 124,238,239,261,262,263,264,265,266,346,358,361,372,449 5 -341246 cd05922 FACL_like_6 3 putative CoA binding site 0 0 1 1 164,214,215,218,238,369,370,371,424,430 5 -341246 cd05922 FACL_like_6 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 121,124,125,126,127,128,129,131,132 0 -341247 cd05923 CBAL 1 active site 0 1 1 0 85,157,180,199,200,203,204,205,227,247,249,250,274,275,276,277,296,297,298,299,300,301,302,304,305,318,378,380,395,401,402,403,404,405,406,435,467,469,471 1 -341247 cd05923 CBAL 2 AMP binding site 0 1 1 0 157,275,276,277,296,297,298,299,300,301,302,318,378,380,395,401,406 5 -341247 cd05923 CBAL 3 substrate binding site 0 1 1 0 180,203,204,205,274,297,299,300,304,305 5 -341247 cd05923 CBAL 4 CoA binding site 0 1 1 0 85,180,199,200,203,204,205,227,247,249,250,274,275,297,299,300,301,304,305,402,403,404,405,435,467,469,471 5 -341247 cd05923 CBAL 5 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 154,157,158,159,160,161,162,164,165 0 -341248 cd05924 FACL_like_5 1 putative active site 0 0 1 1 10,64,65,112,114,115,118,141,142,164,165,166,167,168,169,250,262,265,273,274,275,276,337 1 -341248 cd05924 FACL_like_5 2 putative AMP binding site 0 0 1 1 10,141,142,164,165,166,167,168,169,250,262,265,276,356 5 -341248 cd05924 FACL_like_5 3 putative CoA binding site 0 0 1 1 64,114,115,118,141,273,274,275,331,337 5 -341248 cd05924 FACL_like_5 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 7,10,11,12,13,14,15,17,18 0 -341249 cd05926 FACL_fum10p_like 1 putative active site 0 0 1 1 156,196,197,244,246,247,250,272,273,294,295,296,297,298,299,378,390,393,401,402,403,404,465 1 -341249 cd05926 FACL_fum10p_like 2 putative AMP binding site 0 0 1 1 156,272,273,294,295,296,297,298,299,378,390,393,404,484 5 -341249 cd05926 FACL_fum10p_like 3 putative CoA binding site 0 0 1 1 196,246,247,250,272,401,402,403,459,465 5 -341249 cd05926 FACL_fum10p_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341250 cd05927 LC-FACS_euk 1 putative active site 0 0 1 1 121,165,166,211,213,214,217,240,241,303,304,305,306,307,308,389,401,404,413,414,415,416,500 1 -341250 cd05927 LC-FACS_euk 2 putative AMP binding site 0 0 1 1 121,240,241,303,304,305,306,307,308,389,401,404,416,523 5 -341250 cd05927 LC-FACS_euk 3 putative CoA binding site 0 0 1 1 165,213,214,217,240,413,414,415,498,500 5 -341250 cd05927 LC-FACS_euk 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 118,121,122,123,124,125,126,128,129 0 -341251 cd05928 MACS_euk 1 active site 0 1 1 0 99,226,227,228,252,272,274,278,298,299,300,301,320,321,322,323,324,325,328,329,344,407,419,422,428,430,431,432,433,462,493,498,499,501,503 1 -341251 cd05928 MACS_euk 2 AMP binding site 0 1 1 0 298,299,300,301,320,321,322,323,324,325,344,407,419,422,428,433 5 -341251 cd05928 MACS_euk 3 putative CoA binding site 0 0 1 1 222,274,275,278,298,430,431,432,493,499 5 -341251 cd05928 MACS_euk 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 178,181,182,183,184,185,186,188,189 0 -341252 cd05929 BACL_like 1 putative active site 0 0 1 1 132,175,176,222,224,225,228,251,252,273,274,275,276,277,278,355,367,370,378,379,380,381,445 1 -341252 cd05929 BACL_like 2 putative AMP binding site 0 0 1 1 132,251,252,273,274,275,276,277,278,355,367,370,381,464 5 -341252 cd05929 BACL_like 3 putative CoA binding site 0 0 1 1 175,224,225,228,251,378,379,380,439,445 5 -341252 cd05929 BACL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 129,132,133,134,135,136,137,139,140 0 -341253 cd05930 A_NRPS 1 AMP binding site 0 1 1 0 100,101,216,217,238,239,240,241,242,243,266,331,343,346,437 5 -341253 cd05930 A_NRPS 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341254 cd05931 FAAL 1 active site 0 1 1 0 180,200,201,202,276,279,280,281,282,307,308,309,310,311,316,356,422,433,436 1 -341254 cd05931 FAAL 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341255 cd05932 LC_FACS_bac 1 putative active site 0 0 1 1 144,184,185,230,232,233,236,256,257,303,304,305,306,307,308,376,388,391,400,401,402,403,472 1 -341255 cd05932 LC_FACS_bac 2 putative AMP binding site 0 0 1 1 144,256,257,303,304,305,306,307,308,376,388,391,403,497 5 -341255 cd05932 LC_FACS_bac 3 putative CoA binding site 0 0 1 1 184,232,233,236,256,400,401,402,459,472 5 -341255 cd05932 LC_FACS_bac 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 141,144,145,146,147,148,149,151,152 0 -341256 cd05933 ACSBG_like 1 putative active site 0 0 1 1 157,201,202,250,252,253,256,279,280,348,349,350,351,352,353,426,438,441,450,451,452,453,552 1 -341256 cd05933 ACSBG_like 2 putative AMP binding site 0 0 1 1 157,279,280,348,349,350,351,352,353,426,438,441,453,575 5 -341256 cd05933 ACSBG_like 3 putative CoA binding site 0 0 1 1 201,252,253,256,279,450,451,452,546,552 5 -341256 cd05933 ACSBG_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 154,157,158,159,160,161,162,164,165 0 -341257 cd05934 FACL_DitJ_like 1 putative active site 0 0 1 1 88,128,129,178,180,181,184,203,204,223,224,225,226,227,228,308,320,323,331,332,333,334,395 1 -341257 cd05934 FACL_DitJ_like 2 putative AMP binding site 0 0 1 1 88,203,204,223,224,225,226,227,228,308,320,323,334,414 5 -341257 cd05934 FACL_DitJ_like 3 putative CoA binding site 0 0 1 1 128,180,181,184,203,331,332,333,389,395 5 -341257 cd05934 FACL_DitJ_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341258 cd05935 LC_FACS_like 1 putative active site 0 0 1 1 91,131,132,179,181,182,185,206,207,228,229,230,231,232,233,315,327,330,338,339,340,341,407 1 -341258 cd05935 LC_FACS_like 2 putative AMP binding site 0 0 1 1 91,206,207,228,229,230,231,232,233,315,327,330,341,423 5 -341258 cd05935 LC_FACS_like 3 putative CoA binding site 0 0 1 1 131,181,182,185,206,338,339,340,398,407 5 -341258 cd05935 LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 88,91,92,93,94,95,96,98,99 0 -341259 cd05936 FC-FACS_FadD_like 1 putative active site 0 0 1 1 132,174,175,222,224,225,228,249,250,271,272,273,274,275,276,354,366,369,377,378,379,380,441 1 -341259 cd05936 FC-FACS_FadD_like 2 putative AMP binding site 0 0 1 1 132,249,250,271,272,273,274,275,276,354,366,369,380,460 5 -341259 cd05936 FC-FACS_FadD_like 3 putative CoA binding site 0 0 1 1 174,224,225,228,249,377,378,379,435,441 5 -341259 cd05936 FC-FACS_FadD_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 129,132,133,134,135,136,137,139,140 0 -341260 cd05937 FATP_chFAT1_like 1 putative active site 0 0 1 1 94,134,135,191,193,194,197,209,210,230,231,232,233,234,235,343,355,358,366,367,368,369,435 1 -341260 cd05937 FATP_chFAT1_like 2 putative AMP binding site 0 0 1 1 94,209,210,230,231,232,233,234,235,343,355,358,369,454 5 -341260 cd05937 FATP_chFAT1_like 3 putative CoA binding site 0 0 1 1 134,193,194,197,209,366,367,368,426,435 5 -341260 cd05937 FATP_chFAT1_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 91,94,95,96,97,98,99,101,102 0 -341261 cd05938 hsFATP2a_ACSVL_like 1 putative active site 0 0 1 1 151,190,191,247,249,250,253,265,266,286,287,288,289,290,291,391,403,406,414,415,416,417,479 1 -341261 cd05938 hsFATP2a_ACSVL_like 2 putative AMP binding site 0 0 1 1 151,265,266,286,287,288,289,290,291,391,403,406,417,498 5 -341261 cd05938 hsFATP2a_ACSVL_like 3 putative CoA binding site 0 0 1 1 190,249,250,253,265,414,415,416,470,479 5 -341261 cd05938 hsFATP2a_ACSVL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 148,151,152,153,154,155,156,158,159 0 -341262 cd05939 hsFATP4_like 1 putative active site 0 0 1 1 111,151,152,208,210,211,214,226,227,247,248,249,250,251,252,354,366,369,377,378,379,380,441 1 -341262 cd05939 hsFATP4_like 2 putative AMP binding site 0 0 1 1 111,226,227,247,248,249,250,251,252,354,366,369,380,460 5 -341262 cd05939 hsFATP4_like 3 putative CoA binding site 0 0 1 1 151,210,211,214,226,377,378,379,432,441 5 -341262 cd05939 hsFATP4_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 108,111,112,113,114,115,116,118,119 0 -341263 cd05940 FATP_FACS 1 putative active site 0 0 1 1 88,128,129,185,187,188,191,203,204,224,225,226,227,228,229,328,340,343,351,352,353,354,416 1 -341263 cd05940 FATP_FACS 2 putative AMP binding site 0 0 1 1 88,203,204,224,225,226,227,228,229,328,340,343,354,435 5 -341263 cd05940 FATP_FACS 3 putative CoA binding site 0 0 1 1 128,187,188,191,203,351,352,353,407,416 5 -341263 cd05940 FATP_FACS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341264 cd05941 MCS 1 active site 0 1 1 0 96,136,137,140,141,142,184,186,190,220,221,222,241,242,243,244,245,246,250,265,325,337,345,347,349,352,381,418 1 -341264 cd05941 MCS 2 AMP binding site 0 1 1 0 96,220,221,222,241,242,243,244,245,246,265,325,337,345,347,352 5 -341264 cd05941 MCS 3 CoA binding site 0 1 1 0 136,137,140,141,142,184,186,190,220,242,244,245,246,250,347,349,350,351,381,418 5 -341264 cd05941 MCS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -341265 cd05943 AACS 1 putative active site 0 0 1 1 256,297,298,344,346,347,350,376,377,400,401,402,403,404,405,489,501,504,512,513,514,515,579 1 -341265 cd05943 AACS 2 putative AMP binding site 0 0 1 1 256,376,377,400,401,402,403,404,405,489,501,504,515,598 5 -341265 cd05943 AACS 3 putative CoA binding site 0 0 1 1 297,346,347,350,376,512,513,514,573,579 5 -341265 cd05943 AACS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 253,256,257,258,259,260,261,263,264 0 -341266 cd05944 FACL_like_4 1 putative active site 0 0 1 1 9,49,50,103,105,106,109,128,129,150,151,152,153,154,155,238,250,253,261,262,263,264,326 1 -341266 cd05944 FACL_like_4 2 putative AMP binding site 0 0 1 1 9,128,129,150,151,152,153,154,155,238,250,253,264,345 5 -341266 cd05944 FACL_like_4 3 putative CoA binding site 0 0 1 1 49,105,106,109,128,261,262,263,319,326 5 -341266 cd05944 FACL_like_4 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 6,9,10,11,12,13,14,16,17 0 -341267 cd05945 DltA 1 AMP binding site 0 1 1 0 104,105,222,223,244,245,246,247,248,249,273,335,347,350,442 5 -341267 cd05945 DltA 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 101,104,105,106,107,108,109,111,112 0 -341268 cd05958 ABCL 1 putative active site 0 0 1 1 104,145,146,149,150,151,193,195,196,199,220,221,242,243,244,245,246,247,251,252,322,334,337,345,346,347,348,412,431 1 -341268 cd05958 ABCL 2 putative chemical substrate binding site 0 0 1 1 149,150,151,220,221,245,246,247,251,252,431 5 -341268 cd05958 ABCL 3 putative CoA binding site 0 0 1 1 145,195,196,199,220,345,346,347,406,412 5 -341268 cd05958 ABCL 4 putative AMP binding site 0 1 1 0 104,220,221,242,243,244,245,246,247,322,334,337,348,431 5 -341268 cd05958 ABCL 5 putative dimer interface 0 0 1 1 30,33,35,36,83,96,97,297,298,300,302,303,304,305,309,314,315,316 2 -341268 cd05958 ABCL 6 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 101,104,105,106,107,108,109,111,112 0 -341269 cd05959 BCL_4HBCL 1 chemical substrate binding site 0 1 1 0 215,216,217,287,288,312,313,314,318,319,500 5 -341269 cd05959 BCL_4HBCL 2 dimer interface 0 1 1 0 49,51,53,54,100,158,162,163,364,365,367,368,369,372,373,374,375,379,382,383,384,385 2 -341269 cd05959 BCL_4HBCL 3 putative active site 0 0 1 1 170,211,212,215,216,217,260,262,263,266,287,288,309,310,311,312,313,314,318,319,391,403,406,414,415,416,417,481,500 1 -341269 cd05959 BCL_4HBCL 4 putative CoA binding site 0 0 1 1 211,262,263,266,287,414,415,416,475,481 5 -341269 cd05959 BCL_4HBCL 5 putative AMP binding site 0 0 1 0 170,287,288,309,310,311,312,313,314,391,403,406,417,500 5 -341269 cd05959 BCL_4HBCL 6 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 167,170,171,172,173,174,175,177,178 0 -341270 cd05966 ACS 1 active site 0 1 1 0 139,140,141,167,170,172,279,284,285,307,308,309,333,334,337,360,361,362,363,385,386,387,388,389,390,474,486,489,497,498,499,500,558,563,564 1 -341270 cd05966 ACS 2 AMP binding site 0 1 1 0 284,285,360,361,362,363,385,386,387,388,389,390,474,486,489,500 5 -341270 cd05966 ACS 3 CoA binding site 0 1 1 0 139,140,141,167,170,172,279,285,307,308,309,333,334,337,497,498,499,558,563 5 -341270 cd05966 ACS 4 acetate binding site 0 1 1 0 284,285,360,361,388 5 -341270 cd05966 ACS 5 acyl-activating enzyme (AAE) consensus motif 0 1 1 1 235,238,239,240,241,242,243,245,246 0 -341271 cd05967 PrpE 1 putative active site 0 0 1 1 237,278,279,331,333,334,337,362,363,384,385,386,387,388,389,476,488,491,499,500,501,502,567 1 -341271 cd05967 PrpE 2 putative AMP binding site 0 0 1 1 237,362,363,384,385,386,387,388,389,476,488,491,502,586 5 -341271 cd05967 PrpE 3 putative CoA binding site 0 0 1 1 278,333,334,337,362,499,500,501,561,567 5 -341271 cd05967 PrpE 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 234,237,238,239,240,241,242,244,245 0 -341272 cd05968 AACS_like 1 putative active site 0 0 1 1 243,284,285,335,337,338,341,364,365,389,390,391,392,393,394,476,488,491,499,500,501,502,566 1 -341272 cd05968 AACS_like 2 putative AMP binding site 0 0 1 1 243,364,365,389,390,391,392,393,394,476,488,491,502,585 5 -341272 cd05968 AACS_like 3 putative CoA binding site 0 0 1 1 284,337,338,341,364,499,500,501,560,566 5 -341272 cd05968 AACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 240,243,244,245,246,247,248,250,251 0 -341273 cd05969 MACS_like_4 1 active site 0 0 1 1 57,140,141,142,165,185,187,191,214,215,216,217,236,237,238,239,240,241,245,246,261,321,333,336,342,344,345,346,347,376,405,410,411,413,415 1 -341273 cd05969 MACS_like_4 2 AMP binding site 0 0 1 1 214,215,216,217,236,237,238,239,240,241,261,321,333,336,342,347 5 -341273 cd05969 MACS_like_4 3 putative CoA binding site 0 0 1 1 136,187,188,191,214,344,345,346,405,411 5 -341273 cd05969 MACS_like_4 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -341274 cd05970 MACS_AAE_MA_like 1 active site 0 0 1 1 104,236,237,238,262,282,284,288,308,309,310,311,330,331,332,333,334,335,338,339,354,417,429,432,438,440,441,442,443,472,501,506,507,509,511 1 -341274 cd05970 MACS_AAE_MA_like 2 AMP binding site 0 0 1 1 308,309,310,311,330,331,332,333,334,335,354,417,429,432,438,443 5 -341274 cd05970 MACS_AAE_MA_like 3 putative CoA binding site 0 0 1 1 232,284,285,288,308,440,441,442,501,507 5 -341274 cd05970 MACS_AAE_MA_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 189,192,193,194,195,196,197,199,200 0 -341275 cd05971 MACS_like_3 1 active site 0 0 1 1 63,141,142,143,167,187,189,193,214,215,216,217,236,237,238,239,240,241,244,245,261,321,333,336,342,344,345,346,347,376,405,410,411,413,415 1 -341275 cd05971 MACS_like_3 2 AMP binding site 0 0 1 1 214,215,216,217,236,237,238,239,240,241,261,321,333,336,342,347 5 -341275 cd05971 MACS_like_3 3 putative CoA binding site 0 0 1 1 137,189,190,193,214,344,345,346,405,411 5 -341275 cd05971 MACS_like_3 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341276 cd05972 MACS_like 1 active site 0 1 1 0 57,132,133,134,158,178,180,184,204,205,206,207,226,227,228,229,230,231,234,235,250,310,322,325,331,333,334,335,336,365,394,399,400,402,404 1 -341276 cd05972 MACS_like 2 AMP binding site 0 1 1 0 204,205,206,207,226,227,228,229,230,231,250,310,322,325,331,336 5 -341276 cd05972 MACS_like 3 putative CoA binding site 0 0 1 1 128,180,181,184,204,333,334,335,394,400 5 -341276 cd05972 MACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341277 cd05973 MACS_like_2 1 active site 0 0 1 1 57,139,140,141,164,184,186,190,212,213,214,215,234,235,236,237,238,239,242,243,260,319,331,334,340,342,343,344,345,374,403,408,409,411,413 1 -341277 cd05973 MACS_like_2 2 AMP binding site 0 0 1 1 212,213,214,215,234,235,236,237,238,239,260,319,331,334,340,345 5 -341277 cd05973 MACS_like_2 3 putative CoA binding site 0 0 1 1 135,186,187,190,212,342,343,344,403,409 5 -341277 cd05973 MACS_like_2 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341278 cd05974 MACS_like_1 1 active site 0 0 1 1 57,136,137,138,162,182,184,188,207,208,209,210,229,230,231,232,233,234,237,238,253,313,325,328,334,336,337,338,339,368,397,402,403,405,407 1 -341278 cd05974 MACS_like_1 2 AMP binding site 0 0 1 1 207,208,209,210,229,230,231,232,233,234,253,313,325,328,334,339 5 -341278 cd05974 MACS_like_1 3 putative CoA binding site 0 0 1 1 132,184,185,188,207,336,337,338,397,403 5 -341278 cd05974 MACS_like_1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 89,92,93,94,95,96,97,99,100 0 -99716 cd05992 PB1 1 PB1 interaction surface 0 1 1 1 3,32 2 -99716 cd05992 PB1 2 PB1 interaction 0 1 1 1 1,3,9,10,11,28,76 2 -99716 cd05992 PB1 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,28,32,76 2 -99716 cd05992 PB1 4 PB1 interaction site 0 1 1 1 46,59 2 -99716 cd05992 PB1 5 PB1 interaction surface 0 1 1 1 46,59 2 -99716 cd05992 PB1 6 PB1 interaction site 0 0 1 1 46,59 2 -99716 cd05992 PB1 7 PB1 interaction surface 0 1 1 1 46,59 2 -100076 cd06006 R3H_unknown_2 1 RxxxH motif 0 0 1 1 29,33 0 -100077 cd06007 R3H_DEXH_helicase 1 RxxxH motif 0 0 1 1 29,33 0 -276963 cd06059 Tubulin 1 nucleotide binding site 0 1 1 1 7,8,9,12,59,98,101,103,104,105,129,141,164,185,189 5 -276963 cd06059 Tubulin 2 alpha/beta domain interface 0 1 1 1 30,31,58,59,60,63,141,185,346,349,350,354,355,356,358,359 2 -276963 cd06059 Tubulin 3 beta/alpha domain interface 0 1 1 1 157,214,215,219,221,222,223,224,288,312,386 2 -100037 cd06061 PurM-like1 1 putative ATP binding site 0 0 1 1 69,115,116,117 5 -100037 cd06061 PurM-like1 2 dimerization interface 0 0 1 1 43,44,45,46,48,50,69,79,82,85,117,129,130,134,226 2 -99873 cd06062 H2MP_MemB-H2up 1 nickel binding site 0 1 1 1 13,59,89 4 -99873 cd06062 H2MP_MemB-H2up 2 putative substrate-binding site 0 0 1 0 7,21,37,38,39 0 -99874 cd06063 H2MP_Cyano-H2up 1 nickel binding site 0 0 1 1 13,58,88 4 -99875 cd06064 H2MP_F420-Reduc 1 nickel binding site 0 0 1 1 12,62,92 4 -99876 cd06066 H2MP_NAD-link-bidir 1 nickel binding site 0 0 1 1 12,56,82 4 -99877 cd06067 H2MP_MemB-H2evol 1 nickel binding site 0 0 1 1 12,58,85 4 -99878 cd06068 H2MP_like-1 1 nickel binding site 0 0 1 1 12,58,87 4 -99879 cd06070 H2MP_like-2 1 nickel binding site 0 0 1 1 12,53,84 4 -99903 cd06080 MUM1_like 1 putative chromatin binding site 0 0 1 1 10,13,16,34,42,44 0 -240511 cd06087 KOW_RPS4 1 RNA binding site 0 1 1 0 11,12,13,22,24,26,27,29,31,32,44,46 3 -240512 cd06088 KOW_RPL14 1 RNA binding site 0 1 1 0 7,9,10,22,25,27,28,45,47,48,50,60,63,65,66 3 -240513 cd06089 KOW_RPL26 1 RNA binding site 0 1 1 0 7,8,9,21,36,37,59,60 3 -240514 cd06090 KOW_RPL27 1 RNA binding site 0 1 1 0 1,2,3,4,5,6,7,8,9,12,16,17,18,19,20,21,22,23,36,37,38,39,40,41,46,47,48,50,53,54,55,61 3 -240515 cd06091 KOW_NusG 1 heterodimer interface 0 1 1 0 12,13,14,15,16,19,31,40,41,42,44,45,46,47,51,52 2 -240515 cd06091 KOW_NusG 2 homodimer interface 0 1 1 0 12,13,14,15 2 -132768 cd06093 PX_domain 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -133158 cd06094 RP_Saci_like 1 inhibitor binding site 0 0 1 0 14,16,18,38,39,40,77 0 -133158 cd06094 RP_Saci_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133158 cd06094 RP_Saci_like 3 Catalytic residue 0 0 1 0 14 1 -133159 cd06095 RP_RTVL_H_like 1 inhibitor binding site 0 0 1 0 14,16,18,39,40,41,78 0 -133159 cd06095 RP_RTVL_H_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133159 cd06095 RP_RTVL_H_like 3 Catalytic residue 0 0 1 0 14 1 -133160 cd06096 Plasmepsin_5 1 catalytic residue 0 0 1 1 21,236 1 -133160 cd06096 Plasmepsin_5 2 catalytic motif 0 0 1 1 21,22,23,24,236,237,238,239 1 -133160 cd06096 Plasmepsin_5 3 Active site flap 0 0 1 1 76,77,78,79,80,83,84,85,86,87 1 -133161 cd06097 Aspergillopepsin_like 1 catalytic motif 0 0 0 1 18,19,20,21,203,204,205,206 1 -133161 cd06097 Aspergillopepsin_like 2 catalytic residue 0 1 1 1 18,203 1 -133161 cd06097 Aspergillopepsin_like 3 Active site flap 0 1 1 1 59,60,61,62,63,64,66,67,68,69,70 1 -133161 cd06097 Aspergillopepsin_like 4 inhibitor binding site 0 1 1 0 18,20,62,63,64,203,205,206,207 0 -133162 cd06098 phytepsin 1 catalytic residue 0 0 1 1 28,215 1 -133162 cd06098 phytepsin 2 catalytic motif 0 0 1 1 28,29,30,31,215,216,217,218 1 -133162 cd06098 phytepsin 3 Active site flap 0 0 1 1 69,70,71,72,73,74,75,76,77,78,79 1 -133162 cd06098 phytepsin 4 propeptide binding site 0 1 1 1 6,9,10,11,13,90,91,107,113,152,161,162,163,164,165,166,170 0 -99853 cd06099 CS_ACL-C_CCL 1 catalytic triad 0 0 1 0 67,108,162 1 -99853 cd06099 CS_ACL-C_CCL 2 oxalacetate binding site 0 1 1 1 32,35,67,108,109,117,187,207 5 -99853 cd06099 CS_ACL-C_CCL 3 coenzyme A binding site 0 1 1 1 65,66,67,70,73,102,103,104,105,106,107,108,109,157,160,162,204 5 -99853 cd06099 CS_ACL-C_CCL 4 citrylCoA binding site 0 1 1 1 32,35,66,67,102,103,105,106,107,108,109,117,160,187 5 -99854 cd06100 CCL_ACL-C 1 active site 0 0 1 1 43,47,77,78,79,82,85,117,118,119,120,121,122,123,124,132,168,171,173,198,218,221 1 -99854 cd06100 CCL_ACL-C 2 catalytic triad 0 0 1 0 79,123,173 1 -99854 cd06100 CCL_ACL-C 3 oxalacetate binding site 0 0 1 1 43,47,79,123,124,132,198,221 5 -99854 cd06100 CCL_ACL-C 4 coenzyme A binding site 0 0 1 1 77,78,79,82,85,117,118,119,120,121,122,123,124,168,171,173,218 5 -99854 cd06100 CCL_ACL-C 5 citrylCoA binding site 0 0 1 1 43,47,78,79,117,118,120,121,122,123,124,132,171,198 5 -99855 cd06101 citrate_synt 1 active site 0 1 1 1 3,84,87,117,118,119,120,122,125,154,155,156,157,158,159,160,161,164,169,209,212,214,235,239,256,259 1 -99855 cd06101 citrate_synt 2 catalytic triad 0 0 1 0 119,160,214 1 -99855 cd06101 citrate_synt 3 oxalacetate/citrate binding site 0 1 1 1 84,87,119,120,160,161,169,214,235,239,259 5 -99855 cd06101 citrate_synt 4 coenzyme A binding site 0 1 1 1 3,117,118,119,122,125,154,155,156,157,158,159,160,161,164,209,212,214,256 5 -99855 cd06101 citrate_synt 5 citrylCoA binding site 0 1 1 1 3,84,87,118,119,154,155,157,158,159,160,161,169,212,239 5 -99855 cd06101 citrate_synt 6 dimer interface 0 1 1 0 1,2,5,6,7,8,9,10,11,84,88,91,92,95,96,99,100,101,105,112,113,116,117,118,161,256,257,258,259,260,261,262,263,264 2 -99856 cd06102 citrate_synt_like_2 1 active site 0 0 1 1 3,110,113,143,144,145,146,148,151,178,179,180,181,182,183,184,185,188,193,225,228,230,251,255,271,274 1 -99856 cd06102 citrate_synt_like_2 2 catalytic triad 0 0 1 0 145,184,230 1 -99856 cd06102 citrate_synt_like_2 3 oxalacetate/citrate binding site 0 0 1 1 110,113,145,146,184,185,193,230,251,255,274 5 -99856 cd06102 citrate_synt_like_2 4 coenzyme A binding site 0 0 1 1 3,143,144,145,148,151,178,179,180,181,182,183,184,185,188,225,228,230,271 5 -99856 cd06102 citrate_synt_like_2 5 citrylCoA binding site 0 0 1 1 3,110,113,144,145,178,179,181,182,183,184,185,193,228,255 5 -99856 cd06102 citrate_synt_like_2 6 dimer interface 0 0 1 1 1,2,5,6,8,9,10,11,12,110,114,117,118,121,122,125,126,127,131,138,139,142,143,144,185,271,272,273,274,275,276,277,278,279 2 -99857 cd06103 ScCS-like 1 active site 0 1 1 1 40,233,237,267,268,269,270,272,275,309,310,311,312,313,314,315,316,319,324,365,368,370,392,396,413,416 1 -99857 cd06103 ScCS-like 2 catalytic triad 0 0 1 0 269,315,370 1 -99857 cd06103 ScCS-like 3 oxalacetate/citrate binding site 0 1 1 1 233,237,269,270,315,316,324,370,392,396,416 5 -99857 cd06103 ScCS-like 4 coenzyme A binding site 0 1 1 1 40,267,268,269,272,275,309,310,311,312,313,314,315,316,319,365,368,370,413 5 -99857 cd06103 ScCS-like 5 citrylCoA binding site 0 1 1 1 40,233,237,268,269,309,310,312,313,314,315,316,324,368,396 5 -99857 cd06103 ScCS-like 6 dimer interface 0 0 1 1 38,39,42,43,44,45,46,47,48,133,137,140,233,238,241,242,245,246,249,250,251,255,262,263,266,267,268,316,413,414,415,416,417,418,419,420,421 2 -99858 cd06105 ScCit1-2_like 1 active site 0 1 1 1 40,231,235,265,266,267,268,270,273,307,308,309,310,311,312,313,314,317,322,363,366,368,390,394,411,414 1 -99858 cd06105 ScCit1-2_like 2 catalytic triad 0 0 1 0 267,313,368 1 -99858 cd06105 ScCit1-2_like 3 oxalacetate/citrate binding site 0 1 1 1 231,235,267,268,313,314,322,368,390,394,414 5 -99858 cd06105 ScCit1-2_like 4 coenzyme A binding site 0 1 1 1 40,265,266,267,270,273,307,308,309,310,311,312,313,314,317,363,366,368,411 5 -99858 cd06105 ScCit1-2_like 5 citrylCoA binding site 0 1 1 1 40,231,235,266,267,307,308,310,311,312,313,314,322,366,394 5 -99858 cd06105 ScCit1-2_like 6 dimer interface 0 0 1 1 38,39,42,43,44,45,46,47,48,133,137,140,231,236,239,240,243,244,247,248,249,253,260,261,264,265,266,314,411,412,413,414,415,416,417,418,419 2 -99859 cd06106 ScCit3_like 1 active site 0 0 1 1 40,233,237,267,268,269,270,272,275,309,310,311,312,313,314,315,316,319,324,367,370,372,394,398,415,418 1 -99859 cd06106 ScCit3_like 2 catalytic triad 0 0 1 0 269,315,372 1 -99859 cd06106 ScCit3_like 3 oxalacetate/citrate binding site 0 0 1 1 233,237,269,270,315,316,324,372,394,398,418 5 -99859 cd06106 ScCit3_like 4 coenzyme A binding site 0 0 1 1 40,267,268,269,272,275,309,310,311,312,313,314,315,316,319,367,370,372,415 5 -99859 cd06106 ScCit3_like 5 citrylCoA binding site 0 0 1 1 40,233,237,268,269,309,310,312,313,314,315,316,324,370,398 5 -99859 cd06106 ScCit3_like 6 dimer interface 0 0 1 1 38,39,42,43,44,45,46,47,48,133,137,140,233,238,241,242,245,246,249,250,251,255,262,263,266,267,268,316,415,416,417,418,419,420,421,422,423 2 -99860 cd06107 EcCS_AthCS-per_like 1 active site 0 1 1 1 9,198,201,232,233,234,236,239,266,267,268,269,270,271,272,273,276,281,321,323,326,328,349,353,371,374 1 -99860 cd06107 EcCS_AthCS-per_like 2 catalytic triad 0 0 1 0 233,272,328 1 -99860 cd06107 EcCS_AthCS-per_like 3 oxalacetate/citrate binding site 0 1 1 1 198,201,233,234,272,281,328,349,353,374 5 -99860 cd06107 EcCS_AthCS-per_like 4 coenzyme A binding site 0 1 1 1 232,233,236,239,266,267,268,269,270,271,273,276,321,323,326,328,371 5 -99860 cd06107 EcCS_AthCS-per_like 5 citrylCoA binding site 0 0 1 1 9,198,201,232,233,266,267,269,270,271,272,273,281,326,353 5 -99860 cd06107 EcCS_AthCS-per_like 6 dimer interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,31,32,33,34,37,41,46,54,55,56,57,59,62,63,66,67,78,81,82,84,85,86,90,94,98,101,104,105,106,198,199,200,201,202,205,206,210,213,214,215,216,219,226,227,229,230,231,232,233,234,236,237,273,274,371,373,374,375,376,377,378,379,380,381 2 -99861 cd06108 Ec2MCS_like 1 active site 0 0 1 1 3,177,180,211,212,213,215,218,245,246,247,248,249,250,251,252,255,260,295,297,300,302,323,327,343,346 1 -99861 cd06108 Ec2MCS_like 2 catalytic triad 0 0 1 0 212,251,302 1 -99861 cd06108 Ec2MCS_like 3 oxalacetate/citrate binding site 0 0 1 1 177,180,212,213,251,260,302,323,327,346 5 -99861 cd06108 Ec2MCS_like 4 coenzyme A binding site 0 0 1 1 211,212,215,218,245,246,247,248,249,250,252,255,295,297,300,302,343 5 -99861 cd06108 Ec2MCS_like 5 citrylCoA binding site 0 0 1 1 3,177,180,211,212,245,246,248,249,250,251,252,260,300,327 5 -99861 cd06108 Ec2MCS_like 6 dimer interface 0 0 1 1 0,1,2,5,6,7,8,9,71,72,75,76,84,88,92,95,140,177,178,179,180,181,184,185,189,192,193,194,195,198,205,206,208,209,210,211,252,343,344,345,346,347,348,349,350,351,352,353 2 -99862 cd06109 BsCS-I_like 1 active site 0 1 1 1 3,168,171,202,203,204,206,209,236,237,238,239,240,241,242,243,246,251,290,292,295,297,318,322,338,341 1 -99862 cd06109 BsCS-I_like 2 catalytic triad 0 0 1 1 203,242,297 1 -99862 cd06109 BsCS-I_like 3 oxalacetate/citrate binding site 0 1 1 1 168,171,203,204,242,251,297,318,322,341 5 -99862 cd06109 BsCS-I_like 4 coenzyme A binding site 0 1 1 1 202,203,206,209,236,237,238,239,240,241,243,246,290,292,295,297,338 5 -99862 cd06109 BsCS-I_like 5 citrylCoA binding site 0 0 1 1 3,168,171,202,203,236,237,239,240,241,242,243,251,295,322 5 -99862 cd06109 BsCS-I_like 6 dimer interface 0 1 0 0 0,1,2,5,6,7,8,9,10,21,26,90,91,94,172,176,180,183,184,185,186,189,196,197,199,200,201,202,244,339,340,341,342,343,344,345,346,347 2 -99863 cd06110 BSuCS-II_like 1 active site 0 0 1 1 3,179,182,213,214,215,217,220,247,248,249,250,251,252,253,254,257,262,297,299,302,304,325,329,345,348 1 -99863 cd06110 BSuCS-II_like 2 catalytic triad 0 0 1 0 214,253,304 1 -99863 cd06110 BSuCS-II_like 3 oxalacetate/citrate binding site 0 0 1 1 179,182,214,215,253,262,304,325,329,348 5 -99863 cd06110 BSuCS-II_like 4 coenzyme A binding site 0 0 1 1 213,214,217,220,247,248,249,250,251,252,254,257,297,299,302,304,345 5 -99863 cd06110 BSuCS-II_like 5 citrylCoA binding site 0 0 1 1 3,179,182,213,214,247,248,250,251,252,253,254,262,302,329 5 -99863 cd06110 BSuCS-II_like 6 dimer interface 0 0 1 1 0,1,2,5,6,7,8,9,10,11,26,40,51,53,72,75,76,84,88,91,92,95,179,181,183,186,187,190,191,193,194,195,196,197,200,203,207,208,210,211,212,213,254,255,345,346,347,348,349,350,351,352,353,354 2 -99864 cd06111 DsCS_like 1 active site 0 0 1 1 3,179,182,213,214,215,217,220,247,248,249,250,251,252,253,254,257,262,297,299,302,304,325,329,345,348 1 -99864 cd06111 DsCS_like 2 catalytic triad 0 0 1 0 214,253,304 1 -99864 cd06111 DsCS_like 3 oxalacetate/citrate binding site 0 1 1 1 179,182,214,215,253,262,304,325,329,348 5 -99864 cd06111 DsCS_like 4 coenzyme A binding site 0 1 1 1 213,214,217,220,247,248,249,250,251,252,254,257,297,299,302,304,345 5 -99864 cd06111 DsCS_like 5 citrylCoA binding site 0 0 1 1 3,179,182,213,214,247,248,250,251,252,253,254,262,302,329 5 -99864 cd06111 DsCS_like 6 dimer interface 0 0 1 1 0,1,2,5,6,7,8,9,10,11,26,40,51,53,72,75,76,84,88,91,92,95,179,181,183,186,187,190,191,193,194,195,196,197,200,203,207,208,210,211,212,213,254,255,345,346,347,348,349,350,351,352,353,354 2 -99865 cd06112 citrate_synt_like_1_1 1 active site 0 0 1 1 5,183,186,217,218,219,221,224,251,252,253,254,255,256,257,258,261,266,305,307,310,312,333,337,353,356 1 -99865 cd06112 citrate_synt_like_1_1 2 catalytic triad 0 0 1 0 218,257,312 1 -99865 cd06112 citrate_synt_like_1_1 3 oxalacetate/citrate binding site 0 0 1 1 183,186,218,219,257,266,312,333,337,356 5 -99865 cd06112 citrate_synt_like_1_1 4 coenzyme A binding site 0 0 1 1 217,218,221,224,251,252,253,254,255,256,258,261,305,307,310,312,353 5 -99865 cd06112 citrate_synt_like_1_1 5 citrylCoA binding site 0 0 1 1 5,183,186,217,218,251,252,254,255,256,257,258,266,310,337 5 -99865 cd06112 citrate_synt_like_1_1 6 dimer interface 0 0 1 1 2,3,4,7,8,9,10,11,12,13,28,42,53,55,74,77,78,86,90,93,94,97,183,185,187,190,191,194,195,197,198,199,200,201,204,207,211,212,214,215,216,217,258,259,353,354,355,356,357,358,359,360,361,362 2 -99866 cd06113 citrate_synt_like_1_2 1 active site 0 0 1 1 3,207,211,242,243,244,246,249,288,289,290,291,292,293,294,295,298,303,346,348,351,353,374,378,395,398 1 -99866 cd06113 citrate_synt_like_1_2 2 catalytic triad 0 0 1 0 243,294,353 1 -99866 cd06113 citrate_synt_like_1_2 3 oxalacetate/citrate binding site 0 0 1 1 207,211,243,244,294,303,353,374,378,398 5 -99866 cd06113 citrate_synt_like_1_2 4 coenzyme A binding site 0 0 1 1 242,243,246,249,288,289,290,291,292,293,295,298,346,348,351,353,395 5 -99866 cd06113 citrate_synt_like_1_2 5 citrylCoA binding site 0 0 1 1 3,207,211,242,243,288,289,291,292,293,294,295,303,351,378 5 -99866 cd06113 citrate_synt_like_1_2 6 dimer interface 0 0 1 1 0,1,2,5,6,12,13,14,15,16,41,61,72,74,93,96,97,105,109,112,113,116,207,209,212,215,216,219,220,222,223,224,225,226,229,232,236,237,239,240,241,242,295,296,395,396,397,398,399,400,401,402,403,404 2 -99867 cd06114 EcCS_like 1 active site 0 1 1 1 31,213,216,247,248,249,251,254,283,284,285,286,287,288,289,290,293,298,339,341,344,346,367,371,389,392 1 -99867 cd06114 EcCS_like 2 catalytic triad 0 0 1 0 248,289,346 1 -99867 cd06114 EcCS_like 3 oxalacetate/citrate binding site 0 1 1 1 213,216,248,249,289,298,346,367,371,392 5 -99867 cd06114 EcCS_like 4 coenzyme A binding site 0 1 1 1 247,248,251,254,283,284,285,286,287,288,290,293,339,341,344,346,389 5 -99867 cd06114 EcCS_like 5 citrylCoA binding site 0 0 1 1 31,213,216,247,248,283,284,286,287,288,289,290,298,344,371 5 -99867 cd06114 EcCS_like 6 dimer interface 0 1 1 1 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,41,53,54,55,56,59,63,68,76,77,78,79,81,84,85,88,89,100,103,104,106,107,108,112,116,120,123,126,127,128,213,214,215,216,217,220,221,225,228,229,230,231,234,241,242,244,245,246,247,248,249,251,252,290,291,389,391,392,393,394,395,396,397,398,399 2 -99867 cd06114 EcCS_like 7 NADH binding 0 1 1 1 90,92,93,94,95,96,97,98,129,147,151,173 5 -99867 cd06114 EcCS_like 8 cationic pore residues 0 0 1 1 95,96,97,98,99,100,101,102,103,106,107,108,109,110,111,162,163,164,165,166,167,168,169,170,171,172,173,174,188,189 0 -99868 cd06115 AthCS_per_like 1 active site 0 0 1 1 29,218,221,252,253,254,256,259,286,287,288,289,290,291,292,293,296,301,341,343,346,348,369,373,391,394 1 -99868 cd06115 AthCS_per_like 2 catalytic triad 0 0 1 0 253,292,348 1 -99868 cd06115 AthCS_per_like 3 oxalacetate/citrate binding site 0 0 1 1 218,221,253,254,292,301,348,369,373,394 5 -99868 cd06115 AthCS_per_like 4 coenzyme A binding site 0 0 1 1 252,253,256,259,286,287,288,289,290,291,293,296,341,343,346,348,391 5 -99868 cd06115 AthCS_per_like 5 citrylCoA binding site 0 0 1 1 29,218,221,252,253,286,287,289,290,291,292,293,301,346,373 5 -99868 cd06115 AthCS_per_like 6 dimer interface 0 0 1 1 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,39,51,52,53,54,57,61,66,74,75,76,77,79,82,83,86,87,98,101,102,104,105,106,110,114,118,121,124,125,126,218,219,220,221,222,225,226,230,233,234,235,236,239,246,247,249,250,251,252,253,254,256,257,293,294,391,393,394,395,396,397,398,399,400,401 2 -99869 cd06116 CaCS_like 1 active site 0 0 1 1 9,191,194,225,226,227,229,232,259,260,261,262,263,264,265,266,269,274,314,316,319,321,342,346,364,367 1 -99869 cd06116 CaCS_like 2 catalytic triad 0 0 1 0 226,265,321 1 -99869 cd06116 CaCS_like 3 oxalacetate/citrate binding site 0 0 1 1 191,194,226,227,265,274,321,342,346,367 5 -99869 cd06116 CaCS_like 4 coenzyme A binding site 0 0 1 1 225,226,229,232,259,260,261,262,263,264,266,269,314,316,319,321,364 5 -99869 cd06116 CaCS_like 5 citrylCoA binding site 0 0 1 1 9,191,194,225,226,259,260,262,263,264,265,266,274,319,346 5 -99869 cd06116 CaCS_like 6 dimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,31,32,33,34,37,41,46,54,55,56,57,59,62,63,66,67,78,81,82,84,85,86,90,94,98,101,104,105,106,191,192,193,194,195,198,199,203,206,207,208,209,212,219,220,222,223,224,225,226,227,229,230,266,267,364,366,367,368,369,370,371,372,373,374 2 -99870 cd06117 Ec2MCS_like_1 1 active site 0 0 1 1 3,180,183,214,215,216,218,221,248,249,250,251,252,253,254,255,258,263,298,300,303,305,326,330,346,349 1 -99870 cd06117 Ec2MCS_like_1 2 catalytic triad 0 0 1 0 215,254,305 1 -99870 cd06117 Ec2MCS_like_1 3 oxalacetate/citrate binding site 0 0 1 1 180,183,215,216,254,263,305,326,330,349 5 -99870 cd06117 Ec2MCS_like_1 4 coenzyme A binding site 0 0 1 1 214,215,218,221,248,249,250,251,252,253,255,258,298,300,303,305,346 5 -99870 cd06117 Ec2MCS_like_1 5 citrylCoA binding site 0 0 1 1 3,180,183,214,215,248,249,251,252,253,254,255,263,303,330 5 -99870 cd06117 Ec2MCS_like_1 6 dimer interface 0 0 1 1 0,1,2,5,6,7,8,9,71,72,75,76,84,88,92,95,143,180,181,182,183,184,187,188,192,195,196,197,198,201,208,209,211,212,213,214,255,346,347,348,349,350,351,352,353,354,355,356 2 -99871 cd06118 citrate_synt_like_1 1 active site 0 1 1 1 3,179,182,212,213,214,215,217,220,247,248,249,250,251,252,253,254,257,262,302,305,307,328,332,349,352 1 -99871 cd06118 citrate_synt_like_1 2 catalytic triad 0 0 1 0 214,253,307 1 -99871 cd06118 citrate_synt_like_1 3 oxalacetate/citrate binding site 0 1 1 1 179,182,214,215,253,254,262,307,328,332,352 5 -99871 cd06118 citrate_synt_like_1 4 coenzyme A binding site 0 1 1 1 3,212,213,214,217,220,247,248,249,250,251,252,253,254,257,302,305,307,349 5 -99871 cd06118 citrate_synt_like_1 5 citrylCoA binding site 0 1 1 1 3,179,182,213,214,247,248,250,251,252,253,254,262,305,332 5 -99871 cd06118 citrate_synt_like_1 6 dimer interface 0 1 1 1 1,2,5,6,7,8,9,10,11,88,92,95,179,183,186,187,190,191,194,195,196,200,207,208,211,212,213,254,349,350,351,352,353,354,355,356,357 2 -176647 cd06125 DnaQ_like_exo 1 active site 0 1 1 1 3,4,5,6,49,50,52,53,54,86 1 -176647 cd06125 DnaQ_like_exo 2 catalytic site 0 1 1 1 3,5,54,86 1 -176647 cd06125 DnaQ_like_exo 3 substrate binding site 0 1 1 1 4,5,6,49,50,52,53,86 5 -176648 cd06127 DEDDh 1 active site 0 1 1 1 3,4,5,6,8,84,85,87,88,89,144,149 1 -176648 cd06127 DEDDh 2 catalytic site 0 1 1 1 3,5,89,144,149 1 -176648 cd06127 DEDDh 3 substrate binding site 0 1 1 1 3,4,5,6,8,84,85,87,88,144,149 5 -176649 cd06128 DNA_polA_exo 1 active site 0 1 1 1 6,7,8,9,58,59,61,62,63,96,97,133,137 1 -176649 cd06128 DNA_polA_exo 2 catalytic site 0 1 1 1 6,8,63,133,137 1 -176649 cd06128 DNA_polA_exo 3 substrate binding site 0 1 1 1 7,8,9,58,59,61,62,96,97,133,137 5 -176650 cd06129 RNaseD_like 1 catalytic site 0 1 1 1 18,20,77,143,147 1 -176650 cd06129 RNaseD_like 2 putative active site 0 0 1 1 18,19,20,21,72,73,75,76,77,109,110,143,147 1 -176650 cd06129 RNaseD_like 3 putative substrate binding site 0 0 1 1 19,20,21,72,73,75,76,109,110,143,147 5 -99834 cd06130 DNA_pol_III_epsilon_like 1 active site 0 0 1 1 4,5,6,7,9,82,83,85,86,87,140,145 1 -99834 cd06130 DNA_pol_III_epsilon_like 2 catalytic site 0 0 1 1 4,6,87,140,145 1 -99834 cd06130 DNA_pol_III_epsilon_like 3 substrate binding site 0 0 1 1 4,5,6,7,9,82,83,85,86,140,145 5 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 1 active site 0 1 1 1 4,5,6,7,9,10,49,50,53,54,86,87,89,90,91,131,132,146,149,154 1 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 2 catalytic site 0 1 1 1 4,6,91,149,154 1 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 3 substrate binding site 0 1 1 1 4,5,6,7,9,10,49,50,53,54,86,87,89,90,131,132,146,149,154 5 -99836 cd06133 ERI-1_3'hExo_like 1 active site 0 1 1 1 4,5,6,7,9,56,96,97,98,99,100,104,158,163 1 -99836 cd06133 ERI-1_3'hExo_like 2 catalytic site 0 1 1 1 4,6,100,158,163 1 -99836 cd06133 ERI-1_3'hExo_like 3 substrate binding site 0 1 1 1 4,5,6,7,9,56,96,97,98,99,100,104,158,163 5 -99837 cd06134 RNaseT 1 putative active site 0 0 1 1 10,11,12,13,15,107,108,110,111,112,168,173 1 -99837 cd06134 RNaseT 2 catalytic site 0 1 1 1 10,12,112,168,173 1 -99837 cd06134 RNaseT 3 putative substrate binding site 0 0 1 1 10,11,12,13,15,107,108,110,111,168,173 5 -99837 cd06134 RNaseT 4 dimer interface 0 1 1 1 0,2,110,133,134,135,136,137,140,143,144,147,148,188 2 -99838 cd06135 Orn 1 putative active site 0 0 1 1 4,5,6,7,9,99,100,102,103,104,151,156 1 -99838 cd06135 Orn 2 catalytic site 0 1 1 1 4,6,104,151,156 1 -99838 cd06135 Orn 3 putative substrate binding site 0 0 1 1 4,5,6,7,9,99,100,102,103,151,156 5 -99838 cd06135 Orn 4 dimer interface 0 1 1 0 27,102,103,106,109,122,123,125,128,131,136,137,169,171,172 2 -99839 cd06136 TREX1_2 1 active site 0 1 1 1 4,5,6,7,10,62,66,103,104,107,108,109,144,160,165 1 -99839 cd06136 TREX1_2 2 catalytic site 0 1 1 1 4,6,109,160,165 1 -99839 cd06136 TREX1_2 3 substrate binding site 0 1 1 0 4,5,6,7,10,62,66,103,104,107,108,144,160,165 5 -99839 cd06136 TREX1_2 4 nucleotide product binding site 0 1 1 1 6,7,66,160 0 -99839 cd06136 TREX1_2 5 dimer interface 0 1 1 1 20,27,43,46,47,48,49,50,51,66,77,78,80,82,86,89,90,92,93,94,95,163 2 -99840 cd06137 DEDDh_RNase 1 active site 0 1 1 1 3,4,5,6,8,45,49,89,90,92,93,94,146,151 1 -99840 cd06137 DEDDh_RNase 2 catalytic site 0 1 1 1 3,5,94,146,151 1 -99840 cd06137 DEDDh_RNase 3 substrate binding site 0 1 1 1 3,4,5,6,8,45,49,89,90,92,93,146,151 5 -99841 cd06138 ExoI_N 1 active site 0 1 1 1 3,4,5,6,8,9,53,54,89,90,93,94,95,168,173 1 -99841 cd06138 ExoI_N 2 catalytic site 0 1 1 1 3,5,95,168,173 1 -99841 cd06138 ExoI_N 3 substrate binding site 0 1 1 1 3,4,5,6,8,89,90,93,94,168,173 5 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 1 active site 0 1 1 1 10,11,12,13,16,72,73,75,76,77,110,111,126,127,150,154 1 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 2 catalytic site 0 1 1 1 10,12,77,150,154 1 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 3 substrate binding site 0 1 1 0 11,12,13,16,72,73,75,76,110,111,126,127,150,154 5 -176653 cd06141 WRN_exo 1 catalytic site 0 1 1 1 23,25,83,152,156 1 -176653 cd06141 WRN_exo 2 putative active site 0 0 1 1 23,24,25,26,78,79,81,82,83,116,117,152,156 1 -176653 cd06141 WRN_exo 3 putative substrate binding site 0 0 1 1 24,25,26,78,79,81,82,116,117,152,156 5 -176654 cd06142 RNaseD_exo 1 catalytic site 0 1 1 1 17,19,74,140,144 1 -176654 cd06142 RNaseD_exo 2 putative active site 0 0 1 1 17,18,19,20,69,70,72,73,74,106,107,140,144 1 -176654 cd06142 RNaseD_exo 3 putative substrate binding site 0 0 1 1 18,19,20,69,70,72,73,106,107,140,144 5 -99846 cd06143 PAN2_exo 1 active site 0 0 1 1 3,4,5,6,8,64,68,107,108,110,111,112,159,164 1 -99846 cd06143 PAN2_exo 2 catalytic site 0 0 1 1 3,5,112,159,164 1 -99846 cd06143 PAN2_exo 3 substrate binding site 0 0 1 1 3,4,5,6,8,64,68,107,108,110,111,159,164 5 -99847 cd06144 REX4_like 1 active site 0 1 1 1 3,4,5,6,8,46,50,82,83,85,86,87,137,142 1 -99847 cd06144 REX4_like 2 catalytic site 0 1 1 1 3,5,87,137,142 1 -99847 cd06144 REX4_like 3 substrate binding site 0 1 1 1 3,4,5,6,8,46,50,82,83,85,86,137,142 5 -99848 cd06145 REX1_like 1 active site 0 0 1 1 3,4,5,6,8,81,82,84,85,86,135,140 1 -99848 cd06145 REX1_like 2 catalytic site 0 0 1 1 3,5,86,135,140 1 -99848 cd06145 REX1_like 3 substrate binding site 0 0 1 1 3,4,5,6,8,81,82,84,85,135,140 5 -176655 cd06146 mut-7_like_exo 1 catalytic site 0 0 1 1 27,29,92,175,179 1 -176655 cd06146 mut-7_like_exo 2 putative active site 0 0 1 1 27,28,29,30,87,88,90,91,92,141,142,175,179 1 -176655 cd06146 mut-7_like_exo 3 putative substrate binding site 0 0 1 1 28,29,30,87,88,90,91,141,142,175,179 5 -99850 cd06147 Rrp6p_like_exo 1 catalytic site 0 1 1 1 29,31,87,152,156 1 -99850 cd06147 Rrp6p_like_exo 2 putative active site 0 0 1 1 29,30,31,32,82,83,85,86,87,118,119,152,156 1 -99850 cd06147 Rrp6p_like_exo 3 putative substrate binding site 0 0 1 1 30,31,32,82,83,85,86,118,119,152,156 5 -99851 cd06148 Egl_like_exo 1 catalytic site 0 0 1 1 15,17,75,157,161 1 -99851 cd06148 Egl_like_exo 2 putative active site 0 0 1 1 15,16,17,18,70,71,73,74,75,115,116,157,161 1 -99851 cd06148 Egl_like_exo 3 putative substrate binding site 0 0 1 1 16,17,18,70,71,73,74,115,116,157,161 5 -99852 cd06149 ISG20 1 active site 0 1 1 1 3,4,5,6,8,46,50,82,83,85,86,87,142,147 1 -99852 cd06149 ISG20 2 catalytic site 0 1 1 1 3,5,87,142,147 1 -99852 cd06149 ISG20 3 substrate binding site 0 1 1 1 3,4,5,6,8,46,50,82,83,85,86,142,147 5 -100007 cd06150 YjgF_YER057c_UK114_like_2 1 homotrimer interaction site 0 0 1 1 2,3,6,8,11,13,15,16,50,52,53,55,57,68,71,75,80,81,82,83,84,85,86,87,88,98,100,102 2 -100007 cd06150 YjgF_YER057c_UK114_like_2 2 putative active site 0 0 1 1 2,64,68,83,98 1 -100008 cd06151 YjgF_YER057c_UK114_like_3 1 homotrimer interaction site 0 0 1 1 0,1,4,6,12,14,16,17,62,64,65,67,69,86,89,93,101,102,103,104,105,106,107,108,109,120,122,124 2 -100008 cd06151 YjgF_YER057c_UK114_like_3 2 putative active site 0 0 1 1 0,82,86,104,120 1 -100009 cd06152 YjgF_YER057c_UK114_like_4 1 homotrimer interaction site 0 0 1 1 2,3,6,8,11,13,15,16,56,58,59,61,63,77,80,84,88,89,90,91,92,93,94,95,96,107,109,111 2 -100009 cd06152 YjgF_YER057c_UK114_like_4 2 putative active site 0 0 1 1 2,73,77,91,107 1 -100010 cd06153 YjgF_YER057c_UK114_like_5 1 homotrimer interaction site 0 0 1 1 0,1,4,6,13,15,17,18,62,64,65,67,69,80,83,87,92,93,94,95,96,97,98,99,100,108,110,112 2 -100010 cd06153 YjgF_YER057c_UK114_like_5 2 putative active site 0 0 1 1 0,76,80,93,108 1 -100011 cd06154 YjgF_YER057c_UK114_like_6 1 homotrimer interaction site 0 0 1 1 12,13,16,18,21,23,25,26,65,67,68,70,72,83,86,90,94,95,96,97,98,99,100,101,102,113,115,117 2 -100011 cd06154 YjgF_YER057c_UK114_like_6 2 putative active site 0 0 1 1 12,79,83,97,113 1 -100012 cd06155 eu_AANH_C_1 1 homotrimer interaction site 0 0 1 1 1,2,5,7,8,10,12,13,47,49,50,52,54,65,68,72,77,78,79,80,81,82,83,84,85,94,96,98 2 -100012 cd06155 eu_AANH_C_1 2 putative active site 0 0 1 1 0,61,65,80,94 1 -100013 cd06156 eu_AANH_C_2 1 homotrimer interaction site 0 0 1 1 0,1,4,6,9,11,13,14,52,54,55,57,59,70,73,95,96,97,98,99,100,101,102,112,114,116 2 -100013 cd06156 eu_AANH_C_2 2 putative active site 0 0 1 1 0,66,70,97,112 1 -132726 cd06157 NR_LBD 1 ligand binding site 0 1 1 0 2,3,6,9,10,39,40,43,44,47,50,87 5 -132726 cd06157 NR_LBD 2 coregulator recognition site 0 1 1 1 11,14,18,23,28,29,31,32,35,36 0 -100079 cd06158 S2P-M50_like_1 1 active site 0 0 1 1 14,15,18,134,142 1 -100079 cd06158 S2P-M50_like_1 2 putative substrate binding region 0 0 1 1 134,135,136,137 5 -100080 cd06159 S2P-M50_PDZ_Arch 1 active site 0 0 1 1 123,124,127,207,215 1 -100080 cd06159 S2P-M50_PDZ_Arch 2 putative substrate binding region 0 0 1 1 207,208,209,210 5 -100081 cd06160 S2P-M50_like_2 1 active site 0 0 1 1 46,47,50,128,136 1 -100081 cd06160 S2P-M50_like_2 2 putative substrate binding region 0 0 1 1 128,129,130,131 5 -100082 cd06161 S2P-M50_SpoIVFB 1 active site 0 1 1 1 43,44,47,131,139 1 -100082 cd06161 S2P-M50_SpoIVFB 2 putative substrate binding region 0 0 1 1 131,132,133,134 5 -100083 cd06162 S2P-M50_PDZ_SREBP 1 active site 0 0 1 1 140,141,144,227,235 1 -100083 cd06162 S2P-M50_PDZ_SREBP 2 putative substrate binding region 0 0 1 1 227,228,229,230 5 -100084 cd06163 S2P-M50_PDZ_RseP-like 1 active site 0 0 1 1 14,15,18,126,134 1 -100084 cd06163 S2P-M50_PDZ_RseP-like 2 putative substrate binding region 0 0 1 1 126,127,128,129 5 -100085 cd06164 S2P-M50_SpoIVFB_CBS 1 active site 0 1 1 1 58,59,62,148,156 1 -100085 cd06164 S2P-M50_SpoIVFB_CBS 2 putative substrate binding region 0 0 1 1 148,149,150,151 5 -320680 cd06165 Sortase_A 1 catalytic site 0 0 1 1 49,111,120 1 -320680 cd06165 Sortase_A 2 active site 0 1 1 0 21,33,34,45,47,97,100,107,109,117,120 1 -320680 cd06165 Sortase_A 3 ligand binding site 0 1 1 0 49,107,109,111,117,120,122 5 -320681 cd06166 Sortase_D_2 1 catalytic site 0 0 1 1 50,112,120 1 -350201 cd06167 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 4,64,89 1 -212486 cd06168 LSMD1 1 putative RNA binding site 0 0 1 1 29,31,62 3 -212486 cd06168 LSMD1 2 Sm1 motif 0 0 1 1 11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37 0 -212486 cd06168 LSMD1 3 Sm2 motif 0 0 1 1 58,59,60,61,62,63,64,65,66,67,68,69 0 -132884 cd06169 BMC 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,38 2 -132884 cd06169 BMC 2 Hexagonal pore residue 0 1 1 1 32 0 -99777 cd06170 LuxR_C_like 1 DNA binding residues 0 1 1 1 1,2,3,16,17,18,26,27,29,30,32,33,34,35,36,47 3 -99777 cd06170 LuxR_C_like 2 dimerization interface 0 1 1 1 12,14,16,47,48,49,52,55,56 2 -100119 cd06171 Sigma70_r4 1 DNA binding residues 0 1 1 1 11,21,27,28,38,40,41,43,44,45,47,48,50 3 -340862 cd06172 MFS_LacY 1 chemical substrate binding pocket 0 1 1 0 11,14,17,18,109,110,113,114,117,135,138,139,142,257,260,264,310,311,314,318,338,346 5 -340863 cd06173 MFS_MefA_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,105,106,108,109,110,113,133,136,137,140,216,219,220,223,224,225,228,252,256,309,310,314,318,334,337,338,341,342,345 5 -349949 cd06174 MFS 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,211,214,215,218,219,220,223,251,255,305,306,310,314,330,333,334,337,338,341 5 -340865 cd06175 MFS_POT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,123,124,126,127,128,131,154,157,158,161,210,213,214,217,218,219,222,253,257,333,334,338,342,358,361,362,365,366,369 5 -349950 cd06176 MFS_BCD_PucC-like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,51,116,117,119,120,121,124,144,147,148,151,234,237,238,241,242,243,246,276,280,326,327,331,335,353,356,357,360,361,364 5 -340866 cd06177 MFS_NHS 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,49,100,101,103,104,105,108,126,129,130,133,207,210,211,214,215,216,219,246,250,302,303,307,311,327,330,331,334,335,338 5 -340867 cd06178 MFS_unc93-like 1 putative chemical substrate binding pocket 0 0 1 1 12,13,16,17,20,48,101,102,104,105,106,109,133,136,137,140,223,226,227,230,231,232,235,258,262,329,330,334,338,363,366,367,370,371,374 5 -340868 cd06179 MFS_TRI12_like 1 putative chemical substrate binding pocket 0 0 1 1 9,10,13,14,17,48,98,99,101,102,103,106,125,128,129,132,270,273,274,277,278,279,282,310,314,366,367,371,375,391,394,395,398,399,402 5 -340869 cd06180 MFS_YjiJ 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,124,127,128,131,204,207,208,211,212,213,216,243,247,292,293,297,301,320,323,324,327,328,331 5 -99779 cd06182 CYPOR_like 1 FAD binding pocket 0 1 1 0 36,48,49,50,51,66,68,82,83,84,85 5 -99779 cd06182 CYPOR_like 2 NAD binding pocket 0 1 1 0 68,69,70,71,122,124,155,156,185,186,194,196,225 5 -99779 cd06182 CYPOR_like 3 catalytic residues 0 0 1 1 51,219,264,266 1 -99779 cd06182 CYPOR_like 4 FAD binding motif 0 0 1 1 48,50,51 5 -99779 cd06182 CYPOR_like 5 phosphate binding motif 0 0 1 1 82,85,88 4 -99779 cd06182 CYPOR_like 6 beta-alpha-beta structure motif 0 0 1 1 119,123,124,125,126,128 0 -99780 cd06183 cyt_b5_reduct_like 1 FAD binding pocket 0 1 1 1 33,47,48,49,50,64,65,66,68,70,71,72,73,74,113,116,117,233 5 -99780 cd06183 cyt_b5_reduct_like 2 NAD binding pocket 0 1 1 0 66,68,113,114,140,141,142,171,183,207,208,209,210,211 5 -99780 cd06183 cyt_b5_reduct_like 3 FAD binding motif 0 0 1 1 47,49,50 5 -99780 cd06183 cyt_b5_reduct_like 4 phosphate binding motif 0 0 1 1 71,74,77,83,91,93 4 -99780 cd06183 cyt_b5_reduct_like 5 beta-alpha-beta structure motif 0 0 1 1 108,112,113,114,115,117 0 -99781 cd06184 flavohem_like_fad_nad_binding 1 FAD binding pocket 0 1 1 1 41,57,58,59,60,73,75,80,81,82,83,125,242 5 -99781 cd06184 flavohem_like_fad_nad_binding 2 NAD binding pocket 0 0 1 1 122,123,148,149,150,215,216 5 -99781 cd06184 flavohem_like_fad_nad_binding 3 Heme binding pocket 0 1 1 1 245 5 -99781 cd06184 flavohem_like_fad_nad_binding 4 FAD binding motif 0 0 1 1 57,59,60 5 -99781 cd06184 flavohem_like_fad_nad_binding 5 phosphate binding motif 0 0 1 1 80,83,86,93,101,103 4 -99781 cd06184 flavohem_like_fad_nad_binding 6 beta-alpha-beta structure motif 0 0 1 1 117,121,122,123,124,126 0 -99782 cd06185 PDR_like 1 FMN-binding pocket 0 1 1 1 41,42,44,58,59,60,66,68,69,110,209 5 -99782 cd06185 PDR_like 2 NAD binding pocket 0 0 1 1 107,108,131,132,133,182,183 5 -99782 cd06185 PDR_like 3 flavin binding motif 0 0 1 1 41,43,44 0 -99782 cd06185 PDR_like 4 phosphate binding motif 0 0 1 1 66,69,72,79 4 -99782 cd06185 PDR_like 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99783 cd06186 NOX_Duox_like_FAD_NADP 1 FAD binding pocket 0 0 1 1 29,44,45,46,47,62,63,64,68,69,70,71,115 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 2 NAD binding pocket 0 0 1 1 115,116,145,146,147,182,183 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 3 FAD binding motif 0 0 1 1 44,46,47 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 4 beta-alpha-beta stucture motif 0 0 1 1 110,114,115,116,117,119 0 -99783 cd06186 NOX_Duox_like_FAD_NADP 5 NAD pyrophosphate binding region 0 0 1 0 110,111,112,113,114,115,116,117,118,119,120 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 6 NADP ribose binding motif 0 0 1 0 143,144,147 5 -99784 cd06187 O2ase_reductase_like 1 FAD binding pocket 0 1 1 1 28,41,42,43,44,58,59,60,62,66,67,68,107,110,221,223 5 -99784 cd06187 O2ase_reductase_like 2 NAD binding pocket 0 0 1 1 107,108,133,134,135,196,197 5 -99784 cd06187 O2ase_reductase_like 3 FAD binding motif 0 0 1 1 41,43,44 5 -99784 cd06187 O2ase_reductase_like 4 phosphate binding motif 0 0 1 1 65,68,71,78,86,88 4 -99784 cd06187 O2ase_reductase_like 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99785 cd06188 NADH_quinone_reductase 1 FAD binding pocket 0 1 1 0 43,86,87,88,89,103,105,107,108,109,117,119,120,121,122,282 5 -99785 cd06188 NADH_quinone_reductase 2 NAD binding pocket 0 0 1 1 159,160,186,187,188,255,256 5 -99785 cd06188 NADH_quinone_reductase 3 FAD binding motif 0 0 1 1 86,88,89 5 -99785 cd06188 NADH_quinone_reductase 4 phosphate binding motif 0 0 1 1 119,122,125,131,139,141 4 -99785 cd06188 NADH_quinone_reductase 5 beta-alpha-beta structure motif 0 0 1 1 154,158,159,160,161,163 0 -99786 cd06189 flavin_oxioreductase 1 FAD binding pocket 0 0 1 1 30,41,42,43,44,58,59,60,62,66,67,68,107,110,221,223 5 -99786 cd06189 flavin_oxioreductase 2 NAD binding pocket 0 0 1 1 107,108,133,134,135,196,197 5 -99786 cd06189 flavin_oxioreductase 3 FAD binding motif 0 0 1 1 41,43,44 5 -99786 cd06189 flavin_oxioreductase 4 phosphate binding motif 0 0 1 1 65,68,71,78,86,88 4 -99786 cd06189 flavin_oxioreductase 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99787 cd06190 T4MO_e_transfer_like 1 FAD binding pocket 0 0 1 1 28,40,41,42,43,57,58,59,61,65,66,67,106,109,228,230 5 -99787 cd06190 T4MO_e_transfer_like 2 NAD binding pocket 0 0 1 1 106,107,134,135,136,202,203 5 -99787 cd06190 T4MO_e_transfer_like 3 FAD binding motif 0 0 1 1 40,42,43 5 -99787 cd06190 T4MO_e_transfer_like 4 phosphate binding motif 0 0 1 1 64,67,70,77,85,87 4 -99787 cd06190 T4MO_e_transfer_like 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99788 cd06191 FNR_iron_sulfur_binding 1 FAD binding pocket 0 0 1 1 32,46,47,48,49,62,63,64,66,70,71,72,111,114,228,230 5 -99788 cd06191 FNR_iron_sulfur_binding 2 NAD binding pocket 0 0 1 1 111,112,137,138,139,203,204 5 -99788 cd06191 FNR_iron_sulfur_binding 3 FAD binding motif 0 0 1 1 46,48,49 5 -99788 cd06191 FNR_iron_sulfur_binding 4 phosphate binding motif 0 0 1 1 69,72,75,82,90,92 4 -99788 cd06191 FNR_iron_sulfur_binding 5 beta-alpha-beta structure motif 0 0 1 1 106,110,111,112,113,115 0 -99789 cd06192 DHOD_e_trans_like 1 FAD binding pocket 0 1 1 0 41,43,44,45,46,60,61,62,68,69,70,106,211,212 5 -99789 cd06192 DHOD_e_trans_like 2 NAD binding pocket 0 0 1 1 106,107,130,131,132,184,185 5 -99789 cd06192 DHOD_e_trans_like 3 Iron coordination center 0 1 1 0 215,220,223,235 4 -99789 cd06192 DHOD_e_trans_like 4 FAD binding motif 0 0 1 1 43,45,46 5 -99789 cd06192 DHOD_e_trans_like 5 phosphate binding motif 0 0 1 1 67,70,73,77,85,87 4 -99789 cd06192 DHOD_e_trans_like 6 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99790 cd06193 siderophore_interacting 1 FAD binding pocket 0 1 0 1 64,65,66,67,81,83,85,89,90,91,92,129,232,233,234 5 -99790 cd06193 siderophore_interacting 2 NAD binding pocket 0 0 1 1 129,130,152,153,154,204,205 5 -99790 cd06193 siderophore_interacting 3 FAD binding motif 0 0 1 1 64,66,67 5 -99790 cd06193 siderophore_interacting 4 phosphate binding motif 0 0 1 1 89,92,95,101 4 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 1 FAD binding pocket 0 0 1 1 28,39,40,41,42,57,59,61,63,65,66,106 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 2 NAD binding pocket 0 0 1 1 106,107,132,133,134,193,194 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 3 FAD binding motif 0 0 1 1 39,41,42 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 4 phosphate binding motif 0 0 1 1 63,66,69,76,84,86 4 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99792 cd06195 FNR1 1 FAD binding pocket 0 1 1 1 29,44,45,46,47,60,62,64,67,69,70,110,240 5 -99792 cd06195 FNR1 2 NAD binding pocket 0 0 1 1 110,111,136,137,138,207,208 5 -99792 cd06195 FNR1 3 FAD binding motif 0 0 1 1 44,46,47 5 -99792 cd06195 FNR1 4 phosphate binding motif 0 0 1 1 67,70,73,79,88,90 4 -99792 cd06195 FNR1 5 beta-alpha-beta structure motif 0 0 1 1 105,109,110,111,112,114 0 -99793 cd06196 FNR_like_1 1 FAD binding pocket 0 0 1 1 32,47,48,49,50,63,65,67,71,73,74,108 5 -99793 cd06196 FNR_like_1 2 NAD binding pocket 0 0 1 1 108,109,134,135,136,192,193 5 -99793 cd06196 FNR_like_1 3 FAD binding motif 0 0 1 1 47,49,50 5 -99793 cd06196 FNR_like_1 4 phosphate binding motif 0 0 1 1 71,74,77,83 4 -99793 cd06196 FNR_like_1 5 beta-alpha-beta structure motif 0 0 1 1 103,107,108,109,110,112 0 -99794 cd06197 FNR_like_2 1 FAD binding pocket 0 0 1 1 30,60,61,62,63,80,82,84,85,87,88,134 5 -99794 cd06197 FNR_like_2 2 NAD binding pocket 0 0 1 1 134,135,161,162,163,196,197 5 -99794 cd06197 FNR_like_2 3 FAD binding motif 0 0 1 1 60,62,63 5 -99794 cd06197 FNR_like_2 4 phosphate binding motif 0 0 1 1 85,88,91,102 4 -99794 cd06197 FNR_like_2 5 beta-alpha-beta structure motif 0 0 1 1 129,133,134,135,136,138 0 -99795 cd06198 FNR_like_3 1 FAD binding pocket 0 0 1 1 27,41,42,43,44,58,60,62,63,65,66,104 5 -99795 cd06198 FNR_like_3 2 NAD binding pocket 0 0 1 1 104,105,130,131,132,187,188 5 -99795 cd06198 FNR_like_3 3 FAD binding motif 0 0 1 1 41,43,44 5 -99795 cd06198 FNR_like_3 4 phosphate binding motif 0 0 1 1 63,66,69,76,84,86 4 -99795 cd06198 FNR_like_3 5 beta-alpha-beta structure motif 0 0 1 1 99,103,104,105,106,108 0 -99796 cd06199 SiR 1 FAD binding pocket 0 1 1 0 35,146,147,148,149,164,166,179,180,181,182 5 -99796 cd06199 SiR 2 NAD binding pocket 0 0 1 1 166,167,168,169,220,222,249,250,279,280,287,289,318 5 -99796 cd06199 SiR 3 catalytic residues 0 0 1 1 149,312,357,359 1 -99796 cd06199 SiR 4 FAD binding motif 0 0 1 1 146,148,149 5 -99796 cd06199 SiR 5 phosphate binding motif 0 0 1 1 179,182,185 4 -99796 cd06199 SiR 6 beta-alpha-beta structure motif 0 0 1 1 217,221,222,223,224,226 0 -99797 cd06200 SiR_like1 1 FAD binding pocket 0 0 1 1 36,48,49,50,51,64,66,76,77,78,79 5 -99797 cd06200 SiR_like1 2 NAD binding pocket 0 0 1 1 66,67,68,69,116,118,144,145,174,175,182,184,213 5 -99797 cd06200 SiR_like1 3 catalytic residues 0 0 1 1 51,207,242,244 1 -99797 cd06200 SiR_like1 4 FAD binding motif 0 0 1 1 48,50,51 5 -99797 cd06200 SiR_like1 5 phosphate binding motif 0 0 1 1 76,79,82 4 -99797 cd06200 SiR_like1 6 beta-alpha-beta structure motif 0 0 1 1 113,117,118,119,120,122 0 -99798 cd06201 SiR_like2 1 FAD binding pocket 0 0 1 1 88,100,101,102,103,116,118,123,124,125,126 5 -99798 cd06201 SiR_like2 2 NAD binding pocket 0 0 1 1 118,119,120,121,162,164,188,189,218,219,225,227,255 5 -99798 cd06201 SiR_like2 3 catalytic residues 0 0 1 1 103,250,286,288 1 -99798 cd06201 SiR_like2 4 FAD binding motif 0 0 1 1 100,102,103 5 -99798 cd06201 SiR_like2 5 phosphate binding motif 0 0 1 1 123,126,129 4 -99798 cd06201 SiR_like2 6 beta-alpha-beta structure motif 0 0 1 1 159,163,164,165,166,168 0 -99799 cd06202 Nitric_oxide_synthase 1 FAD binding pocket 0 1 1 0 36,177,178,179,180,195,197,213,214,215,216 5 -99799 cd06202 Nitric_oxide_synthase 2 NAD binding pocket 0 1 1 0 197,198,199,200,253,255,290,291,320,321,329,331,360 5 -99799 cd06202 Nitric_oxide_synthase 3 dimerization interface 0 1 1 0 27,83,84,186,189,234,242 2 -99799 cd06202 Nitric_oxide_synthase 4 catalytic residues 0 0 1 1 180,355,399,401 1 -99799 cd06202 Nitric_oxide_synthase 5 FAD binding motif 0 0 1 1 177,179,180 5 -99799 cd06202 Nitric_oxide_synthase 6 phosphate binding motif 0 0 1 1 213,216,219 4 -99799 cd06202 Nitric_oxide_synthase 7 beta-alpha-beta structure motif 0 0 1 1 250,254,255,256,257,259 0 -99800 cd06203 methionine_synthase_red 1 FAD binding pocket 0 1 1 0 174,175,176,177,192,193,202,203,204,205,227,397 5 -99800 cd06203 methionine_synthase_red 2 NAD binding pocket 0 0 1 1 194,195,196,197,248,250,283,284,313,314,324,326,356 5 -99800 cd06203 methionine_synthase_red 3 catalytic residues 0 0 1 1 177,350,395,397 1 -99800 cd06203 methionine_synthase_red 4 FAD binding motif 0 0 1 1 174,176,177 5 -99800 cd06203 methionine_synthase_red 5 phosphate binding motif 0 0 1 1 202,205,208 4 -99800 cd06203 methionine_synthase_red 6 beta-alpha-beta structure motif 0 0 1 1 245,249,250,251,252,254 0 -99801 cd06204 CYPOR 1 FAD binding pocket 0 1 1 0 42,178,179,180,181,196,197,198,212,213,214,215,415 5 -99801 cd06204 CYPOR 2 NADP binding pocket 0 1 1 0 21,198,200,273,274,305,306,335,336,341,343,345,370,374,377 5 -99801 cd06204 CYPOR 3 catalytic residues 0 0 1 1 181,368,413,415 1 -99801 cd06204 CYPOR 4 FAD binding motif 0 0 1 1 178,180,181 5 -99801 cd06204 CYPOR 5 phosphate binding motif 0 0 1 1 212,215,218 4 -99801 cd06204 CYPOR 6 beta-alpha-beta structure motif 0 0 1 1 269,273,274,275,276,278 0 -99802 cd06206 bifunctional_CYPOR 1 FAD binding pocket 0 0 1 1 34,161,162,163,164,179,181,196,197,198,199 5 -99802 cd06206 bifunctional_CYPOR 2 NAD binding pocket 0 0 1 1 181,182,183,184,237,239,270,271,299,300,308,310,338 5 -99802 cd06206 bifunctional_CYPOR 3 catalytic residues 0 0 1 1 164,333,381,383 1 -99802 cd06206 bifunctional_CYPOR 4 FAD binding motif 0 0 1 1 161,163,164 5 -99802 cd06206 bifunctional_CYPOR 5 phosphate binding motif 0 0 1 1 196,199,202 4 -99802 cd06206 bifunctional_CYPOR 6 beta-alpha-beta structure motif 0 0 1 1 234,238,239,240,241,243 0 -99803 cd06207 CyPoR_like 1 FAD binding pocket 0 0 1 1 35,164,165,166,167,182,184,198,199,200,201 5 -99803 cd06207 CyPoR_like 2 NAD binding pocket 0 0 1 1 184,185,186,187,237,239,270,271,300,301,308,310,340 5 -99803 cd06207 CyPoR_like 3 catalytic residues 0 0 1 1 167,334,379,381 1 -99803 cd06207 CyPoR_like 4 FAD binding motif 0 0 1 1 164,166,167 5 -99803 cd06207 CyPoR_like 5 phosphate binding motif 0 0 1 1 198,201,204 4 -99803 cd06207 CyPoR_like 6 beta-alpha-beta structure motif 0 0 1 1 234,238,239,240,241,243 0 -99804 cd06208 CYPOR_like_FNR 1 FAD binding pocket 0 1 1 0 64,65,66,67,85,87,89,91,102,103,104,105,144,285 5 -99804 cd06208 CYPOR_like_FNR 2 NAD binding pocket 0 1 1 0 87,176,177,206,218,220,246,248 5 -99804 cd06208 CYPOR_like_FNR 3 dimerization interface 0 1 1 0 5,60,62,216,217,221,224,251 2 -99804 cd06208 CYPOR_like_FNR 4 catalytic residues 0 0 1 1 67,244,283,285 1 -99804 cd06208 CYPOR_like_FNR 5 FAD binding motif 0 0 1 1 64,66,67 5 -99804 cd06208 CYPOR_like_FNR 6 phosphate binding motif 0 0 1 1 102,105,108 4 -99804 cd06208 CYPOR_like_FNR 7 beta-alpha-beta structure motif 0 0 1 1 139,143,144,145,146,148 0 -99805 cd06209 BenDO_FAD_NAD 1 FAD binding pocket 0 1 1 1 35,47,48,49,50,63,64,65,67,70,71,72,73,111,114,224,225,226,227 5 -99805 cd06209 BenDO_FAD_NAD 2 NAD binding pocket 0 0 1 1 111,112,137,138,139,199,200 5 -99805 cd06209 BenDO_FAD_NAD 3 FAD binding motif 0 0 1 1 47,49,50 5 -99805 cd06209 BenDO_FAD_NAD 4 phosphate binding motif 0 0 1 1 70,73,76,83,91,93 4 -99805 cd06209 BenDO_FAD_NAD 5 beta-alpha-beta structure motif 0 0 1 1 106,110,111,112,113,115 0 -99806 cd06210 MMO_FAD_NAD_binding 1 FAD binding pocket 0 1 1 1 39,51,52,53,54,68,69,70,71,72,76,77,78,99,118,121,145,149,150,176,232,234,235 5 -99806 cd06210 MMO_FAD_NAD_binding 2 NAD binding pocket 0 0 1 1 117,118,143,144,145,207,208 5 -99806 cd06210 MMO_FAD_NAD_binding 3 FAD binding motif 0 0 1 1 51,53,54 5 -99806 cd06210 MMO_FAD_NAD_binding 4 phosphate binding motif 0 0 1 1 75,78,81,88,96,98 4 -99806 cd06210 MMO_FAD_NAD_binding 5 beta-alpha-beta structure motif 0 0 1 1 112,116,117,118,119,121 0 -99807 cd06211 phenol_2-monooxygenase_like 1 FAD binding pocket 0 0 1 1 40,52,53,54,55,69,70,71,73,77,78,79,118,121,235,237 5 -99807 cd06211 phenol_2-monooxygenase_like 2 NAD binding pocket 0 0 1 1 118,119,144,145,146,210,211 5 -99807 cd06211 phenol_2-monooxygenase_like 3 FAD binding motif 0 0 1 1 52,54,55 5 -99807 cd06211 phenol_2-monooxygenase_like 4 phosphate binding motif 0 0 1 1 76,79,82,89,97,99 4 -99807 cd06211 phenol_2-monooxygenase_like 5 beta-alpha-beta structure motif 0 0 1 1 113,117,118,119,120,122 0 -99808 cd06212 monooxygenase_like 1 FAD binding pocket 0 0 1 1 34,46,47,48,49,63,64,65,67,71,72,73,112,115,228,230 5 -99808 cd06212 monooxygenase_like 2 NAD binding pocket 0 0 1 1 112,113,138,139,140,203,204 5 -99808 cd06212 monooxygenase_like 3 FAD binding motif 0 0 1 1 46,48,49 5 -99808 cd06212 monooxygenase_like 4 phosphate binding motif 0 0 1 1 70,73,76,83,91,93 4 -99808 cd06212 monooxygenase_like 5 beta-alpha-beta structure motif 0 0 1 1 107,111,112,113,114,116 0 -99809 cd06213 oxygenase_e_transfer_subunit 1 FAD binding pocket 0 0 1 1 32,44,45,46,47,61,62,63,65,69,70,71,109,112,224,226 5 -99809 cd06213 oxygenase_e_transfer_subunit 2 NAD binding pocket 0 0 1 1 109,110,135,136,137,199,200 5 -99809 cd06213 oxygenase_e_transfer_subunit 3 FAD binding motif 0 0 1 1 44,46,47 5 -99809 cd06213 oxygenase_e_transfer_subunit 4 phosphate binding motif 0 0 1 1 68,71,74,81,89,91 4 -99809 cd06213 oxygenase_e_transfer_subunit 5 beta-alpha-beta structure motif 0 0 1 1 104,108,109,110,111,113 0 -99810 cd06214 PA_degradation_oxidoreductase_like 1 FAD binding pocket 0 0 1 1 37,51,52,53,54,67,68,69,71,75,76,77,117,120,237,239 5 -99810 cd06214 PA_degradation_oxidoreductase_like 2 NAD binding pocket 0 0 1 1 117,118,143,144,145,212,213 5 -99810 cd06214 PA_degradation_oxidoreductase_like 3 NAD(p) ribose binding residues 0 0 1 1 116,117,118,119,120,121 5 -99810 cd06214 PA_degradation_oxidoreductase_like 4 NAD(P)-pyrophosphate-nicotinamide binding residues 0 0 1 1 211,212,213,214,215,216 5 -99810 cd06214 PA_degradation_oxidoreductase_like 5 FAD binding motif 0 0 1 1 51,53,54 5 -99810 cd06214 PA_degradation_oxidoreductase_like 6 phosphate binding motif 0 0 1 1 74,77,80,87,95,97 4 -99810 cd06214 PA_degradation_oxidoreductase_like 7 beta-alpha-beta structure motif 0 0 1 1 112,116,117,118,119,121 0 -99811 cd06215 FNR_iron_sulfur_binding_1 1 FAD binding pocket 0 0 1 1 32,46,47,48,49,63,64,65,67,71,72,73,112,115,228,230 5 -99811 cd06215 FNR_iron_sulfur_binding_1 2 NAD binding pocket 0 0 1 1 112,113,138,139,140,203,204 5 -99811 cd06215 FNR_iron_sulfur_binding_1 3 FAD binding motif 0 0 1 1 46,48,49 5 -99811 cd06215 FNR_iron_sulfur_binding_1 4 phosphate binding motif 0 0 1 1 70,73,76,83,91,93 4 -99811 cd06215 FNR_iron_sulfur_binding_1 5 beta-alpha-beta structure motif 0 0 1 1 107,111,112,113,114,116 0 -99812 cd06216 FNR_iron_sulfur_binding_2 1 FAD binding pocket 0 0 1 1 50,64,65,66,67,82,83,84,86,90,91,92,131,134,240,242 5 -99812 cd06216 FNR_iron_sulfur_binding_2 2 NAD binding pocket 0 0 1 1 131,132,157,158,159,216,217 5 -99812 cd06216 FNR_iron_sulfur_binding_2 3 FAD binding motif 0 0 1 1 64,66,67 5 -99812 cd06216 FNR_iron_sulfur_binding_2 4 phosphate binding motif 0 0 1 1 89,92,95,102,110,112 4 -99812 cd06216 FNR_iron_sulfur_binding_2 5 beta-alpha-beta structure motif 0 0 1 1 126,130,131,132,133,135 0 -99813 cd06217 FNR_iron_sulfur_binding_3 1 FAD binding pocket 0 0 1 1 35,50,51,52,53,67,68,69,71,75,76,77,116,119,232,234 5 -99813 cd06217 FNR_iron_sulfur_binding_3 2 NAD binding pocket 0 0 1 1 116,117,142,143,144,207,208 5 -99813 cd06217 FNR_iron_sulfur_binding_3 3 FAD binding motif 0 0 1 1 50,52,53 5 -99813 cd06217 FNR_iron_sulfur_binding_3 4 phosphate binding motif 0 0 1 1 74,77,80,87,95,97 4 -99813 cd06217 FNR_iron_sulfur_binding_3 5 beta-alpha-beta structure motif 0 0 1 1 111,115,116,117,118,120 0 -99814 cd06218 DHOD_e_trans 1 FAD binding pocket 0 1 1 0 42,44,45,46,47,61,62,63,69,70,71,107,211,212 5 -99814 cd06218 DHOD_e_trans 2 NAD binding pocket 0 0 1 1 107,108,131,132,133,186,187 5 -99814 cd06218 DHOD_e_trans 3 Iron coordination center 0 1 1 0 215,220,223,238 4 -99814 cd06218 DHOD_e_trans 4 FAD binding motif 0 0 1 1 44,46,47 5 -99814 cd06218 DHOD_e_trans 5 phosphate binding motif 0 0 1 1 68,71,74,78,86,88 4 -99814 cd06218 DHOD_e_trans 6 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99815 cd06219 DHOD_e_trans_like1 1 FAD binding pocket 0 0 1 1 41,43,44,45,46,60,61,62,66,67,68,106,211,212 5 -99815 cd06219 DHOD_e_trans_like1 2 NAD binding pocket 0 0 1 1 106,107,130,131,132,186,187 5 -99815 cd06219 DHOD_e_trans_like1 3 Iron coordination center 0 0 1 1 215,220,223,235 4 -99815 cd06219 DHOD_e_trans_like1 4 FAD binding motif 0 0 1 1 43,45,46 5 -99815 cd06219 DHOD_e_trans_like1 5 phosphate binding motif 0 0 1 1 67,70,73,77,86,88 4 -99815 cd06219 DHOD_e_trans_like1 6 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99816 cd06220 DHOD_e_trans_like2 1 FAD binding pocket 0 0 1 1 37,39,40,41,42,53,54,55,59,60,61,97,198,199 5 -99816 cd06220 DHOD_e_trans_like2 2 NAD binding pocket 0 0 1 1 97,98,120,121,122,173,174 5 -99816 cd06220 DHOD_e_trans_like2 3 Iron coordination center 0 0 1 1 202,207,210,220 4 -99816 cd06220 DHOD_e_trans_like2 4 FAD binding motif 0 0 1 1 39,41,42 5 -99816 cd06220 DHOD_e_trans_like2 5 phosphate binding motif 0 0 1 1 58,61,64,70,78,80 4 -99816 cd06220 DHOD_e_trans_like2 6 beta-alpha-beta structure motif 0 0 1 1 92,96,97,98,99,101 0 -99817 cd06221 sulfite_reductase_like 1 FAD binding pocket 0 0 1 1 41,43,44,45,46,60,61,62,66,67,68,107,224,225 5 -99817 cd06221 sulfite_reductase_like 2 NAD binding pocket 0 0 1 1 107,108,134,135,136,196,197 5 -99817 cd06221 sulfite_reductase_like 3 Iron coordination center 0 0 1 1 228,233,236,244 4 -99817 cd06221 sulfite_reductase_like 4 FAD binding motif 0 0 1 1 43,45,46 5 -99817 cd06221 sulfite_reductase_like 5 phosphate binding motif 0 0 1 1 65,68,71,77,85,87 4 -99817 cd06221 sulfite_reductase_like 6 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -259998 cd06222 RNase_H_like 1 active site D[ND] 1 1 1 3,67 1 -259998 cd06222 RNase_H_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,39,40,43,67,106,120 3 -206754 cd06223 PRTases_typeI 1 active site 0 1 1 0 22,24,77,78,79,81,82,83,84,85,109 1 -100121 cd06224 REM 1 GTPase interaction site 0 1 1 0 11,63,67,68,71,74,75,110,111,114,121 2 -100122 cd06225 HAMP 1 dimerization interface 0 1 1 1 0,1,4,5,7,8,11,12,14,30,31,33,34,37,38,40,41,44,45 2 -349445 cd06226 M14_CPT_like 1 Zn binding site [H][ED][H] 0 1 1 27,30,171 4 -349445 cd06226 M14_CPT_like 2 active site 0 0 1 1 27,30,84,104,105,171,172,178,238 1 -349446 cd06227 M14-CPA-like 1 Zn binding site [H][ED][H] 0 1 1 10,13,132 4 -349446 cd06227 M14-CPA-like 2 active site 0 0 1 1 10,13,74,83,84,132,133,139,206 1 -349447 cd06228 M14-like 1 Zn binding site [H][ED][H] 0 1 1 9,12,159 4 -349447 cd06228 M14-like 2 active site 0 0 1 1 9,12,79,99,100,159,160,166,269 1 -349448 cd06229 M14_Endopeptidase_I 1 Zn binding site [H][ED][H] 0 1 1 7,10,152 4 -349448 cd06229 M14_Endopeptidase_I 2 active site 0 0 1 1 7,10,90,99,100,152,153,158,213 1 -349449 cd06230 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,93 4 -349449 cd06230 M14_ASTE_ASPA_like 2 active site 0 1 1 1 7,10,49,59,60,93,94,105,144,154 1 -349450 cd06231 M14_REP34-like 1 Zn binding site [H][ED][H] 1 0 1 51,54,135 4 -349450 cd06231 M14_REP34-like 2 active site 0 1 0 1 51,54,94,101,103,104,135,136,146,215 1 -349451 cd06232 M14-like 1 Zn binding site [H][ED][H] 0 1 1 43,46,144 4 -349451 cd06232 M14-like 2 active site 0 0 1 1 43,46,103,112,113,144,145,152,228 1 -349452 cd06233 M14-like 1 Zn binding site [H][ED][H] 0 1 1 7,10,109 4 -349452 cd06233 M14-like 2 putative active site 0 0 1 1 7,10,52,61,62,109,110,128,209 1 -349453 cd06234 M14_PaCCP-like 1 Zn binding site [H][ED][H] 1 1 1 54,57,147 4 -349453 cd06234 M14_PaCCP-like 2 active site 0 1 1 1 54,57,105,114,115,147,194,223 1 -349454 cd06235 M14_AGTPBP-like 1 Zn binding site [H][ED][H] 0 1 1 49,52,147 4 -349454 cd06235 M14_AGTPBP-like 2 active site 0 0 1 1 49,52,99,108,109,147,148,157,220 1 -349455 cd06236 M14_AGBL5_like 1 Zn binding site [H][ED][H] 0 1 1 69,72,156 4 -349455 cd06236 M14_AGBL5_like 2 active site 0 0 1 1 69,72,120,129,130,156,157,166,238 1 -349456 cd06237 M14_Nna1-like 1 Zn binding site [H][ED][H] 0 1 1 50,53,145 4 -349456 cd06237 M14_Nna1-like 2 active site 0 0 1 1 50,53,100,109,110,145,146,153,212 1 -349457 cd06238 M14-like 1 Zn binding site [H][ED][H] 0 1 1 10,13,126 4 -349457 cd06238 M14-like 2 active site 0 0 1 1 10,13,77,96,97,126,127,131,202 1 -349458 cd06239 M14-like 1 Zn binding site [H][ED][H] 0 1 1 8,11,96 4 -349458 cd06239 M14-like 2 active site 0 0 1 1 8,11,57,66,67,96,97,105,179 1 -349459 cd06240 M14-like 1 Zn binding site [H][ED][H] 0 1 1 10,13,119 4 -349459 cd06240 M14-like 2 active site 0 0 1 1 10,13,64,88,89,119,120,127,197 1 -349460 cd06241 M14-like 1 Zn binding site [H][ED][H] 0 1 1 10,13,111 4 -349460 cd06241 M14-like 2 active site 0 0 1 1 10,13,72,81,82,111,112,117,200 1 -349461 cd06242 M14-like 1 Zn binding site [H][ED][H] 0 1 1 10,13,97 4 -349461 cd06242 M14-like 2 active site 0 0 1 1 10,13,58,67,68,97,98,103,189 1 -349462 cd06243 M14_CP_Csd4-like 1 Zn binding site [QH][ED][H] 1 1 1 25,28,106 4 -349462 cd06243 M14_CP_Csd4-like 2 active site 0 1 1 1 25,28,64,71,72,106,107,131,203 1 -349463 cd06244 M14-like 1 Zn binding site [H][ED][H] 0 1 1 8,11,113 4 -349463 cd06244 M14-like 2 active site 0 0 1 1 8,11,74,83,84,113,114,120,206 1 -349464 cd06245 M14_CPD_III 1 putative active site 0 0 1 1 61,64,122,131,132,168,169,175,179,227,231,233,253 1 -349465 cd06246 M14_CPB2 1 Zn binding site [H][ED][H] 1 1 1 62,65,190 4 -349465 cd06246 M14_CPB2 2 active site 0 1 1 1 62,65,120,137,138,190,191,197,264 1 -349466 cd06247 M14_CPO 1 Zn binding site [H][ED][H] 0 1 1 61,64,189 4 -349466 cd06247 M14_CPO 2 active site 0 0 1 1 61,64,119,136,137,189,190,196,263 1 -349467 cd06248 M14_CP_insect 1 Zn binding site [H][ED][H] 1 1 1 60,63,188 4 -349467 cd06248 M14_CP_insect 2 active site 0 0 1 1 60,63,115,135,136,188,240,242,261 1 -349468 cd06250 M14_PaAOTO_like 1 Zn binding site [H][ED][H] 1 1 1 36,39,165 4 -349468 cd06250 M14_PaAOTO_like 2 active site 0 1 1 1 36,39,88,98,99,165,172,226,237 1 -349469 cd06251 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 21,24,107 4 -349469 cd06251 M14_ASTE_ASPA-like 2 active site 0 0 1 1 21,24,63,73,74,107,120,148,152,165 1 -349470 cd06252 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 43,46,129 4 -349470 cd06252 M14_ASTE_ASPA-like 2 active site 0 0 1 1 43,46,85,95,96,129,142,176,180,194 1 -349471 cd06253 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 31,34,121 4 -349471 cd06253 M14_ASTE_ASPA-like 2 putative active site 0 0 1 1 31,34,78,88,89,121,134,166,170,183 1 -349472 cd06254 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 20,23,107 4 -349472 cd06254 M14_ASTE_ASPA-like 2 active site 0 0 1 1 20,23,61,73,74,107,118,155,159,171 1 -349473 cd06255 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 32,35,118 4 -349473 cd06255 M14_ASTE_ASPA-like 2 active site 0 0 1 1 32,35,77,84,85,118,119,132,175,193 1 -349474 cd06256 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 43,46,126 4 -349474 cd06256 M14_ASTE_ASPA-like 2 active site 0 0 1 1 43,46,83,92,93,126,127,133,169,180 1 -99751 cd06257 DnaJ 1 HSP70 interaction site 0 1 1 0 28,29,30,39,42,43,46,47 2 -341049 cd06258 M3_like 1 Zn binding site HHE 1 1 1 261,265,289 4 -341049 cd06258 M3_like 2 active site 0 1 1 1 261,262,265,289,392,400,403 1 -99750 cd06259 YdcF-like 1 putative active site 0 0 1 1 78,81,101,105,108,145 1 -99749 cd06260 DUF820 1 putative active site 0 0 1 0 19,60,86,100,104 1 -119394 cd06261 TM_PBP2 1 putative PBP binding loops 0 1 1 1 56,76,148,160,163,173 0 -119394 cd06261 TM_PBP2 2 conserved gate region 0 0 1 1 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,142,143,144,145,146,147 0 -119394 cd06261 TM_PBP2 3 dimer interface 0 1 1 0 16,17,20,21,26,36,37,38,39,41,42,43,44,45,46,47,48,49,50,53,54,56,81,82,84,86,89,90,92,96,97,100,117,131,132,135,142,143,144,145,148,149,162,163,173,174,177,178,180,181,184,185,188,189 2 -119394 cd06261 TM_PBP2 4 ABC-ATPase subunit interface 0 1 1 1 101,102,103,104,105,106,107,108,109,110,111,112,113,119,120,124 0 -293792 cd06262 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,127,128,146,187 1 -293792 cd06262 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,127,146,187 4 -293792 cd06262 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,127,146 4 -293792 cd06262 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,146,187 4 -99706 cd06263 MAM 1 putative adhesion site 0 0 1 1 3,4 0 -119387 cd06265 RNase_A_canonical 1 catalytic site 0 1 1 1 9,35,39,65,77,111,112 1 -119387 cd06265 RNase_A_canonical 2 dimerization interface 0 1 1 0 36,68,79,94,96,98,99,101 2 -119387 cd06265 RNase_A_canonical 3 dimerization with domain swap 0 1 1 1 5,6,7,8,9,10,11,12,13,14,19,23,25,26,27,35,38,39,40,41,42,43,76,95,109 0 -259999 cd06266 RNase_HII 1 active site DED[ED] 1 1 1 3,4,100,128 1 -259999 cd06266 RNase_HII 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,7,8,36,74,75,76,100,101,102,126,128,142,166,190,191,192 3 -107262 cd06267 PBP1_LacI_sugar_binding_like 1 ligand binding site 0 1 1 0 12,13,16,61,84,97,133,158,212,229 5 -107262 cd06267 PBP1_LacI_sugar_binding_like 2 dimerization interface 0 1 1 0 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,161,189,193,196,197 2 -107263 cd06268 PBP1_ABC_transporter_LIVBP_like 1 ligand binding site 0 1 1 0 96,97 5 -153137 cd06269 PBP1_glutamate_receptors_like 1 dimerization interface 0 1 1 0 53,55,56,59,60,93,157,160,173,175 2 -107265 cd06270 PBP1_GalS_like 1 ligand binding site 0 1 0 0 12,61,133,158,184,212 5 -107265 cd06270 PBP1_GalS_like 2 dimerization interface (closed form) 0 1 0 0 0,7,13,18,21,30,31,32,33,35,49,53,160,161,193,219,220 2 -107266 cd06271 PBP1_AglR_RafR_like 1 ligand binding site 0 0 1 1 16,20,86,87,98,99,100,101,137,188,216 5 -107267 cd06272 PBP1_hexuronate_repressor_like 1 putative ligand binding site 0 0 0 1 12,13,16,57,80,92,128,153,207,224 5 -107267 cd06272 PBP1_hexuronate_repressor_like 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,42,45,48,49,50,156,184,188,191,192 2 -107268 cd06273 PBP1_GntR_like_1 1 putative ligand binding site 0 0 1 1 12,13,16,61,84,97,134,159,213,230 5 -107268 cd06273 PBP1_GntR_like_1 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,162,190,194,197,198 2 -107269 cd06274 PBP1_FruR 1 ligand binding site 0 0 1 1 12,16,82,83,94,95,96,97,133,185,213 5 -107269 cd06274 PBP1_FruR 2 dimerization interface 0 1 0 0 8,18,19,21,22,25,30,33,35,53,190,220,222 2 -107270 cd06275 PBP1_PurR 1 ligand binding site 0 1 1 1 12,128,130,134,159,213 5 -107270 cd06275 PBP1_PurR 2 dimerization interface 0 1 1 0 9,25,29,31,32,33,46,53,162,190,194,198,217,219,220,267 2 -107271 cd06276 PBP1_FucR_like 1 putative ligand binding site 0 0 0 1 11,12,15,58,82,96,134,150,197,214 5 -107271 cd06276 PBP1_FucR_like 2 putative dimerization interface 0 0 0 1 0,12,13,14,17,18,20,21,29,30,31,32,33,35,43,46,49,50,51,151,174,178,181,182 2 -107272 cd06277 PBP1_LacI_like_1 1 putative ligand binding site 0 0 0 1 15,16,19,64,86,99,135,155,212,229 5 -107272 cd06277 PBP1_LacI_like_1 2 putative dimerization interface 0 0 0 1 0,16,17,18,21,22,24,25,32,33,34,35,36,38,49,52,55,56,57,164,189,193,196,197 2 -107273 cd06278 PBP1_LacI_like_2 1 putative ligand binding site 0 0 0 1 12,13,16,60,83,96,132,155,210,227 5 -107273 cd06278 PBP1_LacI_like_2 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,45,48,51,52,53,158,186,190,193,194 2 -107274 cd06279 PBP1_LacI_like_3 1 putative ligand binding site 0 0 0 1 17,18,21,62,85,97,150,175,230,246 5 -107274 cd06279 PBP1_LacI_like_3 2 putative dimerization interface 0 0 0 1 0,18,19,20,23,24,26,27,34,35,36,37,38,40,47,50,53,54,55,179,207,211,214,215 2 -107275 cd06280 PBP1_LacI_like_4 1 putative ligand binding site 0 0 0 1 12,13,16,61,83,96,131,153,207,224 5 -107275 cd06280 PBP1_LacI_like_4 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,156,184,188,191,192 2 -107276 cd06281 PBP1_LacI_like_5 1 putative ligand binding site 0 0 0 1 12,13,16,61,85,97,133,157,211,228 5 -107276 cd06281 PBP1_LacI_like_5 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,160,188,192,195,196 2 -107277 cd06282 PBP1_GntR_like_2 1 putative ligand binding site 0 0 0 1 12,13,16,61,85,97,134,157,211,228 5 -107277 cd06282 PBP1_GntR_like_2 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,160,188,192,195,196 2 -107278 cd06283 PBP1_RegR_EndR_KdgR_like 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,97,134,158,213,230 5 -107278 cd06283 PBP1_RegR_EndR_KdgR_like 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,162,190,194,197,198 2 -107279 cd06284 PBP1_LacI_like_6 1 ligand binding site 0 1 0 0 10,132,211,228 5 -107279 cd06284 PBP1_LacI_like_6 2 dimerization interface 0 1 0 0 0,21,30,33,35,54,159,192 2 -107280 cd06285 PBP1_LacI_like_7 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,95,131,156,210,227 5 -107280 cd06285 PBP1_LacI_like_7 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,159,187,191,194,195 2 -107281 cd06286 PBP1_CcpB_like 1 putative ligand binding site 0 0 0 1 12,13,16,61,83,95,131,156,210,225 5 -107281 cd06286 PBP1_CcpB_like 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,159,187,191,194,195 2 -107282 cd06287 PBP1_LacI_like_8 1 putative ligand binding site 0 0 0 1 20,21,24,62,85,99,135,157,213,230 5 -107282 cd06287 PBP1_LacI_like_8 2 putative dimerization interface 0 0 0 1 0,21,22,23,26,27,29,30,37,38,39,40,41,43,47,50,53,54,55,162,190,194,197,198 2 -107283 cd06288 PBP1_sucrose_transcription_regulator 1 putative ligand binding site 0 0 0 1 13,14,17,62,84,97,133,158,212,230 5 -107283 cd06288 PBP1_sucrose_transcription_regulator 2 putative dimerization interface 0 0 0 1 0,14,15,16,19,20,22,23,30,31,32,33,34,36,47,50,53,54,55,161,189,193,196,197 2 -107284 cd06289 PBP1_MalI_like 1 putative ligand binding site 0 0 0 1 12,13,16,61,85,98,134,159,213,230 5 -107284 cd06289 PBP1_MalI_like 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,162,190,194,197,198 2 -107285 cd06290 PBP1_LacI_like_9 1 putative ligand binding site 0 0 0 1 12,13,16,61,83,96,132,157,211,228 5 -107285 cd06290 PBP1_LacI_like_9 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,160,188,192,195,196 2 -107286 cd06291 PBP1_Qymf_like 1 ligand binding site 0 1 0 0 10,12,62,81,130,180,208,225 5 -107286 cd06291 PBP1_Qymf_like 2 dimerization interface 0 1 0 0 8,14,18,21,31,33,46,49,53,189,193 2 -107286 cd06291 PBP1_Qymf_like 3 sodium binding site 0 1 0 0 171,201 4 -107287 cd06292 PBP1_LacI_like_10 1 putative ligand binding site 0 0 0 1 12,13,16,61,89,103,139,164,216,233 5 -107287 cd06292 PBP1_LacI_like_10 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,167,193,197,200,201 2 -107288 cd06293 PBP1_LacI_like_11 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,97,134,158,212,229 5 -107288 cd06293 PBP1_LacI_like_11 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,161,189,193,196,197 2 -107289 cd06294 PBP1_ycjW_transcription_regulator_like 1 putative ligand binding site 0 0 0 1 17,18,21,66,89,103,139,165,218,235 5 -107289 cd06294 PBP1_ycjW_transcription_regulator_like 2 putative dimerization interface 0 0 0 1 0,18,19,20,23,24,26,27,34,35,36,37,38,40,51,54,57,58,59,167,195,199,202,203 2 -107290 cd06295 PBP1_CelR 1 putative ligand binding site 0 0 0 1 23,24,27,70,93,106,142,167,221,238 5 -107290 cd06295 PBP1_CelR 2 putative dimerization interface 0 0 0 1 4,24,25,26,29,30,32,33,40,41,42,43,44,46,55,58,61,62,63,170,198,202,205,206 2 -107291 cd06296 PBP1_CatR_like 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,98,134,159,213,230 5 -107291 cd06296 PBP1_CatR_like 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,162,190,194,197,198 2 -107292 cd06297 PBP1_LacI_like_12 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,95,136,161,215,230 5 -107292 cd06297 PBP1_LacI_like_12 2 putative dimerization interface 0 0 0 1 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,164,192,196,199,200 2 -107293 cd06298 PBP1_CcpA_like 1 effector binding site 0 1 1 0 22,232,233,240,244,258,259,261 0 -107293 cd06298 PBP1_CcpA_like 2 dimerization interface 0 1 1 0 0,8,30,31,32,33,34,35,37,45,49,53,161,186,193,197,221 2 -107294 cd06299 PBP1_LacI_like_13 1 putative ligand binding site 0 0 0 1 12,13,16,61,84,97,133,158,210,227 5 -107294 cd06299 PBP1_LacI_like_13 2 dimerization interface 0 1 0 0 0,13,14,15,18,19,21,22,29,30,31,32,33,35,46,49,52,53,54,161,187,191,194,195 2 -107295 cd06300 PBP1_ABC_sugar_binding_like_1 1 putative ligand binding site 0 0 0 1 12,91,142,215,237 5 -107296 cd06301 PBP1_rhizopine_binding_like 1 putative ligand binding site 0 0 0 1 12,87,140,217,237 5 -107297 cd06302 PBP1_LsrB_Quorum_Sensing 1 ligand binding site 0 1 1 0 6,87,101,136,137,140,191,192,193,238 5 -107298 cd06303 PBP1_LuxPQ_Quorum_Sensing 1 ligand binding site 0 1 1 0 11,14,91,147,197,198,222,243 5 -107298 cd06303 PBP1_LuxPQ_Quorum_Sensing 2 subunit interaction site 0 1 1 0 49,53,81,145,153,166,167,168,186 2 -107298 cd06303 PBP1_LuxPQ_Quorum_Sensing 3 calcium binding site 0 1 1 0 81 4 -107299 cd06304 PBP1_BmpA_like 1 ligand binding site 0 1 1 0 6,7,15,86,133,161,208,225 5 -107300 cd06305 PBP1_methylthioribose_binding_like 1 putative ligand binding site 0 0 0 1 12,86,136,216,238 5 -107301 cd06306 PBP1_TorT-like 1 putative ligand binding site 0 0 0 1 12,87,142,216,236 5 -107302 cd06307 PBP1_uncharacterized_sugar_binding 1 putative ligand binding site 0 0 0 1 12,89,142,218,238 5 -107303 cd06308 PBP1_sensor_kinase_like 1 putative ligand binding site 0 0 0 1 12,87,139,215,237 5 -107304 cd06309 PBP1_YtfQ_like 1 putative ligand binding site 0 0 0 1 12,86,141,220,240 5 -107305 cd06310 PBP1_ABC_sugar_binding_like_2 1 putative ligand binding site 0 0 0 1 12,88,140,216,236 5 -107306 cd06311 PBP1_ABC_sugar_binding_like_3 1 putative ligand binding site 0 0 0 1 12,91,143,218,239 5 -107307 cd06312 PBP1_ABC_sugar_binding_like_4 1 putative ligand binding site 0 0 0 1 13,88,142,216,236 5 -107308 cd06313 PBP1_ABC_sugar_binding_like_5 1 putative ligand binding site 0 0 0 1 12,86,140,215,234 5 -107309 cd06314 PBP1_tmGBP 1 ligand binding site 0 1 1 0 12,85,137,160,186,187,212,232 5 -107309 cd06314 PBP1_tmGBP 2 dimerization interface 0 1 1 0 233,236,239,240 2 -107310 cd06315 PBP1_ABC_sugar_binding_like_6 1 putative ligand binding site 0 0 0 1 13,87,143,225,246 5 -107311 cd06316 PBP1_ABC_sugar_binding_like_7 1 putative ligand binding site 0 0 0 1 12,87,143,218,239 5 -107312 cd06317 PBP1_ABC_sugar_binding_like_8 1 putative ligand binding site 0 0 0 1 13,87,142,220,240 5 -107313 cd06318 PBP1_ABC_sugar_binding_like_9 1 putative ligand binding site 0 0 0 1 12,86,140,223,243 5 -107314 cd06319 PBP1_ABC_sugar_binding_like_10 1 putative ligand binding site 0 0 0 1 12,86,142,218,238 5 -107315 cd06320 PBP1_allose_binding 1 ligand binding site 0 1 1 0 6,10,13,88,89,135,139,189,215,235 5 -107315 cd06320 PBP1_allose_binding 2 dimerization interface 0 1 1 0 8,11,14,15,18,21,218,219,225 2 -107315 cd06320 PBP1_allose_binding 3 zinc binding site 0 1 1 0 15 4 -107316 cd06321 PBP1_ABC_sugar_binding_like_11 1 putative ligand binding site 0 0 0 1 12,88,137,213,235 5 -107317 cd06322 PBP1_ABC_sugar_binding_like_12 1 putative ligand binding site 0 0 0 1 12,86,137,211,232 5 -107318 cd06323 PBP1_ribose_binding 1 ligand binding site 0 1 1 0 10,12,13,61,86,87,134,138,162,188,213,233 5 -107318 cd06323 PBP1_ribose_binding 2 dimerization interface 0 1 1 0 136,140,153,154,157,158,176 2 -107319 cd06324 PBP1_ABC_sugar_binding_like_13 1 putative ligand binding site 0 0 0 1 13,88,159,237,270 5 -107320 cd06325 PBP1_ABC_uncharacterized_transporter 1 putative ligand binding site 0 0 0 1 67,68,69,87,88,89,143,192,217 5 -107320 cd06325 PBP1_ABC_uncharacterized_transporter 2 zinc binding site 0 1 0 0 35,37,181,211 4 -107321 cd06326 PBP1_STKc_like 1 putative ligand binding site 0 0 0 1 75,76,77,98,99,100,147,199,223 5 -107322 cd06327 PBP1_SBP_like_1 1 putative ligand binding site 0 0 0 1 73,74,75,96,97,98,146,198,224 5 -107323 cd06328 PBP1_SBP_like_2 1 putative ligand binding site 0 0 0 1 75,76,77,99,100,101,147,199,227 5 -107324 cd06329 PBP1_SBP_like_3 1 putative ligand binding site 0 0 0 1 73,74,75,103,104,105,154,209,233 5 -107325 cd06330 PBP1_Arsenic_SBP_like 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,149,203,229 5 -107326 cd06331 PBP1_AmiC_like 1 ligand binding site 0 1 1 0 74,95,98,99,141 5 -107327 cd06332 PBP1_aromatic_compounds_like 1 putative ligand binding site 0 0 0 1 72,73,74,93,96,97,143,145,220 5 -107328 cd06333 PBP1_ABC-type_HAAT_like 1 putative ligand binding site 0 0 0 1 73,74,75,96,97,98,144,196,220 5 -107329 cd06334 PBP1_ABC_ligand_binding_like_1 1 putative ligand binding site 0 0 0 1 73,74,75,96,97,98,151,203,227 5 -107330 cd06335 PBP1_ABC_ligand_binding_like_2 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,149,201,225 5 -107331 cd06336 PBP1_ABC_ligand_binding_like_3 1 putative ligand binding site 0 0 0 1 77,78,79,100,101,102,149,201,226 5 -107332 cd06337 PBP1_ABC_ligand_binding_like_4 1 putative ligand binding site 0 0 0 1 76,77,78,99,100,101,156,211,235 5 -107333 cd06338 PBP1_ABC_ligand_binding_like_5 1 putative ligand binding site 0 0 0 1 78,79,80,101,102,103,152,204,228 5 -107334 cd06339 PBP1_YraM_LppC_lipoprotein_like 1 putative ligand binding site 0 0 0 1 66,67,68,89,90,135,208,236 5 -107335 cd06340 PBP1_ABC_ligand_binding_like_6 1 putative ligand binding site 0 0 0 1 77,78,79,100,101,102,155,207,231 5 -107336 cd06341 PBP1_ABC_ligand_binding_like_7 1 putative ligand binding site 0 0 0 1 74,75,76,96,97,98,144,196,220 5 -107337 cd06342 PBP1_ABC_LIVBP_like 1 ligand binding site 0 1 1 0 73,74,75,96,97,146,198,222 5 -107337 cd06342 PBP1_ABC_LIVBP_like 2 dimerization interface 0 1 1 0 7,16,20,23,207,228,231,234,235,266 2 -107338 cd06343 PBP1_ABC_ligand_binding_like_8 1 putative ligand binding site 0 0 0 1 81,82,83,104,105,106,155,207,232 5 -107339 cd06344 PBP1_ABC_ligand_binding_like_9 1 putative ligand binding site 0 0 0 1 73,74,75,96,97,98,146,199,223 5 -107340 cd06345 PBP1_ABC_ligand_binding_like_10 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,155,207,231 5 -107341 cd06346 PBP1_ABC_ligand_binding_like_11 1 putative ligand binding site 0 0 0 1 74,75,76,98,99,100,148,200,224 5 -107342 cd06347 PBP1_ABC_ligand_binding_like_12 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,147,199,223 5 -107343 cd06348 PBP1_ABC_ligand_binding_like_13 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,148,200,224 5 -107344 cd06349 PBP1_ABC_ligand_binding_like_14 1 putative ligand binding site 0 0 0 1 74,75,76,97,98,99,146,198,222 5 -153138 cd06350 PBP1_GPCR_family_C_like 1 ligand binding site 0 1 1 0 24,121,122,292 5 -153138 cd06350 PBP1_GPCR_family_C_like 2 dimerization interface 0 1 0 0 63,66,108,195 2 -107346 cd06351 PBP1_iGluR_N_LIVBP_like 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,85,149,152,166,168 2 -107347 cd06352 PBP1_NPR_GC_like 1 ligand binding site 0 1 1 0 81,85,151,152,155,158,159,170 5 -107347 cd06352 PBP1_NPR_GC_like 2 chloride binding site 0 1 1 1 75 4 -107347 cd06352 PBP1_NPR_GC_like 3 dimerization interface (closed form) 0 1 1 0 57,61,81,85,90,151,152,155,158 2 -107347 cd06352 PBP1_NPR_GC_like 4 dimerization interface (open form) 0 1 1 0 187,188,208,215 2 -107348 cd06353 PBP1_BmpA_Med_like 1 putative ligand binding site 0 0 0 1 6,7,15,87,133,161,206,223 5 -107349 cd06354 PBP1_BmpA_PnrA_like 1 ligand binding site 0 1 1 0 6,7,16,87,134,165,191,212,229 5 -107350 cd06355 PBP1_FmdD_like 1 putative ligand binding site 0 0 0 1 74,95,98,99,142 5 -107351 cd06356 PBP1_Amide_Urea_BP_like 1 putative ligand binding site 0 0 0 1 74,95,98,99,141 5 -107352 cd06357 PBP1_AmiC 1 ligand binding site 0 1 1 0 74,75,76,95,98,99,141,143,224 5 -107352 cd06357 PBP1_AmiC 2 regulator interaction site 0 1 1 0 77,80,83,87,102,104,142,146,323,355,357,358 0 -107353 cd06358 PBP1_NHase 1 putative ligand binding site 0 0 0 1 74,94,97,98,141 5 -107354 cd06359 PBP1_Nba_like 1 putative ligand binding site 0 0 0 1 72,73,74,93,96,97,143,145,220 5 -107355 cd06360 PBP1_alkylbenzenes_like 1 putative ligand binding site 0 0 0 1 72,73,74,93,96,97,143,145,223 5 -107356 cd06361 PBP1_GPC6A_like 1 putative ligand-binding site 0 0 0 1 32,133,134,311 5 -107356 cd06361 PBP1_GPC6A_like 2 putative dimerization interface 0 0 0 1 70,73,120,207 2 -107357 cd06362 PBP1_mGluR 1 ligand-binding site 0 1 1 0 27,112,133,134,135,183,264,353 5 -107357 cd06362 PBP1_mGluR 2 dimerization interface 0 1 1 0 66,69,117,120,143,207 2 -107358 cd06363 PBP1_Taste_receptor 1 putative ligand-binding site 0 0 0 1 39,137,138,307 5 -107358 cd06363 PBP1_Taste_receptor 2 putative dimerization interface 0 0 0 1 77,80,124,211 2 -107359 cd06364 PBP1_CaSR 1 putative ligand-binding site 0 0 0 1 46,148,149,395 5 -107359 cd06364 PBP1_CaSR 2 putative dimerization interface 0 0 0 1 85,88,135,222 2 -107360 cd06365 PBP1_Pheromone_receptor 1 putative ligand-binding site 0 0 0 1 36,133,134,358 5 -107360 cd06365 PBP1_Pheromone_receptor 2 putative dimerization interface 0 0 0 1 74,77,120,207 2 -107361 cd06366 PBP1_GABAb_receptor 1 putative ligand-binding site 0 0 0 1 15,96,97,289 5 -107361 cd06366 PBP1_GABAb_receptor 2 putative dimerization interface 0 0 0 1 51,54,83,170 2 -107362 cd06367 PBP1_iGluR_NMDA 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,88,157,160,174,176 2 -107363 cd06368 PBP1_iGluR_non_NMDA_like 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,84,144,147,161,163 2 -107364 cd06369 PBP1_GC_C_enterotoxin_receptor 1 putative ligand binding site 0 0 0 1 93,97,168,169,172,175,176,187 5 -107364 cd06369 PBP1_GC_C_enterotoxin_receptor 2 putative chloride binding site 0 0 0 1 58,88,89 4 -107364 cd06369 PBP1_GC_C_enterotoxin_receptor 3 putative dimerization interface (closed form) 0 0 0 1 71,75,93,97,103,168,169,172,175 2 -107364 cd06369 PBP1_GC_C_enterotoxin_receptor 4 putative dimerization interface (open form) 0 0 0 1 201,202,222,229 2 -107365 cd06370 PBP1_Speract_GC_like 1 putative ligand binding site 0 0 0 1 80,84,149,150,153,156,157,168 5 -107365 cd06370 PBP1_Speract_GC_like 2 putative chloride binding site 0 0 0 1 50,76,77 4 -107365 cd06370 PBP1_Speract_GC_like 3 putative dimerization interface (closed form) 0 0 0 1 58,62,80,84,89,149,150,153,156 2 -107365 cd06370 PBP1_Speract_GC_like 4 putative dimerization interface (open form) 0 0 0 1 190,191,211,218 2 -107366 cd06371 PBP1_sensory_GC_DEF_like 1 putative ligand binding site 0 0 0 1 79,83,145,146,149,152,153,164 5 -107366 cd06371 PBP1_sensory_GC_DEF_like 2 putative chloride binding site 0 0 0 1 48,73,74 4 -107366 cd06371 PBP1_sensory_GC_DEF_like 3 putative dimerization interface (closed form) 0 0 0 1 57,61,79,83,88,145,146,149,152 2 -107366 cd06371 PBP1_sensory_GC_DEF_like 4 putative dimerization interface (open form) 0 0 0 1 182,183,207,214 2 -107367 cd06372 PBP1_GC_G_like 1 putative ligand binding site 0 0 0 1 81,85,152,153,156,159,160,171 5 -107367 cd06372 PBP1_GC_G_like 2 putative chloride binding site 0 0 0 1 48,75,76 4 -107367 cd06372 PBP1_GC_G_like 3 putative dimerization interface (closed form) 0 0 0 1 57,61,81,85,90,152,153,156,159 2 -107367 cd06372 PBP1_GC_G_like 4 putative dimerization interface (open form) 0 0 0 1 189,190,210,217 2 -107368 cd06373 PBP1_NPR_like 1 ligand binding site 0 1 1 0 82,83,86,90,108,109,152,159,160,163,166,167,178 5 -107368 cd06373 PBP1_NPR_like 2 chloride binding site 0 1 1 1 49,80,81 4 -107368 cd06373 PBP1_NPR_like 3 dimerization interface (closed form) 0 1 1 0 62,66,82,83,86,90,94,95,159,160,163,166 2 -107368 cd06373 PBP1_NPR_like 4 dimerization interface (open form) 0 1 1 0 194,195,215,222 2 -107369 cd06374 PBP1_mGluR_groupI 1 ligand binding site 0 1 1 0 38,126,147,148,149,197,279,370 5 -107369 cd06374 PBP1_mGluR_groupI 2 dimerization interface 0 1 1 0 77,80,81,84,88,134,135,137,138,139,160,203,206,221 2 -107370 cd06375 PBP1_mGluR_groupII 1 ligand-binding site 0 1 1 0 27,114,135,136,137,185,264,353 5 -107370 cd06375 PBP1_mGluR_groupII 2 dimerization interface 0 0 0 1 66,69,119,122,145,209 2 -107371 cd06376 PBP1_mGluR_groupIII 1 ligand-binding site 0 1 1 0 27,112,133,134,135,183,265,358 5 -107371 cd06376 PBP1_mGluR_groupIII 2 dimerization interface 0 0 0 1 66,69,117,120,143,208 2 -107372 cd06377 PBP1_iGluR_NMDA_NR3 1 putative dimerization interface 0 0 0 1 66,68,69,72,73,104,167,170,182,184 2 -107373 cd06378 PBP1_iGluR_NMDA_NR2 1 putative dimerization interface 0 0 0 1 47,49,50,53,54,87,156,159,173,175 2 -107374 cd06379 PBP1_iGluR_NMDA_NR1 1 putative dimerization interface 0 0 0 1 65,67,68,71,72,107,175,178,194,196 2 -107375 cd06380 PBP1_iGluR_AMPA 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,84,143,146,162,164 2 -107376 cd06381 PBP1_iGluR_delta_like 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,84,155,158,172,174 2 -107377 cd06382 PBP1_iGluR_Kainate 1 putative dimerization interface 0 0 0 1 49,51,52,55,56,85,146,149,163,165 2 -107378 cd06383 PBP1_iGluR_AMPA_Like 1 putative dimerization interface 0 0 0 1 51,53,54,57,58,89,151,154,166,168 2 -107379 cd06384 PBP1_NPR_B 1 ligand binding site 0 0 0 1 82,83,86,90,108,109,154,161,162,165,168,169,180 5 -107379 cd06384 PBP1_NPR_B 2 chloride binding site 0 0 0 1 49,80,81 4 -107379 cd06384 PBP1_NPR_B 3 dimerization interface (closed form) 0 0 0 1 62,66,82,83,86,90,94,95,161,162,165,168 2 -107379 cd06384 PBP1_NPR_B 4 dimerization interface (open form) 0 0 0 1 195,196,216,223 2 -107380 cd06385 PBP1_NPR_A 1 ligand binding site 0 0 0 1 83,84,87,91,109,110,154,161,162,165,168,169,180 5 -107380 cd06385 PBP1_NPR_A 2 chloride binding site 0 1 1 1 49,81,82 4 -107380 cd06385 PBP1_NPR_A 3 dimerization interface (open form) 0 1 1 0 195,196,216,223 2 -107380 cd06385 PBP1_NPR_A 4 dimerization interface (closed form) 0 0 0 1 63,67,83,84,87,91,95,96,161,162,165,168 2 -107381 cd06386 PBP1_NPR_C_like 1 ligand binding site 0 1 1 0 76,77,80,84,102,103,147,153,154,157,160,161,172 5 -107381 cd06386 PBP1_NPR_C_like 2 chloride binding site 0 1 1 1 48,74,75 4 -107381 cd06386 PBP1_NPR_C_like 3 dimerization interface (closed form) 0 1 1 0 56,60,76,77,80,84,88,89,153,154,157,160 2 -107381 cd06386 PBP1_NPR_C_like 4 dimerization interface (open form) 0 0 0 1 187,188,208,215 2 -107382 cd06387 PBP1_iGluR_AMPA_GluR3 1 putative dimerization interface 0 0 0 1 49,51,52,55,56,85,141,144,158,160 2 -107383 cd06388 PBP1_iGluR_AMPA_GluR4 1 putative dimerization interface 0 0 0 1 49,51,52,55,56,85,141,144,158,160 2 -107384 cd06389 PBP1_iGluR_AMPA_GluR2 1 putative dimerization interface 0 0 0 1 43,45,46,49,50,79,135,138,152,154 2 -107385 cd06390 PBP1_iGluR_AMPA_GluR1 1 putative dimerization interface 0 0 0 1 42,44,45,48,49,78,134,137,151,153 2 -107386 cd06391 PBP1_iGluR_delta_2 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,84,155,158,172,174 2 -107387 cd06392 PBP1_iGluR_delta_1 1 putative dimerization interface 0 0 0 1 48,50,51,54,55,84,155,158,172,174 2 -107388 cd06393 PBP1_iGluR_Kainate_GluR5_7 1 putative dimerization interface 0 0 0 1 58,60,61,64,65,94,156,159,173,175 2 -107389 cd06394 PBP1_iGluR_Kainate_KA1_2 1 putative dimerization interface 0 0 0 1 51,53,54,57,58,88,151,154,168,170 2 -99717 cd06395 PB1_Map2k5 1 PB1 interaction surface 0 1 1 1 47,49,51,60 2 -99718 cd06396 PB1_NBR1 1 PB1 interaction site 0 0 1 1 45,47,49,58 2 -99721 cd06399 PB1_P40 1 PB1 interaction site 0 1 1 1 51,53,55,64 2 -99721 cd06399 PB1_P40 2 hydrophobic pocket 0 0 1 1 19,27,35,82,84 0 -99724 cd06403 PB1_Par6 1 PB1 interaction surface 0 1 1 1 1,3,10,11,12,14,29,33,73 2 -99725 cd06404 PB1_aPKC 1 PB1 interaction surface 0 1 1 1 46,48,50,59 2 -99726 cd06405 PB1_Mekk2_3 1 PB1 interaction 0 1 1 1 1,3,9,10,11,27,69,72 2 -99727 cd06406 PB1_P67 1 PB1 interaction surface 0 1 1 1 5,15,32,68 2 -99732 cd06411 PB1_p51 1 putative interaction surface of the p51 PB1 domain 0 0 0 0 3,12,28 0 -119374 cd06412 GH25_CH-type 1 active site 0 0 1 0 4,28,31,57,59,93,95,133,155,177,187 1 -119375 cd06413 GH25_muramidase_1 1 active site 0 0 1 0 6,30,59,61,91,93,129,149,169,184 1 -119376 cd06414 GH25_LytC-like 1 active site 0 0 1 0 4,28,60,62,94,96,131,152,170,185 1 -119377 cd06415 GH25_Cpl1-like 1 active site 0 0 1 0 4,27,56,58,93,95,126,150,178,189 1 -119378 cd06416 GH25_Lys1-like 1 active site 0 0 1 0 4,28,57,59,92,94,128,152,178,191 1 -119379 cd06417 GH25_LysA-like 1 active site 0 0 1 0 4,25,54,56,85,87,118,138,168,183 1 -119380 cd06418 GH25_BacA-like 1 active site 0 0 1 0 15,39,70,72,111,113,146,167,188,207 1 -119381 cd06419 GH25_muramidase_2 1 active site 0 0 1 0 11,35,64,66,96,98,132,151,168,185 1 -133042 cd06420 GT2_Chondriotin_Pol_N 1 Substrate binding site 0 1 1 0 3,4,5,7,33,64,66,70,86,88,128,153,154,179 0 -133042 cd06420 GT2_Chondriotin_Pol_N 2 metal binding site 0 1 0 0 88,179 0 -133043 cd06421 CESA_CelA_like 1 DXD motif 0 0 1 1 91,92,93 0 -133044 cd06422 NTP_transferase_like_1 1 Substrate binding site 0 0 1 1 4,5,6,50,103,105 0 -133044 cd06422 NTP_transferase_like_1 2 metal binding site 0 0 1 1 105,210,212 0 -133045 cd06423 CESA_like 1 DXD motif 0 0 1 1 85,86,87 0 -133046 cd06424 UGGPase 1 Substrate Binding Site 0 0 0 1 5,7,8,60,118,120,121,149,150,186,187 0 -133047 cd06425 M1P_guanylylT_B_like_N 1 probable substrate binding site 0 0 1 1 5,6,7,8,22,107,108,109,171 0 -133047 cd06425 M1P_guanylylT_B_like_N 2 metal binding site 0 0 1 1 109,217,219 0 -133048 cd06426 NTP_transferase_like_2 1 Substrate binding site 0 0 1 1 3,4,5,49,101,103 0 -133048 cd06426 NTP_transferase_like_2 2 metal binding site 0 0 1 1 103,208,210 0 -133049 cd06427 CESA_like_2 1 DXD motif 0 0 1 1 91,92,93 0 -133050 cd06428 M1P_guanylylT_A_like_N 1 putative substrate binding site 0 0 1 1 3,4,5,6,22,109,110,111,175 0 -133050 cd06428 M1P_guanylylT_A_like_N 2 metal binding site 0 0 1 1 111,242,244 0 -133051 cd06429 GT8_like_1 1 putative ligand binding site 0 0 1 1 5,6,7,8,9,103,118,120,121,122,147,150,151,152,190,191,212,213,231,233,234,237 0 -133051 cd06429 GT8_like_1 2 metal binding site 0 0 0 1 120,122,231 0 -133052 cd06430 GT8_like_2 1 putative ligand binding site 0 0 1 1 5,6,7,9,10,86,101,103,104,105,133,157,158,159,203,204,229,230,250,252,253,256 0 -133052 cd06430 GT8_like_2 2 metal binding site 0 0 0 1 103,105,250 0 -133053 cd06431 GT8_LARGE_C 1 putative ligand binding site 0 0 1 1 5,6,7,10,11,86,102,104,105,106,134,158,159,160,196,197,222,223,242,244,245,248 0 -133053 cd06431 GT8_LARGE_C 2 metal binding site 0 0 0 1 104,106,242 0 -133054 cd06432 GT8_HUGT1_C_like 1 putative ligand binding site 0 0 1 1 5,6,7,10,11,84,100,102,103,104,129,158,159,160,196,197,220,221,235,237,238,243 0 -133054 cd06432 GT8_HUGT1_C_like 2 metal binding site 0 0 0 1 102,104,235 0 -133055 cd06433 GT_2_WfgS_like 1 metal binding site 0 0 0 1 33,168,170 0 -133056 cd06434 GT2_HAS 1 DXD motif 0 0 1 1 84,85,86 0 -133057 cd06435 CESA_NdvC_like 1 Ligand binding site 0 0 1 1 4,6,93 0 -133057 cd06435 CESA_NdvC_like 2 DXD motif 0 0 1 1 91,92,93 0 -133058 cd06436 GlcNAc-1-P_transferase 1 DXD motif 0 0 1 1 96,97,98 0 -133059 cd06437 CESA_CaSu_A2 1 DXD motif 0 0 1 1 94,95,96 0 -133060 cd06438 EpsO_like 1 DXD motif 0 0 1 1 88,89,90 0 -133061 cd06439 CESA_like_1 1 DXD motif 0 0 1 1 116,117,118 0 -133062 cd06442 DPM1_like 1 Ligand binding site 0 0 1 1 3,5,87 0 -133062 cd06442 DPM1_like 2 DXD motif 0 0 1 1 85,86,87 0 -133062 cd06442 DPM1_like 3 Putative Catalytic site 0 0 1 1 34,86,87 0 -176473 cd06444 DNA_pol_A 1 active site 0 1 1 1 35,39,42,43,67,68,69,71,73,74,75,76,108,109,137,154,158,260,267,298,299,300 1 -176473 cd06444 DNA_pol_A 2 catalytic site 0 1 1 1 108,109,111,137,154,158,300 1 -176473 cd06444 DNA_pol_A 3 DNA binding site 0 1 1 1 35,39,42,43,67,68,69,71,73,74,75,76,166,259,260,263,267,298,299,300 3 -119438 cd06445 ATase 1 active site 0 0 1 1 19,50,51,53,77 1 -119438 cd06445 ATase 2 DNA binding site 0 1 1 1 0,1,19,20,28,31,33,34,36,39,40,42,50,55,62 3 -107207 cd06446 Trp-synth_B 1 catalytic residue 0 1 1 1 65 1 -107207 cd06446 Trp-synth_B 2 pyridoxal 5'-phosphate binding site 0 1 1 1 64,65,92,168,210,211,212,213,214,328,354 5 -107208 cd06447 D-Ser-dehyd 1 catalytic residue 0 0 0 1 91 1 -107208 cd06447 D-Ser-dehyd 2 pyridoxal 5'-phosphate binding pocket 0 0 0 1 90,91,143,252,253,254,255,256,359,396,397 5 -107209 cd06448 L-Ser-dehyd 1 catalytic residue 0 1 1 1 31 1 -107209 cd06448 L-Ser-dehyd 2 pyridoxal 5'-phosphate binding site 0 1 1 1 31,60,164,165,166,167,168 5 -107210 cd06449 ACCD 1 catalytic residue 0 1 1 1 35 1 -107210 cd06449 ACCD 2 pyridoxal 5'-phosphate binding site 0 1 1 1 34,35,38,63,182,183,184,185,186,304,305,306 5 -99743 cd06450 DOPA_deC_like 1 catalytic residue 0 1 0 1 215 1 -99743 cd06450 DOPA_deC_like 2 pyridoxal 5'-phosphate binding site 0 1 0 0 65,66,69,154,183,186,212,215 5 -99744 cd06451 AGAT_like 1 catalytic residue 0 1 1 1 185 1 -99744 cd06451 AGAT_like 2 pyridoxal 5'-phosphate binding site 0 1 1 1 57,58,59,84,134,159,161,184,185 5 -99744 cd06451 AGAT_like 3 homodimer interface 0 1 0 0 14,17,24,26,56,57,63,87,90,94,95,184,191,216,234,235,236,237,311 2 -99745 cd06452 SepCysS 1 catalytic residue 0 1 1 0 200 1 -99745 cd06452 SepCysS 2 pyridoxal 5'-phosphate binding site 0 1 1 0 67,68,71,92,174,176,177,197,199,200 5 -99745 cd06452 SepCysS 3 dimer interface 0 1 0 0 17,23,68,69,76,93,98,100,101,207,233,234,236,237 2 -99746 cd06453 SufS_like 1 catalytic residue 0 0 1 1 200 1 -99746 cd06453 SufS_like 2 pyridoxal 5'-phosphate binding pocket 0 0 1 1 69,70,73,97,174,176,177,197,199,200 5 -99747 cd06454 KBL_like 1 catalytic residue 0 1 1 1 201 1 -99747 cd06454 KBL_like 2 pyridoxal 5'-phosphate binding site 0 1 1 0 68,69,70,94,138,142,167,169,170,198,201 5 -99747 cd06454 KBL_like 3 substrate-cofactor binding pocket 0 1 1 0 8,68,69,70,94,138,142,143,167,169,170,198,201,325 0 -341050 cd06455 M3A_TOP 1 Zn binding site HHE 1 1 1 436,440,465 4 -341050 cd06455 M3A_TOP 2 active site 0 0 1 1 436,437,440,465,567,572,573,575,576,579 1 -341051 cd06456 M3A_DCP 1 Zn binding site HHE 1 1 1 444,448,473 4 -341051 cd06456 M3A_DCP 2 active site 0 1 1 1 397,398,399,444,445,448,473,476,525,567,568,574,575,579,580,581,585,588 1 -341052 cd06457 M3A_MIP 1 metal binding site HHE 0 1 1 408,412,437 4 -341052 cd06457 M3A_MIP 2 active site 0 0 1 1 353,354,355,408,409,412,437,440,489,538,539,543,544,546,547,550 1 -341053 cd06459 M3B_PepF 1 Zn binding site HHE 1 1 1 339,343,367 4 -341053 cd06459 M3B_PepF 2 active site 0 0 1 1 339,340,343,367,465,472,476 1 -341054 cd06460 M32_Taq 1 metal binding site HHE 1 1 1 252,256,282 4 -341054 cd06460 M32_Taq 2 active site 0 1 1 1 252,253,256,282,395,404,407 1 -341055 cd06461 M2_ACE 1 Zn binding site HHE 1 1 1 338,342,366 4 -341055 cd06461 M2_ACE 2 active site 0 1 1 1 308,309,310,311,332,338,339,342,346,365,366,370,412,466,467,468,473,475,478 1 -119396 cd06462 Peptidase_S24_S26 1 Catalytic site 0 1 1 1 8,46 1 -107221 cd06464 ACD_sHsps-like 1 putative dimer interface 0 1 1 1 0,1,2,3,4,11,13,15,16,59,79,80 2 -107222 cd06465 p23_hB-ind1_like 1 Hsp90 binding site 0 1 0 1 6,18,19,63,68,83,94,96,97,99,100,102 0 -107227 cd06470 ACD_IbpA-B_like 1 putative dimer interface 0 0 1 1 2,3,4,5,6,15,17,19,20,63,81,82 2 -107228 cd06471 ACD_LpsHSP_like 1 putative dimer interface 0 0 1 1 3,4,5,6,7,14,16,18,19,65,84,85 2 -107229 cd06472 ACD_ScHsp26_like 1 dimer interface 0 1 1 1 0,1,2,3,4,5,6,13,15,17,18,40,45,48,49,50,51,52,53,54,55,56,58,63,82,83,84 2 -107230 cd06475 ACD_HspB1_like 1 putative dimer interface 0 0 1 1 0,1,2,3,4,14,16,18,19,56,77,78 2 -107231 cd06476 ACD_HspB2_like 1 putative dimer interface 0 0 1 1 0,1,2,3,4,11,13,15,16,53,74,75 2 -107232 cd06477 ACD_HspB3_Like 1 putative dimer interface 0 0 1 1 0,1,2,3,4,11,13,15,16,53,74,75 2 -107233 cd06478 ACD_HspB4-5-6 1 putative dimer interface 0 0 1 1 1,2,3,4,5,11,13,15,16,53,74,75 2 -107234 cd06479 ACD_HspB7_like 1 putative dimer interface 0 0 1 1 1,2,3,4,5,12,14,16,17,51,72,73 2 -107235 cd06480 ACD_HspB8_like 1 putative dimer interface 0 0 1 1 1,2,3,4,5,19,21,23,24,61,82,83 2 -107236 cd06481 ACD_HspB9_like 1 putative dimer interface 0 0 1 1 0,1,2,3,4,11,13,15,16,57,78,79 2 -107237 cd06482 ACD_HspB10 1 putative dimer interface 0 0 1 1 0,1,2,3,4,12,14,16,17,57,78,79 2 -107245 cd06497 ACD_alphaA-crystallin_HspB4 1 putative dimer interface 0 0 1 1 4,5,6,7,8,14,16,18,19,56,77,78 2 -107246 cd06498 ACD_alphaB-crystallin_HspB5 1 putative dimer interface 0 0 1 1 1,2,3,4,5,11,13,15,16,53,74,75 2 -133460 cd06499 GT_MraY-like 1 Mg++ binding site 0 0 1 1 45,46 4 -133460 cd06499 GT_MraY-like 2 putative catalytic motif 0 0 1 1 167,168,169,170 1 -99748 cd06502 TA_like 1 catalytic residue 0 1 1 1 195 1 -99748 cd06502 TA_like 2 pyridoxal 5'-phosphate binding site 0 1 1 0 55,56,59,133,164,167,192,195 5 -99748 cd06502 TA_like 3 tetramer interface 0 1 1 0 2,5,6,7,8,14,17,18,19,53,56,57,64,82,83,84,85,86,87,88,89,96,97,98,194,195,201,216,217,220,221,231,232,307 2 -119382 cd06522 GH25_AtlA-like 1 active site 0 0 1 0 4,31,60,62,96,98,128,149,171,186 1 -119383 cd06523 GH25_PlyB-like 1 active site 0 0 1 0 3,28,57,59,89,91,120,140,157,172 1 -119384 cd06524 GH25_YegX-like 1 active site 0 0 1 0 3,31,60,62,93,95,128,149,172,187 1 -119385 cd06525 GH25_Lyc-like 1 active site 0 0 1 1 3,27,56,58,88,90,122,142,164,179 1 -107247 cd06526 metazoan_ACD 1 putative dimer interface 0 0 1 1 0,1,2,3,4,11,13,15,16,53,74,75 2 -132725 cd06528 RNAP_A'' 1 Rpb1_C (A") - Rpb1_N (A') interaction site 0 1 1 1 4,7,11,16,22,25,29,30,31,33,34,36,37,38,40,41,42,43,44,45,47,48,49,51,52,53,54,55,58,80,84,277,278,279,281,282,284,285,286,288,289,292,299,304,305,309,311,316,318,320,321,325,326,328,329,330,331,332,333,335,336,337,338,339,340,341,347,353,355 0 -132725 cd06528 RNAP_A'' 2 Rpb1_C (A") - Rpb2 (B) interaction site 0 1 1 1 41,45,324,325,328,343,346,349,353 0 -132725 cd06528 RNAP_A'' 3 Rpb1_C (A") - Rpb5 (H) interaction site 0 1 1 1 0,2,239,240,252,253,254,255,256,257,258,260,262,281,291,292 0 -132725 cd06528 RNAP_A'' 4 Rpb1_C (A") - Rpb6 (K) interaction site 0 1 1 1 0,35,37,40,352,353,356,357,358,359,360,361 0 -132725 cd06528 RNAP_A'' 5 Rpb1_C (A") - Rpb7 (E) interaction site 0 1 1 1 353,354,359,360,361,362 0 -132725 cd06528 RNAP_A'' 6 DNA binding site 0 0 1 1 86,301,318,319,322 3 -132725 cd06528 RNAP_A'' 7 cleft 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,89,90,91,92,93,94,95,96,97,98,99,100,106,107,108,109,110,111,112,113,114,115,116,117,118,119,203,204,205,206,207,208,209,210,211,212,213,214,215,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,308,309,310 0 -132725 cd06528 RNAP_A'' 8 clamp 0 0 1 1 310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351 0 -119397 cd06529 S24_LexA-like 1 Catalytic site 0 0 1 1 8,44 1 -119398 cd06530 S26_SPase_I 1 Catalytic site 0 1 1 1 8,51 1 -143395 cd06534 ALDH-SF 1 catalytic residues 0 0 1 0 102,200,231,234 1 -143395 cd06534 ALDH-SF 2 NAD(P) binding site 0 1 0 0 98,99,100,101,102,110,125,127,128,176,177,178,179,182,185,186,200,201,202,234,271,273,299,338 5 -119368 cd06535 CIDE_N_CAD 1 CAD/ICAD heterodimer interaction site 0 1 1 1 5,14,15,17,18,28,32 2 -119369 cd06536 CIDE_N_ICAD 1 CAD/ICAD heterodimer interaction site 0 1 1 1 49,51,52,53,54,55,57,58,77,79 2 -119370 cd06537 CIDE_N_B 1 putative heterodimer interaction sites 0 0 1 1 5,14,15,17,18,28,32,46,48,49,54,55,74,76 2 -119371 cd06538 CIDE_N_FSP27 1 putative heterodimer interaction sites 0 0 1 1 5,14,15,17,18,28,32,46,48,49,54,55,74,76 2 -119372 cd06539 CIDE_N_A 1 putative heterodimer interaction sites 0 0 1 1 5,14,15,17,18,28,32,47,49,50,55,56,75,77 2 -119359 cd06542 GH18_EndoS-like 1 active site 0 0 1 1 5,33,108,110,112,173,175,235 1 -119360 cd06543 GH18_PF-ChiA-like 1 active site 0 1 1 0 5,32,72,108,110,112,178,179,225,259 1 -119361 cd06544 GH18_narbonin 1 putative carbohydrate binding site 0 0 1 1 4,31,117,119,121,180,245,247 5 -119362 cd06545 GH18_3CO4_chitinase 1 putative active site 0 0 1 1 3,29,103,105,107,160,162,163,236 1 -119363 cd06546 GH18_CTS3_chitinase 1 putative active site 0 0 1 1 116,118,120,183,185,186,250 1 -119364 cd06547 GH85_ENGase 1 putative active site 0 0 1 1 8,35,107,109,111,177,179,180 1 -119365 cd06548 GH18_chitinase 1 active site 0 1 1 0 3,32,129,131,133,206,208,209,261,316 1 -119366 cd06549 GH18_trifunctional 1 putative active site 0 0 1 1 3,30,108,110,112,166,168,169,287 1 -119348 cd06550 TM_ABC_iron-siderophores_like 1 dimer interface 0 1 1 1 23,25,30,84,86,87,90,91,94,95,98,101,102,104,115,116,119,195,246,249,250,253,256,257,260 2 -119348 cd06550 TM_ABC_iron-siderophores_like 2 ABC-ATPase subunit interface 0 1 1 0 18,22,23,24,145,146,148,149,150,152,153,155,156,157,158,159,160,162,163,164,205,212 0 -119348 cd06550 TM_ABC_iron-siderophores_like 3 putative PBP binding regions 0 1 1 1 104,129,187,191,235,243 0 -153244 cd06551 LPLAT 1 putative acyl-acceptor binding pocket 0 1 1 0 33,36,38,58,59,60,61,109,110,111 0 -119341 cd06556 ICL_KPHMT 1 active site 0 1 1 0 36,38,39,40,50,78,80,108,130,175,196,198,208 1 -119341 cd06556 ICL_KPHMT 2 metal binding site 0 1 1 1 78,80,106,108 4 -119341 cd06556 ICL_KPHMT 3 oligomerization interface 0 1 1 1 14,15,16,17,19,20,21,22,23,25,26,29,31,32,33,40,41,43,44,45,48,49,52,53,54,55,57,58,61,62,64,65,68,69,81,82,84,91,92,95,96,99,103,115,118,119,121,122,123,124,125,126,170,231,232,233,234,235,237,238,239 2 -119342 cd06557 KPHMT-like 1 active site 0 1 1 0 17,36,38,39,40,78,108,132,137,177,208,210 1 -119342 cd06557 KPHMT-like 2 metal binding site 0 1 1 0 39,78,108 4 -119342 cd06557 KPHMT-like 3 oligomerization interface 0 1 1 1 0,1,20,21,22,23,26,41,43,44,45,46,47,48,52,53,58,61,62,65,68,81,82,92,96,99,100,105,123,124,125,126,127,128,138,139,141,142,143,144,172,212,215,216,230,233,234,235,236,237 2 -119339 cd06558 crotonase-like 1 substrate binding site 0 1 1 1 19,21,53,57,58,59,60,61,102,104,105,106,128,129,132 5 -119339 cd06558 crotonase-like 2 trimer interface 0 1 1 1 86,94,115,116,117,118,130,131,132,133,139,141,142,143,145,146,151,152,154,155,157,158,161,172,175,190,193,194 2 -119339 cd06558 crotonase-like 3 oxyanion hole (OAH) forming residues 0 0 1 1 59,106 0 -143472 cd06559 Endonuclease_V 1 Active_site 0 1 1 1 31,33,34,69,71,72,73,74,99,100,101,105,110,111,127,128,129,130,131,202,206 1 -143473 cd06560 PriL 1 PriL-PriS interface 0 1 1 1 113,114,117,121,134,135,136,137,138,139 2 -132880 cd06561 AlkD_like 1 Active site 0 0 1 1 5,85,89,122,154,155,162 1 -119332 cd06562 GH20_HexA_HexB-like 1 active site 0 1 1 1 11,40,94,157,158,207,227,252,254,296,298 1 -119333 cd06563 GH20_chitobiase-like 1 active site 0 1 1 1 11,110,173,174,223,240,265,267,315,317 1 -119334 cd06564 GH20_DspB_LnbB-like 1 active site 0 1 1 0 10,39,106,165,166,198,220,246,294,296 1 -119335 cd06565 GH20_GcnA-like 1 putative active site 0 0 1 1 9,84,139,140,183,209,275,277 1 -143475 cd06567 Peptidase_S41 1 Active site serine 0 1 1 0 156 1 -119336 cd06568 GH20_SpHex_like 1 active site 0 1 1 1 11,99,162,163,210,238,240,287,289 1 -119337 cd06569 GH20_Sm-chitobiase-like 1 active site 0 1 1 0 15,121,162,163,207,208,259,284,314,316,317,328,330,388,390 1 -119338 cd06570 GH20_chitobiase-like_1 1 active site 0 0 1 1 11,92,155,156,205,222,245,247,270,272 1 -119330 cd06571 Bac_DnaA_C 1 DnaA box-binding interface 0 1 1 0 23,31,32,39,45,46,47,56,57,58,59,60,63,66,67 3 -119329 cd06572 Histidinol_dh 1 catalytic residues 0 1 1 1 296,297 1 -119329 cd06572 Histidinol_dh 2 NAD binding site 0 1 1 1 26,98,100,101,109,130,157,158,160,181,182,183,185,186,231 5 -119329 cd06572 Histidinol_dh 3 zinc binding site 0 1 1 1 228,231,330,389 4 -119329 cd06572 Histidinol_dh 4 substrate binding site 0 1 1 1 108,206,228,231,296,297,326,330,331,337,384,386,389 5 -119329 cd06572 Histidinol_dh 5 product binding site 0 1 1 1 106,108,206,231,296,297,326,330,331,337,384,386,389 0 -119329 cd06572 Histidinol_dh 6 dimerization interface 0 1 1 0 51,52,55,56,58,61,62,65,66,69,70,77,79,83,84,85,86,87,90,92,104,105,106,107,108,176,191,195,219,220,223,224,226,227,228,230,231,301,306,309,310,312,313,314,315,316,317,318,319,320,322,324,325,327,328,329,330,331,333,335,345,346,348,349,350,351,352,354,355,358,359,360,361,362,363,364,365,380,381,383,384,385,386,387,388,389 2 -119320 cd06574 TM_PBP1_branched-chain-AA_like 1 TM-ABC transporter signature motif 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -119440 cd06578 HemD 1 active site 0 1 1 0 4,56,57,58,86,129,153,155,179,180,181,182,183 1 -119321 cd06579 TM_PBP1_transp_AraH_like 1 TM-ABC transporter signature motif 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -119322 cd06580 TM_PBP1_transp_TpRbsC_like 1 TM-ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -119323 cd06581 TM_PBP1_LivM_like 1 TM-ABC transporter signature motif 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -119324 cd06582 TM_PBP1_LivH_like 1 TM-ABC transporter signature motif 0 0 1 1 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -133475 cd06583 PGRP 1 substrate binding site 0 1 1 0 8,9,33,37,51,58,59,65,112,116,119,120,121 5 -133475 cd06583 PGRP 2 Zn binding residues 0 1 1 1 7,112,121 4 -133475 cd06583 PGRP 3 amidase catalytic site 0 0 1 1 7,37,112,119,121 1 -132915 cd06586 TPP_enzyme_PYR 1 TPP binding site 0 1 1 1 18,43,72 5 -132915 cd06586 TPP_enzyme_PYR 2 PYR/PP interface 0 1 1 1 13,18,27,38,39,42,45,48,49,51,52,53,56,75,76,79 2 -132915 cd06586 TPP_enzyme_PYR 3 dimer interface 0 1 1 1 18,27,38,39,42,71,72,74,112,114 2 -319899 cd06588 PhnB_like 1 dimer interface 0 1 0 0 0,1,2,3,4,5,21,56,57,60,76,77,78,79,80,81,83,87,116,126 2 -269876 cd06589 GH31 1 active site 0 1 1 0 45,46,111,113,114,164,177,180,237,239 1 -269876 cd06589 GH31 2 catalytic site DD 0 1 1 113,180 1 -260000 cd06590 RNase_HII_bacteria_HIII_like 1 active site DED[ED] 1 1 1 4,5,107,136 1 -260000 cd06590 RNase_HII_bacteria_HIII_like 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,8,9,39,78,79,80,107,108,109,134,136,150,173,200,201,202 3 -269877 cd06591 GH31_xylosidase_XylS 1 active site 0 1 1 0 17,45,46,86,150,152,208,222,225,258,292 1 -269877 cd06591 GH31_xylosidase_XylS 2 catalytic site DD 0 1 1 152,225 1 -269878 cd06592 GH31_NET37 1 putative active site 0 0 1 1 39,40,147,149,150,188,206,283,285 1 -269878 cd06592 GH31_NET37 2 catalytic site DD 0 1 1 149,206 1 -269879 cd06593 GH31_xylosidase_YicI 1 active site 0 1 1 0 45,84,154,156,157,205,218,221,254,279 1 -269879 cd06593 GH31_xylosidase_YicI 2 catalytic site DD 0 1 1 156,221 1 -269879 cd06593 GH31_xylosidase_YicI 3 homotrimer interface 0 1 1 0 91,92,100 2 -269879 cd06593 GH31_xylosidase_YicI 4 homohexamer (dimer of homotrimers) interface 0 1 1 0 223,226,231 2 -269880 cd06594 GH31_glucosidase_YihQ 1 putative active site 0 0 1 1 44,163,213,227,230,266,299 1 -269880 cd06594 GH31_glucosidase_YihQ 2 catalytic site DD 0 1 1 163,230 1 -269881 cd06595 GH31_u1 1 putative active site 0 0 1 1 46,153,192,205,208,241,267 1 -269881 cd06595 GH31_u1 2 catalytic site DD 0 1 1 153,208 1 -269882 cd06596 GH31_CPE1046 1 putative active site 0 0 1 1 65,115,150,163,166,199,224 1 -269882 cd06596 GH31_CPE1046 2 catalytic site DD 0 1 1 115,166 1 -269883 cd06597 GH31_transferase_CtsY 1 active site 0 1 1 0 17,45,46,50,53,83,126,163,212,228,261,289 1 -269883 cd06597 GH31_transferase_CtsY 2 catalytic site DD 0 1 1 163,228 1 -269884 cd06598 GH31_transferase_CtsZ 1 active site 0 1 1 0 17,45,46,90,127,128,161,163,164,168,214,228,231,264,291,293 1 -269884 cd06598 GH31_transferase_CtsZ 2 catalytic site DD 0 1 1 163,231 1 -269885 cd06599 GH31_glycosidase_Aec37 1 putative active site 0 0 1 1 49,163,218,231,234,267,293 1 -269885 cd06599 GH31_glycosidase_Aec37 2 catalytic site DD 0 1 1 163,234 1 -269886 cd06600 GH31_MGAM-like 1 active site 0 1 1 0 17,45,46,82,109,111,112,150,163,166,224 1 -269886 cd06600 GH31_MGAM-like 2 catalytic site DD 0 1 1 111,166 1 -269887 cd06601 GH31_lyase_GLase 1 active site 0 1 1 0 17,45,82,96,97,135,137,138,155,212,225,228,261,294 1 -269887 cd06601 GH31_lyase_GLase 2 catalytic site DD 0 1 1 137,228 1 -269888 cd06602 GH31_MGAM_SI_GAA 1 active site 0 1 1 0 17,45,46,82,121,156,158,159,249,262,265,298,323 1 -269888 cd06602 GH31_MGAM_SI_GAA 2 catalytic site DD 0 1 1 158,265 1 -269889 cd06603 GH31_GANC_GANAB_alpha 1 putative active site 0 0 1 1 45,158,218,231,234,267,292 1 -269889 cd06603 GH31_GANC_GANAB_alpha 2 catalytic site DD 0 1 1 158,234 1 -269890 cd06604 GH31_glucosidase_II_MalA 1 active site 0 1 1 0 17,45,46,82,119,153,155,156,218,231,234,236,267,292 1 -269890 cd06604 GH31_glucosidase_II_MalA 2 catalytic site DD 0 1 1 155,234 1 -270782 cd06605 PKc_MAPKK 1 ATP binding site 0 1 1 0 8,9,10,11,12,14,16,29,31,61,77,78,79,80,83,84,86,87,126,128,129,131,142 5 -270782 cd06605 PKc_MAPKK 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,124,126,127,128,129,131,141,142,145,157,158,159,160,162,189,198 1 -270782 cd06605 PKc_MAPKK 3 polypeptide substrate binding site 0 0 1 1 11,12,124,126,127,128,145,157,158,159,160,162,189,198 2 -270782 cd06605 PKc_MAPKK 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,157,158,159,160,161,162 0 -270783 cd06606 STKc_MAPKKK 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,82,83,84,87,127,128,130,140,141,142 5 -270783 cd06606 STKc_MAPKKK 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,83,84,87,123,125,126,127,128,130,140,141,144,160,161,162,163,165,192,201 1 -270783 cd06606 STKc_MAPKKK 3 polypeptide substrate binding site 0 0 1 1 10,11,123,125,126,127,144,160,161,162,163,165,192,201 2 -270783 cd06606 STKc_MAPKKK 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,160,161,162,163,164,165 0 -270784 cd06607 STKc_TAO 1 ATP binding site 0 1 1 0 8,9,10,11,12,16,29,31,63,79,80,81,82,129,130,132,143 5 -270784 cd06607 STKc_TAO 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,84,85,88,125,127,128,129,130,132,142,143,146,156,157,158,159,161,191,200 1 -270784 cd06607 STKc_TAO 3 polypeptide substrate binding site 0 0 1 1 11,12,125,127,128,129,146,156,157,158,159,161,191,200 2 -270784 cd06607 STKc_TAO 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270785 cd06608 STKc_myosinIII_N_like 1 ATP binding site 0 1 1 1 13,14,15,16,17,21,34,36,65,87,88,89,90,93,94,97,141,142,144,155 5 -270785 cd06608 STKc_myosinIII_N_like 2 active site 0 0 1 1 13,14,15,16,17,21,34,36,65,87,88,89,90,93,94,97,137,139,140,141,142,144,154,155,158,172,173,174,175,177,209,218 1 -270785 cd06608 STKc_myosinIII_N_like 3 polypeptide substrate binding site 0 0 1 1 16,17,137,139,140,141,158,172,173,174,175,177,209,218 2 -270785 cd06608 STKc_myosinIII_N_like 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 0 -270786 cd06609 STKc_MST3_like 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,48,61,77,78,79,80,83,84,87,126,127,129,140 5 -270786 cd06609 STKc_MST3_like 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,122,124,125,126,127,129,139,140,143,157,158,159,160,162,189,198 1 -270786 cd06609 STKc_MST3_like 3 polypeptide substrate binding site 0 0 1 1 11,12,122,124,125,126,143,157,158,159,160,162,189,198 2 -270786 cd06609 STKc_MST3_like 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162 0 -270787 cd06610 STKc_OSR1_SPAK 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,128,130,131,133,144 5 -270787 cd06610 STKc_OSR1_SPAK 2 dimer interface 0 1 1 1 127,128,152,153,154,166,167,168,169,170,171,172,173,174,175,176,177,178,179,181,182,183,187,190,191,194,195,198,204,211,214,215,216,218,219,249,251,252,254 2 -270787 cd06610 STKc_OSR1_SPAK 3 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,126,128,129,130,131,133,143,144,147,165,166,167,168,170,198,207 1 -270787 cd06610 STKc_OSR1_SPAK 4 polypeptide substrate binding site 0 0 1 1 11,12,126,128,129,130,147,165,166,167,168,170,198,207 2 -270787 cd06610 STKc_OSR1_SPAK 5 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,162,163,164,165,166,167,168,169,170 0 -132942 cd06611 STKc_SLK_like 1 ATP binding site 0 1 1 1 12,13,14,15,16,20,33,35,51,64,78,80,81,82,83,86,87,90,131,132,134,144,145 5 -132942 cd06611 STKc_SLK_like 2 active site 0 0 1 1 12,13,14,15,16,20,33,35,64,80,81,82,83,86,87,90,127,129,130,131,132,134,144,145,148,162,163,164,165,167,199,208 1 -132942 cd06611 STKc_SLK_like 3 polypeptide substrate binding site 0 0 1 1 15,16,127,129,130,131,148,162,163,164,165,167,199,208 2 -132942 cd06611 STKc_SLK_like 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -132943 cd06612 STKc_MST1_2 1 ATP binding site 0 0 1 1 10,11,12,13,14,18,31,33,60,76,77,78,79,82,83,86,127,128,130,141 5 -132943 cd06612 STKc_MST1_2 2 active site 0 0 1 1 10,11,12,13,14,18,31,33,60,76,77,78,79,82,83,86,123,125,126,127,128,130,140,141,144,158,159,160,161,163,190,199 1 -132943 cd06612 STKc_MST1_2 3 polypeptide substrate binding site 0 0 1 1 13,14,123,125,126,127,144,158,159,160,161,163,190,199 2 -132943 cd06612 STKc_MST1_2 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163 0 -270788 cd06613 STKc_MAP4K3_like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,59,75,76,77,78,81,82,85,121,123,124,125,126,128,138,139,142,156,157,158,159,161,191,200 1 -270788 cd06613 STKc_MAP4K3_like 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,59,75,76,77,78,81,82,85,125,126,128,139 5 -270788 cd06613 STKc_MAP4K3_like 3 polypeptide substrate binding site 0 0 1 1 10,11,121,123,124,125,142,156,157,158,159,161,191,200 2 -270788 cd06613 STKc_MAP4K3_like 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,152,153,154,155,156,157,158,159,160,161 0 -270789 cd06614 STKc_PAK 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,78,80,81,84,125,126,128,138,139 5 -270789 cd06614 STKc_PAK 2 polypeptide substrate binding site 0 1 1 1 10,11,121,123,124,125,142,155,156,157,158,159,161,188,197,198,199 2 -270789 cd06614 STKc_PAK 3 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,78,80,81,84,121,123,124,125,126,128,138,139,142,155,156,157,158,159,161,188,197,198,199 1 -270789 cd06614 STKc_PAK 4 activation loop (A-loop) 0 1 1 1 138,139,140,141,142,143,144,145,146,147,148,149,154,155,156,157,158,159,160,161 0 -132946 cd06615 PKc_MEK 1 ATP binding site 0 1 1 0 8,9,10,11,12,14,16,29,31,61,77,78,79,80,83,84,86,87,126,128,129,131,142 5 -132946 cd06615 PKc_MEK 2 homodimer interface 0 1 1 0 15,35,36,71,164,168,169,170,171,239,242,243,246,247 2 -132946 cd06615 PKc_MEK 3 noncompetitive inhibitor binding site 0 1 1 1 12,31,49,52,61,75,77,142,143,144,145,146,149,153 5 -132946 cd06615 PKc_MEK 4 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,124,126,127,128,129,131,141,142,145,157,158,159,160,162,189,198 1 -132946 cd06615 PKc_MEK 5 polypeptide substrate binding site 0 0 1 1 11,12,124,126,127,128,145,157,158,159,160,162,189,198 2 -132946 cd06615 PKc_MEK 6 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270790 cd06616 PKc_MKK4 1 ATP binding site 0 1 1 1 13,14,15,16,17,19,21,34,36,67,83,84,85,86,88,89,91,92,136,138,139,141,152 5 -270790 cd06616 PKc_MKK4 2 allosteric peptide binding site 0 1 1 1 0,1,2,3,4,26,31,33,51,70,72,73,74,82 2 -270790 cd06616 PKc_MKK4 3 active site 0 0 1 1 13,14,15,16,17,21,34,36,67,83,84,85,86,88,89,92,134,136,137,138,139,141,151,152,155,168,169,170,171,173,204,213 1 -270790 cd06616 PKc_MKK4 4 polypeptide substrate binding site 0 0 1 1 16,17,134,136,137,138,155,168,169,170,171,173,204,213 2 -270790 cd06616 PKc_MKK4 5 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -173729 cd06617 PKc_MKK3_6 1 ATP binding site 0 1 1 1 8,9,10,11,12,14,16,29,31,62,78,79,80,81,83,84,86,87,130,132,133,135,146 5 -173729 cd06617 PKc_MKK3_6 2 dimer interface 0 1 1 1 4,6,8,9,10,11,12,13,14,15,17,19,31,32,34,35,36,68,70,71,73,75,80,81,82,83,84,91,132,133,135,145,150,153,154,155,156,281,282 2 -173729 cd06617 PKc_MKK3_6 3 active site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,83,84,87,128,130,131,132,133,135,145,146,149,162,163,164,165,167,198,207 1 -173729 cd06617 PKc_MKK3_6 4 polypeptide substrate binding site 0 0 1 1 11,12,128,130,131,132,149,162,163,164,165,167,198,207 2 -173729 cd06617 PKc_MKK3_6 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,162,163,164,165,166,167 0 -270791 cd06618 PKc_MKK7 1 active site 0 0 1 1 22,23,24,25,26,30,43,45,76,92,93,94,95,97,98,101,139,141,142,143,144,146,156,157,160,173,174,175,176,178,208,217 1 -270791 cd06618 PKc_MKK7 2 ATP binding site 0 0 1 1 22,23,24,25,26,28,30,43,45,76,92,93,94,95,97,98,100,101,141,143,144,146,157 5 -270791 cd06618 PKc_MKK7 3 polypeptide substrate binding site 0 0 1 1 25,26,139,141,142,143,160,173,174,175,176,178,208,217 2 -270791 cd06618 PKc_MKK7 4 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -132950 cd06619 PKc_MKK5 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,119,121,122,123,124,126,136,137,140,152,153,154,155,157,184,193 1 -132950 cd06619 PKc_MKK5 2 ATP binding site 0 0 1 1 8,9,10,11,12,14,16,29,31,61,77,78,79,80,83,84,86,87,121,123,124,126,137 5 -132950 cd06619 PKc_MKK5 3 polypeptide substrate binding site 0 0 1 1 11,12,119,121,122,123,140,152,153,154,155,157,184,193 2 -132950 cd06619 PKc_MKK5 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 0 -270792 cd06620 PKc_Byr1_like 1 active site 0 0 1 1 12,13,14,15,16,20,33,35,65,82,83,84,85,88,89,92,129,131,132,133,134,136,146,147,150,162,163,164,165,167,194,203 1 -270792 cd06620 PKc_Byr1_like 2 ATP binding site 0 0 1 1 12,13,14,15,16,18,20,33,35,65,82,83,84,85,88,89,91,92,131,133,134,136,147 5 -270792 cd06620 PKc_Byr1_like 3 polypeptide substrate binding site 0 0 1 1 15,16,129,131,132,133,150,162,163,164,165,167,194,203 2 -270792 cd06620 PKc_Byr1_like 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270793 cd06621 PKc_Pek1_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,79,80,81,82,85,86,89,129,131,132,133,134,136,146,147,150,162,163,164,165,167,194,203 1 -270793 cd06621 PKc_Pek1_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,14,16,29,31,61,79,80,81,82,85,86,88,89,131,133,134,136,147 5 -270793 cd06621 PKc_Pek1_like 3 polypeptide substrate binding site 0 0 1 1 11,12,129,131,132,133,150,162,163,164,165,167,194,203 2 -270793 cd06621 PKc_Pek1_like 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -132953 cd06622 PKc_PBS2_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,127,129,130,131,132,134,144,145,148,160,161,162,163,165,198,207 1 -132953 cd06622 PKc_PBS2_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,14,16,29,31,61,77,78,79,80,83,84,86,87,129,131,132,134,145 5 -132953 cd06622 PKc_PBS2_like 3 polypeptide substrate binding site 0 0 1 1 11,12,127,129,130,131,148,160,161,162,163,165,198,207 2 -132953 cd06622 PKc_PBS2_like 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -132954 cd06623 PKc_MAPKK_plant_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,83,84,87,124,126,127,128,129,131,141,142,145,159,160,161,162,164,191,200 1 -132954 cd06623 PKc_MAPKK_plant_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,14,16,29,31,61,77,78,79,80,83,84,86,87,126,128,129,131,142 5 -132954 cd06623 PKc_MAPKK_plant_like 3 polypeptide substrate binding site 0 0 1 1 11,12,124,126,127,128,145,159,160,161,162,164,191,200 2 -132954 cd06623 PKc_MAPKK_plant_like 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,158,159,160,161,162,163,164 0 -270794 cd06624 STKc_ASK 1 ATP binding site 0 1 1 1 15,16,17,18,19,23,36,38,67,83,84,85,86,88,89,90,93,136,137,139,150,151,152 5 -270794 cd06624 STKc_ASK 2 active site 0 0 1 1 15,16,17,18,19,23,36,38,67,83,84,85,86,89,90,93,132,134,135,136,137,139,150,151,154,168,169,170,171,173,202,211 1 -270794 cd06624 STKc_ASK 3 polypeptide substrate binding site 0 0 1 1 18,19,132,134,135,136,154,168,169,170,171,173,202,211 2 -270794 cd06624 STKc_ASK 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270795 cd06625 STKc_MEKK3_like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,64,80,81,82,83,86,87,90,126,128,129,130,131,133,143,144,147,163,164,165,166,168,195,204 1 -270795 cd06625 STKc_MEKK3_like 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,64,80,81,82,83,85,86,87,90,130,131,133,143,144,145 5 -270795 cd06625 STKc_MEKK3_like 3 polypeptide substrate binding site 0 0 1 1 10,11,126,128,129,130,147,163,164,165,166,168,195,204 2 -270795 cd06625 STKc_MEKK3_like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,163,164,165,166,167,168 0 -270796 cd06626 STKc_MEKK4 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,83,84,87,123,125,126,127,128,130,140,141,144,163,164,165,166,168,198,207 1 -270796 cd06626 STKc_MEKK4 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,82,83,84,87,127,128,130,140,141,142 5 -270796 cd06626 STKc_MEKK4 3 polypeptide substrate binding site 0 0 1 1 10,11,123,125,126,127,144,163,164,165,166,168,198,207 2 -270796 cd06626 STKc_MEKK4 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,162,163,164,165,166,167,168 0 -270797 cd06627 STKc_Cdc7_like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,83,84,87,123,125,126,127,128,130,140,141,144,158,159,160,161,163,190,199 1 -270797 cd06627 STKc_Cdc7_like 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,82,83,84,87,127,128,130,140,141,142 5 -270797 cd06627 STKc_Cdc7_like 3 polypeptide substrate binding site 0 0 1 1 10,11,123,125,126,127,144,158,159,160,161,163,190,199 2 -270797 cd06627 STKc_Cdc7_like 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,157,158,159,160,161,162,163 0 -270798 cd06628 STKc_Byr2_like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,68,84,85,86,87,90,91,94,130,132,133,134,135,137,147,148,151,171,172,173,174,176,203,212 1 -270798 cd06628 STKc_Byr2_like 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,68,84,85,86,87,89,90,91,94,134,135,137,147,148,149 5 -270798 cd06628 STKc_Byr2_like 3 polypeptide substrate binding site 0 0 1 1 10,11,130,132,133,134,151,171,172,173,174,176,203,212 2 -270798 cd06628 STKc_Byr2_like 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,168,169,170,171,172,173,174,175,176 0 -270799 cd06629 STKc_Bck1_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,70,86,87,88,89,92,93,96,132,134,135,136,137,139,149,150,153,169,170,171,172,174,203,212 1 -270799 cd06629 STKc_Bck1_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,70,86,87,88,89,91,92,93,96,136,137,139,149,150,151 5 -270799 cd06629 STKc_Bck1_like 3 polypeptide substrate binding site 0 0 1 1 11,12,132,134,135,136,153,169,170,171,172,174,203,212 2 -270799 cd06629 STKc_Bck1_like 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,166,167,168,169,170,171,172,173,174 0 -270800 cd06630 STKc_MEKK1 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,65,81,82,83,84,87,88,91,127,129,130,131,132,134,145,146,149,167,168,169,170,172,199,208 1 -270800 cd06630 STKc_MEKK1 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,65,81,82,83,84,86,87,88,91,131,132,134,145,146,147 5 -270800 cd06630 STKc_MEKK1 3 polypeptide substrate binding site 0 0 1 1 10,11,127,129,130,131,149,167,168,169,170,172,199,208 2 -270800 cd06630 STKc_MEKK1 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270801 cd06631 STKc_YSK4 1 active site 0 0 1 1 8,9,10,11,12,16,28,30,65,81,82,83,84,87,88,91,127,129,130,131,132,134,144,145,148,168,169,170,171,173,200,209 1 -270801 cd06631 STKc_YSK4 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,28,30,65,81,82,83,84,86,87,88,91,131,132,134,144,145,146 5 -270801 cd06631 STKc_YSK4 3 polypeptide substrate binding site 0 0 1 1 11,12,127,129,130,131,148,168,169,170,171,173,200,209 2 -270801 cd06631 STKc_YSK4 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,162,163,164,165,166,167,168,169,170,171,172,173 0 -270802 cd06632 STKc_MEKK1_plant 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,64,80,81,82,83,86,87,90,126,128,129,130,131,133,143,144,147,160,161,162,163,165,194,203 1 -270802 cd06632 STKc_MEKK1_plant 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,64,80,81,82,83,85,86,87,90,130,131,133,143,144,145 5 -270802 cd06632 STKc_MEKK1_plant 3 polypeptide substrate binding site 0 0 1 1 10,11,126,128,129,130,147,160,161,162,163,165,194,203 2 -270802 cd06632 STKc_MEKK1_plant 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,157,158,159,160,161,162,163,164,165 0 -270803 cd06633 STKc_TAO3 1 active site 0 0 1 1 28,29,30,31,32,36,49,51,83,99,100,101,102,104,105,108,145,147,148,149,150,152,162,163,166,176,177,178,179,181,211,220 1 -270803 cd06633 STKc_TAO3 2 ATP binding site 0 0 1 1 28,29,30,31,32,36,49,51,83,99,100,101,102,104,105,108,149,150,152,163,308 5 -270803 cd06633 STKc_TAO3 3 polypeptide substrate binding site 0 0 1 1 31,32,145,147,148,149,166,176,177,178,179,181,211,220 2 -270803 cd06633 STKc_TAO3 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -270804 cd06634 STKc_TAO2 1 ATP binding site 0 1 1 0 22,23,24,25,26,30,43,45,77,93,94,95,96,98,99,102,143,144,146,157,302 5 -270804 cd06634 STKc_TAO2 2 active site 0 0 1 1 22,23,24,25,26,30,43,45,77,93,94,95,96,98,99,102,139,141,142,143,144,146,156,157,160,170,171,172,173,175,205,214 1 -270804 cd06634 STKc_TAO2 3 polypeptide substrate binding site 0 0 1 1 25,26,139,141,142,143,160,170,171,172,173,175,205,214 2 -270804 cd06634 STKc_TAO2 4 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270805 cd06635 STKc_TAO1 1 active site 0 0 1 1 32,33,34,35,36,40,53,55,87,103,104,105,106,108,109,112,149,151,152,153,154,156,166,167,170,180,181,182,183,185,215,224 1 -270805 cd06635 STKc_TAO1 2 ATP binding site 0 0 1 1 32,33,34,35,36,40,53,55,87,103,104,105,106,108,109,112,153,154,156,167,312 5 -270805 cd06635 STKc_TAO1 3 polypeptide substrate binding site 0 0 1 1 35,36,149,151,152,153,170,180,181,182,183,185,215,224 2 -270805 cd06635 STKc_TAO1 4 activation loop (A-loop) 0 0 1 1 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270806 cd06636 STKc_MAP4K4_6_N 1 active site 0 0 1 1 23,24,25,26,27,31,44,46,75,97,98,99,100,103,104,107,145,147,148,149,150,152,162,163,166,180,181,182,183,185,217,226 1 -270806 cd06636 STKc_MAP4K4_6_N 2 ATP binding site 0 0 1 1 23,24,25,26,27,31,44,46,75,97,98,99,100,103,104,107,149,150,152,163 5 -270806 cd06636 STKc_MAP4K4_6_N 3 polypeptide substrate binding site 0 0 1 1 26,27,145,147,148,149,166,180,181,182,183,185,217,226 2 -270806 cd06636 STKc_MAP4K4_6_N 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 0 -270807 cd06637 STKc_TNIK 1 ATP binding site 0 1 1 1 13,14,15,16,17,21,34,36,65,87,88,89,90,93,94,97,139,140,142,153 5 -270807 cd06637 STKc_TNIK 2 active site 0 0 1 1 13,14,15,16,17,21,34,36,65,87,88,89,90,93,94,97,135,137,138,139,140,142,152,153,156,170,171,172,173,175,207,216 1 -270807 cd06637 STKc_TNIK 3 polypeptide substrate binding site 0 0 1 1 16,17,135,137,138,139,156,170,171,172,173,175,207,216 2 -270807 cd06637 STKc_TNIK 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -132969 cd06638 STKc_myosinIIIA_N 1 active site 0 0 1 1 25,26,27,28,29,33,46,48,77,98,99,100,101,104,105,108,148,150,151,152,153,155,165,166,169,183,184,185,186,188,220,229 1 -132969 cd06638 STKc_myosinIIIA_N 2 ATP binding site 0 0 1 1 25,26,27,28,29,33,46,48,77,98,99,100,101,104,105,108,152,153,155,166 5 -132969 cd06638 STKc_myosinIIIA_N 3 polypeptide substrate binding site 0 0 1 1 28,29,148,150,151,152,169,183,184,185,186,188,220,229 2 -132969 cd06638 STKc_myosinIIIA_N 4 activation loop (A-loop) 0 0 1 1 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -270808 cd06639 STKc_myosinIIIB_N 1 active site 0 0 1 1 29,30,31,32,33,37,50,52,81,102,103,104,105,108,109,112,152,154,155,156,157,159,169,170,173,187,188,189,190,192,224,233 1 -270808 cd06639 STKc_myosinIIIB_N 2 ATP binding site 0 0 1 1 29,30,31,32,33,37,50,52,81,102,103,104,105,108,109,112,156,157,159,170 5 -270808 cd06639 STKc_myosinIIIB_N 3 polypeptide substrate binding site 0 0 1 1 32,33,152,154,155,156,173,187,188,189,190,192,224,233 2 -270808 cd06639 STKc_myosinIIIB_N 4 activation loop (A-loop) 0 0 1 1 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 0 -132971 cd06640 STKc_MST4 1 ATP binding site 0 1 1 1 11,12,13,14,15,19,32,34,51,64,80,81,82,83,86,87,90,129,130,132,143 5 -132971 cd06640 STKc_MST4 2 active site 0 0 1 1 11,12,13,14,15,19,32,34,64,80,81,82,83,86,87,90,125,127,128,129,130,132,142,143,146,160,161,162,163,165,192,201 1 -132971 cd06640 STKc_MST4 3 polypeptide substrate binding site 0 0 1 1 14,15,125,127,128,129,146,160,161,162,163,165,192,201 2 -132971 cd06640 STKc_MST4 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270809 cd06641 STKc_MST3 1 ATP binding site 0 1 1 1 11,12,13,14,15,19,32,34,51,64,80,81,82,83,86,87,90,129,130,132,143 5 -270809 cd06641 STKc_MST3 2 active site 0 0 1 1 11,12,13,14,15,19,32,34,64,80,81,82,83,86,87,90,125,127,128,129,130,132,142,143,146,160,161,162,163,165,192,201 1 -270809 cd06641 STKc_MST3 3 polypeptide substrate binding site 0 0 1 1 14,15,125,127,128,129,146,160,161,162,163,165,192,201 2 -270809 cd06641 STKc_MST3 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270810 cd06642 STKc_STK25 1 ATP binding site 0 1 1 1 11,12,13,14,15,19,32,34,51,64,80,81,82,83,86,87,90,129,130,132,143 5 -270810 cd06642 STKc_STK25 2 active site 0 0 1 1 11,12,13,14,15,19,32,34,64,80,81,82,83,86,87,90,125,127,128,129,130,132,142,143,146,160,161,162,163,165,192,201 1 -270810 cd06642 STKc_STK25 3 polypeptide substrate binding site 0 0 1 1 14,15,125,127,128,129,146,160,161,162,163,165,192,201 2 -270810 cd06642 STKc_STK25 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270811 cd06643 STKc_SLK 1 ATP binding site 0 1 1 1 12,13,14,15,16,20,33,35,51,64,78,80,81,82,83,86,87,90,131,132,134,144,145 5 -270811 cd06643 STKc_SLK 2 active site 0 0 1 1 12,13,14,15,16,20,33,35,64,80,81,82,83,86,87,90,127,129,130,131,132,134,144,145,148,162,163,164,165,167,199,208 1 -270811 cd06643 STKc_SLK 3 polypeptide substrate binding site 0 0 1 1 15,16,127,129,130,131,148,162,163,164,165,167,199,208 2 -270811 cd06643 STKc_SLK 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -132975 cd06644 STKc_STK10 1 ATP binding site 0 1 1 1 19,20,21,22,23,27,40,42,58,71,85,87,88,89,90,93,94,97,138,139,141,151,152 5 -132975 cd06644 STKc_STK10 2 active site 0 0 1 1 19,20,21,22,23,27,40,42,71,87,88,89,90,93,94,97,134,136,137,138,139,141,151,152,155,169,170,171,172,174,206,215 1 -132975 cd06644 STKc_STK10 3 polypeptide substrate binding site 0 0 1 1 22,23,134,136,137,138,155,169,170,171,172,174,206,215 2 -132975 cd06644 STKc_STK10 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -270812 cd06645 STKc_MAP4K3 1 active site 0 0 1 1 18,19,20,21,22,26,39,41,70,86,87,88,89,92,93,96,132,134,135,136,137,139,149,150,153,167,168,169,170,172,202,211 1 -270812 cd06645 STKc_MAP4K3 2 ATP binding site 0 0 1 1 18,19,20,21,22,26,39,41,70,86,87,88,89,92,93,96,136,137,139,150 5 -270812 cd06645 STKc_MAP4K3 3 polypeptide substrate binding site 0 0 1 1 21,22,132,134,135,136,153,167,168,169,170,172,202,211 2 -270812 cd06645 STKc_MAP4K3 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270813 cd06646 STKc_MAP4K5 1 active site 0 0 1 1 16,17,18,19,20,24,37,39,68,84,85,86,87,90,91,94,130,132,133,134,135,137,147,148,151,165,166,167,168,170,200,209 1 -270813 cd06646 STKc_MAP4K5 2 ATP binding site 0 0 1 1 16,17,18,19,20,24,37,39,68,84,85,86,87,90,91,94,134,135,137,148 5 -270813 cd06646 STKc_MAP4K5 3 polypeptide substrate binding site 0 0 1 1 19,20,130,132,133,134,151,165,166,167,168,170,200,209 2 -270813 cd06646 STKc_MAP4K5 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270814 cd06647 STKc_PAK_I 1 ATP binding site 0 1 1 1 14,15,16,17,18,22,35,37,66,82,83,84,85,86,88,89,92,131,132,134,144,145 5 -270814 cd06647 STKc_PAK_I 2 AID interaction site 0 1 1 1 19,53,122,124,125,126,127,145,146,173,174,176,181,206,209,212 2 -270814 cd06647 STKc_PAK_I 3 activation loop (A-loop) 0 1 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270814 cd06647 STKc_PAK_I 4 active site 0 0 1 1 14,15,16,17,18,22,35,37,66,82,83,84,85,86,88,89,92,127,129,130,131,132,134,144,145,148,161,162,163,164,165,167,194,203,204,205 1 -270814 cd06647 STKc_PAK_I 5 polypeptide substrate binding site 0 0 1 1 17,18,127,129,130,131,148,161,162,163,164,165,167,194,203,204,205 2 -270815 cd06648 STKc_PAK_II 1 ATP binding site 0 1 1 1 14,15,16,17,18,22,35,37,66,82,83,84,85,86,88,89,92,131,132,134,144,145 5 -270815 cd06648 STKc_PAK_II 2 polypeptide substrate binding site 0 1 1 1 17,18,46,127,129,130,131,148,161,162,163,164,165,167,194,203,204,205 2 -270815 cd06648 STKc_PAK_II 3 active site 0 0 1 1 14,15,16,17,18,22,35,37,66,82,83,84,85,86,88,89,92,127,129,130,131,132,134,144,145,148,161,162,163,164,165,167,194,203,204,205 1 -270815 cd06648 STKc_PAK_II 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -132980 cd06649 PKc_MEK2 1 ATP binding site 0 1 1 0 12,13,14,15,16,18,20,33,35,65,81,82,83,84,87,88,91,130,132,133,135,146 5 -132980 cd06649 PKc_MEK2 2 homodimer interface 0 1 1 0 19,39,40,75,168,172,173,174,175,253,256,257,260,261 2 -132980 cd06649 PKc_MEK2 3 noncompetitive inhibitor binding site 0 1 1 1 16,35,53,56,65,79,81,146,147,148,149,150,153,157 5 -132980 cd06649 PKc_MEK2 4 active site 0 0 1 1 12,13,14,15,16,20,33,35,65,81,82,83,84,87,88,91,128,130,131,132,133,135,145,146,149,161,162,163,164,166,193,202 1 -132980 cd06649 PKc_MEK2 5 polypeptide substrate binding site 0 0 1 1 15,16,128,130,131,132,149,161,162,163,164,166,193,202 2 -132980 cd06649 PKc_MEK2 6 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270816 cd06650 PKc_MEK1 1 ATP binding site 0 1 1 0 12,13,14,15,16,18,20,33,35,65,81,82,83,84,87,88,90,91,130,132,133,135,146 5 -270816 cd06650 PKc_MEK1 2 noncompetitive inhibitor binding site 0 1 1 1 15,16,35,53,56,65,79,81,146,147,149,150,153,154,157 5 -270816 cd06650 PKc_MEK1 3 KSR interface 0 1 1 1 159,160,161,162,163,164,166,168,172,173,174,175,247,248,249,252,253,256 2 -270816 cd06650 PKc_MEK1 4 homodimer interface 0 0 1 1 19,39,40,75,168,172,173,174,175,249,252,253,256,257 2 -270816 cd06650 PKc_MEK1 5 active site 0 0 1 1 12,13,14,15,16,20,33,35,65,81,82,83,84,87,88,91,128,130,131,132,133,135,145,146,149,161,162,163,164,166,193,202 1 -270816 cd06650 PKc_MEK1 6 polypeptide substrate binding site 0 0 1 1 15,16,128,130,131,132,149,161,162,163,164,166,193,202 2 -270816 cd06650 PKc_MEK1 7 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270817 cd06651 STKc_MEKK3 1 active site 0 0 1 1 14,15,16,17,18,22,35,37,71,89,90,91,92,95,96,99,135,137,138,139,140,142,152,153,156,173,174,175,176,178,205,214 1 -270817 cd06651 STKc_MEKK3 2 ATP binding site 0 0 1 1 14,15,16,17,18,22,35,37,71,89,90,91,92,94,95,96,99,139,140,142,152,153,154 5 -270817 cd06651 STKc_MEKK3 3 polypeptide substrate binding site 0 0 1 1 17,18,135,137,138,139,156,173,174,175,176,178,205,214 2 -270817 cd06651 STKc_MEKK3 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -270818 cd06652 STKc_MEKK2 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,66,84,85,86,87,90,91,94,130,132,133,134,135,137,147,148,151,168,169,170,171,173,200,209 1 -270818 cd06652 STKc_MEKK2 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,30,32,66,84,85,86,87,89,90,91,94,134,135,137,147,148,149 5 -270818 cd06652 STKc_MEKK2 3 polypeptide substrate binding site 0 0 1 1 12,13,130,132,133,134,151,168,169,170,171,173,200,209 2 -270818 cd06652 STKc_MEKK2 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270819 cd06653 STKc_MEKK3_like_u1 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,66,84,85,86,87,90,91,94,130,132,133,134,135,137,147,148,151,168,169,170,171,173,200,209 1 -270819 cd06653 STKc_MEKK3_like_u1 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,30,32,66,84,85,86,87,89,90,91,94,134,135,137,147,148,149 5 -270819 cd06653 STKc_MEKK3_like_u1 3 polypeptide substrate binding site 0 0 1 1 12,13,130,132,133,134,151,168,169,170,171,173,200,209 2 -270819 cd06653 STKc_MEKK3_like_u1 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270820 cd06654 STKc_PAK1 1 ATP binding site 0 1 1 1 27,28,29,30,31,35,48,50,79,95,96,97,98,99,101,102,105,144,145,147,157,158 5 -270820 cd06654 STKc_PAK1 2 AID interaction site 0 1 1 1 32,66,135,137,138,139,140,158,159,186,187,189,194,219,222,225 2 -270820 cd06654 STKc_PAK1 3 active site 0 0 1 1 27,28,29,30,31,35,48,50,79,95,96,97,98,99,101,102,105,140,142,143,144,145,147,157,158,161,174,175,176,177,178,180,207,216,217,218 1 -270820 cd06654 STKc_PAK1 4 polypeptide substrate binding site 0 0 1 1 30,31,140,142,143,144,161,174,175,176,177,178,180,207,216,217,218 2 -270820 cd06654 STKc_PAK1 5 activation loop (A-loop) 0 1 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -132986 cd06655 STKc_PAK2 1 active site 0 0 1 1 26,27,28,29,30,34,47,49,78,94,95,96,97,98,100,101,104,139,141,142,143,144,146,156,157,160,173,174,175,176,177,179,206,215,216,217 1 -132986 cd06655 STKc_PAK2 2 ATP binding site 0 0 1 1 26,27,28,29,30,34,47,49,78,94,95,96,97,98,100,101,104,143,144,146,156,157 5 -132986 cd06655 STKc_PAK2 3 polypeptide substrate binding site 0 0 1 1 29,30,139,141,142,143,160,173,174,175,176,177,179,206,215,216,217 2 -132986 cd06655 STKc_PAK2 4 AID interaction site 0 0 1 1 31,65,134,136,137,138,139,157,158,185,186,188,193,218,221,224 2 -132986 cd06655 STKc_PAK2 5 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -132987 cd06656 STKc_PAK3 1 active site 0 0 1 1 26,27,28,29,30,34,47,49,78,94,95,96,97,98,100,101,104,139,141,142,143,144,146,156,157,160,173,174,175,176,177,179,206,215,216,217 1 -132987 cd06656 STKc_PAK3 2 ATP binding site 0 0 1 1 26,27,28,29,30,34,47,49,78,94,95,96,97,98,100,101,104,143,144,146,156,157 5 -132987 cd06656 STKc_PAK3 3 polypeptide substrate binding site 0 0 1 1 29,30,139,141,142,143,160,173,174,175,176,177,179,206,215,216,217 2 -132987 cd06656 STKc_PAK3 4 AID interaction site 0 0 1 1 31,65,134,136,137,138,139,157,158,185,186,188,193,218,221,224 2 -132987 cd06656 STKc_PAK3 5 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -132988 cd06657 STKc_PAK4 1 ATP binding site 0 1 1 1 27,28,29,30,31,35,48,50,79,95,96,97,98,99,101,102,105,144,145,147,157,158 5 -132988 cd06657 STKc_PAK4 2 polypeptide substrate binding site 0 1 1 1 30,31,59,140,142,143,144,161,174,175,176,177,178,180,207,216,217,218 2 -132988 cd06657 STKc_PAK4 3 active site 0 0 1 1 27,28,29,30,31,35,48,50,79,95,96,97,98,99,101,102,105,140,142,143,144,145,147,157,158,161,174,175,176,177,178,180,207,216,217,218 1 -132988 cd06657 STKc_PAK4 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -132989 cd06658 STKc_PAK5 1 ATP binding site 0 1 1 1 29,30,31,32,33,37,50,52,81,97,98,99,100,101,103,104,107,146,147,149,159,160,289 5 -132989 cd06658 STKc_PAK5 2 active site 0 0 1 1 29,30,31,32,33,37,50,52,81,97,98,99,100,101,103,104,107,142,144,145,146,147,149,159,160,163,176,177,178,179,180,182,209,218,219,220 1 -132989 cd06658 STKc_PAK5 3 polypeptide substrate binding site 0 0 1 1 32,33,61,142,144,145,146,163,176,177,178,179,180,182,209,218,219,220 2 -132989 cd06658 STKc_PAK5 4 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -270821 cd06659 STKc_PAK6 1 active site 0 0 1 1 28,29,30,31,32,36,49,51,80,96,97,98,99,100,102,103,106,141,143,144,145,146,148,158,159,162,175,176,177,178,179,181,208,217,218,219 1 -270821 cd06659 STKc_PAK6 2 ATP binding site 0 0 1 1 28,29,30,31,32,36,49,51,80,96,97,98,99,100,102,103,106,145,146,148,158,159 5 -270821 cd06659 STKc_PAK6 3 polypeptide substrate binding site 0 0 1 1 31,32,60,141,143,144,145,162,175,176,177,178,179,181,208,217,218,219 2 -270821 cd06659 STKc_PAK6 4 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -119408 cd06660 Aldo_ket_red 1 active site 0 1 1 0 16,17,18,46,51,78,116,117,147,148,169,197,198,199,200,201,202,236,253,254,255,256,261,264,265 1 -119408 cd06660 Aldo_ket_red 2 catalytic tetrad 0 0 1 0 46,51,78,116 1 -119400 cd06661 GGCT_like 1 putative catalytic residue 0 0 1 1 70 1 -119400 cd06661 GGCT_like 2 putative active site pocket 0 1 1 1 0,3,5,6,69,70,76,98 1 -119400 cd06661 GGCT_like 3 dimerization interface 0 1 1 0 44,45,47,76,77,78,79,80,82,94,97 2 -133456 cd06663 Biotinyl_lipoyl_domains 1 lipoyl-biotinyl attachment site 0 1 1 0 39 6 -143480 cd06664 IscU_like 1 active site 0 1 1 1 32,57,111 1 -143480 cd06664 IscU_like 2 trimerization site 0 1 1 1 0,1,2,3,6,7,32,33,57,59,107,108,110,111 2 -143484 cd06808 PLPDE_III 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 20,22,64,111,147,149,207,208,209,210 5 -143484 cd06808 PLPDE_III 2 catalytic residue 0 1 1 1 22 1 -143485 cd06810 PLPDE_III_ODC_DapDC_like 1 active site 0 1 1 1 30,32,51,74,121,169,172,208,209,247,248,249,250,319,320,348,352,356 1 -143485 cd06810 PLPDE_III_ODC_DapDC_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 30,32,51,74,121,169,172,208,209,247,248,249,250,319,348 5 -143485 cd06810 PLPDE_III_ODC_DapDC_like 3 catalytic residues 0 1 1 1 32,319 1 -143485 cd06810 PLPDE_III_ODC_DapDC_like 4 substrate binding site 0 1 1 1 172,250,319,320,348,352,356 5 -143485 cd06810 PLPDE_III_ODC_DapDC_like 5 dimer interface 0 1 1 0 0,32,53,54,56,57,79,97,100,104,140,141,142,143,264,265,266,267,274,276,278,281,316,318,319,320,323,351,352,353,356,357,358 2 -143486 cd06811 PLPDE_III_yhfX_like 1 active site 0 0 1 1 58,60,81,106,150,162,192,234,235,253,254,255,256,297 1 -143486 cd06811 PLPDE_III_yhfX_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 58,60,81,106,150,192,234,235,253,254,255,256 5 -143486 cd06811 PLPDE_III_yhfX_like 3 catalytic residue 0 0 1 1 60 1 -143486 cd06811 PLPDE_III_yhfX_like 4 substrate binding site 0 0 1 1 60,162,192,256 5 -143486 cd06811 PLPDE_III_yhfX_like 5 dimer interface 0 0 1 1 27,60,62,83,84,86,87,93,113,126,129,133,161,162,163,164,283,284,285,286,290,292,294,297,298,372 2 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 1 active site 0 0 1 1 36,38,58,79,129,136,166,211,212,228,229,230,231,274 1 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 36,38,58,79,129,166,211,212,228,229,230,231 5 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 3 catalytic residue 0 0 1 1 38 1 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 4 substrate binding site 0 0 1 1 38,136,166,231 5 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 5 dimer interface 0 0 1 1 5,38,40,60,61,63,64,70,86,105,108,112,135,136,137,138,259,260,261,262,267,269,271,274,275,358 2 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 1 active site 0 0 1 1 39,41,62,83,134,145,180,237,238,254,255,256,257,298 1 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 39,41,62,83,134,180,237,238,254,255,256,257 5 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 3 catalytic residue 0 0 1 1 41 1 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 4 substrate binding site 0 0 1 1 41,145,180,257 5 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 5 dimer interface 0 0 1 1 10,41,43,64,65,67,68,74,91,110,113,117,144,145,146,147,284,285,286,287,291,293,295,298,299,375 2 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 1 active site 0 0 1 1 38,40,61,83,138,145,175,224,225,240,241,242,243,305 1 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 38,40,61,83,138,175,224,225,240,241,242,243 5 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 3 catalytic residue 0 0 1 1 40 1 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 4 substrate binding site 0 0 1 1 40,145,175,243 5 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 5 dimer interface 0 0 1 1 8,40,42,63,64,66,67,73,90,114,117,121,144,145,146,147,270,271,272,273,298,300,302,305,306,367 2 -143490 cd06815 PLPDE_III_AR_like_1 1 active site 0 0 1 1 31,33,54,77,121,128,157,196,197,216,217,218,219,287 1 -143490 cd06815 PLPDE_III_AR_like_1 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 31,33,54,77,121,157,196,197,216,217,218,219 5 -143490 cd06815 PLPDE_III_AR_like_1 3 catalytic residue 0 0 1 1 33 1 -143490 cd06815 PLPDE_III_AR_like_1 4 substrate binding site 0 0 1 1 33,128,157,219 5 -143490 cd06815 PLPDE_III_AR_like_1 5 dimer interface 0 0 1 1 0,33,35,56,57,59,60,66,83,98,100,104,127,128,129,130,248,249,250,251,280,282,284,287,288,347 2 -143491 cd06817 PLPDE_III_DSD 1 active site 0 0 1 1 36,38,60,85,136,143,175,221,222,246,247,248,249,292 1 -143491 cd06817 PLPDE_III_DSD 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 36,38,60,85,136,175,221,222,246,247,248,249 5 -143491 cd06817 PLPDE_III_DSD 3 catalytic residue 0 0 1 1 38 1 -143491 cd06817 PLPDE_III_DSD 4 substrate binding site 0 0 1 1 38,143,175,249 5 -143491 cd06817 PLPDE_III_DSD 5 dimer interface 0 0 1 1 5,38,40,62,63,65,66,72,92,111,114,118,142,143,144,145,277,278,279,280,285,287,289,292,293,370 2 -143492 cd06818 PLPDE_III_cryptic_DSD 1 active site 0 0 1 1 33,35,55,76,129,136,166,213,214,238,239,240,241,294 1 -143492 cd06818 PLPDE_III_cryptic_DSD 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 33,35,55,76,129,166,213,214,238,239,240,241 5 -143492 cd06818 PLPDE_III_cryptic_DSD 3 catalytic residue 0 0 1 1 35 1 -143492 cd06818 PLPDE_III_cryptic_DSD 4 substrate binding site 0 0 1 1 35,136,166,241 5 -143492 cd06818 PLPDE_III_cryptic_DSD 5 dimer interface 0 0 1 1 2,35,37,57,58,60,61,67,84,105,108,112,135,136,137,138,280,281,282,283,287,289,291,294,295,374 2 -143493 cd06819 PLPDE_III_LS_D-TA 1 active site 0 0 1 1 37,39,59,80,130,137,167,212,213,229,230,231,232,277 1 -143493 cd06819 PLPDE_III_LS_D-TA 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 37,39,59,80,130,167,212,213,229,230,231,232 5 -143493 cd06819 PLPDE_III_LS_D-TA 3 catalytic residue 0 0 1 1 39 1 -143493 cd06819 PLPDE_III_LS_D-TA 4 substrate binding site 0 0 1 1 39,137,167,232 5 -143493 cd06819 PLPDE_III_LS_D-TA 5 dimer interface 0 0 1 1 6,39,41,61,62,64,65,71,88,106,109,113,136,137,138,139,263,264,265,266,270,272,274,277,278,343 2 -143494 cd06820 PLPDE_III_LS_D-TA_like 1 active site 0 0 1 1 33,35,55,76,126,133,163,205,206,222,223,224,225,267 1 -143494 cd06820 PLPDE_III_LS_D-TA_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 33,35,55,76,126,163,205,206,222,223,224,225 5 -143494 cd06820 PLPDE_III_LS_D-TA_like 3 catalytic residue 0 0 1 1 35 1 -143494 cd06820 PLPDE_III_LS_D-TA_like 4 substrate binding site 0 0 1 1 35,133,163,225 5 -143494 cd06820 PLPDE_III_LS_D-TA_like 5 dimer interface 0 0 1 1 2,35,37,57,58,60,61,67,84,102,105,109,132,133,134,135,253,254,255,256,260,262,264,267,268,335 2 -143495 cd06821 PLPDE_III_D-TA 1 active site 0 0 1 1 38,40,60,81,133,140,170,216,217,230,231,232,233,275 1 -143495 cd06821 PLPDE_III_D-TA 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 38,40,60,81,133,170,216,217,230,231,232,233 5 -143495 cd06821 PLPDE_III_D-TA 3 catalytic residue 0 0 1 1 40 1 -143495 cd06821 PLPDE_III_D-TA 4 substrate binding site 0 0 1 1 40,140,170,233 5 -143495 cd06821 PLPDE_III_D-TA 5 dimer interface 0 0 1 1 8,40,42,62,63,65,66,72,88,109,112,116,139,140,141,142,261,262,263,264,268,270,272,275,276,342 2 -143496 cd06822 PLPDE_III_YBL036c_euk 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 28,30,51,72,159,161,203,204,219,220,221,222 5 -143496 cd06822 PLPDE_III_YBL036c_euk 2 catalytic residue 0 1 1 0 30 1 -143497 cd06824 PLPDE_III_Yggs_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 31,33,54,77,161,199,215,217,218 5 -143497 cd06824 PLPDE_III_Yggs_like 2 catalytic residue 0 1 1 0 33 1 -143498 cd06825 PLPDE_III_VanT 1 active site 0 0 1 1 30,32,36,78,119,126,154,197,198,213,214,215,216,259,278,307,308,352 1 -143498 cd06825 PLPDE_III_VanT 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 30,32,36,78,126,154,197,198,213,214,215,216,352 5 -143498 cd06825 PLPDE_III_VanT 3 catalytic residues 0 0 1 1 32,259 1 -143498 cd06825 PLPDE_III_VanT 4 substrate binding site 0 0 1 1 32,36,126,154,259,278,307,308,352 5 -143498 cd06825 PLPDE_III_VanT 5 dimer interface 0 0 1 1 32,33,58,61,62,99,100,124,125,126,127,154,156,246,247,248,249,251,255,256,258,259,260,273,278,284,309,310,348,349,352,353,360,361 2 -143499 cd06826 PLPDE_III_AR2 1 active site 0 0 1 1 30,32,36,78,123,131,162,202,203,218,219,220,221,257,276,304,305,352 1 -143499 cd06826 PLPDE_III_AR2 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 30,32,36,78,131,162,202,203,218,219,220,221,352 5 -143499 cd06826 PLPDE_III_AR2 3 catalytic residues 0 0 1 1 32,257 1 -143499 cd06826 PLPDE_III_AR2 4 substrate binding site 0 0 1 1 32,36,131,162,257,276,304,305,352 5 -143499 cd06826 PLPDE_III_AR2 5 dimer interface 0 0 1 1 32,33,58,61,62,99,100,129,130,131,132,162,164,244,245,246,247,249,253,254,256,257,258,271,276,282,306,307,348,349,352,353,357,358 2 -143500 cd06827 PLPDE_III_AR_proteobact 1 active site 0 1 1 1 29,31,35,75,119,126,153,155,189,190,191,205,206,207,208,338 1 -143500 cd06827 PLPDE_III_AR_proteobact 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 29,31,35,75,155,189,190,205,207,208,338 5 -143500 cd06827 PLPDE_III_AR_proteobact 3 catalytic residues 0 1 1 1 31,250 1 -143500 cd06827 PLPDE_III_AR_proteobact 4 substrate binding site 0 1 1 1 31,35,126,155,338 5 -143500 cd06827 PLPDE_III_AR_proteobact 5 dimer interface 0 1 1 0 237,240,246,247,249,250,251,264,269,275,297,299,336,338,339,344,347 2 -143501 cd06828 PLPDE_III_DapDC 1 active site 0 1 1 1 33,35,54,77,124,172,174,177,213,214,254,255,256,257,293,297,324,353,357,361 1 -143501 cd06828 PLPDE_III_DapDC 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 33,35,54,77,124,172,174,177,213,214,254,255,256,257,324,353 5 -143501 cd06828 PLPDE_III_DapDC 3 catalytic residues 0 1 1 1 35,324 1 -143501 cd06828 PLPDE_III_DapDC 4 substrate binding site 0 1 1 1 35,174,177,257,293,297,324,325,353,357,361 5 -143501 cd06828 PLPDE_III_DapDC 5 dimer interface 0 1 1 0 40,41,56,57,59,60,79,80,81,85,100,103,144,145,146,147,272,274,281,283,321,322,323,324,325,326,328,356,357,358,360,361,362,363,366 2 -143502 cd06829 PLPDE_III_CANSDC 1 active site 0 0 1 1 31,33,52,74,117,160,163,195,196,227,228,229,230,296,297,325,329,333 1 -143502 cd06829 PLPDE_III_CANSDC 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 31,33,52,74,117,160,163,195,196,227,228,229,230,296,325 5 -143502 cd06829 PLPDE_III_CANSDC 3 catalytic residues 0 0 1 1 33,296 1 -143502 cd06829 PLPDE_III_CANSDC 4 substrate binding site 0 0 1 1 163,230,296,297,325,329,333 5 -143502 cd06829 PLPDE_III_CANSDC 5 dimer interface 0 0 1 1 0,33,54,55,57,58,79,95,98,102,131,132,133,134,244,245,246,247,253,255,257,260,293,295,296,297,300,328,329,330,333,334,335 2 -143503 cd06830 PLPDE_III_ADC 1 active site 0 0 1 1 43,45,68,92,142,192,195,231,232,280,281,282,283,349,350,389,393,397 1 -143503 cd06830 PLPDE_III_ADC 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 43,45,68,92,142,192,195,231,232,280,281,282,283,349,389 5 -143503 cd06830 PLPDE_III_ADC 3 catalytic residues 0 0 1 1 45,349 1 -143503 cd06830 PLPDE_III_ADC 4 substrate binding site 0 0 1 1 195,283,349,350,389,393,397 5 -143503 cd06830 PLPDE_III_ADC 5 dimer interface 0 0 1 1 4,45,70,71,73,74,97,117,121,125,161,162,163,164,297,298,299,300,305,307,309,312,346,348,349,350,352,392,393,394,397,398,399 2 -143504 cd06831 PLPDE_III_ODC_like_AZI 1 dimer interface 0 1 1 1 65,66,67,93,115,262,303,332,334,365,368,371 2 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 1 active site 0 0 1 1 32,34,53,76,123,173,176,214,215,253,254,255,256,328,329,357,361,365 1 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 32,34,53,76,123,173,176,214,215,253,254,255,256,328,357 5 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 3 catalytic residues 0 0 1 1 34,328 1 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 4 substrate binding site 0 0 1 1 176,256,328,329,357,361,365 5 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 5 dimer interface 0 0 1 1 1,34,55,56,58,59,81,98,101,105,143,144,145,146,270,271,272,273,280,282,284,287,325,327,328,329,332,360,361,362,365,366,367 2 -143506 cd06839 PLPDE_III_Btrk_like 1 active site 0 0 1 1 36,38,57,80,127,176,179,216,217,257,258,259,260,332,333,361,365,370 1 -143506 cd06839 PLPDE_III_Btrk_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 1 36,38,57,80,127,176,179,216,217,257,258,259,260,332,361 5 -143506 cd06839 PLPDE_III_Btrk_like 3 catalytic residues 0 0 1 1 38,332 1 -143506 cd06839 PLPDE_III_Btrk_like 4 substrate binding site 0 0 1 1 179,260,332,333,361,365,370 5 -143506 cd06839 PLPDE_III_Btrk_like 5 dimer interface 0 0 1 1 6,38,59,60,62,63,85,103,106,110,146,147,148,149,274,275,276,277,284,286,288,291,329,331,332,333,336,364,365,366,370,371,372 2 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 1 active site 0 0 1 1 40,42,61,86,128,175,177,180,212,213,249,250,251,252,288,292,319,348,352,356 1 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 40,42,61,86,128,175,177,180,212,213,249,250,251,252,319,348 5 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 3 catalytic residues 0 0 1 1 42,319 1 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 4 substrate binding site 0 0 1 1 42,177,180,252,288,292,319,320,348,352,356 5 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 5 dimer interface 0 0 1 1 47,48,63,64,66,67,88,89,90,94,108,111,148,149,150,151,267,269,276,278,316,317,318,319,320,321,323,351,352,353,355,356,357,358,361 2 -143508 cd06841 PLPDE_III_MccE_like 1 active site 0 0 1 1 39,41,60,83,129,173,176,210,211,258,259,260,261,327,328,356,360,364 1 -143508 cd06841 PLPDE_III_MccE_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 39,41,60,83,129,173,176,210,211,258,259,260,261,327,356 5 -143508 cd06841 PLPDE_III_MccE_like 3 catalytic residues 0 0 1 1 41,327 1 -143508 cd06841 PLPDE_III_MccE_like 4 substrate binding site 0 0 1 1 176,261,327,328,356,360,364 5 -143508 cd06841 PLPDE_III_MccE_like 5 dimer interface 0 0 1 1 6,41,62,63,65,66,88,105,108,112,140,141,142,143,275,276,277,278,285,287,289,292,324,326,327,328,331,359,360,361,364,365,366 2 -143509 cd06842 PLPDE_III_Y4yA_like 1 active site 0 0 1 1 42,44,63,86,133,174,177,211,212,298,299,300,301,371,372,402,406,411 1 -143509 cd06842 PLPDE_III_Y4yA_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 42,44,63,86,133,174,177,211,212,298,299,300,301,371,402 5 -143509 cd06842 PLPDE_III_Y4yA_like 3 catalytic residues 0 0 1 1 44,371 1 -143509 cd06842 PLPDE_III_Y4yA_like 4 substrate binding site 0 0 1 1 177,301,371,372,402,406,411 5 -143509 cd06842 PLPDE_III_Y4yA_like 5 dimer interface 0 0 1 1 9,44,65,66,68,69,91,108,111,115,143,144,145,146,315,316,317,318,326,328,330,333,368,370,371,372,375,405,406,407,411,412,413 2 -143510 cd06843 PLPDE_III_PvsE_like 1 active site 0 0 1 1 31,33,52,74,121,171,174,211,212,249,250,251,252,327,328,356,360,365 1 -143510 cd06843 PLPDE_III_PvsE_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 31,33,52,74,121,171,174,211,212,249,250,251,252,327,356 5 -143510 cd06843 PLPDE_III_PvsE_like 3 catalytic residues 0 0 1 1 33,327 1 -143510 cd06843 PLPDE_III_PvsE_like 4 substrate binding site 0 0 1 1 174,252,327,328,356,360,365 5 -143510 cd06843 PLPDE_III_PvsE_like 5 dimer interface 0 0 1 1 1,33,54,55,57,58,79,97,100,104,141,142,143,144,266,267,268,269,275,277,279,282,324,326,327,328,331,359,360,361,365,366,367 2 -132900 cd06845 Bcl-2_like 1 BH3-homology region binding site 0 1 1 0 41,42,44,45,49,52,53,69,70,73,74,77,78,85,87,88,90,91,95,99,143 0 -132900 cd06845 Bcl-2_like 2 BH4 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 0 -132900 cd06845 Bcl-2_like 3 BH3 0 0 1 1 38,39,40,41,42,43,44,45,46 0 -132900 cd06845 Bcl-2_like 4 BH1 0 0 1 1 77,78,79,84,85,86,87,88,89,90,91,92,93,94,95,96 0 -132900 cd06845 Bcl-2_like 5 BH2 0 0 1 1 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 0 -185704 cd06846 Adenylation_DNA_ligase_like 1 active site 0 1 1 0 23,25,30,44,45,74,92,155,158,178,180 1 -133457 cd06848 GCS_H 1 lipoyl attachment site 0 1 1 0 55 6 -133458 cd06849 lipoyl_domain 1 lipoyl attachment site 0 1 1 0 40 6 -133458 cd06849 lipoyl_domain 2 E3 interaction surface 0 1 1 0 30,37,38,39,40,41,42,46 0 -133459 cd06850 biotinyl_domain 1 biotinylation site 0 1 1 0 33 6 -133459 cd06850 biotinyl_domain 2 carboxyltransferase (CT) interaction site 0 1 1 1 23,32,33,34,41 0 -133461 cd06851 GT_GPT_like 1 Mg++ binding site 0 0 1 1 64,65 4 -133461 cd06851 GT_GPT_like 2 putative catalytic motif 0 0 1 1 183,184,185,186 1 -133462 cd06852 GT_MraY 1 Mg++ binding site 0 0 1 1 54,55 4 -133462 cd06852 GT_MraY 2 putative catalytic motif 0 0 1 1 187,188,189,190 1 -133462 cd06852 GT_MraY 3 putative substrate binding site 0 0 1 1 240,246,247,248,249,250 5 -133463 cd06853 GT_WecA_like 1 Mg++ binding site 0 0 1 1 54,55 4 -133463 cd06853 GT_WecA_like 2 putative catalytic motif 0 0 1 1 173,174,175,176 1 -133463 cd06853 GT_WecA_like 3 substrate binding site 0 0 1 1 224,238,239,240,241 5 -133464 cd06854 GT_WbpL_WbcO_like 1 Mg++ binding site 0 0 1 1 61,62 4 -133464 cd06854 GT_WbpL_WbcO_like 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -133464 cd06854 GT_WbpL_WbcO_like 3 putative substrate binding site 0 0 1 1 223,234,235,236,237 5 -133465 cd06855 GT_GPT_euk 1 Mg++ binding site 0 0 1 1 78,79 4 -133465 cd06855 GT_GPT_euk 2 putative catalytic motif 0 0 1 1 214,215,216,217 1 -133466 cd06856 GT_GPT_archaea 1 Mg++ binding site 0 0 1 1 57,58 4 -133466 cd06856 GT_GPT_archaea 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -271356 cd06857 SLC5-6-like_sbd 1 Na binding site 0 1 1 1 8,11,287,290,291 4 -132769 cd06859 PX_SNX1_2_like 1 phosphoinositide binding site 0 0 1 1 41,42,43,83 5 -132770 cd06860 PX_SNX7_30_like 1 phosphoinositide binding site 0 0 1 1 41,42,43,67,68,85 5 -132771 cd06861 PX_Vps5p 1 phosphoinositide binding site 0 0 1 1 41,42,43,67,68,81 5 -132772 cd06862 PX_SNX9_18_like 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,76 5 -132773 cd06863 PX_Atg24p 1 phosphoinositide binding site 0 0 1 1 42,43,44,68,69,87 5 -132774 cd06864 PX_SNX4 1 phosphoinositide binding site 0 0 1 1 50,51,52,76,77,98 5 -132775 cd06865 PX_SNX_like 1 phosphoinositide binding site 0 0 1 1 46,47,48,72,73,89 5 -132776 cd06866 PX_SNX8_Mvp1p_like 1 phosphoinositide binding site 0 0 1 1 34,35,36,60,61,74 5 -132777 cd06867 PX_SNX41_42 1 phosphoinositide binding site 0 0 1 1 32,33,34,58,59,81 5 -132778 cd06868 PX_HS1BP3 1 phosphoinositide binding site 0 0 1 1 51,52,53,77,78,89 5 -132779 cd06869 PX_UP2_fungi 1 putative phosphoinositide binding site 0 0 1 1 54,55,56,80,81,88 5 -132780 cd06870 PX_CISK 1 phosphoinositide binding site 0 0 1 1 38,39,40,63,64,78 5 -132780 cd06870 PX_CISK 2 dimer interface 0 1 1 1 10,11,12,13,14,15,16,17,18,32,33,34,35,36,106,108 2 -132781 cd06871 PX_MONaKA 1 phosphoinositide binding site 0 0 1 1 42,43,44,65,66,79 5 -132782 cd06872 PX_SNX19_like_plant 1 phosphoinositide binding site 0 0 1 1 37,38,39,61,62,76 5 -132783 cd06873 PX_SNX13 1 phosphoinositide binding site 0 0 1 1 45,46,47,71,72,85 5 -132784 cd06874 PX_KIF16B_SNX23 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,63,76 5 -132785 cd06875 PX_IRAS 1 phosphoinositide binding site 0 0 1 1 35,36,37,60,61,74 5 -132786 cd06876 PX_MDM1p 1 phosphoinositide binding site 0 0 1 1 61,62,63,87,88,103 5 -132787 cd06877 PX_SNX14 1 phosphoinositide binding site 0 0 1 1 48,49,50,74,75,88 5 -132788 cd06878 PX_SNX25 1 putative phosphoinositide binding site 0 0 1 1 54,55,56,83,84,96 5 -132789 cd06879 PX_UP1_plant 1 phosphoinositide binding site 0 0 1 1 67,68,69,93,94,107 5 -132790 cd06880 PX_SNX22 1 phosphoinositide binding site 0 0 1 1 37,38,39,60,61,73 5 -132791 cd06881 PX_SNX15_like 1 phosphoinositide binding site 0 0 1 1 42,43,44,71,72,86 5 -132792 cd06882 PX_p40phox 1 phosphoinositide binding site 0 1 1 1 39,40,41,73,74,86 5 -132792 cd06882 PX_p40phox 2 PB1 domain interface 0 1 1 1 14,16,17,19,41,119,122 2 -132793 cd06883 PX_PI3K_C2 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,63,77 5 -132794 cd06884 PX_PI3K_C2_68D 1 putative phosphoinositide binding site 0 0 1 1 38,39,40,64,65,79 5 -132795 cd06885 PX_SNX17_31 1 phosphoinositide binding site 0 0 1 1 33,34,35,58,59,72 5 -132796 cd06886 PX_SNX27 1 phosphoinositide binding site 0 0 1 1 36,37,38,61,62,75 5 -132797 cd06887 PX_p47phox 1 phosphoinositide binding site 0 1 1 1 37,38,39,71,72,84 5 -132797 cd06887 PX_p47phox 2 anionic phospholipid binding site 0 1 1 1 45,49,64,68,69 5 -132798 cd06888 PX_FISH 1 phosphoinositide binding site 0 0 1 1 37,38,39,71,72,87 5 -132799 cd06889 PX_NoxO1 1 putative phosphoinositide binding site 0 0 1 1 38,39,40,72,73,89 5 -132800 cd06890 PX_Bem1p 1 phosphoinositide binding site 0 0 1 1 33,34,35,66,67,80 5 -132801 cd06891 PX_Vps17p 1 putative phosphoinositide binding site 0 0 1 1 68,69,70,93,94,109 5 -132802 cd06892 PX_SNX5_like 1 putative phosphoinositide binding site 0 0 1 1 39,40,41,66,67,110 5 -132803 cd06893 PX_SNX19 1 phosphoinositide binding site 0 0 1 1 55,56,57,90,91,101 5 -132804 cd06894 PX_SNX3_like 1 phosphoinositide binding site 0 1 1 1 42,44,47,67,68,81,90 5 -132805 cd06895 PX_PLD 1 phosphoinositide binding site 0 0 1 1 41,42,43,95,96,109 5 -132806 cd06896 PX_PI3K_C2_gamma 1 putative phosphoinositide binding site 0 0 1 1 31,32,33,56,57,69 5 -132807 cd06897 PX_SNARE 1 phosphoinositide binding site 0 0 1 1 33,34,35,58,59,75 5 -132808 cd06898 PX_SNX10 1 phosphoinositide binding site 0 0 1 1 41,42,43,66,67,82 5 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 1 metal binding site 0 1 1 1 120,122,136 4 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 2 N-linked glycosylation site 0 1 1 1 105 0 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 3 homotetramer interaction site 0 1 1 1 0,1,3,13,45,48,148,168,179,181,182,183,192,193,194,196,208 2 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 4 homodimer interaction site 0 1 1 0 0,1,3,13,45,48,208 2 -173888 cd06900 lectin_VcfQ 1 putative metal binding site 0 0 1 0 118,120 4 -173889 cd06901 lectin_VIP36_VIPL 1 metal binding site 0 1 1 0 107,111,136,139 4 -173889 cd06901 lectin_VIP36_VIPL 2 carbohydrate binding site 0 1 1 0 76,109,111,136,206,207,208 5 -173890 cd06902 lectin_ERGIC-53_ERGL 1 metal binding site 0 1 1 0 108,110,111,112,113,117,118,137 4 -173890 cd06902 lectin_ERGIC-53_ERGL 2 carbohydrate binding site 0 0 1 0 77,112,134,207,208 5 -173891 cd06903 lectin_EMP46_EMP47 1 metal binding site 0 1 1 1 121,131,132,136 4 -173891 cd06903 lectin_EMP46_EMP47 2 carbohydrate binding site 0 0 1 0 76,197 5 -349475 cd06904 M14_MpaA-like 1 Zn binding site [H][ED][H] 1 1 1 32,35,136 4 -349475 cd06904 M14_MpaA-like 2 active site 0 1 1 1 32,35,76,85,86,136,137,143,167,190 1 -349476 cd06905 M14-like 1 Zn binding site [HED][ED][H] 0 1 1 66,69,256 4 -349476 cd06905 M14-like 2 putative active site 0 0 1 1 66,69,126,192,193,256,257,263,332 1 -349477 cd06906 M14_Nna1 1 Zn binding site [H][ED][H] 0 1 1 51,54,148 4 -349477 cd06906 M14_Nna1 2 active site 0 0 1 1 51,54,101,110,111,148,149,158,233 1 -349478 cd06907 M14_AGBL2-3_like 1 Zn binding site [H][ED][H] 0 1 1 46,49,142 4 -349478 cd06907 M14_AGBL2-3_like 2 active site 0 0 1 1 46,49,96,105,106,142,143,152,215 1 -349479 cd06908 M14_AGBL4_like 1 Zn binding site [H][ED][H] 0 1 1 45,48,143 4 -349479 cd06908 M14_AGBL4_like 2 active site 0 0 1 1 45,48,95,104,105,143,144,153,216 1 -349480 cd06909 M14_ASPA 1 Zn binding site [H][ED][H] 1 1 1 9,12,102 4 -349480 cd06909 M14_ASPA 2 active site 0 1 1 1 9,12,51,58,59,102,103,113,147,151,161 1 -349481 cd06910 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 0 1 1 33,36,124 4 -349481 cd06910 M14_ASTE_ASPA-like 2 active site 0 0 1 1 33,36,80,87,88,124,125,134,170,174,186 1 -132874 cd06911 VirB9_CagX_TrbG 1 VirB7 interaction site 0 1 1 0 5,6,7,8,9,10,11,16,17,18,19,20,21,71,76,77,78,79,80,81,82 0 -133467 cd06912 GT_MraY_like 1 Mg++ binding site 0 0 1 1 54,55 4 -133467 cd06912 GT_MraY_like 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -133064 cd06914 GT8_GNT1 1 putative ligand binding site 0 0 1 1 5,6,7,10,11,82,96,98,99,100,124,129,130,131,161,162,191,192,227,229,230,235 0 -133064 cd06914 GT8_GNT1 2 metal binding site 0 0 0 1 98,100,227 0 -133065 cd06915 NTP_transferase_WcbM_like 1 Substrate binding site 0 0 1 1 3,4,5,49,102,104 0 -133065 cd06915 NTP_transferase_WcbM_like 2 Mg++ binding site 0 0 1 1 104 0 -133065 cd06915 NTP_transferase_WcbM_like 3 metal binding site 0 0 1 0 104 0 -133065 cd06915 NTP_transferase_WcbM_like 4 Mg++ binding site 0 0 1 0 104,211,213 0 -133065 cd06915 NTP_transferase_WcbM_like 5 metal binding site 0 0 1 1 104,211,213 0 -143512 cd06916 NR_DBD_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143512 cd06916 NR_DBD_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -270822 cd06917 STKc_NAK1_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,64,80,81,82,83,86,87,90,125,127,128,129,130,132,142,143,146,160,161,162,163,165,193,202 1 -270822 cd06917 STKc_NAK1_like 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,48,64,80,81,82,83,86,87,90,129,130,132,143 5 -270822 cd06917 STKc_NAK1_like 3 polypeptide substrate binding site 0 0 1 1 11,12,125,127,128,129,146,160,161,162,163,165,193,202 2 -270822 cd06917 STKc_NAK1_like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165 0 -132994 cd06919 Asp_decarbox 1 active site 0 1 1 1 7,9,22,23,56 1 -132994 cd06919 Asp_decarbox 2 tetramerization interface 0 1 1 0 0,1,2,3,4,5,7,9,10,18,19,20,21,35,37,40,41,45,47,50,52,53,54,55,56,72,73,75,76,84,88,89,90,99 2 -132993 cd06920 NEAT 1 heme-binding site 0 1 1 1 11,19,20,23,48,94,96,101,105,107 5 -211312 cd06921 ChtBD1_GH19_hevein 1 carbohydrate binding site 0 1 1 1 18,20,21,22,24,28,29 5 -211313 cd06922 ChtBD1_GH18_1 1 carbohydrate binding site 0 0 1 1 15,17,18,19,21,26 5 -211314 cd06923 ChtBD1_GH16 1 carbohydrate binding site 0 0 1 1 16,18,19,20,22,26 5 -132902 cd06926 RNAP_II_RPB11 1 RPB11 - RPB3 heterodimer interface 0 1 1 1 6,8,22,26,28,29,31,36,39,78,79,84,85,86,88,89,90,91,92 2 -132902 cd06926 RNAP_II_RPB11 2 RPB11 - RPB1 interaction site 0 1 1 1 13,34,45,47,48,49,51,52,53,54 2 -132902 cd06926 RNAP_II_RPB11 3 RPB11 - RPB2 interaction site 0 1 1 1 27,52,53 2 -132902 cd06926 RNAP_II_RPB11 4 RPB11 - RPB8 interaction site 0 1 1 0 44 2 -132903 cd06927 RNAP_L 1 L- D heterodimer interface 0 1 1 1 0,17,18,20,23,24,31,70,74,76,77,80,81 2 -132903 cd06927 RNAP_L 2 L- A' interaction site 0 1 1 1 9,30,31,36,37,38,39,41,44,53 2 -132903 cd06927 RNAP_L 3 L- B interaction site 0 1 1 1 19,23,45,46 2 -132904 cd06928 RNAP_alpha_NTD 1 alphaNTD homodimer interface 0 1 1 1 0,2,14,17,19,20,21,24,28,31,32,36,204,207,208,210,211,213,214 2 -132904 cd06928 RNAP_alpha_NTD 2 alphaNTD - beta' interaction site 0 1 1 1 54,66,69,72,73,137,138,140,159,164,165,174 2 -132904 cd06928 RNAP_alpha_NTD 3 alphaNTD - beta interaction site 0 1 1 1 11,23,27,30,31,52,54,56,58,59,60,61,66,72,121,138,157,159,165,166,167,169,170,171,172,182,185,187 2 -132727 cd06929 NR_LBD_F1 1 ligand binding site 0 1 1 0 5,6,10,44,48,51,84,169 5 -132727 cd06929 NR_LBD_F1 2 coactivator recognition site 0 1 1 1 15,18,22,27,32,33,35,36,39,40 2 -132728 cd06930 NR_LBD_F2 1 ligand binding site 0 1 1 0 0,3,4,7,10,11,40,41,44,45,48,51,63,86 5 -132728 cd06930 NR_LBD_F2 2 coactivator recognition site 0 1 1 0 15,19,29,30,32,33,36,37 2 -132729 cd06931 NR_LBD_HNF4_like 1 ligand binding site 0 1 1 0 33,39,43,77,81,84,94,95,112,202,203,206 5 -132729 cd06931 NR_LBD_HNF4_like 2 coactivator recognition site 0 1 1 1 48,52,62,63,65,66,69,70,216,217,220,221 2 -132729 cd06931 NR_LBD_HNF4_like 3 dimer interface 0 1 1 0 119,140,146,160,161,164,165,168,169,179,180,182,183,184,186,187,189,190,191,193,194,197 2 -132730 cd06932 NR_LBD_PPAR 1 ligand binding site 0 1 1 0 66,67,71,105,109,112,121,123,146,231 5 -132730 cd06932 NR_LBD_PPAR 2 coactivator recognition site 0 1 1 1 76,79,83,88,93,94,96,97,100,101 2 -132730 cd06932 NR_LBD_PPAR 3 heterodimer interface 0 1 1 0 155,177,180,189,212,216,219,221,222,225,226,233 2 -132731 cd06933 NR_LBD_VDR 1 ligand binding site 0 1 1 0 19,23,38,41,44,45,48,82,85,86,89,97,99,111,114,116,208,212,215 5 -132731 cd06933 NR_LBD_VDR 2 coactivator recognition site 0 1 1 1 53,57,63,68,70,71,75,227,228,231,232,236,237 2 -132732 cd06934 NR_LBD_PXR_like 1 ligand binding site 0 1 1 0 38,39,42,43,46,81,84,95,102,106,107,112,116,117,120,204 5 -132732 cd06934 NR_LBD_PXR_like 2 coactivator recognition site 0 1 1 1 51,55,61,68,69,72,73,221,224,225 2 -132732 cd06934 NR_LBD_PXR_like 3 heterodimer interface 0 1 0 0 119,149,160,163,171,188,189,191,195,196,198,202 2 -132733 cd06935 NR_LBD_TR 1 ligand binding site 0 1 1 0 53,56,57,59,60,63,66,94,97,101,113,114,115,125,128,130,137,219,226,239 5 -132733 cd06935 NR_LBD_TR 2 coactivator recognition site 0 1 1 1 65,68,72,82,86,89,237,238,241 2 -132733 cd06935 NR_LBD_TR 3 dimer interface 0 1 0 0 132,177,207,210,211,214,217,218,220,221 2 -132734 cd06936 NR_LBD_Fxr 1 ligand binding site 0 1 1 0 18,37,40,41,43,44,47,81,82,84,85,88,200,214 5 -132734 cd06936 NR_LBD_Fxr 2 coactivator recognition site 0 1 1 1 49,52,56,66,67,70,73,74,217,220 2 -132734 cd06936 NR_LBD_Fxr 3 dimer interface 0 1 1 0 128,147,154,158,181,184,185,188,189,191,194,195,198,199 2 -132735 cd06937 NR_LBD_RAR 1 ligand binding site 0 1 1 0 42,45,46,49,80,83,84,87,90,100,101,116,208,209,212,228 5 -132735 cd06937 NR_LBD_RAR 2 coactivator recognition site 0 1 1 1 54,58,68,71,72,75,76,222,223,226,227 2 -132735 cd06937 NR_LBD_RAR 3 heterodimer interface 0 1 1 0 129,151,152,163,166,167,170,171,174,178,189,190,192,193,196,199,200 2 -132736 cd06938 NR_LBD_EcR 1 ligand binding site 0 1 0 0 15,16,17,43,44,46,47,50,84,87,88,91,99,101,102,112,124,209 5 -132736 cd06938 NR_LBD_EcR 2 putative coactivator recognition site 0 0 1 1 52,55,59,64,69,70,72,73,76,77,222,223,226 0 -132736 cd06938 NR_LBD_EcR 3 heterodimer interface 0 1 1 0 126,163,166,170,174,190,191,194,196,198,200,201 2 -132737 cd06939 NR_LBD_ROR_like 1 ligand binding site 0 1 1 0 17,18,19,49,52,53,55,56,59,93,96,97,99,100,108,109,110,120,123,132,213 5 -132737 cd06939 NR_LBD_ROR_like 2 coactivator recognition site 0 1 1 1 68,78,81,82,85,86,234,235,238,239 2 -132738 cd06940 NR_LBD_REV_ERB 1 ligand binding site 0 1 0 0 13,16,20,24,54,57,58,61,65,93,94,97,179,182,183,186 5 -132738 cd06940 NR_LBD_REV_ERB 2 homodimer interface 0 1 1 0 103,126,127,128,137,140,141,162,163,166,167,170,171,173,174,177,178 2 -132739 cd06941 NR_LBD_DmE78_like 1 putative ligand binding site 0 0 1 1 5,6,10,44,48,51,64,66,84,169 5 -132739 cd06941 NR_LBD_DmE78_like 2 putative coactivator recognition site 0 0 1 1 15,18,22,27,32,33,35,36,39,40 0 -132740 cd06942 NR_LBD_Sex_1_like 1 putative ligand binding site 0 0 1 1 5,6,10,44,48,51,62,64,83,167 5 -132740 cd06942 NR_LBD_Sex_1_like 2 putative coactivator recognition site 0 0 1 1 15,18,22,27,32,33,35,36,39,40 0 -132741 cd06943 NR_LBD_RXR_like 1 ligand binding site 0 1 1 0 34,35,37,38,41,75,79,82,92,93,108,198,201,202 5 -132741 cd06943 NR_LBD_RXR_like 2 homodimer interface 0 1 1 0 114,118,122,145,147,156,163,167,179,182,183,186,187,188,189,192,193,196,200 2 -132741 cd06943 NR_LBD_RXR_like 3 coactivator recognition site 0 1 1 0 43,46,50,55,60,61,63,64,68 2 -132741 cd06943 NR_LBD_RXR_like 4 heterodimer interface 0 1 1 0 114,118,122,139,145,159,160,163,164,167,181,182,185,186,188,189,190,192,193,196,200 2 -132742 cd06944 NR_LBD_Ftz-F1_like 1 ligand binding site 0 1 1 0 39,42,43,79,80,83,87,102,124,125,210,213,214,217 5 -132742 cd06944 NR_LBD_Ftz-F1_like 2 coactivator recognition site 0 1 1 1 51,54,58,68,71,72,75,76,227,228,231,232 2 -132743 cd06945 NR_LBD_Nurr1_like 1 heterodimer interface 0 1 1 0 9,12,15,16,137,139,140,141,178 2 -132743 cd06945 NR_LBD_Nurr1_like 2 putative coactivator recognition site 0 0 1 1 54,57,61,66,71,72,74,75,78,79,227,230,234 0 -132744 cd06946 NR_LBD_ERR 1 ligand binding site 0 1 1 1 28,31,35,38,76,89,93,103,104,105,199,202,204 5 -132744 cd06946 NR_LBD_ERR 2 coactivator recognition site 0 1 1 1 43,57,60,61,64,65,212,213,216,217 2 -132744 cd06946 NR_LBD_ERR 3 dimer interface 0 1 1 0 139 2 -132745 cd06947 NR_LBD_GR_Like 1 ligand binding site 0 1 1 0 29,32,33,35,36,39,69,70,73,74,77,80,92,108,112,115,201,204,205,208,219 5 -132745 cd06947 NR_LBD_GR_Like 2 coactivator recognition site 0 1 1 1 44,48,58,59,62,222,225,229 2 -132745 cd06947 NR_LBD_GR_Like 3 dimer interface 0 1 1 0 14,16,17,18,19,20,84,94,95,97,99 2 -132746 cd06948 NR_LBD_COUP-TF 1 putative ligand binding site 0 0 1 1 33,34,38,72,76,79,93,114 5 -132746 cd06948 NR_LBD_COUP-TF 2 putative coactivator recognition site 0 0 1 1 43,46,50,55,60,61,63,64,67,68 0 -132747 cd06949 NR_LBD_ER 1 ligand binding site 0 1 1 0 36,41,43,77,84,208,211 5 -132747 cd06949 NR_LBD_ER 2 coactivator recognition site 0 1 1 1 48,52,65,66,70,225,229,230 2 -132747 cd06949 NR_LBD_ER 3 dimer interface 0 1 1 0 141,145,147,148,166,170,171,174,188,189,191,192,193,195,196,199,200,202,203,206 2 -132748 cd06950 NR_LBD_Tlx_PNR_like 1 putative ligand binding site 0 0 1 1 29,30,34,68,72,75,89,108 5 -132748 cd06950 NR_LBD_Tlx_PNR_like 2 putative coactivator recognition site 0 0 1 1 39,42,46,51,56,57,59,60,63,64 0 -132749 cd06951 NR_LBD_Dax1_like 1 putative ligand binding site 0 0 1 1 22,23,27,61,65,68,83,116 5 -132749 cd06951 NR_LBD_Dax1_like 2 putative coactivator recognition site 0 0 1 1 32,35,39,44,49,50,52,53,56,57,216,219 0 -132749 cd06951 NR_LBD_Dax1_like 3 heterotrimer interface 0 1 1 0 40,41,42,43,45,46,48,154,155,156,163 2 -132750 cd06952 NR_LBD_TR2_like 1 putative ligand binding site 0 0 1 1 24,25,29,63,67,70,84,111 5 -132750 cd06952 NR_LBD_TR2_like 2 putative coactivator recognition site 0 0 1 1 34,37,41,46,51,52,54,55,58,59 0 -132751 cd06953 NR_LBD_DHR4_like 1 putative ligand binding site 0 0 1 1 30,31,35,69,73,76,90,113 5 -132751 cd06953 NR_LBD_DHR4_like 2 putative coactivator recognition site 0 0 1 1 40,43,47,52,57,58,60,61,64,65 0 -132752 cd06954 NR_LBD_LXR 1 ligand binding site 0 1 1 0 44,47,48,50,51,85,88,89,92,103,125,129,211,214,215,218,225,229,233 5 -132752 cd06954 NR_LBD_LXR 2 coactivator recognition site 0 1 1 1 56,59,63,73,74,76,77,81,227,228,231 2 -132752 cd06954 NR_LBD_LXR 3 dimer interface 0 1 1 0 158,169,173,177,180,184,192,194,195,196,198,199,201,202,203,205,206,209 2 -143513 cd06955 NR_DBD_VDR 1 zinc binding site 0 1 0 1 8,11,25,28,44,50,60,63 4 -143513 cd06955 NR_DBD_VDR 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,33,34,57,58,64,78,79,84 3 -143513 cd06955 NR_DBD_VDR 3 dimer interface 0 1 1 1 45,46,59,76,77 2 -143514 cd06956 NR_DBD_RXR 1 zinc binding site 0 1 1 1 2,5,19,22,38,44,54,57 4 -143514 cd06956 NR_DBD_RXR 2 DNA binding site 0 1 1 1 11,12,13,14,20,21,23,25,27,28,31,39,51,52,55,58,71,72,73,75,76 3 -143514 cd06956 NR_DBD_RXR 3 RXR/ECR heterodimer interface 0 1 1 0 7,48,49,51,53 2 -143514 cd06956 NR_DBD_RXR 4 RXR/PPAR heterodimer interface 0 1 0 0 33,56,59,60,63,64,68,69,70,74,75,76 2 -143514 cd06956 NR_DBD_RXR 5 RXR/RAR heterodimer interface 0 1 1 0 74,76 2 -143514 cd06956 NR_DBD_RXR 6 RXR/RXR homodimer interface DR2 0 1 1 0 70,71,72,73,74,75 2 -143514 cd06956 NR_DBD_RXR 7 RXR/RXR homodimer interface DR1 0 1 1 0 49,50,53 2 -143515 cd06957 NR_DBD_PNR_like_2 1 zinc binding site 0 0 0 1 0,3,17,20,36,43,53,56 4 -143515 cd06957 NR_DBD_PNR_like_2 2 putative DNA binding site 0 0 0 1 10,11,12,18,19,21,23,26,29,50,51,54,57,68,71 3 -143516 cd06958 NR_DBD_COUP_TF 1 zinc binding site 0 1 0 1 0,3,17,20,36,42,52,55 4 -143516 cd06958 NR_DBD_COUP_TF 2 putative DNA binding site 0 0 0 1 9,10,11,12,18,19,21,23,26,29,37,49,50,53,56,67 3 -143517 cd06959 NR_DBD_EcR_like 1 zinc binding site 0 1 0 1 1,4,18,21,37,43,53,56 4 -143517 cd06959 NR_DBD_EcR_like 2 DNA binding site 0 1 1 1 10,11,12,13,19,20,22,24,26,27,50,51,52,54,57,70,71,72 3 -143517 cd06959 NR_DBD_EcR_like 3 dimer interface 0 1 1 0 6,7,47,48,51 2 -143518 cd06960 NR_DBD_HNF4A 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143518 cd06960 NR_DBD_HNF4A 2 DNA binding site 0 1 1 1 6,10,11,12,18,19,21,23,25,26,29,49,50,53,56,69,70,71,73 3 -143518 cd06960 NR_DBD_HNF4A 3 homodimer interface 0 1 0 0 37,50,51,53 2 -143519 cd06961 NR_DBD_TR 1 zinc binding site 0 1 0 1 1,4,18,21,37,43,53,56 4 -143519 cd06961 NR_DBD_TR 2 DNA binding site 0 1 1 1 11,12,13,19,20,22,24,26,27,30,50,51,54,57,70,71,72,77,80,81,83,84 3 -143519 cd06961 NR_DBD_TR 3 heterodimer interface 0 1 1 0 11,14,67,69,70 2 -143520 cd06962 NR_DBD_FXR 1 zinc binding site 0 0 0 1 3,6,20,23,39,45,55,58 4 -143520 cd06962 NR_DBD_FXR 2 putative DNA binding site 0 0 0 1 12,13,14,15,21,22,24,26,28,29,52,53,54,56,59,73 3 -143520 cd06962 NR_DBD_FXR 3 putative dimer interface 0 0 0 1 8,9,49,50,53 2 -143521 cd06963 NR_DBD_GR_like 1 zinc binding site 0 1 0 1 0,3,17,20,36,42,52,55 4 -143521 cd06963 NR_DBD_GR_like 2 dimer interface 0 1 1 0 35,36,37,39,42,43,47,48,51 2 -143521 cd06963 NR_DBD_GR_like 3 DNA binding site 0 1 1 1 10,11,12,18,19,21,22,25,26,34,49,50,56 3 -143522 cd06964 NR_DBD_RAR 1 zinc binding site 0 1 0 1 6,9,23,26,42,48,58,61 4 -143522 cd06964 NR_DBD_RAR 2 DNA binding site 0 1 1 1 16,17,18,24,25,27,29,31,32,35,55,56,59,62,75,76,77 3 -143522 cd06964 NR_DBD_RAR 3 heterodimer interface 0 1 1 0 53,56,57,58,59 2 -143523 cd06965 NR_DBD_Ppar 1 zinc binding site 0 1 0 1 1,4,18,21,37,42,52,55 4 -143523 cd06965 NR_DBD_Ppar 2 DNA binding site 0 1 1 1 9,10,11,12,13,19,20,22,24,26,27,30,49,50,53,56,67,70,71,72,73,74,76 3 -143523 cd06965 NR_DBD_Ppar 3 dimer interface 0 1 1 0 47,48,50,51 2 -143524 cd06966 NR_DBD_CAR 1 zinc binding site 0 0 0 1 2,5,19,22,38,44,54,57 4 -143524 cd06966 NR_DBD_CAR 2 putative DNA binding site 0 0 0 1 12,13,14,20,21,23,25,28,31,51,52,55,58,69,72 3 -143525 cd06967 NR_DBD_TR2_like 1 zinc binding site 0 0 0 1 5,8,22,25,41,47,57,60 4 -143525 cd06967 NR_DBD_TR2_like 2 putative DNA binding site 0 0 0 1 15,16,17,23,24,26,28,31,34,54,55,58,61,72,75 3 -143526 cd06968 NR_DBD_ROR 1 zinc binding site 0 0 0 1 7,10,24,27,43,49,59,62 4 -143526 cd06968 NR_DBD_ROR 2 putative DNA binding site 0 0 0 1 17,18,19,25,26,28,30,33,36,56,57,60,63,74,77 3 -143527 cd06969 NR_DBD_NGFI-B 1 zinc binding site 0 1 0 1 2,5,19,22,38,44,54,57 4 -143527 cd06969 NR_DBD_NGFI-B 2 DNA binding site 0 1 1 1 11,12,13,14,20,21,23,25,27,28,51,52,55,58,71,72,73 3 -143528 cd06970 NR_DBD_PNR 1 zinc binding site 0 0 0 1 8,11,25,28,44,51,61,64 4 -143528 cd06970 NR_DBD_PNR 2 putative DNA binding site 0 0 0 1 18,19,20,26,27,29,31,34,37,58,59,62,65,76,79 3 -133477 cd06971 PgpA 1 binuclear metal-binding site 0 1 1 1 70,73,74,123,126,127 4 -133477 cd06971 PgpA 2 tetramer interfaces 0 1 1 0 3,25,43,46,47,50,51,67,70,71,72,75,76,78,79,82,92,93,94,96,97,98,100,101,103,104,141,142 2 -132992 cd06974 TerD_like 1 putative metal binding site 0 1 0 0 19,21,67 4 -270234 cd07012 PBP2_Bug_TTT 1 chemical substrate binding site 0 1 1 0 11,15,16,17,136,137,178,223 5 -132924 cd07013 S14_ClpP 1 active site residues 0 1 1 1 70,95,144 1 -132924 cd07013 S14_ClpP 2 oligomer interface 0 1 1 1 3,5,14,15,18,19,22,37,44,48,51,54,55,59,67,89,91,97,98,99,100,114,117,119,121,144,146 2 -132925 cd07014 S49_SppA 1 active site residues 0 1 1 1 83 1 -132925 cd07014 S49_SppA 2 oligomer interface 0 1 1 1 24,31,57,121,125 2 -132925 cd07014 S49_SppA 3 tandem repeat interface 0 1 1 1 4,45,83,98,100,108,109,110,111,123,148,149,150,152,155 2 -132926 cd07015 Clp_protease_NfeD 1 active site residues 0 1 1 1 73,114 1 -132926 cd07015 Clp_protease_NfeD 2 dimer interface 0 1 1 0 1,166 2 -132927 cd07016 S14_ClpP_1 1 active site residues 0 0 1 1 70,93,142 1 -132927 cd07016 S14_ClpP_1 2 oligomer interface 0 0 1 1 3,5,17,18,21,37,44,48,51,54,55,59,67,87,89,95,96,97,98,105,108,110,112,142,144 2 -132928 cd07017 S14_ClpP_2 1 active site residues 0 1 1 1 79,104,153 1 -132928 cd07017 S14_ClpP_2 2 oligomer interface 0 1 1 1 12,14,23,24,27,28,31,46,53,57,60,63,64,68,76,98,100,106,107,108,109,123,126,128,130,153,155 2 -132929 cd07018 S49_SppA_67K_type 1 active site residues 0 1 1 1 89 1 -132929 cd07018 S49_SppA_67K_type 2 oligomer interface 0 1 1 1 31,38,64,166,170 2 -132929 cd07018 S49_SppA_67K_type 3 tandem repeat interface 0 1 1 1 5,52,89,104,106,114,115,116,117,168,192,193,194,196,199 2 -132930 cd07019 S49_SppA_1 1 active site residues 0 1 1 1 82 1 -132930 cd07019 S49_SppA_1 2 oligomer interface 0 1 1 1 23,30,56,122,124,125,126,127,128,156,160 2 -132930 cd07019 S49_SppA_1 3 tandem repeat interface 0 1 1 1 7,44,82,97,99,107,108,109,110,158,182,183,184,186,189 2 -132931 cd07020 Clp_protease_NfeD_1 1 active site residues 0 1 1 1 73,114 1 -132931 cd07020 Clp_protease_NfeD_1 2 dimer interface 0 1 1 0 1,166 2 -132932 cd07021 Clp_protease_NfeD_like 1 active site residues 0 0 1 1 70,107 1 -132932 cd07021 Clp_protease_NfeD_like 2 dimer interface 0 0 1 0 1,172 2 -132933 cd07022 S49_Sppa_36K_type 1 active site residues 0 0 1 1 85 1 -132933 cd07022 S49_Sppa_36K_type 2 oligomer interface 0 0 1 1 27,34,60,126,128,129,130,131,132,160,164 2 -132933 cd07022 S49_Sppa_36K_type 3 tandem repeat interface 0 0 1 1 7,48,85,100,102,110,111,112,113,162,185,186,187,189,192 2 -132934 cd07023 S49_Sppa_N_C 1 active site residues 0 1 1 1 78 1 -132934 cd07023 S49_Sppa_N_C 2 oligomer interface 0 1 1 1 19,26,52,118,120,121,122,123,124,153,157 2 -132934 cd07023 S49_Sppa_N_C 3 tandem repeat interface 0 1 1 1 7,40,78,93,95,103,104,105,106,155,179,180,181,183,186 2 -132882 cd07025 Peptidase_S66 1 catalytic triad 0 0 1 1 97,198,267 1 -132882 cd07025 Peptidase_S66 2 dimer interface 0 1 1 1 75,76,179,180,182,183,205,206,208,209,212,213,250,251 2 -197305 cd07026 Ribosomal_L20 1 23S rRNA binding site 0 1 1 0 0,1,2,3,4,5,7,8,9,10,15,16,17,18,19,20,21,22,24,25,26,27,30,31,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,57,60,64,70,71,74,75,78,86,87,88 3 -197305 cd07026 Ribosomal_L20 2 L21 binding site 0 1 1 0 30,34,37,38,40,41,44,83,84,85,86,89,95,96,102,103 2 -197305 cd07026 Ribosomal_L20 3 L13 binding site 0 1 1 0 51,54,55,58,61,62,64,88,91,94 2 -132905 cd07027 RNAP_RPB11_like 1 RPB11 - RPB3 heterodimer interface 0 1 1 1 14,19,20,21,23,28,42,70,71,76,77,78,80,81,82 2 -132905 cd07027 RNAP_RPB11_like 2 RPB11 - RPB1 interaction site 0 1 1 1 26,37,39,40,41,43,44,45 2 -132905 cd07027 RNAP_RPB11_like 3 RPB11 - RPB2 interaction site 0 1 1 1 19,44,45 2 -132905 cd07027 RNAP_RPB11_like 4 RPB11 - RPB8 interaction site 0 1 1 1 36 2 -132906 cd07028 RNAP_RPB3_like 1 RPB3 - RPB11 heterodimer interface 0 1 1 1 0,1,2,7,8,16,20,22,23,26,29,156,157,191,195,198,199,202,208,209 2 -132906 cd07028 RNAP_RPB3_like 2 RPB3 - RPB2 interaction site 0 1 1 1 25,28,29,33,53,55,56,59,60,158,159,164,165,166,168,169,171,172 2 -132906 cd07028 RNAP_RPB3_like 3 RPB3 - RPB10 interaction site 0 1 1 1 51,60,63,108,110,132,133,134,137,139,160,165,166,183,185 2 -132906 cd07028 RNAP_RPB3_like 4 RPB3 - RPB12 interaction site 0 1 1 1 40,41,42,43,44,45,46,54,59,157,158,160 2 -132907 cd07029 RNAP_I_III_AC19 1 AC19 - AC40 heterodimer interface 0 0 1 1 14,19,20,21,23,28,42,70,71,76,77,78,80,81,82 2 -132907 cd07029 RNAP_I_III_AC19 2 AC19 - A190(C160) interaction site 0 0 1 1 26,37,39,40,41,43,44,45 2 -132907 cd07029 RNAP_I_III_AC19 3 AC19 - A135(C128) interaction site 0 0 1 1 19,44,45 2 -132907 cd07029 RNAP_I_III_AC19 4 AC19 - RPB8 interaction site 0 0 1 1 36 2 -132908 cd07030 RNAP_D 1 D - L heterodimer interface 0 1 1 1 1,2,3,4,16,19,20,22,23,26,29,34,237,240,244,248,250,251,252,253,254,255,257 2 -132908 cd07030 RNAP_D 2 D - A' interaction site 0 1 1 1 205,208 0 -132908 cd07030 RNAP_D 3 D - B interaction site 0 1 1 1 21,25,28,29,32,33,53,54,55,56,59,60,147,148,155,157,158,159,160,202,205 0 -132908 cd07030 RNAP_D 4 D - N interaction site 0 1 1 1 49,51,60,63,65,102,104,121,122,123,124,125,131 0 -132908 cd07030 RNAP_D 5 D - P interaction site 0 1 1 0 41,42,43,44,45,46,48,54,59,149 0 -132909 cd07031 RNAP_II_RPB3 1 RPB3 - RPB11 heterodimer interface 0 1 1 1 0,1,2,7,8,16,20,22,23,26,29,164,165,240,244,247,248,251,257,258,261,264 2 -132909 cd07031 RNAP_II_RPB3 2 RPB3 - RPB1 interaction site 0 1 1 1 191,192,193,220 2 -132909 cd07031 RNAP_II_RPB3 3 RPB3 - RPB2 interaction site 0 1 1 1 25,28,29,33,53,55,56,59,60,166,167,172,173,174,176,177,179,180,187,188,189,191,193,200,201 2 -132909 cd07031 RNAP_II_RPB3 4 RPB3 - RPB10 interaction site 0 1 1 1 51,60,63,107,109,140,141,142,145,147,168,173,174,232,234 2 -132909 cd07031 RNAP_II_RPB3 5 RPB3 - RPB12 interaction site 0 1 1 1 40,41,42,43,44,45,46,54,59,165,166,168 2 -132909 cd07031 RNAP_II_RPB3 6 RPB3 - RPB8 interaction site 0 1 1 0 186,220 2 -132910 cd07032 RNAP_I_II_AC40 1 AC40 - AC19 heterodimer interface 0 0 1 1 0,1,2,7,8,16,20,22,23,26,29,171,172,270,274,277,278,281,287,288 2 -132910 cd07032 RNAP_I_II_AC40 2 AC40 - A135(C128) interaction site 0 0 1 1 25,28,29,33,53,55,56,59,60,173,174,179,180,181,183,184,186,187 2 -132910 cd07032 RNAP_I_II_AC40 3 AC40 - RPB10 interaction site 0 0 1 1 51,60,63,118,120,147,148,149,152,154,175,180,181,262,264 2 -132910 cd07032 RNAP_I_II_AC40 4 AC40 - RPB12 interaction site 0 0 1 1 40,41,42,43,44,45,46,54,59,172,173,175 2 -132916 cd07033 TPP_PYR_DXS_TK_like 1 TPP binding site 0 1 1 1 45,47,72,75 5 -132916 cd07033 TPP_PYR_DXS_TK_like 2 PYR/PP interface 0 1 1 1 14,16,22,39,42,44,45,46,47,48,49,52,53,55,56,57,75,78,79,105,108,124,125,146 2 -132916 cd07033 TPP_PYR_DXS_TK_like 3 dimer interface 0 1 1 1 22,42,45,46,47,74,75,77,105,107,116,117,119,120,122 2 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 1 TPP binding site 0 1 1 1 20,49 5 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 2 substrate binding site 0 1 1 1 22,99 5 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 3 PYR/PP interface 0 1 1 1 15,16,19,20,22,28,29,44,45,46,47,54,55,57,58,59,62,64,81,84 2 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 4 dimer interface 0 1 1 1 15,16,22,26,29,44,45,46,47,54,55,57,58,59,62,64,81,84,88,101,102,118,119 2 -132918 cd07035 TPP_PYR_POX_like 1 TPP binding site 0 1 1 1 18,42,68,72 5 -132918 cd07035 TPP_PYR_POX_like 2 dimer interface 0 1 1 1 18,19,20,23,27,36,38,39,40,41,43,68,71,72,74,75,78,112,115 2 -132918 cd07035 TPP_PYR_POX_like 3 PYR/PP interface 0 1 1 1 13,18,19,23,27,35,36,37,38,39,40,41,44,47,48,51,52,54,55,56,68,75,79,82,83 2 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 1 TPP binding site 0 1 1 1 21,50,52,78,81 5 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 2 alpha subunit interface 0 1 1 1 14,16,22,44,47,49,50,51,52,53,54,57,58,60,61,62,81,84,85,94,95,117,120,135,136,157,158 2 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 3 heterodimer interface 0 1 1 1 22,47,49,50,51,52,80,81,83,88,92,95,117,119,120,128,130,131,133 2 -132920 cd07037 TPP_PYR_MenD 1 TPP binding site 0 1 1 1 43 5 -132920 cd07037 TPP_PYR_MenD 2 PYR/PP interface 0 1 1 1 16,18,19,23,37,38,39,40,41,42,43,44,45,48,49,51,52,53,55,56,69,73,76,80,83,105,106 2 -132920 cd07037 TPP_PYR_MenD 3 dimer interface 0 1 1 1 16,18,19,23,37,39,40,41,42,43,44,69,72,73,75,76,79,98,105,106,109,113,116,117 2 -132920 cd07037 TPP_PYR_MenD 4 tetramer interface 0 1 1 1 16,18,19,23,37,39,40,41,42,43,44,69,72,73,75,76,79,98,105,106,109,113,116,117 2 -132921 cd07038 TPP_PYR_PDC_IPDC_like 1 TPP binding site 0 1 1 1 18,43,68,107 5 -132921 cd07038 TPP_PYR_PDC_IPDC_like 2 PYR/PP interface 0 1 1 1 18,19,27,30,36,39,40,41,42,45,48,49,51,53,55,56,57,68,75,79,83,106,107 2 -132921 cd07038 TPP_PYR_PDC_IPDC_like 3 dimer interface 0 1 1 1 18,19,27,30,41,42,68,75,106,107,109,120,123 2 -132922 cd07039 TPP_PYR_POX 1 TPP binding site 0 1 1 1 21,46,69,76 5 -132922 cd07039 TPP_PYR_POX 2 PYR/PP interface 0 1 1 1 16,21,23,26,29,30,42,43,44,45,48,52,55,56,58,59,72,75,79,82,83,86,87,161 2 -132922 cd07039 TPP_PYR_POX 3 dimer interface 0 1 1 1 21,23,26,29,30,42,43,44,45,47,72,75,76,79,82,116,161 2 -132922 cd07039 TPP_PYR_POX 4 tetramer interface 0 1 1 1 21,23,26,29,30,42,43,44,45,47,72,75,76,79,82,112,114,116,124,139,142,161 2 -132716 cd07040 HP 1 catalytic core 0 1 1 1 5,6,57,106,107 1 -132914 cd07043 STAS_anti-anti-sigma_factors 1 anti sigma factor interaction site 0 1 1 0 16,18,19,20,26,49,51,52,53,55,56,57,60,61,83,87,88,90 0 -132914 cd07043 STAS_anti-anti-sigma_factors 2 regulatory phosphorylation site 0 1 1 0 52 6 -132871 cd07044 CofD_YvcK 1 phosphate binding site 0 1 1 0 5,6,7,182,183,187,216,217 4 -132871 cd07044 CofD_YvcK 2 dimer interface 0 1 1 0 88,89,92,93,95,96,106,109,110 2 -132885 cd07045 BMC_CcmK_like 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,35,36,37,68,69,70,72,74,75,78 2 -132885 cd07045 BMC_CcmK_like 2 Hexagonal pore residue 0 1 1 1 32 0 -132886 cd07046 BMC_PduU-EutS 1 putative hexamer interface 0 0 1 1 43,46,55,58,59,65,70,72 2 -132886 cd07046 BMC_PduU-EutS 2 putative hexagonal pore 0 0 1 1 70 0 -132887 cd07047 BMC_PduB_repeat1 1 putative hexamer interface 0 0 1 1 42,45,52,55,56,62,67,77 2 -132887 cd07047 BMC_PduB_repeat1 2 putative hexagonal pore 0 0 1 1 67 0 -132888 cd07048 BMC_PduB_repeat2 1 putative hexamer interface 0 0 1 1 5,8,17,20,21,27,32,42 2 -132888 cd07048 BMC_PduB_repeat2 2 putative hexagonal pore 0 0 1 1 32 0 -132889 cd07049 BMC_EutL_repeat1 1 putative hexamer interface 0 0 1 1 30,33,42,45,46,52,57,72 2 -132889 cd07049 BMC_EutL_repeat1 2 putative hexagonal pore 0 0 1 1 57 0 -132890 cd07050 BMC_EutL_repeat2 1 putative hexamer interface 0 0 1 1 21,24,32,35,36,42,47,54 2 -132890 cd07050 BMC_EutL_repeat2 2 putative hexagonal pore 0 0 1 1 47 0 -132891 cd07051 BMC_like_1_repeat1 1 putative hexamer interface 0 0 1 1 37,40,49,52,53,59,64,68 2 -132891 cd07051 BMC_like_1_repeat1 2 putative hexagonal pore 0 0 1 1 64 0 -132892 cd07052 BMC_like_1_repeat2 1 putative hexamer interface 0 0 1 1 23,26,35,38,39,45,50,54 2 -132892 cd07052 BMC_like_1_repeat2 2 putative hexagonal pore 0 0 1 1 50 0 -132893 cd07053 BMC_PduT_repeat1 1 putative hexamer interface 0 0 1 1 5,8,17,20,21,27,32,37 2 -132893 cd07053 BMC_PduT_repeat1 2 putative hexagonal pore 0 0 1 1 32 0 -132894 cd07054 BMC_PduT_repeat2 1 putative hexamer interface 0 0 1 1 5,8,17,20,21,27,32,39 2 -132894 cd07054 BMC_PduT_repeat2 2 putative hexagonal pore 0 0 1 1 32 0 -132895 cd07055 BMC_like_2 1 putative hexamer interface 0 0 1 1 5,8,16,19,20,26,31,37 2 -132895 cd07055 BMC_like_2 2 putative hexagonal pore 0 0 1 1 31 0 -132896 cd07056 BMC_PduK 1 putative hexamer interface 0 0 1 1 5,8,17,20,21,27,32,38 2 -132896 cd07056 BMC_PduK 2 putative hexagonal pore 0 0 1 1 32 0 -132897 cd07057 BMC_CcmK 1 Hexamer interface 0 1 1 1 5,8,17,20,21,27,32,35,36,37,70,71,72,74,76,77,80 2 -132897 cd07057 BMC_CcmK 2 Hexagonal pore residue 0 1 1 1 32 0 -132898 cd07058 BMC_CsoS1 1 Hexamer interface 0 0 1 1 7,10,19,22,23,29,34,37,38,39,71,72,73,75,77,78,81 2 -132898 cd07058 BMC_CsoS1 2 Hexagonal pore residue 0 0 1 1 34 0 -132898 cd07058 BMC_CsoS1 3 Hexagonal pore 0 1 1 1 37 0 -132899 cd07059 BMC_PduA 1 Hexamer interface 0 0 1 1 5,8,17,20,21,27,32,35,36,37,68,69,70,72,74,75,78 2 -132899 cd07059 BMC_PduA 2 Putative hexagonal pore residue 0 0 1 1 32 0 -349952 cd07060 SPOUT_MTase 1 SAM binding site 0 1 1 0 35,36,37,59,60,61,62,78,79,80,85,87,90 5 -132717 cd07061 HP_HAP_like 1 catalytic core 0 1 1 1 9,10,13,60,181,182 1 -132883 cd07062 Peptidase_S66_mccF_like 1 catalytic triad 0 0 1 1 101,224,292 1 -132883 cd07062 Peptidase_S66_mccF_like 2 putative dimer interface 0 0 1 1 79,80,202,203,205,206,231,232,234,235,238,239,275,276 2 -132881 cd07064 AlkD_like_1 1 Active site 0 0 1 1 12,94,98,132,163,164,171 1 -143549 cd07066 CRD_FZ 1 putative Wnt binding site 0 0 1 1 8,10,11,14,15,16 2 -132718 cd07067 HP_PGM_like 1 catalytic core 0 1 1 1 5,6,57,106,107 1 -132753 cd07068 NR_LBD_ER_like 1 ligand binding site 0 1 1 0 31,32,34,35,36,38,39,68,72,73,79,89,108,195,198,199,205,210 5 -132753 cd07068 NR_LBD_ER_like 2 coactivator recognition site 0 1 1 1 43,57,60,61,64,65,212,213,216,217 2 -132753 cd07068 NR_LBD_ER_like 3 dimer interface 0 1 1 0 114,118,139,141,142,143,152,155,156,159,160,163,179,180,182,183,185,186,187,189,190 2 -132754 cd07069 NR_LBD_Lrh-1 1 ligand binding site 0 1 1 0 41,44,45,81,82,85,89,104,115,118,119,120,123,126,127,212,215,216,219 5 -132754 cd07069 NR_LBD_Lrh-1 2 homodimer interface 0 1 1 0 32,33,34,35,36,37,39,40,41,118,219,220,221,223,224,225,227,228 2 -132754 cd07069 NR_LBD_Lrh-1 3 corepressor recognition site 0 1 1 1 53,56,60,70,73,74,77,78,229,230,233,234 0 -132755 cd07070 NR_LBD_SF-1 1 ligand binding site 0 1 1 0 39,42,80,83,84,87,100,102,108,112,113,116,117,118,121,128,207,210,213,214,217 5 -132755 cd07070 NR_LBD_SF-1 2 corepressor recognition site 0 1 1 1 71,72,228,231,232 0 -132756 cd07071 NR_LBD_Nurr1 1 heterodimer interface 0 1 1 0 9,12,15,138 2 -132756 cd07071 NR_LBD_Nurr1 2 putative coactivator recognition site 0 0 1 1 54,57,61,66,71,72,74,75,78,79,226,229,233 0 -132757 cd07072 NR_LBD_DHR38_like 1 heterodimer interface 0 1 1 0 3,6,9,10,13,140,177,181 2 -132757 cd07072 NR_LBD_DHR38_like 2 putative coactivator recognition site 0 0 1 1 55,58,62,67,72,73,75,76,79,80,227,230,234 0 -132758 cd07073 NR_LBD_AR 1 ligand binding site 0 1 1 0 29,32,33,35,36,39,69,70,73,74,77,80,92,108,115,201,205 5 -132758 cd07073 NR_LBD_AR 2 coactivator recognition site 0 1 1 1 41,44,48,54,58,62,66,221,222,225,226 2 -132759 cd07074 NR_LBD_PR 1 ligand binding site 0 1 1 0 29,32,33,35,36,39,70,73,74,80,92,108,111,112,115,201,204,205,208,217,219,223 5 -132759 cd07074 NR_LBD_PR 2 dimer interface 0 1 1 0 199,203,207,210,211,228,232,235,236 2 -132759 cd07074 NR_LBD_PR 3 putative coactivator recognition site 0 0 1 1 44,48,58,59,62,222,225,229 0 -132760 cd07075 NR_LBD_MR 1 ligand binding site 0 1 1 0 32,33,35,36,39,70,73,77,80,92,108,115,204,205,208 5 -132760 cd07075 NR_LBD_MR 2 homodimer interface 0 1 1 0 156,159,163,175,176,177,178,181,182,184,185,243,244,245 2 -132760 cd07075 NR_LBD_MR 3 coactivator recognition site 0 1 1 1 41,44,45,48,58,62,66,222,225,226 2 -132761 cd07076 NR_LBD_GR 1 ligand binding site 0 1 1 0 29,32,33,36,39,40,69,70,73,74,77,80,92,111,115,201,204,206 5 -132761 cd07076 NR_LBD_GR 2 coactivator recognition site 0 1 1 1 44,48,54,58,59,61,62,65,66,221,224,225,227,228,232 2 -132761 cd07076 NR_LBD_GR 3 dimer interface 0 1 1 0 14,16,17,18,19,20,83,84,94,95,97,99 2 -143396 cd07077 ALDH-like 1 putative catalytic cysteine 0 0 1 1 241 1 -143397 cd07078 ALDH 1 catalytic residues 0 0 1 0 106,204,235,238 1 -143397 cd07078 ALDH 2 NAD(P) binding site 0 1 0 0 102,103,104,105,106,114,129,131,132,180,181,182,183,186,189,190,204,205,206,238,336,338,364,403 5 -143398 cd07079 ALDH_F18-19_ProA-GPR 1 putative catalytic cysteine 0 0 1 1 250 1 -143399 cd07080 ALDH_Acyl-CoA-Red_LuxC 1 putative catalytic cysteine 0 0 1 1 259 1 -143400 cd07081 ALDH_F20_ACDH_EutE-like 1 putative catalytic cysteine 0 0 1 1 237 1 -143401 cd07082 ALDH_F11_NP-GAPDH 1 NADP binding site 0 1 1 1 147,148,149,150,174,176,177,207,212,225,227,228,231,376 5 -143401 cd07082 ALDH_F11_NP-GAPDH 2 substrate binding site 0 1 1 0 151,152,280,281,282,436,437 5 -143401 cd07082 ALDH_F11_NP-GAPDH 3 activator binding site 0 1 1 0 55,62,137,138 0 -143401 cd07082 ALDH_F11_NP-GAPDH 4 tetrameric interface 0 1 1 0 54,55,58,59,60,108,111,112,114,115,118,119,120,121,122,124,137,139,236,241,248,411,413,414,415,417,418,420,421,423,425,426,427,428,429,430,432,439,440,442,444,450,457,458,465,467,468,469,470,471,472 2 -143401 cd07082 ALDH_F11_NP-GAPDH 5 catalytic residues 0 0 1 0 151,247,278,281 1 -143402 cd07083 ALDH_P5CDH 1 NAD binding site 0 1 1 0 160,161,187,189,190,220,238,241,244 5 -143402 cd07083 ALDH_P5CDH 2 Glutamate binding site 0 1 1 0 117,164,165,268,300,301,302,303,453,468 5 -143402 cd07083 ALDH_P5CDH 3 catalytic residues 0 0 1 0 164,268,299,302 1 -143403 cd07084 ALDH_KGSADH-like 1 NADP binding site 0 1 1 0 106,107,109,133,135,136,184,185,186,187,190 5 -143403 cd07084 ALDH_KGSADH-like 2 catalytic residues 0 0 1 0 110,206,238,241 1 -143404 cd07085 ALDH_F6_MMSDH 1 NAD binding site 0 1 1 1 143,144,145,146,154,169,172,202,219,220,221,222,225,243,244,245,277,378,380,406 5 -143404 cd07085 ALDH_F6_MMSDH 2 tetrameric interface 0 1 1 0 57,59,63,66,70,103,106,107,116,117,118,119,120,121,122,123,128,131,134,227,231,234,237,239,413,415,416,418,419,422,425,426,428,430,431,432,433,442,446,448,462,469,470,471,472,473,474,476,477 2 -143404 cd07085 ALDH_F6_MMSDH 3 catalytic residues 0 0 1 0 146,243,274,277 1 -143405 cd07086 ALDH_F7_AASADH-like 1 NAD binding site 0 1 1 0 140,141,142,143,166,168,169,206,207,220,221,222,223,226,229,244,245,246,278,377,446 5 -143405 cd07086 ALDH_F7_AASADH-like 2 catalytic residues 0 0 1 0 143,244,275,278 1 -143406 cd07087 ALDH_F3-13-14_CALDH-like 1 NAD(P) binding site 0 1 1 0 108,109,110,136,165,183,282,284,285,288,329,331 5 -143406 cd07087 ALDH_F3-13-14_CALDH-like 2 catalytic residues 0 0 1 0 110,205,236,239 1 -143407 cd07088 ALDH_LactADH-AldA 1 NAD binding site 0 1 1 0 139,140,141,142,166,169,199,203,204,217,220,223,226,321,325 5 -143407 cd07088 ALDH_LactADH-AldA 2 substrate binding site 0 1 1 0 144,151,241,275,276,433,439 5 -143407 cd07088 ALDH_LactADH-AldA 3 catalytic residues 0 0 1 0 143,241,272,275 1 -143408 cd07089 ALDH_CddD-AldA-like 1 NAD binding site 0 1 0 0 129,130,131,132,133,156,193,207,208,209,210,213,216,231,232,233,265,364,366,430 5 -143408 cd07089 ALDH_CddD-AldA-like 2 catalytic residues 0 0 1 0 133,231,262,265 1 -143409 cd07090 ALDH_F9_TMBADH 1 NAD binding site 0 1 1 0 122,123,125,126,149,181,199,201,202,205,223,224,225,257,359,361,425 5 -143409 cd07090 ALDH_F9_TMBADH 2 tetrameric interface 0 1 1 0 38,40,44,47,51,54,87,91,98,99,100,101,102,110,112,113,114,207,218,240,243,246,247,280,295,394,395,396,397,400,401,403,406,408,409,410,411,413,414,422,424,428,430,433,435,447,448,449,450,451,452,454,455 2 -143409 cd07090 ALDH_F9_TMBADH 3 catalytic residues 0 0 1 0 126,223,254,257 1 -143410 cd07091 ALDH_F1-2_Ald2-like 1 NAD(P) binding site 0 1 1 0 147,148,150,151,174,177,206,207,211,212,225,226,227,228,231,234,235,250,251,252,284,381,383,409,447 5 -143410 cd07091 ALDH_F1-2_Ald2-like 2 catalytic residues 0 0 1 0 151,250,281,284 1 -143411 cd07092 ALDH_ABALDH-YdcW 1 NAD binding site 0 1 1 0 124,125,127,151,153,154,183,188,202,203,204,207,210,225,227,259,306,355 5 -143411 cd07092 ALDH_ABALDH-YdcW 2 substrate binding site 0 1 1 0 258,415 5 -143411 cd07092 ALDH_ABALDH-YdcW 3 tetrameric interface 0 1 1 0 38,85,95,99,100,101,102,104,105,107,113,114,197,209,212,219,226,389,390,391,392,393,396,397,399,402,404,405,406,407,408,409,418,419,420,425,426,431,444,445,446,447,448,449 2 -143411 cd07092 ALDH_ABALDH-YdcW 4 catalytic residues 0 0 1 0 128,225,256,259 1 -143412 cd07093 ALDH_F8_HMSADH 1 NAD binding site 0 1 0 0 124,125,126,132,150,152,153,183,187,188,202,203,204,207,210,225,226,259,360,362,426 5 -143412 cd07093 ALDH_F8_HMSADH 2 catalytic residues 0 0 1 0 127,225,256,259 1 -143413 cd07094 ALDH_F21_LactADH-like 1 catalytic residues 0 0 1 0 133,229,260,263 1 -143413 cd07094 ALDH_F21_LactADH-like 2 NAD(P) binding site 0 0 0 1 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,229,230,231,263,357,359,385,424 5 -143414 cd07095 ALDH_SGSD_AstD 1 catalytic residues 0 0 1 0 107,205,236,239 1 -143414 cd07095 ALDH_SGSD_AstD 2 NAD(P) binding site 0 0 0 1 103,104,105,106,107,115,130,132,133,180,181,182,183,186,189,190,205,206,207,239,336,338,364,403 5 -143415 cd07097 ALDH_KGSADH-YcbD 1 catalytic residues 0 0 1 0 145,243,274,277 1 -143415 cd07097 ALDH_KGSADH-YcbD 2 NAD(P) binding site 0 0 0 1 141,142,143,144,145,153,168,170,171,219,220,221,222,225,228,229,243,244,245,277,376,378,404,443 5 -143416 cd07098 ALDH_F15-22 1 catalytic residues 0 0 1 0 130,231,262,265 1 -143416 cd07098 ALDH_F15-22 2 NAD(P) binding site 0 0 0 1 126,127,128,129,130,138,153,155,156,207,208,209,210,213,216,217,231,232,233,265,366,368,394,434 5 -143417 cd07099 ALDH_DDALDH 1 catalytic residues 0 0 1 0 129,225,256,259 1 -143417 cd07099 ALDH_DDALDH 2 NAD(P) binding site 0 0 0 1 125,126,127,128,129,137,152,154,155,201,202,203,204,207,210,211,225,226,227,259,356,358,384,424 5 -143418 cd07100 ALDH_SSADH1_GabD1 1 catalytic residues 0 0 1 0 106,203,234,237 1 -143418 cd07100 ALDH_SSADH1_GabD1 2 NAD(P) binding site 0 0 0 1 102,103,104,105,106,114,129,131,132,179,180,181,182,185,188,189,203,204,205,237,334,336,362,400 5 -143419 cd07101 ALDH_SSADH2_GabD2 1 catalytic residues 0 0 1 0 128,224,255,258 1 -143419 cd07101 ALDH_SSADH2_GabD2 2 NAD(P) binding site 0 0 0 1 124,125,126,127,128,136,151,153,154,200,201,202,203,206,209,210,224,225,226,258,356,358,384,425 5 -143420 cd07102 ALDH_EDX86601 1 catalytic residues 0 0 1 0 126,223,254,257 1 -143420 cd07102 ALDH_EDX86601 2 NAD(P) binding site 0 0 0 1 122,123,124,125,126,134,149,151,152,199,200,201,202,205,208,209,223,224,225,257,357,359,385,423 5 -143421 cd07103 ALDH_F5_SSADH_GabD 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143421 cd07103 ALDH_F5_SSADH_GabD 2 NAD(P) binding site 0 0 0 1 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,356,358,384,422 5 -143421 cd07103 ALDH_F5_SSADH_GabD 3 tetramerization interface 0 1 0 0 38,47,88,91,92,94,95,96,97,98,99,100,101,102,108,109,110,115,197,209,213,216,273,277,323,391,393,394,398,400,403,405,406,407,408,409,410,411,417,420,421,427,432,444,445,446,447,448,449,450 2 -143422 cd07104 ALDH_BenzADH-like 1 catalytic residues 0 0 1 0 108,207,238,241 1 -143422 cd07104 ALDH_BenzADH-like 2 NAD(P) binding site 0 0 0 1 104,105,106,107,108,116,131,133,134,183,184,185,186,189,192,193,207,208,209,241,335,337,363,402 5 -143423 cd07105 ALDH_SaliADH 1 catalytic residues 0 0 1 0 108,209,240,243 1 -143423 cd07105 ALDH_SaliADH 2 NAD(P) binding site 0 0 0 1 104,105,106,107,108,116,131,133,134,185,186,187,188,191,194,195,209,210,211,243,336,338,364,403 5 -143424 cd07106 ALDH_AldA-AAD23400 1 catalytic residues 0 0 1 0 124,220,251,254 1 -143424 cd07106 ALDH_AldA-AAD23400 2 NAD(P) binding site 0 0 0 1 120,121,122,123,124,132,147,149,150,196,197,198,199,202,205,206,220,221,222,254,351,353,379,417 5 -143425 cd07107 ALDH_PhdK-like 1 catalytic residues 0 0 0 0 223,255,258 1 -143425 cd07107 ALDH_PhdK-like 2 catalytic residues 0 0 1 0 126,223,255,258 1 -143425 cd07107 ALDH_PhdK-like 3 NAD(P) binding site 0 0 0 1 122,123,124,125,126,134,149,151,152,199,200,201,202,205,208,209,223,224,225,258,359,361,387,425 5 -143426 cd07108 ALDH_MGR_2402 1 catalytic residues 0 0 0 0 224,256,259 1 -143426 cd07108 ALDH_MGR_2402 2 catalytic residues 0 0 1 0 127,224,256,259 1 -143426 cd07108 ALDH_MGR_2402 3 NAD(P) binding site 0 0 0 1 123,124,125,126,127,135,150,152,153,200,201,202,203,206,209,210,224,225,226,259,361,363,389,427 5 -143427 cd07109 ALDH_AAS00426 1 catalytic residues 0 0 0 0 225,256,259 1 -143427 cd07109 ALDH_AAS00426 2 catalytic residues 0 0 1 0 127,225,256,259 1 -143427 cd07109 ALDH_AAS00426 3 NAD(P) binding site 0 0 0 1 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,358,360,386,425 5 -143428 cd07110 ALDH_F10_BADH 1 catalytic residues 0 0 0 0 228,259,262 1 -143428 cd07110 ALDH_F10_BADH 2 catalytic residues 0 0 1 0 130,228,259,262 1 -143428 cd07110 ALDH_F10_BADH 3 NAD(P) binding site 0 0 0 1 126,127,128,129,130,138,153,155,156,204,205,206,207,210,213,214,228,229,230,262,361,363,389,427 5 -143429 cd07111 ALDH_F16 1 catalytic residues 0 0 1 0 157,254,287,290 1 -143429 cd07111 ALDH_F16 2 NAD(P) binding site 0 0 0 1 153,154,155,156,157,165,180,182,183,230,231,232,233,236,239,240,254,255,256,290,385,387,413,451 5 -143430 cd07112 ALDH_GABALDH-PuuC 1 catalytic residues 0 0 1 0 134,233,265,268 1 -143430 cd07112 ALDH_GABALDH-PuuC 2 NAD(P) binding site 0 0 0 1 130,131,132,133,134,142,157,159,160,208,209,210,211,214,217,218,233,234,235,268,367,369,395,433 5 -143431 cd07113 ALDH_PADH_NahF 1 catalytic residues 0 0 1 0 152,249,280,283 1 -143431 cd07113 ALDH_PADH_NahF 2 NAD(P) binding site 0 0 0 1 148,149,150,151,152,160,175,177,178,225,226,227,228,231,234,235,249,250,251,283,380,382,408,446 5 -143432 cd07114 ALDH_DhaS 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143432 cd07114 ALDH_DhaS 2 NAD(P) binding site 0 0 0 1 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,362,364,390,428 5 -143433 cd07115 ALDH_HMSADH_HapE 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143433 cd07115 ALDH_HMSADH_HapE 2 NAD(P) binding site 0 0 0 1 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,356,358,384,422 5 -143434 cd07116 ALDH_ACDHII-AcoD 1 catalytic residues 0 0 1 0 146,243,279,282 1 -143434 cd07116 ALDH_ACDHII-AcoD 2 NAD(P) binding site 0 0 0 1 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,282,382,384,410,448 5 -143435 cd07117 ALDH_StaphAldA1 1 catalytic residues 0 0 1 0 146,243,274,277 1 -143435 cd07117 ALDH_StaphAldA1 2 NAD(P) binding site 0 0 0 1 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,277,378,380,406,444 5 -143436 cd07118 ALDH_SNDH 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143436 cd07118 ALDH_SNDH 2 NAD(P) binding site 0 0 0 1 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,359,361,387,425 5 -143437 cd07119 ALDH_BADH-GbsA 1 NAD(P) binding site 0 1 0 0 140,141,142,143,144,167,170,200,204,218,220,221,224,227,242,244,276,326,377 5 -143437 cd07119 ALDH_BADH-GbsA 2 tetramerization interface 0 1 0 0 48,58,62,69,89,102,106,116,118,126,128,132,226,229,230,233,236,237,262,266,299,302,314,421,424,425,426,427,428,429,430,431,433,438,440,441,446,448,453,465,466,467,468,469,470,472,479,480,481 2 -143437 cd07119 ALDH_BADH-GbsA 3 catalytic residues 0 0 1 0 144,242,273,276 1 -143438 cd07120 ALDH_PsfA-ACA09737 1 catalytic residues 0 0 1 0 127,226,257,260 1 -143438 cd07120 ALDH_PsfA-ACA09737 2 NAD(P) binding site 0 0 0 1 123,124,125,126,127,135,150,152,153,202,203,204,205,208,211,212,226,227,228,260,360,362,388,426 5 -143439 cd07121 ALDH_EutE 1 putative catalytic cysteine 0 0 1 1 239 1 -143440 cd07122 ALDH_F20_ACDH 1 putative catalytic cysteine 0 0 1 1 237 1 -143441 cd07123 ALDH_F4-17_P5CDH 1 NAD binding site 0 0 1 1 176,177,202,204,205,253,256,259 5 -143441 cd07123 ALDH_F4-17_P5CDH 2 Glutamate binding site 0 0 1 1 133,180,181,283,315,316,317,318,473,488 5 -143441 cd07123 ALDH_F4-17_P5CDH 3 catalytic residues 0 0 1 0 180,283,314,317 1 -143442 cd07124 ALDH_PutA-P5CDH-RocA 1 NAD binding site 0 1 1 0 172,173,199,201,202,232,250,253,256 5 -143442 cd07124 ALDH_PutA-P5CDH-RocA 2 Glutamate binding site 0 1 1 0 131,176,177,181,280,312,313,314,315,465,470,472,473,480 5 -143442 cd07124 ALDH_PutA-P5CDH-RocA 3 homodimer interface 0 1 0 0 152,154,159,160,161,163,261,262,265,275,449,456,459,461,462,463,464,465,466,468,474,476,477,478,479,483,484,489,491,496,499,503,504,505,506,507,508,509,510 2 -143442 cd07124 ALDH_PutA-P5CDH-RocA 4 catalytic residues 0 0 1 0 176,280,311,314 1 -143443 cd07125 ALDH_PutA-P5CDH 1 NAD binding site 0 0 1 1 173,174,200,202,203,233,251,254,257 5 -143443 cd07125 ALDH_PutA-P5CDH 2 Glutamate binding site 0 0 1 1 131,177,178,278,310,311,312,313,461,476 5 -143443 cd07125 ALDH_PutA-P5CDH 3 catalytic residues 0 0 1 0 177,278,309,312 1 -143444 cd07126 ALDH_F12_P5CDH 1 NADP binding site 0 0 1 1 148,149,151,175,177,178,225,226,227,228,231 5 -143444 cd07126 ALDH_F12_P5CDH 2 catalytic residues 0 0 1 0 152,246,278,281 1 -143445 cd07127 ALDH_PAD-PaaZ 1 NADP binding site 0 0 1 1 199,200,202,226,228,229,282,283,284,285,288 5 -143445 cd07127 ALDH_PAD-PaaZ 2 catalytic residues 0 0 1 0 203,304,335,338 1 -143446 cd07128 ALDH_MaoC-N 1 NADP binding site 0 1 1 0 150,151,153,177,179,180,226,227,228,229,232 5 -143446 cd07128 ALDH_MaoC-N 2 substrate binding site 0 1 1 1 101,155,292,465,467,468 5 -143446 cd07128 ALDH_MaoC-N 3 dimer interface 0 1 1 0 122,126,131,133,134,136,138,234,237,418,433,447,448,449,450,451,452,459,460,462,471,472,482,483,489,496,497,498,499,500,501,503,506,509 2 -143446 cd07128 ALDH_MaoC-N 4 catalytic residues 0 0 1 0 154,252,288,291 1 -143447 cd07129 ALDH_KGSADH 1 NADP binding site 0 1 1 0 114,140,142,143,182,195,198,201 5 -143447 cd07129 ALDH_KGSADH 2 dimer interface 0 1 0 0 12,16,84,98,100,203,206,371,392,396,400,402,403,404,405,407,415,420,421,425,426,446,447,449,450,451,452 2 -143447 cd07129 ALDH_KGSADH 3 catalytic residues 0 0 1 0 115,221,255,258 1 -143448 cd07130 ALDH_F7_AASADH 1 NAD binding site 0 1 1 0 139,140,141,142,165,167,168,205,206,219,220,221,222,225,228,243,244,245,277,373,442 5 -143448 cd07130 ALDH_F7_AASADH 2 tetrameric interface 0 1 1 0 47,53,56,62,69,108,109,111,113,115,117,118,119,120,127,128,130,227,230,231,234,239,240,267,303,315,388,411,417,418,422,425,427,428,429,430,436,437,441,445,452,456,457,460,464,465,466,467,468,469,471,472 2 -143448 cd07130 ALDH_F7_AASADH 3 catalytic residues 0 0 1 0 142,243,274,277 1 -143449 cd07131 ALDH_AldH-CAJ73105 1 NAD binding site 0 0 1 1 142,143,144,145,168,170,171,206,207,219,220,221,222,225,228,243,244,245,277,378,445 5 -143449 cd07131 ALDH_AldH-CAJ73105 2 catalytic residues 0 0 1 0 145,243,274,277 1 -143450 cd07132 ALDH_F3AB 1 NAD(P) binding site 0 1 1 0 108,109,110,136,165,183,282,284,285,288,329,331 5 -143450 cd07132 ALDH_F3AB 2 homodimeric interface 0 1 1 0 52,82,83,87,94,98,100,175,177,185,189,192,199,219,222,225,226,229,266,276,354,355,359,364,370,373,376,377,378,379,380,381,382,383,384,385,391,396,399,400,402,405,419,421,422,424,425,426,427,428,432,434,435,437,438,439,440,441 2 -143450 cd07132 ALDH_F3AB 3 catalytic residues 0 0 1 0 110,205,236,239 1 -143451 cd07133 ALDH_CALDH_CalB 1 NAD(P) binding site 0 0 1 1 109,110,111,137,166,184,282,284,285,288,337,339 5 -143451 cd07133 ALDH_CALDH_CalB 2 catalytic residues 0 0 1 0 111,206,237,240 1 -143452 cd07134 ALDH_AlkH-like 1 NAD(P) binding site 0 0 1 1 108,109,110,136,165,183,284,286,287,290,336,338 5 -143452 cd07134 ALDH_AlkH-like 2 catalytic residues 0 0 1 0 110,205,236,239 1 -143453 cd07135 ALDH_F14-YMR110C 1 NAD(P) binding site 0 0 1 1 116,117,118,144,173,191,290,292,293,296,339,341 5 -143453 cd07135 ALDH_F14-YMR110C 2 catalytic residues 0 0 1 0 118,213,244,247 1 -143454 cd07136 ALDH_YwdH-P39616 1 NAD(P) binding site 0 0 1 1 108,109,110,136,165,183,282,284,285,288,329,331 5 -143454 cd07136 ALDH_YwdH-P39616 2 catalytic residues 0 0 1 0 110,205,236,239 1 -143455 cd07137 ALDH_F3FHI 1 NAD(P) binding site 0 0 1 1 109,110,111,137,166,184,284,286,287,290,335,337 5 -143455 cd07137 ALDH_F3FHI 2 catalytic residues 0 0 1 0 111,206,238,241 1 -143456 cd07138 ALDH_CddD_SSP0762 1 NAD binding site 0 0 0 1 136,137,138,139,140,163,200,214,215,216,217,220,223,238,239,240,272,372,374,437 5 -143456 cd07138 ALDH_CddD_SSP0762 2 catalytic residues 0 0 1 0 140,238,269,272 1 -143457 cd07139 ALDH_AldA-Rv0768 1 NAD binding site 0 1 0 0 143,144,145,146,147,170,206,220,221,222,223,226,229,244,245,246,278,377,379,442 5 -143457 cd07139 ALDH_AldA-Rv0768 2 catalytic residues 0 0 1 0 147,244,275,278 1 -143458 cd07140 ALDH_F1L_FTFDH 1 NADP binding site 0 1 1 1 153,154,156,157,180,183,212,213,217,218,231,232,233,234,237,240,241,256,257,258,290,387,389,417,455 5 -143458 cd07140 ALDH_F1L_FTFDH 2 homotetrameric interface 0 1 1 0 64,66,70,73,111,114,115,119,121,122,123,124,125,126,127,128,129,130,131,137,142,227,239,246,250,273,414,424,426,427,433,435,436,437,438,439,440,441,442,443,448,450,451,452,454,458,460,463,465,477,478,479,480,481,482,483,484,485 2 -143458 cd07140 ALDH_F1L_FTFDH 3 catalytic residues 0 0 1 0 157,256,287,290 1 -143459 cd07141 ALDH_F1AB_F2_RALDH1 1 NAD binding site 0 1 1 0 151,152,153,154,178,181,211,215,216,229,232,235,255,256,288,335,338,385 5 -143459 cd07141 ALDH_F1AB_F2_RALDH1 2 homotetrameric interface 0 1 1 0 58,59,63,66,68,72,113,116,117,121,123,124,127,128,129,130,131,133,134,137,138,139,140,141,142,143,144,237,240,243,244,247,248,250,255,420,422,429,432,434,435,436,437,438,439,440,441,448,449,450,453,454,455,456,458,461,466,473,474,475,476,477,478,480 2 -143459 cd07141 ALDH_F1AB_F2_RALDH1 3 catalytic residues 0 0 1 0 155,254,285,288 1 -143460 cd07142 ALDH_F2BC 1 NAD(P) binding site 0 0 1 1 147,148,150,151,174,177,206,207,211,212,225,226,227,228,231,234,235,250,251,252,284,381,383,409,447 5 -143460 cd07142 ALDH_F2BC 2 catalytic residues 0 0 1 0 151,250,281,284 1 -143461 cd07143 ALDH_AldA_AN0554 1 NAD(P) binding site 0 0 1 1 150,151,153,154,177,180,209,210,214,215,228,229,230,231,234,237,238,253,254,255,287,384,386,412,450 5 -143461 cd07143 ALDH_AldA_AN0554 2 catalytic residues 0 0 1 0 154,253,284,287 1 -143462 cd07144 ALDH_ALD2-YMR170C 1 NAD(P) binding site 0 0 1 1 150,151,153,154,177,180,209,210,214,215,228,229,230,231,234,237,238,252,253,254,286,387,389,415,453 5 -143462 cd07144 ALDH_ALD2-YMR170C 2 catalytic residues 0 0 1 0 154,252,283,286 1 -143463 cd07145 ALDH_LactADH_F420-Bios 1 catalytic residues 0 0 1 0 133,231,262,265 1 -143463 cd07145 ALDH_LactADH_F420-Bios 2 NAD(P) binding site 0 0 0 1 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,231,232,233,265,360,362,388,427 5 -143464 cd07146 ALDH_PhpJ 1 catalytic residues 0 0 1 0 130,226,257,260 1 -143464 cd07146 ALDH_PhpJ 2 NAD(P) binding site 0 0 0 1 126,127,128,129,130,138,153,155,156,204,205,206,207,210,213,214,226,227,228,260,354,356,382,421 5 -143465 cd07147 ALDH_F21_RNP123 1 catalytic residues 0 0 1 0 133,228,259,262 1 -143465 cd07147 ALDH_F21_RNP123 2 NAD(P) binding site 0 0 0 1 129,130,131,132,133,141,156,158,159,206,207,208,209,212,215,216,228,229,230,262,356,358,384,423 5 -143466 cd07148 ALDH_RL0313 1 catalytic residues 0 0 1 0 134,230,261,264 1 -143466 cd07148 ALDH_RL0313 2 NAD(P) binding site 0 0 0 1 130,131,132,133,134,142,157,159,160,207,208,209,210,213,216,217,230,231,232,264,359,361,387,426 5 -143467 cd07149 ALDH_y4uC 1 catalytic residues 0 0 1 0 133,229,260,263 1 -143467 cd07149 ALDH_y4uC 2 NAD(P) binding site 0 0 0 1 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,229,230,231,263,357,359,385,424 5 -143468 cd07150 ALDH_VaniDH_like 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143468 cd07150 ALDH_VaniDH_like 2 NAD(P) binding site 0 0 0 1 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,355,357,383,422 5 -143469 cd07151 ALDH_HBenzADH 1 catalytic residues 0 0 1 0 140,239,270,273 1 -143469 cd07151 ALDH_HBenzADH 2 NAD(P) binding site 0 0 0 1 136,137,138,139,140,148,163,165,166,215,216,217,218,221,224,225,239,240,241,273,367,369,395,434 5 -143470 cd07152 ALDH_BenzADH 1 catalytic residues 0 0 1 0 120,218,249,252 1 -143470 cd07152 ALDH_BenzADH 2 NAD(P) binding site 0 0 0 1 116,117,118,119,120,128,143,145,146,194,195,196,197,200,203,204,218,219,220,252,346,348,374,413 5 -133478 cd07153 Fur_like 1 putative DNA binding helix 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 0 -133478 cd07153 Fur_like 2 metal binding site 1 0 1 1 1 69,71,90,107 4 -133478 cd07153 Fur_like 3 metal binding site 2 0 1 1 1 15,63,70,72,83 4 -133478 cd07153 Fur_like 4 structural Zn2+ binding site 0 1 1 1 75,78,115 4 -133478 cd07153 Fur_like 5 dimer interface 0 1 1 1 74,75,76,92,93,102,103,104,106,107,108,109,110,111,112,113,114 2 -143529 cd07154 NR_DBD_PNR_like 1 zinc binding site 0 0 0 1 0,3,17,20,36,43,53,56 4 -143529 cd07154 NR_DBD_PNR_like 2 putative DNA binding site 0 0 0 1 10,11,12,18,19,21,23,26,29,50,51,54,57,68,71 3 -143530 cd07155 NR_DBD_ER_like 1 zinc binding site 0 1 0 1 0,3,17,20,36,42,52,55 4 -143530 cd07155 NR_DBD_ER_like 2 dimer interface 0 1 0 0 35,36,37,42,43,48,51 2 -143530 cd07155 NR_DBD_ER_like 3 DNA binding site 0 0 0 1 10,11,12,13,18,19,21,22,23,25,26,29,49,50,53,56,70,71,74 3 -143531 cd07156 NR_DBD_VDR_like 1 zinc binding site 0 1 0 1 0,3,17,20,36,42,52,55 4 -143531 cd07156 NR_DBD_VDR_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,25,26,49,50,56,70,71 3 -143531 cd07156 NR_DBD_VDR_like 3 dimer interface 0 1 1 1 37,38,51,68,69 2 -143532 cd07157 2DBD_NR_DBD1 1 zinc binding site 0 0 0 1 2,5,19,22,40,46,56,59 4 -143532 cd07157 2DBD_NR_DBD1 2 putative DNA binding site 0 0 0 1 12,13,14,20,21,23,25,28,31,53,54,57,60,71,74 3 -143533 cd07158 NR_DBD_Ppar_like 1 zinc binding site 0 1 0 1 0,3,17,20,37,43,53,56 4 -143533 cd07158 NR_DBD_Ppar_like 2 DNA binding site 0 1 1 1 8,9,10,11,12,18,19,21,23,25,26,29,50,51,54,57,68,71,72 3 -143533 cd07158 NR_DBD_Ppar_like 3 heterodimer interface 0 1 1 0 48,49,51,52 2 -143533 cd07158 NR_DBD_Ppar_like 4 homodimer interface 0 1 1 0 68,69 2 -143534 cd07160 NR_DBD_LXR 1 zinc binding site 0 0 0 1 20,23,37,40,56,62,72,75 4 -143534 cd07160 NR_DBD_LXR 2 putative DNA binding site 0 0 0 1 29,30,31,32,38,39,41,43,46,69,70,71,73,76,87,90 3 -143534 cd07160 NR_DBD_LXR 3 putative dimer interface 0 0 0 1 25,26,66,67,70 2 -143535 cd07161 NR_DBD_EcR 1 zinc binding site 0 1 0 1 3,6,20,23,39,45,55,58 4 -143535 cd07161 NR_DBD_EcR 2 DNA binding site 0 1 1 1 12,13,14,15,21,22,24,26,28,29,52,53,54,56,59,72,73,74,75 3 -143535 cd07161 NR_DBD_EcR 3 heterodimer interface 0 1 1 0 8,9,49,50,53 2 -143536 cd07162 NR_DBD_PXR 1 zinc binding site 0 0 0 1 1,4,18,21,37,43,53,56 4 -143536 cd07162 NR_DBD_PXR 2 putative DNA binding site 0 0 0 1 11,12,13,19,20,22,24,27,30,50,51,54,57,68,71 3 -143537 cd07163 NR_DBD_TLX 1 zinc binding site 0 0 0 1 8,11,25,28,44,52,62,65 4 -143537 cd07163 NR_DBD_TLX 2 putative DNA binding site 0 0 0 1 18,19,20,26,27,29,31,34,37,59,60,63,66,77,80 3 -143538 cd07164 NR_DBD_PNR_like_1 1 zinc binding site 0 0 0 1 0,3,17,20,36,42,52,55 4 -143538 cd07164 NR_DBD_PNR_like_1 2 putative DNA binding site 0 0 0 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143539 cd07165 NR_DBD_DmE78_like 1 zinc binding site 0 0 0 1 0,3,17,20,36,42,52,55 4 -143539 cd07165 NR_DBD_DmE78_like 2 putative DNA binding site 0 0 0 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143539 cd07165 NR_DBD_DmE78_like 3 putative dimer interface 0 0 0 1 47,48,50,51 2 -143540 cd07166 NR_DBD_REV_ERB 1 zinc binding site 0 1 0 1 5,8,22,25,42,48,58,61 4 -143540 cd07166 NR_DBD_REV_ERB 2 DNA binding site 0 1 1 1 14,15,16,17,23,24,26,28,30,31,55,56,59,62,73,76,77,78,79,80,81,82 3 -143540 cd07166 NR_DBD_REV_ERB 3 dimer interface 0 1 1 0 73,74,78 2 -143541 cd07167 NR_DBD_Lrh-1_like 1 zinc binding site 0 1 0 1 0,3,17,20,36,42,52,55 4 -143541 cd07167 NR_DBD_Lrh-1_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,25,26,29,49,50,56,69,70,71,74,75,76,77,78,79,80,86 3 -143542 cd07168 NR_DBD_DHR4_like 1 zinc binding site 0 0 0 1 8,11,25,28,44,50,60,63 4 -143542 cd07168 NR_DBD_DHR4_like 2 putative DNA binding site 0 0 0 1 18,19,20,26,27,29,31,34,37,57,58,61,64,75,78 3 -143543 cd07169 NR_DBD_GCNF_like 1 zinc binding site 0 0 0 1 8,11,25,28,44,50,60,63 4 -143543 cd07169 NR_DBD_GCNF_like 2 putative DNA binding site 0 0 0 1 18,19,20,26,27,29,31,34,37,57,58,61,64,75,78 3 -143544 cd07170 NR_DBD_ERR 1 zinc binding site 0 1 0 1 6,9,23,26,42,48,58,61 4 -143544 cd07170 NR_DBD_ERR 2 DNA binding site 0 1 0 1 4,16,17,18,19,24,25,27,28,29,31,32,35,55,56,59,62,76,77,80,81,82,83,84,85,86,87 3 -143545 cd07171 NR_DBD_ER 1 zinc binding site 0 1 0 1 5,8,22,25,41,47,57,60 4 -143545 cd07171 NR_DBD_ER 2 DNA binding site 0 1 0 1 14,15,16,17,23,24,26,27,28,30,31,54,55,58,61 3 -143545 cd07171 NR_DBD_ER 3 dimer interface 0 1 0 0 40,41,42,43,47,48,53,56 2 -143546 cd07172 NR_DBD_GR_PR 1 zinc binding site 0 1 0 1 4,7,21,24,40,46,56,59 4 -143546 cd07172 NR_DBD_GR_PR 2 DNA binding site 0 1 1 1 14,15,16,22,23,25,26,29,30,38,53,54,60 3 -143546 cd07172 NR_DBD_GR_PR 3 dimer interface 0 1 1 0 39,40,41,43,46,47,51,52,55 2 -143547 cd07173 NR_DBD_AR 1 zinc binding site 0 1 0 1 5,8,22,25,41,47,57,60 4 -143547 cd07173 NR_DBD_AR 2 DNA binding site 0 1 1 1 14,15,16,17,24,26,27,30,31,39,54,55,58,61 3 -143547 cd07173 NR_DBD_AR 3 dimer interface 0 1 1 0 40,41,42,43,44,46,47,48,53,56 2 -143580 cd07176 terB 1 putative metal binding site 0 0 0 1 15,22,90,97 4 -143581 cd07177 terB_like 1 metal binding site 0 1 0 0 12,19,82,85,92 4 -143582 cd07178 terB_like_YebE 1 putative metal binding site 0 0 0 1 12,19,77,81 4 -143548 cd07179 2DBD_NR_DBD2 1 zinc binding site 0 0 0 1 0,3,17,20,36,42,52,55 4 -143548 cd07179 2DBD_NR_DBD2 2 putative DNA binding site 0 0 0 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -260001 cd07180 RNase_HII_archaea_like 1 active site D[DE]D[ED] 1 1 1 3,4,103,133 1 -260001 cd07180 RNase_HII_archaea_like 2 RNA/DNA hybrid binding site 0 0 1 1 3,4,5,6,7,8,38,77,78,79,103,104,105,131,133,147,171,196,197,198 3 -260002 cd07181 RNase_HII_eukaryota_like 1 trimer interface 0 1 1 1 69,72,73,195,196,197,198,200,206,215,219,220 2 -260002 cd07181 RNase_HII_eukaryota_like 2 active site DED[DE] 0 1 1 3,4,111,139 1 -260002 cd07181 RNase_HII_eukaryota_like 3 RNA/DNA hybrid binding site 0 0 1 1 3,4,5,6,7,8,38,82,83,84,111,112,113,137,139,153,183,208,209,210 3 -260003 cd07182 RNase_HII_bacteria_HII_like 1 active site DED[DE] 1 1 1 3,4,95,113 1 -260003 cd07182 RNase_HII_bacteria_HII_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,7,8,34,69,70,71,95,96,97,110,111,113,127,148,149,150,152,153,154,174,175,176 3 -143586 cd07185 OmpA_C-like 1 ligand binding site 0 1 1 0 7,8,41,42,45,49,50,53,95,99 5 -132872 cd07186 CofD_like 1 substrate binding site 0 1 1 0 44,63,85,86,91,151 5 -132872 cd07186 CofD_like 2 phosphate binding site 0 1 1 0 5,6,7,191,192,196,230,231 4 -132872 cd07186 CofD_like 3 dimer interface 0 1 1 0 38,39,40,71,72,75,76,89,90,92,93,96,97,100,103,118,119 2 -132873 cd07187 YvcK_like 1 putative substrate binding pocket 0 0 0 1 31,35,49,52,87 5 -132873 cd07187 YvcK_like 2 phosphate binding site 0 0 0 1 5,6,7,183,184,188,217,218 4 -132873 cd07187 YvcK_like 3 dimer interface 0 1 0 0 80,85,88,89,92,93,95,96,106,109,110 2 -143587 cd07197 nitrilase 1 active site 0 1 1 1 38,109,113,117,142,143,145,146,167 1 -143587 cd07197 nitrilase 2 catalytic triad 0 0 1 1 38,109,142 1 -143587 cd07197 nitrilase 3 dimer interface 0 1 1 1 110,111,112,113,116,123,124,125,143,145,146,147,148,149,152,153,178,179,181,182,183,185,186,207,208,249,250,251,252 2 -132837 cd07198 Patatin 1 active site 0 0 1 1 5,6,8,33,151 1 -132837 cd07198 Patatin 2 nucleophile elbow 0 0 1 1 31,32,33,34,35 0 -132838 cd07199 Pat17_PNPLA8_PNPLA9_like 1 active site 0 0 1 1 6,7,9,41,136 1 -132838 cd07199 Pat17_PNPLA8_PNPLA9_like 2 nucleophile elbow 0 0 1 1 39,40,41,42,43 0 -132839 cd07200 cPLA2_Grp-IVA 1 active site 0 0 1 1 52,53,55,83,326 1 -132839 cd07200 cPLA2_Grp-IVA 2 flexible lid region 0 0 1 1 258,269 0 -132839 cd07200 cPLA2_Grp-IVA 3 nucleophile elbow 0 0 1 1 81,82,83,84,85 0 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF 1 active site 0 0 1 1 61,62,64,92,376 1 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF 2 flexible lid region 0 0 1 1 267,328 0 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF 3 nucleophile elbow 0 0 1 1 90,91,92,93,94 0 -132841 cd07202 cPLA2_Grp-IVC 1 active site 0 0 1 1 47,48,50,78,287 1 -132841 cd07202 cPLA2_Grp-IVC 2 flexible lid region 0 0 1 1 247,258 0 -132841 cd07202 cPLA2_Grp-IVC 3 nucleophile elbow 0 0 1 1 76,77,78,79,80 0 -132842 cd07203 cPLA2_Fungal_PLB 1 active site 0 0 1 1 71,72,74,112,361 1 -132842 cd07203 cPLA2_Fungal_PLB 2 flexible lid region 0 0 1 1 301,330 0 -132842 cd07203 cPLA2_Fungal_PLB 3 nucleophile elbow 0 0 1 1 110,111,112,113,114 0 -132843 cd07204 Pat_PNPLA_like 1 active site 0 0 1 1 6,7,9,38,157 1 -132843 cd07204 Pat_PNPLA_like 2 nucleophile elbow 0 0 1 1 36,37,38,39,40 0 -132844 cd07205 Pat_PNPLA6_PNPLA7_NTE1_like 1 active site 0 0 1 1 7,8,10,35,149 1 -132844 cd07205 Pat_PNPLA6_PNPLA7_NTE1_like 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132845 cd07206 Pat_TGL3-4-5_SDP1 1 active site 0 0 1 1 76,77,79,104,203 1 -132845 cd07206 Pat_TGL3-4-5_SDP1 2 nucleophile elbow 0 0 1 1 102,103,104,105,106 0 -132846 cd07207 Pat_ExoU_VipD_like 1 active site 0 0 1 1 6,7,9,34,174 1 -132846 cd07207 Pat_ExoU_VipD_like 2 nucleophile elbow 0 0 1 1 32,33,34,35,36 0 -132847 cd07208 Pat_hypo_Ecoli_yjju_like 1 active site 0 0 1 1 5,6,8,34,155 1 -132847 cd07208 Pat_hypo_Ecoli_yjju_like 2 nucleophile elbow 0 0 1 1 32,33,34,35,36 0 -132848 cd07209 Pat_hypo_Ecoli_Z1214_like 1 active site 0 0 1 1 5,6,8,33,139 1 -132848 cd07209 Pat_hypo_Ecoli_Z1214_like 2 nucleophile elbow 0 0 1 1 31,32,33,34,35 0 -132849 cd07210 Pat_hypo_W_succinogenes_WS1459_like 1 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132849 cd07210 Pat_hypo_W_succinogenes_WS1459_like 2 active site 0 0 1 1 7,8,10,35,149 1 -132850 cd07211 Pat_PNPLA8 1 active site 0 0 1 1 15,16,18,48,192 1 -132850 cd07211 Pat_PNPLA8 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -132851 cd07212 Pat_PNPLA9 1 active site 0 0 1 1 6,7,9,39,170 1 -132851 cd07212 Pat_PNPLA9 2 nucleophile elbow 0 0 1 1 37,38,39,40,41 0 -132852 cd07213 Pat17_PNPLA8_PNPLA9_like1 1 active site 0 0 1 1 9,10,12,41,169 1 -132852 cd07213 Pat17_PNPLA8_PNPLA9_like1 2 nucleophile elbow 0 0 1 1 39,40,41,42,43 0 -132853 cd07214 Pat17_isozyme_like 1 active site 0 0 1 1 11,12,14,50,199 1 -132853 cd07214 Pat17_isozyme_like 2 nucleophile elbow 0 0 1 1 48,49,50,51,52 0 -132854 cd07215 Pat17_PNPLA8_PNPLA9_like2 1 active site 0 0 1 1 7,8,10,47,189 1 -132854 cd07215 Pat17_PNPLA8_PNPLA9_like2 2 nucleophile elbow 0 0 1 1 45,46,47,48,49 0 -132855 cd07216 Pat17_PNPLA8_PNPLA9_like3 1 active site 0 0 1 1 8,9,11,49,193 1 -132855 cd07216 Pat17_PNPLA8_PNPLA9_like3 2 nucleophile elbow 0 0 1 1 47,48,49,50,51 0 -132856 cd07217 Pat17_PNPLA8_PNPLA9_like4 1 active site 0 0 1 1 8,9,11,48,191 1 -132856 cd07217 Pat17_PNPLA8_PNPLA9_like4 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -132857 cd07218 Pat_iPLA2 1 active site 0 0 1 1 7,8,10,37,156 1 -132857 cd07218 Pat_iPLA2 2 nucleophile elbow 0 0 1 1 35,36,37,38,39 0 -132858 cd07219 Pat_PNPLA1 1 active site 0 0 1 1 19,20,22,51,170 1 -132858 cd07219 Pat_PNPLA1 2 nucleophile elbow 0 0 1 1 49,50,51,52,53 0 -132859 cd07220 Pat_PNPLA2 1 active site 0 0 1 1 11,12,14,43,162 1 -132859 cd07220 Pat_PNPLA2 2 nucleophile elbow 0 0 1 1 41,42,43,44,45 0 -132860 cd07221 Pat_PNPLA3 1 active site 0 0 1 1 7,8,10,39,158 1 -132860 cd07221 Pat_PNPLA3 2 nucleophile elbow 0 0 1 1 37,38,39,40,41 0 -132861 cd07222 Pat_PNPLA4 1 active site 0 0 1 1 6,7,9,38,158 1 -132861 cd07222 Pat_PNPLA4 2 nucleophile elbow 0 0 1 1 36,37,38,39,40 0 -132862 cd07223 Pat_PNPLA5-mammals 1 active site 0 0 1 1 16,17,19,48,167 1 -132862 cd07223 Pat_PNPLA5-mammals 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -132863 cd07224 Pat_like 1 active site 0 0 1 1 6,7,9,36,153 1 -132863 cd07224 Pat_like 2 nucleophile elbow 0 0 1 1 34,35,36,37,38 0 -132864 cd07225 Pat_PNPLA6_PNPLA7 1 active site 0 0 1 1 22,23,25,50,170 1 -132864 cd07225 Pat_PNPLA6_PNPLA7 2 nucleophile elbow 0 0 1 1 48,49,50,51,52 0 -132865 cd07227 Pat_Fungal_NTE1 1 active site 0 0 1 1 17,18,20,45,163 1 -132865 cd07227 Pat_Fungal_NTE1 2 nucleophile elbow 0 0 1 1 43,44,45,46,47 0 -132866 cd07228 Pat_NTE_like_bacteria 1 active site 0 0 1 1 7,8,10,35,149 1 -132866 cd07228 Pat_NTE_like_bacteria 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132867 cd07229 Pat_TGL3_like 1 active site 0 0 1 1 90,91,93,118,284 1 -132867 cd07229 Pat_TGL3_like 2 nucleophile elbow 0 0 1 1 116,117,118,119,120 0 -132868 cd07230 Pat_TGL4-5_like 1 active site 0 0 1 1 80,81,83,108,259 1 -132868 cd07230 Pat_TGL4-5_like 2 nucleophile elbow 0 0 1 1 106,107,108,109,110 0 -132869 cd07231 Pat_SDP1-like 1 active site 0 0 1 1 75,76,78,103,215 1 -132869 cd07231 Pat_SDP1-like 2 nucleophile elbow 0 0 1 1 101,102,103,104,105 0 -132870 cd07232 Pat_PLPL 1 active site 0 0 1 1 74,75,77,102,248 1 -132870 cd07232 Pat_PLPL 2 nucleophile elbow 0 0 1 1 100,101,102,103,104 0 -319900 cd07233 GlxI_Zn 1 active site 0 1 1 1 2,6,31,36,38,66,68,70,93,117,127,129,137,139 1 -319900 cd07233 GlxI_Zn 2 metal binding site [HQ]EH[KE] 1 1 1 2,66,93,139 4 -319900 cd07233 GlxI_Zn 3 glutathione binding site 0 1 1 0 6,31,36,38,68,70,117,127,129,137 5 -319900 cd07233 GlxI_Zn 4 dimer interface 0 1 1 0 0,1,2,3,4,6,10,11,14,15,18,19,22,25,28,29,39,43,63,65,66,70,71,90,91,92,93,94,95,96,97,98,99,107,136,139 2 -319901 cd07235 MRD 1 ligand binding site 0 1 1 1 2,4,32,33,35,47,51,52,55,102,103,104,107 5 -319901 cd07235 MRD 2 dimer interface 0 1 1 0 0,1,2,3,4,5,6,20,21,38,42,44,55,67,68,69,70,71,72,73,74,95,96,114,116,121 2 -319902 cd07237 BphC1-RGP6_C_like 1 Fe binding site HHE 1 1 1 11,75,126 4 -319902 cd07237 BphC1-RGP6_C_like 2 active site 0 1 1 0 11,38,52,60,67,74,75,107,109,110,116,126,146 1 -319903 cd07238 VOC_like 1 dimer interface 0 1 0 0 0,1,2,3,4,5,6,7,8,10,13,17,21,23,30,31,32,33,34,35,36,37,44,45,46,47,48,49,50,51,52,57,58,59,60,61,62,63,64,65,90,101 2 -319904 cd07239 BphC5-RK37_C_like 1 Mn binding site HHYE 1 0 1 6,61,102,112 4 -319904 cd07239 BphC5-RK37_C_like 2 putative active site 0 0 1 1 6,8,39,47,61,63,93,95,96,102,112 1 -319904 cd07239 BphC5-RK37_C_like 3 putative oligomer interface 0 1 0 0 36,53,70,73,74,77,81,92,131,132,134,135,139,140,141,142 2 -319905 cd07241 VOC_BsYyaH 1 putative metal binding site HHE 0 0 1 3,72,122 4 -319906 cd07242 VOC_BsYqjT 1 Zn binding site HE 1 0 1 68,121 4 -319906 cd07242 VOC_BsYqjT 2 ligand binding site 0 1 0 0 67,68,111,119,121 5 -319906 cd07242 VOC_BsYqjT 3 putative dimer interface 0 1 0 0 0,1,2,3,4,5,6,7,44,49,51,64,65,66,67,68,69,70,71,72,73,74,78,118,123 2 -319907 cd07243 2_3_CTD_C 1 Fe binding site HH[SGA]YE 1 1 1 8,70,72,111,121 4 -319907 cd07243 2_3_CTD_C 2 active site 0 1 1 0 8,10,47,55,70,72,102,104,105,111,121,143 1 -319907 cd07243 2_3_CTD_C 3 tetramer interface 0 1 1 0 5,28,50,51,53,74,77,78,79,82,83,86,87,90,99,101,106,108,128,132,133,134,136,137,138,139,142 2 -319908 cd07244 FosA 1 Mn binding site HHE 1 1 1 3,59,105 4 -319908 cd07244 FosA 2 K binding site 0 1 1 1 87,89,93,95,114 4 -319908 cd07244 FosA 3 dimer interface 0 1 1 0 0,1,2,3,4,5,6,7,22,25,26,27,28,29,30,35,37,38,39,42,46,57,58,59,60,61,62,63,64,68,72,102,105,106,107,109,110,111,114,115 2 -319909 cd07245 VOC_like 1 dimer interface 0 1 0 0 0,1,2,3,4,6,20,21,23,38,41,42,46,68,69,70,71,72,73,74,75,79,80,83,115,116 2 -319909 cd07245 VOC_like 2 putative metal binding site HH[HE] 0 0 1 2,69,115 4 -319910 cd07246 VOC_like 1 putative dimer interface 0 1 0 0 0,1,2,3,4,5,7,22,36,37,44,45,47,48,49,68,69,70,72,73,74,75,76,77,83,104,109,117,118,119,120 2 -319912 cd07249 MMCE 1 metal binding site [HQ][QDE][HQ][EQ] 1 0 0 2,49,73,123 4 -319912 cd07249 MMCE 2 substrate binding site 0 1 1 0 2,38,49,60,73,109,111,123,125 5 -319912 cd07249 MMCE 3 dimer interface 0 1 1 0 0,3,5,12,16,17,19,21,22,23,24,45,46,48,68,69,71,73,74,76,91,93,112,119,120 2 -319913 cd07250 HPPD_C_like 1 active site 0 1 1 0 5,48,61,63,73,88,156,169,179,183,184 1 -319913 cd07250 HPPD_C_like 2 Fe binding site H[HQ]E 1 1 1 5,88,169 4 -319916 cd07253 GLOD5 1 metal binding site H[DH][DE] 1 0 0 5,67,118 4 -319916 cd07253 GLOD5 2 dimer interface 0 1 0 0 0,1,2,3,4,5,6,7,24,25,40,41,42,43,44,62,63,64,65,66,67,68,69,70,71,72,73,78,79,82,91,98,99,100,101,110,113,114,116,118,122 2 -319917 cd07254 VOC_like 1 putative metal binding site [HQ]HE 0 0 1 3,60,112 4 -319918 cd07255 VOC_BsCatE_like_N 1 putative metal binding site HE 0 0 1 66,113 4 -319919 cd07256 HPCD_C_class_II 1 active site 0 1 1 0 5,7,42,50,64,93,98,100,101,107,117,119,143,154 1 -319919 cd07256 HPCD_C_class_II 2 metal binding site HHE 1 1 1 5,64,117 4 -319919 cd07256 HPCD_C_class_II 3 tetramer interface 0 1 1 0 2,70,71,72,73,76,77,79,80,81,83,84,85,86,88,91,95,97,99,102,104,121,122,123,124,131,133,141,145,146 2 -319920 cd07257 THT_oxygenase_C 1 putative metal binding site HHE 0 0 1 3,68,119 4 -319920 cd07257 THT_oxygenase_C 2 putative active site 0 0 1 1 3,5,41,54,68,70,100,102,103,109,119 1 -319921 cd07258 PpCmtC_C 1 putative metal binding site HHE 0 0 1 1,55,106 4 -319921 cd07258 PpCmtC_C 2 putative active site 0 0 1 1 1,3,32,41,55,57,87,89,90,96,106 1 -319922 cd07261 EhpR_like 1 dimer interface 0 1 0 0 0,1,2,3,4,17,18,19,20,21,25,29,30,35,37,38,40,41,44,55,58,59,60,61,62,63,64,65,66,74,75,78,79,87,88,91,93,95,98,100,108,110,111,112 2 -319926 cd07265 2_3_CTD_N 1 tetramer interface 0 1 1 0 2,3,44,47,67,121 2 -319927 cd07266 HPCD_N_class_II 1 tetramer interface 0 1 1 0 2,3,43,66,68,117 2 -319929 cd07268 VOC_EcYecM_like 1 putative metal binding site HHK 0 0 1 26,97,156 4 -132809 cd07276 PX_SNX16 1 phosphoinositide binding site 0 0 1 1 39,40,41,64,65,79 5 -132810 cd07277 PX_RUN 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,63,76 5 -132811 cd07278 PX_RICS_like 1 putative phosphoinositide binding site 0 0 1 1 44,45,46,72,73,83 5 -132812 cd07279 PX_SNX20_21_like 1 phosphoinositide binding site 0 0 1 1 40,41,42,66,67,81 5 -132813 cd07280 PX_YPT35 1 phosphoinositide binding site 0 0 1 1 43,44,45,71,72,90 5 -132814 cd07281 PX_SNX1 1 phosphoinositide binding site 0 0 1 1 41,42,43,93 5 -132815 cd07282 PX_SNX2 1 phosphoinositide binding site 0 0 1 1 41,42,43,69,70,93 5 -132816 cd07283 PX_SNX30 1 phosphoinositide binding site 0 0 1 1 41,42,43,67,68,85 5 -132817 cd07284 PX_SNX7 1 phosphoinositide binding site 0 0 1 1 41,42,43,67,68,85 5 -132818 cd07285 PX_SNX9 1 phosphoinositide binding site 0 1 1 1 36,37,38,63,77 5 -132819 cd07286 PX_SNX18 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,76 5 -132820 cd07287 PX_RPK118_like 1 phosphoinositide binding site 0 0 1 1 42,43,44,72,73,87 5 -132821 cd07288 PX_SNX15 1 phosphoinositide binding site 0 0 1 1 42,43,44,72,73,87 5 -132822 cd07289 PX_PI3K_C2_alpha 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,63,77 5 -132823 cd07290 PX_PI3K_C2_beta 1 phosphoinositide binding site 0 0 1 1 36,37,38,62,63,77 5 -132824 cd07291 PX_SNX5 1 putative phosphoinositide binding site 0 0 1 1 39,40,41,66,67,110 5 -132825 cd07292 PX_SNX6 1 putative phosphoinositide binding site 0 0 1 1 39,40,41,66,67,110 5 -132826 cd07293 PX_SNX3 1 phosphoinositide binding site 0 0 1 1 42,44,47,67,68,81,90 5 -132827 cd07294 PX_SNX12 1 phosphoinositide binding site 0 0 1 1 44,46,49,69,70,83,92 5 -132828 cd07295 PX_Grd19 1 phosphoinositide binding site 0 1 1 1 42,44,47,68,69,73,82 5 -132829 cd07296 PX_PLD1 1 phosphoinositide binding site 0 0 1 1 43,44,45,90,91,104 5 -132830 cd07297 PX_PLD2 1 phosphoinositide binding site 0 0 1 1 41,42,43,87,88,99 5 -132831 cd07298 PX_RICS 1 putative phosphoinositide binding site 0 0 1 1 45,46,47,73,74,84 5 -132832 cd07299 PX_TCGAP 1 putative phosphoinositide binding site 0 0 1 1 43,44,45,71,72,82 5 -132833 cd07300 PX_SNX20 1 phosphoinositide binding site 0 0 1 1 40,41,42,66,67,81 5 -132834 cd07301 PX_SNX21 1 phosphoinositide binding site 0 0 1 1 40,41,42,66,67,81 5 -143636 cd07302 CHD 1 nucleotidyl binding site 0 1 1 0 5,7,8,9,10,11,12,47,49,50,51,54,118,119,120,124,125,128,129,165 0 -143636 cd07302 CHD 2 metal binding site 0 1 1 0 7,51 4 -143636 cd07302 CHD 3 dimer interface 0 1 1 0 12,24,27,28,31,35,47,48,106,109,119,120,121,122,125,165 2 -143612 cd07304 Chorismate_synthase 1 FMN-binding site 0 1 1 0 95,96,97,116,118,233,234,235,293,295,296,297,321,324,327 5 -143612 cd07304 Chorismate_synthase 2 Active site 0 1 1 0 9,38,95,96,117,118,119,120,123,234,235,292,293,295,296,297,324,328 1 -143612 cd07304 Chorismate_synthase 3 Tetramer interface 0 1 1 1 1,2,3,4,5,6,7,14,16,18,22,23,56,57,59,60,67,68,70,72,74,101,102,103,104,105,116,117,125,192,197,198,199,200,201,202,213,215,216,217,221,223,224,227,228,229,231,232,234,237,238,239,240,241,244,245,247,248,252,253,273,276,277,278,280,281,282,289,291,292,293,294,297,335 2 -132767 cd07306 Porin3_VDAC 1 putative dimerization interface 0 0 1 1 23,25,250,252,270 2 -132767 cd07306 Porin3_VDAC 2 putative determinants of voltage gating 0 0 1 1 12,16,42,57,78,147,275 0 -153271 cd07307 BAR 1 dimer interface 0 1 1 0 0,3,4,8,10,11,14,15,17,18,28,29,31,32,35,36,38,39,42,58,61,62,155,158,159,161,166,169,170,172,173,176,177,180,181,183,184,187,188,190,191 2 -173892 cd07308 lectin_leg-like 1 metal binding site 0 1 1 0 106 4 -173892 cd07308 lectin_leg-like 2 carbohydrate binding site 0 1 1 0 75,201 5 -213985 cd07309 PHP 1 active site 0 1 1 1 3,5,36,69,84,86 1 -143583 cd07311 terB_like_1 1 metal binding site 0 1 0 0 43,98,101,108 4 -143583 cd07311 terB_like_1 2 dimer interface 0 1 0 0 5,8,9,10,11,13,14,15,17,18,21,46,49,50,52,63,86,88,89,96,128,136,140,143,146,148 2 -143584 cd07313 terB_like_2 1 putative metal binding site 0 0 0 1 12,19,85,92 4 -143585 cd07316 terB_like_DjlA 1 putative metal binding site 0 0 0 1 12,19,86,93 4 -153371 cd07320 Extradiol_Dioxygenase_3B_like 1 metal binding site 0 1 1 1 6,222 4 -153371 cd07320 Extradiol_Dioxygenase_3B_like 2 active site 0 1 1 0 6,7,8,109,170,222,251,252 1 -153390 cd07321 Extradiol_Dioxygenase_3A_like 1 dimer interface 0 1 1 1 0,4,7,10,13,18,48,51,56,57,58,59,62,68,69,72,75,76 2 -153390 cd07321 Extradiol_Dioxygenase_3A_like 2 tetramer interface 0 1 1 1 1 2 -143474 cd07322 PriL_PriS_Eukaryotic 1 PriL_PriS interface 0 0 1 1 127,128,131,135,140,141,142,143,144,145 2 -153396 cd07323 LAM 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -320683 cd07324 M48C_Oma1-like 1 Zn binding site 0 1 0 0 61,65,83,129 4 -320683 cd07324 M48C_Oma1-like 2 putative active site 0 1 1 1 61,62,65,83,87,129 1 -320684 cd07325 M48_Ste24p_like 1 Zn binding site 0 0 0 0 75,79,122,186 4 -320684 cd07325 M48_Ste24p_like 2 putative active site 0 0 1 1 75,76,79,122,126,186 1 -320685 cd07326 M56_BlaR1_MecR1_like 1 Zn binding site 0 0 1 0 69,73,110 4 -320685 cd07326 M56_BlaR1_MecR1_like 2 putative active site 0 0 1 1 69,70,73,110,114,152 1 -320686 cd07327 M48B_HtpX_like 1 Zn binding site 0 0 1 0 86,90,109,171 4 -320686 cd07327 M48B_HtpX_like 2 putative active site 0 0 1 1 86,87,90,109,113,171 1 -320687 cd07328 M48_Ste24p_like 1 Zn binding site 0 0 0 0 90,94,112,147 4 -320687 cd07328 M48_Ste24p_like 2 putative active site 0 0 1 1 90,91,94,112,116,147 1 -320688 cd07329 M56_like 1 Zn binding site 0 0 1 0 55,59,113 4 -320688 cd07329 M56_like 2 putative active site 0 0 1 1 55,56,59,113,117 1 -320689 cd07330 M48A_Ste24p 1 Zn binding site 0 1 1 0 182,186,228,272 4 -320689 cd07330 M48A_Ste24p 2 putative active site 0 0 1 1 182,183,186,228,232,272 1 -320690 cd07331 M48C_Oma1_like 1 Zn binding site 0 0 0 0 65,69,125,169 4 -320690 cd07331 M48C_Oma1_like 2 putative active site 0 0 1 1 65,66,69,125,129,169 1 -320691 cd07332 M48C_Oma1_like 1 Zn binding site 0 0 0 0 109,113,164,209 4 -320691 cd07332 M48C_Oma1_like 2 putative active site 0 0 1 1 109,110,113,164,168,209 1 -320692 cd07333 M48C_bepA_like 1 Zn binding site 0 1 0 0 88,92,111,157 4 -320692 cd07333 M48C_bepA_like 2 putative active site 0 1 1 1 88,89,92,111,115,157 1 -320693 cd07334 M48C_loiP_like 1 Zn binding site 0 0 0 0 99,103,158,201 4 -320693 cd07334 M48C_loiP_like 2 putative active site 0 0 1 1 99,100,103,158,162,201 1 -320694 cd07335 M48B_HtpX_like 1 Zn binding site 0 0 1 0 96,100,173,228 4 -320694 cd07335 M48B_HtpX_like 2 putative active site 0 0 1 1 96,97,100,173,177,228 1 -320695 cd07336 M48B_HtpX_like 1 Zn binding site 0 0 1 0 117,121,191,252 4 -320695 cd07336 M48B_HtpX_like 2 putative active site 0 0 1 1 117,118,121,191,195,252 1 -320696 cd07337 M48B_HtpX_like 1 Zn binding site 0 0 1 0 99,103,149,190 4 -320696 cd07337 M48B_HtpX_like 2 putative active site 0 0 1 1 99,100,103,149,153,190 1 -320697 cd07338 M48B_HtpX_like 1 Zn binding site 0 0 1 0 95,99,167,203 4 -320697 cd07338 M48B_HtpX_like 2 putative active site 0 0 1 1 95,96,99,167,171,203 1 -320698 cd07339 M48B_HtpX_like 1 Zn binding site 0 0 1 0 90,94,165,216 4 -320698 cd07339 M48B_HtpX_like 2 putative active site 0 0 1 1 90,91,94,165,169,216 1 -320699 cd07340 M48B_Htpx_like 1 Zn binding site 0 0 1 0 91,95,173,234 4 -320699 cd07340 M48B_Htpx_like 2 putative active site 0 0 1 1 91,92,95,173,177,234 1 -320700 cd07341 M56_BlaR1_MecR1_like 1 Zn binding site 0 0 1 0 88,92,129 4 -320700 cd07341 M56_BlaR1_MecR1_like 2 putative active site 0 0 1 1 88,89,92,129,133,172 1 -320701 cd07342 M48C_Oma1_like 1 Zn binding site 0 0 1 0 61,65,98,140 4 -320701 cd07342 M48C_Oma1_like 2 putative active site 0 0 1 1 61,65,98,102,140 1 -320702 cd07343 M48A_Zmpste24p_like 1 Zn binding site 0 1 1 0 270,274,348,392 4 -320702 cd07343 M48A_Zmpste24p_like 2 active site 0 1 1 1 270,271,274,348,352,392 1 -320703 cd07344 M48_yhfN_like 1 Zn binding site 0 1 1 0 60,64,70 4 -320703 cd07344 M48_yhfN_like 2 active site 0 1 1 0 60,61,64,70 1 -320704 cd07345 M48A_Ste24p-like 1 Zn binding site 0 0 1 0 210,214,292,331 4 -320704 cd07345 M48A_Ste24p-like 2 putative active site 0 0 1 1 210,211,214,292,296,331 1 -349983 cd07346 ABC_6TM_exporters 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349983 cd07346 ABC_6TM_exporters 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349983 cd07346 ABC_6TM_exporters 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349983 cd07346 ABC_6TM_exporters 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349983 cd07346 ABC_6TM_exporters 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349983 cd07346 ABC_6TM_exporters 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -259818 cd07347 harmonin_N_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -132762 cd07348 NR_LBD_NGFI-B 1 putative coactivator recognition site 0 0 1 1 54,57,61,66,71,72,74,75,78,79,226,229,233 0 -132762 cd07348 NR_LBD_NGFI-B 2 heterodimer interface 0 0 1 0 9,12,15,138 2 -132763 cd07349 NR_LBD_SHP 1 putative ligand binding site 0 0 1 1 22,23,27,61,65,68,83,113 5 -132763 cd07349 NR_LBD_SHP 2 putative coactivator recognition site 0 0 1 1 32,35,39,44,49,50,52,53,56,57,214,217 0 -132763 cd07349 NR_LBD_SHP 3 heterotrimer interface 0 0 1 0 40,41,42,43,45,46,48,152,153,154,161 2 -132764 cd07350 NR_LBD_Dax1 1 putative ligand binding site 0 0 1 1 22,23,27,61,65,68,83,125 5 -132764 cd07350 NR_LBD_Dax1 2 putative coactivator recognition site 0 0 1 1 32,35,39,44,49,50,52,53,56,57,226,229 0 -132764 cd07350 NR_LBD_Dax1 3 heterotrimer interface 0 1 1 0 40,41,42,43,45,46,48,164,165,166,173 2 -259819 cd07353 harmonin_N 1 cadherin 23 binding site 0 1 1 1 1,3,4,7,8,21,22,25,28,29,31,32,35,66 0 -259820 cd07354 HN_L-delphilin-R1_like 1 putative protein binding site 0 0 1 1 1,4,8,23,26,29,30,33 2 -259821 cd07355 HN_L-delphilin-R2_like 1 putative protein binding site 0 0 1 1 1,4,8,21,24,27,28,31 2 -259822 cd07356 HN_L-whirlin_R1_like 1 putative protein binding site 0 0 1 1 1,4,8,21,24,27,28,31 2 -259823 cd07357 HN_L-whirlin_R2_like 1 putative protein binding site 0 0 1 1 1,4,8,21,24,27,28,31 2 -259824 cd07358 HN_PDZD7_like 1 putative protein binding site 0 0 1 1 1,4,8,21,24,27,28,31 2 -153372 cd07359 PCA_45_Doxase_B_like 1 Fe(II) binding site 0 1 1 0 9,54,233 4 -153372 cd07359 PCA_45_Doxase_B_like 2 active site 0 1 1 0 9,10,11,54,120,185,233,261,262 1 -153372 cd07359 PCA_45_Doxase_B_like 3 dimer interface 0 1 1 1 11,54,55,56,59,60,78,79,145,146,147,148,149,194,195,196,220,221,224,225,226,229,230,233,256,257,261 2 -153372 cd07359 PCA_45_Doxase_B_like 4 tetramer interface 0 1 1 0 60,62,63,64,65,66,93,94,97,98,101,102,104,105,107,109,110,111,112,113,114,115,148,151,153,154,168 2 -153373 cd07361 MEMO_like 1 putative ligand binding pocket/active site 0 1 1 1 7,42,74,124,178,181,219 1 -153373 cd07361 MEMO_like 2 putative metal binding site 0 0 1 1 42,74 4 -153374 cd07362 HPCD_like 1 putative metal binding site 0 0 1 1 7,52 4 -153374 cd07362 HPCD_like 2 putative active site 0 0 1 1 7,8,9,52,120,180,236,263,264 1 -153375 cd07363 45_DOPA_Dioxygenase 1 metal binding site 0 1 0 0 6,41,217 4 -153375 cd07363 45_DOPA_Dioxygenase 2 putative active site 0 0 1 1 6,7,8,41,106,162,217,244,245 1 -153376 cd07364 PCA_45_Dioxygenase_B 1 Fe(II) binding site 0 1 1 0 11,58,239 4 -153376 cd07364 PCA_45_Dioxygenase_B 2 active site 0 1 1 0 11,12,13,58,124,192,239,265,266,267,268 1 -153376 cd07364 PCA_45_Dioxygenase_B 3 dimer interface 0 1 1 1 13,28,58,59,60,63,64,65,82,83,84,85,86,152,153,154,155,156,193,194,195,196,197,198,199,200,201,202,203,226,227,230,231,232,235,236,239,263,264,266,267 2 -153376 cd07364 PCA_45_Dioxygenase_B 4 tetramer interface 0 1 1 0 64,65,66,67,68,69,70,97,98,101,102,105,106,108,109,111,112,113,114,115,116,117,118,119,155,158,160,161,175,177 2 -153377 cd07365 MhpB_like 1 Fe(II) binding site 0 0 1 1 9,52,269 4 -153377 cd07365 MhpB_like 2 putative active site 0 0 1 1 9,10,11,52,114,178,269,300,301 1 -153377 cd07365 MhpB_like 3 putative dimer interface 0 0 1 1 11,52,53,54,57,58,76,77,140,141,142,143,144,230,231,232,256,257,260,261,262,265,266,269,295,296,300 2 -153377 cd07365 MhpB_like 4 putative tetramer interface 0 0 1 1 58,60,61,62,63,64,87,88,91,92,95,96,98,99,101,103,104,105,106,107,108,109,143,146,148,149,163 2 -153378 cd07366 3MGA_Dioxygenase 1 putative Fe(II) binding site 0 0 1 1 10,96,284 4 -153378 cd07366 3MGA_Dioxygenase 2 putative active site 0 0 1 1 10,11,12,96,181,247,284,318,319 1 -153378 cd07366 3MGA_Dioxygenase 3 putative dimer interface 0 0 1 1 12,96,97,98,101,102,120,121,207,208,209,210,211,249,250,251,270,271,274,275,276,280,281,284,309,310,318 2 -153378 cd07366 3MGA_Dioxygenase 4 putative tetramer interface 0 0 1 1 102,104,105,106,107,108,150,151,154,155,158,159,161,162,164,166,167,168,169,170,171,172,210,213,215,216,230 2 -153379 cd07367 CarBb 1 Fe(II) binding site 0 0 1 1 11,52,230 4 -153379 cd07367 CarBb 2 putative active site 0 0 1 1 11,12,13,52,116,182,230,258,259 1 -153379 cd07367 CarBb 3 putative dimer interface 0 0 1 1 13,52,53,54,57,58,76,77,141,142,143,144,145,191,192,193,216,217,220,221,222,226,227,230,253,254,258 2 -153379 cd07367 CarBb 4 putative tetramer interface 0 0 1 1 58,60,61,62,63,64,89,90,93,94,97,98,100,101,103,105,106,107,108,109,110,111,144,147,149,150,164 2 -153380 cd07368 PhnC_Bs_like 1 Fe(II) binding site 0 0 1 1 11,56,239 4 -153380 cd07368 PhnC_Bs_like 2 putative active site 0 0 1 1 11,12,13,56,121,191,239,267,268 1 -153380 cd07368 PhnC_Bs_like 3 putative dimer interface 0 0 1 1 13,56,57,58,61,62,80,81,151,152,153,154,155,200,201,202,226,227,230,231,232,235,236,239,262,263,267 2 -153380 cd07368 PhnC_Bs_like 4 putative tetramer interface 0 0 1 1 62,64,65,66,67,68,94,95,98,99,102,103,105,106,108,110,111,112,113,114,115,116,154,157,159,160,174 2 -153381 cd07369 PydA_Rs_like 1 Fe(II) binding site 0 0 1 1 11,56,291 4 -153381 cd07369 PydA_Rs_like 2 putative active site 0 0 1 1 11,12,13,56,126,191,291,319,320 1 -153381 cd07369 PydA_Rs_like 3 putative dimer interface 0 0 1 1 13,56,57,58,61,62,80,81,151,152,153,154,155,252,253,254,278,279,282,283,284,287,288,291,314,315,319 2 -153381 cd07369 PydA_Rs_like 4 putative tetramer interface 0 0 1 1 62,64,65,66,67,68,99,100,103,104,107,108,110,111,113,115,116,117,118,119,120,121,154,157,159,160,174 2 -153382 cd07370 HPCD 1 putative metal binding site 0 0 1 1 9,54 4 -153382 cd07370 HPCD 2 putative active site 0 0 1 1 9,10,11,54,122,181,238,269,270 1 -153383 cd07371 2A5CPDO_AB 1 putative metal binding site 0 0 1 1 7,48 4 -153383 cd07371 2A5CPDO_AB 2 putative active site 0 0 1 1 7,8,9,48,115,175,230,257,258 1 -153384 cd07372 2A5CPDO_B 1 putative metal binding site 0 0 1 1 10,59 4 -153384 cd07372 2A5CPDO_B 2 putative active site 0 0 1 1 10,11,12,59,126,192,251,278,279 1 -143620 cd07374 CYTH-like_Pase 1 putative active site 0 1 1 1 0,2,4,37,51,53,55,66,76,114,116,134,151,153 0 -143620 cd07374 CYTH-like_Pase 2 putative metal binding residues 0 1 1 1 0,2,132,151,153 4 -143620 cd07374 CYTH-like_Pase 3 putative triphosphate binding site 0 1 1 1 2,4,37,51,55,66,76,116,151 4 -143620 cd07374 CYTH-like_Pase 4 signature motif 0 0 1 1 0,2,4 0 -153408 cd07375 Anticodon_Ia_like 1 anticodon binding site 0 1 1 0 11,14,15,18,19,81 0 -153408 cd07375 Anticodon_Ia_like 2 tRNA binding surface 0 1 1 0 1,5,8,11,15,16,18,19,68,75,78,81 3 -143511 cd07376 PLPDE_III_DSD_D-TA_like 1 active site 0 0 1 1 22,24,44,65,116,123,154,198,199,215,216,217,218,260 1 -143511 cd07376 PLPDE_III_DSD_D-TA_like 2 pyridoxal 5'-phosphate (PLP) binding site 0 0 1 1 22,24,44,65,116,154,198,199,215,216,217,218 5 -143511 cd07376 PLPDE_III_DSD_D-TA_like 3 catalytic residue 0 0 1 1 24 1 -143511 cd07376 PLPDE_III_DSD_D-TA_like 4 substrate binding site 0 0 1 1 24,123,154,218 5 -143511 cd07376 PLPDE_III_DSD_D-TA_like 5 dimer interface 0 0 1 1 24,26,46,47,49,50,56,73,92,95,99,122,123,124,125,245,246,247,248,253,255,257,260,261,329 2 -153418 cd07377 WHTH_GntR 1 DNA-binding site 0 1 1 0 0,2,25,27,28,36,37,38,39,40,42,43,46,56,57,59,60,61,62 3 -277324 cd07378 MPP_ACP5 1 active site 0 1 1 0 7,44,47,82,179,188,214,216 1 -277324 cd07378 MPP_ACP5 2 metal binding site 0 1 1 0 7,44,47,82,179,214,216 4 -277324 cd07378 MPP_ACP5 3 N-glycosylation site 0 1 1 0 88 6 -277325 cd07379 MPP_239FB 1 putative active site 0 0 1 1 6,8,27,58,59,74,111,113 1 -277325 cd07379 MPP_239FB 2 putative metal binding site 0 0 1 1 6,8,27,58,74,111,113 4 -277326 cd07380 MPP_CWF19_N 1 putative active site 0 0 1 1 4,6,34,65,66,75,117 1 -277326 cd07380 MPP_CWF19_N 2 putative metal binding site 0 0 1 1 4,6,34,65,75,117 4 -277327 cd07381 MPP_CapA 1 putative active site 0 0 1 1 5,7,44,84,85,182,214,216 1 -277327 cd07381 MPP_CapA 2 putative metal binding site 0 0 1 1 5,7,44,84,182,214,216 4 -277328 cd07382 MPP_DR1281 1 active site 0 1 1 0 6,37,38,65,66,69,148,173,175 1 -277328 cd07382 MPP_DR1281 2 metal binding site 0 1 1 0 6,37,38,65,148,173,175 4 -277328 cd07382 MPP_DR1281 3 homotetramer interface 0 1 1 0 68,71,89,90,116,117,118,121,122,126,150,152,153,154,156,157,160,161,174,176,177,178,179,180,182,192,202,203,204,208,211,212,215,216,217,251,253 2 -277328 cd07382 MPP_DR1281 4 homodimer interface 0 1 1 0 116,118,124,126,127,130,150,152,153,154,156,157,160,161,174,176,177,178,179,180,182,192,202,203,204,208,212,215,216,251,253 2 -277329 cd07383 MPP_Dcr2 1 putative active site 0 0 1 1 9,11,50,86,87,123,173,175 1 -277329 cd07383 MPP_Dcr2 2 putative metal binding site 0 0 1 1 9,11,50,86,123,173,175 4 -277330 cd07384 MPP_Cdc1_like 1 putative active site 0 0 1 1 4,6,53,96,97,123,142,144 1 -277330 cd07384 MPP_Cdc1_like 2 putative metal binding site 0 0 1 1 4,6,53,96,123,142,144 4 -277331 cd07385 MPP_YkuE_C 1 putative active site 0 0 1 1 8,10,40,71,72,143,163,165 1 -277331 cd07385 MPP_YkuE_C 2 putative metal binding site 0 0 1 1 8,10,40,71,143,163,165 4 -277332 cd07386 MPP_DNA_pol_II_small_archeal_C 1 putative active site 0 0 1 1 5,7,43,89,90,135,198,200 1 -277332 cd07386 MPP_DNA_pol_II_small_archeal_C 2 putative metal binding site 0 0 1 1 5,7,43,89,135,198,200 4 -277333 cd07387 MPP_PolD2_C 1 putative active site 0 0 1 1 6,8,50,102,103,149,210 1 -277333 cd07387 MPP_PolD2_C 2 putative metal binding site 0 0 1 1 6,8,50,102,149,210 4 -277333 cd07387 MPP_PolD2_C 3 PolD3 binding site 0 1 1 0 16,17,20,24,26,27,28,29,30,31,81,85,88,89,92,93,252,253,254,255,256 2 -277334 cd07388 MPP_Tt1561 1 putative active site 0 0 1 1 11,13,39,70,71,154,186 1 -277334 cd07388 MPP_Tt1561 2 putative metal binding site 0 0 1 1 11,13,39,70,154,186 4 -277335 cd07389 MPP_PhoD 1 active site 0 1 1 0 6,35,38,89,90,91,95,96,211,213 1 -277335 cd07389 MPP_PhoD 2 metal binding site 0 1 1 0 6,35,38,89,90,95,96,211,213 4 -277336 cd07390 MPP_AQ1575 1 putative active site 0 0 1 1 5,7,50,78,79,111,130,132 1 -277336 cd07390 MPP_AQ1575 2 putative metal binding site 0 0 1 1 5,7,50,78,111,130,132 4 -277337 cd07391 MPP_PF1019 1 putative active site 0 0 1 1 4,6,49,83,84,112,129,131 1 -277337 cd07391 MPP_PF1019 2 putative metal binding site 0 0 1 1 4,6,49,83,112,129,131 4 -277338 cd07392 MPP_PAE1087 1 putative active site 0 0 1 1 5,7,31,61,62,132,170,172 1 -277338 cd07392 MPP_PAE1087 2 putative metal binding site 0 0 1 1 5,7,31,61,132,170,172 4 -277339 cd07393 MPP_DR1119 1 putative active site 0 0 1 1 5,7,50,80,81,177,206,208 1 -277339 cd07393 MPP_DR1119 2 putative metal binding site 0 0 1 1 5,7,50,80,177,206,208 4 -163637 cd07394 MPP_Vps29 1 active site 0 1 1 0 6,8,37,60,84,113,115 1 -163637 cd07394 MPP_Vps29 2 metal binding site 0 1 1 0 6,8,37,60,84,113,115 4 -163637 cd07394 MPP_Vps29 3 Vps29:Vps35 subcomplex 0 1 1 1 6,8,12,37,60,61,84,89,113 2 -277340 cd07395 MPP_CSTP1 1 putative active site 0 0 1 1 11,13,58,95,96,173,214,216 1 -277340 cd07395 MPP_CSTP1 2 putative metal binding site 0 0 1 1 11,13,58,95,173,214,216 4 -277341 cd07396 MPP_Nbla03831 1 active site 0 1 1 0 7,9,24,54,89,90,163,200,202 1 -277341 cd07396 MPP_Nbla03831 2 metal binding site 0 1 1 0 7,9,54,89,163,200,202 4 -277342 cd07397 MPP_NostocDevT-like 1 putative active site 0 0 1 1 7,9,33,58,59,160,211,213 1 -277342 cd07397 MPP_NostocDevT-like 2 putative metal binding site 0 0 1 1 7,9,33,58,160,211,213 4 -277343 cd07398 MPP_YbbF-LpxH 1 putative active site 0 0 1 1 4,6,37,76,77,112,196,198 1 -277343 cd07398 MPP_YbbF-LpxH 2 putative metal binding site 0 0 1 1 4,6,37,76,112,196,198 4 -277344 cd07399 MPP_YvnB 1 putative active site 0 0 1 1 7,9,43,76,77,112,149 1 -277344 cd07399 MPP_YvnB 2 putative metal binding site 0 0 1 1 7,9,43,76,112,149 4 -277345 cd07400 MPP_1 1 putative active site 0 0 1 1 5,7,38,69,70,77,115,117 1 -277345 cd07400 MPP_1 2 putative metal binding site 0 0 1 1 5,7,38,69,77,115,117 4 -277346 cd07401 MPP_TMEM62_N 1 putative active site 0 0 1 1 6,8,41,85,86,173,207,209 1 -277346 cd07401 MPP_TMEM62_N 2 putative metal binding site 0 0 1 1 6,8,41,85,173,207,209 4 -277347 cd07402 MPP_GpdQ 1 active site 0 1 1 0 5,7,47,50,77,78,150,189,191,211 1 -277347 cd07402 MPP_GpdQ 2 metal binding site 0 1 1 0 5,7,47,77,150,189,191 4 -277347 cd07402 MPP_GpdQ 3 homohexamer interface 0 1 1 1 20,23,26,27,30,31,50,53,62,154,156,157,184,186,193,194,195,196,197,200,201,202,204,233,236,238 2 -277348 cd07403 MPP_TTHA0053 1 putative active site 0 0 1 1 4,6,30,53,54,62,98,100 1 -277348 cd07403 MPP_TTHA0053 2 putative metal binding site 0 0 1 1 4,6,30,53,62,98,100 4 -277349 cd07404 MPP_MS158 1 putative active site 0 0 1 1 5,7,34,64,65,137,179,181 1 -277349 cd07404 MPP_MS158 2 putative metal binding site 0 0 1 1 5,7,34,64,137,179,181 4 -277350 cd07405 MPP_UshA_N 1 active site 0 1 1 1 7,9,50,82,83,183,218,220 1 -277350 cd07405 MPP_UshA_N 2 metal binding site 0 1 1 1 7,9,50,82,183,218,220 4 -277351 cd07406 MPP_CG11883_N 1 putative active site 0 0 1 1 7,9,46,78,79,179,202,204 1 -277351 cd07406 MPP_CG11883_N 2 putative metal binding site 0 0 1 1 7,9,46,78,179,202,204 4 -277352 cd07407 MPP_YHR202W_N 1 putative active site 0 0 1 1 12,14,58,92,93,195,226,228 1 -277352 cd07407 MPP_YHR202W_N 2 putative metal binding site 0 1 1 1 12,14,58,92,195,226,228 4 -277353 cd07408 MPP_SA0022_N 1 putative active site 0 0 1 1 7,9,41,73,74,171,207,209 1 -277353 cd07408 MPP_SA0022_N 2 putative metal binding site 0 0 1 1 7,9,41,73,171,207,209 4 -277354 cd07409 MPP_CD73_N 1 active site 0 1 1 1 7,9,57,89,90,93,153,188,211,213 1 -277354 cd07409 MPP_CD73_N 2 metal binding site 0 1 1 1 7,9,57,89,188,211,213 4 -277355 cd07410 MPP_CpdB_N 1 active site 0 0 1 1 7,9,52,90,91,191,224,226 1 -277355 cd07410 MPP_CpdB_N 2 metal binding site 0 1 1 1 7,9,52,90,191,224,226 4 -277356 cd07411 MPP_SoxB_N 1 active site 0 1 1 1 7,9,69,100,101,201,224,226 1 -277356 cd07411 MPP_SoxB_N 2 metal binding site 0 1 1 1 7,9,69,100,201,224,226 4 -277357 cd07412 MPP_YhcR_N 1 putative active site 0 0 1 1 7,9,57,90,91,207,246,248 1 -277357 cd07412 MPP_YhcR_N 2 putative metal binding site 0 0 1 1 7,9,57,90,207,246,248 4 -277358 cd07413 MPP_PA3087 1 active site 0 0 1 1 5,7,41,45,71,72,138,174,183 1 -277358 cd07413 MPP_PA3087 2 metal binding site 0 0 1 1 5,7,41,71,138,183 4 -277359 cd07414 MPP_PP1_PPKL 1 active site 0 1 1 0 56,58,84,88,116,117,121,122,126,165,187,188,189,198,212,213,214,240,264,265,266,267,268 1 -277359 cd07414 MPP_PP1_PPKL 2 metal binding site 0 1 1 1 56,58,84,116,165,240 4 -277359 cd07414 MPP_PP1_PPKL 3 natural toxin binding site 0 1 1 0 88,121,122,126,187,188,189,198,212,213,214,264,265,266,267,268 5 -277359 cd07414 MPP_PP1_PPKL 4 MYPT1 binding site 0 1 1 0 171,173,190,195,208,217,225,226,228,229,230,232,233,234,249,253,280,281,283,285,287 2 -277360 cd07415 MPP_PP2A_PP4_PP6 1 active site 0 1 1 0 48,50,76,80,108,109,113,114,118,158,180,181,182,191,204,205,206,232,234,258,259,260 1 -277360 cd07415 MPP_PP2A_PP4_PP6 2 metal binding site 0 1 1 0 48,50,76,108,158,232 4 -277360 cd07415 MPP_PP2A_PP4_PP6 3 heterotrimer interface 0 1 1 0 42,58,61,62,64,65,67,69,70,82,97,98,99,100,101,112,113,116,117,121,122,125,126,134,259,268,278,284 2 -277361 cd07416 MPP_PP2B 1 active site 0 1 1 1 49,51,77,81,109,110,158,191,213,240,242 1 -277361 cd07416 MPP_PP2B 2 metal binding site 0 1 1 0 49,51,77,109,158,240 4 -277361 cd07416 MPP_PP2B 3 CN-CyPA-CsA complex 0 1 1 0 12,14,49,51,77,109,118,158,240,273,300 2 -277362 cd07417 MPP_PP5_C 1 active site 0 1 1 0 66,68,95,98,99,127,128,176,210,224,251,275 1 -277362 cd07417 MPP_PP5_C 2 metal binding site 0 1 1 0 66,68,95,127,176,251 4 -277362 cd07417 MPP_PP5_C 3 TPR interaction site 0 1 1 1 99,137,221,223,224,225,275,278 2 -163661 cd07418 MPP_PP7 1 active site 0 0 1 1 72,74,101,105,133,134,185,249,291 1 -163661 cd07418 MPP_PP7 2 metal binding site 0 0 1 1 72,74,101,133,185,291 4 -277363 cd07419 MPP_Bsu1_C 1 active site 0 0 1 1 54,56,90,94,122,123,177,211,260 1 -277363 cd07419 MPP_Bsu1_C 2 metal binding site 0 0 1 1 54,56,90,122,177,260 4 -277364 cd07420 MPP_RdgC 1 active site 0 0 1 1 57,59,86,90,118,119,170,205,247 1 -277364 cd07420 MPP_RdgC 2 metal binding site 0 0 1 1 57,59,86,118,170,247 4 -163664 cd07421 MPP_Rhilphs 1 active site 0 0 1 1 8,10,42,46,75,76,208,223,261 1 -163664 cd07421 MPP_Rhilphs 2 metal binding site 0 0 1 1 8,10,42,75,208,261 4 -277365 cd07422 MPP_ApaH 1 active site 0 1 1 1 5,7,34,37,38,62,63,117,224,241,246 1 -277365 cd07422 MPP_ApaH 2 metal binding site 0 1 1 0 5,7,34,62,117,224 4 -277366 cd07423 MPP_Prp_like 1 active site 0 1 1 0 4,6,42,46,72,73,136,189,205 1 -277366 cd07423 MPP_Prp_like 2 metal binding site 0 1 1 0 4,6,42 4 -277366 cd07423 MPP_Prp_like 3 putative RNA binding site 0 0 1 0 13,18,36,46,49,55,76,84,94,115,140,172,180,182,197,213,218,222,228 3 -277367 cd07424 MPP_PrpA_PrpB 1 active site 0 1 1 1 7,9,36,39,40,62,63,122,146,148,169,185 1 -277367 cd07424 MPP_PrpA_PrpB 2 metal binding site 0 1 1 0 7,9,36,62,122,169 4 -277368 cd07425 MPP_Shelphs 1 active site 0 1 1 0 4,6,40,44,75,76,133,140,142,174 1 -277368 cd07425 MPP_Shelphs 2 metal binding site 0 1 1 1 4,6,40,75,133,174 4 -143632 cd07430 GH15_N 1 Domain interface 0 1 1 0 7,8,9,10,11,12,13,14,16,17,19,20,25,26,28,30,38,40,44,45,74,76,82,84,133,138,205,256,259 0 -213986 cd07431 PHP_PolIIIA 1 active site 0 1 1 1 3,5,12,37,62,143,145 1 -213986 cd07431 PHP_PolIIIA 2 PHP Thumb interface 0 1 1 1 51,55,56,57,175 2 -213987 cd07432 PHP_HisPPase 1 active site 0 1 1 1 3,5,36,61,69,125,127 1 -213988 cd07433 PHP_PolIIIA_DnaE1 1 putative active site 0 0 1 1 5,7,14,39,64,196,198 1 -213988 cd07433 PHP_PolIIIA_DnaE1 2 putative PHP Thumb interface 0 0 1 1 53,57,58,59,263 2 -213989 cd07434 PHP_PolIIIA_DnaE2 1 putative active site 0 0 1 1 4,6,13,38,63,181,183 1 -213989 cd07434 PHP_PolIIIA_DnaE2 2 putative PHP Thumb interface 0 0 1 1 52,56,57,58,248 2 -213990 cd07435 PHP_PolIIIA_POLC 1 active site 0 1 1 1 6,13,38,63,195,197 1 -213990 cd07435 PHP_PolIIIA_POLC 2 putative PHP Thumb interface 0 0 1 1 52,56,57,58,263 2 -213991 cd07436 PHP_PolX 1 active site 0 1 1 1 9,11,16,41,80,107,135,196,198 1 -213992 cd07437 PHP_HisPPase_Ycdx_like 1 active site 0 1 1 1 5,7,13,38,71,99,129,190,192 1 -213993 cd07438 PHP_HisPPase_AMP 1 active site 0 1 1 1 3,5,10,35,60,71,94,151,153 1 -143633 cd07439 FANCE_c-term 1 disease-associated mutation sites 0 0 1 1 74,83,89,222 0 -143633 cd07439 FANCE_c-term 2 predicted protein-protein interaction site 0 0 1 1 168,205,206,207,211,242,243 2 -143550 cd07441 CRD_SFRP3 1 putative Wnt binding site 0 0 1 1 10,12,13,14,16,17,18 2 -143551 cd07442 CRD_SFRP4 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143552 cd07443 CRD_SFRP1 1 putative Wnt binding site 0 0 1 1 15,17,18,19,21,22,23 2 -143553 cd07444 CRD_SFRP5 1 putative Wnt binding site 0 0 1 1 15,17,18,19,21,22,23 2 -143554 cd07445 CRD_corin_1 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143555 cd07446 CRD_SFRP2 1 putative Wnt binding site 0 0 1 1 13,15,16,17,19,20,21 2 -143556 cd07447 CRD_Carboxypeptidase_Z 1 putative Wnt binding site 0 0 1 1 10,12,13,14,16,17,18 2 -143557 cd07448 CRD_FZ4 1 putative Wnt binding site 0 0 1 1 10,12,13,14,16,17,18 2 -143558 cd07449 CRD_FZ3 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143559 cd07450 CRD_FZ6 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143560 cd07451 CRD_SMO 1 putative Wnt binding site 0 0 1 1 11,13,14,19,20,21 2 -143561 cd07452 CRD_sizzled 1 putative Wnt binding site 0 0 1 1 17,19,20,21,23,24,25 2 -143562 cd07453 CRD_crescent 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143563 cd07454 CRD_LIN_17 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143564 cd07455 CRD_Collagen_XVIII 1 putative Wnt binding site 0 0 1 1 13,15,16,17,19,20,21 2 -143565 cd07456 CRD_FZ5_like 1 putative Wnt binding site 0 0 1 1 8,10,11,12,14,15,16 2 -143566 cd07457 CRD_FZ9_like 1 putative Wnt binding site 0 0 1 1 9,11,12,13,15,16,17 2 -143567 cd07458 CRD_FZ1_like 1 putative Wnt binding site 0 0 1 1 9,11,12,13,15,16,17 2 -143568 cd07459 CRD_TK_ROR_like 1 putative Wnt binding site 0 0 1 1 9,11,12,20,21,22 2 -143569 cd07460 CRD_FZ5 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143570 cd07461 CRD_FZ8 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143571 cd07462 CRD_FZ10 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143572 cd07463 CRD_FZ9 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143573 cd07464 CRD_FZ2 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143574 cd07465 CRD_FZ1 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143575 cd07466 CRD_FZ7 1 putative Wnt binding site 0 0 1 1 11,13,14,15,17,18,19 2 -143576 cd07467 CRD_TK_ROR1 1 putative Wnt binding site 0 0 1 1 11,13,14,15,22,23,24 2 -143577 cd07468 CRD_TK_ROR2 1 putative Wnt binding site 0 0 1 1 11,13,14,15,22,23,24 2 -143578 cd07469 CRD_TK_ROR_related 1 putative Wnt binding site 0 0 1 1 11,13,14,15,24,25,26 2 -143621 cd07470 CYTH-like_mRNA_RTPase 1 active site 0 1 1 1 22,24,96,112,124,128,152,171,173,175,186,204,206,208 1 -143621 cd07470 CYTH-like_mRNA_RTPase 2 putative metal binding residues 0 1 1 1 22,24,186,206,208 4 -143621 cd07470 CYTH-like_mRNA_RTPase 3 gamma-phosphate binding site 0 1 1 1 22,96,112,124,128,152,173,175,208 5 -143621 cd07470 CYTH-like_mRNA_RTPase 4 dimer interface 0 1 1 1 0,1,72,76,180,185,234,237,238,240,241 2 -143621 cd07470 CYTH-like_mRNA_RTPase 5 signature motif 0 0 1 1 22,24,26 0 -143621 cd07470 CYTH-like_mRNA_RTPase 6 motif B 0 0 1 1 171,172,173 0 -143621 cd07470 CYTH-like_mRNA_RTPase 7 motif C 0 0 1 1 204,205,206,207,208 0 -173799 cd07473 Peptidases_S8_Subtilisin_like 1 catalytic triad 0 0 1 0 9,64,224 1 -173799 cd07473 Peptidases_S8_Subtilisin_like 2 putative active site 0 0 1 0 9,64,126,127,128,156,224 1 -173800 cd07474 Peptidases_S8_subtilisin_Vpr-like 1 catalytic triad 0 0 1 0 9,63,235 1 -173800 cd07474 Peptidases_S8_subtilisin_Vpr-like 2 putative active site 0 0 1 0 9,63,125,126,127,157,235 1 -173801 cd07475 Peptidases_S8_C5a_Peptidase 1 catalytic triad 0 0 1 0 18,83,274 1 -173801 cd07475 Peptidases_S8_C5a_Peptidase 2 putative active site 0 0 1 0 18,83,150,151,152,184,274 1 -173802 cd07476 Peptidases_S8_thiazoline_oxidase_subtilisin-like_protease 1 putative catalytic triad 0 0 1 0 17,51,211 1 -173802 cd07476 Peptidases_S8_thiazoline_oxidase_subtilisin-like_protease 2 putative active site 0 0 1 0 17,51,112,113,114,146,211 1 -173803 cd07477 Peptidases_S8_Subtilisin_subset 1 active site 0 1 1 0 7,41,84,103,132,196 1 -173803 cd07477 Peptidases_S8_Subtilisin_subset 2 catalytic residues 0 0 1 1 7,41,196 1 -173804 cd07478 Peptidases_S8_CspA-like 1 active site 0 0 1 0 11,79,133,157,191,399 1 -173804 cd07478 Peptidases_S8_CspA-like 2 catalytic triad 0 0 1 0 11,79,399 1 -173805 cd07479 Peptidases_S8_SKI-1_like 1 active site 0 0 1 0 15,46,87,106,136,212 1 -173805 cd07479 Peptidases_S8_SKI-1_like 2 catalytic triad 0 0 1 0 15,46,212 1 -173806 cd07480 Peptidases_S8_12 1 active site 0 0 1 0 15,47,90,109,168,237 1 -173806 cd07480 Peptidases_S8_12 2 catalytic triad 0 0 1 0 15,47,237 1 -173807 cd07481 Peptidases_S8_BacillopeptidaseF-like 1 active site 0 0 1 0 9,53,95,126,156,227 1 -173807 cd07481 Peptidases_S8_BacillopeptidaseF-like 2 catalytic triad 0 0 1 0 9,53,227 1 -173808 cd07482 Peptidases_S8_Lantibiotic_specific_protease 1 active site 0 0 1 0 7,54,58,112,113,114,150,152,153,260 1 -173808 cd07482 Peptidases_S8_Lantibiotic_specific_protease 2 catalytic triad 0 0 1 0 7,54,260 1 -173809 cd07483 Peptidases_S8_Subtilisin_Novo-like 1 active site 0 0 1 0 62,86,90,147,148,149,176,178,179,256 1 -173809 cd07483 Peptidases_S8_Subtilisin_Novo-like 2 catalytic triad 0 0 1 0 8,86,256 1 -173810 cd07484 Peptidases_S8_Thermitase_like 1 active site 0 0 1 0 35,69,132,133,220,223 1 -173810 cd07484 Peptidases_S8_Thermitase_like 2 catalytic triad 0 0 1 0 35,69,223 1 -173811 cd07485 Peptidases_S8_Fervidolysin_like 1 active site 0 0 1 0 17,62,131,132,236,239 1 -173811 cd07485 Peptidases_S8_Fervidolysin_like 2 catalytic triad 0 0 1 0 17,62,239 1 -173812 cd07487 Peptidases_S8_1 1 active site 0 0 1 0 9,45,90,113,146,229 1 -173812 cd07487 Peptidases_S8_1 2 catalytic triad 0 0 1 0 9,45,229 1 -173813 cd07488 Peptidases_S8_2 1 putative active site 0 0 1 0 38,69,92,131,207 1 -173813 cd07488 Peptidases_S8_2 2 putative catalytic residues 0 0 1 0 7,38,207 1 -173814 cd07489 Peptidases_S8_5 1 active site 0 0 1 0 20,69,112,131,163,230 1 -173814 cd07489 Peptidases_S8_5 2 catalytic triad 0 0 1 0 20,69,163,230 1 -173815 cd07490 Peptidases_S8_6 1 active site 0 0 1 0 7,44,86,105,136,219 1 -173815 cd07490 Peptidases_S8_6 2 catalytic triad 0 0 1 0 7,44,219 1 -173816 cd07491 Peptidases_S8_7 1 active site 0 0 1 0 10,50,90,109,144,212 1 -173816 cd07491 Peptidases_S8_7 2 catalytic triad 0 0 1 0 10,50,212 1 -173817 cd07492 Peptidases_S8_8 1 active site 0 0 1 0 7,45,97,98,99,126,128,129,187 1 -173817 cd07492 Peptidases_S8_8 2 catalytic triad 0 0 1 0 7,45,187 1 -173818 cd07493 Peptidases_S8_9 1 active site 0 0 1 0 7,48,110,111,112,152,154,155,226 1 -173818 cd07493 Peptidases_S8_9 2 catalytic triad 0 0 1 0 7,48,226 1 -173819 cd07494 Peptidases_S8_10 1 active site 0 0 1 0 28,62,92,111,153,248 1 -173819 cd07494 Peptidases_S8_10 2 catalytic triad 0 0 1 0 28,62,248 1 -173820 cd07496 Peptidases_S8_13 1 active site 0 0 1 0 7,72,76,143,144,145,171,173,174,252 1 -173820 cd07496 Peptidases_S8_13 2 catalytic triad 0 0 1 0 7,72,252 1 -173821 cd07497 Peptidases_S8_14 1 active site 0 0 1 1 57,138,271 1 -173821 cd07497 Peptidases_S8_14 2 catalytic triad 0 0 1 1 9,57,271 1 -173822 cd07498 Peptidases_S8_15 1 active site 0 0 1 1 6,41,104,209 1 -173822 cd07498 Peptidases_S8_15 2 catalytic triad 0 0 1 1 6,41,209 1 -319802 cd07499 HAD_CBAP 1 active site 0 1 1 1 18,19,20,21,22,30,44,45,51,86,87,88,117,124,138,139,142,143,164,165 1 -319802 cd07499 HAD_CBAP 2 oligomer interface 0 1 1 1 1,2,5,25,27,28,31,32,35,58,60,61,62,63,64,103,159,160,161,162,168,169,170,171,172,173,180,181,183,184 2 -319802 cd07499 HAD_CBAP 3 HAD signature motif I Dxxx[TV] 0 1 1 18,19,20,21,22 0 -319802 cd07499 HAD_CBAP 4 HAD signature motif II [ST] 0 1 1 86 0 -319802 cd07499 HAD_CBAP 5 HAD signature motif III [KR] 0 1 1 124 0 -319802 cd07499 HAD_CBAP 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 138,139,143 0 -319803 cd07500 HAD_PSP 1 active site 0 1 1 1 4,5,6,7,8,92,93,94,137,159,160,163,164 1 -319803 cd07500 HAD_PSP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319803 cd07500 HAD_PSP 3 HAD signature motif II [ST] 0 1 1 92 0 -319803 cd07500 HAD_PSP 4 HAD signature motif III [KR] 0 1 1 137 0 -319803 cd07500 HAD_PSP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 159,160,164 0 -319804 cd07501 HAD_MDP-1_like 1 active site 0 1 1 1 6,7,8,9,10,56,57,87,109,110,113,114 1 -319804 cd07501 HAD_MDP-1_like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319804 cd07501 HAD_MDP-1_like 3 HAD signature motif II [ST] 0 1 1 56 0 -319804 cd07501 HAD_MDP-1_like 4 HAD signature motif III [KR] 0 1 1 87 0 -319804 cd07501 HAD_MDP-1_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 109,110,114 0 -319805 cd07502 HAD_PNKP-C 1 active site 0 1 1 1 6,7,8,9,10,62,63,101,120,121,125,126 1 -319805 cd07502 HAD_PNKP-C 2 homodimer interface 0 1 1 0 43,44,46,47,50,53,56,116,117,127,130,131,135,136,137,138,139,140,141 2 -319805 cd07502 HAD_PNKP-C 3 Hen1 interface 0 1 1 0 90,91,92,94,95,103 2 -319805 cd07502 HAD_PNKP-C 4 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319805 cd07502 HAD_PNKP-C 5 HAD signature motif II [ST] 0 1 1 62 0 -319805 cd07502 HAD_PNKP-C 6 HAD signature motif III [KR] 0 1 1 101 0 -319805 cd07502 HAD_PNKP-C 7 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 120,121,126 0 -319806 cd07503 HAD_HisB-N 1 active site 0 1 1 1 5,6,7,8,9,47,48,49,50,98,122,123,124,126,127 1 -319806 cd07503 HAD_HisB-N 2 homodimer interface 0 1 1 0 23,24,25,26,27,28,29,30,31,34,68 2 -319806 cd07503 HAD_HisB-N 3 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319806 cd07503 HAD_HisB-N 4 HAD signature motif II [ST] 0 1 1 47 0 -319806 cd07503 HAD_HisB-N 5 HAD signature motif III [KR] 0 1 1 98 0 -319806 cd07503 HAD_HisB-N 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 122,123,127 0 -319807 cd07504 HAD_5NT 1 active site 0 1 1 1 24,25,26,27,28,43,64,68,71,88,89,92,139,140,141,185,188,212,213,216,217 1 -319807 cd07504 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 24,25,26,27,28 0 -319807 cd07504 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 139 0 -319807 cd07504 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 188 0 -319807 cd07504 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 212,213,217 0 -319808 cd07505 HAD_BPGM-like 1 active site 0 1 1 1 4,5,6,7,8,63,64,97,121,122,125,126 1 -319808 cd07505 HAD_BPGM-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319808 cd07505 HAD_BPGM-like 3 HAD signature motif II [ST] 0 1 1 63 0 -319808 cd07505 HAD_BPGM-like 4 HAD signature motif III [KR] 0 1 1 97 0 -319808 cd07505 HAD_BPGM-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 121,122,126 0 -319808 cd07505 HAD_BPGM-like 6 active site 0 1 1 1 4,5,6,7,8,63,64,97,121,122,125,126 1 -319809 cd07506 HAD_like 1 active site 0 1 1 1 4,5,6,7,8,32,33,64,92,93,94,96,97 1 -319809 cd07506 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319809 cd07506 HAD_like 3 HAD signature motif II [ST] 0 1 1 32 0 -319809 cd07506 HAD_like 4 HAD signature motif III [KR] 0 1 1 64 0 -319809 cd07506 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 92,93,97 0 -319810 cd07507 HAD_Pase 1 active site 0 1 1 1 4,5,6,7,8,38,39,40,44,115,127,137,140,145,172,173,174,175,177,185,209,210,213,214 1 -319810 cd07507 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319810 cd07507 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319810 cd07507 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 185 0 -319810 cd07507 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 209,210,214 0 -319811 cd07508 HAD_Pase_UmpH-like 1 active site 0 1 1 1 4,5,6,7,8,36,37,38,39,162,196,220,221,222,225,226 1 -319811 cd07508 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319811 cd07508 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 37 0 -319811 cd07508 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 196 0 -319811 cd07508 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 220,221,226 0 -319812 cd07509 HAD_PPase 1 active site 0 1 1 1 5,6,7,8,9,38,39,40,41,42,43,136,171,195,196,197,200,201 1 -319812 cd07509 HAD_PPase 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319812 cd07509 HAD_PPase 3 HAD signature motif II [ST] 0 1 1 38 0 -319812 cd07509 HAD_PPase 4 HAD signature motif III [KR] 0 1 1 171 0 -319812 cd07509 HAD_PPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 195,196,201 0 -319813 cd07510 HAD_Pase_UmpH-like 1 active site 0 1 1 1 6,7,8,9,10,38,39,40,41,140,169,172,203,227,228,229,232,233 1 -319813 cd07510 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319813 cd07510 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 39 0 -319813 cd07510 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 203 0 -319813 cd07510 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 227,228,233 0 -319814 cd07511 HAD_like 1 active site 0 1 1 1 5,6,7,8,9,38,39,40,73,106,107,111,112 1 -319814 cd07511 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319814 cd07511 HAD_like 3 HAD signature motif II [ST] 0 1 1 38 0 -319814 cd07511 HAD_like 4 HAD signature motif III [KR] 0 1 1 73 0 -319814 cd07511 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 106,107,112 0 -319815 cd07512 HAD_PGPase 1 active site 0 0 1 1 4,5,6,7,8,108,109,141,165,166,169,170 1 -319815 cd07512 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319815 cd07512 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 108 0 -319815 cd07512 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 141 0 -319815 cd07512 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 165,166,170 0 -319816 cd07514 HAD_Pase 1 active site 0 1 1 1 4,5,6,7,8,38,39,40,67,89,90,91,93,94 1 -319816 cd07514 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319816 cd07514 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319816 cd07514 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 67 0 -319816 cd07514 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 89,90,94 0 -319817 cd07515 HAD-like 1 active site 0 1 1 1 4,5,6,7,8,38,39,67,90,91,95,96 1 -319817 cd07515 HAD-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319817 cd07515 HAD-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319817 cd07515 HAD-like 4 HAD signature motif III [KR] 0 1 1 67 0 -319817 cd07515 HAD-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 90,91,96 0 -319818 cd07516 HAD_Pase 1 active site 0 1 1 1 4,5,6,7,8,38,39,183,205,206,207,209,210 1 -319818 cd07516 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319818 cd07516 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319818 cd07516 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 183 0 -319818 cd07516 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 205,206,210 0 -319819 cd07517 HAD_HPP 1 active site 0 1 1 1 5,6,7,8,9,39,40,41,141,163,164,167,168 1 -319819 cd07517 HAD_HPP 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319819 cd07517 HAD_HPP 3 HAD signature motif II [ST] 0 1 1 39 0 -319819 cd07517 HAD_HPP 4 HAD signature motif III [KR] 0 1 1 141 0 -319819 cd07517 HAD_HPP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -319820 cd07518 HAD_YbiV-Like 1 active site 0 1 1 1 5,6,7,8,9,40,41,42,63,71,73,107,115,137,138,139,141,142 1 -319820 cd07518 HAD_YbiV-Like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319820 cd07518 HAD_YbiV-Like 3 HAD signature motif II [ST] 0 1 1 40 0 -319820 cd07518 HAD_YbiV-Like 4 HAD signature motif III [KR] 0 1 1 115 0 -319820 cd07518 HAD_YbiV-Like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 137,138,142 0 -319821 cd07519 HAD_PTase 1 active site 0 0 1 1 4,5,6,7,8,35,36,69,86,87,90,91 1 -319821 cd07519 HAD_PTase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319821 cd07519 HAD_PTase 3 HAD signature motif II [ST] 0 1 1 35 0 -319821 cd07519 HAD_PTase 4 HAD signature motif III [KR] 0 1 1 69 0 -319821 cd07519 HAD_PTase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 86,87,91 0 -319822 cd07520 HAD_like 1 active site 0 0 1 1 4,5,6,7,8,79,80,102,125,126,129,130 1 -319822 cd07520 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319822 cd07520 HAD_like 3 HAD signature motif II [ST] 0 1 1 79 0 -319822 cd07520 HAD_like 4 HAD signature motif III [KR] 0 1 1 102 0 -319822 cd07520 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 125,126,130 0 -319823 cd07521 HAD_FCP1-like 1 active site 0 1 1 1 6,7,8,9,10,14,15,61,62,63,64,68,101,117,118,120,121,122 1 -319823 cd07521 HAD_FCP1-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319823 cd07521 HAD_FCP1-like 3 HAD signature motif II [ST] 0 1 1 62 0 -319823 cd07521 HAD_FCP1-like 4 HAD signature motif III [KR] 0 1 1 101 0 -319823 cd07521 HAD_FCP1-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 117,118,122 0 -319824 cd07522 HAD_cN-II 1 active site 0 1 1 1 16,17,18,19,20,205,206,243,300,301,302,305,306 1 -319824 cd07522 HAD_cN-II 2 HAD signature motif I Dxxx[TV] 0 1 1 16,17,18,19,20 0 -319824 cd07522 HAD_cN-II 3 HAD signature motif II [ST] 0 1 1 205 0 -319824 cd07522 HAD_cN-II 4 HAD signature motif III [KR] 0 1 1 243 0 -319824 cd07522 HAD_cN-II 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 300,301,306 0 -319825 cd07523 HAD_YsbA-like 1 active site 0 1 1 1 4,5,6,7,8,96,97,98,128,129,153,154,157,158 1 -319825 cd07523 HAD_YsbA-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319825 cd07523 HAD_YsbA-like 3 HAD signature motif II [ST] 0 1 1 97 0 -319825 cd07523 HAD_YsbA-like 4 HAD signature motif III [KR] 0 1 1 129 0 -319825 cd07523 HAD_YsbA-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 153,154,158 0 -319826 cd07524 HAD_Pase 1 active site 0 1 1 1 4,5,6,7,8,13,15,16,50,94,95,145,163,164,165,167,168 1 -319826 cd07524 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319826 cd07524 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 94 0 -319826 cd07524 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 145 0 -319826 cd07524 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -319827 cd07525 HAD_like 1 active site 0 1 1 1 5,6,7,8,9,38,39,182,207,208,212,213 1 -319827 cd07525 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319827 cd07525 HAD_like 3 HAD signature motif II [ST] 0 1 1 38 0 -319827 cd07525 HAD_like 4 HAD signature motif III [KR] 0 1 1 182 0 -319827 cd07525 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 207,208,213 0 -319828 cd07526 HAD_BPGM_like 1 active site 0 1 1 1 5,6,7,8,9,61,62,95,119,120,123,124 1 -319828 cd07526 HAD_BPGM_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319828 cd07526 HAD_BPGM_like 3 HAD signature motif II [ST] 0 1 1 61 0 -319828 cd07526 HAD_BPGM_like 4 HAD signature motif III [KR] 0 1 1 95 0 -319828 cd07526 HAD_BPGM_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 119,120,124 0 -319829 cd07527 HAD_ScGPP-like 1 active site 0 1 1 1 4,5,6,7,8,39,40,99,100,101,131,155,156,159,160 1 -319829 cd07527 HAD_ScGPP-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319829 cd07527 HAD_ScGPP-like 3 HAD signature motif II [ST] 0 1 1 99 0 -319829 cd07527 HAD_ScGPP-like 4 HAD signature motif III [KR] 0 1 1 131 0 -319829 cd07527 HAD_ScGPP-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 155,156,160 0 -319830 cd07528 HAD_CbbY-like 1 active site 0 1 1 1 4,5,6,7,8,117,118,153,177,178,181,182 1 -319830 cd07528 HAD_CbbY-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319830 cd07528 HAD_CbbY-like 3 HAD signature motif II [ST] 0 1 1 117 0 -319830 cd07528 HAD_CbbY-like 4 HAD signature motif III [KR] 0 1 1 153 0 -319830 cd07528 HAD_CbbY-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 177,178,182 0 -319831 cd07529 HAD_AtGPP-like 1 active site 0 1 1 1 6,7,8,9,10,106,107,143,170,171,174,175 1 -319831 cd07529 HAD_AtGPP-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319831 cd07529 HAD_AtGPP-like 3 HAD signature motif II [ST] 0 1 1 106 0 -319831 cd07529 HAD_AtGPP-like 4 HAD signature motif III [KR] 0 1 1 143 0 -319831 cd07529 HAD_AtGPP-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 170,171,175 0 -319832 cd07530 HAD_Pase_UmpH-like 1 active site 0 1 1 1 5,6,7,8,9,37,38,39,40,143,176,200,201,202,205,206 1 -319832 cd07530 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319832 cd07530 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319832 cd07530 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 176 0 -319832 cd07530 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 200,201,206 0 -319833 cd07531 HAD_Pase_UmpH-like 1 active site 0 1 1 1 5,6,7,8,9,37,38,39,40,48,51,143,145,157,179,203,204,205,208,209 1 -319833 cd07531 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319833 cd07531 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319833 cd07531 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 179 0 -319833 cd07531 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 203,204,209 0 -319834 cd07532 HAD_PNPase_UmpH-like 1 active site 0 0 1 1 11,12,13,14,15,43,44,45,46,171,205,229,230,231,234,235 1 -319834 cd07532 HAD_PNPase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 11,12,13,14,15 0 -319834 cd07532 HAD_PNPase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 44 0 -319834 cd07532 HAD_PNPase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 205 0 -319834 cd07532 HAD_PNPase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 229,230,235 0 -319835 cd07533 HAD_like 1 active site 0 0 1 1 4,5,6,7,8,106,107,138,162,163,166,167 1 -319835 cd07533 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319835 cd07533 HAD_like 3 HAD signature motif II [ST] 0 1 1 106 0 -319835 cd07533 HAD_like 4 HAD signature motif III [KR] 0 1 1 138 0 -319835 cd07533 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 162,163,167 0 -319836 cd07534 HAD_CAP 1 active site 0 1 1 1 36,37,38,39,40,96,97,132,150,151,154,155 1 -319836 cd07534 HAD_CAP 2 homodimer interface 0 1 1 0 0,1,2,4,5,6,8,9,12,13,16,17,45,46,47,49,50,52,53,62,65,66,69,80,151,152,153,168,169,172,179,180,183,184,185,187,188,189,194,195 2 -319836 cd07534 HAD_CAP 3 HAD signature motif I Dxxx[TV] 0 1 1 36,37,38,39,40 0 -319836 cd07534 HAD_CAP 4 HAD signature motif II [ST] 0 1 1 96 0 -319836 cd07534 HAD_CAP 5 HAD signature motif III [KR] 0 1 1 132 0 -319836 cd07534 HAD_CAP 6 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,155 0 -319837 cd07535 HAD_VSP 1 active site 0 1 1 1 40,41,42,43,44,100,101,141,160,161,164,165 1 -319837 cd07535 HAD_VSP 2 HAD signature motif I Dxxx[TV] 0 1 1 40,41,42,43,44 0 -319837 cd07535 HAD_VSP 3 HAD signature motif II [ST] 0 1 1 100 0 -319837 cd07535 HAD_VSP 4 HAD signature motif III [KR] 0 1 1 141 0 -319837 cd07535 HAD_VSP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319838 cd07536 P-type_ATPase_APLT 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 361,362,363,364,365,366,367 0 -319838 cd07536 P-type_ATPase_APLT 2 putative ATP binding site 0 0 1 1 361,362,363,398,422,423,424,487,534,535,536,623,626,629,649,652 5 -319838 cd07536 P-type_ATPase_APLT 3 phosphorylation site D 0 1 1 361 6 -319839 cd07538 P-type_ATPase 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 303,304,305,306,307,308,309 0 -319839 cd07538 P-type_ATPase 2 putative ATP binding site 0 0 1 1 303,304,305,327,349,350,351,384,439,440,441,487,490,493,512,515 5 -319839 cd07538 P-type_ATPase 3 phosphorylation site D 0 1 1 303 6 -319839 cd07538 P-type_ATPase 4 putative cation binding site 0 0 1 1 573,577,578,580,581,606,609,610 4 -319840 cd07539 P-type_ATPase 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 304,305,306,307,308,309,310 0 -319840 cd07539 P-type_ATPase 2 putative ATP binding site 0 0 1 1 304,305,306,328,351,352,353,396,452,453,454,500,503,506,525,528 5 -319840 cd07539 P-type_ATPase 3 phosphorylation site D 0 1 1 304 6 -319840 cd07539 P-type_ATPase 4 putative cation binding site 0 0 1 1 586,590,591,593,594,619,622,623 4 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 331,332,333,334,335,336,337 0 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 2 putative ATP binding site 0 0 1 1 331,332,333,368,392,393,394,454,501,502,503,583,586,589,609,612 5 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 3 phosphorylation site D 0 1 1 331 6 -319842 cd07542 P-type_ATPase_cation 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 310,311,312,313,314,315,316 0 -319842 cd07542 P-type_ATPase_cation 2 putative ATP binding site 0 0 1 1 310,311,312,396,420,421,422,454,514,515,516,566,569,572,591,594 5 -319842 cd07542 P-type_ATPase_cation 3 phosphorylation site D 0 1 1 310 6 -319842 cd07542 P-type_ATPase_cation 4 putative cation binding site 0 0 1 1 648,652,653,655,656,672,675,676 4 -319843 cd07543 P-type_ATPase_cation 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 316,317,318,319,320,321,322 0 -319843 cd07543 P-type_ATPase_cation 2 putative ATP binding site 0 0 1 1 316,317,318,410,438,439,440,470,531,532,533,577,580,583,602,605 5 -319843 cd07543 P-type_ATPase_cation 3 phosphorylation site D 0 1 1 316 6 -319843 cd07543 P-type_ATPase_cation 4 putative cation binding site 0 0 1 1 660,664,665,667,668,695,698,699 4 -319844 cd07544 P-type_ATPase_HM 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 299,300,301,302,303,304,305 0 -319844 cd07544 P-type_ATPase_HM 2 putative ATP binding site 0 0 1 1 299,300,301,364,380,381,382,406,447,448,449,469,472,475,493,496 5 -319844 cd07544 P-type_ATPase_HM 3 phosphorylation site D 0 1 1 299 6 -319844 cd07544 P-type_ATPase_HM 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 255,256,257 0 -319844 cd07544 P-type_ATPase_HM 5 putative HM ion binding site 0 0 1 1 255,257,558,559,580,584 4 -319845 cd07545 P-type_ATPase_Cd-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 294,295,296,297,298,299,300 0 -319845 cd07545 P-type_ATPase_Cd-like 2 putative ATP binding site 0 0 1 1 294,295,296,359,375,376,377,407,448,449,450,470,473,476,495,498 5 -319845 cd07545 P-type_ATPase_Cd-like 3 phosphorylation site D 0 1 1 294 6 -319845 cd07545 P-type_ATPase_Cd-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 250,251,252 0 -319845 cd07545 P-type_ATPase_Cd-like 5 putative HM ion binding site 0 0 1 1 250,252,560,561,582,586 4 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 297,298,299,300,301,302,303 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 2 putative ATP binding site 0 0 1 1 297,298,299,362,378,379,380,408,447,448,449,468,471,474,492,495 5 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 3 phosphorylation site D 0 1 1 297 6 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 253,254,255 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 5 putative HM ion binding site 0 0 1 1 253,255,556,557,578,582 4 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 308,309,310,311,312,313,314 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 2 putative ATP binding site 0 0 1 1 308,309,310,372,388,389,390,411,452,453,454,474,477,480,500,503 5 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 3 phosphorylation site D 0 1 1 308 6 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 264,265,266 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 5 putative HM ion binding site 0 0 1 1 264,266,565,566,587,591 4 -319848 cd07550 P-type_ATPase_HM 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 289,290,291,292,293,294,295 0 -319848 cd07550 P-type_ATPase_HM 2 putative ATP binding site 0 0 1 1 289,290,291,355,371,372,373,403,444,445,446,466,469,472,491,494 5 -319848 cd07550 P-type_ATPase_HM 3 phosphorylation site D 0 1 1 289 6 -319848 cd07550 P-type_ATPase_HM 4 HM-ATPase signature motif [CSTFLY][PCSG][CHPST] 0 1 1 245,246,247 0 -319848 cd07550 P-type_ATPase_HM 5 putative HM ion binding site 0 0 1 1 245,247,555,556,577,581 4 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 311,312,313,314,315,316,317 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 2 putative ATP binding site 0 0 1 1 311,312,313,376,392,393,394,422,462,463,464,484,487,490,509,512 5 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 3 phosphorylation site D 0 1 1 311 6 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 267,268,269 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 5 putative HM ion binding site 0 0 1 1 267,269,573,574,595,599 4 -319850 cd07552 P-type_ATPase_Cu-like 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 327,328,329,330,331,332,333 0 -319850 cd07552 P-type_ATPase_Cu-like 2 putative ATP binding site 0 0 1 1 327,328,329,392,408,409,410,437,477,478,479,499,502,505,524,527 5 -319850 cd07552 P-type_ATPase_Cu-like 3 phosphorylation site D 0 1 1 327 6 -319850 cd07552 P-type_ATPase_Cu-like 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 283,284,285 0 -319850 cd07552 P-type_ATPase_Cu-like 5 putative HM ion binding site 0 0 1 1 283,285,588,589,616,620 4 -319851 cd07553 P-type_ATPase_HM 1 P-type ATPase signature motif DK[TS]GT[LIVM][TS] 0 1 1 323,324,325,326,327,328,329 0 -319851 cd07553 P-type_ATPase_HM 2 putative ATP binding site 0 0 1 1 323,324,325,386,403,404,405,416,456,457,458,480,483,486,503,506 5 -319851 cd07553 P-type_ATPase_HM 3 phosphorylation site D 0 1 1 323 6 -319851 cd07553 P-type_ATPase_HM 4 HM-ATPase signature motif [CST][PC][CHP] 0 1 1 279,280,281 0 -319851 cd07553 P-type_ATPase_HM 5 putative HM ion binding site 0 0 1 1 279,281,567,568,589,593 4 -143637 cd07556 Nucleotidyl_cyc_III 1 nucleotidyl binding site 0 1 1 0 7,8,9,10,11,12,51,120 0 -143637 cd07556 Nucleotidyl_cyc_III 2 metal binding site 0 1 1 0 7,51 4 -143638 cd07557 trimeric_dUTPase 1 active site 0 1 1 1 42,43,44,57,58,59,62,66,67 1 -143638 cd07557 trimeric_dUTPase 2 trimer interface 0 1 1 0 0,1,14,19,20,22,38,40,41,42,43,44,45,50,51,52,57,60,67,69,71,73,77,78,79,80,81,84,88 2 -143471 cd07559 ALDH_ACDHII_AcoD-like 1 catalytic residues 0 0 1 0 146,243,279,282 1 -143471 cd07559 ALDH_ACDHII_AcoD-like 2 NAD(P) binding site 0 0 0 1 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,282,383,385,411,449 5 -143476 cd07560 Peptidase_S41_CPP 1 Catalytic dyad 0 0 1 0 143,168 1 -143477 cd07561 Peptidase_S41_CPP_like 1 Catalytic dyad 0 0 1 0 172,197 1 -143478 cd07562 Peptidase_S41_TRI 1 Active site tetrad 0 0 1 0 60,61,175,231 1 -143478 cd07562 Peptidase_S41_TRI 2 Peptide binding site 0 1 1 0 61,126,127,175,176,201,203,204,205,220 0 -143478 cd07562 Peptidase_S41_TRI 3 Domain interface 0 1 1 1 0,3,6,7,9,10,13,14,15,16,17,22,30,32,33,36,44,45,48,51,52,54,55,56,60,61,62,63,64,66,67,68,69,70,71,72,74,77,92,99,101,102,105,106,109,110,123,126,127,130,131,132,135,136,143,144,145,146,147,148,151,152,153,155,156,157,171,175,176,179,183,196,197,198,199,203,204,205,206,207,208,209,211,220,221,222,223,224,225,231,232,233,242,243,244,245 0 -143479 cd07563 Peptidase_S41_IRBP 1 active site triad 0 1 1 1 58,169,226 1 -143588 cd07564 nitrilases_CHs 1 putative active site 0 0 1 1 40,122,126,129,156,157,159,160,180 1 -143588 cd07564 nitrilases_CHs 2 catalytic triad 0 0 1 1 40,122,156 1 -143588 cd07564 nitrilases_CHs 3 putative dimer interface 0 0 1 1 123,124,125,126,128,135,136,137,157,159,160,161,162,163,165,166,195,196,198,199,200,202,203,239,240,283,284,285,286,287 2 -143589 cd07565 aliphatic_amidase 1 active site 0 1 1 1 46,119,123,127,152,153,178 1 -143589 cd07565 aliphatic_amidase 2 catalytic triad 0 0 1 1 46,119,152 1 -143589 cd07565 aliphatic_amidase 3 dimer interface 0 1 1 1 99,120,121,122,123,124,125,126,127,128,129,130,131,132,153,156,157,158,159,160,162,163,165,166,182,185,188,189,191,192,195,196,225,253,254,255,257,258,260,261,262,263,264,265,266,267,268,269,270,271,272,278,280,281,282,283,284,285,286,287,288,289 2 -143589 cd07565 aliphatic_amidase 4 multimer interface 0 1 1 1 35,36,37,99,120,121,122,123,124,125,126,127,128,129,130,131,132,153,156,157,158,159,160,162,163,165,166,181,182,185,188,189,191,192,195,196,215,225,230,233,235,236,237,238,239,240,241,248,253,254,255,257,258,260,261,262,263,264,265,266,267,268,269,270,271,272,278,280,281,282,283,284,285,286,287,288,289 2 -143590 cd07566 ScNTA1_like 1 putative active site 0 0 1 1 43,118,122,125,166,167,169,170,196 1 -143590 cd07566 ScNTA1_like 2 catalytic triad 0 0 1 1 43,118,166 1 -143590 cd07566 ScNTA1_like 3 putative dimer interface 0 0 1 1 119,120,121,122,124,131,132,133,167,169,170,171,172,173,176,177,207,208,210,211,212,214,215,239,240,288,289,290,291,292 2 -143591 cd07567 biotinidase_like 1 putative active site 0 0 1 1 47,146,150,152,179,180,182,183,205 1 -143591 cd07567 biotinidase_like 2 catalytic triad 0 0 1 1 47,146,179 1 -143591 cd07567 biotinidase_like 3 putative dimer interface 0 0 1 1 147,148,149,150,151,158,159,160,180,182,183,184,185,186,189,190,211,212,214,215,216,218,219,243,244,294,295,296,297,298 2 -143592 cd07568 ML_beta-AS_like 1 putative active site 0 0 1 1 50,124,128,135,161,162,164,165,186 1 -143592 cd07568 ML_beta-AS_like 2 catalytic triad 0 0 1 1 50,124,161 1 -143592 cd07568 ML_beta-AS_like 3 dimer interface 0 1 1 1 113,115,117,119,125,126,127,129,130,141,142,144,145,146,147,148,149,150,155,162,165,166,167,168,169,171,172,175,176,189,191,193,194,195,197,198,199,201,202,205,206,239,268,269,270,271,274,275,276,277,278,280,281,283,284,285 2 -143592 cd07568 ML_beta-AS_like 4 multimer interface 0 1 1 1 59,60,61,62,64,67,99,103,105,113,115,117,119,125,126,127,129,130,131,134,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,155,162,165,166,167,168,169,171,172,175,176,189,191,193,194,195,197,198,199,201,202,205,206,239,263,264,266,267,268,269,270,271,272,273,274,275,276,277,278,280,281,283,284,285 2 -143593 cd07569 DCase 1 active site 0 1 0 1 45,51,125,129,130,142,144,170,171,173,174,195,196,200,284 1 -143593 cd07569 DCase 2 catalytic triad 0 0 1 1 45,125,170 1 -143593 cd07569 DCase 3 dimer interface 0 1 1 1 126,127,128,130,145,150,151,155,171,174,175,176,177,180,181,184,185,203,205,206,209,212,213,216,217,219,220,223,224,253,254,255,279,280,283,284,285,287,289,290,291,292,293,294,295,296,297,298,299,300,301 2 -143593 cd07569 DCase 4 tetramer interface 0 1 1 1 4,35,36,37,126,127,128,130,145,150,151,155,171,174,175,176,177,180,181,184,185,203,204,205,206,208,209,212,213,216,217,219,220,223,224,242,246,251,253,254,255,256,257,258,259,261,262,263,269,271,276,279,280,283,284,285,287,289,290,291,292,293,294,295,296,297,298,299,300,301 2 -143594 cd07570 GAT_Gln-NAD-synth 1 active site 0 1 1 1 39,108,112,114,117,119,144,145,148,177 1 -143594 cd07570 GAT_Gln-NAD-synth 2 catalytic triad 0 0 1 1 39,108,144 1 -143594 cd07570 GAT_Gln-NAD-synth 3 protein interface 1 0 1 1 1 110,111,112,114,115,116,118,127,145,147,148,149,150,151,155,156,173,174,175,176,179,183,186,187,190,191,203,205,206,207,209,229,245,254,255,258,259 2 -143594 cd07570 GAT_Gln-NAD-synth 4 multimer interface 0 1 1 1 10,11,12,13,14,47,48,49,50,52,53,54,55,58,85,90,91,110,111,112,114,115,116,118,120,121,124,125,127,145,147,148,149,150,151,155,156,158,161,173,174,175,176,179,183,186,187,190,191,203,204,205,206,207,209,229,243,245,246,253,254,255,256,257,258,259,260 2 -143595 cd07571 ALP_N-acyl_transferase 1 putative active site 0 0 1 1 46,107,111,115,159,160,162,163,184 1 -143595 cd07571 ALP_N-acyl_transferase 2 catalytic triad 0 0 1 1 46,107,159 1 -143595 cd07571 ALP_N-acyl_transferase 3 putative dimer interface 0 0 1 1 108,109,110,111,114,121,122,123,160,162,163,164,165,166,169,170,199,200,202,203,204,206,207,219,220,262,263,264,265,266 2 -143596 cd07572 nit 1 putative active site 0 1 1 1 38,94,111,115,127,152,153,155,156,177 1 -143596 cd07572 nit 2 catalytic triad 0 0 1 1 38,111,152 1 -143596 cd07572 nit 3 dimer interface 0 1 1 1 112,113,133,134,135,153,156,157,158,159,160,162,163,185,186,189,190,192,193,194,196,197,227,257,258,261,262,264 2 -143597 cd07573 CPA 1 putative active site 0 0 1 1 39,113,117,124,150,151,153,154,175 0 -143597 cd07573 CPA 2 catalytic triad 0 0 1 1 39,113,150 1 -143597 cd07573 CPA 3 putative dimer interface 0 0 1 1 114,115,116,117,123,130,131,132,151,153,154,155,156,157,160,161,195,196,198,199,200,202,203,228,229,271,272,273,274,275 2 -143598 cd07574 nitrilase_Rim1_like 1 putative active site 0 0 1 1 41,118,122,127,152,153,155,156,177 1 -143598 cd07574 nitrilase_Rim1_like 2 catalytic triad 0 0 1 1 41,118,152 1 -143598 cd07574 nitrilase_Rim1_like 3 putative dimer interface 0 0 1 1 119,120,121,122,126,133,134,135,153,155,156,157,158,159,162,163,189,190,192,193,194,196,197,222,223,273,274,275,276,277 2 -143599 cd07575 Xc-1258_like 1 putative active site 0 1 1 1 39,45,105,109,114,139,140,142,143,162,163 1 -143599 cd07575 Xc-1258_like 2 catalytic triad 0 0 1 1 39,105,139 1 -143599 cd07575 Xc-1258_like 3 dimer interface 0 1 1 1 106,107,111,140,143,144,145,146,147,149,169,170,173,174,176,177,178,180,181,211,212,213,240,241,242,243,245,246,247,248,249,250,251 2 -143599 cd07575 Xc-1258_like 4 multimer interface 0 1 1 1 106,107,111,140,143,144,145,146,147,149,169,170,173,174,176,177,178,180,181,209,211,212,213,214,215,216,217,218,219,223,225,226,227,240,241,242,243,245,246,247,248,249,250,251 2 -143600 cd07576 R-amidase_like 1 putative active site 0 0 1 1 39,108,112,116,141,142,144,145,166 1 -143600 cd07576 R-amidase_like 2 catalytic triad 0 0 1 1 39,108,141 1 -143600 cd07576 R-amidase_like 3 putative dimer interface 0 0 1 1 109,110,111,112,115,122,123,124,142,144,145,146,147,148,151,152,177,178,180,181,182,184,185,206,207,248,249,250,251,252 2 -143601 cd07577 Ph0642_like 1 putative active site 0 1 1 1 36,107,111,114,140,141,143,144,165,167,168,171 1 -143601 cd07577 Ph0642_like 2 catalytic triad 0 0 1 1 36,107,140 1 -143601 cd07577 Ph0642_like 3 dimer interface 0 1 1 1 108,109,110,111,112,113,115,116,120,121,122,124,125,141,143,144,145,146,147,150,151,154,155,168,170,173,174,176,177,178,180,181,214,215,243,244,245,246,247,249,252,253,254,255,257,258 2 -143601 cd07577 Ph0642_like 4 putative tetramer interface 0 1 1 1 108,109,110,111,112,113,115,116,119,120,121,122,124,125,129,141,143,144,145,146,147,150,151,154,155,168,170,173,174,176,177,178,180,181,214,215,243,244,245,246,247,249,251,252,253,254,255,256,257,258 2 -143602 cd07578 nitrilase_1_R1 1 putative active site 0 0 1 1 40,112,116,119,145,146,148,149,170 1 -143602 cd07578 nitrilase_1_R1 2 catalytic triad 0 0 1 1 40,112,145 1 -143602 cd07578 nitrilase_1_R1 3 putative dimer interface 0 0 1 1 113,114,115,116,118,125,126,127,146,148,149,150,151,152,155,156,179,180,182,183,184,186,187,208,209,251,252,253,254,255 2 -143603 cd07579 nitrilase_1_R2 1 putative active site 0 0 1 1 38,103,107,110,135,136,138,139,160 1 -143603 cd07579 nitrilase_1_R2 2 catalytic triad 0 0 1 1 38,103,135 1 -143603 cd07579 nitrilase_1_R2 3 putative dimer interface 0 0 1 1 104,105,106,107,109,116,117,118,136,138,139,140,141,142,145,146,190,191,193,194,195,197,198,217,218,260,261,262,263,264 2 -143604 cd07580 nitrilase_2 1 putative active site 0 0 1 1 39,110,114,117,143,144,146,147,168 1 -143604 cd07580 nitrilase_2 2 catalytic triad 0 0 1 1 39,110,143 1 -143604 cd07580 nitrilase_2 3 putative dimer interface 0 0 1 1 111,112,113,114,116,123,124,125,144,146,147,148,149,150,153,154,185,186,188,189,190,192,193,214,215,260,261,262,263,264 2 -143605 cd07581 nitrilase_3 1 putative active site 0 0 1 1 37,108,112,119,146,147,149,150,171 1 -143605 cd07581 nitrilase_3 2 catalytic triad 0 0 1 1 37,108,146 1 -143605 cd07581 nitrilase_3 3 putative dimer interface 0 0 1 1 109,110,111,112,118,125,126,127,147,149,150,151,152,153,156,157,184,185,187,188,189,191,192,209,210,250,251,252,253,254 2 -143606 cd07582 nitrilase_4 1 putative active site 0 0 1 1 49,126,130,143,172,173,175,176,197 1 -143606 cd07582 nitrilase_4 2 catalytic triad 0 0 1 1 49,126,172 1 -143606 cd07582 nitrilase_4 3 putative dimer interface 0 0 1 1 127,128,129,130,142,149,150,151,173,175,176,177,178,179,182,183,209,210,212,213,214,216,217,242,243,289,290,291,292,293 2 -143607 cd07583 nitrilase_5 1 putative active site 0 0 1 1 39,108,112,117,142,143,145,146,167 1 -143607 cd07583 nitrilase_5 2 catalytic triad 0 0 1 1 39,108,142 1 -143607 cd07583 nitrilase_5 3 putative dimer interface 0 0 1 1 109,110,111,112,116,123,124,125,143,145,146,147,148,149,152,153,178,179,181,182,183,185,186,207,208,249,250,251,252 2 -143608 cd07584 nitrilase_6 1 putative active site 0 0 1 1 39,113,117,120,145,146,148,149,170 1 -143608 cd07584 nitrilase_6 2 catalytic triad 0 0 1 1 39,113,145 1 -143608 cd07584 nitrilase_6 3 putative dimer interface 0 0 1 1 114,115,116,117,119,126,127,128,146,148,149,150,151,152,155,156,181,182,184,185,186,188,189,210,211,253,254,255,256,257 2 -143609 cd07585 nitrilase_7 1 putative active site 0 0 1 1 39,107,111,115,139,140,142,143,164 1 -143609 cd07585 nitrilase_7 2 catalytic triad 0 0 1 1 39,107,139 1 -143609 cd07585 nitrilase_7 3 putative dimer interface 0 0 1 1 108,109,110,111,114,120,121,122,140,142,143,144,145,146,149,150,179,180,182,183,184,186,187,208,209,253,254,255,256,257 2 -143610 cd07586 nitrilase_8 1 putative active site 0 0 1 1 39,106,110,117,142,143,145,146,167 1 -143610 cd07586 nitrilase_8 2 catalytic triad 0 0 1 1 39,106,142 1 -143610 cd07586 nitrilase_8 3 putative dimer interface 0 0 1 1 107,108,109,110,116,123,124,125,143,145,146,147,148,149,152,153,185,186,188,189,190,192,193,214,215,258,259,260,261,262 2 -143611 cd07587 ML_beta-AS 1 putative active site 0 0 1 1 110,187,191,198,224,225,227,228,249 1 -143611 cd07587 ML_beta-AS 2 catalytic triad 0 0 1 1 110,187,224 1 -143611 cd07587 ML_beta-AS 3 dimer interface 0 1 1 1 0,3,4,7,8,9,12,16,18,19,20,21,176,178,180,182,188,189,190,192,193,204,205,207,208,209,210,211,212,213,218,225,228,229,230,231,232,234,235,238,239,252,254,256,257,258,260,261,262,264,265,268,269,315,344,345,346,347,350,351,352,353,354,356,357,359,360,361 2 -143611 cd07587 ML_beta-AS 4 multimer interface 0 1 1 1 0,3,4,7,8,9,12,16,18,19,20,21,53,79,80,81,120,121,122,123,125,128,160,166,168,176,178,180,182,188,189,190,192,193,194,197,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,218,225,228,229,230,231,232,234,235,238,239,252,254,256,257,258,260,261,262,264,265,268,269,287,288,289,290,291,292,293,294,296,297,315,339,340,342,343,344,345,346,347,348,349,350,351,352,353,354,356,357,359,360,361 2 -153272 cd07588 BAR_Amphiphysin 1 dimer interface 0 0 1 1 19,22,23,27,30,33,34,37,47,48,50,51,54,55,57,58,61,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153272 cd07588 BAR_Amphiphysin 2 putative membrane interaction site 0 0 1 1 42,49,108,111,114,115,139 0 -153273 cd07589 BAR_DNMBP 1 dimer interface 0 0 1 1 12,15,16,20,22,23,26,27,29,30,44,45,47,48,51,52,54,55,58,67,70,71,153,156,157,159,164,167,168,170,171,174,175,178,179,181,182,187,188,190,191 2 -153274 cd07590 BAR_Bin3 1 dimer interface 0 0 1 1 18,21,22,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50,53,73,76,77,172,175,176,178,183,186,187,189,190,193,194,197,198,200,201,204,205,207,208 2 -153275 cd07591 BAR_Rvs161p 1 dimer interface 0 0 1 1 18,21,22,26,28,29,32,33,35,36,46,47,49,50,53,54,56,57,60,74,77,78,171,174,175,177,182,185,186,188,189,192,193,196,197,199,200,203,204,206,207 2 -153276 cd07592 BAR_Endophilin_A 1 dimer interface 0 1 1 0 13,14,17,18,20,21,24,25,28,32,35,36,64,65,67,68,71,72,75,78,79,83,84,85,88,89,183,184,186,187,188,190,191,194,197,198,200,201,202,204,205,208,209,211,212,215,219 2 -153276 cd07592 BAR_Endophilin_A 2 putative membrane interaction site 0 0 1 1 20,28,40,127,131,134,139,140,148,149,152,159 0 -153277 cd07593 BAR_MUG137_fungi 1 dimer interface 0 0 1 1 14,17,18,22,24,25,28,29,31,32,51,52,54,55,58,59,61,62,65,79,82,83,169,172,173,175,179,182,183,185,186,189,190,193,194,196,197,200,201,203,204 2 -153278 cd07594 BAR_Endophilin_B 1 dimer interface 0 0 1 1 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,190,193,194,196,200,203,204,206,207,210,211,214,215,217,218,221,222,224,225 2 -153278 cd07594 BAR_Endophilin_B 2 putative membrane interaction site 0 0 1 1 50,132,136,139,144,145,154,157,172 0 -153279 cd07595 BAR_RhoGAP_Rich-like 1 dimer interface 0 0 1 1 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,185,188,189,191,195,198,199,201,202,205,206,209,210,212,213,216,217,219,220 2 -153280 cd07596 BAR_SNX 1 dimer interface 0 1 1 0 11,14,15,18,19,21,22,25,28,29,32,39,40,42,43,46,49,50,53,54,72,179,182,183,185,186,187,190,193,194,196,197,198,200,201,204,205,207,208,211,212,214,215 2 -153281 cd07597 BAR_SNX8 1 dimer interface 0 0 1 1 22,25,26,30,32,33,36,39,40,57,58,60,61,64,67,68,71,99,206,209,210,212,217,220,221,223,224,225,227,228,231,232,234,235,239,241,242 2 -153281 cd07597 BAR_SNX8 2 dimer interface 0 0 1 1 22,25,26,30,32,33,36,37,39,40,57,58,60,61,64,65,67,68,71,99,102,103,206,209,210,212,217,220,221,223,224,227,228,231,232,234,235,238,239,241,242 2 -153282 cd07598 BAR_FAM92 1 dimer interface 0 0 1 1 11,14,15,19,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,65,68,69,162,165,166,168,173,176,177,179,180,183,184,187,188,190,191,194,195,197,198 2 -153283 cd07599 BAR_Rvs167p 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,75,78,79,176,179,180,182,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153284 cd07600 BAR_Gvp36 1 dimer interface 0 0 1 1 37,40,41,46,48,49,52,53,55,56,74,75,77,78,81,82,84,85,88,111,114,115,204,207,208,210,213,216,217,219,220,223,224,227,228,230,231,234,235,237,238 2 -153285 cd07601 BAR_APPL 1 dimer interface 0 0 1 1 9,12,13,17,20,23,24,27,37,38,40,41,44,45,47,48,51,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153285 cd07601 BAR_APPL 2 putative membrane interaction site 0 0 1 1 0,25,26,99,101,110,126,129,132,134,138,153 0 -153286 cd07602 BAR_RhoGAP_OPHN1-like 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153287 cd07603 BAR_ACAPs 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153288 cd07604 BAR_ASAPs 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153289 cd07605 I-BAR_IMD 1 dimer interface 0 1 1 0 8,9,17,20,21,24,27,28,31,34,35,37,38,42,44,45,48,49,51,52,55,56,65,69,79,176,179,180,182,183,186,187,189,190,193,194,197,200,201,205,208,211,218,219,221,222 2 -153290 cd07606 BAR_SFC_plant 1 dimer interface 0 0 1 1 8,11,12,16,18,19,22,23,25,26,36,37,39,40,43,44,46,47,50,67,70,71,163,166,167,169,174,177,178,180,181,184,185,188,189,191,192,195,196,198,199 2 -153291 cd07607 BAR_SH3P_plant 1 dimer interface 0 0 1 1 8,11,12,16,18,19,22,23,25,26,36,37,39,40,43,44,46,47,50,65,68,69,170,173,174,176,181,184,185,187,188,191,192,195,196,198,199,202,203,205,206 2 -153292 cd07608 BAR_ArfGAP_fungi 1 dimer interface 0 0 1 1 8,11,12,16,18,19,22,23,25,26,34,35,37,38,41,42,44,45,48,59,62,63,151,154,155,157,163,166,167,169,170,173,174,177,178,180,181,184,185,187,188 2 -153293 cd07609 BAR_SIP3_fungi 1 dimer interface 0 0 1 1 8,11,12,16,18,19,22,23,25,26,29,30,32,33,36,37,39,40,43,53,56,57,163,166,167,169,170,173,174,176,177,180,181,184,185,187,188,200,201,203,204 2 -153294 cd07610 FCH_F-BAR 1 dimer interface 0 1 1 0 0,3,10,13,14,17,20,21,24,25,28,32,35,39,64,67,124,128,153,157,160,163,164,167,171,174,178,182,185,186,189 2 -153295 cd07611 BAR_Amphiphysin_I_II 1 dimer interface 0 0 1 1 19,22,23,27,30,33,34,37,47,48,50,51,54,55,57,58,61,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153295 cd07611 BAR_Amphiphysin_I_II 2 putative membrane interaction site 0 0 1 1 42,49,108,111,114,115,139 0 -153296 cd07612 BAR_Bin2 1 dimer interface 0 0 1 1 19,22,23,27,30,33,34,37,47,48,50,51,54,55,57,58,61,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153296 cd07612 BAR_Bin2 2 putative membrane interaction site 0 0 1 1 42,49,108,111,114,115,139 0 -153297 cd07613 BAR_Endophilin_A1 1 dimer interface 0 1 1 1 13,14,17,18,20,21,24,25,28,32,35,36,64,65,67,68,71,72,75,78,79,83,84,85,88,89,183,184,186,187,188,190,191,194,197,198,200,201,202,204,205,208,209,211,212,215,219 2 -153297 cd07613 BAR_Endophilin_A1 2 putative membrane interaction site 0 0 1 1 20,28,40,122,127,131,134,139,140,148,149,152,159 0 -153298 cd07614 BAR_Endophilin_A2 1 dimer interface 0 0 1 1 13,14,17,18,20,21,24,25,28,32,35,36,64,65,67,68,71,72,75,78,79,83,84,85,88,89,183,184,186,187,188,190,191,194,197,198,200,201,202,204,205,208,209,211,212,215,219 2 -153298 cd07614 BAR_Endophilin_A2 2 putative membrane interaction site 0 0 1 1 20,28,40,127,131,134,139,140,148,149,152,159 0 -153299 cd07615 BAR_Endophilin_A3 1 dimer interface 0 1 0 0 13,14,17,18,20,21,24,25,28,32,35,36,64,65,67,68,71,72,75,78,79,83,84,85,88,89,183,184,186,187,188,190,191,194,197,198,200,201,202,204,205,208,209,211,212,215,219 2 -153299 cd07615 BAR_Endophilin_A3 2 putative membrane interaction site 0 0 1 1 20,28,40,42,127,131,134,139,140,148,149,152,159 0 -153300 cd07616 BAR_Endophilin_B1 1 dimer interface 0 0 1 1 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,190,193,194,196,200,203,204,206,207,210,211,214,215,217,218,221,222,224,225 2 -153300 cd07616 BAR_Endophilin_B1 2 putative membrane interaction site 0 0 1 1 50,132,136,139,144,145,154,157,172 0 -153301 cd07617 BAR_Endophilin_B2 1 dimer interface 0 0 1 1 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,181,184,185,187,191,194,195,197,198,201,202,205,206,208,209,212,213,215,216 2 -153301 cd07617 BAR_Endophilin_B2 2 putative membrane interaction site 0 0 1 1 50,132,136,139,144,145,154,157,163 0 -153302 cd07618 BAR_Rich1 1 dimer interface 0 0 1 1 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,187,190,191,193,197,200,201,203,204,207,208,211,212,214,215,218,219,221,222 2 -153303 cd07619 BAR_Rich2 1 dimer interface 0 0 1 1 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,189,192,193,195,199,202,203,205,206,209,210,213,214,216,217,220,221,223,224 2 -153304 cd07620 BAR_SH3BP1 1 dimer interface 0 0 1 1 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,198,201,202,204,208,211,212,214,215,218,219,222,223,225,226,229,230,232,233 2 -153305 cd07621 BAR_SNX5_6 1 dimer interface 0 0 1 1 31,34,35,38,39,41,42,45,48,49,52,59,60,62,63,66,69,70,73,74,89,178,181,182,184,185,186,189,192,193,195,196,197,199,200,203,204,206,207,210,211,213,214 2 -153306 cd07622 BAR_SNX4 1 dimer interface 0 0 1 1 21,24,25,28,29,31,32,35,38,39,42,49,50,52,53,56,59,60,63,64,77,160,163,164,166,167,168,171,174,175,177,178,179,181,182,185,186,188,189,192,193,195,196 2 -153307 cd07623 BAR_SNX1_2 1 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,36,37,40,47,48,50,51,54,57,58,61,62,78,183,186,187,189,190,191,194,197,198,200,201,202,204,205,208,209,211,212,215,216,218,219 2 -153308 cd07624 BAR_SNX7_30 1 dimer interface 0 0 1 1 21,24,25,28,29,31,32,35,38,39,42,49,50,52,53,56,59,60,63,64,78,161,164,165,167,168,169,172,175,176,178,179,180,182,183,186,187,189,190,193,194,196,197 2 -153309 cd07625 BAR_Vps17p 1 dimer interface 0 0 1 1 25,28,29,32,33,35,36,39,42,43,46,53,54,56,57,60,63,64,67,68,84,191,194,195,197,198,199,202,205,206,208,209,210,212,213,216,217,219,220,223,224,226,227 2 -153310 cd07626 BAR_SNX9_like 1 dimer interface 0 1 1 0 11,14,15,18,19,21,22,25,28,29,32,40,41,43,44,47,50,51,54,55,58,63,66,77,159,162,163,165,166,167,170,173,174,176,177,178,180,181,184,185,187,188,191,192,194,195,198 2 -153310 cd07626 BAR_SNX9_like 2 putative membrane interaction site 0 0 1 1 13,20,31,32,39,43,103,117,122,128 0 -153311 cd07627 BAR_Vps5p 1 dimer interface 0 0 1 1 11,14,15,18,19,21,22,25,28,29,32,39,40,42,43,46,49,50,53,54,70,177,180,181,183,184,185,188,191,192,194,195,196,198,199,202,203,205,206,209,210,212,213 2 -153312 cd07628 BAR_Atg24p 1 dimer interface 0 0 1 1 11,14,15,18,19,21,22,25,28,29,32,39,40,42,43,46,49,50,53,54,69,146,149,150,152,153,154,157,160,161,163,164,165,167,168,171,172,174,175,178,179,181,182 2 -153313 cd07629 BAR_Atg20p 1 dimer interface 0 0 1 1 11,14,15,19,20,22,23,26,29,30,33,40,41,43,44,47,50,51,54,55,71,148,151,152,154,155,156,159,162,163,165,166,167,169,170,173,174,176,177,180,181,183,184 2 -153314 cd07630 BAR_SNX_like 1 dimer interface 0 0 1 1 11,14,15,18,19,21,22,25,28,29,32,39,40,42,43,46,49,50,53,54,72,159,162,163,165,166,167,170,173,174,176,177,178,180,181,184,185,187,188,191,192,194,195 2 -153315 cd07631 BAR_APPL1 1 dimer interface 0 0 1 1 9,12,13,17,20,23,24,27,37,38,40,41,44,45,47,48,51,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153315 cd07631 BAR_APPL1 2 putative membrane interaction site 0 0 1 1 0,25,26,99,101,104,110,126,129,132,134,138,153 0 -153316 cd07632 BAR_APPL2 1 dimer interface 0 0 1 1 9,12,13,17,20,23,24,27,37,38,40,41,44,45,47,48,51,69,166,169,170,172,177,178,180,181,184,185,187,188,191,192,194,195,199,202 2 -153316 cd07632 BAR_APPL2 2 putative membrane interaction site 0 0 1 1 0,26,99,101,110,126,129,132,134,138,153 0 -153317 cd07633 BAR_OPHN1 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153318 cd07634 BAR_GAP10-like 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153319 cd07635 BAR_GRAF2 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153320 cd07636 BAR_GRAF 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153321 cd07637 BAR_ACAP3 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153322 cd07638 BAR_ACAP2 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153323 cd07639 BAR_ACAP1 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153324 cd07640 BAR_ASAP3 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,170,173,174,176,178,181,182,184,185,191,192,195,196,198,199,202,203,205,206 2 -153325 cd07641 BAR_ASAP1 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153326 cd07642 BAR_ASAP2 1 dimer interface 0 0 1 1 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153327 cd07643 I-BAR_IMD_MIM 1 dimer interface 0 1 1 0 11,12,15,19,22,23,25,26,29,30,33,36,37,39,40,44,46,47,50,51,53,54,57,58,61,62,65,68,72,79,82,178,181,182,184,185,188,189,191,192,195,196,199,202,203,206,209,212,213,219,220,222,223,224,225,226,227,228,229,230 2 -153327 cd07643 I-BAR_IMD_MIM 2 putative actin binding residues 0 0 1 1 142,143,145,146 2 -153328 cd07644 I-BAR_IMD_BAIAP2L2 1 dimer interface 0 0 1 1 8,9,17,20,21,24,27,28,31,34,35,37,38,42,44,45,48,49,51,52,55,56,65,69,76,79,168,171,172,174,175,178,179,181,182,185,186,189,192,193,196,200,203,210,211,213,214 2 -153329 cd07645 I-BAR_IMD_BAIAP2L1 1 dimer interface 0 0 1 1 8,9,17,20,21,24,27,28,31,34,35,37,38,42,44,45,48,49,51,52,55,56,65,69,76,79,177,180,181,183,184,187,188,190,191,194,195,198,201,202,205,209,212,219,220,222,223 2 -153330 cd07646 I-BAR_IMD_IRSp53 1 dimer interface 0 1 1 0 0,4,7,10,11,18,19,22,23,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54,57,58,61,62,63,64,66,67,70,71,74,81,92,96,171,175,178,179,182,183,185,186,187,189,190,192,193,194,196,197,200,201,203,204,206,207,208,211,214,218,221,222,224,225,227,228,230,231 2 -153330 cd07646 I-BAR_IMD_IRSp53 2 putative membrane interaction site 0 0 1 1 103,125,142,166 0 -153330 cd07646 I-BAR_IMD_IRSp53 3 putative Rac binding residues 0 0 1 1 6,18,138 2 -153330 cd07646 I-BAR_IMD_IRSp53 4 putative actin binding residues 0 0 1 1 137,140,142 2 -153331 cd07647 F-BAR_PSTPIP 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,67,70,172,176,201,205,208,211,212,215,219,222,226,230,233,234,237 2 -153332 cd07648 F-BAR_FCHO 1 dimer interface 0 1 1 0 0,3,4,5,8,9,12,15,18,19,22,23,25,26,29,30,33,34,37,40,41,44,47,51,52,55,56,57,61,64,68,71,124,128,131,132,135,162,165,166,169,172,176,179,180,184,191,194,195,198,199,201,202,205,209,212,213,216,219,220,223,224,226,227,230,233,234,235,238,239,240,242,243,244,246,247,248,249,250,251,252,253,254,256,257,258,259,260 2 -153332 cd07648 F-BAR_FCHO 2 putative membrane interaction site 0 0 1 1 11,14,21,28,39,43,46,101,104,126,134,140,157,160 0 -153333 cd07649 F-BAR_GAS7 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,67,70,166,170,195,199,202,205,206,209,213,216,220,224,227,228,231 2 -153334 cd07650 F-BAR_Syp1p_like 1 dimer interface 0 0 1 1 16,19,26,29,30,33,36,37,40,41,44,48,51,55,80,83,147,151,177,181,184,187,188,191,195,198,202,206,209,210,213 2 -153334 cd07650 F-BAR_Syp1p_like 2 putative membrane interaction surface 0 0 1 1 17,21,28,42,43,53,116 0 -153335 cd07651 F-BAR_PombeCdc15_like 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,67,70,169,173,198,202,205,208,209,212,216,219,223,227,230,231,234 2 -153336 cd07652 F-BAR_Rgd1 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,72,75,159,163,188,193,196,199,200,203,207,210,214,218,221,222,225 2 -153337 cd07653 F-BAR_CIP4-like 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,73,76,180,184,210,214,217,220,221,224,228,231,235,239,242,243,246 2 -153337 cd07653 F-BAR_CIP4-like 2 putative membrane interaction site 0 0 1 1 28,39,46,47,51,103,106,107,125,132,136,139,143 0 -153338 cd07654 F-BAR_FCHSD 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,77,80,182,186,211,216,219,222,223,226,230,233,237,241,244,245,248 2 -153339 cd07655 F-BAR_PACSIN 1 dimer interface 0 1 1 0 0,1,2,8,9,12,15,18,19,22,23,25,26,29,30,33,34,36,37,40,41,44,47,48,65,68,71,79,127,131,194,209,212,216,219,220,222,223,227,230,231,233,234,237,238,239,240,245,246,249,252,253,256,257 2 -153339 cd07655 F-BAR_PACSIN 2 putative membrane interaction site 0 0 1 1 7,11,28,32,35,47,83,95,114,121,122,129,130,132,185,189,192 0 -153340 cd07656 F-BAR_srGAP 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,81,84,174,178,203,207,210,213,214,217,221,224,228,232,235,236,239 2 -153341 cd07657 F-BAR_Fes_Fer 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,72,75,166,170,195,203,206,209,210,213,217,220,224,228,231,232,235 2 -153342 cd07658 F-BAR_NOSTRIN 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,69,72,172,176,201,205,208,211,212,215,219,222,226,230,233,234,237 2 -153343 cd07659 BAR_PICK1 1 dimer interface 0 0 1 1 16,17,23,27,30,33,34,37,40,41,45,47,48,51,54,55,60,61,63,64,67,71,180,184,185,188,189,191,192,199,200,202,203 2 -153343 cd07659 BAR_PICK1 2 putative Rac binding site 0 0 1 1 22,25,28,29,32,33,35,36,37,39,40,76,79,83,86,87 0 -153344 cd07660 BAR_Arfaptin 1 dimer interface 0 1 1 0 16,17,23,27,30,33,34,37,40,41,45,47,48,51,54,55,58,59,61,62,65,69,167,171,172,175,176,178,179,186,187,189,190 2 -153344 cd07660 BAR_Arfaptin 2 Rac binding site 0 1 1 1 22,25,28,29,32,33,35,36,37,39,40,74,77,81,84,85 2 -153345 cd07661 BAR_ICA69 1 dimer interface 0 0 1 1 16,17,23,27,30,33,34,37,40,41,45,47,48,51,54,55,59,60,62,63,66,70,170,174,175,178,179,181,182,189,190,192,193 2 -153345 cd07661 BAR_ICA69 2 putative Rac binding site 0 0 1 1 22,25,28,29,32,33,35,36,37,39,40,75,78,82,85,86 0 -153346 cd07662 BAR_SNX6 1 dimer interface 0 0 1 1 30,33,34,37,38,40,41,44,47,48,51,58,59,61,62,65,68,69,72,73,88,177,180,181,183,184,185,188,191,192,194,195,196,198,199,202,203,205,206,209,210,212,213 2 -153347 cd07663 BAR_SNX5 1 dimer interface 0 0 1 1 30,33,34,37,38,40,41,44,47,48,51,58,59,61,62,65,68,69,72,73,88,177,180,181,183,184,185,188,191,192,194,195,196,198,199,202,203,205,206,209,210,212,213 2 -153348 cd07664 BAR_SNX2 1 dimer interface 0 0 1 1 29,32,33,36,37,39,40,43,46,47,50,57,58,60,61,64,67,68,71,72,88,193,196,197,199,200,201,204,207,208,210,211,212,214,215,218,219,221,222,225,226,228,229 2 -153349 cd07665 BAR_SNX1 1 dimer interface 0 0 1 1 29,32,33,36,37,39,40,43,46,47,50,57,58,60,61,64,67,68,71,72,88,193,196,197,199,200,201,204,207,208,210,211,212,214,215,218,219,221,222,225,226,228,229 2 -153350 cd07666 BAR_SNX7 1 dimer interface 0 0 1 1 61,64,65,68,69,71,72,75,78,79,82,89,90,92,93,96,99,100,103,104,118,204,207,208,210,211,212,215,218,219,221,222,223,225,226,229,230,232,233,236,237,239,240 2 -153351 cd07667 BAR_SNX30 1 dimer interface 0 0 1 1 58,61,62,65,66,68,69,72,75,76,79,86,87,89,90,93,96,97,100,101,115,201,204,205,207,208,209,212,215,216,218,219,220,222,223,226,227,229,230,233,234,236,237 2 -153352 cd07668 BAR_SNX9 1 dimer interface 0 1 1 0 19,22,23,26,27,29,30,33,36,37,40,48,49,51,52,55,58,59,62,63,66,68,69,71,74,85,167,170,171,173,174,175,178,181,182,184,185,186,188,189,192,193,195,196,199,200,202,203,206,207,208,209 2 -153352 cd07668 BAR_SNX9 2 putative membrane interaction site 0 0 1 1 21,28,39,40,47,51,111,125,130,136,142 0 -153353 cd07669 BAR_SNX33 1 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,36,37,40,48,49,51,52,55,58,59,62,63,66,71,74,85,167,170,171,173,174,175,178,181,182,184,185,186,188,189,192,193,195,196,199,200,202,203,206 2 -153353 cd07669 BAR_SNX33 2 putative membrane interaction site 0 0 1 1 21,39,40,47,51,125,130,136,142 0 -153354 cd07670 BAR_SNX18 1 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,36,37,40,48,49,51,52,55,58,59,62,63,66,71,74,85,167,170,171,173,174,175,178,181,182,184,185,186,188,189,192,193,195,196,199,200,202,203,206 2 -153354 cd07670 BAR_SNX18 2 putative membrane interaction site 0 0 1 1 21,39,40,47,51,125,130,136,142 0 -153355 cd07671 F-BAR_PSTPIP1 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,67,70,172,176,201,205,208,211,212,215,219,222,226,230,233,234,237 2 -153356 cd07672 F-BAR_PSTPIP2 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,68,71,173,177,202,206,209,212,213,216,220,223,227,231,234,235,238 2 -153357 cd07673 F-BAR_FCHO2 1 dimer interface 0 1 1 0 0,1,3,4,5,6,7,10,11,12,15,16,19,22,25,26,29,30,32,33,36,37,40,41,44,47,48,51,54,58,59,62,63,64,68,71,75,78,131,135,138,139,142,169,172,173,176,179,183,186,187,191,198,201,202,205,206,208,209,212,216,219,220,223,226,227,230,231,233,234,237,240,241,242,245,246,247,249,250,251,253,254,255,256,257,258,259,260,261,263,264,265,266,267,268 2 -153357 cd07673 F-BAR_FCHO2 2 putative membrane interaction site 0 0 1 1 18,21,28,35,46,50,53,108,111,133,141,147,164,167 0 -153358 cd07674 F-BAR_FCHO1 1 dimer interface 0 0 1 1 0,3,4,5,8,9,12,15,18,19,22,23,25,26,29,30,33,34,37,40,41,44,47,51,52,55,56,57,61,64,68,71,124,128,131,132,135,162,165,166,169,172,176,179,180,184,191,194,195,198,199,201,202,205,209,212,213,216,219,220,223,224,226,227,230,233,234,235,238,239,240,242,243,244,246,247,248,249,250,251,252,253,254,256,257,258,259,260 2 -153358 cd07674 F-BAR_FCHO1 2 putative membrane interaction site 0 0 1 1 11,14,21,28,39,43,46,101,104,126,134,140,157,160 0 -153359 cd07675 F-BAR_FNBP1L 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,74,77,181,185,211,215,218,221,222,225,229,232,236,240,243,244,247 2 -153359 cd07675 F-BAR_FNBP1L 2 putative membrane interaction site 0 0 1 1 28,39,46,47,51,104,107,108,126,133,137,140,144 0 -153360 cd07676 F-BAR_FBP17 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,75,78,182,186,212,216,219,222,223,226,230,233,237,241,244,245,248 2 -153360 cd07676 F-BAR_FBP17 2 putative membrane interaction site 0 0 1 1 28,39,46,47,51,105,108,109,127,134,138,141,145 0 -153361 cd07677 F-BAR_FCHSD2 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,77,80,178,182,207,212,215,218,219,222,226,229,233,237,240,241,244 2 -153362 cd07678 F-BAR_FCHSD1 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,76,79,181,185,210,215,218,221,222,225,229,232,236,240,243,244,247 2 -153363 cd07679 F-BAR_PACSIN2 1 dimer interface 0 1 1 0 0,1,2,8,9,12,15,18,19,22,23,25,26,29,30,33,34,36,37,40,41,44,47,48,56,57,61,65,68,69,71,79,127,131,194,209,212,216,219,220,222,223,224,227,230,231,233,234,237,238,239,240,245,246,249,252,253,256,257 2 -153363 cd07679 F-BAR_PACSIN2 2 putative membrane interaction site 0 0 1 1 7,11,18,28,32,35,47,83,95,114,121,122,129,130,132,185,189,192 0 -153364 cd07680 F-BAR_PACSIN1 1 dimer interface 0 1 1 0 0,1,2,8,9,12,15,18,19,22,23,25,26,29,30,33,34,36,37,40,41,44,47,48,65,68,71,79,127,131,138,141,142,145,146,190,194,205,209,212,216,219,220,222,223,226,227,230,231,233,234,237,238,239,240,241,245,246,249,250,252,253,256,257 2 -153364 cd07680 F-BAR_PACSIN1 2 putative membrane interaction site 0 0 1 1 7,11,17,28,32,35,46,47,54,83,95,114,121,122,129,130,132,139,185,189,192 0 -153365 cd07681 F-BAR_PACSIN3 1 dimer interface 0 0 1 1 0,1,2,8,9,12,15,18,19,22,23,25,26,29,30,33,34,36,37,40,41,44,47,48,65,68,71,79,127,131,194,209,212,216,219,220,222,223,227,230,231,233,234,237,238,239,240,245,246,249,252,253,256,257 2 -153365 cd07681 F-BAR_PACSIN3 2 putative membrane interaction site 0 0 1 1 7,11,28,32,35,47,83,95,114,121,122,129,130,132,185,189,192 0 -153366 cd07682 F-BAR_srGAP2 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,83,86,196,200,225,229,232,235,236,239,243,246,250,254,257,258,261 2 -153367 cd07683 F-BAR_srGAP1 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,84,87,186,190,215,219,222,225,226,229,233,236,240,244,247,248,251 2 -153368 cd07684 F-BAR_srGAP3 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,83,86,186,190,215,219,222,225,226,229,233,236,240,244,247,248,251 2 -153369 cd07685 F-BAR_Fes 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,76,79,166,170,195,203,206,209,210,213,217,220,224,228,231,232,235 2 -153370 cd07686 F-BAR_Fer 1 dimer interface 0 0 1 1 5,8,15,18,19,22,25,26,29,30,33,37,40,44,72,75,163,167,192,200,203,206,207,210,214,217,221,225,228,229,232 2 -319321 cd07687 IgC_TCR_delta 1 IgC heterodimer interface 0 1 1 0 1,2,3,4,8,10,12,14,45,46,47,48,50,52,53,77,78,79 2 -319321 cd07687 IgC_TCR_delta 2 intrachain IgV domain interface 0 1 1 0 39,43,44,45 2 -319322 cd07688 IgC_TCR_alpha 1 IgC heterodimer interface 0 1 1 0 0,4,5,6,7,14,16,18,37,38,39,42,43,44,53,55,57,59,77 2 -319322 cd07688 IgC_TCR_alpha 2 intrachain IgV domain interface 0 1 1 0 24,43,52,54 2 -143314 cd07690 Ig1_CD4 1 MHC interface 0 1 0 0 40,41,42,43,45,57 2 -143314 cd07690 Ig1_CD4 2 interchain domain interface 0 1 1 0 0,2,4,73,76,93 2 -143315 cd07691 Ig_CD3_gamma_delta 1 heterodimer interface 0 1 1 0 0,1,3,46,59,60,61,63,64,65,66,67 2 -143316 cd07692 Ig_CD3_epsilon 1 heterodimer interface 0 1 1 0 0,4,47,58,59,60,62,63,64 2 -143317 cd07693 Ig1_Robo 1 Slit binding interface 0 1 1 0 5,8,17,19,21,23,63,64 2 -143318 cd07694 Ig2_CD4 1 Ig1 domain interface 0 1 1 0 0,21,23,75,76,77,78 2 -143318 cd07694 Ig2_CD4 2 Ig3 domain interface 0 1 1 0 14,85,86,87 2 -143319 cd07695 Ig3_CD4 1 Ig4 domain interface 0 1 1 0 3,4,5,6,8,86,87 2 -143319 cd07695 Ig3_CD4 2 Ig2 domain interface 0 1 1 0 21,95,99,100,102 2 -319323 cd07696 IgC_CH3_IgAEM_CH2_IgG 1 heterodimer interface 0 1 1 1 1,2,3,4,17,19,21,23,57,58,59,60,62,64,65,92,93,94 2 -319323 cd07696 IgC_CH3_IgAEM_CH2_IgG 2 intrachain IgC domain interface 0 1 1 0 4,6,7,8 2 -319324 cd07697 IgC_TCR_gamma 1 IgC heterodimer interface 0 1 1 0 4,5,6,8,10,11,14,19,21,23,25,49,51,54,61,63,65,94 2 -319324 cd07697 IgC_TCR_gamma 2 intrachain IgV domain interface 0 1 1 0 29,31,82,84,94 2 -319324 cd07697 IgC_TCR_gamma 3 interchain IgV domain interface 0 1 1 0 33,48,50 2 -143322 cd07698 IgC_MHC_I_alpha3 1 heterodimer interface 0 1 1 0 19,21,48,49,51,52,53,59,61 2 -143322 cd07698 IgC_MHC_I_alpha3 2 MHC binding domain interface 0 1 1 0 26,27,28,56,81 2 -319325 cd07699 IgC_L 1 heterodimer interface 0 1 1 0 4,5,6,19,21,23,25,26,48,49,50,51,61,62,63,94,95 2 -319325 cd07699 IgC_L 2 intrachain IgV interface 0 1 1 0 28,53,54,58 0 -319326 cd07700 IgV_CD8_beta 1 heterodimer interface 0 1 1 0 24,28,38,40,92,99,100 2 -319327 cd07701 Ig1_Necl-3 1 putative dimer interface 0 0 1 1 26,29,34,35,37,43,45,81 2 -319330 cd07706 IgV_TCR_delta 1 IgV heterodimer interface 0 1 1 0 32,34,36,40,42,44,47,87,98,99,101,103,104 2 -319330 cd07706 IgV_TCR_delta 2 antigen/MHC binding site 0 1 1 0 28,30,47,92 2 -319330 cd07706 IgV_TCR_delta 3 L1 hypervariable region 0 0 1 1 22,23,28,29 0 -319330 cd07706 IgV_TCR_delta 4 L2 hypervariable region 0 0 1 1 63,64,65,69,70 0 -319330 cd07706 IgV_TCR_delta 5 L3 hypervariable region 0 0 1 1 91,92,93,97,98,99,100 0 -293793 cd07707 MBL-B1-B2-like 1 active site 0 1 1 1 18,38,65,67,68,69,144,163,166,171,172,202 1 -293793 cd07707 MBL-B1-B2-like 2 Zn binding site [HN]HH 1 1 1 65,67,144 4 -293793 cd07707 MBL-B1-B2-like 3 Zn binding site DCH 1 1 1 69,163,202 4 -293794 cd07708 MBL-B3-like 1 active site 0 1 1 1 67,69,71,72,107,145,170,172,211 1 -293794 cd07708 MBL-B3-like 2 Zn binding site HH[DC]HHH 1 1 1 67,69,71,72,145,211 4 -293794 cd07708 MBL-B3-like 3 Zn binding site HHH 1 1 1 67,69,145 4 -293794 cd07708 MBL-B3-like 4 Zn binding site [DC]HH 1 1 1 71,72,211 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 1 active site 0 1 1 0 75,77,79,80,142,143,161,166,187,209,218 1 -293795 cd07709 flavodiiron_proteins_MBL-fold 2 Fe binding site H[ED]DHHDHH 1 1 1 75,77,79,80,142,161,166,218 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 3 Fe binding site H[ED]HD 1 1 1 75,77,142,161 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 4 Fe binding site DHDH 1 1 1 79,80,161,218 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 1 active site 0 1 1 1 63,65,66,67,68,108,111,114,115,117,135,171,190,197,198,201,203,208,232 1 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 2 metal binding site HHD[DH][ED]H 1 1 1 63,65,67,68,171,232 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 3 metal binding site H[HC][DE] 1 1 1 63,65,171 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 4 metal binding site DH[DE]H 1 1 1 67,68,190,232 4 -293797 cd07711 MBLAC1-like_MBL-fold 1 active site 0 0 1 1 67,69,71,72,120,121,142,184 1 -293797 cd07711 MBLAC1-like_MBL-fold 2 Zn binding site HHHHDH 1 0 1 67,69,72,120,142,184 4 -293797 cd07711 MBLAC1-like_MBL-fold 3 Zn binding site HHHD 1 0 1 67,69,120,142 4 -293797 cd07711 MBLAC1-like_MBL-fold 4 Zn binding site HDH 1 0 1 72,142,184 4 -293798 cd07712 MBLAC2-like_MBL-fold 1 putative active site 0 0 1 1 49,51,53,54,122,123,141,181 1 -293798 cd07712 MBLAC2-like_MBL-fold 2 putative metal binding site H[HD]DHDH 0 1 1 49,51,53,122,141,181 4 -293798 cd07712 MBLAC2-like_MBL-fold 3 putative metal binding site H[HD]HD 0 1 1 49,51,122,141 4 -293798 cd07712 MBLAC2-like_MBL-fold 4 putative metal binding site DDH 0 1 1 53,141,181 4 -293799 cd07713 DHPS-like_MBL-fold 1 active site 0 0 1 1 62,64,66,67,163,164,183,212,240,241 1 -293799 cd07713 DHPS-like_MBL-fold 2 metal binding site HHDHHH 1 1 1 62,64,66,67,185,240 4 -293799 cd07713 DHPS-like_MBL-fold 3 metal binding site HHH 1 1 1 62,64,185 4 -293799 cd07713 DHPS-like_MBL-fold 4 metal binding site DHH 1 1 1 66,67,240 4 -293800 cd07714 RNaseJ_MBL-fold 1 active site 0 1 1 0 28,62,64,65,66,67,130,131,152,185,213 1 -293800 cd07714 RNaseJ_MBL-fold 2 Zn binding site HHDHHDH 1 1 1 62,64,66,67,130,152,213 4 -293800 cd07714 RNaseJ_MBL-fold 3 Zn binding site HHHD 1 1 1 62,64,130,152 4 -293800 cd07714 RNaseJ_MBL-fold 4 Zn binding site DHDH 1 1 1 66,67,152,213 4 -293801 cd07715 TaR3-like_MBL-fold 1 putative active site 0 0 1 1 64,66,68,69,147,148,168,211 1 -293801 cd07715 TaR3-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 64,66,68,147,168,211 4 -293801 cd07715 TaR3-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 64,66,147,168 4 -293801 cd07715 TaR3-like_MBL-fold 4 putative metal binding site DDH 0 1 1 68,168,211 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 1 putative active site 0 0 1 1 32,56,57,59,61,62,132,133,153,173 1 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 2 metal binding site HHDHHD 1 1 1 57,59,61,62,132,153 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 3 metal binding site HHHD 1 1 1 57,59,132,153 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 4 metal binding site DHD 1 1 1 61,62,153 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 1 putative active site 0 0 1 1 31,56,57,59,61,62,136,137,156,176,214 1 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 2 metal binding site H[HA]DHHDH 1 1 1 57,59,61,62,136,156,214 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 3 metal binding site H[HA]HD 1 1 1 57,59,136,156 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 4 metal binding site DHDH 1 1 1 61,62,156,214 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 1 putative active site 0 0 1 1 32,63,64,66,68,69,159,160,181,201 1 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 2 putative metal binding site HHDHHD 0 1 1 64,66,68,69,159,181 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 64,66,159,181 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 4 putative metal binding site DHD 0 1 1 68,69,181 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 1 putative active site 0 0 1 1 58,60,62,63,150,151,173,192 1 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 58,60,62,150,173,192 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 58,60,150,173 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 4 putative metal binding site DDH 0 1 1 62,173,192 4 -293806 cd07720 OPHC2-like_MBL-fold 1 active site 0 0 1 1 15,98,100,102,103,131,182,203,206,219,221,250 1 -293806 cd07720 OPHC2-like_MBL-fold 2 metal binding site HHDHHDH 1 1 1 98,100,102,103,182,203,250 4 -293806 cd07720 OPHC2-like_MBL-fold 3 metal binding site HHHD 1 1 1 98,100,182,203 4 -293806 cd07720 OPHC2-like_MBL-fold 4 metal binding site DHDH 1 1 1 102,103,203,250 4 -293807 cd07721 yflN-like_MBL-fold 1 putative active site 0 0 1 1 56,58,60,61,139,140,158,200 1 -293807 cd07721 yflN-like_MBL-fold 2 putative metal binding site H[HD]DHDH 0 1 1 56,58,60,139,158,200 4 -293807 cd07721 yflN-like_MBL-fold 3 putative metal binding site H[HD]HD 0 1 1 56,58,139,158 4 -293807 cd07721 yflN-like_MBL-fold 4 putative metal binding site DDH 0 1 1 60,158,200 4 -293808 cd07722 LACTB2-like_MBL-fold 1 active site 0 0 1 1 63,65,67,68,129,130,148,183 1 -293808 cd07722 LACTB2-like_MBL-fold 2 Zn binding site HHDHHDH 1 0 1 63,65,67,68,129,148,183 4 -293808 cd07722 LACTB2-like_MBL-fold 3 Zn binding site HHHD 1 0 1 63,65,129,148 4 -293808 cd07722 LACTB2-like_MBL-fold 4 Zn binding site DHDH 1 0 1 67,68,148,183 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 1 active site 0 1 1 0 50,52,54,55,107,126,129,133,135,164 1 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 2 metal binding site HHDHHDH 1 1 1 50,52,54,55,107,126,164 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 3 metal binding site HHHD 1 1 1 50,52,107,126 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 4 metal binding site DHDH 1 1 1 54,55,126,164 4 -293810 cd07724 POD-like_MBL-fold 1 active site 0 1 1 0 55,59,111,130,133,137,138,139,176 1 -293810 cd07724 POD-like_MBL-fold 2 Fe binding site HHD 1 1 1 55,111,130 4 -293811 cd07725 TTHA1429-like_MBL-fold 1 active site 0 0 1 1 62,64,66,67,111,112,130,173 1 -293811 cd07725 TTHA1429-like_MBL-fold 2 Zn binding site HHDHHDH 1 1 1 62,64,66,67,111,130,173 4 -293811 cd07725 TTHA1429-like_MBL-fold 3 Zn binding site HHH 1 1 1 62,64,111 4 -293811 cd07725 TTHA1429-like_MBL-fold 4 Zn binding site DHDH 1 1 1 66,67,130,173 4 -293812 cd07726 ST1585-like_MBL-fold 1 active site 0 0 1 1 61,63,65,66,149,150,168,214 1 -293812 cd07726 ST1585-like_MBL-fold 2 metal binding site HHDHHDH 1 1 1 61,63,65,66,149,168,214 4 -293812 cd07726 ST1585-like_MBL-fold 3 metal binding site HHHD 1 1 1 61,63,149,168 4 -293812 cd07726 ST1585-like_MBL-fold 4 metal binding site DHDH 1 1 1 65,66,168,214 4 -293813 cd07727 YmaE-like_MBL-fold 1 putative active site 0 0 1 1 54,56,58,59,111,112,130,174 1 -293813 cd07727 YmaE-like_MBL-fold 2 putative metal binding site H[HD]HDH 0 1 1 54,56,111,130,174 4 -293813 cd07727 YmaE-like_MBL-fold 3 putative metal binding site H[HD]HD 0 1 1 54,56,111,130 4 -293813 cd07727 YmaE-like_MBL-fold 4 putative metal binding site DH 0 1 1 130,174 4 -293814 cd07728 YtnP-like_MBL-fold 1 putative active site 0 0 1 1 102,104,106,107,182,183,203,248 1 -293814 cd07728 YtnP-like_MBL-fold 2 putative metal binding site H[HD]DHDH 0 1 1 102,104,106,182,203,248 4 -293814 cd07728 YtnP-like_MBL-fold 3 putative metal binding site H[HD]HD 0 1 1 102,104,182,203 4 -293814 cd07728 YtnP-like_MBL-fold 4 putative metal binding site DDH 0 1 1 106,203,248 4 -293815 cd07729 AHL_lactonase_MBL-fold 1 active site 0 1 1 0 9,11,95,97,98,99,100,169,190,193,235 1 -293815 cd07729 AHL_lactonase_MBL-fold 2 Zn binding site H[DH][DE]HD[HE] 1 1 1 95,97,99,169,190,235 4 -293815 cd07729 AHL_lactonase_MBL-fold 3 Zn binding site H[HD]H 1 1 1 95,97,169 4 -293815 cd07729 AHL_lactonase_MBL-fold 4 Zn binding site [DE]D[HE] 1 1 1 99,190,235 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 90,92,94,95,175,176,197,248 1 -293816 cd07730 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 90,92,94,175,197,248 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 90,92,175,197 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 94,197,248 4 -293817 cd07731 ComA-like_MBL-fold 1 active site 0 1 1 0 55,57,58,59,60,132,152,177,178 1 -293817 cd07731 ComA-like_MBL-fold 2 Zn binding site H[HD]DHNDH 1 1 1 55,57,59,60,132,152,178 4 -293817 cd07731 ComA-like_MBL-fold 3 Zn binding site H[HD]ND 1 1 1 55,57,132,152 4 -293817 cd07731 ComA-like_MBL-fold 4 Zn binding site DHDH 1 1 1 59,60,152,178 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 82,84,86,87,150,151,172,201 1 -293818 cd07732 metallo-hydrolase-like_MBL-fold 2 Zn binding site HHDHHD 1 0 1 82,84,86,87,150,172 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 3 Zn binding site HHHD 1 0 1 82,84,150,172 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 4 Zn binding site DHD 1 0 1 86,87,172 4 -293819 cd07733 YycJ-like_MBL-fold 1 putative active site 0 0 1 1 52,54,56,57,117,118,139,150 1 -293819 cd07733 YycJ-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 52,54,56,117,139,150 4 -293819 cd07733 YycJ-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 52,54,117,139 4 -293819 cd07733 YycJ-like_MBL-fold 4 putative metal binding site DDH 0 1 1 56,139,150 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 1 active site 0 1 1 1 8,56,58,60,61,145,166 1 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 2 Zn binding site HHDHHD 1 1 1 56,58,60,61,145,166 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 3 Zn binding site HHH 1 1 1 56,58,145 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 4 Zn binding site DHD 1 1 1 60,61,166 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 5 RNA binding site 0 1 1 1 129,130,131,137,153,155,160,183 3 -293821 cd07735 class_II_PDE_MBL-fold 1 active site 0 1 1 0 9,72,74,76,77,179,227,258 1 -293821 cd07735 class_II_PDE_MBL-fold 2 Zn binding site HHDHHDH 1 1 1 72,74,76,77,157,179,258 4 -293821 cd07735 class_II_PDE_MBL-fold 3 Zn binding site HHHD 1 1 1 72,74,157,179 4 -293821 cd07735 class_II_PDE_MBL-fold 4 Zn binding site DHDH 1 1 1 76,77,179,258 4 -293822 cd07736 PhnP-like_MBL-fold 1 active site 0 1 0 0 73,75,77,78,140,161 1 -293822 cd07736 PhnP-like_MBL-fold 2 Zn binding site H[HD]DHHD 1 0 1 73,75,77,78,140,161 4 -293822 cd07736 PhnP-like_MBL-fold 3 Zn binding site HHHD 1 0 1 73,75,140,161 4 -293822 cd07736 PhnP-like_MBL-fold 4 Zn binding site DHD 1 0 1 77,78,161 4 -293823 cd07737 YcbL-like_MBL-fold 1 putative active site 0 0 1 1 53,55,57,58,129,130,148,189 1 -293823 cd07737 YcbL-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 53,55,57,129,148,189 4 -293823 cd07737 YcbL-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 53,55,129,148 4 -293823 cd07737 YcbL-like_MBL-fold 4 metal binding site DDH 1 1 1 57,148,189 4 -293824 cd07738 DdPDE5-like_MBL-fold 1 putative active site 0 0 1 1 55,57,59,60,130,131,151,188 1 -293824 cd07738 DdPDE5-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 55,57,59,130,151,188 4 -293824 cd07738 DdPDE5-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 55,57,130,151 4 -293824 cd07738 DdPDE5-like_MBL-fold 4 putative metal binding site DDH 0 1 1 59,151,188 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 59,61,63,64,138,139,159,200 1 -293825 cd07739 metallo-hydrolase-like_MBL-fold 2 putative metal binding site H[HD]D[DEH]DH 0 1 1 59,61,63,138,159,200 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 3 putative metal binding site H[HD][DEH]D 0 1 1 59,61,138,159 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 63,159,200 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 56,58,60,61,139,140,162,193 1 -293826 cd07740 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 56,58,60,139,162,193 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 56,58,139,162 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 60,162,193 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 60,62,64,65,135,136,157,211 1 -293827 cd07741 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDH[DC]H 0 1 1 60,62,64,135,157,211 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHH[DC] 0 1 1 60,62,135,157 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 4 putative metal binding site D[DC]H 0 1 1 64,157,211 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 87,89,91,92,171,172,192,248 1 -293828 cd07742 metallo-hydrolase-like_MBL-fold 2 putative metal binding site H[DH][DE]H[DH]H 0 1 1 87,89,91,171,192,248 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 3 putative metal binding site H[DH]H[DH] 0 1 1 87,89,171,192 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 4 putative metal binding site [DE][DH]H 0 1 1 91,192,248 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 52,54,56,57,137,138,155,196 1 -293829 cd07743 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 52,54,56,137,155,196 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 52,54,137,155 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 56,155,196 4 -143394 cd07749 NT_Pol-beta-like_1 1 metal binding triad 0 0 1 1 38,40,86 4 -143622 cd07750 PolyPPase_VTC_like 1 active site 0 1 1 1 4,40,63,65,79,88,137,139,154,184,209,210,211,212 1 -143622 cd07750 PolyPPase_VTC_like 2 putative metal binding residues 0 1 1 1 0,2,184,186 4 -143622 cd07750 PolyPPase_VTC_like 3 substrate binding site 0 1 1 0 4,40,63,65,79,88,137,139,154,184,209,210,211 5 -143622 cd07750 PolyPPase_VTC_like 4 acceptor-phosphate pocket 0 1 1 0 40,63,79,210,211,212 0 -143622 cd07750 PolyPPase_VTC_like 5 polyP binding site 0 1 1 1 4,40,52,55,63,65,79,81,86,88,137,139,150,184,186,209,210,211,212 0 -143622 cd07750 PolyPPase_VTC_like 6 dimer interface 0 1 1 0 1,54,57,196,200 2 -143622 cd07750 PolyPPase_VTC_like 7 signature motif 0 0 1 1 0,2,4 0 -143623 cd07751 PolyPPase_VTC4_like 1 active site 0 1 1 1 6,10,59,82,84,100,113,178,180,196,237,239,267,268,269,270 1 -143623 cd07751 PolyPPase_VTC4_like 2 putative metal binding residues 0 1 1 1 6,237,239 4 -143623 cd07751 PolyPPase_VTC4_like 3 substrate binding site 0 1 1 0 10,59,82,84,100,113,178,180,196,237,267,268,269 5 -143623 cd07751 PolyPPase_VTC4_like 4 acceptor-phosphate pocket 0 1 1 0 59,82,100,268,269,270 0 -143623 cd07751 PolyPPase_VTC4_like 5 polyP binding site 0 1 1 1 10,59,71,74,82,84,100,102,110,111,113,178,180,192,237,239,266,267,268,269,270 0 -143623 cd07751 PolyPPase_VTC4_like 6 dimer interface 0 1 1 0 5,7,73,76,104,105,106,107,108,246,247,248,253,257,287 2 -143623 cd07751 PolyPPase_VTC4_like 7 signature motif 0 0 1 1 6,8,10 0 -143624 cd07756 CYTH-like_Pase_CHAD 1 putative active site 0 0 1 1 0,2,4,38,54,56,67,81,122,124,141,158,160 1 -143624 cd07756 CYTH-like_Pase_CHAD 2 putative metal binding residues 0 0 1 1 0,2,158,160 4 -143624 cd07756 CYTH-like_Pase_CHAD 3 putative triphosphate binding site 0 0 1 1 2,4,38,54,67,81,124,158 4 -143624 cd07756 CYTH-like_Pase_CHAD 4 signature motif 0 0 1 1 0,2,4 0 -143625 cd07758 ThTPase 1 putative active site pocket 0 0 1 1 1,2,3,4,5,35,49,51,53,58,60,76,78,120,122,133,134,136,139,142,144,146,148,149,189,190,191,192,193 1 -143625 cd07758 ThTPase 2 putative metal binding residues 0 0 1 1 1,3,134,146,148 4 -143625 cd07758 ThTPase 3 putative substrate binding pocket 0 1 1 1 1,3,4,5,35,49,51,60,76,78,120,122,136,139,146,189,190 5 -143625 cd07758 ThTPase 4 putative dimer interface 0 1 0 0 32,34,36,52,54,113,114,115,116,117,118,119,139,140,194 2 -143625 cd07758 ThTPase 5 signature motif 0 0 1 1 1,3,5 0 -143626 cd07761 CYTH-like_CthTTM-like 1 putative active site 0 0 1 1 1,3,35,37,48,57,59,81,83,97,110,112 1 -143626 cd07761 CYTH-like_CthTTM-like 2 putative metal binding residues 0 0 1 1 1,3,110,112 4 -143626 cd07761 CYTH-like_CthTTM-like 3 putative phosphate binding site 0 0 1 1 35,48,81,83 4 -143626 cd07761 CYTH-like_CthTTM-like 4 putative dimer interface 0 1 1 1 28,29,32,34,45,47,58,60,61,62,66,69,70,73 2 -143626 cd07761 CYTH-like_CthTTM-like 5 signature motif 0 0 1 1 1,3,5 0 -143627 cd07762 CYTH-like_Pase_1 1 putative active site 0 1 1 1 1,3,5,32,48,50,52,61,70,116,118,131,144,146,174 1 -143627 cd07762 CYTH-like_Pase_1 2 putative metal binding residues 0 0 1 1 1,3,144,146 4 -143627 cd07762 CYTH-like_Pase_1 3 putative triphosphate binding site 0 0 1 1 3,5,32,48,52,61,70,118,144 4 -143627 cd07762 CYTH-like_Pase_1 4 signature motif 0 0 1 1 1,3,5 0 -341447 cd07766 DHQ_Fe-ADH 1 active site 0 1 1 1 29,85,86,87,90,93,110,111,113,149,157,164,168,196,200,210 1 -341447 cd07766 DHQ_Fe-ADH 2 metal binding site 0 1 1 1 164,196,210 4 -341447 cd07766 DHQ_Fe-ADH 3 NAD binding site 0 1 1 0 29,85,86,87,110,111,113,149,210 5 -198346 cd07768 FGGY_RBK_like 1 active site 0 0 1 1 6,8,9,10,11,13,79,81,99,241,242,261,262,263,266,302,306,328,410,411,412,415,439 1 -198346 cd07768 FGGY_RBK_like 2 catalytic site DTD 0 1 1 6,9,241 1 -198346 cd07768 FGGY_RBK_like 3 metal binding site DD 0 1 1 6,241 4 -198346 cd07768 FGGY_RBK_like 4 carbohydrate binding site 0 1 1 1 8,9,79,81,99,130,178,241,242,263,266,295 5 -198346 cd07768 FGGY_RBK_like 5 MgATP binding site 0 0 1 1 6,8,9,10,11,13,241,261,262,263,302,303,305,306,328,329,331,410,411,412,415 5 -198346 cd07768 FGGY_RBK_like 6 N- and C-terminal domain interface 0 1 1 1 2,4,6,13,15,17,21,22,26,72,73,74,75,76,77,120,121,122,123,131,172,173,176,178,183,213,215,234,236,244,247,248,276,279,280,281,282,283,284,285,286,287,352,356,439,440,441,443,444,446,447,448,449,450,451,463,464 2 -198346 cd07768 FGGY_RBK_like 7 putative homodimer interface 0 1 0 1 303,307,310,311,312,341,343,348,349,361,362,363,364,365,366,371,372,373 2 -198347 cd07769 FGGY_GK 1 active site 0 1 1 1 5,7,8,9,10,12,77,78,79,98,130,240,241,260,261,262,265,306,307,309,310,322,323,325,406,407,408,411 1 -198347 cd07769 FGGY_GK 2 MgATP binding site 0 1 1 1 5,7,8,9,10,12,240,260,261,262,306,307,309,310,322,323,325,406,407,408,411 5 -198347 cd07769 FGGY_GK 3 metal binding site DD 1 1 1 5,240 4 -198347 cd07769 FGGY_GK 4 glycerol binding site 0 1 1 1 8,77,78,79,98,130,240,241,265 5 -198347 cd07769 FGGY_GK 5 catalytic site D[TS]D 0 1 1 5,8,240 1 -198347 cd07769 FGGY_GK 6 N- and C-terminal domain interface 0 1 1 1 0,1,3,5,8,9,12,13,14,16,17,20,22,38,70,71,72,73,74,75,78,98,99,100,101,104,105,108,120,121,123,124,125,126,128,130,131,178,179,182,183,187,189,190,192,214,215,216,217,218,233,235,236,262,265,273,274,275,276,280,281,282,283,284,285,286,287,288,294,296,299,301,302,303,304,310,344,345,352,354,355,357,433,435,436,437,439,440,441,442,443,444,445,446,447,449,450,458,459 2 -198347 cd07769 FGGY_GK 7 homodimer interface 0 1 1 1 34,37,40,99,304,307,311,314,337,339,344,356,357,358,359,360,361,362,363,364,365,369,370,372,481 2 -198347 cd07769 FGGY_GK 8 homotetramer interface 0 1 1 1 28,45,46,48,49,52,53,56,57,90,167,170,223,224 2 -212659 cd07770 FGGY_GntK 1 active site 0 1 0 1 5,7,8,75,77,95,127,235,236,256,257,260,262,277,279,291,296,297,299,300,315,319,339,397,398,399 1 -212659 cd07770 FGGY_GntK 2 ATP binding site 0 1 0 0 256,257,296,297,299,300,315,319,397,398,399 5 -212659 cd07770 FGGY_GntK 3 carbohydrate binding site 0 1 1 1 7,8,75,77,95,127,235,236,257,260,262,277,279,291,339 5 -212659 cd07770 FGGY_GntK 4 catalytic site D[TS]D 0 1 1 5,8,235 1 -212659 cd07770 FGGY_GntK 5 metal binding site DD 0 1 1 5,235 4 -212659 cd07770 FGGY_GntK 6 N- and C-terminal domain interface 0 1 1 1 3,12,16,71,77,95,117,121,123,169,170,173,181,183,236,237,238,239,240,241,242,262,271,276,277,278,279,280,281,282,288,427,428,429,430,431,435,437 2 -198349 cd07771 FGGY_RhuK 1 active site 0 1 1 1 5,7,8,9,10,12,75,76,77,95,234,235,236,255,256,257,258,260,294,298,302,317,321,403,404,405,407,408 1 -198349 cd07771 FGGY_RhuK 2 ATP binding site 0 1 1 0 7,8,9,10,12,255,256,257,298,302,317,321,403,404,405,407,408 5 -198349 cd07771 FGGY_RhuK 3 carbohydrate binding site 0 1 1 1 75,76,77,95,234,235,236,258,260,294 5 -198349 cd07771 FGGY_RhuK 4 metal binding site DD 0 1 1 5,235 4 -198349 cd07771 FGGY_RhuK 5 putative catalytic site 0 0 1 1 5,8,235 1 -198349 cd07771 FGGY_RhuK 6 N- and C-terminal domain interface 0 1 1 1 1,2,3,4,5,8,9,12,14,16,18,23,25,30,68,69,70,71,72,73,74,75,95,96,113,114,117,121,122,123,124,125,127,169,170,173,180,207,229,230,231,234,235,236,237,238,241,243,244,257,258,268,269,270,272,274,275,278,279,280,281,282,283,284,285,289,290,294,299,302,342,343,429,431,432,433,435,436,438,439 2 -198350 cd07772 FGGY_NaCK_like 1 putative active site 0 0 1 1 5,7,8,9,10,12,71,73,91,229,230,250,251,252,255,291,295,305,380,381,382,385,410 1 -198350 cd07772 FGGY_NaCK_like 2 metal binding site DD 0 1 1 5,229 4 -198350 cd07772 FGGY_NaCK_like 3 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,229,250,251,252,291,292,294,295,305,306,308,380,381,382,385 5 -198350 cd07772 FGGY_NaCK_like 4 putative carbohydrate binding site 0 0 1 1 7,8,71,73,91,122,229,230,252,255 5 -198350 cd07772 FGGY_NaCK_like 5 putative catalytic site 0 0 1 1 5,8,229 1 -198350 cd07772 FGGY_NaCK_like 6 N- and C-terminal domain interface 0 1 1 1 1,3,5,12,14,16,20,21,22,25,65,67,110,111,114,116,117,163,164,165,168,169,170,174,176,199,200,224,227,231,232,234,235,236,247,257,264,266,272,273,274,275,276,277,278,279,280,282,409,410,411,412,413,414,415,416,417,418 2 -198351 cd07773 FGGY_FK 1 putative active site 0 0 1 1 5,7,8,9,10,12,77,79,97,237,238,256,257,258,261,300,304,318,400,401,402,405,429 1 -198351 cd07773 FGGY_FK 2 putative catalytic site 0 0 1 1 5,8,237 1 -198351 cd07773 FGGY_FK 3 metal binding site DD 0 1 1 5,237 4 -198351 cd07773 FGGY_FK 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,237,256,257,258,300,301,303,304,318,319,321,400,401,402,405 5 -198351 cd07773 FGGY_FK 5 putative carbohydrate binding site 0 0 1 1 7,8,77,79,97,129,237,238,258,261 5 -198351 cd07773 FGGY_FK 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,70,71,72,73,74,75,76,77,97,103,129,130,170,171,172,175,180,182,185,207,208,210,211,230,231,232,233,237,238,239,240,258,261,269,270,271,273,274,275,276,277,278,291,294,296,304,429,430,431,433,434,436,437 2 -198352 cd07774 FGGY_1 1 putative active site 0 0 1 1 5,7,8,9,10,12,73,75,93,233,234,253,254,255,258,300,304,322,392,393,394,397,421 1 -198352 cd07774 FGGY_1 2 catalytic site D[ST]D 0 1 1 5,8,233 1 -198352 cd07774 FGGY_1 3 metal binding site DD 0 1 1 5,233 4 -198352 cd07774 FGGY_1 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,233,253,254,255,300,301,303,304,322,323,325,392,393,394,397 5 -198352 cd07774 FGGY_1 5 putative carbohydrate binding site 0 0 1 1 7,8,73,75,93,125,233,234,255,258 5 -198352 cd07774 FGGY_1 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,66,67,68,69,70,71,72,73,93,99,125,126,166,167,168,171,177,179,182,203,204,206,207,225,226,227,228,233,234,235,236,255,258,269,270,271,275,276,277,278,279,280,290,293,295,304,421,422,423,425,426,428,429 2 -198353 cd07775 FGGY_AI-2K 1 putative active site 0 0 1 1 5,7,8,9,10,12,79,81,98,239,240,259,260,261,264,301,305,323,413,414,415,418,442 1 -198353 cd07775 FGGY_AI-2K 2 catalytic site DTD 0 1 1 5,8,239 1 -198353 cd07775 FGGY_AI-2K 3 metal binding site DD 0 1 1 5,239 4 -198353 cd07775 FGGY_AI-2K 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,239,259,260,261,301,302,304,305,323,324,326,413,414,415,418 5 -198353 cd07775 FGGY_AI-2K 5 putative carbohydrate binding site 0 0 1 1 7,8,79,81,98,131,239,240,261,264 5 -198353 cd07775 FGGY_AI-2K 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,72,73,74,75,76,77,78,79,98,104,131,132,172,173,174,177,182,184,187,209,210,212,213,232,233,234,235,239,240,241,242,261,264,274,275,276,280,281,282,283,284,285,292,295,297,305,442,443,444,446,447,449,450 2 -212660 cd07776 FGGY_D-XK_euk 1 putative active site 0 0 1 1 5,7,8,9,10,12,88,90,128,271,272,290,291,292,296,330,334,342,439,440,441,444,469 1 -212660 cd07776 FGGY_D-XK_euk 2 catalytic site DTD 0 1 1 5,8,271 1 -212660 cd07776 FGGY_D-XK_euk 3 metal binding site DD 0 1 1 5,271 4 -212660 cd07776 FGGY_D-XK_euk 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,271,290,291,292,330,331,333,334,342,343,345,439,440,441,444 5 -212660 cd07776 FGGY_D-XK_euk 5 putative xylulose binding site 0 0 1 1 88,90,128,271,272,324 5 -212660 cd07776 FGGY_D-XK_euk 6 N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,81,82,83,84,85,86,87,88,128,134,161,162,203,204,205,208,213,215,218,241,242,244,245,264,265,266,267,271,272,273,274,292,296,305,306,307,311,312,313,314,315,316,321,324,326,334,469,470,471,473,474,476,477 2 -212661 cd07777 FGGY_SHK_like 1 putative active site 0 0 1 1 6,8,9,10,11,13,78,80,110,242,243,261,262,263,273,311,315,330,410,411,412,416,439 1 -212661 cd07777 FGGY_SHK_like 2 catalytic site DTD 0 1 1 6,9,242 1 -212661 cd07777 FGGY_SHK_like 3 metal binding site DD 0 1 1 6,242 4 -212661 cd07777 FGGY_SHK_like 4 MgATP binding site 0 0 1 1 6,8,9,10,11,13,242,261,262,263,311,312,314,315,330,331,333,410,411,412,416 5 -212661 cd07777 FGGY_SHK_like 5 putative carbohydrate binding site 0 0 1 1 8,9,78,80,110,135,242,243,263,273 5 -212661 cd07777 FGGY_SHK_like 6 putative N- and C-terminal domain interface 0 0 1 1 1,2,3,4,5,6,8,9,10,13,15,17,18,22,23,24,27,71,72,73,74,75,76,77,78,110,116,135,136,176,177,178,181,188,190,193,215,216,218,219,235,236,237,238,242,243,244,245,263,273,282,283,284,285,286,287,288,289,290,299,302,304,315,439,440,441,443,444,446,447 2 -198356 cd07778 FGGY_L-RBK_like 1 putative active site 0 0 1 1 10,12,13,14,15,17,85,87,105,250,251,270,271,272,275,312,316,322,423,424,425,429,454 1 -198356 cd07778 FGGY_L-RBK_like 2 catalytic site [DE][TS]D 0 1 1 10,13,250 1 -198356 cd07778 FGGY_L-RBK_like 3 metal binding site [DE]D 0 1 1 10,250 4 -198356 cd07778 FGGY_L-RBK_like 4 MgATP binding site 0 0 1 1 10,12,13,14,15,17,250,270,271,272,312,313,315,316,322,323,325,423,424,425,429 5 -198356 cd07778 FGGY_L-RBK_like 5 putative carbohydrate binding site 0 0 1 1 12,13,85,87,105,128,250,251,272,275 5 -198356 cd07778 FGGY_L-RBK_like 6 putative N- and C-terminal domain interface 0 0 1 1 5,6,7,8,9,10,12,13,14,17,19,21,22,25,26,27,30,78,79,80,81,82,83,84,85,105,109,128,129,169,170,171,174,179,181,184,216,217,219,220,243,244,245,246,250,251,252,253,272,275,286,287,288,293,294,295,296,297,298,304,307,309,316,454,455,456,458,459,461,462 2 -212662 cd07779 FGGY_ygcE_like 1 putative active site 0 0 1 1 5,7,8,9,10,12,78,80,98,241,242,261,262,263,267,302,306,324,412,413,414,417,441 1 -212662 cd07779 FGGY_ygcE_like 2 catalytic site D[TS]D 0 1 1 5,8,241 1 -212662 cd07779 FGGY_ygcE_like 3 metal binding site DD 0 1 1 5,241 4 -212662 cd07779 FGGY_ygcE_like 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,241,261,262,263,302,303,305,306,324,325,327,412,413,414,417 5 -212662 cd07779 FGGY_ygcE_like 5 putative carbohydrate binding site 0 0 1 1 7,8,78,80,98,130,241,242,263,267 5 -212662 cd07779 FGGY_ygcE_like 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,71,72,73,74,75,76,77,78,98,104,130,131,171,172,173,176,181,183,186,211,212,214,215,234,235,236,237,241,242,243,244,263,267,275,276,277,281,282,283,284,285,286,292,295,297,306,441,442,443,445,446,448,449 2 -198358 cd07781 FGGY_RBK 1 active site 0 0 1 1 6,8,9,10,11,13,86,88,117,270,271,289,290,291,294,331,335,361,442,443,444,448,472 1 -198358 cd07781 FGGY_RBK 2 catalytic site D[TS]D 0 1 1 6,9,270 1 -198358 cd07781 FGGY_RBK 3 metal binding site DD 0 1 1 6,270 4 -198358 cd07781 FGGY_RBK 4 carbohydrate binding site 0 1 1 1 8,9,86,87,88,117,151,204,270,271,291,294,324 5 -198358 cd07781 FGGY_RBK 5 MgATP binding site 0 0 1 1 6,8,9,10,11,13,270,289,290,291,331,332,334,335,361,362,364,442,443,444,448 5 -198358 cd07781 FGGY_RBK 6 N- and C-terminal domain interface 0 1 1 1 2,4,6,13,15,17,22,23,27,79,80,81,82,83,84,142,143,144,145,147,152,198,199,202,203,207,208,209,240,241,242,243,244,263,265,273,275,276,277,303,305,308,309,310,311,312,313,314,315,316,318,322,323,324,385,389,470,472,473,474,476,477,479,480,481,482,483,484,496,497 2 -198358 cd07781 FGGY_RBK 7 homodimer interface 0 1 0 1 332,336,339,340,341,342,343,344,374,376,381,382,394,395,396,397,398,399,400,401,402,404,405,406 2 -212663 cd07782 FGGY_YpCarbK_like 1 active site 0 0 1 1 6,8,9,10,11,13,78,79,106,253,254,282,283,284,287,324,328,351,446,447,448,451,475 1 -212663 cd07782 FGGY_YpCarbK_like 2 carbohydrate binding site 0 1 1 1 8,9,78,79,106,136,184,253,254,284,287,317 5 -212663 cd07782 FGGY_YpCarbK_like 3 catalytic site D[TS]D 0 1 1 6,9,253 1 -212663 cd07782 FGGY_YpCarbK_like 4 metal binding site DD 0 1 1 6,253 4 -212663 cd07782 FGGY_YpCarbK_like 5 MgATP binding site 0 0 1 1 6,8,9,10,11,13,253,282,283,284,324,325,327,328,351,352,354,446,447,448,451 5 -212663 cd07782 FGGY_YpCarbK_like 6 N- and C-terminal domain interface 0 1 1 1 2,4,6,13,15,17,21,22,26,71,72,73,74,75,76,127,128,129,130,137,178,179,182,184,189,223,226,246,248,256,259,260,297,301,302,303,304,305,306,307,308,309,386,390,475,476,477,479,480,482,483,484,485,486,487,499,500 2 -212663 cd07782 FGGY_YpCarbK_like 7 putative homodimer interface 0 0 0 1 325,329,332,375,377,382,383,395,396,397,398,399,400,408,409,410 2 -198360 cd07783 FGGY_CarbK-RPE_like 1 active site 0 0 1 1 6,8,9,10,11,13,78,80,98,241,242,261,262,263,266,303,307,324,405,406,407,410,434 1 -198360 cd07783 FGGY_CarbK-RPE_like 2 catalytic site DTD 0 1 1 6,9,241 1 -198360 cd07783 FGGY_CarbK-RPE_like 3 metal binding site DD 0 1 1 6,241 4 -198360 cd07783 FGGY_CarbK-RPE_like 4 MgATP binding site 0 0 1 1 6,8,9,10,11,13,241,261,262,263,303,304,306,307,324,325,327,405,406,407,410 5 -198360 cd07783 FGGY_CarbK-RPE_like 5 putative carbohydrate binding site 0 0 1 1 8,9,78,80,98,130,178,241,242,263,266,296 5 -198360 cd07783 FGGY_CarbK-RPE_like 6 N- and C-terminal domain interface 0 0 1 1 2,4,6,13,15,17,21,22,26,71,72,73,74,75,76,119,120,121,122,131,173,174,177,178,183,213,215,234,236,244,247,248,277,280,281,282,283,284,285,286,287,288,348,352,434,435,436,438,439,441,442,443,444,445,446,458,459 2 -198360 cd07783 FGGY_CarbK-RPE_like 7 putative homodimer interface 0 0 0 1 304,308,311,337,339,344,345,357,358,359,360,361,362,367,368,369 2 -198361 cd07786 FGGY_EcGK_like 1 active site 0 1 1 1 5,7,8,9,12,77,78,79,98,130,239,240,259,260,261,264,304,305,307,308,320,321,323,404,405,406,409 1 -198361 cd07786 FGGY_EcGK_like 2 metal binding site DD 1 1 1 5,239 4 -198361 cd07786 FGGY_EcGK_like 3 MgATP binding site 0 1 1 1 5,7,8,9,12,259,260,261,304,305,307,308,320,321,323,404,405,406,409 5 -198361 cd07786 FGGY_EcGK_like 4 glycerol binding site 0 1 1 1 8,77,78,79,98,130,239,240,264 5 -198361 cd07786 FGGY_EcGK_like 5 catalytic site D[TS]D 0 1 1 5,8,239 1 -198361 cd07786 FGGY_EcGK_like 6 N- and C-terminal domain interface 0 1 1 1 0,1,3,5,8,9,12,14,16,17,20,22,38,70,71,72,73,74,75,76,77,78,98,99,101,104,108,120,123,124,125,126,128,130,131,178,179,182,183,189,190,192,214,215,216,217,234,235,241,242,261,264,273,275,281,282,283,284,285,286,287,292,294,297,299,301,302,308,343,350,352,353,355,431,433,434,435,437,438,440,441,442,443,444,445,447,448 2 -198361 cd07786 FGGY_EcGK_like 7 homodimer interface 0 1 1 1 34,37,40,99,302,305,308,309,312,335,337,342,355,356,357,358,359,360,361,362,363,367,370 2 -198361 cd07786 FGGY_EcGK_like 8 homotetramer interface 0 1 1 1 28,45,48,49,53,56,57,90,167,170,223,224 2 -198361 cd07786 FGGY_EcGK_like 9 FBP binding site 0 1 1 1 227,228,230 5 -198361 cd07786 FGGY_EcGK_like 10 protein IIAGlc interface 0 1 1 1 396,398,466,468,470,471,472,473,475 2 -198362 cd07789 FGGY_CsGK_like 1 active site 0 0 1 1 5,7,8,9,10,12,77,78,79,98,130,242,243,262,263,264,267,308,309,311,312,324,325,327,408,409,410,413 1 -198362 cd07789 FGGY_CsGK_like 2 catalytic site DTD 0 1 1 5,8,242 1 -198362 cd07789 FGGY_CsGK_like 3 glycerol binding site 0 1 1 1 78,79,98,130,242 5 -198362 cd07789 FGGY_CsGK_like 4 metal binding site DD 0 1 1 5,242 4 -198362 cd07789 FGGY_CsGK_like 5 MgATP binding site 0 0 1 1 5,7,8,9,10,12,242,262,263,264,308,309,311,312,324,325,327,408,409,410,413 5 -198362 cd07789 FGGY_CsGK_like 6 N- and C-terminal domain interface 0 1 1 1 0,1,3,5,14,16,17,18,20,22,70,71,72,73,74,75,78,120,121,123,124,125,126,181,182,185,186,190,192,193,195,217,218,219,220,237,238,240,242,243,244,245,246,247,248,249,259,261,267,269,276,278,282,283,284,285,286,287,288,289,290,291,298,301,407,435,436,437,438,439,440,441,442,443,444,445,447,448,449,451,452,462 2 -198362 cd07789 FGGY_CsGK_like 7 homodimer interface 0 1 0 0 313,317,318,320,339,341,358,359,360,361,362,363,364,365,366,367,368,370,371,374,479,483,486,487,490,493,494 2 -198362 cd07789 FGGY_CsGK_like 8 putative homotetramer interface 0 0 1 1 28,45,46,48,49,52,53,56,57,90,167,170,226,227 2 -198363 cd07791 FGGY_GK2_bacteria 1 active site 0 0 1 1 5,7,8,9,10,12,75,76,77,96,128,238,239,258,259,260,263,302,303,305,306,317,318,320,401,402,403,406 1 -198363 cd07791 FGGY_GK2_bacteria 2 catalytic site DTD 0 1 1 5,8,238 1 -198363 cd07791 FGGY_GK2_bacteria 3 metal binding site DD 0 1 1 5,238 4 -198363 cd07791 FGGY_GK2_bacteria 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,238,258,259,260,302,303,305,306,317,318,320,401,402,403,406 5 -198363 cd07791 FGGY_GK2_bacteria 5 glycerol binding site 0 0 1 1 76,77,96,238 5 -198363 cd07791 FGGY_GK2_bacteria 6 N- and C-terminal domain interface 0 0 1 1 0,1,3,5,8,9,12,13,14,16,17,20,22,38,68,69,70,71,72,73,76,96,97,98,99,102,103,106,118,119,121,122,123,124,126,128,129,176,177,180,181,185,187,188,190,212,213,214,215,216,231,233,234,260,263,271,272,273,274,277,278,279,280,281,282,283,284,285,290,292,295,297,298,299,300,306,339,340,347,349,350,352,428,430,431,432,434,435,436,437,438,439,440,441,442,444,445,453,454 2 -198363 cd07791 FGGY_GK2_bacteria 7 putative homodimer interface 0 0 1 1 34,37,40,97,300,303,307,310,332,334,339,351,352,353,354,355,356,357,358,359,360,364,365,367,476 2 -198363 cd07791 FGGY_GK2_bacteria 8 putative homotetramer interface 0 0 1 1 28,45,46,48,49,52,53,56,57,88,165,168,221,222 2 -212664 cd07792 FGGY_GK1-3_metazoa 1 active site 0 0 1 1 6,8,9,10,11,13,82,83,84,103,138,249,250,269,270,271,274,316,317,319,320,332,333,335,416,417,418,421 1 -212664 cd07792 FGGY_GK1-3_metazoa 2 catalytic site DTD 0 1 1 6,9,249 1 -212664 cd07792 FGGY_GK1-3_metazoa 3 metal binding site DD 0 1 1 6,249 4 -212664 cd07792 FGGY_GK1-3_metazoa 4 MgATP binding site 0 0 1 1 6,8,9,10,11,13,249,269,270,271,316,317,319,320,332,333,335,416,417,418,421 5 -212664 cd07792 FGGY_GK1-3_metazoa 5 putative glycerol binding site 0 0 1 1 83,84,103,138,249 5 -212664 cd07792 FGGY_GK1-3_metazoa 6 putative N- and C-terminal domain interface 0 0 1 1 1,2,4,6,9,10,13,14,15,17,18,22,24,40,75,76,77,78,79,80,83,103,104,105,106,109,110,113,128,129,131,132,133,134,136,138,139,189,190,193,194,198,200,201,203,225,226,227,228,229,242,244,245,271,274,282,283,284,285,289,290,291,292,293,294,295,296,297,304,306,309,311,312,313,314,320,354,355,362,364,365,367,443,445,446,447,449,450,451,452,453,454,455,456,457,459,460,469,470 2 -212664 cd07792 FGGY_GK1-3_metazoa 7 putative homodimer interface 0 0 1 1 36,39,42,104,314,317,321,324,347,349,354,366,367,368,369,370,371,372,373,374,375,379,380,382,492 2 -212664 cd07792 FGGY_GK1-3_metazoa 8 putative homotetramer interface 0 0 1 1 30,47,48,50,51,54,55,58,59,95,175,178,234,235 2 -212665 cd07793 FGGY_GK5_metazoa 1 putative active site 0 0 1 1 5,7,8,9,10,12,77,78,79,98,146,255,256,275,276,277,280,320,321,323,324,335,336,338,419,420,421,424 1 -212665 cd07793 FGGY_GK5_metazoa 2 catalytic site D[TS]D 0 1 1 5,8,255 1 -212665 cd07793 FGGY_GK5_metazoa 3 metal binding site DD 0 1 1 5,255 4 -212665 cd07793 FGGY_GK5_metazoa 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,255,275,276,277,320,321,323,324,335,336,338,419,420,421,424 5 -212665 cd07793 FGGY_GK5_metazoa 5 putative glycerol binding site 0 0 1 1 78,79,98,255 5 -212665 cd07793 FGGY_GK5_metazoa 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,3,5,8,9,12,13,14,16,17,20,22,38,70,71,72,73,74,75,78,98,99,100,101,104,105,108,130,131,133,134,135,136,138,146,147,194,195,198,199,203,205,206,208,230,231,232,233,234,248,250,251,277,280,287,288,289,290,295,296,297,298,299,300,301,302,303,308,310,313,315,316,317,318,324,357,358,365,367,368,370,446,448,449,450,452,453,454,455,456,457,458,459,460,462,463,471,472 2 -212665 cd07793 FGGY_GK5_metazoa 7 putative homodimer interface 0 0 1 1 34,37,40,99,318,321,325,328,350,352,357,369,370,371,372,373,374,375,376,377,378,382,383,385,495 2 -212665 cd07793 FGGY_GK5_metazoa 8 putative homotetramer interface 0 0 1 1 28,45,46,48,49,52,53,56,57,90,183,186,239,240 2 -198366 cd07794 FGGY_GK_like_proteobact 1 active site 0 0 1 1 6,8,9,10,11,13,70,71,72,91,123,224,225,244,245,246,249,290,291,293,294,302,303,305,388,389,390,393 1 -198366 cd07794 FGGY_GK_like_proteobact 2 catalytic site DTD 0 1 1 6,9,224 1 -198366 cd07794 FGGY_GK_like_proteobact 3 metal binding site DD 0 1 1 6,224 4 -198366 cd07794 FGGY_GK_like_proteobact 4 MgATP binding site 0 0 1 1 6,8,9,10,11,13,224,244,245,246,290,291,293,294,302,303,305,388,389,390,393 5 -198366 cd07794 FGGY_GK_like_proteobact 5 putative glycerol binding site 0 0 1 1 71,72,91,224 5 -198366 cd07794 FGGY_GK_like_proteobact 6 N- and C-terminal domain interface 0 0 1 1 1,2,4,6,9,10,13,14,15,17,18,21,23,39,63,64,65,66,67,68,71,91,92,93,94,97,98,101,113,114,116,117,118,119,121,123,124,169,170,173,174,178,180,181,183,205,206,207,208,209,217,219,220,246,249,257,258,259,260,265,266,267,268,269,270,271,272,273,278,280,283,285,286,287,288,294,327,328,335,337,338,340,415,417,418,419,421,422,423,424,425,426,427,428,429,431,432,440,441 2 -198366 cd07794 FGGY_GK_like_proteobact 7 putative homodimer interface 0 0 1 1 35,38,41,92,288,291,295,298,320,322,327,339,340,341,342,343,344,345,346,347,348,352,353,355,467 2 -198366 cd07794 FGGY_GK_like_proteobact 8 putative homotetramer interface 0 0 1 1 29,46,47,49,50,53,54,57,58,83,160,163,214,215 2 -198367 cd07795 FGGY_ScGut1p_like 1 active site 0 0 1 1 7,9,10,11,12,14,82,83,84,103,137,249,250,269,270,271,274,316,317,319,320,332,333,335,416,417,418,421 1 -198367 cd07795 FGGY_ScGut1p_like 2 catalytic site DTD 0 1 1 7,10,249 1 -198367 cd07795 FGGY_ScGut1p_like 3 metal binding site DD 0 1 1 7,249 4 -198367 cd07795 FGGY_ScGut1p_like 4 MgATP binding site 0 0 1 1 7,9,10,11,12,14,249,269,270,271,316,317,319,320,332,333,335,416,417,418,421 5 -198367 cd07795 FGGY_ScGut1p_like 5 putative glycerol binding site 0 0 1 1 83,84,103,137,249 5 -198367 cd07795 FGGY_ScGut1p_like 6 N- and C-terminal domain interface 0 0 1 1 2,3,5,7,10,11,14,15,16,18,19,22,24,40,75,76,77,78,79,80,83,103,104,105,106,109,110,113,127,128,130,131,132,133,135,137,138,188,189,192,193,197,199,200,202,225,226,227,228,229,242,244,245,271,274,282,283,284,285,289,290,291,292,293,294,295,296,297,304,306,309,311,312,313,314,320,354,355,362,364,365,367,443,445,446,447,449,450,451,452,453,454,455,456,457,459,460,469,470 2 -198367 cd07795 FGGY_ScGut1p_like 7 putative homodimer interface 0 0 1 1 36,39,42,104,314,317,321,324,347,349,354,366,367,368,369,370,371,372,373,374,375,379,380,382,492 2 -198367 cd07795 FGGY_ScGut1p_like 8 putative homotetramer interface 0 0 1 1 30,47,48,50,51,54,55,58,59,95,174,177,234,235 2 -198368 cd07796 FGGY_NHO1_plant 1 active site 0 0 1 1 5,7,8,9,10,12,81,82,83,102,136,250,251,269,270,271,274,316,317,319,320,332,333,335,423,424,425,428 1 -198368 cd07796 FGGY_NHO1_plant 2 catalytic site DTD 0 1 1 5,8,250 1 -198368 cd07796 FGGY_NHO1_plant 3 metal binding site DD 0 1 1 5,250 4 -198368 cd07796 FGGY_NHO1_plant 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,250,269,270,271,316,317,319,320,332,333,335,423,424,425,428 5 -198368 cd07796 FGGY_NHO1_plant 5 putative glycerol binding site 0 0 1 1 82,83,102,250 5 -198368 cd07796 FGGY_NHO1_plant 6 N- and C-terminal domain interface 0 0 1 1 0,1,3,5,8,9,12,13,14,16,17,20,22,38,74,75,76,77,78,79,82,102,103,104,105,108,109,112,126,127,129,130,131,132,134,136,137,189,190,193,194,198,200,201,203,225,226,227,228,229,243,245,246,271,274,282,283,284,285,289,290,291,292,293,294,295,296,297,304,306,309,311,312,313,314,320,354,355,362,364,365,367,450,452,453,454,456,457,458,459,460,461,462,463,464,466,467,477,478 2 -198368 cd07796 FGGY_NHO1_plant 7 putative homodimer interface 0 0 1 1 34,37,40,103,314,317,321,324,347,349,354,366,367,368,369,370,371,372,373,374,375,379,380,382,500 2 -198368 cd07796 FGGY_NHO1_plant 8 putative homotetramer interface 0 0 1 1 28,45,46,48,49,52,53,56,57,94,173,176,234,235 2 -198369 cd07798 FGGY_AI-2K_like 1 putative active site 0 0 1 1 5,7,8,9,10,12,77,79,96,233,234,252,253,254,256,294,298,306,396,397,398,401,426 1 -198369 cd07798 FGGY_AI-2K_like 2 catalytic site DTD 0 1 1 5,8,233 1 -198369 cd07798 FGGY_AI-2K_like 3 metal binding site DD 0 1 1 5,233 4 -198369 cd07798 FGGY_AI-2K_like 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,233,252,253,254,294,295,297,298,306,307,309,396,397,398,401 5 -198369 cd07798 FGGY_AI-2K_like 5 carbohydrate binding site 0 0 1 1 7,8,77,79,96,125,233,234,254,256 5 -198369 cd07798 FGGY_AI-2K_like 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,70,71,72,73,74,75,76,77,96,102,125,126,166,167,168,171,176,178,181,203,204,206,207,226,227,228,229,233,234,235,236,254,256,267,268,269,273,274,275,276,277,278,285,288,290,298,426,427,428,430,431,433,434 2 -212666 cd07802 FGGY_L-XK 1 putative active site 0 0 1 1 5,7,8,9,10,12,77,79,97,239,240,259,260,261,264,300,304,323,405,406,407,409,433 1 -212666 cd07802 FGGY_L-XK 2 catalytic site D[TS]D 0 1 1 5,8,239 1 -212666 cd07802 FGGY_L-XK 3 metal binding site DD 0 1 1 5,239 4 -212666 cd07802 FGGY_L-XK 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,239,259,260,261,300,301,303,304,323,324,326,405,406,407,409 5 -212666 cd07802 FGGY_L-XK 5 putative xylulose binding site 0 0 1 1 77,79,97,239,240,294 5 -212666 cd07802 FGGY_L-XK 6 putative N- and C-terminal domain interface 0 0 1 1 0,1,2,3,4,5,7,8,9,12,14,16,17,20,21,22,25,70,71,72,73,74,75,76,77,97,103,129,130,170,171,172,175,180,182,185,209,210,212,213,232,233,234,235,239,240,241,242,261,264,275,276,277,281,282,283,284,285,286,291,294,296,304,433,434,435,437,438,440,441 2 -198371 cd07803 FGGY_D-XK 1 active site 0 1 1 1 5,7,8,9,10,12,77,78,79,97,236,237,256,257,258,291,298,299,301,302,315,316,318,399,400,401,404 1 -198371 cd07803 FGGY_D-XK 2 catalytic site D[TS]D 0 1 1 5,8,236 1 -198371 cd07803 FGGY_D-XK 3 metal binding site DD 0 1 1 5,236 4 -198371 cd07803 FGGY_D-XK 4 MgATP binding site 0 1 1 1 5,7,8,9,10,12,236,256,257,258,298,299,301,302,315,316,318,399,400,401,404 5 -198371 cd07803 FGGY_D-XK 5 xylulose binding site 0 1 1 0 77,78,79,97,236,237,291 5 -198371 cd07803 FGGY_D-XK 6 N- and C-terminal domain interface 0 1 1 1 1,3,4,5,12,13,14,16,20,71,73,75,118,122,123,170,171,174,175,181,207,208,231,236,237,238,239,240,241,242,243,244,245,246,247,251,252,253,263,265,271,272,273,277,278,279,280,281,282,283,287,288,291,395,422,428,429,430,431,432,433,434,435,436,437,439,440,455,456 2 -198371 cd07803 FGGY_D-XK 7 homodimer interface 0 1 1 0 303,306,307,350,351,352,353,354,355,356,357,361,362,363,366 2 -198372 cd07804 FGGY_XK_like_1 1 putative active site 0 1 1 1 5,7,8,9,10,12,77,78,79,97,237,238,257,258,259,290,297,298,300,301,319,320,322,403,404,405,408 1 -198372 cd07804 FGGY_XK_like_1 2 catalytic site D[ST]D 0 1 1 5,8,237 1 -198372 cd07804 FGGY_XK_like_1 3 metal binding site DD 0 1 1 5,237 4 -198372 cd07804 FGGY_XK_like_1 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,237,257,258,259,297,298,300,301,319,320,322,403,404,405,408 5 -198372 cd07804 FGGY_XK_like_1 5 putative xylulose binding site 0 0 1 1 77,78,79,97,237,238,290 5 -198372 cd07804 FGGY_XK_like_1 6 N- and C-terminal domain interface 0 1 1 1 1,3,14,16,20,21,71,73,75,119,120,123,124,171,172,175,176,180,182,185,208,209,232,237,238,239,240,241,242,243,244,245,246,250,251,252,254,264,272,273,274,277,278,279,280,281,282,288,290,398,400,426,428,431,432,433,434,435,436,437,438,439,440,441,443,444,449,456,457 2 -198372 cd07804 FGGY_XK_like_1 7 putative homodimer interface 0 0 1 1 302,305,306,354,355,356,357,358,359,360,361,365,366,367,370 2 -198373 cd07805 FGGY_XK_like_2 1 active site 0 1 1 1 5,7,8,9,10,12,77,78,79,97,185,248,249,269,270,290,303,305,310,311,314,337,421,422,423,426 1 -198373 cd07805 FGGY_XK_like_2 2 catalytic site DTD 0 1 1 5,8,248 1 -198373 cd07805 FGGY_XK_like_2 3 metal binding site DD 0 1 0 5,248 4 -198373 cd07805 FGGY_XK_like_2 4 MgATP binding site 0 1 1 1 5,7,8,9,10,12,248,268,269,270,310,311,313,314,337,338,340,421,422,423,426 5 -198373 cd07805 FGGY_XK_like_2 5 xylulose binding site 0 1 0 0 78,79,185,249,273,290,303,305 5 -198373 cd07805 FGGY_XK_like_2 6 N- and C-terminal domain interface 0 1 1 1 0,1,3,4,5,12,13,14,16,17,20,22,25,70,73,74,75,79,128,129,132,133,134,136,180,181,184,185,219,220,243,246,249,250,251,252,253,254,255,256,257,263,265,267,268,273,280,281,282,283,284,285,288,289,290,291,292,293,294,363,418,444,450,451,452,453,454,455,456,458,459,460,463,465 2 -198373 cd07805 FGGY_XK_like_2 7 putative homodimer interface 0 0 1 1 315,318,319,371,372,373,374,375,376,377,378,382,383,384,387 2 -198374 cd07808 FGGY_D-XK_EcXK-like 1 active site 0 1 1 1 5,7,8,9,10,12,77,78,79,97,236,237,256,257,258,291,298,299,301,302,314,315,317,398,399,400,403 1 -198374 cd07808 FGGY_D-XK_EcXK-like 2 xylulose binding site 0 1 1 0 77,78,79,97,236,237,291 5 -198374 cd07808 FGGY_D-XK_EcXK-like 3 catalytic site DTD 0 1 1 5,8,236 1 -198374 cd07808 FGGY_D-XK_EcXK-like 4 metal binding site DD 0 1 1 5,236 4 -198374 cd07808 FGGY_D-XK_EcXK-like 5 MgATP binding site 0 0 1 1 5,7,8,9,10,12,236,256,257,258,298,299,301,302,314,315,317,398,399,400,403 5 -198374 cd07808 FGGY_D-XK_EcXK-like 6 N- and C-terminal domain interface 0 1 1 1 1,2,3,4,5,12,14,16,20,71,72,73,74,118,121,122,123,124,126,129,170,171,174,175,181,184,206,207,208,210,231,233,236,237,238,239,240,241,242,243,244,245,251,253,261,263,269,271,273,278,279,280,281,282,283,285,286,287,288,291,427,428,429,430,431,432,433,434,435,436,437,438,439,440,452,453 2 -198374 cd07808 FGGY_D-XK_EcXK-like 7 homodimer interface 0 1 1 0 303,306,307,349,350,351,352,353,354,355,356,360,361,362,365 2 -198375 cd07809 FGGY_D-XK_1 1 active site 0 0 1 1 5,7,8,9,10,12,78,79,80,98,242,243,262,263,264,296,303,304,306,307,317,318,320,401,402,403,406 1 -198375 cd07809 FGGY_D-XK_1 2 catalytic site DTD 0 1 1 5,8,242 1 -198375 cd07809 FGGY_D-XK_1 3 metal binding site DD 0 1 1 5,242 4 -198375 cd07809 FGGY_D-XK_1 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,242,262,263,264,303,304,306,307,317,318,320,401,402,403,406 5 -198375 cd07809 FGGY_D-XK_1 5 xylulose binding site 0 0 1 1 78,79,80,98,242,243,296 5 -198375 cd07809 FGGY_D-XK_1 6 N- and C-terminal domain interface 0 1 1 1 1,3,4,5,12,14,16,17,20,21,71,72,73,74,76,79,80,121,125,126,127,132,172,173,174,177,184,213,214,215,216,235,237,238,239,242,243,244,245,246,248,249,250,251,277,278,279,281,284,285,286,287,288,289,291,292,293,294,296,424,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,444,445,446,457,459 2 -198375 cd07809 FGGY_D-XK_1 7 putative homodimer interface 0 0 1 1 308,311,312,351,352,353,354,355,356,357,358,363,364,365,368 2 -198376 cd07810 FGGY_D-XK_2 1 putative active site 0 0 1 1 5,7,8,9,10,12,81,82,83,101,240,241,260,261,262,299,306,307,309,310,323,324,326,406,407,408,414 1 -198376 cd07810 FGGY_D-XK_2 2 catalytic site D[TS]D 0 1 1 5,8,240 1 -198376 cd07810 FGGY_D-XK_2 3 metal binding site DD 0 1 1 5,240 4 -198376 cd07810 FGGY_D-XK_2 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,240,260,261,262,306,307,309,310,323,324,326,406,407,408,414 5 -198376 cd07810 FGGY_D-XK_2 5 putative xylulose binding site 0 0 1 1 81,82,83,101,240,241,299 5 -198376 cd07810 FGGY_D-XK_2 6 putative N- and C-terminal domain interface 0 0 1 1 1,3,4,5,12,13,14,16,21,75,77,79,122,126,127,174,175,178,179,185,211,212,235,240,241,242,243,244,245,246,247,248,249,250,251,255,256,257,267,269,275,276,277,281,282,283,284,285,286,287,295,296,299,402,432,436,437,438,439,440,441,442,443,444,445,447,448,463,464 2 -198376 cd07810 FGGY_D-XK_2 7 putative homodimer interface 0 0 1 1 311,314,315,358,359,360,361,362,363,364,365,370,371,372,375 2 -198377 cd07811 FGGY_D-XK_3 1 putative active site 0 0 1 1 5,7,8,9,10,12,77,78,79,98,238,239,258,259,260,290,297,298,300,301,314,315,317,397,398,399,402 1 -198377 cd07811 FGGY_D-XK_3 2 catalytic site DTD 0 1 1 5,8,238 1 -198377 cd07811 FGGY_D-XK_3 3 metal binding site DD 0 1 1 5,238 4 -198377 cd07811 FGGY_D-XK_3 4 putative MgATP binding site 0 0 1 1 5,7,8,9,10,12,238,258,259,260,297,298,300,301,314,315,317,397,398,399,402 5 -198377 cd07811 FGGY_D-XK_3 5 putative xylulose binding site 0 0 1 1 77,78,79,98,238,239,290 5 -198377 cd07811 FGGY_D-XK_3 6 putative N- and C-terminal domain interface 0 0 1 1 1,3,4,5,12,13,14,16,20,71,73,75,120,124,125,172,173,176,177,183,209,210,233,238,239,240,241,242,243,244,245,246,247,248,249,253,254,255,265,267,273,274,275,277,278,279,280,281,282,283,286,287,290,393,420,426,427,428,429,430,431,432,433,434,435,437,438,454,455 2 -198377 cd07811 FGGY_D-XK_3 7 putative homodimer interface 0 0 1 1 302,305,306,348,349,350,351,352,353,354,355,359,360,361,364 2 -176854 cd07812 SRPBCC 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,39,41,43,45,61,63,65,72,74,89,90,92,94,101,103,105,107,121,122,123,124,125,127,128,131,132,133,136 0 -176855 cd07813 COQ10p_like 1 putative coenzyme Q binding site 0 0 1 1 0,2,4,13,14,15,17,18,33,43,45,47,49,60,62,64,70,72,83,84,86,88,98,100,102,104,115,116,117,118,119,121,122,123,125,126,127,130 5 -176856 cd07814 SRPBCC_CalC_Aha1-like 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,34,42,44,46,48,57,59,60,62,65,71,73,74,87,88,90,92,102,104,106,108,117,118,119,120,121,122,123,124,125,127,128,129,132 5 -176857 cd07815 SRPBCC_PITP 1 lipid binding site 0 1 1 1 19,20,23,27,30,37,56,58,60,62,65,67,70,74,78,79,81,83,85,87,92,94,96,99,100,106,108,185,191,193,203,207,210,211,212,215 5 -176857 cd07815 SRPBCC_PITP 2 PKC phosphorylation site 0 0 1 1 161 6 -176857 cd07815 SRPBCC_PITP 3 putatative regulatory loop 0 0 1 1 115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,179,180 0 -176857 cd07815 SRPBCC_PITP 4 putative lipid exchange loop 0 0 1 1 62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,79,80 0 -176858 cd07816 Bet_v1-like 1 hydrophobic ligand binding site 0 1 1 1 2,6,19,20,23,27,34,52,54,55,60,63,65,77,79,81,85,86,94,96,98,100,110,112,114,116,128,129,131,132,135,136,138,139,140 0 -176858 cd07816 Bet_v1-like 2 glycine-rich loop 0 0 1 1 42,43,44,45,46,47,48,49,50 0 -176859 cd07817 SRPBCC_8 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,34,40,42,44,46,58,60,63,69,71,81,82,84,86,96,98,100,102,117,118,119,120,121,123,124,125,127,128,129,132 5 -176860 cd07818 SRPBCC_1 1 putative hydrophobic ligand binding site 0 0 1 1 3,5,7,16,17,18,20,21,32,46,48,50,52,54,67,69,78,80,94,95,97,99,107,109,111,113,128,129,130,131,132,134,135,136,138,139,140,143 5 -176861 cd07819 SRPBCC_2 1 putative hydrophobic ligand binding site 0 0 1 1 3,5,7,16,17,18,20,21,33,40,42,44,46,50,52,65,67,92,93,95,97,103,105,107,109,115,116,117,118,119,125,126,127,130,131,132,135 5 -176862 cd07820 SRPBCC_3 1 putative hydrophobic ligand binding site 0 0 1 1 0,2,4,13,14,15,17,18,33,38,40,42,44,64,66,82,84,91,92,94,96,102,104,106,108,115,116,117,118,119,121,122,123,126,127,128,131 5 -176863 cd07821 PYR_PYL_RCAR_like 1 putative hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,29,31,35,46,48,50,52,58,60,62,65,72,74,76,83,86,87,88,90,92,102,104,106,108,119,120,121,122,123,125,126,127,129,130,131,134 5 -176863 cd07821 PYR_PYL_RCAR_like 2 protein interface 0 1 1 1 30,31,33,53,54,82,83,118,119,121,122,125,129 2 -176863 cd07821 PYR_PYL_RCAR_like 3 gate 0 0 1 1 53,54,56 0 -176864 cd07822 SRPBCC_4 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,31,40,42,44,46,61,63,72,74,88,89,91,93,102,104,106,108,120,121,122,123,124,126,127,128,130,131,132,135 5 -176865 cd07823 SRPBCC_5 1 putative hydrophobic ligand binding site 0 0 1 1 0,2,4,13,14,15,17,18,30,39,41,43,45,60,62,72,74,89,90,92,94,104,106,108,110,124,125,126,127,128,130,131,132,134,135,136,139 5 -176866 cd07824 SRPBCC_6 1 putative hydrophobic ligand binding site 0 0 1 1 2,4,6,15,16,17,19,20,32,42,44,46,48,66,68,77,79,89,90,92,94,102,104,106,108,122,123,124,125,126,131,132,133,136,137,138,141 5 -176867 cd07825 SRPBCC_7 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,30,41,43,45,47,64,66,72,74,93,94,96,98,105,107,109,111,123,124,125,126,127,129,130,131,133,134,135,138 5 -176868 cd07826 SRPBCC_CalC_Aha1-like_9 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,38,46,48,50,52,61,63,64,66,69,75,77,78,90,91,93,95,105,107,109,111,120,121,122,123,124,125,126,127,128,130,131,132,135 5 -143640 cd07827 RHD-n 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,103,105,106,173 3 -143652 cd07828 nitrobindin 1 heme-binding site 0 1 0 0 20,21,24,26,46,55,56,77,113,115,128,130,132,140,141 5 -270823 cd07829 STKc_CDK_like 1 active site 0 1 1 1 6,7,8,9,14,27,29,46,60,76,77,78,79,82,84,85,122,124,126,127,129,140,143,155,157,158,159,160,162,200,201 1 -270823 cd07829 STKc_CDK_like 2 ATP binding site 0 1 1 0 6,7,8,9,14,27,29,60,76,77,78,79,82,85,126,127,129,140 5 -270823 cd07829 STKc_CDK_like 3 polypeptide substrate binding site 0 1 1 0 46,84,122,124,143,155,157,158,159,160,162,200,201 2 -270823 cd07829 STKc_CDK_like 4 CDK/cyclin interface 0 1 1 1 40,42,45,46,48,49,52,53,65,67,72,111,114,115,116,117,145,147,148,149,150,154,155,267,271,272,273 2 -270823 cd07829 STKc_CDK_like 5 activation loop (A-loop) 0 1 1 1 139,140,141,142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161,162 0 -270824 cd07830 STKc_MAK_like 1 active site 0 0 1 1 6,7,8,9,14,27,29,45,60,76,77,78,79,82,84,85,123,125,127,128,130,141,144,155,157,158,159,160,162,200 1 -270824 cd07830 STKc_MAK_like 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,60,76,77,78,79,82,123,125,127,128,130,141 5 -270824 cd07830 STKc_MAK_like 3 polypeptide substrate binding site 0 0 1 1 45,84,123,125,144,155,157,158,159,160,162,200 2 -270824 cd07830 STKc_MAK_like 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,153,154,155,156,157,158,159,160,161,162 0 -270825 cd07831 STKc_MOK 1 active site 0 0 1 1 6,7,8,9,10,14,27,29,45,60,78,79,80,81,84,86,87,124,126,128,129,131,141,144,155,157,158,159,160,162,200 1 -270825 cd07831 STKc_MOK 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,60,78,79,80,81,84,124,126,128,129,131,141 5 -270825 cd07831 STKc_MOK 3 polypeptide substrate binding site 0 0 1 1 45,86,124,126,144,155,157,158,159,160,162,200 2 -270825 cd07831 STKc_MOK 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270826 cd07832 STKc_CCRK 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,47,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,158,160,161,162,163,165,203 1 -270826 cd07832 STKc_CCRK 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,84,124,126,128,129,131,142 5 -270826 cd07832 STKc_CCRK 3 polypeptide substrate binding site 0 0 1 1 47,86,124,126,145,158,160,161,162,163,165,203 2 -270826 cd07832 STKc_CCRK 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,157,158,159,160,161,162,163,164,165 0 -270827 cd07833 STKc_CDKL 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,84,124,126,128,129,131,142 5 -270827 cd07833 STKc_CDKL 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,48,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,158,160,161,162,163,165,203 1 -270827 cd07833 STKc_CDKL 3 polypeptide substrate binding site 0 0 1 1 48,86,124,126,145,158,160,161,162,163,165,203 2 -270827 cd07833 STKc_CDKL 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,163,164,165 0 -270828 cd07834 STKc_MAPK 1 ATP binding site 0 1 1 0 7,8,9,10,12,13,15,28,30,61,82,83,84,85,88,91,129,131,132,134,144,145 5 -270828 cd07834 STKc_MAPK 2 KIM docking site 0 1 1 1 58,86,87,92,103,106,113,135,136,137,138,139,293,295,298 2 -270828 cd07834 STKc_MAPK 3 activation loop (A-loop) 0 1 1 1 144,145,146,147,148,149,150,151,152,153,154,161,162,163,164,165,166,167,168,169 0 -270828 cd07834 STKc_MAPK 4 active site 0 0 1 1 7,8,9,10,12,13,15,28,30,47,61,82,83,84,85,88,90,91,127,129,131,132,134,144,145,148,162,164,165,166,167,169,207 1 -270828 cd07834 STKc_MAPK 5 polypeptide substrate binding site 0 0 1 1 47,90,127,129,148,162,164,165,166,167,169,207 2 -270829 cd07835 STKc_CDK1_CdkB_like 1 active site 0 1 1 0 6,7,8,9,14,27,29,46,60,76,77,78,79,82,84,85,123,125,127,128,130,141,144,156,158,159,160,161,163,201,202 1 -270829 cd07835 STKc_CDK1_CdkB_like 2 ATP binding site 0 1 1 0 6,7,8,9,14,27,29,60,76,77,78,79,82,85,127,128,130,141 5 -270829 cd07835 STKc_CDK1_CdkB_like 3 polypeptide substrate binding site 0 1 1 0 46,84,123,125,144,156,158,159,160,161,163,201,202 2 -270829 cd07835 STKc_CDK1_CdkB_like 4 CDK/cyclin interface 0 1 1 0 33,38,39,40,42,45,46,48,49,52,53,67,112,115,116,117,118,146,147,148,150,151,155,156,268,272,273,274 2 -270829 cd07835 STKc_CDK1_CdkB_like 5 activation loop (A-loop) 0 1 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -143341 cd07836 STKc_Pho85 1 active site 0 0 1 1 7,8,9,10,15,28,30,46,60,76,77,78,79,82,84,85,124,126,128,129,131,142,145,157,159,160,161,162,164,202,203 1 -143341 cd07836 STKc_Pho85 2 ATP binding site 0 1 1 1 7,8,9,10,15,28,30,60,76,77,78,79,80,82,85,128,129,131,142 5 -143341 cd07836 STKc_Pho85 3 polypeptide substrate binding site 0 0 1 1 46,84,124,126,145,157,159,160,161,162,164,202,203 2 -143341 cd07836 STKc_Pho85 4 CDK/cyclin interface 0 1 1 0 36,37,38,39,40,42,45,46,48,49,50,52,53,67,72,117,118,123,147,150,151,152,153,154,155,156 2 -143341 cd07836 STKc_Pho85 5 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270830 cd07837 STKc_CdkB_plant 1 active site 0 0 1 1 8,9,10,11,16,29,31,48,63,83,84,85,86,89,91,92,133,135,137,138,140,152,155,167,169,170,171,172,174,212,213 1 -270830 cd07837 STKc_CdkB_plant 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,63,83,84,85,86,89,92,137,138,140,152 5 -270830 cd07837 STKc_CdkB_plant 3 polypeptide substrate binding site 0 0 1 1 48,91,133,135,155,167,169,170,171,172,174,212,213 2 -270830 cd07837 STKc_CdkB_plant 4 CDK/cyclin interface 0 0 1 1 40,41,42,44,47,48,50,51,54,55,68,70,79,122,125,126,127,128,157,159,160,161,162,166,167,278,282,283,284 2 -270830 cd07837 STKc_CdkB_plant 5 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -270831 cd07838 STKc_CDK4_6_like 1 ATP binding site 0 1 1 1 6,7,8,9,10,11,14,27,29,63,84,85,86,87,90,135,136,138,149 5 -270831 cd07838 STKc_CDK4_6_like 2 CDK/cyclin interface 0 1 1 0 37,38,39,40,42,45,46,48,49,52,53,56,57,68,70,78,80,124,125,276,278 2 -270831 cd07838 STKc_CDK4_6_like 3 CDK/INK4 inhibitor interface 0 1 1 1 1,2,3,4,5,6,16,18,23,25,88,89,93,97,141 2 -270831 cd07838 STKc_CDK4_6_like 4 active site 0 0 1 1 6,7,8,9,10,11,14,27,29,46,63,84,85,86,87,90,92,93,131,133,135,136,138,149,152,163,165,166,167,168,170,207,208 1 -270831 cd07838 STKc_CDK4_6_like 5 polypeptide substrate binding site 0 0 1 1 46,92,131,133,152,163,165,166,167,168,170,207,208 2 -270831 cd07838 STKc_CDK4_6_like 6 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -143344 cd07839 STKc_CDK5 1 ATP binding site 0 1 1 1 7,8,9,10,15,28,30,61,77,78,79,80,83,86,127,128,130,141 5 -143344 cd07839 STKc_CDK5 2 CDK/p25 interface 0 1 1 1 34,35,39,40,42,43,44,46,47,49,50,51,53,54,68,73,117,118,119,146,147,148,149,150,151,153,154,155,156 2 -143344 cd07839 STKc_CDK5 3 active site 0 0 1 1 7,8,9,10,15,28,30,47,61,77,78,79,80,83,85,86,123,125,127,128,130,141,144,156,158,159,160,161,163,202,203 1 -143344 cd07839 STKc_CDK5 4 polypeptide substrate binding site 0 0 1 1 47,85,123,125,144,156,158,159,160,161,163,202 2 -143344 cd07839 STKc_CDK5 5 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270832 cd07840 STKc_CDK9_like 1 ATP binding site 0 1 1 1 6,7,8,9,14,27,29,60,82,83,84,85,88,91,132,133,135,146 5 -270832 cd07840 STKc_CDK9_like 2 CDK/cyclin interface 0 1 1 0 38,39,40,42,45,49,52,62,63,64,65,67,78 2 -270832 cd07840 STKc_CDK9_like 3 active site 0 0 1 1 6,7,8,9,14,27,29,46,60,82,83,84,85,88,90,91,128,130,132,133,135,146,149,162,164,165,166,167,169,207,208 1 -270832 cd07840 STKc_CDK9_like 4 polypeptide substrate binding site 0 0 1 1 46,90,128,130,149,162,164,165,166,167,169,207,208 2 -270832 cd07840 STKc_CDK9_like 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,161,162,163,164,165,166,167,168,169 0 -270833 cd07841 STKc_CDK7 1 ATP binding site 0 1 1 0 7,9,10,11,12,13,15,28,30,64,80,81,82,83,130,131,149 5 -270833 cd07841 STKc_CDK7 2 active site 0 0 1 1 7,8,9,10,12,13,15,28,30,50,64,80,81,82,83,86,88,89,126,128,130,131,133,144,147,149,159,161,162,163,164,166,204,205 1 -270833 cd07841 STKc_CDK7 3 polypeptide substrate binding site 0 0 1 1 50,88,126,128,147,159,161,162,163,164,166,204,205 2 -270833 cd07841 STKc_CDK7 4 CDK/cyclin interface 0 0 1 1 42,43,44,46,49,50,52,53,56,57,69,71,76,115,118,119,120,121,149,151,152,153,154,158,159,270,274,275,276 2 -270833 cd07841 STKc_CDK7 5 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166 0 -270834 cd07842 STKc_CDK8_like 1 ATP binding site 0 1 1 1 7,8,9,10,15,30,32,64,82,83,84,85,88,91,136,137,139,154 5 -270834 cd07842 STKc_CDK8_like 2 CDK/cyclin interface 0 1 1 0 43,44,46,49,50,52,53,54,56,57,58,69,71,76,77,78,126,127,128 2 -270834 cd07842 STKc_CDK8_like 3 active site 0 0 1 1 7,8,9,10,15,30,32,50,64,82,83,84,85,88,90,91,132,134,136,137,139,154,157,172,174,175,176,177,179,217,218 1 -270834 cd07842 STKc_CDK8_like 4 polypeptide substrate binding site 0 0 1 1 50,90,132,134,157,172,174,175,176,177,179,217,218 2 -270834 cd07842 STKc_CDK8_like 5 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,170,171,172,173,174,175,176,177,178,179 0 -173741 cd07843 STKc_CDC2L1 1 active site 0 0 1 1 12,13,14,15,20,33,35,52,66,84,85,86,87,90,92,93,130,132,134,135,137,148,151,163,165,166,167,168,170,208,209 1 -173741 cd07843 STKc_CDC2L1 2 ATP binding site 0 0 1 1 12,13,14,15,20,33,35,66,84,85,86,87,90,93,134,135,137,148 5 -173741 cd07843 STKc_CDC2L1 3 polypeptide substrate binding site 0 0 1 1 52,92,130,132,151,163,165,166,167,168,170,208,209 2 -173741 cd07843 STKc_CDC2L1 4 CDK/cyclin interface 0 0 1 1 44,45,46,48,51,52,54,55,58,59,71,73,80,119,122,123,124,125,153,155,156,157,158,162,163,278,282,283,284 2 -173741 cd07843 STKc_CDC2L1 5 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166,167,168,169,170 0 -270835 cd07844 STKc_PCTAIRE_like 1 ATP binding site 0 1 1 1 7,8,9,10,15,28,30,60,76,77,78,79,82,85,126,127,129,140 5 -270835 cd07844 STKc_PCTAIRE_like 2 active site 0 0 1 1 7,8,9,10,15,28,30,46,60,76,77,78,79,82,84,85,122,124,126,127,129,140,143,155,157,158,159,160,162,200,201 1 -270835 cd07844 STKc_PCTAIRE_like 3 polypeptide substrate binding site 0 0 1 1 46,84,122,124,143,155,157,158,159,160,162,200,201 2 -270835 cd07844 STKc_PCTAIRE_like 4 putative CDK/cyclin interface 0 0 1 1 38,39,40,42,45,46,48,49,52,53,65,67,72,111,114,115,116,117,145,147,148,149,150,154,155,271,275,276,277 2 -270835 cd07844 STKc_PCTAIRE_like 5 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -173742 cd07845 STKc_CDK10 1 active site 0 0 1 1 14,15,16,17,22,35,37,54,68,86,87,88,89,92,94,95,132,134,136,137,139,150,153,165,167,168,169,170,172,210,211 1 -173742 cd07845 STKc_CDK10 2 ATP binding site 0 0 1 1 14,15,16,17,22,35,37,68,86,87,88,89,92,95,136,137,139,150 5 -173742 cd07845 STKc_CDK10 3 polypeptide substrate binding site 0 0 1 1 54,94,132,134,153,165,167,168,169,170,172,210,211 2 -173742 cd07845 STKc_CDK10 4 CDK/cyclin interface 0 0 1 1 46,47,48,50,53,54,56,57,60,61,73,75,82,121,124,125,126,127,155,157,158,159,160,164,165,278,282,283,284 2 -173742 cd07845 STKc_CDK10 5 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,162,163,164,165,166,167,168,169,170,171,172 0 -270836 cd07846 STKc_CDKL2_3 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,84,124,126,128,129,131,142 5 -270836 cd07846 STKc_CDKL2_3 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,48,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,157,159,160,161,162,164,202 1 -270836 cd07846 STKc_CDKL2_3 3 polypeptide substrate binding site 0 0 1 1 48,86,124,126,145,157,159,160,161,162,164,202 2 -270836 cd07846 STKc_CDKL2_3 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270837 cd07847 STKc_CDKL1_4 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,84,124,126,128,129,131,142 5 -270837 cd07847 STKc_CDKL1_4 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,48,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,157,159,160,161,162,164,202 1 -270837 cd07847 STKc_CDKL1_4 3 polypeptide substrate binding site 0 0 1 1 48,86,124,126,145,157,159,160,161,162,164,202 2 -270837 cd07847 STKc_CDKL1_4 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164 0 -270838 cd07848 STKc_CDKL5 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,48,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,158,160,161,162,163,165,202 1 -270838 cd07848 STKc_CDKL5 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,84,124,126,128,129,131,142 5 -270838 cd07848 STKc_CDKL5 3 polypeptide substrate binding site 0 0 1 1 48,86,124,126,145,158,160,161,162,163,165,202 2 -270838 cd07848 STKc_CDKL5 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270839 cd07849 STKc_ERK1_2_like 1 ATP binding site 0 1 1 0 12,13,14,15,17,18,20,33,35,65,86,87,88,89,92,95,134,135,137,147,148 5 -270839 cd07849 STKc_ERK1_2_like 2 KIM docking site 0 1 1 1 62,90,91,95,96,99,100,105,106,109,112,116,138,139,140,141,142,143,297,299,302 2 -270839 cd07849 STKc_ERK1_2_like 3 active site 0 0 1 1 12,13,14,15,17,18,20,33,35,51,65,86,87,88,89,92,94,95,130,132,134,135,137,147,148,151,166,168,169,170,171,173,211 1 -270839 cd07849 STKc_ERK1_2_like 4 polypeptide substrate binding site 0 0 1 1 51,94,130,132,151,166,168,169,170,171,173,211 2 -270839 cd07849 STKc_ERK1_2_like 5 activation loop (A-loop) 0 1 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -270840 cd07850 STKc_JNK 1 ATP binding site 0 1 1 0 7,8,9,10,11,12,13,15,28,30,61,83,84,85,86,87,88,89,133,143 5 -270840 cd07850 STKc_JNK 2 KIM docking site 0 1 1 1 87,93,102,105,134,135,136,137,138,299,300,302,305 2 -270840 cd07850 STKc_JNK 3 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,47,61,83,84,85,86,87,88,89,91,92,126,128,130,131,133,143,144,147,158,160,161,162,163,165,202 1 -270840 cd07850 STKc_JNK 4 polypeptide substrate binding site 0 0 1 1 47,91,126,128,147,158,160,161,162,163,165,202 2 -270840 cd07850 STKc_JNK 5 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,157,158,159,160,161,162,163,164,165 0 -143356 cd07851 STKc_p38 1 ATP binding site 0 1 1 0 22,23,27,29,30,43,45,67,76,78,96,98,99,100,101,104,142,144,146,147,159,160,162 5 -143356 cd07851 STKc_p38 2 KIM docking site 0 1 1 1 103,108,117,118,121,150,151,152,153,154,303 2 -143356 cd07851 STKc_p38 3 lipid binding site 0 1 1 1 183,184,187,189,191,192,193,228,234,238,241,251,283,284,285,286 5 -143356 cd07851 STKc_p38 4 activation loop (A-loop) 0 1 1 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -143356 cd07851 STKc_p38 5 active site 0 0 1 1 22,23,24,25,27,29,30,43,45,62,67,76,78,96,98,99,100,101,104,106,107,142,144,146,147,149,159,160,162,163,172,174,175,176,177,179,217 1 -143356 cd07851 STKc_p38 6 polypeptide substrate binding site 0 0 1 1 62,106,142,144,163,172,174,175,176,177,179,217 2 -270841 cd07852 STKc_MAPK15-like 1 active site 0 0 1 1 14,15,16,17,19,20,22,35,37,54,69,87,88,89,90,93,95,96,131,133,135,136,138,148,149,152,169,171,172,173,174,176,214 1 -270841 cd07852 STKc_MAPK15-like 2 ATP binding site 0 0 1 1 14,15,16,17,19,20,22,35,37,69,87,88,89,90,93,96,133,135,136,138,148,149 5 -270841 cd07852 STKc_MAPK15-like 3 polypeptide substrate binding site 0 0 1 1 54,95,131,133,152,169,171,172,173,174,176,214 2 -270841 cd07852 STKc_MAPK15-like 4 KIM docking site 0 0 1 1 66,91,92,97,107,110,117,139,140,141,142,143,300,302,305 2 -270841 cd07852 STKc_MAPK15-like 5 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,167,168,169,170,171,172,173,174,175,176 0 -173748 cd07853 STKc_NLK 1 active site 0 0 1 1 7,8,9,10,12,13,15,28,30,47,61,82,83,84,85,88,90,91,127,129,131,132,134,144,145,148,161,163,164,165,166,168,206 1 -173748 cd07853 STKc_NLK 2 ATP binding site 0 0 1 1 7,8,9,10,12,13,15,28,30,61,82,83,84,85,88,91,129,131,132,134,144,145 5 -173748 cd07853 STKc_NLK 3 polypeptide substrate binding site 0 0 1 1 47,90,127,129,148,161,163,164,165,166,168,206 2 -173748 cd07853 STKc_NLK 4 KIM docking site 0 0 1 1 58,86,87,92,103,106,113,135,136,137,138,139,293,295,298 2 -173748 cd07853 STKc_NLK 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -143359 cd07854 STKc_MAPK4_6 1 active site 0 0 1 1 12,13,14,15,17,18,20,33,35,50,64,94,95,96,97,100,102,103,138,140,142,143,145,156,157,160,175,177,178,179,180,182,220 1 -143359 cd07854 STKc_MAPK4_6 2 ATP binding site 0 0 1 1 12,13,14,15,17,18,20,33,35,64,94,95,96,97,100,103,140,142,143,145,156,157 5 -143359 cd07854 STKc_MAPK4_6 3 polypeptide substrate binding site 0 0 1 1 50,102,138,140,160,175,177,178,179,180,182,220 2 -143359 cd07854 STKc_MAPK4_6 4 KIM docking site 0 0 1 1 61,98,99,104,114,117,124,146,147,148,149,151,305,307,310 2 -143359 cd07854 STKc_MAPK4_6 5 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -270842 cd07855 STKc_ERK5 1 ATP binding site 0 1 1 1 12,13,14,15,17,18,20,33,35,66,88,89,90,91,94,97,135,137,138,140,150,151 5 -270842 cd07855 STKc_ERK5 2 KIM docking site 0 1 1 1 63,92,93,98,109,112,119,141,142,143,144,145,301,303,306 2 -270842 cd07855 STKc_ERK5 3 active site 0 0 1 1 12,13,14,15,17,18,20,33,35,52,66,88,89,90,91,94,96,97,133,135,137,138,140,150,151,154,170,172,173,174,175,177,215 1 -270842 cd07855 STKc_ERK5 4 polypeptide substrate binding site 0 0 1 1 52,96,133,135,154,170,172,173,174,175,177,215 2 -270842 cd07855 STKc_ERK5 5 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 0 -270843 cd07856 STKc_Sty1_Hog1 1 active site 0 0 1 1 17,18,19,20,22,23,25,38,40,57,71,88,89,90,91,94,96,97,132,134,136,137,139,149,150,153,162,164,165,166,167,169,207 1 -270843 cd07856 STKc_Sty1_Hog1 2 ATP binding site 0 0 1 1 17,18,19,20,22,23,25,38,40,71,88,89,90,91,94,97,134,136,137,139,149,150 5 -270843 cd07856 STKc_Sty1_Hog1 3 polypeptide substrate binding site 0 0 1 1 57,96,132,134,153,162,164,165,166,167,169,207 2 -270843 cd07856 STKc_Sty1_Hog1 4 KIM docking site 0 0 1 1 68,92,93,98,108,111,118,140,141,142,143,144,293,295,298 2 -270843 cd07856 STKc_Sty1_Hog1 5 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -173750 cd07857 STKc_MPK1 1 active site 0 0 1 1 7,8,9,10,12,13,15,30,32,49,64,84,85,86,87,90,92,93,129,131,133,134,136,146,147,150,166,168,169,170,171,173,211 1 -173750 cd07857 STKc_MPK1 2 ATP binding site 0 0 1 1 7,8,9,10,12,13,15,30,32,64,84,85,86,87,90,93,131,133,134,136,146,147 5 -173750 cd07857 STKc_MPK1 3 polypeptide substrate binding site 0 0 1 1 49,92,129,131,150,166,168,169,170,171,173,211 2 -173750 cd07857 STKc_MPK1 4 KIM docking site 0 0 1 1 61,88,89,94,105,108,115,137,138,139,140,141,297,299,302 2 -173750 cd07857 STKc_MPK1 5 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -143363 cd07858 STKc_TEY_MAPK 1 active site 0 0 1 1 12,13,14,15,17,18,20,33,35,52,66,87,88,89,90,93,95,96,132,134,136,137,139,149,150,153,165,167,168,169,170,172,210 1 -143363 cd07858 STKc_TEY_MAPK 2 ATP binding site 0 0 1 1 12,13,14,15,17,18,20,33,35,66,87,88,89,90,93,96,134,136,137,139,149,150 5 -143363 cd07858 STKc_TEY_MAPK 3 polypeptide substrate binding site 0 0 1 1 52,95,132,134,153,165,167,168,169,170,172,210 2 -143363 cd07858 STKc_TEY_MAPK 4 KIM docking site 0 0 1 1 63,91,92,97,108,111,118,140,141,142,143,144,296,298,301 2 -143363 cd07858 STKc_TEY_MAPK 5 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,162,163,164,165,166,167,168,169,170,171,172 0 -143364 cd07859 STKc_TDY_MAPK 1 active site 0 0 1 1 7,8,9,10,12,13,15,28,30,47,61,82,83,84,85,88,90,91,127,129,131,132,134,144,145,148,163,165,166,167,168,170,209 1 -143364 cd07859 STKc_TDY_MAPK 2 ATP binding site 0 0 1 1 7,8,9,10,12,13,15,28,30,61,82,83,84,85,88,91,129,131,132,134,144,145 5 -143364 cd07859 STKc_TDY_MAPK 3 polypeptide substrate binding site 0 0 1 1 47,90,127,129,148,163,165,166,167,168,170,209 2 -143364 cd07859 STKc_TDY_MAPK 4 KIM docking site 0 0 1 1 58,86,87,92,103,106,113,135,136,137,138,139,295,297,300 2 -143364 cd07859 STKc_TDY_MAPK 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270844 cd07860 STKc_CDK2_3 1 active site 0 1 1 0 7,8,9,10,15,28,30,47,61,77,78,79,80,83,85,86,124,126,128,129,131,142,145,157,159,160,161,162,164,202,203 1 -270844 cd07860 STKc_CDK2_3 2 ATP binding site 0 1 1 0 7,8,9,10,15,28,30,61,77,78,79,80,83,86,128,129,131,142 5 -270844 cd07860 STKc_CDK2_3 3 polypeptide substrate binding site 0 1 1 0 47,85,124,126,145,157,159,160,161,162,164,202,203 2 -270844 cd07860 STKc_CDK2_3 4 CDK/cyclin interface 0 1 1 0 34,38,39,40,41,43,46,47,49,50,53,54,68,69,70,113,116,117,118,119,147,148,149,151,152,154,155,156,157,269,273,274,275 2 -270844 cd07860 STKc_CDK2_3 5 activation loop (A-loop) 0 1 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270845 cd07861 STKc_CDK1_euk 1 active site 0 0 1 1 7,8,9,10,15,28,30,47,61,77,78,79,80,83,85,86,125,127,129,130,132,143,146,158,160,161,162,163,165,203,204 1 -270845 cd07861 STKc_CDK1_euk 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,61,77,78,79,80,83,86,129,130,132,143 5 -270845 cd07861 STKc_CDK1_euk 3 polypeptide substrate binding site 0 0 1 1 47,85,125,127,146,158,160,161,162,163,165,203,204 2 -270845 cd07861 STKc_CDK1_euk 4 CDK/cyclin interface 0 0 1 1 34,39,40,41,43,46,47,49,50,53,54,68,114,117,118,119,120,148,149,150,152,153,157,158,270,274,275,276 2 -270845 cd07861 STKc_CDK1_euk 5 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270846 cd07862 STKc_CDK6 1 ATP binding site 0 1 1 1 8,9,10,11,12,13,16,30,32,66,87,88,89,90,93,138,139,141,152 5 -270846 cd07862 STKc_CDK6 2 CDK/cyclin interface 0 1 1 0 40,41,42,43,45,47,48,49,51,52,55,56,60,71,73,75,83,127,128,129,157,158,159,160,161,162,163,164,165,166,184,187,281 2 -270846 cd07862 STKc_CDK6 3 CDK/INK4 inhibitor interface 0 1 1 1 3,4,5,6,7,8,18,20,26,28,91,92,96,100,144 2 -270846 cd07862 STKc_CDK6 4 active site 0 0 1 1 8,9,10,11,12,13,16,30,32,49,66,87,88,89,90,93,95,96,134,136,138,139,141,152,155,166,168,169,170,171,173,210,211 1 -270846 cd07862 STKc_CDK6 5 polypeptide substrate binding site 0 0 1 1 49,95,134,136,155,166,168,169,170,171,173,210,211 2 -270846 cd07862 STKc_CDK6 6 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -143368 cd07863 STKc_CDK4 1 CDK/cyclin interface 0 1 1 0 38,39,40,41,43,45,46,47,49,50,53,54,57,58,59,68,69,70,71,74 2 -143368 cd07863 STKc_CDK4 2 active site 0 0 1 1 7,8,9,10,11,12,15,28,30,47,64,85,86,87,88,91,93,94,132,134,136,137,139,150,153,164,166,167,168,169,171,208,209 1 -143368 cd07863 STKc_CDK4 3 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,64,85,86,87,88,91,94,136,137,139,150 5 -143368 cd07863 STKc_CDK4 4 polypeptide substrate binding site 0 0 1 1 47,93,132,134,153,164,166,167,168,169,171,208 2 -143368 cd07863 STKc_CDK4 5 CDK/INK4 inhibitor interface 0 0 1 1 2,3,4,5,6,7,17,19,24,26,89,90,94,98,142 2 -143368 cd07863 STKc_CDK4 6 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -270847 cd07864 STKc_CDK12 1 active site 0 0 1 1 14,15,16,17,22,35,37,54,68,94,95,96,97,100,102,103,140,142,144,145,147,158,161,174,176,177,178,179,181,219,220 1 -270847 cd07864 STKc_CDK12 2 ATP binding site 0 0 1 1 14,15,16,17,22,35,37,68,94,95,96,97,100,103,144,145,147,158 5 -270847 cd07864 STKc_CDK12 3 polypeptide substrate binding site 0 0 1 1 54,102,140,142,161,174,176,177,178,179,181,219,220 2 -270847 cd07864 STKc_CDK12 4 CDK/cyclin interface 0 0 1 1 46,47,48,50,53,57,60,70,71,72,73,75,90 2 -270847 cd07864 STKc_CDK12 5 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,177,178,179,180,181 0 -270848 cd07865 STKc_CDK9 1 ATP binding site 0 1 1 1 19,20,21,22,27,40,42,73,97,98,99,100,103,106,147,148,150,161 5 -270848 cd07865 STKc_CDK9 2 CDK/cyclin interface 0 1 1 0 2,3,4,5,6,7,51,52,53,55,58,62,65,75,76,77,78,80,93 2 -270848 cd07865 STKc_CDK9 3 active site 0 0 1 1 19,20,21,22,27,40,42,59,73,97,98,99,100,103,105,106,143,145,147,148,150,161,164,180,182,183,184,185,187,225,226 1 -270848 cd07865 STKc_CDK9 4 polypeptide substrate binding site 0 0 1 1 59,105,143,145,164,180,182,183,184,185,187,225,226 2 -270848 cd07865 STKc_CDK9 5 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,181,182,183,184,185,186,187 0 -270849 cd07866 STKc_BUR1 1 active site 0 0 1 1 15,16,17,18,23,36,38,55,69,93,94,95,96,99,101,102,139,141,143,144,146,157,160,183,185,186,187,188,190,228,229 1 -270849 cd07866 STKc_BUR1 2 ATP binding site 0 0 1 1 15,16,17,18,23,36,38,69,93,94,95,96,99,102,143,144,146,157 5 -270849 cd07866 STKc_BUR1 3 polypeptide substrate binding site 0 0 1 1 55,101,139,141,160,183,185,186,187,188,190,228,229 2 -270849 cd07866 STKc_BUR1 4 CDK/cyclin interface 0 0 1 1 47,48,49,51,54,58,61,71,72,73,74,76,89 2 -270849 cd07866 STKc_BUR1 5 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -270850 cd07867 STKc_CDC2L6 1 active site 0 0 1 1 9,10,11,12,17,32,34,47,61,79,80,81,82,85,87,88,133,135,137,138,140,155,158,173,175,176,177,178,180,218,219 1 -270850 cd07867 STKc_CDC2L6 2 ATP binding site 0 0 1 1 9,10,11,12,17,32,34,61,79,80,81,82,85,88,137,138,140,155 5 -270850 cd07867 STKc_CDC2L6 3 polypeptide substrate binding site 0 0 1 1 47,87,133,135,158,173,175,176,177,178,180,218,219 2 -270850 cd07867 STKc_CDC2L6 4 CDK/cyclin interface 0 0 1 1 40,41,43,46,47,49,50,51,53,54,55,66,68,73,74,75,127,128,129 2 -270850 cd07867 STKc_CDC2L6 5 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -270851 cd07868 STKc_CDK8 1 ATP binding site 0 1 1 1 24,25,26,27,32,47,49,76,94,95,96,97,100,103,152,153,155,170 5 -270851 cd07868 STKc_CDK8 2 CDK/cyclin interface 0 1 1 0 0,1,2,3,6,10,55,56,58,61,62,64,65,66,68,69,70,81,83,84,85,88,89,90,142,143,144 2 -270851 cd07868 STKc_CDK8 3 active site 0 0 1 1 24,25,26,27,32,47,49,62,76,94,95,96,97,100,102,103,148,150,152,153,155,170,173,188,190,191,192,193,195,233,234 1 -270851 cd07868 STKc_CDK8 4 polypeptide substrate binding site 0 0 1 1 62,102,148,150,173,188,190,191,192,193,195,233,234 2 -270851 cd07868 STKc_CDK8 5 activation loop (A-loop) 0 0 1 1 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 0 -143374 cd07869 STKc_PFTAIRE1 1 active site 0 0 1 1 12,13,14,15,20,33,35,51,65,81,82,83,84,87,89,90,127,129,131,132,134,145,148,160,162,163,164,165,167,205,206 1 -143374 cd07869 STKc_PFTAIRE1 2 ATP binding site 0 0 1 1 12,13,14,15,20,33,35,65,81,82,83,84,87,90,131,132,134,145 5 -143374 cd07869 STKc_PFTAIRE1 3 polypeptide substrate binding site 0 0 1 1 51,89,127,129,148,160,162,163,164,165,167,205,206 2 -143374 cd07869 STKc_PFTAIRE1 4 putative CDK/cyclin interface 0 0 1 1 43,44,45,47,50,51,53,54,57,58,70,72,77,116,119,120,121,122,150,152,153,154,155,159,160,276,280,281,282 2 -143374 cd07869 STKc_PFTAIRE1 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270852 cd07870 STKc_PFTAIRE2 1 active site 0 0 1 1 7,8,9,10,15,28,30,46,60,76,77,78,79,82,84,85,122,124,126,127,129,140,143,155,157,158,159,160,162,200,201 1 -270852 cd07870 STKc_PFTAIRE2 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,60,76,77,78,79,82,85,126,127,129,140 5 -270852 cd07870 STKc_PFTAIRE2 3 polypeptide substrate binding site 0 0 1 1 46,84,122,124,143,155,157,158,159,160,162,200,201 2 -270852 cd07870 STKc_PFTAIRE2 4 putative CDK/cyclin interface 0 0 1 1 38,39,40,42,45,46,48,49,52,53,65,67,72,111,114,115,116,117,145,147,148,149,150,154,155,271,275,276,277 2 -270852 cd07870 STKc_PFTAIRE2 5 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270853 cd07871 STKc_PCTAIRE3 1 active site 0 0 1 1 12,13,14,15,20,33,35,51,65,81,82,83,84,87,89,90,127,129,131,132,134,145,148,160,162,163,164,165,167,205,206 1 -270853 cd07871 STKc_PCTAIRE3 2 ATP binding site 0 0 1 1 12,13,14,15,20,33,35,65,81,82,83,84,87,90,131,132,134,145 5 -270853 cd07871 STKc_PCTAIRE3 3 polypeptide substrate binding site 0 0 1 1 51,89,127,129,148,160,162,163,164,165,167,205,206 2 -270853 cd07871 STKc_PCTAIRE3 4 putative CDK/cyclin interface 0 0 1 1 43,44,45,47,50,51,53,54,57,58,70,72,77,116,119,120,121,122,150,152,153,154,155,159,160,273,277,278,279 2 -270853 cd07871 STKc_PCTAIRE3 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -143377 cd07872 STKc_PCTAIRE2 1 active site 0 0 1 1 13,14,15,16,21,34,36,52,66,82,83,84,85,88,90,91,128,130,132,133,135,146,149,161,163,164,165,166,168,206,207 1 -143377 cd07872 STKc_PCTAIRE2 2 ATP binding site 0 0 1 1 13,14,15,16,21,34,36,66,82,83,84,85,88,91,132,133,135,146 5 -143377 cd07872 STKc_PCTAIRE2 3 polypeptide substrate binding site 0 0 1 1 52,90,128,130,149,161,163,164,165,166,168,206,207 2 -143377 cd07872 STKc_PCTAIRE2 4 putative CDK/cyclin interface 0 0 1 1 44,45,46,48,51,52,54,55,58,59,71,73,78,117,120,121,122,123,151,153,154,155,156,160,161,274,278,279,280 2 -143377 cd07872 STKc_PCTAIRE2 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270854 cd07873 STKc_PCTAIRE1 1 ATP binding site 0 1 1 1 9,10,11,12,17,30,32,62,78,79,80,81,84,87,128,129,131,142 5 -270854 cd07873 STKc_PCTAIRE1 2 active site 0 0 1 1 9,10,11,12,17,30,32,48,62,78,79,80,81,84,86,87,124,126,128,129,131,142,145,157,159,160,161,162,164,202,203 1 -270854 cd07873 STKc_PCTAIRE1 3 polypeptide substrate binding site 0 0 1 1 48,86,124,126,145,157,159,160,161,162,164,202,203 2 -270854 cd07873 STKc_PCTAIRE1 4 putative CDK/cyclin interface 0 0 1 1 40,41,42,44,47,48,50,51,54,55,67,69,74,113,116,117,118,119,147,149,150,151,152,156,157,270,274,275,276 2 -270854 cd07873 STKc_PCTAIRE1 5 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -143379 cd07874 STKc_JNK3 1 ATP binding site 0 1 1 0 24,25,26,27,28,29,30,32,45,47,78,80,98,100,101,102,103,105,106,109,145,147,148,150,160 5 -143379 cd07874 STKc_JNK3 2 active site 0 0 1 1 24,25,26,27,28,29,30,32,45,47,64,78,80,98,100,101,102,103,105,106,108,109,143,145,147,148,150,160,161,164,175,177,178,179,180,182,219 1 -143379 cd07874 STKc_JNK3 3 polypeptide substrate binding site 0 0 1 1 64,108,143,145,164,175,177,178,179,180,182,219 2 -143379 cd07874 STKc_JNK3 4 KIM docking site 0 0 1 1 104,110,119,122,151,152,153,154,155,315,316,318,321 2 -143379 cd07874 STKc_JNK3 5 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -143380 cd07875 STKc_JNK1 1 ATP binding site 0 1 1 1 31,32,33,34,35,36,37,39,52,54,85,107,108,109,110,111,112,113,157,167 5 -143380 cd07875 STKc_JNK1 2 KIM docking site 0 1 1 1 111,117,126,129,158,159,160,161,162,322,323,325,328 2 -143380 cd07875 STKc_JNK1 3 allosteric inhibitor binding site 0 1 1 1 177,179,196,197,198,229,230,233,252,254,255,258 5 -143380 cd07875 STKc_JNK1 4 active site 0 0 1 1 31,32,33,34,35,36,37,39,52,54,71,85,107,108,109,110,111,112,113,115,116,150,152,154,155,157,167,168,171,182,184,185,186,187,189,226 1 -143380 cd07875 STKc_JNK1 5 polypeptide substrate binding site 0 0 1 1 71,115,150,152,171,182,184,185,186,187,189,226 2 -143380 cd07875 STKc_JNK1 6 activation loop (A-loop) 0 0 1 1 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 0 -143381 cd07876 STKc_JNK2 1 ATP binding site 0 1 1 1 28,29,30,31,32,33,34,36,49,51,82,104,105,106,107,108,109,110,154,164 5 -143381 cd07876 STKc_JNK2 2 active site 0 0 1 1 28,29,30,31,32,33,34,36,49,51,68,82,104,105,106,107,108,109,110,112,113,147,149,151,152,154,164,165,168,179,181,182,183,184,186,223 1 -143381 cd07876 STKc_JNK2 3 polypeptide substrate binding site 0 0 1 1 68,112,147,149,168,179,181,182,183,184,186,223 2 -143381 cd07876 STKc_JNK2 4 KIM docking site 0 0 1 1 108,114,123,126,155,156,157,158,159,319,320,322,325 2 -143381 cd07876 STKc_JNK2 5 activation loop (A-loop) 0 0 1 1 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -143382 cd07877 STKc_p38alpha 1 ATP binding site 0 1 1 0 24,25,29,31,32,45,47,69,78,80,98,100,101,102,103,106,144,146,148,149,161,162,164 5 -143382 cd07877 STKc_p38alpha 2 KIM docking site 0 1 1 1 105,110,113,114,119,120,123,152,153,154,155,156,305 2 -143382 cd07877 STKc_p38alpha 3 lipid binding site 0 1 1 1 185,186,189,191,193,194,195,230,236,240,243,253,285,286,287,288 5 -143382 cd07877 STKc_p38alpha 4 activation loop (A-loop) 0 1 1 1 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -143382 cd07877 STKc_p38alpha 5 active site 0 0 1 1 24,25,26,27,29,31,32,45,47,64,69,78,80,98,100,101,102,103,106,108,109,144,146,148,149,151,161,162,164,165,174,176,177,178,179,181,219 1 -143382 cd07877 STKc_p38alpha 6 polypeptide substrate binding site 0 0 1 1 64,108,144,146,165,174,176,177,178,179,181,219 2 -143383 cd07878 STKc_p38beta 1 ATP binding site 0 1 1 1 22,23,27,29,30,43,45,67,76,78,96,98,99,100,101,104,142,144,146,147,159,160,162 5 -143383 cd07878 STKc_p38beta 2 active site 0 0 1 1 22,23,24,25,27,29,30,43,45,62,67,76,78,96,98,99,100,101,104,106,107,142,144,146,147,149,159,160,162,163,172,174,175,176,177,179,217 1 -143383 cd07878 STKc_p38beta 3 polypeptide substrate binding site 0 0 1 1 62,106,142,144,163,172,174,175,176,177,179,217 2 -143383 cd07878 STKc_p38beta 4 KIM docking site 0 0 1 1 103,108,117,118,121,150,151,152,153,154,303 2 -143383 cd07878 STKc_p38beta 5 lipid binding site 0 0 1 1 183,184,187,189,191,192,193,228,234,238,241,251,283,284,285,286 5 -143383 cd07878 STKc_p38beta 6 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -143384 cd07879 STKc_p38delta 1 active site 0 0 1 1 22,23,24,25,27,29,30,43,45,62,67,76,78,96,98,99,100,101,104,106,107,141,143,145,146,148,158,159,161,162,171,173,174,175,176,178,216 1 -143384 cd07879 STKc_p38delta 2 ATP binding site 0 0 1 1 22,23,27,29,30,43,45,67,76,78,96,98,99,100,101,104,141,143,145,146,158,159,161 5 -143384 cd07879 STKc_p38delta 3 polypeptide substrate binding site 0 0 1 1 62,106,141,143,162,171,173,174,175,176,178,216 2 -143384 cd07879 STKc_p38delta 4 KIM docking site 0 0 1 1 103,108,116,117,120,149,150,151,152,153,302 2 -143384 cd07879 STKc_p38delta 5 lipid binding site 0 0 1 1 182,183,186,188,190,191,192,227,233,237,240,250,282,283,284,285 5 -143384 cd07879 STKc_p38delta 6 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -143385 cd07880 STKc_p38gamma 1 ATP binding site 0 1 1 1 22,23,27,29,30,43,45,67,76,78,96,98,99,100,101,104,142,144,146,147,159,160,162 5 -143385 cd07880 STKc_p38gamma 2 KIM docking site 0 0 1 1 103,108,117,118,121,150,151,152,153,154,303 2 -143385 cd07880 STKc_p38gamma 3 lipid binding site 0 0 1 1 183,184,187,189,191,192,193,228,234,238,241,251,283,284,285,286 5 -143385 cd07880 STKc_p38gamma 4 active site 0 0 1 1 22,23,24,25,27,29,30,43,45,62,67,76,78,96,98,99,100,101,104,106,107,142,144,146,147,149,159,160,162,163,172,174,175,176,177,179,217 1 -143385 cd07880 STKc_p38gamma 5 polypeptide substrate binding site 0 0 1 1 62,106,142,144,163,172,174,175,176,177,179,217 2 -143385 cd07880 STKc_p38gamma 6 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -143641 cd07881 RHD-n_NFAT 1 DNA binding site 0 1 1 0 23,26,28,29,31,32,33,81,122,124,125,139,140,142,173 3 -143642 cd07882 RHD-n_TonEBP 1 DNA binding site 0 1 1 0 13,16,18,19,20,21,22,23,109,111,112,127,129,160 3 -143643 cd07883 RHD-n_NFkB 1 DNA binding site 0 1 1 0 14,16,17,19,20,23,24,25,101,103,104,196 3 -143644 cd07884 RHD-n_Relish 1 DNA binding site 0 0 1 1 13,15,16,18,19,22,23,24,25,106,108,109,158 3 -143645 cd07885 RHD-n_RelA 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,103,104,105,168 3 -143646 cd07886 RHD-n_RelB 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,24,26,106,107,108 3 -143647 cd07887 RHD-n_Dorsal_Dif 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,102,104,105,106,139,171 3 -143579 cd07888 CRD_corin_2 1 putative Wnt binding site 0 0 1 1 8,10,11,14,15,16 2 -143628 cd07890 CYTH-like_AC_IV-like 1 putative active site 0 1 1 1 0,2,4,31,33,34,35,50,52,54,65,78,106,108,121,131,133,165 1 -143628 cd07890 CYTH-like_AC_IV-like 2 putative metal binding residues 0 0 1 1 0,2,131,133 4 -143628 cd07890 CYTH-like_AC_IV-like 3 putative triphosphate binding site 0 1 1 1 2,4,34,50,54,65,78,108,131 4 -143628 cd07890 CYTH-like_AC_IV-like 4 dimer interface 0 1 1 0 47,49,62,64,66,67,77,79,80,81,82,83,85,88,89,91,92,93,95,96 2 -143628 cd07890 CYTH-like_AC_IV-like 5 signature motif 0 0 1 1 0,2,4 0 -143629 cd07891 CYTH-like_CthTTM-like_1 1 putative active site 0 0 1 1 1,3,37,39,50,60,62,84,86,99,112,114 1 -143629 cd07891 CYTH-like_CthTTM-like_1 2 putative metal binding residues 0 0 1 1 1,3,112,114 4 -143629 cd07891 CYTH-like_CthTTM-like_1 3 putative phosphate binding site 0 0 1 1 37,50,84,86 4 -143629 cd07891 CYTH-like_CthTTM-like_1 4 putative dimer interface 0 0 1 1 28,29,34,36,47,49,61,63,64,65,69,72,73,76 2 -143629 cd07891 CYTH-like_CthTTM-like_1 5 signature motif 0 0 1 1 1,3,5 0 -143630 cd07892 PolyPPase_VTC2-3_like 1 active site 0 0 1 1 10,59,82,84,100,111,172,174,190,243,245,275,276,277,278 1 -143630 cd07892 PolyPPase_VTC2-3_like 2 putative metal binding residues 0 0 1 1 243,245 4 -143630 cd07892 PolyPPase_VTC2-3_like 3 substrate binding site 0 0 1 1 10,59,82,84,100,111,172,174,190,243,275,276,277 5 -143630 cd07892 PolyPPase_VTC2-3_like 4 acceptor-phosphate pocket 0 0 1 1 59,82,100,276,277,278 0 -143630 cd07892 PolyPPase_VTC2-3_like 5 polyP binding site 0 0 1 1 10,59,71,74,82,84,100,102,109,111,172,174,186,243,245,275,276,277,278 0 -143630 cd07892 PolyPPase_VTC2-3_like 6 putative dimer interface 0 0 1 1 7,73,76,261,265 2 -143630 cd07892 PolyPPase_VTC2-3_like 7 signature motif 0 0 1 1 6,8,10 0 -153435 cd07893 OBF_DNA_ligase 1 DNA binding site 0 1 1 0 21,39,40,42,43,44,45,46,47,93,95,96,98,110,111,112,113,115 3 -185705 cd07894 Adenylation_RNA_ligase 1 active site 0 1 1 1 28,30,31,33,52,53,54,55,59,74,106,130,158,188,190,200 1 -185705 cd07894 Adenylation_RNA_ligase 2 dimer interface 0 1 1 0 32,33,34,35,39,40,43,200,218,219,223,224,227,231,232,234,235,237,238,251,252,254,255,256,258,259,260,262,263,266,334,335,336,338,339,340,341 2 -185706 cd07895 Adenylation_mRNA_capping 1 active site 0 1 1 1 24,25,26,45,47,52,98,115,166,193,209,211,213 1 -185706 cd07895 Adenylation_mRNA_capping 2 CTD docking site 0 1 1 1 43,111,131,132,134,135,136,138,162,165,168,169 0 -185707 cd07896 Adenylation_kDNA_ligase_like 1 active site 0 1 1 1 20,21,22,23,27,38,61,94,127,149,152,154,170 1 -185707 cd07896 Adenylation_kDNA_ligase_like 2 DNA binding site 0 1 1 1 7,22,25,26,27,37,38,39,41,69,70,73,74,77,78,79,149,170,172 3 -185708 cd07897 Adenylation_DNA_ligase_Bac1 1 active site 0 0 1 1 28,29,30,31,33,34,35,49,50,51,53,55,78,86,87,90,91,92,117,178,181,183,198,200,202 1 -185708 cd07897 Adenylation_DNA_ligase_Bac1 2 DNA binding site 0 0 1 1 30,33,34,35,49,50,51,53,55,86,87,90,91,92,178,200,202 3 -185709 cd07898 Adenylation_DNA_ligase 1 active site 0 1 1 1 25,26,27,28,30,31,32,47,75,91,114,174,177,179,194,196 1 -185709 cd07898 Adenylation_DNA_ligase 2 DNA binding site 0 1 1 1 27,30,31,32,46,47,48,50,52,91,92,95,96,97,174,196,198 3 -185710 cd07900 Adenylation_DNA_ligase_I_Euk 1 active site 0 1 1 1 26,35,36,37,38,40,41,42,57,58,59,61,63,90,104,105,108,109,110,111,112,113,129,189,192,194,211,213,215 1 -185710 cd07900 Adenylation_DNA_ligase_I_Euk 2 DNA binding site 0 1 1 1 26,37,40,41,42,57,58,59,61,63,104,105,108,109,110,111,112,113,189,213,215 3 -185711 cd07901 Adenylation_DNA_ligase_Arch_LigB 1 active site 0 1 1 1 8,29,30,31,32,34,36,51,81,121,180,183,185,196,200,202,204 1 -185711 cd07901 Adenylation_DNA_ligase_Arch_LigB 2 DNA binding site 0 0 1 1 31,34,35,36,50,51,52,54,56,94,95,98,99,100,180,202,204 3 -185712 cd07902 Adenylation_DNA_ligase_III 1 active site 0 1 1 1 38,39,40,41,43,44,45,59,60,61,63,65,92,106,107,110,111,112,127,187,190,192,205,207,209 1 -185712 cd07902 Adenylation_DNA_ligase_III 2 DNA binding site 0 1 1 1 30,43,44,45,59,60,61,63,106,110,111,112,113,202,203,204,207,209,212 3 -185713 cd07903 Adenylation_DNA_ligase_IV 1 active site 0 0 1 1 37,38,39,40,42,43,44,59,97,108,135,195,198,200,215,217 1 -185713 cd07903 Adenylation_DNA_ligase_IV 2 DNA binding site 0 0 1 1 39,42,43,44,58,59,60,62,64,112,113,116,117,118,195,217,219 3 -185714 cd07905 Adenylation_DNA_ligase_LigC 1 active site 0 0 1 1 20,21,22,23,25,26,27,42,71,82,110,168,171,173,186,188 1 -185714 cd07905 Adenylation_DNA_ligase_LigC 2 DNA binding site 0 0 1 1 22,25,26,27,41,42,43,45,47,87,88,91,92,93,168,188,190 3 -185715 cd07906 Adenylation_DNA_ligase_LigD_LigC 1 active site 0 0 1 1 20,21,22,23,25,26,27,42,71,83,107,163,166,168,183,185 1 -185715 cd07906 Adenylation_DNA_ligase_LigD_LigC 2 DNA binding site 0 0 1 1 22,25,26,27,41,42,43,45,47,83,84,87,88,89,163,185,187 3 -153117 cd07908 Mn_catalase_like 1 dinuclear metal binding motif 0 0 1 1 27,59,62,112,142,145 4 -153118 cd07909 YciF 1 metal binding site 0 1 1 0 14,40,44,47,102,105,109,135 4 -153118 cd07909 YciF 2 dimerization interface 0 1 1 0 5,9,67,68,69,72,76,81,96,97,99,104,108,111 2 -153119 cd07910 MiaE 1 active site 0 1 1 0 29,60,63,91,105,108,113,143,146,150 1 -153119 cd07910 MiaE 2 dinuclear metal binding site 0 1 1 1 29,60,63,113,143,146 4 -153119 cd07910 MiaE 3 dimerization interface 0 1 0 0 30,37,40,51,54,55,58,61,64,65 2 -153120 cd07911 RNRR2_Rv0233_like 1 active site 0 1 1 0 45,53,57,60,86,90,93,127,153,154,158,161,164,189,192,228,233,248 1 -153120 cd07911 RNRR2_Rv0233_like 2 diiron metal binding site 0 1 1 1 57,90,93,154,162,189,192 4 -143653 cd07912 Tweety_N 1 putative pore region 0 0 1 1 363,366 0 -153419 cd07914 IGPD 1 putative active site pocket 0 1 1 1 8,34,38,41,42,60,61,64,86,94,95,108,132,156,157,160 1 -153419 cd07914 IGPD 2 metal binding residues 0 1 1 1 34,60,61,64,132,156,157,160 4 -153419 cd07914 IGPD 3 3-fold/trimer interface 0 1 1 0 85,87,89,90,91,93,94,95,97,98,102,103,104,108,110,144,146,148,150,168,171,177 2 -153419 cd07914 IGPD 4 4-fold oligomerization interface 0 1 1 0 30,31,34,56,57,58,60,61,119,120,121,122,123,126,128,131,132,153,154,155,156,157 2 -153420 cd07920 Pumilio 1 RNA binding site 0 1 1 1 57,58,61,93,94,97,130,133,165,166,169,198,199,201,202,205,234,235,237,238,241,276,277,279,280,283,313,316 3 -153391 cd07921 PCA_45_Doxase_A_like 1 dimer interface 0 1 1 1 0,1,2,3,4,9,13,17,20,23,28,58,61,66,67,68,69,72,75,78,79,81,82,85,88,89,96,100,101,102,103,104,105 2 -153391 cd07921 PCA_45_Doxase_A_like 2 active site 0 1 1 1 81 1 -153391 cd07921 PCA_45_Doxase_A_like 3 tetramer interface 0 1 1 1 6,10 2 -153392 cd07922 CarBa 1 putative dimer interface 0 0 1 1 1,5,8,11,14,19,49,52,57,58,59,60,63,69,70,73,76,77 2 -153392 cd07922 CarBa 2 putative tetramer interface 0 0 1 1 2 2 -153393 cd07923 Gallate_dioxygenase_C 1 putative N- and C-terminal domain interface 0 0 1 1 9,12,15,20,50,53,59,60,61,62,65,70,71,74,77,78 2 -153393 cd07923 Gallate_dioxygenase_C 2 putative dimer interface 0 0 1 1 2 2 -153394 cd07924 PCA_45_Doxase_A 1 dimer interface 0 1 1 1 2,3,5,6,7,8,9,10,11,12,17,21,25,28,31,36,66,69,74,75,76,77,80,83,86,87,89,90,93,96,97,104,108,109,110,111,112,113,114,115,118,119,120 2 -153394 cd07924 PCA_45_Doxase_A 2 active site 0 1 1 1 89 1 -153394 cd07924 PCA_45_Doxase_A 3 tetramer interface 0 1 1 1 0,14,18 2 -153395 cd07925 LigA_like_1 1 putative dimer interface 0 0 1 1 0,1,2,3,4,9,13,17,20,23,28,58,61,66,67,68,69,72,75,78,79,81,82,85,88,89,96,100,101,102,103,104,105 2 -153395 cd07925 LigA_like_1 2 putative active site 0 0 1 1 81 1 -153395 cd07925 LigA_like_1 3 putative tetramer interface 0 0 1 1 6,10 2 -143648 cd07927 RHD-n_NFAT_like 1 DNA binding site 0 1 1 0 13,16,18,19,20,21,22,23,109,111,112,126,127,129,160 3 -153077 cd07930 bacterial_phosphagen_kinase 1 ADP binding site 0 0 0 1 5,7,9,68,94,102,153,155,156,157,184,186,188,189,199 5 -153077 cd07930 bacterial_phosphagen_kinase 2 phosphagen binding site 0 0 0 1 98,144,190,191 0 -153077 cd07930 bacterial_phosphagen_kinase 3 substrate specificity loop 0 0 1 1 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,197,198,199,200,201,202 0 -153078 cd07931 eukaryotic_phosphagen_kinases 1 ADP binding site 0 1 1 0 102,104,106,165,201,209,262,264,265,266,291,293,306 5 -153078 cd07931 eukaryotic_phosphagen_kinases 2 phosphagen binding site 0 1 1 0 44,45,174,205,253,255 0 -153078 cd07931 eukaryotic_phosphagen_kinases 3 substrate specificity loop 0 0 1 1 288,289,290,291,292,293,294,295,296,297,303,304,305,306,307,308,309 0 -153079 cd07932 arginine_kinase_like 1 ADP binding site 0 1 1 0 115,117,119,178,214,222,273,275,276,277,302,304,306,307,317 5 -153079 cd07932 arginine_kinase_like 2 arginine binding site 0 1 1 0 54,55,56,57,59,187,218,264,266,267,307,308 5 -153079 cd07932 arginine_kinase_like 3 substrate specificity loop 0 0 1 1 299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320 0 -143649 cd07933 RHD-n_c-Rel 1 DNA binding site 0 1 1 0 14,16,17,19,20,23,103,104,171 3 -143650 cd07934 RHD-n_NFkB2 1 DNA binding site 0 1 1 0 14,16,17,19,20,23,24,25,102,104,105,184 3 -143651 cd07935 RHD-n_NFkB1 1 DNA binding site 0 1 1 0 14,16,17,19,20,23,24,25,26,101,103,104,201 3 -153421 cd07936 SCAN 1 dimerization interface 0 1 1 0 7,8,10,11,12,17,18,19,21,22,25,26,29,30,32,33,34,35,39,40,43,44,47,48,49,51,52,54,55,56,57,76,79,80,82,83,84 2 -163675 cd07937 DRE_TIM_PC_TC_5S 1 active site 0 1 1 1 6,7,10,38,42,75,77,138,168,197,199,233 1 -163675 cd07937 DRE_TIM_PC_TC_5S 2 catalytic residues 0 0 1 1 6,7,38 1 -163675 cd07937 DRE_TIM_PC_TC_5S 3 metal binding site 0 1 1 0 7,168,197,199 4 -163675 cd07937 DRE_TIM_PC_TC_5S 4 homodimer binding site 0 1 1 0 175,177,202,204,206,210,211,225,226,228,238,244,258 2 -163676 cd07938 DRE_TIM_HMGL 1 active site 0 1 1 0 6,7,10,40,42,92,198,200,240 1 -163676 cd07938 DRE_TIM_HMGL 2 catalytic residues 0 0 1 1 6,7,37 1 -163676 cd07938 DRE_TIM_HMGL 3 metal binding site 0 1 1 0 7,198,200,240 4 -163677 cd07939 DRE_TIM_NifV 1 active site 0 0 1 1 6,7,10,37,66,68,130,158,187,189 1 -163677 cd07939 DRE_TIM_NifV 2 catalytic residues 0 0 1 1 6,7,37 1 -163677 cd07939 DRE_TIM_NifV 3 metal binding site 0 0 1 1 7,158,187,189 4 -163678 cd07940 DRE_TIM_IPMS 1 active site 0 0 1 1 6,7,10,37,68,90,132,134,162,164,194,196 1 -163678 cd07940 DRE_TIM_IPMS 2 catalytic residues 0 0 1 1 6,7,37 1 -163678 cd07940 DRE_TIM_IPMS 3 metal binding site 0 0 1 1 194,196 4 -163679 cd07941 DRE_TIM_LeuA3 1 active site 0 0 1 1 6,7,10,37,67,69,139,170,200,202 1 -163679 cd07941 DRE_TIM_LeuA3 2 catalytic residues 0 0 1 1 6,7,37 1 -163679 cd07941 DRE_TIM_LeuA3 3 metal binding site 0 0 1 1 7,170,200,202 4 -163680 cd07942 DRE_TIM_LeuA 1 active site 0 1 1 0 9,10,40,147,181,183,214,216 1 -163680 cd07942 DRE_TIM_LeuA 2 catalytic residues 0 0 1 1 9,10,40 1 -163680 cd07942 DRE_TIM_LeuA 3 metal binding site 0 1 1 0 10,214,216 4 -163681 cd07943 DRE_TIM_HOA 1 active site 0 1 1 0 8,9,12,39,130,132,162,190,192 1 -163681 cd07943 DRE_TIM_HOA 2 catalytic residues 0 0 1 1 8,9,39 1 -163681 cd07943 DRE_TIM_HOA 3 metal binding site 0 1 1 0 9,190,192 4 -163682 cd07944 DRE_TIM_HOA_like 1 active site 0 0 1 1 6,7,10,37,76,78,129,157,188,190 1 -163682 cd07944 DRE_TIM_HOA_like 2 catalytic residues 0 0 1 1 6,7,37 1 -163682 cd07944 DRE_TIM_HOA_like 3 metal binding site 0 0 1 1 7,157,188,190 4 -163683 cd07945 DRE_TIM_CMS 1 active site 0 1 1 0 5,6,9,37,72,133,135,166,168,196,198 1 -163683 cd07945 DRE_TIM_CMS 2 catalytic residues 0 0 1 1 5,6,37 1 -163683 cd07945 DRE_TIM_CMS 3 metal binding site 0 1 1 0 196,198,232 4 -163684 cd07947 DRE_TIM_Re_CS 1 active site 0 0 1 1 8,9,12,43,71,73,135,169,208,210 1 -163684 cd07947 DRE_TIM_Re_CS 2 catalytic residues 0 0 1 1 8,9,43 1 -163684 cd07947 DRE_TIM_Re_CS 3 metal binding site 0 0 1 1 9,169,208,210 4 -163685 cd07948 DRE_TIM_HCS 1 active site 0 0 1 1 8,9,12,39,68,70,132,160,189,191 1 -163685 cd07948 DRE_TIM_HCS 2 catalytic residues 0 0 1 1 8,9,39 1 -163685 cd07948 DRE_TIM_HCS 3 metal binding site 0 0 1 1 9,160,189,191 4 -153386 cd07949 PCA_45_Doxase_B_like_1 1 Fe(II) binding site 0 0 1 1 11,58,238 4 -153386 cd07949 PCA_45_Doxase_B_like_1 2 putative active site 0 0 1 1 11,12,13,58,124,191,238,266,267 1 -153386 cd07949 PCA_45_Doxase_B_like_1 3 putative dimer interface 0 0 1 1 13,58,59,60,63,64,82,83,151,152,153,154,155,200,201,202,225,226,229,230,231,234,235,238,262,263,266 2 -153386 cd07949 PCA_45_Doxase_B_like_1 4 putative tetramer interface 0 0 1 1 64,66,67,68,69,70,97,98,101,102,105,106,108,109,111,113,114,115,116,117,118,119,154,157,159,160,174 2 -153387 cd07950 Gallate_Doxase_N 1 Fe(II) binding site 0 0 1 1 11,58,239 4 -153387 cd07950 Gallate_Doxase_N 2 putative active site 0 0 1 1 11,12,13,58,124,192,239,266,267 1 -153387 cd07950 Gallate_Doxase_N 3 putative dimer interface 0 0 1 1 64,66,67,68,69,70,97,98,101,102,105,106,108,109,111,113,114,115,116,117,118,119,155,158,160,161,175 2 -153389 cd07952 ED_3B_like 1 putative metal binding site 0 0 1 1 6,44,218 4 -153389 cd07952 ED_3B_like 2 putative active site 0 0 1 1 6,7,8,44,105,171,218,219,247,248 1 -153409 cd07955 Anticodon_Ia_Cys_like 1 putative tRNA binding surface 0 1 1 1 2,5,9,12,15,18,41,43,44,47,50,51,54,58 3 -153410 cd07956 Anticodon_Ia_Arg 1 anticodon binding site 0 1 1 0 40,43,44,47,48,51,113,116,117,118,119,133,154,155 0 -153410 cd07956 Anticodon_Ia_Arg 2 tRNA binding surface 0 1 1 0 30,31,32,33,37,40,43,44,47,48,51,91,100,107,111,113,133 3 -153411 cd07957 Anticodon_Ia_Met 1 anticodon binding site 0 1 1 0 8,12,13,16,17,20,21,24,25,78,84 0 -153411 cd07957 Anticodon_Ia_Met 2 tRNA binding surface 0 1 1 0 1,8,9,12,13,16,17,20,21,24,25,75,76,78,79,84 3 -153412 cd07958 Anticodon_Ia_Leu_BEm 1 tRNA binding surface 0 1 1 0 3,6,7,10,14,63,67,70,71,74,77,81 3 -153413 cd07959 Anticodon_Ia_Leu_AEc 1 tRNA binding surface 0 1 1 0 3,6,7,10,14,60,64,68,69,72,75,79 3 -153414 cd07960 Anticodon_Ia_Ile_BEm 1 anticodon binding site 0 1 1 0 17,20 0 -153414 cd07960 Anticodon_Ia_Ile_BEm 2 tRNA binding surface 0 1 1 0 3,7,10,14,17,20,21,69,72,73,76,77,80,85,89,92,176,179 3 -153415 cd07961 Anticodon_Ia_Ile_ABEc 1 anticodon binding site 0 0 1 1 18,21 0 -153415 cd07961 Anticodon_Ia_Ile_ABEc 2 tRNA binding surface 0 0 1 1 3,7,10,15,18,21,22,72,75,76,79,80,83,87,91,94,179,182 3 -153416 cd07962 Anticodon_Ia_Val 1 anticodon binding site 0 1 1 0 14,17,18,20,21,82,86,87,90 0 -153416 cd07962 Anticodon_Ia_Val 2 tRNA binding surface 0 1 1 0 1,3,4,7,9,10,13,14,17,18,20,21,68,71,78,86,87,90 3 -153417 cd07963 Anticodon_Ia_Cys 1 anticodon binding site 0 1 1 0 118,122,127,131,134,144,145,146 0 -153417 cd07963 Anticodon_Ia_Cys 2 tRNA binding surface 0 1 1 0 2,5,9,12,15,18,46,48,49,52,55,56,59,62,118,122,127,131,134,143,144,145,146,154 3 -176481 cd07964 RBP-H 1 trimer interface 0 1 1 1 16,18,20,23,25,56,57,61,63,64,94,98,102 2 -153436 cd07967 OBF_DNA_ligase_III 1 DNA binding site 0 0 1 1 14,15,16,17,18,23,41,42,44,45,46,47,48,49,104,106,107,109,115,116,117,118,120 3 -153437 cd07968 OBF_DNA_ligase_IV 1 DNA binding site 0 0 1 1 22,46,47,49,50,51,52,53,54,108,110,111,113,118,119,120,121,123 3 -153438 cd07969 OBF_DNA_ligase_I 1 DNA binding site 0 1 1 0 13,14,15,16,17,22,40,41,43,44,45,46,47,48,94,96,97,99,113,114,115,116,118 3 -153439 cd07970 OBF_DNA_ligase_LigC 1 DNA binding site 0 0 1 1 17,33,34,36,37,38,39,40,41,101,103,104,106 3 -153440 cd07971 OBF_DNA_ligase_LigD 1 DNA binding site 0 0 1 1 20,36,37,39,40,41,42,43,44,96,98,99,101 3 -153441 cd07972 OBF_DNA_ligase_Arch_LigB 1 DNA binding site 0 0 1 1 12,13,14,15,16,21,39,40,42,43,44,45,46,47,85,87,88,90,95,96,97,98,100 3 -153422 cd07973 Spt4 1 Spt4-Spt5NGN interface 0 0 1 1 48,49,50,51,52,53,58 0 -153422 cd07973 Spt4 2 Zn binding site 0 1 1 0 5,8,22,25 4 -199899 cd07976 TFIIA_alpha_beta_like 1 TFIIA subunit interface 0 1 1 1 2,3,4,6,7,10,11,14,15,19,24,28,31,32,35,36,39,40,43,45,57,58,59,60,61,62,63,64,65,67,74,76,80,81,82,83,84,85,86,89,90,91,92,93,94,95,96,97,98,99,100,101 2 -199899 cd07976 TFIIA_alpha_beta_like 2 TBP interaction site 0 1 1 0 69,101 2 -199899 cd07976 TFIIA_alpha_beta_like 3 DNA binding site 0 1 1 0 66,69,71 3 -259828 cd07980 TFIIF_beta 1 heterodimer interface 0 1 1 1 0,1,7,9,12,13,14,15,16,17,18,19,22,25,28,34,35,36,37,38,39,40,41,42,50,78,79,80,81,82,83,84,85,86,87,88,108,110,111,117 2 -173964 cd07981 TAF12 1 heterodimer interface 0 1 1 1 0,1,5,9,12,13,27,30,31,32,34,35,36,39,40,43,46,52,54,55,56,59,60,63,67,69,71 2 -173964 cd07981 TAF12 2 Heterotetramer interface 0 1 1 1 20,22,23,26,29,30,33 2 -153245 cd07983 LPLAT_DUF374-like 1 putative acyl-acceptor binding pocket 0 0 1 1 33,36,38,53,54,55,56,105,106,107 0 -153246 cd07984 LPLAT_LABLAT-like 1 putative acyl-acceptor binding pocket 0 0 1 1 27,30,32,49,50,51,52,98,99,100 0 -153247 cd07985 LPLAT_GPAT 1 putative G3P-binding pocket 0 1 1 0 29,32,34,58,59,60,61,83,84,123,124,125,127 0 -153248 cd07986 LPLAT_ACT14924-like 1 putative acyl-acceptor binding pocket 0 0 1 1 29,32,35,54,55,56,57,106,107,108 0 -153249 cd07987 LPLAT_MGAT-like 1 putative acyl-acceptor binding pocket 0 0 1 1 27,30,33,49,50,51,52,97,98,99 0 -153250 cd07988 LPLAT_ABO13168-like 1 putative acyl-acceptor binding pocket 0 0 1 1 28,31,33,52,53,54,55,103,104,105 0 -153251 cd07989 LPLAT_AGPAT-like 1 putative acyl-acceptor binding pocket 0 0 1 1 31,34,36,52,53,54,55,105,106,107 0 -153252 cd07990 LPLAT_LCLAT1-like 1 putative acyl-acceptor binding pocket 0 0 1 1 31,34,36,57,58,59,60,112,113,114 0 -153253 cd07991 LPLAT_LPCAT1-like 1 putative acyl-acceptor binding pocket 0 0 1 1 31,34,36,50,51,52,53,105,106,107 0 -153254 cd07992 LPLAT_AAK14816-like 1 putative acyl-acceptor binding pocket 0 0 1 1 35,38,41,57,58,59,60,118,119,120 0 -153255 cd07993 LPLAT_DHAPAT-like 1 putative acyl-acceptor binding pocket 0 0 1 0 29,32,34,55,56,57,58,109,110,111 0 -153431 cd07995 TPK 1 active site 0 1 1 1 4,5,6,27,28,29,47,49,50,73,74,75,76,77,78,98,100,101,102,105,109,169,171,183,184,185,186 1 -153431 cd07995 TPK 2 thiamine binding site 0 1 1 1 47,73,74,75,76,169,171,183,184,185,186 5 -153431 cd07995 TPK 3 dimerization interface 0 1 1 0 29,33,36,73,74,75,79,99,101,102,103,104,105,106,107,108,110,111,130,132,150,152,154,156,157,182,184,185,205 2 -153432 cd07999 GH7_CBH_EG 1 active site 0 1 1 0 27,29,30,99,133,137,163,165,167,190,192,195,206,337,339,348 1 -153433 cd08010 yceG_like 1 dimerization interface 0 1 0 0 0,2,3,4,5,6,7,16,20,27,28,31,160,162,179,182,229,230,237,240,241,244 2 -349933 cd08011 M20_ArgE_DapE-like 1 metal binding site HDEEEH 0 1 1 67,100,134,135,160,332 4 -349933 cd08011 M20_ArgE_DapE-like 2 putative dimer interface 0 0 1 1 176,187,188,189,190,199,201,202,205,206,208,209,212,214,216,217,218,219,220,221,222,223,229,230,238,240,305 2 -349934 cd08012 M20_ArgE-related 1 metal binding site HDEEDH 0 1 1 85,117,151,152,182,397 4 -349935 cd08013 M20_ArgE_DapE-like 1 metal binding site HDEEEH 0 1 1 75,105,137,138,161,352 4 -349935 cd08013 M20_ArgE_DapE-like 2 putative dimer interface 0 0 1 1 176,187,188,189,190,196,198,199,202,203,205,206,209,228,230,231,232,233,234,235,236,237,243,244,252,254,326 2 -349936 cd08014 M20_Acy1-like 1 metal binding site CHEHH 0 1 1 87,89,123,148,347 4 -349936 cd08014 M20_Acy1-like 2 putative dimer interface 0 0 0 1 171,193,194,198,201,204,221,222,223,224,225,226,227,231,232,234,240,241,242 2 -349937 cd08015 M28_like 1 metal binding site HDEEDH 0 1 1 22,34,68,69,105,177 4 -349938 cd08017 M20_IAA_Hyd 1 metal binding site CHEHH 0 1 1 86,88,122,146,349 4 -349938 cd08017 M20_IAA_Hyd 2 putative dimer interface 0 0 0 1 169,191,192,196,199,202,219,220,221,222,223,224,225,229,230,232,238,239,240 2 -349939 cd08018 M20_Acy1_amhX-like 1 metal binding site CHEHH 0 1 1 85,87,121,145,340 4 -349939 cd08018 M20_Acy1_amhX-like 2 putative dimer interface 0 0 0 1 168,190,191,195,198,201,215,216,217,218,219,220,221,226,227,229,235,236,237 2 -349940 cd08019 M20_Acy1-like 1 metal binding site CHEHH 0 1 1 86,88,122,146,345 4 -349940 cd08019 M20_Acy1-like 2 putative dimer interface 0 0 0 1 169,191,192,196,199,202,219,220,221,222,223,224,225,229,230,232,238,239,240 2 -349941 cd08021 M20_Acy1_YhaA-like 1 metal binding site CHEEH[NCH] 1 1 0 98,100,133,134,159,357 4 -349941 cd08021 M20_Acy1_YhaA-like 2 tetramer interface 0 1 1 1 178,182,183,184,193,194,195,197,198,200,201,202,204,205,208,209,211,212,213,215,216,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,251,252,253,255,271,272,274,275,276,279,280,318,321,322 2 -349942 cd08022 M28_PSMA_like 1 metal binding site H[ED][EKQ]E[ED][QNRH] 1 1 0 81,91,128,129,157,244 4 -349942 cd08022 M28_PSMA_like 2 active site 0 1 1 0 81,91,128,129,131,132,157,158,160,161,213,214,231,240,243,244 1 -349942 cd08022 M28_PSMA_like 3 dimer interface 0 1 1 0 72,73,75,119,140,141,148 2 -185693 cd08023 GH16_laminarinase_like 1 active site 0 1 1 0 67,94,98,114,116,119,133 1 -185693 cd08023 GH16_laminarinase_like 2 catalytic residues 0 0 0 0 114,116,119 1 -185694 cd08024 GH16_CCF 1 catalytic residues 0 0 0 1 149,151,154 1 -153434 cd08026 DUF326 1 dimerization interface 0 1 0 0 35,36,38,39,42,43,46,49,50,56,57,60,64,67,68 2 -153397 cd08028 LARP_3 1 RNA binding site 0 1 1 0 10,13,14,19,22,23,25,45,46,47 3 -153398 cd08029 LA_like_fungal 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,42,43,44 3 -153399 cd08030 LA_like_plant 1 RNA binding site 0 0 1 1 7,10,11,16,19,20,22,43,44,45 3 -153400 cd08031 LARP_4_5_like 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -153401 cd08032 LARP_7 1 RNA binding site 0 0 1 1 11,14,15,20,23,24,26,47,48,49 3 -153402 cd08033 LARP_6 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,42,43,44 3 -153403 cd08034 LARP_1_2 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -153404 cd08035 LARP_4 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -153405 cd08036 LARP_5 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -153406 cd08037 LARP_1 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -153407 cd08038 LARP_2 1 RNA binding site 0 0 1 1 6,9,10,15,18,19,21,40,41,42 3 -185716 cd08039 Adenylation_DNA_ligase_Fungal 1 active site 0 0 1 1 26,27,28,29,31,32,33,51,52,53,55,57,90,110,111,114,115,116,131,202,205,207,227,229,231 1 -185716 cd08039 Adenylation_DNA_ligase_Fungal 2 DNA binding site 0 0 1 1 28,31,32,33,51,52,53,55,57,110,111,114,115,116,202,229,231 3 -153442 cd08040 OBF_DNA_ligase_family 1 DNA binding site 0 1 1 0 21,37,38,40,41,42,43,44,45,97,99,100,102 3 -153443 cd08041 OBF_kDNA_ligase_like 1 DNA binding site 0 1 1 0 12,21,22,33,34,36,37,38,39,40,41,57,66,69,71 3 -176269 cd08044 TAF5_NTD2 1 Ca binding site 0 1 1 1 63,66,67 4 -176269 cd08044 TAF5_NTD2 2 homodimer interface 0 1 1 1 23,24,64,93,94,95,96,97,129 2 -173967 cd08048 TAF11 1 heterodimer interface 0 1 1 1 3,6,7,10,11,14,16,17,20,21,24,25,28,29,41,44,45,46,48,49,50,53,57,69,70,71,72,73,76,77,80 2 -153446 cd08054 gp6 1 oligomerization interface 0 1 1 1 3,6,7,9,17,18,21,22,24,25,28,29,32,49,50,51,54,57,58,59,61,62,63,65,66,67,77,78,79,80,81,82,84,85,88,89 2 -163689 cd08058 MPN_euk_mb 1 MPN+ (JAMM) motif 0 0 1 1 16,71,73,81,84 0 -163689 cd08058 MPN_euk_mb 2 Zinc-binding site 0 1 1 0 71,73,84 4 -163690 cd08059 MPN_prok_mb 1 MPN+ (JAMM) motif 0 1 1 1 16,62,64,72,75 0 -163690 cd08059 MPN_prok_mb 2 Zinc-binding site 0 1 1 0 62,64,75 4 -163697 cd08066 MPN_AMSH_like 1 MPN+ (JAMM) motif 0 1 1 1 26,81,83,91,94 0 -163697 cd08066 MPN_AMSH_like 2 Zinc-binding site 0 1 1 1 81,83,94 4 -163697 cd08066 MPN_AMSH_like 3 Distal ubiquitin recognition interface 0 1 1 0 28,29,30,55,56,57,58,59,62,63,66,69,75,76,79,81,83,91,93,94,96,97,100,101,103,104,142 2 -163697 cd08066 MPN_AMSH_like 4 Proximal ubiquitin recognition interface 0 1 1 0 55,83,86,87,89,91,92,142,143,144 0 -163698 cd08067 MPN_2A_DUB 1 MPN+ (JAMM) motif 0 0 1 1 26,85,87,95,98 0 -163698 cd08067 MPN_2A_DUB 2 Zinc-binding site 0 0 1 0 85,87,98 4 -163699 cd08068 MPN_BRCC36 1 MPN+ (JAMM) motif 0 0 1 1 24,95,97,105,108 0 -163699 cd08068 MPN_BRCC36 2 Zinc-binding site 0 0 1 0 95,97,108 4 -163700 cd08069 MPN_RPN11_CSN5 1 MPN+ (JAMM) motif 0 0 1 1 32,93,95,103,106 0 -163700 cd08069 MPN_RPN11_CSN5 2 Zinc-binding site 0 0 1 0 93,95,106 4 -163701 cd08070 MPN_like 1 MPN+ (JAMM) motif 0 0 1 1 17,76,78,86,89 0 -163701 cd08070 MPN_like 2 Zinc-binding site 0 0 1 1 76,78,89 4 -163702 cd08071 MPN_DUF2466 1 MPN+ (JAMM) motif 0 0 1 1 16,66,68,76,79 0 -163702 cd08071 MPN_DUF2466 2 Zinc-binding site 0 0 1 1 66,68,79 4 -163703 cd08072 MPN_archaeal 1 MPN+ (JAMM) motif 0 1 1 1 19,65,67,75,78 0 -163703 cd08072 MPN_archaeal 2 Zinc-binding site 0 1 1 0 65,67,78 4 -163704 cd08073 MPN_NLPC_P60 1 MPN+ (JAMM) motif 0 0 1 1 16,65,67,75,78 0 -163704 cd08073 MPN_NLPC_P60 2 Zinc-binding site 0 0 1 1 65,67,78 4 -173969 cd08148 RuBisCO_large 1 catalytic residue 0 1 1 0 160 1 -173969 cd08148 RuBisCO_large 2 metal binding site 0 1 1 0 162,163 4 -173969 cd08148 RuBisCO_large 3 dimer interface 0 1 1 0 23,24,25,26,42,65,66,73,76,77,78,81,82,134,135,163,166,167,168,170,173,174,203,210,211,226,231,232,233,234,236,237,240,253,254,255,256,257 2 -163706 cd08150 catalase_like 1 heme binding pocket 0 1 1 1 5,43,76,81,89,270,274 5 -163707 cd08151 AOS 1 heme binding pocket 0 1 1 0 27,29,30,65,82,84,101,102,103,108,110,116,161,162,288,315,318,319,322,323,326 5 -163707 cd08151 AOS 2 dimer interface 0 1 1 0 0,1,4,7,8,11,12,14,15,18,19,21,22,23,24,25,321,325 2 -163708 cd08152 y4iL_like 1 putative heme binding pocket 0 0 1 1 7,46,89,94,291,295 5 -163709 cd08153 srpA_like 1 putative heme binding pocket 0 0 1 1 17,54,89,94,102,282,286 5 -163710 cd08154 catalase_clade_1 1 heme binding pocket 0 1 1 1 49,88,122,127,135,328,332 5 -163710 cd08154 catalase_clade_1 2 tetramer interface 0 1 1 0 42,47,95,96,115,116,131,132,133,134,135,137,140,146,147,148,149,150,151,155,158,222,225,228,229,233,236,237,240,263,264,269,271,297,299,300,302,305,312,313,321,323,326,329,330,331,334,335,338,339,340,342,343,345,346,347,348,352,356,357,359,362,364,365,366,375,376,377,378,379,380,439,440,442,444,448 2 -163711 cd08155 catalase_clade_2 1 heme binding pocket 0 1 1 1 10,49,83,88,96,293,297 5 -163711 cd08155 catalase_clade_2 2 tetramer interface 0 1 1 0 3,8,56,57,76,77,92,93,94,95,96,98,101,107,108,109,110,111,112,120,123,187,190,193,194,198,201,202,205,228,229,234,236,262,264,265,267,270,277,278,286,288,291,294,295,296,299,300,303,304,305,308,309,311,312,313,314,318,322,323,325,328,330,331,332,341,342,343,344,345,346,412,413,416,418,422 2 -163712 cd08156 catalase_clade_3 1 heme binding pocket 0 1 1 1 7,46,80,85,93,286,290 5 -163712 cd08156 catalase_clade_3 2 NADPH binding site 0 1 1 0 83,126,130,133,135,145,167,169,234,235,236,237,374,377,378 5 -163712 cd08156 catalase_clade_3 3 tetramer interface 0 1 1 0 0,5,53,54,73,74,89,90,91,92,93,95,98,104,105,106,107,108,109,113,116,180,183,186,187,191,194,195,198,221,222,227,229,255,257,258,260,263,270,271,279,281,284,287,288,289,292,293,296,297,298,300,301,303,304,305,306,310,314,315,317,320,322,323,324,334,335,336,337,338,339,399,400,402,404,408 2 -163713 cd08157 catalase_fungal 1 heme binding pocket 0 1 1 1 23,62,96,101,109,302,306 5 -163713 cd08157 catalase_fungal 2 NADPH binding site 0 0 1 0 99,142,146,149,151,161,183,185,250,251,252,253,394,397,398 5 -163713 cd08157 catalase_fungal 3 tetramer interface 0 1 1 0 16,21,69,70,89,90,105,106,107,108,109,111,114,120,121,122,123,124,125,129,132,196,199,202,203,207,210,211,214,237,238,243,245,271,273,274,276,279,286,287,295,297,300,303,304,305,308,309,312,313,314,316,317,319,320,321,322,326,331,332,334,338,340,341,342,352,353,354,355,356,357,420,421,423,425,429 2 -176482 cd08159 APC10-like 1 putative ligand binding site 0 0 1 1 26,54,60,62,121 5 -277369 cd08162 MPP_PhoA_N 1 putative active site 0 0 1 1 7,9,46,86,87,225,249,251 1 -277369 cd08162 MPP_PhoA_N 2 putative metal binding site 0 0 1 1 7,9,46,86,225,249,251 4 -277370 cd08163 MPP_Cdc1 1 putative active site 0 0 1 1 4,6,53,92,93,169,223,225 1 -277370 cd08163 MPP_Cdc1 2 putative metal binding site 0 0 1 1 4,6,53,92,169,223,225 4 -277371 cd08164 MPP_Ted1 1 putative active site 0 0 1 1 4,6,52,106,107,132,151,153 1 -277371 cd08164 MPP_Ted1 2 putative metal binding site 0 0 1 1 4,6,52,106,132,151,153 4 -277372 cd08165 MPP_MPPE1 1 putative active site 0 0 1 1 4,6,46,84,85,110,129,131 1 -277372 cd08165 MPP_MPPE1 2 putative metal binding site 0 0 1 1 4,6,46,84,110,129,131 4 -277373 cd08166 MPP_Cdc1_like_1 1 putative active site 0 0 1 1 4,6,50,88,89,115,142,144 1 -277373 cd08166 MPP_Cdc1_like_1 2 putative metal binding site 0 0 1 1 4,6,50,88,115,142,144 4 -173979 cd08168 Cytochrom_C3 1 heme-binding residues 0 1 1 0 7,10,18,21,22,23,35,57,60,63,64,79,82,83 5 -341448 cd08169 DHQ-like 1 active site 0 1 1 1 30,91,92,93,96,99,116,117,119,138,141,156,164,171,175,234,238,250 1 -341448 cd08169 DHQ-like 2 dimer interface 0 1 1 0 65,72,73,100,103,107,129,130,139,140,141,142,143,144 2 -341448 cd08169 DHQ-like 3 metal binding site 0 1 1 0 171,234,250 4 -341449 cd08170 GlyDH 1 active site 0 1 1 0 29,85,86,87,90,93,108,109,111,130,131,148,156,163,167,246,250,263 1 -341449 cd08170 GlyDH 2 metal binding site 0 1 1 1 163,246,263 4 -341449 cd08170 GlyDH 3 dimer interface 0 1 0 0 1,2,3,5,6,197,200,223,224,227 2 -341450 cd08171 GlyDH-like 1 putative active site 0 0 1 0 29,86,87,88,91,94,109,110,112,131,132,149,157,164,168,247,251,265 1 -341450 cd08171 GlyDH-like 2 putative metal binding site 0 0 1 1 164,247,265 4 -341451 cd08172 GlyDH-like 1 putative active site 0 0 1 0 30,83,84,85,88,91,106,107,109,128,129,146,154,161,165,245,249,262 1 -341451 cd08172 GlyDH-like 2 putative NAD binding site 0 0 1 0 30,83,84,85,106,107,109,111,146,262 5 -341451 cd08172 GlyDH-like 3 putative metal binding site 0 0 1 1 161,245,262 4 -341452 cd08173 Gro1PDH 1 active site 0 1 1 1 32,88,89,90,93,96,111,112,114,148,156,163,167,243,247,259 1 -341452 cd08173 Gro1PDH 2 metal binding site 0 1 1 1 116,163,243,259 4 -341453 cd08174 G1PDH-like 1 putative active site 0 0 1 1 32,85,86,87,90,93,108,109,111,128,129,145,153,160,164,239,243,255 1 -341453 cd08174 G1PDH-like 2 metal binding site 0 1 0 1 160,239,255 4 -341454 cd08175 G1PDH 1 putative active site 0 0 1 1 31,90,91,92,95,98,113,114,116,133,134,150,158,165,169,245,249,265 1 -341454 cd08175 G1PDH 2 metal binding site 0 0 1 1 165,245,265 4 -341455 cd08176 LPO 1 active site 0 1 1 1 35,93,94,95,135,136,139,148,157,176,184,191,195,260,274 1 -341455 cd08176 LPO 2 metal binding site 0 1 1 1 191,195,260,274 4 -341455 cd08176 LPO 3 dimer interface 0 1 1 0 6,7,8,9,10,168,211,242 2 -341456 cd08177 MAR 1 active site 0 1 1 0 30,84,85,86,89,92,107,108,110,126,127,145,153,160,164,229,233,243 1 -341456 cd08177 MAR 2 metal binding site 0 0 0 1 160,164,229,243 4 -341456 cd08177 MAR 3 dimer interface 0 1 1 0 32,150,151,299,301 2 -341457 cd08178 AAD_C 1 putative active site 0 0 1 1 30,88,89,90,93,96,140,141,143,162,163,181,189,196,200,265,269,279 1 -341457 cd08178 AAD_C 2 metal binding site 0 1 1 1 196,200,265,279 4 -341458 cd08179 NADPH_BDH 1 putative active site 0 0 1 1 30,89,90,91,94,97,133,134,136,155,156,174,182,189,193,258,262,272 1 -341458 cd08179 NADPH_BDH 2 metal binding site 0 0 1 1 189,193,258,272 4 -341459 cd08180 PDD 1 putative active site 0 0 1 1 29,86,87,88,91,94,117,118,120,139,140,158,166,173,177,242,246,256 1 -341459 cd08180 PDD 2 metal binding site 0 0 1 1 173,177,242,256 4 -341460 cd08181 PPD-like 1 active site 0 1 1 1 34,35,39,65,91,92,93,96,99,131,132,135,137,140,142,153,172,175,176,180,187,191,194,256,270 1 -341460 cd08181 PPD-like 2 dimer interface 0 1 1 0 0,1,2,5,6,7,8,9,12,16,203,207,211,238 2 -341460 cd08181 PPD-like 3 metal binding site 0 1 1 0 187,191,256,270 4 -341461 cd08182 HEPD 1 putative active site 0 0 1 1 30,87,88,89,92,95,130,131,133,152,153,171,179,186,190,255,259,269 1 -341461 cd08182 HEPD 2 metal binding site 0 0 1 1 186,190,255,269 4 -341462 cd08183 Fe-ADH-like 1 putative active site 0 0 1 1 29,86,87,88,91,94,131,132,134,153,154,172,180,187,191,256,260,270 1 -341462 cd08183 Fe-ADH-like 2 metal binding site 0 0 1 1 187,191,256,270 4 -341463 cd08184 Fe-ADH_KdnB-like 1 active site 0 1 1 0 33,35,36,61,62,90,91,92,95,98,131,132,135,137,140,142,144,151,170,174,178,182,185,252,266,270 1 -341463 cd08184 Fe-ADH_KdnB-like 2 metal binding site 0 1 1 1 185,252,266,270 4 -341464 cd08185 Fe-ADH-like 1 putative active site 0 0 1 1 32,91,92,93,96,99,136,137,139,158,159,177,185,192,196,261,265,276 1 -341464 cd08185 Fe-ADH-like 2 metal binding site 0 0 1 1 192,196,261,276 4 -341465 cd08186 Fe-ADH-like 1 putative active site 0 0 1 1 30,89,90,91,94,97,131,132,134,153,154,172,180,187,191,256,260,271 1 -341465 cd08186 Fe-ADH-like 2 metal binding site 0 0 1 1 187,191,256,271 4 -341466 cd08187 BDH 1 active site 0 1 1 0 36,37,38,67,68,94,95,96,99,135,136,139,141,144,146,148,157,176,179,180,191,195,264,278 1 -341466 cd08187 BDH 2 dimer interface 0 1 1 0 6,8,9,11,12,219,223,239,240,243 2 -341466 cd08187 BDH 3 metal binding site 0 1 1 0 191,195,264,278 4 -341467 cd08188 PDDH 1 putative active site 0 0 1 1 35,93,94,95,98,101,134,135,137,156,157,175,183,190,194,259,263,273 1 -341467 cd08188 PDDH 2 metal binding site 0 1 1 1 190,194,259,273,277 4 -341468 cd08189 Fe-ADH-like 1 putative active site 0 0 1 1 34,92,93,94,97,100,134,135,137,156,157,175,183,190,194,259,263,273 1 -341468 cd08189 Fe-ADH-like 2 metal binding site 0 0 1 1 190,194,259,273 4 -341469 cd08190 HOT 1 putative active site 0 0 1 1 30,88,89,90,93,96,134,135,137,156,157,175,183,190,194,277,281,304 1 -341469 cd08190 HOT 2 metal binding site 0 0 1 1 190,194,277,304 4 -341470 cd08191 Fe-ADH-like 1 putative active site 0 0 1 1 32,90,91,92,95,98,131,132,134,153,154,172,180,187,191,271,275,285 1 -341470 cd08191 Fe-ADH-like 2 metal binding site 0 0 1 1 187,191,271,285 4 -341471 cd08192 MAR-like 1 putative active site 0 0 1 0 30,87,88,89,92,95,136,137,139,157,158,176,184,191,195,261,265,275 1 -341471 cd08192 MAR-like 2 metal binding site 0 0 0 1 191,195,261,275 4 -341472 cd08193 HVD 1 putative active site 0 0 1 1 33,91,92,93,96,99,132,133,135,153,154,172,180,187,191,257,261,271 1 -341472 cd08193 HVD 2 metal binding site 0 0 1 1 187,191,257,271 4 -341473 cd08194 Fe-ADH-like 1 putative active site 0 0 1 1 30,88,89,90,93,96,129,130,132,151,152,170,178,185,189,254,258,268 1 -341473 cd08194 Fe-ADH-like 2 metal binding site 0 0 1 1 185,189,254,268 4 -341474 cd08195 DHQS 1 active site 0 1 1 1 30,92,93,94,97,100,117,118,120,139,142,157,165,172,176,235,239,251 1 -341474 cd08195 DHQS 2 metal binding site 0 1 1 0 172,235,251 4 -341474 cd08195 DHQS 3 dimer interface 0 0 1 0 66,73,74,101,104,106,107,108,130,131,140,141,142,143,144,145 2 -341475 cd08196 Fe-ADH-like 1 putative active site 0 0 1 1 35,91,92,93,96,99,133,134,136,155,156,174,182,189,193,258,262,272 1 -341475 cd08196 Fe-ADH-like 2 metal binding site 0 0 1 1 189,193,258,272 4 -341476 cd08197 DOIS 1 active site 0 1 1 1 30,92,93,94,97,100,117,118,120,139,142,157,165,172,176,235,239,251 1 -341476 cd08197 DOIS 2 metal binding site 0 1 1 0 172,235,251 4 -341476 cd08197 DOIS 3 dimer interface 0 1 1 0 66,70,73,77,83,105,107,108,130,131,132,141,142,143,310,312,313 2 -341477 cd08198 DHQS-like 1 putative active site 0 0 1 1 123,139,145,155,187,190,229,249,252,256,268,329 1 -341477 cd08198 DHQS-like 2 putative metal binding site 0 0 1 1 187,252,268 4 -341478 cd08199 EEVS 1 active site 0 1 1 1 33,40,64,67,95,96,97,100,120,121,123,127,128,133,142,143,160,163,164,165,168,171,175,241,257,261 1 -341478 cd08199 EEVS 2 metal binding site 0 1 1 0 127,175,241,257 4 -173829 cd08201 plant_peroxidase_like_1 1 putative active site 0 0 1 1 46,49,50,77,137,168,229 1 -173829 cd08201 plant_peroxidase_like_1 2 putative substrate binding site 0 0 1 1 46,49,50 5 -173829 cd08201 plant_peroxidase_like_1 3 putative heme binding site 0 0 0 1 42,43,45,46,49,137,138,139,150,163,164,167,168,170,171,172,173,174,175,226,228,254,258 5 -350058 cd08204 ArfGap 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350058 cd08204 ArfGap 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -173970 cd08205 RuBisCO_IV_RLP 1 active site 0 1 1 0 88,135,137,163,164,165,166,252,253,285,322,323,324,346,347 1 -173970 cd08205 RuBisCO_IV_RLP 2 metal binding site 0 1 1 0 165,166 4 -173970 cd08205 RuBisCO_IV_RLP 3 catalytic residue 0 1 1 0 163 1 -173970 cd08205 RuBisCO_IV_RLP 4 dimer interface 0 1 0 0 23,24,25,26,43,73,79,83,87,166,167,169,229,232,233,236,239,240,243,254,255,256,257,258,259 2 -173971 cd08206 RuBisCO_large_I_II_III 1 active site 0 1 1 0 26,31,32,87,137,139,141,167,168,258,259,291,298,299,342,343,344,366,367 1 -173971 cd08206 RuBisCO_large_I_II_III 2 metal binding site 0 1 1 0 167,168 4 -173971 cd08206 RuBisCO_large_I_II_III 3 catalytic residue 0 1 1 0 165 1 -173971 cd08206 RuBisCO_large_I_II_III 4 dimer interface 0 1 1 0 26,27,28,29,31,46,78,81,82,83,86,87,139,140,141,142,168,171,172,173,174,175,178,179,208,209,211,212,213,216,217,232,237,238,239,240,242,243,246,260,261,262,263,264,267,271 2 -173972 cd08207 RLP_NonPhot 1 active site 0 0 1 1 98,148,150,176,177,178,179,265,266,298,336,337,338,361,362 1 -173972 cd08207 RLP_NonPhot 2 metal binding site 0 0 1 1 178,179 4 -173972 cd08207 RLP_NonPhot 3 catalytic residue 0 0 1 1 176 1 -173972 cd08207 RLP_NonPhot 4 dimer interface 0 0 0 1 23,24,25,26,43,83,89,93,97,179,180,182,242,245,246,249,252,253,256,267,268,269,270,271,272 2 -173973 cd08208 RLP_Photo 1 active site 0 0 1 1 114,165,167,193,194,195,196,282,283,315,352,353,354,377,378 1 -173973 cd08208 RLP_Photo 2 metal binding site 0 0 1 1 195,196 4 -173973 cd08208 RLP_Photo 3 catalytic residue 0 0 1 1 193 1 -173973 cd08208 RLP_Photo 4 dimer interface 0 1 1 0 39,40,41,44,46,47,54,57,58,98,99,100,104,105,106,109,112,113,114,117,118,119,120,167,168,171,172,176,196,197,199,200,201,203,235,236,237,238,239,240,259,261,262,263,266,267,269,270,273,282,283,284,285,287,288,289,291,297,317,321,322,323,324,326 2 -173974 cd08209 RLP_DK-MTP-1-P-enolase 1 active site 0 1 1 0 82,129,131,157,158,159,160,248,249,282,318,319,320,342,343 1 -173974 cd08209 RLP_DK-MTP-1-P-enolase 2 metal binding site 0 1 1 0 159,160 4 -173974 cd08209 RLP_DK-MTP-1-P-enolase 3 catalytic residue 0 1 1 0 157 1 -173974 cd08209 RLP_DK-MTP-1-P-enolase 4 dimer interface 0 1 0 0 22,23,24,25,42,67,73,77,81,160,161,163,223,226,227,230,233,234,237,250,251,252,253,254,255 2 -173975 cd08210 RLP_RrRLP 1 active site 0 0 1 1 84,131,133,158,159,160,161,248,249,281,318,319,320,342,343 1 -173975 cd08210 RLP_RrRLP 2 metal binding site 0 0 1 1 160,161 4 -173975 cd08210 RLP_RrRLP 3 catalytic residue 0 0 1 1 158 1 -173975 cd08210 RLP_RrRLP 4 dimer interface 0 0 0 1 25,26,27,28,44,69,75,79,83,161,162,164,224,227,228,231,234,235,238,250,251,252,253,254,255 2 -173976 cd08211 RuBisCO_large_II 1 active site 0 1 1 0 109,162,191,192,286,319,321,364,366,367,389,390,391 1 -173976 cd08211 RuBisCO_large_II 2 metal binding site 0 1 1 0 191,192 4 -173976 cd08211 RuBisCO_large_II 3 catalytic residue 0 1 1 0 189 1 -173976 cd08211 RuBisCO_large_II 4 dimer interface 0 1 1 0 46,47,48,49,51,65,100,103,104,105,108,109,164,165,166,167,192,195,196,197,198,199,202,203,232,233,235,236,237,240,241,261,266,267,268,269,271,272,275,287,288,289,290,291,294,299 2 -173977 cd08212 RuBisCO_large_I 1 active site 0 1 1 0 37,42,43,100,150,152,154,180,181,270,271,303,310,311,355,356,357,379,380 1 -173977 cd08212 RuBisCO_large_I 2 metal binding site 0 1 1 0 180,181 4 -173977 cd08212 RuBisCO_large_I 3 catalytic residue 0 1 1 0 178 1 -173977 cd08212 RuBisCO_large_I 4 homodimer interface 0 1 1 0 22,37,39,40,42,43,44,45,46,47,48,49,52,57,83,84,85,86,87,89,91,92,95,96,98,99,100,102,103,104,105,107,108,109,152,153,154,155,156,181,182,184,185,186,187,188,190,220,221,222,223,224,225,230,245,248,249,250,251,252,254,255,270,272,273,275,276,277,279,280,283,284,285,307,308,309,310,311,312,357,358,359,380,381,383,384,385,386,388,389,438,441,443,445,446,448 2 -173977 cd08212 RuBisCO_large_I 5 heterodimer interface 0 1 1 0 133,138,140,141,142,143,144,171,172,173,203,206,207,208,209,210,211,212,235,240,265,373,386,387,391,394,397,398,401,402,405,407,408,409,427,429 2 -173978 cd08213 RuBisCO_large_III 1 active site 0 1 1 1 26,31,32,86,136,138,140,166,167,256,257,289,296,297,340,341,342,364,365 1 -173978 cd08213 RuBisCO_large_III 2 metal binding site 0 0 1 1 166,167 4 -173978 cd08213 RuBisCO_large_III 3 catalytic residue 0 0 1 1 164 1 -173978 cd08213 RuBisCO_large_III 4 dimer interface 0 1 0 0 26,28,29,30,31,69,70,71,72,75,77,78,80,81,84,85,86,88,89,90,91,93,138,139,140,141,142,143,147,150,151,154,167,168,170,171,172,174,206,207,208,209,210,212,215,230,233,234,235,236,237,238,240,241,244,256,258,259,261,262,263,265,266,269,297,298,299,368,369,374 2 -270855 cd08215 STKc_Nek 1 ATP binding site 0 1 1 0 7,8,10,11,15,28,30,61,78,79,80,84,132,134,150 5 -270855 cd08215 STKc_Nek 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,127,129,131,132,134,145,148,150,164,165,166,167 1 -270855 cd08215 STKc_Nek 3 polypeptide substrate binding site 0 0 1 1 11,84,86,127,129,131,148,164,165,166,167 2 -270855 cd08215 STKc_Nek 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,160,161,162,163,164,165,166,167 0 -270856 cd08216 PK_STRAD 1 ATP binding site 0 1 1 1 5,6,7,8,9,13,15,28,30,77,78,79,80,84,87,129,130,132,145 5 -270856 cd08216 PK_STRAD 2 MO25 interaction site 0 1 1 1 34,35,37,38,39,46,49,50,53,54,56,66,67,68,70,71,73,115,119,153,154 2 -270856 cd08216 PK_STRAD 3 LKB1 interaction site 0 1 1 1 40,161,163,168,171,180,181,182,183,184,214,215,216,217,218,219 2 -270857 cd08217 STKc_Nek2 1 ATP binding site 0 1 1 0 7,8,10,11,15,28,30,61,80,81,82,86,139,141,157 5 -270857 cd08217 STKc_Nek2 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,79,80,81,82,86,88,134,136,138,139,141,152,155,157,171,172,173,174 1 -270857 cd08217 STKc_Nek2 3 polypeptide substrate binding site 0 0 1 1 11,86,88,134,136,138,155,171,172,173,174 2 -270857 cd08217 STKc_Nek2 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,166,167,168,169,170,171,172,173,174 0 -270858 cd08218 STKc_Nek1 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,130,132,148 5 -270858 cd08218 STKc_Nek1 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,125,127,129,130,132,143,146,148,162,163,164,165 1 -270858 cd08218 STKc_Nek1 3 polypeptide substrate binding site 0 0 1 1 11,84,86,125,127,129,146,162,163,164,165 2 -270858 cd08218 STKc_Nek1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -173759 cd08219 STKc_Nek3 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,60,77,78,79,83,129,131,147 5 -173759 cd08219 STKc_Nek3 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,76,77,78,79,83,85,124,126,128,129,131,142,145,147,161,162,163,164 1 -173759 cd08219 STKc_Nek3 3 polypeptide substrate binding site 0 0 1 1 11,83,85,124,126,128,145,161,162,163,164 2 -173759 cd08219 STKc_Nek3 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270859 cd08220 STKc_Nek8 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,130,132,149 5 -270859 cd08220 STKc_Nek8 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,125,127,129,130,132,144,147,149,162,163,164,165 1 -270859 cd08220 STKc_Nek8 3 polypeptide substrate binding site 0 0 1 1 11,84,86,125,127,129,147,162,163,164,165 2 -270859 cd08220 STKc_Nek8 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270860 cd08221 STKc_Nek9 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,130,132,148 5 -270860 cd08221 STKc_Nek9 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,125,127,129,130,132,143,146,148,162,163,164,165 1 -270860 cd08221 STKc_Nek9 3 polypeptide substrate binding site 0 0 1 1 11,84,86,125,127,129,146,162,163,164,165 2 -270860 cd08221 STKc_Nek9 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165 0 -270861 cd08222 STKc_Nek11 1 ATP binding site 0 0 1 1 7,8,10,11,15,31,33,64,81,82,83,87,135,137,152 5 -270861 cd08222 STKc_Nek11 2 active site 0 0 1 1 7,8,9,10,11,15,31,33,64,80,81,82,83,87,89,130,132,134,135,137,147,150,152,166,167,168,169 1 -270861 cd08222 STKc_Nek11 3 polypeptide substrate binding site 0 0 1 1 11,87,89,130,132,134,150,166,167,168,169 2 -270861 cd08222 STKc_Nek11 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270862 cd08223 STKc_Nek4 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,79,80,81,85,131,133,149 5 -270862 cd08223 STKc_Nek4 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,78,79,80,81,85,87,126,128,130,131,133,144,147,149,163,164,165,166 1 -270862 cd08223 STKc_Nek4 3 polypeptide substrate binding site 0 0 1 1 11,85,87,126,128,130,147,163,164,165,166 2 -270862 cd08223 STKc_Nek4 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270863 cd08224 STKc_Nek6_7 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,62,79,80,81,85,133,135,151 5 -270863 cd08224 STKc_Nek6_7 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,128,130,132,133,135,146,149,151,165,166,167,168 1 -270863 cd08224 STKc_Nek6_7 3 polypeptide substrate binding site 0 0 1 1 11,85,87,128,130,132,149,165,166,167,168 2 -270863 cd08224 STKc_Nek6_7 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -173765 cd08225 STKc_Nek5 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,130,132,149 5 -173765 cd08225 STKc_Nek5 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,125,127,129,130,132,144,147,149,163,164,165,166 1 -173765 cd08225 STKc_Nek5 3 polypeptide substrate binding site 0 0 1 1 11,84,86,125,127,129,147,163,164,165,166 2 -173765 cd08225 STKc_Nek5 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270864 cd08226 PK_STRAD_beta 1 ATP binding site 0 0 1 1 5,6,7,8,9,13,15,28,30,77,78,79,80,84,87,129,130,132,145 5 -270864 cd08226 PK_STRAD_beta 2 MO25 interaction site 0 0 1 1 34,35,37,38,39,46,49,50,53,54,56,66,67,68,70,71,73,115,119,153,154 2 -270864 cd08226 PK_STRAD_beta 3 LKB1 interaction site 0 0 1 1 40,161,163,168,171,180,181,182,183,184,214,215,216,217,218,219 2 -173767 cd08227 PK_STRAD_alpha 1 ATP binding site 0 1 1 1 5,6,7,8,9,13,15,28,30,77,78,79,80,84,87,129,130,132,145 5 -173767 cd08227 PK_STRAD_alpha 2 MO25 interaction site 0 1 1 1 34,35,37,38,39,46,49,50,53,54,56,66,67,68,70,71,73,115,119,153,154,156 2 -173767 cd08227 PK_STRAD_alpha 3 LKB1 interaction site 0 1 1 1 40,161,163,168,171,180,181,182,183,184,214,215,216,217,218,219 2 -270865 cd08228 STKc_Nek6 1 ATP binding site 0 0 1 1 9,10,12,13,17,30,32,64,81,82,83,87,135,137,153 5 -270865 cd08228 STKc_Nek6 2 active site 0 0 1 1 9,10,11,12,13,17,30,32,64,80,81,82,83,87,89,130,132,134,135,137,148,151,153,167,168,169,170 1 -270865 cd08228 STKc_Nek6 3 polypeptide substrate binding site 0 0 1 1 13,87,89,130,132,134,151,167,168,169,170 2 -270865 cd08228 STKc_Nek6 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -270866 cd08229 STKc_Nek7 1 ATP binding site 0 0 1 1 31,32,34,35,39,52,54,86,103,104,105,109,157,159,175 5 -270866 cd08229 STKc_Nek7 2 active site 0 0 1 1 31,32,33,34,35,39,52,54,86,102,103,104,105,109,111,152,154,156,157,159,170,173,175,189,190,191,192 1 -270866 cd08229 STKc_Nek7 3 polypeptide substrate binding site 0 0 1 1 35,109,111,152,154,156,173,189,190,191,192 2 -270866 cd08229 STKc_Nek7 4 activation loop (A-loop) 0 0 1 1 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 0 -176192 cd08230 glucose_DH 1 NADP binding site 0 1 1 0 37,38,39,42,152,179,180,181,182,183,201,202,203,224,244,245,246,247,267,268,269,297,298,299 5 -176192 cd08230 glucose_DH 2 dimer interface 0 1 1 0 131,137,139,140,165,171,193,302,306,310,313,314,316 2 -176192 cd08230 glucose_DH 3 catalytic Zn binding site 0 1 1 0 37,62,63,148 4 -176192 cd08230 glucose_DH 4 structural Zn binding site 0 1 1 0 91,94,97,105,106,107 4 -176193 cd08231 MDR_TM0436_like 1 tetramer interface 0 1 0 0 97,99,100,102,103,106,107,108,138,165,166,177,198,199,200,250,270,272,277,286,287,288,289,295,296,298,299,300,301,302,303,304,305,313,314,317,318,321 2 -176193 cd08231 MDR_TM0436_like 2 catalytic Zn binding site 0 1 1 0 37,59,60,159 4 -176193 cd08231 MDR_TM0436_like 3 structural Zn binding site 0 1 1 0 95,98,101,109 4 -176194 cd08232 idonate-5-DH 1 putative NAD(P) binding site 0 0 1 1 33,34,35,38,148,152,172,173,174,175,176,177,196,197,201,216,237,238,240,260,261,284,285,286 5 -176194 cd08232 idonate-5-DH 2 catalytic Zn binding site 0 0 1 1 33,35,58,148 4 -176195 cd08233 butanediol_DH_like 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,155,159,179,180,181,182,183,184,203,204,208,223,247,248,250,273,274,294,295,296 5 -176195 cd08233 butanediol_DH_like 2 catalytic Zn binding site 0 0 1 1 36,38,69,155 4 -176196 cd08234 threonine_DH_like 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,142,146,166,167,168,169,170,171,190,191,195,210,232,233,235,255,256,281,282,283 5 -176196 cd08234 threonine_DH_like 2 catalytic Zn binding site 0 0 1 1 36,38,57,142 4 -176197 cd08235 iditol_2_DH_like 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,148,152,172,173,174,175,176,177,196,197,201,216,240,241,243,263,264,289,290,291 5 -176197 cd08235 iditol_2_DH_like 2 catalytic Zn binding site 0 0 1 1 36,38,58,148 4 -176198 cd08236 sugar_DH 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,142,146,166,167,168,169,170,171,190,191,195,210,233,234,236,256,257,283,284,285 5 -176198 cd08236 sugar_DH 2 catalytic Zn binding site 0 0 1 1 36,38,57,142 4 -176199 cd08237 ribitol-5-phosphate_DH 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,143,147,170,171,172,173,174,175,195,196,200,213,228,229,231,254,255,278,279,280 5 -176199 cd08237 ribitol-5-phosphate_DH 2 putative catalytic Zn binding site 0 0 1 1 37,39,63,143 4 -176200 cd08238 sorbose_phosphate_red 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,146,150,183,184,185,186,187,188,209,210,214,238,263,264,266,286,287,313,314,315 5 -176200 cd08238 sorbose_phosphate_red 2 catalytic Zn binding site 0 0 1 1 38,40,67,146 4 -176201 cd08239 THR_DH_like 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,146,150,170,171,172,173,174,175,194,195,199,214,237,238,240,260,261,284,285,286 5 -176201 cd08239 THR_DH_like 2 catalytic Zn binding site 0 0 1 1 36,38,59,146 4 -176202 cd08240 6_hydroxyhexanoate_dh_like 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,157,161,182,183,184,185,186,187,206,207,211,226,249,250,252,272,273,296,297,298 5 -176202 cd08240 6_hydroxyhexanoate_dh_like 2 catalytic Zn binding site 0 0 1 1 37,39,71,157 4 -176203 cd08241 QOR1 1 NAD(P) binding site 0 1 1 0 39,40,121,125,146,149,150,151,170,171,175,190,214,236,237,239,240,261,262,263,313,315,317 5 -176204 cd08242 MDR_like 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,138,142,162,163,164,165,166,167,185,186,190,202,220,221,223,243,244,267,268,269 5 -176204 cd08242 MDR_like 2 catalytic Zn binding site 0 0 1 1 36,38,55,138 4 -176204 cd08242 MDR_like 3 structural Zn binding site 0 0 1 1 82,85,88,96 4 -176205 cd08243 quinone_oxidoreductase_like_1 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,124,128,149,150,151,152,154,155,173,174,178,193,214,215,217,236,237,265,266,267 5 -176206 cd08244 MDR_enoyl_red 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,125,129,149,150,151,152,154,155,173,174,178,194,217,218,220,239,240,264,265,266 5 -176207 cd08245 CAD 1 NAD binding site 0 1 1 0 36,37,38,41,145,149,169,171,172,173,191,192,193,197,231,232,233,234,254,255,279,280,281 5 -176207 cd08245 CAD 2 substrate binding site 0 1 1 0 36,38,58,84,145,281 5 -176207 cd08245 CAD 3 tetramer interface 0 1 1 1 91,93,94,102,103,104,183,184,185,187,199,202,203,253,255,274,275,276,277,278,279,280,289,293,296 2 -176207 cd08245 CAD 4 catalytic Zn binding site 0 1 1 1 36,58,145 4 -176207 cd08245 CAD 5 structural Zn binding site 0 1 1 0 89,92,95,103 4 -176208 cd08246 crotonyl_coA_red 1 putative NAD(P) binding site 0 0 1 1 54,55,56,59,173,177,200,201,202,203,205,206,224,225,229,244,291,292,294,313,314,338,339,340 5 -176209 cd08247 AST1_like 1 putative NAD(P) binding site 0 0 1 1 40,41,42,45,132,136,158,159,160,161,163,164,183,184,193,205,231,232,234,257,258,297,298,299 5 -176210 cd08248 RTN4I1 1 NAD(P) binding site 0 1 1 0 42,140,141,144,169,171,172,173,174,192,194,212,233,234,255,256,296,297,298,341,342,343 5 -176211 cd08249 enoyl_reductase_like 1 NAD(P) binding site 0 1 1 1 39,40,130,163,164,165,166,185,186,188,189,204,227,228,252,253,270,272,330,331 5 -176212 cd08250 Mgc45594_like 1 NADP binding site 0 1 0 0 42,43,44,121,125,146,149,150,151,169,170,171,175,190,213,214,235,236,237,238,239,241,269,270,271,316,317,319,321,323 5 -176212 cd08250 Mgc45594_like 2 dimer interface 0 1 0 0 228,229,231,235,236,237,255,256,257,259,260,261,262,263,264,265,266,267,268,269,270,273,274 2 -176213 cd08251 polyketide_synthase 1 putative NAD(P) binding site 0 0 1 0 20,107,127,129,130,131,132,151,152,156,171,172,195,217,242,243,244 5 -176214 cd08252 AL_MDR 1 putative NAD(P) binding site 0 0 1 1 42,43,44,47,126,130,156,157,158,159,161,162,181,182,186,201,223,224,226,246,247,268,269,270 5 -176214 cd08252 AL_MDR 2 dimer interface 0 1 0 0 133,137,138,230,239,240,248,252,253,254,255,256,258,259,260,261,262,263,264,265,266,267,268,269,272,273,276,278 2 -176215 cd08253 zeta_crystallin 1 NAD(P) binding site 0 1 1 0 40,44,126,130,150,151,152,153,154,155,156,175,176,195,196,219,220,224,241,242,247,265,266,267,311,315,316 5 -176216 cd08254 hydroxyacyl_CoA_DH 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,147,151,172,173,174,175,176,177,194,195,200,215,238,239,241,261,262,285,286,287 5 -176216 cd08254 hydroxyacyl_CoA_DH 2 catalytic Zn binding site 0 0 1 1 38,40,61,147 4 -176216 cd08254 hydroxyacyl_CoA_DH 3 structural Zn binding site 0 0 1 1 91,94,97,105 4 -176217 cd08255 2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_like 1 putative NAD(P) binding site 0 0 1 1 11,13,14,17,80,84,104,105,106,107,108,109,128,129,133,148,165,166,168,188,189,213,214,215 5 -176218 cd08256 Zn_ADH2 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,157,161,181,182,183,184,185,186,205,206,210,233,249,250,252,272,273,297,298,299 5 -176218 cd08256 Zn_ADH2 2 catalytic Zn binding site 0 0 1 1 36,67,68,157 4 -176218 cd08256 Zn_ADH2 3 structural Zn binding site 0 0 1 1 99,102,105,113 4 -176219 cd08258 Zn_ADH4 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,146,150,171,172,173,174,175,176,194,195,201,223,239,240,242,262,263,287,288,289 5 -176219 cd08258 Zn_ADH4 2 catalytic Zn binding site 0 0 1 1 38,60,61,146 4 -176219 cd08258 Zn_ADH4 3 structural Zn binding site 0 0 1 1 91,94,97,105 4 -176220 cd08259 Zn_ADH5 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,145,149,169,170,171,172,174,175,193,194,197,213,232,233,235,254,255,279,280,281 5 -176220 cd08259 Zn_ADH5 2 catalytic Zn binding site 0 0 1 1 37,59,60,145 4 -176220 cd08259 Zn_ADH5 3 structural Zn binding site 0 0 1 1 89,92,95,103 4 -176221 cd08260 Zn_ADH6 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,147,151,172,173,174,175,176,177,195,196,200,215,239,240,242,262,263,289,290,291 5 -176221 cd08260 Zn_ADH6 2 catalytic Zn binding site 0 0 1 1 37,59,147 4 -176221 cd08260 Zn_ADH6 3 structural Zn binding site 0 0 1 1 89,92,95,103 4 -176222 cd08261 Zn_ADH7 1 putative NAD(P) binding site 0 0 1 1 36,37,38,41,142,146,166,167,168,169,170,171,189,190,194,209,233,234,236,256,257,280,281,282 5 -176222 cd08261 Zn_ADH7 2 catalytic Zn binding site 0 0 1 1 36,58,59,142 4 -176222 cd08261 Zn_ADH7 3 structural Zn binding site 0 0 1 1 88,91,94,102 4 -176223 cd08262 Zn_ADH8 1 putative NAD(P) binding site 0 0 1 1 35,36,37,40,144,148,168,169,170,171,172,173,192,193,197,211,239,240,242,262,263,286,287,288 5 -176223 cd08262 Zn_ADH8 2 catalytic Zn binding site 0 0 1 1 35,68,69,144 4 -176224 cd08263 Zn_ADH10 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,169,173,194,195,196,197,198,199,218,219,223,238,262,263,265,285,286,311,312,313 5 -176224 cd08263 Zn_ADH10 2 catalytic Zn binding site 0 0 1 1 37,58,169 4 -176224 cd08263 Zn_ADH10 3 structural Zn binding site 0 0 1 1 91,94,97,105 4 -176225 cd08264 Zn_ADH_like2 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,145,149,169,170,171,172,174,175,193,194,196,209,229,230,232,251,252,276,277,278 5 -176225 cd08264 Zn_ADH_like2 2 putative structural Zn binding site 0 0 1 1 89,92,95,103 4 -176226 cd08265 Zn_ADH3 1 putative NAD(P) binding site 0 0 1 1 63,64,65,68,184,188,210,211,212,213,214,215,234,235,239,254,281,282,284,305,306,329,330,331 5 -176226 cd08265 Zn_ADH3 2 tetramer interface 0 1 0 0 102,103,104,105,124,125,126,129,130,132,135,137,138,159,162,190,194,201,202,203,204,224,225,226,228,273,298,299,304,305,306,320,321,323,324,325,326,327,328,329,330,334,336,339,340,343,344,347 2 -176226 cd08265 Zn_ADH3 3 catalytic Zn binding site 0 1 1 1 63,92,93,184 4 -176226 cd08265 Zn_ADH3 4 structural Zn binding site 0 1 1 0 122,125,128,136 4 -176227 cd08266 Zn_ADH_like1 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,148,152,173,174,175,176,178,179,197,198,202,217,241,242,244,263,264,288,289,290 5 -176227 cd08266 Zn_ADH_like1 2 structural Zn binding site 0 1 1 1 92,95,98,106 4 -176228 cd08267 MDR1 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,125,129,150,151,152,153,155,156,174,175,178,193,214,215,238,239,266,267,268 5 -176229 cd08268 MDR2 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,120,130,151,152,153,154,156,157,175,176,180,195,219,220,222,241,242,266,267,268 5 -176230 cd08269 Zn_ADH9 1 putative NAD(P) binding site 0 0 1 1 31,32,33,36,112,116,136,137,138,139,140,141,160,161,165,191,204,205,207,227,228,252,253,254 5 -176230 cd08269 Zn_ADH9 2 catalytic Zn binding site 0 0 1 1 31,56,57,112 4 -176231 cd08270 MDR4 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,115,119,139,140,141,142,144,145,163,164,168,183,198,199,201,220,221,244,245,246 5 -176232 cd08271 MDR5 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,123,127,148,149,150,151,153,154,172,173,176,191,215,216,218,237,238,258,259,260 5 -176232 cd08271 MDR5 2 substrate binding site 0 1 0 0 41,86,89,123,239,259,260,261 5 -176233 cd08272 MDR6 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,126,130,151,152,153,154,156,157,175,176,179,193,217,218,220,239,240,260,261,262 5 -176234 cd08273 MDR8 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,121,125,146,147,148,149,151,152,170,171,174,188,209,210,212,231,232,270,271,272 5 -176235 cd08274 MDR9 1 putative NAD(P) binding site 0 0 1 1 40,41,42,45,160,164,184,185,186,187,189,190,209,210,212,227,249,250,252,271,272,296,297,298 5 -176236 cd08275 MDR3 1 putative NAD(P) binding site 0 0 1 1 38,39,40,43,120,124,145,146,147,148,150,151,170,171,174,189,212,213,215,234,235,275,276,277 5 -176237 cd08276 MDR7 1 putative NAD(P) binding site 0 0 1 1 39,40,41,44,142,146,167,168,169,170,171,172,190,191,195,210,235,236,238,257,258,282,283,284 5 -176238 cd08277 liver_alcohol_DH_like 1 NAD binding site 0 1 1 0 40,41,166,170,191,192,193,194,195,215,216,220,260,261,265,266,284,285,308,309,310,360 5 -176238 cd08277 liver_alcohol_DH_like 2 substrate binding site 0 1 1 0 41,60,86,286 5 -176238 cd08277 liver_alcohol_DH_like 3 dimer interface 0 1 0 0 94,95,98,100,101,102,103,252,253,278,283,284,285,286,292,293,294,295,296,297,299,302,303,304,305,306,307,308,309 2 -176238 cd08277 liver_alcohol_DH_like 4 catalytic Zn binding site 0 1 1 1 39,41,60,166 4 -176238 cd08277 liver_alcohol_DH_like 5 structural Zn binding site 0 1 1 0 90,93,96,104 4 -176239 cd08278 benzyl_alcohol_DH 1 NAD binding site 0 1 0 0 40,41,168,172,194,195,196,197,217,218,219,222,237,260,261,283,284,285,309,310,311 5 -176239 cd08278 benzyl_alcohol_DH 2 catalytic Zn binding site 0 1 1 0 39,41,60,168 4 -176239 cd08278 benzyl_alcohol_DH 3 structural Zn binding site 0 1 1 0 89,92,95,103 4 -176240 cd08279 Zn_ADH_class_III 1 NAD binding site 0 0 1 1 37,38,39,42,164,168,189,190,191,192,193,213,214,218,257,258,259,263,280,281,282,306,307,308,351,358 5 -176240 cd08279 Zn_ADH_class_III 2 substrate binding site 0 0 1 1 39,58,84,282 5 -176240 cd08279 Zn_ADH_class_III 3 structural Zn binding site 0 0 1 1 88,91,94,102 4 -176240 cd08279 Zn_ADH_class_III 4 catalytic Zn binding site 0 0 1 1 37,39,58,164 4 -176241 cd08281 liver_ADH_like1 1 NAD binding site 0 0 1 1 45,46,47,50,173,177,198,199,200,201,202,222,223,227,265,266,267,271,288,289,290,314,315,316,359,366 5 -176241 cd08281 liver_ADH_like1 2 substrate binding site 0 0 1 1 47,66,92,290 5 -176241 cd08281 liver_ADH_like1 3 catalytic Zn binding site 0 0 1 1 45,47,66,173 4 -176241 cd08281 liver_ADH_like1 4 structural Zn binding site 0 0 1 1 96,99,102,110 4 -176242 cd08282 PFDH_like 1 catalytic Zn binding site 0 1 1 0 37,39,58,159 4 -176242 cd08282 PFDH_like 2 structural Zn binding site 0 1 1 0 88,89,91,94,102 4 -176242 cd08282 PFDH_like 3 NAD binding site 0 1 1 0 37,38,39,42,84,159,163,183,185,186,187,206,207,208,212,226,249,250,254,255,266,283,284,285,320,321,322,362 5 -176243 cd08283 FDH_like_1 1 NAD binding site 0 0 1 1 37,38,39,42,85,167,171,190,191,193,194,195,214,215,216,220,235,260,261,262,287,304,305,306,329,330,331,371 5 -176243 cd08283 FDH_like_1 2 catalytic Zn binding site 0 0 1 1 37,39,59,167 4 -176243 cd08283 FDH_like_1 3 structural Zn binding site 0 0 1 1 89,90,92,95,103 4 -176244 cd08284 FDH_like_2 1 NAD(P) binding site 0 0 1 1 84,150,151,154,174,176,177,198,199,203,241,242,247,264,266,289,290,291,331 5 -176244 cd08284 FDH_like_2 2 catalytic Zn binding site 0 0 1 1 37,39,58,150 4 -176244 cd08284 FDH_like_2 3 structural Zn binding site 0 0 1 1 88,91,94,102 4 -176245 cd08285 NADP_ADH 1 NADP binding site 0 1 1 0 37,38,149,153,173,174,175,176,177,198,199,217,241,242,243,264,265,266 5 -176245 cd08285 NADP_ADH 2 tetramer interface 0 1 1 0 24,89,90,91,92,95,96,98,100,101,105,130,155,156,159,165,166,186,187,188,189,190,191,192,193,210,248,257,258,263,265,266,267,268,270,271,272,273,274,275,276,280,281,282,283,284,285,286,288,289,290,291,292,293,297,298,299,303,307,310,312 2 -176245 cd08285 NADP_ADH 3 catalytic Zn binding site 0 1 1 0 36,38,58,149 4 -176246 cd08286 FDH_like_ADH2 1 NAD(P) binding site 0 0 1 1 148,152,173,175,176,177,197,198,202,247,264,266,288,329 5 -176246 cd08286 FDH_like_ADH2 2 catalytic Zn binding site 0 0 1 1 37,39,59,148 4 -176246 cd08286 FDH_like_ADH2 3 structural Zn binding site 0 0 1 1 89,92,95,103 4 -176247 cd08287 FDH_like_ADH3 1 NAD(P) binding site 0 0 1 1 38,39,42,84,151,155,175,177,178,179,199,200,204,243,244,249,290,291,292 5 -176247 cd08287 FDH_like_ADH3 2 catalytic Zn binding site 0 0 1 1 37,39,58,151 4 -176247 cd08287 FDH_like_ADH3 3 structural Zn binding site 0 0 1 1 88,91,94,102 4 -176248 cd08288 MDR_yhdh 1 NADP binding site 0 1 0 0 39,40,125,126,129,153,155,156,157,158,177,178,179,197,218,219,240,241,242,243,244,265,266,267,268,310,313,315 5 -176248 cd08288 MDR_yhdh 2 dimer interface 0 1 0 0 206,233,239,240,241,242,248,250,251,252,253,255,256,257,259,260,261,262,263,264,265,266,269,270 2 -176249 cd08289 MDR_yhfp_like 1 putative NADP binding site 0 0 0 1 39,40,125,126,129,153,155,156,157,158,177,178,179,197,219,220,241,242,243,244,245,266,267,268,269,312,317 5 -176249 cd08289 MDR_yhfp_like 2 putative dimer interface 0 0 0 1 207,234,240,241,242,243,249,251,252,253,254,256,257,258,261,262,263,264,265,266,267,270,271 2 -176250 cd08290 ETR 1 NADP binding site 0 1 1 0 42,128,129,132,153,155,156,157,158,178,227,228,249,250,251,252,274,275,276,335 5 -176250 cd08290 ETR 2 dimer interface 0 1 1 0 52,53,248,249,250,251,257,258,259,261,264,265,266,269,270,271,272,273,275 2 -176251 cd08291 ETR_like_1 1 NADP binding site 0 1 0 0 43,126,127,130,150,152,153,154,155,175,176,179,218,219,244,245,247,248,267,268,269,316,317,320 5 -176251 cd08291 ETR_like_1 2 dimer interface 0 1 0 0 44,47,48,61,220,221,233,243,244,248,251,252,253,254,255,259,262,263,264,265,266,267,268 2 -176252 cd08292 ETR_like_2 1 putative NAD(P) binding site 0 0 1 1 41,122,123,126,146,148,149,150,151,171,214,215,236,237,239,261,262,263 5 -176252 cd08292 ETR_like_2 2 putative dimer interface 0 0 1 1 236,245,246,247,251,252,258,260,262 2 -176253 cd08293 PTGR2 1 NADP binding site 0 1 1 0 49,138,164,165,166,186,187,191,207,230,231,252,253,254,255,256,258,286,287,288,331,332,334,336,338 5 -176253 cd08293 PTGR2 2 substrate binding site 0 1 0 0 50,64,98,99,289 5 -176254 cd08294 leukotriene_B4_DH_like 1 NAD(P) binding site 0 1 1 0 46,125,129,150,153,154,155,174,175,179,194,217,218,239,240,241,242,243,245,270,271,272,315,316,318,320 5 -176254 cd08294 leukotriene_B4_DH_like 2 substrate binding site 0 1 1 0 47,50,239,245,273 5 -176254 cd08294 leukotriene_B4_DH_like 3 dimer interface 0 1 1 0 12,15,16,17,50,53,54,233,238,239,240,241,244,260,261,264,265,266,267,268,269,270,271,274 2 -176255 cd08295 double_bond_reductase_like 1 NAD binding site 0 1 0 0 50,51,133,137,158,160,161,162,163,164,182,183,187,203,227,228,249,250,251,252,253,255,279,280,281,324,325,329,331 5 -176255 cd08295 double_bond_reductase_like 2 substrate binding site 0 1 0 0 51,77,255,281 5 -176255 cd08295 double_bond_reductase_like 3 dimer interface 0 1 0 0 54,243,248,249,251,266,267,268,269,270,271,273,274,275,276,277,278,279,280,283 2 -176256 cd08296 CAD_like 1 putative NAD(P) binding site 0 0 1 1 37,38,39,42,146,150,170,171,172,173,174,175,193,194,198,213,234,235,237,257,258,281,282,283 5 -176256 cd08296 CAD_like 2 putative substrate binding site 0 0 1 1 37,39,59,85,146,283 5 -176256 cd08296 CAD_like 3 catalytic Zn binding site 0 0 1 1 37,39,59,146 4 -176256 cd08296 CAD_like 4 structural Zn binding site 0 0 1 1 90,93,96,104 4 -176257 cd08297 CAD3 1 NAD binding site 0 1 1 0 38,39,40,43,148,152,172,174,175,177,195,196,201,240,241,242,243,246,263,264,265,288,289,290,335 5 -176257 cd08297 CAD3 2 substrate binding site 0 1 1 0 38,40,49,61,87,148,265,290 5 -176257 cd08297 CAD3 3 tetramer interface 0 1 1 0 49,94,96,97,105,106,107,163,164,165,187,188,189,191,203,206,207,247,255,257,262,264,265,275,276,281,282,283,284,285,286,287,288,289,293,294,298,302,305 2 -176257 cd08297 CAD3 4 catalytic Zn binding site 0 1 1 1 38,61,148 4 -176257 cd08297 CAD3 5 structural Zn binding site 0 1 1 0 92,95,98,106 4 -176258 cd08298 CAD2 1 putative NAD(P) binding site 0 0 1 1 41,42,43,46,150,154,174,175,176,177,178,179,197,198,202,213,233,234,236,254,255,280,281,282 5 -176258 cd08298 CAD2 2 putative substrate binding site 0 0 1 1 41,43,63,89,150,282 5 -176258 cd08298 CAD2 3 catalytic Zn binding site 0 0 1 1 41,43,63,150 4 -176258 cd08298 CAD2 4 structural Zn binding site 0 0 1 1 94,97,100,108 4 -176259 cd08299 alcohol_DH_class_I_II_IV 1 NAD binding site 0 1 1 0 45,46,172,176,197,198,199,200,201,221,222,226,266,267,271,272,290,291,315,316,317,367 5 -176259 cd08299 alcohol_DH_class_I_II_IV 2 substrate binding site 0 1 1 0 46,65,91,114,139,292 5 -176259 cd08299 alcohol_DH_class_I_II_IV 3 dimer interface 0 1 0 0 99,100,103,108,258,259,270,283,284,289,290,298,299,300,301,302,303,306,307,308,309,310,311,312,313,314,315,316 2 -176259 cd08299 alcohol_DH_class_I_II_IV 4 catalytic Zn binding site 0 1 1 1 44,65,172 4 -176259 cd08299 alcohol_DH_class_I_II_IV 5 structural Zn binding site 0 1 1 0 95,96,98,101,109 4 -176260 cd08300 alcohol_DH_class_III 1 NAD binding site 0 1 1 0 40,41,168,172,193,194,195,196,197,217,218,222,262,263,267,268,286,287,311,312,313,363 5 -176260 cd08300 alcohol_DH_class_III 2 substrate binding site 0 1 1 1 39,41,50,51,52,61,87,88,168,288,312 5 -176260 cd08300 alcohol_DH_class_III 3 dimer interface 0 1 0 0 95,96,99,101,102,104,106,253,258,269,270,277,278,279,280,289,292,293,294,295,296,297,298,299,302,303,304,307,308,309,310,311,312 2 -176260 cd08300 alcohol_DH_class_III 4 catalytic Zn binding site 0 1 1 1 39,61,62,168 4 -176260 cd08300 alcohol_DH_class_III 5 structural Zn binding site 0 1 1 0 91,94,97,105 4 -176261 cd08301 alcohol_DH_plants 1 NAD binding site 0 0 1 0 40,41,169,173,194,195,196,197,198,218,219,223,263,264,268,269,287,288,312,313,314,364 5 -176261 cd08301 alcohol_DH_plants 2 substrate binding site 0 0 0 0 39,41,61,87,135,169,289,313 5 -176261 cd08301 alcohol_DH_plants 3 catalytic Zn binding site 0 0 1 0 39,41,61,169 4 -260020 cd08306 Death_FADD 1 FADD-FAS heterodimer interface 0 1 1 1 2,5,6,9,10,38,39,41,45,60,61,62,75,76,78,79,81,82,83,84 2 -260020 cd08306 Death_FADD 2 tetramer interface 0 1 1 1 69,78,81,82 2 -260021 cd08307 Death_Pelle 1 Pelle-Tube interaction site 0 1 1 0 3,30,33,37,40,57,58,59,61,62,63,64,68,70,71,72,74,93 2 -260022 cd08308 Death_Tube 1 Pelle-Tube interaction site 0 1 1 0 23,26,94,95,96,97,98,101,115,119,120,121,122,124,126,127 2 -260026 cd08312 Death_MyD88 1 MyD88-IRAK4 interaction site 0 1 1 1 10,12,13,14,15,17,23,29,32,33,69,71,72,75,76 2 -260028 cd08316 Death_FAS_TNFRSF6 1 FAS-FADD heterodimer interface 0 1 1 1 2,3,5,6,9,10,12,13,25,58,59,60,62,63,65,68,69,70,72,73,74,76,79,80,81,82,83,85,88,89 2 -260028 cd08316 Death_FAS_TNFRSF6 2 tetramer interface 0 1 1 1 70,73,77,80,81,88,91,92 2 -260028 cd08316 Death_FAS_TNFRSF6 3 octamer interface 0 1 1 1 25,81,82,85,89,92,93 2 -260031 cd08319 Death_RAIDD 1 RAIDD-PIDD interaction site 0 1 1 1 1,2,5,6,9,36,39,45,46,49,52,53,54,56,57 2 -260031 cd08319 Death_RAIDD 2 Type I interaction site 0 1 1 0 1,2,5,9,36,38,39,45,49 2 -260031 cd08319 Death_RAIDD 3 Type II interaction site 0 1 1 0 53,54,57 2 -260031 cd08319 Death_RAIDD 4 Type III interaction site 0 1 1 0 27,30,31,34,35 2 -260034 cd08323 CARD_APAF1 1 APAF1-Caspase9 interaction site 0 1 1 0 16,17,20,21,23,24,30,33 2 -260035 cd08324 CARD_NOD1_CARD4 1 homodimer interface 0 1 1 1 5,8,9,12,13,14,15,17,18,19,21,25,66,69,70,72,73,74,75,76,77,78,79,80,82,83 2 -176740 cd08326 CARD_CASP9 1 Caspase9-APAF1 interaction site 0 1 1 0 5,6,8,9,12,45,49,53,56 2 -260038 cd08329 CARD_BIRC2_BIRC3 1 RING interface 0 1 1 0 11,14,40,41,44,48,57,60,61,63,64 0 -260041 cd08333 DED_Caspase_8_r1 1 putative DED1/DED2 interface 0 0 1 1 13,14,18,21,22,24,25,61,65 2 -260041 cd08333 DED_Caspase_8_r1 2 charge triad [ED]RD 0 1 1 15,68,70 1 -260042 cd08334 DED_Caspase_8_10_r2 1 putative DED1/DED2 interface 0 0 1 1 1,4,5,7,8,12,42,46 2 -260043 cd08336 DED_FADD 1 charge triad [ED]RD 0 1 1 17,70,72 1 -260044 cd08337 DED_c-FLIP_r1 1 DED1/DED2 interface 0 1 1 1 14,15,19,22,23,25,26,56,60 2 -260044 cd08337 DED_c-FLIP_r1 2 charge triad [ED]RD 0 1 1 16,63,65 1 -260045 cd08338 DED_PEA15 1 ERK2 interaction site 0 1 1 1 12,17,66,67,69,70,71,72,74,75,78 2 -260045 cd08338 DED_PEA15 2 charge triad [ED]RD 0 1 1 17,70,72 1 -176750 cd08339 DED_DEDD-like 1 charge triad [ED]RD 0 1 1 19,72,74 1 -260046 cd08340 DED_c-FLIP_r2 1 DED1/DED2 interface 0 1 1 1 0,3,4,6,7,11,39,41,45 2 -260046 cd08340 DED_c-FLIP_r2 2 charge triad [ED]RD 0 1 1 17,70,72 1 -260047 cd08341 DED_Caspase_10_r1 1 putative DED1/DED2 interface 0 0 1 1 15,16,20,23,24,26,27,63,67 2 -260047 cd08341 DED_Caspase_10_r1 2 charge triad 0 0 1 1 17,70,72 1 -319930 cd08342 HPPD_N_like 1 dimer interface 0 1 1 0 11,12,13,15,16,37,39,69 2 -319931 cd08343 ED_TypeI_classII_C 1 active site 0 1 1 0 1,3,38,48,62,64,94,103,113 1 -319931 cd08343 ED_TypeI_classII_C 2 metal binding site [EH]HE 1 1 0 1,62,113 4 -319933 cd08345 Fosfomycin_RP 1 metal binding site HHE 1 1 1 0,62,111 4 -319933 cd08345 Fosfomycin_RP 2 active site 0 1 1 0 0,2,37,48,50,62,101,111 1 -319933 cd08345 Fosfomycin_RP 3 dimer interface 0 1 1 0 0,1,2,3,4,22,23,24,25,39,41,46,50,62,63,64,65,66,67,75,108,111,112,113,115,116,117 2 -319934 cd08346 PcpA_N_like 1 Zn binding site H[STAV] 1 0 1 3,5 4 -319935 cd08347 PcpA_C_like 1 Zn binding site HE 1 0 1 67,115 4 -319936 cd08348 BphC2-C3-RGP6_C_like 1 putative metal binding site H[QH]E 0 1 1 3,70,118 4 -319936 cd08348 BphC2-C3-RGP6_C_like 2 putative active site 0 0 0 1 3,5,37,45,70,72,101,108,118 1 -319937 cd08349 BLMA_like 1 ligand binding site 0 1 1 0 24,25,32,43,45,46,60,93,100,102,106,107,108,110 5 -319937 cd08349 BLMA_like 2 dimer interface 0 1 1 0 0,1,2,32,39,40,41,43,58,59,60,61,62,63,68,69,72,111 2 -319938 cd08350 BLMT_like 1 ligand binding site 0 1 1 1 33,35,42,44,59,63,97,101,105,109,111,113 5 -319938 cd08350 BLMT_like 2 dimer interface 0 1 1 0 0,1,2,3,4,5,6,33,40,42,44,46,47,48,58,59,60,61,62,63,64,65,113,117 2 -319939 cd08351 ChaP_like 1 metal binding site HHE 0 0 1 4,58,114 4 -319940 cd08352 VOC_Bs_YwkD_like 1 putative metal binding site HHE 0 0 1 4,72,119 4 -319941 cd08353 VOC_like 1 putative dimer interface 0 1 0 0 0,1,2,3,4,5,6,7,8,9,10,11,23,24,25,37,40,41,42,44,57,58,60,61,63,64,68,71,72,83,84,85,86,87,88,89,90,91,92,93,94,95,96,99,100,103,112,116,118,124,125,126,133,134,135,140 2 -319942 cd08354 VOC_like 1 putative metal binding site EHE 0 0 1 2,69,117 4 -319942 cd08354 VOC_like 2 homodimer interface 0 1 0 0 0,1,2,3,4,6,21,22,23,27,34,36,37,38,39,40,41,66,67,68,69,70,71,72,73,82,94,95,107,109,115,117,119,120,121 2 -319945 cd08357 VOC_like 1 putative metal binding site HHE 0 0 1 1,66,119 4 -319947 cd08359 VOC_like 1 putative dimer interface 0 0 0 0 0,1,2,3,4,5,6,7,45,46,49,63,64,65,66,67,68,69,70,71,72,91,113 2 -319948 cd08360 MhqB_like_C 1 putative metal binding site HHE 0 0 1 5,62,113 4 -319948 cd08360 MhqB_like_C 2 putative active site 0 0 1 1 5,7,38,48,62,64,94,96,97,103,113 1 -319950 cd08362 BphC5-RrK37_N_like 1 putative oligomer interface 0 1 0 0 11,22 2 -319951 cd08363 FosB 1 putative Mg binding site HHE 0 1 1 2,61,110 4 -319951 cd08363 FosB 2 putative active site 0 0 1 1 2,4,32,43,45,61,100,110 1 -319952 cd08364 FosX 1 Mn binding site HHE[EQK] 1 1 1 5,67,116,124 4 -319952 cd08364 FosX 2 active site 0 1 1 0 5,7,42,53,55,65,67,101,106,116,118,125 1 -319952 cd08364 FosX 3 dimer interface 0 1 1 0 0,1,2,3,4,5,6,7,8,9,24,38,40,42,48,51,53,55,61,65,66,67,68,69,70,71,76,80,113,116,117,118,122,124 2 -176483 cd08365 APC10-like1 1 putative ligand binding site 0 0 1 1 27,55,61,63,123 5 -176484 cd08366 APC10 1 putative ligand binding site 0 0 1 0 30,57,64,66,130 5 -176262 cd08367 P53 1 DNA binding site 0 1 1 0 128,130,137,162,164,165,166,169 3 -176262 cd08367 P53 2 zinc binding site 0 1 1 0 67,70,127,131 4 -176262 cd08367 P53 3 dimerization site 0 1 1 1 68,69,70,72 2 -259829 cd08368 LIM 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -187712 cd08369 FMT_core 1 active site 0 1 1 0 4,7,8,9,74,75,76,77,78,79,80,81,86,95,96,97,98,106,126,128,129,132,133 1 -187712 cd08369 FMT_core 2 catalytic site 0 0 1 1 95,97,133 1 -187712 cd08369 FMT_core 3 substrate binding site 0 1 1 0 7,8,75,76,96,98,162 5 -187712 cd08369 FMT_core 4 cosubstrate binding site 0 1 1 1 74,77,79,80,81,86,95,128,129,132,133 0 -187740 cd08371 Lumazine_synthase-like 1 active site 0 1 1 1 5,7,8,38,39,40,41,42,64,65,66,67,72,73,76,96,97,110,112,118,122 1 -187740 cd08371 Lumazine_synthase-like 2 homopentamer interface 0 1 1 1 7,34,35,36,37,38,41,42,44,45,46,48,49,50,52,67,72,73,74,75,77,78,79,81,82,83,85,86,87,88,89,92,93,94,97,103,108,112,118,121,125,128 2 -197306 cd08372 EEP 1 putative catalytic site 0 1 1 1 4,33,115,153,155,203,232,233 1 -197306 cd08372 EEP 2 putative metal binding site 0 1 1 1 33,232 4 -197306 cd08372 EEP 3 putative phosphate binding site 0 1 1 1 115,155,233 4 -176021 cd08375 C2_Intersectin 1 putative Ca2+ binding site 0 0 1 0 36,83,85,91 4 -176022 cd08376 C2B_MCTP_PRT 1 putative Ca2+ binding site 0 0 1 0 21,68,70,76 4 -176023 cd08377 C2C_MCTP_PRT 1 Ca2+ binding site 0 0 1 0 16,22,68,70,76 4 -176024 cd08378 C2B_MCTP_PRT_plant 1 putative Ca2+ binding site 0 0 1 0 17,64,66,71 4 -176025 cd08379 C2D_MCTP_PRT_plant 1 putative Ca2+ binding site 0 0 1 0 18,24,70,72,83 4 -176027 cd08381 C2B_PI3K_class_II 1 nuclear localization signal 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59 0 -176028 cd08382 C2_Smurf-like 1 putative Ca2+ binding pocket 0 0 1 0 15,21,67,69,77,79 4 -176029 cd08383 C2A_RasGAP 1 putative Ca2+ binding site 0 0 1 0 18,67,69,74 4 -176030 cd08384 C2B_Rabphilin_Doc2 1 Ca2+ binding site 0 1 1 0 28,34,88,90,96 4 -176031 cd08385 C2A_Synaptotagmin-1-5-6-9-10 1 Ca2+ binding site 0 1 1 0 31,37,89,91,97 4 -176032 cd08386 C2A_Synaptotagmin-7 1 Ca2+ binding site 0 0 1 0 31,37,90,92,98 4 -176033 cd08387 C2A_Synaptotagmin-8 1 putative Ca2+ binding site 0 0 1 1 31,37,89,91,97 4 -176037 cd08391 C2A_C2C_Synaptotagmin_like 1 Ca2+ binding site 0 0 1 0 28,75,77,82 4 -176040 cd08394 C2A_Munc13 1 homodimer interface 0 1 1 0 22,24,26,30,31,32,33,62,64,70,71,72,73 2 -176043 cd08398 C2_PI3K_class_I_alpha 1 p110alpha-p85alpha complex 0 1 1 0 20,21,83,120,121,122,123,125,142 0 -176046 cd08401 C2A_RasA2_RasA3 1 putative Ca2+ binding site 0 0 1 0 22,69,71,76 4 -176047 cd08402 C2B_Synaptotagmin-1 1 Ca2+ binding site 0 1 1 0 30,36,90,92,98 4 -176048 cd08403 C2B_Synaptotagmin-3-5-6-9-10 1 Ca2+ binding site 0 1 1 0 29,35,59,89,91,97 4 -176049 cd08404 C2B_Synaptotagmin-4 1 Ca2+ binding pocket 0 1 1 0 30,36,90,92,97 4 -176050 cd08405 C2B_Synaptotagmin-7 1 Ca2+ binding pocket 0 0 1 0 30,36,90,92 4 -176103 cd08411 PBP2_OxyR 1 dimerization interface 0 1 0 0 12,15,16,19,23,31,32,33,34,35,128,131,132,135,138,139,141,142 2 -176104 cd08412 PBP2_PAO1_like 1 putative substrate binding pocket 0 0 0 1 8,12,55,73,107,131,148 5 -176104 cd08412 PBP2_PAO1_like 2 dimerization interface 0 1 0 0 10,11,12,15,16,18,19,32,34,42,45,119,120,126,127,128,130,131,132,136,137,140,141,151,158,159 2 -176105 cd08413 PBP2_CysB_like 1 substrate binding site 0 1 0 0 6,8,9,54,55,56,72,108 5 -176105 cd08413 PBP2_CysB_like 2 dimerization interface 0 1 0 0 7,10,11,14,15,18,22,29,30,31,32,33,34,35,39,127,128,129,130,131,132,134,135,138,139,142,185,186,187,188,190,191 2 -176106 cd08414 PBP2_LTTR_aromatics_like 1 substrate binding pocket 0 1 0 0 6,55,102,103,110 5 -176106 cd08414 PBP2_LTTR_aromatics_like 2 dimerization interface 0 1 0 0 5,12,15,16,18,19,22,30,32,34,78,112,113,132,133,139,140,142,143,161 2 -176107 cd08415 PBP2_LysR_opines_like 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176108 cd08416 PBP2_MdcR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176109 cd08417 PBP2_Nitroaromatics_like 1 substrate binding pocket 0 1 0 0 6,8,9,13,71,108,175 5 -176109 cd08417 PBP2_Nitroaromatics_like 2 dimerization interface 0 1 0 0 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140 2 -176110 cd08418 PBP2_TdcA 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,73,109,176 5 -176110 cd08418 PBP2_TdcA 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,98,126,127,128,129,130,133,134,137,138,141,155 2 -176111 cd08419 PBP2_CbbR_RubisCO_like 1 putative dimerization interface 0 0 1 1 14,15,17,18,21,25,27,28,29,30,31,32,33,125,126,127,128,129,130,136,137,139,140 2 -176112 cd08420 PBP2_CysL_like 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,129,130,131,132,133,134,140,141,143,144 2 -176113 cd08421 PBP2_LTTR_like_1 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176114 cd08422 PBP2_CrgA_like 1 dimerization interface 0 1 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,125,126,127,128,129,136,137,140 2 -176114 cd08422 PBP2_CrgA_like 2 putative effector binding pocket 0 0 1 0 10,14,53,67,69,131,148,175 0 -176115 cd08423 PBP2_LTTR_like_6 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,131,132,133,134,135,136,142,143,145,146 2 -176116 cd08425 PBP2_CynR 1 dimerization interface 0 1 0 0 11,16,17,19,20,23,30,31,32,33,34,35,100,128,129,130,131,132,133,135,136,139,140,143,144,146 2 -176117 cd08426 PBP2_LTTR_like_5 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176118 cd08427 PBP2_LTTR_like_2 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,124,125,126,127,128,129,135,136,138,139 2 -176119 cd08428 PBP2_IciA_ArgP 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,29,30,31,32,33,34,35,126,127,128,129,130,131,137,138,140,141 2 -176120 cd08429 PBP2_NhaR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176121 cd08430 PBP2_IlvY 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176122 cd08431 PBP2_HupR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,124,125,126,127,128,129,135,136,138,139 2 -176123 cd08432 PBP2_GcdR_TrpI_HvrB_AmpR_like 1 substrate binding pocket 0 1 0 0 6,7,9,126,127,128,148 5 -176123 cd08432 PBP2_GcdR_TrpI_HvrB_AmpR_like 2 dimerization interface 0 1 0 0 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176124 cd08433 PBP2_Nac 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176125 cd08434 PBP2_GltC_like 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176126 cd08435 PBP2_GbpR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,129,130,131,132,133,134,140,141,143,144 2 -176127 cd08436 PBP2_LTTR_like_3 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176128 cd08437 PBP2_MleR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176129 cd08438 PBP2_CidR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176130 cd08439 PBP2_LrhA_like 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,116,117,118,119,120,121,127,128,130,131 2 -176131 cd08440 PBP2_LTTR_like_4 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176132 cd08441 PBP2_MetR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176133 cd08442 PBP2_YofA_SoxR_like 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,122,123,124,125,126,127,133,134,136,137 2 -176134 cd08443 PBP2_CysB 1 substrate binding site 0 1 0 0 6,8,9,54,55,56,72,108 5 -176134 cd08443 PBP2_CysB 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,22,29,30,31,32,33,34,35,39,127,128,129,130,131,132,134,135,138,139,142,186,187,188,190,191 2 -176135 cd08444 PBP2_Cbl 1 putative substrate binding site 0 0 0 1 6,8,9,54,55,56,72,108 5 -176135 cd08444 PBP2_Cbl 2 dimerization interface 0 1 0 0 7,10,11,14,15,18,22,29,30,31,32,33,34,35,39,127,128,129,130,131,132,134,135,138,139,142,186,187,188,190,191 2 -176136 cd08445 PBP2_BenM_CatM_CatR 1 substrate binding pocket 0 1 0 0 7,38,56,57,104,105,111,112,136 5 -176136 cd08445 PBP2_BenM_CatM_CatR 2 dimerizarion interface 0 1 0 0 6,11,12,16,17,19,20,23,31,33,35,79,134,135,137,138,141,142,144,145 2 -176136 cd08445 PBP2_BenM_CatM_CatR 3 CrgA pocket 0 0 0 0 7,9,38,56,57,104,105,110,112,136 0 -176137 cd08446 PBP2_Chlorocatechol 1 putative substrate binding pocket 0 0 0 1 7,56,103,104,111 5 -176137 cd08446 PBP2_Chlorocatechol 2 dimerization interface 0 1 0 0 6,11,12,13,16,17,20,23,31,32,46,47,57,79,109,112,113,114,116,125,126,128,130,133,140,143,144,158,159,160,161,182 2 -176138 cd08447 PBP2_LTTR_aromatics_like_1 1 putative substrate binding pocket 0 0 0 1 6,55,102,103,110 5 -176138 cd08447 PBP2_LTTR_aromatics_like_1 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,78,112,113,132,133,139,140,142,143,161 2 -176139 cd08448 PBP2_LTTR_aromatics_like_2 1 putative substrate binding pocket 0 0 0 1 6,55,102,103,110 5 -176139 cd08448 PBP2_LTTR_aromatics_like_2 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,78,112,113,132,133,139,140,142,143,161 2 -176140 cd08449 PBP2_XapR 1 putative substrate binding pocket 0 0 0 1 6,55,104,105,111 5 -176140 cd08449 PBP2_XapR 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,80,113,114,133,134,140,141,143,144,162 2 -176141 cd08450 PBP2_HcaR 1 putative substrate binding pocket 0 0 0 1 6,55,102,103,109 5 -176141 cd08450 PBP2_HcaR 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,78,111,112,131,132,138,139,141,142,160 2 -176142 cd08451 PBP2_BudR 1 putative substrate binding pocket 0 0 0 1 6,56,104,105,112 5 -176142 cd08451 PBP2_BudR 2 putative dimerization interface 0 0 0 1 5,13,16,17,19,20,23,31,33,35,80,114,115,134,135,141,142,144,145,163 2 -176143 cd08452 PBP2_AlsR 1 putative substrate binding pocket 0 0 0 1 6,55,102,103,110 5 -176143 cd08452 PBP2_AlsR 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,78,112,113,132,133,139,140,142,143,161 2 -176144 cd08453 PBP2_IlvR 1 putative substrate binding pocket 0 0 0 1 6,55,105,106,113 5 -176144 cd08453 PBP2_IlvR 2 putative dimerization interface 0 0 0 1 5,12,15,16,18,19,22,30,32,34,81,115,116,135,136,142,143,145,146,164 2 -176145 cd08456 PBP2_LysR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176146 cd08457 PBP2_OccR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176147 cd08458 PBP2_NocR 1 putative dimerization interface 0 0 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176148 cd08459 PBP2_DntR_NahR_LinR_like 1 substrate binding pocket 0 1 0 0 6,8,9,13,71,108,175 5 -176148 cd08459 PBP2_DntR_NahR_LinR_like 2 dimerization interface 0 1 0 0 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140,154 2 -176149 cd08460 PBP2_DntR_like_1 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,70,107,174 5 -176149 cd08460 PBP2_DntR_like_1 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,96,124,125,126,127,128,131,132,135,136,139,153 2 -176150 cd08461 PBP2_DntR_like_3 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,109,173 5 -176150 cd08461 PBP2_DntR_like_3 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,126,127,128,129,130,133,134,137,138,141,155 2 -176151 cd08462 PBP2_NodD 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,70,107,175 5 -176151 cd08462 PBP2_NodD 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,96,125,126,127,128,129,132,133,136,137,140,154 2 -176152 cd08463 PBP2_DntR_like_4 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,72,111,178 5 -176152 cd08463 PBP2_DntR_like_4 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,99,128,129,130,131,132,135,136,139,140,143,157 2 -176153 cd08464 PBP2_DntR_like_2 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,108,175 5 -176153 cd08464 PBP2_DntR_like_2 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140,154 2 -176154 cd08465 PBP2_ToxR 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,108,175 5 -176154 cd08465 PBP2_ToxR 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140,154 2 -176155 cd08466 PBP2_LeuO 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,107,175 5 -176155 cd08466 PBP2_LeuO 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140,154 2 -176156 cd08467 PBP2_SyrM 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,109,175 5 -176156 cd08467 PBP2_SyrM 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,125,126,127,128,129,132,133,136,137,140,154 2 -176157 cd08468 PBP2_Pa0477 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,74,110,177 5 -176157 cd08468 PBP2_Pa0477 2 dimerization interface 0 1 0 0 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,99,127,128,129,130,131,134,135,138,139,142,156 2 -176158 cd08469 PBP2_PnbR 1 putative substrate binding pocket 0 0 0 1 6,8,9,13,71,108,196 5 -176158 cd08469 PBP2_PnbR 2 putative dimerization interface 0 0 0 1 7,10,11,14,15,18,19,21,22,25,26,28,29,30,31,32,34,97,146,147,148,149,150,153,154,157,158,161,175 2 -176159 cd08470 PBP2_CrgA_like_1 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,121,122,123,124,125,132,133,136 2 -176159 cd08470 PBP2_CrgA_like_1 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,127,144,171 0 -176160 cd08471 PBP2_CrgA_like_2 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,125,126,127,128,129,136,137,140 2 -176160 cd08471 PBP2_CrgA_like_2 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,131,148,175 0 -176161 cd08472 PBP2_CrgA_like_3 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,127,128,129,130,131,138,139,142 2 -176161 cd08472 PBP2_CrgA_like_3 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,133,150,177 0 -176162 cd08473 PBP2_CrgA_like_4 1 putative dimerization interface 0 0 1 1 13,14,18,19,21,22,25,29,31,32,33,34,35,36,37,100,130,131,132,133,134,141,142,145 2 -176162 cd08473 PBP2_CrgA_like_4 2 putative effector binding pocket 0 0 1 1 12,16,55,71,73,136,153,180 0 -176163 cd08474 PBP2_CrgA_like_5 1 putative dimerization interface 0 0 1 1 13,14,18,19,21,22,25,29,31,32,33,34,35,36,37,99,130,131,132,133,134,141,142,145 2 -176163 cd08474 PBP2_CrgA_like_5 2 putative effector binding pocket 0 0 1 1 12,16,55,69,72,136,153,180 0 -176164 cd08475 PBP2_CrgA_like_6 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,97,127,128,129,130,131,138,139,142 2 -176164 cd08475 PBP2_CrgA_like_6 2 putative effector binding pocket 0 0 1 1 10,14,53,68,70,133,150,177 0 -176165 cd08476 PBP2_CrgA_like_7 1 putative dimerization interface 0 0 1 1 9,10,14,15,17,18,21,25,27,28,29,30,31,32,33,94,125,126,127,128,129,136,137,140 2 -176165 cd08476 PBP2_CrgA_like_7 2 putative effector binding pocket 0 0 1 1 8,12,51,65,67,131,148,175 0 -176166 cd08477 PBP2_CrgA_like_8 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,125,126,127,128,129,136,137,140 2 -176166 cd08477 PBP2_CrgA_like_8 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,131,148,175 0 -176167 cd08478 PBP2_CrgA 1 dimerization interface 0 1 1 1 13,14,18,19,21,22,25,29,31,32,33,34,35,36,37,98,126,127,128,129,130,137,138,141 2 -176167 cd08478 PBP2_CrgA 2 putative effector binding pocket 0 0 1 0 12,16,55,69,71,132,149,177 0 -176168 cd08479 PBP2_CrgA_like_9 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,126,127,128,129,130,137,138,141 2 -176168 cd08479 PBP2_CrgA_like_9 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,132,149,176 0 -176169 cd08480 PBP2_CrgA_like_10 1 putative dimerization interface 0 0 1 1 11,12,16,17,19,20,23,27,29,30,31,32,33,34,35,96,125,126,127,128,129,136,137,140 2 -176169 cd08480 PBP2_CrgA_like_10 2 putative effector binding pocket 0 0 1 1 10,14,53,67,69,131,148,176 0 -176170 cd08481 PBP2_GcdR_like 1 substrate binding pocket 0 1 0 0 6,7,9,126,127,128,148 5 -176170 cd08481 PBP2_GcdR_like 2 dimerization interface 0 1 0 0 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176171 cd08482 PBP2_TrpI 1 putative substrate binding pocket 0 0 0 1 6,7,9,129,130,131,151 5 -176171 cd08482 PBP2_TrpI 2 putative dimerization interface 0 0 0 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176172 cd08483 PBP2_HvrB 1 putative substrate binding pocket 0 0 0 1 6,7,9,124,125,126,146 5 -176172 cd08483 PBP2_HvrB 2 putative dimerization interface 0 0 0 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176173 cd08484 PBP2_LTTR_beta_lactamase 1 putative substrate binding pocket 0 0 0 1 6,7,9,122,123,124,144 5 -176173 cd08484 PBP2_LTTR_beta_lactamase 2 putative dimerization interface 0 0 0 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176174 cd08485 PBP2_ClcR 1 putative dimerization interface 0 0 0 1 6,11,12,13,16,17,20,23,31,32,46,47,57,79,109,112,113,114,116,125,126,128,130,133,140,143,144,158,159,160,161,182 2 -176174 cd08485 PBP2_ClcR 2 putative substrate binding pocket 0 0 0 1 7,56,103,104,111 5 -176175 cd08486 PBP2_CbnR 1 dimerization interface 0 1 0 0 6,11,12,13,16,17,20,23,31,32,46,47,57,79,109,112,113,114,116,125,126,128,130,133,140,143,144,158,159,160,161,182 2 -176175 cd08486 PBP2_CbnR 2 putative substrate binding pocket 0 0 0 1 7,56,103,104,111 5 -176176 cd08487 PBP2_BlaA 1 putative substrate binding pocket 0 0 0 1 6,7,9,122,123,124,144 5 -176176 cd08487 PBP2_BlaA 2 putative dimerization interface 0 0 0 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -176177 cd08488 PBP2_AmpR 1 putative substrate binding pocket 0 0 0 1 6,7,9,124,125,126,146 5 -176177 cd08488 PBP2_AmpR 2 putative dimerization interface 0 0 0 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34 2 -173854 cd08489 PBP2_NikA 1 substrate binding site 0 1 1 0 17,21,91,94,131,391,395,483 5 -173858 cd08493 PBP2_DppA_like 1 peptide binding site 0 1 1 0 376,380,393,394,395,396,398 2 -173869 cd08504 PBP2_OppA 1 peptide binding site 0 1 1 0 24,232,253,381,397,399,400,401,402,403,469 2 -173871 cd08506 PBP2_clavulanate_OppA2 1 peptide binding site 0 1 1 0 18,20,23,325,359,376,377 2 -173874 cd08509 PBP2_TmCBP_oligosaccharides_like 1 substrate binding site 0 1 1 0 5,222,410,490 5 -173875 cd08510 PBP2_Lactococcal_OppA_like 1 peptide binding site 0 1 1 0 148,378,412,415,416,432,433,443,444,451,453 2 -173878 cd08513 PBP2_thermophilic_Hb8_like 1 peptide binding site 0 1 0 0 26,349,378,392,393,394,402 2 -173878 cd08513 PBP2_thermophilic_Hb8_like 2 dimer interface 0 1 0 0 201,205,209,276,277,351,354,355,358 2 -173879 cd08514 PBP2_AppA_like 1 peptide binding site 0 1 1 0 23,128,129,217,243,247,345,376,383,384,394,395,406,464,466 2 -197342 cd08525 Reelin_subrepeat_1 1 reelin repeat interface 0 1 1 0 16,17,42,43,45,49,50,51,52,86,87,134,135,137 0 -197342 cd08525 Reelin_subrepeat_1 2 reelin subrepeat interface 0 1 1 0 74,95,97,98,113,115,116,124,126 0 -197342 cd08525 Reelin_subrepeat_1 3 EGF domain interface 0 1 1 0 58,60,122,158,160 0 -197343 cd08526 Reelin_subrepeat_2 1 reelin repeat interface 0 1 1 0 0,2,57,58,60,62,112,114,115,116,149 0 -197343 cd08526 Reelin_subrepeat_2 2 reelin subrepeat interface 0 1 1 0 19,42,43,85,87,101 0 -197343 cd08526 Reelin_subrepeat_2 3 EGF domain interface 0 1 1 0 50,91,92,94 0 -270867 cd08528 STKc_Nek10 1 ATP binding site 0 0 1 1 7,8,10,11,15,29,31,71,88,89,90,94,143,145,161 5 -270867 cd08528 STKc_Nek10 2 active site 0 0 1 1 7,8,9,10,11,15,29,31,71,87,88,89,90,94,96,138,140,142,143,145,156,159,161,175,176,177,178 1 -270867 cd08528 STKc_Nek10 3 polypeptide substrate binding site 0 0 1 1 11,94,96,138,140,142,159,175,176,177,178 2 -270867 cd08528 STKc_Nek10 4 activation loop (A-loop) 0 0 1 1 155,156,157,158,159,160,161,162,163,164,171,172,173,174,175,176,177,178 0 -270868 cd08529 STKc_FA2-like 1 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,130,132,148 5 -270868 cd08529 STKc_FA2-like 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,125,127,129,130,132,143,146,148,162,163,164,165 1 -270868 cd08529 STKc_FA2-like 3 polypeptide substrate binding site 0 0 1 1 11,84,86,125,127,129,146,162,163,164,165 2 -270868 cd08529 STKc_FA2-like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,156,157,158,159,160,161,162,163,164,165 0 -270869 cd08530 STKc_CNK2-like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,127,129,131,132,134,145,148,150,162,163,164,165 1 -270869 cd08530 STKc_CNK2-like 2 ATP binding site 0 0 1 1 7,8,10,11,15,28,30,61,78,79,80,84,132,134,150 5 -270869 cd08530 STKc_CNK2-like 3 polypeptide substrate binding site 0 0 1 1 11,84,86,127,129,131,148,162,163,164,165 2 -270869 cd08530 STKc_CNK2-like 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -176085 cd08535 SAM_PNT-Tel_Yan 1 oligomer interface EH 0 1 1 1 19,20,21,22,23,24,51,52,53,55,56,59,60 2 -176085 cd08535 SAM_PNT-Tel_Yan 2 oligomer interface ML 0 1 1 1 7,29,32,33,34,36,37,40,42,44,45,48,49 2 -176086 cd08536 SAM_PNT-Mae 1 heterodimer interface ML 0 1 1 1 5,6,29,31,32,33,35,36,39,44,48 0 -176092 cd08542 SAM_PNT-ETS-1 1 ERK2 MAP kinase docking site 0 0 1 1 63,65,69 2 -260083 cd08546 cohesin_like 1 dockerin binding interface 0 1 1 0 33,34,65,67,76,80,81,82,123,127,129 2 -260084 cd08547 Type_II_cohesin 1 dockerin binding interface 0 1 1 0 32,33,58,60,62,71,75,76,77,114,118,119 2 -260085 cd08548 Type_I_cohesin_like 1 dockerin binding interface 0 1 1 0 30,31,32,33,35,62,63,64,66,72,74,76,77,78,115,116,122,124 2 -341479 cd08549 G1PDH_related 1 active site 0 1 1 1 30,78,79,80,83,86,101,102,104,138,146,153,157,232,236,252 1 -341479 cd08549 G1PDH_related 2 metal binding site 0 1 1 1 153,232,252 4 -341480 cd08550 GlyDH-like 1 active site 0 1 1 0 29,85,86,87,90,93,108,109,111,130,131,148,156,163,167,246,250,263 1 -341480 cd08550 GlyDH-like 2 NAD binding site 0 1 1 0 29,85,86,87,108,109,111,113,148,263 5 -341480 cd08550 GlyDH-like 3 metal binding site 0 1 1 1 163,246,263 4 -341481 cd08551 Fe-ADH 1 active site 0 1 1 1 30,88,89,90,93,96,129,130,132,151,152,170,178,185,189,254,258,268 1 -341481 cd08551 Fe-ADH 2 metal binding site 0 1 1 1 185,189,254,268 4 -350202 cd08553 PIN_Fcf1-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 5,42,96 1 -350202 cd08553 PIN_Fcf1-like 2 metal binding site 0 1 1 0 38,65,67,77 4 -350202 cd08553 PIN_Fcf1-like 3 homodimer interface 0 1 1 0 17,19,22,23,26,27,100,108,111,112,113,114,119,120,121,122 2 -176489 cd08554 Cyt_b561 1 putative heme binding sites 0 0 0 1 4,38,72,111 5 -176498 cd08555 PI-PLCc_GDPD_SF 1 catalytic site 0 1 1 1 3,45 1 -176498 cd08555 PI-PLCc_GDPD_SF 2 active site 0 1 1 1 3,30,32,84,120,154 1 -176499 cd08556 GDPD 1 catalytic site 0 1 1 1 3,45 1 -176499 cd08556 GDPD 2 metal binding site 0 1 1 1 30,32,66 4 -176499 cd08556 GDPD 3 active site 0 1 1 0 3,30,32,45,66,98,118,165 1 -176500 cd08557 PI-PLCc_bacteria_like 1 catalytic site 0 1 1 1 17,70 1 -176500 cd08557 PI-PLCc_bacteria_like 2 active site 0 1 1 1 17,56,104,156,175,177 1 -176501 cd08558 PI-PLCc_eukaryota 1 catalytic site 0 1 1 1 16,61 1 -176501 cd08558 PI-PLCc_eukaryota 2 metal binding site 0 1 1 1 17,46,48,95 4 -176501 cd08558 PI-PLCc_eukaryota 3 active site 0 1 1 1 16,17,46,48,61,95,143,145,151,178,180 1 -176502 cd08559 GDPD_periplasmic_GlpQ_like 1 catalytic site 0 1 1 1 5,47 1 -176502 cd08559 GDPD_periplasmic_GlpQ_like 2 metal binding site 0 1 1 1 32,34,133 4 -176502 cd08559 GDPD_periplasmic_GlpQ_like 3 active site 0 1 1 0 5,32,34,47,133,170,172,192,261,291 1 -176503 cd08560 GDPD_EcGlpQ_like_1 1 catalytic site 0 0 1 1 21,63 1 -176503 cd08560 GDPD_EcGlpQ_like_1 2 putative metal binding site 0 0 1 1 48,50,169 4 -176503 cd08560 GDPD_EcGlpQ_like_1 3 putative active site 0 0 1 1 21,48,50,63,169,209,296 1 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like 1 catalytic site 0 0 1 1 3,45 1 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like 2 putative metal binding site 0 0 1 1 30,32,111 4 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like 3 putative active site 0 0 1 1 3,30,32,45,111,139,217 1 -176505 cd08562 GDPD_EcUgpQ_like 1 catalytic site 0 0 1 1 3,45 1 -176505 cd08562 GDPD_EcUgpQ_like 2 putative metal binding site 0 0 1 1 30,32,105 4 -176505 cd08562 GDPD_EcUgpQ_like 3 putative active site 0 0 1 1 3,30,32,45,105,137,204 1 -176506 cd08563 GDPD_TtGDE_like 1 catalytic site 0 1 1 1 5,47 1 -176506 cd08563 GDPD_TtGDE_like 2 metal binding site 0 1 1 1 32,34,47,107 4 -176506 cd08563 GDPD_TtGDE_like 3 active site 0 1 1 1 5,32,34,47,107,140,160,205 1 -176506 cd08563 GDPD_TtGDE_like 4 dimer interface 0 1 1 1 111,112,140,142,143,146,163,164,165,166,170,171,174,175,190 2 -176507 cd08564 GDPD_GsGDE_like 1 catalytic site 0 0 1 1 8,52 1 -176507 cd08564 GDPD_GsGDE_like 2 putative metal binding site 0 0 1 1 37,39,125 4 -176507 cd08564 GDPD_GsGDE_like 3 putative active site 0 0 1 1 8,37,39,52,125,153,228 1 -176508 cd08565 GDPD_pAtGDE_like 1 catalytic site 0 1 1 1 3,45 1 -176508 cd08565 GDPD_pAtGDE_like 2 metal binding site 0 1 1 1 30,32,100,102 4 -176508 cd08565 GDPD_pAtGDE_like 3 active site 0 1 1 0 3,4,30,32,45,98,100,102,135,154,206,226 1 -176509 cd08566 GDPD_AtGDE_like 1 catalytic site 0 0 1 1 4,47 1 -176509 cd08566 GDPD_AtGDE_like 2 putative metal binding site 0 0 1 1 32,34,105 4 -176509 cd08566 GDPD_AtGDE_like 3 putative active site 0 0 1 1 4,32,34,47,105,130,202 1 -176509 cd08566 GDPD_AtGDE_like 4 oligomer interface 0 1 1 0 37,38,39,40,41 2 -176510 cd08567 GDPD_SpGDE_like 1 catalytic site 0 1 1 1 5,47 1 -176510 cd08567 GDPD_SpGDE_like 2 metal binding site 0 1 1 1 32,34,131 4 -176510 cd08567 GDPD_SpGDE_like 3 active site 0 1 1 0 5,32,34,47,131,168,170,190,236 1 -176511 cd08568 GDPD_TmGDE_like 1 catalytic site 0 0 1 1 4,46 1 -176511 cd08568 GDPD_TmGDE_like 2 putative metal binding site 0 0 1 1 31,33,97 4 -176511 cd08568 GDPD_TmGDE_like 3 putative active site 0 0 1 1 4,31,33,46,97,123,199 1 -176512 cd08570 GDPD_YPL206cp_fungi 1 catalytic site 0 0 1 1 3,45 1 -176512 cd08570 GDPD_YPL206cp_fungi 2 putative metal binding site 0 0 1 1 30,32,104 4 -176512 cd08570 GDPD_YPL206cp_fungi 3 putative active site 0 0 1 1 3,30,32,45,104,138,209 1 -176514 cd08572 GDPD_GDE5_like 1 catalytic site 0 0 1 1 4,54 1 -176514 cd08572 GDPD_GDE5_like 2 putative metal binding site 0 0 1 1 39,41,141 4 -176514 cd08572 GDPD_GDE5_like 3 putative active site 0 0 1 1 4,39,41,54,141,184,266 1 -176515 cd08573 GDPD_GDE1 1 catalytic site 0 0 1 1 3,45 1 -176515 cd08573 GDPD_GDE1 2 putative metal binding site 0 0 1 1 30,32,107 4 -176515 cd08573 GDPD_GDE1 3 putative active site 0 0 1 1 3,30,32,45,107,136,233 1 -176516 cd08574 GDPD_GDE_2_3_6 1 catalytic site 0 0 1 1 6,48 1 -176516 cd08574 GDPD_GDE_2_3_6 2 putative metal binding site 0 0 1 1 33,35,132 4 -176516 cd08574 GDPD_GDE_2_3_6 3 putative active site 0 0 1 1 6,33,35,48,132,168,228 1 -176517 cd08575 GDPD_GDE4_like 1 catalytic site 0 0 1 1 5,47 1 -176517 cd08575 GDPD_GDE4_like 2 putative metal binding site 0 0 1 1 32,34,114 4 -176517 cd08575 GDPD_GDE4_like 3 putative active site 0 0 1 1 5,32,34,47,114,143,236 1 -176518 cd08576 GDPD_like_SMaseD_PLD 1 catalytic site 0 1 1 1 4,40 1 -176518 cd08576 GDPD_like_SMaseD_PLD 2 Mg binding site 0 1 1 0 24,26,81 4 -176518 cd08576 GDPD_like_SMaseD_PLD 3 putative active site 0 1 1 0 4,24,26,40,81,214 1 -176518 cd08576 GDPD_like_SMaseD_PLD 4 catalytic loop 0 0 1 1 39,40,41,42,43,44,45,46,49,50,51,52,53 1 -176519 cd08577 PI-PLCc_GDPD_SF_unchar3 1 catalytic site 0 0 1 1 5,40 1 -176519 cd08577 PI-PLCc_GDPD_SF_unchar3 2 putative active site 0 0 1 1 5,26,28,83,126,203 1 -176521 cd08579 GDPD_memb_like 1 catalytic site 0 0 1 1 3,45 1 -176521 cd08579 GDPD_memb_like 2 putative metal binding site 0 0 1 1 30,32,101 4 -176521 cd08579 GDPD_memb_like 3 putative active site 0 0 1 1 3,30,32,45,101,132,195 1 -176522 cd08580 GDPD_Rv2277c_like 1 catalytic site 0 0 1 1 5,47 1 -176522 cd08580 GDPD_Rv2277c_like 2 putative metal binding site 0 0 1 1 32,34,111 4 -176522 cd08580 GDPD_Rv2277c_like 3 putative active site 0 0 1 1 5,32,34,47,111,140,235 1 -176523 cd08581 GDPD_like_1 1 catalytic site 0 0 1 1 3,45 1 -176523 cd08581 GDPD_like_1 2 putative metal binding site 0 0 1 1 30,32,108 4 -176523 cd08581 GDPD_like_1 3 putative active site 0 0 1 1 3,30,32,45,108,140,204 1 -176524 cd08582 GDPD_like_2 1 catalytic site 0 0 1 1 3,45 1 -176524 cd08582 GDPD_like_2 2 putative metal binding site 0 0 1 1 30,32,105 4 -176524 cd08582 GDPD_like_2 3 putative active site 0 0 1 1 3,30,32,45,105,136,206 1 -176525 cd08583 PI-PLCc_GDPD_SF_unchar1 1 catalytic site 0 0 1 1 3,47 1 -176525 cd08583 PI-PLCc_GDPD_SF_unchar1 2 putative active site 0 0 1 1 3,32,34,105,141,210 1 -176526 cd08584 PI-PLCc_GDPD_SF_unchar2 1 catalytic site 0 0 1 1 3,35 1 -176526 cd08584 PI-PLCc_GDPD_SF_unchar2 2 putative active site 0 0 1 1 3,21,23,60,88,155 1 -176527 cd08585 GDPD_like_3 1 catalytic site 0 0 1 1 8,52 1 -176527 cd08585 GDPD_like_3 2 putative metal binding site 0 0 1 1 37,39,105 4 -176527 cd08585 GDPD_like_3 3 putative active site 0 0 1 1 8,37,39,52,105,134,214 1 -176528 cd08586 PI-PLCc_BcPLC_like 1 catalytic site 0 1 1 1 18,65 1 -176528 cd08586 PI-PLCc_BcPLC_like 2 active site 0 1 1 1 18,52,98,147,180,182 1 -176528 cd08586 PI-PLCc_BcPLC_like 3 putative metal binding site 0 1 1 1 19,52 4 -176529 cd08587 PI-PLCXDc_like 1 catalytic site 0 0 1 1 17,85 1 -176529 cd08587 PI-PLCXDc_like 2 putative active site 0 0 1 1 17,70,85,116,171,190,192,272 1 -176530 cd08588 PI-PLCc_At5g67130_like 1 catalytic site 0 0 1 1 20,66 1 -176530 cd08588 PI-PLCc_At5g67130_like 2 putative active site 0 0 1 1 20,54,66,100,154,176,178,254 1 -176531 cd08589 PI-PLCc_SaPLC1_like 1 catalytic site 0 0 1 1 17,96 1 -176531 cd08589 PI-PLCc_SaPLC1_like 2 putative metal binding site 0 0 1 1 18,61,63,134 4 -176531 cd08589 PI-PLCc_SaPLC1_like 3 putative active site 0 0 1 1 17,63,134,207,214,216,246,248 1 -176532 cd08590 PI-PLCc_Rv2075c_like 1 catalytic site 0 0 1 1 18,72 1 -176532 cd08590 PI-PLCc_Rv2075c_like 2 putative metal binding site 0 0 1 1 19,58,60,113 4 -176532 cd08590 PI-PLCc_Rv2075c_like 3 putative active site 0 0 1 1 18,60,113,168,175,177,209,211 1 -176533 cd08591 PI-PLCc_beta 1 catalytic site 0 1 1 1 16,63 1 -176533 cd08591 PI-PLCc_beta 2 Ca binding site 0 1 1 1 17,46,48,97 4 -176533 cd08591 PI-PLCc_beta 3 putative active site 0 0 1 1 16,17,46,48,63,97,149,151,182,209,211 1 -176534 cd08592 PI-PLCc_gamma 1 catalytic site 0 0 1 1 16,61 1 -176534 cd08592 PI-PLCc_gamma 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176534 cd08592 PI-PLCc_gamma 3 putative active site 0 0 1 1 16,17,46,48,61,95,143,145,153,181,183 1 -176535 cd08593 PI-PLCc_delta 1 catalytic site 0 1 1 1 16,61 1 -176535 cd08593 PI-PLCc_delta 2 metal binding site 0 1 1 1 17,46,48,95 4 -176535 cd08593 PI-PLCc_delta 3 active site 0 1 1 1 16,17,46,48,61,95,143,145,182,209,211 1 -176536 cd08594 PI-PLCc_eta 1 catalytic site 0 0 1 1 16,61 1 -176536 cd08594 PI-PLCc_eta 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176536 cd08594 PI-PLCc_eta 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,152,179,181 1 -176537 cd08595 PI-PLCc_zeta 1 catalytic site 0 0 1 1 16,61 1 -176537 cd08595 PI-PLCc_zeta 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176537 cd08595 PI-PLCc_zeta 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,182,209,211 1 -176538 cd08596 PI-PLCc_epsilon 1 catalytic site 0 0 1 1 16,61 1 -176538 cd08596 PI-PLCc_epsilon 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176538 cd08596 PI-PLCc_epsilon 3 putative active site 0 0 1 1 16,17,46,48,61,95,147,149,179,206,208 1 -176540 cd08598 PI-PLC1c_yeast 1 catalytic site 0 0 1 1 16,61 1 -176540 cd08598 PI-PLC1c_yeast 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176540 cd08598 PI-PLC1c_yeast 3 putative active site 0 0 1 1 16,17,46,48,61,95,143,145,156,183,185 1 -176541 cd08599 PI-PLCc_plant 1 catalytic site 0 0 1 1 16,61 1 -176541 cd08599 PI-PLCc_plant 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176541 cd08599 PI-PLCc_plant 3 putative active site 0 0 1 1 16,17,46,48,61,95,143,145,152,180,182 1 -176542 cd08600 GDPD_EcGlpQ_like 1 catalytic site 0 1 1 1 5,47 1 -176542 cd08600 GDPD_EcGlpQ_like 2 metal binding site 0 1 1 1 32,34,140 4 -176542 cd08600 GDPD_EcGlpQ_like 3 active site 0 1 1 0 5,32,34,47,140,177,281 1 -176543 cd08601 GDPD_SaGlpQ_like 1 catalytic site 0 1 1 0 5,47 1 -176543 cd08601 GDPD_SaGlpQ_like 2 metal binding site 0 1 1 1 32,34,116 4 -176543 cd08601 GDPD_SaGlpQ_like 3 active site 0 1 1 0 5,32,34,47,116,152,223 1 -176544 cd08602 GDPD_ScGlpQ1_like 1 catalytic site 0 0 1 1 5,47 1 -176544 cd08602 GDPD_ScGlpQ1_like 2 putative metal binding site 0 0 1 1 32,34,138 4 -176544 cd08602 GDPD_ScGlpQ1_like 3 putative active site 0 0 1 1 5,32,34,47,138,176,271 1 -176547 cd08605 GDPD_GDE5_like_1_plant 1 catalytic site 0 0 1 1 4,57 1 -176547 cd08605 GDPD_GDE5_like_1_plant 2 putative metal binding site 0 0 1 1 42,44,138 4 -176547 cd08605 GDPD_GDE5_like_1_plant 3 putative active site 0 0 1 1 4,42,44,57,138,175,255 1 -176548 cd08606 GDPD_YPL110cp_fungi 1 catalytic site 0 0 1 1 6,56 1 -176548 cd08606 GDPD_YPL110cp_fungi 2 putative metal binding site 0 0 1 1 41,43,126 4 -176548 cd08606 GDPD_YPL110cp_fungi 3 putative active site 0 0 1 1 6,41,43,56,126,170,250 1 -176549 cd08607 GDPD_GDE5 1 catalytic site 0 0 1 1 4,53 1 -176549 cd08607 GDPD_GDE5 2 putative metal binding site 0 0 1 1 38,40,135 4 -176549 cd08607 GDPD_GDE5 3 putative active site 0 0 1 1 4,38,40,53,135,180,263 1 -176550 cd08608 GDPD_GDE2 1 catalytic site 0 0 1 1 6,48 1 -176550 cd08608 GDPD_GDE2 2 putative metal binding site 0 0 1 1 33,35,132 4 -176550 cd08608 GDPD_GDE2 3 putative active site 0 0 1 1 6,33,35,48,132,168,228 1 -176551 cd08609 GDPD_GDE3 1 catalytic site 0 0 1 1 31,73 1 -176551 cd08609 GDPD_GDE3 2 putative metal binding site 0 0 1 1 58,60,157 4 -176551 cd08609 GDPD_GDE3 3 putative active site 0 0 1 1 31,58,60,73,157,193,250 1 -176552 cd08610 GDPD_GDE6 1 catalytic site 0 0 1 1 27,69 1 -176552 cd08610 GDPD_GDE6 2 putative metal binding site 0 0 1 1 54,56,153 4 -176552 cd08610 GDPD_GDE6 3 putative active site 0 0 1 1 27,54,56,69,153,190,250 1 -176553 cd08612 GDPD_GDE4 1 catalytic site 0 0 1 1 31,73 1 -176553 cd08612 GDPD_GDE4 2 putative metal binding site 0 0 1 1 58,60,139 4 -176553 cd08612 GDPD_GDE4 3 putative active site 0 0 1 1 31,58,60,73,139,167,266 1 -176554 cd08613 GDPD_GDE4_like_1 1 catalytic site 0 0 1 1 28,92 1 -176554 cd08613 GDPD_GDE4_like_1 2 putative metal binding site 0 0 1 1 77,79,159 4 -176554 cd08613 GDPD_GDE4_like_1 3 putative active site 0 0 1 1 28,77,79,92,159,190,267 1 -176555 cd08616 PI-PLCXD1c 1 catalytic site 0 0 1 1 18,91 1 -176555 cd08616 PI-PLCXD1c 2 putative active site 0 0 1 1 18,77,91,121,173,192,194,274 1 -176556 cd08619 PI-PLCXDc_plant 1 catalytic site 0 0 1 1 37,84 1 -176556 cd08619 PI-PLCXDc_plant 2 putative active site 0 0 1 1 37,75,84,115,163,185,187,267 1 -176557 cd08620 PI-PLCXDc_like_1 1 catalytic site 0 0 1 1 17,70 1 -176557 cd08620 PI-PLCXDc_like_1 2 putative active site 0 0 1 1 17,49,70,101,160,172,174,263 1 -176558 cd08621 PI-PLCXDc_like_2 1 catalytic site 0 0 1 1 17,72 1 -176558 cd08621 PI-PLCXDc_like_2 2 putative active site 0 0 1 1 17,59,72,111,173,201,203,283 1 -176559 cd08622 PI-PLCXDc_CG14945_like 1 catalytic site 0 0 1 1 17,73 1 -176559 cd08622 PI-PLCXDc_CG14945_like 2 putative active site 0 0 1 1 17,58,73,103,159,177,179,257 1 -176560 cd08623 PI-PLCc_beta1 1 catalytic site 0 0 1 1 16,63 1 -176560 cd08623 PI-PLCc_beta1 2 putative Ca binding site 0 0 1 1 17,46,48,97 4 -176560 cd08623 PI-PLCc_beta1 3 putative active site 0 0 1 1 16,17,46,48,63,97,150,152,183,210,212 1 -176561 cd08624 PI-PLCc_beta2 1 catalytic site 0 1 1 1 16,63 1 -176561 cd08624 PI-PLCc_beta2 2 Ca binding site 0 1 1 1 17,46,48,97 4 -176561 cd08624 PI-PLCc_beta2 3 putative active site 0 0 1 1 16,17,46,48,63,97,150,152,186,213,215 1 -176562 cd08625 PI-PLCc_beta3 1 catalytic site 0 0 1 1 16,63 1 -176562 cd08625 PI-PLCc_beta3 2 putative Ca binding site 0 0 1 1 17,46,48,97 4 -176562 cd08625 PI-PLCc_beta3 3 putative active site 0 0 1 1 16,17,46,48,63,97,150,152,183,210,212 1 -176563 cd08626 PI-PLCc_beta4 1 catalytic site 0 0 1 1 16,63 1 -176563 cd08626 PI-PLCc_beta4 2 putative Ca binding site 0 0 1 1 17,46,48,97 4 -176563 cd08626 PI-PLCc_beta4 3 putative active site 0 0 1 1 16,17,46,48,63,97,149,151,182,209,211 1 -176564 cd08627 PI-PLCc_gamma1 1 catalytic site 0 0 1 1 16,61 1 -176564 cd08627 PI-PLCc_gamma1 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176564 cd08627 PI-PLCc_gamma1 3 putative active site 0 0 1 1 16,17,46,48,61,95,143,145,153,181,183 1 -176565 cd08628 PI-PLCc_gamma2 1 catalytic site 0 0 1 1 16,61 1 -176565 cd08628 PI-PLCc_gamma2 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176565 cd08628 PI-PLCc_gamma2 3 putative active site 0 0 1 1 16,17,46,48,61,95,143,145,179,206,208 1 -176566 cd08629 PI-PLCc_delta1 1 catalytic site 0 1 1 1 16,61 1 -176566 cd08629 PI-PLCc_delta1 2 metal binding site 0 1 1 1 17,46,48,95 4 -176566 cd08629 PI-PLCc_delta1 3 active site 0 1 1 1 16,17,46,48,61,95,143,145,183,210,212 1 -176567 cd08630 PI-PLCc_delta3 1 catalytic site 0 0 1 1 16,61 1 -176567 cd08630 PI-PLCc_delta3 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176567 cd08630 PI-PLCc_delta3 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,183,210,212 1 -176568 cd08631 PI-PLCc_delta4 1 catalytic site 0 0 1 1 16,61 1 -176568 cd08631 PI-PLCc_delta4 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176568 cd08631 PI-PLCc_delta4 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,183,210,212 1 -176569 cd08632 PI-PLCc_eta1 1 catalytic site 0 0 1 1 16,61 1 -176569 cd08632 PI-PLCc_eta1 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176569 cd08632 PI-PLCc_eta1 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,178,205,207 1 -176570 cd08633 PI-PLCc_eta2 1 catalytic site 0 0 1 1 16,61 1 -176570 cd08633 PI-PLCc_eta2 2 putative Ca binding site 0 0 1 1 17,46,48,95 4 -176570 cd08633 PI-PLCc_eta2 3 putative active site 0 0 1 1 16,17,46,48,61,95,144,146,179,206,208 1 -176474 cd08637 DNA_pol_A_pol_I_C 1 active site 0 1 1 1 82,86,89,90,115,116,117,119,121,122,123,124,156,157,185,205,209,293,300,331,332,333 1 -176474 cd08637 DNA_pol_A_pol_I_C 2 catalytic site 0 1 1 1 156,157,159,185,205,209,333 1 -176474 cd08637 DNA_pol_A_pol_I_C 3 DNA binding site 0 1 1 1 82,86,89,90,115,116,117,119,121,122,123,124,217,292,293,296,300,331,332,333 3 -176475 cd08638 DNA_pol_A_theta 1 active site 0 0 1 1 52,56,59,60,89,90,91,93,95,96,97,98,145,146,174,194,198,282,289,325,326,327 1 -176475 cd08638 DNA_pol_A_theta 2 catalytic site 0 0 1 1 145,146,148,174,194,198,327 1 -176475 cd08638 DNA_pol_A_theta 3 DNA binding site 0 0 1 1 52,56,59,60,89,90,91,93,95,96,97,98,206,281,282,285,289,325,326,327 3 -176476 cd08639 DNA_pol_A_Aquificae_like 1 active site 0 0 1 1 38,42,45,46,71,72,73,75,77,78,79,80,108,109,137,157,161,239,246,275,276,277 1 -176476 cd08639 DNA_pol_A_Aquificae_like 2 catalytic site 0 0 1 1 108,109,111,137,157,161,277 1 -176476 cd08639 DNA_pol_A_Aquificae_like 3 DNA binding site 0 0 1 1 38,42,45,46,71,72,73,75,77,78,79,80,169,238,239,242,246,275,276,277 3 -176477 cd08640 DNA_pol_A_plastid_like 1 active site 0 0 1 1 51,55,58,59,83,84,85,87,89,90,91,92,124,125,153,196,200,284,291,322,323,324 1 -176477 cd08640 DNA_pol_A_plastid_like 2 catalytic site 0 0 1 1 124,125,127,153,196,200,324 1 -176477 cd08640 DNA_pol_A_plastid_like 3 DNA binding site 0 0 1 1 51,55,58,59,83,84,85,87,89,90,91,92,208,283,284,287,291,322,323,324 3 -176478 cd08641 DNA_pol_gammaA 1 active site 0 0 1 1 53,57,60,61,107,108,109,111,113,114,115,116,148,149,187,201,205,316,323,354,355,356 1 -176478 cd08641 DNA_pol_gammaA 2 catalytic site 0 0 1 1 148,149,151,187,201,205,356 1 -176478 cd08641 DNA_pol_gammaA 3 DNA binding site 0 0 1 1 53,57,60,61,107,108,109,111,113,114,115,116,213,315,316,319,323,354,355,356 3 -176478 cd08641 DNA_pol_gammaA 4 heterodimer interface 0 1 1 1 16,23,27,34,37,38,41,43,44 2 -176479 cd08642 DNA_pol_A_pol_I_A 1 active site 0 0 1 1 78,82,85,86,106,107,108,110,112,113,114,115,175,176,204,226,230,300,307,332,333,334 1 -176479 cd08642 DNA_pol_A_pol_I_A 2 catalytic site 0 0 1 1 175,176,178,204,226,230,334 1 -176479 cd08642 DNA_pol_A_pol_I_A 3 DNA binding site 0 0 1 1 78,82,85,86,106,107,108,110,112,113,114,115,238,299,300,303,307,332,333,334 3 -176480 cd08643 DNA_pol_A_pol_I_B 1 active site 0 0 1 1 115,119,122,123,150,151,152,154,156,157,158,159,192,193,223,235,239,335,342,377,378,379 1 -176480 cd08643 DNA_pol_A_pol_I_B 2 catalytic site 0 0 1 1 192,193,195,223,235,239,379 1 -176480 cd08643 DNA_pol_A_pol_I_B 3 DNA binding site 0 0 1 1 115,119,122,123,150,151,152,154,156,157,158,159,247,334,335,338,342,377,378,379 3 -187713 cd08644 FMT_core_ArnA_N 1 catalytic site 0 0 1 1 101,103,139 1 -187713 cd08644 FMT_core_ArnA_N 2 substrate binding site 0 1 1 0 8,41,84,117,199,200,202 5 -187713 cd08644 FMT_core_ArnA_N 3 cosubstrate binding site 0 1 1 1 80,83,86,87,92,101,113,134,135,138,139 0 -187714 cd08645 FMT_core_GART 1 active site 0 1 1 0 5,10,11,12,83,84,85,86,87,88,89,90,95,104,105,106,107,115,135,137,138,141,142,171 1 -187714 cd08645 FMT_core_GART 2 catalytic site 0 0 1 1 104,106,142 1 -187714 cd08645 FMT_core_GART 3 substrate binding site 0 1 1 0 10,11,84,85,105,107,171 5 -187714 cd08645 FMT_core_GART 4 cosubstrate binding site 0 1 1 1 83,86,88,89,90,95,104,137,138,141,142 0 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 1 putative active site 0 0 1 1 6,10,11,83,84,85,86,87,88,89,90,95,104,105,106,107,115,135,137,138,141,142 1 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 2 catalytic site 0 0 1 1 104,106,142 1 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 3 substrate binding site 0 1 1 1 7,8,10,31,35,37,38,39,40,84,85,86,87,104,106,107,115,116,117,202 5 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 4 putative cosubstrate binding site 0 0 1 1 83,86,88,89,90,95,104,137,138,141,142 0 -187716 cd08647 FMT_core_FDH_N 1 putative active site 0 0 1 1 6,9,10,11,82,83,84,85,86,88,89,94,103,104,105,106,114,134,136,137,140,141 1 -187716 cd08647 FMT_core_FDH_N 2 catalytic site 0 0 1 1 103,105,141 1 -187716 cd08647 FMT_core_FDH_N 3 putative substrate binding site 0 0 1 1 13,14,83,84,104,106,171 5 -187716 cd08647 FMT_core_FDH_N 4 cosubstrate binding site 0 1 1 1 85,86,87,88,89,91,94,103,134,137,139,141 0 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 1 putative active site 0 0 1 1 6,11,12,81,82,83,84,85,86,87,88,93,102,103,104,105,113,133,135,136,139,140 1 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 2 catalytic site 0 0 1 1 102,104,140 1 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 3 putative substrate binding site 0 0 1 1 11,12,82,83,103,105,169 5 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 4 putative cosubstrate binding site 0 0 1 1 81,84,86,87,88,93,102,135,136,139,140 0 -187718 cd08649 FMT_core_NRPS_like 1 putative active site 0 0 1 1 5,12,13,14,66,67,68,69,70,71,72,73,78,87,88,89,90,98,118,120,121,124,125 1 -187718 cd08649 FMT_core_NRPS_like 2 catalytic site 0 0 1 1 87,89,125 1 -187718 cd08649 FMT_core_NRPS_like 3 putative substrate binding site 0 0 1 1 12,13,67,68,88,90,154 5 -187718 cd08649 FMT_core_NRPS_like 4 putative cosubstrate binding site 0 0 1 1 66,69,71,72,73,78,87,120,121,124,125 0 -187719 cd08650 FMT_core_HypX_N 1 putative active site 0 0 1 1 6,15,16,17,52,53,54,55,56,57,58,59,64,71,72,73,74,81,101,103,104,107,108 1 -187719 cd08650 FMT_core_HypX_N 2 catalytic site 0 0 1 1 71,73,108 1 -187719 cd08650 FMT_core_HypX_N 3 putative substrate binding site 0 0 1 1 15,16,53,54,72,74,138 5 -187719 cd08650 FMT_core_HypX_N 4 putative cosubstrate binding site 0 0 1 1 52,55,57,58,59,64,71,103,104,107,108 0 -187720 cd08651 FMT_core_like_4 1 putative active site 0 0 1 1 5,12,13,14,80,81,82,83,84,85,86,87,92,101,102,103,104,112,132,134,135,138,139 1 -187720 cd08651 FMT_core_like_4 2 catalytic site 0 0 1 1 101,103,139 1 -187720 cd08651 FMT_core_like_4 3 putative substrate binding site 0 0 1 1 12,13,81,82,102,104,168 5 -187720 cd08651 FMT_core_like_4 4 putative cosubstrate binding site 0 0 1 1 80,83,85,86,87,92,101,134,135,138,139 0 -187721 cd08653 FMT_core_like_3 1 putative active site 0 0 1 1 5,13,14,15,51,52,53,54,55,56,57,58,63,72,73,74,75,83,104,106,107,110,111 1 -187721 cd08653 FMT_core_like_3 2 catalytic site 0 0 1 1 72,74,111 1 -187721 cd08653 FMT_core_like_3 3 putative substrate binding site 0 0 1 1 13,14,52,53,73,75,140 5 -187721 cd08653 FMT_core_like_3 4 putative cosubstrate binding site 0 0 1 1 51,54,56,57,58,63,72,106,107,110,111 0 -349943 cd08656 M28_like 1 metal binding site HDE[ED]DH 0 1 1 78,103,135,136,177,258 4 -349944 cd08659 M20_ArgE_DapE-like 1 metal binding site HDEEEH 1 1 0 61,94,128,129,154,338 4 -349944 cd08659 M20_ArgE_DapE-like 2 dimer interface 0 1 1 0 169,180,181,182,183,189,191,192,195,196,198,199,202,218,220,221,222,223,224,225,226,227,233,234,242,244,310 2 -349945 cd08660 M20_Acy1-like 1 metal binding site CHEHH 1 1 1 88,90,124,148,342 4 -349945 cd08660 M20_Acy1-like 2 dimer interface 0 1 0 0 171,191,193,194,197,198,200,232,234,240,241,242 2 -341056 cd08662 M13 1 Zn binding site HHE 1 1 1 480,484,541 4 -341056 cd08662 M13 2 active site 0 1 1 1 30,433,438,439,440,441,460,476,477,480,481,484,541,583,586,587,604,605,611 1 -176450 cd08663 DAP_dppA_1 1 metal binding site 0 1 1 0 7,9,59,103,134 4 -176450 cd08663 DAP_dppA_1 2 active site 0 1 1 1 7,9,59,103,115,134 1 -176450 cd08663 DAP_dppA_1 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,80,81,82,83,178,179,182,183,184,185,190 2 -176450 cd08663 DAP_dppA_1 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -176485 cd08664 APC10-HERC2 1 putative ligand binding site 0 0 1 1 49,77,83,85,144 5 -176486 cd08665 APC10-CUL7 1 putative ligand binding site 0 0 1 1 26,54,60,62,122 5 -176487 cd08666 APC10-HECTD3 1 putative ligand binding site 0 0 1 1 31,59,65,67,126 5 -176488 cd08667 APC10-ZZEF1 1 putative ligand binding site 0 0 1 1 26,54,60,62,122 5 -176571 cd08674 Cdt1_m 1 Cdt1-Geminin permissive interaction site 0 1 1 1 1,2,4,5,8,9,10,11,13,155,159,160,161,162,163,164,165,166,168 0 -176571 cd08674 Cdt1_m 2 Cdt1-Geminin inhibitory interaction site 0 1 1 1 0,1,2,4,5,8,9,10,11,14,30,60,119,120,121,124,127,146,155,159,160,161,162,163,164,165,166 0 -176058 cd08676 C2A_Munc13-like 1 putative Ca2+ binding site 0 0 1 1 43,49,125,127 4 -176072 cd08690 C2_Freud-1 1 putative Ca2+ binding pocket 0 0 1 0 25,85,87,93,96 4 -187730 cd08702 Arna_FMT_C 1 active site 0 1 1 1 20,24,25 1 -187730 cd08702 Arna_FMT_C 2 hexamer interface 0 1 1 1 77,84,85,86,87,90 2 -187732 cd08704 Met_tRNA_FMT_C 1 substrate binding site 0 1 1 1 23,34,36,77,79,81,82,84 5 -188660 cd08705 RGS_R7-like 1 G-alpha interaction site 0 1 1 1 28,29,30,32,33,66,67,68,70,71,72,74,75,76,99,102,103,105,106,107,111 0 -188660 cd08705 RGS_R7-like 2 G-beta-5 interaction site 0 1 1 0 13,44,45,46,47,48,89,90,91,94,101,105 0 -188661 cd08706 RGS_R12-like 1 G-alpha-3 interaction site 0 1 1 1 20,21,22,24,25,60,61,62,63,64,65,67,68,95,97,98,99,103 2 -188662 cd08707 RGS_Axin 1 APC binding site 0 1 1 1 4,5,6,7,10,27,30,31,34,35,37,47,48,50,51,52,54,55 2 -188664 cd08709 RGS_RGS2 1 G-alpha interaction site 0 1 1 0 19,20,21,22,24,25,59,60,61,63,64,65,66,67,68,69,96,98,99,100,101,104 2 -188665 cd08710 RGS_RGS16 1 G-alpha-0 interaction site 0 1 1 1 20,21,24,25,59,63,65,69,71,100,101,104,107 2 -188666 cd08711 RGS_RGS8 1 G alpha interface 0 1 1 1 31,32,33,35,36,63,64,68,70,72,74,75,76,78,79,80,82,83,86,89,107,110,111,112,115,118 2 -188669 cd08714 RGS_RGS4 1 G-alpha-i1 interaction site 0 1 1 1 20,21,24,25,63,65,68,71,96,100 2 -188670 cd08715 RGS_RGS1 1 G-alpha interaction site 0 1 1 1 20,21,22,24,25,59,60,62,63,64,66,67,70,95,98,99,103 2 -188670 cd08715 RGS_RGS1 2 homodimer interface 0 1 1 0 7,11,15,18,19,21,108,109,112 2 -188673 cd08718 RGS_RZ-like 1 putative G-alpha interaction site 0 0 1 1 25,29,32,68,69,97,100 0 -188679 cd08724 RGS_GRK-like 1 putative dimer interface 0 1 1 1 13,16,107,109,110,112,113 2 -188690 cd08736 RGS_RhoGEF-like 1 G-alpha-13 interaction site 0 1 1 1 13,14,15,16,17,107,109,110,111,112,114,115,116,119 0 -188691 cd08737 RGS_RGS6 1 G-alpha interaction site 0 0 1 1 29,30,31,33,34,67,68,69,71,72,73,75,76,77,100,103,104,106,107,108,112 0 -188691 cd08737 RGS_RGS6 2 G-beta-5 interaction site 0 0 1 1 14,45,46,47,48,49,90,91,92,95,102,106 0 -188692 cd08738 RGS_RGS7 1 G-alpha interaction site 0 0 1 1 28,29,30,32,33,66,67,68,70,71,72,74,75,76,99,102,103,105,106,107,111 0 -188692 cd08738 RGS_RGS7 2 G-beta-5 interaction site 0 0 1 1 13,44,45,46,47,48,89,90,91,94,101,105 0 -188693 cd08739 RGS_RGS9 1 heterotrimeric complex 0 1 1 1 0,3,6,10,13,15,18,19,22,26,28,29,30,32,33,38,42,66,67,68,69,70,71,72,74,75,76,99,102,103,105,106,107,108,111,114 0 -188693 cd08739 RGS_RGS9 2 G-beta-5 interaction site 0 1 1 0 13,44,45,46,47,48,89,90,91,94,101,105 0 -188694 cd08740 RGS_RGS11 1 G-alpha interaction site 0 0 1 1 14,45,46,47,48,49,90,91,92,95,102,106 0 -188694 cd08740 RGS_RGS11 2 G-beta-5 interaction site 0 0 1 1 14,45,46,47,48,49,90,91,92,95,102,106 0 -188695 cd08741 RGS_RGS10 1 G-alpha-3 interaction site 0 1 1 1 20,21,22,24,25,60,61,62,63,64,65,67,68,95,97,98,99,103 2 -188696 cd08742 RGS_RGS12 1 G-alpha-3 interaction site 0 0 1 1 20,21,22,24,25,62,63,64,65,66,67,69,70,97,99,100,101,105 2 -188697 cd08743 RGS_RGS14 1 putative G-alpha-3 interaction site 0 0 1 1 30,31,32,34,35,72,73,74,75,76,77,79,80,107,109,110,111,115 2 -188698 cd08744 RGS_RGS17 1 putative G-alpha interaction site 0 0 1 1 25,29,32,68,69,97,100 0 -188699 cd08745 RGS_RGS19 1 putative G-alpha interaction site 0 0 1 1 25,29,32,68,69,97,100 0 -188700 cd08746 RGS_RGS20 1 putative G-alpha interaction site 0 0 1 1 74,78,81,117,118,146,149 0 -188701 cd08747 RGS_GRK2_GRK3 1 putative G-alpha-q11 interface 0 0 1 1 76,79,80,84,85,86,87,88,107 2 -188701 cd08747 RGS_GRK2_GRK3 2 putative dimer interface 0 0 1 1 40,43,137,139,140,142,143 2 -188702 cd08748 RGS_GRK1 1 putative dimer interface 0 1 1 1 1,2,3,32,35,36,125,126,127,128,130,131,134 2 -188703 cd08749 RGS_GRK7 1 putative dimer interface 0 0 1 1 32,35,125,127,128,130,131 2 -188704 cd08750 RGS_GRK4 1 putative dimer interface 0 0 1 1 17,20,111,113,114,116,117 2 -188705 cd08751 RGS_GRK6 1 putative dimer interface 0 1 1 1 0,3,4,5,29,33,34,37,39,50,125,128,129,130,131,133,134,137 2 -188706 cd08752 RGS_GRK5 1 putative dimer interface 0 0 1 1 16,19,110,112,113,115,116 2 -188707 cd08753 RGS_PDZRhoGEF 1 G-alpha-13 interaction site 0 1 1 1 0,1,2,3,4,5,6,8,9,10,42,43,44,45,132,134,135,136,137,139,140,141,144 0 -188708 cd08754 RGS_LARG 1 putative G-alpha-13 interaction site 0 0 1 1 43,44,45,46,47,137,139,140,141,142,144,145,146,149 0 -188709 cd08755 RGS_p115RhoGEF 1 putative G-alpha-13 interaction site 0 0 1 1 14,15,16,17,18,108,110,111,112,113,115,116,117,120 0 -188710 cd08756 RGS_GEF_like 1 putative G-alpha-13 interaction site 0 0 1 1 13,14,15,16,17,109,111,112,113,114,116,117,118 0 -260086 cd08759 Type_III_cohesin_like 1 dockerin binding interface 0 1 1 0 31,35,63,64,65,66,68,69,70,79,81,83,84,85,121,122,123,129,134 2 -176490 cd08760 Cyt_b561_FRRS1_like 1 putative heme binding sites 0 0 0 1 38,71,104,140 5 -176491 cd08761 Cyt_b561_CYB561D2_like 1 putative heme binding sites 0 0 0 1 23,60,94,135 5 -176492 cd08762 Cyt_b561_CYBASC3 1 putative heme binding sites 0 0 0 1 37,73,107,146 5 -176492 cd08762 Cyt_b561_CYBASC3 2 putative catalytic site 0 0 1 0 37,56,57,73,107,146 1 -176492 cd08762 Cyt_b561_CYBASC3 3 putative ascorbate binding site 0 0 1 1 70 5 -176493 cd08763 Cyt_b561_CYB561 1 putative heme binding sites 0 0 0 1 9,43,77,116 5 -176494 cd08764 Cyt_b561_CG1275_like 1 putative heme binding sites 0 0 0 1 26,60,96,135 5 -176495 cd08765 Cyt_b561_CYBRD1 1 putative heme binding sites 0 0 0 1 14,50,84,123 5 -176496 cd08766 Cyt_b561_ACYB-1_like 1 putative heme binding sites 0 0 0 1 10,43,77,116 5 -176572 cd08767 Cdt1_c 1 putative Cdt1-MCM complex binding site 0 0 1 1 17,21,57,58,62,84,88,92,99,101,104,122,125 0 -176573 cd08768 Cdc6_C 1 DNA binding site 0 1 1 1 25,46,47,65,67,74,75,76 3 -176451 cd08769 DAP_dppA_2 1 putative metal binding site 0 0 1 1 7,9,61,103,134 4 -176451 cd08769 DAP_dppA_2 2 putative active site 0 0 1 1 7,9,61,103,115,134 1 -176451 cd08769 DAP_dppA_2 3 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -176452 cd08770 DAP_dppA_3 1 putative metal binding site 0 0 1 0 7,9,59,104,134 4 -176452 cd08770 DAP_dppA_3 2 putative active site 0 0 1 1 7,9,59,104,116,134 1 -176452 cd08770 DAP_dppA_3 3 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -206738 cd08771 DLP_1 1 GTP/Mg2+ binding site 0 1 1 0 10,12,13,14,15,16,17,30,31,36,115,185,187,188,217,218,219,220,221,224 5 -206738 cd08771 DLP_1 2 homodimer interface 0 1 1 0 11,12,119,132,157,159,161,162,163,164,166,167,188,190,191,192,193,220,221,222 2 -206738 cd08771 DLP_1 3 Switch I region 0 0 1 1 40,41,42 0 -206738 cd08771 DLP_1 4 Switch II region 0 0 1 1 117,118,148,149 0 -206738 cd08771 DLP_1 5 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206738 cd08771 DLP_1 6 G2 box 0 0 1 1 36 0 -206738 cd08771 DLP_1 7 G3 box 0 0 1 1 115,116,117,118 0 -206738 cd08771 DLP_1 8 G4 box 0 0 1 1 184,185,186,187 0 -206738 cd08771 DLP_1 9 G5 box 0 0 1 1 217,218,219 0 -350091 cd08772 GH43_62_32_68_117_130 1 active site [DEN][DEN][DEN] 0 1 1 1,120,176 1 -176798 cd08773 FpgNei_N 1 catalytic residue 0 0 1 1 0 1 -176798 cd08773 FpgNei_N 2 putative catalytic residues 0 0 1 1 1,56 1 -176798 cd08773 FpgNei_N 3 DNA binding site 0 1 1 1 0,1,56,71,73,74,75,89,90 3 -176798 cd08773 FpgNei_N 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,53,54,55,56,57 2 -206755 cd08774 14-3-3 1 peptide binding site 0 1 1 1 45,52,118,125,126,167,170,171,174,177,178,215,218,221,222 2 -206755 cd08774 14-3-3 2 dimer interface 0 1 1 1 5,8,9,11,12,14,17,54,57,61,76,80,83,84,87 2 -176753 cd08775 DED_Caspase-like_r2 1 DED1/DED2 interface 0 1 1 1 0,3,4,6,7,11,41,45 2 -176753 cd08775 DED_Caspase-like_r2 2 charge triad [ED]RD 0 1 1 17,70,72 1 -176754 cd08776 DED_Caspase-like_r1 1 DED1/DED2 interface 0 1 1 1 13,14,18,21,22,24,25,55,59 2 -176754 cd08776 DED_Caspase-like_r1 2 charge triad [ED]RD 0 1 1 15,62,64 1 -260049 cd08779 Death_PIDD 1 PIDD-RAIDD interaction site 0 1 1 1 13,17,20,21,22,25,26,33,71,73,74,75,76,79 2 -260049 cd08779 Death_PIDD 2 Type I interaction site 0 1 1 0 13,17,20,21,25,26,33,71,72 2 -260049 cd08779 Death_PIDD 3 Type II interaction site 0 1 1 0 73,74,75,76,79 2 -260049 cd08779 Death_PIDD 4 Type III interaction site 0 1 1 0 8,9,11,13,38,39,40,41,44 2 -260051 cd08781 Death_UNC5-like 1 dimer interface 0 1 1 0 33,34,36,37,47,50,51,54,55 2 -260055 cd08785 CARD_CARD9-like 1 putative BCL10 interaction site 0 1 1 1 13,16,19,48 2 -260058 cd08790 DED_DEDD 1 charge triad [ED]RD 0 1 1 19,72,74 1 -176769 cd08791 DED_DEDD2 1 charge triad [ED]RD 0 1 1 27,81,83 1 -260059 cd08792 DED_Caspase_8_10_r1 1 putative DED1/DED2 interface 0 0 1 1 13,14,18,21,22,24,25,61,65 2 -260059 cd08792 DED_Caspase_8_10_r1 2 charge triad [ED]RD 0 1 1 15,68,70 1 -260060 cd08793 Death_IRAK4 1 IRAK4-MyD88 interaction site 0 1 1 1 3,5,7,8,11,38,39,43,46,47,50,60,63,64,67,69 2 -260060 cd08793 Death_IRAK4 2 IRAK4-IRAK2 interaction site 0 1 1 1 16,19,20,21,25,28,37,41,45,83,84,85,86,87,89,99 2 -260061 cd08794 Death_IRAK1 1 putative IRAK1-IRAK4 interaction site 0 0 1 1 2,3,5,6,7,8,41,50,51,54,55,56,57,58,59,60,65 2 -176773 cd08795 Death_IRAK2 1 IRAK2-IRAK4 interaction site 0 1 1 1 2,3,5,6,7,8,41,48,49,54,55,58,59,60,61,62,63,64,69 2 -260064 cd08799 Death_UNC5C 1 dimer interface 0 0 1 1 33,34,36,37,47,50,51,54,55 2 -260065 cd08800 Death_UNC5A 1 dimer interface 0 0 1 1 33,34,36,37,47,50,51,54,55 2 -176779 cd08801 Death_UNC5D 1 dimer interface 0 0 1 1 33,34,36,37,47,50,51,54,55 2 -176780 cd08802 Death_UNC5B 1 dimer interface 0 1 1 0 33,34,36,37,47,50,51,54,55 2 -260069 cd08807 CARD_CARD10_CARMA3 1 putative BCL10 interaction site 0 0 1 1 13,16,19,50 2 -260070 cd08808 CARD_CARD11_CARMA1 1 putative BCL10 interaction site 0 1 1 1 13,16,19,47,50 2 -260071 cd08809 CARD_CARD9 1 putative BCL10 interaction site 0 0 1 1 13,16,19,50 2 -176791 cd08813 DED_Caspase_8_r2 1 putative DED1/DED2 interface 0 0 1 1 1,4,5,7,8,12,42,46 2 -260074 cd08814 DED_Caspase_10_r2 1 putative DED1/DED2 interface 0 0 1 1 1,4,5,7,8,12,38,42 2 -260075 cd08816 CARD_RIG-I_r1 1 CARD2 interaction site 0 1 1 0 15,16,17,18,21,22,47,48,77,78,79,80,81,82 0 -260076 cd08817 CARD_RIG-I_r2 1 CARD1 interface 0 1 1 0 1,4,32,33,34,35,57,61,63,64 0 -260076 cd08817 CARD_RIG-I_r2 2 helical insert domain interface 0 1 1 0 2,5,6,8,9,11,12,13,15,16,41,45,46,47,49,50,53,82,85,86,88 0 -187722 cd08820 FMT_core_like_6 1 putative active site 0 0 1 1 5,12,13,14,74,75,76,77,78,79,80,81,86,95,96,97,98,106,126,128,129,132,133 1 -187722 cd08820 FMT_core_like_6 2 catalytic site 0 0 1 1 95,97,133 1 -187722 cd08820 FMT_core_like_6 3 putative substrate binding site 0 0 1 1 12,13,75,76,96,98,162 5 -187722 cd08820 FMT_core_like_6 4 putative cosubstrate binding site 0 0 1 1 74,77,79,80,81,86,95,128,129,132,133 0 -187723 cd08821 FMT_core_like_1 1 putative active site 0 0 1 1 5,9,10,11,49,50,51,52,53,54,55,56,61,68,69,70,71,79,99,101,102,105,106 1 -187723 cd08821 FMT_core_like_1 2 catalytic site 0 0 1 1 68,70,106 1 -187723 cd08821 FMT_core_like_1 3 putative substrate binding site 0 0 1 1 13,14,50,51,69,71,133 5 -187723 cd08821 FMT_core_like_1 4 putative cosubstrate binding site 0 0 1 1 49,52,54,55,56,61,68,101,102,105,106 0 -187724 cd08822 FMT_core_like_2 1 putative active site 0 0 1 1 6,13,14,15,71,72,73,74,75,76,77,78,83,92,93,94,95,103,123,125,126,129,130 1 -187724 cd08822 FMT_core_like_2 2 catalytic site 0 0 1 1 92,94,130 1 -187724 cd08822 FMT_core_like_2 3 putative substrate binding site 0 0 1 1 13,14,72,73,93,95,160 5 -187724 cd08822 FMT_core_like_2 4 putative cosubstrate binding site 0 0 1 1 71,74,76,77,78,83,92,125,126,129,130 0 -187725 cd08823 FMT_core_like_5 1 putative active site 0 0 1 1 4,11,12,13,76,77,78,79,80,81,82,83,88,97,98,99,100,108,128,130,131,134,135 1 -187725 cd08823 FMT_core_like_5 2 catalytic site 0 0 1 1 97,99,135 1 -187725 cd08823 FMT_core_like_5 3 putative substrate binding site 0 0 1 1 11,12,77,78,98,100,164 5 -187725 cd08823 FMT_core_like_5 4 putative cosubstrate binding site 0 0 1 1 76,79,81,82,83,88,97,130,131,134,135 0 -259807 cd08825 MVP_shoulder 1 oligomer interface 0 1 1 1 11,12,13,15,21,22,24,25,26,27,33,35,53,54,59,60,63,64,67,70,71,74,75,78,79,82,83,85,86,110,119,120,121,123,124,127,129,130,131,133,134,135,137,138,139,140,141,142,144,145,146,149 2 -259808 cd08826 SPFH_eoslipins_u1 1 trimer interface 0 1 1 0 0,1,2,3,4,5,6,7,10,11,21,29,30,31,44,45,47,48,49,78,81,82,107,110,111,112,113,114,115,116,118,122,126 2 -350059 cd08830 ArfGap_ArfGap1 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350059 cd08830 ArfGap_ArfGap1 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350060 cd08831 ArfGap_ArfGap2_3_like 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350060 cd08831 ArfGap_ArfGap2_3_like 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350061 cd08832 ArfGap_ADAP 1 Zn binding site 0 1 1 1 19,22,39,42 4 -350061 cd08832 ArfGap_ADAP 2 arginine finger 0 0 1 1 19,22,39,42,47 0 -350062 cd08833 ArfGap_GIT 1 Zn binding site 0 0 1 1 10,13,30,33 4 -350062 cd08833 ArfGap_GIT 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350063 cd08834 ArfGap_ASAP 1 Zn binding site 0 1 1 1 17,20,37,40,101 4 -350063 cd08834 ArfGap_ASAP 2 GTP binding site 0 1 1 0 42,45,46 5 -350063 cd08834 ArfGap_ASAP 3 ANK repeat binding site 0 1 1 1 3,4,7,30,31,32,53,61,62,63,64,65,67,68,69,71,72,73,77,78,81,82,112,115,116 2 -350063 cd08834 ArfGap_ASAP 4 arginine finger 0 0 1 1 17,20,37,40,45 0 -350064 cd08835 ArfGap_ACAP 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350064 cd08835 ArfGap_ACAP 2 ANK repeat binding site 0 1 1 0 40,43,44,53,57,58,98 2 -350064 cd08835 ArfGap_ACAP 3 arginine finger 0 0 1 1 15,18,35,38,43 0 -350065 cd08836 ArfGap_AGAP 1 Zn binding site 0 0 1 1 14,17,34,37 4 -350065 cd08836 ArfGap_AGAP 2 arginine finger 0 0 1 1 14,17,34,37,42 0 -350066 cd08837 ArfGap_ARAP 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350066 cd08837 ArfGap_ARAP 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350067 cd08838 ArfGap_AGFG 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350067 cd08838 ArfGap_AGFG 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350068 cd08839 ArfGap_SMAP 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350068 cd08839 ArfGap_SMAP 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -350069 cd08843 ArfGap_ADAP1 1 Zn binding site 0 1 1 1 19,22,39,42 4 -350069 cd08843 ArfGap_ADAP1 2 KIF13B binding site 0 1 1 1 48,50,51,70,82,83 2 -350069 cd08843 ArfGap_ADAP1 3 arginine finger 0 0 1 1 19,22,39,42,47 0 -350070 cd08844 ArfGap_ADAP2 1 Zn binding site 0 0 1 1 19,22,39,42 4 -350070 cd08844 ArfGap_ADAP2 2 arginine finger 0 0 1 1 19,22,39,42,47 0 -350071 cd08846 ArfGap_GIT1 1 putative Zn binding site 0 0 1 1 10,13,30,33 4 -350071 cd08846 ArfGap_GIT1 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350072 cd08847 ArfGap_GIT2 1 Zn binding site 0 0 1 1 10,13,30,33 4 -350072 cd08847 ArfGap_GIT2 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350073 cd08848 ArfGap_ASAP1 1 Zn binding site 0 0 1 1 17,20,37,40,102 4 -350073 cd08848 ArfGap_ASAP1 2 putative GTP binding site 0 0 1 1 42,45,46 5 -350073 cd08848 ArfGap_ASAP1 3 putative ANK repeat binding site 0 0 1 1 3,4,7,30,31,32,53,61,62,63,64,65,67,68,69,71,72,73,77,78,81,82,113,116,117 2 -350073 cd08848 ArfGap_ASAP1 4 arginine finger 0 0 1 1 17,20,37,40,45 0 -350074 cd08849 ArfGap_ASAP2 1 Zn binding site 0 1 1 1 17,20,37,40,103 4 -350074 cd08849 ArfGap_ASAP2 2 GTP binding site 0 0 1 1 42,45,46 5 -350074 cd08849 ArfGap_ASAP2 3 ANK repeat binding site 0 1 1 1 3,4,7,30,31,32,53,61,62,63,64,65,67,68,69,71,72,73,77,78,81,82,114,117,118 2 -350074 cd08849 ArfGap_ASAP2 4 arginine finger 0 0 1 1 17,20,37,40,45 0 -350075 cd08850 ArfGap_ACAP3 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350075 cd08850 ArfGap_ACAP3 2 putative ANK repeat binding site 0 0 1 1 40,43,44,53,57,58,98 2 -350075 cd08850 ArfGap_ACAP3 3 arginine finger 0 0 1 1 15,18,35,38,43 0 -350076 cd08851 ArfGap_ACAP2 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350076 cd08851 ArfGap_ACAP2 2 putative ANK repeat binding site 0 0 1 1 40,43,44,53,57,58,98 2 -350076 cd08851 ArfGap_ACAP2 3 arginine finger 0 0 1 1 15,18,35,38,43 0 -350077 cd08852 ArfGap_ACAP1 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350077 cd08852 ArfGap_ACAP1 2 ANK repeat binding site 0 1 1 0 40,43,44,53,57,58,98 2 -350077 cd08852 ArfGap_ACAP1 3 arginine finger 0 0 1 1 15,18,35,38,43 0 -350078 cd08853 ArfGap_AGAP2 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350078 cd08853 ArfGap_AGAP2 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350079 cd08854 ArfGap_AGAP1 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350079 cd08854 ArfGap_AGAP1 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350080 cd08855 ArfGap_AGAP3 1 Zn binding site 0 0 1 1 16,19,36,39 4 -350080 cd08855 ArfGap_AGAP3 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350081 cd08856 ArfGap_ARAP2 1 Zn binding site 0 0 1 1 20,23,40,43 4 -350081 cd08856 ArfGap_ARAP2 2 arginine finger 0 0 1 1 20,23,40,43,48 0 -350082 cd08857 ArfGap_AGFG1 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350082 cd08857 ArfGap_AGFG1 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350083 cd08859 ArfGap_SMAP2 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350083 cd08859 ArfGap_SMAP2 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -176869 cd08860 TcmN_ARO-CYC_like 1 active site 0 0 1 1 32,64,66,79,105,107 1 -176869 cd08860 TcmN_ARO-CYC_like 2 catalytic residues_1 0 0 1 1 32,66 1 -176869 cd08860 TcmN_ARO-CYC_like 3 catalytic residues_2 0 0 1 1 32,79 1 -176869 cd08860 TcmN_ARO-CYC_like 4 putative hydrophobic ligand binding site 0 0 1 1 2,4,6,15,16,17,19,20,35,45,47,49,51,64,66,75,77,89,90,92,94,103,105,107,109,122,123,124,125,126,128,129,130,132,133,134,137 5 -176870 cd08861 OtcD1_ARO-CYC_like 1 putative hydrophobic ligand binding site 0 0 1 1 0,2,4,13,14,15,17,18,32,38,40,42,44,53,55,71,73,89,90,92,94,101,103,105,107,120,121,122,123,124,126,127,128,130,131,132,135 5 -176871 cd08862 SRPBCC_Smu440-like 1 putative hydrophobic ligand binding site 0 0 1 1 2,4,6,15,16,17,19,20,35,46,48,50,52,60,62,71,73,83,84,86,88,98,100,102,104,116,117,118,119,120,122,123,124,126,127,128,131 5 -176872 cd08863 SRPBCC_DUF1857 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,21,22,23,25,26,42,52,54,56,58,65,67,75,77,85,86,88,90,100,102,104,106,119,120,121,122,123,125,126,127,129,130,131,134 5 -176873 cd08864 SRPBCC_DUF3074 1 putative hydrophobic ligand binding site 0 0 1 1 95,97,99,107,108,109,111,112,115,122,124,126,128,141,143,146,148,152,153,155,157,169,171,173,175,181,182,183,184,185,188,189,190,192,193,194,198 5 -176874 cd08865 SRPBCC_10 1 putative hydrophobic ligand binding site 0 0 1 1 0,2,4,13,14,15,17,18,33,39,41,43,45,62,64,70,72,88,89,91,93,99,101,103,105,118,119,120,121,122,124,125,126,128,129,130,133 5 -176875 cd08866 SRPBCC_11 1 putative hydrophobic ligand binding site 0 0 1 1 0,2,4,13,14,15,17,18,33,40,42,44,46,60,62,76,78,92,93,95,97,105,107,109,111,122,123,124,125,126,128,129,130,132,133,134,137 5 -176876 cd08867 START_STARD4_5_6-like 1 putative lipid binding site 0 0 1 1 26,27,34,47,49,60,64,72,75,76,78,79,97,99,100,101,102,107,110,112,114,130,147,149,150,151,152,154,168,170,172,174,176,178,185,187,188,189,191,192,193,196,197,200 5 -176877 cd08868 START_STARD1_3_like 1 putative lipid binding site 0 0 1 1 28,29,37,49,51,62,66,73,76,77,79,80,98,100,101,102,103,108,111,113,115,130,147,149,150,151,152,154,168,170,172,174,176,178,185,187,188,189,191,192,193,196,197,200 5 -176878 cd08869 START_RhoGAP 1 putative lipid binding site 0 0 1 1 23,24,32,45,47,58,62,66,69,70,72,73,91,93,94,95,96,99,102,104,106,123,139,141,142,143,144,146,158,160,162,164,166,168,175,177,178,179,181,182,183,185,186,189 5 -176879 cd08870 START_STARD2_7-like 1 PtdCho binding site 0 1 1 1 26,27,38,51,53,65,69,75,81,101,103,105,114,116,151,153,155,169,171,173,188,189,190,194,197,198,201 0 -176880 cd08871 START_STARD10-like 1 putative lipid binding site 0 0 1 1 27,28,35,48,50,62,66,72,75,76,78,79,98,100,101,102,103,105,108,110,112,127,144,146,147,148,149,151,163,165,167,169,171,173,180,182,183,184,186,187,188,191,192,195 5 -176881 cd08872 START_STARD11-like 1 ceramide binding site 0 1 1 1 71,77,80,81,83,84,102,104,105,107,108,110,113,115,117,140,157,159,161,189,193,195,204,207,208,210,211,212,215 5 -176882 cd08873 START_STARD14_15-like 1 lipid binding site 0 1 1 1 59,60,67,75,76,78,80,91,95,101,104,105,107,108,126,128,129,130,131,134,137,139,141,159,176,178,179,180,181,183,195,197,199,200,201,202,203,205,206,207,209,210,211,213,214,215,220,223,224,227 5 -176882 cd08873 START_STARD14_15-like 2 dimer interface I 0 1 0 1 3,4,7,10,17,18,20,130,131,134,203,204,206,207,211,216 2 -176882 cd08873 START_STARD14_15-like 3 dimer interface II 0 1 0 1 38,41,48,51,52,149,151,152,153,154,186 2 -176883 cd08874 START_STARD9-like 1 putative lipid binding site 0 0 1 1 26,27,34,46,48,59,63,69,72,73,75,76,95,97,98,99,100,104,107,109,111,126,144,146,147,148,149,151,166,168,170,172,174,176,179,181,182,183,187,188,192,193,196 5 -176884 cd08875 START_ArGLABRA2_like 1 putative lipid binding site 0 0 1 1 28,29,40,61,63,74,78,82,85,86,91,92,119,121,122,123,124,127,130,132,134,150,168,170,171,172,173,175,187,189,191,193,195,197,203,205,206,207,209,210,211,214,215,218 5 -176885 cd08876 START_1 1 putative lipid binding site 0 0 1 1 21,22,29,42,44,55,59,65,68,69,71,72,91,93,94,95,96,98,101,103,105,122,138,140,141,142,143,145,157,159,161,163,165,167,174,176,177,178,180,181,182,185,186,189 5 -176886 cd08877 START_2 1 putative lipid binding site 0 0 1 1 26,27,34,47,49,60,64,70,73,74,77,78,96,98,99,100,101,103,106,108,110,128,155,157,158,159,160,162,174,176,178,180,182,184,192,194,195,196,198,199,200,203,204,207 5 -176887 cd08878 RHO_alpha_C_DMO-like 1 active site 0 1 1 1 18,20,21,23,24,28,77,78,80,88,90,108,110,146,149,150,153,154,157 1 -176887 cd08878 RHO_alpha_C_DMO-like 2 substrate binding site 0 1 1 1 18,20,21,23,24,77,80,88,90,108,110,146,149,150,153,154 5 -176887 cd08878 RHO_alpha_C_DMO-like 3 Fe binding site 0 1 1 1 23,28,157 4 -176887 cd08878 RHO_alpha_C_DMO-like 4 alpha subunit interface 0 1 1 1 16,17,20,22,23,27,29,160,163,164,167,168,175,176,177,178,179,181,188 2 -176888 cd08879 RHO_alpha_C_AntDO-like 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,110,111,113,121,123,128,130,164,167,168,174,175,178 1 -176888 cd08879 RHO_alpha_C_AntDO-like 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,110,111,113,121,123,128,130,164,167,168,174,175 5 -176888 cd08879 RHO_alpha_C_AntDO-like 3 Fe binding site 0 0 1 1 23,28,178 4 -176888 cd08879 RHO_alpha_C_AntDO-like 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,25,27,138,139,180,181,182,184,185,186,187,188,199,200,201,202,224,227,231 2 -176889 cd08880 RHO_alpha_C_ahdA1c-like 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,100,101,103,111,113,120,122,155,158,159,165,166,169 1 -176889 cd08880 RHO_alpha_C_ahdA1c-like 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,100,101,103,111,113,120,122,155,158,159,165,166 5 -176889 cd08880 RHO_alpha_C_ahdA1c-like 3 Fe binding site 0 0 1 1 23,28,169 4 -176889 cd08880 RHO_alpha_C_ahdA1c-like 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,25,27,130,131,171,172,173,175,176,177,178,179,190,191,192,193,195,198,202 2 -176890 cd08881 RHO_alpha_C_NDO-like 1 active site 0 1 1 1 22,23,26,27,29,30,34,74,76,86,132,138,142 1 -176890 cd08881 RHO_alpha_C_NDO-like 2 substrate binding site 0 1 1 1 22,23,26,27,29,30,34,74,76,86,132,138 5 -176890 cd08881 RHO_alpha_C_NDO-like 3 Fe binding site 0 1 1 1 29,34,142 4 -176890 cd08881 RHO_alpha_C_NDO-like 4 alpha subunit interface 0 1 1 1 21,22,26,28,29,33,144,145,146,148,149,151,152,153,154,155,156,157,158,161,162,163,164,165,166,167,188,190 2 -176890 cd08881 RHO_alpha_C_NDO-like 5 beta subunit interface 0 1 1 1 5,6,7,8,9,10,11,12,35,36,126,129,130,135,137,140,141,143,144,147 2 -176891 cd08882 RHO_alpha_C_MupW-like 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,125,126,128,136,138,145,147,187,190,191,197,198,201 1 -176891 cd08882 RHO_alpha_C_MupW-like 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,125,126,128,136,138,145,147,187,190,191,197,198 5 -176891 cd08882 RHO_alpha_C_MupW-like 3 Fe binding site 0 0 1 1 23,28,201 4 -176891 cd08882 RHO_alpha_C_MupW-like 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,25,27,155,156,203,204,205,207,208,209,210,211,222,223,224,225,229,232,236 2 -176892 cd08883 RHO_alpha_C_CMO-like 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,69,70,72,80,82,89,91,120,123,129,130,133 1 -176892 cd08883 RHO_alpha_C_CMO-like 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,69,70,72,80,82,89,91,120,123,129,130 5 -176892 cd08883 RHO_alpha_C_CMO-like 3 Fe binding site 0 0 1 1 23,28,133 4 -176892 cd08883 RHO_alpha_C_CMO-like 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,27,99,100,135,136,137,139,140,141,142,143,154,155,156,157,162,165,169 2 -176893 cd08884 RHO_alpha_C_GbcA-like 1 putative active site 0 0 1 1 27,28,30,31,33,34,38,98,99,101,109,111,118,120,150,153,154,160,161,164 1 -176893 cd08884 RHO_alpha_C_GbcA-like 2 putative substrate binding site 0 0 1 1 27,28,30,31,33,34,38,98,99,101,109,111,118,120,150,153,154,160,161 5 -176893 cd08884 RHO_alpha_C_GbcA-like 3 Fe binding site 0 0 1 1 33,38,164 4 -176893 cd08884 RHO_alpha_C_GbcA-like 4 putative alpha subunit interface 0 0 1 1 18,19,23,26,27,30,32,33,37,128,129,166,167,168,170,171,172,173,174,185,186,187,188,192,195,199 2 -176894 cd08885 RHO_alpha_C_1 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,81,82,84,92,94,101,103,137,140,145,146,149 1 -176894 cd08885 RHO_alpha_C_1 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,81,82,84,92,94,101,103,137,140,145,146 5 -176894 cd08885 RHO_alpha_C_1 3 Fe binding site 0 0 1 1 23,28,149 4 -176894 cd08885 RHO_alpha_C_1 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,27,111,112,151,152,153,155,156,157,158,159,170,171,172,173,177,180,184 2 -176895 cd08886 RHO_alpha_C_2 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,70,71,73,81,83,92,94,124,127,128,132,136 1 -176895 cd08886 RHO_alpha_C_2 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,70,71,73,81,83,92,94,124,127,128,132 5 -176895 cd08886 RHO_alpha_C_2 3 Fe binding site 0 0 1 1 23,28,136 4 -176895 cd08886 RHO_alpha_C_2 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,27,102,103,138,139,140,142,143,144,145,146,154,155,156,157,168,171,175 2 -176896 cd08887 RHO_alpha_C_3 1 putative active site 0 0 1 1 17,18,20,21,23,24,28,76,77,79,87,89,96,98,132,135,136,140,141,144 1 -176896 cd08887 RHO_alpha_C_3 2 putative substrate binding site 0 0 1 1 17,18,20,21,23,24,28,76,77,79,87,89,96,98,132,135,136,140,141 5 -176896 cd08887 RHO_alpha_C_3 3 Fe binding site 0 0 1 1 23,28,144 4 -176896 cd08887 RHO_alpha_C_3 4 putative alpha subunit interface 0 0 1 1 8,9,13,16,17,20,22,23,27,106,107,146,147,148,150,151,152,153,154,165,166,167,168,172,175,179 2 -176897 cd08888 SRPBCC_PITPNA-B_like 1 lipid binding site 0 1 1 1 19,20,23,27,30,37,56,58,60,62,65,67,70,74,78,79,81,83,85,87,92,94,96,98,100,101,107,109,192,198,200,210,214,215,217,218,219,222 5 -176897 cd08888 SRPBCC_PITPNA-B_like 2 PKC phosphorylation site 0 0 1 1 163 6 -176897 cd08888 SRPBCC_PITPNA-B_like 3 putatative regulatory loop 0 0 1 1 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,185,186,187 0 -176897 cd08888 SRPBCC_PITPNA-B_like 4 putative lipid exchange loop 0 0 1 1 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 0 -176898 cd08889 SRPBCC_PITPNM1-2_like 1 putative lipid binding site 0 0 1 1 20,21,24,28,31,39,58,60,62,64,67,69,72,76,80,81,83,85,87,89,94,96,98,101,102,108,110,193,199,201,211,219,220,221,224 5 -176898 cd08889 SRPBCC_PITPNM1-2_like 2 putative PKC phosphorylation site 0 0 1 1 163 6 -176898 cd08889 SRPBCC_PITPNM1-2_like 3 putatative regulatory loop 0 0 1 1 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,187,188 0 -176898 cd08889 SRPBCC_PITPNM1-2_like 4 putative lipid exchange loop 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 0 -176899 cd08890 SRPBCC_PITPNC1_like 1 putative lipid binding site 0 0 1 1 19,20,23,27,30,37,56,58,60,62,65,67,70,74,77,78,80,82,84,86,91,93,95,98,99,105,107,184,190,192,202,206,207,209,210,211,214 5 -176899 cd08890 SRPBCC_PITPNC1_like 2 putative PKC phosphorylation site 0 0 1 1 160 6 -176899 cd08890 SRPBCC_PITPNC1_like 3 putatative regulatory loop 0 0 1 1 114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -176899 cd08890 SRPBCC_PITPNC1_like 4 putative lipid exchange loop 0 0 1 1 62,63,64,65,66,67,68,69,70,71,72,73,74,75,77,78,79 0 -176900 cd08891 SRPBCC_CalC 1 CLM binding site 0 1 1 1 22,28,29,52,60,61,62,81,83,84,85,87,130,131,134,138,142 0 -176900 cd08891 SRPBCC_CalC 2 DNA binding site 0 1 1 1 84,125,126,128,129,130,132,133 3 -176900 cd08891 SRPBCC_CalC 3 L1 loop 0 0 1 1 81,82,83,84,85,86,87 0 -176900 cd08891 SRPBCC_CalC 4 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,22,40,48,50,52,54,60,62,63,65,68,74,76,77,93,94,96,98,109,111,113,115,127,128,129,130,131,132,133,134,135,137,138,139,142 5 -176901 cd08892 SRPBCC_Aha1 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,32,40,42,44,46,48,50,51,53,56,62,64,65,78,79,81,83,93,95,97,99,103,104,105,106,107,108,109,110,111,114,115,116,119 5 -176901 cd08892 SRPBCC_Aha1 2 putative Hsp90 binding residues 0 0 1 1 53,65,78,88,89 2 -176902 cd08893 SRPBCC_CalC_Aha1-like_GntR-HTH 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,33,40,42,44,46,54,56,57,59,62,68,70,71,87,88,90,92,102,104,106,108,114,115,116,117,118,119,120,121,122,124,125,126,129 5 -176903 cd08894 SRPBCC_CalC_Aha1-like_1 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,35,46,48,50,52,61,63,64,66,69,75,77,78,87,88,90,92,102,104,106,108,116,117,118,119,120,121,122,123,124,126,127,128,132 5 -176904 cd08895 SRPBCC_CalC_Aha1-like_2 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,38,46,48,50,52,68,70,71,73,76,82,84,85,98,99,101,103,113,115,117,119,124,125,126,127,128,129,130,131,132,134,135,136,139 5 -176905 cd08896 SRPBCC_CalC_Aha1-like_3 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,38,46,48,50,52,61,63,64,66,69,75,77,78,94,95,97,99,109,111,113,115,124,125,126,127,128,129,130,131,132,134,135,136,139 5 -176906 cd08897 SRPBCC_CalC_Aha1-like_4 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,30,47,49,51,53,63,65,66,68,71,77,79,80,86,87,89,91,101,103,105,107,111,112,113,114,115,116,117,118,119,121,122,123,126 5 -176907 cd08898 SRPBCC_CalC_Aha1-like_5 1 putative hydrophobic ligand binding site 0 0 1 1 2,4,6,15,16,17,19,20,25,37,44,46,48,50,55,57,58,60,63,69,71,72,91,92,94,96,106,108,110,112,123,124,125,126,127,128,129,130,131,133,134,135,138 5 -176908 cd08899 SRPBCC_CalC_Aha1-like_6 1 putative hydrophobic ligand binding site 0 0 1 1 12,14,16,25,26,27,29,30,35,42,50,52,54,56,63,65,66,68,71,77,79,80,89,90,92,94,104,106,108,110,115,116,117,118,119,120,121,122,123,125,126,127,130 5 -176909 cd08900 SRPBCC_CalC_Aha1-like_7 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,39,47,49,51,53,62,64,65,67,70,76,78,79,93,94,96,98,108,110,112,114,121,122,123,124,125,126,127,128,129,131,132,133,136 5 -176910 cd08901 SRPBCC_CalC_Aha1-like_8 1 putative hydrophobic ligand binding site 0 0 1 1 1,3,5,14,15,16,18,19,24,32,39,41,43,45,52,54,55,57,60,66,68,69,78,79,81,83,94,96,98,100,110,111,112,113,114,115,116,117,118,120,121,122,125 5 -176911 cd08902 START_STARD4-like 1 putative lipid binding site 0 0 1 1 27,28,35,48,50,61,65,71,74,75,77,78,96,98,99,100,101,106,109,111,113,128,143,145,146,147,148,150,164,166,168,170,172,174,181,183,184,185,187,188,189,192,193,196 5 -176912 cd08903 START_STARD5-like 1 putative lipid binding site 0 0 1 1 26,27,34,47,49,60,64,72,75,76,78,79,97,99,100,101,102,107,110,112,114,130,147,149,150,151,152,154,168,170,172,174,176,178,185,187,188,189,191,192,193,196,197,200 5 -176912 cd08903 START_STARD5-like 2 putative dimer interface 0 1 0 1 73,74,76,77,79,104,195,199,202 2 -176913 cd08904 START_STARD6-like 1 putative lipid binding site 0 0 1 1 26,27,34,47,49,60,64,70,73,74,76,77,95,97,98,99,100,105,108,110,112,128,145,147,148,149,150,152,166,168,170,172,174,176,183,185,186,187,189,190,191,194,195,198 5 -176914 cd08905 START_STARD1-like 1 putative lipid binding site 0 0 1 1 29,30,38,50,52,63,67,74,77,78,80,81,99,101,102,103,104,109,112,114,116,131,148,150,151,152,153,155,169,171,173,175,177,179,186,188,189,190,192,193,194,197,198,201 5 -176915 cd08906 START_STARD3-like 1 putative lipid binding site 0 0 1 1 29,30,38,50,52,63,67,74,77,78,80,81,99,101,102,103,104,109,112,114,116,131,148,150,151,152,153,155,169,171,173,175,177,179,186,188,189,190,192,193,194,197,198,201 5 -176916 cd08907 START_STARD8-like 1 putative lipid binding site 0 0 1 1 31,32,40,53,55,66,70,74,77,78,80,81,99,101,102,103,104,107,110,112,114,131,147,149,150,151,152,154,166,168,170,172,174,176,183,185,186,187,189,190,191,193,194,197 5 -176917 cd08908 START_STARD12-like 1 putative lipid binding site 0 0 1 1 31,32,40,53,55,66,70,74,77,78,80,81,99,101,102,103,104,107,110,112,114,131,146,148,149,150,151,153,165,167,169,171,173,175,182,184,185,186,188,189,190,192,193,196 5 -176918 cd08909 START_STARD13-like 1 putative lipid binding site 0 0 1 1 31,32,40,53,55,66,70,74,77,78,80,81,99,101,102,103,104,107,110,112,114,131,147,149,150,151,152,154,166,168,170,172,174,176,183,185,186,187,189,190,191,193,194,197 5 -176919 cd08910 START_STARD2-like 1 PtdCho binding site 0 1 1 1 29,30,37,50,52,64,68,74,80,97,99,101,110,112,151,153,155,167,169,171,186,187,188,192,195,196,199 0 -176920 cd08911 START_STARD7-like 1 putative PtdCho binding site 0 0 1 1 25,26,33,46,48,60,64,70,76,96,98,100,109,111,148,150,152,167,169,171,186,187,188,192,195,196,199 0 -176921 cd08913 START_STARD14-like 1 lipid binding site 0 1 1 1 63,64,71,79,80,82,84,95,99,105,108,109,111,112,130,132,133,134,135,139,142,144,146,164,181,183,184,185,186,188,200,202,204,205,206,207,208,210,211,212,214,215,216,218,219,220,225,228,229,232 5 -176921 cd08913 START_STARD14-like 2 dimer interface I 0 1 0 1 6,7,10,13,20,21,23,134,135,136,137,138,139,208,209,211,212,216,221 2 -176921 cd08913 START_STARD14-like 3 dimer interface II 0 1 0 1 42,45,52,55,56,154,156,157,158,159,191 2 -176922 cd08914 START_STARD15-like 1 putative lipid binding site 0 0 1 1 60,61,68,76,77,79,81,92,96,102,105,106,108,109,127,129,130,131,132,135,138,140,142,160,177,179,180,181,182,184,196,198,200,201,202,203,204,206,207,208,210,211,212,214,215,216,221,224,225,228 5 -176922 cd08914 START_STARD15-like 2 putative dimer interface I 0 0 0 1 4,5,8,11,18,19,21,131,132,135,204,205,207,208,212,217 2 -176922 cd08914 START_STARD15-like 3 putative dimer interface II 0 0 0 1 39,42,49,52,53,150,152,153,154,155,187 2 -185746 cd08915 V_Alix_like 1 putative YPXnL-motif binding site 0 1 1 1 81,140,144,147,148,312,315,316,319,322 0 -271269 cd08916 TrHb3_P 1 heme binding site 0 1 1 0 16,29,32,33,40,43,44,47,48,58,60,61,62,65,66,69,72,76,77,80,104,107,108,111 5 -271270 cd08917 TrHb2_O 1 heme binding site 0 1 1 0 15,16,29,30,31,38,41,42,45,56,65,68,69,72,74,79,82,108,111,112,115 5 -271271 cd08919 PBP_like 1 chromophore binding site 0 1 1 1 54,55,61,71,74,75,77,78,79,81,82,101,102,109,110,113,116,119,120 5 -271271 cd08919 PBP_like 2 heterodimer interface 0 1 1 1 1,2,5,6,8,9,12,13,14,19,22,23,25,26,37,40,43,80,83,84,85,87,88,91,92,101 2 -271272 cd08920 Ngb 1 heme binding site 0 1 1 0 30,40,41,63,66,67,70,87,91,95,100,105,108 5 -271273 cd08922 FHb-globin 1 heme binding site 0 1 1 1 27,40,41,42,51,54,55,58,59,78,79,82,83,86,88,92,93,96,124,127,131 5 -271273 cd08922 FHb-globin 2 FAD binding site 0 1 1 1 42,47,48 5 -271273 cd08922 FHb-globin 3 NAD- and FAD-binding domain interface 0 1 1 0 38,39,40,41,42,50,57,75,77,78,81,82,84,85,86,87 2 -271274 cd08923 class1-2_nsHbs_Lbs 1 heme binding site 0 1 1 0 40,41,42,43,56,60,63,64,67,68,90,91,94,95,98,100,104,105,108,136,139,140,143 5 -271275 cd08924 Cygb 1 heme binding site 0 1 1 0 30,37,40,41,58,61,62,65,66,69,70,90,93,94,97,98,100,104,105,108 5 -271275 cd08924 Cygb 2 homodimer interface 0 1 1 0 29,32,33,34,35,36,104,106,107,110,113,114,118,136 2 -271275 cd08924 Cygb 3 apolar cavity 0 0 1 1 70,86,105,108,112,132,135,138 0 -271276 cd08925 Hb-beta_like 1 heme binding site 0 1 1 0 25,35,36,57,60,61,64,82,86,90,92,96,97,100,135 5 -271276 cd08925 Hb-beta_like 2 tetramer interface 0 1 1 1 24,27,28,31,34,91,93,96,102,105,106,109,110,113,116,117,118,121,122,125 2 -271277 cd08926 Mb 1 heme binding site 0 1 1 0 34,37,38,40,58,61,62,65,66,83,86,87,90,91,93,97,98,101,132 5 -271278 cd08927 Hb-alpha_like 1 heme binding site 0 1 1 0 30,40,41,56,59,60,63,81,85,95,96,99,134 5 -271278 cd08927 Hb-alpha_like 2 tetramer interface 0 1 1 1 29,32,33,39,40,90,92,93,101,105,108,109,115,116,117,120,121,124,138,139 2 -187633 cd08928 KR_fFAS_like_SDR_c_like 1 active site 0 0 1 1 115,147,159,163 1 -187633 cd08928 KR_fFAS_like_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 4,6,7,10,29,30,31,91,92,93,145,146,147,159,163,189,190,191,192 5 -187634 cd08929 SDR_c4 1 active site 0 0 1 1 104,132,145,149 1 -187634 cd08929 SDR_c4 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,52,53,54,80,81,82,103,130,131,132,145,149,175,176,177,178,180,181 5 -187634 cd08929 SDR_c4 3 homodimer interface 0 1 0 0 57,88,89,90,92,93,97,101,105,106,109,112,113,116,138,139,140,141,142,143,146,147,150,151,154,155,157,158,159,161,162,163 2 -187635 cd08930 SDR_c8 1 active site 0 0 1 1 113,141,164,168 1 -187635 cd08930 SDR_c8 2 putative NAD(P) binding site 0 0 1 1 8,10,11,12,13,32,33,34,58,59,60,86,87,88,112,139,140,141,164,168,194,195,196,197,199,200 5 -187636 cd08931 SDR_c9 1 active site 0 0 1 1 106,134,147,151 1 -187636 cd08931 SDR_c9 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,54,55,56,82,83,84,105,132,133,134,147,151,177,178,179,180,182,183 5 -212493 cd08932 HetN_like_SDR_c 1 active site 0 0 1 1 103,131,144,148 1 -212493 cd08932 HetN_like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 6,8,9,10,11,30,31,32,51,52,53,79,80,81,102,129,130,131,144,148,174,175,176,177,179,180 5 -187638 cd08933 RDH_SDR_c 1 active site 0 0 1 1 118,145,158,162 1 -187638 cd08933 RDH_SDR_c 2 putative NAD(P) binding site 0 0 1 1 15,17,18,19,20,39,40,41,65,66,67,93,94,95,117,143,144,145,158,162,188,189,190,191,193,194 5 -187638 cd08933 RDH_SDR_c 3 homotetramer interface 0 1 0 0 5,104,106,107,108,111,112,116,119,120,123,127,134,148,149,150,151,152,153,154,156,159,160,163,164,167,168,170,171,172,174,175,177,190,217,218,219,221,222,223,227,230,231,234,238,240,241,242,243,244,245,247,248,249,250,251,252,255,256,257 2 -187638 cd08933 RDH_SDR_c 4 homodimer interface 0 1 0 0 104,106,107,108,111,112,116,119,120,123,127,134,148,149,151,152,153,154,156,159,160,163,164,167,168,170,171,172,174,175 2 -187639 cd08934 CAD_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187639 cd08934 CAD_SDR_c 2 NADP binding site 0 1 1 1 9,10,11,12,13,14,33,34,35,58,59,60,86,87,88,89,109,136,137,138,151,155,181,182,183,184,186,187,188,191 5 -187639 cd08934 CAD_SDR_c 3 homodimer interface 0 1 1 0 63,94,95,96,97,98,100,103,104,107,111,112,115,116,119,122,127,144,145,146,147,149,150,152,153,156,157,160,161,163,164,165,167,168,171,172 2 -187639 cd08934 CAD_SDR_c 4 homotetramer interface 0 1 1 0 63,94,95,96,97,98,100,103,104,107,111,112,115,116,119,122,127,142,144,145,146,147,149,150,152,153,156,157,160,161,163,164,165,166,167,168,170,171,172,175,209,210,211,215,219,222,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 2 -187640 cd08935 mannonate_red_SDR_c 1 active site 0 0 1 1 126,154,167,171 1 -187640 cd08935 mannonate_red_SDR_c 2 putative NAD(P) binding site 0 0 1 1 11,13,14,15,16,35,36,37,60,61,62,88,89,90,125,152,153,154,167,171,197,198,199,200,202,203 5 -187641 cd08936 CR_SDR_c 1 active site 0 0 1 1 118,146,159,163 1 -187641 cd08936 CR_SDR_c 2 NADP binding site 0 1 1 1 16,17,18,19,20,21,40,41,42,45,65,66,67,93,94,95,144,145,146,159,163,189,190,191,192,194,195,196,197 5 -187641 cd08936 CR_SDR_c 3 homodimer interface 0 1 1 0 101,102,103,104,105,108,111,112,116,119,120,123,124,126,127,130,152,154,155,157,160,161,164,165,168,169,171,172,173,175,176 2 -187641 cd08936 CR_SDR_c 4 homotetramer interface 0 1 1 0 28,101,102,103,104,105,108,111,112,116,120,123,124,126,127,149,150,152,157,160,161,164,165,167,168,169,171,172,173,176,181,191,216,217,218,219,220,224,227,228,231,236,238,239,240,241,243,244,245,246,247,248,249,250,252,253,254,255 2 -187642 cd08937 DHB_DH-like_SDR_c 1 active site 0 0 1 1 111,139,150,154 1 -187642 cd08937 DHB_DH-like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 10,12,13,14,15,34,35,36,58,59,60,86,87,88,110,137,138,139,150,154,180,181,182,183,185,186 5 -187643 cd08939 KDSR-like_SDR_c 1 active site 0 0 1 1 112,140,153,157 1 -187643 cd08939 KDSR-like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,60,61,62,88,89,90,111,138,139,140,153,157,183,184,185,186,188,189 5 -187643 cd08939 KDSR-like_SDR_c 3 homodimer interface 0 1 0 0 175,177,216,219,220,224,226,233,234,235,236,237,238 2 -187643 cd08939 KDSR-like_SDR_c 4 homotetramer interface 0 1 0 0 65,96,97,98,100,105,109,117,121,124,125,146,147,148,149,151,154,155,158,159,161,162,163,165,166,167,169,170,177,216,220,224,226,227,233,234,235,236,237,238 2 -187644 cd08940 HBDH_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187644 cd08940 HBDH_SDR_c 2 NAD binding site 0 1 1 1 8,10,11,12,13,31,32,33,59,60,61,87,88,89,110,137,138,139,152,156,182,183,184,185,187,188,189,190 5 -187644 cd08940 HBDH_SDR_c 3 substrate binding site 0 1 1 0 91,139,141,149,152,183,184,189,193,254 5 -187644 cd08940 HBDH_SDR_c 4 homotetramer interface 0 1 1 0 68,94,95,96,97,99,101,104,108,112,113,116,117,119,120,123,124,127,143,144,145,146,147,148,149,150,153,154,157,158,161,162,164,165,166,168,169,171,172,218,219,221,222,223,227,230,231,234,239,241,242,243,244,245,246,248,249,250,251,252,253,256,257 2 -187644 cd08940 HBDH_SDR_c 5 homodimer interface 0 1 1 0 68,94,95,96,97,99,101,104,108,113,116,117,119,120,123,124,127,143,145,146,147,148,149,150,153,154,157,158,161,162,164,165,166,168,169 2 -187645 cd08941 3KS_SDR_c 1 active site 0 0 1 1 150,179,201,205 1 -187645 cd08941 3KS_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,36,37,38,51,52,53,93,94,95,149,177,178,179,201,205,231,232,233,234,236,237 5 -187646 cd08942 RhlG_SDR_c 1 active site 0 0 1 1 112,144,158,162 1 -187646 cd08942 RhlG_SDR_c 2 NADP binding site 0 1 1 1 12,13,14,15,16,17,36,37,38,60,61,62,63,88,89,90,111,142,143,144,158,162,188,189,190,191,193,194,195 5 -187647 cd08943 R1PA_ADH_SDR_c 1 active site 0 0 1 1 107,136,149,153 1 -187647 cd08943 R1PA_ADH_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,55,56,57,83,84,85,106,134,135,136,149,153,179,180,181,182,184,185 5 -187648 cd08944 SDR_c12 1 active site 0 0 1 1 108,136,149,153 1 -187648 cd08944 SDR_c12 2 putative NAD(P) binding site 0 0 1 1 9,11,12,13,14,33,34,35,55,56,57,83,84,85,107,134,135,136,149,153,179,180,181,182,184,185 5 -187648 cd08944 SDR_c12 3 homodimer interface 0 1 0 0 21,161,165,215,219,220,223,225,226,229,231,233,234,235,236,237,238,240,241,242,243,244,245 2 -187649 cd08945 PKR_SDR_c 1 active site 0 0 1 1 110,140,153,157 1 -187649 cd08945 PKR_SDR_c 2 NAD(P) binding site 0 1 1 1 9,10,11,12,13,14,33,34,35,58,59,60,61,86,87,88,109,138,139,140,153,157,183,184,185,186,188,189,190 5 -187649 cd08945 PKR_SDR_c 3 substrate binding site 0 1 1 0 90,140,141,142,145,147,153,185,254 5 -187649 cd08945 PKR_SDR_c 4 homodimer interface 0 1 1 1 63,94,95,96,97,98,100,103,104,107,111,112,115,116,119,122,123,128,144,146,147,148,149,151,154,155,158,159,162,163,165,166,167,169,170,257 2 -212494 cd08946 SDR_e 1 active site 0 0 1 1 56,80,104,108 1 -212494 cd08946 SDR_e 2 NAD(P) binding site 0 1 1 1 4,6,7,8,9,28,29,30,36,37,38,55,78,79,80,104,108,131,132,133,134 5 -212494 cd08946 SDR_e 3 substrate binding site 0 1 1 0 80,104,133,150,162,170 5 -187651 cd08947 NmrA_TMR_like_SDR_a 1 NADP binding site 0 1 1 1 4,6,7,8,9,30,49,50,51,70,71,72,137,138,139 5 -187652 cd08948 5beta-POR_like_SDR_a 1 active site 0 0 1 1 119,150 1 -187652 cd08948 5beta-POR_like_SDR_a 2 NAD(P) binding site 0 1 1 1 5,6,7,8,9,10,32,33,34,50,51,52,76,77,78,115,116,150,173,174,176,183,184,185,301 5 -187653 cd08950 KR_fFAS_SDR_c_like 1 active site 0 0 1 1 123,155,167,171 1 -187653 cd08950 KR_fFAS_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 13,15,16,19,38,39,40,100,101,102,153,154,155,167,171,197,198,199,200 5 -187654 cd08951 DR_C-13_KR_SDR_c_like 1 active site 0 0 1 1 148,157,161 0 -187654 cd08951 DR_C-13_KR_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 13,15,16,18,37,38,39,94,95,96,146,147,148,157,161,185,186,187,188 5 -187655 cd08952 KR_1_SDR_x 1 active site 0 0 1 1 340,364,377,381 1 -187655 cd08952 KR_1_SDR_x 2 NADP binding site 0 1 1 1 238,239,241,261,262,263,264,289,290,291,292,316,317,318,339,340,362,363,377,404,405 5 -187656 cd08953 KR_2_SDR_x 1 active site 0 0 1 1 318,342,355,359 1 -187656 cd08953 KR_2_SDR_x 2 putative NADP binding site 0 0 1 1 213,214,216,236,237,238,239,266,267,268,269,294,295,296,317,318,340,341,355,384 5 -187657 cd08954 KR_1_FAS_SDR_x 1 active site 0 0 1 1 331,357,370,374 1 -187657 cd08954 KR_1_FAS_SDR_x 2 putative NADP binding site 0 0 1 1 226,227,229,250,251,252,253,280,281,282,283,307,308,309,330,331,355,356,370,397,398 5 -187658 cd08955 KR_2_FAS_SDR_x 1 active site 0 0 1 1 259,283,296,300 1 -187658 cd08955 KR_2_FAS_SDR_x 2 putative NADP binding site 0 0 1 1 157,158,160,180,181,182,183,207,208,209,210,235,236,237,258,259,281,282,296,323,324 5 -187659 cd08956 KR_3_FAS_SDR_x 1 active site 0 0 1 1 304,328,341,345 1 -187659 cd08956 KR_3_FAS_SDR_x 2 putative NADP binding site 0 0 1 1 201,202,204,225,226,227,228,253,254,255,256,280,281,282,303,304,326,327,341,368,369 5 -187660 cd08957 WbmH_like_SDR_e 1 active site 0 0 1 1 91,115,141,145 1 -187660 cd08957 WbmH_like_SDR_e 2 NAD binding site 0 1 1 1 6,8,9,10,11,30,31,32,33,34,35,51,52,53,74,75,76,78,90,113,114,115,141,145,164,165,166,167 5 -187660 cd08957 WbmH_like_SDR_e 3 putative substrate binding site 0 0 1 1 115,141,166,180,192,197 5 -187660 cd08957 WbmH_like_SDR_e 4 homodimer interface 0 1 1 0 82,84,85,88,89,92,93,96,99,100,138,139,140,143,147,150,151,154,155 2 -187661 cd08958 FR_SDR_e 1 active site 0 0 1 1 95,120,154,158 1 -187661 cd08958 FR_SDR_e 2 NADP binding site 0 1 1 1 4,6,7,8,9,28,29,55,56,57,76,77,78,79,80,118,119,154,158,181,182,183,184,196 5 -187661 cd08958 FR_SDR_e 3 substrate binding site 0 1 0 0 80,82,120,121,122,125,154,181,182,183,196,199,213,217,282 5 -350084 cd08959 ArfGap_ArfGap1_like 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350084 cd08959 ArfGap_ArfGap1_like 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -199206 cd08962 GatD 1 active site 0 1 1 1 123,124,125,155,156,157,182,354 1 -199206 cd08962 GatD 2 homodimer interface 0 1 1 0 123,125,126,127,132,157,158,161,183,219,233,234,235,236,237,239,241,244,285,287,289,291,292,297,298,301,302,307,313,315,316,317,319,321,322,342,343,344,345,346,347,348,354,355,356,358,374,377 2 -199206 cd08962 GatD 3 GatE binding site 0 1 1 0 6,10,11,25,26,28,30,33,34,35,36,37,38,39,40,83,84,85,86,87,88,90,100,103,104,105,107,184,187,188,189,190,194,195,219,220,221,236,238,239,240,241,317,348,350,352,353,358,369 5 -199207 cd08963 L-asparaginase_I 1 active site 0 1 1 0 9,10,52,53,82,83,84,109,155 1 -199207 cd08963 L-asparaginase_I 2 homodimer interface 0 1 1 0 10,19,20,21,48,51,52,53,54,55,56,57,59,60,84,85,88,110,111,155,156,157,158,159,160,202,203,204,205,206,207,208,209,210,211,212,214,215,218,221,222,231,233,234,235,239,263,266,267,268,269,270,274,293,297,301 2 199208 cd08964 L-asparaginase_II 1 active site 0 1 1 1 9,10,53,54,55,86,87,88,112,160,242 1 199208 cd08964 L-asparaginase_II 2 homodimer interface 0 1 1 1 55,56,57,58,59,62,88,89,91,92,93,160,161,162,163,164,208,209,210,212,214,218,220,221,224,225,228,230,238,239,240,242,243,244,265,266,267,270,271,297,298,301 2 199208 cd08964 L-asparaginase_II 3 homotetramer interface 0 1 1 0 10,55,56,57,58,59,62,88,92,114,119,120,121,124,125,149,150,154,156,160,161,162,163,165,175,176,177,179,181,186,188,189,190,192,193,210,212,214,218,220,228,230,238,239,240,242,244,265,266,273,274 2 -176799 cd08965 EcNei-like_N 1 catalytic residue 0 0 1 1 0 1 -176799 cd08965 EcNei-like_N 2 putative catalytic residues 0 0 1 1 1,51 1 -176799 cd08965 EcNei-like_N 3 DNA binding site 0 1 1 1 0,1,51,66,68,69,70,85,86,87,89,103,105 3 -176799 cd08965 EcNei-like_N 4 intercalation triad 0 1 1 1 68,69,70 3 -176799 cd08965 EcNei-like_N 5 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,48,49,50,51 2 -176799 cd08965 EcNei-like_N 6 substrate specificity determining residue 0 0 1 1 88 0 -176800 cd08966 EcFpg-like_N 1 catalytic residue 0 0 1 1 0 1 -176800 cd08966 EcFpg-like_N 2 putative catalytic residues 0 0 1 1 1,57 1 -176800 cd08966 EcFpg-like_N 3 DNA binding site 0 1 1 1 0,1,57,72,74,75,76,90,91,109,110,111,112 3 -176800 cd08966 EcFpg-like_N 4 8OG recognition residue 0 1 1 1 76 3 -176800 cd08966 EcFpg-like_N 5 intercalation triad 0 1 1 1 75,110,112 3 -176800 cd08966 EcFpg-like_N 6 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,54,55,56,57,76 2 -176800 cd08966 EcFpg-like_N 7 turnover-facilitating residue 0 0 1 1 72 0 -176800 cd08966 EcFpg-like_N 8 putative reading head residues 0 0 1 1 91,111 0 -176801 cd08967 MeNeil1_N 1 catalytic residue 0 0 1 1 1 1 -176801 cd08967 MeNeil1_N 2 putative catalytic residues 0 0 1 1 2,53 1 -176801 cd08967 MeNeil1_N 3 putative DNA binding site 0 0 1 1 1,2,53,82,84,85,86,99,100 3 -176801 cd08967 MeNeil1_N 4 putative intercalation triad 0 0 1 1 85,121,123 3 -176801 cd08967 MeNeil1_N 5 H2TH interface 0 1 1 1 2,3,4,7,51,52,53,54 2 -176802 cd08968 MeNeil2_N 1 catalytic residue 0 0 1 1 1 1 -176802 cd08968 MeNeil2_N 2 putative catalytic residues 0 0 1 1 2,49 1 -176802 cd08968 MeNeil2_N 3 putative DNA binding site 0 0 1 1 1,2,49,74,76,77,78,92,93 3 -176802 cd08968 MeNeil2_N 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,46,47,48,49,50 2 -176803 cd08969 MeNeil3_N 1 catalytic residue 0 0 1 1 1 1 -176803 cd08969 MeNeil3_N 2 putative catalytic residues 0 0 1 1 2,69 1 -176803 cd08969 MeNeil3_N 3 putative DNA binding site 0 0 1 1 1,2,69,83,85,86,87,103,104 3 -176803 cd08969 MeNeil3_N 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,66,67,68,69,70 2 -176804 cd08970 AcNei1_N 1 catalytic residue 0 0 1 1 1 1 -176804 cd08970 AcNei1_N 2 putative catalytic residues 0 0 1 1 2,51 1 -176804 cd08970 AcNei1_N 3 putative DNA binding site 0 0 1 1 1,2,51,66,68,69,70,83,84 3 -176804 cd08970 AcNei1_N 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,48,49,50,51,52 2 -176805 cd08971 AcNei2_N 1 catalytic residue 0 0 1 1 1 1 -176805 cd08971 AcNei2_N 2 putative catalytic residues 0 0 1 1 2,50 1 -176805 cd08971 AcNei2_N 3 putative DNA binding site 0 0 1 1 1,2,50,65,67,68,69,86,87 3 -176805 cd08971 AcNei2_N 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,47,48,49,50,51 2 -176806 cd08972 PF_Nei_N 1 catalytic residue 0 0 1 1 1 1 -176806 cd08972 PF_Nei_N 2 putative catalytic residues 0 0 1 1 2,59 1 -176806 cd08972 PF_Nei_N 3 putative DNA binding site 0 0 1 1 1,2,59,75,77,78,79,108,109 3 -176806 cd08972 PF_Nei_N 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,56,57,58,59,60 2 -176807 cd08973 BaFpgNei_N_1 1 catalytic residue 0 0 1 1 1 1 -176807 cd08973 BaFpgNei_N_1 2 putative catalytic residues 0 0 1 1 2,56 1 -176807 cd08973 BaFpgNei_N_1 3 putative DNA binding site 0 0 1 1 1,2,56,71,73,74,75,90,91 3 -176807 cd08973 BaFpgNei_N_1 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,53,54,55,56,57 2 -176808 cd08974 BaFpgNei_N_2 1 catalytic residue 0 0 1 1 1 1 -176808 cd08974 BaFpgNei_N_2 2 putative catalytic residues 0 0 1 1 2,48 1 -176808 cd08974 BaFpgNei_N_2 3 putative DNA binding site 0 0 1 1 1,2,48,62,64,65,66,75,76 3 -176808 cd08974 BaFpgNei_N_2 4 putative H2TH interface 0 0 1 1 2,3,4,5,7,8,11,45,46,47,48,49 2 -176809 cd08975 BaFpgNei_N_3 1 catalytic residue 0 0 1 1 0 1 -176809 cd08975 BaFpgNei_N_3 2 putative catalytic residues 0 0 1 1 1,60 1 -176809 cd08975 BaFpgNei_N_3 3 putative DNA binding site 0 0 1 1 0,1,60,74,76,77,78,90,91 3 -176809 cd08975 BaFpgNei_N_3 4 putative H2TH interface 0 0 1 1 1,2,3,4,6,7,10,57,58,59,60,61 2 -176810 cd08976 BaFpgNei_N_4 1 catalytic residue 0 0 1 1 0 1 -176810 cd08976 BaFpgNei_N_4 2 putative catalytic residues 0 0 1 1 1,56 1 -176810 cd08976 BaFpgNei_N_4 3 putative DNA binding site 0 0 1 1 0,1,56,71,73,74,75,89,90 3 -176810 cd08976 BaFpgNei_N_4 4 putative H2TH interface 0 0 1 1 1,2,3,4,6,7,10,53,54,55,56,57 2 -350092 cd08978 GH_F 1 active site [DENG][DEN][DEN] 0 1 1 1,114,172 1 -350093 cd08979 GH_J 1 active site [DEN][DEN][DEN] 0 1 1 1,129,183 1 -350094 cd08980 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,129,191 1 -350094 cd08980 GH43_LbAraf43-like 2 chemical substrate binding site 0 1 1 0 1,55,56,128,129,191,216,256 5 -350095 cd08981 GH43_Bt1873-like 1 active site [DEN][DEN][DEN] 0 1 1 7,124,195 1 -350096 cd08982 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 6,94,164 1 -350097 cd08983 GH43_Bt3655-like 1 active site [DEN][DEN][DEN] 0 1 1 19,139,190 1 -350098 cd08984 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 11,134,182 1 -350099 cd08985 GH43_CtGH43-like 1 active site [DENG][DEN][DEN] 0 1 1 4,125,173 1 -350100 cd08986 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 3,125,173 1 -350101 cd08987 GH62 1 active site [DEN][DEN][DEN] 0 1 1 27,137,188 1 -350101 cd08987 GH62 2 chemical substrate binding site 0 1 1 0 98,136,154,187,188,213,291,292 5 -350102 cd08988 GH43_ABN 1 active site [DEN][DEN][DEN] 0 1 1 1,119,171 1 -350102 cd08988 GH43_ABN 2 chemical substrate binding site 0 1 1 1 0,1,16,60,116,136,171,199,267 5 -350103 cd08989 GH43_XYL-like 1 active site [DEN][DEN][DEN] 0 1 1 9,121,170 1 -350103 cd08989 GH43_XYL-like 2 chemical substrate binding site 0 1 1 1 9,26,68,69,120,121,170,231,261 5 -350104 cd08990 GH43_AXH_like 1 active site [DEN][DEN][DEN] 0 1 1 1,121,171 1 -350104 cd08990 GH43_AXH_like 2 chemical substrate binding site 0 1 1 1 1,63,120,121,170,171,221,222,251 5 -350105 cd08991 GH43_HoAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,108,175 1 -350106 cd08992 GH117 1 active site [DEN][DEN][DENQ] 0 1 1 23,171,229 1 -350106 cd08992 GH117 2 chemical substrate binding site 0 1 1 0 22,23,61,98,99,114,170,171,186,228,229,297 5 -350106 cd08992 GH117 3 homodimer interface 0 1 1 0 2,46,47,48,49,59,189,202,218,219,221,222,223,224,225,245,250,254,260,261,262,263 2 -350107 cd08993 GH130 1 active site NDYD 0 1 1 7,67,203,264 1 -350107 cd08993 GH130 2 chemical substrate binding site 0 1 1 0 7,22,66,67,84,114,115,132,173,192,203,239,244,264 5 -350108 cd08994 GH43_62_32_68_117_130-like 1 active site [DENG][DEN][DEN] 0 1 1 14,151,209 1 -350109 cd08995 GH32_EcAec43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,124,182 1 -350110 cd08996 GH32_FFase 1 active site [DEN][DEN][DEN] 0 1 1 4,125,181 1 -350110 cd08996 GH32_FFase 2 chemical substrate binding site 0 1 1 1 3,4,20,63,64,124,125,181 5 -350110 cd08996 GH32_FFase 3 beta-sandwich domain interface 0 1 1 1 36,42,43,44,45,234,235,254,255,268,270,271,273,274,276,279 2 -350111 cd08997 GH68 1 active site [DEN][DEN][DEN] 0 1 1 2,155,239 1 -350111 cd08997 GH68 2 chemical substrate binding site 0 1 1 1 1,2,25,71,72,154,155,172,237,239,257,305,306 5 -350112 cd08998 GH43_Arb43a-like 1 active site [DEN][DEN][DEN] 0 1 1 2,118,172 1 -350112 cd08998 GH43_Arb43a-like 2 chemical substrate binding site 0 1 1 1 0,1,2,18,19,59,115,135,136,172,192,200,267 5 -350113 cd08999 GH43_ABN-like 1 active site [DEN][DEN][DEN] 0 1 1 9,122,182 1 -350113 cd08999 GH43_ABN-like 2 putative chemical substrate binding site 0 0 1 1 8,9,24,64,119,139,182,207,268 5 -350114 cd09000 GH43_SXA-like 1 active site [DEN][DEN][DEN] 0 1 1 9,122,181 1 -350114 cd09000 GH43_SXA-like 2 chemical substrate binding site 0 1 1 1 9,26,68,69,121,122,181,243,274 5 -350115 cd09001 GH43_FsAxh1-like 1 active site [DEN][DEN][DEN] 0 1 1 12,122,172 1 -350115 cd09001 GH43_FsAxh1-like 2 chemical substrate binding site 0 1 1 1 12,29,76,77,121,122,172,227,228,244,246,252 5 -350116 cd09002 GH43_XYL-like 1 active site [DEN][DEN][DEN] 0 1 1 11,107,162 1 -350116 cd09002 GH43_XYL-like 2 chemical substrate binding site 0 0 1 1 11,28,60,61,106,107,162,226,253 5 -350117 cd09003 GH43_XynD-like 1 active site [DEN][DEN][DEN] 0 1 1 10,143,199 1 -350117 cd09003 GH43_XynD-like 2 chemical substrate binding site 0 1 1 1 81,142,198,199,262,263 5 -350118 cd09004 GH43_bXyl-like 1 active site [DEN][DEN][DEN] 0 1 1 1,112,159 1 -350156 cd09005 NP-I 1 active site 0 1 1 1 4,5,46,49,70,71,72,73,74,75,139,141,142,150,161,162,163,164,183,186,187,188,201,202 1 -350157 cd09006 PNP_EcPNPI-like 1 active site 0 1 1 1 15,16,17,20,60,83,84,85,86,87,88,155,174,175,176,177,199,200,202 1 -350157 cd09006 PNP_EcPNPI-like 2 homohexamer interface 0 1 1 1 0,16,17,18,19,37,39,40,60,61,63,64,67,68,70,71,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,127,128,130,131,134,135,146,147,148,150,153,154,155,156,165,166,167,168,169,171,176,183,186,187,189 2 -350157 cd09006 PNP_EcPNPI-like 3 purine nucleoside binding site 0 1 1 1 60,83,86,87,88,155,174,175,176,177,199,200,202 5 -350157 cd09006 PNP_EcPNPI-like 4 phosphate binding site 0 1 1 1 15,16,17,20,39,83,84,85,86,177 4 -350158 cd09007 NP-I_spr0068 1 putative active site 0 0 1 1 10,11,12,15,51,54,75,76,77,78,79,80,143,145,146,154,165,166,167,168,187,190,191,192,206,207 1 -350159 cd09008 MTAN 1 active site 0 1 1 1 5,6,9,47,48,73,74,75,147,148,167,168,169,170,189,192,193,195,208 1 -350159 cd09008 MTAN 2 homodimer interface 0 1 1 0 7,28,44,46,47,48,49,50,51,53,54,57,58,60,61,62,94,96,146,147,148,169,173,176,177,179,180,181,182 2 -350160 cd09009 PNP-EcPNPII_like 1 active site 0 1 1 1 24,25,76,78,80,106,107,108,109,110,182,187,188,193,204,205,206,207,229,230,231,232,240,242,245 1 -350160 cd09009 PNP-EcPNPII_like 2 homotrimer interface 0 1 1 0 79,80,81,82,83,125,126,127,128,129,130,131,133,134,136,137,148,149,150,151,152,153,154,157,160,164,178,181,182,183,184,185,186,187,188,189,190,191,192,194,195,197,198,199,206,213,233,238,239,240,242 2 -350160 cd09009 PNP-EcPNPII_like 3 purine nucleoside binding site 0 1 1 1 25,78,80,108,109,110,187,188,204,205,206,229,230,242,245 5 -350160 cd09009 PNP-EcPNPII_like 4 phosphate binding site 0 1 1 0 24,25,56,76,78,107,108,207 4 -350161 cd09010 MTAP_SsMTAPII_like_MTIP 1 active site 0 1 1 1 5,48,49,57,81,82,83,84,120,155,160,177,178,179,180,202,203,205,215,218 1 -350161 cd09010 MTAP_SsMTAPII_like_MTIP 2 homohexamer interface 0 1 1 1 55,56,57,58,59,100,101,102,103,104,110,111,113,114,120,121,122,123,124,158,159,160,161,162,163,164,165,168,172,173,179,186,206,215 2 -350161 cd09010 MTAP_SsMTAPII_like_MTIP 3 phosphate binding site 0 1 1 1 5,48,49,81,82,180 4 -319955 cd09013 BphC-JF8_N_like 1 tetramer interface 0 1 0 0 0,1,4,5,26,45,48,68,69,70,116,120 2 -319956 cd09014 BphC-JF8_C_like 1 metal binding site HHYE 1 0 0 8,71,112,122 4 -319956 cd09014 BphC-JF8_C_like 2 active site 0 1 0 0 8,10,43,46,59,60,62,71,103,105,106,112,122,149,161,162 1 -319956 cd09014 BphC-JF8_C_like 3 tetramer interface 0 1 0 0 0,5,33,50,52,77,78,80,81,84,86,87,88,90,91,92,93,96,99,100,104,107,126,129,130,133,134,135,139,140,141,148,151,152,153,154 2 -212511 cd09015 Ureohydrolase 1 active site 0 1 1 1 88,111,113,115,127,202,204,247 1 -212511 cd09015 Ureohydrolase 2 Mn binding site [NH]DHDDD 1 1 1 88,111,113,115,202,204 4 -212511 cd09015 Ureohydrolase 3 oligomer interface 0 1 1 1 5,8,17,18,21,24,49,52,53,212,216,220,224,225,257,260,261,264,268 2 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 1 active site 0 1 1 1 4,5,6,7,58,59,61,62,63,96,97,132,136 1 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 2 catalytic site 0 1 1 1 4,6,63,132,136 1 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 3 putative substrate binding site 0 1 1 1 5,6,7,58,59,61,62,96,97,132,136 5 -185696 cd09019 galactose_mutarotase_like 1 active site 0 1 1 0 51,62,87,158,160,229,268,293 1 -185696 cd09019 galactose_mutarotase_like 2 catalytic residues 0 1 1 0 158,293 1 -185697 cd09020 D-hex-6-P-epi_like 1 active site 0 1 1 0 46,68,72,142,144,186,220,245 1 -185697 cd09020 D-hex-6-P-epi_like 2 catalytic residues 0 1 1 0 142,245 1 -185697 cd09020 D-hex-6-P-epi_like 3 phosphate binding residues 0 1 1 0 46,72 0 -185698 cd09021 Aldose_epim_Ec_YphB 1 active site 0 1 0 0 48,75,142,144,193,227,239 1 -185698 cd09021 Aldose_epim_Ec_YphB 2 catalytic residues 0 1 0 0 142,239 1 -185699 cd09022 Aldose_epim_Ec_YihR 1 active site 0 0 1 1 45,72,140,142,196,236,253 1 -185699 cd09022 Aldose_epim_Ec_YihR 2 catalytic residues 0 0 1 1 140,253 1 -185700 cd09023 Aldose_epim_Ec_c4013 1 active site 0 0 1 1 73,148,150,193,241,251 1 -185700 cd09023 Aldose_epim_Ec_c4013 2 catalytic residues 0 0 1 1 148,251 1 -185701 cd09024 Aldose_epim_lacX 1 active site 0 0 1 1 52,70,140,142,202,237,249 1 -185701 cd09024 Aldose_epim_lacX 2 catalytic residues 0 0 1 1 140,249 1 -185702 cd09025 Aldose_epim_Slr1438 1 active site 0 0 1 1 80,151,153,194,228,239 1 -185702 cd09025 Aldose_epim_Slr1438 2 catalytic residues 0 0 1 1 151,239 1 -350085 cd09028 ArfGap_ArfGap3 1 Zn binding site 0 1 1 1 21,24,41,44 4 -350085 cd09028 ArfGap_ArfGap3 2 arginine finger 0 0 1 1 21,24,41,44,49 0 -350086 cd09029 ArfGap_ArfGap2 1 Zn binding site 0 1 1 1 21,24,41,44 4 -350086 cd09029 ArfGap_ArfGap2 2 arginine finger 0 0 1 1 21,24,41,44,49 0 -176923 cd09030 DUF1425 1 putative dimer interface 0 1 0 0 0,1,2,3,4,9,19,21,23,70,96,97,98,99,100 2 -185761 cd09034 BRO1_Alix_like 1 putative ESCRT-III binding site 0 0 1 1 120,123,137,140,141,189,192,193,203,206,207,336,338,340,342 0 -197307 cd09073 ExoIII_AP-endo 1 putative catalytic site 0 1 1 1 5,33,106,146,148,217,242,243 1 -197307 cd09073 ExoIII_AP-endo 2 active site 0 1 1 1 5,7,8,9,10,11,12,33,35,40,62,63,91,106,109,111,116,146,148,158,160,162,200,202,203,204,206,210,212,214,216,217,240,242,243 1 -197307 cd09073 ExoIII_AP-endo 3 DNA binding site 0 1 1 0 5,7,8,9,10,11,12,33,35,40,62,63,91,106,109,111,116,146,148,158,160,162,200,202,203,204,210,212,214,216,240,243 3 -197307 cd09073 ExoIII_AP-endo 4 AP binding site 0 1 1 1 106,109,146,148,200,214,216,243 3 -197307 cd09073 ExoIII_AP-endo 5 metal binding site A 0 1 1 1 7,33,242,243 4 -197307 cd09073 ExoIII_AP-endo 6 putative metal binding site B 0 1 1 1 146,148,243 4 -197307 cd09073 ExoIII_AP-endo 7 putative phosphate binding site 0 1 1 1 5,33,106,109,146,148,243 4 -197308 cd09074 INPP5c 1 putative catalytic site 0 0 1 1 8,40,140,185,187,261,288,289 1 -197308 cd09074 INPP5c 2 putative active site 0 1 1 1 8,10,40,119,120,140,143,144,185,187,189,239,240,255,261,288,289 1 -197308 cd09074 INPP5c 3 Mg binding site 0 1 1 1 10,40,288 4 -197308 cd09074 INPP5c 4 putative PI/IP binding site 0 1 1 1 40,119,120,140,143,144,189,239,240,255,288 5 -197308 cd09074 INPP5c 5 putative phosphate binding site 0 0 1 1 140,187,289 4 -197309 cd09075 DNase1-like 1 putative catalytic site 0 0 1 1 5,37,76,132,166,168,210,249,250 1 -197309 cd09075 DNase1-like 2 putative active site 0 1 1 1 5,6,8,37,39,40,76,109,132,166,168,209,210,249,250 1 -197309 cd09075 DNase1-like 3 DNA binding site 0 1 1 0 8,39,40,76,109,132,166,168,209,250 3 -197309 cd09075 DNase1-like 4 putative Mg binding site IVa 0 0 1 1 166,210,250 4 -197309 cd09075 DNase1-like 5 putative Mg binding site IVb 0 0 1 1 5,37,249 4 -197309 cd09075 DNase1-like 6 Ca binding site I 0 1 1 1 199,201 4 -197309 cd09075 DNase1-like 7 Ca binding site II 0 1 1 1 97,110 4 -197309 cd09075 DNase1-like 8 putative phosphate binding site 0 0 1 1 7,132,166,168,250 4 -197310 cd09076 L1-EN 1 putative catalytic site 0 0 1 1 4,33,105,140,142,203,227,228 1 -197310 cd09076 L1-EN 2 putative metal binding site 0 1 1 1 33,227 4 -197310 cd09076 L1-EN 3 putative phosphate binding site 0 0 1 1 105,142,228 4 -197311 cd09077 R1-I-EN 1 putative catalytic site 0 1 1 1 6,33,88,121,123,171,196,197 1 -197311 cd09077 R1-I-EN 2 putative metal binding site 0 0 1 1 33,196 4 -197311 cd09077 R1-I-EN 3 phosphate binding site 0 1 1 1 6,8,33,88,121,123,197 4 -197312 cd09078 nSMase 1 putative catalytic site 0 1 1 1 6,43,83,133,174,176,232,271,272 1 -197312 cd09078 nSMase 2 metal binding site A 0 1 1 1 6,43,271 4 -197312 cd09078 nSMase 3 metal binding site B 0 1 1 1 174,176,272 4 -197312 cd09078 nSMase 4 metal binding site C 0 1 1 1 45,47,80,81 4 -197312 cd09078 nSMase 5 phosphate binding site 0 1 1 1 43,271,272 4 -197313 cd09079 RgfB-like 1 putative catalytic site 0 0 1 1 4,36,136,170,172,223,250,251 1 -197313 cd09079 RgfB-like 2 putative metal binding site 0 0 1 1 36,250 4 -197313 cd09079 RgfB-like 3 putative phosphate binding site 0 0 1 1 136,172,251 4 -197314 cd09080 TDP2 1 putative catalytic site 0 0 1 1 6,38,116,152,154,206,239,240 1 -197314 cd09080 TDP2 2 putative metal binding site 0 0 1 1 38,239 4 -197314 cd09080 TDP2 3 putative phosphate binding site 0 0 1 1 116,154,240 4 -197315 cd09081 CdtB 1 putative catalytic site 0 0 1 1 4,36,137,171,173,210,238,239 1 -197315 cd09081 CdtB 2 putative metal binding site 0 0 1 1 36,238 4 -197315 cd09081 CdtB 3 putative phosphate binding site 0 0 1 1 137,173,239 4 -197315 cd09081 CdtB 4 heterotrimer interface 0 1 1 1 6,8,17,18,21,22,26,36,72,73,88,89,94,95,119,121,137,139,140,200,201,203,204,206,224,225,226,227,229,240 2 -197315 cd09081 CdtB 5 CdtA interface 0 1 1 0 21,26,72,73,200,204,224,225,226,227,229,240 2 -197315 cd09081 CdtB 6 CdtC interface 0 1 1 0 6,8,17,18,21,22,36,88,89,94,95,119,121,137,139,140,201,203,204,206,240 2 -197316 cd09082 Deadenylase 1 putative catalytic site 0 1 1 1 4,49,169,219,221,298,337,338 1 -197316 cd09082 Deadenylase 2 putative active site 0 1 1 1 4,49,169,172,174,180,219,221,223,288,293,297,298,338 1 -197316 cd09082 Deadenylase 3 putative Mg binding site A 0 1 1 1 4,49,337 4 -197316 cd09082 Deadenylase 4 putative Mg binding site B 0 1 1 1 219,221,338 4 -197316 cd09082 Deadenylase 5 putative poly(A) RNA binding site 0 1 1 1 4,49,169,172,174,180,219,221,223,288,293,297,338 3 -197316 cd09082 Deadenylase 6 putative phosphate binding site 0 0 1 1 169,221,338 4 -197317 cd09083 EEP-1 1 putative catalytic site 0 0 1 1 5,41,133,167,169,216,243,244 1 -197317 cd09083 EEP-1 2 putative metal binding site 0 0 1 1 41,243 4 -197317 cd09083 EEP-1 3 putative phosphate binding site 0 0 1 1 133,169,244 4 -197318 cd09084 EEP-2 1 putative catalytic site 0 0 1 1 4,36,112,173,175,215,237,238 1 -197318 cd09084 EEP-2 2 putative metal binding site 0 0 1 1 36,237 4 -197318 cd09084 EEP-2 3 putative phosphate binding site 0 0 1 1 112,175,238 4 -197319 cd09085 Mth212-like_AP-endo 1 putative catalytic site 0 1 1 1 6,34,107,147,149,218,243,244 1 -197319 cd09085 Mth212-like_AP-endo 2 active site 0 1 1 1 6,8,9,10,11,12,15,16,34,36,41,61,62,63,64,92,107,110,111,112,113,121,147,149,159,163,167,168,202,204,205,206,207,211,213,215,217,218,243,244 1 -197319 cd09085 Mth212-like_AP-endo 3 DNA binding site 0 1 1 0 8,9,10,11,12,15,16,34,36,41,61,62,63,64,92,107,110,113,147,149,159,163,204,205,206,211,213,215,244 3 -197319 cd09085 Mth212-like_AP-endo 4 putative AP binding site 0 1 1 1 107,110,147,149,201,215,217,244 3 -197319 cd09085 Mth212-like_AP-endo 5 metal binding site A 0 1 1 1 8,34,243 4 -197319 cd09085 Mth212-like_AP-endo 6 putative metal binding site B 0 0 1 1 107,147,149,244 4 -197319 cd09085 Mth212-like_AP-endo 7 phosphate binding site A 0 1 1 1 6,34,107,110,147,149,244 4 -197319 cd09085 Mth212-like_AP-endo 8 phosphate binding site B 0 1 1 1 205,207 4 -197320 cd09086 ExoIII-like_AP-endo 1 putative catalytic site 0 0 1 1 6,33,104,145,147,216,245,246 1 -197320 cd09086 ExoIII-like_AP-endo 2 active site 0 1 1 1 8,9,11,12,13,33,59,60,104,107,109,115,145,147,199,202,203,213,215,216,242,243,246 1 -197320 cd09086 ExoIII-like_AP-endo 3 DNA binding site 0 1 1 1 8,9,11,12,13,59,60,104,107,109,115,202,203,242,243 3 -197320 cd09086 ExoIII-like_AP-endo 4 putative AP binding site 0 0 1 1 104,107,145,147,199,213,215,246 3 -197320 cd09086 ExoIII-like_AP-endo 5 metal binding site A 0 1 1 1 8,33,245,246 4 -197320 cd09086 ExoIII-like_AP-endo 6 putative metal binding site B 0 0 1 1 104,145,147,246 4 -197320 cd09086 ExoIII-like_AP-endo 7 putative phosphate binding site 0 0 1 1 6,33,104,107,145,147,246 4 -197321 cd09087 Ape1-like_AP-endo 1 putative catalytic site 0 1 1 1 6,34,108,147,149,219,244,245 1 -197321 cd09087 Ape1-like_AP-endo 2 active site 0 1 1 1 6,8,9,10,11,12,16,34,36,41,64,65,108,111,147,149,159,161,163,166,167,202,204,205,206,212,214,216,218,219,245 1 -197321 cd09087 Ape1-like_AP-endo 3 DNA binding site 0 1 1 0 6,8,9,10,11,12,16,34,36,41,64,65,108,111,147,149,159,161,163,166,167,202,204,205,206,212,214,216,218,245 3 -197321 cd09087 Ape1-like_AP-endo 4 AP binding site 0 1 1 1 108,111,147,149,167,202,216,218,245 3 -197321 cd09087 Ape1-like_AP-endo 5 metal binding site A 0 1 1 1 8,34,244 4 -197321 cd09087 Ape1-like_AP-endo 6 metal binding site B 0 1 1 1 147,149,245 4 -197321 cd09087 Ape1-like_AP-endo 7 putative phosphate binding site 0 0 1 1 6,34,108,111,147,149,245 4 -197322 cd09088 Ape2-like_AP-endo 1 putative catalytic site 0 0 1 1 5,40,149,190,192,275,300,301 1 -197322 cd09088 Ape2-like_AP-endo 2 putative active site 0 0 1 1 5,7,8,9,10,11,12,40,42,46,70,71,134,149,152,154,160,190,192,202,204,206,258,260,261,262,264,268,270,272,274,275,298,300,301 1 -197322 cd09088 Ape2-like_AP-endo 3 putative DNA binding site 0 0 1 1 5,7,8,9,10,11,12,40,42,46,70,71,134,149,152,154,160,190,192,202,204,206,258,260,261,262,268,270,272,274,298,301 3 -197322 cd09088 Ape2-like_AP-endo 4 putative AP binding site 0 0 1 1 149,152,190,192,258,272,274,301 3 -197322 cd09088 Ape2-like_AP-endo 5 putative metal binding site A 0 0 1 1 7,40,300 4 -197322 cd09088 Ape2-like_AP-endo 6 putative metal binding site B 0 0 1 1 190,192,301 4 -197322 cd09088 Ape2-like_AP-endo 7 putative phosphate binding site 0 0 1 1 5,40,149,152,190,192,301 4 -197323 cd09089 INPP5c_Synj 1 putative catalytic site 0 0 1 1 8,59,157,198,200,274,317,318 1 -197323 cd09089 INPP5c_Synj 2 putative active site 0 0 1 1 8,10,59,136,137,157,160,161,198,200,202,252,253,268,274,317,318 1 -197323 cd09089 INPP5c_Synj 3 putative Mg binding site 0 0 1 1 10,59,317 4 -197323 cd09089 INPP5c_Synj 4 putative PI/IP binding site 0 0 1 1 59,136,137,157,160,161,202,252,253,268,317 5 -197323 cd09089 INPP5c_Synj 5 putative phosphate binding site 0 0 1 1 157,200,318 4 -197324 cd09090 INPP5c_ScInp51p-like 1 putative catalytic site 0 0 1 1 8,40,140,181,183,257,280,281 1 -197324 cd09090 INPP5c_ScInp51p-like 2 putative active site 0 1 1 1 8,10,40,44,140,143,144,181,183,185,235,236,251,257,280,281 1 -197324 cd09090 INPP5c_ScInp51p-like 3 Mg binding site 0 1 1 1 10,40,280 4 -197324 cd09090 INPP5c_ScInp51p-like 4 PI/IP binding site 0 1 1 1 143,144,185,235,236,251,280 5 -197324 cd09090 INPP5c_ScInp51p-like 5 putative phosphate binding site 0 0 1 1 140,183,281 4 -197325 cd09091 INPP5c_SHIP 1 putative catalytic site 0 0 1 1 8,49,137,183,185,269,296,297 1 -197325 cd09091 INPP5c_SHIP 2 putative active site 0 0 1 1 8,10,49,116,117,137,140,141,183,185,187,240,241,263,269,296,297 1 -197325 cd09091 INPP5c_SHIP 3 Mg binding site 0 0 1 1 10,49,296 4 -197325 cd09091 INPP5c_SHIP 4 putative PI/IP binding site 0 0 1 1 49,116,117,137,140,141,187,240,241,263,296 5 -197325 cd09091 INPP5c_SHIP 5 putative phosphate binding site 0 0 1 1 137,185,297 4 -197326 cd09092 INPP5A 1 putative catalytic site 0 0 1 1 8,45,174,222,224,339,372,373 1 -197326 cd09092 INPP5A 2 putative active site 0 0 1 1 8,10,45,153,154,174,177,178,222,224,226,317,318,333,339,372,373 1 -197326 cd09092 INPP5A 3 putative Mg binding site 0 0 1 1 45,372 4 -197326 cd09092 INPP5A 4 putative PI/IP binding site 0 0 1 1 45,153,154,174,177,178,226,317,318,333,372 5 -197326 cd09092 INPP5A 5 putative phosphate binding site 0 0 1 1 174,224,373 4 -197327 cd09093 INPP5c_INPP5B 1 putative catalytic site 0 0 1 1 8,38,135,180,182,257,281,282 1 -197327 cd09093 INPP5c_INPP5B 2 putative active site 0 1 1 1 8,10,38,41,43,46,108,114,115,135,138,139,180,182,184,235,236,249,251,257,281,282 1 -197327 cd09093 INPP5c_INPP5B 3 Mg binding site 0 1 1 1 10,38,281 4 -197327 cd09093 INPP5c_INPP5B 4 putative PI/IP binding site 0 1 1 1 38,41,43,46,108,114,115,135,138,139,184,235,236,249,251,281 5 -197327 cd09093 INPP5c_INPP5B 5 putative phosphate binding site 0 0 1 1 135,182,282 4 -197328 cd09094 INPP5c_INPP5J-like 1 putative catalytic site 0 0 1 1 8,40,135,178,180,255,289,290 1 -197328 cd09094 INPP5c_INPP5J-like 2 putative active site 0 0 1 1 8,10,40,114,115,135,138,139,178,180,182,233,234,249,255,289,290 1 -197328 cd09094 INPP5c_INPP5J-like 3 putative Mg binding site 0 0 1 1 40,289 4 -197328 cd09094 INPP5c_INPP5J-like 4 putative PI/IP binding site 0 0 1 1 40,114,115,135,138,139,182,233,234,249,289 5 -197328 cd09094 INPP5c_INPP5J-like 5 putative phosphate binding site 0 0 1 1 135,180,290 4 -197329 cd09095 INPP5c_INPP5E-like 1 putative catalytic site 0 0 1 1 12,45,129,181,183,260,287,288 1 -197329 cd09095 INPP5c_INPP5E-like 2 putative active site 0 1 1 1 12,14,45,108,109,129,132,133,181,183,185,238,239,254,260,287,288 1 -197329 cd09095 INPP5c_INPP5E-like 3 putative Mg binding site 0 0 1 1 45,287 4 -197329 cd09095 INPP5c_INPP5E-like 4 putative PI/IP binding site 0 0 1 1 45,108,109,129,132,133,185,238,239,254,287 5 -197329 cd09095 INPP5c_INPP5E-like 5 putative phosphate binding site 0 0 1 1 129,183,288 4 -197330 cd09096 Deadenylase_nocturnin 1 putative catalytic site 0 0 1 1 5,51,142,180,182,233,269,270 1 -197330 cd09096 Deadenylase_nocturnin 2 putative active site 0 0 1 1 5,51,142,145,147,153,180,182,184,223,228,232,233,270 1 -197330 cd09096 Deadenylase_nocturnin 3 putative Mg binding site A 0 0 1 1 5,51,269 4 -197330 cd09096 Deadenylase_nocturnin 4 putative Mg binding site B 0 0 1 1 180,182,270 4 -197330 cd09096 Deadenylase_nocturnin 5 putative poly(A) RNA binding site 0 0 1 1 5,51,142,145,147,153,180,182,184,223,228,232,270 3 -197330 cd09096 Deadenylase_nocturnin 6 putative phosphate binding site 0 0 1 1 142,182,270 4 -197331 cd09097 Deadenylase_CCR4 1 putative catalytic site 0 1 1 1 4,49,164,211,213,280,318,319 1 -197331 cd09097 Deadenylase_CCR4 2 active site 0 1 1 1 4,49,164,167,169,175,211,213,215,270,275,279,280,319 1 -197331 cd09097 Deadenylase_CCR4 3 Mg binding site A 0 1 1 1 4,49,318 4 -197331 cd09097 Deadenylase_CCR4 4 Mg binding site B 0 1 1 1 211,213,319 4 -197331 cd09097 Deadenylase_CCR4 5 poly(A) RNA binding site 0 1 1 1 4,49,164,167,169,175,211,213,215,270,275,279,319 3 -197331 cd09097 Deadenylase_CCR4 6 putative phosphate binding site 0 0 1 1 164,213,319 4 -197332 cd09098 INPP5c_Synj1 1 putative catalytic site 0 0 1 1 8,58,156,197,199,273,325,326 1 -197332 cd09098 INPP5c_Synj1 2 putative active site 0 0 1 1 8,10,58,135,136,156,159,160,197,199,201,251,252,267,273,325,326 1 -197332 cd09098 INPP5c_Synj1 3 Mg binding site 0 0 1 1 10,58,325 4 -197332 cd09098 INPP5c_Synj1 4 putative PI/IP binding site 0 0 1 1 58,135,136,156,159,160,201,251,252,267,325 5 -197332 cd09098 INPP5c_Synj1 5 putative phosphate binding site 0 0 1 1 156,199,326 4 -197333 cd09099 INPP5c_Synj2 1 putative catalytic site 0 0 1 1 8,58,156,197,199,273,325,326 1 -197333 cd09099 INPP5c_Synj2 2 putative active site 0 0 1 1 8,10,58,135,136,156,159,160,197,199,201,251,252,267,273,325,326 1 -197333 cd09099 INPP5c_Synj2 3 Mg binding site 0 0 1 1 10,58,325 4 -197333 cd09099 INPP5c_Synj2 4 putative PI/IP binding site 0 0 1 1 58,135,136,156,159,160,201,251,252,267,325 5 -197333 cd09099 INPP5c_Synj2 5 putative phosphate binding site 0 0 1 1 156,199,326 4 -197334 cd09100 INPP5c_SHIP1-INPP5D 1 putative catalytic site 0 0 1 1 8,49,137,183,185,269,296,297 1 -197334 cd09100 INPP5c_SHIP1-INPP5D 2 putative active site 0 0 1 1 8,10,49,116,117,137,140,141,183,185,187,240,241,263,269,296,297 1 -197334 cd09100 INPP5c_SHIP1-INPP5D 3 putative Mg binding site 0 0 1 1 49,296 4 -197334 cd09100 INPP5c_SHIP1-INPP5D 4 putative PI/IP binding site 0 0 1 1 49,116,117,137,140,141,187,240,241,263,296 5 -197334 cd09100 INPP5c_SHIP1-INPP5D 5 putative phosphate binding site 0 0 1 1 137,185,297 4 -197335 cd09101 INPP5c_SHIP2-INPPL1 1 putative catalytic site 0 0 1 1 8,49,137,183,185,266,293,294 1 -197335 cd09101 INPP5c_SHIP2-INPPL1 2 putative active site 0 0 1 1 8,10,49,116,117,137,140,141,183,185,187,237,238,260,266,293,294 1 -197335 cd09101 INPP5c_SHIP2-INPPL1 3 putative Mg binding site 0 0 1 1 49,293 4 -197335 cd09101 INPP5c_SHIP2-INPPL1 4 putative PI/IP binding site 0 0 1 1 49,116,117,137,140,141,187,237,238,260,293 5 -197335 cd09101 INPP5c_SHIP2-INPPL1 5 putative phosphate binding site 0 0 1 1 137,185,294 4 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 1 putative active site 0 0 1 1 118,120,132,134,145 1 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 2 catalytic site 0 0 1 1 118 1 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 3 domain interface 0 1 0 1 1,3,106,107,108,109,110,114,115,116,117,118,119,120,130,132,142,143,144,145,146,148,150,155,159,160,163,167 2 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 1 putative active site 0 0 1 1 120,122,135,137,148 1 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 2 catalytic site 0 0 1 1 120 1 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 3 domain interface 0 1 0 1 0,1,2,3,4,5,6,8,117,118,119,120,121,132,133,134,135,141,145,146,147,148,149,150,151,152,154,160,163,167,170,171 2 -197203 cd09104 PLDc_vPLD1_2_like_1 1 putative active site 0 0 1 1 112,114,128,130,141 1 -197203 cd09104 PLDc_vPLD1_2_like_1 2 catalytic site 0 0 1 1 112 1 -197204 cd09105 PLDc_vPLD1_2_like_2 1 putative active site 0 0 1 1 110,112,125,127,138 1 -197204 cd09105 PLDc_vPLD1_2_like_2 2 catalytic site 0 0 1 1 110 1 -197205 cd09106 PLDc_vPLD3_4_5_like_1 1 putative active site 0 0 1 1 116,118,131,133,144 1 -197205 cd09106 PLDc_vPLD3_4_5_like_1 2 putative catalytic site 0 0 1 1 116 1 -197206 cd09107 PLDc_vPLD3_4_5_like_2 1 putative active site 0 0 1 1 124,126,138,140,148 1 -197206 cd09107 PLDc_vPLD3_4_5_like_2 2 putative catalytic site 0 0 1 1 124 1 -197207 cd09108 PLDc_PMFPLD_like_1 1 putative active site 0 1 1 1 156,158,171,173,188 1 -197207 cd09108 PLDc_PMFPLD_like_1 2 catalytic site 0 1 1 1 156 1 -197207 cd09108 PLDc_PMFPLD_like_1 3 domain interface 0 1 1 1 3,4,5,6,11,12,13,14,16,17,19,29,30,32,36,37,38,39,40,148,154,155,156,157,158,159,167,169,170,171,173,178,179,183,184,185,186,187,188,189,190,191,193,197,198,200,201,204,207,208 2 -197208 cd09109 PLDc_PMFPLD_like_2 1 putative active site 0 1 1 1 160,162,175,177,185 1 -197208 cd09109 PLDc_PMFPLD_like_2 2 catalytic site 0 0 1 1 160 1 -197208 cd09109 PLDc_PMFPLD_like_2 3 domain interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,158,159,160,161,162,171,173,174,175,177,182,183,184,185,186,188,195,198,199,202,203,206,207,210 2 -197209 cd09110 PLDc_CLS_1 1 putative active site 0 0 1 1 97,99,112,114,131 1 -197209 cd09110 PLDc_CLS_1 2 catalytic site 0 0 1 1 97 1 -197210 cd09111 PLDc_ymdC_like_1 1 putative active site 0 0 1 1 106,108,121,123,139 1 -197210 cd09111 PLDc_ymdC_like_1 2 catalytic site 0 0 1 1 106 1 -197211 cd09112 PLDc_CLS_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197211 cd09112 PLDc_CLS_2 2 catalytic site 0 0 1 1 93 1 -197212 cd09113 PLDc_ymdC_like_2 1 putative active site 0 0 1 1 117,119,132,134,145 1 -197212 cd09113 PLDc_ymdC_like_2 2 catalytic site 0 0 1 1 117 1 -197213 cd09114 PLDc_PPK1_C1 1 active site 0 1 1 1 43,44,74,104,106,126,128,137,139 1 -197213 cd09114 PLDc_PPK1_C1 2 catalytic site 0 0 1 1 104 1 -197213 cd09114 PLDc_PPK1_C1 3 domain interface 0 1 1 1 0,3,4,10,11,12,13,15,16,17,18,19,21,24,99,100,101,102,103,104,105,107,124,125,126,134,135,136,137,138,139,140,142,146,148,149,152,153,155,156,158,159,160 2 -197214 cd09115 PLDc_PPK1_C2 1 active site 0 1 1 1 63,89,91,93,109,111,120,122 1 -197214 cd09115 PLDc_PPK1_C2 2 catalytic site 0 0 1 1 91 1 -197214 cd09115 PLDc_PPK1_C2 3 domain interface 0 1 1 1 0,1,2,88,89,90,91,92,93,94,107,108,109,119,120,121,122,123,125,128,131,132,135,136,139 2 -197215 cd09116 PLDc_Nuc_like 1 putative active site 0 1 1 1 88,90,103,105,116 1 -197215 cd09116 PLDc_Nuc_like 2 catalytic site 0 0 1 1 88 1 -197216 cd09117 PLDc_Bfil_DEXD_like 1 putative active site 0 1 1 1 80,82,98,100,111 1 -197216 cd09117 PLDc_Bfil_DEXD_like 2 catalytic site 0 0 1 1 80 1 -197216 cd09117 PLDc_Bfil_DEXD_like 3 homodimer interface 0 1 1 1 78,79,80,81,82,83,96,98,100,108,109,110,111,112,114,116 2 -197217 cd09118 PLDc_yjhR_C_like 1 putative active site 0 0 1 1 88,90,103,105,119 1 -197217 cd09118 PLDc_yjhR_C_like 2 catalytic site 0 0 1 1 88 1 -197219 cd09120 PLDc_DNaseII_1 1 putative active site 0 0 1 1 92,94,110,112,133 1 -197219 cd09120 PLDc_DNaseII_1 2 catalytic site 0 0 1 1 92 1 -197220 cd09121 PLDc_DNaseII_2 1 putative active site 0 0 1 1 84,86,102,104,114 1 -197220 cd09121 PLDc_DNaseII_2 2 catalytic site 0 0 1 1 84 1 -197221 cd09122 PLDc_Tdp1_1 1 putative active site 0 1 1 1 19,77,79,81,97,99,110 1 -197221 cd09122 PLDc_Tdp1_1 2 catalytic site 0 1 1 1 79 1 -197221 cd09122 PLDc_Tdp1_1 3 domain interface 0 1 1 1 13,15,39,77,78,79,80,86,95,97,107,108,109,110,111,113,134,136,137,139,140,141,142,143,144 2 -197222 cd09123 PLDc_Tdp1_2 1 putative active site 0 1 1 1 128,130,151,153,175 1 -197222 cd09123 PLDc_Tdp1_2 2 catalytic site 0 0 1 1 128 1 -197222 cd09123 PLDc_Tdp1_2 3 domain interface 0 1 1 1 127,128,129,130,149,150,151,172,173,174,175,176,178,180 2 -197223 cd09124 PLDc_like_TrmB_middle 1 sugar binding site 0 1 1 1 119,120,123 5 -197223 cd09124 PLDc_like_TrmB_middle 2 C-terminal domain interface 0 1 1 0 22,23,24,26,47,48,49,50,52,54,68,70,72,84,86,115,116,119,122,123 2 -197225 cd09127 PLDc_unchar1_1 1 putative active site 0 0 1 1 91,93,106,108,119 1 -197225 cd09127 PLDc_unchar1_1 2 putative catalytic site 0 0 1 1 91 1 -197226 cd09128 PLDc_unchar1_2 1 putative active site 0 0 1 1 91,93,106,108,119 1 -197226 cd09128 PLDc_unchar1_2 2 putative catalytic site 0 0 1 1 91 1 -197227 cd09129 PLDc_unchar2_1 1 putative active site 0 0 1 1 145,147,159,161,169 1 -197227 cd09129 PLDc_unchar2_1 2 putative catalytic site 0 0 1 1 145 1 -197228 cd09130 PLDc_unchar2_2 1 putative active site 0 0 1 1 96,98,114,116,128 1 -197228 cd09130 PLDc_unchar2_2 2 putative catalytic site 0 0 1 1 96 1 -197229 cd09131 PLDc_unchar3 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197229 cd09131 PLDc_unchar3 2 putative catalytic site 0 0 1 1 93 1 -197230 cd09132 PLDc_unchar4 1 putative active site 0 0 1 1 88,90,103,105,116 1 -197230 cd09132 PLDc_unchar4 2 putative catalytic site 0 0 1 1 88 1 -197231 cd09133 PLDc_unchar5 1 putative active site 0 0 1 1 89,91,104,106,119 1 -197231 cd09133 PLDc_unchar5 2 putative catalytic site 0 0 1 1 89 1 -197232 cd09134 PLDc_PSS_G_neg_1 1 putative active site 0 0 1 1 120,122,134,136,151 1 -197232 cd09134 PLDc_PSS_G_neg_1 2 catalytic site 0 0 1 1 120 1 -197232 cd09134 PLDc_PSS_G_neg_1 3 domain interface 0 1 0 1 10,12,108,109,110,111,112,116,117,118,119,120,121,122,132,134,148,149,150,151,152,154,156,160,164,165,168,172 2 -197233 cd09135 PLDc_PGS1_euk_1 1 putative active site 0 0 1 1 120,122,134,136,147 1 -197233 cd09135 PLDc_PGS1_euk_1 2 catalytic site 0 0 1 1 120 1 -197233 cd09135 PLDc_PGS1_euk_1 3 putative domain interface 0 0 0 1 1,3,108,109,110,111,112,116,117,118,119,120,121,122,132,134,144,145,146,147,148,150,152,157,161,162,165,169 2 -197234 cd09136 PLDc_PSS_G_neg_2 1 putative active site 0 0 1 1 120,122,135,137,148 1 -197234 cd09136 PLDc_PSS_G_neg_2 2 catalytic site 0 0 1 1 120 1 -197234 cd09136 PLDc_PSS_G_neg_2 3 domain interface 0 1 0 1 0,1,2,3,4,5,6,8,117,118,119,120,121,132,133,134,135,141,145,146,147,148,149,150,151,152,154,160,163,167,170,171 2 -197235 cd09137 PLDc_PGS1_euk_2 1 putative active site 0 0 1 1 116,118,137,139,150 1 -197235 cd09137 PLDc_PGS1_euk_2 2 catalytic site 0 0 1 1 116 1 -197235 cd09137 PLDc_PGS1_euk_2 3 putative domain interface 0 0 0 1 0,1,2,3,4,5,6,8,113,114,115,116,117,134,135,136,137,143,147,148,149,150,151,152,153,154,156,162,165,169,172,173 2 -197236 cd09138 PLDc_vPLD1_2_yPLD_like_1 1 putative active site 0 0 1 1 112,114,127,129,140 1 -197236 cd09138 PLDc_vPLD1_2_yPLD_like_1 2 catalytic site 0 0 1 1 112 1 -197237 cd09139 PLDc_pPLD_like_1 1 putative active site 0 0 1 1 130,132,154,156,167 1 -197237 cd09139 PLDc_pPLD_like_1 2 catalytic site 0 0 1 1 130 1 -197238 cd09140 PLDc_vPLD1_2_like_bac_1 1 putative active site 0 0 1 1 112,114,127,129,140 1 -197238 cd09140 PLDc_vPLD1_2_like_bac_1 2 catalytic site 0 0 1 1 112 1 -197239 cd09141 PLDc_vPLD1_2_yPLD_like_2 1 putative active site 0 0 1 1 143,145,158,160,173 1 -197239 cd09141 PLDc_vPLD1_2_yPLD_like_2 2 catalytic site 0 0 1 1 143 1 -197240 cd09142 PLDc_pPLD_like_2 1 putative active site 0 0 1 1 165,167,180,182,195 1 -197240 cd09142 PLDc_pPLD_like_2 2 catalytic site 0 0 1 1 165 1 -197241 cd09143 PLDc_vPLD1_2_like_bac_2 1 putative active site 0 0 1 1 106,108,121,123,134 1 -197241 cd09143 PLDc_vPLD1_2_like_bac_2 2 catalytic site 0 0 1 1 106 1 -197242 cd09144 PLDc_vPLD3_1 1 putative active site 0 0 1 1 117,119,132,134,145 1 -197242 cd09144 PLDc_vPLD3_1 2 catalytic site 0 0 1 1 117 1 -197243 cd09145 PLDc_vPLD4_1 1 putative active site 0 0 1 1 116,118,131,133,144 1 -197243 cd09145 PLDc_vPLD4_1 2 catalytic site 0 0 1 1 116 1 -197245 cd09147 PLDc_vPLD3_2 1 putative active site 0 0 1 1 125,127,139,141,149 1 -197245 cd09147 PLDc_vPLD3_2 2 catalytic site 0 0 1 1 125 1 -197246 cd09148 PLDc_vPLD4_2 1 putative active site 0 0 1 1 124,126,138,140,148 1 -197246 cd09148 PLDc_vPLD4_2 2 catalytic site 0 0 1 1 124 1 -197248 cd09150 PLDc_Ymt_1 1 putative active site 0 0 1 1 162,164,177,179,193 1 -197248 cd09150 PLDc_Ymt_1 2 catalytic site 0 0 1 1 162 1 -197249 cd09151 PLDc_Ymt_2 1 putative active site 0 0 1 1 208,210,223,225,233 1 -197249 cd09151 PLDc_Ymt_2 2 catalytic site 0 0 1 1 208 1 -197250 cd09152 PLDc_EcCLS_like_1 1 putative active site 0 0 1 1 106,108,121,123,140 1 -197250 cd09152 PLDc_EcCLS_like_1 2 catalytic site 0 0 1 1 106 1 -197251 cd09154 PLDc_SMU_988_like_1 1 putative active site 0 0 1 1 98,100,113,115,132 1 -197251 cd09154 PLDc_SMU_988_like_1 2 catalytic site 0 0 1 1 98 1 -197252 cd09155 PLDc_PaCLS_like_1 1 putative active site 0 0 1 1 97,99,112,114,131 1 -197252 cd09155 PLDc_PaCLS_like_1 2 catalytic site 0 0 1 1 97 1 -197253 cd09156 PLDc_CLS_unchar1_1 1 putative active site 0 0 1 1 97,99,112,114,131 1 -197253 cd09156 PLDc_CLS_unchar1_1 2 catalytic site 0 0 1 1 97 1 -197254 cd09157 PLDc_CLS_unchar2_1 1 putative active site 0 0 1 1 97,99,112,114,131 1 -197254 cd09157 PLDc_CLS_unchar2_1 2 catalytic site 0 0 1 1 97 1 -197255 cd09158 PLDc_EcCLS_like_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197255 cd09158 PLDc_EcCLS_like_2 2 catalytic site 0 0 1 1 93 1 -197256 cd09159 PLDc_ybhO_like_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197256 cd09159 PLDc_ybhO_like_2 2 catalytic site 0 0 1 1 93 1 -197257 cd09160 PLDc_SMU_988_like_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197257 cd09160 PLDc_SMU_988_like_2 2 catalytic site 0 0 1 1 93 1 -197258 cd09161 PLDc_PaCLS_like_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197258 cd09161 PLDc_PaCLS_like_2 2 catalytic site 0 0 1 1 93 1 -197259 cd09162 PLDc_CLS_unchar1_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197259 cd09162 PLDc_CLS_unchar1_2 2 catalytic site 0 0 1 1 93 1 -197260 cd09163 PLDc_CLS_unchar2_2 1 putative active site 0 0 1 1 93,95,108,110,121 1 -197260 cd09163 PLDc_CLS_unchar2_2 2 catalytic site 0 0 1 1 93 1 -197261 cd09164 PLDc_EcPPK1_C1_like 1 active site 0 1 1 1 43,44,74,104,106,126,128,137,139 1 -197261 cd09164 PLDc_EcPPK1_C1_like 2 catalytic site 0 0 1 1 104 1 -197261 cd09164 PLDc_EcPPK1_C1_like 3 domain interface 0 1 1 1 0,3,4,10,11,12,13,15,16,17,18,19,21,24,100,101,102,103,104,105,107,124,125,126,134,135,136,137,138,139,140,142,146,148,149,152,153,155,156,158,159,160 2 -197262 cd09165 PLDc_PaPPK1_C1_like 1 putative active site 0 0 1 1 43,44,74,104,106,126,128,137,139 1 -197262 cd09165 PLDc_PaPPK1_C1_like 2 catalytic site 0 0 1 1 104 1 -197262 cd09165 PLDc_PaPPK1_C1_like 3 putative domain interface 0 0 1 1 0,3,4,10,11,12,13,15,16,17,18,19,21,24,100,101,102,103,104,105,107,124,125,126,134,135,136,137,138,139,140,142,146,148,149,152,153,155,156,158,159,160 2 -197263 cd09166 PLDc_PPK1_C1_unchar 1 putative active site 0 0 1 1 43,44,74,104,106,126,128,137,139 1 -197263 cd09166 PLDc_PPK1_C1_unchar 2 catalytic site 0 0 1 1 104 1 -197263 cd09166 PLDc_PPK1_C1_unchar 3 putative domain interface 0 0 1 1 0,3,4,10,11,12,13,15,16,17,18,19,21,24,100,101,102,103,104,105,107,124,125,126,134,135,136,137,138,139,140,142,146,148,149,152,153,155,156,158,159,160 2 -197264 cd09167 PLDc_EcPPK1_C2_like 1 active site 0 1 1 1 64,90,92,94,110,112,121,123 1 -197264 cd09167 PLDc_EcPPK1_C2_like 2 catalytic site 0 0 1 1 92 1 -197264 cd09167 PLDc_EcPPK1_C2_like 3 domain interface 0 1 1 1 0,1,2,3,8,89,90,91,92,93,94,95,108,109,110,120,121,122,123,124,126,129,132,133,136,137,140 2 -197265 cd09168 PLDc_PaPPK1_C2_like 1 putative active site 0 0 1 1 64,90,92,94,110,112,121,123 1 -197265 cd09168 PLDc_PaPPK1_C2_like 2 catalytic site 0 0 1 1 92 1 -197265 cd09168 PLDc_PaPPK1_C2_like 3 putative domain interface 0 0 1 1 1,2,3,89,90,91,92,93,94,95,108,109,110,120,121,122,123,124,126,129,132,133,136,137,140 2 -197266 cd09169 PLDc_PPK1_C2_unchar 1 putative active site 0 0 1 1 63,89,91,93,109,111,120,122 1 -197266 cd09169 PLDc_PPK1_C2_unchar 2 catalytic site 0 0 1 1 91 1 -197266 cd09169 PLDc_PPK1_C2_unchar 3 putative domain interface 0 0 1 1 0,1,2,88,89,90,91,92,93,94,107,108,109,119,120,121,122,123,125,128,131,132,135,136,139 2 -197267 cd09170 PLDc_Nuc 1 putative active site 0 1 1 1 88,90,103,105,116 1 -197267 cd09170 PLDc_Nuc 2 catalytic site 0 0 1 1 88 1 -197268 cd09171 PLDc_vPLD6_like 1 putative active site 0 0 1 1 85,87,100,102,113 1 -197268 cd09171 PLDc_vPLD6_like 2 catalytic site 0 0 1 1 85 1 -197269 cd09172 PLDc_Nuc_like_unchar1_1 1 putative active site 0 0 1 1 90,92,109,111,122 1 -197269 cd09172 PLDc_Nuc_like_unchar1_1 2 catalytic site 0 0 1 1 90 1 -197270 cd09173 PLDc_Nuc_like_unchar1_2 1 putative active site 0 0 1 1 101,103,120,122,133 1 -197270 cd09173 PLDc_Nuc_like_unchar1_2 2 catalytic site 0 0 1 1 101 1 -197271 cd09174 PLDc_Nuc_like_unchar2 1 putative active site 0 0 1 1 87,89,102,104,114 1 -197271 cd09174 PLDc_Nuc_like_unchar2 2 catalytic site 0 0 1 1 87 1 -197272 cd09175 PLDc_Bfil 1 putative active site 0 1 1 1 102,104,120,122,133 1 -197272 cd09175 PLDc_Bfil 2 catalytic site 0 0 1 1 102 1 -197272 cd09175 PLDc_Bfil 3 homodimer interface 0 1 1 1 3,5,6,7,8,10,97,98,99,100,101,102,103,104,105,118,120,122,130,131,132,133,134,136,138 2 -197273 cd09176 PLDc_unchar6 1 putative active site 0 0 1 1 76,78,94,96,108 1 -197273 cd09176 PLDc_unchar6 2 catalytic site 0 0 1 1 76 1 -197273 cd09176 PLDc_unchar6 3 putative homodimer interface 0 0 1 1 74,75,76,77,78,79,92,94,96,105,106,107,108,109,111,113 2 -197274 cd09177 PLDc_RE_NgoFVII 1 putative active site 0 0 1 1 85,87,104,106,121 1 -197274 cd09177 PLDc_RE_NgoFVII 2 catalytic site 0 0 1 1 85 1 -197274 cd09177 PLDc_RE_NgoFVII 3 putative homodimer interface 0 0 1 1 83,84,85,86,87,88,102,104,106,118,119,120,121,122,124,126 2 -197275 cd09178 PLDc_N_Snf2_like 1 putative active site 0 0 1 1 73,75,95,97,108 1 -197275 cd09178 PLDc_N_Snf2_like 2 catalytic site 0 0 1 1 73 1 -197275 cd09178 PLDc_N_Snf2_like 3 putative homodimer interface 0 0 1 1 71,72,73,74,75,76,93,95,97,105,106,107,108,109,111,113 2 -197276 cd09179 PLDc_N_DEXD_a 1 putative active site 0 0 1 1 128,130,147,149,160 1 -197276 cd09179 PLDc_N_DEXD_a 2 catalytic site 0 0 1 1 128 1 -197277 cd09180 PLDc_N_DEXD_b 1 putative active site 0 0 1 1 84,86,103,105,116 1 -197277 cd09180 PLDc_N_DEXD_b 2 catalytic site 0 0 1 1 84 1 -197277 cd09180 PLDc_N_DEXD_b 3 putative homodimer interface 0 0 1 1 82,83,84,85,86,87,101,103,105,113,114,115,116,117,119,121 2 -197285 cd09189 PLDc_DNaseII_alpha_1 1 putative active site 0 0 1 1 98,100,116,118,140 1 -197285 cd09189 PLDc_DNaseII_alpha_1 2 catalytic site 0 0 1 1 98 1 -197286 cd09190 PLDc_DNaseII_beta_1 1 putative active site 0 0 1 1 99,101,117,119,140 1 -197286 cd09190 PLDc_DNaseII_beta_1 2 catalytic site 0 0 1 1 99 1 -197287 cd09191 PLDc_DNaseII_alpha_2 1 putative active site 0 0 1 1 84,86,100,102,112 1 -197287 cd09191 PLDc_DNaseII_alpha_2 2 catalytic site 0 0 1 1 84 1 -197288 cd09192 PLDc_DNaseII_beta_2 1 putative active site 0 0 1 1 84,86,102,104,114 1 -197288 cd09192 PLDc_DNaseII_beta_2 2 catalytic site 0 0 1 1 84 1 -197289 cd09193 PLDc_mTdp1_1 1 putative active site 0 1 1 1 42,98,100,102,119,121,132 1 -197289 cd09193 PLDc_mTdp1_1 2 catalytic site 0 1 1 1 100 1 -197289 cd09193 PLDc_mTdp1_1 3 domain interface 0 1 1 1 1,2,4,6,7,9,10,16,17,20,36,37,38,40,63,88,90,91,92,97,98,99,100,101,103,105,107,111,113,117,119,129,130,131,132,133,135,140,141,142,143,151,152,153,154,155,157,158,160,161,162,163,164,165,166,167 2 -197290 cd09194 PLDc_yTdp1_1 1 putative active site 0 0 1 1 40,99,101,103,120,122,133 1 -197290 cd09194 PLDc_yTdp1_1 2 catalytic site 0 0 1 1 101 1 -197290 cd09194 PLDc_yTdp1_1 3 domain interface 0 1 1 1 0,2,3,4,5,7,9,10,11,20,34,36,63,99,100,101,102,103,108,118,119,120,126,127,130,131,132,133,134,136,139,140,141,142,143,144,145,146,153,154,155,156,158,159,160,161,162,163 2 -197291 cd09195 PLDc_mTdp1_2 1 putative active site 0 1 1 1 138,140,159,161,183 1 -197291 cd09195 PLDc_mTdp1_2 2 catalytic site 0 0 1 1 138 1 -197291 cd09195 PLDc_mTdp1_2 3 domain interface 0 1 1 1 0,1,2,4,5,6,130,131,132,135,136,137,138,139,140,158,159,180,181,182,183,184,186,188 2 -197292 cd09196 PLDc_yTdp1_2 1 putative active site 0 0 1 1 149,151,172,174,192 1 -197292 cd09196 PLDc_yTdp1_2 2 catalytic site 0 0 1 1 149 1 -197292 cd09196 PLDc_yTdp1_2 3 domain interface 0 1 1 1 100,104,107,143,146,147,148,149,150,170,172,189,190,191,192,193,195 2 -197293 cd09197 PLDc_pPLDalpha_1 1 putative active site 0 0 1 1 130,132,156,158,169 1 -197293 cd09197 PLDc_pPLDalpha_1 2 catalytic site 0 0 1 1 130 1 -197294 cd09198 PLDc_pPLDbeta_1 1 putative active site 0 0 1 1 133,135,156,158,169 1 -197294 cd09198 PLDc_pPLDbeta_1 2 catalytic site 0 0 1 1 133 1 -197295 cd09199 PLDc_pPLDalpha_2 1 putative active site 0 0 1 1 168,170,183,185,198 1 -197295 cd09199 PLDc_pPLDalpha_2 2 catalytic site 0 0 1 1 168 1 -197296 cd09200 PLDc_pPLDbeta_2 1 putative active site 0 0 1 1 165,167,180,182,195 1 -197296 cd09200 PLDc_pPLDbeta_2 2 catalytic site 0 0 1 1 165 1 -197297 cd09203 PLDc_N_DEXD_b1 1 putative active site 0 0 1 1 84,86,103,105,116 1 -197297 cd09203 PLDc_N_DEXD_b1 2 catalytic site 0 0 1 1 84 1 -197297 cd09203 PLDc_N_DEXD_b1 3 putative homodimer interface 0 0 1 1 82,83,84,85,86,87,101,103,105,113,114,115,116,117,119,121 2 -197298 cd09204 PLDc_N_DEXD_b2 1 putative active site 0 0 1 1 82,84,100,102,113 1 -197298 cd09204 PLDc_N_DEXD_b2 2 catalytic site 0 0 1 1 82 1 -197298 cd09204 PLDc_N_DEXD_b2 3 putative homodimer interface 0 0 1 1 80,81,82,83,84,85,98,100,102,110,111,112,113,114,116,118 2 -197299 cd09205 PLDc_N_DEXD_b3 1 putative active site 0 0 1 1 85,87,104,106,117 1 -197299 cd09205 PLDc_N_DEXD_b3 2 catalytic site 0 0 1 1 85 1 -197299 cd09205 PLDc_N_DEXD_b3 3 putative homodimer interface 0 0 1 1 83,84,85,86,87,88,102,104,106,114,115,116,117,118,120,122 2 -187741 cd09208 Lumazine_synthase-II 1 active site 0 1 1 1 7,9,10,42,43,44,45,67,68,69,70,71,72,73,74,99,100,106 1 -187741 cd09208 Lumazine_synthase-II 2 homopentamer interface 0 1 1 1 9,37,38,39,40,41,44,45,47,48,49,51,52,53,55,56,58,70,72,73,74,75,76,77,78,80,81,82,84,85,87,88,89,90,91,92,95,96,97,98,100,103,104,105,106,117,118,121,122,125,128,132,135,136 2 -187741 cd09208 Lumazine_synthase-II 3 dimer interface 0 1 1 1 70,71,72,73,106,107,108,109,110,113,114,117,121 2 -187742 cd09209 Lumazine_synthase-I 1 active site 0 1 1 1 7,8,40,41,42,43,64,65,66,67,68,69,71,73,74,97,98,99,100,101,112,120,123 1 -187742 cd09209 Lumazine_synthase-I 2 homopentamer interface 0 1 1 1 1,7,36,37,38,39,42,43,45,46,47,49,50,51,53,57,68,70,71,73,75,76,78,79,80,82,83,84,86,87,88,89,90,93,94,98,100,102,104,108,112,120,123,127,130,131 2 -187743 cd09210 Riboflavin_synthase_archaeal 1 active site 0 1 1 1 7,35,36,37,38,39,61,62,63,67,68,71,91,92,94,96,99,113,117,140,141 1 -187743 cd09210 Riboflavin_synthase_archaeal 2 homopentamer interface 0 1 1 1 4,5,6,8,9,10,11,31,32,33,34,35,38,39,41,42,45,46,49,50,70,73,74,76,77,78,80,81,82,83,84,87,88,89,91,92,96,120,131,132,134,135,136,137 2 -187744 cd09211 Lumazine_synthase_archaeal 1 putative active site 0 0 1 1 5,7,8,37,38,39,40,41,63,64,65,66,71,72,75,95,96,109,111,118,122 1 -187744 cd09211 Lumazine_synthase_archaeal 2 putative homopentamer interface 0 0 1 1 7,33,34,35,36,37,40,41,43,44,45,47,48,49,51,66,71,72,73,74,76,77,78,80,81,82,84,85,86,87,88,91,92,93,96,102,107,111,118,121,125,128 0 -198416 cd09212 PUB 1 peptide binding site 0 1 1 1 18,21,22,25,34,35,37,38,39,42,44,48 2 -188873 cd09213 Luminal_IRE1_like 1 homodimer interface 0 1 1 0 82,83,84,85,86,95,97,98,99,100,102,103,104,116,118,119,120,152,153,161,163,178,180,181,182 2 -185753 cd09214 GH64-like 1 substrate binding pocket 0 1 1 1 126,127,128,130,135,136,137,139,141,142,227,228,291,294,295,304 5 -185753 cd09214 GH64-like 2 catalytic residues 0 0 1 1 126,142 1 -185754 cd09215 Thaumatin-like 1 electronegative/electropositive cleft residues 0 0 1 1 46,87,100,105 0 -185755 cd09216 GH64-LPHase-like 1 substrate binding pocket 0 1 1 1 114,115,116,118,123,124,125,127,129,130,259,260,325,328,329,338 5 -185755 cd09216 GH64-LPHase-like 2 catalytic residues 0 0 1 1 114,130 1 -185756 cd09217 TLP-P 1 electronegative/electropositive cleft residues 0 0 1 1 41,81,93,98 0 -185757 cd09218 TLP-PA 1 electronegative/electropositive cleft residues 0 0 1 1 48,89,102,107,200 0 -185757 cd09218 TLP-PA 2 predicted IgE-binding epitope region 0 0 1 1 168,169,171,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 0 -185758 cd09219 TLP-F 1 putative electronegative/electropositive cleft residues 0 0 1 1 51,92,104,109 0 -185759 cd09220 GH64-GluB-like 1 substrate binding pocket 0 0 1 1 117,118,119,121,126,127,128,130,132,133,266,267,336,339,340,354 5 -185759 cd09220 GH64-GluB-like 2 catalytic residues 0 0 1 1 117,133 1 -187745 cd09223 Photo_RC 1 chlorophyll binding site 0 1 1 0 33,37,64,67,68,71,93,94,97,98,100,113,114,116,117,118,120,121,122,125,188,191,195 0 -187745 cd09223 Photo_RC 2 pheophytin binding site 0 1 1 0 12,15,16,19,37,40,44,57,61,64,121,124,125,128,129,163,167,184,185,188 0 -187745 cd09223 Photo_RC 3 quinone binding site 0 1 1 0 125,130,133,159,163,170,171,176 0 -187745 cd09223 Photo_RC 4 Fe binding site 0 1 1 0 130,177 4 -198423 cd09224 CytoC_RC 1 Heme binding sites 0 1 1 1 52,53,54,55,56,57,58,66,70,73,74,77,83,85,86,87,92,93,98,99,100,102,103,104,106,107,109,110,120,121,124,125,126,127,128,131,132,136,137,138,141,188,189,190,191,211,212,215,216,218,219,222,224,225,226,228,229,230,235,236,244,245,247,248,249,251,252,253,254,255,270,282,285,286,289,290,294,295,296 5 -198423 cd09224 CytoC_RC 2 subunit interface 0 1 1 0 0,1,2,4,6,7,8,9,10,12,13,14,15,16,17,19,21,173,174,175,189,190,191,192,193,194,195,196,197,202,203,204,205,206,208,209,212,216,219,224,225,226,227,230,231,232,233,234,235,236,238,241,242,243,244,246,249,250,253 2 -185717 cd09232 Snurportin-1_C 1 m3G-cap binding site 0 1 1 0 7,8,9,10,30,31,32,47,160,163,181 0 -185717 cd09232 Snurportin-1_C 2 exportin 1 interface 0 1 1 0 3,29,46,47,48,50,78,129,158,183 0 -187750 cd09233 ACE1-Sec16-like 1 homodimer interface 0 1 1 1 63,64,66,67,69,70,71,72,73,75,77,87,89,91,92,94,95,99,105,112,122,127,130,164,165 2 -187750 cd09233 ACE1-Sec16-like 2 heterodimer interface 0 1 1 1 234,256,257,259,260,263,264,267,296,297,300,301,304,308 2 -185747 cd09234 V_HD-PTP_like 1 putative YPXnL-motif binding site 0 0 1 1 83,138,142,145,146,307,310,311,314,317 0 -185748 cd09235 V_Alix 1 YPXnL-motif binding site 0 1 1 1 80,138,142,145,146,309,312,313,316,319 0 -185748 cd09235 V_Alix 2 putative dimer interface 0 0 1 1 278,279,280,281,282,283,284 2 -185749 cd09236 V_AnPalA_UmRIM20_like 1 putative YPXnL-motif binding site 0 0 1 1 82,141,145,148,149,323,326,327,330,333 0 -185750 cd09237 V_ScBro1_like 1 putative YPXnL-motif binding site 0 0 1 1 77,135,139,142,143,326,329,330,333,336 0 -185751 cd09238 V_Alix_like_1 1 putative YPXnL-motif binding site 0 0 1 1 83,141,145,148,149,309,312,313,316,319 0 -185762 cd09239 BRO1_HD-PTP_like 1 putative ESCRT-III binding site 0 0 1 1 123,126,139,142,143,188,191,192,201,204,205,339,341,343,345 0 -185763 cd09240 BRO1_Alix 1 putative ESCRT-III binding site 0 0 1 1 128,131,144,147,148,196,199,200,209,212,213,335,337,339,341 0 -185764 cd09241 BRO1_ScRim20-like 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,181,184,185,194,197,198,322,324,326,328 0 -185765 cd09242 BRO1_ScBro1_like 1 putative Snf7 binding site 0 0 1 1 116,119,129,132,135,136,180,183,184,187,196,199,200,336,338,340,342,347 0 -185766 cd09243 BRO1_Brox_like 1 putative ESCRT-III binding site 0 0 1 1 118,121,137,140,141,191,194,195,204,207,208,343,345,347,349 0 -185767 cd09244 BRO1_Rhophilin 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,195,198,199,333,335,337,339 0 -185768 cd09245 BRO1_UmRIM23-like 1 putative ESCRT-III binding site 0 0 1 1 126,129,159,162,163,216,219,220,247,250,251,401,403,405,407 0 -185769 cd09246 BRO1_Alix_like_1 1 putative ESCRT-III binding site 0 0 1 1 120,123,136,139,140,188,191,192,201,204,205,333,335,337,339 0 -185770 cd09247 BRO1_Alix_like_2 1 putative ESCRT-III binding site 0 0 1 1 122,125,136,139,140,193,196,197,206,209,210,337,339,341,343 0 -185771 cd09248 BRO1_Rhophilin_1 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,196,199,200,367,369,371,373 0 -185772 cd09249 BRO1_Rhophilin_2 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,194,197,198,368,370,372,374 0 -271158 cd09250 AP-1_Mu1_Cterm 1 signal peptide binding site 0 0 1 1 18,19,20,47,155,231,233,257,258,259,260,262 2 -271158 cd09250 AP-1_Mu1_Cterm 2 heterotetramer interface 0 1 1 0 12,32,34,36,37,47,57,81,84,108,115,117,131,143,145,151,156,175,180,183,184,193,199,200,202,229,230,231,234,243,244,245,246,255,256,257,258,259,264,266,267 2 -271159 cd09251 AP-2_Mu2_Cterm 1 signal peptide binding site 0 1 1 1 6,7,8,35,148,222,224,233,234,248,249,250,251,253 2 -271159 cd09251 AP-2_Mu2_Cterm 2 AP-2 beta subunit interface 0 1 1 0 24,25,75,76,77,78,79,80,84,85,106,108,213,215,258,260 2 -271160 cd09252 AP-3_Mu3_Cterm 1 putative signal peptide binding site 0 0 1 1 15,16,17,44,139,211,213,222,236,237,238,239,241 2 -271161 cd09253 AP-4_Mu4_Cterm 1 signal peptide binding site 0 1 1 1 79,80,81,82,84,86,89,90,105,108 2 -271161 cd09253 AP-4_Mu4_Cterm 2 putative signal peptide binding site 0 0 1 1 13,14,15,42,150,228,230,239,255,256,257,258,260 2 -271166 cd09258 AP-1_Mu1A_Cterm 1 heterotetramer interface 0 1 1 0 13,33,35,37,38,48,58,81,84,108,115,117,119,131,143,145,151,156,175,180,183,184,193,199,200,202,226,227,228,231,240,241,242,243,252,253,254,255,256,261,263,264 2 -271166 cd09258 AP-1_Mu1A_Cterm 2 signal peptide binding site 0 0 1 1 19,20,21,48,155,228,230,254,255,256,257,259 2 -271167 cd09259 AP-1_Mu1B_Cterm 1 signal binding site 0 0 1 1 17,18,19,20,47,238,241,253,254,255,256 0 -271167 cd09259 AP-1_Mu1B_Cterm 2 signal peptide binding site 0 0 1 1 18,19,20,47,154,227,229,238,253,254,255,256,258 2 -211371 cd09260 AP-3_Mu3A_Cterm 1 signal peptide binding site 0 1 1 1 15,16,17,224,227,237,238,239,240,241 2 -211372 cd09261 AP-3_Mu3B_Cterm 1 putative signal peptide binding site 0 0 1 1 15,16,17,44,141,213,215,224,238,239,240,241,243 2 -271170 cd09264 AP_Syp1_MHD 1 ligand binding site 0 1 1 0 6,8,24,25,26,88 5 -185703 cd09269 deoxyribose_mutarotase 1 active site 0 0 1 1 64,140,142,200,247,258 1 -185703 cd09269 deoxyribose_mutarotase 2 catalytic residues 0 0 1 1 140,265 1 -187751 cd09270 RNase_H2-B 1 heterotrimeric interface 0 1 1 1 2,3,4,17,40,50,51,52,53,54 0 -187752 cd09271 RNase_H2-C 1 heterotrimeric interface 0 1 1 1 0,1,2,3,4,23,32,34,35,36,37,38,39,53,54,55,56 0 -260004 cd09272 RNase_HI_RT_Ty1 1 active site DED[ED] 0 1 1 4,47,81,130 1 -260004 cd09272 RNase_HI_RT_Ty1 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,42,43,44,47,81,107,134 3 -260005 cd09273 RNase_HI_RT_Bel 1 active site DEDD 1 1 1 4,36,57,123 1 -260005 cd09273 RNase_HI_RT_Bel 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,31,32,33,36,57,104,127 3 -260006 cd09274 RNase_HI_RT_Ty3 1 active site DEDD 0 1 1 4,46,71,114 1 -260006 cd09274 RNase_HI_RT_Ty3 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,41,42,43,46,71,104,118 3 -260007 cd09275 RNase_HI_RT_DIRS1 1 active site DEDD 0 1 1 4,36,61,112 1 -260007 cd09275 RNase_HI_RT_DIRS1 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,31,32,33,36,61,102,116 3 -260008 cd09276 Rnase_HI_RT_non_LTR 1 active site DEDD 0 1 1 4,41,67,122 1 -260008 cd09276 Rnase_HI_RT_non_LTR 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,36,37,38,41,67,108,126 3 -260009 cd09277 RNase_HI_bacteria_like 1 active site DEDD 0 1 1 5,48,72,125 1 -260009 cd09277 RNase_HI_bacteria_like 2 RNA/DNA hybrid binding site 0 0 1 1 5,6,7,8,43,44,45,48,72,111,129 3 -260010 cd09278 RNase_HI_prokaryote_like 1 active site DEDD 1 1 1 6,44,66,130 1 -260010 cd09278 RNase_HI_prokaryote_like 2 RNA/DNA hybrid binding site 0 0 1 1 6,7,8,9,39,40,41,44,66,116,134 3 -260011 cd09279 RNase_HI_like 1 active site DEDD 0 1 1 5,45,69,119 1 -260011 cd09279 RNase_HI_like 2 RNA/DNA hybrid binding site 0 0 1 1 5,6,7,8,40,41,42,45,69,109,123 3 -260012 cd09280 RNase_HI_eukaryote_like 1 active site DE[DN]D 1 1 1 4,46,70,136 1 -260012 cd09280 RNase_HI_eukaryote_like 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,9,10,11,41,42,43,46,70,72,73,99,100,122,125,140 3 -187753 cd09281 UPF0066 1 cofactor binding site 0 1 0 0 50,52,53,81,89,91,110,115 0 -187753 cd09281 UPF0066 2 homodimer interaction site 0 1 0 0 0,1,36,37,38,40,47,51,76,77,78,79,80,81,85,87,89,118,119,120,121,122,123 2 -185681 cd09286 NMNAT_Eukarya 1 active site 0 0 1 1 4,5,6,7,8,12,14,15,18,123,125,126,128,191 1 -185681 cd09286 NMNAT_Eukarya 2 (T/H)XGH motif 0 0 1 1 12,13,14,15 0 -185682 cd09287 GluRS_non_core 1 active site 0 0 1 1 4,5,6,7,8,14,16,17,19,20,40,42,43,110,114,127,128,129,132,135,153,158,159,168 1 -185682 cd09287 GluRS_non_core 2 HIGH motif 0 0 1 1 14,15,16,17 0 -185682 cd09287 GluRS_non_core 3 KMSKS motif 0 0 1 1 165,166,167,168,169 0 -187746 cd09288 Photosystem-II_D2 1 chlorophyll binding site 0 1 1 0 21,22,25,26,29,31,75,76,77,78,79,90,98,99,102,103,106,108,109,112,113,116,138,140,142,143,144,145,161,164,165,167,168,171,172,177,183,184,186,187,188,190,191,192,195,265,268,269,272 0 -187746 cd09288 Photosystem-II_D2 2 pheophytin binding site 0 1 1 0 27,34,104,108,111,115,128,132,135,139,159,160,191,195,198,199,239,243,261,262,265 0 -187746 cd09288 Photosystem-II_D2 3 quinone binding site 0 1 1 0 31,184,185,188,189,195,196,199,200,203,235,236,239,246,247,253,256,260,263 0 -187746 cd09288 Photosystem-II_D2 4 Fe binding site 0 1 1 0 254 4 -187746 cd09288 Photosystem-II_D2 5 beta carotene binding site 0 1 1 0 28,29,32,33,35,36,99 0 -187746 cd09288 Photosystem-II_D2 6 bromide binding site 0 1 1 0 303 0 -187746 cd09288 Photosystem-II_D2 7 D1 interface 0 1 1 0 11,13,14,15,44,47,49,50,55,58,60,61,63,65,114,115,118,119,122,124,125,127,128,131,158,162,163,165,166,168,169,172,178,179,190,193,194,196,197,198,200,201,202,203,204,205,206,208,209,217,220,221,222,223,224,227,228,229,230,231,232,233,237,238,239,240,241,242,243,244,248,249,250,251,252,254,255,257,258,261,284,298,299,300,303,304,306,307,310,311,314,315,318,319,333,334,335,336,337,338 0 -187746 cd09288 Photosystem-II_D2 8 core light harvesting protein interface 0 1 1 0 112,116,120,123,126,127,130,133,141,148,149,150,151,170,174,266,270,273,274,277,309,312,316 0 -187746 cd09288 Photosystem-II_D2 9 CP43 interface 0 1 1 0 207,208,209,210,211,213,214,215,216,228,229,231,234,237,241 0 -187746 cd09288 Photosystem-II_D2 10 cytochrome b559 alpha interface 0 1 1 0 40,41,42,44,45,46,48,54,55,70,71,81,82,321 0 -187746 cd09288 Photosystem-II_D2 11 cytochrome b559 beta interface 0 1 1 0 28,35,36,39,40,53,54 0 -187746 cd09288 Photosystem-II_D2 12 protein H interface 0 1 1 0 73,74,75,77,81,82 0 -187746 cd09288 Photosystem-II_D2 13 protein J interface 0 1 1 0 54,55,56 0 -187746 cd09288 Photosystem-II_D2 14 protein L interface 0 1 1 0 181,182,184,185,252,286 0 -187746 cd09288 Photosystem-II_D2 15 protein M interface 0 1 1 0 286,289,290 0 -187746 cd09288 Photosystem-II_D2 16 protein T interface 0 1 1 0 233,240,244,245 0 -187746 cd09288 Photosystem-II_D2 17 protein X interface 0 1 1 0 79 0 -187746 cd09288 Photosystem-II_D2 18 cytochrome c-550 interface 0 1 1 0 314,318,334,338 0 -187746 cd09288 Photosystem-II_D2 19 Mn-stabilizing polypeptide interface 0 1 1 0 288,291,292,294,295,296,297,298,306,309,336 0 -187747 cd09289 Photosystem-II_D1 1 chlorophyll binding site 0 1 1 0 26,29,32,33,38,86,87,88,89,90,107,111,112,114,120,121,124,140,142,143,144,146,147,150,151,165,169,172,176,177,179,180,186,191,192,194,195,196,198,199,200,203,274,278,279,280,283 0 -187747 cd09289 Photosystem-II_D1 2 pheophytin binding site 0 1 1 0 34,37,38,41,108,112,119,123,139,140,143,167,199,202,203,206,207,248,251,272 0 -187747 cd09289 Photosystem-II_D1 3 quinone binding site 0 1 1 0 204,207,208,211,244,245,248,252,256,257,258,264 0 -187747 cd09289 Photosystem-II_D1 4 Fe binding site 0 1 1 0 208,265 4 -187747 cd09289 Photosystem-II_D1 5 oxygen evolving complex binding site 0 1 1 0 163,182,325,326,335 0 -187747 cd09289 Photosystem-II_D1 6 bromide binding site 0 1 1 0 174,325,326,330,331,332 0 -187747 cd09289 Photosystem-II_D1 7 beta carotene binding site 0 1 1 0 28,31,32,35,36,39,40,43,98,99 0 -187747 cd09289 Photosystem-II_D1 8 D2 interface 0 1 1 0 21,22,54,58,60,61,62,69,76,119,122,123,126,127,132,133,134,135,136,139,166,170,171,173,174,177,186,187,198,199,201,202,204,205,206,208,209,210,212,213,214,216,226,227,229,230,232,233,235,236,237,238,239,240,241,242,246,247,250,251,253,254,255,260,261,262,265,266,268,269,272,293,295,299,307,308,309,310,311,313,314,316,317,318,320,321,323,324,327,328,330,331,332,333 0 -187747 cd09289 Photosystem-II_D1 9 CP43 interface 0 1 1 0 55,56,80,82,84,85,86,110,120,124,127,128,129,130,131,132,134,135,137,138,141,145,153,156,157,159,160,163,182,183,184,235,277,281,284,285,288,289,290,291,292,293,294,295,296,297,298,315,318,319,322,326,328,329,330,331,332,333,334,335,336,337 0 -187747 cd09289 Photosystem-II_D1 10 core light harvesting interface 0 1 1 0 215,216,217,218,219,221,222,224,250 0 -187747 cd09289 Photosystem-II_D1 11 cytochrome b559 alpha subunit interface 0 1 1 0 250,255,301,302,303,305,306,307 0 -187747 cd09289 Photosystem-II_D1 12 protein I interface 0 1 1 0 7,10,15,25,26,28,29,32,89,90,124,128,129,131 0 -187747 cd09289 Photosystem-II_D1 13 protein J interface 0 1 1 0 298,299,300 0 -187747 cd09289 Photosystem-II_D1 14 protein L interface 0 1 1 0 69,70,224 0 -187747 cd09289 Photosystem-II_D1 15 manganese-stabilizing polypeptide interface 0 1 1 0 50,57,58,82,87,91,92,96,97,100,101,327,328 0 -187747 cd09289 Photosystem-II_D1 16 protein T interface 0 1 1 0 21,46,64,65,68,69,70,231,232 0 -187747 cd09289 Photosystem-II_D1 17 cytochrome c-550 interface 0 1 1 0 297,301,302,303,304,305,306,312,316,322 0 -187748 cd09290 Photo-RC_L 1 bacteriochlorophyll binding site 0 1 1 1 45,48,97,124,127,128,131,146,150,151,153,154,156,157,158,160,161,162,167,168,173,174,176,177,178,180,181,182,185,220,244,245,247,248 0 -187748 cd09290 Photo-RC_L 2 bacteriopheophytin binding site 0 1 1 1 40,41,44,48,93,96,97,100,104,117,121,123,124,128,146,148,153,181,184,185,188,189,219,220,237,238,241 0 -187748 cd09290 Photo-RC_L 3 quinone binding site 0 1 1 1 28,34,38,41,100 0 -187748 cd09290 Photo-RC_L 4 Fe binding site 0 1 1 1 190,230 4 -187748 cd09290 Photo-RC_L 5 subunit M interface 0 1 1 1 0,2,4,5,7,8,9,24,27,28,29,60,62,63,100,103,104,107,108,111,112,113,114,116,117,151,152,154,155,157,158,162,166,168,169,174,180,183,184,186,187,188,190,191,192,193,194,195,196,197,198,199,200,201,207,210,211,214,215,217,218,219,221,222,223,224,226,227,228,229,230,231,233,234,237,263,266,267,271,272 0 -187748 cd09290 Photo-RC_L 6 subunit H interface 0 1 1 1 0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,19,22,23,24,109,110,111,198,199,209,210,211,213,225,226,227 0 -187748 cd09290 Photo-RC_L 7 cytochrome C subunit interface 0 1 1 0 67,68,70,71,81,83,135,138,139,144,147,155,156,158,159,160,162,163,164,165,166,252,253,254,255,256,262 0 -187749 cd09291 Photo-RC_M 1 bacteriochlorophyll binding site 0 1 1 1 59,110,114,117,138,141,144,145,148,163,167,170,171,173,174,175,177,178,184,185,190,191,193,194,195,197,198,199,202,265,268,271,272 0 -187749 cd09291 Photo-RC_M 2 bacteriopheophytin binding site 0 1 1 1 48,49,52,53,56,113,114,117,134,137,138,141,198,201,202,205,206,240,244,261,265 0 -187749 cd09291 Photo-RC_M 3 quinone binding site 0 1 0 1 202,206,207,210,236,237,240,244,246,247,248,249,250,253,256 0 -187749 cd09291 Photo-RC_M 4 Fe binding site 0 1 0 1 207,254 4 -187749 cd09291 Photo-RC_M 5 carotenoid binding site 0 1 0 0 56,59,60,61,78,94,103,104,107,108,111,145,148,149,150,159,163,165,166,167,170 0 -187749 cd09291 Photo-RC_M 6 subunit L interface 0 1 1 1 6,8,9,18,28,31,32,33,35,37,38,39,40,72,76,79,80,117,120,121,124,125,126,128,129,132,133,134,137,168,171,172,174,175,179,185,186,191,197,200,201,204,205,207,208,209,210,211,212,213,215,216,217,220,222,223,226,229,231,234,235,238,239,240,241,242,243,244,245,247,251,254,255,257,258,261,264,290,291,292,293,295,296 0 -187749 cd09291 Photo-RC_M 7 subunit H interface 0 1 1 1 0,1,2,3,4,9,10,26,188,189,192,196,216,217,220,221,224,225,226,227,228,229,230,231,234,241,246,247,248,249,251,252,255,256,259,263,267,278,279,285,288,289 0 -187749 cd09291 Photo-RC_M 8 cytochrome C interface 0 1 0 0 66,67,68,73,77,84,87,88,173,175,176,177,179,180,183,186,276,278,279,280,281,283,284,285,293,295,296 0 -187755 cd09294 SmpB 1 SmpB-tmRNA interface 0 1 1 1 14,15,16,17,18,19,21,22,24,25,28,45,73,74,75,76,77,78,106 0 -187756 cd09299 TDT 1 gating phenylalanine in ion channel 0 0 1 1 285 0 -350171 cd09300 DEAD-like_helicase_C 1 ATP binding site 0 1 1 0 44 5 -212512 cd09301 HDAC 1 active site 0 1 1 1 104,105,113,114,141,143,221,260,262 1 -212512 cd09301 HDAC 2 Zn binding site DHD 1 1 1 141,143,221 4 -187706 cd09302 Jacalin_like 1 putative sugar binding site 0 1 1 0 0,73,117,118,120 5 -187757 cd09317 TDT_Mae1_like 1 gating phenylalanine in ion channel 0 0 1 1 289 0 -187758 cd09318 TDT_SSU1 1 gating phenylalanine in ion channel 0 0 1 1 300 0 -187759 cd09319 TDT_like_1 1 gating phenylalanine in ion channel 0 0 1 1 274 0 -187760 cd09320 TDT_like_2 1 gating phenylalanine in ion channel 0 0 1 1 283 0 -187761 cd09321 TDT_like_3 1 gating phenylalanine in ion channel 0 0 1 1 282 0 -187762 cd09322 TDT_TehA_like 1 gating phenylalanine in ion channel 0 0 1 1 248 0 -187763 cd09323 TDT_SLAC1_like 1 gating phenylalanine in ion channel 0 0 1 1 253 0 -187764 cd09324 TDT_TehA 1 gating phenylalanine in ion channel 0 0 1 1 252 0 -187765 cd09325 TDT_C4-dicarb_trans 1 gating phenylalanine in ion channel 0 0 1 1 243 0 -188712 cd09326 LIM_CRP_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,32,48,51 4 -188713 cd09327 LIM1_abLIM 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188714 cd09328 LIM2_abLIM 1 Zn binding site 0 1 0 1 3,6,23,26,29,32,51,54 4 -188715 cd09329 LIM3_abLIM 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,47,50 4 -188716 cd09330 LIM4_abLIM 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,48,51 4 -188717 cd09331 LIM1_PINCH 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188717 cd09331 LIM1_PINCH 2 ILK binding interface 0 1 1 0 2,3,5,27,29,30,31,32,33,43,44,46,51,52,54,55,56,57,58 0 -188718 cd09332 LIM2_PINCH 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188719 cd09333 LIM3_PINCH 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,46,49 4 -188720 cd09334 LIM4_PINCH 1 Zn binding site 0 1 1 1 2,5,22,25,28,31,49,52 4 -188720 cd09334 LIM4_PINCH 2 N(i)ck binding interface 0 1 1 0 1,5,6,7,8 0 -188721 cd09335 LIM5_PINCH 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -259830 cd09336 LIM1_Paxillin_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188723 cd09337 LIM2_Paxillin_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188724 cd09338 LIM3_Paxillin_like 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188725 cd09339 LIM4_Paxillin_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188726 cd09340 LIM1_Testin_like 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188727 cd09341 LIM2_Testin_like 1 Zn binding site 0 0 0 1 2,5,23,26,29,32,50,53 4 -188728 cd09342 LIM3_Testin_like 1 Zn binding site 0 1 1 1 0,3,22,27,30,33,51,55 4 -188729 cd09343 LIM1_FHL 1 Zn binding site 0 1 0 1 4,7,26,29,32,35,53,56 4 -188730 cd09344 LIM1_FHL1 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,49,52 4 -188731 cd09345 LIM2_FHL 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,49,52 4 -188732 cd09346 LIM3_FHL 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188733 cd09347 LIM4_FHL 1 Zn binding site 0 1 0 1 0,3,24,27,30,33,51,54 4 -188734 cd09348 LIM4_FHL1 1 Zn binding site 0 1 0 1 4,7,29,32,35,38,56,59 4 -188735 cd09349 LIM1_Zyxin 1 Zn binding site 0 0 0 1 33,36,55,58,61,64,82,85 4 -188736 cd09350 LIM1_TRIP6 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,49,52 4 -188737 cd09351 LIM1_LPP 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188738 cd09352 LIM1_Ajuba_like 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188739 cd09353 LIM2_Zyxin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -188740 cd09354 LIM2_LPP 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -188741 cd09355 LIM2_Ajuba_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -188742 cd09356 LIM2_TRIP6 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,48,51 4 -188743 cd09357 LIM3_Zyxin_like 1 Zn binding site 0 0 0 1 0,3,27,30,33,36,58,61 4 -188744 cd09358 LIM_Mical_like 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,51 4 -188745 cd09359 LIM_LASP_like 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188746 cd09360 LIM_ALP_like 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188747 cd09361 LIM1_Enigma_like 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188748 cd09362 LIM2_Enigma_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188749 cd09363 LIM3_Enigma_like 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188750 cd09364 LIM1_LIMK 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188751 cd09365 LIM2_LIMK 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,49,52 4 -188752 cd09366 LIM1_Isl 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188753 cd09367 LIM1_Lhx1_Lhx5 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188754 cd09368 LIM1_Lhx3_Lhx4 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,47,50 4 -188755 cd09369 LIM1_Lhx2_Lhx9 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,49,52 4 -188756 cd09370 LIM1_Lmx1a 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188757 cd09371 LIM1_Lmx1b 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188758 cd09372 LIM2_FBLP-1 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -188759 cd09373 LIM1_AWH 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,49,52 4 -188760 cd09374 LIM2_Isl 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188761 cd09375 LIM2_Lhx1_Lhx5 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,51,54 4 -188762 cd09376 LIM2_Lhx3_Lhx4 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,51,54 4 -188762 cd09376 LIM2_Lhx3_Lhx4 2 Isl binding site 0 1 1 0 12,37 0 -188763 cd09377 LIM2_Lhx2_Lhx9 1 Zn binding site 0 0 0 1 4,7,26,29,32,35,54,57 4 -188764 cd09378 LIM2_Lmx1a_Lmx1b 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188765 cd09379 LIM2_AWH 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188766 cd09380 LIM1_Lhx6 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,49,52 4 -188767 cd09381 LIM1_Lhx7_Lhx8 1 Zn binding site 0 0 0 1 1,4,22,25,28,31,50,53 4 -188768 cd09382 LIM2_Lhx6 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188769 cd09383 LIM2_Lhx7_Lhx8 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188770 cd09384 LIM1_LMO2 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,50,53 4 -188771 cd09385 LIM2_LMO2 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188772 cd09386 LIM1_LMO4 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188772 cd09386 LIM1_LMO4 2 Lbd1 binding interface 0 1 1 0 1,2,3,4,28,29,45,46,47 0 -188773 cd09387 LIM2_LMO4 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188774 cd09388 LIM1_LMO1_LMO3 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188775 cd09389 LIM2_LMO1_LMO3 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188776 cd09390 LIM2_dLMO 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188777 cd09391 LIM1_Lrg1p_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,52,55 4 -188778 cd09392 LIM2_Lrg1p_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,48,51 4 -188779 cd09393 LIM3_Lrg1p_like 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,51,54 4 -188780 cd09394 LIM1_Rga 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188781 cd09395 LIM2_Rga 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188782 cd09396 LIM_DA1 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188783 cd09397 LIM1_UF1 1 Zn binding site 0 0 0 1 0,3,24,27,30,33,52,55 4 -188784 cd09400 LIM_like_1 1 Zn binding site 0 0 0 1 4,7,25,28,31,34,53,56 4 -188785 cd09401 LIM_TLP_like 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,51 4 -188786 cd09402 LIM1_CRP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188787 cd09403 LIM2_CRP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188788 cd09404 LIM1_MLP84B_like 1 Zn binding site 0 0 0 1 1,4,22,25,28,31,49,52 4 -188789 cd09405 LIM1_Paxillin 1 Zn binding site 0 0 0 1 1,4,21,24,27,30,48,51 4 -188790 cd09406 LIM1_Leupaxin 1 Zn binding site 0 0 0 1 2,5,22,25,28,31,49,52 4 -188791 cd09407 LIM2_Paxillin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188792 cd09408 LIM2_Leupaxin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188793 cd09409 LIM3_Paxillin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188794 cd09410 LIM3_Leupaxin 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188795 cd09411 LIM4_Paxillin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188796 cd09412 LIM4_Leupaxin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188797 cd09413 LIM1_Testin 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188798 cd09414 LIM1_LIMPETin 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188799 cd09415 LIM1_Prickle 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188800 cd09416 LIM2_Testin 1 Zn binding site 0 0 0 1 2,5,23,26,29,32,50,53 4 -188801 cd09417 LIM2_LIMPETin_like 1 Zn binding site 0 0 0 1 2,5,23,26,29,32,50,53 4 -188802 cd09418 LIM2_Prickle 1 Zn binding site 0 0 0 1 2,5,23,26,29,32,50,53 4 -188803 cd09419 LIM3_Testin 1 Zn binding site 0 1 1 1 0,3,22,27,30,33,51,55 4 -188804 cd09420 LIM3_Prickle 1 Zn binding site 0 0 0 1 2,5,24,29,32,35,53,57 4 -188805 cd09421 LIM3_LIMPETin 1 Zn binding site 0 0 0 1 4,7,26,29,32,35,53,56 4 -188806 cd09422 LIM1_FHL2 1 Zn binding site 0 0 0 1 4,7,26,29,32,35,53,56 4 -188807 cd09423 LIM1_FHL3 1 Zn binding site 0 1 0 1 4,7,26,29,32,35,53,56 4 -188808 cd09424 LIM2_FHL1 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,49,52 4 -188809 cd09425 LIM4_LIMPETin 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188810 cd09426 LIM2_FHL2 1 Zn binding site 0 1 0 1 0,3,22,25,28,31,49,52 4 -188811 cd09427 LIM2_FHL3 1 Zn binding site 0 1 0 1 3,6,25,27,28,31,34,52,55 4 -188812 cd09428 LIM2_FHL5 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188813 cd09429 LIM3_FHL1 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188814 cd09430 LIM5_LIMPETin 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188815 cd09431 LIM3_Fhl2 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188816 cd09432 LIM6_LIMPETin 1 Zn binding site 0 0 0 1 0,3,24,27,30,33,51,54 4 -188817 cd09433 LIM4_FHL2 1 Zn binding site 0 1 0 1 0,3,24,27,30,33,51,54 4 -188818 cd09434 LIM4_FHL3 1 Zn binding site 0 0 0 1 0,3,24,27,30,33,51,54 4 -188819 cd09435 LIM3_Zyxin 1 Zn binding site 0 0 0 1 0,3,27,30,33,36,58,61 4 -188820 cd09436 LIM3_TRIP6 1 Zn binding site 0 0 0 1 0,3,27,30,33,36,57,60 4 -188821 cd09437 LIM3_LPP 1 Zn binding site 0 0 0 1 0,3,27,30,33,36,58,61 4 -188822 cd09438 LIM3_Ajuba_like 1 Zn binding site 0 0 0 1 0,3,27,30,33,36,57,60 4 -188823 cd09439 LIM_Mical 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188824 cd09440 LIM1_SF3 1 Zn binding site 0 0 0 1 4,7,25,28,31,34,52,55 4 -188825 cd09441 LIM2_SF3 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188826 cd09442 LIM_Eplin_like 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,51 4 -188827 cd09443 LIM_Ltd-1 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188828 cd09444 LIM_Mical_like_1 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188829 cd09445 LIM_Mical_like_2 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188830 cd09446 LIM_N_RAP 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188831 cd09447 LIM_LASP 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188832 cd09448 LIM_CLP36 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188833 cd09449 LIM_Mystique 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188834 cd09450 LIM_ALP 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188835 cd09451 LIM_RIL 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188836 cd09452 LIM1_Enigma 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188837 cd09453 LIM1_ENH 1 Zn binding site 0 1 0 1 0,3,20,23,26,29,47,50 4 -188838 cd09454 LIM1_ZASP_Cypher 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188839 cd09455 LIM1_Enigma_like_1 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,49,52 4 -188840 cd09456 LIM2_Enigma 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188841 cd09457 LIM2_ENH 1 Zn binding site 0 0 0 1 0,3,20,23,26,29,47,50 4 -188842 cd09458 LIM3_Enigma 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188843 cd09459 LIM3_ENH 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188844 cd09460 LIM3_ZASP_Cypher 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188845 cd09461 LIM3_Enigma_like_1 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,49,52 4 -188846 cd09462 LIM1_LIMK1 1 Zn binding site 0 0 0 1 21,24,42,45,48,51,68,71 4 -188847 cd09463 LIM1_LIMK2 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188848 cd09464 LIM2_LIMK1 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,50,53 4 -188849 cd09465 LIM2_LIMK2 1 Zn binding site 0 1 0 1 5,8,25,28,31,34,54,57 4 -188850 cd09466 LIM1_Lhx3a 1 Zn binding site 0 0 0 1 3,6,24,27,30,33,50,53 4 -188851 cd09467 LIM1_Lhx3b 1 Zn binding site 0 1 0 1 3,6,24,27,30,33,50,53 4 -188852 cd09468 LIM1_Lhx4 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,47,50 4 -188853 cd09469 LIM1_Lhx2 1 Zn binding site 0 0 0 1 10,13,31,34,37,40,59,62 4 -188854 cd09470 LIM1_Lhx9 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,49,52 4 -188855 cd09471 LIM2_Isl2 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,50,53 4 -188856 cd09472 LIM2_Lhx3b 1 Zn binding site 0 1 0 1 1,4,23,26,29,32,52,55 4 -188856 cd09472 LIM2_Lhx3b 2 Isl binding site 0 1 1 0 13,38 0 -188857 cd09473 LIM2_Lhx4 1 Zn binding site 0 0 0 1 0,3,22,25,28,31,51,54 4 -188858 cd09474 LIM2_Lhx2 1 Zn binding site 0 0 0 1 4,7,26,29,32,35,54,57 4 -188859 cd09475 LIM2_Lhx9 1 Zn binding site 0 0 0 1 4,7,26,29,32,35,54,57 4 -188860 cd09476 LIM1_TLP 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,52 4 -188861 cd09477 LIM2_TLP 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,52 4 -188862 cd09478 LIM_CRIP 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,52 4 -188863 cd09479 LIM1_CRP1 1 Zn binding site 0 0 0 1 2,5,23,26,29,32,50,53 4 -188864 cd09480 LIM1_CRP2 1 Zn binding site 0 1 1 1 1,4,22,25,28,31,49,52 4 -188865 cd09481 LIM1_CRP3 1 Zn binding site 0 0 0 1 1,4,22,25,28,31,49,52 4 -188866 cd09482 LIM2_CRP3 1 Zn binding site 0 0 1 1 0,3,21,24,27,30,48,51 4 -188867 cd09483 LIM1_Prickle_1 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188868 cd09484 LIM1_Prickle_2 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -188869 cd09485 LIM_Eplin_alpha_beta 1 Zn binding site 0 1 0 1 0,3,21,24,27,30,48,51 4 -188870 cd09486 LIM_Eplin_like_1 1 Zn binding site 0 0 0 1 0,3,21,24,27,30,48,51 4 -188887 cd09488 SAM_EPH-R 1 putative phosphorylation site 0 0 1 1 16,49 6 -188888 cd09489 SAM_Smaug-like 1 RNA binding site 0 1 1 1 6,8,9,10,11,12,13,42,43,45,46 3 -188889 cd09490 SAM_Arap1,2,3 1 heterodimer interface EH 0 0 1 1 13,37,52,53,56 2 -188890 cd09491 SAM_Ship2 1 heterodimer interface ML 0 0 1 1 28,29,30,32,33,36,41 2 -188898 cd09499 SAM_AIDA1AB-like_repeat1 1 intramolecular dimer interface ML 0 1 1 1 22,23,24,25,27,29,30,33,34,36,37,40,43,44 2 -188899 cd09500 SAM_AIDA1AB-like_repeat2 1 intramolecular dimer interface EH 0 1 1 1 50,51,52,53,55,56 2 -188903 cd09504 SAM_STIM-1,2-like 1 oligomer interface 0 0 1 1 4,24,35,51,64,70 2 -188905 cd09506 SAM_Shank1,2,3 1 polymer interface (intrafiber) 0 0 1 1 44,46,51 2 -188905 cd09506 SAM_Shank1,2,3 2 polymer interface (interfiber) 0 0 1 1 3,4,5,7,21,22,35 2 -188905 cd09506 SAM_Shank1,2,3 3 Zn binding site 0 0 1 1 20,21,53 4 -188906 cd09507 SAM_DGK-delta-eta 1 homooligomer interface EH 0 1 1 1 40,44,49,50,51,52,53,55,56,59 2 -188906 cd09507 SAM_DGK-delta-eta 2 homooligomer interface ML 0 1 1 1 27,28,29,30,31,37,38,39,41,42,45 2 -188908 cd09509 SAM_Polycomb 1 oligomer interface ML 0 1 1 1 29,30,31,33,34,37,38,41,42,47 2 -188908 cd09509 SAM_Polycomb 2 oligomer interface EH 0 1 1 1 50,51,52,53,55,56,59,62 2 -188909 cd09510 SAM_aveugle-like 1 heterodimer interface ML 0 1 1 1 30,31,32,33,34,37,38,41,46,49,50 2 -188910 cd09511 SAM_CNK1,2,3-suppressor 1 heterodimer interface EH 0 1 1 1 16,41,45,50,51,52,53,54,55,56,57,59,60,63 2 -188916 cd09517 SAM_USH1G_HARP 1 oligomer interface 0 1 1 0 0,1,3,5,6,7,9,10,12,57,58,62 2 -188933 cd09534 SAM_Ste11_fungal 1 homodimer interface 0 1 1 1 33,35,36,37,38,40,41,47,48,50,51,54,55 2 -188933 cd09534 SAM_Ste11_fungal 2 putative heterodimer interface 0 0 1 1 4,7,18,22,26,55,56,57,58,59,60,61 2 -188933 cd09534 SAM_Ste11_fungal 3 heterodimer interface ML 0 0 1 1 33,38,41 2 -188935 cd09536 SAM_Ste50_fungal 1 heterodimer interface EH 0 0 1 1 43,45,56,60,64 2 -188937 cd09538 SAM_DLC1,2-like 1 putative lipid binding site 0 0 1 1 10,13,15 5 -188941 cd09542 SAM_EPH-A1 1 putative phosphorylation site 0 0 1 1 18,51 6 -188942 cd09543 SAM_EPH-A2 1 putative phosphorylation site 0 0 1 1 19,52 6 -188942 cd09543 SAM_EPH-A2 2 heterodimer interface EH 0 0 1 1 15,39,54,55,58 2 -188944 cd09545 SAM_EPH-A4 1 putative phosphorylation site 0 0 1 1 17,50 6 -188944 cd09545 SAM_EPH-A4 2 homodimer interface 0 0 1 1 2,3,29,33,61,65,68 2 -188945 cd09546 SAM_EPH-A5 1 putative phosphorylation site 0 0 1 1 17,50 6 -188946 cd09547 SAM_EPH-A6 1 putative phosphorylation site 0 0 1 1 17,50 6 -188947 cd09548 SAM_EPH-A7 1 putative phosphorylation site 0 0 1 1 21,54 6 -188948 cd09549 SAM_EPH-A10 1 putative phosphorylation site 0 0 1 1 21,54 6 -188949 cd09550 SAM_EPH-A8 1 putative phosphorylation site 0 0 1 1 16,49 6 -188950 cd09551 SAM_EPH-B1 1 putative phosphorylation site 0 0 1 1 20,53 6 -188951 cd09552 SAM_EPH-B2 1 putative phosphorylation site 0 0 1 1 20,53 6 -188951 cd09552 SAM_EPH-B2 2 homooligomer interface 0 0 1 1 2,3,5,27,33,34,42,50,51,52,53,55,56,64,68 2 -188951 cd09552 SAM_EPH-B2 3 homodimer interface (tail-to-tail) 0 1 1 1 36,37,38,39,40,41,44,62,65,68,69 2 -188951 cd09552 SAM_EPH-B2 4 putative homodimer interface (head-to-head) 0 0 1 1 2,5,11,32,60,63,64 2 -188952 cd09553 SAM_EPH-B3 1 putative phosphorylation site 0 0 1 1 20,53 6 -188953 cd09554 SAM_EPH-B4 1 putative phosphorylation site 0 0 1 1 17,50 6 -188954 cd09555 SAM_EPH-B6 1 putative phosphorylation site 0 0 1 1 20,53 6 -188955 cd09556 SAM_VTS1_fungal 1 RNA binding site 0 1 1 1 13,15,16,17,18,19,20,47,49,50,52,53 3 -188956 cd09557 SAM_Smaug 1 RNA binding site 0 0 1 1 16,18,19,47,50,51,52,59,61 3 -188957 cd09558 SAM_ZCCH14 1 putative RNA binding site 0 0 1 1 12,14,15,16,17,18,19,48,49,51,52 3 -188972 cd09573 SAM_STIM1 1 oligomer interface 0 0 1 1 4,24,35,51,64,70 2 -188973 cd09574 SAM_STIM2 1 putative oligomer interface 0 0 1 1 4,24,35,51,64,70 2 -188974 cd09575 SAM_DGK-delta 1 homooligomer interface EH 0 1 1 1 40,44,49,50,51,52,53,55,56,59 2 -188974 cd09575 SAM_DGK-delta 2 homooligomer interface ML 0 1 1 1 27,28,29,30,31,37,38,39,41,42,45 2 -188975 cd09576 SAM_DGK-eta 1 putative homooligomer interface EH 0 0 1 1 40,44,49,50,51,52,53,55,56,59 2 -188975 cd09576 SAM_DGK-eta 2 putative homooligomer interface ML 0 0 1 1 27,28,29,30,31,37,38,39,41,42,45 2 -188976 cd09577 SAM_Ph1,2,3 1 oligomer interface ML 0 1 1 1 29,30,31,32,33,35,36,39,40,44,49 2 -188976 cd09577 SAM_Ph1,2,3 2 oligomer interface EH 0 0 1 1 18,19,53,54,57,58,61 2 -188977 cd09578 SAM_Scm 1 oligomer interface ML 0 1 1 1 32,33,34,35,36,38,39,42,43,46,47,49,50,51,52 2 -188977 cd09578 SAM_Scm 2 oligomer interface EH 0 1 1 1 19,55,56,57,58,60,61,64,67 2 -188978 cd09579 SAM_Samd7,11 1 putative oligomer interface ML 0 0 1 1 29,30,31,33,34,37,38,41,42,47 2 -188978 cd09579 SAM_Samd7,11 2 putative oligomer interface EH 0 0 1 1 50,51,52,53,55,56,59,62 2 -188979 cd09580 SAM_Scm-like-4MBT 1 putative oligomer interface ML 0 0 1 1 28,29,30,32,33,36,37,40,41,46 2 -188979 cd09580 SAM_Scm-like-4MBT 2 putative oligomer interface EH 0 0 1 1 49,50,51,52,54,55,58,61 2 -188980 cd09581 SAM_Scm-like-4MBT1,2 1 putative oligomer interface ML 0 0 1 1 39,40,41,43,44,47,48,51,52,57 2 -188980 cd09581 SAM_Scm-like-4MBT1,2 2 putative oligomer interface EH 0 0 1 1 60,61,62,63,65,66,69,72 2 -188981 cd09582 SAM_Scm-like-3MBT3,4 1 putative oligomer interface ML 0 0 1 1 29,30,31,33,34,37,38,41,42,47 2 -188981 cd09582 SAM_Scm-like-3MBT3,4 2 putative oligomer interface EH 0 0 1 1 50,51,52,53,55,56,59,62 2 -188982 cd09583 SAM_Atherin-like 1 putative oligomer interface ML 0 0 1 1 28,29,30,32,33,36,37,40,41,46 2 -188982 cd09583 SAM_Atherin-like 2 putative oligomer interface EH 0 0 1 1 49,50,51,52,54,55,58,61 2 -188985 cd09586 SAM_USH1G 1 oligomer interface 0 1 1 0 0,1,3,5,6,7,9,10,12,57,58,62 2 -188986 cd09587 SAM_HARP 1 putative polypeptide binding site 0 0 1 1 0,1,3,5,6,7,9,10,12,57,58,62 2 -188990 cd09591 SAM_DLC1 1 oligomer interface 0 0 1 1 21,22 2 -188990 cd09591 SAM_DLC1 2 putative lipid binding site 0 0 1 1 10,13,15 5 -188991 cd09592 SAM_DLC2 1 lipid binding site 0 0 1 1 14,17,19 5 -198424 cd09593 UDG_like 1 active site 0 1 1 0 5,6,8,89,90,121,122,124 1 -198424 cd09593 UDG_like 2 ligand binding site 0 1 1 0 4,5,6,7,8,48,122 5 -341057 cd09594 GluZincin 1 Zn binding site HHE 1 1 1 70,74,94 4 -341058 cd09595 M1 1 Zn binding site HHE 1 1 1 281,285,304 4 -341058 cd09595 M1 2 active site 0 1 1 1 109,111,112,246,247,248,249,250,278,281,282,285,300,304,366 1 -341059 cd09596 M36 1 Zn binding site HHE 1 1 1 138,142,168 4 -341059 cd09596 M36 2 active site 0 1 1 1 100,132,138,142,156,159,168,172,176,179,193,194,195,196,202,203,207,228 1 -341059 cd09596 M36 3 intra-domain interface 0 1 1 1 100,101,102,103,104,105,113,115,138,139,142,148,156,159,163,168,227,228,270,274,277,281,282,287,290,291,294,297,298 2 -341060 cd09597 M4_TLP 1 Zn binding site HHE 1 1 1 103,107,127 4 -341060 cd09597 M4_TLP 2 active site 0 1 1 1 74,75,100,103,104,107,118,127,152,164,165,194 1 -341061 cd09598 M4_like 1 Zn binding site HHE 0 1 1 95,99,122 4 -341061 cd09598 M4_like 2 active site 0 0 1 1 61,62,92,95,96,99,113,122,164,194 1 -341062 cd09599 M1_LTA4H 1 Zn binding site HHE 1 1 1 287,291,310 4 -341062 cd09599 M1_LTA4H 2 active site 0 1 1 1 129,131,132,259,260,261,262,263,284,287,288,291,306,310,317,370,375 1 -341063 cd09600 M1_APN 1 Zn binding site HHE 1 1 1 289,293,312 4 -341063 cd09600 M1_APN 2 active site 0 1 1 1 111,113,250,251,252,253,254,255,256,286,289,290,293,311,312,365,368,373,374 1 -341064 cd09601 M1_APN-Q_like 1 Zn binding site HHE 1 1 1 290,294,313 4 -341064 cd09601 M1_APN-Q_like 2 active site 0 1 1 1 118,120,254,255,256,257,290,291,294,313,317,371,376 1 -341065 cd09602 M1_APN 1 Zn binding site HHE 0 1 1 291,295,314 4 -341065 cd09602 M1_APN 2 active site 0 0 1 1 120,122,123,256,257,258,259,260,288,291,292,295,310,314,377 1 -341066 cd09603 M1_APN_like 1 Zn binding site HHE 0 1 1 272,276,295 4 -341066 cd09603 M1_APN_like 2 active site 0 0 1 1 111,113,114,244,245,246,247,248,269,272,273,276,291,295,348 1 -341067 cd09604 M1_APN_like 1 Zn binding site HHE 0 1 1 298,302,321 4 -341067 cd09604 M1_APN_like 2 active site 0 0 1 1 121,123,124,270,271,272,273,274,295,298,299,302,317,321,379 1 -341068 cd09605 M3A 1 Zn binding site HHE 1 1 1 383,387,412 4 -341068 cd09605 M3A 2 active site 0 1 1 1 335,336,337,383,384,387,412,415,464,511,512,517,518,520,521,524 1 -341069 cd09606 M3B_PepF 1 Zn binding site HHE 1 1 1 345,349,373 4 -341069 cd09606 M3B_PepF 2 active site 0 0 1 1 345,346,349,373,468,475,479 1 -341070 cd09607 M3B_PepF 1 Zn binding site HHE 0 1 1 374,378,401 4 -341070 cd09607 M3B_PepF 2 active site 0 0 1 1 374,375,378,401,497,506,510 1 -341071 cd09608 M3B_PepF 1 Zn binding site HHE 1 1 0 355,359,383 4 -341071 cd09608 M3B_PepF 2 active site 0 0 1 1 355,356,359,383,481,487,491 1 -341072 cd09609 M3B_PepF 1 Zn binding site HHE 0 1 1 380,384,408 4 -341072 cd09609 M3B_PepF 2 active site 0 0 1 1 380,381,384,408,507,513,517 1 -341073 cd09610 M3B_PepF 1 Zn binding site HHE 0 1 1 333,337,360 4 -341073 cd09610 M3B_PepF 2 active site 0 0 1 1 333,334,337,360,458,465,469 1 -187707 cd09611 Jacalin_ZG16_like 1 putative sugar binding site 0 0 1 1 3,4,25,26,28,30,48,49,70,71,72,74,92,115,118,120 5 -187708 cd09612 Jacalin 1 sugar binding site 0 1 1 0 0,77,118,119,120,122 5 -187709 cd09613 Jacalin_metallopeptidase_like 1 putative sugar binding site 0 0 1 1 4,5,22,23,24,26,44,45,66,67,68,70,90,91,112,113,114,116 5 -187710 cd09614 griffithsin_like 1 sugar binding site 0 1 1 0 5,6,22,23,24,26,47,48,70,71,72,74,93,94,115,116,117,119 5 -187711 cd09615 Jacalin_EEP 1 putative sugar binding site 0 0 1 1 4,5,27,28,29,31,49,50,76,77,78,94,95,120,121,122,124 5 -187737 cd09616 Peptidase_C12_UCH_L1_L3 1 catalytic site 0 0 1 1 83,89,163,178 1 -187737 cd09616 Peptidase_C12_UCH_L1_L3 2 peptide binding site 0 1 1 0 2,3,4,5,6,7,27,28,29,30,49,89,162,164,207 2 -187737 cd09616 Peptidase_C12_UCH_L1_L3 3 inhibitor binding site 0 1 1 0 2,83,87,89,162,163 5 -187738 cd09617 Peptidase_C12_UCH37_BAP1 1 catalytic site 0 0 1 1 74,80,158,173 1 -187738 cd09617 Peptidase_C12_UCH37_BAP1 2 cancer-causing mutation sites 0 0 1 1 74,80,158,173 0 -187676 cd09618 CBM9_like_2 1 putative ligand binding site 0 0 1 1 88,107,109,167 5 -187677 cd09619 CBM9_like_4 1 putative ligand binding site 0 0 1 1 75,92,94,155 5 -187678 cd09620 CBM9_like_3 1 putative ligand binding site 0 0 1 1 71,90,92,164 5 -187679 cd09621 CBM9_like_5 1 putative ligand binding site 0 0 1 1 67,89,91,154 5 -187680 cd09622 CBM9_like_HisKa 1 putative ligand binding site 0 0 1 1 130,132,133,144,145,146,200,202,247 5 -187681 cd09623 DOMON_EBDH 1 heme binding site 0 1 1 0 35,53,107,109,119,120,122,133,144,149,152,154,198,199,200,202,210,211,213,215,217 5 -187681 cd09623 DOMON_EBDH 2 beta subunit binding site 0 1 1 1 51,52,53,55,94,96,101,102,152,154,209,210 2 -187682 cd09624 DOMON_b558_566 1 putative heme binding site 0 0 1 1 56,58,138,160,253,254,255,257,268,270,272 5 -187683 cd09625 DOMON_like_cytochrome 1 putative ligand binding site 0 0 1 1 123,125,172,183,325,326,327,329,341 5 -187684 cd09626 DOMON_glucodextranase_like 1 putative ligand binding site 0 0 1 1 68,98,100,156 5 -187685 cd09627 DOMON_murB_like 1 putative heme binding site 0 0 1 1 65,67,68,78,79,80,157,159,169,170,174 5 -187686 cd09628 DOMON_SDR_2_like 1 putative heme binding site 0 0 1 1 51,53,54,62,67,68,69,142,144,152,155 5 -187687 cd09629 DOMON_CIL1_like 1 putative ligand binding site 0 0 1 1 38,40,41,54,55,56,130,132,146 5 -187688 cd09630 CDH_like_cytochrome 1 heme binding site 0 1 1 0 50,52,53,59,64,65,66,85,87,88,136,138,154,156,157,160,162 5 -187689 cd09631 DOMON_DOH 1 putative ligand binding site 0 0 1 1 31,33,34,46,47,48,107,109,117,132 5 -193606 cd09632 PliI_like 1 dimer interface 0 1 1 0 0,2,16,18,19,20,21,22,25,26,27,28,29,31,33,45,48,49,50,52 2 -193606 cd09632 PliI_like 2 putative inhibitory loop 0 0 1 1 83,84,86 0 -193607 cd09633 Deltex_C 1 putative dimer interface 0 1 0 0 8,9,10,11,12,14,26,28,30,31,32,51,52,53,55,89,102,103,111 2 -213407 cd09644 Csn2 1 tetramer interface 0 0 1 1 26,27,29,30,31,33,34,37,67,69,82,86,90,98,99,101,102,105,106,108,109,110,112,113,114,115,122,123,124,125,127,128,131,132,133,135,136,137,138,139,143,144,145,146,147,153,156,160,170,171,174,175,187,201,204 2 -213407 cd09644 Csn2 2 putative DNA binding site 0 0 1 1 54,134,139,163,165 3 -213408 cd09758 Csn2 1 Ca binding site 0 1 1 0 121,122,127 4 -213408 cd09758 Csn2 2 Ca binding site 0 1 1 0 137,141,145,149 4 -213408 cd09758 Csn2 3 tetramer interface 0 1 1 0 24,25,27,28,29,31,32,35,62,63,65,78,82,86,89,96,99,100,102,103,106,107,109,110,111,113,114,115,116,117,118,119,120,121,122,123,127,128,129,131,132,133,134,135,136,137,139,140,141,142,143,149,152,156,166,167,170,171,172,173,183,196,197,200 2 -213408 cd09758 Csn2 4 putative DNA binding site 0 0 1 1 54,76,130,135,159,161 3 -187662 cd09761 A3DFK9-like_SDR_c 1 active site 0 0 1 1 105,132,145,149 1 -187662 cd09761 A3DFK9-like_SDR_c 2 NAD binding site 0 1 1 1 7,10,11,12,31,32,33,36,53,54,55,81,82,83,84,100,104,130,131,132,145,149,174,175,176,177,179 5 -187662 cd09761 A3DFK9-like_SDR_c 3 homodimer interface 0 1 1 1 161,164,165,176,177,199,200,201,202,203,204,208,211,212,215,222,223,224,225,226,227,228,229,230,231,232,233,234,237,238 2 -187663 cd09762 HSDL2_SDR_c 1 active site 0 0 1 1 117,145,160,164 1 -187663 cd09762 HSDL2_SDR_c 2 NAD(P) binding site 0 1 1 1 9,11,12,13,14,33,34,35,42,65,66,67,93,94,95,116,143,160,164,189,193,194,196,197,198 5 -187663 cd09762 HSDL2_SDR_c 3 homodimer interface 0 1 0 0 70,105,107,110,111,114,119,122,126,129,147,149,151,158,162,169,170,172,173,174,176,177 2 -187664 cd09763 DHRS1-like_SDR_c 1 active site 0 0 1 1 119,147,159,163 1 -187664 cd09763 DHRS1-like_SDR_c 2 NAD(P) binding site 0 0 1 1 9,11,12,13,14,33,34,35,40,59,60,61,88,89,90,118,145,159,163,188,192,193,195,220,221 5 -187664 cd09763 DHRS1-like_SDR_c 3 putative dimer interface 0 0 0 1 64,107,109,112,113,116,121,124,128,131,149,151,153,157,161,168,169,171,172,173,175,176 2 -188874 cd09768 Luminal_EIF2AK3 1 homodimer interface 0 0 1 1 81,82,83,84,85,90,92,93,94,95,97,98,99,111,113,114,115,136,137,145,147,162,164,165,166 2 -188875 cd09769 Luminal_IRE1 1 homodimer interface 0 1 1 0 80,81,82,83,84,90,92,93,94,95,97,98,99,111,113,114,115,118,146,147,155,157,172,174,175,176 2 -197361 cd09803 UBAN 1 polyubiquitin binding site 0 1 1 0 38,42,43,45,46,49,50,51,53,54,56,57,58,61,62,65,66,69 2 -197361 cd09803 UBAN 2 dimer interface 0 1 1 0 1,2,5,6,8,9,12,15,16,19,20,22,23,26,30,33,40,43,46,47,50,53,54,57,58,60,61,64,65,68,72,75,79,82 2 -197362 cd09804 Dcp1 1 heterodimer interface 0 1 1 0 1,2,6,8,9,12,13,23,25,47,64,65,66,69,71 2 -187665 cd09805 type2_17beta_HSD-like_SDR_c 1 active site 0 0 1 1 109,136,149,153 1 -187665 cd09805 type2_17beta_HSD-like_SDR_c 2 NADP binding site 0 0 1 1 6,8,9,10,11,31,54,55,56,84,85,86,87,108,134,135,136,149,153,182,184,185,186 5 -187665 cd09805 type2_17beta_HSD-like_SDR_c 3 steroid binding site 0 0 1 0 136,137,138,143,149,180,181,187,216,219,261 0 -187666 cd09806 type1_17beta-HSD-like_SDR_c 1 active site 0 0 1 1 109,137,150,154 1 -187666 cd09806 type1_17beta-HSD-like_SDR_c 2 NADP binding site 0 1 1 1 6,8,9,10,11,34,59,60,61,85,86,87,88,108,135,136,137,150,154,183,185,186,187 5 -187666 cd09806 type1_17beta-HSD-like_SDR_c 3 steroid binding site 0 1 1 0 137,138,139,144,150,181,182,188,215,218,256 0 -212495 cd09807 retinol-DH_like_SDR_c 1 active site 0 0 1 1 108,142,161,165 1 -212495 cd09807 retinol-DH_like_SDR_c 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,58,59,60,86,87,88,107,140,141,142,161,165,191,192,193,194,196,197 5 -187668 cd09808 DHRS-12_like_SDR_c-like 1 active site 0 0 1 1 108,142,162,166 1 -187668 cd09808 DHRS-12_like_SDR_c-like 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,58,59,60,86,87,88,107,140,141,142,162,166,190,191,192,193,195,196 5 -187669 cd09809 human_WWOX_like_SDR_c-like 1 active site 0 0 1 1 108,142,169,173 1 -187669 cd09809 human_WWOX_like_SDR_c-like 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,31,32,33,58,59,60,86,87,88,107,140,141,142,169,173,199,200,201,202,204,205 5 -187670 cd09810 LPOR_like_SDR_c_like 1 active site 0 0 1 1 110,146,186,190 1 -187670 cd09810 LPOR_like_SDR_c_like 2 putative NAD(P) binding site 0 0 1 1 7,9,10,11,12,32,33,34,57,58,59,85,86,87,109,144,145,146,186,190,217,218,219,220,222,223 5 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e 1 active site 0 0 1 1 97,121,151,155 1 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,32,33,34,78,79,80,96,119,120,121,151,155,183,184,185,186 5 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e 3 putative substrate binding site 0 0 1 1 121,151,185,198,208,213 5 -187672 cd09812 3b-HSD_like_1_SDR_e 1 active site 0 0 1 1 87,111,140,144 1 -187672 cd09812 3b-HSD_like_1_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,29,30,31,67,68,69,86,109,110,111,140,144,173,174,175,176 5 -187672 cd09812 3b-HSD_like_1_SDR_e 3 putative substrate binding site 0 0 1 1 111,140,175,188,199,204 5 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e 1 active site 0 0 1 1 89,113,140,144 1 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e 2 putative NAD(P) binding site 0 0 1 1 5,7,8,9,10,30,31,32,73,74,75,88,111,112,113,140,144,168,169,170,171 5 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e 3 putative substrate binding site 0 0 1 1 113,140,170,183,194,199 5 -212499 cd09815 TP_methylase 1 active site 0 1 1 0 7,87,88,89,92,93,94,117,118,138,160,161,188,190,191,218,219 1 -212499 cd09815 TP_methylase 2 SAM binding site 0 1 0 0 87,88,89,92,93,117,118,161,188,190,191,218,219 5 -212499 cd09815 TP_methylase 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,91,92,97,100,101,111,112,113,114,115,116,117,119,120,121,123,124,134,135,136,195 2 -188648 cd09816 prostaglandin_endoperoxide_synthase 1 heme binding site 0 1 1 0 60,103,107,111,114,115,116,208,295,298,299,300,301,304,321,356,358,359,362 5 -188648 cd09816 prostaglandin_endoperoxide_synthase 2 substrate binding site 0 1 1 0 28,109,258,261,262,266,268,294,298,300,430,434,438,439,442,443,446 5 -188648 cd09816 prostaglandin_endoperoxide_synthase 3 homodimer interface 0 1 1 0 36,38,39,40,48,49,50,51,52,54,131,232,233,234,235,236,239,240,243,246,247,250,280,281,282,283,284,285,286,287,449,450,453,454,455,456,457,459,460,461,463,464 2 -188649 cd09817 linoleate_diol_synthase_like 1 putative heme binding site 0 0 1 1 180,181,273,276,277,278,279,282,331,374,377,381 5 -188649 cd09817 linoleate_diol_synthase_like 2 putative substrate binding site 0 0 1 1 228,231,232,236,272,276,278,451,455,459,460,463,464,467 5 -188650 cd09818 PIOX_like 1 putative active site 0 0 1 1 193,261,427,428 1 -188650 cd09818 PIOX_like 2 putative heme binding site 0 0 1 1 143,144,258,261,262,263,264,267,291,341,344,348 5 -188650 cd09818 PIOX_like 3 putative substrate binding site 0 0 1 1 194,197,198,202,257,261,263,413,417,421,422,425,426,429 5 -188651 cd09819 An_peroxidase_bacterial_1 1 putative heme binding site 0 0 1 1 152,153,241,244,245,246,248,251,270,320,337,340,344 5 -188651 cd09819 An_peroxidase_bacterial_1 2 putative substrate binding site 0 0 1 1 210,213,214,218,240,244,246,408,412,416,417,420,421,424 5 -188652 cd09820 dual_peroxidase_like 1 putative heme binding site 0 0 1 1 209,210,292,295,296,297,299,302,334,384,387,391 5 -188652 cd09820 dual_peroxidase_like 2 putative substrate binding site 0 0 1 1 260,263,264,268,291,295,297,459,463,467,468,471,472,475 5 -188653 cd09821 An_peroxidase_bacterial_2 1 putative heme binding site 0 0 1 1 186,187,287,290,291,292,294,297,327,362,373,376,380 5 -188653 cd09821 An_peroxidase_bacterial_2 2 putative substrate binding site 0 0 1 1 253,256,257,261,286,290,292,503,507,511,512,515,516,519 5 -188654 cd09822 peroxinectin_like_bacterial 1 putative heme binding site 0 0 1 1 121,122,205,208,209,210,212,215,238,276,287,290,294 5 -188654 cd09822 peroxinectin_like_bacterial 2 putative substrate binding site 0 0 1 1 172,175,176,180,204,208,210,358,362,366,367,370,371,374 5 -188655 cd09823 peroxinectin_like 1 heme binding site 0 1 1 0 71,74,168,171,172,175,178,201,252,259 5 -188655 cd09823 peroxinectin_like 2 putative substrate binding site 0 0 1 1 125,128,129,133,167,171,173,325,329,333,334,337,338,341 5 -188655 cd09823 peroxinectin_like 3 Ca binding site 0 1 1 0 7,11,13 4 -188655 cd09823 peroxinectin_like 4 homodimer interface 0 1 1 0 3,270,273 2 -188656 cd09824 myeloperoxidase_like 1 heme binding site 0 1 1 0 89,92,178,181,182,185,188,214,266,273 5 -188656 cd09824 myeloperoxidase_like 2 Ca binding site 0 1 1 0 18,22,24 4 -188656 cd09824 myeloperoxidase_like 3 putative glycosylation site 0 1 1 1 39,75,166 6 -188656 cd09824 myeloperoxidase_like 4 putative substrate binding site 0 0 1 1 143,146,147,151,177,181,183,340,344,348,349,352,353,356 5 -188656 cd09824 myeloperoxidase_like 5 homodimer interface 0 1 1 0 14,284,287 2 -188657 cd09825 thyroid_peroxidase 1 heme binding site 0 0 1 1 226,229,317,320,321,324,327,353,405,412 5 -188657 cd09825 thyroid_peroxidase 2 Ca binding site 0 0 1 1 154,158,160 4 -188657 cd09825 thyroid_peroxidase 3 putative substrate binding site 0 0 1 1 280,283,284,288,316,320,322,479,483,487,488,491,492,495 5 -188657 cd09825 thyroid_peroxidase 4 putative homodimer interface 0 0 1 1 150,423,426 2 -188658 cd09826 peroxidasin_like 1 heme binding site 0 0 1 1 113,116,203,206,207,210,213,238,290,297 5 -188658 cd09826 peroxidasin_like 2 Ca binding site 0 0 1 1 43,47,49 4 -188658 cd09826 peroxidasin_like 3 putative substrate binding site 0 0 1 1 167,170,171,175,202,206,208,364,368,372,373,376,377,380 5 -188658 cd09826 peroxidasin_like 4 putative homodimer interface 0 0 1 1 39,308,311 2 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,61,62,63,64,65 7 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 3 putative ligand binding site I 0 0 0 0 31,44,48,49,52,70,91,92,93,108 5 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 4 putative ligand binding site II 0 0 0 0 3,5,6,7,31,32,33,91,104,106,108,109,112 5 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 3 putative ligand binding site I 0 0 0 0 29,41,45,46,49,71,93,94,95,110 5 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 4 putative ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,93,106,108,110,111,114 5 -341404 cd09834 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,67,68,69,70,71 7 -341404 cd09834 CBS_pair_bac 2 CBS repeat 0 0 0 0 76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,104,105,106,107,108,109,110,112,113,114,115,116 7 -341404 cd09834 CBS_pair_bac 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,76,95,96,97,112 5 -341404 cd09834 CBS_pair_bac 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,95,108,110,112,113,116 5 -341405 cd09836 CBS_pair_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,60,61,62,63,64 7 -341405 cd09836 CBS_pair_arch 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341405 cd09836 CBS_pair_arch 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,69,91,92,93,108 5 -341405 cd09836 CBS_pair_arch 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,91,104,106,108,109,112 5 -341406 cd09837 CBS_pair_chlorobiales 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,59,60,61,62,63 7 -341406 cd09837 CBS_pair_chlorobiales 2 CBS repeat 0 0 0 0 67,68,69,70,73,74,75,76,77,78,79,80,81,82,83,89,90,91,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110 7 -341406 cd09837 CBS_pair_chlorobiales 3 putative ligand binding site I 0 0 0 0 26,38,42,43,46,67,89,90,91,106 5 -341406 cd09837 CBS_pair_chlorobiales 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,89,102,104,106,107,110 5 -341074 cd09839 M1_like_TAF2 1 oligomer interface 0 1 1 0 478,479,482,486,490,513 2 -341074 cd09839 M1_like_TAF2 2 intramolecular interface 0 1 1 0 146,167,169,174,177,343,346,366,367,368,420,421,424,425,427,428,430,431,434,440,528 2 -188871 cd09840 LIM2_CRP2 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188872 cd09841 LIM1_Prickle_3 1 Zn binding site 0 0 0 1 0,3,26,29,32,35,53,56 4 -197300 cd09842 PLDc_vPLD1_1 1 putative active site 0 0 1 1 112,114,127,129,140 1 -197300 cd09842 PLDc_vPLD1_1 2 catalytic site 0 0 1 1 112 1 -197301 cd09843 PLDc_vPLD2_1 1 putative active site 0 0 1 1 111,113,126,128,139 1 -197301 cd09843 PLDc_vPLD2_1 2 catalytic site 0 0 1 1 111 1 -197302 cd09844 PLDc_vPLD1_2 1 putative active site 0 0 1 1 142,144,157,159,172 1 -197302 cd09844 PLDc_vPLD1_2 2 catalytic site 0 0 1 1 142 1 -197303 cd09845 PLDc_vPLD2_2 1 putative active site 0 0 1 1 142,144,157,159,172 1 -197303 cd09845 PLDc_vPLD2_2 2 catalytic site 0 0 1 1 142 1 -349946 cd09848 M28_TfR 1 dimer interface 0 1 1 1 46,48,49,51,61,63,66,68,69,71,116,118,135,138,139,140,141,142,143,144,145,146 2 -349947 cd09849 M20_Acy1L2-like 1 metal binding site CHEHH 0 1 1 91,93,129,170,360 4 -197367 cd09850 Ebola-like_HR1-HR2 1 HR1A 0 0 1 1 0,1,2,3,4,5,6,7,8 0 -197367 cd09850 Ebola-like_HR1-HR2 2 HR1B 0 0 1 1 9,10,11,12,13,14,15,16,17,18 0 -197367 cd09850 Ebola-like_HR1-HR2 3 HR1C 0 0 1 1 19,20,21,22,23,24,25 0 -197367 cd09850 Ebola-like_HR1-HR2 4 HR1D 0 0 1 1 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 0 -197367 cd09850 Ebola-like_HR1-HR2 5 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -197367 cd09850 Ebola-like_HR1-HR2 6 CX(6,7)C motif 0 0 0 1 44,45,46,47,48,49,50,52 0 -197367 cd09850 Ebola-like_HR1-HR2 7 HR2 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75,76 0 -197367 cd09850 Ebola-like_HR1-HR2 8 Cl binding site 0 1 1 1 26,29 4 -197367 cd09850 Ebola-like_HR1-HR2 9 homotrimer interface 0 1 1 1 0,1,2,4,5,7,8,10,11,12,14,15,16,18,19,21,22,23,25,26,27,28,29,30,31,32,33,35,36,37,39,40,46,47,50,54,55,56,57,59,65,66,69,72,73,76 2 -197367 cd09850 Ebola-like_HR1-HR2 10 HR1-GP1 interface 0 1 1 1 0,1,2,4,5,6,8,9,11,12,13,16,17,18,19,20,22,23,24,25,27,28,30,31,32,34,35,37 2 -197368 cd09851 HTLV-1-like_HR1-HR2 1 HR1 0 0 1 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -197368 cd09851 HTLV-1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 0 -197368 cd09851 HTLV-1-like_HR1-HR2 3 CX(6)C motif 0 0 1 1 52,53,54,55,56,57,58,59 0 -197368 cd09851 HTLV-1-like_HR1-HR2 4 HR2 0 0 1 1 68,69,70,71,72,73,74,75,76,77 0 -197368 cd09851 HTLV-1-like_HR1-HR2 5 Cl binding site 0 1 1 1 37 4 -197368 cd09851 HTLV-1-like_HR1-HR2 6 homotrimer interface 0 0 1 1 8,9,10,12,13,15,16,18,19,20,22,23,24,26,27,29,30,31,33,34,35,36,37,38,39,40,41,43,44,45,54,55,58,61,62,63,70,73,74,77 2 -350203 cd09852 PIN_SF 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,78,97,99 1 -350204 cd09853 PIN_FEN-like 1 active site 0 1 1 1 2,4,5,6,8,9,10,12,13,26,30,31,33,34,35,37,50,57,94,98,118,120,142,143,144,145,158,169,172 1 -350204 cd09853 PIN_FEN-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 2,50,118,120 4 -350204 cd09853 PIN_FEN-like 3 metal binding site 2 [DEQN][DEQN] 1 1 1 143,145 4 -350204 cd09853 PIN_FEN-like 4 helical arch 0 0 1 1 56,57,58,93,94 0 -350205 cd09854 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,41,94,113 1 -350206 cd09856 PIN_FEN1-like 1 active site 0 1 1 1 2,3,25,27,28,31,32,33,35,36,51,52,55,56,59,72,73,79,83,118,119,120,121,144,146,164,165,166,167,178,180,181,221,222,223,227,230,234 1 -350206 cd09856 PIN_FEN1-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 25,72,144,146 4 -350206 cd09856 PIN_FEN1-like 3 metal binding site 2 [DEQN][DEQN] 1 1 1 165,167 4 -350206 cd09856 PIN_FEN1-like 4 helical arch 0 0 1 1 78,79,80,81,82,83,118,119,120,121 0 -350207 cd09857 PIN_EXO1 1 active site 0 1 1 1 1,2,3,6,7,29,31,32,35,36,39,40,53,57,77,84,88,91,94,95,116,119,120,149,151,169,170,171,172,184 1 -350207 cd09857 PIN_EXO1 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 29,77,149,151 4 -350207 cd09857 PIN_EXO1 3 metal binding site 2 [DEQN][DEQN] 1 1 1 170,172 4 -350207 cd09857 PIN_EXO1 4 helical arch 0 1 1 1 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 0 -350208 cd09858 PIN_MKT1 1 helical arch 0 0 1 1 86,87,88,127,128 0 -350209 cd09859 PIN_53EXO 1 active site 0 1 1 1 2,5,6,8,9,10,12,13,33,34,36,37,38,40,41,52,54,60,74,78,82,102,104,105,126,127,128,129,149,150,153 1 -350209 cd09859 PIN_53EXO 2 metal binding site 1 [DENQ][DENQ][DENQ] 1 1 1 2,104,127 4 -350209 cd09859 PIN_53EXO 3 metal binding site 2 [DENQ][DENQ] 0 1 1 127,129 4 -350209 cd09859 PIN_53EXO 4 metal binding site 3 [DENQ][DENQ] 0 1 1 102,105 4 -350209 cd09859 PIN_53EXO 5 helical arch 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68,69,74,75,76,77,78 0 -350210 cd09860 PIN_T4-like 1 active site 0 1 1 1 4,7,8,10,11,12,14,15,33,34,36,37,38,40,41,52,54,59,79,83,87,108,110,132,133,134,135,149,151,152,153,156 1 -350210 cd09860 PIN_T4-like 2 metal binding site 1 [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,52,108,110 4 -350210 cd09860 PIN_T4-like 3 metal binding site 2 [DENQ][DENQ] 1 1 1 133,135 4 -350210 cd09860 PIN_T4-like 4 5' ssDNA interaction site 0 1 1 0 7,10,11,14,54,59,79,83,87,132,133,134,151,153,156 3 -350210 cd09860 PIN_T4-like 5 3' ssDNA interaction site 0 1 1 0 8,12,33,34,36,37,38,40,41,149,152 3 -350210 cd09860 PIN_T4-like 6 helical arch 0 0 1 1 64,65,66,67,68,69,79,80,81,82,83 0 -350211 cd09862 PIN_Rrp44-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 53,81,130,157 1 -350211 cd09862 PIN_Rrp44-like 2 exosome subunit interface 0 1 1 0 11,12,13,14,15,17,19,79,83,84,90,94,108,111 2 -350211 cd09862 PIN_Rrp44-like 3 metal binding site 0 1 1 0 22,27,30,143 4 -350212 cd09864 PIN_Fcf1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 15,52,85,104 1 -350212 cd09864 PIN_Fcf1-like 2 UTP 24 binding site 0 1 1 0 0,7,8,26,61,62,63,64,65,66,67,68 2 -350213 cd09865 PIN_ScUtp23p-like 1 metal binding site 0 1 1 1 61,88,90,100 4 -350213 cd09865 PIN_ScUtp23p-like 2 homodimer interface 0 1 1 0 6,9,12,13,16,17,39,40,42,45,46,49,50,125,133,136,137,138,139,142,143,144,145,146,147,148 2 -350214 cd09866 PIN_Fcf1-Utp23-H 1 active site [DENQ][DENQ][DENQ] 0 1 1 12,49,103 1 -350215 cd09867 PIN_FEN1 1 active site 0 1 1 1 3,24,26,27,30,32,34,35,36,37,38,44,45,52,56,60,61,64,77,84,91,119,124,149,151,170,172,183,186,234,235,236,237,240 1 -350215 cd09867 PIN_FEN1 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 24,77,149,151 4 -350215 cd09867 PIN_FEN1 3 metal binding site 2 [DEQN][DEQN] 1 1 1 170,172 4 -350215 cd09867 PIN_FEN1 4 helical arch 0 0 1 1 83,84,85,86,87,88,123,124,125,126 0 -350215 cd09867 PIN_FEN1 5 3' dsDNA binding site 0 1 1 0 35,36,37,38,52,56,60,61,64,186,234,236,237,240,243,247 3 -350215 cd09867 PIN_FEN1 6 FEN1-PCNA interface 0 1 1 1 18,19,20,71,158,159,160,206,208,209,217,218,220 2 -350216 cd09868 PIN_XPG_RAD2 1 active site 0 1 1 1 0,5,31,34,35,38,39,117,119,137,138,139,140,151,154 1 -350216 cd09868 PIN_XPG_RAD2 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 28,75,117,119 4 -350216 cd09868 PIN_XPG_RAD2 3 metal binding site 2 [DEQN][DEQN] 1 1 1 138,140 4 -350216 cd09868 PIN_XPG_RAD2 4 helical arch 0 0 1 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94 0 -350217 cd09869 PIN_GEN1 1 active site 0 1 1 1 14,28,35,52,53,56,57,73,133,135,154,156,169,170,216,220 1 -350217 cd09869 PIN_GEN1 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 28,73,133,135 4 -350217 cd09869 PIN_GEN1 3 metal binding site 2 [DEQN][DEQN] 0 1 1 154,156 4 -350217 cd09869 PIN_GEN1 4 helical arch 0 0 1 1 79,80,81,82,83,84,85,86,87,88,89,90,103,104,105,106,107,108,109,110 0 -350218 cd09870 PIN_YEN1 1 active site 0 1 1 1 0,2,5,39,45,46,86,128,130,148,149,151 1 -350218 cd09870 PIN_YEN1 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 39,86,128,130 4 -350218 cd09870 PIN_YEN1 3 metal binding site 2 [DEQN][DEQN] 1 1 1 149,151 4 -350218 cd09870 PIN_YEN1 4 helical arch 0 0 1 1 92,93,94,95,96,97,102,103,104,105 0 -350219 cd09871 PIN_MtVapC28-VapC30-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,39,98,118 1 -350219 cd09871 PIN_MtVapC28-VapC30-like 2 toxin/antitoxin interface 0 1 1 0 10,11,12,13,17,21,25,30,43,49,51,52,55,58,59,62 2 -350219 cd09871 PIN_MtVapC28-VapC30-like 3 homodimer interface 0 1 1 0 34,35,37,38,39,41,42,45,50,53,57,69,70,75,76,78,79,82,83,96,97,99,100 2 -350220 cd09872 PIN_Sll0205-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,94,112 1 -350221 cd09873 PIN_Pae0151-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,39,95,113 1 -350221 cd09873 PIN_Pae0151-like 2 homotetrameric interface 0 1 1 1 4,33,34,35,37,38,39,40,41,42,44,45,46,62,63,65,66,80,83,84,86,87,91,92,93,94,95,97,112,113,114,115,119 2 -350222 cd09874 PIN_MT3492-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,40,100,119 1 -350223 cd09875 PIN_VapC-FitB-like 1 active site [DENQ][DENQ][DENQ] 1 1 1 2,39,116 1 -350223 cd09875 PIN_VapC-FitB-like 2 heterodimer interface 0 1 1 1 1,2,3,4,6,7,8,9,10,11,19,20,21,22,30,31,35,39,40,42,43,44,52,53,54,55,56,58,59,60,61,62,68,71,95,96,97,98,100,101,109,116,118 2 -350223 cd09875 PIN_VapC-FitB-like 3 homodimer interface 0 1 1 1 34,35,37,38,39,41,42,43,44,53,54,56,57,58,60,71,72,80,81,82,84,85,86,96,100 2 -350224 cd09876 PIN_Nob1-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,29,76 1 -350225 cd09877 PIN_YacL-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 3,34,82,100,102 1 -350225 cd09877 PIN_YacL-like 2 homodimer interface 0 1 0 0 0,14,18,19,20,21,115,116,117,119,120,123,124,125,126 2 -350226 cd09878 PIN_VapC_VirB11L-ATPase-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,35,89,107 1 -350227 cd09879 PIN_VapC_AF0591-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,39,76,94 1 -350228 cd09880 PIN_Smg5-6-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,33,98,128,130 1 -350229 cd09881 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,38,94,112 1 -350229 cd09881 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,33,34,36,37,38,40,41,42,44,51,52,53,54,55,57,58,59,61,64,65,67,68,69,73,74,76,77,78,80,81,84,90,91,92,93,94,95,96,97,105,106,111,112 2 -350229 cd09881 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,38,40,41,42,51,52,53,54,55,57,58,59,61,64,65,67,69,80,90,91,92,93,94,95,96,97,105,106,111,112 2 -350229 cd09881 PIN_VapC4-5_FitB-like 4 homodimer interface 0 1 1 1 33,34,36,37,38,40,41,44,53,57,67,68,69,73,74,76,77,78,80,81,84,92,93,96 2 -350230 cd09882 PIN_MtVapC3-like_start 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 2,40,93,111,113 1 -350230 cd09882 PIN_MtVapC3-like_start 2 heterodimer interface 0 1 1 1 3,4,6,7,9,10,11,22,26,27,29,36,40,41,43,44,45,50,53,54,55,56,57,90,92,93,111,113 2 -350230 cd09882 PIN_MtVapC3-like_start 3 homodimer interface 0 1 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,73,74,75,76,78,79,80,82,83,84,91,95 2 -350231 cd09883 PIN_VapC_PhoHL-ATPase 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 6,34,98,122,124 1 -350232 cd09884 PIN_Smg5-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 5,36,88,123,134 1 -350232 cd09884 PIN_Smg5-like 2 conserved Asp residue 0 0 1 1 5 0 -350233 cd09885 PIN_Smg6-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 10,41,114,153,155 1 -193576 cd09887 NGN_Arch 1 heterodimer interface 0 1 1 1 1,12,15,19,22,23,29,30,31,32,33,34,45,72,75,76,78,79,81 2 -193577 cd09888 NGN_Euk 1 heterodimer interface 0 1 1 1 12,15,16,18,19,20,22,26,34,35,36,37,38,39,50,52,80,81,84 2 -193580 cd09891 NGN_Bact_1 1 putative homodimer interface 0 1 1 1 3,37,57,60,62,94,102 2 -188617 cd09897 H3TH_FEN1-XPG-like 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188617 cd09897 H3TH_FEN1-XPG-like 2 metal binding site 0 1 1 1 12 4 -188618 cd09898 H3TH_53EXO 1 putative DNA binding site 0 0 1 1 10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,30,31,32,33 3 -188618 cd09898 H3TH_53EXO 2 putative metal binding site 0 0 1 1 12,15 4 -188619 cd09899 H3TH_T4-like 1 DNA binding site 0 1 1 1 11,12,13,14,15,16,17,18,19,20,21,23,24,25,30 3 -188619 cd09899 H3TH_T4-like 2 metal binding site 0 1 1 1 13,16 4 -188620 cd09900 H3TH_XPG-like 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188620 cd09900 H3TH_XPG-like 2 metal binding site 0 1 1 1 12 4 -188621 cd09901 H3TH_FEN1-like 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188621 cd09901 H3TH_FEN1-like 2 putative metal binding site 0 0 1 1 12 4 -188623 cd09903 H3TH_FEN1-Arc 1 putative DNA binding site 0 0 1 1 10,11,12,13,14,17,18,19,20,21,22,24,25,26,27 3 -188623 cd09903 H3TH_FEN1-Arc 2 metal binding site 0 1 1 1 12 4 -188624 cd09904 H3TH_XPG 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188624 cd09904 H3TH_XPG 2 putative metal binding site 0 0 1 1 12 4 -188625 cd09905 H3TH_GEN1 1 putative DNA binding site 0 0 1 1 10,11,12,13,14,15,18,19,20,21,22,23,25,26,27,28 3 -188625 cd09905 H3TH_GEN1 2 putative metal binding site 0 0 1 1 13 4 -188626 cd09906 H3TH_YEN1 1 putative DNA binding site 0 0 1 1 10,11,12,13,14,15,18,19,20,21,22,23,25,26,27,28 3 -188626 cd09906 H3TH_YEN1 2 putative metal binding site 0 0 1 1 13 4 -188627 cd09907 H3TH_FEN1-Euk 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188627 cd09907 H3TH_FEN1-Euk 2 putative metal binding site 0 0 1 1 12 4 -188628 cd09908 H3TH_EXO1 1 putative DNA binding site 0 0 1 1 9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26 3 -188628 cd09908 H3TH_EXO1 2 putative metal binding site 0 0 1 1 12 4 -197369 cd09909 HIV-1-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -197369 cd09909 HIV-1-like_HR1-HR2 2 HR2 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127 0 -197369 cd09909 HIV-1-like_HR1-HR2 3 homotrimer interface 0 1 1 1 2,4,5,6,8,9,10,11,12,13,15,16,17,18,19,22,23,24,25,26,27,29,30,31,32,33,34,36,37,38,40,41,43,44,47,48,50,51,52,54,55,56,57,58,59,60,61,62,63,68,70,72,73,74,75,85,86,89,90,93,96,97,100,101,103,104,107,108,110,111,114,115,121,122,125 2 -197365 cd09911 Lin0431_like 1 trimer interface 0 1 1 1 8,9,10,11,12,13,20,21 2 -206739 cd09912 DLP_2 1 GTP/Mg2+ binding site 0 1 1 0 8,9,10,11,12,13,14,54,110,111,113,147,148,149 5 -206739 cd09912 DLP_2 2 Switch I region 0 0 1 1 37,38,39 0 -206739 cd09912 DLP_2 3 Switch II region 0 0 1 1 53,54,74,75 0 -206739 cd09912 DLP_2 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206739 cd09912 DLP_2 5 G2 box 0 0 1 1 33 0 -206739 cd09912 DLP_2 6 G3 box 0 0 1 1 51,52,53,54 0 -206739 cd09912 DLP_2 7 G4 box 0 0 1 1 110,111,112,113 0 -206739 cd09912 DLP_2 8 G5 box 0 0 1 1 147,148,149 0 -206740 cd09913 EHD 1 GTP/Mg2+ binding site 0 0 1 0 10,11,12,13,93,160,162,196,197,198 5 -206740 cd09913 EHD 2 Switch I region 0 0 1 1 38,39,40 0 -206740 cd09913 EHD 3 Switch II region 0 0 1 1 95,96,123,124 0 -206740 cd09913 EHD 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206740 cd09913 EHD 5 G2 box 0 0 1 1 34 0 -206740 cd09913 EHD 6 G3 box 0 0 1 1 93,94,95,96 0 -206740 cd09913 EHD 7 G4 box 0 0 1 1 159,160,161,162 0 -206740 cd09913 EHD 8 G5 box 0 0 1 1 196,197,198 0 -206741 cd09914 RocCOR 1 GTP/Mg2+ binding site 0 0 1 0 12,13,14,15,59,113,114,116,143,144,145 5 -206741 cd09914 RocCOR 2 Switch I region 0 0 1 1 36,37,38 0 -206741 cd09914 RocCOR 3 Switch II region 0 0 1 1 58,59,75,76 0 -206741 cd09914 RocCOR 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206741 cd09914 RocCOR 5 G2 box 0 0 1 1 32 0 -206741 cd09914 RocCOR 6 G3 box 0 0 1 1 56,57,58,59 0 -206741 cd09914 RocCOR 7 G4 box 0 0 1 1 113,114,115,116 0 -206741 cd09914 RocCOR 8 G5 box 0 0 1 1 143,144,145 0 -206742 cd09915 Rag 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,56,115,116,118,156,157,158 5 -206742 cd09915 Rag 2 Switch I region 0 0 1 1 37,38,39 0 -206742 cd09915 Rag 3 Switch II region 0 0 1 1 55,56,75,76 0 -206742 cd09915 Rag 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206742 cd09915 Rag 5 G2 box 0 0 1 1 33 0 -206742 cd09915 Rag 6 G3 box 0 0 1 1 53,54,55,56 0 -206742 cd09915 Rag 7 G4 box 0 0 1 1 115,116,117,118 0 -206742 cd09915 Rag 8 G5 box 0 0 1 1 156,157,158 0 -197366 cd09916 CpxP_like 1 dimer interface 0 1 1 0 33,37,40,41,45,47,51,54,58,62,66,69,70,73,76,87,88,91 2 -198174 cd09918 SH2_Nterm_SPT6_like 1 phosphotyrosine binding pocket 0 1 1 1 9,27,49,51 2 -198174 cd09918 SH2_Nterm_SPT6_like 2 hydrophobic binding pocket 0 0 1 1 50,84 2 -198175 cd09919 SH2_STAT_family 1 phosphotyrosine binding pocket 0 0 1 1 27,45,71,73 2 -198175 cd09919 SH2_STAT_family 2 hydrophobic binding pocket 0 0 1 1 72,88 2 -198175 cd09919 SH2_STAT_family 3 homodimer interface 0 0 1 0 82,83 2 -198176 cd09920 SH2_Cbl-b_TKB 1 phosphotyrosine binding pocket 0 1 1 1 18,38,40,41,42,43,48,60,62 2 -198176 cd09920 SH2_Cbl-b_TKB 2 hydrophobic binding pocket 0 1 1 1 63,64,65,66,79,80,81 2 -198177 cd09921 SH2_Jak_family 1 phosphotyrosine binding pocket 0 0 1 1 20,40,65,67 2 -198177 cd09921 SH2_Jak_family 2 hydrophobic binding pocket 0 0 1 1 66,95 2 -198178 cd09923 SH2_SOCS_family 1 phosphotyrosine binding pocket 0 1 1 1 8,26,28,36,49 2 -198178 cd09923 SH2_SOCS_family 2 hydrophobic binding pocket 0 0 1 1 59,61,79 2 -198179 cd09925 SH2_SHC 1 phosphotyrosine binding pocket 0 1 1 0 15,31,33,38,43,52,53,54 2 -198179 cd09925 SH2_SHC 2 hydrophobic binding pocket 0 1 1 1 42,53,55,57,62,63,64,69,75,86,87,88 2 -198180 cd09926 SH2_CRK_like 1 phosphotyrosine binding pocket 0 0 1 1 15,33,54,56 2 -198180 cd09926 SH2_CRK_like 2 hydrophobic binding pocket 0 0 1 1 55,87 2 -198181 cd09927 SH2_Tensin_like 1 phosphotyrosine binding pocket 0 0 1 1 11,29,67,69 2 -198181 cd09927 SH2_Tensin_like 2 hydrophobic binding pocket 0 0 1 1 68,98 2 -198182 cd09928 SH2_Cterm_SPT6_like 1 phosphotyrosine binding pocket 0 0 1 1 12,35,57,59 2 -198182 cd09928 SH2_Cterm_SPT6_like 2 hydrophobic binding pocket 0 0 1 1 58,84 2 -198183 cd09929 SH2_BLNK_SLP-76 1 phosphotyrosine binding pocket 0 0 1 1 19,38,61,63 2 -198183 cd09929 SH2_BLNK_SLP-76 2 hydrophobic binding pocket 0 0 1 1 62,95 2 -198184 cd09930 SH2_cSH2_p85_like 1 phosphotyrosine binding pocket 0 1 1 1 14,32,34,35,52,54 2 -198184 cd09930 SH2_cSH2_p85_like 2 hydrophobic binding pocket 0 1 1 1 53,64,86,89,93 2 -198185 cd09931 SH2_C-SH2_SHP_like 1 phosphotyrosine binding pocket 0 1 1 1 28,30,35,36 2 -198185 cd09931 SH2_C-SH2_SHP_like 2 hydrophobic binding pocket 0 0 1 1 50,77 2 -198186 cd09932 SH2_C-SH2_PLC_gamma_like 1 phosphotyrosine binding pocket 0 0 1 1 12,31,52,54 2 -198186 cd09932 SH2_C-SH2_PLC_gamma_like 2 hydrophobic binding pocket 0 0 1 1 53,79 2 -199827 cd09933 SH2_Src_family 1 phosphotyrosine binding pocket 0 1 1 1 11,31,33,34,35,41,57,58,59 2 -199827 cd09933 SH2_Src_family 2 hydrophobic binding pocket 0 1 1 1 70,86,91,92,93 2 -199827 cd09933 SH2_Src_family 3 autoinhibitory site 0 1 1 1 11,31,33,34,35,36,41,57,59,92 2 -198188 cd09934 SH2_Tec_family 1 phosphotyrosine binding pocket 0 0 1 1 14,33 2 -198188 cd09934 SH2_Tec_family 2 hydrophobic binding pocket 0 1 1 1 85,93,94 2 -198189 cd09935 SH2_ABL 1 phosphotyrosine binding pocket 0 1 1 1 11,39,52 2 -198190 cd09937 SH2_csk_like 1 phosphotyrosine binding pocket 0 0 1 1 11,29,50,52 2 -198190 cd09937 SH2_csk_like 2 hydrophobic binding pocket 0 0 1 1 51,78 2 -198191 cd09938 SH2_N-SH2_Zap70_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 9,29,50,52 2 -198191 cd09938 SH2_N-SH2_Zap70_Syk_like 2 hydrophobic binding pocket 0 1 1 1 51,63,64,66,85,86 2 -198192 cd09939 SH2_STAP_family 1 phosphotyrosine binding pocket 0 1 1 1 8,27,36,52 2 -198192 cd09939 SH2_STAP_family 2 hydrophobic binding pocket 0 1 1 1 41,43,51,62,64,79,80,83,88 2 -198193 cd09940 SH2_Vav_family 1 phosphotyrosine binding pocket 0 0 1 1 13,31,52,54 2 -198193 cd09940 SH2_Vav_family 2 hydrophobic binding pocket 0 0 1 1 53,81 2 -199828 cd09941 SH2_Grb2_like 1 phosphotyrosine binding pocket 0 1 1 1 11,30,32,40,51,53 2 -198195 cd09942 SH2_nSH2_p85_like 1 phosphotyrosine binding pocket 0 0 1 1 15,33,54,56 2 -198195 cd09942 SH2_nSH2_p85_like 2 hydrophobic binding pocket 0 0 1 1 55,82 2 -198196 cd09943 SH2_Nck_family 1 phosphotyrosine binding pocket 0 1 1 1 9,28,30,31,32,38,51 2 -198196 cd09943 SH2_Nck_family 2 hydrophobic binding pocket 0 1 1 1 50,61,64,81,82,83 2 -198197 cd09944 SH2_Grb7_family 1 phosphotyrosine binding pocket 0 1 1 1 13,33,34,35,38,54 2 -198197 cd09944 SH2_Grb7_family 2 hydrophobic binding pocket 0 1 1 1 55,87 2 -198198 cd09945 SH2_SHB_SHD_SHE_SHF_like 1 phosphotyrosine binding pocket 0 0 1 1 9,27,48,50 2 -198198 cd09945 SH2_SHB_SHD_SHE_SHF_like 2 hydrophobic binding pocket 0 0 1 1 49,78 2 -198199 cd09946 SH2_HSH2_like 1 phosphotyrosine binding pocket 0 0 1 1 15,33,53,55 2 -198199 cd09946 SH2_HSH2_like 2 hydrophobic binding pocket 0 0 1 1 54,83 2 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 3 HR2 0 0 1 1 64,65,66,67,68,69,70,71,72 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,54,65,68,69,72 2 -197371 cd09948 Ebola_RSV-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 3 CX(6,7)C motif 0 0 1 1 44,45,46,47,48,49,50,51 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 4 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 5 Cl binding site 0 1 1 1 29 4 -197371 cd09948 Ebola_RSV-like_HR1-HR2 6 homotrimer interface 0 1 1 1 0,1,2,4,5,7,8,10,11,12,14,15,16,18,19,21,22,23,25,26,27,28,29,30,31,32,33,35,36,37,46,47,50,53,54,55,56,58,64,67,68,71 2 -197372 cd09949 RSV-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -197372 cd09949 RSV-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -197372 cd09949 RSV-like_HR1-HR2 3 CX(6)C motif 0 0 1 1 44,45,46,47,48,49,50,51 0 -197372 cd09949 RSV-like_HR1-HR2 4 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197372 cd09949 RSV-like_HR1-HR2 5 Cl binding site 0 0 1 1 29 4 -197372 cd09949 RSV-like_HR1-HR2 6 homotrimer interface 0 0 1 1 0,1,2,4,5,7,8,10,11,12,14,15,16,18,19,21,22,23,25,26,27,28,29,30,31,32,33,35,36,37,46,47,50,53,54,55,56,58,64,67,68,71 2 -197373 cd09950 ENVV1-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 0 -197373 cd09950 ENVV1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -197373 cd09950 ENVV1-like_HR1-HR2 3 CX(6)C motif 0 0 1 1 44,45,46,47,48,49,50,51 0 -197373 cd09950 ENVV1-like_HR1-HR2 4 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197373 cd09950 ENVV1-like_HR1-HR2 5 Cl binding site 0 0 1 1 29 4 -197373 cd09950 ENVV1-like_HR1-HR2 6 homotrimer interface 0 0 1 1 0,1,2,4,5,7,8,10,11,12,14,15,16,18,19,21,22,23,25,26,27,28,29,30,31,32,33,35,36,37,46,47,50,53,54,55,56,58,64,67,68,71 2 -197374 cd09951 HERV-Rb-like_HR1-HR2 1 HR1 0 0 1 1 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 3 CX(6)C motif 0 0 1 1 48,49,50,51,52,53,54,55 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 4 HR2 0 0 1 1 71,72,73,74,75,76,77,78,79 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 5 Cl binding site 0 0 1 1 33 4 -197374 cd09951 HERV-Rb-like_HR1-HR2 6 homotrimer interface 0 0 1 1 4,5,6,8,9,11,12,14,15,16,18,19,20,22,23,25,26,27,29,30,31,32,33,34,35,36,37,39,40,41,50,51,54,57,58,59,60,62,72,75,76,79 2 -197380 cd09971 SdiA-regulated 1 putative active site 0 1 0 1 17,33,58,60,113,167,218,233 1 -212513 cd09987 Arginase_HDAC 1 active site 0 1 1 1 34,57,59,61,149,151,194 1 -212513 cd09987 Arginase_HDAC 2 metal binding site 0 1 1 1 57,59,151 4 -212514 cd09988 Formimidoylglutamase 1 putative active site 0 0 1 1 83,107,109,110,111,121,122,194,196,239 1 -212514 cd09988 Formimidoylglutamase 2 putative metal binding site HDHD[CD]D 0 1 1 83,107,109,111,194,196 4 -212515 cd09989 Arginase 1 active site 0 1 1 1 94,118,120,122,124,135,136,174,177,222,224,267 1 -212515 cd09989 Arginase 2 Mn binding site HDHDD[ND] 1 1 1 94,118,120,122,222,224 4 -212515 cd09989 Arginase 3 oligomer interface 0 1 1 1 171,173,178,181,182,190,191,192,194,195,196,197,200,201,204,239,240,241,242,243,244,245,246,252 2 -212516 cd09990 Agmatinase-like 1 active site 0 1 1 1 89,113,115,116,117,129,130,206,208,251 1 -212516 cd09990 Agmatinase-like 2 Mn binding site [NH]DHD[CD]D 1 1 1 89,113,115,117,206,208 4 -212516 cd09990 Agmatinase-like 3 oligomer interface 0 1 1 1 89,113,115,116,117,129,130,206,208,251 2 -212517 cd09991 HDAC_classI 1 active site 0 1 1 1 126,127,135,136,162,164,250,257,287,289 1 -212517 cd09991 HDAC_classI 2 Zn binding site DHD 1 1 1 162,164,250 4 -212518 cd09992 HDAC_classII 1 active site 0 1 1 1 104,105,113,114,142,144,229,271 1 -212518 cd09992 HDAC_classII 2 Zn binding site DHD 1 1 1 142,144,229 4 -212519 cd09993 HDAC_classIV 1 putative active site 0 0 1 1 6,99,100,101,102,110,111,112,139,141,212,216,256,257,259 1 -212519 cd09993 HDAC_classIV 2 Zn binding site DHD 0 1 1 139,141,216 4 -212520 cd09994 HDAC_AcuC_like 1 active site 0 1 1 1 126,127,135,136,163,165,252,259,294,296 1 -212520 cd09994 HDAC_AcuC_like 2 Zn binding site DHD 1 1 1 163,165,252 4 -212521 cd09996 HDAC_classII_1 1 active site 0 1 1 1 136,137,145,146,174,176,262,304 1 -212521 cd09996 HDAC_classII_1 2 Zn binding site DHD 1 1 1 174,176,262 4 -212522 cd09998 HDAC_Hos3 1 putative active site 0 0 1 1 119,120,128,129,157,159,287,333 1 -212522 cd09998 HDAC_Hos3 2 Zn binding site DHD 0 1 1 157,159,287 4 -212523 cd09999 Arginase-like_1 1 active site 0 0 1 1 85,108,110,112,125,206,208,251 1 -212523 cd09999 Arginase-like_1 2 Mn binding site CD[NSH]DDD 0 1 1 85,108,110,112,206,208 4 -212524 cd10000 HDAC8 1 active site 0 1 1 1 86,87,127,128,129,137,138,164,166,194,253,260,290,292 1 -212524 cd10000 HDAC8 2 Zn binding site DHD 1 1 1 164,166,253 4 -212524 cd10000 HDAC8 3 phosphorylation site S 0 1 1 23 6 -212525 cd10001 HDAC_classII_APAH 1 active site 0 1 1 1 116,117,125,126,152,154,241,278 1 -212525 cd10001 HDAC_classII_APAH 2 Zn binding site DHD 1 1 1 152,154,241 4 -212526 cd10002 HDAC10_HDAC6-dom1 1 putative active site 0 0 1 1 116,117,125,126,154,156,247,285 1 -212526 cd10002 HDAC10_HDAC6-dom1 2 Zn binding site DHD 0 1 1 154,156,247 4 -212527 cd10003 HDAC6-dom2 1 putative active site 0 0 1 1 125,126,134,135,163,165,256,294 1 -212527 cd10003 HDAC6-dom2 2 Zn binding site DHD 0 1 1 163,165,256 4 -212528 cd10004 RPD3-like 1 active site 0 0 1 1 132,133,141,142,168,170,256,263,293,295 1 -212528 cd10004 RPD3-like 2 Zn binding site DHD 0 1 1 168,170,256 4 -212529 cd10005 HDAC3 1 active site 0 0 1 1 131,132,140,141,167,169,256,263,293,295 1 -212529 cd10005 HDAC3 2 Zn binding site DHD 0 1 1 167,169,256 4 -212530 cd10006 HDAC4 1 active site 0 1 1 1 153,154,162,163,191,193,285,325 1 -212530 cd10006 HDAC4 2 Zn binding site 1 DHD 1 1 1 191,193,285 4 -212530 cd10006 HDAC4 3 Zn binding site 2 HCHC 1 1 1 16,18,29,102 4 -212531 cd10007 HDAC5 1 putative active site 0 0 1 1 153,154,162,163,191,193,285,325 1 -212531 cd10007 HDAC5 2 Zn binding site DHD 0 1 1 191,193,285 4 -212531 cd10007 HDAC5 3 putative Zn binding site 2 HCHC 0 1 1 15,17,28,102 4 -212532 cd10008 HDAC7 1 active site 0 1 1 1 24,108,151,152,160,161,189,191,220,283,291,292,323 1 -212532 cd10008 HDAC7 2 Zn binding site 1 DHD 1 1 1 189,191,283 4 -212532 cd10008 HDAC7 3 Zn binding site 2 CCHC 1 1 1 15,17,23,100 4 -212533 cd10009 HDAC9 1 putative active site 0 0 1 1 151,152,160,161,189,191,283,323 1 -212533 cd10009 HDAC9 2 Zn binding site DHD 0 1 1 189,191,283 4 -212533 cd10009 HDAC9 3 putative Zn binding site 2 HCHC 0 1 1 13,15,26,100 4 -212534 cd10010 HDAC1 1 active site 0 0 1 1 136,137,145,146,172,174,260,267,297,299 1 -212534 cd10010 HDAC1 2 Zn binding site DHD 0 1 1 172,174,260 4 -212535 cd10011 HDAC2 1 active site 0 1 1 1 132,133,141,142,168,170,256,263,293,295 1 -212535 cd10011 HDAC2 2 Zn binding site DHD 1 1 1 168,170,256 4 -199900 cd10014 TFIIA_gamma_C 1 TFIIA subunit interface 0 1 1 1 0,1,2,3,4,5,6,9,11,14,16,18,25,33,34,35,37,38,39,40,41,42,43,44 2 -199900 cd10014 TFIIA_gamma_C 2 TBP interface 0 1 1 1 6,7,8,9,10,11,12,13,14,16 2 -197381 cd10015 BfiI_C_EcoRII_N_B3 1 DNA binding site 0 1 1 0 4,7,19,22,24,61,73,75,76,78,79 3 -197382 cd10016 EcoRII_N 1 DNA binding site 0 1 1 0 7,10,11,12,17,19,20,21,22,25,27,44,64,68,70,76,77,79,81,83,84,86,87,136,138 3 -197383 cd10017 B3_DNA 1 putative DNA binding site 0 0 1 1 4,7,15,18,20,49,60,62,63,65,66 3 -197384 cd10018 BfiI_C 1 putative DNA binding site 0 0 1 1 4,7,27,30,32,73,85,87,88,90,91 3 206756 cd10019 14-3-3_sigma 1 dimer interface 0 1 1 1 4,8,11,12,14,17,24,57,60,64,79,80,82,83,86,87,90 2 206756 cd10019 14-3-3_sigma 2 peptide binding site 0 1 1 1 48,49,55,121,128,129,173,174,177,181,225,229 2 206756 cd10019 14-3-3_sigma 3 putative phospho-independent ligand binding site 0 0 1 1 201,203,205 0 -206757 cd10020 14-3-3_epsilon 1 peptide binding site 0 1 1 0 46,53,126,127,168,171,172,175,178,179,215,216,219,223,226,227 2 -206757 cd10020 14-3-3_epsilon 2 putative dimer interface 0 0 1 1 2,6,9,10,12,22,55,58,62,77,78,80,81,84,85,88 2 -206758 cd10022 14-3-3_beta_zeta 1 dimer interface 0 1 1 0 3,6,7,10,11,13,14,16,19,56,59,63,73,76,77,80,83,84,87 2 -206758 cd10022 14-3-3_beta_zeta 2 peptide binding site 0 1 1 1 39,40,43,44,47,115,118,125,126,163,167,170,171,174,207,208,209,210,211,214,215,218,222 2 -206759 cd10023 14-3-3_theta 1 dimer interface 0 1 0 0 7,8,12,14,15,17,20,57,60,64,77,81,88 2 -206759 cd10023 14-3-3_theta 2 peptide binding site 0 1 1 0 48,55,119,126,127,168,171,172,175,178,179,219,223,226,227 2 -206760 cd10024 14-3-3_gamma 1 dimer interface 0 1 0 0 4,7,8,11,12,14,15,17,20,57,60,61,64,75,76,79,80,83,86,87,90 2 -206760 cd10024 14-3-3_gamma 2 peptide binding site 0 1 0 0 48,55,123,130,131,175,176,179,220,223,227,230,231 2 -206761 cd10025 14-3-3_eta 1 peptide binding site 0 1 1 0 47,54,129,130,174,175,178,219,222,226 2 -206761 cd10025 14-3-3_eta 2 dimer interface 0 1 1 0 7,10,11,13,14,16,19,56,59,60,63,82,85,86,89 2 -206762 cd10026 14-3-3_plant 1 peptide binding site 0 1 1 0 48,55,59,121,128,129,170,173,174,177,181,221,224,225,229 2 -206762 cd10026 14-3-3_plant 2 inhibitor binding 0 1 1 1 11,41,44,45,118,121,122,166,167,213,214,217 5 -198425 cd10027 UDG_F1 1 active site 0 1 1 0 44,45,47,48,67,68,69,145,146,166,167,169,170,171,172 1 -198425 cd10027 UDG_F1 2 ligand binding site 0 1 1 0 43,44,45,46,47,57,58,69,103,167 5 -198425 cd10027 UDG_F1 3 UGI interface 0 1 1 0 44,47,48,49,67,68,69,112,113,145,146,167,169,170,171 2 -198425 cd10027 UDG_F1 4 catalytic site 0 1 1 1 45,167 1 -198426 cd10028 UDG_F2_MUG 1 active site 0 1 1 0 15,16,18,31,32,33,106,107,108,122,138,139,141,142,143 1 -198426 cd10028 UDG_F2_MUG 2 SUMO-1 interface 0 1 1 1 40,41,153,154,157 2 -198427 cd10029 UDG_F3_SMUG 1 active site 0 1 1 0 54,55,56,57,69,134,209,210,211,212 1 -198427 cd10029 UDG_F3_SMUG 2 DNA binding site 0 1 1 1 155,185,186,187,209,211,213 3 -198427 cd10029 UDG_F3_SMUG 3 substrate specificity residue 0 0 1 1 58 0 -198428 cd10030 UDG_F4_TTUDGA_like 1 active site 0 1 1 0 27,28,29,34,40,41,67,141 1 -198428 cd10030 UDG_F4_TTUDGA_like 2 Fe-S cluster binding site 0 1 1 1 0,2,3,5,6,9,69,70,71,86,87,90 4 -198429 cd10031 UDG_F5_TTUDGB_like 1 active site 0 1 1 1 44,45,46,47,50,51,57,58,61,62,63,107,177,179,180 1 -198429 cd10031 UDG_F5_TTUDGB_like 2 DNA binding site 0 1 1 0 44,45,47,61,62,63,107,111,138,139,158,176,177,179,180,181,182,184,185,187 3 -198429 cd10031 UDG_F5_TTUDGB_like 3 Fe-S cluster binding site 0 1 1 0 0,2,3,6,28,100,101,102,116,117,120 4 -198430 cd10032 UDG_MUG_like 1 putative active site 0 0 1 1 16,17,19,108,109,110,132,133,135 1 -198431 cd10033 UDG_like_1 1 putative active site 0 0 1 1 21,22,24,105,106,107,139,140,142 1 -198431 cd10033 UDG_like_1 2 putative uracil binding site 0 0 0 1 20,21,22,63,140 5 -198432 cd10034 UDG_like_2 1 putative active site 0 0 1 1 15,16,18,93,94,95,127,128,130 1 -198432 cd10034 UDG_like_2 2 putative uracil binding site 0 0 0 1 14,15,16,54,128 5 -198433 cd10035 UDG_like_3 1 putative active site 0 0 1 1 19,20,22,109,110,111,129,130,132 1 -198433 cd10035 UDG_like_3 2 putative uracil binding site 0 0 0 1 18,19,20,65,130 5 -197345 cd10037 Reelin_repeat_1_subrepeat_1 1 reelin repeat interface 0 0 1 0 12,13,30,31,33,37,38,39,40,72,73,120,121,123 0 -197345 cd10037 Reelin_repeat_1_subrepeat_1 2 reelin subrepeat interface 0 0 1 0 60,81,83,84,99,101,102,110,112 0 -197345 cd10037 Reelin_repeat_1_subrepeat_1 3 EGF domain interface 0 0 1 0 45,47,108,143,145 0 -197346 cd10038 Reelin_repeat_2_subrepeat_1 1 reelin repeat interface 0 0 1 0 17,18,44,45,47,51,52,53,54,90,91,138,139,141 0 -197346 cd10038 Reelin_repeat_2_subrepeat_1 2 reelin subrepeat interface 0 0 1 0 78,99,101,102,117,119,120,128,130 0 -197346 cd10038 Reelin_repeat_2_subrepeat_1 3 EGF domain interface 0 0 1 0 60,62,126,161,163 0 -197347 cd10039 Reelin_repeat_3_subrepeat_1 1 reelin repeat interface 0 0 1 0 17,18,43,44,46,50,51,52,53,87,88,142,143,145 0 -197347 cd10039 Reelin_repeat_3_subrepeat_1 2 reelin subrepeat interface 0 1 1 0 75,96,98,99,121,123,124,132,134 0 -197347 cd10039 Reelin_repeat_3_subrepeat_1 3 EGF domain interface 0 1 1 0 59,61,130,167,169 0 -197348 cd10040 Reelin_repeat_4_subrepeat_1 1 reelin repeat interface 0 0 1 0 16,17,42,43,45,49,50,51,52,86,87,134,135,137 0 -197348 cd10040 Reelin_repeat_4_subrepeat_1 2 reelin subrepeat interface 0 0 1 0 74,95,97,98,108,110,111,124,126 0 -197348 cd10040 Reelin_repeat_4_subrepeat_1 3 EGF domain interface 0 0 1 0 58,60,122,158,160 0 -197349 cd10041 Reelin_repeat_5_subrepeat_1 1 reelin repeat interface 0 1 1 0 15,16,48,49,51,55,56,57,58,92,93,144,145,147 0 -197349 cd10041 Reelin_repeat_5_subrepeat_1 2 reelin subrepeat interface 0 1 1 0 66,77,78,79,101,116,117,118,123,126,127,132,134,170,173 0 -197349 cd10041 Reelin_repeat_5_subrepeat_1 3 EGF domain interface 0 1 1 0 64,66,132,170,172 0 -197350 cd10042 Reelin_repeat_6_subrepeat_1 1 reelin receptor interface 0 1 1 1 22,35,36,66,145,147 0 -197350 cd10042 Reelin_repeat_6_subrepeat_1 2 reelin repeat interface 0 1 1 0 14,15,39,40,42,46,47,48,49,82,83,130,131,133 0 -197350 cd10042 Reelin_repeat_6_subrepeat_1 3 reelin subrepeat interface 0 1 1 0 70,91,93,94,109,111,112,120,122 0 -197350 cd10042 Reelin_repeat_6_subrepeat_1 4 EGF domain interface 0 1 1 0 55,57,118,154,156 0 -197351 cd10043 Reelin_repeat_7_subrepeat_1 1 reelin repeat interface 0 0 1 0 28,29,55,56,58,62,63,64,65,100,101,145,146,148 0 -197351 cd10043 Reelin_repeat_7_subrepeat_1 2 reelin subrepeat interface 0 0 1 0 88,109,111,112,123,125,126,137,139 0 -197351 cd10043 Reelin_repeat_7_subrepeat_1 3 EGF domain interface 0 0 1 0 71,73,135,168,170 0 -197352 cd10044 Reelin_repeat_8_subrepeat_1 1 reelin repeat interface 0 0 1 0 19,20,48,49,51,55,56,57,58,95,96,148,149,151 0 -197352 cd10044 Reelin_repeat_8_subrepeat_1 2 reelin subrepeat interface 0 0 1 0 82,104,106,107,122,124,125,138,140 0 -197352 cd10044 Reelin_repeat_8_subrepeat_1 3 EGF domain interface 0 0 1 0 64,66,136,172,174 0 -197353 cd10045 Reelin_repeat_1_subrepeat_2 1 reelin repeat interface 0 0 1 0 2,4,60,61,63,65,115,117,118,119,152 0 -197353 cd10045 Reelin_repeat_1_subrepeat_2 2 reelin subrepeat interface 0 0 1 0 22,45,46,88,90,104 0 -197353 cd10045 Reelin_repeat_1_subrepeat_2 3 EGF domain interface 0 0 1 0 53,94,95,97 0 -197354 cd10046 Reelin_repeat_2_subrepeat_2 1 reelin repeat interface 0 0 1 0 3,5,63,64,66,68,116,118,119,120,153 0 -197354 cd10046 Reelin_repeat_2_subrepeat_2 2 reelin subrepeat interface 0 0 1 0 22,48,49,89,91,105 0 -197354 cd10046 Reelin_repeat_2_subrepeat_2 3 EGF domain interface 0 0 1 0 56,95,96,98 0 -197355 cd10047 Reelin_repeat_3_subrepeat_2 1 reelin repeat interface 0 0 1 0 2,4,57,58,60,62,112,114,115,116,148 0 -197355 cd10047 Reelin_repeat_3_subrepeat_2 2 reelin subrepeat interface 0 1 1 0 19,42,43,85,87,101 0 -197355 cd10047 Reelin_repeat_3_subrepeat_2 3 EGF domain interface 0 1 1 0 50,91,92,94 0 -197356 cd10048 Reelin_repeat_4_subrepeat_2 1 reelin repeat interface 0 0 1 0 3,5,60,61,63,65,108,110,111,112,145 0 -197356 cd10048 Reelin_repeat_4_subrepeat_2 2 reelin subrepeat interface 0 0 1 0 21,45,46,81,83,97 0 -197356 cd10048 Reelin_repeat_4_subrepeat_2 3 EGF domain interface 0 0 1 0 53,87,88,90 0 -197357 cd10049 Reelin_repeat_5_subrepeat_2 1 reelin repeat interface 0 1 1 0 3,5,59,60,62,64,110,112,113,114,147 0 -197357 cd10049 Reelin_repeat_5_subrepeat_2 2 reelin subrepeat interface 0 1 1 0 21,44,45,82,84,98 0 -197357 cd10049 Reelin_repeat_5_subrepeat_2 3 EGF domain interface 0 1 1 0 52,88,89,91 0 -197358 cd10050 Reelin_repeat_6_subrepeat_2 1 reelin repeat interface 0 1 1 0 3,5,59,60,62,64,108,110,111,112,145 0 -197358 cd10050 Reelin_repeat_6_subrepeat_2 2 reelin subrepeat interface 0 1 1 0 21,44,45,81,83,97 0 -197358 cd10050 Reelin_repeat_6_subrepeat_2 3 EGF domain interface 0 1 1 0 52,87,88,90 0 -197359 cd10051 Reelin_repeat_7_subrepeat_2 1 reelin repeat interface 0 0 1 0 2,4,59,60,62,64,114,116,117,118,158 0 -197359 cd10051 Reelin_repeat_7_subrepeat_2 2 reelin subrepeat interface 0 0 1 0 21,44,45,87,89,103 0 -197359 cd10051 Reelin_repeat_7_subrepeat_2 3 EGF domain interface 0 0 1 0 52,93,94,96 0 -197360 cd10052 Reelin_repeat_8_subrepeat_2 1 reelin repeat interface 0 0 1 0 2,4,62,63,65,67,121,123,124,125,158 0 -197360 cd10052 Reelin_repeat_8_subrepeat_2 2 reelin subrepeat interface 0 0 1 0 21,47,48,94,96,110 0 -197360 cd10052 Reelin_repeat_8_subrepeat_2 3 EGF domain interface 0 0 1 0 55,100,101,103 0 -199901 cd10145 TFIIA_gamma_N 1 TFIIA subunit interface 0 1 1 1 3,4,7,8,9,12,13,15,16,17,19,20,30,34,37,41,42,43,45,46,47 2 -199902 cd10147 Wzt_C-like 1 putative carbohydrate binding site 0 0 1 1 4,51,66,103,116,118,119 5 -197385 cd10148 CsoR-like_DUF156 1 putative metal binding site 0 1 1 1 27,52,56 4 -197385 cd10148 CsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,72,75,76,77,78 2 -197385 cd10148 CsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,66,67,69,70,71,73,74 2 -197385 cd10148 CsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,66,67,69,70,71,72,73,74,75,76,77,78 2 -197385 cd10148 CsoR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 26,52,72 0 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,55,56,59,60,61 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,56,60,61 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197386 cd10151 TthCsoR-like_DUF156 1 putative metal binding site 0 1 1 1 29,54,58 4 -197386 cd10151 TthCsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,50,54,74,77,78,79,80 2 -197386 cd10151 TthCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 48,51,52,55,56,58,59,68,69,71,72,73,75,76 2 -197386 cd10151 TthCsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,48,50,51,52,54,55,56,59,68,69,71,72,73,74,75,76,77,78,79,80 2 -197386 cd10151 TthCsoR-like_DUF156 5 allosteric switch controlling residues 0 0 1 1 28,54,74 0 -197387 cd10152 SaCsoR-like_DUF156 1 putative metal binding site 0 0 1 1 27,52,56 4 -197387 cd10152 SaCsoR-like_DUF156 2 putative homodimer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,71,74,75,76,77 2 -197387 cd10152 SaCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 46,49,50,53,54,56,57,65,66,68,69,70,72,73 2 -197387 cd10152 SaCsoR-like_DUF156 4 putative homotetramer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,65,66,68,69,70,71,72,73,74,75,76,77 2 -197387 cd10152 SaCsoR-like_DUF156 5 allosteric switch controlling residues 0 0 1 1 26,52,71 0 -197388 cd10153 RcnR-FrmR-like_DUF156 1 putative metal binding site 0 0 1 1 0,32,57,61 4 -197388 cd10153 RcnR-FrmR-like_DUF156 2 putative homodimer interface 0 0 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,53,57,78,81,82,83,84 2 -197388 cd10153 RcnR-FrmR-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 51,54,55,58,59,61,62,72,73,75,76,77,79,80 2 -197388 cd10153 RcnR-FrmR-like_DUF156 4 putative homotetramer interface 0 0 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,51,53,54,55,57,58,59,62,72,73,75,76,77,78,79,80,81,82,83,84 2 -197388 cd10153 RcnR-FrmR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 57,78 0 -197389 cd10154 NreA-like_DUF156 1 putative metal binding site 0 0 1 1 30,55,59 4 -197389 cd10154 NreA-like_DUF156 2 putative homodimer interface 0 0 1 1 3,6,7,10,11,14,17,18,20,21,24,25,26,27,29,30,31,33,34,35,37,38,40,41,44,45,48,51,55,77,80,81,82,83 2 -197389 cd10154 NreA-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 49,52,53,56,57,59,60,71,72,74,75,76,78,79 2 -197389 cd10154 NreA-like_DUF156 4 putative homotetramer interface 0 0 1 1 3,6,7,10,11,14,17,18,20,21,24,25,26,27,29,30,31,33,34,35,37,38,40,41,44,45,48,49,51,52,53,55,56,57,60,71,72,74,75,76,77,78,79,80,81,82,83 2 -197389 cd10154 NreA-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 55,77 0 -197390 cd10155 BsYrkD-like_DUF156 1 putative metal binding site 0 0 1 1 27,52,56 4 -197390 cd10155 BsYrkD-like_DUF156 2 putative homodimer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,73,76,77,78,79 2 -197390 cd10155 BsYrkD-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 46,49,50,53,54,56,57,67,68,70,71,72,74,75 2 -197390 cd10155 BsYrkD-like_DUF156 4 putative homotetramer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,67,68,70,71,72,73,74,75,76,77,78,79 2 -197390 cd10155 BsYrkD-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 73 0 -197391 cd10156 FpFrmR-Cterm-like_DUF156 1 putative metal binding site 0 0 1 1 32,57,61 4 -197391 cd10156 FpFrmR-Cterm-like_DUF156 2 putative homodimer interface 0 0 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,53,57,76,79,80,81,82 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 51,54,55,58,59,61,62,70,71,73,74,75,77,78 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 4 putative homotetramer interface 0 0 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,51,53,54,55,57,58,59,62,70,71,73,74,75,76,77,78,79,80,81,82 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 31,57,76 0 -197392 cd10157 BsCsoR-like_DUF156 1 putative metal binding site 0 0 1 1 29,54,58 4 -197392 cd10157 BsCsoR-like_DUF156 2 putative homodimer interface 0 0 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,50,54,74,77,78,79,80 2 -197392 cd10157 BsCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 0 1 1 48,51,52,55,56,58,59,68,69,71,72,73,75,76 2 -197392 cd10157 BsCsoR-like_DUF156 4 putative homotetramer interface 0 0 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,48,50,51,52,54,55,56,59,68,69,71,72,73,74,75,76,77,78,79,80 2 -197392 cd10157 BsCsoR-like_DUF156 5 allosteric switch controlling residues 0 0 1 1 28,54,74 0 -197393 cd10158 CsoR-like_DUF156_1 1 putative metal binding site 0 0 1 1 27,52,56 4 -197393 cd10158 CsoR-like_DUF156_1 2 putative homodimer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,71,74,75,76,77 2 -197393 cd10158 CsoR-like_DUF156_1 3 putative homodimer-homodimer interface 0 0 1 1 46,49,50,53,54,56,57,65,66,68,69,70,72,73 2 -197393 cd10158 CsoR-like_DUF156_1 4 putative homotetramer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,65,66,68,69,70,71,72,73,74,75,76,77 2 -197393 cd10158 CsoR-like_DUF156_1 5 putative allosteric switch controlling residues 0 0 1 1 52,71 0 -197394 cd10159 CsoR-like_DUF156_2 1 putative metal binding site 0 0 1 1 28,53,57 4 -197394 cd10159 CsoR-like_DUF156_2 2 putative homodimer interface 0 0 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,49,53,73,76,77,78,79 2 -197394 cd10159 CsoR-like_DUF156_2 3 putative homodimer-homodimer interface 0 0 1 1 47,50,51,54,55,57,58,67,68,70,71,72,74,75 2 -197394 cd10159 CsoR-like_DUF156_2 4 putative homotetramer interface 0 0 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,47,49,50,51,53,54,55,58,67,68,70,71,72,73,74,75,76,77,78,79 2 -197394 cd10159 CsoR-like_DUF156_2 5 putative allosteric switch controlling residues 0 0 1 1 27,53,73 0 -197395 cd10160 CsoR-like_DUF156_3 1 putative metal binding site 0 0 1 1 28,53,57 4 -197395 cd10160 CsoR-like_DUF156_3 2 putative homodimer interface 0 0 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,49,53,73,76,77,78,79 2 -197395 cd10160 CsoR-like_DUF156_3 3 putative homodimer-homodimer interface 0 0 1 1 47,50,51,54,55,57,58,67,68,70,71,72,74,75 2 -197395 cd10160 CsoR-like_DUF156_3 4 putative homotetramer interface 0 0 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,47,49,50,51,53,54,55,58,67,68,70,71,72,73,74,75,76,77,78,79 2 -197396 cd10161 CsoR-like_DUF156_4 1 putative metal binding site 0 0 1 1 27 4 -197396 cd10161 CsoR-like_DUF156_4 2 putative homodimer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,73,76,77,78,79 2 -197396 cd10161 CsoR-like_DUF156_4 3 putative homodimer-homodimer interface 0 0 1 1 46,49,50,53,54,56,57,67,68,70,71,72,74,75 2 -197396 cd10161 CsoR-like_DUF156_4 4 putative homotetramer interface 0 0 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,67,68,70,71,72,73,74,75,76,77,78,79 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,52,55,56,59,60,61 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,56,60,61 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 1 tetramer interface 0 0 1 1 4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,55,56,59,60,61 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 2 dimer interface A, B 0 0 1 1 30,34,45,46,49,56,60,61 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 3 dimer interface A, C 0 0 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 4 dimer interface A, D 0 0 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 1 tetramer interface 0 0 1 1 4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,64,65,68,69,70 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 2 dimer interface A, B 0 0 1 1 30,34,45,46,49,65,69,70 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 3 dimer interface A, C 0 0 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,64,68 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 4 dimer interface A, D 0 0 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -212667 cd10170 HSP70_NBD 1 nucleotide binding site 0 1 1 1 3,5,6,7,8,66,138,166,190,191,192,193,194,195,197,221,222,259,262,263,329,330,331,333,334,356 5 -212667 cd10170 HSP70_NBD 2 SBD interface 0 1 1 1 143,144,146,147,162,163,165,208,209,210,211 2 -212667 cd10170 HSP70_NBD 3 putative NEF/HSP70 interaction site 0 1 1 1 27,44,48,51,52,124,125,249,252,253,256,260,274,276,277 2 -212668 cd10225 MreB_like 1 nucleotide binding site 0 1 1 0 3,5,6,7,8,62,125,147,149,150,151,152,173,174,198,201,202,277,278,279,281,282,304,307 5 -212668 cd10225 MreB_like 2 Mg binding site 0 1 1 1 3,147 4 -212668 cd10225 MreB_like 3 RodZ interaction site 0 1 1 1 134,135,143,269,270,271,296,298,301 2 -212668 cd10225 MreB_like 4 putative protofilament interaction site 0 0 1 1 29,45,53,140,142,162,194,196,219,227,230,260,263,295,319 2 -212669 cd10227 ParM_like 1 nucleotide binding site 0 1 1 0 6,7,8,9,11,173,174,175,277,278,282 5 -212669 cd10227 ParM_like 2 Mg binding site [ED][ED] 1 1 0 4,172 4 -212669 cd10227 ParM_like 3 putative protofilament interface 0 0 1 1 27,29,54,57,58,59,81,145,167,184 2 -212670 cd10228 HSPA4_like_NDB 1 nucleotide binding site 0 1 1 0 7,8,9,10,66,199,201,202,203,204,230,268,271,272,275,338,339,340,342,343 5 -212670 cd10228 HSPA4_like_NDB 2 HSP70 interaction site 0 1 1 0 16,19,20,21,22,27,28,29,30,31,52,53,55,56,136,137,182,262,272,275,276,277,283,285,286,342,360,361,362,363,366,370,374,377,378,379,380 2 -212670 cd10228 HSPA4_like_NDB 3 SBD interface 0 1 1 1 42,43,44,76,110,114,117,118,121,125,148,149,151,152,156,160,167,168,170,218 2 -212671 cd10229 HSPA12_like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,82,147,182,210,211,212,213,214,215,217,244,245,282,285,286,361,362,363,365,366,391 5 -212671 cd10229 HSPA12_like_NBD 2 SBD interface 0 0 1 1 152,153,155,156,178,179,181,231,232,233,234 2 -212671 cd10229 HSPA12_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 29,55,59,62,63,124,125,272,275,276,279,283,298,300,301 2 -212672 cd10230 HYOU1-like_NBD 1 nucleotide binding site 0 0 1 1 5,6,7,8,65,196,198,199,200,201,237,277,280,281,284,347,348,349,351,352 5 -212672 cd10230 HYOU1-like_NBD 2 HSP70 interaction site 0 0 1 1 14,20,21,26,27,28,29,30,51,52,135,136,181,271,281,284,292,294,295,351,370,371,372,373,376,380,384,387 2 -212672 cd10230 HYOU1-like_NBD 3 SBD interface 0 0 1 1 41,42,43,108,112,115,116,119,123,147,148,150,151,155,159,166,167,169,225 2 -212673 cd10231 YegD_like 1 nucleotide binding site 0 0 1 1 3,5,6,7,8,69,123,158,180,181,182,183,184,185,187,217,218,307,310,311,375,376,377,379,380,402 5 -212673 cd10231 YegD_like 2 SBD interface 0 0 1 1 135,136,138,139,154,155,157,205,206,207,208 2 -212673 cd10231 YegD_like 3 putative NEF/HSP70 interaction site 0 0 1 1 26,48,52,55,56,109,110,297,300,301,304,308,322,324,325 2 -212674 cd10232 ScSsz1p_like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,66,144,172,199,200,201,202,203,204,206,230,231,268,271,272,338,339,340,342,343,373 5 -212674 cd10232 ScSsz1p_like_NBD 2 SBD interface 0 0 1 1 149,150,152,153,168,169,171,217,218,219,220 2 -212674 cd10232 ScSsz1p_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 28,44,48,51,52,130,131,258,261,262,265,269,283,285,286 2 -212675 cd10233 HSPA1-2_6-8-like_NBD 1 nucleotide binding site 0 1 1 0 4,6,7,8,9,65,141,169,193,194,195,196,197,198,200,224,225,262,265,266,269,332,333,334,336,337,360 5 -212675 cd10233 HSPA1-2_6-8-like_NBD 2 SBD interface 0 1 1 1 146,186,207,209,210,211,213,214,319 2 -212675 cd10233 HSPA1-2_6-8-like_NBD 3 BAG/HSP70 interaction site 0 1 1 1 27,29,51,54,55,251,252,255,256,259,260,263,277,278,279,280,286,288 2 -212675 cd10233 HSPA1-2_6-8-like_NBD 4 NEF/HSP70 interaction site 0 1 1 1 17,19,21,26,27,28,30,44,48,51,127,128,252,256,263,266,267,270,275,277,279,280,284,336 2 -212676 cd10234 HSPA9-Ssq1-like_NBD 1 nucleotide binding site 0 1 1 1 9,10,11,12,69,169,193,194,196,222,260,263,267,334,335,336,338 5 -212676 cd10234 HSPA9-Ssq1-like_NBD 2 NEF interaction site 0 1 1 1 27,30,48,52,55,56,58,59,127,128,129,130,250,253,254,257,275,277,278 2 -212676 cd10234 HSPA9-Ssq1-like_NBD 3 SBD interface 0 0 1 1 146,147,149,150,165,166,168,209,210,211,212 2 -212677 cd10235 HscC_like_NBD 1 nucleotide binding site 0 0 1 1 3,5,6,7,8,65,114,142,165,166,167,168,169,170,172,196,197,231,234,235,299,300,301,303,304,326 5 -212677 cd10235 HscC_like_NBD 2 SBD interface 0 0 1 1 119,120,122,123,138,139,141,183,184,185,186 2 -212677 cd10235 HscC_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 26,43,47,50,51,100,101,221,224,225,228,232,246,248,249 2 -212678 cd10236 HscA_like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,66,136,164,186,187,188,189,190,191,193,217,218,251,254,255,315,316,317,319,320,342 5 -212678 cd10236 HscA_like_NBD 2 SBD interface 0 0 1 1 141,142,144,145,160,161,163,204,205,206,207 2 -212678 cd10236 HscA_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 28,44,48,51,52,122,123,241,244,245,248,252,264,266,267 2 -212679 cd10237 HSPA13-like_NBD 1 nucleotide binding site 0 0 1 1 25,27,28,29,30,88,165,193,216,217,218,219,220,221,223,247,248,284,287,288,359,360,361,363,364,386 5 -212679 cd10237 HSPA13-like_NBD 2 SBD interface 0 0 1 1 170,171,173,174,189,190,192,234,235,236,237 2 -212679 cd10237 HSPA13-like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 50,66,70,73,74,151,152,274,277,278,281,285,299,301,302 2 -212680 cd10238 HSPA14-like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,66,142,170,195,196,197,198,199,200,202,226,227,264,267,268,334,335,336,338,339,362 5 -212680 cd10238 HSPA14-like_NBD 2 SBD interface 0 0 1 1 147,148,150,151,166,167,169,213,214,215,216 2 -212680 cd10238 HSPA14-like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 28,44,48,51,52,128,129,254,257,258,261,265,279,281,282 2 -212681 cd10241 HSPA5-like_NBD 1 nucleotide binding site 0 0 1 1 6,8,9,10,11,67,143,171,194,195,196,197,198,199,201,225,226,263,266,267,333,334,335,337,338,361 5 -212681 cd10241 HSPA5-like_NBD 2 SBD interface 0 0 1 1 148,149,151,152,167,168,170,212,213,214,215 2 -212681 cd10241 HSPA5-like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 29,45,49,52,53,129,130,253,256,257,260,264,278,280,281 2 -199834 cd10276 BamB_YfgL 1 Trp docking motif 0 0 1 1 12,13,14,17,51,53,56,57,58,61,93,95,98,99,100,103,134,136,139,140,141,144,179,181,184,185,186,189,230,232,235,236,237,240,269,271,274,275,276,279,312,314,317,318,319,322,354,356 2 -199835 cd10277 PQQ_ADH_I 1 active site 0 1 1 1 52,96,97,102,146,162,163,213,231,273,300,438 1 -199835 cd10277 PQQ_ADH_I 2 dimer interface 0 1 1 0 34,35,37,38,39,40,41,42,43,45,48,49,68,81,472,473,474,475,518,519,520,524 2 -199835 cd10277 PQQ_ADH_I 3 Trp docking motif 0 0 1 1 35,36,37,40,73,75,78,79,80,83,122,124,127,128,129,132,173,175,178,179,180,183,252,254,257,258,259,262,306,308,311,312,313,316,419,421,424,425,426,429,460,462,465,466,467,470,525,527 2 -199836 cd10278 PQQ_MDH 1 active site 0 1 1 1 41,89,90,93,95,139,154,155,157,221,223,241,245,283,310,372,448,512 1 -199836 cd10278 PQQ_MDH 2 small subunit binding site 0 1 1 0 124,125,126,127,128,129,130,131,159,160,161,171,177,208,209,211,216,217,247,248,249,251,252,253,255,279,281,400,403,404 2 -199836 cd10278 PQQ_MDH 3 dimer interface 0 1 1 0 28,29,30,31,32,33,34,35,37,62,70,71,72,75,77,467,482,483,484,485,507,542,543,544 2 -199836 cd10278 PQQ_MDH 4 Trp docking motif 0 0 1 1 25,26,27,30,63,65,69,70,71,74,115,117,120,121,122,125,166,168,171,172,173,176,262,264,267,268,269,272,316,318,321,322,323,326,429,431,434,435,436,439,470,472,475,476,477,480,549,551 2 -199837 cd10279 PQQ_ADH_II 1 active site 0 1 1 1 43,89,90,93,95,139,154,155,156,157,214,216,234,238,279,281,306,361,362,366,367,404,451,515,516 1 -199837 cd10279 PQQ_ADH_II 2 Trp docking motif 0 0 1 1 27,28,29,32,64,66,69,70,71,74,115,117,120,121,122,125,166,168,171,172,173,176,258,260,263,264,265,268,312,314,317,318,319,322,433,435,438,439,440,443,474,476,479,480,481,484,538,540 2 -199837 cd10279 PQQ_ADH_II 3 cytochrome domain interface 0 1 1 0 39,40,82,83,85,400,403,404,513,518,519,520,532 2 -199838 cd10280 PQQ_mGDH 1 putative active site 0 0 1 1 48,91,92,97,161,176,177,230,318,536 1 -199838 cd10280 PQQ_mGDH 2 Trp docking motif 0 0 1 1 25,26,27,30,69,71,74,75,76,79,126,128,131,132,133,136,192,194,197,198,199,202,270,272,275,276,277,280,324,326,329,330,331,334,500,502,505,506,507,510,559,561,564,565,566,569,612,614 2 -197336 cd10281 Nape_like_AP-endo 1 putative catalytic site 0 0 1 1 6,34,107,147,149,219,244,245 1 -197336 cd10281 Nape_like_AP-endo 2 putative active site 0 1 1 1 6,8,9,10,11,12,13,34,36,41,63,64,92,107,110,112,117,147,149,159,161,163,202,204,205,206,208,212,214,216,218,219,242,244,245 1 -197336 cd10281 Nape_like_AP-endo 3 putative DNA binding site 0 0 1 1 6,8,9,10,11,12,13,34,36,41,63,64,92,107,110,112,117,147,149,159,161,163,202,204,205,206,212,214,216,218,242,245 3 -197336 cd10281 Nape_like_AP-endo 4 putative AP binding site 0 0 1 1 107,110,147,149,202,216,218,245 3 -197336 cd10281 Nape_like_AP-endo 5 metal binding site A 0 1 1 1 8,34,244 4 -197336 cd10281 Nape_like_AP-endo 6 putative metal binding site B 0 0 1 1 147,149,245 4 -197336 cd10281 Nape_like_AP-endo 7 putative phosphate binding site 0 0 1 1 6,34,107,110,147,149,245 4 -197337 cd10282 DNase1 1 putative catalytic site 0 0 1 1 5,37,76,130,164,166,208,247,248 1 -197337 cd10282 DNase1 2 putative active site 0 1 1 1 5,6,8,12,37,39,40,41,73,74,76,107,130,133,164,166,171,203,207,208,247,248 1 -197337 cd10282 DNase1 3 DNA binding site 0 1 1 0 8,12,39,40,41,73,74,76,107,130,133,164,166,171,207,248 3 -197337 cd10282 DNase1 4 putative Mg binding site IVa 0 0 1 1 164,208,248 4 -197337 cd10282 DNase1 5 putative Mg binding site IVb 0 0 1 1 5,37,247 4 -197337 cd10282 DNase1 6 putative phosphate binding site 0 0 1 1 7,130,164,166,248 4 -197337 cd10282 DNase1 7 Ca binding site I 0 1 1 1 197,199 4 -197337 cd10282 DNase1 8 Ca binding site II 0 1 1 1 97,108 4 -197337 cd10282 DNase1 9 metal binding site III 0 1 1 1 168,194 4 -197337 cd10282 DNase1 10 actin binding site 0 1 1 1 7 2 -197338 cd10283 MnuA_DNase1-like 1 putative catalytic site 0 0 1 1 6,38,79,131,174,176,214,257,258 1 -197338 cd10283 MnuA_DNase1-like 2 putative active site 0 0 1 1 6,7,9,38,40,41,79,109,131,174,176,213,214,257,258 1 -197338 cd10283 MnuA_DNase1-like 3 putative DNA binding site 0 0 1 1 9,40,41,79,109,131,174,176,213,258 3 -197338 cd10283 MnuA_DNase1-like 4 putative Mg binding site IVa 0 0 1 1 174,214,258 4 -197338 cd10283 MnuA_DNase1-like 5 putative Mg binding site IVb 0 0 1 1 6,38,257 4 -197338 cd10283 MnuA_DNase1-like 6 putative phosphate binding site 0 0 1 1 8,131,174,176,258 4 -198434 cd10284 growth_hormone_like 1 receptor binding interface 0 1 1 0 0,3,4,6,7,9,12,13,16,38,48,54,55,104,107,110,111,114,152,155,156,159,160,162,163,164,166,167,170,177 2 -198435 cd10285 somatotropin_like 1 receptor binding interface 0 1 1 0 0,3,6,7,9,12,13,16,32,33,36,37,39,51,52,53,54,57,58,105,108,109,112,153,156,157,160,161,163,164,167,168,171,179 2 -198436 cd10286 somatolactin 1 putative receptor binding interface 0 0 1 1 22,25,26,28,29,31,34,35,38,62,72,78,79,128,131,134,135,138,179,182,183,186,187,189,190,191,193,194,197,205 2 -198437 cd10287 prolactin_2 1 putative receptor binding interface 0 0 1 1 3,6,7,9,10,12,15,16,19,39,49,55,56,105,108,111,112,115,157,160,161,164,165,167,168,169,171,172,175,183 2 -198438 cd10288 prolactin_like 1 receptor binding interface 0 1 1 0 0,1,2,10,11,12,17,20,21,26,29,30,54,55,65,71,72,121,124,127,128,175,176,179,180,182,183,184,186,187,190,198 2 -198322 cd10289 GST_C_AaRS_like 1 protein interface 1 0 1 1 1 1,2,3,5,6,7,8,9,10,12,13,23,26,32,33 2 -198322 cd10289 GST_C_AaRS_like 2 protein interface 2 0 1 1 1 31,32,33,34,35,69,70,72,73,77,80,81 2 -198323 cd10290 GST_C_MetRS_N_fungi 1 Arc1p interface 0 1 1 1 0,1,5,10,13,19,22,23,26,27,30 2 -198324 cd10291 GST_C_YfcG_like 1 active site 0 1 1 1 16,17,20,24,76 1 -198324 cd10291 GST_C_YfcG_like 2 putative dimer interface 0 0 1 1 2,3,6,7,9,10,12,13,21,24,25,33,35,39,40,46,50 2 -198324 cd10291 GST_C_YfcG_like 3 N-terminal domain interface 0 1 1 0 1,4,5,8,11,66,67,68,71,72,74,75,76,103,105,106,108,109 2 -198325 cd10292 GST_C_YghU_like 1 active site 0 1 1 1 12,15,16,19,20,76 1 -198325 cd10292 GST_C_YghU_like 2 dimer interface 0 1 1 1 2,3,5,6,7,9,10,12,13,16,17,20,24,25,29,30,32,33,34,35,37,38,39,40,41,42,45,46,47,49,50,53,90,91 2 -198325 cd10292 GST_C_YghU_like 3 N-terminal domain interface 0 1 1 0 5,8,11,12,28,66,68,71,72,74,75,76,110,112,113,115,116,117 2 -198326 cd10293 GST_C_Ure2p 1 dimer interface 0 1 1 1 2,3,6,7,9,10,12,13,21,24,25,33,35,39,40,46,50 2 -198326 cd10293 GST_C_Ure2p 2 N-terminal domain interface 0 1 1 0 5,11,12,74,77,78,110,112,115 2 -198327 cd10294 GST_C_ValRS_N 1 putative protein interface 1 0 0 1 1 5,6,7,9,10,11,12,15,17,18,47,50 0 -198328 cd10295 GST_C_Sigma 1 dimer interface 0 1 1 1 0,1,3,4,5,7,8,9,11,12,15,48,49,52 2 -198328 cd10295 GST_C_Sigma 2 substrate binding pocket (H-site) 0 1 1 1 14,17,18,21,22,74,77 5 -198328 cd10295 GST_C_Sigma 3 N-terminal domain interface 0 1 1 0 7,10,11,14,18,64,65,66,69,70,72,73,76,77 2 -198329 cd10296 GST_C_CLIC4 1 N-terminal domain interface 0 1 1 0 4,69,73,74,75,78,79,82,83,86,117,118,119,121,122,123,124,128,129,132,133 2 -198330 cd10297 GST_C_CLIC5 1 N-terminal domain interface 0 0 1 1 78,79,82,86,118,119,122,123,128 2 -198331 cd10298 GST_C_CLIC2 1 N-terminal domain interface 0 1 1 0 4,49,68,72,73,74,77,78,81,85,115,116,117,118,120,121,122,123,127,128,131 2 -198332 cd10299 GST_C_CLIC3 1 N-terminal domain interface 0 1 1 0 3,4,67,71,72,73,74,76,77,80,84,116,117,120,121,122,123,126,127,129,130 2 -198333 cd10300 GST_C_CLIC1 1 N-terminal domain interface 0 1 1 0 78,79,82,86,118,119,122,123,128,131,132 2 -198334 cd10301 GST_C_CLIC6 1 N-terminal domain interface 0 0 1 1 78,79,82,86,118,119,122,123,128 2 -198335 cd10302 GST_C_GDAP1L1 1 putative dimer interface 0 0 1 1 1,2,5,6,9,39 2 -198335 cd10302 GST_C_GDAP1L1 2 putative N-terminal domain interface 0 0 1 1 1,8,67,70,71,74,78 2 -198336 cd10303 GST_C_GDAP1 1 putative dimer interface 0 0 1 1 1,2,5,6,9,39 2 -198336 cd10303 GST_C_GDAP1 2 putative N-terminal domain interface 0 0 1 1 1,8,67,70,71,74,78 2 -198337 cd10304 GST_C_Arc1p_N_like 1 MetRS interface 0 1 1 1 0,1,3,4,5,7,8,9,10,11,12,14,15,25,28,34,35 2 -198337 cd10304 GST_C_Arc1p_N_like 2 GluRS interface 0 1 1 0 33,34,35,36,37,41,42,75,76,78,79,83,86,87,99 2 -198338 cd10305 GST_C_AIMP3 1 putative MetRS interface 0 1 1 1 5,32,35,36,38,39,40,41,42,45,46,75,79,83,100 2 -198338 cd10305 GST_C_AIMP3 2 N-terminal domain interface 0 1 1 0 10,13,14,48,49,50,53,54,57,92,93,94 2 -198339 cd10306 GST_C_GluRS_N 1 Arc1p interface 0 1 1 1 37,38,39,40,71,74,75,78,82,85,86 2 -198339 cd10306 GST_C_GluRS_N 2 putative protein interface 1 0 0 1 1 3,4,5,7,8,9,10,11,12,14,15,28,31,37,38 2 -198340 cd10307 GST_C_MetRS_N 1 putative protein interface 1 0 0 1 1 21,22,23,25,26,27,28,29,30,32,33,43,46,52,53 2 -198340 cd10307 GST_C_MetRS_N 2 putative protein interface 2 0 0 1 1 51,52,53,54,55,89,90,92,93,97,100,101 2 -198341 cd10308 GST_C_eEF1b_like 1 putative protein interface 1 0 0 1 1 2,3,4,6,7,8,9,10,11,13,14,29,32,38,39 2 -198341 cd10308 GST_C_eEF1b_like 2 putative protein interface 2 0 0 1 1 37,38,39,40,41,69,70,72,73,77,80,81 2 -198342 cd10309 GST_C_GluProRS_N 1 protein interface 1 0 0 1 1 1,2,3,5,6,7,8,9,10,12,13,24,27,33,34 2 -198342 cd10309 GST_C_GluProRS_N 2 protein interface 2 0 0 1 1 32,33,34,35,36,68,69,71,72,76,79,80 2 -198343 cd10310 GST_C_CysRS_N 1 putative protein interface 1 0 0 1 1 2,3,4,6,7,8,9,10,11,13,14,21,24,30,31 2 -198343 cd10310 GST_C_CysRS_N 2 putative protein interface 2 0 0 1 1 29,30,31,32,33,60,61,63,64,68,71,72 2 -197304 cd10311 PLDc_N_DEXD_c 1 putative active site 0 0 1 1 118,120,135,137,150 1 -197304 cd10311 PLDc_N_DEXD_c 2 catalytic site 0 0 1 1 118 1 -197339 cd10312 Deadenylase_CCR4b 1 putative catalytic site 0 1 1 1 4,49,169,219,221,298,337,338 1 -197339 cd10312 Deadenylase_CCR4b 2 active site 0 1 1 1 4,49,169,172,174,180,219,221,223,288,293,297,298,338 1 -197339 cd10312 Deadenylase_CCR4b 3 Mg binding site A 0 1 1 1 4,49,337 4 -197339 cd10312 Deadenylase_CCR4b 4 Mg binding site B 0 1 1 1 219,221,338 4 -197339 cd10312 Deadenylase_CCR4b 5 poly(A) RNA binding site 0 1 1 1 4,49,169,172,174,180,219,221,223,288,293,297,338 3 -197339 cd10312 Deadenylase_CCR4b 6 putative phosphate binding site 0 0 1 1 169,221,338 4 -197340 cd10313 Deadenylase_CCR4a 1 putative catalytic site 0 0 1 1 4,49,170,221,223,300,339,340 1 -197340 cd10313 Deadenylase_CCR4a 2 active site 0 0 1 1 4,49,170,173,175,181,221,223,225,290,295,299,300,340 1 -197340 cd10313 Deadenylase_CCR4a 3 Mg binding site A 0 0 1 1 4,49,339 4 -197340 cd10313 Deadenylase_CCR4a 4 Mg binding site B 0 0 1 1 221,223,340 4 -197340 cd10313 Deadenylase_CCR4a 5 poly(A) RNA binding site 0 0 1 1 4,49,170,173,175,181,221,223,225,290,295,299,340 3 -197340 cd10313 Deadenylase_CCR4a 6 putative phosphate binding site 0 0 1 1 170,223,340 4 -198457 cd10314 FAM20_C 1 putative catalytic residues 0 0 1 1 94,101,121 1 -198457 cd10314 FAM20_C 2 putative metal binding site 0 0 1 1 106,121 4 -198457 cd10314 FAM20_C 3 putative catalytic loop 0 0 1 1 98,99,100,101,102,103,104,105,106 1 -198457 cd10314 FAM20_C 4 putative activation loop 0 0 1 1 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 0 -199215 cd10315 CBM41_pullulanase 1 carbohydrate binding site 0 1 1 0 19,21,60,68,73 5 -199905 cd10317 RGL4_C 1 substrate binding site 0 1 1 1 106,108,112 5 -199905 cd10317 RGL4_C 2 Ca binding site 0 1 1 1 6,155 4 -199906 cd10318 RGL11 1 active site 0 1 1 0 322,360,411,494,495,555 1 -199906 cd10318 RGL11 2 metal binding site 0 1 1 0 112,117,119,121,125,181,183,185,189,322,328,330,332,336,345,346,358,360,366,375,381,416,425,456,458,462,499,503,511,556 4 -198439 cd10319 EphR_LBD 1 ephrin binding site 0 1 1 0 11,25,26,27,28,30,31,36,38,41,74,76,128,135,136,137,164,165,166,168 2 -199907 cd10320 RGL4_N 1 active site 0 1 1 1 64,123,125,127,129,131,157,163,175,176,225,227,232 1 -199907 cd10320 RGL4_N 2 catalytic site 0 0 1 1 175,232 1 -199216 cd10321 RNase_Ire1_like 1 kinase interface 0 1 1 0 2,111,115,118,119,123 2 -199216 cd10321 RNase_Ire1_like 2 homodimer interface 0 1 1 1 4,8,11,12,76,79,80 2 -199216 cd10321 RNase_Ire1_like 3 ligand binding site 0 1 1 1 0,1,4,8,79 5 -271357 cd10322 SLC5sbd 1 Na binding site 0 0 1 1 47,50,318,321,322 4 -271358 cd10323 SLC-NCS1sbd 1 Na binding site 0 1 1 1 12,15,272,275,276 4 -271358 cd10323 SLC-NCS1sbd 2 substrate binding site 0 1 1 1 16,91,95,193,194,196,277,281 5 -271359 cd10324 SLC6sbd 1 Na binding site 2 0 1 1 1 14,17,292,295,296 4 -271359 cd10324 SLC6sbd 2 Na binding site 1 0 1 1 1 16,21,195,227 4 -271359 cd10324 SLC6sbd 3 substrate binding site 1 0 1 1 1 16,18,19,20,21,96,194,195,200,202,296,299,300 5 -271359 cd10324 SLC6sbd 4 substrate binding site 2 0 1 1 1 23,24,95,99,102,261,265 5 -271360 cd10325 SLC5sbd_vSGLT 1 Na binding site 0 0 1 1 48,51,340,343,344 4 -271360 cd10325 SLC5sbd_vSGLT 2 substrate binding site 0 0 1 1 50,55,73,74,77,247,248,252,282,403,407 5 -271361 cd10326 SLC5sbd_NIS-like 1 Na binding site 0 0 1 1 46,49,331,334,335 4 -212037 cd10327 SLC5sbd_PanF 1 Na binding site 0 0 1 1 51,54,327,330,331 4 -271362 cd10328 SLC5sbd_YidK 1 Na binding site 0 0 1 1 44,47,332,335,336 4 -271363 cd10329 SLC5sbd_SGLT1-like 1 Na binding site 0 0 1 1 46,49,332,335,336 4 -271364 cd10332 SLC6sbd-B0AT-like 1 Na binding site 2 0 0 1 1 15,18,357,360,361 4 -271364 cd10332 SLC6sbd-B0AT-like 2 Na binding site 1 0 0 1 1 17,22,246,278 4 -271364 cd10332 SLC6sbd-B0AT-like 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,245,246,251,253,361,364,365 5 -271364 cd10332 SLC6sbd-B0AT-like 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,326,330 5 -271365 cd10333 LeuT-like_sbd 1 Na binding site 2 0 1 1 1 15,18,331,334,335 4 -271365 cd10333 LeuT-like_sbd 2 Na binding site 1 0 1 1 1 17,22,236,268 4 -271365 cd10333 LeuT-like_sbd 3 substrate binding site 1 0 1 1 1 16,17,19,20,21,22,103,235,236,238,241,243,335,338,339 5 -271365 cd10333 LeuT-like_sbd 4 substrate binding site 2 0 1 1 1 24,25,102,106,109,299,300,304,382,386 5 -271366 cd10334 SLC6sbd_u1 1 Na binding site 2 0 0 1 1 15,18,325,328,329 4 -271366 cd10334 SLC6sbd_u1 2 Na binding site 1 0 0 1 1 17,22,227,259 4 -271366 cd10334 SLC6sbd_u1 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,226,227,232,234,329,332,333 5 -271366 cd10334 SLC6sbd_u1 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,293,297 5 -271367 cd10336 SLC6sbd_Tyt1-Like 1 Na binding site 2 0 0 1 1 14,17,310,313,314 4 -271367 cd10336 SLC6sbd_Tyt1-Like 2 Na binding site 1 0 0 1 1 16,21,221,253 4 -271367 cd10336 SLC6sbd_Tyt1-Like 3 putative substrate binding site 1 0 0 1 1 15,16,18,19,20,21,99,220,221,226,228,314,317,318 5 -271367 cd10336 SLC6sbd_Tyt1-Like 4 putative substrate binding site 2 0 0 1 1 23,24,98,102,105,279,283 5 -198200 cd10337 SH2_BCAR3 1 phosphotyrosine binding pocket 0 0 1 1 14,30,51,53 2 -198200 cd10337 SH2_BCAR3 2 hydrophobic binding pocket 0 0 1 1 52,87 2 -198201 cd10338 SH2_SHA 1 phosphotyrosine binding pocket 0 0 1 1 18,36,64,66 2 -198201 cd10338 SH2_SHA 2 hydrophobic binding pocket 0 0 1 1 65,82 2 -198202 cd10339 SH2_RIN_family 1 phosphotyrosine binding pocket 0 0 1 1 18,36,61,63 2 -198202 cd10339 SH2_RIN_family 2 hydrophobic binding pocket 0 0 1 1 62,90 2 -198203 cd10340 SH2_N-SH2_SHP_like 1 phosphotyrosine binding pocket 0 1 1 1 8,27,48,50 2 -198203 cd10340 SH2_N-SH2_SHP_like 2 hydrophobic binding pocket 0 1 1 1 47,48,49,63,83,84,85,86,88 2 -199829 cd10341 SH2_N-SH2_PLC_gamma_like 1 phosphotyrosine binding pocket 0 1 1 1 14,35,37,45,56 2 -199829 cd10341 SH2_N-SH2_PLC_gamma_like 2 hydrophobic binding pocket 0 1 1 1 48,57,72,95 2 -198205 cd10342 SH2_SAP1 1 phosphotyrosine binding pocket 0 1 1 1 11,30,53 2 -198205 cd10342 SH2_SAP1 2 hydrophobic binding pocket 0 1 1 1 51,52,64,65,70,89,90,91 2 -198206 cd10343 SH2_SHIP 1 phosphotyrosine binding pocket 0 0 1 1 11,30,51,53 2 -198206 cd10343 SH2_SHIP 2 hydrophobic binding pocket 0 0 1 1 51,52,64,65,70,73,89,90,91 2 -198207 cd10344 SH2_SLAP 1 phosphotyrosine binding pocket 0 0 1 1 18,38,64,66 2 -198207 cd10344 SH2_SLAP 2 hydrophobic binding pocket 0 0 1 1 65,93 2 -198208 cd10345 SH2_C-SH2_Zap70_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 8,28,30 2 -198208 cd10345 SH2_C-SH2_Zap70_Syk_like 2 hydrophobic binding pocket 0 1 1 1 49,61,64,83 2 -198209 cd10346 SH2_SH2B_family 1 phosphotyrosine binding pocket 0 0 1 1 16,37,58,60 2 -198209 cd10346 SH2_SH2B_family 2 hydrophobic binding pocket 0 0 1 1 59,86 2 -198210 cd10347 SH2_Nterm_shark_like 1 phosphotyrosine binding pocket 0 0 1 1 9,29,50,52 2 -198210 cd10347 SH2_Nterm_shark_like 2 hydrophobic binding pocket 0 0 1 1 51,80 2 -198211 cd10348 SH2_Cterm_shark_like 1 phosphotyrosine binding pocket 0 0 1 1 8,28,49,51 2 -198211 cd10348 SH2_Cterm_shark_like 2 hydrophobic binding pocket 0 0 1 1 50,78 2 -199830 cd10349 SH2_SH2D2A_SH2D7 1 phosphotyrosine binding pocket 0 0 1 1 8,26,46,48 2 -199830 cd10349 SH2_SH2D2A_SH2D7 2 hydrophobic binding pocket 0 0 1 1 47,76 2 -198213 cd10350 SH2_SH2D4A 1 phosphotyrosine binding pocket 0 0 1 1 15,33,53,55 2 -198213 cd10350 SH2_SH2D4A 2 hydrophobic binding pocket 0 0 1 1 54,83 2 -198214 cd10351 SH2_SH2D4B 1 phosphotyrosine binding pocket 0 0 1 1 15,33,53,55 2 -198214 cd10351 SH2_SH2D4B 2 hydrophobic binding pocket 0 0 1 1 54,83 2 -198215 cd10352 SH2_a2chimerin_b2chimerin 1 phosphotyrosine binding pocket 0 0 1 1 14,32,53,55 2 -198215 cd10352 SH2_a2chimerin_b2chimerin 2 hydrophobic binding pocket 0 0 1 1 54,78 2 -198216 cd10353 SH2_Nterm_RasGAP 1 phosphotyrosine binding pocket 0 0 1 1 27,46,67,69 2 -198216 cd10353 SH2_Nterm_RasGAP 2 hydrophobic binding pocket 0 0 1 1 68,94 2 -198217 cd10354 SH2_Cterm_RasGAP 1 phosphotyrosine binding pocket 0 0 1 1 8,27,48,50 2 -198217 cd10354 SH2_Cterm_RasGAP 2 hydrophobic binding pocket 0 0 1 1 49,76 2 -198218 cd10355 SH2_DAPP1_BAM32_like 1 phosphotyrosine binding pocket 0 0 1 1 14,33,54,56 2 -198218 cd10355 SH2_DAPP1_BAM32_like 2 hydrophobic binding pocket 0 0 1 1 55,81 2 -198219 cd10356 SH2_ShkA_ShkC 1 phosphotyrosine binding pocket 0 0 1 1 18,36,58,60 2 -198219 cd10356 SH2_ShkA_ShkC 2 hydrophobic binding pocket 0 0 1 1 59,85 2 -198220 cd10357 SH2_ShkD_ShkE 1 phosphotyrosine binding pocket 0 0 1 1 18,36,59,61 2 -198220 cd10357 SH2_ShkD_ShkE 2 hydrophobic binding pocket 0 0 1 1 60,86 2 -198221 cd10358 SH2_PTK6_Brk 1 phosphotyrosine binding pocket 0 0 1 1 10,30,51,53 2 -198221 cd10358 SH2_PTK6_Brk 2 hydrophobic binding pocket 0 0 1 1 52,80 2 -198222 cd10359 SH2_SH3BP2 1 phosphotyrosine binding pocket 0 0 1 1 8,32,54,56 2 -198222 cd10359 SH2_SH3BP2 2 hydrophobic binding pocket 0 0 1 1 55,82 2 -198223 cd10360 SH2_Srm 1 phosphotyrosine binding pocket 0 0 1 1 8,28,49,51 2 -198223 cd10360 SH2_Srm 2 hydrophobic binding pocket 0 0 1 1 50,77 2 -198224 cd10361 SH2_Fps_family 1 phosphotyrosine binding pocket 0 0 1 1 14,30,54,56 2 -198224 cd10361 SH2_Fps_family 2 hydrophobic binding pocket 0 0 1 1 55,82 2 -198225 cd10362 SH2_Src_Lck 1 phosphotyrosine binding pocket 0 1 1 1 11,31,33,34,35,41,57,58,59 2 -198225 cd10362 SH2_Src_Lck 2 hydrophobic binding pocket 0 1 1 1 58,70,71,73,86,91,92,93 2 -198225 cd10362 SH2_Src_Lck 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198226 cd10363 SH2_Src_HCK 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198226 cd10363 SH2_Src_HCK 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198226 cd10363 SH2_Src_HCK 3 autoinhibitory site 0 1 1 1 11,31,33,34,35,36,41,57,59,71,72,73,92 2 -198227 cd10364 SH2_Src_Lyn 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198227 cd10364 SH2_Src_Lyn 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198227 cd10364 SH2_Src_Lyn 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198228 cd10365 SH2_Src_Src 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198228 cd10365 SH2_Src_Src 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198228 cd10365 SH2_Src_Src 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198229 cd10366 SH2_Src_Yes 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198229 cd10366 SH2_Src_Yes 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198229 cd10366 SH2_Src_Yes 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198230 cd10367 SH2_Src_Fgr 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198230 cd10367 SH2_Src_Fgr 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198230 cd10367 SH2_Src_Fgr 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198231 cd10368 SH2_Src_Fyn 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198231 cd10368 SH2_Src_Fyn 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198231 cd10368 SH2_Src_Fyn 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -199831 cd10369 SH2_Src_Frk 1 phosphotyrosine binding pocket 0 0 1 1 11,31,52,54 2 -199831 cd10369 SH2_Src_Frk 2 hydrophobic binding pocket 0 0 1 1 53,81 2 -199831 cd10369 SH2_Src_Frk 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,52,54,87 2 -198233 cd10370 SH2_Src_Src42 1 phosphotyrosine binding pocket 0 0 1 1 11,31,52,54 2 -198233 cd10370 SH2_Src_Src42 2 hydrophobic binding pocket 0 0 1 1 53,81 2 -198233 cd10370 SH2_Src_Src42 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,52,54,87 2 -198234 cd10371 SH2_Src_Blk 1 phosphotyrosine binding pocket 0 0 1 1 11,31,56,58 2 -198234 cd10371 SH2_Src_Blk 2 hydrophobic binding pocket 0 0 1 1 57,85 2 -198234 cd10371 SH2_Src_Blk 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,56,58,91 2 -198235 cd10372 SH2_STAT1 1 phosphotyrosine binding pocket 0 0 1 1 27,45,73,75 2 -198235 cd10372 SH2_STAT1 2 hydrophobic binding pocket 0 0 1 1 74,90 2 -198235 cd10372 SH2_STAT1 3 homodimer interface 0 0 1 0 84,85,149 2 -198236 cd10373 SH2_STAT2 1 phosphotyrosine binding pocket 0 0 1 1 27,45,71,73 2 -198236 cd10373 SH2_STAT2 2 hydrophobic binding pocket 0 0 1 1 72,88 2 -198236 cd10373 SH2_STAT2 3 homodimer interface 0 0 1 0 82,83,139 2 -198237 cd10374 SH2_STAT3 1 phosphotyrosine binding pocket 0 0 1 1 37,55,82,84 2 -198237 cd10374 SH2_STAT3 2 hydrophobic binding pocket 0 0 1 1 83,99 2 -198237 cd10374 SH2_STAT3 3 homodimer interface 0 0 1 0 93,94,156 2 -198238 cd10375 SH2_STAT4 1 phosphotyrosine binding pocket 0 0 1 1 27,45,71,73 2 -198238 cd10375 SH2_STAT4 2 hydrophobic binding pocket 0 0 1 1 72,88 2 -198238 cd10375 SH2_STAT4 3 homodimer interface 0 0 1 0 82,83,145 2 -198239 cd10376 SH2_STAT5 1 phosphotyrosine binding pocket 0 0 1 1 27,45,69,71 2 -198239 cd10376 SH2_STAT5 2 hydrophobic binding pocket 0 0 1 1 70,86 2 -198239 cd10376 SH2_STAT5 3 homodimer interface 0 0 1 0 80,81,128 2 -198240 cd10377 SH2_STAT6 1 phosphotyrosine binding pocket 0 0 1 1 27,45,71,73 2 -198240 cd10377 SH2_STAT6 2 hydrophobic binding pocket 0 0 1 1 72,88 2 -198240 cd10377 SH2_STAT6 3 homodimer interface 0 0 1 0 82,83,128 2 -198241 cd10378 SH2_Jak1 1 phosphotyrosine binding pocket 0 0 1 1 20,40,71,73 2 -198241 cd10378 SH2_Jak1 2 hydrophobic binding pocket 0 0 1 1 72,100 2 -198242 cd10379 SH2_Jak2 1 phosphotyrosine binding pocket 0 0 1 1 20,40,65,67 2 -198242 cd10379 SH2_Jak2 2 hydrophobic binding pocket 0 0 1 1 66,95 2 -198243 cd10380 SH2_Jak3 1 phosphotyrosine binding pocket 0 0 1 1 20,40,65,67 2 -198243 cd10380 SH2_Jak3 2 hydrophobic binding pocket 0 0 1 1 66,94 2 -198244 cd10381 SH2_Jak_Tyk2 1 phosphotyrosine binding pocket 0 0 1 1 20,40,71,73 2 -198244 cd10381 SH2_Jak_Tyk2 2 hydrophobic binding pocket 0 0 1 1 72,100 2 -198245 cd10382 SH2_SOCS1 1 phosphotyrosine binding pocket 0 0 1 1 18,36,38,46,59 2 -198245 cd10382 SH2_SOCS1 2 hydrophobic binding pocket 0 0 1 1 69,71,86 2 -198246 cd10383 SH2_SOCS2 1 phosphotyrosine binding pocket 0 0 1 1 15,33,35,43,56 2 -198246 cd10383 SH2_SOCS2 2 hydrophobic binding pocket 0 0 1 1 66,68,89 2 -198247 cd10384 SH2_SOCS3 1 phosphotyrosine binding pocket 0 0 1 1 18,36,38,46,59 2 -198247 cd10384 SH2_SOCS3 2 hydrophobic binding pocket 0 0 1 1 69,71,92 2 -198248 cd10385 SH2_SOCS4 1 phosphotyrosine binding pocket 0 1 1 1 18,36,38,46,59 2 -198248 cd10385 SH2_SOCS4 2 hydrophobic binding pocket 0 0 1 1 69,71,89 2 -198248 cd10385 SH2_SOCS4 3 Elongin-C binding interface 0 1 1 0 8,10 2 -198249 cd10386 SH2_SOCS5 1 phosphotyrosine binding pocket 0 0 1 1 8,26,28,36,49 2 -198249 cd10386 SH2_SOCS5 2 hydrophobic binding pocket 0 0 1 1 59,61,79 2 -198250 cd10387 SH2_SOCS6 1 phosphotyrosine binding pocket 0 0 1 1 18,36,38,46,59 2 -198250 cd10387 SH2_SOCS6 2 hydrophobic binding pocket 0 0 1 1 69,71,88 2 -198251 cd10388 SH2_SOCS7 1 phosphotyrosine binding pocket 0 0 1 1 18,36,38,46,59 2 -198251 cd10388 SH2_SOCS7 2 hydrophobic binding pocket 0 0 1 1 69,71,89 2 -198252 cd10389 SH2_SHB 1 phosphotyrosine binding pocket 0 0 1 1 9,27,48,50 2 -198252 cd10389 SH2_SHB 2 hydrophobic binding pocket 0 0 1 1 49,77 2 -198253 cd10390 SH2_SHD 1 phosphotyrosine binding pocket 0 0 1 1 9,27,48,50 2 -198253 cd10390 SH2_SHD 2 hydrophobic binding pocket 0 0 1 1 49,78 2 -198254 cd10391 SH2_SHE 1 phosphotyrosine binding pocket 0 0 1 1 9,27,48,50 2 -198254 cd10391 SH2_SHE 2 hydrophobic binding pocket 0 0 1 1 49,78 2 -198255 cd10392 SH2_SHF 1 phosphotyrosine binding pocket 0 0 1 1 9,27,48,50 2 -198255 cd10392 SH2_SHF 2 hydrophobic binding pocket 0 0 1 1 49,78 2 -198256 cd10393 SH2_RIN1 1 phosphotyrosine binding pocket 0 0 1 1 18,36,61,63 2 -198256 cd10393 SH2_RIN1 2 hydrophobic binding pocket 0 0 1 1 62,90 2 -198257 cd10394 SH2_RIN2 1 phosphotyrosine binding pocket 0 0 1 1 18,36,60,62 2 -198257 cd10394 SH2_RIN2 2 hydrophobic binding pocket 0 0 1 1 61,89 2 -198258 cd10395 SH2_RIN3 1 phosphotyrosine binding pocket 0 0 1 1 18,36,61,63 2 -198258 cd10395 SH2_RIN3 2 hydrophobic binding pocket 0 0 1 1 62,90 2 -198259 cd10396 SH2_Tec_Itk 1 phosphotyrosine binding pocket 0 0 1 1 14,33 2 -198259 cd10396 SH2_Tec_Itk 2 hydrophobic binding pocket 0 1 1 1 89,97,98 2 -198260 cd10397 SH2_Tec_Btk 1 phosphotyrosine binding pocket 0 0 1 1 14,33 2 -198260 cd10397 SH2_Tec_Btk 2 hydrophobic binding pocket 0 0 1 1 87,95,96 2 -198261 cd10398 SH2_Tec_Txk 1 phosphotyrosine binding pocket 0 0 1 1 14,33 2 -198261 cd10398 SH2_Tec_Txk 2 hydrophobic binding pocket 0 0 1 1 87,95,96 2 -198262 cd10399 SH2_Tec_Bmx 1 phosphotyrosine binding pocket 0 0 1 1 14,33 2 -198262 cd10399 SH2_Tec_Bmx 2 hydrophobic binding pocket 0 0 1 1 87,95,96 2 -198263 cd10400 SH2_SAP1a 1 phosphotyrosine binding pocket 0 1 1 1 11,30,51,53 2 -198263 cd10400 SH2_SAP1a 2 hydrophobic binding pocket 0 1 1 1 51,52,64,65,70,73,89,90,91 2 -198264 cd10401 SH2_C-SH2_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 11,31,33,51,53 2 -198264 cd10401 SH2_C-SH2_Syk_like 2 hydrophobic binding pocket 0 1 1 1 52,64,67,86 2 -198265 cd10402 SH2_C-SH2_Zap70 1 phosphotyrosine binding pocket 0 1 1 1 18,38,40,47 2 -198265 cd10402 SH2_C-SH2_Zap70 2 hydrophobic binding pocket 0 0 1 1 59,87 2 -198266 cd10403 SH2_STAP1 1 phosphotyrosine binding pocket 0 1 1 1 8,27,36,52 2 -198266 cd10403 SH2_STAP1 2 hydrophobic binding pocket 0 1 1 1 41,43,51,62,64,79,80,83,88 2 -198267 cd10404 SH2_STAP2 1 phosphotyrosine binding pocket 0 0 1 1 8,27,37,54 2 -198267 cd10404 SH2_STAP2 2 hydrophobic binding pocket 0 0 1 1 42,44,53,64,66,81,82,85,90 2 -198268 cd10405 SH2_Vav1 1 phosphotyrosine binding pocket 0 0 1 1 13,31,52,54 2 -198268 cd10405 SH2_Vav1 2 hydrophobic binding pocket 0 0 1 1 53,80 2 -198269 cd10406 SH2_Vav2 1 phosphotyrosine binding pocket 0 0 1 1 13,31,52,54 2 -198269 cd10406 SH2_Vav2 2 hydrophobic binding pocket 0 0 1 1 53,80 2 -198270 cd10407 SH2_Vav3 1 phosphotyrosine binding pocket 0 0 1 1 13,31,52,54 2 -198270 cd10407 SH2_Vav3 2 hydrophobic binding pocket 0 0 1 1 53,80 2 -198271 cd10408 SH2_Nck1 1 phosphotyrosine binding pocket 0 0 1 1 9,28,30,31,32,38,51 2 -198271 cd10408 SH2_Nck1 2 hydrophobic binding pocket 0 0 1 1 50,61,64,81,82,83 2 -198272 cd10409 SH2_Nck2 1 phosphotyrosine binding pocket 0 1 1 1 9,28,30,31,32,38,51 2 -198272 cd10409 SH2_Nck2 2 hydrophobic binding pocket 0 1 1 1 50,61,64,81,82,83 2 -198273 cd10410 SH2_SH2B1 1 phosphotyrosine binding pocket 0 0 1 1 16,37,58,60 2 -198273 cd10410 SH2_SH2B1 2 hydrophobic binding pocket 0 0 1 1 59,86 2 -198274 cd10411 SH2_SH2B2 1 phosphotyrosine binding pocket 0 0 1 1 16,37,58,60 2 -198274 cd10411 SH2_SH2B2 2 hydrophobic binding pocket 0 0 1 1 59,86 2 -198275 cd10412 SH2_SH2B3 1 phosphotyrosine binding pocket 0 0 1 1 16,37,58,60 2 -198275 cd10412 SH2_SH2B3 2 hydrophobic binding pocket 0 0 1 1 59,86 2 -198276 cd10413 SH2_Grb7 1 phosphotyrosine binding pocket 0 1 1 1 13,33,34,35,38,54 2 -198276 cd10413 SH2_Grb7 2 hydrophobic binding pocket 0 1 1 1 55,87 2 -198277 cd10414 SH2_Grb14 1 phosphotyrosine binding pocket 0 0 1 1 13,33,34,35,38,54 2 -198277 cd10414 SH2_Grb14 2 hydrophobic binding pocket 0 0 1 1 55,87 2 -198278 cd10415 SH2_Grb10 1 phosphotyrosine binding pocket 0 0 1 1 13,33,34,35,38,54 2 -198278 cd10415 SH2_Grb10 2 hydrophobic binding pocket 0 0 1 1 55,87 2 -198279 cd10416 SH2_SH2D2A 1 phosphotyrosine binding pocket 0 0 1 1 15,33,53,55 2 -198279 cd10416 SH2_SH2D2A 2 hydrophobic binding pocket 0 0 1 1 54,83 2 -199832 cd10417 SH2_SH2D7 1 phosphotyrosine binding pocket 0 0 1 1 15,33,53,55 2 -199832 cd10417 SH2_SH2D7 2 hydrophobic binding pocket 0 0 1 1 54,83 2 -198281 cd10418 SH2_Src_Fyn_isoform_a_like 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198281 cd10418 SH2_Src_Fyn_isoform_a_like 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198281 cd10418 SH2_Src_Fyn_isoform_a_like 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198282 cd10419 SH2_Src_Fyn_isoform_b_like 1 phosphotyrosine binding pocket 0 0 1 1 11,31,57,59 2 -198282 cd10419 SH2_Src_Fyn_isoform_b_like 2 hydrophobic binding pocket 0 0 1 1 58,86 2 -198282 cd10419 SH2_Src_Fyn_isoform_b_like 3 autoinhibitory site 0 0 1 1 11,31,33,34,35,36,41,57,59,92 2 -198283 cd10420 SH2_STAT5b 1 phosphotyrosine binding pocket 0 0 1 1 27,45,69,71 2 -198283 cd10420 SH2_STAT5b 2 hydrophobic binding pocket 0 0 1 1 70,86 2 -198283 cd10420 SH2_STAT5b 3 homodimer interface 0 0 1 0 80,81,131 2 -198284 cd10421 SH2_STAT5a 1 phosphotyrosine binding pocket 0 0 1 1 27,45,69,71 2 -198284 cd10421 SH2_STAT5a 2 hydrophobic binding pocket 0 0 1 1 70,86 2 -198284 cd10421 SH2_STAT5a 3 homodimer interface 0 0 1 0 80,81,126 2 -199217 cd10422 RNase_Ire1 1 kinase interface 0 1 1 0 2,100,104,107,108,112 2 -199217 cd10422 RNase_Ire1 2 homodimer interface 0 1 1 1 4,8,11,12,71,74,75,78,91,92,93,122,123,126 2 -199217 cd10422 RNase_Ire1 3 ligand binding site 0 1 1 1 0,1,4,8,74,92,123,126,127 5 -199218 cd10423 RNase_RNase-L 1 putative kinase interface 0 0 1 1 2,103,107,110,111,115 2 -199218 cd10423 RNase_RNase-L 2 putative homodimer interface 0 0 1 1 4,8,11,12,77,80,81 2 -199218 cd10423 RNase_RNase-L 3 putative ligand binding site 0 0 1 1 0,1,4,8,80 5 -198344 cd10424 GST_C_9 1 putative dimer interface 0 0 1 1 1,2,5,6,9,46 2 -198344 cd10424 GST_C_9 2 putative substrate binding pocket (H-site) 0 0 1 1 8,12,13,72,75 5 -198344 cd10424 GST_C_9 3 putative N-terminal domain interface 0 0 1 1 1,8,64,67,68,71,75 2 -259896 cd10425 Ephrin-A_Ectodomain 1 receptor binding site 0 1 1 0 27,68,69,70,71,72,84,85,92,93,94,95,96,97,99,100 2 -259897 cd10426 Ephrin-B_Ectodomain 1 receptor binding site 0 1 1 1 28,67,68,69,74,77,78,80,81,82,84,86,88,89,90,91,92,93,94,96 2 -198378 cd10427 FGGY_GK_1 1 active site 0 0 1 1 5,7,8,9,10,12,77,78,79,98,130,240,241,260,261,262,265,305,306,308,309,321,322,324,405,406,407,410 1 -198378 cd10427 FGGY_GK_1 2 catalytic site DTD 0 1 1 5,8,240 1 -198378 cd10427 FGGY_GK_1 3 metal binding site DD 0 1 1 5,240 4 -198378 cd10427 FGGY_GK_1 4 MgATP binding site 0 0 1 1 5,7,8,9,10,12,240,260,261,262,305,306,308,309,321,322,324,405,406,407,410 5 -198378 cd10427 FGGY_GK_1 5 putative glycerol binding site 0 0 1 1 8,77,78,79,98,130,240,241,265 5 -198378 cd10427 FGGY_GK_1 6 N- and C-terminal domain interface 0 0 1 1 0,1,3,5,8,9,12,13,14,16,17,20,22,38,70,71,72,73,74,75,78,98,99,100,101,104,105,108,120,121,123,124,125,126,128,130,131,178,179,182,183,187,189,190,192,214,215,216,217,218,233,235,236,262,265,273,274,275,276,280,281,282,283,284,285,286,287,288,293,295,298,300,301,302,303,309,343,344,351,353,354,356,432,434,435,436,438,439,440,441,442,443,444,445,446,448,449,455,456 2 -198378 cd10427 FGGY_GK_1 7 putative homodimer interface 0 0 1 1 34,37,40,99,303,306,310,313,336,338,343,355,356,357,358,359,360,361,362,363,364,368,369,371,478 2 -198378 cd10427 FGGY_GK_1 8 putative homotetramer interface 0 0 1 1 28,45,46,48,49,52,53,56,57,90,167,170,223,224 2 -198381 cd10434 GIY-YIG_UvrC_Cho 1 active site 0 1 1 0 7,18,20,21,28,32,67,79 1 -198381 cd10434 GIY-YIG_UvrC_Cho 2 catalytic site 0 0 1 1 18,28,67 1 -198381 cd10434 GIY-YIG_UvrC_Cho 3 metal binding site 0 1 1 1 67 4 -198381 cd10434 GIY-YIG_UvrC_Cho 4 putative DNA binding site 0 0 1 1 18,28,67 3 -198381 cd10434 GIY-YIG_UvrC_Cho 5 GIY-YIG motif/motif A 0 0 1 1 5,6,7,18,19,20 0 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 1 putative metal binding site 0 0 1 1 92 4 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 2 DNA binding site 0 1 1 1 31,34,57,59,63,109,111,112,113,114,115,116 3 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 3 homodimer interface 0 1 1 1 80,81,82,83,84,87,89,90,93,100,104 2 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 4 GIY-YIG motif/motif A 0 0 1 1 2,3,4,31,32,33 0 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 5 active site 0 1 1 1 4,31,33,34,57,61,92,104 1 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 1 active site 0 1 1 1 3,13,15,16,23,27,82 1 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 2 metal binding site 0 1 1 1 82 4 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 3 catalytic site 0 1 1 1 82 1 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 4 DNA binding site 0 1 1 1 3,13,15,16,17,18,19,23,25,26,27,29,79,82,94,95,96 3 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 5 GIY-YIG motif/motif A 0 0 1 1 1,2,3,13,14,15 0 -198384 cd10437 GIY-YIG_HE_I-TevI_like 1 putative active site 0 0 1 1 3,14,16,24,28,72,86 1 -198384 cd10437 GIY-YIG_HE_I-TevI_like 2 catalytic site 0 0 1 1 24,72 1 -198384 cd10437 GIY-YIG_HE_I-TevI_like 3 putative metal binding site 0 0 1 1 72 4 -198384 cd10437 GIY-YIG_HE_I-TevI_like 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,14,15,16 0 -198385 cd10438 GIY-YIG_MSH 1 putative active site 0 0 1 1 3,13,15,23,27,55,68 1 -198385 cd10438 GIY-YIG_MSH 2 putative metal binding site 0 0 1 1 55 4 -198385 cd10438 GIY-YIG_MSH 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,13,14,15 0 -198386 cd10439 GIY-YIG_COG3410 1 putative active site 0 0 1 1 5,16,18,26,30,62,79 1 -198386 cd10439 GIY-YIG_COG3410 2 putative metal binding site 0 0 1 1 62 4 -198386 cd10439 GIY-YIG_COG3410 3 GIY-YIG motif/motif A 0 0 0 1 3,4,5,16,17,18 0 -198387 cd10440 GIY-YIG_COG3680 1 putative active site 0 0 1 1 3,15,17,18,23,27,77,93 1 -198387 cd10440 GIY-YIG_COG3680 2 putative metal binding site 0 0 1 1 77 4 -198387 cd10440 GIY-YIG_COG3680 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,15,16,17 0 -198388 cd10441 GIY-YIG_COG1833 1 putative active site 0 0 1 1 3,32,34,44,48,81,103 1 -198388 cd10441 GIY-YIG_COG1833 2 putative metal binding site 0 0 1 1 81 4 -198388 cd10441 GIY-YIG_COG1833 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,32,33,34 0 -198389 cd10442 GIY-YIG_PLEs 1 putative active site 0 0 1 1 2,13,15,24,28,75,91 1 -198389 cd10442 GIY-YIG_PLEs 2 putative metal binding site 0 0 1 1 75 4 -198389 cd10442 GIY-YIG_PLEs 3 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198389 cd10442 GIY-YIG_PLEs 4 CCHH motif 0 0 1 1 6,9,45,51 0 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 1 putative active site 0 0 1 1 3,14,16,25,29,71,87 1 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 2 putative metal binding site 0 0 1 1 71 4 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,14,15,16 0 -198391 cd10444 GIY-YIG_SegABCDEFG 1 putative active site 0 0 1 1 2,13,15,29,66,82 1 -198391 cd10444 GIY-YIG_SegABCDEFG 2 putative metal binding site 0 0 1 1 66 4 -198391 cd10444 GIY-YIG_SegABCDEFG 3 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198392 cd10445 GIY-YIG_bI1_like 1 putative active site 0 0 1 1 3,14,16,24,28,72,84 1 -198392 cd10445 GIY-YIG_bI1_like 2 putative metal binding site 0 0 1 1 72 4 -198392 cd10445 GIY-YIG_bI1_like 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,14,15,16 0 -198393 cd10446 GIY-YIG_unchar_1 1 putative active site 0 0 1 1 11,22,24,35,39,85,100 1 -198393 cd10446 GIY-YIG_unchar_1 2 putative metal binding site 0 0 1 1 85 4 -198393 cd10446 GIY-YIG_unchar_1 3 GIY-YIG motif/motif A 0 0 0 1 9,10,11,22,23,24 0 -198394 cd10447 GIY-YIG_unchar_2 1 putative active site 0 0 1 1 2,17,19,27,31,60,77 1 -198394 cd10447 GIY-YIG_unchar_2 2 putative metal binding site 0 0 1 1 60 4 -198394 cd10447 GIY-YIG_unchar_2 3 GIY-YIG motif/motif A 0 0 0 1 0,1,2,17,18,19 0 -198395 cd10448 GIY-YIG_unchar_3 1 putative active site 0 0 1 1 3,14,16,24,28,61,80 1 -198395 cd10448 GIY-YIG_unchar_3 2 putative metal binding site 0 0 1 1 61 4 -198395 cd10448 GIY-YIG_unchar_3 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,14,15,16 0 -198396 cd10449 GIY-YIG_SLX1_like 1 putative active site 0 0 1 1 2,13,15,23,27,59 1 -198396 cd10449 GIY-YIG_SLX1_like 2 putative metal binding site 0 0 1 1 59 4 -198396 cd10449 GIY-YIG_SLX1_like 3 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198397 cd10450 GIY-YIG_AtGrxS16_like 1 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198398 cd10451 GIY-YIG_LuxR_like 1 GIY-YIG motif/motif A 0 0 0 1 14,15,16,27,28,29 0 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 1 active site 0 1 1 1 43,70,72,73,98,102,136,148 1 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 2 putative metal binding site 0 0 1 1 136 4 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 3 DNA binding site 0 1 1 1 70,73,77,78,79,80,81,82,83,90,98,100,104,152,153,155,156,157,158,159,160,161,163,166,167,168,169 3 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 4 homodimer interface 0 1 1 1 0,2,4,5,6,7,8,9,11,12,15,18,19,22,26,27,28,29,30,34,35,37,38,79,80,81,82,83,121,122,123,124,125,127,128,130,131,133,134,137,144,148,149,152,162,163,164,165,166 2 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 5 GIY-YIG motif/motif A 0 0 1 1 41,42,43,70,71,72 0 -198400 cd10453 GIY-YIG_RE_Cfr42I 1 putative active site 0 0 1 1 37,65,67,68,92,96,127,139 1 -198400 cd10453 GIY-YIG_RE_Cfr42I 2 putative metal binding site 0 0 1 1 127 4 -198400 cd10453 GIY-YIG_RE_Cfr42I 3 GIY-YIG motif/motif A 0 0 1 1 35,36,37,65,66,67 0 -198401 cd10454 GIY-YIG_COG3680_Meta 1 GIY-YIG motif/motif A 0 0 0 1 1,2,3,36,37,38 0 -198401 cd10454 GIY-YIG_COG3680_Meta 2 putative active site 0 0 1 1 3,36,38,39,44,48,99,113 1 -198401 cd10454 GIY-YIG_COG3680_Meta 3 putative metal binding site 0 0 1 1 99 4 -198402 cd10455 GIY-YIG_SLX1 1 putative active site 0 0 1 1 4,18,20,28,32,68 1 -198402 cd10455 GIY-YIG_SLX1 2 putative metal binding site 0 0 1 1 68 4 -198402 cd10455 GIY-YIG_SLX1 3 GIY-YIG motif/motif A 0 0 0 1 2,3,4,18,19,20 0 -198403 cd10456 GIY-YIG_UPF0213 1 putative active site 0 0 1 1 3,13,15,23,27,60 1 -198403 cd10456 GIY-YIG_UPF0213 2 putative metal binding site 0 0 1 1 60 4 -198403 cd10456 GIY-YIG_UPF0213 3 GIY-YIG motif/motif A 0 0 0 1 1,2,3,13,14,15 0 -198404 cd10457 GIY-YIG_AtGrxS16 1 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198405 cd10458 GIY-YIG_NifU 1 GIY-YIG motif/motif A 0 0 0 1 0,1,2,13,14,15 0 -198417 cd10459 PUB_PNGase 1 peptide binding site 0 1 1 1 17,20,21,24,33,34,36,37,38,41,43,47 2 -198418 cd10460 PUB_UBXD1 1 putative peptide binding site 0 0 1 1 19,22,23,26,35,36,38,39,40,43,45,49 2 -198419 cd10461 PUB_UBA_plant 1 putative peptide binding site 0 0 1 1 20,23,24,27,36,37,39,40,41,44,46,50 2 -198420 cd10462 PUB_UBA 1 putative peptide binding site 0 0 1 1 21,24,25,28,37,38,40,41,42,45,47,51 2 -198421 cd10463 PUB_WLM 1 putative peptide binding site 0 0 1 1 19,22,23,26,35,36,38,39,40,43,45,49 2 -198422 cd10464 PUB_RNF31 1 putative peptide binding site 0 0 1 1 25,28,29,32,40,41,44,45,46,49,51,55 2 -198456 cd10466 FimH_man-bind 1 mannosyl binding site 0 1 1 0 0,12,44,45,46,51,53,132,134,141,143 5 -198458 cd10467 FAM20_C_like 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198458 cd10467 FAM20_C_like 2 putative metal binding site 0 0 1 1 109,124 4 -198458 cd10467 FAM20_C_like 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198458 cd10467 FAM20_C_like 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198459 cd10468 Four-jointed-like_C 1 putative catalytic residues 0 0 1 1 149,156,192 1 -198459 cd10468 Four-jointed-like_C 2 putative metal binding site 0 0 1 1 161,192 4 -198459 cd10468 Four-jointed-like_C 3 putative catalytic loop 0 0 1 1 153,154,155,156,157,158,159,160,161 1 -198459 cd10468 Four-jointed-like_C 4 putative activation loop 0 0 1 1 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 0 -198460 cd10469 FAM20A_C 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198460 cd10469 FAM20A_C 2 putative metal binding site 0 0 1 1 109,124 4 -198460 cd10469 FAM20A_C 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198460 cd10469 FAM20A_C 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198461 cd10470 FAM20B_C 1 putative catalytic residues 0 0 1 1 94,101,120 1 -198461 cd10470 FAM20B_C 2 putative metal binding site 0 0 1 1 106,120 4 -198461 cd10470 FAM20B_C 3 putative catalytic loop 0 0 1 1 98,99,100,101,102,103,104,105,106 1 -198461 cd10470 FAM20B_C 4 putative activation loop 0 0 1 1 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 0 -198462 cd10471 FAM20C_C 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198462 cd10471 FAM20C_C 2 putative metal binding site 0 0 1 1 109,124 4 -198462 cd10471 FAM20C_C 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198462 cd10471 FAM20C_C 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198440 cd10472 EphR_LBD_B 1 ephrin binding site 0 1 1 0 7,8,9,10,11,23,24,25,26,28,32,34,36,39,72,73,74,78,80,126,128,129,134,135,137,138,163,165,167 2 -198441 cd10473 EphR_LBD_A 1 ephrin binding site 0 1 1 0 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -198442 cd10474 EphR_LBD_B4 1 ephrin binding site 0 1 1 0 10,12,26,27,28,29,31,32,33,35,37,39,42,43,76,78,130,132,138,139,140,142,167,168,169,171 2 -198443 cd10475 EphR_LBD_B6 1 ephrin binding site 0 0 1 1 12,24,25,26,27,29,30,35,37,40,75,77,129,138,139,140,167,168,169,171 2 -198444 cd10476 EphR_LBD_B1 1 ephrin binding site 0 0 1 1 7,8,9,11,23,24,25,26,28,32,34,36,39,72,73,74,78,80,126,128,134,135,137,138,163,165,167 2 -198445 cd10477 EphR_LBD_B2 1 ephrin binding site 0 1 1 0 9,10,11,13,25,26,27,28,30,34,36,38,41,74,75,76,80,82,128,130,131,132,133,134,135,136,137,139,140,165,167,169 2 -198446 cd10478 EphR_LBD_B3 1 ephrin binding site 0 0 1 1 8,9,10,12,24,25,26,27,29,33,35,37,40,73,74,75,79,81,127,129,131,132,134,135,160,162,164 2 -198447 cd10479 EphR_LBD_A1 1 ephrin binding site 0 0 1 1 25,27,28,29,30,31,37,38,40,42,75,77,82,83,127,131,132,135,136,137,164,165,166,168 2 -198448 cd10480 EphR_LBD_A2 1 ephrin binding site 0 1 1 0 25,27,28,29,30,31,33,35,37,38,40,41,42,45,73,75,80,123,127,128,131,132,133,160,161,162,164 2 -198448 cd10480 EphR_LBD_A2 2 dimer interface 0 1 1 0 101,102,103,104,105 2 -198449 cd10481 EphR_LBD_A3 1 ephrin binding site 0 0 1 1 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -198450 cd10482 EphR_LBD_A4 1 ephrin binding site 0 1 1 0 10,12,21,25,26,27,28,29,30,32,34,38,41,43,74,75,76,81,82,124,127,128,133,134,136,161,162,163,165 2 -198451 cd10483 EphR_LBD_A5 1 ephrin binding site 0 0 1 1 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -198452 cd10484 EphR_LBD_A6 1 ephrin binding site 0 0 1 1 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -198453 cd10485 EphR_LBD_A7 1 ephrin binding site 0 0 1 1 26,28,29,30,31,32,39,40,42,44,75,77,82,83,125,129,130,133,134,135,162,163,164,166 2 -198454 cd10486 EphR_LBD_A8 1 ephrin binding site 0 0 1 1 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -198455 cd10487 EphR_LBD_A10 1 ephrin binding site 0 0 1 1 24,26,27,28,29,30,37,38,40,42,73,75,80,81,123,127,128,131,132,133,160,161,162,164 2 -199812 cd10488 MH1_R-SMAD 1 DNA binding site 0 1 1 1 23,27,30,60,61,64,65,66,67,68,71,90 3 -199812 cd10488 MH1_R-SMAD 2 Zn binding site 0 1 1 1 54,99,111,116 4 -199813 cd10489 MH1_SMAD_6_7 1 putative DNA binding site 0 0 1 1 24,28,31,61,62,86 3 -199813 cd10489 MH1_SMAD_6_7 2 Zn binding site 0 0 1 1 55,95,105,110 4 -199814 cd10490 MH1_SMAD_1_5_9 1 DNA binding site 0 1 1 1 23,27,61,62,65,66,67,68,69,72,91 3 -199814 cd10490 MH1_SMAD_1_5_9 2 Zn binding site 0 1 1 1 55,100,112,117 4 -199815 cd10491 MH1_SMAD_2_3 1 DNA binding site 0 1 1 1 24,28,61,65,66,67,68,69,72,91,92 3 -199815 cd10491 MH1_SMAD_2_3 2 Zn binding site 0 1 1 1 55,100,112,117 4 -199816 cd10492 MH1_SMAD_4 1 DNA binding site 0 1 1 1 24,28,31,63,64,67,68,69,70,71,74,92,93 3 -199816 cd10492 MH1_SMAD_4 2 Zn binding site 0 1 1 1 57,101,113,118 4 -199817 cd10493 MH1_SMAD_6 1 putative DNA binding site 0 0 1 1 14,18,21,54,55,78 3 -199817 cd10493 MH1_SMAD_6 2 Zn binding site 0 0 1 1 45,87,99,104 4 -199818 cd10494 MH1_SMAD_7 1 putative DNA binding site 0 0 1 1 21,25,28,62,63,86 3 -199818 cd10494 MH1_SMAD_7 2 Zn binding site 0 0 1 1 52,95,107,112 4 -199820 cd10495 MH2_R-SMAD 1 trimer interface 0 1 1 1 9,14,15,17,28,29,30,31,32,37,41,42,44,46,47,53,54,56,57,58,61,130,133,136,140,142,146,147,148,153,155,159,164,166,168,170,173,174,176,177,180,181 2 -199821 cd10496 MH2_I-SMAD 1 putative trimer interface 0 0 1 1 6,14,15,17,26,27,28,29,30,34,38,40,41,43,51,55,56,58,129,153,160,162,164 2 -199822 cd10497 MH2_SMAD_1_5_9 1 trimer interface 0 1 1 1 4,15,20,21,23,34,35,36,37,38,43,47,48,50,52,53,59,60,62,63,64,67,86,136,139,142,146,148,152,153,154,159,161,165,170,172,174,176,179,180,182,183,186,187,191,192,193,194,196,197,198,199,200 2 -199823 cd10498 MH2_SMAD_4 1 trimer interface 0 1 1 1 9,12,17,18,33,34,35,36,37,41,45,46,47,48,50,51,52,57,61,62,64,167,168,169,173,176,199,206,208,210,213,216,217,221 2 -199824 cd10499 MH2_SMAD_6 1 putative trimer interface 0 0 1 1 15,23,24,26,35,36,37,38,39,43,47,48,49,50,52,53,59,63,64,66,137,161,168,170,172 2 -199825 cd10500 MH2_SMAD_7 1 putative trimer interface 0 0 1 1 13,21,22,24,33,34,35,36,37,41,45,47,48,50,57,61,62,64,135,159,166,168,170 2 -259849 cd10506 RNAP_IV_RPD1_N 1 putative active site region 0 0 1 1 202,207,213,219,308,309,310,344,346,348,721,722 1 -259849 cd10506 RNAP_IV_RPD1_N 2 Zn-binding 0 0 1 1 33,36,44,47 4 -259849 cd10506 RNAP_IV_RPD1_N 3 catalytic site DDD 0 1 1 344,346,348 1 -259792 cd10507 Zn-ribbon_RPA12 1 Zn binding site 0 0 1 1 8,11,36,39 4 -259793 cd10508 Zn-ribbon_RPB9 1 Zn binding site 0 1 1 1 12,15,40,43 4 -259793 cd10508 Zn-ribbon_RPB9 2 trimer interface 0 1 1 1 0,2,3,5,23,24,26,34,35,36 2 -259794 cd10509 Zn-ribbon_RPC11 1 Zn binding site 0 0 1 1 8,11,36,39 4 -259795 cd10511 Zn-ribbon_TFS 1 Zn binding site 0 1 1 1 8,11,36,39 4 -240598 cd10546 VKOR 1 putative active site 0 0 1 1 29,37,43,108,111 1 -240598 cd10546 VKOR 2 redox center 0 1 1 1 108,109,110,111 1 -319871 cd10549 MtMvhB_like 1 Fe-S cluster binding site 0 0 0 1 0,7,8,9,10,12,13,17,21,25,27,38,41,42,43,44,47,51,52,55,56,72,82,83,84,85,89,90,91,93,94,106,108,109,110,111,112,115,119,124 4 -319872 cd10550 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 0,7,8,9,10,12,13,17,21,30,32,45,48,49,50,51,56,60,61,64,65,74,84,85,86,87,91,92,93,95,96,105,107,108,109,110,111,117,121,126 4 -319873 cd10551 PsrB 1 Fe-S cluster binding site 0 1 1 0 7,8,9,10,12,13,17,21,29,30,32,49,51,52,53,54,55,58,60,64,65,69,77,84,85,86,87,88,89,90,94,95,96,98,99,120,122,123,124,125,126,136,137,138,141,142,144,146,147 4 -319873 cd10551 PsrB 2 trimer interface 0 1 1 0 4,5,6,7,8,9,10,12,14,15,16,18,19,20,27,28,31,32,33,34,35,36,45,47,62,63,64,65,66,67,81,82,83,84,85,86,87,88,91,92,93,94,95,96,97,99,100,101,118,119,128,129,140,141,142,143,144,145,163,172,174,175 2 -319874 cd10552 TH_beta_N 1 Fe-S cluster binding site 0 1 1 0 7,8,9,10,11,12,13,17,21,41,43,60,63,64,65,66,70,71,88,105,106,107,109,121,122,123,124,125,136,137,138,142,144,146,147 4 -319874 cd10552 TH_beta_N 2 dimer interface 0 1 1 0 5,6,7,8,9,10,11,12,14,15,18,19,20,22,23,24,26,37,39,42,43,44,45,47,49,54,56,58,128,137,140,141,143,144,145 2 -319877 cd10555 EBDH_beta 1 Fe-S cluster binding site 0 1 1 0 13,14,15,16,17,18,19,23,27,38,39,41,129,131,132,133,134,135,138,139,140,144,146,149,158,165,166,167,168,169,170,171,175,177,179,180,189,191,192,193,194,195,205,206,207,211,212,215,216 4 -319877 cd10555 EBDH_beta 2 trimer interface 0 1 1 0 9,11,12,14,15,16,17,18,20,21,24,25,26,27,29,30,35,37,38,58,59,66,67,68,71,72,77,78,80,82,89,90,91,92,93,94,95,97,109,110,111,113,114,115,117,118,120,124,125,127,139,142,143,144,145,150,152,159,162,166,168,169,170,173,174,182,184,187,190,193,196,197,198,200,203,209,210,211,212,213,214,257,258,259,260,262,266,267,298,301,302,310,313,314 2 -319878 cd10556 SER_beta 1 Fe-S cluster binding site 0 0 1 1 20,21,22,23,24,25,26,30,34,45,46,48,137,140,141,142,143,146,147,148,152,153,154,157,166,168,173,174,175,176,177,178,179,183,185,188,197,199,200,201,202,203,213,214,215,219,220,221,223,224 4 -319879 cd10557 NarH_beta-like 1 Fe-S cluster binding site 0 1 1 0 13,14,15,16,17,18,19,23,27,38,39,41,175,178,179,180,181,184,185,186,190,191,192,195,204,206,211,212,213,214,215,216,217,221,223,226,235,237,238,239,240,241,251,252,253,257,258,259,261,262 4 -319879 cd10557 NarH_beta-like 2 trimer interface 0 1 1 0 1,9,10,11,12,13,14,15,16,17,18,21,22,24,25,26,27,35,37,63,85,86,87,88,90,91,92,93,94,95,97,98,100,101,102,104,105,107,116,117,118,119,120,121,125,126,129,136,137,138,140,141,142,143,144,165,166,169,170,171,173,183,184,187,188,189,190,191,192,193,196,197,198,199,200,205,206,207,208,209,210,211,212,214,215,228,230,232,233,234,236,239,242,243,244,246,252,255,256,257,258,259,260,271,272,312,353,354,355,356,361,362 2 -319880 cd10558 FDH-N 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,12,13,14,18,22,47,49,66,69,70,71,72,75,76,77,81,82,83,86,87,95,102,103,104,105,106,107,108,112,113,114,116,117,126,128,129,130,131,132,142,144,148,149,150,153 4 -319880 cd10558 FDH-N 2 trimer interface 0 1 1 0 6,7,8,9,10,11,12,13,16,19,20,21,22,23,31,32,33,35,37,38,53,62,64,82,90,100,102,103,104,105,106,107,109,110,112,115,119,124,133,134,135,138,146,147,148,149,150,151,168,171 2 -319881 cd10559 W-FDH 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,12,14,18,22,47,49,67,69,70,71,72,73,77,78,98,116,117,118,121,132,133,134,135,136,146,147,148,152,153,154,156,157 4 -319881 cd10559 W-FDH 2 heterodimer interface 0 1 1 0 6,7,8,9,10,11,12,13,16,19,20,21,24,31,32,33,34,35,37,38,51,53,63,65,109,110,128,137,138,139,150,151,152,153 2 -319882 cd10560 FDH-O_like 1 Fe-S cluster binding site 0 0 0 1 1,8,9,10,11,13,14,18,22,48,50,74,77,78,79,80,85,89,90,93,94,102,112,113,114,115,119,120,121,123,124,133,135,136,137,138,139,151,155,160 4 -319883 cd10561 HybA_like 1 Fe-S cluster binding site 0 0 0 1 1,8,9,10,11,13,14,18,22,47,49,65,68,69,70,71,76,80,81,84,85,93,103,104,105,106,110,111,112,114,115,126,128,129,130,131,132,144,148,153 4 -319884 cd10562 FDH_b_like 1 Fe-S cluster binding site 0 0 0 1 0,7,8,9,10,12,13,17,21,44,46,66,69,70,71,72,77,81,82,85,86,94,104,105,106,107,111,112,113,115,116,125,127,128,129,130,131,143,147,152 4 -319885 cd10563 CooF_like 1 Fe-S cluster binding site 0 0 0 1 1,8,9,10,11,13,14,18,22,40,42,53,56,57,58,59,64,68,69,72,73,82,92,93,94,95,99,100,101,103,104,113,115,116,117,118,119,127,131,136 4 -319886 cd10564 NapF_like 1 Fe-S cluster binding site 0 0 0 1 7,14,15,16,17,19,20,24,28,34,36,43,46,47,48,49,52,56,57,60,61,73,87,88,89,90,94,95,96,98,99,115,117,118,119,120,121,124,128,133 4 -349488 cd10566 MDM2_like 1 p53 binding site 0 1 1 0 24,27,28,31,32,37,42,63,64,66,67 2 -349489 cd10567 SWIB-MDM2_like 1 putative peptide binding site 0 0 1 1 18,21,22,24,25,28,29,34,39,40,42,62,63 2 -349490 cd10568 SWIB_like 1 putative peptide binding site 0 0 1 1 16,19,20,22,23,26,27,32,37,38,40,57,60,61 2 -269973 cd10569 FERM_C_Talin 1 peptide binding site 0 1 1 1 45,46,47,48,49,50,51,60,87 2 -269973 cd10569 FERM_C_Talin 2 putative actin binding site 2 0 0 1 1 80,81,82,83,84,85,86,87,88,89,90,91 2 -269973 cd10569 FERM_C_Talin 3 homodimer interface 0 1 1 0 25,43,45,46,61,62 2 -269973 cd10569 FERM_C_Talin 4 putative phosphoinositide binding site 0 0 1 0 8,30,32,40 5 -269975 cd10571 PH_beta_spectrin 1 non-cannonical phosphoinositide binding site 0 1 1 1 7,20,21,22,68 5 -269977 cd10573 PH_DAPP1 1 phosphoinositide binding site 0 1 1 0 10,17,19,21,32,34,72 5 -269978 cd10574 EVH1_SPRED-like 1 putative proline-rich peptide binding site 0 0 1 1 9,18,76,78 2 -276901 cd10575 TNFRSF6B 1 polypeptide ligand binding site 0 1 1 0 44,45,46,47,49,50,51,55 2 -276901 cd10575 TNFRSF6B 2 CRD1 0 0 1 0 0,1,2,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36 7 -276901 cd10575 TNFRSF6B 3 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -276901 cd10575 TNFRSF6B 4 CRD3 0 0 1 0 81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,113,114,115,116,117,118,119 7 -276902 cd10576 TNFRSF1A 1 parallel homodimerization interface 0 1 1 1 2,3,4,15,16,17,18,19,20,21,33,38,48,74,75,113,116,119,120,121,128 2 -276902 cd10576 TNFRSF1A 2 antiparallel homodimerization interface 0 1 1 0 0,1,2,6,44,53,55,56,58,61,63,77,88,90,91,127,129 2 -276902 cd10576 TNFRSF1A 3 polypeptide ligand binding site 0 1 1 0 43,53,54,55,56,59,61,62,63,96 2 -276902 cd10576 TNFRSF1A 4 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,33,34,35,36 7 -276902 cd10576 TNFRSF1A 5 CRD2 0 0 1 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -276902 cd10576 TNFRSF1A 6 CRD3 0 0 1 0 82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,101,102,103,104,105,106,107,108,112,113,114,115,116,117,118,119,120 7 -276903 cd10577 TNFRSF1B 1 homodimer interface 0 1 1 1 60,61,64,82,132,133,134,158,160 2 -276903 cd10577 TNFRSF1B 2 polypeptide ligand binding site 0 1 1 0 41,43,45,46,47,49,50,51,53,54,55,56,57,59,60,77,89,91,92,96,97 2 -276903 cd10577 TNFRSF1B 3 CRD1 0 0 1 0 0,1,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 7 -276903 cd10577 TNFRSF1B 4 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -276903 cd10577 TNFRSF1B 5 CRD3 0 0 1 0 81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,98,99,100,101,102,103,104 7 -276903 cd10577 TNFRSF1B 6 CRD4 0 0 1 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,158,159,160,161,162 7 -276904 cd10578 TNFRSF3 1 CRD1 0 0 1 0 11,12,13,14,15,16,17,18,19,20,22,23,24,25,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -276904 cd10578 TNFRSF3 2 CRD2 0 0 1 0 72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -276904 cd10578 TNFRSF3 3 CRD3 0 0 1 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156 7 -276905 cd10579 TNFRSF6 1 polypeptide ligand binding site 0 1 1 0 20,21,22,23,24,25,26,55,56,57,58,63 2 -276905 cd10579 TNFRSF6 2 CRD1 0 0 1 0 9,10,11,12,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,40,41,42,43 7 -276905 cd10579 TNFRSF6 3 CRD2 0 0 1 0 46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -276905 cd10579 TNFRSF6 4 CRD3 0 0 1 0 90,91,92,93,94,95,96,97,101,102,103,104,105,106,107,108,109,110 7 -276906 cd10580 TNFRSF10 1 polypeptide ligand binding site 0 1 1 0 35,38,43,74,75,76,77,78 2 -276906 cd10580 TNFRSF10 2 Antibody binding 0 1 1 0 1,2,3,10,12,29,30,32,33,34,35,37,38,77,98 2 -276906 cd10580 TNFRSF10 3 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17 7 -276906 cd10580 TNFRSF10 4 CRD2 0 0 1 0 20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -276906 cd10580 TNFRSF10 5 CRD3 0 0 1 0 62,63,64,65,66,67,68,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -276907 cd10581 TNFRSF11B 1 CRD1 0 0 1 0 0,1,4,5,6,7,8,9,10,11,12,20,21,22,23,24,25,26,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -276907 cd10581 TNFRSF11B 2 CRD2 0 0 1 0 59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -276907 cd10581 TNFRSF11B 3 CRD3 0 0 1 0 101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,128,129,130,131,132,133,134,135,136,137,138,139 7 -276908 cd10582 TNFRSF14 1 polypeptide ligand binding site 0 1 1 1 13,14,16,19,22,26,27,29,30,31,32,33,35,45 2 -276908 cd10582 TNFRSF14 2 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33 7 -276908 cd10582 TNFRSF14 3 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -276908 cd10582 TNFRSF14 4 CRD3 0 0 1 0 79,80,81,82,83,84,85,91,92,93,94,95,96 7 -276909 cd10583 TNFRSF21 1 CRD1 0 0 1 0 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35 7 -276909 cd10583 TNFRSF21 2 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -276909 cd10583 TNFRSF21 3 CRD3 0 0 1 0 80,81,82,83,90,91,92,93,94,95,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,132,133 7 -198285 cd10718 SH2_CIS 1 phosphotyrosine binding pocket 0 0 1 1 12,30,32,40,53 2 -198285 cd10718 SH2_CIS 2 hydrophobic binding pocket 0 0 1 1 63,65,86 2 -199908 cd10719 DnaJ_zf 1 Zn binding sites CCCCCCCC 1 1 1 0,3,17,20,43,46,57,60 4 -199909 cd10747 DnaJ_C 1 substrate binding site 0 1 1 0 4,19,20,21,22,23,24,33,57 2 -199909 cd10747 DnaJ_C 2 dimer interface 0 1 1 0 95,96,99,100,120,121,122,123,153,154,155,156,157 2 -199910 cd10748 anti-TRAP 1 Zn binding site cccc 1 1 0 10,13,24,27 4 -199910 cd10748 anti-TRAP 2 TRAP binding interface 0 1 1 0 4,5,8,11,12,25,26,33,34,35,36,37,39,40 2 -199910 cd10748 anti-TRAP 3 trimer interface 0 1 1 0 0,1,2,5,6,7,30,34,37,38,40,41,42,44,45,46,47,48,49 2 -199910 cd10748 anti-TRAP 4 dodecamer interface 1 0 1 1 0 0,1,2,3,6,7,22,23,24,25,28,30,32,34,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51 2 -199910 cd10748 anti-TRAP 5 dodecamer interface 2 0 1 1 0 0,1,2,3,4,5,6,7,8,11,26,30,33,34,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51 2 -212098 cd10786 GH38N_AMII_like 1 active site 0 1 1 1 8,10,13,121,123,145,228 1 -212098 cd10786 GH38N_AMII_like 2 catalytic site DD 1 1 0 121,228 1 -212099 cd10787 LamB_YcsF_like 1 putative active site 0 1 1 0 5,59,70,106,108,109,113,162,165,173,176,220 1 -212100 cd10788 YdjC_like 1 putative active site 0 1 1 1 5,6,8,54,56,120,122,124,216,232 1 -212100 cd10788 YdjC_like 2 Mg binding site DD[DH]H 1 1 0 5,6,56,124 4 -212100 cd10788 YdjC_like 3 putative homodimer interface 0 1 1 0 11,33,36,37,38,39,40,77,78,80,102,110,113 2 -212100 cd10788 YdjC_like 4 YdjC motif 0 0 1 1 5,6,7,8,54,55,56,119,120,121,122,123,124,216,232 0 -212101 cd10789 GH38N_AMII_ER_cytosolic 1 active site 0 0 1 1 8,10,13,120,122,144,211 1 -212101 cd10789 GH38N_AMII_ER_cytosolic 2 catalytic site DD 0 1 1 120,211 1 -212102 cd10790 GH38N_AMII_1 1 active site 0 1 1 1 8,10,13,119,121,143,175,215 1 -212102 cd10790 GH38N_AMII_1 2 catalytic site DD 1 1 0 119,215 1 -212102 cd10790 GH38N_AMII_1 3 metal binding site HDD 1 1 0 8,10,119 4 -212102 cd10790 GH38N_AMII_1 4 homodimer interface 0 1 1 0 13,14,15,16,18,19,21,22,23,26,30,57,58,59,61,215 2 -212103 cd10791 GH38N_AMII_like_1 1 putative active site 0 0 1 1 8,10,13,125,127,149,236 1 -212103 cd10791 GH38N_AMII_like_1 2 catalytic site [DE][DE] 0 1 1 125,236 1 -212104 cd10792 GH57N_AmyC_like 1 active site 0 0 1 0 7,9,11,26,147,183,186,238,246,247,248,252,254,255,347,354,400,409 1 -212104 cd10792 GH57N_AmyC_like 2 catalytic site ED 0 1 1 186,347 1 -212104 cd10792 GH57N_AmyC_like 3 substrate binding site 0 0 1 0 9,11,26,147,186,238,246,247,248,252,254,255,347,400 5 -212105 cd10793 GH57N_TLGT_like 1 active site 0 1 1 0 6,8,119,120,178,179,183,209,210,213,217,269,271,275 1 -212105 cd10793 GH57N_TLGT_like 2 catalytic site ED 1 1 0 119,210 1 -212105 cd10793 GH57N_TLGT_like 3 homodimer interface 0 1 1 0 123,124,125,147,148,149,150,151,154,160,162,167,261,263,264,265,266,277,278 2 -212105 cd10793 GH57N_TLGT_like 4 Lid 1 0 0 1 1 217,218,219,220 0 -212106 cd10794 GH57N_PfGalA_like 1 putative active site 0 0 1 1 4,6,117,214,293,302 1 -212106 cd10794 GH57N_PfGalA_like 2 catalytic site ED 0 1 1 117,214 1 -212107 cd10795 GH57N_MJA1_like 1 putative active site 0 0 1 1 6,8,143,236,292,302 1 -212107 cd10795 GH57N_MJA1_like 2 catalytic site [ED][DE] 0 1 1 143,236 1 -212108 cd10796 GH57N_APU 1 putative active site 0 0 1 1 5,7,143,247,302,310 1 -212108 cd10796 GH57N_APU 2 catalytic site E[ED] 0 1 1 143,247 1 -212109 cd10797 GH57N_APU_like_1 1 active site 0 0 1 1 4,6,149,257,311,320 1 -212109 cd10797 GH57N_APU_like_1 2 catalytic site ED 0 1 1 149,257 1 -212110 cd10798 GH57N_like_1 1 active site 0 0 1 1 5,7,154,260,319,326 1 -212110 cd10798 GH57N_like_1 2 catalytic site ED 0 1 1 154,260 1 -212111 cd10800 LamB_YcsF_YbgL_like 1 putative active site 0 0 1 1 5,54,65,101,103,104,108,157,160,168,171,215 1 -212112 cd10801 LamB_YcsF_like_1 1 putative active site 0 0 1 1 5,54,65,101,103,104,108,157,160,168,171,215 1 -212113 cd10802 YdjC_TTHB029_like 1 putative active site 0 1 1 1 7,8,10,56,58,125,127,129,220,238 1 -212113 cd10802 YdjC_TTHB029_like 2 Mg binding site DDHH 1 1 0 7,8,58,129 4 -212113 cd10802 YdjC_TTHB029_like 3 homodimer interface 0 1 1 0 13,35,38,39,40,41,42,85,86,88,107,115,118 2 -212113 cd10802 YdjC_TTHB029_like 4 YdjC motif 0 0 1 1 7,8,9,10,56,57,58,124,125,126,127,128,129,220,238 0 -212114 cd10803 YdjC_EF3048_like 1 putative active site 0 0 1 1 6,7,9,55,57,117,119,121,196,214 1 -212114 cd10803 YdjC_EF3048_like 2 Mg binding site DDHH 0 1 0 6,7,57,121 4 -212114 cd10803 YdjC_EF3048_like 3 YdjC motif 0 0 1 1 6,7,8,9,55,56,57,116,117,118,119,120,121,196,214 0 -212114 cd10803 YdjC_EF3048_like 4 putative homodimer interface 0 0 1 1 12,34,37,38,39,40,41,76,77,79,99,107,110 2 -212115 cd10804 YdjC_HpnK_like 1 putative active site 0 0 1 1 6,7,9,55,57,123,125,127,232,250 1 -212115 cd10804 YdjC_HpnK_like 2 Mg binding site DDHH 0 1 1 6,7,57,127 4 -212115 cd10804 YdjC_HpnK_like 3 putative homodimer interface 0 0 1 1 12,34,37,38,39,40,41,78,79,81,105,113,116 2 -212115 cd10804 YdjC_HpnK_like 4 YdjC motif 0 0 1 1 6,7,8,9,55,56,57,122,123,124,125,126,127,232,250 0 -212116 cd10805 YdjC_like_1 1 putative active site 0 0 1 1 6,7,9,55,57,125,127,129,203,221 1 -212116 cd10805 YdjC_like_1 2 Mg binding site DD[DH]H 0 1 1 6,7,57,129 4 -212116 cd10805 YdjC_like_1 3 putative homodimer interface 0 0 1 1 12,34,37,38,39,40,41,78,79,81,106,114,117 2 -212116 cd10805 YdjC_like_1 4 YdjC motif 0 0 1 1 6,7,8,9,55,56,57,124,125,126,127,128,129,203,221 0 -212117 cd10806 YdjC_like_2 1 putative active site 0 0 1 1 6,7,9,54,56,123,125,127,238,263 1 -212117 cd10806 YdjC_like_2 2 Mg binding site DDHH 0 1 1 6,7,56,127 4 -212117 cd10806 YdjC_like_2 3 putative homodimer interface 0 0 1 1 12,34,37,38,39,40,41,78,79,81,104,112,115 2 -212117 cd10806 YdjC_like_2 4 YdjC motif 0 0 1 1 6,7,8,9,54,55,56,122,123,124,125,126,127,238,263 0 -212118 cd10807 YdjC_like_3 1 putative active site 0 0 1 1 5,6,8,55,57,114,116,118,222,240 1 -212118 cd10807 YdjC_like_3 2 Mg binding site DDHH 0 1 1 5,6,57,118 4 -212118 cd10807 YdjC_like_3 3 putative homodimer interface 0 0 1 1 11,33,36,37,38,39,40,83,84,86,95,103,106 2 -212118 cd10807 YdjC_like_3 4 YdjC motif 0 0 1 1 5,6,7,8,55,56,57,113,114,115,116,117,118,222,240 0 -212119 cd10808 YdjC 1 putative active site 0 0 1 1 6,7,9,55,57,123,125,127,230,248 1 -212119 cd10808 YdjC 2 Mg binding site DDHH 0 1 1 6,7,57,127 4 -212119 cd10808 YdjC 3 putative homodimer interface 0 0 1 1 12,34,37,38,39,40,41,78,79,81,105,113,116 2 -212119 cd10808 YdjC 4 YdjC motif 0 0 1 1 6,7,8,9,55,56,57,122,123,124,125,126,127,230,248 0 -212120 cd10809 GH38N_AMII_GMII_SfManIII_like 1 active site 0 1 1 1 10,12,15,124,126,148,187,189,193,199,209,218,219,260,261,263,335 1 -212120 cd10809 GH38N_AMII_GMII_SfManIII_like 2 substrate binding site 0 1 1 1 10,12,15,126,148,187,189,193,199,209,215,218,219,260,261,263,330,335 5 -212120 cd10809 GH38N_AMII_GMII_SfManIII_like 3 catalytic site D[ND] 1 1 0 124,261 1 -212120 cd10809 GH38N_AMII_GMII_SfManIII_like 4 Zn binding site HD 1 1 0 10,12 4 -212121 cd10810 GH38N_AMII_LAM_like 1 active site 0 1 1 0 9,11,14,133,135,157,255 1 -212121 cd10810 GH38N_AMII_LAM_like 2 catalytic site DD 1 1 1 133,255 1 -212121 cd10810 GH38N_AMII_LAM_like 3 dimer interface 0 1 1 1 11,12,13,14,15,16,17,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,110,111,133,135,136,137,138,139,140,144,157,158,159,160,161,162,178,179,180 2 -212121 cd10810 GH38N_AMII_LAM_like 4 putative glycosylation site N 0 1 0 70 6 -212122 cd10811 GH38N_AMII_Epman_like 1 putative active site 0 0 1 1 9,11,14,124,126,148,261,262,264 1 -212122 cd10811 GH38N_AMII_Epman_like 2 catalytic site DD 0 1 1 124,262 1 -212123 cd10812 GH38N_AMII_ScAms1_like 1 active site 0 0 1 1 8,10,13,120,122,144,211 1 -212123 cd10812 GH38N_AMII_ScAms1_like 2 catalytic site DD 0 1 1 120,211 1 -212124 cd10813 GH38N_AMII_Man2C1 1 active site 0 0 1 1 8,10,13,120,122,144,211 1 -212124 cd10813 GH38N_AMII_Man2C1 2 catalytic site DD 0 1 1 120,211 1 -212125 cd10814 GH38N_AMII_SpGH38_like 1 active site 0 1 1 1 8,10,13,120,122,144,175,215 1 -212125 cd10814 GH38N_AMII_SpGH38_like 2 catalytic site DD 1 1 0 120,215 1 -212125 cd10814 GH38N_AMII_SpGH38_like 3 metal binding site HDD 1 1 0 8,10,120 4 -212125 cd10814 GH38N_AMII_SpGH38_like 4 homodimer interface 0 1 1 0 13,14,15,16,18,19,21,22,23,26,30,58,59,60,62,215 2 -212126 cd10815 GH38N_AMII_EcMngB_like 1 active site 0 0 1 1 8,10,13,120,122,144,175,215 1 -212126 cd10815 GH38N_AMII_EcMngB_like 2 catalytic site DD 0 1 1 120,215 1 -212126 cd10815 GH38N_AMII_EcMngB_like 3 metal binding site HDD 0 1 1 8,10,120 4 -212127 cd10816 GH57N_BE_TK1436_like 1 active site 0 1 1 1 7,9,11,25,147,182,185,235,265,273,274,275,276,279,281,282,358,365,411,420 1 -212127 cd10816 GH57N_BE_TK1436_like 2 catalytic site ED 1 1 1 185,358 1 -212127 cd10816 GH57N_BE_TK1436_like 3 substrate binding site 0 1 1 0 9,11,25,147,185,235,265,273,274,275,276,279,281,282,358,411 5 -211315 cd10909 ChtBD1_GH18_2 1 carbohydrate binding site 0 0 1 1 30,32,33,34,36,41 5 -350234 cd10910 PIN_limkain_b1_N_like 1 active site [DENQ][DENQ][DENQ] 0 1 1 6,76,102 1 -350235 cd10911 PIN_LabA 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 7,87,89,112,114 1 -350236 cd10912 PIN_YacP-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 4,50,79,102 1 -350236 cd10912 PIN_YacP-like 2 homodimer interface 0 1 1 0 14,25,28,29,32,35,36,39,40,66,130,133,134,136,137,138,140,141 2 -199211 cd10913 Peptidase_C25_N_gingipain 1 active site 0 1 1 1 208,209,210,211,241,243,288 1 -199212 cd10914 Peptidase_C25_N_1 1 putative active site 0 0 1 1 230,231,232,233,269,271 1 -199213 cd10915 Peptidase_C25_N_2 1 putative active site 0 0 1 1 264,265,266,267,300,302 1 -213021 cd10916 CE4_PuuE_HpPgdA_like 1 active site 0 1 1 1 6,8,80,84,209 1 -213021 cd10916 CE4_PuuE_HpPgdA_like 2 catalytic site [DE]H 0 1 1 8,209 1 -213021 cd10916 CE4_PuuE_HpPgdA_like 3 tetramer interface 0 1 1 0 10,35,38,39,42,62,63,120,122,143,144,145,146,147,168,174,175,188,189,192,193,220 2 -213022 cd10917 CE4_NodB_like_6s_7s 1 active site 0 1 1 0 7,8,58,62,98,99,100,120,150,152 1 -213022 cd10917 CE4_NodB_like_6s_7s 2 catalytic site DRDH 0 1 1 7,96,126,152 1 -213022 cd10917 CE4_NodB_like_6s_7s 3 metal binding site DHH 1 1 1 8,58,62 4 -213022 cd10917 CE4_NodB_like_6s_7s 4 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,120,126,127,150,152 0 -213023 cd10918 CE4_NodB_like_5s_6s 1 putative active site 0 0 1 1 6,7,71,75,111,112,113 1 -213023 cd10918 CE4_NodB_like_5s_6s 2 putative metal binding site DHH 0 1 1 7,71,75 4 -200545 cd10919 CE4_CDA_like 1 putative active site 0 0 1 1 8,9,64,68,108,109,110,229 1 -200545 cd10919 CE4_CDA_like 2 putative catalytic site DH 0 1 1 8,229 1 -200545 cd10919 CE4_CDA_like 3 putative Zn binding site DHH 0 1 1 9,64,68 4 -200545 cd10919 CE4_CDA_like 4 NodB motif 0 0 1 1 6,7,8,9,64,65,66,67,68,69,106,108,131,227,229 0 -200546 cd10920 CE4_WbmS 1 active site 0 1 0 0 20,22,68,103,104,153,181,183 1 -200546 cd10920 CE4_WbmS 2 Zn binding site DHH 1 0 0 22,68,103 4 -200547 cd10921 CE4_MJ0505_like 1 putative active site 0 0 1 1 8,9,71,75,112,113,114,184 1 -200547 cd10921 CE4_MJ0505_like 2 putative Zn binding site DHH 0 1 1 9,71,75 4 -200548 cd10922 CE4_PelA_like_C 1 putative active site 0 0 1 1 10,11,81,85,135,136,137,198 1 -200549 cd10923 CE4_COG5298 1 putative active site 0 0 1 1 7,8,76,80,134,135,136,220 1 -200549 cd10923 CE4_COG5298 2 putative catalytic site [DE]H 0 1 1 7,220 1 -200549 cd10923 CE4_COG5298 3 putative Zn binding site DHH 0 1 1 8,76,80 4 -200549 cd10923 CE4_COG5298 4 NodB motif 0 0 1 1 5,6,7,8,76,77,78,79,80,132,134,177,218,220 0 -200550 cd10924 CE4_COG4878 1 putative active site 0 0 1 1 8,9,97,101,151,152,153,232 1 -200550 cd10924 CE4_COG4878 2 putative catalytic site DH 0 1 1 8,232 1 -200550 cd10924 CE4_COG4878 3 putative Zn binding site DHH 0 1 1 9,97,101 4 -200550 cd10924 CE4_COG4878 4 NodB motif 0 0 1 1 6,7,8,9,97,98,99,100,101,149,151,176,230,232 0 -200551 cd10925 CE4_u1 1 putative active site 0 0 1 1 6,7,70,74,124,125,126,181 1 -200551 cd10925 CE4_u1 2 putative catalytic site DH 0 1 1 6,181 1 -200551 cd10925 CE4_u1 3 putative Zn binding site DHH 0 1 1 7,70,74 4 -200551 cd10925 CE4_u1 4 NodB motif 0 0 1 1 4,5,6,7,70,71,72,73,74,122,124,147,179,181 0 -200552 cd10926 CE4_u2 1 putative active site 0 0 1 1 11,12,79,84,124,125,126,218 1 -200553 cd10927 CE4_u3 1 putative active site 0 0 1 1 9,10,70,74,120,121,122,194 1 -200553 cd10927 CE4_u3 2 putative catalytic site DH 0 1 1 9,194 1 -200553 cd10927 CE4_u3 3 putative Zn binding site DHH 0 1 1 10,70,74 4 -200553 cd10927 CE4_u3 4 NodB motif 0 0 1 1 7,8,9,10,70,71,72,73,74,118,120,142,192,194 0 -200554 cd10928 CE4_u4 1 putative active site 0 0 1 1 6,7,57,61,109,110,111,190 1 -200554 cd10928 CE4_u4 2 putative catalytic site DH 0 1 1 6,190 1 -200554 cd10928 CE4_u4 3 putative Zn binding site DHH 0 1 1 7,57,61 4 -200554 cd10928 CE4_u4 4 NodB motif 0 0 1 1 4,5,6,7,57,58,59,60,61,107,109,150,188,190 0 -200555 cd10929 CE4_u5 1 putative active site 0 0 1 1 7,8,78,82,119,120,121,179 1 -200556 cd10930 CE4_u6 1 putative active site 0 0 1 1 10,11,63,67,103,104,105,192 1 -200556 cd10930 CE4_u6 2 putative catalytic site DH 0 1 1 10,192 1 -200556 cd10930 CE4_u6 3 NodB motif 0 0 1 1 8,9,10,11,63,64,65,66,67,101,103,124,190,192 0 -200557 cd10931 CE4_u7 1 putative active site 0 0 1 1 7,8,70,103,104,105,202 1 -200557 cd10931 CE4_u7 2 putative catalytic site DH 0 1 1 7,202 1 -200558 cd10932 CE4_u8 1 putative active site 0 0 1 1 7,8,87,91,149,150,151,303 1 -200558 cd10932 CE4_u8 2 putative catalytic site DH 0 1 1 7,303 1 -200558 cd10932 CE4_u8 3 NodB motif 0 0 1 1 5,6,7,8,87,88,89,90,91,147,149,174,301,303 0 -200559 cd10933 CE4_u9 1 putative active site 0 0 1 1 6,7,88,144,145,146,241 1 -200559 cd10933 CE4_u9 2 putative catalytic site DH 0 1 1 6,241 1 -200560 cd10934 CE4_cadherin_MopE_like_N 1 putative active site 0 0 1 1 10,11,84,88,126,127,128,218 1 -200560 cd10934 CE4_cadherin_MopE_like_N 2 putative catalytic site DH 0 1 1 10,218 1 -200560 cd10934 CE4_cadherin_MopE_like_N 3 NodB motif 0 0 1 1 8,9,10,11,84,85,86,87,88,124,126,147,216,218 0 -200561 cd10935 CE4_WalW 1 putative active site 0 0 1 1 6,7,76,129,130,131,262 1 -200561 cd10935 CE4_WalW 2 putative catalytic site DH 0 1 1 6,262 1 -200562 cd10936 CE4_DAC2 1 Zn binding site DHH 1 0 1 7,53,99 4 -200562 cd10936 CE4_DAC2 2 putative active site 0 0 1 1 6,7,53,99,100,101,185 1 -200562 cd10936 CE4_DAC2 3 putative catalytic site DH 0 1 1 6,185 1 -200562 cd10936 CE4_DAC2 4 NodB motif 0 0 1 1 4,5,6,7,53,54,55,56,57,97,99,128,183,185 0 -200563 cd10938 CE4_HpPgdA_like 1 active site 0 1 1 0 6,8,81,85,218 1 -200563 cd10938 CE4_HpPgdA_like 2 catalytic site [ED]H 0 1 0 8,218 1 -200563 cd10938 CE4_HpPgdA_like 3 Zn binding site DHH 1 1 1 8,81,85 4 -200563 cd10938 CE4_HpPgdA_like 4 tetramer interface 0 1 1 0 14,15,24,25,27,28,29,31,32,36,40,59,62,63,64,83,84,86,87,90,91,94,95,98,99,102,122,123,125,143,144,145,146,147,148,149,168,169,170,175,176,177,179,180,181,197,198,201,202,205,224,225,226,228,229,232 2 -200564 cd10939 CE4_ArnD 1 putative active site 0 0 1 1 6,8,104,108,231 1 -200564 cd10939 CE4_ArnD 2 putative catalytic site [ED]H 0 1 1 8,231 1 -200564 cd10939 CE4_ArnD 3 putative Zn binding site DHH 0 1 1 8,104,108 4 -200565 cd10940 CE4_PuuE_HpPgdA_like_1 1 putative active site 0 0 1 1 6,8,78,82,118,119,120,249 1 -200565 cd10940 CE4_PuuE_HpPgdA_like_1 2 putative catalytic site [ED]H 0 1 1 8,249 1 -200565 cd10940 CE4_PuuE_HpPgdA_like_1 3 putative Zn binding site DHH 0 1 1 8,78,82 4 -200566 cd10941 CE4_PuuE_HpPgdA_like_2 1 putative active site 0 0 1 1 6,8,76,80,115,116,117,217 1 -200566 cd10941 CE4_PuuE_HpPgdA_like_2 2 putative catalytic site [ED]H 0 1 1 8,217 1 -200567 cd10942 CE4_u11 1 putative active site 0 0 1 1 6,8,78,82,116,117,118,212 1 -200568 cd10943 CE4_NodB 1 putative active site 0 0 1 1 7,8,58,62,99,100,101,121,151,153 1 -200568 cd10943 CE4_NodB 2 putative catalytic site DRDH 0 1 1 7,97,127,153 1 -200568 cd10943 CE4_NodB 3 putative Zn binding site DHH 0 1 1 8,58,62 4 -200568 cd10943 CE4_NodB 4 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,97,99,100,121,127,128,151,153 0 -200569 cd10944 CE4_SmPgdA_like 1 active site 0 1 1 0 7,8,57,61,98,99,100,124,158,160 1 -200569 cd10944 CE4_SmPgdA_like 2 catalytic site DRDH 1 1 0 7,96,130,160 1 -200569 cd10944 CE4_SmPgdA_like 3 Zn binding site DHH 1 1 0 8,57,61 4 -200569 cd10944 CE4_SmPgdA_like 4 NodB motif 0 0 1 1 5,6,7,8,57,58,59,60,61,62,96,98,99,124,130,131,158,160 0 -200570 cd10946 CE4_Mll8295_like 1 putative active site 0 0 1 1 7,8,61,65,101,102,103,134,181,183 1 -200570 cd10946 CE4_Mll8295_like 2 putative catalytic site DR[ED]H 0 1 1 7,99,142,183 1 -200570 cd10946 CE4_Mll8295_like 3 putative Zn binding site DHH 0 1 1 8,61,65 4 -200570 cd10946 CE4_Mll8295_like 4 NodB motif 0 0 1 1 5,6,7,8,61,62,63,64,65,66,99,101,102,134,142,143,181,183 0 -200571 cd10947 CE4_SpPgdA_BsYjeA_like 1 active site 0 1 1 0 7,8,58,62,98,99,117,149 1 -200571 cd10947 CE4_SpPgdA_BsYjeA_like 2 catalytic site DRDH 0 1 1 7,96,123,149 1 -200571 cd10947 CE4_SpPgdA_BsYjeA_like 3 Zn binding site DHH 1 1 0 8,58,62 4 -200571 cd10947 CE4_SpPgdA_BsYjeA_like 4 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,117,123,124,147,149 0 -200572 cd10948 CE4_BsPdaA_like 1 active site 0 1 1 0 46,48,97,101,138,139,140,160,163,193,195 1 -200572 cd10948 CE4_BsPdaA_like 2 catalytic site DRDH 0 1 1 46,136,166,195 1 -200572 cd10948 CE4_BsPdaA_like 3 Cd binding site HH 1 1 0 97,101 4 -200572 cd10948 CE4_BsPdaA_like 4 NodB motif 0 0 1 1 44,45,46,47,97,98,99,100,101,102,136,138,139,160,166,167,193,195 0 -200573 cd10949 CE4_BsPdaB_like 1 putative active site 0 0 1 1 10,11,62,66,102,103,104,124,154,156 1 -200573 cd10949 CE4_BsPdaB_like 2 putative catalytic site DRDH 0 1 1 10,100,130,156 1 -200573 cd10949 CE4_BsPdaB_like 3 NodB motif 0 0 1 1 8,9,10,11,62,63,64,65,66,67,100,102,103,124,130,131,154,156 0 -200574 cd10950 CE4_BsYlxY_like 1 NodB motif 0 0 1 1 10,11,12,13,63,64,65,66,67,68,101,103,104,125,131,132,155,157 0 -200575 cd10951 CE4_ClCDA_like 1 active site 0 1 1 0 14,15,68,72,108,109,110,168 1 -200575 cd10951 CE4_ClCDA_like 2 catalytic site DRDH 0 1 1 14,106,136,168 1 -200575 cd10951 CE4_ClCDA_like 3 Zn binding site DHH 1 1 1 15,68,72 4 -200575 cd10951 CE4_ClCDA_like 4 NodB motif 0 0 1 1 12,13,14,15,68,69,70,71,72,73,106,108,109,130,136,137,166,168 0 -200576 cd10952 CE4_MrCDA_like 1 putative active site 0 0 1 1 7,8,57,61,97,98,99,159 1 -200576 cd10952 CE4_MrCDA_like 2 putative catalytic site DRDH 0 1 1 7,95,125,159 1 -200576 cd10952 CE4_MrCDA_like 3 putative Zn binding site DHH 0 1 1 8,57,61 4 -200576 cd10952 CE4_MrCDA_like 4 NodB motif 0 0 1 1 5,6,7,8,57,58,59,60,61,62,95,97,98,119,125,126,157,159 0 -200577 cd10953 CE4_SlAXE_like 1 active site 0 1 1 0 7,8,58,62,96,97,98,99,100,120,151 1 -200577 cd10953 CE4_SlAXE_like 2 catalytic site DH 0 1 1 8,62 1 -200577 cd10953 CE4_SlAXE_like 3 Zn binding site HH 1 1 0 58,62 4 -200577 cd10953 CE4_SlAXE_like 4 dimer interface 0 1 1 0 102,104,107,108,111,116,117,120,121,144,146 2 -200577 cd10953 CE4_SlAXE_like 5 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,120,126,127,149,151 0 -200578 cd10954 CE4_CtAXE_like 1 active site 0 0 1 1 7,8,58,62,96,97,98,99,100,117,149 1 -200578 cd10954 CE4_CtAXE_like 2 catalytic site DH 1 1 1 8,58 1 -200578 cd10954 CE4_CtAXE_like 3 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,117,123,124,147,149 0 -200579 cd10955 CE4_BH0857_like 1 putative active site 0 0 1 1 7,8,62,66,109,110,111,131,161,163 1 -200579 cd10955 CE4_BH0857_like 2 putative catalytic site DRDH 0 1 1 7,107,137,163 1 -200579 cd10955 CE4_BH0857_like 3 NodB motif 0 0 1 1 5,6,7,8,62,63,66,67,107,109,110,131,137,138,161,163 0 -200580 cd10956 CE4_BH1302_like 1 putative active site 0 0 1 1 11,12,62,66,102,103,104,124,156,158 1 -200580 cd10956 CE4_BH1302_like 2 putative catalytic site DR[DE]H 0 1 1 11,100,129,158 1 -200580 cd10956 CE4_BH1302_like 3 putative Zn binding site DHH 0 1 1 12,62,66 4 -200580 cd10956 CE4_BH1302_like 4 NodB motif 0 0 1 1 9,10,11,12,62,63,64,65,66,67,100,102,103,124,129,130,156,158 0 -200581 cd10958 CE4_NodB_like_2 1 putative active site 0 0 1 1 7,8,57,61,102,103,104,124,154,156 1 -200581 cd10958 CE4_NodB_like_2 2 putative catalytic site DRDH 0 1 1 7,100,130,156 1 -200581 cd10958 CE4_NodB_like_2 3 NodB motif 0 0 1 1 5,6,7,8,57,58,59,60,61,62,100,102,103,124,130,131,154,156 0 -200582 cd10959 CE4_NodB_like_3 1 putative active site 0 0 1 1 7,8,58,62,98,99,100,120,151,153 1 -200582 cd10959 CE4_NodB_like_3 2 putative catalytic site DRDH 0 1 1 7,96,126,153 1 -200582 cd10959 CE4_NodB_like_3 3 putative Zn binding site DHH 0 1 1 8,58,62 4 -200582 cd10959 CE4_NodB_like_3 4 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,120,126,127,151,153 0 -200583 cd10960 CE4_NodB_like_1 1 putative active site 0 0 1 1 7,8,71,75,112,113,114,140,200,202 1 -200583 cd10960 CE4_NodB_like_1 2 putative catalytic site DR[ED]H 0 1 1 7,110,146,202 1 -200583 cd10960 CE4_NodB_like_1 3 putative Zn binding site DHH 0 1 1 8,71,75 4 -200583 cd10960 CE4_NodB_like_1 4 NodB motif 0 0 1 1 5,6,7,8,71,72,73,74,75,76,110,112,113,140,146,147,200,202 0 -200584 cd10962 CE4_GT2-like 1 putative active site 0 0 1 1 7,8,58,62,98,99,100,127,158,160 1 -200584 cd10962 CE4_GT2-like 2 putative catalytic site DRDH 0 1 1 7,96,133,160 1 -200584 cd10962 CE4_GT2-like 3 putative Zn binding site DHH 0 1 1 8,58,62 4 -200584 cd10962 CE4_GT2-like 4 NodB motif 0 0 1 1 5,6,7,8,58,59,60,61,62,63,96,98,99,125,133,134,158,160 0 -200585 cd10963 CE4_RC0012_like 1 putative active site 0 0 1 1 7,8,70,74,119,120,121,137,158,160 1 -200585 cd10963 CE4_RC0012_like 2 NodB motif 0 0 1 1 5,6,7,8,70,71,74,75,117,119,120,137,143,144,158,160 0 -200586 cd10964 CE4_PgaB_5s 1 putative active site 0 0 1 1 10,11,80,85,147,148,149 1 -200586 cd10964 CE4_PgaB_5s 2 putative metal binding site DHH 0 1 1 11,80,85 4 -200587 cd10965 CE4_IcaB_5s 1 putative active site 0 0 1 1 9,10,68,73,116,117,118 1 -200587 cd10965 CE4_IcaB_5s 2 putative metal binding site DHH 0 1 1 10,68,73 4 -213024 cd10966 CE4_yadE_5s 1 putative active site 0 0 1 1 9,10,69,74,112,113,114 1 -213024 cd10966 CE4_yadE_5s 2 putative metal binding site DHH 0 1 1 10,69,74 4 -200589 cd10967 CE4_GLA_like_6s 1 putative active site 0 0 1 1 7,8,60,64,100,101,102,176 1 -200589 cd10967 CE4_GLA_like_6s 2 putative metal binding site DHH 0 1 1 8,60,64 4 -213025 cd10968 CE4_Mlr8448_like_5s 1 putative active site 0 0 1 1 7,8,70,74,110,111,112 1 -213025 cd10968 CE4_Mlr8448_like_5s 2 putative metal binding site DHH 0 1 1 8,70,74 4 -213026 cd10969 CE4_Ecf1_like_5s 1 putative active site 0 0 1 1 43,44,127,131,159,160,161 1 -213026 cd10969 CE4_Ecf1_like_5s 2 putative metal binding site DHH 0 1 1 44,127,131 4 -213027 cd10970 CE4_DAC_u1_6s 1 putative active site 0 0 1 1 7,8,61,65,102,103,104 1 -213027 cd10970 CE4_DAC_u1_6s 2 putative metal binding site DHH 0 1 1 8,61,65 4 -200593 cd10971 CE4_DAC_u2_5s 1 putative active site 0 0 1 1 6,7,109,113,150,151,152 1 -200593 cd10971 CE4_DAC_u2_5s 2 putative metal binding site DHH 0 1 1 7,109,113 4 -200594 cd10972 CE4_DAC_u3_5s 1 putative active site 0 0 1 1 11,12,86,90,127,128,129 1 -200594 cd10972 CE4_DAC_u3_5s 2 putative metal binding site DHH 0 1 1 12,86,90 4 -213028 cd10973 CE4_DAC_u4_5s 1 putative active site 0 0 1 1 7,8,63,67,110,111,112 1 -213028 cd10973 CE4_DAC_u4_5s 2 putative metal binding site DHH 0 1 1 8,63,67 4 -200596 cd10974 CE4_CDA_like_1 1 putative active site 0 0 1 1 8,9,64,68,108,109,110,226 1 -200596 cd10974 CE4_CDA_like_1 2 putative catalytic site DH 0 1 1 8,226 1 -200596 cd10974 CE4_CDA_like_1 3 putative Zn binding site DHH 0 1 1 9,64,68 4 -200596 cd10974 CE4_CDA_like_1 4 NodB motif 0 0 1 1 6,7,8,9,64,65,66,67,68,69,106,108,132,224,226 0 -200597 cd10975 CE4_CDA_like_2 1 putative active site 0 0 1 1 8,9,63,67,110,111,112,225 1 -200597 cd10975 CE4_CDA_like_2 2 putative catalytic site DH 0 1 1 8,225 1 -200597 cd10975 CE4_CDA_like_2 3 putative Zn binding site DHH 0 1 1 9,63,67 4 -200597 cd10975 CE4_CDA_like_2 4 NodB motif 0 0 1 1 6,7,8,9,63,64,65,66,67,68,108,110,134,223,225 0 -200598 cd10976 CE4_CDA_like_3 1 putative active site 0 0 1 1 9,10,90,94,149,150,151,255 1 -200598 cd10976 CE4_CDA_like_3 2 putative catalytic site DH 0 1 1 9,255 1 -200598 cd10976 CE4_CDA_like_3 3 NodB motif 0 0 1 1 7,8,9,10,90,91,92,93,94,95,147,149,172,253,255 0 -200599 cd10977 CE4_PuuE_SpCDA1 1 active site 0 1 1 1 13,15,32,104,108,143,144,145,235 1 -200599 cd10977 CE4_PuuE_SpCDA1 2 catalytic site [ED]H 0 1 1 15,235 1 -200599 cd10977 CE4_PuuE_SpCDA1 3 tetramer interface 0 1 1 0 17,19,23,24,35,36,37,44,45,47,48,50,51,52,53,54,55,57,58,59,62,63,66,86,87,112,113,144,146,147,148,166,167,168,169,170,173,189,190,195,196,200,201,202,203,204,207,210,211,214,215,218,219,222,242,243,244,246 2 -200600 cd10978 CE4_Sll1306_like 1 putative active site 0 0 1 1 14,16,97,101,136,137,138,228 1 -200600 cd10978 CE4_Sll1306_like 2 putative catalytic site [ED]H 0 1 1 16,228 1 -200601 cd10979 CE4_PuuE_like 1 putative active site 0 0 1 1 26,28,107,111,147,148,149,239 1 -200601 cd10979 CE4_PuuE_like 2 putative catalytic site [ED]H 0 1 1 28,239 1 -200602 cd10980 CE4_SpCDA1 1 putative active site 0 0 1 1 13,15,32,106,110,147,148,149,252 1 -200602 cd10980 CE4_SpCDA1 2 putative catalytic site [ED]H 0 1 1 15,252 1 -211380 cd10981 ZnPC_S1P1 1 Zn binding site HHHDHHE 1 1 1 4,55,113,117,123,139,143 4 -199826 cd10985 MH2_SMAD_2_3 1 trimer interface 0 0 1 1 17,22,23,25,36,37,38,39,40,44,48,51,53,54,60,61,63,64,65,68,137,140,143,147,149,153,154,155,160,162,166,171,173,175,177,180,181,183,184,187,188 2 -199911 cd11005 M35_like 1 active site 0 1 0 1 122,123,126,135,138 1 -199911 cd11005 M35_like 2 Zn binding site 0 1 1 1 122,123,126,135 4 -199912 cd11006 M35_peptidyl-Lys_like 1 active site 0 1 0 1 117,118,121,130,133 1 -199912 cd11006 M35_peptidyl-Lys_like 2 Zn binding site 0 1 1 1 117,118,121,130 4 -199913 cd11007 M35_like_1 1 putative active site 0 0 0 1 135,136,139,148,151 1 -199913 cd11007 M35_like_1 2 putative Zn binding site 0 0 1 1 135,136,139,148 4 -199914 cd11008 M35_deuterolysin_like 1 active site 0 1 0 1 123,124,127,138,141 1 -199914 cd11008 M35_deuterolysin_like 2 Zn binding site 0 1 1 1 123,124,127,138 4 -211381 cd11009 Zn_dep_PLPC 1 Zn binding site HHHDHHE 1 1 1 11,61,109,113,119,131,135 4 -211382 cd11010 S1-P1_nuclease 1 active site 0 1 1 0 5,44,59,60,62,112,116,122,147,151 1 -211382 cd11010 S1-P1_nuclease 2 Zn binding site HDHHDHHD 1 1 1 5,44,59,112,116,122,147,151 4 -259898 cd11012 CuRO_6_ceruloplasmin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 81,127,132,137 4 -259898 cd11012 CuRO_6_ceruloplasmin 2 Trinuclear Cu binding site HHHH 1 1 1 84,86,126,128 4 -259898 cd11012 CuRO_6_ceruloplasmin 3 Domain 1 interface 0 1 1 1 84,86,87,88,89,95,97,98,99,100,101,118,119,122,123,124,126,128,130,134 2 -259898 cd11012 CuRO_6_ceruloplasmin 4 Domain 5 interface 0 1 1 0 2,3,4,6,8,9,10,11,12,14,15,16,17,21,25,26,27,28,31,32,36,38,39,41,42,43,44,45,46,49,50,51,52,53,54,55,56,57,58,59,70,72,75,76,93,94,110,112,124,135,138 2 -259898 cd11012 CuRO_6_ceruloplasmin 5 Domain 2 interface 0 1 1 0 78,80,82,92,98,101,102,104,106,128,129,130,131,132 2 -259898 cd11012 CuRO_6_ceruloplasmin 6 Domain 4 interface 0 1 1 0 75,76,77,93,106,107,108,109,110,111 2 -259899 cd11013 Plantacyanin 1 Type 1 (T1) Cu binding site HCHX 1 1 1 38,78,83,88 4 -259900 cd11014 Mavicyanin 1 Type 1 (T1) Cu binding site HCHX 1 1 1 42,83,88,93 4 -259901 cd11015 CuRO_2_FVIII_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 74,117,122,127 4 -259901 cd11015 CuRO_2_FVIII_like 2 heterodimer interface 0 1 1 0 69,70,71,86,96,98,99 2 -259901 cd11015 CuRO_2_FVIII_like 3 Domain 1 interface 0 1 1 0 2,3,4,6,10,11,12,14,15,16,38,42,43,44,45,47,48,49,50,51,63,64,65,67,69,86,100,101,102 2 -259901 cd11015 CuRO_2_FVIII_like 4 Domains 3/4 interface 0 1 1 0 77,79,87,88,89,90,92,94,95,119,120 2 -259902 cd11016 CuRO_4_FVIII_like 1 heterodimer interface 0 1 1 0 77,78,80,84,85,87,88,89,90,93,94,95,96,97,98,99,104,114,116,118,119,120,127,128,131 2 -259902 cd11016 CuRO_4_FVIII_like 2 Domain 3 interface 0 1 1 0 2,4,6,10,12,14,15,16,17,20,21,24,25,26,27,28,32,33,38,39,41,42,43,45,49,50,51,52,53,54,55,58,59,69,70,71,73,108,109,110,133 2 -259902 cd11016 CuRO_4_FVIII_like 3 Domain 2 interface 0 1 1 0 76,104,106,107 2 -259904 cd11018 CuRO_6_FVIII_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 81,127,132,137 4 -259904 cd11018 CuRO_6_FVIII_like 2 heterodimer interface 0 1 1 0 54,77,78,80,82,84,86,87,89,93,94,95,96,97,98,99,100,101,102,104,106,107,108,109,110,111,118,119,122,123,124,126,128,129,130,131,132,133,134,140 2 -259904 cd11018 CuRO_6_FVIII_like 3 Domain 5 interface 0 1 1 1 2,3,4,6,9,10,11,12,14,15,16,19,20,24,45,49,50,51,52,55,58,66,68,70,72,74,91,92,93,95,110,112,113,114 2 -259906 cd11020 CuRO_1_CuNIR 1 Type 1 (T1) Cu binding site HCHM 1 1 0 56,96,104,109 4 -259906 cd11020 CuRO_1_CuNIR 2 Type II Cu binding site HH 1 1 1 61,95 4 -259906 cd11020 CuRO_1_CuNIR 3 trimer interface 0 1 1 0 59,61,62,63,64,65,66,67,82,83,84,85,87,88,91,92,93,95,105 2 -259907 cd11021 CuRO_2_ceruloplasmin 1 Type 1 (T1) Cu binding site HCHX 1 1 1 81,124,129,134 4 -259907 cd11021 CuRO_2_ceruloplasmin 2 Domain 1 interface 0 1 1 0 2,3,4,6,10,11,12,14,15,16,17,20,21,22,25,26,27,28,31,32,41,42,43,45,46,49,50,51,52,53,54,55,56,57,58,59,70,71,72,74,94,107,108,109,121,130,131,132,135 2 -259907 cd11021 CuRO_2_ceruloplasmin 3 Domain 3 interface 0 1 1 0 84,89,95,96,98,115,116,119,120,121,125,127,130,131,137 2 -259907 cd11021 CuRO_2_ceruloplasmin 4 Domain 4 interface 0 1 1 0 80,82,84,95,99,101,103,125,126,127,128,129,131 2 -259907 cd11021 CuRO_2_ceruloplasmin 5 Domain 6 interface 0 1 1 0 75,76,77,95,103,104,105,106,107 2 -259908 cd11022 CuRO_4_ceruloplasmin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 81,124,129,134 4 -259908 cd11022 CuRO_4_ceruloplasmin 2 Domain 3 interface 0 1 1 0 2,3,4,6,9,10,11,12,14,15,16,20,21,24,25,42,43,45,47,49,50,51,52,55,56,57,58,59,70,71,72,75,105,106,107,108,109 2 -259908 cd11022 CuRO_4_ceruloplasmin 3 Domain 5 interface 0 1 1 0 84,87,89,91,93,94,95,96,97,98,99,115,116,119,120,123,127,130,131 2 -259908 cd11022 CuRO_4_ceruloplasmin 4 Domain 2 interface 0 1 1 0 14,75,76,77,93,103,104,105,106 2 -259908 cd11022 CuRO_4_ceruloplasmin 5 Domain 6 interface 0 1 1 0 78,80,82,93,95,97,99,101,103,125,126,127,128,129 2 -259909 cd11023 CuRO_2_ceruloplasmin_like_2 1 Type 1 (T1) Cu binding site HCHM 0 1 1 57,101,106,111 0 -259910 cd11024 CuRO_1_2DMCO_NIR_like 1 Type 1 (T1) Cu binding site HCH 1 0 0 54,96,104 4 -259910 cd11024 CuRO_1_2DMCO_NIR_like 2 trinuclear Cu binding site HHHH 1 0 1 57,59,95,97 4 -259910 cd11024 CuRO_1_2DMCO_NIR_like 3 trimer interface 0 1 0 0 57,59,60,61,62,63,64,88,92,95,97,100,101 2 -259910 cd11024 CuRO_1_2DMCO_NIR_like 4 Domain 2 interface 0 1 0 0 14,15,20,29,30,33,59,89,90,91,92,93,102,105,106,110,112,114 2 -200496 cd11235 Sema_semaphorin 1 plexin binding site 0 1 1 0 49,50,51,52,103,104,108,129,131,132,139,149,152,153,155,160,182,206,207,208,209,210,212,319,323,326 2 -200496 cd11235 Sema_semaphorin 2 homodimer interface 0 1 1 1 183,184,186,189,190,191,225,229,230,231,233,235,258,259,260,264,265,332,347 2 -200498 cd11237 Sema_1A 1 putative plexin binding site 0 0 1 1 51,52,53,54,106,107,111,132,134,135,142,147,150,151,153,158,180,204,205,206,207,208,210,320,324,327 2 -200498 cd11237 Sema_1A 2 putative homodimer interface 0 0 1 1 181,182,184,187,188,189,223,227,228,229,231,233,259,260,261,265,266,333,348 2 -200499 cd11238 Sema_2A 1 putative plexin binding site 0 0 1 1 53,54,55,56,112,113,117,145,147,148,155,172,175,176,178,183,205,229,230,231,232,233,235,341,345,348 2 -200499 cd11238 Sema_2A 2 putative homodimer interface 0 0 1 1 206,207,209,212,213,214,248,252,253,254,256,258,279,280,281,285,286,354,367 2 -200500 cd11239 Sema_3 1 homodimer interface 0 1 1 1 206,207,209,212,213,214,248,251,252,254,256,260,283,284,285,286,287,288,289,290,316,317,318,319,364,379 2 -200500 cd11239 Sema_3 2 putative plexin binding site 0 0 1 1 57,58,59,60,119,120,124,145,147,148,155,165,168,169,171,176,205,229,230,231,232,233,235,351,355,358 2 -200501 cd11240 Sema_4 1 plexin binding site 0 1 1 0 58,59,60,118,139,141,142,144,159,162,164,169,201,225,226,227,228,229,231,309,310,345,349,352 2 -200501 cd11240 Sema_4 2 putative homodimer interface 0 0 1 1 202,203,205,208,209,210,244,247,248,249,251,253,276,277,278,282,283,358,372 2 -200502 cd11241 Sema_5 1 putative plexin binding site 0 0 1 1 55,56,57,58,108,109,113,135,137,138,145,155,158,159,161,166,188,212,213,214,215,216,218,322,326,329 2 -200502 cd11241 Sema_5 2 putative homodimer interface 0 0 1 1 189,190,192,195,196,197,231,235,236,237,239,241,260,261,262,266,267,335,350 2 -200503 cd11242 Sema_6 1 plexin binding site 0 1 1 0 60,61,62,63,114,115,140,142,143,150,164,165,166,171,218,219,222,345 2 -200503 cd11242 Sema_6 2 homodimer interface 0 1 1 1 195,237,239,241,242,243,245,269,271,272,273,274,275,304,366,367,369 2 -200504 cd11243 Sema_7A 1 putative plexin binding site 0 0 1 1 48,49,50,51,97,98,102,123,125,126,131,138,141,142,144,149,177,201,202,203,204,206,208,301,305,308 2 -200504 cd11243 Sema_7A 2 putative homodimer interface 0 0 1 1 178,179,181,184,185,186,221,224,225,226,228,230,253,254,255,256,257,314,331 2 -200505 cd11244 Sema_plexin_A 1 Semaphorin binding site 0 1 1 1 55,57,58,117,154,155,156,182,183,184,191,192,193,347,350,352,355,356,357,358,359,369,370,372 2 -200506 cd11245 Sema_plexin_B 1 Semaphorin binding site 0 1 1 1 46,47,48,169,174,180,202,328,329,336,341,342,343 2 -200509 cd11248 Sema_MET_like 1 putative HGF ligand binding site 0 1 1 1 79,80,81,120,143,144,171,173,180,181,239 2 -200510 cd11249 Sema_3A 1 homodimer interface 0 1 1 1 227,228,230,233,234,235,269,272,273,275,277,281,304,305,306,307,308,309,310,311,337,338,339,340,384,399 2 -200510 cd11249 Sema_3A 2 putative plexin binding site 0 0 1 1 78,79,80,81,140,141,145,166,168,169,176,186,189,190,192,197,226,250,251,252,253,254,256,371,375,378 2 -200511 cd11250 Sema_3B 1 homodimer interface 0 0 1 1 206,207,209,212,213,214,248,251,252,254,256,260,283,284,285,286,287,288,289,290,316,317,318,319,363,378 2 -200511 cd11250 Sema_3B 2 putative plexin binding site 0 0 1 1 57,58,59,60,119,120,124,145,147,148,155,165,168,169,171,176,205,229,230,231,232,233,235,350,354,357 2 -200512 cd11251 Sema_3C 1 homodimer interface 0 0 1 1 205,206,208,211,212,213,247,250,251,253,255,259,282,283,284,285,286,287,288,289,315,316,317,318,363,378 2 -200512 cd11251 Sema_3C 2 putative plexin binding site 0 0 1 1 57,58,59,60,118,119,123,144,146,147,154,164,167,168,170,175,204,228,229,230,231,232,234,350,354,357 2 -200513 cd11252 Sema_3D 1 homodimer interface 0 0 1 1 209,210,212,215,216,217,251,254,255,257,259,263,286,287,288,289,290,291,292,293,319,320,321,322,367,382 2 -200513 cd11252 Sema_3D 2 putative plexin binding site 0 0 1 1 57,58,59,60,119,120,124,145,147,148,155,168,171,172,174,179,208,232,233,234,235,236,238,354,358,361 2 -200514 cd11253 Sema_3E 1 homodimer interface 0 0 1 1 205,206,208,211,212,213,247,250,251,253,255,259,282,283,284,285,286,287,288,289,315,316,317,318,363,378 2 -200514 cd11253 Sema_3E 2 putative plexin binding site 0 0 1 1 57,58,59,60,118,119,123,144,146,147,154,164,167,168,170,175,204,228,229,230,231,232,234,350,354,357 2 -200515 cd11254 Sema_3F 1 homodimer interface 0 0 1 1 206,207,208,211,212,213,247,250,251,253,255,259,282,283,284,285,286,287,288,289,315,316,317,318,363,378 2 -200515 cd11254 Sema_3F 2 putative plexin binding site 0 0 1 1 57,58,59,60,119,120,124,145,147,148,155,165,168,169,171,176,205,228,229,230,231,232,234,350,354,357 2 -200516 cd11255 Sema_3G 1 homodimer interface 0 0 1 1 204,205,208,211,212,213,247,250,251,253,255,259,282,283,284,285,286,287,288,289,315,316,317,318,366,381 2 -200516 cd11255 Sema_3G 2 putative plexin binding site 0 0 1 1 57,58,59,60,118,119,123,144,146,147,154,163,166,167,169,174,203,228,229,230,231,232,234,353,357,360 2 -200517 cd11256 Sema_4A 1 plexin binding site 0 0 1 1 60,61,62,124,145,147,148,150,165,168,170,175,200,224,225,226,227,228,230,309,310,334,338,341 2 -200517 cd11256 Sema_4A 2 putative homodimer interface 0 0 1 1 201,202,204,207,208,209,243,245,246,247,249,251,274,275,276,282,283,347,362 2 -200518 cd11257 Sema_4B 1 plexin binding site 0 0 1 1 60,61,62,125,146,148,149,151,166,169,171,176,208,232,233,234,235,236,238,320,321,356,360,363 2 -200518 cd11257 Sema_4B 2 putative homodimer interface 0 0 1 1 209,210,212,215,216,217,251,254,255,256,258,260,285,286,287,293,294,369,381 2 -200519 cd11258 Sema_4C 1 plexin binding site 0 0 1 1 59,60,61,119,140,142,143,145,160,163,165,170,202,226,227,228,229,230,232,310,311,346,350,353 2 -200519 cd11258 Sema_4C 2 putative homodimer interface 0 0 1 1 203,204,206,209,210,211,245,248,249,250,252,254,277,278,279,283,284,359,374 2 -200520 cd11259 Sema_4D 1 plexin binding site 0 1 1 0 68,69,70,127,148,150,151,153,167,170,172,177,209,233,234,235,236,237,239,321,322,357,361,364 2 -200520 cd11259 Sema_4D 2 putative homodimer interface 0 0 1 1 210,211,213,216,217,218,252,255,256,257,259,261,284,285,286,290,291,370,385 2 -200521 cd11260 Sema_4E 1 plexin binding site 0 0 1 1 57,58,59,118,139,141,142,144,157,160,162,167,199,223,224,225,226,227,229,310,311,346,350,353 2 -200521 cd11260 Sema_4E 2 putative homodimer interface 0 0 1 1 200,201,203,206,207,208,242,244,245,246,248,250,273,274,275,279,280,359,374 2 -200522 cd11261 Sema_4F 1 plexin binding site 0 0 1 1 62,63,64,120,141,143,144,146,162,165,167,172,204,228,229,230,231,232,234,313,314,350,354,357 2 -200522 cd11261 Sema_4F 2 putative homodimer interface 0 0 1 1 205,206,208,211,212,213,247,250,251,252,254,256,280,281,282,286,287,363,378 2 -200523 cd11262 Sema_4G 1 plexin binding site 0 0 1 1 59,60,61,118,139,141,142,143,158,161,163,168,200,225,226,227,228,229,231,309,310,345,349,352 2 -200523 cd11262 Sema_4G 2 putative homodimer interface 0 0 1 1 201,202,205,208,209,210,244,247,248,249,251,253,276,277,278,282,283,358,373 2 -200524 cd11263 Sema_5A 1 putative plexin binding site 0 0 1 1 55,56,57,58,108,109,113,135,137,138,145,155,158,159,161,166,188,211,212,213,214,215,217,320,324,327 2 -200524 cd11263 Sema_5A 2 putative homodimer interface 0 0 1 1 189,190,191,194,195,196,230,234,235,236,238,240,259,260,261,265,266,333,348 2 -200525 cd11264 Sema_5B 1 putative plexin binding site 0 0 1 1 55,56,57,58,108,109,113,135,137,138,145,155,158,159,161,166,188,211,212,213,214,215,217,321,325,328 2 -200525 cd11264 Sema_5B 2 putative homodimer interface 0 0 1 1 189,190,191,194,195,196,230,234,235,236,238,240,259,260,261,265,266,334,349 2 -200526 cd11265 Sema_5C 1 putative plexin binding site 0 0 1 1 55,56,57,58,108,109,113,135,137,138,145,157,160,161,163,168,190,214,215,216,217,219,221,318,322,325 2 -200526 cd11265 Sema_5C 2 putative homodimer interface 0 0 1 1 191,192,194,197,198,199,234,238,239,240,242,244,263,264,265,269,270,331,346 2 -200527 cd11266 Sema_6A 1 plexin binding site 0 1 1 0 60,61,62,63,114,115,140,142,143,150,164,165,166,171,218,219,222,345 2 -200527 cd11266 Sema_6A 2 homodimer interface 0 1 1 1 195,237,239,241,242,243,245,269,271,272,273,274,275,304,366,367,369 2 -200528 cd11267 Sema_6B 1 plexin binding site 0 0 1 1 60,61,62,63,114,115,140,142,143,150,164,165,166,171,218,219,222,343 2 -200528 cd11267 Sema_6B 2 homodimer interface 0 0 1 1 195,237,239,241,242,243,245,269,271,272,273,274,275,304,364,365,367 2 -200529 cd11268 Sema_6C 1 plexin binding site 0 0 1 1 59,60,61,62,113,114,139,141,142,149,163,164,165,170,217,218,221,344 2 -200529 cd11268 Sema_6C 2 homodimer interface 0 0 1 1 194,236,238,240,241,242,244,268,270,271,272,273,274,303,365,366,367 2 -200530 cd11269 Sema_6D 1 plexin binding site 0 0 1 1 60,61,62,63,114,115,140,142,143,150,164,165,166,171,218,219,222,345 2 -200530 cd11269 Sema_6D 2 homodimer interface 0 0 1 1 195,237,239,241,242,243,245,269,271,272,273,274,275,304,366,367,369 2 -200531 cd11270 Sema_6E 1 plexin binding site 0 0 1 1 57,58,59,60,111,112,137,139,140,147,162,163,164,169,216,217,220,343 2 -200531 cd11270 Sema_6E 2 homodimer interface 0 0 1 1 193,235,237,239,240,241,243,267,269,270,271,272,273,302,364,365,367 2 -200532 cd11271 Sema_plexin_A1 1 putative Semaphorin binding site 0 0 1 1 56,58,59,118,155,156,157,183,184,185,192,193,194,348,351,353,356,357,358,359,360,370,371,373 2 -200533 cd11272 Sema_plexin_A2 1 Semaphorin binding site 0 1 1 1 55,57,58,117,154,155,156,182,183,184,191,192,193,348,351,353,356,357,358,359,360,370,373 2 -200534 cd11273 Sema_plexin_A3 1 putative Semaphorin binding site 0 0 1 1 55,57,58,117,154,155,156,182,183,184,191,192,193,347,350,352,355,356,357,358,359,369,370,372 2 -200535 cd11274 Sema_plexin_A4 1 putative Semaphorin binding site 0 0 1 1 55,57,58,117,154,155,156,182,183,184,191,192,193,347,350,352,355,356,357,358,359,369,370,372 2 -200536 cd11275 Sema_plexin_B1 1 Semaphorin binding site 0 1 1 1 52,53,54,110,112,113,114,152,181,186,188,189,191,192,214,221,341,342,347,348,355,360,361,362 2 -200537 cd11276 Sema_plexin_B2 1 putative Semaphorin binding site 0 0 1 1 52,53,54,174,179,185,186,208,336,337,344,349,350,351 2 -200538 cd11277 Sema_plexin_B3 1 putative Semaphorin binding site 0 0 1 1 52,53,54,171,176,181,182,204,321,322,329,334,335,336 2 -200539 cd11278 Sema_MET 1 HGF binding site 0 1 1 1 98,99,100,101,122,141,165,166,167,193,195,196,197,198,204,205,261 2 -200539 cd11278 Sema_MET 2 InlB binding site 0 1 1 1 276,306,307,308,309,344,351,401,402,406,444,445 2 -200540 cd11279 Sema_RON 1 putative MSP binding site 0 0 1 1 98,99,100,140,163,164,191,193,200,201,257 2 -200436 cd11280 gelsolin_like 1 putative type 2 Ca binding site DE 1 1 1 28,50 4 -200437 cd11281 ADF_drebrin_like 1 putative F-actin interface 0 0 1 1 75,89,116,119 2 -200438 cd11282 ADF_coactosin_like 1 putative F-actin binding interface 0 0 1 1 66,68,82,84,95,109,112 2 -200440 cd11284 ADF_Twf-C_like 1 G-actin binding interface 0 1 1 0 0,1,2,3,4,34,78,80,83,86,87,89,90,91,93,94,96,114,116,118 2 -200440 cd11284 ADF_Twf-C_like 2 putative F-actin interface 0 0 1 1 87,119,122 2 -200441 cd11285 ADF_Twf-N_like 1 putative G-actin interface 0 0 1 1 1,2 2 -200442 cd11286 ADF_cofilin_like 1 putative G-actin interface 0 0 1 1 0,1 2 -200442 cd11286 ADF_cofilin_like 2 putative F-actin interface 0 0 1 1 76,78,92,119,122 2 -200443 cd11287 Sec23_C 1 catalytic residue R 1 1 1 106 1 -200443 cd11287 Sec23_C 2 Sar1 interface 0 1 1 0 103,106,107,110 2 -200444 cd11288 gelsolin_S5_like 1 putative type 2 Ca binding site NDE 1 1 1 30,31,53 4 -200444 cd11288 gelsolin_S5_like 2 putative nucleotide binding residue 0 1 1 1 8 5 -200445 cd11289 gelsolin_S2_like 1 putative type 2 Ca binding site D[DE] 1 1 1 28,50 4 -200446 cd11290 gelsolin_S1_like 1 putative type 1 Ca binding site D 1 1 1 77 4 -200446 cd11290 gelsolin_S1_like 2 putative type 2 Ca binding site DE 1 1 1 34,65 4 -200446 cd11290 gelsolin_S1_like 3 putative actin binding interface 0 1 1 1 17,18,57,63,64,66,67,68,70,71,72,74,75,86,88 2 -200447 cd11291 gelsolin_S6_like 1 putative type 2 Ca binding site DE 1 1 1 30,52 4 -200448 cd11292 gelsolin_S3_like 1 putative type 2 Ca binding site DE 0 1 1 34,56 4 -200448 cd11292 gelsolin_S3_like 2 putative nucleotide binding site 0 1 1 1 92,97 5 -200449 cd11293 gelsolin_S4_like 1 putative type 1 Ca binding site D 1 1 1 75 4 -200449 cd11293 gelsolin_S4_like 2 putative type 2 Ca binding site D[DE] 1 1 1 33,63 4 -200449 cd11293 gelsolin_S4_like 3 putative actin binding interface 0 1 1 1 16,17,55,61,62,64,65,66,68,69,70,72,73,84,86 2 -200449 cd11293 gelsolin_S4_like 4 putative nucleotide binding residue 0 1 1 1 91 5 -199917 cd11295 Mago_nashi 1 exon junction core complex interaction site 0 1 1 0 7,8,9,10,11,12,13,16,17,25,30,32,33,34,36,37,38,39,40,42,44,47,48,49,51,52,55,58,59,99,101,102,103,119,120,123,124,126,127,128,130,131,132,135,136,137,138,139,140,141 2 -199917 cd11295 Mago_nashi 2 Y14 interface 0 1 1 0 25,47,48,49,51,52,55,58,59,120,123,124,127,128,131,132,135,136,137,138 2 -199917 cd11295 Mago_nashi 3 eIF4AIII interface 0 1 1 0 7,8,9,13,16,17,30,32,33,34,36,37,38,39,40,42,44,79,99,101,102,103,119,123,126,127,130,138,139,140,141,142 2 -199917 cd11295 Mago_nashi 4 Barentsz interface 0 1 1 0 9,10,11,12,13,36,37,78,79,99 2 -199917 cd11295 Mago_nashi 5 Imp13 interface 0 1 1 0 10,41,43,44,45,55,58,64,67,71,91,137 2 -199917 cd11295 Mago_nashi 6 Upf3b interface 0 1 1 0 62,64,103 2 -211383 cd11296 O-FucT_like 1 GDP-Fucose binding site 0 1 0 0 9,10,11,12,77,79,127,128,129,171,190,191,192 5 -350237 cd11297 PIN_LabA-like_N_1 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,69,94,96 1 -211384 cd11298 O-FucT-2 1 GDP-Fucose binding site 0 0 0 1 10,11,12,13,249,251,288,289,290,327,346,347,348 5 -211385 cd11299 O-FucT_plant 1 GDP-Fucose binding site 0 0 0 1 8,9,10,11,167,169,208,209,210,252,271,272,273 5 -211386 cd11300 Fut8_like 1 GDP-Fucose binding site 0 0 0 1 45,46,47,48,189,191,235,236,237,278,297,298,299 5 -211387 cd11301 Fut1_Fut2_like 1 GDP-Fucose binding site 0 0 0 1 9,10,11,12,141,143,183,184,185,212,230,231,232 5 -211388 cd11302 O-FucT-1 1 GDP-Fucose binding site 0 1 0 0 13,14,15,16,207,209,214,229,275,276,277,302,304,323,324,325 5 -206637 cd11304 Cadherin_repeat 1 Ca2+ binding site 0 1 1 1 7,8,60,62,93,95,96 4 -206765 cd11305 alpha_DG_C 1 CA-like domain interface 0 1 1 0 18,19,23,24,26,27,30,41,42,43,44,45,46,47 2 -199915 cd11306 M35_peptidyl-Lys 1 active site 0 1 0 1 114,115,118,127,130 1 -199915 cd11306 M35_peptidyl-Lys 2 Zn binding site 0 1 1 1 114,115,118,127 4 -199916 cd11307 M35_Asp_f2_like 1 putative Zn binding site 0 0 1 1 132,133,136,147 4 -206764 cd11310 14-3-3_1 1 putative peptide binding site 0 0 1 1 47,54,118,125,126,167,170,171,174,177,178,215,218,221,222 2 -206764 cd11310 14-3-3_1 2 putative dimer interface 0 0 1 1 7,10,11,13,14,16,19,56,59,63,76,80,83,84,87 2 -200452 cd11313 AmyAc_arch_bac_AmyA 1 active site 0 0 1 1 163,165,194,256,257 1 -200452 cd11313 AmyAc_arch_bac_AmyA 2 catalytic site 0 0 1 1 165,194,257 1 -200453 cd11314 AmyAc_arch_bac_plant_AmyA 1 active site 0 1 1 1 7,50,90,100,134,136,137,139,161,163,164,237,238 1 -200453 cd11314 AmyAc_arch_bac_plant_AmyA 2 catalytic site 0 0 1 1 136,161,238 1 -200453 cd11314 AmyAc_arch_bac_plant_AmyA 3 Ca binding site 0 1 1 1 89,105 4 -200454 cd11315 AmyAc_bac1_AmyA 1 active site 0 1 1 0 47,48,51,52,91,94,126,170,172,173,175,176,207,209,211,272,273,277 1 -200454 cd11315 AmyAc_bac1_AmyA 2 catalytic site 0 0 1 1 172,207,273 1 -200454 cd11315 AmyAc_bac1_AmyA 3 Ca binding site 0 1 1 0 90,142,167 4 -200455 cd11316 AmyAc_bac2_AmyA 1 active site 0 1 1 0 51,53,93,147,151,181,183,184,186,187,224,226,250,292,293,337,338,342 1 -200455 cd11316 AmyAc_bac2_AmyA 2 catalytic site 0 0 1 1 183,224,293 1 -200455 cd11316 AmyAc_bac2_AmyA 3 Ca binding site 0 1 1 0 12,14,16,20,92,153 4 -200456 cd11317 AmyAc_bac_euk_AmyA 1 active site 0 1 1 0 46,47,50,51,86,89,102,103,104,105,135,137,138,140,141,171,173,178,235,236,241 1 -200456 cd11317 AmyAc_bac_euk_AmyA 2 catalytic site 0 0 1 1 137,171,236 1 -200456 cd11317 AmyAc_bac_euk_AmyA 3 Ca binding site 0 1 1 0 88,107 4 -200457 cd11318 AmyAc_bac_fung_AmyA 1 active site 0 1 1 1 9,67,102,195,196,197,228,230,231,233,234,260,262,263,289,326,327 1 -200457 cd11318 AmyAc_bac_fung_AmyA 2 catalytic site 0 0 1 1 230,260,327 1 -200457 cd11318 AmyAc_bac_fung_AmyA 3 Na/Ca binding site 0 1 1 1 101,193,199 4 -200458 cd11319 AmyAc_euk_AmyA 1 active site 0 1 1 0 79,81,82,121,203,205,206,208,209,229,231,232,233,255,295,296,339,343 1 -200458 cd11319 AmyAc_euk_AmyA 2 catalytic site 0 0 1 1 205,229,296 1 -200458 cd11319 AmyAc_euk_AmyA 3 Ca binding site 0 1 1 0 120,174 4 -200459 cd11320 AmyAc_AmyMalt_CGTase_like 1 active site 0 1 1 0 85,87,88,127,180,210,212,215,216,240,242,311,312,359,363 1 -200459 cd11320 AmyAc_AmyMalt_CGTase_like 2 catalytic site 0 0 1 1 212,240,312 1 -200459 cd11320 AmyAc_AmyMalt_CGTase_like 3 Ca binding site 0 1 1 0 16,21,44,126,182 4 -200460 cd11321 AmyAc_bac_euk_BE 1 active site 0 0 1 1 175,177,178,232,300,301 1 -200460 cd11321 AmyAc_bac_euk_BE 2 catalytic site 0 0 1 1 177,232,301 1 -200461 cd11322 AmyAc_Glg_BE 1 active site 0 0 1 1 194,196,197,249,316,317 1 -200461 cd11322 AmyAc_Glg_BE 2 catalytic site 0 0 1 1 196,249,317 1 -200462 cd11323 AmyAc_AGS 1 active site 0 0 1 1 301,303,304,337,450,451 1 -200462 cd11323 AmyAc_AGS 2 catalytic site 0 0 1 1 303,337,451 1 -200463 cd11324 AmyAc_Amylosucrase 1 active site 0 1 1 0 116,119,159,200,201,223,227,257,259,260,301,303,368,369,370,412,422,493 1 -200463 cd11324 AmyAc_Amylosucrase 2 catalytic site 0 0 1 1 259,301,369 1 -200464 cd11325 AmyAc_GTHase 1 active site 0 1 1 0 222,224,247,251,316,317,320 1 -200464 cd11325 AmyAc_GTHase 2 catalytic site 0 0 1 1 187,222,316 1 -200465 cd11326 AmyAc_Glg_debranch 1 active site 0 0 1 1 201,203,204,240,311,312 1 -200465 cd11326 AmyAc_Glg_debranch 2 catalytic site 0 0 1 1 203,240,312 1 -200467 cd11328 AmyAc_maltase 1 active site 0 0 1 1 58,61,98,101,146,165,169,201,270,335,336 1 -200467 cd11328 AmyAc_maltase 2 catalytic site 0 0 1 1 201,270,336 1 -200469 cd11330 AmyAc_OligoGlu 1 active site 0 0 1 1 56,59,96,99,141,160,164,196,264,325,326,393 1 -200469 cd11330 AmyAc_OligoGlu 2 catalytic site 0 0 1 1 196,264,326 1 -200470 cd11331 AmyAc_OligoGlu_like 1 active site 0 0 1 1 56,59,96,99,141,160,164,196,259,320,321 1 -200470 cd11331 AmyAc_OligoGlu_like 2 catalytic site 0 0 1 1 196,259,321 1 -200471 cd11332 AmyAc_OligoGlu_TS 1 active site 0 0 1 1 56,59,96,99,144,167,171,203,262,323,324 1 -200471 cd11332 AmyAc_OligoGlu_TS 2 catalytic site 0 0 1 1 203,262,324 1 -200472 cd11333 AmyAc_SI_OligoGlu_DGase 1 active site 0 1 1 0 53,56,93,96,137,156,160,192,248,369 1 -200472 cd11333 AmyAc_SI_OligoGlu_DGase 2 catalytic site 0 0 1 1 192,248,322 1 -200472 cd11333 AmyAc_SI_OligoGlu_DGase 3 Ca binding site 0 1 1 0 14,16,18,22 4 -200473 cd11334 AmyAc_TreS 1 active site 0 0 1 1 193,195,196,237,302,303 1 -200473 cd11334 AmyAc_TreS 2 catalytic site 0 0 1 1 195,237,303 1 -200474 cd11335 AmyAc_MTase_N 1 active site 0 1 1 1 164,348,350,351,379,435,479,504 1 -200474 cd11335 AmyAc_MTase_N 2 catalytic site 0 0 1 1 350,379,435 1 -200474 cd11335 AmyAc_MTase_N 3 maltose binding site 2 0 1 1 1 353,380,389,394 5 -200474 cd11335 AmyAc_MTase_N 4 homodimer interface 0 0 1 0 65,71,72,74,109,110,112,187,190,254,258,264 2 -200475 cd11336 AmyAc_MTSase 1 active site 0 1 1 0 44,46,86,191,230,258,260,371,394,410,446,609,613 1 -200475 cd11336 AmyAc_MTSase 2 catalytic site 0 0 1 1 230,258,446 1 -200476 cd11337 AmyAc_CMD_like 1 active site 0 0 1 1 97,141,143,144,172,237,238 1 -200476 cd11337 AmyAc_CMD_like 2 catalytic site 0 0 1 1 143,172,238 1 -200477 cd11338 AmyAc_CMD 1 active site 0 1 1 0 84,86,126,175,208,209,237,239,303,304,348,352 1 -200477 cd11338 AmyAc_CMD 2 catalytic site 0 0 1 1 208,237,304 1 -200477 cd11338 AmyAc_CMD 3 homodimer interface 0 1 1 1 177,211,212,213,214,215,216,219,239,240,261,287 2 -200478 cd11339 AmyAc_bac_CMD_like_2 1 active site 0 0 1 1 80,82,153,155,156,186,188,210,213,252,253,254 1 -200478 cd11339 AmyAc_bac_CMD_like_2 2 catalytic site 0 0 1 1 155,186,253 1 -200479 cd11340 AmyAc_bac_CMD_like_3 1 active site 0 1 1 0 77,79,119,170,171,174,205,207,208,211,236,238,314,315 1 -200479 cd11340 AmyAc_bac_CMD_like_3 2 catalytic site 0 0 1 1 207,236,315 1 -200479 cd11340 AmyAc_bac_CMD_like_3 3 homodimer interface 0 1 1 1 133,134 2 -200479 cd11340 AmyAc_bac_CMD_like_3 4 Ca binding site 0 1 1 0 15,20,21,42,118,176 4 -200480 cd11341 AmyAc_Pullulanase_LD-like 1 active site 0 1 1 0 82,83,130,194,196,197,225,227,256,259,316,317,318,372,374 1 -200480 cd11341 AmyAc_Pullulanase_LD-like 2 catalytic site 0 0 1 1 196,225,317 1 -200480 cd11341 AmyAc_Pullulanase_LD-like 3 Ca binding site 0 1 1 0 63,69,91 4 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like 1 active site 0 1 1 0 49,52,87,146,150,180,182,183,186,224,226,289,290,330,331,334,395 1 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like 2 catalytic site 0 0 1 1 182,224,290 1 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like 3 homodimer interface 0 1 1 0 106,112,113,115,118,119,126,127,131,132,139,140,141,389,392 2 -200482 cd11344 AmyAc_GlgE_like 1 active site 0 1 1 0 53,57,68,70,113,145,146,148,149,182,184,185,213,271,325,326 1 -200482 cd11344 AmyAc_GlgE_like 2 catalytic site 0 0 1 1 184,213,271 1 -200482 cd11344 AmyAc_GlgE_like 3 acceptor binding site 0 1 1 1 216,217,218,235,238,239 5 -200482 cd11344 AmyAc_GlgE_like 4 homodimer interface 0 1 1 0 131,132,133,140,141,142,155,187,188,189,190,192,195,217,219,220,223,227 2 -200483 cd11345 AmyAc_SLC3A2 1 homodimer interface 0 1 1 1 8,10,192,323 2 -200485 cd11347 AmyAc_1 1 active site 0 0 1 1 125,206,208,209,254,309,310 1 -200485 cd11347 AmyAc_1 2 catalytic site 0 0 1 1 208,254,310 1 -200486 cd11348 AmyAc_2 1 active site 0 0 1 1 93,197,199,200,237,317,318 1 -200486 cd11348 AmyAc_2 2 catalytic site 0 0 1 1 199,237,318 1 -200487 cd11349 AmyAc_3 1 active site 0 0 1 1 130,255,257,258,286,349,350 1 -200487 cd11349 AmyAc_3 2 catalytic site 0 0 1 1 257,286,350 1 -200488 cd11350 AmyAc_4 1 active site 0 0 1 1 105,173,175,176,220,284,285 1 -200488 cd11350 AmyAc_4 2 catalytic site 0 0 1 1 175,220,285 1 -200489 cd11352 AmyAc_5 1 active site 0 0 1 1 124,242,244,245,278,351,352 1 -200489 cd11352 AmyAc_5 2 catalytic site 0 0 1 1 244,278,352 1 -200490 cd11353 AmyAc_euk_bac_CMD_like 1 active site 0 0 1 1 57,59,99,149,182,183,211,213,276,277,325,328 1 -200490 cd11353 AmyAc_euk_bac_CMD_like 2 catalytic site 0 0 1 1 182,211,277 1 -200491 cd11354 AmyAc_bac_CMD_like 1 active site 0 0 1 1 58,60,100,141,173,174,202,204,264,265,314,317 1 -200491 cd11354 AmyAc_bac_CMD_like 2 catalytic site 0 0 1 1 173,202,265 1 -200492 cd11355 AmyAc_Sucrose_phosphorylase 1 active site 0 1 1 0 45,48,83,153,157,187,189,190,193,230,232,287,288,331,332,335,389 1 -200492 cd11355 AmyAc_Sucrose_phosphorylase 2 catalytic site 0 0 1 1 189,230,288 1 -200492 cd11355 AmyAc_Sucrose_phosphorylase 3 homodimer interface 0 1 1 0 112,118,119,121,124,125,132,133,137,138,146,147,148,383,386 2 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 1 active site 0 0 1 1 51,54,89,148,152,182,184,185,188,226,228,291,292,332,333,336,398 1 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 2 catalytic site 0 0 1 1 184,226,292 1 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 3 homodimer interface 0 0 1 1 108,114,115,117,120,121,128,129,133,134,141,142,143,392,395 2 -206766 cd11358 RNase_PH 1 oligomer interface 0 1 0 0 12,14,29,31,32,33,49,51,56,73,76,80,97,102,107,125,126,127,147,186,187,188,189,190,191,192,193,194,195,196,197,198,203,207 2 -206766 cd11358 RNase_PH 2 RNA binding site 0 0 1 0 47,48,49,76,83 3 -200494 cd11359 AmyAc_SLC3A1 1 active site 0 0 1 1 56,59,96,99,142,161,165,197,267,331,332 1 -200494 cd11359 AmyAc_SLC3A1 2 catalytic site 0 0 1 1 197,267,332 1 -206767 cd11362 RNase_PH_bact 1 active site 0 1 1 0 55,76,111,112,113,114,115,116,170,176 1 -206767 cd11362 RNase_PH_bact 2 hexamer interface 0 1 0 0 10,11,12,13,14,24,26,28,30,32,52,54,56,57,58,59,60,61,63,66,67,75,76,78,79,82,86,89,103,105,107,109,110,111,186,187,188,189,190,192,194,195,196,197,198,199,201,204,205,208,209,212 2 -206768 cd11363 RNase_PH_PNPase_1 1 trimer interface 0 1 1 0 17,18,19,20,21,22,27,36,38,40,42,57,59,61,62,63,64,66,67,68,69,72,73,74,75,76,80,105,107,109,113,114,115,116,117 2 -206768 cd11363 RNase_PH_PNPase_1 2 RNase E interface 0 1 1 0 1,3,12,14,17,27,29,31,34 2 -206769 cd11364 RNase_PH_PNPase_2 1 active site 0 1 1 0 57,59,76,80,114,115,116,164,170,172,184,186 1 -206769 cd11364 RNase_PH_PNPase_2 2 trimer interface 0 1 1 0 5,7,11,12,13,14,15,23,24,28,30,32,33,34,38,39,40,56,58,61,62,63,64,66,67,68,71,73,103,105,107,109,110,111 2 -206769 cd11364 RNase_PH_PNPase_2 3 RNase E interface 0 1 1 0 0,1,2,3,4,5,6,7,8,9,12,206,210,214,218,219 2 -206770 cd11365 RNase_PH_archRRP42 1 active site 0 1 1 0 100 1 -206770 cd11365 RNase_PH_archRRP42 2 RNA binding site 0 1 1 0 63,71,72,73,100,107 3 -206770 cd11365 RNase_PH_archRRP42 3 hexamer interface 0 1 1 0 34,35,36,37,48,50,53,54,56,58,75,77,79,80,81,82,88,91,93,94,96,97,100,104,108,110,129,131,133,135,136,137,138,202,221,222,223,224,225,226,227,228,229,230,231,232,233,238,239,242,243 2 -206771 cd11366 RNase_PH_archRRP41 1 active site 0 1 1 0 64,71,72,110,111,155,161 1 -206771 cd11366 RNase_PH_archRRP41 2 RNA binding site 0 1 1 0 61,65,70,72,108,111,112 3 -206771 cd11366 RNase_PH_archRRP41 3 hexamer interface 0 1 1 0 10,11,12,13,26,28,30,32,53,55,57,58,59,62,63,64,67,71,74,75,78,79,82,86,101,103,105,106,107,108,162,167,173,174,176,177,178,179,180,181,182,184,187,188,191,192,195 2 -206771 cd11366 RNase_PH_archRRP41 4 Rrp4-like subunit interface 0 1 1 0 15,33,93,124,125,126,127,129,130,131,132,133,202,206,209,210,213 2 -206772 cd11367 RNase_PH_RRP42 1 hexamer interface 0 1 1 0 38,39,40,45,52,56,58,77,82,83,98,106,131,133,137,138,225,229,230,231,232,233,234,235,236,237,238,239,240,241,242,247,248,251,252,254,255 2 -206772 cd11367 RNase_PH_RRP42 2 Rrp4 interface 0 1 1 0 0,1,2,3,4,5,7,8,11,12,15,17,19,20,21,22,29,50,212 2 -206773 cd11368 RNase_PH_RRP45 1 hexamer interface 0 1 1 0 35,37,52,54,55,56,71,73,78,95,98,102,124,129,134,152,153,154,184,225,226,227,228,229,230,231,232,233,234,235,236,241,245 2 -206773 cd11368 RNase_PH_RRP45 2 Rrp40 interface 0 1 1 0 1,2,3,6,7,11,14,16 2 -206774 cd11369 RNase_PH_RRP43 1 hexamer interface 0 1 1 0 38,40,55,57,58,59,74,76,81,98,101,105,127,132,137,155,156,157,186,226,227,228,229,230,231,232,233,234,235,236,237,242,246 2 -206775 cd11370 RNase_PH_RRP41 1 hexamer interface 0 1 1 0 23,25,40,42,43,44,61,63,68,86,89,93,107,112,117,135,136,137,144,184,185,186,187,188,189,190,191,192,193,194,195,198,202 2 -206775 cd11370 RNase_PH_RRP41 2 Rrp4 interface 0 1 1 0 25,43,44,45,46,48,100,104,107,135,136,137,138,140,141,142,144,217,220,221,224,225 2 -206776 cd11371 RNase_PH_MTR3 1 hexamer interface 0 1 1 0 12,14,29,31,32,33,49,51,56,73,76,80,94,99,104,122,123,124,131,170,171,172,173,174,175,176,177,178,179,180,181,182,185,189 2 -206776 cd11371 RNase_PH_MTR3 2 Rrp4 interface 0 1 1 0 122,125,127,128,129,131,200,204,207,208 2 -206777 cd11372 RNase_PH_RRP46 1 hexamer interface 0 1 1 0 12,14,29,31,32,33,49,51,56,65,68,72,86,91,96,114,115,116,165,166,167,168,169,170,171,172,173,174,175,176,179,183 2 -206777 cd11372 RNase_PH_RRP46 2 Rrp40 interface 0 1 1 0 8,10,11,13,14,33,34,35,83,85,117,119,120,121,123,160,198 2 -200603 cd11374 CE4_u10 1 putative active site 0 0 1 1 8,9,69,73,129,130,131,204 1 -200603 cd11374 CE4_u10 2 putative Zn binding site DHH 0 1 1 9,69,73 4 -213029 cd11375 Peptidase_M54 1 Zn binding site HHHCCCC 1 1 1 128,132,138,139,144,163,166 4 -213029 cd11375 Peptidase_M54 2 active site 0 0 1 1 85,87,128,129,132,138,139,144,146,163,166 1 -271138 cd11376 Imelysin-like 1 Conserved motif GHE 0 1 1 69,71,74 0 -206778 cd11377 Pro-peptidase_S53 1 peptidase domain interface 0 1 1 0 16,18,19,21,27,28,31,45,46,48,51,133,134,136,137 2 -211390 cd11378 DUF296 1 putative Zn binding site HHH 1 0 0 79,81,95 4 -211390 cd11378 DUF296 2 trimer interface 0 1 0 0 1,3,5,8,33,34,54,61,62,63,64,66,68,79,81,83,86,89,91,92,93,106,108,110,112 2 -211391 cd11379 DUF4425 1 dimer interface 0 1 0 0 17,19,21,23,25,43,44,45,46,47,48,64,65,67,69,71,73,74,75,109,110,111,113 2 -211392 cd11380 Ribosomal_S8e_like 1 18S rRNA binding interface 0 1 1 0 0,2,3,4,5,6,7,10,11,12,13,14,16,17,18,19,22,24,25,26,27,28,29,37,38,39,40,41,43,44,45,46,48,51,52,54,55,60,62,64,67,68,69,70,71,83,93,94,95,123,124,125,126,127,128,131,133 3 -211392 cd11380 Ribosomal_S8e_like 2 S11 protein interface 0 1 1 0 79,81,135 2 -211394 cd11382 Ribosomal_S8e 1 18S rRNA binding interface 0 1 1 0 0,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,24,25,26,27,28,29,36,37,38,39,40,42,43,44,45,47,50,51,53,54,59,61,63,66,67,68,69,70,82,92,93,94,107,108,109,110,111,112,115,117 3 -211394 cd11382 Ribosomal_S8e 2 S11 protein interface 0 1 1 0 78,80,119 2 -206743 cd11383 YfjP 1 GTP/Mg2+ binding site 0 0 1 0 6,7,8,9,10,11,112,113,115,121,122 5 -206743 cd11383 YfjP 2 Switch I region 0 0 1 1 30,31,32,33,34 0 -206743 cd11383 YfjP 3 Switch II region 0 0 1 1 49,50,51,52,53,54,74 0 -206743 cd11383 YfjP 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206743 cd11383 YfjP 5 G2 box 0 0 1 1 31 0 -206743 cd11383 YfjP 6 G3 box 0 0 1 1 50,51,52,53 0 -206743 cd11383 YfjP 7 G4 box 0 0 1 1 112,113,114,115 0 -206743 cd11383 YfjP 8 G5 box 0 0 1 1 121,122,123 0 -206744 cd11384 RagA_like 1 GTP/Mg2+ binding site 0 1 1 0 10,11,12,13,56,118,119,121,154,155,156 5 -206744 cd11384 RagA_like 2 heterodimer interface 0 1 1 0 193,195,220,223,224,227,228,231,234,235,237,240,241,242,243,244,245,246,247,254,266 2 -206744 cd11384 RagA_like 3 Switch I region 0 0 1 1 37,38,39 0 -206744 cd11384 RagA_like 4 Switch II region 0 0 1 1 55,56,77,78 0 -206744 cd11384 RagA_like 5 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206744 cd11384 RagA_like 6 G2 box 0 0 1 1 33 0 -206744 cd11384 RagA_like 7 G3 box 0 0 1 1 53,54,55,56 0 -206744 cd11384 RagA_like 8 G4 box 0 0 1 1 118,119,120,121 0 -206744 cd11384 RagA_like 9 G5 box 0 0 1 1 154,155,156 0 -206745 cd11385 RagC_like 1 GTP/Mg2+ binding site 0 1 1 0 10,11,12,13,56,115,116,118,156,157,158 5 -206745 cd11385 RagC_like 2 Switch I region 0 0 1 1 37,38,39 0 -206745 cd11385 RagC_like 3 Switch II region 0 0 1 1 55,56,75,76 0 -206745 cd11385 RagC_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206745 cd11385 RagC_like 5 G2 box 0 0 1 1 33 0 -206745 cd11385 RagC_like 6 G3 box 0 0 1 1 53,54,55,56 0 -206745 cd11385 RagC_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206745 cd11385 RagC_like 8 G5 box 0 0 1 1 156,157,158 0 -206779 cd11386 MCP_signal 1 dimer interface 0 1 1 0 8,9,12,13,16,19,20,22,23,26,29,30,33,36,37,40,41,44,47,48,50,51,55,57,58,61,64,65,68,69,72,75,78,79,82,86,89,96,100,103,106,107,110,113,114,117,118,120,121,124,125,138,139,142,145,146,149,152,153,155,156,159,160,163,166,167,170,173,174,176,177,180,181,183,184,187,190,191,194,197,198 2 -206779 cd11386 MCP_signal 2 putative CheW interface 0 0 1 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 2 -271368 cd11474 SLC5sbd_CHT 1 putative glycosylation site N 0 1 1 284 6 -271368 cd11474 SLC5sbd_CHT 2 putative glycosylation site N 0 1 1 54 6 -271368 cd11474 SLC5sbd_CHT 3 Na binding site 0 0 1 1 45,48,321,324,325 4 -271369 cd11475 SLC5sbd_PutP 1 Na binding site 0 0 1 1 45,48,326,329,330 4 -271370 cd11476 SLC5sbd_DUR3 1 Na binding site 0 0 1 1 52,55,338,341,342 4 -271371 cd11477 SLC5sbd_u1 1 Na binding site 0 0 1 1 48,51,331,334,335 4 -271372 cd11478 SLC5sbd_u2 1 Na binding site 0 0 1 1 47,50,335,338,339 4 -271373 cd11479 SLC5sbd_u3 1 Na binding site 0 0 1 1 47,50,313,316,317 4 -271374 cd11480 SLC5sbd_u4 1 Na binding site 0 0 1 1 45,48,337,340,341 4 -271375 cd11482 SLC-NCS1sbd_NRT1-like 1 Na binding site 0 0 1 1 26,29,314,317,318 4 -271375 cd11482 SLC-NCS1sbd_NRT1-like 2 putative substrate binding site 0 0 1 1 30,106,110,226,227,229,319,323 5 -271376 cd11483 SLC-NCS1sbd_Mhp1-like 1 Na binding site 0 1 1 1 30,33,302,305,306 4 -271376 cd11483 SLC-NCS1sbd_Mhp1-like 2 substrate binding site 0 1 1 1 34,112,116,213,214,216,307,311 5 -271377 cd11484 SLC-NCS1sbd_CobB-like 1 Na binding site 0 0 1 1 17,20,264,267,268 4 -271377 cd11484 SLC-NCS1sbd_CobB-like 2 putative substrate binding site 0 0 1 1 21,96,100,192,193,195,269,273 5 -271378 cd11485 SLC-NCS1sbd_YbbW-like 1 Na binding site 0 0 1 1 29,32,304,307,308 4 -271378 cd11485 SLC-NCS1sbd_YbbW-like 2 putative substrate binding site 0 0 1 1 33,109,113,223,224,226,309,313 5 -271379 cd11486 SLC5sbd_SGLT1 1 putative glycosylation site N 0 1 1 221 6 -271379 cd11486 SLC5sbd_SGLT1 2 Na binding site 0 0 1 1 49,52,362,365,366 4 -212056 cd11487 SLC5sbd_SGLT2 1 putative glycosylation site N 0 1 1 226 6 -212056 cd11487 SLC5sbd_SGLT2 2 putative glycosylation site N 0 1 1 282 6 -212056 cd11487 SLC5sbd_SGLT2 3 putative glycosylation site N 0 1 1 375 6 -212056 cd11487 SLC5sbd_SGLT2 4 Na binding site 0 0 1 1 49,52,365,368,369 4 -271380 cd11488 SLC5sbd_SGLT4 1 putative glycosylation site N 0 1 1 219 6 -271380 cd11488 SLC5sbd_SGLT4 2 Na binding site 0 0 1 1 48,51,356,359,360 4 -212058 cd11489 SLC5sbd_SGLT5 1 putative glycosylation site N 0 1 1 222 6 -212058 cd11489 SLC5sbd_SGLT5 2 putative glycosylation site N 0 1 1 79 6 -212058 cd11489 SLC5sbd_SGLT5 3 putative glycosylation site N 0 1 1 369 6 -212058 cd11489 SLC5sbd_SGLT5 4 Na binding site 0 0 1 1 51,54,359,362,363 4 -271381 cd11490 SLC5sbd_SGLT6 1 putative glycosylation site N 0 1 1 219 6 -271381 cd11490 SLC5sbd_SGLT6 2 Na binding site 0 0 1 1 48,51,356,359,360 4 -271382 cd11491 SLC5sbd_SMIT 1 putative glycosylation site N 0 1 1 226 6 -271382 cd11491 SLC5sbd_SMIT 2 Na binding site 0 0 1 1 48,51,365,368,369 4 -271383 cd11492 SLC5sbd_NIS-SMVT 1 Na binding site 0 0 1 1 50,53,335,338,339 4 -271384 cd11493 SLC5sbd_NIS-like_u1 1 Na binding site 0 0 1 1 46,49,334,337,338 4 -271385 cd11494 SLC5sbd_NIS-like_u2 1 Na binding site 0 0 1 1 47,50,336,339,340 4 -271386 cd11495 SLC5sbd_NIS-like_u3 1 Na binding site 0 0 1 1 50,53,332,335,336 4 -271387 cd11496 SLC6sbd-TauT-like 1 Na binding site 2 0 0 1 1 15,18,358,361,362 4 -271387 cd11496 SLC6sbd-TauT-like 2 Na binding site 1 0 0 1 1 17,22,261,293 4 -271387 cd11496 SLC6sbd-TauT-like 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,260,261,266,268,362,365,366 5 -271387 cd11496 SLC6sbd-TauT-like 4 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,327,331 5 -271388 cd11497 SLC6sbd_SERT-like 1 Na binding site 2 0 0 1 1 15,18,356,359,360 4 -271388 cd11497 SLC6sbd_SERT-like 2 Na binding site 1 0 0 1 1 17,22,259,291 4 -271388 cd11497 SLC6sbd_SERT-like 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,258,259,264,266,360,363,364 5 -271388 cd11497 SLC6sbd_SERT-like 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,325,329 5 -212067 cd11498 SLC6sbd_GlyT1 1 putative glycosylation site N 0 1 1 153 6 -212067 cd11498 SLC6sbd_GlyT1 2 putative glycosylation site N 0 1 1 156 6 -212067 cd11498 SLC6sbd_GlyT1 3 putative glycosylation site N 0 1 1 167 6 -212067 cd11498 SLC6sbd_GlyT1 4 putative glycosylation site N 0 1 1 173 6 -212067 cd11498 SLC6sbd_GlyT1 5 Na binding site 2 0 0 1 1 31,34,385,388,389 4 -212067 cd11498 SLC6sbd_GlyT1 6 Na binding site 1 0 0 1 1 33,38,288,320 4 -212067 cd11498 SLC6sbd_GlyT1 7 putative substrate binding site 1 0 0 1 1 32,33,35,36,37,38,112,287,288,293,295,389,392,393 5 -212067 cd11498 SLC6sbd_GlyT1 8 putative substrate binding site 2 0 0 1 1 40,41,111,115,118,354,358 5 -271389 cd11499 SLC6sbd_GlyT2 1 putative glycosylation site N 0 1 1 152 6 -271389 cd11499 SLC6sbd_GlyT2 2 putative glycosylation site N 0 1 1 162 6 -271389 cd11499 SLC6sbd_GlyT2 3 putative glycosylation site N 0 1 1 167 6 -271389 cd11499 SLC6sbd_GlyT2 4 putative glycosylation site N 0 1 1 173 6 -271389 cd11499 SLC6sbd_GlyT2 5 Na binding site 2 0 0 1 1 15,18,383,386,387 4 -271389 cd11499 SLC6sbd_GlyT2 6 Na binding site 1 0 0 1 1 17,22,286,318 4 -271389 cd11499 SLC6sbd_GlyT2 7 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,285,286,291,293,387,390,391 5 -271389 cd11499 SLC6sbd_GlyT2 8 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,352,356 5 -271390 cd11500 SLC6sbd_PROT 1 putative glycosylation site N 0 1 1 141 6 -271390 cd11500 SLC6sbd_PROT 2 Na binding site 2 0 0 1 1 15,18,354,357,358 4 -271390 cd11500 SLC6sbd_PROT 3 Na binding site 1 0 0 1 1 17,22,257,289 4 -271390 cd11500 SLC6sbd_PROT 4 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,256,257,262,264,358,361,362 5 -271390 cd11500 SLC6sbd_PROT 5 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,323,327 5 -271391 cd11501 SLC6sbd_ATB0 1 putative glycosylation site N 0 1 1 119 6 -271391 cd11501 SLC6sbd_ATB0 2 putative glycosylation site N 0 1 1 127 6 -271391 cd11501 SLC6sbd_ATB0 3 putative glycosylation site N 0 1 1 138 6 -271391 cd11501 SLC6sbd_ATB0 4 putative glycosylation site N 0 1 1 157 6 -271391 cd11501 SLC6sbd_ATB0 5 putative glycosylation site N 0 1 1 162 6 -271391 cd11501 SLC6sbd_ATB0 6 putative glycosylation site N 0 1 1 190 6 -271391 cd11501 SLC6sbd_ATB0 7 putative glycosylation site N 0 1 1 262 6 -271391 cd11501 SLC6sbd_ATB0 8 Na binding site 2 0 0 1 1 15,18,379,382,383 4 -271391 cd11501 SLC6sbd_ATB0 9 Na binding site 1 0 0 1 1 17,22,282,314 4 -271391 cd11501 SLC6sbd_ATB0 10 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,281,282,287,289,383,386,387 5 -271391 cd11501 SLC6sbd_ATB0 11 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,348,352 5 -271392 cd11502 SLC6sbd_NTT5 1 putative glycosylation site N 0 1 1 126 6 -271392 cd11502 SLC6sbd_NTT5 2 putative glycosylation site N 0 1 1 232 6 -271392 cd11502 SLC6sbd_NTT5 3 Na binding site 2 0 0 1 1 15,18,369,372,373 4 -271392 cd11502 SLC6sbd_NTT5 4 Na binding site 1 0 0 1 1 17,22,246,278 4 -271392 cd11502 SLC6sbd_NTT5 5 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,245,246,251,253,373,376,377 5 -271392 cd11502 SLC6sbd_NTT5 6 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,338,342 5 -271393 cd11503 SLC5sbd_NIS 1 putative glycosylation site N 0 1 1 210 6 -271393 cd11503 SLC5sbd_NIS 2 putative glycosylation site N 0 1 1 482 6 -271393 cd11503 SLC5sbd_NIS 3 putative glycosylation site N 0 1 1 470 6 -271393 cd11503 SLC5sbd_NIS 4 Na binding site 0 0 1 1 50,53,335,338,339 4 -271394 cd11504 SLC5sbd_SMVT 1 putative glycosylation site N 0 1 1 114 6 -271394 cd11504 SLC5sbd_SMVT 2 putative glycosylation site N 0 1 1 465 6 -271394 cd11504 SLC5sbd_SMVT 3 putative glycosylation site N 0 1 1 474 6 -271394 cd11504 SLC5sbd_SMVT 4 putative glycosylation site N 0 1 1 510 6 -271394 cd11504 SLC5sbd_SMVT 5 Na binding site 0 0 1 1 53,56,338,341,342 4 -271395 cd11505 SLC5sbd_SMCT 1 putative glycosylation site N 0 1 1 216 6 -271395 cd11505 SLC5sbd_SMCT 2 putative glycosylation site N 0 1 1 477 6 -271395 cd11505 SLC5sbd_SMCT 3 putative glycosylation site N 0 1 1 474 6 -271395 cd11505 SLC5sbd_SMCT 4 putative glycosylation site N 0 1 1 478 6 -271395 cd11505 SLC5sbd_SMCT 5 Na binding site 0 0 1 1 56,59,341,344,345 4 -212075 cd11506 SLC6sbd_GAT1 1 putative glycosylation site N 0 1 1 174 6 -212075 cd11506 SLC6sbd_GAT1 2 putative glycosylation site N 0 1 1 179 6 -212075 cd11506 SLC6sbd_GAT1 3 putative glycosylation site N 0 1 1 182 6 -212075 cd11506 SLC6sbd_GAT1 4 Na binding site 2 0 0 1 1 57,60,390,393,394 4 -212075 cd11506 SLC6sbd_GAT1 5 Na binding site 1 0 0 1 1 59,64,293,325 4 -212075 cd11506 SLC6sbd_GAT1 6 putative substrate binding site 1 0 0 1 1 58,59,61,62,63,64,138,292,293,298,300,394,397,398 5 -212075 cd11506 SLC6sbd_GAT1 7 putative substrate binding site 2 0 0 1 1 66,67,137,141,144,359,363 5 -271396 cd11507 SLC6sbd_GAT2 1 Na binding site 2 0 0 1 1 15,18,354,357,358 4 -271396 cd11507 SLC6sbd_GAT2 2 Na binding site 1 0 0 1 1 17,22,257,289 4 -271396 cd11507 SLC6sbd_GAT2 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,256,257,262,264,358,361,362 5 -271396 cd11507 SLC6sbd_GAT2 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,323,327 5 -212077 cd11508 SLC6sbd_GAT3 1 Na binding site 2 0 0 1 1 16,19,357,360,361 4 -212077 cd11508 SLC6sbd_GAT3 2 Na binding site 1 0 0 1 1 18,23,260,292 4 -212077 cd11508 SLC6sbd_GAT3 3 putative substrate binding site 1 0 0 1 1 17,18,20,21,22,23,98,259,260,265,267,361,364,365 5 -212077 cd11508 SLC6sbd_GAT3 4 putative substrate binding site 2 0 0 1 1 25,26,97,101,104,326,330 5 -271397 cd11509 SLC6sbd_CT1 1 putative glycosylation site N 0 1 1 501 6 -271397 cd11509 SLC6sbd_CT1 2 Na binding site 2 0 0 1 1 15,18,366,369,370 4 -271397 cd11509 SLC6sbd_CT1 3 Na binding site 1 0 0 1 1 17,22,269,301 4 -271397 cd11509 SLC6sbd_CT1 4 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,268,269,274,276,370,373,374 5 -271397 cd11509 SLC6sbd_CT1 5 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,335,339 5 -271398 cd11510 SLC6sbd_TauT 1 putative glycosylation site N 0 1 1 122 6 -271398 cd11510 SLC6sbd_TauT 2 putative glycosylation site N 0 1 1 138 6 -271398 cd11510 SLC6sbd_TauT 3 putative glycosylation site N 0 1 1 149 6 -271398 cd11510 SLC6sbd_TauT 4 putative glycosylation site N 0 1 1 492 6 -271398 cd11510 SLC6sbd_TauT 5 Na binding site 2 0 0 1 1 15,18,357,360,361 4 -271398 cd11510 SLC6sbd_TauT 6 Na binding site 1 0 0 1 1 17,22,260,292 4 -271398 cd11510 SLC6sbd_TauT 7 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,259,260,265,267,361,364,365 5 -271398 cd11510 SLC6sbd_TauT 8 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,326,330 5 -212080 cd11511 SLC6sbd_BGT1 1 Na binding site 2 0 0 1 1 16,19,356,359,360 4 -212080 cd11511 SLC6sbd_BGT1 2 Na binding site 1 0 0 1 1 18,23,259,291 4 -212080 cd11511 SLC6sbd_BGT1 3 putative substrate binding site 1 0 0 1 1 17,18,20,21,22,23,98,258,259,264,266,360,363,364 5 -212080 cd11511 SLC6sbd_BGT1 4 putative substrate binding site 2 0 0 1 1 25,26,97,101,104,325,329 5 -212081 cd11512 SLC6sbd_NET 1 putative glycosylation site N 0 1 1 128 6 -212081 cd11512 SLC6sbd_NET 2 putative glycosylation site N 0 1 1 142 6 -212081 cd11512 SLC6sbd_NET 3 putative glycosylation site N 0 1 1 136 6 -212081 cd11512 SLC6sbd_NET 4 Na binding site 2 0 0 1 1 15,18,359,362,363 4 -212081 cd11512 SLC6sbd_NET 5 Na binding site 1 0 0 1 1 17,22,262,294 4 -212081 cd11512 SLC6sbd_NET 6 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,261,262,267,269,363,366,367 5 -212081 cd11512 SLC6sbd_NET 7 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,328,332 5 -271399 cd11513 SLC6sbd_SERT 1 putative glycosylation site N 0 1 1 129 6 -271399 cd11513 SLC6sbd_SERT 2 putative glycosylation site N 0 1 1 138 6 -271399 cd11513 SLC6sbd_SERT 3 putative glycosylation site N 0 1 1 122 6 -271399 cd11513 SLC6sbd_SERT 4 Na binding site 2 0 0 1 1 15,18,355,358,359 4 -271399 cd11513 SLC6sbd_SERT 5 Na binding site 1 0 0 1 1 17,22,257,289 4 -271399 cd11513 SLC6sbd_SERT 6 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,256,257,262,264,359,362,363 5 -271399 cd11513 SLC6sbd_SERT 7 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,324,328 5 -212083 cd11514 SLC6sbd_DAT1 1 putative glycosylation site N 0 1 1 128 6 -212083 cd11514 SLC6sbd_DAT1 2 putative glycosylation site N 0 1 1 121 6 -212083 cd11514 SLC6sbd_DAT1 3 putative glycosylation site N 0 1 1 145 6 -212083 cd11514 SLC6sbd_DAT1 4 Na binding site 2 0 0 1 1 15,18,358,361,362 4 -212083 cd11514 SLC6sbd_DAT1 5 Na binding site 1 0 0 1 1 17,22,261,293 4 -212083 cd11514 SLC6sbd_DAT1 6 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,96,260,261,266,268,362,365,366 5 -212083 cd11514 SLC6sbd_DAT1 7 putative substrate binding site 2 0 0 1 1 24,25,95,99,102,327,331 5 -271400 cd11515 SLC6sbd_NTT4-like 1 Na binding site 2 0 0 1 1 15,18,359,362,363 4 -271400 cd11515 SLC6sbd_NTT4-like 2 Na binding site 1 0 0 1 1 17,22,248,280 4 -271400 cd11515 SLC6sbd_NTT4-like 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,247,248,253,255,363,366,367 5 -271400 cd11515 SLC6sbd_NTT4-like 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,328,332 5 -212085 cd11516 SLC6sbd_B0AT1 1 Na binding site 2 0 0 1 1 15,18,395,398,399 4 -212085 cd11516 SLC6sbd_B0AT1 2 Na binding site 1 0 0 1 1 17,22,246,278 4 -212085 cd11516 SLC6sbd_B0AT1 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,245,246,251,253,399,402,403 5 -212085 cd11516 SLC6sbd_B0AT1 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,364,368 5 -212086 cd11517 SLC6sbd_B0AT3 1 putative glycosylation site N 0 1 1 127 6 -212086 cd11517 SLC6sbd_B0AT3 2 putative glycosylation site N 0 1 1 151 6 -212086 cd11517 SLC6sbd_B0AT3 3 putative glycosylation site N 0 1 1 337 6 -212086 cd11517 SLC6sbd_B0AT3 4 Na binding site 2 0 0 1 1 16,19,396,399,400 4 -212086 cd11517 SLC6sbd_B0AT3 5 Na binding site 1 0 0 1 1 18,23,247,279 4 -212086 cd11517 SLC6sbd_B0AT3 6 putative substrate binding site 1 0 0 1 1 17,18,20,21,22,23,98,246,247,252,254,400,403,404 5 -212086 cd11517 SLC6sbd_B0AT3 7 putative substrate binding site 2 0 0 1 1 25,26,97,101,104,365,369 5 -271401 cd11518 SLC6sbd_SIT1 1 Na binding site 2 0 0 1 1 18,21,400,403,404 4 -271401 cd11518 SLC6sbd_SIT1 2 Na binding site 1 0 0 1 1 20,25,249,281 4 -271401 cd11518 SLC6sbd_SIT1 3 putative substrate binding site 1 0 0 1 1 19,20,22,23,24,25,100,248,249,254,256,404,407,408 5 -271401 cd11518 SLC6sbd_SIT1 4 putative substrate binding site 2 0 0 1 1 27,28,99,103,106,369,373 5 -271402 cd11519 SLC5sbd_SMCT1 1 putative glycosylation site N 0 1 1 474 6 -271402 cd11519 SLC5sbd_SMCT1 2 putative glycosylation site N 0 1 1 478 6 -271402 cd11519 SLC5sbd_SMCT1 3 Na binding site 0 0 1 1 56,59,341,344,345 4 -212089 cd11520 SLC5sbd_SMCT2 1 putative glycosylation site N 0 1 1 216 6 -212089 cd11520 SLC5sbd_SMCT2 2 putative glycosylation site N 0 1 1 477 6 -212089 cd11520 SLC5sbd_SMCT2 3 Na binding site 0 0 1 1 56,59,341,344,345 4 -271403 cd11521 SLC6sbd_NTT4 1 Na binding site 2 0 0 1 1 15,18,409,412,413 4 -271403 cd11521 SLC6sbd_NTT4 2 Na binding site 1 0 0 1 1 17,22,248,280 4 -271403 cd11521 SLC6sbd_NTT4 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,247,248,253,255,413,416,417 5 -271403 cd11521 SLC6sbd_NTT4 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,378,382 5 -212091 cd11522 SLC6sbd_SBAT1 1 putative glycosylation site N 0 1 1 126 6 -212091 cd11522 SLC6sbd_SBAT1 2 putative glycosylation site N 0 1 1 152 6 -212091 cd11522 SLC6sbd_SBAT1 3 Na binding site 2 0 0 1 1 15,18,409,412,413 4 -212091 cd11522 SLC6sbd_SBAT1 4 Na binding site 1 0 0 1 1 17,22,248,280 4 -212091 cd11522 SLC6sbd_SBAT1 5 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,247,248,253,255,413,416,417 5 -212091 cd11522 SLC6sbd_SBAT1 6 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,378,382 5 -212133 cd11523 NTP-PPase 1 metal binding site EEED 1 1 1 28,31,56,59 4 -211400 cd11524 SYLF 1 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -211401 cd11525 SYLF_SH3YL1_like 1 putative lipid binding residues 0 0 1 1 3,4,7,10 5 -211401 cd11525 SYLF_SH3YL1_like 2 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -211402 cd11526 SYLF_FYVE 1 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -212134 cd11527 NTP-PPase_dUTPase 1 active site 0 1 1 1 4,7,8,11,12,27,34,37,62,65,68,69,81,85,88,93 1 -212134 cd11527 NTP-PPase_dUTPase 2 homodimer interface 0 1 1 0 11,12,27,29,30,32,33,36,39,40,45,46,47,48,49,50,51,69,89,93 2 -212134 cd11527 NTP-PPase_dUTPase 3 metal binding site EEED 0 1 1 34,37,62,65 4 -212135 cd11528 NTP-PPase_MazG_Nterm 1 metal binding site EEED 1 0 1 33,36,52,55 4 -212135 cd11528 NTP-PPase_MazG_Nterm 2 homodimer interface 0 1 1 0 1,2,5,23,24,27,30,31,34,35,38,41,46,49,50,53,54,55,56,57,58,60,63,72,75,76,77,78,79,81,82,83,85,86 2 -212136 cd11529 NTP-PPase_MazG_Cterm 1 active site 0 1 1 0 17,18,19,28,32,35,47,50,51,54 1 -212136 cd11529 NTP-PPase_MazG_Cterm 2 putative chemical substrate binding site 0 0 1 1 31,32,35,50,51,54 5 -212136 cd11529 NTP-PPase_MazG_Cterm 3 homodimer interface 0 1 1 0 0,1,2,4,5,8,12,15,16,17,29,30,36,37,48,49,50,52,53,54,56,57,59,66,67,68,71,73,74,75,76,77,78,79,80,81,82,85,86,89,104,107,111 2 -212136 cd11529 NTP-PPase_MazG_Cterm 4 metal binding site EEED 0 1 1 32,35,51,54 4 -212137 cd11530 NTP-PPase_DR2231_like 1 metal binding site EEED 1 1 1 35,38,54,57 4 -212138 cd11531 NTP-PPase_BsYpjD 1 metal binding site EEED 1 0 1 30,33,58,61 4 -212138 cd11531 NTP-PPase_BsYpjD 2 homodimer interface 0 1 0 0 2,5,6,9,20,21,24,27,28,31,34,35,38,39,55,56,57,59,60,61,62,63,64,66,69,73,75,77,78,79,80,81,82,83,84,85,87,88 2 -212139 cd11532 NTP-PPase_COG4997 1 metal binding site EEED 0 0 1 40,43,55,58 4 -212140 cd11533 NTP-PPase_Af0060_like 1 metal binding site EEED 1 0 1 30,33,59,62 4 -212140 cd11533 NTP-PPase_Af0060_like 2 homodimer interface 0 1 0 0 0,1,4,24,27,28,31,32,34,35,38,57,60,63,65,67,68,69,71,72,74 2 -212141 cd11534 NTP-PPase_HisIE_like 1 metal binding site EEED 0 1 1 38,41,57,60 4 -212142 cd11535 NTP-PPase_SsMazG 1 metal binding site EEED 1 0 1 28,31,47,50 4 -212143 cd11536 NTP-PPase_iMazG 1 metal binding site EEED 1 1 1 27,30,55,58 4 -212143 cd11536 NTP-PPase_iMazG 2 putative chemical substrate binding site 0 0 1 1 10,11,19,20,27,30,55,58,61,62,81 5 -212143 cd11536 NTP-PPase_iMazG 3 homodimer interface 0 1 1 0 0,3,10,21,24,25,28,31,32,35,52,53,54,56,57,58,59,60,63,66,67,70,71,72,73,74,76,77,78,80,81,84 2 -212143 cd11536 NTP-PPase_iMazG 4 oligomer interface 0 1 1 1 18,21,22,23,25,26,28,29,32,33,35,36 2 -212144 cd11537 NTP-PPase_RS21-C6_like 1 metal binding site EEED 1 0 1 28,31,59,62 4 -212144 cd11537 NTP-PPase_RS21-C6_like 2 chemical substrate binding site 0 1 1 0 3,28,31,59,62,66 5 -212144 cd11537 NTP-PPase_RS21-C6_like 3 homodimer interface 0 1 0 0 2,3,6,9,10,12,18,19,22,23,25,26,29,32,33,36,37,56,57,58,60,61,62,64,65,67,70,71,73,74,76,78,79,81,82,83,85,86,88,89 2 -212144 cd11537 NTP-PPase_RS21-C6_like 4 oligomer interface 0 1 1 1 15,19,20,22,23,24,26,27,30,31,33,36,37,66 2 -212145 cd11538 NTP-PPase_u1 1 metal binding site EEED 0 0 1 34,37,66,69 4 -212146 cd11539 NTP-PPase_u2 1 metal binding site EEED 0 0 1 23,26,47,50 4 -212147 cd11540 NTP-PPase_u3 1 putative metal binding site EEXD 0 0 1 30,33,49,52 4 -212148 cd11541 NTP-PPase_u4 1 putative metal binding site EEED 0 0 1 29,32,56,59 4 -212149 cd11542 NTP-PPase_u5 1 metal binding site EEED 0 0 1 37,40,63,66 4 -212151 cd11544 NTP-PPase_DR2231 1 active site 0 1 1 0 37,40,56,59,82,86,89,98,99,100,102 1 -212151 cd11544 NTP-PPase_DR2231 2 metal binding site EEED 1 1 1 37,40,56,59 4 -212151 cd11544 NTP-PPase_DR2231 3 homodimer interface 0 1 1 0 0,3,4,6,7,10,11,28,30,31,34,35,38,41,42,45,53,54,55,57,58,59,60,61,62,64,65,67,68,71,73,75,76,78,79,80,82,83,86,87,89,90 2 -212152 cd11545 NTP-PPase_YP_001813558 1 putative metal binding site EEAD 0 1 1 37,40,49,52 4 -212152 cd11545 NTP-PPase_YP_001813558 2 putative nucleotide binding site 0 0 1 1 4,8,13,26,30,52,55,56,75,79 5 -212153 cd11546 NTP-PPase_His4 1 metal binding site EEED 0 0 1 38,41,54,57 4 -212154 cd11547 NTP-PPase_HisE 1 putative metal binding site EEEQ 0 1 1 40,43,59,62 4 -212154 cd11547 NTP-PPase_HisE 2 homodimer interface 0 1 1 0 0,1,2,3,5,30,31,34,35,37,38,41,42,44,45,47,48,49,51,52,53,54,56,57,58,60,61,63,64,67,70,71,74,75,76,80,81,82,84,85 2 -211389 cd11548 NodZ_like 1 GDP-Fucose binding site 0 0 0 1 8,9,10,11,170,172,209,210,211,251,270,271,272 5 -211406 cd11552 Serine_rich_BCAR1 1 putative 14-3-3 binding site 0 0 1 1 29,30,31,32,33,34,35 2 -212092 cd11554 SLC6sbd_u2 1 Na binding site 2 0 0 1 1 14,17,289,292,293 4 -212092 cd11554 SLC6sbd_u2 2 Na binding site 1 0 0 1 1 16,21,194,226 4 -212092 cd11554 SLC6sbd_u2 3 putative substrate binding site 1 0 0 1 1 15,16,18,19,20,21,96,193,194,199,201,293,296,297 5 -212092 cd11554 SLC6sbd_u2 4 putative substrate binding site 2 0 0 1 1 23,24,95,99,102,258,262 5 -271404 cd11555 SLC-NCS1sbd_u1 1 Na binding site 0 0 1 1 29,32,308,311,312 4 -271404 cd11555 SLC-NCS1sbd_u1 2 putative substrate binding site 0 0 1 1 33,109,113,227,228,230,313,317 5 -271405 cd11556 SLC6sbd_SERT-like_u1 1 Na binding site 2 0 0 1 1 15,18,371,374,375 4 -271405 cd11556 SLC6sbd_SERT-like_u1 2 Na binding site 1 0 0 1 1 17,22,274,306 4 -271405 cd11556 SLC6sbd_SERT-like_u1 3 putative substrate binding site 1 0 0 1 1 16,17,19,20,21,22,97,273,274,279,281,375,378,379 5 -271405 cd11556 SLC6sbd_SERT-like_u1 4 putative substrate binding site 2 0 0 1 1 24,25,96,100,103,340,344 5 -211396 cd11558 W2_eIF2B_epsilon 1 putative essential glutamate E 0 0 1 29 0 -211396 cd11558 W2_eIF2B_epsilon 2 putative disease-causing mutation sites WE 0 0 1 78,100 0 -211408 cd11564 FAT-like_CAS_C 1 NSP binding site 0 1 1 1 2,6,7,10,14,43,46,47,50,53,57,58,61,62,76,77,80,84,87,91 2 -211318 cd11566 eIF1_SUI1 1 rRNA binding site 0 1 1 0 9,12,13,15,32,35,36,37,39,40,41,43,57,60 3 -211318 cd11566 eIF1_SUI1 2 Mutations affecting start-site selection 0 0 1 0 59,60 0 -211319 cd11567 YciH_like 1 putative rRNA binding site 0 0 1 1 9,13,14,16,34,37,38,39,41,42,43,45,54,57 3 -211409 cd11568 FAT-like_CASS4_C 1 NSP binding site 0 0 1 1 2,6,7,10,14,43,46,47,50,53,54,55,58,59,73,74,77,81,84,88 2 -211410 cd11569 FAT-like_BCAR1_C 1 NSP binding site 0 1 1 1 7,11,12,15,19,48,51,52,55,58,59,60,62,63,66,67,81,82,85,89,92,96 2 -211411 cd11570 FAT-like_NEDD9_C 1 NSP binding site 0 0 1 1 2,6,7,10,14,43,46,47,50,53,54,55,57,58,61,62,76,77,80,84,87,91 2 -211412 cd11571 FAT-like_EFS_C 1 NSP binding site 0 0 1 1 3,7,8,11,15,44,47,48,51,54,55,56,58,59,62,63,77,78,81,85,88,92 2 -211413 cd11572 RlmI_M_like 1 putative RNA binding site 0 0 1 1 25,49 3 -211414 cd11573 GH99_GH71_like 1 ligand binding site 0 1 1 1 4,6,32,66,108,158,199,243,245,246 5 -211414 cd11573 GH99_GH71_like 2 putative catalytic site [ED]E 0 1 1 243,246 1 -211415 cd11574 GH99 1 ligand binding site 0 1 1 1 5,7,19,22,84,119,161,216,253,259,297,299,300 5 -211415 cd11574 GH99 2 putative catalytic site [ED]E 0 1 1 297,300 1 -211416 cd11575 GH99_GH71_like_3 1 putative catalytic site DE 0 1 1 299,302 1 -211416 cd11575 GH99_GH71_like_3 2 putative ligand binding site 0 0 1 1 86,129,169,214,253,299,301,302 5 -211417 cd11576 GH99_GH71_like_2 1 putative catalytic site EE 0 1 1 325,328 1 -211417 cd11576 GH99_GH71_like_2 2 putative ligand binding site 0 0 1 1 100,136,180,240,281,325,327,328 5 -211418 cd11577 GH71 1 putative catalytic site DE 0 1 1 235,238 1 -211418 cd11577 GH71 2 putative ligand binding site 0 0 1 1 43,72,108,158,194,235,237,238 5 -211419 cd11578 GH99_GH71_like_1 1 putative catalytic site [ED]E 0 1 1 282,285 1 -211419 cd11578 GH99_GH71_like_1 2 putative ligand binding site 0 0 1 1 55,83,133,192,238,282,284,285 5 -211420 cd11579 Glyco_tran_WbsX 1 putative ligand binding site 0 0 1 1 7,9,23,26,80,110,165,216,271,320,322,323 5 -211420 cd11579 Glyco_tran_WbsX 2 putative catalytic site EE 0 1 1 320,323 1 -211421 cd11580 eIF2D_N_like 1 PUA domain interface 0 1 1 1 23,24,62,64,68,69,70,71 2 -211424 cd11582 Axin_TNKS_binding 1 TNKS binding site xxxRPPVPGEExRxxLGEPEGxxx 1 1 0 7,9,10,11,12,13,14,15,16,17,18,19,50,54,55,56,57,59,60,61,62,63,64,66 2 -211425 cd11583 Orc6_mid 1 putative DNA binding site [RK][RK] 0 1 1 44,75 3 -211426 cd11585 SATB1_N 1 tetramer interface 0 1 1 0 1,3,24,25,26,27,28,30,62,64,67,68,74,75,76,77,85,86,89,90,91,93,94 2 -212155 cd11586 VbhA_like 1 FIC domain binding interface xxxxxxxxxx[STN]xxxE[GN]xxxxxxxxxxxxx 1 1 1 2,5,6,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,28,32,35,42,45,46,49,50,53 2 -212536 cd11587 Arginase-like 1 active site 0 1 1 1 92,115,117,119,132,222,224,267 1 -212536 cd11587 Arginase-like 2 Mn binding site [CH]DHDDD 1 1 1 92,115,117,119,222,224 4 -212536 cd11587 Arginase-like 3 oligomer interface 0 1 1 1 5,8,16,17,20,23,40,43,44,232,236,240,244,245,281,284,285,288,292 2 -212537 cd11589 Agmatinase_like_1 1 active site 0 1 1 1 95,117,119,120,121,133,134,204,206,249 1 -212537 cd11589 Agmatinase_like_1 2 Mn binding site [DH]DHDDD 1 1 1 95,117,119,121,204,206 4 -212537 cd11589 Agmatinase_like_1 3 oligomer interface 0 1 1 1 6,9,18,19,22,25,56,59,60,214,218,222,226,227,259,262,263,266,270 2 -212538 cd11592 Agmatinase_PAH 1 putative active site 0 0 1 1 107,130,132,133,134,146,147,221,223,265 1 -212538 cd11592 Agmatinase_PAH 2 Mn binding site HDHDDD 1 1 1 107,130,132,134,221,223 4 -212538 cd11592 Agmatinase_PAH 3 oligomer interface 0 1 1 1 24,27,36,37,40,43,68,71,72,231,235,239,243,244,275,278,279,282,286 2 -212539 cd11593 Agmatinase-like_2 1 putative active site 0 0 1 0 88,111,113,114,115,127,128,195,197,240 1 -212539 cd11593 Agmatinase-like_2 2 Mn binding site HDHDDD 1 1 1 88,111,113,115,195,197 4 -212540 cd11598 HDAC_Hos2 1 active site 0 0 1 1 130,131,139,140,166,168,255,262,292,294 1 -212540 cd11598 HDAC_Hos2 2 Zn binding site DHD 0 1 1 166,168,255 4 -212541 cd11599 HDAC_classII_2 1 putative active site 0 0 1 1 105,106,114,115,143,145,226,268 1 -212541 cd11599 HDAC_classII_2 2 Zn binding site DHD 0 1 1 143,145,226 4 -212542 cd11600 HDAC_Clr3 1 putative active site 0 0 1 1 114,115,123,124,154,156,247,285 1 -212542 cd11600 HDAC_Clr3 2 Zn binding site DHD 0 1 1 154,156,247 4 -211427 cd11602 Ndc10 1 DNA binding site 0 1 1 0 152,153,265,266,267,272,273,275,276,280,292,294,295 3 -211427 cd11602 Ndc10 2 dimer interface 0 1 1 0 128,129,130,132,133,135,289,290,291,403,404,407,408 2 -211428 cd11603 ThermoDBP 1 putative dimer interface 0 1 1 0 7,9,10,11,18,90,95,122,123,124,125,126,127,128,129 2 -211429 cd11604 RTT106_N 1 dimer interface 0 1 1 0 2,6,7,10,13,14,17,18,20,21,24,25,27,28,31,32,34,35,36,39 2 -212156 cd11606 COE_DBD 1 DNA binding site 0 1 1 1 27,28,29,30,31,121,124,125,126,127,133,134,135,136,138,161,163,165,166,167,168,169,197,199,200,201,202,203,204 3 -212156 cd11606 COE_DBD 2 Zinc binding site HCCC 1 1 1 121,125,128,134 4 -211320 cd11607 DENR_C 1 putative rRNA binding site 0 0 1 1 9,12,13,15,33,36,37,38,40,41,42,44,58,61 3 -211321 cd11608 eIF2D_C 1 putative rRNA binding site 0 0 1 1 8,11,12,14,32,35,36,37,39,40,41,43,59,62 3 -211422 cd11609 MCT1_N 1 PUA domain interface 0 1 0 1 28,29,67,69,73,74,75,76 2 -211423 cd11610 eIF2D_N 1 PUA domain interface 0 1 0 1 23,24,66,68,72,73,74,75 2 -212160 cd11615 SAF_NeuB_like 1 putative substrate binding site R 0 1 1 24 5 -212160 cd11615 SAF_NeuB_like 2 NeuB binding interface 0 1 0 0 0,1,6,22,23,24,30,31,32 2 -212162 cd11617 Antifreeze_III 1 ice binding surface 0 1 1 1 6,7,9,10,11,12,13,15,16,17,18,41 5 -211316 cd11618 ChtBD1_1 1 carbohydrate binding site 0 0 1 1 19,21,22,23,25,30 5 -212009 cd11619 HR1_CIP4-like 1 putative Rho binding site 1 0 0 1 1 12,15,18,19,22,23,25,26,29,30,32,33,51,52,55,58,59,62 2 -212009 cd11619 HR1_CIP4-like 2 putative Rho binding site 2 0 0 1 1 20,21,23,24,27,28,30,31,34,35,46,47,49 2 -212010 cd11620 HR1_PKC-like_2_fungi 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,50,51,54,57,58,61 2 -212010 cd11620 HR1_PKC-like_2_fungi 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,45,46,48 2 -212011 cd11621 HR1_PKC-like_1_fungi 1 putative Rho binding site 1 0 0 1 1 7,10,13,14,17,18,20,21,24,25,27,28,50,51,54,57,58,61 2 -212011 cd11621 HR1_PKC-like_1_fungi 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,45,46,48 2 -212012 cd11622 HR1_PKN_1 1 Rho binding site 1 0 1 1 0 8,11,14,15,18,19,21,22,25,26,28,29,44,45,48,51,52,55 2 -212012 cd11622 HR1_PKN_1 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,34,39,40,42 2 -212013 cd11623 HR1_PKN_2 1 putative Rho binding site 1 0 0 1 1 8,11,14,15,18,19,21,22,25,26,28,29,49,50,53,56,57,60 2 -212013 cd11623 HR1_PKN_2 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,44,45,47 2 -212014 cd11624 HR1_Rhophilin 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,47,48,51,54,55,58 2 -212014 cd11624 HR1_Rhophilin 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,42,43,45 2 -212015 cd11625 HR1_PKN_3 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212015 cd11625 HR1_PKN_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212016 cd11626 HR1_ROCK 1 putative Rho binding site 1 0 0 1 1 7,10,13,14,17,18,20,21,24,25,27,28,44,45,48,51,52,55 2 -212016 cd11626 HR1_ROCK 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,39,40,42 2 -212017 cd11627 HR1_Ste20-like 1 putative Rho binding site 1 0 0 1 1 7,10,13,14,17,18,20,21,24,25,27,28,49,50,53,56,57,60 2 -212017 cd11627 HR1_Ste20-like 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,44,45,47 2 -212018 cd11628 HR1_CIP4_FNBP1L 1 putative Rho binding site 1 0 0 1 1 13,16,19,20,23,24,26,27,30,31,33,34,52,53,56,59,60,63 2 -212018 cd11628 HR1_CIP4_FNBP1L 2 putative Rho binding site 2 0 0 1 1 21,22,24,25,28,29,31,32,35,36,47,48,50 2 -212019 cd11629 HR1_FBP17 1 putative Rho binding site 1 0 0 1 1 12,15,18,19,22,23,25,26,29,30,32,33,51,52,55,58,59,62 2 -212019 cd11629 HR1_FBP17 2 putative Rho binding site 2 0 0 1 1 20,21,23,24,27,28,30,31,34,35,46,47,49 2 -212020 cd11630 HR1_PKN1_2 1 putative Rho binding site 1 0 0 1 1 10,13,16,17,20,21,23,24,27,28,30,31,51,52,55,58,59,62 2 -212020 cd11630 HR1_PKN1_2 2 putative Rho binding site 2 0 0 1 1 18,19,21,22,25,26,28,29,32,33,46,47,49 2 -212021 cd11631 HR1_PKN2_2 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212021 cd11631 HR1_PKN2_2 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212022 cd11632 HR1_PKN3_2 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212022 cd11632 HR1_PKN3_2 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212023 cd11633 HR1_Rhophilin-1 1 putative Rho binding site 1 0 0 1 1 17,20,23,24,27,28,30,31,34,35,37,38,53,54,57,60,61,64 2 -212023 cd11633 HR1_Rhophilin-1 2 putative Rho binding site 2 0 0 1 1 25,26,28,29,32,33,35,36,39,40,48,49,51 2 -212024 cd11634 HR1_Rhophilin-2 1 putative Rho binding site 1 0 0 1 1 14,17,20,21,24,25,27,28,31,32,34,35,50,51,54,57,58,61 2 -212024 cd11634 HR1_Rhophilin-2 2 putative Rho binding site 2 0 0 1 1 22,23,25,26,29,30,32,33,36,37,45,46,48 2 -212025 cd11635 HR1_PKN2_3 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212025 cd11635 HR1_PKN2_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212026 cd11636 HR1_PKN1_3 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212026 cd11636 HR1_PKN1_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212027 cd11637 HR1_PKN3_3 1 putative Rho binding site 1 0 0 1 1 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212027 cd11637 HR1_PKN3_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212028 cd11638 HR1_ROCK2 1 putative Rho binding site 1 0 0 1 1 8,11,14,15,18,19,21,22,25,26,28,29,45,46,49,52,53,56 2 -212028 cd11638 HR1_ROCK2 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,40,41,43 2 -212029 cd11639 HR1_ROCK1 1 putative Rho binding site 1 0 0 1 1 7,10,13,14,17,18,20,21,24,25,27,28,44,45,48,51,52,55 2 -212029 cd11639 HR1_ROCK1 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,39,40,42 2 -212163 cd11640 HutP 1 RNA binding site 0 1 1 0 37,38,39,40,41,52,55,56,59,93,94,95,96,114,122 3 -212163 cd11640 HutP 2 Histidine-zinc binding site 0 1 1 0 67,71,74,75,86,91,92,115,116,117,123 5 -212163 cd11640 HutP 3 hexamer interface 0 1 1 0 2,3,4,5,8,9,12,47,50,51,67,71,74,79,82,83,86,90,91,92,112,114,121,122,123,124,126,128,130 2 -212500 cd11641 Precorrin-4_C11-MT 1 active site 0 0 1 1 7,78,79,80,83,84,85,108,109,134,159,160,187,189,190,218,219 1 -212500 cd11641 Precorrin-4_C11-MT 2 SAM binding site 0 1 1 0 7,33,78,79,80,83,108,109,159,160,161,187,189,190,217,218,219 5 -212500 cd11641 Precorrin-4_C11-MT 3 homodimer interface 0 1 0 0 9,11,12,13,14,15,16,18,56,80,81,82,83,84,85,86,87,88,89,91,92,95,103,105,106,107,108,110,111,114,115,118,120,121,122,126,127,128,129,130,131,132,133,134,141,142,144,145,149,150,152,153 2 -212501 cd11642 SUMT 1 active site 0 1 1 0 8,31,32,33,84,85,86,89,90,91,92,114,115,119,140,142,164,165,166,167,168,192,194,195,197,221,222,223,224 1 -212501 cd11642 SUMT 2 SAM binding site 0 1 1 0 8,84,85,86,89,90,114,115,165,192,194,195,222,223,224 5 -212501 cd11642 SUMT 3 homodimer interface 0 1 1 0 12,13,14,15,16,17,19,86,88,89,90,94,95,97,101,102,109,111,113,117,118,126,128,129,130,134,135,136,137,138 2 -212502 cd11643 Precorrin-6A-synthase 1 active site 0 0 1 1 7,107,108,109,112,113,114,140,141,164,181,182,202,204,205,240,241 1 -212502 cd11643 Precorrin-6A-synthase 2 SAM binding site 0 1 0 0 7,107,108,109,112,113,140,141,182,183,202,204,205,239,240,241 5 -212502 cd11643 Precorrin-6A-synthase 3 homodimer interface 0 1 0 0 11,12,13,14,15,16,19,109,111,112,113,117,118,135,137,138,139,140,143,146,147,150,151,152,153,154,158,159,160,161,162,163,164,167 2 -212503 cd11644 Precorrin-6Y-methylase 1 active site 0 0 1 1 7,32,71,72,73,76,77,78,99,100,119,140,141,168,170,171,194,195,196 1 -212503 cd11644 Precorrin-6Y-methylase 2 SAM binding site 0 1 0 0 32,71,72,73,76,77,99,100,141,142,168,170,171,194,195,196 5 -212503 cd11644 Precorrin-6Y-methylase 3 putative homodimer interface 0 0 0 1 13,14,15,16,18,73,74,75,76,77,78,81,82,84,85,94,96,97,98,99,101,102,105,106,115,116,117,118,119 2 -212504 cd11645 Precorrin_2_C20_MT 1 active site 0 0 1 1 8,95,96,97,100,101,102,125,126,149,169,170,195,197,198,220,221 1 -212504 cd11645 Precorrin_2_C20_MT 2 SAM binding site 0 1 1 0 8,95,96,97,100,101,102,125,126,130,170,171,195,197,198,218,219,220,221 5 -212504 cd11645 Precorrin_2_C20_MT 3 homodimer interface 0 1 1 0 11,12,13,14,15,16,17,97,98,99,100,101,105,106,108,120,122,123,124,127,128,129,131,132,135,136,137,138,143,144,145,146,147,149,165 2 -212505 cd11646 Precorrin_3B_C17_MT 1 active site 0 0 1 1 9,78,79,80,83,84,85,110,111,131,158,159,190,192,193,217,218 1 -212505 cd11646 Precorrin_3B_C17_MT 2 SAM binding site 0 1 0 0 9,78,79,80,83,84,110,111,115,159,160,161,190,192,193,195,215,216,217,218 5 -212505 cd11646 Precorrin_3B_C17_MT 3 homodimer interface 0 1 0 0 11,15,16,17,18,80,82,83,84,88,91,92,103,105,107,108,109,110,113,120,121,123,124,125,126,127,128,129,130,131,144,153,154,223,227,228,232,234,237 2 -212506 cd11647 Diphthine_synthase 1 SAM binding site 0 1 1 0 8,34,83,84,87,88,89,112,113,163,164,204,206,207,231,232,233 5 -212506 cd11647 Diphthine_synthase 2 homodimer interface 0 1 1 0 8,10,12,13,14,15,16,17,19,20,86,87,92,95,96,99,100,106,107,108,109,110,111,112,114,115,116,118,119,125,126,128,129,130,131,152,156,158,208,211 2 -212507 cd11648 RsmI 1 putative SAM binding site 0 0 1 1 7,79,80,81,84,85,109,110,155,180,182,183,210,211,212 5 -212507 cd11648 RsmI 2 putative homodimer interface 0 0 0 1 13,14,15,16,18,81,82,83,84,85,86,89,90,92,93,104,106,107,108,109,111,112,115,116,125,126,127,128,129 2 -212508 cd11649 RsmI_like 1 putative SAM binding site 0 0 1 1 7,87,88,89,92,93,117,118,167,193,195,196,222,223,224 5 -212508 cd11649 RsmI_like 2 homodimer interface 0 1 0 0 16,17,18,19,21,89,90,91,92,93,94,97,98,100,101,112,114,115,116,117,119,120,123,124,133,134,135,136,137 2 -212167 cd11653 rap1_RCT 1 recruitment target interaction site 0 1 1 1 0,5,8,9,12,23,24,27,28,30,31,34,35,36,96 2 -212553 cd11654 TRF2_RBM 1 heterodimer interface 0 1 1 1 7,8,9,10,11,12,13,15,16,17,19,20,21,30,33,34,35,36,37,38 2 -212554 cd11655 rap1_myb-like 1 putative DNA binding site x[YFHV][RHGDE]xxxx[RKHEQ][RK]x 1 1 1 0,3,41,42,44,47,48,49,51,53 3 -212555 cd11656 FBX4_GTPase_like 1 TRF1 binding interface 0 1 1 1 179,180,183,184,195,196,197,198,199,210 2 -212555 cd11656 FBX4_GTPase_like 2 SKP1 binding interface 0 1 1 0 3,9 2 -212555 cd11656 FBX4_GTPase_like 3 homodimer interface 0 0 1 1 178,180,181,183,194,195,197,199 2 -212556 cd11658 SANT_DMAP1_like 1 putative DNA binding site 0 0 1 1 0,32,33,35,36,38,39,40,42,43,44 3 -212556 cd11658 SANT_DMAP1_like 2 calcium ion 0 1 0 0 13,16 4 -212557 cd11659 SANT_CDC5_II 1 putative DNA binding site 0 0 1 1 3,4,26,27,37,38,41,45 3 -212557 cd11659 SANT_CDC5_II 2 putative Na binding site 0 0 0 1 30,33,35 4 -212558 cd11660 SANT_TRF 1 DNA binding site 0 1 1 0 0,1,2,20,22,23,35,37,38,39,41,42,43,45,46 3 -212559 cd11661 SANT_MTA3_like 1 putative DNA binding site 0 0 1 1 1,31,32,34,35,37,38,39,41,42,43 3 -212560 cd11662 apollo_TRF2_binding 1 heterodimer interface 0 1 1 1 2,4,5,6,7,8,9,10,11,12,13,14 2 -212128 cd11663 GH119_BcIgtZ-like 1 putative active site 0 0 1 1 4,6,142,284,338,360 1 -212128 cd11663 GH119_BcIgtZ-like 2 catalytic site ED 0 1 1 142,284 1 -212129 cd11664 LamB_YcsF_like_2 1 putative active site 0 0 1 1 5,61,72,108,110,111,115,164,167,175,178,220 1 -212130 cd11665 LamB_like 1 putative active site 0 0 1 1 5,59,70,106,108,109,113,160,163,171,174,220 1 -212131 cd11666 GH38N_Man2A1 1 active site 0 0 1 1 10,12,15,124,126,148,187,189,193,199,209,218,219,260,261,263,339 1 -212131 cd11666 GH38N_Man2A1 2 catalytic site DD 0 1 1 124,261 1 -212131 cd11666 GH38N_Man2A1 3 metal binding site HD 0 1 1 10,12 4 -212131 cd11666 GH38N_Man2A1 4 substrate binding site 0 0 1 1 10,12,15,126,148,187,189,193,199,209,215,218,219,260,261,263,334,339 5 -212132 cd11667 GH38N_Man2A2 1 active site 0 0 1 1 10,12,15,124,126,148,187,189,193,199,209,218,219,260,261,263,339 1 -212132 cd11667 GH38N_Man2A2 2 substrate binding site 0 0 1 1 10,12,15,126,148,187,189,193,199,209,215,218,219,260,261,263,334,339 5 -212132 cd11667 GH38N_Man2A2 3 catalytic site DD 0 1 1 124,261 1 -212132 cd11667 GH38N_Man2A2 4 metal binding site HD 0 1 1 10,12 4 -212168 cd11669 TTHB210-like 1 oligomer interface 0 1 1 1 13,17,20,21,22,31,32,34,45,46,47,49,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,77,78,79,80,81,86,87,88,89,97,99,101 2 -212561 cd11670 Sp_RAP1_RCT 1 RAP1-TAZ1 interaction site 0 1 1 1 3,6,7,9,10,11,13,21,22,24,25,28,29,33,34,35 2 -212562 cd11671 TAZ1_RBM 1 heterodimer interface 0 1 1 1 0,15,24,25,26,27,28,29,30,32,33 2 -277250 cd11672 ADDz 1 peptide binding site 0 1 1 1 53,54,55,56,57,58,70,91 2 -277250 cd11672 ADDz 2 Zn binding site CCCCCCCCCCCC 1 1 0 4,7,24,27,47,50,59,64,69,72,93,96 4 -212563 cd11673 hemoglobin_linker_C 1 hemoglobin interaction interface 0 1 1 0 14,16,33,35,36,39,66,105,106,109,110 2 -212563 cd11673 hemoglobin_linker_C 2 trimer interface 0 1 1 1 8,9,11,98,116,118 2 -212564 cd11674 lambda-1 1 Zn binding site 0 0 1 1 75,78,91,96 4 -212564 cd11674 lambda-1 2 homooligomer interface 0 1 1 0 60,61,62,63,74,79,119,120,382,383,385,387,448,452,455,456,643,644,645,646,649,650,666,670,671,672,675,681,683,684,685,687,691,694,695,697,699,786,787,789,792 2 -212564 cd11674 lambda-1 3 VP6 interface 0 1 1 0 329,330,331,332,333,334,340,342,356,359,360,363,364,366,368,370,371,373,374,387,388,389,390,391,392,393,394,401,617,911,913,916,1136,1137,1138,1152,1154 2 -212565 cd11675 SCAB1_middle 1 PH domain interface 0 1 1 0 9,10,11,34,43,44,45,46,47,48,50,52,54,55,56,57,58 2 -212487 cd11676 Gemin6 1 heterodimer interface 0 1 1 0 0,1,3,4,7,8,16,17,19,21,26,27,28,29,30,31,34,36,46,47,48,49,50,51,52,54 2 -212488 cd11677 Gemin7 1 heterodimer interface 0 1 1 0 0,1,4,5,8,9,11,12,14,15,18,27,28,29,30,31,33,67,68,70,71,72,73,74,75,76 2 -212489 cd11678 archaeal_LSm 1 putative oligomer interface 0 0 1 1 4,7,8,13,15,16,21,23,28,29,30,31,34,35,37,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212489 cd11678 archaeal_LSm 2 putative RNA binding site 0 0 1 1 31,59 3 -212489 cd11678 archaeal_LSm 3 Sm1 motif 0 0 1 1 12,13,14,15,16,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212489 cd11678 archaeal_LSm 4 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212490 cd11679 archaeal_Sm_like 1 heptamer interface 0 1 1 0 0,1,2,3,4,5,7,13,15,16,18,20,22,30,35,36,37,48,49,51,52,53,54,55,57,58,60,61,62,63,64 2 -212543 cd11680 HDAC_Hos1 1 active site 0 0 1 1 114,115,123,124,151,153,236,243,275,277 1 -212543 cd11680 HDAC_Hos1 2 Zn binding site DHD 0 1 1 151,153,236 4 -212544 cd11681 HDAC_classIIa 1 active site 0 1 1 1 150,151,159,160,188,190,282,322 1 -212544 cd11681 HDAC_classIIa 2 Zn binding site DHD 1 1 1 188,190,282 4 -212545 cd11682 HDAC6-dom1 1 putative active site 0 0 1 1 116,117,125,126,154,156,247,285 1 -212545 cd11682 HDAC6-dom1 2 Zn binding site DHD 0 1 1 154,156,247 4 -212546 cd11683 HDAC10 1 putative active site 0 0 1 1 116,117,125,126,154,156,247,285 1 -212546 cd11683 HDAC10 2 Zn binding site DHD 0 1 1 154,156,247 4 -212566 cd11684 DHR2_DOCK 1 Rac/Cdc42 binding site 0 1 1 0 122,124,148,151,152,153,154,156,157,170,171,172,189,190,191,223,224,225,226,237,238,241,243,280,281,284,304,305,307,308,311,312,313,316,317,318,321,322,325,354,375,376,379 2 -212566 cd11684 DHR2_DOCK 2 dimer interface 0 1 1 0 84,94,96,97,99,100,103,104,106,107,110,111 2 -212566 cd11684 DHR2_DOCK 3 nucleotide sensor 0 0 1 1 316,317,318,321 0 -212582 cd11687 PpPFK_gamma 1 oligomer interface 0 1 1 0 72,76,108,110,111,112,113,201,202,203,205,206,207,209,210,211,212,213,216,220,222,223,226,258,259,260,261,290,291,292,295,296,302,312,314,316,317,318,319,320,321,322,323,324,343,344,345 2 -212588 cd11689 SidM_DrrA_GEF 1 Rab1 interaction interface 0 1 1 0 34,37,41,64,67,68,71,72,75,76,78,79,82,83,84,87,88,89,91,92,93,95,96,97,98,99,100,102,105,106,109,110,111,112,113,114,115,135,139,140,141,144,173 2 -212589 cd11690 Tsi2_like 1 dimer interface 0 1 1 0 1,2,5,8,12,13,15,16,19,42,45,48,49,52 2 -212591 cd11692 HRI1_N_like 1 dimer interface 0 1 1 0 4,6,7,12,15,16,17,20,38,39,97,98,102,106,123,133 2 -212591 cd11692 HRI1_N_like 2 putative ligand binding site 0 1 1 0 8,25,52,54,73,75,77,90,92,94,107,122,124 5 -212567 cd11694 DHR2_DOCK_D 1 Cdc42 binding site 0 1 1 0 102,103,104,105,136,137,139,140,141,142,144,145,164,165,166,183,185,214,216,223,224,230,232,269,270,273,287,289,293,296,297,298,301,302,303,304,305,306,307,310,338,356,357,359,360,363 2 -212567 cd11694 DHR2_DOCK_D 2 nucleotide sensor 0 0 1 1 301,302,303,304,305,306 0 -212567 cd11694 DHR2_DOCK_D 3 putative dimer interface 0 0 1 1 68,78,80,81,83,84,87,88,90,91,94,95 2 -212568 cd11695 DHR2_DOCK_C 1 Rac/Cdc42 binding site 0 0 1 1 102,104,127,130,131,132,133,135,136,155,156,157,174,175,176,204,205,206,207,217,218,221,223,260,261,264,280,281,283,284,287,288,289,292,293,294,297,298,301,330,352,355 2 -212568 cd11695 DHR2_DOCK_C 2 nucleotide sensor 0 0 1 1 292,293,294,295,296,297 0 -212568 cd11695 DHR2_DOCK_C 3 putative dimer interface 0 0 1 1 61,71,73,74,76,77,80,81,83,84,87,88 2 -212569 cd11696 DHR2_DOCK_B 1 putative Rac/Cdc42 binding site 0 0 1 1 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,302,303,305,306,309,310,311,314,315,316,319,320,323,353,375,378 2 -212569 cd11696 DHR2_DOCK_B 2 nucleotide sensor 0 0 1 1 314,315,316,317,318,319 0 -212569 cd11696 DHR2_DOCK_B 3 putative dimer interface 0 0 1 1 80,90,92,93,95,96,99,100,102,103,106,107 2 -212570 cd11697 DHR2_DOCK_A 1 Rac binding site 0 1 1 0 150,152,153,154,155,171,172,173,190,191,192,226,227,228,229,240,241,244,283,287,307,308,310,311,315,316,319,320,321,322,323,324,325,328,358,374,376,377,380,383 2 -212570 cd11697 DHR2_DOCK_A 2 dimer interface 0 1 1 0 84,91,92,93,95,97,98,100,101,104,105,107,108,111,112,115,202,206,207,208,209,212 2 -212570 cd11697 DHR2_DOCK_A 3 nucleotide sensor 0 0 1 1 319,320,321,322,323,324 0 -212571 cd11698 DHR2_DOCK9 1 Cdc42 binding site 0 1 1 0 138,139,140,141,143,172,173,175,176,177,178,180,181,200,201,202,219,221,250,252,259,260,266,305,306,309,323,325,329,332,333,334,337,338,339,340,342,343,346,374,392,393,395,396,399 2 -212571 cd11698 DHR2_DOCK9 2 nucleotide sensor 0 0 1 1 337,338,339,340,341,342 0 -212571 cd11698 DHR2_DOCK9 3 putative dimer interface 0 0 1 1 104,114,116,117,119,120,123,124,126,127,130,131 2 -212572 cd11699 DHR2_DOCK10 1 Cdc42 binding site 0 0 1 1 172,173,174,175,206,207,209,210,211,212,214,215,234,235,236,253,255,284,286,293,294,300,302,339,340,343,357,359,363,366,367,368,371,372,373,374,375,376,377,380,408,426,427,429,430,433 2 -212572 cd11699 DHR2_DOCK10 2 nucleotide sensor 0 0 1 1 371,372,373,374,375,376 0 -212572 cd11699 DHR2_DOCK10 3 putative dimer interface 0 0 1 1 138,148,150,151,153,154,157,158,160,161,164,165 2 -212573 cd11700 DHR2_DOCK11 1 Cdc42 binding site 0 0 1 1 139,140,141,142,173,174,176,177,178,179,181,182,201,202,203,220,222,251,253,260,261,267,269,306,307,310,324,326,330,333,334,335,338,339,340,341,342,343,344,347,375,393,394,396,397,400 2 -212573 cd11700 DHR2_DOCK11 2 nucleotide sensor 0 0 1 1 338,339,340,341,342,343 0 -212573 cd11700 DHR2_DOCK11 3 putative dimer interface 0 0 1 1 105,115,117,118,120,121,124,125,127,128,131,132 2 -212574 cd11701 DHR2_DOCK8 1 Rac/Cdc42 binding site 0 0 1 1 157,159,182,185,186,187,188,190,191,210,211,212,229,230,231,259,260,261,262,272,273,276,278,315,316,319,335,336,338,339,342,343,344,347,348,349,352,353,356,384,406,409 2 -212574 cd11701 DHR2_DOCK8 2 nucleotide sensor 0 0 1 1 347,348,349,350,351,352 0 -212574 cd11701 DHR2_DOCK8 3 putative dimer interface 0 0 1 1 117,127,129,130,132,133,136,137,139,140,143,144 2 -212575 cd11702 DHR2_DOCK6 1 Rac/Cdc42 binding site 0 0 1 1 158,160,183,186,187,188,189,191,192,211,212,213,230,231,232,260,261,262,263,273,274,277,279,316,317,320,336,337,339,340,343,344,345,348,349,350,353,354,357,385,407,410 2 -212575 cd11702 DHR2_DOCK6 2 nucleotide sensor 0 0 1 1 348,349,350,351,352,353 0 -212575 cd11702 DHR2_DOCK6 3 putative dimer interface 0 0 1 1 116,126,128,129,131,132,135,136,138,139,142,143 2 -212576 cd11703 DHR2_DOCK7 1 Rac/Cdc42 binding site 0 0 1 1 195,197,220,223,224,225,226,228,229,248,249,250,267,268,269,297,298,299,300,310,311,314,316,353,354,357,373,374,376,377,380,381,382,385,386,387,390,391,394,422,444,447 2 -212576 cd11703 DHR2_DOCK7 2 nucleotide sensor 0 0 1 1 385,386,387,388,389,390 0 -212576 cd11703 DHR2_DOCK7 3 putative dimer interface 0 0 1 1 155,165,167,168,170,171,174,175,177,178,181,182 2 -212577 cd11704 DHR2_DOCK3 1 putative Rac/Cdc42 binding site 0 0 1 1 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,303,304,306,307,310,311,312,315,316,317,320,321,324,354,376,379 2 -212577 cd11704 DHR2_DOCK3 2 nucleotide sensor 0 0 1 1 315,316,317,318,319,320 0 -212577 cd11704 DHR2_DOCK3 3 putative dimer interface 0 0 1 1 80,90,92,93,95,96,99,100,102,103,106,107 2 -212578 cd11705 DHR2_DOCK4 1 putative Rac/Cdc42 binding site 0 0 1 1 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,302,303,305,306,309,310,311,314,315,316,319,320,323,353,375,378 2 -212578 cd11705 DHR2_DOCK4 2 nucleotide sensor 0 0 1 1 314,315,316,317,318,319 0 -212578 cd11705 DHR2_DOCK4 3 putative dimer interface 0 0 1 1 80,90,92,93,95,96,99,100,102,103,106,107 2 -212579 cd11706 DHR2_DOCK2 1 Rac binding site 0 1 1 0 168,170,171,172,173,189,190,191,208,209,210,244,245,246,247,258,259,262,301,305,325,326,328,329,333,334,337,338,339,340,341,342,343,346,376,392,394,395,398,401 2 -212579 cd11706 DHR2_DOCK2 2 dimer interface 0 1 1 0 102,109,110,111,113,115,116,118,119,122,123,125,126,129,130,133,220,224,225,226,227,230 2 -212579 cd11706 DHR2_DOCK2 3 nucleotide sensor 0 0 1 1 337,338,339,340,341,342 0 -212580 cd11707 DHR2_DOCK1 1 Rac binding site 0 0 1 1 150,152,153,154,155,171,172,173,190,191,192,226,227,228,229,240,241,244,283,287,307,308,310,311,315,316,319,320,321,322,323,324,325,328,358,374,376,377,380,383 2 -212580 cd11707 DHR2_DOCK1 2 dimer interface 0 0 1 1 84,91,92,93,95,97,98,100,101,104,105,107,108,111,112,115,202,206,207,208,209,212 2 -212580 cd11707 DHR2_DOCK1 3 nucleotide sensor 0 0 1 1 319,320,321,322,323,324 0 -212581 cd11708 DHR2_DOCK5 1 Rac binding site 0 0 1 1 150,152,153,154,155,171,172,173,190,191,192,226,227,228,229,240,241,244,283,287,307,308,310,311,315,316,319,320,321,322,323,324,325,328,358,374,376,377,380,383 2 -212581 cd11708 DHR2_DOCK5 2 dimer interface 0 0 1 1 84,91,92,93,95,97,98,100,101,104,105,107,108,111,112,115,202,206,207,208,209,212 2 -212581 cd11708 DHR2_DOCK5 3 nucleotide sensor 0 0 1 1 319,320,321,322,323,324 0 -212548 cd11710 GINS_A_psf1 1 tetramer interface 0 1 1 1 27,30,78,82,86,87,104,107,109,111,112,113,114,115,116,117,118,119,120,121 2 -212549 cd11711 GINS_A_Sld5 1 tetramer interface 0 1 1 1 26,29,70,74,78,79,94,97,99,101,102,103,104,105,106,107,108,109,110,111 2 -212550 cd11712 GINS_A_psf2 1 tetramer interface 0 1 1 1 38,41,65,69,73,74,92,95,97,99,100,101,102,103,104,105,106,107,108,109 2 -212551 cd11713 GINS_A_psf3 1 tetramer interface 0 1 1 1 35,38,58,62,66,67,84,87,89,91,92,93,94,95,96,97,98,99,100,101 2 -212552 cd11714 GINS_A_archaea 1 oligomer interface 1 0 1 1 1 0,4,8,11,52,53,56,57,64 2 -212552 cd11714 GINS_A_archaea 2 oligomer interface 2 0 1 1 1 88,91,92,95 2 -212593 cd11719 FANC 1 heterodimer interface 0 1 1 0 0,1,2,3,7,11,46,49,50,53,54,56,57,87,90,91,92,138,141,142,174,178,184,232,236,237,239,335,343,346,394,397,398,401,405,408,438,441,444,445,448,477,480,481,484,486,539,540,541,543,544,547,548,550,551,552,555,574,577,578,579,580,583,586,636 2 -212593 cd11719 FANC 2 ubiquitination site K 0 1 1 481 6 -212593 cd11719 FANC 3 putative DNA binding site 0 0 1 1 244,245,246,247,248,249,250,251,252,253,254,286,287,288,289,290,291,292,293,294,295,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,887,888,889,890,891,892,893,894,895,896,897,898,899,900,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946 3 -212594 cd11720 FANCI 1 heterodimer interface 0 1 1 0 0,7,11,41,42,45,48,49,52,53,56,86,89,139,140,172,176,233,237,240,336,394,398,401,431,434,437,438,441,473,474,477,533,534,537,538,541,542,544,545,568,570,571,572,573,574,577,580,630,634 2 -212594 cd11720 FANCI 2 ubiquitination site K 0 1 1 474 6 -212594 cd11720 FANCI 3 phosphorylation site [st] 0 1 1 516 6 -212594 cd11720 FANCI 4 putative DNA binding site 0 0 1 1 247,251,254,290,295,298,892,938,988,1004,1017,1074,1078,1088,1171,1178,1179 3 -212595 cd11721 FANCD2 1 heterodimer interface 0 1 1 0 40,41,42,43,80,81,82,85,86,89,92,93,95,127,128,158,162,194,198,201,246,250,251,253,335,338,366,369,370,377,411,414,417,418,456,459,460,463,465,510,511,514,521,522,524,525 2 -212595 cd11721 FANCD2 2 ubiquitination site K 0 1 1 460 6 -212595 cd11721 FANCD2 3 putative DNA binding site 0 0 1 1 256,264,268,294,295,299,302,677,730,891,986,994,1002,1005,1053,1056,1064,1075,1076,1109,1112,1118,1119,1127 3 -212596 cd11722 SOAR 1 dimer interface 0 1 1 0 0,3,4,6,7,10,11,14,15,18,82,83,86,89 2 -212596 cd11722 SOAR 2 putative inhibitory helix interface 0 1 1 0 1,2,5,90,91 2 -212509 cd11723 YabN_N 1 putative SAM binding site 0 0 1 1 8,86,87,88,91,92,117,118,156,184,186,187,211,212,213 5 -212509 cd11723 YabN_N 2 putative homodimer interface 0 0 0 1 14,15,16,17,19,88,89,90,91,92,93,97,98,100,101,112,114,115,116,117,119,120,123,124,136,137,138,139,140 2 -212510 cd11724 TP_methylase_like 1 putative SAM binding site 0 0 1 1 9,107,108,109,112,113,135,136,187,213,215,216,244,245,246 5 -212510 cd11724 TP_methylase_like 2 putative homodimer interface 0 0 0 1 15,16,17,18,20,109,110,111,112,113,114,117,118,120,121,130,132,133,134,135,137,138,141,142,158,159,160,161,162 2 -277251 cd11725 ADDz_Dnmt3 1 peptide binding site 0 1 1 1 55,56,57,58,59,60,72,93 2 -277251 cd11725 ADDz_Dnmt3 2 Zn binding site CCC[CH]CCCCCCCC 1 1 0 4,7,26,29,49,52,61,66,71,74,95,98 4 -277252 cd11726 ADDz_ATRX 1 Zn binding site CCCCCCCCCCCC 1 1 1 4,7,29,32,52,55,64,67,72,75,96,99 4 -277252 cd11726 ADDz_ATRX 2 peptide binding site 0 1 1 1 44,46,49,58,59,60,61,62,63,73,94 2 -277253 cd11727 ADDz_Dnmt3l 1 Zn binding site CCCCCCCCCCCC 1 1 0 6,9,26,29,49,52,61,66,71,74,95,98 4 -277253 cd11727 ADDz_Dnmt3l 2 peptide binding site 0 1 1 1 41,43,46,55,56,57,58,59,60,72,87,88,90,91,93 2 -277254 cd11728 ADDz_Dnmt3b 1 putative Zn binding site CCCCCCCCCCCC 0 1 1 4,7,24,27,47,50,59,64,69,72,93,96 4 -277255 cd11729 ADDz_Dnmt3a 1 Zn binding site CCCCCCCCCCCC 1 1 1 7,10,27,30,50,53,62,67,72,75,96,99 4 -277255 cd11729 ADDz_Dnmt3a 2 peptide binding site 0 1 1 1 42,44,46,47,48,49,54,55,56,57,58,59,60,61,88,89,91,94 2 -212496 cd11730 Tthb094_like_SDR_c 1 putative active site 0 0 1 1 96,135,139 1 -212496 cd11730 Tthb094_like_SDR_c 2 NAD(P) binding site 0 1 1 1 4,6,7,8,9,28,29,30,48,49,50,72,73,74,75,96,120,121,135,139,163,164,165,166,168,169,170,171 5 -212497 cd11731 Lin1944_like_SDR_c 1 putative NAD(P) binding site 0 0 1 1 4,6,7,8,9,28,29,30,36,37,38,60,61,62,83,108,109,110,123,127,152,153,154,155,157,158 5 -212497 cd11731 Lin1944_like_SDR_c 2 homodimer interface 0 1 0 0 68,69,72,74,75,77,81,89,90,93,94,114,116,117,118,119,120,121,124,125,128,129,132,133,135,136,137,139,140,142 2 -212682 cd11732 HSP105-110_like_NBD 1 nucleotide binding site 0 1 1 0 5,6,7,8,64,198,200,201,202,203,229,267,270,271,274,337,338,339,341,342 5 -212682 cd11732 HSP105-110_like_NBD 2 HSP70 interaction site 0 1 1 0 14,19,20,25,26,27,28,29,50,51,134,135,180,261,271,274,282,284,285,341,359,360,361,362,365,369,373,376 2 -212682 cd11732 HSP105-110_like_NBD 3 SBD interface 0 1 1 1 40,41,42,108,112,115,116,119,123,146,147,149,150,154,158,165,166,168,217 2 -212683 cd11733 HSPA9-like_NBD 1 nucleotide binding site 0 0 1 1 9,10,11,12,69,170,194,195,197,223,261,264,268,335,336,337,339 5 -212683 cd11733 HSPA9-like_NBD 2 NEF interaction site 0 1 1 1 27,30,48,52,55,56,58,59,128,129,130,131,251,254,255,258,276,278,279 2 -212683 cd11733 HSPA9-like_NBD 3 SBD interface 0 0 1 1 147,148,150,151,166,167,169,210,211,212,213 2 -212684 cd11734 Ssq1_like_NBD 1 nucleotide binding site 0 0 1 1 9,10,11,12,68,169,194,195,197,223,261,264,268,331,332,333,335 5 -212684 cd11734 Ssq1_like_NBD 2 NEF interaction site 0 0 1 1 27,30,47,51,54,55,57,58,127,128,129,130,251,254,255,258,276,278,279 2 -212684 cd11734 Ssq1_like_NBD 3 SBD interface 0 0 1 1 146,147,149,150,165,166,168,210,211,212,213 2 -212685 cd11735 HSPA12A_like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,83,147,181,258,259,260,261,262,263,265,291,292,330,333,334,425,426,427,429,430,454 5 -212685 cd11735 HSPA12A_like_NBD 2 SBD interface 0 0 1 1 152,153,155,156,177,178,180,278,279,280,281 2 -212685 cd11735 HSPA12A_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 28,55,59,62,63,125,126,320,323,324,327,331,347,349,350 2 -212686 cd11736 HSPA12B_like_NBD 1 nucleotide binding site 0 0 1 1 5,7,8,9,10,83,147,181,259,260,261,262,263,264,266,292,293,331,334,335,426,427,428,430,431,455 5 -212686 cd11736 HSPA12B_like_NBD 2 SBD interface 0 0 1 1 152,153,155,156,177,178,180,279,280,281,282 2 -212686 cd11736 HSPA12B_like_NBD 3 putative NEF/HSP70 interaction site 0 0 1 1 28,55,59,62,63,125,126,321,324,325,328,332,348,350,351 2 -212687 cd11737 HSPA4_NBD 1 nucleotide binding site 0 0 1 1 7,8,9,10,66,200,202,203,204,205,231,269,272,273,276,340,341,342,344,345 5 -212687 cd11737 HSPA4_NBD 2 HSP70 interaction site 0 0 1 1 16,19,20,21,22,27,28,29,30,31,52,53,55,56,136,137,182,263,273,276,277,278,285,287,288,344,362,363,364,365,368,372,376,379,380,381,382 2 -212687 cd11737 HSPA4_NBD 3 SBD interface 0 0 1 1 42,43,44,76,110,114,117,118,121,125,148,149,151,152,156,160,167,168,170,219 2 -212688 cd11738 HSPA4L_NBD 1 nucleotide binding site 0 0 1 1 7,8,9,10,66,200,202,203,204,205,231,269,272,273,276,340,341,342,344,345 5 -212688 cd11738 HSPA4L_NBD 2 HSP70 interaction site 0 0 1 1 16,19,20,21,22,27,28,29,30,31,52,53,55,56,136,137,182,263,273,276,277,278,285,287,288,344,362,363,364,365,368,372,376,379,380,381,382 2 -212688 cd11738 HSPA4L_NBD 3 SBD interface 0 0 1 1 42,43,44,76,110,114,117,118,121,125,148,149,151,152,156,160,167,168,170,219 2 -212689 cd11739 HSPH1_NBD 1 nucleotide binding site 0 0 1 1 7,8,9,10,66,200,202,203,204,205,231,269,272,273,276,340,341,342,344,345 5 -212689 cd11739 HSPH1_NBD 2 HSP70 interaction site 0 0 1 1 16,19,20,21,22,27,28,29,30,31,52,53,55,56,136,137,182,263,273,276,277,278,285,287,288,344,362,363,364,365,368,372,376,379,380,381,382 2 -212689 cd11739 HSPH1_NBD 3 SBD interface 0 0 1 1 42,43,44,76,110,114,117,118,121,125,148,149,151,152,156,160,167,168,170,219 2 -240666 cd11741 TIN2_TBM 1 Protein interaction interface [FY]LP 0 1 1 9,11,13 2 -213039 cd11743 Cthe_2751_like 1 dimer interface 0 1 1 0 11,12,15,36,42,43,45,46,49,50,77,80,81,85,87,120,121 2 -213354 cd11744 MIT_CorA-like 1 oligomer interface 0 1 1 1 23,26,27,36,38,87,91,104,107,111,115,118,119,122,125,126,128,129,132,144,145,147,148,151,152,155,156,158,159,163,165,166,169,170,173,174,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213372 cd11745 Yos9_DD 1 homodimer interface 0 1 0 0 76,78,93,95,97,103,105,107,118,119,120,121,122 2 -213063 cd11747 GH94N_like_1 1 homodimer interface 0 1 0 0 36,38,59,60,61,62,63,67,69,108,110,111,112,113,116,121,125,126,132,138,139,140,147,182,183,185,187,189,192,193,194,195,197,200,201,203 2 -213070 cd11754 GH94N_CBP_like 1 putative active site 0 1 1 1 164 1 -213070 cd11754 GH94N_CBP_like 2 homodimer interface 0 1 1 0 17,18,19,20,21,22,52,56,58,59,60,61,62,63,64,88,155,157,161,163,164,165,167,168,169,171,186,187,188,189,208,214,215,216,217,218,235,237,275 2 -213070 cd11754 GH94N_CBP_like 3 catalytic domain interface 0 1 1 0 3,4,5,7,11,12,20,21,22,23,24,25,26,29,33,35,37,41,42,43,45,47,48,49,50,51,52,53,57,59,65,98,99,100,101,157 2 -213071 cd11755 GH94N_ChBP_like 1 catalytic domain interface 0 1 1 0 0,1,2,3,5,7,10,11,12,20,21,22,23,24,25,26,28,29,30,31,32,33,35,37,41,42,43,45,47,48,49,50,53,57,59,65,102,103,104,105,160,161 2 -213071 cd11755 GH94N_ChBP_like 2 putative homodimer interface 0 0 1 1 17,18,19,20,21,22,52,56,58,59,60,61,64,90,159,161,165,168,169,170,172,173,174,176,191,192,219,225,226,227,228,229,246,248 2 -212691 cd11757 SH3_SH3BP4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212692 cd11758 SH3_CRK_N 1 peptide ligand binding site 0 1 1 1 6,8,15,31,33,34,48,50,51 2 -212692 cd11758 SH3_CRK_N 2 C-terminal SH3 interface 0 1 1 1 6,7,8,11,31,33,34,48,50,51 2 -212693 cd11759 SH3_CRK_C 1 peptide ligand binding site 0 0 1 1 7,9,12,18,36,37,50,52,53 2 -212693 cd11759 SH3_CRK_C 2 N-terminal SH3 interface 0 1 1 1 0,1,2,28,30,31,32,46 2 -212693 cd11759 SH3_CRK_C 3 SH2 interface 0 1 1 1 34,35,36,37,38,50,51,52,55,56 2 -212694 cd11760 SH3_MIA_like 1 putative polypeptide substrate binding site 0 0 1 1 17,18,19,22,23,24,25,26,47,48,62,63,64,66,67 2 -212695 cd11761 SH3_FCHSD_1 1 peptide ligand binding site 0 0 1 1 7,9,12,16,35,36,50,52,53 2 -212696 cd11762 SH3_FCHSD_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212697 cd11763 SH3_SNX9_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212698 cd11764 SH3_Eps8 1 peptide ligand binding site 0 1 1 1 7,11,12,13,30,31,32,34,43,44,46,47,48,49 2 -212698 cd11764 SH3_Eps8 2 swapped dimer interface 0 1 1 0 0,1,2,3,4,5,7,10,13,14,15,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37,42,43,44,45,49,50,51,52,53 2 -212699 cd11765 SH3_Nck_1 1 peptide ligand binding site 0 1 1 1 7,10,11,13,14,30,31,32,44,46,47,48,49 2 -212700 cd11766 SH3_Nck_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212701 cd11767 SH3_Nck_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,49,51,52 2 -212702 cd11768 SH3_Tec_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212703 cd11769 SH3_CSK 1 peptide ligand binding site 0 1 1 1 9,12,13,15,29,30,32,33,35,36,38,48,50,51,52,53 2 -212704 cd11770 SH3_Nephrocystin 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212705 cd11771 SH3_Pex13p_fungal 1 peptide ligand binding site 0 1 1 1 5,10,11,14,15,35,38,39,51,53,55,56 2 -212705 cd11771 SH3_Pex13p_fungal 2 putative Pex5p binding site 0 0 1 1 0,23,25,43,45 2 -212706 cd11772 SH3_OSTF1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212707 cd11773 SH3_Sla1p_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,53,55,56 2 -212708 cd11774 SH3_Sla1p_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212709 cd11775 SH3_Sla1p_3 1 ubiquitin binding site 0 1 1 1 6,7,8,9,15,33,34,35,50,51,52,53 2 -212709 cd11775 SH3_Sla1p_3 2 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,50,52,53 2 -212710 cd11776 SH3_PI3K_p85 1 peptide ligand binding site 0 1 1 1 6,7,8,12,15,47,48,49,64,66,67 2 -212711 cd11777 SH3_CIP4_Bzz1_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212712 cd11778 SH3_Bzz1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212713 cd11779 SH3_Irsp53_BAIAP2L 1 peptide ligand binding site 0 1 1 1 5,6,8,14,15,27,28,33,34,35,37,47,48,50,51,52,53 2 -212714 cd11780 SH3_Sorbs_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212715 cd11781 SH3_Sorbs_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212716 cd11782 SH3_Sorbs_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212717 cd11783 SH3_SH3RF_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212718 cd11784 SH3_SH3RF2_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212719 cd11785 SH3_SH3RF_C 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212720 cd11786 SH3_SH3RF_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212721 cd11787 SH3_SH3RF_2 1 peptide ligand binding site 0 0 1 1 5,7,10,17,35,36,49,51,52 2 -212723 cd11789 SH3_Nebulin_family_C 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212724 cd11790 SH3_Amphiphysin 1 peptide ligand binding site 0 1 1 1 11,12,13,14,15,16,17,36,38,39,40,41,56,58,59 2 -212725 cd11791 SH3_UBASH3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,52,54,55 2 -212726 cd11792 SH3_Fut8 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212727 cd11793 SH3_ephexin1_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212728 cd11794 SH3_DNMBP_N1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212729 cd11795 SH3_DNMBP_N2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212730 cd11796 SH3_DNMBP_N3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212731 cd11797 SH3_DNMBP_N4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212732 cd11798 SH3_DNMBP_C1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212733 cd11799 SH3_ARHGEF37_C1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212734 cd11800 SH3_DNMBP_C2_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212735 cd11801 SH3_JIP1_like 1 homodimer interface 0 1 1 0 5,6,7,8,10,11,13,14,29,31,32,33,35,46,48,49,50,51 2 -212735 cd11801 SH3_JIP1_like 2 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212736 cd11802 SH3_Endophilin_B 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212737 cd11803 SH3_Endophilin_A 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212738 cd11804 SH3_GRB2_like_N 1 peptide ligand binding site 0 1 1 1 4,5,6,7,10,11,14,33,34,47,48,49,50 2 -212739 cd11805 SH3_GRB2_like_C 1 peptide ligand binding site 0 1 1 1 5,7,10,11,14,32,33,44,46,48,49 2 -212740 cd11806 SH3_PRMT2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212741 cd11807 SH3_ASPP 1 p53 binding site 0 1 1 1 8,11,12,14,15,33,34,36,37,48,50,52 2 -212742 cd11808 SH3_Alpha_Spectrin 1 peptide ligand binding site 0 1 1 1 5,7,10,32,33,46,48,49 2 -212743 cd11809 SH3_srGAP 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212744 cd11810 SH3_RUSC1_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212745 cd11811 SH3_CHK 1 peptide ligand binding site 0 0 1 1 7,9,12,16,35,36,51,53,54 2 -212746 cd11812 SH3_AHI-1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212747 cd11813 SH3_SGSM3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212748 cd11814 SH3_Eve1_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212749 cd11815 SH3_Eve1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212750 cd11816 SH3_Eve1_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212751 cd11817 SH3_Eve1_4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212752 cd11818 SH3_Eve1_5 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212753 cd11819 SH3_Cortactin_like 1 peptide ligand binding site 0 1 1 1 5,7,10,13,14,32,33,45,47,49,50 2 -212754 cd11820 SH3_STAM 1 peptide ligand binding site 0 1 1 1 6,8,11,12,14,15,33,34,47,49,50 2 -212755 cd11821 SH3_ASAP 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,49,51,52 2 -212756 cd11822 SH3_SASH_like 1 peptide ligand binding site 0 0 1 1 5,7,10,16,34,35,48,50,51 2 -212757 cd11823 SH3_Nostrin 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212758 cd11824 SH3_PSTPIP1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212759 cd11825 SH3_PLCgamma 1 peptide ligand binding site 0 1 1 1 5,11,13,14,33,45,49,50 2 -212760 cd11826 SH3_Abi 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212761 cd11827 SH3_MyoIe_If_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212762 cd11828 SH3_ARHGEF9_like 1 DH-PH interface 0 1 1 1 2,3,4,9,10,12,48,51 2 -212762 cd11828 SH3_ARHGEF9_like 2 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212763 cd11829 SH3_GAS7 1 peptide ligand binding site 0 0 1 1 5,7,10,15,33,34,47,49,50 2 -212764 cd11830 SH3_VAV_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212765 cd11831 SH3_VAV_1 1 peptide ligand binding site 0 0 1 1 5,7,10,20,39,40,55,57,58 2 -212766 cd11832 SH3_Shank 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212767 cd11833 SH3_Stac_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212768 cd11834 SH3_Stac_2 1 peptide ligand binding site 0 0 1 1 5,7,10,12,29,30,47,49,50 2 -212769 cd11835 SH3_ARHGAP32_33 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,49,51,52 2 -212770 cd11836 SH3_Intersectin_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212771 cd11837 SH3_Intersectin_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,46,48,49 2 -212772 cd11838 SH3_Intersectin_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,45,47,48 2 -212773 cd11839 SH3_Intersectin_4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,51,53,54 2 -212774 cd11840 SH3_Intersectin_5 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212775 cd11841 SH3_SH3YL1_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212776 cd11842 SH3_Ysc84p_like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212777 cd11843 SH3_PACSIN 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212778 cd11844 SH3_CAS 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,49,51,52 2 -212779 cd11845 SH3_Src_like 1 peptide ligand binding site 0 1 1 1 5,7,10,11,14,31,32,33,46,48,50,51 2 -212780 cd11846 SH3_Srms 1 peptide ligand binding site 0 0 1 1 5,7,10,11,14,30,31,32,46,48,50,51 2 -212781 cd11847 SH3_Brk 1 peptide ligand binding site 0 0 1 1 5,7,10,14,30,31,32,49,51,53,54 2 -212782 cd11848 SH3_SLAP-like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,47,49,50 2 -212783 cd11849 SH3_SPIN90 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,47,49,50 2 -212784 cd11850 SH3_Abl 1 peptide ligand binding site 0 1 1 1 5,7,10,11,12,14,29,33,34,47,49,51,52 2 -212784 cd11850 SH3_Abl 2 PTKc domain interface 0 1 1 0 9,10,11,12,31,33 2 -212785 cd11851 SH3_RIM-BP 1 peptide ligand binding site 0 0 1 1 5,7,10,21,40,41,55,57,58 2 -212786 cd11852 SH3_Kalirin_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,35,36,55,57,58 2 -212787 cd11853 SH3_Kalirin_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,52,54,55 2 -212788 cd11854 SH3_Fus1p 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,52,53 2 -212789 cd11855 SH3_Sho1p 1 peptide ligand binding site 0 1 1 1 5,7,16,33,34,48,49,50,51 2 -212790 cd11856 SH3_p47phox_like 1 peptide ligand binding site 0 1 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -212791 cd11857 SH3_DBS 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212792 cd11858 SH3_Myosin-I_fungi 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,46,48,50,51 2 -212793 cd11859 SH3_ZO 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,55,57,58 2 -212794 cd11860 SH3_DLG5 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,55,57,58 2 -212794 cd11860 SH3_DLG5 2 GuK domain interface 0 0 1 1 2,19,20 2 -212795 cd11861 SH3_DLG-like 1 GuK domain interface 0 1 1 1 2,24,25 2 -212795 cd11861 SH3_DLG-like 2 peptide ligand binding site 0 0 1 1 5,7,10,19,37,38,57,59,60 2 -212796 cd11862 SH3_MPP 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -212796 cd11862 SH3_MPP 2 GuK domain interface 0 0 1 1 2,26,27 2 -212797 cd11863 SH3_CACNB 1 peptide ligand binding site 0 0 1 1 6,8,11,22,40,41,57,59,60 2 -212798 cd11864 SH3_PEX13_eumet 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,51,53,54 2 -212799 cd11865 SH3_Nbp2-like 1 peptide ligand binding site 0 1 1 1 5,7,10,11,13,14,27,29,30,31,32,33,35,44,45,46,48,50,51 2 -212800 cd11866 SH3_SKAP1-like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212801 cd11867 hSH3_ADAP 1 putative lipid binding site 0 0 1 1 0,1,2,3,4,5,6,7,8,9 5 -212802 cd11869 SH3_p40phox 1 peptide ligand binding site 0 1 1 1 5,6,10,14,29,30,32,33,46,49 2 -212802 cd11869 SH3_p40phox 2 PB1 domain interface 0 1 1 0 26,39,40,42 2 -212803 cd11870 SH3_p67phox-like_C 1 peptide ligand binding site 0 1 1 1 5,6,7,11,12,13,14,26,27,28,29,30,32,33,35,42,43,44,46,48,49 2 -212804 cd11871 SH3_p67phox_N 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212805 cd11872 SH3_DOCK_AB 1 ELMO interaction site 0 1 1 1 2,3,4,5,6,13,18,19,20,22,26,27,31,32,34,42,44,46,48,50,51,53,55 2 -212805 cd11872 SH3_DOCK_AB 2 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,48,50,51 2 -212806 cd11873 SH3_CD2AP-like_1 1 peptide ligand binding site 0 1 1 1 5,7,10,11,13,14,30,31,32,33,44,46,48,49 2 -212807 cd11874 SH3_CD2AP-like_2 1 putative peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,33,44,46,48,49 2 -212808 cd11875 SH3_CD2AP-like_3 1 ubiquitin interaction site 0 1 1 1 4,5,6,7,8,9,10,11,13,14,18,19,32,33,34,35,45,46,48,50,51,53 2 -212808 cd11875 SH3_CD2AP-like_3 2 putative peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,35,46,48,50,51 2 -212809 cd11876 SH3_MLK 1 peptide ligand binding site 0 0 1 1 5,7,10,14,37,38,51,53,54 2 -212810 cd11877 SH3_PIX 1 peptide ligand binding site 0 1 1 1 5,7,10,13,14,29,31,32,33,44,46,48,49 2 -212811 cd11878 SH3_Bem1p_1 1 peptide ligand binding site 0 0 1 1 5,10,12,13,33,34,36,45,47,49,51,52 2 -212812 cd11879 SH3_Bem1p_2 1 peptide ligand binding site 0 1 1 1 5,10,12,13,29,32,33,35,45,47,49,51,52 2 -212813 cd11880 SH3_Caskin 1 peptide ligand binding site 0 0 1 1 6,8,11,16,34,35,54,56,57 2 -212814 cd11881 SH3_MYO7A 1 peptide ligand binding site 0 0 1 1 7,9,12,18,41,42,57,59,60 2 -212815 cd11882 SH3_GRAF-like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212816 cd11883 SH3_Sdc25 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,51,53,54 2 -212817 cd11884 SH3_MYO15 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,49,51,52 2 -212818 cd11885 SH3_SH3TC 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,50,52,53 2 -212819 cd11886 SH3_BOI 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,51,53,54 2 -212820 cd11887 SH3_Bbc1 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,53,55,56 2 -212821 cd11888 SH3_ARHGAP9_like 1 peptide ligand binding site 0 0 1 1 5,7,10,16,34,35,50,52,53 2 -212822 cd11889 SH3_Cyk3p-like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212823 cd11890 MIA 1 putative polypeptide substrate binding site 0 0 1 1 19,20,21,24,25,26,27,28,49,50,69,70,71,73,74 2 -212824 cd11891 MIAL 1 putative polypeptide substrate binding site 0 0 1 1 17,18,19,22,23,24,25,26,49,50,69,70,71,73,74 2 -212825 cd11892 SH3_MIA2 1 putative polypeptide substrate binding site 0 0 1 1 17,18,19,22,23,24,25,26,47,48,59,60,61,63,64 2 -212826 cd11893 SH3_MIA3 1 putative polypeptide substrate binding site 0 0 1 1 17,18,19,22,23,24,25,26,47,48,59,60,61,63,64 2 -212827 cd11894 SH3_FCHSD2_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,49,51,52 2 -212828 cd11895 SH3_FCHSD1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212829 cd11896 SH3_SNX33 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212830 cd11897 SH3_SNX18 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212831 cd11898 SH3_SNX9 1 peptide ligand binding site 0 0 1 1 5,7,10,15,34,35,49,51,52 2 -212832 cd11899 SH3_Nck2_1 1 peptide ligand binding site 0 1 1 1 11,14,15,17,18,34,35,36,48,50,51,52,53 2 -212833 cd11900 SH3_Nck1_1 1 peptide ligand binding site 0 0 1 1 10,13,14,16,17,33,34,35,47,49,50,51,52 2 -212834 cd11901 SH3_Nck1_2 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,48,50,51 2 -212835 cd11902 SH3_Nck2_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212836 cd11903 SH3_Nck2_3 1 Lim4 domain interface 0 1 1 1 37,51,52,54,55,56 2 -212836 cd11903 SH3_Nck2_3 2 peptide ligand binding site 0 0 1 1 6,8,11,15,35,36,50,52,53 2 -212837 cd11904 SH3_Nck1_3 1 peptide ligand binding site 0 0 1 1 6,8,11,15,35,36,50,52,53 2 -212838 cd11905 SH3_Tec 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,48,50,51 2 -212839 cd11906 SH3_BTK 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,48,50,51 2 -212840 cd11907 SH3_TXK 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,48,50,51 2 -212841 cd11908 SH3_ITK 1 SH2 domain interface 0 1 1 1 5,6,11,12,14,15,31,32,33,34,35,46,48,49,50,51,53 2 -212841 cd11908 SH3_ITK 2 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,48,50,51 2 -212842 cd11909 SH3_PI3K_p85beta 1 peptide ligand binding site 0 0 1 1 6,7,8,12,15,47,48,49,64,66,67 2 -212843 cd11910 SH3_PI3K_p85alpha 1 peptide ligand binding site 0 1 1 1 7,8,9,13,16,48,49,50,65,67,68 2 -212844 cd11911 SH3_CIP4-like 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212845 cd11912 SH3_Bzz1_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,48,50,51 2 -212846 cd11913 SH3_BAIAP2L1 1 peptide ligand binding site 0 1 1 1 5,6,8,15,16,28,29,34,35,36,38,48,49,51,52,53,54 2 -212847 cd11914 SH3_BAIAP2L2 1 peptide ligand binding site 0 0 1 1 5,6,8,15,16,28,29,34,35,36,38,48,49,51,52,53,54 2 -212848 cd11915 SH3_Irsp53 1 peptide ligand binding site 0 0 1 1 5,6,8,15,16,28,29,34,35,36,38,48,49,51,52,53,54 2 -212849 cd11916 SH3_Sorbs1_3 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,50,52,53 2 -212850 cd11917 SH3_Sorbs2_3 1 peptide ligand binding site 0 0 1 1 10,12,15,19,37,38,53,55,56 2 -212851 cd11918 SH3_Vinexin_3 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,50,52,53 2 -212852 cd11919 SH3_Sorbs1_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212853 cd11920 SH3_Sorbs2_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212854 cd11921 SH3_Vinexin_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212855 cd11922 SH3_Sorbs1_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,49,51,52 2 -212856 cd11923 SH3_Sorbs2_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,49,51,52 2 -212857 cd11924 SH3_Vinexin_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,49,51,52 2 -212858 cd11925 SH3_SH3RF3_3 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,49,51,52 2 -212859 cd11926 SH3_SH3RF1_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212860 cd11927 SH3_SH3RF1_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212861 cd11928 SH3_SH3RF3_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212862 cd11929 SH3_SH3RF2_1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212863 cd11930 SH3_SH3RF1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,18,36,37,50,52,53 2 -212864 cd11931 SH3_SH3RF3_2 1 peptide ligand binding site 0 0 1 1 5,7,10,18,36,37,50,52,53 2 -212865 cd11932 SH3_SH3RF2_2 1 peptide ligand binding site 0 0 1 1 5,7,10,20,38,39,52,54,55 2 -212866 cd11933 SH3_Nebulin_C 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,50,52,53 2 -212867 cd11934 SH3_Lasp1_C 1 peptide ligand binding site 0 0 1 1 8,10,13,17,35,36,51,53,54 2 -212868 cd11935 SH3_Nebulette_C 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,49,51,52 2 -212869 cd11936 SH3_UBASH3B 1 peptide ligand binding site 0 0 1 1 7,9,12,16,38,39,54,56,57 2 -212870 cd11937 SH3_UBASH3A 1 peptide ligand binding site 0 0 1 1 6,8,11,15,37,38,53,55,56 2 -212871 cd11938 SH3_ARHGEF16_26 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212872 cd11939 SH3_ephexin1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212873 cd11940 SH3_ARHGEF5_19 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212874 cd11941 SH3_ARHGEF37_C2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -212875 cd11942 SH3_JIP2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212875 cd11942 SH3_JIP2 2 homodimer interface 0 0 1 1 5,6,7,8,10,11,13,14,29,31,32,33,35,46,48,49,50,51 2 -212876 cd11943 SH3_JIP1 1 homodimer interface 0 1 1 0 5,6,7,8,10,11,13,14,29,31,32,33,35,46,48,49,50,51 2 -212876 cd11943 SH3_JIP1 2 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,48,50,51 2 -212877 cd11944 SH3_Endophilin_B2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212878 cd11945 SH3_Endophilin_B1 1 peptide ligand binding site 0 0 1 1 9,11,14,18,38,39,52,54,55 2 -212879 cd11946 SH3_GRB2_N 1 peptide ligand binding site 0 1 1 1 5,6,7,8,11,12,14,15,30,31,32,34,35,48,49,50,51 2 -212879 cd11946 SH3_GRB2_N 2 C-terminal SH3 interface 0 1 1 0 0,36,49,52,53,54 2 -212880 cd11947 SH3_GRAP2_N 1 peptide ligand binding site 0 0 1 1 4,5,6,7,10,11,14,31,32,45,46,47,48 2 -212881 cd11948 SH3_GRAP_N 1 peptide ligand binding site 0 0 1 1 4,5,6,7,10,11,14,33,34,47,48,49,50 2 -212882 cd11949 SH3_GRB2_C 1 peptide ligand binding site 0 1 1 1 5,7,10,11,14,30,32,33,44,46,48,49 2 -212882 cd11949 SH3_GRB2_C 2 Vav SH3 interface 0 1 1 1 5,7,8,10,11,32,33,46,48,49 2 -212882 cd11949 SH3_GRB2_C 3 N-terminal SH3 interface 0 1 1 0 24,25,26,27,28,35,42 2 -212883 cd11950 SH3_GRAP2_C 1 peptide ligand binding site 0 1 1 1 5,7,8,10,11,13,14,30,32,33,35,44,46,48,49 2 -212884 cd11951 SH3_GRAP_C 1 peptide ligand binding site 0 0 1 1 5,7,10,11,14,32,33,44,46,48,49 2 -212885 cd11952 SH3_iASPP 1 p53 binding site 0 0 1 1 8,11,12,14,15,32,33,35,36,47,49,51 2 -212886 cd11953 SH3_ASPP2 1 p53 binding site 0 1 1 1 8,11,12,14,15,31,32,33,34,36,37,48,50,52 2 -212887 cd11954 SH3_ASPP1 1 p53 binding site 0 0 1 1 8,11,12,14,15,33,34,36,37,48,50,52 2 -212888 cd11955 SH3_srGAP1-3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212889 cd11956 SH3_srGAP4 1 peptide ligand binding site 0 0 1 1 7,9,12,16,34,35,48,50,51 2 -212890 cd11957 SH3_RUSC2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212891 cd11958 SH3_RUSC1 1 peptide ligand binding site 0 0 1 1 5,7,10,13,31,32,45,47,48 2 -212892 cd11959 SH3_Cortactin 1 peptide ligand binding site 0 1 1 1 5,7,10,13,14,32,33,44,46,48,49 2 -212893 cd11960 SH3_Abp1_eu 1 peptide ligand binding site 0 0 1 1 5,7,10,13,14,32,33,45,47,49,50 2 -212894 cd11961 SH3_Abp1_fungi_C2 1 peptide ligand binding site 0 1 1 1 5,6,7,8,10,11,12,13,14,19,29,30,32,33,44,46,48,49 2 -212895 cd11962 SH3_Abp1_fungi_C1 1 peptide ligand binding site 0 0 1 1 5,7,10,13,14,32,33,45,47,49,50 2 -212896 cd11963 SH3_STAM2 1 peptide ligand binding site 0 1 1 1 7,9,12,13,15,16,34,35,48,50,51 2 -212897 cd11964 SH3_STAM1 1 peptide ligand binding site 0 0 1 1 6,8,11,12,14,15,33,34,47,49,50 2 -212898 cd11965 SH3_ASAP1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,49,51,52 2 -212899 cd11966 SH3_ASAP2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,49,51,52 2 -212900 cd11967 SH3_SASH1 1 peptide ligand binding site 0 0 1 1 6,8,11,17,35,36,49,51,52 2 -212901 cd11968 SH3_SASH3 1 peptide ligand binding site 0 0 1 1 6,8,11,17,35,36,49,51,52 2 -212902 cd11969 SH3_PLCgamma2 1 peptide ligand binding site 0 0 1 1 5,11,13,14,33,45,49,50 2 -212903 cd11970 SH3_PLCgamma1 1 peptide ligand binding site 0 1 1 1 9,15,17,18,37,49,53,54 2 -212904 cd11971 SH3_Abi1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212905 cd11972 SH3_Abi2 1 peptide ligand binding site 0 0 1 1 8,10,13,17,35,36,49,51,52 2 -212906 cd11973 SH3_ASEF 1 DH-PH interface 0 1 1 1 20,21,22,27,28,30,58,66,69,71,72 2 -212906 cd11973 SH3_ASEF 2 APC binding site 0 1 0 1 0,1,2,3,4,5,6,7,8,9,10,12,13,45,48,49,62,72 2 -212906 cd11973 SH3_ASEF 3 peptide ligand binding site 0 0 1 1 23,25,28,32,50,51,64,66,67 2 -212907 cd11974 SH3_ASEF2 1 putative DH-PH interface 0 0 1 1 3,4,5,10,11,13,49 2 -212907 cd11974 SH3_ASEF2 2 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212908 cd11975 SH3_ARHGEF9 1 putative DH-PH interface 0 0 1 1 7,8,9,14,15,17,53 2 -212908 cd11975 SH3_ARHGEF9 2 peptide ligand binding site 0 0 1 1 10,12,15,19,37,38,51,53,54 2 -212909 cd11976 SH3_VAV1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212910 cd11977 SH3_VAV2_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,35,36,49,51,52 2 -212911 cd11978 SH3_VAV3_2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,48,50,51 2 -212912 cd11979 SH3_VAV1_1 1 peptide ligand binding site 0 0 1 1 5,7,10,20,39,40,55,57,58 2 -212913 cd11980 SH3_VAV2_1 1 peptide ligand binding site 0 0 1 1 5,7,10,18,37,38,53,55,56 2 -212914 cd11981 SH3_VAV3_1 1 peptide ligand binding site 0 0 1 1 5,7,10,20,39,40,55,57,58 2 -212915 cd11982 SH3_Shank1 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212916 cd11983 SH3_Shank2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212917 cd11984 SH3_Shank3 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212918 cd11985 SH3_Stac2_C 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212919 cd11986 SH3_Stac3_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,46,48,49 2 -212920 cd11987 SH3_Intersectin1_1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212921 cd11988 SH3_Intersectin2_1 1 peptide ligand binding site 0 0 1 1 7,9,12,16,36,37,50,52,53 2 -212922 cd11989 SH3_Intersectin1_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,45,47,48 2 -212923 cd11990 SH3_Intersectin2_2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,45,47,48 2 -212924 cd11991 SH3_Intersectin1_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,45,47,48 2 -212925 cd11992 SH3_Intersectin2_3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,45,47,48 2 -212926 cd11993 SH3_Intersectin1_4 1 peptide ligand binding site 0 0 1 1 9,11,14,18,36,37,55,57,58 2 -212927 cd11994 SH3_Intersectin2_4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,32,33,51,53,54 2 -212928 cd11995 SH3_Intersectin1_5 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212929 cd11996 SH3_Intersectin2_5 1 peptide ligand binding site 0 0 1 1 6,8,11,15,33,34,47,49,50 2 -212930 cd11997 SH3_PACSIN3 1 peptide ligand binding site 0 0 1 1 7,9,12,16,35,36,50,52,53 2 -212931 cd11998 SH3_PACSIN1-2 1 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,49,51,52 2 -212932 cd11999 SH3_PACSIN_like 1 peptide ligand binding site 0 0 1 1 7,9,12,16,35,36,50,52,53 2 -212933 cd12000 SH3_CASS4 1 peptide ligand binding site 0 0 1 1 6,8,11,15,36,37,50,52,53 2 -212934 cd12001 SH3_BCAR1 1 peptide ligand binding site 0 0 1 1 8,10,13,17,38,39,52,54,55 2 -212935 cd12002 SH3_NEDD9 1 peptide ligand binding site 0 0 1 1 5,7,10,14,35,36,49,51,52 2 -212936 cd12003 SH3_EFS 1 peptide ligand binding site 0 0 1 1 6,8,11,15,36,37,50,52,53 2 -212937 cd12004 SH3_Lyn 1 peptide ligand binding site 0 0 1 1 5,7,10,11,14,30,31,32,45,47,49,50 2 -212938 cd12005 SH3_Lck 1 peptide ligand binding site 0 0 1 1 5,7,10,11,14,30,31,32,45,47,49,50 2 -212939 cd12006 SH3_Fyn_Yrk 1 peptide ligand binding site 0 1 1 1 6,8,11,12,15,31,32,33,34,47,49,51,52 2 -212939 cd12006 SH3_Fyn_Yrk 2 SAP interaction site 0 1 1 1 8,11,12,13,14,15,31,34,47 2 -212940 cd12007 SH3_Yes 1 peptide ligand binding site 0 0 1 1 6,8,11,12,15,32,33,34,47,49,51,52 2 -212941 cd12008 SH3_Src 1 peptide ligand binding site 0 1 1 1 5,7,8,9,10,11,14,30,31,32,33,46,48,50,51 2 -212941 cd12008 SH3_Src 2 swapped dimer interface 0 1 1 0 0,1,2,3,4,5,6,7,10,11,13,14,15,16,17,21,22,23,24,25,26,28,30,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,51,52,53,54,55 2 -212942 cd12009 SH3_Blk 1 peptide ligand binding site 0 0 1 1 5,7,10,11,14,30,31,32,45,47,49,50 2 -212943 cd12010 SH3_SLAP 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,47,49,50 2 -212944 cd12011 SH3_SLAP2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,47,49,50 2 -212945 cd12012 SH3_RIM-BP_2 1 peptide ligand binding site 0 0 1 1 5,7,10,22,41,42,55,57,58 2 -212946 cd12013 SH3_RIM-BP_3 1 peptide ligand binding site 0 0 1 1 5,7,10,21,40,41,54,56,57 2 -212947 cd12014 SH3_RIM-BP_1 1 peptide ligand binding site 0 0 1 1 5,7,10,21,40,41,55,57,58 2 -212948 cd12015 SH3_Tks_1 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -212949 cd12016 SH3_Tks_2 1 peptide ligand binding site 0 0 1 1 6,8,14,15,32,33,34,45,47,49,50 2 -212950 cd12017 SH3_Tks_3 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -212951 cd12018 SH3_Tks4_4 1 peptide ligand binding site 0 0 1 1 5,7,12,13,30,31,32,47,49,51,52 2 -212952 cd12019 SH3_Tks5_4 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -212953 cd12020 SH3_Tks5_5 1 peptide ligand binding site 0 0 1 1 5,7,12,13,30,31,32,47,49,51,52 2 -212954 cd12021 SH3_p47phox_1 1 peptide ligand binding site 0 1 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -212955 cd12022 SH3_p47phox_2 1 peptide ligand binding site 0 1 1 1 11,13,14,31,32,33,44,46,48,49 2 -212956 cd12023 SH3_NoxO1_1 1 peptide ligand binding site 0 0 1 1 5,7,16,31,33,35,47,49,51,52 2 -212957 cd12024 SH3_NoxO1_2 1 peptide ligand binding site 0 0 1 1 11,13,14,31,32,33,44,46,48,49 2 -212958 cd12025 SH3_Obscurin_like 1 peptide ligand binding site 0 0 1 1 7,9,17,18,35,36,37,54,56,58,59 2 -212959 cd12026 SH3_ZO-1 1 peptide ligand binding site 0 0 1 1 8,10,13,17,38,39,58,60,61 2 -212959 cd12026 SH3_ZO-1 2 GuK interface 0 1 1 1 2,3,4,5,6,7,8,21,22,25,40,48,49,57,58,59,63,64 2 -212959 cd12026 SH3_ZO-1 3 PDZ interface 0 1 0 0 0,1,2,30,31,32,37,40,59 0 -212960 cd12027 SH3_ZO-2 1 peptide ligand binding site 0 0 1 1 9,11,14,18,39,40,56,58,59 2 -212961 cd12028 SH3_ZO-3 1 peptide ligand binding site 0 0 1 1 8,10,13,17,38,39,58,60,61 2 -212962 cd12029 SH3_DLG3 1 peptide ligand binding site 0 0 1 1 8,10,13,22,40,41,60,62,63 2 -212962 cd12029 SH3_DLG3 2 GuK domain interface 0 0 1 1 5,27,28 2 -212963 cd12030 SH3_DLG4 1 GuK domain interface 0 1 1 1 4,26 2 -212963 cd12030 SH3_DLG4 2 peptide ligand binding site 0 0 1 1 7,9,12,21,39,40,59,61,62 2 -212964 cd12031 SH3_DLG1 1 GuK domain interface 0 1 1 1 5,27,28,49 2 -212964 cd12031 SH3_DLG1 2 peptide ligand binding site 0 0 1 1 8,10,13,22,40,41,60,62,63 2 -212965 cd12032 SH3_DLG2 1 peptide ligand binding site 0 0 1 1 11,13,16,25,43,44,63,65,66 2 -212965 cd12032 SH3_DLG2 2 GuK domain interface 0 0 1 1 8,30,31 2 -212966 cd12033 SH3_MPP7 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -212966 cd12033 SH3_MPP7 2 GuK domain interface 0 0 1 1 2,26,27 2 -212967 cd12034 SH3_MPP4 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -212967 cd12034 SH3_MPP4 2 GuK domain interface 0 0 1 1 2,26,27 2 -212968 cd12035 SH3_MPP1-like 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -212968 cd12035 SH3_MPP1-like 2 GuK domain interface 0 0 1 1 2,26,27 2 -212969 cd12036 SH3_MPP5 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,59,61,62 2 -212969 cd12036 SH3_MPP5 2 GuK domain interface 0 0 1 1 2,26,27 2 -212970 cd12037 SH3_MPP2 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,55,57,58 2 -212970 cd12037 SH3_MPP2 2 GuK domain interface 0 0 1 1 2,26,27 2 -212971 cd12038 SH3_MPP6 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,56,58,59 2 -212971 cd12038 SH3_MPP6 2 GuK domain interface 0 0 1 1 2,26,27 2 -212972 cd12039 SH3_MPP3 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -212972 cd12039 SH3_MPP3 2 GuK domain interface 0 0 1 1 2,26,27 2 -212973 cd12040 SH3_CACNB2 1 peptide ligand binding site 0 0 1 1 11,13,16,27,45,46,62,64,65 2 -212974 cd12041 SH3_CACNB1 1 peptide ligand binding site 0 0 1 1 10,12,15,26,44,45,61,63,64 2 -212975 cd12042 SH3_CACNB3 1 peptide ligand binding site 0 0 1 1 10,12,15,26,44,45,61,63,64 2 -212976 cd12043 SH3_CACNB4 1 peptide ligand binding site 0 0 1 1 10,12,15,26,44,45,61,63,64 2 -212977 cd12044 SH3_SKAP1 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212978 cd12045 SH3_SKAP2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -212979 cd12046 SH3_p67phox_C 1 peptide ligand binding site 0 1 1 1 5,6,7,11,12,13,14,26,27,28,29,30,32,33,35,42,43,44,46,48,49 2 -212980 cd12047 SH3_Noxa1_C 1 peptide ligand binding site 0 0 1 1 5,6,7,11,12,13,14,26,27,28,29,30,32,33,35,42,43,44,46,48,49 2 -212981 cd12048 SH3_DOCK3_B 1 ELMO interaction site 0 0 1 1 2,3,4,5,6,13,18,19,20,22,26,27,31,32,34,42,44,46,48,50,51,53,55 2 -212981 cd12048 SH3_DOCK3_B 2 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,48,50,51 2 -212982 cd12049 SH3_DOCK4_B 1 ELMO interaction site 0 0 1 1 2,3,4,5,6,13,18,19,20,22,26,27,31,32,34,42,44,46,48,50,51,53,55 2 -212982 cd12049 SH3_DOCK4_B 2 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,48,50,51 2 -212983 cd12050 SH3_DOCK2_A 1 ELMO interaction site 0 1 1 1 2,3,4,5,6,13,18,19,20,22,26,27,31,32,34,42,44,46,48,50,51,53,55 2 -212983 cd12050 SH3_DOCK2_A 2 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,48,50,51 2 -212984 cd12051 SH3_DOCK1_5_A 1 ELMO interaction site 0 0 1 1 2,3,4,5,6,13,18,19,20,22,26,27,31,32,34,42,44,46,48,50,51,53,55 2 -212984 cd12051 SH3_DOCK1_5_A 2 peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,48,50,51 2 -212985 cd12052 SH3_CIN85_1 1 peptide ligand binding site 0 1 1 1 5,7,10,11,13,14,31,33,44,48,49,51 2 -212985 cd12052 SH3_CIN85_1 2 putative ubiquitin interaction site 0 0 1 1 4,5,6,7,8,9,10,14,18,19,31,32,33,43,44,46,48,49 2 -212986 cd12053 SH3_CD2AP_1 1 peptide ligand binding site 0 1 1 1 5,7,11,13,14,31,32,33,34,45,47,49,50 2 -212987 cd12054 SH3_CD2AP_2 1 peptide ligand binding site 0 1 1 1 6,8,11,12,13,14,15,30,31,32,33,34,36,43,45,47,49,50 2 -212988 cd12055 SH3_CIN85_2 1 putative peptide ligand binding site 0 0 1 1 5,7,10,14,31,32,33,44,46,48,49 2 -212988 cd12055 SH3_CIN85_2 2 putative ubiquitin interaction site 0 0 1 1 4,5,6,7,8,9,10,14,18,19,31,32,33,43,44,46,48,49 2 -212989 cd12056 SH3_CD2AP_3 1 putative peptide ligand binding site 0 0 1 1 7,9,12,16,35,36,37,48,50,52,53 2 -212989 cd12056 SH3_CD2AP_3 2 putative ubiquitin interaction site 0 0 1 1 6,7,8,9,10,11,12,13,15,16,20,21,34,35,36,37,47,48,50,52,53,55 2 -212990 cd12057 SH3_CIN85_3 1 ubiquitin interaction site 0 1 1 1 4,5,6,7,8,9,10,11,13,14,18,19,32,33,34,35,45,46,48,50,51,53 2 -212990 cd12057 SH3_CIN85_3 2 putative peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,35,46,48,50,51 2 -212991 cd12058 SH3_MLK4 1 peptide ligand binding site 0 0 1 1 5,7,10,14,37,38,51,53,54 2 -212992 cd12059 SH3_MLK1-3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,37,38,51,53,54 2 -212993 cd12060 SH3_alphaPIX 1 peptide ligand binding site 0 0 1 1 7,9,12,15,16,31,33,34,35,46,48,50,51 2 -212994 cd12061 SH3_betaPIX 1 peptide ligand binding site 0 1 1 1 5,7,10,13,14,29,31,32,33,44,46,48,49 2 -212995 cd12062 SH3_Caskin1 1 peptide ligand binding site 0 0 1 1 6,8,11,16,34,35,54,56,57 2 -212996 cd12063 SH3_Caskin2 1 peptide ligand binding site 0 0 1 1 6,8,11,16,34,35,54,56,57 2 -212997 cd12064 SH3_GRAF 1 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,48,50,51 2 -212998 cd12065 SH3_GRAF2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -212999 cd12066 SH3_GRAF3 1 peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,47,49,50 2 -213000 cd12067 SH3_MYO15A 1 peptide ligand binding site 0 0 1 1 5,7,10,14,59,60,73,75,76 2 -213001 cd12068 SH3_MYO15B 1 peptide ligand binding site 0 0 1 1 5,7,10,14,34,35,48,50,51 2 -213002 cd12069 SH3_ARHGAP27 1 peptide ligand binding site 0 0 1 1 5,7,10,16,34,35,50,52,53 2 -213003 cd12070 SH3_ARHGAP12 1 peptide ligand binding site 0 0 1 1 6,8,11,16,34,35,50,52,53 2 -213004 cd12071 SH3_FBP17 1 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,49,51,52 2 -213005 cd12072 SH3_FNBP1L 1 peptide ligand binding site 0 0 1 1 6,8,11,15,34,35,49,51,52 2 -213006 cd12073 SH3_HS1 1 peptide ligand binding site 0 0 1 1 6,8,11,14,15,33,34,45,47,49,50 2 -213007 cd12074 SH3_Tks5_1 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -213008 cd12075 SH3_Tks4_1 1 peptide ligand binding site 0 0 1 1 6,8,14,15,32,33,34,45,47,49,50 2 -213009 cd12076 SH3_Tks4_2 1 peptide ligand binding site 0 0 1 1 6,8,14,15,32,33,34,45,47,49,50 2 -213010 cd12077 SH3_Tks5_2 1 peptide ligand binding site 0 0 1 1 6,8,14,15,32,33,34,45,47,49,50 2 -213011 cd12078 SH3_Tks4_3 1 peptide ligand binding site 0 0 1 1 5,7,13,14,31,32,33,44,46,48,49 2 -213012 cd12079 SH3_Tks5_3 1 peptide ligand binding site 0 0 1 1 6,8,14,15,32,33,34,45,47,49,50 2 -213013 cd12080 SH3_MPP1 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -213013 cd12080 SH3_MPP1 2 GuK domain interface 0 0 1 1 2,26,27 2 -213014 cd12081 SH3_CASK 1 peptide ligand binding site 0 0 1 1 5,7,10,21,39,40,57,59,60 2 -213014 cd12081 SH3_CASK 2 GuK domain interface 0 0 1 1 2,26,27 2 -213373 cd12083 DD_cGKI 1 homodimer interface 0 1 1 0 0,2,3,6,9,10,13,14,17,20,21,24,27,28,31,34,35,38,39,41,42,46 2 -213373 cd12083 DD_cGKI 2 putative GKAP docking site 0 0 1 1 18,19,21,23 2 -213043 cd12084 DD_R_PKA 1 dimer interface 0 1 1 1 2,5,6,9,10,13,14,17,18,20,21,22,23,25,26,29,30,33 2 -213043 cd12084 DD_R_PKA 2 AKAP interaction site 0 1 1 1 2,3,6,7,10,11,14,15 2 -213374 cd12085 DD_cGKI-alpha 1 homodimer interface 0 1 1 1 0,2,3,6,9,10,13,14,17,20,21,24,27,28,31,34,35,38,39,41,42,46 2 -213374 cd12085 DD_cGKI-alpha 2 putative GKAP docking site 0 0 1 1 18,19,21,23 2 -213375 cd12086 DD_cGKI-beta 1 homodimer interface 0 1 1 0 0,3,4,6,7,10,13,14,17,18,21,24,25,27,28,31,32,34,35,38,39,41,42,45,46 2 -213375 cd12086 DD_cGKI-beta 2 putative GKAP docking site 0 0 1 1 22,23,25,27 2 -213052 cd12087 TM_EGFR-like 1 dimer interface 0 1 1 1 2,5,6,9,10,12,13,14,16,17,20 2 -277188 cd12089 Hef_ID 1 helicase domain interface 0 1 1 1 3,74,75,76,79 2 -277189 cd12090 MDA5_ID 1 RNA binding site 0 1 1 0 35,36,39,43 3 -277189 cd12090 MDA5_ID 2 RD interface 0 1 1 1 43,46,47,50,51,54 2 -277189 cd12090 MDA5_ID 3 helicase domain interface 0 1 1 1 35,36,39,43 2 -277190 cd12091 FANCM_ID 1 putative helicase domain interface 0 0 1 1 74,76,77,78,79,86 2 -213053 cd12092 TM_ErbB4 1 homodimer interface 0 1 0 1 0,1,3,4,5,6,9,10,13,14,17,18,21,22,25,29 2 -213054 cd12093 TM_ErbB1 1 heterodimer interface 0 1 1 1 10,11,12,14,15,16,17,18,19,22,23 2 -213055 cd12094 TM_ErbB2 1 heterodimer interface 0 1 1 1 2,3,5,8,11,14,15,16,18,19,22,23,26 2 -213055 cd12094 TM_ErbB2 2 homodimer interface 0 1 1 1 3,4,5,6,8,9,10,11,14,15,16,18,19,20,22,23,26,30 2 -213056 cd12095 TM_ErbB3 1 homodimer interface 0 1 0 1 3,7,10,11,14,15,17,18,21,25,26,29 2 -213044 cd12097 DD_RI_PKA 1 dimer interface 0 1 1 1 0,3,9,12,13,17,20,21,25,27,28,29,30,32,33,36,37,40 2 -213044 cd12097 DD_RI_PKA 2 AKAP interaction site 0 1 1 1 0,1,10,11,13,14,17,18 2 -213045 cd12098 DD_R_PKA_fungi 1 putative dimer interface 0 0 1 1 2,5,6,9,10,13,14,17,18,20,21,22,23,25,26,29,31,34 2 -213045 cd12098 DD_R_PKA_fungi 2 putative AKAP interaction site 0 0 1 1 2,3,6,7,10,11,14,15 2 -213046 cd12099 DD_RII_PKA 1 dimer interface 0 1 1 1 0,1,2,4,7,8,11,12,15,16,19,22,23,24,25,27,28,31,32,34,35 2 -213046 cd12099 DD_RII_PKA 2 AKAP interaction site 0 1 1 1 0,4,5,8,9,12,13,16,17 2 -213047 cd12100 DD_CABYR_SP17 1 putative dimer interface 0 0 1 1 4,7,8,11,12,15,16,19,20,22,23,24,25,27,28,31,32,35 2 -213047 cd12100 DD_CABYR_SP17 2 putative AKAP interaction site 0 0 1 1 4,5,8,9,12,13,16,17 2 -213048 cd12101 DD_RIalpha_PKA 1 dimer interface 0 1 1 1 4,7,8,13,16,17,20,21,24,25,29,31,32,33,34,36,37,40,41,44 2 -213048 cd12101 DD_RIalpha_PKA 2 AKAP interaction site 0 1 1 1 1,4,5,14,15,17,18,21,22 2 -213049 cd12102 DD_RIbeta_PKA 1 dimer interface 0 1 0 1 6,7,10,14,16,19,20,24,27,28,31,32,33,34,35,36,37,39,40,43,44,46,47,50,51 2 -213049 cd12102 DD_RIbeta_PKA 2 AKAP interaction site 0 0 1 1 7,8,17,18,20,21,24,25 2 -213050 cd12103 DD_RIIalpha_PKA 1 dimer interface 0 1 1 1 0,1,2,3,4,6,9,10,13,14,17,18,21,24,25,26,27,29,30,33,34,36,37 2 -213050 cd12103 DD_RIIalpha_PKA 2 AKAP interaction site 0 1 1 1 2,6,7,10,11,14,15,18,19 2 -213051 cd12104 DD_RIIbeta_PKA 1 dimer interface 0 0 1 1 2,3,4,6,9,10,13,14,17,18,21,24,25,26,27,29,30,33,34,36,37 2 -213051 cd12104 DD_RIIbeta_PKA 2 AKAP interaction site 0 0 1 1 2,6,7,10,11,14,15,18,19 2 -213982 cd12107 Hemerythrin 1 Fe binding site HHEHHHD 1 1 0 6,43,47,62,66,102,107 4 -213983 cd12108 Hr-like 1 Fe binding site HHXE[EH]HE 1 1 0 6,48,49,52,77,119,123 4 -213984 cd12109 Hr_FBXL5 1 Fe binding site HHXEHHE 1 1 0 8,50,51,54,77,123,127 4 -213994 cd12110 PHP_HisPPase_Hisj_like 1 active site 0 1 1 1 3,5,11,36,81,109,156,227,229 1 -213994 cd12110 PHP_HisPPase_Hisj_like 2 dimer interface 0 1 1 1 6,7,8,10,11,12,13,15,16,57,58,61,62,64,65,66,68 2 -213995 cd12111 PHP_HisPPase_Thermotoga_like 1 active site 0 1 1 1 6,8,13,38,89,98,185,187 1 -213995 cd12111 PHP_HisPPase_Thermotoga_like 2 dimer interface 0 1 1 1 180 2 -213996 cd12112 PHP_HisPPase_Chlorobi_like 1 active site 0 1 1 1 17,19,24,49,87,96,131,188,190 1 -213996 cd12112 PHP_HisPPase_Chlorobi_like 2 dimer interface 0 1 1 1 21,26,27,28,30,31,55,58,59,66,192,194,195 2 -213997 cd12113 PHP_PolIIIA_DnaE3 1 active site 0 1 1 1 5,7,14,39,64,204,206 1 -213997 cd12113 PHP_PolIIIA_DnaE3 2 metal binding site 0 1 1 1 140,160 4 -213997 cd12113 PHP_PolIIIA_DnaE3 3 PHP Thumb interface 0 1 1 1 57,58,59 2 -341279 cd12114 A_NRPS_TlmIV_like 1 AMP binding site 0 0 1 1 133,134,251,252,273,274,275,276,277,278,301,364,376,379,470 5 -341279 cd12114 A_NRPS_TlmIV_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 130,133,134,135,136,137,138,140,141 0 -341280 cd12115 A_NRPS_Sfm_like 1 AMP binding site 0 0 1 1 112,113,221,222,243,244,245,246,247,248,269,334,346,349,440 5 -341280 cd12115 A_NRPS_Sfm_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 109,112,113,114,115,116,117,119,120 0 -341281 cd12116 A_NRPS_Ta1_like 1 AMP binding site 0 0 1 1 133,134,247,248,267,268,269,270,271,272,292,358,370,373,463 5 -341281 cd12116 A_NRPS_Ta1_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 130,133,134,135,136,137,138,140,141 0 -341282 cd12117 A_NRPS_Srf_like 1 AMP binding site 0 1 1 1 151,186,257,258,259,279,280,281,282,283,284,285,307,372,384,387 5 -341282 cd12117 A_NRPS_Srf_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 140,143,144,145,146,147,148,150,151 0 -341283 cd12118 ttLC_FACS_AEE21_like 1 AMP binding site 0 0 1 1 140,255,256,257,275,276,277,278,279,280,372,387,389,393,398 5 -341283 cd12118 ttLC_FACS_AEE21_like 2 putative active site 0 0 1 1 140,180,181,227,229,230,233,254,255,275,276,277,278,279,280,372,384,387,395,396,397,398,459 1 -341283 cd12118 ttLC_FACS_AEE21_like 3 putative CoA binding site 0 0 1 1 180,229,230,233,254,395,396,397,453,459 5 -341283 cd12118 ttLC_FACS_AEE21_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 137,140,141,142,143,144,145,147,148 0 -341284 cd12119 ttLC_FACS_AlkK_like 1 AMP binding site 0 1 1 0 170,288,289,290,308,309,310,311,312,313,403,418,420,424,429 5 -341284 cd12119 ttLC_FACS_AlkK_like 2 dimer interface 0 1 1 0 2,3,7,8,11,51,75,161,162,164,167,180,181,182,183,185,186,189,192,228,229,316,346,347,348,351,374,375,376,377,378,379,380,381,382,383,384,397,399,411 2 -341284 cd12119 ttLC_FACS_AlkK_like 3 putative active site 0 0 1 1 170,212,213,260,262,263,266,287,288,308,309,310,311,312,313,403,415,418,426,427,428,429,490 1 -341284 cd12119 ttLC_FACS_AlkK_like 4 putative CoA binding site 0 0 1 1 212,262,263,266,287,426,427,428,484,490 5 -341284 cd12119 ttLC_FACS_AlkK_like 5 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 167,170,171,172,173,174,175,177,178 0 -213377 cd12121 MARK_C_like 1 putative phospholipid binding site 0 0 1 1 0,3,73,75,76 5 -213378 cd12122 AMPKA_C 1 beta subunit interface 0 1 1 1 1,2,3,4,5,6,13,14,18,21,22,25,29,30,31,33,34,35,36,37,40,41,42,74,78,79,80,81,82,87,88,90,91,92,93,115,117,118,120,121,122,124,125,128,129 2 -213378 cd12122 AMPKA_C 2 gamma subunit interface 0 1 1 1 45,47,115,116,118,119,122 2 -271279 cd12124 Pgbs 1 heme binding site 0 1 1 1 65,68,69,80,84,87,88,91,107,111,114,115,120,121,132,136,137,140,141,144,177,180 5 -271279 cd12124 Pgbs 2 homodimer interface 0 1 1 0 19,22,23,25,26,27,28,58,62,64,116,117,131,133,134,135,136,138,139,141,142,143,145,166,167,170,171,174,178,183,184 2 -271279 cd12124 Pgbs 3 apolar tunnel 1 0 0 1 1 51,54,55,58,92,140,143,144,147,148 0 -271279 cd12124 Pgbs 4 apolar tunnel 2 0 0 1 1 56,59,60,69,81 0 -271280 cd12125 APC_alpha 1 chromophore binding site 0 1 1 1 56,63,69,70,75,78,79,81,82,83,85,86,105,106,113,114,117,120,123,124 5 -271280 cd12125 APC_alpha 2 heterodimer interface 0 1 1 1 0,2,3,6,7,9,10,13,14,15,16,21,24,25,27,28,31,32,34,35,39,42,45,84,87,88,92,95,96,105 2 -271280 cd12125 APC_alpha 3 hexamer interface 0 1 1 1 75,78,85,88,105,106,107,108,109,110,112,113,116,117 2 -271280 cd12125 APC_alpha 4 linker polypeptide interface 0 1 1 0 10,13 2 -271281 cd12126 APC_beta 1 chromophore binding site 0 1 1 1 59,65,71,72,76,77,80,81,83,84,85,87,88,91,107,108,112,116,119,121,122,125,126 5 -271281 cd12126 APC_beta 2 heterodimer interface 0 1 1 1 0,2,4,5,8,11,12,15,16,17,18,23,26,27,29,30,33,34,37,41,44,47,89,90,91,93,94,97,98,103,107 2 -271281 cd12126 APC_beta 3 hexamer interface 0 1 1 1 12,13,14,15,52,60,62,68,69,73,74,75,76,78,79,82 2 -271281 cd12126 APC_beta 4 linker polypeptide interface 0 1 1 0 76,79,80,83,87,91,106,107,108,110,111,112,114,115,118 2 -271282 cd12127 PE-PC-PEC_beta 1 chromophore binding site 1 0 1 1 1 58,65,71,72,76,77,80,81,83,84,87,107,112,115,116,119,121,122,125,126 5 -271282 cd12127 PE-PC-PEC_beta 2 chromophore binding site 2 0 1 1 1 34,35,37,38,39,141,142,143,150,152 5 -271282 cd12127 PE-PC-PEC_beta 3 heterodimer interface 0 1 1 1 4,8,15,16,17,18,20,23,27,37,41,44,86,90,91,93,94,97,107 2 -271283 cd12128 PBP_PBS-LCM 1 putative chromophore binding site 0 0 1 1 59,60,73,86,89,90,92,93,94,96,97,116,117,123,124,127,129,132,133 5 -271283 cd12128 PBP_PBS-LCM 2 putative heterodimer interface 0 0 1 1 1,2,5,6,8,9,13,14,15,20,23,24,26,27,37,40,48,95,98,99,100,102,103,106,107,116 2 -271284 cd12129 PE-PC-PEC_alpha 1 chromophore binding site 0 1 1 1 58,64,72,73,78,81,82,84,85,88,89,108,109,116,120,122,126,127 5 -271284 cd12129 PE-PC-PEC_alpha 2 heterodimer interface 0 1 1 1 1,3,4,7,8,10,11,14,15,16,17,22,25,26,29,32,36,39,40,43,46,87,90,91,94,95,98,99,108 2 -271285 cd12130 Apl 1 chromophore binding site 0 0 1 1 51,52,58,70,73,74,76,77,78,80,81,100,101,108,109,112,115,118,119 5 -271285 cd12130 Apl 2 putative heterodimer interface 0 0 1 1 1,2,5,6,8,9,12,13,14,19,22,23,25,26,34,37,40,79,82,83,84,86,87,90,91,100 2 -271286 cd12131 HGbI_like 1 heme binding site 0 1 1 0 36,37,38,45,48,49,52,73,76,77,80,82,86,87,90,118,121,125 5 -271286 cd12131 HGbI_like 2 homodimer interface 0 1 1 0 16,17,20,21,24,25,27,28,34,35,37,41,42,43,100,101 2 -271287 cd12137 GbX 1 heme binding site 0 0 1 1 40,41,61,64,65,68,89,92,93,98,102,103,106 5 -213015 cd12139 SH3_Bin1 1 peptide ligand binding site 0 1 1 1 11,12,13,14,15,16,17,36,38,39,40,41,64,66,67 2 -213016 cd12140 SH3_Amphiphysin_I 1 peptide ligand binding site 0 0 1 1 11,12,13,14,15,16,17,36,38,39,40,41,64,66,67 2 -213017 cd12141 SH3_DNMBP_C2 1 peptide ligand binding site 0 0 1 1 5,7,10,14,36,37,50,52,53 2 -213018 cd12142 SH3_D21-like 1 putative ubiquitin interaction site 0 0 1 1 4,5,6,7,8,9,10,11,13,14,18,19,32,33,34,35,45,46,48,50,51,53 2 -213018 cd12142 SH3_D21-like 2 putative peptide ligand binding site 0 0 1 1 5,7,10,14,33,34,35,46,48,50,51 2 -213019 cd12143 SH3_ARHGAP9 1 peptide ligand binding site 0 0 1 1 5,7,10,16,34,35,53,55,56 2 -213387 cd12144 SDH_N_domain 1 homodimer interface 0 1 0 0 9,10,11,12,28,37,38 2 -213388 cd12145 Rev1_C 1 Polymerase eta interaction site 0 1 1 0 1,2,3,4,5,6,14,15,18,22,24,25,26,28,29,32,33 2 -213389 cd12146 STING_C 1 cyclic di-GMP binding site 0 1 1 0 7,8,11,12,80,82,103,106,107,110 5 -213389 cd12146 STING_C 2 homodimer interface 0 1 1 0 0,2,3,4,6,7,9,10,14,110,113,114,144,145 2 -213390 cd12147 Cep3_C 1 homodimer interface 0 0 1 1 33,34,35,36,37,84,103,104,105,109,168,171,172,174,175,176,177,178,180,181,182,185,201,202,205,206,208,209,212,215,216,217,218,231,232,235,236,238,239,256,257,259,260 2 -213392 cd12149 Flavi_E_C 1 homodimer interface 0 1 1 0 5,6,8,9,16,17,62 2 -213392 cd12149 Flavi_E_C 2 low pH trimer interface 0 1 1 0 13,29,46,47,48,66 2 -213392 cd12149 Flavi_E_C 3 low pH domain interface 0 1 1 0 12,29,48,49,50,51,53 2 -213393 cd12150 talin-RS 1 FERM domain interface 0 1 1 0 15,22,23,26,29,30,109,110,113,116,117,147,154 2 -213394 cd12151 F1-ATPase_gamma 1 core domain interface 0 1 1 1 3,8,14,18,21,22,24,25,28,29,83,85,86,87,88,116,117,120,121,124,247,250,251,254,260,263,264,266,267,270,271,274,276,277,278,279,280,281 2 -213394 cd12151 F1-ATPase_gamma 2 delta subunit interface 0 1 1 0 39,40,42,43,46,49,50,212,215,216,219 2 -213394 cd12151 F1-ATPase_gamma 3 epsilon subunit interface 0 1 1 1 119,130,131,132,133,134,135,215,218,219 2 -213395 cd12152 F1-ATPase_delta 1 epsilon subunit interface 0 1 1 0 8,24,40,41,43,59,61,62,63,77,78,80,83,84,86,93,111,112,114,115,118,120 2 -213395 cd12152 F1-ATPase_delta 2 gamma subunit interface 0 1 1 0 3,6,7,8,10,13,35,36,37,38,39,62,63,64,65,66,67,73,75,76,77 2 -213395 cd12152 F1-ATPase_delta 3 LBP interface 0 1 1 1 18,20,26,27,29,31,33,34,35,49 2 -213396 cd12153 F1-ATPase_epsilon 1 gamma subunit interface 0 1 1 0 1,2,6,7,8,9,12,13,17,34,35,36,37,38,39,40,41,42,43,44 2 -213396 cd12153 F1-ATPase_epsilon 2 delta subunit interface 0 1 1 0 8,11,12,13,14,15,16,21,22,23,24,27,34 2 -240631 cd12154 FDH_GDH_like 1 NAD binding site 0 1 1 1 166,167,168,170,188,189,190,222,223,251 5 -240632 cd12155 PGDH_1 1 NAD binding site 0 0 1 1 68,92,96,141,142,143,144,145,163,164,165,195,196,197,202,223,224,225,249,250,273,275,276 5 -240632 cd12155 PGDH_1 2 catalytic site R[QE]H 0 1 1 225,254,273 1 -240632 cd12155 PGDH_1 3 putative ligand binding site 0 0 1 1 46,67,68,69,92,225,273 5 -240633 cd12156 HPPR 1 NAD binding site 0 1 1 1 72,73,100,147,148,149,150,151,169,170,171,172,198,199,200,205,226,227,228,252,275,277,278 5 -240633 cd12156 HPPR 2 catalytic site R[QE]H 0 1 1 228,257,275 1 -240633 cd12156 HPPR 3 putative ligand binding site 0 0 1 1 49,71,72,73,96,228,275 5 -240634 cd12157 PTDH 1 NAD binding site 0 1 1 1 74,75,98,102,149,150,152,153,154,172,173,174,175,205,206,207,212,215,233,234,235,259,260,291,293,294 5 -240634 cd12157 PTDH 2 ligand binding site 0 1 1 0 51,73,74,75,98,235,291 5 -240634 cd12157 PTDH 3 homodimer interface 0 1 1 0 7,50,51,52,100,101,104,105,107,108,111,115,117,118,120,121,124,125,129,130,131,132,137,138,140,141,142,160,161,164,165,261,263,264,266,286,287,288,289,290,291,292,293,295,296,297,300 2 -240634 cd12157 PTDH 4 catalytic site R[QE]H 0 1 1 235,264,291 1 -240635 cd12158 ErythrP_dh 1 NAD binding site 0 1 1 1 89,93,120,121,122,123,124,125,143,144,145,146,172,173,174,181,183,204,205,206,230,231,252,254,255 5 -240635 cd12158 ErythrP_dh 2 ligand binding site 0 1 1 1 89,206,252,256,338 5 -240635 cd12158 ErythrP_dh 3 homodimer interface 0 1 1 1 291,292,293,294,295,296,297,298,299,301,302,303,306,309,313,316,318,319,322,326 2 -240635 cd12158 ErythrP_dh 4 catalytic site R[QE]H 0 1 1 206,235,252 1 -240636 cd12159 2-Hacid_dh_2 1 catalytic site R[QE]H 0 1 1 215,244,263 1 -240636 cd12159 2-Hacid_dh_2 2 putative NAD binding site 0 0 1 1 57,82,86,131,132,133,134,135,153,154,155,185,186,187,192,213,214,215,239,240,263,265,266 5 -240636 cd12159 2-Hacid_dh_2 3 putative ligand binding site 0 0 1 1 35,56,57,58,82,215,263 5 -240637 cd12160 2-Hacid_dh_3 1 catalytic site R[QE]H 0 1 1 232,261,280 1 -240637 cd12160 2-Hacid_dh_3 2 putative NAD binding site 0 0 1 1 67,90,94,149,150,151,152,153,171,172,173,202,203,204,209,230,231,232,256,257,280,282,283 5 -240637 cd12160 2-Hacid_dh_3 3 putative ligand binding site 0 0 1 1 43,66,67,68,90,232,280 5 -240638 cd12161 GDH_like_1 1 catalytic site R[QED]H 0 1 1 233,262,282 1 -240638 cd12161 GDH_like_1 2 putative NAD binding site 0 0 1 1 77,101,105,150,151,152,153,154,172,173,174,203,204,205,210,231,232,233,257,258,282,284,285 5 -240638 cd12161 GDH_like_1 3 putative ligand binding site 0 0 1 1 55,76,77,78,101,233,282 5 -240639 cd12162 2-Hacid_dh_4 1 catalytic site R[QE]H 0 1 1 233,262,282 1 -240639 cd12162 2-Hacid_dh_4 2 putative NAD binding site 0 0 1 1 73,97,101,153,154,155,156,157,175,176,177,203,204,205,210,231,232,233,257,258,282,284,285 5 -240639 cd12162 2-Hacid_dh_4 3 putative ligand binding site 0 0 1 1 51,72,73,74,97,233,282 5 -240640 cd12163 2-Hacid_dh_5 1 catalytic site R[QE]H 0 1 1 247,276,295 1 -240640 cd12163 2-Hacid_dh_5 2 putative NAD binding site 0 0 1 1 62,87,91,139,140,141,142,143,161,162,163,216,217,218,223,245,246,247,271,272,295,297,298 5 -240640 cd12163 2-Hacid_dh_5 3 putative ligand binding site 0 0 1 1 40,61,62,63,87,247,295 5 -240641 cd12164 GDH_like_2 1 NAD binding site 0 1 1 1 66,67,84,90,94,138,139,140,141,142,160,161,162,163,165,192,193,194,198,199,220,221,222,246,247,270,272,273,305 5 -240641 cd12164 GDH_like_2 2 dimerization interface 0 1 0 0 93,95,96,97,99,100,103,104,107,109,112,113,115,116,120,121,123,126,129,153,244,248,251,252,253,255,259,260,262,265,267,268,269,271,272,276 2 -240641 cd12164 GDH_like_2 3 catalytic site R[QE]H 0 1 1 222,251,270 1 -240641 cd12164 GDH_like_2 4 putative ligand binding site 0 0 1 1 46,65,66,67,90,222,270 5 -240642 cd12165 2-Hacid_dh_6 1 NAD binding site 0 1 1 1 68,69,88,90,144,145,146,147,166,167,168,199,201,204,225,227,251,252,283 5 -240642 cd12165 2-Hacid_dh_6 2 dimer interface 0 1 0 0 92,96,97,100,101,103,107,109,110,113,116,117,134,135,154,158,257,258,268,271,277,278,279,280,281,282,285,286,287,288,289 2 -240642 cd12165 2-Hacid_dh_6 3 putative ligand binding site 0 0 1 1 47,67,68,69,90,227,281 5 -240642 cd12165 2-Hacid_dh_6 4 putative catalytic site R[QE]H 0 1 1 227,256,281 1 -240643 cd12166 2-Hacid_dh_7 1 catalytic site R[QE]H 0 1 1 219,247,266 1 -240643 cd12166 2-Hacid_dh_7 2 putative NAD binding site 0 0 1 1 68,90,94,138,139,140,141,142,160,161,162,189,190,191,196,217,218,219,242,243,266,268,269 5 -240643 cd12166 2-Hacid_dh_7 3 putative ligand binding site 0 0 1 1 44,67,68,69,90,219,266 5 -240644 cd12167 2-Hacid_dh_8 1 catalytic site R[QED]H 0 1 1 240,268,287 1 -240644 cd12167 2-Hacid_dh_8 2 putative NAD binding site 0 0 1 1 80,104,108,156,157,158,159,160,178,179,180,210,211,212,217,238,239,240,263,264,287,289,290 5 -240644 cd12167 2-Hacid_dh_8 3 putative ligand binding site 0 0 1 1 56,79,80,81,104,240,287 5 -240645 cd12168 Mand_dh_like 1 NAD binding site 0 1 1 1 112,161,162,163,164,183,184,215,216,217,218,219,222,243,244,245,269,292,294,295 5 -240645 cd12168 Mand_dh_like 2 catalytic site R[QE]H 0 1 1 245,274,292 1 -240645 cd12168 Mand_dh_like 3 putative ligand binding site 0 0 1 1 55,83,84,85,108,245,292 5 -240645 cd12168 Mand_dh_like 4 dimerization interface 0 1 0 0 110,111,114,118,121,122,125,127,128,137,139,142,143,146,149,150,151,152,154,170,171,174,175,271,274,275,276,282,284,287,288,289,290,291,292,293,294,297,298,299,301 2 -240646 cd12169 PGDH_like_1 1 ligand binding site 0 1 1 0 152,203,204,205,232,233,284 5 -240646 cd12169 PGDH_like_1 2 NAD binding site 0 0 1 1 77,100,104,148,149,150,151,152,170,171,172,203,204,205,210,231,232,233,257,258,281,283,284 5 -240646 cd12169 PGDH_like_1 3 catalytic site R[QE]H 0 1 1 233,262,281 1 -240646 cd12169 PGDH_like_1 4 dimerization interface 0 1 0 0 7,8,10,14,55,103,106,107,109,110,113,119,122,123,126,127,128,131,132,133,135,136,137,138,139,140,142,159,162,163,262,263,264,265,278,279,280,281,282,283,285,287,288 2 -240647 cd12170 2-Hacid_dh_9 1 putative NAD binding site 0 0 1 1 76,104,108,144,145,146,147,148,166,167,168,197,198,199,202,222,223,224,251,252,269,271,272 5 -240647 cd12170 2-Hacid_dh_9 2 putative ligand binding site 0 0 1 1 53,75,76,77,104,224,269 5 -240648 cd12171 2-Hacid_dh_10 1 catalytic site R[QE]H 0 1 1 237,266,285 1 -240648 cd12171 2-Hacid_dh_10 2 putative NAD binding site 0 0 1 1 75,99,103,153,154,155,156,157,175,176,177,207,208,209,214,235,236,237,261,262,285,287,288 5 -240648 cd12171 2-Hacid_dh_10 3 putative ligand binding site 0 0 1 1 53,74,75,76,99,237,285 5 -240649 cd12172 PGDH_like_2 1 catalytic site R[QE]H 0 1 1 232,261,280 1 -240649 cd12172 PGDH_like_2 2 putative NAD binding site 0 0 1 1 76,100,104,148,149,150,151,152,170,171,172,202,203,204,209,230,231,232,256,257,280,282,283 5 -240649 cd12172 PGDH_like_2 3 putative ligand binding site 0 0 1 1 54,75,76,77,100,232,280 5 -240650 cd12173 PGDH_4 1 NAD binding site 0 1 1 1 70,94,98,144,146,147,148,166,167,168,169,198,199,200,205,226,227,228,252,253,276,278,279 5 -240650 cd12173 PGDH_4 2 ligand binding site 0 1 1 0 46,47,67,69,70,94,228,276,279,285 5 -240650 cd12173 PGDH_4 3 catalytic site R[QE]H 0 1 1 228,257,276 1 -240650 cd12173 PGDH_4 4 dimerization interface 0 1 1 0 96,97,100,101,103,104,107,108,111,113,114,116,117,120,121,123,124,125,127,130,131,132,133,134,135,136,138,155,158,159,254,257,258,259,265,266,267,268,269,271,272,273,274,275,276,277,278,280,281,282,283,287 2 -240651 cd12174 PGDH_like_3 1 putative NAD binding site 0 0 1 1 58,82,86,141,142,143,144,145,163,164,165,198,199,200,205,226,227,228,251,252,270,272,273 5 -240651 cd12174 PGDH_like_3 2 putative ligand binding site 0 0 1 1 38,57,58,59,82,228,270 5 -240651 cd12174 PGDH_like_3 3 putative catalytic site R[EQD]H 0 1 1 228,255,270 1 -240652 cd12175 2-Hacid_dh_11 1 catalytic site R[QE]H 0 1 1 233,262,281 1 -240652 cd12175 2-Hacid_dh_11 2 putative NAD binding site 0 0 1 1 73,97,101,148,149,150,151,152,170,171,172,203,204,205,210,231,232,233,257,258,281,283,284 5 -240652 cd12175 2-Hacid_dh_11 3 putative ligand binding site 0 0 1 1 50,72,73,74,97,233,281 5 -240653 cd12176 PGDH_3 1 NAD binding site 0 1 1 1 72,94,96,100,146,147,148,149,150,168,169,170,173,198,199,200,204,205,208,226,227,228,252,280,282,283 5 -240653 cd12176 PGDH_3 2 ligand binding site 0 1 1 0 48,49,71,72,73,96 5 -240653 cd12176 PGDH_3 3 catalytic site R[QE]H 0 1 1 228,257,280 1 -240653 cd12176 PGDH_3 4 tetramer interface 0 1 1 0 98,99,102,103,105,106,107,109,110,113,115,118,119,122,123,125,127,128,129,130,131,132,133,134,135,136,137,138,140,160,161,254,257,258,261,264,265,269,270,272,275,276,277,278,279,280,281,282,284,285,286,287,289 2 -240654 cd12177 2-Hacid_dh_12 1 catalytic site R[QE]H 0 1 1 238,267,286 1 -240654 cd12177 2-Hacid_dh_12 2 putative NAD binding site 0 0 1 1 77,102,106,153,154,155,156,157,176,177,178,208,209,210,215,236,237,238,262,263,286,288,289 5 -240654 cd12177 2-Hacid_dh_12 3 putative ligand binding site 0 0 1 1 54,76,77,78,102,238,286 5 -240655 cd12178 2-Hacid_dh_13 1 catalytic site R[QE]H 0 1 1 235,264,282 1 -240655 cd12178 2-Hacid_dh_13 2 putative NAD binding site 0 0 1 1 73,97,101,150,151,152,153,154,172,173,174,205,206,207,212,233,234,235,259,260,282,284,285 5 -240655 cd12178 2-Hacid_dh_13 3 putative ligand binding site 0 0 1 1 50,72,73,74,97,235,282 5 -240656 cd12179 2-Hacid_dh_14 1 catalytic site R[QE]H 0 1 1 225,254,282 1 -240656 cd12179 2-Hacid_dh_14 2 putative NAD binding site 0 0 1 1 70,94,98,144,145,146,147,148,166,167,168,195,196,197,202,223,224,225,249,250,282,284,285 5 -240656 cd12179 2-Hacid_dh_14 3 putative ligand binding site 0 0 1 1 47,69,70,71,94,225,282 5 -240657 cd12180 2-Hacid_dh_15 1 catalytic site R[QE]H 0 1 1 224,253,272 1 -240657 cd12180 2-Hacid_dh_15 2 putative NAD binding site 0 0 1 1 72,94,98,141,142,143,144,145,163,164,165,194,195,196,201,222,223,224,248,249,272,274,275 5 -240657 cd12180 2-Hacid_dh_15 3 putative ligand binding site 0 0 1 1 45,71,72,73,94,224,272 5 -240658 cd12181 ceo_syn 1 putative NAD(P) binding site 0 0 1 1 160,162,163,183,184,185,203,204,205 5 -240658 cd12181 ceo_syn 2 putative active site RKHHN[ST] 0 1 1 14,72,92,125,130,268 1 -240658 cd12181 ceo_syn 3 putative ligand binding site 0 0 1 1 14,72,90,92,130,265 5 -240659 cd12183 LDH_like_2 1 putative NAD binding site 0 0 1 1 99,104,150,152,153,154,155,172,173,174,203,204,205,206,210,213,231,232,233,257,258,294,296,297 5 -240659 cd12183 LDH_like_2 2 putative ligand binding site 0 0 1 1 75,76,77,99,233,294,297 5 -240659 cd12183 LDH_like_2 3 catalytic site R[QE]H 0 1 1 233,262,294 1 -240660 cd12184 HGDH_like 1 putative NAD binding site 0 0 1 1 99,104,151,153,154,155,156,173,174,175,203,204,205,206,211,214,232,233,234,258,259,296,298,299 5 -240660 cd12184 HGDH_like 2 putative ligand binding site 0 0 1 1 75,76,77,99,234,296,299 5 -240660 cd12184 HGDH_like 3 catalytic site R[QE]H 0 1 1 234,263,296 1 -240660 cd12184 HGDH_like 4 putative homodimer interface 0 0 1 1 50,100,102,103,106,107,110,113,114,117,122,123,126,138,139,141,142,143,144,162,165,166,266,267,293,295,296,297,298,299,300,301,302,303,305 2 -240661 cd12185 HGDH_LDH_like 1 putative NAD binding site 0 0 1 1 98,103,149,151,152,153,154,171,172,173,201,202,203,204,208,211,229,230,231,255,256,292,294,295 5 -240661 cd12185 HGDH_LDH_like 2 putative ligand binding site 0 0 1 1 75,76,77,98,231,292,295 5 -240661 cd12185 HGDH_LDH_like 3 catalytic site R[QE]H 0 1 1 231,260,292 1 -240662 cd12186 LDH 1 NAD binding site 0 1 1 1 99,104,151,153,154,155,156,173,174,175,204,205,206,207,211,214,232,233,234,258,259,295,297,298 5 -240662 cd12186 LDH 2 ligand binding site 0 1 1 0 75,76,77,99,234,295,298 5 -240662 cd12186 LDH 3 homodimer interface 0 1 1 0 8,100,102,103,106,107,110,111,113,114,117,122,123,126,128,129,130,131,132,133,137,138,139,140,141,142,143,144,162,165,166,266,267,268,269,270,292,293,294,295,296,297,298,299,300,301,302,303,304 2 -240662 cd12186 LDH 4 catalytic site R[QE]H 0 1 1 234,263,295 1 -240663 cd12187 LDH_like_1 1 NAD binding site 0 1 1 1 71,94,99,145,146,147,148,149,167,168,169,199,200,201,205,206,227,228,229,253,254,297,299,300 5 -240663 cd12187 LDH_like_1 2 ligand binding site 0 1 1 0 47,70,71,72,94,229,297,300 5 -240663 cd12187 LDH_like_1 3 homodimer interface 0 1 1 0 95,97,98,101,102,105,108,109,112,114,115,117,118,121,124,126,131,132,133,134,135,136,137,138,156,159,160,255,261,262,284,294,295,296,297,298,300,301,302,303,304,305,306 2 -240663 cd12187 LDH_like_1 4 catalytic site R[QE]H 0 1 1 229,258,297 1 -240664 cd12188 SDH 1 NAD(P) binding site 0 1 1 1 125,131,134,188,189,191,192,193,194,213,214,217,236,237,242,264,265,303,304,305,306,307 5 -240664 cd12188 SDH 2 ligand binding site 0 1 1 0 14,73,89,91,117,126,130 5 -240664 cd12188 SDH 3 active site RKHRF[ST] 0 1 1 14,73,91,126,130,308 1 -240664 cd12188 SDH 4 homodimer interface 0 1 1 0 121,122,191,203,211,213,216,328,331,336 2 -240665 cd12189 LKR_SDH_like 1 putative NAD(P) binding site 0 0 1 1 199,201,202,222,223,224,286,287,288 5 -240665 cd12189 LKR_SDH_like 2 ligand binding site FRFG 0 1 1 85,122,126,127 5 -240665 cd12189 LKR_SDH_like 3 active site RKHRF 0 1 1 14,69,87,122,126 1 -213398 cd12191 gal11_coact 1 heterodimer interface 0 1 1 1 0,1,2,3,7,8,47,48,51,54,55,59,64,67,68,71,72,75 2 -213399 cd12192 GCN4_cent 1 heterodimer interface 0 1 1 1 10,11,13,14,25,26,28,29,30,32,33,37,38,39 2 -269833 cd12193 bZIP_GCN4 1 DNA binding site 0 1 1 0 5,6,8,9,10,12,13,14,15,16,17,19 3 -269833 cd12193 bZIP_GCN4 2 dimer interface 0 1 1 0 27,31,34,35,37,38,41,42,44,45,48,49,51,52,53 2 -269833 cd12193 bZIP_GCN4 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -213379 cd12194 Kcc4p_like_C 1 putative phospholipid binding site 0 0 1 1 10,19,46,51,65,94,97,103,107 5 -213380 cd12195 CIPK_C 1 CBL interaction site 0 1 1 1 0,1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,23,24,25,26,28,29,30,32,83,87,93 2 -213380 cd12195 CIPK_C 2 putative PP2C binding site 0 0 1 1 28,29 2 -213381 cd12196 MARK1-3_C 1 putative phospholipid binding site 0 0 1 1 2,5,75,77,78 5 -213382 cd12197 MARK4_C 1 putative phospholipid binding site 0 0 1 1 0,3,74,76,77 5 -213383 cd12198 MELK_C 1 putative phospholipid binding site 0 0 1 1 0,3,73,75,76 5 -213384 cd12199 AMPKA1_C 1 beta subunit interface 0 1 1 1 0,1,2,3,4,5,6,8,13,35,36,37,57,58,59,60,61,66,69,70,71,72,74,81,84,85,86,88,89,93 2 -213384 cd12199 AMPKA1_C 2 gamma subunit interface 0 1 1 1 0,45,47,79,80,82,83,86 2 -213385 cd12200 AMPKA2_C 1 beta subunit interface 0 0 1 1 4,5,6,7,8,9,10,12,17,39,40,41,61,62,63,64,65,70,73,74,75,76,78,87,90,91,92,94,95,99 2 -213385 cd12200 AMPKA2_C 2 gamma subunit interface 0 0 1 1 4,49,51,85,86,88,89,92 2 -213386 cd12201 MARK2_C 1 putative phospholipid binding site 0 0 1 1 2,5,75,77,78 5 -213176 cd12204 CBD_like 1 ligand binding site [WY]T 1 1 0 32,33 5 -213176 cd12204 CBD_like 2 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 31,32 5 -213344 cd12205 RasGAP_plexin 1 putative Rap interface 0 0 1 1 72,112,116,117,118,119,120,127,230,238,239,242,243,269,276,278,285,286 2 -213345 cd12206 RasGAP_IQGAP_related 1 putative RAS interface 0 0 1 1 55,85,87,89,90,93,96,100,180,188,189,192,193,196,212,215,216,219,223,225,231,232 2 -213346 cd12207 RasGAP_IQGAP3 1 putative RAS interface 0 0 1 1 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213403 cd12208 septicolysin_like 1 oligomer interface 0 1 1 1 13,16,20,23,24,25,26,27,28,29,30,31,39,40,46,47,54,57,58,61,62,65,72,73,77,81,84,91,92,94,95,98,99,107,109,110,111,112,113,114,115,116,117,125 2 -213404 cd12211 Bc2l-C_N 1 trimer interface 0 1 1 0 0,1,2,3,29,37,39,41,43,44,52,67,68,69,70,71,72,73,74,75,76,79,80,82,83,85,86,87,88,89,90,91,118,120,122,123,124,126,127,129 2 -213404 cd12211 Bc2l-C_N 2 ligand binding site 0 1 1 1 46,72,80,81,82,83,109 5 -276936 cd12212 Fis1 1 heterodimer interface 0 1 1 1 5,8,9,12,24,25,26,28,29,32,41,44,45,47,48,51,54,55,57,60,61,62,63,65,67,75,77,80,83,84,87 2 -276936 cd12212 Fis1 2 TPR repeat 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -276936 cd12212 Fis1 3 TPR repeat 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -213406 cd12213 ABD 1 ligand binding site 0 0 1 1 54,55 5 -213178 cd12215 ChiC_BD 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 25,26 5 -213409 cd12216 Csn2_like 1 tetramer interface 0 1 1 0 23,24,26,27,28,30,31,34,61,65,77,81,85,95,98,99,101,102,105,106,108,109,110,112,113,114,115,118,119,120,121,123,124,127,128,129,131,132,133,134,135,140,141,142,143,144,150,153,157,167,168,171,172,184,198,201 2 -213410 cd12217 Stu0660_Csn2 1 putative DNA binding site 0 0 1 1 45,92,154 3 -213410 cd12217 Stu0660_Csn2 2 tetramer interface 0 1 1 1 27,28,31,32,36,39,47,49,50,81,88,99,100,103,104,106,108,109,112,115,116,119,122,123,124,126,127,129,130,131,132,133,137,138,139,140,141,142,150,152,154,155,156,157,158,159,165,166,167,168,170,171,174,176,179,180,183,184,187,201,202,204,205,206,207,208,209,210,213,237,238,239,240,242,275,276,277,279,296,303,306,307,308,311,313,316,317,324,325,326,329,334,336,337,338,340,341,342 2 -213411 cd12218 Csn2 1 tetramer interface 0 0 1 1 24,25,27,28,29,31,32,35,58,60,72,76,80,92,95,96,98,99,102,103,105,106,107,109,110,111,112,115,116,117,118,120,121,124,125,126,128,129,130,131,132,137,138,139,140,141,147,150,154,164,165,168,169,181,195,198 2 -213411 cd12218 Csn2 2 putative DNA binding site 0 0 1 1 127,132,159 3 -340518 cd12219 Ubl_TBK1_like 1 putative hydrophobic patch 0 0 1 1 8,45,74 2 -240617 cd12220 Pesticin_RB 1 TonB box 0 0 1 1 0,1,2,3,4,5,6,7 2 -240615 cd12222 Caa3-IV 1 dimer interface 0 1 1 0 0,3,6,7,10,14,21,22,23,26,27,28,31,33,34,35,37,38,41,42,45,48,49,52,53,55,56,57,58,59,60,61,62 2 -240676 cd12230 RRM1_U2AF65 1 RNA binding site 0 1 1 0 2,4,7,47,48,49,51,77,79,80,81 3 -240678 cd12232 RRM3_U2AF65 1 polypeptide substrate binding site 0 1 1 0 5,8,18,19,21,22,23,25,26,27,29,30,75,77,78,79,80,81,85 2 -240686 cd12240 RRM_NCBP2 1 chemical substrate binding site 0 1 1 0 1,41,43,70,72,73,74 5 -240686 cd12240 RRM_NCBP2 2 subunit interface 0 1 1 0 8,11,12,13,15,16,17,20,21,23,25,27,47,54,57,58,60,61,62,63,65,66 2 -240687 cd12241 RRM_SF3B14 1 ligand binding site 0 1 1 0 5,44,74,75,76 5 -240687 cd12241 RRM_SF3B14 2 polypeptide substrate binding site 0 1 1 0 0,2,3,5,15,29,30,31,32,33,34,35,36,39,42,44,48,49,50,75 2 -240692 cd12246 RRM1_U1A_like 1 RNA binding site 0 1 1 1 2,4,5,8,33,35,37,38,39,41,42,43,45,69,72,74,75,76,77 3 -240698 cd12252 RRM_DbpA 1 RNA binding site 0 1 1 0 7,12,13,14,15,17,18,19,21,22,28,31,32,33,34,64,65,68 3 -240724 cd12278 RRM_eIF3B 1 polypeptide substrate binding site 0 1 1 0 5,8,15,18,19,21,22,23,25,26,29,68,69,70,71,73,74,79,80 2 -240724 cd12278 RRM_eIF3B 2 dimer interface 0 1 1 0 2,4,6,7,39,49,51,53,81,83 2 -240733 cd12287 RRM_U2AF35_like 1 polypeptide substrate binding site 0 1 1 0 33,36,37,40,41,44,45,85,86,87,88,89,90,91,92,93,94,95,96 2 -240737 cd12291 RRM1_La 1 RNA binding site 0 1 1 0 12,27,28,29,43,45 3 -240743 cd12297 RRM2_Prp24 1 RNA binding site 0 1 1 0 1,3,30,31,32,35,42,44,75 3 -240768 cd12322 RRM2_TDP43 1 DNA binding site 0 1 1 0 1,3,5,6,30,36,38,40,67,68,69,70 3 -240770 cd12324 RRM_RBM8 1 polypeptide substrate binding site 0 1 1 0 0,1,2,3,4,9,11,33,34,36,38,40,41,42,47,49,51,53,80,81,82,83,84,86,87 2 -240771 cd12325 RRM1_hnRNPA_hnRNPD_like 1 RNA binding site 0 1 1 0 1,3,4,5,6,28,30,39,40,41,43,66,69,71 3 -240775 cd12329 RRM2_hnRNPD_like 1 DNA binding site 0 1 1 0 0,2,4,5,29,30,31,32,34,35,38,39,40,42,44,61,68,69,70,72,73,74 3 -240776 cd12330 RRM2_Hrp1p 1 RNA binding site 0 1 1 0 2,4,29,31,42,44,70,72,74 3 -240778 cd12332 RRM1_p54nrb_like 1 heterodimer interface 0 1 1 0 0,47,50,51,54,55 2 -240779 cd12333 RRM2_p54nrb_like 1 heterodimer interface 0 1 1 0 5,8,9,10,11,12,13,14,18,22,27,29,30,31,32,33,34,39,43,58,59,63,64,65,67,68,69,70,71,72,74 2 -240788 cd12342 RRM_Nab3p 1 RNA binding site 0 1 1 0 0,2,30,32,35,37,64,66,67,68,69,70 3 -240799 cd12353 RRM2_TIA1_like 1 dimer interface 0 1 1 0 9,11,13,17,20,24,25 2 -240807 cd12361 RRM1_2_CELF1-6_like 1 RNA binding site 0 1 1 0 0,2,4,5,8,27,29,31,40,41,42,44,74,76 3 -240809 cd12363 RRM_TRA2 1 RNA binding site 0 1 1 0 0,4,5,29,31,40,42,44,46,68,69,70,71,74,75,76,77 3 -240811 cd12365 RRM_RNPS1 1 polypeptide substrate binding site 0 1 1 0 6,7,8,9,10,12,13,16,17,20,21,32,36,37,57,58,59,60,61,62,63,64,65,66,67 2 -240816 cd12370 RRM1_PUF60 1 dimer interface 0 1 1 0 62,73,74,75 2 -240817 cd12371 RRM2_PUF60 1 dimer interface 0 1 1 0 55,59,60 2 -240818 cd12372 RRM_CFIm68_CFIm59 1 polypeptide substrate binding site 0 1 1 0 7,8,9,10,11,12,28,30,31,33,34,35,36,37,38,39,40 2 -240819 cd12373 RRM_SRSF3_like 1 RNA binding site 0 1 1 0 29,31,32,33,35,37,39,70,72 3 -240821 cd12375 RRM1_Hu_like 1 RNA binding site 0 1 1 0 1,3,5,6,9,30,32,40,41,43,45,69,70,72,76 3 -240822 cd12376 RRM2_Hu_like 1 RNA binding site 0 1 1 0 1,3,27,28,30,32,41,45,47,76,78 3 -240824 cd12378 RRM1_I_PABPs 1 RNA binding site 0 1 1 0 0,2,12,29,30,32,33,34,37,40,42,44,46,71,73,74,75,76,77 3 -240824 cd12378 RRM1_I_PABPs 2 oligomer interface 0 1 1 0 11,12,13,16,28,32,34,35,36,37,38,77,79 2 -240825 cd12379 RRM2_I_PABPs 1 RNA binding site 0 1 1 0 3,5,7,8,30,42,43,44,46,48,73,76 3 -240828 cd12382 RRM_RBMX_like 1 RNA binding site 0 1 1 0 2,4,6,7,8,9,10,31,33,34,35,36,38,39,40,41,42,43,44,46,71,73,75,76,77,78,79 3 -240834 cd12388 RRM1_RAVER 1 polypeptide substrate binding site 0 1 1 0 7,59,60,61 2 -240844 cd12398 RRM_CSTF2_RNA15_like 1 RNA binding site 0 1 1 0 1,28,29,30,31,32,33,34,35,38,41,42,43,67,70,71,72,73,74 3 -240849 cd12403 RRM1_NCL 1 RNA binding site 0 1 1 0 1,3,12,13,17,35,36,38,39,40,42,44,70,72,74 3 -240850 cd12404 RRM2_NCL 1 RNA binding site 0 1 1 0 0,1,6,8,30,31,32,33,40,42,43,44,73,75 3 -240853 cd12407 RRM_FOX1_like 1 RNA binding site 0 1 1 0 1,3,5,6,7,8,9,10,30,31,32,33,34,36,37,38,39,40,41,43,67,72,73,74,75 3 -240858 cd12412 RRM_DAZL_BOULE 1 RNA binding site 0 1 1 0 0,3,5,32,33,34,35,37,41,42,43,44,46,72,73,74,75,76,77,78,79 3 -240858 cd12412 RRM_DAZL_BOULE 2 homodimer interface 0 1 1 0 15,16,19,35,37,38,39,40 2 -240864 cd12418 RRM_Aly_REF_like 1 peptide binding site 0 1 1 0 18,19,55,56,58,59,60,61,63,65,66,67,70 2 -240867 cd12421 RRM1_PTBP1_hnRNPL_like 1 RNA binding site 0 1 1 0 2,4,29,31,34,36,38,69,70,71,72,73 3 -240868 cd12422 RRM2_PTBP1_hnRNPL_like 1 RNA binding site 0 1 1 0 2,4,31,33,35,40,42,71,74,75,80,81,82,83,84 3 -240869 cd12423 RRM3_PTBP1_like 1 RNA binding site 0 1 1 0 2,4,5,30,32,38,40,67,69,71,72,73 3 -240869 cd12423 RRM3_PTBP1_like 2 RRM dimerization site 0 1 1 0 15,17,18,19 2 -240871 cd12425 RRM4_PTBP1_like 1 RNA binding site 0 1 1 0 2,4,5,30,31,32,33,34,35,37,38,40,57,64,65,68,69,70,71,72,73,74,75 3 -240871 cd12425 RRM4_PTBP1_like 2 RRM dimerization site 0 1 1 0 47,50,51,53,54,57,71 2 -240874 cd12428 RRM_PARN 1 chemical substrate binding site 0 1 1 0 10,12,13,14,31,33,34 5 -240887 cd12441 RRM_Nup53_like 1 homodimer interface 0 1 1 0 4,6,7,35,36,37,56,58,63,64,65,66,68 2 -240902 cd12456 RRM_p65 1 RNA binding site 0 1 1 0 15,22,28,29,31,40,41,42 3 -240920 cd12476 RRM1_SNF 1 putative RNA binding site 0 0 1 1 2,4,5,8,33,35,37,38,39,41,42,43,45,69,72,74,75,76,77 3 -240921 cd12477 RRM1_U1A 1 RNA binding site 0 1 1 1 6,8,9,12,37,39,41,42,43,44,45,46,47,49,73,76,78,79,80,81,82,83,84,85 3 -240922 cd12478 RRM1_U2B 1 RNA binding site 0 1 1 0 4,6,7,10,11,13,14,18,34,35,36,37,38,39,40,41,42,43,44,45,47,71,74,76,77,78,79,80,81,82,83 3 -240943 cd12499 RRM_EcCsdA_like 1 putative RNA binding site 0 0 1 1 7,12,13,14,15,17,18,19,21,22,28,31,32,33,34,64,65,68 3 -240944 cd12500 RRM_BsYxiN_like 1 RNA binding site 0 1 1 0 7,8,12,13,14,15,17,18,19,21,22,28,31,32,33,34,61,62,63,64,65,68 3 -240945 cd12501 RRM_EcDbpA_like 1 putative RNA binding site 0 0 1 1 7,12,13,14,15,17,18,19,21,22,28,31,32,33,34,64,65,68 3 -240959 cd12515 RRM5_RBM12_like 1 dimer interface 0 1 0 0 12,13,14,15,32,34 2 -240982 cd12538 RRM_U2AF35 1 polypeptide substrate binding site 0 1 1 0 34,37,38,41,42,45,46,87,88,89,90,91,92,93,94,95,96,97,98 2 -240995 cd12551 RRM_II_PABPN1L 1 homodimer interface 0 1 1 0 2,8,9,11,12,13,16,25,26,27,28,29,30,31,32,33,34,35,42,44,72,75 2 -241020 cd12576 RRM1_MSI 1 RNA binding site 0 1 1 0 1,3,4,5,6,7,28,30,39,40,41,43,66,69,71,72,73,74 3 -241021 cd12577 RRM1_Hrp1p 1 RNA binding site 0 1 1 0 1,3,4,5,6,7,28,30,38,39,40,41,43,65,68,71,72,73 3 -241022 cd12578 RRM1_hnRNPA_like 1 DNA binding site 0 1 1 0 0,2,4,5,27,29,31,40,41,42,44,67,70,72,73,74,75,76,77 3 -241027 cd12583 RRM2_hnRNPD 1 DNA binding site 0 1 1 0 0,2,4,5,29,30,31,32,34,35,38,39,40,42,44,61,68,69,70,72,73,74 3 -241028 cd12584 RRM2_hnRNPAB 1 putative DNA binding site 0 0 1 1 5,7,9,10,34,35,36,37,39,40,43,44,45,47,49,66,73,74,75,77,78,79 3 -241029 cd12585 RRM2_hnRPDL 1 putative DNA binding site 0 0 1 1 0,2,4,5,29,30,31,32,34,35,38,39,40,42,44,61,68,69,70,72,73,74 3 -241030 cd12586 RRM1_PSP1 1 heterodimer interface 0 1 1 0 0,47,50,51,54,55,57 2 -241032 cd12588 RRM1_p54nrb 1 heterodimer interface 0 1 1 0 46,47,50,51,53,54,55 2 -241033 cd12589 RRM2_PSP1 1 heterodimer interface 0 1 1 0 5,8,9,10,11,12,13,14,18,21,22,27,29,30,31,32,33,34,39,43,58,59,60,61,62,63,64,65,67,68,69,70,71,72,74 2 -241035 cd12591 RRM2_p54nrb 1 heterodimer interface 0 1 1 0 5,9,10,11,12,13,14,17,18,22,27,29,30,31,32,33,34,38,58,59,60,62,63,64,65,66,67,68,69,70,71,72,74 2 -241062 cd12618 RRM2_TIA1 1 dimer interface 0 1 1 0 11,13,15,19,22,26,27 2 -241075 cd12631 RRM1_CELF1_2_Bruno 1 RNA binding site 0 1 1 0 4,6,7,10,31,32,33,34,36,37,44,45,46,48,78,80,82,83 3 -241076 cd12632 RRM1_CELF3_4_5_6 1 putative RNA binding site 0 0 1 1 6,8,10,11,14,33,35,37,46,47,48,50,80,82 3 -241077 cd12633 RRM1_FCA 1 putative RNA binding site 0 0 1 1 0,2,4,5,8,27,29,31,40,41,42,44,74,76 3 -241078 cd12634 RRM2_CELF1_2 1 RNA binding site 0 1 1 0 2,4,6,7,10,29,31,33,41,42,43,45,71,72,75,77,79,80 3 -241079 cd12635 RRM2_CELF3_4_5_6 1 putative RNA binding site 0 0 1 1 2,4,6,7,10,29,31,33,41,42,43,45,75,77 3 -241080 cd12636 RRM2_Bruno_like 1 putative RNA binding site 0 0 1 1 2,4,6,7,10,29,31,33,41,42,43,45,75,77 3 -241081 cd12637 RRM2_FCA 1 putative RNA binding site 0 0 1 1 0,2,4,5,8,27,29,31,39,40,41,43,73,75 3 -241085 cd12641 RRM_TRA2B 1 RNA binding site 0 1 1 0 2,10,14,15,39,41,50,52,54,56,78,79,80,81,84,85,86,87,88 3 -241087 cd12643 RRM_CFIm68 1 polypeptide substrate binding site 0 1 1 0 8,9,10,11,12,13,31,34,35,36,37,38,39,40,41 2 -241088 cd12644 RRM_CFIm59 1 polypeptide substrate binding site 0 1 0 0 10,11,12,13,14,15,31,33,34,36,37,38,39,40,41,42,43 2 -241089 cd12645 RRM_SRSF3 1 RNA binding site 0 1 1 0 34,36,37,38,40,42,44,75,77 3 -241090 cd12646 RRM_SRSF7 1 putative RNA binding site 0 0 1 1 29,31,32,33,37,39,70,72 3 -241092 cd12648 RRM3_UHM_PUF60 1 oligomer interface 0 1 1 0 33,34,36,37,38,41,42,43,44,45,46,59,92,93,94,95,96 2 -241093 cd12649 RRM1_SXL 1 RNA binding site 0 1 1 0 1,3,5,6,9,30,32,33,34,35,39,40,41,42,43,45,69,70,72,76,77,79,80 3 -241094 cd12650 RRM1_Hu 1 RNA binding site 0 1 1 0 2,4,6,7,10,31,33,41,42,44,46,70,71,73,77 3 -241095 cd12651 RRM2_SXL 1 RNA binding site 0 1 1 0 1,3,5,6,9,27,28,30,32,41,42,43,45,47,76,78 3 -241096 cd12652 RRM2_Hu 1 RNA binding site 0 1 1 0 1,3,27,28,30,32,41,45,47,76,78 3 -241107 cd12663 RRM1_RAVER1 1 polypeptide substrate binding site 0 1 1 0 8,9,10,32,33,34,58,60,61,62 2 -241115 cd12671 RRM_CSTF2_CSTF2T 1 RNA binding site 0 0 1 0 1,28,29,30,31,32,41,42,43,67,70,71,72 3 -241116 cd12672 RRM_DAZL 1 RNA binding site 0 1 1 0 3,6,8,35,36,37,38,40,44,45,46,47,49,74,75,76,77,78,79,80,81 3 -241116 cd12672 RRM_DAZL 2 homodimer interface 0 1 1 0 18,19,22,38,40,41,42,43 2 -241117 cd12673 RRM_BOULE 1 putative RNA binding site 0 0 1 1 0,3,5,32,33,34,35,37,41,42,43,44,46,73,74,75,76,77,78,79,80 3 -241124 cd12680 RRM_THOC4 1 peptide binding site 0 1 1 0 18,19,22,23,55,56,58,59,60,61,63,64,65,66,67,70 2 -241129 cd12685 RRM_RBM20 1 putative RNA binding site 0 0 1 1 3,5,6,31,33,36,37,38,40,71,72,73,74,75 3 -241130 cd12686 RRM1_PTBPH1_PTBPH2 1 putative RNA binding site 0 0 1 1 5,7,8,32,34,39,40,41,43,76,77,78,79,80 3 -241131 cd12687 RRM1_PTBPH3 1 putative RNA binding site 0 0 1 1 3,5,6,30,32,35,36,37,39,70,71,72,73,74 3 -241132 cd12688 RRM1_PTBP1_like 1 RNA binding site 0 1 1 0 3,5,6,30,32,35,36,37,39,70,71,72,73,74,77,78,79 3 -241133 cd12689 RRM1_hnRNPL_like 1 putative RNA binding site 0 0 1 1 5,7,8,32,34,37,38,39,41,72,73,74,75,76 3 -241134 cd12690 RRM3_PTBPH1_PTBPH2 1 putative RNA binding site 0 0 1 1 4,6,33,35,37,42,44,74,77,78,83,84,85,86,87 3 -241135 cd12691 RRM2_PTBPH1_PTBPH2 1 putative RNA binding site 0 0 1 1 4,6,34,36,38,43,45,81,84,85,90,91,92,93,94 3 -241136 cd12692 RRM2_PTBPH3 1 putative RNA binding site 0 0 1 1 5,7,34,36,38,43,45,74,77,78,83,84,85,86,87 3 -241137 cd12693 RRM2_PTBP1_like 1 RNA binding site 0 1 1 0 4,6,33,35,37,40,42,44,73,76,77,78,79,82,83,84,85,86,88,89,90 3 -241138 cd12694 RRM2_hnRNPL_like 1 putative RNA binding site 0 0 1 1 4,6,33,35,37,41,43,72,75,76,81,82,83,84,85 3 -241139 cd12695 RRM3_PTBP1 1 RNA binding site 0 1 1 0 2,4,5,30,32,38,40,67,69,71,72,73 3 -241139 cd12695 RRM3_PTBP1 2 RRM dimerization site 0 1 1 0 15,17,18,19 2 -241140 cd12696 RRM3_PTBP2 1 putative RNA binding site 0 0 1 1 16,18,19,44,46,52,54,81,83,85,86,87 3 -241141 cd12697 RRM3_ROD1 1 putative RNA binding site 0 0 1 1 3,5,6,31,33,39,41,68,70,72,73,74 3 -241145 cd12701 RRM4_PTBP1 1 RNA binding site 0 1 1 0 2,4,5,30,31,32,33,34,35,37,38,40,57,64,68,69,70,71,72,73,74,75 3 -241145 cd12701 RRM4_PTBP1 2 RRM dimerization site 0 1 1 0 69,70 2 -241146 cd12702 RRM4_PTBP2 1 putative RNA binding site 0 0 1 1 6,8,9,34,35,36,37,38,39,40,41,43,60,67,71,72,73,74,75,76,77,78 3 -241147 cd12703 RRM4_ROD1 1 putative RNA binding site 0 0 1 1 6,8,9,34,35,36,37,38,39,41,42,44,61,68,72,73,74,75,76,77,78,79 3 -241166 cd12722 RRM_Nup53 1 homodimer interface 0 1 1 0 5,7,8,36,37,38,57,59,63,64,65,66,67,69 2 -241172 cd12728 RRM_like_Smg4_UPF3B 1 polypeptide substrate binding site 0 1 1 0 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 2 -241195 cd12751 RRM5_RBM12 1 dimer interface 0 1 0 0 11,12,13,14,15,16,33,35,38,39 2 -241203 cd12759 RRM1_MSI1 1 RNA binding site 0 1 1 0 1,3,5,6,7,8,9,30,32,41,42,43,45,68,71,73,74,75,76 3 -241204 cd12760 RRM1_MSI2 1 putative RNA binding site 0 0 1 1 2,4,5,6,7,8,29,31,40,41,42,44,67,70,72,73,74,75 3 -241205 cd12761 RRM1_hnRNPA1 1 DNA binding site 0 1 1 0 0,3,5,7,8,30,32,34,43,44,45,47,70,73,75,76,77,78,79,80 3 -241206 cd12762 RRM1_hnRNPA2B1 1 putative DNA binding site 0 0 1 1 3,5,7,8,30,32,34,43,44,45,47,70,73,75,76,77,78,79,80 3 -241207 cd12763 RRM1_hnRNPA3 1 putative DNA binding site 0 0 1 1 3,5,7,8,30,32,34,43,44,45,47,70,73,75,76,77,78,79,80 3 -241211 cd12767 RRM2_SRSF1 1 polypeptide substrate binding site 0 1 1 0 10,13,14,18,21,33,63 2 -241213 cd12769 RRM1_HuR 1 RNA binding site 0 1 1 0 2,4,6,7,10,31,33,40,41,42,44,46,70,71,73,77,78,80 3 -241214 cd12770 RRM1_HuD 1 RNA binding site 0 1 1 0 3,8,11,32,47,71,72,74,79,81 3 -241215 cd12771 RRM1_HuB 1 putative RNA binding site 0 0 1 1 5,7,9,10,13,34,36,43,44,45,47,49,73,74,76,80 3 -241216 cd12772 RRM1_HuC 1 RNA binding site 0 1 1 0 4,6,8,9,12,33,34,35,36,38,42,43,44,45,46,48,72,73,74,75,77,79,80 3 -241217 cd12773 RRM2_HuR 1 RNA binding site 0 1 1 0 1,3,27,28,30,32,41,45,47,76,78,79 3 -241218 cd12774 RRM2_HuD 1 RNA binding site 0 1 1 0 3,5,32,43,47,49,78,80 3 -241219 cd12775 RRM2_HuB 1 putative RNA binding site 0 0 1 1 6,8,32,33,35,37,46,50,52,81,83 3 -241220 cd12776 RRM2_HuC 1 RNA binding site 0 1 1 0 0,2,4,28,29,31,33,42,44,46,48,78,79,80 3 -241221 cd12777 RRM1_PTBP1 1 RNA binding site 0 1 1 0 3,5,6,30,32,35,36,37,39,70,71,72,73,74,77,78,79 3 -241222 cd12778 RRM1_PTBP2 1 putative RNA binding site 0 0 1 1 4,6,7,31,33,36,37,38,40,71,72,73,74,75,78,79,80 3 -241223 cd12779 RRM1_ROD1 1 putative RNA binding site 0 0 1 1 8,10,11,35,37,40,41,42,44,75,76,77,78,79,82,83,84 3 -241224 cd12780 RRM1_hnRNPL 1 putative RNA binding site 0 0 1 1 5,7,8,32,34,37,38,39,41,72,73,74,75,76 3 -241225 cd12781 RRM1_hnRPLL 1 putative RNA binding site 0 0 1 1 6,8,9,33,35,38,39,40,42,73,74,75,76,77 3 -241226 cd12782 RRM2_PTBP1 1 RNA binding site 0 1 1 0 5,7,34,36,38,41,43,45,74,77,78,79,80,83,84,85,86,87,89,90,91 3 -241227 cd12783 RRM2_PTBP2 1 putative RNA binding site 0 0 1 1 4,6,33,35,37,40,42,44,73,76,77,78,79,82,83,84,85,86,88,89,90 3 -241228 cd12784 RRM2_ROD1 1 putative RNA binding site 0 0 1 1 6,8,35,37,39,42,44,46,75,78,79,80,81,84,85,86,87,88,90,91,92 3 -241229 cd12785 RRM2_hnRNPL 1 putative RNA binding site 0 0 1 1 7,9,36,38,40,44,46,75,78,79,84,85,86,87,88 3 -241230 cd12786 RRM2_hnRPLL 1 putative RNA binding site 0 0 1 1 5,7,34,36,38,42,44,73,76,77,82,83,84,85,86 3 -213347 cd12787 RasGAP_plexin_B 1 putative Rap interface 0 0 1 1 74,113,117,118,119,120,121,128,235,243,244,247,248,274,281,283,290,291 2 -213348 cd12788 RasGAP_plexin_D1 1 putative Rap interface 0 0 1 1 97,136,140,141,142,143,144,151,255,263,264,267,268,294,301,303,310,311 2 -213349 cd12789 RasGAP_plexin_C1 1 putative Rap interface 0 0 1 1 75,114,118,119,120,121,122,129,233,241,242,245,246,272,279,281,288,289 2 -213350 cd12790 RasGAP_plexin_A 1 putative Rap interface 0 0 1 1 72,113,117,118,119,120,121,128,233,241,242,245,246,272,279,281,288,289 2 -213351 cd12791 RasGAP_plexin_B3 1 putative Rap interface 0 0 1 1 74,113,117,118,119,120,121,128,237,245,246,249,250,276,283,285,292,293 2 -213352 cd12792 RasGAP_plexin_B2 1 putative Rap interface 0 0 1 1 76,116,120,121,122,123,124,131,240,248,249,252,253,279,286,288,295,296 2 -213353 cd12793 RasGAP_plexin_B1 1 putative Rap interface 0 0 1 1 72,111,115,116,117,118,119,126,234,242,243,246,247,273,280,282,289,290 2 -240614 cd12794 Hsm3_like 1 heterodimer interface 0 1 1 1 139,140,142,143,146,179,183,184,187,221,222,226,275,276,277,278,279,282 2 -240614 cd12794 Hsm3_like 2 homodimer interface 0 1 1 0 21,22,25,29,30,33,34,65,137,139,156,159,179,199,200,222,225,226,244,245,246,247,250,413,414,415,416,427,448,451,452,453,454 2 -240613 cd12795 FILIA_N_like 1 dimer interface 0 1 1 0 41,49,51,52,53,56,57,58,81,82,85,89,92,93,96 2 -240609 cd12796 LbR_Ice_bind 1 putative water-binding motif 0 1 1 1 7,8,9,10,11,23,24,25,26,27,31,32,33,34,35,38,39,40,41,42,46,47,48,49,50,52,53,54,55,56,60,61,62,63,64,67,68,69,70,71,75,76,77,78,81,82,83,84,85,88,89,90,91,92,95,96,97,98,99,102,103,104,105,108,109,110,111,112 0 -240609 cd12796 LbR_Ice_bind 2 putative trimer interface 0 0 1 1 7,9,11,12,23,25,27,28,29,38,40,42,43,53,55,57,67,69,71,72,81,83,86,90,92,93 2 -213998 cd12798 Alt_A1 1 homodimer interface 0 0 1 1 58,59,60,71,73,85,86,87,98,99,100,101,102,103,105,125,127,129,130,131 2 -340366 cd12799 pesticin_lyz_like 1 catalytic residues ETD 0 1 1 10,24,30 1 -213999 cd12800 Sol_i_2 1 homodimer interface 0 1 1 0 18,23,24,25,26,29,30,32,33,80,94,97,98,101,104,105,106,107,109,110 2 -213999 cd12800 Sol_i_2 2 ligand binding site 0 1 1 1 35,45,57,100,103 5 -214000 cd12801 HopAB_KID 1 kinase binding site 0 1 1 1 31,32,33,52,56,57,58 2 -214001 cd12802 HopAB_PID 1 Pto binding site 0 1 1 0 24,28,29,32,33,34,35,36,37,42,46,52,53,54,55,56,57,58 2 -214002 cd12803 HopAB_BID 1 BAK1 binding site 0 1 1 0 0,1,3,33,34,35,36,37,56,59,60,61,62,63,68,71,72,75 2 -214003 cd12804 AKAP10_AKB 1 PKA R subunit binding site 0 1 1 1 12,13,14,16,17,18,20,21,22,23,24,25,27,28,29,31,32,33 2 -214005 cd12806 Esterase_713_like 1 catalytic site 0 0 1 1 147,171,239 1 -214006 cd12807 Esterase_713 1 catalytic site 0 1 1 1 60,61,63,126,134,135,196,197,255,259,292 1 -214007 cd12808 Esterase_713_like-1 1 catalytic site 0 0 1 1 195,219,287 1 -214008 cd12809 Esterase_713_like-2 1 catalytic site 0 0 1 1 178,202,258 1 -214009 cd12810 Esterase_713_like-3 1 catalytic site 0 0 1 1 182,205,303 1 -240610 cd12813 LbR-like 1 trimer interface 0 1 1 0 7,9,11,12,13,22,24,26,27,28,37,39,41,42,43,51,53,55,57,65,67,69,71,79,81,83,84,85,93,95 2 -240611 cd12819 LbR_vir_like 1 putative trimer interface 0 0 1 0 67,69,71,72,73,83,85,87,88,89,98,100,102,103 2 -240612 cd12820 LbR_YadA-like 1 trimer interface 0 1 1 0 0,2,5,6,14,19,20,28,30,32,33,34,42,44,46,47,48,56,58,60,61,62,70,72,74,75,76,84,86,88,89,90,98,100,102,103,107,109,110,113,114,115,116,117,118,122 2 -213355 cd12821 EcCorA_ZntB-like 1 oligomer interface 0 0 1 1 24,27,28,37,39,84,88,102,105,109,113,116,117,120,123,124,126,127,130,142,143,145,146,149,150,153,154,156,157,161,163,164,167,168,171,172,183,184,186,187,190,191,193,194,197,198,200,201,203,204,205,208,209,210,211,212,213,214,215,217,218,219,220,221,222,223,224,225,226,227,228,229,231,232,233,235,236,237,238,239,240,242,243,244,245,246,247,248,249,261,262,265,266,278,281 2 -213355 cd12821 EcCorA_ZntB-like 2 Cl binding site 0 0 1 1 2,36,49,51,61,75,76,77,78,80,81,111,114,163,164,167,189 4 -213356 cd12822 TmCorA-like 1 oligomer interface 0 1 1 0 23,26,27,36,38,87,91,105,108,116,119,123,129,130,133,145,146,149,152,153,156,160,186,187,189,190,193,194,196,197,200,201,203,204,206,207,208,211,212,213,214,215,216,217,218,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,238,239,240,241,242,243,245,246,247,248,249,250,251,252,263,264,267,268,271,282,285 2 -213356 cd12822 TmCorA-like 2 metal binding site [de][de] 1 1 0 27,190 4 -213356 cd12822 TmCorA-like 3 metal binding site [ED][DE][DE] 1 1 0 26,112,190 4 -213356 cd12822 TmCorA-like 4 putative Cl binding site 0 1 1 0 91,105 4 -213356 cd12822 TmCorA-like 5 periplasmic entrance 0 0 1 1 246,248,249 0 -213356 cd12822 TmCorA-like 6 hydrophobic gate 0 0 1 1 228,231 0 -213356 cd12822 TmCorA-like 7 basic sphincter 0 0 1 1 223,229,283,284,285,286 0 -213356 cd12822 TmCorA-like 8 aspartate ring D 0 1 1 214 0 -213357 cd12823 Mrs2_Mfm1p-like 1 oligomer interface 0 0 1 1 28,31,32,43,45,82,86,112,115,119,123,126,127,130,133,134,136,137,140,152,153,155,156,159,160,163,164,166,167,171,173,174,177,178,181,182,215,216,218,219,222,223,225,226,229,230,232,233,235,236,237,240,241,242,243,244,245,246,247,249,250,251,252,253,254,255,256,257,258,259,260,261,263,264,265,267,268,269,270,271,272,274,275,276,277,281,282,283,284,295,296,299,300,316,319 2 -213357 cd12823 Mrs2_Mfm1p-like 2 Cl binding site 0 0 1 1 11,42,54,56,57,71,72,73,74,78,79,121,124,173,174,177,221 4 -213358 cd12824 ZntB-like 1 oligomer interface 0 0 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213358 cd12824 ZntB-like 2 Cl binding site 0 0 1 1 5,8,36,37,38,50,52,66,67,81,82,83,84,86,87,115,118,167,168,171,193 4 -213359 cd12825 EcCorA-like 1 oligomer interface 0 0 1 1 26,29,30,36,38,86,90,103,106,110,114,117,118,121,124,125,127,128,131,145,146,148,149,152,153,156,157,159,160,164,166,167,170,171,174,175,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213359 cd12825 EcCorA-like 2 Cl binding site 0 0 1 1 2,35,47,49,63,77,78,79,80,82,83,112,115,166,167,170,190 4 -213360 cd12826 EcCorA_ZntB-like_u1 1 oligomer interface 0 0 1 1 23,26,27,32,34,83,87,97,100,104,108,111,112,115,118,119,121,122,125,137,138,140,141,144,145,148,149,151,152,156,158,159,162,163,166,167,178,179,181,182,185,186,188,189,192,193,195,196,198,199,200,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,222,223,224,226,227,228,230,231,232,233,234,235,237,238,239,240,241,242,243,244,256,257,260,261,273,276 2 -213360 cd12826 EcCorA_ZntB-like_u1 2 Cl binding site 0 0 1 1 4,31,46,48,58,72,73,74,75,79,80,106,109,158,159,162,184 4 -213361 cd12827 EcCorA_ZntB-like_u2 1 oligomer interface 0 0 1 1 23,26,27,36,38,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,264,265,268,269,282,285 2 -213361 cd12827 EcCorA_ZntB-like_u2 2 Cl binding site 0 0 1 1 2,35,49,51,67,81,82,83,84,86,87,115,118,167,168,171,193 4 -213362 cd12828 TmCorA-like_1 1 oligomer interface 0 1 1 0 27,30,31,37,38,40,42,91,95,101,110,113,121,124,128,134,135,138,142,143,150,151,154,157,158,161,165,187,191,192,194,195,198,199,201,202,205,206,208,209,211,212,213,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,243,244,245,246,247,248,250,251,252,253,254,255,256,257,268,269,272,273,276,287,290 2 -213362 cd12828 TmCorA-like_1 2 metal binding site [de][de] 1 1 0 31,195 4 -213362 cd12828 TmCorA-like_1 3 metal binding site [ED][DE][DE] 1 1 0 30,117,195 4 -213362 cd12828 TmCorA-like_1 4 Cl binding site 0 1 1 0 95,110 4 -213362 cd12828 TmCorA-like_1 5 periplasmic entrance 0 0 1 1 251,253,254 0 -213362 cd12828 TmCorA-like_1 6 putative hydrophobic gate 0 0 1 1 233,236 0 -213362 cd12828 TmCorA-like_1 7 basic sphincter 0 0 1 1 228,234,288,289,290,291 0 -213362 cd12828 TmCorA-like_1 8 aspartate ring D 0 1 1 219 0 -213363 cd12829 Alr1p-like 1 oligomer interface 0 0 1 1 23,26,27,36,38,89,93,107,110,118,121,125,131,132,135,150,151,154,157,158,161,165,195,196,198,199,202,203,205,206,209,210,212,213,215,216,217,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244,245,246,247,248,250,251,252,254,255,256,257,258,259,261,262,263,264,265,266,267,268,278,279,282,283,286,298,301 2 -213363 cd12829 Alr1p-like 2 metal binding site [de][de] 0 1 1 27,199 4 -213363 cd12829 Alr1p-like 3 metal binding site [ED][DE][DE] 0 1 1 26,114,199 4 -213363 cd12829 Alr1p-like 4 putative Cl binding site 0 0 1 1 93,107 4 -213363 cd12829 Alr1p-like 5 periplasmic entrance 0 0 1 1 262,264,265 0 -213363 cd12829 Alr1p-like 6 hydrophobic gate 0 0 1 1 244,247 0 -213364 cd12830 MtCorA-like 1 oligomer interface 0 0 1 1 26,29,30,39,41,90,94,108,111,119,122,126,132,133,136,148,149,152,155,156,159,163,189,190,192,193,196,197,199,200,203,204,206,207,209,210,211,214,215,216,217,218,219,220,221,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,241,242,243,244,245,246,248,249,250,251,252,253,254,255,266,267,270,271,274,285,288 2 -213364 cd12830 MtCorA-like 2 metal binding site [de][de] 0 1 1 30,193 4 -213364 cd12830 MtCorA-like 3 metal binding site [ED][DE][DE] 0 1 1 29,115,193 4 -213364 cd12830 MtCorA-like 4 putative Cl binding site 0 0 1 1 94,108 4 -213364 cd12830 MtCorA-like 5 periplasmic entrance 0 0 1 1 249,251,252 0 -213364 cd12830 MtCorA-like 6 hydrophobic gate 0 0 1 1 231,234 0 -213364 cd12830 MtCorA-like 7 basic sphincter 0 0 1 1 226,232,286,287,288,289 0 -213365 cd12831 TmCorA-like_u2 1 oligomer interface 0 0 1 1 26,29,30,39,41,86,90,103,106,114,117,121,127,128,131,143,144,147,150,151,154,158,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,261,262,265,266,269,280,283 2 -213365 cd12831 TmCorA-like_u2 2 metal binding site [de][de] 0 1 1 30,188 4 -213365 cd12831 TmCorA-like_u2 3 metal binding site [ED][DE][DE] 0 1 1 29,110,188 4 -213365 cd12831 TmCorA-like_u2 4 putative Cl binding site 0 0 1 1 90,103 4 -213365 cd12831 TmCorA-like_u2 5 periplasmic entrance 0 0 1 1 244,246,247 0 -213365 cd12831 TmCorA-like_u2 6 hydrophobic gate 0 0 1 1 226,229 0 -213365 cd12831 TmCorA-like_u2 7 basic sphincter 0 0 1 1 221,227,281,282,283,284 0 -213365 cd12831 TmCorA-like_u2 8 aspartate ring D 0 1 1 212 0 -213366 cd12832 TmCorA-like_u3 1 oligomer interface 0 0 1 1 23,26,27,36,38,91,95,108,111,119,122,126,132,133,136,149,150,153,156,157,160,164,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,261,262,265,266,269,280,283 2 -213366 cd12832 TmCorA-like_u3 2 metal binding site [de][de] 0 1 1 27,188 4 -213366 cd12832 TmCorA-like_u3 3 putative Cl binding site 0 0 1 1 95,108 4 -213366 cd12832 TmCorA-like_u3 4 periplasmic entrance 0 0 1 1 244,246,247 0 -213366 cd12832 TmCorA-like_u3 5 hydrophobic gate 0 0 1 1 226,229 0 -213366 cd12832 TmCorA-like_u3 6 basic sphincter 0 0 1 1 221,227,281,282,283,284 0 -213367 cd12833 ZntB-like_1 1 oligomer interface 0 0 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213367 cd12833 ZntB-like_1 2 Cl binding site 0 0 1 1 5,8,36,37,38,50,52,66,67,81,82,83,84,86,87,115,118,167,168,171,193 4 -213368 cd12834 ZntB_u1 1 oligomer interface 0 0 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213368 cd12834 ZntB_u1 2 Cl binding site 0 0 1 1 5,8,36,37,38,50,52,66,67,81,82,83,84,86,87,115,118,167,168,171,193 4 -213369 cd12835 EcCorA-like_1 1 oligomer interface 0 0 1 1 26,29,30,36,38,85,89,102,105,109,113,116,117,120,123,124,126,127,130,145,146,148,149,152,153,156,157,159,160,164,166,167,170,171,174,175,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213369 cd12835 EcCorA-like_1 2 Cl binding site 0 0 1 1 2,35,47,49,62,76,77,78,79,81,82,111,114,166,167,170,190 4 -213370 cd12836 HpCorA-like 1 oligomer interface 0 0 1 1 28,31,32,38,40,87,91,104,107,111,115,118,119,122,125,126,128,129,132,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,185,186,188,189,192,193,195,196,199,200,202,203,205,206,207,210,211,212,213,214,215,216,217,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,237,238,239,240,241,242,244,245,246,247,248,249,250,251,263,264,267,268,280,283 2 -213370 cd12836 HpCorA-like 2 Cl binding site 0 0 1 1 4,37,49,51,64,78,79,80,81,83,84,113,116,167,168,171,191 4 -213371 cd12837 EcCorA-like_u1 1 oligomer interface 0 0 1 1 27,30,31,37,39,87,91,104,107,111,115,118,119,122,125,126,128,129,132,154,155,157,158,161,162,165,166,168,169,173,175,176,179,180,183,184,195,196,198,199,202,203,205,206,209,210,212,213,215,216,217,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,239,240,241,243,244,245,247,248,249,250,251,252,254,255,256,257,258,259,260,261,273,274,277,278,290,293 2 -213371 cd12837 EcCorA-like_u1 2 Cl binding site 0 0 1 1 3,36,48,50,64,78,79,80,81,83,84,113,116,175,176,179,201 4 -214011 cd12838 Killer_toxin_alpha 1 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,9,11,13,14,15,23,26,31,34,35,37,38,39,41,42,43,45,46,48,49,50,53,54,55,56,57,58,59,60,61 2 -214012 cd12839 Killer_toxin_beta 1 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,8,10,11,20,21,22,24,25,26,27,28,29,30,31,32,33,38,39,40,41,42,43,44,45,46,51,52,54,56,58,64,66,70,71,72,73 2 -214013 cd12840 CarS 1 putative repressor interaction site 0 0 1 1 57,69,71 2 -214014 cd12841 TM_EphA1 1 dimer interface 0 1 1 0 8,10,11,14,15,17,18,19,22,23,26,27,30,35 2 -240607 cd12869 MqsR 1 peptide binding site 0 1 1 0 22,23,24,25,26,28,29,32,38,39,59,62,67,92,97 2 -240606 cd12870 MqsA 1 Zn binding site 0 1 1 0 1,4,35,38 4 -240606 cd12870 MqsA 2 toxin interface 0 1 1 0 0,2,3,5,16,39,40,41,42,43,44,45,48,49,51,52,56,59 2 -293963 cd12906 SPRY_SOCS1-2-4 1 peptide binding site 0 1 1 0 23,25,57,75,162,163,164 2 -240599 cd12916 VKOR_1 1 putative active site 0 0 1 1 30,36,42,112,115 1 -240599 cd12916 VKOR_1 2 substrate binding site 0 1 1 0 15,39,43,44,45,52,53,55,56,60,89,93,96,100,103,115,118 5 -240599 cd12916 VKOR_1 3 redox center CXXC 1 1 1 112,113,114,115 1 -240600 cd12917 VKOR_euk 1 putative active site 0 0 1 1 33,41,47,122,125 1 -240600 cd12917 VKOR_euk 2 redox center 0 0 1 1 122,123,124,125 1 -240601 cd12918 VKOR_arc 1 putative active site 0 0 1 1 29,37,43,108,111 1 -240601 cd12918 VKOR_arc 2 redox center 0 0 1 1 108,109,110,111 1 -240602 cd12919 VKOR_2 1 putative active site 0 0 1 1 42,48,54,123,126 1 -240602 cd12919 VKOR_2 2 redox center 0 0 1 1 123,124,125,126 1 -240603 cd12920 VKOR_3 1 putative active site 0 0 1 1 33,41,47,115,118 1 -240603 cd12920 VKOR_3 2 redox center 0 0 1 1 115,116,117,118 1 -240604 cd12921 VKOR_4 1 putative active site 0 0 1 1 32,40,46,110,113 1 -240604 cd12921 VKOR_4 2 redox center 0 0 1 1 110,111,112,113 1 -240605 cd12922 VKOR_5 1 putative active site 0 0 1 1 33,41,47,115,118 1 -240605 cd12922 VKOR_5 2 redox center 0 0 1 1 115,116,117,118 1 -214016 cd12923 iSH2_PI3K_IA_R 1 heterodimer interface 0 1 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,72,75,76,79,83,86,112,113,116,119 2 -214017 cd12924 iSH2_PIK3R1 1 heterodimer interface 0 1 1 1 23,27,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,68,83,84,87,94,120,121,124,127 2 -214018 cd12925 iSH2_PIK3R3 1 putative heterodimer interface 0 0 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,80,83,84,87,91,94,120,121,124,127 2 -214019 cd12926 iSH2_PIK3R2 1 heterodimer interface 0 1 1 1 21,23,24,28,30,35,37,38,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,65,80,83,84,87,90,91,94,98,110,113,114,117,120,121,123,124,127,128,134 2 -214019 cd12926 iSH2_PIK3R2 2 NS1 interaction site 0 1 1 1 131,134,135,137,138,139,141,142,143,145,146,147,150,151,154 2 -260087 cd12930 GAT_SF 1 ubiquitin binding site 0 1 1 0 2,3,6,7,9,10,13,14,17,29,32,33 2 -240585 cd12934 LEM 1 polypeptide substrate binding site 0 1 1 0 15,16,17,18,19,20,22,23,26,27,29,30 2 -240586 cd12939 LEM_emerin 1 polypeptide substrate binding site 0 1 1 0 5,6,18,19,20,21,22,23,25,26,29,30,32,33 2 -240587 cd12940 LEM_LAP2_LEMD1 1 putative polypeptide substrate binding site 0 0 1 1 6,7,19,20,21,22,23,24,26,27,30,31,33,34 2 -240588 cd12941 LEM_LEMD2 1 putative polypeptide substrate binding site 0 0 1 1 2,3,15,16,17,18,19,20,22,23,26,27,29,30 2 -240589 cd12942 LEM_Man1 1 putative polypeptide substrate binding site 0 0 1 1 6,7,19,20,21,22,23,24,26,27,30,31,33,34 2 -240590 cd12943 LEM_ANKL1 1 putative polypeptide substrate binding site 0 0 1 1 2,3,15,16,17,18,19,20,22,23,26,27,29,30 2 -240591 cd12944 LEM_ANKL2 1 putative polypeptide substrate binding site 0 0 1 1 6,7,19,20,21,22,23,24,26,27,30,31,33,34 2 -240581 cd12946 NOPS_p54nrb_PSF_PSPC1 1 heterodimer interface 0 1 1 0 0,1,2,4,44,45,47,48,49,51,52,53,55,56,58,59,62,63,66,67,69,70,73,74,77,78,80,81,84,85,88 2 -240582 cd12947 NOPS_p54nrb 1 heterodimer interface 0 1 1 1 0,1,2,4,10,11,12,13,14,15,16,17,18,19,22,28,30,31,32,33,34,36,37,38,39,44,45,47,48,49,50,51,52,53,55,56,58,59,62,63,66,67,69,70,73,74,77,78,80,81,84,85 2 -240583 cd12948 NOPS_PSF 1 putative heterodimer interface 0 0 1 1 0,1,2,4,10,11,12,13,14,15,16,17,18,19,22,28,30,31,32,33,34,36,37,38,39,44,45,47,48,49,50,51,52,53,55,56,58,59,62,63,66,67,69,70,73,74,77,78,80,81,84,85 2 -240584 cd12949 NOPS_PSPC1 1 heterodimer interface 0 1 1 1 0,1,2,4,10,11,12,13,15,16,17,18,19,22,27,28,30,31,32,33,34,36,37,38,39,44,45,48,49,51,52,53,55,56,58,59,62,63,66,67,69,70,73,74,77,78,80,81,84,85,88 2 -214020 cd12955 SKA2 1 SKA1 interface 0 1 1 1 11,14,15,17,18,21,24,25,28,35,44,48,51,55,59,62,65,66,69,73,76,77,79,83 2 -214020 cd12955 SKA2 2 SKA3 interface 0 1 1 1 7,10,14,17,20,21,24,45,48,52,56,66,73,80,81,84,87,93,100,101,104,108 2 -214020 cd12955 SKA2 3 homodimer interface 0 1 1 1 0,1,2,3,4,6,7,10,11 2 -240562 cd12956 CBM_SusE-F_like 1 starch binding site 0 1 1 1 12,40,42,49,52 5 -240570 cd12957 SKA3_N 1 SKA1 interface 0 1 1 1 7,11,14,18,22,25,26,34,38,39,42,45,46,49,50,52,53,56,57,59,60,63,64,66,67,71,74,77 2 -240570 cd12957 SKA3_N 2 SKA2 interface 0 1 1 1 8,11,15,19,22,23,26,45,49,52,55,56,59,66,70,73,76,77,79,80,87,91,94 2 -240570 cd12957 SKA3_N 3 homodimer interface 0 1 1 1 0,1,2,3,4,5,7,8,9,12,13,16 2 -214021 cd12958 SKA1_N 1 SKA2 interface 0 1 1 1 9,13,16,17,20,21,23,24,27,39,43,46,47,50,51,53,54,57,60,64,67,68,70,71,74 2 -214021 cd12958 SKA1_N 2 SKA3 interface 0 1 1 1 3,6,7,10,14,17,18,21,24,25,32,35,36,39,42,43,45,46,49,50,52,53,56,59,60,63,67,70,74 2 -214021 cd12958 SKA1_N 3 homodimer interface 0 1 1 1 1,2,3,6 2 -214022 cd12959 MMACHC-like 1 cobalamin binding site 0 1 1 0 28,29,30,99,108,110,111,112,113,114,117,124,126,141,143,144,153,154,155,191,195,200,201 5 -214022 cd12959 MMACHC-like 2 dimer interface 0 1 1 1 35,36,37,68,69,70,71,95,96,97,100,102,103,106,109 2 -240575 cd12960 Spider_toxin 1 Principal Structural Motif (PSM) 0 0 1 1 1,8,15,16 0 -240575 cd12960 Spider_toxin 2 Extra Structural Motif (ESM) 0 0 1 1 21,23,30,32 0 -240569 cd12961 CBM58_SusG 1 starch binding site 0 1 1 1 38,40,41,42,65,68,77,82,108 5 -240563 cd12964 CBM-Fa 1 starch binding site 0 1 1 1 6,10,43,45,58,68,87 5 -240564 cd12965 CBM-Eb_CBM-Fb 1 starch binding site 0 1 1 1 11,42,49,52,73 5 -240565 cd12966 CBM-Ec_CBM-Fc 1 starch binding site 0 1 1 1 13,43,53,54,68,71 5 -240565 cd12966 CBM-Ec_CBM-Fc 2 starch-binding loop 0 0 1 1 71,73 0 -240566 cd12967 CBM_SusE-F_like_u1 1 starch binding site 0 0 1 1 10,38,40,47,50 5 -240557 cd13114 POLO_box_Plk4_1 1 homodimer interface 0 1 1 0 0,1,2,3,19,21,36,97,98,100,101 2 -240558 cd13115 POLO_box_Plk4_2 1 homodimer interface 0 1 1 0 36,52,53,54,66,69,70,75,78,79,82,83 2 -240559 cd13116 POLO_box_Plk4_3 1 homodimer interface 0 1 1 0 7,14,25,27,29,30,31,32,33,34,35,36,37,41,42,43,44,45,46,48,68,69,71,72 2 -240560 cd13117 POLO_box_2 1 phosphopeptide binding site 0 1 1 0 7,26,28,30 2 -240561 cd13118 POLO_box_1 1 phosphopeptide binding site 0 1 1 0 6,7,8,9,80,82,83,84,85,86 2 -240555 cd13122 MSL2_CXC 1 Zn binding site CCCCCCCCC 1 1 1 6,8,20,25,27,34,37,39,42 4 -240536 cd13131 MATE_NorM_like 1 cation binding site 0 1 1 1 244,248,274,277,356,360,387,413,417 4 -240537 cd13132 MATE_eukaryotic 1 putative cation binding site 0 0 1 1 239,243,270,273,352,356,383,409,413 4 -240523 cd13150 DAXX_histone_binding 1 Histone H3.3 interface 0 1 1 0 12,13,16,19,20,22,23,24,25,26,27,28,30,31,32,33,35,36,37,38,40,41,44,47,48,51,64,65,66,96,97,98,99,100,103,130,134,135,138,141,144,145,148,149,151,152,153,155,179,182,183,186,187,189,190,193,194,197 2 -240523 cd13150 DAXX_histone_binding 2 Histone H4 interface 0 1 1 0 26,96,98,101,142,145,146,149,154,158,159,160,161,164,167,171,174,178,181,182,185,186,189,193 2 -240522 cd13151 DAXX_helical_bundle 1 Rassf1C interface 0 1 1 0 24,26,27,30,31,34,64,65,67,68,70,71,74,75,78,83 2 -240520 cd13156 KOW_RPL6 1 RNA binding site 0 1 1 0 0,2,18,19,20,21,22,24,35,36,43,44,45,46,47,49,51,52,53,54,56,57,82,106,109,110,132,135,136,137,141,142 3 -269979 cd13157 PTB_tensin-related 1 putative phosphoinositide binding site 0 0 1 1 6,80,102 5 -269979 cd13157 PTB_tensin-related 2 putative peptide binding site 0 0 1 1 70,71,72,73,74,75,87,113,117 2 -269980 cd13158 PTB_APPL 1 putative phosphoinositide binding site 0 0 1 1 15,92,116 5 -269980 cd13158 PTB_APPL 2 putative peptide binding site 0 0 1 1 81,82,83,84,85,86,99,125,129 2 -269981 cd13159 PTB_LDLRAP-mammal-like 1 peptide binding site 0 1 1 0 69,70,71,72,73,74,75,76,77,90,97,111,114,115,118,121 2 -269981 cd13159 PTB_LDLRAP-mammal-like 2 putative phosphoinositide binding site 0 0 1 1 7,83,103 5 -269982 cd13160 PTB_LDLRAP_insect-like 1 peptide binding site 0 0 1 0 72,73,74,75,76,77,90,100,117,118,121 2 -269982 cd13160 PTB_LDLRAP_insect-like 2 putative phosphoinositide binding site 0 0 1 1 5,83,106 5 -269983 cd13161 PTB_TK_HMTK 1 putative phosphoinositide binding site 0 0 1 1 6,78,98 5 -269983 cd13161 PTB_TK_HMTK 2 putative peptide binding site 0 0 1 1 67,68,69,70,71,72,85,107,111 2 -269984 cd13162 PTB_RGS12 1 putative peptide binding site 0 0 1 1 70,71,72,73,74,75,88,123,127 2 -269984 cd13162 PTB_RGS12 2 putative phosphoinositide binding site 0 0 1 1 5,81,112 5 -269985 cd13163 PTB_ICAP1 1 putative peptide binding site 0 0 1 1 77,78,79,80,81,82,97,121,125 2 -269985 cd13163 PTB_ICAP1 2 putative phosphoinositide binding site 0 0 1 1 5,90,110 5 -241318 cd13164 PTB_DOK4_DOK5_DOK6 1 putative phosphopeptide binding site 0 0 1 1 51,52,53,54,55,56,62,66,67,77,90 2 -269986 cd13165 PTB_DOK7 1 putative phosphopeptide binding site 0 0 1 1 49,50,51,52,53,54,60,64,65,75,88 2 -269987 cd13166 PTB_CCM2 1 putative peptide binding site 0 0 1 1 72,79,80,81,82 2 -269987 cd13166 PTB_CCM2 2 putative phosphoinositide binding site 0 0 1 0 14,48,50,68 5 -269988 cd13167 PTB_P-CLI1 1 putative peptide binding site 0 0 1 1 77,78,79,80,81,82,96,122,126 2 -269988 cd13167 PTB_P-CLI1 2 putative phosphoinositide binding site 0 0 1 1 5,89,112 5 -269989 cd13168 PTB_LOC417372 1 putative peptide binding site 0 0 1 1 67,68,69,70,71,72,85,112,116 2 -269989 cd13168 PTB_LOC417372 2 putative phosphoinositide binding site 0 0 1 1 5,78,101 5 -269990 cd13169 RanBD_NUP50_plant 1 putative RAN binding site 0 0 1 1 14,16,17,18,21,22,23,24,25,26,43,45,47,48,50,52,53,54,57,59,63,67,75,77,91,95 2 -269991 cd13170 RanBD_NUP50 1 putative RAN binding site 0 0 1 1 14,16,17,18,22,23,24,25,26,27,44,46,48,49,53,54,55,58,60,64,68,76,78,88,92 2 -269992 cd13171 RanBD1_RanBP2_insect-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,21,22,23,24,25,26,43,45,47,48,50,52,53,54,57,59,63,67,77,79,92,96 2 -269993 cd13172 RanBD2_RanBP2_insect-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,46,48,50,51,53,55,56,57,60,62,66,70,80,82,95,99 2 -269994 cd13173 RanBD3_RanBP2_insect-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,21,22,23,24,25,26,43,45,47,48,50,52,53,54,57,59,63,67,75,77,90,94 2 -269995 cd13174 RanBD4_RanBP2_insect-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,95,99 2 -269996 cd13175 RanBD5_RanBP2_insect-like 1 putative RAN binding site 0 0 1 1 45,47,49,50,54,55,56,59,61,63,67,76,78,91,95 2 -269997 cd13176 RanBD_RanBP2-like 1 RAN binding site 0 1 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,94,98 2 -269998 cd13177 RanBD2_RanBP2-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,94,98 2 -269999 cd13178 RanBD4_RanBP2-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,94,98 2 -270000 cd13179 RanBD_RanBP1 1 CRM1-RanBP1-RanGTP complex 0 1 1 0 11,12,15,16,17,26,32,34,41,42,43,44,45,46,50,61,63,65,67,68,69,70,71,72,73,74,77,78,79,87,88,89,90,93,94,95,97,99,103,110,112,114,116 2 -270000 cd13179 RanBD_RanBP1 2 Ran#RanBP1#RanGAP complex 0 1 1 0 11,12,14,15,16,17,30,32,34,43,44,45,46,63,65,67,68,70,71,72,73,74,77,78,79,87,88,89,90,97,99,103,106,108,112,116 2 -270001 cd13180 RanBD_RanBP3 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,47,49,51,52,56,57,58,61,63,67,71,79,81,91,95 2 -270002 cd13181 RanBD_NUP2 1 putative RAN binding site 0 0 1 1 14,16,17,18,25,26,27,28,29,30,47,49,51,52,54,56,57,58,61,63,67,71,80,82,92,96 2 -270003 cd13182 EVH1-like_Dcp1 1 Dcp2 binding site 0 1 1 0 60,61,66 2 -270003 cd13182 EVH1-like_Dcp1 2 proline-rich peptide binding site 0 0 1 1 24,25,34,36,97 2 -270003 cd13182 EVH1-like_Dcp1 3 Patch 2 0 0 1 1 9,10,12,46,48 0 -270003 cd13182 EVH1-like_Dcp1 4 hydrophobic patch 0 0 1 1 5,12,15,16,42,59,110,114 0 -270004 cd13183 FERM_C_FRMPD1_FRMPD3_FRMPD4 1 putative actin binding site 2 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96 2 -270004 cd13183 FERM_C_FRMPD1_FRMPD3_FRMPD4 2 putative peptide binding site 0 0 1 1 43,49,50,51,52,85,89,92,93 2 -270004 cd13183 FERM_C_FRMPD1_FRMPD3_FRMPD4 3 putative phosphoinositide binding site 0 0 1 0 8,29,31,39 5 -270005 cd13184 FERM_C_4_1_family 1 putative actin binding site 2 0 0 1 1 81,82,83,84,85,86,87,88,89,90,91,92 2 -270005 cd13184 FERM_C_4_1_family 2 putative peptide binding site 0 1 1 1 38,43,44,45,46,81,85,88,89 2 -270005 cd13184 FERM_C_4_1_family 3 putative phosphoinositide binding site 0 0 1 0 9,26,28,34 5 -270006 cd13185 FERM_C_FRMD1_FRMD6 1 putative actin binding site 2 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96 2 -270006 cd13185 FERM_C_FRMD1_FRMD6 2 putative peptide binding site 0 0 1 1 47,52,53,54,55,85,89,92,93 2 -270006 cd13185 FERM_C_FRMD1_FRMD6 3 putative phosphoinositide binding site 0 0 1 0 14,31,33,43 5 -270007 cd13186 FERM_C_NBL4_NBL5 1 putative actin binding site 2 0 0 1 1 80,81,82,83,84,85,86,87,88,89,90,91 2 -270007 cd13186 FERM_C_NBL4_NBL5 2 putative peptide binding site 0 0 1 1 37,42,43,44,45,80,84,87,88 2 -270007 cd13186 FERM_C_NBL4_NBL5 3 putative phosphoinositide binding site 0 0 1 0 8,25,27,33 5 -270008 cd13187 FERM_C_PTPH13 1 putative actin binding site 2 0 0 1 1 83,84,85,86,87,88,89,90,91,92,93,94 2 -270008 cd13187 FERM_C_PTPH13 2 putative peptide binding site 0 0 1 1 44,49,50,51,52,83,87,90,91 2 -270008 cd13187 FERM_C_PTPH13 3 putative phosphoinositide binding site 0 0 1 0 8,28,30,40 5 -270009 cd13188 FERM_C_PTPN14_PTPN21 1 putative actin binding site 2 0 0 1 1 77,78,79,80,81,82,83,84,85,86,87,88 2 -270009 cd13188 FERM_C_PTPN14_PTPN21 2 putative peptide binding site 0 0 1 1 39,44,45,46,47,77,81,84,85 2 -270009 cd13188 FERM_C_PTPN14_PTPN21 3 putative phosphoinositide binding site 0 0 1 0 9,26,28,35 5 -270010 cd13189 FERM_C_PTPN4_PTPN3_like 1 putative actin binding site 2 0 0 1 1 82,83,84,85,86,87,88,89,90,91,92,93 2 -270010 cd13189 FERM_C_PTPN4_PTPN3_like 2 putative peptide binding site 0 0 1 1 39,44,45,46,47,82,86,89,90 2 -270010 cd13189 FERM_C_PTPN4_PTPN3_like 3 putative phosphoinositide binding site 0 0 1 0 10,27,29,35 5 -270011 cd13190 FERM_C_FAK1 1 putative actin binding site 2 0 0 1 1 87,88,89,90,91,92,93,94,95,96,97,98 2 -270011 cd13190 FERM_C_FAK1 2 putative peptide binding site 0 0 1 1 42,47,48,49,50,87,91,94,95 2 -270011 cd13190 FERM_C_FAK1 3 putative phosphoinositide binding site 0 0 1 0 8,28,30,37 5 -270012 cd13191 FERM_C_FRMD4A_FRMD4B 1 putative actin binding site 2 0 0 1 1 93,94,95,96,97,98,99,100,101,102,103,104 2 -270012 cd13191 FERM_C_FRMD4A_FRMD4B 2 putative peptide binding site 0 0 1 1 40,45,46,47,48,93,97,100,101 2 -270012 cd13191 FERM_C_FRMD4A_FRMD4B 3 putative phosphoinositide binding site 0 0 1 0 8,25,27,36 5 -270013 cd13192 FERM_C_FRMD3_FRMD5 1 putative actin binding site 2 0 0 1 1 93,94,95,96,97,98,99,100,101,102,103,104 2 -270013 cd13192 FERM_C_FRMD3_FRMD5 2 putative peptide binding site 0 0 1 1 52,57,58,59,60,93,97,100,101 2 -270013 cd13192 FERM_C_FRMD3_FRMD5 3 putative phosphoinositide binding site 0 0 1 0 23,40,42,48 5 -270014 cd13193 FERM_C_FARP1-like 1 putative actin binding site 2 0 0 1 1 89,90,91,92,93,94,95,96,97,98,99,100 2 -270014 cd13193 FERM_C_FARP1-like 2 putative peptide binding site 0 0 1 1 46,51,52,53,54,89,93,96,97 2 -270014 cd13193 FERM_C_FARP1-like 3 putative phosphoinositide binding site 0 0 1 0 17,34,36,42 5 -270015 cd13194 FERM_C_ERM 1 phosphoinositide binding site 0 1 1 1 78,82 5 -270015 cd13194 FERM_C_ERM 2 peptide binding site 0 1 1 1 42,45,46,47,48,49,50,51,52,60,81,84,85,88 2 -270015 cd13194 FERM_C_ERM 3 actin binding site 2 0 0 1 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 2 -270015 cd13194 FERM_C_ERM 4 homodimer interface 0 1 1 1 42,43,45,46,47,48,49,50,51,60,81,84,85,88 2 -270016 cd13195 FERM_C_MYLIP_IDOL 1 putative actin binding site 2 0 0 1 1 80,81,82,83,84,85,86,87,88,89,90,91 2 -270016 cd13195 FERM_C_MYLIP_IDOL 2 putative peptide binding site 0 0 1 1 39,44,45,46,47,80,84,87,88 2 -270016 cd13195 FERM_C_MYLIP_IDOL 3 putative phosphoinositide binding site 0 0 1 0 9,26,28,35 5 -275394 cd13196 FERM_C_JAK 1 putative actin binding site 2 0 0 1 1 88,89,90,91,92,93,94,95,96,97,98,99 2 -275394 cd13196 FERM_C_JAK 2 putative peptide binding site 0 0 1 1 49,54,55,56,57,88,92,95,96 2 -275394 cd13196 FERM_C_JAK 3 putative phosphoinositide binding site 0 0 1 0 8,30,32,45 5 -270018 cd13197 FERM_C_CCM1 1 putative actin binding site 2 0 0 1 1 87,88,89,90,91,92,93,94,95,96,97,98 2 -270018 cd13197 FERM_C_CCM1 2 putative peptide binding site 0 0 1 1 45,50,51,52,53,87,91,94,95 2 -270018 cd13197 FERM_C_CCM1 3 putative phosphoinositide binding site 0 0 1 0 14,33,35,41 5 -270019 cd13198 FERM_C1_MyoVII 1 CEN1 peptide binding site 0 1 1 0 0,1,5,7,22,37 2 -270019 cd13198 FERM_C1_MyoVII 2 putative actin binding site 2 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96 2 -270019 cd13198 FERM_C1_MyoVII 3 putative phosphoinositide binding site 0 0 1 0 10,32,34,41 5 -270020 cd13199 FERM_C2_MyoVII 1 putative actin binding site 2 0 0 1 1 83,84,85,86,87,88,89,90,91,92,93,94 2 -270020 cd13199 FERM_C2_MyoVII 2 putative peptide binding site 0 0 1 1 41,45,46,47,48,83,87,90,91 2 -270020 cd13199 FERM_C2_MyoVII 3 putative phosphoinositide binding site 0 0 1 0 8,29,31,37 5 -270021 cd13200 FERM_C_KCBP 1 putative actin binding site 2 0 0 1 1 94,95,96,97,98,99,100,101,102,103,104,105 2 -270021 cd13200 FERM_C_KCBP 2 putative peptide binding site 0 0 1 1 43,47,48,49,50,94,98,101,102 2 -270021 cd13200 FERM_C_KCBP 3 putative phosphoinositide binding site 0 0 1 0 8,31,33,39 5 -270022 cd13201 FERM_C_MyoXV 1 putative actin binding site 2 0 0 1 1 89,90,91,92,93,94,95,96,97,98,99,100 2 -270022 cd13201 FERM_C_MyoXV 2 putative peptide binding site 0 0 1 1 43,48,49,50,51,89,93,96,97 2 -270022 cd13201 FERM_C_MyoXV 3 putative phosphoinositide binding site 0 0 1 0 8,29,31,39 5 -270023 cd13202 FERM_C_MyoX 1 peptide binding site 0 1 1 1 42,43,45,46,47,48,49,50,56,73,74,77,78,80,81,84,85 2 -270023 cd13202 FERM_C_MyoX 2 putative actin binding site 2 0 0 1 1 77,78,79,80,81,82,83,84,85,86,87,88 2 -270024 cd13203 FERM_C1_myosin_like 1 putative actin binding site 2 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95 2 -270024 cd13203 FERM_C1_myosin_like 2 putative peptide binding site 0 0 1 1 41,48,49,50,51,84,88,91,92 2 -270024 cd13203 FERM_C1_myosin_like 3 putative phosphoinositide binding site 0 0 1 0 8,29,31,35 5 -270025 cd13204 FERM_C2_myosin_like 1 putative actin binding site 2 0 0 1 1 80,81,82,83,84,85,86,87,88,89,90,91 2 -270025 cd13204 FERM_C2_myosin_like 2 putative peptide binding site 0 0 1 1 43,48,49,50,51,80,84,87,88 2 -270025 cd13204 FERM_C2_myosin_like 3 putative phosphoinositide binding site 0 0 1 0 8,29,31,39 5 -270026 cd13205 FERM_C_fermitin 1 putative peptide binding site 0 0 1 1 42,47,48,49,50,79,83,86,87 2 -270026 cd13205 FERM_C_fermitin 2 putative actin binding site 2 0 0 1 1 79,80,81,82,83,84,85,86,87,88,89,90 2 -270026 cd13205 FERM_C_fermitin 3 putative phosphoinositide binding site 0 0 1 0 10,28,30,38 5 -241360 cd13206 FERM_C-lobe_PLEKHH1_PLEKHH2 1 TSLC1 peptide binding site 0 0 1 1 44,49,50,51,52,87,91,94,95,98 2 -241360 cd13206 FERM_C-lobe_PLEKHH1_PLEKHH2 2 putative actin binding site 2 0 0 1 1 87,88,89,90,91,92,93,94,95,96,97,98 2 -241360 cd13206 FERM_C-lobe_PLEKHH1_PLEKHH2 3 putative phosphoinositide binding site 0 0 1 0 8,30,32,40 5 -275402 cd13215 PH-GRAM1_AGT26 1 putative lipid binding motif 0 0 1 1 28,39,40,41 0 -275403 cd13216 PH-GRAM2_AGT26 1 putative lipid binding motif 0 0 1 1 19,20,21 0 -270045 cd13225 PH-like_bacteria 1 pentamer interface 0 1 0 0 20,21,28,34,35,36,37,38,39,41,46,47,48,49,50,51,52,65,66,84,87,88,91 2 -270045 cd13225 PH-like_bacteria 2 dodecaamer interface 0 1 1 0 34,35,36,37,39,50,51,52,84,87,88,91 2 -275408 cd13226 PH-GRAM-like_Eap45 1 ubiquitin binding site 0 1 1 0 66,67,69,85,86,87,99,105 2 -275408 cd13226 PH-GRAM-like_Eap45 2 phosphoinositide binding site 0 0 1 1 31,81,111 5 -275409 cd13227 PH-GRAM-like_Vps36 1 phosphoinositide binding site 0 1 1 0 34,82,85 5 -270049 cd13229 PH_TFIIH 1 peptide binding site 0 1 1 0 9,44,45,46,47,50,54,55,56,66,68,83,87 2 -270053 cd13233 PH_ARHGAP9-like 1 non-cannonial phosphoinositide binding site 0 1 1 1 8,19,20,21,69,70,71 5 -270054 cd13234 PHsplit_PLC_gamma 1 Rac2 binding site 0 1 1 1 56,87,91,94,95 2 -270060 cd13240 PH1_Kalirin_Trio_like 1 Rac1 binding site 0 1 1 0 17,57,59 2 -270061 cd13241 PH2_Kalirin_Trio_p63RhoGEF 1 Galpha i/q binding site 0 1 1 1 9,44,45,71,73,126,129,130,131,133,134,136,137,138 2 -270068 cd13248 PH_PEPP1_2_3 1 phosphoinositide binding site 0 1 0 0 14,16,17,24,26,37,80 5 -270072 cd13252 PH1_ADAP 1 phosphoinositide binding site 0 1 1 0 8,11,12,13,19,32,34,42,76 5 -270072 cd13252 PH1_ADAP 2 KIF12B binding site 0 1 1 1 7,13,15,16,17,56,57,58,59,60,61,62,63,81,83 2 -270072 cd13252 PH1_ADAP 3 heterotetramer interface 0 1 0 1 7,13,15,16,17,56,57,58,59,60,61,62,63,81,82,83,84,86,87 2 -270085 cd13265 PH_evt 1 phosophoserine binding site 0 1 1 0 10,12,13,14,15,16,17,19,33,44,86 5 -270086 cd13266 PH_Skap_family 1 ligand binding site 0 1 1 0 8,10,23,34,78 5 -270090 cd13271 PH2_TAPP1_2 1 phosphoinositide binding site 0 1 1 0 15,17,18,26,37,47,48,80 5 -270114 cd13302 PH2_Pleckstrin_2 1 phosphoinositide binding site 0 1 1 0 13,15,16,17,18,38,48,87 5 -270114 cd13302 PH2_Pleckstrin_2 2 homodimer interface 0 1 1 0 33,35,37,47,50,52,54,55,82 2 -241457 cd13303 PH1-like_Rtt106 1 H3 histone binding site 0 0 1 1 13,19 2 -241457 cd13303 PH1-like_Rtt106 2 dsDNA binding site 0 0 1 1 19,20,21,41,67 3 -241457 cd13303 PH1-like_Rtt106 3 negative patch 0 0 1 1 66 0 -241458 cd13304 PH2-like_Rtt106 1 K56ac binding site 0 1 1 0 21,22,38,85,88 2 -241458 cd13304 PH2-like_Rtt106 2 H3 histone binding site 0 0 1 1 49,52 2 -241458 cd13304 PH2-like_Rtt106 3 H3-H4 binding site 0 0 1 0 45,46,47,48,49,50,51,52,53,54 2 -241458 cd13304 PH2-like_Rtt106 4 dsDNA binding site 0 0 1 1 10,13,29,30 3 -241458 cd13304 PH2-like_Rtt106 5 negative patch 0 0 1 1 14,74 0 -270115 cd13305 PH_SHARPIN 1 homodimer interface 0 1 1 0 3,39,93,96,97,100,101,103 2 -270119 cd13309 PH_SKIP 1 SifA binding site 0 1 1 0 49,54,55,56,57,58,60,61,73,85,96,99 2 -270121 cd13311 PH_Slm1 1 non-cannonical phosphoinositide binding site 0 1 1 1 11,16,17,18,68,90 5 -270122 cd13312 PH_USP37_like 1 homodimer interface 0 1 0 0 24,25,26,37,44,45,46,48 2 -270123 cd13313 PH_NF1 1 homodimer interface 0 1 1 0 0,1,32,105,106,108,109 2 -270124 cd13314 PH_Rpn13 1 ubiquitin binding site 0 1 1 0 29,30,32,49,50,51,52,53,54,55,56,74,75,76,79 2 -270125 cd13315 PH_Sec3 1 phosphoinositide binding site 0 1 1 0 47,49,65,67,78,102,104 5 -270125 cd13315 PH_Sec3 2 homodimer interface 0 1 1 0 26,78,87,88,89,90,116,119,122,123,124,125,126,127,129,131,132,134,135,136,137,138,139,140 2 -270125 cd13315 PH_Sec3 3 Rho1 binding site 0 1 1 0 2,46,48,94,107,108,109 2 -270139 cd13331 PH_Avo1 1 homodimer interface 0 1 1 0 2,3,4,5,16,17,18,19,20,47,69,83,84,85,86,91,94,95,98 2 -270139 cd13331 PH_Avo1 2 putative phosphoinositide binding site 0 0 1 0 7,9,10,15,17,44,45,47,81,83 5 -275412 cd13332 FERM_C_JAK1 1 putative actin binding site 2 0 0 1 1 123,124,125,126,127,128,129,130,131,132,133,134 2 -275412 cd13332 FERM_C_JAK1 2 putative peptide binding site 0 0 1 1 86,91,92,93,94,123,127,130,131 2 -275412 cd13332 FERM_C_JAK1 3 putative phosphoinositide binding site 0 0 1 0 8,40,42,82 5 -270141 cd13333 FERM_C_JAK2 1 putative actin binding site 2 0 0 1 1 92,93,94,95,96,97,98,99,100,101,102,103 2 -270141 cd13333 FERM_C_JAK2 2 putative peptide binding site 0 0 1 1 46,51,52,53,54,92,96,99,100 2 -270141 cd13333 FERM_C_JAK2 3 putative phosphoinositide binding site 0 0 1 0 8,23,25,42 5 -275413 cd13334 FERM_C_JAK3 1 putative actin binding site 2 0 0 1 1 89,90,91,92,93,94,95,96,97,98,99,100 2 -275413 cd13334 FERM_C_JAK3 2 putative peptide binding site 0 0 1 1 42,47,48,49,50,89,93,96,97 2 -275413 cd13334 FERM_C_JAK3 3 putative phosphoinositide binding site 0 0 1 0 8,25,27,38 5 -275414 cd13335 FERM_C_TYK2 1 putative actin binding site 2 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148 2 -275414 cd13335 FERM_C_TYK2 2 putative peptide binding site 0 0 1 1 100,105,106,107,108,137,141,144,145 2 -275414 cd13335 FERM_C_TYK2 3 putative phosphoinositide binding site 0 0 1 0 9,51,53,96 5 -241514 cd13360 PH_PLC_fungal 1 putative Rac1 binding site 0 0 1 1 5,7,16,33,91 2 -241514 cd13360 PH_PLC_fungal 2 putative phosphoinositide binding site 0 0 1 1 8,10,13,15,17,32,33 5 -270167 cd13361 PH_PLC_beta 1 Rac1 binding site 0 1 1 1 5,7,18,35,100 2 -270167 cd13361 PH_PLC_beta 2 putative phosphoinositide binding site 0 0 1 1 8,10,15,17,19,34,35 5 -270168 cd13362 PH_PLC_gamma 1 putative Rac1 binding site 0 0 1 1 5,7,19,34,94 2 -270168 cd13362 PH_PLC_gamma 2 putative phosphoinositide binding site 0 0 1 1 8,10,16,18,20,33,34 5 -270169 cd13363 PH_PLC_delta 1 phosphoinositide binding site 0 1 1 0 8,10,14,16,18,32,33 5 -270169 cd13363 PH_PLC_delta 2 putative Rac1 binding site 0 0 1 1 5,7,17,33,90 2 -270170 cd13364 PH_PLC_eta 1 putative Rac1 binding site 0 0 1 1 5,7,17,34,91 2 -270170 cd13364 PH_PLC_eta 2 putative phosphoinositide binding site 0 0 1 1 8,10,14,16,18,33,34 5 -270171 cd13365 PH_PLC_plant-like 1 putative phosphoinositide binding site 0 0 1 1 17,19,23,25,27,42,43 5 -270171 cd13365 PH_PLC_plant-like 2 putative Rac1 binding site 0 0 1 1 14,16,26,43,97 2 -270180 cd13380 PH_Skap1 1 ligand binding site 0 1 1 0 8,9,10,11,13,23,34,44,78 5 -270181 cd13381 PH_Skap-hom_Skap2 1 ligand binding site 0 1 1 0 8,10,14,21,23,34,78,80 5 -275425 cd13390 PH_LARG 1 RhoA binding site 0 1 1 0 28,30,44,122,123 2 -275426 cd13391 PH_PRG 1 RhoA binding site 0 1 1 0 125,128 2 -275426 cd13391 PH_PRG 2 activated RhoA binding site 0 1 1 1 39,93,95,96,98,99,105,107,109,110,111,113,115,116 2 -275426 cd13391 PH_PRG 3 homodimer interface 0 1 1 0 98,99,100,101,102,123,124 2 -240521 cd13394 Syo1_like 1 polypeptide substrate binding site 0 1 1 0 295,302,311,312,347,390,393,394,397,398,400,401,402,412,443,447,476,481,574,578 2 -340367 cd13399 Slt35_like 1 sugar binding site 0 1 1 0 11,12,13,15,19,22,29,30,31,34,63,84,85,86,87,91 5 -340367 cd13399 Slt35_like 2 catalytic residues ESN 0 1 1 13,20,86 1 -340368 cd13400 LT_IagB_like 1 catalytic residue E 0 1 1 14 1 -340368 cd13400 LT_IagB_like 2 putative sugar binding site 0 0 1 1 14,36,37,38,41,69,87,88 5 -340369 cd13401 Slt70_like 1 sugar binding site 0 1 1 0 30,39,41,43,48,49,50,53,84,103,104,105,106,107,133 5 -340369 cd13401 Slt70_like 2 catalytic residue E 0 1 1 30 1 -340370 cd13402 LT_TF_like 1 putative sugar binding site 0 0 1 1 10,36,37,38,41,66,86,87 5 -340370 cd13402 LT_TF_like 2 catalytic residue E 0 1 1 10 1 -340371 cd13403 MLTF_like 1 catalytic residue E 0 1 1 21 1 -340371 cd13403 MLTF_like 2 putative sugar binding site 0 0 1 1 21,39,40,41,44,66,91,92 5 -259831 cd13404 UreI_AmiS_like 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,121,124,125 5 -259831 cd13404 UreI_AmiS_like 2 constriction site 1 0 0 1 1 3,64,121 5 -259831 cd13404 UreI_AmiS_like 3 constriction site 2 0 0 1 1 10,67,68,124,125 5 -259831 cd13404 UreI_AmiS_like 4 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,159,162 2 -276910 cd13405 TNFRSF14_teleost 1 CRD1 0 0 1 0 0,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,31,32,33 7 -276910 cd13405 TNFRSF14_teleost 2 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,62,63,64,65,66,67,68,69,70,72,73,74,75,76,77 7 -276911 cd13406 TNFRSF4 1 polypeptide ligand binding site 0 1 1 0 4,5,6,7,8,16,26,49,50,53 2 -276911 cd13406 TNFRSF4 2 CRD1 0 0 1 0 2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,32,33,34,35 7 -276911 cd13406 TNFRSF4 3 CRD2 0 0 1 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78 7 -276911 cd13406 TNFRSF4 4 CRD3 0 0 1 0 80,81,82,83,84,85,86,93,94,95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,128,129,130,131,132,133,134,135,136,137 7 -276912 cd13407 TNFRSF5 1 polypeptide ligand binding site 0 1 1 1 39,40,47,48,50,51,52,53,56,58,60,93 2 -276912 cd13407 TNFRSF5 2 CRD1 0 0 1 0 0,1,2,3,4,5,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,30,31,32,33 7 -276912 cd13407 TNFRSF5 3 CRD2 0 0 1 0 36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -276912 cd13407 TNFRSF5 4 CRD3 0 0 1 0 79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,99,100,101,102,103,104,105,106,107,113,114,115,116,117 7 -276912 cd13407 TNFRSF5 5 CRD4 0 0 1 0 120,121,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140,141,142,152,153,154,155,156,157,158,159,160 7 -276913 cd13408 TNFRSF7 1 CRD1 0 0 1 0 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -276913 cd13408 TNFRSF7 2 CRD2 0 0 1 0 61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -276913 cd13408 TNFRSF7 3 CRD3 0 0 1 0 102,103,104,105,107,108,109,110,111,112,113,114,115,116,117 7 -276914 cd13409 TNFRSF8 1 CRD1 0 0 1 0 27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63 7 -276914 cd13409 TNFRSF8 2 CRD2 0 0 1 0 66,67,68,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -276914 cd13409 TNFRSF8 3 CRD3 0 0 1 0 106,107,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -276915 cd13410 TNFRSF9 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22 7 -276915 cd13410 TNFRSF9 2 CRD2 0 0 1 0 25,26,27,29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,46,49,50,51,52,53,54,55,56,59,60,61,62,63 7 -276915 cd13410 TNFRSF9 3 CRD3 0 0 1 0 65,66,67,68,69,70,71,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,92,93,94 7 -276915 cd13410 TNFRSF9 4 CRD4 0 0 1 0 97,98,99,100,101,102,103,104,105,110,111,112,113,114,115,116,117,118,119,120,121,125,126,127,128,129,130,131,132,133,134,135 7 -276916 cd13411 TNFRSF11A 1 polypeptide ligand binding site 0 1 1 0 42,55,58,60,62,63,64,85,93,94,95,96 2 -276916 cd13411 TNFRSF11A 2 homodimer interface 0 1 1 0 143,144,145,146,147 2 -276916 cd13411 TNFRSF11A 3 CRD1 0 0 1 0 1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35 7 -276916 cd13411 TNFRSF11A 4 CRD2 0 0 1 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -276916 cd13411 TNFRSF11A 5 CRD3 0 0 1 0 81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,113,114,115,116,117,118 7 -276916 cd13411 TNFRSF11A 6 CRD4 0 0 1 0 121,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,153,154,155,156,157,158,159,160,161 7 -276917 cd13412 TNFRSF11B_teleost 1 CRD1 0 0 1 0 0,1,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -276917 cd13412 TNFRSF11B_teleost 2 CRD2 0 0 1 0 45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -276917 cd13412 TNFRSF11B_teleost 3 CRD3 0 0 1 0 87,88,89,90,91,92,95,96,97,98,99,100,101,102,103,104,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125 7 -276918 cd13413 TNFRSF12A 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,14,22,23 7 -276918 cd13413 TNFRSF12A 2 CRD2 0 0 1 0 26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,67,68,69,70,71,72,73,74,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -276919 cd13414 TNFRSF17 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 7 -276919 cd13414 TNFRSF17 2 CRD2 0 0 1 0 20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124 7 -276920 cd13415 TNFRSF13B 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -276920 cd13415 TNFRSF13B 2 CRD2 0 0 1 0 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -276920 cd13415 TNFRSF13B 3 CRD3 0 0 1 0 138,139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,181,182,183,184,185,186,187,190,191,192,193,194,195,196 7 -276921 cd13416 TNFRSF16 1 polypeptide ligand binding site 0 1 1 1 38,39,65,66,67,68,70,73,76,81,104,105,117,132,133,134,135,136 2 -276921 cd13416 TNFRSF16 2 CRD1 0 0 1 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34 7 -276921 cd13416 TNFRSF16 3 CRD2 0 0 1 0 37,38,39,42,43,44,45,46,47,48,49,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -276921 cd13416 TNFRSF16 4 CRD3 0 0 1 0 79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,108,109,110,111,112,113,114,115,116 7 -276921 cd13416 TNFRSF16 5 CRD4 0 0 1 0 119,123,124,125,126,127,132,133,134,135,136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -276922 cd13417 TNFRSF18 1 CRD1 0 0 1 0 1,2,3,4,5,6,7,8,9,10,11,12,13,21,22,23,24,28,29,30,31,32,33,34,35 7 -276922 cd13417 TNFRSF18 2 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -276923 cd13418 TNFRSF19 1 CRD1 0 0 1 0 1,2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39 7 -276923 cd13418 TNFRSF19 2 CRD2 0 0 1 0 42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -276923 cd13418 TNFRSF19 3 CRD3 0 0 1 0 84,85,86,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -276924 cd13419 TNFRSF19L 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,24,25,26 7 -276924 cd13419 TNFRSF19L 2 CRD2 0 0 1 0 29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -276925 cd13420 TNFRSF25 1 CRD1 0 0 1 0 3,4,5,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38 7 -276925 cd13420 TNFRSF25 2 CRD2 0 0 1 0 41,42,43,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -276925 cd13420 TNFRSF25 3 CRD3 0 0 1 0 85,86,87,88,89,90,91,92,93,94,102,103,104,105,106,107,108,109 7 -276926 cd13421 TNFRSF_EDAR 1 CRD1 0 0 1 0 18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58 7 -276926 cd13421 TNFRSF_EDAR 2 CRD2 0 0 1 0 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,95,96,97,98,99,100 7 -276926 cd13421 TNFRSF_EDAR 3 CRD3 0 0 1 0 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -276927 cd13422 TNFRSF5_teleost 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,12,13,14,15,16,17,18,19,20,21,22,23,24,28,30,31,32,33 7 -276927 cd13422 TNFRSF5_teleost 2 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,74,75,76,77 7 -276927 cd13422 TNFRSF5_teleost 3 CRD3 0 0 1 0 79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99 7 -276927 cd13422 TNFRSF5_teleost 4 CRD4 0 0 1 0 117,118,120,121,122,123,124,125,126,127,128,129,130,135,136,137,138,139,140,141,142,151,152,153,154,155,156,157,158,159 7 -276928 cd13423 TNFRSF6_teleost 1 CRD1 0 0 1 0 1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,33,34,35 7 -276928 cd13423 TNFRSF6_teleost 2 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,49,52,53,54,55,56,57,58,59,60,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -276928 cd13423 TNFRSF6_teleost 3 CRD3 0 0 1 0 81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100,101,102 7 -276929 cd13424 TNFRSF9_teleost 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,30,31,32,33,34 7 -276929 cd13424 TNFRSF9_teleost 2 CRD2 0 0 1 0 37,38,39,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,71,72,73,74,75 7 -276929 cd13424 TNFRSF9_teleost 3 CRD3 0 0 1 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,107 7 -276929 cd13424 TNFRSF9_teleost 4 CRD4 0 0 1 0 110,111,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,146,147,148,149 7 -240449 cd13426 Peptidase_G1 1 active site 0 1 1 0 42,56,75,141,144 1 -240449 cd13426 Peptidase_G1 2 polypeptide substrate binding site 0 1 1 0 2,3,7,40,42,47,56,60,73,75,141,143,144,181 2 -240450 cd13427 YncM_like 1 putative dimer interface 0 1 0 0 33,36,38,56,69,70,152 2 -240450 cd13427 YncM_like 2 putative binding site 0 1 0 1 7,9,50,145 0 -259832 cd13428 UreI_AmiS 1 transport channel LLFTYWLW 0 1 1 3,10,63,66,67,116,119,120 5 -259832 cd13428 UreI_AmiS 2 urea transport residue E 0 1 1 144 5 -259832 cd13428 UreI_AmiS 3 constriction site 1 0 0 1 1 3,63,116 5 -259832 cd13428 UreI_AmiS 4 constriction site 2 0 0 1 1 10,66,67,119,120 5 -259832 cd13428 UreI_AmiS 5 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,46,47,54,55,57,58,61,62,65,68,69,78,79,81,82,85,86,89,92,93,96,97,150,154,157 2 -259833 cd13429 UreI_AmiS_like_2 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,118,121,122 5 -259833 cd13429 UreI_AmiS_like_2 2 constriction site 1 0 0 1 1 3,64,118 5 -259833 cd13429 UreI_AmiS_like_2 3 constriction site 2 0 0 1 1 10,67,68,121,122 5 -259833 cd13429 UreI_AmiS_like_2 4 hexamer interface 0 0 1 1 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,157,160 2 -240441 cd13433 Na_channel_gate 1 putative hydrophobic latch 0 0 1 1 15,16,17,18 0 -240441 cd13433 Na_channel_gate 2 phosphorylation site [ST] 0 1 1 33 6 -240443 cd13440 CamS_repeat_2 1 putative dimer interface 0 1 0 0 31,32,34,35,41,51,53,60,61,62,63,64,65,67,68,70,71,72,74,75,88,90,100,102,112,113,114 2 -240444 cd13441 CamS_repeat_1 1 putative dimer interface 0 1 0 0 0,2,3,4,10,11,13,14,20,23,24,27,45,47 2 -259835 cd13442 CDI_toxin_Bp1026b_like 1 putative active site [EQ][DE][DEQ]x 0 1 1 21,50,59,78 1 -259835 cd13442 CDI_toxin_Bp1026b_like 2 putative metal binding site 0 0 1 1 21,50 4 -259835 cd13442 CDI_toxin_Bp1026b_like 3 inhibitor binding site 0 1 1 0 7,10,17,18,21,38,46,47,48,50,59,60,61,63,64,65,70,73,74,77,78,80 2 -259836 cd13443 CDI_inhibitor_Bp1026b_like 1 CDI toxin binding surface 0 1 1 0 0,1,2,4,36,39,44,45,48,61,65,67,70,71,73,93,94,95,96,97,99 2 -259837 cd13444 CDI_toxin_EC869_like 1 putative active site [EDQ]DSK 0 1 1 23,44,55,57 1 -259837 cd13444 CDI_toxin_EC869_like 2 Zn binding site [ED][ED] 1 1 0 23,44 4 -259837 cd13444 CDI_toxin_EC869_like 3 inhibitor binding site 0 1 1 0 33,35,36,37,41,46,88,89,90,91,93,94,95,97,99,100 2 -259838 cd13445 CDI_inhibitor_EC869_like 1 CDI toxin binding surface 0 1 1 0 0,2,4,17,20,21,22,23,24,25,75,100,104,113,118,119,121,122,123,124,125 2 -259825 cd13516 HHD_CCM2 1 putative dimer interface 0 1 1 0 0,1,2,3,4,8,9,12,15,16,18,19,22,35,38,41,42,43,45,46 2 -270236 cd13518 PBP2_Fe3_thiamine_like 1 chemical substrate binding site 0 1 1 1 139,140,174,175,176,193,195,196 5 -270237 cd13519 PBP2_PEB3_AcfC 1 chemical substrate binding site 0 1 1 0 6,33,34,112,113,144,145,146,147 5 -270238 cd13520 PBP2_TAXI_TRAP 1 chemical substrate binding site 0 1 1 0 6,10,11,12,38,39,40,58,89,119,120,121,163,164 5 -270239 cd13521 PBP2_AlgQ_like 1 chemical substrate binding site 0 1 1 0 117,126,175,261,381,385,386 5 -270239 cd13521 PBP2_AlgQ_like 2 dimer interface 0 1 1 0 133,136,137,138,139 2 -270240 cd13522 PBP2_ABC_oligosaccharides 1 chemical substrate binding site 0 1 1 0 63,64,109,154,155,227,339,342 5 -270241 cd13523 PBP2_polyamines 1 chemical substrate binding site 0 1 1 0 6,142,206,232,234 5 -270242 cd13524 PBP2_Thiaminase_I 1 chemical substrate binding site 0 1 1 0 7,9,112,232,234,265,267 5 -270242 cd13524 PBP2_Thiaminase_I 2 dimer interface 0 1 1 0 0,28,281,282,285 2 -270243 cd13525 PBP2_ATP-Prtase_HisG 1 chemical substrate binding site 0 1 1 0 141,143,156,157,158,160,161,162,163 5 -270244 cd13526 PBP2_lipoprotein_MetQ_like 1 chemical substrate binding site 0 1 1 0 36,53,54,55,58,79,108,111,167,169,195 5 -270245 cd13527 PBP2_TRAP 1 chemical substrate binding site 0 1 1 0 61,123,143,145,165,182,209 5 -270246 cd13528 PBP2_osmoprotectants 1 chemical substrate binding site 0 1 1 0 6,8,56,57,60,102,104,183,207 5 -270247 cd13529 PBP2_transferrin 1 active site 0 1 1 0 56,85,111,118,217 1 -270250 cd13532 PBP2_PDT_like 1 active site 0 1 1 0 6,32,33 1 -270250 cd13532 PBP2_PDT_like 2 dimer interface 0 1 1 0 32,38,53,106,108,112,124,126,127,128 2 -270252 cd13534 PBP2_MqnD_like 1 ligand binding site 0 1 1 0 37,53,55,104,105,106,143,176 5 -270253 cd13535 PBP2_Osm_BCP_like 1 ligand binding site 0 1 1 0 8,10,55,84,126,130,131,178 5 -270253 cd13535 PBP2_Osm_BCP_like 2 dimer interface 0 1 1 0 236,239,240,243 2 -270254 cd13536 PBP2_EcModA 1 chemical substrate binding site 0 1 1 0 6,7,35,54,119,120,146,147,165 5 -270255 cd13537 PBP2_YvgL_like 1 putative chemical substrate binding site 0 0 1 1 6,7,36,55,116,117,143,144,162 5 -270256 cd13538 PBP2_ModA_like_1 1 putative chemical substrate binding site 0 0 1 1 6,7,36,55,114,115,148,149,167 5 -270257 cd13539 PBP2_AvModA 1 chemical substrate binding site 0 1 1 0 6,7,35,54,115,116,142,143,161 5 -270258 cd13540 PBP2_ModA_WtpA 1 chemical substrate binding site 0 1 1 0 6,7,36,56,120,121,158,159,177 5 -270259 cd13541 PBP2_ModA_like_2 1 putative chemical substrate binding site 0 0 1 1 6,7,35,54,114,115,156,157,175 5 -270260 cd13542 PBP2_FutA1_ilke 1 chemical substrate binding site 0 1 1 0 138,139,174,175,176,193,195,196 5 -270261 cd13543 PBP2_Fbp 1 chemical substrate binding site 0 1 1 0 137,138,172,173,174,191,193,194 5 -270262 cd13544 PBP2_Fbp_like_1 1 putative chemical substrate binding site 0 0 1 1 141,142,176,177,178,195,197,198 5 -270263 cd13545 PBP2_TbpA 1 chemical substrate binding site 0 1 1 0 143,144,178,179,180,197,199,200 5 -270264 cd13546 PBP2_BitB 1 putative chemical substrate binding site 0 0 1 1 137,138,170,171,172,189,191,192 5 -270265 cd13547 PBP2_Fbp_like_2 1 putative chemical substrate binding site 0 0 1 1 141,142,174,175,176,193,195,196 5 -270266 cd13548 PBP2_AEPn_like 1 putative chemical substrate binding site 0 0 1 1 136,137,171,172,173,190,193,194 5 -270267 cd13549 PBP2_Fbp_like_3 1 putative chemical substrate binding site 0 0 1 1 139,140,177,178,179,196,198,199 5 -270268 cd13550 PBP2_Fbp_like_4 1 putative chemical substrate binding site 0 0 1 1 138,139,173,174,175,192,194,195 5 -270269 cd13551 PBP2_Fbp_like_5 1 putative chemical substrate binding site 0 0 1 1 138,139,180,181,182,199,202,203 5 -270270 cd13552 PBP2_Fbp_like_6 1 putative chemical substrate binding site 0 0 1 1 139,140,179,180,181,198,200,201 5 -270271 cd13553 PBP2_NrtA_CpmA_like 1 chemical substrate binding site 0 1 1 0 7,8,38,82,106,112,138,155,156,159,185 5 -270272 cd13554 PBP2_DszB 1 chemical substrate binding site 0 1 1 0 8,37,85,109,118,159,160,163,189 5 -270273 cd13555 PBP2_sulfate_ester_like 1 chemical substrate binding site 0 1 0 0 20,87,251,259,260 5 -270274 cd13556 PBP2_SsuA_like_1 1 putative chemical substrate binding site 0 0 1 1 7,40,84,108,113,155,156,159,182 5 -270275 cd13557 PBP2_SsuA 1 chemical substrate binding site 0 1 1 0 7,39,84,108,113,155,156,159,183 5 -270276 cd13558 PBP2_SsuA_like_2 1 putative chemical substrate binding site 0 0 1 1 7,35,80,104,109,151,152,155,179 5 -270277 cd13559 PBP2_SsuA_like_3 1 putative chemical substrate binding site 0 0 1 1 7,50,102,126,131,174,175,178,203 5 -270278 cd13560 PBP2_taurine 1 putative chemical substrate binding site 0 0 1 1 7,37,82,106,111,153,154,157,183 5 -270279 cd13561 PBP2_SsuA_like_4 1 putative chemical substrate binding site 0 0 1 1 7,39,84,106,111,153,154,157,185 5 -270280 cd13562 PBP2_SsuA_like_5 1 putative chemical substrate binding site 0 0 1 1 7,44,89,113,118,160,161,164,188 5 -270281 cd13563 PBP2_SsuA_like_6 1 putative chemical substrate binding site 0 0 1 1 7,38,83,105,110,152,153,156,181 5 -270282 cd13564 PBP2_ThiY_THI5_like 1 chemical substrate binding site 0 1 1 0 7,39,84,108,114,156,157,160,187 5 -270283 cd13565 PBP2_PstS 1 chemical substrate binding site 0 1 1 0 8,9,10,37,38,56,136,140,141,142 5 -270284 cd13566 PBP2_phosphate 1 chemical substrate binding site 0 1 0 0 8,56,128,132,133,134,135,158 5 -270285 cd13567 PBP2_TtGluBP 1 chemical substrate binding site 0 1 1 0 6,10,11,12,38,39,40,58,89,119,120,121,163,164 5 -270286 cd13568 PBP2_TAXI_TRAP_like_3 1 putative chemical substrate binding site 0 0 1 1 6,10,11,12,40,41,42,60,92,122,123,124,167,168 5 -270287 cd13569 PBP2_TAXI_TRAP_like_1 1 putative chemical substrate binding site 0 0 1 1 6,10,11,12,38,39,40,58,87,117,118,119,162,163 5 -270288 cd13570 PBP2_TAXI_TRAP_like_2 1 putative chemical substrate binding site 0 0 1 1 6,10,11,12,37,38,39,57,89,119,120,121,160,161 5 -270289 cd13571 PBP2_PnhD_1 1 putative chemical substrate binding site 0 0 1 1 45,61,63,90,120,121,122,151,169,199 5 -270290 cd13572 PBP2_PnhD_2 1 putative chemical substrate binding site 0 0 1 1 45,61,63,90,120,121,122,151,169,199 5 -270291 cd13573 PBP2_PnhD_3 1 putative chemical substrate binding site 0 0 1 1 45,61,63,91,121,122,123,152,170,200 5 -270292 cd13574 PBP2_PnhD_4 1 putative chemical substrate binding site 0 0 1 1 45,61,63,92,122,123,124,152,170,194 5 -270293 cd13575 PBP2_PnhD 1 chemical substrate binding site 0 1 1 0 45,61,63,91,125,126,127,156,174,204 5 -270294 cd13576 PBP2_BugD_Asp 1 chemical substrate binding site 0 1 1 0 11,15,16,17,136,137,178,223 5 -270295 cd13577 PBP2_BugE_Glu 1 chemical substrate binding site 0 1 1 0 11,15,16,17,137,138,179,224 5 -270296 cd13578 PBP2_Bug27 1 chemical substrate binding site 0 1 1 0 11,15,16,17,136,137,178,223 5 -270297 cd13579 PBP2_Bug_NagM 1 putative chemical substrate binding site 0 0 1 1 11,15,16,17,137,138,179,224 5 -270298 cd13580 PBP2_AlgQ_like_1 1 putative chemical substrate binding site 0 0 1 1 116,124,173,256,376,380,381 5 -270298 cd13580 PBP2_AlgQ_like_1 2 putative dimer interface 0 0 1 1 131,134,135,136,137 2 -270299 cd13581 PBP2_AlgQ_like_2 1 putative chemical substrate binding site 0 0 1 1 119,130,179,269,388,392,393 5 -270299 cd13581 PBP2_AlgQ_like_2 2 putative dimer interface 0 0 1 1 137,140,141,142,143 2 -270300 cd13582 PBP2_AlgQ_like_3 1 putative chemical substrate binding site 0 0 1 1 112,124,173,259,373,377,378 5 -270300 cd13582 PBP2_AlgQ_like_3 2 putative dimer interface 0 0 1 1 131,134,135,136,137 2 -270301 cd13583 PBP2_AlgQ_like_4 1 putative chemical substrate binding site 0 0 1 1 118,127,176,257,379,383,384 5 -270301 cd13583 PBP2_AlgQ_like_4 2 putative dimer interface 0 0 1 1 134,137,138,139,140 2 -270302 cd13584 PBP2_AlgQ1_2 1 chemical substrate binding site 0 1 1 0 121,132,181,261,384,388,389 5 -270302 cd13584 PBP2_AlgQ1_2 2 dimer interface 0 1 1 0 139,142,143,144,145 2 -270303 cd13585 PBP2_TMBP_like 1 chemical substrate binding site 0 1 1 0 110,112,236,238,270,271,272,313 5 -270304 cd13586 PBP2_Maltose_binding_like 1 chemical substrate binding site 0 1 1 0 61,62,107,153,154,227,328,338,341 5 -270305 cd13587 PBP2_polyamine_2 1 putative chemical substrate binding site 0 0 1 1 6,143,216,242,244 5 -270306 cd13588 PBP2_polyamine_1 1 putative chemical substrate binding site 0 0 1 1 6,141,205,231,233 5 -270307 cd13589 PBP2_polyamine_RpCGA009 1 putative chemical substrate binding site 0 0 1 1 7,141,201,227,229 5 -270308 cd13590 PBP2_PotD_PotF_like 1 chemical substrate binding site 0 1 1 1 6,201,204,227,229,265 5 -270309 cd13591 PBP2_HisGL1 1 chemical substrate binding site 0 1 1 0 10,115,154,155,156,157,158,159,160 5 -270310 cd13592 PBP2_HisGL2 1 chemical substrate binding site 0 1 1 0 142,144,157,158,159,161,162,163,164 5 -270311 cd13593 PBP2_HisGL3 1 chemical substrate binding site 0 0 1 1 151,153,166,167,168,170,171,172,173 5 -270312 cd13594 PBP2_HisGL4 1 putative chemical substrate binding site 0 0 1 1 141,143,156,157,158,160,161,162,163 5 -270312 cd13594 PBP2_HisGL4 2 dimer interface 0 1 0 0 35,49,52,55,56,75,136,137,138,139,147,148,150 2 -270313 cd13595 PBP2_HisGs 1 chemical substrate binding site 0 1 1 0 139,141,154,155,156,158,159,160,161 5 -270313 cd13595 PBP2_HisGs 2 dimer interface 0 1 1 0 7,35,36,47,48,53,57,59,60,80,81,82,83,84,85,118,130,134,135,136,137,138,139,142,145,146,148,183,191,195,198 2 -270314 cd13596 PBP2_lipoprotein_GmpC 1 chemical substrate binding site 0 1 1 0 35,52,53,54,57,78,107,110,166,168,197 5 -270315 cd13597 PBP2_lipoprotein_Tp32 1 chemical substrate binding site 0 1 1 0 36,53,54,55,58,79,108,111,167,169,195 5 -270316 cd13598 PBP2_lipoprotein_IlpA_like 1 chemical substrate binding site 0 1 1 0 36,53,54,55,58,79,108,111,167,169,194 5 -270317 cd13599 PBP2_lipoprotein_Gna1946 1 chemical substrate binding site 0 1 1 0 37,54,55,56,59,80,109,112,169,171,195 5 -270318 cd13600 PBP2_lipoprotein_like_1 1 putative chemical substrate binding site 0 0 1 1 36,53,54,55,58,108,111,168,170,195 5 -270319 cd13601 PBP2_TRAP_DctP1_3_4_like 1 putative chemical substrate binding site 0 0 1 1 62,122,143,145,165,182,210 5 -270320 cd13602 PBP2_TRAP_BpDctp6_7 1 chemical substrate binding site 0 1 1 0 46,64,118,121,141,143,163,180,181,184,205 5 -270320 cd13602 PBP2_TRAP_BpDctp6_7 2 dimer interface 0 1 1 0 15,82,167,186,187,188,191,192,199,200,201,247,251,252,254,255,259,260,261,262 2 -270321 cd13603 PBP2_TRAP_Siap_TeaA_like 1 chemical substrate binding site 0 1 1 0 142,144,165,182,183,186,207 5 -270322 cd13604 PBP2_TRAP_ketoacid_lactate_like 1 chemical substrate binding site 0 1 1 0 13,66,122,143,145,180,181,182,206 5 -270323 cd13605 PBP2_TRAP_DctP_like_2 1 putative chemical substrate binding site 0 0 1 1 61,124,144,146,167,184,212 5 -270324 cd13606 PBP2_ProX_like 1 putative chemical substrate binding site 0 0 1 1 6,8,55,56,59,98,100,181,205 5 -270325 cd13607 PBP2_AfProX_like 1 chemical substrate binding site 0 1 1 0 6,8,55,56,59,99,101,180,204 5 -270326 cd13608 PBP2_OpuCC_like 1 chemical substrate binding site 0 1 1 0 6,8,57,58,61,102,104,184,208 5 -270327 cd13609 PBP2_Opu_like_1 1 putative chemical substrate binding site 0 0 1 1 6,8,56,57,60,101,103,182,206 5 -270328 cd13610 PBP2_ChoS 1 putative chemical substrate binding site 0 0 1 1 6,8,57,58,61,103,105,183,207 5 -270329 cd13611 PBP2_YehZ 1 putative chemical substrate binding site 0 0 1 1 6,8,55,56,59,100,102,186,210 5 -270330 cd13612 PBP2_ProWX 1 putative chemical substrate binding site 0 0 1 1 6,8,57,58,61,101,103,182,206 5 -270331 cd13613 PBP2_Opu_like_2 1 putative chemical substrate binding site 0 0 1 1 6,8,56,57,60,101,103,183,207 5 -270332 cd13614 PBP2_QAT_like 1 putative chemical substrate binding site 0 0 1 1 6,8,55,56,59,100,102,183,207 5 -270333 cd13615 PBP2_ProWY 1 putative chemical substrate binding site 0 0 1 1 6,8,54,55,58,99,101,181,205 5 -270334 cd13616 PBP2_OsmF 1 putative chemical substrate binding site 0 0 1 1 6,8,55,56,59,102,104,193,217 5 -270335 cd13617 PBP2_transferrin_C 1 active site 0 1 0 0 53,91,117,121,122,123,124,184,252 1 -270336 cd13618 PBP2_transferrin_N 1 active site 0 1 1 0 55,87,112,116,117,118,119,184,245 1 -270337 cd13619 PBP2_GlnP 1 ligand binding site 0 1 1 0 6,9,47,64,65,66,67,72,112,115,116,156,182 5 -270338 cd13620 PBP2_GltS 1 ligand binding site 0 1 0 0 10,13,17,54,71,72,73,74,79,120,123,124,125,162,191 5 -270339 cd13621 PBP2_AA_binding_like_3 1 putative amino acid binding residues 0 0 1 1 80,125,163 0 -270340 cd13622 PBP2_Arg_3 1 putative ligand binding site 0 0 0 1 8,11,49,66,68,69,74,114,117,118,119,157 5 -270342 cd13624 PBP2_Arg_Lys_His 1 chemical substrate binding site 0 1 1 0 9,47,64,65,66,67,72,112,115,116,154,182 5 -270342 cd13624 PBP2_Arg_Lys_His 2 dimer interface 0 1 1 0 133,134,138,141,142,145,163,215,216,217,218 2 -270343 cd13625 PBP2_AA_binding_like_1 1 amino acid binding residues 0 0 1 0 167 0 -270344 cd13626 PBP2_Cystine_like 1 chemical substrate binding site 0 1 1 0 6,9,47,64,65,66,72,112,116,117,153 5 -270345 cd13627 PBP2_AA_binding_like_2 1 amino acid binding residues 0 0 1 0 169 0 -270346 cd13628 PBP2_Ala 1 chemical substrate binding site 0 1 0 0 48,66,67,68,73,115,116,117,157,184 5 -270347 cd13629 PBP2_Dsm1740 1 ligand binding site 0 1 0 0 6,9,47,65,66,67,72,115,118,119,139,156,157 5 -270347 cd13629 PBP2_Dsm1740 2 oligomer interface 0 1 0 0 73,74,77,78,79,181,183,190,194,197,198,201,202,205,213,216 2 -270348 cd13630 PBP2_PDT_1 1 putative active site 0 0 1 1 6,32,33 1 -270348 cd13630 PBP2_PDT_1 2 putative dimer interface 0 0 1 1 32,38,53,104,106,110,122,125,126 2 -270349 cd13631 PBP2_Ct-PDT_like 1 active site 0 0 1 0 6,32,33 1 -270349 cd13631 PBP2_Ct-PDT_like 2 dimer interface 0 1 1 0 32,38,53,105,107,111,122,124,125 2 -270350 cd13632 PBP2_Aa-PDT_like 1 putative active site 0 0 1 1 6,33,34 1 -270350 cd13632 PBP2_Aa-PDT_like 2 dimer interface 0 1 1 0 33,39,54,107,109,113,125 2 -270351 cd13633 PBP2_Sa-PDT_like 1 active site 0 1 1 0 6,33,34 1 -270351 cd13633 PBP2_Sa-PDT_like 2 dimer interface 0 0 1 1 33,39,54,107,109,113,123,125,126 2 -270352 cd13634 PBP2_Sco4506 1 putative ligand binding site 0 0 0 1 50,103,104,105,143,176 5 -270352 cd13634 PBP2_Sco4506 2 oligomer interface 0 1 1 0 0,1,12,15,16,26,124,125,126,132,194,216 2 -270353 cd13635 PBP2_Ttha1568_Mqnd 1 ligand binding site 0 1 1 0 37,53,107,108,145,177 5 -270354 cd13636 PBP2_Af1704 1 putative ligand binding site 0 0 1 1 37,53,107,108,144,176 5 -270355 cd13637 PBP2_Ca3427_like 1 putative ligand binding site 0 0 1 1 6,8,9,10,39,159,162,185 5 -270356 cd13638 PBP2_EcProx_like 1 ligand binding site 0 1 1 0 13,15,61,90,132,136,137,184 5 -270357 cd13639 PBP2_OpuAC_like 1 ligand binding site 0 1 1 0 8,10,55,83,113,117,118,164 5 -270358 cd13640 PBP2_ChoX 1 ligand binding site 0 1 1 0 8,10,55,84,117,121,122,170 5 -270358 cd13640 PBP2_ChoX 2 dimer interface 0 1 1 0 213,216,217,220 2 -270359 cd13641 PBP2_HisX_like 1 putative ligand binding site 0 0 1 1 8,10,56,85,101,105,106,154 5 -270360 cd13642 PBP2_BCP_1 1 putative ligand binding site 0 0 1 1 8,10,58,87,128,132,133,180 5 -270361 cd13643 PBP2_BCP_2 1 putative ligand binding site 0 0 1 1 8,10,55,84,126,130,131,175 5 -270362 cd13644 PBP2_HemC_archaea 1 putative ligand binding site 0 0 1 1 6,10,56,77,78,121,122,123,125,126,142,143,144,145,146,149,188,235 5 -270362 cd13644 PBP2_HemC_archaea 2 putative dimer interface 0 0 1 1 95,169,177,179,245,246 2 -270363 cd13645 PBP2_HuPBGD_like 1 ligand binding site 0 1 1 0 6,10,57,78,79,125,126,127,129,130,146,147,148,149,150,153,195,242 5 -270363 cd13645 PBP2_HuPBGD_like 2 dimer interface 0 1 1 0 96,175,184,186,252,253 2 -270364 cd13646 PBP2_EcHMBS_like 1 ligand binding site 0 1 1 0 6,10,57,78,79,122,123,124,126,127,143,144,145,146,147,150,190,237 5 -270364 cd13646 PBP2_EcHMBS_like 2 dimer interface 0 0 1 1 96,170,179,181,247,248 2 -270365 cd13647 PBP2_PBGD_2 1 putative ligand binding site 0 0 1 1 6,10,57,78,79,122,123,124,126,127,143,144,145,146,147,150,191,238 5 -270365 cd13647 PBP2_PBGD_2 2 putative dimer interface 0 0 1 1 96,170,179,181,248,249 2 -270366 cd13648 PBP2_PBGD_1 1 ligand binding site 0 1 1 0 6,8,10,52,61,82,83,126,127,128,130,131,148,149,150,151,154,194,241 5 -270366 cd13648 PBP2_PBGD_1 2 putative dimer interface 0 0 1 1 100,174,182,184,251,252 2 -270367 cd13649 PBP2_Cae31940 1 chemical substrate binding site 0 1 1 0 7,39,84,110,116,159,160,163,196 5 -270368 cd13650 PBP2_THI5 1 putative chemical substrate binding site 0 0 1 1 7,39,84,109,113,154,155,162,196 5 -270369 cd13651 PBP2_ThiY 1 chemical substrate binding site 0 1 1 0 7,39,84,108,113,154,155,160,187 5 -270370 cd13652 PBP2_ThiY_THI5_like_1 1 putative chemical substrate binding site 0 0 1 1 7,39,89,113,119,161,162,165,191 5 -270371 cd13653 PBP2_phosphate_like_1 1 chemical substrate binding site 0 1 0 0 8,9,10,37,38,56,129 5 -270372 cd13654 PBP2_phosphate_like_2 1 putative chemical substrate binding site 0 0 0 1 8,56,133,137,138,139,140,164 5 -270373 cd13655 PBP2_oligosaccharide_1 1 putative chemical substrate binding site 0 0 1 1 61,62,109,150,151,222,328,338,341 5 -270374 cd13656 PBP2_MBP 1 chemical substrate binding site 0 1 1 0 7,9,10,57,60,61,106,148,149,150,151,225,325,335,339 5 -270375 cd13657 PBP2_Maltodextrin 1 chemical substrate binding site 0 1 1 0 6,11,60,63,64,111,157,158,226,259,329,339 5 -270376 cd13658 PBP2_CMBP 1 chemical substrate binding site 0 1 1 0 6,7,8,59,61,62,107,151,153,154,209,212,228,261,329,339,340,343 5 -270377 cd13659 PBP2_PotF 1 chemical substrate binding site 0 1 1 0 6,211,214,243,245,281 5 -270377 cd13659 PBP2_PotF 2 dimer interface 0 1 1 0 17,20,21,269,270 2 -270378 cd13660 PBP2_PotD 1 chemical substrate binding site 0 1 1 0 6,201,204,227,229,265 5 -270378 cd13660 PBP2_PotD 2 dimer interface 0 1 1 0 2,7,12,13,16,27,28,29,30,32,188,191,192,207,209 2 -270379 cd13661 PBP2_PotD_PotF_like_1 1 putative chemical substrate binding site 0 0 1 1 6,187,190,213,215,259 5 -270380 cd13662 PBP2_TpPotD_like 1 chemical substrate binding site 0 1 1 1 6,9,34,54,201,230,232,297 5 -270381 cd13663 PBP2_PotD_PotF_like_2 1 putative chemical substrate binding site 0 0 1 1 6,203,206,229,231,267 5 -270382 cd13664 PBP2_PotD_PotF_like_3 1 putative chemical substrate binding site 0 0 1 1 6,201,204,227,229,265 5 -270383 cd13665 PBP2_TRAP_Dctp3_4 1 putative chemical substrate binding site 0 0 1 1 62,121,142,144,164,181,209 5 -270384 cd13666 PBP2_TRAP_DctP_like_1 1 putative chemical substrate binding site 0 0 1 1 62,125,145,147,166,183,211 5 -270385 cd13667 PBP2_TRAP_DctP1 1 putative chemical substrate binding site 0 0 1 1 61,118,138,140,159,176,203 5 -270386 cd13668 PBP2_TRAP_UehA_TeaA 1 chemical substrate binding site 0 1 1 0 144,146,167,184,185,188,209 5 -270387 cd13669 PBP2_TRAP_TM0322_like 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270388 cd13670 PBP2_TRAP_Tp0957_like 1 putative chemical substrate binding site 0 0 1 1 140,142,164,181,182,185,206 5 -270389 cd13671 PBP2_TRAP_SBP_like_3 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270390 cd13672 PBP2_TRAP_Siap 1 chemical substrate binding site 0 1 1 0 6,45,61,62,63,66,122,142,144,165,182,209 5 -270391 cd13673 PBP2_TRAP_SBP_like_2 1 putative chemical substrate binding site 0 0 1 1 144,146,167,184,185,188,209 5 -270392 cd13674 PBP2_TRAP_SBP_like_1 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270393 cd13675 PBP2_TRAP_SBP_like_5 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270394 cd13676 PBP2_TRAP_DctP2_like 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270395 cd13677 PBP2_TRAP_SBP_like_6 1 putative chemical substrate binding site 0 0 1 1 147,149,170,187,188,191,212 5 -270396 cd13678 PBP2_TRAP_DctP10 1 putative chemical substrate binding site 0 0 1 1 144,146,167,184,185,188,209 5 -270397 cd13679 PBP2_TRAP_YiaO_like 1 putative chemical substrate binding site 0 0 1 1 142,144,165,182,183,186,207 5 -270398 cd13680 PBP2_TRAP_SBP_like_4 1 chemical substrate binding site 0 1 0 0 6,7,13,63,118,142,164,181,182,185,189,205,207,209 5 -270399 cd13681 PBP2_TRAP_lactate 1 chemical substrate binding site 0 1 1 0 63,65,66,123,143,145,181,182,212,215 5 -270400 cd13682 PBP2_TRAP_alpha-ketoacid 1 chemical substrate binding site 0 1 1 0 14,67,123,144,146,181,182,183,207 5 -270401 cd13683 PBP2_TRAP_DctP6_7 1 putative chemical substrate binding site 0 0 1 1 13,123,143,145,180,181,182,205 5 -270402 cd13684 PBP2_TRAP_Dctp5_like 1 chemical substrate binding site 0 0 1 1 13,122,143,145,180,181,182,206 5 -270403 cd13685 PBP2_iGluR_non_NMDA_like 1 peptide binding site 0 1 1 0 56,83,84,85,90,132,135,136,137,189,215 2 -270403 cd13685 PBP2_iGluR_non_NMDA_like 2 dimer interface 0 1 1 0 25,37,41,87,88,91,96,97,98,99,212,230,231,234,235,236,237,238,239,241,244 2 -270405 cd13687 PBP2_iGluR_NMDA 1 peptide binding site 0 1 1 0 77,78,79,84,132,133,134,174,175 2 -270405 cd13687 PBP2_iGluR_NMDA 2 dimer interface 0 1 1 0 77,78,79,80,82,84,85,86,113,132,133,137,175,198,199,200,203,209,225,226,227,228,231 2 -270406 cd13688 PBP2_GltI_DEBP 1 ligand binding site 0 1 1 0 14,17,65,80,87,129,130,171,172,201 5 -270406 cd13688 PBP2_GltI_DEBP 2 putative dimer interface 0 0 1 1 23,27,153,156 2 -270407 cd13689 PBP2_BsGlnH 1 putative peptide binding site 0 0 1 1 14,17,59,74,81,123,124,161,162,191 2 -270407 cd13689 PBP2_BsGlnH 2 putative dimer interface 0 0 1 1 23,28,143,146 2 -270408 cd13690 PBP2_GluB 1 putative peptide binding site 0 0 1 1 14,17,62,77,84,127,128,165,166,193 2 -270408 cd13690 PBP2_GluB 2 putative dimer interface 0 0 1 1 23,28,147,150 2 -270409 cd13691 PBP2_Peb1a_like 1 peptide binding site 0 1 1 0 14,17,60,75,82,124,125,166,167,191 2 -270409 cd13691 PBP2_Peb1a_like 2 dimer interface 0 1 1 1 23,28,148,151 2 -270410 cd13692 PBP2_BztA 1 putative peptide binding site 0 0 1 1 14,17,61,76,83,127,128,169,170,199 2 -270410 cd13692 PBP2_BztA 2 putative dimer interface 0 0 1 1 23,27,151,154 2 -270411 cd13693 PBP2_polar_AA 1 putative peptide binding site 0 0 1 1 14,17,58,73,80,123,124,160,161,190 2 -270411 cd13693 PBP2_polar_AA 2 putative dimer interface 0 0 1 1 23,27,142,145 2 -270412 cd13694 PBP2_Cysteine 1 peptide binding site 0 1 1 0 14,17,61,76,83,125,126,163,164,191 2 -270412 cd13694 PBP2_Cysteine 2 dimer interface 0 1 1 0 23,27,145,148 2 -270413 cd13695 PBP2_Mlr3796_like 1 putative peptide binding site 0 0 1 1 14,17,61,76,83,129,130,167,168,195 2 -270413 cd13695 PBP2_Mlr3796_like 2 putative dimer interface 0 0 1 1 23,27,149,152 2 -270414 cd13696 PBP2_Atu4678_like 1 putative peptide binding site 0 0 1 1 14,17,58,73,80,122,123,160,161,190 2 -270414 cd13696 PBP2_Atu4678_like 2 putative dimer interface 0 0 1 1 23,27,142,145 2 -270415 cd13697 PBP2_ArtJ_like 1 putative peptide binding site 0 0 1 1 14,17,58,73,80,124,125,162,163,191 2 -270415 cd13697 PBP2_ArtJ_like 2 putative dimer interface 0 0 1 1 23,27,144,147 2 -270416 cd13698 PBP2_HisGluGlnArgOpine 1 ligand binding site 0 1 0 0 8,11,49,66,68,69,74,109,112,113,114,149 5 -270417 cd13699 PBP2_OccT_like 1 putative ligand binding site 0 0 1 1 8,11,49,66,68,69,74,99,102,103,104,142 5 -270418 cd13700 PBP2_Arg_STM4351 1 ligand binding site 0 1 1 0 8,11,49,66,68,69,74,112,115,116,117,154 5 -270419 cd13701 PBP2_ml15202_like 1 putative ligand binding site 0 0 1 1 8,12,50,67,69,70,75,115,118,119,120,158 5 -270420 cd13702 PBP2_mlr5654_like 1 putative ligand binding site 0 0 1 1 8,11,49,66,68,69,74,115,118,119,120,157 5 -270421 cd13703 PBP2_HisJ_LAO 1 ligand binding site 0 1 1 0 8,11,49,66,68,69,74,114,117,118,119,158 5 -270427 cd13709 PBP2_YxeM 1 putative chemical substrate binding site 0 0 1 1 7,10,47,64,65,72,112,116,117,155 5 -270428 cd13710 PBP2_TcyK 1 chemical substrate binding site 0 1 0 0 7,9,10,49,66,67,74,115,118,119,145,148,160,162 5 -270429 cd13711 PBP2_Ngo0372_TcyA 1 chemical substrate binding site 0 1 1 0 7,10,48,65,66,67,73,113,117,118,152 5 -270430 cd13712 PBP2_FliY 1 putative chemical substrate binding site 0 0 1 1 6,9,47,64,65,66,72,113,117,118,154 5 -270431 cd13713 PBP2_Cystine_like_1 1 putative chemical substrate binding site 0 0 1 1 6,9,47,64,72,111,115,116,152 5 -270432 cd13714 PBP2_iGluR_Kainate 1 peptide binding site 0 1 1 0 58,86,87,88,93 2 -270432 cd13714 PBP2_iGluR_Kainate 2 dimer interface 0 1 1 0 89,90,91,94,95,99,100,101,102,105,143,210,211,225,226,229,230,231,233,234,236,237,238,239 2 -270433 cd13715 PBP2_iGluR_AMPA 1 peptide binding site 0 1 1 0 60,88,89,90,95,137,140,141,142,191,192,195,219 2 -270433 cd13715 PBP2_iGluR_AMPA 2 ligand binding site 0 1 1 0 103,104,105,106,107,238,241,246,247,250 5 -270433 cd13715 PBP2_iGluR_AMPA 3 dimer interface 0 1 1 0 41,45,92,93,96,101,102,103,104,216,234,235,238,239,240,241,242,243,245,248 2 -270434 cd13716 PBP2_iGluR_delta_like 1 ligand binding site 0 1 0 0 56,83,84,85,90,103,135,136,137,191,192 5 -270435 cd13717 PBP2_iGluR_putative 1 putative peptide binding site 0 0 0 1 53,80,81,82,87,210,213,214,215,297,323 2 -270435 cd13717 PBP2_iGluR_putative 2 putative dimer interface 0 0 0 1 22,34,38,84,85,88,93,94,95,96,320,338,339,342,343,344,345,346,347,349,352 2 -270436 cd13718 PBP2_iGluR_NMDA_Nr2 1 peptide binding site 0 1 1 0 110,111,112,117,168,169,170,210,211 2 -270436 cd13718 PBP2_iGluR_NMDA_Nr2 2 putative dimer interface 0 0 1 1 110,111,112,113,115,117,118,119,146,168,169,173,211,236,237,238,241,247,263,264,265,266,269 2 -270437 cd13719 PBP2_iGluR_NMDA_Nr1 1 peptide binding site 0 1 1 0 109,110,111,116,164,165,166,208,209 2 -270437 cd13719 PBP2_iGluR_NMDA_Nr1 2 dimer interface 0 1 1 0 109,110,111,112,114,116,117,118,145,164,165,169,209,230,231,232,235,241,257,258,259,260,263 2 -270438 cd13720 PBP2_iGluR_NMDA_Nr3 1 peptide binding site 0 0 1 1 119,120,121,126,174,175,176,218,219 2 -270438 cd13720 PBP2_iGluR_NMDA_Nr3 2 dimer interface 0 1 1 0 119,120,121,122,124,126,127,128,155,174,175,179,219,242,243,244,247,253,269,270,271,272,275 2 -270439 cd13721 PBP2_iGluR_Kainate_GluR6 1 peptide binding site 0 1 1 0 58,86,87,88,93 2 -270439 cd13721 PBP2_iGluR_Kainate_GluR6 2 dimer interface 0 1 1 0 89,90,91,94,95,99,100,101,102,105,143,146,149,210,211,225,226,229,230,231,233,234,236,237,238,239 2 -270440 cd13722 PBP2_iGluR_Kainate_GluR5 1 peptide binding site 0 1 1 0 58,85,86,87,92 2 -270440 cd13722 PBP2_iGluR_Kainate_GluR5 2 dimer interface 0 1 1 0 88,89,90,93,98,99,100,104,210,224,225,228,229,232,233,235,236,237 2 -270441 cd13723 PBP2_iGluR_Kainate_GluR7 1 putative peptide binding site 0 0 1 1 58,85,86,87,92 2 -270441 cd13723 PBP2_iGluR_Kainate_GluR7 2 putative dimer interface 0 0 1 1 88,89,90,93,94,98,99,100,101,104,262,328,329,343,344,347,348,349,351,352,354,355,356,357 2 -270442 cd13724 PBP2_iGluR_kainate_KA1 1 putative peptide binding site 0 0 0 0 58,85,86,87,92 2 -270442 cd13724 PBP2_iGluR_kainate_KA1 2 putative dimer interface 0 0 0 0 2,9,16,47,48,53,54 2 -270443 cd13725 PBP2_iGluR_kainate_KA2 1 putative peptide binding site 0 0 0 0 58,85,86,87,92 2 -270443 cd13725 PBP2_iGluR_kainate_KA2 2 putative dimer interface 0 0 0 0 2,9,16,47,48,53,54 2 -270444 cd13726 PBP2_iGluR_AMPA_GluR2 1 peptide binding site 0 1 1 0 58,86,87,88,93,135,138,139,140,189,190,193,217 2 -270444 cd13726 PBP2_iGluR_AMPA_GluR2 2 ligand binding site 0 1 1 0 101,102,103,104,105,236,239,244,245,248 5 -270444 cd13726 PBP2_iGluR_AMPA_GluR2 3 dimer interface 0 1 1 0 27,39,43,90,91,94,99,100,101,102,214,232,233,236,237,238,239,240,241,243,246 2 -270445 cd13727 PBP2_iGluR_AMPA_GluR4 1 peptide binding site 0 1 1 1 58,86,87,88,93,135,138,139,140,189,190,193,217 2 -270445 cd13727 PBP2_iGluR_AMPA_GluR4 2 putative ligand binding site 0 0 0 1 101,102,103,104,105,236,239,244,245,248 5 -270445 cd13727 PBP2_iGluR_AMPA_GluR4 3 dimer interface 0 1 1 0 89,90,91,94,99,100,101,102,214,228,232,233,236,239,240 2 -270446 cd13728 PBP2_iGluR_AMPA_GluR3 1 ligand binding site 0 1 1 1 58,86,87,88,93,135,138,139,140,189,190,193,217 5 -270447 cd13729 PBP2_iGluR_AMPA_GluR1 1 putative peptide binding site 0 0 0 1 58,86,87,88,93,136,139,140,141,190,191,194,218 2 -270447 cd13729 PBP2_iGluR_AMPA_GluR1 2 putative ligand binding site 0 0 0 1 101,102,103,104,105,237,240,245,246,249 5 -270447 cd13729 PBP2_iGluR_AMPA_GluR1 3 putative dimer interface 0 0 0 1 27,39,43,90,91,94,99,100,101,102,215,233,234,237,238,239,240,241,242,244,247 2 -270448 cd13730 PBP2_iGluR_delta_1 1 putative ligand binding site 0 0 0 1 56,83,84,85,90,103,135,136,137,191,192 5 -270449 cd13731 PBP2_iGluR_delta_2 1 ligand binding site 0 1 0 0 56,83,84,85,90,103,135,136,137,191,192 5 -293971 cd13736 SPRY_PRY_TRIM25 1 putative heterodimer interface 0 1 1 1 47,49,50,150,153 2 -293971 cd13736 SPRY_PRY_TRIM25 2 heterodimer interface 0 1 1 1 24,157 2 -259839 cd13746 Sir4p-SID_like 1 Sir2p interface 0 1 1 1 3,31,34,35,38,39,42,45,46,48,49,50,53,54,56,57,58,60,61,62,64,66,67,68,71,73,74,75,76,77,79,80,81,82,85,86,88,90,91,93,94,98,101,102,103,104,105,107,108,109,110,111,112,114 2 -259834 cd13747 UreI_AmiS_like_1 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,121,124,125 5 -259834 cd13747 UreI_AmiS_like_1 2 constriction site 1 0 0 1 1 3,64,121 5 -259834 cd13747 UreI_AmiS_like_1 3 constriction site 2 0 0 1 1 10,67,68,124,125 5 -259834 cd13747 UreI_AmiS_like_1 4 hexamer interface 0 0 1 1 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,159,162 2 -259840 cd13748 CBM29_CBM65 1 carbohydrate binding site 0 1 1 0 11,45,47,53,55,82,86 5 -259796 cd13749 Zn-ribbon_TFIIS 1 Zn binding site 0 1 1 1 9,12,37,40 4 -259796 cd13749 Zn-ribbon_TFIIS 2 trimer interface 0 1 1 1 0,3,4,5,6,7,11,15,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,43,44,45 2 -259841 cd13768 DSS1_Sem1 1 nuclear mRNA export protein (Thp1) interaction site 0 1 1 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,33,34,35,36,37,38,40,41,43,47,49,50,52,53,54,56,57,58,59,60 2 -260099 cd13777 Aar2_N 1 inter-domain interface 0 1 1 0 16,38,40,42,52,53,54,55,56,57,62,65,76,78,110,112,113,114,115,116,117,119,121,122,123,124,125 2 -260099 cd13777 Aar2_N 2 heterodimer interface 0 1 1 1 42,52 2 -260100 cd13778 Aar2_C 1 inter-domain interface 0 1 1 0 0,1,2,3,5,6,7,47,48,51,52,55,56,58,59,60,64,92,96,99,100 2 -260100 cd13778 Aar2_C 2 heterodimer interface 0 1 1 1 60,98,99,145,148,152 2 -260101 cd13783 SPACA1 1 putative phosphorylation site 0 0 1 1 175,228,246 6 -260102 cd13784 SP_1775_like 1 oligomer interface 0 1 0 0 7,8,10,12,23,26,27,28,29,30,31,33,36,37,52,53,54,57,59,60,63,64 2 -260102 cd13784 SP_1775_like 2 putative ligand binding site 0 1 0 0 31,36 5 -260079 cd13785 CARD_BinCARD_like 1 putative Bcl10 interaction site 0 0 1 1 15,19,39 2 -259853 cd13831 HU 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,38,39,40,41,42,45,73,74,75,77,79,83,84 2 -259853 cd13831 HU 2 DNA binding site 0 1 1 0 51,53,54,56,58,59,60,61,66,67,69 3 -259854 cd13832 IHF 1 dimer interface 0 1 1 0 0,3,6,7,10,13,17,20,21,22,24,25,26,27,28,29,30,31,32,33,37,38,39,40,41,42,44,71,72,74,76,78,82 2 -259854 cd13832 IHF 2 DNA binding site 0 1 1 0 0,1,40,41,42,44,50,52,53,75,77,79,80 3 -259855 cd13833 HU_IHF_like 1 homodimer interface 0 1 0 0 0,1,3,4,5,8,9,10,13,16,19,20,23,24,27,31,32,34,35,38,39,40,42,43,44,45,46,47,50,51,52,53,54,55,56,57,58,59,61,62,63,64,67,68,80,82,83,84,85,86,87,88,89,90,92,93,95,96 2 -259855 cd13833 HU_IHF_like 2 putative DNA binding site 0 0 1 1 13,14,52,54,55,56,57,59,63,65,66,81,83,85,86,87,88,89,90,93 3 -259856 cd13834 HU_like 1 putative dimer interface 0 0 1 1 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,40,41,42,43,44,50,81,82,83,85,87,91,92 2 -259856 cd13834 HU_like 2 putative DNA binding site 0 0 1 1 1,2,41,43,44,45,50,52,56,58,59,80,82,84,85,86,87,88,89,92 3 -259857 cd13835 IHF_A 1 dimer interface 0 1 1 0 4,7,21,25,28,29,31,32,38,39,40,41,43,72,73,75,77,86,87 2 -259857 cd13835 IHF_A 2 DNA binding site 0 1 1 0 0,1,20,41,43,44,45,47,51,53,56,57,58,59,60,61,62,67,69,72,74,78,81,84 3 -259858 cd13836 IHF_B 1 dimer interface 0 1 1 0 2,5,8,9,12,16,20,23,24,25,27,28,29,30,31,32,33,34,35,36,40,41,42,43,44,45,47,74,75,77,79,81,85 2 -259858 cd13836 IHF_B 2 DNA binding site 0 1 1 0 2,3,43,44,45,47,53,55,56,78,80,82,83 3 -260013 cd13838 RNase_H_like_Prp8_IV 1 active site 0 1 1 1 15,16,98 1 -260103 cd13839 MEF2_binding 1 MEF2 interaction interface 0 1 1 0 3,5,6,7,8,9,12,13,15,16,20,21,24,25,26,27,28 2 -260104 cd13840 SMBP_like 1 putative metal binding site 0 1 0 1 3,10,17,29,36,50,53,57,64,69,76,83 4 -260105 cd13841 ABBA-PTs 1 active site 0 1 1 0 40,53,55,117,119,121,173,175,177,217,232,234,273,285,289 1 -259911 cd13842 CuRO_HCO_II_like 1 CuA binuclear center HCCHM 1 1 1 43,78,82,86,89 4 -259912 cd13843 Azurin_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 42,108,113,117 4 -259913 cd13844 CuRO_1_BOD_CotA_like 1 trinuclear Cu binding site HHHH 1 1 1 89,91,136,138 4 -259913 cd13844 CuRO_1_BOD_CotA_like 2 Domain 3 interface 0 1 1 0 89,91,92,93,94,95,96,97,100,102,103,104,125,134,136,138,140,143,144,147 2 -259913 cd13844 CuRO_1_BOD_CotA_like 3 Domain 2 interface 0 1 1 0 13,14,15,21,23,35,91,129,130,131,132,134,144,145,147,148,153,154,156,158 2 -259913 cd13844 CuRO_1_BOD_CotA_like 4 dimer interface 0 1 1 1 0,1,2,4,46,48,50,85,97,98,102,104,105,106,108,121,122,123,125,141,142,145 2 -259913 cd13844 CuRO_1_BOD_CotA_like 5 hexamer interface 0 1 1 1 11,13,17,18,19,20,160,161 2 -259914 cd13845 CuRO_1_AAO 1 trinuclear Cu binding site HHHH 1 1 1 56,58,100,102 4 -259914 cd13845 CuRO_1_AAO 2 Domain 3 interface 0 1 1 1 56,58,61,62,63,66,67,69,71,72,73,74,75,76,77,84,85,86,100,102,104,105,107,108 2 -259914 cd13845 CuRO_1_AAO 3 Domain 2 interface 0 1 1 0 2,6,7,12,13,14,15,17,18,19,20,27,28,33,51,52,58,81,93,94,95,96,97,98,100,105,107,108,109,112,113,114,116,119 2 -259915 cd13846 CuRO_1_AAO_like_1 1 putative Domain 3 interface 0 0 1 1 55,57,60,83,84,99,101,103,106,107 2 -259915 cd13846 CuRO_1_AAO_like_1 2 putative Domain 2 interface 0 0 1 1 2,6,7,28,33,51,57,92,93,94,95,96,97,99,106,107,108,111,112,113,115 2 -259916 cd13847 CuRO_1_AAO_like_2 1 trinuclear Cu binding site HHHH 0 1 1 52,54,98,100 4 -259916 cd13847 CuRO_1_AAO_like_2 2 putative Domain 3 interface 0 0 1 1 52,54,57,81,82,98,100,102,104,105 2 -259916 cd13847 CuRO_1_AAO_like_2 3 putative Domain 2 interface 0 0 1 1 2,6,7,24,29,48,54,91,92,93,94,95,96,98,104,105,106,109,110,111,113 2 -259917 cd13848 CuRO_1_CopA 1 trinuclear Cu binding site HHHH 0 1 1 55,57,97,99 4 -259917 cd13848 CuRO_1_CopA 2 putative Domain 3 interface 0 0 1 1 55,57,60,82,83,97,99,101,104,105 2 -259917 cd13848 CuRO_1_CopA 3 putative Domain 2 interface 0 0 1 1 2,6,7,28,33,51,57,90,91,92,93,94,95,97,104,105,106,109,110,111,113 2 -259918 cd13849 CuRO_1_LCC_plant 1 trinuclear Cu binding site HHHH 0 1 1 53,55,98,100 4 -259918 cd13849 CuRO_1_LCC_plant 2 putative Domain 3 interface 0 0 1 1 53,55,58,82,83,98,100,102,104,105 2 -259918 cd13849 CuRO_1_LCC_plant 3 putative Domain 2 interface 0 0 1 1 2,6,7,26,31,49,55,91,92,93,94,95,96,98,104,105,106,109,110,111,113 2 -259919 cd13850 CuRO_1_Abr2_like 1 trinuclear Cu binding site HHHH 0 1 1 53,55,98,100 4 -259919 cd13850 CuRO_1_Abr2_like 2 putative Domain 3 interface 0 0 1 1 53,55,58,82,83,98,100,102,105,106 2 -259919 cd13850 CuRO_1_Abr2_like 3 putative Domain 2 interface 0 0 1 1 2,6,7,26,31,49,55,91,92,93,94,95,96,98,105,106,107,110,111,112,114 2 -259920 cd13851 CuRO_1_Fet3p 1 trinuclear Cu binding site hhhh 1 1 1 57,59,102,104 4 -259920 cd13851 CuRO_1_Fet3p 2 Domain 3 interface 0 1 1 1 57,59,60,62,64,65,66,67,68,70,72,74,75,76,77,100,102,104,106,107,109 2 -259920 cd13851 CuRO_1_Fet3p 3 Domain 2 interface 0 1 1 0 13,14,16,19,21,29,59,96,97,98,99,100,101,107,109,110,111,114,116,118 2 -259921 cd13852 CuRO_1_McoP_like 1 trinuclear Cu binding site HHHH 1 1 1 49,51,89,91 4 -259921 cd13852 CuRO_1_McoP_like 2 Domain 3 interface 0 1 1 1 49,51,52,54,55,56,57,60,62,63,64,82,89,91,93,94,95,96,97,100 2 -259921 cd13852 CuRO_1_McoP_like 3 Domain 2 interface 0 1 1 0 25,51,52,83,85,86,87,98,100,101,102,105,107,109 2 -259922 cd13853 CuRO_1_Tth-MCO_like 1 trinuclear Cu binding site HHHH 1 0 1 73,75,116,118 4 -259922 cd13853 CuRO_1_Tth-MCO_like 2 Domain 3 interface 0 1 0 1 73,75,76,78,79,80,81,89,114,116,118,120,121,122,123,124 2 -259922 cd13853 CuRO_1_Tth-MCO_like 3 Domain 2 interface 0 1 0 0 17,19,20,21,28,29,30,32,34,35,75,76,109,110,111,112,113,114,124,127,128,129,132,134,136 2 -259923 cd13854 CuRO_1_MaLCC_like 1 trinuclear Cu binding site HHHH 1 1 1 59,61,103,105 4 -259923 cd13854 CuRO_1_MaLCC_like 2 Domain 3 interface 0 1 1 1 59,61,62,64,65,66,67,69,70,72,74,75,77,78,79,80,81,96,101,103,105,106,107,110 2 -259923 cd13854 CuRO_1_MaLCC_like 3 Domain 2 interface 0 1 1 0 13,15,16,17,18,19,21,30,31,34,61,62,96,97,98,99,100,101,108,110,111,112,117,119,120,121 2 -259924 cd13855 CuRO_1_McoC_like 1 trinuclear Cu binding site HHHH 1 1 1 57,59,98,100 4 -259924 cd13855 CuRO_1_McoC_like 2 Domain 3 interface 0 1 1 1 57,59,60,62,63,64,65,68,70,71,72,90,95,96,98,100,102,103,104,105,106,109 2 -259924 cd13855 CuRO_1_McoC_like 3 Domain 2 interface 0 1 1 0 15,18,19,20,21,22,30,33,59,92,93,94,95,96,106,107,110,111,115,116,118,120 2 -259925 cd13856 CuRO_1_Tv-LCC_like 1 trinuclear Cu binding site HHHH 1 1 1 60,62,105,107 4 -259925 cd13856 CuRO_1_Tv-LCC_like 2 Domain 3 interface 0 1 1 1 60,62,63,65,66,67,68,69,70,71,73,75,77,78,79,80,81,103,105,107,109,110,112,113 2 -259925 cd13856 CuRO_1_Tv-LCC_like 3 Domain 2 interface 0 1 1 0 13,14,16,18,20,27,28,31,52,54,62,99,100,101,102,103,109,110,112,113,114,117,119,121,123 2 -259926 cd13857 CuRO_1_Diphenol_Ox 1 trinuclear Cu binding site HHHH 0 1 1 55,57,100,102 4 -259926 cd13857 CuRO_1_Diphenol_Ox 2 putative Domain 3 interface 0 0 1 1 55,57,60,84,85,100,102,104,107,108 2 -259926 cd13857 CuRO_1_Diphenol_Ox 3 putative Domain 2 interface 0 0 1 1 2,6,7,28,33,51,57,93,94,95,96,97,98,100,107,108,109,112,113,114,116 2 -259927 cd13858 CuRO_1_tcLCC2_insect_like 1 trinuclear Cu binding site HHHH 0 1 1 42,44,86,88 4 -259927 cd13858 CuRO_1_tcLCC2_insect_like 2 putative Domain 3 interface 0 0 1 1 42,44,47,71,72,86,88,90,93,94 2 -259927 cd13858 CuRO_1_tcLCC2_insect_like 3 putative Domain 2 interface 0 0 1 1 5,9,10,14,19,38,44,79,80,81,82,83,84,86,93,94,95,98,99,100,102 2 -259928 cd13859 CuRO_D1_2dMcoN_like 1 trinuclear Cu binding site HHHH 1 1 1 56,58,100,102 4 -259928 cd13859 CuRO_D1_2dMcoN_like 2 Type 1 (T1) Cu binding site HCHM 1 1 1 53,101,108,114 4 -259928 cd13859 CuRO_D1_2dMcoN_like 3 trimer interface 0 1 1 0 56,58,59,61,62,66,67,69,71,73,74,75,76,77,98,100,102,104,105,106,109,110 2 -259928 cd13859 CuRO_D1_2dMcoN_like 4 Domain 2 interface 0 1 1 0 12,13,14,15,17,18,19,20,22,28,29,32,51,58,59,93,94,95,96,97,98,106,107,109,110,111,112,115,116,117,119 2 -259929 cd13860 CuRO_1_2dMco_1 1 trinuclear Cu binding site HHHH 0 1 1 56,58,98,100 4 -259929 cd13860 CuRO_1_2dMco_1 2 putative trimer interface 0 0 1 1 56,58,59,61,96,98,100,102,107 2 -259930 cd13861 CuRO_1_CumA_like 1 trinuclear Cu binding site HHHH 0 1 1 56,58,98,100 4 -259930 cd13861 CuRO_1_CumA_like 2 putative Domain 3 interface 0 0 1 1 56,58,61,83,84,98,100,102,107,108 2 -259930 cd13861 CuRO_1_CumA_like 3 putative Domain 2 interface 0 0 1 1 2,6,7,29,34,52,58,91,92,93,94,95,96,98,107,108,109,112,113,114,116 2 -259931 cd13862 CuRO_1_MCO_like_1 1 trinuclear Cu binding site HHHH 0 1 1 56,58,98,100 4 -259931 cd13862 CuRO_1_MCO_like_1 2 putative Domain 3 interface 0 0 1 1 56,58,61,83,84,98,100,102,111,112 2 -259931 cd13862 CuRO_1_MCO_like_1 3 putative Domain 2 interface 0 0 1 1 2,6,7,29,34,52,58,91,92,93,94,95,96,98,111,112,113,116,117,118,120 2 -259932 cd13864 CuRO_1_MCO_like_2 1 trinuclear Cu binding site HHHH 0 1 1 68,70,119,121 4 -259932 cd13864 CuRO_1_MCO_like_2 2 putative Domain 3 interface 0 0 1 1 68,70,73,102,103,119,121,123,126,127 2 -259932 cd13864 CuRO_1_MCO_like_2 3 putative Domain 2 interface 0 0 1 1 4,8,9,29,34,64,70,112,113,114,115,116,117,119,126,127,128,131,132,133,135 2 -259933 cd13865 CuRO_1_LCC_like_3 1 trinuclear Cu binding site HHHH 0 1 1 53,55,95,97 4 -259933 cd13865 CuRO_1_LCC_like_3 2 putative Domain 3 interface 0 0 1 1 53,55,58,80,81,95,97,99,102,103 2 -259933 cd13865 CuRO_1_LCC_like_3 3 putative Domain 2 interface 0 0 1 1 7,11,12,26,31,49,55,88,89,90,91,92,93,95,102,103,104,107,108,109,111 2 -259934 cd13866 CuRO_2_BOD 1 Domain 3 interface 0 1 1 0 62,64,82,83,85,86,87,88,89,92,93,94,96,100,102,103,104,105,106,107 2 -259934 cd13866 CuRO_2_BOD 2 Domain 1 interface 0 1 1 0 5,6,7,8,12,34,37,38,39,40,44,53,55,57,86,87,88,104,106,145,147,148 2 -259935 cd13867 CuRO_2_CueO_FtsP 1 Domain 3 interface 0 1 1 0 60,62,75,76,78,79,80,81,82,85,86,87,89,93,95,96,97,98,99,100 2 -259935 cd13867 CuRO_2_CueO_FtsP 2 Domain 1 interface 0 1 1 0 2,3,4,5,9,32,35,36,37,38,42,51,53,55,79,80,81,97,99,138,140,141 2 -259936 cd13868 CuRO_2_CotA_like 1 Domain 3 interface 0 1 1 0 68,70,85,86,88,89,90,91,92,95,96,97,99,103,105,106,107,108,109,110 2 -259936 cd13868 CuRO_2_CotA_like 2 Domain 1 interface 0 1 1 0 2,3,4,5,9,40,43,44,45,46,50,59,61,63,89,90,91,107,109,147,149,150 2 -259937 cd13869 CuRO_2_PHS 1 Domain 3 interface 0 1 1 0 76,78,98,99,101,102,103,104,105,108,109,110,112,118,120,121,122,123,124,125 2 -259937 cd13869 CuRO_2_PHS 2 Domain 1 interface 0 1 1 0 1,2,3,4,8,48,51,52,53,54,58,67,69,71,102,103,104,122,124,159,161,162 2 -259938 cd13870 CuRO_2_CopA_like_1 1 putative Domain 3 interface 0 0 1 1 48,50,62,63,65,66,67,68,69,71,72,73,75,79,81,82,83,84,85,86 2 -259938 cd13870 CuRO_2_CopA_like_1 2 putative Domain 1 interface 0 0 1 1 2,3,4,5,9,16,19,20,21,22,29,39,41,43,66,67,68,83,85,110,112,113 2 -259939 cd13871 CuRO_2_AAO 1 Domain 3 interface 0 1 1 0 91,93,105,106,108,109,110,111,112,114,115,116,118,122,124,125,126,127,128,129 2 -259939 cd13871 CuRO_2_AAO 2 Domain 1 interface 0 1 1 0 3,4,5,6,10,35,38,39,40,41,72,82,84,86,109,110,111,126,128,159,161,162 2 -259940 cd13872 CuRO_2_AAO_like_1 1 putative Domain 3 interface 0 0 1 1 68,70,82,83,85,86,87,88,89,93,94,95,97,99,101,102,103,104,105,106 2 -259940 cd13872 CuRO_2_AAO_like_1 2 putative Domain 1 interface 0 0 1 1 2,3,4,5,9,32,35,36,37,38,49,59,61,63,86,87,88,103,105,134,136,137 2 -259941 cd13873 CuRO_2_AAO_like_2 1 putative Domain 3 interface 0 0 1 1 80,82,95,96,98,99,100,101,102,104,105,106,108,112,114,115,116,117,118,119 2 -259941 cd13873 CuRO_2_AAO_like_2 2 putative Domain 1 interface 0 0 1 1 2,3,4,5,9,34,37,38,39,40,61,71,73,75,99,100,101,116,118,154,156,157 2 -259942 cd13874 CuRO_2_CopA 1 putative Domain 3 interface 0 0 1 1 44,46,58,59,61,62,63,64,65,67,68,69,71,75,77,78,79,80,81,82 2 -259942 cd13874 CuRO_2_CopA 2 putative Domain 1 interface 0 0 1 1 1,2,3,4,8,12,15,16,17,18,25,35,37,39,62,63,64,79,81,103,105,106 2 -259943 cd13875 CuRO_2_LCC_plant 1 putative Domain 3 interface 0 0 1 1 70,72,84,85,87,88,89,90,91,93,94,95,97,101,103,104,105,106,107,108 2 -259943 cd13875 CuRO_2_LCC_plant 2 putative Domain 1 interface 0 0 1 1 0,1,2,3,7,31,34,35,36,37,51,61,63,65,88,89,90,105,107,141,143,144 2 -259944 cd13876 CuRO_2_Abr2_like 1 putative Domain 3 interface 0 0 1 1 64,66,78,79,81,82,83,84,85,87,88,89,91,95,97,98,99,100,101,102 2 -259944 cd13876 CuRO_2_Abr2_like 2 putative Domain 1 interface 0 0 1 1 0,1,2,3,7,31,34,35,36,37,44,55,57,59,82,83,84,99,101,130,132,133 2 -259945 cd13877 CuRO_2_Fet3p_like 1 Domain 3 interface 0 1 1 0 65,67,79,80,82,83,84,85,86,88,89,90,92,96,98,99,100,101,102,103 2 -259945 cd13877 CuRO_2_Fet3p_like 2 Domain 1 interface 0 1 1 0 2,3,4,5,9,36,39,40,41,42,46,56,58,60,83,84,85,100,102,139,141,142 2 -259946 cd13879 CuRO_2_McoP_like 1 putative Domain 3 interface 0 0 1 1 62,64,77,78,80,81,82,83,84,87,88,89,91,95,97,98,99,100,101,102 2 -259946 cd13879 CuRO_2_McoP_like 2 putative Domain 1 interface 0 0 1 1 2,3,4,5,9,34,37,38,39,40,44,53,55,57,81,82,83,99,101,154,156,157 2 -259947 cd13880 CuRO_2_MaLCC_like 1 Domain 3 interface 0 1 1 0 70,72,84,85,87,88,89,90,91,93,94,95,97,101,103,104,105,106,107,108 2 -259947 cd13880 CuRO_2_MaLCC_like 2 Domain 1 interface 0 1 1 0 1,2,3,4,8,31,34,35,36,37,51,61,63,65,88,89,90,105,107,142,144,145 2 -259948 cd13881 CuRO_2_McoC_like 1 Domain 3 interface 0 1 1 0 61,63,75,76,78,79,80,81,82,85,86,87,89,93,95,96,97,98,99,100 2 -259948 cd13881 CuRO_2_McoC_like 2 Domain 1 interface 0 1 1 0 1,2,3,4,8,32,35,36,37,38,42,52,54,56,79,80,81,97,99,135,137,138 2 -259949 cd13882 CuRO_2_Tv-LCC_like 1 Domain 3 interface 0 1 1 0 66,68,80,81,83,84,85,86,87,89,90,91,93,97,99,100,101,102,103,104 2 -259949 cd13882 CuRO_2_Tv-LCC_like 2 Domain 1 interface 0 1 1 0 0,1,2,3,7,28,31,32,33,34,47,57,59,61,84,85,86,101,103,136,138,139 2 -259950 cd13883 CuRO_2_Diphenol_Ox 1 putative Domain 3 interface 0 0 1 1 82,84,96,97,99,100,101,102,103,106,107,108,110,114,116,117,118,119,120,121 2 -259950 cd13883 CuRO_2_Diphenol_Ox 2 putative Domain 1 interface 0 0 1 1 0,1,2,3,7,36,39,40,41,42,63,73,75,77,100,101,102,118,120,156,158,159 2 -259951 cd13884 CuRO_2_tcLCC_insect_like 1 putative Domain 3 interface 0 0 1 1 75,77,89,90,92,93,94,95,96,98,99,100,102,106,108,109,110,111,112,113 2 -259951 cd13884 CuRO_2_tcLCC_insect_like 2 putative Domain 1 interface 0 0 1 1 1,2,3,4,8,31,34,35,36,37,55,65,67,69,93,94,95,110,112,143,145,146 2 -259952 cd13885 CuRO_2_CumA_like 1 putative Domain 3 interface 0 0 1 1 65,67,79,80,82,83,84,85,86,88,89,90,92,98,100,101,102,103,104,105 2 -259952 cd13885 CuRO_2_CumA_like 2 putative Domain 1 interface 0 0 1 1 2,3,4,5,9,36,39,40,41,42,46,56,58,60,83,84,85,102,104,125,127,128 2 -259953 cd13886 CuRO_2_MCO_like_1 1 putative Domain 3 interface 0 0 1 1 81,83,95,96,98,99,100,101,102,104,105,106,108,112,114,115,116,117,118,119 2 -259953 cd13886 CuRO_2_MCO_like_1 2 putative Domain 1 interface 0 0 1 1 0,1,2,3,7,33,36,37,38,39,62,72,74,76,99,100,101,116,118,155,157,158 2 -259954 cd13887 CuRO_2_MCO_like_2 1 putative Domain 3 interface 0 0 1 1 43,45,57,58,60,61,62,63,64,66,67,68,70,74,76,77,78,79,80,81 2 -259954 cd13887 CuRO_2_MCO_like_2 2 putative Domain 1 interface 0 0 1 1 0,1,2,3,7,11,14,15,16,17,24,34,36,38,61,62,63,78,80,106,108,109 2 -259955 cd13888 CuRO_3_McoP_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 51,121,126,131 4 -259955 cd13888 CuRO_3_McoP_like 2 trinuclear Cu binding site HHHH 1 1 1 54,56,120,122 4 -259955 cd13888 CuRO_3_McoP_like 3 Domain 1 interface 0 1 1 1 21,24,54,56,57,89,91,92,115,116,117,118,120,122,124,125,127,128,132,134 2 -259955 cd13888 CuRO_3_McoP_like 4 Domain 2 interface 0 1 1 0 8,9,12,13,14,15,20,44,47,48,49,50,51,52,53,54,55,58,59,60,61,65,67,68,69,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,105,120,121,122,123,124,125,126,127,128,130,131 2 -259956 cd13889 CuRO_3_BOD 1 Type 1 (T1) Cu binding site HCHM 1 1 1 50,107,112,117 4 -259956 cd13889 CuRO_3_BOD 2 trinuclear Cu binding site HHHH 1 1 1 53,55,106,108 4 -259956 cd13889 CuRO_3_BOD 3 Domain 1 interface 0 1 1 1 24,53,55,56,58,80,81,98,99,102,103,104,106,108,110,113,114,116,118,120 2 -259956 cd13889 CuRO_3_BOD 4 Domain 2 interface 0 1 1 0 15,17,48,49,51,58,72,73,74,75,76,77,78,79,80,81,82,83,85,86,108,109,110,111,112,115 2 -259957 cd13890 CuRO_3_CueO_FtsP 1 Type 1 (T1) Cu binding site HCHX 0 1 1 49,107,112,117 4 -259957 cd13890 CuRO_3_CueO_FtsP 2 trinuclear Cu binding site HHHH 0 1 1 52,54,106,108 4 -259957 cd13890 CuRO_3_CueO_FtsP 3 Domain 1 interface 0 1 1 1 22,24,52,54,56,57,77,95,101,102,103,104,106,108,110,111,113,114,118 2 -259957 cd13890 CuRO_3_CueO_FtsP 4 Domain 2 interface 0 1 1 0 10,15,47,48,50,57,71,72,75,76,77,78,80,108,109,110,111,112,115 2 -259958 cd13891 CuRO_3_CotA_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 53,126,131,136 4 -259958 cd13891 CuRO_3_CotA_like 2 trinuclear Cu binding site HHHH 1 1 1 56,58,125,127 4 -259958 cd13891 CuRO_3_CotA_like 3 Domain 1 interface 0 1 1 1 27,56,58,59,97,99,100,117,120,121,122,123,125,127,129,130,132,133,134,137,139 2 -259958 cd13891 CuRO_3_CotA_like 4 Domain 2 interface 0 1 1 0 54,92,93,95,97,98,99,100,102,127,128,129,130,131,134 2 -259959 cd13892 CuRO_3_PHS 1 Type 1 (T1) Cu binding site HCHX 1 1 1 86,163,168,173 4 -259959 cd13892 CuRO_3_PHS 2 trinuclear Cu binding site HHHH 1 1 1 89,91,162,164 4 -259959 cd13892 CuRO_3_PHS 3 Domain 1 interface 0 1 1 1 59,89,91,92,94,134,136,137,153,156,158,159,160,162,164,166,167,169,170,174 2 -259959 cd13892 CuRO_3_PHS 4 Domain 2 interface 0 1 1 0 16,17,87,94,129,130,132,133,134,135,136,137,139,164,165,166,167,168 2 -259960 cd13893 CuRO_3_AAO 1 Type 1 (T1) Cu binding site HCHX 1 1 1 66,129,134,139 4 -259960 cd13893 CuRO_3_AAO 2 trinuclear Cu binding site HHHH 1 1 1 69,71,128,130 4 -259960 cd13893 CuRO_3_AAO 3 Domain 1 interface 0 1 1 1 28,29,31,32,33,34,69,71,72,73,103,104,120,121,122,123,124,125,126,128,130,132,150,152,153,154 2 -259960 cd13893 CuRO_3_AAO 4 Domain 2 interface 0 1 1 0 14,15,16,64,65,67,74,98,101,102,103,104,106,108,130,131,132,133,136 2 -259961 cd13894 CuRO_3_AAO_like_1 1 putative Domain 1 interface 0 0 1 1 61,63,64,77,80,101,102,103,104,106,108,110,111,116,118 2 -259961 cd13894 CuRO_3_AAO_like_1 2 putative Domain 2 interface 0 0 1 1 17,57,59,77,78,79,80,82,84,106,107,108,110,111,112 2 -259962 cd13895 CuRO_3_AAO_like_2 1 Type 1 (T1) Cu binding site HCHX 0 1 1 92,170,175,180 4 -259962 cd13895 CuRO_3_AAO_like_2 2 trinuclear Cu binding site HHHH 0 1 1 95,97,169,171 4 -259962 cd13895 CuRO_3_AAO_like_2 3 putative Domain 1 interface 0 0 1 1 95,97,98,129,132,164,165,166,167,169,171,173,174,181,183 2 -259962 cd13895 CuRO_3_AAO_like_2 4 putative Domain 2 interface 0 0 1 1 55,91,93,129,130,131,132,134,136,169,170,171,173,174,175 2 -259963 cd13896 CuRO_3_CopA 1 Type 1 (T1) Cu binding site HCHX 0 1 1 49,98,103,108 4 -259963 cd13896 CuRO_3_CopA 2 trinuclear Cu binding site HHHH 0 1 1 52,54,97,99 4 -259963 cd13896 CuRO_3_CopA 3 putative Domain 1 interface 0 0 1 1 52,54,55,70,73,92,93,94,95,97,99,101,102,109,111 2 -259963 cd13896 CuRO_3_CopA 4 putative Domain 2 interface 0 0 1 1 16,48,50,70,71,72,73,75,77,97,98,99,101,102,103 2 -259964 cd13897 CuRO_3_LCC_plant 1 Type 1 (T1) Cu binding site HCHX 0 1 1 56,119,124,129 4 -259964 cd13897 CuRO_3_LCC_plant 2 trinuclear Cu binding site HHHH 0 1 1 59,61,118,120 4 -259964 cd13897 CuRO_3_LCC_plant 3 putative Domain 1 interface 0 0 1 1 59,61,62,91,94,113,114,115,116,118,120,122,123,130,132 2 -259964 cd13897 CuRO_3_LCC_plant 4 putative Domain 2 interface 0 0 1 1 11,55,57,91,92,93,94,96,98,118,119,120,122,123,124 2 -259965 cd13898 CuRO_3_Abr2_like 1 Type 1 (T1) Cu binding site HCHX 0 1 1 72,146,151,156 4 -259965 cd13898 CuRO_3_Abr2_like 2 trinuclear Cu binding site HHHH 0 1 1 75,77,145,147 4 -259965 cd13898 CuRO_3_Abr2_like 3 putative Domain 1 interface 0 0 1 1 75,77,78,114,117,140,141,142,143,145,147,149,150,157,159 2 -259965 cd13898 CuRO_3_Abr2_like 4 putative Domain 2 interface 0 0 1 1 16,71,73,114,115,116,117,119,121,145,146,147,149,150,151 2 -259966 cd13899 CuRO_3_Fet3p 1 Type 1 (T1) Cu binding site HCHX 1 1 1 77,141,146,151 4 -259966 cd13899 CuRO_3_Fet3p 2 trinuclear Cu binding site HHHH 1 1 1 80,82,140,142 4 -259966 cd13899 CuRO_3_Fet3p 3 Domain 1 interface 0 1 1 1 26,29,32,33,34,80,82,83,84,85,115,116,133,136,137,138,140,142,144,148,154 2 -259966 cd13899 CuRO_3_Fet3p 4 Domain 2 interface 0 1 1 0 11,15,17,76,78,112,113,114,115,116,118,142,143,144,145,146,148,149 2 -259967 cd13900 CuRO_3_Tth-MCO_like 1 Type 1 (T1) Cu binding site HCHX 1 0 1 53,106,111,116 4 -259967 cd13900 CuRO_3_Tth-MCO_like 2 trinuclear Cu binding site HHHH 1 0 1 56,58,105,107 4 -259967 cd13900 CuRO_3_Tth-MCO_like 3 Domain 1 interface 0 1 0 1 26,56,58,59,61,79,80,96,97,100,101,103,105,107,109,110,112,113,117 2 -259967 cd13900 CuRO_3_Tth-MCO_like 4 Domain 2 interface 0 1 0 0 17,19,51,52,54,74,75,76,77,78,79,80,82,84,107,108,109,110,111,113,114 2 -259968 cd13901 CuRO_3_MaLCC_like 1 Type 1 (T1) Cu binding site HCHX 1 0 1 80,141,146,151 4 -259968 cd13901 CuRO_3_MaLCC_like 2 trinuclear Cu binding site HHHH 1 0 1 83,85,140,142 4 -259968 cd13901 CuRO_3_MaLCC_like 3 Domain 1 interface 0 1 0 1 34,35,36,39,40,41,56,83,85,86,88,113,115,116,132,133,135,136,137,138,140,142,144,145,148,154 2 -259968 cd13901 CuRO_3_MaLCC_like 4 Domain 2 interface 0 1 0 1 11,23,81,88,113,114,115,116,117,142,143,144,145,148,149 2 -259969 cd13902 CuRO_3_McoC_like 1 Type 1 (T1) Cu binding site HCHM 1 1 1 54,108,113,118 4 -259969 cd13902 CuRO_3_McoC_like 2 trinuclear Cu binding site HHHH 1 1 1 57,59,107,109 4 -259969 cd13902 CuRO_3_McoC_like 3 Domain 1 interface 0 1 1 1 27,57,59,62,82,83,100,101,102,103,104,105,107,109,111,112,114,115,119,121 2 -259969 cd13902 CuRO_3_McoC_like 4 Domain 2 interface 0 1 1 0 9,19,20,51,52,53,54,55,62,76,77,78,79,80,81,82,83,85,87,109,110,111,112,113,116 2 -259970 cd13903 CuRO_3_Tv-LCC_like 1 Type 1 (T1) Cu binding site HCHX 1 1 1 72,128,133,138 4 -259970 cd13903 CuRO_3_Tv-LCC_like 2 trinuclear Cu binding site HHHH 1 1 1 75,77,127,129 4 -259970 cd13903 CuRO_3_Tv-LCC_like 3 Domain 1 interface 0 1 1 1 25,26,29,30,31,75,77,78,79,80,101,102,119,120,122,123,124,125,127,129,131,132,134,135 2 -259970 cd13903 CuRO_3_Tv-LCC_like 4 Domain 2 interface 0 1 1 0 9,15,71,73,83,86,98,99,100,101,102,103,104,129,130,131,132,136 2 -259971 cd13904 CuRO_3_Diphenol_Ox 1 Type 1 (T1) Cu binding site HCHX 0 1 1 77,141,146,151 4 -259971 cd13904 CuRO_3_Diphenol_Ox 2 trinuclear Cu binding site HHHH 0 1 1 80,82,140,142 4 -259971 cd13904 CuRO_3_Diphenol_Ox 3 putative Domain 1 interface 0 0 1 1 80,82,83,113,116,135,136,137,138,140,142,144,145,152,154 2 -259971 cd13904 CuRO_3_Diphenol_Ox 4 putative Domain 2 interface 0 0 1 1 21,76,78,113,114,115,116,118,120,140,141,142,144,145,146 2 -259972 cd13905 CuRO_3_tcLLC2_insect_like 1 Type 1 (T1) Cu binding site HCHX 0 1 1 69,148,153,158 4 -259972 cd13905 CuRO_3_tcLLC2_insect_like 2 trinuclear Cu binding site HHHH 0 1 1 72,74,147,149 4 -259972 cd13905 CuRO_3_tcLLC2_insect_like 3 putative Domain 1 interface 0 0 1 1 72,74,75,120,123,142,143,144,145,147,149,151,152,159,161 2 -259972 cd13905 CuRO_3_tcLLC2_insect_like 4 putative Domain 2 interface 0 0 1 1 27,68,70,120,121,122,123,125,127,147,148,149,151,152,153 2 -259973 cd13906 CuRO_3_CumA_like 1 Type 1 (T1) Cu binding site HCHX 0 1 1 68,120,125,130 4 -259973 cd13906 CuRO_3_CumA_like 2 trinuclear Cu binding site HHHH 0 1 1 71,73,119,121 4 -259973 cd13906 CuRO_3_CumA_like 3 putative Domain 1 interface 0 0 1 1 71,73,74,92,95,114,115,116,117,119,121,123,124,131,133 2 -259973 cd13906 CuRO_3_CumA_like 4 putative Domain 2 interface 0 0 1 1 28,67,69,92,93,94,95,97,99,119,120,121,123,124,125 2 -259974 cd13907 CuRO_3_MCO_like_1 1 Type 1 (T1) Cu binding site HCHX 0 1 1 71,136,141,146 4 -259974 cd13907 CuRO_3_MCO_like_1 2 trinuclear Cu binding site HHHH 0 1 1 74,76,135,137 4 -259974 cd13907 CuRO_3_MCO_like_1 3 putative Domain 1 interface 0 0 1 1 74,76,77,107,110,130,131,132,133,135,137,139,140,147,149 2 -259974 cd13907 CuRO_3_MCO_like_1 4 putative Domain 2 interface 0 0 1 1 14,70,72,107,108,109,110,112,114,135,136,137,139,140,141 2 -259975 cd13908 CuRO_3_MCO_like_2 1 Type 1 (T1) Cu binding site HCHX 0 1 1 54,105,110,115 4 -259975 cd13908 CuRO_3_MCO_like_2 2 trinuclear Cu binding site HHHH 0 1 1 57,59,104,106 4 -259975 cd13908 CuRO_3_MCO_like_2 3 putative Domain 1 interface 0 0 1 1 57,59,60,77,80,99,100,101,102,104,106,108,109,116,118 2 -259975 cd13908 CuRO_3_MCO_like_2 4 putative Domain 2 interface 0 0 1 1 20,53,55,77,78,79,80,82,84,104,105,106,108,109,110 2 -259976 cd13909 CuRO_3_MCO_like_3 1 Type 1 (T1) Cu binding site HCHX 0 1 1 70,119,124,129 4 -259976 cd13909 CuRO_3_MCO_like_3 2 trinuclear Cu binding site HHHH 0 1 1 73,75,118,120 4 -259976 cd13909 CuRO_3_MCO_like_3 3 putative Domain 1 interface 0 0 1 1 73,75,76,91,94,113,114,115,116,118,120,122,123,130,132 2 -259976 cd13909 CuRO_3_MCO_like_3 4 putative Domain 2 interface 0 0 1 1 36,69,71,91,92,93,94,96,98,118,119,120,122,123,124 2 -259977 cd13910 CuRO_3_MCO_like_4 1 Type 1 (T1) Cu binding site HCHX 0 1 1 82,149,154,159 4 -259977 cd13910 CuRO_3_MCO_like_4 2 trinuclear Cu binding site HHHH 0 1 1 85,87,148,150 4 -259977 cd13910 CuRO_3_MCO_like_4 3 putative Domain 1 interface 0 0 1 1 85,87,88,121,124,143,144,145,146,148,150,152,153,160,162 2 -259977 cd13910 CuRO_3_MCO_like_4 4 putative Domain 2 interface 0 0 1 1 17,81,83,121,122,123,124,126,128,148,149,150,152,153,154 2 -259978 cd13911 CuRO_3_MCO_like_5 1 Type 1 (T1) Cu binding site HCHX 0 1 1 48,103,108,113 4 -259978 cd13911 CuRO_3_MCO_like_5 2 trinuclear Cu binding site HHHH 0 1 1 51,53,102,104 4 -259978 cd13911 CuRO_3_MCO_like_5 3 putative Domain 1 interface 0 0 1 1 51,53,54,74,77,97,98,99,100,102,104,106,107,114,116 2 -259978 cd13911 CuRO_3_MCO_like_5 4 putative Domain 2 interface 0 0 1 1 16,47,49,74,75,76,77,79,81,102,103,104,106,107,108 2 -259979 cd13912 CcO_II_C 1 CuA binding site HCECHM 1 1 1 68,103,105,107,111,114 4 -259979 cd13912 CcO_II_C 2 subunit I/II interface 0 1 1 0 78,80,83,85,87,102,103,104,105,109,111,112 2 -259979 cd13912 CcO_II_C 3 subunit II/IV interface 0 1 1 0 98,100 2 -259979 cd13912 CcO_II_C 4 subunit II/VIb interface 0 1 1 0 0,1,3,5,16,58,64,85,86,87,88 2 -259979 cd13912 CcO_II_C 5 subunit II/VIc interface 0 1 1 0 46,48,53,54,96 2 -259980 cd13913 ba3_CcO_II_C 1 CuA binuclear site HCCHM 1 1 0 45,80,84,88,91 4 -259980 cd13913 ba3_CcO_II_C 2 Subunit I/II interface 0 1 1 0 42,44,50,53,55,56,57,61,64,77,79,81,82,83,84,85,86,88,89,92 2 -259980 cd13913 ba3_CcO_II_C 3 Subunit II/IIa interface 0 1 1 0 52,53,68 2 -259981 cd13914 CuRO_HCO_II_like_3 1 CuA binuclear center HCCHM 0 1 1 45,80,84,88,91 4 -259982 cd13915 CuRO_HCO_II_like_2 1 CuA binuclear center HCCHM 0 1 1 45,80,84,88,91 4 -259983 cd13916 CuRO_HCO_II_like_1 1 CuA binuclear center HCCHM 0 1 1 35,74,78,82,85 4 -259984 cd13917 CuRO_HCO_II_like_4 1 CuA binuclear center HCCHM 0 1 1 34,69,73,77,80 4 -259985 cd13918 CuRO_HCO_II_like_6 1 CuA binuclear center HCCHM 0 1 1 76,111,115,119,122 4 -259986 cd13919 CuRO_HCO_II_like_5 1 CuA binuclear center HCCHM 0 1 1 53,88,92,96,99 4 -259987 cd13920 Stellacyanin 1 Type 1 (T1) Cu binding site HCHX 1 1 1 43,84,89,94 4 -259988 cd13921 Amicyanin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 33,67,70,73 4 -259989 cd13922 Azurin 1 Type 1 (T1) Cu binding site HCHM 1 1 1 43,109,114,118 4 -340372 cd13925 RPF 1 catalytic residue E 0 1 1 9 1 -340372 cd13925 RPF 2 sugar binding site 0 1 1 0 9,23,27,28,29,30,33,36,67,68,69 5 -340373 cd13926 N-acetylmuramidase_GH108 1 catalytic residue E 0 1 1 13 1 -260106 cd13929 PT-DMATS_CymD 1 active site 0 1 1 0 61,75,77,148,161,163,165,217,230,232,234,300,315,317,372,378,383,387 1 -260107 cd13930 PT-Tnase 1 putative active site 0 0 1 1 60,74,76,142,144,146,203,205,207,255,269,271,323,339,343 1 -260108 cd13931 PT-CloQ_NphB 1 active site 0 1 1 0 36,51,53,99,108,110,112,150,161,163,201,202,204,206,216,254,267,271 1 -260108 cd13931 PT-CloQ_NphB 2 metal binding site D 1 1 1 51 4 -260108 cd13931 PT-CloQ_NphB 3 pyrophosphate moiety binding site 0 1 1 0 108,161,216 5 -259826 cd13932 HN_RTEL1 1 putative protein binding site 0 0 1 1 16,19,23,36,39,42,43,46 2 -259827 cd13933 harmonin_N_like_u1 1 putative protein binding site 0 0 1 1 1,4,8,21,24,27,28,31 2 -260014 cd13934 RNase_H_Dikarya_like 1 active site DEDD 0 1 1 4,49,79,144 1 -260014 cd13934 RNase_H_Dikarya_like 2 RNA/DNA hybrid binding site 0 0 1 1 4,5,6,7,44,45,46,49,79,134,148 3 -260015 cd13935 RNase_H_bacteria_like 1 active site DE[ND]E[DN] 1 1 0 7,45,68,124,128 1 -260015 cd13935 RNase_H_bacteria_like 2 RNA/DNA hybrid binding site 0 1 1 0 7,8,9,10,11,12,13,14,40,41,42,43,45,68,69,70,71,74,75,82,83,84,116,117,119,124 3 -260116 cd13944 lytB_ispH 1 Fe-S cluster binding site 0 1 1 0 9,93,189 4 -260116 cd13944 lytB_ispH 2 substrate binding site 0 1 1 0 12,37,38,70,71,121,123,161,162,216,217,218,219,261 5 -260116 cd13944 lytB_ispH 3 catalytic site 0 0 1 1 121,123,217,219 1 -260117 cd13945 Chs5_N 1 homodimer interface 0 1 1 0 0,2,3,22,24,25,26,27,29,30,32,39,40,41,42,43,44,45,46,47,48,51,52 2 -260117 cd13945 Chs5_N 2 Bch1 interaction interface 0 1 1 0 7,8,9,15,17,21,22,23,29,55,58,59,62,63,66,67,69,70,71,72 2 -260117 cd13945 Chs5_N 3 Chs6 interaction interface 0 0 1 1 7,8,17,21,22,36,37,38,52,56,59,60,62,63,66,67,69,70,71,72 2 -260118 cd13946 LysW 1 Zn binding site CC[HC]C 1 1 0 2,5,23,26 4 -260118 cd13946 LysW 2 ArgX binding interface 0 1 1 1 4,5,6,14,17,18,19,20,26,27,31,33,42,45,48,49,50,51,52,53 2 -260118 cd13946 LysW 3 AAA attachment site 0 1 1 1 53 1 -320087 cd13949 7tm_V1R_pheromone 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320087 cd13949 7tm_V1R_pheromone 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320087 cd13949 7tm_V1R_pheromone 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320087 cd13949 7tm_V1R_pheromone 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320087 cd13949 7tm_V1R_pheromone 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320087 cd13949 7tm_V1R_pheromone 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320087 cd13949 7tm_V1R_pheromone 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320088 cd13950 7tm_TAS2R 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320088 cd13950 7tm_TAS2R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320088 cd13950 7tm_TAS2R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320088 cd13950 7tm_TAS2R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320088 cd13950 7tm_TAS2R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320088 cd13950 7tm_TAS2R 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320088 cd13950 7tm_TAS2R 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320089 cd13951 7tmF_Frizzled_SMO 1 ligand binding site 0 1 1 0 1,10,60,162,167,169,178,253,256,257,276,281,284,285 5 -320089 cd13951 7tmF_Frizzled_SMO 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320089 cd13951 7tmF_Frizzled_SMO 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320089 cd13951 7tmF_Frizzled_SMO 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320089 cd13951 7tmF_Frizzled_SMO 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320089 cd13951 7tmF_Frizzled_SMO 6 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320089 cd13951 7tmF_Frizzled_SMO 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320089 cd13951 7tmF_Frizzled_SMO 8 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -341314 cd13952 7tm_classB 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,69,76,154,155,157,159,214,217,230,234 2 -341314 cd13952 7tm_classB 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341314 cd13952 7tm_classB 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341314 cd13952 7tm_classB 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -341314 cd13952 7tm_classB 5 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -341314 cd13952 7tm_classB 6 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341314 cd13952 7tm_classB 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -341314 cd13952 7tm_classB 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320091 cd13953 7tm_classC_mGluR-like 1 putative allosteric modulator binding site 0 1 1 1 57,69,70,73,74,77,156,161,164,165,168,202,205,206,209,213,221,222,225,228,232 5 -320091 cd13953 7tm_classC_mGluR-like 2 putative dimer interface 0 1 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320091 cd13953 7tm_classC_mGluR-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320091 cd13953 7tm_classC_mGluR-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320091 cd13953 7tm_classC_mGluR-like 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320091 cd13953 7tm_classC_mGluR-like 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320091 cd13953 7tm_classC_mGluR-like 7 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320091 cd13953 7tm_classC_mGluR-like 8 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320091 cd13953 7tm_classC_mGluR-like 9 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320092 cd13954 7tmA_OR 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320092 cd13954 7tmA_OR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320092 cd13954 7tmA_OR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320092 cd13954 7tmA_OR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320092 cd13954 7tmA_OR 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320092 cd13954 7tmA_OR 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320092 cd13954 7tmA_OR 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320092 cd13954 7tmA_OR 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -260119 cd13956 PT_UbiA 1 putative active site dddd 0 1 1 55,59,175,179 1 -260120 cd13957 PT_UbiA_Cox10 1 putative active site [eD]DD 0 1 1 54,58,180 1 -260121 cd13958 PT_UbiA_chlorophyll 1 putative active site NDDDND[aS]D 0 1 1 55,56,59,63,179,180,183,187 1 -260122 cd13959 PT_UbiA_COQ2 1 putative active site dddd 0 1 1 56,60,176,180 1 -260123 cd13960 PT_UbiA_HPT1 1 putative active site dddd 0 1 1 61,65,191,195 1 -260124 cd13961 PT_UbiA_DGGGPS 1 putative active site dddd 0 1 1 58,62,176,180 1 -260125 cd13962 PT_UbiA_UBIAD1 1 putative active site n[ed]dnndd 0 1 1 52,53,56,182,183,186,190 1 -260126 cd13963 PT_UbiA_2 1 putative active site nddd 0 1 1 52,53,56,60 1 -260127 cd13964 PT_UbiA_1 1 putative active site nddd 0 1 1 51,52,55,59 1 -260128 cd13965 PT_UbiA_3 1 putative active site NQxDQ[eD]DD 0 1 1 55,56,59,63,176,177,180,184 1 -260129 cd13966 PT_UbiA_4 1 putative active site NDDDDD 0 1 1 52,53,56,60,179,183 1 -260130 cd13967 PT_UbiA_5 1 putative active site DDDDD 0 1 1 55,59,180,183,187 1 -270870 cd13968 PKc_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,54,70,71,72,73,115,119,120,122,132,133 5 -270871 cd13969 ADCK1-like 1 putative ATP binding site 0 0 1 1 50,51,52,53,54,56,66,68,127,146,147,148,149,191,195,196,198,213,214 5 -270872 cd13970 ABC1_ADCK3 1 putative ATP binding site 0 0 1 1 54,55,56,57,58,60,70,72,131,150,151,152,153,193,197,198,200,211,212 5 -270873 cd13971 ADCK2-like 1 putative ATP binding site 0 0 1 1 50,51,52,53,62,64,74,76,137,156,157,158,159,201,205,206,208,235,236 5 -270874 cd13972 UbiB 1 putative ATP binding site 0 0 1 1 50,51,52,53,54,56,66,68,130,149,150,151,152,194,198,199,201,211,212 5 -270875 cd13973 PK_MviN-like 1 dimer interface 0 1 1 1 0,23,24,25,52,55,56,64,65,66,67,80 2 -270876 cd13974 STKc_SHIK 1 active site 0 0 1 1 3,4,5,6,7,11,26,28,66,100,101,102,103,117,119,156,158,160,161,163,175,178,194,195,196,197 1 -270876 cd13974 STKc_SHIK 2 ATP binding site 0 0 1 1 3,4,5,6,7,11,26,28,66,100,101,102,103,117,156,158,160,161,163,175 5 -270876 cd13974 STKc_SHIK 3 polypeptide substrate binding site 0 0 1 1 7,117,119,156,158,160,178,194,195,196,197 2 -270876 cd13974 STKc_SHIK 4 activation loop (A-loop) 0 0 1 1 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 0 -270877 cd13975 PKc_Dusty 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,83,84,85,86,89,91,126,128,130,131,133,144,147,160,161,162,163 1 -270877 cd13975 PKc_Dusty 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,60,83,84,85,86,89,126,128,130,131,133,144 5 -270877 cd13975 PKc_Dusty 3 polypeptide substrate binding site 0 0 1 1 11,89,91,126,128,130,147,160,161,162,163 2 -270877 cd13975 PKc_Dusty 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270879 cd13977 STKc_PDIK1L 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,113,114,115,116,120,122,158,160,162,163,165,179,182,209,210,211,212 1 -270879 cd13977 STKc_PDIK1L 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,61,113,114,115,116,120,158,160,162,163,165,179 5 -270879 cd13977 STKc_PDIK1L 3 polypeptide substrate binding site 0 0 1 1 11,120,122,158,160,162,182,209,210,211,212 2 -270879 cd13977 STKc_PDIK1L 4 activation loop (A-loop) 0 0 1 1 178,179,180,181,182,183,184,185,186,187,188,189,190,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 0 -270880 cd13978 STKc_RIP 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,54,70,71,72,73,77,79,119,121,123,124,126,137,140,161,162,163,164 1 -270880 cd13978 STKc_RIP 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,54,70,71,72,73,77,119,121,123,124,126,137 5 -270880 cd13978 STKc_RIP 3 polypeptide substrate binding site 0 0 1 1 4,77,79,119,121,123,140,161,162,163,164 2 -270880 cd13978 STKc_RIP 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,156,157,158,159,160,161,162,163,164 0 -270881 cd13979 STKc_Mos 1 active site 0 0 1 1 10,11,12,13,14,18,29,31,61,80,81,82,83,87,89,127,129,131,132,134,145,148,167,168,169,170 1 -270881 cd13979 STKc_Mos 2 ATP binding site 0 0 1 1 10,11,12,13,14,18,29,31,61,80,81,82,83,87,127,129,131,132,134,145 5 -270881 cd13979 STKc_Mos 3 polypeptide substrate binding site 0 0 1 1 14,87,89,127,129,131,148,167,168,169,170 2 -270881 cd13979 STKc_Mos 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,164,165,166,167,168,169,170 0 -270882 cd13980 STKc_Vps15 1 active site 0 0 1 1 7,8,9,10,11,15,26,28,60,76,77,78,79,82,84,121,123,125,126,128,139,142,165,166,167,168 1 -270882 cd13980 STKc_Vps15 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,26,28,60,76,77,78,79,82,121,123,125,126,128,139 5 -270882 cd13980 STKc_Vps15 3 polypeptide substrate binding site 0 0 1 1 11,82,84,121,123,125,142,165,166,167,168 2 -270882 cd13980 STKc_Vps15 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,165,166,167,168 0 -270883 cd13981 STKc_Bub1_BubR1 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,31,33,63,79,80,81,82,86,130,132,134,135,137,163 5 -270883 cd13981 STKc_Bub1_BubR1 2 active site 0 0 1 1 7,8,9,10,11,15,31,33,63,79,80,81,82,86,88,130,132,134,135,137,163,166,184,185,186,187 1 -270883 cd13981 STKc_Bub1_BubR1 3 polypeptide substrate binding site 0 0 1 1 11,86,88,130,132,134,166,184,185,186,187 2 -270883 cd13981 STKc_Bub1_BubR1 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,181,183,184,185,186,187 0 -270884 cd13982 STKc_IRE1 1 ATP binding site 0 1 1 0 8,9,10,11,12,15,17,28,30,57,73,74,76,79,127,128,130,146 5 -270884 cd13982 STKc_IRE1 2 dimer interface (face-to-face) 0 1 1 1 10,13,14,16,31,33,65,67,68,214,215,217,218,221 2 -270884 cd13982 STKc_IRE1 3 dimer interface (back-to-back) 0 1 1 1 0,22,23,25,48,49,51,53,58,59,60,61,62,74,109,112,113,116,117,141,259,262 2 -270884 cd13982 STKc_IRE1 4 oligomer interface 0 1 1 1 6,19,158,159,188,232,233,234,257 2 -270884 cd13982 STKc_IRE1 5 active site 0 0 1 1 8,9,10,11,12,17,28,30,57,73,74,75,76,79,81,123,125,127,128,130,146,149,168,169,170,171 1 -270884 cd13982 STKc_IRE1 6 polypeptide substrate binding site 0 0 1 1 12,79,81,123,125,127,149,168,169,170,171 2 -270884 cd13982 STKc_IRE1 7 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,164,165,166,167,168,169,170,171 0 -270885 cd13983 STKc_WNK 1 ATP binding site 0 1 1 1 8,9,10,11,12,14,16,29,31,62,80,81,82,83,87,128,130,132,133,135,147 5 -270885 cd13983 STKc_WNK 2 active site 0 0 1 1 8,9,10,11,12,14,16,29,31,62,80,81,82,83,87,89,128,130,132,133,135,147,150,164,165,166,167 1 -270885 cd13983 STKc_WNK 3 polypeptide substrate binding site 0 0 1 1 12,87,89,128,130,132,150,164,165,166,167 2 -270885 cd13983 STKc_WNK 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,158,159,160,161,162,163,164,165,166,167 0 -270887 cd13985 STKc_GAK_like 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,60,80,81,82,83,86,129,131,133,134,136,147 5 -270887 cd13985 STKc_GAK_like 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,80,81,82,83,86,88,129,131,133,134,136,147,150,175,176,177,178 1 -270887 cd13985 STKc_GAK_like 3 polypeptide substrate binding site 0 0 1 1 11,86,88,129,131,133,150,175,176,177,178 2 -270887 cd13985 STKc_GAK_like 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178 0 -270888 cd13986 STKc_16 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,59,80,81,82,83,87,133,135,137,138,140,151 5 -270888 cd13986 STKc_16 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,59,80,81,82,83,87,89,133,135,137,138,140,151,154,179,180,181,182 1 -270888 cd13986 STKc_16 3 polypeptide substrate binding site 0 0 1 1 11,87,89,133,135,137,154,179,180,181,182 2 -270888 cd13986 STKc_16 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,181,182 0 -270889 cd13987 STKc_SBK1 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,52,69,70,71,72,76,78,115,117,119,120,122,135,138,151,152,153,154 1 -270889 cd13987 STKc_SBK1 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,52,69,70,71,72,76,115,117,119,120,122,135 5 -270889 cd13987 STKc_SBK1 3 polypeptide substrate binding site 0 0 1 1 4,76,78,115,117,119,138,151,152,153,154 2 -270889 cd13987 STKc_SBK1 4 activation loop (A-loop) 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 0 -270890 cd13988 STKc_TBK1 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,53,71,72,73,74,75,78,80,120,122,124,125,127,141,142,145,160,161,162,163 1 -270890 cd13988 STKc_TBK1 2 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,53,71,72,73,74,75,78,120,122,124,125,127,141,142 5 -270890 cd13988 STKc_TBK1 3 polypeptide substrate binding site 0 0 1 1 4,78,80,120,122,124,145,160,161,162,163 2 -270890 cd13988 STKc_TBK1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270891 cd13989 STKc_IKK 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,55,77,78,79,80,84,126,128,130,131,133,147 5 -270891 cd13989 STKc_IKK 2 active site 0 0 1 1 0,1,2,3,4,8,21,23,55,77,78,79,80,84,86,126,128,130,131,133,147,150,165,166,167,168 1 -270891 cd13989 STKc_IKK 3 polypeptide substrate binding site 0 0 1 1 4,84,86,126,128,130,150,165,166,167,168 2 -270891 cd13989 STKc_IKK 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,159,160,161,162,163,164,165,166,167,168 0 -270891 cd13989 STKc_IKK 5 SDD interface 0 1 1 1 90,92,96,99,200,205,233,234,236,242,243,244,245 2 -270892 cd13990 STKc_TLK 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,66,83,84,85,86,90,92,131,133,135,136,138,152,155,177,178,179,180 1 -270892 cd13990 STKc_TLK 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,66,83,84,85,86,90,131,133,135,136,138,152 5 -270892 cd13990 STKc_TLK 3 polypeptide substrate binding site 0 0 1 1 11,90,92,131,133,135,155,177,178,179,180 2 -270892 cd13990 STKc_TLK 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -270893 cd13991 STKc_NIK 1 active site 0 0 1 1 13,14,15,16,17,21,34,36,60,76,77,78,79,83,85,86,122,124,126,127,129,141,144,165,166,167,168 1 -270893 cd13991 STKc_NIK 2 ATP binding site 0 1 1 1 13,14,15,16,17,21,34,36,60,76,77,78,79,83,86,122,124,126,127,129,141 5 -270893 cd13991 STKc_NIK 3 polypeptide substrate binding site 0 0 1 1 17,83,85,122,124,126,144,165,166,167,168 2 -270893 cd13991 STKc_NIK 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270895 cd13993 STKc_Pat1_like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,67,83,84,85,86,90,92,131,133,135,136,138,150,153,166,167,168,169 1 -270895 cd13993 STKc_Pat1_like 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,67,83,84,85,86,90,131,133,135,136,138,150 5 -270895 cd13993 STKc_Pat1_like 3 polypeptide substrate binding site 0 0 1 1 11,90,92,131,133,135,153,166,167,168,169 2 -270895 cd13993 STKc_Pat1_like 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270896 cd13994 STKc_HAL4_like 1 active site 0 0 1 1 0,1,2,3,4,8,23,25,59,76,77,78,79,83,85,122,124,126,127,129,140,143,163,164,165,166 1 -270896 cd13994 STKc_HAL4_like 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,23,25,59,76,77,78,79,83,122,124,126,127,129,140 5 -270896 cd13994 STKc_HAL4_like 3 polypeptide substrate binding site 0 0 1 1 4,83,85,122,124,126,143,163,164,165,166 2 -270896 cd13994 STKc_HAL4_like 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,160,161,162,163,164,165,166 0 -270897 cd13995 STKc_MAP3K8 1 active site 0 0 1 1 11,12,13,14,15,19,32,34,58,74,75,76,77,81,83,120,122,124,125,127,137,140,156,157,158,159 1 -270897 cd13995 STKc_MAP3K8 2 ATP binding site 0 0 1 1 11,12,13,14,15,19,32,34,58,74,75,76,77,81,120,122,124,125,127,137 5 -270897 cd13995 STKc_MAP3K8 3 polypeptide substrate binding site 0 0 1 1 15,81,83,120,122,124,140,156,157,158,159 2 -270897 cd13995 STKc_MAP3K8 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159 0 -270898 cd13996 STKc_EIF2AK 1 active site 0 1 1 1 13,14,19,21,34,36,82,83,84,85,89,135,136,138,150,184,185,186,217,219,220,221,222,223,224,225,226 1 -270898 cd13996 STKc_EIF2AK 2 ATP binding site 0 1 1 0 13,14,19,21,34,36,66,82,83,84,85,89,131,133,135,136,138,150 5 -270898 cd13996 STKc_EIF2AK 3 eIF2alpha (substrate) binding site 0 1 1 0 184,185,186,217,219,220,221,222,223,224,225,226 2 -270898 cd13996 STKc_EIF2AK 4 dimer interface 0 1 1 1 0,1,2,5,6,51,52,55,56,58,59,61,67,68,69,70,71,72,73,74,75,77,78,121,124,125,126 2 -270898 cd13996 STKc_EIF2AK 5 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,175,176,177,178,179,180,181,182,183,184,185,186 0 -270899 cd13997 PKc_Wee1_like 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,127,129,131,132,134,145 5 -270899 cd13997 PKc_Wee1_like 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,127,129,131,132,134,145,148,161,162,163,164 1 -270899 cd13997 PKc_Wee1_like 3 polypeptide substrate binding site 0 0 1 1 11,85,87,127,129,131,148,161,162,163,164 2 -270899 cd13997 PKc_Wee1_like 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164 0 -270900 cd13998 STKc_TGFbR-like 1 ATP binding site 0 1 1 0 2,3,4,5,6,7,8,10,21,23,71,72,74,78,129,130,132,143 5 -270900 cd13998 STKc_TGFbR-like 2 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,125,127,129,130,132,143,146,166,167,168,169 1 -270900 cd13998 STKc_TGFbR-like 3 polypeptide substrate binding site 0 1 1 1 6,78,80,125,127,129,146,166,167,168,169 2 -270900 cd13998 STKc_TGFbR-like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270901 cd13999 STKc_MAP3K-like 1 active site 0 0 1 1 0,1,2,3,4,8,19,21,52,68,69,70,71,75,77,115,117,119,120,122,133,136,152,153,154,155 1 -270901 cd13999 STKc_MAP3K-like 2 ATP binding site 0 1 1 0 0,1,2,3,4,8,19,21,52,68,69,70,71,75,115,117,119,120,122,133 5 -270901 cd13999 STKc_MAP3K-like 3 polypeptide substrate binding site 0 0 1 1 4,75,77,115,117,119,136,152,153,154,155 2 -270901 cd13999 STKc_MAP3K-like 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,151,152,153,154,155 0 -270902 cd14000 STKc_LRRK 1 active site 0 0 1 1 0,1,2,3,4,8,20,22,72,86,87,88,89,93,95,136,138,140,141,143,159,162,176,177,178,179 1 -270902 cd14000 STKc_LRRK 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,20,22,72,86,87,88,89,93,136,138,140,141,143,159 5 -270902 cd14000 STKc_LRRK 3 polypeptide substrate binding site 0 0 1 1 4,93,95,136,138,140,162,176,177,178,179 2 -270902 cd14000 STKc_LRRK 4 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -270903 cd14001 PKc_TOPK 1 active site 0 0 1 1 6,7,8,9,10,14,31,33,67,84,85,86,87,90,92,135,137,139,140,142,154,157,177,178,179,180 1 -270903 cd14001 PKc_TOPK 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,31,33,67,84,85,86,87,90,135,137,139,140,142,154 5 -270903 cd14001 PKc_TOPK 3 polypeptide substrate binding site 0 0 1 1 10,90,92,135,137,139,157,177,178,179,180 2 -270903 cd14001 PKc_TOPK 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,179,180 0 -270904 cd14002 STKc_STK36 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,84,86,122,123,125,127,128,130,140,141,144,159,160,161,162,163,165 1 -270904 cd14002 STKc_STK36 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,62,78,79,80,81,84,127,128,130,140,141 5 -270904 cd14002 STKc_STK36 3 polypeptide substrate binding site 0 0 1 1 12,84,86,122,123,125,127,144,159,160,161,162,163,165 2 -270904 cd14002 STKc_STK36 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270905 cd14003 STKc_AMPK-like 1 ATP binding site 0 1 1 1 7,8,9,10,15,28,30,61,77,78,79,80,84,127,128,130,140,141 5 -270905 cd14003 STKc_AMPK-like 2 polypeptide substrate binding site 0 1 1 1 84,86,87,89,123,125,127,144,158,159,160,161,162,164,194,195,196,197 2 -270905 cd14003 STKc_AMPK-like 3 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,87,89,122,123,125,127,128,130,140,141,144,158,159,160,161,162,164,194,195,196,197 1 -270905 cd14003 STKc_AMPK-like 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,155,156,157,158,159,160,161,162 0 -270906 cd14004 STKc_PASK 1 ATP binding site 0 1 1 0 7,8,15,28,30,70,86,87,88,89,92,94,137,138,140,150,151 5 -270906 cd14004 STKc_PASK 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,70,86,87,88,89,94,96,133,135,137,138,140,150,151,154,168,169,170,171 1 -270906 cd14004 STKc_PASK 3 polypeptide substrate binding site 0 0 1 1 11,94,96,133,135,137,154,168,169,170,171 2 -270906 cd14004 STKc_PASK 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -270907 cd14005 STKc_PIM 1 active site 0 1 1 1 7,8,9,10,11,15,28,30,68,84,85,86,87,92,94,95,97,98,131,133,134,135,136,138,150,166,167,168,170,198,202,203,204,207 1 -270907 cd14005 STKc_PIM 2 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,68,84,85,86,87,92,131,133,135,136,138,150 5 -270907 cd14005 STKc_PIM 3 polypeptide substrate binding site 0 1 0 0 92,94,95,97,98,131,133,134,135,166,167,168,170,198,202,203,204,207 2 -270907 cd14005 STKc_PIM 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,162,163,164,165,166,167,168,169,170 0 -270908 cd14006 STKc_MLCK-like 1 ATP binding site 0 1 1 0 0,1,2,3,4,6,8,21,23,51,67,68,70,74,117,118,120,132,133 5 -270908 cd14006 STKc_MLCK-like 2 active site 0 0 1 1 0,1,2,3,4,6,8,21,23,51,67,68,70,74,76,113,115,117,118,120,132,133,136,151,152,153,154 1 -270908 cd14006 STKc_MLCK-like 3 polypeptide substrate binding site 0 0 1 1 4,74,76,113,115,117,136,151,152,153,154 2 -270908 cd14006 STKc_MLCK-like 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,150,151,152,153,154 0 -270909 cd14007 STKc_Aurora 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,28,30,62,79,81,85,128,129,131,142 5 -270909 cd14007 STKc_Aurora 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,124,126,128,129,131,142,145,159,160,161,162 1 -270909 cd14007 STKc_Aurora 3 polypeptide substrate binding site 0 0 1 1 11,85,87,124,126,128,145,159,160,161,162 2 -270909 cd14007 STKc_Aurora 4 activation loop (A-loop) 0 1 1 1 141,142,143,144,145,146,147,148,149,150,153,154,155,156,157,158,159,160,161,162 0 -270910 cd14008 STKc_LKB1_CaMKK 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,66,84,85,86,87,91,132,134,136,137,139,150 5 -270910 cd14008 STKc_LKB1_CaMKK 2 active site 0 0 1 1 0,1,2,3,4,8,21,23,66,84,85,86,87,91,93,132,134,136,137,139,150,153,169,170,171,172 1 -270910 cd14008 STKc_LKB1_CaMKK 3 polypeptide substrate binding site 0 0 1 1 4,91,93,132,134,136,153,169,170,171,172 2 -270910 cd14008 STKc_LKB1_CaMKK 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,166,167,168,169,170,171,172 0 -270911 cd14009 STKc_ATG1_ULK_like 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,54,70,71,72,73,77,79,116,118,120,121,123,137,140,155,156,157,158 1 -270911 cd14009 STKc_ATG1_ULK_like 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,54,70,71,72,73,77,116,118,120,121,123,137 5 -270911 cd14009 STKc_ATG1_ULK_like 3 polypeptide substrate binding site 0 0 1 1 4,77,79,116,118,120,140,155,156,157,158 2 -270911 cd14009 STKc_ATG1_ULK_like 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,149,150,151,152,153,154,155,156,157,158 0 -270912 cd14010 STKc_ULK4 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,56,72,73,74,75,79,81,118,120,122,123,125,136,139,171,172,173,174 1 -270912 cd14010 STKc_ULK4 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,56,72,73,74,75,79,118,120,122,123,125,136 5 -270912 cd14010 STKc_ULK4 3 polypeptide substrate binding site 0 0 1 1 11,79,81,118,120,122,139,171,172,173,174 2 -270912 cd14010 STKc_ULK4 4 activation loop (A-loop) 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,168,169,170,171,172,173,174 0 -270915 cd14013 STKc_SNT7_plant 1 active site 0 0 1 1 2,3,4,5,6,10,28,30,59,78,79,80,81,85,87,144,146,148,149,151,163,166,183,184,185,186 1 -270915 cd14013 STKc_SNT7_plant 2 ATP binding site 0 0 1 1 2,3,4,5,6,10,28,30,59,78,79,80,81,85,144,146,148,149,151,163 5 -270915 cd14013 STKc_SNT7_plant 3 polypeptide substrate binding site 0 0 1 1 6,85,87,144,146,148,166,183,184,185,186 2 -270915 cd14013 STKc_SNT7_plant 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -270916 cd14014 STKc_PknB_like 1 ATP binding site 0 1 1 0 7,8,10,11,12,13,15,28,30,62,78,79,80,81,85,126,128,129,131,141,142 5 -270916 cd14014 STKc_PknB_like 2 dimer interface 0 1 1 1 0,24,25,54,59,64,65,66,67,79 2 -270916 cd14014 STKc_PknB_like 3 active site 0 0 1 1 7,8,10,11,12,13,15,28,30,62,78,79,80,81,85,87,124,126,128,129,131,141,142,145,162,163,164,165 1 -270916 cd14014 STKc_PknB_like 4 polypeptide substrate binding site 0 0 1 1 11,85,87,124,126,128,145,162,163,164,165 2 -270916 cd14014 STKc_PknB_like 5 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,158,159,160,161,162,163,164,165 0 -270917 cd14015 STKc_VRK 1 ATP binding site 0 1 1 1 17,18,19,20,21,25,43,45,85,105,106,107,108,111,151,153,155,156,158,172 5 -270917 cd14015 STKc_VRK 2 active site 0 0 1 1 17,18,19,20,21,25,43,45,85,105,106,107,108,111,113,151,153,155,156,158,172,175,198,199,200,201 1 -270917 cd14015 STKc_VRK 3 polypeptide substrate binding site 0 0 1 1 21,111,113,151,153,155,175,198,199,200,201 2 -270917 cd14015 STKc_VRK 4 activation loop (A-loop) 0 0 1 1 171,172,173,174,175,176,177,178,179,180,181,182,183,190,191,192,193,194,195,196,197,198,199,200,201 0 -270918 cd14016 STKc_CK1 1 ATP binding site 0 1 1 0 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,122,124,125,127,141 5 -270918 cd14016 STKc_CK1 2 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,80,82,120,122,124,125,127,141,144,167,168,169,170 1 -270918 cd14016 STKc_CK1 3 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,144,167,168,169,170 2 -270918 cd14016 STKc_CK1 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161,164,165,166,167,168,169,170 0 -270919 cd14017 STKc_TTBK 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,82,121,123,125,126,128,143,146,169,170,171,172 1 -270919 cd14017 STKc_TTBK 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,121,123,125,126,128,143 5 -270919 cd14017 STKc_TTBK 3 polypeptide substrate binding site 0 0 1 1 11,80,82,121,123,125,146,169,170,171,172 2 -270919 cd14017 STKc_TTBK 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,169,170,171,172 0 -270920 cd14018 STKc_PINK1 1 active site 0 0 1 1 0,1,2,3,4,8,17,19,75,118,119,120,121,124,126,162,164,166,167,169,184,187,209,210,211,212 1 -270920 cd14018 STKc_PINK1 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,17,19,75,118,119,120,121,124,162,164,166,167,169,184 5 -270920 cd14018 STKc_PINK1 3 polypeptide substrate binding site 0 0 1 1 4,124,126,162,164,166,187,209,210,211,212 2 -270920 cd14018 STKc_PINK1 4 activation loop (A-loop) 0 0 1 1 183,184,185,186,187,188,189,190,191,192,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 0 -270921 cd14019 STKc_Cdc7 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,36,38,66,82,83,84,85,87,129,130,132,144 5 -270921 cd14019 STKc_Cdc7 2 active site 0 0 1 1 8,9,10,11,12,16,36,38,48,66,82,83,84,85,89,91,92,125,127,129,130,132,144,147,159,161,162,163,164,166,205 1 -270921 cd14019 STKc_Cdc7 3 polypeptide substrate binding site 0 0 1 1 48,91,125,127,147,159,161,162,163,164,166,205 2 -270921 cd14019 STKc_Cdc7 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270922 cd14020 STKc_KIS 1 active site 0 0 1 1 7,8,9,10,11,15,30,32,51,66,87,88,89,90,93,95,96,134,136,138,139,141,153,156,165,167,168,169,170,172,220 1 -270922 cd14020 STKc_KIS 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,30,32,66,87,88,89,90,93,134,136,138,139,141,153 5 -270922 cd14020 STKc_KIS 3 polypeptide substrate binding site 0 0 1 1 51,95,134,136,156,165,167,168,169,170,172,220 2 -270922 cd14020 STKc_KIS 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270923 cd14021 ChoK-like_euk 1 ATP binding site 0 1 1 0 6,11,13,31,33,62,74,75,76,77,79,80,81,121,124,135,136 5 -270923 cd14021 ChoK-like_euk 2 substrate binding site 0 1 1 0 8,9,10,117,119,122,139,155,223,226 5 -270923 cd14021 ChoK-like_euk 3 active site 0 1 1 1 6,8,9,10,11,13,31,33,62,74,75,76,77,79,80,81,117,119,121,122,124,135,136,139,155,223,226 1 -270923 cd14021 ChoK-like_euk 4 dimer interface 0 1 1 0 46,49,50,53,54,64,65,66,67,109 2 -270927 cd14025 STKc_RIP4_like 1 active site 0 0 1 1 3,4,5,6,7,11,24,26,57,71,72,73,74,78,80,118,120,122,123,125,136,139,158,159,160,161 1 -270927 cd14025 STKc_RIP4_like 2 ATP binding site 0 0 1 1 3,4,5,6,7,11,24,26,57,71,72,73,74,78,118,120,122,123,125,136 5 -270927 cd14025 STKc_RIP4_like 3 polypeptide substrate binding site 0 0 1 1 7,78,80,118,120,122,139,158,159,160,161 2 -270927 cd14025 STKc_RIP4_like 4 activation loop (A-loop) 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 0 -270928 cd14026 STKc_RIP2 1 active site 0 0 1 1 4,5,6,7,8,12,25,27,59,75,76,77,78,82,84,126,128,130,131,133,144,147,168,169,170,171 1 -270928 cd14026 STKc_RIP2 2 ATP binding site 0 0 1 1 4,5,6,7,8,12,25,27,59,75,76,77,78,82,126,128,130,131,133,144 5 -270928 cd14026 STKc_RIP2 3 polypeptide substrate binding site 0 0 1 1 8,82,84,126,128,130,147,168,169,170,171 2 -270928 cd14026 STKc_RIP2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -270929 cd14027 STKc_RIP1 1 active site 0 0 1 1 0,1,2,3,4,8,20,22,53,69,70,71,72,76,78,114,116,118,119,121,132,135,164,165,166,167 1 -270929 cd14027 STKc_RIP1 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,20,22,53,69,70,71,72,76,114,116,118,119,121,132 5 -270929 cd14027 STKc_RIP1 3 polypeptide substrate binding site 0 0 1 1 4,76,78,114,116,118,135,164,165,166,167 2 -270929 cd14027 STKc_RIP1 4 activation loop (A-loop) 0 0 1 1 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270929 cd14027 STKc_RIP1 5 Necrostatin binding site 0 1 1 1 22,41,44,45,47,52,53,55,67,69,105,110,112,130,131,132,133,135,137,138,141 5 -270930 cd14028 STKc_Bub1_vert 1 ATP binding site 0 1 1 0 7,8,9,10,11,15,33,35,64,80,81,82,83,87,131,133,135,136,138,162 5 -270930 cd14028 STKc_Bub1_vert 2 active site 0 0 1 1 7,8,9,10,11,15,33,35,64,80,81,82,83,87,89,131,133,135,136,138,162,165,183,184,185,186 1 -270930 cd14028 STKc_Bub1_vert 3 polypeptide substrate binding site 0 0 1 1 11,87,89,131,133,135,165,183,184,185,186 2 -270930 cd14028 STKc_Bub1_vert 4 activation loop (A-loop) 0 0 1 1 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -270931 cd14029 STKc_BubR1_vert 1 active site 0 0 1 1 11,12,13,14,15,19,47,49,78,95,96,97,98,101,103,140,142,144,145,147,169,172,188,189,190,191 1 -270931 cd14029 STKc_BubR1_vert 2 ATP binding site 0 0 1 1 11,12,13,14,15,19,47,49,78,95,96,97,98,101,140,142,144,145,147,169 5 -270931 cd14029 STKc_BubR1_vert 3 polypeptide substrate binding site 0 0 1 1 15,101,103,140,142,144,172,188,189,190,191 2 -270931 cd14029 STKc_BubR1_vert 4 activation loop (A-loop) 0 0 1 1 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 0 -270932 cd14030 STKc_WNK1 1 ATP binding site 0 1 1 1 32,33,34,35,36,38,40,53,55,86,106,107,108,109,113,154,156,158,159,161,173 5 -270932 cd14030 STKc_WNK1 2 active site 0 0 1 1 32,33,34,35,36,38,40,53,55,86,106,107,108,109,113,115,154,156,158,159,161,173,176,190,191,192,193 1 -270932 cd14030 STKc_WNK1 3 polypeptide substrate binding site 0 0 1 1 36,113,115,154,156,158,176,190,191,192,193 2 -270932 cd14030 STKc_WNK1 4 activation loop (A-loop) 0 0 1 1 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 0 -270933 cd14031 STKc_WNK3 1 active site 0 0 1 1 17,18,19,20,21,23,25,38,40,71,91,92,93,94,98,100,139,141,143,144,146,158,161,175,176,177,178 1 -270933 cd14031 STKc_WNK3 2 ATP binding site 0 0 1 1 17,18,19,20,21,25,38,40,71,91,92,93,94,98,139,141,143,144,146,158 5 -270933 cd14031 STKc_WNK3 3 polypeptide substrate binding site 0 0 1 1 21,98,100,139,141,143,161,175,176,177,178 2 -270933 cd14031 STKc_WNK3 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -270934 cd14032 STKc_WNK2_like 1 putative active site 0 0 1 1 8,9,10,11,12,16,29,31,62,82,83,84,85,89,91,130,132,134,135,137,149,152,166,167,168,169 1 -270934 cd14032 STKc_WNK2_like 2 putative ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,62,82,83,84,85,89,130,132,134,135,137,149 5 -270934 cd14032 STKc_WNK2_like 3 putative polypeptide substrate binding site 0 0 1 1 12,89,91,130,132,134,152,166,167,168,169 2 -270934 cd14032 STKc_WNK2_like 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270935 cd14033 STKc_WNK4 1 active site 0 0 1 1 8,9,10,11,12,14,16,29,31,62,82,83,84,85,89,91,130,132,134,135,137,149,152,166,167,168,169 1 -270935 cd14033 STKc_WNK4 2 ATP binding site 0 0 1 1 8,9,10,11,12,14,16,29,31,62,82,83,84,85,89,130,132,134,135,137,149 5 -270935 cd14033 STKc_WNK4 3 polypeptide substrate binding site 0 0 1 1 12,89,91,130,132,134,152,166,167,168,169 2 -270935 cd14033 STKc_WNK4 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270938 cd14036 STKc_GAK 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,60,84,85,86,87,90,134,136,138,139,141,152 5 -270938 cd14036 STKc_GAK 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,84,85,86,87,90,92,134,136,138,139,141,152,155,183,184,185,186 1 -270938 cd14036 STKc_GAK 3 polypeptide substrate binding site 0 0 1 1 11,90,92,134,136,138,155,183,184,185,186 2 -270938 cd14036 STKc_GAK 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,183,184,185,186 0 -270939 cd14037 STKc_NAK_like 1 active site 0 0 1 1 10,11,12,13,14,18,31,33,63,84,85,86,87,91,93,134,136,138,139,141,152,155,180,181,182,183 1 -270939 cd14037 STKc_NAK_like 2 ATP binding site 0 0 1 1 10,11,12,13,14,18,31,33,63,84,85,86,87,91,134,136,138,139,141,152 5 -270939 cd14037 STKc_NAK_like 3 polypeptide substrate binding site 0 0 1 1 14,91,93,134,136,138,155,180,181,182,183 2 -270939 cd14037 STKc_NAK_like 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 0 -270940 cd14038 STKc_IKK_beta 1 ATP binding site 0 1 1 1 1,2,3,4,5,9,22,24,54,76,77,78,79,83,125,127,129,130,132,146 5 -270940 cd14038 STKc_IKK_beta 2 active site 0 0 1 1 1,2,3,4,5,9,22,24,54,76,77,78,79,83,85,125,127,129,130,132,146,149,164,165,166,167 1 -270940 cd14038 STKc_IKK_beta 3 polypeptide substrate binding site 0 0 1 1 5,83,85,125,127,129,149,164,165,166,167 2 -270940 cd14038 STKc_IKK_beta 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270940 cd14038 STKc_IKK_beta 5 tetramer interface 0 1 1 0 209,211,212,216 2 -270940 cd14038 STKc_IKK_beta 6 ULD interface 0 1 1 1 101,103,104,138,139 2 -270940 cd14038 STKc_IKK_beta 7 SDD interface 0 1 1 1 89,91,94,95,98,199,204,232,233,235,241,242,243,244 2 -270941 cd14039 STKc_IKK_alpha 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,53,74,75,76,77,81,83,123,125,127,128,130,144,147,162,163,164,165 1 -270941 cd14039 STKc_IKK_alpha 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,53,74,75,76,77,81,123,125,127,128,130,144 5 -270941 cd14039 STKc_IKK_alpha 3 polypeptide substrate binding site 0 0 1 1 4,81,83,123,125,127,147,162,163,164,165 2 -270941 cd14039 STKc_IKK_alpha 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270941 cd14039 STKc_IKK_alpha 5 putative SDD interface 0 0 1 1 87,89,93,96,197,202,230,231,233,239,240,241,242 2 -270942 cd14040 STKc_TLK1 1 active site 0 0 1 1 13,14,15,16,17,21,34,36,72,89,90,91,92,96,98,137,139,141,142,144,158,161,183,184,185,186 1 -270942 cd14040 STKc_TLK1 2 ATP binding site 0 0 1 1 13,14,15,16,17,21,34,36,72,89,90,91,92,96,137,139,141,142,144,158 5 -270942 cd14040 STKc_TLK1 3 polypeptide substrate binding site 0 0 1 1 17,96,98,137,139,141,161,183,184,185,186 2 -270942 cd14040 STKc_TLK1 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -270943 cd14041 STKc_TLK2 1 active site 0 0 1 1 13,14,15,16,17,21,34,36,72,89,90,91,92,96,98,137,139,141,142,144,158,161,184,185,186,187 1 -270943 cd14041 STKc_TLK2 2 ATP binding site 0 0 1 1 13,14,15,16,17,21,34,36,72,89,90,91,92,96,137,139,141,142,144,158 5 -270943 cd14041 STKc_TLK2 3 polypeptide substrate binding site 0 0 1 1 17,96,98,137,139,141,161,184,185,186,187 0 -270943 cd14041 STKc_TLK2 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,184,185,186,187 0 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 1 ATP binding site 0 1 1 0 13,14,21,34,36,66,82,83,84,85,128,130,133,135,146 5 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 2 dimer interface 0 1 1 1 0,1,2,5,6,51,52,55,56,58,59,61,67,68,69,70,71,72,73,74,75,77,78,118,121,122,123 2 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 3 active site 0 0 1 1 13,14,19,21,34,36,82,83,84,85,89,132,133,135,146,184,185,186,219,221,222,223,224,225,226,227,228 1 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 4 eIF2alpha (substrate) binding site 0 0 1 1 184,185,186,219,221,222,223,224,225,226,227,228 2 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,161,162,163,164,165,166,167,168,169,175,176,177,178,179,180,181,182,183,184,185,186 0 -270949 cd14047 STKc_EIF2AK2_PKR 1 active site 0 1 1 1 19,21,34,36,93,94,95,96,100,106,109,145,146,148,159,178,179,180,211,213,214,215,216,217,218,219,220 1 -270949 cd14047 STKc_EIF2AK2_PKR 2 ATP binding site 0 1 1 0 19,21,34,36,93,94,95,96,100,145,146,148,159 5 -270949 cd14047 STKc_EIF2AK2_PKR 3 eIF2alpha (substrate) binding site 0 1 1 0 106,109,178,179,180,211,213,214,215,216,217,218,219,220 2 -270949 cd14047 STKc_EIF2AK2_PKR 4 dimer interface 0 0 1 1 0,1,2,5,6,46,47,50,51,53,54,56,62,63,64,65,66,67,68,69,70,72,89,131,134,135,136 2 -270949 cd14047 STKc_EIF2AK2_PKR 5 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,179,180 0 -270950 cd14048 STKc_EIF2AK3_PERK 1 active site 0 0 1 1 13,14,19,21,34,36,93,94,95,96,100,146,147,149,160,192,193,194,225,227,228,229,230,231,232,233,234 1 -270950 cd14048 STKc_EIF2AK3_PERK 2 ATP binding site 0 0 1 1 13,14,19,21,34,36,66,93,94,95,96,100,142,144,146,147,149,160 5 -270950 cd14048 STKc_EIF2AK3_PERK 3 eIF2alpha (substrate) binding site 0 0 1 1 192,193,194,225,227,228,229,230,231,232,233,234 2 -270950 cd14048 STKc_EIF2AK3_PERK 4 dimer interface 0 0 1 1 0,1,2,5,6,51,52,55,56,58,59,67,68,69,70,71,72,73,74,75,77,89,132,135,136,137 2 -270950 cd14048 STKc_EIF2AK3_PERK 5 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 0 -270951 cd14049 STKc_EIF2AK1_HRI 1 active site 0 0 1 1 13,14,19,21,34,36,85,86,87,88,91,148,149,151,163,195,196,197,228,230,231,232,233,234,235,236,237 1 -270951 cd14049 STKc_EIF2AK1_HRI 2 ATP binding site 0 0 1 1 13,14,19,21,34,36,67,85,86,87,88,91,144,146,148,149,151,163 5 -270951 cd14049 STKc_EIF2AK1_HRI 3 eIF2alpha (substrate) binding site 0 0 1 1 195,196,197,228,230,231,232,233,234,235,236,237 2 -270951 cd14049 STKc_EIF2AK1_HRI 4 dimer interface 0 0 1 1 0,1,2,5,6,52,53,56,57,59,60,68,69,70,71,72,73,74,75,76,78,81,134,137,138,139 2 -270951 cd14049 STKc_EIF2AK1_HRI 5 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,186,187,188,189,190,191,192,193,194,195,196,197 0 -270952 cd14050 PKc_Myt1 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,85,87,124,126,128,129,131,142,145,160,161,162,163 1 -270952 cd14050 PKc_Myt1 2 ATP binding site 0 1 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,85,124,126,128,129,131,142 5 -270952 cd14050 PKc_Myt1 3 polypeptide substrate binding site 0 0 1 1 12,85,87,124,126,128,145,160,161,162,163 2 -270952 cd14050 PKc_Myt1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270953 cd14051 PTKc_Wee1 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,128,130,132,133,135,170 5 -270953 cd14051 PTKc_Wee1 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,128,130,132,133,135,170,173,185,186,187,188 1 -270953 cd14051 PTKc_Wee1 3 polypeptide substrate binding site 0 0 1 1 11,85,87,128,130,132,173,185,186,187,188 2 -270953 cd14051 PTKc_Wee1 4 activation loop (A-loop) 0 0 1 1 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -270954 cd14052 PTKc_Wee1_fungi 1 active site 0 0 1 1 7,8,9,10,11,15,29,31,65,81,82,83,84,88,90,130,132,134,135,137,148,151,165,166,167,168 1 -270954 cd14052 PTKc_Wee1_fungi 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,29,31,65,81,82,83,84,88,130,132,134,135,137,148 5 -270954 cd14052 PTKc_Wee1_fungi 3 polypeptide substrate binding site 0 0 1 1 11,88,90,130,132,134,151,165,166,167,168 2 -270954 cd14052 PTKc_Wee1_fungi 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,159,160,161,162,163,164,165,166,167,168 0 -270955 cd14053 STKc_ACVR2 1 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,126,128,130,131,133,144,147,165,166,167,168 1 -270955 cd14053 STKc_ACVR2 2 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,130,131,133,144 5 -270955 cd14053 STKc_ACVR2 3 polypeptide substrate binding site 0 1 1 1 6,78,80,126,128,130,147,165,166,167,168 2 -270955 cd14053 STKc_ACVR2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270956 cd14054 STKc_BMPR2_AMHR2 1 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,72,73,75,79,130,131,133,144 5 -270956 cd14054 STKc_BMPR2_AMHR2 2 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,72,73,74,75,79,81,126,128,130,131,133,144,147,173,174,175,176 1 -270956 cd14054 STKc_BMPR2_AMHR2 3 polypeptide substrate binding site 0 1 1 1 6,79,81,126,128,130,147,173,174,175,176 2 -270956 cd14054 STKc_BMPR2_AMHR2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -270957 cd14055 STKc_TGFbR2_like 1 active site 0 0 1 1 2,3,4,5,6,7,8,10,27,29,57,77,78,79,80,84,86,131,133,135,136,138,149,152,172,173,174,175 1 -270957 cd14055 STKc_TGFbR2_like 2 ATP binding site 0 0 1 1 2,3,4,5,6,7,8,10,27,29,77,78,80,84,135,136,138,149 5 -270957 cd14055 STKc_TGFbR2_like 3 polypeptide substrate binding site 0 0 1 1 6,84,86,131,133,135,152,172,173,174,175 2 -270957 cd14055 STKc_TGFbR2_like 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270958 cd14056 STKc_TGFbR_I 1 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,128,129,131,142 5 -270958 cd14056 STKc_TGFbR_I 2 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,124,126,128,129,131,142,145,165,166,167,168 1 -270958 cd14056 STKc_TGFbR_I 3 polypeptide substrate binding site 0 1 1 1 6,78,80,124,126,128,145,165,166,167,168 2 -270958 cd14056 STKc_TGFbR_I 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -270958 cd14056 STKc_TGFbR_I 5 FKBP12 binding site 0 1 1 1 33,34,37,38,41,42,56,58 2 -270959 cd14057 PK_ILK 1 ATP binding site 0 1 1 0 3,5,6,7,10,21,23,70,71,72,73,80,124,127,140,142 5 -270959 cd14057 PK_ILK 2 Parvin interface 0 1 1 1 28,149,150,151,152,162,163,164,165,197,198,199,200,202,203,204,207 2 -270960 cd14058 STKc_TAK1 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,19,21,48,64,65,66,67,71,116,118,120,121,123,135 5 -270960 cd14058 STKc_TAK1 2 TAB1 binding site 0 1 1 1 183,184,185,186,191,210,211,212,213,214,215,216,249,250,251,252 2 -270960 cd14058 STKc_TAK1 3 active site 0 0 1 1 0,1,2,3,4,8,19,21,48,64,65,66,67,71,73,116,118,120,121,123,135,138,151,152,153,154 1 -270960 cd14058 STKc_TAK1 4 polypeptide substrate binding site 0 0 1 1 4,71,73,116,118,120,138,151,152,153,154 2 -270960 cd14058 STKc_TAK1 5 activation loop (A-loop) 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 0 -270961 cd14059 STKc_MAP3K12_13 1 active site 0 0 1 1 0,1,2,3,4,8,19,21,43,59,60,61,62,66,68,105,107,109,110,112,123,126,141,142,143,144 1 -270961 cd14059 STKc_MAP3K12_13 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,19,21,43,59,60,61,62,66,105,107,109,110,112,123 5 -270961 cd14059 STKc_MAP3K12_13 3 polypeptide substrate binding site 0 0 1 1 4,66,68,105,107,109,126,141,142,143,144 2 -270961 cd14059 STKc_MAP3K12_13 4 activation loop (A-loop) 0 0 1 1 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 0 -270962 cd14060 STKc_MLTK 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,44,60,61,62,63,67,69,111,113,115,116,118,129,132,146,147,148,149 1 -270962 cd14060 STKc_MLTK 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,44,60,61,62,63,67,111,113,115,116,118,129 5 -270962 cd14060 STKc_MLTK 3 polypeptide substrate binding site 0 0 1 1 4,67,69,111,113,115,132,146,147,148,149 2 -270962 cd14060 STKc_MLTK 4 activation loop (A-loop) 0 0 1 1 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 0 -270963 cd14061 STKc_MLK 1 ATP binding site 0 1 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,119,121,123,124,126,145 5 -270963 cd14061 STKc_MLK 2 active site 0 0 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,80,119,121,123,124,126,145,148,162,163,164,165 1 -270963 cd14061 STKc_MLK 3 polypeptide substrate binding site 0 0 1 1 5,78,80,119,121,123,148,162,163,164,165 2 -270963 cd14061 STKc_MLK 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270964 cd14062 STKc_Raf 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,18,20,51,66,67,68,69,73,113,115,117,118,120,131 5 -270964 cd14062 STKc_Raf 2 dimer interface 0 1 1 0 12,14,15,42,43,44,45,46,47,48,52,53,54,99,102,103,106,107,123,125,252 2 -270964 cd14062 STKc_Raf 3 active site 0 0 1 1 0,1,2,3,4,8,18,20,51,66,67,68,69,73,75,113,115,117,118,120,131,134,152,153,154,155 1 -270964 cd14062 STKc_Raf 4 polypeptide substrate binding site 0 0 1 1 4,73,75,113,115,117,134,152,153,154,155 2 -270964 cd14062 STKc_Raf 5 activation loop (A-loop) 0 0 1 1 130,131,132,133,134,135,136,137,138,139,140,141,142,143,149,150,151,152,153,154,155 0 -270965 cd14063 PK_KSR 1 ATP binding site 0 1 1 0 7,9,10,11,15,25,27,74,75,76,77,123,125,126,128,137,138 5 -270965 cd14063 PK_KSR 2 MEK interface 0 1 1 1 157,159,160,161,173,174,176,213,214,215,216,219,220,221,223,224 2 -270966 cd14064 PKc_TNNI3K 1 active site 0 0 1 1 0,1,2,3,4,8,19,21,53,70,71,72,73,77,79,119,121,123,124,126,137,140,157,158,159,160 1 -270966 cd14064 PKc_TNNI3K 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,19,21,53,70,71,72,73,77,119,121,123,124,126,137 5 -270966 cd14064 PKc_TNNI3K 3 polypeptide substrate binding site 0 0 1 1 4,77,79,119,121,123,140,157,158,159,160 2 -270966 cd14064 PKc_TNNI3K 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -270967 cd14065 PKc_LIMK_like 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,75,113,115,117,118,120,134,137,159,160,161,162 1 -270967 cd14065 PKc_LIMK_like 2 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,113,115,117,118,120,134 5 -270967 cd14065 PKc_LIMK_like 3 polypeptide substrate binding site 0 0 1 1 4,73,75,113,115,117,137,159,160,161,162 2 -270967 cd14065 PKc_LIMK_like 4 activation loop (A-loop) 0 0 1 1 133,134,135,136,137,138,139,140,141,142,143,149,150,151,152,155,156,157,158,159,160,161,162 0 -270968 cd14066 STKc_IRAK 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,20,22,52,68,69,70,71,75,120,122,124,125,127,138 5 -270968 cd14066 STKc_IRAK 2 active site 0 0 1 1 0,1,2,3,4,8,20,22,52,68,69,70,71,75,77,120,122,124,125,127,138,141,159,160,161,162 1 -270968 cd14066 STKc_IRAK 3 polypeptide substrate binding site 0 0 1 1 4,75,77,120,122,124,141,159,160,161,162 2 -270968 cd14066 STKc_IRAK 4 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,155,156,157,158,159,160,161,162 0 -270969 cd14067 STKc_LRRK1 1 active site 0 0 1 1 0,1,2,3,4,8,20,22,72,86,87,88,89,93,95,138,140,142,143,145,161,164,178,179,180,181 1 -270969 cd14067 STKc_LRRK1 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,20,22,72,86,87,88,89,93,138,140,142,143,145,161 5 -270969 cd14067 STKc_LRRK1 3 polypeptide substrate binding site 0 0 1 1 4,93,95,138,140,142,164,178,179,180,181 2 -270969 cd14067 STKc_LRRK1 4 activation loop (A-loop) 0 0 1 1 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -270970 cd14068 STKc_LRRK2 1 active site 0 0 1 1 0,1,2,3,4,8,20,22,49,63,64,65,66,70,72,110,112,114,115,117,133,136,150,151,152,153 1 -270970 cd14068 STKc_LRRK2 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,20,22,49,63,64,65,66,70,110,112,114,115,117,133 5 -270970 cd14068 STKc_LRRK2 3 polypeptide substrate binding site 0 0 1 1 4,70,72,110,112,114,136,150,151,152,153 2 -270970 cd14068 STKc_LRRK2 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 0 -270971 cd14069 STKc_Chk1 1 ATP binding site 0 1 1 1 8,9,10,11,16,29,31,62,78,79,80,81,85,128,129,131,141,142 5 -270971 cd14069 STKc_Chk1 2 allosteric inhibitor binding site 0 1 1 1 87,88,90,91,92,127,167,194,198,199,200 5 -270971 cd14069 STKc_Chk1 3 active site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,85,87,123,124,126,128,129,131,141,142,145,162,163,164,165,166,168 1 -270971 cd14069 STKc_Chk1 4 polypeptide substrate binding site 0 0 1 1 12,85,87,123,124,126,128,145,162,163,164,165,166,168 2 -270971 cd14069 STKc_Chk1 5 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270972 cd14070 STKc_HUNK 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,65,81,82,83,84,88,90,91,93,126,127,129,131,132,134,144,145,148,164,165,166,167,168,169,171,200,201,202,203,205 1 -270972 cd14070 STKc_HUNK 2 ATP binding site 0 0 1 1 9,10,11,12,17,30,32,65,81,82,83,84,88,131,132,134,144,145 5 -270972 cd14070 STKc_HUNK 3 polypeptide substrate binding site 0 0 1 1 88,90,91,93,127,129,131,148,164,165,166,167,168,169,171,200,201,202,203,205 2 -270972 cd14070 STKc_HUNK 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169 0 -270973 cd14071 STKc_SIK 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,87,89,122,123,125,127,128,130,140,141,144,157,158,159,160,161,162,164,194,195,196,197,199 1 -270973 cd14071 STKc_SIK 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,61,77,78,79,80,84,127,128,130,140,141 5 -270973 cd14071 STKc_SIK 3 polypeptide substrate binding site 0 0 1 1 84,86,87,89,123,125,127,144,157,158,159,160,161,162,164,194,195,196,197,199 2 -270973 cd14071 STKc_SIK 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270974 cd14072 STKc_MARK 1 polypeptide substrate binding site 0 1 1 1 11,84,86,122,123,125,127,144,158,159,160,161,162,164 2 -270974 cd14072 STKc_MARK 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,61,77,78,79,80,84,86,87,89,122,123,125,127,128,130,140,141,144,157,158,159,160,161,162,164,194,195,196,197,199 1 -270974 cd14072 STKc_MARK 3 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,61,77,78,79,80,84,127,128,130,140,141 5 -270974 cd14072 STKc_MARK 4 activation loop (A-loop) 0 1 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -270975 cd14073 STKc_NUAK 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,86,88,89,91,124,125,127,129,130,132,142,143,146,159,160,161,162,163,164,166,196,197,198,199,201 1 -270975 cd14073 STKc_NUAK 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,63,79,80,81,82,86,129,130,132,142,143 5 -270975 cd14073 STKc_NUAK 3 polypeptide substrate binding site 0 0 1 1 86,88,89,91,125,127,129,146,159,160,161,162,163,164,166,196,197,198,199,201 2 -270975 cd14073 STKc_NUAK 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270976 cd14074 STKc_SNRK 1 active site 0 0 1 1 10,11,12,13,14,18,31,33,64,80,81,82,83,87,89,90,92,126,127,129,131,132,134,145,146,149,163,164,165,166,167,169,199,200,201,202 1 -270976 cd14074 STKc_SNRK 2 ATP binding site 0 0 1 1 10,11,12,13,18,31,33,64,80,81,82,83,87,131,132,134,145,146 5 -270976 cd14074 STKc_SNRK 3 polypeptide substrate binding site 0 0 1 1 87,89,90,92,127,129,131,149,163,164,165,166,167,169,199,200,201,202 2 -270976 cd14074 STKc_SNRK 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -270977 cd14075 STKc_NIM1 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,63,79,80,81,82,86,88,89,91,124,125,127,129,130,132,142,143,146,160,161,162,163,164,166,196,197,198,199 1 -270977 cd14075 STKc_NIM1 2 ATP binding site 0 0 1 1 9,10,11,12,17,30,32,63,79,80,81,82,86,129,130,132,142,143 5 -270977 cd14075 STKc_NIM1 3 polypeptide substrate binding site 0 0 1 1 86,88,89,91,125,127,129,146,160,161,162,163,164,166,196,197,198,199 2 -270977 cd14075 STKc_NIM1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270978 cd14076 STKc_Kin4 1 active site 0 0 1 1 8,9,10,11,12,16,34,36,68,84,85,86,87,91,93,94,96,129,130,132,134,135,137,147,148,151,167,168,169,170,171,173,204,205,206,207 1 -270978 cd14076 STKc_Kin4 2 ATP binding site 0 0 1 1 8,9,10,11,16,34,36,68,84,85,86,87,91,134,135,137,147,148 5 -270978 cd14076 STKc_Kin4 3 polypeptide substrate binding site 0 0 1 1 91,93,94,96,130,132,134,151,167,168,169,170,171,173,204,205,206,207 2 -270978 cd14076 STKc_Kin4 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -270979 cd14077 STKc_Kin1_2 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,75,91,92,93,94,98,100,101,103,136,137,139,141,142,144,154,155,158,172,173,174,175,176,178,208,209,210,211 1 -270979 cd14077 STKc_Kin1_2 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,75,91,92,93,94,98,141,142,144,154,155 5 -270979 cd14077 STKc_Kin1_2 3 polypeptide substrate binding site 0 0 1 1 98,100,101,103,137,139,141,158,172,173,174,175,176,178,208,209,210,211 2 -270979 cd14077 STKc_Kin1_2 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -270980 cd14078 STKc_MELK 1 ATP binding site 0 1 0 0 10,11,13,14,15,16,18,31,33,46,63,80,81,82,86,129,130,132,142,143 5 -270980 cd14078 STKc_MELK 2 active site 0 0 1 1 10,11,13,14,15,16,18,31,33,46,63,80,81,82,86,88,89,91,125,127,129,130,132,142,143,146,162,163,164,165,166,168,198,199,200,201 1 -270980 cd14078 STKc_MELK 3 polypeptide substrate binding site 0 0 1 1 86,88,89,91,125,127,129,146,162,163,164,165,166,168,198,199,200,201 2 -270980 cd14078 STKc_MELK 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166 0 -270981 cd14079 STKc_AMPK_alpha 1 ATP binding site 0 1 1 1 9,10,11,12,17,30,32,64,80,81,82,83,87,130,131,133,143,144 5 -270981 cd14079 STKc_AMPK_alpha 2 heterotrimer interface 0 1 1 0 151,152,153,154,155,156,175,176,178,181,241 2 -270981 cd14079 STKc_AMPK_alpha 3 active site 0 0 1 1 9,10,11,12,13,17,30,32,64,80,81,82,83,87,89,90,92,125,126,128,130,131,133,143,144,147,161,162,163,164,165,167,197,198,199,200 1 -270981 cd14079 STKc_AMPK_alpha 4 polypeptide substrate binding site 0 0 1 1 87,89,90,92,126,128,130,147,161,162,163,164,165,167,197,198,199,200 2 -270981 cd14079 STKc_AMPK_alpha 5 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270982 cd14080 STKc_TSSK-like 1 active site 0 0 1 1 7,8,9,10,11,15,30,32,64,80,81,82,83,87,89,90,92,125,126,128,130,131,133,143,144,147,164,165,166,167,168,170,200,201,202,203 1 -270982 cd14080 STKc_TSSK-like 2 ATP binding site 0 0 1 1 7,8,9,10,15,30,32,64,80,81,82,83,87,130,131,133,143,144 5 -270982 cd14080 STKc_TSSK-like 3 polypeptide substrate binding site 0 0 1 1 87,89,90,92,126,128,130,147,164,165,166,167,168,170,200,201,202,203 2 -270982 cd14080 STKc_TSSK-like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,159,160,161,162,163,164,165,166,167,168 0 -270983 cd14081 STKc_BRSK1_2 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,86,88,89,91,124,125,127,129,130,132,142,143,146,160,161,162,163,164,166,196,197,198,199 1 -270983 cd14081 STKc_BRSK1_2 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,63,79,80,81,82,86,129,130,132,142,143 5 -270983 cd14081 STKc_BRSK1_2 3 polypeptide substrate binding site 0 0 1 1 86,88,89,91,125,127,129,146,160,161,162,163,164,166,196,197,198,199 2 -270983 cd14081 STKc_BRSK1_2 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164 0 -270984 cd14082 STKc_PKD 1 active site 0 0 1 1 10,11,12,13,14,18,31,33,64,80,81,82,83,86,88,126,127,129,131,132,134,147,148,151,165,166,167,168,169,171 1 -270984 cd14082 STKc_PKD 2 ATP binding site 0 0 1 1 10,11,12,13,18,31,33,64,80,81,82,83,86,131,132,134,147,148 5 -270984 cd14082 STKc_PKD 3 polypeptide substrate binding site 0 0 1 1 14,86,88,126,127,129,131,151,165,166,167,168,169,171 2 -270984 cd14082 STKc_PKD 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -270985 cd14083 STKc_CaMKI 1 ATP binding site 0 1 1 1 10,11,12,13,18,31,33,63,79,80,81,82,86,129,130,132,145,146 5 -270985 cd14083 STKc_CaMKI 2 active site 0 0 1 1 10,11,12,13,14,18,31,33,63,79,80,81,82,86,88,124,125,127,129,130,132,145,146,149,162,163,164,165,166,168 1 -270985 cd14083 STKc_CaMKI 3 polypeptide substrate binding site 0 0 1 1 14,86,88,124,125,127,129,149,162,163,164,165,166,168 2 -270985 cd14083 STKc_CaMKI 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -270986 cd14084 STKc_Chk2 1 ATP binding site 0 1 1 0 13,14,15,16,17,18,19,21,34,36,73,89,90,91,92,96,139,140,142,156 5 -270986 cd14084 STKc_Chk2 2 dimer interface 0 1 1 0 8,9,11,13,15,23,25,30,32,41,44,45,46,56,91,98,102,103,178,213,216 2 -270986 cd14084 STKc_Chk2 3 active site 0 0 1 1 13,14,15,16,17,18,19,21,34,36,73,89,90,91,92,96,98,134,135,137,139,140,142,155,156,159,173,174,175,176,177,179 1 -270986 cd14084 STKc_Chk2 4 polypeptide substrate binding site 0 0 1 1 17,96,98,134,135,137,139,159,173,174,175,176,177,179 2 -270986 cd14084 STKc_Chk2 5 activation loop (A-loop) 0 0 1 1 155,156,157,158,159,160,161,162,163,164,165,169,170,171,172,173,174,175,176,177 0 -270987 cd14085 STKc_CaMKIV 1 ATP binding site 0 1 1 1 10,11,12,13,18,31,33,60,76,77,78,79,83,126,127,129,142,143 5 -270987 cd14085 STKc_CaMKIV 2 active site 0 0 1 1 10,11,12,13,14,18,31,33,60,76,77,78,79,83,85,121,122,124,126,127,129,142,143,146,160,161,162,163,164,166 1 -270987 cd14085 STKc_CaMKIV 3 polypeptide substrate binding site 0 0 1 1 14,83,85,121,122,124,126,146,160,161,162,163,164,166 2 -270987 cd14085 STKc_CaMKIV 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -270988 cd14086 STKc_CaMKII 1 ATP binding site 0 1 1 1 8,9,10,11,16,29,31,62,78,79,80,81,85,128,129,131,144,145 5 -270988 cd14086 STKc_CaMKII 2 CaM binding site 0 1 1 1 282,284,285,286,287,288,289,290,291 2 -270988 cd14086 STKc_CaMKII 3 active site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,85,87,123,124,126,128,129,131,144,145,148,163,164,165,166,167,169 1 -270988 cd14086 STKc_CaMKII 4 polypeptide substrate binding site 0 0 1 1 12,85,87,123,124,126,128,148,163,164,165,166,167,169 2 -270988 cd14086 STKc_CaMKII 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,157,158,159,160,161,162,163,164,165,166,167 0 -270989 cd14087 STKc_PSKH1 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,59,75,76,77,78,82,84,120,121,123,125,126,128,141,142,145,161,162,163,164,165,167 1 -270989 cd14087 STKc_PSKH1 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,59,75,76,77,78,82,125,126,128,141,142 5 -270989 cd14087 STKc_PSKH1 3 polypeptide substrate binding site 0 0 1 1 12,82,84,120,121,123,125,145,161,162,163,164,165,167 2 -270989 cd14087 STKc_PSKH1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -270990 cd14088 STKc_CaMK_like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,84,86,122,123,125,127,128,130,143,144,147,159,160,161,162,163,165 1 -270990 cd14088 STKc_CaMK_like 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,61,77,78,79,80,84,127,128,130,143,144 5 -270990 cd14088 STKc_CaMK_like 3 polypeptide substrate binding site 0 0 1 1 12,84,86,122,123,125,127,147,159,160,161,162,163,165 2 -270990 cd14088 STKc_CaMK_like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -270991 cd14089 STKc_MAPKAPK 1 ATP binding site 0 1 1 0 8,9,10,11,12,13,16,29,31,56,76,77,78,79,129,131,144,145 5 -270991 cd14089 STKc_MAPKAPK 2 active site 0 0 1 1 8,9,10,11,12,13,16,29,31,56,76,77,78,79,83,85,123,124,126,128,129,131,144,145,148,162,163,164,165,166,168 1 -270991 cd14089 STKc_MAPKAPK 3 polypeptide substrate binding site 0 0 1 1 12,83,85,123,124,126,128,148,162,163,164,165,166,168 2 -270991 cd14089 STKc_MAPKAPK 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,158,159,160,161,162,163,164,165,166 0 -270992 cd14090 STKc_Mnk 1 Zn binding site 0 1 1 0 219,223,231,234 4 -270992 cd14090 STKc_Mnk 2 active site 0 0 1 1 9,10,11,12,13,17,30,32,62,78,79,80,81,85,87,123,124,126,128,129,131,144,145,148,171,172,173,174,175,177 1 -270992 cd14090 STKc_Mnk 3 ATP binding site 0 0 1 1 9,10,11,12,17,30,32,62,78,79,80,81,85,128,129,131,144,145 5 -270992 cd14090 STKc_Mnk 4 polypeptide substrate binding site 0 0 1 1 13,85,87,123,124,126,128,148,171,172,173,174,175,177 2 -270992 cd14090 STKc_Mnk 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -270993 cd14091 STKc_RSK_C 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,56,72,73,74,75,79,81,117,118,120,122,123,125,139,140,143,158,159,160,161,162,164 1 -270993 cd14091 STKc_RSK_C 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,56,72,73,74,75,79,122,123,125,139,140 5 -270993 cd14091 STKc_RSK_C 3 polypeptide substrate binding site 0 0 1 1 11,79,81,117,118,120,122,143,158,159,160,161,162,164 2 -270993 cd14091 STKc_RSK_C 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162 0 -270994 cd14092 STKc_MSK_C 1 ATP binding site 0 1 1 0 13,14,15,34,77,78,79,80,84,127,128,130,143,299 5 -270994 cd14092 STKc_MSK_C 2 active site 0 0 1 1 13,14,15,16,17,21,34,36,61,77,78,79,80,84,86,122,123,125,127,128,130,143,144,147,161,162,163,164,165,167,299 1 -270994 cd14092 STKc_MSK_C 3 polypeptide substrate binding site 0 0 1 1 17,84,86,122,123,125,127,147,161,162,163,164,165,167 2 -270994 cd14092 STKc_MSK_C 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165 0 -270995 cd14093 STKc_PhKG 1 active site 0 1 1 1 10,11,13,14,16,18,31,33,71,87,88,90,94,96,132,133,135,137,138,140,151,154,166,167,168,169,170,171,172,174 1 -270995 cd14093 STKc_PhKG 2 ATP binding site 0 1 1 0 10,11,13,14,16,18,31,33,71,87,88,90,94,133,135,137,138,140,151 5 -270995 cd14093 STKc_PhKG 3 polypeptide substrate binding site 0 1 1 0 14,94,96,132,133,135,137,154,166,167,168,169,170,171,172,174 2 -270995 cd14093 STKc_PhKG 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -270996 cd14094 STKc_CASK 1 ATP binding site 0 1 1 0 10,11,12,16,18,31,33,67,83,84,85,86,137,138,140,154 5 -270996 cd14094 STKc_CASK 2 active site 0 0 1 1 10,11,12,14,16,18,31,33,67,83,84,85,86,90,92,132,133,135,137,138,140,154,157,172,173,174,175,176,178 1 -270996 cd14094 STKc_CASK 3 polypeptide substrate binding site 0 0 1 1 14,90,92,132,133,135,137,157,172,173,174,175,176,178 2 -270996 cd14094 STKc_CASK 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -270997 cd14095 STKc_DCKL 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,76,77,78,79,83,85,121,122,124,126,127,129,143,144,147,159,160,161,162,163,165 1 -270997 cd14095 STKc_DCKL 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,60,76,77,78,79,83,126,127,129,143,144 5 -270997 cd14095 STKc_DCKL 3 polypeptide substrate binding site 0 0 1 1 11,83,85,121,122,124,126,147,159,160,161,162,163,165 2 -270997 cd14095 STKc_DCKL 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,163 0 -270998 cd14096 STKc_RCK1-like 1 active site 0 0 1 1 8,9,10,11,12,16,30,32,68,84,85,86,87,91,93,129,130,132,134,135,137,180,181,184,197,198,199,200,201,203 1 -270998 cd14096 STKc_RCK1-like 2 ATP binding site 0 0 1 1 8,9,10,11,16,30,32,68,84,85,86,87,91,134,135,137,180,181 5 -270998 cd14096 STKc_RCK1-like 3 polypeptide substrate binding site 0 0 1 1 12,91,93,129,130,132,134,184,197,198,199,200,201,203 2 -270998 cd14096 STKc_RCK1-like 4 activation loop (A-loop) 0 0 1 1 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 0 -270999 cd14097 STKc_STK33 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,62,78,79,80,81,85,87,123,124,126,128,129,131,148,149,152,168,169,170,171,172,174 1 -270999 cd14097 STKc_STK33 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,62,78,79,80,81,85,128,129,131,148,149 5 -270999 cd14097 STKc_STK33 3 polypeptide substrate binding site 0 0 1 1 12,85,87,123,124,126,128,152,168,169,170,171,172,174 2 -270999 cd14097 STKc_STK33 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172 0 -271000 cd14098 STKc_Rad53_Cds1 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,63,79,80,81,82,86,88,124,125,127,129,130,132,144,145,148,162,163,164,165,166,168 1 -271000 cd14098 STKc_Rad53_Cds1 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,63,79,80,81,82,86,129,130,132,144,145 5 -271000 cd14098 STKc_Rad53_Cds1 3 polypeptide substrate binding site 0 0 1 1 11,86,88,124,125,127,129,148,162,163,164,165,166,168 2 -271000 cd14098 STKc_Rad53_Cds1 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166 0 -271001 cd14099 STKc_PLK 1 ATP binding site 0 1 1 0 8,9,10,11,12,16,29,31,63,80,81,82,132,143 5 -271001 cd14099 STKc_PLK 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,86,88,125,127,129,130,132,143,146,162,163,164,165 1 -271001 cd14099 STKc_PLK 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,162,163,164,165 2 -271001 cd14099 STKc_PLK 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,155,156,157,158,159,160,161,162,163,164,165 0 -271002 cd14100 STKc_PIM1 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,67,83,84,85,86,91,130,132,134,135,137,149 5 -271002 cd14100 STKc_PIM1 2 active site 0 1 1 1 7,8,9,10,11,15,28,30,67,83,84,85,86,91,93,94,96,97,130,132,133,134,135,137,149,165,166,167,169,197,201,202,203,206 1 -271002 cd14100 STKc_PIM1 3 polypeptide substrate binding site 0 1 0 0 91,93,94,96,97,130,132,133,134,165,166,167,169,197,201,202,203,206 2 -271002 cd14100 STKc_PIM1 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271003 cd14101 STKc_PIM2 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,69,85,86,87,88,93,132,134,136,137,139,151 5 -271003 cd14101 STKc_PIM2 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,69,85,86,87,88,93,95,96,98,99,132,134,135,136,137,139,151,167,168,169,171,199,203,204,205,208 1 -271003 cd14101 STKc_PIM2 3 polypeptide substrate binding site 0 0 0 1 93,95,96,98,99,132,134,135,136,167,168,169,171,199,203,204,205,208 2 -271003 cd14101 STKc_PIM2 4 activation loop (A-loop) 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -271004 cd14102 STKc_PIM3 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,66,82,83,84,85,90,92,93,95,96,129,131,132,133,134,136,148,164,165,166,168,196,200,201,202,205 1 -271004 cd14102 STKc_PIM3 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,66,82,83,84,85,90,129,131,133,134,136,148 5 -271004 cd14102 STKc_PIM3 3 polypeptide substrate binding site 0 0 0 1 90,92,93,95,96,129,131,132,133,164,165,166,168,196,200,201,202,205 2 -271004 cd14102 STKc_PIM3 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271005 cd14103 STKc_MLCK 1 ATP binding site 0 1 1 1 0,1,2,3,4,6,8,21,23,52,68,69,71,75,119,120,122,134,135 5 -271005 cd14103 STKc_MLCK 2 active site 0 0 1 1 0,1,2,3,4,6,8,21,23,52,68,69,71,75,77,115,117,119,120,122,134,135,138,153,154,155,156 1 -271005 cd14103 STKc_MLCK 3 polypeptide substrate binding site 0 0 1 1 4,75,77,115,117,119,138,153,154,155,156 2 -271005 cd14103 STKc_MLCK 4 activation loop (A-loop) 0 0 1 1 134,135,136,137,138,139,140,141,142,145,146,147,148,149,150,151,152,153,154,155,156 0 -271006 cd14104 STKc_Titin 1 active site 0 1 1 1 7,8,9,10,11,13,15,28,30,58,74,75,77,81,83,121,123,125,126,128,140,141,144,159,160,161,162 1 -271006 cd14104 STKc_Titin 2 ATP binding site 0 1 1 1 7,8,9,10,11,13,15,28,30,58,74,75,77,81,125,126,128,140,141 5 -271006 cd14104 STKc_Titin 3 polypeptide substrate binding site 0 0 1 1 11,81,83,121,123,125,144,159,160,161,162 2 -271006 cd14104 STKc_Titin 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -271007 cd14105 STKc_DAPK 1 ATP binding site 0 1 1 0 12,13,14,15,16,18,20,33,35,70,86,87,89,93,136,137,139,153,154 5 -271007 cd14105 STKc_DAPK 2 active site 0 0 1 1 12,13,14,15,16,18,20,33,35,70,86,87,89,93,95,132,134,136,137,139,153,154,157,172,173,174,175 1 -271007 cd14105 STKc_DAPK 3 polypeptide substrate binding site 0 0 1 1 16,93,95,132,134,136,157,172,173,174,175 2 -271007 cd14105 STKc_DAPK 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271008 cd14106 STKc_DRAK 1 ATP binding site 0 1 1 1 15,16,17,18,19,21,23,36,38,70,86,87,89,93,136,137,139,152,153 5 -271008 cd14106 STKc_DRAK 2 active site 0 0 1 1 15,16,17,18,19,21,23,36,38,70,86,87,89,93,95,132,134,136,137,139,152,153,156,171,172,173,174 1 -271008 cd14106 STKc_DRAK 3 polypeptide substrate binding site 0 0 1 1 19,93,95,132,134,136,156,171,172,173,174 2 -271008 cd14106 STKc_DRAK 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271009 cd14107 STKc_obscurin_rpt1 1 ATP binding site 0 0 1 1 9,10,11,12,13,15,17,30,32,60,76,77,79,83,126,127,129,141,142 5 -271009 cd14107 STKc_obscurin_rpt1 2 active site 0 0 1 1 9,10,11,12,13,15,17,30,32,60,76,77,79,83,85,122,124,126,127,129,141,142,145,160,161,162,163 1 -271009 cd14107 STKc_obscurin_rpt1 3 polypeptide substrate binding site 0 0 1 1 13,83,85,122,124,126,145,160,161,162,163 2 -271009 cd14107 STKc_obscurin_rpt1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -271010 cd14108 STKc_SPEG_rpt1 1 ATP binding site 0 0 1 1 9,10,11,12,13,15,17,30,32,60,76,77,79,83,125,126,128,140,141 5 -271010 cd14108 STKc_SPEG_rpt1 2 active site 0 0 1 1 9,10,11,12,13,15,17,30,32,60,76,77,79,83,85,121,123,125,126,128,140,141,144,159,160,161,162 1 -271010 cd14108 STKc_SPEG_rpt1 3 polypeptide substrate binding site 0 0 1 1 13,83,85,121,123,125,144,159,160,161,162 2 -271010 cd14108 STKc_SPEG_rpt1 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -271012 cd14110 STKc_obscurin_rpt2 1 ATP binding site 0 0 1 1 10,11,12,13,14,16,18,31,33,61,77,78,80,84,127,128,130,140,141 5 -271012 cd14110 STKc_obscurin_rpt2 2 active site 0 0 1 1 10,11,12,13,14,16,18,31,33,61,77,78,80,84,86,123,125,127,128,130,140,141,144,161,162,163,164 1 -271012 cd14110 STKc_obscurin_rpt2 3 polypeptide substrate binding site 0 0 1 1 14,84,86,123,125,127,144,161,162,163,164 2 -271012 cd14110 STKc_obscurin_rpt2 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -271013 cd14111 STKc_SPEG_rpt2 1 ATP binding site 0 0 1 1 10,11,12,13,14,16,18,31,33,61,77,78,80,84,127,128,130,140,141 5 -271013 cd14111 STKc_SPEG_rpt2 2 active site 0 0 1 1 10,11,12,13,14,16,18,31,33,61,77,78,80,84,86,123,125,127,128,130,140,141,144,161,162,163,164 1 -271013 cd14111 STKc_SPEG_rpt2 3 polypeptide substrate binding site 0 0 1 1 14,84,86,123,125,127,144,161,162,163,164 2 -271013 cd14111 STKc_SPEG_rpt2 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -271014 cd14112 STKc_Unc-89_rpt2 1 ATP binding site 0 0 1 1 10,11,12,13,14,16,18,33,35,62,78,79,81,84,127,128,130,142,143 5 -271014 cd14112 STKc_Unc-89_rpt2 2 active site 0 0 1 1 10,11,12,13,14,16,18,33,35,62,78,79,81,84,86,123,125,127,128,130,142,143,146,160,161,162,163 1 -271014 cd14112 STKc_Unc-89_rpt2 3 polypeptide substrate binding site 0 0 1 1 14,84,86,123,125,127,146,160,161,162,163 2 -271014 cd14112 STKc_Unc-89_rpt2 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163 0 -271015 cd14113 STKc_Trio_C 1 ATP binding site 0 0 1 1 14,15,16,17,18,20,22,35,37,65,81,82,84,88,131,132,134,147,148 5 -271015 cd14113 STKc_Trio_C 2 active site 0 0 1 1 14,15,16,17,18,20,22,35,37,65,81,82,84,88,90,127,129,131,132,134,147,148,151,166,167,168,169 1 -271015 cd14113 STKc_Trio_C 3 polypeptide substrate binding site 0 0 1 1 18,88,90,127,129,131,151,166,167,168,169 2 -271015 cd14113 STKc_Trio_C 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271016 cd14114 STKc_Twitchin_like 1 active site 0 1 1 1 9,10,11,12,13,15,17,30,32,61,77,78,80,84,86,124,126,128,129,131,143,144,147,162,163,164,165 1 -271016 cd14114 STKc_Twitchin_like 2 ATP binding site 0 1 1 1 9,10,11,12,13,15,17,30,32,61,77,78,80,84,128,129,131,143,144 5 -271016 cd14114 STKc_Twitchin_like 3 polypeptide substrate binding site 0 0 1 1 13,84,86,124,126,128,147,162,163,164,165 2 -271016 cd14114 STKc_Twitchin_like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271017 cd14115 STKc_Kalirin_C 1 ATP binding site 0 0 1 0 0,1,2,3,4,6,8,21,23,51,67,68,70,74,117,118,120,133,134 5 -271017 cd14115 STKc_Kalirin_C 2 active site 0 0 1 1 0,1,2,3,4,6,8,21,23,51,67,68,70,74,76,113,115,117,118,120,133,134,137,152,153,154,155 1 -271017 cd14115 STKc_Kalirin_C 3 polypeptide substrate binding site 0 0 1 1 4,74,76,113,115,117,137,152,153,154,155 2 -271017 cd14115 STKc_Kalirin_C 4 activation loop (A-loop) 0 0 1 1 133,134,135,136,137,138,139,140,141,151,152,153,154,155 0 -271018 cd14116 STKc_Aurora-A 1 ATP binding site 0 1 1 0 12,13,14,15,16,20,33,35,67,84,86,90,133,134,136,147 5 -271018 cd14116 STKc_Aurora-A 2 TPX2 binding site 0 1 1 1 0,1,5,25,27,28,30,32,39,43,48,51,52,55,56,57,59,60,61,62,70,71,72,74,79,119,123,125,153,155 2 -271018 cd14116 STKc_Aurora-A 3 active site 0 0 1 1 12,13,14,15,16,20,33,35,67,83,84,85,86,90,92,129,131,133,134,136,147,150,164,165,166,167 1 -271018 cd14116 STKc_Aurora-A 4 polypeptide substrate binding site 0 0 1 1 16,90,92,129,131,133,150,164,165,166,167 2 -271018 cd14116 STKc_Aurora-A 5 activation loop (A-loop) 0 1 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271019 cd14117 STKc_Aurora-B_like 1 ATP binding site 0 1 1 1 13,14,15,16,17,21,34,36,68,85,87,91,134,135,137,148 5 -271019 cd14117 STKc_Aurora-B_like 2 INCENP binding site 0 1 1 1 0,1,2,8,9,10,11,23,24,25,26,29,31,32,33,40,43,49,52,53,56,57,63,69,71,72,73,74,75,76,77,80,83,86,88,140,141,143,266,267,268,269 2 -271019 cd14117 STKc_Aurora-B_like 3 active site 0 0 1 1 13,14,15,16,17,21,34,36,68,84,85,86,87,91,93,130,132,134,135,137,148,151,165,166,167,168 1 -271019 cd14117 STKc_Aurora-B_like 4 polypeptide substrate binding site 0 0 1 1 17,91,93,130,132,134,151,165,166,167,168 2 -271019 cd14117 STKc_Aurora-B_like 5 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271020 cd14118 STKc_CAMKK 1 ATP binding site 0 1 1 1 1,2,3,4,5,9,22,24,76,94,95,96,97,101,139,141,143,144,146,157 5 -271020 cd14118 STKc_CAMKK 2 active site 0 0 1 1 1,2,3,4,5,9,22,24,76,94,95,96,97,101,103,139,141,143,144,146,157,160,176,177,178,179 1 -271020 cd14118 STKc_CAMKK 3 polypeptide substrate binding site 0 0 1 1 5,101,103,139,141,143,160,176,177,178,179 2 -271020 cd14118 STKc_CAMKK 4 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -271021 cd14119 STKc_LKB1 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,56,74,75,76,77,81,121,123,125,126,128,139 5 -271021 cd14119 STKc_LKB1 2 MO25 interface 0 1 1 0 45,110,113,114,116,146,147,148,149,150,151,152,246,252 2 -271021 cd14119 STKc_LKB1 3 STRAD interface 0 1 1 1 15,16,17,18,19,51,131,132 2 -271021 cd14119 STKc_LKB1 4 active site 0 0 1 1 0,1,2,3,4,8,21,23,56,74,75,76,77,81,83,121,123,125,126,128,139,142,160,161,162,163 1 -271021 cd14119 STKc_LKB1 5 polypeptide substrate binding site 0 0 1 1 4,81,83,121,123,125,142,160,161,162,163 2 -271021 cd14119 STKc_LKB1 6 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -271022 cd14120 STKc_ULK1_2-like 1 active site 0 0 1 1 0,1,2,3,4,8,22,24,54,70,71,72,73,77,79,116,118,120,121,123,143,146,161,162,163,164 1 -271022 cd14120 STKc_ULK1_2-like 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,22,24,54,70,71,72,73,77,116,118,120,121,123,143 5 -271022 cd14120 STKc_ULK1_2-like 3 polypeptide substrate binding site 0 0 1 1 4,77,79,116,118,120,146,161,162,163,164 2 -271022 cd14120 STKc_ULK1_2-like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,155,156,157,158,159,160,161,162,163,164 0 -271023 cd14121 STKc_ULK3 1 active site 0 0 1 1 2,3,4,5,6,10,24,26,57,73,74,75,76,80,82,119,121,123,124,126,139,142,157,158,159,160 1 -271023 cd14121 STKc_ULK3 2 ATP binding site 0 0 1 1 2,3,4,5,6,10,24,26,57,73,74,75,76,80,119,121,123,124,126,139 5 -271023 cd14121 STKc_ULK3 3 polypeptide substrate binding site 0 0 1 1 6,80,82,119,121,123,142,157,158,159,160 2 -271023 cd14121 STKc_ULK3 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160 0 -271024 cd14122 STKc_VRK1 1 ATP binding site 0 1 1 1 17,18,19,20,21,25,43,45,85,105,106,107,108,111,151,153,155,156,158,171 5 -271024 cd14122 STKc_VRK1 2 active site 0 0 1 1 17,18,19,20,21,25,43,45,85,105,106,107,108,111,113,151,153,155,156,158,171,174,197,198,199,200 1 -271024 cd14122 STKc_VRK1 3 polypeptide substrate binding site 0 0 1 1 21,111,113,151,153,155,174,197,198,199,200 2 -271024 cd14122 STKc_VRK1 4 activation loop (A-loop) 0 0 1 1 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 0 -271025 cd14123 STKc_VRK2 1 active site 0 0 1 1 19,20,21,22,23,27,45,47,87,107,108,109,110,113,115,153,155,157,158,160,173,176,199,200,201,202 1 -271025 cd14123 STKc_VRK2 2 ATP binding site 0 0 1 1 19,20,21,22,23,27,45,47,87,107,108,109,110,113,153,155,157,158,160,173 5 -271025 cd14123 STKc_VRK2 3 polypeptide substrate binding site 0 0 1 1 23,113,115,153,155,157,176,199,200,201,202 2 -271025 cd14123 STKc_VRK2 4 activation loop (A-loop) 0 0 1 1 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 0 -271027 cd14125 STKc_CK1_delta_epsilon 1 ATP binding site 0 1 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,122,124,125,127,141 5 -271027 cd14125 STKc_CK1_delta_epsilon 2 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,80,82,120,122,124,125,127,141,144,167,168,169,170 1 -271027 cd14125 STKc_CK1_delta_epsilon 3 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,144,167,168,169,170 2 -271027 cd14125 STKc_CK1_delta_epsilon 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -271028 cd14126 STKc_CK1_gamma 1 ATP binding site 0 1 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,122,124,125,127,143 5 -271028 cd14126 STKc_CK1_gamma 2 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,80,82,120,122,124,125,127,143,146,169,170,171,172 1 -271028 cd14126 STKc_CK1_gamma 3 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,146,169,170,171,172 2 -271028 cd14126 STKc_CK1_gamma 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -271029 cd14127 STKc_CK1_fungal 1 ATP binding site 0 1 1 0 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,122,124,125,127,142,143 5 -271029 cd14127 STKc_CK1_fungal 2 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,80,82,120,122,124,125,127,143,146,169,170,171,172 1 -271029 cd14127 STKc_CK1_fungal 3 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,146,169,170,171,172 2 -271029 cd14127 STKc_CK1_fungal 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 0 -271030 cd14128 STKc_CK1_alpha 1 ATP binding site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,122,124,125,127,141 5 -271030 cd14128 STKc_CK1_alpha 2 active site 0 0 1 1 7,8,9,10,11,12,13,15,28,30,74,75,76,77,78,80,82,120,122,124,125,127,141,144,167,168,169,170 1 -271030 cd14128 STKc_CK1_alpha 3 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,144,167,168,169,170 2 -271030 cd14128 STKc_CK1_alpha 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -271031 cd14129 STKc_TTBK2 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,82,121,123,125,126,128,143,146,168,169,170,171 1 -271031 cd14129 STKc_TTBK2 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,121,123,125,126,128,143 5 -271031 cd14129 STKc_TTBK2 3 polypeptide substrate binding site 0 0 1 1 11,80,82,121,123,125,146,168,169,170,171 2 -271031 cd14129 STKc_TTBK2 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,168,169,170,171 0 -271032 cd14130 STKc_TTBK1 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,82,121,123,125,126,128,143,146,168,169,170,171 1 -271032 cd14130 STKc_TTBK1 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,80,121,123,125,126,128,143 5 -271032 cd14130 STKc_TTBK1 3 polypeptide substrate binding site 0 0 1 1 11,80,82,121,123,125,146,168,169,170,171 2 -271032 cd14130 STKc_TTBK1 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,168,169,170,171 0 -271033 cd14131 PKc_Mps1 1 ATP binding site 0 1 1 1 8,9,10,11,12,16,28,30,62,80,81,82,83,86,127,129,131,132,134,144 5 -271033 cd14131 PKc_Mps1 2 active site 0 0 1 1 8,9,10,11,12,16,28,30,62,80,81,82,83,86,88,127,129,131,132,134,144,147,165,166,167,168 1 -271033 cd14131 PKc_Mps1 3 polypeptide substrate binding site 0 0 1 1 12,86,88,127,129,131,147,165,166,167,168 2 -271033 cd14131 PKc_Mps1 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271033 cd14131 PKc_Mps1 5 secondary chemical binding site 0 1 1 1 14,30,32,45,48,78,143 5 -271034 cd14132 STKc_CK2_alpha 1 ATP binding site 0 1 1 0 27,28,30,31,33,46,48,75,93,94,96,140,141,143,154,155 5 -271034 cd14132 STKc_CK2_alpha 2 tetramer interface 0 1 1 1 16,17,19,20,21,22,30,34,83 2 -271034 cd14132 STKc_CK2_alpha 3 CK2 beta interface 0 1 1 0 16,17,19,20,21,37,39,83 2 -271034 cd14132 STKc_CK2_alpha 4 allosteric inhibitor binding site 0 1 1 1 16,19,20,21,47,49,81,83,84,90 5 -271034 cd14132 STKc_CK2_alpha 5 active site 0 0 1 1 25,26,27,28,29,33,46,48,60,75,93,94,95,96,100,102,103,136,138,140,141,143,155,158,169,171,172,173,174,176,215 1 -271034 cd14132 STKc_CK2_alpha 6 polypeptide substrate binding site 0 0 1 1 60,102,136,138,158,169,171,172,173,174,176,215 2 -271034 cd14132 STKc_CK2_alpha 7 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,169,170,171,172,173,174,175,176 0 -271035 cd14133 PKc_DYRK_like 1 active site 0 1 1 1 6,7,8,9,10,14,27,29,43,63,79,80,81,82,85,87,88,126,128,130,131,133,146,149,158,160,161,162,163,165,202 1 -271035 cd14133 PKc_DYRK_like 2 ATP binding site 0 1 1 1 6,7,8,9,10,14,27,29,63,79,80,81,82,85,126,128,130,131,133,146 5 -271035 cd14133 PKc_DYRK_like 3 polypeptide substrate binding site 0 1 1 1 43,87,126,128,149,158,160,161,162,163,165,202 2 -271035 cd14133 PKc_DYRK_like 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,157,158,159,160,161,162,163,164,165 0 -271036 cd14134 PKc_CLK 1 ATP binding site 0 1 1 1 19,20,21,22,27,40,42,76,92,93,94,95,98,101,143,144,146,175,176 5 -271036 cd14134 PKc_CLK 2 active site 0 0 1 1 19,20,21,22,23,27,40,42,56,76,92,93,94,95,98,100,101,139,141,143,144,146,176,179,188,190,191,192,193,195,232 1 -271036 cd14134 PKc_CLK 3 polypeptide substrate binding site 0 0 1 1 56,100,139,141,179,188,190,191,192,193,195,232 2 -271036 cd14134 PKc_CLK 4 activation loop (A-loop) 0 0 1 1 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 0 -271037 cd14135 STKc_PRP4 1 active site 0 0 1 1 7,8,9,10,11,15,29,31,45,65,81,82,83,84,87,89,90,129,131,133,134,136,148,151,161,163,164,165,166,168,205 1 -271037 cd14135 STKc_PRP4 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,29,31,65,81,82,83,84,87,129,131,133,134,136,148 5 -271037 cd14135 STKc_PRP4 3 polypeptide substrate binding site 0 0 1 1 45,89,129,131,151,161,163,164,165,166,168,205 2 -271037 cd14135 STKc_PRP4 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271038 cd14136 STKc_SRPK 1 ATP binding site 0 1 1 1 17,18,19,20,21,25,38,40,76,96,97,98,99,102,144,146,148,149,151,163 5 -271038 cd14136 STKc_SRPK 2 active site 0 0 1 1 17,18,19,20,21,25,38,40,54,76,96,97,98,99,102,104,105,144,146,148,149,151,163,166,175,177,178,179,180,182,219 1 -271038 cd14136 STKc_SRPK 3 polypeptide substrate binding site 0 0 1 1 54,104,144,146,166,175,177,178,179,180,182,219 2 -271038 cd14136 STKc_SRPK 4 kinase-docking site 0 1 1 1 112,113,212,214,216,225,230,233,234,237,238,266,270,272,281,282 2 -271038 cd14136 STKc_SRPK 5 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -271039 cd14137 STKc_GSK3 1 ATP binding site 0 1 1 0 11,12,13,14,19,32,34,59,81,82,83,84,87,132,134,135,137,149 5 -271039 cd14137 STKc_GSK3 2 axin binding site 0 1 1 1 177,212,213,215,216,219,220,240,241,242,243,244,245 2 -271039 cd14137 STKc_GSK3 3 dimer interface 0 1 1 0 15,16,161,162,163,164,165,166,167,168,169,177,178,209,210,211,212,213,215,216,220,240,241,242,243 2 -271039 cd14137 STKc_GSK3 4 polypeptide substrate binding site 0 0 1 1 45,89,130,132,152,163,165,166,167,168,170,208 2 -271039 cd14137 STKc_GSK3 5 active site 0 0 1 1 11,12,13,14,15,19,32,34,45,59,81,82,83,84,87,89,90,130,132,134,135,137,149,152,163,165,166,167,168,170,208 1 -271039 cd14137 STKc_GSK3 6 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166,167,168,169,170 0 -271040 cd14138 PTKc_Wee1a 1 ATP binding site 0 1 1 1 12,13,14,15,16,20,33,35,67,83,84,85,86,90,133,135,137,138,140,170 5 -271040 cd14138 PTKc_Wee1a 2 active site 0 0 1 1 12,13,14,15,16,20,33,35,67,83,84,85,86,90,92,133,135,137,138,140,170,173,185,186,187,188 1 -271040 cd14138 PTKc_Wee1a 3 polypeptide substrate binding site 0 0 1 1 16,90,92,133,135,137,173,185,186,187,188 2 -271040 cd14138 PTKc_Wee1a 4 activation loop (A-loop) 0 0 1 1 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -271041 cd14139 PTKc_Wee1b 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,128,130,132,133,135,168,171,183,184,185,186 1 -271041 cd14139 PTKc_Wee1b 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,128,130,132,133,135,168 5 -271041 cd14139 PTKc_Wee1b 3 polypeptide substrate binding site 0 0 1 1 11,85,87,128,130,132,171,183,184,185,186 2 -271041 cd14139 PTKc_Wee1b 4 activation loop (A-loop) 0 0 1 1 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -271042 cd14140 STKc_ACVR2b 1 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,127,129,131,132,134,145,148,166,167,168,169 1 -271042 cd14140 STKc_ACVR2b 2 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,131,132,134,145 5 -271042 cd14140 STKc_ACVR2b 3 polypeptide substrate binding site 0 1 1 1 6,78,80,127,129,131,148,166,167,168,169 2 -271042 cd14140 STKc_ACVR2b 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271043 cd14141 STKc_ACVR2a 1 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,126,128,130,131,133,144,147,165,166,167,168 1 -271043 cd14141 STKc_ACVR2a 2 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,130,131,133,144 5 -271043 cd14141 STKc_ACVR2a 3 polypeptide substrate binding site 0 1 1 1 6,78,80,126,128,130,147,165,166,167,168 2 -271043 cd14141 STKc_ACVR2a 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271044 cd14142 STKc_ACVR1_ALK1 1 active site 0 1 1 1 12,13,14,15,16,20,31,33,61,81,82,83,84,88,90,134,136,138,139,141,152,155,175,176,177,178 1 -271044 cd14142 STKc_ACVR1_ALK1 2 ATP binding site 0 1 1 1 12,13,14,15,16,17,18,20,31,33,81,82,84,88,138,139,141,152 5 -271044 cd14142 STKc_ACVR1_ALK1 3 polypeptide substrate binding site 0 1 1 1 16,88,90,134,136,138,155,175,176,177,178 2 -271044 cd14142 STKc_ACVR1_ALK1 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -271044 cd14142 STKc_ACVR1_ALK1 5 FKBP12 binding site 0 1 1 1 0,1,4,5,43,44,47,48,51,52,66,68 2 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 1 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,128,129,131,142 5 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 2 active site 0 1 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,124,126,128,129,131,142,145,165,166,167,168 1 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 3 polypeptide substrate binding site 0 1 1 1 6,78,80,124,126,128,145,165,166,167,168 2 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 5 FKBP12 binding site 0 1 1 1 33,34,37,38,41,42,56,58 2 -271046 cd14144 STKc_BMPR1 1 ATP binding site 0 1 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,128,129,131,142 5 -271046 cd14144 STKc_BMPR1 2 active site 0 0 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,124,126,128,129,131,142,145,165,166,167,168 1 -271046 cd14144 STKc_BMPR1 3 polypeptide substrate binding site 0 0 1 1 6,78,80,124,126,128,145,165,166,167,168 2 -271046 cd14144 STKc_BMPR1 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271046 cd14144 STKc_BMPR1 5 FKBP12 binding site 0 1 1 1 33,34,37,38,41,56,58 2 -271047 cd14145 STKc_MLK1 1 ATP binding site 0 1 1 1 13,14,15,16,17,21,32,34,67,83,84,85,86,90,131,133,135,136,138,157 5 -271047 cd14145 STKc_MLK1 2 active site 0 0 1 1 13,14,15,16,17,21,32,34,67,83,84,85,86,90,92,131,133,135,136,138,157,160,174,175,176,177 1 -271047 cd14145 STKc_MLK1 3 polypeptide substrate binding site 0 0 1 1 17,90,92,131,133,135,160,174,175,176,177 2 -271047 cd14145 STKc_MLK1 4 activation loop (A-loop) 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 0 -271048 cd14146 STKc_MLK4 1 ATP binding site 0 0 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,129,131,133,134,136,155 5 -271048 cd14146 STKc_MLK4 2 active site 0 0 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,80,129,131,133,134,136,155,158,172,173,174,175 1 -271048 cd14146 STKc_MLK4 3 polypeptide substrate binding site 0 0 1 1 5,78,80,129,131,133,158,172,173,174,175 2 -271048 cd14146 STKc_MLK4 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271049 cd14147 STKc_MLK3 1 ATP binding site 0 0 1 1 10,11,12,13,14,18,29,31,64,80,81,82,83,87,128,130,132,133,135,154 5 -271049 cd14147 STKc_MLK3 2 active site 0 0 1 1 10,11,12,13,14,18,29,31,64,80,81,82,83,87,89,128,130,132,133,135,154,157,171,172,173,174 1 -271049 cd14147 STKc_MLK3 3 polypeptide substrate binding site 0 0 1 1 14,87,89,128,130,132,157,171,172,173,174 2 -271049 cd14147 STKc_MLK3 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271050 cd14148 STKc_MLK2 1 ATP binding site 0 0 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,119,121,123,124,126,145 5 -271050 cd14148 STKc_MLK2 2 active site 0 0 1 1 1,2,3,4,5,9,20,22,55,71,72,73,74,78,80,119,121,123,124,126,145,148,162,163,164,165 1 -271050 cd14148 STKc_MLK2 3 polypeptide substrate binding site 0 0 1 1 5,78,80,119,121,123,148,162,163,164,165 2 -271050 cd14148 STKc_MLK2 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271051 cd14149 STKc_C-Raf 1 ATP binding site 0 1 1 1 19,20,21,22,23,27,37,39,70,85,86,87,88,92,132,134,136,137,139,150 5 -271051 cd14149 STKc_C-Raf 2 dimer interface 0 1 1 0 4,6,31,33,34,61,62,63,64,65,66,67,71,72,73,118,121,122,125,126,142,144,271 2 -271051 cd14149 STKc_C-Raf 3 active site 0 0 1 1 19,20,21,22,23,27,37,39,70,85,86,87,88,92,94,132,134,136,137,139,150,153,171,172,173,174 1 -271051 cd14149 STKc_C-Raf 4 polypeptide substrate binding site 0 0 1 1 23,92,94,132,134,136,153,171,172,173,174 2 -271051 cd14149 STKc_C-Raf 5 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271052 cd14150 STKc_A-Raf 1 ATP binding site 0 0 1 1 7,8,9,10,11,15,25,27,58,73,74,75,76,80,120,122,124,125,127,138 5 -271052 cd14150 STKc_A-Raf 2 dimer interface 0 0 1 1 19,21,22,49,50,51,52,53,54,55,59,60,61,106,109,110,113,114,130,132,259 2 -271052 cd14150 STKc_A-Raf 3 active site 0 0 1 1 7,8,9,10,11,15,25,27,58,73,74,75,76,80,82,120,122,124,125,127,138,141,159,160,161,162 1 -271052 cd14150 STKc_A-Raf 4 polypeptide substrate binding site 0 0 1 1 11,80,82,120,122,124,141,159,160,161,162 2 -271052 cd14150 STKc_A-Raf 5 activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -271053 cd14151 STKc_B-Raf 1 ATP binding site 0 1 1 1 15,16,17,18,19,23,33,35,66,81,82,83,84,88,128,130,132,133,135,146 5 -271053 cd14151 STKc_B-Raf 2 dimer interface 0 1 1 0 27,28,29,30,57,58,60,61,62,63,67,68,69,114,117,118,121,138,140 2 -271053 cd14151 STKc_B-Raf 3 active site 0 0 1 1 15,16,17,18,19,23,33,35,66,81,82,83,84,88,90,128,130,132,133,135,146,149,167,168,169,170 1 -271053 cd14151 STKc_B-Raf 4 polypeptide substrate binding site 0 0 1 1 19,88,90,128,130,132,149,167,168,169,170 2 -271053 cd14151 STKc_B-Raf 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -271054 cd14152 STKc_KSR1 1 ATP binding site 0 0 1 1 7,9,10,11,15,25,27,74,75,76,77,123,125,126,128,137,138 5 -271054 cd14152 STKc_KSR1 2 MEK interface 0 0 1 1 157,159,160,161,173,174,176,212,213,214,215,218,219,220,222,223 2 -271054 cd14152 STKc_KSR1 3 putative active site 0 0 1 1 7,8,9,10,11,15,25,27,58,74,75,76,77,81,83,121,123,125,126,128,138,141,162,163,164,165 1 -271054 cd14152 STKc_KSR1 4 putative polypeptide substrate binding site 0 0 1 1 11,81,83,121,123,125,141,162,163,164,165 2 -271054 cd14152 STKc_KSR1 5 putative activation loop (A-loop) 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271055 cd14153 PK_KSR2 1 ATP binding site 0 1 1 0 7,9,10,11,15,25,27,74,75,76,77,123,125,126,128,137,138 5 -271055 cd14153 PK_KSR2 2 MEK interface 0 1 1 1 156,157,159,160,161,173,174,176,212,213,214,215,218,219,220,222,223 2 -271056 cd14154 STKc_LIMK 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,52,68,69,70,71,75,77,115,117,119,120,122,133,136,172,173,174,175 1 -271056 cd14154 STKc_LIMK 2 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,52,68,69,70,71,75,115,117,119,120,122,133 5 -271056 cd14154 STKc_LIMK 3 polypeptide substrate binding site 0 0 1 1 4,75,77,115,117,119,136,172,173,174,175 2 -271056 cd14154 STKc_LIMK 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271057 cd14155 PKc_TESK 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,75,112,114,116,117,119,133,136,154,155,156,157 1 -271057 cd14155 PKc_TESK 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,112,114,116,117,119,133 5 -271057 cd14155 PKc_TESK 3 polypeptide substrate binding site 0 0 1 1 4,73,75,112,114,116,136,154,155,156,157 2 -271057 cd14155 PKc_TESK 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157 0 -271058 cd14156 PKc_LIMK_like_unk 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,75,113,115,117,118,120,134,137,157,158,159,160 1 -271058 cd14156 PKc_LIMK_like_unk 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,50,66,67,68,69,73,113,115,117,118,120,134 5 -271058 cd14156 PKc_LIMK_like_unk 3 polypeptide substrate binding site 0 0 1 1 4,73,75,113,115,117,137,157,158,159,160 2 -271058 cd14156 PKc_LIMK_like_unk 4 activation loop (A-loop) 0 0 1 1 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 0 -271059 cd14157 STKc_IRAK2 1 ATP binding site 0 0 1 1 0,1,2,3,4,8,19,21,54,70,71,72,73,77,119,121,123,124,126,137 5 -271059 cd14157 STKc_IRAK2 2 active site 0 0 1 1 0,1,2,3,4,8,19,21,54,70,71,72,73,77,79,119,121,123,124,126,137,140,161,162,163,164 1 -271059 cd14157 STKc_IRAK2 3 polypeptide substrate binding site 0 0 1 1 4,77,79,119,121,123,140,161,162,163,164 2 -271059 cd14157 STKc_IRAK2 4 activation loop (A-loop) 0 0 1 1 136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -271060 cd14158 STKc_IRAK4 1 ATP binding site 0 1 1 1 22,23,24,25,26,30,41,43,76,92,93,94,95,99,141,143,145,146,148,159 5 -271060 cd14158 STKc_IRAK4 2 active site 0 0 1 1 22,23,24,25,26,30,41,43,76,92,93,94,95,99,101,141,143,145,146,148,159,162,180,181,182,183 1 -271060 cd14158 STKc_IRAK4 3 polypeptide substrate binding site 0 0 1 1 26,99,101,141,143,145,162,180,181,182,183 2 -271060 cd14158 STKc_IRAK4 4 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,172,173,174,175,176,177,178,179,180,181,182,183 0 -271061 cd14159 STKc_IRAK1 1 ATP binding site 0 0 1 1 0,1,2,3,4,8,19,21,54,70,71,72,73,77,121,123,125,126,128,139 5 -271061 cd14159 STKc_IRAK1 2 active site 0 0 1 1 0,1,2,3,4,8,19,21,54,70,71,72,73,77,79,121,123,125,126,128,139,142,166,167,168,169 1 -271061 cd14159 STKc_IRAK1 3 polypeptide substrate binding site 0 0 1 1 4,77,79,121,123,125,142,166,167,168,169 2 -271061 cd14159 STKc_IRAK1 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271063 cd14161 STKc_NUAK2 1 active site 0 0 1 1 10,11,12,13,14,18,30,32,64,80,81,82,83,87,89,90,92,125,126,128,130,131,133,143,144,147,160,161,162,163,164,165,167,197,198,199,200,202 1 -271063 cd14161 STKc_NUAK2 2 ATP binding site 0 0 1 1 10,11,12,13,18,30,32,64,80,81,82,83,87,130,131,133,143,144 5 -271063 cd14161 STKc_NUAK2 3 polypeptide substrate binding site 0 0 1 1 87,89,90,92,126,128,130,147,160,161,162,163,164,165,167,197,198,199,200,202 2 -271063 cd14161 STKc_NUAK2 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271064 cd14162 STKc_TSSK4-like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,88,90,123,124,126,128,129,131,141,142,145,164,165,166,167,168,170,200,201,202,203 1 -271064 cd14162 STKc_TSSK4-like 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,62,78,79,80,81,85,128,129,131,141,142 5 -271064 cd14162 STKc_TSSK4-like 3 polypeptide substrate binding site 0 0 1 1 85,87,88,90,124,126,128,145,164,165,166,167,168,170,200,201,202,203 2 -271064 cd14162 STKc_TSSK4-like 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,158,159,160,161,162,163,164,165,166,167,168 0 -271065 cd14163 STKc_TSSK3-like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,79,80,81,82,86,88,89,91,124,125,127,129,130,132,141,142,145,161,162,163,164,165,167,197,198,199,200 1 -271065 cd14163 STKc_TSSK3-like 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,62,79,80,81,82,86,129,130,132,141,142 5 -271065 cd14163 STKc_TSSK3-like 3 polypeptide substrate binding site 0 0 1 1 86,88,89,91,125,127,129,145,161,162,163,164,165,167,197,198,199,200 2 -271065 cd14163 STKc_TSSK3-like 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271066 cd14164 STKc_TSSK6-like 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,79,80,81,82,85,87,88,90,123,124,126,128,129,131,142,143,146,161,162,163,164,165,167,197,198,199,200 1 -271066 cd14164 STKc_TSSK6-like 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,62,79,80,81,82,85,128,129,131,142,143 5 -271066 cd14164 STKc_TSSK6-like 3 polypeptide substrate binding site 0 0 1 1 85,87,88,90,124,126,128,146,161,162,163,164,165,167,197,198,199,200 2 -271066 cd14164 STKc_TSSK6-like 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271067 cd14165 STKc_TSSK1_2-like 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,83,87,89,90,92,125,126,128,130,131,133,143,144,147,166,167,168,169,170,172,202,203,204,205 1 -271067 cd14165 STKc_TSSK1_2-like 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,63,80,81,82,83,87,130,131,133,143,144 5 -271067 cd14165 STKc_TSSK1_2-like 3 polypeptide substrate binding site 0 0 1 1 87,89,90,92,126,128,130,147,166,167,168,169,170,172,202,203,204,205 2 -271067 cd14165 STKc_TSSK1_2-like 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -271068 cd14166 STKc_CaMKI_gamma 1 ATP binding site 0 1 1 1 10,11,12,13,18,31,33,62,78,79,80,81,85,128,129,131,144,145 5 -271068 cd14166 STKc_CaMKI_gamma 2 active site 0 0 1 1 10,11,12,13,14,18,31,33,62,78,79,80,81,85,87,123,124,126,128,129,131,144,145,148,161,162,163,164,165,167 1 -271068 cd14166 STKc_CaMKI_gamma 3 polypeptide substrate binding site 0 0 1 1 14,85,87,123,124,126,128,148,161,162,163,164,165,167 2 -271068 cd14166 STKc_CaMKI_gamma 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271069 cd14167 STKc_CaMKI_alpha 1 active site 0 1 1 1 10,11,12,13,14,16,18,31,33,63,79,80,81,82,86,88,124,125,127,129,130,132,145,146,149,163,164,165,166,167,169 1 -271069 cd14167 STKc_CaMKI_alpha 2 ATP binding site 0 1 1 1 10,11,12,13,14,16,18,31,33,63,79,80,81,82,86,125,127,129,130,132,145,146 5 -271069 cd14167 STKc_CaMKI_alpha 3 polypeptide substrate binding site 0 0 1 1 14,86,88,124,125,127,129,149,163,164,165,166,167,169 2 -271069 cd14167 STKc_CaMKI_alpha 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271070 cd14168 STKc_CaMKI_delta 1 ATP binding site 0 1 1 1 17,18,19,20,25,38,40,70,86,87,88,89,93,136,137,139,152,153 5 -271070 cd14168 STKc_CaMKI_delta 2 active site 0 0 1 1 17,18,19,20,21,25,38,40,70,86,87,88,89,93,95,131,132,134,136,137,139,152,153,156,170,171,172,173,174,176 1 -271070 cd14168 STKc_CaMKI_delta 3 polypeptide substrate binding site 0 0 1 1 21,93,95,131,132,134,136,156,170,171,172,173,174,176 2 -271070 cd14168 STKc_CaMKI_delta 4 activation loop (A-loop) 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271071 cd14169 STKc_CaMKI_beta 1 active site 0 0 1 1 10,11,12,13,14,18,31,33,63,79,80,81,82,86,88,124,125,127,129,130,132,145,146,149,162,163,164,165,166,168 1 -271071 cd14169 STKc_CaMKI_beta 2 ATP binding site 0 0 1 1 10,11,12,13,18,31,33,63,79,80,81,82,86,129,130,132,145,146 5 -271071 cd14169 STKc_CaMKI_beta 3 polypeptide substrate binding site 0 0 1 1 14,86,88,124,125,127,129,149,162,163,164,165,166,168 2 -271071 cd14169 STKc_CaMKI_beta 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -271072 cd14170 STKc_MAPKAPK2 1 ATP binding site 0 1 1 0 9,10,11,12,13,14,17,30,32,57,77,78,79,80,130,132,145,146 5 -271072 cd14170 STKc_MAPKAPK2 2 heterodimer interface 0 1 1 1 11,12,13,14,16,166,167,168,169,170,174,176,179,200,202,203,204,205,219,220,222,223,247,248,286,287,289,290,291,293,294,296,297,298,300,301 2 -271072 cd14170 STKc_MAPKAPK2 3 active site 0 0 1 1 9,10,11,12,13,14,17,30,32,57,77,78,79,80,84,86,124,125,127,129,130,132,145,146,149,163,164,165,166,167,169 1 -271072 cd14170 STKc_MAPKAPK2 4 polypeptide substrate binding site 0 0 1 1 13,84,86,124,125,127,129,149,163,164,165,166,167,169 2 -271072 cd14170 STKc_MAPKAPK2 5 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271073 cd14171 STKc_MAPKAPK5 1 active site 0 0 1 1 13,14,15,16,17,18,21,34,36,61,87,88,89,90,94,96,132,133,135,137,138,140,153,154,157,169,170,171,172,173,175 1 -271073 cd14171 STKc_MAPKAPK5 2 ATP binding site 0 0 1 1 13,14,15,16,17,18,21,34,36,61,87,88,89,90,138,140,153,154 5 -271073 cd14171 STKc_MAPKAPK5 3 polypeptide substrate binding site 0 0 1 1 17,94,96,132,133,135,137,157,169,170,171,172,173,175 2 -271073 cd14171 STKc_MAPKAPK5 4 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,165,166,167,168,169,170,171,172,173 0 -271074 cd14172 STKc_MAPKAPK3 1 ATP binding site 0 1 1 1 11,12,13,14,15,16,19,32,34,59,79,80,81,82,132,134,147,148 5 -271074 cd14172 STKc_MAPKAPK3 2 active site 0 0 1 1 11,12,13,14,15,16,19,32,34,59,79,80,81,82,86,88,126,127,129,131,132,134,147,148,151,165,166,167,168,169,171 1 -271074 cd14172 STKc_MAPKAPK3 3 polypeptide substrate binding site 0 0 1 1 15,86,88,126,127,129,131,151,165,166,167,168,169,171 2 -271074 cd14172 STKc_MAPKAPK3 4 heterodimer interface 0 0 1 1 13,14,15,16,18,168,169,170,171,172,176,178,181,202,204,205,206,207,221,222,224,225,249,250 2 -271074 cd14172 STKc_MAPKAPK3 5 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169 0 -271075 cd14173 STKc_Mnk2 1 Zn binding site 0 1 1 0 218,222,230,233 4 -271075 cd14173 STKc_Mnk2 2 active site 0 0 1 1 9,10,11,12,13,17,30,32,62,78,79,80,81,85,87,123,124,126,128,129,131,144,145,148,170,171,172,173,174,176 1 -271075 cd14173 STKc_Mnk2 3 ATP binding site 0 0 1 1 9,10,11,12,17,30,32,62,78,79,80,81,85,128,129,131,144,145 5 -271075 cd14173 STKc_Mnk2 4 polypeptide substrate binding site 0 0 1 1 13,85,87,123,124,126,128,148,170,171,172,173,174,176 2 -271075 cd14173 STKc_Mnk2 5 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271076 cd14174 STKc_Mnk1 1 active site 0 0 1 1 9,10,11,12,13,17,30,32,62,78,79,80,81,85,87,123,124,126,128,129,131,144,145,148,170,171,172,173,174,176 1 -271076 cd14174 STKc_Mnk1 2 ATP binding site 0 0 1 1 9,10,11,12,17,30,32,62,78,79,80,81,85,128,129,131,144,145 5 -271076 cd14174 STKc_Mnk1 3 polypeptide substrate binding site 0 0 1 1 13,85,87,123,124,126,128,148,170,171,172,173,174,176 2 -271076 cd14174 STKc_Mnk1 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271076 cd14174 STKc_Mnk1 5 Zn binding site 0 0 1 1 218,222,230,233 4 -271077 cd14175 STKc_RSK1_C 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,57,73,74,75,76,80,82,118,119,121,123,124,126,140,141,144,159,160,161,162,163,165 1 -271077 cd14175 STKc_RSK1_C 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,57,73,74,75,76,80,123,124,126,140,141 5 -271077 cd14175 STKc_RSK1_C 3 polypeptide substrate binding site 0 0 1 1 12,80,82,118,119,121,123,144,159,160,161,162,163,165 2 -271077 cd14175 STKc_RSK1_C 4 activation loop (A-loop) 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -271078 cd14176 STKc_RSK2_C 1 active site 0 1 1 1 26,27,28,29,30,32,34,47,49,75,91,92,93,94,97,98,100,136,137,139,141,142,144,158,159,162,177,178,179,180,181,183 1 -271078 cd14176 STKc_RSK2_C 2 ATP binding site 0 1 1 1 26,27,28,29,32,34,47,49,75,91,92,93,94,97,98,141,142,144,158,159 5 -271078 cd14176 STKc_RSK2_C 3 polypeptide substrate binding site 0 0 1 1 30,98,100,136,137,139,141,162,177,178,179,180,181,183 2 -271078 cd14176 STKc_RSK2_C 4 activation loop (A-loop) 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -271079 cd14177 STKc_RSK4_C 1 active site 0 0 1 1 11,12,13,14,15,19,32,34,60,76,77,78,79,83,85,121,122,124,126,127,129,143,144,147,162,163,164,165,166,168 1 -271079 cd14177 STKc_RSK4_C 2 ATP binding site 0 0 1 1 11,12,13,14,19,32,34,60,76,77,78,79,83,126,127,129,143,144 5 -271079 cd14177 STKc_RSK4_C 3 polypeptide substrate binding site 0 0 1 1 15,83,85,121,122,124,126,147,162,163,164,165,166,168 2 -271079 cd14177 STKc_RSK4_C 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -271080 cd14178 STKc_RSK3_C 1 active site 0 0 1 1 10,11,12,13,14,18,31,33,59,75,76,77,78,82,84,120,121,123,125,126,128,142,143,146,161,162,163,164,165,167 1 -271080 cd14178 STKc_RSK3_C 2 ATP binding site 0 0 1 1 10,11,12,13,18,31,33,59,75,76,77,78,82,125,126,128,142,143 5 -271080 cd14178 STKc_RSK3_C 3 polypeptide substrate binding site 0 0 1 1 14,82,84,120,121,123,125,146,161,162,163,164,165,167 2 -271080 cd14178 STKc_RSK3_C 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271081 cd14179 STKc_MSK1_C 1 ATP binding site 0 1 1 0 14,15,16,35,80,81,82,83,87,130,131,133,146,298 5 -271081 cd14179 STKc_MSK1_C 2 active site 0 0 1 1 14,15,16,17,18,22,35,37,64,80,81,82,83,87,89,125,126,128,130,131,133,146,147,150,165,166,167,168,169,171,298 1 -271081 cd14179 STKc_MSK1_C 3 polypeptide substrate binding site 0 0 1 1 18,87,89,125,126,128,130,150,165,166,167,168,169,171 2 -271081 cd14179 STKc_MSK1_C 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271082 cd14180 STKc_MSK2_C 1 ATP binding site 0 0 1 1 13,14,15,34,79,80,81,82,86,129,130,132,145,297 5 -271082 cd14180 STKc_MSK2_C 2 active site 0 0 1 1 13,14,15,16,17,21,34,36,63,79,80,81,82,86,88,124,125,127,129,130,132,145,146,149,164,165,166,167,168,170,297 1 -271082 cd14180 STKc_MSK2_C 3 polypeptide substrate binding site 0 0 1 1 17,86,88,124,125,127,129,149,164,165,166,167,168,170 2 -271082 cd14180 STKc_MSK2_C 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271083 cd14181 STKc_PhKG2 1 active site 0 0 1 1 17,18,20,21,23,25,38,40,78,94,95,97,101,103,139,140,142,144,145,147,158,161,173,174,175,176,177,178,179,181 1 -271083 cd14181 STKc_PhKG2 2 ATP binding site 0 1 1 1 17,18,20,21,23,25,38,40,78,94,95,97,101,140,142,144,145,147,158 5 -271083 cd14181 STKc_PhKG2 3 polypeptide substrate binding site 0 0 1 1 21,101,103,139,140,142,144,161,173,174,175,176,177,178,179,181 2 -271083 cd14181 STKc_PhKG2 4 activation loop (A-loop) 0 0 1 1 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -271084 cd14182 STKc_PhKG1 1 active site 0 1 1 1 10,11,13,14,16,18,31,33,72,88,89,91,95,97,133,134,136,138,139,141,152,155,167,168,169,170,171,172,173,175 1 -271084 cd14182 STKc_PhKG1 2 ATP binding site 0 1 1 0 10,11,13,14,16,18,31,33,72,88,89,91,95,134,136,138,139,141,152 5 -271084 cd14182 STKc_PhKG1 3 polypeptide substrate binding site 0 1 1 0 14,95,97,133,134,136,138,155,167,168,169,170,171,172,173,175 2 -271084 cd14182 STKc_PhKG1 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -271085 cd14183 STKc_DCKL1 1 active site 0 0 1 1 13,14,15,16,17,21,34,36,66,82,83,84,85,89,91,127,128,130,132,133,135,149,150,153,165,166,167,168,169,171 1 -271085 cd14183 STKc_DCKL1 2 ATP binding site 0 0 1 1 13,14,15,16,21,34,36,66,82,83,84,85,89,132,133,135,149,150 5 -271085 cd14183 STKc_DCKL1 3 polypeptide substrate binding site 0 0 1 1 17,89,91,127,128,130,132,153,165,166,167,168,169,171 2 -271085 cd14183 STKc_DCKL1 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271086 cd14184 STKc_DCKL2 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,61,77,78,79,80,84,86,122,123,125,127,128,130,144,145,148,160,161,162,163,164,166 1 -271086 cd14184 STKc_DCKL2 2 ATP binding site 0 0 1 1 8,9,10,11,16,29,31,61,77,78,79,80,84,127,128,130,144,145 5 -271086 cd14184 STKc_DCKL2 3 polypeptide substrate binding site 0 0 1 1 12,84,86,122,123,125,127,148,160,161,162,163,164,166 2 -271086 cd14184 STKc_DCKL2 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 0 -271087 cd14185 STKc_DCKL3 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,60,76,77,78,79,83,85,121,122,124,126,127,129,143,144,147,159,160,161,162,163,165 1 -271087 cd14185 STKc_DCKL3 2 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,60,76,77,78,79,83,126,127,129,143,144 5 -271087 cd14185 STKc_DCKL3 3 polypeptide substrate binding site 0 0 1 1 11,83,85,121,122,124,126,147,159,160,161,162,163,165 2 -271087 cd14185 STKc_DCKL3 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 0 -271088 cd14186 STKc_PLK4 1 ATP binding site 0 1 0 0 8,9,10,11,12,16,29,31,63,79,80,82,86,89,133 5 -271088 cd14186 STKc_PLK4 2 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,82,86,88,89,126,128,130,131,133,144,147,163,164,165,166 1 -271088 cd14186 STKc_PLK4 3 polypeptide substrate binding site 0 0 1 1 12,86,88,126,128,130,147,163,164,165,166 2 -271088 cd14186 STKc_PLK4 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -271089 cd14187 STKc_PLK1 1 ATP binding site 0 1 1 0 14,15,16,17,22,35,37,69,86,87,88,91,135,138,149 5 -271089 cd14187 STKc_PLK1 2 active site 0 0 1 1 14,15,16,17,18,22,35,37,69,86,87,88,91,92,94,131,133,135,138,149,152,168,169,170,171 1 -271089 cd14187 STKc_PLK1 3 polypeptide substrate binding site 0 0 1 1 18,92,94,131,133,135,152,168,169,170,171 2 -271089 cd14187 STKc_PLK1 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 0 -271090 cd14188 STKc_PLK2 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,86,88,125,127,129,130,132,143,146,162,163,164,165 1 -271090 cd14188 STKc_PLK2 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,132,143 5 -271090 cd14188 STKc_PLK2 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,162,163,164,165 2 -271090 cd14188 STKc_PLK2 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271091 cd14189 STKc_PLK3 1 active site 0 0 1 1 8,9,10,11,12,16,29,31,63,79,80,81,82,86,88,125,127,129,130,132,143,146,162,163,164,165 1 -271091 cd14189 STKc_PLK3 2 ATP binding site 0 0 1 1 8,9,10,11,12,16,29,31,63,80,81,82,132,143 5 -271091 cd14189 STKc_PLK3 3 polypeptide substrate binding site 0 0 1 1 12,86,88,125,127,129,146,162,163,164,165 2 -271091 cd14189 STKc_PLK3 4 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271092 cd14190 STKc_MLCK2 1 ATP binding site 0 0 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,130,131,133,145,146 5 -271092 cd14190 STKc_MLCK2 2 active site 0 0 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,88,126,128,130,131,133,145,146,149,164,165,166,167 1 -271092 cd14190 STKc_MLCK2 3 polypeptide substrate binding site 0 0 1 1 15,86,88,126,128,130,149,164,165,166,167 2 -271092 cd14190 STKc_MLCK2 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271093 cd14191 STKc_MLCK1 1 ATP binding site 0 0 1 1 9,10,11,12,13,15,17,30,32,61,77,78,80,84,128,129,131,143,144 5 -271093 cd14191 STKc_MLCK1 2 active site 0 0 1 1 9,10,11,12,13,15,17,30,32,61,77,78,80,84,86,124,126,128,129,131,143,144,147,162,163,164,165 1 -271093 cd14191 STKc_MLCK1 3 polypeptide substrate binding site 0 0 1 1 13,84,86,124,126,128,147,162,163,164,165 2 -271093 cd14191 STKc_MLCK1 4 activation loop (A-loop) 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271094 cd14192 STKc_MLCK3 1 ATP binding site 0 0 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,130,131,133,145,146 5 -271094 cd14192 STKc_MLCK3 2 active site 0 0 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,88,126,128,130,131,133,145,146,149,164,165,166,167 1 -271094 cd14192 STKc_MLCK3 3 polypeptide substrate binding site 0 0 1 1 15,86,88,126,128,130,149,164,165,166,167 2 -271094 cd14192 STKc_MLCK3 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271095 cd14193 STKc_MLCK4 1 ATP binding site 0 1 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,130,131,133,145,146 5 -271095 cd14193 STKc_MLCK4 2 active site 0 0 1 1 11,12,13,14,15,17,19,32,34,63,79,80,82,86,88,126,128,130,131,133,145,146,149,164,165,166,167 1 -271095 cd14193 STKc_MLCK4 3 polypeptide substrate binding site 0 0 1 1 15,86,88,126,128,130,149,164,165,166,167 2 -271095 cd14193 STKc_MLCK4 4 activation loop (A-loop) 0 0 1 1 145,146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,163,164,165,166,167 0 -271096 cd14194 STKc_DAPK1 1 ATP binding site 0 1 1 0 12,13,14,15,16,17,18,20,33,35,70,86,87,89,93,132,136,137,139,153,154 5 -271096 cd14194 STKc_DAPK1 2 CaM binding site 0 1 1 1 11,14,16,17,46,47,93,96,99,100,215 2 -271096 cd14194 STKc_DAPK1 3 active site 0 0 1 1 12,13,14,15,16,17,18,20,33,35,70,86,87,89,93,95,132,134,136,137,139,153,154,157,172,173,174,175 1 -271096 cd14194 STKc_DAPK1 4 polypeptide substrate binding site 0 0 1 1 16,93,95,132,134,136,157,172,173,174,175 2 -271096 cd14194 STKc_DAPK1 5 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271097 cd14195 STKc_DAPK3 1 ATP binding site 0 1 1 1 12,13,14,15,16,18,20,33,35,70,86,87,89,93,132,136,137,139,153,154 5 -271097 cd14195 STKc_DAPK3 2 dimer interface 0 1 1 1 133,134,135,136,173,174,175,176,177,178,179,180,181,182,183,184,187,191,194,195,198,208,211,219,222,223,253,256 2 -271097 cd14195 STKc_DAPK3 3 active site 0 0 1 1 12,13,14,15,16,18,20,33,35,70,86,87,89,93,95,132,134,136,137,139,153,154,157,172,173,174,175 1 -271097 cd14195 STKc_DAPK3 4 polypeptide substrate binding site 0 0 1 1 16,93,95,132,134,136,157,172,173,174,175 2 -271097 cd14195 STKc_DAPK3 5 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271098 cd14196 STKc_DAPK2 1 ATP binding site 0 1 1 0 12,13,14,15,16,18,20,33,35,70,86,87,89,93,136,137,139,153,154 5 -271098 cd14196 STKc_DAPK2 2 dimer interface 0 1 1 0 40,43,44,46,50,53,136,167,168,169,170,175,182,183,184,211,212,213,214,215,216,219,220,223 2 -271098 cd14196 STKc_DAPK2 3 active site 0 0 1 1 12,13,14,15,16,18,20,33,35,70,86,87,89,93,95,132,134,136,137,139,153,154,157,172,173,174,175 1 -271098 cd14196 STKc_DAPK2 4 polypeptide substrate binding site 0 0 1 1 16,93,95,132,134,136,157,172,173,174,175 2 -271098 cd14196 STKc_DAPK2 5 activation loop (A-loop) 0 0 1 1 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271099 cd14197 STKc_DRAK1 1 ATP binding site 0 0 1 1 16,17,18,19,20,22,24,37,39,71,87,88,90,94,139,140,142,155,156 5 -271099 cd14197 STKc_DRAK1 2 active site 0 0 1 1 16,17,18,19,20,22,24,37,39,71,87,88,90,94,96,135,137,139,140,142,155,156,159,174,175,176,177 1 -271099 cd14197 STKc_DRAK1 3 polypeptide substrate binding site 0 0 1 1 20,94,96,135,137,139,159,174,175,176,177 2 -271099 cd14197 STKc_DRAK1 4 activation loop (A-loop) 0 0 1 1 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 0 -271100 cd14198 STKc_DRAK2 1 ATP binding site 0 1 1 1 15,16,17,18,19,21,23,36,38,70,86,87,89,93,138,139,141,154,155 5 -271100 cd14198 STKc_DRAK2 2 active site 0 0 1 1 15,16,17,18,19,21,23,36,38,70,86,87,89,93,95,134,136,138,139,141,154,155,158,173,174,175,176 1 -271100 cd14198 STKc_DRAK2 3 polypeptide substrate binding site 0 0 1 1 19,93,95,134,136,138,158,173,174,175,176 2 -271100 cd14198 STKc_DRAK2 4 activation loop (A-loop) 0 0 1 1 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -271101 cd14199 STKc_CaMKK2 1 ATP binding site 0 1 1 1 9,10,11,12,13,17,30,32,87,105,106,107,108,112,150,152,154,155,157,168 5 -271101 cd14199 STKc_CaMKK2 2 active site 0 0 1 1 9,10,11,12,13,17,30,32,87,105,106,107,108,112,114,150,152,154,155,157,168,171,187,188,189,190 1 -271101 cd14199 STKc_CaMKK2 3 polypeptide substrate binding site 0 0 1 1 13,112,114,150,152,154,171,187,188,189,190 2 -271101 cd14199 STKc_CaMKK2 4 activation loop (A-loop) 0 0 1 1 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 0 -271102 cd14200 STKc_CaMKK1 1 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,85,103,104,105,106,110,148,150,152,153,155,166 5 -271102 cd14200 STKc_CaMKK1 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,85,103,104,105,106,110,112,148,150,152,153,155,166,169,185,186,187,188 1 -271102 cd14200 STKc_CaMKK1 3 polypeptide substrate binding site 0 0 1 1 11,110,112,148,150,152,169,185,186,187,188 2 -271102 cd14200 STKc_CaMKK1 4 activation loop (A-loop) 0 0 1 1 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 0 -271103 cd14201 STKc_ULK2 1 active site 0 0 1 1 13,14,15,16,17,21,35,37,67,83,84,85,86,90,92,129,131,133,134,136,156,159,174,175,176,177 1 -271103 cd14201 STKc_ULK2 2 ATP binding site 0 0 1 1 13,14,15,16,17,21,35,37,67,83,84,85,86,90,129,131,133,134,136,156 5 -271103 cd14201 STKc_ULK2 3 polypeptide substrate binding site 0 0 1 1 17,90,92,129,131,133,159,174,175,176,177 2 -271103 cd14201 STKc_ULK2 4 activation loop (A-loop) 0 0 1 1 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 0 -271104 cd14202 STKc_ULK1 1 active site 0 0 1 1 9,10,11,12,13,17,31,33,63,79,80,81,82,86,88,125,127,129,130,132,152,155,170,171,172,173 1 -271104 cd14202 STKc_ULK1 2 ATP binding site 0 0 1 1 9,10,11,12,13,17,31,33,63,79,80,81,82,86,125,127,129,130,132,152 5 -271104 cd14202 STKc_ULK1 3 polypeptide substrate binding site 0 0 1 1 13,86,88,125,127,129,155,170,171,172,173 2 -271104 cd14202 STKc_ULK1 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -271105 cd14203 PTKc_Src_Fyn_like 1 ATP binding site 0 1 1 0 2,3,10,22,24,67,68,69,70,73,115,117,119,120,122,133 5 -271105 cd14203 PTKc_Src_Fyn_like 2 CSK binding interface 0 1 1 1 104,107,108,171,233,234,235,237,239,240,243,247 2 -271105 cd14203 PTKc_Src_Fyn_like 3 SH3/SH2 domain interface 0 1 1 0 50,53,55,68,94,98,246 2 -271105 cd14203 PTKc_Src_Fyn_like 4 activation loop (A-loop) 0 1 1 1 132,133,134,135,136,137,138,139,143,144,145,146,147,148,150,151,152,153,154,155,156 0 -271105 cd14203 PTKc_Src_Fyn_like 5 active site 0 0 1 1 2,4,5,6,10,22,24,67,68,69,70,73,115,119,120,122,133,150,151,152,153,154,163,197 1 -271105 cd14203 PTKc_Src_Fyn_like 6 polypeptide substrate binding site 0 0 1 1 115,119,150,151,152,153,154,163,197 2 -271106 cd14204 PTKc_Mer 1 ATP binding site 0 1 1 0 14,15,22,38,71,93,94,95,99,144,148,149,151,162 5 -271106 cd14204 PTKc_Mer 2 active site 0 0 1 1 14,15,16,17,18,22,38,40,71,93,94,95,99,144,148,149,151,162,180,181,182,183,184,193,227 1 -271106 cd14204 PTKc_Mer 3 polypeptide substrate binding site 0 0 1 1 144,148,180,181,182,183,184,193,227 2 -271106 cd14204 PTKc_Mer 4 activation loop (A-loop) 0 0 1 1 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 0 -271107 cd14205 PTKc_Jak2_rpt2 1 ATP binding site 0 1 1 0 11,12,13,19,36,67,85,86,87,88,89,91,136,137,139,149,150 5 -271107 cd14205 PTKc_Jak2_rpt2 2 active site 0 0 1 1 11,12,13,19,36,67,85,86,87,88,89,91,132,136,137,139,149,150,169,170,171,172,173,182,231 1 -271107 cd14205 PTKc_Jak2_rpt2 3 polypeptide substrate binding site 0 0 1 1 132,136,169,170,171,172,173,182,231 2 -271107 cd14205 PTKc_Jak2_rpt2 4 activation loop (A-loop) 0 0 1 1 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 0 -271108 cd14206 PTKc_Aatyk3 1 active site 0 0 1 1 4,5,6,7,8,12,27,29,75,76,77,78,81,82,131,135,136,138,149,167,168,169,170,171,180,221 1 -271108 cd14206 PTKc_Aatyk3 2 ATP binding site 0 0 1 1 4,5,7,8,12,27,29,75,76,77,78,81,82,135,136,138,149 5 -271108 cd14206 PTKc_Aatyk3 3 polypeptide substrate binding site 0 0 1 1 131,135,167,168,169,170,171,180,221 2 -271108 cd14206 PTKc_Aatyk3 4 activation loop (A-loop) 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 0 -271109 cd14207 PTKc_VEGFR1 1 ATP binding site 0 1 1 1 14,15,22,40,42,59,63,88,90,91,92,93,195,202,211,220,221,222,223 5 -271109 cd14207 PTKc_VEGFR1 2 active site 0 0 1 1 14,15,22,40,42,59,63,88,90,91,92,93,195,202,204,208,211,220,221,222,223,240,241,242,243,244,253,288 1 -271109 cd14207 PTKc_VEGFR1 3 polypeptide substrate binding site 0 0 1 1 204,208,240,241,242,243,244,253,288 2 -271109 cd14207 PTKc_VEGFR1 4 activation loop (A-loop) 0 0 1 1 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 0 -271110 cd14208 PTK_Jak3_rpt1 1 V617F mutation site 0 0 1 1 71 0 -271111 cd14209 STKc_PKA 1 active site 0 1 1 0 9,10,11,12,13,14,16,29,31,41,63,79,80,82,86,88,92,125,127,128,129,130,132,142,143,146,157,159,160,161,162,189,193,194,195,198,199,200,202,205,286,289 1 -271111 cd14209 STKc_PKA 2 ATP binding site 0 1 1 0 8,9,10,11,12,13,14,16,29,31,63,79,80,81,82,86,125,127,129,130,132,142,143,286 5 -271111 cd14209 STKc_PKA 3 polypeptide substrate binding site 0 1 1 0 10,12,13,41,42,43,86,88,92,125,127,128,129,146,157,158,159,160,161,162,189,193,194,195,198,199,200,202,205,206,289 2 -271111 cd14209 STKc_PKA 4 regulatory subunit interface 0 1 1 1 12,42,43,45,46,86,88,92,127,128,129,146,153,155,156,157,158,159,160,163,170,171,172,189,202,203,206,207,210,289 2 -271111 cd14209 STKc_PKA 5 activation loop (A-loop) 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 0 -271112 cd14210 PKc_DYRK 1 active site 0 1 1 1 20,21,22,23,24,28,41,43,57,77,93,94,95,96,99,101,102,140,142,144,145,147,160,163,172,174,175,176,177,179,216 1 -271112 cd14210 PKc_DYRK 2 ATP binding site 0 1 1 1 20,21,22,23,24,28,41,43,77,93,94,95,96,99,140,142,144,145,147,160 5 -271112 cd14210 PKc_DYRK 3 polypeptide substrate binding site 0 1 1 1 57,101,140,142,163,172,174,175,176,177,179,216 2 -271112 cd14210 PKc_DYRK 4 activation loop (A-loop) 0 0 1 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 0 -271113 cd14211 STKc_HIPK 1 active site 0 0 1 1 6,7,8,9,10,14,27,29,43,62,78,79,80,81,84,86,87,125,127,129,130,132,147,150,160,162,163,164,165,167,204 1 -271113 cd14211 STKc_HIPK 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,62,78,79,80,81,84,125,127,129,130,132,147 5 -271113 cd14211 STKc_HIPK 3 polypeptide substrate binding site 0 0 1 1 43,86,125,127,150,160,162,163,164,165,167,204 2 -271113 cd14211 STKc_HIPK 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 0 -271114 cd14212 PKc_YAK1 1 active site 0 0 1 1 6,7,8,9,10,14,27,29,43,64,80,81,82,83,86,88,89,127,129,131,132,134,147,150,159,161,162,163,164,166,203 1 -271114 cd14212 PKc_YAK1 2 ATP binding site 0 0 1 1 6,7,8,9,10,14,27,29,64,80,81,82,83,86,127,129,131,132,134,147 5 -271114 cd14212 PKc_YAK1 3 polypeptide substrate binding site 0 0 1 1 43,88,127,129,150,159,161,162,163,164,166,203 2 -271114 cd14212 PKc_YAK1 4 activation loop (A-loop) 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 0 -271115 cd14213 PKc_CLK1_4 1 ATP binding site 0 1 1 1 19,20,21,22,27,41,43,77,93,94,95,96,99,102,144,145,147,176,177 5 -271115 cd14213 PKc_CLK1_4 2 active site 0 0 1 1 19,20,21,22,23,27,41,43,57,77,93,94,95,96,99,101,102,140,142,144,145,147,177,180,189,191,192,193,194,196,233 1 -271115 cd14213 PKc_CLK1_4 3 polypeptide substrate binding site 0 0 1 1 57,101,140,142,180,189,191,192,193,194,196,233 2 -271115 cd14213 PKc_CLK1_4 4 activation loop (A-loop) 0 0 1 1 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 0 -271116 cd14214 PKc_CLK3 1 ATP binding site 0 1 1 1 20,21,22,23,28,42,44,78,94,95,96,97,100,103,145,146,148,177,178 5 -271116 cd14214 PKc_CLK3 2 active site 0 0 1 1 20,21,22,23,24,28,42,44,58,78,94,95,96,97,100,102,103,141,143,145,146,148,178,181,190,192,193,194,195,197,234 1 -271116 cd14214 PKc_CLK3 3 polypeptide substrate binding site 0 0 1 1 58,102,141,143,181,190,192,193,194,195,197,234 2 -271116 cd14214 PKc_CLK3 4 activation loop (A-loop) 0 0 1 1 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 0 -271117 cd14215 PKc_CLK2 1 ATP binding site 0 1 1 1 19,20,21,22,27,41,43,77,93,94,95,96,99,102,144,145,147,176,177 5 -271117 cd14215 PKc_CLK2 2 active site 0 0 1 1 19,20,21,22,23,27,41,43,57,77,93,94,95,96,99,101,102,140,142,144,145,147,177,180,189,191,192,193,194,196,233 1 -271117 cd14215 PKc_CLK2 3 polypeptide substrate binding site 0 0 1 1 57,101,140,142,180,189,191,192,193,194,196,233 2 -271117 cd14215 PKc_CLK2 4 activation loop (A-loop) 0 0 1 1 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 0 -271118 cd14216 STKc_SRPK1 1 ATP binding site 0 1 1 1 17,18,19,20,21,25,38,40,76,96,97,98,99,102,144,146,148,149,151,192 5 -271118 cd14216 STKc_SRPK1 2 active site 0 0 1 1 17,18,19,20,21,25,38,40,54,76,96,97,98,99,102,104,105,144,146,148,149,151,192,195,204,206,207,208,209,211,248 1 -271118 cd14216 STKc_SRPK1 3 polypeptide substrate binding site 0 0 1 1 54,104,144,146,195,204,206,207,208,209,211,248 2 -271118 cd14216 STKc_SRPK1 4 kinase-docking site 0 1 1 1 112,113,241,243,245,254,259,262,263,266,267,295,299,301,310,311 2 -271118 cd14216 STKc_SRPK1 5 activation loop (A-loop) 0 0 1 1 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 0 -271119 cd14217 STKc_SRPK2 1 ATP binding site 0 1 1 1 19,20,21,22,23,27,40,42,78,98,99,100,101,104,146,148,150,151,153,209 5 -271119 cd14217 STKc_SRPK2 2 active site 0 0 1 1 19,20,21,22,23,27,40,42,56,78,98,99,100,101,104,106,107,146,148,150,151,153,209,212,221,223,224,225,226,228,265 1 -271119 cd14217 STKc_SRPK2 3 polypeptide substrate binding site 0 0 1 1 56,106,146,148,212,221,223,224,225,226,228,265 2 -271119 cd14217 STKc_SRPK2 4 kinase-docking site 0 0 1 1 114,115,258,260,262,271,276,279,280,283,284,312,316,318,327,328 2 -271119 cd14217 STKc_SRPK2 5 activation loop (A-loop) 0 0 1 1 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 0 -271120 cd14218 STKc_SRPK3 1 active site 0 0 1 1 17,18,19,20,21,25,38,40,54,76,96,97,98,99,102,104,105,144,146,148,149,151,208,211,220,222,223,224,225,227,264 1 -271120 cd14218 STKc_SRPK3 2 ATP binding site 0 0 1 1 17,18,19,20,21,25,38,40,76,96,97,98,99,102,144,146,148,149,151,208 5 -271120 cd14218 STKc_SRPK3 3 polypeptide substrate binding site 0 0 1 1 54,104,144,146,211,220,222,223,224,225,227,264 2 -271120 cd14218 STKc_SRPK3 4 kinase-docking site 0 0 1 1 112,113,257,259,261,270,275,278,279,282,283,311,315,317,326,327 2 -271120 cd14218 STKc_SRPK3 5 activation loop (A-loop) 0 0 1 1 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 0 -271121 cd14219 STKc_BMPR1b 1 ATP binding site 0 1 1 1 12,13,14,15,16,17,18,20,31,33,81,82,84,88,138,139,141,152 5 -271121 cd14219 STKc_BMPR1b 2 active site 0 0 1 1 12,13,14,15,16,20,31,33,61,81,82,83,84,88,90,134,136,138,139,141,152,155,175,176,177,178 1 -271121 cd14219 STKc_BMPR1b 3 polypeptide substrate binding site 0 0 1 1 16,88,90,134,136,138,155,175,176,177,178 2 -271121 cd14219 STKc_BMPR1b 4 activation loop (A-loop) 0 0 1 1 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 0 -271121 cd14219 STKc_BMPR1b 5 FKBP12 binding site 0 1 1 1 43,44,47,48,51,66,68 2 -271122 cd14220 STKc_BMPR1a 1 ATP binding site 0 0 1 1 2,3,4,5,6,7,8,10,21,23,71,72,74,78,128,129,131,142 5 -271122 cd14220 STKc_BMPR1a 2 active site 0 0 1 1 2,3,4,5,6,10,21,23,51,71,72,73,74,78,80,124,126,128,129,131,142,145,165,166,167,168 1 -271122 cd14220 STKc_BMPR1a 3 polypeptide substrate binding site 0 0 1 1 6,78,80,124,126,128,145,165,166,167,168 2 -271122 cd14220 STKc_BMPR1a 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -271122 cd14220 STKc_BMPR1a 5 FKBP12 binding site 0 0 1 1 33,34,37,38,41,56,58 2 -271123 cd14221 STKc_LIMK1 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,39,52,68,69,70,71,74,75,77,115,117,119,120,122,133,136,166,167,168,169 1 -271123 cd14221 STKc_LIMK1 2 ATP binding site 0 1 1 1 0,1,2,3,4,8,21,23,39,52,68,69,70,71,74,75,115,117,119,120,122,133 5 -271123 cd14221 STKc_LIMK1 3 polypeptide substrate binding site 0 0 1 1 4,75,77,115,117,119,136,166,167,168,169 2 -271123 cd14221 STKc_LIMK1 4 activation loop (A-loop) 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142,143,144,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 0 -271124 cd14222 STKc_LIMK2 1 active site 0 0 1 1 0,1,2,3,4,8,21,23,52,68,69,70,71,75,77,114,116,118,119,121,132,135,171,172,173,174 1 -271124 cd14222 STKc_LIMK2 2 ATP binding site 0 0 1 1 0,1,2,3,4,8,21,23,52,68,69,70,71,75,114,116,118,119,121,132 5 -271124 cd14222 STKc_LIMK2 3 polypeptide substrate binding site 0 0 1 1 4,75,77,114,116,118,135,171,172,173,174 2 -271124 cd14222 STKc_LIMK2 4 activation loop (A-loop) 0 0 1 1 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -271125 cd14223 STKc_GRK2 1 ATP binding site 0 1 1 1 7,8,9,10,11,15,28,30,82,83,84,134,145 5 -271125 cd14223 STKc_GRK2 2 active site 0 0 1 1 7,8,9,10,11,15,28,30,65,81,82,84,88,90,127,129,131,132,134,144,145,148,160,161,162,163,164,165,193,199,202 1 -271125 cd14223 STKc_GRK2 3 polypeptide substrate binding site 0 0 1 1 11,88,90,127,129,131,148,160,161,162,163,164,165,193,199,202 2 -271125 cd14223 STKc_GRK2 4 activation loop (A-loop) 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 0 -271126 cd14224 PKc_DYRK2_3 1 ATP binding site 0 1 1 1 72,73,74,75,76,80,93,95,129,145,146,147,148,151,192,194,196,197,199,212 5 -271126 cd14224 PKc_DYRK2_3 2 active site 0 0 1 1 72,73,74,75,76,80,93,95,109,129,145,146,147,148,151,153,154,192,194,196,197,199,212,215,224,226,227,228,229,231,268 1 -271126 cd14224 PKc_DYRK2_3 3 polypeptide substrate binding site 0 0 1 1 109,153,192,194,215,224,226,227,228,229,231,268 2 -271126 cd14224 PKc_DYRK2_3 4 activation loop (A-loop) 0 0 1 1 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 0 -271127 cd14225 PKc_DYRK4 1 active site 0 0 1 1 50,51,52,53,54,58,71,73,87,107,123,124,125,126,129,131,132,170,172,174,175,177,190,193,202,204,205,206,207,209,246 1 -271127 cd14225 PKc_DYRK4 2 ATP binding site 0 0 1 1 50,51,52,53,54,58,71,73,107,123,124,125,126,129,170,172,174,175,177,190 5 -271127 cd14225 PKc_DYRK4 3 polypeptide substrate binding site 0 0 1 1 87,131,170,172,193,202,204,205,206,207,209,246 2 -271127 cd14225 PKc_DYRK4 4 activation loop (A-loop) 0 0 1 1 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 0 -271128 cd14226 PKc_DYRK1 1 active site 0 1 1 1 20,21,22,23,24,28,41,43,57,77,93,94,95,96,99,101,102,142,144,146,147,149,162,165,174,176,177,178,179,181,218 1 -271128 cd14226 PKc_DYRK1 2 ATP binding site 0 1 1 1 20,21,22,23,24,28,41,43,77,93,94,95,96,99,142,144,146,147,149,162 5 -271128 cd14226 PKc_DYRK1 3 polypeptide substrate binding site 0 1 1 1 57,101,142,144,165,174,176,177,178,179,181,218 2 -271128 cd14226 PKc_DYRK1 4 activation loop (A-loop) 0 0 1 1 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 0 -271129 cd14227 STKc_HIPK2 1 active site 0 0 1 1 22,23,24,25,26,30,43,45,59,78,94,95,96,97,100,102,103,141,143,145,146,148,163,166,176,178,179,180,181,183,220 1 -271129 cd14227 STKc_HIPK2 2 ATP binding site 0 0 1 1 22,23,24,25,26,30,43,45,78,94,95,96,97,100,141,143,145,146,148,163 5 -271129 cd14227 STKc_HIPK2 3 polypeptide substrate binding site 0 0 1 1 59,102,141,143,166,176,178,179,180,181,183,220 2 -271129 cd14227 STKc_HIPK2 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 0 -271130 cd14228 STKc_HIPK1 1 active site 0 0 1 1 22,23,24,25,26,30,43,45,59,78,94,95,96,97,100,102,103,141,143,145,146,148,163,166,176,178,179,180,181,183,220 1 -271130 cd14228 STKc_HIPK1 2 ATP binding site 0 0 1 1 22,23,24,25,26,30,43,45,78,94,95,96,97,100,141,143,145,146,148,163 5 -271130 cd14228 STKc_HIPK1 3 polypeptide substrate binding site 0 0 1 1 59,102,141,143,166,176,178,179,180,181,183,220 2 -271130 cd14228 STKc_HIPK1 4 activation loop (A-loop) 0 0 1 1 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 0 -271131 cd14229 STKc_HIPK3 1 active site 0 0 1 1 7,8,9,10,11,15,28,30,44,63,79,80,81,82,85,87,88,126,128,130,131,133,148,151,161,163,164,165,166,168,205 1 -271131 cd14229 STKc_HIPK3 2 ATP binding site 0 0 1 1 7,8,9,10,11,15,28,30,63,79,80,81,82,85,126,128,130,131,133,148 5 -271131 cd14229 STKc_HIPK3 3 polypeptide substrate binding site 0 0 1 1 44,87,126,128,151,161,163,164,165,166,168,205 2 -271131 cd14229 STKc_HIPK3 4 activation loop (A-loop) 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 0 -260088 cd14230 GAT_GGA 1 ubiquitin binding site 0 1 1 1 3,6,7,10,13,14,26,27,29,30,33,34,37 2 -260089 cd14231 GAT_GGA_like_plant 1 putative ubiquitin binding site 0 0 1 1 2,3,6,7,9,10,13,14,17,29,32,33 2 -260090 cd14232 GAT_LSB5 1 putative ubiquitin binding site 0 0 1 1 2,3,6,7,9,10,13,14,17,29,32,33 2 -260091 cd14233 GAT_TOM1_like 1 ubiquitin binding site 0 1 1 0 8,9,12,13,15,16,19,20,23,36,39,40 2 -260092 cd14234 GAT_GGA_meta 1 ubiquitin binding site 0 1 1 1 7,10,11,14,17,18,21,30,31,33,34,37,38,41 2 -260092 cd14234 GAT_GGA_meta 2 Rabaptin5 binding site 0 1 1 1 43,46,47,49,50,51,53,54,56,58,60,67,70,71,74 2 -260093 cd14235 GAT_GGA_fungi 1 putative ubiquitin binding site 0 0 1 1 11,14,15,18,21,22,33,34,36,37,40,41,44 2 -260094 cd14236 GAT_TOM1 1 ubiquitin binding site 0 1 1 0 11,12,15,16,18,19,22,23,26,39,42,43 2 -260095 cd14237 GAT_TM1L1 1 putative ubiquitin binding site 0 0 1 1 11,12,15,16,18,19,22,23,26,39,42,43 2 -260096 cd14238 GAT_TM1L2 1 putative ubiquitin binding site 0 0 1 1 11,12,15,16,18,19,22,23,26,39,42,43 2 -260097 cd14239 GAT_GGA1_GGA2 1 Rabaptin5 binding site 0 1 1 1 46,49,50,52,53,54,56,57,59,61,63,70,73,74,77 2 -260097 cd14239 GAT_GGA1_GGA2 2 putative ubiquitin binding site 0 0 1 1 10,13,14,17,20,21,24,33,34,36,37,40,41,44 2 -260098 cd14240 GAT_GGA3 1 ubiquitin binding site 0 1 1 0 7,10,11,14,17,18,21,30,31,33,34,37,38,41 2 -260098 cd14240 GAT_GGA3 2 putative Rabaptin5 binding site 0 0 1 1 43,46,47,49,50,51,53,54,56,58,60,67,70,71,74 2 -260131 cd14241 PAD 1 active site 0 1 1 0 7,9,15,27,29,34,37,60,64,68,81,83 1 -260131 cd14241 PAD 2 dimer interface 0 1 1 0 45,47,48,53,55,57,58,59,63,65,66,67,69,71,74,78,79,80,82,84,109,110,115,117,119,121,123 2 -260109 cd14243 PT-AcyF_like 1 putative active site 0 0 1 1 41,55,57,124,126,128,176,178,180,219,231,233,269,284,288 1 -271203 cd14244 GH_101_like 1 catalytic site DDE 0 1 1 58,168,195 1 -271203 cd14244 GH_101_like 2 active site 0 0 1 1 58,127,129,168,195,196,209,215 1 -271204 cd14245 DMP12 1 putative HU binding interface 0 0 1 1 8,14,17,20,53,70,72,79,85,106 2 -271205 cd14246 ADAM17_MPD 1 CxxC motif CxxC 0 1 1 19,20,21,22 0 -271205 cd14246 ADAM17_MPD 2 putative molecular switch CC 0 1 1 19,53 0 -271206 cd14247 Lmo2686_like 1 hexamer interface 0 1 0 1 2,4,5,7,9,13,14,15,16,17,18,19,20,21,22,25,28,29,30,31,32,33,34,41,42,43,44,45,46,47,48,56,73,74,75,76,77,78,79,80,81,83,84,85,86,101,104,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,134,135,137 2 -271207 cd14248 ESP 1 putative receptor binding site 0 0 1 1 5,9,22,24,25,43,47,51 2 -271208 cd14249 ESP1_like 1 putative receptor binding site 0 0 1 1 5,9,16,18,19,37,41,45 2 -271209 cd14250 ESP36_like 1 putative receptor binding site 0 0 1 1 8,12,25,27,28,46,50,54 2 -271210 cd14251 PL-6 1 substrate binding site 0 1 1 0 140,142,173,174,175,176,180,183,206,208,211,213,234,235,260 5 -271210 cd14251 PL-6 2 Ca binding site 0 1 1 0 174,206,208 4 -271210 cd14251 PL-6 3 catalytic site 0 0 1 1 213,234 1 -271211 cd14252 Dockerin_like 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 1,3,5,7,12,36,38,40,47 4 -271212 cd14253 Dockerin 1 Ca binding site Dxxx[DE][DENS]xx[DE] 1 1 1 1,3,5,7,12,35,37,39,46 4 -271212 cd14253 Dockerin 2 cohesin binding interface 1 0 1 1 1 17,20,43,44,45,47,48,52 2 -271212 cd14253 Dockerin 3 cohesin binding interface 2 0 1 1 1 9,10,11,13,14,15,17,18,51,54,55 2 -271213 cd14254 Dockerin_II 1 Ca binding site D[NDV][NDST]x[DE][DENS][NDT][DN]x[ED] 1 1 0 1,3,5,7,12,33,35,37,39,44 4 -271213 cd14254 Dockerin_II 2 cohesin binding interface 1 0 1 0 1 5,7,9,10,11,13,14,16,17,18,20,45,49,52,53 2 -271213 cd14254 Dockerin_II 3 cohesin binding interface 2 0 1 1 1 10,17,20,37,39,41,42,43,45,46,49,50,52 2 -271214 cd14255 Dockerin_III 1 Ca binding site D[DNTS][DN][LIMVT]D[DEA][KRNDA]xx[DT] 1 1 1 1,3,5,7,12,40,42,44,46,51 4 -271214 cd14255 Dockerin_III 2 cohesin binding interface 0 1 1 0 7,8,9,10,11,13,14,17,18,21,52,53,56,59,60,61 2 -271215 cd14256 Dockerin_I 1 Ca binding site D[NDT]xxD[DEN]xxD 1 1 1 2,4,6,8,13,36,38,40,47 4 -271215 cd14256 Dockerin_I 2 cohesin binding interface 1 0 1 1 1 18,21,44,45,46,48,49,53 2 -271215 cd14256 Dockerin_I 3 cohesin binding interface 2 0 1 1 1 10,11,12,14,15,16,18,19,22,52,55,56 2 -271221 cd14257 CttA_X 1 dockerin interface 0 1 1 1 16,18,19,20,22,23,27,30,81,82,86,112,113,114,115 2 -271222 cd14259 PUFD_like 1 RAWUL domain interface 0 1 1 0 1,2,4,5,6,7,8,10,11,12,14,16,25,27,29,69,70,71,73,74,92,103,105 2 -271223 cd14260 PUFD_like_1 1 RAWUL domain interface 0 1 1 0 3,5,6,7,8,9,10,11,12,13,14,15,17,19,28,29,30,32,73,74,76,79,101,112,114 2 -271224 cd14261 PUFD 1 RAWUL domain interface 0 1 1 0 6,7,9,10,11,12,13,15,16,17,19,21,30,32,74,75,76,78,79,81,82,99,110,112,114,115,116 2 -271354 cd14262 VirB5_like 1 3-helical coiled coil 0 0 1 0 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -271354 cd14262 VirB5_like 2 3-helical coiled coil 0 0 1 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -271354 cd14262 VirB5_like 3 3-helical coiled coil 0 0 1 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -260132 cd14263 DAGK_IM_like 1 Zn binding site 0 1 1 0 17,65 4 -260132 cd14263 DAGK_IM_like 2 trimer interface 0 1 1 0 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260132 cd14263 DAGK_IM_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -260133 cd14264 DAGK_IM 1 Zn binding site 0 1 1 0 20,68 4 -260133 cd14264 DAGK_IM 2 trimer interface 0 1 1 0 7,8,9,10,11,12,13,15,16,44,45,46,48,49,52,55,59,60,62,63,65,66,67,69,70,71,73,74,79,81,82,85,88,91,92,95,96,99,103,106,107 2 -260133 cd14264 DAGK_IM 3 putative active site 0 0 1 1 11,20,61,68,72,86,87 1 -260133 cd14264 DAGK_IM 4 putative active site 0 0 1 1 0,5,9,12,21,24,26,61,64,65,68,72,73,85,86,87,89,90,92 1 -260134 cd14265 UDPK_IM_like 1 Zn binding site 0 0 1 1 17,65 4 -260134 cd14265 UDPK_IM_like 2 trimer interface 0 0 1 1 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260134 cd14265 UDPK_IM_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -260135 cd14266 UDPK_IM_PAP2_like 1 Zn binding site 0 0 1 1 17,65 4 -260135 cd14266 UDPK_IM_PAP2_like 2 trimer interface 0 0 1 1 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260135 cd14266 UDPK_IM_PAP2_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -341312 cd14267 Rif1_CTD_C-II_like 1 homodimer interface 0 1 1 1 0,1,2,3,5,6,8,9,10,12,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,31,32,33,35,36,37,39,40,42,43,44 2 -341312 cd14267 Rif1_CTD_C-II_like 2 interdimer interface 0 1 1 1 30,33,34,37,38,40,41,44,45 2 -341312 cd14267 Rif1_CTD_C-II_like 3 tetramer interface 0 1 1 1 0,1,2,3,5,6,8,9,10,12,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45 2 -270461 cd14275 UBA_EF-Ts 1 polypeptide substrate binding site 0 1 1 0 2,3,6,7,13,14,17 2 -270471 cd14285 UBA_scEDE1_like 1 polypeptide substrate binding site 0 1 1 0 3,6,7,8,9,25,26,27,29,30,33 2 -270493 cd14308 UBA_Mud1_like 1 homodimer interface 0 1 1 0 5,8,9,27,28,31,32,35 2 -270496 cd14311 UBA_II_E2_UBC1 1 putative polypeptide substrate binding site 0 0 0 1 11,12,13,14,39,42 2 -270497 cd14312 UBA_II_E2_UBC27_like 1 putative polypeptide substrate binding site 0 0 0 1 8,9,10,11,28,31 2 -270498 cd14313 UBA_II_E2_UBE2K_like 1 polypeptide substrate binding site 0 1 0 0 8,9,10,11,28,31,35 2 -270499 cd14314 UBA_II_E2_pyUCE_like 1 putative polypeptide substrate binding site 0 0 0 1 9,10,11,12,29,32,36 2 -270500 cd14315 UBA1_UBAP1 1 polypeptide substrate binding site 0 1 1 0 1,2,3,7,30,31,34 2 -270501 cd14316 UBA2_UBAP1_like 1 polypeptide substrate binding site 0 1 1 0 19,22,23 2 -270505 cd14320 UBA_SQSTM 1 polypeptide substrate binding site 0 1 0 0 11,12,13,16,17,18,19,22,23,26,37,38,39 2 -270509 cd14324 UBA_Dsk2p_like 1 polypeptide substrate binding site 0 1 1 0 10,13,14,15,16,32,33,34,37,41 2 -270510 cd14325 UBA_RNF31 1 polypeptide substrate binding site 0 1 1 0 15,39,42,43,45,46,49,50,52,53,54 2 -270527 cd14342 UBA_TAP-C 1 peptide binding site 0 1 1 0 13,17,20,21,23,24,25,26,31,35,39,44,46 2 -270552 cd14369 CUE_VPS9_like 1 polypeptide substrate binding site 0 1 1 0 0,4,6,7,8,10,11,12,15,19,23,24,27,28,29,33,34,35 2 -270557 cd14374 CUE1_Cue2p_like 1 polypeptide substrate binding site 0 1 1 0 5,8,9,10,11,28,29,30,31,33,37,38,40,41 2 -270569 cd14386 UBA2_UBP5 1 polypeptide substrate binding site 0 1 0 0 25,30,31,34,35,38,39,42 2 -270570 cd14387 UBA2_UBP13 1 putative polypeptide substrate binding site 0 0 0 1 23,28,29,32,33 2 -270573 cd14390 UBA_II_E2_UBE2K 1 polypeptide substrate binding site 0 1 0 0 8,9,10,11,28,31,35,36 2 -270574 cd14391 UBA_II_E2_UBCD4 1 polypeptide substrate binding site 0 0 0 1 8,9,10,11,28,31,35 2 -270575 cd14392 UBA_Cbl-b 1 polypeptide substrate binding site 0 1 1 0 2,3,5,6,7,9,10,15,19 2 -270582 cd14399 UBA_PLICs 1 polypeptide substrate binding site 0 1 1 0 10,11,12,13,14,15,31,34,35,36,38,39 2 -270606 cd14423 CUE_UBR5 1 polypeptide substrate binding site 0 1 1 0 8,11,12,14,32,33,36,37,40,41 2 -259859 cd14435 SPO1_TF1_like 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,38,39,40,41,42,45,73,74,75,77,79,83,84 2 -259859 cd14435 SPO1_TF1_like 2 putative DNA binding site 0 0 1 1 1,2,39,41,42,43,45,47,51,53,54,72,74,76,77,78,79,80,81,84 3 -271226 cd14436 LepB 1 catalytic site 0 1 1 0 103 1 -271226 cd14436 LepB 2 active site 0 1 1 0 103 1 -271226 cd14436 LepB 3 heterodimer interface 0 1 1 0 74,75,91,94,103,108,112,116,127,131,134,135,138,141,142,147,148 2 -271228 cd14438 Hip_N 1 homodimer interface 0 1 1 0 2,3,5,6,7,9,10,13,14,20,24,27,28,30,31,32,34,35,36,37,38,39,40 2 -270205 cd14439 AlgX_N_like 1 active site DHS 0 1 1 147,149,240 1 -270206 cd14440 AlgX_N_like_3 1 active site DHS 0 1 1 146,148,251 1 -270207 cd14441 AlgX_N 1 active site DHS 0 1 1 135,137,229 1 -270208 cd14442 AlgJ_like 1 active site DHS 0 1 1 147,149,243 1 -270209 cd14443 AlgX_N_like_2 1 active site DHS 0 1 1 138,140,228 1 -270210 cd14444 AlgX_N_like_1 1 active site DHS 0 1 1 132,134,228 1 -271220 cd14445 RILP-like 1 homodimer interface 0 1 1 0 1,5,9,10,12,20,27,28,30,39,40,43,46,47,49,50,51,53,54,56,57,58,60,68,71,74,75,78,79,81,82,85,86 2 -271220 cd14445 RILP-like 2 MyoVa-GTD binding interface 0 1 1 0 15,17,18,19,21,22,25,28,29,41,44,45,48,49,51,52,55 2 -271219 cd14446 bt3222_like 1 dimer interface 0 0 0 1 19,22,23,26,27,28,49,53,60,68,91,92,93,94,95,96,100,101,102,103,105,106,150,151,152,153,154,155,157,159,161,164,169,173,175,176,177,180,182,183,184,188,193,194,195,196,197,214,221,236,237,238,260 2 -259990 cd14448 CuRO_2_BOD_CotA_like 1 Domain 3 interface 0 1 1 0 63,65,78,79,81,82,83,84,85,88,89,90,92,96,98,99,100,101,102,103 2 -259990 cd14448 CuRO_2_BOD_CotA_like 2 Domain 1 interface 0 1 1 0 1,2,3,4,8,35,38,39,40,41,45,54,56,58,82,83,84,100,102,137,139,140 2 -259991 cd14449 CuRO_1_2DMCO_NIR_like_2 1 trinuclear Cu binding site HHHH 1 1 1 54,56,108,110 4 -259991 cd14449 CuRO_1_2DMCO_NIR_like_2 2 trimer interface 0 1 1 0 54,56,57,58,59,60,61,62,69,70,105,108,110,114,118,121 2 -259991 cd14449 CuRO_1_2DMCO_NIR_like_2 3 Domain 2 interface 0 1 1 0 14,26,27,56,102,104,105,106,108,121,122,123,124,126,128,130,132,133 2 -259993 cd14451 CuRO_5_FV_like 1 Domain 6 interface 0 1 1 1 9,12,14,15,17,18,33,34,35,36,57,58,59,60,61,62,67,83,86,91,139,140,141,142,143,144,145,146,155,156,158,159,160,163,165,167 2 -259994 cd14452 CuRO_1_FVIII_like 1 metal binding site 0 1 1 0 97,102,112,115,116 4 -259994 cd14452 CuRO_1_FVIII_like 2 heterodimer interface 0 1 1 0 89,91,92,93,95,96,97,100,104,106,107,111,112,125,131,133,134,135,137,139,140,144,146,151,153,154,155,156 2 -259994 cd14452 CuRO_1_FVIII_like 3 Domain 2 interface 0 1 1 0 11,13,35,36,37,38,39,54,57,58,59,61,62,67,83,140,145,146,147,155,156,157,158,159,160,163,167 2 -259995 cd14453 CuRO_2_FV_like 1 heterodimer interface 0 1 1 0 58,59,60,61,75,85,87,88 2 -259995 cd14453 CuRO_2_FV_like 2 Domain 1 interface 0 1 1 0 3,4,6,9,10,11,12,14,15,16,25,31,32,33,37,39,41,52,54,56,57,58,75,87,89,90,91 2 -259997 cd14455 CuRO_6_FV_like 1 heterodimer interface 0 1 1 0 60,74,75,76,78,80,82,83,85,93,94,95,97,98,100,102,114,115,118,119,120,124,125,126,127,128,129 2 -271218 cd14456 Menin 1 MLL1 binding site 0 1 1 0 126,127,128,143,144,145,168,169,170,171,228,231,234,236,268,272,309,313,349,353 2 -271218 cd14456 Menin 2 LEDGF interaction interface 0 1 1 1 82,85,86,88,89,91,92,93,94,95 2 -271217 cd14458 DP_DD 1 heterodimer interface 0 1 1 1 0,4,7,8,10,11,14,15,17,18,21,22,25,28,29,32,35,36,38,39,41,42,43,46,56,57,58,59,60,61,62,63,64,65,66,67,69,80,81,82,83,84,85,86,87,88,90,92,94,100,101,103 2 -271217 cd14458 DP_DD 2 RbC binding site 0 1 1 1 24,27,28,31,63,72,74,89,90,91,92,93,94,95,96,103 2 -271217 cd14458 DP_DD 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 7 -270615 cd14472 mltA_B_like 1 ligand binding site 0 1 1 1 55,56,57,58,73,74,75,82,84,131 5 -270618 cd14485 mltA_like_LT_A 1 active site aspartates DDD 0 1 1 87,121,133 1 -270618 cd14485 mltA_like_LT_A 2 ligand binding site 0 1 1 1 85,121,122,123,146,147 5 -270619 cd14486 3D_domain 1 active site aspartates DDD 0 1 1 42,70,81 1 -270619 cd14486 3D_domain 2 ligand binding site 0 1 1 1 40,70,71,72,94,95 5 -271154 cd14488 CBM6-CBM35-CBM36_like_2 1 metal binding site [DEQN]x[DN] 0 1 1 5,7,126 4 -271156 cd14490 CBM6-CBM35-CBM36_like_1 1 metal binding site [EQ]E[DN] 0 1 1 9,11,151 4 -350344 cd14494 PTP_DSP_cys 1 active site CxxxR 1 1 0 62,63,66,67,68 1 -350344 cd14494 PTP_DSP_cys 2 catalytic site CR 0 1 1 62,68 1 -350345 cd14495 PTPLP-like 1 active site xxxxCxxxxxRx 1 1 0 2,91,163,164,192,193,194,195,196,197,198,247 1 -350345 cd14495 PTPLP-like 2 catalytic site CR 0 1 1 192,198 1 -350346 cd14496 PTP_paladin 1 active site CxxxxxR 0 1 1 136,137,138,139,140,141,142 1 -350346 cd14496 PTP_paladin 2 catalytic site CR 0 1 1 136,142 1 -350347 cd14497 PTP_PTEN-like 1 active site xxCxxxRx 1 1 1 69,70,101,102,103,106,107,149 1 -350347 cd14497 PTP_PTEN-like 2 catalytic site CR 0 1 1 101,107 1 -350348 cd14498 DSP 1 active site xxCxxxxxR 1 1 1 11,54,85,86,87,88,89,90,91 1 -350348 cd14498 DSP 2 catalytic site CR 0 1 1 85,91 1 -350349 cd14499 CDC14_C 1 active site CxxxxxR 0 1 1 115,116,117,118,119,120,121 1 -350349 cd14499 CDC14_C 2 catalytic site CR 0 1 1 115,121 1 -350350 cd14500 PTP-IVa 1 heterodimer interface 0 1 1 0 0,2,67,68,105,106,107,134,135,136,137,139,141 2 -350350 cd14500 PTP-IVa 2 active site CxxxxxR 0 1 1 101,102,103,104,105,106,107 1 -350350 cd14500 PTP-IVa 3 catalytic site CR 0 1 1 101,107 1 -350351 cd14501 PFA-DSP 1 active site CxxxxxR 1 1 1 100,101,102,103,104,105,106 1 -350351 cd14501 PFA-DSP 2 catalytic site CR 0 1 1 100,106 1 -350352 cd14502 RNA_5'-triphosphatase 1 active site CxxxxxRxx 1 1 1 117,118,119,120,121,122,123,124,157 1 -350352 cd14502 RNA_5'-triphosphatase 2 catalytic site CR 0 1 1 117,123 1 -350353 cd14503 PTP-bact 1 active site CxxxxR 1 1 1 90,91,92,93,94,95 1 -350353 cd14503 PTP-bact 2 catalytic site CR 0 1 1 90,95 1 -350354 cd14504 DUSP23 1 active site xCxxxxxR 1 1 1 59,88,89,90,91,92,93,94 1 -350354 cd14504 DUSP23 2 catalytic site CR 0 1 1 88,94 1 -350355 cd14505 CDKN3-like 1 active site xCxxxxxRx 1 1 0 81,112,113,114,115,116,117,118,152 1 -350355 cd14505 CDKN3-like 2 catalytic site CR 0 1 1 112,118 1 -350356 cd14506 PTP_PTPDC1 1 active site CxxxxxR 0 1 1 115,116,117,118,119,120,121 1 -350356 cd14506 PTP_PTPDC1 2 catalytic site CR 0 1 1 115,121 1 -350357 cd14507 PTP-MTM-like 1 active site xxxxxxCxxxxxRxx 1 1 1 21,57,65,68,90,91,153,154,155,156,157,158,159,195,199 1 -350357 cd14507 PTP-MTM-like 2 catalytic site CR 0 1 1 153,159 1 -350358 cd14508 PTP_tensin 1 active site xxCxxxRx 0 1 1 67,68,99,100,101,104,105,148 1 -350358 cd14508 PTP_tensin 2 catalytic site CR 0 1 1 99,105 1 -350359 cd14509 PTP_PTEN 1 active site xxCxxxRx 1 1 0 68,69,100,101,102,105,106,147 1 -350359 cd14509 PTP_PTEN 2 catalytic site CR 0 1 1 100,106 1 -350360 cd14510 PTP_VSP_TPTE 1 catalytic site CR 0 1 1 114,120 1 -350360 cd14510 PTP_VSP_TPTE 2 active site xxCxxxRx 0 1 1 82,83,114,115,116,119,120,166 1 -350362 cd14512 DSP_MKP 1 active site xxCxxxxxR 0 1 1 11,54,85,86,87,88,89,90,91 1 -350362 cd14512 DSP_MKP 2 catalytic site CR 0 1 1 85,91 1 -350363 cd14513 DSP_slingshot 1 catalytic site CR 0 1 1 84,90 1 -350363 cd14513 DSP_slingshot 2 active site xxCxxxxxR 1 1 1 11,53,84,85,86,87,88,89,90 1 -350364 cd14514 DUSP14-like 1 catalytic site CR 0 1 1 83,89 1 -350364 cd14514 DUSP14-like 2 active site xxCxxxxxR 1 1 1 11,52,83,84,85,86,87,88,89 1 -350365 cd14515 DUSP3-like 1 active site xxCxxxxxRxxxx 1 1 1 11,62,94,95,96,97,98,99,100,131,132,133,134 1 -350365 cd14515 DUSP3-like 2 catalytic site CR 0 1 1 94,100 1 -350366 cd14516 DSP_fungal_PPS1 1 catalytic site CR 0 1 1 122,128 1 -350366 cd14516 DSP_fungal_PPS1 2 active site xxCxxxxxR 0 1 1 17,90,122,123,124,125,126,127,128 1 -350368 cd14518 DSP_fungal_YVH1 1 active site xxCxxxxxR 1 1 1 11,54,96,97,98,99,100,101,102 1 -350368 cd14518 DSP_fungal_YVH1 2 catalytic site CR 0 1 1 96,102 1 -350369 cd14519 DSP_DUSP22_15 1 active site xxCxxxxxR 1 1 1 11,52,83,84,85,86,87,88,89 1 -350369 cd14519 DSP_DUSP22_15 2 catalytic site CR 0 1 1 83,89 1 -350370 cd14520 DSP_DUSP12 1 active site xxCxxxxxR 1 1 1 11,55,85,86,87,88,89,90,91 1 -350370 cd14520 DSP_DUSP12 2 catalytic site CR 1 1 1 85,91 1 -350371 cd14521 DSP_fungal_SDP1-like 1 active site xxxCxxxxxRx 1 1 1 16,71,99,100,101,102,103,104,105,106,107 1 -350371 cd14521 DSP_fungal_SDP1-like 2 catalytic site CR 0 1 1 100,106 1 -350373 cd14523 DSP_DUSP19 1 active site xxCxxxxxR 1 1 1 12,54,85,86,87,88,89,90,91 1 -350373 cd14523 DSP_DUSP19 2 catalytic site CR 0 1 1 85,91 1 -350374 cd14524 PTPMT1 1 active site xxxCxxxxxRx 1 1 0 0,13,65,95,96,97,98,99,100,101,135 1 -350374 cd14524 PTPMT1 2 catalytic site CR 0 1 1 95,101 1 -350375 cd14526 DSP_laforin-like 1 active site xxCxxxxxRx 1 1 0 69,70,100,101,102,103,104,105,106,137 1 -350375 cd14526 DSP_laforin-like 2 catalytic site CR 0 1 1 100,106 1 -350376 cd14527 DSP_bac 1 catalytic site CR 0 1 1 82,88 1 -350376 cd14527 DSP_bac 2 active site xxCxxxxxR 0 1 1 15,52,82,83,84,85,86,87,88 1 -350377 cd14528 PFA-DSP_Siw14 1 catalytic site CR 1 1 1 98,104 1 -350377 cd14528 PFA-DSP_Siw14 2 active site CxxxxxR 1 1 1 98,99,100,101,102,103,104 1 -350378 cd14529 TpbA-like 1 active site CxxxxxR 1 1 1 95,96,97,98,99,100,101 1 -350378 cd14529 TpbA-like 2 catalytic site CR 1 1 1 95,101 1 -350379 cd14531 PFA-DSP_Oca1 1 catalytic site CR 0 1 1 99,105 1 -350379 cd14531 PFA-DSP_Oca1 2 active site CxxxxxR 0 1 1 99,100,101,102,103,104,105 1 -350380 cd14532 PTP-MTMR6-like 1 active site xxxxxxCxxxxxRxx 0 1 1 75,110,118,121,143,144,205,206,207,208,209,210,211,247,251 1 -350380 cd14532 PTP-MTMR6-like 2 catalytic site CR 1 1 1 205,211 1 -350380 cd14532 PTP-MTMR6-like 3 dimer interface 0 1 1 1 158,163,164,165,166,168,169,173,178 2 -350381 cd14533 PTP-MTMR3-like 1 catalytic site CR 0 1 1 156,162 1 -350381 cd14533 PTP-MTMR3-like 2 active site xxxxxxCxxxxxRxx 0 1 1 22,61,69,72,94,95,156,157,158,159,160,161,162,198,202 1 -350383 cd14535 PTP-MTM1-like 1 active site xxxxxxCxxxxxRxx 1 1 0 21,57,65,68,90,91,152,153,154,155,156,157,158,194,198 1 -350383 cd14535 PTP-MTM1-like 2 catalytic site CR 0 1 1 152,158 1 -350386 cd14538 PTPc-N20_13 1 active site xxCxxxxxRx 1 1 1 116,117,146,147,148,149,150,151,152,190 1 -350386 cd14538 PTPc-N20_13 2 catalytic site CR 0 1 1 146,152 1 -350387 cd14539 PTP-N23 1 catalytic site CR 0 1 1 149,155 1 -350387 cd14539 PTP-N23 2 active site xxCxxxxxRx 0 1 1 114,115,149,150,151,152,153,154,155,194 1 -350388 cd14540 PTPc-N21_14 1 active site xxCxxxxxRx 1 1 1 117,118,158,159,160,161,162,163,164,202 1 -350388 cd14540 PTPc-N21_14 2 catalytic site CR 0 1 1 158,164 1 -350389 cd14541 PTPc-N3_4 1 active site xxCxxxxxRx 1 1 1 117,118,149,150,151,152,153,154,155,193 1 -350389 cd14541 PTPc-N3_4 2 catalytic site CR 0 1 1 149,155 1 -350390 cd14542 PTPc-N22_18_12 1 active site xxCxxxxxRxxx 1 1 0 112,113,144,145,146,147,148,149,150,188,191,192 1 -350390 cd14542 PTPc-N22_18_12 2 catalytic site CR 0 1 1 144,150 1 -350391 cd14543 PTPc-N9 1 active site xxxxxxxxCxxxxxRx 1 1 0 33,34,35,36,37,111,112,172,216,217,218,219,220,221,222,260 1 -350391 cd14543 PTPc-N9 2 catalytic site CR 0 1 1 216,222 1 -350392 cd14544 PTPc-N11_6 1 active site xxxxCxxxRx 1 1 1 5,6,8,9,185,186,187,189,191,232 1 -350392 cd14544 PTPc-N11_6 2 catalytic site CR 0 1 1 185,191 1 -350393 cd14545 PTPc-N1_2 1 active site xxxxxCxxxxxRx 1 1 1 5,6,7,8,141,174,175,176,177,178,179,180,220 1 -350393 cd14545 PTPc-N1_2 2 catalytic site CR 0 1 1 174,180 1 -350394 cd14546 R-PTP-N-N2 1 catalytic site CR 0 1 1 145,151 1 -350394 cd14546 R-PTP-N-N2 2 active site xxCxxxxxRx 0 1 1 113,114,145,146,147,148,149,150,151,190 1 -350395 cd14547 PTPc-KIM 1 active site xxxxxxxCxxxxxRx 1 1 1 1,2,3,4,5,135,136,169,170,171,172,173,174,175,213 1 -350395 cd14547 PTPc-KIM 2 catalytic site CR 0 1 1 169,175 1 -350396 cd14548 R3-PTPc 1 active site xxxxCxxxxxRx 1 1 1 1,3,135,136,167,168,169,170,171,172,173,211 1 -350396 cd14548 R3-PTPc 2 catalytic site CR 0 1 1 167,173 1 -350397 cd14549 R5-PTPc-1 1 catalytic site CR 0 1 1 149,155 1 -350397 cd14549 R5-PTPc-1 2 active site xxCxxxxxRx 0 1 1 117,118,149,150,151,152,153,154,155,193 1 -350399 cd14551 R-PTPc-A-E-1 1 catalytic site CR 0 1 1 147,153 1 -350399 cd14551 R-PTPc-A-E-1 2 active site xxCxxxxxRx 0 1 1 115,116,147,148,149,150,151,152,153,191 1 -350400 cd14552 R-PTPc-A-E-2 1 catalytic site CR 0 1 1 144,150 1 -350400 cd14552 R-PTPc-A-E-2 2 active site xxCxxxxxRx 0 1 1 111,112,144,145,146,147,148,149,150,188 1 -350401 cd14553 R-PTPc-LAR-1 1 catalytic site CR 0 1 1 175,181 1 -350401 cd14553 R-PTPc-LAR-1 2 active site xxCxxxxxRx 0 1 1 143,144,175,176,177,178,179,180,181,219 1 -350402 cd14554 R-PTP-LAR-2 1 putative active site xxCxxxxxRx 0 1 1 146,147,180,181,182,183,184,185,186,224 1 -350402 cd14554 R-PTP-LAR-2 2 catalytic site CR 0 1 1 180,186 1 -350403 cd14555 R-PTPc-typeIIb-1 1 active site xxCxxxxxRx 1 1 1 110,111,142,143,144,145,146,147,148,186 1 -350403 cd14555 R-PTPc-typeIIb-1 2 catalytic site CR 0 1 1 142,148 1 -350404 cd14556 R-PTPc-typeIIb-2 1 catalytic site CR 0 1 1 146,152 1 -350404 cd14556 R-PTPc-typeIIb-2 2 active site xxCxxxxxRx 0 1 1 112,113,146,147,148,149,150,151,152,190 1 -350405 cd14557 R-PTPc-C-1 1 catalytic site CR 0 1 1 146,152 1 -350405 cd14557 R-PTPc-C-1 2 active site xxCxxxxxRx 0 1 1 114,115,146,147,148,149,150,151,152,190 1 -350406 cd14558 R-PTP-C-2 1 putative active site xxCxxxxxRx 0 1 1 110,111,148,149,150,151,152,153,154,192 1 -350406 cd14558 R-PTP-C-2 2 catalytic site CR 0 1 1 148,154 1 -350407 cd14559 PTP_YopH-like 1 active site XXXXXXCxxxxxRx 1 1 1 2,3,4,5,127,128,174,175,176,177,178,179,180,216 1 -350407 cd14559 PTP_YopH-like 2 catalytic site CR 0 1 1 174,180 1 -350409 cd14561 PTP_tensin-3 1 catalytic site CR 0 1 1 99,105 1 -350409 cd14561 PTP_tensin-3 2 active site xxCxxxRx 0 1 1 67,68,99,100,101,104,105,148 1 -350413 cd14565 DSP_MKP_classI 1 active site xxCxxxxxR 1 1 1 11,53,84,85,86,87,88,89,90 1 -350413 cd14565 DSP_MKP_classI 2 catalytic site CR 0 1 1 84,90 1 -350414 cd14566 DSP_MKP_classII 1 active site xxCxxxxxR 1 1 1 11,55,86,87,88,89,90,91,92 1 -350414 cd14566 DSP_MKP_classII 2 catalytic site CR 0 1 1 86,92 1 -350415 cd14567 DSP_DUSP10 1 active site xxCxxxxxR 1 1 1 11,55,86,87,88,89,90,91,92 1 -350415 cd14567 DSP_DUSP10 2 catalytic site CR 0 1 1 86,92 1 -350416 cd14568 DSP_MKP_classIII 1 catalytic site CR 0 1 1 85,91 1 -350416 cd14568 DSP_MKP_classIII 2 active site xxCxxxxxR 1 1 1 11,54,85,86,87,88,89,90,91 1 -350417 cd14569 DSP_slingshot_2 1 active site xxCxxxxxR 1 1 1 14,56,87,88,89,90,91,92,93 1 -350417 cd14569 DSP_slingshot_2 2 catalytic site CR 0 1 1 87,93 1 -350418 cd14570 DSP_slingshot_1 1 catalytic site CR 0 1 1 87,93 1 -350418 cd14570 DSP_slingshot_1 2 active site xxCxxxxxR 0 1 1 14,56,87,88,89,90,91,92,93 1 -350419 cd14571 DSP_slingshot_3 1 catalytic site CR 0 1 1 87,93 1 -350419 cd14571 DSP_slingshot_3 2 active site xxCxxxxxR 0 1 1 14,56,87,88,89,90,91,92,93 1 -350420 cd14572 DUSP14 1 active site xxCxxxxxR 1 1 1 18,60,91,92,93,94,95,96,97 1 -350420 cd14572 DUSP14 2 catalytic site CR 0 1 1 91,97 1 -350421 cd14573 DUSP18_21 1 active site xxCxxxxxR 1 1 1 12,54,85,86,87,88,89,90,91 1 -350421 cd14573 DUSP18_21 2 catalytic site CR 0 1 1 85,91 1 -350422 cd14574 DUSP28 1 active site xxCxxxxxR 0 1 1 11,53,84,85,86,87,88,89,90 1 -350422 cd14574 DUSP28 2 catalytic site CR 0 1 1 84,90 1 -350423 cd14575 DUPD1 1 active site xxCxxxxxRxxxx 1 1 1 21,70,102,103,104,105,106,107,108,139,140,141,142 1 -350423 cd14575 DUPD1 2 catalytic site CR 0 1 1 102,108 1 -350425 cd14577 DUSP13B 1 active site 0 0 1 1 28,77,109,110,111,112,113,114,115,146,147,148,149 1 -350425 cd14577 DUSP13B 2 active site xxCxxxxxRxxxx 0 1 1 28,77,109,110,111,112,113,114,115,146,147,148,149 1 -350426 cd14578 DUSP26 1 active site xxCxxxxxRxxxx 1 1 1 11,58,90,91,92,93,94,95,96,127,128,129,130 1 -350426 cd14578 DUSP26 2 catalytic site CR 0 1 1 90,96 1 -350427 cd14579 DUSP3 1 active site xxCxxxxxRxxxx 1 1 0 31,82,114,115,116,117,118,119,120,151,152,153,154 1 -350427 cd14579 DUSP3 2 catalytic site CR 0 1 1 114,120 1 -350428 cd14580 DUSP13A 1 catalytic site CR 0 1 1 91,97 1 -350428 cd14580 DUSP13A 2 active site xxCxxxxxRxxxx 0 1 1 11,59,91,92,93,94,95,96,97,128,129,130,131 1 -350429 cd14581 DUSP22 1 active site xxCxxxxxR 1 1 1 14,55,86,87,88,89,90,91,92 1 -350429 cd14581 DUSP22 2 catalytic site CR 0 1 1 86,92 1 -350430 cd14582 DSP_DUSP15 1 active site xxCxxxxxR 1 1 1 15,56,87,88,89,90,91,92,93 1 -350430 cd14582 DSP_DUSP15 2 catalytic site CR 0 1 1 87,93 1 -350431 cd14583 PTP-MTMR7 1 catalytic site CR 0 1 1 206,212 1 -350431 cd14583 PTP-MTMR7 2 putative dimer interface 0 0 1 1 158,163,164,165,166,168,169,173,178 2 -350431 cd14583 PTP-MTMR7 3 active site xxxxxxCxxxxxRxx 0 1 1 75,110,118,121,143,144,206,207,208,209,210,211,212,248,252 1 -350432 cd14584 PTP-MTMR8 1 catalytic site CR 1 1 1 212,218 1 -350432 cd14584 PTP-MTMR8 2 dimer interface 0 1 1 0 164,169,170,171,172,174,175,179,184 2 -350432 cd14584 PTP-MTMR8 3 active site xxxxxxCxxxxxRxx 0 1 1 81,116,124,127,149,150,212,213,214,215,216,217,218,254,258 1 -350433 cd14585 PTP-MTMR6 1 catalytic site CR 1 1 1 206,212 1 -350433 cd14585 PTP-MTMR6 2 putative dimer interface 0 0 1 1 158,163,164,165,166,168,169,173,178 2 -350433 cd14585 PTP-MTMR6 3 active site xxxxxxCxxxxxRxx 0 1 1 75,110,118,121,143,144,206,207,208,209,210,211,212,248,252 1 -350434 cd14586 PTP-MTMR3 1 catalytic site CR 0 1 1 244,250 1 -350434 cd14586 PTP-MTMR3 2 active site xxxxxxCxxxxxRxx 0 1 1 68,149,157,160,182,183,244,245,246,247,248,249,250,286,290 1 -350435 cd14587 PTP-MTMR4 1 catalytic site CR 0 1 1 235,241 1 -350435 cd14587 PTP-MTMR4 2 active site xxxxxxCxxxxxRxx 0 1 1 63,140,148,151,173,174,235,236,237,238,239,240,241,277,281 1 -350438 cd14590 PTP-MTMR2 1 active site xxxxxxCxxxxxRxx 1 1 0 34,70,78,81,103,104,165,166,167,168,169,170,171,207,211 1 -350438 cd14590 PTP-MTMR2 2 catalytic site CR 0 1 1 165,171 1 -350439 cd14591 PTP-MTM1 1 active site xxxxxxCxxxxxRxx 0 1 1 21,57,65,68,90,91,152,153,154,155,156,157,158,194,198 1 -350439 cd14591 PTP-MTM1 2 catalytic site CR 0 1 1 152,158 1 -350440 cd14592 PTP-MTMR1 1 catalytic site CR 1 1 1 152,158 1 -350440 cd14592 PTP-MTMR1 2 active site xxxxxxCxxxxxRxx 0 1 1 21,57,65,68,90,91,152,153,154,155,156,157,158,194,198 1 -350444 cd14596 PTPc-N20 1 active site xxCxxxxxRx 0 1 1 115,116,145,146,147,148,149,150,151,189 1 -350444 cd14596 PTPc-N20 2 catalytic site CR 0 1 1 145,151 1 -350445 cd14597 PTPc-N13 1 active site xxCxxxxxRx 1 1 1 143,144,173,174,175,176,177,178,179,217 1 -350445 cd14597 PTPc-N13 2 catalytic site CR 0 1 1 173,179 1 -350446 cd14598 PTPc-N21 1 catalytic site CR 0 1 1 158,164 1 -350446 cd14598 PTPc-N21 2 active site xxCxxxxxRx 0 1 1 117,118,158,159,160,161,162,163,164,202 1 -350447 cd14599 PTPc-N14 1 active site xxCxxxxxRx 1 1 1 183,184,225,226,227,228,229,230,231,269 1 -350447 cd14599 PTPc-N14 2 catalytic site CR 0 1 1 225,231 1 -350448 cd14600 PTPc-N3 1 active site xxCxxxxxRx 1 1 1 180,181,211,212,213,214,215,216,217,255 1 -350448 cd14600 PTPc-N3 2 catalytic site CR 0 1 1 211,217 1 -350449 cd14601 PTPc-N4 1 active site xxCxxxxxRx 1 1 1 117,118,149,150,151,152,153,154,155,193 1 -350449 cd14601 PTPc-N4 2 catalytic site CR 0 1 1 149,155 1 -350450 cd14602 PTPc-N22 1 active site xxxxxCxxxxRxx 1 1 0 2,3,4,5,6,170,171,172,174,175,176,217,218 1 -350450 cd14602 PTPc-N22 2 catalytic site CR 0 1 1 170,176 1 -350451 cd14603 PTPc-N18 1 active site xxxxxxCxxxxxRxx 1 1 0 35,36,37,38,170,171,202,203,204,205,206,207,208,246,249 1 -350451 cd14603 PTPc-N18 2 catalytic site CR 0 1 1 202,208 1 -350452 cd14604 PTPc-N12 1 active site xxCxxxxxRxxx 1 1 1 197,198,229,230,231,232,233,234,235,273,276,277 1 -350452 cd14604 PTPc-N12 2 catalytic site CR 0 1 1 229,235 1 -350453 cd14605 PTPc-N11 1 active site xxxxCxxxRx 1 1 1 6,7,9,10,187,188,189,191,193,234 1 -350453 cd14605 PTPc-N11 2 catalytic site CR 0 1 1 187,193 1 -350454 cd14606 PTPc-N6 1 active site xxxxCxxxRx 1 1 0 22,23,25,26,200,201,202,204,206,247 1 -350454 cd14606 PTPc-N6 2 catalytic site CR 0 1 1 200,206 1 -350455 cd14607 PTPc-N2 1 active site xxxxxCxxxxxRx 0 1 1 29,30,31,32,165,198,199,200,201,202,203,204,244 1 -350455 cd14607 PTPc-N2 2 catalytic site CR 0 1 1 198,204 1 -350456 cd14608 PTPc-N1 1 active site xxxxxCxxxxxRx 1 1 0 30,31,32,33,166,199,200,201,202,203,204,205,246 1 -350456 cd14608 PTPc-N1 2 catalytic site CR 0 1 1 199,205 1 -350457 cd14609 R-PTP-N 1 catalytic site CR 0 1 1 216,222 1 -350457 cd14609 R-PTP-N 2 active site xxCxxxxxRx 0 1 1 184,185,216,217,218,219,220,221,222,261 1 -350458 cd14610 R-PTP-N2 1 catalytic site CR 0 1 1 218,224 1 -350458 cd14610 R-PTP-N2 2 active site xxCxxxxxRx 0 1 1 186,187,218,219,220,221,222,223,224,263 1 -350459 cd14611 R-PTPc-R 1 active site xxxxxxxCxxxxxRx 0 1 1 3,4,5,6,7,137,138,171,172,173,174,175,176,177,215 1 -350459 cd14611 R-PTPc-R 2 catalytic site CR 0 1 1 171,177 1 -350460 cd14612 PTPc-N7 1 active site xxxxxxxCxxxxxRx 1 1 0 19,20,21,22,23,153,154,187,188,189,190,191,192,193,231 1 -350460 cd14612 PTPc-N7 2 catalytic site CR 0 1 1 187,193 1 -350461 cd14613 PTPc-N5 1 active site xxxxxxxCxxxxxRx 1 1 1 29,30,31,32,33,163,164,198,199,200,201,202,203,204,242 1 -350461 cd14613 PTPc-N5 2 catalytic site CR 0 1 1 198,204 1 -350462 cd14614 R-PTPc-O 1 active site xxxxCxxxxxRx 1 1 1 17,19,151,152,185,186,187,188,189,190,191,229 1 -350462 cd14614 R-PTPc-O 2 catalytic site CR 0 1 1 185,191 1 -350463 cd14615 R-PTPc-J 1 active site xxxxCxxxxxRx 1 1 1 2,4,136,137,170,171,172,173,174,175,176,214 1 -350463 cd14615 R-PTPc-J 2 catalytic site CR 0 1 1 170,176 1 -350464 cd14616 R-PTPc-Q 1 active site xxCxxxxxRx 1 1 1 137,138,169,170,171,172,173,174,175,213 1 -350464 cd14616 R-PTPc-Q 2 catalytic site CR 0 1 1 169,175 1 -350465 cd14617 R-PTPc-B 1 active site xxxxCxxxxxRx 1 1 1 2,4,139,140,173,174,175,176,177,178,179,217 1 -350465 cd14617 R-PTPc-B 2 catalytic site CR 0 1 1 173,179 1 -350466 cd14618 R-PTPc-V 1 active site xxxxCxxxxxRx 0 1 1 2,4,138,139,172,173,174,175,176,177,178,216 1 -350466 cd14618 R-PTPc-V 2 catalytic site CR 0 1 1 172,178 1 -350467 cd14619 R-PTPc-H 1 active site xxxxCxxxxxRx 0 1 1 2,4,138,139,172,173,174,175,176,177,178,216 1 -350467 cd14619 R-PTPc-H 2 catalytic site CR 0 1 1 172,178 1 -350468 cd14620 R-PTPc-E-1 1 catalytic site CR 0 1 1 170,176 1 -350468 cd14620 R-PTPc-E-1 2 active site xxCxxxxxRx 0 1 1 138,139,170,171,172,173,174,175,176,214 1 -350469 cd14621 R-PTPc-A-1 1 catalytic site CR 0 1 1 228,234 1 -350469 cd14621 R-PTPc-A-1 2 active site xxCxxxxxRx 0 1 1 196,197,228,229,230,231,232,233,234,272 1 -350470 cd14622 R-PTPc-E-2 1 catalytic site CR 0 1 1 145,151 1 -350470 cd14622 R-PTPc-E-2 2 active site xxCxxxxxRx 0 1 1 112,113,145,146,147,148,149,150,151,189 1 -350471 cd14623 R-PTPc-A-2 1 catalytic site CR 0 1 1 169,175 1 -350471 cd14623 R-PTPc-A-2 2 active site xxCxxxxxRx 0 1 1 136,137,169,170,171,172,173,174,175,213 1 -350472 cd14624 R-PTPc-D-1 1 catalytic site CR 0 1 1 219,225 1 -350472 cd14624 R-PTPc-D-1 2 active site xxCxxxxxRx 0 1 1 187,188,219,220,221,222,223,224,225,263 1 -350473 cd14625 R-PTPc-S-1 1 catalytic site CR 0 1 1 219,225 1 -350473 cd14625 R-PTPc-S-1 2 active site xxCxxxxxRx 0 1 1 187,188,219,220,221,222,223,224,225,263 1 -350474 cd14626 R-PTPc-F-1 1 catalytic site CR 0 1 1 213,219 1 -350474 cd14626 R-PTPc-F-1 2 active site xxCxxxxxRx 0 1 1 181,182,213,214,215,216,217,218,219,257 1 -350475 cd14627 R-PTP-S-2 1 catalytic site CR 0 1 1 227,233 1 -350475 cd14627 R-PTP-S-2 2 putative active site xxCxxxxxRx 0 1 1 193,194,227,228,229,230,231,232,233,271 1 -350476 cd14628 R-PTP-D-2 1 catalytic site CR 0 1 1 226,232 1 -350476 cd14628 R-PTP-D-2 2 putative active site xxCxxxxxRx 0 1 1 192,193,226,227,228,229,230,231,232,270 1 -350477 cd14629 R-PTP-F-2 1 catalytic site CR 0 1 1 227,233 1 -350477 cd14629 R-PTP-F-2 2 putative active site xxCxxxxxRx 0 1 1 193,194,227,228,229,230,231,232,233,271 1 -350478 cd14630 R-PTPc-T-1 1 catalytic site CR 0 1 1 174,180 1 -350478 cd14630 R-PTPc-T-1 2 active site xxCxxxxxRx 0 1 1 142,143,174,175,176,177,178,179,180,218 1 -350479 cd14631 R-PTPc-K-1 1 active site xxCxxxxxRx 1 1 1 124,125,156,157,158,159,160,161,162,200 1 -350479 cd14631 R-PTPc-K-1 2 catalytic site CR 0 1 1 156,162 1 -350480 cd14632 R-PTPc-U-1 1 catalytic site CR 0 1 1 142,148 1 -350480 cd14632 R-PTPc-U-1 2 active site xxCxxxxxRx 0 1 1 110,111,142,143,144,145,146,147,148,186 1 -350481 cd14633 R-PTPc-M-1 1 catalytic site CR 0 1 1 211,217 1 -350481 cd14633 R-PTPc-M-1 2 active site xxCxxxxxRx 0 1 1 179,180,211,212,213,214,215,216,217,255 1 -350482 cd14634 R-PTPc-T-2 1 catalytic site CR 0 1 1 147,153 1 -350482 cd14634 R-PTPc-T-2 2 active site xxCxxxxxRx 0 1 1 111,112,147,148,149,150,151,152,153,191 1 -350483 cd14635 R-PTPc-M-2 1 catalytic site CR 0 1 1 147,153 1 -350483 cd14635 R-PTPc-M-2 2 active site xxCxxxxxRx 0 1 1 111,112,147,148,149,150,151,152,153,191 1 -350484 cd14636 R-PTPc-K-2 1 catalytic site CR 0 1 1 147,153 1 -350484 cd14636 R-PTPc-K-2 2 active site xxCxxxxxRx 0 1 1 111,112,147,148,149,150,151,152,153,191 1 -350485 cd14637 R-PTPc-U-2 1 catalytic site CR 0 1 1 148,154 1 -350485 cd14637 R-PTPc-U-2 2 active site xxCxxxxxRx 0 1 1 114,115,148,149,150,151,152,153,154,192 1 -350486 cd14638 DSP_DUSP1 1 catalytic site CR 0 1 1 84,90 1 -350486 cd14638 DSP_DUSP1 2 active site xxCxxxxxR 0 1 1 11,53,84,85,86,87,88,89,90 1 -350487 cd14639 DSP_DUSP5 1 active site xxCxxxxxR 1 1 1 11,53,84,85,86,87,88,89,90 1 -350487 cd14639 DSP_DUSP5 2 catalytic site CR 0 1 1 84,90 1 -350488 cd14640 DSP_DUSP4 1 active site xxCxxxxxR 1 1 1 11,53,84,85,86,87,88,89,90 1 -350488 cd14640 DSP_DUSP4 2 catalytic site CR 0 1 1 84,90 1 -350489 cd14641 DSP_DUSP2 1 active site xxCxxxxxR 0 1 1 14,56,87,88,89,90,91,92,93 1 -350489 cd14641 DSP_DUSP2 2 catalytic site CR 0 1 1 87,93 1 -350490 cd14642 DSP_DUSP6 1 active site xxCxxxxxR 1 1 1 13,57,88,89,90,91,92,93,94 1 -350490 cd14642 DSP_DUSP6 2 catalytic site CR 0 1 1 88,94 1 -350491 cd14643 DSP_DUSP7 1 active site xxCxxxxxR 1 1 1 16,60,91,92,93,94,95,96,97 1 -350491 cd14643 DSP_DUSP7 2 catalytic site CR 0 1 1 91,97 1 -350492 cd14644 DSP_DUSP9 1 active site xxCxxxxxR 1 1 1 13,57,88,89,90,91,92,93,94 1 -350492 cd14644 DSP_DUSP9 2 catalytic site CR 0 1 1 88,94 1 -350493 cd14645 DSP_DUSP8 1 catalytic site CR 0 1 1 96,102 1 -350493 cd14645 DSP_DUSP8 2 active site xxCxxxxxR 0 1 1 22,65,96,97,98,99,100,101,102 1 -350494 cd14646 DSP_DUSP16 1 active site xxCxxxxxR 1 1 1 13,56,87,88,89,90,91,92,93 1 -350494 cd14646 DSP_DUSP16 2 catalytic site CR 0 1 1 87,93 1 -271236 cd14651 ZIP_Put3 1 dimer interface 0 1 1 0 0,1,2,3,5,6,9,10,12,13,16,17,19,20,23,24,27,28,30 2 -271236 cd14651 ZIP_Put3 2 DNA binding site 0 1 1 1 0,3,6,7,10 3 -271236 cd14651 ZIP_Put3 3 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -271237 cd14653 ZIP_Gal4p-like 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271237 cd14653 ZIP_Gal4p-like 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271238 cd14654 ZIP_Gal4 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,16,18,20,21,22,28,31,39,40,43 2 -271238 cd14654 ZIP_Gal4 2 DNA binding site 0 1 1 1 0,1 3 -271238 cd14654 ZIP_Gal4 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 7 -271239 cd14655 ZIP_Hap1 1 dimer interface 0 1 1 0 8,11,12,14,15,18,19,21,22,25,26,28,29 2 -271239 cd14655 ZIP_Hap1 2 DNA binding site 0 1 1 1 1 3 -271239 cd14655 ZIP_Hap1 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -271139 cd14656 Imelysin-like_EfeO 1 Conserved motif GHE 0 1 1 83,85,88 0 -271140 cd14657 Imelysin_IrpA-like 1 Conserved motif GHE 0 1 1 130,132,135 0 -271141 cd14658 Imelysin-like_IrpA 1 Conserved motif GHE 0 1 1 108,110,113 0 -271141 cd14658 Imelysin-like_IrpA 2 putative metal binding site EDE 1 0 1 58,75,184 4 -271142 cd14659 Imelysin-like_IPPA 1 Conserved motif G[ED] 0 1 1 112,117 0 -271137 cd14660 E2F_DD 1 heterodimer interface 0 1 1 1 1,2,5,6,8,9,12,13,15,16,19,20,22,23,25,26,27,29,30,33,41,42,43,44,45,46,49,50,53,57,58,59,60,61,62,63,64,65,83,84,85,86,87,88,89,90,92,93,94,95,97,103 2 -271137 cd14660 E2F_DD 2 RbC binding site 0 1 1 1 67,68,69,70,71,72,73,74,75,76,78,79,84 2 -271137 cd14660 E2F_DD 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -271136 cd14661 Imelysin_like_PIBO 1 Conserved motif GHE 0 1 1 334,336,339 0 -271132 cd14662 STKc_SnRK2 1 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,58,74,75,76,77,81,124,125,127,139,140 5 -271132 cd14662 STKc_SnRK2 2 polypeptide substrate binding site 0 0 1 1 81,83,84,86,120,122,124,143,157,158,159,160,161,163,193,194,195,196 2 -271132 cd14662 STKc_SnRK2 3 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,81,83,84,86,119,120,122,124,125,127,139,140,143,157,158,159,160,161,163,193,194,195,196 1 -271132 cd14662 STKc_SnRK2 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161 0 -271133 cd14663 STKc_SnRK3 1 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,62,78,79,80,81,85,128,129,131,141,142 5 -271133 cd14663 STKc_SnRK3 2 polypeptide substrate binding site 0 0 1 1 85,87,88,90,124,126,128,145,162,163,164,165,166,168,198,199,200,201 2 -271133 cd14663 STKc_SnRK3 3 active site 0 0 1 1 7,8,9,10,11,15,28,30,62,78,79,80,81,85,87,88,90,123,124,126,128,129,131,141,142,145,162,163,164,165,166,168,198,199,200,201 1 -271133 cd14663 STKc_SnRK3 4 activation loop (A-loop) 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151,152,159,160,161,162,163,164,165,166 0 -271134 cd14664 STK_BAK1_like 1 ATP binding site 0 1 1 1 0,1,2,3,4,8,20,22,52,68,69,70,71,75,121,123,125,126,128,139 5 -271134 cd14664 STK_BAK1_like 2 active site 0 0 1 1 0,1,2,3,4,8,20,22,52,68,69,70,71,75,77,121,123,125,126,128,139,142,159,160,161,162 1 -271134 cd14664 STK_BAK1_like 3 polypeptide substrate binding site 0 0 1 1 4,75,77,121,123,125,142,159,160,161,162 2 -271134 cd14664 STK_BAK1_like 4 activation loop (A-loop) 0 0 1 1 138,139,140,141,142,143,144,145,155,156,157,158,159,160,161,162 0 -271135 cd14665 STKc_SnRK2-3 1 ATP binding site 0 0 1 1 7,8,9,10,15,28,30,58,74,75,76,77,81,124,125,127,139,140 5 -271135 cd14665 STKc_SnRK2-3 2 polypeptide substrate binding site 0 0 1 1 81,83,84,86,120,122,124,143,157,158,159,160,161,163,193,194,195,196 2 -271135 cd14665 STKc_SnRK2-3 3 active site 0 0 1 1 7,8,9,10,11,15,28,30,58,74,75,76,77,81,83,84,86,119,120,122,124,125,127,139,140,143,157,158,159,160,161,163,193,194,195,196 1 -271135 cd14665 STKc_SnRK2-3 4 activation loop (A-loop) 0 0 1 1 139,140,141,142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161 0 -271135 cd14665 STKc_SnRK2-3 5 HAB1-PP2C interface 0 1 1 1 11,12,13,14,118,119,124,150,152,153,154,155,156,157,158,162,163,167,168,170,204,205,206,207,210 2 -270620 cd14667 3D_containing_proteins 1 active site aspartates DDD 0 1 1 34,56,67 1 -270620 cd14667 3D_containing_proteins 2 putative ligand binding site 0 0 1 1 32,56,57,58,80,81 5 -270616 cd14668 mlta_B 1 ligand binding site 0 1 1 1 82,83,84,85,99,100,101,108,110,112,126,128,156 5 -270617 cd14669 mlta_related_B 1 putative ligand binding site 0 0 1 1 58,59,60,61,75,76,77,84,86,125 5 -270614 cd14670 BslA_like 1 hydrophobic cap [LIMV][LIMV][LIMV][LIMV][LIMV][LIMV][LIMV][LIMV] 1 1 0 31,32,34,79,81,84,113,115 0 -269821 cd14671 PAAR_like 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 10,39,42,69 4 -269821 cd14671 PAAR_like 2 PAAR motifs 0 0 1 1 0,1,2,3,29,30,31,32,59,60,61,62 0 -270203 cd14684 RanBD1_RanBP2-like 1 RAN binding site 0 1 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,94,98 2 -270204 cd14685 RanBD3_RanBP2-like 1 putative RAN binding site 0 0 1 1 14,16,17,18,23,24,25,26,27,28,45,47,49,50,52,54,55,56,59,61,65,69,79,81,94,98 2 -269834 cd14686 bZIP 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269834 cd14686 bZIP 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269834 cd14686 bZIP 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269835 cd14687 bZIP_ATF2 1 DNA binding site 0 1 1 0 1,5,7,8,9,12,14,15,16,18,19,20 3 -269835 cd14687 bZIP_ATF2 2 dimer interface 0 1 1 0 19,26,27,29,30,33,34,37,40,41,44,47,48,50,51,54,55,58,59 2 -269835 cd14687 bZIP_ATF2 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269836 cd14688 bZIP_YAP 1 DNA binding site 0 1 1 0 0,1,5,6,8,9,10,12,13,16,17,19,20 3 -269836 cd14688 bZIP_YAP 2 dimer interface 0 1 1 0 23,24,27,28,30,31,34,35,37,38,41,44,45,48,49,52,55,56,58,59 2 -269836 cd14688 bZIP_YAP 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -269837 cd14689 bZIP_CREB3 1 DNA binding site 0 0 1 1 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269837 cd14689 bZIP_CREB3 2 dimer interface 0 0 1 1 20,23,24,27,28,30,31,34,35,37,38,41,42,44,45,48,49,51,52 2 -269837 cd14689 bZIP_CREB3 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269838 cd14690 bZIP_CREB1 1 DNA binding site 0 1 1 0 1,5,7,8,9,11,12,13,15,16,18,19,20 3 -269838 cd14690 bZIP_CREB1 2 dimer interface 0 1 1 0 19,22,26,27,29,30,33,34,36,37,40,43,44,47,48,50,51 2 -269838 cd14690 bZIP_CREB1 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269839 cd14691 bZIP_XBP1 1 DNA binding site 0 0 1 1 6,7,9,10,11,13,14,15,16,17,18,20,21,22 3 -269839 cd14691 bZIP_XBP1 2 dimer interface 0 0 1 1 21,24,25,28,29,31,32,35,36,38,39,42,43,45,46,49,50,52,53 2 -269839 cd14691 bZIP_XBP1 3 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -269840 cd14692 bZIP_ATF4 1 DNA binding site 0 0 1 1 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269840 cd14692 bZIP_ATF4 2 dimer interface 0 1 1 0 24,27,30,31,34,35,37,38,41,42,44,45,48,51,52,55,56,58,59 2 -269840 cd14692 bZIP_ATF4 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -269841 cd14693 bZIP_CEBP 1 DNA binding site 0 1 1 0 4,5,7,8,10,11,12,14,15,16,17,18,19,21,23,25 3 -269841 cd14693 bZIP_CEBP 2 dimer interface 0 1 1 0 26,29,32,33,36,37,39,40,42,43,44,46,47,50,51,53,54,57,58 2 -269841 cd14693 bZIP_CEBP 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269842 cd14694 bZIP_NFIL3 1 DNA binding site 0 0 1 1 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269842 cd14694 bZIP_NFIL3 2 dimer interface 0 0 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269842 cd14694 bZIP_NFIL3 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269843 cd14695 bZIP_HLF 1 DNA binding site 0 0 1 1 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269843 cd14695 bZIP_HLF 2 dimer interface 0 0 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269843 cd14695 bZIP_HLF 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269844 cd14696 bZIP_Jun 1 DNA binding site 0 1 1 0 5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269844 cd14696 bZIP_Jun 2 dimer interface 0 1 1 0 19,20,22,23,25,26,27,29,30,33,34,36,37,39,40,41,43,44,47,48,51,54,57,58,59,60 2 -269844 cd14696 bZIP_Jun 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269845 cd14697 bZIP_Maf 1 DNA binding site 0 1 1 0 7,10,11,12,14,15,16,18,19,20,22,23,25,26 3 -269845 cd14697 bZIP_Maf 2 dimer interface 0 1 1 0 26,29,30,33,34,36,37,40,41,43,44,47,50,51,54,57,58,61,62 2 -269845 cd14697 bZIP_Maf 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -269846 cd14698 bZIP_CNC 1 DNA binding site 0 0 1 1 9,10,12,13,14,16,17,18,19,20,21,23,24,25 3 -269846 cd14698 bZIP_CNC 2 dimer interface 0 0 1 1 24,27,28,31,32,34,35,38,39,41,42,45,46,48,49,52,53,55,56 2 -269846 cd14698 bZIP_CNC 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -269847 cd14699 bZIP_Fos_like 1 DNA binding site 0 1 1 0 1,4,5,7,8,9,11,12,14,15,16,18,19,20 3 -269847 cd14699 bZIP_Fos_like 2 dimer interface 0 1 1 0 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269847 cd14699 bZIP_Fos_like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -269848 cd14700 bZIP_ATF6 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269848 cd14700 bZIP_ATF6 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269848 cd14700 bZIP_ATF6 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269849 cd14701 bZIP_BATF 1 DNA binding site 0 0 1 1 6,7,9,10,11,13,14,15,16,17,18,20,21,22 3 -269849 cd14701 bZIP_BATF 2 dimer interface 0 0 1 1 21,24,25,28,29,31,32,35,36,38,39,42,43,45,46,49,50,52,53 2 -269849 cd14701 bZIP_BATF 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -269850 cd14702 bZIP_plant_GBF1 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269850 cd14702 bZIP_plant_GBF1 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269850 cd14702 bZIP_plant_GBF1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269851 cd14703 bZIP_plant_RF2 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269851 cd14703 bZIP_plant_RF2 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269851 cd14703 bZIP_plant_RF2 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269852 cd14704 bZIP_HY5-like 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269852 cd14704 bZIP_HY5-like 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269852 cd14704 bZIP_HY5-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269853 cd14705 bZIP_Zip1 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269853 cd14705 bZIP_Zip1 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269853 cd14705 bZIP_Zip1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269854 cd14706 bZIP_CREBZF 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269854 cd14706 bZIP_CREBZF 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269854 cd14706 bZIP_CREBZF 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269855 cd14707 bZIP_plant_BZIP46 1 DNA binding site 0 0 1 1 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269855 cd14707 bZIP_plant_BZIP46 2 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269855 cd14707 bZIP_plant_BZIP46 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269856 cd14708 bZIP_HBP1b-like 1 DNA binding site 0 0 1 1 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269856 cd14708 bZIP_HBP1b-like 2 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269856 cd14708 bZIP_HBP1b-like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269857 cd14709 bZIP_CREBL2 1 DNA binding site 0 0 1 1 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269857 cd14709 bZIP_CREBL2 2 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269857 cd14709 bZIP_CREBL2 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269858 cd14710 bZIP_HAC1-like 1 DNA binding site 0 0 1 1 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269858 cd14710 bZIP_HAC1-like 2 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269858 cd14710 bZIP_HAC1-like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269859 cd14711 bZIP_CEBPA 1 DNA binding site 0 1 1 0 5,6,8,9,11,12,13,15,16,18,19,20,22,24 3 -269859 cd14711 bZIP_CEBPA 2 dimer interface 0 1 1 0 27,30,33,34,37,38,40,41,43,44,45,47,48,51,52,54,55,58,59 2 -269859 cd14711 bZIP_CEBPA 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269860 cd14712 bZIP_CEBPB 1 DNA binding site 0 1 1 0 5,10,14,16,17,18,20,21,22,23,24,25,27,29,31 3 -269860 cd14712 bZIP_CEBPB 2 dimer interface 0 1 1 0 32,35,38,39,42,43,45,46,48,49,50,52,53,56,57,59,60,63,64 2 -269860 cd14712 bZIP_CEBPB 3 coiled coil 0 0 0 0 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -269861 cd14713 bZIP_CEBPG 1 DNA binding site 0 0 1 1 5,6,8,9,11,12,13,15,16,17,18,19,20,22,26 3 -269861 cd14713 bZIP_CEBPG 2 dimer interface 0 0 1 1 27,30,33,34,37,38,40,41,43,44,45,47,48,51,52,54,55,58,59 2 -269861 cd14713 bZIP_CEBPG 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269862 cd14714 bZIP_CEBPD 1 DNA binding site 0 0 1 1 6,7,9,10,12,13,14,16,17,18,19,20,21,23,27 3 -269862 cd14714 bZIP_CEBPD 2 dimer interface 0 0 1 1 28,31,34,35,38,39,41,42,44,45,46,48,49,52,53,55,56,59,60 2 -269862 cd14714 bZIP_CEBPD 3 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -269863 cd14715 bZIP_CEBPE 1 DNA binding site 0 0 1 1 5,6,8,9,11,12,13,15,16,17,18,19,20,22,26 3 -269863 cd14715 bZIP_CEBPE 2 dimer interface 0 0 1 1 27,30,33,34,37,38,40,41,43,44,45,47,48,51,52,54,55,58,59 2 -269863 cd14715 bZIP_CEBPE 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269864 cd14716 bZIP_CEBP-like_1 1 DNA binding site 0 0 1 1 4,5,7,8,10,11,12,14,15,16,17,18,19,21,25 3 -269864 cd14716 bZIP_CEBP-like_1 2 putative dimer interface 0 0 1 1 26,29,32,33,36,37,39,40,42,43,44,46,47,50,51,53,54,57,58 2 -269864 cd14716 bZIP_CEBP-like_1 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269865 cd14717 bZIP_Maf_small 1 DNA binding site 0 1 1 0 10,11,12,14,15,16,18,19,22,23,25,26 3 -269865 cd14717 bZIP_Maf_small 2 dimer interface 0 1 1 0 26,29,30,33,34,36,37,40,41,43,44,47,50,51,54,57,58,61,62 2 -269865 cd14717 bZIP_Maf_small 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -269866 cd14718 bZIP_Maf_large 1 DNA binding site 0 1 1 0 7,10,11,12,14,15,16,18,19,20,22,23,25,26 3 -269866 cd14718 bZIP_Maf_large 2 dimer interface 0 1 1 0 26,33,36,37,40,41,43,44,47,48,50,51,54,57,58,61,62,64,65 2 -269866 cd14718 bZIP_Maf_large 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -269867 cd14719 bZIP_BACH 1 DNA binding site 0 0 1 1 12,13,15,16,17,19,20,21,22,23,24,26,27,28 3 -269867 cd14719 bZIP_BACH 2 dimer interface 0 0 1 1 27,30,31,34,35,37,38,41,42,44,45,48,49,51,52,55,56,58,59 2 -269867 cd14719 bZIP_BACH 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -269868 cd14720 bZIP_NFE2-like 1 DNA binding site 0 0 1 1 9,10,12,13,14,16,17,18,19,20,21,23,24,25 3 -269868 cd14720 bZIP_NFE2-like 2 dimer interface 0 0 1 1 24,27,28,31,32,34,35,38,39,41,42,45,46,48,49,52,53,55,56 2 -269868 cd14720 bZIP_NFE2-like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -269869 cd14721 bZIP_Fos 1 DNA binding site 0 1 1 0 1,4,5,7,8,9,11,12,14,15,16,18,19,20 3 -269869 cd14721 bZIP_Fos 2 dimer interface 0 1 1 0 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269869 cd14721 bZIP_Fos 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269870 cd14722 bZIP_ATF3 1 DNA binding site 0 0 1 1 1,4,5,7,8,9,11,12,14,15,16,18,19,20 3 -269870 cd14722 bZIP_ATF3 2 dimer interface 0 0 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269870 cd14722 bZIP_ATF3 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -271240 cd14723 ZIP_Ppr1 1 dimer interface 0 1 1 0 0,4,5,8,9,11,12,14,15,16,18,19,22,24 2 -271240 cd14723 ZIP_Ppr1 2 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 7 -271241 cd14724 ZIP_Gal4-like_1 1 dimer interface 0 0 1 1 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271241 cd14724 ZIP_Gal4-like_1 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271242 cd14725 ZIP_Gal4-like_2 1 dimer interface 0 0 1 1 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271242 cd14725 ZIP_Gal4-like_2 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350608 cd14726 TraB_PrgY-like 1 putative active site HER[ND]H 0 1 1 7,31,142,143,168 1 -350609 cd14727 ChanN-like 1 heme binding site 0 1 1 1 98,99,102,148,152,155 5 -350609 cd14727 ChanN-like 2 heme binding site 0 0 1 1 140,159 5 -350609 cd14727 ChanN-like 3 active site HEKDH 0 1 1 8,36,159,160,187 1 -350610 cd14728 Ere-like 1 putative active site 0 0 1 1 13,41,211,212,240 1 -350611 cd14729 RtxA-like 1 putative active site 0 0 1 0 7,34,123,124,146 1 -269830 cd14730 LodA_like 1 putative active site x[CS]DC[QEH] 1 1 0 350,414,463,467,470 1 -269831 cd14731 LodA_like_1 1 putative active site xHDCx 0 1 1 342,411,480,484,487 1 -269832 cd14732 LodA 1 active site x[CS]DC[QEH] 1 1 0 396,451,523,527,530 1 -269822 cd14737 PAAR_1 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 12,44,52,79 4 -269822 cd14737 PAAR_1 2 heterodimer interface 0 1 1 0 26,27,28,29,30,89,90,91,92,93 2 -269822 cd14737 PAAR_1 3 PAAR motifs 0 0 1 1 1,2,3,4,33,34,35,36,69,70,71,72 0 -269823 cd14738 PAAR_2 1 putative Zn binding site 0 0 1 1 20,49,79 4 -269823 cd14738 PAAR_2 2 PAAR motifs 0 0 1 1 0,1,2,3,39,40,41,42,69,70,71,72 0 -269824 cd14739 PAAR_3 1 putative Zn binding site 0 0 1 1 10,36,75 4 -269824 cd14739 PAAR_3 2 PAAR motifs 0 0 1 1 0,1,2,3,28,29,30,31,65,66,67,68 0 -269825 cd14740 PAAR_4 1 PAAR motifs 0 0 1 1 0,1,2,3,49,50,51,52,91,92,93,94 0 -269826 cd14741 PAAR_5 1 putative Zn binding site 0 0 1 1 11,39,50,78 4 -269826 cd14741 PAAR_5 2 PAAR motifs 0 0 1 1 1,2,3,4,30,31,32,33,68,69,70,71 0 -269827 cd14742 PAAR_RHS 1 putative Zn binding site 0 0 1 1 10,41,71 4 -269827 cd14742 PAAR_RHS 2 PAAR motifs 0 0 1 1 0,1,2,3,27,28,29,30,61,62,63,64 0 -269828 cd14743 PAAR_CT_1 1 putative Zn binding site 0 0 1 1 10,39,42,69 4 -269828 cd14743 PAAR_CT_1 2 PAAR motifs 0 0 1 1 0,1,2,3,32,33,34,35,59,60,61,62 0 -269829 cd14744 PAAR_CT_2 1 PAAR motifs 0 0 1 1 0,1,2,3,28,29,30,31,60,61,62,63 0 -270613 cd14745 GH66 1 chemical substrate binding site 0 1 1 0 36,37,39,57,60,87,89,163,164,204,225,302,303,304,305,307 5 -270613 cd14745 GH66 2 catalytic site 0 1 1 0 163,225 1 -270450 cd14747 PBP2_MalE 1 putative chemical substrate binding site 0 0 1 1 63,64,112,165,166,237,341,351,354 5 -270451 cd14748 PBP2_UgpB 1 chemical substrate binding site 0 1 1 0 39,62,63,112,114,238,272,273,311,356 5 -270452 cd14749 PBP2_XBP1_like 1 chemical substrate binding site 0 1 1 0 6,7,43,114,168,222,242,348,350 5 -270453 cd14750 PBP2_TMBP 1 chemical substrate binding site 0 1 1 0 66,67,114,168,169,241,349,359,362 5 -270454 cd14751 PBP2_GacH 1 chemical substrate binding site 0 1 1 0 63,64,111,160,161,232,336,346,349 5 -270212 cd14752 GH31_N 1 active site 0 1 0 0 44 1 -271288 cd14755 GS_BA2291-HK_like 1 homodimer interface 0 1 1 1 74,75,76,77,78,81,82,85,88,92,100,102,105,106,109,117,121,124,125,127,128,129,131 2 -271288 cd14755 GS_BA2291-HK_like 2 cofactor binding site 0 1 1 1 15,19,35,38,39,42,66,70,80,83,84,87 5 -271288 cd14755 GS_BA2291-HK_like 3 fatty acid binding site 0 1 1 1 15,19,35,38,39,42,66,70,84,87 5 -271288 cd14755 GS_BA2291-HK_like 4 chloride binding site 0 1 1 1 80,83 4 -271289 cd14756 TrHb 1 heme binding site 0 1 1 0 16,29,37,40,41,44,60,63,64,67,69,74,77,102,105,106,109 5 -271290 cd14757 GS_EcDosC-like_GGDEF 1 heme binding site 0 0 1 1 46,49,59,62,63,66,89,92,93,98,102,106,107,146 5 -271290 cd14757 GS_EcDosC-like_GGDEF 2 homodimer interface 0 0 1 1 7,8,9,39,100,101,102,104,105,108,111,132,133,136,137,140,144 2 -271291 cd14758 GS_GGDEF_1 1 heme binding site 0 0 1 1 46,49,59,62,63,66,86,89,90,95,99,103,104,143 5 -271291 cd14758 GS_GGDEF_1 2 homodimer interface 0 0 1 1 7,8,9,39,97,98,99,101,102,105,108,129,130,133,134,137,141 2 -271292 cd14759 GS_GGDEF_2 1 heme binding site 0 0 1 1 45,48,60,63,64,67,88,91,92,97,101,105,106,145 5 -271292 cd14759 GS_GGDEF_2 2 homodimer interface 0 0 1 1 6,7,8,38,99,100,101,103,104,107,110,131,132,135,136,139,143 2 -271293 cd14760 GS_PAS-GGDEF-EAL 1 heme binding site 0 0 1 1 45,48,58,61,62,65,85,88,89,94,98,102,103,143 5 -271293 cd14760 GS_PAS-GGDEF-EAL 2 homodimer interface 0 0 1 1 6,7,8,38,96,97,98,100,101,104,107,129,130,133,134,137,141 2 -271294 cd14761 GS_GsGCS_like 1 heme binding site 0 1 1 1 41,47,50,60,63,64,67,86,87,90,91,94,96,100,104,105,144 5 -271294 cd14761 GS_GsGCS_like 2 homodimer interface 0 1 1 0 8,9,10,40,98,99,100,102,103,106,109,110,113,114,117,118,126,127,130,131,134,135,138,141,142 2 -271295 cd14762 GS_STAS 1 heme binding site 0 0 1 1 45,48,57,60,61,64,84,87,88,93,97,101,102,138 5 -271295 cd14762 GS_STAS 2 homodimer interface 0 0 1 1 6,7,8,38,95,96,97,99,100,103,106,124,125,128,129,132,136 2 -271296 cd14763 SSDgbs_1 1 heme binding site 0 0 1 1 45,48,57,60,61,64,84,87,88,93,97,101,102,137 5 -271296 cd14763 SSDgbs_1 2 homodimer interface 0 0 1 1 6,7,8,38,95,96,97,99,100,103,106,123,124,127,128,131,135 2 -271297 cd14764 SSDgbs_2 1 heme binding site 0 0 1 1 45,48,57,60,61,64,84,87,88,93,97,101,102,140 5 -271297 cd14764 SSDgbs_2 2 homodimer interface 0 0 1 1 6,7,8,38,95,96,97,99,100,103,106,126,127,130,131,134,138 2 -271298 cd14765 Hb 1 heme binding site 0 1 1 0 25,32,35,36,38,39,51,54,55,58,59,76,79,80,84,86,90,91,94,129 5 -271298 cd14765 Hb 2 tetramer interface 0 1 1 1 24,27,28,34,85,87,96,100,103,104,110,111,112,115,116,119 2 -271299 cd14766 CeGLB25_like 1 heme binding site 0 0 1 1 32,33,54,57,58,61,82,85,86,92,96,97,100 5 -271300 cd14767 PE_beta_like 1 chromophore binding site 1 0 1 1 1 58,65,71,72,76,77,80,81,83,84,87,107,112,115,116,119,121,122,125,126 5 -271300 cd14767 PE_beta_like 2 chromophore binding site 2 0 1 1 1 34,35,37,38,39,141,142,143,152,153,154,155,157 5 -271300 cd14767 PE_beta_like 3 chromophore binding site 3 0 1 1 1 49,53,56,57,60,61,128,132,135,136,139,140,144,145,146,147 5 -271300 cd14767 PE_beta_like 4 heterodimer interface 0 1 1 1 4,8,15,16,17,18,19,20,23,27,37,41,44,86,90,91,93,94,97,107,108,110,115,145,146 2 -271301 cd14768 PC_PEC_beta 1 chromophore binding site 1 0 1 1 1 58,65,71,72,76,77,80,81,83,84,85,87,91,107,108,112,115,116,119,121,122,125,126,129 5 -271301 cd14768 PC_PEC_beta 2 chromophore binding site 2 0 1 1 1 31,34,35,37,38,39,41,42,141,142,143,144,147,148,149,150,151,152,156 5 -271301 cd14768 PC_PEC_beta 3 heterodimer interface 0 1 1 1 0,1,2,4,5,8,9,11,12,15,16,17,18,20,23,24,26,27,29,30,33,36,37,40,41,44,47,86,89,90,91,93,94,97,98,103,107 2 -271301 cd14768 PC_PEC_beta 4 hexamer interface 0 1 1 1 12,13,14,15,52,56,66,68,69,73,74,75,76,78,79,82 2 -271301 cd14768 PC_PEC_beta 5 dodecamer interface 0 1 1 1 38,41,44,45,47,48 2 -271302 cd14769 PE_alpha 1 chromophore binding site 1 0 1 1 1 59,65,71,72,77,80,81,83,84,87,88,107,108,115,116,119,121,122,125,126 5 -271302 cd14769 PE_alpha 2 chromophore binding site 2 0 1 1 1 42,43,46,49,50,53,136,137,138,141,142,143,151 5 -271302 cd14769 PE_alpha 3 heterodimer interface 0 1 1 1 0,2,4,5,8,9,11,12,15,16,17,18,23,26,27,30,33,36,37,40,41,44,47,86,89,90,93,94,97,98,107 2 -271303 cd14770 PC-PEC_alpha 1 chromophore binding site 0 1 1 1 58,59,65,72,73,74,78,79,80,82,83,85,86,87,89,90,93,109,110,114,117,121,123,127,128 5 -271303 cd14770 PC-PEC_alpha 2 heterodimer interface 0 1 1 1 0,2,4,5,7,8,9,11,12,15,16,17,18,22,23,26,27,29,30,33,34,37,40,41,44,47,88,91,92,93,95,96,99,100,109 2 -271303 cd14770 PC-PEC_alpha 3 hexamer interface 0 1 1 1 82,85,89,92,93,108,109,110,112,113,114,116,117,120,121 2 -271303 cd14770 PC-PEC_alpha 4 dodecamer interface 0 1 1 1 1,3,14,16,20,21,24,25,27,28,29,31,32,61,62,64,68,73,101,115,119,120,122,126,147,148,151,152,154,158,160,161 2 -271304 cd14771 TrHb2_Mt-trHbO-like_O 1 heme binding site 0 1 1 0 18,30,31,32,39,42,43,46,57,61,66,69,70,73,75,80,83,107,111,112,115 5 -271304 cd14771 TrHb2_Mt-trHbO-like_O 2 putative homodimer interface 0 1 1 0 67,68,71,72,73,74,117,118 2 -271305 cd14772 TrHb2_Bs-trHb-like_O 1 heme binding site 0 1 1 0 17,29,30,31,37,40,41,44,55,64,67,68,71,73,78,81,106,110,113 5 -271306 cd14773 TrHb2_PhHbO-like_O 1 heme binding site 0 1 1 0 32,33,34,40,43,44,47,58,67,70,71,74,76,80,81,84,109,112,113,116 5 -271307 cd14774 TrHb2_O_1 1 heme binding site 0 0 1 1 16,17,28,29,30,39,42,43,46,57,66,69,70,73,75,80,83,108,111,112,115 5 -271308 cd14775 TrHb2_O_2 1 heme binding site 0 0 1 1 16,17,29,30,31,37,40,41,44,56,65,68,69,72,74,79,82,109,112,113,116 5 -271309 cd14776 HmpEc-globin_like 1 heme binding site 0 1 1 1 27,37,40,41,51,54,55,82,83,93,96,125 5 -271309 cd14776 HmpEc-globin_like 2 FAD binding site 0 1 1 1 42,44,46,48 5 -271309 cd14776 HmpEc-globin_like 3 NAD- and FAD-binding domain interface 0 1 1 0 38,39,40,41,42,43,44,46,50,51,78,81,82,84,85,86,87 2 -271310 cd14777 Yhb1-globin_like 1 heme binding site 0 1 1 1 22,23,26,27,40,41,42,45,51,54,55,58,78,79,82,83,86,88,92,93,96,100,124,127,131 5 -271310 cd14777 Yhb1-globin_like 2 FAD binding site 0 1 1 1 42,44,47,48,82 5 -271310 cd14777 Yhb1-globin_like 3 NAD- and FAD-binding domain interface 0 1 1 0 35,38,39,40,42,50,57,58,61,75,77,78,81,82,84,85,86,87 2 -271311 cd14778 VtHb-like_SDgb 1 heme binding site 0 1 1 0 40,41,55,58,79,82,83,88,92,93,96,127,131 5 -271312 cd14779 FHP_Ae-globin_like 1 heme binding site 0 1 1 1 27,40,41,42,78,79,83,86,88,92,93,96,124,127,128,131 5 -271312 cd14779 FHP_Ae-globin_like 2 lipid binding site 0 1 1 1 26,27,41,54,55,57,58,61,79,96,100,120,127 5 -271312 cd14779 FHP_Ae-globin_like 3 FAD binding site 0 1 1 1 42,44,45 5 -271312 cd14779 FHP_Ae-globin_like 4 NAD- and FAD-binding domain interface 0 1 1 0 38,39,41,42,43,44,54,57,71,74,75,77,78,81,82,84,85,86,138,139 2 -271313 cd14780 HmpPa-globin_like 1 heme binding site 0 0 1 1 27,40,41,42,51,54,55,58,59,78,79,82,83,86,88,92,93,96,124,127,131 5 -271313 cd14780 HmpPa-globin_like 2 FAD binding site 0 0 1 1 42,47,48 5 -271313 cd14780 HmpPa-globin_like 3 NAD- and FAD-binding domain interface 0 0 1 1 38,39,40,41,42,50,57,75,77,78,81,82,84,85,86,87 2 -271314 cd14781 FHb-globin_1 1 heme binding site 0 0 1 1 27,39,40,41,50,53,54,57,58,77,78,81,82,85,87,91,92,95,123,126,130 5 -271314 cd14781 FHb-globin_1 2 FAD binding site 0 0 1 1 41,46,47 5 -271314 cd14781 FHb-globin_1 3 NAD- and FAD-binding domain interface 0 0 1 1 37,38,39,40,41,49,56,74,76,77,80,81,83,84,85,86 2 -271315 cd14782 FHb-globin_2 1 heme binding site 0 0 1 1 27,41,42,43,52,55,56,59,60,81,82,85,86,89,91,95,96,99,127,130,134 5 -271315 cd14782 FHb-globin_2 2 FAD binding site 0 0 1 1 43,48,49 5 -271315 cd14782 FHb-globin_2 3 NAD- and FAD-binding domain interface 0 0 1 1 39,40,41,42,43,51,58,78,80,81,84,85,87,88,89,90 2 -271316 cd14783 FHb-globin_3 1 heme binding site 0 0 1 1 27,40,41,42,51,54,55,58,59,78,79,82,83,86,88,92,93,96,124,127,131 5 -271316 cd14783 FHb-globin_3 2 FAD binding site 0 0 1 1 42,47,48 5 -271316 cd14783 FHb-globin_3 3 NAD- and FAD-binding domain interface 0 0 1 1 38,39,40,41,42,50,57,75,77,78,81,82,84,85,86,87 2 -271317 cd14784 class1_nsHb_like 1 heme binding site 0 1 1 0 40,41,42,43,56,60,63,64,67,68,90,91,94,95,98,100,104,105,108,136,139,140,143 5 -271317 cd14784 class1_nsHb_like 2 homodimer interface 0 1 1 0 32,33,34,35,36,102,103,104,106,107,110,114,129 2 -270211 cd14785 V-ATPase_C 1 3-helical coiled coil 0 0 1 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -270211 cd14785 V-ATPase_C 2 3-helical coiled coil 0 0 1 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -270211 cd14785 V-ATPase_C 3 3-helical coiled coil 0 0 1 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300 7 -341075 cd14786 STAT_CCD 1 coiled-coil motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -350614 cd14789 Tiki 1 putative active site HERNH 0 1 1 17,43,214,215,240 1 -269891 cd14790 GH_D 1 active site 0 1 1 0 39,40,103,105,106,149,164,168,230,232 1 -269891 cd14790 GH_D 2 catalytic site 0 0 1 1 105,168 1 -269892 cd14791 GH36 1 active site 0 1 1 0 8,39,83,148,152,196,215,218 1 -269892 cd14791 GH36 2 catalytic site DD 0 1 1 150,218 1 -269893 cd14792 GH27 1 active site 0 1 1 0 7,42,43,84,120,122,156,175,179 1 -269893 cd14792 GH27 2 catalytic site DD 0 1 1 122,179 1 -269817 cd14794 RNLA_N_1 1 dimer interface 0 1 1 0 6,7,28,34,35,36,54 2 -269818 cd14795 RNLA_N_2 1 dimer interface 0 1 1 0 28,31,32,34,35,36,46 2 -269819 cd14796 RNAse_HIII_N 1 nucleic acid substrate binding site 0 0 1 1 37,41,43,45,47,49 3 -269820 cd14797 DUF302 1 putative Zn binding site CC 1 0 0 53,74 4 -269820 cd14797 DUF302 2 dimer interface 0 1 1 0 2,29,31,33,37,40,47,49,55,59,62,66,67,69,70,71,72,73,75,77,79,89,90,91,95 2 -271353 cd14798 RX-CC_like 1 RanGAP2 interaction site 0 1 1 0 66,70,73,95,98,101,102,103,105,106,107,109,110 2 -269812 cd14803 RAP 1 3-helical coiled coil 0 0 1 0 5,6,7,8,9,10,11,12 7 -269812 cd14803 RAP 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -269812 cd14803 RAP 3 3-helical coiled coil 0 0 1 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -271351 cd14804 Tra_M 1 tetramer interface 0 1 1 0 1,2,3,4,5,6,7,9,12,14,15,35,38,39,41,42,43,44,45,46,48,49,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,104,108,109,111,112,115,116,119,120 2 -271351 cd14804 Tra_M 2 DNA binding site 0 1 1 0 2,4,5,6,7,9,12,33,34,35 3 -271348 cd14805 Translin-like 1 heterodimer interface 0 1 1 0 0,1,4,7,8,73,74,128,129,161,164,165,168,171,172 2 -269813 cd14806 RAP_D1 1 3-helical coiled coil 0 0 1 0 4,5,6,7,8,9,10,11,12,13 7 -269813 cd14806 RAP_D1 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -269813 cd14806 RAP_D1 3 3-helical coiled coil 0 0 1 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -269814 cd14807 RAP_D2 1 3-helical coiled coil 0 0 1 0 4,5,6,7,8,9,10,11,12,13 7 -269814 cd14807 RAP_D2 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 7 -269814 cd14807 RAP_D2 3 3-helical coiled coil 0 0 1 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -269815 cd14808 RAP_D3 1 polypeptide substrate binding site 0 1 1 1 34,35,38,41,42,48,51,52,65,72,76 2 -269815 cd14808 RAP_D3 2 3-helical coiled coil 0 0 1 0 7,8,9,10,11,12,13,14 7 -269815 cd14808 RAP_D3 3 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -269815 cd14808 RAP_D3 4 3-helical coiled coil 0 0 1 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 7 -269871 cd14809 bZIP_AUREO-like 1 DNA binding site 0 1 1 0 4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269871 cd14809 bZIP_AUREO-like 2 dimer interface 0 1 1 1 18,19,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,50 2 -269871 cd14809 bZIP_AUREO-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269872 cd14810 bZIP_u1 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269872 cd14810 bZIP_u1 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269872 cd14810 bZIP_u1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269873 cd14811 bZIP_u2 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269873 cd14811 bZIP_u2 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269873 cd14811 bZIP_u2 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269874 cd14812 bZIP_u3 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269874 cd14812 bZIP_u3 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269874 cd14812 bZIP_u3 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269875 cd14813 bZIP_BmCbz-like 1 DNA binding site 0 0 1 1 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269875 cd14813 bZIP_BmCbz-like 2 dimer interface 0 0 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269875 cd14813 bZIP_BmCbz-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -350615 cd14814 Peptidase_M15 1 active site RHD[ED]H 1 1 1 27,57,64,103,106 1 -350615 cd14814 Peptidase_M15 2 Zn binding site HDH 1 1 1 57,64,106 4 -271352 cd14815 BA_2398_like 1 tetramer interface 0 1 0 0 32,33,68,70,71,72,73,74 2 -350616 cd14817 D-Ala-D-Ala_dipeptidase_VanX 1 active site RHD[ED]H 0 1 1 68,113,120,178,181 1 -350616 cd14817 D-Ala-D-Ala_dipeptidase_VanX 2 Zn binding site HDH 1 1 1 113,120,181 4 -271349 cd14819 Translin 1 heterodimer interface 0 1 1 0 0,1,3,4,8,12,15,73,74,75,102,104,105,126,127,129,130,133,165,168,169,170,172,173,175,176 2 -271350 cd14820 TRAX 1 heterodimer interface 0 1 1 0 0,3,4,6,7,10,11,67,68,109,149,152,153 2 -271350 cd14820 TRAX 2 RNA binding site 0 1 1 0 22,25,29,79,119,169,176 3 -341428 cd14824 Longin 1 lipid binding site 0 1 1 0 0,29,32,51,54,56 5 -341428 cd14824 Longin 2 Sec22 interface 0 1 1 0 12,15,17,30,34,112,116,119 2 -341428 cd14824 Longin 3 VARP interface 0 1 1 0 50,53,73,77 2 -341429 cd14825 TRAPPC2_sedlin 1 TRAPPC5 interface 0 1 1 0 49,50,72,73,74,76,99,103,107 2 -341429 cd14825 TRAPPC2_sedlin 2 TRAPPC3 interface 0 1 1 0 104,107,108,109,110 2 -341430 cd14826 SR_alpha_SRX 1 heterodimer interface 0 1 1 0 5,7,8,9,10,11,14,27,30,31,34,35,62 2 -341430 cd14826 SR_alpha_SRX 2 RNA binding site 0 1 1 0 35,36,37,45,46,47 3 -341431 cd14827 AP_sigma 1 dileucine motif interface 0 1 1 1 6,7,12,59,60,61,62,85,86,89,94,95,96,97,98 2 -341431 cd14827 AP_sigma 2 AP large SU interface 0 1 1 0 11,12,13,14,16,17,42,43,44,45,46,73,74,75,76,78,79,80,83,94,101,102,103,104,108,109,112,113,120,121,122,123,124,125,126,127 2 -341431 cd14827 AP_sigma 3 AP-2 mu interface 0 1 1 0 0,18,20,23,24,27,28,48,50,51 2 -341432 cd14828 AP_Mu_N 1 AP beta interface 0 1 1 0 15,18,43,44,52,54,56,68,69,70,72,73,74,77,81,109,110,113,114,116,117,118,120,121,122,123,132,134,135 2 -341433 cd14829 Zeta-COP 1 COPG1 heterodimer interface 0 1 1 0 11,13,14,15,24,28,44,45,47,69,71,72,73,74,75,78,101,104,105,108,109,112,113,116,117,119,120,121,122,123,131 2 -341435 cd14831 AP1_sigma 1 dileucine motif interface 0 0 1 1 6,7,12,59,60,61,62,85,86,89,94,95,96,97,98 2 -341435 cd14831 AP1_sigma 2 AP-1 gamma interface 0 1 1 0 11,12,13,14,16,17,42,43,44,45,46,72,73,74,75,76,78,79,80,83,94,101,102,103,104,108,109,112,113,116,117,118,119,120,121,122,123,125,126,127,134,135,136,138,139,142 2 -341435 cd14831 AP1_sigma 3 AP-1 mu interface 0 1 1 0 23,27,31,34,48,49,50,51 2 -341436 cd14832 AP4_sigma 1 dileucine motif interface 0 0 1 1 6,7,12,59,60,61,62,85,86,89,94,95,96,97,98 2 -341436 cd14832 AP4_sigma 2 putative AP-4 epsilon interface 0 0 1 1 11,12,13,14,16,17,42,43,44,45,46,71,72,73,74,75,76,78,79,80,83,94,101,102,103,104,108,109,112,113,116,117,118,119,120,121,122,123,124,125,126,127 2 -341436 cd14832 AP4_sigma 3 putative AP-4 mu interface 0 0 1 1 23,27,31,34,48,49,50,51 2 -341437 cd14833 AP2_sigma 1 dileucine motif interface 0 1 1 1 8,9,14,61,62,63,64,87,88,91,96,97,98,99,100 2 -341437 cd14833 AP2_sigma 2 AP-2 alpha interface 0 1 1 0 0,17,19,44,45,46,47,48,59,73,74,75,76,77,78,80,81,82,84,85,88,100,103,104,106,107,110,111,114,118,119,121,122,123,124,125,126,127,128,129,136,137,140 2 -341437 cd14833 AP2_sigma 3 AP-2 mu interface 0 1 1 0 2,20,22,25,26,29,30,50,52,53 2 -341438 cd14834 AP3_sigma 1 dileucine motif interface 0 0 1 1 8,9,14,67,68,69,70,93,94,97,102,103,104,105,106 2 -341438 cd14834 AP3_sigma 2 putative AP-3 delta interface 0 0 1 1 13,14,15,16,18,19,44,45,46,47,48,79,80,81,82,83,84,86,87,88,91,102,109,110,111,116,117,120,121,124,125,126,127,128,129,130,131,132,133,134,135 2 -341438 cd14834 AP3_sigma 3 putative AP-3 mu interface 0 0 1 1 25,29,33,36,50,51,52,59 2 -341439 cd14835 AP1_Mu_N 1 AP-1 beta interface 0 1 1 0 15,18,41,42,43,44,52,54,56,68,69,70,71,72,73,74,77,81,107,108,111,112,114,115,116,118,119,120,121,130,132,133 2 -341440 cd14836 AP2_Mu_N 1 AP2 beta interface 0 1 1 0 0,17,18,20,21,44,45,46,47,48,51,53,55,57,59,70,71,72,73,74,75,76,78,79,80,82,83,104,108,109,112,113,116,117,119,120,121,122,124,130,131,133,134,135 2 -341441 cd14837 AP3_Mu_N 1 putative AP-3 beta interface 0 0 1 1 15,18,43,44,52,54,56,68,69,70,72,73,74,77,81,107,108,111,112,114,115,116,118,119,120,121,130,132,133 2 -341442 cd14838 AP4_Mu_N 1 putative AP-4 beta interface 0 0 1 1 15,18,41,42,50,52,54,66,67,68,70,71,72,75,79,105,106,109,110,112,113,114,116,117,118,119,128,130,131 2 -350617 cd14840 D-Ala-D-Ala_dipeptidase_Aad 1 putative active site RHD[ED]H 0 1 1 51,78,85,142,145 1 -350617 cd14840 D-Ala-D-Ala_dipeptidase_Aad 2 putative Zn binding site HDH 0 1 1 78,85,145 4 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 1 active site RHD[ED]H 0 1 1 28,77,84,147,150 1 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 2 Zn binding site HDH 0 1 1 77,84,150 4 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 3 active site RHD[ED]H 0 1 1 28,77,84,147,150 1 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 4 Zn binding site HDH 0 1 1 77,84,150 4 -350619 cd14844 Zn-DD-carboxypeptidase_like 1 active site RHD[ED]H 0 1 1 37,58,65,95,98 1 -350619 cd14844 Zn-DD-carboxypeptidase_like 2 Zn binding site HDH 1 1 0 58,65,98 4 -350620 cd14845 L-Ala-D-Glu_peptidase_like 1 active site RHD[ED]H 0 1 1 36,66,73,118,121 1 -350620 cd14845 L-Ala-D-Glu_peptidase_like 2 Zn binding site HDH 1 1 1 66,73,121 4 -350621 cd14846 Peptidase_M15_like 1 active site RHD[ED]H 0 1 1 29,63,70,96,99 1 -350621 cd14846 Peptidase_M15_like 2 Zn binding site HDH 0 1 1 63,70,99 4 -350622 cd14847 DD-carboxypeptidase_like 1 active site RHD[ED]H 0 1 1 29,82,89,145,148 1 -350622 cd14847 DD-carboxypeptidase_like 2 Zn binding site HDH 0 1 1 82,89,148 4 -350623 cd14849 DD-dipeptidase_VanXYc 1 active site RHD[ED]H 1 1 1 28,61,68,118,121 1 -350623 cd14849 DD-dipeptidase_VanXYc 2 Zn binding site HDH 1 1 1 61,68,121 4 -350624 cd14852 LD-carboxypeptidase 1 active site RHD[ED]H 1 1 1 58,91,98,146,149 1 -350624 cd14852 LD-carboxypeptidase 2 Zn binding site HDH 1 1 0 91,98,149 4 -341445 cd14855 TRAPPC1_MUM2 1 TRAPPC4 interface 0 1 1 0 0,32,35,36,39,42,43,46,47,49,50,51,52,60,61,62,63,64,65,66,67,86 2 -341445 cd14855 TRAPPC1_MUM2 2 TRAPPC3 interface 0 1 1 0 7,8,9,37,44,72,73,75,76,78,96,99,100,104,107,108,109,110,111 2 -341445 cd14855 TRAPPC1_MUM2 3 TRAPPC6 interface 0 1 1 0 105,106,109,110,111,120,121,122,123 2 -341445 cd14855 TRAPPC1_MUM2 4 GTPase interface 0 1 1 0 34,38,42 2 -341446 cd14856 TRAPPC4_synbindin 1 TRAPPC1 interface 0 1 1 0 0,3,31,32,35,36,39,42,43,44,45,46,47,48,49,53,54,55,56,57,58,59,60,63,65,79 2 -341446 cd14856 TRAPPC4_synbindin 2 TRAPPC5 interface 0 1 1 0 100,103,104,105,106,118 2 -341446 cd14856 TRAPPC4_synbindin 3 TRAPPC3 interface 0 1 1 0 7,53,69,70,71,72,73,74,92,95,96,98,99,100,103,104,105,108 2 -275438 cd14859 PMEI_like 1 heterodimer interface 0 1 1 0 67,68,71,75,92,104,138 2 -341482 cd14860 4HBD_NAD 1 putative active site 0 0 1 1 33,86,87,88,91,94,125,126,128,147,148,166,174,181,185,252,256,266 1 -341482 cd14860 4HBD_NAD 2 metal binding site 0 0 1 1 181,185,252,266 4 -341483 cd14861 Fe-ADH-like 1 putative active site 0 0 1 1 32,90,91,92,95,98,135,136,138,157,158,176,184,191,195,259,263,273 1 -341483 cd14861 Fe-ADH-like 2 metal binding site 0 0 1 1 191,195,259,273 4 -341484 cd14862 Fe-ADH-like 1 putative active site 0 0 1 1 31,89,90,91,94,97,132,133,135,154,155,173,181,188,192,257,261,271 1 -341484 cd14862 Fe-ADH-like 2 metal binding site 0 0 1 1 188,192,257,271 4 -341485 cd14863 Fe-ADH-like 1 putative active site 0 0 1 1 34,92,93,94,97,100,134,135,137,156,157,175,183,190,194,259,263,273 1 -341485 cd14863 Fe-ADH-like 2 metal binding site 0 0 1 1 190,194,259,273 4 -341486 cd14864 Fe-ADH-like 1 putative active site 0 0 1 1 32,90,91,92,95,98,131,132,134,152,153,172,180,187,191,256,260,270 1 -341486 cd14864 Fe-ADH-like 2 metal binding site 0 0 1 1 187,191,256,270 4 -341487 cd14865 Fe-ADH-like 1 putative active site 0 0 1 1 35,93,94,95,98,101,135,136,138,157,158,176,184,191,195,260,264,274 1 -341487 cd14865 Fe-ADH-like 2 metal binding site 0 0 1 1 191,195,260,274 4 -341488 cd14866 Fe-ADH-like 1 putative active site 0 0 1 1 34,91,92,93,96,99,141,142,144,162,163,181,189,196,200,264,268,278 1 -341488 cd14866 Fe-ADH-like 2 metal binding site 0 0 1 1 196,200,264,278 4 -271246 cd14867 uS7_Eukaryote 1 rRNA binding site 0 1 1 1 31,33,37,38,39,40,43,51,54,56,57,58,59,60,64,65,66,67,68,71,111,112,113,115,125,132,139,142,148,149 3 -271246 cd14867 uS7_Eukaryote 2 S11 interface 0 1 1 1 110,113,115,184 2 -271246 cd14867 uS7_Eukaryote 3 S9 interface 0 1 1 1 0,27,28,29,31,32,33,34,67,71 2 -271246 cd14867 uS7_Eukaryote 4 S25 interface 0 1 1 1 75,78,79,82,148,150,151 2 -271247 cd14868 uS7_Mitochondria_Fungi 1 rRNA binding site 0 0 1 1 29,30,31,35,36,37,38,39,42,43,77,86,95,96,99,103,110,116,117,120 3 -271247 cd14868 uS7_Mitochondria_Fungi 2 S11 interface 0 0 1 1 38,41,42,45,150 2 -271247 cd14868 uS7_Mitochondria_Fungi 3 S9 interface 0 0 1 1 38,41,42,45 2 -271248 cd14869 uS7_Bacteria 1 rRNA binding site 0 1 1 1 16,17,18,22,23,24,25,26,29,30,64,69,73,82,83,86,90,97,103,104,107 3 -271248 cd14869 uS7_Bacteria 2 S11 interface 0 1 1 1 137 2 -271248 cd14869 uS7_Bacteria 3 S9 interface 0 1 1 1 25,28,29,32 2 -271249 cd14870 uS7_Mitochondria_Mammalian 1 rRNA binding site 0 0 1 1 55,56,57,61,62,63,64,65,68,69,118,127,136,137,140,144,151,158,159,162 3 -271249 cd14870 uS7_Mitochondria_Mammalian 2 S11 interface 0 0 1 1 192 2 -271249 cd14870 uS7_Mitochondria_Mammalian 3 S9 interface 0 0 1 1 64,67,68,71 2 -271250 cd14871 uS7_Chloroplast 1 rRNA binding site 0 0 1 1 19,20,21,25,26,27,28,29,32,33,67,76,85,86,89,93,100,106,107,110 3 -271250 cd14871 uS7_Chloroplast 2 S11 interface 0 0 1 1 140 2 -271250 cd14871 uS7_Chloroplast 3 S9 interface 0 0 1 1 28,31,32,35 2 -276839 cd14872 MYSc_Myo4 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,123,124,125,126,127,128,130,131,132,133,354,355,356,357,358,359 5 -276839 cd14872 MYSc_Myo4 2 putative phosphorylation site [ed] 0 1 1 301 6 -276839 cd14872 MYSc_Myo4 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276839 cd14872 MYSc_Myo4 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276839 cd14872 MYSc_Myo4 5 switch I region 0 0 1 1 123,124,125,126,127,128,130,131,132,133 0 -276839 cd14872 MYSc_Myo4 6 switch II region 0 0 1 1 354,355,356,357,358,359 0 -276839 cd14872 MYSc_Myo4 7 converter subdomain 0 0 1 1 587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643 0 -276839 cd14872 MYSc_Myo4 8 relay loop 0 0 1 1 383,384,385,386,387,388,389,390,391,392,393,394,397,398,399,400,401,402,403,404,405,406 0 -276839 cd14872 MYSc_Myo4 9 SH1 helix 0 0 1 1 575,576,577,578,579,580,581,582,583,584 0 -276840 cd14873 MYSc_Myo10 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,35,36,80,81,82,83,84,85,86,87,133,134,135,136,137,138,139,140,141,142,143,357,358,359,360,361,362 5 -276840 cd14873 MYSc_Myo10 2 putative phosphorylation site 0 0 1 1 306 6 -276840 cd14873 MYSc_Myo10 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276840 cd14873 MYSc_Myo10 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,35,36 0 -276840 cd14873 MYSc_Myo10 5 switch I region 0 0 1 1 133,134,135,136,137,138,139,140,141,142,143 0 -276840 cd14873 MYSc_Myo10 6 switch II region 0 0 1 1 357,358,359,360,361,362 0 -276840 cd14873 MYSc_Myo10 7 converter subdomain 0 0 1 1 596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650 0 -276840 cd14873 MYSc_Myo10 8 relay loop 0 0 1 1 386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409 0 -276840 cd14873 MYSc_Myo10 9 SH1 helix 0 0 1 1 584,585,586,587,588,589,590,591,592,593 0 -276841 cd14874 MYSc_Myo12 1 ATP binding site 0 0 1 1 27,28,70,71,72,73,74,75,76,77,113,114,115,116,117,118,119,120,121,122,123,337,338,339,340,341,342 5 -276841 cd14874 MYSc_Myo12 2 P-loop 0 0 1 1 70,71,72,73,74,75,76,77 0 -276841 cd14874 MYSc_Myo12 3 purine-binding loop 0 0 1 1 27,28 0 -276841 cd14874 MYSc_Myo12 4 switch I region 0 0 1 1 113,114,115,116,117,118,119,120,121,122,123 0 -276841 cd14874 MYSc_Myo12 5 switch II region 0 0 1 1 337,338,339,340,341,342 0 -276841 cd14874 MYSc_Myo12 6 converter subdomain 0 0 1 1 571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627 0 -276841 cd14874 MYSc_Myo12 7 relay loop 0 0 1 1 366,367,368,369,370,371,372,373,374,375,376,377,380,381,382,383,384,385,386,387,388,389 0 -276841 cd14874 MYSc_Myo12 8 SH1 helix 0 0 1 1 559,560,561,562,563,564,565,566,567,568 0 -276842 cd14875 MYSc_Myo13 1 ATP binding site 0 0 1 1 28,29,30,31,32,33,34,35,36,82,83,84,85,86,87,88,89,136,137,138,139,140,141,142,143,144,145,146,369,370,371,372,373,374 5 -276842 cd14875 MYSc_Myo13 2 putative phosphorylation site 0 0 1 1 315 6 -276842 cd14875 MYSc_Myo13 3 P-loop 0 0 1 1 82,83,84,85,86,87,88,89 0 -276842 cd14875 MYSc_Myo13 4 purine-binding loop 0 0 1 1 28,29,30,31,32,33,34,35,36 0 -276842 cd14875 MYSc_Myo13 5 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276842 cd14875 MYSc_Myo13 6 switch II region 0 0 1 1 369,370,371,372,373,374 0 -276842 cd14875 MYSc_Myo13 7 converter subdomain 0 0 1 1 601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663 0 -276842 cd14875 MYSc_Myo13 8 relay loop 0 0 1 1 398,399,400,401,402,403,404,405,406,407,408,409,412,413,414,415,416,417,418,419,420,421 0 -276842 cd14875 MYSc_Myo13 9 SH1 helix 0 0 1 1 589,590,591,592,593,594,595,596,597,598 0 -276843 cd14876 MYSc_Myo14 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,80,81,82,83,84,85,86,87,126,127,128,129,130,131,132,133,134,135,136,358,359,360,361,362,363 5 -276843 cd14876 MYSc_Myo14 2 putative phosphorylation site [st] 0 1 1 306 6 -276843 cd14876 MYSc_Myo14 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276843 cd14876 MYSc_Myo14 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276843 cd14876 MYSc_Myo14 5 switch I region 0 0 1 1 126,127,128,129,130,131,132,133,134,135,136 0 -276843 cd14876 MYSc_Myo14 6 switch II region 0 0 1 1 358,359,360,361,362,363 0 -276843 cd14876 MYSc_Myo14 7 converter subdomain 0 0 1 1 592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,636,637,638,639,640,641,642,643,644,645,646,647,648 0 -276843 cd14876 MYSc_Myo14 8 relay loop 0 0 1 1 387,388,389,390,391,392,393,394,395,396,397,398,401,402,403,404,405,406,407,408,409,410 0 -276843 cd14876 MYSc_Myo14 9 SH1 helix 0 0 1 1 580,581,582,583,584,585,586,587,588,589 0 -276844 cd14878 MYSc_Myo16 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,82,83,84,85,86,87,88,89,127,128,129,130,131,132,133,134,135,136,137,363,364,365,366,367,368 5 -276844 cd14878 MYSc_Myo16 2 putative phosphorylation site [ED] 0 1 1 307 6 -276844 cd14878 MYSc_Myo16 3 P-loop 0 0 1 1 82,83,84,85,86,87,88,89 0 -276844 cd14878 MYSc_Myo16 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276844 cd14878 MYSc_Myo16 5 switch I region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137 0 -276844 cd14878 MYSc_Myo16 6 switch II region 0 0 1 1 363,364,365,366,367,368 0 -276844 cd14878 MYSc_Myo16 7 converter subdomain 0 0 1 1 600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655 0 -276844 cd14878 MYSc_Myo16 8 relay loop 0 0 1 1 392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415 0 -276844 cd14878 MYSc_Myo16 9 SH1 helix 0 0 1 1 588,589,590,591,592,593,594,595,596,597 0 -276845 cd14879 MYSc_Myo17 1 ATP binding site 0 0 1 1 31,32,39,90,91,92,93,94,95,96,97,137,138,144,145,146,147,371,372,373,374,375,376 5 -276845 cd14879 MYSc_Myo17 2 putative phosphorylation site [ED] 0 1 1 318 6 -276845 cd14879 MYSc_Myo17 3 P-loop 0 0 1 1 90,91,92,93,94,95,96,97 0 -276845 cd14879 MYSc_Myo17 4 purine-binding loop 0 0 1 1 31,32,39 0 -276845 cd14879 MYSc_Myo17 5 switch I region 0 0 1 1 137,138,144,145,146,147 0 -276845 cd14879 MYSc_Myo17 6 switch II region 0 0 1 1 371,372,373,374,375,376 0 -276845 cd14879 MYSc_Myo17 7 converter subdomain 0 0 1 1 587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,624,625,626,627,628,629,630,631,632,633,634,635,636,637 0 -276845 cd14879 MYSc_Myo17 8 relay loop 0 0 1 1 403,404,405,406,407,408,409,410,411,412,413,414,417,418,419,420,421,422,423,424,425 0 -276845 cd14879 MYSc_Myo17 9 SH1 helix 0 0 1 1 575,576,577,578,579,580,581,582,583,584 0 -276846 cd14880 MYSc_Myo19 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,83,84,85,86,87,88,89,90,136,137,138,139,140,141,142,143,144,145,146,365,366,367,368,369,370 5 -276846 cd14880 MYSc_Myo19 2 P-loop 0 0 1 1 83,84,85,86,87,88,89,90 0 -276846 cd14880 MYSc_Myo19 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276846 cd14880 MYSc_Myo19 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276846 cd14880 MYSc_Myo19 5 switch II region 0 0 1 1 365,366,367,368,369,370 0 -276846 cd14880 MYSc_Myo19 6 converter subdomain 0 0 1 1 607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,646,647,648,649,650,651,652,653,654,655,656,657 0 -276846 cd14880 MYSc_Myo19 7 relay loop 0 0 1 1 394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417 0 -276846 cd14880 MYSc_Myo19 8 SH1 helix 0 0 1 1 595,596,597,598,599,600,601,602,603,604 0 -276847 cd14881 MYSc_Myo20 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,74,75,76,77,78,79,80,81,120,121,122,123,124,125,126,127,128,129,130,349,350,351,352,353,354 5 -276847 cd14881 MYSc_Myo20 2 P-loop 0 0 1 1 74,75,76,77,78,79,80,81 0 -276847 cd14881 MYSc_Myo20 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,74,75,76,77,78,79,80,81,120,121,122,123,124,125,126,127,128,129,130,349,350,351,352,353,354 0 -276847 cd14881 MYSc_Myo20 4 switch I region 0 0 1 1 120,121,122,123,124,125,126,127,128,129,130 0 -276847 cd14881 MYSc_Myo20 5 switch II region 0 0 1 1 349,350,351,352,353,354 0 -276847 cd14881 MYSc_Myo20 6 converter subdomain 0 0 1 1 567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,621,622,623,624,625,626,627,628,629,630,631,632 0 -276847 cd14881 MYSc_Myo20 7 relay loop 0 0 1 1 378,379,380,381,382,383,384,385,386,387,388,389,392,393,394,395,396,397,398,399,400,401 0 -276847 cd14881 MYSc_Myo20 8 SH1 helix 0 0 1 1 555,556,557,558,559,560,561,562,563,564 0 -276848 cd14882 MYSc_Myo21 1 ATP binding site 0 0 1 1 27,28,29,30,32,33,34,35,79,80,81,82,83,84,85,86,123,124,125,126,127,128,129,130,131,132,133,361,362,363,364,365,366 5 -276848 cd14882 MYSc_Myo21 2 putative phosphorylation site [ST] 0 1 1 306 6 -276848 cd14882 MYSc_Myo21 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276848 cd14882 MYSc_Myo21 4 purine-binding loop 0 0 1 1 27,28,29,30,32,33,34,35 0 -276848 cd14882 MYSc_Myo21 5 switch I region 0 0 1 1 123,124,125,126,127,128,129,130,131,132,133 0 -276848 cd14882 MYSc_Myo21 6 switch II region 0 0 1 1 361,362,363,364,365,366 0 -276848 cd14882 MYSc_Myo21 7 converter subdomain 0 0 1 1 588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,630,631,632,633,634,635,636,637,638,639,640,641 0 -276848 cd14882 MYSc_Myo21 8 relay loop 0 0 1 1 390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413 0 -276848 cd14882 MYSc_Myo21 9 SH1 helix 0 0 1 1 576,577,578,579,580,581,582,583,584,585 0 -276849 cd14883 MYSc_Myo22 1 ATP binding site 0 0 1 1 27,28,29,30,35,79,80,81,82,83,84,85,86,123,124,125,126,127,128,129,130,131,132,133,354,355,356,357,358,359 5 -276849 cd14883 MYSc_Myo22 2 putative phosphorylation site [T] 0 1 1 302 6 -276849 cd14883 MYSc_Myo22 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276849 cd14883 MYSc_Myo22 4 purine-binding loop 0 0 1 1 27,28,29,30,35 0 -276849 cd14883 MYSc_Myo22 5 switch I region 0 0 1 1 123,124,125,126,127,128,129,130,131,132,133 0 -276849 cd14883 MYSc_Myo22 6 switch II region 0 0 1 1 354,355,356,357,358,359 0 -276849 cd14883 MYSc_Myo22 7 converter subdomain 0 0 1 1 604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660 0 -276849 cd14883 MYSc_Myo22 8 relay loop 0 0 1 1 383,384,385,386,387,388,389,390,391,392,393,394,397,398,399,400,401,402,403,404,405,406 0 -276849 cd14883 MYSc_Myo22 9 SH1 helix 0 0 1 1 592,593,594,595,596,597,598,599,600,601 0 -276850 cd14884 MYSc_Myo23 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,87,88,89,90,91,92,93,94,133,134,135,136,137,138,139,140,141,142,143,385,386,387,388,389,390 5 -276850 cd14884 MYSc_Myo23 2 putative phosphorylation site 0 0 1 1 321 6 -276850 cd14884 MYSc_Myo23 3 P-loop 0 0 1 1 87,88,89,90,91,92,93,94 0 -276850 cd14884 MYSc_Myo23 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276850 cd14884 MYSc_Myo23 5 switch I region 0 0 1 1 133,134,135,136,137,138,139,140,141,142,143 0 -276850 cd14884 MYSc_Myo23 6 switch II region 0 0 1 1 385,386,387,388,389,390 0 -276850 cd14884 MYSc_Myo23 7 converter subdomain 0 0 1 1 630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684 0 -276850 cd14884 MYSc_Myo23 8 relay loop 0 0 1 1 414,415,416,417,418,419,420,421,422,423,424,425,428,429,430,431,432,433,434,435,436,437 0 -276850 cd14884 MYSc_Myo23 9 SH1 helix 0 0 1 1 618,619,620,621,622,623,624,625,626,627 0 -276851 cd14886 MYSc_Myo25 1 putative phosphorylation site [de] 0 1 1 308 6 -276851 cd14886 MYSc_Myo25 2 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,85,86,87,88,89,90,91,92,130,131,132,133,134,135,136,137,138,139,140,360,361,362,363,364,365 5 -276851 cd14886 MYSc_Myo25 3 P-loop 0 0 1 1 85,86,87,88,89,90,91,92 0 -276851 cd14886 MYSc_Myo25 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276851 cd14886 MYSc_Myo25 5 switch I region 0 0 1 1 130,131,132,133,134,135,136,137,138,139,140 0 -276851 cd14886 MYSc_Myo25 6 switch II region 0 0 1 1 360,361,362,363,364,365 0 -276851 cd14886 MYSc_Myo25 7 converter subdomain 0 0 1 1 591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649 0 -276851 cd14886 MYSc_Myo25 8 relay loop 0 0 1 1 389,390,391,392,393,394,395,396,397,398,399,400,403,404,405,406,407,408,409,410,411,412 0 -276851 cd14886 MYSc_Myo25 9 SH1 helix 0 0 1 1 579,580,581,582,583,584,585,586,587,588 0 -276852 cd14887 MYSc_Myo26 1 ATP binding site 0 0 1 1 35,36,37,38,39,40,41,42,43,87,88,89,90,91,92,93,94,136,137,138,139,140,141,142,143,144,145,146,397,398,399,400,401,402 5 -276852 cd14887 MYSc_Myo26 2 putative phosphorylation site [ed] 0 1 1 332 6 -276852 cd14887 MYSc_Myo26 3 P-loop 0 0 1 1 87,88,89,90,91,92,93,94 0 -276852 cd14887 MYSc_Myo26 4 purine-binding loop 0 0 1 1 35,36,37,38,39,40,41,42,43 0 -276852 cd14887 MYSc_Myo26 5 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276852 cd14887 MYSc_Myo26 6 switch II region 0 0 1 1 397,398,399,400,401,402 0 -276852 cd14887 MYSc_Myo26 7 converter subdomain 0 0 1 1 644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,712,713,714,715,716,717,718,719,720,721,722,723,724 0 -276852 cd14887 MYSc_Myo26 8 relay loop 0 0 1 1 429,430,431,432,433,434,435,436,437,438,439,440 0 -276852 cd14887 MYSc_Myo26 9 SH1 helix 0 0 1 1 657,658,659,660,661,662,663,664,665,666 0 -276853 cd14888 MYSc_Myo27 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,79,80,81,82,83,84,85,86,127,128,129,130,131,132,133,134,135,136,137,391,392,393,394,395,396 5 -276853 cd14888 MYSc_Myo27 2 putative phosphorylation site E 0 1 1 338 6 -276853 cd14888 MYSc_Myo27 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276853 cd14888 MYSc_Myo27 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276853 cd14888 MYSc_Myo27 5 switch I region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137 0 -276853 cd14888 MYSc_Myo27 6 switch II region 0 0 1 1 391,392,393,394,395,396 0 -276853 cd14888 MYSc_Myo27 7 converter subdomain 0 0 1 1 628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666 0 -276853 cd14888 MYSc_Myo27 8 relay loop 0 0 1 1 420,421,422,423,424,425,426,427,428,429,430,431,434,435,436,437,438,439,440,441,442,443 0 -276853 cd14888 MYSc_Myo27 9 SH1 helix 0 0 1 1 616,617,618,619,620,621,622,623,624,625 0 -276854 cd14889 MYSc_Myo28 1 ATP binding site 0 0 1 1 27,28,29,30,32,33,34,35,83,84,85,86,87,88,89,90,127,128,129,130,131,132,133,134,135,136,137,358,359,360,361,362,363 5 -276854 cd14889 MYSc_Myo28 2 putative phosphorylation site [ES] 0 1 1 303 6 -276854 cd14889 MYSc_Myo28 3 P-loop 0 0 1 1 83,84,85,86,87,88,89,90 0 -276854 cd14889 MYSc_Myo28 4 purine-binding loop 0 0 1 1 27,28,29,30,32,33,34,35 0 -276854 cd14889 MYSc_Myo28 5 switch I region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137 0 -276854 cd14889 MYSc_Myo28 6 switch II region 0 0 1 1 358,359,360,361,362,363 0 -276854 cd14889 MYSc_Myo28 7 converter subdomain 0 0 1 1 607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658 0 -276854 cd14889 MYSc_Myo28 8 relay loop 0 0 1 1 387,388,389,390,391,392,393,394,395,396,397,398,401,402,403,404,405,406,407,408,409,410 0 -276854 cd14889 MYSc_Myo28 9 SH1 helix 0 0 1 1 595,596,597,598,599,600,601,602,603,604 0 -276855 cd14890 MYSc_Myo29 1 ATP binding site 0 0 1 1 27,28,29,36,84,85,86,87,88,89,90,91,147,148,149,150,151,152,153,154,155,156,157,375,376,377,378,379,380 5 -276855 cd14890 MYSc_Myo29 2 P-loop 0 0 1 1 84,85,86,87,88,89,90,91 0 -276855 cd14890 MYSc_Myo29 3 purine-binding loop 0 0 1 1 27,28,29,36 0 -276855 cd14890 MYSc_Myo29 4 switch I region 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157 0 -276855 cd14890 MYSc_Myo29 5 switch II region 0 0 1 1 375,376,377,378,379,380 0 -276855 cd14890 MYSc_Myo29 6 converter subdomain 0 0 1 1 610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661 0 -276855 cd14890 MYSc_Myo29 7 relay loop 0 0 1 1 404,405,406,407,408,409,410,411,412,413,414,415,418,419,420,421,422,423,424,425,426,427 0 -276855 cd14890 MYSc_Myo29 8 SH1 helix 0 0 1 1 598,599,600,601,602,603,604,605,606,607 0 -276856 cd14891 MYSc_Myo30 1 ATP binding site 0 0 1 1 29,30,31,32,33,34,35,36,37,81,82,83,84,85,86,87,88,144,145,146,147,148,149,150,151,152,153,154,377,378,379,380,381,382 5 -276856 cd14891 MYSc_Myo30 2 putative phosphorylation site E 0 1 1 325 6 -276856 cd14891 MYSc_Myo30 3 P-loop 0 0 1 1 81,82,83,84,85,86,87,88 0 -276856 cd14891 MYSc_Myo30 4 purine-binding loop 0 0 1 1 29,30,31,32,33,34,35,36,37 0 -276856 cd14891 MYSc_Myo30 5 switch I region 0 0 1 1 144,145,146,147,148,149,150,151,152,153,154 0 -276856 cd14891 MYSc_Myo30 6 switch II region 0 0 1 1 377,378,379,380,381,382 0 -276856 cd14891 MYSc_Myo30 7 converter subdomain 0 0 1 1 587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644 0 -276856 cd14891 MYSc_Myo30 8 relay loop 0 0 1 1 407,408,409,410,411,412,413,414,415,416,417,418 0 -276856 cd14891 MYSc_Myo30 9 SH1 helix 0 0 1 1 575,576,577,578,579,580,581,582,583,584 0 -276857 cd14892 MYSc_Myo31 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,86,87,88,89,90,91,92,93,143,144,145,146,147,148,149,150,151,152,153,384,385,386,387,388,389 5 -276857 cd14892 MYSc_Myo31 2 putative phosphorylation site S 0 1 1 322 6 -276857 cd14892 MYSc_Myo31 3 P-loop 0 0 1 1 86,87,88,89,90,91,92,93 0 -276857 cd14892 MYSc_Myo31 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276857 cd14892 MYSc_Myo31 5 switch I region 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153 0 -276857 cd14892 MYSc_Myo31 6 switch II region 0 0 1 1 384,385,386,387,388,389 0 -276857 cd14892 MYSc_Myo31 7 converter subdomain 0 0 1 1 593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655 0 -276857 cd14892 MYSc_Myo31 8 relay loop 0 0 1 1 413,414,415,416,417,418,419,420,421,422,423,424 0 -276857 cd14892 MYSc_Myo31 9 SH1 helix 0 0 1 1 581,582,583,584,585,586,587,588,589,590 0 -276858 cd14893 MYSc_Myo32 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,89,90,91,92,93,94,95,96,146,147,148,149,150,151,152,153,154,155,156,405,406,407,408,409,410 5 -276858 cd14893 MYSc_Myo32 2 P-loop 0 0 1 1 89,90,91,92,93,94,95,96 0 -276858 cd14893 MYSc_Myo32 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276858 cd14893 MYSc_Myo32 4 switch I region 0 0 1 1 146,147,148,149,150,151,152,153,154,155,156 0 -276858 cd14893 MYSc_Myo32 5 switch II region 0 0 1 1 405,406,407,408,409,410 0 -276858 cd14893 MYSc_Myo32 6 converter subdomain 0 0 1 1 693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740 0 -276858 cd14893 MYSc_Myo32 7 relay loop 0 0 1 1 436,437,438,439,440,441,442,443,444,445,446,447,450,451,452,453,454,455,456,457,458,459 0 -276858 cd14893 MYSc_Myo32 8 SH1 helix 0 0 1 1 677,678,679,680,681,682,683,684,685,686 0 -276859 cd14894 MYSc_Myo33 1 ATP binding site 0 0 1 1 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,107,108,109,110,111,112,113,114,261,262,263,264,265,266,267,268,269,270,271,537,538,539,540,541,542 5 -276859 cd14894 MYSc_Myo33 2 putative phosphorylation site E 0 1 1 468 6 -276859 cd14894 MYSc_Myo33 3 P-loop 0 0 1 1 107,108,109,110,111,112,113,114 0 -276859 cd14894 MYSc_Myo33 4 purine-binding loop 0 0 1 1 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 0 -276859 cd14894 MYSc_Myo33 5 switch I region 0 0 1 1 261,262,263,264,265,266,267,268,269,270,271 0 -276859 cd14894 MYSc_Myo33 6 switch II region 0 0 1 1 537,538,539,540,541,542 0 -276859 cd14894 MYSc_Myo33 7 converter subdomain 0 0 1 1 800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870 0 -276859 cd14894 MYSc_Myo33 8 relay loop 0 0 1 1 566,567,568,569,570,571,572,573,574,575,576,577,580,581,582,583,584,585 0 -276859 cd14894 MYSc_Myo33 9 SH1 helix 0 0 1 1 785,786,787,788,789,790,791,792,793,794 0 -276860 cd14895 MYSc_Myo34 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,86,87,88,89,90,91,92,93,140,141,142,143,144,145,146,147,148,149,150,405,406,407,408,409,410 5 -276860 cd14895 MYSc_Myo34 2 putative phosphorylation site E 0 1 1 342 6 -276860 cd14895 MYSc_Myo34 3 P-loop 0 0 1 1 86,87,88,89,90,91,92,93 0 -276860 cd14895 MYSc_Myo34 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276860 cd14895 MYSc_Myo34 5 switch I region 0 0 1 1 140,141,142,143,144,145,146,147,148,149,150 0 -276860 cd14895 MYSc_Myo34 6 switch II region 0 0 1 1 405,406,407,408,409,410 0 -276860 cd14895 MYSc_Myo34 7 converter subdomain 0 0 1 1 654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703 0 -276860 cd14895 MYSc_Myo34 8 relay loop 0 0 1 1 434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457 0 -276860 cd14895 MYSc_Myo34 9 SH1 helix 0 0 1 1 642,643,644,645,646,647,648,649,650,651 0 -276861 cd14896 MYSc_Myo35 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,124,125,126,127,128,129,130,131,132,133,134,355,356,357,358,359,360 5 -276861 cd14896 MYSc_Myo35 2 putative phosphorylation site d 0 1 1 301 6 -276861 cd14896 MYSc_Myo35 3 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276861 cd14896 MYSc_Myo35 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276861 cd14896 MYSc_Myo35 5 switch I region 0 0 1 1 124,125,126,127,128,129,130,131,132,133,134 0 -276861 cd14896 MYSc_Myo35 6 switch II region 0 0 1 1 355,356,357,358,359,360 0 -276861 cd14896 MYSc_Myo35 7 converter subdomain 0 0 1 1 588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643 0 -276861 cd14896 MYSc_Myo35 8 relay loop 0 0 1 1 384,385,386,387,388,389,390,391,392,393,394,395,398,399,400,401,402,403,404,405,406,407 0 -276861 cd14896 MYSc_Myo35 9 SH1 helix 0 0 1 1 576,577,578,579,580,581,582,583,584,585 0 -276862 cd14897 MYSc_Myo36 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,34,35,80,81,82,83,84,85,86,87,125,126,127,129,130,131,132,133,134,135,364,365,366,367,368,369 5 -276862 cd14897 MYSc_Myo36 2 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276862 cd14897 MYSc_Myo36 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,34,35 0 -276862 cd14897 MYSc_Myo36 4 switch I region 0 0 1 1 125,126,127,129,130,131,132,133,134,135 0 -276862 cd14897 MYSc_Myo36 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276862 cd14897 MYSc_Myo36 6 converter subdomain 0 0 1 1 581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634 0 -276862 cd14897 MYSc_Myo36 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,416 0 -276862 cd14897 MYSc_Myo36 8 SH1 helix 0 0 1 1 569,570,571,572,573,574,575,576,577,578 0 -276863 cd14898 MYSc_Myo37 1 ATP binding site 0 0 1 1 27,28,29,34,35,36,75,76,77,78,79,80,81,82,119,120,121,122,123,124,125,126,127,128,129,330,331,332,333,334,335 5 -276863 cd14898 MYSc_Myo37 2 putative phosphorylation site E 0 1 1 280 6 -276863 cd14898 MYSc_Myo37 3 P-loop 0 0 1 1 75,76,77,78,79,80,81,82 0 -276863 cd14898 MYSc_Myo37 4 purine-binding loop 0 0 1 1 27,28,29,34,35,36 0 -276863 cd14898 MYSc_Myo37 5 switch I region 0 0 1 1 119,120,121,122,123,124,125,126,127,128,129 0 -276863 cd14898 MYSc_Myo37 6 switch II region 0 0 1 1 330,331,332,333,334,335 0 -276863 cd14898 MYSc_Myo37 7 converter subdomain 0 0 1 1 541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,566,567,568,569,570,571,572,573,574,575,576,577 0 -276863 cd14898 MYSc_Myo37 8 relay loop 0 0 1 1 359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382 0 -276863 cd14898 MYSc_Myo37 9 SH1 helix 0 0 1 1 529,530,531,532,533,534,535,536,537,538 0 -276864 cd14899 MYSc_Myo38 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,90,91,92,93,94,95,96,97,152,153,154,155,156,157,158,159,160,161,162,414,415,416,417,418,419 5 -276864 cd14899 MYSc_Myo38 2 putative phosphorylation site 0 0 1 1 347 6 -276864 cd14899 MYSc_Myo38 3 P-loop 0 0 1 1 90,91,92,93,94,95,96,97 0 -276864 cd14899 MYSc_Myo38 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,35,36 0 -276864 cd14899 MYSc_Myo38 5 switch I region 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162 0 -276864 cd14899 MYSc_Myo38 6 switch II region 0 0 1 1 414,415,416,417,418,419 0 -276864 cd14899 MYSc_Myo38 7 converter subdomain 0 0 1 1 679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716 0 -276864 cd14899 MYSc_Myo38 8 relay loop 0 0 1 1 443,444,445,446,447,448,449,450,451,452,453,454,457,458,459,460,461,462,463,464,465,466 0 -276864 cd14899 MYSc_Myo38 9 SH1 helix 0 0 1 1 658,659,660,661,662,663,664,665,666,667 0 -276865 cd14900 MYSc_Myo39 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,95,96,97,98,99,100,101,102,150,151,152,153,154,155,156,157,158,159,160,364,365,366,367,368,369 5 -276865 cd14900 MYSc_Myo39 2 putative phosphorylation site [ED] 0 1 1 307 6 -276865 cd14900 MYSc_Myo39 3 P-loop 0 0 1 1 95,96,97,98,99,100,101,102 0 -276865 cd14900 MYSc_Myo39 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276865 cd14900 MYSc_Myo39 5 switch I region 0 0 1 1 150,151,152,153,154,155,156,157,158,159,160 0 -276865 cd14900 MYSc_Myo39 6 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276865 cd14900 MYSc_Myo39 7 converter subdomain 0 0 1 1 573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626 0 -276865 cd14900 MYSc_Myo39 8 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416 0 -276865 cd14900 MYSc_Myo39 9 SH1 helix 0 0 1 1 561,562,563,564,565,566,567,568,569,570 0 -276866 cd14901 MYSc_Myo40 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,89,90,91,92,93,94,95,96,142,143,144,145,146,147,148,149,150,151,152,374,375,376,377,378,379 5 -276866 cd14901 MYSc_Myo40 2 putative phosphorylation site [ED] 0 1 1 320 6 -276866 cd14901 MYSc_Myo40 3 P-loop 0 0 1 1 89,90,91,92,93,94,95,96 0 -276866 cd14901 MYSc_Myo40 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276866 cd14901 MYSc_Myo40 5 switch I region 0 0 1 1 142,143,144,145,146,147,148,149,150,151,152 0 -276866 cd14901 MYSc_Myo40 6 switch II region 0 0 1 1 374,375,376,377,378,379 0 -276866 cd14901 MYSc_Myo40 7 converter subdomain 0 0 1 1 593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,642,643,644,645,646,647,648,649,650,651,652,653,654 0 -276866 cd14901 MYSc_Myo40 8 relay loop 0 0 1 1 403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426 0 -276866 cd14901 MYSc_Myo40 9 SH1 helix 0 0 1 1 581,582,583,584,585,586,587,588,589,590 0 -276867 cd14902 MYSc_Myo41 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,34,35,36,89,90,91,92,93,94,95,96,143,144,145,146,147,148,149,150,151,152,153,387,388,389,390,391,392 5 -276867 cd14902 MYSc_Myo41 2 putative phosphorylation site 0 0 1 1 326 6 -276867 cd14902 MYSc_Myo41 3 P-loop 0 0 1 1 89,90,91,92,93,94,95,96 0 -276867 cd14902 MYSc_Myo41 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,34,35,36 0 -276867 cd14902 MYSc_Myo41 5 switch I region 0 0 1 1 143,144,145,146,147,148,149,150,151,152,153 0 -276867 cd14902 MYSc_Myo41 6 switch II region 0 0 1 1 387,388,389,390,391,392 0 -276867 cd14902 MYSc_Myo41 7 converter subdomain 0 0 1 1 622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,660,661,662,663,664,665,666,667,668,669,670,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715 0 -276867 cd14902 MYSc_Myo41 8 relay loop 0 0 1 1 416,417,418,419,420,421,422,423,424,425,426,427,430,431,432,433,434,435,436,437,438,439 0 -276867 cd14902 MYSc_Myo41 9 SH1 helix 0 0 1 1 610,611,612,613,614,615,616,617,618,619 0 -276868 cd14903 MYSc_Myo42 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,80,81,82,83,84,85,86,87,125,126,127,128,129,130,131,132,133,134,135,353,354,355,356,357,358 5 -276868 cd14903 MYSc_Myo42 2 putative phosphorylation site [ED] 0 1 1 301 6 -276868 cd14903 MYSc_Myo42 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276868 cd14903 MYSc_Myo42 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276868 cd14903 MYSc_Myo42 5 switch I region 0 0 1 1 125,126,127,128,129,130,131,132,133,134,135 0 -276868 cd14903 MYSc_Myo42 6 switch II region 0 0 1 1 353,354,355,356,357,358 0 -276868 cd14903 MYSc_Myo42 7 converter subdomain 0 0 1 1 601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657 0 -276868 cd14903 MYSc_Myo42 8 relay loop 0 0 1 1 382,383,384,385,386,387,388,389,390,391,392,393,396,397,398,399,400,401,402,403,404,405 0 -276868 cd14903 MYSc_Myo42 9 SH1 helix 0 0 1 1 589,590,591,592,593,594,595,596,597,598 0 -276869 cd14904 MYSc_Myo43 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,80,81,82,83,84,85,86,87,125,126,127,128,129,130,131,132,133,134,135,354,355,356,357,358,359 5 -276869 cd14904 MYSc_Myo43 2 putative phosphorylation site [ED] 0 1 1 301 6 -276869 cd14904 MYSc_Myo43 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276869 cd14904 MYSc_Myo43 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276869 cd14904 MYSc_Myo43 5 switch I region 0 0 1 1 125,126,127,128,129,130,131,132,133,134,135 0 -276869 cd14904 MYSc_Myo43 6 switch II region 0 0 1 1 354,355,356,357,358,359 0 -276869 cd14904 MYSc_Myo43 7 converter subdomain 0 0 1 1 597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652 0 -276869 cd14904 MYSc_Myo43 8 relay loop 0 0 1 1 383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406 0 -276869 cd14904 MYSc_Myo43 9 SH1 helix 0 0 1 1 585,586,587,588,589,590,591,592,593,594 0 -276870 cd14905 MYSc_Myo44 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,35,36,78,79,80,81,82,83,84,85,123,124,125,126,127,128,129,130,131,132,133,338,339,340,341,342,343 5 -276870 cd14905 MYSc_Myo44 2 P-loop 0 0 1 1 78,79,80,81,82,83,84,85 0 -276870 cd14905 MYSc_Myo44 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,35,36 0 -276870 cd14905 MYSc_Myo44 4 switch I region 0 0 1 1 123,124,125,126,127,128,129,130,131,132,133 0 -276870 cd14905 MYSc_Myo44 5 switch II region 0 0 1 1 338,339,340,341,342,343 0 -276870 cd14905 MYSc_Myo44 6 converter subdomain 0 0 1 1 617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672 0 -276870 cd14905 MYSc_Myo44 7 relay loop 0 0 1 1 367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389 0 -276870 cd14905 MYSc_Myo44 8 SH1 helix 0 0 1 1 605,606,607,608,609,610,611,612,613,614 0 -276871 cd14906 MYSc_Myo45 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,35,36,81,82,83,84,85,86,87,88,136,137,138,139,140,141,142,143,144,145,146,397,398,399,400,401,402 5 -276871 cd14906 MYSc_Myo45 2 putative phosphorylation site 0 0 1 1 334 6 -276871 cd14906 MYSc_Myo45 3 P-loop 0 0 1 1 81,82,83,84,85,86,87,88 0 -276871 cd14906 MYSc_Myo45 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,35,36 0 -276871 cd14906 MYSc_Myo45 5 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276871 cd14906 MYSc_Myo45 6 switch II region 0 0 1 1 397,398,399,400,401,402 0 -276871 cd14906 MYSc_Myo45 7 converter subdomain 0 0 1 1 634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714 0 -276871 cd14906 MYSc_Myo45 8 relay loop 0 0 1 1 426,427,428,429,430,431,432,433,434,435,436,437,440,441,442,443,444,445,446,447,448,449 0 -276871 cd14906 MYSc_Myo45 9 SH1 helix 0 0 1 1 622,623,624,625,626,627,628,629,630,631 0 -276872 cd14907 MYSc_Myo46 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,36,88,89,90,91,92,93,94,95,152,153,154,155,156,157,158,159,160,161,162,394,395,396,397,398,399 5 -276872 cd14907 MYSc_Myo46 2 putative phosphorylation site [ed] 0 1 1 334 6 -276872 cd14907 MYSc_Myo46 3 P-loop 0 0 1 1 88,89,90,91,92,93,94,95 0 -276872 cd14907 MYSc_Myo46 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35,36 0 -276872 cd14907 MYSc_Myo46 5 switch I region 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162 0 -276872 cd14907 MYSc_Myo46 6 switch II region 0 0 1 1 394,395,396,397,398,399 0 -276872 cd14907 MYSc_Myo46 7 converter subdomain 0 0 1 1 638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668 0 -276872 cd14907 MYSc_Myo46 8 relay loop 0 0 1 1 423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446 0 -276872 cd14907 MYSc_Myo46 9 SH1 helix 0 0 1 1 626,627,628,629,630,631,632,633,634,635 0 -276873 cd14908 MYSc_Myo47 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,89,90,91,92,93,94,95,96,145,146,147,148,149,150,151,152,153,154,155,386,387,388,389,390,391 5 -276873 cd14908 MYSc_Myo47 2 putative phosphorylation site [ed] 0 1 1 333 6 -276873 cd14908 MYSc_Myo47 3 P-loop 0 0 1 1 89,90,91,92,93,94,95,96 0 -276873 cd14908 MYSc_Myo47 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276873 cd14908 MYSc_Myo47 5 switch I region 0 0 1 1 145,146,147,148,149,150,151,152,153,154,155 0 -276873 cd14908 MYSc_Myo47 6 switch II region 0 0 1 1 386,387,388,389,390,391 0 -276873 cd14908 MYSc_Myo47 7 converter subdomain 0 0 1 1 605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681 0 -276873 cd14908 MYSc_Myo47 8 relay loop 0 0 1 1 415,416,417,418,419,420,421,422,423,424,425,426,429,430,431,432,433,434,435,436,437,438 0 -276873 cd14908 MYSc_Myo47 9 SH1 helix 0 0 1 1 593,594,595,596,597,598,599,600,601,602 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,132,133,134,135,136,137,138,139,140,141,142,360,361,362,363,364,365 5 -276874 cd14909 MYSc_Myh1_insects_crustaceans 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 4 switch I region 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 5 switch II region 0 0 1 1 360,361,362,363,364,365 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 6 converter subdomain 0 0 1 1 610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 7 relay loop 0 0 1 1 389,390,391,392,393,394,395,396,397,398,399,400,403,404,405,406,407,408,409,410,411,412 0 -276874 cd14909 MYSc_Myh1_insects_crustaceans 8 SH1 helix 0 0 1 1 598,599,600,601,602,603,604,605,606,607 0 -276875 cd14910 MYSc_Myh1_mammals 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,136,137,138,139,140,141,142,143,144,145,146,364,365,366,367,368,369 5 -276875 cd14910 MYSc_Myh1_mammals 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276875 cd14910 MYSc_Myh1_mammals 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276875 cd14910 MYSc_Myh1_mammals 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276875 cd14910 MYSc_Myh1_mammals 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276875 cd14910 MYSc_Myh1_mammals 6 converter subdomain 0 0 1 1 613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670 0 -276875 cd14910 MYSc_Myh1_mammals 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,411,412,413,414,415,416 0 -276875 cd14910 MYSc_Myh1_mammals 8 SH1 helix 0 0 1 1 601,602,603,604,605,606,607,608,609,610 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,141,142,143,144,145,146,147,148,149,150,151,369,370,371,372,373,374 5 -276876 cd14911 MYSc_Myh2_insects_mollusks 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 4 switch I region 0 0 1 1 141,142,143,144,145,146,147,148,149,150,151 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 5 switch II region 0 0 1 1 369,370,371,372,373,374 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 6 converter subdomain 0 0 1 1 617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 7 relay loop 0 0 1 1 398,399,400,401,402,403,404,405,406,407,408,409,412,413,414,415,416,417,418,419,420,421 0 -276876 cd14911 MYSc_Myh2_insects_mollusks 8 SH1 helix 0 0 1 1 605,606,607,608,609,610,611,612,613,614 0 -276877 cd14912 MYSc_Myh2_mammals 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,136,137,138,139,140,141,142,143,144,145,146,364,365,366,367,368,369 5 -276877 cd14912 MYSc_Myh2_mammals 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276877 cd14912 MYSc_Myh2_mammals 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276877 cd14912 MYSc_Myh2_mammals 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276877 cd14912 MYSc_Myh2_mammals 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276877 cd14912 MYSc_Myh2_mammals 6 converter subdomain 0 0 1 1 615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672 0 -276877 cd14912 MYSc_Myh2_mammals 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,411,412,413,414,415,416 0 -276877 cd14912 MYSc_Myh2_mammals 8 SH1 helix 0 0 1 1 603,604,605,606,607,608,609,610,611,612 0 -276878 cd14913 MYSc_Myh3 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,134,135,136,137,138,139,140,141,142,143,144,362,363,364,365,366,367 5 -276878 cd14913 MYSc_Myh3 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276878 cd14913 MYSc_Myh3 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276878 cd14913 MYSc_Myh3 4 switch I region 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144 0 -276878 cd14913 MYSc_Myh3 5 switch II region 0 0 1 1 362,363,364,365,366,367 0 -276878 cd14913 MYSc_Myh3 6 converter subdomain 0 0 1 1 610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667 0 -276878 cd14913 MYSc_Myh3 7 relay loop 0 0 1 1 391,392,393,394,395,396,397,398,399,400,401,402,405,406,407,408,409,410,411,412,413,414 0 -276878 cd14913 MYSc_Myh3 8 SH1 helix 0 0 1 1 598,599,600,601,602,603,604,605,606,607 0 -276879 cd14915 MYSc_Myh4 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,136,137,138,139,140,141,142,143,144,145,146,364,365,366,367,368,369 5 -276879 cd14915 MYSc_Myh4 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276879 cd14915 MYSc_Myh4 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276879 cd14915 MYSc_Myh4 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276879 cd14915 MYSc_Myh4 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276879 cd14915 MYSc_Myh4 6 converter subdomain 0 0 1 1 622,623,624,625,626,627,628,629,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670 0 -276879 cd14915 MYSc_Myh4 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,411,412,413,414,415,416 0 -276879 cd14915 MYSc_Myh4 8 SH1 helix 0 0 1 1 601,602,603,604,605,606,607,608,609,610 0 -276880 cd14916 MYSc_Myh6 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,135,136,137,138,139,140,141,142,143,144,145,363,364,365,366,367,368 5 -276880 cd14916 MYSc_Myh6 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276880 cd14916 MYSc_Myh6 3 purine-binding loop 0 0 1 1 27,28,29,30,35 0 -276880 cd14916 MYSc_Myh6 4 switch I region 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145 0 -276880 cd14916 MYSc_Myh6 5 switch II region 0 0 1 1 363,364,365,366,367,368 0 -276880 cd14916 MYSc_Myh6 6 converter subdomain 0 0 1 1 612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669 0 -276880 cd14916 MYSc_Myh6 7 relay loop 0 0 1 1 392,393,394,395,396,397,398,399,400,401,402,403,406,407,408,409,410,411,412,413,414,415 0 -276880 cd14916 MYSc_Myh6 8 SH1 helix 0 0 1 1 600,601,602,603,604,605,606,607,608,609 0 -276881 cd14917 MYSc_Myh7 1 ATP binding site 0 1 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,134,135,136,137,138,139,140,141,142,143,144,362,363,364,365,366,367 5 -276881 cd14917 MYSc_Myh7 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276881 cd14917 MYSc_Myh7 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276881 cd14917 MYSc_Myh7 4 switch I region 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144 0 -276881 cd14917 MYSc_Myh7 5 switch II region 0 0 1 1 362,363,364,365,366,367 0 -276881 cd14917 MYSc_Myh7 6 converter subdomain 0 0 1 1 610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667 0 -276881 cd14917 MYSc_Myh7 7 relay loop 0 0 1 1 391,392,393,394,395,396,397,398,399,400,401,402,405,406,407,408,409,410,411,412,413,414 0 -276881 cd14917 MYSc_Myh7 8 SH1 helix 0 0 1 1 598,599,600,601,602,603,604,605,606,607 0 -276882 cd14918 MYSc_Myh8 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,134,135,136,137,138,139,140,141,142,143,144,362,363,364,365,366,367 5 -276882 cd14918 MYSc_Myh8 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276882 cd14918 MYSc_Myh8 3 purine-binding loop 0 0 0 1 27,28,29,30,31,32,33,34,35 0 -276882 cd14918 MYSc_Myh8 4 switch I region 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144 0 -276882 cd14918 MYSc_Myh8 5 switch II region 0 0 1 1 362,363,364,365,366,367 0 -276882 cd14918 MYSc_Myh8 6 converter subdomain 0 0 1 1 610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667 0 -276882 cd14918 MYSc_Myh8 7 relay loop 0 0 1 1 391,392,393,394,395,396,397,398,399,400,401,402,405,406,407,408,409,410,411,412,413,414 0 -276882 cd14918 MYSc_Myh8 8 SH1 helix 0 0 1 1 598,599,600,601,602,603,604,605,606,607 0 -276883 cd14919 MYSc_Myh9 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,129,130,131,132,133,134,135,136,137,138,139,357,358,359,360,361,362 5 -276883 cd14919 MYSc_Myh9 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276883 cd14919 MYSc_Myh9 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276883 cd14919 MYSc_Myh9 4 switch I region 0 0 1 1 129,130,131,132,133,134,135,136,137,138,139 0 -276883 cd14919 MYSc_Myh9 5 switch II region 0 0 1 1 357,358,359,360,361,362 0 -276883 cd14919 MYSc_Myh9 6 converter subdomain 0 0 1 1 613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669 0 -276883 cd14919 MYSc_Myh9 7 relay loop 0 0 1 1 386,387,388,389,390,391,392,393,394,395,396,397,400,401,402,403,404,405,406,407,408,409 0 -276883 cd14919 MYSc_Myh9 8 SH1 helix 0 0 1 1 601,602,603,604,605,606,607,608,609,610 0 -276952 cd14920 MYSc_Myh10 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,132,133,134,135,136,137,138,139,140,141,142,360,361,362,363,364,365 5 -276952 cd14920 MYSc_Myh10 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276952 cd14920 MYSc_Myh10 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276952 cd14920 MYSc_Myh10 4 switch I region 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142 0 -276952 cd14920 MYSc_Myh10 5 switch II region 0 0 1 1 360,361,362,363,364,365 0 -276952 cd14920 MYSc_Myh10 6 converter subdomain 0 0 1 1 616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672 0 -276952 cd14920 MYSc_Myh10 7 relay loop 0 0 1 1 389,390,391,392,393,394,395,396,397,398,399,400,403,404,405,406,407,408,409,410,411,412 0 -276952 cd14920 MYSc_Myh10 8 SH1 helix 0 0 1 1 604,605,606,607,608,609,610,611,612,613 0 -276885 cd14921 MYSc_Myh11 1 ATP binding site 0 1 1 0 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,132,133,134,135,136,137,138,139,140,141,142,360,361,362,363,364,365 5 -276885 cd14921 MYSc_Myh11 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276885 cd14921 MYSc_Myh11 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276885 cd14921 MYSc_Myh11 4 switch I region 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142 0 -276885 cd14921 MYSc_Myh11 5 switch II region 0 0 1 1 360,361,362,363,364,365 0 -276885 cd14921 MYSc_Myh11 6 converter subdomain 0 0 1 1 616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672 0 -276885 cd14921 MYSc_Myh11 7 relay loop 0 0 1 1 389,390,391,392,393,394,395,396,397,398,399,400,403,404,405,406,407,408,409,410,411,412 0 -276885 cd14921 MYSc_Myh11 8 SH1 helix 0 0 1 1 604,605,606,607,608,609,610,611,612,613,614 0 -276887 cd14923 MYSc_Myh13 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,135,136,137,138,139,140,141,142,143,144,145,363,364,365,366,367,368 5 -276887 cd14923 MYSc_Myh13 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276887 cd14923 MYSc_Myh13 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276887 cd14923 MYSc_Myh13 4 switch I region 0 0 1 1 135,136,137,138,139,140,141,142,143,144,145 0 -276887 cd14923 MYSc_Myh13 5 switch II region 0 0 1 1 363,364,365,366,367,368 0 -276887 cd14923 MYSc_Myh13 6 converter subdomain 0 0 1 1 613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670 0 -276887 cd14923 MYSc_Myh13 7 relay loop 0 0 1 1 392,393,394,395,396,397,398,399,400,401,402,403,406,407,408,409,410,411,412,413,414,415 0 -276887 cd14923 MYSc_Myh13 8 SH1 helix 0 0 1 1 601,602,603,604,605,606,607,608,609,610 0 -276953 cd14927 MYSc_Myh7b 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,138,139,140,141,142,143,144,145,146,147,148,366,367,368,369,370,371 5 -276953 cd14927 MYSc_Myh7b 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276953 cd14927 MYSc_Myh7b 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276953 cd14927 MYSc_Myh7b 4 switch I region 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148 0 -276953 cd14927 MYSc_Myh7b 5 switch II region 0 0 1 1 366,367,368,369,370,371 0 -276953 cd14927 MYSc_Myh7b 6 converter subdomain 0 0 1 1 618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675 0 -276953 cd14927 MYSc_Myh7b 7 relay loop 0 0 1 1 395,396,397,398,399,400,401,402,403,404,405,406,409,410,411,412,413,414,415,416,417,418 0 -276953 cd14927 MYSc_Myh7b 8 SH1 helix 0 0 1 1 606,607,608,609,610,611,612,613,614,615 0 -276892 cd14929 MYSc_Myh15_mammals 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,129,130,131,132,133,134,135,136,137,138,139,356,357,358,359,360,361 5 -276892 cd14929 MYSc_Myh15_mammals 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276892 cd14929 MYSc_Myh15_mammals 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276892 cd14929 MYSc_Myh15_mammals 4 switch I region 0 0 1 1 129,130,131,132,133,134,135,136,137,138,139 0 -276892 cd14929 MYSc_Myh15_mammals 5 switch II region 0 0 1 1 356,357,358,359,360,361 0 -276892 cd14929 MYSc_Myh15_mammals 6 converter subdomain 0 0 1 1 604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661 0 -276892 cd14929 MYSc_Myh15_mammals 7 relay loop 0 0 1 1 385,386,387,388,389,390,391,392,393,394,395,396,399,400,401,402,403,404,405,406,407,408 0 -276892 cd14929 MYSc_Myh15_mammals 8 SH1 helix 0 0 1 1 592,593,594,595,596,597,598,599,600,601 0 -276893 cd14930 MYSc_Myh14_mammals 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,132,133,134,135,136,137,138,139,140,141,142,359,360,361,362,363,364 5 -276893 cd14930 MYSc_Myh14_mammals 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276893 cd14930 MYSc_Myh14_mammals 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276893 cd14930 MYSc_Myh14_mammals 4 switch I region 0 0 1 1 132,133,134,135,136,137,138,139,140,141,142 0 -276893 cd14930 MYSc_Myh14_mammals 5 switch II region 0 0 1 1 359,360,361,362,363,364 0 -276893 cd14930 MYSc_Myh14_mammals 6 converter subdomain 0 0 1 1 613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669 0 -276893 cd14930 MYSc_Myh14_mammals 7 relay loop 0 0 1 1 388,389,390,391,392,393,394,395,396,397,398,399,402,403,404,405,406,407,408,409,410,411 0 -276893 cd14930 MYSc_Myh14_mammals 8 SH1 helix 0 0 1 1 601,602,603,604,605,606,607,608,609,610 0 -276895 cd14932 MYSc_Myh18 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,136,137,138,139,140,141,142,143,144,145,146,364,365,366,367,368,369 5 -276895 cd14932 MYSc_Myh18 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276895 cd14932 MYSc_Myh18 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276895 cd14932 MYSc_Myh18 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276895 cd14932 MYSc_Myh18 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276895 cd14932 MYSc_Myh18 6 converter subdomain 0 0 1 1 619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675 0 -276895 cd14932 MYSc_Myh18 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,411,412,413,414,415,416 0 -276895 cd14932 MYSc_Myh18 8 SH1 helix 0 0 1 1 607,608,609,610,611,612,613,614,615,616 0 -276896 cd14934 MYSc_Myh16 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,130,131,132,133,134,135,136,137,138,139,140,358,359,360,361,362,363 5 -276896 cd14934 MYSc_Myh16 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276896 cd14934 MYSc_Myh16 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276896 cd14934 MYSc_Myh16 4 switch I region 0 0 1 1 130,131,132,133,134,135,136,137,138,139,140 0 -276896 cd14934 MYSc_Myh16 5 switch II region 0 0 1 1 358,359,360,361,362,363 0 -276896 cd14934 MYSc_Myh16 6 converter subdomain 0 0 1 1 602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658 0 -276896 cd14934 MYSc_Myh16 7 relay loop 0 0 1 1 387,388,389,390,391,392,393,394,395,396,397,398,401,402,403,404,405,406,407,408,409,410 0 -276896 cd14934 MYSc_Myh16 8 SH1 helix 0 0 1 1 590,591,592,593,594,595,596,597,598,599 0 -276897 cd14937 MYSc_Myo24A 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,75,76,77,78,79,80,81,82,119,120,121,122,123,124,125,126,127,128,129,350,351,352,353,354,355 5 -276897 cd14937 MYSc_Myo24A 2 P-loop 0 0 1 1 75,76,77,78,79,80,81,82 0 -276897 cd14937 MYSc_Myo24A 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276897 cd14937 MYSc_Myo24A 4 switch I region 0 0 1 1 119,120,121,122,123,124,125,126,127,128,129 0 -276897 cd14937 MYSc_Myo24A 5 switch II region 0 0 1 1 350,351,352,353,354,355 0 -276897 cd14937 MYSc_Myo24A 6 converter subdomain 0 0 1 1 581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636 0 -276897 cd14937 MYSc_Myo24A 7 relay loop 0 0 1 1 379,380,381,382,383,384,385,386,387,388,389,390,393,394,395,396,397,398,399,400,401,402 0 -276897 cd14937 MYSc_Myo24A 8 SH1 helix 0 0 1 1 570,571,572,573,574,575,576,577,578,579 0 -276898 cd14938 MYSc_Myo24B 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,80,81,82,83,84,85,86,87,148,149,150,151,152,153,154,155,156,157,158,403,404,405,406,407,408 5 -276898 cd14938 MYSc_Myo24B 2 putative phosphorylation site S 0 1 1 348 6 -276898 cd14938 MYSc_Myo24B 3 P-loop 0 0 1 1 80,81,82,83,84,85,86,87 0 -276898 cd14938 MYSc_Myo24B 4 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276898 cd14938 MYSc_Myo24B 5 switch I region 0 0 1 1 148,149,150,151,152,153,154,155,156,157,158 0 -276898 cd14938 MYSc_Myo24B 6 switch II region 0 0 1 1 403,404,405,406,407,408 0 -276898 cd14938 MYSc_Myo24B 7 converter subdomain 0 0 1 1 663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712 0 -276898 cd14938 MYSc_Myo24B 8 relay loop 0 0 1 1 432,433,434,435,436,437,438,439,440,441,442,443,446,447,448,449,450,451,452,453,454,455 0 -276898 cd14938 MYSc_Myo24B 9 SH1 helix 0 0 1 1 652,653,654,655,656,657,658,659,660,661 0 -320093 cd14939 7tmD_STE2 1 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 7 -320093 cd14939 7tmD_STE2 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -320093 cd14939 7tmD_STE2 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320093 cd14939 7tmD_STE2 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320093 cd14939 7tmD_STE2 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320093 cd14939 7tmD_STE2 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320093 cd14939 7tmD_STE2 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 2 TM helix 2 0 0 0 0 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 5 TM helix 5 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 7 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -271344 cd14941 TRAPPC_bet3-like 1 heterodimer interface 0 1 1 0 3,4,6,7,10,11,15,16,28,32,36,39,40,43,44,115 2 -271345 cd14942 TRAPPC3_bet3 1 TRS31 interface 0 1 1 0 0,1,2,3,4,6,7,8,10,11,14,28,32,35,36,39,40,43,70,71,73,94,115 2 -271345 cd14942 TRAPPC3_bet3 2 TRS23 interface 0 1 1 0 38,39,42,43,45,46,47,48,50,52,126 2 -271345 cd14942 TRAPPC3_bet3 3 ligand binding site 0 1 1 0 4,40,41,44,50,51,52,53,54,58,59,62,63,67,68,71,72,115,116,119,120,123,124,129 5 -271345 cd14942 TRAPPC3_bet3 4 acylation site C 1 1 0 53 6 -271346 cd14943 TRAPPC5_Trs31 1 BET3 interface 0 1 1 0 0,1,2,3,4,5,7,8,10,11,15,29,33,37,40,41,44,71,72,74,75,118 2 -271346 cd14943 TRAPPC5_Trs31 2 sedlin interface 0 1 1 0 40,42,43,46,52,53,54,55,56,129,132 2 -271347 cd14944 TRAPPC6A_Trs33 1 BET3 interface 0 1 1 0 3,4,6,7,8,10,11,14,42,46,49,50,53,54,57,82,85,105,131 2 -271347 cd14944 TRAPPC6A_Trs33 2 synbindin interface 0 1 1 0 2,5,9,110,111,124,128 2 -271340 cd14949 Asparaginase_2_like_3 1 active site GNT[VI]TGxR[SG]DSGG 0 1 1 6,60,154,155,172,174,175,182,184,185,186,204,206 1 -271340 cd14949 Asparaginase_2_like_3 2 catalytic nucleophile T 0 1 1 154 1 -271340 cd14949 Asparaginase_2_like_3 3 putative dimer interface 0 0 1 1 118,181,182,183,193,207,210,216,217 2 -271341 cd14950 Asparaginase_2_like_2 1 active site [GA][DN]TVTG[IVLT]RG[DA][STA]GG 0 1 1 5,57,128,129,146,148,149,156,158,159,160,179,181 1 -271341 cd14950 Asparaginase_2_like_2 2 catalytic nucleophile T 0 1 1 128 1 -271341 cd14950 Asparaginase_2_like_2 3 putative dimer interface 0 0 1 1 116,155,156,157,168,182,185,191,192 2 -271321 cd14951 NHL-2_like 1 NHL repeat 0 0 0 0 20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -271321 cd14951 NHL-2_like 2 NHL repeat 0 0 0 0 78,79,80,81,82,83,84,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,111,112,113,114,115,116,117,118 7 -271321 cd14951 NHL-2_like 3 NHL repeat 0 0 0 0 135,136,137,138,139,140,141,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,161,162,163,164,165,176,177,178,179,180,181,182 7 -271321 cd14951 NHL-2_like 4 NHL repeat 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,215,216,217,218,219,220,221,222,223,227,228,229,230,231,232,233,234 7 -271321 cd14951 NHL-2_like 5 NHL repeat 0 0 0 0 248,249,250,251,252,253,254,255,256,257,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,279,280,281,282 7 -271321 cd14951 NHL-2_like 6 NHL repeat 0 0 0 1 292,293,294,295,296,297,298,299,300,307,308,309,310,311,312,313,314,327,328,329,330,331,332,333 7 -271322 cd14952 NHL_PKND_like 1 NHL repeat 0 0 0 0 11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,42,43,44,45,46,47 7 -271322 cd14952 NHL_PKND_like 2 NHL repeat 0 0 0 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,71,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92 7 -271322 cd14952 NHL_PKND_like 3 NHL repeat 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -271322 cd14952 NHL_PKND_like 4 NHL repeat 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,163,164,165,168,169,170,171,172,173,174 7 -271322 cd14952 NHL_PKND_like 5 NHL repeat 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,190,191,192,193,194,195,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,214 7 -271322 cd14952 NHL_PKND_like 6 NHL repeat 0 0 0 1 219,220,221,222,223,224,225,226,227,228,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246 7 -271323 cd14953 NHL_like_1 1 NHL repeat 0 0 0 0 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,61,62,63,64,65 7 -271323 cd14953 NHL_like_1 2 NHL repeat 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -271323 cd14953 NHL_like_1 3 NHL repeat 0 0 0 0 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169 7 -271323 cd14953 NHL_like_1 4 NHL repeat 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,197,198,199,200,201,202,203,206,207,208,209,210,211,212,213,214,219,220,221,222,223,224,225 7 -271323 cd14953 NHL_like_1 5 NHL repeat 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,261,262,263,264,265,266,267,268,269,270,271,272 7 -271323 cd14953 NHL_like_1 6 NHL repeat 0 0 0 1 296,297,298,299,300,301,302,303,304,307,308,309,310,311,312,313,314,316,317,318,319,320,321,322 7 -271324 cd14954 NHL_TRIM71_like 1 NHL repeat 0 0 0 0 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -271324 cd14954 NHL_TRIM71_like 2 NHL repeat 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -271324 cd14954 NHL_TRIM71_like 3 NHL repeat 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -271324 cd14954 NHL_TRIM71_like 4 NHL repeat 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -271324 cd14954 NHL_TRIM71_like 5 NHL repeat 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,236,237,238,239,240,241,242 7 -271324 cd14954 NHL_TRIM71_like 6 NHL repeat 0 0 0 1 258,259,260,261,262,263,264,265,266,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -271325 cd14955 NHL_like_4 1 NHL repeat 0 0 0 0 17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,52,53,54,55,56 7 -271325 cd14955 NHL_like_4 2 NHL repeat 0 0 0 0 64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,82,83,84,85,86,87,88,89,90,91,92,93,96,97,98,99,100,101,102,103 7 -271325 cd14955 NHL_like_4 3 NHL repeat 0 0 0 0 111,112,113,114,115,116,117,121,122,123,124,125,126,129,130,131,132,133,134,135,136,137,138,139,141,142,143,144,145,146,147 7 -271325 cd14955 NHL_like_4 4 NHL repeat 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184,189,190,191,192,193,194,195 7 -271325 cd14955 NHL_like_4 5 NHL repeat 0 0 0 0 204,205,206,207,208,209,210,211,212,213,216,217,218,219,220,221,225,226,227,228,229,238,239,240,241 7 -271325 cd14955 NHL_like_4 6 NHL repeat 0 0 0 1 250,251,252,253,254,255,256,257,258,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276 7 -271326 cd14956 NHL_like_3 1 NHL repeat 0 0 0 0 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,47,48,49,50,51,52,53 7 -271326 cd14956 NHL_like_3 2 NHL repeat 0 0 0 0 61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,90,92,93,94,95,96,97,98,99,100 7 -271326 cd14956 NHL_like_3 3 NHL repeat 0 0 0 0 108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -271326 cd14956 NHL_like_3 4 NHL repeat 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -271326 cd14956 NHL_like_3 5 NHL repeat 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,229,230,231,232,233,234,235,236,237,238 7 -271326 cd14956 NHL_like_3 6 NHL repeat 0 0 0 1 247,248,249,250,251,252,253,254,255,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273 7 -271327 cd14957 NHL_like_2 1 NHL repeat 0 0 0 0 19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58 7 -271327 cd14957 NHL_like_2 2 NHL repeat 0 0 0 0 66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,104,105 7 -271327 cd14957 NHL_like_2 3 NHL repeat 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149 7 -271327 cd14957 NHL_like_2 4 NHL repeat 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,191,192,193,194,195,196,197 7 -271327 cd14957 NHL_like_2 5 NHL repeat 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236 7 -271327 cd14957 NHL_like_2 6 NHL repeat 0 0 0 1 252,253,254,255,256,257,258,259,260,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279 7 -271328 cd14958 NHL_PAL_like 1 active site HxYxHRH 1 1 1 78,127,146,147,178,193,275 1 -271328 cd14958 NHL_PAL_like 2 polypeptide substrate binding site xxHYHRxH 1 1 0 30,35,78,146,178,193,273,275 2 -271328 cd14958 NHL_PAL_like 3 Zn binding site HHH 1 1 0 78,178,275 4 -271328 cd14958 NHL_PAL_like 4 Ca binding site 0 1 1 0 17,80,131,276 4 -271328 cd14958 NHL_PAL_like 5 NHL repeat 0 0 0 0 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,39,40,41,43,44,45,46,47,49,50,51,52,55,56,57,58,59,60,61,62,63,67,68,69,70,71 7 -271328 cd14958 NHL_PAL_like 6 NHL repeat 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,110,111,112,113,114,115,116,117,118 7 -271328 cd14958 NHL_PAL_like 7 NHL repeat 0 0 0 0 129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -271328 cd14958 NHL_PAL_like 8 NHL repeat 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -271328 cd14958 NHL_PAL_like 9 NHL repeat 0 0 0 0 218,219,220,221,222,223,224,225,226,227,230,231,232,233,234,235,244,245,246,247,248,260,261,262,263 7 -271328 cd14958 NHL_PAL_like 10 NHL repeat 0 0 0 1 272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,292,293,294,295,296,297,298 7 -271329 cd14959 NHL_brat_like 1 putative Pumilio binding site 0 0 1 1 14,15,16,17,18,19,20,42,61,62,63,64,69,87 2 -271329 cd14959 NHL_brat_like 2 NHL repeat 0 0 0 0 23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58,59 7 -271329 cd14959 NHL_brat_like 3 NHL repeat 0 0 0 0 70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -271329 cd14959 NHL_brat_like 4 NHL repeat 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -271329 cd14959 NHL_brat_like 5 NHL repeat 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -271329 cd14959 NHL_brat_like 6 NHL repeat 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238 7 -271329 cd14959 NHL_brat_like 7 NHL repeat 0 0 0 1 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270 7 -271330 cd14960 NHL_TRIM2_like 1 NHL repeat 0 0 0 0 18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57 7 -271330 cd14960 NHL_TRIM2_like 2 NHL repeat 0 0 0 0 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,94,97,98,99,100,101,102,103,104 7 -271330 cd14960 NHL_TRIM2_like 3 NHL repeat 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -271330 cd14960 NHL_TRIM2_like 4 NHL repeat 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192 7 -271330 cd14960 NHL_TRIM2_like 5 NHL repeat 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,221,222,223,224,225,230,231,232,233,234,235,236,237,238,239,240 7 -271330 cd14960 NHL_TRIM2_like 6 NHL repeat 0 0 0 1 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -271331 cd14961 NHL_TRIM32_like 1 NHL repeat 0 0 0 0 12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,45,46,47,48,49,50,51 7 -271331 cd14961 NHL_TRIM32_like 2 NHL repeat 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,91,92,93,94,95,96,97,98 7 -271331 cd14961 NHL_TRIM32_like 3 NHL repeat 0 0 0 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,134,135,136,137,138,139,140,141 7 -271331 cd14961 NHL_TRIM32_like 4 NHL repeat 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,172,173,174,175,176,177,178,179,180,184,185,186,187,188,189,190,191,192,193,194 7 -271331 cd14961 NHL_TRIM32_like 5 NHL repeat 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,221,223,224,225,226,227,228,229,231,232,233,234 7 -271331 cd14961 NHL_TRIM32_like 6 NHL repeat 0 0 0 1 245,246,247,248,249,250,251,252,253,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -271332 cd14962 NHL_like_6 1 NHL repeat 0 0 0 0 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -271332 cd14962 NHL_like_6 2 NHL repeat 0 0 0 0 58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -271332 cd14962 NHL_like_6 3 NHL repeat 0 0 0 0 101,102,103,104,105,106,107,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -271332 cd14962 NHL_like_6 4 NHL repeat 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -271332 cd14962 NHL_like_6 5 NHL repeat 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -271332 cd14962 NHL_like_6 6 NHL repeat 0 0 0 1 241,242,243,244,245,246,247,248,249,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -271333 cd14963 NHL_like_5 1 NHL repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,42,43,44,45,46,47,48,49 7 -271333 cd14963 NHL_like_5 2 NHL repeat 0 0 0 0 57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -271333 cd14963 NHL_like_5 3 NHL repeat 0 0 0 0 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -271333 cd14963 NHL_like_5 4 NHL repeat 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,183,184,185,186 7 -271333 cd14963 NHL_like_5 5 NHL repeat 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,228,229,230,231,232,233,234,235 7 -271333 cd14963 NHL_like_5 6 NHL repeat 0 0 0 1 241,242,243,244,245,246,247,248,249,250,252,253,254,255,256,257,258,259,261,262,263,264,265,266,267 7 -341315 cd14964 7tm_GPCRs 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -341315 cd14964 7tm_GPCRs 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -341315 cd14964 7tm_GPCRs 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341315 cd14964 7tm_GPCRs 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341315 cd14964 7tm_GPCRs 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341315 cd14964 7tm_GPCRs 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -341315 cd14964 7tm_GPCRs 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320096 cd14965 7tm_Opsins_type1 1 ligand binding site 0 1 1 0 73,76,77,105,109,125,128,129,132,169,172,173,176,198,201,202 5 -320096 cd14965 7tm_Opsins_type1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -320096 cd14965 7tm_Opsins_type1 3 TM helix 2 0 0 0 0 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -320096 cd14965 7tm_Opsins_type1 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 7 -320096 cd14965 7tm_Opsins_type1 5 TM helix 4 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320096 cd14965 7tm_Opsins_type1 6 TM helix 5 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320096 cd14965 7tm_Opsins_type1 7 TM helix 6 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320096 cd14965 7tm_Opsins_type1 8 TM helix 7 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320097 cd14966 7tmD_STE3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320097 cd14966 7tmD_STE3 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -320097 cd14966 7tmD_STE3 3 TM helix 3 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -320097 cd14966 7tmD_STE3 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320097 cd14966 7tmD_STE3 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320097 cd14966 7tmD_STE3 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320097 cd14966 7tmD_STE3 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320098 cd14967 7tmA_amine_R-like 1 ligand binding site 0 1 1 0 74,78,79,82,83,159,162,163,166,206,209,210,213,229,233,237 5 -320098 cd14967 7tmA_amine_R-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320098 cd14967 7tmA_amine_R-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60 7 -320098 cd14967 7tmA_amine_R-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320098 cd14967 7tmA_amine_R-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320098 cd14967 7tmA_amine_R-like 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320098 cd14967 7tmA_amine_R-like 7 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320098 cd14967 7tmA_amine_R-like 8 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -341316 cd14968 7tmA_Adenosine_R 1 ligand binding site 0 1 1 0 78,155,156,164,232,235,236,239,255,256,259 5 -341316 cd14968 7tmA_Adenosine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341316 cd14968 7tmA_Adenosine_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -341316 cd14968 7tmA_Adenosine_R 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341316 cd14968 7tmA_Adenosine_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341316 cd14968 7tmA_Adenosine_R 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -341316 cd14968 7tmA_Adenosine_R 7 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -341316 cd14968 7tmA_Adenosine_R 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320100 cd14969 7tmA_Opsins_type2_animals 1 ligand binding site 0 1 1 0 75,79,80,83,84,148,149,150,151,167,168,172,231,235,258,262 5 -320100 cd14969 7tmA_Opsins_type2_animals 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320100 cd14969 7tmA_Opsins_type2_animals 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61 7 -320100 cd14969 7tmA_Opsins_type2_animals 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320100 cd14969 7tmA_Opsins_type2_animals 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320100 cd14969 7tmA_Opsins_type2_animals 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320100 cd14969 7tmA_Opsins_type2_animals 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320100 cd14969 7tmA_Opsins_type2_animals 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320101 cd14970 7tmA_Opioid_R-like 1 putative ligand binding pocket 0 1 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,227,230,231,233,234,237,248,249,251,252,253,256,259,260 5 -320101 cd14970 7tmA_Opioid_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320101 cd14970 7tmA_Opioid_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320101 cd14970 7tmA_Opioid_R-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320101 cd14970 7tmA_Opioid_R-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320101 cd14970 7tmA_Opioid_R-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320101 cd14970 7tmA_Opioid_R-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320101 cd14970 7tmA_Opioid_R-like 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320102 cd14971 7tmA_Galanin_R-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,226,229,230,232,233,236,247,248,250,251,252,255,258,259 2 -320102 cd14971 7tmA_Galanin_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320102 cd14971 7tmA_Galanin_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320102 cd14971 7tmA_Galanin_R-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320102 cd14971 7tmA_Galanin_R-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320102 cd14971 7tmA_Galanin_R-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320102 cd14971 7tmA_Galanin_R-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320102 cd14971 7tmA_Galanin_R-like 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -341317 cd14972 7tmA_EDG-like 1 ligand binding site 0 1 1 0 53,72,73,76,77,80,160,222,229,246,249 5 -341317 cd14972 7tmA_EDG-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -341317 cd14972 7tmA_EDG-like 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -341317 cd14972 7tmA_EDG-like 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -341317 cd14972 7tmA_EDG-like 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -341317 cd14972 7tmA_EDG-like 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -341317 cd14972 7tmA_EDG-like 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341317 cd14972 7tmA_EDG-like 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320104 cd14973 7tmA_Mrgpr 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,155,158,159,160,162,163,164,166,167,204,207,208,210,211,214,222,223,225,226,227,230,233,234 2 -320104 cd14973 7tmA_Mrgpr 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320104 cd14973 7tmA_Mrgpr 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320104 cd14973 7tmA_Mrgpr 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320104 cd14973 7tmA_Mrgpr 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320104 cd14973 7tmA_Mrgpr 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320104 cd14973 7tmA_Mrgpr 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320104 cd14973 7tmA_Mrgpr 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 1 putative ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,219,222,223,225,226,229,240,241,243,244,245,248,251,252 5 -320105 cd14974 7tmA_Anaphylatoxin_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320106 cd14975 7tmA_LTB4R 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,158,161,162,163,165,166,167,169,170,214,217,218,220,221,224,243,244,246,247,248,251,254,255 5 -320106 cd14975 7tmA_LTB4R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320106 cd14975 7tmA_LTB4R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320106 cd14975 7tmA_LTB4R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320106 cd14975 7tmA_LTB4R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320106 cd14975 7tmA_LTB4R 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320106 cd14975 7tmA_LTB4R 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320106 cd14975 7tmA_LTB4R 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320107 cd14976 7tmA_RNL3R 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,169,172,173,174,176,177,178,180,181,228,231,232,234,235,238,256,257,259,260,261,264,267,268 2 -320107 cd14976 7tmA_RNL3R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320107 cd14976 7tmA_RNL3R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320107 cd14976 7tmA_RNL3R 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320107 cd14976 7tmA_RNL3R 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320107 cd14976 7tmA_RNL3R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320107 cd14976 7tmA_RNL3R 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320107 cd14976 7tmA_RNL3R 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320108 cd14977 7tmA_ET_R-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,167,170,171,172,174,175,176,178,179,233,236,237,239,240,243,258,259,261,262,263,266,269,270 2 -320108 cd14977 7tmA_ET_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320108 cd14977 7tmA_ET_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60 7 -320108 cd14977 7tmA_ET_R-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320108 cd14977 7tmA_ET_R-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320108 cd14977 7tmA_ET_R-like 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320108 cd14977 7tmA_ET_R-like 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320108 cd14977 7tmA_ET_R-like 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320109 cd14978 7tmA_FMRFamide_R-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,76,77,78,79,80,81,83,84,87,132,134,135,136,137,138,171,174,175,176,178,179,180,182,183,242,245,246,248,249,252,265,266,268,269,270,273,276,277 5 -320109 cd14978 7tmA_FMRFamide_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320109 cd14978 7tmA_FMRFamide_R-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320109 cd14978 7tmA_FMRFamide_R-like 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320109 cd14978 7tmA_FMRFamide_R-like 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320109 cd14978 7tmA_FMRFamide_R-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320109 cd14978 7tmA_FMRFamide_R-like 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320109 cd14978 7tmA_FMRFamide_R-like 8 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320110 cd14979 7tmA_NTSR-like 1 peptide ligand binding site 0 1 1 0 60,77,139,157,158,159,160,248,249,252,253,266,270 2 -320110 cd14979 7tmA_NTSR-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320110 cd14979 7tmA_NTSR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60 7 -320110 cd14979 7tmA_NTSR-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320110 cd14979 7tmA_NTSR-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320110 cd14979 7tmA_NTSR-like 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320110 cd14979 7tmA_NTSR-like 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320110 cd14979 7tmA_NTSR-like 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,80,81,82,83,84,85,87,88,91,135,137,138,139,140,141,170,173,174,175,177,178,179,181,182,233,236,237,239,240,243,252,253,255,256,257,260,263,264 2 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 4 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 8 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320112 cd14981 7tmA_Prostanoid_R 1 putative ligand binding pocket 0 0 1 1 58,61,62,75,76,77,78,79,80,82,83,86,131,133,134,135,136,137,163,166,167,168,170,171,172,174,175,235,238,239,241,242,245,253,254,256,257,258,261,264,265 5 -320112 cd14981 7tmA_Prostanoid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320112 cd14981 7tmA_Prostanoid_R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320112 cd14981 7tmA_Prostanoid_R 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320112 cd14981 7tmA_Prostanoid_R 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320112 cd14981 7tmA_Prostanoid_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320112 cd14981 7tmA_Prostanoid_R 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320112 cd14981 7tmA_Prostanoid_R 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -341318 cd14982 7tmA_purinoceptor-like 1 putative ligand binding pocket 0 1 1 1 55,58,59,72,73,74,75,76,77,79,80,83,84,127,128,130,131,132,133,134,149,150,151,152,161,164,165,166,168,169,170,172,173,222,225,226,228,229,232,249,250,252,253,254,257,260,261 5 -341318 cd14982 7tmA_purinoceptor-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341318 cd14982 7tmA_purinoceptor-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341318 cd14982 7tmA_purinoceptor-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341318 cd14982 7tmA_purinoceptor-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341318 cd14982 7tmA_purinoceptor-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341318 cd14982 7tmA_purinoceptor-like 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341318 cd14982 7tmA_purinoceptor-like 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -341318 cd14982 7tmA_purinoceptor-like 9 temp lbs 0 0 0 0 58,72,76,77,80,81,84,127,130,131,133,134,149,150,151,152,162,165,166,169,228,229,232,249,250,252,253,257 0 -320114 cd14983 7tmA_FFAR 1 putative ligand binding pocket 0 1 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,168,171,172,173,175,176,177,179,180,226,229,230,232,233,236,242,243,245,246,247,250,253,254 5 -320114 cd14983 7tmA_FFAR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320114 cd14983 7tmA_FFAR 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320114 cd14983 7tmA_FFAR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320114 cd14983 7tmA_FFAR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320114 cd14983 7tmA_FFAR 6 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320114 cd14983 7tmA_FFAR 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320114 cd14983 7tmA_FFAR 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -341319 cd14984 7tmA_Chemokine_R 1 chemokine binding site 0 1 1 1 6,55,58,74,77,78,147,148,149,150,151,152,160,163,164,219,226,229,241,245,248,249,252 2 -341319 cd14984 7tmA_Chemokine_R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341319 cd14984 7tmA_Chemokine_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341319 cd14984 7tmA_Chemokine_R 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341319 cd14984 7tmA_Chemokine_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341319 cd14984 7tmA_Chemokine_R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341319 cd14984 7tmA_Chemokine_R 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -341319 cd14984 7tmA_Chemokine_R 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341320 cd14985 7tmA_Angiotensin_R-like 1 putative peptide ligand binding pocket 0 1 1 1 6,55,58,59,63,76,79,80,83,134,138,153,223,226,258,262 2 -341320 cd14985 7tmA_Angiotensin_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341320 cd14985 7tmA_Angiotensin_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341320 cd14985 7tmA_Angiotensin_R-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341320 cd14985 7tmA_Angiotensin_R-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341320 cd14985 7tmA_Angiotensin_R-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341320 cd14985 7tmA_Angiotensin_R-like 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -341320 cd14985 7tmA_Angiotensin_R-like 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320117 cd14986 7tmA_Vasopressin-like 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,158,161,162,163,165,166,167,169,170,242,245,246,248,249,252,261,262,264,265,266,269,272,273 2 -320117 cd14986 7tmA_Vasopressin-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320117 cd14986 7tmA_Vasopressin-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61 7 -320117 cd14986 7tmA_Vasopressin-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320117 cd14986 7tmA_Vasopressin-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320117 cd14986 7tmA_Vasopressin-like 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320117 cd14986 7tmA_Vasopressin-like 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320117 cd14986 7tmA_Vasopressin-like 8 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320118 cd14987 7tmA_ACKR3_CXCR7 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,164,167,168,169,171,172,173,175,176,220,223,224,226,227,230,248,249,251,252,253,256,259,260 2 -320118 cd14987 7tmA_ACKR3_CXCR7 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320118 cd14987 7tmA_ACKR3_CXCR7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320118 cd14987 7tmA_ACKR3_CXCR7 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320118 cd14987 7tmA_ACKR3_CXCR7 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320118 cd14987 7tmA_ACKR3_CXCR7 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320118 cd14987 7tmA_ACKR3_CXCR7 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320118 cd14987 7tmA_ACKR3_CXCR7 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320119 cd14988 7tmA_GPR182 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,217,220,221,223,224,227,244,245,247,248,249,252,255,256 5 -320119 cd14988 7tmA_GPR182 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320119 cd14988 7tmA_GPR182 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320119 cd14988 7tmA_GPR182 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320119 cd14988 7tmA_GPR182 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320119 cd14988 7tmA_GPR182 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320119 cd14988 7tmA_GPR182 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320119 cd14988 7tmA_GPR182 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320120 cd14989 7tmA_GPER1 1 putative ligand binding pocket 0 0 1 1 55,58,59,70,71,72,73,74,75,77,78,81,126,128,129,130,131,132,151,154,155,156,158,159,160,162,163,212,215,216,218,219,222,242,243,245,246,247,250,253,254 5 -320120 cd14989 7tmA_GPER1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320120 cd14989 7tmA_GPER1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320120 cd14989 7tmA_GPER1 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320120 cd14989 7tmA_GPER1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320120 cd14989 7tmA_GPER1 6 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320120 cd14989 7tmA_GPER1 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320120 cd14989 7tmA_GPER1 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320121 cd14990 7tmA_GPR146 1 putative ligand binding pocket 0 0 1 1 55,58,59,75,76,77,78,79,80,82,83,86,128,130,131,132,133,134,156,159,160,161,163,164,165,167,168,218,221,222,224,225,228,246,247,249,250,251,254,257,258 5 -320121 cd14990 7tmA_GPR146 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320121 cd14990 7tmA_GPR146 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320121 cd14990 7tmA_GPR146 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320121 cd14990 7tmA_GPR146 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320121 cd14990 7tmA_GPR146 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320121 cd14990 7tmA_GPR146 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320121 cd14990 7tmA_GPR146 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320122 cd14991 7tmA_HCAR-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,221,224,225,227,228,231,246,247,249,250,251,254,257,258 5 -320122 cd14991 7tmA_HCAR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320122 cd14991 7tmA_HCAR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320122 cd14991 7tmA_HCAR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320122 cd14991 7tmA_HCAR-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320122 cd14991 7tmA_HCAR-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320122 cd14991 7tmA_HCAR-like 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320122 cd14991 7tmA_HCAR-like 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320123 cd14992 7tmA_TACR_family 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,166,169,170,171,173,174,175,177,178,235,238,239,241,242,245,257,258,260,261,262,265,268,269 2 -320123 cd14992 7tmA_TACR_family 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320123 cd14992 7tmA_TACR_family 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57 7 -320123 cd14992 7tmA_TACR_family 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320123 cd14992 7tmA_TACR_family 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320123 cd14992 7tmA_TACR_family 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320123 cd14992 7tmA_TACR_family 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320123 cd14992 7tmA_TACR_family 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320124 cd14993 7tmA_CCKR-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,166,169,170,171,173,174,175,177,178,238,241,242,244,245,248,262,263,265,266,267,270,273,274 2 -320124 cd14993 7tmA_CCKR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320124 cd14993 7tmA_CCKR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320124 cd14993 7tmA_CCKR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320124 cd14993 7tmA_CCKR-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320124 cd14993 7tmA_CCKR-like 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320124 cd14993 7tmA_CCKR-like 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320124 cd14993 7tmA_CCKR-like 8 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320125 cd14994 7tmA_GPR141 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,160,163,164,165,167,168,169,171,172,221,224,225,227,228,231,240,241,243,244,245,248,251,252 5 -320125 cd14994 7tmA_GPR141 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320125 cd14994 7tmA_GPR141 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320125 cd14994 7tmA_GPR141 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320125 cd14994 7tmA_GPR141 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320125 cd14994 7tmA_GPR141 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320125 cd14994 7tmA_GPR141 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320125 cd14994 7tmA_GPR141 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320126 cd14995 7tmA_TRH-R 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,164,167,168,169,171,172,173,175,176,216,219,220,222,223,226,235,236,238,239,240,243,246,247 2 -320126 cd14995 7tmA_TRH-R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320126 cd14995 7tmA_TRH-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59 7 -320126 cd14995 7tmA_TRH-R 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320126 cd14995 7tmA_TRH-R 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320126 cd14995 7tmA_TRH-R 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320126 cd14995 7tmA_TRH-R 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320126 cd14995 7tmA_TRH-R 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320127 cd14996 7tmA_GPR82 1 putative ligand binding pocket 0 0 1 1 55,58,59,76,77,78,79,80,81,83,84,87,148,150,151,152,153,154,183,186,187,188,190,191,192,194,195,246,249,250,252,253,256,271,272,274,275,276,279,282,283 5 -320127 cd14996 7tmA_GPR82 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320127 cd14996 7tmA_GPR82 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320127 cd14996 7tmA_GPR82 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320127 cd14996 7tmA_GPR82 5 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320127 cd14996 7tmA_GPR82 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320127 cd14996 7tmA_GPR82 7 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320127 cd14996 7tmA_GPR82 8 TM helix 7 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -320128 cd14997 7tmA_ETH-R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,164,167,168,169,171,172,173,175,176,234,237,238,240,241,244,260,261,263,264,265,268,271,272 2 -320128 cd14997 7tmA_ETH-R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320128 cd14997 7tmA_ETH-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320128 cd14997 7tmA_ETH-R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320128 cd14997 7tmA_ETH-R 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320128 cd14997 7tmA_ETH-R 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320128 cd14997 7tmA_ETH-R 7 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320128 cd14997 7tmA_ETH-R 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320129 cd14998 7tmA_GPR153_GPR162-like 1 putative ligand binding pocket 0 0 1 1 54,57,58,75,76,77,78,79,80,82,83,86,131,133,134,135,136,137,162,165,166,167,169,170,171,173,174,249,252,253,255,256,259,267,268,270,271,272,275,278,279 5 -320129 cd14998 7tmA_GPR153_GPR162-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320129 cd14998 7tmA_GPR153_GPR162-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320129 cd14998 7tmA_GPR153_GPR162-like 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320129 cd14998 7tmA_GPR153_GPR162-like 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320129 cd14998 7tmA_GPR153_GPR162-like 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320129 cd14998 7tmA_GPR153_GPR162-like 7 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320129 cd14998 7tmA_GPR153_GPR162-like 8 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320130 cd14999 7tmA_UII-R 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,70,71,72,73,74,75,77,78,81,125,127,128,129,130,131,160,163,164,165,167,168,169,171,172,225,228,229,231,232,235,248,249,251,252,253,256,259,260 2 -320130 cd14999 7tmA_UII-R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320130 cd14999 7tmA_UII-R 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320130 cd14999 7tmA_UII-R 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320130 cd14999 7tmA_UII-R 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320130 cd14999 7tmA_UII-R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320130 cd14999 7tmA_UII-R 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320130 cd14999 7tmA_UII-R 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320131 cd15000 7tmA_BNGR-A34-like 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,125,127,128,129,130,131,157,160,161,162,164,165,166,168,169,224,227,228,230,231,234,251,252,254,255,256,259,262,263 2 -320131 cd15000 7tmA_BNGR-A34-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320131 cd15000 7tmA_BNGR-A34-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320131 cd15000 7tmA_BNGR-A34-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320131 cd15000 7tmA_BNGR-A34-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320131 cd15000 7tmA_BNGR-A34-like 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320131 cd15000 7tmA_BNGR-A34-like 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320131 cd15000 7tmA_BNGR-A34-like 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320132 cd15001 7tmA_GPRnna14-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,209,212,213,215,216,219,232,233,235,236,237,240,243,244 5 -320132 cd15001 7tmA_GPRnna14-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320132 cd15001 7tmA_GPRnna14-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320132 cd15001 7tmA_GPRnna14-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320132 cd15001 7tmA_GPRnna14-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320132 cd15001 7tmA_GPRnna14-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320132 cd15001 7tmA_GPRnna14-like 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320132 cd15001 7tmA_GPRnna14-like 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320133 cd15002 7tmA_GPR151 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,246,247,249,250,251,254,257,258 5 -320133 cd15002 7tmA_GPR151 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320133 cd15002 7tmA_GPR151 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60 7 -320133 cd15002 7tmA_GPR151 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320133 cd15002 7tmA_GPR151 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320133 cd15002 7tmA_GPR151 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320133 cd15002 7tmA_GPR151 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320133 cd15002 7tmA_GPR151 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320134 cd15005 7tmA_SREB-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,158,161,162,163,165,166,167,169,170,276,279,280,282,283,286,295,296,298,299,300,303,306,307 5 -320134 cd15005 7tmA_SREB-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320134 cd15005 7tmA_SREB-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320134 cd15005 7tmA_SREB-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320134 cd15005 7tmA_SREB-like 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320134 cd15005 7tmA_SREB-like 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320134 cd15005 7tmA_SREB-like 7 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320134 cd15005 7tmA_SREB-like 8 TM helix 7 0 0 0 0 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321 7 -320135 cd15006 7tmA_GPR176 1 putative ligand binding pocket 0 0 1 1 55,58,59,74,75,76,77,78,79,81,82,85,128,130,131,132,133,134,159,162,163,164,166,167,168,170,171,236,239,240,242,243,246,255,256,258,259,260,263,266,267 5 -320135 cd15006 7tmA_GPR176 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320135 cd15006 7tmA_GPR176 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320135 cd15006 7tmA_GPR176 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320135 cd15006 7tmA_GPR176 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320135 cd15006 7tmA_GPR176 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320135 cd15006 7tmA_GPR176 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320135 cd15006 7tmA_GPR176 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320136 cd15007 7tmA_GPR75 1 putative ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,129,131,132,133,134,135,155,158,159,160,162,163,164,166,167,207,210,211,213,214,217,227,228,230,231,232,235,238,239 5 -320136 cd15007 7tmA_GPR75 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320136 cd15007 7tmA_GPR75 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320136 cd15007 7tmA_GPR75 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320136 cd15007 7tmA_GPR75 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320136 cd15007 7tmA_GPR75 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320136 cd15007 7tmA_GPR75 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320136 cd15007 7tmA_GPR75 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320137 cd15008 7tmA_GPR19 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,125,127,128,129,130,131,153,156,157,158,160,161,162,164,165,222,225,226,228,229,232,241,242,244,245,246,249,252,253 5 -320137 cd15008 7tmA_GPR19 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320137 cd15008 7tmA_GPR19 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320137 cd15008 7tmA_GPR19 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320137 cd15008 7tmA_GPR19 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320137 cd15008 7tmA_GPR19 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320137 cd15008 7tmA_GPR19 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320137 cd15008 7tmA_GPR19 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320138 cd15010 7tmA_ACKR1_DARC 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,69,70,71,72,73,74,76,77,80,118,120,121,122,123,124,147,150,151,152,154,155,156,158,159,193,196,197,199,200,203,222,223,225,226,227,230,233,234 2 -320138 cd15010 7tmA_ACKR1_DARC 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320138 cd15010 7tmA_ACKR1_DARC 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320138 cd15010 7tmA_ACKR1_DARC 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320138 cd15010 7tmA_ACKR1_DARC 5 TM helix 4 0 0 0 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320138 cd15010 7tmA_ACKR1_DARC 6 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320138 cd15010 7tmA_ACKR1_DARC 7 TM helix 6 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -320138 cd15010 7tmA_ACKR1_DARC 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320139 cd15011 7tmA_GPR149 1 putative ligand binding pocket 0 0 1 1 54,57,58,68,69,70,71,72,73,75,76,79,124,126,127,128,129,130,156,159,160,161,163,164,165,167,168,204,207,208,210,211,214,221,222,224,225,226,229,232,233 5 -320139 cd15011 7tmA_GPR149 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320139 cd15011 7tmA_GPR149 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320139 cd15011 7tmA_GPR149 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320139 cd15011 7tmA_GPR149 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320139 cd15011 7tmA_GPR149 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320139 cd15011 7tmA_GPR149 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320139 cd15011 7tmA_GPR149 8 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320140 cd15012 7tmA_Trissin_R 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,220,223,224,226,227,230,243,244,246,247,248,251,254,255 2 -320140 cd15012 7tmA_Trissin_R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320140 cd15012 7tmA_Trissin_R 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320140 cd15012 7tmA_Trissin_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320140 cd15012 7tmA_Trissin_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320140 cd15012 7tmA_Trissin_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320140 cd15012 7tmA_Trissin_R 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320140 cd15012 7tmA_Trissin_R 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320141 cd15013 7tm_TAS2R4 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320141 cd15013 7tm_TAS2R4 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320141 cd15013 7tm_TAS2R4 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320141 cd15013 7tm_TAS2R4 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320141 cd15013 7tm_TAS2R4 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320141 cd15013 7tm_TAS2R4 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320141 cd15013 7tm_TAS2R4 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320142 cd15014 7tm_TAS2R40 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320142 cd15014 7tm_TAS2R40 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320142 cd15014 7tm_TAS2R40 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320142 cd15014 7tm_TAS2R40 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320142 cd15014 7tm_TAS2R40 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320142 cd15014 7tm_TAS2R40 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320142 cd15014 7tm_TAS2R40 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320143 cd15015 7tm_TAS2R39 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320143 cd15015 7tm_TAS2R39 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320143 cd15015 7tm_TAS2R39 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320143 cd15015 7tm_TAS2R39 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320143 cd15015 7tm_TAS2R39 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320143 cd15015 7tm_TAS2R39 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320143 cd15015 7tm_TAS2R39 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320144 cd15016 7tm_TAS2R1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320144 cd15016 7tm_TAS2R1 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320144 cd15016 7tm_TAS2R1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320144 cd15016 7tm_TAS2R1 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320144 cd15016 7tm_TAS2R1 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320144 cd15016 7tm_TAS2R1 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320144 cd15016 7tm_TAS2R1 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320145 cd15017 7tm_TAS2R16 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320145 cd15017 7tm_TAS2R16 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320145 cd15017 7tm_TAS2R16 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320145 cd15017 7tm_TAS2R16 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320145 cd15017 7tm_TAS2R16 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320145 cd15017 7tm_TAS2R16 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320145 cd15017 7tm_TAS2R16 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320146 cd15018 7tm_TAS2R41-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320146 cd15018 7tm_TAS2R41-like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320146 cd15018 7tm_TAS2R41-like 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320146 cd15018 7tm_TAS2R41-like 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320146 cd15018 7tm_TAS2R41-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320146 cd15018 7tm_TAS2R41-like 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320146 cd15018 7tm_TAS2R41-like 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320147 cd15019 7tm_TAS2R14-like 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320147 cd15019 7tm_TAS2R14-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320147 cd15019 7tm_TAS2R14-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320147 cd15019 7tm_TAS2R14-like 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320147 cd15019 7tm_TAS2R14-like 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320147 cd15019 7tm_TAS2R14-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320147 cd15019 7tm_TAS2R14-like 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320148 cd15020 7tm_TAS2R3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320148 cd15020 7tm_TAS2R3 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320148 cd15020 7tm_TAS2R3 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320148 cd15020 7tm_TAS2R3 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320148 cd15020 7tm_TAS2R3 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320148 cd15020 7tm_TAS2R3 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320148 cd15020 7tm_TAS2R3 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320149 cd15021 7tm_TAS2R10 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320149 cd15021 7tm_TAS2R10 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320149 cd15021 7tm_TAS2R10 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320149 cd15021 7tm_TAS2R10 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320149 cd15021 7tm_TAS2R10 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320149 cd15021 7tm_TAS2R10 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320149 cd15021 7tm_TAS2R10 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320150 cd15022 7tm_TAS2R8 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320150 cd15022 7tm_TAS2R8 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320150 cd15022 7tm_TAS2R8 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320150 cd15022 7tm_TAS2R8 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320150 cd15022 7tm_TAS2R8 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320150 cd15022 7tm_TAS2R8 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320150 cd15022 7tm_TAS2R8 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320151 cd15023 7tm_TAS2R7-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320151 cd15023 7tm_TAS2R7-like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320151 cd15023 7tm_TAS2R7-like 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320151 cd15023 7tm_TAS2R7-like 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320151 cd15023 7tm_TAS2R7-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320151 cd15023 7tm_TAS2R7-like 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320151 cd15023 7tm_TAS2R7-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320152 cd15024 7tm_TAS2R42 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320152 cd15024 7tm_TAS2R42 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320152 cd15024 7tm_TAS2R42 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320152 cd15024 7tm_TAS2R42 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320152 cd15024 7tm_TAS2R42 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320152 cd15024 7tm_TAS2R42 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320152 cd15024 7tm_TAS2R42 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320153 cd15025 7tm_TAS2R38 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320153 cd15025 7tm_TAS2R38 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320153 cd15025 7tm_TAS2R38 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320153 cd15025 7tm_TAS2R38 4 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320153 cd15025 7tm_TAS2R38 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320153 cd15025 7tm_TAS2R38 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320153 cd15025 7tm_TAS2R38 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320154 cd15026 7tm_TAS2R13 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320154 cd15026 7tm_TAS2R13 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320154 cd15026 7tm_TAS2R13 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320154 cd15026 7tm_TAS2R13 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320154 cd15026 7tm_TAS2R13 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320154 cd15026 7tm_TAS2R13 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320154 cd15026 7tm_TAS2R13 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320155 cd15027 7tm_TAS2R43-like 1 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320155 cd15027 7tm_TAS2R43-like 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320155 cd15027 7tm_TAS2R43-like 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320155 cd15027 7tm_TAS2R43-like 4 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320155 cd15027 7tm_TAS2R43-like 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320155 cd15027 7tm_TAS2R43-like 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320155 cd15027 7tm_TAS2R43-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320156 cd15028 7tm_Opsin-1_euk 1 putative ligand binding site 0 0 1 1 90,93,94,122,126,142,145,146,149,186,189,190,193,215,218,219 5 -320156 cd15028 7tm_Opsin-1_euk 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320156 cd15028 7tm_Opsin-1_euk 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320156 cd15028 7tm_Opsin-1_euk 4 TM helix 3 0 0 0 0 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320156 cd15028 7tm_Opsin-1_euk 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320156 cd15028 7tm_Opsin-1_euk 6 TM helix 5 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320156 cd15028 7tm_Opsin-1_euk 7 TM helix 6 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320156 cd15028 7tm_Opsin-1_euk 8 TM helix 7 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320157 cd15029 7tm_SRI_SRII 1 ligand binding site 0 1 1 0 73,76,77,80,105,106,109,124,127,128,131,168,171,172,175,198,201,202 5 -320157 cd15029 7tm_SRI_SRII 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320157 cd15029 7tm_SRI_SRII 3 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -320157 cd15029 7tm_SRI_SRII 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 7 -320157 cd15029 7tm_SRI_SRII 5 TM helix 4 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320157 cd15029 7tm_SRI_SRII 6 TM helix 5 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320157 cd15029 7tm_SRI_SRII 7 TM helix 6 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320157 cd15029 7tm_SRI_SRII 8 TM helix 7 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320158 cd15030 7tmF_SMO_homolog 1 ligand binding site 0 1 1 0 1,10,61,81,164,166,167,169,171,174,180,257,260,261,264,293,298,301,302 5 -320158 cd15030 7tmF_SMO_homolog 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320158 cd15030 7tmF_SMO_homolog 3 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320158 cd15030 7tmF_SMO_homolog 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320158 cd15030 7tmF_SMO_homolog 5 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -320158 cd15030 7tmF_SMO_homolog 6 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320158 cd15030 7tmF_SMO_homolog 7 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320158 cd15030 7tmF_SMO_homolog 8 TM helix 7 0 0 0 0 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316 7 -320159 cd15031 7tmF_FZD3_insect 1 putative ligand binding site 0 0 1 1 1,10,60,165,170,172,175,176,186,264,265,273,278,281,282 5 -320159 cd15031 7tmF_FZD3_insect 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320159 cd15031 7tmF_FZD3_insect 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320159 cd15031 7tmF_FZD3_insect 4 TM helix 3 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -320159 cd15031 7tmF_FZD3_insect 5 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156 7 -320159 cd15031 7tmF_FZD3_insect 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320159 cd15031 7tmF_FZD3_insect 7 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320159 cd15031 7tmF_FZD3_insect 8 TM helix 7 0 0 0 0 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -320160 cd15032 7tmF_FZD6 1 putative ligand binding site 0 0 1 1 1,10,60,81,163,168,170,173,174,179,254,257,258,283,288,291,292 5 -320160 cd15032 7tmF_FZD6 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320160 cd15032 7tmF_FZD6 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320160 cd15032 7tmF_FZD6 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320160 cd15032 7tmF_FZD6 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320160 cd15032 7tmF_FZD6 6 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -320160 cd15032 7tmF_FZD6 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320160 cd15032 7tmF_FZD6 8 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -320161 cd15033 7tmF_FZD3 1 putative ligand binding site 0 0 1 1 1,10,60,81,163,168,170,173,174,179,254,257,258,283,288,291,292 5 -320161 cd15033 7tmF_FZD3 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320161 cd15033 7tmF_FZD3 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320161 cd15033 7tmF_FZD3 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320161 cd15033 7tmF_FZD3 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320161 cd15033 7tmF_FZD3 6 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320161 cd15033 7tmF_FZD3 7 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320161 cd15033 7tmF_FZD3 8 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -320162 cd15034 7tmF_FZD1_2_7-like 1 putative ligand binding site 0 0 1 1 1,10,60,162,167,169,178,253,256,257,284,289,292,293 5 -320162 cd15034 7tmF_FZD1_2_7-like 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320162 cd15034 7tmF_FZD1_2_7-like 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320162 cd15034 7tmF_FZD1_2_7-like 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320162 cd15034 7tmF_FZD1_2_7-like 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320162 cd15034 7tmF_FZD1_2_7-like 6 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320162 cd15034 7tmF_FZD1_2_7-like 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320162 cd15034 7tmF_FZD1_2_7-like 8 TM helix 7 0 0 0 0 282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 7 -320163 cd15035 7tmF_FZD5_FZD8-like 1 putative ligand binding site 0 0 1 1 1,10,60,75,157,162,164,167,168,173,249,252,253,269,274,277,278 5 -320163 cd15035 7tmF_FZD5_FZD8-like 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320163 cd15035 7tmF_FZD5_FZD8-like 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320163 cd15035 7tmF_FZD5_FZD8-like 4 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320163 cd15035 7tmF_FZD5_FZD8-like 5 TM helix 4 0 0 0 0 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320163 cd15035 7tmF_FZD5_FZD8-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320163 cd15035 7tmF_FZD5_FZD8-like 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320163 cd15035 7tmF_FZD5_FZD8-like 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320164 cd15036 7tmF_FZD9 1 putative ligand binding site 0 0 1 1 1,10,60,79,161,166,168,171,172,177,252,255,256,282,287,290,291 5 -320164 cd15036 7tmF_FZD9 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320164 cd15036 7tmF_FZD9 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320164 cd15036 7tmF_FZD9 4 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320164 cd15036 7tmF_FZD9 5 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320164 cd15036 7tmF_FZD9 6 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320164 cd15036 7tmF_FZD9 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320164 cd15036 7tmF_FZD9 8 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320165 cd15037 7tmF_FZD10 1 putative ligand binding site 0 0 1 1 1,10,60,79,161,166,168,171,172,177,252,255,256,282,287,290,291 5 -320165 cd15037 7tmF_FZD10 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320165 cd15037 7tmF_FZD10 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320165 cd15037 7tmF_FZD10 4 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320165 cd15037 7tmF_FZD10 5 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320165 cd15037 7tmF_FZD10 6 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -320165 cd15037 7tmF_FZD10 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320165 cd15037 7tmF_FZD10 8 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320166 cd15038 7tmF_FZD4 1 putative ligand binding site 0 0 1 1 1,10,60,81,163,168,170,173,174,179,254,257,258,266,271,274,275 5 -320166 cd15038 7tmF_FZD4 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320166 cd15038 7tmF_FZD4 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320166 cd15038 7tmF_FZD4 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320166 cd15038 7tmF_FZD4 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320166 cd15038 7tmF_FZD4 6 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -320166 cd15038 7tmF_FZD4 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320166 cd15038 7tmF_FZD4 8 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320167 cd15039 7tmB3_Methuselah-like 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,68,75,159,160,162,164,220,223,236,240 2 -320167 cd15039 7tmB3_Methuselah-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320167 cd15039 7tmB3_Methuselah-like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320167 cd15039 7tmB3_Methuselah-like 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320167 cd15039 7tmB3_Methuselah-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320167 cd15039 7tmB3_Methuselah-like 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320167 cd15039 7tmB3_Methuselah-like 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320167 cd15039 7tmB3_Methuselah-like 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320168 cd15040 7tmB2_Adhesion 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,68,75,149,150,152,154,208,211,223,227 2 -320168 cd15040 7tmB2_Adhesion 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320168 cd15040 7tmB2_Adhesion 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320168 cd15040 7tmB2_Adhesion 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320168 cd15040 7tmB2_Adhesion 5 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320168 cd15040 7tmB2_Adhesion 6 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320168 cd15040 7tmB2_Adhesion 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320168 cd15040 7tmB2_Adhesion 8 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -341321 cd15041 7tmB1_hormone_R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,82,89,160,161,163,165,219,222,237,241 2 -341321 cd15041 7tmB1_hormone_R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341321 cd15041 7tmB1_hormone_R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341321 cd15041 7tmB1_hormone_R 4 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -341321 cd15041 7tmB1_hormone_R 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -341321 cd15041 7tmB1_hormone_R 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341321 cd15041 7tmB1_hormone_R 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341321 cd15041 7tmB1_hormone_R 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320170 cd15042 7tmC_Boss 1 putative allosteric modulator binding site 0 0 1 1 57,73,74,77,78,81,143,148,151,152,155,189,192,193,196,200,208,209,212,215,219 5 -320170 cd15042 7tmC_Boss 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,68,72 2 -320170 cd15042 7tmC_Boss 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320170 cd15042 7tmC_Boss 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320170 cd15042 7tmC_Boss 5 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320170 cd15042 7tmC_Boss 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320170 cd15042 7tmC_Boss 7 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320170 cd15042 7tmC_Boss 8 TM helix 6 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320170 cd15042 7tmC_Boss 9 TM helix 7 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320171 cd15043 7tmC_RAIG_GPRC5 1 putative allosteric modulator binding site 0 0 1 1 59,71,72,75,76,79,146,151,154,155,158,194,197,198,201,205,218,219,222,225,229 5 -320171 cd15043 7tmC_RAIG_GPRC5 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,50,54,57,58,66,70 2 -320171 cd15043 7tmC_RAIG_GPRC5 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320171 cd15043 7tmC_RAIG_GPRC5 4 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320171 cd15043 7tmC_RAIG_GPRC5 5 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320171 cd15043 7tmC_RAIG_GPRC5 6 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320171 cd15043 7tmC_RAIG_GPRC5 7 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320171 cd15043 7tmC_RAIG_GPRC5 8 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320171 cd15043 7tmC_RAIG_GPRC5 9 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,156,161,164,165,168,202,205,206,209,213,221,222,225,228,232 5 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 7 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 8 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 9 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320173 cd15045 7tmC_mGluRs 1 allosteric modulator binding site 0 1 1 0 57,69,70,73,74,77,156,161,164,165,168,202,205,206,209,213,223,224,227,230,234 5 -320173 cd15045 7tmC_mGluRs 2 dimer interface 0 1 1 0 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320173 cd15045 7tmC_mGluRs 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320173 cd15045 7tmC_mGluRs 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320173 cd15045 7tmC_mGluRs 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320173 cd15045 7tmC_mGluRs 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320173 cd15045 7tmC_mGluRs 7 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320173 cd15045 7tmC_mGluRs 8 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320173 cd15045 7tmC_mGluRs 9 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320174 cd15046 7tmC_TAS1R 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,158,163,166,167,170,204,207,208,211,215,223,224,227,230,234 5 -320174 cd15046 7tmC_TAS1R 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320174 cd15046 7tmC_TAS1R 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320174 cd15046 7tmC_TAS1R 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320174 cd15046 7tmC_TAS1R 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320174 cd15046 7tmC_TAS1R 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320174 cd15046 7tmC_TAS1R 7 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320174 cd15046 7tmC_TAS1R 8 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320174 cd15046 7tmC_TAS1R 9 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320175 cd15047 7tmC_GABA-B-like 1 putative allosteric modulator binding site 0 0 1 1 57,72,73,76,77,80,165,170,173,174,177,212,215,216,219,223,233,234,237,240,244 5 -320175 cd15047 7tmC_GABA-B-like 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,67,71 2 -320175 cd15047 7tmC_GABA-B-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320175 cd15047 7tmC_GABA-B-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320175 cd15047 7tmC_GABA-B-like 5 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320175 cd15047 7tmC_GABA-B-like 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320175 cd15047 7tmC_GABA-B-like 7 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320175 cd15047 7tmC_GABA-B-like 8 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320175 cd15047 7tmC_GABA-B-like 9 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,154,163,166,167,170,243,246,247,250,266,270,274 5 -320176 cd15048 7tmA_Histamine_H3R_H4R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 8 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -341322 cd15049 7tmA_mAChR 1 ligand binding site 0 1 1 0 79,80,83,84,131,163,166,167,170,171,210,213,214,236,239,240 5 -341322 cd15049 7tmA_mAChR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341322 cd15049 7tmA_mAChR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341322 cd15049 7tmA_mAChR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341322 cd15049 7tmA_mAChR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -341322 cd15049 7tmA_mAChR 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -341322 cd15049 7tmA_mAChR 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -341322 cd15049 7tmA_mAChR 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320178 cd15050 7tmA_Histamine_H1R 1 ligand binding site 0 1 1 0 79,80,83,84,87,130,167,171,211,214,215,218,241 5 -320178 cd15050 7tmA_Histamine_H1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320178 cd15050 7tmA_Histamine_H1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320178 cd15050 7tmA_Histamine_H1R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320178 cd15050 7tmA_Histamine_H1R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320178 cd15050 7tmA_Histamine_H1R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320178 cd15050 7tmA_Histamine_H1R 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320178 cd15050 7tmA_Histamine_H1R 8 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320179 cd15051 7tmA_Histamine_H2R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,157,164,167,168,171,235,238,239,242,257,261,265 5 -320179 cd15051 7tmA_Histamine_H2R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320179 cd15051 7tmA_Histamine_H2R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320179 cd15051 7tmA_Histamine_H2R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320179 cd15051 7tmA_Histamine_H2R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320179 cd15051 7tmA_Histamine_H2R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320179 cd15051 7tmA_Histamine_H2R 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320179 cd15051 7tmA_Histamine_H2R 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320180 cd15052 7tmA_5-HT2 1 ligand binding site 0 1 1 0 76,77,80,81,84,85,152,153,154,159,160,163,164,167,207,210,211,214,217,229,232,233,236,240 5 -320180 cd15052 7tmA_5-HT2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320180 cd15052 7tmA_5-HT2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320180 cd15052 7tmA_5-HT2 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320180 cd15052 7tmA_5-HT2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320180 cd15052 7tmA_5-HT2 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320180 cd15052 7tmA_5-HT2 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320180 cd15052 7tmA_5-HT2 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320181 cd15053 7tmA_D2-like_dopamine_R 1 ligand binding site 0 1 1 0 76,80,81,84,152,158,161,162,208,209,212,233,237,241 5 -320181 cd15053 7tmA_D2-like_dopamine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320181 cd15053 7tmA_D2-like_dopamine_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320181 cd15053 7tmA_D2-like_dopamine_R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320181 cd15053 7tmA_D2-like_dopamine_R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320181 cd15053 7tmA_D2-like_dopamine_R 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320181 cd15053 7tmA_D2-like_dopamine_R 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320181 cd15053 7tmA_D2-like_dopamine_R 8 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320182 cd15054 7tmA_5-HT6 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,162,169,172,173,176,216,219,220,223,237,241,245 5 -320182 cd15054 7tmA_5-HT6 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320182 cd15054 7tmA_5-HT6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320182 cd15054 7tmA_5-HT6 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320182 cd15054 7tmA_5-HT6 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320182 cd15054 7tmA_5-HT6 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320182 cd15054 7tmA_5-HT6 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320182 cd15054 7tmA_5-HT6 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320183 cd15055 7tmA_TAARs 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,156,163,166,167,170,235,238,239,242,255,259,263 5 -320183 cd15055 7tmA_TAARs 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320183 cd15055 7tmA_TAARs 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60 7 -320183 cd15055 7tmA_TAARs 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320183 cd15055 7tmA_TAARs 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320183 cd15055 7tmA_TAARs 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320183 cd15055 7tmA_TAARs 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320183 cd15055 7tmA_TAARs 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320184 cd15056 7tmA_5-HT4 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,160,167,170,171,174,242,245,246,249,264,268,272 5 -320184 cd15056 7tmA_5-HT4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320184 cd15056 7tmA_5-HT4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320184 cd15056 7tmA_5-HT4 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320184 cd15056 7tmA_5-HT4 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320184 cd15056 7tmA_5-HT4 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320184 cd15056 7tmA_5-HT4 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320184 cd15056 7tmA_5-HT4 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320185 cd15057 7tmA_D1-like_dopamine_R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,160,167,170,171,174,242,245,246,249,270,274,278 5 -320185 cd15057 7tmA_D1-like_dopamine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320185 cd15057 7tmA_D1-like_dopamine_R 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320185 cd15057 7tmA_D1-like_dopamine_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320185 cd15057 7tmA_D1-like_dopamine_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320185 cd15057 7tmA_D1-like_dopamine_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320185 cd15057 7tmA_D1-like_dopamine_R 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320185 cd15057 7tmA_D1-like_dopamine_R 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320186 cd15058 7tmA_Beta_AR 1 ligand binding site 0 1 1 0 75,76,79,80,83,158,159,161,165,166,169,170,173,254,257,258,261,276,280,284 5 -320186 cd15058 7tmA_Beta_AR 2 G protein interaction site 0 1 1 1 28,29,97,100,101,102,104,105,106,107,108,109,188,191,192,194,195,196,198,199,238,239,242,243 2 -320186 cd15058 7tmA_Beta_AR 3 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320186 cd15058 7tmA_Beta_AR 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320186 cd15058 7tmA_Beta_AR 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320186 cd15058 7tmA_Beta_AR 6 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320186 cd15058 7tmA_Beta_AR 7 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320186 cd15058 7tmA_Beta_AR 8 TM helix 6 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320186 cd15058 7tmA_Beta_AR 9 TM helix 7 0 0 0 0 273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -320187 cd15059 7tmA_alpha2_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,153,160,163,164,167,208,211,212,215,231,235,239 5 -320187 cd15059 7tmA_alpha2_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320187 cd15059 7tmA_alpha2_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320187 cd15059 7tmA_alpha2_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320187 cd15059 7tmA_alpha2_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320187 cd15059 7tmA_alpha2_AR 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320187 cd15059 7tmA_alpha2_AR 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320187 cd15059 7tmA_alpha2_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,153,160,163,164,167,207,210,211,214,230,234,238 5 -320188 cd15060 7tmA_tyramine_octopamine_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320189 cd15061 7tmA_tyramine_R-like 1 putative ligand binding site 0 0 1 1 74,78,79,82,83,150,157,160,161,164,204,207,208,211,226,230,234 5 -320189 cd15061 7tmA_tyramine_R-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320189 cd15061 7tmA_tyramine_R-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320189 cd15061 7tmA_tyramine_R-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320189 cd15061 7tmA_tyramine_R-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320189 cd15061 7tmA_tyramine_R-like 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320189 cd15061 7tmA_tyramine_R-like 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320189 cd15061 7tmA_tyramine_R-like 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320190 cd15062 7tmA_alpha1_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,151,158,161,162,165,208,211,212,215,231,235,239 5 -320190 cd15062 7tmA_alpha1_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320190 cd15062 7tmA_alpha1_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320190 cd15062 7tmA_alpha1_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320190 cd15062 7tmA_alpha1_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320190 cd15062 7tmA_alpha1_AR 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320190 cd15062 7tmA_alpha1_AR 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320190 cd15062 7tmA_alpha1_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320191 cd15063 7tmA_Octopamine_R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,160,167,170,171,174,214,217,218,221,236,240,244 5 -320191 cd15063 7tmA_Octopamine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320191 cd15063 7tmA_Octopamine_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320191 cd15063 7tmA_Octopamine_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320191 cd15063 7tmA_Octopamine_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320191 cd15063 7tmA_Octopamine_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320191 cd15063 7tmA_Octopamine_R 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320191 cd15063 7tmA_Octopamine_R 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320192 cd15064 7tmA_5-HT1_5_7 1 ligand binding site 0 1 1 0 75,76,79,80,83,84,149,161,165,205,208,209,215,225,228,229,232,236 5 -320192 cd15064 7tmA_5-HT1_5_7 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320192 cd15064 7tmA_5-HT1_5_7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320192 cd15064 7tmA_5-HT1_5_7 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320192 cd15064 7tmA_5-HT1_5_7 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320192 cd15064 7tmA_5-HT1_5_7 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320192 cd15064 7tmA_5-HT1_5_7 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320192 cd15064 7tmA_5-HT1_5_7 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320193 cd15065 7tmA_Ap5-HTB1-like 1 putative ligand binding site 0 0 1 1 74,78,79,82,83,161,168,171,172,175,248,251,252,255,270,274,278 5 -320193 cd15065 7tmA_Ap5-HTB1-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320193 cd15065 7tmA_Ap5-HTB1-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320193 cd15065 7tmA_Ap5-HTB1-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320193 cd15065 7tmA_Ap5-HTB1-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320193 cd15065 7tmA_Ap5-HTB1-like 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320193 cd15065 7tmA_Ap5-HTB1-like 7 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320193 cd15065 7tmA_Ap5-HTB1-like 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320194 cd15066 7tmA_DmOct-betaAR-like 1 putative ligand binding site 0 0 1 1 74,78,79,82,83,157,164,167,168,171,211,214,215,218,235,239,243 5 -320194 cd15066 7tmA_DmOct-betaAR-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320194 cd15066 7tmA_DmOct-betaAR-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320194 cd15066 7tmA_DmOct-betaAR-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320194 cd15066 7tmA_DmOct-betaAR-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320194 cd15066 7tmA_DmOct-betaAR-like 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320194 cd15066 7tmA_DmOct-betaAR-like 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320194 cd15066 7tmA_DmOct-betaAR-like 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320195 cd15067 7tmA_Dop1R2-like 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,153,160,163,164,167,207,210,211,214,232,236,240 5 -320195 cd15067 7tmA_Dop1R2-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320195 cd15067 7tmA_Dop1R2-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320195 cd15067 7tmA_Dop1R2-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320195 cd15067 7tmA_Dop1R2-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320195 cd15067 7tmA_Dop1R2-like 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320195 cd15067 7tmA_Dop1R2-like 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320195 cd15067 7tmA_Dop1R2-like 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320196 cd15068 7tmA_Adenosine_R_A2A 1 ligand binding site 0 1 1 0 78,161,162,170,239,242,243,246,263,264,267 5 -320196 cd15068 7tmA_Adenosine_R_A2A 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320196 cd15068 7tmA_Adenosine_R_A2A 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320196 cd15068 7tmA_Adenosine_R_A2A 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320196 cd15068 7tmA_Adenosine_R_A2A 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320196 cd15068 7tmA_Adenosine_R_A2A 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320196 cd15068 7tmA_Adenosine_R_A2A 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320196 cd15068 7tmA_Adenosine_R_A2A 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320197 cd15069 7tmA_Adenosine_R_A2B 1 putative ligand binding site 0 0 1 1 78,165,166,174,239,242,243,246,264,268 5 -320197 cd15069 7tmA_Adenosine_R_A2B 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320197 cd15069 7tmA_Adenosine_R_A2B 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320197 cd15069 7tmA_Adenosine_R_A2B 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320197 cd15069 7tmA_Adenosine_R_A2B 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320197 cd15069 7tmA_Adenosine_R_A2B 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320197 cd15069 7tmA_Adenosine_R_A2B 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320197 cd15069 7tmA_Adenosine_R_A2B 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320198 cd15070 7tmA_Adenosine_R_A3 1 putative ligand binding site 0 0 1 1 78,154,155,163,229,232,233,236,250,254 5 -320198 cd15070 7tmA_Adenosine_R_A3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320198 cd15070 7tmA_Adenosine_R_A3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320198 cd15070 7tmA_Adenosine_R_A3 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320198 cd15070 7tmA_Adenosine_R_A3 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320198 cd15070 7tmA_Adenosine_R_A3 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320198 cd15070 7tmA_Adenosine_R_A3 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320198 cd15070 7tmA_Adenosine_R_A3 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341323 cd15071 7tmA_Adenosine_R_A1 1 putative ligand binding site 0 1 1 1 2,6,56,60,77,78,81,161,162,167,170,237,240,241,244,260,261,264 5 -341323 cd15071 7tmA_Adenosine_R_A1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341323 cd15071 7tmA_Adenosine_R_A1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -341323 cd15071 7tmA_Adenosine_R_A1 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341323 cd15071 7tmA_Adenosine_R_A1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341323 cd15071 7tmA_Adenosine_R_A1 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -341323 cd15071 7tmA_Adenosine_R_A1 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -341323 cd15071 7tmA_Adenosine_R_A1 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320200 cd15072 7tmA_Retinal_GPR 1 putative ligand binding site 0 0 1 1 74,78,79,82,83,144,145,146,147,163,164,168,207,211,234,238 5 -320200 cd15072 7tmA_Retinal_GPR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320200 cd15072 7tmA_Retinal_GPR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320200 cd15072 7tmA_Retinal_GPR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320200 cd15072 7tmA_Retinal_GPR 5 TM helix 4 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320200 cd15072 7tmA_Retinal_GPR 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320200 cd15072 7tmA_Retinal_GPR 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320200 cd15072 7tmA_Retinal_GPR 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320201 cd15073 7tmA_Peropsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,167,168,172,227,231,254,258 5 -320201 cd15073 7tmA_Peropsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320201 cd15073 7tmA_Peropsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320201 cd15073 7tmA_Peropsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320201 cd15073 7tmA_Peropsin 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320201 cd15073 7tmA_Peropsin 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320201 cd15073 7tmA_Peropsin 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320201 cd15073 7tmA_Peropsin 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320202 cd15074 7tmA_Opsin5_neuropsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,169,170,174,231,235,258,262 5 -320202 cd15074 7tmA_Opsin5_neuropsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320202 cd15074 7tmA_Opsin5_neuropsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320202 cd15074 7tmA_Opsin5_neuropsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320202 cd15074 7tmA_Opsin5_neuropsin 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320202 cd15074 7tmA_Opsin5_neuropsin 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320202 cd15074 7tmA_Opsin5_neuropsin 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320202 cd15074 7tmA_Opsin5_neuropsin 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320203 cd15075 7tmA_Parapinopsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,167,168,172,226,230,253,257 5 -320203 cd15075 7tmA_Parapinopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320203 cd15075 7tmA_Parapinopsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320203 cd15075 7tmA_Parapinopsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320203 cd15075 7tmA_Parapinopsin 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320203 cd15075 7tmA_Parapinopsin 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320203 cd15075 7tmA_Parapinopsin 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320203 cd15075 7tmA_Parapinopsin 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320204 cd15076 7tmA_SWS1_opsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,169,170,174,227,231,254,258 5 -320204 cd15076 7tmA_SWS1_opsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320204 cd15076 7tmA_SWS1_opsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320204 cd15076 7tmA_SWS1_opsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320204 cd15076 7tmA_SWS1_opsin 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320204 cd15076 7tmA_SWS1_opsin 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320204 cd15076 7tmA_SWS1_opsin 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320204 cd15076 7tmA_SWS1_opsin 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320205 cd15077 7tmA_SWS2_opsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,169,170,174,227,231,254,258 5 -320205 cd15077 7tmA_SWS2_opsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320205 cd15077 7tmA_SWS2_opsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320205 cd15077 7tmA_SWS2_opsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320205 cd15077 7tmA_SWS2_opsin 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320205 cd15077 7tmA_SWS2_opsin 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320205 cd15077 7tmA_SWS2_opsin 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320205 cd15077 7tmA_SWS2_opsin 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320206 cd15078 7tmA_Encephalopsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,145,146,147,148,164,165,169,226,230,253,257 5 -320206 cd15078 7tmA_Encephalopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320206 cd15078 7tmA_Encephalopsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320206 cd15078 7tmA_Encephalopsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320206 cd15078 7tmA_Encephalopsin 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320206 cd15078 7tmA_Encephalopsin 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320206 cd15078 7tmA_Encephalopsin 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320206 cd15078 7tmA_Encephalopsin 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320207 cd15079 7tmA_photoreceptors_insect 1 putative ligand binding site 0 0 1 1 74,78,79,82,83,148,149,150,151,167,168,172,239,243,266,270 5 -320207 cd15079 7tmA_photoreceptors_insect 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320207 cd15079 7tmA_photoreceptors_insect 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320207 cd15079 7tmA_photoreceptors_insect 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320207 cd15079 7tmA_photoreceptors_insect 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320207 cd15079 7tmA_photoreceptors_insect 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320207 cd15079 7tmA_photoreceptors_insect 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320207 cd15079 7tmA_photoreceptors_insect 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -341324 cd15080 7tmA_MWS_opsin 1 ligand binding site 0 1 1 0 75,79,80,83,84,149,150,151,153,169,170,173,174,227,230,231,234,254,258 5 -341324 cd15080 7tmA_MWS_opsin 2 arrestin binding site 0 1 1 0 97,100,103,211,212,272,273 2 -341324 cd15080 7tmA_MWS_opsin 3 putative G protein interaction site 0 1 1 1 34,97,100,101,103,188,204,205,208,211,212,272,273 2 -341324 cd15080 7tmA_MWS_opsin 4 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341324 cd15080 7tmA_MWS_opsin 5 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -341324 cd15080 7tmA_MWS_opsin 6 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341324 cd15080 7tmA_MWS_opsin 7 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341324 cd15080 7tmA_MWS_opsin 8 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -341324 cd15080 7tmA_MWS_opsin 9 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -341324 cd15080 7tmA_MWS_opsin 10 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320209 cd15081 7tmA_LWS_opsin 1 putative ligand binding site 0 0 1 1 87,91,92,95,96,160,161,162,163,181,182,186,239,243,266,270 5 -320209 cd15081 7tmA_LWS_opsin 2 TM helix 1 0 0 0 1 13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320209 cd15081 7tmA_LWS_opsin 3 TM helix 2 0 0 0 0 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320209 cd15081 7tmA_LWS_opsin 4 TM helix 3 0 0 0 0 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320209 cd15081 7tmA_LWS_opsin 5 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320209 cd15081 7tmA_LWS_opsin 6 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320209 cd15081 7tmA_LWS_opsin 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320209 cd15081 7tmA_LWS_opsin 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320210 cd15082 7tmA_VA_opsin 1 putative ligand binding site 0 0 1 1 88,92,93,96,97,161,162,163,164,180,181,185,238,242,265,269 5 -320210 cd15082 7tmA_VA_opsin 2 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320210 cd15082 7tmA_VA_opsin 3 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320210 cd15082 7tmA_VA_opsin 4 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320210 cd15082 7tmA_VA_opsin 5 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 7 -320210 cd15082 7tmA_VA_opsin 6 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -320210 cd15082 7tmA_VA_opsin 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320210 cd15082 7tmA_VA_opsin 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320211 cd15083 7tmA_Melanopsin-like 1 ligand binding site 0 1 1 0 52,75,80,84,149,150,151,168,169,173,238,242,269 5 -320211 cd15083 7tmA_Melanopsin-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320211 cd15083 7tmA_Melanopsin-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60 7 -320211 cd15083 7tmA_Melanopsin-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320211 cd15083 7tmA_Melanopsin-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320211 cd15083 7tmA_Melanopsin-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320211 cd15083 7tmA_Melanopsin-like 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320211 cd15083 7tmA_Melanopsin-like 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320212 cd15084 7tmA_Pinopsin 1 putative ligand binding site 0 0 1 1 85,89,90,93,94,158,159,160,161,177,178,182,235,239,262,266 5 -320212 cd15084 7tmA_Pinopsin 2 TM helix 1 0 0 0 1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 7 -320212 cd15084 7tmA_Pinopsin 3 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 7 -320212 cd15084 7tmA_Pinopsin 4 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -320212 cd15084 7tmA_Pinopsin 5 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320212 cd15084 7tmA_Pinopsin 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320212 cd15084 7tmA_Pinopsin 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320212 cd15084 7tmA_Pinopsin 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320213 cd15085 7tmA_Parietopsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,167,168,172,227,231,254,258 5 -320213 cd15085 7tmA_Parietopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320213 cd15085 7tmA_Parietopsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320213 cd15085 7tmA_Parietopsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320213 cd15085 7tmA_Parietopsin 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320213 cd15085 7tmA_Parietopsin 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320213 cd15085 7tmA_Parietopsin 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320213 cd15085 7tmA_Parietopsin 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320214 cd15086 7tmA_tmt_opsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,148,149,150,151,167,168,172,223,227,250,254 5 -320214 cd15086 7tmA_tmt_opsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320214 cd15086 7tmA_tmt_opsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320214 cd15086 7tmA_tmt_opsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320214 cd15086 7tmA_tmt_opsin 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320214 cd15086 7tmA_tmt_opsin 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320214 cd15086 7tmA_tmt_opsin 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320214 cd15086 7tmA_tmt_opsin 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320215 cd15087 7tmA_NPBWR 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,129,131,132,133,134,135,163,166,167,168,170,171,172,174,175,227,230,231,233,234,237,248,249,251,252,253,256,259,260 2 -320215 cd15087 7tmA_NPBWR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320215 cd15087 7tmA_NPBWR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320215 cd15087 7tmA_NPBWR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320215 cd15087 7tmA_NPBWR 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320215 cd15087 7tmA_NPBWR 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320215 cd15087 7tmA_NPBWR 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320215 cd15087 7tmA_NPBWR 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320216 cd15088 7tmA_MCHR-like 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,224,227,228,230,231,234,244,245,247,248,249,252,255,256 2 -320216 cd15088 7tmA_MCHR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320216 cd15088 7tmA_MCHR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320216 cd15088 7tmA_MCHR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320216 cd15088 7tmA_MCHR-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320216 cd15088 7tmA_MCHR-like 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320216 cd15088 7tmA_MCHR-like 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320216 cd15088 7tmA_MCHR-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320217 cd15089 7tmA_Delta_opioid_R 1 putative ligand binding pocket 0 1 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,150,151,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,247,248,250,251,252,255,258,259 5 -320217 cd15089 7tmA_Delta_opioid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320217 cd15089 7tmA_Delta_opioid_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320217 cd15089 7tmA_Delta_opioid_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320217 cd15089 7tmA_Delta_opioid_R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320217 cd15089 7tmA_Delta_opioid_R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320217 cd15089 7tmA_Delta_opioid_R 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320217 cd15089 7tmA_Delta_opioid_R 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320218 cd15090 7tmA_Mu_opioid_R 1 putative ligand binding pocket 0 1 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,160,163,164,165,167,168,169,171,172,224,227,228,230,231,234,245,246,248,249,250,253,256,257 5 -320218 cd15090 7tmA_Mu_opioid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320218 cd15090 7tmA_Mu_opioid_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320218 cd15090 7tmA_Mu_opioid_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320218 cd15090 7tmA_Mu_opioid_R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320218 cd15090 7tmA_Mu_opioid_R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320218 cd15090 7tmA_Mu_opioid_R 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320218 cd15090 7tmA_Mu_opioid_R 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320219 cd15091 7tmA_Kappa_opioid_R 1 putative ligand binding pocket 0 1 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,227,230,231,233,234,237,248,249,251,252,253,256,259,260 5 -320219 cd15091 7tmA_Kappa_opioid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320219 cd15091 7tmA_Kappa_opioid_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320219 cd15091 7tmA_Kappa_opioid_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320219 cd15091 7tmA_Kappa_opioid_R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320219 cd15091 7tmA_Kappa_opioid_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320219 cd15091 7tmA_Kappa_opioid_R 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320219 cd15091 7tmA_Kappa_opioid_R 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320220 cd15092 7tmA_NOFQ_opioid_R 1 putative ligand binding pocket 0 1 1 0 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,160,163,164,165,167,168,169,171,172,224,227,228,230,231,234,245,246,248,249,250,253,256,257 5 -320220 cd15092 7tmA_NOFQ_opioid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320220 cd15092 7tmA_NOFQ_opioid_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320220 cd15092 7tmA_NOFQ_opioid_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320220 cd15092 7tmA_NOFQ_opioid_R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320220 cd15092 7tmA_NOFQ_opioid_R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320220 cd15092 7tmA_NOFQ_opioid_R 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320220 cd15092 7tmA_NOFQ_opioid_R 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320221 cd15093 7tmA_SSTR 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,246,247,249,250,251,254,257,258 2 -320221 cd15093 7tmA_SSTR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320221 cd15093 7tmA_SSTR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320221 cd15093 7tmA_SSTR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320221 cd15093 7tmA_SSTR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320221 cd15093 7tmA_SSTR 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320221 cd15093 7tmA_SSTR 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320221 cd15093 7tmA_SSTR 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320222 cd15094 7tmA_AstC_insect 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,248,249,251,252,253,256,259,260 2 -320222 cd15094 7tmA_AstC_insect 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320222 cd15094 7tmA_AstC_insect 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320222 cd15094 7tmA_AstC_insect 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320222 cd15094 7tmA_AstC_insect 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320222 cd15094 7tmA_AstC_insect 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320222 cd15094 7tmA_AstC_insect 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320222 cd15094 7tmA_AstC_insect 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320223 cd15095 7tmA_KiSS1R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,162,165,166,167,169,170,171,173,174,232,235,236,238,239,242,254,255,257,258,259,262,265,266 2 -320223 cd15095 7tmA_KiSS1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320223 cd15095 7tmA_KiSS1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320223 cd15095 7tmA_KiSS1R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320223 cd15095 7tmA_KiSS1R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320223 cd15095 7tmA_KiSS1R 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320223 cd15095 7tmA_KiSS1R 7 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320223 cd15095 7tmA_KiSS1R 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320224 cd15096 7tmA_AstA_R_insect 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,163,166,167,168,170,171,172,174,175,229,232,233,235,236,239,250,251,253,254,255,258,261,262 2 -320224 cd15096 7tmA_AstA_R_insect 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320224 cd15096 7tmA_AstA_R_insect 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320224 cd15096 7tmA_AstA_R_insect 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320224 cd15096 7tmA_AstA_R_insect 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320224 cd15096 7tmA_AstA_R_insect 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320224 cd15096 7tmA_AstA_R_insect 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320224 cd15096 7tmA_AstA_R_insect 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320225 cd15097 7tmA_Gal2_Gal3_R 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,159,162,163,164,166,167,168,170,171,224,227,228,230,231,234,245,246,248,249,250,253,256,257 2 -320225 cd15097 7tmA_Gal2_Gal3_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320225 cd15097 7tmA_Gal2_Gal3_R 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320225 cd15097 7tmA_Gal2_Gal3_R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320225 cd15097 7tmA_Gal2_Gal3_R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320225 cd15097 7tmA_Gal2_Gal3_R 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320225 cd15097 7tmA_Gal2_Gal3_R 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320225 cd15097 7tmA_Gal2_Gal3_R 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320226 cd15098 7tmA_Gal1_R 1 putative peptide ligand binding pocket 0 0 1 1 58,61,62,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,164,167,168,169,171,172,173,175,176,227,230,231,233,234,237,248,249,251,252,253,256,259,260 2 -320226 cd15098 7tmA_Gal1_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320226 cd15098 7tmA_Gal1_R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320226 cd15098 7tmA_Gal1_R 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320226 cd15098 7tmA_Gal1_R 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320226 cd15098 7tmA_Gal1_R 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320226 cd15098 7tmA_Gal1_R 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320226 cd15098 7tmA_Gal1_R 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320227 cd15099 7tmA_Cannabinoid_R 1 putative ligand binding site 0 0 1 1 56,75,76,79,80,83,162,228,235,252,255 5 -320227 cd15099 7tmA_Cannabinoid_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320227 cd15099 7tmA_Cannabinoid_R 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320227 cd15099 7tmA_Cannabinoid_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320227 cd15099 7tmA_Cannabinoid_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320227 cd15099 7tmA_Cannabinoid_R 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320227 cd15099 7tmA_Cannabinoid_R 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320227 cd15099 7tmA_Cannabinoid_R 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 1 putative ligand binding site 0 0 1 1 55,71,72,75,76,79,157,219,226,239,242 5 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -341325 cd15101 7tmA_LPAR 1 putative antagonist binding pocket 0 1 1 0 2,52,59,63,74,75,78,79,82,157,160,221,224,227,228,244,245,247,248 5 -341325 cd15101 7tmA_LPAR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341325 cd15101 7tmA_LPAR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341325 cd15101 7tmA_LPAR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341325 cd15101 7tmA_LPAR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341325 cd15101 7tmA_LPAR 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -341325 cd15101 7tmA_LPAR 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341325 cd15101 7tmA_LPAR 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320230 cd15102 7tmA_S1PR 1 ligand binding site 0 1 1 0 55,59,74,75,78,79,82,148,160,216,223,241,244 5 -320230 cd15102 7tmA_S1PR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320230 cd15102 7tmA_S1PR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320230 cd15102 7tmA_S1PR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320230 cd15102 7tmA_S1PR 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320230 cd15102 7tmA_S1PR 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320230 cd15102 7tmA_S1PR 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320230 cd15102 7tmA_S1PR 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320231 cd15103 7tmA_MCR 1 putative ligand binding site 0 0 1 1 56,81,82,85,86,89,153,214,221,241,244 5 -320231 cd15103 7tmA_MCR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320231 cd15103 7tmA_MCR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320231 cd15103 7tmA_MCR 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320231 cd15103 7tmA_MCR 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320231 cd15103 7tmA_MCR 6 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320231 cd15103 7tmA_MCR 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320231 cd15103 7tmA_MCR 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,160,163,164,167,230,233,234,237,253,257,261 5 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320233 cd15105 7tmA_MrgprA 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,156,159,160,161,163,164,165,167,168,205,208,209,211,212,215,226,227,229,230,231,234,237,238 2 -320233 cd15105 7tmA_MrgprA 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320233 cd15105 7tmA_MrgprA 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320233 cd15105 7tmA_MrgprA 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320233 cd15105 7tmA_MrgprA 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320233 cd15105 7tmA_MrgprA 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320233 cd15105 7tmA_MrgprA 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320233 cd15105 7tmA_MrgprA 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320234 cd15106 7tmA_MrgprX-like 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,125,127,128,129,130,131,154,157,158,159,161,162,163,165,166,203,206,207,209,210,213,224,225,227,228,229,232,235,236 2 -320234 cd15106 7tmA_MrgprX-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320234 cd15106 7tmA_MrgprX-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320234 cd15106 7tmA_MrgprX-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320234 cd15106 7tmA_MrgprX-like 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320234 cd15106 7tmA_MrgprX-like 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320234 cd15106 7tmA_MrgprX-like 7 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320234 cd15106 7tmA_MrgprX-like 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320235 cd15107 7tmA_MrgprB 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,155,158,159,160,162,163,164,166,167,204,207,208,210,211,214,225,226,228,229,230,233,236,237 2 -320235 cd15107 7tmA_MrgprB 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320235 cd15107 7tmA_MrgprB 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320235 cd15107 7tmA_MrgprB 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320235 cd15107 7tmA_MrgprB 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320235 cd15107 7tmA_MrgprB 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320235 cd15107 7tmA_MrgprB 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320235 cd15107 7tmA_MrgprB 8 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320236 cd15108 7tmA_MrgprD 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,155,158,159,160,162,163,164,166,167,206,209,210,212,213,216,226,227,229,230,231,234,237,238 2 -320236 cd15108 7tmA_MrgprD 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320236 cd15108 7tmA_MrgprD 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320236 cd15108 7tmA_MrgprD 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320236 cd15108 7tmA_MrgprD 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320236 cd15108 7tmA_MrgprD 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320236 cd15108 7tmA_MrgprD 7 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320236 cd15108 7tmA_MrgprD 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320237 cd15109 7tmA_MrgprF 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,157,160,161,162,164,165,166,168,169,207,210,211,213,214,217,224,225,227,228,229,232,235,236 2 -320237 cd15109 7tmA_MrgprF 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320237 cd15109 7tmA_MrgprF 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320237 cd15109 7tmA_MrgprF 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320237 cd15109 7tmA_MrgprF 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320237 cd15109 7tmA_MrgprF 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320237 cd15109 7tmA_MrgprF 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320237 cd15109 7tmA_MrgprF 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320238 cd15110 7tmA_MrgprH 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,75,76,77,78,79,80,82,83,86,129,131,132,133,134,135,158,161,162,163,165,166,167,169,170,207,210,211,213,214,217,224,225,227,228,229,232,235,236 2 -320238 cd15110 7tmA_MrgprH 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320238 cd15110 7tmA_MrgprH 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55,56 7 -320238 cd15110 7tmA_MrgprH 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320238 cd15110 7tmA_MrgprH 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320238 cd15110 7tmA_MrgprH 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320238 cd15110 7tmA_MrgprH 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320238 cd15110 7tmA_MrgprH 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320239 cd15111 7tmA_MrgprG 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,67,68,69,70,71,72,74,75,78,121,123,124,125,126,127,150,153,154,155,157,158,159,161,162,198,201,202,204,205,208,215,216,218,219,220,223,226,227 2 -320239 cd15111 7tmA_MrgprG 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320239 cd15111 7tmA_MrgprG 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320239 cd15111 7tmA_MrgprG 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320239 cd15111 7tmA_MrgprG 5 TM helix 4 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320239 cd15111 7tmA_MrgprG 6 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320239 cd15111 7tmA_MrgprG 7 TM helix 6 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320239 cd15111 7tmA_MrgprG 8 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320240 cd15112 7tmA_MrgprE 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,156,159,160,161,163,164,165,167,168,205,208,209,211,212,215,222,223,225,226,227,230,233,234 2 -320240 cd15112 7tmA_MrgprE 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320240 cd15112 7tmA_MrgprE 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320240 cd15112 7tmA_MrgprE 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320240 cd15112 7tmA_MrgprE 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320240 cd15112 7tmA_MrgprE 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320240 cd15112 7tmA_MrgprE 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320240 cd15112 7tmA_MrgprE 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320241 cd15113 7tmA_MAS1L 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,73,74,75,76,77,78,80,81,84,126,128,129,130,131,132,151,154,155,156,158,159,160,162,163,200,203,204,206,207,210,215,216,218,219,220,223,226,227 2 -320241 cd15113 7tmA_MAS1L 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320241 cd15113 7tmA_MAS1L 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320241 cd15113 7tmA_MAS1L 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320241 cd15113 7tmA_MAS1L 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320241 cd15113 7tmA_MAS1L 6 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320241 cd15113 7tmA_MAS1L 7 TM helix 6 0 0 0 0 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320241 cd15113 7tmA_MAS1L 8 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320242 cd15114 7tmA_C5aR 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,217,220,221,223,224,227,240,241,243,244,245,248,251,252 2 -320242 cd15114 7tmA_C5aR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320242 cd15114 7tmA_C5aR 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320242 cd15114 7tmA_C5aR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320242 cd15114 7tmA_C5aR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320242 cd15114 7tmA_C5aR 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320242 cd15114 7tmA_C5aR 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320242 cd15114 7tmA_C5aR 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320243 cd15115 7tmA_C3aR 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,153,156,157,158,160,161,162,164,165,210,213,214,216,217,220,231,232,234,235,236,239,242,243 2 -320243 cd15115 7tmA_C3aR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320243 cd15115 7tmA_C3aR 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320243 cd15115 7tmA_C3aR 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320243 cd15115 7tmA_C3aR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320243 cd15115 7tmA_C3aR 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320243 cd15115 7tmA_C3aR 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320243 cd15115 7tmA_C3aR 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320244 cd15116 7tmA_CMKLR1 1 putative ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,173,176,177,178,180,181,182,184,185,229,232,233,235,236,239,250,251,253,254,255,258,261,262 5 -320244 cd15116 7tmA_CMKLR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320244 cd15116 7tmA_CMKLR1 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320244 cd15116 7tmA_CMKLR1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320244 cd15116 7tmA_CMKLR1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320244 cd15116 7tmA_CMKLR1 6 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320244 cd15116 7tmA_CMKLR1 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320244 cd15116 7tmA_CMKLR1 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320245 cd15117 7tmA_FPR-like 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,173,176,177,178,180,181,182,184,185,229,232,233,235,236,239,254,255,257,258,259,262,265,266 2 -320245 cd15117 7tmA_FPR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320245 cd15117 7tmA_FPR-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320245 cd15117 7tmA_FPR-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320245 cd15117 7tmA_FPR-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320245 cd15117 7tmA_FPR-like 6 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320245 cd15117 7tmA_FPR-like 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320245 cd15117 7tmA_FPR-like 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320246 cd15118 7tmA_PD2R2_CRTH2 1 putative ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,171,174,175,176,178,179,180,182,183,227,230,231,233,234,237,250,251,253,254,255,258,261,262 5 -320246 cd15118 7tmA_PD2R2_CRTH2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320246 cd15118 7tmA_PD2R2_CRTH2 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320246 cd15118 7tmA_PD2R2_CRTH2 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320246 cd15118 7tmA_PD2R2_CRTH2 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320246 cd15118 7tmA_PD2R2_CRTH2 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320246 cd15118 7tmA_PD2R2_CRTH2 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320246 cd15118 7tmA_PD2R2_CRTH2 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320247 cd15119 7tmA_GPR1 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,165,168,169,170,172,173,174,176,177,221,224,225,227,228,231,244,245,247,248,249,252,255,256 2 -320247 cd15119 7tmA_GPR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320247 cd15119 7tmA_GPR1 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320247 cd15119 7tmA_GPR1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320247 cd15119 7tmA_GPR1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320247 cd15119 7tmA_GPR1 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320247 cd15119 7tmA_GPR1 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320247 cd15119 7tmA_GPR1 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320248 cd15120 7tmA_GPR33 1 putative ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,172,175,176,177,179,180,181,183,184,228,231,232,234,235,238,248,249,251,252,253,256,259,260 5 -320248 cd15120 7tmA_GPR33 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320248 cd15120 7tmA_GPR33 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320248 cd15120 7tmA_GPR33 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320248 cd15120 7tmA_GPR33 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320248 cd15120 7tmA_GPR33 6 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320248 cd15120 7tmA_GPR33 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320248 cd15120 7tmA_GPR33 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320249 cd15121 7tmA_LTB4R1 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,215,218,219,221,222,225,243,244,246,247,248,251,254,255 5 -320249 cd15121 7tmA_LTB4R1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320249 cd15121 7tmA_LTB4R1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320249 cd15121 7tmA_LTB4R1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320249 cd15121 7tmA_LTB4R1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320249 cd15121 7tmA_LTB4R1 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320249 cd15121 7tmA_LTB4R1 7 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320249 cd15121 7tmA_LTB4R1 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320250 cd15122 7tmA_LTB4R2 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,162,165,166,167,169,170,171,173,174,218,221,222,224,225,228,246,247,249,250,251,254,257,258 5 -320250 cd15122 7tmA_LTB4R2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320250 cd15122 7tmA_LTB4R2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320250 cd15122 7tmA_LTB4R2 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320250 cd15122 7tmA_LTB4R2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320250 cd15122 7tmA_LTB4R2 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320250 cd15122 7tmA_LTB4R2 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320250 cd15122 7tmA_LTB4R2 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320251 cd15123 7tmA_BRS-3 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,166,169,170,171,173,174,175,177,178,236,239,240,242,243,246,260,261,263,264,265,268,271,272 2 -320251 cd15123 7tmA_BRS-3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320251 cd15123 7tmA_BRS-3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320251 cd15123 7tmA_BRS-3 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320251 cd15123 7tmA_BRS-3 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320251 cd15123 7tmA_BRS-3 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320251 cd15123 7tmA_BRS-3 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320251 cd15123 7tmA_BRS-3 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320252 cd15124 7tmA_GRPR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,166,169,170,171,173,174,175,177,178,236,239,240,242,243,246,259,260,262,263,264,267,270,271 2 -320252 cd15124 7tmA_GRPR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320252 cd15124 7tmA_GRPR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320252 cd15124 7tmA_GRPR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320252 cd15124 7tmA_GRPR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320252 cd15124 7tmA_GRPR 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320252 cd15124 7tmA_GRPR 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320252 cd15124 7tmA_GRPR 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320253 cd15125 7tmA_NMBR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,165,168,169,170,172,173,174,176,177,235,238,239,241,242,245,258,259,261,262,263,266,269,270 2 -320253 cd15125 7tmA_NMBR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320253 cd15125 7tmA_NMBR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320253 cd15125 7tmA_NMBR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320253 cd15125 7tmA_NMBR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320253 cd15125 7tmA_NMBR 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320253 cd15125 7tmA_NMBR 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320253 cd15125 7tmA_NMBR 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320254 cd15126 7tmA_ETBR-LP2 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,129,131,132,133,134,135,176,179,180,181,183,184,185,187,188,242,245,246,248,249,252,264,265,267,268,269,272,275,276 2 -320254 cd15126 7tmA_ETBR-LP2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320254 cd15126 7tmA_ETBR-LP2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320254 cd15126 7tmA_ETBR-LP2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320254 cd15126 7tmA_ETBR-LP2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320254 cd15126 7tmA_ETBR-LP2 6 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320254 cd15126 7tmA_ETBR-LP2 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320254 cd15126 7tmA_ETBR-LP2 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320255 cd15127 7tmA_GPR37 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,129,131,132,133,134,135,176,179,180,181,183,184,185,187,188,242,245,246,248,249,252,264,265,267,268,269,272,275,276 2 -320255 cd15127 7tmA_GPR37 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320255 cd15127 7tmA_GPR37 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320255 cd15127 7tmA_GPR37 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320255 cd15127 7tmA_GPR37 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320255 cd15127 7tmA_GPR37 6 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320255 cd15127 7tmA_GPR37 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320255 cd15127 7tmA_GPR37 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320256 cd15128 7tmA_ET_R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,77,78,79,80,81,82,84,85,88,133,135,136,137,138,139,171,174,175,176,178,179,180,182,183,238,241,242,244,245,248,266,267,269,270,271,274,277,278 2 -320256 cd15128 7tmA_ET_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320256 cd15128 7tmA_ET_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320256 cd15128 7tmA_ET_R 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320256 cd15128 7tmA_ET_R 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320256 cd15128 7tmA_ET_R 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320256 cd15128 7tmA_ET_R 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320256 cd15128 7tmA_ET_R 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320257 cd15129 7tmA_GPR142 1 putative ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,153,156,157,158,160,161,162,164,165,214,217,218,220,221,224,236,237,239,240,241,244,247,248 5 -320257 cd15129 7tmA_GPR142 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320257 cd15129 7tmA_GPR142 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320257 cd15129 7tmA_GPR142 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320257 cd15129 7tmA_GPR142 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320257 cd15129 7tmA_GPR142 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320257 cd15129 7tmA_GPR142 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320257 cd15129 7tmA_GPR142 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320258 cd15130 7tmA_NTSR 1 peptide ligand binding site 0 1 1 0 63,67,68,81,143,159,160,161,162,227,228,231,232,234,235,236,239,244,247,251 2 -320258 cd15130 7tmA_NTSR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320258 cd15130 7tmA_NTSR 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320258 cd15130 7tmA_NTSR 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320258 cd15130 7tmA_NTSR 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320258 cd15130 7tmA_NTSR 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320258 cd15130 7tmA_NTSR 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320258 cd15130 7tmA_NTSR 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320259 cd15131 7tmA_GHSR 1 putative peptide ligand binding site 0 0 1 1 59,76,138,153,154,155,156,238,239,242,243,257,261 2 -320259 cd15131 7tmA_GHSR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320259 cd15131 7tmA_GHSR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320259 cd15131 7tmA_GHSR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320259 cd15131 7tmA_GHSR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320259 cd15131 7tmA_GHSR 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320259 cd15131 7tmA_GHSR 7 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320259 cd15131 7tmA_GHSR 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320260 cd15132 7tmA_motilin_R 1 putative peptide ligand binding site 0 0 1 1 59,76,138,154,155,156,157,239,240,243,244,255,259 2 -320260 cd15132 7tmA_motilin_R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320260 cd15132 7tmA_motilin_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320260 cd15132 7tmA_motilin_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320260 cd15132 7tmA_motilin_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320260 cd15132 7tmA_motilin_R 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320260 cd15132 7tmA_motilin_R 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320260 cd15132 7tmA_motilin_R 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320261 cd15133 7tmA_NMU-R 1 putative peptide ligand binding site 0 0 1 1 60,77,139,153,154,155,156,246,247,250,251,264,268 2 -320261 cd15133 7tmA_NMU-R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320261 cd15133 7tmA_NMU-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320261 cd15133 7tmA_NMU-R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320261 cd15133 7tmA_NMU-R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320261 cd15133 7tmA_NMU-R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320261 cd15133 7tmA_NMU-R 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320261 cd15133 7tmA_NMU-R 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320262 cd15134 7tmA_capaR 1 putative peptide ligand binding site 0 0 1 1 60,77,139,159,160,161,162,246,247,250,251,264,268 2 -320262 cd15134 7tmA_capaR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320262 cd15134 7tmA_capaR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320262 cd15134 7tmA_capaR 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320262 cd15134 7tmA_capaR 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320262 cd15134 7tmA_capaR 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320262 cd15134 7tmA_capaR 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320262 cd15134 7tmA_capaR 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320263 cd15135 7tmA_GPR39 1 putative peptide ligand binding site 0 0 1 1 63,81,142,170,171,172,173,266,267,270,271,286,290 2 -320263 cd15135 7tmA_GPR39 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320263 cd15135 7tmA_GPR39 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320263 cd15135 7tmA_GPR39 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320263 cd15135 7tmA_GPR39 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320263 cd15135 7tmA_GPR39 6 TM helix 5 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320263 cd15135 7tmA_GPR39 7 TM helix 6 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320263 cd15135 7tmA_GPR39 8 TM helix 7 0 0 0 0 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312 7 -320264 cd15136 7tmA_Glyco_hormone_R 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,222,225,226,228,229,232,241,242,244,245,246,249,252,253 2 -320264 cd15136 7tmA_Glyco_hormone_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320264 cd15136 7tmA_Glyco_hormone_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320264 cd15136 7tmA_Glyco_hormone_R 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320264 cd15136 7tmA_Glyco_hormone_R 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320264 cd15136 7tmA_Glyco_hormone_R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320264 cd15136 7tmA_Glyco_hormone_R 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320264 cd15136 7tmA_Glyco_hormone_R 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320265 cd15137 7tmA_Relaxin_R 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,134,136,137,138,139,140,169,172,173,174,176,177,178,180,181,232,235,236,238,239,242,250,251,253,254,255,258,261,262 2 -320265 cd15137 7tmA_Relaxin_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320265 cd15137 7tmA_Relaxin_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320265 cd15137 7tmA_Relaxin_R 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320265 cd15137 7tmA_Relaxin_R 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320265 cd15137 7tmA_Relaxin_R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320265 cd15137 7tmA_Relaxin_R 7 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320265 cd15137 7tmA_Relaxin_R 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320266 cd15138 7tmA_LRR_GPR 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,221,224,225,227,228,231,240,241,243,244,245,248,251,252 2 -320266 cd15138 7tmA_LRR_GPR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320266 cd15138 7tmA_LRR_GPR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320266 cd15138 7tmA_LRR_GPR 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320266 cd15138 7tmA_LRR_GPR 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320266 cd15138 7tmA_LRR_GPR 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320266 cd15138 7tmA_LRR_GPR 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320266 cd15138 7tmA_LRR_GPR 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320267 cd15139 7tmA_PGE2_EP2 1 putative ligand binding pocket 0 0 1 1 61,64,65,81,82,83,84,85,86,88,89,92,137,139,140,141,142,143,169,172,173,174,176,177,178,180,181,247,250,251,253,254,257,264,265,267,268,269,272,275,276 5 -320267 cd15139 7tmA_PGE2_EP2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320267 cd15139 7tmA_PGE2_EP2 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320267 cd15139 7tmA_PGE2_EP2 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320267 cd15139 7tmA_PGE2_EP2 5 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320267 cd15139 7tmA_PGE2_EP2 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320267 cd15139 7tmA_PGE2_EP2 7 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320267 cd15139 7tmA_PGE2_EP2 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320268 cd15140 7tmA_PGD2 1 putative ligand binding pocket 0 0 1 1 66,69,70,88,89,90,91,92,93,95,96,99,144,146,147,148,149,150,178,181,182,183,185,186,187,189,190,260,263,264,266,267,270,277,278,280,281,282,285,288,289 5 -320268 cd15140 7tmA_PGD2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320268 cd15140 7tmA_PGD2 3 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320268 cd15140 7tmA_PGD2 4 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118 7 -320268 cd15140 7tmA_PGD2 5 TM helix 4 0 0 0 0 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320268 cd15140 7tmA_PGD2 6 TM helix 5 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320268 cd15140 7tmA_PGD2 7 TM helix 6 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320268 cd15140 7tmA_PGD2 8 TM helix 7 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303 7 -320269 cd15141 7tmA_PGI2 1 putative ligand binding pocket 0 0 1 1 60,63,64,80,81,82,83,84,85,87,88,91,136,138,139,140,141,142,171,174,175,176,178,179,180,182,183,249,252,253,255,256,259,266,267,269,270,271,274,277,278 5 -320269 cd15141 7tmA_PGI2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320269 cd15141 7tmA_PGI2 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320269 cd15141 7tmA_PGI2 4 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -320269 cd15141 7tmA_PGI2 5 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320269 cd15141 7tmA_PGI2 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320269 cd15141 7tmA_PGI2 7 TM helix 6 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320269 cd15141 7tmA_PGI2 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320270 cd15142 7tmA_PGE2_EP4 1 putative ligand binding pocket 0 0 1 1 58,61,62,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,162,165,166,167,169,170,171,173,174,245,248,249,251,252,255,267,268,270,271,272,275,278,279 5 -320270 cd15142 7tmA_PGE2_EP4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320270 cd15142 7tmA_PGE2_EP4 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320270 cd15142 7tmA_PGE2_EP4 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320270 cd15142 7tmA_PGE2_EP4 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320270 cd15142 7tmA_PGE2_EP4 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320270 cd15142 7tmA_PGE2_EP4 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320270 cd15142 7tmA_PGE2_EP4 8 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320271 cd15143 7tmA_TXA2_R 1 putative ligand binding pocket 0 0 1 1 61,64,65,81,82,83,84,85,86,88,89,92,137,139,140,141,142,143,168,171,172,173,175,176,177,179,180,233,236,237,239,240,243,261,262,264,265,266,269,272,273 5 -320271 cd15143 7tmA_TXA2_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320271 cd15143 7tmA_TXA2_R 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320271 cd15143 7tmA_TXA2_R 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320271 cd15143 7tmA_TXA2_R 5 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320271 cd15143 7tmA_TXA2_R 6 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320271 cd15143 7tmA_TXA2_R 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320271 cd15143 7tmA_TXA2_R 8 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320272 cd15144 7tmA_PGE2_EP1 1 putative ligand binding pocket 0 0 1 1 61,64,65,80,81,82,83,84,85,87,88,91,136,138,139,140,141,142,169,172,173,174,176,177,178,180,181,237,240,241,243,244,247,259,260,262,263,264,267,270,271 5 -320272 cd15144 7tmA_PGE2_EP1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320272 cd15144 7tmA_PGE2_EP1 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320272 cd15144 7tmA_PGE2_EP1 4 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -320272 cd15144 7tmA_PGE2_EP1 5 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320272 cd15144 7tmA_PGE2_EP1 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320272 cd15144 7tmA_PGE2_EP1 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320272 cd15144 7tmA_PGE2_EP1 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320273 cd15145 7tmA_FP 1 putative ligand binding pocket 0 0 1 1 61,64,65,81,82,83,84,85,86,88,89,92,137,139,140,141,142,143,170,173,174,175,177,178,179,181,182,235,238,239,241,242,245,255,256,258,259,260,263,266,267 5 -320273 cd15145 7tmA_FP 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320273 cd15145 7tmA_FP 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320273 cd15145 7tmA_FP 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320273 cd15145 7tmA_FP 5 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320273 cd15145 7tmA_FP 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320273 cd15145 7tmA_FP 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320273 cd15145 7tmA_FP 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320274 cd15146 7tmA_PGE2_EP3 1 putative ligand binding pocket 0 0 1 1 61,64,65,81,82,83,84,85,86,88,89,92,137,139,140,141,142,143,169,172,173,174,176,177,178,180,181,238,241,242,244,245,248,273,274,276,277,278,281,284,285 5 -320274 cd15146 7tmA_PGE2_EP3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320274 cd15146 7tmA_PGE2_EP3 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320274 cd15146 7tmA_PGE2_EP3 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320274 cd15146 7tmA_PGE2_EP3 5 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320274 cd15146 7tmA_PGE2_EP3 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320274 cd15146 7tmA_PGE2_EP3 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320274 cd15146 7tmA_PGE2_EP3 8 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -320275 cd15147 7tmA_PAFR 1 putative ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,166,169,170,171,173,174,175,177,178,228,231,232,234,235,238,257,258,260,261,262,265,268,269 5 -320275 cd15147 7tmA_PAFR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320275 cd15147 7tmA_PAFR 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320275 cd15147 7tmA_PAFR 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320275 cd15147 7tmA_PAFR 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320275 cd15147 7tmA_PAFR 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320275 cd15147 7tmA_PAFR 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320275 cd15147 7tmA_PAFR 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320276 cd15148 7tmA_GPR34-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,158,161,162,163,165,166,167,169,170,222,225,226,228,229,232,248,249,251,252,253,256,259,260 5 -320276 cd15148 7tmA_GPR34-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320276 cd15148 7tmA_GPR34-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320276 cd15148 7tmA_GPR34-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320276 cd15148 7tmA_GPR34-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320276 cd15148 7tmA_GPR34-like 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320276 cd15148 7tmA_GPR34-like 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320276 cd15148 7tmA_GPR34-like 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320277 cd15149 7tmA_P2Y14 1 putative ligand binding site 0 0 1 1 67,71,75,76,79,80,83,126,129,130,133,137,148,149,153,161,164,165,168,230,233,237,254 5 -320277 cd15149 7tmA_P2Y14 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320277 cd15149 7tmA_P2Y14 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320277 cd15149 7tmA_P2Y14 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320277 cd15149 7tmA_P2Y14 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320277 cd15149 7tmA_P2Y14 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320277 cd15149 7tmA_P2Y14 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320277 cd15149 7tmA_P2Y14 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -341326 cd15150 7tmA_P2Y12 1 ligand binding site 0 1 1 1 67,71,75,76,79,80,83,126,129,130,133,137,148,149,153,161,164,165,168,230,233,237,254 5 -341326 cd15150 7tmA_P2Y12 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341326 cd15150 7tmA_P2Y12 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341326 cd15150 7tmA_P2Y12 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341326 cd15150 7tmA_P2Y12 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341326 cd15150 7tmA_P2Y12 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341326 cd15150 7tmA_P2Y12 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -341326 cd15150 7tmA_P2Y12 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341327 cd15151 7tmA_P2Y13 1 putative ligand binding site 0 0 1 1 67,71,75,76,79,80,83,126,129,130,133,137,148,149,153,161,164,165,168,230,233,237,254 5 -341327 cd15151 7tmA_P2Y13 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341327 cd15151 7tmA_P2Y13 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341327 cd15151 7tmA_P2Y13 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341327 cd15151 7tmA_P2Y13 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341327 cd15151 7tmA_P2Y13 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341327 cd15151 7tmA_P2Y13 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -341327 cd15151 7tmA_P2Y13 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320280 cd15152 7tmA_GPR174-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,126,128,129,130,131,132,160,163,164,165,167,168,169,171,172,221,224,225,227,228,231,248,249,251,252,253,256,259,260 5 -320280 cd15152 7tmA_GPR174-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320280 cd15152 7tmA_GPR174-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320280 cd15152 7tmA_GPR174-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320280 cd15152 7tmA_GPR174-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320280 cd15152 7tmA_GPR174-like 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320280 cd15152 7tmA_GPR174-like 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320280 cd15152 7tmA_GPR174-like 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320281 cd15153 7tmA_P2Y10 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,126,128,129,130,131,132,161,164,165,166,168,169,170,172,173,222,225,226,228,229,232,249,250,252,253,254,257,260,261 5 -320281 cd15153 7tmA_P2Y10 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320281 cd15153 7tmA_P2Y10 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320281 cd15153 7tmA_P2Y10 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320281 cd15153 7tmA_P2Y10 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320281 cd15153 7tmA_P2Y10 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320281 cd15153 7tmA_P2Y10 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320281 cd15153 7tmA_P2Y10 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320282 cd15154 7tmA_LPAR5 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,164,167,168,169,171,172,173,175,176,223,226,227,229,230,233,251,252,254,255,256,259,262,263 5 -320282 cd15154 7tmA_LPAR5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320282 cd15154 7tmA_LPAR5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320282 cd15154 7tmA_LPAR5 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320282 cd15154 7tmA_LPAR5 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320282 cd15154 7tmA_LPAR5 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320282 cd15154 7tmA_LPAR5 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320282 cd15154 7tmA_LPAR5 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320283 cd15155 7tmA_LPAR4 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,222,225,226,228,229,232,249,250,252,253,254,257,260,261 5 -320283 cd15155 7tmA_LPAR4 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320283 cd15155 7tmA_LPAR4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320283 cd15155 7tmA_LPAR4 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320283 cd15155 7tmA_LPAR4 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320283 cd15155 7tmA_LPAR4 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320283 cd15155 7tmA_LPAR4 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320283 cd15155 7tmA_LPAR4 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320284 cd15156 7tmA_LPAR6_P2Y5 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,224,227,228,230,231,234,251,252,254,255,256,259,262,263 5 -320284 cd15156 7tmA_LPAR6_P2Y5 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320284 cd15156 7tmA_LPAR6_P2Y5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320284 cd15156 7tmA_LPAR6_P2Y5 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320284 cd15156 7tmA_LPAR6_P2Y5 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320284 cd15156 7tmA_LPAR6_P2Y5 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320284 cd15156 7tmA_LPAR6_P2Y5 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320284 cd15156 7tmA_LPAR6_P2Y5 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320285 cd15157 7tmA_CysLTR2 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,159,162,163,164,166,167,168,170,171,221,224,225,227,228,231,244,245,247,248,249,252,255,256 5 -320285 cd15157 7tmA_CysLTR2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320285 cd15157 7tmA_CysLTR2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320285 cd15157 7tmA_CysLTR2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320285 cd15157 7tmA_CysLTR2 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320285 cd15157 7tmA_CysLTR2 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320285 cd15157 7tmA_CysLTR2 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320285 cd15157 7tmA_CysLTR2 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320286 cd15158 7tmA_CysLTR1 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,162,165,166,167,169,170,171,173,174,224,227,228,230,231,234,251,252,254,255,256,259,262,263 5 -320286 cd15158 7tmA_CysLTR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320286 cd15158 7tmA_CysLTR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320286 cd15158 7tmA_CysLTR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320286 cd15158 7tmA_CysLTR1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320286 cd15158 7tmA_CysLTR1 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320286 cd15158 7tmA_CysLTR1 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320286 cd15158 7tmA_CysLTR1 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320287 cd15159 7tmA_EBI2 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,252,253,255,256,257,260,263,264 5 -320287 cd15159 7tmA_EBI2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320287 cd15159 7tmA_EBI2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320287 cd15159 7tmA_EBI2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320287 cd15159 7tmA_EBI2 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320287 cd15159 7tmA_EBI2 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320287 cd15159 7tmA_EBI2 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320287 cd15159 7tmA_EBI2 8 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320288 cd15160 7tmA_Proton-sensing_R 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,219,222,223,225,226,229,246,247,249,250,251,254,257,258 5 -320288 cd15160 7tmA_Proton-sensing_R 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320288 cd15160 7tmA_Proton-sensing_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320288 cd15160 7tmA_Proton-sensing_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320288 cd15160 7tmA_Proton-sensing_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320288 cd15160 7tmA_Proton-sensing_R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320288 cd15160 7tmA_Proton-sensing_R 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320288 cd15160 7tmA_Proton-sensing_R 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320289 cd15161 7tmA_GPR17 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,157,160,161,162,164,165,166,168,169,216,219,220,222,223,226,243,244,246,247,248,251,254,255 5 -320289 cd15161 7tmA_GPR17 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320289 cd15161 7tmA_GPR17 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320289 cd15161 7tmA_GPR17 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320289 cd15161 7tmA_GPR17 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320289 cd15161 7tmA_GPR17 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320289 cd15161 7tmA_GPR17 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320289 cd15161 7tmA_GPR17 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -341328 cd15162 7tmA_PAR 1 putative peptide ligand binding pocket 0 1 1 1 55,58,59,65,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,151,152,153,164,167,168,169,171,172,173,175,176,224,227,228,230,231,234,246,247,249,250,251,254,257,258 2 -341328 cd15162 7tmA_PAR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341328 cd15162 7tmA_PAR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341328 cd15162 7tmA_PAR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341328 cd15162 7tmA_PAR 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341328 cd15162 7tmA_PAR 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -341328 cd15162 7tmA_PAR 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -341328 cd15162 7tmA_PAR 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320291 cd15163 7tmA_GPR20 1 putative ligand binding pocket 0 0 1 1 55,58,59,69,70,71,72,73,74,76,77,80,125,127,128,129,130,131,142,145,146,147,149,150,151,153,154,203,206,207,209,210,213,224,225,227,228,229,232,235,236 5 -320291 cd15163 7tmA_GPR20 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320291 cd15163 7tmA_GPR20 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320291 cd15163 7tmA_GPR20 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320291 cd15163 7tmA_GPR20 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320291 cd15163 7tmA_GPR20 6 TM helix 5 0 0 0 0 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320291 cd15163 7tmA_GPR20 7 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320291 cd15163 7tmA_GPR20 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320292 cd15164 7tmA_GPR35-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,69,70,71,72,73,74,76,77,80,125,127,128,129,130,131,150,153,154,155,157,158,159,161,162,212,215,216,218,219,222,238,239,241,242,243,246,249,250 5 -320292 cd15164 7tmA_GPR35-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320292 cd15164 7tmA_GPR35-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320292 cd15164 7tmA_GPR35-like 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320292 cd15164 7tmA_GPR35-like 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320292 cd15164 7tmA_GPR35-like 6 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320292 cd15164 7tmA_GPR35-like 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320292 cd15164 7tmA_GPR35-like 8 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320293 cd15165 7tmA_GPR55-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,70,71,72,73,74,75,77,78,81,126,128,129,130,131,132,155,158,159,160,162,163,164,166,167,216,219,220,222,223,226,243,244,246,247,248,251,254,255 5 -320293 cd15165 7tmA_GPR55-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320293 cd15165 7tmA_GPR55-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320293 cd15165 7tmA_GPR55-like 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320293 cd15165 7tmA_GPR55-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320293 cd15165 7tmA_GPR55-like 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320293 cd15165 7tmA_GPR55-like 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320293 cd15165 7tmA_GPR55-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320294 cd15166 7tmA_NAGly_R_GPR18 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,222,225,226,228,229,232,241,242,244,245,246,249,252,253 5 -320294 cd15166 7tmA_NAGly_R_GPR18 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320294 cd15166 7tmA_NAGly_R_GPR18 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320294 cd15166 7tmA_NAGly_R_GPR18 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320294 cd15166 7tmA_NAGly_R_GPR18 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320294 cd15166 7tmA_NAGly_R_GPR18 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320294 cd15166 7tmA_NAGly_R_GPR18 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320294 cd15166 7tmA_NAGly_R_GPR18 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320295 cd15167 7tmA_GPR171 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,221,224,225,227,228,231,248,249,251,252,253,256,259,260 5 -320295 cd15167 7tmA_GPR171 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320295 cd15167 7tmA_GPR171 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320295 cd15167 7tmA_GPR171 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320295 cd15167 7tmA_GPR171 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320295 cd15167 7tmA_GPR171 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320295 cd15167 7tmA_GPR171 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320295 cd15167 7tmA_GPR171 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341329 cd15168 7tmA_P2Y1-like 1 putative ligand binding pocket 0 1 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,222,225,226,228,229,232,250,251,253,254,255,258,261,262 5 -341329 cd15168 7tmA_P2Y1-like 2 putative allosteric modulator binding site 0 1 1 0 10,14,50,51,53,54,67,74,75 5 -341329 cd15168 7tmA_P2Y1-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341329 cd15168 7tmA_P2Y1-like 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341329 cd15168 7tmA_P2Y1-like 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341329 cd15168 7tmA_P2Y1-like 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341329 cd15168 7tmA_P2Y1-like 7 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341329 cd15168 7tmA_P2Y1-like 8 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341329 cd15168 7tmA_P2Y1-like 9 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320297 cd15169 7tmA_FFAR1 1 putative ligand binding pocket 0 1 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,173,176,177,178,180,181,182,184,185,231,234,235,237,238,241,248,249,251,252,253,256,259,260 5 -320297 cd15169 7tmA_FFAR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320297 cd15169 7tmA_FFAR1 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320297 cd15169 7tmA_FFAR1 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320297 cd15169 7tmA_FFAR1 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320297 cd15169 7tmA_FFAR1 6 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 7 -320297 cd15169 7tmA_FFAR1 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320297 cd15169 7tmA_FFAR1 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320298 cd15170 7tmA_FFAR2_FFAR3 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,167,170,171,172,174,175,176,178,179,226,229,230,232,233,236,242,243,245,246,247,250,253,254 5 -320298 cd15170 7tmA_FFAR2_FFAR3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320298 cd15170 7tmA_FFAR2_FFAR3 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320298 cd15170 7tmA_FFAR2_FFAR3 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320298 cd15170 7tmA_FFAR2_FFAR3 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320298 cd15170 7tmA_FFAR2_FFAR3 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320298 cd15170 7tmA_FFAR2_FFAR3 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320298 cd15170 7tmA_FFAR2_FFAR3 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320299 cd15171 7tmA_CCRL2 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,70,71,72,73,74,75,77,78,81,127,129,130,131,132,133,148,149,150,151,152,164,167,168,169,171,172,173,175,176,218,221,222,224,225,228,245,246,248,249,250,253,256,257 2 -320299 cd15171 7tmA_CCRL2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320299 cd15171 7tmA_CCRL2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320299 cd15171 7tmA_CCRL2 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320299 cd15171 7tmA_CCRL2 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320299 cd15171 7tmA_CCRL2 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320299 cd15171 7tmA_CCRL2 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320299 cd15171 7tmA_CCRL2 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341330 cd15172 7tmA_CCR6 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,151,152,153,154,155,156,165,168,169,224,231,234,244,248,251,252,255 2 -341330 cd15172 7tmA_CCR6 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341330 cd15172 7tmA_CCR6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341330 cd15172 7tmA_CCR6 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341330 cd15172 7tmA_CCR6 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341330 cd15172 7tmA_CCR6 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -341330 cd15172 7tmA_CCR6 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341330 cd15172 7tmA_CCR6 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320301 cd15173 7tmA_CXCR6 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,148,149,150,151,152,153,158,161,162,217,224,227,233,237,240,241,244 2 -320301 cd15173 7tmA_CXCR6 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320301 cd15173 7tmA_CXCR6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320301 cd15173 7tmA_CXCR6 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320301 cd15173 7tmA_CXCR6 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320301 cd15173 7tmA_CXCR6 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320301 cd15173 7tmA_CXCR6 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320301 cd15173 7tmA_CXCR6 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320302 cd15174 7tmA_CCR9 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,149,150,151,152,153,154,162,165,166,221,228,231,243,247,250,251,254 2 -320302 cd15174 7tmA_CCR9 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320302 cd15174 7tmA_CCR9 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320302 cd15174 7tmA_CCR9 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320302 cd15174 7tmA_CCR9 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320302 cd15174 7tmA_CCR9 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320302 cd15174 7tmA_CCR9 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320302 cd15174 7tmA_CCR9 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341331 cd15175 7tmA_CCR7 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,149,150,151,152,153,154,160,163,164,219,226,229,241,245,248,249,252 2 -341331 cd15175 7tmA_CCR7 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341331 cd15175 7tmA_CCR7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341331 cd15175 7tmA_CCR7 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341331 cd15175 7tmA_CCR7 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341331 cd15175 7tmA_CCR7 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341331 cd15175 7tmA_CCR7 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -341331 cd15175 7tmA_CCR7 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320304 cd15176 7tmA_ACKR4_CCR11 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,145,146,147,148,149,150,158,161,162,217,224,227,239,243,246,247,250 2 -320304 cd15176 7tmA_ACKR4_CCR11 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320304 cd15176 7tmA_ACKR4_CCR11 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320304 cd15176 7tmA_ACKR4_CCR11 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320304 cd15176 7tmA_ACKR4_CCR11 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320304 cd15176 7tmA_ACKR4_CCR11 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320304 cd15176 7tmA_ACKR4_CCR11 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320304 cd15176 7tmA_ACKR4_CCR11 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -341332 cd15177 7tmA_CCR10 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,149,150,151,152,153,154,162,165,166,221,228,231,243,247,250,251,254 2 -341332 cd15177 7tmA_CCR10 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341332 cd15177 7tmA_CCR10 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341332 cd15177 7tmA_CCR10 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341332 cd15177 7tmA_CCR10 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341332 cd15177 7tmA_CCR10 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -341332 cd15177 7tmA_CCR10 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -341332 cd15177 7tmA_CCR10 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341333 cd15178 7tmA_CXCR1_2 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,148,149,150,151,152,153,161,164,165,220,227,230,242,246,249,250,253 2 -341333 cd15178 7tmA_CXCR1_2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341333 cd15178 7tmA_CXCR1_2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341333 cd15178 7tmA_CXCR1_2 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341333 cd15178 7tmA_CXCR1_2 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341333 cd15178 7tmA_CXCR1_2 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341333 cd15178 7tmA_CXCR1_2 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341333 cd15178 7tmA_CXCR1_2 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341334 cd15179 7tmA_CXCR4 1 chemokine binding site 0 1 1 1 6,55,58,74,77,78,147,148,149,150,151,152,160,163,164,219,226,229,241,245,248,249,252 2 -341334 cd15179 7tmA_CXCR4 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341334 cd15179 7tmA_CXCR4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341334 cd15179 7tmA_CXCR4 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341334 cd15179 7tmA_CXCR4 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341334 cd15179 7tmA_CXCR4 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341334 cd15179 7tmA_CXCR4 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -341334 cd15179 7tmA_CXCR4 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341335 cd15180 7tmA_CXCR3 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,149,150,151,152,153,154,161,164,165,221,228,231,243,247,250,251,254 2 -341335 cd15180 7tmA_CXCR3 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341335 cd15180 7tmA_CXCR3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341335 cd15180 7tmA_CXCR3 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341335 cd15180 7tmA_CXCR3 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341335 cd15180 7tmA_CXCR3 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341335 cd15180 7tmA_CXCR3 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -341335 cd15180 7tmA_CXCR3 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341336 cd15181 7tmA_CXCR5 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,149,150,151,152,153,154,162,165,166,222,229,232,244,248,251,252,255 2 -341336 cd15181 7tmA_CXCR5 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341336 cd15181 7tmA_CXCR5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341336 cd15181 7tmA_CXCR5 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341336 cd15181 7tmA_CXCR5 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341336 cd15181 7tmA_CXCR5 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -341336 cd15181 7tmA_CXCR5 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -341336 cd15181 7tmA_CXCR5 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -341337 cd15182 7tmA_XCR1 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,148,149,150,151,152,153,155,158,159,214,221,224,234,238,241,242,245 2 -341337 cd15182 7tmA_XCR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341337 cd15182 7tmA_XCR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341337 cd15182 7tmA_XCR1 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341337 cd15182 7tmA_XCR1 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341337 cd15182 7tmA_XCR1 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341337 cd15182 7tmA_XCR1 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -341337 cd15182 7tmA_XCR1 8 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320311 cd15183 7tmA_CCR1 1 putative chemokine binding site 0 0 1 1 6,55,58,75,78,79,148,149,150,151,152,153,161,164,165,220,227,230,241,245,248,249,252 2 -320311 cd15183 7tmA_CCR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320311 cd15183 7tmA_CCR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320311 cd15183 7tmA_CCR1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320311 cd15183 7tmA_CCR1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320311 cd15183 7tmA_CCR1 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320311 cd15183 7tmA_CCR1 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320311 cd15183 7tmA_CCR1 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341338 cd15184 7tmA_CCR5_CCR2 1 putative chemokine binding site 0 1 1 1 6,55,58,74,77,78,147,148,149,150,151,152,160,163,164,220,227,230,241,245,248,249,252 2 -341338 cd15184 7tmA_CCR5_CCR2 2 allosteric modulator binding site 0 1 1 0 20,24,34,38,95,198,202,205,266,270,273,276 5 -341338 cd15184 7tmA_CCR5_CCR2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341338 cd15184 7tmA_CCR5_CCR2 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341338 cd15184 7tmA_CCR5_CCR2 5 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -341338 cd15184 7tmA_CCR5_CCR2 6 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341338 cd15184 7tmA_CCR5_CCR2 7 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341338 cd15184 7tmA_CCR5_CCR2 8 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341338 cd15184 7tmA_CCR5_CCR2 9 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341339 cd15185 7tmA_CCR3 1 putative chemokine binding site 0 0 1 1 6,55,58,75,78,79,148,149,150,151,152,153,161,164,165,220,227,230,241,245,248,249,252 2 -341339 cd15185 7tmA_CCR3 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341339 cd15185 7tmA_CCR3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341339 cd15185 7tmA_CCR3 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341339 cd15185 7tmA_CCR3 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341339 cd15185 7tmA_CCR3 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341339 cd15185 7tmA_CCR3 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341339 cd15185 7tmA_CCR3 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320314 cd15186 7tmA_CX3CR1 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,143,144,145,146,147,148,156,159,160,215,222,225,236,240,243,244,247 2 -320314 cd15186 7tmA_CX3CR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320314 cd15186 7tmA_CX3CR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320314 cd15186 7tmA_CX3CR1 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320314 cd15186 7tmA_CX3CR1 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320314 cd15186 7tmA_CX3CR1 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320314 cd15186 7tmA_CX3CR1 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320314 cd15186 7tmA_CX3CR1 8 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320315 cd15187 7tmA_CCR8 1 putative chemokine binding site 0 0 1 1 6,55,58,74,77,78,147,148,149,150,151,152,159,162,163,218,225,228,239,243,246,247,250 2 -320315 cd15187 7tmA_CCR8 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320315 cd15187 7tmA_CCR8 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320315 cd15187 7tmA_CCR8 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320315 cd15187 7tmA_CCR8 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320315 cd15187 7tmA_CCR8 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320315 cd15187 7tmA_CCR8 7 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320315 cd15187 7tmA_CCR8 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320316 cd15188 7tmA_ACKR2_D6 1 putative chemokine binding site 0 0 1 1 6,56,59,75,78,79,149,150,151,152,153,154,161,164,165,220,227,230,241,245,248,249,252 2 -320316 cd15188 7tmA_ACKR2_D6 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320316 cd15188 7tmA_ACKR2_D6 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320316 cd15188 7tmA_ACKR2_D6 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320316 cd15188 7tmA_ACKR2_D6 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320316 cd15188 7tmA_ACKR2_D6 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320316 cd15188 7tmA_ACKR2_D6 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320316 cd15188 7tmA_ACKR2_D6 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320317 cd15189 7tmA_Bradykinin_R 1 putative peptide ligand binding pocket 0 0 1 1 6,55,58,59,63,76,79,80,83,134,138,153,223,226,258,262 2 -320317 cd15189 7tmA_Bradykinin_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320317 cd15189 7tmA_Bradykinin_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320317 cd15189 7tmA_Bradykinin_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320317 cd15189 7tmA_Bradykinin_R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320317 cd15189 7tmA_Bradykinin_R 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320317 cd15189 7tmA_Bradykinin_R 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320317 cd15189 7tmA_Bradykinin_R 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -341340 cd15190 7tmA_Apelin_R 1 peptide ligand binding pocket 0 1 1 0 1,2,3,4,5,66,69,70,72,74,91,149,154,155,156,157,158,164,166,179,245,249,252,274,278,282 2 -341340 cd15190 7tmA_Apelin_R 2 TM helix 1 0 0 0 1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 7 -341340 cd15190 7tmA_Apelin_R 3 TM helix 2 0 0 0 0 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -341340 cd15190 7tmA_Apelin_R 4 TM helix 3 0 0 0 0 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -341340 cd15190 7tmA_Apelin_R 5 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -341340 cd15190 7tmA_Apelin_R 6 TM helix 5 0 0 0 0 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -341340 cd15190 7tmA_Apelin_R 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -341340 cd15190 7tmA_Apelin_R 8 TM helix 7 0 0 0 0 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -341341 cd15191 7tmA_AT2R 1 putative peptide ligand binding pocket 0 1 1 1 6,55,58,59,63,76,79,80,83,133,137,152,224,227,259,263 2 -341341 cd15191 7tmA_AT2R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341341 cd15191 7tmA_AT2R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341341 cd15191 7tmA_AT2R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341341 cd15191 7tmA_AT2R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -341341 cd15191 7tmA_AT2R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -341341 cd15191 7tmA_AT2R 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -341341 cd15191 7tmA_AT2R 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320320 cd15192 7tmA_AT1R 1 putative peptide ligand binding pocket 0 1 1 1 6,48,55,58,59,63,76,79,80,83,134,138,153,224,227,259,263 2 -320320 cd15192 7tmA_AT1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320320 cd15192 7tmA_AT1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320320 cd15192 7tmA_AT1R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320320 cd15192 7tmA_AT1R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320320 cd15192 7tmA_AT1R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320320 cd15192 7tmA_AT1R 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320320 cd15192 7tmA_AT1R 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320321 cd15193 7tmA_GPR25 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,155,158,159,160,162,163,164,166,167,217,220,221,223,224,227,245,246,248,249,250,253,256,257 5 -320321 cd15193 7tmA_GPR25 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320321 cd15193 7tmA_GPR25 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320321 cd15193 7tmA_GPR25 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320321 cd15193 7tmA_GPR25 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320321 cd15193 7tmA_GPR25 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320321 cd15193 7tmA_GPR25 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320321 cd15193 7tmA_GPR25 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320322 cd15194 7tmA_GPR15 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,158,161,162,163,165,166,167,169,170,220,223,224,226,227,230,247,248,250,251,252,255,258,259 5 -320322 cd15194 7tmA_GPR15 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320322 cd15194 7tmA_GPR15 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320322 cd15194 7tmA_GPR15 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320322 cd15194 7tmA_GPR15 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320322 cd15194 7tmA_GPR15 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320322 cd15194 7tmA_GPR15 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320322 cd15194 7tmA_GPR15 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320323 cd15195 7tmA_GnRHR-like 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,163,166,167,168,170,171,172,174,175,238,241,242,244,245,248,259,260,262,263,264,267,270,271 2 -320323 cd15195 7tmA_GnRHR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320323 cd15195 7tmA_GnRHR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320323 cd15195 7tmA_GnRHR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320323 cd15195 7tmA_GnRHR-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320323 cd15195 7tmA_GnRHR-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320323 cd15195 7tmA_GnRHR-like 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320323 cd15195 7tmA_GnRHR-like 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,211,214,215,217,218,221,230,231,233,234,235,238,241,242 2 -320324 cd15196 7tmA_Vasopressin_Oxytocin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320325 cd15197 7tmA_NPSR 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,158,161,162,163,165,166,167,169,170,239,242,243,245,246,249,260,261,263,264,265,268,271,272 2 -320325 cd15197 7tmA_NPSR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320325 cd15197 7tmA_NPSR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320325 cd15197 7tmA_NPSR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320325 cd15197 7tmA_NPSR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320325 cd15197 7tmA_NPSR 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320325 cd15197 7tmA_NPSR 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320325 cd15197 7tmA_NPSR 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320326 cd15198 7tmA_GPR150 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,124,126,127,128,129,130,164,167,168,169,171,172,173,175,176,246,249,250,252,253,256,265,266,268,269,270,273,276,277 2 -320326 cd15198 7tmA_GPR150 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320326 cd15198 7tmA_GPR150 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320326 cd15198 7tmA_GPR150 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320326 cd15198 7tmA_GPR150 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320326 cd15198 7tmA_GPR150 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320326 cd15198 7tmA_GPR150 7 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320326 cd15198 7tmA_GPR150 8 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320327 cd15199 7tmA_GPR31 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,158,161,162,163,165,166,167,169,170,219,222,223,225,226,229,244,245,247,248,249,252,255,256 5 -320327 cd15199 7tmA_GPR31 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320327 cd15199 7tmA_GPR31 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320327 cd15199 7tmA_GPR31 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320327 cd15199 7tmA_GPR31 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320327 cd15199 7tmA_GPR31 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320327 cd15199 7tmA_GPR31 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320327 cd15199 7tmA_GPR31 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320328 cd15200 7tmA_OXER1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320328 cd15200 7tmA_OXER1 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56 7 -320328 cd15200 7tmA_OXER1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320328 cd15200 7tmA_OXER1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320328 cd15200 7tmA_OXER1 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320328 cd15200 7tmA_OXER1 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320328 cd15200 7tmA_OXER1 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320328 cd15200 7tmA_OXER1 8 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,158,161,162,163,165,166,167,169,170,217,220,221,223,224,227,242,243,245,246,247,250,253,254 5 -320329 cd15201 7tmA_HCAR1-3 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,220,223,224,226,227,230,247,248,250,251,252,255,258,259 5 -320329 cd15201 7tmA_HCAR1-3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320329 cd15201 7tmA_HCAR1-3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320329 cd15201 7tmA_HCAR1-3 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320329 cd15201 7tmA_HCAR1-3 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320329 cd15201 7tmA_HCAR1-3 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320329 cd15201 7tmA_HCAR1-3 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320329 cd15201 7tmA_HCAR1-3 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320330 cd15202 7tmA_TACR-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,164,167,168,169,171,172,173,175,176,233,236,237,239,240,243,254,255,257,258,259,262,265,266 2 -320330 cd15202 7tmA_TACR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320330 cd15202 7tmA_TACR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320330 cd15202 7tmA_TACR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320330 cd15202 7tmA_TACR-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320330 cd15202 7tmA_TACR-like 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320330 cd15202 7tmA_TACR-like 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320330 cd15202 7tmA_TACR-like 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320331 cd15203 7tmA_NPYR-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,163,166,167,168,170,171,172,174,175,236,239,240,242,243,246,259,260,262,263,264,267,270,271 2 -320331 cd15203 7tmA_NPYR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320331 cd15203 7tmA_NPYR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320331 cd15203 7tmA_NPYR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320331 cd15203 7tmA_NPYR-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320331 cd15203 7tmA_NPYR-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320331 cd15203 7tmA_NPYR-like 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320331 cd15203 7tmA_NPYR-like 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320332 cd15204 7tmA_prokineticin-R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,74,75,76,77,78,79,81,82,85,128,130,131,132,133,134,163,166,167,168,170,171,172,174,175,231,234,235,237,238,241,254,255,257,258,259,262,265,266 2 -320332 cd15204 7tmA_prokineticin-R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320332 cd15204 7tmA_prokineticin-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320332 cd15204 7tmA_prokineticin-R 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320332 cd15204 7tmA_prokineticin-R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320332 cd15204 7tmA_prokineticin-R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320332 cd15204 7tmA_prokineticin-R 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320332 cd15204 7tmA_prokineticin-R 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320333 cd15205 7tmA_QRFPR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,165,168,169,170,172,173,174,176,177,240,243,244,246,247,250,264,265,267,268,269,272,275,276 2 -320333 cd15205 7tmA_QRFPR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320333 cd15205 7tmA_QRFPR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320333 cd15205 7tmA_QRFPR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320333 cd15205 7tmA_QRFPR 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320333 cd15205 7tmA_QRFPR 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320333 cd15205 7tmA_QRFPR 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320333 cd15205 7tmA_QRFPR 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320334 cd15206 7tmA_CCK_R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,213,216,217,219,220,223,235,236,238,239,240,243,246,247 2 -320334 cd15206 7tmA_CCK_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320334 cd15206 7tmA_CCK_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320334 cd15206 7tmA_CCK_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320334 cd15206 7tmA_CCK_R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320334 cd15206 7tmA_CCK_R 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320334 cd15206 7tmA_CCK_R 7 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320334 cd15206 7tmA_CCK_R 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320335 cd15207 7tmA_NPFFR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,162,165,166,167,169,170,171,173,174,233,236,237,239,240,243,257,258,260,261,262,265,268,269 2 -320335 cd15207 7tmA_NPFFR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320335 cd15207 7tmA_NPFFR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320335 cd15207 7tmA_NPFFR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320335 cd15207 7tmA_NPFFR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320335 cd15207 7tmA_NPFFR 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320335 cd15207 7tmA_NPFFR 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320335 cd15207 7tmA_NPFFR 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320336 cd15208 7tmA_OXR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,164,167,168,169,171,172,173,175,176,246,249,250,252,253,256,269,270,272,273,274,277,280,281 2 -320336 cd15208 7tmA_OXR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320336 cd15208 7tmA_OXR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320336 cd15208 7tmA_OXR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320336 cd15208 7tmA_OXR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320336 cd15208 7tmA_OXR 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320336 cd15208 7tmA_OXR 7 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320336 cd15208 7tmA_OXR 8 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320337 cd15209 7tmA_Mel1 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,156,159,160,161,163,164,165,167,168,223,226,227,229,230,233,245,246,248,249,250,253,256,257 5 -320337 cd15209 7tmA_Mel1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320337 cd15209 7tmA_Mel1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320337 cd15209 7tmA_Mel1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320337 cd15209 7tmA_Mel1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320337 cd15209 7tmA_Mel1 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320337 cd15209 7tmA_Mel1 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320337 cd15209 7tmA_Mel1 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320338 cd15210 7tmA_GPR84-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,159,162,163,164,166,167,168,170,171,205,208,209,211,212,215,220,221,223,224,225,228,231,232 5 -320338 cd15210 7tmA_GPR84-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320338 cd15210 7tmA_GPR84-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57 7 -320338 cd15210 7tmA_GPR84-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320338 cd15210 7tmA_GPR84-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320338 cd15210 7tmA_GPR84-like 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320338 cd15210 7tmA_GPR84-like 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320338 cd15210 7tmA_GPR84-like 8 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320339 cd15211 7tmA_GPR88-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,70,71,72,73,74,75,77,78,81,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,233,236,237,239,240,243,249,250,252,253,254,257,260,261 5 -320339 cd15211 7tmA_GPR88-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320339 cd15211 7tmA_GPR88-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320339 cd15211 7tmA_GPR88-like 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320339 cd15211 7tmA_GPR88-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320339 cd15211 7tmA_GPR88-like 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320339 cd15211 7tmA_GPR88-like 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320339 cd15211 7tmA_GPR88-like 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320340 cd15212 7tmA_GPR135 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,233,236,237,239,240,243,251,252,254,255,256,259,262,263 5 -320340 cd15212 7tmA_GPR135 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320340 cd15212 7tmA_GPR135 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320340 cd15212 7tmA_GPR135 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320340 cd15212 7tmA_GPR135 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320340 cd15212 7tmA_GPR135 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320340 cd15212 7tmA_GPR135 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320340 cd15212 7tmA_GPR135 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320341 cd15213 7tmA_PSP24-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,125,127,128,129,130,131,157,160,161,162,164,165,166,168,169,209,212,213,215,216,219,228,229,231,232,233,236,239,240 5 -320341 cd15213 7tmA_PSP24-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320341 cd15213 7tmA_PSP24-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320341 cd15213 7tmA_PSP24-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320341 cd15213 7tmA_PSP24-like 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320341 cd15213 7tmA_PSP24-like 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320341 cd15213 7tmA_PSP24-like 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320341 cd15213 7tmA_PSP24-like 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320342 cd15214 7tmA_GPR161 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,156,159,160,161,163,164,165,167,168,208,211,212,214,215,218,227,228,230,231,232,235,238,239 5 -320342 cd15214 7tmA_GPR161 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320342 cd15214 7tmA_GPR161 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320342 cd15214 7tmA_GPR161 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320342 cd15214 7tmA_GPR161 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320342 cd15214 7tmA_GPR161 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320342 cd15214 7tmA_GPR161 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320342 cd15214 7tmA_GPR161 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320343 cd15215 7tmA_GPR101 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,156,159,160,161,163,164,165,167,168,209,212,213,215,216,219,227,228,230,231,232,235,238,239 5 -320343 cd15215 7tmA_GPR101 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320343 cd15215 7tmA_GPR101 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320343 cd15215 7tmA_GPR101 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320343 cd15215 7tmA_GPR101 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320343 cd15215 7tmA_GPR101 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320343 cd15215 7tmA_GPR101 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320343 cd15215 7tmA_GPR101 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320344 cd15216 7tmA_SREB1_GPR27 1 putative ligand binding pocket 0 0 1 1 56,59,60,76,77,78,79,80,81,83,84,87,133,135,136,137,138,139,160,163,164,165,167,168,169,171,172,279,282,283,285,286,289,298,299,301,302,303,306,309,310 5 -320344 cd15216 7tmA_SREB1_GPR27 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320344 cd15216 7tmA_SREB1_GPR27 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320344 cd15216 7tmA_SREB1_GPR27 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320344 cd15216 7tmA_SREB1_GPR27 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320344 cd15216 7tmA_SREB1_GPR27 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320344 cd15216 7tmA_SREB1_GPR27 7 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320344 cd15216 7tmA_SREB1_GPR27 8 TM helix 7 0 0 0 0 299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324 7 -320345 cd15217 7tmA_SREB3_GPR173 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,158,161,162,163,165,166,167,169,170,276,279,280,282,283,286,295,296,298,299,300,303,306,307 5 -320345 cd15217 7tmA_SREB3_GPR173 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320345 cd15217 7tmA_SREB3_GPR173 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320345 cd15217 7tmA_SREB3_GPR173 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320345 cd15217 7tmA_SREB3_GPR173 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320345 cd15217 7tmA_SREB3_GPR173 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320345 cd15217 7tmA_SREB3_GPR173 7 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320345 cd15217 7tmA_SREB3_GPR173 8 TM helix 7 0 0 0 0 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321 7 -320346 cd15218 7tmA_SREB2_GPR85 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,158,161,162,163,165,166,167,169,170,277,280,281,283,284,287,296,297,299,300,301,304,307,308 5 -320346 cd15218 7tmA_SREB2_GPR85 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320346 cd15218 7tmA_SREB2_GPR85 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320346 cd15218 7tmA_SREB2_GPR85 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320346 cd15218 7tmA_SREB2_GPR85 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320346 cd15218 7tmA_SREB2_GPR85 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320346 cd15218 7tmA_SREB2_GPR85 7 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320346 cd15218 7tmA_SREB2_GPR85 8 TM helix 7 0 0 0 0 297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322 7 -320347 cd15219 7tmA_GPR26_GPR78-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,162,165,166,167,169,170,171,173,174,212,215,216,218,219,222,230,231,233,234,235,238,241,242 5 -320347 cd15219 7tmA_GPR26_GPR78-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320347 cd15219 7tmA_GPR26_GPR78-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320347 cd15219 7tmA_GPR26_GPR78-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320347 cd15219 7tmA_GPR26_GPR78-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320347 cd15219 7tmA_GPR26_GPR78-like 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320347 cd15219 7tmA_GPR26_GPR78-like 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320347 cd15219 7tmA_GPR26_GPR78-like 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320348 cd15220 7tmA_GPR61_GPR62-like 1 putative ligand binding pocket 0 0 1 1 53,56,57,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,211,214,215,217,218,221,230,231,233,234,235,238,241,242 5 -320348 cd15220 7tmA_GPR61_GPR62-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320348 cd15220 7tmA_GPR61_GPR62-like 3 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -320348 cd15220 7tmA_GPR61_GPR62-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320348 cd15220 7tmA_GPR61_GPR62-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320348 cd15220 7tmA_GPR61_GPR62-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320348 cd15220 7tmA_GPR61_GPR62-like 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320348 cd15220 7tmA_GPR61_GPR62-like 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320349 cd15221 7tmA_OR52B-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320349 cd15221 7tmA_OR52B-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320349 cd15221 7tmA_OR52B-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320349 cd15221 7tmA_OR52B-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320349 cd15221 7tmA_OR52B-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320349 cd15221 7tmA_OR52B-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320349 cd15221 7tmA_OR52B-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320349 cd15221 7tmA_OR52B-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320350 cd15222 7tmA_OR51-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320350 cd15222 7tmA_OR51-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320350 cd15222 7tmA_OR51-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320350 cd15222 7tmA_OR51-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320350 cd15222 7tmA_OR51-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320350 cd15222 7tmA_OR51-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320350 cd15222 7tmA_OR51-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320350 cd15222 7tmA_OR51-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320351 cd15223 7tmA_OR56-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320351 cd15223 7tmA_OR56-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320351 cd15223 7tmA_OR56-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320351 cd15223 7tmA_OR56-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320351 cd15223 7tmA_OR56-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320351 cd15223 7tmA_OR56-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320351 cd15223 7tmA_OR56-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320351 cd15223 7tmA_OR56-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320352 cd15224 7tmA_OR6B-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320352 cd15224 7tmA_OR6B-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320352 cd15224 7tmA_OR6B-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320352 cd15224 7tmA_OR6B-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320352 cd15224 7tmA_OR6B-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320352 cd15224 7tmA_OR6B-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320352 cd15224 7tmA_OR6B-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320352 cd15224 7tmA_OR6B-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320353 cd15225 7tmA_OR10A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320353 cd15225 7tmA_OR10A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320353 cd15225 7tmA_OR10A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320353 cd15225 7tmA_OR10A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320353 cd15225 7tmA_OR10A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320353 cd15225 7tmA_OR10A-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320353 cd15225 7tmA_OR10A-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320353 cd15225 7tmA_OR10A-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320354 cd15226 7tmA_OR4-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,226,229,230,232,233,236,240,241,243,244,245,248,251,252 5 -320354 cd15226 7tmA_OR4-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320354 cd15226 7tmA_OR4-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320354 cd15226 7tmA_OR4-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320354 cd15226 7tmA_OR4-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320354 cd15226 7tmA_OR4-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320354 cd15226 7tmA_OR4-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320354 cd15226 7tmA_OR4-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320355 cd15227 7tmA_OR14-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320355 cd15227 7tmA_OR14-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320355 cd15227 7tmA_OR14-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320355 cd15227 7tmA_OR14-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320355 cd15227 7tmA_OR14-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320355 cd15227 7tmA_OR14-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320355 cd15227 7tmA_OR14-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320355 cd15227 7tmA_OR14-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320356 cd15228 7tmA_OR10D-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,241,242,244,245,246,249,252,253 5 -320356 cd15228 7tmA_OR10D-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320356 cd15228 7tmA_OR10D-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320356 cd15228 7tmA_OR10D-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320356 cd15228 7tmA_OR10D-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320356 cd15228 7tmA_OR10D-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320356 cd15228 7tmA_OR10D-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320356 cd15228 7tmA_OR10D-like 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320357 cd15229 7tmA_OR8S1-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320357 cd15229 7tmA_OR8S1-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320357 cd15229 7tmA_OR8S1-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320357 cd15229 7tmA_OR8S1-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320357 cd15229 7tmA_OR8S1-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320357 cd15229 7tmA_OR8S1-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320357 cd15229 7tmA_OR8S1-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320357 cd15229 7tmA_OR8S1-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320358 cd15230 7tmA_OR5-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320358 cd15230 7tmA_OR5-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320358 cd15230 7tmA_OR5-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320358 cd15230 7tmA_OR5-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320358 cd15230 7tmA_OR5-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320358 cd15230 7tmA_OR5-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320358 cd15230 7tmA_OR5-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320358 cd15230 7tmA_OR5-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320359 cd15231 7tmA_OR5V1-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320359 cd15231 7tmA_OR5V1-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320359 cd15231 7tmA_OR5V1-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320359 cd15231 7tmA_OR5V1-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320359 cd15231 7tmA_OR5V1-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320359 cd15231 7tmA_OR5V1-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320359 cd15231 7tmA_OR5V1-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320359 cd15231 7tmA_OR5V1-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320360 cd15232 7tmA_OR13-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320360 cd15232 7tmA_OR13-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320360 cd15232 7tmA_OR13-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57 7 -320360 cd15232 7tmA_OR13-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320360 cd15232 7tmA_OR13-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320360 cd15232 7tmA_OR13-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320360 cd15232 7tmA_OR13-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320360 cd15232 7tmA_OR13-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320361 cd15233 7tmA_OR3A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320361 cd15233 7tmA_OR3A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320361 cd15233 7tmA_OR3A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320361 cd15233 7tmA_OR3A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320361 cd15233 7tmA_OR3A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320361 cd15233 7tmA_OR3A-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320361 cd15233 7tmA_OR3A-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320361 cd15233 7tmA_OR3A-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320362 cd15234 7tmA_OR7-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320362 cd15234 7tmA_OR7-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320362 cd15234 7tmA_OR7-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320362 cd15234 7tmA_OR7-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320362 cd15234 7tmA_OR7-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320362 cd15234 7tmA_OR7-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320362 cd15234 7tmA_OR7-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320362 cd15234 7tmA_OR7-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320363 cd15235 7tmA_OR1A-like 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,171,174,175,176,178,179,180,182,183,228,231,232,234,235,238,244,245,247,248,249,252,255,256 5 -320363 cd15235 7tmA_OR1A-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320363 cd15235 7tmA_OR1A-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320363 cd15235 7tmA_OR1A-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320363 cd15235 7tmA_OR1A-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320363 cd15235 7tmA_OR1A-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320363 cd15235 7tmA_OR1A-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320363 cd15235 7tmA_OR1A-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320364 cd15236 7tmA_OR1E-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320364 cd15236 7tmA_OR1E-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320364 cd15236 7tmA_OR1E-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320364 cd15236 7tmA_OR1E-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320364 cd15236 7tmA_OR1E-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320364 cd15236 7tmA_OR1E-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320364 cd15236 7tmA_OR1E-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320364 cd15236 7tmA_OR1E-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320365 cd15237 7tmA_OR2-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320365 cd15237 7tmA_OR2-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320365 cd15237 7tmA_OR2-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320365 cd15237 7tmA_OR2-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320365 cd15237 7tmA_OR2-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320365 cd15237 7tmA_OR2-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320365 cd15237 7tmA_OR2-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320365 cd15237 7tmA_OR2-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320366 cd15238 7tm_ARII-like 1 ligand binding site 0 1 1 0 79,82,83,111,115,130,133,134,137,174,177,178,181,203,206,207 5 -320366 cd15238 7tm_ARII-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320366 cd15238 7tm_ARII-like 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320366 cd15238 7tm_ARII-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320366 cd15238 7tm_ARII-like 5 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320366 cd15238 7tm_ARII-like 6 TM helix 5 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320366 cd15238 7tm_ARII-like 7 TM helix 6 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320366 cd15238 7tm_ARII-like 8 TM helix 7 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320367 cd15239 7tm_YRO2_fungal-like 1 putative ligand binding site 0 0 1 1 87,90,91,119,123,138,141,142,145,182,185,186,189,211,214,215 5 -320367 cd15239 7tm_YRO2_fungal-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320367 cd15239 7tm_YRO2_fungal-like 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320367 cd15239 7tm_YRO2_fungal-like 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320367 cd15239 7tm_YRO2_fungal-like 5 TM helix 4 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320367 cd15239 7tm_YRO2_fungal-like 6 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -320367 cd15239 7tm_YRO2_fungal-like 7 TM helix 6 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320367 cd15239 7tm_YRO2_fungal-like 8 TM helix 7 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320368 cd15240 7tm_ASR-like 1 ligand binding site 0 1 1 0 75,79,82,111,115,131,134,135,138,175,178,179,182,209 5 -320368 cd15240 7tm_ASR-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320368 cd15240 7tm_ASR-like 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320368 cd15240 7tm_ASR-like 4 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320368 cd15240 7tm_ASR-like 5 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320368 cd15240 7tm_ASR-like 6 TM helix 5 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320368 cd15240 7tm_ASR-like 7 TM helix 6 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320368 cd15240 7tm_ASR-like 8 TM helix 7 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320369 cd15241 7tm_ChRs 1 putative ligand binding site 0 0 1 1 71,74,77,78,81,109,113,128,131,132,135,173,176,177,180,203,206,207 5 -320369 cd15241 7tm_ChRs 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320369 cd15241 7tm_ChRs 3 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -320369 cd15241 7tm_ChRs 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -320369 cd15241 7tm_ChRs 5 TM helix 4 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -320369 cd15241 7tm_ChRs 6 TM helix 5 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320369 cd15241 7tm_ChRs 7 TM helix 6 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320369 cd15241 7tm_ChRs 8 TM helix 7 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320370 cd15242 7tm_Proteorhodopsin 1 putative ligand binding site 0 0 1 1 79,82,85,86,89,118,122,138,141,142,145,182,185,186,189,213,216,217 5 -320370 cd15242 7tm_Proteorhodopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320370 cd15242 7tm_Proteorhodopsin 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -320370 cd15242 7tm_Proteorhodopsin 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320370 cd15242 7tm_Proteorhodopsin 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320370 cd15242 7tm_Proteorhodopsin 6 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -320370 cd15242 7tm_Proteorhodopsin 7 TM helix 6 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320370 cd15242 7tm_Proteorhodopsin 8 TM helix 7 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320371 cd15243 7tm_Halorhodopsin 1 putative ligand binding site 0 0 1 1 82,85,88,89,92,117,121,138,141,142,145,180,183,184,187,210,213,214 5 -320371 cd15243 7tm_Halorhodopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320371 cd15243 7tm_Halorhodopsin 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320371 cd15243 7tm_Halorhodopsin 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320371 cd15243 7tm_Halorhodopsin 5 TM helix 4 0 0 0 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125 7 -320371 cd15243 7tm_Halorhodopsin 6 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -320371 cd15243 7tm_Halorhodopsin 7 TM helix 6 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320371 cd15243 7tm_Halorhodopsin 8 TM helix 7 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320372 cd15244 7tm_bacteriorhodopsin 1 ligand binding site 0 1 1 0 79,82,83,111,115,131,134,135,138,175,178,179,182,205,208,209 5 -320372 cd15244 7tm_bacteriorhodopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320372 cd15244 7tm_bacteriorhodopsin 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -320372 cd15244 7tm_bacteriorhodopsin 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320372 cd15244 7tm_bacteriorhodopsin 5 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320372 cd15244 7tm_bacteriorhodopsin 6 TM helix 5 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320372 cd15244 7tm_bacteriorhodopsin 7 TM helix 6 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320372 cd15244 7tm_bacteriorhodopsin 8 TM helix 7 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320373 cd15245 7tmF_FZD2 1 putative ligand binding site 0 0 1 1 1,10,60,80,162,167,169,172,173,178,253,256,257,282,287,290,291 5 -320373 cd15245 7tmF_FZD2 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320373 cd15245 7tmF_FZD2 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320373 cd15245 7tmF_FZD2 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320373 cd15245 7tmF_FZD2 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320373 cd15245 7tmF_FZD2 6 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320373 cd15245 7tmF_FZD2 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320373 cd15245 7tmF_FZD2 8 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320374 cd15246 7tmF_FZD7 1 putative ligand binding site 0 0 1 1 1,10,60,80,162,167,169,172,173,178,253,256,257,282,287,290,291 5 -320374 cd15246 7tmF_FZD7 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320374 cd15246 7tmF_FZD7 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320374 cd15246 7tmF_FZD7 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320374 cd15246 7tmF_FZD7 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320374 cd15246 7tmF_FZD7 6 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -320374 cd15246 7tmF_FZD7 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320374 cd15246 7tmF_FZD7 8 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320375 cd15247 7tmF_FZD1 1 putative ligand binding site 0 0 1 1 11,20,70,90,172,177,179,182,183,188,263,266,267,292,297,300,301 5 -320375 cd15247 7tmF_FZD1 2 TM helix 1 0 0 0 1 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 7 -320375 cd15247 7tmF_FZD1 3 TM helix 2 0 0 0 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320375 cd15247 7tmF_FZD1 4 TM helix 3 0 0 0 0 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320375 cd15247 7tmF_FZD1 5 TM helix 4 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320375 cd15247 7tmF_FZD1 6 TM helix 5 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320375 cd15247 7tmF_FZD1 7 TM helix 6 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320375 cd15247 7tmF_FZD1 8 TM helix 7 0 0 0 0 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315 7 -320376 cd15248 7tmF_FZD1_insect 1 putative ligand binding site 0 0 1 1 1,10,60,87,169,174,176,179,180,185,260,263,264,292,297,300,301 5 -320376 cd15248 7tmF_FZD1_insect 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320376 cd15248 7tmF_FZD1_insect 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320376 cd15248 7tmF_FZD1_insect 4 TM helix 3 0 0 0 0 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320376 cd15248 7tmF_FZD1_insect 5 TM helix 4 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320376 cd15248 7tmF_FZD1_insect 6 TM helix 5 0 0 0 0 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320376 cd15248 7tmF_FZD1_insect 7 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320376 cd15248 7tmF_FZD1_insect 8 TM helix 7 0 0 0 0 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315 7 -320377 cd15249 7tmF_FZD5 1 putative ligand binding site 0 0 1 1 1,10,60,77,159,164,166,169,170,175,250,253,254,272,277,280,281 5 -320377 cd15249 7tmF_FZD5 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320377 cd15249 7tmF_FZD5 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320377 cd15249 7tmF_FZD5 4 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -320377 cd15249 7tmF_FZD5 5 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320377 cd15249 7tmF_FZD5 6 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320377 cd15249 7tmF_FZD5 7 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320377 cd15249 7tmF_FZD5 8 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320378 cd15250 7tmF_FZD8 1 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320378 cd15250 7tmF_FZD8 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320378 cd15250 7tmF_FZD8 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320378 cd15250 7tmF_FZD8 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320378 cd15250 7tmF_FZD8 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320378 cd15250 7tmF_FZD8 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320378 cd15250 7tmF_FZD8 7 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -320378 cd15250 7tmF_FZD8 8 putative ligand binding site 0 0 1 1 1,10,60,81,163,168,170,173,174,179,254,257,258,276,281,284,285 5 -320379 cd15251 7tmB2_BAI_Adhesion_VII 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,68,75,147,148,150,152,201,204,217,221 2 -320379 cd15251 7tmB2_BAI_Adhesion_VII 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 6 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 7 TM helix 6 0 0 0 0 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 8 TM helix 7 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320381 cd15253 7tmB2_GPR113 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,59,62,63,66,75,82,158,159,161,163,219,222,235,239 2 -320381 cd15253 7tmB2_GPR113 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320381 cd15253 7tmB2_GPR113 3 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320381 cd15253 7tmB2_GPR113 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320381 cd15253 7tmB2_GPR113 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320381 cd15253 7tmB2_GPR113 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320381 cd15253 7tmB2_GPR113 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320381 cd15253 7tmB2_GPR113 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,59,62,63,66,78,85,162,163,165,167,223,226,239,243 2 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 3 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320383 cd15255 7tmB2_GPR144 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,215,218,228,232 2 -320383 cd15255 7tmB2_GPR144 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320383 cd15255 7tmB2_GPR144 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320383 cd15255 7tmB2_GPR144 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320383 cd15255 7tmB2_GPR144 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320383 cd15255 7tmB2_GPR144 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320383 cd15255 7tmB2_GPR144 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320383 cd15255 7tmB2_GPR144 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320384 cd15256 7tmB2_GPR133 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,56,59,60,63,70,77,149,150,152,154,210,213,225,229 2 -320384 cd15256 7tmB2_GPR133 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320384 cd15256 7tmB2_GPR133 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320384 cd15256 7tmB2_GPR133 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320384 cd15256 7tmB2_GPR133 5 TM helix 4 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320384 cd15256 7tmB2_GPR133 6 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320384 cd15256 7tmB2_GPR133 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320384 cd15256 7tmB2_GPR133 8 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320385 cd15257 7tmB2_GPR128 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,93,100,190,191,193,195,249,252,267,271 2 -320385 cd15257 7tmB2_GPR128 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320385 cd15257 7tmB2_GPR128 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320385 cd15257 7tmB2_GPR128 4 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320385 cd15257 7tmB2_GPR128 5 TM helix 4 0 0 0 0 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320385 cd15257 7tmB2_GPR128 6 TM helix 5 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320385 cd15257 7tmB2_GPR128 7 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320385 cd15257 7tmB2_GPR128 8 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,70,77,161,162,164,166,220,223,235,239 2 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,56,59,60,63,70,77,157,158,160,162,208,211,226,230 2 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,75,82,153,154,156,158,213,216,231,235 2 -320388 cd15260 7tmB1_NPR_B4_insect-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 6 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320389 cd15261 7tmB1_PDFR 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,88,95,167,168,170,172,226,229,246,250 2 -320389 cd15261 7tmB1_PDFR 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320389 cd15261 7tmB1_PDFR 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320389 cd15261 7tmB1_PDFR 4 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320389 cd15261 7tmB1_PDFR 5 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320389 cd15261 7tmB1_PDFR 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320389 cd15261 7tmB1_PDFR 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320389 cd15261 7tmB1_PDFR 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,82,89,158,159,161,163,215,218,234,238 2 -320390 cd15262 7tmB1_NPR_B3_insect-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 4 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320391 cd15263 7tmB1_DH_R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,71,78,160,161,163,165,219,222,236,240 2 -320391 cd15263 7tmB1_DH_R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320391 cd15263 7tmB1_DH_R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320391 cd15263 7tmB1_DH_R 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320391 cd15263 7tmB1_DH_R 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320391 cd15263 7tmB1_DH_R 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320391 cd15263 7tmB1_DH_R 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320391 cd15263 7tmB1_DH_R 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320392 cd15264 7tmB1_CRF-R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,73,80,152,153,155,157,211,214,229,233 2 -320392 cd15264 7tmB1_CRF-R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320392 cd15264 7tmB1_CRF-R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320392 cd15264 7tmB1_CRF-R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320392 cd15264 7tmB1_CRF-R 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320392 cd15264 7tmB1_CRF-R 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320392 cd15264 7tmB1_CRF-R 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320392 cd15264 7tmB1_CRF-R 8 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320393 cd15265 7tmB1_PTHR 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,95,102,172,173,175,177,234,237,253,257 2 -320393 cd15265 7tmB1_PTHR 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320393 cd15265 7tmB1_PTHR 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320393 cd15265 7tmB1_PTHR 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320393 cd15265 7tmB1_PTHR 5 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320393 cd15265 7tmB1_PTHR 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320393 cd15265 7tmB1_PTHR 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320393 cd15265 7tmB1_PTHR 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320394 cd15266 7tmB1_GLP2R 1 putative polypeptide ligand binding pocket 0 0 1 1 1,7,11,49,53,56,57,60,87,93,94,97,101,157,158,165,166,168,169,170,224,227,244,245,248 2 -320394 cd15266 7tmB1_GLP2R 2 putative G protein interaction site 0 0 1 1 30,39,111,114,115,116,191,194,212,213,216,219,261,262,265,266,268,272,275,279 2 -320394 cd15266 7tmB1_GLP2R 3 putative allosteric modulator binding site 0 0 1 1 191,207,208,210,211,212,214,215,257,261,265,266,267 5 -320394 cd15266 7tmB1_GLP2R 4 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320394 cd15266 7tmB1_GLP2R 5 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320394 cd15266 7tmB1_GLP2R 6 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320394 cd15266 7tmB1_GLP2R 7 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 7 -320394 cd15266 7tmB1_GLP2R 8 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320394 cd15266 7tmB1_GLP2R 9 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320394 cd15266 7tmB1_GLP2R 10 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320395 cd15267 7tmB1_GCGR 1 putative polypeptide ligand binding pocket 0 1 1 1 3,9,13,51,55,58,59,62,88,94,95,98,102,158,159,166,167,169,170,171,225,228,245,246,249 2 -320395 cd15267 7tmB1_GCGR 2 allosteric modulator binding site 0 1 1 0 192,208,209,211,212,213,215,216,262,266,267,268 5 -320395 cd15267 7tmB1_GCGR 3 putative G protein interaction site 0 0 1 1 32,41,112,115,116,117,192,195,213,214,217,220,262,263,266,267,269,273,276,280 2 -320395 cd15267 7tmB1_GCGR 4 TM helix 1 0 0 0 1 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320395 cd15267 7tmB1_GCGR 5 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320395 cd15267 7tmB1_GCGR 6 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320395 cd15267 7tmB1_GCGR 7 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320395 cd15267 7tmB1_GCGR 8 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320395 cd15267 7tmB1_GCGR 9 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320395 cd15267 7tmB1_GCGR 10 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -341342 cd15268 7tmB1_GLP1R 1 polypeptide ligand binding pocket 0 1 1 0 1,49,53,56,60,63,92,93,96,100,156,157,158,165,168,169,244,247 2 -341342 cd15268 7tmB1_GLP1R 2 G protein interaction site 0 1 1 0 30,35,39,110,113,114,115,120,121,122,190,193,197,198,201,211,212,215,218,260,261,264,265,266,267,271,274,278 2 -341342 cd15268 7tmB1_GLP1R 3 allosteric modulator binding site 0 1 1 0 206,207,210,211,213,214,256,260,264,265,266 5 -341342 cd15268 7tmB1_GLP1R 4 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341342 cd15268 7tmB1_GLP1R 5 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341342 cd15268 7tmB1_GLP1R 6 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -341342 cd15268 7tmB1_GLP1R 7 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -341342 cd15268 7tmB1_GLP1R 8 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341342 cd15268 7tmB1_GLP1R 9 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341342 cd15268 7tmB1_GLP1R 10 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320397 cd15269 7tmB1_VIP-R1 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,155,156,158,160,216,219,232,236 2 -320397 cd15269 7tmB1_VIP-R1 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320397 cd15269 7tmB1_VIP-R1 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320397 cd15269 7tmB1_VIP-R1 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320397 cd15269 7tmB1_VIP-R1 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320397 cd15269 7tmB1_VIP-R1 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320397 cd15269 7tmB1_VIP-R1 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320397 cd15269 7tmB1_VIP-R1 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320398 cd15270 7tmB1_GHRHR 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,155,156,158,160,216,219,232,236 2 -320398 cd15270 7tmB1_GHRHR 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320398 cd15270 7tmB1_GHRHR 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320398 cd15270 7tmB1_GHRHR 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320398 cd15270 7tmB1_GHRHR 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320398 cd15270 7tmB1_GHRHR 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320398 cd15270 7tmB1_GHRHR 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320398 cd15270 7tmB1_GHRHR 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320399 cd15271 7tmB1_GHRHR2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,154,155,157,159,215,218,231,235 2 -320399 cd15271 7tmB1_GHRHR2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320399 cd15271 7tmB1_GHRHR2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320399 cd15271 7tmB1_GHRHR2 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320399 cd15271 7tmB1_GHRHR2 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320399 cd15271 7tmB1_GHRHR2 6 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320399 cd15271 7tmB1_GHRHR2 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320399 cd15271 7tmB1_GHRHR2 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320400 cd15272 7tmB1_PTH-R_related 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,90,97,168,169,171,173,229,232,249,253 2 -320400 cd15272 7tmB1_PTH-R_related 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320400 cd15272 7tmB1_PTH-R_related 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320400 cd15272 7tmB1_PTH-R_related 4 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -320400 cd15272 7tmB1_PTH-R_related 5 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320400 cd15272 7tmB1_PTH-R_related 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320400 cd15272 7tmB1_PTH-R_related 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320400 cd15272 7tmB1_PTH-R_related 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,91,98,169,170,172,174,228,231,249,253 2 -320401 cd15273 7tmB1_NPR_B7_insect-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 4 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 5 TM helix 4 0 0 0 0 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341343 cd15274 7tmB1_calcitonin_R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,75,82,152,153,155,157,211,214,228,232 2 -341343 cd15274 7tmB1_calcitonin_R 2 G protein interaction site 0 1 1 0 35,98,99,102,103,104,107,108,109,178,181,182,185,186,200,203,249,259,263,270,273 2 -341343 cd15274 7tmB1_calcitonin_R 3 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341343 cd15274 7tmB1_calcitonin_R 4 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341343 cd15274 7tmB1_calcitonin_R 5 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341343 cd15274 7tmB1_calcitonin_R 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341343 cd15274 7tmB1_calcitonin_R 7 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -341343 cd15274 7tmB1_calcitonin_R 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -341343 cd15274 7tmB1_calcitonin_R 9 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320403 cd15275 7tmB1_secretin 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,155,156,158,160,216,219,235,239 2 -320403 cd15275 7tmB1_secretin 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320403 cd15275 7tmB1_secretin 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320403 cd15275 7tmB1_secretin 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320403 cd15275 7tmB1_secretin 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320403 cd15275 7tmB1_secretin 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320403 cd15275 7tmB1_secretin 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320403 cd15275 7tmB1_secretin 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 1 putative allosteric modulator binding site 0 0 1 1 59,71,72,75,76,79,148,153,156,157,160,196,199,200,203,207,220,221,224,227,231 5 -320404 cd15277 7tmC_RAIG3_GPRC5C 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,50,54,57,58,66,70 2 -320404 cd15277 7tmC_RAIG3_GPRC5C 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 4 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 5 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 6 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 7 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 8 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 9 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 1 putative allosteric modulator binding site 0 0 1 1 59,71,72,75,76,79,141,146,149,150,153,189,192,193,196,200,214,215,218,221,225 5 -320405 cd15278 7tmC_RAIG2_GPRC5B 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,50,54,57,58,66,70 2 -320405 cd15278 7tmC_RAIG2_GPRC5B 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 4 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 5 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 6 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 7 TM helix 5 0 0 0 0 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 8 TM helix 6 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 9 TM helix 7 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 1 putative allosteric modulator binding site 0 0 1 1 59,71,72,75,76,79,146,151,154,155,158,194,197,198,201,205,218,219,222,225,229 5 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,50,54,57,58,66,70 2 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 4 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 5 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 6 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 7 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 8 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 9 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320407 cd15280 7tmC_V2R-like 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,156,161,164,165,168,202,205,206,209,213,221,222,225,228,232 5 -320407 cd15280 7tmC_V2R-like 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320407 cd15280 7tmC_V2R-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320407 cd15280 7tmC_V2R-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320407 cd15280 7tmC_V2R-like 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320407 cd15280 7tmC_V2R-like 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320407 cd15280 7tmC_V2R-like 7 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320407 cd15280 7tmC_V2R-like 8 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320407 cd15280 7tmC_V2R-like 9 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320408 cd15281 7tmC_GPRC6A 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,154,159,162,163,166,200,203,204,207,211,219,220,223,226,230 5 -320408 cd15281 7tmC_GPRC6A 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320408 cd15281 7tmC_GPRC6A 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320408 cd15281 7tmC_GPRC6A 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320408 cd15281 7tmC_GPRC6A 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320408 cd15281 7tmC_GPRC6A 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320408 cd15281 7tmC_GPRC6A 7 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320408 cd15281 7tmC_GPRC6A 8 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320408 cd15281 7tmC_GPRC6A 9 TM helix 7 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320409 cd15282 7tmC_CaSR 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,222,223,226,229,233 5 -320409 cd15282 7tmC_CaSR 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320409 cd15282 7tmC_CaSR 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320409 cd15282 7tmC_CaSR 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320409 cd15282 7tmC_CaSR 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320409 cd15282 7tmC_CaSR 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320409 cd15282 7tmC_CaSR 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320409 cd15282 7tmC_CaSR 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320409 cd15282 7tmC_CaSR 9 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320410 cd15283 7tmC_V2R_pheromone 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,222,223,226,229,233 5 -320410 cd15283 7tmC_V2R_pheromone 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320410 cd15283 7tmC_V2R_pheromone 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320410 cd15283 7tmC_V2R_pheromone 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320410 cd15283 7tmC_V2R_pheromone 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320410 cd15283 7tmC_V2R_pheromone 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320410 cd15283 7tmC_V2R_pheromone 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320410 cd15283 7tmC_V2R_pheromone 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320410 cd15283 7tmC_V2R_pheromone 9 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320411 cd15284 7tmC_mGluR_group2 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,224,225,228,231,235 5 -320411 cd15284 7tmC_mGluR_group2 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320411 cd15284 7tmC_mGluR_group2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320411 cd15284 7tmC_mGluR_group2 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320411 cd15284 7tmC_mGluR_group2 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320411 cd15284 7tmC_mGluR_group2 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320411 cd15284 7tmC_mGluR_group2 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320411 cd15284 7tmC_mGluR_group2 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320411 cd15284 7tmC_mGluR_group2 9 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320412 cd15285 7tmC_mGluR_group1 1 allosteric modulator binding site 0 1 1 0 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,220,221,224,227,231 5 -320412 cd15285 7tmC_mGluR_group1 2 dimer interface 0 1 1 0 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320412 cd15285 7tmC_mGluR_group1 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320412 cd15285 7tmC_mGluR_group1 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320412 cd15285 7tmC_mGluR_group1 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320412 cd15285 7tmC_mGluR_group1 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320412 cd15285 7tmC_mGluR_group1 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320412 cd15285 7tmC_mGluR_group1 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320412 cd15285 7tmC_mGluR_group1 9 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320413 cd15286 7tmC_mGluR_group3 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,162,167,170,171,174,208,211,212,215,219,232,233,236,239,243 5 -320413 cd15286 7tmC_mGluR_group3 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320413 cd15286 7tmC_mGluR_group3 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320413 cd15286 7tmC_mGluR_group3 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320413 cd15286 7tmC_mGluR_group3 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320413 cd15286 7tmC_mGluR_group3 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320413 cd15286 7tmC_mGluR_group3 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320413 cd15286 7tmC_mGluR_group3 8 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320413 cd15286 7tmC_mGluR_group3 9 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320414 cd15287 7tmC_TAS1R2a-like 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,222,223,226,229,233 5 -320414 cd15287 7tmC_TAS1R2a-like 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320414 cd15287 7tmC_TAS1R2a-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320414 cd15287 7tmC_TAS1R2a-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320414 cd15287 7tmC_TAS1R2a-like 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320414 cd15287 7tmC_TAS1R2a-like 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320414 cd15287 7tmC_TAS1R2a-like 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320414 cd15287 7tmC_TAS1R2a-like 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320414 cd15287 7tmC_TAS1R2a-like 9 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320415 cd15288 7tmC_TAS1R2 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,159,164,167,168,171,205,208,209,212,216,224,225,228,231,235 5 -320415 cd15288 7tmC_TAS1R2 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320415 cd15288 7tmC_TAS1R2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320415 cd15288 7tmC_TAS1R2 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320415 cd15288 7tmC_TAS1R2 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320415 cd15288 7tmC_TAS1R2 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320415 cd15288 7tmC_TAS1R2 7 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320415 cd15288 7tmC_TAS1R2 8 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320415 cd15288 7tmC_TAS1R2 9 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320416 cd15289 7tmC_TAS1R1 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,158,163,166,167,170,204,207,208,211,215,223,224,227,230,234 5 -320416 cd15289 7tmC_TAS1R1 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320416 cd15289 7tmC_TAS1R1 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320416 cd15289 7tmC_TAS1R1 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320416 cd15289 7tmC_TAS1R1 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320416 cd15289 7tmC_TAS1R1 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320416 cd15289 7tmC_TAS1R1 7 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320416 cd15289 7tmC_TAS1R1 8 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320416 cd15289 7tmC_TAS1R1 9 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320417 cd15290 7tmC_TAS1R3 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,158,163,166,167,170,204,207,208,211,215,223,224,227,230,234 5 -320417 cd15290 7tmC_TAS1R3 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320417 cd15290 7tmC_TAS1R3 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320417 cd15290 7tmC_TAS1R3 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320417 cd15290 7tmC_TAS1R3 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320417 cd15290 7tmC_TAS1R3 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320417 cd15290 7tmC_TAS1R3 7 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320417 cd15290 7tmC_TAS1R3 8 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320417 cd15290 7tmC_TAS1R3 9 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320418 cd15291 7tmC_GABA-B-R1 1 putative allosteric modulator binding site 0 0 1 1 57,76,77,80,81,84,176,181,184,185,188,223,226,227,230,234,244,245,248,251,255 5 -320418 cd15291 7tmC_GABA-B-R1 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,71,75 2 -320418 cd15291 7tmC_GABA-B-R1 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320418 cd15291 7tmC_GABA-B-R1 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320418 cd15291 7tmC_GABA-B-R1 5 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320418 cd15291 7tmC_GABA-B-R1 6 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320418 cd15291 7tmC_GABA-B-R1 7 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -320418 cd15291 7tmC_GABA-B-R1 8 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320418 cd15291 7tmC_GABA-B-R1 9 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320419 cd15292 7tmC_GPR156 1 putative allosteric modulator binding site 0 0 1 1 57,73,74,77,78,81,170,175,178,179,182,213,216,217,220,224,238,239,242,245,249 5 -320419 cd15292 7tmC_GPR156 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,68,72 2 -320419 cd15292 7tmC_GPR156 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320419 cd15292 7tmC_GPR156 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320419 cd15292 7tmC_GPR156 5 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320419 cd15292 7tmC_GPR156 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320419 cd15292 7tmC_GPR156 7 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320419 cd15292 7tmC_GPR156 8 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320419 cd15292 7tmC_GPR156 9 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320420 cd15293 7tmC_GPR158-like 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,153,158,161,162,165,199,202,203,206,210,222,223,226,229,233 5 -320420 cd15293 7tmC_GPR158-like 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320420 cd15293 7tmC_GPR158-like 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320420 cd15293 7tmC_GPR158-like 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320420 cd15293 7tmC_GPR158-like 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320420 cd15293 7tmC_GPR158-like 6 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320420 cd15293 7tmC_GPR158-like 7 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320420 cd15293 7tmC_GPR158-like 8 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320420 cd15293 7tmC_GPR158-like 9 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320421 cd15294 7tmC_GABA-B-R2 1 putative allosteric modulator binding site 0 0 1 1 57,76,77,80,81,84,172,177,180,181,184,219,222,223,226,230,240,241,244,247,251 5 -320421 cd15294 7tmC_GABA-B-R2 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,71,75 2 -320421 cd15294 7tmC_GABA-B-R2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320421 cd15294 7tmC_GABA-B-R2 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320421 cd15294 7tmC_GABA-B-R2 5 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320421 cd15294 7tmC_GABA-B-R2 6 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320421 cd15294 7tmC_GABA-B-R2 7 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320421 cd15294 7tmC_GABA-B-R2 8 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320421 cd15294 7tmC_GABA-B-R2 9 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320422 cd15295 7tmA_Histamine_H4R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,151,160,163,164,167,210,213,214,217,232,236,240 5 -320422 cd15295 7tmA_Histamine_H4R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320422 cd15295 7tmA_Histamine_H4R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320422 cd15295 7tmA_Histamine_H4R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320422 cd15295 7tmA_Histamine_H4R 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320422 cd15295 7tmA_Histamine_H4R 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320422 cd15295 7tmA_Histamine_H4R 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320422 cd15295 7tmA_Histamine_H4R 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320423 cd15296 7tmA_Histamine_H3R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,155,164,167,168,171,218,221,222,225,241,245,249 5 -320423 cd15296 7tmA_Histamine_H3R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320423 cd15296 7tmA_Histamine_H3R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320423 cd15296 7tmA_Histamine_H3R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320423 cd15296 7tmA_Histamine_H3R 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320423 cd15296 7tmA_Histamine_H3R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320423 cd15296 7tmA_Histamine_H3R 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320423 cd15296 7tmA_Histamine_H3R 8 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320424 cd15297 7tmA_mAChR_M2 1 ligand binding site 0 1 0 0 79,80,83,84,131,157,163,166,167,170,171,210,213,214,236,239,240 5 -320424 cd15297 7tmA_mAChR_M2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320424 cd15297 7tmA_mAChR_M2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320424 cd15297 7tmA_mAChR_M2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320424 cd15297 7tmA_mAChR_M2 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320424 cd15297 7tmA_mAChR_M2 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320424 cd15297 7tmA_mAChR_M2 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320424 cd15297 7tmA_mAChR_M2 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -341344 cd15298 7tmA_mAChR_M4 1 ligand binding site 0 1 1 0 79,80,83,84,131,163,166,167,170,171,210,213,214,236,239,240 5 -341344 cd15298 7tmA_mAChR_M4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341344 cd15298 7tmA_mAChR_M4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341344 cd15298 7tmA_mAChR_M4 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341344 cd15298 7tmA_mAChR_M4 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -341344 cd15298 7tmA_mAChR_M4 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -341344 cd15298 7tmA_mAChR_M4 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -341344 cd15298 7tmA_mAChR_M4 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320426 cd15299 7tmA_mAChR_M3 1 ligand binding site 0 1 1 0 82,83,86,87,134,166,170,173,174,213,216,217,239,242 5 -320426 cd15299 7tmA_mAChR_M3 2 TM helix 1 0 0 0 1 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320426 cd15299 7tmA_mAChR_M3 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320426 cd15299 7tmA_mAChR_M3 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320426 cd15299 7tmA_mAChR_M3 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320426 cd15299 7tmA_mAChR_M3 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320426 cd15299 7tmA_mAChR_M3 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320426 cd15299 7tmA_mAChR_M3 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320427 cd15300 7tmA_mAChR_M5 1 putative ligand binding site 0 0 1 1 79,80,83,84,131,163,166,167,170,171,210,213,214,236,239,240 5 -320427 cd15300 7tmA_mAChR_M5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320427 cd15300 7tmA_mAChR_M5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320427 cd15300 7tmA_mAChR_M5 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320427 cd15300 7tmA_mAChR_M5 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320427 cd15300 7tmA_mAChR_M5 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320427 cd15300 7tmA_mAChR_M5 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320427 cd15300 7tmA_mAChR_M5 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320428 cd15301 7tmA_mAChR_DM1-like 1 putative ligand binding site 0 0 1 1 79,80,83,84,131,164,167,168,171,172,216,219,220,244,247,248 5 -320428 cd15301 7tmA_mAChR_DM1-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320428 cd15301 7tmA_mAChR_DM1-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320428 cd15301 7tmA_mAChR_DM1-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320428 cd15301 7tmA_mAChR_DM1-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320428 cd15301 7tmA_mAChR_DM1-like 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320428 cd15301 7tmA_mAChR_DM1-like 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320428 cd15301 7tmA_mAChR_DM1-like 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 1 putative ligand binding site 0 0 1 1 80,81,84,85,132,165,168,169,172,173,212,215,216,240,243,244 5 -320429 cd15302 7tmA_mAChR_GAR-2-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -341345 cd15304 7tmA_5-HT2A 1 putative ligand binding site 0 0 1 1 77,80,81,84,85,152,159,160,163,167,211,214,215,218,221,234,237,238,241,245 5 -341345 cd15304 7tmA_5-HT2A 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341345 cd15304 7tmA_5-HT2A 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341345 cd15304 7tmA_5-HT2A 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -341345 cd15304 7tmA_5-HT2A 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -341345 cd15304 7tmA_5-HT2A 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341345 cd15304 7tmA_5-HT2A 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -341345 cd15304 7tmA_5-HT2A 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -341346 cd15305 7tmA_5-HT2C 1 putative ligand binding site 0 0 1 1 77,80,81,84,85,152,159,160,163,167,213,216,217,220,223,236,239,240,243,247 5 -341346 cd15305 7tmA_5-HT2C 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341346 cd15305 7tmA_5-HT2C 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341346 cd15305 7tmA_5-HT2C 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -341346 cd15305 7tmA_5-HT2C 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -341346 cd15305 7tmA_5-HT2C 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341346 cd15305 7tmA_5-HT2C 7 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -341346 cd15305 7tmA_5-HT2C 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -341347 cd15306 7tmA_5-HT2B 1 ligand binding site 0 1 1 0 77,80,81,84,85,152,162,163,166,170,215,218,219,222,225,237,240,241,244,248 5 -341347 cd15306 7tmA_5-HT2B 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341347 cd15306 7tmA_5-HT2B 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341347 cd15306 7tmA_5-HT2B 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -341347 cd15306 7tmA_5-HT2B 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -341347 cd15306 7tmA_5-HT2B 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -341347 cd15306 7tmA_5-HT2B 7 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -341347 cd15306 7tmA_5-HT2B 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320433 cd15307 7tmA_5-HT2_insect-like 1 putative ligand binding site 0 0 1 1 76,79,80,83,84,151,158,159,162,166,217,220,221,224,227,239,242,243,246,250 5 -320433 cd15307 7tmA_5-HT2_insect-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320433 cd15307 7tmA_5-HT2_insect-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320433 cd15307 7tmA_5-HT2_insect-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320433 cd15307 7tmA_5-HT2_insect-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320433 cd15307 7tmA_5-HT2_insect-like 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320433 cd15307 7tmA_5-HT2_insect-like 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320433 cd15307 7tmA_5-HT2_insect-like 8 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320434 cd15308 7tmA_D4_dopamine_R 1 putative ligand binding site 0 0 1 1 76,80,81,84,158,161,162,208,209,212,228,232,236 5 -320434 cd15308 7tmA_D4_dopamine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320434 cd15308 7tmA_D4_dopamine_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320434 cd15308 7tmA_D4_dopamine_R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320434 cd15308 7tmA_D4_dopamine_R 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320434 cd15308 7tmA_D4_dopamine_R 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320434 cd15308 7tmA_D4_dopamine_R 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320434 cd15308 7tmA_D4_dopamine_R 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320435 cd15309 7tmA_D2_dopamine_R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320435 cd15309 7tmA_D2_dopamine_R 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57 7 -320435 cd15309 7tmA_D2_dopamine_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320435 cd15309 7tmA_D2_dopamine_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320435 cd15309 7tmA_D2_dopamine_R 5 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320435 cd15309 7tmA_D2_dopamine_R 6 TM helix 6 0 0 0 0 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320435 cd15309 7tmA_D2_dopamine_R 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320435 cd15309 7tmA_D2_dopamine_R 8 putative ligand binding site 0 0 1 1 75,79,80,83,155,158,159,205,206,209,224,228,232 5 -320436 cd15310 7tmA_D3_dopamine_R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320436 cd15310 7tmA_D3_dopamine_R 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57 7 -320436 cd15310 7tmA_D3_dopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320436 cd15310 7tmA_D3_dopamine_R 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320436 cd15310 7tmA_D3_dopamine_R 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320436 cd15310 7tmA_D3_dopamine_R 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320436 cd15310 7tmA_D3_dopamine_R 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320436 cd15310 7tmA_D3_dopamine_R 8 ligand binding site 0 1 1 0 76,80,81,84,159,162,163,209,210,213,229,233,237 5 -320437 cd15312 7tmA_TAAR2_3_4 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,159,166,169,170,173,237,240,241,244,259,263,267 5 -320437 cd15312 7tmA_TAAR2_3_4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320437 cd15312 7tmA_TAAR2_3_4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320437 cd15312 7tmA_TAAR2_3_4 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320437 cd15312 7tmA_TAAR2_3_4 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320437 cd15312 7tmA_TAAR2_3_4 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320437 cd15312 7tmA_TAAR2_3_4 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320437 cd15312 7tmA_TAAR2_3_4 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320438 cd15314 7tmA_TAAR1 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,157,164,167,168,171,230,233,234,237,252,256,260 5 -320438 cd15314 7tmA_TAAR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320438 cd15314 7tmA_TAAR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320438 cd15314 7tmA_TAAR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320438 cd15314 7tmA_TAAR1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320438 cd15314 7tmA_TAAR1 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320438 cd15314 7tmA_TAAR1 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320438 cd15314 7tmA_TAAR1 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320439 cd15316 7tmA_TAAR6_8_9 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,159,165,168,169,172,238,241,242,245,260,264,268 5 -320439 cd15316 7tmA_TAAR6_8_9 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320439 cd15316 7tmA_TAAR6_8_9 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320439 cd15316 7tmA_TAAR6_8_9 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320439 cd15316 7tmA_TAAR6_8_9 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320439 cd15316 7tmA_TAAR6_8_9 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320439 cd15316 7tmA_TAAR6_8_9 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320439 cd15316 7tmA_TAAR6_8_9 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320440 cd15317 7tmA_TAAR5-like 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,159,165,168,169,172,238,241,242,245,260,264,268 5 -320440 cd15317 7tmA_TAAR5-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320440 cd15317 7tmA_TAAR5-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320440 cd15317 7tmA_TAAR5-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320440 cd15317 7tmA_TAAR5-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320440 cd15317 7tmA_TAAR5-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320440 cd15317 7tmA_TAAR5-like 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320440 cd15317 7tmA_TAAR5-like 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320441 cd15318 7tmA_TAAR5 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,159,165,168,169,172,230,233,234,237,252,256,260 5 -320441 cd15318 7tmA_TAAR5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320441 cd15318 7tmA_TAAR5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320441 cd15318 7tmA_TAAR5 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320441 cd15318 7tmA_TAAR5 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320441 cd15318 7tmA_TAAR5 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320441 cd15318 7tmA_TAAR5 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320441 cd15318 7tmA_TAAR5 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320442 cd15319 7tmA_D1B_dopamine_R 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,165,172,175,176,179,256,259,260,263,288,292,296 5 -320442 cd15319 7tmA_D1B_dopamine_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320442 cd15319 7tmA_D1B_dopamine_R 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320442 cd15319 7tmA_D1B_dopamine_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320442 cd15319 7tmA_D1B_dopamine_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320442 cd15319 7tmA_D1B_dopamine_R 6 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320442 cd15319 7tmA_D1B_dopamine_R 7 TM helix 6 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320442 cd15319 7tmA_D1B_dopamine_R 8 TM helix 7 0 0 0 0 285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310 7 -320443 cd15320 7tmA_D1A_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320443 cd15320 7tmA_D1A_dopamine_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320443 cd15320 7tmA_D1A_dopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320443 cd15320 7tmA_D1A_dopamine_R 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320443 cd15320 7tmA_D1A_dopamine_R 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320443 cd15320 7tmA_D1A_dopamine_R 6 TM helix 6 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320443 cd15320 7tmA_D1A_dopamine_R 7 TM helix 7 0 0 0 0 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312 7 -320443 cd15320 7tmA_D1A_dopamine_R 8 putative ligand binding site 0 0 1 1 76,80,81,84,85,165,172,175,176,179,262,265,266,269,290,294,298 5 -320444 cd15321 7tmA_alpha2B_AR 1 putative ligand binding site 0 0 1 1 81,85,86,89,90,159,166,169,170,173,214,217,218,221,238,242,246 5 -320444 cd15321 7tmA_alpha2B_AR 2 TM helix 1 0 0 0 1 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 7 -320444 cd15321 7tmA_alpha2B_AR 3 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320444 cd15321 7tmA_alpha2B_AR 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320444 cd15321 7tmA_alpha2B_AR 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320444 cd15321 7tmA_alpha2B_AR 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320444 cd15321 7tmA_alpha2B_AR 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320444 cd15321 7tmA_alpha2B_AR 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320445 cd15322 7tmA_alpha2A_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,152,159,162,163,166,207,210,211,214,229,233,237 5 -320445 cd15322 7tmA_alpha2A_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320445 cd15322 7tmA_alpha2A_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320445 cd15322 7tmA_alpha2A_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320445 cd15322 7tmA_alpha2A_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320445 cd15322 7tmA_alpha2A_AR 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320445 cd15322 7tmA_alpha2A_AR 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320445 cd15322 7tmA_alpha2A_AR 8 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320446 cd15323 7tmA_alpha2C_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,152,159,162,163,166,207,210,211,214,231,235,239 5 -320446 cd15323 7tmA_alpha2C_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320446 cd15323 7tmA_alpha2C_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320446 cd15323 7tmA_alpha2C_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320446 cd15323 7tmA_alpha2C_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320446 cd15323 7tmA_alpha2C_AR 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320446 cd15323 7tmA_alpha2C_AR 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320446 cd15323 7tmA_alpha2C_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320447 cd15324 7tmA_alpha-2D_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,147,154,157,158,161,202,205,206,209,226,230,234 5 -320447 cd15324 7tmA_alpha-2D_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320447 cd15324 7tmA_alpha-2D_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320447 cd15324 7tmA_alpha-2D_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320447 cd15324 7tmA_alpha-2D_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320447 cd15324 7tmA_alpha-2D_AR 6 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320447 cd15324 7tmA_alpha-2D_AR 7 TM helix 6 0 0 0 0 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320447 cd15324 7tmA_alpha-2D_AR 8 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320448 cd15325 7tmA_alpha1A_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,151,158,161,162,165,208,211,212,215,231,235,239 5 -320448 cd15325 7tmA_alpha1A_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320448 cd15325 7tmA_alpha1A_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320448 cd15325 7tmA_alpha1A_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320448 cd15325 7tmA_alpha1A_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320448 cd15325 7tmA_alpha1A_AR 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320448 cd15325 7tmA_alpha1A_AR 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320448 cd15325 7tmA_alpha1A_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320449 cd15326 7tmA_alpha1B_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,151,158,161,162,165,208,211,212,215,231,235,239 5 -320449 cd15326 7tmA_alpha1B_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320449 cd15326 7tmA_alpha1B_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320449 cd15326 7tmA_alpha1B_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320449 cd15326 7tmA_alpha1B_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320449 cd15326 7tmA_alpha1B_AR 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320449 cd15326 7tmA_alpha1B_AR 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320449 cd15326 7tmA_alpha1B_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320450 cd15327 7tmA_alpha1D_AR 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,151,158,161,162,165,208,211,212,215,231,235,239 5 -320450 cd15327 7tmA_alpha1D_AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320450 cd15327 7tmA_alpha1D_AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320450 cd15327 7tmA_alpha1D_AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320450 cd15327 7tmA_alpha1D_AR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320450 cd15327 7tmA_alpha1D_AR 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320450 cd15327 7tmA_alpha1D_AR 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320450 cd15327 7tmA_alpha1D_AR 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320451 cd15328 7tmA_5-HT5 1 putative ligand binding site 0 0 1 1 76,77,80,81,84,85,151,163,167,207,210,211,217,226,229,230,233,237 5 -320451 cd15328 7tmA_5-HT5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320451 cd15328 7tmA_5-HT5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320451 cd15328 7tmA_5-HT5 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320451 cd15328 7tmA_5-HT5 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320451 cd15328 7tmA_5-HT5 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320451 cd15328 7tmA_5-HT5 7 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320451 cd15328 7tmA_5-HT5 8 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320452 cd15329 7tmA_5-HT7 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,84,148,160,164,204,207,208,214,227,230,231,234,238 5 -320452 cd15329 7tmA_5-HT7 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320452 cd15329 7tmA_5-HT7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320452 cd15329 7tmA_5-HT7 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320452 cd15329 7tmA_5-HT7 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320452 cd15329 7tmA_5-HT7 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320452 cd15329 7tmA_5-HT7 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320452 cd15329 7tmA_5-HT7 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,84,150,162,166,206,209,210,216,227,230,231,234,238 5 -320453 cd15330 7tmA_5-HT1A_vertebrates 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 7 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 8 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,84,152,164,168,208,211,212,218,228,231,232,235,239 5 -320454 cd15331 7tmA_5-HT1A_invertebrates 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 8 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320455 cd15333 7tmA_5-HT1B_1D 1 ligand binding site 0 1 1 0 79,80,83,84,87,88,153,166,170,211,214,215,221,232,235,236,239,243 5 -320455 cd15333 7tmA_5-HT1B_1D 2 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -320455 cd15333 7tmA_5-HT1B_1D 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320455 cd15333 7tmA_5-HT1B_1D 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320455 cd15333 7tmA_5-HT1B_1D 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320455 cd15333 7tmA_5-HT1B_1D 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320455 cd15333 7tmA_5-HT1B_1D 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320455 cd15333 7tmA_5-HT1B_1D 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320456 cd15334 7tmA_5-HT1F 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,84,148,161,165,205,208,209,215,225,228,229,232,236 5 -320456 cd15334 7tmA_5-HT1F 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320456 cd15334 7tmA_5-HT1F 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320456 cd15334 7tmA_5-HT1F 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320456 cd15334 7tmA_5-HT1F 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320456 cd15334 7tmA_5-HT1F 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320456 cd15334 7tmA_5-HT1F 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320456 cd15334 7tmA_5-HT1F 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320457 cd15335 7tmA_5-HT1E 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,84,149,162,166,206,209,210,216,225,228,229,232,236 5 -320457 cd15335 7tmA_5-HT1E 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320457 cd15335 7tmA_5-HT1E 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320457 cd15335 7tmA_5-HT1E 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320457 cd15335 7tmA_5-HT1E 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320457 cd15335 7tmA_5-HT1E 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320457 cd15335 7tmA_5-HT1E 7 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320457 cd15335 7tmA_5-HT1E 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320458 cd15336 7tmA_Melanopsin 1 putative ligand binding site 0 0 1 1 75,79,80,83,84,149,150,151,152,168,169,173,237,241,264,268 5 -320458 cd15336 7tmA_Melanopsin 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320458 cd15336 7tmA_Melanopsin 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320458 cd15336 7tmA_Melanopsin 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320458 cd15336 7tmA_Melanopsin 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320458 cd15336 7tmA_Melanopsin 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320458 cd15336 7tmA_Melanopsin 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320458 cd15336 7tmA_Melanopsin 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 1 ligand binding site 0 1 1 0 52,76,81,85,150,151,152,169,170,174,239,243,270 5 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320460 cd15338 7tmA_MCHR1 1 putative peptide ligand binding pocket 0 0 1 1 58,61,62,75,76,77,78,79,80,82,83,86,131,133,134,135,136,137,164,167,168,169,171,172,173,175,176,228,231,232,234,235,238,248,249,251,252,253,256,259,260 2 -320460 cd15338 7tmA_MCHR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320460 cd15338 7tmA_MCHR1 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320460 cd15338 7tmA_MCHR1 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320460 cd15338 7tmA_MCHR1 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320460 cd15338 7tmA_MCHR1 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320460 cd15338 7tmA_MCHR1 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320460 cd15338 7tmA_MCHR1 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320461 cd15339 7tmA_MCHR2 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,229,232,233,235,236,239,249,250,252,253,254,257,260,261 2 -320461 cd15339 7tmA_MCHR2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320461 cd15339 7tmA_MCHR2 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320461 cd15339 7tmA_MCHR2 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320461 cd15339 7tmA_MCHR2 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320461 cd15339 7tmA_MCHR2 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320461 cd15339 7tmA_MCHR2 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320461 cd15339 7tmA_MCHR2 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320462 cd15340 7tmA_CB1 1 putative ligand binding site 0 0 1 1 56,75,76,79,80,83,162,239,246,263,266 5 -320462 cd15340 7tmA_CB1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320462 cd15340 7tmA_CB1 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320462 cd15340 7tmA_CB1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320462 cd15340 7tmA_CB1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320462 cd15340 7tmA_CB1 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320462 cd15340 7tmA_CB1 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320462 cd15340 7tmA_CB1 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320463 cd15341 7tmA_CB2 1 putative ligand binding site 0 0 1 1 56,75,76,79,80,83,162,226,233,250,253 5 -320463 cd15341 7tmA_CB2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320463 cd15341 7tmA_CB2 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320463 cd15341 7tmA_CB2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320463 cd15341 7tmA_CB2 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320463 cd15341 7tmA_CB2 6 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320463 cd15341 7tmA_CB2 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320463 cd15341 7tmA_CB2 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320464 cd15342 7tmA_LPAR2_Edg4 1 putative ligand binding site 0 0 1 1 2,52,59,63,74,75,78,79,82,157,160,221,224,227,228,244,245,247,248 5 -320464 cd15342 7tmA_LPAR2_Edg4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320464 cd15342 7tmA_LPAR2_Edg4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320464 cd15342 7tmA_LPAR2_Edg4 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320464 cd15342 7tmA_LPAR2_Edg4 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320464 cd15342 7tmA_LPAR2_Edg4 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320464 cd15342 7tmA_LPAR2_Edg4 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320464 cd15342 7tmA_LPAR2_Edg4 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320465 cd15343 7tmA_LPAR3_Edg7 1 putative ligand binding site 0 0 1 1 2,52,59,63,74,75,78,79,82,157,160,221,224,227,228,244,245,247,248 5 -320465 cd15343 7tmA_LPAR3_Edg7 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320465 cd15343 7tmA_LPAR3_Edg7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320465 cd15343 7tmA_LPAR3_Edg7 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320465 cd15343 7tmA_LPAR3_Edg7 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320465 cd15343 7tmA_LPAR3_Edg7 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320465 cd15343 7tmA_LPAR3_Edg7 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320465 cd15343 7tmA_LPAR3_Edg7 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -341348 cd15344 7tmA_LPAR1_Edg2 1 ligand binding site 0 1 1 0 2,52,59,63,74,75,78,79,82,148,157,160,221,224,227,228,243,244,246,247 5 -341348 cd15344 7tmA_LPAR1_Edg2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341348 cd15344 7tmA_LPAR1_Edg2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341348 cd15344 7tmA_LPAR1_Edg2 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341348 cd15344 7tmA_LPAR1_Edg2 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341348 cd15344 7tmA_LPAR1_Edg2 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -341348 cd15344 7tmA_LPAR1_Edg2 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341348 cd15344 7tmA_LPAR1_Edg2 8 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320467 cd15345 7tmA_S1PR3_Edg3 1 putative ligand binding site 0 0 1 1 55,74,75,78,79,82,160,216,223,241,244 5 -320467 cd15345 7tmA_S1PR3_Edg3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320467 cd15345 7tmA_S1PR3_Edg3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320467 cd15345 7tmA_S1PR3_Edg3 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320467 cd15345 7tmA_S1PR3_Edg3 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320467 cd15345 7tmA_S1PR3_Edg3 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320467 cd15345 7tmA_S1PR3_Edg3 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320467 cd15345 7tmA_S1PR3_Edg3 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320468 cd15346 7tmA_S1PR1_Edg1 1 ligand binding site 0 1 1 0 55,59,74,75,78,79,82,148,160,223,230,248,251 5 -320468 cd15346 7tmA_S1PR1_Edg1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320468 cd15346 7tmA_S1PR1_Edg1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320468 cd15346 7tmA_S1PR1_Edg1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320468 cd15346 7tmA_S1PR1_Edg1 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320468 cd15346 7tmA_S1PR1_Edg1 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320468 cd15346 7tmA_S1PR1_Edg1 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320468 cd15346 7tmA_S1PR1_Edg1 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320469 cd15347 7tmA_S1PR2_Edg5 1 putative ligand binding site 0 0 1 1 55,74,75,78,79,82,160,212,219,237,240 5 -320469 cd15347 7tmA_S1PR2_Edg5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320469 cd15347 7tmA_S1PR2_Edg5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320469 cd15347 7tmA_S1PR2_Edg5 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320469 cd15347 7tmA_S1PR2_Edg5 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320469 cd15347 7tmA_S1PR2_Edg5 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320469 cd15347 7tmA_S1PR2_Edg5 7 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320469 cd15347 7tmA_S1PR2_Edg5 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320470 cd15348 7tmA_S1PR5_Edg8 1 putative ligand binding site 0 0 1 1 55,74,75,78,79,82,160,223,230,248,251 5 -320470 cd15348 7tmA_S1PR5_Edg8 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320470 cd15348 7tmA_S1PR5_Edg8 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320470 cd15348 7tmA_S1PR5_Edg8 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320470 cd15348 7tmA_S1PR5_Edg8 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320470 cd15348 7tmA_S1PR5_Edg8 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320470 cd15348 7tmA_S1PR5_Edg8 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320470 cd15348 7tmA_S1PR5_Edg8 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320471 cd15349 7tmA_S1PR4_Edg6 1 putative ligand binding site 0 0 1 1 55,74,75,78,79,82,161,217,224,242,245 5 -320471 cd15349 7tmA_S1PR4_Edg6 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320471 cd15349 7tmA_S1PR4_Edg6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320471 cd15349 7tmA_S1PR4_Edg6 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320471 cd15349 7tmA_S1PR4_Edg6 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320471 cd15349 7tmA_S1PR4_Edg6 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320471 cd15349 7tmA_S1PR4_Edg6 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320471 cd15349 7tmA_S1PR4_Edg6 8 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320472 cd15350 7tmA_MC2R_ACTH_R 1 putative ligand binding site 0 0 1 1 56,81,82,85,86,89,153,214,221,241,244 5 -320472 cd15350 7tmA_MC2R_ACTH_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320472 cd15350 7tmA_MC2R_ACTH_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320472 cd15350 7tmA_MC2R_ACTH_R 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320472 cd15350 7tmA_MC2R_ACTH_R 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320472 cd15350 7tmA_MC2R_ACTH_R 6 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320472 cd15350 7tmA_MC2R_ACTH_R 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320472 cd15350 7tmA_MC2R_ACTH_R 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320473 cd15351 7tmA_MC1R 1 putative ligand binding site 0 0 1 1 56,81,82,85,86,89,153,215,222,242,245 5 -320473 cd15351 7tmA_MC1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320473 cd15351 7tmA_MC1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320473 cd15351 7tmA_MC1R 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320473 cd15351 7tmA_MC1R 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320473 cd15351 7tmA_MC1R 6 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320473 cd15351 7tmA_MC1R 7 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320473 cd15351 7tmA_MC1R 8 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320474 cd15352 7tmA_MC3R 1 putative ligand binding site 0 0 1 1 56,81,82,85,86,89,153,216,223,243,246 5 -320474 cd15352 7tmA_MC3R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320474 cd15352 7tmA_MC3R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320474 cd15352 7tmA_MC3R 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320474 cd15352 7tmA_MC3R 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320474 cd15352 7tmA_MC3R 6 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320474 cd15352 7tmA_MC3R 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320474 cd15352 7tmA_MC3R 8 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320475 cd15353 7tmA_MC4R 1 putative ligand binding site 0 0 1 1 56,80,81,84,85,88,152,213,220,240,243 5 -320475 cd15353 7tmA_MC4R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320475 cd15353 7tmA_MC4R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320475 cd15353 7tmA_MC4R 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320475 cd15353 7tmA_MC4R 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320475 cd15353 7tmA_MC4R 6 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320475 cd15353 7tmA_MC4R 7 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320475 cd15353 7tmA_MC4R 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320476 cd15354 7tmA_MC5R 1 putative ligand binding site 0 0 1 1 56,81,82,85,86,89,153,214,221,241,244 5 -320476 cd15354 7tmA_MC5R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320476 cd15354 7tmA_MC5R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320476 cd15354 7tmA_MC5R 4 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 7 -320476 cd15354 7tmA_MC5R 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320476 cd15354 7tmA_MC5R 6 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320476 cd15354 7tmA_MC5R 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320476 cd15354 7tmA_MC5R 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320477 cd15355 7tmA_NTSR1 1 peptide ligand binding site 0 1 1 0 63,67,68,81,143,148,157,158,159,160,256,257,260,261,263,264,265,268,273,276,280 2 -320477 cd15355 7tmA_NTSR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320477 cd15355 7tmA_NTSR1 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320477 cd15355 7tmA_NTSR1 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320477 cd15355 7tmA_NTSR1 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320477 cd15355 7tmA_NTSR1 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320477 cd15355 7tmA_NTSR1 7 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320477 cd15355 7tmA_NTSR1 8 TM helix 7 0 0 0 0 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302 7 -320478 cd15356 7tmA_NTSR2 1 peptide ligand binding site 0 0 1 1 63,67,68,81,143,162,163,164,165,231,232,235,236,238,239,240,243,248,251,255 2 -320478 cd15356 7tmA_NTSR2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320478 cd15356 7tmA_NTSR2 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320478 cd15356 7tmA_NTSR2 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320478 cd15356 7tmA_NTSR2 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320478 cd15356 7tmA_NTSR2 6 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320478 cd15356 7tmA_NTSR2 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320478 cd15356 7tmA_NTSR2 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320479 cd15357 7tmA_NMU-R2 1 putative peptide ligand binding site 0 0 1 1 60,77,139,157,158,159,160,241,242,245,246,259,263 2 -320479 cd15357 7tmA_NMU-R2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320479 cd15357 7tmA_NMU-R2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320479 cd15357 7tmA_NMU-R2 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320479 cd15357 7tmA_NMU-R2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320479 cd15357 7tmA_NMU-R2 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320479 cd15357 7tmA_NMU-R2 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320479 cd15357 7tmA_NMU-R2 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320480 cd15358 7tmA_NMU-R1 1 putative peptide ligand binding site 0 0 1 1 60,77,139,157,158,159,160,253,254,257,258,271,275 2 -320480 cd15358 7tmA_NMU-R1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320480 cd15358 7tmA_NMU-R1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320480 cd15358 7tmA_NMU-R1 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320480 cd15358 7tmA_NMU-R1 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320480 cd15358 7tmA_NMU-R1 6 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320480 cd15358 7tmA_NMU-R1 7 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320480 cd15358 7tmA_NMU-R1 8 TM helix 7 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -320481 cd15359 7tmA_LHCGR 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,222,225,226,228,229,232,241,242,244,245,246,249,252,253 2 -320481 cd15359 7tmA_LHCGR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320481 cd15359 7tmA_LHCGR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320481 cd15359 7tmA_LHCGR 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320481 cd15359 7tmA_LHCGR 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320481 cd15359 7tmA_LHCGR 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320481 cd15359 7tmA_LHCGR 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320481 cd15359 7tmA_LHCGR 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320482 cd15360 7tmA_FSH-R 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,222,225,226,228,229,232,241,242,244,245,246,249,252,253 2 -320482 cd15360 7tmA_FSH-R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320482 cd15360 7tmA_FSH-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320482 cd15360 7tmA_FSH-R 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320482 cd15360 7tmA_FSH-R 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320482 cd15360 7tmA_FSH-R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320482 cd15360 7tmA_FSH-R 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320482 cd15360 7tmA_FSH-R 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320483 cd15361 7tmA_LGR4 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,221,224,225,227,228,231,240,241,243,244,245,248,251,252 2 -320483 cd15361 7tmA_LGR4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320483 cd15361 7tmA_LGR4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320483 cd15361 7tmA_LGR4 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320483 cd15361 7tmA_LGR4 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320483 cd15361 7tmA_LGR4 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320483 cd15361 7tmA_LGR4 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320483 cd15361 7tmA_LGR4 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320484 cd15362 7tmA_LGR6 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,165,168,169,170,172,173,174,176,177,223,226,227,229,230,233,242,243,245,246,247,250,253,254 2 -320484 cd15362 7tmA_LGR6 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320484 cd15362 7tmA_LGR6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320484 cd15362 7tmA_LGR6 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320484 cd15362 7tmA_LGR6 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320484 cd15362 7tmA_LGR6 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320484 cd15362 7tmA_LGR6 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320484 cd15362 7tmA_LGR6 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320485 cd15363 7tmA_LGR5 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,221,224,225,227,228,231,240,241,243,244,245,248,251,252 2 -320485 cd15363 7tmA_LGR5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320485 cd15363 7tmA_LGR5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320485 cd15363 7tmA_LGR5 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320485 cd15363 7tmA_LGR5 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320485 cd15363 7tmA_LGR5 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320485 cd15363 7tmA_LGR5 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320485 cd15363 7tmA_LGR5 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320486 cd15364 7tmA_GPR132_G2A 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,158,161,162,163,165,166,167,169,170,217,220,221,223,224,227,245,246,248,249,250,253,256,257 5 -320486 cd15364 7tmA_GPR132_G2A 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320486 cd15364 7tmA_GPR132_G2A 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320486 cd15364 7tmA_GPR132_G2A 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320486 cd15364 7tmA_GPR132_G2A 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320486 cd15364 7tmA_GPR132_G2A 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320486 cd15364 7tmA_GPR132_G2A 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320486 cd15364 7tmA_GPR132_G2A 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320487 cd15365 7tmA_GPR65_TDAG8 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,219,222,223,225,226,229,243,244,246,247,248,251,254,255 5 -320487 cd15365 7tmA_GPR65_TDAG8 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320487 cd15365 7tmA_GPR65_TDAG8 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320487 cd15365 7tmA_GPR65_TDAG8 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320487 cd15365 7tmA_GPR65_TDAG8 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320487 cd15365 7tmA_GPR65_TDAG8 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320487 cd15365 7tmA_GPR65_TDAG8 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320487 cd15365 7tmA_GPR65_TDAG8 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320488 cd15366 7tmA_GPR4 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,219,222,223,225,226,229,246,247,249,250,251,254,257,258 5 -320488 cd15366 7tmA_GPR4 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320488 cd15366 7tmA_GPR4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320488 cd15366 7tmA_GPR4 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320488 cd15366 7tmA_GPR4 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320488 cd15366 7tmA_GPR4 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320488 cd15366 7tmA_GPR4 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320488 cd15366 7tmA_GPR4 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320489 cd15367 7tmA_GPR68_OGR1 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,219,222,223,225,226,229,242,243,245,246,247,250,253,254 5 -320489 cd15367 7tmA_GPR68_OGR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320489 cd15367 7tmA_GPR68_OGR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320489 cd15367 7tmA_GPR68_OGR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320489 cd15367 7tmA_GPR68_OGR1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320489 cd15367 7tmA_GPR68_OGR1 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320489 cd15367 7tmA_GPR68_OGR1 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320489 cd15367 7tmA_GPR68_OGR1 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320490 cd15368 7tmA_P2Y8 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,65,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,151,152,153,166,169,170,171,173,174,175,177,178,226,229,230,232,233,236,247,248,250,251,252,255,258,259 2 -320490 cd15368 7tmA_P2Y8 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320490 cd15368 7tmA_P2Y8 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320490 cd15368 7tmA_P2Y8 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320490 cd15368 7tmA_P2Y8 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320490 cd15368 7tmA_P2Y8 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320490 cd15368 7tmA_P2Y8 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320490 cd15368 7tmA_P2Y8 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320491 cd15369 7tmA_PAR1 1 putative peptide ligand binding pocket 0 1 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,151,152,153,154,164,167,168,169,171,172,173,175,176,224,227,228,230,231,234,247,248,250,251,252,255,258,259 2 -320491 cd15369 7tmA_PAR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320491 cd15369 7tmA_PAR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320491 cd15369 7tmA_PAR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320491 cd15369 7tmA_PAR1 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320491 cd15369 7tmA_PAR1 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320491 cd15369 7tmA_PAR1 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320491 cd15369 7tmA_PAR1 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -341349 cd15370 7tmA_PAR2 1 putative peptide ligand binding pocket 0 1 1 1 55,58,59,65,72,73,74,75,76,77,79,80,83,127,129,130,131,132,133,150,151,152,163,166,167,168,170,171,172,174,175,224,227,228,230,231,234,246,247,249,250,251,254,257,258 2 -341349 cd15370 7tmA_PAR2 2 allosteric modulator binding site 0 1 1 0 44,47,78,81,82,85,123,127,134,135 5 -341349 cd15370 7tmA_PAR2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341349 cd15370 7tmA_PAR2 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341349 cd15370 7tmA_PAR2 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341349 cd15370 7tmA_PAR2 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341349 cd15370 7tmA_PAR2 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -341349 cd15370 7tmA_PAR2 8 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -341349 cd15370 7tmA_PAR2 9 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320493 cd15371 7tmA_PAR3 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,64,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,150,151,152,164,167,168,169,171,172,173,175,176,219,222,223,225,226,229,241,242,244,245,246,249,252,253 2 -320493 cd15371 7tmA_PAR3 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320493 cd15371 7tmA_PAR3 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320493 cd15371 7tmA_PAR3 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320493 cd15371 7tmA_PAR3 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320493 cd15371 7tmA_PAR3 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320493 cd15371 7tmA_PAR3 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320493 cd15371 7tmA_PAR3 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320494 cd15372 7tmA_PAR4 1 putative peptide ligand binding pocket 0 0 1 1 54,57,58,64,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,150,151,152,163,166,167,168,170,171,172,174,175,218,221,222,224,225,228,240,241,243,244,245,248,251,252 2 -320494 cd15372 7tmA_PAR4 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320494 cd15372 7tmA_PAR4 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320494 cd15372 7tmA_PAR4 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320494 cd15372 7tmA_PAR4 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320494 cd15372 7tmA_PAR4 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320494 cd15372 7tmA_PAR4 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320494 cd15372 7tmA_PAR4 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320495 cd15373 7tmA_P2Y2 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,223,226,227,229,230,233,249,250,252,253,254,257,260,261 5 -320495 cd15373 7tmA_P2Y2 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320495 cd15373 7tmA_P2Y2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320495 cd15373 7tmA_P2Y2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320495 cd15373 7tmA_P2Y2 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320495 cd15373 7tmA_P2Y2 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320495 cd15373 7tmA_P2Y2 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320495 cd15373 7tmA_P2Y2 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320496 cd15374 7tmA_P2Y4 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,251,252,254,255,256,259,262,263 5 -320496 cd15374 7tmA_P2Y4 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320496 cd15374 7tmA_P2Y4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320496 cd15374 7tmA_P2Y4 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320496 cd15374 7tmA_P2Y4 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320496 cd15374 7tmA_P2Y4 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320496 cd15374 7tmA_P2Y4 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320496 cd15374 7tmA_P2Y4 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320497 cd15375 7tmA_OXGR1 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,220,223,224,226,227,230,246,247,249,250,251,254,257,258 5 -320497 cd15375 7tmA_OXGR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320497 cd15375 7tmA_OXGR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320497 cd15375 7tmA_OXGR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320497 cd15375 7tmA_OXGR1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320497 cd15375 7tmA_OXGR1 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320497 cd15375 7tmA_OXGR1 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320497 cd15375 7tmA_OXGR1 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320498 cd15376 7tmA_P2Y11 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,150,152,153,154,163,166,167,168,170,171,172,174,175,222,225,226,228,229,232,248,249,251,252,253,256,259,260 5 -320498 cd15376 7tmA_P2Y11 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320498 cd15376 7tmA_P2Y11 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320498 cd15376 7tmA_P2Y11 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320498 cd15376 7tmA_P2Y11 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320498 cd15376 7tmA_P2Y11 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320498 cd15376 7tmA_P2Y11 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320498 cd15376 7tmA_P2Y11 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341350 cd15377 7tmA_P2Y1 1 putative ligand binding pocket 0 1 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,149,151,152,153,162,165,166,167,169,170,171,173,174,226,229,230,232,233,236,255,256,258,259,260,263,266,267 5 -341350 cd15377 7tmA_P2Y1 2 allosteric modulator binding site 0 1 1 0 10,14,50,51,53,54,67,74,75 5 -341350 cd15377 7tmA_P2Y1 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341350 cd15377 7tmA_P2Y1 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -341350 cd15377 7tmA_P2Y1 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341350 cd15377 7tmA_P2Y1 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341350 cd15377 7tmA_P2Y1 7 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -341350 cd15377 7tmA_P2Y1 8 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -341350 cd15377 7tmA_P2Y1 9 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320500 cd15378 7tmA_SUCNR1_GPR91 1 putative ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,147,149,150,151,160,163,164,165,167,168,169,171,172,221,224,225,227,228,231,249,250,252,253,254,257,260,261 5 -320500 cd15378 7tmA_SUCNR1_GPR91 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320500 cd15378 7tmA_SUCNR1_GPR91 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320500 cd15378 7tmA_SUCNR1_GPR91 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320500 cd15378 7tmA_SUCNR1_GPR91 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320500 cd15378 7tmA_SUCNR1_GPR91 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320500 cd15378 7tmA_SUCNR1_GPR91 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320500 cd15378 7tmA_SUCNR1_GPR91 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320501 cd15379 7tmA_P2Y6 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,129,131,132,133,134,135,149,151,152,153,162,165,166,167,169,170,171,173,174,227,230,231,233,234,237,254,255,257,258,259,262,265,266 5 -320501 cd15379 7tmA_P2Y6 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320501 cd15379 7tmA_P2Y6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320501 cd15379 7tmA_P2Y6 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320501 cd15379 7tmA_P2Y6 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320501 cd15379 7tmA_P2Y6 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320501 cd15379 7tmA_P2Y6 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320501 cd15379 7tmA_P2Y6 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320502 cd15380 7tmA_BK-1 1 putative peptide ligand binding pocket 0 0 1 1 6,55,58,59,63,76,79,80,83,134,138,153,225,228,260,264 2 -320502 cd15380 7tmA_BK-1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320502 cd15380 7tmA_BK-1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320502 cd15380 7tmA_BK-1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320502 cd15380 7tmA_BK-1 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320502 cd15380 7tmA_BK-1 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320502 cd15380 7tmA_BK-1 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320502 cd15380 7tmA_BK-1 8 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320503 cd15381 7tmA_BK-2 1 putative peptide ligand binding pocket 0 0 1 1 6,55,58,59,63,76,79,80,83,134,138,153,223,226,258,262 2 -320503 cd15381 7tmA_BK-2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320503 cd15381 7tmA_BK-2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320503 cd15381 7tmA_BK-2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320503 cd15381 7tmA_BK-2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320503 cd15381 7tmA_BK-2 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320503 cd15381 7tmA_BK-2 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320503 cd15381 7tmA_BK-2 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320504 cd15382 7tmA_AKHR 1 putative peptide ligand binding pocket 0 0 1 1 58,61,62,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,243,246,247,249,250,253,264,265,267,268,269,272,275,276 2 -320504 cd15382 7tmA_AKHR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320504 cd15382 7tmA_AKHR 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320504 cd15382 7tmA_AKHR 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320504 cd15382 7tmA_AKHR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320504 cd15382 7tmA_AKHR 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320504 cd15382 7tmA_AKHR 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320504 cd15382 7tmA_AKHR 8 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320505 cd15383 7tmA_GnRHR_vertebrate 1 putative peptide ligand binding pocket 0 0 1 1 58,61,62,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,163,166,167,168,170,171,172,174,175,239,242,243,245,246,249,261,262,264,265,266,269,272,273 2 -320505 cd15383 7tmA_GnRHR_vertebrate 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320505 cd15383 7tmA_GnRHR_vertebrate 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320505 cd15383 7tmA_GnRHR_vertebrate 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320505 cd15383 7tmA_GnRHR_vertebrate 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320505 cd15383 7tmA_GnRHR_vertebrate 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320505 cd15383 7tmA_GnRHR_vertebrate 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320505 cd15383 7tmA_GnRHR_vertebrate 8 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320506 cd15384 7tmA_GnRHR_invertebrate 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,162,165,166,167,169,170,171,173,174,239,242,243,245,246,249,258,259,261,262,263,266,269,270 2 -320506 cd15384 7tmA_GnRHR_invertebrate 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320506 cd15384 7tmA_GnRHR_invertebrate 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320506 cd15384 7tmA_GnRHR_invertebrate 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320506 cd15384 7tmA_GnRHR_invertebrate 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320506 cd15384 7tmA_GnRHR_invertebrate 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320506 cd15384 7tmA_GnRHR_invertebrate 7 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320506 cd15384 7tmA_GnRHR_invertebrate 8 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320507 cd15385 7tmA_V1aR 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,245,248,249,251,252,255,267,268,270,271,272,275,278,279 2 -320507 cd15385 7tmA_V1aR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320507 cd15385 7tmA_V1aR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320507 cd15385 7tmA_V1aR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320507 cd15385 7tmA_V1aR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320507 cd15385 7tmA_V1aR 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320507 cd15385 7tmA_V1aR 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320507 cd15385 7tmA_V1aR 8 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320508 cd15386 7tmA_V1bR 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,246,249,250,252,253,256,268,269,271,272,273,276,279,280 2 -320508 cd15386 7tmA_V1bR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320508 cd15386 7tmA_V1bR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320508 cd15386 7tmA_V1bR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320508 cd15386 7tmA_V1bR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320508 cd15386 7tmA_V1bR 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320508 cd15386 7tmA_V1bR 7 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320508 cd15386 7tmA_V1bR 8 TM helix 7 0 0 0 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -320509 cd15387 7tmA_OT_R 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,125,127,128,129,130,131,157,160,161,162,164,165,166,168,169,244,247,248,250,251,254,263,264,266,267,268,271,274,275 2 -320509 cd15387 7tmA_OT_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320509 cd15387 7tmA_OT_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320509 cd15387 7tmA_OT_R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320509 cd15387 7tmA_OT_R 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320509 cd15387 7tmA_OT_R 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320509 cd15387 7tmA_OT_R 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320509 cd15387 7tmA_OT_R 8 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320510 cd15388 7tmA_V2R 1 putative peptide ligand binding pocket 0 0 1 1 57,60,61,72,73,74,75,76,77,79,80,83,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,242,245,246,248,249,252,261,262,264,265,266,269,272,273 2 -320510 cd15388 7tmA_V2R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320510 cd15388 7tmA_V2R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320510 cd15388 7tmA_V2R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320510 cd15388 7tmA_V2R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320510 cd15388 7tmA_V2R 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320510 cd15388 7tmA_V2R 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320510 cd15388 7tmA_V2R 8 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320511 cd15389 7tmA_GPR83 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,164,167,168,169,171,172,173,175,176,233,236,237,239,240,243,251,252,254,255,256,259,262,263 2 -320511 cd15389 7tmA_GPR83 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320511 cd15389 7tmA_GPR83 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320511 cd15389 7tmA_GPR83 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320511 cd15389 7tmA_GPR83 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320511 cd15389 7tmA_GPR83 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320511 cd15389 7tmA_GPR83 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320511 cd15389 7tmA_GPR83 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320512 cd15390 7tmA_TACR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,165,168,169,170,172,173,174,176,177,233,236,237,239,240,243,255,256,258,259,260,263,266,267 2 -320512 cd15390 7tmA_TACR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320512 cd15390 7tmA_TACR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320512 cd15390 7tmA_TACR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320512 cd15390 7tmA_TACR 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320512 cd15390 7tmA_TACR 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320512 cd15390 7tmA_TACR 7 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320512 cd15390 7tmA_TACR 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320513 cd15391 7tmA_NPR-like_invertebrate 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,162,165,166,167,169,170,171,173,174,231,234,235,237,238,241,255,256,258,259,260,263,266,267 2 -320513 cd15391 7tmA_NPR-like_invertebrate 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320513 cd15391 7tmA_NPR-like_invertebrate 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320513 cd15391 7tmA_NPR-like_invertebrate 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320513 cd15391 7tmA_NPR-like_invertebrate 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320513 cd15391 7tmA_NPR-like_invertebrate 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320513 cd15391 7tmA_NPR-like_invertebrate 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320513 cd15391 7tmA_NPR-like_invertebrate 8 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320514 cd15392 7tmA_PR4-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,162,165,166,167,169,170,171,173,174,231,234,235,237,238,241,253,254,256,257,258,261,264,265 2 -320514 cd15392 7tmA_PR4-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320514 cd15392 7tmA_PR4-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320514 cd15392 7tmA_PR4-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320514 cd15392 7tmA_PR4-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320514 cd15392 7tmA_PR4-like 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320514 cd15392 7tmA_PR4-like 7 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320514 cd15392 7tmA_PR4-like 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320515 cd15393 7tmA_leucokinin-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,163,166,167,168,170,171,172,174,175,232,235,236,238,239,242,254,255,257,258,259,262,265,266 2 -320515 cd15393 7tmA_leucokinin-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320515 cd15393 7tmA_leucokinin-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320515 cd15393 7tmA_leucokinin-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320515 cd15393 7tmA_leucokinin-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320515 cd15393 7tmA_leucokinin-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320515 cd15393 7tmA_leucokinin-like 7 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320515 cd15393 7tmA_leucokinin-like 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320516 cd15394 7tmA_PrRP_R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,230,233,234,236,237,240,252,253,255,256,257,260,263,264 2 -320516 cd15394 7tmA_PrRP_R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320516 cd15394 7tmA_PrRP_R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320516 cd15394 7tmA_PrRP_R 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320516 cd15394 7tmA_PrRP_R 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320516 cd15394 7tmA_PrRP_R 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320516 cd15394 7tmA_PrRP_R 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320516 cd15394 7tmA_PrRP_R 8 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320517 cd15395 7tmA_NPY1R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,169,172,173,174,176,177,178,180,181,237,240,241,243,244,247,259,260,262,263,264,267,270,271 2 -320517 cd15395 7tmA_NPY1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320517 cd15395 7tmA_NPY1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320517 cd15395 7tmA_NPY1R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320517 cd15395 7tmA_NPY1R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320517 cd15395 7tmA_NPY1R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320517 cd15395 7tmA_NPY1R 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320517 cd15395 7tmA_NPY1R 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320518 cd15396 7tmA_NPY6R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,169,172,173,174,176,177,178,180,181,237,240,241,243,244,247,259,260,262,263,264,267,270,271 2 -320518 cd15396 7tmA_NPY6R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320518 cd15396 7tmA_NPY6R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320518 cd15396 7tmA_NPY6R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320518 cd15396 7tmA_NPY6R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320518 cd15396 7tmA_NPY6R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320518 cd15396 7tmA_NPY6R 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320518 cd15396 7tmA_NPY6R 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320519 cd15397 7tmA_NPY4R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,169,172,173,174,176,177,178,180,181,237,240,241,243,244,247,259,260,262,263,264,267,270,271 2 -320519 cd15397 7tmA_NPY4R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320519 cd15397 7tmA_NPY4R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320519 cd15397 7tmA_NPY4R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320519 cd15397 7tmA_NPY4R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320519 cd15397 7tmA_NPY4R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320519 cd15397 7tmA_NPY4R 7 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320519 cd15397 7tmA_NPY4R 8 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320520 cd15398 7tmA_NPY5R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,166,169,170,171,173,174,175,177,178,217,220,221,223,224,227,239,240,242,243,244,247,250,251 2 -320520 cd15398 7tmA_NPY5R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320520 cd15398 7tmA_NPY5R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320520 cd15398 7tmA_NPY5R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320520 cd15398 7tmA_NPY5R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320520 cd15398 7tmA_NPY5R 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320520 cd15398 7tmA_NPY5R 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320520 cd15398 7tmA_NPY5R 8 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320521 cd15399 7tmA_NPY2R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,164,167,168,169,171,172,173,175,176,229,232,233,235,236,239,251,252,254,255,256,259,262,263 2 -320521 cd15399 7tmA_NPY2R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320521 cd15399 7tmA_NPY2R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320521 cd15399 7tmA_NPY2R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320521 cd15399 7tmA_NPY2R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320521 cd15399 7tmA_NPY2R 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320521 cd15399 7tmA_NPY2R 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320521 cd15399 7tmA_NPY2R 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320522 cd15400 7tmA_Mel1B 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,156,159,160,161,163,164,165,167,168,223,226,227,229,230,233,245,246,248,249,250,253,256,257 5 -320522 cd15400 7tmA_Mel1B 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320522 cd15400 7tmA_Mel1B 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320522 cd15400 7tmA_Mel1B 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320522 cd15400 7tmA_Mel1B 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320522 cd15400 7tmA_Mel1B 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320522 cd15400 7tmA_Mel1B 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320522 cd15400 7tmA_Mel1B 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320523 cd15401 7tmA_Mel1C 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,156,159,160,161,163,164,165,167,168,223,226,227,229,230,233,245,246,248,249,250,253,256,257 5 -320523 cd15401 7tmA_Mel1C 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320523 cd15401 7tmA_Mel1C 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320523 cd15401 7tmA_Mel1C 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320523 cd15401 7tmA_Mel1C 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320523 cd15401 7tmA_Mel1C 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320523 cd15401 7tmA_Mel1C 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320523 cd15401 7tmA_Mel1C 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320524 cd15402 7tmA_Mel1A 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,156,159,160,161,163,164,165,167,168,223,226,227,229,230,233,245,246,248,249,250,253,256,257 5 -320524 cd15402 7tmA_Mel1A 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320524 cd15402 7tmA_Mel1A 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320524 cd15402 7tmA_Mel1A 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320524 cd15402 7tmA_Mel1A 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320524 cd15402 7tmA_Mel1A 6 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320524 cd15402 7tmA_Mel1A 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320524 cd15402 7tmA_Mel1A 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320525 cd15403 7tmA_GPR45 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,125,127,128,129,130,131,157,160,161,162,164,165,166,168,169,245,248,249,251,252,255,267,268,270,271,272,275,278,279 5 -320525 cd15403 7tmA_GPR45 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320525 cd15403 7tmA_GPR45 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320525 cd15403 7tmA_GPR45 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320525 cd15403 7tmA_GPR45 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320525 cd15403 7tmA_GPR45 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320525 cd15403 7tmA_GPR45 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320525 cd15403 7tmA_GPR45 8 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320526 cd15404 7tmA_GPR63 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,125,127,128,129,130,131,157,160,161,162,164,165,166,168,169,209,212,213,215,216,219,231,232,234,235,236,239,242,243 5 -320526 cd15404 7tmA_GPR63 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320526 cd15404 7tmA_GPR63 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320526 cd15404 7tmA_GPR63 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320526 cd15404 7tmA_GPR63 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320526 cd15404 7tmA_GPR63 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320526 cd15404 7tmA_GPR63 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320526 cd15404 7tmA_GPR63 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320527 cd15405 7tmA_OR8B-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320527 cd15405 7tmA_OR8B-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320527 cd15405 7tmA_OR8B-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320527 cd15405 7tmA_OR8B-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320527 cd15405 7tmA_OR8B-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320527 cd15405 7tmA_OR8B-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320527 cd15405 7tmA_OR8B-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320527 cd15405 7tmA_OR8B-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320528 cd15406 7tmA_OR8D-like 1 putative ligand binding pocket 0 0 1 1 65,68,69,81,82,83,84,85,86,88,89,92,137,139,140,141,142,143,179,182,183,184,186,187,188,190,191,236,239,240,242,243,246,252,253,255,256,257,260,263,264 5 -320528 cd15406 7tmA_OR8D-like 2 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 7 -320528 cd15406 7tmA_OR8D-like 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320528 cd15406 7tmA_OR8D-like 4 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320528 cd15406 7tmA_OR8D-like 5 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320528 cd15406 7tmA_OR8D-like 6 TM helix 5 0 0 0 0 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 7 -320528 cd15406 7tmA_OR8D-like 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320528 cd15406 7tmA_OR8D-like 8 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320529 cd15407 7tmA_OR5B-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320529 cd15407 7tmA_OR5B-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320529 cd15407 7tmA_OR5B-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320529 cd15407 7tmA_OR5B-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320529 cd15407 7tmA_OR5B-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320529 cd15407 7tmA_OR5B-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320529 cd15407 7tmA_OR5B-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320529 cd15407 7tmA_OR5B-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320530 cd15408 7tmA_OR5AK3-like 1 putative ligand binding pocket 0 0 1 1 69,72,73,85,86,87,88,89,90,92,93,96,141,143,144,145,146,147,183,186,187,188,190,191,192,194,195,240,243,244,246,247,250,256,257,259,260,261,264,267,268 5 -320530 cd15408 7tmA_OR5AK3-like 2 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320530 cd15408 7tmA_OR5AK3-like 3 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320530 cd15408 7tmA_OR5AK3-like 4 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320530 cd15408 7tmA_OR5AK3-like 5 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320530 cd15408 7tmA_OR5AK3-like 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320530 cd15408 7tmA_OR5AK3-like 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320530 cd15408 7tmA_OR5AK3-like 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320531 cd15409 7tmA_OR5H-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320531 cd15409 7tmA_OR5H-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320531 cd15409 7tmA_OR5H-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320531 cd15409 7tmA_OR5H-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320531 cd15409 7tmA_OR5H-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320531 cd15409 7tmA_OR5H-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320531 cd15409 7tmA_OR5H-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320531 cd15409 7tmA_OR5H-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320532 cd15410 7tmA_OR5D-like 1 putative ligand binding pocket 0 0 1 1 69,72,73,85,86,87,88,89,90,92,93,96,141,143,144,145,146,147,183,186,187,188,190,191,192,194,195,240,243,244,246,247,250,256,257,259,260,261,264,267,268 5 -320532 cd15410 7tmA_OR5D-like 2 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320532 cd15410 7tmA_OR5D-like 3 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320532 cd15410 7tmA_OR5D-like 4 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320532 cd15410 7tmA_OR5D-like 5 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320532 cd15410 7tmA_OR5D-like 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320532 cd15410 7tmA_OR5D-like 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320532 cd15410 7tmA_OR5D-like 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320533 cd15411 7tmA_OR8H-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320533 cd15411 7tmA_OR8H-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320533 cd15411 7tmA_OR8H-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320533 cd15411 7tmA_OR8H-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320533 cd15411 7tmA_OR8H-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320533 cd15411 7tmA_OR8H-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320533 cd15411 7tmA_OR8H-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320533 cd15411 7tmA_OR8H-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320534 cd15412 7tmA_OR5M-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320534 cd15412 7tmA_OR5M-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320534 cd15412 7tmA_OR5M-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320534 cd15412 7tmA_OR5M-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320534 cd15412 7tmA_OR5M-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320534 cd15412 7tmA_OR5M-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320534 cd15412 7tmA_OR5M-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320534 cd15412 7tmA_OR5M-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320535 cd15413 7tmA_OR8K-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320535 cd15413 7tmA_OR8K-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320535 cd15413 7tmA_OR8K-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320535 cd15413 7tmA_OR8K-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320535 cd15413 7tmA_OR8K-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320535 cd15413 7tmA_OR8K-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320535 cd15413 7tmA_OR8K-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320535 cd15413 7tmA_OR8K-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320536 cd15414 7tmA_OR5G-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320536 cd15414 7tmA_OR5G-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320536 cd15414 7tmA_OR5G-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320536 cd15414 7tmA_OR5G-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320536 cd15414 7tmA_OR5G-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320536 cd15414 7tmA_OR5G-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320536 cd15414 7tmA_OR5G-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320536 cd15414 7tmA_OR5G-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320537 cd15415 7tmA_OR5J-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320537 cd15415 7tmA_OR5J-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320537 cd15415 7tmA_OR5J-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320537 cd15415 7tmA_OR5J-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320537 cd15415 7tmA_OR5J-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320537 cd15415 7tmA_OR5J-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320537 cd15415 7tmA_OR5J-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320537 cd15415 7tmA_OR5J-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320538 cd15416 7tmA_OR5P-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320538 cd15416 7tmA_OR5P-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320538 cd15416 7tmA_OR5P-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320538 cd15416 7tmA_OR5P-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320538 cd15416 7tmA_OR5P-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320538 cd15416 7tmA_OR5P-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320538 cd15416 7tmA_OR5P-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320538 cd15416 7tmA_OR5P-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320539 cd15417 7tmA_OR5A1-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320539 cd15417 7tmA_OR5A1-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320539 cd15417 7tmA_OR5A1-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320539 cd15417 7tmA_OR5A1-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320539 cd15417 7tmA_OR5A1-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320539 cd15417 7tmA_OR5A1-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320539 cd15417 7tmA_OR5A1-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320539 cd15417 7tmA_OR5A1-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320540 cd15418 7tmA_OR9G-like 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,171,174,175,176,178,179,180,182,183,228,231,232,234,235,238,244,245,247,248,249,252,255,256 5 -320540 cd15418 7tmA_OR9G-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320540 cd15418 7tmA_OR9G-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320540 cd15418 7tmA_OR9G-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320540 cd15418 7tmA_OR9G-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320540 cd15418 7tmA_OR9G-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320540 cd15418 7tmA_OR9G-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320540 cd15418 7tmA_OR9G-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320541 cd15419 7tmA_OR9K2-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320541 cd15419 7tmA_OR9K2-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320541 cd15419 7tmA_OR9K2-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320541 cd15419 7tmA_OR9K2-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320541 cd15419 7tmA_OR9K2-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320541 cd15419 7tmA_OR9K2-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320541 cd15419 7tmA_OR9K2-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320541 cd15419 7tmA_OR9K2-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320542 cd15420 7tmA_OR2A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320542 cd15420 7tmA_OR2A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320542 cd15420 7tmA_OR2A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320542 cd15420 7tmA_OR2A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320542 cd15420 7tmA_OR2A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320542 cd15420 7tmA_OR2A-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320542 cd15420 7tmA_OR2A-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320542 cd15420 7tmA_OR2A-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320543 cd15421 7tmA_OR2T-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320543 cd15421 7tmA_OR2T-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320543 cd15421 7tmA_OR2T-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320543 cd15421 7tmA_OR2T-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320543 cd15421 7tmA_OR2T-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320543 cd15421 7tmA_OR2T-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320543 cd15421 7tmA_OR2T-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320543 cd15421 7tmA_OR2T-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320544 cd15424 7tmA_OR2_unk 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320544 cd15424 7tmA_OR2_unk 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320544 cd15424 7tmA_OR2_unk 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320544 cd15424 7tmA_OR2_unk 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320544 cd15424 7tmA_OR2_unk 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320544 cd15424 7tmA_OR2_unk 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320544 cd15424 7tmA_OR2_unk 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320544 cd15424 7tmA_OR2_unk 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320545 cd15428 7tmA_OR2D-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320545 cd15428 7tmA_OR2D-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320545 cd15428 7tmA_OR2D-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320545 cd15428 7tmA_OR2D-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320545 cd15428 7tmA_OR2D-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320545 cd15428 7tmA_OR2D-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320545 cd15428 7tmA_OR2D-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320545 cd15428 7tmA_OR2D-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320546 cd15429 7tmA_OR2F-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320546 cd15429 7tmA_OR2F-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320546 cd15429 7tmA_OR2F-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320546 cd15429 7tmA_OR2F-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320546 cd15429 7tmA_OR2F-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320546 cd15429 7tmA_OR2F-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320546 cd15429 7tmA_OR2F-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320546 cd15429 7tmA_OR2F-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320547 cd15430 7tmA_OR13-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320547 cd15430 7tmA_OR13-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320547 cd15430 7tmA_OR13-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320547 cd15430 7tmA_OR13-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320547 cd15430 7tmA_OR13-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320547 cd15430 7tmA_OR13-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320547 cd15430 7tmA_OR13-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320547 cd15430 7tmA_OR13-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320548 cd15431 7tmA_OR13H-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,169,172,173,174,176,177,178,180,181,226,229,230,232,233,236,242,243,245,246,247,250,253,254 5 -320548 cd15431 7tmA_OR13H-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320548 cd15431 7tmA_OR13H-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320548 cd15431 7tmA_OR13H-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320548 cd15431 7tmA_OR13H-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320548 cd15431 7tmA_OR13H-like 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320548 cd15431 7tmA_OR13H-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320548 cd15431 7tmA_OR13H-like 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320549 cd15432 7tmA_OR2B2-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320549 cd15432 7tmA_OR2B2-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320549 cd15432 7tmA_OR2B2-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320549 cd15432 7tmA_OR2B2-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320549 cd15432 7tmA_OR2B2-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320549 cd15432 7tmA_OR2B2-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320549 cd15432 7tmA_OR2B2-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320549 cd15432 7tmA_OR2B2-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320550 cd15433 7tmA_OR2Y-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320550 cd15433 7tmA_OR2Y-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320550 cd15433 7tmA_OR2Y-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320550 cd15433 7tmA_OR2Y-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320550 cd15433 7tmA_OR2Y-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320550 cd15433 7tmA_OR2Y-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320550 cd15433 7tmA_OR2Y-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320550 cd15433 7tmA_OR2Y-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320551 cd15434 7tmA_OR2W-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320551 cd15434 7tmA_OR2W-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320551 cd15434 7tmA_OR2W-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320551 cd15434 7tmA_OR2W-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320551 cd15434 7tmA_OR2W-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320551 cd15434 7tmA_OR2W-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320551 cd15434 7tmA_OR2W-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320551 cd15434 7tmA_OR2W-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320552 cd15436 7tmB2_Latrophilin 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320552 cd15436 7tmB2_Latrophilin 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320552 cd15436 7tmB2_Latrophilin 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320552 cd15436 7tmB2_Latrophilin 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320552 cd15436 7tmB2_Latrophilin 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320552 cd15436 7tmB2_Latrophilin 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320552 cd15436 7tmB2_Latrophilin 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320552 cd15436 7tmB2_Latrophilin 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320553 cd15437 7tmB2_ETL 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320553 cd15437 7tmB2_ETL 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320553 cd15437 7tmB2_ETL 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320553 cd15437 7tmB2_ETL 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320553 cd15437 7tmB2_ETL 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320553 cd15437 7tmB2_ETL 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320553 cd15437 7tmB2_ETL 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320553 cd15437 7tmB2_ETL 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320554 cd15438 7tmB2_CD97 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320554 cd15438 7tmB2_CD97 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320554 cd15438 7tmB2_CD97 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320554 cd15438 7tmB2_CD97 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320554 cd15438 7tmB2_CD97 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320554 cd15438 7tmB2_CD97 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320554 cd15438 7tmB2_CD97 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320554 cd15438 7tmB2_CD97 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320555 cd15439 7tmB2_EMR 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,151,152,154,156,212,215,227,231 2 -320555 cd15439 7tmB2_EMR 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320555 cd15439 7tmB2_EMR 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320555 cd15439 7tmB2_EMR 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320555 cd15439 7tmB2_EMR 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320555 cd15439 7tmB2_EMR 6 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320555 cd15439 7tmB2_EMR 7 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320555 cd15439 7tmB2_EMR 8 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,209,212,224,228 2 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 8 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,203,206,218,222 2 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 8 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320558 cd15442 7tmB2_GPR97 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,58,61,62,65,74,81,165,166,168,170,224,227,239,243 2 -320558 cd15442 7tmB2_GPR97 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320558 cd15442 7tmB2_GPR97 3 TM helix 2 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320558 cd15442 7tmB2_GPR97 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320558 cd15442 7tmB2_GPR97 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320558 cd15442 7tmB2_GPR97 6 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320558 cd15442 7tmB2_GPR97 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320558 cd15442 7tmB2_GPR97 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320559 cd15443 7tmB2_GPR114 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,70,77,161,162,164,166,219,222,234,238 2 -320559 cd15443 7tmB2_GPR114 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320559 cd15443 7tmB2_GPR114 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320559 cd15443 7tmB2_GPR114 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320559 cd15443 7tmB2_GPR114 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320559 cd15443 7tmB2_GPR114 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320559 cd15443 7tmB2_GPR114 7 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320559 cd15443 7tmB2_GPR114 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320560 cd15444 7tmB2_GPR64 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,71,78,162,163,165,167,222,225,237,241 2 -320560 cd15444 7tmB2_GPR64 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320560 cd15444 7tmB2_GPR64 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320560 cd15444 7tmB2_GPR64 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320560 cd15444 7tmB2_GPR64 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320560 cd15444 7tmB2_GPR64 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320560 cd15444 7tmB2_GPR64 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320560 cd15444 7tmB2_GPR64 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320561 cd15445 7tmB1_CRF-R1 1 antagonist binding site 0 1 1 0 46,87,90,91,94,164,167,168,200,204,207,211 5 -320561 cd15445 7tmB1_CRF-R1 2 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,73,80,152,153,155,157,211,214,229,233 2 -320561 cd15445 7tmB1_CRF-R1 3 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320561 cd15445 7tmB1_CRF-R1 4 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320561 cd15445 7tmB1_CRF-R1 5 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320561 cd15445 7tmB1_CRF-R1 6 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320561 cd15445 7tmB1_CRF-R1 7 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320561 cd15445 7tmB1_CRF-R1 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320561 cd15445 7tmB1_CRF-R1 9 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320562 cd15446 7tmB1_CRF-R2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,72,79,151,152,154,156,210,213,228,232 2 -320562 cd15446 7tmB1_CRF-R2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320562 cd15446 7tmB1_CRF-R2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320562 cd15446 7tmB1_CRF-R2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320562 cd15446 7tmB1_CRF-R2 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320562 cd15446 7tmB1_CRF-R2 6 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320562 cd15446 7tmB1_CRF-R2 7 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320562 cd15446 7tmB1_CRF-R2 8 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320563 cd15447 7tmC_mGluR2 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,224,225,228,231,235 5 -320563 cd15447 7tmC_mGluR2 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320563 cd15447 7tmC_mGluR2 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320563 cd15447 7tmC_mGluR2 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320563 cd15447 7tmC_mGluR2 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320563 cd15447 7tmC_mGluR2 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320563 cd15447 7tmC_mGluR2 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320563 cd15447 7tmC_mGluR2 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320563 cd15447 7tmC_mGluR2 9 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320564 cd15448 7tmC_mGluR3 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,224,225,228,231,235 5 -320564 cd15448 7tmC_mGluR3 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320564 cd15448 7tmC_mGluR3 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320564 cd15448 7tmC_mGluR3 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320564 cd15448 7tmC_mGluR3 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320564 cd15448 7tmC_mGluR3 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320564 cd15448 7tmC_mGluR3 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320564 cd15448 7tmC_mGluR3 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320564 cd15448 7tmC_mGluR3 9 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320565 cd15449 7tmC_mGluR1 1 allosteric modulator binding site 0 1 1 0 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,220,221,224,227,231 5 -320565 cd15449 7tmC_mGluR1 2 dimer interface 0 1 1 0 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320565 cd15449 7tmC_mGluR1 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320565 cd15449 7tmC_mGluR1 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320565 cd15449 7tmC_mGluR1 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320565 cd15449 7tmC_mGluR1 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320565 cd15449 7tmC_mGluR1 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320565 cd15449 7tmC_mGluR1 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320565 cd15449 7tmC_mGluR1 9 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320566 cd15450 7tmC_mGluR5 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,157,162,165,166,169,203,206,207,210,214,220,221,224,227,231 5 -320566 cd15450 7tmC_mGluR5 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320566 cd15450 7tmC_mGluR5 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320566 cd15450 7tmC_mGluR5 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320566 cd15450 7tmC_mGluR5 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320566 cd15450 7tmC_mGluR5 6 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320566 cd15450 7tmC_mGluR5 7 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320566 cd15450 7tmC_mGluR5 8 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320566 cd15450 7tmC_mGluR5 9 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320567 cd15451 7tmC_mGluR7 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,162,167,170,171,174,208,211,212,215,219,232,233,236,239,243 5 -320567 cd15451 7tmC_mGluR7 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320567 cd15451 7tmC_mGluR7 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320567 cd15451 7tmC_mGluR7 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320567 cd15451 7tmC_mGluR7 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320567 cd15451 7tmC_mGluR7 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320567 cd15451 7tmC_mGluR7 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320567 cd15451 7tmC_mGluR7 8 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320567 cd15451 7tmC_mGluR7 9 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320568 cd15452 7tmC_mGluR4 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,162,167,170,171,174,208,211,212,215,219,232,233,236,239,243 5 -320568 cd15452 7tmC_mGluR4 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320568 cd15452 7tmC_mGluR4 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320568 cd15452 7tmC_mGluR4 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320568 cd15452 7tmC_mGluR4 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320568 cd15452 7tmC_mGluR4 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320568 cd15452 7tmC_mGluR4 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320568 cd15452 7tmC_mGluR4 8 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320568 cd15452 7tmC_mGluR4 9 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320569 cd15453 7tmC_mGluR6 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320569 cd15453 7tmC_mGluR6 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320569 cd15453 7tmC_mGluR6 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320569 cd15453 7tmC_mGluR6 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320569 cd15453 7tmC_mGluR6 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320569 cd15453 7tmC_mGluR6 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320569 cd15453 7tmC_mGluR6 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320569 cd15453 7tmC_mGluR6 8 putative ligand binding site 0 0 1 1 57,69,70,73,74,77,162,167,170,171,174,208,211,212,215,219,232,233,236,239,243 5 -320569 cd15453 7tmC_mGluR6 9 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320570 cd15454 7tmC_mGluR8 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,162,167,170,171,174,208,211,212,215,219,232,233,236,239,243 5 -320570 cd15454 7tmC_mGluR8 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320570 cd15454 7tmC_mGluR8 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320570 cd15454 7tmC_mGluR8 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320570 cd15454 7tmC_mGluR8 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320570 cd15454 7tmC_mGluR8 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320570 cd15454 7tmC_mGluR8 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320570 cd15454 7tmC_mGluR8 8 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320570 cd15454 7tmC_mGluR8 9 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -271319 cd15457 NADAR 1 putative active site 0 0 1 1 15,33,40,113 1 -271230 cd15464 HN_like 1 putative active site RERRYE 0 0 0 16,233,250,326,354,373 1 -271230 cd15464 HN_like 2 Sialidase propeller 1 0 0 0 1 15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -271230 cd15464 HN_like 3 Sialidase propeller 2 0 0 0 1 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,121,122,123,124,125,126,127,128 7 -271230 cd15464 HN_like 4 Sialidase propeller 3 0 0 0 1 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -271230 cd15464 HN_like 5 Sialidase propeller 4 0 0 0 1 230,231,232,233,234,235,236,237,238,239,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,268,269,270,271,272,273,274,275,276,277 7 -271230 cd15464 HN_like 6 Sialidase propeller 5 0 0 0 1 300,301,302,303,304,305,306,307,308,309,310,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,338,339,340,341,342,343,344,345 7 -271230 cd15464 HN_like 7 Sialidase propeller 6 0 0 0 1 352,353,354,355,356,357,358,359,360,361,365,366,367,368,369,370,371,372,373,374,375,376,377,381,382,383,384,385,386,387,388,389,390 7 -275386 cd15465 bS6_mito 1 rRNA binding site 0 0 1 1 1,47,51,70,73,74,81,88,91,92,93 3 -275386 cd15465 bS6_mito 2 S18 interface 0 0 1 1 2,4,43,45,46,47,61,63,88,92 2 -271231 cd15467 MV-h 1 receptor binding site 0 1 1 0 4,5,6,7,8,9,277,278,296,313,316,318,354,356,360,363 2 -271231 cd15467 MV-h 2 dimer interface 0 1 1 0 14,16,17,18,21,22,25,27,49,52,74,76,77,78,84,85,88,90 2 -271231 cd15467 MV-h 3 Sialidase propeller 1 0 0 0 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -271231 cd15467 MV-h 4 Sialidase propeller 2 0 0 0 1 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,142,143,144,145,146,147,148,149 7 -271231 cd15467 MV-h 5 Sialidase propeller 3 0 0 0 1 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -271231 cd15467 MV-h 6 Sialidase propeller 4 0 0 0 1 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -271231 cd15467 MV-h 7 Sialidase propeller 5 0 0 0 1 322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366 7 -271231 cd15467 MV-h 8 Sialidase propeller 6 0 0 0 1 376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414 7 -271232 cd15468 HeV-G 1 receptor binding site 0 1 1 0 51,52,53,54,117,199,200,212,213,269,299,300,301,302,303,312,315,316,317,318,341,342,343,344,366,368,369,370,390,391,392,394,399 2 -271232 cd15468 HeV-G 2 hydrophobic pocket 0 1 1 0 370,390,392,399 2 -271232 cd15468 HeV-G 3 dimer interface 0 1 1 0 14,16,17,18,19,20,21,23,25,70,78,79,80,396,397,398,400 2 -271232 cd15468 HeV-G 4 Sialidase propeller 1 0 0 0 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -271232 cd15468 HeV-G 5 Sialidase propeller 2 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,140,141,142,143,144,145,146,147,148,149 7 -271232 cd15468 HeV-G 6 Sialidase propeller 3 0 0 0 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -271232 cd15468 HeV-G 7 Sialidase propeller 4 0 0 0 1 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -271232 cd15468 HeV-G 8 Sialidase propeller 5 0 0 0 1 317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362 7 -271232 cd15468 HeV-G 9 Sialidase propeller 6 0 0 0 1 369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407 7 -271233 cd15469 HN 1 active site RDERRYE 1 1 0 14,38,240,255,341,369,390 1 -271233 cd15469 HN 2 receptor binding site 0 1 1 0 14,98,139,157,202,203,240,255,257,309,341,369 5 -271233 cd15469 HN 3 dimer interface 0 1 1 0 4,5,6,7,8,9,33,45,54,56,68,70,393,394,395,396,400,402,403,404 2 -271233 cd15469 HN 4 Sialidase propeller 1 0 0 0 1 13,14,15,16,17,18,19,20,21,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 7 -271233 cd15469 HN 5 Sialidase propeller 2 0 0 0 1 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126 7 -271233 cd15469 HN 6 Sialidase propeller 3 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,172,173,174,175,176,177,178,186,187,188,189,190,191,192,193,194,195,196,197,198,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,224,225,226,227,228,229,230,231,232,233,234,235 7 -271233 cd15469 HN 7 Sialidase propeller 4 0 0 0 1 237,238,239,240,241,242,243,244,245,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,280,281,282,283,284,285,286,287,288 7 -271233 cd15469 HN 8 Sialidase propeller 5 0 0 0 1 311,312,313,314,315,316,317,318,319,320,321,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,353,354,355,356,357,358,359,360 7 -271233 cd15469 HN 9 Sialidase propeller 6 0 0 0 1 367,368,369,370,371,372,373,374,375,376,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407 7 -271261 cd15477 Myo5b_CBD 1 Rab11 interface 0 1 1 0 21,23,24,81,195,200,201,232,236,239,240,243,244,247,250,253,271,274,275,289,312,351,352,353,354,355 2 -271262 cd15478 Myo5a_CBD 1 melanophilin interface 0 1 1 0 45,48,49,52,53,56,57,60,91,109,110,111,112,113,114,116,117,120 2 -271262 cd15478 Myo5a_CBD 2 RILPL2 interface 0 1 1 0 17,18,19,22,23,24,25,195,196,354,359,361,363,364,365 2 -271263 cd15479 fMyo4p_CBD 1 She3P interaction interface 0 1 1 0 212,241,248,251,252,253,259,262,263,265,266,268 2 -271252 cd15481 SRP68-RBD 1 RNA binding site 0 1 1 0 11,20,21,23,25,27,28,29,30,31,32,34,35,36,63,74,78,95,96,98,99,102,103,106,109 3 -271234 cd15482 Sialidase_non-viral 1 catalytic site 0 1 1 1 14,39,200,216,277,306,322 1 -271234 cd15482 Sialidase_non-viral 2 Sialidase propeller 1 0 0 0 1 13,14,15,16,17,18,19,20,21,26,27,28,29,30,31,32,33,36,37,38,39,40,43,44,45,46,47,48,49,50,51,57,58,59,61,62,63,64,65 7 -271234 cd15482 Sialidase_non-viral 3 Sialidase propeller 2 0 0 0 1 75,76,77,78,79,80,81,82,83,84,87,88,89,90,91,92,93,94,95,96,97,110,111,112,113,114,115,116,117,125,126,127,128,129,130 7 -271234 cd15482 Sialidase_non-viral 4 Sialidase propeller 3 0 0 0 1 141,142,143,144,145,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,173,174,175,176,177,178,179,180,183,184,185,186,187,188,189,190 7 -271234 cd15482 Sialidase_non-viral 5 Sialidase propeller 4 0 0 0 1 199,200,201,202,203,204,205,206,209,210,211,212,213,214,215,216,217,223,224,225,226,227,228,229,230,231,234,235,236,237,238,239 7 -271234 cd15482 Sialidase_non-viral 6 Sialidase propeller 5 0 0 0 1 249,250,251,252,253,254,255,256,257,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,282,283,284,285,286,291,292,293,294,295,296,297,298 7 -271234 cd15482 Sialidase_non-viral 7 Sialidase propeller 6 0 0 0 1 305,306,307,308,309,310,311,312,316,317,318,319,320,321,322,323,331,332,333,334,335,336,337,338 7 -271235 cd15483 Influenza_NA 1 tetramer interface 0 1 1 1 15,16,19,21,24,25,27,28,29,30,43,53,54,56,58,59,60,61,70,71,72,80,81,82,83,85,86,87,89,91,96,113,114,115,118,120,122,124,128,129,130,132,134,329,338,368,370,372,373,374,375,376,377,378,379,380,381,382,385 2 -271235 cd15483 Influenza_NA 2 catalytic site RDERRYE 1 1 1 35,68,195,210,289,323,344 1 -271235 cd15483 Influenza_NA 3 Sialidase propeller 1 0 0 0 1 34,35,36,37,38,39,40,41,42,46,47,48,49,50,51,52,53,65,66,67,68,69,72,73,74,75,76,77,78,79,80,85,86,87,89,90,91,92,93 7 -271235 cd15483 Influenza_NA 4 Sialidase propeller 2 0 0 0 1 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -271235 cd15483 Influenza_NA 5 Sialidase propeller 3 0 0 0 1 140,141,142,143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,170,171,172,173,174,175,176,177,179,180,181,182,183,184,185,186 7 -271235 cd15483 Influenza_NA 6 Sialidase propeller 4 0 0 0 1 194,195,196,197,198,199,200,201,203,204,205,206,207,208,209,210,211,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233 7 -271235 cd15483 Influenza_NA 7 Sialidase propeller 5 0 0 0 1 266,267,268,269,270,271,272,273,274,277,278,279,280,281,282,283,284,285,288,289,290,291,292,293,294,295,296,297,298,307,308,309,310,311,312,313,314 7 -271235 cd15483 Influenza_NA 8 Sialidase propeller 6 0 0 0 1 322,323,324,325,326,327,328,329,338,339,340,341,342,343,344,345,361,362,363,364,365,366,367,368 7 -271251 cd15484 uS7_plant 1 rRNA binding site 0 0 1 1 8,9,10,14,15,16,17,18,21,22,59,64,68,77,78,81,85,92,104,105,108 3 -271251 cd15484 uS7_plant 2 S11 interface 0 0 1 1 138 2 -271251 cd15484 uS7_plant 3 S9 interface 0 0 1 1 17,20,21,24 2 -271243 cd15485 ZIP_Cat8 1 dimer interface 0 0 1 0 1,2,4,5,8,9,11,12,15,16,18,19,22,23 2 -271243 cd15485 ZIP_Cat8 2 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -271244 cd15486 ZIP_Sip4 1 dimer interface 0 0 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271244 cd15486 ZIP_Sip4 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -275387 cd15487 bS6_chloro_cyano 1 rRNA binding site 0 1 1 1 4,50,52,54,87,89,90,91,92 3 -275387 cd15487 bS6_chloro_cyano 2 S18 interface 0 1 1 1 5,7,43,47,48,49,60,61,62,87,91 2 -350626 cd15488 Tm-1-like 1 ATP binding site 0 1 1 0 6,8,9,10,34,35,36,67,70,99,101,102 5 -276966 cd15489 PHD_SF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,44,47 4 -276966 cd15489 PHD_SF 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,42 2 -294011 cd15490 eIF2_gamma_III 1 tRNA binding site 0 1 1 0 40,41,42,70,72,76,79,83 3 -276967 cd15492 PHD_BRPF_JADE_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,18,21,26,29,42,45 4 -276967 cd15492 PHD_BRPF_JADE_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,40 2 -276968 cd15493 PHD_JMJD2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,12,15,20,23,38,41 4 -276968 cd15493 PHD_JMJD2 2 putative histone H3 binding site 0 0 1 1 0,8,9,10,11,12,16,36 2 -276969 cd15494 PHD_ATX1_2_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,43,46 4 -276969 cd15494 PHD_ATX1_2_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,41 2 -276970 cd15495 PHD_ATX3_4_5_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,43,46 4 -276970 cd15495 PHD_ATX3_4_5_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,41 2 -276971 cd15496 PHD_PHF7_G2E3_like 1 Zn binding site CCCCHCCC 1 1 1 1,6,26,29,35,38,50,53 4 -276971 cd15496 PHD_PHF7_G2E3_like 2 putative histone H3 binding site 0 0 1 1 0,22,23,24,25,26,30,48 2 -276972 cd15497 PHD1_Snt2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,44,47 4 -276972 cd15497 PHD1_Snt2p_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,42 2 -276973 cd15498 PHD2_Snt2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,51,54 4 -276973 cd15498 PHD2_Snt2p_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,49 2 -276974 cd15499 PHD1_MTF2_PHF19_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,18,21,26,29,47,50 4 -276974 cd15499 PHD1_MTF2_PHF19_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,45 2 -276975 cd15500 PHD1_PHF1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,47,50 4 -276975 cd15500 PHD1_PHF1 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,45 2 -276976 cd15501 PHD_Int12 1 Zn binding site CCCCHCCC 1 1 1 1,4,18,21,26,29,48,51 4 -276976 cd15501 PHD_Int12 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,46 2 -276977 cd15502 PHD_Phf1p_Phf2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,48,51 4 -276977 cd15502 PHD_Phf1p_Phf2p_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,46 2 -276978 cd15503 PHD2_MTF2_PHF19_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,16,19,24,27,46,49 4 -276978 cd15503 PHD2_MTF2_PHF19_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -276979 cd15504 PHD_PRHA_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,22,27,30,49,52 4 -276979 cd15504 PHD_PRHA_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,23,47 2 -276980 cd15505 PHD_ING 1 Zn binding site CCCCHCCC 1 1 1 1,3,14,19,25,28,41,44 4 -276980 cd15505 PHD_ING 2 H3K4me3 binding site 0 1 1 1 0,10,11,12,13,14,15,22,23,26,34,35,37,39 2 -276981 cd15506 PHD1_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,15,18,23,26,43,46 4 -276981 cd15506 PHD1_KMT2A_like 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,41 2 -276982 cd15507 PHD2_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,46,49 4 -276982 cd15507 PHD2_KMT2A_like 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,44 2 -276983 cd15508 PHD3_KMT2A_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,20,23,28,31,53,56 4 -276983 cd15508 PHD3_KMT2A_like 2 putative histone H3 binding site 0 0 1 1 0,16,17,18,19,20,24,51 2 -276984 cd15509 PHD1_KMT2C_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,44,47 4 -276984 cd15509 PHD1_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,42 2 -276985 cd15510 PHD2_KMT2C_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -276985 cd15510 PHD2_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -276986 cd15511 PHD3_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,19,22,27,30,48,51 4 -276986 cd15511 PHD3_KMT2C 2 putative histone H3 binding site 0 0 1 1 0,15,16,17,18,19,23,46 2 -276987 cd15512 PHD4_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,45,48 4 -276987 cd15512 PHD4_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,43 2 -276988 cd15513 PHD5_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,42,45 4 -276988 cd15513 PHD5_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -276989 cd15514 PHD6_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,47,50 4 -276989 cd15514 PHD6_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,45 2 -276990 cd15515 PHD1_KDM5A_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -276990 cd15515 PHD1_KDM5A_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -276991 cd15516 PHD2_KDM5A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,14,17,22,25,49,52 4 -276991 cd15516 PHD2_KDM5A_like 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,47 2 -276992 cd15517 PHD_TCF19_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,18,21,26,29,45,48 4 -276992 cd15517 PHD_TCF19_like 2 histone H3 binding site 0 1 1 1 14,15,16,17,18,19,22,24,27 2 -276993 cd15518 PHD_Ecm5p_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,14,17,22,25,41,44 4 -276993 cd15518 PHD_Ecm5p_Lid2p_like 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,39 2 -276994 cd15519 PHD1_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,42,45 4 -276994 cd15519 PHD1_Lid2p_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -276995 cd15520 PHD3_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,16,19,24,27,43,46 4 -276995 cd15520 PHD3_Lid2p_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,41 2 -276996 cd15521 PHD_VIN3_plant 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,19,30,35,38,60,63 4 -276996 cd15521 PHD_VIN3_plant 2 putative histone H3 binding site 0 0 1 1 0,15,16,17,18,19,31,58 2 -276997 cd15522 PHD_TAF3 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -276997 cd15522 PHD_TAF3 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -276998 cd15523 PHD_PHF21A 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -276998 cd15523 PHD_PHF21A 2 histone H3 binding site 0 1 1 0 0,7,8,9,10,11,12,32,33,34,35,37 2 -276999 cd15524 PHD_PHF21B 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,39,42 4 -276999 cd15524 PHD_PHF21B 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,37 2 -277000 cd15525 PHD_UHRF1_2 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,43,46 4 -277000 cd15525 PHD_UHRF1_2 2 histone H3 binding site 0 1 1 0 0,7,13,14,15,16,17,19,20,36,37,39,40,41 2 -277001 cd15526 PHD1_MOZ_d4 1 Zn binding site CCCCHCCC 1 1 1 1,4,23,26,31,34,52,55 4 -277001 cd15526 PHD1_MOZ_d4 2 histone H3 binding site 0 1 1 0 0,2,3,5,23,28,29,30,35,36,37,41,50,52,53,54 2 -277001 cd15526 PHD1_MOZ_d4 3 PHD2 interface 0 1 1 1 37,41,44,45,48,50,51,53,55 2 -277002 cd15527 PHD2_KAT6A_6B 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277002 cd15527 PHD2_KAT6A_6B 2 histone H3 binding site 0 1 1 0 11,12,13,14,15,16,17,20,35,36,37,38 2 -277002 cd15527 PHD2_KAT6A_6B 3 PHD1 interface 0 1 1 1 0,5,17,18,19,20,21 2 -277003 cd15528 PHD1_PHF10 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,21,24,29,32,50,53 4 -277003 cd15528 PHD1_PHF10 2 putative histone H3 binding site 0 0 1 1 0,17,18,19,20,21,25,48 2 -277004 cd15529 PHD2_PHF10 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,40,43 4 -277004 cd15529 PHD2_PHF10 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,38 2 -277005 cd15530 PHD2_d4 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277005 cd15530 PHD2_d4 2 histone H3 binding site 0 1 1 0 7,10,11,12,13,14,15,16,17,25,35,36,37,38,39,40 2 -277005 cd15530 PHD2_d4 3 PHD1 interface 0 1 1 1 0,15,16,17,18,19,20,21 2 -277006 cd15531 PHD1_CHD_II 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277006 cd15531 PHD1_CHD_II 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,37 2 -277007 cd15532 PHD2_CHD_II 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277007 cd15532 PHD2_CHD_II 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,37 2 -277008 cd15533 PHD1_PHF12 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,41,44 4 -277008 cd15533 PHD1_PHF12 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,39 2 -277009 cd15534 PHD2_PHF12_Rco1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,43,46 4 -277009 cd15534 PHD2_PHF12_Rco1 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,41 2 -277010 cd15535 PHD1_Rco1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,41,44 4 -277010 cd15535 PHD1_Rco1 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,39 2 -277011 cd15536 PHD_PHRF1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,42,45 4 -277011 cd15536 PHD_PHRF1 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277012 cd15537 PHD_BS69 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,39,42 4 -277012 cd15537 PHD_BS69 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,37 2 -277013 cd15538 PHD_PRKCBP1 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,37,40 4 -277013 cd15538 PHD_PRKCBP1 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,35 2 -277014 cd15539 PHD1_AIRE 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277014 cd15539 PHD1_AIRE 2 histone H3 binding site 0 1 1 0 0,6,7,8,9,10,11,12,14,22,32,33,34,35,36,37 2 -277015 cd15540 PHD2_AIRE 1 Zn binding site CCCCHCCC 1 1 1 1,4,14,17,22,25,38,41 4 -277015 cd15540 PHD2_AIRE 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,36 2 -277016 cd15541 PHD_TIF1_like 1 Zn binding site CCCCH[CHX]CC 1 1 1 1,4,13,16,21,24,39,42 4 -277016 cd15541 PHD_TIF1_like 2 histone H3 binding site 0 1 1 0 0,5,6,10,11,12,13,14,21 2 -277017 cd15542 PHD_UBR7 1 Zn binding site CCCCH[CH]CC 0 1 1 1,3,21,24,29,32,50,53 4 -277017 cd15542 PHD_UBR7 2 putative histone H3 binding site 0 0 1 1 0,17,18,19,20,21,25,48 2 -277018 cd15543 PHD_RSF1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,42,45 4 -277018 cd15543 PHD_RSF1 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277019 cd15544 PHD_BAZ1A_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277019 cd15544 PHD_BAZ1A_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277020 cd15545 PHD_BAZ2A_like 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277020 cd15545 PHD_BAZ2A_like 2 H3 histone binding site 0 1 0 0 7,13,14,15,16,17,35,36,37,38 2 -277021 cd15546 PHD_PHF13_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,15,18,23,26,40,43 4 -277021 cd15546 PHD_PHF13_like 2 histone H3 binding site 0 1 0 0 7,9,10,11,12,13,14,21,31,34,35,36 2 -277022 cd15547 PHD_SHPRH 1 Zn binding site CCCCHCCC 1 1 1 1,3,17,20,25,28,43,46 4 -277022 cd15547 PHD_SHPRH 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,41 2 -277023 cd15548 PHD_ASH1L 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 2,4,16,19,24,27,39,42 4 -277023 cd15548 PHD_ASH1L 2 putative histone H3 binding site 0 0 1 1 1,12,13,14,15,16,20,37 2 -277024 cd15549 PHD_PHF20_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,41,44 4 -277024 cd15549 PHD_PHF20_like 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,39 2 -277025 cd15550 PHD_MLL5 1 Zn binding site CCCCHCCC 1 1 1 1,3,15,18,23,26,40,43 4 -277025 cd15550 PHD_MLL5 2 histone H3 binding site 0 1 1 0 8,10,11,12,13,14,16,21,34,35,36,37,38 2 -277026 cd15551 PHD_PYGO 1 Zn binding site CCCCHCCC 1 1 1 1,4,17,21,26,29,50,53 4 -277026 cd15551 PHD_PYGO 2 H3K4me binding site 0 1 1 1 12,14,15,16,18,24,37,40,41,46 2 -277026 cd15551 PHD_PYGO 3 BCL9 HD1 interface 0 1 1 1 30,31,32,39,40,46,47,48,49 2 -277027 cd15552 PHD_PHF3_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,15,18,23,26,46,49 4 -277027 cd15552 PHD_PHF3_like 2 histone H3 binding site 0 1 1 0 0,7,11,12,13,14,15,16,19,21,42,43,44 2 -277028 cd15553 PHD_Cfp1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,42,45 4 -277028 cd15553 PHD_Cfp1 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,40 2 -277029 cd15554 PHD_PHF2_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,16,19,24,27,43,46 4 -277029 cd15554 PHD_PHF2_like 2 histone H3 binding site 0 1 1 0 0,7,12,13,14,15,22,38,39 2 -277030 cd15555 PHD_KDM2A_2B 1 Zn binding site CCCCHCCC 1 1 1 1,4,20,23,28,31,51,54 4 -277030 cd15555 PHD_KDM2A_2B 2 putative histone H3 binding site 0 0 1 1 0,16,17,18,19,20,24,49 2 -277031 cd15556 PHD_MMD1_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,16,19,24,27,42,45 4 -277031 cd15556 PHD_MMD1_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277032 cd15557 PHD_CBP_p300 1 Zn binding site CCCCHCCC 1 1 1 1,2,8,11,16,19,33,36 4 -277032 cd15557 PHD_CBP_p300 2 putative histone H3 binding site 0 0 1 1 0,5,6,7,8,12,31 2 -277033 cd15558 PHD_Hop1p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,43,46 4 -277033 cd15558 PHD_Hop1p_like 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,41 2 -277034 cd15559 PHD1_BPTF 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,39,42 4 -277034 cd15559 PHD1_BPTF 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,37 2 -277035 cd15560 PHD2_3_BPTF 1 Zn binding site CCCCHCCC 1 1 1 1,3,16,19,24,27,43,46 4 -277035 cd15560 PHD2_3_BPTF 2 histone H3 binding site 0 1 1 0 0,7,9,12,13,14,15,16,17,20,22,32,35,38,39 2 -277036 cd15561 PHD1_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,52,55 4 -277036 cd15561 PHD1_PHF14 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,50 2 -277037 cd15562 PHD2_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,46,49 4 -277037 cd15562 PHD2_PHF14 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -277038 cd15563 PHD3_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,16,19,24,27,45,48 4 -277038 cd15563 PHD3_PHF14 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,43 2 -277039 cd15564 PHD1_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,17,22,25,38,41 4 -277039 cd15564 PHD1_NSD 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,18,36 2 -277040 cd15565 PHD2_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,22,27,30,47,50 4 -277040 cd15565 PHD2_NSD 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,23,45 2 -277041 cd15566 PHD3_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,18,21,26,29,44,47 4 -277041 cd15566 PHD3_NSD 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,42 2 -277042 cd15567 PHD4_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,37,40 4 -277042 cd15567 PHD4_NSD 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,35 2 -277043 cd15568 PHD5_NSD 1 Zn binding site CCCCHCCH 1 1 1 1,4,13,18,23,26,39,42 4 -277043 cd15568 PHD5_NSD 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,19,37 2 -277044 cd15569 PHD_RAG2 1 Zn binding site CCCHHCCH 1 1 1 4,8,31,37,40,43,63,66 4 -277044 cd15569 PHD_RAG2 2 putative histone H3 binding site 0 0 1 1 3,27,28,29,30,31,38,61 2 -277045 cd15570 PHD_Bye1p_SIZ1_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,15,18,23,26,46,49 4 -277045 cd15570 PHD_Bye1p_SIZ1_like 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,44 2 -277046 cd15571 ePHD 1 Zn binding site CCHCCCCCHCCH 1 1 1 0,3,26,29,61,64,74,79,84,87,108,111 4 -277046 cd15571 ePHD 2 putative histone H3 binding site 0 0 1 1 60,70,71,72,73,74,80,106 2 -277047 cd15572 PHD_BRPF 1 Zn binding site CCCCHCCC 1 1 1 3,6,20,23,28,31,44,47 4 -277047 cd15572 PHD_BRPF 2 putative histone H3 binding site 0 0 1 1 2,16,17,18,19,20,24,42 2 -277048 cd15573 PHD_JADE 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,21,26,29,42,45 4 -277048 cd15573 PHD_JADE 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,40 2 -277049 cd15574 PHD_AF10_AF17 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,23,28,31,44,47 4 -277049 cd15574 PHD_AF10_AF17 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,24,42 2 -277050 cd15575 PHD_JMJD2A 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,71,74,79,82,96,99 4 -277050 cd15575 PHD_JMJD2A 2 putative histone H3 binding site 0 0 1 1 0,67,68,69,70,71,75,94 2 -277051 cd15576 PHD_JMJD2B 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,70,73,78,81,95,98 4 -277051 cd15576 PHD_JMJD2B 2 putative histone H3 binding site 0 0 1 1 0,66,67,68,69,70,74,93 2 -277052 cd15577 PHD_JMJD2C 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,75,78,83,86,100,103 4 -277052 cd15577 PHD_JMJD2C 2 putative histone H3 binding site 0 0 1 1 0,71,72,73,74,75,79,98 2 -277053 cd15578 PHD1_MTF2 1 Zn binding site CCCCHCCC 1 1 1 1,4,18,21,26,29,47,50 4 -277053 cd15578 PHD1_MTF2 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,45 2 -277054 cd15579 PHD1_PHF19 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,21,26,29,47,50 4 -277054 cd15579 PHD1_PHF19 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,45 2 -277055 cd15580 PHD2_MTF2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,16,19,24,27,46,49 4 -277055 cd15580 PHD2_MTF2 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -277056 cd15581 PHD2_PHF19 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,16,19,24,27,46,49 4 -277056 cd15581 PHD2_PHF19 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -277057 cd15582 PHD2_PHF1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,16,19,24,27,46,49 4 -277057 cd15582 PHD2_PHF1 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -277058 cd15583 PHD_ash2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -277058 cd15583 PHD_ash2p_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,44 2 -277059 cd15584 PHD_ING1_2 1 Zn binding site CCCCHCCC 1 1 1 1,3,14,19,25,28,41,44 4 -277059 cd15584 PHD_ING1_2 2 H3K4me3 binding site 0 1 1 1 0,7,8,9,10,11,12,13,14,15,22,23,26,34,35,37,39 2 -277060 cd15585 PHD_ING3 1 Zn binding site CCCCHCCC 1 1 1 1,3,14,19,25,28,41,44 4 -277060 cd15585 PHD_ING3 2 H3K4me3 binding site 0 0 1 1 0,10,11,12,13,14,15,22,23,26,34,35,37,39 2 -277061 cd15586 PHD_ING4_5 1 Zn binding site CCCCHCCC 1 1 1 1,3,14,19,25,28,41,44 4 -277061 cd15586 PHD_ING4_5 2 H3K4me3 binding site 0 1 1 1 0,7,8,9,10,11,12,13,14,15,23,26,34,35,37,39 2 -277062 cd15587 PHD_Yng1p_like 1 Zn binding site CCCCHCCC 1 1 1 1,3,14,19,25,28,41,44 4 -277062 cd15587 PHD_Yng1p_like 2 H3K4me3 binding site 0 0 1 1 0,10,11,12,13,14,15,22,23,26,34,35,37,39 2 -277063 cd15588 PHD1_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,15,18,23,26,43,46 4 -277063 cd15588 PHD1_KMT2A 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,41 2 -277064 cd15589 PHD1_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,15,18,23,26,43,46 4 -277064 cd15589 PHD1_KMT2B 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,41 2 -277065 cd15590 PHD2_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,46,49 4 -277065 cd15590 PHD2_KMT2A 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,44 2 -277066 cd15591 PHD2_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,46,49 4 -277066 cd15591 PHD2_KMT2B 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,44 2 -277067 cd15592 PHD3_KMT2A 1 Zn binding site CCCCHCCC 1 1 1 1,4,20,23,28,31,53,56 4 -277067 cd15592 PHD3_KMT2A 2 putative histone H3 binding site 0 0 1 1 0,16,17,18,19,20,24,51 2 -277068 cd15593 PHD3_KMT2B 1 Zn binding site CCCCHCCC 0 1 1 1,4,20,23,28,31,53,56 4 -277068 cd15593 PHD3_KMT2B 2 putative histone H3 binding site 0 0 1 1 0,16,17,18,19,20,24,51 2 -277069 cd15594 PHD2_KMT2C 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277069 cd15594 PHD2_KMT2C 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277070 cd15595 PHD2_KMT2D 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,42,45 4 -277070 cd15595 PHD2_KMT2D 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277071 cd15596 PHD4_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 8,11,25,28,33,36,52,55 4 -277071 cd15596 PHD4_KMT2C 2 putative histone H3 binding site 0 0 1 1 7,21,22,23,24,25,29,50 2 -277072 cd15597 PHD3_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 2,5,19,22,27,30,46,49 4 -277072 cd15597 PHD3_KMT2D 2 putative histone H3 binding site 0 0 1 1 1,15,16,17,18,19,23,44 2 -277073 cd15600 PHD6_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,47,50 4 -277073 cd15600 PHD6_KMT2C 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,45 2 -277074 cd15601 PHD5_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,17,20,25,28,47,50 4 -277074 cd15601 PHD5_KMT2D 2 putative histone H3 binding site 0 0 1 1 0,13,14,15,16,17,21,45 2 -277075 cd15602 PHD1_KDM5A 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,42,45 4 -277075 cd15602 PHD1_KDM5A 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277076 cd15603 PHD1_KDM5B 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,42,45 4 -277076 cd15603 PHD1_KDM5B 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277077 cd15604 PHD1_KDM5C_5D 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277077 cd15604 PHD1_KDM5C_5D 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277078 cd15605 PHD1_Lid_like 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,42,45 4 -277078 cd15605 PHD1_Lid_like 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277079 cd15606 PHD2_KDM5A 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,14,17,22,25,52,55 4 -277079 cd15606 PHD2_KDM5A 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,50 2 -277080 cd15607 PHD2_KDM5B 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,14,17,22,25,40,43 4 -277080 cd15607 PHD2_KDM5B 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,38 2 -277081 cd15608 PHD2_KDM5C_5D 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,14,17,22,25,54,57 4 -277081 cd15608 PHD2_KDM5C_5D 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,18,52 2 -277082 cd15609 PHD_TCF19 1 Zn binding site CCCCHCCC 0 1 1 1,6,19,22,27,30,47,49 4 -277082 cd15609 PHD_TCF19 2 histone H3 binding site 0 0 1 1 15,16,17,18,19,20,23,25,28 2 -277083 cd15610 PHD3_KDM5A_like 1 Zn binding site CCCCHCCC 1 1 1 1,6,19,22,27,30,46,49 4 -277083 cd15610 PHD3_KDM5A_like 2 H3K4me3 binding site 0 0 1 1 15,16,17,18,19,20,23,25,28 2 -277084 cd15612 PHD_OBE1_like 1 Zn binding site CCCCHCCC 0 1 1 1,4,19,22,27,30,56,59 4 -277084 cd15612 PHD_OBE1_like 2 putative histone H3 binding site 0 0 1 1 15,16,17,18,19,20,23,25,28 2 -277085 cd15613 PHD_AL_plant 1 Zn binding site CCCCHCCC 1 1 1 1,4,17,20,25,28,44,47 4 -277085 cd15613 PHD_AL_plant 2 histone H3 binding site 0 0 1 1 13,14,15,16,17,18,21,23,26 2 -277086 cd15614 PHD_HAC_like 1 Zn binding site CCCCHCCC 0 1 1 1,4,41,44,49,52,69,72 4 -277086 cd15614 PHD_HAC_like 2 putative histone H3 binding site 0 0 1 1 37,38,39,40,41,42,45,47,50 2 -277087 cd15615 PHD_ARID4_like 1 Zn binding site CCCCHCCC 0 1 1 1,4,21,24,29,32,53,56 4 -277087 cd15615 PHD_ARID4_like 2 putative histone H3 binding site 0 0 1 1 17,18,19,20,21,22,25,27,30 2 -277088 cd15616 PHD_UHRF1 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,43,46 4 -277088 cd15616 PHD_UHRF1 2 histone H3 binding site 0 1 1 0 0,7,10,11,13,14,15,16,17,19,20,36,37,38,39,40,41 2 -277089 cd15617 PHD_UHRF2 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,43,46 4 -277089 cd15617 PHD_UHRF2 2 histone H3 binding site 0 0 1 1 0,7,13,14,15,16,17,19,20,36,37,39,40,41 2 -277090 cd15618 PHD1_MOZ_MORF 1 Zn binding site CCCCHCCC 1 1 1 4,7,25,28,33,36,54,57 4 -277090 cd15618 PHD1_MOZ_MORF 2 histone H3 binding site 0 0 1 1 3,5,6,8,25,30,31,32,37,38,39,52,54,55,56 2 -277090 cd15618 PHD1_MOZ_MORF 3 PHD2 interface 0 1 1 1 39,43,46,47,50,52,53,55,57 2 -277091 cd15619 PHD1_d4 1 Zn binding site CCCCHCCC 1 1 1 1,4,23,26,31,34,52,55 4 -277091 cd15619 PHD1_d4 2 histone H3 binding site 0 1 1 0 0,2,3,5,23,28,29,30,35,36,37,41,50,52,53,54 2 -277091 cd15619 PHD1_d4 3 PHD2 interface 0 1 1 1 37,38,40,41,44,45,48,50,51,53,55 2 -277092 cd15622 PHD_TIF1alpha 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277092 cd15622 PHD_TIF1alpha 2 histone H3 binding site 0 1 1 0 0,5,6,7,8,9,10,11,12,13,14,21,32,33,34,35 2 -277093 cd15623 PHD_TIF1beta 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277093 cd15623 PHD_TIF1beta 2 histone H3 binding site 0 0 1 1 0,5,6,9,10,11,12,13,14,21,34,35 2 -277094 cd15624 PHD_TIF1gamma 1 Zn binding site CCCCHCCC 1 1 1 1,4,13,16,21,24,39,42 4 -277094 cd15624 PHD_TIF1gamma 2 histone H3 binding site 0 0 1 1 0,5,6,9,10,11,12,13,14,21,34,35 2 -277095 cd15625 PHD_TIF1delta 1 Zn binding site CCCCH[HC]CC 0 1 1 4,7,16,19,24,28,42,45 4 -277095 cd15625 PHD_TIF1delta 2 histone H3 binding site 0 0 1 1 0,1,2,3,8,9,10,11,12,13,14,15,16,17,24,35,36,37,38 2 -277096 cd15626 PHD_SP110_140 1 Zn binding site CCCCHHCC 1 1 1 1,4,13,16,21,25,38,41 4 -277096 cd15626 PHD_SP110_140 2 histone H3 binding site 0 0 1 1 0,5,6,9,10,11,12,13,14,21 2 -277097 cd15627 PHD_BAZ1A 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,42,45 4 -277097 cd15627 PHD_BAZ1A 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277098 cd15628 PHD_BAZ1B 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277098 cd15628 PHD_BAZ1B 2 putative histone H3 binding site 0 0 1 1 0,12,13,14,15,16,20,40 2 -277099 cd15629 PHD_BAZ2A 1 Zn binding site CCCCHCCC 1 1 1 1,4,16,19,24,27,42,45 4 -277099 cd15629 PHD_BAZ2A 2 H3 histone binding site 0 1 0 0 7,10,11,13,14,15,16,17,35,36,37,38 2 -277100 cd15630 PHD_BAZ2B 1 Zn binding site CCCCHCCC 1 1 1 2,5,17,20,25,28,43,46 4 -277100 cd15630 PHD_BAZ2B 2 H3 histone binding site 0 0 0 1 8,14,15,16,17,18,36,37,38,39 2 -277101 cd15631 PHD_PHF23 1 Zn binding site CCCCHCCC 0 1 1 1,3,15,18,23,26,40,43 4 -277101 cd15631 PHD_PHF23 2 histone H3 binding site 0 0 0 1 7,9,10,11,12,13,14,21,31,34,35,36 2 -277102 cd15632 PHD_PHF13 1 Zn binding site CCCCHCCC 1 1 1 3,5,17,20,25,28,42,45 4 -277102 cd15632 PHD_PHF13 2 histone H3 binding site 0 1 0 0 9,11,12,13,14,15,16,23,33,36,37,38 2 -277103 cd15633 PHD_PHF20L1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,40,43 4 -277103 cd15633 PHD_PHF20L1 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,38 2 -277104 cd15634 PHD_PHF20 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,40,43 4 -277104 cd15634 PHD_PHF20 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,38 2 -277105 cd15635 PHD_PYGO1 1 Zn binding site CCCCHCCC 1 1 1 2,5,18,22,27,30,51,54 4 -277105 cd15635 PHD_PYGO1 2 H3K4me binding site 0 1 1 1 0,9,10,11,13,15,16,17,19,25,38,41,42,44,47 2 -277105 cd15635 PHD_PYGO1 3 BCL9 HD1 interface 0 1 1 1 31,32,33,34,37,40,41,44,46,47,48,49,50,55 2 -277106 cd15636 PHD_PYGO2 1 Zn binding site CCCCHCCC 1 1 1 1,4,17,21,26,29,50,53 4 -277106 cd15636 PHD_PYGO2 2 H3K4me binding site 0 1 1 1 8,10,12,14,15,16,18,24,37,40,41,43,46 2 -277106 cd15636 PHD_PYGO2 3 BCL9 HD1 interface 0 1 1 1 30,31,32,33,35,36,39,40,45,46,47,48,49 2 -277107 cd15637 PHD_dPYGO 1 Zn binding site CCCCHCCC 1 1 1 1,4,17,21,26,29,50,53 4 -277107 cd15637 PHD_dPYGO 2 H3K4me binding site 0 0 1 1 12,14,15,16,18,24,37,40,41,46 2 -277107 cd15637 PHD_dPYGO 3 BCL9 HD1 interface 0 1 1 1 30,31,32,33,36,39,40,43,45,46,47,48,49 2 -277108 cd15638 PHD_PHF3 1 Zn binding site CCCCHCCC 0 1 1 1,4,16,19,24,27,47,50 4 -277108 cd15638 PHD_PHF3 2 histone H3 binding site 0 0 1 1 0,8,12,13,14,15,16,17,20,22,43,44,45 2 -277109 cd15639 PHD_DIDO1_like 1 Zn binding site CCCCHCCC 1 1 1 5,7,19,22,27,30,50,53 4 -277109 cd15639 PHD_DIDO1_like 2 H3K4me3 binding site 0 1 1 1 4,11,13,14,15,16,17,18,19,20,23,25,35,38,39,41,42,45,46,47,48 2 -277110 cd15640 PHD_KDM7 1 Zn binding site CCCCHCCC 1 1 1 1,3,16,19,24,27,43,46 4 -277110 cd15640 PHD_KDM7 2 histone H3 binding site 0 0 1 1 0,7,12,13,14,15,22,38,39 2 -277111 cd15641 PHD_PHF2 1 Zn binding site CCCCHCCC 1 1 1 1,3,16,19,24,27,43,46 4 -277111 cd15641 PHD_PHF2 2 histone H3 binding site 0 1 1 0 0,7,10,11,12,13,14,15,22,32,38,39 2 -277112 cd15642 PHD_PHF8 1 Zn binding site CCCCHCCC 1 1 1 2,4,17,20,25,28,44,47 4 -277112 cd15642 PHD_PHF8 2 histone H3 binding site 0 1 1 0 1,8,10,13,14,15,16,23,36,39 2 -277113 cd15643 PHD_KDM2A 1 Zn binding site CCCCHCCC 1 1 1 1,4,23,26,31,34,53,56 4 -277113 cd15643 PHD_KDM2A 2 putative histone H3 binding site 0 0 1 1 0,19,20,21,22,23,27,51 2 -277114 cd15644 PHD_KDM2B 1 Zn binding site CCCCHCCC 1 1 1 1,4,27,30,35,38,58,61 4 -277114 cd15644 PHD_KDM2B 2 putative histone H3 binding site 0 0 1 1 0,23,24,25,26,27,31,56 2 -277115 cd15645 PHD_FXL19 1 Zn binding site CCCCHCCC 0 1 1 1,4,27,30,35,38,58,61 4 -277115 cd15645 PHD_FXL19 2 putative histone H3 binding site 0 0 1 1 0,23,24,25,26,27,31,56 2 -277116 cd15646 PHD_p300 1 Zn binding site CCCCHCCC 1 1 1 1,2,9,12,17,20,34,37 4 -277116 cd15646 PHD_p300 2 putative histone H3 binding site 0 0 1 1 0,5,6,7,8,9,13,32 2 -277117 cd15647 PHD_CBP 1 Zn binding site CCCCHCCC 1 1 1 1,2,9,12,17,20,34,37 4 -277117 cd15647 PHD_CBP 2 putative histone H3 binding site 0 0 1 1 0,5,6,7,8,9,13,32 2 -277118 cd15648 PHD1_NSD1_2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,17,22,25,38,41 4 -277118 cd15648 PHD1_NSD1_2 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,18,36 2 -277119 cd15649 PHD1_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,14,18,23,26,39,42 4 -277119 cd15649 PHD1_NSD3 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,19,37 2 -277120 cd15650 PHD2_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,14,19,24,27,43,46 4 -277120 cd15650 PHD2_NSD1 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,20,41 2 -277121 cd15651 PHD2_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,14,19,24,27,43,46 4 -277121 cd15651 PHD2_NSD2 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,20,41 2 -277122 cd15652 PHD2_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,14,19,24,27,43,46 4 -277122 cd15652 PHD2_NSD3 2 putative histone H3 binding site 0 0 1 1 0,10,11,12,13,14,20,41 2 -277123 cd15653 PHD3_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,22,25,30,35,50,53 4 -277123 cd15653 PHD3_NSD1 2 putative histone H3 binding site 0 0 1 1 0,18,19,20,21,22,26,48 2 -277124 cd15654 PHD3_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,22,25,30,35,50,53 4 -277124 cd15654 PHD3_NSD2 2 putative histone H3 binding site 0 0 1 1 0,18,19,20,21,22,26,48 2 -277125 cd15655 PHD3_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,21,24,29,34,49,52 4 -277125 cd15655 PHD3_NSD3 2 putative histone H3 binding site 0 0 1 1 0,17,18,19,20,21,25,47 2 -277126 cd15656 PHD4_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,36,39 4 -277126 cd15656 PHD4_NSD1 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,34 2 -277127 cd15657 PHD4_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,36,39 4 -277127 cd15657 PHD4_NSD2 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,34 2 -277128 cd15658 PHD4_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,4,13,16,21,24,36,39 4 -277128 cd15658 PHD4_NSD3 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,17,34 2 -277129 cd15659 PHD5_NSD1 1 Zn binding site CCCCHCCH 0 1 1 1,4,13,18,23,26,39,42 4 -277129 cd15659 PHD5_NSD1 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,19,37 2 -277130 cd15660 PHD5_NSD2 1 Zn binding site CCCCHCCH 0 1 1 1,4,13,18,23,26,39,42 4 -277130 cd15660 PHD5_NSD2 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,19,37 2 -277131 cd15661 PHD5_NSD3 1 Zn binding site CCCCHCCH 1 1 1 1,4,13,18,23,26,39,42 4 -277131 cd15661 PHD5_NSD3 2 putative histone H3 binding site 0 0 1 1 0,9,10,11,12,13,19,37 2 -277132 cd15662 ePHD_ATX1_2_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,69,74,79,82,111,114 4 -277132 cd15662 ePHD_ATX1_2_like 2 putative histone H3 binding site 0 0 1 1 55,65,66,67,68,69,75,109 2 -277133 cd15663 ePHD_ATX3_4_5_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,21,24,57,60,70,73,78,81,108,111 4 -277133 cd15663 ePHD_ATX3_4_5_like 2 putative histone H3 binding site 0 0 1 1 56,66,67,68,69,70,74,106 2 -277134 cd15664 ePHD_KMT2A_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,27,30,60,63,72,77,82,85,101,104 4 -277134 cd15664 ePHD_KMT2A_like 2 putative histone H3 binding site 0 0 1 1 59,68,69,70,71,72,78,99 2 -277135 cd15665 ePHD1_KMT2C_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,11,14,44,47,56,61,66,69,86,89 4 -277135 cd15665 ePHD1_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 43,52,53,54,55,56,62,84 2 -277136 cd15666 ePHD2_KMT2C_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,27,30,60,63,72,77,82,85,101,104 4 -277136 cd15666 ePHD2_KMT2C_like 2 putative histone H3 binding site 0 0 1 1 59,68,69,70,71,72,78,99 2 -277137 cd15667 ePHD_Snt2p_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,35,38,71,74,84,87,92,95,137,140 4 -277137 cd15667 ePHD_Snt2p_like 2 putative histone H3 binding site 0 0 1 1 70,80,81,82,83,84,88,135 2 -277138 cd15668 ePHD_RAI1_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,25,28,57,60,69,74,79,82,99,102 4 -277138 cd15668 ePHD_RAI1_like 2 putative histone H3 binding site 0 0 1 1 56,65,66,67,68,69,75,97 2 -277139 cd15669 ePHD_PHF7_G2E3_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,25,28,65,68,77,82,87,90,108,111 4 -277139 cd15669 ePHD_PHF7_G2E3_like 2 putative histone H3 binding site 0 0 1 1 64,73,74,75,76,77,83,106 2 -277140 cd15670 ePHD_BRPF 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,69,74,79,82,112,115 4 -277140 cd15670 ePHD_BRPF 2 putative histone H3 binding site 0 0 1 1 55,65,66,67,68,69,75,110 2 -277141 cd15671 ePHD_JADE 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,21,24,57,60,70,75,80,83,108,111 4 -277141 cd15671 ePHD_JADE 2 putative histone H3 binding site 0 0 1 1 56,66,67,68,69,70,76,106 2 -277142 cd15672 ePHD_AF10_like 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,55,58,75,80,85,88,112,115 4 -277142 cd15672 ePHD_AF10_like 2 putative histone H3 binding site 0 0 1 1 54,71,72,73,74,75,81,110 2 -277143 cd15673 ePHD_PHF6_like 1 Zn binding site CCHCCCCCHCCH 1 1 1 0,3,25,28,66,69,78,83,88,91,112,115 4 -277143 cd15673 ePHD_PHF6_like 2 putative histone H3 binding site 0 0 1 1 65,74,75,76,77,78,84,110 2 -277144 cd15674 ePHD_PHF14 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,73,78,83,86,110,113 4 -277144 cd15674 ePHD_PHF14 2 putative histone H3 binding site 0 0 1 1 55,69,70,71,72,73,79,108 2 -277145 cd15675 ePHD_JMJD2 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,55,58,74,79,84,87,108,111 4 -277145 cd15675 ePHD_JMJD2 2 putative histone H3 binding site 0 0 1 1 54,70,71,72,73,74,80,106 2 -277146 cd15676 PHD_BRPF1 1 Zn binding site CCCCHCCC 0 1 1 9,12,26,29,34,37,50,53 4 -277146 cd15676 PHD_BRPF1 2 putative histone H3 binding site 0 0 1 1 8,22,23,24,25,26,30,48 2 -277147 cd15677 PHD_BRPF2 1 Zn binding site CCCCHCCC 1 1 1 3,6,20,23,28,31,44,47 4 -277147 cd15677 PHD_BRPF2 2 putative histone H3 binding site 0 0 1 1 2,16,17,18,19,20,24,42 2 -277148 cd15678 PHD_BRPF3 1 Zn binding site CCCCHCCC 0 1 1 3,6,20,23,28,31,44,47 4 -277148 cd15678 PHD_BRPF3 2 putative histone H3 binding site 0 0 1 1 2,16,17,18,19,20,24,42 2 -277149 cd15679 PHD_JADE1 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,21,26,29,42,45 4 -277149 cd15679 PHD_JADE1 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,40 2 -277150 cd15680 PHD_JADE2 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,21,26,29,42,45 4 -277150 cd15680 PHD_JADE2 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,40 2 -277151 cd15681 PHD_JADE3 1 Zn binding site CCCCHCCC 0 1 1 1,4,18,21,26,29,42,45 4 -277151 cd15681 PHD_JADE3 2 putative histone H3 binding site 0 0 1 1 0,14,15,16,17,18,22,40 2 -277152 cd15682 PHD_ING1 1 Zn binding site CCCCHCCC 1 1 1 2,4,15,20,26,29,42,45 4 -277152 cd15682 PHD_ING1 2 H3K4me3 binding site 0 1 1 1 1,8,9,10,11,12,13,14,15,16,23,24,27,35,36,38,40 2 -277153 cd15683 PHD_ING2 1 Zn binding site CCCCHCCC 1 1 1 2,4,15,20,26,29,42,45 4 -277153 cd15683 PHD_ING2 2 H3K4me3 binding site 0 1 1 1 1,8,9,10,11,12,13,14,15,16,23,24,27,35,36,38 2 -277154 cd15684 PHD_ING4 1 Zn binding site CCCCHCCC 1 1 1 2,4,15,20,26,29,42,45 4 -277154 cd15684 PHD_ING4 2 H3K4me3 binding site 0 1 1 1 1,8,9,10,11,12,13,14,15,16,24,27,35,36,38,40 2 -277155 cd15685 PHD_ING5 1 Zn binding site CCCCHCCC 1 1 1 2,4,15,20,26,29,42,45 4 -277155 cd15685 PHD_ING5 2 H3K4me3 binding site 0 1 1 1 1,8,9,10,11,12,13,14,15,16,24,27,35,36,38,40 2 -277156 cd15686 PHD3_KDM5A 1 Zn binding site CCCCHCCC 1 1 1 2,7,20,24,29,32,47,50 4 -277156 cd15686 PHD3_KDM5A 2 H3K4me3 binding site 0 0 1 1 16,17,18,19,20,21,25,27,30 2 -277157 cd15687 PHD3_KDM5B 1 Zn binding site CCCCHCCC 1 1 1 1,6,19,23,28,31,46,49 4 -277157 cd15687 PHD3_KDM5B 2 H3K4me3 binding site 0 0 1 1 15,16,17,18,19,20,24,26,29 2 -277158 cd15688 PHD1_MOZ 1 Zn binding site CCCCHCCC 1 1 1 4,7,25,28,33,36,54,57 4 -277158 cd15688 PHD1_MOZ 2 histone H3 binding site 0 0 1 1 3,5,6,8,25,30,31,32,37,38,39,52,54,55,56 2 -277158 cd15688 PHD1_MOZ 3 PHD2 interface 0 1 1 1 39,43,46,47,50,52,53,55,57 2 -277159 cd15689 PHD1_MORF 1 Zn binding site CCCCHCCC 0 1 1 4,7,25,28,33,36,54,57 4 -277159 cd15689 PHD1_MORF 2 histone H3 binding site 0 0 1 1 3,5,6,8,25,30,32,37,38,39,52,54,55,56 2 -277159 cd15689 PHD1_MORF 3 PHD2 interface 0 0 1 1 39,43,46,47,50,52,53,55,57 2 -277160 cd15690 PHD1_DPF1 1 Zn binding site CCCCHCCC 0 1 1 5,8,24,27,32,35,53,56 4 -277160 cd15690 PHD1_DPF1 2 histone H3 binding site 0 0 1 1 4,6,7,9,24,29,30,31,36,37,38,51,53,54,55 2 -277160 cd15690 PHD1_DPF1 3 PHD2 interface 0 0 1 1 38,39,41,42,45,46,49,51,52,54,56 2 -277161 cd15691 PHD1_DPF2_like 1 Zn binding site CCCCHCCC 0 1 1 1,4,23,26,31,34,52,55 4 -277161 cd15691 PHD1_DPF2_like 2 histone H3 binding site 0 0 1 1 0,2,3,5,23,28,29,30,35,36,37,50,52,53,54 2 -277161 cd15691 PHD1_DPF2_like 3 PHD2 interface 0 0 1 1 37,38,40,41,44,45,48,50,51,53,55 2 -277162 cd15692 PHD1_DPF3 1 Zn binding site CCCCHCCC 1 1 1 1,4,23,26,31,34,52,55 4 -277162 cd15692 PHD1_DPF3 2 histone H3 binding site 0 1 1 0 0,2,3,5,23,28,29,30,35,36,37,41,50,52,53,54 2 -277162 cd15692 PHD1_DPF3 3 PHD2 interface 0 1 1 1 37,38,40,41,44,45,48,50,51,53,55 2 -277163 cd15693 ePHD_KMT2A 1 Zn binding site CCHCCCCCHCCH 0 1 1 2,5,29,32,62,65,74,79,84,87,103,106 4 -277163 cd15693 ePHD_KMT2A 2 putative histone H3 binding site 0 0 1 1 61,70,71,72,73,74,80,101 2 -277164 cd15694 ePHD_KMT2B 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,27,30,60,63,72,77,82,85,101,104 4 -277164 cd15694 ePHD_KMT2B 2 putative histone H3 binding site 0 0 1 1 59,68,69,70,71,72,78,99 2 -277165 cd15695 ePHD1_KMT2D 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,11,14,44,47,56,61,66,69,86,89 4 -277165 cd15695 ePHD1_KMT2D 2 putative histone H3 binding site 0 0 1 1 43,52,53,54,55,56,62,84 2 -277166 cd15696 ePHD1_KMT2C 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,11,14,44,47,56,61,66,69,86,89 4 -277166 cd15696 ePHD1_KMT2C 2 putative histone H3 binding site 0 0 1 1 43,52,53,54,55,56,62,84 2 -277167 cd15697 ePHD2_KMT2C 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,27,30,60,63,72,77,82,85,101,104 4 -277167 cd15697 ePHD2_KMT2C 2 putative histone H3 binding site 0 0 1 1 59,68,69,70,71,72,78,99 2 -277168 cd15698 ePHD2_KMT2D 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,27,30,60,63,72,77,82,85,101,104 4 -277168 cd15698 ePHD2_KMT2D 2 putative histone H3 binding site 0 0 1 1 59,68,69,70,71,72,78,99 2 -277169 cd15699 ePHD_TCF20 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,25,28,57,60,69,74,79,82,99,102 4 -277169 cd15699 ePHD_TCF20 2 putative histone H3 binding site 0 0 1 1 56,65,66,67,68,69,75,97 2 -277170 cd15700 ePHD_RAI1 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,26,29,58,61,70,75,80,83,100,103 4 -277170 cd15700 ePHD_RAI1 2 putative histone H3 binding site 0 0 1 1 57,66,67,68,69,70,76,98 2 -277171 cd15701 ePHD_BRPF1 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,70,75,80,83,114,117 4 -277171 cd15701 ePHD_BRPF1 2 putative histone H3 binding site 0 0 1 1 55,66,67,68,69,70,76,112 2 -277172 cd15702 ePHD_BRPF2 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,70,75,80,83,114,117 4 -277172 cd15702 ePHD_BRPF2 2 putative histone H3 binding site 0 0 1 1 55,66,67,68,69,70,76,112 2 -277173 cd15703 ePHD_BRPF3 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,56,59,70,75,80,83,114,117 4 -277173 cd15703 ePHD_BRPF3 2 putative histone H3 binding site 0 0 1 1 55,66,67,68,69,70,76,112 2 -277174 cd15704 ePHD_JADE1 1 Zn binding site CCHCCCCCHCCH 0 1 1 3,6,24,27,60,63,73,78,83,86,110,113 4 -277174 cd15704 ePHD_JADE1 2 putative histone H3 binding site 0 0 1 1 59,69,70,71,72,73,79,108 2 -277175 cd15705 ePHD_JADE2 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,21,24,57,60,70,75,80,83,107,110 4 -277175 cd15705 ePHD_JADE2 2 putative histone H3 binding site 0 0 1 1 56,66,67,68,69,70,76,105 2 -277176 cd15706 ePHD_JADE3 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,21,24,57,60,70,75,80,83,107,110 4 -277176 cd15706 ePHD_JADE3 2 putative histone H3 binding site 0 0 1 1 56,66,67,68,69,70,76,105 2 -277177 cd15707 ePHD_RNO 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,21,24,57,60,70,75,80,83,109,112 4 -277177 cd15707 ePHD_RNO 2 putative histone H3 binding site 0 0 1 1 56,66,67,68,69,70,76,107 2 -277178 cd15708 ePHD_AF10 1 Zn binding site CCHCCCCCHCCH 0 1 1 4,7,24,27,59,62,79,84,89,92,116,119 4 -277178 cd15708 ePHD_AF10 2 putative histone H3 binding site 0 0 1 1 58,75,76,77,78,79,85,114 2 -277179 cd15709 ePHD_AF17 1 Zn binding site CCHCCCCCHCCH 0 1 1 4,7,24,27,59,62,79,84,89,92,116,119 4 -277179 cd15709 ePHD_AF17 2 putative histone H3 binding site 0 0 1 1 58,75,76,77,78,79,85,114 2 -277180 cd15710 ePHD1_PHF6 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,25,28,65,68,77,82,87,90,111,114 4 -277180 cd15710 ePHD1_PHF6 2 putative histone H3 binding site 0 0 1 1 64,73,74,75,76,77,83,109 2 -277181 cd15711 ePHD2_PHF6 1 Zn binding site CCHCCCCCHCCH 1 1 1 0,3,27,30,68,71,80,85,90,93,114,117 4 -277181 cd15711 ePHD2_PHF6 2 putative histone H3 binding site 0 0 1 1 67,76,77,78,79,80,86,112 2 -277182 cd15712 ePHD_PHF11 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,23,26,65,68,77,82,87,90,111,114 4 -277182 cd15712 ePHD_PHF11 2 putative histone H3 binding site 0 0 1 1 64,73,74,75,76,77,83,109 2 -277183 cd15713 ePHD_JMJD2A 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,55,58,72,77,82,85,106,109 4 -277183 cd15713 ePHD_JMJD2A 2 putative histone H3 binding site 0 0 1 1 54,68,69,70,71,72,78,104 2 -277184 cd15714 ePHD_JMJD2B 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,55,58,72,77,82,85,106,109 4 -277184 cd15714 ePHD_JMJD2B 2 putative histone H3 binding site 0 0 1 1 54,68,69,70,71,72,78,104 2 -277185 cd15715 ePHD_JMJD2C 1 Zn binding site CCHCCCCCHCCH 0 1 1 0,3,20,23,55,58,72,77,82,85,106,109 4 -277185 cd15715 ePHD_JMJD2C 2 putative histone H3 binding site 0 0 1 1 54,68,69,70,71,72,78,104 2 -277256 cd15716 FYVE_RBNS5 1 putative Zn binding site CCCCCCCC 0 1 1 12,15,28,31,36,39,50,53 4 -277256 cd15716 FYVE_RBNS5 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 3,6,24,25,26,27,28,29,31,32,48,49,50 5 -277257 cd15717 FYVE_PKHF 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,27,30,35,38,56,59 4 -277257 cd15717 FYVE_PKHF 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,23,24,25,26,27,28,30,31,54,55,56 5 -277258 cd15718 FYVE_WDFY1_like 1 putative Zn binding site CCCCCCCC 0 1 1 8,11,35,38,43,46,65,68 4 -277258 cd15718 FYVE_WDFY1_like 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,6,31,32,33,34,35,36,38,39,63,64,65 5 -277259 cd15719 FYVE_WDFY3 1 putative Zn binding site CCCCCCCC 0 1 1 11,14,27,30,35,38,57,60 4 -277259 cd15719 FYVE_WDFY3 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,5,23,24,25,26,27,28,30,31,55,56,57 5 -277260 cd15720 FYVE_Hrs 1 Zn binding site CCCCCCCC 1 0 0 7,10,23,26,31,34,53,56 4 -277260 cd15720 FYVE_Hrs 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,3,19,20,21,22,23,24,26,27,51,52,53 5 -277261 cd15721 FYVE_RUFY1_like 1 Zn binding site CCCCCCCC 1 0 0 9,12,25,28,33,36,53,56 4 -277261 cd15721 FYVE_RUFY1_like 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 0,3,21,22,23,24,25,26,28,29,51,52,53 5 -277262 cd15723 FYVE_protrudin 1 Zn binding site CCCCCCCC 1 0 0 1,4,18,21,26,29,54,57 4 -277263 cd15724 FYVE_ZFY26 1 putative Zn binding site CCCCCCCC 0 1 1 9,12,26,29,34,37,55,58 4 -277263 cd15724 FYVE_ZFY26 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 0,3,22,23,24,25,26,27,29,30,53,54,55 5 -277264 cd15725 FYVE_PIKfyve_Fab1 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,26,29,34,37,56,59 4 -277264 cd15725 FYVE_PIKfyve_Fab1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,22,23,24,25,26,27,29,30,54,55,56 5 -277265 cd15726 FYVE_FYCO1 1 putative Zn binding site CCCCCCCC 0 1 1 9,12,25,28,33,36,53,56 4 -277265 cd15726 FYVE_FYCO1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 0,3,21,22,23,24,25,26,28,29,51,52,53 5 -277266 cd15727 FYVE_ZF21 1 putative Zn binding site CCCCCCCC 0 1 1 12,15,28,31,36,39,58,61 4 -277266 cd15727 FYVE_ZF21 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 3,6,24,25,26,27,28,29,31,32,56,57,58 5 -277267 cd15728 FYVE_ANFY1 1 putative Zn binding site CCCCCCCC 0 1 1 9,12,25,28,33,36,55,58 4 -277267 cd15728 FYVE_ANFY1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 3,5,21,22,23,24,25,26,28,29,53,54,55 5 -277268 cd15729 FYVE_endofin 1 Zn binding site CCCCCCCC 1 0 0 15,18,31,34,39,42,60,63 4 -277268 cd15729 FYVE_endofin 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 6,9,27,28,29,30,31,32,34,35,58,59,60 5 -277269 cd15730 FYVE_EEA1 1 Zn binding site CCCCCCCC 1 1 0 11,14,27,30,35,38,55,58 4 -277269 cd15730 FYVE_EEA1 2 homodimer interface 0 1 1 0 0,1,2,27,28,29,30,31,44,45,46,47,48,49,61,62 2 -277269 cd15730 FYVE_EEA1 3 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,5,23,24,25,26,27,28,30,31,53,54,55 5 -277270 cd15731 FYVE_LST2 1 putative Zn binding site CCCCCCCC 0 1 1 13,16,29,32,37,40,59,62 4 -277270 cd15731 FYVE_LST2 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 4,7,25,26,27,28,29,30,32,33,57,58,59 5 -277271 cd15732 FYVE_MTMR3 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,26,29,34,37,56,59 4 -277271 cd15732 FYVE_MTMR3 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,22,23,24,25,26,27,29,30,54,55,56 5 -277272 cd15733 FYVE_MTMR4 1 putative Zn binding site CCCCCCCC 0 1 1 9,12,25,28,33,36,55,58 4 -277272 cd15733 FYVE_MTMR4 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 0,3,21,22,23,24,25,26,28,29,53,54,55 5 -277273 cd15734 FYVE_ZFYV1 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,26,29,34,37,56,59 4 -277273 cd15734 FYVE_ZFYV1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,22,23,24,25,26,27,29,30,54,55,56 5 -277274 cd15735 FYVE_spVPS27p_like 1 putative Zn binding site CCCCCCCC 0 1 1 8,11,24,27,32,35,54,57 4 -277274 cd15735 FYVE_spVPS27p_like 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,5,20,21,22,23,24,25,27,28,52,53,54 5 -277275 cd15736 FYVE_scVPS27p_Vac1p_like 1 Zn binding site CCCCCHCC 1 1 0 1,4,17,20,25,28,51,54 4 -277276 cd15737 FYVE2_Vac1p_like 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,26,29,34,41,78,81 4 -277276 cd15737 FYVE2_Vac1p_like 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,22,23,24,25,26,27,29,30,76,77,78 5 -277277 cd15738 FYVE_MTMR_unchar 1 putative Zn binding site CCCCCCCC 0 1 1 11,13,26,29,34,37,56,59 4 -277278 cd15739 FYVE_RABE_unchar 1 putative Zn binding site CCCCCCCC 0 1 1 12,15,28,31,36,39,56,59 4 -277278 cd15739 FYVE_RABE_unchar 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 3,6,24,25,26,27,28,29,31,32,54,55,56 5 -277279 cd15740 FYVE_FGD3 1 putative Zn binding site CCCCCCCC 0 1 1 7,10,24,27,32,35,49,52 4 -277280 cd15741 FYVE_FGD1_2_4 1 putative Zn binding site CCCCCCCC 0 1 1 11,14,28,31,36,39,57,60 4 -277280 cd15741 FYVE_FGD1_2_4 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,5,24,25,26,27,28,29,31,32,55,56,57 5 -277281 cd15742 FYVE_FGD5 1 putative Zn binding site CCCCCCCC 0 1 1 11,14,27,30,35,38,56,59 4 -277282 cd15743 FYVE_FGD6 1 putative Zn binding site CCCCCCCC 0 1 1 11,14,27,30,35,38,56,59 4 -277282 cd15743 FYVE_FGD6 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,5,23,24,25,26,27,28,30,31,54,55,56 5 -277283 cd15744 FYVE_RUFY3 1 putative Zn binding site CCCCC[CH]CC 0 0 1 1,4,18,21,26,29,47,50 4 -277284 cd15745 FYVE_RUFY4 1 putative Zn binding site CCCCCCCC 0 0 1 1,4,17,20,25,28,47,50 4 -277285 cd15746 FYVE_RP3A_like 1 Zn binding site CCCCCCCC 1 1 0 6,9,23,26,31,34,49,52 4 -277286 cd15747 FYVE_Slp3_4_5 1 Zn binding site CCCCCCCC 1 0 0 2,5,19,22,27,30,42,45 4 -277287 cd15748 FYVE_SPIR 1 putative Zn binding site CCCCCCCC 0 1 1 4,7,21,24,29,32,37,40 4 -277288 cd15749 FYVE_ZFY19 1 Zn binding site CCCCCCCC 1 0 0 1,4,17,20,25,28,46,49 4 -277289 cd15750 FYVE_CARP 1 Zn binding site CCCCCCCC 1 1 0 2,5,18,21,26,29,40,43 4 -277290 cd15751 FYVE_BSN_PCLO 1 putative Zn binding site CCCCCCCC 0 1 1 2,5,23,26,31,34,50,53 4 -277291 cd15752 FYVE_SlaC2-a 1 Zn binding site CCCCCCCC 1 1 0 2,5,19,22,27,30,42,45 4 -277291 cd15752 FYVE_SlaC2-a 2 polypeptide substrate binding site 0 1 1 0 32,33,34,35,36,46,50,52,53,54,56,58,59,60,62,63,66,67,69,70,71,72,74,75 2 -277292 cd15753 FYVE_SlaC2-c 1 putative Zn binding site CCCCCCCC 0 1 1 1,4,18,21,26,29,41,44 4 -277293 cd15754 FYVE_PKHF1 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,27,30,35,38,56,59 4 -277293 cd15754 FYVE_PKHF1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,23,24,25,26,27,28,30,31,54,55,56 5 -277294 cd15755 FYVE_PKHF2 1 putative Zn binding site CCCCCCCC 0 1 1 10,13,27,30,35,38,56,59 4 -277294 cd15755 FYVE_PKHF2 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,23,24,25,26,27,28,30,31,54,55,56 5 -277295 cd15756 FYVE_WDFY1 1 putative Zn binding site CCCCCCCC 0 1 1 8,11,35,38,43,46,65,68 4 -277295 cd15756 FYVE_WDFY1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,6,31,32,33,34,35,36,38,39,63,64,65 5 -277296 cd15757 FYVE_WDFY2 1 putative Zn binding site CCCCCCCC 0 1 1 8,11,35,38,43,46,65,68 4 -277296 cd15757 FYVE_WDFY2 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 2,6,31,32,33,34,35,36,38,39,63,64,65 5 -277297 cd15758 FYVE_RUFY1 1 Zn binding site CCCCCCCC 1 0 0 14,17,30,33,38,41,58,61 4 -277297 cd15758 FYVE_RUFY1 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 5,8,26,27,28,29,30,31,33,34,56,57,58 5 -277298 cd15759 FYVE_RUFY2 1 putative Zn binding site CCCCCCCC 0 0 1 12,15,28,31,36,39,56,59 4 -277298 cd15759 FYVE_RUFY2 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 3,6,24,25,26,27,28,29,31,32,54,55,56 5 -277299 cd15760 FYVE_scVPS27p_like 1 Zn binding site CCCCCHCC 1 1 0 7,10,23,26,31,34,54,57 4 -277299 cd15760 FYVE_scVPS27p_like 2 putative phosphatidylinositol 3-phosphate binding site 0 0 1 1 1,4,19,20,21,22,23,24,26,27,52,53,54 5 -277300 cd15761 FYVE1_Vac1p_like 1 putative Zn binding site CCCCCHCC 0 1 1 12,15,28,31,36,39,63,66 4 -277301 cd15762 FYVE_RP3A 1 Zn binding site CCCCCCCC 1 1 0 6,9,23,26,31,34,48,51 4 -277301 cd15762 FYVE_RP3A 2 polypeptide substrate binding site 0 1 1 0 24,55,58,59,60,64,65,66,67,72,74 2 -277302 cd15763 FYVE_RPH3L 1 putative Zn binding site CCCCCCCC 0 1 1 9,12,26,29,34,37,52,55 4 -277303 cd15764 FYVE_Slp4 1 Zn binding site CCCCCCCC 1 0 0 5,8,22,25,30,33,44,47 4 -277304 cd15765 FYVE_Slp3 1 putative Zn binding site CCCCCCCC 0 0 1 3,6,20,23,28,31,42,45 4 -277305 cd15766 FYVE_Slp5 1 putative Zn binding site CCCCCCCC 0 0 1 2,5,19,22,27,30,41,44 4 -277306 cd15767 FYVE_SPIR1 1 putative Zn binding site CCCCCCCC 0 1 1 6,9,23,26,31,34,63,66 4 -277307 cd15768 FYVE_SPIR2 1 putative Zn binding site CCCCCCCC 0 1 1 6,9,22,25,30,33,100,103 4 -277308 cd15769 FYVE_CARP1 1 putative Zn binding site CCCCCCCC 0 1 1 3,6,19,22,27,30,40,43 4 -277309 cd15770 FYVE_CARP2 1 Zn binding site CCCCCCCC 1 1 0 3,6,19,22,27,30,41,44 4 -277310 cd15771 FYVE1_BSN_PCLO 1 putative Zn binding site CCCCCCCC 0 1 1 2,5,22,25,30,33,49,52 4 -277311 cd15772 FYVE2_BSN_PCLO 1 putative Zn binding site CCCCCCCC 0 1 1 2,5,22,25,30,33,49,52 4 -277312 cd15773 FYVE1_BSN 1 putative Zn binding site CCCCCCCC 0 1 1 5,8,25,28,33,36,52,55 4 -277313 cd15774 FYVE1_PCLO 1 putative Zn binding site CCCCCCCC 0 1 1 2,5,23,26,31,34,50,53 4 -277314 cd15775 FYVE2_BSN 1 putative Zn binding site CCCCCCCC 0 1 1 3,6,23,26,31,34,50,53 4 -277315 cd15776 FYVE2_PCLO 1 putative Zn binding site CCCCCCCC 0 1 1 2,5,22,25,30,33,49,52 4 -276940 cd15777 CRBN_C_like 1 Thalidomide binding site N[PSAN]xx[STCG][WF]W[WF][FY] 1 1 0 29,30,31,56,57,58,64,78,80 5 -276940 cd15777 CRBN_C_like 2 Zn binding site CCCC 1 1 0 2,5,69,72 4 -275431 cd15784 PH_RUTBC 1 Rab binding interface L[LV]GK[NS]NYN[flimMv][NHKS]x 1 1 0 2,3,5,6,7,8,23,41,44,45,113 2 -276949 cd15788 Clospo_01618_like 1 dimer interface 0 1 0 0 0,3,5,32,33,36,37,39,43,47,76,78,81,82,83 2 -275439 cd15795 PMEI-Pla_a_1_like 1 putative heterodimer interface 0 0 1 0 75,76,79,83,100,112,146 2 -275440 cd15796 CIF_like 1 heterodimer interface 0 1 1 0 75,76,79,83,87,90,95,96,98,99,110,113 2 -275441 cd15797 PMEI 1 heterodimer interface 0 1 1 0 75,76,79,83,100,112,146 2 -275442 cd15798 PMEI-like_3 1 putative heterodimer interface 0 0 1 0 70,71,74,78,102,114,149 2 -275443 cd15799 PMEI-like_4 1 putative heterodimer interface 0 0 1 0 73,74,77,81,101,113,147 2 -275444 cd15800 PMEI-like_2 1 putative heterodimer interface 0 0 1 0 75,76,79,83,100,112,145 2 -275445 cd15801 PMEI-like_1 1 putative heterodimer interface 0 0 1 0 72,73,76,80,97,109,143 2 -276805 cd15802 RING_CBP-p300 1 Zn binding site CCCC 1 1 0 7,11,34,37 4 -276805 cd15802 RING_CBP-p300 2 HAT interface 0 1 1 1 0,3,4,70,72 2 -276941 cd15803 RLR_C_like 1 Zn binding site CCCC 1 1 0 2,5,57,60 4 -276942 cd15804 RLR_C 1 Zn binding site CCCC 1 1 0 4,7,59,62 4 -276942 cd15804 RLR_C 2 dsRNA binding site 0 1 1 0 21,23,24,67,68,79,80,81,99,100 3 -276943 cd15805 RIG-I_C 1 Zn binding site CCCC 1 1 0 5,8,59,62 4 -276943 cd15805 RIG-I_C 2 dsRNA binding site 0 1 1 0 25,48,67,68,79,80,81,101 3 -276944 cd15806 LGP2_C 1 Zn binding site CCCC 1 1 0 4,7,59,62 4 -276944 cd15806 LGP2_C 2 dsRNA binding site 0 1 1 0 21,23,24,43,46,48,51,67,68,79,80,81,82,83,98,99,100,101 3 -276945 cd15807 MDA5_C 1 Zn binding site CCCC 1 1 0 7,10,62,65 4 -276945 cd15807 MDA5_C 2 dsRNA binding site 0 1 1 0 24,25,26,27,28,71,73,74,75,82,84,102,103,104,105 3 -276939 cd15830 BamD 1 heterodimer interface 0 1 1 0 3,6,14,15,16,18,36,37,40,43,44,47,50,51,74,77,80,84,111,114,122,128,131,132,134,135,136,137,138,139,141,144,172,174,175,176,182,203,206,207,210,211 2 -276939 cd15830 BamD 2 TPR repeat 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -276939 cd15830 BamD 3 TPR repeat 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -276939 cd15830 BamD 4 TPR repeat 0 0 1 1 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -276939 cd15830 BamD 5 TPR repeat 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -276939 cd15830 BamD 6 TPR repeat 0 0 1 1 181,182,183,184,185,186,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -276938 cd15831 BTAD 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -276938 cd15831 BTAD 2 TPR repeat 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -276938 cd15831 BTAD 3 TPR repeat 0 0 1 1 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -276937 cd15832 SNAP 1 TPR repeat 0 0 1 1 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -276937 cd15832 SNAP 2 TPR repeat 0 0 1 1 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -276937 cd15832 SNAP 3 TPR repeat 0 0 1 1 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -276937 cd15832 SNAP 4 TPR repeat 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -276930 cd15834 TNFRSF1A_teleost 1 CRD1 0 0 1 0 0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35 7 -276930 cd15834 TNFRSF1A_teleost 2 CRD2 0 0 1 0 38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -276930 cd15834 TNFRSF1A_teleost 3 CRD3 0 0 1 0 80,81,82,83,84,85,86,87,88,89,90,91,92,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,117,118,119,120 7 -276930 cd15834 TNFRSF1A_teleost 4 CRD4 0 0 1 0 122,123,124,125,126,130,131,132,133,134,135,136,137,138,139,140,143,144,145,146,147 7 -276931 cd15835 TNFRSF1B_teleost 1 CRD1 0 0 1 0 4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -276931 cd15835 TNFRSF1B_teleost 2 CRD2 0 0 1 0 44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -276931 cd15835 TNFRSF1B_teleost 3 CRD3 0 0 1 0 87,88,89,90,91,92,93,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -276932 cd15836 TNFRSF11A_teleost 1 CRD1 0 0 1 0 3,4,5,6,7,8,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,33,34,35,36 7 -276932 cd15836 TNFRSF11A_teleost 2 CRD2 0 0 1 0 39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,78,79,80 7 -276932 cd15836 TNFRSF11A_teleost 3 CRD3 0 0 1 0 82,83,84,85,86,87,88,93,94,95,96,97,98,99,100,101,102,117,118 7 -276933 cd15837 TNFRSF26 1 CRD1 0 0 1 0 0,1,2,3,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,29,30,31,32,33,34 7 -276933 cd15837 TNFRSF26 2 CRD2 0 0 1 0 37,38,39,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76 7 -276933 cd15837 TNFRSF26 3 CRD3 0 0 1 0 78,79,80,81,82,83,84,89,90,91,92,93,94,95,96,97,98,99,100,109 7 -276934 cd15838 TNFRSF27 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38 7 -276934 cd15838 TNFRSF27 2 CRD2 0 0 1 0 41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,75,76,77,78,79,80 7 -276934 cd15838 TNFRSF27 3 CRD3 0 0 1 0 83,84,85,87,88,89,90,91,92,93,94,95,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115 7 -276935 cd15839 TNFRSF_viral 1 CRD1 0 0 1 0 0,1,2,3,4,5,6,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,32,33,34,35 7 -276935 cd15839 TNFRSF_viral 2 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,78 7 -276935 cd15839 TNFRSF_viral 3 CRD3 0 0 1 0 80,81,82,83,84,85,86,94,95,96,97,98,99,100,101,102,103,113,114,115,116,117,118,119,120 7 -277193 cd15840 SNARE_Qa 1 heterotetramer interface 0 1 1 0 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277193 cd15840 SNARE_Qa 2 zero layer 0 0 1 1 31 0 -277194 cd15841 SNARE_Qc 1 heterotetramer interface 0 1 1 0 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277194 cd15841 SNARE_Qc 2 zero layer 0 0 1 1 31 0 -277195 cd15842 SNARE_Qb 1 heterotetramer interface 0 1 1 0 5,6,9,10,12,13,14,16,17,18,19,20,21,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,44,45,46,48,49,51,52,53,54,55,56,58,59 2 -277195 cd15842 SNARE_Qb 2 zero layer 0 1 1 1 34 0 -277196 cd15843 R-SNARE 1 heterotetramer interface 0 1 1 0 1,2,3,5,6,8,9,10,11,12,13,15,16,17,19,22,23,25,26,27,29,30,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,50,51,52,53,54,55,57,58,59 2 -277196 cd15843 R-SNARE 2 zero layer 0 1 1 1 26 0 -277197 cd15844 SNARE_syntaxin5 1 heterotetramer interface 0 0 0 1 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277197 cd15844 SNARE_syntaxin5 2 zero layer 0 0 1 1 31 0 -277198 cd15845 SNARE_syntaxin16 1 heterotetramer interface 0 0 1 1 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277198 cd15845 SNARE_syntaxin16 2 zero layer 0 0 1 1 31 0 -277199 cd15846 SNARE_syntaxin17 1 heterotetramer interface 0 0 1 1 4,6,7,9,10,11,12,13,14,16,17,18,20,21,23,24,25,27,28,30,31,32,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277199 cd15846 SNARE_syntaxin17 2 zero layer 0 0 1 1 34 0 -277200 cd15847 SNARE_syntaxin7_like 1 heterotetramer interface 0 1 1 0 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277200 cd15847 SNARE_syntaxin7_like 2 zero layer 0 0 1 1 31 0 -277201 cd15848 SNARE_syntaxin1-like 1 heterotetramer interface 0 1 1 0 0,1,3,4,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,49,50,52,53,54,55,56,57,59,60,61,62 2 -277201 cd15848 SNARE_syntaxin1-like 2 zero layer 0 0 1 1 35 0 -277202 cd15849 SNARE_Sso1 1 heterotetramer interface 0 1 1 0 0,3,6,7,10,11,12,13,14,16,17,18,19,20,21,23,24,25,27,28,30,31,32,34,35,37,38,39,40,41,42,44,45,46,48,49,51,52,53,54,55,56,58,59,60,61,62,63 2 -277202 cd15849 SNARE_Sso1 2 zero layer 0 0 1 1 34 0 -277203 cd15850 SNARE_syntaxin18 1 heterotetramer interface 0 0 1 1 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277203 cd15850 SNARE_syntaxin18 2 zero layer 0 0 1 1 31 0 -277204 cd15851 SNARE_Syntaxin6 1 heterotetramer interface 0 1 1 0 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277204 cd15851 SNARE_Syntaxin6 2 zero layer 0 0 1 1 31 0 -277205 cd15852 SNARE_Syntaxin8 1 heterotetramer interface 0 1 1 0 6,7,9,10,11,13,14,16,17,18,20,21,22,23,24,25,27,28,29,30,31,32,34,35,37,38,39,41,42,43,45,46,48,49,50,52,53,55,56,57 2 -277205 cd15852 SNARE_Syntaxin8 2 zero layer 0 0 1 1 31 0 -277206 cd15853 SNARE_Bet1 1 heterotetramer interface 0 0 1 1 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277206 cd15853 SNARE_Bet1 2 zero layer 0 0 1 1 31 0 -277207 cd15854 SNARE_SNAP47C 1 heterotetramer interface 0 0 1 1 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277207 cd15854 SNARE_SNAP47C 2 zero layer 0 0 1 1 31 0 -277208 cd15855 SNARE_SNAP25C_23C 1 heterotetramer interface 0 1 1 0 0,2,3,6,7,8,9,10,11,13,14,17,18,20,21,22,24,25,28,29,31,32,34,35,36,37,38,39,41,42,45,48,52,55,58 2 -277208 cd15855 SNARE_SNAP25C_23C 2 zero layer 0 0 1 1 31 0 -277209 cd15856 SNARE_SNAP29C 1 heterotetramer interface 0 0 1 1 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277209 cd15856 SNARE_SNAP29C 2 zero layer 0 0 1 1 31 0 -277210 cd15857 SNARE_SEC9C 1 heterotetramer interface 0 1 1 0 0,2,3,4,6,7,8,9,10,11,13,14,15,16,17,18,20,21,22,24,25,28,29,31,32,34,35,36,38,39,41,42,45,46,48,49,50,51,52,53,55,56 2 -277210 cd15857 SNARE_SEC9C 2 zero layer 0 0 1 1 31 0 -277211 cd15858 SNARE_VAM7 1 heterotetramer interface 0 0 1 1 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277211 cd15858 SNARE_VAM7 2 zero layer 0 0 1 1 31 0 -277212 cd15859 SNARE_SYN8 1 heterotetramer interface 0 0 1 1 4,5,6,7,9,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,30,31,34,35,37,38,39,41,42,43,45,46,48,49,52,53,55,56,58 2 -277212 cd15859 SNARE_SYN8 2 zero layer 0 0 1 1 31 0 -277213 cd15860 SNARE_USE1 1 heterotetramer interface 0 0 1 1 5,6,7,8,10,11,12,14,15,16,18,19,21,22,23,24,25,26,28,29,32,35,36,38,39,40,42,43,44,46,47,49,50,53,54,56,57,59 2 -277213 cd15860 SNARE_USE1 2 zero layer 0 0 1 1 32 0 -277214 cd15861 SNARE_SNAP25N_23N_29N_SEC9N 1 heterotetramer interface 0 1 1 0 2,5,6,7,8,9,10,12,13,14,15,16,17,19,20,23,24,26,27,28,29,30,31,33,34,36,37,38,40,41,42,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64 2 -277214 cd15861 SNARE_SNAP25N_23N_29N_SEC9N 2 zero layer 0 1 1 1 37 0 -277215 cd15862 SNARE_Vti1 1 heterotetramer interface 0 1 1 0 5,6,9,10,12,13,14,16,17,18,19,20,21,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,44,45,46,48,49,51,52,53,54,55,56,58,59 2 -277215 cd15862 SNARE_Vti1 2 zero layer 0 0 1 1 34 0 -277216 cd15863 SNARE_GS27 1 heterotetramer interface 0 0 1 1 5,6,7,9,10,11,12,13,14,16,17,20,21,23,24,25,26,27,28,30,31,33,34,35,37,38,39,40,41,42,44,45,47,48,49,51,52,54,55,56,58,59,61 2 -277216 cd15863 SNARE_GS27 2 zero layer 0 0 1 1 34 0 -277217 cd15864 SNARE_GS28 1 heterotetramer interface 0 0 1 1 5,6,7,9,10,11,12,13,14,16,17,20,21,23,24,25,26,27,28,30,31,33,34,35,37,38,39,40,41,42,44,45,47,48,49,51,52,54,55,56,58,59,61 2 -277217 cd15864 SNARE_GS28 2 zero layer 0 0 1 1 34 0 -277218 cd15865 SNARE_SEC20 1 heterotetramer interface 0 0 1 1 5,6,7,9,10,11,12,13,14,16,17,20,21,23,24,25,26,27,28,30,31,33,34,35,37,38,39,40,41,42,44,45,47,48,49,51,52,54,55,56,58,59,61 2 -277218 cd15865 SNARE_SEC20 2 zero layer 0 0 1 1 34 0 -277219 cd15866 R-SNARE_SEC22 1 heterotetramer interface 0 0 1 1 2,3,4,6,7,9,10,11,12,13,14,16,17,18,20,23,24,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277219 cd15866 R-SNARE_SEC22 2 zero layer 0 0 1 1 27 0 -277220 cd15867 R-SNARE_YKT6 1 heterotetramer interface 0 0 1 1 2,3,4,6,7,9,10,11,12,13,14,16,17,18,20,23,24,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277220 cd15867 R-SNARE_YKT6 2 zero layer 0 0 1 1 27 0 -277221 cd15868 R-SNARE_VAMP8 1 heterotetramer interface 0 0 1 1 2,3,4,6,7,9,10,11,12,13,14,16,17,18,20,23,24,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277221 cd15868 R-SNARE_VAMP8 2 zero layer 0 0 1 1 27 0 -277222 cd15869 R-SNARE_VAMP4 1 heterotetramer interface 0 1 1 0 2,3,6,7,9,10,11,12,13,14,16,17,20,21,23,24,27,28,31,32,34,35,37,38,40,41,42,44,45,46,48,49,51,52,53,55,56,58,59,60 2 -277222 cd15869 R-SNARE_VAMP4 2 zero layer 0 0 1 1 27 0 -277223 cd15870 R-SNARE_VAMP2 1 heterotetramer interface 0 1 1 0 1,2,3,5,6,8,9,10,11,12,13,15,16,17,19,22,23,25,26,27,29,30,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,50,51,52,53,54,55,57,58,59,62 2 -277223 cd15870 R-SNARE_VAMP2 2 zero layer 0 1 1 1 26 0 -277224 cd15871 R-SNARE_VAMP7 1 heterotetramer interface 0 0 1 1 0,1,4,5,7,8,9,11,12,13,14,15,16,18,19,20,22,23,25,26,29,30,32,33,34,35,36,37,39,40,41,43,44,46,47,48,49,50,51,53,54 2 -277224 cd15871 R-SNARE_VAMP7 2 zero layer 0 0 1 1 26 0 -277225 cd15872 R-SNARE_VAMP5 1 heterotetramer interface 0 0 1 1 2,3,4,6,7,9,10,11,12,13,14,16,17,18,20,23,24,26,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277225 cd15872 R-SNARE_VAMP5 2 zero layer 0 0 1 1 27 0 -277226 cd15873 R-SNARE_STXBP5_6 1 heterotetramer interface 0 1 1 0 3,6,7,9,13,14,16,17,18,20,21,23,24,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,55,56,59 2 -277226 cd15873 R-SNARE_STXBP5_6 2 zero layer 0 0 1 1 27 0 -277227 cd15874 R-SNARE_Snc1 1 heterotetramer interface 0 1 1 0 1,2,5,6,8,9,10,11,12,13,15,16,17,19,20,22,23,25,26,27,29,30,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,51,52,54,55,58 2 -277227 cd15874 R-SNARE_Snc1 2 zero layer 0 0 1 1 26 0 -277228 cd15875 SNARE_syntaxin7 1 heterotetramer interface 0 1 1 0 3,4,6,7,8,10,11,13,14,15,17,18,20,21,22,23,24,25,27,28,29,31,32,34,35,36,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277228 cd15875 SNARE_syntaxin7 2 zero layer 0 0 1 1 31 0 -277229 cd15876 SNARE_syntaxin12 1 heterotetramer interface 0 1 1 0 1,3,4,6,7,8,9,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56,57 2 -277229 cd15876 SNARE_syntaxin12 2 zero layer 0 0 1 1 31 0 -277230 cd15877 SNARE_TSNARE1 1 heterotetramer interface 0 0 1 1 4,6,7,9,10,11,12,13,14,16,17,18,20,21,23,24,25,27,28,30,31,32,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60 2 -277230 cd15877 SNARE_TSNARE1 2 zero layer 0 0 1 1 34 0 -277231 cd15878 SNARE_syntaxin11 1 heterotetramer interface 0 0 1 1 5,7,8,10,11,12,13,14,15,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277231 cd15878 SNARE_syntaxin11 2 zero layer 0 0 1 1 35 0 -277232 cd15879 SNARE_syntaxin19 1 heterotetramer interface 0 0 1 1 5,7,8,10,11,12,13,14,15,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277232 cd15879 SNARE_syntaxin19 2 zero layer 0 0 1 1 35 0 -277233 cd15880 SNARE_syntaxin1 1 heterotetramer interface 0 1 1 0 5,7,8,10,11,12,13,14,15,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277233 cd15880 SNARE_syntaxin1 2 zero layer 0 0 1 1 35 0 -277233 cd15880 SNARE_syntaxin1 3 Munc18 interface 0 1 1 0 22,25,26,29,30,32,33,34,37,38,39,40,41,42,43,45,46,47,49,50,51,52,53,54 2 -277234 cd15881 SNARE_syntaxin3 1 zero layer 0 0 1 1 35 0 -277234 cd15881 SNARE_syntaxin3 2 heterotetramer interface 0 0 1 1 5,7,8,10,11,12,13,14,15,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277235 cd15882 SNARE_syntaxin2 1 zero layer 0 0 1 1 35 0 -277235 cd15882 SNARE_syntaxin2 2 heterotetramer interface 0 0 1 1 5,7,8,10,11,12,13,14,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277236 cd15883 SNARE_syntaxin4 1 heterotetramer interface 0 0 1 1 5,7,8,10,11,12,13,14,15,17,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61 2 -277236 cd15883 SNARE_syntaxin4 2 zero layer 0 0 1 1 35 0 -277237 cd15884 SNARE_SNAP23C 1 heterotetramer interface 0 0 1 1 0,2,3,6,7,8,9,10,11,13,14,17,18,20,21,22,24,25,28,29,31,32,34,35,36,37,38,39,41,42,45,48,52,55,58 2 -277237 cd15884 SNARE_SNAP23C 2 zero layer 0 0 1 1 31 0 -277238 cd15885 SNARE_SNAP25C 1 heterotetramer interface 0 1 1 0 0,2,3,6,7,8,9,10,11,13,14,17,18,20,21,22,24,25,28,29,31,32,34,35,36,37,38,39,41,42,45,48,52,55,58 2 -277238 cd15885 SNARE_SNAP25C 2 zero layer 0 0 1 1 31 0 -277239 cd15886 SNARE_SEC9N 1 heterotetramer interface 0 1 1 0 2,5,6,7,8,9,10,12,13,14,15,16,17,19,20,23,24,26,27,28,29,30,31,33,34,36,37,38,40,41,42,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64,65,66,68,69 2 -277239 cd15886 SNARE_SEC9N 2 zero layer 0 0 1 1 37 0 -277240 cd15887 SNARE_SNAP29N 1 heterotetramer interface 0 0 1 1 2,5,6,7,8,9,10,12,13,14,15,16,17,19,20,23,24,26,27,28,29,30,31,33,34,36,37,38,40,41,42,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64 2 -277240 cd15887 SNARE_SNAP29N 2 zero layer 0 0 1 1 37 0 -277241 cd15888 SNARE_SNAP47N 1 heterotetramer interface 0 0 1 1 2,5,6,7,8,9,10,12,13,14,15,16,17,19,20,23,24,26,27,28,29,30,31,33,34,36,37,38,40,41,42,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64 2 -277241 cd15888 SNARE_SNAP47N 2 zero layer 0 0 1 1 37 0 -277242 cd15889 SNARE_SNAP25N_23N 1 heterotetramer interface 0 1 1 0 8,9,12,13,15,16,17,19,20,21,22,23,24,26,27,28,30,31,33,34,37,38,40,41,42,43,44,45,47,48,49,51,52,54,55,56,57,58,59,61,62 2 -277242 cd15889 SNARE_SNAP25N_23N 2 zero layer 0 1 1 1 37 0 -277243 cd15890 SNARE_Vti1b 1 heterotetramer interface 0 1 1 0 5,6,9,10,12,13,14,16,17,18,19,20,21,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,44,45,46,48,49,51,52,53,54,55,56,58,59 2 -277243 cd15890 SNARE_Vti1b 2 zero layer 0 0 1 1 34 0 -277244 cd15891 SNARE_Vti1a 1 heterotetramer interface 0 1 1 0 5,6,9,10,12,13,14,16,17,18,19,20,21,23,24,25,27,28,30,31,34,35,37,38,39,40,41,42,44,45,46,48,49,51,52,53,54,55,56,58,59 2 -277244 cd15891 SNARE_Vti1a 2 zero layer 0 0 1 1 34 0 -277245 cd15892 R-SNARE_STXBP6 1 heterotetramer interface 0 0 1 1 1,2,5,6,8,9,10,12,13,14,15,16,17,19,20,21,23,24,26,27,30,31,33,34,35,36,37,38,40,41,42,44,45,47,48,49,50,51,52,54,55 2 -277245 cd15892 R-SNARE_STXBP6 2 zero layer 0 0 1 1 27 0 -277246 cd15893 R-SNARE_STXBP5 1 heterotetramer interface 0 1 1 0 3,6,7,9,13,14,16,17,18,20,21,23,24,27,28,30,31,32,33,34,35,37,38,39,40,41,42,44,45,46,47,48,49,51,52,53,55,56,59 2 -277246 cd15893 R-SNARE_STXBP5 2 zero layer 0 0 1 1 27 0 -277247 cd15894 SNARE_SNAP25N 1 heterotetramer interface 0 1 1 0 14,15,18,19,21,22,23,25,26,27,28,29,30,32,33,34,36,37,39,40,43,44,46,47,48,49,50,51,53,54,55,57,58,60,61,62,63,64,65,67,68 2 -277247 cd15894 SNARE_SNAP25N 2 zero layer 0 1 1 1 43 0 -277248 cd15895 SNARE_SNAP23N 1 heterotetramer interface 0 0 1 1 4,7,8,9,10,11,12,14,15,16,17,18,19,21,22,25,26,28,29,30,31,32,33,35,36,38,39,40,42,43,44,45,46,47,49,50,52,53,54,56,57,59,60,61,63,64,66 2 -277248 cd15895 SNARE_SNAP23N 2 zero layer 0 0 1 1 39 0 -276899 cd15896 MYSc_Myh19 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,34,35,79,80,81,82,83,84,85,86,136,137,138,139,140,141,142,143,144,145,146,364,365,366,367,368,369 5 -276899 cd15896 MYSc_Myh19 2 P-loop 0 0 1 1 79,80,81,82,83,84,85,86 0 -276899 cd15896 MYSc_Myh19 3 purine-binding loop 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -276899 cd15896 MYSc_Myh19 4 switch I region 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146 0 -276899 cd15896 MYSc_Myh19 5 switch II region 0 0 1 1 364,365,366,367,368,369 0 -276899 cd15896 MYSc_Myh19 6 converter subdomain 0 0 1 1 618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674 0 -276899 cd15896 MYSc_Myh19 7 relay loop 0 0 1 1 393,394,395,396,397,398,399,400,401,402,403,404,407,408,409,410,411,412,413,414,415,416 0 -276899 cd15896 MYSc_Myh19 8 SH1 helix 0 0 1 1 606,607,608,609,610,611,612,613,614,615 0 -320054 cd15897 EFh_PEF 1 Ca binding site 0 1 1 1 12,19,49,51,53,60,79,81,83,90 4 -320054 cd15897 EFh_PEF 2 dimer interface 0 1 1 0 40,42,52,106,109,112,113,114,115,125,129,132,133,136,137,140,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164 2 -320054 cd15897 EFh_PEF 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320054 cd15897 EFh_PEF 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320054 cd15897 EFh_PEF 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320054 cd15897 EFh_PEF 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320054 cd15897 EFh_PEF 7 EF-hand motif 0 0 0 0 136,137,138,139,140,141,142,143,144,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320029 cd15898 EFh_PI-PLC 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320029 cd15898 EFh_PI-PLC 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320029 cd15898 EFh_PI-PLC 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320029 cd15898 EFh_PI-PLC 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320021 cd15899 EFh_CREC 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320021 cd15899 EFh_CREC 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320021 cd15899 EFh_CREC 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320021 cd15899 EFh_CREC 4 EF-hand motif 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320021 cd15899 EFh_CREC 5 EF-hand motif 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320021 cd15899 EFh_CREC 6 EF-hand motif 0 0 0 0 201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320021 cd15899 EFh_CREC 7 EF-hand motif 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320080 cd15900 EFh_MICU 1 Ca binding site 0 1 1 0 9,11,13,20,131,133,135,142 4 -320080 cd15900 EFh_MICU 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320080 cd15900 EFh_MICU 3 EF-hand motif 0 0 0 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320080 cd15900 EFh_MICU 4 EF-hand motif 0 0 0 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320080 cd15900 EFh_MICU 5 EF-hand motif 0 0 0 1 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -319999 cd15901 EFh_DMD_DYTN_DTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -319999 cd15901 EFh_DMD_DYTN_DTN 2 EF-hand-like motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -319999 cd15901 EFh_DMD_DYTN_DTN 3 EF-hand-like motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -319999 cd15901 EFh_DMD_DYTN_DTN 4 EF-hand-like motif 0 0 0 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,156,157,158,159,160,161,162 7 -320075 cd15902 EFh_HEF 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320075 cd15902 EFh_HEF 2 EF-hand motif 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320075 cd15902 EFh_HEF 3 EF-hand motif 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320075 cd15902 EFh_HEF 4 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320075 cd15902 EFh_HEF 5 EF-hand motif 0 0 0 0 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320075 cd15902 EFh_HEF 6 EF-hand motif 0 0 0 0 225,226,227,228,229,230,231,232,233,234,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -277191 cd15903 Dicer_PBD 1 Trbp binding interface 0 1 1 0 5,6,9,11,12,80,81,84,85,88,91,92,95 2 -320706 cd15904 TSPO_MBR 1 dimer interface 0 1 1 0 2,3,5,6,8,9,12,56,66,68,69,70,72,73,75,76,77,79,80,83,84,103 2 -320706 cd15904 TSPO_MBR 2 lipid binding site 0 1 1 1 11,37,38,40,41,81,129,132,133,136 5 -320571 cd15905 7tmA_GPBAR1 1 putative ligand binding pocket 0 0 1 1 53,56,57,67,68,69,70,71,72,74,75,78,123,125,126,127,128,129,148,151,152,153,155,156,157,159,160,224,227,228,230,231,234,245,246,248,249,250,253,256,257 5 -320571 cd15905 7tmA_GPBAR1 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320571 cd15905 7tmA_GPBAR1 3 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320571 cd15905 7tmA_GPBAR1 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320571 cd15905 7tmA_GPBAR1 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320571 cd15905 7tmA_GPBAR1 6 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320571 cd15905 7tmA_GPBAR1 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320571 cd15905 7tmA_GPBAR1 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320572 cd15906 7tmA_GPR162 1 putative ligand binding pocket 0 0 1 1 54,57,58,75,76,77,78,79,80,82,83,86,131,133,134,135,136,137,162,165,166,167,169,170,171,173,174,263,266,267,269,270,273,281,282,284,285,286,289,292,293 5 -320572 cd15906 7tmA_GPR162 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320572 cd15906 7tmA_GPR162 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320572 cd15906 7tmA_GPR162 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320572 cd15906 7tmA_GPR162 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320572 cd15906 7tmA_GPR162 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320572 cd15906 7tmA_GPR162 7 TM helix 6 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320572 cd15906 7tmA_GPR162 8 TM helix 7 0 0 0 0 282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 7 -320573 cd15907 7tmA_GPR153 1 putative ligand binding pocket 0 0 1 1 54,57,58,75,76,77,78,79,80,82,83,86,131,133,134,135,136,137,162,165,166,167,169,170,171,173,174,249,252,253,255,256,259,267,268,270,271,272,275,278,279 5 -320573 cd15907 7tmA_GPR153 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320573 cd15907 7tmA_GPR153 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320573 cd15907 7tmA_GPR153 4 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320573 cd15907 7tmA_GPR153 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320573 cd15907 7tmA_GPR153 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320573 cd15907 7tmA_GPR153 7 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320573 cd15907 7tmA_GPR153 8 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320574 cd15908 7tm_TAS2R40-like 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320574 cd15908 7tm_TAS2R40-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320574 cd15908 7tm_TAS2R40-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320574 cd15908 7tm_TAS2R40-like 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320574 cd15908 7tm_TAS2R40-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320574 cd15908 7tm_TAS2R40-like 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320574 cd15908 7tm_TAS2R40-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320575 cd15909 7tmF_FZD4_9_10-like 1 putative ligand binding site 0 0 1 1 1,10,60,162,167,169,178,253,256,257,282,287,290,291 5 -320575 cd15909 7tmF_FZD4_9_10-like 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320575 cd15909 7tmF_FZD4_9_10-like 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320575 cd15909 7tmF_FZD4_9_10-like 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 7 -320575 cd15909 7tmF_FZD4_9_10-like 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320575 cd15909 7tmF_FZD4_9_10-like 6 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -320575 cd15909 7tmF_FZD4_9_10-like 7 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320575 cd15909 7tmF_FZD4_9_10-like 8 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320576 cd15910 7tmF_FZD3_FZD6-like 1 putative ligand binding site 0 0 1 1 1,10,60,163,168,170,179,254,257,258,283,288,291,292 5 -320576 cd15910 7tmF_FZD3_FZD6-like 2 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320576 cd15910 7tmF_FZD3_FZD6-like 3 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320576 cd15910 7tmF_FZD3_FZD6-like 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320576 cd15910 7tmF_FZD3_FZD6-like 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320576 cd15910 7tmF_FZD3_FZD6-like 6 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -320576 cd15910 7tmF_FZD3_FZD6-like 7 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320576 cd15910 7tmF_FZD3_FZD6-like 8 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -320577 cd15911 7tmA_OR11A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320577 cd15911 7tmA_OR11A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320577 cd15911 7tmA_OR11A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320577 cd15911 7tmA_OR11A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320577 cd15911 7tmA_OR11A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320577 cd15911 7tmA_OR11A-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320577 cd15911 7tmA_OR11A-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320577 cd15911 7tmA_OR11A-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320578 cd15912 7tmA_OR6C-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320578 cd15912 7tmA_OR6C-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320578 cd15912 7tmA_OR6C-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320578 cd15912 7tmA_OR6C-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320578 cd15912 7tmA_OR6C-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320578 cd15912 7tmA_OR6C-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320578 cd15912 7tmA_OR6C-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320578 cd15912 7tmA_OR6C-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320579 cd15913 7tmA_OR11G-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320579 cd15913 7tmA_OR11G-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320579 cd15913 7tmA_OR11G-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320579 cd15913 7tmA_OR11G-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320579 cd15913 7tmA_OR11G-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320579 cd15913 7tmA_OR11G-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320579 cd15913 7tmA_OR11G-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320579 cd15913 7tmA_OR11G-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320580 cd15914 7tmA_OR6N-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320580 cd15914 7tmA_OR6N-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320580 cd15914 7tmA_OR6N-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320580 cd15914 7tmA_OR6N-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320580 cd15914 7tmA_OR6N-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320580 cd15914 7tmA_OR6N-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320580 cd15914 7tmA_OR6N-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320580 cd15914 7tmA_OR6N-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320581 cd15915 7tmA_OR12D-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,228,231,232,234,235,238,244,245,247,248,249,252,255,256 5 -320581 cd15915 7tmA_OR12D-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320581 cd15915 7tmA_OR12D-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320581 cd15915 7tmA_OR12D-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320581 cd15915 7tmA_OR12D-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320581 cd15915 7tmA_OR12D-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320581 cd15915 7tmA_OR12D-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320581 cd15915 7tmA_OR12D-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320582 cd15916 7tmA_OR10G-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,171,174,175,176,178,179,180,182,183,228,231,232,234,235,238,242,243,245,246,247,250,253,254 5 -320582 cd15916 7tmA_OR10G-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320582 cd15916 7tmA_OR10G-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320582 cd15916 7tmA_OR10G-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320582 cd15916 7tmA_OR10G-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320582 cd15916 7tmA_OR10G-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320582 cd15916 7tmA_OR10G-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320582 cd15916 7tmA_OR10G-like 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -341351 cd15917 7tmA_OR51_52-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -341351 cd15917 7tmA_OR51_52-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341351 cd15917 7tmA_OR51_52-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341351 cd15917 7tmA_OR51_52-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341351 cd15917 7tmA_OR51_52-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341351 cd15917 7tmA_OR51_52-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -341351 cd15917 7tmA_OR51_52-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -341351 cd15917 7tmA_OR51_52-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320584 cd15918 7tmA_OR1_7-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320584 cd15918 7tmA_OR1_7-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320584 cd15918 7tmA_OR1_7-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320584 cd15918 7tmA_OR1_7-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320584 cd15918 7tmA_OR1_7-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320584 cd15918 7tmA_OR1_7-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320584 cd15918 7tmA_OR1_7-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320584 cd15918 7tmA_OR1_7-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320585 cd15919 7tmA_GPR139 1 putative ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,153,156,157,158,160,161,162,164,165,214,217,218,220,221,224,236,237,239,240,241,244,247,248 5 -320585 cd15919 7tmA_GPR139 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320585 cd15919 7tmA_GPR139 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320585 cd15919 7tmA_GPR139 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320585 cd15919 7tmA_GPR139 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320585 cd15919 7tmA_GPR139 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320585 cd15919 7tmA_GPR139 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320585 cd15919 7tmA_GPR139 8 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320586 cd15920 7tmA_GPR34-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,68,69,70,71,72,73,75,76,79,124,126,127,128,129,130,153,156,157,158,160,161,162,164,165,217,220,221,223,224,227,244,245,247,248,249,252,255,256 5 -320586 cd15920 7tmA_GPR34-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320586 cd15920 7tmA_GPR34-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320586 cd15920 7tmA_GPR34-like 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320586 cd15920 7tmA_GPR34-like 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320586 cd15920 7tmA_GPR34-like 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320586 cd15920 7tmA_GPR34-like 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320586 cd15920 7tmA_GPR34-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320587 cd15921 7tmA_CysLTR 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,160,163,164,165,167,168,169,171,172,222,225,226,228,229,232,249,250,252,253,254,257,260,261 5 -320587 cd15921 7tmA_CysLTR 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320587 cd15921 7tmA_CysLTR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320587 cd15921 7tmA_CysLTR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320587 cd15921 7tmA_CysLTR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320587 cd15921 7tmA_CysLTR 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320587 cd15921 7tmA_CysLTR 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320587 cd15921 7tmA_CysLTR 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320588 cd15922 7tmA_P2Y-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,161,164,165,166,168,169,170,172,173,223,226,227,229,230,233,250,251,253,254,255,258,261,262 5 -320588 cd15922 7tmA_P2Y-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320588 cd15922 7tmA_P2Y-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320588 cd15922 7tmA_P2Y-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320588 cd15922 7tmA_P2Y-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320588 cd15922 7tmA_P2Y-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320588 cd15922 7tmA_P2Y-like 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320588 cd15922 7tmA_P2Y-like 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320589 cd15923 7tmA_GPR35_55-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,70,71,72,73,74,75,77,78,81,126,128,129,130,131,132,153,156,157,158,160,161,162,164,165,214,217,218,220,221,224,239,240,242,243,244,247,250,251 5 -320589 cd15923 7tmA_GPR35_55-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320589 cd15923 7tmA_GPR35_55-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320589 cd15923 7tmA_GPR35_55-like 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320589 cd15923 7tmA_GPR35_55-like 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320589 cd15923 7tmA_GPR35_55-like 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320589 cd15923 7tmA_GPR35_55-like 7 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320589 cd15923 7tmA_GPR35_55-like 8 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -341352 cd15924 7tmA_P2Y12-like 1 ligand binding site 0 1 1 1 67,71,75,76,79,80,83,126,129,130,133,137,148,149,153,161,164,165,168,230,233,237,254 5 -341352 cd15924 7tmA_P2Y12-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341352 cd15924 7tmA_P2Y12-like 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341352 cd15924 7tmA_P2Y12-like 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -341352 cd15924 7tmA_P2Y12-like 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341352 cd15924 7tmA_P2Y12-like 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341352 cd15924 7tmA_P2Y12-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -341352 cd15924 7tmA_P2Y12-like 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320591 cd15925 7tmA_RNL3R2 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,160,163,164,165,167,168,169,171,172,221,224,225,227,228,231,249,250,252,253,254,257,260,261 2 -320591 cd15925 7tmA_RNL3R2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320591 cd15925 7tmA_RNL3R2 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320591 cd15925 7tmA_RNL3R2 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320591 cd15925 7tmA_RNL3R2 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320591 cd15925 7tmA_RNL3R2 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320591 cd15925 7tmA_RNL3R2 7 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320591 cd15925 7tmA_RNL3R2 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320592 cd15926 7tmA_RNL3R1 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,165,168,169,170,172,173,174,176,177,226,229,230,232,233,236,254,255,257,258,259,262,265,266 2 -320592 cd15926 7tmA_RNL3R1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320592 cd15926 7tmA_RNL3R1 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320592 cd15926 7tmA_RNL3R1 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320592 cd15926 7tmA_RNL3R1 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320592 cd15926 7tmA_RNL3R1 6 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320592 cd15926 7tmA_RNL3R1 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320592 cd15926 7tmA_RNL3R1 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320593 cd15927 7tmA_Bombesin_R-like 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,166,169,170,171,173,174,175,177,178,236,239,240,242,243,246,260,261,263,264,265,268,271,272 2 -320593 cd15927 7tmA_Bombesin_R-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320593 cd15927 7tmA_Bombesin_R-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60 7 -320593 cd15927 7tmA_Bombesin_R-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320593 cd15927 7tmA_Bombesin_R-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320593 cd15927 7tmA_Bombesin_R-like 6 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320593 cd15927 7tmA_Bombesin_R-like 7 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320593 cd15927 7tmA_Bombesin_R-like 8 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320594 cd15928 7tmA_GHSR-like 1 peptide ligand binding site 0 0 1 0 59,76,138,153,154,155,156,236,237,240,241,254,258 2 -320594 cd15928 7tmA_GHSR-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320594 cd15928 7tmA_GHSR-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320594 cd15928 7tmA_GHSR-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320594 cd15928 7tmA_GHSR-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320594 cd15928 7tmA_GHSR-like 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320594 cd15928 7tmA_GHSR-like 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320594 cd15928 7tmA_GHSR-like 8 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -341353 cd15929 7tmB1_GlucagonR-like 1 putative polypeptide ligand binding pocket 0 1 1 1 1,7,11,49,53,56,57,60,86,92,93,96,100,156,157,164,165,167,168,169,223,226,243,244,247 2 -341353 cd15929 7tmB1_GlucagonR-like 2 G protein interaction site 0 1 1 0 30,39,110,113,114,115,190,193,211,212,215,218,260,261,264,265,267,271,274,278 2 -341353 cd15929 7tmB1_GlucagonR-like 3 allosteric modulator binding site 0 1 1 0 190,206,207,209,210,211,213,214,256,260,264,265,266 5 -341353 cd15929 7tmB1_GlucagonR-like 4 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341353 cd15929 7tmB1_GlucagonR-like 5 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -341353 cd15929 7tmB1_GlucagonR-like 6 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -341353 cd15929 7tmB1_GlucagonR-like 7 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -341353 cd15929 7tmB1_GlucagonR-like 8 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -341353 cd15929 7tmB1_GlucagonR-like 9 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341353 cd15929 7tmB1_GlucagonR-like 10 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320596 cd15930 7tmB1_Secretin_R-like 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,155,156,158,160,216,219,232,236 2 -320596 cd15930 7tmB1_Secretin_R-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320596 cd15930 7tmB1_Secretin_R-like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320596 cd15930 7tmB1_Secretin_R-like 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320596 cd15930 7tmB1_Secretin_R-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320596 cd15930 7tmB1_Secretin_R-like 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320596 cd15930 7tmB1_Secretin_R-like 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320596 cd15930 7tmB1_Secretin_R-like 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,151,152,154,156,212,215,227,231 2 -320597 cd15931 7tmB2_EMR_Adhesion_II 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 5 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 6 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 7 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 8 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,59,62,63,66,76,83,160,161,163,165,221,224,237,241 2 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 3 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,145,146,148,150,207,210,222,226 2 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 5 TM helix 4 0 0 0 0 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 6 TM helix 5 0 0 0 0 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 7 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320600 cd15934 7tmC_mGluRs_group2_3 1 putative allosteric modulator binding site 0 0 1 1 57,69,70,73,74,77,155,160,163,164,167,201,204,205,208,212,222,223,226,229,233 5 -320600 cd15934 7tmC_mGluRs_group2_3 2 putative dimer interface 0 0 1 1 3,6,7,10,11,13,14,48,52,55,56,64,68 2 -320600 cd15934 7tmC_mGluRs_group2_3 3 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320600 cd15934 7tmC_mGluRs_group2_3 4 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320600 cd15934 7tmC_mGluRs_group2_3 5 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -320600 cd15934 7tmC_mGluRs_group2_3 6 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320600 cd15934 7tmC_mGluRs_group2_3 7 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320600 cd15934 7tmC_mGluRs_group2_3 8 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320600 cd15934 7tmC_mGluRs_group2_3 9 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320601 cd15935 7tmA_OR4Q3-like 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,171,174,175,176,178,179,180,182,183,227,230,231,233,234,237,241,242,244,245,246,249,252,253 5 -320601 cd15935 7tmA_OR4Q3-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320601 cd15935 7tmA_OR4Q3-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320601 cd15935 7tmA_OR4Q3-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320601 cd15935 7tmA_OR4Q3-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320601 cd15935 7tmA_OR4Q3-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320601 cd15935 7tmA_OR4Q3-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320601 cd15935 7tmA_OR4Q3-like 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320602 cd15936 7tmA_OR4D-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,226,229,230,232,233,236,240,241,243,244,245,248,251,252 5 -320602 cd15936 7tmA_OR4D-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320602 cd15936 7tmA_OR4D-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320602 cd15936 7tmA_OR4D-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320602 cd15936 7tmA_OR4D-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320602 cd15936 7tmA_OR4D-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320602 cd15936 7tmA_OR4D-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320602 cd15936 7tmA_OR4D-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320603 cd15937 7tmA_OR4N-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,226,229,230,232,233,236,240,241,243,244,245,248,251,252 5 -320603 cd15937 7tmA_OR4N-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320603 cd15937 7tmA_OR4N-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320603 cd15937 7tmA_OR4N-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320603 cd15937 7tmA_OR4N-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320603 cd15937 7tmA_OR4N-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320603 cd15937 7tmA_OR4N-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320603 cd15937 7tmA_OR4N-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320604 cd15938 7tmA_OR4Q2-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,224,227,228,230,231,234,238,239,241,242,243,246,249,250 5 -320604 cd15938 7tmA_OR4Q2-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320604 cd15938 7tmA_OR4Q2-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320604 cd15938 7tmA_OR4Q2-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320604 cd15938 7tmA_OR4Q2-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320604 cd15938 7tmA_OR4Q2-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320604 cd15938 7tmA_OR4Q2-like 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320604 cd15938 7tmA_OR4Q2-like 8 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320605 cd15939 7tmA_OR4A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,226,229,230,232,233,236,240,241,243,244,245,248,251,252 5 -320605 cd15939 7tmA_OR4A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320605 cd15939 7tmA_OR4A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320605 cd15939 7tmA_OR4A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320605 cd15939 7tmA_OR4A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320605 cd15939 7tmA_OR4A-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320605 cd15939 7tmA_OR4A-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320605 cd15939 7tmA_OR4A-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320606 cd15940 7tmA_OR4E-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,226,229,230,232,233,236,240,241,243,244,245,248,251,252 5 -320606 cd15940 7tmA_OR4E-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320606 cd15940 7tmA_OR4E-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320606 cd15940 7tmA_OR4E-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320606 cd15940 7tmA_OR4E-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320606 cd15940 7tmA_OR4E-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320606 cd15940 7tmA_OR4E-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320606 cd15940 7tmA_OR4E-like 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320607 cd15941 7tmA_OR10S1-like 1 putative ligand binding pocket 0 0 1 1 57,60,61,74,75,76,77,78,79,81,82,85,130,132,133,134,135,136,172,175,176,177,179,180,181,183,184,229,232,233,235,236,239,243,244,246,247,248,251,254,255 5 -320607 cd15941 7tmA_OR10S1-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320607 cd15941 7tmA_OR10S1-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320607 cd15941 7tmA_OR10S1-like 4 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320607 cd15941 7tmA_OR10S1-like 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320607 cd15941 7tmA_OR10S1-like 6 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 7 -320607 cd15941 7tmA_OR10S1-like 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320607 cd15941 7tmA_OR10S1-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320608 cd15942 7tmA_OR10G6-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,241,242,244,245,246,249,252,253 5 -320608 cd15942 7tmA_OR10G6-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320608 cd15942 7tmA_OR10G6-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320608 cd15942 7tmA_OR10G6-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320608 cd15942 7tmA_OR10G6-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320608 cd15942 7tmA_OR10G6-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320608 cd15942 7tmA_OR10G6-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320608 cd15942 7tmA_OR10G6-like 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320609 cd15943 7tmA_OR5AP2-like 1 putative ligand binding pocket 0 0 1 1 70,73,74,86,87,88,89,90,91,93,94,97,142,144,145,146,147,148,184,187,188,189,191,192,193,195,196,241,244,245,247,248,251,257,258,260,261,262,265,268,269 5 -320609 cd15943 7tmA_OR5AP2-like 2 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -320609 cd15943 7tmA_OR5AP2-like 3 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320609 cd15943 7tmA_OR5AP2-like 4 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -320609 cd15943 7tmA_OR5AP2-like 5 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320609 cd15943 7tmA_OR5AP2-like 6 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320609 cd15943 7tmA_OR5AP2-like 7 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320609 cd15943 7tmA_OR5AP2-like 8 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320610 cd15944 7tmA_OR5AR1-like 1 putative ligand binding pocket 0 0 1 1 69,72,73,85,86,87,88,89,90,92,93,96,141,143,144,145,146,147,183,186,187,188,190,191,192,194,195,240,243,244,246,247,250,256,257,259,260,261,264,267,268 5 -320610 cd15944 7tmA_OR5AR1-like 2 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320610 cd15944 7tmA_OR5AR1-like 3 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320610 cd15944 7tmA_OR5AR1-like 4 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320610 cd15944 7tmA_OR5AR1-like 5 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320610 cd15944 7tmA_OR5AR1-like 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320610 cd15944 7tmA_OR5AR1-like 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320610 cd15944 7tmA_OR5AR1-like 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320611 cd15945 7tmA_OR5C1-like 1 putative ligand binding pocket 0 0 1 1 69,72,73,85,86,87,88,89,90,92,93,96,141,143,144,145,146,147,183,186,187,188,190,191,192,194,195,240,243,244,246,247,250,256,257,259,260,261,264,267,268 5 -320611 cd15945 7tmA_OR5C1-like 2 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320611 cd15945 7tmA_OR5C1-like 3 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320611 cd15945 7tmA_OR5C1-like 4 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320611 cd15945 7tmA_OR5C1-like 5 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320611 cd15945 7tmA_OR5C1-like 6 TM helix 5 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320611 cd15945 7tmA_OR5C1-like 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320611 cd15945 7tmA_OR5C1-like 8 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320612 cd15946 7tmA_OR1330-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320612 cd15946 7tmA_OR1330-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320612 cd15946 7tmA_OR1330-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320612 cd15946 7tmA_OR1330-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320612 cd15946 7tmA_OR1330-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320612 cd15946 7tmA_OR1330-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320612 cd15946 7tmA_OR1330-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320612 cd15946 7tmA_OR1330-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320613 cd15947 7tmA_OR2B-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,243,244,246,247,248,251,254,255 5 -320613 cd15947 7tmA_OR2B-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320613 cd15947 7tmA_OR2B-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320613 cd15947 7tmA_OR2B-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320613 cd15947 7tmA_OR2B-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320613 cd15947 7tmA_OR2B-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320613 cd15947 7tmA_OR2B-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320613 cd15947 7tmA_OR2B-like 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320614 cd15948 7tmA_OR52K-like 1 putative ligand binding pocket 0 0 1 1 57,60,61,73,74,75,76,77,78,80,81,84,129,131,132,133,134,135,171,174,175,176,178,179,180,182,183,228,231,232,234,235,238,246,247,249,250,251,254,257,258 5 -320614 cd15948 7tmA_OR52K-like 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320614 cd15948 7tmA_OR52K-like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320614 cd15948 7tmA_OR52K-like 4 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320614 cd15948 7tmA_OR52K-like 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320614 cd15948 7tmA_OR52K-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320614 cd15948 7tmA_OR52K-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320614 cd15948 7tmA_OR52K-like 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320615 cd15949 7tmA_OR52M-like 1 putative ligand binding pocket 0 0 1 1 72,75,76,88,89,90,91,92,93,95,96,99,144,146,147,148,149,150,186,189,190,191,193,194,195,197,198,243,246,247,249,250,253,261,262,264,265,266,269,272,273 5 -320615 cd15949 7tmA_OR52M-like 2 TM helix 1 0 0 0 1 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 7 -320615 cd15949 7tmA_OR52M-like 3 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 7 -320615 cd15949 7tmA_OR52M-like 4 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118 7 -320615 cd15949 7tmA_OR52M-like 5 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320615 cd15949 7tmA_OR52M-like 6 TM helix 5 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320615 cd15949 7tmA_OR52M-like 7 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320615 cd15949 7tmA_OR52M-like 8 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320616 cd15950 7tmA_OR52I-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320616 cd15950 7tmA_OR52I-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320616 cd15950 7tmA_OR52I-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320616 cd15950 7tmA_OR52I-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320616 cd15950 7tmA_OR52I-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320616 cd15950 7tmA_OR52I-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320616 cd15950 7tmA_OR52I-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320616 cd15950 7tmA_OR52I-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320617 cd15951 7tmA_OR52R_52L-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320617 cd15951 7tmA_OR52R_52L-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320617 cd15951 7tmA_OR52R_52L-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320617 cd15951 7tmA_OR52R_52L-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320617 cd15951 7tmA_OR52R_52L-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320617 cd15951 7tmA_OR52R_52L-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320617 cd15951 7tmA_OR52R_52L-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320617 cd15951 7tmA_OR52R_52L-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320618 cd15952 7tmA_OR52E-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,169,172,173,174,176,177,178,180,181,226,229,230,232,233,236,244,245,247,248,249,252,255,256 5 -320618 cd15952 7tmA_OR52E-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320618 cd15952 7tmA_OR52E-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320618 cd15952 7tmA_OR52E-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320618 cd15952 7tmA_OR52E-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320618 cd15952 7tmA_OR52E-like 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320618 cd15952 7tmA_OR52E-like 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320618 cd15952 7tmA_OR52E-like 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341354 cd15953 7tmA_OR52P-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -341354 cd15953 7tmA_OR52P-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341354 cd15953 7tmA_OR52P-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341354 cd15953 7tmA_OR52P-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341354 cd15953 7tmA_OR52P-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -341354 cd15953 7tmA_OR52P-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -341354 cd15953 7tmA_OR52P-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -341354 cd15953 7tmA_OR52P-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320620 cd15954 7tmA_OR52N-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,246,247,249,250,251,254,257,258 5 -320620 cd15954 7tmA_OR52N-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320620 cd15954 7tmA_OR52N-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320620 cd15954 7tmA_OR52N-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320620 cd15954 7tmA_OR52N-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320620 cd15954 7tmA_OR52N-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320620 cd15954 7tmA_OR52N-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320620 cd15954 7tmA_OR52N-like 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320621 cd15955 7tmA_OR52A-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,171,174,175,176,178,179,180,182,183,228,231,232,234,235,238,246,247,249,250,251,254,257,258 5 -320621 cd15955 7tmA_OR52A-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320621 cd15955 7tmA_OR52A-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320621 cd15955 7tmA_OR52A-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320621 cd15955 7tmA_OR52A-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320621 cd15955 7tmA_OR52A-like 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320621 cd15955 7tmA_OR52A-like 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320621 cd15955 7tmA_OR52A-like 8 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320622 cd15956 7tmA_OR52W-like 1 putative ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,170,173,174,175,177,178,179,181,182,227,230,231,233,234,237,245,246,248,249,250,253,256,257 5 -320622 cd15956 7tmA_OR52W-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320622 cd15956 7tmA_OR52W-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320622 cd15956 7tmA_OR52W-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320622 cd15956 7tmA_OR52W-like 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320622 cd15956 7tmA_OR52W-like 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320622 cd15956 7tmA_OR52W-like 7 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320622 cd15956 7tmA_OR52W-like 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341355 cd15957 7tmA_Beta2_AR 1 ligand binding site 0 1 1 0 75,79,80,83,84,158,159,165,169,170,173,250,253,254,257,272,276,280 5 -341355 cd15957 7tmA_Beta2_AR 2 G protein interaction site 0 1 1 1 28,29,97,100,101,102,104,105,106,107,108,109,188,191,192,194,195,196,198,199,234,235,238,239 2 -341355 cd15957 7tmA_Beta2_AR 3 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341355 cd15957 7tmA_Beta2_AR 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -341355 cd15957 7tmA_Beta2_AR 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341355 cd15957 7tmA_Beta2_AR 6 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -341355 cd15957 7tmA_Beta2_AR 7 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -341355 cd15957 7tmA_Beta2_AR 8 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -341355 cd15957 7tmA_Beta2_AR 9 TM helix 7 0 0 0 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -320624 cd15958 7tmA_Beta1_AR 1 ligand binding site 0 1 1 0 59,60,75,79,80,83,159,161,165,166,169,170,173,247,250,251,254,270,273,274,277 5 -320624 cd15958 7tmA_Beta1_AR 2 putative G protein interaction site 0 0 1 1 28,29,97,100,101,102,104,105,106,107,108,109,188,191,192,194,195,196,198,199,231,232,235,236 2 -320624 cd15958 7tmA_Beta1_AR 3 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320624 cd15958 7tmA_Beta1_AR 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320624 cd15958 7tmA_Beta1_AR 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320624 cd15958 7tmA_Beta1_AR 6 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320624 cd15958 7tmA_Beta1_AR 7 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320624 cd15958 7tmA_Beta1_AR 8 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320624 cd15958 7tmA_Beta1_AR 9 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320625 cd15959 7tmA_Beta3_AR 1 putative ligand binding site 0 0 1 1 75,76,79,80,83,159,160,162,166,167,170,171,174,251,254,255,258,273,277,281 5 -320625 cd15959 7tmA_Beta3_AR 2 putative G protein interaction site 0 0 1 1 28,29,97,100,101,102,104,105,106,107,108,109,189,192,193,195,196,197,199,200,235,236,239,240 2 -320625 cd15959 7tmA_Beta3_AR 3 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320625 cd15959 7tmA_Beta3_AR 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320625 cd15959 7tmA_Beta3_AR 5 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320625 cd15959 7tmA_Beta3_AR 6 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320625 cd15959 7tmA_Beta3_AR 7 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320625 cd15959 7tmA_Beta3_AR 8 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320625 cd15959 7tmA_Beta3_AR 9 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320626 cd15960 7tmA_GPR185-like 1 putative ligand binding site 0 0 1 1 55,71,72,75,76,79,157,219,226,239,242 5 -320626 cd15960 7tmA_GPR185-like 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320626 cd15960 7tmA_GPR185-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320626 cd15960 7tmA_GPR185-like 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320626 cd15960 7tmA_GPR185-like 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320626 cd15960 7tmA_GPR185-like 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320626 cd15960 7tmA_GPR185-like 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320626 cd15960 7tmA_GPR185-like 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320627 cd15961 7tmA_GPR12 1 putative ligand binding site 0 0 1 1 55,71,72,75,76,79,157,219,226,239,242 5 -320627 cd15961 7tmA_GPR12 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320627 cd15961 7tmA_GPR12 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320627 cd15961 7tmA_GPR12 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320627 cd15961 7tmA_GPR12 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320627 cd15961 7tmA_GPR12 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320627 cd15961 7tmA_GPR12 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320627 cd15961 7tmA_GPR12 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320628 cd15962 7tmA_GPR6 1 putative ligand binding site 0 0 1 1 55,71,72,75,76,79,157,219,226,239,242 5 -320628 cd15962 7tmA_GPR6 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320628 cd15962 7tmA_GPR6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320628 cd15962 7tmA_GPR6 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320628 cd15962 7tmA_GPR6 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320628 cd15962 7tmA_GPR6 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320628 cd15962 7tmA_GPR6 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320628 cd15962 7tmA_GPR6 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320629 cd15963 7tmA_GPR3 1 putative ligand binding site 0 0 1 1 55,71,72,75,76,79,157,219,226,239,242 5 -320629 cd15963 7tmA_GPR3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320629 cd15963 7tmA_GPR3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320629 cd15963 7tmA_GPR3 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320629 cd15963 7tmA_GPR3 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320629 cd15963 7tmA_GPR3 6 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320629 cd15963 7tmA_GPR3 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320629 cd15963 7tmA_GPR3 8 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320630 cd15964 7tmA_TSH-R 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,135,137,138,139,140,141,163,166,167,168,170,171,172,174,175,222,225,226,228,229,232,241,242,244,245,246,249,252,253 2 -320630 cd15964 7tmA_TSH-R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320630 cd15964 7tmA_TSH-R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320630 cd15964 7tmA_TSH-R 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320630 cd15964 7tmA_TSH-R 5 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320630 cd15964 7tmA_TSH-R 6 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320630 cd15964 7tmA_TSH-R 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320630 cd15964 7tmA_TSH-R 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320631 cd15965 7tmA_RXFP1_LGR7 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,134,136,137,138,139,140,170,173,174,175,177,178,179,181,182,235,238,239,241,242,245,253,254,256,257,258,261,264,265 2 -320631 cd15965 7tmA_RXFP1_LGR7 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320631 cd15965 7tmA_RXFP1_LGR7 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320631 cd15965 7tmA_RXFP1_LGR7 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320631 cd15965 7tmA_RXFP1_LGR7 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320631 cd15965 7tmA_RXFP1_LGR7 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320631 cd15965 7tmA_RXFP1_LGR7 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320631 cd15965 7tmA_RXFP1_LGR7 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320632 cd15966 7tmA_RXFP2_LGR8 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,79,80,81,82,83,84,86,87,90,134,136,137,138,139,140,170,173,174,175,177,178,179,181,182,235,238,239,241,242,245,253,254,256,257,258,261,264,265 2 -320632 cd15966 7tmA_RXFP2_LGR8 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320632 cd15966 7tmA_RXFP2_LGR8 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320632 cd15966 7tmA_RXFP2_LGR8 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320632 cd15966 7tmA_RXFP2_LGR8 5 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320632 cd15966 7tmA_RXFP2_LGR8 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320632 cd15966 7tmA_RXFP2_LGR8 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320632 cd15966 7tmA_RXFP2_LGR8 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320633 cd15967 7tmA_P2Y1-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,146,148,149,150,159,162,163,164,166,167,168,170,171,218,221,222,224,225,228,247,248,250,251,252,255,258,259 5 -320633 cd15967 7tmA_P2Y1-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320633 cd15967 7tmA_P2Y1-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320633 cd15967 7tmA_P2Y1-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320633 cd15967 7tmA_P2Y1-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320633 cd15967 7tmA_P2Y1-like 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320633 cd15967 7tmA_P2Y1-like 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320633 cd15967 7tmA_P2Y1-like 8 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,224,227,228,230,231,234,251,252,254,255,256,259,262,263 5 -320634 cd15968 7tmA_P2Y6_P2Y3-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320635 cd15969 7tmA_GPR87 1 putative ligand binding site 0 0 1 1 67,71,75,76,79,80,83,126,129,130,133,137,148,149,153,161,164,165,168,229,232,236,253 5 -320635 cd15969 7tmA_GPR87 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320635 cd15969 7tmA_GPR87 3 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320635 cd15969 7tmA_GPR87 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320635 cd15969 7tmA_GPR87 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320635 cd15969 7tmA_GPR87 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320635 cd15969 7tmA_GPR87 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320635 cd15969 7tmA_GPR87 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320636 cd15970 7tmA_SSTR1 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,161,164,165,166,168,169,170,172,173,225,228,229,231,232,235,242,243,245,246,247,250,253,254 2 -320636 cd15970 7tmA_SSTR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320636 cd15970 7tmA_SSTR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320636 cd15970 7tmA_SSTR1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320636 cd15970 7tmA_SSTR1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320636 cd15970 7tmA_SSTR1 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320636 cd15970 7tmA_SSTR1 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320636 cd15970 7tmA_SSTR1 8 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320637 cd15971 7tmA_SSTR2 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,160,163,164,165,167,168,169,171,172,224,227,228,230,231,234,245,246,248,249,250,253,256,257 2 -320637 cd15971 7tmA_SSTR2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320637 cd15971 7tmA_SSTR2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320637 cd15971 7tmA_SSTR2 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320637 cd15971 7tmA_SSTR2 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320637 cd15971 7tmA_SSTR2 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320637 cd15971 7tmA_SSTR2 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320637 cd15971 7tmA_SSTR2 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320638 cd15972 7tmA_SSTR3 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,158,161,162,163,165,166,167,169,170,224,227,228,230,231,234,245,246,248,249,250,253,256,257 2 -320638 cd15972 7tmA_SSTR3 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320638 cd15972 7tmA_SSTR3 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320638 cd15972 7tmA_SSTR3 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320638 cd15972 7tmA_SSTR3 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320638 cd15972 7tmA_SSTR3 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320638 cd15972 7tmA_SSTR3 7 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320638 cd15972 7tmA_SSTR3 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320639 cd15973 7tmA_SSTR4 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,159,162,163,164,166,167,168,170,171,223,226,227,229,230,233,240,241,243,244,245,248,251,252 2 -320639 cd15973 7tmA_SSTR4 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320639 cd15973 7tmA_SSTR4 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320639 cd15973 7tmA_SSTR4 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320639 cd15973 7tmA_SSTR4 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320639 cd15973 7tmA_SSTR4 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320639 cd15973 7tmA_SSTR4 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320639 cd15973 7tmA_SSTR4 8 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320640 cd15974 7tmA_SSTR5 1 putative peptide ligand binding pocket 0 0 1 1 55,58,59,71,72,73,74,75,76,78,79,82,127,129,130,131,132,133,158,161,162,163,165,166,167,169,170,222,225,226,228,229,232,243,244,246,247,248,251,254,255 2 -320640 cd15974 7tmA_SSTR5 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320640 cd15974 7tmA_SSTR5 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320640 cd15974 7tmA_SSTR5 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320640 cd15974 7tmA_SSTR5 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320640 cd15974 7tmA_SSTR5 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320640 cd15974 7tmA_SSTR5 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320640 cd15974 7tmA_SSTR5 8 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320641 cd15975 7tmA_ET-AR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,77,78,79,80,81,82,84,85,88,133,135,136,137,138,139,171,174,175,176,178,179,180,182,183,238,241,242,244,245,248,266,267,269,270,271,274,277,278 2 -320641 cd15975 7tmA_ET-AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320641 cd15975 7tmA_ET-AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320641 cd15975 7tmA_ET-AR 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320641 cd15975 7tmA_ET-AR 5 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320641 cd15975 7tmA_ET-AR 6 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320641 cd15975 7tmA_ET-AR 7 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320641 cd15975 7tmA_ET-AR 8 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320642 cd15976 7tmA_ET-BR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,168,171,172,173,175,176,177,179,180,234,237,238,240,241,244,262,263,265,266,267,270,273,274 2 -320642 cd15976 7tmA_ET-BR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320642 cd15976 7tmA_ET-BR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320642 cd15976 7tmA_ET-BR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320642 cd15976 7tmA_ET-BR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320642 cd15976 7tmA_ET-BR 6 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320642 cd15976 7tmA_ET-BR 7 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320642 cd15976 7tmA_ET-BR 8 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320643 cd15977 7tmA_ET-CR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,168,171,172,173,175,176,177,179,180,234,237,238,240,241,244,262,263,265,266,267,270,273,274 2 -320643 cd15977 7tmA_ET-CR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320643 cd15977 7tmA_ET-CR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320643 cd15977 7tmA_ET-CR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320643 cd15977 7tmA_ET-CR 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320643 cd15977 7tmA_ET-CR 6 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320643 cd15977 7tmA_ET-CR 7 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320643 cd15977 7tmA_ET-CR 8 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320644 cd15978 7tmA_CCK-AR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,164,167,168,169,171,172,173,175,176,222,225,226,228,229,232,244,245,247,248,249,252,255,256 2 -320644 cd15978 7tmA_CCK-AR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320644 cd15978 7tmA_CCK-AR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320644 cd15978 7tmA_CCK-AR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320644 cd15978 7tmA_CCK-AR 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320644 cd15978 7tmA_CCK-AR 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320644 cd15978 7tmA_CCK-AR 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320644 cd15978 7tmA_CCK-AR 8 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320645 cd15979 7tmA_CCK-BR 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,164,167,168,169,171,172,173,175,176,219,222,223,225,226,229,241,242,244,245,246,249,252,253 2 -320645 cd15979 7tmA_CCK-BR 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320645 cd15979 7tmA_CCK-BR 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320645 cd15979 7tmA_CCK-BR 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320645 cd15979 7tmA_CCK-BR 5 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320645 cd15979 7tmA_CCK-BR 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320645 cd15979 7tmA_CCK-BR 7 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320645 cd15979 7tmA_CCK-BR 8 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320646 cd15980 7tmA_NPFFR2 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,170,173,174,175,177,178,179,181,182,241,244,245,247,248,251,265,266,268,269,270,273,276,277 2 -320646 cd15980 7tmA_NPFFR2 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320646 cd15980 7tmA_NPFFR2 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320646 cd15980 7tmA_NPFFR2 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320646 cd15980 7tmA_NPFFR2 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320646 cd15980 7tmA_NPFFR2 6 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320646 cd15980 7tmA_NPFFR2 7 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320646 cd15980 7tmA_NPFFR2 8 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320647 cd15981 7tmA_NPFFR1 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,169,172,173,174,176,177,178,180,181,241,244,245,247,248,251,265,266,268,269,270,273,276,277 2 -320647 cd15981 7tmA_NPFFR1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320647 cd15981 7tmA_NPFFR1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320647 cd15981 7tmA_NPFFR1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320647 cd15981 7tmA_NPFFR1 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320647 cd15981 7tmA_NPFFR1 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320647 cd15981 7tmA_NPFFR1 7 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320647 cd15981 7tmA_NPFFR1 8 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320648 cd15982 7tmB1_PTH2R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,95,102,172,173,175,177,234,237,253,257 2 -320648 cd15982 7tmB1_PTH2R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320648 cd15982 7tmB1_PTH2R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320648 cd15982 7tmB1_PTH2R 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320648 cd15982 7tmB1_PTH2R 5 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320648 cd15982 7tmB1_PTH2R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320648 cd15982 7tmB1_PTH2R 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320648 cd15982 7tmB1_PTH2R 8 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320649 cd15983 7tmB1_PTH3R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,90,97,167,168,170,172,229,232,249,253 2 -320649 cd15983 7tmB1_PTH3R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320649 cd15983 7tmB1_PTH3R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320649 cd15983 7tmB1_PTH3R 4 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -320649 cd15983 7tmB1_PTH3R 5 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320649 cd15983 7tmB1_PTH3R 6 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320649 cd15983 7tmB1_PTH3R 7 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320649 cd15983 7tmB1_PTH3R 8 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320650 cd15984 7tmB1_PTH1R 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,95,102,172,173,175,177,234,237,254,258 2 -320650 cd15984 7tmB1_PTH1R 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320650 cd15984 7tmB1_PTH1R 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320650 cd15984 7tmB1_PTH1R 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320650 cd15984 7tmB1_PTH1R 5 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320650 cd15984 7tmB1_PTH1R 6 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320650 cd15984 7tmB1_PTH1R 7 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320650 cd15984 7tmB1_PTH1R 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320651 cd15985 7tmB1_GlucagonR-like_1 1 putative polypeptide ligand binding pocket 0 0 1 1 1,7,11,49,53,56,57,60,87,93,94,97,101,157,158,165,166,168,169,170,224,227,244,245,248 2 -320651 cd15985 7tmB1_GlucagonR-like_1 2 putative G protein interaction site 0 0 1 1 30,39,111,114,115,116,191,194,212,213,216,219,261,262,265,266,268,272,275,279 2 -320651 cd15985 7tmB1_GlucagonR-like_1 3 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320651 cd15985 7tmB1_GlucagonR-like_1 4 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320651 cd15985 7tmB1_GlucagonR-like_1 5 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320651 cd15985 7tmB1_GlucagonR-like_1 6 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 7 -320651 cd15985 7tmB1_GlucagonR-like_1 7 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320651 cd15985 7tmB1_GlucagonR-like_1 8 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320651 cd15985 7tmB1_GlucagonR-like_1 9 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320651 cd15985 7tmB1_GlucagonR-like_1 10 putative allosteric modulator binding site 0 0 1 1 191,207,208,210,211,212,214,215,257,261,265,266,267 5 -320652 cd15986 7tmB1_VIP-R2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,79,86,156,157,159,161,217,220,233,237 2 -320652 cd15986 7tmB1_VIP-R2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320652 cd15986 7tmB1_VIP-R2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320652 cd15986 7tmB1_VIP-R2 4 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320652 cd15986 7tmB1_VIP-R2 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320652 cd15986 7tmB1_VIP-R2 6 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320652 cd15986 7tmB1_VIP-R2 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320652 cd15986 7tmB1_VIP-R2 8 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320653 cd15987 7tmB1_PACAP-R1 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,77,84,155,156,158,160,216,219,232,236 2 -320653 cd15987 7tmB1_PACAP-R1 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320653 cd15987 7tmB1_PACAP-R1 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320653 cd15987 7tmB1_PACAP-R1 4 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -320653 cd15987 7tmB1_PACAP-R1 5 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320653 cd15987 7tmB1_PACAP-R1 6 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320653 cd15987 7tmB1_PACAP-R1 7 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320653 cd15987 7tmB1_PACAP-R1 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320654 cd15988 7tmB2_BAI2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,68,75,147,148,150,152,239,242,255,259 2 -320654 cd15988 7tmB2_BAI2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320654 cd15988 7tmB2_BAI2 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320654 cd15988 7tmB2_BAI2 4 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320654 cd15988 7tmB2_BAI2 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320654 cd15988 7tmB2_BAI2 6 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320654 cd15988 7tmB2_BAI2 7 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320654 cd15988 7tmB2_BAI2 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320655 cd15989 7tmB2_BAI3 1 putative polypeptide ligand binding pocket 0 0 1 1 9,13,56,59,60,63,70,77,149,150,152,154,241,244,257,261 2 -320655 cd15989 7tmB2_BAI3 2 TM helix 1 0 0 0 1 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320655 cd15989 7tmB2_BAI3 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320655 cd15989 7tmB2_BAI3 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320655 cd15989 7tmB2_BAI3 5 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320655 cd15989 7tmB2_BAI3 6 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320655 cd15989 7tmB2_BAI3 7 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320655 cd15989 7tmB2_BAI3 8 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320656 cd15990 7tmB2_BAI1 1 putative polypeptide ligand binding pocket 0 0 1 1 10,14,57,60,61,64,71,78,150,151,153,155,209,212,225,229 2 -320656 cd15990 7tmB2_BAI1 2 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320656 cd15990 7tmB2_BAI1 3 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320656 cd15990 7tmB2_BAI1 4 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320656 cd15990 7tmB2_BAI1 5 TM helix 4 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320656 cd15990 7tmB2_BAI1 6 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320656 cd15990 7tmB2_BAI1 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320656 cd15990 7tmB2_BAI1 8 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320657 cd15991 7tmB2_CELSR1 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,203,206,218,222 2 -320657 cd15991 7tmB2_CELSR1 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320657 cd15991 7tmB2_CELSR1 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320657 cd15991 7tmB2_CELSR1 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320657 cd15991 7tmB2_CELSR1 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320657 cd15991 7tmB2_CELSR1 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320657 cd15991 7tmB2_CELSR1 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320657 cd15991 7tmB2_CELSR1 8 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320658 cd15992 7tmB2_CELSR2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,204,207,219,223 2 -320658 cd15992 7tmB2_CELSR2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320658 cd15992 7tmB2_CELSR2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320658 cd15992 7tmB2_CELSR2 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320658 cd15992 7tmB2_CELSR2 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320658 cd15992 7tmB2_CELSR2 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320658 cd15992 7tmB2_CELSR2 7 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320658 cd15992 7tmB2_CELSR2 8 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320659 cd15993 7tmB2_CELSR3 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,203,206,218,222 2 -320659 cd15993 7tmB2_CELSR3 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320659 cd15993 7tmB2_CELSR3 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320659 cd15993 7tmB2_CELSR3 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320659 cd15993 7tmB2_CELSR3 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320659 cd15993 7tmB2_CELSR3 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320659 cd15993 7tmB2_CELSR3 7 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320659 cd15993 7tmB2_CELSR3 8 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320660 cd15994 7tmB2_GPR111_115 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,59,62,63,66,76,83,160,161,163,165,220,223,236,240 2 -320660 cd15994 7tmB2_GPR111_115 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320660 cd15994 7tmB2_GPR111_115 3 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320660 cd15994 7tmB2_GPR111_115 4 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320660 cd15994 7tmB2_GPR111_115 5 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320660 cd15994 7tmB2_GPR111_115 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320660 cd15994 7tmB2_GPR111_115 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320660 cd15994 7tmB2_GPR111_115 8 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320661 cd15995 7tmB2_GPR56 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,70,77,164,165,167,169,217,220,234,238 2 -320661 cd15995 7tmB2_GPR56 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320661 cd15995 7tmB2_GPR56 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320661 cd15995 7tmB2_GPR56 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320661 cd15995 7tmB2_GPR56 5 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320661 cd15995 7tmB2_GPR56 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320661 cd15995 7tmB2_GPR56 7 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320661 cd15995 7tmB2_GPR56 8 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320662 cd15996 7tmB2_GPR126 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,70,77,162,163,165,167,222,225,237,241 2 -320662 cd15996 7tmB2_GPR126 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320662 cd15996 7tmB2_GPR126 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320662 cd15996 7tmB2_GPR126 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320662 cd15996 7tmB2_GPR126 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320662 cd15996 7tmB2_GPR126 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320662 cd15996 7tmB2_GPR126 7 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320662 cd15996 7tmB2_GPR126 8 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320663 cd15997 7tmB2_GPR112 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,54,57,58,61,70,77,160,161,163,165,220,223,235,239 2 -320663 cd15997 7tmB2_GPR112 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320663 cd15997 7tmB2_GPR112 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320663 cd15997 7tmB2_GPR112 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320663 cd15997 7tmB2_GPR112 5 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320663 cd15997 7tmB2_GPR112 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320663 cd15997 7tmB2_GPR112 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320663 cd15997 7tmB2_GPR112 8 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320664 cd15998 7tmB2_GPR124 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,56,59,60,63,70,77,158,159,161,163,215,218,233,237 2 -320664 cd15998 7tmB2_GPR124 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320664 cd15998 7tmB2_GPR124 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320664 cd15998 7tmB2_GPR124 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320664 cd15998 7tmB2_GPR124 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320664 cd15998 7tmB2_GPR124 6 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320664 cd15998 7tmB2_GPR124 7 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320664 cd15998 7tmB2_GPR124 8 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320665 cd15999 7tmB2_GPR125 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,56,59,60,63,70,77,160,161,163,165,258,261,276,280 2 -320665 cd15999 7tmB2_GPR125 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320665 cd15999 7tmB2_GPR125 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320665 cd15999 7tmB2_GPR125 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320665 cd15999 7tmB2_GPR125 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320665 cd15999 7tmB2_GPR125 6 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320665 cd15999 7tmB2_GPR125 7 TM helix 6 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320665 cd15999 7tmB2_GPR125 8 TM helix 7 0 0 0 0 273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -320666 cd16000 7tmB2_GPR123 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,56,59,60,63,70,77,161,162,164,166,221,224,239,243 2 -320666 cd16000 7tmB2_GPR123 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320666 cd16000 7tmB2_GPR123 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320666 cd16000 7tmB2_GPR123 4 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320666 cd16000 7tmB2_GPR123 5 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320666 cd16000 7tmB2_GPR123 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320666 cd16000 7tmB2_GPR123 7 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320666 cd16000 7tmB2_GPR123 8 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320667 cd16001 7tmA_P2Y3-like 1 putative ligand binding pocket 0 0 1 1 55,58,59,72,73,74,75,76,77,79,80,83,128,130,131,132,133,134,148,150,151,152,161,164,165,166,168,169,170,172,173,223,226,227,229,230,233,250,251,253,254,255,258,261,262 5 -320667 cd16001 7tmA_P2Y3-like 2 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320667 cd16001 7tmA_P2Y3-like 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -320667 cd16001 7tmA_P2Y3-like 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320667 cd16001 7tmA_P2Y3-like 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320667 cd16001 7tmA_P2Y3-like 6 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320667 cd16001 7tmA_P2Y3-like 7 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320667 cd16001 7tmA_P2Y3-like 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320668 cd16002 7tmA_NK1R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,160,163,164,165,167,168,169,171,172,228,231,232,234,235,238,250,251,253,254,255,258,261,262 2 -320668 cd16002 7tmA_NK1R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320668 cd16002 7tmA_NK1R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320668 cd16002 7tmA_NK1R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320668 cd16002 7tmA_NK1R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320668 cd16002 7tmA_NK1R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320668 cd16002 7tmA_NK1R 7 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320668 cd16002 7tmA_NK1R 8 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320669 cd16003 7tmA_NKR_NK3R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,158,161,162,163,165,166,167,169,170,226,229,230,232,233,236,248,249,251,252,253,256,259,260 2 -320669 cd16003 7tmA_NKR_NK3R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320669 cd16003 7tmA_NKR_NK3R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320669 cd16003 7tmA_NKR_NK3R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320669 cd16003 7tmA_NKR_NK3R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320669 cd16003 7tmA_NKR_NK3R 6 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320669 cd16003 7tmA_NKR_NK3R 7 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320669 cd16003 7tmA_NKR_NK3R 8 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320670 cd16004 7tmA_SKR_NK2R 1 putative peptide ligand binding pocket 0 0 1 1 56,59,60,72,73,74,75,76,77,79,80,83,126,128,129,130,131,132,160,163,164,165,167,168,169,171,172,229,232,233,235,236,239,251,252,254,255,256,259,262,263 2 -320670 cd16004 7tmA_SKR_NK2R 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320670 cd16004 7tmA_SKR_NK2R 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320670 cd16004 7tmA_SKR_NK2R 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320670 cd16004 7tmA_SKR_NK2R 5 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320670 cd16004 7tmA_SKR_NK2R 6 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320670 cd16004 7tmA_SKR_NK2R 7 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320670 cd16004 7tmA_SKR_NK2R 8 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320671 cd16005 7tmB2_Latrophilin-3 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320671 cd16005 7tmB2_Latrophilin-3 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320671 cd16005 7tmB2_Latrophilin-3 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320671 cd16005 7tmB2_Latrophilin-3 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320671 cd16005 7tmB2_Latrophilin-3 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320671 cd16005 7tmB2_Latrophilin-3 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320671 cd16005 7tmB2_Latrophilin-3 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320671 cd16005 7tmB2_Latrophilin-3 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320672 cd16006 7tmB2_Latrophilin-2 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320672 cd16006 7tmB2_Latrophilin-2 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320672 cd16006 7tmB2_Latrophilin-2 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320672 cd16006 7tmB2_Latrophilin-2 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320672 cd16006 7tmB2_Latrophilin-2 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320672 cd16006 7tmB2_Latrophilin-2 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320672 cd16006 7tmB2_Latrophilin-2 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320672 cd16006 7tmB2_Latrophilin-2 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320673 cd16007 7tmB2_Latrophilin-1 1 putative polypeptide ligand binding pocket 0 0 1 1 7,11,53,56,57,60,67,74,146,147,149,151,207,210,222,226 2 -320673 cd16007 7tmB2_Latrophilin-1 2 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320673 cd16007 7tmB2_Latrophilin-1 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320673 cd16007 7tmB2_Latrophilin-1 4 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -320673 cd16007 7tmB2_Latrophilin-1 5 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320673 cd16007 7tmB2_Latrophilin-1 6 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320673 cd16007 7tmB2_Latrophilin-1 7 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320673 cd16007 7tmB2_Latrophilin-1 8 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -293733 cd16009 PPM 1 active site 0 1 1 1 8,80,126,127,147,151,153,155,187,189,191,203,207,235,281,286,322,323,334 1 -293733 cd16009 PPM 2 Mn binding site D[TS]X[DET]HDHH 1 1 0 8,80,151,281,286,322,323,334 4 -293733 cd16009 PPM 3 substrate binding site 0 0 1 1 80,126,127,147,151,155,187,189,191,203,235,281,286,323,334 5 -293733 cd16009 PPM 4 activator binding site 0 1 1 1 126,127,151,153,189,191,203,207 5 -293734 cd16010 iPGM 1 active site 0 1 1 0 8,57,58,118,119,149,150,181,187,253,256,326,329,393,397,434,435,437,453 1 -293734 cd16010 iPGM 2 Mn binding site D[TS]DHDHH 1 1 1 8,58,393,397,434,435,453 4 -293734 cd16010 iPGM 3 substrate binding site 0 1 1 0 8,57,58,118,119,149,150,181,187,253,256,326,329,393,397,435,453 5 -293735 cd16011 iPGM_like 1 putative active site 0 0 1 1 8,55,267,271,309,310,319 1 -293735 cd16011 iPGM_like 2 Zn binding site D[TS]D[HE]DHH 1 0 0 8,55,267,271,309,310,319 4 -293735 cd16011 iPGM_like 3 putative substrate binding site 0 0 1 1 8,55,267,310 5 -293735 cd16011 iPGM_like 4 homodimer interface 0 1 0 0 83,85,130,137,222,229,243,247,248,290,291 2 -293736 cd16012 ALP 1 active site 0 1 1 0 8,55,56,110,121,195,200,204,242,243,247 1 -293736 cd16012 ALP 2 metal binding site D[TS][TS]EDHDHH 1 1 0 8,56,110,195,200,204,242,243,247 4 -293736 cd16012 ALP 3 substrate binding site 0 1 1 1 8,55,56,121,200,204,243,247 5 -293736 cd16012 ALP 4 homodimer interface 0 1 1 0 12,13,16,19,20,41,42,43,45,47,49,53,66,67,68,78,84,246,248,249,250,251,253,263,265,266,267,268,269,271,272,275 2 -293737 cd16013 AcpA 1 putative active site 0 0 1 1 11,142,267,303,304 1 -293737 cd16013 AcpA 2 metal binding site E[TS]D[DE] 1 1 0 11,142,303,304 4 -293737 cd16013 AcpA 3 putative substrate binding site 0 0 1 1 11,142,267,304 5 -293737 cd16013 AcpA 4 homodimer interface 0 1 1 0 49,50,53,55,88,89,91,133,311,313,315,316,317,318,344,345,346,347,349 2 -293738 cd16014 PLC 1 putative active site 0 0 1 1 9,88,174,210,211 1 -293738 cd16014 PLC 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 9,88,210,211 4 -293738 cd16014 PLC 3 putative substrate binding site 0 0 1 1 9,88,174,211 5 -293739 cd16015 LTA_synthase 1 putative active site 0 0 1 1 8,50,167,227,228 1 -293739 cd16015 LTA_synthase 2 metal binding site E[TS]D[HE] 1 1 0 8,50,227,228 4 -293739 cd16015 LTA_synthase 3 putative substrate binding site 0 0 1 1 8,50,167,228 5 -293739 cd16015 LTA_synthase 4 homodimer interface 0 1 1 0 100,102,103,104,105,108 2 -293740 cd16016 AP-SPAP 1 active site 0 1 1 0 10,11,50,51,72,135,217,221,264,265,400 1 -293740 cd16016 AP-SPAP 2 Zn binding site [DE][CST]D[HE][DE][HENQ]H 1 1 0 10,51,217,221,264,265,400 4 -293740 cd16016 AP-SPAP 3 substrate binding site 0 1 1 0 10,50,51,72,135,217,221,265,400 5 -293741 cd16017 LptA 1 putative active site 0 0 1 1 10,50,153,219,220,232 1 -293741 cd16017 LptA 2 Zn binding site [ED]THDH[HQ] 1 1 0 10,50,153,219,220,232 4 -293741 cd16017 LptA 3 putative substrate binding site 0 0 1 1 10,50,153,220 5 -293741 cd16017 LptA 4 homodimer interface 0 1 1 1 80,93,231,232,233 2 -293742 cd16018 Enpp 1 active site 0 1 1 0 8,44,45,66,167,171,214,215,223 1 -293742 cd16018 Enpp 2 Zn binding site DTD[HQ][DE]HH 1 1 0 8,45,167,171,214,215,223 4 -293742 cd16018 Enpp 3 substrate binding site 0 1 1 0 8,44,45,66,167,171,215,223 5 -293742 cd16018 Enpp 4 homodimer interface 0 1 1 1 248,249,250 2 -293743 cd16019 GPI_EPT 1 putative active site 0 0 1 1 12,55,163,206,207 1 -293743 cd16019 GPI_EPT 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 12,55,206,207 4 -293743 cd16019 GPI_EPT 3 putative substrate binding site 0 0 1 1 12,55,163,207 5 -293744 cd16020 GPI_EPT_1 1 putative active site 0 0 1 1 12,13,51,167,214,215 1 -293744 cd16020 GPI_EPT_1 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 12,51,214,215 4 -293744 cd16020 GPI_EPT_1 3 putative substrate binding site 0 0 1 1 12,51,167,215 5 -293745 cd16021 ALP_like 1 putative active site 0 0 1 1 8,45,174,211,212 1 -293745 cd16021 ALP_like 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 8,45,211,212 4 -293745 cd16021 ALP_like 3 putative substrate binding site 0 0 1 1 8,45,174,212 5 -293746 cd16022 sulfatase_like 1 active site 0 1 1 0 8,9,48,99,101,127,166,167 1 -293746 cd16022 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 1 1 1 8,9,48,166,167 4 -293746 cd16022 sulfatase_like 3 substrate binding site 0 1 1 0 8,9,48,99,101,127,167 5 -293747 cd16023 GPI_EPT_3 1 putative active site 0 0 1 1 12,65,170,212,213 1 -293747 cd16023 GPI_EPT_3 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 12,65,212,213 4 -293747 cd16023 GPI_EPT_3 3 putative substrate binding site 0 0 1 1 12,65,170,213 5 -293748 cd16024 GPI_EPT_2 1 putative active site 0 0 1 1 12,13,51,155,202,203 1 -293748 cd16024 GPI_EPT_2 2 metal binding site [DE][CST][DE][EHNQ] 0 1 1 12,51,202,203 4 -293748 cd16024 GPI_EPT_2 3 putative substrate binding site 0 0 1 1 12,51,155,203 5 -293749 cd16025 PAS_like 1 active site 0 1 1 0 10,11,48,106,108,148,254,255,275 1 -293749 cd16025 PAS_like 2 Ca binding site [DE]X[CS][DE][HNQ] 1 1 0 10,11,48,254,255 4 -293749 cd16025 PAS_like 3 substrate binding site 0 1 1 1 10,11,48,106,108,148,255,275 5 -293750 cd16026 GALNS_like 1 active site 0 1 1 0 9,10,49,103,105,128,194,246,247,267,268 1 -293750 cd16026 GALNS_like 2 metal binding site [DE]X[CS][DE][HNQ] 1 1 0 9,10,49,246,247 4 -293750 cd16026 GALNS_like 3 substrate binding site 0 1 1 0 49,103,105,128,194,267,268 5 -293751 cd16027 SGSH 1 putative active site 0 0 1 1 8,9,47,98,100,153,224,225 1 -293751 cd16027 SGSH 2 Ca binding site [DE]X[CS][DE][HNQ] 1 0 0 8,9,47,224,225 4 -293751 cd16027 SGSH 3 putative substrate binding site 0 0 1 1 8,9,47,98,100,153,225 5 -293751 cd16027 SGSH 4 homodimer interface 0 1 0 0 310,332,333 2 -293752 cd16028 PMH 1 putative active site 0 0 1 1 8,9,48,96,98,168,273,274 1 -293752 cd16028 PMH 2 Mn binding site DCDH 1 1 0 8,48,273,274 4 -293752 cd16028 PMH 3 putative substrate binding site 0 0 1 1 8,9,48,96,98,168,274 5 -293752 cd16028 PMH 4 tetramer interface 0 1 1 1 65,85,86,87,88,89,90,145,147,148,151,152,156,398,400,429,431,438,439,440,442,443,444 2 -293753 cd16029 4-S 1 putative active site 0 0 1 1 8,9,47,101,103,193,255,256 1 -293753 cd16029 4-S 2 Ca binding site [DE]X[CS][DE][HNQ] 1 1 0 8,9,47,255,256 4 -293753 cd16029 4-S 3 putative substrate binding site 0 0 1 1 8,9,47,101,103,193,256 5 -293754 cd16030 iduronate-2-sulfatase 1 putative active site 0 0 1 1 10,11,49,100,102,192,296,297 1 -293754 cd16030 iduronate-2-sulfatase 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 10,11,49,296,297 4 -293754 cd16030 iduronate-2-sulfatase 3 putative substrate binding site 0 0 1 1 10,11,49,100,102,192,297 5 -293755 cd16031 G6S_like 1 putative active site 0 0 1 1 10,11,50,99,101,174,272,273 1 -293755 cd16031 G6S_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 10,11,50,272,273 4 -293755 cd16031 G6S_like 3 putative substrate binding site 0 0 1 1 10,11,50,99,101,174,273 5 -293756 cd16032 choline-sulfatase 1 putative active site 0 0 1 1 8,9,48,96,98,144,199,200 1 -293756 cd16032 choline-sulfatase 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,199,200 4 -293756 cd16032 choline-sulfatase 3 putative substrate binding site 0 0 1 1 8,9,48,96,98,144,200 5 -293757 cd16033 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,103,105,159,252,253 1 -293757 cd16033 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,252,253 4 -293757 cd16033 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,103,105,159,253 5 -293758 cd16034 sulfatase_like 1 putative active site 0 0 1 1 9,10,49,97,99,186,262,263 1 -293758 cd16034 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,49,262,263 4 -293758 cd16034 sulfatase_like 3 putative substrate binding site 0 0 1 1 9,10,49,97,99,186,263 5 -293759 cd16035 sulfatase_like 1 putative active site 0 0 1 1 8,9,47,48,101,103,149,202,203 1 -293759 cd16035 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,202,203 4 -293759 cd16035 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,101,103,149,203 5 -293760 cd16037 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,96,98,142,197,198 1 -293760 cd16037 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,197,198 4 -293760 cd16037 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,96,98,142,198 5 -277186 cd16039 PHD_SPP1 1 Zn binding site CCC[CH]H[CH]C[CH] 0 1 1 1,3,15,18,23,26,42,45 4 -277186 cd16039 PHD_SPP1 2 putative histone H3 binding site 0 0 1 1 0,11,12,13,14,15,19,40 2 -293880 cd16074 OCRE 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293880 cd16074 OCRE 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293880 cd16074 OCRE 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293880 cd16074 OCRE 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293880 cd16074 OCRE 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293922 cd16075 ORC6_CTD 1 ORC3-binding site 0 1 1 0 33,34,35,38,39,42,43,46,49 2 -293922 cd16075 ORC6_CTD 2 MGS mutation site 0 0 1 1 35 0 -293923 cd16076 TSPcc 1 chemical substrate binding site 0 1 1 0 8,19,22 5 -293923 cd16076 TSPcc 2 oligomer interface 0 1 1 0 0,1,2,4,5,6,7,8,9,12,14,15,16,18,19,20,22,23,25,26,27,28,29,30,32,33,34,36,37,38,39 2 -293923 cd16076 TSPcc 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -293923 cd16076 TSPcc 4 glutamine ring Q 1 1 1 22 0 -293924 cd16077 TSP-5cc 1 chemical substrate binding site 0 1 1 0 11,22,25 5 -293924 cd16077 TSP-5cc 2 oligomer interface 0 1 1 0 3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293924 cd16077 TSP-5cc 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -293924 cd16077 TSP-5cc 4 glutamine ring Q 1 1 1 25 0 -293925 cd16079 TSP-3cc 1 chemical substrate binding site 0 0 1 1 11,22,25 5 -293925 cd16079 TSP-3cc 2 oligomer interface 0 0 1 1 0,1,2,3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293925 cd16079 TSP-3cc 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -293925 cd16079 TSP-3cc 4 glutamine ring Q 0 1 1 25 0 -293926 cd16080 TSP-4cc 1 chemical substrate binding site 0 0 1 1 11,22,25 5 -293926 cd16080 TSP-4cc 2 oligomer interface 0 0 1 1 0,1,2,3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293926 cd16080 TSP-4cc 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 7 -293926 cd16080 TSP-4cc 4 glutamine ring Q 0 1 1 25 0 -293927 cd16081 TSPcc_insect 1 chemical substrate binding site 0 0 1 1 10,21,24 5 -293927 cd16081 TSPcc_insect 2 oligomer interface 0 0 1 1 0,1,2,3,4,6,7,8,9,10,11,14,16,17,18,20,21,22,24,25,27,28,29,30,31,32,34,35,36,38,39,40,41 2 -293927 cd16081 TSPcc_insect 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -293927 cd16081 TSPcc_insect 4 glutamine ring Q 0 1 1 24 0 -319331 cd16082 IgC_CRIg 1 dimer interface 0 0 1 1 1,2,3,4,16,18,20,22,46,47,48,49,51,53,54,80,81,82 2 -319332 cd16083 IgC_CD80 1 intrachain IgC domain interface 0 1 1 0 26,52,53,54,55 2 -319334 cd16085 IgC_SIRP_domain_3 1 intrachain IgC domain interface 0 1 1 0 0,1,27,28,35,36,37,38,51,52,53,83,84,86 2 -319335 cd16086 IgV_CD80 1 B7-1/CTLA-4 complex 0 1 1 0 28,30,32,35,37,46,60,82,84,91,92,93 2 -319335 cd16086 IgV_CD80 2 homodimer interface 0 1 1 0 21,24,41,46,57,59,60,61,67,69 2 -319336 cd16087 IgV_CD86 1 homodimer interface 0 1 0 0 43,44,45,47,56,59,60,70,71 2 -319336 cd16087 IgV_CD86 2 B7-2 (CD86)/CTLA-4 (CD152) complex 0 1 1 0 26,28,30,34,36,39,41,46,83,85,91,92,93,94 2 -319336 cd16087 IgV_CD86 3 L1 hypervariable region 0 0 1 1 19,24 0 -319336 cd16087 IgV_CD86 4 L2 hypervariable region 0 0 1 1 62,64 0 -319336 cd16087 IgV_CD86 5 L3 hypervariable region 0 0 1 1 88,90 0 -319337 cd16088 IgV_PD1 1 PD-1/PD-L1 complex 0 1 1 1 29,31,33,38,39,40,41,43,48,49,51,53,55,87,89,93,95,96,97,99,101 2 -319337 cd16088 IgV_PD1 2 PD-1/PD-L2 complex 0 1 1 0 29,31,33,40,41,42,43,48,49,53,54,55,87,89,90,91,93,94,97,98,99,101 2 -319338 cd16089 IgV_CRIg 1 C3b/C3c:CRIq complex 0 1 1 1 1,8,34,36,38,39,42,44,46,47,48,49,51,52,53,54,77,78,79,81,87,99,100,101,103,110 2 -319339 cd16090 IgV_CD47 1 SIRP-CD47 complex 0 1 1 0 29,31,33,87,96 2 -319341 cd16092 IgC_CH1_IgD 1 heterodimer interface 0 1 1 1 52 2 -319343 cd16094 IgC_CH3_IgD 1 homodimer interface 0 1 1 0 55 2 -319344 cd16095 IgV_H_TCR_mu 1 heterodimer interface 0 0 1 0 35,39,43,86,102,103 2 -319344 cd16095 IgV_H_TCR_mu 2 antigen binding site 0 0 1 1 29,46,90 2 -319344 cd16095 IgV_H_TCR_mu 3 intrachain domain interface 0 0 1 0 5,7,107,109,111 2 -319344 cd16095 IgV_H_TCR_mu 4 L1 hypervariable region 0 0 1 1 20,21,22,27,28 0 -319344 cd16095 IgV_H_TCR_mu 5 L2 hypervariable region 0 0 1 1 64,65,66,67,68,69 0 -319344 cd16095 IgV_H_TCR_mu 6 L3 hypervariable region 0 0 1 1 90,99,100,101 0 -319344 cd16095 IgV_H_TCR_mu 7 heterodimer interface 0 0 1 0 29,31,33,35,41,43,84,86,88,102,103,104 2 -319344 cd16095 IgV_H_TCR_mu 8 antigen binding site 0 0 1 1 28,29,31,90 2 -319344 cd16095 IgV_H_TCR_mu 9 L1 hypervariable region 0 0 1 1 20,28 0 -319344 cd16095 IgV_H_TCR_mu 10 L2 hypervariable region 0 0 1 1 64,69 0 -319344 cd16095 IgV_H_TCR_mu 11 L3 hypervariable region 0 0 1 1 90,101 0 -319345 cd16096 IgV_CD79b_beta 1 homodimer interface 0 1 1 0 0,27,66,79,80,81,82,84,85,87 2 -319345 cd16096 IgV_CD79b_beta 2 heterodimer interface 0 0 1 0 21,23,25,27,33,35,66,68,70,82,83,84 2 -319345 cd16096 IgV_CD79b_beta 3 antigen binding site 0 0 1 1 20,21,23,72 2 -319345 cd16096 IgV_CD79b_beta 4 L1 hypervariable region 0 0 1 1 16,20 0 -319345 cd16096 IgV_CD79b_beta 5 L2 hypervariable region 0 0 1 1 48,51 0 -319345 cd16096 IgV_CD79b_beta 6 L3 hypervariable region 0 0 1 1 72,81 0 -319346 cd16097 IgV_SIRP 1 homodimer interface 0 1 1 0 1,2,3,4,5,6,7,19,21,23,35,40,42,67,68,79,81,82,83,103,104,106,108,109 2 -319346 cd16097 IgV_SIRP 2 CD47 binding site 0 1 1 0 29,30,31,69,88,91,96 2 -319346 cd16097 IgV_SIRP 3 FabOX117 binding site 0 1 1 0 1,2,3,4,5,6,7,19,21,23,67,68,103,104 2 -294015 cd16098 FliS 1 heterodimer interface 0 1 1 0 0,1,4,6,7,10,36,39,40,43,44,47,48,56,59,62,63,64,66,85,86,88,89,92,93,96,97,99,100 2 -294015 cd16098 FliS 2 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 7 -294015 cd16098 FliS 3 coiled coil 0 0 1 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 7 -294015 cd16098 FliS 4 coiled coil 0 0 1 0 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -294015 cd16098 FliS 5 coiled coil 0 0 1 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350627 cd16100 ARID 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -341089 cd16101 ING 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -340519 cd16102 RAWUL_PCGF_like 1 key conserved lysines [KR][KR] 0 1 1 37,42 0 -340520 cd16103 Ubl2_OASL 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340520 cd16103 Ubl2_OASL 2 key conserved lysines [KR][KR][KR] 0 1 1 6,27,29 0 -340521 cd16104 Ubl_USP14_like 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340521 cd16104 Ubl_USP14_like 2 key conserved lysines [KR][KR] 0 1 1 6,27 0 -340522 cd16105 Ubl_ASPSCR1_like 1 key conserved lysines [KR][KR] 0 1 1 8,30 0 -340523 cd16106 Ubl_Dsk2p_like 1 Ufd2 interaction site 0 1 1 1 6,43,45,46,47,48,67,69,70 2 -340523 cd16106 Ubl_Dsk2p_like 2 Uba interaction site 0 1 1 1 39,41,43,45,46,59,61,67,69,70,71,72 2 -340523 cd16106 Ubl_Dsk2p_like 3 key conserved lysine K27 [KR] 0 1 1 26 0 -340523 cd16106 Ubl_Dsk2p_like 4 key conserved lysines [KR][KR][KR] 0 1 1 5,26,47 0 -340524 cd16107 Ubl_AtUPL5_like 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340524 cd16107 Ubl_AtUPL5_like 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 4,9,31,46 0 -340525 cd16108 Ubl_ATG8_like 1 Atg7 interaction site 0 1 1 1 1,19,22,31,32,34,35,36,38,39,40,46,48,49,50,52,55,56,59,60,61 2 -340525 cd16108 Ubl_ATG8_like 2 Atg4 interaction site 0 1 1 1 9,34,38,46,47,48,49,50,52,55,56,59,60,81,83,84 2 -340525 cd16108 Ubl_ATG8_like 3 key conserved lysine K33 [RK] 0 1 1 40 0 -340526 cd16109 DCX1 1 tubulin binding site 0 1 1 1 11,12,13,19,27,35,51,78 2 -340526 cd16109 DCX1 2 key conserved lysines 0 0 0 1 15,60 0 -340527 cd16110 DCX1_RP_like 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340528 cd16111 DCX_DCLK3 1 putative DCX-stabilized microtubules 0 0 1 1 0,11,12,13,19,24,25,27,35,43,44,45,47,48,51,78 2 -340528 cd16111 DCX_DCLK3 2 key conserved lysines 0 0 1 1 15,59 0 -340529 cd16112 DCX1_DCX 1 tubulin binding sites 0 1 1 1 0,11,12,13,19,24,25,27,35,43,44,45,47,48,51,78 2 -340529 cd16112 DCX1_DCX 2 Fab binding site 0 1 1 1 9,11,12,13,42,43,44,45,79,81,83,84,85 2 -340529 cd16112 DCX1_DCX 3 key conserved lysines 0 0 1 1 15,60 0 -340530 cd16113 DCX2_DCDC2_like 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340531 cd16114 Ubl_SUMO1 1 SUMO1-SAE2-SAE1-ATP-Mg complex 0 1 1 1 8,9,10,37,39,40,42,46,47,48,49,68,70,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 2 SUMO1-UBE2K interaction site 0 1 1 0 37,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 3 SUMO1-UBC9 interaction site 0 1 1 0 4,6,7,8,45,46,60,61,62,64,65,66,68,69,70 2 -340531 cd16114 Ubl_SUMO1 4 SUMO1-SENP2 interaction site 0 1 1 0 39,42,44,46,47,48,49,51,54,68,70,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 5 SUMO1-E2I-RanBP2 interaction site 0 1 1 0 8,9,10,11,12,13,14,15,16,17,18,21,25,29,33,40,42,71,73,74,75 2 -340531 cd16114 Ubl_SUMO1 6 SUMO1-SENP1 interaction site 0 1 1 0 39,42,44,46,47,49,51,53,54,58,59,68,70,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 7 SUMO1-SENP1-Rangap complex 0 1 1 0 8,39,42,44,46,47,49,54,58,68,70,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 8 SUMO1-SAE2-SAE1 complex 0 1 1 0 0,2,6,8,10,12,14,15,16,17,18,20,21,22,25,26,29,33,39,40,42,44,47,49,68,70,71,72,73,74,75 2 -340531 cd16114 Ubl_SUMO1 9 SUMO1-Ysmb-9 interaction site 0 1 1 0 0,2,12,13,14,15,16,21,25,26,29,33 2 -340531 cd16114 Ubl_SUMO1 10 peptide binding site 1 0 1 1 0 0,2,11,12,13,14,15,16,17,21,22,25,26,29,33,34 2 -340531 cd16114 Ubl_SUMO1 11 peptide binding site 2 0 1 1 0 0,5,11,13,14,15,16,17,18,20,21,22,25,26,29,30,32,33,34 2 -340531 cd16114 Ubl_SUMO1 12 key conserved lysine K27 [KR] 0 1 1 27 0 -340531 cd16114 Ubl_SUMO1 13 key conserved lysines 0 0 1 1 27,33 0 -340532 cd16115 Ubl_SUMO2_3_4 1 SUMO2-SENP1 interaction site 0 1 1 0 8,39,42,44,46,47,48,49,51,54,65,68,70,71 2 -340532 cd16115 Ubl_SUMO2_3_4 2 SUMO2-SENP2 0 1 1 0 39,42,44,45,46,47,49,51,54,59,65,68,70,71 2 -340532 cd16115 Ubl_SUMO2_3_4 3 SUMO2-TDG interaction site 0 1 1 0 0,9,10,11,12,13,14,15,16,17,18,25,32,33,34 2 -340532 cd16115 Ubl_SUMO2_3_4 4 SUMO2-SENP2-Rangap1 complex 0 1 1 0 39,42,44,46,47,49,51,54,65,68,70,71 2 -340532 cd16115 Ubl_SUMO2_3_4 5 SUMO2 dimer-RNF4 SIM2-3 interaction site 0 1 1 0 0,2,11,12,13,14,15,16,17,18,19,20,21,22,24,25,29,30,32,33,34,39,51,52,53,55 2 -340532 cd16115 Ubl_SUMO2_3_4 6 SUMO2-Rangap1-UBC9-RanBP2 complex 0 1 1 0 8,9,10,11,12,13,14,15,16,18,25,33,42,71 2 -340532 cd16115 Ubl_SUMO2_3_4 7 SUMO2-Rangap1-UBC9-ZNF451 complex 0 1 1 0 2,6,7,8,9,10,11,12,13,14,15,16,17,18,21,25,26,29,33,34,36,37,39,40,41,44,46,48,70,71 2 -340532 cd16115 Ubl_SUMO2_3_4 8 SUMO3-MCAF1 interaction site 0 1 1 0 0,13,14,15,16,17,18,20,21,22,25,26,29,30,33 2 -340532 cd16115 Ubl_SUMO2_3_4 9 key conserved lysine K33 [KR] 0 1 1 33 0 -340533 cd16116 Ubl_Smt3_like 1 Smt3-Ulp1 interaction site 0 1 1 1 40,43,45,46,47,48,49,50,52,55,61,66,69,71,72,73 2 -340533 cd16116 Ubl_Smt3_like 2 Smt3-Ubc9 interaction site 0 1 1 0 5,7,8,9,46,47,48,49,61,63,65,66,67,69,70,71 2 -340533 cd16116 Ubl_Smt3_like 3 Smt3-Ysmb1 interaction site 0 1 1 0 0,1,3,14,15,16,17,19,22,26,27,29,30,33,34 2 -340533 cd16116 Ubl_Smt3_like 4 RING E3/E2-SUMO complex 0 1 1 0 7,8,9,46,47,48,61,63,65,66,67,69,70,71 2 -340533 cd16116 Ubl_Smt3_like 5 Smt3-PCNA interaction site 0 1 1 0 43,45,46,47,48,49,50,58,59,60,61 2 -340533 cd16116 Ubl_Smt3_like 6 Smt3-FadD32 interaction site 0 1 1 0 46,47,48,49,60,61,63 2 -340533 cd16116 Ubl_Smt3_like 7 SUMO-Xopd interaction site 0 1 1 0 7,25,40,45,47,48,50,53,67,69,71,72,73 2 -340533 cd16116 Ubl_Smt3_like 8 key conserved lysine K6 [KR] 0 1 1 34 0 -340534 cd16117 UBX_UBXN4 1 putative UBX-p97 interaction site 0 0 1 1 2,4,6,7,10,11,13,46,47,49,68,69,70,71,73,75 2 -340534 cd16117 UBX_UBXN4 2 key conserved lysines [KR][KR] 0 1 1 6,50 0 -340535 cd16118 UBX2_UBXN9 1 putative UBX-p97 interaction site 0 1 1 1 1,3,5,6,9,10,12,44,45,47,65,66,67,68,70,72 2 -340536 cd16119 UBX_UBXN6 1 key conserved lysine K6 [KR] 0 0 1 6 0 -340537 cd16120 UBX_UBXN3B 1 putative UBX-p97 interaction site 0 0 1 1 1,3,5,12,45,73,74 2 -340537 cd16120 UBX_UBXN3B 2 key conserved lysines [KR][KR] 0 1 1 5,48 0 -340538 cd16121 FERM_F1_SNX17 1 key conserved lysines [KR][KR] 0 1 1 34,62 0 -340539 cd16122 FERM_F1_SNX31 1 key conserved lysines [KR][KR] 0 1 1 37,65 0 -340540 cd16123 RA_RASSF7_like 1 key conserved lysine K48 [KR] 0 1 1 52 0 -340541 cd16124 RA_GRB7_10_14 1 RA-PH-Ras interaction site 0 1 1 0 2,4,8,9,11,12,13,14,15,16,28,29,31,32,33,35,37,38,40,81,82,84 2 -340541 cd16124 RA_GRB7_10_14 2 key conserved lysines [KR][KR] 0 1 1 33,55 0 -340542 cd16125 RA_ASPP1_2 1 key conserved lysine K48 [KR] 0 1 1 50 0 -340543 cd16126 Ubl_HR23B 1 UIM interaction site 0 1 1 1 5,6,7,9,44,46,47,48,49,50,51,67,68,69,70,72,74,77 2 -340543 cd16126 Ubl_HR23B 2 key conserved lysine K27 [KR] 0 1 1 26 0 -340543 cd16126 Ubl_HR23B 3 key conserved lysines [KR][KR][KR][KR] 0 1 1 5,26,28,50 0 -340544 cd16127 Ubl_ATG8_GABARAP_like 1 Atg7 interaction site 0 0 1 1 23,29,30,41,44,53,54,56,57,58,60,61,62,67,68,70,71,72,74,77,78,79,81,82,83 2 -340544 cd16127 Ubl_ATG8_GABARAP_like 2 Atg4 interaction site 0 0 1 1 31,56,60,67,68,69,70,71,72,74,77,78,79,80,81,82,103,105,106 2 -340544 cd16127 Ubl_ATG8_GABARAP_like 3 key conserved lysine K33 [KR] 0 1 1 62 0 -340545 cd16128 Ubl_ATG8 1 Atg7 interaction site 0 1 1 1 17,26,27,35,38,47,48,50,51,52,54,55,56,61,62,64,65,66,68,71,72,73,75,76,77,101,102 2 -340545 cd16128 Ubl_ATG8 2 Atg19 interaction site 0 1 1 1 6,9,10,17,31,32,33,34,35,37,38,39,40,41,44,47,48,49,51,52,55,56,57,58,61,93 2 -340545 cd16128 Ubl_ATG8 3 Atg4 interaction site 0 0 1 1 25,50,54,61,62,63,64,65,66,68,71,72,73,74,75,76,97,99,100,101,102 2 -340545 cd16128 Ubl_ATG8 4 peptide binding site 1 0 1 1 0 6,17,19,35,37,38,39,41,49,52,56,93 2 -340545 cd16128 Ubl_ATG8 5 peptide binding site 2 0 1 1 0 6,10,17,19,20,21,35,37,38,39,41,52,56,93 2 -340545 cd16128 Ubl_ATG8 6 key conserved lysine K33 [KR] 0 1 1 56 0 -340546 cd16129 Ubl_ATG8_MAP1LC3 1 Atg13 interaction site 0 1 1 1 8,13,14,15,36,37,38,40,41,42,47,51,55,93 2 -340546 cd16129 Ubl_ATG8_MAP1LC3 2 Atg4 interaction site 0 1 1 1 23,49,53,60,61,62,63,64,65,67,70,71,74,75,76,97,99,100,101,102,103,104 2 -340546 cd16129 Ubl_ATG8_MAP1LC3 3 Atg7 interaction site 0 0 1 1 15,21,22,34,37,46,47,49,50,51,53,54,55,61,63,64,65,67,70,71,75,76,77,102,103,104 2 -340546 cd16129 Ubl_ATG8_MAP1LC3 4 key conserved lysine K33 [KR] 0 1 1 55 0 -340547 cd16130 RA_Rin3 1 key conserved lysine K33 [KR] 0 1 1 35 0 -340548 cd16131 RA_Rin2 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340549 cd16132 RA_RASSF10 1 key conserved lysine K48 [KR] 0 1 1 69 0 -340550 cd16133 RA_RASSF9 1 key conserved lysine K48 [KR] 0 1 1 60 0 -340551 cd16134 RA_RASSF8 1 key conserved lysine K48 [KR] 0 1 1 49 0 -340552 cd16135 RA_RASSF7 1 key conserved lysine K48 [KR] 0 1 1 50 0 -340553 cd16136 RA_MRL_Lpd 1 RA-PH-RAP1 interaction site 0 0 1 1 7,12,13,14,15,16,17,18,19,35,36,37,38,53,71,72,75 2 -340553 cd16136 RA_MRL_Lpd 2 key conserved lysines [KR][KR] 0 1 1 36,58 0 -340554 cd16137 RA_MRL_RIAM 1 RA-PH-RAP1 interaction site 0 1 1 0 5,10,11,12,13,14,15,16,17,33,34,35,36,51,69,70,73 2 -340554 cd16137 RA_MRL_RIAM 2 key conserved lysines [KR][KR] 0 1 1 34,56 0 -340555 cd16138 RA_MRL_MIG10 1 RA-PH-RAP1 interaction site 0 0 1 1 5,10,11,12,13,14,15,16,17,33,34,35,36,51,69,70,73 2 -340555 cd16138 RA_MRL_MIG10 2 key conserved lysines [KR][KR] 0 1 1 34,56 0 -340556 cd16139 RA_GRB14 1 RA-PH-Ras interaction site 0 1 1 0 2,4,8,9,11,12,13,14,15,16,28,29,31,32,33,35,37,38,39,40,81,82,84 2 -340556 cd16139 RA_GRB14 2 key conserved lysines [KR][KR] 0 1 1 33,55 0 -340557 cd16140 RA_GRB7 1 putative RA-PH-Ras interaction site 0 0 1 1 3,5,9,10,12,13,14,15,16,17,29,30,32,33,34,36,38,39,40,41,82,83,85 2 -340557 cd16140 RA_GRB7 2 key conserved lysines [KR][KR] 0 1 1 34,56 0 -340558 cd16141 RA_GRB10 1 dimer interface 0 1 1 0 20,61,63,66 2 -340558 cd16141 RA_GRB10 2 putative RA-PH-Ras interaction site 0 0 1 1 3,5,9,10,12,13,14,15,16,17,29,30,32,33,34,36,38,80,81,83 2 -340558 cd16141 RA_GRB10 3 key conserved lysines [KR][KR] 0 1 1 34,56 0 -293761 cd16142 ARS_like 1 putative active site 0 0 1 1 8,9,50,103,105,162,215,216 1 -293761 cd16142 ARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,50,215,216 4 -293761 cd16142 ARS_like 3 putative substrate binding site 0 0 1 1 8,9,50,103,105,162,216 5 -293762 cd16143 ARS_like 1 putative active site 0 0 1 1 8,9,48,49,103,105,184,236,237 1 -293762 cd16143 ARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,49,236,237 4 -293762 cd16143 ARS_like 3 putative substrate binding site 0 0 1 1 8,9,49,103,105,184,237 5 -293763 cd16144 ARS_like 1 putative active site 0 0 1 1 8,9,48,114,116,195,258,259 1 -293763 cd16144 ARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,258,259 4 -293763 cd16144 ARS_like 3 putative substrate binding site 0 0 1 1 8,9,48,114,116,195,259 5 -293764 cd16145 ARS_like 1 putative active site 0 0 1 1 8,9,48,101,103,199,266,267 1 -293764 cd16145 ARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,266,267 4 -293764 cd16145 ARS_like 3 putative substrate binding site 0 0 1 1 8,9,48,101,103,199,267 5 -293765 cd16146 ARS_like 1 putative active site 0 0 1 1 8,9,47,98,100,184,243,244 1 -293765 cd16146 ARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,47,243,244 4 -293765 cd16146 ARS_like 3 putative substrate binding site 0 0 1 1 8,9,47,98,100,184,244 5 -293766 cd16147 G6S 1 putative active site 0 0 1 1 9,10,45,102,104,186,277,278 1 -293766 cd16147 G6S 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,45,277,278 4 -293766 cd16147 G6S 3 putative substrate binding site 0 0 1 1 9,10,45,102,104,186,278 5 -293767 cd16148 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,94,96,159,198,199 1 -293767 cd16148 sulfatase_like 2 putative metal binding site [DE]X[CST][DE][HNQ] 0 1 1 8,9,48,198,199 4 -293767 cd16148 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,94,96,159,199 5 -293768 cd16149 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,107,109,138,177,178 1 -293768 cd16149 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,177,178 4 -293768 cd16149 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,107,109,138,178 5 -293769 cd16150 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,96,98,143,235,236 1 -293769 cd16150 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,235,236 4 -293769 cd16150 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,96,98,143,236 5 -293770 cd16151 sulfatase_like 1 putative metal binding site 0 0 1 0 8,47,240,241 4 -293770 cd16151 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,47,240,241 4 -293770 cd16151 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,47,93,95,180,241 5 -293771 cd16152 sulfatase_like 1 putative active site 0 0 1 1 9,10,49,97,99,135,210,211 1 -293771 cd16152 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,49,210,211 4 -293771 cd16152 sulfatase_like 3 putative substrate binding site 0 0 1 1 9,10,49,97,99,135,211 5 -293772 cd16153 sulfatase_like 1 putative active site 0 0 1 1 9,10,59,110,112,154,206,207 1 -293772 cd16153 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,59,206,207 4 -293772 cd16153 sulfatase_like 3 putative substrate binding site 0 0 1 1 9,10,59,110,112,154,207 5 -293773 cd16154 sulfatase_like 1 putative active site 0 0 1 1 8,9,49,101,103,178,241,242 1 -293773 cd16154 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,49,241,242 4 -293773 cd16154 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,49,101,103,178,242 5 -293774 cd16155 sulfatase_like 1 putative active site 0 0 1 1 10,11,54,101,103,134,227,228 1 -293774 cd16155 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 10,11,54,227,228 4 -293774 cd16155 sulfatase_like 3 putative substrate binding site 0 0 1 1 10,11,54,101,103,134,228 5 -293775 cd16156 sulfatase_like 1 putative active site 0 0 1 1 8,9,48,96,98,185,274,275 1 -293775 cd16156 sulfatase_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,274,275 4 -293775 cd16156 sulfatase_like 3 putative substrate binding site 0 0 1 1 8,9,48,96,98,185,275 5 -293776 cd16157 GALNS 1 active site 0 1 1 0 9,10,49,78,110,112,135,207,259,260,281,282 1 -293776 cd16157 GALNS 2 Ca binding site [DE]X[CS][DE][HNQ] 1 1 0 9,10,49,259,260 4 -293776 cd16157 GALNS 3 substrate binding site 0 1 1 0 49,78,110,112,135,207,281,282 5 -293776 cd16157 GALNS 4 homodimer interface 0 1 1 0 13,18,19,20,22,23,24,38,40,221,222,223,308,391,392,393,394,395,414,416,417,422,423 2 -293777 cd16158 ARSA 1 putative active site 0 0 1 1 9,10,49,103,105,130,209,261,262,282,283 1 -293777 cd16158 ARSA 2 metal binding site [DE]X[CS][DE][HNQ] 1 1 0 9,10,49,261,262 4 -293777 cd16158 ARSA 3 putative substrate binding site 0 0 1 1 49,103,105,130,209,282,283 5 -293778 cd16159 ES 1 putative active site 0 0 1 1 9,10,49,108,110,139,262,314,315,340,341 1 -293778 cd16159 ES 2 Ca binding site [DE]X[CS][DE][HNQ] 1 1 0 9,10,49,314,315 4 -293778 cd16159 ES 3 putative substrate binding site 0 0 1 1 49,108,110,139,262,340,341 5 -293779 cd16160 spARS_like 1 putative active site 0 0 1 1 9,10,49,105,107,136,205,257,258,278,279 1 -293779 cd16160 spARS_like 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,49,257,258 4 -293779 cd16160 spARS_like 3 putative substrate binding site 0 0 1 1 49,105,107,136,205,278,279 5 -293780 cd16161 ARSG 1 putative active site 0 0 1 1 9,10,50,103,105,128,165,218,219,247,248 1 -293780 cd16161 ARSG 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 9,10,50,218,219 4 -293780 cd16161 ARSG 3 putative substrate binding site 0 0 1 1 50,103,105,128,165,247,248 5 -293881 cd16162 OCRE_RBM5_like 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293881 cd16162 OCRE_RBM5_like 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293881 cd16162 OCRE_RBM5_like 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293881 cd16162 OCRE_RBM5_like 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35,36 7 -293881 cd16162 OCRE_RBM5_like 5 OCRE repeat 5 0 0 1 1 38,39,40,41,42,43,44,45 7 -293882 cd16163 OCRE_RBM6 1 OCRE repeat 1 0 0 1 1 6,7,8,9,10,11,12,13 7 -293882 cd16163 OCRE_RBM6 2 OCRE repeat 2 0 0 1 1 14,15,16,17,18,19,20,21 7 -293882 cd16163 OCRE_RBM6 3 OCRE repeat 3 0 0 1 1 22,23,24,25,26,27,28,29 7 -293882 cd16163 OCRE_RBM6 4 OCRE repeat 4 0 0 1 1 30,31,32,33,34,35,36,37 7 -293882 cd16163 OCRE_RBM6 5 OCRE repeat 5 0 0 1 1 39,40,41,42,43,44,45,46 7 -293883 cd16164 OCRE_VG5Q 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293883 cd16164 OCRE_VG5Q 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293883 cd16164 OCRE_VG5Q 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293883 cd16164 OCRE_VG5Q 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293883 cd16164 OCRE_VG5Q 5 OCRE repeat 5 0 0 1 1 38,39,40,41,42,43,44,45 7 -293884 cd16165 OCRE_ZOP1_plant 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293884 cd16165 OCRE_ZOP1_plant 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293884 cd16165 OCRE_ZOP1_plant 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293884 cd16165 OCRE_ZOP1_plant 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293884 cd16165 OCRE_ZOP1_plant 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293885 cd16166 OCRE_SUA_like 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293885 cd16166 OCRE_SUA_like 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293885 cd16166 OCRE_SUA_like 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293885 cd16166 OCRE_SUA_like 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35,36 7 -293885 cd16166 OCRE_SUA_like 5 OCRE repeat 5 0 0 1 1 38,39,40,41,42,43,44,45 7 -293886 cd16167 OCRE_RBM10 1 OCRE repeat 1 0 0 1 1 6,7,8,9,10,11,12,13 7 -293886 cd16167 OCRE_RBM10 2 OCRE repeat 2 0 0 1 1 14,15,16,17,18,19,20,21 7 -293886 cd16167 OCRE_RBM10 3 OCRE repeat 3 0 0 1 1 22,23,24,25,26,27,28,29 7 -293886 cd16167 OCRE_RBM10 4 OCRE repeat 4 0 0 1 1 30,31,32,33,34,35,36,37 7 -293886 cd16167 OCRE_RBM10 5 OCRE repeat 5 0 0 1 1 39,40,41,42,43,44,45,46 7 -293887 cd16168 OCRE_RBM5 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293887 cd16168 OCRE_RBM5 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293887 cd16168 OCRE_RBM5 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293887 cd16168 OCRE_RBM5 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35,36 7 -293887 cd16168 OCRE_RBM5 5 OCRE repeat 5 0 0 1 1 38,39,40,41,42,43,44,45 7 -320084 cd16170 MvaT_DBD 1 DNA binding site 0 1 1 0 0,1,3,5,16,17,18,19,20,22,24,25,28,37 3 -293781 cd16171 ARSK 1 putative active site 0 0 1 1 8,9,48,96,98,176,231,232 1 -293781 cd16171 ARSK 2 metal binding site [DE]X[CS][DE][HNQ] 0 1 1 8,9,48,231,232 4 -293781 cd16171 ARSK 3 putative substrate binding site 0 0 1 1 8,9,47,48,96,98,176,232 5 -293930 cd16172 TorS_sensor_domain 1 homodimer interface 0 1 1 0 1,4,5,8,11,12,15,19,110,114,121,124,125,137,138,141,142,144,145,151,152,155,158,159,162,163,166,169,170,173,179,238,242,245,246,249,256 2 -293930 cd16172 TorS_sensor_domain 2 TorT interface 0 1 1 0 101,104,108,111,112,116,118,119,120,122,123,125,138,142,143,145,146,149,152,153,155,196,197,200,202,205,206 2 -320081 cd16173 EFh_MICU1 1 Ca binding site 0 1 1 0 9,11,13,20,132,134,136,143 4 -320081 cd16173 EFh_MICU1 2 homodimer interface 0 1 1 0 2,87,90,93,94,96,114 2 -320081 cd16173 EFh_MICU1 3 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320081 cd16173 EFh_MICU1 4 EF-hand motif 0 0 0 1 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -320081 cd16173 EFh_MICU1 5 EF-hand motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320081 cd16173 EFh_MICU1 6 EF-hand motif 0 0 0 1 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320082 cd16174 EFh_MICU2 1 Ca binding site 0 0 1 1 9,11,13,20,133,135,137,144 4 -320082 cd16174 EFh_MICU2 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320082 cd16174 EFh_MICU2 3 EF-hand motif 0 0 0 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -320082 cd16174 EFh_MICU2 4 EF-hand motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -320082 cd16174 EFh_MICU2 5 EF-hand motif 0 0 0 1 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320083 cd16175 EFh_MICU3 1 Ca binding site 0 0 1 1 9,11,13,20,107,109,111,118 4 -320083 cd16175 EFh_MICU3 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320083 cd16175 EFh_MICU3 3 EF-hand motif 0 0 0 1 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320083 cd16175 EFh_MICU3 4 EF-hand motif 0 0 0 1 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -320083 cd16175 EFh_MICU3 5 EF-hand motif 0 0 0 1 98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320076 cd16176 EFh_HEF_CB 1 Ca binding site 0 1 1 1 8,10,12,19,94,96,98,105,138,140,142,149,182,184,186,193 4 -320076 cd16176 EFh_HEF_CB 2 EF-hand motif 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320076 cd16176 EFh_HEF_CB 3 EF-hand motif 0 0 1 1 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320076 cd16176 EFh_HEF_CB 4 EF-hand motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320076 cd16176 EFh_HEF_CB 5 EF-hand motif 0 0 1 1 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -320076 cd16176 EFh_HEF_CB 6 EF-hand motif 0 0 1 1 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 7 -320076 cd16176 EFh_HEF_CB 7 EF-hand motif 0 0 1 1 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320077 cd16177 EFh_HEF_CR 1 Ca binding site 0 0 1 1 8,10,12,19,55,57,59,66,99,101,103,110,143,145,147,154,187,189,191,198 4 -320077 cd16177 EFh_HEF_CR 2 EF-hand motif 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320077 cd16177 EFh_HEF_CR 3 EF-hand motif 0 0 1 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 7 -320077 cd16177 EFh_HEF_CR 4 EF-hand motif 0 0 1 1 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320077 cd16177 EFh_HEF_CR 5 EF-hand motif 0 0 1 1 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320077 cd16177 EFh_HEF_CR 6 EF-hand motif 0 0 1 1 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320077 cd16177 EFh_HEF_CR 7 EF-hand motif 0 0 1 1 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320078 cd16178 EFh_HEF_SCGN 1 Ca binding site 0 1 1 1 101,103,105,112,145,147,149,156,193,195,197,204,237,239,241,248 4 -320078 cd16178 EFh_HEF_SCGN 2 EF-hand motif 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320078 cd16178 EFh_HEF_SCGN 3 EF-hand motif 0 0 1 1 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320078 cd16178 EFh_HEF_SCGN 4 EF-hand motif 0 0 1 1 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320078 cd16178 EFh_HEF_SCGN 5 EF-hand motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320078 cd16178 EFh_HEF_SCGN 6 EF-hand motif 0 0 1 1 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320078 cd16178 EFh_HEF_SCGN 7 EF-hand motif 0 0 1 1 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320079 cd16179 EFh_HEF_CBN 1 putative Ca binding site 0 0 1 1 8,10,12,19,58,60,62,69,104,106,108,115,150,152,154,161,197,199,201,208 4 -320079 cd16179 EFh_HEF_CBN 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320079 cd16179 EFh_HEF_CBN 3 EF-hand motif 0 0 0 0 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320079 cd16179 EFh_HEF_CBN 4 EF-hand motif 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320079 cd16179 EFh_HEF_CBN 5 EF-hand motif 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320079 cd16179 EFh_HEF_CBN 6 EF-hand motif 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320079 cd16179 EFh_HEF_CBN 7 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320055 cd16180 EFh_PEF_Group_I 1 Ca binding site 0 1 0 1 9,11,13,20,76,78,80,87,142,144,146 4 -320055 cd16180 EFh_PEF_Group_I 2 homodimer interface 0 1 1 0 103,106,107,110,131,134,135,137,138,147,148,149,150,151,152,153,154,156,157,160,161 2 -320055 cd16180 EFh_PEF_Group_I 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320055 cd16180 EFh_PEF_Group_I 4 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320055 cd16180 EFh_PEF_Group_I 5 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320055 cd16180 EFh_PEF_Group_I 6 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320055 cd16180 EFh_PEF_Group_I 7 EF-hand motif 0 0 0 0 133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 1 Ca binding site 0 1 1 1 12,19,79,81,83,87,90 4 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 2 homodimer interface 0 1 1 0 42,52,100,106,109,112,113,114,115,116,124,128,131,132,135,136,138,139,148,149,150,151,152,153,154,155,157,159,161,162,163,164 2 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 7 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 1 Ca binding site 0 1 1 1 12,19,36,51,53,55,62,81,83,85,92,124,126,127 4 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 2 homodimer interface 0 1 1 0 42,44,54,108,111,114,115,116,117,127,131,134,135,138,139,142,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166 2 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 4 EF-hand motif 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,65,66,67,68,69,70,71 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 5 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 6 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 7 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320058 cd16183 EFh_PEF_ALG-2 1 Ca binding site 0 1 1 0 9,11,13,20,76,78,80,87,142,144,146 4 -320058 cd16183 EFh_PEF_ALG-2 2 peptide binding site 0 1 1 0 44,45,47,64,67,68,95,96,132,135,138,139,142,145,147 2 -320058 cd16183 EFh_PEF_ALG-2 3 homodimer interface 0 1 1 0 97,103,106,107,110,131,134,135,137,138,147,148,149,150,151,152,153,154,156,157,160,161,164 2 -320058 cd16183 EFh_PEF_ALG-2 4 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320058 cd16183 EFh_PEF_ALG-2 5 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320058 cd16183 EFh_PEF_ALG-2 6 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320058 cd16183 EFh_PEF_ALG-2 7 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320058 cd16183 EFh_PEF_ALG-2 8 EF-hand motif 0 0 0 0 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320059 cd16184 EFh_PEF_peflin 1 putative Ca binding site 0 0 1 1 9,11,13,20,76,78,80,87 4 -320059 cd16184 EFh_PEF_peflin 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320059 cd16184 EFh_PEF_peflin 3 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320059 cd16184 EFh_PEF_peflin 4 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320059 cd16184 EFh_PEF_peflin 5 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320059 cd16184 EFh_PEF_peflin 6 EF-hand motif 0 0 0 0 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320060 cd16185 EFh_PEF_ALG-2_like 1 Ca binding site 0 1 0 0 9,11,13,20,45,47,49,56 4 -320060 cd16185 EFh_PEF_ALG-2_like 2 homodimer interface 0 1 0 0 48,96,102,105,106,109,110,114,129,133,134,136,137,146,147,148,149,150,151,152,153,155,156,157,159,160,161,162 2 -320060 cd16185 EFh_PEF_ALG-2_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320060 cd16185 EFh_PEF_ALG-2_like 4 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320060 cd16185 EFh_PEF_ALG-2_like 5 EF-hand motif 0 0 0 0 66,67,68,69,70,71,72,73,74,75,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320060 cd16185 EFh_PEF_ALG-2_like 6 EF-hand motif 0 0 0 0 102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320060 cd16185 EFh_PEF_ALG-2_like 7 EF-hand motif 0 0 0 0 132,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320061 cd16186 EFh_PEF_grancalcin 1 Ca binding site 0 1 1 0 12,19,79,81,83,87,90 4 -320061 cd16186 EFh_PEF_grancalcin 2 homodimer interface 0 1 1 0 42,52,100,106,109,112,113,114,115,116,124,128,131,132,135,136,138,139,148,149,150,151,152,153,154,155,157,159,161,162,163,164 2 -320061 cd16186 EFh_PEF_grancalcin 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320061 cd16186 EFh_PEF_grancalcin 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320061 cd16186 EFh_PEF_grancalcin 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320061 cd16186 EFh_PEF_grancalcin 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320061 cd16186 EFh_PEF_grancalcin 7 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320062 cd16187 EFh_PEF_sorcin 1 putative Ca binding site 0 0 1 1 12,19,49,51,53,60,79,81,83,90 4 -320062 cd16187 EFh_PEF_sorcin 2 putative phosphorylation site 0 1 1 0 113,114,115,141,142,143,144 6 -320062 cd16187 EFh_PEF_sorcin 3 homodimer interface 0 1 1 0 42,43,52,100,106,109,110,112,113,114,128,131,132,135,136,139,148,149,150,151,152,153,154,155,157,158,159,161,162,163,164 2 -320062 cd16187 EFh_PEF_sorcin 4 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320062 cd16187 EFh_PEF_sorcin 5 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320062 cd16187 EFh_PEF_sorcin 6 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320062 cd16187 EFh_PEF_sorcin 7 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320062 cd16187 EFh_PEF_sorcin 8 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320063 cd16188 EFh_PEF_CPNS1_2 1 Ca binding site 0 1 1 0 12,19,37,54,56,63,82,84,86,93,125,127,128 4 -320063 cd16188 EFh_PEF_CPNS1_2 2 ligand binding site 0 1 1 0 27,68,71,72,75,126 5 -320063 cd16188 EFh_PEF_CPNS1_2 3 homodimer interface 0 1 1 0 42,43,45,55,57,58,109,112,115,116,117,118,120,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168 2 -320063 cd16188 EFh_PEF_CPNS1_2 4 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320063 cd16188 EFh_PEF_CPNS1_2 5 EF-hand motif 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320063 cd16188 EFh_PEF_CPNS1_2 6 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320063 cd16188 EFh_PEF_CPNS1_2 7 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320063 cd16188 EFh_PEF_CPNS1_2 8 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320064 cd16189 EFh_PEF_CAPN1_like 1 Ca binding site 0 1 1 0 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320064 cd16189 EFh_PEF_CAPN1_like 2 heterodimer interface 0 1 1 0 37,42,45,46,49,57,109,112,113,116,117,118,119,128,131,135,136,139,140,142,143,152,153,154,155,156,157,158,161,162,163,164,165,166,167 2 -320064 cd16189 EFh_PEF_CAPN1_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320064 cd16189 EFh_PEF_CAPN1_like 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320064 cd16189 EFh_PEF_CAPN1_like 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320064 cd16189 EFh_PEF_CAPN1_like 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320064 cd16189 EFh_PEF_CAPN1_like 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320065 cd16190 EFh_PEF_CAPN3 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,147,149,151 4 -320065 cd16190 EFh_PEF_CAPN3 2 homodimer interface 0 1 1 0 49,55,108,109,112,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168 2 -320065 cd16190 EFh_PEF_CAPN3 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320065 cd16190 EFh_PEF_CAPN3 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320065 cd16190 EFh_PEF_CAPN3 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320065 cd16190 EFh_PEF_CAPN3 6 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320065 cd16190 EFh_PEF_CAPN3 7 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320066 cd16191 EFh_PEF_CAPN8 1 putative Ca binding site 0 0 1 1 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320066 cd16191 EFh_PEF_CAPN8 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320066 cd16191 EFh_PEF_CAPN8 3 EF-hand motif 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320066 cd16191 EFh_PEF_CAPN8 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320066 cd16191 EFh_PEF_CAPN8 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320066 cd16191 EFh_PEF_CAPN8 6 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320067 cd16192 EFh_PEF_CAPN9 1 putative Ca binding site 0 0 1 1 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320067 cd16192 EFh_PEF_CAPN9 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320067 cd16192 EFh_PEF_CAPN9 3 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320067 cd16192 EFh_PEF_CAPN9 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320067 cd16192 EFh_PEF_CAPN9 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320067 cd16192 EFh_PEF_CAPN9 6 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320068 cd16193 EFh_PEF_CAPN11 1 putative Ca binding site 0 0 1 1 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320068 cd16193 EFh_PEF_CAPN11 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320068 cd16193 EFh_PEF_CAPN11 3 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320068 cd16193 EFh_PEF_CAPN11 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320068 cd16193 EFh_PEF_CAPN11 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320068 cd16193 EFh_PEF_CAPN11 6 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320069 cd16194 EFh_PEF_CAPN12 1 putative Ca binding site 0 0 1 1 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320069 cd16194 EFh_PEF_CAPN12 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320069 cd16194 EFh_PEF_CAPN12 3 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320069 cd16194 EFh_PEF_CAPN12 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320069 cd16194 EFh_PEF_CAPN12 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320069 cd16194 EFh_PEF_CAPN12 6 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320070 cd16195 EFh_PEF_CAPN13_14 1 Ca binding site 0 1 0 0 52,56,63 4 -320070 cd16195 EFh_PEF_CAPN13_14 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320070 cd16195 EFh_PEF_CAPN13_14 3 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320070 cd16195 EFh_PEF_CAPN13_14 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320070 cd16195 EFh_PEF_CAPN13_14 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320070 cd16195 EFh_PEF_CAPN13_14 6 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320071 cd16196 EFh_PEF_CalpA_B 1 Ca binding site 0 0 1 1 12,14,19,35,50,52,54,61,80,82,84,91,123,125,126 4 -320071 cd16196 EFh_PEF_CalpA_B 2 phosphorylation site 0 0 1 1 86 6 -320071 cd16196 EFh_PEF_CalpA_B 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320071 cd16196 EFh_PEF_CalpA_B 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320071 cd16196 EFh_PEF_CalpA_B 5 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320071 cd16196 EFh_PEF_CalpA_B 6 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320071 cd16196 EFh_PEF_CalpA_B 7 EF-hand motif 0 0 0 0 136,137,138,139,140,141,142,143,144,145,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320072 cd16197 EFh_PEF_CalpC 1 putative Ca binding site 0 0 1 1 12,14,19,35,50,52,54,61,80,82,84,91,123,125,126 4 -320072 cd16197 EFh_PEF_CalpC 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320072 cd16197 EFh_PEF_CalpC 3 EF-hand motif 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320072 cd16197 EFh_PEF_CalpC 4 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320072 cd16197 EFh_PEF_CalpC 5 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320072 cd16197 EFh_PEF_CalpC 6 EF-hand motif 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320073 cd16198 EFh_PEF_CAPN1 1 Ca binding site 0 0 1 1 12,13,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320073 cd16198 EFh_PEF_CAPN1 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320073 cd16198 EFh_PEF_CAPN1 3 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320073 cd16198 EFh_PEF_CAPN1 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320073 cd16198 EFh_PEF_CAPN1 5 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320073 cd16198 EFh_PEF_CAPN1 6 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320074 cd16199 EFh_PEF_CAPN2 1 Ca binding site 0 1 1 0 12,14,19,37,52,54,56,63,82,84,86,93,125,127,128 4 -320074 cd16199 EFh_PEF_CAPN2 2 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,33,34,35,36,37,38,39,40,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 2 -320074 cd16199 EFh_PEF_CAPN2 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320074 cd16199 EFh_PEF_CAPN2 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320074 cd16199 EFh_PEF_CAPN2 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320074 cd16199 EFh_PEF_CAPN2 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320074 cd16199 EFh_PEF_CAPN2 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320030 cd16200 EFh_PI-PLCbeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320030 cd16200 EFh_PI-PLCbeta 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320030 cd16200 EFh_PI-PLCbeta 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320030 cd16200 EFh_PI-PLCbeta 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320031 cd16201 EFh_PI-PLCgamma 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320031 cd16201 EFh_PI-PLCgamma 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320031 cd16201 EFh_PI-PLCgamma 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320031 cd16201 EFh_PI-PLCgamma 4 EF-hand motif 0 0 0 0 110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320032 cd16202 EFh_PI-PLCdelta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320032 cd16202 EFh_PI-PLCdelta 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320032 cd16202 EFh_PI-PLCdelta 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320032 cd16202 EFh_PI-PLCdelta 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320033 cd16203 EFh_PI-PLCepsilon 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320033 cd16203 EFh_PI-PLCepsilon 2 putative EF-hand motif 0 0 0 0 34,35,36,37,38,39,40,41,42,43,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -320033 cd16203 EFh_PI-PLCepsilon 3 EF-hand motif 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320033 cd16203 EFh_PI-PLCepsilon 4 EF-hand motif 0 0 0 0 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320034 cd16204 EFh_PI-PLCzeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -320034 cd16204 EFh_PI-PLCzeta 2 EF-hand motif 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320034 cd16204 EFh_PI-PLCzeta 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320034 cd16204 EFh_PI-PLCzeta 4 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320035 cd16205 EFh_PI-PLCeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320035 cd16205 EFh_PI-PLCeta 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320035 cd16205 EFh_PI-PLCeta 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320035 cd16205 EFh_PI-PLCeta 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320036 cd16206 EFh_PRIP 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320036 cd16206 EFh_PRIP 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -320036 cd16206 EFh_PRIP 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320036 cd16206 EFh_PRIP 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320037 cd16207 EFh_ScPlc1p_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -320037 cd16207 EFh_ScPlc1p_like 2 EF-hand motif 0 0 0 0 38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320037 cd16207 EFh_ScPlc1p_like 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320037 cd16207 EFh_ScPlc1p_like 4 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320038 cd16208 EFh_PI-PLCbeta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320038 cd16208 EFh_PI-PLCbeta1 2 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320038 cd16208 EFh_PI-PLCbeta1 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320038 cd16208 EFh_PI-PLCbeta1 4 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320039 cd16209 EFh_PI-PLCbeta2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320039 cd16209 EFh_PI-PLCbeta2 2 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320039 cd16209 EFh_PI-PLCbeta2 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320039 cd16209 EFh_PI-PLCbeta2 4 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320040 cd16210 EFh_PI-PLCbeta3 1 polypeptide substrate binding site 0 1 1 0 103,104,105,106,107,108,109 2 -320040 cd16210 EFh_PI-PLCbeta3 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320040 cd16210 EFh_PI-PLCbeta3 3 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320040 cd16210 EFh_PI-PLCbeta3 4 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320040 cd16210 EFh_PI-PLCbeta3 5 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320041 cd16211 EFh_PI-PLCbeta4 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320041 cd16211 EFh_PI-PLCbeta4 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320041 cd16211 EFh_PI-PLCbeta4 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320041 cd16211 EFh_PI-PLCbeta4 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320042 cd16212 EFh_NorpA_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320042 cd16212 EFh_NorpA_like 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320042 cd16212 EFh_NorpA_like 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320042 cd16212 EFh_NorpA_like 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320043 cd16213 EFh_PI-PLC21 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320043 cd16213 EFh_PI-PLC21 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320043 cd16213 EFh_PI-PLC21 3 EF-hand motif 0 0 0 0 74,75,76,77,78,79,80,81,82,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320043 cd16213 EFh_PI-PLC21 4 EF-hand motif 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320044 cd16214 EFh_PI-PLCgamma1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320044 cd16214 EFh_PI-PLCgamma1 2 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320044 cd16214 EFh_PI-PLCgamma1 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320044 cd16214 EFh_PI-PLCgamma1 4 EF-hand motif 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320046 cd16216 EFh_PI-PLCgamma1_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320046 cd16216 EFh_PI-PLCgamma1_like 2 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320046 cd16216 EFh_PI-PLCgamma1_like 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320046 cd16216 EFh_PI-PLCgamma1_like 4 EF-hand motif 0 0 0 0 115,116,117,118,119,120,121,122,123,124,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320047 cd16217 EFh_PI-PLCdelta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320047 cd16217 EFh_PI-PLCdelta1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320047 cd16217 EFh_PI-PLCdelta1 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320047 cd16217 EFh_PI-PLCdelta1 4 EF-hand motif 0 0 0 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320048 cd16218 EFh_PI-PLCdelta3 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320048 cd16218 EFh_PI-PLCdelta3 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320048 cd16218 EFh_PI-PLCdelta3 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320048 cd16218 EFh_PI-PLCdelta3 4 EF-hand motif 0 0 0 0 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320049 cd16219 EFh_PI-PLCdelta4 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320049 cd16219 EFh_PI-PLCdelta4 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320049 cd16219 EFh_PI-PLCdelta4 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320049 cd16219 EFh_PI-PLCdelta4 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320050 cd16220 EFh_PI-PLCeta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320050 cd16220 EFh_PI-PLCeta1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320050 cd16220 EFh_PI-PLCeta1 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320050 cd16220 EFh_PI-PLCeta1 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320051 cd16221 EFh_PI-PLCeta2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320051 cd16221 EFh_PI-PLCeta2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320051 cd16221 EFh_PI-PLCeta2 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320051 cd16221 EFh_PI-PLCeta2 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320052 cd16222 EFh_PRIP1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320052 cd16222 EFh_PRIP1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -320052 cd16222 EFh_PRIP1 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320052 cd16222 EFh_PRIP1 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320053 cd16223 EFh_PRIP2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320053 cd16223 EFh_PRIP2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -320053 cd16223 EFh_PRIP2 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320053 cd16223 EFh_PRIP2 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320022 cd16224 EFh_CREC_RCN2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30 7 -320022 cd16224 EFh_CREC_RCN2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320022 cd16224 EFh_CREC_RCN2 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320022 cd16224 EFh_CREC_RCN2 4 EF-hand motif 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320022 cd16224 EFh_CREC_RCN2 5 EF-hand motif 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320022 cd16224 EFh_CREC_RCN2 6 EF-hand motif 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320022 cd16224 EFh_CREC_RCN2 7 EF-hand motif 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320023 cd16225 EFh_CREC_cab45 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320023 cd16225 EFh_CREC_cab45 2 EF-hand motif 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320023 cd16225 EFh_CREC_cab45 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320023 cd16225 EFh_CREC_cab45 4 EF-hand motif 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320023 cd16225 EFh_CREC_cab45 5 EF-hand motif 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320023 cd16225 EFh_CREC_cab45 6 EF-hand motif 0 0 0 0 212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320023 cd16225 EFh_CREC_cab45 7 EF-hand motif 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320024 cd16226 EFh_CREC_Calumenin_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29 7 -320024 cd16226 EFh_CREC_Calumenin_like 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320024 cd16226 EFh_CREC_Calumenin_like 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320024 cd16226 EFh_CREC_Calumenin_like 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320024 cd16226 EFh_CREC_Calumenin_like 5 EF-hand motif 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320024 cd16226 EFh_CREC_Calumenin_like 6 EF-hand motif 0 0 0 0 197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320024 cd16226 EFh_CREC_Calumenin_like 7 EF-hand motif 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320025 cd16227 EFh_CREC_RCN2_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30 7 -320025 cd16227 EFh_CREC_RCN2_like 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320025 cd16227 EFh_CREC_RCN2_like 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320025 cd16227 EFh_CREC_RCN2_like 4 EF-hand motif 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320025 cd16227 EFh_CREC_RCN2_like 5 EF-hand motif 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320025 cd16227 EFh_CREC_RCN2_like 6 EF-hand motif 0 0 0 0 196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320025 cd16227 EFh_CREC_RCN2_like 7 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320026 cd16228 EFh_CREC_Calumenin 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320026 cd16228 EFh_CREC_Calumenin 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320026 cd16228 EFh_CREC_Calumenin 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320026 cd16228 EFh_CREC_Calumenin 4 EF-hand motif 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320026 cd16228 EFh_CREC_Calumenin 5 EF-hand motif 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320026 cd16228 EFh_CREC_Calumenin 6 EF-hand motif 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320026 cd16228 EFh_CREC_Calumenin 7 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320027 cd16229 EFh_CREC_RCN1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320027 cd16229 EFh_CREC_RCN1 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320027 cd16229 EFh_CREC_RCN1 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320027 cd16229 EFh_CREC_RCN1 4 EF-hand motif 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320027 cd16229 EFh_CREC_RCN1 5 EF-hand motif 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320027 cd16229 EFh_CREC_RCN1 6 EF-hand motif 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320027 cd16229 EFh_CREC_RCN1 7 EF-hand motif 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320028 cd16230 EFh_CREC_RCN3 1 putative N-glycosylation site 0 0 1 1 96 6 -320028 cd16230 EFh_CREC_RCN3 2 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320028 cd16230 EFh_CREC_RCN3 3 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320028 cd16230 EFh_CREC_RCN3 4 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320028 cd16230 EFh_CREC_RCN3 5 EF-hand motif 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320028 cd16230 EFh_CREC_RCN3 6 EF-hand motif 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320028 cd16230 EFh_CREC_RCN3 7 EF-hand motif 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320028 cd16230 EFh_CREC_RCN3 8 EF-hand motif 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320010 cd16231 EFh_SPARC_like 1 Ca binding site 0 1 1 0 60,65,72,95,97,99,106 4 -320010 cd16231 EFh_SPARC_like 2 polypeptide substrate binding site 0 1 1 1 7,8,11,12,14,15,18,19,22,83,84 2 -320010 cd16231 EFh_SPARC_like 3 EC/FS-domain interface 0 1 1 1 70,71,85 0 -320010 cd16231 EFh_SPARC_like 4 EF-hand motif 0 0 0 1 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320010 cd16231 EFh_SPARC_like 5 EF-hand motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -320011 cd16232 EFh_SPARC_TICN 1 putative Ca binding site 0 0 1 1 55,59,66 4 -320011 cd16232 EFh_SPARC_TICN 2 EF-hand motif 0 0 0 1 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320011 cd16232 EFh_SPARC_TICN 3 EF-hand motif 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107 7 -320012 cd16233 EFh_SPARC_FSTL1 1 putative Ca binding site 0 0 1 1 44,47,54,93,95,97,104 4 -320012 cd16233 EFh_SPARC_FSTL1 2 EF-hand motif 0 0 0 1 32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320012 cd16233 EFh_SPARC_FSTL1 3 EF-hand motif 0 0 0 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320013 cd16234 EFh_SPARC_SMOC 1 Ca binding site 0 0 1 1 48,50,52,59,85,87,89,96 4 -320013 cd16234 EFh_SPARC_SMOC 2 EF-hand motif 0 0 0 1 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -320013 cd16234 EFh_SPARC_SMOC 3 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320014 cd16235 EFh_SPARC_SPARC 1 Ca binding site 0 1 1 0 40,45,52,75,77,79,86 4 -320014 cd16235 EFh_SPARC_SPARC 2 polypeptide substrate binding site 0 1 1 1 7,8,11,12,14,15,18,19,22,26,60,63,64 2 -320014 cd16235 EFh_SPARC_SPARC 3 EC/FS-domain interface 0 1 1 1 50,51,65 0 -320014 cd16235 EFh_SPARC_SPARC 4 EF-hand motif 0 0 0 1 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320014 cd16235 EFh_SPARC_SPARC 5 EF-hand motif 0 0 0 1 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320015 cd16236 EFh_SPARC_SPARCL1 1 Ca binding site 0 0 1 1 37,42,49,72,74,76,83 4 -320015 cd16236 EFh_SPARC_SPARCL1 2 EF-hand motif 0 0 0 1 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -320015 cd16236 EFh_SPARC_SPARCL1 3 EF-hand motif 0 0 0 1 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 7 -320016 cd16237 EFh_SPARC_TICN1 1 putative Ca binding site 0 0 1 1 59,63,70 4 -320016 cd16237 EFh_SPARC_TICN1 2 EF-hand motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320016 cd16237 EFh_SPARC_TICN1 3 EF-hand motif 0 0 0 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320017 cd16238 EFh_SPARC_TICN2 1 putative Ca binding site 0 0 1 1 59,63,70 4 -320017 cd16238 EFh_SPARC_TICN2 2 EF-hand motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320017 cd16238 EFh_SPARC_TICN2 3 EF-hand motif 0 0 0 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320018 cd16239 EFh_SPARC_TICN3 1 putative Ca binding site 0 0 1 1 60,64,71 4 -320018 cd16239 EFh_SPARC_TICN3 2 EF-hand motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -320018 cd16239 EFh_SPARC_TICN3 3 EF-hand motif 0 0 0 1 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -320019 cd16240 EFh_SPARC_SMOC1 1 Ca binding site 0 0 1 1 57,59,61,68,94,96,98,105 4 -320019 cd16240 EFh_SPARC_SMOC1 2 EF-hand motif 0 0 0 1 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -320019 cd16240 EFh_SPARC_SMOC1 3 EF-hand motif 0 0 0 1 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320020 cd16241 EFh_SPARC_SMOC2 1 Ca binding site 0 0 1 1 56,58,60,67,93,95,97,104 4 -320020 cd16241 EFh_SPARC_SMOC2 2 EF-hand motif 0 0 0 1 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 7 -320020 cd16241 EFh_SPARC_SMOC2 3 EF-hand motif 0 0 0 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320000 cd16242 EFh_DMD_like 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320000 cd16242 EFh_DMD_like 2 EF-hand-like motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -320000 cd16242 EFh_DMD_like 3 EF-hand-like motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -320000 cd16242 EFh_DMD_like 4 EF-hand-like motif 0 0 0 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,155,156,157,158,159,160,161,162 7 -320000 cd16242 EFh_DMD_like 5 Domain interface 0 1 1 0 0,1,3,4,23,27,31,33,34,37,48,49,50,51,52,53,54,56,57,60,66,79,120,121,123 0 -320000 cd16242 EFh_DMD_like 6 peptide binding site 0 1 1 0 64,65,66 2 -320001 cd16243 EFh_DYTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320001 cd16243 EFh_DYTN 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320001 cd16243 EFh_DYTN 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320001 cd16243 EFh_DYTN 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320002 cd16244 EFh_DTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -320002 cd16244 EFh_DTN 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320002 cd16244 EFh_DTN 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320002 cd16244 EFh_DTN 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160 7 -320003 cd16245 EFh_DAH 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320003 cd16245 EFh_DAH 2 EF-hand-like motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -320003 cd16245 EFh_DAH 3 EF-hand-like motif 0 0 0 1 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320003 cd16245 EFh_DAH 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320004 cd16246 EFh_DMD 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320004 cd16246 EFh_DMD 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320004 cd16246 EFh_DMD 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320004 cd16246 EFh_DMD 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 7 -320004 cd16246 EFh_DMD 5 Domain interface 0 1 1 0 0,1,3,4,22,26,30,32,33,36,47,48,49,50,51,52,53,55,56,59,65,78,119,120,122 0 -320004 cd16246 EFh_DMD 6 peptide binding site 0 1 1 0 63,64,65 2 -320005 cd16247 EFh_UTRO 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320005 cd16247 EFh_UTRO 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320005 cd16247 EFh_UTRO 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320005 cd16247 EFh_UTRO 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 7 -320006 cd16248 EFh_DRP-2 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 7 -320006 cd16248 EFh_DRP-2 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320006 cd16248 EFh_DRP-2 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320006 cd16248 EFh_DRP-2 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,154,155,156,157,158,159,160,161 7 -320007 cd16249 EFh_DTNA 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -320007 cd16249 EFh_DTNA 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320007 cd16249 EFh_DTNA 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320007 cd16249 EFh_DTNA 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320008 cd16250 EFh_DTNB 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -320008 cd16250 EFh_DTNB 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320008 cd16250 EFh_DTNB 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320008 cd16250 EFh_DTNB 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160 7 -319994 cd16251 EFh_parvalbumin_like 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319994 cd16251 EFh_parvalbumin_like 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319994 cd16251 EFh_parvalbumin_like 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319994 cd16251 EFh_parvalbumin_like 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319995 cd16252 EFh_calglandulin_like 1 Ca binding site 0 0 1 1 46,48,50,54,57,87,89,91,98 4 -319995 cd16252 EFh_calglandulin_like 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319995 cd16252 EFh_calglandulin_like 3 EF-hand motif 0 0 0 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -319995 cd16252 EFh_calglandulin_like 4 EF-hand motif 0 0 0 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -319996 cd16253 EFh_parvalbumins 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319996 cd16253 EFh_parvalbumins 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319996 cd16253 EFh_parvalbumins 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319996 cd16253 EFh_parvalbumins 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319997 cd16254 EFh_parvalbumin_alpha 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319997 cd16254 EFh_parvalbumin_alpha 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319997 cd16254 EFh_parvalbumin_alpha 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319997 cd16254 EFh_parvalbumin_alpha 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319998 cd16255 EFh_parvalbumin_beta 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319998 cd16255 EFh_parvalbumin_beta 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319998 cd16255 EFh_parvalbumin_beta 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319998 cd16255 EFh_parvalbumin_beta 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -293929 cd16256 LumP 1 ligand binding site 0 1 1 1 40,46,47,48,49,61,62,63,64,65,68,69,99,100,101 5 -293929 cd16256 LumP 2 FMN binding site 0 1 1 0 40,46,47,48,49,61,62,63,64,65,68,69,99,100,101 5 -293915 cd16258 Tet_III 1 S12 interface 0 1 1 0 14,15,18,22,33,35,40 2 -293917 cd16260 EF4_III 1 S12 interface 0 1 1 0 14,18,34,35,36,37,43,44 2 -293911 cd16266 IF2_aeIF5B_IV 1 tRNA binding site 0 1 1 0 10,11,12,14,15,16,17,18,19,46,47,48,63,64,65,66,67,74 3 -293911 cd16266 IF2_aeIF5B_IV 2 16S rRNA binding site 0 1 1 0 11,12,13,29,50,66 3 -293912 cd16267 HBS1-like_II 1 18S rRNA binding site 0 0 1 1 15,16,66,68 3 -293913 cd16268 EF2_II 1 tRNA binding site 0 1 1 0 14,56 3 -293879 cd16269 GBP_C 1 coiled coil 0 0 1 0 259,260,261,262,263,264,265,266,267,268,269,270 7 -293879 cd16269 GBP_C 2 coiled coil 0 0 1 0 279,280,281,282,283,284,285,286,287,288,289,290 7 -293878 cd16270 Apc5_N 1 Apc4 interaction interface 0 1 1 0 12,13,24,27,28,31,32,34,35,39,96,106,107,108,109 2 -293878 cd16270 Apc5_N 2 APC subunit 15 interaction interface 0 1 1 0 111,114,115,118,121,122 2 -293878 cd16270 Apc5_N 3 CDC23 interaction interface 0 1 1 0 76,77,78,81,85,120,124,125,126,127,129,130 2 -293830 cd16272 RNaseZ_MBL-fold 1 putative active site 0 0 1 1 31,56,57,59,61,62,137,138,158,178 1 -293830 cd16272 RNaseZ_MBL-fold 2 metal binding site 0 1 1 1 57,59,61,62,137,158 4 -293830 cd16272 RNaseZ_MBL-fold 3 metal binding site 0 1 1 1 57,59,137,158 4 -293830 cd16272 RNaseZ_MBL-fold 4 metal binding site 0 1 1 1 61,62,158 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 1 putative active site 0 0 1 1 43,45,47,48,106,107,128,153 1 -293831 cd16273 SNM1A-1C-like_MBL-fold 2 putative metal binding site HHDHDD 0 1 1 43,45,47,106,128,153 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 43,45,106,128 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 4 putative metal binding site DDD 0 1 1 47,128,153 4 -293832 cd16274 PQQB-like_MBL-fold 1 putative active site 0 0 1 1 87,89,91,92,174,175,197,218 1 -293832 cd16274 PQQB-like_MBL-fold 2 putative metal binding site 0 0 1 1 91,218 4 -293833 cd16275 BaeB-like_MBL-fold 1 putative active site 0 0 1 1 54,56,58,59,115,116,132,173 1 -293833 cd16275 BaeB-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 54,56,58,115,132,173 4 -293833 cd16275 BaeB-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 54,56,115,132 4 -293833 cd16275 BaeB-like_MBL-fold 4 putative metal binding site DDH 0 1 1 58,132,173 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 52,54,56,57,118,119,137,177 1 -293834 cd16276 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHD[HD]DH 0 1 1 52,54,56,118,137,177 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HH[HD]D 0 1 1 52,54,118,137 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 56,137,177 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 70,72,74,75,154,155,175,221 1 -293835 cd16277 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 70,72,74,154,175,221 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 70,72,154,175 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 74,175,221 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 60,62,64,65,122,123,141,180 1 -293836 cd16278 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 60,62,64,122,141,180 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 60,62,122,141 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 64,141,180 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 0 10,73,74,75,76,77,78,79,80,152,170 1 -293837 cd16279 metallo-hydrolase-like_MBL-fold 2 metal binding site HHDH[HD]D 1 1 1 73,75,77,78,152,170 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 3 metal binding site HH[HD]D 1 1 1 73,75,152,170 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 4 metal binding site DHD 1 1 1 77,78,170 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 68,70,72,73,141,142,166,204 1 -293838 cd16280 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHH 0 1 1 68,70,72,141,204 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHH 0 1 1 68,70,141 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DH 0 1 1 72,204 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 101,103,105,106,185,186,206,251 1 -293839 cd16281 metallo-hydrolase-like_MBL-fold 2 putative metal binding site HHDHDH 0 1 1 101,103,105,185,206,251 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 101,103,185,206 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 4 putative metal binding site DDH 0 1 1 105,206,251 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 1 putative active site 0 0 1 1 59,61,63,64,141,142,160,197 1 -293840 cd16282 metallo-hydrolase-like_MBL-fold 2 putative metal binding site 0 0 1 1 59,61,63,141,160,197 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 59,61,141,160 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 4 putative metal binding site [HDE][HDE]H 0 1 1 63,160,197 4 -293841 cd16283 RomA-like_MBL-fold 1 putative active site 0 0 1 1 56,58,60,61,127,128,148,180 1 -293841 cd16283 RomA-like_MBL-fold 2 putative metal binding site HHDD 0 1 1 56,58,60,148 4 -293841 cd16283 RomA-like_MBL-fold 3 putative metal binding site HHD 0 1 1 56,58,148 4 -293841 cd16283 RomA-like_MBL-fold 4 putative metal binding site DD 0 1 1 60,148 4 -293842 cd16284 UlaG-like_MBL-fold 1 putative active site 0 0 1 1 45,47,49,50,132,133,154,177 1 -293842 cd16284 UlaG-like_MBL-fold 2 putative metal binding site HHDDD 0 1 1 45,47,49,132,154 4 -293842 cd16284 UlaG-like_MBL-fold 3 putative metal binding site HHDD 0 1 1 45,47,132,154 4 -293842 cd16284 UlaG-like_MBL-fold 4 putative metal binding site DD 0 1 1 49,154 4 -293843 cd16285 MBL-B1 1 active site 0 1 1 0 16,18,20,23,24,43,70,72,73,74,131,150,153,160,161,162,192 1 -293843 cd16285 MBL-B1 2 Zn binding site HHDHCH 1 1 1 70,72,74,131,150,192 4 -293843 cd16285 MBL-B1 3 Zn binding site HHH 1 1 1 70,72,131 4 -293843 cd16285 MBL-B1 4 Zn binding site DCH 1 1 1 74,150,192 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 1 active site 0 0 1 1 26,27,42,71,72,74,76,77,161,180,217,218 1 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 2 Zn binding site HHDHCH 1 1 1 72,74,76,161,180,218 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 3 Zn binding site HHH 1 1 1 72,74,161 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 4 Zn binding site DCH 1 1 1 76,180,218 4 -293845 cd16287 CphS_ImiS-like_MBL-B2 1 active site 0 1 1 1 18,38,68,69,101,104,105,144,163,166,170,171,174,205 1 -293845 cd16287 CphS_ImiS-like_MBL-B2 2 Zn binding site NHH 0 1 1 65,67,144 4 -293845 cd16287 CphS_ImiS-like_MBL-B2 3 Zn binding site DCH 1 1 0 69,163,205 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 1 active site 0 1 1 0 67,69,71,72,144,169,171,173,210,213,240,244,247 1 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 1 67,69,71,72,144,210 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,144 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 4 Zn binding site DHH 1 1 0 71,72,210 4 -293847 cd16289 L1_POM-1-like_MBL-B3 1 active site 0 1 1 1 0,67,69,71,72,107,110,111,143,170,172,208 1 -293847 cd16289 L1_POM-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 1 67,69,71,72,143,208 4 -293847 cd16289 L1_POM-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,143 4 -293847 cd16289 L1_POM-1-like_MBL-B3 4 Zn binding site DHH 1 1 1 71,72,208 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 1 active site 0 1 1 0 67,69,71,72,108,145,170,172,212 1 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 2 Zn binding site [HE]HDHHH 1 1 1 67,69,71,72,145,212 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 3 Zn binding site [HE]HH 1 1 1 67,69,145 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 4 Zn binding site DHH 1 1 1 71,72,212 4 -293849 cd16291 INTS11-like_MBL-fold 1 active site 0 0 1 1 9,62,64,66,67,151,172 1 -293849 cd16291 INTS11-like_MBL-fold 2 Zn binding site HHDHHD 0 1 1 62,64,66,67,151,172 4 -293849 cd16291 INTS11-like_MBL-fold 3 Zn binding site HHH 0 1 1 62,64,151 4 -293849 cd16291 INTS11-like_MBL-fold 4 Zn binding site DHD 0 1 1 66,67,172 4 -293849 cd16291 INTS11-like_MBL-fold 5 putative RNA binding site 0 0 1 1 135,136,137,143,159,161,166,189 3 -293850 cd16292 CPSF3-like_MBL-fold 1 active site 0 1 1 1 59,61,63,64,146,167 1 -293850 cd16292 CPSF3-like_MBL-fold 2 Zn binding site HHDHHD 1 1 1 59,61,63,64,146,167 4 -293850 cd16292 CPSF3-like_MBL-fold 3 Zn binding site HHHD 1 1 1 59,61,146,167 4 -293850 cd16292 CPSF3-like_MBL-fold 4 Zn binding site DHD 1 1 1 63,64,167 4 -293851 cd16293 CPSF2-like_MBL-fold 1 active site 0 0 1 1 9,55,57,59,60,146,167 1 -293851 cd16293 CPSF2-like_MBL-fold 2 putative Zn binding site h[DE][DE]HHD 0 1 1 55,57,59,60,146,167 4 -293851 cd16293 CPSF2-like_MBL-fold 3 putative Zn binding site H[DE]H 0 1 1 55,57,146 4 -293851 cd16293 CPSF2-like_MBL-fold 4 putative Zn binding site [DE][HC][DHE] 0 1 1 59,60,167 4 -293851 cd16293 CPSF2-like_MBL-fold 5 putative RNA binding site 0 0 1 1 127,128,129,138,154,156,161,184 3 -293852 cd16294 Int9-like_MBL-fold 1 putative active site 0 0 1 1 9,50,52,54,55,118,139 1 -293852 cd16294 Int9-like_MBL-fold 2 putative RNA binding site 0 0 1 1 102,103,104,110,126,128,133,156 3 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 1 active site 0 1 1 1 9,58,60,62,63,149,171 1 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 2 Zn binding site HHDHHD 1 1 1 58,60,62,63,149,171 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 3 Zn binding site HHH 1 1 1 58,60,149 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 4 Zn binding site DHD 1 1 1 62,63,171 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 5 RNA binding site 0 1 1 1 133,134,135,141,157,159,165,188 3 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 1 putative active site 0 0 1 1 26,51,52,54,56,57,111,112,143,173 1 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 2 putative metal binding site [HN][HNAD]NH[ND] 0 1 1 54,56,57,111,143 4 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 3 putative metal binding site [HN]H[ND] 0 1 1 54,111,143 4 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 4 putative metal binding site [AHDN]N[ND] 0 1 1 56,57,143 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 1 putative active site 0 0 1 1 32,34,36,37,114,115,135,165 1 -293855 cd16297 artemis-SNM1C-like_MBL-fold 2 putative metal binding site HHDHDD 0 1 1 32,34,36,114,135,164 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 32,34,114,135 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 4 putative metal binding site DDD 0 1 1 36,135,164 4 -293856 cd16298 SNM1A-like_MBL-fold 1 putative active site 0 0 1 1 43,45,47,48,104,105,126,151 1 -293856 cd16298 SNM1A-like_MBL-fold 2 putative metal binding site HHDHDD 0 1 1 43,45,47,104,126,150 4 -293856 cd16298 SNM1A-like_MBL-fold 3 putative metal binding site HHHD 0 1 1 43,45,104,126 4 -293856 cd16298 SNM1A-like_MBL-fold 4 putative metal binding site DDD 0 1 1 47,126,150 4 -293857 cd16299 IND_BlaB-like_MBL-B1 1 active site 0 1 1 0 43,70,72,73,74,104,133,152,164,194 1 -293857 cd16299 IND_BlaB-like_MBL-B1 2 Zn binding site HHDHCH 1 1 1 70,72,74,133,152,194 4 -293857 cd16299 IND_BlaB-like_MBL-B1 3 Zn binding site HHH 1 1 1 70,72,133 4 -293857 cd16299 IND_BlaB-like_MBL-B1 4 Zn binding site DCH 1 1 1 74,152,194 4 -293858 cd16300 NDM_FIM-like_MBL-B1 1 active site 0 1 1 0 16,18,44,71,73,74,75,103,135,154,157,164,165,166,196 1 -293858 cd16300 NDM_FIM-like_MBL-B1 2 Zn binding site HHDHCH 1 1 1 71,73,75,135,154,196 4 -293858 cd16300 NDM_FIM-like_MBL-B1 3 Zn binding site HHH 1 1 1 71,73,135 4 -293858 cd16300 NDM_FIM-like_MBL-B1 4 Zn binding site DCH 1 1 1 75,154,196 4 -293859 cd16301 IMP_DIM-like_MBL-B1 1 active site 0 1 1 0 18,20,23,26,27,28,46,72,74,76,134,153,156,162,163,164,165,195 1 -293859 cd16301 IMP_DIM-like_MBL-B1 2 Zn binding site HH[DE]HCH 1 1 1 72,74,76,134,153,195 4 -293859 cd16301 IMP_DIM-like_MBL-B1 3 Zn binding site HHH 1 1 1 72,74,134 4 -293859 cd16301 IMP_DIM-like_MBL-B1 4 Zn binding site [DE]CH 1 1 1 76,153,195 4 -293860 cd16302 CcrA-like_MBL-B1 1 active site 0 1 1 0 18,21,24,25,71,73,75,134,153,156,157,159,163,164,194,195,196 1 -293860 cd16302 CcrA-like_MBL-B1 2 Zn binding site HHDHCH 1 1 1 71,73,75,134,153,194 4 -293860 cd16302 CcrA-like_MBL-B1 3 Zn binding site HHH 1 1 1 71,73,134 4 -293860 cd16302 CcrA-like_MBL-B1 4 Zn binding site DCH 1 1 1 75,153,194 4 -293861 cd16303 VIM_type_MBL-B1 1 active site 0 1 1 0 20,25,45,72,74,76,137,156,163,168,198 1 -293861 cd16303 VIM_type_MBL-B1 2 Zn binding site HHDHCH 1 1 1 72,74,76,137,156,198 4 -293861 cd16303 VIM_type_MBL-B1 3 Zn binding site HHH 1 1 1 72,74,137 4 -293861 cd16303 VIM_type_MBL-B1 4 Zn binding site DCH 1 1 1 76,156,198 4 -293862 cd16304 BcII-like_MBL-B1 1 active site 0 1 1 0 18,23,43,70,72,73,74,133,152,164,167,194 1 -293862 cd16304 BcII-like_MBL-B1 2 Zn binding site HHDHCH 1 1 1 70,72,74,133,152,194 4 -293862 cd16304 BcII-like_MBL-B1 3 Zn binding site HHH 1 1 1 70,72,133 4 -293862 cd16304 BcII-like_MBL-B1 4 Zn binding site DCH 1 1 1 74,152,194 4 -293863 cd16305 Sfh-1-like_MBL-B2 1 active site 0 1 1 1 18,38,68,69,101,104,105,144,163,166,170,171,174,205 1 -293863 cd16305 Sfh-1-like_MBL-B2 2 Zn binding site NHH 0 1 1 65,67,144 4 -293863 cd16305 Sfh-1-like_MBL-B2 3 Zn binding site DCH 1 0 0 69,163,205 4 -293864 cd16306 CphA_ImiS-like_MBL-B2 1 active site 0 1 1 1 18,38,68,69,101,104,105,144,163,166,170,171,174,201 1 -293864 cd16306 CphA_ImiS-like_MBL-B2 2 Zn binding site NHH 0 1 1 65,67,144 4 -293864 cd16306 CphA_ImiS-like_MBL-B2 3 Zn binding site DCH 1 1 0 69,163,201 4 -293865 cd16307 FEZ-1-like_MBL-B3 1 active site 0 1 1 0 67,69,71,72,145,170,172,174,211,214,241,245,248 1 -293865 cd16307 FEZ-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 0 67,69,71,72,145,211 4 -293865 cd16307 FEZ-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,145 4 -293865 cd16307 FEZ-1-like_MBL-B3 4 Zn binding site DHH 1 1 0 71,72,211 4 -293866 cd16308 GOB1-like_MBL-B3 1 putative active site 0 0 1 1 67,69,71,72,144,169,171,173,210,213,240,244,247 1 -293866 cd16308 GOB1-like_MBL-B3 2 Zn binding site HHDHHH 0 1 1 67,69,71,72,144,210 4 -293866 cd16308 GOB1-like_MBL-B3 3 Zn binding site HHH 0 1 1 67,69,144 4 -293866 cd16308 GOB1-like_MBL-B3 4 Zn binding site DHH 0 1 1 71,72,210 4 -293867 cd16309 BJP-1-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,142,168,170,172,208,211,238,242,245 1 -293867 cd16309 BJP-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 1 67,69,71,72,142,208 4 -293867 cd16309 BJP-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,142 4 -293867 cd16309 BJP-1-like_MBL-B3 4 Zn binding site DHH 1 1 0 71,72,208 4 -293868 cd16310 Mbl1b-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,143,168,170,172,208,211,238,242,245 1 -293868 cd16310 Mbl1b-like_MBL-B3 2 Zn binding site HHDHHH 0 1 1 67,69,71,72,143,208 4 -293868 cd16310 Mbl1b-like_MBL-B3 3 Zn binding site HHH 0 1 1 67,69,143 4 -293868 cd16310 Mbl1b-like_MBL-B3 4 Zn binding site DHH 0 1 1 71,72,208 4 -293869 cd16311 THIN-B2-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,108,145,170,172,213 1 -293869 cd16311 THIN-B2-like_MBL-B3 2 Zn binding site HHDHHH 0 1 1 67,69,71,72,145,213 4 -293869 cd16311 THIN-B2-like_MBL-B3 3 Zn binding site HHH 0 1 1 67,69,145 4 -293869 cd16311 THIN-B2-like_MBL-B3 4 Zn binding site DHH 0 1 1 71,72,213 4 -293870 cd16312 THIN-B-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,108,147,172,174,215 1 -293870 cd16312 THIN-B-like_MBL-B3 2 Zn binding site HHDHHH 0 1 1 67,69,71,72,147,215 4 -293870 cd16312 THIN-B-like_MBL-B3 3 Zn binding site HHH 0 1 1 67,69,147 4 -293870 cd16312 THIN-B-like_MBL-B3 4 Zn binding site DHH 0 1 1 71,72,215 4 -293871 cd16313 SMB-1-like_MBL-B3 1 active site 0 1 1 0 67,69,71,72,108,145,170,172,210 1 -293871 cd16313 SMB-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 1 67,69,71,72,145,210 4 -293871 cd16313 SMB-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,145 4 -293871 cd16313 SMB-1-like_MBL-B3 4 Zn binding site DHH 1 1 1 71,72,210 4 -293872 cd16314 AIM-1-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,108,145,170,172,210 1 -293872 cd16314 AIM-1-like_MBL-B3 2 Zn binding site HHDHHH 1 1 1 67,69,71,72,145,210 4 -293872 cd16314 AIM-1-like_MBL-B3 3 Zn binding site HHH 1 1 1 67,69,145 4 -293872 cd16314 AIM-1-like_MBL-B3 4 Zn binding site DHH 1 1 1 71,72,210 4 -293873 cd16315 EVM-1-like_MBL-B3 1 active site 0 0 1 1 67,69,71,72,108,145,170,172,210 1 -293873 cd16315 EVM-1-like_MBL-B3 2 Zn binding site HHDHHH 0 1 1 67,69,71,72,145,210 4 -293873 cd16315 EVM-1-like_MBL-B3 3 Zn binding site HHH 0 1 1 67,69,145 4 -293873 cd16315 EVM-1-like_MBL-B3 4 Zn binding site DHH 0 1 1 71,72,210 4 -293874 cd16316 BlaB-like_MBL-B1 1 active site 0 1 1 0 43,70,72,73,74,104,133,152,164,194 1 -293874 cd16316 BlaB-like_MBL-B1 2 Zn binding site HHDHCH 1 1 1 70,72,74,133,152,194 4 -293874 cd16316 BlaB-like_MBL-B1 3 Zn binding site HHH 1 1 1 70,72,133 4 -293874 cd16316 BlaB-like_MBL-B1 4 Zn binding site DCH 1 1 1 74,152,194 4 -293875 cd16317 IND_MBL-B1 1 active site 0 1 1 1 45,72,74,75,76,106,135,154,166,196 1 -293875 cd16317 IND_MBL-B1 2 Zn binding site HHDHCH 1 1 1 72,74,76,135,154,196 4 -293875 cd16317 IND_MBL-B1 3 Zn binding site HHH 1 1 1 72,74,135 4 -293875 cd16317 IND_MBL-B1 4 Zn binding site DCH 1 1 1 76,154,196 4 -293876 cd16318 MUS_TUS_MBL-B1 1 active site 0 0 1 1 43,70,72,73,74,104,133,152,164,194 1 -293876 cd16318 MUS_TUS_MBL-B1 2 Zn binding site HHDHCH 0 1 1 70,72,74,133,152,194 4 -293876 cd16318 MUS_TUS_MBL-B1 3 Zn binding site HHH 0 1 1 70,72,133 4 -293876 cd16318 MUS_TUS_MBL-B1 4 Zn binding site DCH 0 1 1 74,152,194 4 -293782 cd16319 MraZ 1 oligomer interface 0 1 1 1 0,28,36,45,46,49 2 -293782 cd16319 MraZ 2 DXXXR DXXR 1 1 0 6,8,9,10 7 -293783 cd16320 MraZ_N 1 oligomer interface 0 1 1 1 0,1,2,31,39,48,49,52 2 -293783 cd16320 MraZ_N 2 DXXXR DXXR 1 1 0 8,10,11,12 7 -293784 cd16321 MraZ_C 1 oligomer interface 0 1 1 1 8,10,38,45,54,55,58 2 -293784 cd16321 MraZ_C 2 DXXXR DXXR 1 1 0 16,18,19,20 7 -293877 cd16322 TTHA1623-like_MBL-fold 1 putative active site 0 1 1 1 53,55,57,58,128,129,147,187 1 -293877 cd16322 TTHA1623-like_MBL-fold 2 metal binding site HH[DE][HN]HDH 1 1 1 53,55,57,58,128,147,187 4 -293877 cd16322 TTHA1623-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 53,55,128,147 4 -293877 cd16322 TTHA1623-like_MBL-fold 4 metal binding site [DE][HN]DH 1 1 0 57,58,147,187 4 -319982 cd16324 LolA_fold-like 1 hydrophobic core 0 1 1 1 3,5,7,9,19,21,23,34,36,45,47,56,58,115,127,129,138,141,143,152,154,156,159 0 -319983 cd16325 LolA 1 hydrophobic core 0 0 1 1 15,17,19,21,32,34,36,46,48,54,56,65,67,116,128,130,139,142,144,152,154,156,163 0 -319984 cd16326 LolB 1 hydrophobic core 0 0 1 1 14,16,18,20,29,31,33,42,44,53,55,62,64,120,127,129,141,144,146,153,155,157,160 0 -319984 cd16326 LolB 2 lipid binding site 0 0 1 1 48 5 -319985 cd16327 RseB 1 homodimer interface 0 1 1 1 25,27,49,55,57,66,68,71,76 2 -319985 cd16327 RseB 2 heterodimer interface 0 1 1 1 9,13,23,26,27,28,29,30,32,47,51,55,57,66,68,74,76,90,155 2 -319985 cd16327 RseB 3 hydrophobic core 0 0 1 1 19,21,23,25,30,32,34,47,49,55,57,66,68,120,130,132,141,144,146,155,157,159,162 0 -319992 cd16328 RseA_N 1 heterodimer interface 0 1 1 0 0,1,4,5,6,7,8,9,10,17,18,20,21,31,33,34,35,36,37,38,39,40,41,42,43,44,54,55,56,58,59,60,62,63 2 -319986 cd16329 LolA_like 1 hydrophobic core 0 0 1 1 18,20,23,25,35,37,39,51,53,62,64,78,80,164,177,179,191,194,196,205,207,209,212 0 -319987 cd16330 LolA_VioE 1 homodimer interface 0 1 1 0 11,13,15,17,18,25,26,27,29,31,40,42,43,44,56,58,73,75,77,86,87,88,90,92,154,168,171 2 -319987 cd16330 LolA_VioE 2 hydrophobic core 0 1 1 1 10,12,14,16,26,28,30,32,41,43,45,46,59,61,72,74,104,133,141,143,152,155,157,165,167,169,172 0 -319990 cd16332 YsxB-like 1 putative active site HCS 0 0 1 20,32,36 1 -319990 cd16332 YsxB-like 2 homodimer interface 0 1 0 0 29,30,33,34,37,38,41,44,45,75,78,79,81,82,85,86,89 2 -319989 cd16333 RELM 1 trimer interface 0 1 1 1 2,3,6,7,9,10,13,14,17,27,29,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,70,76,80,83,84 2 -319989 cd16333 RELM 2 oligomer interface 0 1 1 1 0,1,2,3,5,6 2 -319988 cd16334 LppX-like 1 hydrophobic core 0 1 1 1 24,26,28,30,42,44,46,54,56,71,73,78,80,138,159,161,170,173,175,185,187,189,192 0 -319981 cd16335 MukF_N 1 homodimer interface 0 1 1 0 2,3,6,7,8,9,10,11,13,16,17,24,26,34,50,69,75,76,77,78,79,87,89,90,91,92,93,95,97,100,101,103,108,110,111,114,115,118,122,140,145,146,148,149,150,153,156,160,163,164,166,167,169,170,173,248,252,259 2 -319981 cd16335 MukF_N 2 MukE-MukF interface 0 1 1 0 176,180,184,259,262,263,266,267,270,273,274,283,286,287,288,290,291,292,294,295,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313 2 -319980 cd16336 MukE 1 MukE-MukF interface 0 1 1 0 20,21,22,23,67,74,75,76,77,78,80,83,84,87,90,91,93,94,96,99,100,101,102,103,104,117,122,126,155,161,167,169,175,176,177,178,180,181,182,183,184,185,188,191,198,199,200,201,203 2 -319980 cd16336 MukE 2 homodimer interface 0 1 1 0 0,8,13,14,15,17,18,21,50,51,73 2 -319979 cd16337 MukF_C 1 MukF-MukB interface 0 1 1 0 0,2,5,6,7,9,52,53,56,57,60,61,64,73,74,75,77,78,80,87,88,89,90,91 2 -319976 cd16338 CpcT 1 chemical substrate binding site 0 1 1 0 28,47,57,58,60,62,76,109,111,130,141,145,152,154,156,167,174,176 5 -319976 cd16338 CpcT 2 catalytic site [FY][DE] 0 1 1 57,156 1 -319976 cd16338 CpcT 3 homodimer interface 0 1 1 1 16,18,19,23,26,49,57,167,168,169,174 2 -319977 cd16339 CpcS 1 chemical substrate binding site 0 0 1 1 132,142 5 -319975 cd16341 FdhE 1 Fe binding site 0 1 0 1 151,154,176,179,190,193,217,220 4 -319974 cd16342 FusC_FusB 1 Zn binding site CCCC 1 1 1 149,152,181,187 4 -319974 cd16342 FusC_FusB 2 dimer interface 0 1 1 0 13,16,17,26,27,29,30,33,139,141,145,146,148,153,154,160,162,175,177,179,192,199 2 -319971 cd16343 LMWPTP 1 active site 0 1 1 0 6,7,8,9,10,11,12,13,43,121,123 1 -319972 cd16344 LMWPAP 1 active site 0 1 1 0 6,8,9,10,11,12,13,116,118 1 -319973 cd16345 LMWP_ArsC 1 active site 0 1 1 0 5,7,8,9,10,11,12,100,102 1 -319957 cd16347 VOC_like 1 metal binding site HHTE 1 0 0 36,149,151,215 4 -319958 cd16348 VOC_YdcJ_like 1 metal binding site HHTE 1 0 0 60,216,218,286 4 -319959 cd16349 VOC_like 1 metal binding site HHTE 0 0 1 44,200,202,266 4 -319960 cd16350 VOC_like 1 metal binding site HHTE 1 0 0 36,161,163,232 4 -319352 cd16352 CheD 1 heterodimer interface 0 1 1 1 20,21,22,23,89,130,132,145 2 -319352 cd16352 CheD 2 putative catalytic site [CS]H 0 1 1 24,41 1 -319961 cd16354 BAT 1 homodimer interface 0 1 1 0 0,1,2,3,39,40,41,42,43,44,45,46,49,59,62,63,64,65,66,67,68,69,73,74 2 -319962 cd16355 VOC_like 1 dimer interface 0 0 0 0 0,1,2,3,5,21,22,23,43,58,59,60,62,70,71,72,73,74,75,80,81,84,117 2 -319963 cd16356 PsjN_like 1 putative active site 0 0 1 1 0,4,32,43,45,67,107,115,117 1 -319963 cd16356 PsjN_like 2 homodimer interface 0 1 0 0 0,1,2,3,4,21,42,67,68,69,70,71,107,109,113,114,115,117 2 -319964 cd16357 GLOD4_C 1 putative active site 0 0 1 1 0,4,31,43,45,59,102,110,112 1 -319965 cd16358 GlxI_Ni 1 active site 0 0 1 1 2,6,31,36,38,53,55,57,71,95,107,109,117,119 1 -319965 cd16358 GlxI_Ni 2 metal binding site [HQ]EH[KE] 1 1 1 2,53,71,119 4 -319965 cd16358 GlxI_Ni 3 glutathione binding site 0 0 1 0 6,31,36,38,55,57,95,107,109,117 5 -319965 cd16358 GlxI_Ni 4 dimer interface 0 1 1 0 0,1,2,3,4,5,6,21,43,50,51,52,53,63,64,65,66,68,69,70,71,72,73,74,75,77,116,119,121 2 -319969 cd16362 TflA 1 metal binding site HE 1 0 0 57,104 4 -319969 cd16362 TflA 2 chemical substrate binding site 0 1 0 0 57,94,104 5 -319897 cd16363 Col_Im_like 1 heterodimer interface 0 1 1 0 19,20,26,29,30,33,34,37,44,45,46,47,49,50,51,52,58 2 -341100 cd16364 T3SC_I_like 1 dimer interface 0 1 1 0 41,43,75,77,78,79,80,90,92 2 -319887 cd16365 NarH_like 1 Fe-S cluster binding site 0 1 1 0 11,12,13,14,15,16,17,21,25,36,37,39,69,72,73,74,75,78,79,80,84,85,86,89,98,100,105,106,107,108,109,110,111,115,117,120,129,131,132,133,134,135,145,146,147,151,152,153,155,156 4 -319887 cd16365 NarH_like 2 trimer interface 0 1 0 0 7,9,10,12,13,14,15,16,18,19,22,23,24,25,27,28,33,35,36,60,61,64,65,67,79,82,83,84,85,90,92,99,102,106,108,109,110,113,114,122,124,127,130,133,136,137,138,140,143,149,150,151,152,153,154,198,199,200 2 -319888 cd16366 FDH_beta_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,46,48,66,69,70,71,72,77,81,82,85,86,94,104,105,106,107,111,112,113,115,116,125,127,128,129,130,131,143,147,152 4 -319889 cd16367 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 13,20,21,22,23,25,26,30,34,38,40,53,56,57,58,59,64,68,69,72,73,81,90,91,92,93,97,98,99,101,102,107,109,110,111,112,113,121,125,131 4 -319890 cd16368 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 2,9,10,11,12,19,20,24,28,68,70,87,90,91,92,93,98,102,103,106,107,115,125,126,127,128,132,133,134,136,137,159,161,162,163,164,165,177,181,186 4 -319891 cd16369 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 3,10,11,12,13,15,16,20,24,30,32,47,50,51,52,53,58,62,63,66,67,75,86,87,88,89,93,94,95,97,98,107,109,110,111,112,113,125,129,134 4 -319892 cd16370 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 3,10,11,12,13,15,16,20,24,33,35,49,52,53,54,55,60,64,65,68,69,77,87,88,89,90,94,95,96,98,99,108,110,111,112,113,114,117,121,126 4 -319893 cd16371 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 1,8,9,10,11,13,14,18,22,31,33,50,53,54,55,56,61,65,66,69,70,78,88,89,90,91,95,96,97,99,100,109,111,112,113,114,115,127,131,136 4 -319894 cd16372 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 2,9,10,11,12,14,15,19,23,32,34,45,48,49,50,51,54,58,59,62,63,71,81,82,83,84,88,89,90,92,93,102,104,105,106,107,108,111,115,120 4 -319895 cd16373 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 8,15,16,17,18,20,21,25,29,37,39,51,54,55,56,57,61,65,66,69,70,85,101,102,103,104,108,109,110,112,113,128,130,131,132,133,134,137,141,149 4 -319896 cd16374 DMSOR_beta_like 1 Fe-S cluster binding site 0 0 0 1 0,7,8,9,10,12,13,17,21,25,27,39,42,43,44,45,50,54,55,58,59,67,77,78,79,80,84,85,86,88,89,98,100,101,102,103,104,116,120,125 4 -319867 cd16375 Avd_IVP_like 1 pentamer interface 0 1 1 0 1,5,8,9,12,16,25,26,28,29,31,32,35,38,39,42,46,57,58,61,62,65,66,68,69 2 -319868 cd16376 Avd_like 1 pentamer interface 0 1 1 0 1,5,8,9,12,16,22,23,25,26,28,29,31,32,35,38,39,42,46,60,61,64,65,68,69,71,72 2 -319869 cd16377 23S_rRNA_IVP_like 1 pentamer interface 0 1 1 0 6,7,9,10,13,17,25,30,32,36,40,44,47,48,59,60,62,63,66,67,69,70,71,73,74,93,94,97 2 -319866 cd16378 CcmH_N 1 putative catalytic site 0 0 1 1 13,16 1 -319863 cd16379 YitT_C_like 1 dimer interface 0 1 0 0 4,30,31,32,36,38,54,57,58,64,65,66,67,69 2 -319864 cd16380 YitT_C 1 dimer interface 0 1 0 0 8,34,35,36,41,43,59,62,63,66,67,69,70,71,72,74 2 -319865 cd16381 YitT_C_like_1 1 putative dimer interface 0 0 0 1 5,31,32,33,36,38,54,57,58,64,65,66,67,69 2 -341357 cd16382 XisI-like 1 homodimer interface 0 1 1 1 27,28,29,30,31,34,36,38,40,42,44,49,51,53,56,58,65,67,68,92,93,94,96,99 2 -319862 cd16383 GUN4 1 ligand binding site 0 1 1 0 26,101,107,110,113,126,127,128,129,130,131 5 -319760 cd16384 VirB8_like 1 dimerization motif NPXG 1 1 1 119,120,121,122 2 -319860 cd16386 TcpC_N 1 trimer interface 0 1 1 1 4,6,7,8,10,11,15,18,19,38,39,40,44,48,51,53,58,59,65,66,67,68,69,71,75,76,77,81,83,95,96,97,98,100,102,103,104,109,110,111,113,114,115,116,117,118,119,120,121 2 -319246 cd16387 ParB_N_Srx 1 putative active site 0 0 1 1 1,3,34,37,38 1 -319247 cd16388 SbnI_like_N 1 putative active site 0 0 1 1 18,50,53,54 1 -319248 cd16389 FIN 1 active site DK[DN]TR 0 1 1 44,46,83,86,87 1 -319249 cd16390 ParB_N_Srx_like 1 putative active site 0 0 1 1 17,19,58,60,61 1 -319249 cd16390 ParB_N_Srx_like 2 homodimer interface 0 1 0 0 84,90,91,94,103,105,111 2 -319250 cd16392 toxin-ParB 1 putative active site 0 0 1 1 11,13,46,49,50 1 -319251 cd16393 SPO0J_N 1 arginine patch RRR 0 1 1 57,58,60 2 -319251 cd16393 SPO0J_N 2 putative ParB Box II GRR[RKH]A 0 1 1 55,57,58,60,61 2 -319252 cd16394 sopB_N 1 putative ParB Box II GRR[RKH]A 0 1 1 46,48,49,51,52 2 -319253 cd16395 Srx 1 active site RCHR 0 1 0 10,58,59,60 1 -319253 cd16395 Srx 2 ATP binding site 0 1 1 0 20,23,24,27,35,37,56,57,58,59,60 5 -319253 cd16395 Srx 3 phosphorylation site C 0 1 1 58 6 -319253 cd16395 Srx 4 peroxiredoxin binding site 0 1 1 0 1,2,3,4,9,10,11,12,13,40,42,43,50,51,52,55,56,73,76,77,82,85,86 2 -319254 cd16396 Noc_N 1 ParB Box II GRR[RKH]A 0 1 1 57,59,60,62,63 2 -319254 cd16396 Noc_N 2 arginine patch RRR 0 1 1 59,60,62 2 -319256 cd16398 KorB_N_like 1 putative ParB Box II GRR[RKH]A 0 1 1 52,54,55,57,58 2 -319256 cd16398 KorB_N_like 2 arginine patch RRR 0 1 1 54,55,57 2 -319257 cd16400 ParB_Srx_like_nuclease 1 putative active site 0 0 1 1 14,16,45,48,49 1 -319257 cd16400 ParB_Srx_like_nuclease 2 Ca-Po4 binding site 0 1 1 1 10,45,46,47,48 5 -319258 cd16401 ParB_N_like_MT 1 putative ParB Box II like motif 0 0 1 1 44,46,47,49,50 2 -319259 cd16402 ParB_N_like_MT 1 putative ParB Box II like motif 0 0 1 1 45,47,48,50,51 2 -319260 cd16403 ParB_N_like_MT 1 putative ParB Box II like motif 0 0 1 1 46,48,49,51,52 2 -319261 cd16404 pNOB8_ParB_N_like 1 putative ParB Box II like motif 0 0 1 1 43,45,46,48,49 2 -319262 cd16405 RepB_like_N 1 putative ParB Box II like GRR[RKH]A 0 1 1 56,58,59,61,62 2 -319262 cd16405 RepB_like_N 2 arginine patch RRR 0 1 1 58,59,61 2 -319263 cd16406 ParB_N_like 1 putative ParB Box II GRR[RKH]A 0 1 1 37,39,40,42,43 2 -319263 cd16406 ParB_N_like 2 arginine patch RRR 0 1 1 39,40,42 2 -319264 cd16407 ParB_N_like 1 putative ParB Box II GRR[RKH]A 0 1 1 50,52,53,55,56 2 -319264 cd16407 ParB_N_like 2 arginine patch RRR 0 1 1 52,53,55 2 -319265 cd16408 ParB_N_like 1 putative ParB Box II like motif 0 0 1 1 47,49,50,52,53 2 -319266 cd16409 ParB_N_like 1 putative ParB Box II like motif 0 0 1 1 36,38,39,41,42 2 -319267 cd16410 ParB_N_like 1 putative ParB Box II like Motif GRR[REQ]A 0 1 1 43,45,46,48,49 2 -319267 cd16410 ParB_N_like 2 arginine patch-related motif RR[ERQ] 0 1 1 45,46,48 2 -319268 cd16411 ParB_N_like 1 putative ParB Box II like motif GGREA 0 1 1 53,55,56,58,59 2 -319269 cd16412 dndB 1 putative active site 0 0 1 1 30,32,104,107,108 1 -319269 cd16412 dndB 2 putative [QN]R motif [QN]R 0 0 1 41,42 1 -319269 cd16412 dndB 3 DGQHR like motif DGQ[QH]R 0 0 0 104,105,106,107,108 1 -319269 cd16412 dndB 4 DNA modification residue C 0 1 1 17 0 -319269 cd16412 dndB 5 FXXXN motif FN 0 0 0 144,148 0 -319270 cd16413 DGQHR_domain 1 putative active site 0 0 1 1 8,10,85,88,89 1 -319270 cd16413 DGQHR_domain 2 DGQHR like motif DGQ[QH]R 0 0 0 85,86,87,88,89 1 -319270 cd16413 DGQHR_domain 3 FXXXN motif FN 0 0 0 121,125 0 -319270 cd16413 DGQHR_domain 4 putative Conserved QR Motif QR 0 0 0 20,21 0 -319271 cd16414 dndB_like 1 putative active site 0 0 1 1 8,10,82,85,86 1 -319271 cd16414 dndB_like 2 DGQHR like motif DGQ[QH]R 0 0 0 82,83,84,85,86 1 -319271 cd16414 dndB_like 3 FXXXN motif FN 0 0 0 128,132 0 -319852 cd16415 HAD_dREG-2_like 1 active site 0 0 1 1 4,5,6,7,8,29,30,61,85,86,90,91 1 -319852 cd16415 HAD_dREG-2_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319852 cd16415 HAD_dREG-2_like 3 HAD signature motif II [ST] 0 1 1 29 0 -319852 cd16415 HAD_dREG-2_like 4 HAD signature motif III [KR] 0 1 1 61 0 -319852 cd16415 HAD_dREG-2_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 85,86,91 0 -319853 cd16416 HAD_BsYqeG-like 1 active site 0 0 1 1 4,5,6,7,8,39,40,63,87,88,92,93 1 -319853 cd16416 HAD_BsYqeG-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319853 cd16416 HAD_BsYqeG-like 3 HAD signature motif II [ST] 0 1 1 39 0 -319853 cd16416 HAD_BsYqeG-like 4 HAD signature motif III [KR] 0 1 1 63 0 -319853 cd16416 HAD_BsYqeG-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 87,88,93 0 -319854 cd16417 HAD_PGPase 1 active site 0 0 1 1 4,5,6,7,8,109,110,142,166,167,170,171 1 -319854 cd16417 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319854 cd16417 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 109 0 -319854 cd16417 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 142 0 -319854 cd16417 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 166,167,171 0 -319855 cd16418 HAD_Pase 1 active site 0 0 1 1 4,5,6,7,8,30,31,86,111,112,115,116 1 -319855 cd16418 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319855 cd16418 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 30 0 -319855 cd16418 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 86 0 -319855 cd16418 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 111,112,116 0 -319856 cd16419 HAD_SPS 1 active site 0 0 1 1 6,7,8,9,10,41,42,132,150,151,155,156 1 -319856 cd16419 HAD_SPS 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319856 cd16419 HAD_SPS 3 HAD signature motif II [ST] 0 1 1 41 0 -319856 cd16419 HAD_SPS 4 HAD signature motif III [KR] 0 1 1 132 0 -319856 cd16419 HAD_SPS 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,156 0 -319857 cd16421 HAD_PGPase 1 active site 0 0 1 1 4,5,6,7,8,29,30,61,85,86,89,90 1 -319857 cd16421 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319857 cd16421 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 29 0 -319857 cd16421 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 61 0 -319857 cd16421 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 85,86,90 0 -319858 cd16422 HAD_Pase_UmpH-like 1 active site 0 1 1 1 4,5,6,7,8,36,37,38,39,142,176,200,201,202,203,204,205,206 1 -319858 cd16422 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319858 cd16422 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 37 0 -319858 cd16422 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 176 0 -319858 cd16422 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 200,201,206 0 -319859 cd16423 HAD_BPGM-like 1 active site 0 1 1 1 4,5,6,7,8,66,67,68,99,123,124,127,128 1 -319859 cd16423 HAD_BPGM-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319859 cd16423 HAD_BPGM-like 3 HAD signature motif II [ST] 0 1 1 66 0 -319859 cd16423 HAD_BPGM-like 4 HAD signature motif III [KR] 0 1 1 99 0 -319859 cd16423 HAD_BPGM-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 123,124,128 0 -319761 cd16424 VirB8 1 dimer interface 0 1 1 0 1,4,5,7,8,9,11,12,21,24,27,64,117,120,121,124,125 2 -319761 cd16424 VirB8 2 dimerization motif NPXG 1 1 1 123,124,125,126 2 -319762 cd16425 TrbF 1 putative dimer interface 0 0 1 1 4,5,7,8,9,11,12,22,29,32,62 2 -319762 cd16425 TrbF 2 putative dimerization motif NPXG 0 1 1 119,120,121,122 2 -319754 cd16426 VirB10_like 1 oligomer interface 0 1 1 1 2,3,4,5,9,10,12,13,14,15,19,21,22,27,28,29,31,43,45,47,49,55,59,61,63,66,68,70,73,74,75,76,77,78,81,87,88,89,99,101,104,107,109,112,115,116,117,118,119,120,121,122,123,124,130,132,134,135,136,138,142,145,146,147,148,149 2 -319758 cd16427 TraM-like 1 trimer interface 0 1 1 1 7,8,11,12,14,15,31,51,52,53,54,65,67,69,78,93,94,95 2 -319759 cd16428 TcpC_C 1 trimer interface 0 1 1 1 19,37,38,39,43,44,73,75,76,77,78,79,80,81 2 -319755 cd16429 VirB10 1 oligomer interface 0 1 1 1 2,3,4,5,9,10,12,13,14,15,19,21,22,27,28,29,31,43,45,47,49,55,60,62,64,67,69,71,74,75,76,77,78,79,82,88,89,90,100,102,105,108,110,113,144,145,146,147,148,149,150,151,152,153,159,161,163,164,165,167,171,174,175,176,177,178 2 -319756 cd16430 TraB 1 putative oligomer interface 0 0 1 1 2,3,5,6,10,11,13,14,15,16,27,29,30,35,36,37,39,50,52,54,56,62,65,67,69,72,74,76,81,82,83,84,85,86,92,96,97,98,108,110,113,116,118,121,167,168,169,170,171,172,173,174,175,176,182,184,186,187,188,190,194,197,198,199,200,201 2 -319757 cd16431 IcmE 1 putative oligomer interface 0 0 1 1 2,3,5,6,10,11,13,14,15,16,20,22,23,28,29,30,32,34,36,38,40,45,47,49,51,54,56,58,61,62,63,64,65,66,67,72,73,74,86,88,91,94,96,99,140,141,142,143,144,145,146,147,148,149,158,160,162,163,164,166,170,173,174,175,176,177 2 -319751 cd16432 CheB_Rec 1 heterodimer interface 0 1 1 1 7,10,11,14,35,38,41,42,45,126,149,150,153 2 -319740 cd16435 BPL_LplA_LipB 1 active site 0 1 1 0 12,13,34,40,41,42,43,72,73,74,75,76,82,83,84,124,125,132,135,136,137,148,149,150,152 1 -319740 cd16435 BPL_LplA_LipB 2 catalytic site K 1 1 0 132 1 -319741 cd16442 BPL 1 active site 0 1 1 0 9,10,11,33,36,37,38,39,42,43,44,45,53,54,55,93,97,99,104,107,109,125,126,127,129 1 -319741 cd16442 BPL 2 catalytic site 0 1 1 0 104 1 -319742 cd16443 LplA 1 active site 0 1 1 0 35,68,73,74,75,76,77,81,83,124,133,134,135,136,137,149,150,151,153 1 -319742 cd16443 LplA 2 catalytic site K 1 1 0 133 1 -319743 cd16444 LipB 1 active site 0 1 1 0 65,67,68,69,70,72,80,129,132,133,134,145,146,147 1 -319743 cd16444 LipB 2 catalytic site K 1 1 0 129 1 -319362 cd16448 RING-H2 1 Zn binding site 0 1 0 0 0,3,19,21,24,27,39,42 4 -319362 cd16448 RING-H2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 0,3,19,21,24,27,39,42 7 -319363 cd16449 RING-HC 1 Zn binding site 0 1 1 0 0,3,15,17,20,23,35,38 4 -319363 cd16449 RING-HC 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,35,38 7 -319364 cd16450 mRING-C3HGC3_RFWD3 1 modified RING finger (C3HGC3-type) CCCHGCCC 0 0 1 4,7,24,26,29,32,44,47 0 -319365 cd16451 mRING_PEX12 1 putative Zn binding site 0 0 0 1 0,3,21,24 4 -319365 cd16451 mRING_PEX12 2 modified RING finger 0 0 0 1 0,3,16,18,21,24,35,38 7 -319366 cd16452 SP-RING_like 1 Zn binding site 0 1 1 0 17,19,37,40 4 -319366 cd16452 SP-RING_like 2 variant of RING finger, similar to SP-RING 0 0 1 1 2,5,17,19,22,25,37,40 7 -319367 cd16453 RING-Ubox 1 U-box domain, a modified RING finger 0 0 1 1 1,4,16,18,21,24,35,38 7 -319368 cd16454 RING-H2_PA-TM-RING 1 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319368 cd16454 RING-H2_PA-TM-RING 2 Zn binding site 0 1 0 0 1,4,19,21,24,27,38,41 4 -319369 cd16455 RING-H2_AMFR 1 Zn binding site 0 1 1 0 2,5,17,19,22,25,36,39 4 -319369 cd16455 RING-H2_AMFR 2 polypeptide substrate binding site 0 1 1 0 3,4,5,6,7,28,29,32,33,37,38,40 2 -319369 cd16455 RING-H2_AMFR 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,17,19,22,25,36,39 7 -319370 cd16456 RING-H2_APC11 1 Zn binding site 0 1 1 1 3,6,17,24,31,39,53,56 4 -319370 cd16456 RING-H2_APC11 2 polypeptide substrate binding site 0 1 1 0 5,6,7,11,15,16,18,22,28,42 2 -319370 cd16456 RING-H2_APC11 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,31,33,36,39,53,56 7 -319371 cd16457 RING-H2_BRAP2 1 Zn binding site 0 0 0 1 2,5,21,23,26,29,38,41 4 -319371 cd16457 RING-H2_BRAP2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 1 1 2,5,21,23,26,29,38,41 7 -319372 cd16458 RING-H2_Dmap_like 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,42,45 4 -319372 cd16458 RING-H2_Dmap_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,42,45 7 -319373 cd16459 RING-H2_DTX1_like 1 Zn binding site 0 1 0 0 1,4,31,33,36,39,55,58 4 -319373 cd16459 RING-H2_DTX1_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,31,33,36,39,55,58 7 -319374 cd16460 RING-H2_DZIP3 1 Zn binding site 0 0 0 1 2,5,19,21,24,27,38,41 4 -319374 cd16460 RING-H2_DZIP3 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,19,21,24,27,38,41 7 -319375 cd16461 RING-H2_EL5_like 1 Zn binding site 0 1 1 0 1,4,19,21,24,27,38,41 4 -319375 cd16461 RING-H2_EL5_like 2 putative polypeptide substrate binding site 0 0 1 1 27,28,29,30,31,32 2 -319375 cd16461 RING-H2_EL5_like 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319376 cd16462 RING-H2_Pep3p_like 1 Zn binding site 0 0 0 1 2,5,19,21,24,27,41,44 4 -319376 cd16462 RING-H2_Pep3p_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,19,21,24,27,41,44 7 -319377 cd16463 RING-H2_PHR 1 Zn binding site 0 0 0 1 3,6,21,23,26,29,50,53 4 -319377 cd16463 RING-H2_PHR 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,21,23,26,29,50,53 7 -319378 cd16464 RING-H2_Pirh2 1 Zn binding site 0 1 1 0 1,4,20,22,25,28,40,43 4 -319378 cd16464 RING-H2_Pirh2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,20,22,25,28,40,43 7 -319379 cd16465 RING-H2_PJA1_2 1 Zn binding site 0 1 0 0 1,4,19,21,24,27,38,41 4 -319379 cd16465 RING-H2_PJA1_2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319380 cd16466 RING-H2_RBX2 1 Zn binding site 0 1 0 1 3,6,14,17,26,33,35,38,40,41,52,55 4 -319380 cd16466 RING-H2_RBX2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,33,35,38,41,52,55 7 -319381 cd16467 RING-H2_RNF6_like 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,38,41 4 -319381 cd16467 RING-H2_RNF6_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319382 cd16468 RING-H2_RNF11 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319382 cd16468 RING-H2_RNF11 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319383 cd16469 RING-H2_RNF24_like 1 Zn binding site 0 1 0 0 2,5,20,22,25,28,39,42 4 -319383 cd16469 RING-H2_RNF24_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319384 cd16470 RING-H2_RNF25 1 Zn binding site 0 1 1 0 1,4,19,21,24,27,62,65 4 -319384 cd16470 RING-H2_RNF25 2 polypeptide substrate binding site 0 1 1 0 2,3,5,6,30,31,34,63,66 2 -319384 cd16470 RING-H2_RNF25 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,62,65 7 -319385 cd16471 RING-H2_RNF32 1 Zn binding site 0 0 1 1 1,4,18,20,23,26,44,47 4 -319385 cd16471 RING-H2_RNF32 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,18,20,23,26,44,47 7 -319386 cd16472 RING-H2_RNF38_like 1 Zn binding site 0 1 1 0 3,6,21,23,26,29,40,43 4 -319386 cd16472 RING-H2_RNF38_like 2 polypeptide substrate binding site 0 1 1 0 2,4,5,6,7,8,23,29,32,33,41,42,43,44 2 -319386 cd16472 RING-H2_RNF38_like 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,21,23,26,29,40,43 7 -319387 cd16473 RING-H2_RNF103 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,39,42 4 -319387 cd16473 RING-H2_RNF103 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,39,42 7 -319388 cd16474 RING-H2_RNF111_like 1 Zn binding site 0 1 1 0 2,5,20,22,25,28,39,42 4 -319388 cd16474 RING-H2_RNF111_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319389 cd16475 RING-H2_RNF121_like 1 Zn binding site 0 0 0 1 2,5,27,29,32,35,48,51 4 -319389 cd16475 RING-H2_RNF121_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,27,29,32,35,48,51 7 -319390 cd16476 RING-H2_RNF139_like 1 Zn binding site 0 0 0 1 2,5,17,19,22,25,36,39 4 -319390 cd16476 RING-H2_RNF139_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,17,19,22,25,36,39 7 -319391 cd16477 RING-H2_RNF214 1 Zn binding site 0 0 1 1 2,5,19,21,24,27,40,43 4 -319391 cd16477 RING-H2_RNF214 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,19,21,24,27,40,43 7 -319392 cd16478 RING-H2_Rapsyn 1 Zn binding site 0 0 1 1 3,6,22,24,27,30,41,44 4 -319392 cd16478 RING-H2_Rapsyn 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,22,24,27,30,41,44 7 -319393 cd16479 RING-H2_synoviolin 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,38,41 4 -319393 cd16479 RING-H2_synoviolin 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,19,21,24,27,38,41 7 -319394 cd16480 RING-H2_TRAIP 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,40,43 4 -319394 cd16480 RING-H2_TRAIP 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,40,43 7 -319395 cd16481 RING-H2_TTC3 1 Zn binding site 0 0 0 1 1,4,18,20,23,26,37,40 4 -319395 cd16481 RING-H2_TTC3 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,18,20,23,26,37,40 7 -319396 cd16482 RING-H2_UBR1_like 1 Zn binding site 0 0 1 1 1,4,13,15,18,21,54,57 4 -319396 cd16482 RING-H2_UBR1_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,13,15,18,21,54,57 7 -319397 cd16483 RING-H2_UBR3 1 Zn binding site 0 0 1 1 2,5,43,45,48,51,77,80 4 -319397 cd16483 RING-H2_UBR3 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,43,45,48,51,77,80 7 -319398 cd16484 RING-H2_Vps 1 Zn binding site 0 0 1 1 1,4,22,24,27,30,41,44 4 -319398 cd16484 RING-H2_Vps 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,22,24,27,30,41,44 7 -319399 cd16485 mRING-H2-C3H2C2D_RBX1 1 Zn binding site 0 1 1 1 2,5,13,16,28,35,37,40,42,43,54,57 4 -319399 cd16485 mRING-H2-C3H2C2D_RBX1 2 polypeptide substrate binding site 0 1 1 0 32,34,36,41 2 -319399 cd16485 mRING-H2-C3H2C2D_RBX1 3 modified RING-H2 finger (C3H2C2D-type) CCCHHCCD 0 0 1 2,5,35,37,40,43,54,57 7 -319400 cd16486 mRING-H2-C3H2C2D_ZSWM2 1 modified RING-H2 finger (C3H2C2D-type) CCCHHCCD 0 0 1 1,4,19,21,24,27,39,42 7 -319401 cd16487 mRING-H2-C3DHC3_ZFPL1 1 modified RING-H2 finger (C3DHC3-type) CCCDHCCC 0 0 1 3,6,20,22,25,28,47,50 7 -319402 cd16488 mRING-H2-C3H3C2_Mio_like 1 modified RING-H2 finger (C3H3C2-type) CCCHHHCC 0 0 1 1,4,18,20,23,26,37,41 7 -319403 cd16489 mRING-CH-C4HC2H_ZNRF 1 modified RING-CH finger (C4HC2H-type) CCCCHCCH 0 0 1 1,4,19,21,24,27,38,41 7 -319404 cd16490 RING-CH-C4HC3_FANCL 1 Zn binding site 0 1 1 0 1,4,18,23,28,31,53,56 4 -319404 cd16490 RING-CH-C4HC3_FANCL 2 polypeptide substrate binding site 0 1 1 0 2,3,4,5,6,9,10,30,31,34,35,54,55,57 2 -319404 cd16490 RING-CH-C4HC3_FANCL 3 RING-CH finger (C4HC3-type) CCCCHCCC 0 1 1 1,4,18,23,28,31,53,56 7 -319405 cd16491 RING-CH-C4HC3_LTN1 1 Zn binding site 0 0 1 1 2,5,21,24,29,32,45,48 4 -319405 cd16491 RING-CH-C4HC3_LTN1 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,21,24,29,32,45,48 7 -319406 cd16492 RING-CH-C4HC3_NFX1_like 1 Zn binding site 0 0 1 1 2,5,18,21,26,29,53,56 4 -319406 cd16492 RING-CH-C4HC3_NFX1_like 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 1 1 2,5,18,21,26,29,53,56 7 -319407 cd16493 RING-CH-C4HC3_NSE1 1 Zn binding site 0 1 1 0 1,4,14,19,24,27,40,43 4 -319407 cd16493 RING-CH-C4HC3_NSE1 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,14,19,24,27,40,43 7 -319408 cd16494 RING-CH-C4HC3_ZSWM2 1 Zn binding site 0 0 1 1 3,6,20,24,29,32,50,53 4 -319408 cd16494 RING-CH-C4HC3_ZSWM2 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 3,6,20,24,29,32,50,53 7 -319409 cd16495 RING_CH-C4HC3_MARCH 1 Zn binding site 0 1 0 0 0,3,18,20,28,31,47,50 4 -319409 cd16495 RING_CH-C4HC3_MARCH 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 0,3,18,20,28,31,47,50 7 -319410 cd16496 RING-HC_BARD1 1 Zn binding site 0 1 1 0 3,6,19,21,24,27,36,39 4 -319410 cd16496 RING-HC_BARD1 2 heterodimer interface 0 1 1 0 0,1,15,17,18,19,20,21,22,44 2 -319410 cd16496 RING-HC_BARD1 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,36,39 7 -319411 cd16497 RING-HC_BAR 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,38,41 4 -319411 cd16497 RING-HC_BAR 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,38,41 7 -319412 cd16498 RING-HC_BRCA1 1 Zn binding site 0 1 1 0 6,9,21,23,26,29,43,46 4 -319412 cd16498 RING-HC_BRCA1 2 heterodimer interface 0 1 1 0 0,2,3,4,5,20,22,24 2 -319412 cd16498 RING-HC_BRCA1 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 6,9,21,23,26,29,43,46 7 -319413 cd16499 RING-HC_BRE1_like 1 Zn binding site 0 1 1 0 2,5,17,19,22,25,37,40 4 -319413 cd16499 RING-HC_BRE1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319414 cd16500 RING-HC_CARP 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,32,35 4 -319414 cd16500 RING-HC_CARP 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319415 cd16501 RING-HC_CblA_like 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,32,35 4 -319415 cd16501 RING-HC_CblA_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319416 cd16502 RING-HC_Cbl_like 1 Zn binding site 0 1 1 0 3,6,18,20,23,26,38,41 4 -319416 cd16502 RING-HC_Cbl_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,38,41 7 -319417 cd16503 RING-HC_CHFR 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,39,42 4 -319417 cd16503 RING-HC_CHFR 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,39,42 7 -319418 cd16504 RING-HC_COP1 1 Zn binding site 0 0 1 1 4,7,19,21,24,27,38,41 4 -319418 cd16504 RING-HC_COP1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,19,21,24,27,38,41 7 -319419 cd16505 RING-HC_CYHR1 1 Zn binding site 0 0 1 1 3,6,17,21,24,27,44,47 4 -319419 cd16505 RING-HC_CYHR1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,17,21,24,27,44,47 7 -319420 cd16506 RING-HC_DTX3_like 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,36,39 4 -319420 cd16506 RING-HC_DTX3_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,36,39 7 -319421 cd16507 RING-HC_GEFO_like 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,35,38 4 -319421 cd16507 RING-HC_GEFO_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,35,38 7 -319422 cd16508 RING-HC_HAKAI_like 1 Zn binding site 0 1 1 0 2,5,18,20,23,26,34,37 4 -319422 cd16508 RING-HC_HAKAI_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,34,37 7 -319423 cd16509 RING-HC_HLTF 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,38,41 4 -319423 cd16509 RING-HC_HLTF 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,38,41 7 -319424 cd16510 RING-HC_IAPs 1 Zn binding site 0 1 1 0 3,6,18,20,24,27,34,37 4 -319424 cd16510 RING-HC_IAPs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,24,27,34,37 7 -319425 cd16511 vRING-HC_IRF2BP1_like 1 Zn binding site 0 1 0 0 2,5,17,23,26,29,45,51 4 -319425 cd16511 vRING-HC_IRF2BP1_like 2 variant RING-HC finger (C3HC4-type) CCCHCCCC 0 1 1 2,5,17,23,26,29,45,51 7 -319426 cd16512 RING-HC_LNX3_like 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,39 4 -319426 cd16512 RING-HC_LNX3_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,39 7 -319427 cd16513 RING1-HC_LONFs 1 Zn binding site 0 0 1 1 0,3,18,20,23,26,37,40 4 -319427 cd16513 RING1-HC_LONFs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,18,20,23,26,37,40 7 -319428 cd16514 RING2-HC_LONFs 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,37,40 4 -319428 cd16514 RING2-HC_LONFs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,37,40 7 -319429 cd16515 RING-HC_LRSAM1 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,32,35 4 -319429 cd16515 RING-HC_LRSAM1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319430 cd16516 RING-HC_malin 1 Zn binding site 0 0 1 1 1,4,21,23,26,29,43,46 4 -319430 cd16516 RING-HC_malin 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,21,23,26,29,43,46 7 -319431 cd16517 RING-HC_MAT1 1 Zn binding site 0 1 1 0 0,3,20,22,25,28,40,43 4 -319431 cd16517 RING-HC_MAT1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,20,22,25,28,40,43 7 -319432 cd16518 RING-HC_MEX3 1 Zn binding site 0 0 1 1 0,3,15,17,21,24,36,39 4 -319432 cd16518 RING-HC_MEX3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,21,24,36,39 7 -319433 cd16519 RING-HC_MIBs 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,32,35 4 -319433 cd16519 RING-HC_MIBs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319434 cd16520 RING-HC_MIBs_like 1 Zn binding site 0 0 1 1 1,4,15,17,20,23,30,33 4 -319434 cd16520 RING-HC_MIBs_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,15,17,20,23,30,33 7 -319435 cd16521 RING-HC_MKRN 1 Zn binding site 0 0 0 1 0,3,20,22,25,28,46,49 4 -319435 cd16521 RING-HC_MKRN 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,20,22,25,28,46,49 7 -319436 cd16522 RING-HC_MSL2 1 Zn binding site 0 1 1 0 2,5,20,22,25,28,39,42 4 -319436 cd16522 RING-HC_MSL2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319437 cd16523 RING-HC_MYLIP 1 Zn binding site 0 1 1 0 1,4,16,18,22,25,32,35 4 -319437 cd16523 RING-HC_MYLIP 2 polypeptide substrate binding site 0 1 1 0 2,3,4,5,6,9,12,14,15,16,17,18,19,28,29,33,36 2 -319437 cd16523 RING-HC_MYLIP 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319438 cd16524 RING-HC_NHL-1_like 1 Zn binding site 0 0 1 1 2,5,17,19,22,26,40,43 4 -319438 cd16524 RING-HC_NHL-1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,26,40,43 7 -319439 cd16525 RING-HC_PCGF 1 Zn binding site 0 1 1 0 2,5,18,20,23,26,37,40 4 -319439 cd16525 RING-HC_PCGF 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,37,40 7 -319440 cd16526 RING-HC_PEX2 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,38,41 4 -319440 cd16526 RING-HC_PEX2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,38,41 7 -319441 cd16527 RING-HC_PEX10 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,38 4 -319441 cd16527 RING-HC_PEX10 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,38 7 -319442 cd16528 RING-HC_prokRING 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,34,37 4 -319442 cd16528 RING-HC_prokRING 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,34,37 7 -319443 cd16529 RING-HC_RAD18 1 Zn binding site 0 1 1 0 2,5,18,20,23,26,37,40 4 -319443 cd16529 RING-HC_RAD18 2 homodimer interface 0 1 1 0 9,14,16,19,21 2 -319443 cd16529 RING-HC_RAD18 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,37,40 7 -319444 cd16530 RING-HC_RAG1 1 Zn binding site 0 1 1 0 4,7,9,19,21,24,27,39,42 4 -319444 cd16530 RING-HC_RAG1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,19,21,24,27,39,42 7 -319445 cd16531 RING-HC_RING1_like 1 Zn binding site 0 1 1 0 0,3,16,18,21,24,36,39 4 -319445 cd16531 RING-HC_RING1_like 2 polypeptide substrate binding site 0 1 1 0 12,14,15,17,19,26,30,34 2 -319445 cd16531 RING-HC_RING1_like 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,16,18,21,24,36,39 7 -319446 cd16532 RING-HC_RNFT1_like 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,38 4 -319446 cd16532 RING-HC_RNFT1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,38 7 -319447 cd16533 RING-HC_RNF4 1 Zn binding site 0 1 1 0 5,8,27,29,32,35,46,49 4 -319447 cd16533 RING-HC_RNF4 2 heterotrimeric interface 0 1 1 0 0,7,9,29,35,38,39,42,47,48,49,50,51 2 -319447 cd16533 RING-HC_RNF4 3 homodimer interface 0 1 1 0 0,1,12 2 -319447 cd16533 RING-HC_RNF4 4 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,27,29,32,35,46,49 7 -319448 cd16534 RING-HC_RNF5_like 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,38,41 4 -319448 cd16534 RING-HC_RNF5_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,38,41 7 -319449 cd16535 RING-HC_RNF8 1 Zn binding site 0 1 1 0 3,6,18,20,23,26,37,40 4 -319449 cd16535 RING-HC_RNF8 2 homodimer interface 0 1 1 0 0,1,15,16,19,20,21 2 -319449 cd16535 RING-HC_RNF8 3 polypeptide substrate binding site 0 1 1 0 2,4,5,6,7,8,29,30,33,34,38,41 2 -319449 cd16535 RING-HC_RNF8 4 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,37,40 7 -319450 cd16536 RING-HC_RNF10 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,38,41 4 -319450 cd16536 RING-HC_RNF10 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,38,41 7 -319451 cd16537 RING-HC_RNF37 1 Zn binding site 0 0 1 1 1,4,22,24,27,30,42,45 4 -319451 cd16537 RING-HC_RNF37 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,22,24,27,30,42,45 7 -319452 cd16538 RING-HC_RNF112 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319452 cd16538 RING-HC_RNF112 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319453 cd16539 RING-HC_RNF113A_B 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,36,39 4 -319453 cd16539 RING-HC_RNF113A_B 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,36,39 7 -319454 cd16540 RING-HC_RNF114 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,37,40 4 -319454 cd16540 RING-HC_RNF114 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319455 cd16541 RING-HC_RNF123 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,36,39 4 -319455 cd16541 RING-HC_RNF123 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,36,39 7 -319456 cd16542 RING-HC_RNF125 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,37,40 4 -319456 cd16542 RING-HC_RNF125 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319457 cd16543 RING-HC_RNF135_like 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,32,35 4 -319457 cd16543 RING-HC_RNF135_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,32,35 7 -319458 cd16544 RING-HC_RNF138 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,40,43 4 -319458 cd16544 RING-HC_RNF138 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,40,43 7 -319459 cd16545 RING-HC_RNF141 1 Zn binding site 0 1 0 0 1,4,15,17,20,23,34,37 4 -319459 cd16545 RING-HC_RNF141 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,15,17,20,23,34,37 7 -319460 cd16546 RING-HC_RNF146 1 Zn binding site 0 1 1 0 1,4,16,18,21,24,35,38 4 -319460 cd16546 RING-HC_RNF146 2 polypeptide substrate binding site 0 1 1 0 2,3,5,34,36,37 2 -319460 cd16546 RING-HC_RNF146 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,38 7 -319461 cd16547 RING-HC_RNF151 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,34,37 4 -319461 cd16547 RING-HC_RNF151 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,34,37 7 -319462 cd16548 RING-HC_RNF152 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,40,43 4 -319462 cd16548 RING-HC_RNF152 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,40,43 7 -319463 cd16549 RING-HC_RNF166 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,39,42 4 -319463 cd16549 RING-HC_RNF166 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,39,42 7 -319464 cd16550 RING-HC_RNF168 1 Zn binding site 0 1 1 0 0,3,15,17,20,23,35,38 4 -319464 cd16550 RING-HC_RNF168 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,35,38 7 -319465 cd16551 RING-HC_RNF169 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,36,39 4 -319465 cd16551 RING-HC_RNF169 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,36,39 7 -319466 cd16552 RING-HC_NEURL3 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,37,40 4 -319466 cd16552 RING-HC_NEURL3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,37,40 7 -319467 cd16553 RING-HC_RNF170 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,39,42 4 -319467 cd16553 RING-HC_RNF170 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,39,42 7 -319468 cd16554 RING-HC_RNF180 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,39,42 4 -319468 cd16554 RING-HC_RNF180 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,39,42 7 -319469 cd16555 RING-HC_RNF182 1 Zn binding site 0 0 1 1 1,4,20,22,25,28,45,48 4 -319469 cd16555 RING-HC_RNF182 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,20,22,25,28,45,48 7 -319470 cd16556 RING-HC_RNF183_like 1 Zn binding site 0 0 1 1 1,4,20,22,25,28,46,49 4 -319470 cd16556 RING-HC_RNF183_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,20,22,25,28,46,49 7 -319471 cd16557 RING-HC_RNF186 1 Zn binding site 0 0 1 1 3,6,21,23,26,29,45,48 4 -319471 cd16557 RING-HC_RNF186 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,21,23,26,29,45,48 7 -319472 cd16558 RING-HC_RNF207 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,38,41 4 -319472 cd16558 RING-HC_RNF207 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,38,41 7 -319473 cd16559 RING-HC_RNF208 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,42,45 4 -319473 cd16559 RING-HC_RNF208 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,42,45 7 -319474 cd16560 RING-HC_RNF212_like 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,36,39 4 -319474 cd16560 RING-HC_RNF212_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,36,39 7 -319475 cd16561 RING-HC_RNF213 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,36,39 4 -319475 cd16561 RING-HC_RNF213 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,36,39 7 -319476 cd16562 RING-HC_RNF219 1 Zn binding site 0 0 0 1 3,6,16,20,23,26,37,40 4 -319476 cd16562 RING-HC_RNF219 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,16,20,23,26,37,40 7 -319477 cd16563 RING-HC_RNF220 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,36,39 4 -319477 cd16563 RING-HC_RNF220 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,36,39 7 -319478 cd16564 RING-HC_RNF222 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,42,45 4 -319478 cd16564 RING-HC_RNF222 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,42,45 7 -319479 cd16565 RING-HC_RNF224_like 1 Zn binding site 0 0 1 1 1,4,20,22,25,28,44,47 4 -319479 cd16565 RING-HC_RNF224_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,20,22,25,28,44,47 7 -319480 cd16566 RING-HC_RSPRY1 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,33,36 4 -319480 cd16566 RING-HC_RSPRY1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,33,36 7 -319481 cd16567 RING-HC_RAD16_like 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,39,42 4 -319481 cd16567 RING-HC_RAD16_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,39,42 7 -319482 cd16568 RING-HC_ScPSH1_like 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,40,43 4 -319482 cd16568 RING-HC_ScPSH1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,40,43 7 -319483 cd16569 RING-HC_SHPRH 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,46,49 4 -319483 cd16569 RING-HC_SHPRH 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,46,49 7 -319484 cd16570 RING-HC_SH3RFs 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,41,44 4 -319484 cd16570 RING-HC_SH3RFs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,41,44 7 -319485 cd16571 RING-HC_SIAHs 1 Zn binding site 0 0 1 1 2,5,16,20,23,26,33,36 4 -319485 cd16571 RING-HC_SIAHs 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,16,20,23,26,33,36 7 -319486 cd16572 RING-HC_SpRad8_like 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,44,47 4 -319486 cd16572 RING-HC_SpRad8_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,44,47 7 -319487 cd16573 RING-HC_TFB3_like 1 Zn binding site 0 0 1 1 3,6,24,26,29,32,44,49 4 -319487 cd16573 RING-HC_TFB3_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,24,26,29,32,44,49 7 -319488 cd16574 RING-HC_Topors 1 Zn binding site 0 0 0 1 0,3,16,18,21,24,35,38 4 -319488 cd16574 RING-HC_Topors 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,16,18,21,24,35,38 7 -319489 cd16575 RING-HC_MID_C-I 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,46,49 4 -319489 cd16575 RING-HC_MID_C-I 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,46,49 7 -319490 cd16576 RING-HC_TRIM9_like_C-I 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,36,39 4 -319490 cd16576 RING-HC_TRIM9_like_C-I 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,36,39 7 -319491 cd16577 RING-HC_MuRF_C-II 1 Zn binding site 0 0 1 1 2,5,18,20,23,26,46,49 4 -319491 cd16577 RING-HC_MuRF_C-II 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,46,49 7 -319492 cd16578 RING-HC_TRIM42_C-III 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,45,48 4 -319492 cd16578 RING-HC_TRIM42_C-III 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,45,48 7 -319493 cd16579 RING-HC_PML_C-V 1 Zn binding site 0 1 1 0 1,4,16,18,21,24,32,35 4 -319493 cd16579 RING-HC_PML_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,32,35 7 -319494 cd16580 RING-HC_TRIM8_C-V 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319494 cd16580 RING-HC_TRIM8_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319495 cd16581 RING-HC_TRIM13_like_C-V 1 Zn binding site 0 0 1 1 4,7,19,21,24,27,40,43 4 -319495 cd16581 RING-HC_TRIM13_like_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,19,21,24,27,40,43 7 -319496 cd16582 RING-HC_TRIM31_C-V 1 Zn binding site 0 1 0 0 3,6,18,20,23,26,37,40 4 -319496 cd16582 RING-HC_TRIM31_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,37,40 7 -319497 cd16583 RING-HC_TRIM40-C-V 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,40,43 4 -319497 cd16583 RING-HC_TRIM40-C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,40,43 7 -319498 cd16584 RING-HC_TRIM56_C-V 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319498 cd16584 RING-HC_TRIM56_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319499 cd16585 RING-HC_TIF1_C-VI 1 Zn binding site 0 0 1 1 3,6,20,22,25,28,53,56 4 -319499 cd16585 RING-HC_TIF1_C-VI 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,20,22,25,28,53,56 7 -319500 cd16586 RING-HC_TRIM2_like_C-VII 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319500 cd16586 RING-HC_TRIM2_like_C-VII 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319501 cd16587 RING-HC_TRIM32_C-VII 1 Zn binding site 0 1 0 0 1,4,20,22,25,28,42,45 4 -319501 cd16587 RING-HC_TRIM32_C-VII 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,20,22,25,28,42,45 7 -319502 cd16588 RING-HC_TRIM45-C-VII 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,57,60 4 -319502 cd16588 RING-HC_TRIM45-C-VII 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,57,60 7 -319503 cd16589 RING-HC_TRIM71_C-VII 1 Zn binding site 0 0 1 1 4,7,47,49,52,55,70,73 4 -319503 cd16589 RING-HC_TRIM71_C-VII 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,47,49,52,55,70,73 7 -319504 cd16590 RING-HC_TRIM4_C-IV_like 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319504 cd16590 RING-HC_TRIM4_C-IV_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319505 cd16591 RING-HC_TRIM5_like-C-IV 1 Zn binding site 0 1 0 0 3,6,18,20,23,26,43,45,46 4 -319505 cd16591 RING-HC_TRIM5_like-C-IV 2 polypeptide substrate binding site 0 1 0 0 4,5,7,8,44,45,47 2 -319505 cd16591 RING-HC_TRIM5_like-C-IV 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,43,46 7 -319506 cd16592 RING-HC_TRIM7_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319506 cd16592 RING-HC_TRIM7_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319507 cd16593 RING-HC_TRIM10_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,44,47 4 -319507 cd16593 RING-HC_TRIM10_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,44,47 7 -319508 cd16594 RING-HC_TRIM11_like_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319508 cd16594 RING-HC_TRIM11_like_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319509 cd16595 RING-HC_TRIM17_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,43,46 4 -319509 cd16595 RING-HC_TRIM17_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,43,46 7 -319510 cd16596 RING-HC_TRIM21_C-IV 1 Zn binding site 0 0 0 1 4,7,19,21,24,27,39,42 4 -319510 cd16596 RING-HC_TRIM21_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,19,21,24,27,39,42 7 -319511 cd16597 RING-HC_TRIM25_C-IV 1 Zn binding site 0 0 0 1 2,5,17,19,22,25,39,42 4 -319511 cd16597 RING-HC_TRIM25_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319512 cd16598 RING-HC_TRIM26_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,40,43 4 -319512 cd16598 RING-HC_TRIM26_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319513 cd16599 RING-HC_TRIM35_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,38,41 4 -319513 cd16599 RING-HC_TRIM35_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,38,41 7 -319514 cd16600 RING-HC_TRIM38_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,46,49 4 -319514 cd16600 RING-HC_TRIM38_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,46,49 7 -319515 cd16601 RING-HC_TRIM39_C-IV 1 Zn binding site 0 1 0 0 3,6,18,20,23,26,40,43 4 -319515 cd16601 RING-HC_TRIM39_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319516 cd16602 RING-HC_TRIM41_like_C-IV 1 Zn binding site 0 0 0 1 4,7,19,21,24,27,35,38 4 -319516 cd16602 RING-HC_TRIM41_like_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,19,21,24,27,35,38 7 -319517 cd16603 RING-HC_TRIM43_like_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,40,43 4 -319517 cd16603 RING-HC_TRIM43_like_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319518 cd16604 RING-HC_TRIM47_C-IV 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,42,45 4 -319518 cd16604 RING-HC_TRIM47_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,42,45 7 -319519 cd16605 RING-HC_TRIM50_like_C-IV 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319519 cd16605 RING-HC_TRIM50_like_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319520 cd16606 RING-HC_TRIM58_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,44,47 4 -319520 cd16606 RING-HC_TRIM58_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,44,47 7 -319521 cd16607 RING-HC_TRIM60_like_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319521 cd16607 RING-HC_TRIM60_like_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319522 cd16608 RING-HC_TRIM62_C-IV 1 Zn binding site 0 0 0 1 5,8,20,22,25,28,44,47 4 -319522 cd16608 RING-HC_TRIM62_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,44,47 7 -319523 cd16609 RING-HC_TRIM65_C-IV 1 Zn binding site 0 0 0 1 2,5,17,19,22,25,42,45 4 -319523 cd16609 RING-HC_TRIM65_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,42,45 7 -319524 cd16610 RING-HC_TRIM68_C-IV 1 Zn binding site 0 0 0 1 3,6,18,20,23,26,44,47 4 -319524 cd16610 RING-HC_TRIM68_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,44,47 7 -319525 cd16611 RING-HC_TRIM69_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,39,42 4 -319525 cd16611 RING-HC_TRIM69_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,39,42 7 -319526 cd16612 RING-HC_TRIM72_C-IV 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,42,45 4 -319526 cd16612 RING-HC_TRIM72_C-IV 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,42,45 7 -319527 cd16613 RING-HC_UHRF 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,37,40 4 -319527 cd16613 RING-HC_UHRF 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319528 cd16614 RING-HC_UNK_like 1 Zn binding site 0 0 1 1 1,4,14,16,20,23,29,32 4 -319528 cd16614 RING-HC_UNK_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,14,16,20,23,29,32 7 -319529 cd16615 RING-HC_ZNF598 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,36,39 4 -319529 cd16615 RING-HC_ZNF598 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,36,39 7 -319530 cd16616 mRING-HC-C4C4_Asi1p_like 1 Zn binding site 0 0 1 1 0,3,15,17,21,24,36,39 4 -319530 cd16616 mRING-HC-C4C4_Asi1p_like 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 0,3,15,17,21,24,36,39 7 -319531 cd16617 mRING-HC-C4C4_CesA_plant 1 Zn binding site 0 1 0 0 2,5,21,24,29,32,44,47 4 -319531 cd16617 mRING-HC-C4C4_CesA_plant 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 2,5,21,24,29,32,44,47 7 -319532 cd16618 mRING-HC-C4C4_CNOT4 1 Zn binding site 0 1 1 0 0,3,17,19,24,27,39,42 4 -319532 cd16618 mRING-HC-C4C4_CNOT4 2 polypeptide substrate binding site 0 1 1 0 1,2,3,4,5,6,21,26,27,30,31,36,38,39,40,41,42,43 2 -319532 cd16618 mRING-HC-C4C4_CNOT4 3 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 0,3,17,19,24,27,39,42 7 -319533 cd16619 mRING-HC-C4C4_TRIM37_C-VIII 1 Zn binding site 0 1 1 0 2,5,15,18,23,26,38,41 4 -319533 cd16619 mRING-HC-C4C4_TRIM37_C-VIII 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 2,5,15,18,23,26,38,41 7 -319534 cd16620 vRING-HC-C4C4_RBBP6 1 Zn binding site 0 1 1 0 5,8,20,21,26,29,41,44 4 -319534 cd16620 vRING-HC-C4C4_RBBP6 2 homodimer interface 0 1 1 0 0,1,2,3,4,5,6,12,17,18,19,21,22,23,24 2 -319534 cd16620 vRING-HC-C4C4_RBBP6 3 variant RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 5,8,20,21,26,29,41,44 7 -319535 cd16621 vRING-HC-C4C4_RFPL1_like 1 putative Zn binding site 0 0 1 1 1,4,16,18,21,24,39,42 4 -319535 cd16621 vRING-HC-C4C4_RFPL1_like 2 variant RING-HC finger (C4C4-type) CCCCCCCC 0 0 1 1,4,16,18,21,24,39,42 7 -319536 cd16622 vRING-HC-C4C4_RBR_RNF217 1 Zn binding site 0 0 1 1 0,3,14,15,20,23,41,46 4 -319536 cd16622 vRING-HC-C4C4_RBR_RNF217 2 variant RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 0,3,14,15,20,23,41,46 7 -319537 cd16623 RING-HC_RBR_TRIAD1_like 1 Zn binding site 0 0 1 1 0,3,17,19,22,25,44,49 4 -319537 cd16623 RING-HC_RBR_TRIAD1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,17,19,22,25,44,49 7 -319538 cd16624 RING-HC_RBR_CUL9 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,46,51 4 -319538 cd16624 RING-HC_RBR_CUL9 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,46,51 7 -319539 cd16625 RING-HC_RBR_HEL2_like 1 Zn binding site 0 0 1 1 2,5,19,21,24,27,47,52 4 -319539 cd16625 RING-HC_RBR_HEL2_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,19,21,24,27,47,52 7 -319540 cd16626 RING-HC_RBR_HHARI 1 Zn binding site 0 1 1 0 1,4,18,20,23,26,46,51 4 -319540 cd16626 RING-HC_RBR_HHARI 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,18,20,23,26,46,51 7 -319541 cd16627 RING-HC_RBR_parkin 1 Zn binding site 0 1 1 0 2,5,17,21,24,27,53,57 4 -319541 cd16627 RING-HC_RBR_parkin 2 polypeptide substrate binding site 0 1 1 0 47,48,49 2 -319541 cd16627 RING-HC_RBR_parkin 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,21,24,27,53,57 7 -319542 cd16628 RING-HC_RBR_RNF14 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,47,52 4 -319542 cd16628 RING-HC_RBR_RNF14 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,20,22,25,28,47,52 7 -319543 cd16629 RING-HC_RBR_RNF19 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,45,48 4 -319543 cd16629 RING-HC_RBR_RNF19 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,45,48 7 -319544 cd16630 RING-HC_RBR_RNF216 1 Zn binding site 0 0 1 1 2,5,17,21,24,27,46,52 4 -319544 cd16630 RING-HC_RBR_RNF216 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,21,24,27,46,52 7 -319545 cd16631 mRING-HC-C4C4_RBR_HOIP 1 Zn binding site 0 1 1 0 1,4,19,21,24,27,46,49 4 -319545 cd16631 mRING-HC-C4C4_RBR_HOIP 2 polypeptide substrate binding site 0 1 1 0 3,27,30,31,34,36,37,38,39,40,43,47,48 2 -319545 cd16631 mRING-HC-C4C4_RBR_HOIP 3 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 1,4,19,21,24,27,46,49 7 -319546 cd16632 mRING-HC-C4C4_RBR_RNF144 1 Zn binding site 0 1 0 0 0,3,18,20,23,26,45,50 4 -319546 cd16632 mRING-HC-C4C4_RBR_RNF144 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 0,3,18,20,23,26,45,50 7 -319547 cd16633 mRING-HC-C3HC3D_RBR_HOIL1 1 Zn binding site 0 0 1 1 4,7,22,24,27,30,45,49 4 -319547 cd16633 mRING-HC-C3HC3D_RBR_HOIL1 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 4,7,22,24,27,30,45,49 7 -319548 cd16634 mRING-HC-C3HC3D_Nrdp1 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,38,41 4 -319548 cd16634 mRING-HC-C3HC3D_Nrdp1 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,19,21,24,27,38,41 7 -319549 cd16635 mRING-HC-C3HC3D_PHRF1 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,39,42 4 -319549 cd16635 mRING-HC-C3HC3D_PHRF1 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 2,5,20,22,25,28,39,42 7 -319550 cd16636 mRING-HC-C3HC3D_SCAF11 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,38,41 4 -319550 cd16636 mRING-HC-C3HC3D_SCAF11 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 1,4,19,21,24,27,38,41 7 -319551 cd16637 mRING-HC-C3HC3D_LNX1_like 1 Zn binding site 0 1 1 0 3,6,18,20,23,26,37,40 4 -319551 cd16637 mRING-HC-C3HC3D_LNX1_like 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,18,20,23,26,37,40 7 -319552 cd16638 mRING-HC-C3HC3D_Roquin 1 Zn binding site 0 1 0 0 3,6,22,24,27,39,42 4 -319552 cd16638 mRING-HC-C3HC3D_Roquin 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,22,24,27,30,39,42 7 -319553 cd16639 RING-HC_TRAF2 1 Zn binding site 0 1 1 0 2,5,17,19,22,25,37,40 4 -319553 cd16639 RING-HC_TRAF2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319554 cd16640 RING-HC_TRAF3 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,37,40 4 -319554 cd16640 RING-HC_TRAF3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319555 cd16641 mRING-HC-C3HC3D_TRAF4 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,39,42 4 -319555 cd16641 mRING-HC-C3HC3D_TRAF4 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,19,21,24,27,39,42 7 -319556 cd16642 mRING-HC-C3HC3D_TRAF5 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,38,41 4 -319556 cd16642 mRING-HC-C3HC3D_TRAF5 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 2,5,17,19,22,25,38,41 7 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 1 Zn binding site 0 1 1 0 3,6,18,20,23,26,38,41 4 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 2 polypeptide substrate binding site 0 1 1 0 2,4,5,6,7,8,30,33,34,39 2 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 3 homodimer interface 0 1 1 0 0,1,15,17,18,19,20,21,51,52,53,54,55 2 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 4 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,18,20,23,26,38,41 7 -319558 cd16644 mRING-HC-C3HC3D_TRAF7 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,34,37 4 -319558 cd16644 mRING-HC-C3HC3D_TRAF7 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 2,5,17,19,22,25,34,37 7 -319559 cd16645 mRING-HC-C3HC3D_TRIM23_C-IX 1 Zn binding site 0 0 0 1 3,6,23,25,28,44,47 4 -319559 cd16645 mRING-HC-C3HC3D_TRIM23_C-IX 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,23,25,28,31,44,47 7 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like 1 Zn binding site 0 1 1 0 0,3,14,19,23,26,37,40 4 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like 2 homodimer interface 0 1 1 0 0,1,9,11,13,14,16,17,18,19,20,21,38,39 2 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like 3 heterodimer interface 0 1 1 0 11,13,15,18,19,20,21,40,41 2 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like 4 modified RING-HC finger (C2H2C4-type) CCHHCCCC 0 1 1 0,3,14,19,23,26,37,40 7 -319561 cd16647 mRING-HC-C3HC5_NEU1 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,37,40 4 -319561 cd16647 mRING-HC-C3HC5_NEU1 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,37,40 7 -319562 cd16648 mRING-HC-C3HC5_MAPL 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,35,38 4 -319562 cd16648 mRING-HC-C3HC5_MAPL 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,35,38 7 -319563 cd16649 mRING-HC-C3HC5_CGRF1_like 1 Zn binding site 0 1 0 0 1,4,16,18,22,25,36,39 4 -319563 cd16649 mRING-HC-C3HC5_CGRF1_like 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,36,39 7 -319564 cd16650 SP-RING_PIAS_like 1 Zn binding site 0 1 1 0 19,21,42,45 4 -319564 cd16650 SP-RING_PIAS_like 2 SP-RING finger 0 0 1 1 3,6,19,21,26,29,42,45 7 -319565 cd16651 SPL-RING_NSE2 1 Zn binding site 0 1 1 0 18,20,40,45 4 -319565 cd16651 SPL-RING_NSE2 2 SPL-RING finger 0 0 1 1 2,5,18,20,24,27,40,45 7 -319566 cd16652 dRing_Rmd5p_like 1 degenerated RING finger 0 0 1 1 2,5,20,22,25,28,42,45 7 -319567 cd16653 RING-like_Rtf2 1 RING-like Rtf2 domain (C2HC2-type) CCHCC 0 1 1 2,21,23,38,41 7 -319568 cd16654 RING-Ubox_CHIP 1 polypeptide substrate binding site 1 0 1 1 0 0,2,3,7,8,10,19,20,22,24,32,33,36,37,42,43,45,54,55,56,57,58,59,61,62,65 2 -319568 cd16654 RING-Ubox_CHIP 2 polypeptide substrate binding site 2 0 1 1 0 3,7,8,10,11,18,19,20,21,22,24,29,32,33,37,42,43,45,54,55,56,57,58,59,61,62,65 2 -319568 cd16654 RING-Ubox_CHIP 3 U-box domain, a modified RING finger 0 0 1 1 6,9,21,23,26,29,41,44 7 -319569 cd16655 RING-Ubox_WDSUB1_like 1 U-box domain, a modified RING finger 0 0 1 1 2,5,17,19,22,25,37,40 7 -319570 cd16656 RING-Ubox_PRP19 1 dimer interface 0 1 1 0 11,13,17,18,20,49,50,51,52 2 -319570 cd16656 RING-Ubox_PRP19 2 U-box domain, a modified RING finger 0 0 1 1 1,4,17,19,22,25,36,39 7 -319571 cd16657 RING-Ubox_UBE4A 1 U-box domain, a modified RING finger 0 0 1 1 4,7,20,22,25,28,39,42 7 -319572 cd16658 RING-Ubox_UBE4B 1 polypeptide substrate binding site 0 1 1 0 0,18,63,64,67,70,71,74 2 -319572 cd16658 RING-Ubox_UBE4B 2 U-box domain, a modified RING finger 0 0 1 1 10,13,25,27,30,33,44,47 7 -319573 cd16659 RING-Ubox_Emp 1 U-box domain, a modified RING finger 0 0 1 1 4,7,22,24,27,30,44,47 7 -319574 cd16660 RING-Ubox_RNF37 1 U-box domain, a modified RING finger 0 0 1 1 5,8,20,22,25,28,45,48 7 -319575 cd16661 RING-Ubox1_NOSIP 1 U-box domain, a modified RING finger 0 0 1 1 2,5,17,19,22,25,35,38 7 -319576 cd16662 RING-Ubox2_NOSIP 1 U-box domain, a modified RING finger 0 0 1 1 3,6,22,24,27,30,41,44 7 -319577 cd16663 RING-Ubox_PPIL2 1 U-box domain, a modified RING finger 0 0 1 1 4,7,19,21,24,27,38,41 7 -319578 cd16664 RING-Ubox_PUB 1 U-box domain, a modified RING finger 0 0 1 1 2,5,17,19,22,25,37,40 7 -319579 cd16665 RING-H2_RNF13_like 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,40,43 4 -319579 cd16665 RING-H2_RNF13_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,40,43 7 -319580 cd16666 RING-H2_RNF43_like 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319580 cd16666 RING-H2_RNF43_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319581 cd16667 RING-H2_RNF126_like 1 Zn binding site 0 1 0 0 1,4,19,21,24,27,38,41 4 -319581 cd16667 RING-H2_RNF126_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319582 cd16668 RING-H2_GRAIL 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319582 cd16668 RING-H2_GRAIL 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319583 cd16669 RING-H2_RNF181 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319583 cd16669 RING-H2_RNF181 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319584 cd16670 RING-H2_RNF215 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319584 cd16670 RING-H2_RNF215 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319585 cd16671 RING-H2_DTX1_4 1 Zn binding site 0 0 0 1 3,6,36,38,41,44,60,63 4 -319585 cd16671 RING-H2_DTX1_4 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,36,38,41,44,60,63 7 -319586 cd16672 RING-H2_DTX2 1 Zn binding site 0 1 0 0 1,4,34,36,39,42,58,61 4 -319586 cd16672 RING-H2_DTX2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,34,36,39,42,58,61 7 -319587 cd16673 RING-H2_RNF6 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,39,42 4 -319587 cd16673 RING-H2_RNF6 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319588 cd16674 RING-H2_RNF12 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,39,42 4 -319588 cd16674 RING-H2_RNF12 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319589 cd16675 RING-H2_RNF24 1 Zn binding site 0 1 0 0 2,5,20,22,25,28,39,42 4 -319589 cd16675 RING-H2_RNF24 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319590 cd16676 RING-H2_RNF122 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319590 cd16676 RING-H2_RNF122 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319591 cd16677 RING1-H2_RNF32 1 Zn binding site 0 0 1 1 1,4,18,20,23,26,39,42 4 -319591 cd16677 RING1-H2_RNF32 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,18,20,23,26,39,42 7 -319592 cd16678 RING2-H2_RNF32 1 Zn binding site 0 0 1 1 1,4,29,31,34,37,52,55 4 -319592 cd16678 RING2-H2_RNF32 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,29,31,34,37,52,55 7 -319593 cd16679 RING-H2_RNF38 1 Zn binding site 0 1 1 0 4,7,22,24,27,30,41,44 4 -319593 cd16679 RING-H2_RNF38 2 polypeptide substrate binding site 0 1 1 0 0,3,5,6,7,8,9,24,30,33,34,42,43,44,45 2 -319593 cd16679 RING-H2_RNF38 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 4,7,22,24,27,30,41,44 7 -319594 cd16680 RING-H2_RNF44 1 Zn binding site 0 0 1 1 3,6,21,23,26,29,40,43 4 -319594 cd16680 RING-H2_RNF44 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,21,23,26,29,40,43 7 -319595 cd16681 RING-H2_RNF111 1 Zn binding site 0 1 1 0 2,5,20,22,25,28,39,42 4 -319595 cd16681 RING-H2_RNF111 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319596 cd16682 RING-H2_RNF165 1 Zn binding site 0 0 1 1 2,5,20,22,25,28,39,42 4 -319596 cd16682 RING-H2_RNF165 2 polypeptide substrate binding site 0 1 1 0 3,4,6,7,17,18,19,21,22,28,31,32,35,38,40,42,43,45,47 2 -319596 cd16682 RING-H2_RNF165 3 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319597 cd16683 RING-H2_RNF139 1 Zn binding site 0 0 0 1 2,5,18,20,23,26,37,40 4 -319597 cd16683 RING-H2_RNF139 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,18,20,23,26,37,40 7 -319598 cd16684 RING-H2_RNF145 1 Zn binding site 0 0 0 1 4,7,19,21,24,27,38,41 4 -319598 cd16684 RING-H2_RNF145 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 4,7,19,21,24,27,38,41 7 -319599 cd16685 RING-H2_UBR1 1 Zn binding site 0 0 1 1 4,7,65,67,70,73,104,107 4 -319599 cd16685 RING-H2_UBR1 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 4,7,65,67,70,73,104,107 7 -319600 cd16686 RING-H2_UBR2 1 Zn binding site 0 0 1 1 1,4,61,63,66,69,103,106 4 -319600 cd16686 RING-H2_UBR2 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,61,63,66,69,103,106 7 -319601 cd16687 RING-H2_Vps8 1 Zn binding site 0 0 1 1 2,5,24,26,29,32,50,53 4 -319601 cd16687 RING-H2_Vps8 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,24,26,29,32,50,53 7 -319602 cd16688 RING-H2_Vps11 1 Zn binding site 0 0 1 1 2,5,18,20,23,26,37,40 4 -319602 cd16688 RING-H2_Vps11 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,18,20,23,26,37,40 7 -319603 cd16689 RING-H2_Vps18 1 Zn binding site 0 0 1 1 2,5,19,21,24,27,32,35 4 -319603 cd16689 RING-H2_Vps18 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,19,21,24,27,32,35 7 -319604 cd16690 RING-H2_Vps41 1 Zn binding site 0 0 1 1 4,7,27,29,32,35,44,47 4 -319604 cd16690 RING-H2_Vps41 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 4,7,27,29,32,35,44,47 7 -319605 cd16691 mRING-H2-C3H3C2_Mio 1 modified RING-H2 finger (C3H3C2-type) CCCHHHCC 0 0 1 3,6,44,46,49,52,63,68 7 -319606 cd16692 mRING-H2-C3H3C2_WDR59 1 modified RING-H2 finger (C3H3C2-type) CCCHHHCC 0 0 1 2,5,19,21,24,27,38,42 7 -319607 cd16693 mRING-H2-C3H3C2_WDR24 1 modified RING-H2 finger (C3H3C2-type) CCCHHHCC 0 0 1 1,4,18,20,23,26,37,41 7 -319608 cd16694 mRING-CH-C4HC2H_ZNRF1 1 modified RING-CH finger (C4HC2H-type) CCCCHCCH 0 0 1 2,5,20,22,25,28,39,42 7 -319609 cd16695 mRING-CH-C4HC2H_ZNRF2 1 modified RING-CH finger (C4HC2H-type) CCCCHCCH 0 0 1 1,4,19,21,24,27,38,41 7 -319610 cd16696 RING-CH-C4HC3_NFX1 1 Zn binding site 0 0 1 1 2,5,18,21,26,29,50,53 4 -319610 cd16696 RING-CH-C4HC3_NFX1 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 1 1 2,5,18,21,26,29,50,53 7 -319611 cd16697 RING-CH-C4HC3_NFXL1 1 Zn binding site 0 0 1 1 2,5,18,21,26,29,58,61 4 -319611 cd16697 RING-CH-C4HC3_NFXL1 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 1 1 2,5,18,21,26,29,58,61 7 -319612 cd16698 RING_CH-C4HC3_MARCH1_like 1 Zn binding site 0 1 0 0 1,4,18,20,28,31,44,47 4 -319612 cd16698 RING_CH-C4HC3_MARCH1_like 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,18,20,28,31,44,47 7 -319613 cd16699 RING_CH-C4HC3_MARCH2_like 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319613 cd16699 RING_CH-C4HC3_MARCH2_like 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319614 cd16700 RING_CH-C4HC3_MARCH4_like 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319614 cd16700 RING_CH-C4HC3_MARCH4_like 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319615 cd16701 RING_CH-C4HC3_MARCH5 1 Zn binding site 0 0 0 1 2,5,21,23,31,34,53,56 4 -319615 cd16701 RING_CH-C4HC3_MARCH5 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,21,23,31,34,53,56 7 -319616 cd16702 RING_CH-C4HC3_MARCH6 1 Zn binding site 0 1 0 0 1,4,18,20,28,31,44,47 4 -319616 cd16702 RING_CH-C4HC3_MARCH6 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,18,20,28,31,44,47 7 -319617 cd16703 RING_CH-C4HC3_MARCH7_like 1 Zn binding site 0 0 0 1 4,7,22,24,32,35,56,59 4 -319617 cd16703 RING_CH-C4HC3_MARCH7_like 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 4,7,22,24,32,35,56,59 7 -319618 cd16704 RING-HC_RNF20_like 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,37,40 4 -319618 cd16704 RING-HC_RNF20_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319619 cd16705 RING-HC_dBre1_like 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,37,40 4 -319619 cd16705 RING-HC_dBre1_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319620 cd16706 RING-HC_CARP1 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,32,35 4 -319620 cd16706 RING-HC_CARP1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319621 cd16707 RING-HC_CARP2 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,33,36 4 -319621 cd16707 RING-HC_CARP2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,33,36 7 -319622 cd16708 RING-HC_Cbl 1 Zn binding site 0 1 1 0 3,6,18,20,23,26,38,41 4 -319622 cd16708 RING-HC_Cbl 2 polypeptide substrate binding site 0 1 1 0 4,5,6,7,8,26,29,30,39,40,42 2 -319622 cd16708 RING-HC_Cbl 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,38,41 7 -319623 cd16709 RING-HC_Cbl-b 1 Zn binding site 0 1 1 0 19,22,34,36,39,42,54,57 4 -319623 cd16709 RING-HC_Cbl-b 2 polypeptide substrate binding site 0 1 1 0 8,9,12,13,14,20,21,22,23,36,42,45,46,49,55,56,57,58 2 -319623 cd16709 RING-HC_Cbl-b 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 19,22,34,36,39,42,54,57 7 -319624 cd16710 RING-HC_Cbl-c 1 Zn binding site 0 0 1 1 6,9,21,23,26,29,41,44 4 -319624 cd16710 RING-HC_Cbl-c 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 6,9,21,23,26,29,41,44 7 -319625 cd16711 RING-HC_DTX3 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,36,39 4 -319625 cd16711 RING-HC_DTX3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,36,39 7 -319626 cd16712 RING-HC_DTX3L 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,36,39 4 -319626 cd16712 RING-HC_DTX3L 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,36,39 7 -319627 cd16713 RING-HC_BIRC2_3_7 1 Zn binding site 0 1 1 0 6,9,21,23,27,30,37,40 4 -319627 cd16713 RING-HC_BIRC2_3_7 2 polypeptide substrate binding site 0 1 1 0 3,4,7,8,10,11,14,17,20,21,22,23,24,34,38,39,40,41 2 -319627 cd16713 RING-HC_BIRC2_3_7 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 6,9,21,23,27,30,37,40 7 -319628 cd16714 RING-HC_BIRC4_8 1 Zn binding site 0 1 1 0 14,17,29,31,35,38,45,48 4 -319628 cd16714 RING-HC_BIRC4_8 2 homodimer interface 0 1 1 0 1,2,4,5,8,9,11,12,25,27,28,30,32,56,57,58,59,60 2 -319628 cd16714 RING-HC_BIRC4_8 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 14,17,29,31,35,38,45,48 7 -319629 cd16715 vRING-HC_IRF2BP1 1 Zn binding site 0 0 0 1 2,4,5,17,23,26,29,45,51 4 -319629 cd16715 vRING-HC_IRF2BP1 2 variant RING-HC finger (C3HC4-type) CCCHCCCC 0 1 1 2,5,17,23,26,29,45,51 7 -319630 cd16716 vRING-HC_IRF2BP2 1 Zn binding site 0 0 0 1 2,4,5,17,23,26,29,45,51 4 -319630 cd16716 vRING-HC_IRF2BP2 2 variant RING-HC finger (C3HC4-type) CCCHCCCC 0 1 1 2,5,17,23,26,29,45,51 7 -319631 cd16717 vRING-HC_IRF2BPL 1 Zn binding site 0 1 0 0 2,4,5,17,23,26,29,45,51 4 -319631 cd16717 vRING-HC_IRF2BPL 2 variant RING-HC finger (C3HC4-type) CCCHCCCC 0 1 1 2,5,17,23,26,29,45,51 7 -319632 cd16718 RING-HC_LNX3 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,39 4 -319632 cd16718 RING-HC_LNX3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,39 7 -319633 cd16719 RING-HC_LNX4 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,39 4 -319633 cd16719 RING-HC_LNX4 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,39 7 -319634 cd16720 RING-HC_MEX3A 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,38,41 4 -319634 cd16720 RING-HC_MEX3A 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,38,41 7 -319635 cd16721 RING-HC_MEX3B 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,38,41 4 -319635 cd16721 RING-HC_MEX3B 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,38,41 7 -319636 cd16722 RING-HC_MEX3C 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,38,41 4 -319636 cd16722 RING-HC_MEX3C 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,38,41 7 -319637 cd16723 RING-HC_MEX3D 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,38,41 4 -319637 cd16723 RING-HC_MEX3D 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,38,41 7 -319638 cd16724 RING1-HC_MIB1 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,32,35 4 -319638 cd16724 RING1-HC_MIB1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319639 cd16725 RING2-HC_MIB1 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,32,35 4 -319639 cd16725 RING2-HC_MIB1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319640 cd16726 RING1-HC_MIB2 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,32,35 4 -319640 cd16726 RING1-HC_MIB2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319641 cd16727 RING3-HC_MIB1 1 Zn binding site 0 0 1 1 1,4,15,17,20,23,30,33 4 -319641 cd16727 RING3-HC_MIB1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,15,17,20,23,30,33 7 -319642 cd16728 RING2-HC_MIB2 1 Zn binding site 0 0 1 1 1,4,15,17,20,23,30,33 4 -319642 cd16728 RING2-HC_MIB2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,15,17,20,23,30,33 7 -319643 cd16729 RING-HC_RGLG_plant 1 Zn binding site 0 0 1 1 1,4,15,17,20,23,30,33 4 -319643 cd16729 RING-HC_RGLG_plant 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,15,17,20,23,30,33 7 -319644 cd16730 RING-HC_MKRN1_3 1 Zn binding site 0 0 0 1 3,6,27,29,32,35,53,56 4 -319644 cd16730 RING-HC_MKRN1_3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,27,29,32,35,53,56 7 -319645 cd16731 RING-HC_MKRN2 1 Zn binding site 0 0 0 1 3,6,27,29,32,35,53,56 4 -319645 cd16731 RING-HC_MKRN2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,27,29,32,35,53,56 7 -319646 cd16732 RING-HC_MKRN4 1 Zn binding site 0 0 0 1 3,6,27,29,32,35,53,56 4 -319646 cd16732 RING-HC_MKRN4 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,27,29,32,35,53,56 7 -319647 cd16733 RING-HC_PCGF1 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,38,41 4 -319647 cd16733 RING-HC_PCGF1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,38,41 7 -319648 cd16734 RING-HC_PCGF2 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,38,41 4 -319648 cd16734 RING-HC_PCGF2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,38,41 7 -319649 cd16735 RING-HC_PCGF3 1 Zn binding site 0 0 1 1 3,6,19,21,24,27,38,41 4 -319649 cd16735 RING-HC_PCGF3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,19,21,24,27,38,41 7 -319650 cd16736 RING-HC_PCGF4 1 Zn binding site 0 1 1 0 6,9,22,24,27,30,41,44 4 -319650 cd16736 RING-HC_PCGF4 2 polypeptide substrate binding site 0 1 1 0 3,5,9,11,12,14,15,17,18,20,21,22,23,24,27,28,29,30,32,33 2 -319650 cd16736 RING-HC_PCGF4 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 6,9,22,24,27,30,41,44 7 -319651 cd16737 RING-HC_PCGF5 1 Zn binding site 0 1 1 0 2,5,18,20,23,26,37,40 4 -319651 cd16737 RING-HC_PCGF5 2 polypeptide substrate binding site 0 1 1 0 5,7,8,10,11,13,14,16,17,18,19,23,24,25,28,29 2 -319651 cd16737 RING-HC_PCGF5 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,37,40 7 -319652 cd16738 RING-HC_PCGF6 1 Zn binding site 0 1 0 0 4,7,20,22,25,28,39,42 4 -319652 cd16738 RING-HC_PCGF6 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,39,42 7 -319653 cd16739 RING-HC_RING1 1 Zn binding site 0 0 1 1 1,4,17,19,22,25,37,40 4 -319653 cd16739 RING-HC_RING1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,17,19,22,25,37,40 7 -319654 cd16740 RING-HC_RING2 1 Zn binding site 0 1 1 0 4,7,20,22,25,28,40,43 4 -319654 cd16740 RING-HC_RING2 2 polypeptide substrate binding site 0 1 1 0 16,18,19,21,23,30,34,38,46 2 -319654 cd16740 RING-HC_RING2 3 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,40,43 7 -319655 cd16741 RING-HC_RNFT1 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,35,38 4 -319655 cd16741 RING-HC_RNFT1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,35,38 7 -319656 cd16742 RING-HC_RNFT2 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,36,39 4 -319656 cd16742 RING-HC_RNFT2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,36,39 7 -319657 cd16743 RING-HC_RNF5 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319657 cd16743 RING-HC_RNF5 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319658 cd16744 RING-HC_RNF185 1 Zn binding site 0 0 1 1 1,4,16,18,21,24,38,41 4 -319658 cd16744 RING-HC_RNF185 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,21,24,38,41 7 -319659 cd16745 RING-HC_AtRMA_like 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,39,42 4 -319659 cd16745 RING-HC_AtRMA_like 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,39,42 7 -319660 cd16746 RING-HC_RNF212 1 Zn binding site 0 0 1 1 3,6,22,24,27,30,39,42 4 -319660 cd16746 RING-HC_RNF212 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,22,24,27,30,39,42 7 -319661 cd16747 RING-HC_RNF212B 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,36,39 4 -319661 cd16747 RING-HC_RNF212B 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,36,39 7 -319662 cd16748 RING-HC_SH3RF1 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,41,44 4 -319662 cd16748 RING-HC_SH3RF1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,41,44 7 -319663 cd16749 RING-HC_SH3RF2 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,41,44 4 -319663 cd16749 RING-HC_SH3RF2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,41,44 7 -319664 cd16750 RING-HC_SH3RF3 1 Zn binding site 0 0 1 1 4,7,20,22,25,28,41,44 4 -319664 cd16750 RING-HC_SH3RF3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,20,22,25,28,41,44 7 -319665 cd16751 RING-HC_SIAH1 1 Zn binding site 0 0 1 1 2,5,16,20,23,26,33,36 4 -319665 cd16751 RING-HC_SIAH1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,16,20,23,26,33,36 7 -319666 cd16752 RING-HC_SIAH2 1 Zn binding site 0 0 1 1 2,5,16,20,23,26,33,36 4 -319666 cd16752 RING-HC_SIAH2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,16,20,23,26,33,36 7 -319667 cd16753 RING-HC_MID1 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,48,51 4 -319667 cd16753 RING-HC_MID1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,48,51 7 -319668 cd16754 RING-HC_MID2 1 Zn binding site 0 0 1 1 0,3,15,17,20,23,46,49 4 -319668 cd16754 RING-HC_MID2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 0,3,15,17,20,23,46,49 7 -319669 cd16755 RING-HC_TRIM9 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,45,48 4 -319669 cd16755 RING-HC_TRIM9 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,45,48 7 -319670 cd16756 RING-HC_TRIM36 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,38,41 4 -319670 cd16756 RING-HC_TRIM36 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,38,41 7 -319671 cd16757 RING-HC_TRIM46 1 Zn binding site 0 0 1 1 6,9,21,23,26,29,37,40 4 -319671 cd16757 RING-HC_TRIM46 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 6,9,21,23,26,29,37,40 7 -319672 cd16758 RING-HC_TRIM67 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,44,47 4 -319672 cd16758 RING-HC_TRIM67 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,44,47 7 -319673 cd16759 RING-HC_MuRF1 1 Zn binding site 0 0 1 1 5,8,21,23,26,29,57,60 4 -319673 cd16759 RING-HC_MuRF1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,21,23,26,29,57,60 7 -319674 cd16760 RING-HC_MuRF2 1 Zn binding site 0 0 1 1 5,8,21,23,26,29,57,60 4 -319674 cd16760 RING-HC_MuRF2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,21,23,26,29,57,60 7 -319675 cd16761 RING-HC_MuRF3 1 Zn binding site 0 0 1 1 2,5,18,20,23,26,54,57 4 -319675 cd16761 RING-HC_MuRF3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,18,20,23,26,54,57 7 -319676 cd16762 RING-HC_TRIM13_C-V 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,49,52 4 -319676 cd16762 RING-HC_TRIM13_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,49,52 7 -319677 cd16763 RING-HC_TRIM59_C-V 1 Zn binding site 0 0 1 1 5,8,20,22,25,28,51,54 4 -319677 cd16763 RING-HC_TRIM59_C-V 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 5,8,20,22,25,28,51,54 7 -319678 cd16764 RING-HC_TIF1alpha 1 Zn binding site 0 0 1 1 3,6,20,22,25,28,69,72 4 -319678 cd16764 RING-HC_TIF1alpha 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,20,22,25,28,69,72 7 -319679 cd16765 RING-HC_TIF1beta 1 Zn binding site 0 0 1 1 3,6,21,23,26,29,53,56 4 -319679 cd16765 RING-HC_TIF1beta 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,21,23,26,29,53,56 7 -319680 cd16766 RING-HC_TIF1gamma 1 Zn binding site 0 0 1 1 4,7,23,25,28,31,59,62 4 -319680 cd16766 RING-HC_TIF1gamma 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 4,7,23,25,28,31,59,62 7 -319681 cd16767 RING-HC_TRIM2 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319681 cd16767 RING-HC_TRIM2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319682 cd16768 RING-HC_TRIM3 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,40,43 4 -319682 cd16768 RING-HC_TRIM3 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,40,43 7 -319683 cd16769 RING-HC_UHRF1 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,37,40 4 -319683 cd16769 RING-HC_UHRF1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319684 cd16770 RING-HC_UHRF2 1 Zn binding site 0 1 0 0 2,5,17,19,22,25,37,40 4 -319684 cd16770 RING-HC_UHRF2 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319685 cd16771 RING-HC_UNK 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,32,35 4 -319685 cd16771 RING-HC_UNK 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,16,18,22,25,32,35 7 -319686 cd16772 RING-HC_UNKL 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,33,36 4 -319686 cd16772 RING-HC_UNKL 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,23,26,33,36 7 -319687 cd16773 RING-HC_RBR_TRIAD1 1 Zn binding site 0 0 1 1 2,5,19,21,24,27,46,51 4 -319687 cd16773 RING-HC_RBR_TRIAD1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,19,21,24,27,46,51 7 -319688 cd16774 RING-HC_RBR_ANKIB1 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,46,51 4 -319688 cd16774 RING-HC_RBR_ANKIB1 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,46,51 7 -319689 cd16775 RING-HC_RBR_RNF19A 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,45,48 4 -319689 cd16775 RING-HC_RBR_RNF19A 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,45,48 7 -319690 cd16776 RING-HC_RBR_RNF19B 1 Zn binding site 0 0 1 1 1,4,19,21,24,27,45,48 4 -319690 cd16776 RING-HC_RBR_RNF19B 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 1,4,19,21,24,27,45,48 7 -319691 cd16777 mRING-HC-C4C4_RBR_RNF144A 1 Zn binding site 0 1 0 0 1,4,19,21,24,27,46,51 4 -319691 cd16777 mRING-HC-C4C4_RBR_RNF144A 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 1,4,19,21,24,27,46,51 7 -319692 cd16778 mRING-HC-C4C4_RBR_RNF144B 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,47,52 4 -319692 cd16778 mRING-HC-C4C4_RBR_RNF144B 2 modified RING-HC finger (C4C4-type) CCCCCCCC 0 1 1 2,5,20,22,25,28,47,52 7 -319693 cd16779 mRING-HC-C3HC3D_LNX1 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,37,40 4 -319693 cd16779 mRING-HC-C3HC3D_LNX1 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,18,20,23,26,37,40 7 -319694 cd16780 mRING-HC-C3HC3D_LNX2 1 Zn binding site 0 1 1 0 5,8,20,22,25,28,39,42 4 -319694 cd16780 mRING-HC-C3HC3D_LNX2 2 dimer interface 0 1 1 0 0,2,3,12,20,21,22,23 2 -319694 cd16780 mRING-HC-C3HC3D_LNX2 3 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 5,8,20,22,25,28,39,42 7 -319695 cd16781 mRING-HC-C3HC3D_Roquin1 1 Zn binding site 0 1 0 0 3,6,22,24,27,39,42 4 -319695 cd16781 mRING-HC-C3HC3D_Roquin1 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,22,24,27,30,39,42 7 -319696 cd16782 mRING-HC-C3HC3D_Roquin2 1 Zn binding site 0 0 0 1 3,6,22,24,27,39,42 4 -319696 cd16782 mRING-HC-C3HC3D_Roquin2 2 modified RING-HC finger (C3HC3D-type) CCCHCCCD 0 0 1 3,6,22,24,27,30,39,42 7 -319697 cd16783 mRING-HC-C2H2C4_MDM2 1 Zn binding site 0 1 1 0 3,6,17,22,26,29,40,43 4 -319697 cd16783 mRING-HC-C2H2C4_MDM2 2 homodimer interface 0 1 1 0 0,1,2,3,4,12,14,16,17,19,20,21,22,23,24,41,42,49,51,52,53,54,55,56 2 -319697 cd16783 mRING-HC-C2H2C4_MDM2 3 heterodimer interface 0 1 1 0 0,11,14,18,19,20,21,22,23,24,42,49,50,51,52,53,54,55,56 2 -319697 cd16783 mRING-HC-C2H2C4_MDM2 4 modified RING-HC finger (C2H2C4-type) CCHHCCCC 0 1 1 3,6,17,22,26,29,40,43 7 -319698 cd16784 mRING-HC-C2H2C4_MDM4 1 Zn binding site 0 1 1 0 5,8,19,24,28,31,42,45 4 -319698 cd16784 mRING-HC-C2H2C4_MDM4 2 heterodimer interface 0 1 1 0 0,1,2,16,18,20,21,22,23,24,25,26,39,40,41,45,46,47,48,50,53,54,55,56,57,58 2 -319698 cd16784 mRING-HC-C2H2C4_MDM4 3 modified RING-HC finger (C2H2C4-type) CCHHCCCC 0 1 1 5,8,19,24,28,31,42,45 7 -319699 cd16785 mRING-HC-C3HC5_NEU1A 1 Zn binding site 0 0 1 1 2,5,17,19,23,26,38,41 4 -319699 cd16785 mRING-HC-C3HC5_NEU1A 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 2,5,17,19,21,23,26,38,41 7 -319700 cd16786 mRING-HC-C3HC5_NEU1B 1 Zn binding site 0 0 1 1 1,4,16,18,22,25,37,40 4 -319700 cd16786 mRING-HC-C3HC5_NEU1B 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,37,40 7 -319701 cd16787 mRING-HC-C3HC5_CGRF1 1 Zn binding site 0 1 0 0 1,4,16,18,22,25,32,35 4 -319701 cd16787 mRING-HC-C3HC5_CGRF1 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,32,35 7 -319702 cd16788 mRING-HC-C3HC5_RNF26 1 Zn binding site 0 0 0 1 2,5,17,19,23,26,40,43 4 -319702 cd16788 mRING-HC-C3HC5_RNF26 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 2,5,17,19,21,23,26,40,43 7 -319703 cd16789 mRING-HC-C3HC5_MGRN1_like---blasttree 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,36,39 4 -319703 cd16789 mRING-HC-C3HC5_MGRN1_like---blasttree 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,36,39 7 -319704 cd16790 SP-RING_PIAS 1 Zn binding site 0 1 1 0 19,21,42,45 4 -319704 cd16790 SP-RING_PIAS 2 SP-RING finger CGCHDLCC 0 1 1 3,6,19,21,26,29,42,45 7 -319705 cd16791 SP-RING_ZMIZ 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319705 cd16791 SP-RING_ZMIZ 2 SP-RING finger CTCHDSCC 0 1 1 3,6,19,21,26,29,42,45 7 -319706 cd16792 SP-RING_Siz_plant 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319706 cd16792 SP-RING_Siz_plant 2 SP-RING finger CSCHDVCC 0 1 1 3,6,19,21,26,29,42,45 7 -319707 cd16793 SP-RING_ScSiz_like 1 Zn binding site 0 1 1 0 19,21,42,45 4 -319707 cd16793 SP-RING_ScSiz_like 2 SP-RING finger 0 0 1 1 3,6,19,21,26,29,42,45 7 -319708 cd16794 dRING_RMD5A 1 degenerated RING finger CLCHSACC 0 1 1 3,6,21,23,26,29,41,44 7 -319709 cd16795 dRING_RMD5B 1 degenerated RING finger CLCHSACC 0 1 1 2,5,20,22,25,28,40,43 7 -319710 cd16796 RING-H2_RNF13 1 Zn binding site 0 0 0 1 3,6,21,23,26,29,41,44 4 -319710 cd16796 RING-H2_RNF13 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 3,6,21,23,26,29,41,44 7 -319711 cd16797 RING-H2_RNF167 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,40,43 4 -319711 cd16797 RING-H2_RNF167 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,40,43 7 -319712 cd16798 RING-H2_RNF43 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319712 cd16798 RING-H2_RNF43 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319713 cd16799 RING-H2_ZNRF3 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319713 cd16799 RING-H2_ZNRF3 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319714 cd16800 RING-H2_RNF115 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319714 cd16800 RING-H2_RNF115 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319715 cd16801 RING-H2_RNF126 1 Zn binding site 0 1 0 0 1,4,19,21,24,27,38,41 4 -319715 cd16801 RING-H2_RNF126 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319716 cd16802 RING-H2_RNF128_like 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319716 cd16802 RING-H2_RNF128_like 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319717 cd16803 RING-H2_RNF130 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319717 cd16803 RING-H2_RNF130 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319718 cd16804 RING-H2_RNF149 1 Zn binding site 0 0 0 1 1,4,19,21,24,27,38,41 4 -319718 cd16804 RING-H2_RNF149 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 1,4,19,21,24,27,38,41 7 -319719 cd16805 RING-H2_RNF150 1 Zn binding site 0 0 0 1 2,5,20,22,25,28,39,42 4 -319719 cd16805 RING-H2_RNF150 2 RING-H2 finger (C3H2C3-type) CCCHHCCC 0 0 1 2,5,20,22,25,28,39,42 7 -319720 cd16806 RING_CH-C4HC3_MARCH1 1 Zn binding site 0 0 0 1 2,5,19,21,29,32,45,48 4 -319720 cd16806 RING_CH-C4HC3_MARCH1 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,19,21,29,32,45,48 7 -319721 cd16807 RING_CH-C4HC3_MARCH8 1 Zn binding site 0 1 0 0 2,5,19,21,29,32,45,48 4 -319721 cd16807 RING_CH-C4HC3_MARCH8 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,19,21,29,32,45,48 7 -319722 cd16808 RING_CH-C4HC3_MARCH2 1 Zn binding site 0 0 0 1 2,5,18,20,28,31,44,47 4 -319722 cd16808 RING_CH-C4HC3_MARCH2 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,18,20,28,31,44,47 7 -319723 cd16809 RING_CH-C4HC3_MARCH3 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319723 cd16809 RING_CH-C4HC3_MARCH3 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319724 cd16810 RING_CH-C4HC3_MARCH11 1 Zn binding site 0 0 0 1 2,5,18,20,28,31,44,47 4 -319724 cd16810 RING_CH-C4HC3_MARCH11 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 2,5,18,20,28,31,44,47 7 -319725 cd16811 RING_CH-C4HC3_MARCH4_9 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319725 cd16811 RING_CH-C4HC3_MARCH4_9 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319726 cd16812 RING_CH-C4HC3_MARCH7 1 Zn binding site 0 0 0 1 6,9,24,26,34,37,58,61 4 -319726 cd16812 RING_CH-C4HC3_MARCH7 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 6,9,24,26,34,37,58,61 7 -319727 cd16813 RING_CH-C4HC3_MARCH10 1 Zn binding site 0 0 0 1 4,7,22,24,32,35,56,59 4 -319727 cd16813 RING_CH-C4HC3_MARCH10 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 4,7,22,24,32,35,56,59 7 -319728 cd16814 RING-HC_RNF20 1 Zn binding site 0 0 1 1 2,5,17,19,22,25,37,40 4 -319728 cd16814 RING-HC_RNF20 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 2,5,17,19,22,25,37,40 7 -319729 cd16815 RING-HC_RNF40 1 Zn binding site 0 0 1 1 3,6,18,20,23,26,38,41 4 -319729 cd16815 RING-HC_RNF40 2 RING-HC finger (C3HC4-type) CCCHCCCC 0 0 1 3,6,18,20,23,26,38,41 7 -319730 cd16816 mRING-HC-C3HC5_MGRN1 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,36,39 4 -319730 cd16816 mRING-HC-C3HC5_MGRN1 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,36,39 7 -319731 cd16817 mRING-HC-C3HC5_RNF157 1 Zn binding site 0 0 0 1 1,4,16,18,22,25,36,39 4 -319731 cd16817 mRING-HC-C3HC5_RNF157 2 modified RING-HC finger (C3HC5-type) CCCHCCCCC 0 1 1 1,4,16,18,20,22,25,36,39 7 -319732 cd16818 SP-RING_PIAS1 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319732 cd16818 SP-RING_PIAS1 2 SP-RING finger CGCHDLCC 0 1 1 3,6,19,21,26,29,42,45 7 -319733 cd16819 SP-RING_PIAS2 1 Zn binding site 0 1 1 0 19,21,42,45 4 -319733 cd16819 SP-RING_PIAS2 2 SP-RING finger CGCHDLCC 0 1 1 3,6,19,21,26,29,42,45 7 -319734 cd16820 SP-RING_PIAS3 1 Zn binding site 0 1 0 0 19,21,42,45 4 -319734 cd16820 SP-RING_PIAS3 2 SP-RING finger CGCHDLCC 0 1 1 3,6,19,21,26,29,42,45 7 -319735 cd16821 SP-RING_PIAS4 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319735 cd16821 SP-RING_PIAS4 2 SP-RING finger CVCHDFCC 0 1 1 3,6,19,21,26,29,42,45 7 -319736 cd16822 SP-RING_ZMIZ1 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319736 cd16822 SP-RING_ZMIZ1 2 SP-RING finger CTCHDSCC 0 1 1 3,6,19,21,26,29,42,45 7 -319737 cd16823 SP-RING_ZMIZ2 1 Zn binding site 0 0 1 1 19,21,42,45 4 -319737 cd16823 SP-RING_ZMIZ2 2 SP-RING finger CTCHDSCC 0 1 1 3,6,19,21,26,29,42,45 7 -319738 cd16824 RING_CH-C4HC3_MARCH4 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319738 cd16824 RING_CH-C4HC3_MARCH4 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319739 cd16825 RING_CH-C4HC3_MARCH9 1 Zn binding site 0 0 0 1 1,4,17,19,27,30,43,46 4 -319739 cd16825 RING_CH-C4HC3_MARCH9 2 RING-CH finger (C4HC3-type) CCCCHCCC 0 0 1 1,4,17,19,27,30,43,46 7 -319357 cd16828 HemS-like 1 heme binding site 0 1 1 0 27,60,62,110,117,132,134,137 5 -319358 cd16829 ChuX_HutX-like 1 dimer interface 0 1 1 0 49,53,54,55,56,57,58,59,80,81,82,83,84,85,111,117 2 -319358 cd16829 ChuX_HutX-like 2 heme binding site 0 0 1 1 50,83 5 -319359 cd16830 HemS-like_N 1 heme binding site 0 1 1 0 87,96,98 5 -319360 cd16831 HemS-like_C 1 heme binding site 0 1 1 0 11,12,25,60,62,110,117,132,134,137 5 -319353 cd16832 CNF1_CheD_YfiH-like 1 putative catalytic site [CS]H 0 1 1 30,47 1 -319354 cd16833 YfiH 1 putative catalytic site [CS]H 0 1 1 46,63 1 -319355 cd16834 CNF1-like 1 active site L[STC]G[CS]H 0 1 1 35,36,37,38,53 1 -319355 cd16834 CNF1-like 2 catalytic site [CS]H 0 1 1 38,53 1 -319351 cd16837 BldD_C_like 1 c-di-GMP binding site xxxRxDxxxxxRxD 1 1 0 2,4,28,32,33,34,36,39,40,41,42,43,44,46 5 -319349 cd16840 toxin_MLD 1 putative membrane interaction residues [KR]S[KR] 0 1 1 15,63,65 0 -319245 cd16841 RraA_family 1 trimer interface 0 1 1 0 0,3,4,12,92,93,94,95,109,110,111,112,143,144,145,147 2 -319347 cd16842 Ig_SLAM-CD84_like_N 1 dimer interface 0 1 1 1 20,22,74,76,78 2 -319272 cd16844 ParB_N_like_MT 1 putative ParB Box II like motif 0 0 1 1 32,34,35,37,38 2 -341083 cd16845 STAT1_DBD 1 DNA binding site 0 1 1 1 19,23,61,94,96,109,110,142,143,146 3 -341085 cd16847 STAT3_DBD 1 DNA binding site 0 1 1 1 61,96,111,144,145,148 3 -341087 cd16849 STAT5_DBD 1 dimer interface 0 1 1 0 13,29,30,31,32,33,34,36,67,68,71,86,87,91,118,122,123 2 -341088 cd16850 STAT6_DBD 1 DNA binding site 0 1 0 1 11,14,15,94,97,100,101,105,106,141,142,145 3 -341076 cd16851 STAT1_CCD 1 dimer interface 0 1 1 0 26,27,30,31,34,37,38,41,94,98,101,102,103,105,106,118,119,121,122,125,126,129,133,136,168,171,172,173 2 -341076 cd16851 STAT1_CCD 2 CCD-DBD interface 0 1 1 0 101,102,103,105,106,118,119,122,125,126,129,133,136,164,168,171,172 2 -341077 cd16852 STAT2_CCD 1 coiled-coil motif 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 0 -341078 cd16853 STAT3_CCD 1 coiled-coil motif 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 0 -341078 cd16853 STAT3_CCD 2 ligand inducing 0 0 0 1 75,76 0 -341078 cd16853 STAT3_CCD 3 heterodimer interface 0 1 1 0 104,106,108,109,112,113,121,122,125,128,129,132,133,136,139,140,174,175 2 -341079 cd16854 STAT4_CCD 1 coiled-coil motif 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 0 -341080 cd16855 STAT5_CCD 1 coiled-coil motif 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 0 -341080 cd16855 STAT5_CCD 2 dimer interface 0 1 1 1 28,31,35,38,42,148,152,159 2 -341090 cd16857 ING_ING1_2 1 dimer interface 0 0 1 1 3,6,7,8,11,14,17,21,28,31,32,52,53,56,59,60,63,66,67,70,73,76,77,80,81,83,84,87,88 2 -341091 cd16858 ING_ING3_Yng2p 1 NuA4 core complex interface 0 1 1 0 0,2,4,5,6,7,8,9,11,12,13,14,15,18,19,22,26,28,29,32,35,36,55,58,59,62,63,65,66,69,70,72,73,74,75,76,77,78,80,83,84,85,87,90,91 2 -341091 cd16858 ING_ING3_Yng2p 2 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,55,56,59,62,63,66,69,70,73,76,79,80,83,84,86,87,90,91 2 -341092 cd16859 ING_ING4_5 1 homodimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,32,35,44,45,47,48,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87,90 2 -341093 cd16860 ING_ING1 1 dimer interface 0 0 1 1 3,6,7,8,11,14,17,21,28,31,32,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341094 cd16861 ING_ING2 1 dimer interface 0 0 1 1 3,6,7,8,11,14,17,21,28,31,32,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341095 cd16862 ING_ING4 1 homodimer interface 0 1 1 1 3,6,7,8,11,14,17,21,28,31,32,35,38,47,48,50,51,54,55,58,61,62,65,68,69,72,75,78,79,82,83,85,86,89,90,93 2 -341096 cd16863 ING_ING5 1 dimer interface 0 0 1 1 2,5,6,7,10,13,16,20,27,30,31,53,54,57,60,61,64,67,68,71,74,77,78,81,82,84,85,88,89,92 2 -350628 cd16864 ARID_JARID 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350629 cd16865 ARID_ARID1A-like 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350630 cd16866 ARID_ARID2 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350631 cd16867 ARID_ARID3 1 DNA binding site 0 1 1 0 32,33,34,35,36,37,38,63,65,66,69,77,78,79,80,82,83,84,86,116,117 3 -350632 cd16868 ARID_ARID4 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350633 cd16869 ARID_ARID5 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350634 cd16870 ARID_JARD2 1 putative DNA binding site 0 0 1 1 24,25,26,27,28,29,30,55,57,58,61,72,74,75,76,78 3 -350635 cd16871 ARID_Swi1p-like 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,71,73,74,75,77 3 -350636 cd16872 ARID_HMGB9-like 1 putative DNA binding site 0 0 1 1 20,21,22,23,24,25,26,51,53,54,57,68,70,71,72,74 3 -350637 cd16873 ARID_KDM5A 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350638 cd16874 ARID_KDM5B 1 putative DNA binding site 0 0 1 1 25,26,27,28,29,30,31,56,58,59,62,72,74,75,76,78 3 -350639 cd16875 ARID_KDM5C_5D 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350640 cd16876 ARID_ARID1A 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350641 cd16877 ARID_ARID1B 1 putative DNA binding site 0 0 1 1 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350642 cd16878 ARID_ARID3A 1 putative DNA binding site 0 0 1 1 42,43,44,45,46,47,48,73,75,76,79,87,88,89,90,92,93,94,96,126,127 3 -350643 cd16879 ARID_ARID3B 1 putative DNA binding site 0 0 1 1 34,35,36,37,38,39,40,65,67,68,71,79,80,81,82,84,85,86,88,118,119 3 -350644 cd16880 ARID_ARID3C 1 putative DNA binding site 0 0 1 1 35,36,37,38,39,40,41,66,68,69,72,80,81,82,83,85,86,87,89,119,120 3 -350645 cd16881 ARID_Dri-like 1 DNA binding site 0 1 1 0 39,40,41,42,43,44,45,70,72,73,76,84,85,86,87,89,90,91,93,123,124 3 -350646 cd16882 ARID_ARID4A 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350647 cd16883 ARID_ARID4B 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350648 cd16884 ARID_ARID5A 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350649 cd16885 ARID_ARID5B 1 putative DNA binding site 0 0 1 1 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -341123 cd16887 YEATS 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 21,47,49,50,68,69,70,71,72 2 -340374 cd16888 lyz_G_like1 1 putative catalytic residue E 0 1 1 54 1 -340375 cd16889 chitinase_like 1 catalytic residue E 0 1 1 8 1 -340376 cd16890 lyz_i 1 sugar binding site 0 1 1 0 30,31,32,34,35,38,71,75,94,95,96,97,98 5 -340376 cd16890 lyz_i 2 catalytic residue E 0 1 1 9 1 -340376 cd16890 lyz_i 3 homodimer interface 0 1 1 0 8,9,10,95,107,108 2 -340377 cd16891 CwlT_like 1 catalytic residue E 0 1 1 27 1 -340377 cd16891 CwlT_like 2 active site DQ[SA]SE[SG]S 0 1 1 34,37,38,39,40,41,55 1 -340377 cd16891 CwlT_like 3 putative sugar binding site 0 0 1 1 27,37,38,39,42,62,84,85 5 -340378 cd16892 LT_VirB1_like 1 catalytic residue E 0 1 1 20 1 -340378 cd16892 LT_VirB1_like 2 putative sugar binding site 0 0 1 1 20,65,66,67,70,94,120,121 5 -340379 cd16893 LT_MltC_MltE 1 sugar binding site 0 1 1 0 23,32,34,41,42,43,46,47,80,106,107,108,109,148,152 5 -340379 cd16893 LT_MltC_MltE 2 catalytic residue E 0 1 1 23 1 -340380 cd16894 MltD_like 1 putative sugar binding site 0 0 1 1 16,34,35,36,39,67,85,86 5 -340380 cd16894 MltD_like 2 catalytic residue E 0 1 1 16 1 -340381 cd16895 TraH_like 1 putative catalytic residue E 0 1 1 23 1 -340381 cd16895 TraH_like 2 putative sugar binding site 0 0 1 1 23,72,73,74,77,102,134,135 5 -340382 cd16896 LT_Slt70_like 1 putative sugar binding site 0 0 1 1 28,46,47,48,51,82,101,102 5 -340382 cd16896 LT_Slt70_like 2 catalytic residue E 0 1 1 28 1 -340383 cd16897 LYZ_C 1 sugar binding site 0 1 1 0 45,51,56,57,58,61,62,99,101,105,106,107 5 -340383 cd16897 LYZ_C 2 catalytic residues ED 0 1 1 34,51 1 -340383 cd16897 LYZ_C 3 sugar binding site 0 1 1 0 45,51,56,57,58,61,62,99,101,105,106,107 5 -340384 cd16898 LYZ_LA 1 Ca binding site KD[DE]DD 1 1 0 80,83,85,88,89 4 -340384 cd16898 LYZ_LA 2 dimer interface 0 1 1 1 32,33,44,45,107,108,111,112,116,119,120 2 -340384 cd16898 LYZ_LA 3 Ca binding site DDD 1 1 0 83,88,89 4 -340384 cd16898 LYZ_LA 4 heterodimer interface 0 1 1 1 32,33,44,45,107,108,111,112,116,119,120 2 -340385 cd16899 LYZ_C_invert 1 putative catalytic residues ED 0 1 1 31,49 1 -340386 cd16900 endolysin_R21_like 1 catalytic residues EDT 0 1 0 15,24,30 1 -340387 cd16901 lyz_P1 1 catalytic residues ECT 0 1 1 13,15,28 1 -340387 cd16901 lyz_P1 2 active form disulfide linkage 0 1 1 1 15 2 -340387 cd16901 lyz_P1 3 inactive form disulfide linkage 0 1 1 1 15,22 2 -340388 cd16902 pesticin_lyz 1 catalytic residues ETD 0 1 1 10,30,36 1 -340389 cd16903 pesticin_lyz_like1 1 catalytic residues ETD 0 1 1 12,37,43 1 -340390 cd16904 pesticin_lyz_like2 1 catalytic residues ETD 0 1 1 12,36,42 1 -341124 cd16905 YEATS_Taf14_like 1 peptide binding site 0 1 1 0 22,25,54,56,57,75,76,77,78,79,80,99,101,102,103 2 -341125 cd16906 YEATS_AF-9_like 1 peptide binding site 0 1 1 0 19,21,47,49,50,67,68,69,70,71,72,94,95,96,97 2 -341126 cd16907 YEATS_YEATS2_like 1 peptide binding site 0 1 1 0 50,51,52,53,71,72,73,74,75,76,100 2 -341127 cd16908 YEATS_Yaf9_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 0 1 1 28,54,56,57,75,76,77,78,79 2 -341128 cd16909 YEATS_GAS41_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 0 1 1 26,52,54,55,73,74,75,76,77 2 -341129 cd16910 YEATS_TFIID14_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 0 1 1 23,49,51,52,70,71,72,73,74 2 -350650 cd16911 AfaD_SafA-like 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,21,58,76,83,105,107,108,109,110,111,112,113,114,115,116,117,118,119 2 -341130 cd16913 YkuD_like 1 polypeptide substrate binding site 0 1 1 0 76,77,80,93,94,95,96,98 2 -341130 cd16913 YkuD_like 2 putative active site HC 1 1 1 80,96 1 -340392 cd16915 HATPase_DpiB-CitA-like 1 ATP binding site 0 0 1 1 6,10,13,40,42,44,46,47,69,70,71,72,88,90,95,96,98 5 -340392 cd16915 HATPase_DpiB-CitA-like 2 Mg binding site N 0 1 1 10 4 -340392 cd16915 HATPase_DpiB-CitA-like 3 ATP-lid 0 0 1 1 56,72 0 -340392 cd16915 HATPase_DpiB-CitA-like 4 G-X-G motif GGGG 0 1 1 44,46,69,71 0 -340393 cd16916 HATPase_CheA-like 1 ATP binding site 0 0 1 1 44,48,51,86,88,90,92,93,143,144,145,146,162,164,169,170,172 5 -340393 cd16916 HATPase_CheA-like 2 Mg binding site N 0 1 1 48 4 -340393 cd16916 HATPase_CheA-like 3 ATP-lid 0 0 1 1 126,146 0 -340393 cd16916 HATPase_CheA-like 4 G-X-G motif GGGG 0 1 1 90,92,143,145 0 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 1 ATP binding site 0 0 1 1 6,10,13,35,37,39,41,42,43,44,52,53,54,55,71,73,78,79,81 5 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 2 Mg binding site N 0 1 1 10 4 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 3 ATP-lid 0 0 1 1 48,55 0 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 4 G-X-G motif GGGG 0 1 1 39,41,52,54 0 -340395 cd16918 HATPase_Glnl-NtrB-like 1 ATP binding site 0 0 1 1 6,10,13,47,49,51,53,54,75,76,77,78,94,96,100,101,103 5 -340395 cd16918 HATPase_Glnl-NtrB-like 2 Mg binding site N 0 1 1 10 4 -340395 cd16918 HATPase_Glnl-NtrB-like 3 ATP-lid 0 0 1 1 63,78 0 -340395 cd16918 HATPase_Glnl-NtrB-like 4 G-X-G motif GGGG 0 1 1 51,53,75,77 0 -340396 cd16919 HATPase_CckA-like 1 ATP binding site 0 0 1 1 6,10,13,51,53,55,57,58,81,82,83,84,100,102,107,108,110 5 -340396 cd16919 HATPase_CckA-like 2 Mg binding site N 0 1 1 10 4 -340396 cd16919 HATPase_CckA-like 3 ATP-lid 0 0 1 1 67,84 0 -340396 cd16919 HATPase_CckA-like 4 G-X-G motif GGGG 0 1 1 55,57,81,83 0 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 1 ATP binding site 0 0 1 1 6,10,13,41,43,45,47,48,69,70,71,72,88,90,95,96,98 5 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 2 Mg binding site N 0 1 1 10 4 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 3 ATP-lid 0 0 1 1 57,72 0 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 4 G-X-G motif GGGG 0 1 1 45,47,69,71 0 -340398 cd16921 HATPase_FilI-like 1 ATP binding site 0 0 1 1 6,10,13,38,40,42,44,45,70,71,72,73,89,91,96,97,99 5 -340398 cd16921 HATPase_FilI-like 2 Mg binding site N 0 1 1 10 4 -340398 cd16921 HATPase_FilI-like 3 ATP-lid 0 0 1 1 54,73 0 -340398 cd16921 HATPase_FilI-like 4 G-X-G motif GGGG 0 1 1 42,44,70,72 0 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 1 ATP binding site 0 0 1 1 6,10,13,40,42,44,46,47,74,75,76,77,93,95,100,101,103 5 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 2 Mg binding site N 0 1 1 10 4 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 3 ATP-lid 0 0 1 1 56,77 0 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 4 G-X-G motif GGGG 0 1 1 44,46,74,76 0 -340400 cd16923 HATPase_VanS-like 1 ATP binding site 0 0 1 1 6,10,13,36,38,40,42,43,68,69,70,71,87,89,93,94,96 5 -340400 cd16923 HATPase_VanS-like 2 Mg binding site N 0 1 1 10 4 -340400 cd16923 HATPase_VanS-like 3 ATP-lid 0 0 1 1 52,71 0 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 1 ATP binding site 0 0 1 1 7,11,14,41,43,45,47,48,65,66,67,68,85,87,94,95,97 5 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 2 Mg binding site N 0 1 1 11 4 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 3 ATP-lid 0 0 1 1 53,68 0 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 4 G-X-G motif GGGG 0 1 1 45,47,65,67 0 -340402 cd16925 HATPase_TutC-TodS-like 1 ATP binding site 0 0 1 1 10,14,17,41,43,45,47,48,75,76,77,78,94,96,101,102,104 5 -340402 cd16925 HATPase_TutC-TodS-like 2 Mg binding site N 0 1 1 14 4 -340402 cd16925 HATPase_TutC-TodS-like 3 ATP-lid 0 0 1 1 57,78 0 -340402 cd16925 HATPase_TutC-TodS-like 4 G-X-G motif GGGG 0 1 1 45,47,75,77 0 -340403 cd16926 HATPase_MutL-MLH-PMS-like 1 ATP binding site 0 1 1 1 19,23,24,26,27,46,48,50,52,53,61,66,67,68,69,86,87,88,89,100,102,132,133,135 5 -340403 cd16926 HATPase_MutL-MLH-PMS-like 2 Mg binding site N 1 1 1 23 4 -340403 cd16926 HATPase_MutL-MLH-PMS-like 3 ATP-lid 0 0 1 1 62,89 0 -340403 cd16926 HATPase_MutL-MLH-PMS-like 4 G-X-G motif GGGG 0 1 1 50,52,86,88 0 -340404 cd16927 HATPase_Hsp90-like 1 ATP binding site 0 1 1 1 20,24,25,27,28,31,64,66,68,70,71,79,80,82,83,84,85,86,87,88,106,107,108,109,110,111,112,124,126,157,158,160 5 -340404 cd16927 HATPase_Hsp90-like 2 Mg binding site N 1 1 1 24 4 -340404 cd16927 HATPase_Hsp90-like 3 homodimer interface 0 1 1 1 1,2,5,9,84,108 2 -340404 cd16927 HATPase_Hsp90-like 4 ATP-lid 0 0 1 1 80,112 0 -340404 cd16927 HATPase_Hsp90-like 5 G-X-G motif GGGG 0 1 1 68,70,109,111 0 -340405 cd16928 HATPase_GyrB-like 1 ATP binding site 0 1 1 1 6,10,13,14,35,37,39,41,42,64,65,66,67,73,78,79,80,81,82,83,84,85,96,98,128,129,131 5 -340405 cd16928 HATPase_GyrB-like 2 Mg binding site N 0 1 1 10 4 -340405 cd16928 HATPase_GyrB-like 3 homodimer interface 0 1 1 1 19,40,43,45,46,47,54,58,61,63,64,65,66,67,68,71,72,79,80,100 2 -340405 cd16928 HATPase_GyrB-like 4 ATP-lid 0 0 1 1 59,84 0 -340405 cd16928 HATPase_GyrB-like 5 G-X-G motif GGGG 0 1 1 39,41,81,83 0 -340406 cd16929 HATPase_PDK-like 1 ATP binding site 0 1 1 1 49,53,54,56,57,87,89,91,93,94,102,131,132,133,134,135,136,137,138,154,156,160,161,163 5 -340406 cd16929 HATPase_PDK-like 2 Mg binding site N 1 1 1 53 4 -340406 cd16929 HATPase_PDK-like 3 homodimer interface 0 1 1 1 29,75,77,79,80,81,82,84,85,86,90,95,96,97,153,155,156,157,158,159,162,166 2 -340406 cd16929 HATPase_PDK-like 4 ATP-lid 0 0 1 1 103,137 0 -340406 cd16929 HATPase_PDK-like 5 G-X-G motif GGGG 0 1 1 91,93,134,136 0 -340407 cd16930 HATPase_TopII-like 1 ATP binding site 0 0 1 1 10,14,17,41,43,45,47,48,87,88,89,90,102,104,138,139,141 5 -340407 cd16930 HATPase_TopII-like 2 Mg binding site N 0 1 1 14 4 -340407 cd16930 HATPase_TopII-like 3 ATP-lid 0 0 1 1 65,90 0 -340407 cd16930 HATPase_TopII-like 4 G-X-G motif GGGG 0 1 1 45,47,87,89 0 -340408 cd16931 HATPase_MORC-like 1 ATP binding site 0 0 1 1 17,21,24,48,50,52,54,55,83,84,85,86,99,101,110,111,113 5 -340408 cd16931 HATPase_MORC-like 2 Mg binding site N 0 1 1 21 4 -340408 cd16931 HATPase_MORC-like 3 ATP-lid 0 0 1 1 65,86 0 -340408 cd16931 HATPase_MORC-like 4 G-X-G motif GGGG 0 1 1 52,54,83,85 0 -340409 cd16932 HATPase_Phy-like 1 ATP binding site 0 0 1 1 12,16,19,52,54,56,58,59,78,79,80,81,97,99,103,104,106 5 -340409 cd16932 HATPase_Phy-like 2 Mg binding site N 0 1 1 16 4 -340409 cd16932 HATPase_Phy-like 3 ATP-lid 0 0 1 1 65,81 0 -340409 cd16932 HATPase_Phy-like 4 G-X-G motif GGGG 0 1 1 56,58,78,80 0 -340410 cd16933 HATPase_TopVIB-like 1 ATP binding site 0 1 1 1 25,26,29,30,32,33,59,61,63,64,65,66,94,95,96,97,114,116,154,155,157 5 -340410 cd16933 HATPase_TopVIB-like 2 Mg binding site N 0 1 1 29 4 -340410 cd16933 HATPase_TopVIB-like 3 ATP-lid 0 0 1 1 75,97 0 -340410 cd16933 HATPase_TopVIB-like 4 G-X-G motif GGGG 0 1 1 63,65,94,96 0 -340411 cd16934 HATPase_RsbT-like 1 ATP binding site 0 0 1 1 31,35,38,62,64,66,68,69,87,88,89,90,102,104,109,110,112 5 -340411 cd16934 HATPase_RsbT-like 2 Mg binding site N 0 1 1 35 4 -340411 cd16934 HATPase_RsbT-like 3 ATP-lid 0 0 1 1 76,90 0 -340411 cd16934 HATPase_RsbT-like 4 G-X-G motif GGGG 0 1 1 66,68,87,89 0 -340412 cd16935 HATPase_AgrC-ComD-like 1 ATP binding site 0 0 1 1 42,46,49,76,78,80,82,101,102,103,104,120,122,126,127,129 5 -340412 cd16935 HATPase_AgrC-ComD-like 2 Mg binding site N 0 1 1 46 4 -340412 cd16935 HATPase_AgrC-ComD-like 3 ATP-lid 0 0 1 1 91,104 0 -340413 cd16936 HATPase_RsbW-like 1 ATP binding site 0 0 1 1 6,10,13,39,41,43,45,46,62,63,64,65,77,79,83,84,86 5 -340413 cd16936 HATPase_RsbW-like 2 Mg binding site N 0 1 1 10 4 -340413 cd16936 HATPase_RsbW-like 3 ATP-lid 0 0 1 1 52,65 0 -340413 cd16936 HATPase_RsbW-like 4 G-X-G motif GGGG 0 1 1 43,45,62,64 0 -340414 cd16937 HATPase_SMCHD1-like 1 ATP binding site 0 0 1 1 19,23,26,54,56,58,60,61,87,88,89,90,106,108,111,112,114 5 -340414 cd16937 HATPase_SMCHD1-like 2 Mg binding site N 0 1 1 23 4 -340414 cd16937 HATPase_SMCHD1-like 3 ATP-lid 0 0 1 1 77,90 0 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 1 ATP binding site 0 0 1 1 17,21,24,68,70,72,74,75,99,100,101,102,118,120,125,126,128 5 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 2 Mg binding site N 0 1 1 21 4 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 3 ATP-lid 0 0 1 1 87,102 0 -340416 cd16939 HATPase_RstB-like 1 ATP binding site 0 0 1 1 6,10,13,34,36,38,40,41,68,69,70,71,87,89,94,95,97 5 -340416 cd16939 HATPase_RstB-like 2 Mg binding site N 0 1 1 10 4 -340416 cd16939 HATPase_RstB-like 3 ATP-lid 0 0 1 1 50,71 0 -340416 cd16939 HATPase_RstB-like 4 G-X-G motif GGGG 0 1 1 38,40,68,70 0 -340417 cd16940 HATPase_BasS-like 1 ATP binding site 0 0 1 1 19,23,26,48,50,52,54,55,79,80,81,82,98,100,105,106,108 5 -340417 cd16940 HATPase_BasS-like 2 Mg binding site N 0 1 1 23 4 -340417 cd16940 HATPase_BasS-like 3 ATP-lid 0 0 1 1 67,82 0 -340417 cd16940 HATPase_BasS-like 4 G-X-G motif GGGG 0 1 1 52,54,79,81 0 -340418 cd16942 HATPase_SpoIIAB-like 1 ATP binding site 0 1 1 1 44,48,49,51,52,53,77,79,81,82,83,84,90,96,97,103,104,105,106,107,108,128 5 -340418 cd16942 HATPase_SpoIIAB-like 2 Mg binding site N 1 1 1 48 4 -340418 cd16942 HATPase_SpoIIAB-like 3 homodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,8,12,13,16,19,20,23,24,27,61 2 -340418 cd16942 HATPase_SpoIIAB-like 4 SigmaF binding site 0 1 1 1 15,16,18,19,22,23,29,30,31,32,33,35,36,39 2 -340418 cd16942 HATPase_SpoIIAB-like 5 SpoIIAA binding site 0 1 1 0 11,12,14,15,18,29,37,40,43,44,47,51,94,102,103,104,106,107,110,113,114 2 -340418 cd16942 HATPase_SpoIIAB-like 6 ATP-lid 0 0 1 1 91,108 0 -340418 cd16942 HATPase_SpoIIAB-like 7 G-X-G motif GGGG 0 1 1 81,83,105,107 0 -340419 cd16943 HATPase_AtoS-like 1 ATP binding site 0 0 1 1 9,13,16,39,41,43,45,46,69,70,71,72,88,90,95,96,98 5 -340419 cd16943 HATPase_AtoS-like 2 Mg binding site N 0 1 1 13 4 -340419 cd16943 HATPase_AtoS-like 3 ATP-lid 0 0 1 1 55,72 0 -340419 cd16943 HATPase_AtoS-like 4 G-X-G motif GGGG 0 1 1 43,45,69,71 0 -340420 cd16944 HATPase_NtrY-like 1 ATP binding site 0 0 1 1 10,14,17,45,47,49,51,52,73,74,75,76,92,94,99,100,102 5 -340420 cd16944 HATPase_NtrY-like 2 Mg binding site N 0 1 1 14 4 -340420 cd16944 HATPase_NtrY-like 3 ATP-lid 0 0 1 1 61,76 0 -340420 cd16944 HATPase_NtrY-like 4 G-X-G motif GGGG 0 1 1 49,51,73,75 0 -340421 cd16945 HATPase_CreC-like 1 ATP binding site 0 0 1 1 10,14,17,40,42,44,46,47,73,74,75,76,92,94,98,99,101 5 -340421 cd16945 HATPase_CreC-like 2 Mg binding site N 0 1 1 14 4 -340421 cd16945 HATPase_CreC-like 3 ATP-lid 0 0 1 1 56,76 0 -340421 cd16945 HATPase_CreC-like 4 G-X-G motif GGGG 0 1 1 44,46,73,75 0 -340422 cd16946 HATPase_BaeS-like 1 ATP binding site 0 0 1 1 10,14,17,40,42,44,46,47,74,75,76,77,93,95,100,101,103 5 -340422 cd16946 HATPase_BaeS-like 2 Mg binding site N 0 1 1 14 4 -340422 cd16946 HATPase_BaeS-like 3 ATP-lid 0 0 1 1 56,77 0 -340422 cd16946 HATPase_BaeS-like 4 G-X-G motif GGGG 0 1 1 44,46,74,76 0 -340423 cd16947 HATPase_YcbM-like 1 ATP binding site 0 0 1 1 26,30,33,56,58,60,62,63,90,91,92,93,109,111,116,117,119 5 -340423 cd16947 HATPase_YcbM-like 2 Mg binding site N 0 1 1 30 4 -340423 cd16947 HATPase_YcbM-like 3 ATP-lid 0 0 1 1 72,93 0 -340423 cd16947 HATPase_YcbM-like 4 G-X-G motif GGGG 0 1 1 60,62,90,92 0 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 1 ATP binding site 0 0 1 1 11,15,18,41,43,45,47,48,74,75,76,77,93,95,100,101,103 5 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 2 Mg binding site N 0 1 1 15 4 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 3 ATP-lid 0 0 1 1 57,77 0 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 4 G-X-G motif GGGG 0 1 1 45,47,74,76 0 -340425 cd16949 HATPase_CpxA-like 1 ATP binding site 0 0 1 1 6,10,13,34,36,38,40,41,68,69,70,71,87,89,94,95,97 5 -340425 cd16949 HATPase_CpxA-like 2 Mg binding site N 0 1 1 10 4 -340425 cd16949 HATPase_CpxA-like 3 ATP-lid 0 0 1 1 50,71 0 -340425 cd16949 HATPase_CpxA-like 4 G-X-G motif GGGG 0 1 1 38,40,68,70 0 -340426 cd16950 HATPase_EnvZ-like 1 ATP binding site 0 0 1 1 6,10,13,34,36,38,40,41,66,67,68,69,85,87,92,93,95 5 -340426 cd16950 HATPase_EnvZ-like 2 Mg binding site N 0 1 1 10 4 -340426 cd16950 HATPase_EnvZ-like 3 ATP-lid 0 0 1 1 50,69 0 -340426 cd16950 HATPase_EnvZ-like 4 G-X-G motif GGGG 0 1 1 38,40,66,68 0 -340427 cd16951 HATPase_EL346-LOV-HK-like 1 ATP binding site 0 1 1 1 45,49,50,52,53,54,78,80,82,83,84,85,86,91,95,96,97,98,99,116,118,122,123,125 5 -340427 cd16951 HATPase_EL346-LOV-HK-like 2 Mg binding site N 1 1 1 49 4 -340427 cd16951 HATPase_EL346-LOV-HK-like 3 ATP-lid 0 0 1 1 92,99 0 -340428 cd16952 HATPase_EcPhoR-like 1 ATP binding site 0 0 1 1 6,10,13,36,38,40,42,43,70,71,72,73,89,91,96,97,99 5 -340428 cd16952 HATPase_EcPhoR-like 2 Mg binding site N 0 1 1 10 4 -340428 cd16952 HATPase_EcPhoR-like 3 ATP-lid 0 0 1 1 52,73 0 -340428 cd16952 HATPase_EcPhoR-like 4 G-X-G motif GGGG 0 1 1 40,42,70,72 0 -340429 cd16953 HATPase_BvrS-ChvG-like 1 ATP binding site 0 0 1 1 6,10,13,37,39,41,43,44,71,72,73,74,90,92,101,102,104 5 -340429 cd16953 HATPase_BvrS-ChvG-like 2 Mg binding site N 0 1 1 10 4 -340429 cd16953 HATPase_BvrS-ChvG-like 3 ATP-lid 0 0 1 1 53,74 0 -340429 cd16953 HATPase_BvrS-ChvG-like 4 G-X-G motif GGGG 0 1 1 41,43,71,73 0 -340430 cd16954 HATPase_PhoQ-like 1 ATP binding site 0 1 1 1 43,47,50,51,71,73,75,77,78,86,92,97,100,101,102,103,104,120,122,127,128,130 5 -340430 cd16954 HATPase_PhoQ-like 2 Mg binding site NQ 1 1 1 43,100 4 -340430 cd16954 HATPase_PhoQ-like 3 ATP-lid 0 0 1 1 87,104 0 -340430 cd16954 HATPase_PhoQ-like 4 G-X-G motif GGGG 0 1 1 75,77,101,103 0 -340431 cd16955 HATPase_YpdA-like 1 ATP binding site 0 0 1 1 7,11,14,42,44,46,48,49,66,67,68,69,86,88,93,94,96 5 -340431 cd16955 HATPase_YpdA-like 2 Mg binding site N 0 1 1 11 4 -340431 cd16955 HATPase_YpdA-like 3 ATP-lid 0 0 1 1 54,69 0 -340431 cd16955 HATPase_YpdA-like 4 G-X-G motif GGGG 0 1 1 46,48,66,68 0 -340432 cd16956 HATPase_YehU-like 1 ATP binding site 0 0 1 1 7,11,14,41,43,45,47,48,63,64,65,66,83,85,92,93,95 5 -340432 cd16956 HATPase_YehU-like 2 Mg binding site N 0 1 1 11 4 -340432 cd16956 HATPase_YehU-like 3 ATP-lid 0 0 1 1 52,66 0 -340432 cd16956 HATPase_YehU-like 4 G-X-G motif GGGG 0 1 1 45,47,63,65 0 -340433 cd16957 HATPase_LytS-like 1 ATP binding site 0 0 1 1 7,11,14,41,43,45,47,48,68,69,70,71,88,90,97,98,100 5 -340433 cd16957 HATPase_LytS-like 2 Mg binding site N 0 1 1 11 4 -340433 cd16957 HATPase_LytS-like 3 ATP-lid 0 0 1 1 53,71 0 -341131 cd16961 RMtype1_S_TRD-CR_like 1 TRD-CR/TRD-CR interface 0 1 1 1 103,106,107,109,110,137,139,145,149,152,153,174,176,177 2 -340813 cd16962 RuvC 1 active site DE[DH][DNS] 0 1 1 4,64,137,140 1 -340813 cd16962 RuvC 2 nucleic acid substrate binding site 0 1 1 0 6,7,8,31,41,66,67,68,70,77,78 3 -340813 cd16962 RuvC 3 dimer interface 0 1 1 0 42,43,46,66,67,79,80,82,83,84,86,87,90,96,98 2 -340814 cd16963 CCE1 1 active site [DH]E[DEHS][DNS] 0 1 1 51,124,265,268 1 -340814 cd16963 CCE1 2 dimer interface 0 1 1 0 97,98,101,105,140,144,145,147,148,149,151,152,153,155,156 2 -340814 cd16963 CCE1 3 putative nucleic acid substrate binding site 0 0 1 1 53,54,55,80,126,127,128,143 3 -340815 cd16964 YqgF 1 putative nucleic acid substrate binding site 0 0 1 1 6,7,8,29,57,58,59,71 3 -340815 cd16964 YqgF 2 putative dimer interface 0 0 1 1 37,72,73,75,76,77,79,80 2 -341215 cd16965 Alpha_kinase_ChaK 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341215 cd16965 Alpha_kinase_ChaK 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341216 cd16966 Alpha_kinase_ALPK2_3 1 ATP binding site 0 0 1 1 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -341217 cd16967 Alpha_kinase_eEF2K 1 ATP binding site 0 0 1 1 36,37,38,39,40,41,43,65,67,107,126,127,128,129,171,173,181 5 -341217 cd16967 Alpha_kinase_eEF2K 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 193,194,195,196,197,198 1 -341218 cd16968 Alpha_kinase_MHCK_like 1 ATP binding site 0 1 1 0 27,28,29,30,31,32,33,35,51,53,94,113,114,115,116,120,159,166,167 5 -341218 cd16968 Alpha_kinase_MHCK_like 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 179,180,181,182,183,184 1 -341219 cd16969 Alpha_kinase_ALPK1 1 ATP binding site 0 0 1 1 38,39,40,41,42,43,45,61,63,107,127,128,129,130,173,175,190 5 -341219 cd16969 Alpha_kinase_ALPK1 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 201,202,203,204,205,206 1 -341220 cd16970 Alpha_kinase_VwkA_like 1 ATP binding site 0 0 1 1 41,42,43,44,45,46,48,63,65,114,133,134,135,136,177,179,192 5 -341221 cd16971 Alpha_kinase_ChaK1_TRMP7 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341221 cd16971 Alpha_kinase_ChaK1_TRMP7 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341222 cd16972 Alpha_kinase_ChaK2_TRPM6 1 ATP binding site 0 0 1 1 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341222 cd16972 Alpha_kinase_ChaK2_TRPM6 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341223 cd16973 Alpha_kinase_ALPK3 1 ATP binding site 0 0 1 1 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -341224 cd16974 Alpha_kinase_ALPK2 1 ATP binding site 0 0 1 1 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -340434 cd16975 HATPase_SpaK_NisK-like 1 ATP binding site 0 0 1 1 10,14,17,40,42,44,46,73,74,75,76,92,94,99,100,102 5 -340434 cd16975 HATPase_SpaK_NisK-like 2 Mg binding site N 0 1 1 14 4 -340434 cd16975 HATPase_SpaK_NisK-like 3 ATP-lid 0 0 1 1 56,76 0 -340434 cd16975 HATPase_SpaK_NisK-like 4 G-X-G motif GGGG 0 1 1 44,46,73,75 0 -340435 cd16976 HATPase_HupT_MifS-like 1 ATP binding site 0 0 1 1 6,10,13,38,40,42,44,68,69,70,71,87,89,94,95,97 5 -340435 cd16976 HATPase_HupT_MifS-like 2 Mg binding site N 0 1 1 10 4 -340435 cd16976 HATPase_HupT_MifS-like 3 ATP-lid 0 0 1 1 54,71 0 -340435 cd16976 HATPase_HupT_MifS-like 4 G-X-G motif GGGG 0 1 1 42,44,68,70 0 -340774 cd16977 VHS_GGA 1 acidic-cluster-dileucine motif interaction site 0 1 1 1 77,78,79,82,91,92,121,128,132 2 -340774 cd16977 VHS_GGA 2 dimer interface 0 1 1 0 1,5,10,39,43,44,46,47,48,49 2 -340774 cd16977 VHS_GGA 3 putative intraprotein/interprotein binding site 0 0 1 1 17,18,21,25,65,66 2 -340775 cd16978 VHS_HSE1 1 putative ubiquitin binding site 0 0 1 1 17,18,21,25,66,67 2 -340776 cd16979 VHS_Vps27 1 putative intraprotein/interprotein binding site 0 0 1 1 21,22,25,29,69,70 2 -340777 cd16980 VHS_Lsb5 1 putative intraprotein/interprotein binding site 0 0 1 1 17,18,21,25,65,66 2 -340778 cd16981 CID_RPRD_like 1 CTD binding site 0 1 1 1 12,13,14,17,55,58,59,62,63,101,105 2 -340779 cd16982 CID_Pcf11 1 CTD binding site 0 1 1 1 15,16,18,56,59,60,63,64,95,99,102 2 -340780 cd16983 CID_SCAF8_like 1 CTD binding site 0 1 1 1 15,16,17,18,21,59,62,63,66,111 2 -340781 cd16984 CID_Nrd1_like 1 CTD binding site 0 1 1 1 16,17,18,19,20,21,22,23,26,60,63,64,67,68,121,122,125,126 2 -340782 cd16985 ANTH_N_AP180 1 PtdIns(4,5)P2-binding site 0 1 1 1 6,16,18,19 5 -340783 cd16986 ANTH_N_Sla2p_HIP1_like 1 PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340784 cd16987 ANTH_N_AP180_plant 1 putative PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340785 cd16988 ANTH_N_YAP180 1 putative PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340786 cd16989 ENTH_EpsinR 1 phosphoinositide binding site 0 1 1 1 5,9,10,43,50,54 5 -340786 cd16989 ENTH_EpsinR 2 SNARE interaction site 0 1 1 1 28,29,30,70,71,72,118,119,122,125,126,129 2 -340787 cd16990 ENTH_Epsin 1 phosphoinositide binding site 0 1 1 1 6,10,11,44,50,54 5 -340788 cd16991 ENTH_Ent1_Ent2 1 phosphoinositide binding site 0 0 1 1 9,13,14,47,53,57 5 -340788 cd16991 ENTH_Ent1_Ent2 2 heterodimer interface 0 1 1 1 45,48,49,85,86,88,89,90,91,92,93,94,95,108,112 2 -340789 cd16992 ENTH_Ent3 1 phosphoinositide binding site 0 0 1 1 5,9,10,43,50,54 5 -340789 cd16992 ENTH_Ent3 2 putative SNARE interaction site 0 0 1 1 28,29,30,70,71,72,118,119 2 -340790 cd16993 ENTH_Ent5 1 phosphoinositide binding site 0 0 1 1 5,9,10,42,67,71 5 -340791 cd16994 ENTH_Ent4 1 phosphoinositide binding site 0 0 1 1 5,9,10,44,55,59 5 -340792 cd16995 VHS_Tom1 1 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,67,68 2 -340792 cd16995 VHS_Tom1 2 putative membrane binding residues 0 0 1 0 36,40,43,44 0 -340793 cd16996 VHS_Tom1L2 1 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,67,68 2 -340793 cd16996 VHS_Tom1L2 2 putative membrane binding residues 0 0 1 0 36,40,43,44 0 -340794 cd16997 VHS_Tom1L1 1 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,67,68 2 -340794 cd16997 VHS_Tom1L1 2 putative membrane binding residues 0 0 1 0 36,40,43,44 0 -340795 cd16998 VHS_GGA_fungi 1 acidic-cluster-dileucine motif interaction site 0 0 1 1 78,79,80,83,92,93,127,134,138 2 -340795 cd16998 VHS_GGA_fungi 2 dimer interface 0 0 1 1 1,5,10,40,44,45,47,48,49,50 2 -340795 cd16998 VHS_GGA_fungi 3 putative intraprotein/interprotein binding site 0 0 1 1 17,18,21,25,66,67 2 -340796 cd16999 VHS_STAM2 1 ubiquitin binding site 0 1 1 0 14,15,16,17,18,21,22,25,62,65,66 2 -340797 cd17000 VHS_STAM1 1 ubiquitin binding site 0 0 1 1 15,16,17,19,20,22,65,66,68 2 -340798 cd17001 CID_RPRD2 1 CTD binding site 0 0 1 1 14,15,16,19,57,60,61,64,65,100,104 2 -340799 cd17002 CID_RPRD1 1 CTD binding site 0 1 1 1 14,15,16,19,57,60,61,64,65,102,106,109,110 2 -340800 cd17003 CID_Rtt103 1 CTD binding site 0 1 1 1 11,12,13,14,15,17,18,22,57,60,61,64,65,103,104,107 2 -340801 cd17004 CID_SCAF8 1 CTD binding site 0 1 1 1 15,16,17,18,21,59,62,63,66,111 2 -340802 cd17005 CID_SFRS15_SCAF4 1 CTD binding site 0 0 1 1 15,16,17,18,21,59,62,63,66,111 2 -340803 cd17006 ANTH_N_HIP1_like 1 PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340804 cd17007 ANTH_N_Sla2p 1 PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340804 cd17007 ANTH_N_Sla2p 2 heterodimer interface 0 1 1 1 13,14,15,16,17,18,21,24,25,28,61,65 2 -340805 cd17008 VHS_GGA3 1 acidic-cluster-dileucine motif interaction site 0 1 1 1 80,81,82,85,88,89,92,94,95,124,131,135,137 2 -340805 cd17008 VHS_GGA3 2 dimer interface 0 1 1 0 0,1,4,5,8,12,13,14,42,46,47,49,50,51,52,54,55,99,100,101 2 -340805 cd17008 VHS_GGA3 3 putative intraprotein/interprotein binding site 0 0 1 1 20,21,24,28,68,69 2 -340806 cd17009 VHS_GGA1 1 acidic-cluster-dileucine motif interaction site 0 1 1 1 78,79,80,83,92,93,122,129,133 2 -340806 cd17009 VHS_GGA1 2 dimer interface 0 1 1 0 2,6,11,40,44,47,48,49,50,53,97 2 -340806 cd17009 VHS_GGA1 3 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,66,67 2 -340807 cd17010 VHS_GGA2 1 acidic-cluster-dileucine motif interaction site 0 0 1 1 78,79,80,83,92,93,122,129,133 2 -340807 cd17010 VHS_GGA2 2 dimer interface 0 1 1 0 2,6,11,40,41,43,44,45,47,48,49,50,84,97 2 -340807 cd17010 VHS_GGA2 3 putative intraprotein/interprotein binding site 0 0 1 1 18,19,22,26,66,67 2 -340808 cd17011 CID_RPRD1A 1 CTD binding site 0 1 1 1 14,15,16,19,57,60,61,64,65,102,106,109,110 2 -340809 cd17012 CID_RPRD1B 1 CTD binding site 0 0 1 1 15,16,17,20,58,61,62,65,66,103,107,110,111 2 -340810 cd17013 ANTH_N_HIP1 1 PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -340811 cd17014 ANTH_N_HIP1R 1 PtdIns(4,5)P2-binding site 0 0 1 1 6,16,18,19 5 -341097 cd17015 ING_plant 1 dimer interface 0 0 1 1 0,3,4,5,8,11,14,18,25,28,29,58,59,62,65,66,69,72,73,76,79,82,83,86,87,89,90,93,94 2 -341098 cd17016 ING_Pho23p_like 1 dimer interface 0 0 1 1 0,3,4,5,8,11,14,18,25,28,29,52,53,56,59,60,63,66,67,70,73,76,77,80,81,83,84,87,88 2 -341099 cd17017 ING_Yng1p 1 dimer interface 0 0 1 1 0,3,4,5,8,11,14,18,25,28,29,60,61,64,67,68,71,74,75,78,81,84,85,88,89,91,92,95,96 2 -341101 cd17018 T3SC_IA_ExsC-like 1 dimer interface 0 1 1 0 37,40,42,44,46,52,60,61,64,65,67,68,70,71,72,74,76,77,78,79,80,81,87,89,90,91,93,96 2 -341101 cd17018 T3SC_IA_ExsC-like 2 polypeptide substrate binding site 0 1 1 1 0,3,4,5,8,9,10,11,12,14,15,21,22,23,24,25,26,27,28,35,40,46,66,69,71,72,73,82,83,103,107,110,111,112,114,115,116,118,119,121,122,123,124 2 -341102 cd17019 T3SC_IA_ShcA-like 1 polypeptide substrate binding site 0 1 1 0 1,11,12,13,14,19,20,21,22,23,25,26,27,28,29,30,31,33,34,35,37,38,39,40,43,45,47,48,49,51,84,86,89,91,107,108,111,114,115,118,121 2 -341102 cd17019 T3SC_IA_ShcA-like 2 putative dimer interface 0 0 1 1 43,45,78,80,81,82,83,93,95 2 -341103 cd17020 T3SC_IA_ShcM-like 1 putative dimer interface 0 0 1 1 44,46,78,80,81,82,83,93,95 2 -341104 cd17021 T3SC_IA_SicP-like 1 dimer interface 0 1 1 0 37,42,52,53,54,55,56,59,60,62,63,64,66,67,70,71,76,77,78,79,81,86,89,91,93 2 -341104 cd17021 T3SC_IA_SicP-like 2 polypeptide substrate binding site 0 1 1 0 12,13,14,15,17,21,22,23,24,25,26,27,31,68,102,105,106,109,110,111,113,114,117,118 2 -341105 cd17022 T3SC_IA_SigE-like 1 dimer interface 0 1 1 0 29,31,38,46,47,48,50,53,54,57,58,60,61,63,66,67,68,69,70,71,79,81 2 -341106 cd17023 T3SC_IA_CesT-like 1 dimer interface 0 1 1 1 43,45,58,61,62,63,65,66,67,69,70,73,74,76,77,78,79,80,81,82,84,90,92,94 2 -341107 cd17024 T3SC_IA_DspF-like 1 putative dimer interface 0 0 1 1 42,44,76,78,79,80,81,91,93 2 -341108 cd17025 T3SC_IA_ShcF-like 1 dimer interface 0 1 1 0 20,21,23,38,40,46,48,63,64,66,67,68,70,71,72,73,74,75,78,80,81,82,83,84,85,88,93,95,97,99,100 2 -341109 cd17026 T3SC_IA_SpcU-like 1 polypeptide substrate binding site 0 1 1 0 8,10,11,13,20,21,22,23,24,25,29,47,48,50,78,79,80,82,84,86,104,107,108 2 -341109 cd17026 T3SC_IA_SpcU-like 2 putative dimer interface 0 0 1 1 38,40,72,74,75,76,77,86,88 2 -341110 cd17027 T3SC_IA_YscB_AscB-like 1 dimer interface 0 1 1 0 40,60,63,64,67,68,70,71,74,75,77,78,79,80,81,82,83,85,92,94,99 2 -341110 cd17027 T3SC_IA_YscB_AscB-like 2 polypeptide substrate binding site 0 1 1 0 12,15,16,18,24,25,26,27,28,29,33,44,46,48,53,69,71,72,75,76,77,85,87,88,106,109,110,111,113,114,117 2 -341111 cd17028 T3SC_IA_SycE_Scc1-like 1 putative dimer interface 0 0 1 1 43,45,77,79,80,81,82,92,94 2 -341112 cd17029 T3SC_IA_SycE_SpcS-like 1 dimer interface 0 1 1 1 38,39,42,44,46,62,64,65,66,67,68,70,74,75,76,77,79,87,89 2 -341112 cd17029 T3SC_IA_SycE_SpcS-like 2 polypeptide substrate binding site 0 1 1 1 8,11,13,16,17,23,24,25,26,27,28,29,32,34,36,38,46,66,68,78,83,85,101,105 2 -341113 cd17030 T3SC_IA_SycH-like 1 polypeptide substrate binding site 0 1 1 0 11,23,25,27,28,29,33,35,49,102,106 2 -341113 cd17030 T3SC_IA_SycH-like 2 putative dimer interface 0 0 1 1 43,45,74,76,77,78,79,88,90 2 -341114 cd17031 T3SC_IA_SycN-like 1 heterodimer interface 0 1 1 0 37,39,46,57,60,61,64,65,67,68,69,70,73,74,75,76,78,79,80,81,83,84,88,90,96,97 2 -341114 cd17031 T3SC_IA_SycN-like 2 polypeptide substrate binding site 0 1 1 0 11,12,13,15,23,25,26,27,28,29,30,31,35,37,46,48,82,88,107,108,111 2 -341114 cd17031 T3SC_IA_SycN-like 3 putative dimer interface 0 0 1 1 42,44,76,78,79,80,81,90,92 2 -341115 cd17032 T3SC_IA_SycT-like 1 dimer interface 0 1 1 0 38,42,44,46,58,59,60,61,65,66,67,69,71,72,78,80,82,83,86 2 -341116 cd17033 DR1245-like 1 dimer interface 0 1 1 0 44,46,62,66,67,70,71,73,74,77,79,80,81,82,83,91,93,94,95,96,97,98,99,105,107,108,111,112 2 -341117 cd17034 T3SC_IA_ShcO1-like 1 putative dimer interface 0 0 1 1 42,44,76,78,79,80,81,91,93 2 -341118 cd17035 T3SC_IB_Spa15-like 1 dimer interface 0 1 1 0 65,66,68,69,73,83,85,86,87,88 2 -341118 cd17035 T3SC_IB_Spa15-like 2 polypeptide substrate binding site 0 1 1 0 9,12,13,14,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,48,50,58,59,62,88,89,96,114,115,118 2 -341119 cd17036 T3SC_YbjN-like_1 1 dimer interface 0 1 0 0 47,49,51,62,63,66,67,69,70,71,73,77,78,80,81,82,83,84,89,91,93,94,95,97,98,100,103,106 2 -341120 cd17037 T3SC_IA_ShcV-like 1 putative dimer interface 0 0 1 1 43,45,78,80,81,82,83,93,95 2 -341208 cd17038 Flavi_M 1 glycoprotein E binding interface 0 1 1 0 0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,27,57,68 2 -340559 cd17039 Ubl_ubiquitin_like 1 key conserved lysine K27 [KR] 0 1 1 24 0 -340560 cd17040 Ubl_MoaD_like 1 heterodimer interface 0 1 1 1 53,55,81,82,83,84,85,86 2 -340561 cd17041 Ubl_WDR48 1 heterodimer interface 0 1 1 0 0,1,2,3,5,25,26,27,32,36 2 -340561 cd17041 Ubl_WDR48 2 key conserved lysine K33 [KR] 0 1 1 44 0 -340562 cd17042 Ubl_TmoB 1 heterodimer interface 0 1 1 0 2,4,6,7,8,9,10,11,12,13,14,15,33,34,37,38,39,41,52,53,71,72,73,77 2 -340562 cd17042 Ubl_TmoB 2 key conserved lysine K29 [KR] 0 1 1 30 0 -340564 cd17044 Ubl_TBCE 1 key conserved lysine K27 [KR] 0 1 1 31 0 -340565 cd17045 Ubl_TBCEL 1 key conserved lysine K27 [KR] 0 1 1 32 0 -340566 cd17046 Ubl_IKKA_like 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340567 cd17047 Ubl_UBFD1 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340568 cd17048 Ubl_UBL3 1 key conserved lysines [KR][KR][KR] 0 1 1 10,55,72 0 -340569 cd17049 Ubl_Sacsin 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340569 cd17049 Ubl_Sacsin 2 key conserved lysines [KR][KR] 0 1 1 28,49 0 -340570 cd17050 Ubl1_ANKUB1 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340571 cd17051 Ubl2_ANKUB1 1 key conserved lysine K27 [KR] 0 1 1 33 0 -340571 cd17051 Ubl2_ANKUB1 2 key conserved lysines [KR][KR] 0 1 1 33,39 0 -340572 cd17052 Ubl1_FAT10 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340572 cd17052 Ubl1_FAT10 2 key conserved lysines [KR][KR][KR][KR][KR] 0 1 1 4,25,31,46,63 0 -340573 cd17053 Ubl2_FAT10 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340574 cd17054 Ubl_AtBAG1_like 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340574 cd17054 Ubl_AtBAG1_like 2 key conserved lysines [KR][KR] 0 1 1 26,47 0 -340575 cd17055 Ubl_AtNPL4_like 1 key conserved lysine K27 [KR] 0 1 1 25 0 -340575 cd17055 Ubl_AtNPL4_like 2 key conserved lysines [KR][KR] 0 1 1 5,25 0 -340576 cd17056 Ubl_FAF1 1 key conserved lysine K27 [KR] 0 1 1 24 0 -340576 cd17056 Ubl_FAF1 2 key conserved lysines 0 0 1 1 4,8,24,26,46,61 0 -340577 cd17057 Ubl_TMUB1_like 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340577 cd17057 Ubl_TMUB1_like 2 key conserved lysines 0 0 1 1 6,11,27,29,48,64 0 -340578 cd17058 Ubl_SNRNP25 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340579 cd17059 Ubl_OTU1 1 VCP interaction site 0 1 1 1 3,12,43,46,48,50,66,67,68,69,70,74 2 -340579 cd17059 Ubl_OTU1 2 key conserved lysine K27 [KR] 0 1 1 26 0 -340580 cd17060 Ubl_RB1CC1 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340581 cd17061 Ubl_IQUB 1 key conserved lysine K27 [KR] 0 1 1 29 0 -340582 cd17062 Ubl_NUB1 1 key conserved lysine K27 [KR] 0 1 1 32 0 -340582 cd17062 Ubl_NUB1 2 key conserved lysines 0 0 1 1 7,32,53 0 -340583 cd17063 Ubl_ANKRD60 1 key conserved lysine K27 [KR] 0 1 1 30 0 -340584 cd17064 Ubl_TAFs_like 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340584 cd17064 Ubl_TAFs_like 2 key conserved lysines [KR][KR][KR][KR][KR] 0 1 1 5,10,26,28,48 0 -340585 cd17065 Ubl_UBP24 1 key conserved lysine K27 [KR] 0 1 1 32 0 -340585 cd17065 Ubl_UBP24 2 key conserved lysines [KR][KR] 0 1 1 32,34 0 -340586 cd17066 Ubl_KPC2 1 key conserved lysine K27 [KR] 0 1 1 31 0 -340586 cd17066 Ubl_KPC2 2 key conserved lysines [KR][KR][KR] 0 1 1 31,33,61 0 -340587 cd17067 RBD2_RGS12_like 1 key conserved lysines 0 0 1 1 11,33 0 -340588 cd17068 RBD_PLEKHG5 1 key conserved lysines 0 0 1 1 6,36 0 -340589 cd17069 DCX2 1 putative DCX-stabilized microtubules 0 0 1 1 2,13,14,15,21,26,27,29,37,46,47,50,77 2 -340589 cd17069 DCX2 2 key conserved lysines 0 0 1 1 17,58 0 -340590 cd17070 DCX2_RP_like 1 key conserved lysines 0 0 1 1 13,50 0 -340593 cd17073 KHA 1 key conserved lysine K33 [KR] 0 1 1 32 0 -340594 cd17074 Ubl_CysO_like 1 heterodimer interface 0 1 1 1 6,7,9,53,55,57,60,82,83,84,85,86,87 2 -340594 cd17074 Ubl_CysO_like 2 CysO-BexX interaction site 0 1 1 1 5,6,7,9,42,51,53,55,57,60,64,65,82,83,84,85,86,87 2 -340594 cd17074 Ubl_CysO_like 3 CysO-CysM interaction site 0 1 1 1 6,7,9,16,53,54,55,57,60,61,62,80,82,83,84,85,86,87 2 -340596 cd17076 UBX_UBXN10 1 putative UBX-p97 interaction site 0 0 1 1 3,5,7,8,11,12,14,47,48,50,68,69,70,71,73,75 2 -340596 cd17076 UBX_UBXN10 2 key conserved lysines [KR][KR] 0 1 1 7,52 0 -340597 cd17077 UBX_UBXN11 1 putative UBX-p97 interaction site 0 0 1 1 3,5,7,8,11,12,14,47,48,50,68,69,70,71,73,75 2 -340597 cd17077 UBX_UBXN11 2 key conserved lysines [KR][KR][KR] 0 1 1 7,29,52 0 -340601 cd17081 RAWUL_PCGF1 1 RAWUL-BCOR interaction site 0 1 1 1 0,1,2,3,4,25,26,27,28,29,30,31,33,34,35,39,42,43,46,47,75,76 2 -340601 cd17081 RAWUL_PCGF1 2 key conserved lysine K27 [KR] 0 1 1 41 0 -340601 cd17081 RAWUL_PCGF1 3 key conserved lysines [KR][KR] 0 1 1 41,47 0 -340602 cd17082 RAWUL_PCGF2_like 1 key conserved lysine K27 [KR] 0 1 1 57 0 -340602 cd17082 RAWUL_PCGF2_like 2 key conserved lysines [KR][KR] 0 1 1 57,63 0 -340603 cd17083 RAWUL_PCGF3 1 key conserved lysine K27 [KR] 0 1 1 32 0 -340603 cd17083 RAWUL_PCGF3 2 key conserved lysines [KR][KR] 0 1 1 32,38 0 -340604 cd17084 RAWUL_PCGF5 1 key conserved lysine K27 [KR] 0 1 1 41 0 -340604 cd17084 RAWUL_PCGF5 2 key conserved lysines [KR][KR] 0 1 1 41,47 0 -340605 cd17085 RAWUL_PCGF6 1 key conserved lysine K33 [KR] 0 1 1 43 0 -340606 cd17086 RAWUL_RING1_like 1 heterodimer interface 0 1 1 1 2,3,4,23,24,25,26,30,33,34,35,37,38,41,42,97,98,99 2 -340606 cd17086 RAWUL_RING1_like 2 key conserved lysines [KR][KR][KR] 0 1 1 6,42,98 0 -340607 cd17087 RAWUL_DRIP_like 1 key conserved lysine K27 [KR] 0 1 1 38 0 -340607 cd17087 RAWUL_DRIP_like 2 key conserved lysines [KR][KR] 0 1 1 38,44 0 -340608 cd17088 FERM_F1_FRMPD1_like 1 key conserved lysine K33 [KR] 0 1 1 34 0 -340609 cd17089 FERM_F0_TLN 1 key conserved lysine K33 [KR] 0 1 1 33 0 -340610 cd17090 FERM_F1_TLN 1 key conserved lysines [KR][KR] 0 1 1 5,32 0 -340611 cd17091 FERM_F0_SHANK 1 key conserved lysine K48 [KR] 0 1 1 57 0 -340612 cd17092 FERM1_F1_Myosin-VII 1 polypeptide substrate binding site 0 1 1 0 50,51,52,53,54,55,60,68,90 2 -340612 cd17092 FERM1_F1_Myosin-VII 2 key conserved lysine K33 [KR] 0 1 1 33 0 -340613 cd17093 FERM2_F1_Myosin-VII 1 key conserved lysine K33 [KR] 0 1 1 33 0 -340614 cd17094 FERM_F1_Max1_like 1 key conserved lysine K63 [KR] 0 1 1 89 0 -340615 cd17095 FERM_F0_kindlins 1 key conserved lysine K29 [KR] 0 1 1 30 0 -340619 cd17099 FERM_F1_PTPN14_like 1 key conserved lysines [KR][KR] 0 1 1 35,56 0 -340620 cd17100 FERM_F1_PTPN3_like 1 key conserved lysine K48 [KR] 0 1 1 57 0 -340622 cd17102 FERM_F1_FRMD3 1 key conserved lysine K6 [KR] 0 1 1 5 0 -340623 cd17103 FERM_F1_FRMD4 1 key conserved lysine K11 [KR] 0 1 1 12 0 -340624 cd17104 FERM_F1_MYLIP 1 key conserved lysine K33 [KR] 0 1 1 32 0 -340625 cd17105 FERM_F1_EPB41 1 key conserved lysine K29 [KR] 0 1 1 28 0 -340629 cd17109 FERM_F1_SNX17_like 1 key conserved lysines [KR][KR] 0 1 1 34,62 0 -340630 cd17110 FERM_F1_Myo10_like 1 key conserved lysine K48 [KR] 0 1 1 56 0 -340632 cd17112 RA_MRL_like 1 key conserved lysines [KR][KR] 0 1 1 31,53 0 -340633 cd17113 RA_ARAPs 1 key conserved lysine K48 [KR] 0 1 1 60 0 -340634 cd17114 RA_PLC-epsilon 1 key conserved lysines [KR][KR] 0 1 1 37,70 0 -340636 cd17116 RA_Radil_like 1 RA-Rap1b interaction site 0 1 0 0 14,16,23,24,25,26,27,28,29,30,31,32,48,49,64,66,89,91,96,97,98,101,104,105,106,107,108,109,110,112,114 2 -340636 cd17116 RA_Radil_like 2 key conserved lysines [KR][KR] 0 1 1 49,91 0 -340637 cd17117 RA_ANKFN1_like 1 key conserved lysine K48 [KR] 0 1 1 71 0 -340638 cd17118 Ubl_HERP1 1 key conserved lysine K27 [KR] 0 1 1 29 0 -340638 cd17118 Ubl_HERP1 2 key conserved lysines [KR][KR][KR] 0 1 1 6,29,52 0 -340639 cd17119 Ubl_HERP2 1 key conserved lysine K27 [KR] 0 1 1 29 0 -340639 cd17119 Ubl_HERP2 2 key conserved lysines [KR][KR][KR] 0 1 1 6,29,52 0 -340640 cd17120 Ubl_UBTD1 1 key conserved lysine K27 [KR] 0 1 1 24 0 -340640 cd17120 Ubl_UBTD1 2 key conserved lysines [KR][KR][KR][KR][KR] 0 1 1 3,8,24,45,60 0 -340641 cd17121 Ubl_UBTD2 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340641 cd17121 Ubl_UBTD2 2 key conserved lysines [KR][KR][KR][KR][KR][KR] 0 1 1 6,11,27,29,48,63 0 -340642 cd17122 Ubl_UHRF1 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340642 cd17122 Ubl_UHRF1 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 5,28,30,49 0 -340643 cd17123 Ubl_UHRF2 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340643 cd17123 Ubl_UHRF2 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 5,28,30,49 0 -340644 cd17124 Ubl_TECR 1 key conserved lysine K27 [KR] 0 1 1 30 0 -340644 cd17124 Ubl_TECR 2 key conserved lysines [KR][KR][KR] 0 1 1 13,30,54 0 -340645 cd17125 Ubl_TECRL 1 key conserved lysine K27 [KR] 0 1 1 29 0 -340645 cd17125 Ubl_TECRL 2 key conserved lysines [KR][KR][KR] 0 1 1 11,29,31 0 -340646 cd17126 Ubl_HR23A 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340646 cd17126 Ubl_HR23A 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 5,26,28,50 0 -340647 cd17127 Ubl_TBK1 1 putative hydrophobic patch 0 0 1 1 8,45,74 2 -340647 cd17127 Ubl_TBK1 2 key conserved lysine K48 [KR] 0 1 1 49 0 -340648 cd17128 Ubl_IKKE 1 putative hydrophobic patch 0 0 1 1 8,45,74 2 -340649 cd17129 Ubl1_FAF1 1 key conserved lysine K27 [KR] 0 1 1 26 0 -340649 cd17129 Ubl1_FAF1 2 key conserved lysines [KR][KR][KR] 0 1 1 10,26,63 0 -340650 cd17130 Ubl2_FAF1 1 key conserved lysine K27 [KR] 0 1 1 28 0 -340651 cd17131 Ubl_TMUB1 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340651 cd17131 Ubl_TMUB1 2 key conserved lysines [KR][KR] 0 1 1 6,27 0 -340652 cd17132 Ubl_TMUB2 1 key conserved lysine K27 [KR] 0 1 1 27 0 -340652 cd17132 Ubl_TMUB2 2 key conserved lysines [KR][KR][KR] 0 1 1 6,27,29 0 -340653 cd17133 RBD_ARAF 1 RBD_Raf-KRas interaction site 0 1 1 1 1,8,10,11,12,13,28,31,32,33,34 2 -340653 cd17133 RBD_ARAF 2 putative RBD_Raf-Ras interaction site 0 0 1 1 1,3,8,9,10,11,12,13,15,28,32,33,34 2 -340653 cd17133 RBD_ARAF 3 putative Ca binding site 0 0 1 1 66 4 -340653 cd17133 RBD_ARAF 4 key conserved lysine K29 [KR] 0 1 1 28 0 -340654 cd17134 RBD_BRAF 1 homodimer interface 0 1 1 1 20,21,22,42,44,45,52,53,54,55,57,58,59,62,71,73,74,76,77,78 2 -340654 cd17134 RBD_BRAF 2 putative RBD_Raf-KRas interaction site 0 0 1 1 2,9,11,12,13,14,29,32,33,34,35 2 -340654 cd17134 RBD_BRAF 3 putative RBD_Raf-Ras interaction site 0 0 1 1 2,4,9,10,11,12,13,14,16,29,33,34,35 2 -340654 cd17134 RBD_BRAF 4 putative Ca binding site 0 0 1 1 67 4 -340654 cd17134 RBD_BRAF 5 key conserved lysines [KR][KR][KR] 0 1 1 29,34,52 0 -340655 cd17135 RBD_CRAF 1 RBD_Raf-Ras interaction site 0 1 1 1 2,4,9,10,11,12,13,14,16,29,33,34,35 2 -340655 cd17135 RBD_CRAF 2 Ca binding site 0 1 1 1 70 4 -340655 cd17135 RBD_CRAF 3 putative RBD_Raf-KRas interaction site 0 0 1 1 2,9,11,12,13,14,29,32,33,34,35 2 -340655 cd17135 RBD_CRAF 4 key conserved lysine K29 [KR] 0 1 1 29 0 -340656 cd17136 RBD1_RGS12 1 key conserved lysines 0 0 1 1 5,26,28,49 0 -340657 cd17137 RBD1_RGS14 1 key conserved lysines 0 0 1 1 32,50 0 -340658 cd17138 RBD2_RGS12 1 key conserved lysines 0 0 1 1 12,34 0 -340659 cd17139 RBD2_RGS14 1 key conserved lysines 0 0 1 1 12,34 0 -340660 cd17140 DCX1_DCLK1 1 putative tubulin binding site 0 0 1 1 0,11,12,13,19,24,25,27,35,43,44,45,47,48,51,78 2 -340660 cd17140 DCX1_DCLK1 2 key conserved lysines 0 0 1 1 15,60 0 -340661 cd17141 DCX1_DCLK2 1 putative tubulin binding site 0 0 1 1 0,11,12,13,19,24,25,27,35,43,44,45,47,48,51,78 2 -340661 cd17141 DCX1_DCLK2 2 key conserved lysines 0 0 1 1 15,60 0 -340662 cd17142 DCX2_DCX 1 polypeptide substrate binding site 0 1 1 0 1,2,3,5,19,20,21,22,23,24,29,33,37,38,41 2 -340662 cd17142 DCX2_DCX 2 putative DCX-stabilized microtubules 0 0 1 1 2,13,14,15,21,26,27,29,37,46,47,50,77 2 -340662 cd17142 DCX2_DCX 3 key conserved lysines 0 0 1 1 17,58 0 -340663 cd17143 DCX2_DCLK1 1 putative DCX-stabilized microtubules 0 0 1 1 2,13,14,15,21,26,27,29,37,46,47,50,77 2 -340663 cd17143 DCX2_DCLK1 2 key conserved lysines 0 0 1 1 17,58 0 -340664 cd17144 DCX2_DCLK2 1 putative DCX-stabilized microtubules 0 0 1 1 2,13,14,15,21,26,27,29,37,46,47,50,77 2 -340664 cd17144 DCX2_DCLK2 2 key conserved lysines 0 0 1 1 17,58 0 -340665 cd17145 DCX1_RP1 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340666 cd17146 DCX1_RP1L1 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340667 cd17147 DCX2_RP1 1 key conserved lysines 0 0 1 1 13,50 0 -340668 cd17148 DCX2_RP1L1 1 key conserved lysines 0 0 1 1 13,50 0 -340672 cd17152 DCX2_DCDC2 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340673 cd17153 DCX2_DCDC2B 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340674 cd17154 DCX2_DCDC2C 1 key conserved lysine K33 [KR] 0 1 1 38 0 -340675 cd17155 DCX_DCDC1 1 key conserved lysine K33 [KR] 0 1 1 31 0 -340676 cd17156 DCX1_DCDC5 1 key conserved lysines 0 0 1 1 14,26,48,58 0 -340677 cd17157 DCX2_DCDC5 1 key conserved lysines 0 0 1 1 33,49 0 -340679 cd17159 DCX4_DCDC5 1 key conserved lysines 0 0 1 1 32,58 0 -340680 cd17160 UBX_UBXN2A 1 putative UBX-p97 interaction site 0 0 1 1 8,10,12,13,16,17,19,53,54,56,72,73,74,75,77,79 2 -340680 cd17160 UBX_UBXN2A 2 key conserved lysines [KR][KR] 0 1 1 17,33 0 -340681 cd17161 UBX_UBXN2B 1 putative UBX-p97 interaction site 0 0 1 1 8,10,12,13,16,17,19,53,54,56,72,73,74,75,77,79 2 -340681 cd17161 UBX_UBXN2B 2 key conserved lysines [KR][KR][KR][KR] 0 1 1 12,33,40,57 0 -340682 cd17162 UBX_UBXN2C 1 UBX-p97 interaction site 0 1 1 1 8,10,12,13,16,17,19,53,54,56,72,73,74,75,77,79 2 -340682 cd17162 UBX_UBXN2C 2 key conserved lysines [KR][KR][KR] 0 1 1 12,33,57 0 -340683 cd17163 Ubl_ATG8_GABARAPL2 1 Atg7 interaction site 0 0 1 1 23,29,30,41,44,53,54,56,57,58,60,61,62,68,70,71,72,74,77,78,81,82,83,107,108,109,110,111 2 -340683 cd17163 Ubl_ATG8_GABARAPL2 2 Atg4 interaction site 0 0 1 1 31,56,60,68,69,70,71,72,74,77,78,81,82,103,105,106,107,108,109,110,111 2 -340683 cd17163 Ubl_ATG8_GABARAPL2 3 key conserved lysine K33 [KR] 0 1 1 62 0 -340684 cd17164 RAWUL_PCGF2 1 key conserved lysine K33 [KR] 0 1 1 54 0 -340685 cd17165 RAWUL_PCGF4 1 key conserved lysine K27 [KR] 0 1 1 46 0 -340685 cd17165 RAWUL_PCGF4 2 key conserved lysines [KR][KR] 0 1 1 46,52 0 -340686 cd17166 RAWUL_RING1 1 heterodimer interface 0 0 1 1 2,3,4,22,23,24,25,29,32,33,34,36,37,40,41,115,116,117 2 -340686 cd17166 RAWUL_RING1 2 key conserved lysines [KR][KR][KR] 0 1 1 6,41,116 0 -340687 cd17167 RAWUL_RING2 1 heterodimer interface 0 1 1 1 2,3,4,22,23,24,25,29,32,33,34,36,37,40,41,97,98,99 2 -340687 cd17167 RAWUL_RING2 2 key conserved lysines [KR][KR][KR] 0 1 1 6,41,98 0 -340688 cd17168 FERM_F1_FRMPD1 1 key conserved lysine K33 [KR] 0 1 1 34 0 -340689 cd17169 FERM_F1_FRMPD3 1 key conserved lysine K33 [KR] 0 1 1 34 0 -340690 cd17170 FERM_F1_FRMPD4 1 key conserved lysine K33 [KR] 0 1 1 35 0 -340691 cd17171 FERM_F0_TLN1 1 key conserved lysine K33 [KR] 0 1 1 33 0 -340692 cd17172 FERM_F0_TLN2 1 key conserved lysine K33 [KR] 0 1 1 33 0 -340693 cd17173 FERM_F1_TLN1 1 key conserved lysines [KR][KR] 0 1 1 5,32 0 -340694 cd17174 FERM_F1_TLN2 1 key conserved lysines [KR][KR] 0 1 1 5,32 0 -340695 cd17175 FERM_F0_SHANK1 1 key conserved lysine K48 [KR] 0 1 1 60 0 -340696 cd17176 FERM_F0_SHANK2 1 key conserved lysines [KR][KR] 0 1 1 31,59 0 -340697 cd17177 FERM_F0_SHANK3 1 key conserved lysines [KR][KR] 0 1 1 30,58 0 -340698 cd17178 FERM_F1_PLEKHH1 1 key conserved lysine K63 [KR] 0 1 1 89 0 -340699 cd17179 FERM_F1_PLEKHH2 1 key conserved lysine K63 [KR] 0 1 1 89 0 -340700 cd17180 FERM_F0_KIND1 1 key conserved lysine K29 [KR] 0 1 1 34 0 -340701 cd17181 FERM_F0_KIND2 1 key conserved lysines [KR][KR][KR] 0 1 1 12,30,34 0 -340706 cd17186 FERM_F1_Merlin 1 homodimer interface 0 1 1 1 10,11,12,13,14,15,18,21,24,25,28,32,33,34,35,36,37,39,40 2 -340709 cd17189 FERM_F1_FARP1 1 key conserved lysine K63 [KR] 0 1 1 69 0 -340710 cd17190 FERM_F1_FARP2 1 key conserved lysine K63 [KR] 0 1 1 69 0 -340711 cd17191 FERM_F1_PTPN14 1 key conserved lysines [KR][KR][KR] 0 1 1 8,35,56 0 -340712 cd17192 FERM_F1_PTPN21 1 key conserved lysines [KR][KR] 0 1 1 35,56 0 -340713 cd17193 FERM_F1_PTPN3 1 key conserved lysine K48 [KR] 0 1 1 55 0 -340714 cd17194 FERM_F1_PTPN4 1 key conserved lysine K48 [KR] 0 1 1 55 0 -340719 cd17199 FERM_F1_FRMD4A 1 key conserved lysine K11 [KR] 0 1 1 12 0 -340720 cd17200 FERM_F1_FRMD4B 1 key conserved lysine K11 [KR] 0 1 1 12 0 -340722 cd17202 FERM_F1_EPB41L2 1 key conserved lysine K29 [KR] 0 1 1 29 0 -340723 cd17203 FERM_F1_EPB41L3 1 key conserved lysine K29 [KR] 0 1 1 29 0 -340726 cd17206 FERM_F1_Myosin-X 1 key conserved lysines [KR][KR] 0 1 1 31,56 0 -340727 cd17207 FERM_F1_PLEKHH3 1 key conserved lysine K33 [KR] 0 1 1 35 0 -340728 cd17208 FERM_F1_DdMyo7_like 1 key conserved lysines [KR][KR] 0 1 1 35,56 0 -340729 cd17209 RA_RalGDS 1 RA-Ras interaction site 0 1 1 1 0,1,2,3,5,12,13,14,15,16,17,18,19,20,24,25,33,36,37,39 2 -340729 cd17209 RA_RalGDS 2 key conserved lysines [KR][KR] 0 1 1 33,37 0 -340730 cd17210 RA_RGL 1 putative RA-Ras interaction site 0 0 1 1 0,1,2,3,4,6,13,14,15,16,17,18,19,20,21,25,26,34,37,38,40 2 -340730 cd17210 RA_RGL 2 key conserved lysines [KR][KR] 0 1 1 34,38 0 -340731 cd17211 RA_RGL2 1 putative RA-Ras interaction site 0 0 1 1 0,1,2,3,4,6,13,14,15,16,17,18,19,20,21,25,26,34,37,38,40 2 -340731 cd17211 RA_RGL2 2 key conserved lysines [KR][KR] 0 1 1 34,38 0 -340732 cd17212 RA_RGL3 1 putative RA-Ras interaction site 0 0 1 1 0,1,2,3,4,6,13,14,15,16,17,18,19,20,21,25,26,34,37,38,40 2 -340732 cd17212 RA_RGL3 2 key conserved lysines [KR][KR] 0 1 1 34,38 0 -340734 cd17214 RA_CYR1_like 1 key conserved lysines [KR][KR] 0 1 1 32,59 0 -340735 cd17215 RA_Rin1 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340736 cd17216 RA_Myosin-IXa 1 key conserved lysine K33 [KR] 0 1 1 37 0 -340738 cd17218 RA_RASSF1 1 putative RA-Ras interaction site 0 0 1 1 17,19,20,33,76,78,79,80,81,82,83,85,102,103,104 2 -340738 cd17218 RA_RASSF1 2 key conserved lysines [KR][KR] 0 1 1 102,127 0 -340739 cd17219 RA_RASSF3 1 putative RA-Ras interaction site 0 0 1 1 15,17,18,31,60,62,63,64,65,66,67,69,86,87,88 2 -340739 cd17219 RA_RASSF3 2 key conserved lysine K33 [KR] 0 1 1 86 0 -340740 cd17220 RA_RASSF5 1 RA-Ras interaction site 0 1 1 1 16,18,19,32,71,73,74,75,76,77,78,80,97,98,99 2 -340740 cd17220 RA_RASSF5 2 key conserved lysine K33 [KR] 0 1 1 97 0 -340741 cd17221 RA_RASSF2 1 key conserved lysine K33 [KR] 0 1 1 34 0 -340742 cd17222 RA_RASSF4 1 key conserved lysine K33 [KR] 0 1 1 34 0 -340743 cd17223 RA_RASSF6 1 key conserved lysines [KR][KR] 0 1 1 34,56 0 -340744 cd17224 RA_ASPP1 1 key conserved lysine K48 [KR] 0 1 1 52 0 -340745 cd17225 RA_ASPP2 1 key conserved lysine K48 [KR] 0 1 1 50 0 -340746 cd17226 RA_ARAP1 1 key conserved lysines [KR][KR] 0 1 1 38,62 0 -340747 cd17227 RA_ARAP2 1 key conserved lysine K48 [KR] 0 1 1 62 0 -340748 cd17228 RA_ARAP3 1 key conserved lysine K48 [KR] 0 1 1 62 0 -340749 cd17229 RA1_PLC-epsilon 1 key conserved lysine K48 [KR] 0 1 1 75 0 -340750 cd17230 TGS_DRG1 1 polypeptide substrate binding site 0 1 1 0 7,8,17,19,24,36,38,41,44,51,52,53,55,58,71,73,76,77,78 2 -340750 cd17230 TGS_DRG1 2 key conserved lysine K6 [KR] 0 1 1 9 0 -340751 cd17231 TGS_DRG2 1 key conserved lysine K6 [KR] 0 1 1 9 0 -340752 cd17232 Ubl_ATG8_GABARAP 1 Atg7 interaction site 0 0 1 1 26,32,33,44,47,56,57,59,60,61,63,64,65,70,71,73,74,75,77,80,81,82,84,85,86,110,111,112,113,114 2 -340752 cd17232 Ubl_ATG8_GABARAP 2 Atg4 interaction site 0 0 1 1 34,59,63,70,71,72,73,74,75,77,80,81,82,83,84,85,106,108,109,110,111,112,113,114 2 -340752 cd17232 Ubl_ATG8_GABARAP 3 peptide binding site 0 1 1 0 3,7,15,19,23,26,28,29,30,42,43,44,45,46,47,48,50,61,102 2 -340752 cd17232 Ubl_ATG8_GABARAP 4 key conserved lysine K33 [KR] 0 1 1 65 0 -340753 cd17233 Ubl_ATG8_GABARAPL1_like 1 Atg7 interaction site 0 0 1 1 23,29,30,41,44,53,54,56,57,58,60,61,62,67,68,70,71,72,74,77,78,79,81,82,83 2 -340753 cd17233 Ubl_ATG8_GABARAPL1_like 2 Atg4 interaction site 0 0 1 1 31,56,60,67,68,69,70,71,72,74,77,78,79,80,81,82,103,105,106 2 -340753 cd17233 Ubl_ATG8_GABARAPL1_like 3 peptide binding site 0 1 1 0 7,8,11,12,15,16,19,20,23,25,43,44,45,46,47,58,59,99 2 -340753 cd17233 Ubl_ATG8_GABARAPL1_like 4 key conserved lysine K33 [KR] 0 1 1 62 0 -340754 cd17234 Ubl_ATG8_MAP1LC3A 1 Atg13 interaction site 0 0 1 1 19,24,25,26,47,48,49,51,52,53,58,62,66,104 2 -340754 cd17234 Ubl_ATG8_MAP1LC3A 2 Atg4 interaction site 0 0 1 1 34,60,64,71,72,73,74,75,76,78,81,82,85,86,87,108,110,111,112,113,114,115 2 -340754 cd17234 Ubl_ATG8_MAP1LC3A 3 Atg7 interaction site 0 0 1 1 26,32,33,45,48,57,58,60,61,62,64,65,66,72,74,75,76,78,81,82,86,87,88,113,114,115,116 2 -340754 cd17234 Ubl_ATG8_MAP1LC3A 4 peptide binding site 0 1 1 0 3,6,7,15,19,26,42,43,44,45,46,47,48,49,50,51,53,54,59,62,65,66,75,76 2 -340754 cd17234 Ubl_ATG8_MAP1LC3A 5 key conserved lysine K33 [KR] 0 1 1 66 0 -340755 cd17235 Ubl_ATG8_MAP1LC3B 1 Atg13 interaction site 0 1 1 1 18,23,24,25,46,47,48,50,51,52,57,61,65,103 2 -340755 cd17235 Ubl_ATG8_MAP1LC3B 2 Atg4 interaction site 0 1 1 1 33,59,63,70,71,72,73,74,75,77,80,81,84,85,86,107,109,110,111,112,113,114 2 -340755 cd17235 Ubl_ATG8_MAP1LC3B 3 Atg7 interaction site 0 0 1 1 25,31,32,44,47,56,57,59,60,61,63,64,65,71,73,74,75,77,80,81,85,86,87,112,113,114 2 -340755 cd17235 Ubl_ATG8_MAP1LC3B 4 peptide binding site 1 0 1 1 0 14,15,17,18,21,22,25,27,28,30,44,46,47,48,49,50,53,57,58,60,61,62,64,65,103 2 -340755 cd17235 Ubl_ATG8_MAP1LC3B 5 peptide binding site 2 0 1 1 0 0,5,6,14,15,18,21,25,27,44,46,47,48,49,50,52,53,58,61,64,65,103 2 -340755 cd17235 Ubl_ATG8_MAP1LC3B 6 key conserved lysine K33 [KR] 0 1 1 65 0 -340756 cd17236 Ubl_ATG8_MAP1LC3C 1 Atg13 interaction site 0 0 1 1 16,21,22,23,44,45,46,48,49,50,55,59,63,101 2 -340756 cd17236 Ubl_ATG8_MAP1LC3C 2 Atg4 interaction site 0 0 1 1 31,57,61,68,69,70,71,72,73,75,78,79,82,83,84,105,107,108,109,110,111,112 2 -340756 cd17236 Ubl_ATG8_MAP1LC3C 3 Atg8-Atg7 interaction site 0 0 1 1 23,29,30,42,45,54,55,57,58,59,61,62,63,69,71,72,73,75,78,79,83,84,85,110,111,112 2 -340756 cd17236 Ubl_ATG8_MAP1LC3C 4 peptide binding site 1 0 1 1 0 19,20,23,42,43,44,45,46,48,59,63 2 -340756 cd17236 Ubl_ATG8_MAP1LC3C 5 peptide binding site 2 0 1 0 0 0,3,4,12,13,16,23,25,26,42,43,44,45,46,47,48,50,51,59,63,101 2 -340756 cd17236 Ubl_ATG8_MAP1LC3C 6 key conserved lysine K33 [KR] 0 1 1 63 0 -340757 cd17237 FERM_F1_Moesin 1 polypeptide substrate binding site 0 1 1 0 26,36,39,41,54,56,57,58,79,80 2 -340758 cd17238 FERM_F1_Radixin 1 peptide binding site 0 1 1 0 8,9,10,11,12,13,14,15,16,27,31 2 -340758 cd17238 FERM_F1_Radixin 2 ligand binding site 0 1 1 0 55,57,58 5 -340759 cd17239 FERM_F1_Ezrin 1 homodimer interface 0 1 0 0 5,49,50,52,68,70,71,72,74 2 -340760 cd17240 RA_PHLPP1 1 key conserved lysine [KR][KR] 0 1 1 30,49 0 -340761 cd17241 RA_PHLPP2 1 key conserved lysine K48 [KR] 0 1 1 67 0 -341132 cd17243 RMtype1_S_AchA6I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,107,108,110,111,138,140,146,150,153,154,157,158,160,161,164,165,167,168,171,172,175,177,178,179,180 2 -341133 cd17244 RMtype1_S_Apa101655I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 103,106,107,109,110,136,138,144,148,151,152,155,156,158,159,162,163,165,166,169,170,173,175,176,177,178 2 -341134 cd17245 RMtype1_S_TteMORF1547P-TRD2-CR2_Aco12261I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 95,98,99,102,128,130,140,143,144,147,148,151,154,155,157,158,159,160,161,162,164,165,166,167,168 2 -341135 cd17246 RMtype1_S_SonII-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,110,112,113,142,144,150,154,157,158,161,175,176,179,180,183,185,186 2 -341136 cd17247 RMtype1_S_Eco2747I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 114,115,117,118,145,147,153,157,160,161,164,174,175,178,179,182,184,185 2 -341137 cd17248 RMtype1_S_AmiI-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 119,122,124,125,143,145,151,155,158,159,162,163,165,169,170,172,173,176,177,180,182,183,184,185 2 -341138 cd17249 RMtype1_S_EcoR124I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 105,108,109,111,112,140,142,148,152,155,156,159,160,162,163,166,167,169,170,173,174,177,179,180,181,182 2 -341139 cd17250 RMtype1_S_Eco4255II_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 108,111,112,114,115,139,141,147,151,154,155,158,159,161,162,165,166,168,169,172,173,176,178,179,180,181 2 -341140 cd17251 RMtype1_S_HinAWORF1578P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,110,111,113,114,139,141,147,151,154,155,158,159,161,162,165,166,168,169,172,173,176,178,179,180,181 2 -341141 cd17252 RMtype1_S_EcoKI-TRD1-CR1_like 1 DNA binding site 0 1 1 1 13,14,15,16,17,36,37,40,60,61,62,72,74,94,95,96,135,138,139 3 -341141 cd17252 RMtype1_S_EcoKI-TRD1-CR1_like 2 TRD-CR/TRD-CR interface 0 1 1 1 111,115,148,153,154,158,161,162,165,169,172,175,176,183,186 2 -341141 cd17252 RMtype1_S_EcoKI-TRD1-CR1_like 3 HsdM interface 0 1 1 1 123,124,126,127,128,129,130,131,132 2 -341142 cd17253 RMtype1_S_Eco933I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 111,114,115,117,118,147,149,155,159,162,163,166,167,169,170,177,181,184,186,187 2 -341142 cd17253 RMtype1_S_Eco933I-TRD2-CR2_like 2 putative DNA binding site 0 0 1 1 12,13,14,15,33,34,38,58,59,60,71,72,73,95,96 3 -341142 cd17253 RMtype1_S_Eco933I-TRD2-CR2_like 3 putative HsdM interface 0 0 1 1 122,123,124,126,127,128,129,130,131,132,141 2 -341143 cd17254 RMtype1_S_FclI-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 94,97,98,100,101,127,129,135,139,142,143,161,164,166,167,168,169 2 -341144 cd17255 RMtype1_S_Fco49512ORF2615P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 91,94,95,97,98,121,123,129,133,136,137,140,141,154,155,158,160,161,162,163 2 -341145 cd17256 RMtype1_S_EcoJA65PI-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,107,108,110,111,139,141,147,151,154,155,158,159,161,162,165,166,168,169,172,173,176,178,179,180,181 2 -341146 cd17257 RMtype1_S_EcoBI-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 99,102,103,105,106,132,134,140,144,147,148,151,152,154,155,158,159,161,162,165,166,169,171,172,173,174 2 -341147 cd17258 RMtype1_S_Sau13435ORF2165P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 0 1 1 92,95,96,98,99,127,129,135,139,142,143,146,147,149,150,153,154,156,157,160,161,164,166,167,168,169 2 -341148 cd17259 RMtype1_S_StySKI-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 110,113,114,116,117,145,147,153,157,160,161,164,165,178,179,182,184,185,186,187 2 -341149 cd17260 RMtype1_S_EcoEI-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 83,86,87,89,90,119,121,127,131,134,135,138,139,141,142,145,146,148,149,152,153,156,158,159,160,161 2 -341150 cd17261 RMtype1_S_EcoKI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,117,118,146,148,154,158,161,162,165,166,168,169,172,176,180,183,185,186 2 -341150 cd17261 RMtype1_S_EcoKI-TRD2-CR2_like 2 DNA binding site 0 1 1 1 10,11,12,13,31,32,36,56,57,58,69,70,71,93,94,131,134,135 3 -341150 cd17261 RMtype1_S_EcoKI-TRD2-CR2_like 3 HsdM interface 0 1 1 1 120,121,122,124,125,126,127,128,129,130,131,132,140 2 -341151 cd17262 RMtype1_S_Aco12261I-TRD2-CR2 1 putative TRD-CR/TRD-CR interface 0 0 1 1 96,99,100,102,103,127,129,135,139,142,143,146,147,149,150,156,157,160,161,164,166,167,168,169 2 -341152 cd17263 RMtype1_S_AbaB8300I-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 97,100,101,103,104,131,133,139,143,146,147,150,151,153,154,157,158,160,161,164,165,168,170,171,172,173 2 -341153 cd17264 RMtype1_S_Eco3763I-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 105,108,109,111,112,140,142,148,152,155,156,159,160,162,163,166,167,169,170,173,174,177,179,180,181,182 2 -341154 cd17265 RMtype1_S_Eco4255III-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 101,104,105,107,108,135,137,143,147,150,151,154,155,157,158,169,172,174,175,176,177 2 -341155 cd17266 RMtype1_S_Sau1132ORF3780P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 85,88,89,91,92,116,118,124,128,131,132,149,150,153,155,156,157,158 2 -341156 cd17267 RMtype1_S_EcoAO83I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 0 1 1 82,85,86,88,89,114,116,122,126,129,130,144,147,148,151,153,154,155,156 2 -341157 cd17268 RMtype1_S_Ara36733I_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,110,111,113,114,142,144,150,154,157,158,161,171,172,175,176,179,181,182,183,184 2 -341158 cd17269 RMtype1_S_PluTORF4319P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 87,88,90,91,119,121,127,131,134,135,138,152,153,156,157,160,162,163 2 -341159 cd17270 RMtype1_S_Sba223ORF3470P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 105,108,109,111,112,138,140,146,150,153,154,157,158,163,164,167,168,171,173,174,175,176 2 -341160 cd17271 RMtype1_S_NmaSCMORF606P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 108,109,112,145,146,147,150,151,154,155,158,159,162,166,168,169,172,173,175,176,179 2 -341161 cd17272 RMtype1_S_Eco2747II-TRD2-CR2-like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 103,106,107,109,110,136,138,144,148,151,152,155,156,158,159,162,163,165,166,169,170,173,175,176,177,178 2 -341162 cd17273 RMtype1_S_EcoJA69PI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,114,140,142,148,152,156,159,160,162,163,169,170,173,174,177 2 -341163 cd17274 RMtype1_S_Eco540ANI-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 95,98,99,101,102,126,128,132,136,139,140,143,144,146,147,153,154,157,158,161,163,164,165,166 2 -341164 cd17275 RMtype1_S_MjaORF132P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,111,114,147,148,151,152,155,156,159,160,163,166,167,169,170,173,174,176,177,180 2 -341165 cd17276 RMtype1_S_Sau1132ORF3780P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 114,115,118,147,148,149,152,153,156,157,160,161,164,168,170,171,174,175,177,178,181 2 -341166 cd17277 RMtype1_M_Cni19672ORF1405P_RMtype11G_Hci611ORFHP_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 112,113,115,116,141,143,149,153,156,157,160,171,172,175,176,179,181,182 2 -341167 cd17278 RMtype1_S_LdeBORF1052P-TRD2-CR2 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,110,111,113,114,142,144,150,154,157,158,161,162,164,165,171,172,175,176,179,181,182,183,184 2 -341168 cd17279 RMtype1_S_BmuCF2ORF3362P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,107,108,110,111,137,139,145,149,152,153,156,157,159,160,163,164,166,167,170,171,174,176,177,178,179 2 -341169 cd17280 RMtype1_S_MspEN3ORF6650P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,108,111,143,144,145,148,149,152,153,156,157,160,168,170,171,174,175,177,178,181 2 -341170 cd17281 RMtype1_S_HpyAXIII_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 110,113,114,116,117,143,145,151,155,158,159,162,163,165,166,172,173,176,177,180,182,183,184,185 2 -341171 cd17282 RMtype1_S_Eco16444ORF1681_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,110,111,113,114,140,142,148,152,155,156,159,160,162,163,169,170,173,174,177,179,180,181,182 2 -341172 cd17283 RMtype1_S_Hpy180ORF7835P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,107,108,110,111,138,140,146,150,153,154,157,158,160,161,164,171,172,175,177,178,179,180 2 -341173 cd17284 RMtype1_S_Cbo7060ORF11580P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 105,108,109,111,112,139,141,147,151,154,155,158,159,161,162,165,166,168,169,172,173,176,178,179,180,181 2 -341174 cd17285 RMtype1_S_Csp16704I_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,105,107,108,135,137,143,147,150,151,154,164,165,168,169,172,174,175 2 -341175 cd17286 RMtype1_S_Lla161ORF747P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 0 1 1 100,103,104,106,107,133,135,141,145,148,149,152,153,155,156,159,160,162,163,166,167,170,172,173,174,175 2 -341176 cd17287 RMtype1_S_EcoN10ORF171P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,108,111,143,144,145,148,149,152,153,156,157,160,164,166,167,170,171,173,174,177 2 -341177 cd17288 RMtype1_S_LlaAI06ORF1089P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 86,87,89,90,115,117,123,127,130,131,134,142,143,146,147,150,152,153 2 -341178 cd17289 RMtype1_S_BamJRS5ORF1993P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 0 1 1 110,113,114,116,117,145,147,153,157,160,161,164,165,167,168,171,172,174,175,178,179,182,184,185,186,187 2 -341178 cd17289 RMtype1_S_BamJRS5ORF1993P-TRD1-CR1_like 2 putative TRD-CR/TRD-CR interface 0 0 1 1 112,113,115,116,145,147,153,157,160,161,164,174,175,178,179,182,184,185 2 -341179 cd17290 RMtype1_S_AleSS8ORF2795P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,108,110,111,138,140,146,150,153,154,157,167,168,171,172,175,177,178 2 -341180 cd17291 RMtype1_S_MgeORF438P-TRD-CR_like 1 TRD-CR/TRD-CR interface 0 1 1 1 86,89,90,92,93,119,121,127,131,134,135,152,154,155 2 -341181 cd17292 RMtype1_S_LlaA17I_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 73,76,77,79,80,103,105,111,115,118,119,122,123,125,126,129,130,132,133,136,137,140,142,143,144,145 2 -341182 cd17293 RMtype1_S_Ppo21ORF8840P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 101,104,105,107,108,134,136,142,146,149,150,153,154,156,157,160,161,163,164,167,168,171,173,174,175,176 2 -341183 cd17294 RMtype1_S_MmaC7ORF19P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,112,113,115,116,142,144,150,154,157,158,161,162,164,165,175,176,179,181,182,183,184 2 -341184 cd17296 RMtype1_S_MmaC5ORF1169P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 103,106,107,109,110,136,138,144,148,151,152,155,156,158,159,162,163,165,166,169,170,173,175,176,177,178 2 -341209 cd17297 AldB-like 1 Zn binding site HHH 1 1 0 172,174,185 4 -341209 cd17297 AldB-like 2 putative active site 0 1 1 0 35,43,123,172,174,185 1 -341210 cd17298 DUF1907 1 Zn binding site HHH 1 1 0 248,250,260 4 -341210 cd17298 DUF1907 2 putative active site 0 1 1 0 84,85,96,140,202,248,250,260 1 -341211 cd17299 acetolactate_decarboxylase 1 Zn binding site HHHE 1 1 0 172,174,185,231 4 -341211 cd17299 acetolactate_decarboxylase 2 putative active site 0 1 1 0 35,43,123,172,174,185,231 1 -340437 cd17300 PIPKc_PIKfyve 1 catalytic core residues KDD 0 1 1 58,194,214 1 -340437 cd17300 PIPKc_PIKfyve 2 ATP binding site 0 0 1 1 47,56,58,118,119,120,121,132,151,198,213,214 5 -340438 cd17301 PIPKc_PIP5KI 1 catalytic core residues KDD 0 1 1 111,239,270 1 -340438 cd17301 PIPKc_PIP5KI 2 ATP binding site 0 1 1 0 93,94,95,96,98,100,109,111,161,162,163,164,176,197,243,269,270 5 -340438 cd17301 PIPKc_PIP5KI 3 dimer interface 0 0 1 1 23,24,25,26,27,28,30,66,126,129,130,134,135,227,230,234 2 -340439 cd17302 PIPKc_AtPIP5K_like 1 catalytic core residues KDD 0 1 1 114,240,269 1 -340439 cd17302 PIPKc_AtPIP5K_like 2 ATP binding site 0 0 1 1 103,112,114,165,166,167,168,180,202,244,268,269 5 -340440 cd17303 PIPKc_PIP5K_yeast_like 1 catalytic core residues KDD 0 1 1 111,240,274 1 -340440 cd17303 PIPKc_PIP5K_yeast_like 2 ATP binding site 0 0 1 1 100,109,111,162,163,164,165,177,199,244,273,274 5 -340441 cd17304 PIPKc_PIP5KL1 1 catalytic core residues KDD 0 1 1 106,232,274 1 -340441 cd17304 PIPKc_PIP5KL1 2 ATP binding site 0 0 1 1 95,104,106,157,158,159,160,172,194,236,273,274 5 -340442 cd17305 PIPKc_PIP5KII 1 catalytic core residues KDD 0 1 1 109,237,255 1 -340442 cd17305 PIPKc_PIP5KII 2 ATP binding site 0 1 1 1 98,107,109,160,161,162,163,175,196,241,254,255 5 -340442 cd17305 PIPKc_PIP5KII 3 dimer interface 0 1 1 1 7,11,15,16,18,19,20,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,59,60 2 -340443 cd17306 PIPKc_PIP5K1A_like 1 catalytic core residues KDD 0 1 1 114,242,287 1 -340443 cd17306 PIPKc_PIP5K1A_like 2 ATP binding site 0 0 1 1 96,97,98,99,101,103,112,114,164,165,166,167,179,200,246,286,287 5 -340443 cd17306 PIPKc_PIP5K1A_like 3 dimer interface 0 0 1 1 26,27,28,29,30,31,33,69,129,132,133,137,138,230,233,237 2 -340444 cd17307 PIPKc_PIP5K1B 1 catalytic core residues KDD 0 1 1 111,239,270 1 -340444 cd17307 PIPKc_PIP5K1B 2 ATP binding site 0 0 1 1 93,94,95,96,98,100,109,111,161,162,163,164,176,197,243,269,270 5 -340444 cd17307 PIPKc_PIP5K1B 3 dimer interface 0 0 1 1 23,24,25,26,27,28,30,66,126,129,130,134,135,227,230,234 2 -340445 cd17308 PIPKc_PIP5K1C 1 catalytic core residues KDD 0 1 1 112,240,271 1 -340445 cd17308 PIPKc_PIP5K1C 2 ATP binding site 0 0 1 1 94,95,96,97,99,101,110,112,162,163,164,165,177,198,244,270,271 5 -340445 cd17308 PIPKc_PIP5K1C 3 dimer interface 0 0 1 1 24,25,26,27,28,29,31,67,127,130,131,135,136,228,231,235 2 -340446 cd17309 PIPKc_PIP5K2A 1 catalytic core residues KDD 0 1 1 118,246,264 1 -340446 cd17309 PIPKc_PIP5K2A 2 ATP binding site 0 0 1 1 107,116,118,169,170,171,172,184,205,250,263,264 5 -340446 cd17309 PIPKc_PIP5K2A 3 dimer interface 0 1 1 1 1,2,3,4,16,19,20,23,24,25,27,28,29,37,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,68,69 2 -340447 cd17310 PIPKc_PIP5K2B 1 catalytic core residues KDD 0 1 1 120,248,266 1 -340447 cd17310 PIPKc_PIP5K2B 2 ATP binding site 0 1 1 1 109,118,120,171,172,173,174,186,207,252,265,266 5 -340447 cd17310 PIPKc_PIP5K2B 3 dimer interface 0 1 1 1 3,4,18,22,26,27,28,29,30,39,42,43,44,45,46,47,48,49,50,51,52,53,54,55,70,71 2 -340448 cd17311 PIPKc_PIP5K2C 1 catalytic core residues KDD 0 1 1 107,235,253 1 -340448 cd17311 PIPKc_PIP5K2C 2 ATP binding site 0 0 1 1 96,105,107,158,159,160,161,173,194,239,252,253 5 -340448 cd17311 PIPKc_PIP5K2C 3 dimer interface 0 1 1 1 7,15,16,19,20,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,59,60 2 -340870 cd17312 MFS_OPA_SLC37 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,191,194,195,198,199,200,203,231,235,288,289,293,297,314,317,318,321,322,325 5 -340871 cd17313 MFS_SLC45_SUC 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,118,119,121,122,123,126,146,149,150,153,242,245,246,249,250,251,254,293,297,346,347,351,355,373,376,377,380,381,384 5 -340872 cd17314 MFS_MCT_like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,214,217,218,221,222,223,226,254,258,310,311,315,319,335,338,339,342,343,346 5 -340873 cd17315 MFS_GLUT_like 1 chemical substrate binding pocket 0 1 1 1 8,12,128,131,132,135,190,191,195,196,199,200,226,288,289,292,293,297,320,321,324 5 -340874 cd17316 MFS_SV2_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,52,102,103,105,106,107,110,130,133,134,137,185,188,189,192,193,194,197,225,229,280,281,285,289,305,308,309,312,313,316 5 -340875 cd17317 MFS_SLC22 1 putative chemical substrate binding pocket 0 0 1 1 9,10,13,14,17,41,91,92,94,95,96,99,115,118,119,122,171,174,175,178,179,180,183,203,207,258,259,263,267,283,286,287,290,291,294 5 -340876 cd17318 MFS_SLC17 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,72,124,125,127,128,129,132,152,155,156,159,207,210,211,214,215,216,219,247,251,310,311,315,319,335,338,339,342,343,346 5 -340877 cd17319 MFS_ExuT_GudP_like 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,187,190,191,194,195,196,199,227,231,283,284,288,292,308,311,312,315,316,319 5 -340878 cd17320 MFS_MdfA_MDR_like 1 chemical substrate binding pocket 0 1 1 0 10,11,14,15,39,42,43,100,131,134,135,217,220,339 5 -340879 cd17321 MFS_MMR_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,176,179,180,183,184,185,188,216,220,272,273,277,281,297,300,301,304,305,308 5 -340880 cd17322 MFS_ARN_like 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,53,103,104,106,107,108,111,127,130,131,134,293,296,297,300,301,302,305,333,337,391,392,396,400,416,419,420,423,424,427 5 -340881 cd17323 MFS_Tpo1_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,183,186,187,190,191,192,195,219,223,295,296,300,304,319,322,323,326,327,330 5 -340882 cd17324 MFS_NepI_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,206,209,210,213,214,215,218,246,250,299,300,304,308,323,326,327,330,331,334 5 -340883 cd17325 MFS_MdtG_SLC18_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340884 cd17326 MFS_MFSD8 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,52,108,109,111,112,113,116,135,138,139,142,205,208,209,212,213,214,217,246,250,295,296,300,304,320,323,324,327,328,331 5 -340885 cd17327 MFS_FEN2_like 1 putative chemical substrate binding pocket 0 0 1 1 16,17,20,21,24,57,107,108,110,111,112,115,135,138,139,142,241,244,245,248,249,250,253,280,284,334,335,339,343,360,363,364,367,368,371 5 -340886 cd17328 MFS_spinster_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,215,218,219,222,223,224,227,259,263,316,317,321,325,345,348,349,352,353,356 5 -340887 cd17329 MFS_MdtH_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,101,102,104,105,106,109,129,132,133,136,208,211,212,215,216,217,220,248,252,301,302,306,310,326,329,330,333,334,337 5 -340888 cd17330 MFS_SLC46_TetA_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,50,100,101,103,104,105,108,127,130,131,134,182,185,186,189,190,191,194,222,226,276,277,281,285,301,304,305,308,309,312 5 -340889 cd17331 MFS_SLC22A18 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,51,100,101,103,104,105,108,127,130,131,134,215,218,219,222,223,224,227,255,259,309,310,314,318,334,337,338,341,342,345 5 -340890 cd17332 MFS_MelB_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,229,232,233,236,237,238,241,269,273,323,324,328,332,355,358,359,362,363,366 5 -340891 cd17333 MFS_FucP_MFSD4_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340892 cd17334 MFS_SLC49 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,109,110,112,113,114,117,137,140,141,144,232,235,236,239,240,241,244,271,275,332,333,337,341,357,360,361,364,365,368 5 -340893 cd17335 MFS_MFSD6 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,48,100,101,103,104,105,108,126,129,130,133,206,209,210,213,214,215,218,245,249,298,299,303,307,328,331,332,335,336,339 5 -340894 cd17336 MFS_SLCO_OATP 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,101,102,104,105,106,109,129,132,133,136,203,206,207,210,211,212,215,244,248,289,290,294,298,353,356,357,360,361,364 5 -340895 cd17337 MFS_CsbX 1 putative chemical substrate binding pocket 0 0 1 1 12,13,16,17,20,48,102,103,105,106,107,110,131,134,135,138,216,219,220,223,224,225,228,256,260,315,316,320,324,338,341,342,345,346,349 5 -340896 cd17338 MFS_unc93_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,45,94,95,97,98,99,102,126,129,130,133,215,218,219,222,223,224,227,254,258,308,309,313,317,340,343,344,347,348,351 5 -340897 cd17339 MFS_NIMT_CynX_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,99,100,102,103,104,107,126,129,130,133,204,207,208,211,212,213,216,243,247,296,297,301,305,322,325,326,329,330,333 5 -340898 cd17340 MFS_MFSD1 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,104,105,107,108,109,112,132,135,136,139,225,228,229,232,233,234,237,265,269,317,318,322,326,342,345,346,349,350,353 5 -340899 cd17341 MFS_NRT2_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,101,102,104,105,106,109,128,131,132,135,213,216,217,220,221,222,225,253,257,311,312,316,320,335,338,339,342,343,346 5 -340900 cd17342 MFS_SLC37A3 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,79,135,136,138,139,140,143,163,166,167,170,221,224,225,228,229,230,233,261,265,316,317,321,325,349,352,353,356,357,360 5 -340901 cd17343 MFS_SLC37A4 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,224,227,228,231,232,233,236,264,268,332,333,337,341,357,360,361,364,365,368 5 -340902 cd17344 MFS_SLC37A1_2 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,78,133,134,136,137,138,141,161,164,165,168,219,222,223,226,227,228,231,259,263,315,316,320,324,348,351,352,355,356,359 5 -340903 cd17345 MFS_GlpT 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,108,109,111,112,113,116,136,139,140,143,239,242,243,246,247,248,251,279,283,335,336,340,344,360,363,364,367,368,371 5 -340904 cd17346 MFS_DtpA_like 1 chemical substrate binding pocket 0 1 1 0 14,18,112,138,141,142,145,209,242,243,246,316 5 -340905 cd17347 MFS_SLC15A1_2_like 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,112,113,115,116,117,120,143,146,147,150,213,216,217,220,221,222,225,256,260,344,345,349,353,369,372,373,376,377,380 5 -340906 cd17348 MFS_SLC15A3_4 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,55,105,106,108,109,110,113,136,139,140,143,200,203,204,207,208,209,212,254,258,342,343,347,351,367,370,371,374,375,378 5 -340907 cd17349 MFS_SLC15A5 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,126,127,129,130,131,134,157,160,161,164,221,224,225,228,229,230,233,264,268,348,349,353,357,373,376,377,380,381,384 5 -340908 cd17350 MFS_PTR2 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,62,122,123,125,126,127,130,169,172,173,176,240,243,244,247,248,249,252,279,283,362,363,367,371,387,390,391,394,395,398 5 -340909 cd17351 MFS_NPF 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,124,125,127,128,129,132,158,161,162,165,222,225,226,229,230,231,234,266,270,352,353,357,361,377,380,381,384,385,388 5 -340910 cd17352 MFS_MCT_SLC16 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,285,286,290,294,310,313,314,317,318,321 5 -340911 cd17353 MFS_OFA_like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,221,224,225,228,229,230,233,261,265,315,316,320,324,340,343,344,347,348,351 5 -340912 cd17354 MFS_Mch1p_like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,53,110,111,113,114,115,118,137,140,141,144,204,207,208,211,212,213,216,242,246,301,302,306,310,326,329,330,333,334,337 5 -340913 cd17355 MFS_YcxA_like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,101,102,104,105,106,109,133,136,137,140,215,218,219,222,223,224,227,257,261,311,312,316,320,336,339,340,343,344,347 5 -340914 cd17356 MFS_HXT 1 chemical substrate binding pocket 0 0 1 1 12,16,140,143,144,147,207,208,212,213,216,217,244,314,315,318,319,323,346,347,350 5 -340915 cd17357 MFS_GLUT_Class1_2_like 1 chemical substrate binding pocket 0 1 1 0 11,15,146,149,150,153,268,269,273,274,277,305,367,368,372,376,399,403 5 -340916 cd17358 MFS_GLUT6_8_Class3_like 1 chemical substrate binding pocket 0 0 1 1 13,17,135,138,139,142,250,251,255,256,259,260,286,351,352,355,356,360,383,384,387 5 -340917 cd17359 MFS_XylE_like 1 chemical substrate binding pocket 0 1 1 0 12,130,133,137,207,208,212,213,216,217,306,310,311,315,338,339,342 5 -340918 cd17360 MFS_HMIT_like 1 chemical substrate binding pocket 0 0 1 1 8,12,129,132,133,136,197,198,202,203,206,207,235,285,286,289,290,294,317,318,321 5 -340919 cd17361 MFS_STP 1 chemical substrate binding pocket 0 0 1 1 8,12,145,148,149,152,210,211,215,216,219,220,247,314,315,318,319,323,346,347,350 5 -340920 cd17362 MFS_GLUT10_12_Class3_like 1 chemical substrate binding pocket 0 0 1 1 8,12,133,136,137,140,202,203,207,208,211,212,240,303,304,307,308,312,335,336,339 5 -340921 cd17363 MFS_SV2 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,344,348,397,398,402,406,422,425,426,429,430,433 5 -340922 cd17364 MFS_PhT 1 chemical substrate binding pocket 0 1 1 0 115,139,142,204,208,211,212,316,320 5 -340923 cd17365 MFS_PcaK_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,179,182,183,186,187,188,191,218,222,272,273,277,281,297,300,301,304,305,308 5 -340924 cd17366 MFS_ProP 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,201,204,205,208,209,210,213,241,245,297,298,302,306,322,325,326,329,330,333 5 -340925 cd17367 MFS_KgtP 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,231,234,235,238,239,240,243,271,275,328,329,333,337,353,356,357,360,361,364 5 -340926 cd17368 MFS_CitA 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,230,233,234,237,238,239,242,270,274,327,328,332,336,352,355,356,359,360,363 5 -340927 cd17369 MFS_ShiA_like 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,60,118,119,121,122,123,126,146,149,150,153,236,239,240,243,244,245,248,276,280,333,334,338,342,358,361,362,365,366,369 5 -340928 cd17370 MFS_MJ1317_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,101,102,104,105,106,109,129,132,133,136,207,210,211,214,215,216,219,246,250,299,300,304,308,324,327,328,331,332,335 5 -340929 cd17371 MFS_MucK 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,217,220,221,224,225,226,229,257,261,311,312,316,320,336,339,340,343,344,347 5 -340930 cd17372 MFS_SVOP_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,182,185,186,189,190,191,194,241,245,294,295,299,303,319,322,323,326,327,330 5 -340931 cd17373 MFS_SLC22A17_like 1 putative chemical substrate binding pocket 0 0 1 1 9,10,13,14,17,41,91,92,94,95,96,99,115,118,119,122,171,174,175,178,179,180,183,204,208,275,276,280,284,300,303,304,307,308,311 5 -340932 cd17374 MFS_OAT 1 putative chemical substrate binding pocket 0 0 1 1 17,18,21,22,25,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -340933 cd17375 MFS_SLC22A16_CT2 1 putative chemical substrate binding pocket 0 0 1 1 19,20,23,24,27,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -340934 cd17376 MFS_SLC22A4_5_OCTN1_2 1 putative chemical substrate binding pocket 0 0 1 1 19,20,23,24,27,51,101,102,104,105,106,109,126,129,130,133,182,185,186,189,190,191,194,214,218,269,270,274,278,294,297,298,301,302,305 5 -340935 cd17377 MFS_SLC22A15 1 putative chemical substrate binding pocket 0 0 1 1 23,24,27,28,31,55,105,106,108,109,110,113,129,132,133,136,185,188,189,192,193,194,197,217,221,280,281,285,289,305,308,309,312,313,316 5 -340936 cd17378 MFS_OCT_plant 1 putative chemical substrate binding pocket 0 0 1 1 17,18,21,22,25,49,100,101,103,104,105,108,124,127,128,131,181,184,185,188,189,190,193,213,217,269,270,274,278,294,297,298,301,302,305 5 -340937 cd17379 MFS_SLC22A1_2_3 1 putative chemical substrate binding pocket 0 0 1 1 17,18,21,22,25,49,99,100,102,103,104,107,123,126,127,130,179,182,183,186,187,188,191,211,215,266,267,271,275,291,294,295,298,299,302 5 -340938 cd17380 MFS_SLC17A9_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,102,103,105,106,107,110,130,133,134,137,185,188,189,192,193,194,197,224,228,285,286,290,294,310,313,314,317,318,321 5 -340939 cd17381 MFS_SLC17A5 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,81,133,134,136,137,138,141,161,164,165,168,216,219,220,223,224,225,228,256,260,319,320,324,328,344,347,348,351,352,355 5 -340940 cd17382 MFS_SLC17A6_7_8_VGluT 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,65,117,118,120,121,122,125,145,148,149,152,200,203,204,207,208,209,212,240,244,302,303,307,311,327,330,331,334,335,338 5 -340941 cd17383 MFS_SLC18A3_VAChT 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,46,96,97,99,100,101,104,125,128,129,132,205,208,209,212,213,214,217,245,249,298,299,303,307,328,331,332,335,336,339 5 -340942 cd17384 MFS_SLC18A1_2_VAT1_2 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,47,97,98,100,101,102,105,126,129,130,133,202,205,206,209,210,211,214,242,246,299,300,304,308,323,326,327,330,331,334 5 -340943 cd17385 MFS_SLC18B1 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,107,108,110,111,112,115,134,137,138,141,209,212,213,216,217,218,221,248,252,308,309,313,317,340,343,344,347,348,351 5 -340944 cd17386 MFS_SLC46 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,46,102,103,105,106,107,110,132,135,136,139,187,190,191,194,195,196,199,227,231,282,283,287,291,307,310,311,314,315,318 5 -340945 cd17387 MFS_MFSD14 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,52,100,101,103,104,105,108,127,130,131,134,216,219,220,223,224,225,228,256,260,309,310,314,318,334,337,338,341,342,345 5 -340946 cd17388 MFS_TetA 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,54,104,105,107,108,109,112,131,134,135,138,214,217,218,221,222,223,226,254,258,307,308,312,316,332,335,336,339,340,343 5 -340947 cd17389 MFS_MFSD10 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,80,130,131,133,134,135,138,157,160,161,164,223,226,227,230,231,232,235,263,267,316,317,321,325,341,344,345,348,349,352 5 -340948 cd17390 MFS_MFSD9 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,180,183,184,187,188,189,192,220,224,275,276,280,284,300,303,304,307,308,311 5 -340949 cd17391 MFS_MdtG_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,52,102,103,105,106,107,110,129,132,133,136,209,212,213,216,217,218,221,252,256,305,306,310,314,330,333,334,337,338,341 5 -340950 cd17392 MFS_MFSD2 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,250,253,254,257,258,259,262,290,294,343,344,348,352,377,380,381,384,385,388 5 -340951 cd17393 MFS_MosC_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340952 cd17394 MFS_FucP_like 1 chemical substrate binding pocket 0 1 1 0 3,6,7,10,14,66,70,106,107,110,111,131,134,193,197 5 -340953 cd17395 MFS_MFSD4 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,48,98,99,101,102,103,106,125,128,129,132,200,203,204,207,208,209,212,240,244,294,295,299,303,318,321,322,325,326,329 5 -340954 cd17396 MFS_YdiM_like 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,51,101,102,104,105,106,109,128,131,132,135,207,210,211,214,215,216,219,250,254,305,306,310,314,330,333,334,337,338,341 5 -340955 cd17397 MFS_DIRC2 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,54,109,110,112,113,114,117,137,140,141,144,213,216,217,220,221,222,225,252,256,313,314,318,322,338,341,342,345,346,349 5 -340956 cd17398 MFS_FLVCR_like 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,234,237,238,241,242,243,246,274,278,331,332,336,340,356,359,360,363,364,367 5 -340957 cd17399 MFS_MFSD7 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,113,114,116,117,118,121,141,144,145,148,227,230,231,234,235,236,239,266,270,324,325,329,333,349,352,353,356,357,360 5 -340958 cd17400 MFS_SLCO1_OATP1 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,114,115,117,118,119,122,142,145,146,149,219,222,223,226,227,228,231,260,264,305,306,310,314,375,378,379,382,383,386 5 -340959 cd17401 MFS_SLCO2_OATP2 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,110,111,113,114,115,118,138,141,142,145,231,234,235,238,239,240,243,272,276,317,318,322,326,386,389,390,393,394,397 5 -340960 cd17402 MFS_SLCO3_OATP3 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,114,115,117,118,119,122,142,145,146,149,238,241,242,245,246,247,250,279,283,324,325,329,333,386,389,390,393,394,397 5 -340961 cd17403 MFS_SLCO4_OATP4 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,208,211,212,215,216,217,220,249,253,293,294,298,302,361,364,365,368,369,372 5 -340962 cd17404 MFS_SLCO5_OATP5 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,101,102,104,105,106,109,129,132,133,136,204,207,208,211,212,213,216,245,249,290,291,295,299,362,365,366,369,370,373 5 -340963 cd17405 MFS_SLCO6_OATP6 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,103,104,106,107,108,111,131,134,135,138,214,217,218,221,222,223,226,255,259,300,301,305,309,366,369,370,373,374,377 5 -340964 cd17406 MFS_unc93A_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,46,96,97,99,100,101,104,138,141,142,145,220,223,224,227,228,229,232,259,263,308,309,313,317,340,343,344,347,348,351 5 -340965 cd17407 MFS_MFSD11 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,54,103,104,106,107,108,111,135,138,139,142,198,201,202,205,206,207,210,241,245,307,308,312,316,339,342,343,346,347,350 5 -340966 cd17408 MFS_unc93B1 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,59,108,109,111,112,113,116,164,167,168,171,282,285,286,289,290,291,294,321,325,372,373,377,381,406,409,410,413,414,417 5 -340967 cd17409 MFS_NIMT_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,99,100,102,103,104,107,126,129,130,133,205,208,209,212,213,214,217,244,248,296,297,301,305,322,325,326,329,330,333 5 -340968 cd17410 MFS_CynX_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,202,205,206,209,210,211,214,241,245,294,295,299,303,320,323,324,327,328,331 5 -340969 cd17411 MFS_SLC15A2 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,114,115,117,118,119,122,145,148,149,152,215,218,219,222,223,224,227,258,262,320,321,325,329,345,348,349,352,353,356 5 -340970 cd17412 MFS_SLC15A1 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,123,124,126,127,128,131,154,157,158,161,226,229,230,233,234,235,238,269,273,331,332,336,340,356,359,360,363,364,367 5 -340971 cd17413 MFS_NPF6 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,129,130,132,133,134,137,163,166,167,170,238,241,242,245,246,247,250,281,285,364,365,369,373,389,392,393,396,397,400 5 -340972 cd17414 MFS_NPF4 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,129,130,132,133,134,137,163,166,167,170,233,236,237,240,241,242,245,277,281,362,363,367,371,387,390,391,394,395,398 5 -340973 cd17415 MFS_NPF3 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,128,129,131,132,133,136,162,165,166,169,226,229,230,233,234,235,238,270,274,356,357,361,365,381,384,385,388,389,392 5 -340974 cd17416 MFS_NPF1_2 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,125,126,128,129,130,133,159,162,163,166,225,228,229,232,233,234,237,269,273,350,351,355,359,375,378,379,382,383,386 5 -340975 cd17417 MFS_NPF5 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,125,126,128,129,130,133,159,162,163,166,227,230,231,234,235,236,239,271,275,356,357,361,365,381,384,385,388,389,392 5 -340976 cd17418 MFS_NPF8 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,126,127,129,130,131,134,160,163,164,167,224,227,228,231,232,233,236,267,271,352,353,357,361,377,380,381,384,385,388 5 -340977 cd17419 MFS_NPF7 1 putative chemical substrate binding pocket 0 0 1 1 13,14,17,18,21,54,128,129,131,132,133,136,162,165,166,169,226,229,230,233,234,235,238,269,273,354,355,359,363,379,382,383,386,387,390 5 -340978 cd17420 MFS_MCT8_10 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,229,232,233,236,237,238,241,268,272,324,325,329,333,349,352,353,356,357,360 5 -340979 cd17421 MFS_MCT5 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,130,133,134,137,195,198,199,202,203,204,207,234,238,289,290,294,298,314,317,318,321,322,325 5 -340980 cd17422 MFS_MCT7 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,285,286,290,294,312,315,316,319,320,323 5 -340981 cd17423 MFS_MCT11_13 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,213,216,217,220,221,222,225,252,256,307,308,312,316,332,335,336,339,340,343 5 -340982 cd17424 MFS_MCT12 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,287,288,292,296,312,315,316,319,320,323 5 -340983 cd17425 MFS_MCT6 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,192,195,196,199,200,201,204,231,235,288,289,293,297,313,316,317,320,321,324 5 -340984 cd17426 MFS_MCT1 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,202,205,206,209,210,211,214,241,245,298,299,303,307,323,326,327,330,331,334 5 -340985 cd17427 MFS_MCT2 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,195,198,199,202,203,204,207,234,238,291,292,296,300,316,319,320,323,324,327 5 -340986 cd17428 MFS_MCT9 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,231,235,286,287,291,295,310,313,314,317,318,321 5 -340987 cd17429 MFS_MCT14 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,231,235,286,287,291,295,310,313,314,317,318,321 5 -340988 cd17430 MFS_MCT3_4 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,196,199,200,203,204,205,208,235,239,292,293,297,301,317,320,321,324,325,328 5 -340989 cd17431 MFS_GLUT_Class1 1 chemical substrate binding pocket 0 1 1 0 12,16,147,150,151,154,268,269,273,274,277,303,365,366,370,374,397,401 5 -340990 cd17432 MFS_GLUT_Class2 1 chemical substrate binding pocket 0 0 1 1 12,16,147,150,151,154,268,269,273,274,277,278,305,367,368,371,372,376,399,400,403 5 -340991 cd17433 MFS_GLUT8_Class3 1 chemical substrate binding pocket 0 0 1 1 13,17,135,138,139,142,247,248,252,253,256,257,282,331,332,335,336,340,363,364,367 5 -340992 cd17434 MFS_GLUT6_Class3 1 chemical substrate binding pocket 0 0 1 1 13,17,135,138,139,142,247,248,252,253,256,257,283,332,333,336,337,341,364,365,368 5 -340993 cd17435 MFS_GLUT12_Class3 1 chemical substrate binding pocket 0 0 1 1 12,16,130,133,134,137,202,203,207,208,211,212,240,290,291,294,295,299,322,323,326 5 -340994 cd17436 MFS_GLUT10_Class3 1 chemical substrate binding pocket 0 0 1 1 12,16,130,133,134,137,202,203,207,208,211,212,240,290,291,294,295,299,322,323,326 5 -340995 cd17437 MFS_PLT 1 chemical substrate binding pocket 0 0 1 1 8,12,126,129,130,133,197,198,202,203,206,207,235,301,302,305,306,310,333,334,337 5 -340996 cd17438 MFS_SV2B 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,347,351,400,401,405,409,425,428,429,432,433,436 5 -340997 cd17439 MFS_SV2A 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,348,352,401,402,406,410,426,429,430,433,434,437 5 -340998 cd17440 MFS_SV2C 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,349,353,402,403,407,411,427,430,431,434,435,438 5 -340999 cd17441 MFS_SVOP 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,187,190,191,194,195,196,199,245,249,298,299,303,307,323,326,327,330,331,334 5 -341000 cd17442 MFS_SVOPL 1 putative chemical substrate binding pocket 0 0 1 1 12,13,16,17,20,52,102,103,105,106,107,110,129,132,133,136,184,187,188,191,192,193,196,248,252,301,302,306,310,326,329,330,333,334,337 5 -341001 cd17443 MFS_SLC22A31 1 putative chemical substrate binding pocket 0 0 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,214,218,270,271,275,279,295,298,299,302,303,306 5 -341002 cd17444 MFS_SLC22A23 1 putative chemical substrate binding pocket 0 0 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,220,224,291,292,296,300,316,319,320,323,324,327 5 -341003 cd17445 MFS_SLC22A17 1 putative chemical substrate binding pocket 0 0 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,217,221,273,274,278,282,298,301,302,305,306,309 5 -341004 cd17446 MFS_SLC22A6_OAT1_like 1 putative chemical substrate binding pocket 0 0 1 1 17,18,21,22,25,49,99,100,102,103,104,107,123,126,127,130,179,182,183,186,187,188,191,211,215,266,267,271,275,291,294,295,298,299,302 5 -341005 cd17447 MFS_SLC22A7_OAT2 1 putative chemical substrate binding pocket 0 0 1 1 17,18,21,22,25,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -341006 cd17448 MFS_SLC46A3 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,85,139,140,142,143,144,147,170,173,174,177,225,228,229,232,233,234,237,266,270,318,319,323,327,343,346,347,350,351,354 5 -341007 cd17449 MFS_SLC46A1_PCFT 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,81,135,136,138,139,140,143,165,168,169,172,254,257,258,261,262,263,266,295,299,347,348,352,356,372,375,376,379,380,383 5 -341008 cd17450 MFS_SLC46A2_TSCOT 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,67,121,122,124,125,126,129,151,154,155,158,212,215,216,219,220,221,224,253,257,305,306,310,314,330,333,334,337,338,341 5 -341009 cd17451 MFS_NLS1_MFSD2A 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,223,226,227,230,231,232,235,263,267,316,317,321,325,350,353,354,357,358,361 5 -341010 cd17452 MFS_MFSD2B 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,222,225,226,229,230,231,234,262,266,313,314,318,322,347,350,351,354,355,358 5 -341011 cd17453 MFS_MFSD4A 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,101,102,104,105,106,109,128,131,132,135,249,252,253,256,257,258,261,290,294,344,345,349,353,368,371,372,375,376,379 5 -341012 cd17454 MFS_NaGLT1_MFSD4B 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,48,98,99,101,102,103,106,125,128,129,132,199,202,203,206,207,208,211,239,243,293,294,298,302,317,320,321,324,325,328 5 -341013 cd17455 MFS_FLVCR1 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,235,238,239,242,243,244,247,275,279,332,333,337,341,357,360,361,364,365,368 5 -341014 cd17456 MFS_FLVCR2 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,234,237,238,241,242,243,246,274,278,331,332,336,340,356,359,360,363,364,367 5 -341015 cd17457 MFS_SLCO1B_OATP1B 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,121,122,124,125,126,129,149,152,153,156,238,241,242,245,246,247,250,279,283,324,325,329,333,394,397,398,401,402,405 5 -341016 cd17458 MFS_SLCO1A_OATP1A 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,154,155,157,158,159,162,182,185,186,189,310,313,314,317,318,319,322,351,355,396,397,401,405,466,469,470,473,474,477 5 -341017 cd17459 MFS_SLCO1C_OATP1C 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,158,159,161,162,163,166,186,189,190,193,280,283,284,287,288,289,292,321,325,366,367,371,375,436,439,440,443,444,447 5 -341018 cd17460 MFS_SLCO2B_OATP2B 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,110,111,113,114,115,118,138,141,142,145,269,272,273,276,277,278,281,310,314,355,356,360,364,423,426,427,430,431,434 5 -341019 cd17461 MFS_SLCO2A_OATP2A 1 putative chemical substrate binding pocket 0 0 1 1 15,16,19,20,23,55,114,115,117,118,119,122,142,145,146,149,265,268,269,272,273,274,277,306,310,351,352,356,360,418,421,422,425,426,429 5 -341020 cd17462 MFS_SLCO4A_OATP4A 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,214,217,218,221,222,223,226,255,259,299,300,304,308,370,373,374,377,378,381 5 -341021 cd17463 MFS_SLCO4C_OATP4C 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,216,219,220,223,224,225,228,257,261,302,303,307,311,368,371,372,375,376,379 5 -341022 cd17464 MFS_MCT10 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,224,227,228,231,232,233,236,263,267,319,320,324,328,344,347,348,351,352,355 5 -341023 cd17465 MFS_MCT8 1 putative chemical substrate binding pocket 0 0 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,196,199,200,203,204,205,208,235,239,291,292,296,300,316,319,320,323,324,327 5 -350657 cd17470 T3SS_Flik_C 1 putative substrate specificity switching loop [LIMV]xPx[LM]G 0 1 1 25,26,27,28,30,31 0 -341024 cd17471 MFS_Set 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,48,96,97,99,100,101,104,130,133,134,137,207,210,211,214,215,216,219,247,251,300,301,305,309,324,327,328,331,332,335 5 -341025 cd17472 MFS_YajR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,48,98,99,101,102,103,106,128,131,132,135,202,205,206,209,210,211,214,241,245,289,290,294,298,321,324,325,328,329,332 5 -341026 cd17473 MFS_arabinose_efflux_permease_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,101,102,104,105,106,109,129,132,133,136,205,208,209,212,213,214,217,245,249,298,299,303,307,323,326,327,330,331,334 5 -341027 cd17474 MFS_YfmO_like 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,206,209,210,213,214,215,218,246,250,300,301,305,309,325,328,329,332,333,336 5 -341028 cd17475 MFS_MT3072_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,206,209,210,213,214,215,218,246,250,305,306,310,314,330,333,334,337,338,341 5 -341029 cd17476 MFS_Amf1_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 9,10,13,14,17,49,99,100,102,103,104,107,128,131,132,135,181,184,185,188,189,190,193,224,228,281,282,286,290,306,309,310,313,314,317 5 -341030 cd17477 MFS_YcaD_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,199,202,203,206,207,208,211,235,239,289,290,294,298,314,317,318,321,322,325 5 -341031 cd17478 MFS_FsR 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,203,206,207,210,211,212,215,242,246,294,295,299,303,318,321,322,325,326,329 5 -341032 cd17479 MFS_MFSD6L 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,88,89,91,92,93,96,124,127,128,131,211,214,215,218,219,220,223,250,254,297,298,302,306,329,332,333,336,337,340 5 -341033 cd17480 MFS_SLC40A1_like 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,49,119,120,122,123,124,127,150,153,154,157,211,214,215,218,219,220,223,250,254,312,313,317,321,339,342,343,346,347,350 5 -341034 cd17481 MFS_MFSD13A 1 putative chemical substrate binding pocket 0 0 1 1 9,10,13,14,17,50,120,121,123,124,125,128,149,152,153,156,208,211,212,215,216,217,220,247,251,303,304,308,312,336,339,340,343,344,347 5 -341035 cd17482 MFS_YxiO_like 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,55,108,109,111,112,113,116,136,139,140,143,196,199,200,203,204,205,208,236,240,289,290,294,298,314,317,318,321,322,325 5 -341036 cd17483 MFS_Atg22_like 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,83,137,138,140,141,142,145,192,195,196,199,284,287,288,291,292,293,296,324,328,387,388,392,396,412,415,416,419,420,423 5 -341037 cd17484 MFS_FBT 1 putative chemical substrate binding pocket 0 0 1 1 12,13,16,17,20,48,105,106,108,109,110,113,136,139,140,143,217,220,221,224,225,226,229,256,260,311,312,316,320,344,347,348,351,352,355 5 -341038 cd17485 MFS_MFSD3 1 putative chemical substrate binding pocket 0 0 1 1 8,9,12,13,16,46,105,106,108,109,110,113,129,132,133,136,215,218,219,222,223,224,227,255,259,314,315,319,323,339,342,343,346,347,350 5 -341039 cd17486 MFS_AmpG_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,45,104,105,107,108,109,112,128,131,132,135,216,219,220,223,224,225,228,256,260,317,318,322,326,342,345,346,349,350,353 5 -341040 cd17487 MFS_MFSD5_like 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,103,104,106,107,108,111,133,136,137,140,219,222,223,226,227,228,231,258,262,315,316,320,324,337,340,341,344,345,348 5 -341041 cd17488 MFS_UhpC 1 putative chemical substrate binding pocket 0 0 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,191,194,195,198,199,200,203,231,235,289,290,294,298,314,317,318,321,322,325 5 -341042 cd17489 MFS_YfcJ_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,202,205,206,209,210,211,214,239,243,292,293,297,301,317,320,321,324,325,328 5 -341043 cd17490 MFS_YxlH_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,98,99,101,102,103,106,125,128,129,132,203,206,207,210,211,212,215,242,246,296,297,301,305,321,324,325,328,329,332 5 -341044 cd17491 MFS_MFSD12 1 putative chemical substrate binding pocket 0 0 1 1 10,11,14,15,18,51,119,120,122,123,124,127,148,151,152,155,252,255,256,259,260,261,264,294,298,348,349,353,357,375,378,379,382,383,386 5 -341212 cd17492 toxin_CptN 1 RNA binding site 0 1 1 0 18,19,20,21,22,24,29,30,31,50,51,52,53,56,57,60,63,64,70,71,72,73,78,81,82,84,87,89,90,101,103,104,105,108,111,113,114,115,122,125,126,129,130,132,133,135,136,137,138,139 3 -341185 cd17494 RMtype1_S_Sma198ORF994P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 92,95,96,99,125,127,137,140,141,144,145,148,151,152,154,155,156,157,158,159,161,162,163,164,165 2 -341186 cd17495 RMtype1_S_Cep9333ORF4827P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 94,97,98,101,128,130,140,143,144,147,148,151,154,155,157,158,159,160,161,162,164,165,166,167,168 2 -341187 cd17496 RMtype1_S_BliBORF2384P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 96,99,100,103,129,131,141,144,145,148,149,152,155,156,158,159,160,161,162,163,165,166,167,168,169 2 -341188 cd17497 RMtype1_S_TteMORF1547P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 95,98,99,102,128,130,140,143,144,147,148,151,154,155,157,158,159,160,161,162,164,165,166,167,168 2 -341189 cd17498 RMtype1_S_Aco12261I-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 94,97,98,101,127,129,139,142,143,146,147,150,153,154,156,157,158,159,160,161,163,164,165,166,167 2 -341190 cd17499 RMtype1_S_CloLW9ORF3270P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 96,99,100,103,129,131,141,144,145,148,149,152,155,156,158,159,160,161,162,163,165,166,167,168,169 2 -341191 cd17500 RMtype1_S_MmaGORF2198P_TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,110,113,145,146,147,150,151,154,155,158,159,162,166,168,169,172,173,175,176,179 2 -341192 cd17501 RMtype1_S_Vch69ORF1407P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 114,115,118,150,151,152,155,156,159,160,163,164,167,171,173,174,177,178,180,181,184 2 -341045 cd17502 MFS_Azr1_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,46,96,97,99,100,101,104,124,127,128,131,175,178,179,182,183,184,187,215,219,272,273,277,281,297,300,301,304,305,308 5 -341046 cd17503 MFS_LmrB_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,186,189,190,193,194,195,198,226,230,282,283,287,291,307,310,311,314,315,318 5 -341047 cd17504 MFS_MMR_MDR_like 1 putative chemical substrate binding pocket 0 0 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,185,188,189,192,193,194,197,229,233,283,284,288,292,308,311,312,315,316,319 5 -340762 cd17505 Ubl_SAMP1_like 1 heterodimer interface 0 1 1 1 54,56,83,84,85,86,87,88 2 -340762 cd17505 Ubl_SAMP1_like 2 lysine/di-glycine KGG 0 1 1 3,88,89 7 -341225 cd17508 Alpha_kinase 1 ATP binding site 0 0 1 0 26,27,28,29,30,31,33,56,58,108,129,130,131,132,190,192,206 5 -341226 cd17509 Alpha_kinase 1 ATP binding site 0 0 1 0 36,37,38,39,40,41,43,59,61,104,127,128,129,130,172,174,186 5 -341226 cd17509 Alpha_kinase 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 198,199,200,201,202,203 1 -341121 cd17510 T3SC_YbjN-like_2 1 putative tetramer interface 0 1 0 0 47,48,78,81,82,85,86,88,89,90,91,108,109,110,112,118 2 -341122 cd17511 YbjN_AmyR-like 1 dimer interface 0 1 1 0 41,44,46,64,65,68,69,71,72,73,74,75,77,78,88,89,91,94,95,96,100,103,107 2 -341193 cd17512 RMtype1_S_BceB55ORF5615P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 115,118,119,121,122,151,153,159,163,166,167,170,171,184,185,188,190,191,192,193 2 -341194 cd17513 RMtype1_S_AveSPN6ORF1907P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 105,106,108,109,136,138,144,148,151,152,155,165,166,169,170,173,175,176 2 -341195 cd17514 RMtype1_S_Eco2747I_MmaC7ORF19P-TRD-CR_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 111,112,114,115,140,142,148,152,155,156,159,170,171,174,175,178,180,181 2 -341196 cd17515 RMtype1_S_MjaORF132P_Sau1132ORF3780P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,106,109,141,142,143,146,147,150,151,154,155,158,162,164,165,168,169,171,172,175 2 -341197 cd17516 RMtype1_S_HinAWORF1578P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 106,109,110,112,113,138,140,146,150,153,154,157,158,160,167,168,171,172,175,177,178,179,180 2 -341198 cd17517 RMtype1_S_EcoKI_StySPI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,147,149,155,159,162,163,166,167,169,170,177,181,184,186,187 2 -341198 cd17517 RMtype1_S_EcoKI_StySPI-TRD2-CR2_like 2 DNA binding site 0 1 1 1 10,11,12,13,31,32,36,57,58,59,70,71,72,95,96 3 -341198 cd17517 RMtype1_S_EcoKI_StySPI-TRD2-CR2_like 3 HsdM interface 0 1 1 1 122,123,124,126,127,128,129,130,131,132,141 2 -341199 cd17518 RMtype1_S_Asp27244ORF1181P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,110,112,113,142,144,150,154,157,158,161,168,169,172,173,176,178,179 2 -341200 cd17519 RMtype1_S_HpyCR35ORFAP-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,110,112,113,139,141,147,151,154,155,158,168,169,172,173,176,178,179 2 -341201 cd17520 RMtype1_S_HmoORF3075P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 104,105,107,108,137,139,145,149,152,153,156,167,168,171,172,175,177,178 2 -341202 cd17521 RMtype1_S_Sau13435ORF2165P_TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 107,110,111,113,114,142,144,150,154,157,158,161,162,164,165,172,176,179,181,182 2 -341202 cd17521 RMtype1_S_Sau13435ORF2165P_TRD2-CR2_like 2 putative DNA binding site 0 0 1 1 10,11,12,13,31,32,36,56,57,58,69,70,71,91,92 3 -341202 cd17521 RMtype1_S_Sau13435ORF2165P_TRD2-CR2_like 3 putative HsdM interface 0 0 1 1 118,119,120,122,123,124,125,126,127,128,136 2 -341203 cd17522 RMtype1_S_MjaORF1531P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,112,113,115,116,145,147,153,157,160,161,164,165,167,168,175,179,182,184,185 2 -341203 cd17522 RMtype1_S_MjaORF1531P-TRD1-CR1_like 2 putative DNA binding site 0 0 1 1 10,11,12,13,31,32,36,56,57,58,69,70,71,93,94 3 -341203 cd17522 RMtype1_S_MjaORF1531P-TRD1-CR1_like 3 putative HsdM interface 0 0 1 1 120,121,122,124,125,126,127,128,129,130,139 2 -341204 cd17523 RMtype1_S_StySPI-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,112,113,115,116,145,147,153,157,160,161,164,165,167,168,175,179,182,184,185 2 -341204 cd17523 RMtype1_S_StySPI-TRD2-CR2_like 2 putative DNA binding site 0 0 1 1 12,13,14,15,31,32,36,56,57,58,69,70,71,93,94 3 -341204 cd17523 RMtype1_S_StySPI-TRD2-CR2_like 3 putative HsdM interface 0 0 1 1 120,121,122,124,125,126,127,128,129,130,139 2 -341205 cd17524 RMtype1_S_EcoUTORF5051P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 108,111,112,114,115,144,146,152,156,159,160,163,164,166,167,174,178,181,183,184 2 -341205 cd17524 RMtype1_S_EcoUTORF5051P-TRD2-CR2_like 2 putative DNA binding site 0 0 1 1 10,11,12,13,31,32,36,56,57,58,69,70,71,92,93 3 -341205 cd17524 RMtype1_S_EcoUTORF5051P-TRD2-CR2_like 3 putative HsdM interface 0 0 1 1 119,120,121,123,124,125,126,127,128,129,138 2 -341206 cd17525 RMtype1_S_Eco15ORF14057P-TRD1-CR1_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 109,112,113,115,116,145,147,153,157,160,161,164,165,167,168,175,179,182,184,185 2 -341206 cd17525 RMtype1_S_Eco15ORF14057P-TRD1-CR1_like 2 putative DNA binding site 0 0 1 1 10,11,12,13,31,32,36,57,58,59,70,71,72,94,95 3 -341206 cd17525 RMtype1_S_Eco15ORF14057P-TRD1-CR1_like 3 putative HsdM interface 0 0 1 1 120,121,122,124,125,126,127,128,129,130,139 2 -341207 cd17526 RMtype1_S_Cje2232P-TRD2-CR2_like 1 putative TRD-CR/TRD-CR interface 0 0 1 1 114,117,118,120,121,146,148,154,158,161,162,165,166,168,169,176,180,183,185,186 2 -341207 cd17526 RMtype1_S_Cje2232P-TRD2-CR2_like 2 putative DNA binding site 0 0 1 1 10,11,12,13,32,33,37,58,59,60,71,72,73,94,95 3 -341207 cd17526 RMtype1_S_Cje2232P-TRD2-CR2_like 3 putative HsdM interface 0 0 1 1 125,126,127,129,130,131,132,133,134,135,140 2 -341285 cd17630 OSB_MenE-like 1 putative active site 0 0 1 0 7,47,48,92,94,95,98,118,119,139,140,141,142,143,144,210,222,225,233,234,235,236,295 1 -341285 cd17630 OSB_MenE-like 2 AMP binding site 0 1 1 0 47,52,90,91,116,117,118,119,140,141,142,143,144,163,210,222,225,314 5 -341285 cd17630 OSB_MenE-like 3 CoA binding site 0 0 1 1 47,94,95,98,118,233,234,235,289,295 5 -341285 cd17630 OSB_MenE-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341286 cd17631 FACL_FadD13-like 1 putative active site 0 0 1 0 105,145,146,193,195,196,199,220,221,241,242,243,244,245,246,325,337,340,348,349,350,351,412 1 -341286 cd17631 FACL_FadD13-like 2 putative AMP binding site 0 0 1 0 105,220,221,241,242,243,244,245,246,325,337,340,351,431 5 -341286 cd17631 FACL_FadD13-like 3 putative CoA binding site 0 0 1 1 145,195,196,199,220,348,349,350,406,412 5 -341286 cd17631 FACL_FadD13-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 102,105,106,107,108,109,110,112,113 0 -341287 cd17632 AFD_CAR-like 1 putative active site 0 0 1 0 230,271,272,318,320,321,324,360,361,391,392,393,394,395,396,469,481,484,493,494,495,496,565 1 -341287 cd17632 AFD_CAR-like 2 putative AMP binding site 0 0 1 0 230,360,361,391,392,393,394,395,396,469,481,484,496,583 5 -341287 cd17632 AFD_CAR-like 3 putative CoA binding site 0 0 1 1 271,320,321,324,360,493,494,495,550,565 5 -341287 cd17632 AFD_CAR-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 227,230,231,232,233,234,235,237,238 0 -341288 cd17633 AFD_YhfT-like 1 putative active site 0 0 1 0 7,47,48,94,96,97,100,117,118,140,141,142,143,144,145,213,225,228,236,237,238,239,297 1 -341288 cd17633 AFD_YhfT-like 2 putative AMP binding site 0 0 1 0 7,117,118,140,141,142,143,144,145,213,225,228,239,316 5 -341288 cd17633 AFD_YhfT-like 3 putative CoA binding site 0 0 1 1 47,96,97,100,117,236,237,238,291,297 5 -341288 cd17633 AFD_YhfT-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341289 cd17634 ACS-like 1 active site 0 1 1 0 139,170,172,280,334,335,338,361,362,386,387,388,389,390,391,475,487,490,498,499,500,501,559,565 1 -341289 cd17634 ACS-like 2 AMP binding site 0 1 1 0 361,362,386,387,388,389,390,391,475,487,490,501 5 -341289 cd17634 ACS-like 3 CoA binding site 0 1 1 1 280,334,335,338,361,498,499,500,559,565 5 -341289 cd17634 ACS-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 236,239,240,241,242,243,244,246,247 0 -341290 cd17635 FADD10 1 putative active site 0 0 1 0 8,49,50,97,99,100,103,124,125,146,147,148,149,150,151,229,241,244,252,253,254,255,317 1 -341290 cd17635 FADD10 2 putative AMP binding site 0 1 1 0 8,124,125,146,147,148,149,150,151,229,241,244,255,336 5 -341290 cd17635 FADD10 3 putative CoA binding site 0 0 1 1 49,99,100,103,124,252,253,254,303,317 5 -341290 cd17635 FADD10 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 5,8,9,10,11,12,13,15,16 0 -341291 cd17636 PtmA 1 putative active site 0 0 1 0 7,47,48,94,96,97,100,121,122,140,141,142,143,144,145,222,234,237,245,246,247,248,309 1 -341291 cd17636 PtmA 2 AMP binding site 0 1 1 0 7,121,122,140,141,142,143,144,145,222,234,237,248,328 5 -341291 cd17636 PtmA 3 putative CoA binding site 0 0 1 1 47,96,97,100,121,245,246,247,303,309 5 -341291 cd17636 PtmA 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341291 cd17636 PtmA 5 homodimer interface 0 1 0 0 29,32,33,134,157,158,166,167,171,172,173,174,194,198,199,200,213,226,229,230 2 -341292 cd17637 ACLS-CaiC 1 putative active site 0 0 1 0 7,47,48,94,96,97,100,121,122,140,141,142,143,144,145,221,233,236,246,247,248,249,310 1 -341292 cd17637 ACLS-CaiC 2 putative AMP binding site 0 0 1 0 7,121,122,140,141,142,143,144,145,221,233,236,249,329 5 -341292 cd17637 ACLS-CaiC 3 putative CoA binding site 0 0 1 1 47,96,97,100,121,246,247,248,304,310 5 -341292 cd17637 ACLS-CaiC 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341292 cd17637 ACLS-CaiC 5 homodimer interface 0 1 0 0 25,26,29,32,33,63,165,166,167,170,171,193,197,198,212,215,216,217 2 -341293 cd17638 FadD3 1 putative active site 0 0 1 0 7,47,48,95,97,98,101,122,123,145,146,147,148,149,150,220,232,235,243,244,245,246,307 1 -341293 cd17638 FadD3 2 putative AMP binding site 0 0 1 0 7,122,123,145,146,147,148,149,150,220,232,235,246,326 5 -341293 cd17638 FadD3 3 putative CoA binding site 0 0 1 1 47,97,98,101,122,243,244,245,301,307 5 -341293 cd17638 FadD3 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341294 cd17639 LC_FACS_euk1 1 putative active site 0 0 1 1 95,137,138,189,191,192,195,218,219,278,279,280,281,282,283,364,376,379,388,389,390,391,475 1 -341294 cd17639 LC_FACS_euk1 2 putative AMP binding site 0 0 1 1 95,218,219,278,279,280,281,282,283,364,376,379,391,498 5 -341294 cd17639 LC_FACS_euk1 3 putative CoA binding site 0 0 1 1 137,191,192,195,218,388,389,390,473,475 5 -341294 cd17639 LC_FACS_euk1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341295 cd17640 LC_FACS_like 1 putative active site 0 0 1 1 95,135,136,179,181,182,185,208,209,241,242,243,244,245,246,325,337,340,349,350,351,352,437 1 -341295 cd17640 LC_FACS_like 2 putative AMP binding site 0 0 1 1 95,208,209,241,242,243,244,245,246,325,337,340,352,459 5 -341295 cd17640 LC_FACS_like 3 putative CoA binding site 0 0 1 1 135,181,182,185,208,349,350,351,431,437 5 -341295 cd17640 LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341296 cd17641 LC_FACS_bac1 1 putative active site 0 0 1 1 165,205,206,251,253,254,257,280,281,352,353,354,355,356,357,425,437,440,449,450,451,452,533 1 -341296 cd17641 LC_FACS_bac1 2 putative AMP binding site 0 0 1 1 165,280,281,352,353,354,355,356,357,425,437,440,452,556 5 -341296 cd17641 LC_FACS_bac1 3 putative CoA binding site 0 0 1 1 205,253,254,257,280,449,450,451,520,533 5 -341296 cd17641 LC_FACS_bac1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 162,165,166,167,168,169,170,172,173 0 -341297 cd17642 Firefly_Luc 1 AMP binding site 0 1 1 1 238,309,310,311,332,333,334,335,336,415,427,430,432,434,436,441 5 -341297 cd17642 Firefly_Luc 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 188,191,192,193,194,195,196,198,199 0 -341298 cd17643 A_NRPS_Cytc1-like 1 AMP binding site 0 1 1 0 100,101,218,219,242,243,244,245,246,247,271,337,349,352,443 5 -341298 cd17643 A_NRPS_Cytc1-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341299 cd17644 A_NRPS_ApnA-like 1 AMP binding site 0 1 1 0 113,114,232,233,255,256,257,258,259,260,284,351,363,366,457 5 -341299 cd17644 A_NRPS_ApnA-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341300 cd17645 A_NRPS_LgrA-like 1 AMP binding site 0 0 1 0 111,112,223,224,238,239,240,241,242,243,263,328,340,343,432 5 -341300 cd17645 A_NRPS_LgrA-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 108,111,112,113,114,115,116,118,119 0 -341301 cd17646 A_NRPS_AB3403-like 1 AMP binding site 0 1 1 0 189,190,191,215,235,260,261,262,263,282,283,284,285,286,287,291,292,309,374,386,389,395,397,398,399,400 5 -341301 cd17646 A_NRPS_AB3403-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 142,145,146,147,148,149,150,152,153 0 -341302 cd17647 A_NRPS_alphaAR 1 AMP binding site 0 0 1 0 116,117,231,232,253,254,255,256,257,258,288,377,389,392,510 5 -341302 cd17647 A_NRPS_alphaAR 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 113,116,117,118,119,120,121,123,124 0 -341303 cd17648 A_NRPS_ACVS-like 1 AMP binding site 0 0 1 0 101,102,215,216,236,237,238,239,240,241,262,335,347,350,445 5 -341303 cd17648 A_NRPS_ACVS-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 98,101,102,103,104,105,106,108,109 0 -341304 cd17649 A_NRPS_PvdJ-like 1 AMP binding site 0 0 1 0 101,102,220,221,240,241,242,243,244,245,269,335,347,350,442 5 -341304 cd17649 A_NRPS_PvdJ-like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 98,101,102,103,104,105,106,108,109 0 -341305 cd17650 A_NRPS_PpsD_like 1 AMP binding site 0 0 1 1 100,101,219,220,242,243,244,245,246,247,271,336,348,351,440 5 -341305 cd17650 A_NRPS_PpsD_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341306 cd17651 A_NRPS_VisG_like 1 AMP binding site 0 0 1 0 143,144,261,262,284,285,286,287,288,289,312,377,389,392,483 5 -341306 cd17651 A_NRPS_VisG_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 140,143,144,145,146,147,148,150,151 0 -341307 cd17652 A_NRPS_CmdD_like 1 AMP binding site 0 0 1 0 100,101,212,213,231,232,233,234,235,236,256,322,334,337,428 5 -341307 cd17652 A_NRPS_CmdD_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341308 cd17653 A_NRPS_GliP_like 1 AMP binding site 0 0 1 0 112,113,217,218,236,237,238,239,240,241,260,325,337,340,424 5 -341308 cd17653 A_NRPS_GliP_like 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 109,112,113,114,115,116,117,119,120 0 -341309 cd17654 A_NRPS_acs4 1 AMP binding site 0 0 1 0 125,126,246,247,269,270,271,272,273,274,294,344,355,358,442 5 -341309 cd17654 A_NRPS_acs4 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 122,125,126,127,128,129,130,132,133 0 -341310 cd17655 A_NRPS_Bac 1 AMP binding site 0 1 1 0 144,188,259,260,282,283,284,285,286,287,288,310,375,387,390,479 5 -341310 cd17655 A_NRPS_Bac 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 141,144,145,146,147,148,149,151,152 0 -341311 cd17656 A_NRPS_ProA 1 AMP binding site 0 0 1 0 135,136,253,254,275,276,277,278,279,280,302,367,379,382,471 5 -341311 cd17656 A_NRPS_ProA 2 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 132,135,136,137,138,139,140,142,143 0 -350496 cd17658 PTPc_plant_PTP1 1 catalytic site CR 0 1 1 149,155 1 -350496 cd17658 PTPc_plant_PTP1 2 active site xxCxxxxxRx 0 1 1 118,119,149,150,151,152,153,154,155,195 1 -350497 cd17659 PTP_paladin_1 1 catalytic site CR 0 1 1 139,145 1 -350497 cd17659 PTP_paladin_1 2 active site CxxxxxR 0 1 1 139,140,141,142,143,144,145 1 -350498 cd17660 PTP_paladin_2 1 catalytic site CR 0 1 1 143,149 1 -350498 cd17660 PTP_paladin_2 2 active site CxxxxxR 0 1 1 143,144,145,146,147,148,149 1 -350502 cd17664 Mce1_N 1 active site CxxxxxRxx 0 1 1 117,118,119,120,121,122,123,124,157 1 -350502 cd17664 Mce1_N 2 catalytic site CR 0 1 1 117,123 1 -350503 cd17665 DSP_DUSP11 1 active site CxxxxxRxx 1 1 1 119,120,121,122,123,124,125,126,159 1 -350503 cd17665 DSP_DUSP11 2 catalytic site CR 0 1 1 119,125 1 -350504 cd17666 PTP-MTM-like_fungal 1 catalytic site CR 0 1 1 163,169 1 -350504 cd17666 PTP-MTM-like_fungal 2 active site xxxxxxCxxxxxRxx 0 1 1 21,62,70,73,97,98,163,164,165,166,167,168,169,205,209 1 -350505 cd17667 R-PTPc-G-1 1 catalytic site CR 0 1 1 212,218 1 -350505 cd17667 R-PTPc-G-1 2 active site xxCxxxxxRx 0 1 1 180,181,212,213,214,215,216,217,218,256 1 -350506 cd17668 R-PTPc-Z-1 1 catalytic site CR 0 1 1 151,157 1 -350506 cd17668 R-PTPc-Z-1 2 active site xxCxxxxxRx 0 1 1 119,120,151,152,153,154,155,156,157,195 1 -349491 cd17672 MDM2 1 p53 binding site 0 1 1 0 29,32,33,36,37,42,47,68,69,71,74,75 2 -349492 cd17673 MDM4 1 p53 binding site 0 1 1 0 24,27,28,31,32,37,42,43,45,63,66,69,70 2 -349493 cd17674 SWIB_BAF60A 1 putative peptide binding site 0 0 1 1 19,22,23,25,26,29,30,35,40,41,43,60,63,64 2 -349494 cd17675 SWIB_BAF60B 1 putative peptide binding site 0 0 1 1 22,25,26,28,29,32,33,38,43,44,46,63,66,67 2 -349495 cd17676 SWIB_BAF60C 1 putative peptide binding site 0 0 1 1 16,19,20,22,23,26,27,32,37,38,40,57,60,61 2 -350658 cd17706 MCM 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,273,274 5 -350658 cd17706 MCM 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,244,246,256,260,261,272,273,276,277,280 2 -349340 cd17707 BRCT_XRCC1_rpt2 1 homodimer interface 0 1 1 0 52,57,60,64,66,85,87,88,90,92,93 2 -349340 cd17707 BRCT_XRCC1_rpt2 2 heterodimer interface 0 1 1 0 22,26,29,30,31,32,34,81 2 -349340 cd17707 BRCT_XRCC1_rpt2 3 BRCT sequence motif WC 0 1 1 73,77 0 -349341 cd17709 BRCT_pescadillo_like 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349342 cd17710 BRCT_PAXIP1_rpt2 1 BRCT sequence motif W[SC] 0 1 1 67,71 0 -349343 cd17711 BRCT_PAXIP1_rpt3 1 BRCT sequence motif W[SC] 0 1 1 67,71 0 -349344 cd17712 BRCT_PAXIP1_rpt5 1 BRCT sequence motif W[SC] 0 1 1 63,67 0 -349345 cd17713 BRCT_polymerase_mu_like 1 BRCT sequence motif W[SC] 0 1 1 75,79 0 -349346 cd17714 BRCT_PAXIP1_rpt1 1 BRCT sequence motif WS 0 1 1 63,67 0 -349347 cd17715 BRCT_polymerase_lambda 1 BRCT sequence motif WC 0 1 1 68,72 0 -349348 cd17716 BRCT_microcephalin_rpt1 1 BRCT sequence motif W[SC] 0 1 1 66,70 0 -349349 cd17717 BRCT_DNA_ligase_IV_rpt2 1 XRCC4 interaction site 0 1 1 1 1,22,23,24,26,27,30,31,33,34,82,85,86 2 -349349 cd17717 BRCT_DNA_ligase_IV_rpt2 2 BRCT sequence motif WS 0 1 1 80,84 0 -349350 cd17718 BRCT_TopBP1_rpt3 1 BRCT sequence motif W[CS] 0 1 1 73,77 0 -349351 cd17719 BRCT_Rev1 1 BRCT sequence motif W[SC] 0 1 1 68,72 0 -349352 cd17720 BRCT_Bard1_rpt2 1 BRCT sequence motif W[SC] 0 1 1 91,95 0 -349353 cd17721 BRCT_BRCA1_rpt2 1 ACC1 interaction site 0 1 1 1 16,17,77,78,82,94,95 2 -349353 cd17721 BRCT_BRCA1_rpt2 2 metal binding site H 1 1 0 47 4 -349353 cd17721 BRCT_BRCA1_rpt2 3 BRCT sequence motif W[SC] 0 1 1 79,83 0 -349354 cd17722 BRCT_DNA_ligase_IV_rpt1 1 BRCT sequence motif W[SC] 0 1 1 69,73 0 -349355 cd17723 BRCT_Rad4_rpt4 1 BRCT sequence motif W[CS] 0 1 1 65,69 0 -349356 cd17724 BRCT_p53bp1_rpt2 1 peptide binding site 0 1 1 1 19,80 2 -349356 cd17724 BRCT_p53bp1_rpt2 2 BRCT sequence motif W[SC] 0 1 1 78,82 0 -349357 cd17725 BRCT_XRCC1_rpt1 1 BRCT sequence motif W[SC] 0 1 1 63,67 0 -349359 cd17727 BRCT_TopBP1_rpt6 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349361 cd17729 BRCT_CTDP1 1 BRCT sequence motif W[SC] 0 1 1 83,87 0 -349362 cd17730 BRCT_PAXIP1_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349363 cd17731 BRCT_TopBP1_rpt2_like 1 Crb2 interaction site 0 1 1 1 9,10,11,12,13,17,33,34,35,36,37,50,51,54,58,59 2 -349363 cd17731 BRCT_TopBP1_rpt2_like 2 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349364 cd17732 BRCT_Ect2_rpt2 1 dimer interface 0 1 0 0 10,11,12,13,15,32,33,45,46,48,49,50,51,52 2 -349364 cd17732 BRCT_Ect2_rpt2 2 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349365 cd17733 BRCT_Ect2_rpt1 1 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349366 cd17734 BRCT_Bard1_rpt1 1 BRCT sequence motif W[SC] 0 1 1 68,72 0 -349367 cd17735 BRCT_BRCA1_rpt1 1 ACC1 interaction site 0 1 1 1 4,5,6,8,48,49,50,51,52,54,90 2 -349367 cd17735 BRCT_BRCA1_rpt1 2 BRCT sequence motif W[SC] 0 1 1 68,72 0 -349368 cd17736 BRCT_microcephalin_rpt2 1 BRCT sequence motif W[SC] 0 1 1 64,68 0 -349369 cd17737 BRCT_TopBP1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349370 cd17738 BRCT_TopBP1_rpt7 1 BACH1 interaction site 0 1 1 1 5,6,7,8,9,13,44,46,47,48,49,50 2 -349371 cd17740 BRCT_Rad4_rpt1 1 Crb2 interaction site 0 1 1 1 11,12,13,14,48,49,50 2 -349371 cd17740 BRCT_Rad4_rpt1 2 BRCT sequence motif W[SC] 0 1 1 69,73 0 -349373 cd17742 BRCT_CHS5_like 1 BRCT sequence motif WC 0 1 1 65,69 0 -349374 cd17743 BRCT_BRC1_like_rpt5 1 BRCT sequence motif W[CS] 0 1 1 61,65 0 -349375 cd17744 BRCT_MDC1_rpt1 1 histone H2AX interaction site 0 1 1 1 5,6,40,41,42,44 2 -349375 cd17744 BRCT_MDC1_rpt1 2 BRCT sequence motif W[CS] 0 1 1 60,64 0 -349376 cd17745 BRCT_p53bp1_rpt1 1 p53 interaction site 0 1 1 0 86,88,92,95 2 -349376 cd17745 BRCT_p53bp1_rpt1 2 gamma-H2A interaction site 0 1 1 0 9,10,69,70,71,72,73 2 -349376 cd17745 BRCT_p53bp1_rpt1 3 BRCT sequence motif W[SC] 0 1 1 89,93 0 -349377 cd17746 BRCT_Rad4_rpt2 1 Crb2 interaction site 0 1 1 1 13,14,15,16,17,21,37,38,39,40,41,54,55,58,62,63 2 -349377 cd17746 BRCT_Rad4_rpt2 2 BRCT sequence motif W[SC] 0 1 1 71,75 0 -349378 cd17747 BRCT_PARP1 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349379 cd17748 BRCT_DNA_ligase_like 1 DNA binding site 0 1 1 0 7,8,9,16,29,30,31,32,33,45,46,47,48 3 -349380 cd17749 BRCT_TopBP1_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349382 cd17751 BRCT_microcephalin_rpt3 1 BRCT sequence motif W[SC] 0 1 1 64,68 0 -349383 cd17752 BRCT_RFC1 1 DNA binding site 0 1 1 0 12,13,14,21,34,35,36,37,38,50,51,52,53,54,55,56,59 3 -350659 cd17753 MCM2 1 ATP binding site 0 1 1 1 9,50,51,52,53,54,55,112,180,199,287,288 5 -350659 cd17753 MCM2 2 oligomer interface 0 1 1 0 29,34,35,48,49,50,66,82,87,88,89,92,93,94,95,96,101,102,122,125,126,129,130,133,134,135,136,137,138,139,140,141,142,144,145,158,159,160,190,191,193,196,197,199,200,203,204,206,207,208,209,210,258,260,267,270,274,275,283,286,287,291,294 2 -350659 cd17753 MCM2 3 nucleic acid binding site 0 1 1 0 78,83,85,137,138 3 -350660 cd17754 MCM3 1 ATP binding site 0 1 1 1 8,9,10,49,50,51,52,53,54,55,129,180,261,262,265 5 -350660 cd17754 MCM3 2 oligomer interface 0 1 1 0 5,7,8,9,29,33,34,35,36,37,49,54,55,58,59,62,68,69,70,71,73,75,88,89,95,97,102,104,105,112,122,125,126,130,134,136,137,141,142,143,145,158,175,179,196,197,199,200,203,204,206,207,208,210,228,233,236,237,241,244,245,260,262,264,268 2 -350660 cd17754 MCM3 3 nucleic acid binding site 0 1 1 0 76,82,83,85,86,137 3 -350661 cd17755 MCM4 1 ATP binding site 0 1 1 1 8,9,10,50,51,52,53,54,55,56,130,181,200,204,271,272 5 -350661 cd17755 MCM4 2 oligomer interface 0 1 1 0 7,29,50,51,56,59,63,70,71,72,74,75,77,78,80,84,89,96,97,98,102,105,113,116,123,126,127,131,135,137,138,139,141,142,143,144,146,156,160,161,177,190,197,198,201,205,206,208,209,241,246,249,250,253,257,270,271,274,275,278 2 -350661 cd17755 MCM4 3 nucleic acid binding site 0 1 1 0 77,79,84,89,138,139 3 -350662 cd17756 MCM5 1 ATP binding site 0 1 1 1 8,9,10,49,50,51,52,53,54,55,130,180,199,206,279,280 5 -350662 cd17756 MCM5 2 oligomer interface 0 1 1 0 8,29,31,32,33,34,35,37,48,49,50,54,55,58,69,71,75,76,77,78,86,87,88,92,93,94,95,96,97,98,101,102,112,119,126,130,132,134,136,137,138,141,142,143,159,173,176,180,189,191,196,200,204,205,207,208,209,225,243,248,249,252,255,256,259,260,279,282,286 2 -350662 cd17756 MCM5 3 nucleic acid binding site 0 1 1 0 84,86,137,138 3 -350663 cd17757 MCM6 1 ATP binding site 0 1 1 1 8,9,10,49,50,51,52,53,54,270 5 -350663 cd17757 MCM6 2 oligomer interface 0 1 1 0 30,31,37,49,50,58,69,70,71,73,74,75,76,78,79,93,95,96,98,99,101,104,111,112,115,138,139,140,141,143,144,145,191,196,200,203,204,206,207,208,242,246,249,250,253,254,264,265,266,268,269,272,273,276 2 -350663 cd17757 MCM6 3 nucleic acid binding site 0 1 1 0 78,83,84,86,117,137,138 3 -350664 cd17758 MCM7 1 ATP binding site 0 1 1 1 8,9,10,48,49,50,51,52,53,54,179,202,269 5 -350664 cd17758 MCM7 2 oligomer interface 0 1 1 0 8,32,33,34,48,53,54,57,61,68,70,72,74,77,78,85,88,91,92,94,96,103,111,114,117,121,124,125,128,133,134,135,136,137,140,141,143,144,146,158,159,175,178,188,190,192,195,196,199,202,203,206,207,209,221,237,238,239,240,243,247,250,251,254,255,267,268,269,275 2 -350664 cd17758 MCM7 3 nucleic acid binding site 0 1 1 0 77,136,137 3 -350665 cd17759 MCM8 1 putative ATP binding site 0 0 1 1 9,52,54,55,56,57,114,181,200,251,252 5 -350666 cd17760 MCM9 1 putative ATP binding site 0 0 1 1 9,50,52,53,54,55,110,177,196,261,262 5 -350667 cd17761 MCM_arch 1 putative ATP binding site 0 0 1 1 10,51,53,54,55,56,113,181,200,270,271 5 -350667 cd17761 MCM_arch 2 oligomer interface 0 1 1 1 7,8,29,31,33,34,37,52,56,57,60,61,131,142,161,190,191,192,193,195,196,199,202,203,205,206,207,226,240,245,249,256,257,271,278,283 2 -350162 cd17762 AMN 1 active site 0 1 1 1 26,27,28,31,65,68,89,90,91,92,93,94,157,159,160,180,181,182,183,202,205,206,207,224,225 1 -350162 cd17762 AMN 2 homohexamer interface 0 1 1 1 3,7,10,11,29,33,67,70,73,74,77,78,96,97,98,101,102,109,110,111,112,116,117,120,121,124,125,126,127,129,149,150,151,158,159,160,161,163,164,165,166,171,172,173,174,175,176,177,182,192,193,208,209,211,212,213,215,219,220,222,223 2 -350163 cd17763 UP_hUPP-like 1 active site 0 1 1 1 28,29,30,33,64,80,108,109,110,111,112,113,183,187,189,217,218,219,220,243,251 1 -350163 cd17763 UP_hUPP-like 2 homodimer interface 0 1 1 1 4,5,29,64,65,80,83,84,86,87,90,91,93,94,131,132,139,140,141,142,143,148,181,182,183,184,185,186,188,190,191,192,193,194,195,196,197,199,201,205,219,227,230,231 2 -350163 cd17763 UP_hUPP-like 3 phosphate binding site 0 1 1 1 28,29,30,33,64,108,109,110,111 4 -350164 cd17764 MTAP_SsMTAPI_like 1 active site 0 1 1 1 6,10,71,72,73,74,75,76,144,147,163,164,165,166 1 -350164 cd17764 MTAP_SsMTAPI_like 2 phosphate binding site 0 1 1 1 6,10,28,71,72,73,74 4 -350164 cd17764 MTAP_SsMTAPI_like 3 homohexamer interface 0 1 1 1 7,8,10,30,49,50,52,53,56,59,60,74,91,93,94,95,96,97,98,100,102,103,104,105,109,110,111,113,116,120,135,137,139,141,142,143,144,145,146,155,157,158,165,175,176 2 -350165 cd17765 PNP_ThPNP_like 1 active site 0 1 1 1 3,18,19,20,23,42,63,85,86,87,88,89,90,154,157,176,177,178,179,201,202,204 1 -350165 cd17765 PNP_ThPNP_like 2 homohexamer interface 0 1 1 1 2,3,19,20,21,42,43,44,63,64,66,67,70,73,74,77,105,107,108,109,113,116,117,121,122,123,124,125,126,127,129,130,133,136,148,150,154,155,156,157,158,168,170,171,172,178,185,188,189 2 -350165 cd17765 PNP_ThPNP_like 3 purine nucleoside binding site 0 1 1 1 3,42,63,85,88,89,90,154,157,176,177,178,179,201,202,204 5 -350165 cd17765 PNP_ThPNP_like 4 phosphate binding site 0 1 1 1 18,19,20,23,42,85,86,87,88,179 4 -350166 cd17766 futalosine_nucleosidase_MqnB 1 putative active site 0 0 1 1 6,41,66,67,68,144,145,163,164,166,167,186,189,190,203 1 -350167 cd17767 UP_EcUdp-like 1 active site 0 1 1 1 17,18,21,60,82,83,84,85,86,87,153,183,184,185,186,208,209 1 -350167 cd17767 UP_EcUdp-like 2 homohexamer interface 0 1 1 0 0,1,17,18,19,21,39,40,41,59,60,61,63,64,66,67,70,71,73,74,102,103,104,105,106,107,109,110,112,113,114,119,120,121,122,125,128,129,146,150,151,152,153,154,174,175,177,178,185,195,196,197 2 -350167 cd17767 UP_EcUdp-like 3 pyrimidine nucleoside binding site 0 1 1 1 60,82,85,86,87,153,183,184,185,186,208,209 5 -350167 cd17767 UP_EcUdp-like 4 phosphate binding site 0 1 1 1 16,17,18,21,82,83,84,85,186 4 -350168 cd17768 adenosylhopane_nucleosidase_HpnG-like 1 putative active site 0 0 1 1 6,32,54,55,56,110,111,130,131,132,133,152,155,156,172 1 -350169 cd17769 NP_TgUP-like 1 putative active site 0 0 1 1 5,6,7,10,50,53,76,77,78,79,80,81,158,160,161,176,193,194,195,196,221,224,225,226,237,238 1 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,101,102,103,104,105,106,107,109,110,111,112,113 7 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 putative ligand binding site I 0 0 0 0 28,40,45,46,49,71,93,94,95,109 5 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 putative ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,93,105,107,109,110,113 5 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,36,37,38,39,40,41,44,45,46,47,48,49,59,60,61,62,63 7 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 2 CBS repeat 0 0 0 0 68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,90,91,92,93,94,95,98,99,100,101,102,103,104,106,107,108,109,110 7 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 3 putative ligand binding site I 0 0 0 0 26,40,44,45,48,68,90,91,92,106 5 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,90,102,104,106,107,110 5 -341409 cd17773 CBS_pair_NeuB 1 CBS repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,16,17,18,19,20,21,22,23,24,30,31,32,33,34,35,39,40,41,42,43,44,47,48,49,50,51,52,65,66,67,68,69 7 -341409 cd17773 CBS_pair_NeuB 2 CBS repeat 0 0 0 0 74,75,76,77,80,81,82,83,84,85,86,87,88,89,90,95,96,97,98,99,100,104,105,106,107,108,109,110,112,113,114,115,116 7 -341409 cd17773 CBS_pair_NeuB 3 ligand binding site I 0 0 0 0 30,43,47,48,51,74,95,96,97,112 5 -341409 cd17773 CBS_pair_NeuB 4 ligand binding site II 0 0 0 0 4,6,7,8,30,31,32,95,108,110,112,113,116 5 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,27,28,29,30,31,32,33,34,35,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,70,71,72,73,74 7 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 2 CBS repeat 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,97,98,99,100,101,102,103,104,105,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,125,126,127,128,129,130,131,132,133,134,135,136 7 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 3 putative ligand binding site I 0 0 0 0 29,48,53,54,58,79,100,101,102,116 5 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 4 putative ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,100,114,116,118,119,122 5 -341411 cd17775 CBS_pair_bact_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,62,63,64,65,66 7 -341411 cd17775 CBS_pair_bact_arch 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341411 cd17775 CBS_pair_bact_arch 3 putative ligand binding site I 0 0 0 0 27,40,44,45,48,71,93,94,95,110 5 -341411 cd17775 CBS_pair_bact_arch 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,93,106,108,110,111,114 5 -341412 cd17776 CBS_pair_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341412 cd17776 CBS_pair_arch 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341412 cd17776 CBS_pair_arch 3 putative ligand binding site I 0 1 0 0 27,39,43,44,47,70,92,93,94,108 5 -341412 cd17776 CBS_pair_arch 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,92,104,106,108,109,112 5 -341413 cd17777 CBS_arch_repeat1 1 CBS repeat 0 0 0 0 9,10,11,12,13,14,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,42,43,44,45,46,47,50,51,52,53,54,55,82,83,84,85,86 7 -341413 cd17777 CBS_arch_repeat1 2 CBS repeat 0 0 0 0 91,92,93,94,97,98,99,100,101,102,103,104,105,106,107,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134 7 -341413 cd17777 CBS_arch_repeat1 3 putative ligand binding site I 0 0 0 0 5,8,9,10,34,35,36,113,126,128,130,131,134 5 -341413 cd17777 CBS_arch_repeat1 4 putative ligand binding site II 0 0 0 0 5,8,9,10,34,35,36,113,126,128,130,131,134 5 -341414 cd17778 CBS_arch_repeat2 1 CBS repeat 0 0 0 0 9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,76,77,78,79,80 7 -341414 cd17778 CBS_arch_repeat2 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,116,117,118,119,120,121,122,124,125,126,127,128 7 -341414 cd17778 CBS_arch_repeat2 3 ligand binding site I 0 0 1 0 32,44,48,49,52,85,107,108,109,124 5 -341414 cd17778 CBS_arch_repeat2 4 ligand binding site II 0 1 1 0 6,8,9,10,32,33,34,107,120,122,124,125,128 5 -341415 cd17779 CBS_archAMPK_gamma-repeat1 1 CBS repeat 0 0 0 0 9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,42,43,44,45,46,47,50,51,52,53,54,55,81,82,83,84,85 7 -341415 cd17779 CBS_archAMPK_gamma-repeat1 2 CBS repeat 0 0 0 0 90,91,92,93,96,97,98,99,100,101,102,103,104,105,106,112,113,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133 7 -341415 cd17779 CBS_archAMPK_gamma-repeat1 3 ligand binding site I 0 0 0 0 32,46,50,51,54,90,112,113,114,129 5 -341415 cd17779 CBS_archAMPK_gamma-repeat1 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,112,125,127,129,130,133 5 -341416 cd17780 CBS_pair_arch1_repeat1 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,55,56,57,58,59 7 -341416 cd17780 CBS_pair_arch1_repeat1 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,93,94,95,96,97,98,99,101,102,103,104,105 7 -341416 cd17780 CBS_pair_arch1_repeat1 3 ligand binding site I 0 0 0 0 26,38,42,43,46,63,85,86,87,101 5 -341416 cd17780 CBS_pair_arch1_repeat1 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,97,99,101,102,105 5 -341417 cd17781 CBS_pair_MUG70_1 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341417 cd17781 CBS_pair_MUG70_1 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341417 cd17781 CBS_pair_MUG70_1 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,70,92,93,94,109 5 -341417 cd17781 CBS_pair_MUG70_1 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341418 cd17782 CBS_pair_MUG70_2 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341418 cd17782 CBS_pair_MUG70_2 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341418 cd17782 CBS_pair_MUG70_2 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,70,92,93,94,109 5 -341418 cd17782 CBS_pair_MUG70_2 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341419 cd17783 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,55,56,57,58,59 7 -341419 cd17783 CBS_pair_bac 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341419 cd17783 CBS_pair_bac 3 putative ligand binding site I 0 0 0 0 26,38,42,43,46,64,86,87,88,103 5 -341419 cd17783 CBS_pair_bac 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,86,99,101,103,104,107 5 -341420 cd17784 CBS_pair_Euryarchaeota 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341420 cd17784 CBS_pair_Euryarchaeota 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,96,97,98,99,100,101,104,105,106,107,108,109,110,112,113,114,115,116 7 -341420 cd17784 CBS_pair_Euryarchaeota 3 putative ligand binding site I 0 0 0 0 26,39,43,44,47,69,96,97,98,112 5 -341420 cd17784 CBS_pair_Euryarchaeota 4 putative ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,96,108,110,112,113,116 5 -341421 cd17785 CBS_pair_bac_arch 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,35,36,37,38,39,40,44,45,46,47,48,49,52,53,54,55,56,57,84,85,86,87,88 7 -341421 cd17785 CBS_pair_bac_arch 2 CBS repeat 0 0 0 0 92,93,94,95,98,99,100,101,102,103,104,105,106,107,108,114,115,116,117,118,119,123,124,125,126,127,128,129,131,132,133,134,135 7 -341421 cd17785 CBS_pair_bac_arch 3 putative ligand binding site I 0 0 0 0 35,48,52,53,56,92,114,115,116,131 5 -341421 cd17785 CBS_pair_bac_arch 4 putative ligand binding site II 0 0 0 0 8,10,11,12,35,36,37,114,127,129,131,132,135 5 -341422 cd17786 CBS_pair_Thermoplasmatales 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341422 cd17786 CBS_pair_Thermoplasmatales 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341422 cd17786 CBS_pair_Thermoplasmatales 3 ligand binding site I 0 0 0 0 26,38,43,44,47,70,92,93,94,109 5 -341422 cd17786 CBS_pair_Thermoplasmatales 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341423 cd17787 CBS_pair_ACT 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341423 cd17787 CBS_pair_ACT 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341423 cd17787 CBS_pair_ACT 3 ligand binding site I 0 0 0 0 26,38,43,44,47,63,85,86,87,102 5 -341423 cd17787 CBS_pair_ACT 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,98,100,102,103,106 5 -341424 cd17788 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,81,82,83,84,85 7 -341424 cd17788 CBS_pair_bac 2 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,124,125,126,127,128,129,130,132,133,134,135,136 7 -341424 cd17788 CBS_pair_bac 3 ligand binding site I 0 0 0 0 26,38,43,44,47,93,115,116,117,132 5 -341424 cd17788 CBS_pair_bac 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,115,128,130,132,133,136 5 -341425 cd17789 CBS_pair_plant_CBSX 1 CBS repeat 0 0 0 0 96,97,98,99,102,103,104,105,106,107,108,109,110,111,112,118,119,120,121,122,123,127,128,129,130,131,132,133,135,136,137,138,139 7 -341425 cd17789 CBS_pair_plant_CBSX 2 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,87,88,89,90,91 7 -341425 cd17789 CBS_pair_plant_CBSX 3 ligand binding site I 0 1 1 0 27,40,44,45,48,96,118,119,120,135 5 -341425 cd17789 CBS_pair_plant_CBSX 4 putative ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,118,131,133,135,136,139 5 -341356 cd17790 7tmA_mAChR_M1 1 ligand binding site 0 1 1 0 79,80,83,84,131,163,166,167,170,171,210,213,214,236,239,240 5 -341356 cd17790 7tmA_mAChR_M1 2 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341356 cd17790 7tmA_mAChR_M1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -341356 cd17790 7tmA_mAChR_M1 4 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -341356 cd17790 7tmA_mAChR_M1 5 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -341356 cd17790 7tmA_mAChR_M1 6 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -341356 cd17790 7tmA_mAChR_M1 7 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -341356 cd17790 7tmA_mAChR_M1 8 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -341490 cd17791 HipA-like 1 ATP binding site 0 1 1 0 1,2,3,4,5,7,29,31,66,81,82,83,84,85,100,157,159,162,179,180 5 -341491 cd17792 CtkA 1 ATP binding site 0 1 1 0 5,6,7,9,12,23,25,61,77,78,79,80,86,146,148,151,169,170,173 5 -341491 cd17792 CtkA 2 catalytic loop 0 0 1 1 143,144,145,146,147,148,149,150,151,152 1 -341491 cd17792 CtkA 3 activation loop 0 0 1 1 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 0 -341491 cd17792 CtkA 4 glycine-rich loop 0 0 1 1 2,3,4,5,6,7,8,9,10 0 -341491 cd17792 CtkA 5 putative homodimer interface 0 1 1 0 1,2,4,5,6,7,10,12,13,83,85,90,91,94,95,96,102,103,122,162,163 2 -341492 cd17793 HipA 1 ATP binding site 0 1 1 0 92,93,94,95,96,98,120,122,150,165,166,167,168,169,183,197,241,243,245,246,248,262,263 5 -341492 cd17793 HipA 2 autophosphorylation site [ST] 1 1 1 91 6 -341493 cd17808 HipA_Ec_like 1 ATP binding site 0 1 1 0 132,133,134,135,136,138,160,162,190,205,206,207,208,209,223,280,282,284,285,287,302,303 5 -341493 cd17808 HipA_Ec_like 2 autophosphorylation site [ST] 0 1 1 131 6 -341493 cd17808 HipA_Ec_like 3 homodimer interface 0 1 1 1 2,3,4,5,36,39,48,50,51,54,57,58,61,65,66 2 -341493 cd17808 HipA_Ec_like 4 HipB interaction site 0 1 1 1 17,18,19,27,29,30,256,257,259,260,293,294,295,347,349,352 2 -341494 cd17809 HipA_So_like 1 ATP binding site 0 1 1 0 126,127,128,129,130,132,154,156,186,200,201,202,203,204,218,232,286,288,290,291,307,308 5 -341494 cd17809 HipA_So_like 2 autophosphorylation site [ST] 1 1 1 125 6 -341494 cd17809 HipA_So_like 3 HipB interaction site 0 1 1 1 263,264,265,266,267,269,270,350,351,357,358 2 -341494 cd17809 HipA_So_like 4 putative DNA binding site 0 1 1 1 361,364,365,368 3 -341489 cd17814 Fe-ADH-like 1 putative active site 0 0 1 1 33,91,92,93,96,99,132,133,135,154,155,173,181,188,192,257,261,271 1 -341489 cd17814 Fe-ADH-like 2 metal binding site 0 0 1 1 188,192,257,271 4 -349777 cd17868 GPN 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,170,171,173,174,181,182,183 1 -349778 cd17869 TadZ-like 1 active site 0 1 1 0 12,13,14,15,16,17,18,40,125,178,179,201,203,212 1 -349779 cd17870 GPN1 1 active site 0 1 1 0 7,8,9,10,11,12,13,14,169,170,172,173,224,225,226 1 -349780 cd17871 GPN2 1 putative active site 0 0 1 1 7,8,9,10,11,12,13,14,168,169,171,172,179,180,181 1 -349781 cd17872 GPN3 1 putative active site 0 0 1 1 7,8,9,10,11,12,13,14,168,169,171,172,179,180,181 1 -349782 cd17873 FlhF 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,40,86,142,144,145,167,168,169,170 1 -349782 cd17873 FlhF 2 dimer interface 0 1 1 0 8,9,40,41,42,45,46,88,89,90,117,118,119,120,142,144,145,146,147,170 2 -349782 cd17873 FlhF 3 activator binding site 0 1 1 0 14,21,25,50,53,170,174 2 -349783 cd17874 FtsY 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,18,36,39,45,88,91,93,152,153,155,178,179,180,181 1 -349783 cd17874 FtsY 2 dimer interface 0 1 1 0 8,9,39,40,41,44,45,93,94,95,128,129,130,131,153,155,156,157,158,181 2 -349783 cd17874 FtsY 3 heterodimer interface 0 1 1 0 8,9,39,40,41,44,45,48,93,94,95,126,128,129,130,131,135,136,153,155,156,157,158,181 2 -349783 cd17874 FtsY 4 RNA binding site 0 1 1 0 7,8,9,38,39,40,41,44,45,48,49,58,59,60,61,72,75,76,79,80,91,93,94,95,96,98,99,105,128,129,130,131,132,135,153,155,156,157,158,181 3 -349784 cd17875 SRP54_G 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,18,36,39,45,91,93,147,149,172,173,174,175 1 -349784 cd17875 SRP54_G 2 heterodimer interface 0 1 1 0 8,9,39,40,41,44,45,93,94,95,122,123,124,125,147,149,150,151,152,175 2 -349784 cd17875 SRP54_G 3 RNA binding site 0 1 1 0 21,78,179,191 3 -349785 cd17876 SRalpha_C 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,18,36,39,45,91,157,159,183,184,185,186 1 -349785 cd17876 SRalpha_C 2 heterodimer interface 0 1 1 0 8,9,38,39,40,41,44,45,48,49,62,91,93,94,95,120,122,123,124,125,126,129,157,159,160,162,186 2 -350170 cd17877 NP_MTAN-like 1 active site 0 1 1 1 5,48,73,74,75,134,135,154,155,156,157,176,179,180,196 1 -350625 cd17880 D-Ala-D-Ala_dipeptidase 1 active site RHD[ED]H 0 1 1 27,72,79,102,105 1 -350625 cd17880 D-Ala-D-Ala_dipeptidase 2 Zn binding site HDH 1 1 1 72,79,105 4 -350087 cd17900 ArfGap_ASAP3 1 Zn binding site 0 1 1 1 17,20,37,40,103 4 -350087 cd17900 ArfGap_ASAP3 2 GTP binding site 0 1 1 0 42,45,46 5 -350087 cd17900 ArfGap_ASAP3 3 putative ANK repeat binding site 0 0 1 1 3,4,7,30,31,32,53,61,62,63,64,65,67,68,69,71,72,73,77,78,81,82,114,117,118 2 -350087 cd17900 ArfGap_ASAP3 4 arginine finger 0 0 1 1 17,20,37,40,45 0 -350088 cd17901 ArfGap_ARAP1 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350088 cd17901 ArfGap_ARAP1 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350089 cd17902 ArfGap_ARAP3 1 Zn binding site 0 0 1 1 15,18,35,38 4 -350089 cd17902 ArfGap_ARAP3 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350090 cd17903 ArfGap_AGFG2 1 Zn binding site 0 0 1 1 16,19,36,39 4 -350090 cd17903 ArfGap_AGFG2 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350670 cd17912 DEAD-like_helicase_N 1 putative ATP binding site 0 1 1 1 7,8,9,10,11,12,13,47 5 -350670 cd17912 DEAD-like_helicase_N 2 DEAD box helicase motif DEx[DH] 0 1 1 47,48,49,50 0 -350671 cd17913 DEXQc_Suv3 1 ATP binding site 0 1 1 0 9,10,11,12,13,14,15,87 5 -350671 cd17913 DEXQc_Suv3 2 DEAD box helicase motif DEx[HQ] 0 1 1 87,88,89,90 0 -350672 cd17914 DExxQc_SF1-N 1 ATP binding site 0 1 1 1 7,8,9,10,11,12,13,81 5 -350672 cd17914 DExxQc_SF1-N 2 DEAD box helicase motif DEx[HQD] 0 1 1 50,51,52,53 0 -350673 cd17915 DEAHc_XPD-like 1 ATP binding site 0 0 1 1 8,9,10,11,12,13,14,100,101,115 5 -350673 cd17915 DEAHc_XPD-like 2 DEAD box helicase motif DEx[DH] 0 1 1 100,101,102,103 0 -350674 cd17916 DEXHc_UvrB 1 ATP binding site 0 1 1 0 7,8,9,12,35,36,37,38,39,40,41,223,224 5 -350674 cd17916 DEXHc_UvrB 2 DNA binding site 0 1 1 0 60,61,62,86,87,88,91,93,106,110,118,136,138,141,187,189,190,191,192,195,231,235,242,259 3 -350674 cd17916 DEXHc_UvrB 3 DEAD box helicase motif DExH 0 1 1 223,224,225,226 0 -350675 cd17917 DEXHc_RHA-like 1 ATP binding site 0 1 1 0 9,10,11,12,13,14,15,50,106,107 5 -350675 cd17917 DEXHc_RHA-like 2 DEAD box helicase motif DExH 0 1 1 106,107,108,109 0 -350676 cd17918 DEXHc_RecG 1 ATP binding site 0 1 1 0 13,15,19,44,45,46,47,48,49,50,79,82,132,156 5 -350676 cd17918 DEXHc_RecG 2 DEAD box helicase motif DEx[QH] 0 1 1 132,133,134,135 0 -350677 cd17919 DEXHc_Snf 1 ATP binding site 0 1 1 0 0,4,28,29,30,31,32,33,127,128 5 -350677 cd17919 DEXHc_Snf 2 DEAD box helicase motif DEx[QH] 0 1 1 127,128,129,130 0 -350678 cd17920 DEXHc_RecQ 1 ATP binding site 0 1 1 0 9,11,12,13,16,35,36,37,38,39,40,41,136,137,172 5 -350678 cd17920 DEXHc_RecQ 2 DNA binding site 0 1 1 1 59,60,61,82,83,108,110,111,144,148,149 3 -350678 cd17920 DEXHc_RecQ 3 DEAD box helicase motif DExH 0 1 1 136,137,138,139 0 -350679 cd17921 DEXHc_Ski2 1 ATP binding site 0 1 1 0 0,1,2,5,25,26,27,28,29,30,31 5 -350679 cd17921 DEXHc_Ski2 2 nucleic acid binding site 0 1 1 1 54,55,82,99,101,102,105,134 3 -350679 cd17921 DEXHc_Ski2 3 DEAD box helicase motif DEx[QH] 0 1 1 124,125,126,127 0 -350680 cd17922 DEXHc_LHR-like 1 ATP binding site 0 1 1 0 8,9,12,13,14,15,51,117,118 5 -350680 cd17922 DEXHc_LHR-like 2 DNA binding site 0 1 1 0 40,41,42,68,69,70,77,91,93,94,97,101,102,127 3 -350680 cd17922 DEXHc_LHR-like 3 DEAD box helicase motif DExH 0 1 1 117,118,119,120 0 -350681 cd17923 DEXHc_Hrq1-like 1 ATP binding site 0 0 1 1 22,23,24,25,26,27,28,29,63,131,132 5 -350681 cd17923 DEXHc_Hrq1-like 2 DEAD box helicase motif DExH 0 1 1 131,132,133,134 0 -350682 cd17924 DDXDc_reverse_gyrase 1 ATP binding site 0 1 1 0 9,13,15,16,21,40,41,42,43,44,45,46,144 5 -350682 cd17924 DDXDc_reverse_gyrase 2 DEAD box helicase motif DDxD 0 0 1 144,145,146,147 0 -350683 cd17925 DEXDc_ComFA 1 ATP binding site 0 0 1 1 23,24,25,26,27,28,29,30,62,109,110 5 -350683 cd17925 DEXDc_ComFA 2 DEAD box helicase motif DExD 0 1 1 109,110,111,112 0 -350684 cd17926 DEXHc_RE 1 ATP binding site 0 1 1 0 0,1,4,26,27,28,29,30,31,32 5 -350684 cd17926 DEXHc_RE 2 DEAD box helicase motif DExH 0 1 1 116,117,118,119 0 -350685 cd17927 DEXHc_RIG-I 1 ATP binding site 0 1 1 0 0,1,2,3,6,24,25,26,27,28,29,30,31,69,132,168 5 -350685 cd17927 DEXHc_RIG-I 2 nucleic acid binding site 0 1 1 0 57,58,84,85,106,108,109,112,138,139,140 3 -350685 cd17927 DEXHc_RIG-I 3 DEAD box helicase motif DExH 0 1 1 131,132,133,134 0 -350686 cd17928 DEXDc_SecA 1 ATP binding site 0 1 1 0 61,62,63,64,65,66,67,68 5 -350686 cd17928 DEXDc_SecA 2 peptide binding site 0 1 1 0 149,151,185,187 2 -350686 cd17928 DEXDc_SecA 3 DEAD box helicase motif DExD 0 1 1 167,168,169,170 0 -350687 cd17929 DEXHc_priA 1 ATP binding site 0 1 1 0 22,23,24,25,26,27,28,29 5 -350687 cd17929 DEXHc_priA 2 DEAD box helicase motif DExH 0 1 1 117,118,119,120 0 -350688 cd17930 DEXHc_cas3 1 ATP binding site 0 1 1 0 9,10,11,12,13,14,15,49,136 5 -350688 cd17930 DEXHc_cas3 2 nucleic acid binding site 0 1 1 0 39,40,67,68,107,109,110 3 -350688 cd17930 DEXHc_cas3 3 DEAD box helicase motif DEx[QH] 0 1 1 136,137,138,139 0 -350689 cd17931 DEXHc_viral_Ns3 1 ATP binding site 0 1 1 0 9,10,11,12,13,14,15,98,99 5 -350689 cd17931 DEXHc_viral_Ns3 2 DEAD box helicase motif DExH 0 1 1 98,99,100,101 0 -350690 cd17932 DEXQc_UvrD 1 ATP binding site 0 1 1 0 3,19,20,21,22,23,24,25,26,156,188 5 -350690 cd17932 DEXQc_UvrD 2 nucleic acid binding site 0 1 1 0 81 3 -350690 cd17932 DEXQc_UvrD 3 DEAD box helicase motif DExQD 0 1 1 125,126,127,128,129 0 -350691 cd17933 DEXSc_RecD-like 1 ATP binding site 0 1 1 1 1,19,20,21,22,23,24,25,26,95,126 5 -350691 cd17933 DEXSc_RecD-like 2 DEAD box helicase motif DExS 0 1 1 95,96,97,98 0 -350692 cd17934 DEXXQc_Upf1-like 1 ATP binding site 0 1 1 1 1,22,23,24,25,26,27,91,131,132 5 -350692 cd17934 DEXXQc_Upf1-like 2 DEAD box helicase motif DExxQ 0 1 1 63,64,65,66,67 0 -350693 cd17935 EEXXQc_AQR 1 ATP binding site 0 1 1 0 3,4,5,6,9,28,29,30,31,32,33,34,64,191,192 5 -350693 cd17935 EEXXQc_AQR 2 DEAD box helicase motif EExxQ 0 1 1 116,117,118,119,120 0 -350694 cd17936 EEXXEc_NFX1 1 ATP binding site 0 0 1 1 24,25,26,27,28,29,30,138 5 -350694 cd17936 EEXXEc_NFX1 2 DEAD box helicase motif EExx[QDE] 0 1 1 109,110,111,112,113 0 -350695 cd17937 DEXXYc_viral_SF1-N 1 ATP binding site 0 0 1 1 9,10,11,12,13,14,15,111 5 -350695 cd17937 DEXXYc_viral_SF1-N 2 DEAD box helicase motif 0 0 1 1 84,85,86,87,88 0 -350696 cd17938 DEADc_DDX1 1 ATP binding site 0 0 1 1 17,18,20,21,22,25,43,44,45,46,47,48,49,50 5 -350696 cd17938 DEADc_DDX1 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350697 cd17939 DEADc_EIF4A 1 ATP binding site 0 1 1 0 15,16,18,19,20,23,41,42,43,44,45,46,47,48 5 -350697 cd17939 DEADc_EIF4A 2 DEAD box helicase motif DEx[DH] 0 1 1 145,146,147,148 0 -350698 cd17940 DEADc_DDX6 1 ATP binding site 0 0 1 1 17,18,20,21,22,25,43,44,45,46,47,48,49,50 5 -350698 cd17940 DEADc_DDX6 2 CNOT1 interface 0 1 1 0 1,7,10,11,14,15 2 -350698 cd17940 DEADc_DDX6 3 DEAD box helicase motif DEx[HD] 0 1 1 147,148,149,150 0 -350699 cd17941 DEADc_DDX10 1 ATP binding site 0 1 1 0 9,11,13,16,34,35,36,37,38,39,40,41,143 5 -350699 cd17941 DEADc_DDX10 2 DEAD box helicase motif DEx[HD] 0 1 1 142,143,144,145 0 -350700 cd17942 DEADc_DDX18 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350700 cd17942 DEADc_DDX18 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350701 cd17943 DEADc_DDX20 1 ATP binding site 0 1 0 0 9,11,13,16,34,35,36,37,38,39,40,41 5 -350701 cd17943 DEADc_DDX20 2 DEAD box helicase motif DEx[DH] 0 1 1 138,139,140,141 0 -350702 cd17944 DEADc_DDX21_DDX50 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350702 cd17944 DEADc_DDX21_DDX50 2 DEAD box helicase motif DEx[HD] 0 1 1 142,143,144,145 0 -350703 cd17945 DEADc_DDX23 1 ATP binding site 0 1 1 0 9,11,16,35,36,37,38,39,40,84,147 5 -350703 cd17945 DEADc_DDX23 2 DEAD box helicase motif DEx[HD] 0 1 1 146,147,148,149 0 -350704 cd17946 DEADc_DDX24 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,35,36,37,38,39,40,41,42 5 -350704 cd17946 DEADc_DDX24 2 DEAD box helicase motif DEx[HD] 0 1 1 151,152,153,154 0 -350705 cd17947 DEADc_DDX27 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350705 cd17947 DEADc_DDX27 2 DEAD box helicase motif DEx[HD] 0 1 1 142,143,144,145 0 -350706 cd17948 DEADc_DDX28 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350706 cd17948 DEADc_DDX28 2 DEAD box helicase motif DEx[HD] 0 1 1 145,146,147,148 0 -350707 cd17949 DEADc_DDX31 1 ATP binding site 0 0 1 1 9,10,12,13,14,17,35,36,37,38,39,40,41,42 5 -350707 cd17949 DEADc_DDX31 2 DEAD box helicase motif DEx[HD] 0 1 1 147,148,149,150 0 -350708 cd17950 DEADc_DDX39 1 ATP binding site 0 1 1 0 3,21,23,24,25,28,47,48,49,50,51,52,53,152,153 5 -350708 cd17950 DEADc_DDX39 2 DEAD box helicase motif DEx[HD] 0 1 1 152,153,154,155 0 -350709 cd17951 DEADc_DDX41 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350709 cd17951 DEADc_DDX41 2 DEAD box helicase motif DEx[HD] 0 1 1 152,153,154,155 0 -350710 cd17952 DEADc_DDX42 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350710 cd17952 DEADc_DDX42 2 DEAD box helicase motif DEx[HD] 0 1 1 143,144,145,146 0 -350711 cd17953 DEADc_DDX46 1 ATP binding site 0 1 1 0 13,31,33,34,35,38,56,57,58,59,60,61,62,168,169 5 -350711 cd17953 DEADc_DDX46 2 DEAD box helicase motif DEx[HD] 0 1 1 168,169,170,171 0 -350712 cd17954 DEADc_DDX47 1 ATP binding site 0 1 1 0 1,18,19,21,22,23,26,45,46,47,48,49,50,86 5 -350712 cd17954 DEADc_DDX47 2 DEAD box helicase motif DEx[HD] 0 1 1 149,150,151,152 0 -350713 cd17955 DEADc_DDX49 1 ATP binding site 0 0 1 1 17,18,20,21,22,25,43,44,45,46,47,48,49,50 5 -350713 cd17955 DEADc_DDX49 2 DEAD box helicase motif DEx[HD] 0 1 1 150,151,152,153 0 -350714 cd17956 DEADc_DDX51 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,43,44,45,46,47,48,49,50 5 -350714 cd17956 DEADc_DDX51 2 DEAD box helicase motif DEx[HD] 0 1 1 157,158,159,160 0 -350715 cd17957 DEADc_DDX52 1 ATP binding site 0 1 1 0 9,11,12,13,16,34,35,36,37,38,39,40,41,141 5 -350715 cd17957 DEADc_DDX52 2 DEAD box helicase motif DEx[HD] 0 1 1 141,142,143,144 0 -350716 cd17958 DEADc_DDX43_DDX53 1 ATP binding site 0 1 1 0 9,11,12,13,16,35,36,37,38,39,40,41,78,82 5 -350716 cd17958 DEADc_DDX43_DDX53 2 DEAD box helicase motif DEx[HD] 0 1 1 143,144,145,146 0 -350717 cd17959 DEADc_DDX54 1 ATP binding site 0 0 1 1 19,20,22,23,24,27,45,46,47,48,49,50,51,52 5 -350717 cd17959 DEADc_DDX54 2 DEAD box helicase motif DEx[HD] 0 1 1 151,152,153,154 0 -350718 cd17960 DEADc_DDX55 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350718 cd17960 DEADc_DDX55 2 DEAD box helicase motif DEx[HD] 0 1 1 148,149,150,151 0 -350719 cd17961 DEADc_DDX56 1 ATP binding site 0 0 1 1 12,13,15,16,17,20,38,39,40,41,42,43,44,45 5 -350719 cd17961 DEADc_DDX56 2 DEAD box helicase motif DEx[HD] 0 1 1 151,152,153,154 0 -350720 cd17962 DEADc_DDX59 1 ATP binding site 0 0 1 1 8,9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350720 cd17962 DEADc_DDX59 2 DEAD box helicase motif DEx[HD] 0 0 1 139,140,141,142 0 -350721 cd17963 DEADc_DDX19_DDX25 1 ATP binding site 0 1 1 0 13,15,20,40,41,42,43,44,45,46,142,174 5 -350721 cd17963 DEADc_DDX19_DDX25 2 RNA binding site 0 1 1 0 71,72,73,99,117,118,119,120,123,127,152,155 3 -350721 cd17963 DEADc_DDX19_DDX25 3 DEAD box helicase motif DExD 0 1 1 141,142,143,144 0 -350722 cd17964 DEADc_MSS116 1 ATP binding site 0 1 1 0 13,15,16,17,20,39,40,41,42,43,44,45,46,152,153 5 -350722 cd17964 DEADc_MSS116 2 RNA binding site 0 1 1 0 75,76,77,104,105,126,127,128,129,132,136,156,162 3 -350722 cd17964 DEADc_MSS116 3 DEAD box helicase motif DEx[HD] 0 1 1 152,153,154,155 0 -350723 cd17965 DEADc_MRH4 1 ATP binding site 0 0 1 0 26,27,29,30,31,34,68,69,70,71,72,73,74,75 5 -350723 cd17965 DEADc_MRH4 2 DEAD box helicase motif 0 0 0 1 191,192,193,194 0 -350724 cd17966 DEADc_DDX5_DDX17 1 ATP binding site 0 1 1 0 9,11,12,13,16,34,35,36,37,38,39,40,41 5 -350724 cd17966 DEADc_DDX5_DDX17 2 DEAD box helicase motif DEx[HD] 0 1 1 143,144,145,146 0 -350725 cd17967 DEADc_DDX3_DDX4 1 ATP binding site 0 1 1 0 1,19,21,22,23,26,44,45,46,47,48,49,50,158,159,194 5 -350725 cd17967 DEADc_DDX3_DDX4 2 RNA binding site 0 1 1 0 85,86,87,113,114,134,135,136,137,140,162,168 3 -350725 cd17967 DEADc_DDX3_DDX4 3 DEAD box helicase motif DEx[HD] 0 1 1 158,159,160,161 0 -350726 cd17968 DEAHc_DDX11_starthere 1 ATP binding site 0 0 1 1 8,9,10,11,12,13,14,97,98,112 5 -350726 cd17968 DEAHc_DDX11_starthere 2 DEAD box helicase motif DEAH 0 1 1 97,98,99,100 0 -350727 cd17969 DEAHc_XPD 1 ATP binding site 0 0 1 1 17,18,19,20,21,22,23,120,121,135 5 -350727 cd17969 DEAHc_XPD 2 DEAD box helicase motif DEAH 0 1 1 120,121,122,123 0 -350728 cd17970 DEAHc_FancJ 1 ATP binding site 0 0 1 1 8,9,10,11,12,13,14,143,144,158 5 -350728 cd17970 DEAHc_FancJ 2 DEAD box helicase motif DEAH 0 1 1 143,144,145,146 0 -350729 cd17971 DEXHc_DHX8 1 ATP binding site 0 0 1 1 5,30,31,32,33,34,35,36,69,125,126 5 -350729 cd17971 DEXHc_DHX8 2 DEAD box helicase motif DExH 0 1 1 125,126,127,128 0 -350730 cd17972 DEXHc_DHX9 1 ATP binding site 0 1 1 0 58,83,84,85,86,87,88,89,126,181,182 5 -350730 cd17972 DEXHc_DHX9 2 RNA binding site 0 1 1 0 12,13,115,116,117,118,143,144,145,149,160,162,163,166,167 3 -350730 cd17972 DEXHc_DHX9 3 DEAD box helicase motif DExH 0 1 1 181,182,183,184 0 -350731 cd17973 DEXHc_DHX15 1 ATP binding site 0 1 1 0 12,37,38,39,40,41,42,43,73,77,133,134 5 -350731 cd17973 DEXHc_DHX15 2 DEAD box helicase motif DExH 0 1 1 133,134,135,136 0 -350732 cd17974 DEXHc_DHX16 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,65,121,122 5 -350732 cd17974 DEXHc_DHX16 2 DEAD box helicase motif DExH 0 1 1 121,122,123,124 0 -350733 cd17975 DEXHc_DHX29 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,69,130,131 5 -350733 cd17975 DEXHc_DHX29 2 DEAD box helicase motif DExH 0 1 1 130,131,132,133 0 -350734 cd17976 DEXHc_DHX30 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,68,125,126 5 -350734 cd17976 DEXHc_DHX30 2 DEAD box helicase motif DExH 0 1 1 125,126,127,128 0 -350735 cd17977 DEXHc_DHX32 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,67,123,124 5 -350735 cd17977 DEXHc_DHX32 2 DEAD box helicase motif D[DE]x[DH] 0 1 1 123,124,125,126 0 -350736 cd17978 DEXHc_DHX33 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,65,121,122 5 -350736 cd17978 DEXHc_DHX33 2 DEAD box helicase motif DExH 0 1 1 121,122,123,124 0 -350737 cd17979 DEXHc_DHX34 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,61,117,118 5 -350737 cd17979 DEXHc_DHX34 2 DEAD box helicase motif DExH 0 1 1 117,118,119,120 0 -350738 cd17980 DEXHc_DHX35 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,65,122,123 5 -350738 cd17980 DEXHc_DHX35 2 DEAD box helicase motif DExH 0 1 1 122,123,124,125 0 -350739 cd17981 DEXHc_DHX36 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,68,127,128 5 -350739 cd17981 DEXHc_DHX36 2 DEAD box helicase motif DExH 0 1 1 127,128,129,130 0 -350740 cd17982 DEXHc_DHX37 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,69,124,125 5 -350740 cd17982 DEXHc_DHX37 2 DEAD box helicase motif DExH 0 1 1 124,125,126,127 0 -350741 cd17983 DEXHc_DHX38 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,64,120,121 5 -350741 cd17983 DEXHc_DHX38 2 DEAD box helicase motif DExH 0 1 1 120,121,122,123 0 -350742 cd17984 DEXHc_DHX40 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,64,120,121 5 -350742 cd17984 DEXHc_DHX40 2 DEAD box helicase motif DExH 0 1 1 120,121,122,123 0 -350743 cd17985 DEXHc_DHX57 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,68,124,125 5 -350743 cd17985 DEXHc_DHX57 2 DEAD box helicase motif DExH 0 1 1 124,125,126,127 0 -350744 cd17986 DEXQc_DQX1 1 ATP binding site 0 0 1 1 0,26,27,28,29,30,31,32,68,124,125 5 -350744 cd17986 DEXQc_DQX1 2 DEAD box helicase motif DEx[DHQ] 0 1 1 124,125,126,127 0 -350745 cd17987 DEXHc_YTHDC2 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,66,123,124 5 -350745 cd17987 DEXHc_YTHDC2 2 DEAD box helicase motif DExH 0 1 1 123,124,125,126 0 -350746 cd17988 DEXHc_TDRD9 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,66,122,123 5 -350746 cd17988 DEXHc_TDRD9 2 DEAD box helicase motif DExH 0 1 1 122,123,124,125 0 -350747 cd17989 DEXHc_HrpA 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,64,120,121 5 -350747 cd17989 DEXHc_HrpA 2 DEAD box helicase motif DExH 0 1 1 120,121,122,123 0 -350748 cd17990 DEXHc_HrpB 1 ATP binding site 0 0 1 1 0,25,26,27,28,29,30,31,64,120,121 5 -350748 cd17990 DEXHc_HrpB 2 DEAD box helicase motif DExH 0 1 1 120,121,122,123 0 -350749 cd17991 DEXHc_TRCF 1 ATP binding site 0 0 1 1 13,15,19,44,45,46,47,48,49,50,79,82,143,168 5 -350749 cd17991 DEXHc_TRCF 2 DEAD box helicase motif DEx[QH] 0 1 1 143,144,145,146 0 -350750 cd17992 DEXHc_RecG 1 ATP binding site 0 1 1 0 43,45,49,74,75,76,77,78,79,80,109,112,173,198 5 -350750 cd17992 DEXHc_RecG 2 DEAD box helicase motif DEx[QH] 0 1 1 173,174,175,176 0 -350751 cd17993 DEXHc_CHD1_2 1 ATP binding site 0 1 1 0 0,1,5,29,30,31,32,33,34,72,134,135 5 -350751 cd17993 DEXHc_CHD1_2 2 DEAD box helicase motif DEx[DH] 0 1 1 134,135,136,137 0 -350752 cd17994 DEXHc_CHD3_4_5 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,111,112 5 -350752 cd17994 DEXHc_CHD3_4_5 2 DEAD box helicase motif DEAH 0 1 1 111,112,113,114 0 -350753 cd17995 DEXHc_CHD6_7_8_9 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,138,139 5 -350753 cd17995 DEXHc_CHD6_7_8_9 2 DEAD box helicase motif DEx[HQ] 0 1 1 138,139,140,141 0 -350754 cd17996 DEXHc_SMARCA2_SMARCA4 1 ATP binding site 0 0 1 1 30,31,32,33,34,35,36,70,130,131 5 -350754 cd17996 DEXHc_SMARCA2_SMARCA4 2 DEAD box helicase motif DEx[QH] 0 1 1 130,131,132,133 0 -350755 cd17997 DEXHc_SMARCA1_SMARCA5 1 ATP binding site 0 0 1 1 30,31,32,33,34,35,36,70,131,132 5 -350755 cd17997 DEXHc_SMARCA1_SMARCA5 2 DEAD box helicase motif DEA[HQ] 0 1 1 131,132,133,134 0 -350756 cd17998 DEXHc_SMARCAD1 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,131,132 5 -350756 cd17998 DEXHc_SMARCAD1 2 DEAD box helicase motif DExH 0 1 1 131,132,133,134 0 -350757 cd17999 DEXHc_Mot1 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,72,132,133 5 -350757 cd17999 DEXHc_Mot1 2 DEAD box helicase motif DExH 0 1 1 132,133,134,135 0 -350758 cd18000 DEXHc_ERCC6 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,138,139 5 -350758 cd18000 DEXHc_ERCC6 2 DNA binding site 0 1 1 0 58,121,141,142,143,144,145,150 3 -350758 cd18000 DEXHc_ERCC6 3 DEAD box helicase motif DEx[QH] 0 1 1 138,139,140,141 0 -350759 cd18001 DEXHc_ERCC6L 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,131,132 5 -350759 cd18001 DEXHc_ERCC6L 2 DEAD box helicase motif DExH 0 1 1 131,132,133,134 0 -350760 cd18002 DEXQc_INO80 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,134,135 5 -350760 cd18002 DEXQc_INO80 2 DEAD box helicase motif DEA[QH] 0 1 1 134,135,136,137 0 -350761 cd18003 DEXQc_SRCAP 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,128,129 5 -350761 cd18003 DEXQc_SRCAP 2 DEAD box helicase motif DEx[HQ] 0 1 1 128,129,130,131 0 -350762 cd18004 DEXHc_RAD54 1 ATP binding site 0 0 1 1 32,33,34,35,36,37,38,76,140,141 5 -350762 cd18004 DEXHc_RAD54 2 DEAD box helicase motif DEx[QH] 0 1 1 140,141,142,143 0 -350763 cd18005 DEXHc_ERCC6L2 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,87,145,146 5 -350763 cd18005 DEXHc_ERCC6L2 2 DEAD box helicase motif DExH 0 1 1 145,146,147,148 0 -350764 cd18006 DEXHc_CHD1L 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,128,129 5 -350764 cd18006 DEXHc_CHD1L 2 DEAD box helicase motif DEA[HQ] 0 1 1 128,129,130,131 0 -350765 cd18007 DEXHc_ATRX-like 1 ATP binding site 0 0 1 1 34,35,36,37,38,39,40,74,154,155 5 -350765 cd18007 DEXHc_ATRX-like 2 DEAD box helicase motif DExH 0 1 1 154,155,156,157 0 -350766 cd18008 DEXDc_SHPRH-like 1 ATP binding site 0 0 1 1 22,23,24,25,26,27,28,79,153,154 5 -350766 cd18008 DEXDc_SHPRH-like 2 DEAD box helicase motif DEx[QH] 0 1 1 153,154,155,156 0 -350767 cd18009 DEXHc_HELLS_SMARCA6 1 ATP binding site 0 0 1 1 30,31,32,33,34,35,36,69,134,135 5 -350767 cd18009 DEXHc_HELLS_SMARCA6 2 DEAD box helicase motif DExH 0 1 1 134,135,136,137 0 -350768 cd18010 DEXHc_HARP_SMARCAL1 1 ATP binding site 0 0 1 1 24,25,26,27,28,29,30,60,116,117 5 -350768 cd18010 DEXHc_HARP_SMARCAL1 2 DEAD box helicase motif DExH 0 1 1 116,117,118,119 0 -350769 cd18011 DEXDc_RapA 1 ATP binding site 0 0 1 1 25,26,27,28,29,30,31,64,126,127 5 -350769 cd18011 DEXDc_RapA 2 DEAD box helicase motif DExH 0 1 1 126,127,128,129 0 -350770 cd18012 DEXQc_arch_SWI2_SNF2 1 ATP binding site 0 0 1 1 31,32,33,34,35,36,37,70,127,128 5 -350770 cd18012 DEXQc_arch_SWI2_SNF2 2 DNA binding site 0 1 1 0 61,84,87,105,107,110,111,134,137,138,139 3 -350770 cd18012 DEXQc_arch_SWI2_SNF2 3 DEAD box helicase motif DEx[HQ] 0 1 1 127,128,129,130 0 -350771 cd18013 DEXQc_bact_SNF2 1 ATP binding site 0 0 1 1 23,24,25,26,27,28,29,63,122,123 5 -350771 cd18013 DEXQc_bact_SNF2 2 DEAD box helicase motif DEx[QH] 0 1 1 122,123,124,125 0 -350772 cd18014 DEXHc_RecQ5 1 ATP binding site 0 1 1 0 10,12,13,14,17,36,37,38,39,40,41,42,43,72,141 5 -350772 cd18014 DEXHc_RecQ5 2 DNA binding site 0 0 1 1 61,62,63,84,85,112,114,115,148,152,153 3 -350772 cd18014 DEXHc_RecQ5 3 DEAD box helicase motif DExH 0 1 1 140,141,142,143 0 -350773 cd18015 DEXHc_RecQ1 1 ATP binding site 0 0 1 0 15,17,18,19,22,41,42,43,44,45,46,47,145,146,181 5 -350773 cd18015 DEXHc_RecQ1 2 DNA binding site 0 1 1 1 65,66,67,88,89,116,118,119,125,132,153,157,158 3 -350773 cd18015 DEXHc_RecQ1 3 DEAD box helicase motif DExH 0 1 1 145,146,147,148 0 -350774 cd18016 DEXHc_RecQ2_BLM 1 ATP binding site 0 1 1 0 14,16,18,21,39,40,41,42,43,44,45 5 -350774 cd18016 DEXHc_RecQ2_BLM 2 DNA binding site 0 0 1 1 64,65,66,87,88,115,117,118,152,156,157 3 -350774 cd18016 DEXHc_RecQ2_BLM 3 DEAD box helicase motif DEAH 0 1 1 144,145,146,147 0 -350775 cd18017 DEXHc_RecQ3 1 ATP binding site 0 0 1 1 9,11,12,13,16,36,37,38,39,40,41,42,129,130,165 5 -350775 cd18017 DEXHc_RecQ3 2 DNA binding site 0 0 1 1 60,61,62,83,84,105,107,108,137,141,142 3 -350775 cd18017 DEXHc_RecQ3 3 DEAD box helicase motif DEAH 0 1 1 129,130,131,132 0 -350776 cd18018 DEXHc_RecQ4-like 1 ATP binding site 0 0 1 1 9,11,12,13,16,35,36,37,38,39,40,41,136,137,173 5 -350776 cd18018 DEXHc_RecQ4-like 2 DNA binding site 0 0 1 1 63,64,65,85,86,111,113,114,144,148,149 3 -350776 cd18018 DEXHc_RecQ4-like 3 DEAD box helicase motif DEAH 0 1 1 136,137,138,139 0 -350777 cd18019 DEXHc_Brr2_1 1 ATP binding site 0 1 1 0 16,18,21,42,43,44,45,46,151,152 5 -350777 cd18019 DEXHc_Brr2_1 2 RNA binding site 0 1 1 0 80,81,82,108,109,110,111,112,114,115,125,127,128,131,135,160 3 -350777 cd18019 DEXHc_Brr2_1 3 DEAD box helicase motif DExH 0 1 1 151,152,153,154 0 -350778 cd18020 DEXHc_ASCC3_1 1 ATP binding site 0 0 1 1 0,1,2,5,25,26,27,28,29,30,31 5 -350778 cd18020 DEXHc_ASCC3_1 2 nucleic acid binding site 0 0 1 1 64,65,92,109,111,112,115,145 3 -350778 cd18020 DEXHc_ASCC3_1 3 DEAD box helicase motif DExH 0 1 1 136,137,138,139 0 -350779 cd18021 DEXHc_Brr2_2 1 ATP binding site 0 1 1 0 0,2,3,4,7,26,27,28,29,30,31,32 5 -350779 cd18021 DEXHc_Brr2_2 2 DEAD box helicase motif D[ED]x[QH] 0 1 1 129,130,131,132 0 -350780 cd18022 DEXHc_ASCC3_2 1 ATP binding site 0 0 1 1 0,1,2,5,25,26,27,28,29,30,31 5 -350780 cd18022 DEXHc_ASCC3_2 2 DEAD box helicase motif DExH 0 0 1 127,128,129,130 0 -350781 cd18023 DEXHc_HFM1 1 ATP binding site 0 0 1 1 0,1,2,5,25,26,27,28,29,30,31 5 -350781 cd18023 DEXHc_HFM1 2 nucleic acid binding site 0 0 1 1 60,61,88,106,108,109,112,142 3 -350781 cd18023 DEXHc_HFM1 3 DEAD box helicase motif DExH 0 1 1 133,134,135,136 0 -350782 cd18024 DEXHc_Mtr4-like 1 ATP binding site 0 1 1 0 30,31,32,33,36,55,56,57,58,59,60,61 5 -350782 cd18024 DEXHc_Mtr4-like 2 RNA binding site 0 1 1 0 83,84,120,122,154 3 -350782 cd18024 DEXHc_Mtr4-like 3 DEAD box helicase motif DExH 0 0 1 144,145,146,147 0 -350783 cd18025 DEXHc_DDX60 1 ATP binding site 0 0 1 1 0,1,2,5,24,25,26,27,28,29,30 5 -350783 cd18025 DEXHc_DDX60 2 nucleic acid binding site 0 0 1 1 54,55,87,102,104,105,108,138 3 -350783 cd18025 DEXHc_DDX60 3 DEAD box helicase motif DExH 0 0 1 128,129,130,131 0 -350784 cd18026 DEXHc_POLQ-like 1 ATP binding site 0 1 1 0 13,15,20,41,42,43,44,45,46,47,142 5 -350784 cd18026 DEXHc_POLQ-like 2 nucleic acid binding site 0 0 1 1 70,71,98,116,118,119,122,152 3 -350784 cd18026 DEXHc_POLQ-like 3 DEAD box helicase motif DExH 0 1 1 142,143,144,145 0 -350785 cd18027 DEXHc_SKIV2L 1 ATP binding site 0 1 1 0 6,7,8,9,12,30,31,32,33,34,35,36,37,87 5 -350785 cd18027 DEXHc_SKIV2L 2 nucleic acid binding site 0 0 1 1 59,60,83,96,98,99,102,130 3 -350785 cd18027 DEXHc_SKIV2L 3 DEAD box helicase motif DExH 0 1 1 120,121,122,123 0 -350786 cd18028 DEXHc_archSki2 1 ATP binding site 0 0 1 1 0,1,2,5,25,26,27,28,29,30,31 5 -350786 cd18028 DEXHc_archSki2 2 DNA binding site 0 1 1 0 52,53,54,78,79,80,81,82,97,99,100,103,131 3 -350786 cd18028 DEXHc_archSki2 3 DEAD box helicase motif DExH 0 1 1 121,122,123,124 0 -350787 cd18029 DEXHc_XPB 1 ATP binding site 0 0 1 1 8,9,12,34,35,36,37,38,39,40 5 -350787 cd18029 DEXHc_XPB 2 DNA binding site 0 1 1 0 58,86,101,109,140,141,142,143,164,166,168 3 -350787 cd18029 DEXHc_XPB 3 DEAD box helicase motif DEx[QH] 0 1 1 133,134,135,136 0 -350788 cd18030 DEXHc_RE_I_HsdR 1 ATP binding site 0 1 1 0 19,20,21,22,25,55,56,57,58,59,60,61 5 -350788 cd18030 DEXHc_RE_I_HsdR 2 DEAD box helicase motif DExH 0 1 1 155,156,157,158 0 -350789 cd18031 DEXHc_UvsW 1 ATP binding site 0 0 1 1 0,1,4,23,24,25,26,27,28,29 5 -350789 cd18031 DEXHc_UvsW 2 DEAD box helicase motif DExH 0 1 1 118,119,120,121 0 -350790 cd18032 DEXHc_RE_I_III_res 1 ATP binding site 0 0 1 1 0,1,4,28,29,30,31,32,33,34 5 -350790 cd18032 DEXHc_RE_I_III_res 2 DEAD box helicase motif DExH 0 1 1 121,122,123,124 0 -350791 cd18033 DEXDc_FANCM 1 ATP binding site 0 0 1 1 0,1,2,3,6,23,24,25,26,27,28,29,30,65,126,157 5 -350791 cd18033 DEXDc_FANCM 2 nucleic acid binding site 0 0 1 1 53,54,80,81,101,103,104,107,132,133,134 3 -350791 cd18033 DEXDc_FANCM 3 DEAD box helicase motif DExH 0 1 1 125,126,127,128 0 -350792 cd18034 DEXHc_dicer 1 ATP binding site 0 0 1 1 0,1,2,3,6,23,24,25,26,27,28,29,30,70,133,167 5 -350792 cd18034 DEXHc_dicer 2 nucleic acid binding site 0 0 1 1 58,59,82,83,108,110,111,114,139,140,141 3 -350792 cd18034 DEXHc_dicer 3 DEAD box helicase motif DExH 0 1 1 132,133,134,135 0 -350793 cd18035 DEXHc_Hef 1 ATP binding site 0 0 1 1 0,1,2,3,6,23,24,25,26,27,28,29,30,64,124,155 5 -350793 cd18035 DEXHc_Hef 2 nucleic acid binding site 0 0 1 1 52,53,78,79,99,101,102,105,130,131,132 3 -350793 cd18035 DEXHc_Hef 3 DEAD box helicase motif DExH 0 1 1 123,124,125,126 0 -350794 cd18036 DEXHc_RLR 1 ATP binding site 0 1 1 0 0,1,2,3,6,24,25,26,27,28,29,30,31,134,135 5 -350794 cd18036 DEXHc_RLR 2 nucleic acid binding site 0 1 1 0 58,59,84,85,106,108,109,112,141,142,143 3 -350794 cd18036 DEXHc_RLR 3 DEAD box helicase motif DExH 0 1 1 134,135,136,137 0 -350795 cd18037 DEXSc_Pif1_like 1 ATP binding site 0 1 1 1 1,19,20,21,22,23,24,25,26,99,139 5 -350795 cd18037 DEXSc_Pif1_like 2 DEAD box helicase motif DExS 0 1 1 99,100,101,102 0 -350796 cd18038 DEXXQc_Helz-like 1 ATP binding site 0 0 1 1 5,29,30,31,32,33,34,180,227,228 5 -350796 cd18038 DEXXQc_Helz-like 2 DEAD box helicase motif DExx[HQ] 0 1 1 148,149,150,151,152 0 -350797 cd18039 DEXXQc_UPF1 1 ATP binding site 0 1 1 0 0,1,2,5,24,25,26,27,28,29,30,195,232,233 5 -350797 cd18039 DEXXQc_UPF1 2 RNA binding site 0 1 1 0 52,53,54,76,77,78,79,130,146,148,199,201 3 -350797 cd18039 DEXXQc_UPF1 3 DEAD box helicase motif DExxQ 0 1 1 166,167,168,169,170 0 -350798 cd18040 DEXXc_HELZ2-C 1 ATP binding site 0 0 1 1 5,25,26,27,28,29,30,235,269,270 5 -350798 cd18040 DEXXc_HELZ2-C 2 DEAD box helicase motif DExG 0 1 1 204,205,206,207 0 -350799 cd18041 DEXXQc_DNA2 1 ATP binding site 0 1 1 0 0,1,2,5,28,29,30,31,63,201,202 5 -350799 cd18041 DEXXQc_DNA2 2 nucleic acid binding site 0 1 1 0 52,53,54,115,117,167 3 -350799 cd18041 DEXXQc_DNA2 3 DEAD box helicase motif DExxQ 0 1 1 135,136,137,138,139 0 -350800 cd18042 DEXXQc_SETX 1 ATP binding site 0 0 1 1 4,26,27,28,29,30,31,178,215,216 5 -350800 cd18042 DEXXQc_SETX 2 DEAD box helicase motif DExxQ 0 1 1 149,150,151,152,153 0 -350801 cd18043 DEXXQc_SF1 1 ATP binding site 0 0 1 1 3,23,24,25,26,27,28,114,125,126 5 -350801 cd18043 DEXXQc_SF1 2 DEAD box helicase motif DExxQ 0 1 1 86,87,88,89,90 0 -350802 cd18044 DEXXQc_SMUBP2 1 ATP binding site 0 0 1 1 5,26,27,28,29,30,31,150,189,190 5 -350802 cd18044 DEXXQc_SMUBP2 2 RNA binding site 0 1 1 0 52,53,54,76,79,101,103 3 -350802 cd18044 DEXXQc_SMUBP2 3 DEAD box helicase motif DExxQ 0 1 1 122,123,124,125,126 0 -350803 cd18045 DEADc_EIF4AIII_DDX48 1 ATP binding site 0 1 1 0 0,16,18,19,20,21,22,25,43,44,45,46,47,48,49,50,147,148 5 -350803 cd18045 DEADc_EIF4AIII_DDX48 2 RNA binding site 0 1 1 0 74,75,76,102,103,123,124,125,126,129,132,157,160 3 -350803 cd18045 DEADc_EIF4AIII_DDX48 3 Barentsz interface 0 1 1 0 66,110,111,114,115,134,137,138,139,161,162,165,166,167,168,169,170,190,191,192,193,194 2 -350803 cd18045 DEADc_EIF4AIII_DDX48 4 Mago interface 0 1 1 0 23,27,43,46,182,183,184,187 2 -350803 cd18045 DEADc_EIF4AIII_DDX48 5 DEAD box helicase motif DEx[HD] 0 1 1 147,148,149,150 0 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 1 ATP binding site 0 1 1 0 0,18,20,25,44,45,46,47,48,49,50 5 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 2 eIF4G interface 0 1 1 0 1,11,14,19 2 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 3 DEAD box helicase motif DEx[HD] 0 1 1 147,148,149,150 0 -350805 cd18047 DEADc_DDX19 1 ATP binding site 0 1 1 0 20,22,27,47,48,49,50,51,52,53,151,183 5 -350805 cd18047 DEADc_DDX19 2 RNA binding site 0 1 1 0 78,79,80,107,110,111,125,126,127,128,131,135,136,138,161,164 3 -350805 cd18047 DEADc_DDX19 3 DEAD box helicase motif DEx[DH] 0 1 1 150,151,152,153 0 -350806 cd18048 DEADc_DDX25 1 ATP binding site 0 0 1 1 37,39,44,64,65,66,67,68,69,70,168,200 5 -350806 cd18048 DEADc_DDX25 2 putative RNA binding site 0 0 1 1 95,96,97,124,142,143,144,145,148,152,178,181 3 -350806 cd18048 DEADc_DDX25 3 DEAD box helicase motif DEx[HD] 0 1 1 167,168,169,170 0 -350807 cd18049 DEADc_DDX5 1 ATP binding site 0 1 1 0 43,45,46,47,50,68,69,70,71,72,73,74,75 5 -350807 cd18049 DEADc_DDX5 2 DEAD box helicase motif DEx[HD] 0 1 1 177,178,179,180 0 -350808 cd18050 DEADc_DDX17 1 ATP binding site 0 0 1 1 81,83,84,85,88,106,107,108,109,110,111,112,113 5 -350808 cd18050 DEADc_DDX17 2 DEAD box helicase motif DEx[HD] 0 1 1 215,216,217,218 0 -350809 cd18051 DEADc_DDX3 1 ATP binding site 0 0 1 1 0,10,22,40,42,43,44,47,65,66,67,68,69,70,71,185,186,221 5 -350809 cd18051 DEADc_DDX3 2 RNA binding site 0 0 1 1 112,113,114,140,141,161,162,163,164,167,189,195 3 -350809 cd18051 DEADc_DDX3 3 DEAD box helicase motif DEx[HD] 0 1 1 185,186,187,188 0 -350810 cd18052 DEADc_DDX4 1 ATP binding site 0 0 1 1 22,32,44,62,64,65,66,69,87,88,89,90,91,92,93,200,201,236 5 -350810 cd18052 DEADc_DDX4 2 RNA binding site 0 0 1 1 127,128,129,155,156,176,177,178,179,182,204,210 3 -350810 cd18052 DEADc_DDX4 3 DEAD box helicase motif DEx[HD] 0 1 1 200,201,202,203 0 -350811 cd18053 DEXHc_CHD1 1 ATP binding site 0 0 1 1 47,48,49,50,51,52,53,87,153,154 5 -350811 cd18053 DEXHc_CHD1 2 DEAD box helicase motif DEAH 0 1 1 153,154,155,156 0 -350812 cd18054 DEXHc_CHD2 1 ATP binding site 0 0 1 1 47,48,49,50,51,52,53,87,153,154 5 -350812 cd18054 DEXHc_CHD2 2 DEAD box helicase motif DEAH 0 1 1 153,154,155,156 0 -350813 cd18055 DEXHc_CHD3 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,147,148 5 -350813 cd18055 DEXHc_CHD3 2 DEAD box helicase motif DEAH 0 1 1 147,148,149,150 0 -350814 cd18056 DEXHc_CHD4 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,147,148 5 -350814 cd18056 DEXHc_CHD4 2 DEAD box helicase motif DEAH 0 1 1 147,148,149,150 0 -350815 cd18057 DEXHc_CHD5 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,67,147,148 5 -350815 cd18057 DEXHc_CHD5 2 DEAD box helicase motif DEAH 0 1 1 147,148,149,150 0 -350816 cd18058 DEXHc_CHD6 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,137,138 5 -350816 cd18058 DEXHc_CHD6 2 DEAD box helicase motif DEAH 0 1 1 137,138,139,140 0 -350817 cd18059 DEXHc_CHD7 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,137,138 5 -350817 cd18059 DEXHc_CHD7 2 DEAD box helicase motif DEAH 0 1 1 137,138,139,140 0 -350818 cd18060 DEXHc_CHD8 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,137,138 5 -350818 cd18060 DEXHc_CHD8 2 DEAD box helicase motif DEAH 0 1 1 137,138,139,140 0 -350819 cd18061 DEXHc_CHD9 1 ATP binding site 0 0 1 1 27,28,29,30,31,32,33,66,137,138 5 -350819 cd18061 DEXHc_CHD9 2 DEAD box helicase motif DEAH 0 1 1 137,138,139,140 0 -350820 cd18062 DEXHc_SMARCA4 1 ATP binding site 0 0 1 1 50,51,52,53,54,55,56,90,150,151 5 -350820 cd18062 DEXHc_SMARCA4 2 DEAD box helicase motif DEXH 0 1 1 150,151,152,153 0 -350821 cd18063 DEXHc_SMARCA2 1 ATP binding site 0 0 1 1 50,51,52,53,54,55,56,90,150,151 5 -350821 cd18063 DEXHc_SMARCA2 2 DEAD box helicase motif DExH 0 1 1 150,151,152,153 0 -350822 cd18064 DEXHc_SMARCA5 1 ATP binding site 0 0 1 1 42,43,44,45,46,47,48,82,143,144 5 -350822 cd18064 DEXHc_SMARCA5 2 DEAD box helicase motif DEAH 0 1 1 143,144,145,146 0 -350823 cd18065 DEXHc_SMARCA1 1 ATP binding site 0 0 1 1 42,43,44,45,46,47,48,82,143,144 5 -350823 cd18065 DEXHc_SMARCA1 2 DEAD box helicase motif DEAH 0 1 1 143,144,145,146 0 -350824 cd18066 DEXHc_RAD54B 1 ATP binding site 0 0 1 1 32,33,34,35,36,37,38,77,135,136 5 -350824 cd18066 DEXHc_RAD54B 2 DEAD box helicase motif DExH 0 1 1 135,136,137,138 0 -350825 cd18067 DEXHc_RAD54A 1 ATP binding site 0 0 1 1 32,33,34,35,36,37,38,76,143,144 5 -350825 cd18067 DEXHc_RAD54A 2 DEAD box helicase motif DExH 0 1 1 143,144,145,146 0 -350826 cd18068 DEXHc_ATRX 1 ATP binding site 0 0 1 1 36,37,38,39,40,41,42,78,161,162 5 -350826 cd18068 DEXHc_ATRX 2 DEAD box helicase motif DExH 0 1 1 161,162,163,164 0 -350827 cd18069 DEXHc_ARIP4 1 ATP binding site 0 0 1 1 36,37,38,39,40,41,42,75,142,143 5 -350827 cd18069 DEXHc_ARIP4 2 DEAD box helicase motif DExH 0 1 1 142,143,144,145 0 -350828 cd18070 DEXQc_SHPRH 1 ATP binding site 0 0 1 1 22,23,24,25,26,27,28,87,171,172 5 -350828 cd18070 DEXQc_SHPRH 2 DEAD box helicase motif DEXQ 0 1 1 171,172,173,174 0 -350829 cd18071 DEXHc_HLTF1_SMARC3 1 ATP binding site 0 0 1 1 56,57,58,59,60,61,62,88,151,152 5 -350829 cd18071 DEXHc_HLTF1_SMARC3 2 DEAD box helicase motif DExH 0 1 1 151,152,153,154 0 -350830 cd18072 DEXHc_TTF2 1 ATP binding site 0 0 1 1 28,29,30,31,32,33,34,90,157,158 5 -350830 cd18072 DEXHc_TTF2 2 DEAD box helicase motif DExH 0 1 1 157,158,159,160 0 -350831 cd18073 DEXHc_RIG-I_DDX58 1 ATP binding site 0 1 1 0 0,1,2,3,6,24,25,26,27,28,29,30,31,131 5 -350831 cd18073 DEXHc_RIG-I_DDX58 2 nucleic acid binding site 0 1 1 0 57,58,59,60,84,85,106,108,112,138,139,140,141 3 -350831 cd18073 DEXHc_RIG-I_DDX58 3 DEAD box helicase motif DExH 0 1 1 131,132,133,134 0 -350832 cd18074 DEXHc_RLR-2 1 ATP binding site 0 1 1 0 1,2,3,6,24,25,26,27,28,29,30,31,70 5 -350832 cd18074 DEXHc_RLR-2 2 nucleic acid binding site 0 1 1 0 58,59,60,61,85,86,87,107,113,141,144,145,146 3 -350832 cd18074 DEXHc_RLR-2 3 DEAD box helicase motif DExH 0 1 1 137,138,139,140 0 -350833 cd18075 DEXHc_RLR-3 1 ATP binding site 0 1 1 0 0,1,2,3,6,24,25,26,27,28,29,30,31,66,131 5 -350833 cd18075 DEXHc_RLR-3 2 nucleic acid binding site 0 1 1 0 54,55,56,80,81,84,102,104,105,108,137,138,139 3 -350833 cd18075 DEXHc_RLR-3 3 DEAD box helicase motif DExH 0 1 1 130,131,132,133 0 -350834 cd18076 DEXXQc_HELZ2-N 1 ATP binding site 0 0 1 1 5,32,33,34,35,36,37,183,228,229 5 -350834 cd18076 DEXXQc_HELZ2-N 2 DEAD box helicase motif DExxQ 0 1 1 152,153,154,155,156 0 -350835 cd18077 DEXXQc_HELZ 1 ATP binding site 0 0 1 1 5,30,31,32,33,34,35,183,224,225 5 -350835 cd18077 DEXXQc_HELZ 2 DEAD box helicase motif DExxQ 0 1 1 152,153,154,155,156 0 -350836 cd18078 DEXXQc_Mov10L1 1 ATP binding site 0 0 1 1 5,29,30,31,32,33,34,174,228,229 5 -350836 cd18078 DEXXQc_Mov10L1 2 DEAD box helicase motif DExxQ 0 1 1 142,143,144,145,146 0 -350837 cd18079 S-AdoMet_synt 1 active site 0 1 1 0 4,10,11,12,36,51,94,97,98,114,115,160,162,183,224,226,227,229,235,241,242,256,257,258,262,266,268,299 1 -350837 cd18079 S-AdoMet_synt 2 ATP binding site 0 1 1 0 4,10,11,160,162,242 5 -350837 cd18079 S-AdoMet_synt 3 homodimer interface 0 1 1 1 0,1,2,4,38,40,42,47,49,50,51,115,116,117,118,120,162,164,166,179,181,220,223,234,235,236,238,239,240,241,244,249,250,251,252,253,254,255,256,258,262,294,296,297,298,299,300,305,306,308 2 -349953 cd18080 TrmD-like 1 SAM binding site 0 1 1 0 83,84,85,86,87,110,112,114,128,129,130,134,135,136,138,141 5 -349953 cd18080 TrmD-like 2 dimer interface 0 1 1 0 7,9,10,13,14,18,19,49,50,51,52,53,55,59,61,62,63,66,67,70,91,92,93,94,113,115,116,117,118,127,129,132,133,134,135,136,140,143,144,147,148,151,175,176,177,178,179,180,181,189,194 2 -349954 cd18081 RlmH-like 1 SAM binding site 0 1 1 0 68,69,70,99,100,101,102,104,117,118,119,120,122,123,124,129 5 -349954 cd18081 RlmH-like 2 dimer interface 0 1 1 0 11,12,13,15,16,19,20,74,75,76,77,117,119,120,121,122,123,124,125,128,131,132,135,136,139 2 -349955 cd18082 SpoU-like_family 1 SAM binding site 0 1 1 0 77,78,79,101,102,103,104,105,107,108,120,121,122,124,130,131,133,136 5 -349956 cd18083 aTrm56-like 1 SAM binding site 0 1 1 0 80,81,82,105,106,107,108,122,123,124,125,127,129,130,131,134 5 -349956 cd18083 aTrm56-like 2 dimer interface 0 1 1 0 14,15,18,21,22,24,25,26,47,51,82,83,84,85,86,87,88,90,115,116,118,119,121,123,124,125,126,127,128,129,130,131,132,133,136,137,140,141,147,148,152,159,161,162,163,164,165,166,167 2 -349957 cd18084 RsmE-like 1 SAM binding site 0 1 0 0 91,92,93,94,116,117,118,119,121,138,139,140,144,145,147,150 5 -349957 cd18084 RsmE-like 2 dimer interface 0 1 0 0 17,18,21,22,23,60,61,63,92,93,124,131,139,140,141,142,144,145,146,149,152,153,156,157 2 -349958 cd18085 TM1570-like 1 SAM binding site 0 1 1 0 106,107,108,134,135,136,137,138,139,154,155,162,164,165,166,167,169 5 -349959 cd18086 HsC9orf114-like 1 SAM binding site 0 1 0 0 110,111,112,113,137,138,139,140,143,144,162,163,164,173,175,178 5 -349959 cd18086 HsC9orf114-like 2 dimer interface 0 1 1 0 15,18,21,22,25,28,31,32,34,81,117,118,166,172,173,174,177,180,181,184,185 2 -349960 cd18087 TrmY-like 1 SAM binding site 0 1 1 0 129,170,171,174 5 -349960 cd18087 TrmY-like 2 dimer interface 0 1 1 0 21,26,28,29,32,35,36,39,40,133,135,170,171,172,173,174,175,176,177,180,183,184,187,188,190,191 2 -349961 cd18088 Nep1-like 1 SAM binding site 0 1 1 0 137,138,139,163,164,166,167,169,182,183,184,185,187,188,189,191,194 5 -349961 cd18088 Nep1-like 2 dimer interface 0 1 1 0 28,29,45,47,51,54,55,58,60,93,145,185,187,189,190,192,193,196,197,200 2 -349962 cd18089 SPOUT_Trm10-like 1 SAM binding site 0 1 1 0 85,86,87,104,105,107,109,111,113,116,117,129,130,131,144,145,147,150 5 -349963 cd18090 Arginine_MT_Sfm1 1 SAM binding site 0 1 1 0 73,74,75,94,95,97,119,120,121,122,125,126,128,131 5 -349964 cd18091 SpoU-like_TRM3-like 1 SAM binding site 0 1 0 0 79,80,81,101,102,103,104,105,107,120,121,122,124,129,130,131,133,136 5 -349964 cd18091 SpoU-like_TRM3-like 2 dimer interface 0 1 0 0 18,19,21,22,23,24,51,88,89,122,123,124,125,126,130,131,132,134,135,138,139,142,143 2 -349965 cd18092 SpoU-like_TrmH 1 SAM binding site 0 1 1 0 92,94,114,115,116,117,120,134,135,137,143,144,146,149 5 -349966 cd18093 SpoU-like_TrmJ 1 SAM binding site 0 1 1 0 75,76,77,109,110,111,112,115,128,129,130,138,139,141,144 5 -349966 cd18093 SpoU-like_TrmJ 2 dimer interface 0 1 1 0 18,21,22,23,24,89,90,112,131,132,133,138,139,140,142,143,146,147,150,151 2 -349967 cd18094 SpoU-like_TrmL 1 SAM binding site 0 1 1 0 75,76,77,96,97,98,99,101,102,103,116,117,118,120,125,126,127,129,132 5 -349967 cd18094 SpoU-like_TrmL 2 dimer interface 0 1 1 0 14,17,18,20,21,23,47,50,83,84,117,118,119,120,121,125,126,127,128,130,131,134,135,138,139,141,142 2 -349968 cd18095 SpoU-like_rRNA-MTase 1 SAM binding site 0 1 1 0 78,80,99,100,101,102,105,119,120,122,128,129,131,134 5 -349968 cd18095 SpoU-like_rRNA-MTase 2 dimer interface 0 1 1 0 15,18,19,21,22,23,24,86,87,120,121,122,123,127,128,129,130,133,136,137,140,141 2 -349969 cd18096 SpoU-like 1 putative SAM binding site 0 0 1 1 73,75,95,96,97,98,101,115,116,118,125,126,128,131 5 -349970 cd18097 SpoU-like 1 putative SAM binding site 0 0 1 1 78,80,100,101,102,103,106,120,121,123,129,130,132,135 5 -349971 cd18098 SpoU-like 1 putative SAM binding site 0 0 1 1 75,77,97,98,99,100,103,117,118,120,123,124,126,129 5 -349972 cd18099 Trm10arch 1 SAM binding site 0 1 1 0 77,78,79,80,98,99,128,129,130,136,139,141,146 5 -349973 cd18100 Trm10euk_B 1 SAM binding site 0 0 1 0 86,87,88,105,106,108,110,131,132,134,150,151,153,156 5 -349974 cd18101 Trm10euk_A 1 SAM binding site 0 1 1 0 83,84,85,102,103,105,107,128,129,131,142,143,145,148 5 -349975 cd18102 Trm10_MRRP1 1 SAM binding site 0 0 1 0 88,89,90,107,108,110,112,133,134,136,148,149,151,154 5 -349976 cd18103 SpoU-like_RlmB 1 putative SAM binding site 0 0 1 1 78,80,99,100,101,102,105,119,120,122,128,129,131,134 5 -349976 cd18103 SpoU-like_RlmB 2 homodimer interface 0 1 1 0 18,19,21,22,23,24,46,47,49,52,87,102,120,121,122,123,127,128,129,130,132,133,136,137,140,141 2 -349977 cd18104 SpoU-like_RNA-MTase 1 SAM binding site 0 1 1 0 77,79,98,99,100,101,104,118,119,121,127,128,130,133 5 -349977 cd18104 SpoU-like_RNA-MTase 2 dimer interface 0 1 1 0 15,18,19,21,22,23,24,85,86,119,120,121,122,126,127,128,129,132,135,136,139,140 2 -349978 cd18105 SpoU-like_MRM1 1 putative SAM binding site 0 0 1 1 78,80,109,110,111,112,115,129,130,132,143,144,146,149 5 -349978 cd18105 SpoU-like_MRM1 2 putative dimer interface 0 0 1 1 15,18,19,21,22,23,24,96,97,130,131,132,133,142,143,144,145,148,151,152,155,156 2 -349979 cd18106 SpoU-like_RNMTL1 1 putative SAM binding site 0 0 1 1 77,79,100,101,102,103,106,124,125,127,133,134,136,139 5 -349979 cd18106 SpoU-like_RNMTL1 2 putative dimer interface 0 0 1 1 15,18,19,21,22,23,24,86,87,125,126,127,128,132,133,134,135,138,141,142,145,146 2 -349980 cd18107 SpoU-like_AviRb 1 SAM binding site 0 1 1 0 12,18,83,84,85,104,105,106,107,110,111,123,124,125,127,133,134,135,136,139 5 -349980 cd18107 SpoU-like_AviRb 2 dimer interface 0 1 1 0 15,18,19,21,22,23,24,49,91,92,125,126,127,128,132,133,134,135,137,138,141,142,145,146 2 -349981 cd18108 SpoU-like_NHR 1 SAM binding site 0 1 1 0 12,78,79,100,101,102,103,106,119,120,121,123,129,130,131,132,135 5 -349981 cd18108 SpoU-like_NHR 2 dimer interface 0 1 1 0 18,19,21,22,23,48,86,87,103,122,123,124,128,129,130,131,133,134,137,138,141,142 2 -349982 cd18109 SpoU-like_RNA-MTase 1 putative SAM binding site 0 0 1 1 76,78,96,97,98,99,102,116,117,119,126,127,129,132 5 -349982 cd18109 SpoU-like_RNA-MTase 2 dimer interface 0 0 1 1 15,18,19,21,22,23,24,83,84,117,118,119,120,125,126,127,128,131,134,135,138,139 2 -349745 cd18110 ATP-synt_F1_beta_C 1 lipid binding site 0 1 1 0 56,59,62,63 5 -349746 cd18111 ATP-synt_V_A-type_alpha_C 1 lipid binding site 0 1 1 0 50,51,52,53 5 -349748 cd18113 ATP-synt_F1_alpha_C 1 lipid binding site 0 1 1 0 47,48,49 5 -350838 cd18133 HLD_clamp 1 ATP binding site 0 1 1 0 36,37,40 5 -350839 cd18137 HLD_clamp_pol_III_gamma_tau 1 ATP binding site 0 1 1 0 36,37,40 5 -350839 cd18137 HLD_clamp_pol_III_gamma_tau 2 oligomer interface 0 1 1 0 48,49,61 2 -350840 cd18138 HLD_clamp_pol_III_delta 1 oligomer interface 0 1 1 0 37,41,44,45,47,48,49,51,62 2 -350841 cd18139 HLD_clamp_RarA 1 ATP binding site 0 1 1 0 42,43,46 5 -350842 cd18140 HLD_clamp_RFC 1 ATP binding site 0 1 1 0 36,37,40 5 -350842 cd18140 HLD_clamp_RFC 2 oligomer interface 0 1 1 0 35,37,38,41,44,45,48,49 2 -349482 cd18172 M14_CP_plant 1 Zn binding site [H][ED][H] 0 1 1 60,63,164 4 -349482 cd18172 M14_CP_plant 2 active site 0 0 1 1 60,63,113,122,123,164,165,171,175,220,224,226,246 1 -349483 cd18173 M14_CP_bacteria 1 Zn binding site [H][ED][H] 0 1 1 63,66,172 4 -349483 cd18173 M14_CP_bacteria 2 active site 0 0 1 1 63,66,123,132,133,172,173,179,183,225,229,231,251 1 -349484 cd18174 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 0 1 1 7,10,94 4 -349484 cd18174 M14_ASTE_ASPA_like 2 active site 0 0 1 1 7,10,47,60,61,94,95,107,149,163 1 -349515 cd18206 BTB_POZ_ZBTB17_MIZ1 1 homodimer interface 0 1 1 1 1,2,4,5,6,7,8,9,11,12,15,20,21,36,38,41,42,43,48,74,75,78,79,80,81,101 2 -349515 cd18206 BTB_POZ_ZBTB17_MIZ1 2 putative tetramer (dimer of dimer) interface 0 1 1 0 19,22,23,24,25,26,27,28,29,30,32,34,37,57,58,60,61,63 2 -349541 cd18232 BTB_POZ_ZBTB48_TZAP_KR3 1 homodimer interface 0 1 0 0 0,1,2,3,4,5,7,8,11,17,19,32,34,37,38,44,47,71,72,74,75 2 -349544 cd18235 BTB_POZ_KLHL2-like 1 cullin binding site 0 1 0 1 44,45,48,49,53,54,56,63,64,65,66,96,99,100,102,107 2 -349550 cd18241 BTB_POZ_KLHL11 1 homodimer interface 0 1 0 0 0,1,2,5,6,7,8,9,10,12,13,16,21,22,40,41,42,43,45,46,47,89,90,91,92,93,94,95,96,97,98,99,116,120,124,127,128 2 -349550 cd18241 BTB_POZ_KLHL11 2 cullin binding site 0 1 1 0 49,50,53,54,58,59,60,61,68,69,70,71,99,102,103,110,111,113,125,133 2 -349554 cd18245 BTB_POZ_KLHL16_gigaxonin 1 homodimer interface 0 1 1 0 0,1,3,4,7,13,28,30,31,33,34,35,43,73,74,77,78,100 2 -349557 cd18248 BTB_POZ_KLHL19_KEAP1 1 cullin binding site 0 1 1 1 49,52,53,58,59,60,68,69,100,104,105 2 -349557 cd18248 BTB_POZ_KLHL19_KEAP1 2 modulator binding site 0 1 1 1 72,74,75,90,91,93,94,97 5 -349586 cd18277 BTB_POZ_BACH1 1 homodimer interface 0 1 0 0 0,1,2,3,4,5,6,9,10,11,12,13,14,16,17,20,26,41,43,46,47,48,56,83,84,87,88,89,90,91,92,93,110,111,112,115,118,119 2 -349587 cd18278 BTB_POZ_BACH2 1 homodimer interface 0 1 1 0 1,2,3,4,5,6,7,8,9,10,13,14,15,17,18,21,24,29,30,45,46,47,50,51,52,57,60,61,63,87,88,91,92,93,94,95,96,97,114,115,117,118,120 2 -349599 cd18290 BTB_POZ_BTBD14B_NAC1 1 homodimer interface 0 1 1 0 0,1,2,3,4,5,6,8,9,10,11,13,14,16,17,20,26,41,43,46,47,48,53,56,57,81,82,84,85,86,87,88,89,94,97,98,108,109 2 -349626 cd18317 BTB_POZ_Kv 1 tetramer interface 0 1 1 1 3,5,6,7,8,9,10,11,12,15,42,44,45,48,51,55,58,61,63,71,72,75 2 -349630 cd18321 BTB_POZ_EloC 1 elongin B interface 0 1 1 1 0,7,8,9,10,11,12,13,14,48,49,50,53,56,57,60,61,64,65,73,74,75,79,80,81,83,84 2 -349630 cd18321 BTB_POZ_EloC 2 target protein binding site 0 1 1 1 58,62,65,68,71,72,74,75,77,79,82,83,85,86,87,89,90,94 2 -349630 cd18321 BTB_POZ_EloC 3 cullin binding site 0 1 1 0 26,27,29,31,32,33,34,41,42,43,45,46,87,90,91 2 -349631 cd18322 BTB_POZ_SKP1 1 F-box protein binding site 0 1 1 1 89,93,97,100,105,109,112,113,115,116,119 2 -349631 cd18322 BTB_POZ_SKP1 2 cullin binding site 0 1 1 1 22,23,27,31,35,36,37,39,41,42,97,100,101,103 2 -349635 cd18326 BTB_POZ_ZBTB7A 1 homodimer interface 0 1 1 0 0,1,2,3,4,7,8,9,11,12,15,18,24,39,41,44,45,54,55,82,83,86,87,88,89,90,91,109,113 2 -349640 cd18331 BTB_POZ_ZBTB27_BCL6 1 homodimer interface 0 1 1 1 0,1,2,3,6,7,8,10,11,13,14,17,20,22,23,38,39,40,43,44,45,50,59,81,82,85,86,87,88,89,108,112 2 -349640 cd18331 BTB_POZ_ZBTB27_BCL6 2 co-repressor binding site 0 1 1 1 0,1,2,3,4,5,6,9,10,13,16,20,43,44,45,46,47,50,106,107,108,112 2 -349640 cd18331 BTB_POZ_ZBTB27_BCL6 3 inhibitor binding site 0 1 1 1 13,16,17,20,43,44,45,46,47,50,105,106,107 5 -349647 cd18338 BTB_POZ_KLHL2_Mayven 1 cullin binding site 0 0 0 1 44,45,48,49,53,54,56,63,64,65,66,96,99,100,102,107 2 -349648 cd18339 BTB_POZ_KLHL3 1 cullin binding site 0 1 0 1 44,45,48,49,53,54,55,56,63,64,65,66,96,99,100,102,107 2 -349651 cd18342 BTB_POZ_SPOP 1 cullin binding site 0 1 1 0 45,46,49,50,53,54,55,56,57,63,64,65,66,67,100,101,102,103 2 -349651 cd18342 BTB_POZ_SPOP 2 homodimer interface 0 1 1 0 1,2,3,4,5,6,8,9,11,12,15,20,21,36,38,41,42,43,48,51,52,80,81,82,106,109,110,113 2 -349670 cd18361 BTB_POZ_KCTD1-like 1 pentamer interface 0 1 1 1 1,3,5,6,8,9,10,11,12,15,35,37,40,42,44,46,47,48,50,53,57,60,61,63,65,67,68,69,71,72,75,78,81 2 -349671 cd18362 BTB_POZ_KCTD2-like 1 pentamer interface 0 1 1 0 0,4,6,7,10,11,12,13,16,38,46,47,48,49,50,53,59,62,63,65,67,68,69,70,71,72,74,76,79 2 -349676 cd18367 BTB_POZ_KCTD8-like 1 putative homodimer interface 0 1 1 1 7,9,10,41,42,43,44,47,49,51,52,53,55,56,75,76,77,78,79,80,83,87 2 -349677 cd18368 BTB_POZ_KCTD9 1 pentamer interface 0 1 1 0 1,7,8,9,10,11,12,13,14,17,48,50,51,52,54,55,57,61,64,65,67,69,70,71,73,74,75,78,81 2 -349678 cd18369 BTB_POZ_KCTD10-like_BACURD 1 tetramer interface 0 1 1 0 3,5,6,7,8,9,10,11,15,36,38,40,42,52,55,58,59,70 2 -349686 cd18377 BTB_POZ_Kv1_KCNA 1 tetramer interface 0 1 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349686 cd18377 BTB_POZ_Kv1_KCNA 2 beta subunit interface 0 1 1 1 0,33,36,38,39,41,43 2 -349687 cd18378 BTB_POZ_Kv2_KCNB 1 putative tetramer interface 0 0 1 1 6,8,9,10,11,12,13,14,15,18,54,56,57,60,63,67,70,73,75,83,84,87 2 -349687 cd18378 BTB_POZ_Kv2_KCNB 2 Zn binding site HCCC 0 1 1 75,81,102,103 4 -349688 cd18379 BTB_POZ_Kv3_KCNC 1 Zn binding site HCCC 1 1 1 66,72,93,94 4 -349688 cd18379 BTB_POZ_Kv3_KCNC 2 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,45,47,48,51,54,58,61,64,66,74,75,78 2 -349689 cd18380 BTB_POZ_Kv4_KCND 1 Zn binding site HCCC 1 1 1 63,69,90,91 4 -349689 cd18380 BTB_POZ_Kv4_KCND 2 tetramer interface 0 1 1 1 0,4,6,7,8,9,10,11,12,13,16,42,44,45,46,48,51,55,58,59,61,63,66,68,69,71,72,75,90,91 2 -349689 cd18380 BTB_POZ_Kv4_KCND 3 beta subunit interface 0 1 1 1 13 2 -349690 cd18381 BTB_POZ_Kv5_KCNF1 1 putative tetramer interface 0 0 1 1 5,7,8,9,10,11,12,13,14,17,55,57,58,61,64,68,71,74,76,84,85,88 2 -349690 cd18381 BTB_POZ_Kv5_KCNF1 2 Zn binding site HCCC 0 1 1 76,82,103,104 4 -349691 cd18382 BTB_POZ_Kv6_KCNG 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,51,53,54,57,60,64,67,70,72,80,81,84 2 -349692 cd18384 BTB_POZ_Kv9_KCNS 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,51,53,54,57,60,64,67,70,72,80,81,84 2 -349692 cd18384 BTB_POZ_Kv9_KCNS 2 Zn binding site HCCC 0 1 1 72,78,99,100 4 -349695 cd18387 BTB_POZ_KCTD1 1 pentamer interface 0 1 1 1 1,3,5,7,9,10,12,13,14,15,16,19,39,41,44,46,48,50,51,52,54,57,61,64,65,67,69,71,72,73,75,76,79,82,85 2 -349696 cd18388 BTB_POZ_KCTD15 1 putative pentamer interface 0 0 1 1 0,2,4,6,8,9,11,12,13,14,15,18,38,40,43,45,47,49,50,51,53,56,60,63,64,66,68,70,71,72,74,75,78,81,84 2 -349697 cd18389 BTB_POZ_KCTD2 1 pentamer interface 0 0 1 1 1,5,7,8,11,12,13,14,17,39,47,48,49,50,51,54,60,63,64,66,68,69,70,71,72,73,75,77,80 2 -349698 cd18390 BTB_POZ_KCTD5 1 pentamer interface 0 1 1 0 3,5,9,11,12,15,16,17,18,21,43,51,52,53,54,55,58,64,67,68,70,72,73,74,75,76,77,78,79,81,84 2 -349699 cd18391 BTB_POZ_KCTD17 1 pentamer interface 0 1 1 0 0,1,5,7,8,10,11,12,13,14,17,36,38,46,47,48,49,50,52,53,59,62,63,65,67,68,69,70,71,72,73,75,76,79,80 2 -349704 cd18396 BTB_POZ_KCTD8 1 putative homodimer interface 0 0 1 1 8,10,11,42,43,44,45,48,50,52,53,54,56,57,76,77,78,79,80,81,84,88 2 -349705 cd18397 BTB_POZ_KCTD12_Pfetin 1 putative homodimer interface 0 0 1 1 7,9,10,41,42,43,44,47,49,51,52,53,55,56,75,76,77,78,79,80,83,87 2 -349706 cd18398 BTB_POZ_KCTD16 1 homodimer interface 0 1 1 0 7,9,10,43,44,45,46,49,51,53,54,55,57,58,77,78,79,80,81,82,85,89 2 -349707 cd18399 BTB_POZ_KCTD10_BACURD3 1 tetramer interface 0 1 1 0 5,6,7,11,13,14,15,16,17,18,19,20,23,44,46,48,50,60,63,66,67,71,72,73,74,78 2 -349708 cd18400 BTB_POZ_KCTD13_BACURD1 1 tetramer interface 0 1 1 0 1,2,6,8,9,10,11,12,13,14,15,18,39,41,43,45,49,50,51,52,55,58,61,62,66,67,68,69,77 2 -349709 cd18401 BTB_POZ_TNFAIP1_BACURD2 1 putative tetramer interface 0 0 1 1 2,3,7,9,10,11,12,13,14,15,19,40,42,44,46,56,59,62,63,74 2 -349710 cd18402 BTB_POZ_KCNA1 1 beta subunit interface 0 1 1 1 8,41,44,46,47,49,51 2 -349710 cd18402 BTB_POZ_KCNA1 2 putative tetramer interface 0 0 1 1 9,13,15,16,17,18,19,20,21,22,25,45,48,52,54,55,57,58,61,65,68,72,74,78,82,83,86 2 -349711 cd18403 BTB_POZ_KCNA2_KCNA3 1 tetramer interface 0 1 1 0 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,69,70,74,75,78 2 -349711 cd18403 BTB_POZ_KCNA2_KCNA3 2 beta subunit interface 0 1 1 1 0,33,36,38,39,41,43 2 -349712 cd18405 BTB_POZ_KCNA4 1 putative tetramer interface 0 0 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349712 cd18405 BTB_POZ_KCNA4 2 putative beta subunit interface 0 0 1 1 0,33,36,38,39,41,43 2 -349713 cd18406 BTB_POZ_KCNA5 1 putative tetramer interface 0 0 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349713 cd18406 BTB_POZ_KCNA5 2 putative beta subunit interface 0 0 1 1 0,33,36,38,39,41,43 2 -349714 cd18407 BTB_POZ_KCNA6 1 putative tetramer interface 0 0 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349714 cd18407 BTB_POZ_KCNA6 2 putative beta subunit interface 0 0 1 1 0,33,36,38,39,41,43 2 -349715 cd18408 BTB_POZ_KCNA7 1 putative tetramer interface 0 0 1 1 6,10,12,13,14,15,16,17,18,19,22,42,45,49,51,52,54,55,58,62,65,69,71,75,79,80,83 2 -349715 cd18408 BTB_POZ_KCNA7 2 putative beta subunit interface 0 0 1 1 5,38,41,43,44,46,48 2 -349716 cd18409 BTB_POZ_KCNA10 1 putative tetramer interface 0 0 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349716 cd18409 BTB_POZ_KCNA10 2 putative beta subunit interface 0 0 1 1 0,33,36,38,39,41,43 2 -349717 cd18410 BTB_POZ_Shaker-like 1 putative tetramer interface 0 0 1 1 1,5,7,8,9,10,11,12,13,14,17,37,40,44,46,47,49,50,53,57,60,64,66,70,74,75,78 2 -349717 cd18410 BTB_POZ_Shaker-like 2 putative beta subunit interface 0 0 1 1 0,33,36,38,39,41,43 2 -349718 cd18411 BTB_POZ_KCNB1 1 putative tetramer interface 0 0 1 1 14,16,17,18,19,20,21,22,23,26,62,64,65,68,71,75,78,81,83,91,92,95 2 -349718 cd18411 BTB_POZ_KCNB1 2 Zn binding site HCCC 0 1 1 83,89,110,111 4 -349719 cd18412 BTB_POZ_KCNB2 1 putative tetramer interface 0 0 1 1 21,23,24,25,26,27,28,29,30,33,69,71,72,75,78,82,85,88,90,98,99,102 2 -349719 cd18412 BTB_POZ_KCNB2 2 Zn binding site HCCC 0 1 1 90,96,117,118 4 -349720 cd18413 BTB_POZ_Shab-like 1 putative tetramer interface 0 0 1 1 6,8,9,10,11,12,13,14,15,18,54,56,57,60,63,67,70,73,75,83,84,87 2 -349720 cd18413 BTB_POZ_Shab-like 2 Zn binding site HCCC 0 1 1 75,81,102,103 4 -349721 cd18414 BTB_KCNC1_3 1 putative tetramer interface 0 0 1 1 7,9,10,11,12,13,14,15,16,19,50,52,53,56,59,63,66,69,71,79,80,83 2 -349721 cd18414 BTB_KCNC1_3 2 Zn binding site HCCC 0 1 1 71,77,98,99 4 -349722 cd18415 BTB_KCNC2_4 1 putative tetramer interface 0 0 1 1 6,8,9,10,11,12,13,14,15,18,60,62,63,66,69,73,76,79,81,89,90,93 2 -349722 cd18415 BTB_KCNC2_4 2 Zn binding site HCCC 0 1 1 81,87,108,109 4 -349723 cd18416 BTB_Shaw-like 1 Zn binding site HCCC 1 1 1 66,72,93,94 4 -349723 cd18416 BTB_Shaw-like 2 putative tetramer interface 0 0 1 1 6,8,9,10,11,12,13,14,15,18,45,47,48,51,54,58,61,64,66,74,75,78 2 -349724 cd18417 BTB_POZ_KCND1 1 Zn binding site HCCC 0 1 1 98,104,125,126 4 -349724 cd18417 BTB_POZ_KCND1 2 putative tetramer interface 0 0 1 1 35,39,41,42,43,44,45,46,47,48,51,77,79,80,81,83,86,90,93,94,96,98,101,103,104,106,107,110,125,126 2 -349724 cd18417 BTB_POZ_KCND1 3 putative beta subunit interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,20,21,23,25,28,30,31,33,48 2 -349725 cd18418 BTB_POZ_KCND2 1 Zn binding site HCCC 1 1 1 63,69,90,91 4 -349725 cd18418 BTB_POZ_KCND2 2 putative tetramer interface 0 0 1 1 0,4,6,7,8,9,10,11,12,13,16,42,44,45,46,48,51,55,58,59,61,63,66,68,69,71,72,75,90,91 2 -349725 cd18418 BTB_POZ_KCND2 3 putative beta subunit interface 0 0 1 1 13 2 -349726 cd18419 BTB_POZ_KCND3 1 tetramer interface 0 1 1 0 35,39,41,42,43,44,45,46,47,48,51,77,79,80,81,83,86,90,93,94,96,98,101,102,103,104,106,107,110,125,126 2 -349726 cd18419 BTB_POZ_KCND3 2 beta subunit interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,20,21,23,25,28,30,31,33,48 2 -349726 cd18419 BTB_POZ_KCND3 3 Zn binding site HCCC 1 1 1 98,104,125,126 4 -349727 cd18420 BTB_POZ_Shal-like 1 Zn binding site HCCC 0 1 1 99,105,126,127 4 -349727 cd18420 BTB_POZ_Shal-like 2 putative tetramer interface 0 0 1 1 36,40,42,43,44,45,46,47,48,49,52,78,80,81,82,84,87,91,94,95,97,99,102,104,105,107,108,111,126,127 2 -349727 cd18420 BTB_POZ_Shal-like 3 putative beta subunit interface 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,19,20,24,27,30,31,33,49 2 -349728 cd18421 BTB_POZ_KCNG1_2 1 putative tetramer interface 0 0 1 1 8,10,11,12,13,14,15,16,17,20,56,58,59,62,65,69,72,75,77,85,86,89 2 -349729 cd18422 BTB_POZ_KCNG3 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,51,53,54,57,60,64,67,70,72,80,81,84 2 -349730 cd18423 BTB_POZ_KCNG4 1 putative tetramer interface 0 0 1 1 6,8,9,10,11,12,13,14,15,18,54,56,57,60,63,67,70,73,75,83,84,87 2 -349731 cd18424 BTB_POZ_KCNV1 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,50,52,53,56,59,63,66,69,71,79,80,83 2 -349732 cd18425 BTB_POZ_KCNV2 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,51,53,54,57,60,64,67,70,72,80,81,84 2 -349733 cd18426 BTB_POZ_KCNS1 1 putative tetramer interface 0 0 1 1 3,5,6,7,8,9,10,11,12,15,51,53,54,57,60,64,67,70,72,80,81,84 2 -349733 cd18426 BTB_POZ_KCNS1 2 Zn binding site HCCC 0 1 1 72,78,99,100 4 -349734 cd18427 BTB_POZ_KCNS2 1 putative tetramer interface 0 0 1 1 4,6,7,8,9,10,11,12,13,16,52,54,55,58,61,65,68,71,73,81,82,85 2 -349734 cd18427 BTB_POZ_KCNS2 2 Zn binding site HCCC 0 1 1 73,79,100,101 4 -349735 cd18428 BTB_POZ_KCNS3 1 putative tetramer interface 0 0 1 1 5,7,8,9,10,11,12,13,14,17,53,55,56,59,62,66,69,72,74,82,83,86 2 -349735 cd18428 BTB_POZ_KCNS3 2 Zn binding site HCCC 0 1 1 74,80,101,102 4 -349485 cd18429 M14_Nna1-like 1 Zn binding site [H][ED][H] 0 1 1 49,52,147 4 -349485 cd18429 M14_Nna1-like 2 active site 0 0 1 1 49,52,99,108,109,147,148,154,221 1 -349486 cd18430 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 0 1 1 7,10,90 4 -349486 cd18430 M14_ASTE_ASPA_like 2 active site 0 0 1 1 7,10,49,56,57,90,91,101,134,147 1 -349384 cd18431 BRCT_DNA_ligase_III 1 BRCT sequence motif W[SC] 0 1 1 65,69 0 -349385 cd18432 BRCT_PAXIP1_rpt6_like 1 dimer interface 0 1 1 1 13,52,53,75 2 -349385 cd18432 BRCT_PAXIP1_rpt6_like 2 gamma-H2AX interaction site 0 1 1 0 14,75 2 -349385 cd18432 BRCT_PAXIP1_rpt6_like 3 BRCT sequence motif W[CS] 0 1 1 73,77 0 -349386 cd18433 BRCT_Rad4_rpt3 1 BRCT sequence motif W[CS] 0 1 1 72,76 0 -349387 cd18434 BRCT_TopBP1_rpt5 1 BRCT sequence motif W[CS] 0 1 1 75,79 0 -349388 cd18435 BRCT_BRC1_like_rpt1 1 BRCT sequence motif W[SC] 0 1 1 88,92 0 -349389 cd18436 BRCT_BRC1_like_rpt2 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349391 cd18438 BRCT_BRC1_like_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349392 cd18439 BRCT_BRC1_like_rpt6 1 BRCT sequence motif W[CS] 0 1 1 104,108 0 -349393 cd18440 BRCT_PAXIP1_rpt6 1 gamma-H2AX interaction site 0 1 0 0 14,80 2 -349394 cd18441 BRCT_MDC1_rpt2 1 dimer interface 0 1 1 1 13,14,48,49,71 2 -349394 cd18441 BRCT_MDC1_rpt2 2 gamma-H2AX interaction site 0 1 1 0 13,14 2 -349395 cd18442 BRCT_polymerase_mu 1 BRCT sequence motif W[CS] 0 1 1 78,82 0 -349396 cd18443 BRCT_DNTT 1 BRCT sequence motif W[SC] 0 1 1 75,79 0 -350520 cd18445 BACK_KLHL2_like 1 cullin binding site 0 1 1 0 13,14,15,16,18 2 -350526 cd18451 BACK_KLHL11 1 cullin binding site 0 1 1 0 4,7,8,10,11,13,14,15,16,45,46,84 2 -350587 cd18512 BACK_KLHL2_Mayven 1 putative cullin binding site 0 0 1 1 13,14,15,16,18 2 -350588 cd18513 BACK_KLHL3 1 cullin binding site 0 1 1 0 13,14,15,16,18 2 -350509 cd18533 PTP_fungal 1 active site xxCxxxxxRx 0 1 1 114,115,148,149,150,151,152,153,154,201 1 -350509 cd18533 PTP_fungal 2 catalytic site CR 0 1 1 148,154 1 -350510 cd18534 DSP_plant_IBR5-like 1 catalytic site CR 0 1 1 79,85 1 -350510 cd18534 DSP_plant_IBR5-like 2 active site xxCxxxxxR 0 1 1 12,51,79,80,81,82,83,84,85 1 -350511 cd18535 PTP-IVa3 1 catalytic site CR 0 1 1 99,105 1 -350511 cd18535 PTP-IVa3 2 heterodimer interface 0 1 1 0 0,2,67,68,69,99,100,103,104,105,132,133,134,135,137,139 2 -350511 cd18535 PTP-IVa3 3 active site CxxxxxR 0 1 1 99,100,101,102,103,104,105 1 -350512 cd18536 PTP-IVa2 1 catalytic site CR 0 1 1 100,106 1 -350512 cd18536 PTP-IVa2 2 heterodimer interface 0 1 1 0 0,1,2,3,68,69,102,104,105,106,133,134,135,136,137,138,141 2 -350512 cd18536 PTP-IVa2 3 active site CxxxxxR 0 1 1 100,101,102,103,104,105,106 1 -350513 cd18537 PTP-IVa1 1 peptide binding site 0 1 1 1 46,52,53,55,58,63,64,65,66,67 2 -350513 cd18537 PTP-IVa1 2 active site CxxxxxR 0 1 1 103,104,105,106,107,108,109 1 -350513 cd18537 PTP-IVa1 3 catalytic site CR 0 1 1 103,109 1 -350513 cd18537 PTP-IVa1 4 heterodimer interface 0 0 1 1 4,6,71,72,107,108,109,136,137,138,139,141,143 2 -350514 cd18538 PFA-DSP_unk 1 catalytic site CR 0 1 1 96,102 1 -350514 cd18538 PFA-DSP_unk 2 active site CxxxxxR 0 1 1 96,97,98,99,100,101,102 1 -349786 cd18539 SRP_G 1 active site 0 1 1 1 7,8,9,10,11,12,13,14,18,36,39,45,88,91,93,146,147,149,172,173,174,175 1 -349786 cd18539 SRP_G 2 dimer interface 0 1 1 0 8,9,39,40,41,44,45,93,94,95,122,123,124,125,147,149,150,151,152,175 2 -349786 cd18539 SRP_G 3 heterodimer interface 0 1 1 0 8,9,39,40,41,44,45,48,93,94,95,120,122,123,124,125,129,130,147,149,150,151,152,175 2 -349786 cd18539 SRP_G 4 RNA binding site 0 1 1 0 7,8,9,39,40,41,44,45,48,58,59,72,75,76,91,93,94,95,99,105,122,123,124,125,129,147,149,150,151,152,175 3 -349984 cd18540 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -349984 cd18540 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349984 cd18540 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -349984 cd18540 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -349984 cd18540 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -349984 cd18540 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -349985 cd18541 ABC_6TM_TmrB_like 1 heterodimer interface 0 1 1 1 35,36,38,39,42,45,46,49,50,53,57,64,65,68,69,72,75,76,79,80,82,83,84,85,95,99,102,103,174,181,182,183,185,186,187,188,189,190,192,193,194,195,196,197,198,199,200,201,203,204,205,208,209,211,212,215,216,219,220,223,224,227,228,231,234,235,238,241,242,245,246,248,249,259,262 2 -349985 cd18541 ABC_6TM_TmrB_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349985 cd18541 ABC_6TM_TmrB_like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349985 cd18541 ABC_6TM_TmrB_like 4 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -349985 cd18541 ABC_6TM_TmrB_like 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -349985 cd18541 ABC_6TM_TmrB_like 6 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245 7 -349985 cd18541 ABC_6TM_TmrB_like 7 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -349986 cd18542 ABC_6TM_YknU_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349986 cd18542 ABC_6TM_YknU_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349986 cd18542 ABC_6TM_YknU_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -349986 cd18542 ABC_6TM_YknU_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -349986 cd18542 ABC_6TM_YknU_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -349986 cd18542 ABC_6TM_YknU_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 6 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -349988 cd18544 ABC_6TM_TmrA_like 1 heterodimer interface 0 1 1 1 21,24,25,28,29,39,40,43,46,47,50,51,54,57,58,62,65,66,69,70,73,76,77,80,83,84,85,86,91,92,96,99,100,103,104,178,179,182,183,184,185,186,187,188,190,191,192,193,194,195,196,197,200,201,202,204,205,206,209,210,212,213,216,217,220,221,224,225,228,232,235,236,239,242,243,246,260 2 -349988 cd18544 ABC_6TM_TmrA_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349988 cd18544 ABC_6TM_TmrA_like 3 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349988 cd18544 ABC_6TM_TmrA_like 4 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349988 cd18544 ABC_6TM_TmrA_like 5 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -349988 cd18544 ABC_6TM_TmrA_like 6 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -349988 cd18544 ABC_6TM_TmrA_like 7 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -349989 cd18545 ABC_6TM_YknV_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349989 cd18545 ABC_6TM_YknV_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349989 cd18545 ABC_6TM_YknV_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -349989 cd18545 ABC_6TM_YknV_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -349989 cd18545 ABC_6TM_YknV_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -349989 cd18545 ABC_6TM_YknV_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -349991 cd18547 ABC_6TM_Tm288_like 1 heterodimer interface 0 1 1 0 21,40,43,44,47,50,51,54,55,58,61,62,65,66,69,73,74,77,80,81,84,85,87,88,89,90,92,95,96,100,103,104,182,183,184,186,187,188,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,209,210,213,216,217,220,221,224,225,228,232,235,236,239,240,242,243,246,247,250,253,254,260,264 2 -349991 cd18547 ABC_6TM_Tm288_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349991 cd18547 ABC_6TM_Tm288_like 3 TM helix 2 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -349991 cd18547 ABC_6TM_Tm288_like 4 TM helix 3 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,125,126,127,128,129,130,131,132,133,134,135,136,137,138,140,141,142 7 -349991 cd18547 ABC_6TM_Tm288_like 5 TM helix 4 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -349991 cd18547 ABC_6TM_Tm288_like 6 TM helix 5 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -349991 cd18547 ABC_6TM_Tm288_like 7 TM helix 6 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -349992 cd18548 ABC_6TM_Tm287_like 1 heterodimer interface 0 1 1 0 10,13,14,17,18,21,24,28,34,37,44,45,48,49,52,55,59,63,64,67,68,71,72,74,75,78,79,81,82,83,84,94,97,98,101,102,110,113,121,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,198,199,200,203,204,207,208,210,211,214,215,218,219,222,223,226,230,233,236,237,240,241,244,258,262 2 -349992 cd18548 ABC_6TM_Tm287_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349992 cd18548 ABC_6TM_Tm287_like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349992 cd18548 ABC_6TM_Tm287_like 4 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -349992 cd18548 ABC_6TM_Tm287_like 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -349992 cd18548 ABC_6TM_Tm287_like 6 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349992 cd18548 ABC_6TM_Tm287_like 7 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -349993 cd18549 ABC_6TM_YwjA_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -349993 cd18549 ABC_6TM_YwjA_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349993 cd18549 ABC_6TM_YwjA_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -349993 cd18549 ABC_6TM_YwjA_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -349993 cd18549 ABC_6TM_YwjA_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -349993 cd18549 ABC_6TM_YwjA_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -349994 cd18550 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349994 cd18550 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349994 cd18550 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -349994 cd18550 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -349994 cd18550 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -349994 cd18550 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -349995 cd18551 ABC_6TM_LmrA_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349995 cd18551 ABC_6TM_LmrA_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -349995 cd18551 ABC_6TM_LmrA_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -349995 cd18551 ABC_6TM_LmrA_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -349995 cd18551 ABC_6TM_LmrA_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -349995 cd18551 ABC_6TM_LmrA_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -349996 cd18552 ABC_6TM_MsbA_like 1 homodimer interface 0 1 1 1 34,36,37,38,40,41,42,44,45,48,52,55,56,59,60,67,68,71,75,91,94,95,97,98,101,102,105,180,181,184,185,187,189,192,193,194,203,211,215,218,219,222,223,225,226,229,230,233,236,237,240,241,243,244,258,262,269 2 -349996 cd18552 ABC_6TM_MsbA_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349996 cd18552 ABC_6TM_MsbA_like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349996 cd18552 ABC_6TM_MsbA_like 4 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349996 cd18552 ABC_6TM_MsbA_like 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349996 cd18552 ABC_6TM_MsbA_like 6 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -349996 cd18552 ABC_6TM_MsbA_like 7 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -349997 cd18553 ABC_6TM_PglK_like 1 homodimer interface 0 1 1 1 14,17,20,21,24,25,49,53,56,59,60,63,66,67,70,71,74,75,78,79,82,83,86,90,93,94,96,97,98,99,100,101,104,106,109,113,116,117,192,193,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,217,218,219,222,223,226,229,230,233,234,240,241,243,244,245,247,248,249,251,252,255,256,259,265,266,269,276,277,280,283,288 2 -349997 cd18553 ABC_6TM_PglK_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349997 cd18553 ABC_6TM_PglK_like 3 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -349997 cd18553 ABC_6TM_PglK_like 4 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -349997 cd18553 ABC_6TM_PglK_like 5 TM helix 4 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -349997 cd18553 ABC_6TM_PglK_like 6 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -349997 cd18553 ABC_6TM_PglK_like 7 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -349998 cd18554 ABC_6TM_Sav1866_like 1 homodimer interface 0 1 1 1 20,21,43,47,50,51,54,55,58,59,62,63,66,67,70,71,74,78,81,82,85,86,89,90,91,96,98,99,100,101,105,108,109,110,116,176,183,184,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,205,206,207,210,211,214,215,217,218,222,225,226,228,229,230,232,233,237,240,241,244,247,248,251,265,268,279 2 -349998 cd18554 ABC_6TM_Sav1866_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349998 cd18554 ABC_6TM_Sav1866_like 3 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -349998 cd18554 ABC_6TM_Sav1866_like 4 TM helix 3 0 0 0 0 98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -349998 cd18554 ABC_6TM_Sav1866_like 5 TM helix 4 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -349998 cd18554 ABC_6TM_Sav1866_like 6 TM helix 5 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -349998 cd18554 ABC_6TM_Sav1866_like 7 TM helix 6 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -349999 cd18555 ABC_6TM_T1SS_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -349999 cd18555 ABC_6TM_T1SS_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349999 cd18555 ABC_6TM_T1SS_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -349999 cd18555 ABC_6TM_T1SS_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -349999 cd18555 ABC_6TM_T1SS_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -349999 cd18555 ABC_6TM_T1SS_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350000 cd18556 ABC_6TM_McjD_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350000 cd18556 ABC_6TM_McjD_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 7 -350000 cd18556 ABC_6TM_McjD_like 3 TM helix 3 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -350000 cd18556 ABC_6TM_McjD_like 4 TM helix 4 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -350000 cd18556 ABC_6TM_McjD_like 5 TM helix 5 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -350000 cd18556 ABC_6TM_McjD_like 6 TM helix 6 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -350000 cd18556 ABC_6TM_McjD_like 7 homodimer interface 0 1 1 1 39,42,43,46,47,50,53,57,61,68,69,72,76,79,80,83,84,86,87,89,99,102,103,104,107,186,187,189,190,191,193,196,200,201,202,205,206,209,210,213,214,217,220,224,228,231,235,246,250,263,270,271,278 2 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 2 TM helix 2 0 0 0 0 56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 3 TM helix 3 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 4 TM helix 4 0 0 0 0 157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,198,199,200,201,202,203,204,205,206 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 5 TM helix 5 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,235,236,237,238,239,240,241,242,243,244,246,247,248,249,250,251,252,253,254,255,256,257,258,260,261,262,263,264,265,266,267,268 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 6 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310 7 -350003 cd18559 ABC_6TM_ABCC 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350003 cd18559 ABC_6TM_ABCC 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350003 cd18559 ABC_6TM_ABCC 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -350003 cd18559 ABC_6TM_ABCC 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,176,177,178,179,180,181,182,183,184 7 -350003 cd18559 ABC_6TM_ABCC 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350003 cd18559 ABC_6TM_ABCC 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 1 putative chemical substrate binding site 0 1 1 1 159,162,166,217,224,225,228,272,276,279,280 5 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 4 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 5 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 6 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 7 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350007 cd18563 ABC_6TM_exporter_like 1 substrate binding site 0 0 0 0 17,18,21,236,265,269 0 -350007 cd18563 ABC_6TM_exporter_like 2 TM helix 1 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350007 cd18563 ABC_6TM_exporter_like 3 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350007 cd18563 ABC_6TM_exporter_like 4 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -350007 cd18563 ABC_6TM_exporter_like 5 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -350007 cd18563 ABC_6TM_exporter_like 6 TM helix 5 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -350007 cd18563 ABC_6TM_exporter_like 7 TM helix 6 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -350007 cd18563 ABC_6TM_exporter_like 8 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350007 cd18563 ABC_6TM_exporter_like 9 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350007 cd18563 ABC_6TM_exporter_like 10 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140 7 -350007 cd18563 ABC_6TM_exporter_like 11 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190 7 -350007 cd18563 ABC_6TM_exporter_like 12 TM helix 5 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,240,241,242,243,244,245,246,247,248 7 -350007 cd18563 ABC_6TM_exporter_like 13 TM helix 6 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,273,274,275,276,277,278,279,280,281,282,283,285,286,287,288,289,290,291,292,293,294 7 -350008 cd18564 ABC_6TM_exporter_like 1 substrate binding site 0 0 0 0 17,18,21,247,276,280 0 -350008 cd18564 ABC_6TM_exporter_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350008 cd18564 ABC_6TM_exporter_like 3 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350008 cd18564 ABC_6TM_exporter_like 4 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -350008 cd18564 ABC_6TM_exporter_like 5 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -350008 cd18564 ABC_6TM_exporter_like 6 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -350008 cd18564 ABC_6TM_exporter_like 7 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -350009 cd18565 ABC_6TM_exporter_like 1 substrate binding site 0 0 0 0 17,18,21,247,282,286 0 -350009 cd18565 ABC_6TM_exporter_like 2 heterodimer interface 0 0 1 1 49,50,52,53,56,59,60,63,67,71,78,79,82,83,86,89,90,93,94,96,97,98,99,109,113,116,117,188,195,196,197,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,217,218,219,222,223,225,226,229,230,233,234,237,238,241,242,245,248,249,252,255,256,259,279,282 2 -350009 cd18565 ABC_6TM_exporter_like 3 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350009 cd18565 ABC_6TM_exporter_like 4 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350009 cd18565 ABC_6TM_exporter_like 5 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -350009 cd18565 ABC_6TM_exporter_like 6 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -350009 cd18565 ABC_6TM_exporter_like 7 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -350009 cd18565 ABC_6TM_exporter_like 8 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350012 cd18568 ABC_6TM_HetC_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350012 cd18568 ABC_6TM_HetC_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350012 cd18568 ABC_6TM_HetC_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350012 cd18568 ABC_6TM_HetC_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350012 cd18568 ABC_6TM_HetC_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350012 cd18568 ABC_6TM_HetC_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 1 homodimer interface 0 1 1 1 23,24,27,28,37,40,41,44,47,48,51,52,55,59,62,63,70,73,74,77,78,81,82,85,86,87,88,89,92,95,96,97,100,101,104,105,179,182,183,184,185,186,187,188,189,191,193,194,195,196,197,198,201,202,205,206,209,213,217,221,224,225,228,231,232,235,236,239,242,243,245,246,260 2 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 2 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 4 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 5 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 6 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 7 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350015 cd18571 ABC_6TM_peptidase_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350015 cd18571 ABC_6TM_peptidase_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350015 cd18571 ABC_6TM_peptidase_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350015 cd18571 ABC_6TM_peptidase_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350015 cd18571 ABC_6TM_peptidase_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350015 cd18571 ABC_6TM_peptidase_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350016 cd18572 ABC_6TM_TAP 1 chemical substrate binding site 0 1 1 0 108,111,163,167,175,182,266 5 -350016 cd18572 ABC_6TM_TAP 2 heterodimer interface 0 1 1 0 21,34,38,41,45,46,49,50,52,53,56,57,60,61,64,65,68,71,72,75,78,79,80,81,82,83,86,91,94,95,98,170,174,177,178,179,181,184,185,186,187,188,189,190,191,192,193,194,196,197,199,200,201,204,208,211,212,215,216,220,223,226,227,230,234,237,241 2 -350016 cd18572 ABC_6TM_TAP 3 oligomer interface 0 1 1 0 21,34,38,41,45,46,49,50,52,53,55,56,57,59,60,61,63,64,65,68,71,72,75,78,79,80,81,82,83,86,89,90,91,92,93,94,95,96,98,99,100,101,107,108,111,112,114,115,118,163,167,170,174,175,177,178,179,181,182,184,185,186,187,188,189,190,191,192,193,194,196,197,199,200,201,204,208,211,212,215,216,220,222,223,226,227,228,230,234,237,240,266,267,270,273,274,281,287 2 -350016 cd18572 ABC_6TM_TAP 4 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350016 cd18572 ABC_6TM_TAP 5 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350016 cd18572 ABC_6TM_TAP 6 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350016 cd18572 ABC_6TM_TAP 7 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350016 cd18572 ABC_6TM_TAP 8 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350016 cd18572 ABC_6TM_TAP 9 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350017 cd18573 ABC_6TM_ABCB10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350017 cd18573 ABC_6TM_ABCB10_like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -350017 cd18573 ABC_6TM_ABCB10_like 3 TM helix 3 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350017 cd18573 ABC_6TM_ABCB10_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350017 cd18573 ABC_6TM_ABCB10_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350017 cd18573 ABC_6TM_ABCB10_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350018 cd18574 ABC_6TM_ABCB8_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350018 cd18574 ABC_6TM_ABCB8_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350018 cd18574 ABC_6TM_ABCB8_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -350018 cd18574 ABC_6TM_ABCB8_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -350018 cd18574 ABC_6TM_ABCB8_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350018 cd18574 ABC_6TM_ABCB8_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 2 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 3 TM helix 3 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,118,119,120,121,122,123,124,127,128,129,130,131,132,133,134,135,136,137,138,139,140,142,143,144 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 4 TM helix 4 0 0 0 0 145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 5 TM helix 5 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242,243,244,245,246,248,249,250,251,252,253,254,255,256 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 6 TM helix 6 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 1 TM helix 1 0 0 1 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 2 TM helix 2 0 0 0 0 49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 3 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 4 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 5 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 6 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -350023 cd18579 ABC_6TM_ABCC_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350023 cd18579 ABC_6TM_ABCC_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350023 cd18579 ABC_6TM_ABCC_D1 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -350023 cd18579 ABC_6TM_ABCC_D1 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -350023 cd18579 ABC_6TM_ABCC_D1 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350023 cd18579 ABC_6TM_ABCC_D1 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350024 cd18580 ABC_6TM_ABCC_D2 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350024 cd18580 ABC_6TM_ABCC_D2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350024 cd18580 ABC_6TM_ABCC_D2 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -350024 cd18580 ABC_6TM_ABCC_D2 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -350024 cd18580 ABC_6TM_ABCC_D2 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -350024 cd18580 ABC_6TM_ABCC_D2 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350025 cd18581 ABC_6TM_ABCB6 1 putative chemical substrate binding pocket 0 0 1 1 167,170,174,225,232,233,236,280,284,287,288 5 -350025 cd18581 ABC_6TM_ABCB6 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350025 cd18581 ABC_6TM_ABCB6 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -350025 cd18581 ABC_6TM_ABCB6 4 TM helix 3 0 0 0 0 98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -350025 cd18581 ABC_6TM_ABCB6 5 TM helix 4 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -350025 cd18581 ABC_6TM_ABCB6 6 TM helix 5 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -350025 cd18581 ABC_6TM_ABCB6 7 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 1 putative chemical substrate binding site 0 1 1 1 159,162,166,217,224,225,228,272,276,279,280 5 -350026 cd18582 ABC_6TM_ATM1_ABCB7 2 homodimer interface 0 1 1 1 18,21,22,40,43,44,47,51,55,58,62,63,66,70,77,78,81,83,96,97,100,180,181,183,184,187,188,190,191,196,199,203,204,207,208,210,211,214,215,218,222,225,226,229,230,232,233,236,237,240,241,244,258,261,262,265 2 -350026 cd18582 ABC_6TM_ATM1_ABCB7 3 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 4 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 5 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 6 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 7 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 8 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -350027 cd18583 ABC_6TM_HMT1 1 putative substrate binding pocket 0 0 1 1 157,160,164,215,222,223,226,270,274,277,278 5 -350027 cd18583 ABC_6TM_HMT1 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350027 cd18583 ABC_6TM_HMT1 3 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350027 cd18583 ABC_6TM_HMT1 4 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -350027 cd18583 ABC_6TM_HMT1 5 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,176,177,178,179,180,181,182,183,184 7 -350027 cd18583 ABC_6TM_HMT1 6 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -350027 cd18583 ABC_6TM_HMT1 7 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350028 cd18584 ABC_6TM_AarD_CydD 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -350028 cd18584 ABC_6TM_AarD_CydD 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350028 cd18584 ABC_6TM_AarD_CydD 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133,134 7 -350028 cd18584 ABC_6TM_AarD_CydD 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -350028 cd18584 ABC_6TM_AarD_CydD 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -350028 cd18584 ABC_6TM_AarD_CydD 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350029 cd18585 ABC_6TM_CydC 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -350029 cd18585 ABC_6TM_CydC 2 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -350029 cd18585 ABC_6TM_CydC 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -350029 cd18585 ABC_6TM_CydC 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350029 cd18585 ABC_6TM_CydC 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350029 cd18585 ABC_6TM_CydC 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350030 cd18586 ABC_6TM_PrtD_like 1 homodimer interface 0 1 1 1 20,23,24,28,40,44,48,51,54,55,58,59,66,70,73,77,78,81,82,84,85,86,97,98,101,102,104,105,108,109,112,114,172,176,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,201,202,203,206,210,213,214,218,221,225,228,229,232,233,236,237,239,240,243,244,247,257,275,278,282 2 -350030 cd18586 ABC_6TM_PrtD_like 2 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350030 cd18586 ABC_6TM_PrtD_like 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350030 cd18586 ABC_6TM_PrtD_like 4 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -350030 cd18586 ABC_6TM_PrtD_like 5 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -350030 cd18586 ABC_6TM_PrtD_like 6 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -350030 cd18586 ABC_6TM_PrtD_like 7 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -350031 cd18587 ABC_6TM_LapB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350031 cd18587 ABC_6TM_LapB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350031 cd18587 ABC_6TM_LapB_like 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -350031 cd18587 ABC_6TM_LapB_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -350031 cd18587 ABC_6TM_LapB_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350031 cd18587 ABC_6TM_LapB_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350033 cd18589 ABC_6TM_TAP1 1 chemical substrate binding site 0 1 1 0 108,111,163,167,175,182,266 5 -350033 cd18589 ABC_6TM_TAP1 2 heterodimer interface 0 1 1 0 21,34,38,41,45,49,50,52,53,56,57,60,61,64,65,68,71,75,78,79,81,82,83,86,91,94,95,170,174,177,178,179,181,184,185,186,187,188,189,190,191,192,193,194,196,200,201,204,208,211,212,215,218,219,223,226,227,230 2 -350033 cd18589 ABC_6TM_TAP1 3 oligomer interface 0 1 1 0 21,34,38,41,45,49,50,52,53,56,57,60,61,64,65,68,71,75,78,79,81,82,83,86,91,94,95,108,111,163,167,170,174,175,177,178,179,181,182,184,185,186,187,188,189,190,191,192,193,194,196,200,201,204,208,211,212,215,218,219,223,226,227,230,266 2 -350033 cd18589 ABC_6TM_TAP1 4 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350033 cd18589 ABC_6TM_TAP1 5 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350033 cd18589 ABC_6TM_TAP1 6 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350033 cd18589 ABC_6TM_TAP1 7 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350033 cd18589 ABC_6TM_TAP1 8 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350033 cd18589 ABC_6TM_TAP1 9 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350034 cd18590 ABC_6TM_TAP2 1 chemical substrate binding site 0 1 1 0 108,111,163,167,175,182,266 5 -350034 cd18590 ABC_6TM_TAP2 2 heterodimer interface 0 1 1 0 45,46,49,50,53,56,57,60,61,64,65,68,71,72,75,79,80,81,83,86,91,95,98,177,178,179,181,184,186,187,188,190,192,193,196,197,199,200,204,208,212,215,216,219,220,223,226,230,234,237,241 2 -350034 cd18590 ABC_6TM_TAP2 3 oligomer interface 0 1 1 0 45,46,49,50,53,55,56,57,59,60,61,63,64,65,68,71,72,75,79,80,81,83,86,89,90,91,92,93,94,95,96,98,99,100,101,107,111,112,114,115,118,177,178,179,181,184,186,187,188,190,192,193,196,197,199,200,204,208,212,215,216,219,220,222,223,225,226,230,234,237,241,266,267,270,273,274,277,281,287 2 -350034 cd18590 ABC_6TM_TAP2 4 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350034 cd18590 ABC_6TM_TAP2 5 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350034 cd18590 ABC_6TM_TAP2 6 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350034 cd18590 ABC_6TM_TAP2 7 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350034 cd18590 ABC_6TM_TAP2 8 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350034 cd18590 ABC_6TM_TAP2 9 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 2 TM helix 2 0 0 0 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 5 TM helix 5 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 6 TM helix 6 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 6 TM helix 6 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -350038 cd18594 ABC_6TM_CFTR_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350038 cd18594 ABC_6TM_CFTR_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350038 cd18594 ABC_6TM_CFTR_D1 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -350038 cd18594 ABC_6TM_CFTR_D1 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -350038 cd18594 ABC_6TM_CFTR_D1 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350038 cd18594 ABC_6TM_CFTR_D1 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 1 chemical substrate binding site 0 1 1 0 5,8,54,58,62,112,113,223,226,267,274 5 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 3 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 4 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 5 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 6 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 7 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 5 TM helix 5 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 6 TM helix 6 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,298,299,300,301,302,303,304,305,306,307 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 4 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 6 TM helix 6 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,277,278,279,280,281,282,283,284,285,286 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 2 TM helix 2 0 0 0 0 54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 5 TM helix 5 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 6 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311 7 -350044 cd18600 ABC_6TM_CFTR_D2 1 regulatory domain interaction site 0 1 1 1 0,124,131,194,202,205,314,318,321 0 -350044 cd18600 ABC_6TM_CFTR_D2 2 TM helix 1 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37 7 -350044 cd18600 ABC_6TM_CFTR_D2 3 TM helix 2 0 0 0 0 66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -350044 cd18600 ABC_6TM_CFTR_D2 4 TM helix 3 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -350044 cd18600 ABC_6TM_CFTR_D2 5 TM helix 4 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -350044 cd18600 ABC_6TM_CFTR_D2 6 TM helix 5 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -350044 cd18600 ABC_6TM_CFTR_D2 7 TM helix 6 0 0 0 0 289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 2 TM helix 2 0 0 0 0 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 3 TM helix 3 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 4 TM helix 4 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 5 TM helix 5 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 6 TM helix 6 0 0 0 0 279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 2 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 3 TM helix 3 0 0 0 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 4 TM helix 4 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 5 TM helix 5 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 6 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 1 chemical substrate binding site 0 1 1 0 124,224,270,272,273,276 5 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 2 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 3 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 4 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 5 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 6 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 7 TM helix 6 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 4 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 5 TM helix 5 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 6 TM helix 6 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 6 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 4 TM helix 4 0 0 0 0 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 5 TM helix 5 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350119 cd18607 GH130 1 active site [DEN][DEN][FY][DEN] 0 1 1 7,67,199,260 1 -350119 cd18607 GH130 2 chemical substrate binding site 0 1 1 0 7,22,66,67,116,117,188,199,240,260 5 -350120 cd18608 GH43_F5-8_typeC-like 1 active site [DEN][DEN][DEN] 0 1 1 2,116,168 1 -350121 cd18609 GH32-like 1 active site [DEN][DEN][DEN] 0 1 1 10,147,205 1 -350122 cd18610 GH130_BT3780-like 1 active site NDYD 0 1 1 16,78,232,292 1 -350122 cd18610 GH130_BT3780-like 2 chemical substrate binding site 0 1 1 0 16,31,77,78,96,101,135,159,199,232,273,292 5 -350123 cd18611 GH130 1 active site ND[FYW]D 0 1 1 7,71,220,280 1 -350123 cd18611 GH130 2 chemical substrate binding site 0 0 1 1 7,22,70,71,123,124,208,220,261,280 5 -350124 cd18612 GH130_Lin0857-like 1 active site NDYD 0 1 1 7,59,191,251 1 -350124 cd18612 GH130_Lin0857-like 2 chemical substrate binding site 0 1 1 0 7,22,58,76,106,107,124,164,183,191,227,232,251 5 -350124 cd18612 GH130_Lin0857-like 3 homodimer interface 0 1 1 0 52,55,77,79,80,99,100,101,102,103,104,123,125,127,128,130,131,133,136,139,141,144,145,146,147,148,149,150,151 2 -350125 cd18613 GH130 1 active site NDYD 0 1 1 10,96,228,287 1 -350125 cd18613 GH130 2 chemical substrate binding site 0 0 1 1 10,34,95,96,149,150,220,228,268,287 5 -350126 cd18614 GH130 1 active site NDYD 0 1 1 7,66,205,265 1 -350126 cd18614 GH130 2 chemical substrate binding site 0 0 1 1 7,22,65,66,122,123,196,205,246,265 5 -350127 cd18615 GH130 1 active site NDYD 0 1 1 9,70,206,268 1 -350127 cd18615 GH130 2 chemical substrate binding site 0 0 1 1 9,24,69,70,119,120,195,206,247,268 5 -350128 cd18616 GH43_ABN-like 1 active site [DEN][DEN][DEN] 0 1 1 9,130,176 1 -350128 cd18616 GH43_ABN-like 2 putative chemical substrate binding site 0 0 1 1 8,9,25,71,127,146,176,204,281 5 -350129 cd18617 GH43_XynB-like 1 active site [DEN][DEN][DEN] 0 1 1 9,117,176 1 -350129 cd18617 GH43_XynB-like 2 chemical substrate binding site 0 1 1 1 9,26,68,69,116,117,176,238,268 5 -350130 cd18618 GH43_Xsa43E-like 1 active site [DEN][DEN][DEN] 0 1 1 3,129,178 1 -350130 cd18618 GH43_Xsa43E-like 2 chemical substrate binding site 0 1 1 1 29,31,65,177,178,228,257 5 -350131 cd18619 GH43_CoXyl43_like 1 active site [DEN][DEN][DEN] 0 1 1 9,129,217 1 -350131 cd18619 GH43_CoXyl43_like 2 chemical substrate binding site 0 1 1 0 9,40,42,77,78,128,129,147,148,217,265,266,268,295 5 -350132 cd18620 GH43_XylA-like 1 active site [DEN][DEN][DEN] 0 1 1 1,120,173 1 -350132 cd18620 GH43_XylA-like 2 putative chemical substrate binding site 0 0 1 1 1,67,119,120,172,173,228,229,256 5 -350133 cd18621 GH32_XdINV-like 1 active site [DEN][DEN][DEN] 0 1 1 4,144,220 1 -350133 cd18621 GH32_XdINV-like 2 chemical substrate binding site 0 1 1 1 4,22,68,69,143,144 5 -350133 cd18621 GH32_XdINV-like 3 beta-sandwich domain interface 0 1 1 1 38,44,45,46,47,210,211,282,283,284,285,287,307,308,309,322,324,325,327,328,330,335 2 -350134 cd18622 GH32_Inu-like 1 active site [DEN][DEN][DEN] 0 1 1 5,130,180 1 -350134 cd18622 GH32_Inu-like 2 chemical substrate binding site 0 1 1 1 4,5,21,62,129,180,265 5 -350134 cd18622 GH32_Inu-like 3 beta-sandwich domain interface 0 1 1 0 241,242,262,280,281,282,284 2 -350135 cd18623 GH32_ScrB-like 1 active site [DEN][DEN][DEN] 0 1 1 4,125,179 1 -350135 cd18623 GH32_ScrB-like 2 putative chemical substrate binding site 0 0 1 1 3,4,20,63,64,124,125,179 5 -350135 cd18623 GH32_ScrB-like 3 beta-sandwich domain interface 0 0 1 1 36,42,43,44,45,239,240,259,260,274,276,277,279,280,282,285 2 -350136 cd18624 GH32_Fruct1-like 1 active site [DEN][DEN][DEN] 0 1 0 4,128,182 1 -350136 cd18624 GH32_Fruct1-like 2 chemical substrate binding site 0 1 1 0 3,4,20,63,64,127,128,182 5 -350136 cd18624 GH32_Fruct1-like 3 beta-sandwich domain interface 0 1 1 1 36,42,43,44,46,248,269,270,286,288,289,291 2 -350137 cd18625 GH32_BfrA-like 1 active site [DEN][DEN][DEN] 0 1 1 4,131,185 1 -350137 cd18625 GH32_BfrA-like 2 chemical substrate binding site 0 1 1 0 3,4,20,28,68,69,86,96,130,131,183,185,186,242,262 5 -350137 cd18625 GH32_BfrA-like 3 beta-sandwich domain interface 0 1 1 1 42,43,44,46,236,237,238,239,240,259,260,276,278,279,281,284 2 -349276 cd18626 CD_eEF3 1 ABC2 interface 0 1 1 1 19 2 -349276 cd18626 CD_eEF3 2 putative peptide binding site 0 0 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,46,49,50 2 -349277 cd18627 CD_polycomb_like 1 peptide binding site 0 1 1 0 0,1,2,3,19,21,22,24,28,30,31,32,33,35,36,38,39,41,42,43,44 2 -349278 cd18628 CD3_cpSRP43_like 1 peptide binding site 0 1 1 0 0,1,2,3,26,28,29,34,35,39,41,42 2 -349279 cd18629 CD2_cpSRP43_like 1 peptide binding site 0 1 1 0 5,6,44 2 -349280 cd18630 CD_Rhino 1 peptide binding site 0 1 1 0 0,1,2,3,22,25,29,32,33,37,38,40,41,42,43,44 2 -349281 cd18631 CD_HP1_like 1 peptide binding site 0 1 1 0 0,1,2,3,20,22,23,25,29,31,33,34,37,38,39,40,41,42,43 2 -349282 cd18632 CD_Clr4_like 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,22,24,25,26,27,31,33,34,35,36,38,39,46,49,50 2 -349283 cd18633 CD_MMP8 1 peptide binding site 0 1 1 0 0,1,2,3,22,25,31,33,37,38,40,41,42,43,44 2 -349284 cd18634 CD_CDY 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,21,23,24,25,26,30,32,33,34,35,37,38,45,48,49 2 -349285 cd18635 CD_CMT3_like 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349286 cd18636 CD_Chp1_like 1 peptide binding site 0 1 1 0 0,1,2,3,4,21,23,24,26,30,32,34,35,38,39,40,41,42,44,45 2 -349287 cd18637 CD_Swi6_like 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,22,24,25,26,27,32,34,35,36,37,39,40,47,50,51 2 -349288 cd18638 CD_EhHp1_like 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,45,48,49 2 -349289 cd18639 CD_SUV39H1_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349290 cd18640 CD_Chro-like 1 putative peptide binding site 0 0 1 1 4,21,23,24,25,30,32,33,34,35,37,38,45,48,49 2 -350843 cd18641 CBD_RBP1_like 1 putative peptide binding site 0 0 1 1 15,16,17,18,33,35,36,37,38,42,44,45,46,47,49,50,51,54,55 2 -350843 cd18641 CBD_RBP1_like 2 putative methylated histone tail binding site 0 0 1 1 15,35,38,42 5 -350843 cd18641 CBD_RBP1_like 3 DNA binding site 0 0 1 1 32,34,35,36,37,38,39,41,42,43,44,45 3 -350843 cd18641 CBD_RBP1_like 4 putative RNA binding site 0 0 1 1 32,35,39,41,45 3 -350844 cd18642 CBD_MOF_like 1 putative peptide binding site 0 0 1 1 12,13,15,16,32,34,35,36,37,41,43,44,45,46,48,49,58,61,62 2 -350844 cd18642 CBD_MOF_like 2 putative methylated histone tail binding site 0 0 1 1 13,34,37,41 5 -350844 cd18642 CBD_MOF_like 3 putative DNA binding site 0 0 1 1 31,33,34,35,36,37,38,40,41,42,43,44 3 -350844 cd18642 CBD_MOF_like 4 putative RNA binding site 0 0 1 1 31,34,38,40,44 3 -350845 cd18643 CBD 1 putative peptide binding site 0 0 1 1 15,16,17,18,36,38,39,40,41,45,47,48,49,50,52,53,54,57,58 2 -350845 cd18643 CBD 2 putative methylated histone tail binding site 0 0 1 1 15,38,41,45 5 -350845 cd18643 CBD 3 DNA binding site 0 1 1 1 35,37,38,39,40,41,42,44,45,46,47,48 3 -350845 cd18643 CBD 4 putative RNA binding site 0 0 1 1 35,38,42,44,48 3 -349291 cd18644 CD_polycomb 1 peptide binding site 0 1 1 0 2,3,4,5,24,25,27,31,34,35,36,39,41,42,44,45,48 2 -349292 cd18645 CD_Cbx4 1 peptide binding site 0 0 1 1 3,4,5,6,22,24,25,27,31,33,34,35,36,38,39,41,42,44,45,46,47 2 -349293 cd18646 CD_Cbx7 1 peptide binding site 0 1 1 0 3,4,5,6,23,25,26,28,32,34,35,36,37,40,41,42,43,45,46,49 2 -349294 cd18647 CD_Cbx2 1 peptide binding site 0 1 1 0 2,3,4,5,6,24,25,27,31,34,35,38,39,41,42,44,45 2 -349295 cd18648 CD_Cbx6 1 peptide binding site 0 1 1 0 2,3,4,5,24,25,27,31,33,35,36,38,39,41,42,44,45 2 -349296 cd18649 CD_Cbx8 1 peptide binding site 0 1 1 0 3,4,5,6,25,28,32,34,36,40,42,43,45,46 2 -349297 cd18650 CD_HP1beta_Cbx1 1 peptide binding site 0 1 1 1 0,1,2,3,20,22,23,25,29,31,33,34,37,38,39,40,42,43 2 -349297 cd18650 CD_HP1beta_Cbx1 2 N-methyl group binding site 0 0 1 1 1,22,25 5 -349298 cd18651 CD_HP1alpha_Cbx5 1 peptide binding site 0 1 1 0 0,1,2,3,20,22,33,37,38,39,40,41,42,43 2 -349299 cd18652 CD_HP1gamma_Cbx3 1 peptide binding site 0 1 1 0 0,1,2,3,20,22,25,33,34,36,37,38,39,40,43 2 -349300 cd18653 CD_HP1a_insect 1 peptide binding site 0 1 1 0 0,1,2,3,22,25,33,37,38,39,40,43 2 -349301 cd18654 CSD_HP1beta_Cbx1 1 peptide binding site 0 1 1 0 9,23,30 2 -349301 cd18654 CSD_HP1beta_Cbx1 2 homodimer interface 0 1 1 1 20,41,42,45,46,48,49,52,53,56 2 -349301 cd18654 CSD_HP1beta_Cbx1 3 putative binding pit 0 0 1 1 13,51,52,53,55,56 2 -349302 cd18655 CSD_HP1alpha_Cbx5 1 homodimer interface 0 1 1 1 41,45,46,48,49,52,53 2 -349302 cd18655 CSD_HP1alpha_Cbx5 2 putative binding pit 0 0 1 1 13,51,52,53,55,56 2 -349302 cd18655 CSD_HP1alpha_Cbx5 3 putative peptide binding site 0 0 1 1 9,11,12,13,14,15,23,32,52,55,56 2 -349303 cd18656 CSD_HP1gamma_Cbx3 1 peptide binding site 0 1 1 0 11,12,13,14,15,23,32,52,55,56 2 -349303 cd18656 CSD_HP1gamma_Cbx3 2 homodimer interface 0 1 1 1 38,41,45,46,48,49,52,53 2 -349303 cd18656 CSD_HP1gamma_Cbx3 3 putative binding pit 0 0 1 1 13,51,52,53,55,56 2 -349304 cd18657 CSD_Swi6 1 homodimer interface 0 1 1 1 13,19,35,39,40,43,44,46,47,50,51,54 2 -349304 cd18657 CSD_Swi6 2 putative binding pit 0 0 1 1 11,49,50,51,53,54 2 -349304 cd18657 CSD_Swi6 3 putative peptide binding site 0 0 1 1 7,9,10,11,12,13,22,30,50,53,54 2 -349305 cd18658 CSD_HP1a_insect 1 homodimer interface 0 1 1 1 16,33,37,38,42,44,45,48,49,51,52 2 -349305 cd18658 CSD_HP1a_insect 2 putative binding pit 0 0 1 1 9,47,48,49,51,52 2 -349305 cd18658 CSD_HP1a_insect 3 putative peptide binding site 0 0 1 1 5,7,8,9,10,11,19,28,48,51,52 2 -349306 cd18659 CD2_tandem 1 peptide binding site 0 1 1 0 19,36 2 -349307 cd18660 CD1_tandem 1 peptide binding site 0 1 1 1 2,39,41,42,46 2 -349307 cd18660 CD1_tandem 2 DNA binding site [KR][KR] 1 1 0 62,63 3 -349308 cd18661 CD2_tandem_CHD1-2_like 1 peptide binding site 0 1 1 0 22,39 2 -349309 cd18662 CD2_tandem_CHD3-4_like 1 putative peptide binding site 0 0 1 1 20,37 2 -349310 cd18663 CD2_tandem_CHD5-9_like 1 putative peptide binding site 0 0 1 1 25,42 2 -349311 cd18664 CD2_tandem_ScCHD1_like 1 putative peptide binding site 0 0 1 1 23,40 2 -349312 cd18665 CD1_tandem_CHD1_yeast_like 1 peptide binding site 0 0 1 1 2,34,36,37,41 2 -349312 cd18665 CD1_tandem_CHD1_yeast_like 2 DNA binding site [KR][KR] 1 1 0 57,58 3 -349313 cd18666 CD1_tandem_CHD1-2_like 1 peptide binding site 0 1 1 1 2,52,54,55,59 2 -349313 cd18666 CD1_tandem_CHD1-2_like 2 DNA binding site [KR][KR] 0 1 1 77,78 3 -349314 cd18667 CD1_tandem_CHD3-4_like 1 peptide binding site 0 0 1 1 2,49,51,52,56 2 -349315 cd18668 CD1_tandem_CHD5-9_like 1 peptide binding site 0 0 1 1 4,35,37,38,42 2 -349948 cd18669 M20_18_42 1 metal binding site [DH][ND]EE[EHD][HR] 1 1 1 19,52,86,87,115,179 4 -350850 cd18670 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,28,47 1 -350238 cd18671 PIN_PRORP-Zc3h12a-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 3,80,81,99,103 1 -350239 cd18672 PIN_FAM120B-like 1 active site [DESTQN][DESTQN][DESTQN][DESTQN][DESTQN][DESTQN] 0 1 1 39,86,154,156,175,177 1 -350239 cd18672 PIN_FAM120B-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 0 1 1 39,86,154,156 4 -350239 cd18672 PIN_FAM120B-like 3 metal binding site 2 [DEQN][DEQN] 0 1 1 175,177 4 -350239 cd18672 PIN_FAM120B-like 4 helical arch 0 0 1 1 92,93,94,95,96,97,98,99,100,122,123,124,125,126,127,128,129,130 0 -350240 cd18673 PIN_XRN1-2-like 1 active site 0 1 1 1 3,5,6,9,13,52,59,63,66,67,150,178 1 -350240 cd18673 PIN_XRN1-2-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 1 1 1 3,52,148,150 4 -350240 cd18673 PIN_XRN1-2-like 3 metal binding site 2 [DEQN][DEQN] 0 1 1 178,180 4 -350240 cd18673 PIN_XRN1-2-like 4 helical arch 0 0 1 1 58,59,60,61,62,63,64,65,66,67,68,100,101,102,103,104,105,106,107,108,109 0 -350241 cd18674 PIN_Pox_G5 1 active site [DESTQN][DESTQN][DESTQN][DESTQN][DESTQN][DESTQN] 0 1 1 4,45,99,101,125,127 1 -350241 cd18674 PIN_Pox_G5 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 0 1 1 4,45,99,101 4 -350241 cd18674 PIN_Pox_G5 3 metal binding site 2 [DEQN][DEQN] 0 1 1 125,127 4 -350241 cd18674 PIN_Pox_G5 4 helical arch 0 0 1 1 51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 0 -350242 cd18675 PIN_SpAst1-like 1 active site [DESTQN][DESTQN][DESTQN][DESTQN][DESTQN][DESTQN] 0 1 1 3,59,106,108,126,128 1 -350242 cd18675 PIN_SpAst1-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 0 1 1 3,59,106,108 4 -350242 cd18675 PIN_SpAst1-like 3 metal binding site 2 [DEQN][DEQN] 0 1 1 126,128 4 -350242 cd18675 PIN_SpAst1-like 4 helical arch 0 0 1 1 65,66,67,68,84,85 0 -350243 cd18676 PIN_asteroid-like 1 active site [DESTQN][DESTQN][DESTQN][DESTQN][DESTQN][DESTQN] 0 1 1 3,52,113,115,133,135 1 -350243 cd18676 PIN_asteroid-like 2 metal binding site 1 [DEQN][DEQN][DEQN][DEQN] 0 1 1 3,52,113,115 4 -350243 cd18676 PIN_asteroid-like 3 metal binding site 2 [DEQN][DEQN] 0 1 1 133,135 4 -350243 cd18676 PIN_asteroid-like 4 helical arch 0 0 1 1 58,59,60,61,80,81 0 -350244 cd18677 PIN_MjVapC2-VapC6_like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,103,122,124 1 -350245 cd18678 PIN_MtVapC25_VapC33-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 2,105,123 1 -350246 cd18679 PIN_VapC-Af1683-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,44,99,117 1 -350247 cd18680 PIN_MtVapC20-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,43,100,119,121 1 -350247 cd18680 PIN_MtVapC20-like 2 homodimer interface 0 1 0 0 38,39,41,42,45,46,50,54,61,64,74,75,80,81,84,85,87,88,97,98 2 -350248 cd18681 PIN_MtVapC27-VapC40_like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,39,96,114 1 -350249 cd18682 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,36,89,107 1 -350250 cd18683 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,41,93,112 1 -350251 cd18684 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 3,40,97,115 1 -350252 cd18685 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 4,36,77,95 1 -350253 cd18686 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,88,106 1 -350254 cd18687 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 37,85,104 1 -350255 cd18688 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,42,98,116 1 -350256 cd18689 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,41,93,111,113 1 -350257 cd18690 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,95,119,121 1 -350258 cd18691 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,35,95,113 1 -350259 cd18692 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,41,94,113 1 -350260 cd18693 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,35,93,112 1 -350261 cd18694 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,46,99,118 1 -350262 cd18695 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 2,103,105 1 -350263 cd18696 PIN_MtVapC26-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,40,95,114 1 -350263 cd18696 PIN_MtVapC26-like 2 homodimer interface 0 1 1 0 35,36,38,39,42,51,52,54,55,59,62,68 2 -350263 cd18696 PIN_MtVapC26-like 3 heterodimer interface 0 1 1 1 4,7,8,16,17,31,45,48,53,56,60,63,64,65,66,113 2 -350264 cd18697 PIN_VapC_N-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,42,145,172,175 1 -350265 cd18698 PIN_VapC_C-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,59,103,121 1 -350266 cd18699 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,42,91,110 1 -350267 cd18700 PIN_GNAT-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,44,97,116 1 -350268 cd18701 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,74,93 1 -350269 cd18702 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,55,105,122 1 -350270 cd18703 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,34,95,117,118 1 -350271 cd18704 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,31,104,128 1 -350272 cd18705 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,42,98,117,119 1 -350273 cd18706 PIN_STKc_like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,80,102 1 -350274 cd18707 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,35,90,108,109 1 -350275 cd18708 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,34,75,99 1 -350276 cd18709 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,47,114,179 1 -350277 cd18710 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,32,88,113 1 -350278 cd18711 PIN_VapC-like_DUF411 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,42,100,118 1 -350279 cd18712 PIN_VapC-like_DUF411 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,49,116,137 1 -350280 cd18713 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,104,123,125 1 -350281 cd18714 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,186,211 1 -350282 cd18715 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 4,42,89,108 1 -350283 cd18716 PIN_SSO1118-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 67,85,87 1 -350284 cd18717 PIN_ScNmd4p-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 2,39,133 1 -350285 cd18718 PIN_PRORP 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 3,74,75,95,99 1 -350286 cd18719 PIN_Zc3h12a-N4BP1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 3,84,85,103,107 1 -350287 cd18720 PIN_YqxD-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 4,56,73 1 -350288 cd18721 PIN_ZNF451-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,68,94,99 1 -350289 cd18722 PIN_NicB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 6,68,93,95 1 -350290 cd18723 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,61,87,91 1 -350291 cd18724 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,106,132,140 1 -350292 cd18725 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 4,84,108,110 1 -350293 cd18726 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 5,65,90,92 1 -350294 cd18727 PIN_Swt1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,93,117,119 1 -350295 cd18728 PIN_N4BP1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 3,84,85,103,107 1 -350296 cd18729 PIN_Zc3h12-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 3,87,88,106,110 1 -350297 cd18730 PIN_PH0500-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,91,109 1 -350297 cd18730 PIN_PH0500-like 2 homodimer interface 0 1 1 0 32,33,36,37,39,40,43,49,50,53,57,65,67,70,71,73,74,75,77,78,89,90,92 2 -350298 cd18731 PIN_NgFitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 3,40,102,120,123 1 -350298 cd18731 PIN_NgFitB-like 2 oligomeric interface 0 1 1 1 2,3,4,7,10,11,12,20,23,24,25,26,35,36,39,40,42,43,44,46,53,56,57,60,75,76,77,81,82,84,85,88,89,99,101,102,104,105 2 -350298 cd18731 PIN_NgFitB-like 3 heterodimer interface 0 1 1 0 2,3,4,7,10,11,12,20,23,24,26,40,43,44,53,56,57,60,99,101,102,105 2 -350298 cd18731 PIN_NgFitB-like 4 homodimer interface 0 1 1 0 35,36,39,42,43,46,75,76,77,81,82,84,85,88,89,104 2 -350299 cd18732 PIN_MtVapC4-C5_like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 2,30,90,108,111 1 -350299 cd18732 PIN_MtVapC4-C5_like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,15,16,17,18,21,22,25,26,28,29,30,32,33,34,36,43,44,45,46,47,49,50,51,53,58,59,61,62,63,67,68,70,71,72,74,75,78,86,87,88,89,90,91,92,93,101,102,107,108 2 -350299 cd18732 PIN_MtVapC4-C5_like 3 heterodimer interface 0 1 1 0 1,3,4,5,6,7,8,15,18,21,22,30,33,34,43,46,47,49,50,53,58,59,74,86,87,88,89,91,102,107,108 2 -350299 cd18732 PIN_MtVapC4-C5_like 4 homodimer interface 0 0 1 1 25,26,28,29,30,32,33,36,45,49,61,62,63,67,68,70,71,72,74,75,78,88,89,92 2 -350299 cd18732 PIN_MtVapC4-C5_like 5 VapBC-5 complex 0 1 1 0 1,3,4,5,6,7,8,15,18,21,22,30,33,34,43,46,47,49,50,53,58,59,74,86,87,88,89,91,102,107,108 2 -350300 cd18733 PIN_RfVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 4,39,98,116,119 1 -350300 cd18733 PIN_RfVapC1-like 2 oligomeric interface 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,19,20,21,22,30,31,34,35,37,38,39,41,42,43,45,55,56,57,58,59,61,62,63,65,68,69,71,72,73,77,78,80,81,82,84,85,88,94,95,96,97,98,99,100,101,109,110,115,116 2 -350300 cd18733 PIN_RfVapC1-like 3 heterodimer interface 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,19,20,21,22,30,31,39,41,42,43,55,56,57,58,59,61,62,63,65,68,69,71,73,84,94,95,96,97,98,99,100,101,109,110,115,116 2 -350300 cd18733 PIN_RfVapC1-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,57,61,71,72,73,77,78,80,81,82,84,85,88,96,97,100 2 -350301 cd18734 PIN_RfVapC2-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,95,113,116 1 -350301 cd18734 PIN_RfVapC2-like 2 oligomeric interface 0 1 1 1 3,4,7,9,10,11,14,17,18,21,22,30,34,35,37,38,39,40,41,42,43,44,45,52,53,54,55,56,58,59,60,61,62,65,66,68,69,70,74,75,77,78,79,81,82,85,93,94,97 2 -350301 cd18734 PIN_RfVapC2-like 3 heterodimer interface 0 1 1 1 9,10,14,17,18,21,22,30,41,52,54,56,58,59,60,62 2 -350301 cd18734 PIN_RfVapC2-like 4 homodimer interface 0 1 1 1 34,35,37,38,39,41,42,45,68,69,70,74,75,77,78,79,81,82,85,93,94,97 2 -350302 cd18735 PIN_HiVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,94,112,115 1 -350302 cd18735 PIN_HiVapC1-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,29,30,33,34,36,37,38,40,41,42,44,51,52,53,54,55,57,58,59,61,64,65,67,68,69,73,74,76,77,78,80,81,84,90,91,92,93,94,95,96,97,105,106,111,112 2 -350302 cd18735 PIN_HiVapC1-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,29,30,38,40,41,42,51,52,53,54,55,57,58,59,61,64,65,67,69,80,90,91,92,93,94,95,96,97,105,106,111,112 2 -350302 cd18735 PIN_HiVapC1-like 4 homodimer interface 0 0 1 1 33,34,36,37,38,40,41,44,53,57,67,68,69,73,74,76,77,78,80,81,84,92,93,96 2 -350303 cd18736 PIN_CcVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,89,107,110 1 -350303 cd18736 PIN_CcVapC1-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,29,30,33,34,36,37,38,40,41,42,44,49,50,51,52,53,55,56,57,59,62,63,65,66,67,71,72,74,75,76,78,79,82,85,86,87,88,89,90,91,92,100,101,106,107 2 -350303 cd18736 PIN_CcVapC1-like 3 heterodimer interface 0 1 1 0 2,3,4,7,8,9,10,11,21,22,29,30,38,42,49,50,52,53,56,57,59,62,65,67,85,86,87,88,89,91,92,100,107 2 -350303 cd18736 PIN_CcVapC1-like 4 homodimer interface 0 1 1 0 33,34,36,37,40,41,44,51,55,65,66,67,71,72,74,75,78,79,82,87,91 2 -350304 cd18737 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,35,81,99,102 1 -350304 cd18737 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,26,27,30,31,33,34,35,37,38,39,41,43,44,45,46,47,49,50,51,53,56,57,59,60,61,65,66,68,69,70,72,73,76,77,78,79,80,81,82,83,84,92,93,98,99 2 -350304 cd18737 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,26,27,35,37,38,39,43,44,45,46,47,49,50,51,53,56,57,59,61,72,77,78,79,80,81,82,83,84,92,93,98,99 2 -350304 cd18737 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 30,31,33,34,35,37,38,41,45,49,59,60,61,65,66,68,69,70,72,73,76,79,80,83 2 -350305 cd18738 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,85,103,106 1 -350305 cd18738 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,28,29,32,33,35,36,37,39,40,41,43,47,48,49,50,51,53,54,55,57,60,61,63,64,65,69,70,72,73,74,76,77,80,81,82,83,84,85,86,87,88,96,97,102,103 2 -350305 cd18738 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,28,29,37,39,40,41,47,48,49,50,51,53,54,55,57,60,61,63,65,76,81,82,83,84,85,86,87,88,96,97,102,103 2 -350305 cd18738 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,49,53,63,64,65,69,70,72,73,74,76,77,80,83,84,87 2 -350306 cd18739 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,92,110,112 1 -350306 cd18739 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,49,50,51,52,53,55,56,57,59,62,63,65,66,67,71,72,74,75,76,78,79,82,88,89,90,91,92,93,94,95,103,104,109,110 2 -350306 cd18739 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,49,50,51,52,53,55,56,57,59,62,63,65,67,78,88,89,90,91,92,93,94,95,103,104,109,110 2 -350306 cd18739 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,51,55,65,66,67,71,72,74,75,76,78,79,82,90,91,94 2 -350307 cd18740 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,94,112 1 -350307 cd18740 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,33,34,36,37,38,40,41,42,44,51,52,53,54,55,57,58,59,61,64,65,67,68,69,73,74,76,77,78,80,81,84,90,91,92,93,94,95,96,97,105,106,111,112 2 -350307 cd18740 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,38,40,41,42,51,52,53,54,55,57,58,59,61,64,65,67,69,80,90,91,92,93,94,95,96,97,105,106,111,112 2 -350307 cd18740 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 33,34,36,37,38,40,41,44,53,57,67,68,69,73,74,76,77,78,80,81,84,92,93,96 2 -350308 cd18741 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,88,106 1 -350308 cd18741 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,46,47,48,49,50,52,53,54,56,59,60,62,63,64,68,69,71,72,73,75,76,79,84,85,86,87,88,89,90,91,99,100,105,106 2 -350308 cd18741 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,46,47,48,49,50,52,53,54,56,59,60,62,64,75,84,85,86,87,88,89,90,91,99,100,105,106 2 -350308 cd18741 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,48,52,62,63,64,68,69,71,72,73,75,76,79,86,87,90 2 -350309 cd18742 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,93,111 1 -350309 cd18742 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,50,51,52,53,54,56,57,58,60,63,64,66,67,68,72,73,75,76,77,79,80,83,89,90,91,92,93,94,95,96,104,105,110,111 2 -350309 cd18742 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,50,51,52,53,54,56,57,58,60,63,64,66,68,79,89,90,91,92,93,94,95,96,104,105,110,111 2 -350309 cd18742 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,52,56,66,67,68,72,73,75,76,77,79,80,83,91,92,95 2 -350310 cd18743 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,92,110 1 -350310 cd18743 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,50,51,52,53,54,56,57,58,60,63,64,66,67,68,71,72,74,75,76,78,79,82,88,89,90,91,92,93,94,95,103,104,109,110 2 -350310 cd18743 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,50,51,52,53,54,56,57,58,60,63,64,66,68,78,88,89,90,91,92,93,94,95,103,104,109,110 2 -350310 cd18743 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,52,56,66,67,68,71,72,74,75,76,78,79,82,90,91,94 2 -350311 cd18744 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,94,112 1 -350311 cd18744 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,30,31,34,35,37,38,39,41,42,43,45,51,52,53,54,55,57,58,59,61,64,65,67,68,69,73,74,76,77,78,80,81,84,90,91,92,93,94,95,96,97,105,106,111,112 2 -350311 cd18744 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,30,31,39,41,42,43,51,52,53,54,55,57,58,59,61,64,65,67,69,80,90,91,92,93,94,95,96,97,105,106,111,112 2 -350311 cd18744 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,53,57,67,68,69,73,74,76,77,78,80,81,84,92,93,96 2 -350312 cd18745 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 3,39,95,113,116 1 -350312 cd18745 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,20,21,22,23,30,31,34,35,37,38,39,41,42,43,45,52,53,54,55,56,58,59,60,62,65,66,68,69,70,74,75,77,78,79,81,82,85,91,92,93,94,95,96,97,98,106,107,112,113 2 -350312 cd18745 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,20,21,22,23,30,31,39,41,42,43,52,53,54,55,56,58,59,60,62,65,66,68,70,81,91,92,93,94,95,96,97,98,106,107,112,113 2 -350312 cd18745 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,54,58,68,69,70,74,75,77,78,79,81,82,85,93,94,97 2 -350313 cd18746 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,99,117,120 1 -350313 cd18746 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,30,31,34,35,37,38,39,41,42,43,45,53,54,55,56,57,59,60,61,63,72,73,75,76,77,81,82,84,85,86,88,89,92,95,96,97,98,99,100,101,102,110,111,116,117 2 -350313 cd18746 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,30,31,39,41,42,43,53,54,55,56,57,59,60,61,63,72,73,75,77,88,95,96,97,98,99,100,101,102,110,111,116,117 2 -350313 cd18746 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,55,59,75,76,77,81,82,84,85,86,88,89,92,97,98,101 2 -350314 cd18747 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,97,115,118 1 -350314 cd18747 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,29,30,33,34,36,37,38,40,41,42,44,50,51,52,53,54,56,57,58,60,67,68,70,71,72,76,77,79,80,81,83,84,87,93,94,95,96,97,98,99,100,108,109,114,115 2 -350314 cd18747 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,29,30,38,40,41,42,50,51,52,53,54,56,57,58,60,67,68,70,72,83,93,94,95,96,97,98,99,100,108,109,114,115 2 -350314 cd18747 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 33,34,36,37,38,40,41,44,52,56,70,71,72,76,77,79,80,81,83,84,87,95,96,99 2 -350315 cd18748 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,38,93,111,114 1 -350315 cd18748 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,33,34,36,37,38,40,41,42,44,50,51,52,53,54,56,57,58,60,63,64,66,67,68,72,73,75,76,77,79,80,83,89,90,91,92,93,94,95,96,104,105,110,111 2 -350315 cd18748 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,19,20,21,22,29,30,38,40,41,42,50,51,52,53,54,56,57,58,60,63,64,66,68,79,89,90,91,92,93,94,95,96,104,105,110,111 2 -350315 cd18748 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 33,34,36,37,38,40,41,44,52,56,66,67,68,72,73,75,76,77,79,80,83,91,92,95 2 -350316 cd18749 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,93,111,114 1 -350316 cd18749 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,50,51,52,53,54,56,57,58,60,63,64,66,67,68,72,73,75,76,77,79,80,83,89,90,91,92,93,94,95,96,104,105,110,111 2 -350316 cd18749 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,50,51,52,53,54,56,57,58,60,63,64,66,68,79,89,90,91,92,93,94,95,96,104,105,110,111 2 -350316 cd18749 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,52,56,66,67,68,72,73,75,76,77,79,80,83,91,92,95 2 -350317 cd18750 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,37,94,112,115 1 -350317 cd18750 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,32,33,35,36,37,39,40,41,43,51,52,53,54,55,57,58,59,61,64,65,67,68,69,73,74,76,77,78,80,81,84,90,91,92,93,94,95,96,97,105,106,111,112 2 -350317 cd18750 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,28,29,37,39,40,41,51,52,53,54,55,57,58,59,61,64,65,67,69,80,90,91,92,93,94,95,96,97,105,106,111,112 2 -350317 cd18750 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 32,33,35,36,37,39,40,43,53,57,67,68,69,73,74,76,77,78,80,81,84,92,93,96 2 -350318 cd18751 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,95,113 1 -350318 cd18751 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,26,27,28,29,31,32,35,36,38,39,40,42,43,44,46,49,50,51,52,53,55,56,57,59,65,66,68,69,70,74,75,77,78,79,81,82,85,91,92,93,94,95,96,97,98,106,107,112,113 2 -350318 cd18751 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,26,27,28,29,31,32,40,42,43,44,49,50,51,52,53,55,56,57,59,65,66,68,70,81,91,92,93,94,95,96,97,98,106,107,112,113 2 -350318 cd18751 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,46,51,55,68,69,70,74,75,77,78,79,81,82,85,93,94,97 2 -350319 cd18752 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,96,114 1 -350319 cd18752 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,25,26,27,28,30,31,34,35,37,38,39,41,42,43,45,49,50,51,52,53,55,56,57,59,66,67,69,70,71,75,76,78,79,80,82,83,86,92,93,94,95,96,97,98,99,107,108,113,114 2 -350319 cd18752 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,25,26,27,28,30,31,39,41,42,43,49,50,51,52,53,55,56,57,59,66,67,69,71,82,92,93,94,95,96,97,98,99,107,108,113,114 2 -350319 cd18752 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,51,55,69,70,71,75,76,78,79,80,82,83,86,94,95,98 2 -350320 cd18753 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,35,93,111 1 -350320 cd18753 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,26,27,30,31,33,34,35,37,38,39,41,48,49,50,51,52,54,55,56,58,63,64,66,67,68,72,73,75,76,77,79,80,83,89,90,91,92,93,94,95,96,104,105,110,111 2 -350320 cd18753 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,18,19,20,21,26,27,35,37,38,39,48,49,50,51,52,54,55,56,58,63,64,66,68,79,89,90,91,92,93,94,95,96,104,105,110,111 2 -350320 cd18753 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 30,31,33,34,35,37,38,41,50,54,66,67,68,72,73,75,76,77,79,80,83,91,92,95 2 -350321 cd18754 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,95,113 1 -350321 cd18754 PIN_VapC4-5_FitB-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,21,22,23,24,30,31,34,35,37,38,39,41,42,43,45,52,53,54,55,56,58,59,60,62,65,66,68,69,70,74,75,77,78,79,81,82,85,91,92,93,94,95,96,97,98,106,107,112,113 2 -350321 cd18754 PIN_VapC4-5_FitB-like 3 heterodimer interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,21,22,23,24,30,31,39,41,42,43,52,53,54,55,56,58,59,60,62,65,66,68,70,81,91,92,93,94,95,96,97,98,106,107,112,113 2 -350321 cd18754 PIN_VapC4-5_FitB-like 4 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,45,54,58,68,69,70,74,75,77,78,79,81,82,85,93,94,97 2 -350322 cd18755 PIN_MtVapC3_VapC21-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 2,36,90,108,110 1 -350322 cd18755 PIN_MtVapC3_VapC21-like 2 heterodimer interface 0 1 1 1 3,4,6,7,9,10,11,15,19,20,22,32,36,37,39,40,41,46,49,50,51,52,53,87,89,90,108,110 2 -350322 cd18755 PIN_MtVapC3_VapC21-like 3 homodimer interface 0 1 1 0 31,32,34,35,36,38,39,40,41,42,44,47,48,51,61,62,69,70,71,72,74,75,76,78,79,80,88,92 2 -350323 cd18756 PIN_MtVapC15-VapC11-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 2,40,94,112,114 1 -350323 cd18756 PIN_MtVapC15-VapC11-like 2 heterodimer interface 0 1 1 0 3,4,6,7,9,10,11,18,22,23,25,36,40,41,43,44,45,50,53,54,55,56,57,91,93,94,112,114 2 -350323 cd18756 PIN_MtVapC15-VapC11-like 3 homodimer interface 0 1 1 0 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,73,74,75,76,78,79,80,82,83,84,92,96 2 -350324 cd18757 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,42,94,112,114 1 -350324 cd18757 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,25,29,30,32,38,42,43,45,46,47,52,55,56,57,58,59,91,93,94,112,114 2 -350324 cd18757 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 37,38,40,41,42,44,45,46,47,48,50,53,54,57,67,68,75,76,77,78,80,81,82,84,85,86,92,96 2 -350325 cd18758 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,92,110,112 1 -350325 cd18758 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,23,27,28,30,36,40,41,43,44,45,50,53,54,55,56,57,89,91,92,110,112 2 -350325 cd18758 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,73,74,75,76,78,79,80,82,83,84,90,94 2 -350326 cd18759 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,91,109,111 1 -350326 cd18759 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,35,39,40,42,43,44,49,52,53,54,55,56,88,90,91,109,111 2 -350326 cd18759 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,43,44,45,47,50,51,54,64,65,72,73,74,75,77,78,79,81,82,83,89,93 2 -350327 cd18760 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,93,111,113 1 -350327 cd18760 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,35,39,40,42,43,44,49,52,53,54,55,56,90,92,93,111,113 2 -350327 cd18760 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,43,44,45,47,50,51,54,64,65,73,74,75,76,78,79,80,82,83,84,91,95 2 -350328 cd18761 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,39,92,110,112 1 -350328 cd18761 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,35,39,40,42,43,44,49,52,53,54,55,56,89,91,92,110,112 2 -350328 cd18761 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 34,35,37,38,39,41,42,43,44,45,47,50,51,54,64,65,72,73,74,75,77,78,79,81,82,83,90,94 2 -350329 cd18762 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,95,113,115 1 -350329 cd18762 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,36,40,41,43,44,45,50,53,54,55,56,57,92,94,95,113,115 2 -350329 cd18762 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,75,76,77,78,80,81,82,84,85,86,93,97 2 -350330 cd18763 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,93,111,113 1 -350330 cd18763 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,36,40,41,43,44,45,50,53,54,55,56,57,90,92,93,111,113 2 -350330 cd18763 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,73,74,75,76,78,79,80,82,83,84,91,95 2 -350331 cd18764 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,94,112,114 1 -350331 cd18764 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,36,40,41,43,44,45,50,53,54,55,56,57,91,93,94,112,114 2 -350331 cd18764 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,74,75,76,77,79,80,81,83,84,85,92,96 2 -350332 cd18765 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,40,95,113,115 1 -350332 cd18765 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,22,26,27,29,36,40,41,43,44,45,50,53,54,55,56,57,92,94,95,113,115 2 -350332 cd18765 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 35,36,38,39,40,42,43,44,45,46,48,51,52,55,65,66,75,76,77,78,80,81,82,84,85,86,93,97 2 -350333 cd18766 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,43,95,113,115 1 -350333 cd18766 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,25,29,30,32,39,43,44,46,47,48,53,56,57,58,59,60,92,94,95,113,115 2 -350333 cd18766 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 38,39,41,42,43,45,46,47,48,49,51,54,55,58,68,69,76,77,78,79,81,82,83,85,86,87,93,97 2 -350334 cd18767 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 0 1 1 2,36,91,109,111 1 -350334 cd18767 PIN_MtVapC3-like 2 heterodimer interface 0 0 1 1 3,4,6,7,9,10,11,17,21,22,24,32,36,37,39,40,41,46,49,50,51,52,53,88,90,91,109,111 2 -350334 cd18767 PIN_MtVapC3-like 3 homodimer interface 0 0 1 1 31,32,34,35,36,38,39,40,41,42,44,47,48,51,61,62,71,72,73,74,76,77,78,80,81,82,89,93 2 -350335 cd18768 PIN_MtVapC4-C5-like 1 active site [DENQ][DENQ][DENQ][DENQ][DENQ] 1 1 1 2,33,91,109,111 1 -350335 cd18768 PIN_MtVapC4-C5-like 2 oligomeric interface 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,17,18,19,20,24,25,28,29,31,32,33,35,36,37,39,46,47,48,49,50,52,53,54,56,61,62,64,65,66,70,71,73,74,75,77,78,81,87,88,89,90,91,92,93,94,102,103,108,109 2 -350335 cd18768 PIN_MtVapC4-C5-like 3 heterodimer interface 0 1 1 0 1,3,4,5,6,7,8,17,20,24,25,33,36,37,46,49,50,52,53,56,61,62,77,87,88,89,90,92,103,108,109 2 -350335 cd18768 PIN_MtVapC4-C5-like 4 homodimer interface 0 0 1 1 28,29,31,32,33,35,36,39,48,52,64,65,66,70,71,73,74,75,77,78,81,89,90,93 2 -350335 cd18768 PIN_MtVapC4-C5-like 5 VapBC-5 complex 0 1 1 0 1,3,4,5,6,7,8,17,20,24,25,33,36,37,46,49,50,52,53,56,61,62,77,87,88,89,90,92,103,108,109 2 -350851 cd18769 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,44,62 1 -350852 cd18770 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,37,56 1 -350853 cd18771 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,28,46 1 -350854 cd18772 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,29,61 1 -350651 cd18775 SafA-like 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,15,21,31,56,76,77,78,83,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120 2 -350652 cd18776 AfaD-like 1 polymer interface 0 1 1 1 0,2,4,6,7,9,21,38,103,105,106,107,108,109,110,111,112,113,114 2 -350653 cd18777 PsaA_MyfA 1 carbohydrate binding site [RHQ]xx[GSN]xx[WYFLIMV] 1 1 0 37,67,70,72,74,76,109 5 -350653 cd18777 PsaA_MyfA 2 oligomer interface 0 0 1 1 0,2,4,6,10,11,22,52,67,72,95,97,98,99,100,101,102,103,104,105,106,107,108,109 2 -350051 cd18778 ABC_6TM_exporter_like 1 substrate binding site 0 0 0 0 17,18,21,233,262,266 0 -350051 cd18778 ABC_6TM_exporter_like 2 TM helix 1 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350051 cd18778 ABC_6TM_exporter_like 3 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -350051 cd18778 ABC_6TM_exporter_like 4 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -350051 cd18778 ABC_6TM_exporter_like 5 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -350051 cd18778 ABC_6TM_exporter_like 6 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350051 cd18778 ABC_6TM_exporter_like 7 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -350051 cd18778 ABC_6TM_exporter_like 8 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350051 cd18778 ABC_6TM_exporter_like 9 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -350051 cd18778 ABC_6TM_exporter_like 10 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -350051 cd18778 ABC_6TM_exporter_like 11 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -350051 cd18778 ABC_6TM_exporter_like 12 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245 7 -350051 cd18778 ABC_6TM_exporter_like 13 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -350052 cd18779 ABC_6TM_T1SS_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350052 cd18779 ABC_6TM_T1SS_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350052 cd18779 ABC_6TM_T1SS_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350052 cd18779 ABC_6TM_T1SS_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350052 cd18779 ABC_6TM_T1SS_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350052 cd18779 ABC_6TM_T1SS_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350053 cd18780 ABC_6TM_AtABCB27_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350053 cd18780 ABC_6TM_AtABCB27_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350053 cd18780 ABC_6TM_AtABCB27_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -350053 cd18780 ABC_6TM_AtABCB27_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -350053 cd18780 ABC_6TM_AtABCB27_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350053 cd18780 ABC_6TM_AtABCB27_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -350057 cd18784 ABC_6TM_ABCB9_like 1 chemical substrate binding site 0 0 1 0 108,111,163,167,175,182,266 5 -350057 cd18784 ABC_6TM_ABCB9_like 2 heterodimer interface 0 0 1 0 21,34,38,41,45,46,49,50,52,53,56,57,60,61,64,65,68,71,72,75,78,79,80,81,82,83,86,91,94,95,98,170,174,177,178,179,181,184,185,186,187,188,189,190,191,192,193,194,196,197,199,200,201,204,208,211,212,215,216,220,223,226,227,230,234,237,241 2 -350057 cd18784 ABC_6TM_ABCB9_like 3 oligomer interface 0 0 1 0 21,34,38,41,45,46,49,50,52,53,55,56,57,59,60,61,63,64,65,68,71,72,75,78,79,80,81,82,83,86,89,90,91,92,93,94,95,96,98,99,100,101,107,108,111,112,114,115,118,163,167,170,174,175,177,178,179,181,182,184,185,186,187,188,189,190,191,192,193,194,196,197,199,200,201,204,208,211,212,215,216,220,222,223,226,227,228,230,234,237,240,266,267,270,273,274,281,287 2 -350057 cd18784 ABC_6TM_ABCB9_like 4 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -350057 cd18784 ABC_6TM_ABCB9_like 5 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350057 cd18784 ABC_6TM_ABCB9_like 6 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -350057 cd18784 ABC_6TM_ABCB9_like 7 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -350057 cd18784 ABC_6TM_ABCB9_like 8 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350057 cd18784 ABC_6TM_ABCB9_like 9 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350172 cd18785 SF2_C 1 ATP binding site 0 1 1 0 61,64 5 -350173 cd18786 SF1_C 1 ATP binding site 0 1 1 0 52,54,79 5 -350173 cd18786 SF1_C 2 DNA binding site 0 1 1 0 17,18,19,20,46,48,49 3 -350174 cd18787 SF2_C_DEAD 1 ATP binding site 0 1 1 0 89,91,116,119,120 5 -350175 cd18788 SF2_C_XPD 1 putative ATP binding site 0 0 1 1 140,143 5 -350176 cd18789 SF2_C_XPB 1 putative ATP binding site 0 0 1 1 134,137 5 -350177 cd18790 SF2_C_UvrB 1 ATP binding site 0 1 1 0 124,169 5 -350178 cd18791 SF2_C_RHA 1 ATP binding site 0 1 1 0 92,112,114,116,160 5 -350179 cd18792 SF2_C_RecG_TRCF 1 putative ATP binding site 0 0 1 1 126,129 5 -350180 cd18793 SF2_C_SNF 1 ATP binding site 0 1 1 0 92,93,95,118,121 5 -350180 cd18793 SF2_C_SNF 2 DNA binding site 0 1 1 0 35,36,44,86,107,108 3 -350181 cd18794 SF2_C_RecQ 1 ATP binding site 0 1 1 0 122 5 -350181 cd18794 SF2_C_RecQ 2 DNA binding site 0 1 1 0 37,38,39,40,61,86,87,88,91,108 3 -350182 cd18795 SF2_C_Ski2 1 ATP binding site 0 1 1 0 103,140 5 -350182 cd18795 SF2_C_Ski2 2 DNA binding site 0 1 1 0 50,51,52,53,57,69,70,77,95,96,97 3 -350183 cd18796 SF2_C_LHR 1 ATP binding site 0 1 1 0 106,108,133,136 5 -350183 cd18796 SF2_C_LHR 2 DNA binding site 0 1 1 0 45,46,47,48,52,74,75,100,101,102,149 3 -350184 cd18797 SF2_C_Hrq 1 putative ATP binding site 0 0 1 1 131,134 5 -350186 cd18799 SF2_C_EcoAI-like 1 putative ATP binding site 0 0 1 1 70,71,73,98,101 5 -350187 cd18800 SF2_C_EcoR124I-like 1 ATP binding site 0 1 1 0 36,37,39,63,66 5 -350188 cd18801 SF2_C_FANCM_Hef 1 putative ATP binding site 0 0 1 1 129,132 5 -350189 cd18802 SF2_C_dicer 1 ATP binding site 0 1 1 0 102,104,129,131 5 -350189 cd18802 SF2_C_dicer 2 DNA binding site 0 1 1 0 32,33,34,98,117,119 3 -350190 cd18803 SF2_C_secA 1 ATP binding site 0 1 1 0 92,94,128 5 -350190 cd18803 SF2_C_secA 2 homodimer interface 0 1 1 0 2,3,4,112,116,119,120,123 2 -350191 cd18804 SF2_C_priA 1 ATP binding site 0 1 1 0 155 5 -350192 cd18805 SF2_C_suv3 1 ATP binding site 0 1 1 0 81,84,113,117,120,121 5 -350193 cd18806 SF2_C_viral 1 putative ATP binding site 0 0 1 1 128,131 5 -350193 cd18806 SF2_C_viral 2 homodimer interface 0 1 1 0 7,12,15,16,104,105,106 2 -350194 cd18807 SF1_C_UvrD 1 ATP binding site 0 1 1 0 95,97,140 5 -350194 cd18807 SF1_C_UvrD 2 DNA binding site 0 1 1 0 71,72,73,74,89,91 3 -350195 cd18808 SF1_C_Upf1 1 ATP binding site 0 1 1 0 120,122,155 5 -350195 cd18808 SF1_C_Upf1 2 DNA binding site 0 1 1 0 88,89,90,114,116,117,132 3 -350196 cd18809 SF1_C_RecD 1 ATP binding site 0 1 1 0 42 5 -350196 cd18809 SF1_C_RecD 2 DNA binding site 0 1 1 0 17,18,19,20,36,38,39 3 -350197 cd18810 SF2_C_TRCF 1 putative ATP binding site 0 0 1 1 117,120 5 -350198 cd18811 SF2_C_RecG 1 putative ATP binding site 0 0 1 1 127,130 5 -350138 cd18817 GH43f_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,117,178 1 -350138 cd18817 GH43f_LbAraf43-like 2 chemical substrate binding site 0 1 1 0 1,57,58,116,117,178,202,242 5 -350139 cd18818 GH43_GbtXyl43B-like 1 active site [DEN][DEN][DEN] 0 1 1 1,124,190 1 -350139 cd18818 GH43_GbtXyl43B-like 2 chemical substrate binding site 0 0 1 1 1,58,59,123,124,190,214,254 5 -350140 cd18819 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,134,194 1 -350140 cd18819 GH43_LbAraf43-like 2 chemical substrate binding site 0 0 1 1 1,66,67,133,134,194,218,258 5 -350141 cd18820 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,111,173 1 -350141 cd18820 GH43_LbAraf43-like 2 chemical substrate binding site 0 0 1 1 1,53,54,110,111,173,198,238 5 -350142 cd18821 GH43_Pc3Gal43A-like 1 active site GDE 0 1 1 4,120,167 1 -350143 cd18822 GH43_CtGH43-like 1 active site G[DEN][DEN] 0 1 1 4,121,170 1 -350144 cd18823 GH43_RcAra43A-like 1 active site G[DEN][DEN] 0 1 1 4,139,190 1 -350145 cd18824 GH43_CtGH43-like 1 active site [DENG][DEN][DEN] 0 1 1 4,122,172 1 -350146 cd18825 GH43_CtGH43-like 1 active site G[DEN][DEN] 0 1 1 4,138,187 1 -350147 cd18826 GH43_CtGH43-like 1 active site GDE 0 1 1 4,127,179 1 -350148 cd18827 GH43_XlnD-like 1 active site [DEN][DEN][DEN] 0 1 1 1,119,171 1 -350149 cd18828 GH43_BT3675-like 1 active site [DEN][DEN][DEN] 0 1 1 1,122,171 1 -350150 cd18829 GH43_BsArb43A-like 1 active site [DEN][DEN][DEN] 0 1 1 2,118,168 1 -350150 cd18829 GH43_BsArb43A-like 2 chemical substrate binding site 0 0 1 1 0,1,2,17,18,59,115,135,136,168,188,196,262 5 -350151 cd18830 GH43_CjArb43A-like 1 active site [DEN][DEN][DEN] 0 1 1 2,122,185 1 -350151 cd18830 GH43_CjArb43A-like 2 chemical substrate binding site 0 1 1 1 0,1,2,17,18,58,119,139,140,185,205,213,280 5 -350152 cd18831 GH43_AnAbnA-like 1 active site [DEN][DEN][DEN] 0 1 1 2,115,169 1 -350152 cd18831 GH43_AnAbnA-like 2 chemical substrate binding site 0 0 1 1 0,1,2,18,19,56,112,132,133,169,189,203,275 5 -350153 cd18832 GH43_GsAbnA-like 1 active site [DEN][DEN][DEN] 0 1 1 2,146,208 1 -350153 cd18832 GH43_GsAbnA-like 2 chemical substrate binding site 0 1 1 1 0,1,2,17,18,68,143,163,164,208,230,236,321 5 -350154 cd18833 GH43_PcXyl-like 1 active site [DEN][DEN][DEN] 0 1 1 9,130,183 1 -350154 cd18833 GH43_PcXyl-like 2 chemical substrate binding site 0 0 1 1 9,29,74,75,129,130,183,244,275 5 -349316 cd18960 CD_HP1_like 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,21,23,24,25,26,30,32,33,34,35,37,38,44,47,48 2 -349317 cd18961 CD_CEC-4_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,31,33,34,35,36,38,39,44,47,48 2 -349318 cd18962 CD_MT_like 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349319 cd18963 chromodomain 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,22,24,25,26,27,33,35,36,37,38,40,41,50,53,54 2 -349320 cd18964 chromodomain 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,23,25,26,27,28,32,34,35,36,37,39,40,47,50,51 2 -349321 cd18965 chromodomain 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,46,49,50 2 -349322 cd18966 chromodomain 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349323 cd18967 chromodomain 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,27,29,30,31,32,34,36,37,38,39,41,42,48,51,52 2 -349324 cd18968 chromodomain 1 putative peptide binding site 0 0 1 1 1,2,3,4,5,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349325 cd18969 chromodomain 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,25,27,28,29,30,34,36,37,38,39,41,42,49,52,53 2 -349326 cd18970 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349327 cd18971 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,22,24,25,26,27,29,31,32,33,34,36,37,43,46,47 2 -349328 cd18972 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349329 cd18973 CD_Tf2-1_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349330 cd18974 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349331 cd18975 CD_MarY1_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349332 cd18976 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,44,47,48 2 -349333 cd18977 CD_POL_like 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349334 cd18978 CD_DDE_transposase_like 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349335 cd18979 CD_POL_like 1 putative peptide binding site 0 0 1 1 0,1,2,3,4,20,22,23,24,25,29,31,32,33,34,36,37,41,44,45 2 -349336 cd18980 CD_NC-like 1 putative peptide binding site 0 0 1 1 3,4,5,6,7,25,27,28,29,30,34,36,37,38,39,41,42,49,52,53 2 -349337 cd18981 CSD_HP1e_insect 1 putative binding pit 0 0 1 1 9,47,48,49,51,52 2 -349337 cd18981 CSD_HP1e_insect 2 putative homodimer interface 0 0 1 1 11,16,33,34,41,42,44,45,48,49,51,52 2 -349337 cd18981 CSD_HP1e_insect 3 putative peptide binding site 0 0 1 1 5,7,8,9,10,11,19,28,48,51,52 2 -349338 cd18982 CSD 1 putative binding pit 0 0 1 1 9,44,45,46,48,49 2 -349338 cd18982 CSD 2 putative homodimer interface 0 0 1 1 11,14,30,31,38,39,41,42,45,46,48,49 2 -349338 cd18982 CSD 3 putative peptide binding site 0 0 1 0 5,7,8,9,10,11,17,25,45,48,49 2 -350846 cd18983 CBD_MSL3_like 1 putative peptide binding site 0 1 1 1 6,7,11,12,13,14,29,31,32,33,34,38,40,41,42,43,45,46,47,50,51 2 -350846 cd18983 CBD_MSL3_like 2 putative methylated histone tail binding site 0 0 1 1 11,31,34,38 5 -350846 cd18983 CBD_MSL3_like 3 DNA binding site 0 1 1 1 28,30,31,32,33,34,35,37,38,39,40,41 3 -350846 cd18983 CBD_MSL3_like 4 putative RNA binding site 0 0 1 1 28,31,35,37,41 3 -350847 cd18984 CBD_MOF_like 1 putative peptide binding site 0 0 1 1 12,13,15,16,33,35,36,37,38,42,44,45,46,47,49,50,61,64,65 2 -350847 cd18984 CBD_MOF_like 2 putative methylated histone tail binding site 0 0 1 1 13,35,38,42 5 -350847 cd18984 CBD_MOF_like 3 putative DNA binding site 0 0 1 1 32,34,35,36,37,38,39,41,42,43,44,45 3 -350847 cd18984 CBD_MOF_like 4 putative RNA binding site 0 0 1 1 32,35,39,41,45 3 -350848 cd18985 CBD_TIP60_like 1 putative peptide binding site 0 0 1 1 12,13,15,16,31,33,34,35,36,40,42,43,44,45,47,48,55,58,59 2 -350848 cd18985 CBD_TIP60_like 2 putative methylated histone tail binding site 0 0 1 1 13,33,36,40 5 -350848 cd18985 CBD_TIP60_like 3 putative DNA binding site 0 0 1 1 30,32,33,34,35,36,37,39,40,41,42,43 3 -350848 cd18985 CBD_TIP60_like 4 putative RNA binding site 0 0 1 1 30,33,37,39,43 3 -350849 cd18986 CBD_ESA1_like 1 putative peptide binding site 0 0 1 1 12,13,15,16,31,33,34,35,36,40,42,43,44,45,47,48,56,59,60 2 -350849 cd18986 CBD_ESA1_like 2 putative methylated histone tail binding site 0 0 1 1 13,33,36,40 5 -350849 cd18986 CBD_ESA1_like 3 putative RNA binding site 0 0 1 1 30,33,37,39,43 3 -350849 cd18986 CBD_ESA1_like 4 putative DNA binding site 0 0 1 1 30,32,33,34,35,36,37,39,40,41,42,43 3 -349788 cd18987 LGIC_ECD_anion 1 pentamer interface 0 1 1 0 10,12,13,18,19,26,28,29,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,184 2 -349788 cd18987 LGIC_ECD_anion 2 Cys-loop 0 0 1 0 102,103,104,105,106,109,110,111,112,113,114,115,116 7 -349789 cd18988 LGIC_ECD_bact 1 pentamer interface 0 1 1 0 8,11,13,20,27,53,55,63,65,66,67,68,70,71,72,74,77,78,79,81,91,93,95,99,101,121,147,169,181 2 -349789 cd18988 LGIC_ECD_bact 2 ligand binding site 0 1 1 1 8,27,91,119,121 5 -349790 cd18989 LGIC_ECD_cation 1 pentamer interface 0 1 1 0 10,12,18,19,20,22,26,48,50,52,60,62,64,77,79,81,91,93,95,99,101,121,127,147,179 2 -349790 cd18989 LGIC_ECD_cation 2 Cys-loop 0 0 1 0 100,101,102,103,104,108,109,110,111,112,113,114 7 -349791 cd18990 LGIC_ECD_GABAAR 1 Cys-loop 0 0 1 0 102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -349791 cd18990 LGIC_ECD_GABAAR 2 pentamer interface 0 1 1 0 10,12,13,18,19,26,28,29,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,183 2 -349791 cd18990 LGIC_ECD_GABAAR 3 ligand binding site 0 1 1 1 7,26,63,121,122,123,171 5 -349792 cd18991 LGIC_ECD_GlyR 1 pentamer interface 0 1 1 0 11,14,19,20,23,27,29,51,62,63,64,65,66,68,69,71,73,74,76,77,78,80,82,84,96,97,98,124,125,148,150,151,184 2 -349792 cd18991 LGIC_ECD_GlyR 2 Cys-loop 0 0 1 0 103,104,105,106,107,108,110,111,112,113,114,115,116,117 7 -349792 cd18991 LGIC_ECD_GlyR 3 ligand binding site 0 1 1 0 8,27,29,82,84,92 5 -349793 cd18992 LGIC_ECD_HisCl 1 pentamer interface 0 0 1 1 12,15,20,21,24,28,30,51,63,64,65,66,67,69,70,72,74,75,77,78,79,81,83,85,97,98,99,125,126,149,151,152,184 2 -349793 cd18992 LGIC_ECD_HisCl 2 ligand binding site 0 0 1 1 9,28,30,83,85,93 5 -349793 cd18992 LGIC_ECD_HisCl 3 Cys-loop 0 0 1 0 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118 7 -349794 cd18993 LGIC_ECD_GluCl 1 ligand binding site 0 1 1 1 10,27,29,63,93,122,123,165,170 5 -349794 cd18993 LGIC_ECD_GluCl 2 Cys-loop 0 0 1 0 102,103,104,105,106,109,110,111,112,113,114,115,116 7 -349794 cd18993 LGIC_ECD_GluCl 3 pentamer interface 0 1 1 0 0,2,11,13,14,19,20,25,27,29,30,50,52,53,60,61,62,63,64,65,67,68,70,72,73,79,80,81,83,91,92,93,94,95,96,105,123,124,127,131,133,141,142,143,149,150,160,162,163,164,165,169,170,182 2 -349795 cd18994 LGIC_ECD_ZAC 1 Cys-loop 0 0 1 0 97,98,99,100,101,102,104,105,106,107,108,109,110,111 7 -349796 cd18995 LGIC_AChBP 1 pentamer interface 0 1 1 0 10,12,16,18,19,20,48,50,60,62,64,68,69,71,76,78,80,90,94,98,100,119,120,121,122,125,145,162 2 -349796 cd18995 LGIC_AChBP 2 ligand binding site 0 1 1 0 26,28,64,88,90,118,119,120,160,162,167 5 -349796 cd18995 LGIC_AChBP 3 Cys-loop 0 0 1 0 99,100,101,102,103,106,107,108,109,110,111,112 7 -349797 cd18996 LGIC_ECD_5-HT3 1 pentamer interface 0 1 1 0 0,1,4,5,41,44,50,51,56,58,67,77,80,82,84,89,90,92,94,96,97,99,100,101,103,104,105,107,109,110,111,119,121,122,123,125,129,131,132,151,152,153,157,178,179,182 2 -349797 cd18996 LGIC_ECD_5-HT3 2 Cys-loop 0 0 1 0 130,144 7 -349798 cd18997 LGIC_ECD_nAChR 1 pentamer interface 0 1 1 0 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,180 2 -349798 cd18997 LGIC_ECD_nAChR 2 Cys-loop 0 0 1 0 99,100,101,102,103,106,107,108,109,110,111,112,113 7 -349799 cd18998 LGIC_ECD_GABAAR_A 1 ligand binding site 0 0 1 1 7,26 5 -349799 cd18998 LGIC_ECD_GABAAR_A 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,107,108,109,110,111,112,113,114 7 -349799 cd18998 LGIC_ECD_GABAAR_A 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,183 2 -349800 cd18999 LGIC_ECD_GABAAR_B 1 ligand binding site 0 1 1 1 7,26,61,119,120,121,164,169 5 -349800 cd18999 LGIC_ECD_GABAAR_B 2 Cys-loop 0 0 1 0 100,102,103,104,105,106,107,108,109,110,111,112,114 7 -349800 cd18999 LGIC_ECD_GABAAR_B 3 pentamer interface 0 1 1 0 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349801 cd19000 LGIC_ECD_GABAAR_G 1 ligand binding site 0 0 1 1 7,26 5 -349801 cd19000 LGIC_ECD_GABAAR_G 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349801 cd19000 LGIC_ECD_GABAAR_G 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349802 cd19001 LGIC_ECD_GABAAR_delta 1 ligand binding site 0 0 1 1 8,27 5 -349802 cd19001 LGIC_ECD_GABAAR_delta 2 Cys-loop 0 0 1 0 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349802 cd19001 LGIC_ECD_GABAAR_delta 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,47,49,50,59,60,61,62,63,64,67,69,71,72,78,79,80,82,92,93,94,122,183 2 -349803 cd19002 LGIC_ECD_GABAAR_E 1 ligand binding site 0 0 1 1 7,26 5 -349803 cd19002 LGIC_ECD_GABAAR_E 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349803 cd19002 LGIC_ECD_GABAAR_E 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349804 cd19003 LGIC_ECD_GABAAR_theta 1 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,47,49,50,59,60,61,62,63,64,67,69,71,72,78,79,80,82,92,93,94,122,182 2 -349804 cd19003 LGIC_ECD_GABAAR_theta 2 ligand binding site 0 0 1 1 8,27 5 -349804 cd19003 LGIC_ECD_GABAAR_theta 3 Cys-loop 0 0 1 0 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349805 cd19004 LGIC_ECD_GABAAR_pi 1 ligand binding site 0 0 1 1 8,27 5 -349805 cd19004 LGIC_ECD_GABAAR_pi 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349805 cd19004 LGIC_ECD_GABAAR_pi 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349806 cd19005 LGIC_ECD_GABAAR_rho 1 ligand binding site 0 0 1 1 8,27 5 -349806 cd19005 LGIC_ECD_GABAAR_rho 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -349806 cd19005 LGIC_ECD_GABAAR_rho 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,184 2 -349807 cd19006 LGIC_ECD_GABAAR_LCCH3-like 1 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,49,51,52,61,62,63,64,65,66,69,71,73,74,80,81,82,84,94,95,96,124,182 2 -349807 cd19006 LGIC_ECD_GABAAR_LCCH3-like 2 Cys-loop 0 0 1 0 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349807 cd19006 LGIC_ECD_GABAAR_LCCH3-like 3 ligand binding site 0 0 1 1 8,27 5 -349808 cd19007 LGIC_ECD_GABAR_GRD-like 1 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,182 2 -349808 cd19007 LGIC_ECD_GABAR_GRD-like 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349808 cd19007 LGIC_ECD_GABAR_GRD-like 3 ligand binding site 0 0 1 1 8,27 5 -349809 cd19008 LGIC_ECD_GABAR_RDL-like 1 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,183 2 -349809 cd19008 LGIC_ECD_GABAR_RDL-like 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349809 cd19008 LGIC_ECD_GABAR_RDL-like 3 ligand binding site 0 0 1 1 7,26 5 -349810 cd19009 LGIC_ECD_GlyR_alpha 1 pentamer interface 0 1 1 0 11,14,19,20,23,27,29,50,61,62,63,64,65,67,68,70,72,73,75,76,77,79,81,83,95,96,97,123,124,147,149,150,183 2 -349810 cd19009 LGIC_ECD_GlyR_alpha 2 ligand binding site 0 1 1 1 8,27,29,81,83,91,123,124,166,168,171 5 -349810 cd19009 LGIC_ECD_GlyR_alpha 3 Cys-loop 0 0 1 0 102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -349811 cd19010 LGIC_ECD_GlyR_beta 1 ligand binding site 0 0 1 1 8,27,29,83,85,93 5 -349811 cd19010 LGIC_ECD_GlyR_beta 2 Cys-loop 0 0 1 0 104,105,106,107,108,109,111,112,113,114,115,116,117,118 7 -349811 cd19010 LGIC_ECD_GlyR_beta 3 pentamer interface 0 0 1 1 11,14,19,20,23,27,29,52,63,64,65,66,67,69,70,72,74,75,77,78,79,81,83,85,97,98,99,125,126,148,150,151,186 2 -349812 cd19011 LGIC_ECD_5-HT3A 1 pentamer interface 0 1 1 0 0,1,4,5,34,37,43,44,49,51,60,70,73,75,77,82,83,85,87,89,90,92,93,94,96,97,98,100,102,103,104,112,114,115,116,118,122,124,125,144,145,146,150,170,171,174 2 -349812 cd19011 LGIC_ECD_5-HT3A 2 Cys-loop 0 0 1 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -349813 cd19012 LGIC_ECD_5-HT3B 1 pentamer interface 0 0 1 1 0,1,4,5,37,40,46,47,52,54,63,73,76,78,80,85,86,88,90,92,93,95,96,97,99,100,101,103,105,106,107,115,117,118,119,121,125,127,128,147,148,149,153,173,174,177 2 -349813 cd19012 LGIC_ECD_5-HT3B 2 Cys-loop 0 0 1 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -349814 cd19013 LGIC_ECD_5-HT3C_E 1 pentamer interface 0 0 1 1 0,1,4,5,41,44,50,51,56,58,67,77,80,82,84,89,90,92,94,96,97,99,100,101,103,104,105,107,109,110,111,119,121,122,123,125,129,131,132,151,152,153,157,178,179,182 2 -349814 cd19013 LGIC_ECD_5-HT3C_E 2 Cys-loop 0 0 1 0 130,131,132,133,134,135,137,138,139,140,141,142,143,144 7 -349815 cd19014 LGIC_ECD_nAChR_A1 1 pentamer interface 0 1 1 1 37,39,45,46,53,75,77,86,87,89,91,92,96,98,99,103,104,105,107,117,119,121,125,147,208 2 -349815 cd19014 LGIC_ECD_nAChR_A1 2 Cys-loop 0 0 1 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -349816 cd19015 LGIC_ECD_nAChR_A2 1 pentamer interface 0 1 1 0 35,37,43,44,51,73,75,84,85,87,89,90,94,96,97,101,102,103,105,115,117,119,123,145,205 2 -349816 cd19015 LGIC_ECD_nAChR_A2 2 Cys-loop 0 0 1 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349817 cd19016 LGIC_ECD_nAChR_A3 1 pentamer interface 0 0 1 1 35,37,43,44,51,73,75,84,85,87,89,90,94,96,97,101,102,103,105,115,117,119,123,145,205 2 -349817 cd19016 LGIC_ECD_nAChR_A3 2 Cys-loop 0 0 1 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349818 cd19017 LGIC_ECD_nAChR_A4 1 pentamer interface 0 1 1 0 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,180 2 -349818 cd19017 LGIC_ECD_nAChR_A4 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349819 cd19018 LGIC_ECD_nAChR_A5 1 pentamer interface 0 0 1 1 37,39,45,46,53,75,77,86,87,89,91,92,96,98,99,102,103,104,106,116,118,120,124,146,204 2 -349819 cd19018 LGIC_ECD_nAChR_A5 2 Cys-loop 0 0 1 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -349820 cd19019 LGIC_ECD_nAChR_A6 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,180 2 -349820 cd19019 LGIC_ECD_nAChR_A6 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349821 cd19020 LGIC_ECD_nAChR_A7 1 pentamer interface 0 0 1 1 11,13,19,20,27,49,51,60,61,63,65,66,70,72,73,77,78,79,81,91,93,95,99,121,179 2 -349821 cd19020 LGIC_ECD_nAChR_A7 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349822 cd19021 LGIC_ECD_nAChR_A7L 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,178 2 -349822 cd19021 LGIC_ECD_nAChR_A7L 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349823 cd19022 LGIC_ECD_nAChR_A9 1 oligomer interface 0 1 1 1 35,37,43,44,51,73,75,84,85,87,89,90,94,96,97,101,102,103,105,115,117,119,123,145,205 2 -349823 cd19022 LGIC_ECD_nAChR_A9 2 polypeptide binding site 0 1 1 1 89,144,145,183,184,185,186,187,188,189,192,193 2 -349823 cd19022 LGIC_ECD_nAChR_A9 3 Cys-loop 0 0 1 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349824 cd19023 LGIC_ECD_nAChR_A10 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,180 2 -349824 cd19023 LGIC_ECD_nAChR_A10 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349825 cd19024 LGIC_ECD_nAChR_B1 1 pentamer interface 0 1 1 0 35,37,43,44,51,73,75,84,85,87,89,90,94,96,97,101,102,103,105,115,117,119,123,145,211 2 -349825 cd19024 LGIC_ECD_nAChR_B1 2 Cys-loop 0 0 1 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349826 cd19025 LGIC_ECD_nAChR_B2 1 pentamer interface 0 1 1 0 35,37,43,44,51,73,75,84,85,87,89,90,94,96,97,101,102,103,105,115,117,119,123,145,202 2 -349826 cd19025 LGIC_ECD_nAChR_B2 2 Cys-loop 0 0 1 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -349827 cd19026 LGIC_ECD_nAChR_B3 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,178 2 -349827 cd19026 LGIC_ECD_nAChR_B3 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349828 cd19027 LGIC_ECD_nAChR_B4 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,177 2 -349828 cd19027 LGIC_ECD_nAChR_B4 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349829 cd19028 LGIC_ECD_nAChR_D 1 pentamer interface 0 1 1 0 36,38,44,45,52,74,76,85,86,88,90,91,95,97,98,102,103,104,106,116,118,120,124,146,219 2 -349829 cd19028 LGIC_ECD_nAChR_D 2 Cys-loop 0 0 1 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -349830 cd19029 LGIC_ECD_nAChR_G 1 pentamer interface 0 1 1 0 12,20,48,50,52,54,62,70,72,80,92,93,94,100,122,123,128,153 2 -349830 cd19029 LGIC_ECD_nAChR_G 2 Cys-loop 0 0 1 0 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349831 cd19030 LGIC_ECD_nAChR_E 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,190 2 -349831 cd19030 LGIC_ECD_nAChR_E 2 Cys-loop 0 0 1 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -349832 cd19031 LGIC_ECD_nAChR_proto_alpha-like 1 pentamer interface 0 0 1 1 37,39,45,46,53,75,77,86,87,89,91,92,96,98,99,103,104,105,107,117,119,121,125,147,218 2 -349832 cd19031 LGIC_ECD_nAChR_proto_alpha-like 2 Cys-loop 0 0 1 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -349833 cd19032 LGIC_ECD_nAChR_proto_beta-like 1 pentamer interface 0 0 1 1 36,38,44,45,52,74,76,85,86,88,90,91,95,97,98,102,103,104,106,116,118,120,124,146,206 2 -349833 cd19032 LGIC_ECD_nAChR_proto_beta-like 2 Cys-loop 0 0 1 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -349834 cd19033 LGIC_ECD_nAChR_proto-like 1 pentamer interface 0 0 1 1 10,12,18,19,26,48,50,59,60,62,64,65,69,71,72,76,77,78,80,90,92,94,98,120,182 2 -349834 cd19033 LGIC_ECD_nAChR_proto-like 2 Cys-loop 0 0 1 0 99,100,101,102,103,106,107,108,109,110,111,112,113 7 -349835 cd19034 LGIC_ECD_GABAAR_A1 1 ligand binding site 0 0 1 1 8,36 5 -349835 cd19034 LGIC_ECD_GABAAR_A1 2 Cys-loop 0 0 1 0 110,111,112,113,114,115,117,118,119,120,121,122,123,124 7 -349835 cd19034 LGIC_ECD_GABAAR_A1 3 pentamer interface 0 0 1 1 20,22,23,28,29,36,38,39,56,58,59,68,69,70,71,72,73,76,78,80,81,87,88,89,91,101,102,103,131,193 2 -349836 cd19035 LGIC_ECD_GABAAR_A2 1 ligand binding site 0 0 1 1 17,45 5 -349836 cd19035 LGIC_ECD_GABAAR_A2 2 Cys-loop 0 0 1 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -349836 cd19035 LGIC_ECD_GABAAR_A2 3 pentamer interface 0 0 1 1 29,31,32,37,38,45,47,48,65,67,68,77,78,79,80,81,82,85,87,89,90,96,97,98,100,110,111,112,140,202 2 -349837 cd19036 LGIC_ECD_GABAAR_A3 1 ligand binding site 0 0 1 1 14,42 5 -349837 cd19036 LGIC_ECD_GABAAR_A3 2 Cys-loop 0 0 1 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -349837 cd19036 LGIC_ECD_GABAAR_A3 3 pentamer interface 0 0 1 1 26,28,29,34,35,42,44,45,62,64,65,74,75,76,77,78,79,82,84,86,87,93,94,95,97,107,108,109,137,199 2 -349838 cd19037 LGIC_ECD_GABAAR_A4 1 ligand binding site 0 0 1 1 13,41 5 -349838 cd19037 LGIC_ECD_GABAAR_A4 2 Cys-loop 0 0 1 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -349838 cd19037 LGIC_ECD_GABAAR_A4 3 pentamer interface 0 0 1 1 25,27,28,33,34,41,43,44,61,63,64,73,74,75,76,77,78,81,83,85,86,92,93,94,96,106,107,108,136,198 2 -349839 cd19038 LGIC_ECD_GABAAR_A5 1 ligand binding site 0 0 1 1 13,41 5 -349839 cd19038 LGIC_ECD_GABAAR_A5 2 Cys-loop 0 0 1 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -349839 cd19038 LGIC_ECD_GABAAR_A5 3 pentamer interface 0 0 1 1 25,27,28,33,34,41,43,44,61,63,64,73,74,75,76,77,78,81,83,85,86,92,93,94,96,106,107,108,136,198 2 -349840 cd19039 LGIC_ECD_GABAAR_A6 1 ligand binding site 0 0 1 1 12,40 5 -349840 cd19039 LGIC_ECD_GABAAR_A6 2 Cys-loop 0 0 1 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -349840 cd19039 LGIC_ECD_GABAAR_A6 3 pentamer interface 0 0 1 1 24,26,27,32,33,40,42,43,60,62,63,72,73,74,75,76,77,80,82,84,85,91,92,93,95,105,106,107,135,197 2 -349841 cd19040 LGIC_ECD_GABAAR_B1 1 ligand binding site 0 0 1 1 7,26 5 -349841 cd19040 LGIC_ECD_GABAAR_B1 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349841 cd19040 LGIC_ECD_GABAAR_B1 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349842 cd19041 LGIC_ECD_GABAAR_B2 1 ligand binding site 0 0 1 1 7,26 5 -349842 cd19041 LGIC_ECD_GABAAR_B2 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349842 cd19041 LGIC_ECD_GABAAR_B2 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349843 cd19042 LGIC_ECD_GABAAR_B3 1 ligand binding site 0 1 1 1 8,27 5 -349843 cd19042 LGIC_ECD_GABAAR_B3 2 Cys-loop 0 0 1 0 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349843 cd19042 LGIC_ECD_GABAAR_B3 3 pentamer interface 0 1 1 0 11,13,14,19,20,27,29,30,47,49,50,59,60,61,62,63,64,67,69,71,72,78,79,80,82,92,93,94,122,182 2 -349844 cd19043 LGIC_ECD_GABAAR_G1 1 ligand binding site 0 0 1 1 7,26 5 -349844 cd19043 LGIC_ECD_GABAAR_G1 2 Cys-loop 0 0 1 0 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349844 cd19043 LGIC_ECD_GABAAR_G1 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349845 cd19044 LGIC_ECD_GABAAR_G2 1 ligand binding site 0 0 1 1 9,28 5 -349845 cd19044 LGIC_ECD_GABAAR_G2 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349845 cd19044 LGIC_ECD_GABAAR_G2 3 pentamer interface 0 0 1 1 12,14,15,20,21,28,30,31,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,183 2 -349846 cd19045 LGIC_ECD_GABAAR_G3 1 ligand binding site 0 0 1 1 7,26 5 -349846 cd19045 LGIC_ECD_GABAAR_G3 2 Cys-loop 0 0 1 0 100,102,103,104,105,106,107,108,109,110,111,112,114 7 -349846 cd19045 LGIC_ECD_GABAAR_G3 3 pentamer interface 0 0 1 1 10,12,13,18,19,26,28,29,46,48,49,58,59,60,61,62,63,66,68,70,71,77,78,79,81,91,92,93,121,181 2 -349847 cd19046 LGIC_ECD_GABAAR_rho1 1 ligand binding site 0 0 1 1 8,27 5 -349847 cd19046 LGIC_ECD_GABAAR_rho1 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -349847 cd19046 LGIC_ECD_GABAAR_rho1 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,184 2 -349848 cd19047 LGIC_ECD_GABAAR_rho2 1 ligand binding site 0 0 1 1 8,27 5 -349848 cd19047 LGIC_ECD_GABAAR_rho2 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349848 cd19047 LGIC_ECD_GABAAR_rho2 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,184 2 -349849 cd19048 LGIC_ECD_GABAAR_rho3 1 ligand binding site 0 0 1 1 8,27 5 -349849 cd19048 LGIC_ECD_GABAAR_rho3 2 Cys-loop 0 0 1 0 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349849 cd19048 LGIC_ECD_GABAAR_rho3 3 pentamer interface 0 0 1 1 11,13,14,19,20,27,29,30,48,50,51,60,61,62,63,64,65,68,70,72,73,79,80,81,83,93,94,95,123,184 2 -349851 cd19049 LGIC_TM_anion 1 pentamer interface 0 1 1 0 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,95 2 -349851 cd19049 LGIC_TM_anion 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349851 cd19049 LGIC_TM_anion 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349851 cd19049 LGIC_TM_anion 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349851 cd19049 LGIC_TM_anion 5 TM4 helix 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349852 cd19050 LGIC_TM_bact 1 pentamer interface 0 1 1 0 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,102 2 -349852 cd19050 LGIC_TM_bact 2 ligand binding site 0 1 1 1 32,36,39,40,42,43,46,47,50,51 5 -349852 cd19050 LGIC_TM_bact 3 inhibitor binding site 0 1 1 1 1,5,6,9,60,61,64,65 5 -349852 cd19050 LGIC_TM_bact 4 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349852 cd19050 LGIC_TM_bact 5 TM2 helix 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349852 cd19050 LGIC_TM_bact 6 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349852 cd19050 LGIC_TM_bact 7 TM4 helix 0 0 0 0 93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349853 cd19051 LGIC_TM_cation 1 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349853 cd19051 LGIC_TM_cation 2 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349853 cd19051 LGIC_TM_cation 3 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349853 cd19051 LGIC_TM_cation 4 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 1 pentamer interface 0 1 1 0 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,95 2 -349854 cd19052 LGIC_TM_GABAAR_alpha 2 ligand binding site 0 1 1 0 14,17,18,21,77,80,81,99 5 -349854 cd19052 LGIC_TM_GABAAR_alpha 3 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 4 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 5 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 6 TM4 helix 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349855 cd19053 LGIC_TM_GABAAR_beta 1 pentamer interface 0 1 1 0 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,95 2 -349855 cd19053 LGIC_TM_GABAAR_beta 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349855 cd19053 LGIC_TM_GABAAR_beta 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349855 cd19053 LGIC_TM_GABAAR_beta 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349855 cd19053 LGIC_TM_GABAAR_beta 5 TM4 helix 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 1 pentamer interface 0 0 1 1 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,95 2 -349856 cd19054 LGIC_TM_GABAAR_gamma 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 5 TM4 helix 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349857 cd19055 LGIC_TM_GABAAR_delta 1 pentamer interface 0 0 1 1 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,102 2 -349857 cd19055 LGIC_TM_GABAAR_delta 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349857 cd19055 LGIC_TM_GABAAR_delta 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349857 cd19055 LGIC_TM_GABAAR_delta 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349857 cd19055 LGIC_TM_GABAAR_delta 5 TM4 helix 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349858 cd19056 LGIC_TM_GABAAR_theta 1 pentamer interface 0 0 1 1 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84 2 -349858 cd19056 LGIC_TM_GABAAR_theta 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349858 cd19056 LGIC_TM_GABAAR_theta 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349858 cd19056 LGIC_TM_GABAAR_theta 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349858 cd19056 LGIC_TM_GABAAR_theta 5 TM4 helix 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 1 pentamer interface 0 0 1 1 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84 2 -349859 cd19057 LGIC_TM_GABAAR_epsilon 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 5 TM4 helix 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349860 cd19058 LGIC_TM_GABAAR_pi 1 pentamer interface 0 0 1 1 1,4,5,12,13,15,16,19,22,23,24,27,28,29,30,32,33,34,36,37,40,41,47,48,50,51,59,60,71,75,78,82,85,86,101 2 -349860 cd19058 LGIC_TM_GABAAR_pi 2 TM1 helix 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349860 cd19058 LGIC_TM_GABAAR_pi 3 TM2 helix 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -349860 cd19058 LGIC_TM_GABAAR_pi 4 TM3 helix 0 0 0 0 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349860 cd19058 LGIC_TM_GABAAR_pi 5 TM4 helix 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349861 cd19059 LGIC_TM_GABAAR_rho 1 pentamer interface 0 0 1 1 1,4,5,12,13,15,16,19,22,23,24,27,28,29,30,32,33,34,36,37,40,41,47,48,50,51,58,59,70,74,77,81,84,85,96 2 -349861 cd19059 LGIC_TM_GABAAR_rho 2 TM1 helix 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349861 cd19059 LGIC_TM_GABAAR_rho 3 TM2 helix 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -349861 cd19059 LGIC_TM_GABAAR_rho 4 TM3 helix 0 0 0 0 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349861 cd19059 LGIC_TM_GABAAR_rho 5 TM4 helix 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349862 cd19060 LGIC_TM_GlyR_alpha 1 pentamer interface 0 1 1 0 1,4,5,12,13,15,16,19,22,23,24,27,28,29,30,32,33,34,36,37,40,41,47,48,50,51,58,59,70,74,77,81,84,85,100 2 -349862 cd19060 LGIC_TM_GlyR_alpha 2 ligand binding site 0 1 1 1 3,4,8,9,11,12,15,43,46,50,59,67,70 5 -349862 cd19060 LGIC_TM_GlyR_alpha 3 TM1 helix 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349862 cd19060 LGIC_TM_GlyR_alpha 4 TM2 helix 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -349862 cd19060 LGIC_TM_GlyR_alpha 5 TM3 helix 0 0 0 0 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349862 cd19060 LGIC_TM_GlyR_alpha 6 TM4 helix 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -349863 cd19061 LGIC_TM_GlyR_beta 1 pentamer interface 0 0 1 1 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84 2 -349863 cd19061 LGIC_TM_GlyR_beta 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349863 cd19061 LGIC_TM_GlyR_beta 3 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349863 cd19061 LGIC_TM_GlyR_beta 4 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349863 cd19061 LGIC_TM_GlyR_beta 5 TM4 helix 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349864 cd19062 LGIC_TM_GluCl 1 pentamer interface 0 1 1 0 0,3,4,11,12,14,15,18,21,22,23,26,27,28,29,31,32,33,35,36,39,40,46,47,49,50,57,58,69,73,76,80,83,84,97 2 -349864 cd19062 LGIC_TM_GluCl 2 ligand binding site 0 1 1 1 3,4,7,8,11,42,45,58,62,65,66,69,70,73 5 -349864 cd19062 LGIC_TM_GluCl 3 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349864 cd19062 LGIC_TM_GluCl 4 TM2 helix 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -349864 cd19062 LGIC_TM_GluCl 5 TM3 helix 0 0 0 0 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349864 cd19062 LGIC_TM_GluCl 6 TM4 helix 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349865 cd19063 LGIC_TM_5-HT3 1 pentamer interface 0 1 1 0 12,16,19,22,23,24,28,29,31,32,33,35,36,38,39,40,42,46,47,53,54,70,74,77,78,81,84,85,88,90,94 2 -349865 cd19063 LGIC_TM_5-HT3 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349865 cd19063 LGIC_TM_5-HT3 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349865 cd19063 LGIC_TM_5-HT3 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349865 cd19063 LGIC_TM_5-HT3 5 TM4 helix 0 0 0 0 95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349866 cd19064 LGIC_TM_nAChR 1 pentamer interface 0 1 1 0 32,35,39,42,43,46,50,78,81,84,85,87,88,89 2 -349866 cd19064 LGIC_TM_nAChR 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349866 cd19064 LGIC_TM_nAChR 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349866 cd19064 LGIC_TM_nAChR 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349866 cd19064 LGIC_TM_nAChR 5 TM4 helix 0 0 0 0 90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -349867 cd19065 LGIC_TM_ZAC 1 pentamer interface 0 0 1 1 32,35,39,42,43,46,50,78,81,84,85,87,88,89 2 -349867 cd19065 LGIC_TM_ZAC 2 TM1 helix 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349867 cd19065 LGIC_TM_ZAC 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349867 cd19065 LGIC_TM_ZAC 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349867 cd19065 LGIC_TM_ZAC 5 TM4 helix 0 0 0 0 133,134,135,136,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -350856 cd19165 HemeO 1 heme binding site 0 1 1 0 6,13,16,17,22,26,122,123,124,130,131,135,166,170,194,197,201 5 -350856 cd19165 HemeO 2 heme ligand H 1 1 1 13 5 -350856 cd19165 HemeO 3 kinked helix 0 1 1 1 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -350857 cd19166 HemeO-bac 1 heme binding site 0 1 1 0 5,12,15,16,103,104,107,108,110,111,114,115,144,172,175 5 -350857 cd19166 HemeO-bac 2 heme ligand H 1 1 1 12 5 -350857 cd19166 HemeO-bac 3 kinked helix 0 1 1 1 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -275365 sd00001 TSP3 1 C-type Ca binding site_TSP3-short [DEN][DEN][DEN][DEN][DEN][NDE] 1 1 1 1,3,5,9,12,19 4 -275365 sd00001 TSP3 2 N-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 1 24,26,28,32,35 4 -275365 sd00001 TSP3 3 C-type Ca binding site_TSP3-long [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 37,39,41,45,48,55 4 -275365 sd00001 TSP3 4 TSP3 repeat_short 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 7 -275365 sd00001 TSP3 5 TSP3 repeat_long 0 0 1 1 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54,55,56,57,58 7 -275366 sd00002 TSP3 1 TSP3 repeat_long 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35 7 -275366 sd00002 TSP3 2 TSP3 repeat_short 0 0 1 1 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -275366 sd00002 TSP3 3 N-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 1 1,3,5,9,12 4 -275366 sd00002 TSP3 4 C-type Ca binding site_TSP3-long [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 14,16,18,22,25,32 4 -275366 sd00002 TSP3 5 C-type Ca binding site_TSP3-short [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 37,39,41,45,48,55 4 -275367 sd00003 TSP3_1C 1 TSP3 repeat_1C 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -275367 sd00003 TSP3_1C 2 C-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 0 1,3,5,24,31 4 -276811 sd00004 PPR 1 PPR repeat 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -276811 sd00004 PPR 2 PPR repeat 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -276811 sd00004 PPR 3 PPR repeat 0 0 1 1 70,71,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -276810 sd00005 TPR 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -276810 sd00005 TPR 2 TPR repeat 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -276809 sd00006 TPR 1 putative protein binding surface 0 1 1 1 1,4,5,8,9,11,35,38,39,42,43,45,46,69,72,73,76,77,80 2 -276809 sd00006 TPR 2 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -276809 sd00006 TPR 3 TPR repeat 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -276809 sd00006 TPR 4 TPR repeat 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -276808 sd00008 TPR_YbbN 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,28,29 7 -276808 sd00008 TPR_YbbN 2 TPR repeat 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,58,59,60,61 7 -276808 sd00008 TPR_YbbN 3 TPR repeat 0 0 1 1 102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -276808 sd00008 TPR_YbbN 4 TPR repeat 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -276807 sd00010 SLR 1 SLR repeat 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -276807 sd00010 SLR 2 SLR repeat 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -276807 sd00010 SLR 3 SLR repeat 0 0 1 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -276806 sd00016 Apc5 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -276806 sd00016 Apc5 2 TPR repeat 0 0 1 1 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -275368 sd00017 ZF_C2H2 1 Zn binding site CCHH 1 1 1 1,4,17,21 4 -275368 sd00017 ZF_C2H2 2 Zn binding site CCHH 1 1 1 29,32,45,49 4 -275368 sd00017 ZF_C2H2 3 Zn binding site CCHH 1 1 1 57,60,73,77 4 -275368 sd00017 ZF_C2H2 4 putative nucleic acid binding site 0 1 1 1 6,8,10,12,13,16,17,20,34,36,40,41,44,45,48,62,64,66,68,69,72,73,76 3 -275368 sd00017 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21 7 -275368 sd00017 ZF_C2H2 6 C2H2 Zn finger 0 0 0 0 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 7 -275368 sd00017 ZF_C2H2 7 C2H2 Zn finger 0 0 0 0 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -275369 sd00018 ZF_C2H2 1 Zn binding site CCHH 1 1 1 2,5,18,22 4 -275369 sd00018 ZF_C2H2 2 putative nucleic acid binding site 0 1 1 1 0,7,9,10,11,13,14,18,21 3 -275369 sd00018 ZF_C2H2 3 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23 7 -275370 sd00019 ZF_C2H2 1 Zn binding site CCHH 1 1 1 0,3,16,20 4 -275370 sd00019 ZF_C2H2 2 Zn binding site CCHH 1 1 1 28,31,44,48 4 -275370 sd00019 ZF_C2H2 3 putative nucleic acid binding site 0 1 1 1 5,7,9,11,12,15,16,19,33,35,36,37,39,40,44,47 3 -275370 sd00019 ZF_C2H2 4 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 7 -275370 sd00019 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 7 -275371 sd00020 ZF_C2H2 1 Zn binding site CCHH 1 1 1 0,3,16,22 4 -275371 sd00020 ZF_C2H2 2 Zn binding site CCHH 1 1 1 23,26,39,45 4 -275371 sd00020 ZF_C2H2 3 putative nucleic acid binding site 0 1 1 1 7,8,9,11,12,16,21,28,31,32,33,34,35,37,38 3 -275371 sd00020 ZF_C2H2 4 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22 7 -275371 sd00020 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,43,44,45 7 -275375 sd00025 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275375 sd00025 zf-RanBP2 2 Zn binding site CCCC 0 1 0 46,49,60,63 4 -275375 sd00025 zf-RanBP2 3 Zn binding site CCCC 0 1 0 89,92,103,106 4 -275375 sd00025 zf-RanBP2 4 Zn binding site CCCC 0 1 0 140,143,154,157 4 -275375 sd00025 zf-RanBP2 5 Zn binding site CCCC 0 1 0 183,186,197,200 4 -275375 sd00025 zf-RanBP2 6 Zn binding site CCCC 0 1 0 226,229,240,243 4 -275375 sd00025 zf-RanBP2 7 Zn binding site CCCC 0 1 0 275,278,289,292 4 -275375 sd00025 zf-RanBP2 8 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275375 sd00025 zf-RanBP2 9 RanBP2-type Zn finger 0 0 1 0 44,45,46,47,49,50,53,54,55,60,61,62,63 7 -275375 sd00025 zf-RanBP2 10 RanBP2-type Zn finger 0 0 1 0 87,88,89,90,92,93,96,97,98,103,104,105,106 7 -275375 sd00025 zf-RanBP2 11 RanBP2-type Zn finger 0 0 1 0 138,139,140,141,143,144,147,148,149,154,155,156,157 7 -275375 sd00025 zf-RanBP2 12 RanBP2-type Zn finger 0 0 1 0 181,182,183,184,186,187,190,191,192,197,198,199,200 7 -275375 sd00025 zf-RanBP2 13 RanBP2-type Zn finger 0 0 1 0 224,225,226,227,229,230,233,234,235,240,241,242,243 7 -275375 sd00025 zf-RanBP2 14 RanBP2-type Zn finger 0 0 1 0 273,274,275,276,278,279,282,283,284,289,290,291,292 7 -275376 sd00029 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275376 sd00029 zf-RanBP2 2 Zn binding site CCCC 0 1 0 56,59,70,73 4 -275376 sd00029 zf-RanBP2 3 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275376 sd00029 zf-RanBP2 4 RanBP2-type Zn finger 0 0 1 0 54,55,56,57,59,60,63,64,65,70,71,72,73 7 -275377 sd00030 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275377 sd00030 zf-RanBP2 2 Zn binding site CCCC 0 1 0 22,25,36,39 4 -275377 sd00030 zf-RanBP2 3 Zn binding site CCCC 0 1 0 42,45,56,59 4 -275377 sd00030 zf-RanBP2 4 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275377 sd00030 zf-RanBP2 5 RanBP2-type Zn finger 0 0 1 0 20,21,22,23,25,26,29,30,31,36,37,38,39 7 -275377 sd00030 zf-RanBP2 6 RanBP2-type Zn finger 0 0 1 0 40,41,42,43,45,46,49,50,51,56,57,58,59 7 -275378 sd00031 LRR_1 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,21,22,23 7 -275378 sd00031 LRR_1 2 leucine-rich repeat 0 0 0 0 24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,45,46,47 7 -275378 sd00031 LRR_1 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,58,59,60,61,62,69,70,71 7 -275378 sd00031 LRR_1 4 leucine-rich repeat 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,92,93,94,95 7 -275378 sd00031 LRR_1 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -275379 sd00032 LRR_2 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,17,18,19,20,21 7 -275379 sd00032 LRR_2 2 leucine-rich repeat 0 0 0 0 22,23,24,25,26,27,28,29,30,31,32,41,42,43,44,45,46,47 7 -275379 sd00032 LRR_2 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,65,66,67,68,69,70 7 -275379 sd00032 LRR_2 4 leucine-rich repeat 0 0 0 0 71,72,73,74,75,76,89,90,91,92,93,94,95 7 -275379 sd00032 LRR_2 5 leucine-rich repeat 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,148,149,150,151 7 -275379 sd00032 LRR_2 6 leucine-rich repeat 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,174,175,176,177,178 7 -275379 sd00032 LRR_2 7 leucine-rich repeat 0 0 0 0 179,180,181,182,183,184,185,186,197,198,199,200,201,202,203,204 7 -275380 sd00033 LRR_RI 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23 7 -275380 sd00033 LRR_RI 2 leucine-rich repeat 0 0 0 0 24,25,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,47 7 -275380 sd00033 LRR_RI 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,61,62,63,64,65,66,67,68,69,71 7 -275380 sd00033 LRR_RI 4 leucine-rich repeat 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,95 7 -275380 sd00033 LRR_RI 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,112,113,114,115,116,119 7 -275380 sd00033 LRR_RI 6 leucine-rich repeat 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,133,134,135,136,137,138,139,140,141,143 7 -275380 sd00033 LRR_RI 7 leucine-rich repeat 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,161,162,163,164,165,167 7 -275380 sd00033 LRR_RI 8 leucine-rich repeat 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,191 7 -275380 sd00033 LRR_RI 9 leucine-rich repeat 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,215 7 -275380 sd00033 LRR_RI 10 leucine-rich repeat 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,230,231,232,233,234,235,236,237 7 -275381 sd00034 LRR_AMN1 1 leucine-rich repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,27,28,29 7 -275381 sd00034 LRR_AMN1 2 leucine-rich repeat 0 0 0 0 30,31,32,33,34,35,39,40,41,42,43,44,45,46,47,48,49,53,54,55 7 -275381 sd00034 LRR_AMN1 3 leucine-rich repeat 0 0 0 0 56,57,58,59,60,61,62,63,64,67,68,69,70,71,72,73,74,75,76,78,79,80,81 7 -275381 sd00034 LRR_AMN1 4 leucine-rich repeat 0 0 0 0 82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100,101,102,103,107 7 -275381 sd00034 LRR_AMN1 5 leucine-rich repeat 0 0 0 0 108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,133 7 -275381 sd00034 LRR_AMN1 6 leucine-rich repeat 0 0 0 0 134,135,136,137,138,139,140,141,142,146,147,148,149,150,151,152,153,154,155,156,157,159 7 -275381 sd00034 LRR_AMN1 7 leucine-rich repeat 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,173,174,175,176,177,178,179,181,182,183,184,185 7 -275381 sd00034 LRR_AMN1 8 leucine-rich repeat 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,201,202,203,204,205,208,209,210,211 7 -275382 sd00035 LRR_NTF 1 leucine-rich repeat 0 0 0 0 14,15,16,17,18,19,20,21,22,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56 7 -275382 sd00035 LRR_NTF 2 leucine-rich repeat 0 0 0 0 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,81,82 7 -275382 sd00035 LRR_NTF 3 leucine-rich repeat 0 0 0 0 83,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,104,105,106 7 -275382 sd00035 LRR_NTF 4 leucine-rich repeat 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,127,128,129,130,131,132,133,134,135,136,137 7 -275383 sd00036 LRR_3 1 leucine-rich repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26 7 -275383 sd00036 LRR_3 2 leucine-rich repeat 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,47,48 7 -275383 sd00036 LRR_3 3 leucine-rich repeat 0 0 0 0 49,50,51,52,53,54,55,56,57,61,62,63,64,65,66,67,68,69,72 7 -275383 sd00036 LRR_3 4 leucine-rich repeat 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,95 7 -275383 sd00036 LRR_3 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,112,113,114,115,116,117,118 7 -275383 sd00036 LRR_3 6 leucine-rich repeat 0 0 0 0 119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141 7 -275384 sd00037 PASTA 1 PASTA domain 0 0 0 0 0,1,2,3,4,5,6,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,38,39,40,41,53,54,55,56,57,58,59 7 -275384 sd00037 PASTA 2 PASTA domain 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125 7 -276965 sd00038 Kelch 1 KELCH repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43 7 -276965 sd00038 Kelch 2 KELCH repeat 0 0 0 0 47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,71,72,73,74,75,76,77,78,81,82,83,84,85,86,87,88,89,90,91 7 -276965 sd00038 Kelch 3 KELCH repeat 0 0 0 0 94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,118,119,120,121,122,123,124,125,128,129,130,131,132,133,134,135,136,137,138,139 7 -293791 sd00039 7WD40 1 WD40 repeat 0 0 0 0 0,1,2,3,4,5,11,12,13,14,15,16,19,20,21,22,23,24,25,33,34,36,37,38,39,40 7 -293791 sd00039 7WD40 2 WD40 repeat 0 0 0 0 46,47,48,49,50,51,56,57,58,59,60,61,65,66,67,68,69,78,79,80,81,82,83,84 7 -293791 sd00039 7WD40 3 WD40 repeat 0 0 0 0 89,90,91,92,93,94,95,100,101,102,103,104,105,109,110,111,112,113,114,115,121,122,123,124,125 7 -293791 sd00039 7WD40 4 WD40 repeat 0 0 0 0 133,134,135,136,137,138,143,144,145,146,147,148,152,153,154,155,156,157,158,162,163,165,166,167,168 7 -293791 sd00039 7WD40 5 WD40 repeat 0 0 0 0 175,176,177,178,179,180,181,186,187,188,189,190,191,195,196,197,198,199,200,201,206,207,209,210,211,212 7 -293791 sd00039 7WD40 6 WD40 repeat 0 0 0 0 220,221,222,223,224,225,226,231,232,233,234,235,236,240,241,242,243,244,245,246,257,258,259,260 7 -293791 sd00039 7WD40 7 WD40 repeat 0 0 0 1 267,268,269,270,271,272,278,279,280,281,282,288,289,290,291,292 7 -293790 sd00041 GyrA-ParC_C 1 GyrA_CTD repeat 0 0 1 0 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,26,27,28,29,30,31,37,38,39,40,41,42,43,44,45,46,47 7 -293790 sd00041 GyrA-ParC_C 2 GyrA_CTD repeat 0 0 1 0 50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,76,77,78,79,80,81,82,83,84,85,90,91,92,93,94,95,96,97,98,99,100 7 -293790 sd00041 GyrA-ParC_C 3 GyrA_CTD repeat 0 0 1 0 106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,131,132,133,134,135,136,137,142,143,144,145,146,147,148,149,150 7 -293790 sd00041 GyrA-ParC_C 4 GyrA_CTD repeat 0 0 1 0 154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,172,173,174,175,176,177,178,180,181,182,183,184,185,186,187,188,192,193,194,195,196,197,198,199,200,201 7 -293790 sd00041 GyrA-ParC_C 5 GyrA_CTD repeat 0 0 1 0 204,205,206,207,208,209,210,213,214,215,216,217,218,219,224,225,226,227,228,229,230,231,232,233,234,243,244,245,246,247,248,249,250,251,252 7 -293789 sd00042 LVIVD 1 LVIVD repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -293789 sd00042 LVIVD 2 LVIVD repeat 0 0 1 0 42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77 7 -293789 sd00042 LVIVD 3 LVIVD repeat 0 0 1 0 84,85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -293788 sd00043 ARM 1 putative peptide binding site 0 1 1 1 23,27,31,65,69,73,107,111,115 2 -293788 sd00043 ARM 2 armadillo repeat 0 0 1 0 0,1,2,7,8,9,10,11,12,13,14,15,21,22,23,24,25,26,27,28,29,30,31,32 7 -293788 sd00043 ARM 3 armadillo repeat 0 0 1 0 40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 7 -293788 sd00043 ARM 4 armadillo repeat 0 0 1 0 82,83,84,85,86,87,91,92,93,94,95,96,97,98,105,106,107,108,109,110,111,112,113,114,115,116 7 -293787 sd00044 HEAT 1 putative peptide binding site 0 1 1 0 17,18,21,24,25,54,55,58,61,62,65,93,94,97,100,101,104,132,133,136,139,140,171,172,175,178,179 2 -293787 sd00044 HEAT 2 HEAT repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,22,23,24,25 7 -293787 sd00044 HEAT 3 HEAT repeat 0 0 1 0 37,38,39,40,41,42,43,44,45,46,47,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -293787 sd00044 HEAT 4 HEAT repeat 0 0 1 0 75,76,77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -293787 sd00044 HEAT 5 HEAT repeat 0 0 1 0 114,115,116,117,118,119,120,121,122,123,124,125,130,131,132,133,134,135,136,137,138,139,140 7 -293787 sd00044 HEAT 6 HEAT repeat 0 0 1 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,169,170,171,172,173,174,175,176,177,178,179,180 7 -293786 sd00045 ANK 1 ANK repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,28,29,30,31 7 -293786 sd00045 ANK 2 ANK repeat 0 0 1 0 33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64 7 -293786 sd00045 ANK 3 ANK repeat 0 0 1 0 66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,94,95,96,97 7 -293786 sd00045 ANK 4 oligomer interface 0 1 1 1 0,2,6,7,10,11,12,14,15,19,22,31,33,35,39,40,43,44,45,47,48,52,55,64,66,68,72,73,76,77,78,80,81,85,88,97 2 -293785 sd00046 FHA_bHelix 1 FHA beta-helical repeat 0 0 1 1 0,1,2,3,5,6,7,8,9,10,11,13,14,15,16,17,18 7 -293785 sd00046 FHA_bHelix 2 FHA beta-helical repeat 0 0 1 1 20,21,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39 7 -293785 sd00046 FHA_bHelix 3 FHA beta-helical repeat 0 0 1 1 41,42,43,46,47,48,49,50,51,52,55,56,57,58,59,60 7 -293785 sd00046 FHA_bHelix 4 FHA beta-helical repeat 0 0 1 1 62,63,64,65,67,68,69,70,71,72,73,75,76,77,78,79,80 7 -293785 sd00046 FHA_bHelix 5 FHA beta-helical repeat 0 0 1 1 82,83,84,85,87,88,89,90,91,92,93,96,97,98,99,100,101 7 -293785 sd00046 FHA_bHelix 6 FHA beta-helical repeat 0 0 1 1 103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120 7 -293785 sd00046 FHA_bHelix 7 FHA beta-helical repeat 0 0 1 1 123,124,125,126,128,129,130,131,132,135,136,137,138,139,140,141 7 -293785 sd00046 FHA_bHelix 8 FHA beta-helical repeat 0 0 1 1 143,144,145,146,148,149,150,151,152,153,155,156,157,158,159,160,161,162 7 -293785 sd00046 FHA_bHelix 9 FHA beta-helical repeat 0 0 1 1 164,165,166,167,169,170,171,172,173,176,177,178,179,180,181,182 7 -293785 sd00046 FHA_bHelix 10 FHA beta-helical repeat 0 0 1 1 184,185,186,187,189,190,191,192,193,194,196,197,198,199,200,201,202,203 7 +410909 cd19501 RecA-like_FtsH 1 ATP binding site 0 1 1 1 4,5,6,45,46,47,48,49,50,51 5 +410909 cd19501 RecA-like_FtsH 2 hexamer interface 0 1 1 0 17,34,68,76,92,102,103,105,123,124,131,134,135,150,166 2 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot_generic.dat b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot_generic.dat index c839615aef..0b6848645f 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot_generic.dat +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddannot_generic.dat @@ -1,23388 +1,10 @@ -237975 cd00001 PTS_IIB_man 1 active site 0 0 1 1 4,8,11 1 -237975 cd00001 PTS_IIB_man 2 phosphorylation site 0 0 1 1 11 6 -237977 cd00003 PNPsynthase 1 active site 0 1 1 1 4,6,7,15,40,42,46,47,67,97,98,101,128,148,188,189,210,211 1 -237977 cd00003 PNPsynthase 2 catalytic residues 0 0 1 0 40,67,148,188 1 -237977 cd00003 PNPsynthase 3 hydrophilic channel 0 1 1 1 4,38,63,65,67,85,87,126,128,146,148,185,188,205,206,208 0 -237977 cd00003 PNPsynthase 4 active site lid 0 1 1 1 91,92,93,94,95,96,97,98,99,100,101 1 -237977 cd00003 PNPsynthase 5 dimerization interface 0 0 1 1 15,155,156 2 -320674 cd00004 Sortase 1 catalytic site 0 0 1 1 49,110,118 1 -320674 cd00004 Sortase 2 active site 0 1 1 0 33,34,45,47,106,108,118 1 -320674 cd00004 Sortase 3 ligand binding site 0 1 1 0 110,118 5 -320675 cd05826 Sortase_B 1 catalytic site 0 0 1 1 61,154,162 1 -320675 cd05826 Sortase_B 2 active site 0 1 1 0 44,45,57,59,150,152,162 1 -320675 cd05826 Sortase_B 3 ligand binding site 0 1 1 0 154,162 5 -320676 cd05827 Sortase_C 1 catalytic site 0 0 1 1 52,114,123 1 -320676 cd05827 Sortase_C 2 active site 0 1 1 0 33,34,48,50,110,112,123 1 -320676 cd05827 Sortase_C 3 ligand binding site 0 1 1 0 114,123 5 -320677 cd05828 Sortase_D_1 1 catalytic site 0 0 1 1 50,107,119 1 -320677 cd05828 Sortase_D_1 2 active site 0 1 1 0 33,34,46,48,103,105,119 1 -320677 cd05828 Sortase_D_1 3 ligand binding site 0 1 1 0 107,119 5 -320678 cd05829 Sortase_F 1 catalytic site 0 0 1 1 57,123,137 1 -320678 cd05829 Sortase_F 2 active site 0 1 1 0 40,41,53,55,119,121,137 1 -320678 cd05829 Sortase_F 3 ligand binding site 0 1 1 0 123,137 5 -320679 cd05830 Sortase_E 1 catalytic site 0 0 1 1 51,119,128 1 -320679 cd05830 Sortase_E 2 active site 0 1 1 0 35,36,47,49,115,117,128 1 -320679 cd05830 Sortase_E 3 ligand binding site 0 1 1 0 119,128 5 -320680 cd06165 Sortase_A 1 catalytic site 0 0 1 1 49,111,120 1 -320680 cd06165 Sortase_A 2 active site 0 1 1 0 33,34,45,47,107,109,120 1 -320680 cd06165 Sortase_A 3 ligand binding site 0 1 1 0 111,120 5 -320681 cd06166 Sortase_D_2 1 catalytic site 0 0 1 1 50,112,120 1 -320681 cd06166 Sortase_D_2 2 active site 0 1 1 0 33,34,46,48,108,110,120 1 -320681 cd06166 Sortase_D_2 3 ligand binding site 0 1 1 0 112,120 5 -237978 cd00006 PTS_IIA_man 1 active site 0 0 1 1 7,64,69 1 -237978 cd00006 PTS_IIA_man 2 phosphorylation site 0 0 1 1 7 6 -237978 cd00006 PTS_IIA_man 3 active pocket/dimerization site 0 0 1 1 7,21,22,33,69,100 0 -99707 cd00009 AAA 1 ATP binding site 0 1 1 0 26,27,28,29,30,31,32,33,90,127 5 -99707 cd00009 AAA 2 Walker A motif 0 0 1 1 25,26,27,28,29,30,31,32 0 -99707 cd00009 AAA 3 Walker B motif 0 0 1 1 86,87,88,89,90,91 0 -99707 cd00009 AAA 4 arginine finger 0 0 1 1 141 0 -212657 cd00012 NBD_sugar-kinase_HSP70_actin 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,107,129,130,131,132,177 5 -212658 cd00366 FGGY 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,235,254,255,256,257,397 5 -198346 cd07768 FGGY_RBK_like 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,241,260,261,262,263,410 5 -198358 cd07781 FGGY_RBK 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,270,288,289,290,291,442 5 -212663 cd07782 FGGY_YpCarbK_like 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,253,281,282,283,284,446 5 -198360 cd07783 FGGY_CarbK-RPE_like 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,241,260,261,262,263,405 5 -198347 cd07769 FGGY_GK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,240,259,260,261,262,406 5 -198361 cd07786 FGGY_EcGK_like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,239,258,259,260,261,404 5 -198362 cd07789 FGGY_CsGK_like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,242,261,262,263,264,408 5 -198363 cd07791 FGGY_GK2_bacteria 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,238,257,258,259,260,401 5 -212664 cd07792 FGGY_GK1-3_metazoa 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,249,268,269,270,271,416 5 -212665 cd07793 FGGY_GK5_metazoa 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,255,274,275,276,277,419 5 -198366 cd07794 FGGY_GK_like_proteobact 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,224,243,244,245,246,388 5 -198367 cd07795 FGGY_ScGut1p_like 1 nucleotide binding site 0 1 1 1 7,8,9,10,12,14,249,268,269,270,271,416 5 -198368 cd07796 FGGY_NHO1_plant 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,250,268,269,270,271,423 5 -198378 cd10427 FGGY_GK_1 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,240,259,260,261,262,405 5 -212659 cd07770 FGGY_GntK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,235,254,255,256,257,397 5 -198349 cd07771 FGGY_RhuK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,235,254,255,256,257,403 5 -198350 cd07772 FGGY_NaCK_like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,229,249,250,251,252,380 5 -198351 cd07773 FGGY_FK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,237,255,256,257,258,400 5 -198352 cd07774 FGGY_1 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,233,252,253,254,255,392 5 -198353 cd07775 FGGY_AI-2K 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,239,258,259,260,261,413 5 -198369 cd07798 FGGY_AI-2K_like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,233,251,252,253,254,396 5 -212660 cd07776 FGGY_D-XK_euk 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,271,289,290,291,292,439 5 -212661 cd07777 FGGY_SHK_like 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,242,260,261,262,263,410 5 -198356 cd07778 FGGY_L-RBK_like 1 nucleotide binding site 0 1 1 1 10,11,12,13,15,17,250,269,270,271,272,423 5 -212662 cd07779 FGGY_ygcE_like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,241,260,261,262,263,412 5 -212666 cd07802 FGGY_L-XK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,239,258,259,260,261,405 5 -198371 cd07803 FGGY_D-XK 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,236,255,256,257,258,399 5 -198372 cd07804 FGGY_XK_like_1 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,237,256,257,258,259,403 5 -198373 cd07805 FGGY_XK_like_2 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,248,267,268,269,270,421 5 -198374 cd07808 FGGY_D-XK_EcXK-like 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,236,255,256,257,258,398 5 -198375 cd07809 FGGY_D-XK_1 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,242,261,262,263,264,401 5 -198376 cd07810 FGGY_D-XK_2 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,240,259,260,261,262,406 5 -198377 cd07811 FGGY_D-XK_3 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,238,257,258,259,260,397 5 -212667 cd10170 HSP70_NBD 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,166,190,191,192,193,329 5 -212671 cd10229 HSPA12_like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,182,210,211,212,213,361 5 -212685 cd11735 HSPA12A_like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,181,258,259,260,261,425 5 -212686 cd11736 HSPA12B_like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,181,259,260,261,262,426 5 -212673 cd10231 YegD_like 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,158,180,181,182,183,375 5 -212674 cd10232 ScSsz1p_like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,172,199,200,201,202,338 5 -212675 cd10233 HSPA1-2_6-8-like_NBD 1 nucleotide binding site 0 1 1 1 4,5,6,7,9,11,169,193,194,195,196,332 5 -212676 cd10234 HSPA9-Ssq1-like_NBD 1 nucleotide binding site 0 1 1 1 7,8,9,10,12,14,169,191,192,193,194,334 5 -212683 cd11733 HSPA9-like_NBD 1 nucleotide binding site 0 1 1 1 7,8,9,10,12,14,170,192,193,194,195,335 5 -212684 cd11734 Ssq1_like_NBD 1 nucleotide binding site 0 1 1 1 7,8,9,10,12,14,169,192,193,194,195,331 5 -212677 cd10235 HscC_like_NBD 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,142,165,166,167,168,299 5 -212678 cd10236 HscA_like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,164,186,187,188,189,315 5 -212679 cd10237 HSPA13-like_NBD 1 nucleotide binding site 0 1 1 1 25,26,27,28,30,32,193,216,217,218,219,359 5 -212680 cd10238 HSPA14-like_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,170,195,196,197,198,334 5 -212681 cd10241 HSPA5-like_NBD 1 nucleotide binding site 0 1 1 1 6,7,8,9,11,13,171,194,195,196,197,333 5 -212682 cd11732 HSP105-110_like_NBD 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,169,198,199,200,201,337 5 -212670 cd10228 HSPA4_like_NDB 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,171,199,200,201,202,338 5 -212687 cd11737 HSPA4_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,171,200,201,202,203,340 5 -212688 cd11738 HSPA4L_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,171,200,201,202,203,340 5 -212689 cd11739 HSPH1_NBD 1 nucleotide binding site 0 1 1 1 5,6,7,8,10,12,171,200,201,202,203,340 5 -212672 cd10230 HYOU1-like_NBD 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,170,196,197,198,199,347 5 -212668 cd10225 MreB_like 1 nucleotide binding site 0 1 1 1 3,4,5,6,8,10,125,147,148,149,150,277 5 -212669 cd10227 ParM_like 1 nucleotide binding site 0 1 1 1 4,5,6,7,9,11,147,172,173,174,175,277 5 -237981 cd00014 CH 1 putative actin binding surface 0 0 1 0 0,1,3,4,5,8,11,67,68,71,74,76,92,93,96,97,99,100,103,104 2 -237982 cd00015 ALBUMIN 1 binding site 0 1 0 0 134,137,138,141,157,160 0 -237982 cd00015 ALBUMIN 2 binding site 0 1 0 0 22,26,41,62,66,69,94,97,98 0 -293732 cd00016 ALP_like 1 active site 0 1 1 0 8,49,130,177,178 1 -293732 cd00016 ALP_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,49,177,178 4 -293732 cd00016 ALP_like 3 substrate binding site 0 1 1 0 8,49,130,178 5 -293733 cd16009 PPM 1 active site 0 1 1 0 8,80,281,322,323 1 -293733 cd16009 PPM 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,80,322,323 4 -293733 cd16009 PPM 3 substrate binding site 0 1 1 0 8,80,281,323 5 -293734 cd16010 iPGM 1 active site 0 1 1 0 8,58,393,434,435 1 -293734 cd16010 iPGM 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,58,434,435 4 -293734 cd16010 iPGM 3 substrate binding site 0 1 1 0 8,58,393,435 5 -293735 cd16011 iPGM_like 1 active site 0 1 1 0 8,55,267,309,310 1 -293735 cd16011 iPGM_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,55,309,310 4 -293735 cd16011 iPGM_like 3 substrate binding site 0 1 1 0 8,55,267,310 5 -293736 cd16012 ALP 1 active site 0 1 1 0 8,56,200,242,243 1 -293736 cd16012 ALP 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,56,242,243 4 -293736 cd16012 ALP 3 substrate binding site 0 1 1 0 8,56,200,243 5 -293737 cd16013 AcpA 1 active site 0 1 1 0 11,142,267,303,304 1 -293737 cd16013 AcpA 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 11,142,303,304 4 -293737 cd16013 AcpA 3 substrate binding site 0 1 1 0 11,142,267,304 5 -293738 cd16014 PLC 1 active site 0 1 1 0 9,88,174,210,211 1 -293738 cd16014 PLC 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,88,210,211 4 -293738 cd16014 PLC 3 substrate binding site 0 1 1 0 9,88,174,211 5 -293739 cd16015 LTA_synthase 1 active site 0 1 1 0 8,50,167,227,228 1 -293739 cd16015 LTA_synthase 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,50,227,228 4 -293739 cd16015 LTA_synthase 3 substrate binding site 0 1 1 0 8,50,167,228 5 -293740 cd16016 AP-SPAP 1 active site 0 1 1 0 10,51,217,264,265 1 -293740 cd16016 AP-SPAP 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,51,264,265 4 -293740 cd16016 AP-SPAP 3 substrate binding site 0 1 1 0 10,51,217,265 5 -293741 cd16017 LptA 1 active site 0 1 1 0 10,50,153,219,220 1 -293741 cd16017 LptA 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,50,219,220 4 -293741 cd16017 LptA 3 substrate binding site 0 1 1 0 10,50,153,220 5 -293742 cd16018 Enpp 1 active site 0 1 1 0 8,45,167,214,215 1 -293742 cd16018 Enpp 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,45,214,215 4 -293742 cd16018 Enpp 3 substrate binding site 0 1 1 0 8,45,167,215 5 -293743 cd16019 GPI_EPT 1 active site 0 1 1 0 12,55,163,206,207 1 -293743 cd16019 GPI_EPT 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 12,55,206,207 4 -293743 cd16019 GPI_EPT 3 substrate binding site 0 1 1 0 12,55,163,207 5 -293747 cd16023 GPI_EPT_3 1 active site 0 1 1 0 12,65,170,212,213 1 -293747 cd16023 GPI_EPT_3 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 12,65,212,213 4 -293747 cd16023 GPI_EPT_3 3 substrate binding site 0 1 1 0 12,65,170,213 5 -293748 cd16024 GPI_EPT_2 1 active site 0 1 1 0 12,51,155,202,203 1 -293748 cd16024 GPI_EPT_2 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 12,51,202,203 4 -293748 cd16024 GPI_EPT_2 3 substrate binding site 0 1 1 0 12,51,155,203 5 -293744 cd16020 GPI_EPT_1 1 active site 0 1 1 0 12,51,167,214,215 1 -293744 cd16020 GPI_EPT_1 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 12,51,214,215 4 -293744 cd16020 GPI_EPT_1 3 substrate binding site 0 1 1 0 12,51,167,215 5 -293745 cd16021 ALP_like 1 active site 0 1 1 0 8,45,174,211,212 1 -293745 cd16021 ALP_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,45,211,212 4 -293745 cd16021 ALP_like 3 substrate binding site 0 1 1 0 8,45,174,212 5 -293746 cd16022 sulfatase_like 1 active site 0 1 1 0 8,48,127,166,167 1 -293746 cd16022 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,166,167 4 -293746 cd16022 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,127,167 5 -293749 cd16025 PAS_like 1 active site 0 1 1 0 10,48,148,254,255 1 -293749 cd16025 PAS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,48,254,255 4 -293749 cd16025 PAS_like 3 substrate binding site 0 1 1 0 10,48,148,255 5 -293750 cd16026 GALNS_like 1 active site 0 1 1 0 9,49,194,246,247 1 -293750 cd16026 GALNS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,246,247 4 -293750 cd16026 GALNS_like 3 substrate binding site 0 1 1 0 9,49,194,247 5 -293776 cd16157 GALNS 1 active site 0 1 1 0 9,49,207,259,260 1 -293776 cd16157 GALNS 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,259,260 4 -293776 cd16157 GALNS 3 substrate binding site 0 1 1 0 9,49,207,260 5 -293777 cd16158 ARSA 1 active site 0 1 1 0 9,49,209,261,262 1 -293777 cd16158 ARSA 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,261,262 4 -293777 cd16158 ARSA 3 substrate binding site 0 1 1 0 9,49,209,262 5 -293778 cd16159 ES 1 active site 0 1 1 0 9,49,262,314,315 1 -293778 cd16159 ES 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,314,315 4 -293778 cd16159 ES 3 substrate binding site 0 1 1 0 9,49,262,315 5 -293779 cd16160 spARS_like 1 active site 0 1 1 0 9,49,205,257,258 1 -293779 cd16160 spARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,257,258 4 -293779 cd16160 spARS_like 3 substrate binding site 0 1 1 0 9,49,205,258 5 -293780 cd16161 ARSG 1 active site 0 1 1 0 9,50,165,218,219 1 -293780 cd16161 ARSG 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,50,218,219 4 -293780 cd16161 ARSG 3 substrate binding site 0 1 1 0 9,50,165,219 5 -293751 cd16027 SGSH 1 active site 0 1 1 0 8,47,153,224,225 1 -293751 cd16027 SGSH 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,47,224,225 4 -293751 cd16027 SGSH 3 substrate binding site 0 1 1 0 8,47,153,225 5 -293752 cd16028 PMH 1 active site 0 1 1 0 8,48,168,273,274 1 -293752 cd16028 PMH 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,273,274 4 -293752 cd16028 PMH 3 substrate binding site 0 1 1 0 8,48,168,274 5 -293753 cd16029 4-S 1 active site 0 1 1 0 8,47,193,255,256 1 -293753 cd16029 4-S 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,47,255,256 4 -293753 cd16029 4-S 3 substrate binding site 0 1 1 0 8,47,193,256 5 -293754 cd16030 iduronate-2-sulfatase 1 active site 0 1 1 0 10,49,192,296,297 1 -293754 cd16030 iduronate-2-sulfatase 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,49,296,297 4 -293754 cd16030 iduronate-2-sulfatase 3 substrate binding site 0 1 1 0 10,49,192,297 5 -293755 cd16031 G6S_like 1 active site 0 1 1 0 10,50,174,272,273 1 -293755 cd16031 G6S_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,50,272,273 4 -293755 cd16031 G6S_like 3 substrate binding site 0 1 1 0 10,50,174,273 5 -293756 cd16032 choline-sulfatase 1 active site 0 1 1 0 8,48,144,199,200 1 -293756 cd16032 choline-sulfatase 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,199,200 4 -293756 cd16032 choline-sulfatase 3 substrate binding site 0 1 1 0 8,48,144,200 5 -293757 cd16033 sulfatase_like 1 active site 0 1 1 0 8,48,159,252,253 1 -293757 cd16033 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,252,253 4 -293757 cd16033 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,159,253 5 -293758 cd16034 sulfatase_like 1 active site 0 1 1 0 9,49,186,262,263 1 -293758 cd16034 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,262,263 4 -293758 cd16034 sulfatase_like 3 substrate binding site 0 1 1 0 9,49,186,263 5 -293759 cd16035 sulfatase_like 1 active site 0 1 1 0 8,48,149,202,203 1 -293759 cd16035 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,202,203 4 -293759 cd16035 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,149,203 5 -293760 cd16037 sulfatase_like 1 active site 0 1 1 0 8,48,142,197,198 1 -293760 cd16037 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,197,198 4 -293760 cd16037 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,142,198 5 -293761 cd16142 ARS_like 1 active site 0 1 1 0 8,50,162,215,216 1 -293761 cd16142 ARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,50,215,216 4 -293761 cd16142 ARS_like 3 substrate binding site 0 1 1 0 8,50,162,216 5 -293762 cd16143 ARS_like 1 active site 0 1 1 0 8,49,184,236,237 1 -293762 cd16143 ARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,49,236,237 4 -293762 cd16143 ARS_like 3 substrate binding site 0 1 1 0 8,49,184,237 5 -293763 cd16144 ARS_like 1 active site 0 1 1 0 8,48,195,258,259 1 -293763 cd16144 ARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,258,259 4 -293763 cd16144 ARS_like 3 substrate binding site 0 1 1 0 8,48,195,259 5 -293764 cd16145 ARS_like 1 active site 0 1 1 0 8,48,199,266,267 1 -293764 cd16145 ARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,266,267 4 -293764 cd16145 ARS_like 3 substrate binding site 0 1 1 0 8,48,199,267 5 -293765 cd16146 ARS_like 1 active site 0 1 1 0 8,47,184,243,244 1 -293765 cd16146 ARS_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,47,243,244 4 -293765 cd16146 ARS_like 3 substrate binding site 0 1 1 0 8,47,184,244 5 -293766 cd16147 G6S 1 active site 0 1 1 0 9,45,186,277,278 1 -293766 cd16147 G6S 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,45,277,278 4 -293766 cd16147 G6S 3 substrate binding site 0 1 1 0 9,45,186,278 5 -293767 cd16148 sulfatase_like 1 active site 0 1 1 0 8,48,159,198,199 1 -293767 cd16148 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,198,199 4 -293767 cd16148 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,159,199 5 -293768 cd16149 sulfatase_like 1 active site 0 1 1 0 8,48,138,177,178 1 -293768 cd16149 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,177,178 4 -293768 cd16149 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,138,178 5 -293769 cd16150 sulfatase_like 1 active site 0 1 1 0 8,48,143,235,236 1 -293769 cd16150 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,235,236 4 -293769 cd16150 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,143,236 5 -293770 cd16151 sulfatase_like 1 active site 0 1 1 0 8,47,180,240,241 1 -293770 cd16151 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,47,240,241 4 -293770 cd16151 sulfatase_like 3 substrate binding site 0 1 1 0 8,47,180,241 5 -293771 cd16152 sulfatase_like 1 active site 0 1 1 0 9,49,135,210,211 1 -293771 cd16152 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,49,210,211 4 -293771 cd16152 sulfatase_like 3 substrate binding site 0 1 1 0 9,49,135,211 5 -293772 cd16153 sulfatase_like 1 active site 0 1 1 0 9,59,154,206,207 1 -293772 cd16153 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 9,59,206,207 4 -293772 cd16153 sulfatase_like 3 substrate binding site 0 1 1 0 9,59,154,207 5 -293773 cd16154 sulfatase_like 1 active site 0 1 1 0 8,49,178,241,242 1 -293773 cd16154 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,49,241,242 4 -293773 cd16154 sulfatase_like 3 substrate binding site 0 1 1 0 8,49,178,242 5 -293774 cd16155 sulfatase_like 1 active site 0 1 1 0 10,54,134,227,228 1 -293774 cd16155 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 10,54,227,228 4 -293774 cd16155 sulfatase_like 3 substrate binding site 0 1 1 0 10,54,134,228 5 -293775 cd16156 sulfatase_like 1 active site 0 1 1 0 8,48,185,274,275 1 -293775 cd16156 sulfatase_like 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,274,275 4 -293775 cd16156 sulfatase_like 3 substrate binding site 0 1 1 0 8,48,185,275 5 -293781 cd16171 ARSK 1 active site 0 1 1 0 8,48,176,231,232 1 -293781 cd16171 ARSK 2 metal binding site [DE][CST][DE][EHNQ] 1 1 0 8,48,231,232 4 -293781 cd16171 ARSK 3 substrate binding site 0 1 1 0 8,48,176,232 5 -237985 cd00018 AP2 1 DNA binding site 0 1 1 0 3,4,6,8,10,12,16,18,25,27,30 3 -237986 cd00019 AP2Ec 1 Metal-binding active site 0 1 1 1 64,104,141,175,178,212,225,227,257 0 -237986 cd00019 AP2Ec 2 AP (apurinic/apyrimidinic) site pocket 0 1 1 1 3,29,67,257,268 0 -237986 cd00019 AP2Ec 3 DNA interaction 0 1 0 1 32,33,34,35,36,67,68,70,73 0 -237988 cd00021 BBOX 1 Zn2+ binding site 0 1 1 1 2,5,25,30 4 -237989 cd00022 BIR 1 Zn2+ binding site 0 1 1 0 36,39,56,63 4 -237989 cd00022 BIR 2 peptide binding groove 0 1 1 1 28,33,35,42,43,44,46,50,55,59,60 0 -237990 cd00023 BBI 1 reactive loops 0 0 1 1 6,7,8,14,32,33,34,39,40 0 -237990 cd00023 BBI 2 protease binding site 0 1 1 0 7,8 0 -349274 cd00024 CD_CSD 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349275 cd00034 CSD 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,26,28,29,30,31,33,34,43,46,47 2 -349301 cd18654 CSD_HP1beta_Cbx1 1 putative peptide binding site 0 1 1 1 5,6,7,8,9,24,26,27,28,29,31,33,34,35,36,38,39,48,51,52 2 -349302 cd18655 CSD_HP1alpha_Cbx5 1 putative peptide binding site 0 1 1 1 5,6,7,8,9,24,26,27,28,29,31,33,34,35,36,38,39,48,51,52 2 -349303 cd18656 CSD_HP1gamma_Cbx3 1 putative peptide binding site 0 1 1 1 5,6,7,8,9,24,26,27,28,29,31,33,34,35,36,38,39,48,51,52 2 -349304 cd18657 CSD_Swi6 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,23,25,26,27,28,29,31,32,33,34,36,37,46,49,50 2 -349305 cd18658 CSD_HP1a_insect 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,27,29,30,31,32,34,35,44,47,48 2 -349337 cd18981 CSD_HP1e_insect 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,27,29,30,31,32,34,35,44,47,48 2 -349338 cd18982 CSD 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,18,20,21,22,23,24,26,27,28,29,31,32,41,44,45 2 -349276 cd18626 CD_eEF3 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,46,49,50 2 -349277 cd18627 CD_polycomb_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349291 cd18644 CD_polycomb 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349292 cd18645 CD_Cbx4 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349293 cd18646 CD_Cbx7 1 putative peptide binding site 0 1 1 1 4,5,6,7,8,23,25,26,27,28,32,34,35,36,37,39,40,46,49,50 2 -349294 cd18647 CD_Cbx2 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349295 cd18648 CD_Cbx6 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349296 cd18649 CD_Cbx8 1 putative peptide binding site 0 1 1 1 4,5,6,7,8,23,25,26,27,28,32,34,35,36,37,39,40,46,49,50 2 -349278 cd18628 CD3_cpSRP43_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,24,26,27,28,29,31,33,34,35,36,38,39,44,47,48 2 -349279 cd18629 CD2_cpSRP43_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,21,23,24,25,26,28,30,31,32,33,35,36,41,44,45 2 -349280 cd18630 CD_Rhino 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,44,47,48 2 -349281 cd18631 CD_HP1_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,43,46,47 2 -349297 cd18650 CD_HP1beta_Cbx1 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,43,46,47 2 -349298 cd18651 CD_HP1alpha_Cbx5 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,43,46,47 2 -349299 cd18652 CD_HP1gamma_Cbx3 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,43,46,47 2 -349300 cd18653 CD_HP1a_insect 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,43,46,47 2 -349282 cd18632 CD_Clr4_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,22,24,25,26,27,31,33,34,35,36,38,39,46,49,50 2 -349283 cd18633 CD_MMP8 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,44,47,48 2 -349284 cd18634 CD_CDY 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,21,23,24,25,26,30,32,33,34,35,37,38,45,48,49 2 -349285 cd18635 CD_CMT3_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349286 cd18636 CD_Chp1_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,21,23,24,25,26,30,32,33,34,35,37,38,45,48,49 2 -349287 cd18637 CD_Swi6_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,22,24,25,26,27,32,34,35,36,37,39,40,47,50,51 2 -349288 cd18638 CD_EhHp1_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,20,22,23,24,25,29,31,32,33,34,36,37,45,48,49 2 -349289 cd18639 CD_SUV39H1_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349290 cd18640 CD_Chro-like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,21,23,24,25,26,30,32,33,34,35,37,38,45,48,49 2 -349306 cd18659 CD2_tandem 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,22,24,25,26,27,31,33,34,35,36,38,39,47,50,51 2 -349308 cd18661 CD2_tandem_CHD1-2_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,25,27,28,29,30,34,36,37,38,39,41,42,50,53,54 2 -349309 cd18662 CD2_tandem_CHD3-4_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,23,25,26,27,28,32,34,35,36,37,39,40,48,51,52 2 -349310 cd18663 CD2_tandem_CHD5-9_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,28,30,31,32,33,37,39,40,41,42,44,45,50,53,54 2 -349311 cd18664 CD2_tandem_ScCHD1_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,26,28,29,30,31,35,37,38,39,40,42,43,51,54,55 2 -349307 cd18660 CD1_tandem 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,37,39,40,41,42,46,48,49,50,51,53,54,63,66,67 2 -349312 cd18665 CD1_tandem_CHD1_yeast_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,32,34,35,36,37,41,43,44,45,46,48,49,58,61,62 2 -349313 cd18666 CD1_tandem_CHD1-2_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,50,52,53,54,55,59,61,62,63,64,66,67,78,81,82 2 -349314 cd18667 CD1_tandem_CHD3-4_like 1 putative peptide binding site 0 1 1 1 2,3,4,5,6,47,49,50,51,52,56,58,59,60,61,63,64,72,75,76 2 -349315 cd18668 CD1_tandem_CHD5-9_like 1 putative peptide binding site 0 1 1 1 4,5,6,7,8,33,35,36,37,38,42,44,45,46,47,49,50,61,64,65 2 -349316 cd18960 CD_HP1_like 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,21,23,24,25,26,30,32,33,34,35,37,38,44,47,48 2 -349317 cd18961 CD_CEC-4_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,31,33,34,35,36,38,39,44,47,48 2 -349318 cd18962 CD_MT_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349319 cd18963 chromodomain 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,33,35,36,37,38,40,41,50,53,54 2 -349320 cd18964 chromodomain 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,23,25,26,27,28,32,34,35,36,37,39,40,47,50,51 2 -349321 cd18965 chromodomain 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,46,49,50 2 -349322 cd18966 chromodomain 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349323 cd18967 chromodomain 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,27,29,30,31,32,34,36,37,38,39,41,42,48,51,52 2 -349324 cd18968 chromodomain 1 putative peptide binding site 0 1 1 1 1,2,3,4,5,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349325 cd18969 chromodomain 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,25,27,28,29,30,34,36,37,38,39,41,42,49,52,53 2 -349326 cd18970 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349327 cd18971 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,22,24,25,26,27,29,31,32,33,34,36,37,43,46,47 2 -349328 cd18972 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349329 cd18973 CD_Tf2-1_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349330 cd18974 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,43,46,47 2 -349331 cd18975 CD_MarY1_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,42,45,46 2 -349332 cd18976 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,19,21,22,23,24,28,30,31,32,33,35,36,44,47,48 2 -349333 cd18977 CD_POL_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,26,28,29,30,31,35,37,38,39,40,42,43,50,53,54 2 -349334 cd18978 CD_DDE_transposase_like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,22,24,25,26,27,31,33,34,35,36,38,39,45,48,49 2 -349335 cd18979 CD_POL_like 1 putative peptide binding site 0 1 1 1 0,1,2,3,4,20,22,23,24,25,29,31,32,33,34,36,37,41,44,45 2 -349336 cd18980 CD_NC-like 1 putative peptide binding site 0 1 1 1 3,4,5,6,7,25,27,28,29,30,34,36,37,38,39,41,42,49,52,53 2 -349339 cd00027 BRCT 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349340 cd17707 BRCT_XRCC1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 73,77 0 -349341 cd17709 BRCT_pescadillo_like 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349342 cd17710 BRCT_PAXIP1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 67,71 0 -349343 cd17711 BRCT_PAXIP1_rpt3 1 BRCT sequence motif W[CS] 0 1 1 67,71 0 -349344 cd17712 BRCT_PAXIP1_rpt5 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349345 cd17713 BRCT_polymerase_mu_like 1 BRCT sequence motif W[CS] 0 1 1 75,79 0 -349395 cd18442 BRCT_polymerase_mu 1 BRCT sequence motif W[CS] 0 1 1 78,82 0 -349396 cd18443 BRCT_DNTT 1 BRCT sequence motif W[CS] 0 1 1 75,79 0 -349346 cd17714 BRCT_PAXIP1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349347 cd17715 BRCT_polymerase_lambda 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349348 cd17716 BRCT_microcephalin_rpt1 1 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349349 cd17717 BRCT_DNA_ligase_IV_rpt2 1 BRCT sequence motif W[CS] 0 1 1 80,84 0 -349350 cd17718 BRCT_TopBP1_rpt3 1 BRCT sequence motif W[CS] 0 1 1 73,77 0 -349351 cd17719 BRCT_Rev1 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349352 cd17720 BRCT_Bard1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 91,95 0 -349353 cd17721 BRCT_BRCA1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 79,83 0 -349354 cd17722 BRCT_DNA_ligase_IV_rpt1 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349355 cd17723 BRCT_Rad4_rpt4 1 BRCT sequence motif W[CS] 0 1 1 65,69 0 -349356 cd17724 BRCT_p53bp1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 78,82 0 -349357 cd17725 BRCT_XRCC1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349358 cd17726 BRCT_PARP4_like 1 BRCT sequence motif W[CS] 0 1 1 72,76 0 -349359 cd17727 BRCT_TopBP1_rpt6 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349360 cd17728 BRCT_TopBP1_rpt8 1 BRCT sequence motif W[CS] 0 1 1 71,75 0 -349361 cd17729 BRCT_CTDP1 1 BRCT sequence motif W[CS] 0 1 1 83,87 0 -349362 cd17730 BRCT_PAXIP1_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349363 cd17731 BRCT_TopBP1_rpt2_like 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349377 cd17746 BRCT_Rad4_rpt2 1 BRCT sequence motif W[CS] 0 1 1 71,75 0 -349364 cd17732 BRCT_Ect2_rpt2 1 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349365 cd17733 BRCT_Ect2_rpt1 1 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349366 cd17734 BRCT_Bard1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349367 cd17735 BRCT_BRCA1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349368 cd17736 BRCT_microcephalin_rpt2 1 BRCT sequence motif W[CS] 0 1 1 64,68 0 -349369 cd17737 BRCT_TopBP1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 63,67 0 -349370 cd17738 BRCT_TopBP1_rpt7 1 BRCT sequence motif W[CS] 0 1 1 66,70 0 -349381 cd17750 BRCT_SLF1 1 BRCT sequence motif W[CS] 0 1 1 67,71 0 -349371 cd17740 BRCT_Rad4_rpt1 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349372 cd17741 BRCT_nibrin 1 BRCT sequence motif W[CS] 0 1 1 65,69 0 -349373 cd17742 BRCT_CHS5_like 1 BRCT sequence motif W[CS] 0 1 1 65,69 0 -349374 cd17743 BRCT_BRC1_like_rpt5 1 BRCT sequence motif W[CS] 0 1 1 61,65 0 -349375 cd17744 BRCT_MDC1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 60,64 0 -349376 cd17745 BRCT_p53bp1_rpt1 1 BRCT sequence motif W[CS] 0 1 1 89,93 0 -349378 cd17747 BRCT_PARP1 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349379 cd17748 BRCT_DNA_ligase_like 1 BRCT sequence motif W[CS] 0 1 1 71,75 0 -349383 cd17752 BRCT_RFC1 1 BRCT sequence motif W[CS] 0 1 1 72,76 0 -349380 cd17749 BRCT_TopBP1_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349382 cd17751 BRCT_microcephalin_rpt3 1 BRCT sequence motif W[CS] 0 1 1 64,68 0 -349384 cd18431 BRCT_DNA_ligase_III 1 BRCT sequence motif W[CS] 0 1 1 65,69 0 -349385 cd18432 BRCT_PAXIP1_rpt6_like 1 BRCT sequence motif W[CS] 0 1 1 73,77 0 -349393 cd18440 BRCT_PAXIP1_rpt6 1 BRCT sequence motif W[CS] 0 1 1 78,82 0 -349394 cd18441 BRCT_MDC1_rpt2 1 BRCT sequence motif W[CS] 0 1 1 69,73 0 -349386 cd18433 BRCT_Rad4_rpt3 1 BRCT sequence motif W[CS] 0 1 1 72,76 0 -349387 cd18434 BRCT_TopBP1_rpt5 1 BRCT sequence motif W[CS] 0 1 1 75,79 0 -349388 cd18435 BRCT_BRC1_like_rpt1 1 BRCT sequence motif W[CS] 0 1 1 88,92 0 -349389 cd18436 BRCT_BRC1_like_rpt2 1 BRCT sequence motif W[CS] 0 1 1 68,72 0 -349390 cd18437 BRCT_BRC1_like_rpt3 1 BRCT sequence motif W[CS] 0 1 1 64,68 0 -349391 cd18438 BRCT_BRC1_like_rpt4 1 BRCT sequence motif W[CS] 0 1 1 62,66 0 -349392 cd18439 BRCT_BRC1_like_rpt6 1 BRCT sequence motif W[CS] 0 1 1 104,108 0 -237995 cd00028 B_lectin 1 mannose binding site 0 1 1 1 26,29,31,33,35,61,63,65,67,69,93,95,97,99,101 5 -237995 cd00028 B_lectin 2 dimerization interface 0 1 1 1 1,2,4,7,34,43,44,77,79,87,89,91,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 2 -237996 cd00029 C1 1 zinc binding sites 0 1 1 1 0,13,16,30,33,38,41,49 4 -237996 cd00029 C1 2 putative DAG/PE binding site 0 0 1 1 7,10,11,20,21,22,23,24,25,26 0 -237996 cd00029 C1 3 putative RAS interaction site 0 0 1 0 10,12 2 -206635 cd00031 CA_like 1 Ca2+ binding site 0 1 1 1 7,8,60,62,93,95,96 4 -206636 cd11303 Dystroglycan_repeat 1 Ca2+ binding site 0 1 1 1 12,13,60,62,93,95,96 4 -206637 cd11304 Cadherin_repeat 1 Ca2+ binding site 0 1 1 1 7,8,60,62,93,95,96 4 -237997 cd00032 CASc 1 active site 0 1 1 1 83,126 1 -237997 cd00032 CASc 2 substrate pocket 0 1 1 1 26,84,124,131,176,177,178,179,180,181,185,186 5 -237997 cd00032 CASc 3 proteolytic cleavage site 0 0 1 1 133,160 0 -237997 cd00032 CASc 4 dimer interface 0 1 1 1 132,161,162,169,172,175,198,206,212,226,231,232,234,237,238 2 -153056 cd00033 CCP 1 receptor-ligand interactions 0 1 1 1 10,29 0 -211311 cd00035 ChtBD1 1 carbohydrate binding site 0 1 1 1 17,19,20,21,23,28 5 -211312 cd06921 ChtBD1_GH19_hevein 1 carbohydrate binding site 0 1 1 1 18,20,21,22,24,29 5 -211313 cd06922 ChtBD1_GH18_1 1 carbohydrate binding site 0 1 1 1 15,17,18,19,21,26 5 -211314 cd06923 ChtBD1_GH16 1 carbohydrate binding site 0 1 1 1 16,18,19,20,22,26 5 -211315 cd10909 ChtBD1_GH18_2 1 carbohydrate binding site 0 1 1 1 30,32,33,34,36,41 5 -211316 cd11618 ChtBD1_1 1 carbohydrate binding site 0 1 1 1 19,21,22,23,25,30 5 -213175 cd00036 ChtBD3 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 24,25 5 -213176 cd12204 CBD_like 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 31,32 5 -213177 cd12214 ChiA1_BD 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 24,25 5 -213178 cd12215 ChiC_BD 1 aromatic chitin/cellulose binding site residues [WY][WY] 0 1 1 25,26 5 -153057 cd00037 CLECT 1 ligand binding surface 0 1 1 1 87,91,93,99,101,102,103,104,107,108,109 5 -153058 cd03588 CLECT_CSPGs 1 ligand binding surface 0 1 1 1 94,98,100,106,108,109,110,111,114,115,116 5 -153059 cd03589 CLECT_CEL-1_like 1 ligand binding surface 0 1 1 1 106,110,112,120,122,123,124,125,128,129,130 5 -153060 cd03590 CLECT_DC-SIGN_like 1 ligand binding surface 0 1 1 1 98,102,104,109,111,112,113,114,117,118,119 5 -153061 cd03591 CLECT_collectin_like 1 ligand binding surface 0 1 1 1 87,91,93,97,99,100,101,102,105,106,107 5 -153062 cd03592 CLECT_selectins_like 1 ligand binding surface 0 1 1 1 86,90,92,98,100,101,102,103,106,107,108 5 -153063 cd03593 CLECT_NK_receptors_like 1 ligand binding surface 0 1 1 1 90,94,96,99,101,102,103,104,107,108,109 5 -153064 cd03594 CLECT_REG-1_like 1 ligand binding surface 0 1 1 1 99,103,105,112,114,115,116,117,120,121,122 5 -153065 cd03595 CLECT_chondrolectin_like 1 ligand binding surface 0 1 1 1 110,114,116,132,134,135,136,137,140,141,142 5 -153066 cd03596 CLECT_tetranectin_like 1 ligand binding surface 0 1 1 1 100,104,106,112,114,115,116,117,120,121,122 5 -153067 cd03597 CLECT_attractin_like 1 ligand binding surface 0 1 1 1 99,103,105,111,113,114,115,116,120,121,122 5 -153068 cd03598 CLECT_EMBP_like 1 ligand binding surface 0 1 1 1 89,93,95,100,102,103,104,105,108,109,110 5 -153069 cd03599 CLECT_DGCR2_like 1 ligand binding surface 0 1 1 1 116,120,122,136,138,139,140,141,144,145,146 5 -153070 cd03600 CLECT_thrombomodulin_like 1 ligand binding surface 0 1 1 1 105,109,111,121,123,124,125,126,130,131,132 5 -153071 cd03601 CLECT_TC14_like 1 ligand binding surface 0 1 1 1 91,95,97,102,104,105,106,107,110,111,112 5 -153072 cd03602 CLECT_1 1 ligand binding surface 0 1 1 1 81,85,87,91,93,94,95,96,99,100,101 5 -153073 cd03603 CLECT_VCBS 1 ligand binding surface 0 1 1 1 84,88,90,100,102,103,104,105,109,110,111 5 -237999 cd00038 CAP_ED 1 ligand binding site 0 1 1 1 69,70,79,80,81 5 -237999 cd00038 CAP_ED 2 flexible hinge region 0 1 1 1 101,102,103,107,108,109 0 -119409 cd00039 COLIPASE 1 lipase interaction site 0 1 1 1 14,15,37,44,63,64,65,88 2 -119409 cd00039 COLIPASE 2 lipid-binding surface 0 0 1 1 6,7,8,15,17,35,53,54,55,56,57,58,75,78,83 0 -238000 cd00040 CSF2 1 glycosylation sites 0 0 1 1 26,36 6 -238001 cd00041 CUB 1 heterodimerization interface 0 1 1 1 9,11,13,40,45,83,107,109,111,112 2 -238002 cd00042 CY 1 putative proteinase inhibition site 0 1 1 1 0,43,44,45,47 0 -238003 cd00043 CYCLIN 1 binding site 1 0 1 1 1 0,1,7,8,10,11,33,43,44 0 -238003 cd00043 CYCLIN 2 binding site 2 0 1 1 0 52,56,63,79,82,83 0 -238004 cd00044 CysPc 1 catalytic site 0 0 1 1 76,236,258 1 -238007 cd00048 DSRM 1 dsRNA binding site 0 1 1 1 0,6,7,50,51,52,53,56 3 -199811 cd00049 MH1 1 DNA binding site 0 1 1 1 20,24,27,62,63,88 3 -199811 cd00049 MH1 2 Zn binding site 0 1 1 1 52,97,109,114 4 -199812 cd10488 MH1_R-SMAD 1 DNA binding site 0 1 1 1 23,27,30,64,65,90 3 -199812 cd10488 MH1_R-SMAD 2 Zn binding site 0 1 1 1 54,99,111,116 4 -199814 cd10490 MH1_SMAD_1_5_9 1 DNA binding site 0 1 1 1 23,27,30,65,66,91 3 -199814 cd10490 MH1_SMAD_1_5_9 2 Zn binding site 0 1 1 1 55,100,112,117 4 -199815 cd10491 MH1_SMAD_2_3 1 DNA binding site 0 1 1 1 24,28,31,65,66,91 3 -199815 cd10491 MH1_SMAD_2_3 2 Zn binding site 0 1 1 1 55,100,112,117 4 -199813 cd10489 MH1_SMAD_6_7 1 DNA binding site 0 1 1 1 24,28,31,61,62,86 3 -199813 cd10489 MH1_SMAD_6_7 2 Zn binding site 0 1 1 1 55,95,105,110 4 -199817 cd10493 MH1_SMAD_6 1 DNA binding site 0 1 1 1 14,18,21,54,55,78 3 -199817 cd10493 MH1_SMAD_6 2 Zn binding site 0 1 1 1 45,87,99,104 4 -199818 cd10494 MH1_SMAD_7 1 DNA binding site 0 1 1 1 21,25,28,62,63,86 3 -199818 cd10494 MH1_SMAD_7 2 Zn binding site 0 1 1 1 52,95,107,112 4 -199816 cd10492 MH1_SMAD_4 1 DNA binding site 0 1 1 1 24,28,31,67,68,93 3 -199816 cd10492 MH1_SMAD_4 2 Zn binding site 0 1 1 1 57,101,113,118 4 -199819 cd00050 MH2 1 trimer interface 0 1 1 1 6,14,15,17,28,29,30,31,32,36,40,41,42,43,45,52,56,57,59,132,135,158,165,167,169 2 -199820 cd10495 MH2_R-SMAD 1 trimer interface 0 1 1 1 6,14,15,17,28,29,30,31,32,37,41,42,43,44,46,53,57,58,60,133,136,159,166,168,170 2 -199822 cd10497 MH2_SMAD_1_5_9 1 trimer interface 0 1 1 1 12,20,21,23,34,35,36,37,38,43,47,48,49,50,52,59,63,64,66,139,142,165,172,174,176 2 -199826 cd10985 MH2_SMAD_2_3 1 trimer interface 0 1 1 1 14,22,23,25,36,37,38,39,40,44,48,49,50,51,53,60,64,65,67,140,143,166,173,175,177 2 -199821 cd10496 MH2_I-SMAD 1 trimer interface 0 1 1 1 6,14,15,17,26,27,28,29,30,34,38,39,40,41,43,51,55,56,58,126,129,153,160,162,164 2 -199824 cd10499 MH2_SMAD_6 1 trimer interface 0 1 1 1 15,23,24,26,35,36,37,38,39,43,47,48,49,50,52,59,63,64,66,134,137,161,168,170,172 2 -199825 cd10500 MH2_SMAD_7 1 trimer interface 0 1 1 1 13,21,22,24,33,34,35,36,37,41,45,46,47,48,50,57,61,62,64,132,135,159,166,168,170 2 -199823 cd10498 MH2_SMAD_4 1 trimer interface 0 1 1 1 9,17,18,20,33,34,35,36,37,41,45,46,47,48,50,57,61,62,64,173,176,199,206,208,210 2 -238008 cd00051 EFh 1 Ca2+ binding site 0 1 1 1 9,11,13,20,45,47,49,56 4 -238009 cd00052 EH 1 Ca2+ binding site 0 1 1 1 42,44,46,53 4 -238009 cd00052 EH 2 peptide binding pocket 0 1 1 1 24,34,38 0 -238009 cd00052 EH 3 pseudo EF-hand loop 0 0 1 1 6,7,8,15,16,17,18,19 0 -238011 cd00054 EGF_CA 1 Ca2+ binding site 0 1 1 1 0,3,18 4 -238012 cd00055 EGF_Lam 1 EGF-like motif 0 0 1 1 1,3,13,20,22,31 0 -238013 cd00056 ENDO3c 1 active site 0 1 1 1 111 1 -238013 cd00056 ENDO3c 2 substrate binding pocket 0 1 1 1 97,150,154 5 -238013 cd00056 ENDO3c 3 minor groove reading motif 0 1 1 1 11,12,13,16,55 0 -238013 cd00056 ENDO3c 4 helix-hairpin-helix signature motif 0 1 1 1 87,88,89,90,91,92,93,94 0 -238014 cd00057 FA58C 1 sugar binding site 0 1 1 1 37,65,72 5 -238015 cd00058 FGF 1 heparin binding site (glycine box) 0 1 1 1 98,99,104,108,114 5 -238015 cd00058 FGF 2 receptor interaction site 0 1 1 1 0,3,34,36,38,66,74,77,78,79,80,81,82,84,117,119,121 0 -238016 cd00059 FH 1 DNA binding site 0 1 1 1 36,37,46,49,50,70 3 -238017 cd00060 FHA 1 phosphopeptide binding site 0 1 1 1 27,40,42,43,64,65,66 0 -238019 cd00062 FN2 1 putative gelatin-binding site 0 0 1 0 10,12,17,31,38,44,46 0 -238020 cd00063 FN3 1 Interdomain contacts 0 1 1 0 0,65,80 0 -238020 cd00063 FN3 2 Cytokine receptor motif 0 0 1 1 81,82,84,85 0 -277249 cd00065 FYVE_like_SF 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 13,14,15,16,17,18,23,45 5 -277249 cd00065 FYVE_like_SF 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,17,20,25,28,47,50 4 -277250 cd11672 ADDz 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 55,56,57,58,59,60,67,91 5 -277250 cd11672 ADDz 2 Zn binding site CCCCC[HC]CC 1 1 0 47,50,59,64,69,72,93,96 4 -277251 cd11725 ADDz_Dnmt3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 57,58,59,60,61,62,69,93 5 -277251 cd11725 ADDz_Dnmt3 2 Zn binding site CCCCC[HC]CC 1 1 0 49,52,61,66,71,74,95,98 4 -277253 cd11727 ADDz_Dnmt3l 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 57,58,59,60,61,62,69,93 5 -277253 cd11727 ADDz_Dnmt3l 2 Zn binding site CCCCC[HC]CC 1 1 0 49,52,61,66,71,74,95,98 4 -277254 cd11728 ADDz_Dnmt3b 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 55,56,57,58,59,60,67,91 5 -277254 cd11728 ADDz_Dnmt3b 2 Zn binding site CCCCC[HC]CC 1 1 0 47,50,59,64,69,72,93,96 4 -277255 cd11729 ADDz_Dnmt3a 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 58,59,60,61,62,63,70,94 5 -277255 cd11729 ADDz_Dnmt3a 2 Zn binding site CCCCC[HC]CC 1 1 0 50,53,62,67,72,75,96,99 4 -277252 cd11726 ADDz_ATRX 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 60,61,62,63,64,65,70,94 5 -277252 cd11726 ADDz_ATRX 2 Zn binding site CCCCC[HC]CC 1 1 0 52,55,64,67,72,75,96,99 4 -277256 cd15716 FYVE_RBNS5 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,48 5 -277256 cd15716 FYVE_RBNS5 2 Zn binding site CCCCC[HC]CC 1 1 0 12,15,28,31,36,39,50,53 4 -277257 cd15717 FYVE_PKHF 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,54 5 -277257 cd15717 FYVE_PKHF 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,27,30,35,38,56,59 4 -277293 cd15754 FYVE_PKHF1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,54 5 -277293 cd15754 FYVE_PKHF1 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,27,30,35,38,56,59 4 -277294 cd15755 FYVE_PKHF2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,54 5 -277294 cd15755 FYVE_PKHF2 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,27,30,35,38,56,59 4 -277258 cd15718 FYVE_WDFY1_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 31,32,33,34,35,36,41,63 5 -277258 cd15718 FYVE_WDFY1_like 2 Zn binding site CCCCC[HC]CC 1 1 0 8,11,35,38,43,46,65,68 4 -277295 cd15756 FYVE_WDFY1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 31,32,33,34,35,36,41,63 5 -277295 cd15756 FYVE_WDFY1 2 Zn binding site CCCCC[HC]CC 1 1 0 8,11,35,38,43,46,65,68 4 -277296 cd15757 FYVE_WDFY2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 31,32,33,34,35,36,41,63 5 -277296 cd15757 FYVE_WDFY2 2 Zn binding site CCCCC[HC]CC 1 1 0 8,11,35,38,43,46,65,68 4 -277259 cd15719 FYVE_WDFY3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,55 5 -277259 cd15719 FYVE_WDFY3 2 Zn binding site CCCCC[HC]CC 1 1 0 11,14,27,30,35,38,57,60 4 -277260 cd15720 FYVE_Hrs 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,51 5 -277260 cd15720 FYVE_Hrs 2 Zn binding site CCCCC[HC]CC 1 1 0 7,10,23,26,31,34,53,56 4 -277261 cd15721 FYVE_RUFY1_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 21,22,23,24,25,26,31,51 5 -277261 cd15721 FYVE_RUFY1_like 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,25,28,33,36,53,56 4 -277297 cd15758 FYVE_RUFY1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 26,27,28,29,30,31,36,56 5 -277297 cd15758 FYVE_RUFY1 2 Zn binding site CCCCC[HC]CC 1 1 0 14,17,30,33,38,41,58,61 4 -277298 cd15759 FYVE_RUFY2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,54 5 -277298 cd15759 FYVE_RUFY2 2 Zn binding site CCCCC[HC]CC 1 1 0 12,15,28,31,36,39,56,59 4 -277262 cd15723 FYVE_protrudin 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 14,15,16,17,18,19,24,52 5 -277262 cd15723 FYVE_protrudin 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,18,21,26,29,54,57 4 -277263 cd15724 FYVE_ZFY26 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,53 5 -277263 cd15724 FYVE_ZFY26 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,26,29,34,37,55,58 4 -277264 cd15725 FYVE_PIKfyve_Fab1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,54 5 -277264 cd15725 FYVE_PIKfyve_Fab1 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,26,29,34,37,56,59 4 -277265 cd15726 FYVE_FYCO1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 21,22,23,24,25,26,31,51 5 -277265 cd15726 FYVE_FYCO1 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,25,28,33,36,53,56 4 -277266 cd15727 FYVE_ZF21 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,56 5 -277266 cd15727 FYVE_ZF21 2 Zn binding site CCCCC[HC]CC 1 1 0 12,15,28,31,36,39,58,61 4 -277267 cd15728 FYVE_ANFY1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 21,22,23,24,25,26,31,53 5 -277267 cd15728 FYVE_ANFY1 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,25,28,33,36,55,58 4 -277268 cd15729 FYVE_endofin 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 27,28,29,30,31,32,37,58 5 -277268 cd15729 FYVE_endofin 2 Zn binding site CCCCC[HC]CC 1 1 0 15,18,31,34,39,42,60,63 4 -277269 cd15730 FYVE_EEA1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,53 5 -277269 cd15730 FYVE_EEA1 2 Zn binding site CCCCC[HC]CC 1 1 0 11,14,27,30,35,38,55,58 4 -277270 cd15731 FYVE_LST2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 25,26,27,28,29,30,35,57 5 -277270 cd15731 FYVE_LST2 2 Zn binding site CCCCC[HC]CC 1 1 0 13,16,29,32,37,40,59,62 4 -277271 cd15732 FYVE_MTMR3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,54 5 -277271 cd15732 FYVE_MTMR3 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,26,29,34,37,56,59 4 -277272 cd15733 FYVE_MTMR4 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 21,22,23,24,25,26,31,53 5 -277272 cd15733 FYVE_MTMR4 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,25,28,33,36,55,58 4 -277273 cd15734 FYVE_ZFYV1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,54 5 -277273 cd15734 FYVE_ZFYV1 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,26,29,34,37,56,59 4 -277274 cd15735 FYVE_spVPS27p_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 20,21,22,23,24,25,30,52 5 -277274 cd15735 FYVE_spVPS27p_like 2 Zn binding site CCCCC[HC]CC 1 1 0 8,11,24,27,32,35,54,57 4 -277275 cd15736 FYVE_scVPS27p_Vac1p_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 13,14,15,16,17,18,23,49 5 -277275 cd15736 FYVE_scVPS27p_Vac1p_like 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,17,20,25,28,51,54 4 -277299 cd15760 FYVE_scVPS27p_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,52 5 -277299 cd15760 FYVE_scVPS27p_like 2 Zn binding site CCCCC[HC]CC 1 1 0 7,10,23,26,31,34,54,57 4 -277300 cd15761 FYVE1_Vac1p_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,61 5 -277300 cd15761 FYVE1_Vac1p_like 2 Zn binding site CCCCC[HC]CC 1 1 0 12,15,28,31,36,39,63,66 4 -277276 cd15737 FYVE2_Vac1p_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,76 5 -277276 cd15737 FYVE2_Vac1p_like 2 Zn binding site CCCCC[HC]CC 1 1 0 10,13,26,29,34,41,78,81 4 -277277 cd15738 FYVE_MTMR_unchar 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,54 5 -277277 cd15738 FYVE_MTMR_unchar 2 Zn binding site CCCCC[HC]CC 1 1 0 11,13,26,29,34,37,56,59 4 -277278 cd15739 FYVE_RABE_unchar 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,54 5 -277278 cd15739 FYVE_RABE_unchar 2 Zn binding site CCCCC[HC]CC 1 1 0 12,15,28,31,36,39,56,59 4 -277279 cd15740 FYVE_FGD3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 20,21,22,23,24,25,30,47 5 -277279 cd15740 FYVE_FGD3 2 Zn binding site CCCCC[HC]CC 1 1 0 7,10,24,27,32,35,49,52 4 -277280 cd15741 FYVE_FGD1_2_4 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 24,25,26,27,28,29,34,55 5 -277280 cd15741 FYVE_FGD1_2_4 2 Zn binding site CCCCC[HC]CC 1 1 0 11,14,28,31,36,39,57,60 4 -277281 cd15742 FYVE_FGD5 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,54 5 -277281 cd15742 FYVE_FGD5 2 Zn binding site CCCCC[HC]CC 1 1 0 11,14,27,30,35,38,56,59 4 -277282 cd15743 FYVE_FGD6 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 23,24,25,26,27,28,33,54 5 -277282 cd15743 FYVE_FGD6 2 Zn binding site CCCCC[HC]CC 1 1 0 11,14,27,30,35,38,56,59 4 -277283 cd15744 FYVE_RUFY3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 14,15,16,17,18,19,24,45 5 -277283 cd15744 FYVE_RUFY3 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,18,21,26,29,47,50 4 -277284 cd15745 FYVE_RUFY4 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 13,14,15,16,17,18,23,45 5 -277284 cd15745 FYVE_RUFY4 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,17,20,25,28,47,50 4 -277285 cd15746 FYVE_RP3A_like 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,47 5 -277285 cd15746 FYVE_RP3A_like 2 Zn binding site CCCCC[HC]CC 1 1 0 6,9,23,26,31,34,49,52 4 -277301 cd15762 FYVE_RP3A 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,46 5 -277301 cd15762 FYVE_RP3A 2 Zn binding site CCCCC[HC]CC 1 1 0 6,9,23,26,31,34,48,51 4 -277302 cd15763 FYVE_RPH3L 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 22,23,24,25,26,27,32,50 5 -277302 cd15763 FYVE_RPH3L 2 Zn binding site CCCCC[HC]CC 1 1 0 9,12,26,29,34,37,52,55 4 -277286 cd15747 FYVE_Slp3_4_5 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 15,16,17,18,19,20,25,40 5 -277286 cd15747 FYVE_Slp3_4_5 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,19,22,27,30,42,45 4 -277303 cd15764 FYVE_Slp4 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 18,19,20,21,22,23,28,42 5 -277303 cd15764 FYVE_Slp4 2 Zn binding site CCCCC[HC]CC 1 1 0 5,8,22,25,30,33,44,47 4 -277304 cd15765 FYVE_Slp3 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 16,17,18,19,20,21,26,40 5 -277304 cd15765 FYVE_Slp3 2 Zn binding site CCCCC[HC]CC 1 1 0 3,6,20,23,28,31,42,45 4 -277305 cd15766 FYVE_Slp5 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 15,16,17,18,19,20,25,39 5 -277305 cd15766 FYVE_Slp5 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,19,22,27,30,41,44 4 -277287 cd15748 FYVE_SPIR 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 17,18,19,20,21,22,27,35 5 -277287 cd15748 FYVE_SPIR 2 Zn binding site CCCCC[HC]CC 1 1 0 4,7,21,24,29,32,37,40 4 -277306 cd15767 FYVE_SPIR1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,61 5 -277306 cd15767 FYVE_SPIR1 2 Zn binding site CCCCC[HC]CC 1 1 0 6,9,23,26,31,34,63,66 4 -277307 cd15768 FYVE_SPIR2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 18,19,20,21,22,23,28,98 5 -277307 cd15768 FYVE_SPIR2 2 Zn binding site CCCCC[HC]CC 1 1 0 6,9,22,25,30,33,100,103 4 -277288 cd15749 FYVE_ZFY19 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 13,14,15,16,17,18,23,44 5 -277288 cd15749 FYVE_ZFY19 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,17,20,25,28,46,49 4 -277289 cd15750 FYVE_CARP 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 14,15,16,17,18,19,24,38 5 -277289 cd15750 FYVE_CARP 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,18,21,26,29,40,43 4 -277308 cd15769 FYVE_CARP1 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 15,16,17,18,19,20,25,38 5 -277308 cd15769 FYVE_CARP1 2 Zn binding site CCCCC[HC]CC 1 1 0 3,6,19,22,27,30,40,43 4 -277309 cd15770 FYVE_CARP2 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 15,16,17,18,19,20,25,39 5 -277309 cd15770 FYVE_CARP2 2 Zn binding site CCCCC[HC]CC 1 1 0 3,6,19,22,27,30,41,44 4 -277290 cd15751 FYVE_BSN_PCLO 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,48 5 -277290 cd15751 FYVE_BSN_PCLO 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,23,26,31,34,50,53 4 -277310 cd15771 FYVE1_BSN_PCLO 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 18,19,20,21,22,23,28,47 5 -277310 cd15771 FYVE1_BSN_PCLO 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,22,25,30,33,49,52 4 -277312 cd15773 FYVE1_BSN 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 21,22,23,24,25,26,31,50 5 -277312 cd15773 FYVE1_BSN 2 Zn binding site CCCCC[HC]CC 1 1 0 5,8,25,28,33,36,52,55 4 -277313 cd15774 FYVE1_PCLO 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,48 5 -277313 cd15774 FYVE1_PCLO 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,23,26,31,34,50,53 4 -277311 cd15772 FYVE2_BSN_PCLO 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 18,19,20,21,22,23,28,47 5 -277311 cd15772 FYVE2_BSN_PCLO 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,22,25,30,33,49,52 4 -277314 cd15775 FYVE2_BSN 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 19,20,21,22,23,24,29,48 5 -277314 cd15775 FYVE2_BSN 2 Zn binding site CCCCC[HC]CC 1 1 0 3,6,23,26,31,34,50,53 4 -277315 cd15776 FYVE2_PCLO 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 18,19,20,21,22,23,28,47 5 -277315 cd15776 FYVE2_PCLO 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,22,25,30,33,49,52 4 -277291 cd15752 FYVE_SlaC2-a 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 15,16,17,18,19,20,25,40 5 -277291 cd15752 FYVE_SlaC2-a 2 Zn binding site CCCCC[HC]CC 1 1 0 2,5,19,22,27,30,42,45 4 -277292 cd15753 FYVE_SlaC2-c 1 phosphatidylinositol 3-phosphate binding site 0 0 1 1 14,15,16,17,18,19,24,39 5 -277292 cd15753 FYVE_SlaC2-c 2 Zn binding site CCCCC[HC]CC 1 1 0 1,4,18,21,26,29,41,44 4 -238023 cd00067 GAL4 1 Zn2+ binding site 0 1 1 1 5,8,15,22,25,32 4 -238023 cd00067 GAL4 2 DNA binding site 0 1 1 1 0,4,9,10,11,12,14,17,27 3 -238024 cd00068 GGL 1 beta subunit binding site 0 1 1 0 0,3,7,10,14,19,21,24,25,28,29,32,41,42,52 2 -200450 cd00069 GHB_like 1 receptor binding site 0 1 1 0 37,87,88,91,93,94,95 2 -200450 cd00069 GHB_like 2 dimer interface 0 1 1 0 7,10,24,25,26,27,28,29,30,31,32,33,34,35,36,37,48,49,85,87,90,91,92,93,94,95 2 -200450 cd00069 GHB_like 3 cysteine knot motif 0 0 0 1 0,25,29,49,80,82 0 -238025 cd00070 GLECT 1 sugar binding pocket 0 1 1 0 42,44,46,53,55,62,65,67 5 -238025 cd00070 GLECT 2 dimerization interface 0 1 1 1 1,2,3,4,5,121,122,123,124,125,126 2 -238025 cd00070 GLECT 3 dimerization swap strand 0 1 1 1 1,2,3,4,5 0 -238025 cd00070 GLECT 4 putative alternate dimerization interface 0 1 1 1 10,11,12,15,18,84,85,86,91,93,96 2 -238027 cd00072 GYF 1 proline binding motif 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 0 -238027 cd00072 GYF 2 proline interaction residues 0 0 1 1 24,29,30 0 -238028 cd00073 H15 1 DNA-binding site 0 0 1 1 7,19,50,64 3 -238028 cd00073 H15 2 DNA-binding site 0 0 1 1 45,46,47,48,49,50,51,52,53,54,55,56 3 -238028 cd00073 H15 3 AKP helix motif (fragment) 0 0 1 1 76,77,78,79,80,81,82,83,84,85,86,87 0 -238029 cd00074 H2A 1 DNA binding site 0 1 1 1 24,27,30,31,37,69,72 3 -238029 cd00074 H2A 2 homodimerization interface 0 1 1 1 33,34,35,36 2 -238029 cd00074 H2A 3 acetylation sites 0 0 1 1 0,4 6 -238029 cd00074 H2A 4 ubiquitination site 0 0 1 1 114 0 -238029 cd00074 H2A 5 H2A-H2B dimerization interface 0 1 1 1 46,49,50,53,54,57,58 2 -340391 cd00075 HATPase 1 ATP binding site 0 1 1 1 6,10,13,36,38,40,42,68,69,70,71,87,89,94,95,97 5 -340391 cd00075 HATPase 2 Mg binding site N 1 1 1 10 4 -340391 cd00075 HATPase 3 ATP-lid 0 0 1 1 52,71 0 -340391 cd00075 HATPase 4 G-X-G motif GGGG 0 1 1 40,42,68,70 0 -340392 cd16915 HATPase_DpiB-CitA-like 1 ATP binding site 0 1 1 1 6,10,13,40,42,44,46,69,70,71,72,88,90,95,96,98 5 -340392 cd16915 HATPase_DpiB-CitA-like 2 Mg binding site N 1 1 1 10 4 -340392 cd16915 HATPase_DpiB-CitA-like 3 ATP-lid 0 0 1 1 56,72 0 -340392 cd16915 HATPase_DpiB-CitA-like 4 G-X-G motif GGGG 0 1 1 44,46,69,71 0 -340393 cd16916 HATPase_CheA-like 1 ATP binding site 0 1 1 1 44,48,51,86,88,90,92,143,144,145,146,162,164,169,170,172 5 -340393 cd16916 HATPase_CheA-like 2 Mg binding site N 1 1 1 48 4 -340393 cd16916 HATPase_CheA-like 3 ATP-lid 0 0 1 1 126,146 0 -340393 cd16916 HATPase_CheA-like 4 G-X-G motif GGGG 0 1 1 90,92,143,145 0 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 1 ATP binding site 0 1 1 1 6,10,13,35,37,39,41,52,53,54,55,71,73,78,79,81 5 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 2 Mg binding site N 1 1 1 10 4 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 3 ATP-lid 0 0 1 1 46,55 0 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like 4 G-X-G motif GGGG 0 1 1 39,41,52,54 0 -340395 cd16918 HATPase_Glnl-NtrB-like 1 ATP binding site 0 1 1 1 6,10,13,47,49,51,53,75,76,77,78,94,96,100,101,103 5 -340395 cd16918 HATPase_Glnl-NtrB-like 2 Mg binding site N 1 1 1 10 4 -340395 cd16918 HATPase_Glnl-NtrB-like 3 ATP-lid 0 0 1 1 63,78 0 -340395 cd16918 HATPase_Glnl-NtrB-like 4 G-X-G motif GGGG 0 1 1 51,53,75,77 0 -340396 cd16919 HATPase_CckA-like 1 ATP binding site 0 1 1 1 6,10,13,51,53,55,57,81,82,83,84,100,102,107,108,110 5 -340396 cd16919 HATPase_CckA-like 2 Mg binding site N 1 1 1 10 4 -340396 cd16919 HATPase_CckA-like 3 ATP-lid 0 0 1 1 67,84 0 -340396 cd16919 HATPase_CckA-like 4 G-X-G motif GGGG 0 1 1 55,57,81,83 0 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 1 ATP binding site 0 1 1 1 6,10,13,41,43,45,47,69,70,71,72,88,90,95,96,98 5 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 2 Mg binding site N 1 1 1 10 4 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 3 ATP-lid 0 0 1 1 57,72 0 -340397 cd16920 HATPase_TmoS-FixL-DctS-like 4 G-X-G motif GGGG 0 1 1 45,47,69,71 0 -340398 cd16921 HATPase_FilI-like 1 ATP binding site 0 1 1 1 6,10,13,38,40,42,44,70,71,72,73,89,91,96,97,99 5 -340398 cd16921 HATPase_FilI-like 2 Mg binding site N 1 1 1 10 4 -340398 cd16921 HATPase_FilI-like 3 ATP-lid 0 0 1 1 54,73 0 -340398 cd16921 HATPase_FilI-like 4 G-X-G motif GGGG 0 1 1 42,44,70,72 0 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 1 ATP binding site 0 1 1 1 6,10,13,40,42,44,46,74,75,76,77,93,95,100,101,103 5 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 2 Mg binding site N 1 1 1 10 4 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 3 ATP-lid 0 0 1 1 56,77 0 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like 4 G-X-G motif GGGG 0 1 1 44,46,74,76 0 -340400 cd16923 HATPase_VanS-like 1 ATP binding site 0 1 1 1 6,10,13,36,38,40,42,68,69,70,71,87,89,93,94,96 5 -340400 cd16923 HATPase_VanS-like 2 Mg binding site N 1 1 1 10 4 -340400 cd16923 HATPase_VanS-like 3 ATP-lid 0 0 1 1 52,71 0 -340400 cd16923 HATPase_VanS-like 4 G-X-G motif GGGG 0 1 1 40,42,68,70 0 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 1 ATP binding site 0 1 1 1 7,11,14,41,43,45,47,65,66,67,68,85,87,94,95,97 5 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 2 Mg binding site N 1 1 1 11 4 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 3 ATP-lid 0 0 1 1 53,68 0 -340401 cd16924 HATPase_YpdA-YehU-LytS-like 4 G-X-G motif GGGG 0 1 1 45,47,65,67 0 -340431 cd16955 HATPase_YpdA-like 1 ATP binding site 0 1 1 1 7,11,14,42,44,46,48,66,67,68,69,86,88,93,94,96 5 -340431 cd16955 HATPase_YpdA-like 2 Mg binding site N 1 1 1 11 4 -340431 cd16955 HATPase_YpdA-like 3 ATP-lid 0 0 1 1 54,69 0 -340431 cd16955 HATPase_YpdA-like 4 G-X-G motif GGGG 0 1 1 46,48,66,68 0 -340432 cd16956 HATPase_YehU-like 1 ATP binding site 0 1 1 1 7,11,14,41,43,45,47,63,64,65,66,83,85,92,93,95 5 -340432 cd16956 HATPase_YehU-like 2 Mg binding site N 1 1 1 11 4 -340432 cd16956 HATPase_YehU-like 3 ATP-lid 0 0 1 1 52,66 0 -340432 cd16956 HATPase_YehU-like 4 G-X-G motif GGGG 0 1 1 45,47,63,65 0 -340433 cd16957 HATPase_LytS-like 1 ATP binding site 0 1 1 1 7,11,14,41,43,45,47,68,69,70,71,88,90,97,98,100 5 -340433 cd16957 HATPase_LytS-like 2 Mg binding site N 1 1 1 11 4 -340433 cd16957 HATPase_LytS-like 3 ATP-lid 0 0 1 1 53,71 0 -340433 cd16957 HATPase_LytS-like 4 G-X-G motif GGGG 0 1 1 45,47,68,70 0 -340402 cd16925 HATPase_TutC-TodS-like 1 ATP binding site 0 1 1 1 10,14,17,41,43,45,47,75,76,77,78,94,96,101,102,104 5 -340402 cd16925 HATPase_TutC-TodS-like 2 Mg binding site N 1 1 1 14 4 -340402 cd16925 HATPase_TutC-TodS-like 3 ATP-lid 0 0 1 1 57,78 0 -340402 cd16925 HATPase_TutC-TodS-like 4 G-X-G motif GGGG 0 1 1 45,47,75,77 0 -340403 cd16926 HATPase_MutL-MLH-PMS-like 1 ATP binding site 0 1 1 1 19,23,26,46,48,50,52,86,87,88,89,100,102,132,133,135 5 -340403 cd16926 HATPase_MutL-MLH-PMS-like 2 Mg binding site N 1 1 1 23 4 -340403 cd16926 HATPase_MutL-MLH-PMS-like 3 ATP-lid 0 0 1 1 62,89 0 -340403 cd16926 HATPase_MutL-MLH-PMS-like 4 G-X-G motif GGGG 0 1 1 50,52,86,88 0 -340404 cd16927 HATPase_Hsp90-like 1 ATP binding site 0 1 1 1 20,24,27,64,66,68,70,109,110,111,112,124,126,157,158,160 5 -340404 cd16927 HATPase_Hsp90-like 2 Mg binding site N 1 1 1 24 4 -340404 cd16927 HATPase_Hsp90-like 3 ATP-lid 0 0 1 1 80,112 0 -340404 cd16927 HATPase_Hsp90-like 4 G-X-G motif GGGG 0 1 1 68,70,109,111 0 -340405 cd16928 HATPase_GyrB-like 1 ATP binding site 0 1 1 1 6,10,13,35,37,39,41,81,82,83,84,96,98,128,129,131 5 -340405 cd16928 HATPase_GyrB-like 2 Mg binding site N 1 1 1 10 4 -340405 cd16928 HATPase_GyrB-like 3 ATP-lid 0 0 1 1 59,84 0 -340405 cd16928 HATPase_GyrB-like 4 G-X-G motif GGGG 0 1 1 39,41,81,83 0 -340406 cd16929 HATPase_PDK-like 1 ATP binding site 0 1 1 1 49,53,56,87,89,91,93,134,135,136,137,154,156,160,161,163 5 -340406 cd16929 HATPase_PDK-like 2 Mg binding site N 1 1 1 53 4 -340406 cd16929 HATPase_PDK-like 3 ATP-lid 0 0 1 1 103,137 0 -340406 cd16929 HATPase_PDK-like 4 G-X-G motif GGGG 0 1 1 91,93,134,136 0 -340407 cd16930 HATPase_TopII-like 1 ATP binding site 0 1 1 1 10,14,17,41,43,45,47,87,88,89,90,102,104,138,139,141 5 -340407 cd16930 HATPase_TopII-like 2 Mg binding site N 1 1 1 14 4 -340407 cd16930 HATPase_TopII-like 3 ATP-lid 0 0 1 1 65,90 0 -340407 cd16930 HATPase_TopII-like 4 G-X-G motif GGGG 0 1 1 45,47,87,89 0 -340408 cd16931 HATPase_MORC-like 1 ATP binding site 0 1 1 1 17,21,24,48,50,52,54,83,84,85,86,99,101,110,111,113 5 -340408 cd16931 HATPase_MORC-like 2 Mg binding site N 1 1 1 21 4 -340408 cd16931 HATPase_MORC-like 3 ATP-lid 0 0 1 1 61,86 0 -340408 cd16931 HATPase_MORC-like 4 G-X-G motif GGGG 0 1 1 52,54,83,85 0 -340409 cd16932 HATPase_Phy-like 1 ATP binding site 0 1 1 1 12,16,19,52,54,56,58,78,79,80,81,97,99,103,104,106 5 -340409 cd16932 HATPase_Phy-like 2 Mg binding site N 1 1 1 16 4 -340409 cd16932 HATPase_Phy-like 3 ATP-lid 0 0 1 1 65,81 0 -340409 cd16932 HATPase_Phy-like 4 G-X-G motif GGGG 0 1 1 56,58,78,80 0 -340410 cd16933 HATPase_TopVIB-like 1 ATP binding site 0 1 1 1 25,29,32,59,61,63,65,94,95,96,97,114,116,154,155,157 5 -340410 cd16933 HATPase_TopVIB-like 2 Mg binding site N 1 1 1 29 4 -340410 cd16933 HATPase_TopVIB-like 3 ATP-lid 0 0 1 1 75,97 0 -340410 cd16933 HATPase_TopVIB-like 4 G-X-G motif GGGG 0 1 1 63,65,94,96 0 -340411 cd16934 HATPase_RsbT-like 1 ATP binding site 0 1 1 1 31,35,38,62,64,66,68,87,88,89,90,102,104,109,110,112 5 -340411 cd16934 HATPase_RsbT-like 2 Mg binding site N 1 1 1 35 4 -340411 cd16934 HATPase_RsbT-like 3 ATP-lid 0 0 1 1 76,90 0 -340411 cd16934 HATPase_RsbT-like 4 G-X-G motif GGGG 0 1 1 66,68,87,89 0 -340412 cd16935 HATPase_AgrC-ComD-like 1 ATP binding site 0 1 1 1 42,46,49,76,78,80,82,101,102,103,104,120,122,126,127,129 5 -340412 cd16935 HATPase_AgrC-ComD-like 2 Mg binding site N 1 1 1 46 4 -340412 cd16935 HATPase_AgrC-ComD-like 3 ATP-lid 0 0 1 1 91,104 0 -340412 cd16935 HATPase_AgrC-ComD-like 4 G-X-G motif GGGG 0 1 1 80,82,101,103 0 -340413 cd16936 HATPase_RsbW-like 1 ATP binding site 0 1 1 1 6,10,13,39,41,43,45,62,63,64,65,77,79,83,84,86 5 -340413 cd16936 HATPase_RsbW-like 2 Mg binding site N 1 1 1 10 4 -340413 cd16936 HATPase_RsbW-like 3 ATP-lid 0 0 1 1 52,65 0 -340413 cd16936 HATPase_RsbW-like 4 G-X-G motif GGGG 0 1 1 43,45,62,64 0 -340414 cd16937 HATPase_SMCHD1-like 1 ATP binding site 0 1 1 1 19,23,26,54,56,58,60,91,92,93,94,106,108,111,112,114 5 -340414 cd16937 HATPase_SMCHD1-like 2 Mg binding site N 1 1 1 23 4 -340414 cd16937 HATPase_SMCHD1-like 3 ATP-lid 0 0 1 1 77,94 0 -340414 cd16937 HATPase_SMCHD1-like 4 G-X-G motif GGGG 0 1 1 58,60,91,93 0 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 1 ATP binding site 0 1 1 1 17,21,24,68,70,72,74,99,100,101,102,118,120,123,124,126 5 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 2 Mg binding site N 1 1 1 21 4 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 3 ATP-lid 0 0 1 1 87,102 0 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like 4 G-X-G motif GGGG 0 1 1 72,74,99,101 0 -340416 cd16939 HATPase_RstB-like 1 ATP binding site 0 1 1 1 6,10,13,34,36,38,40,68,69,70,71,87,89,94,95,97 5 -340416 cd16939 HATPase_RstB-like 2 Mg binding site N 1 1 1 10 4 -340416 cd16939 HATPase_RstB-like 3 ATP-lid 0 0 1 1 50,71 0 -340416 cd16939 HATPase_RstB-like 4 G-X-G motif GGGG 0 1 1 38,40,68,70 0 -340417 cd16940 HATPase_BasS-like 1 ATP binding site 0 1 1 1 19,23,26,48,50,52,54,79,80,81,82,98,100,105,106,108 5 -340417 cd16940 HATPase_BasS-like 2 Mg binding site N 1 1 1 23 4 -340417 cd16940 HATPase_BasS-like 3 ATP-lid 0 0 1 1 67,82 0 -340417 cd16940 HATPase_BasS-like 4 G-X-G motif GGGG 0 1 1 52,54,79,81 0 -340418 cd16942 HATPase_SpoIIAB-like 1 ATP binding site 0 1 1 1 44,48,51,77,79,81,83,105,106,107,108,120,122,127,128,130 5 -340418 cd16942 HATPase_SpoIIAB-like 2 Mg binding site N 1 1 1 48 4 -340418 cd16942 HATPase_SpoIIAB-like 3 ATP-lid 0 0 1 1 91,108 0 -340418 cd16942 HATPase_SpoIIAB-like 4 G-X-G motif GGGG 0 1 1 81,83,105,107 0 -340419 cd16943 HATPase_AtoS-like 1 ATP binding site 0 1 1 1 9,13,16,39,41,43,45,69,70,71,72,88,90,95,96,98 5 -340419 cd16943 HATPase_AtoS-like 2 Mg binding site N 1 1 1 13 4 -340419 cd16943 HATPase_AtoS-like 3 ATP-lid 0 0 1 1 55,72 0 -340419 cd16943 HATPase_AtoS-like 4 G-X-G motif GGGG 0 1 1 43,45,69,71 0 -340420 cd16944 HATPase_NtrY-like 1 ATP binding site 0 1 1 1 10,14,17,45,47,49,51,73,74,75,76,92,94,99,100,102 5 -340420 cd16944 HATPase_NtrY-like 2 Mg binding site N 1 1 1 14 4 -340420 cd16944 HATPase_NtrY-like 3 ATP-lid 0 0 1 1 61,76 0 -340420 cd16944 HATPase_NtrY-like 4 G-X-G motif GGGG 0 1 1 49,51,73,75 0 -340421 cd16945 HATPase_CreC-like 1 ATP binding site 0 1 1 1 10,14,17,40,42,44,46,73,74,75,76,92,94,98,99,101 5 -340421 cd16945 HATPase_CreC-like 2 Mg binding site N 1 1 1 14 4 -340421 cd16945 HATPase_CreC-like 3 ATP-lid 0 0 1 1 56,76 0 -340421 cd16945 HATPase_CreC-like 4 G-X-G motif GGGG 0 1 1 44,46,73,75 0 -340422 cd16946 HATPase_BaeS-like 1 ATP binding site 0 1 1 1 10,14,17,40,42,44,46,74,75,76,77,93,95,100,101,103 5 -340422 cd16946 HATPase_BaeS-like 2 Mg binding site N 1 1 1 14 4 -340422 cd16946 HATPase_BaeS-like 3 ATP-lid 0 0 1 1 56,77 0 -340422 cd16946 HATPase_BaeS-like 4 G-X-G motif GGGG 0 1 1 44,46,74,76 0 -340423 cd16947 HATPase_YcbM-like 1 ATP binding site 0 1 1 1 26,30,33,56,58,60,62,90,91,92,93,109,111,116,117,119 5 -340423 cd16947 HATPase_YcbM-like 2 Mg binding site N 1 1 1 30 4 -340423 cd16947 HATPase_YcbM-like 3 ATP-lid 0 0 1 1 72,93 0 -340423 cd16947 HATPase_YcbM-like 4 G-X-G motif GGGG 0 1 1 60,62,90,92 0 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 1 ATP binding site 0 1 1 1 11,15,18,41,43,45,47,74,75,76,77,93,95,100,101,103 5 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 2 Mg binding site N 1 1 1 15 4 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 3 ATP-lid 0 0 1 1 57,77 0 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like 4 G-X-G motif GGGG 0 1 1 45,47,74,76 0 -340425 cd16949 HATPase_CpxA-like 1 ATP binding site 0 1 1 1 6,10,13,34,36,38,40,68,69,70,71,87,89,94,95,97 5 -340425 cd16949 HATPase_CpxA-like 2 Mg binding site N 1 1 1 10 4 -340425 cd16949 HATPase_CpxA-like 3 ATP-lid 0 0 1 1 50,71 0 -340425 cd16949 HATPase_CpxA-like 4 G-X-G motif GGGG 0 1 1 38,40,68,70 0 -340426 cd16950 HATPase_EnvZ-like 1 ATP binding site 0 1 1 1 6,10,13,34,36,38,40,66,67,68,69,85,87,92,93,95 5 -340426 cd16950 HATPase_EnvZ-like 2 Mg binding site N 1 1 1 10 4 -340426 cd16950 HATPase_EnvZ-like 3 ATP-lid 0 0 1 1 50,69 0 -340426 cd16950 HATPase_EnvZ-like 4 G-X-G motif GGGG 0 1 1 38,40,66,68 0 -340427 cd16951 HATPase_EL346-LOV-HK-like 1 ATP binding site 0 1 1 1 45,49,52,78,80,82,84,96,97,98,99,116,118,122,123,125 5 -340427 cd16951 HATPase_EL346-LOV-HK-like 2 Mg binding site N 1 1 1 49 4 -340427 cd16951 HATPase_EL346-LOV-HK-like 3 ATP-lid 0 0 1 1 92,99 0 -340427 cd16951 HATPase_EL346-LOV-HK-like 4 G-X-G motif GGGG 0 1 1 82,84,96,98 0 -340428 cd16952 HATPase_EcPhoR-like 1 ATP binding site 0 1 1 1 6,10,13,36,38,40,42,70,71,72,73,89,91,96,97,99 5 -340428 cd16952 HATPase_EcPhoR-like 2 Mg binding site N 1 1 1 10 4 -340428 cd16952 HATPase_EcPhoR-like 3 ATP-lid 0 0 1 1 52,73 0 -340428 cd16952 HATPase_EcPhoR-like 4 G-X-G motif GGGG 0 1 1 40,42,70,72 0 -340429 cd16953 HATPase_BvrS-ChvG-like 1 ATP binding site 0 1 1 1 6,10,13,37,39,41,43,71,72,73,74,90,92,101,102,104 5 -340429 cd16953 HATPase_BvrS-ChvG-like 2 Mg binding site N 1 1 1 10 4 -340429 cd16953 HATPase_BvrS-ChvG-like 3 ATP-lid 0 0 1 1 53,74 0 -340429 cd16953 HATPase_BvrS-ChvG-like 4 G-X-G motif GGGG 0 1 1 41,43,71,73 0 -340430 cd16954 HATPase_PhoQ-like 1 ATP binding site 0 1 1 1 43,47,50,71,73,75,77,101,102,103,104,120,122,127,128,130 5 -340430 cd16954 HATPase_PhoQ-like 2 Mg binding site N 1 1 1 47 4 -340430 cd16954 HATPase_PhoQ-like 3 ATP-lid 0 0 1 1 87,104 0 -340430 cd16954 HATPase_PhoQ-like 4 G-X-G motif GGGG 0 1 1 75,77,101,103 0 -340434 cd16975 HATPase_SpaK_NisK-like 1 ATP binding site 0 1 1 1 10,14,17,40,42,44,46,73,74,75,76,92,94,99,100,102 5 -340434 cd16975 HATPase_SpaK_NisK-like 2 Mg binding site N 1 1 1 14 4 -340434 cd16975 HATPase_SpaK_NisK-like 3 ATP-lid 0 0 1 1 56,76 0 -340434 cd16975 HATPase_SpaK_NisK-like 4 G-X-G motif GGGG 0 1 1 44,46,73,75 0 -340435 cd16976 HATPase_HupT_MifS-like 1 ATP binding site 0 1 1 1 6,10,13,38,40,42,44,68,69,70,71,87,89,94,95,97 5 -340435 cd16976 HATPase_HupT_MifS-like 2 Mg binding site N 1 1 1 10 4 -340435 cd16976 HATPase_HupT_MifS-like 3 ATP-lid 0 0 1 1 54,71 0 -340435 cd16976 HATPase_HupT_MifS-like 4 G-X-G motif GGGG 0 1 1 42,44,68,70 0 -238031 cd00076 H4 1 H2A-H2B docking site 0 1 1 1 80,81,82,83,84 2 -238031 cd00076 H4 2 H2A interaction site 0 1 1 1 24,26,28 0 -238031 cd00076 H4 3 H2B interaction site 0 1 1 1 52,55,56,59,60,61,62,68,69,72,75,76 2 -238031 cd00076 H4 4 H4 interaction site 0 1 1 0 17,21,25,27,31,34,37,38,41,42,45,46,49,50,70,74 0 -238031 cd00076 H4 5 DNA-binding site 0 1 1 1 28,29,31,57,61,62,64,66,80 3 -238031 cd00076 H4 6 acetylation site 0 0 1 1 0 6 -238032 cd00077 HDc 1 Zn2+ binding site 0 1 1 0 5,37,38,119 4 -238032 cd00077 HDc 2 Mg2+ binding site 0 1 1 0 38 4 -238033 cd00078 HECTc 1 E2 interaction site 0 1 1 1 136,139,140,142,143,146,153,155,159,160,162,168,173,190,194 0 -238033 cd00078 HECTc 2 catalytic cleft 0 0 1 1 6,36,47,108,284,315,316,319,320,321,322,323,343,350 1 -188616 cd00080 H3TH_StructSpec-5'-nucleases 1 DNA binding site 0 1 1 1 9,10,12,21,22,23,32 3 -188616 cd00080 H3TH_StructSpec-5'-nucleases 2 metal binding site 0 1 1 1 12 4 -188617 cd09897 H3TH_FEN1-XPG-like 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188617 cd09897 H3TH_FEN1-XPG-like 2 metal binding site 0 1 1 1 12 4 -188620 cd09900 H3TH_XPG-like 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188620 cd09900 H3TH_XPG-like 2 metal binding site 0 1 1 1 12 4 -188623 cd09903 H3TH_FEN1-Arc 1 DNA binding site 0 1 1 1 9,10,12,20,21,22,27 3 -188623 cd09903 H3TH_FEN1-Arc 2 metal binding site 0 1 1 1 12 4 -188624 cd09904 H3TH_XPG 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188624 cd09904 H3TH_XPG 2 metal binding site 0 1 1 1 12 4 -188625 cd09905 H3TH_GEN1 1 DNA binding site 0 1 1 1 10,11,13,21,22,23,28 3 -188625 cd09905 H3TH_GEN1 2 metal binding site 0 1 1 1 13 4 -188626 cd09906 H3TH_YEN1 1 DNA binding site 0 1 1 1 10,11,13,21,22,23,28 3 -188626 cd09906 H3TH_YEN1 2 metal binding site 0 1 1 1 13 4 -188621 cd09901 H3TH_FEN1-like 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188621 cd09901 H3TH_FEN1-like 2 metal binding site 0 1 1 1 12 4 -188627 cd09907 H3TH_FEN1-Euk 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188627 cd09907 H3TH_FEN1-Euk 2 metal binding site 0 1 1 1 12 4 -188628 cd09908 H3TH_EXO1 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,26 3 -188628 cd09908 H3TH_EXO1 2 metal binding site 0 1 1 1 12 4 -188622 cd09902 H3TH_MKT1 1 DNA binding site 0 1 1 1 9,10,12,19,20,21,35 3 -188622 cd09902 H3TH_MKT1 2 metal binding site 0 1 1 1 12 4 -188618 cd09898 H3TH_53EXO 1 DNA binding site 0 1 1 1 10,11,12,22,23,24,33 3 -188618 cd09898 H3TH_53EXO 2 metal binding site 0 1 1 1 12 4 -188619 cd09899 H3TH_T4-like 1 DNA binding site 0 1 1 1 11,12,13,23,24,25,30 3 -188619 cd09899 H3TH_T4-like 2 metal binding site 0 1 1 1 13 4 -238035 cd00081 Hint 1 protein-splicing catalytic site 0 0 1 1 0,71,134,135 0 -238035 cd00081 Hint 2 thioester formation/cholesterol transfer 0 0 1 1 0,68,71 0 -119399 cd00082 HisKA 1 phosphorylation site 0 0 1 1 12 6 -119399 cd00082 HisKA 2 dimer interface 0 1 1 0 6,10,14,17,21,24,41,45,48,52,55,59 2 -238036 cd00083 HLH 1 DNA binding region 0 1 1 1 3,4,10,11,12,14,37,40 3 -238036 cd00083 HLH 2 E-box/N-box specificity site 0 1 1 1 11 0 -238036 cd00083 HLH 3 dimerization interface 0 1 1 0 17,18,21,22,24,25,41,44,48,50,51,55,57,58 2 -238037 cd00084 HMG-box 1 DNA binding site 0 1 1 1 2,4,5,7,8,11,12,15,19,32,35,38,57 3 -238684 cd01388 SOX-TCF_HMG-box 1 DNA binding site 0 1 1 1 3,5,6,8,9,12,13,16,20,33,36,39,58 3 -238685 cd01389 MATA_HMG-box 1 DNA binding site 0 1 1 1 3,5,6,8,9,12,13,16,20,33,36,39,58 3 -238686 cd01390 HMGB-UBF_HMG-box 1 DNA binding site 0 1 1 1 2,4,5,7,8,11,12,15,19,32,35,38,57 3 -238038 cd00085 HNHc 1 active site 0 1 1 1 26,28,29,30,32,43,44,48,49,52,56 1 -238039 cd00086 homeodomain 1 specific DNA base contacts 0 1 1 1 2,5,45,48,49,52 3 -238039 cd00086 homeodomain 2 DNA binding site 0 1 1 0 0,1,2,3,4,6,23,29,42,44,45,48,49,51,52,53,55,56 3 -238040 cd00087 FReD 1 Ca2+ binding site 0 1 1 0 149,151,153 4 -238040 cd00087 FReD 2 polymerization pocket 0 1 1 0 157,160,161,170,171 0 -238040 cd00087 FReD 3 gamma-gamma dimer interface 0 1 1 1 121 2 -238041 cd00088 HPT 1 active site 0 0 1 1 39 1 -238041 cd00088 HPT 2 putative binding surface 0 0 1 1 39,42,43,58,61 0 -212008 cd00089 HR1 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,46,47,50,53,54,57 2 -212008 cd00089 HR1 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,41,42,44 2 -212009 cd11619 HR1_CIP4-like 1 Rho binding site 1 0 1 1 0 12,15,18,19,22,23,25,26,29,30,32,33,51,52,55,58,59,62 2 -212009 cd11619 HR1_CIP4-like 2 putative Rho binding site 2 0 0 1 1 20,21,23,24,27,28,30,31,34,35,46,47,49 2 -212018 cd11628 HR1_CIP4_FNBP1L 1 Rho binding site 1 0 1 1 0 13,16,19,20,23,24,26,27,30,31,33,34,52,53,56,59,60,63 2 -212018 cd11628 HR1_CIP4_FNBP1L 2 putative Rho binding site 2 0 0 1 1 21,22,24,25,28,29,31,32,35,36,47,48,50 2 -212019 cd11629 HR1_FBP17 1 Rho binding site 1 0 1 1 0 12,15,18,19,22,23,25,26,29,30,32,33,51,52,55,58,59,62 2 -212019 cd11629 HR1_FBP17 2 putative Rho binding site 2 0 0 1 1 20,21,23,24,27,28,30,31,34,35,46,47,49 2 -212010 cd11620 HR1_PKC-like_2_fungi 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,50,51,54,57,58,61 2 -212010 cd11620 HR1_PKC-like_2_fungi 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,45,46,48 2 -212011 cd11621 HR1_PKC-like_1_fungi 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,50,51,54,57,58,61 2 -212011 cd11621 HR1_PKC-like_1_fungi 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,45,46,48 2 -212012 cd11622 HR1_PKN_1 1 Rho binding site 1 0 1 1 0 8,11,14,15,18,19,21,22,25,26,28,29,44,45,48,51,52,55 2 -212012 cd11622 HR1_PKN_1 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,39,40,42 2 -212013 cd11623 HR1_PKN_2 1 Rho binding site 1 0 1 1 0 8,11,14,15,18,19,21,22,25,26,28,29,49,50,53,56,57,60 2 -212013 cd11623 HR1_PKN_2 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,44,45,47 2 -212020 cd11630 HR1_PKN1_2 1 Rho binding site 1 0 1 1 0 10,13,16,17,20,21,23,24,27,28,30,31,51,52,55,58,59,62 2 -212020 cd11630 HR1_PKN1_2 2 putative Rho binding site 2 0 0 1 1 18,19,21,22,25,26,28,29,32,33,46,47,49 2 -212021 cd11631 HR1_PKN2_2 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212021 cd11631 HR1_PKN2_2 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212022 cd11632 HR1_PKN3_2 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212022 cd11632 HR1_PKN3_2 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212014 cd11624 HR1_Rhophilin 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,47,48,51,54,55,58 2 -212014 cd11624 HR1_Rhophilin 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,42,43,45 2 -212023 cd11633 HR1_Rhophilin-1 1 Rho binding site 1 0 1 1 0 17,20,23,24,27,28,30,31,34,35,37,38,53,54,57,60,61,64 2 -212023 cd11633 HR1_Rhophilin-1 2 putative Rho binding site 2 0 0 1 1 25,26,28,29,32,33,35,36,39,40,48,49,51 2 -212024 cd11634 HR1_Rhophilin-2 1 Rho binding site 1 0 1 1 0 14,17,20,21,24,25,27,28,31,32,34,35,50,51,54,57,58,61 2 -212024 cd11634 HR1_Rhophilin-2 2 putative Rho binding site 2 0 0 1 1 22,23,25,26,29,30,32,33,36,37,45,46,48 2 -212015 cd11625 HR1_PKN_3 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212015 cd11625 HR1_PKN_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212025 cd11635 HR1_PKN2_3 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212025 cd11635 HR1_PKN2_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212026 cd11636 HR1_PKN1_3 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212026 cd11636 HR1_PKN1_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212027 cd11637 HR1_PKN3_3 1 Rho binding site 1 0 1 1 0 11,14,17,18,21,22,24,25,28,29,31,32,52,53,56,59,60,63 2 -212027 cd11637 HR1_PKN3_3 2 putative Rho binding site 2 0 0 1 1 19,20,22,23,26,27,29,30,33,34,47,48,50 2 -212016 cd11626 HR1_ROCK 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,44,45,48,51,52,55 2 -212016 cd11626 HR1_ROCK 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,39,40,42 2 -212028 cd11638 HR1_ROCK2 1 Rho binding site 1 0 1 1 0 8,11,14,15,18,19,21,22,25,26,28,29,45,46,49,52,53,56 2 -212028 cd11638 HR1_ROCK2 2 putative Rho binding site 2 0 0 1 1 16,17,19,20,23,24,26,27,30,31,40,41,43 2 -212029 cd11639 HR1_ROCK1 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,44,45,48,51,52,55 2 -212029 cd11639 HR1_ROCK1 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,39,40,42 2 -212017 cd11627 HR1_Ste20-like 1 Rho binding site 1 0 1 1 0 7,10,13,14,17,18,20,21,24,25,27,28,49,50,53,56,57,60 2 -212017 cd11627 HR1_Ste20-like 2 putative Rho binding site 2 0 0 1 1 15,16,18,19,22,23,25,26,29,30,44,45,47 2 -238042 cd00090 HTH_ARSR 1 dimerization interface 0 1 1 0 0,1,3,6,9,10,13,14,17,47,67,68,70,71,72,74,75,76 2 -238042 cd00090 HTH_ARSR 2 putative DNA binding site 0 0 1 1 1,2,6,7,8,21,22,23,32,33,34,35,37,38,41,42,44,45,51,52,53,58,59,60 3 -238042 cd00090 HTH_ARSR 3 putative Zn2+ binding site 0 0 1 1 21,24,67 4 -238043 cd00091 NUC 1 active site 0 1 1 0 77,78,80,111,119,123 1 -238043 cd00091 NUC 2 Mg2+ binding site 0 1 1 0 111 4 -238043 cd00091 NUC 3 substrate binding site 0 0 1 1 77,78,123 5 -238044 cd00092 HTH_CRP 1 DNA binding site 0 1 1 1 37,38,39,40,41,42,43 3 -238044 cd00092 HTH_CRP 2 sequence specific DNA binding site 0 1 1 0 38,39,43 3 -238044 cd00092 HTH_CRP 3 non-specific DNA interactions 0 1 1 1 24,26,27,28,37 3 -238044 cd00092 HTH_CRP 4 putative cAMP binding site 0 1 1 1 38,39 5 -238044 cd00092 HTH_CRP 5 putative switch regulator 0 0 1 1 3,4 0 -238045 cd00093 HTH_XRE 1 non-specific DNA binding site 0 1 1 1 4,8,33 3 -238045 cd00093 HTH_XRE 2 sequence-specific DNA binding site 0 1 1 0 14,15,26,29,33,34 3 -238045 cd00093 HTH_XRE 3 salt bridge 0 1 1 1 7,32 0 -238046 cd00094 HX 1 Metal binding sites 0 1 1 1 9,11,53,55,101,103,150,152 4 -238047 cd00095 IFab 1 putative IFNAR-1 binding site 0 0 1 1 2,3,6,9,10,13,16,17,74,75,77,78,80,81,84,87,88,91,92,95 0 -238047 cd00095 IFab 2 putative IFNAR-2 binding site 0 0 1 1 27,28,29,30,31,32,33,34,36,37,38,44,45,114,115,117,118,121,122,124,125,128,129,130,131,132,133 0 -238047 cd00095 IFab 3 N-glycosylation site 0 1 1 1 75 6 -238048 cd00100 IL1 1 receptor binding site 0 1 1 0 7,8,18,20,23,25,28,31,39,85,86,87,97,99,101,102,103,124 0 -238048 cd00100 IL1 2 receptor activation site 0 1 1 1 2,4,139 0 -238051 cd00103 IRF 1 DNA sequence recognition sites 0 1 1 0 35,73,75,76,79 3 -238051 cd00103 IRF 2 metal binding site 0 1 1 0 78,79,81,84 0 -238053 cd00105 KH-I 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -238053 cd00105 KH-I 2 nucleic acid binding region 0 1 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,31,32,33,34 3 -239086 cd02393 PNPase_KH 1 G-X-X-G motif 0 0 1 0 17,18,19,20 0 -239086 cd02393 PNPase_KH 2 nucleic acid binding region 0 1 1 1 10,12,13,14,16,17,18,19,20,23,24,27,28,33,34,35,36 3 -239087 cd02394 vigilin_like_KH 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -239087 cd02394 vigilin_like_KH 2 nucleic acid binding region 0 1 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,31,32,33,34 3 -239088 cd02395 SF1_like-KH 1 G-X-X-G motif 0 0 1 0 21,22,23,24 0 -239088 cd02395 SF1_like-KH 2 nucleic acid binding region 0 1 1 1 14,16,17,18,20,21,22,23,24,27,28,31,32,37,38,39,40 3 -239089 cd02396 PCBP_like_KH 1 G-X-X-G motif 0 0 1 0 15,16,17,18 0 -239089 cd02396 PCBP_like_KH 2 nucleic acid binding region 0 1 1 1 8,10,11,12,14,15,16,17,18,21,22,25,26,29,30,31,32 3 -238055 cd00107 Knot1 1 knottin fold 0 0 1 1 2,8,12,22,29,31 0 -238055 cd00107 Knot1 2 putative receptor binding site 0 0 1 1 21,30 0 -238056 cd00108 KR 1 ligand binding site 0 1 1 0 27,37,63,65,73 5 -238056 cd00108 KR 2 putative domain interaction site 0 1 1 0 12 0 -238057 cd00109 KU 1 trypsin interaction site 0 1 1 1 10,11,12,13,14,16 0 -238059 cd00111 Trefoil 1 putative ligand binding site 0 0 1 1 15,37,38 5 -238059 cd00111 Trefoil 2 putative binding specificity loop 0 0 1 1 30,37 0 -238060 cd00112 LDLa 1 calcium-binding site 0 1 1 1 17,20,24,30,31 4 -238060 cd00112 LDLa 2 putative binding surface 0 0 1 0 5,13,24,25 0 -238060 cd00112 LDLa 3 D-X-S-D-E motif 0 0 1 1 27,28,29,30,31 0 -238062 cd00114 LIGANc 1 catalytic site 0 1 1 1 107 1 -238062 cd00114 LIGANc 2 nucleotide binding pocket 0 1 1 1 76,105,107,128,163,215,277,279 5 -238062 cd00114 LIGANc 3 K-X-D-G motif 0 0 1 1 107,109,110 0 -319970 cd00115 LMWP 1 active site 0 1 1 1 5,7,8,9,10,11,12,111,113 1 -319971 cd16343 LMWPTP 1 active site 0 1 1 1 6,8,9,10,11,12,13,121,123 1 -319972 cd16344 LMWPAP 1 active site 0 1 1 1 6,8,9,10,11,12,13,116,118 1 -319973 cd16345 LMWP_ArsC 1 active site 0 1 1 1 5,7,8,9,10,11,12,100,102 1 -238064 cd00116 LRR_RI 1 Substrate binding site 0 1 1 1 30,31,89,145,173,229,255,257,283,312 5 -238064 cd00116 LRR_RI 2 Leucine-rich repeats 0 0 1 1 2,4,7,9,24,27,29,32,34,52,55,57,60,62,82,85,87,90,92,109,112,114,117,119,138,141,143,146,148,166,169,171,174,176,194,197,199,202,204,222,225,227,230,232,251,254,256,259,261,279,282,284,287,289,308,311,313,316,318 0 -238067 cd00120 MADS 1 DNA binding site 0 1 1 1 0,1,2,3,4,6,11,13,17,18,20,21,22,24,25,28,29,31,32,36 3 -238067 cd00120 MADS 2 putative phosphorylation site 0 0 1 1 57 6 -238067 cd00120 MADS 3 dimerization interface 0 1 1 1 19,22,26,27,30,31,33,34,35,36,37,42,44,46,52,54,56 2 -238067 cd00120 MADS 4 protein interaction site 0 1 1 0 27,28,31,35,51,52,53,54,55,56,57,58 2 -238165 cd00265 MADS_MEF2_like 1 DNA binding site 0 1 1 1 0,1,2,3,4,6,11,13,17,18,20,21,22,24,25,28,29,31,32,36 3 -238165 cd00265 MADS_MEF2_like 2 putative phosphorylation site 0 0 1 1 57 6 -238165 cd00265 MADS_MEF2_like 3 dimerization interface 0 1 1 1 19,22,26,27,30,31,33,34,35,36,37,42,44,46,52,54,56 2 -238165 cd00265 MADS_MEF2_like 4 protein interaction site 0 1 1 0 27,28,31,35,51,52,53,54,55,56,57,58 2 -238166 cd00266 MADS_SRF_like 1 DNA binding site 0 1 1 1 0,1,2,3,4,6,11,13,17,18,20,21,22,24,25,28,29,31,32,36 3 -238166 cd00266 MADS_SRF_like 2 putative phosphorylation site 0 0 1 1 57 6 -238166 cd00266 MADS_SRF_like 3 dimerization interface 0 1 1 1 19,22,26,27,30,31,33,34,35,36,37,42,44,46,52,54,56 2 -238166 cd00266 MADS_SRF_like 4 protein interaction site 0 1 1 0 27,28,31,35,51,52,53,54,55,56,57,58 2 -238068 cd00121 MATH 1 putative substrate binding site 0 1 1 1 48,95,96,97 5 -238168 cd00270 MATH_TRAF_C 1 putative substrate binding site 0 1 1 1 58,118,119,120 5 -239745 cd03776 MATH_TRAF6 1 putative substrate binding site 0 1 1 1 58,116,117,118 5 -239746 cd03777 MATH_TRAF3 1 putative substrate binding site 0 1 1 1 96,153,154,155 5 -239747 cd03778 MATH_TRAF2 1 putative substrate binding site 0 1 1 1 76,132,133,134 5 -239748 cd03779 MATH_TRAF1 1 putative substrate binding site 0 1 1 1 58,114,115,116 5 -239749 cd03780 MATH_TRAF5 1 putative substrate binding site 0 1 1 1 58,115,116,117 5 -239750 cd03781 MATH_TRAF4 1 putative substrate binding site 0 1 1 1 58,123,124,125 5 -239740 cd03771 MATH_Meprin 1 putative substrate binding site 0 1 1 1 55,136,137,138 5 -239751 cd03782 MATH_Meprin_Beta 1 putative substrate binding site 0 1 1 1 55,136,137,138 5 -239752 cd03783 MATH_Meprin_Alpha 1 putative substrate binding site 0 1 1 1 57,136,137,138 5 -239741 cd03772 MATH_HAUSP 1 putative substrate binding site 0 1 1 1 52,98,99,100 5 -239742 cd03773 MATH_TRIM37 1 putative substrate binding site 0 1 1 1 55,97,98,99 5 -239743 cd03774 MATH_SPOP 1 putative substrate binding site 0 1 1 1 59,102,103,104 5 -239744 cd03775 MATH_Ubp21p 1 putative substrate binding site 0 1 1 1 46,97,98,99 5 -238069 cd00122 MBD 1 DNA binding site 0 1 1 0 12,14,16,23,25,34,37,41 3 -238689 cd01395 HMT_MBD 1 DNA binding site 0 1 1 0 12,14,16,22,24,33,36,40 3 -238690 cd01396 MeCP2_MBD 1 DNA binding site 0 1 1 0 13,15,17,24,26,35,38,42 3 -238691 cd01397 HAT_MBD 1 DNA binding site 0 1 1 0 12,14,16,23,25,34,37,41 3 -238070 cd00123 DmpA_OAT 1 active site pocket 0 1 1 0 98,99,100,165,167,199,237,238 1 -238070 cd00123 DmpA_OAT 2 cleavage site 0 0 1 1 198,199 0 -239065 cd02152 OAT 1 active site pocket 0 1 1 0 101,102,103,165,167,176,215,216 1 -239065 cd02152 OAT 2 cleavage site 0 0 1 1 175,176 0 -239070 cd02252 nylC_like 1 active site pocket 0 1 1 0 101,102,103,174,176,181,220,221 1 -239070 cd02252 nylC_like 2 cleavage site 0 0 1 1 180,181 0 -239071 cd02253 DmpA 1 active site pocket 0 1 1 0 122,123,124,194,196,230,268,269 1 -239071 cd02253 DmpA 2 cleavage site 0 0 1 1 229,230 0 -238072 cd00126 PAH 1 receptor binding site 0 0 1 1 19,23,26,30,31,32,34,35 0 -238072 cd00126 PAH 2 dimerization interface 0 0 1 1 16,20,23,27,29,30,31 2 -238074 cd00129 PAN_APPLE 1 putative binding site 0 1 1 1 19,21,32 0 -238531 cd01098 PAN_AP_plant 1 putative binding site 0 1 1 1 22,24,39 0 -238532 cd01099 PAN_AP_HGF 1 putative binding site 0 1 1 1 18,20,32 0 -238533 cd01100 APPLE_Factor_XI_like 1 putative binding site 0 1 1 1 19,21,32 0 -238075 cd00130 PAS 1 putative active site 0 1 1 1 16,20,26,39,40,41,42,68,73 1 -238075 cd00130 PAS 2 heme pocket 0 1 1 1 36,40,48,51,52,80,82 5 -238076 cd00131 PAX 1 DNA binding site 0 1 1 1 5,6,11,13,14,15,17,22,34,36,45,48,50,51,55,64,65,66,67,68,69,70,72,73,74,75,94,95,96,115,117,118,121,124 3 -238077 cd00132 CRIB 1 GTPase interaction site 0 1 1 1 2,5,8,10,13,30,34 2 -238526 cd01093 CRIB_PAK_like 1 GTPase interaction site 0 1 1 1 2,5,8,10,13,30,34 2 -99904 cd00133 PTS_IIB 1 active site 0 0 1 1 5,7,8,11,12 1 -99904 cd00133 PTS_IIB 2 P-loop 0 0 1 0 5,6,7,8,10,11,12 0 -99904 cd00133 PTS_IIB 3 phosphorylation site 0 0 1 1 5 6 -99905 cd05563 PTS_IIB_ascorbate 1 active site 0 0 1 1 5,7,8,11,12 1 -99905 cd05563 PTS_IIB_ascorbate 2 P-loop 0 0 1 0 5,6,7,8,10,11,12 0 -99905 cd05563 PTS_IIB_ascorbate 3 phosphorylation site 0 0 1 1 5 6 -99906 cd05564 PTS_IIB_chitobiose_lichenan 1 active site 0 0 1 1 5,7,8,10,11 1 -99906 cd05564 PTS_IIB_chitobiose_lichenan 2 P-loop 0 0 1 0 5,6,7,8,9,10,11 0 -99906 cd05564 PTS_IIB_chitobiose_lichenan 3 phosphorylation site 0 0 1 1 5 6 -99907 cd05565 PTS_IIB_lactose 1 active site 0 0 1 1 6,8,9,11,12 1 -99907 cd05565 PTS_IIB_lactose 2 P-loop 0 0 1 0 6,7,8,9,10,11,12 0 -99907 cd05565 PTS_IIB_lactose 3 phosphorylation site 0 0 1 1 6 6 -99908 cd05566 PTS_IIB_galactitol 1 active site 0 0 1 1 6,8,9,12,13 1 -99908 cd05566 PTS_IIB_galactitol 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99908 cd05566 PTS_IIB_galactitol 3 phosphorylation site 0 0 1 1 6 6 -99909 cd05567 PTS_IIB_mannitol 1 active site 0 0 1 1 6,8,9,12,13 1 -99909 cd05567 PTS_IIB_mannitol 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99909 cd05567 PTS_IIB_mannitol 3 phosphorylation site 0 0 1 1 6 6 -99910 cd05568 PTS_IIB_bgl_like 1 active site 0 0 1 1 6,8,9,12,13 1 -99910 cd05568 PTS_IIB_bgl_like 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99910 cd05568 PTS_IIB_bgl_like 3 phosphorylation site 0 0 1 1 6 6 -99911 cd05569 PTS_IIB_fructose 1 active site 0 0 1 1 6,8,9,12,13 1 -99911 cd05569 PTS_IIB_fructose 2 P-loop 0 0 1 0 6,7,8,9,11,12,13 0 -99911 cd05569 PTS_IIB_fructose 3 phosphorylation site 0 0 1 1 6 6 -238079 cd00135 PDGF 1 cysteine knot motif 0 0 1 1 2,33,37,44,80,82 0 -238079 cd00135 PDGF 2 receptor binding interface 0 1 1 1 0,1,2,3,37,39,40,41,42,57,58,59,60 0 -238079 cd00135 PDGF 3 dimerization interface 0 1 1 0 27,36 2 -238080 cd00136 PDZ 1 protein binding site 0 1 1 1 1,2,3,4,6,53,56,57 2 -238486 cd00986 PDZ_LON_protease 1 protein binding site 0 1 1 1 1,2,3,4,6,42,45,46 2 -238487 cd00987 PDZ_serine_protease 1 protein binding site 0 1 1 1 1,2,3,4,6,58,61,62 2 -238488 cd00988 PDZ_CTP_protease 1 protein binding site 0 1 1 1 2,3,4,5,7,53,56,57 2 -238489 cd00989 PDZ_metalloprotease 1 protein binding site 0 1 1 1 1,2,3,4,6,50,53,54 2 -238490 cd00990 PDZ_glycyl_aminopeptidase 1 protein binding site 0 1 1 1 1,2,3,4,6,47,50,51 2 -238491 cd00991 PDZ_archaeal_metalloprotease 1 protein binding site 0 1 1 1 1,2,3,4,6,48,51,52 2 -238492 cd00992 PDZ_signaling 1 protein binding site 0 1 1 1 12,13,14,15,17,66,69,70 2 -197200 cd00138 PLDc_SF 1 putative active site 0 1 1 1 85,87,100,102,113 1 -197200 cd00138 PLDc_SF 2 catalytic site 0 1 1 1 85 1 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 1 putative active site 0 1 1 1 118,120,132,134,145 1 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 2 catalytic site 0 1 1 1 118 1 -197232 cd09134 PLDc_PSS_G_neg_1 1 putative active site 0 1 1 1 120,122,134,136,151 1 -197232 cd09134 PLDc_PSS_G_neg_1 2 catalytic site 0 1 1 1 120 1 -197233 cd09135 PLDc_PGS1_euk_1 1 putative active site 0 1 1 1 120,122,134,136,147 1 -197233 cd09135 PLDc_PGS1_euk_1 2 catalytic site 0 1 1 1 120 1 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 1 putative active site 0 1 1 1 120,122,135,137,148 1 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 2 catalytic site 0 1 1 1 120 1 -197234 cd09136 PLDc_PSS_G_neg_2 1 putative active site 0 1 1 1 120,122,135,137,148 1 -197234 cd09136 PLDc_PSS_G_neg_2 2 catalytic site 0 1 1 1 120 1 -197235 cd09137 PLDc_PGS1_euk_2 1 putative active site 0 1 1 1 116,118,137,139,150 1 -197235 cd09137 PLDc_PGS1_euk_2 2 catalytic site 0 1 1 1 116 1 -197203 cd09104 PLDc_vPLD1_2_like_1 1 putative active site 0 1 1 1 112,114,128,130,141 1 -197203 cd09104 PLDc_vPLD1_2_like_1 2 catalytic site 0 1 1 1 112 1 -197236 cd09138 PLDc_vPLD1_2_yPLD_like_1 1 putative active site 0 1 1 1 112,114,127,129,140 1 -197236 cd09138 PLDc_vPLD1_2_yPLD_like_1 2 catalytic site 0 1 1 1 112 1 -197300 cd09842 PLDc_vPLD1_1 1 putative active site 0 1 1 1 112,114,127,129,140 1 -197300 cd09842 PLDc_vPLD1_1 2 catalytic site 0 1 1 1 112 1 -197301 cd09843 PLDc_vPLD2_1 1 putative active site 0 1 1 1 111,113,126,128,139 1 -197301 cd09843 PLDc_vPLD2_1 2 catalytic site 0 1 1 1 111 1 -197237 cd09139 PLDc_pPLD_like_1 1 putative active site 0 1 1 1 130,132,154,156,167 1 -197237 cd09139 PLDc_pPLD_like_1 2 catalytic site 0 1 1 1 130 1 -197293 cd09197 PLDc_pPLDalpha_1 1 putative active site 0 1 1 1 130,132,156,158,169 1 -197293 cd09197 PLDc_pPLDalpha_1 2 catalytic site 0 1 1 1 130 1 -197294 cd09198 PLDc_pPLDbeta_1 1 putative active site 0 1 1 1 133,135,156,158,169 1 -197294 cd09198 PLDc_pPLDbeta_1 2 catalytic site 0 1 1 1 133 1 -197238 cd09140 PLDc_vPLD1_2_like_bac_1 1 putative active site 0 1 1 1 112,114,127,129,140 1 -197238 cd09140 PLDc_vPLD1_2_like_bac_1 2 catalytic site 0 1 1 1 112 1 -197204 cd09105 PLDc_vPLD1_2_like_2 1 putative active site 0 1 1 1 110,112,125,127,138 1 -197204 cd09105 PLDc_vPLD1_2_like_2 2 catalytic site 0 1 1 1 110 1 -197239 cd09141 PLDc_vPLD1_2_yPLD_like_2 1 putative active site 0 1 1 1 143,145,158,160,173 1 -197239 cd09141 PLDc_vPLD1_2_yPLD_like_2 2 catalytic site 0 1 1 1 143 1 -197302 cd09844 PLDc_vPLD1_2 1 putative active site 0 1 1 1 142,144,157,159,172 1 -197302 cd09844 PLDc_vPLD1_2 2 catalytic site 0 1 1 1 142 1 -197303 cd09845 PLDc_vPLD2_2 1 putative active site 0 1 1 1 142,144,157,159,172 1 -197303 cd09845 PLDc_vPLD2_2 2 catalytic site 0 1 1 1 142 1 -197240 cd09142 PLDc_pPLD_like_2 1 putative active site 0 1 1 1 165,167,180,182,195 1 -197240 cd09142 PLDc_pPLD_like_2 2 catalytic site 0 1 1 1 165 1 -197295 cd09199 PLDc_pPLDalpha_2 1 putative active site 0 1 1 1 168,170,183,185,198 1 -197295 cd09199 PLDc_pPLDalpha_2 2 catalytic site 0 1 1 1 168 1 -197296 cd09200 PLDc_pPLDbeta_2 1 putative active site 0 1 1 1 165,167,180,182,195 1 -197296 cd09200 PLDc_pPLDbeta_2 2 catalytic site 0 1 1 1 165 1 -197241 cd09143 PLDc_vPLD1_2_like_bac_2 1 putative active site 0 1 1 1 106,108,121,123,134 1 -197241 cd09143 PLDc_vPLD1_2_like_bac_2 2 catalytic site 0 1 1 1 106 1 -197205 cd09106 PLDc_vPLD3_4_5_like_1 1 putative active site 0 1 1 1 116,118,131,133,144 1 -197205 cd09106 PLDc_vPLD3_4_5_like_1 2 catalytic site 0 1 1 1 116 1 -197242 cd09144 PLDc_vPLD3_1 1 putative active site 0 1 1 1 117,119,132,134,145 1 -197242 cd09144 PLDc_vPLD3_1 2 catalytic site 0 1 1 1 117 1 -197243 cd09145 PLDc_vPLD4_1 1 putative active site 0 1 1 1 116,118,131,133,144 1 -197243 cd09145 PLDc_vPLD4_1 2 catalytic site 0 1 1 1 116 1 -197244 cd09146 PLDc_vPLD5_1 1 putative active site 0 1 1 1 109,111,124,126,137 1 -197244 cd09146 PLDc_vPLD5_1 2 catalytic site 0 1 1 1 109 1 -197206 cd09107 PLDc_vPLD3_4_5_like_2 1 putative active site 0 1 1 1 124,126,138,140,148 1 -197206 cd09107 PLDc_vPLD3_4_5_like_2 2 catalytic site 0 1 1 1 124 1 -197245 cd09147 PLDc_vPLD3_2 1 putative active site 0 1 1 1 125,127,139,141,149 1 -197245 cd09147 PLDc_vPLD3_2 2 catalytic site 0 1 1 1 125 1 -197246 cd09148 PLDc_vPLD4_2 1 putative active site 0 1 1 1 124,126,138,140,148 1 -197246 cd09148 PLDc_vPLD4_2 2 catalytic site 0 1 1 1 124 1 -197247 cd09149 PLDc_vPLD5_2 1 putative active site 0 1 1 1 122,124,136,138,146 1 -197247 cd09149 PLDc_vPLD5_2 2 catalytic site 0 1 1 1 122 1 -197207 cd09108 PLDc_PMFPLD_like_1 1 putative active site 0 1 1 1 156,158,171,173,188 1 -197207 cd09108 PLDc_PMFPLD_like_1 2 catalytic site 0 1 1 1 156 1 -197248 cd09150 PLDc_Ymt_1 1 putative active site 0 1 1 1 162,164,177,179,193 1 -197248 cd09150 PLDc_Ymt_1 2 catalytic site 0 1 1 1 162 1 -197208 cd09109 PLDc_PMFPLD_like_2 1 putative active site 0 1 1 1 160,162,175,177,185 1 -197208 cd09109 PLDc_PMFPLD_like_2 2 catalytic site 0 1 1 1 160 1 -197249 cd09151 PLDc_Ymt_2 1 putative active site 0 1 1 1 208,210,223,225,233 1 -197249 cd09151 PLDc_Ymt_2 2 catalytic site 0 1 1 1 208 1 -197209 cd09110 PLDc_CLS_1 1 putative active site 0 1 1 1 97,99,112,114,131 1 -197209 cd09110 PLDc_CLS_1 2 catalytic site 0 1 1 1 97 1 -197210 cd09111 PLDc_ymdC_like_1 1 putative active site 0 1 1 1 106,108,121,123,139 1 -197210 cd09111 PLDc_ymdC_like_1 2 catalytic site 0 1 1 1 106 1 -197250 cd09152 PLDc_EcCLS_like_1 1 putative active site 0 1 1 1 106,108,121,123,140 1 -197250 cd09152 PLDc_EcCLS_like_1 2 catalytic site 0 1 1 1 106 1 -197251 cd09154 PLDc_SMU_988_like_1 1 putative active site 0 1 1 1 98,100,113,115,132 1 -197251 cd09154 PLDc_SMU_988_like_1 2 catalytic site 0 1 1 1 98 1 -197252 cd09155 PLDc_PaCLS_like_1 1 putative active site 0 1 1 1 97,99,112,114,131 1 -197252 cd09155 PLDc_PaCLS_like_1 2 catalytic site 0 1 1 1 97 1 -197253 cd09156 PLDc_CLS_unchar1_1 1 putative active site 0 1 1 1 97,99,112,114,131 1 -197253 cd09156 PLDc_CLS_unchar1_1 2 catalytic site 0 1 1 1 97 1 -197254 cd09157 PLDc_CLS_unchar2_1 1 putative active site 0 1 1 1 97,99,112,114,131 1 -197254 cd09157 PLDc_CLS_unchar2_1 2 catalytic site 0 1 1 1 97 1 -197211 cd09112 PLDc_CLS_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197211 cd09112 PLDc_CLS_2 2 catalytic site 0 1 1 1 93 1 -197212 cd09113 PLDc_ymdC_like_2 1 putative active site 0 1 1 1 117,119,132,134,145 1 -197212 cd09113 PLDc_ymdC_like_2 2 catalytic site 0 1 1 1 117 1 -197255 cd09158 PLDc_EcCLS_like_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197255 cd09158 PLDc_EcCLS_like_2 2 catalytic site 0 1 1 1 93 1 -197256 cd09159 PLDc_ybhO_like_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197256 cd09159 PLDc_ybhO_like_2 2 catalytic site 0 1 1 1 93 1 -197257 cd09160 PLDc_SMU_988_like_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197257 cd09160 PLDc_SMU_988_like_2 2 catalytic site 0 1 1 1 93 1 -197258 cd09161 PLDc_PaCLS_like_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197258 cd09161 PLDc_PaCLS_like_2 2 catalytic site 0 1 1 1 93 1 -197259 cd09162 PLDc_CLS_unchar1_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197259 cd09162 PLDc_CLS_unchar1_2 2 catalytic site 0 1 1 1 93 1 -197260 cd09163 PLDc_CLS_unchar2_2 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197260 cd09163 PLDc_CLS_unchar2_2 2 catalytic site 0 1 1 1 93 1 -197213 cd09114 PLDc_PPK1_C1 1 putative active site 0 1 1 1 104,106,126,128,139 1 -197213 cd09114 PLDc_PPK1_C1 2 catalytic site 0 1 1 1 104 1 -197261 cd09164 PLDc_EcPPK1_C1_like 1 putative active site 0 1 1 1 104,106,126,128,139 1 -197261 cd09164 PLDc_EcPPK1_C1_like 2 catalytic site 0 1 1 1 104 1 -197262 cd09165 PLDc_PaPPK1_C1_like 1 putative active site 0 1 1 1 104,106,126,128,139 1 -197262 cd09165 PLDc_PaPPK1_C1_like 2 catalytic site 0 1 1 1 104 1 -197263 cd09166 PLDc_PPK1_C1_unchar 1 putative active site 0 1 1 1 104,106,126,128,139 1 -197263 cd09166 PLDc_PPK1_C1_unchar 2 catalytic site 0 1 1 1 104 1 -197214 cd09115 PLDc_PPK1_C2 1 putative active site 0 1 1 1 91,93,109,111,122 1 -197214 cd09115 PLDc_PPK1_C2 2 catalytic site 0 1 1 1 91 1 -197264 cd09167 PLDc_EcPPK1_C2_like 1 putative active site 0 1 1 1 92,94,110,112,123 1 -197264 cd09167 PLDc_EcPPK1_C2_like 2 catalytic site 0 1 1 1 92 1 -197265 cd09168 PLDc_PaPPK1_C2_like 1 putative active site 0 1 1 1 92,94,110,112,123 1 -197265 cd09168 PLDc_PaPPK1_C2_like 2 catalytic site 0 1 1 1 92 1 -197266 cd09169 PLDc_PPK1_C2_unchar 1 putative active site 0 1 1 1 91,93,109,111,122 1 -197266 cd09169 PLDc_PPK1_C2_unchar 2 catalytic site 0 1 1 1 91 1 -197215 cd09116 PLDc_Nuc_like 1 putative active site 0 1 1 1 88,90,103,105,116 1 -197215 cd09116 PLDc_Nuc_like 2 catalytic site 0 1 1 1 88 1 -197267 cd09170 PLDc_Nuc 1 putative active site 0 1 1 1 88,90,103,105,116 1 -197267 cd09170 PLDc_Nuc 2 catalytic site 0 1 1 1 88 1 -197268 cd09171 PLDc_vPLD6_like 1 putative active site 0 1 1 1 85,87,100,102,113 1 -197268 cd09171 PLDc_vPLD6_like 2 catalytic site 0 1 1 1 85 1 -197269 cd09172 PLDc_Nuc_like_unchar1_1 1 putative active site 0 1 1 1 90,92,109,111,122 1 -197269 cd09172 PLDc_Nuc_like_unchar1_1 2 catalytic site 0 1 1 1 90 1 -197270 cd09173 PLDc_Nuc_like_unchar1_2 1 putative active site 0 1 1 1 101,103,120,122,133 1 -197270 cd09173 PLDc_Nuc_like_unchar1_2 2 catalytic site 0 1 1 1 101 1 -197271 cd09174 PLDc_Nuc_like_unchar2 1 putative active site 0 1 1 1 87,89,102,104,114 1 -197271 cd09174 PLDc_Nuc_like_unchar2 2 catalytic site 0 1 1 1 87 1 -197216 cd09117 PLDc_Bfil_DEXD_like 1 putative active site 0 1 1 1 80,82,98,100,111 1 -197216 cd09117 PLDc_Bfil_DEXD_like 2 catalytic site 0 1 1 1 80 1 -197272 cd09175 PLDc_Bfil 1 putative active site 0 1 1 1 102,104,120,122,133 1 -197272 cd09175 PLDc_Bfil 2 catalytic site 0 1 1 1 102 1 -197274 cd09177 PLDc_RE_NgoFVII 1 putative active site 0 1 1 1 85,87,104,106,121 1 -197274 cd09177 PLDc_RE_NgoFVII 2 catalytic site 0 1 1 1 85 1 -197275 cd09178 PLDc_N_Snf2_like 1 putative active site 0 1 1 1 73,75,95,97,108 1 -197275 cd09178 PLDc_N_Snf2_like 2 catalytic site 0 1 1 1 73 1 -197276 cd09179 PLDc_N_DEXD_a 1 putative active site 0 1 1 1 128,130,147,149,160 1 -197276 cd09179 PLDc_N_DEXD_a 2 catalytic site 0 1 1 1 128 1 -197277 cd09180 PLDc_N_DEXD_b 1 putative active site 0 1 1 1 84,86,103,105,116 1 -197277 cd09180 PLDc_N_DEXD_b 2 catalytic site 0 1 1 1 84 1 -197297 cd09203 PLDc_N_DEXD_b1 1 putative active site 0 1 1 1 84,86,103,105,116 1 -197297 cd09203 PLDc_N_DEXD_b1 2 catalytic site 0 1 1 1 84 1 -197298 cd09204 PLDc_N_DEXD_b2 1 putative active site 0 1 1 1 82,84,100,102,113 1 -197298 cd09204 PLDc_N_DEXD_b2 2 catalytic site 0 1 1 1 82 1 -197299 cd09205 PLDc_N_DEXD_b3 1 putative active site 0 1 1 1 85,87,104,106,117 1 -197299 cd09205 PLDc_N_DEXD_b3 2 catalytic site 0 1 1 1 85 1 -197217 cd09118 PLDc_yjhR_C_like 1 putative active site 0 1 1 1 88,90,103,105,119 1 -197217 cd09118 PLDc_yjhR_C_like 2 catalytic site 0 1 1 1 88 1 -197218 cd09119 PLDc_FAM83_N 1 putative active site 0 1 1 1 216,218,231,233,242 1 -197218 cd09119 PLDc_FAM83_N 2 catalytic site 0 1 1 1 216 1 -197278 cd09181 PLDc_FAM83A_N 1 putative active site 0 1 1 1 218,220,233,235,244 1 -197278 cd09181 PLDc_FAM83A_N 2 catalytic site 0 1 1 1 218 1 -197279 cd09182 PLDc_FAM83B_N 1 putative active site 0 1 1 1 210,212,225,227,236 1 -197279 cd09182 PLDc_FAM83B_N 2 catalytic site 0 1 1 1 210 1 -197280 cd09183 PLDc_FAM83C_N 1 putative active site 0 1 1 1 221,223,236,238,247 1 -197280 cd09183 PLDc_FAM83C_N 2 catalytic site 0 1 1 1 221 1 -197281 cd09184 PLDc_FAM83D_N 1 putative active site 0 1 1 1 218,220,233,235,244 1 -197281 cd09184 PLDc_FAM83D_N 2 catalytic site 0 1 1 1 218 1 -197282 cd09186 PLDc_FAM83F_N 1 putative active site 0 1 1 1 215,217,230,232,241 1 -197282 cd09186 PLDc_FAM83F_N 2 catalytic site 0 1 1 1 215 1 -197283 cd09187 PLDc_FAM83G_N 1 putative active site 0 1 1 1 222,224,237,239,248 1 -197283 cd09187 PLDc_FAM83G_N 2 catalytic site 0 1 1 1 222 1 -197284 cd09188 PLDc_FAM83H_N 1 putative active site 0 1 1 1 212,214,227,229,238 1 -197284 cd09188 PLDc_FAM83H_N 2 catalytic site 0 1 1 1 212 1 -197219 cd09120 PLDc_DNaseII_1 1 putative active site 0 1 1 1 92,94,110,112,133 1 -197219 cd09120 PLDc_DNaseII_1 2 catalytic site 0 1 1 1 92 1 -197285 cd09189 PLDc_DNaseII_alpha_1 1 putative active site 0 1 1 1 98,100,116,118,140 1 -197285 cd09189 PLDc_DNaseII_alpha_1 2 catalytic site 0 1 1 1 98 1 -197286 cd09190 PLDc_DNaseII_beta_1 1 putative active site 0 1 1 1 99,101,117,119,140 1 -197286 cd09190 PLDc_DNaseII_beta_1 2 catalytic site 0 1 1 1 99 1 -197220 cd09121 PLDc_DNaseII_2 1 putative active site 0 1 1 1 84,86,102,104,114 1 -197220 cd09121 PLDc_DNaseII_2 2 catalytic site 0 1 1 1 84 1 -197287 cd09191 PLDc_DNaseII_alpha_2 1 putative active site 0 1 1 1 84,86,100,102,112 1 -197287 cd09191 PLDc_DNaseII_alpha_2 2 catalytic site 0 1 1 1 84 1 -197288 cd09192 PLDc_DNaseII_beta_2 1 putative active site 0 1 1 1 84,86,102,104,114 1 -197288 cd09192 PLDc_DNaseII_beta_2 2 catalytic site 0 1 1 1 84 1 -197221 cd09122 PLDc_Tdp1_1 1 putative active site 0 1 1 1 79,81,97,99,110 1 -197221 cd09122 PLDc_Tdp1_1 2 catalytic site 0 1 1 1 79 1 -197289 cd09193 PLDc_mTdp1_1 1 putative active site 0 1 1 1 100,102,119,121,132 1 -197289 cd09193 PLDc_mTdp1_1 2 catalytic site 0 1 1 1 100 1 -197290 cd09194 PLDc_yTdp1_1 1 putative active site 0 1 1 1 101,103,120,122,133 1 -197290 cd09194 PLDc_yTdp1_1 2 catalytic site 0 1 1 1 101 1 -197222 cd09123 PLDc_Tdp1_2 1 putative active site 0 1 1 1 128,130,151,153,175 1 -197222 cd09123 PLDc_Tdp1_2 2 catalytic site 0 1 1 1 128 1 -197291 cd09195 PLDc_mTdp1_2 1 putative active site 0 1 1 1 138,140,159,161,183 1 -197291 cd09195 PLDc_mTdp1_2 2 catalytic site 0 1 1 1 138 1 -197292 cd09196 PLDc_yTdp1_2 1 putative active site 0 1 1 1 149,151,172,174,192 1 -197292 cd09196 PLDc_yTdp1_2 2 catalytic site 0 1 1 1 149 1 -197223 cd09124 PLDc_like_TrmB_middle 1 putative active site 0 1 1 1 79,81,93,95,101 1 -197223 cd09124 PLDc_like_TrmB_middle 2 catalytic site 0 1 1 1 79 1 -197224 cd09126 PLDc_C_DEXD_like 1 putative active site 0 1 1 1 83,85,98,100,118 1 -197224 cd09126 PLDc_C_DEXD_like 2 catalytic site 0 1 1 1 83 1 -197225 cd09127 PLDc_unchar1_1 1 putative active site 0 1 1 1 91,93,106,108,119 1 -197225 cd09127 PLDc_unchar1_1 2 catalytic site 0 1 1 1 91 1 -197226 cd09128 PLDc_unchar1_2 1 putative active site 0 1 1 1 91,93,106,108,119 1 -197226 cd09128 PLDc_unchar1_2 2 catalytic site 0 1 1 1 91 1 -197227 cd09129 PLDc_unchar2_1 1 putative active site 0 1 1 1 145,147,159,161,169 1 -197227 cd09129 PLDc_unchar2_1 2 catalytic site 0 1 1 1 145 1 -197228 cd09130 PLDc_unchar2_2 1 putative active site 0 1 1 1 96,98,114,116,128 1 -197228 cd09130 PLDc_unchar2_2 2 catalytic site 0 1 1 1 96 1 -197229 cd09131 PLDc_unchar3 1 putative active site 0 1 1 1 93,95,108,110,121 1 -197229 cd09131 PLDc_unchar3 2 catalytic site 0 1 1 1 93 1 -197230 cd09132 PLDc_unchar4 1 putative active site 0 1 1 1 88,90,103,105,116 1 -197230 cd09132 PLDc_unchar4 2 catalytic site 0 1 1 1 88 1 -197231 cd09133 PLDc_unchar5 1 putative active site 0 1 1 1 89,91,104,106,119 1 -197231 cd09133 PLDc_unchar5 2 catalytic site 0 1 1 1 89 1 -197273 cd09176 PLDc_unchar6 1 putative active site 0 1 1 1 76,78,94,96,108 1 -197273 cd09176 PLDc_unchar6 2 catalytic site 0 1 1 1 76 1 -197304 cd10311 PLDc_N_DEXD_c 1 putative active site 0 1 1 1 118,120,135,137,150 1 -197304 cd10311 PLDc_N_DEXD_c 2 catalytic site 0 1 1 1 118 1 -340436 cd00139 PIPKc 1 catalytic core residues KDD 0 1 1 61,190,208 1 -340436 cd00139 PIPKc 2 ATP binding site 0 1 1 0 50,59,61,112,113,114,115,127,149,194,207,208 5 -340437 cd17300 PIPKc_PIKfyve 1 catalytic core residues KDD 0 1 1 58,194,214 1 -340437 cd17300 PIPKc_PIKfyve 2 ATP binding site 0 1 1 0 47,56,58,118,119,120,121,132,151,198,213,214 5 -340438 cd17301 PIPKc_PIP5KI 1 catalytic core residues KDD 0 1 1 111,239,270 1 -340438 cd17301 PIPKc_PIP5KI 2 ATP binding site 0 1 1 0 100,109,111,161,162,163,164,176,197,243,269,270 5 -340443 cd17306 PIPKc_PIP5K1A_like 1 catalytic core residues KDD 0 1 1 114,242,287 1 -340443 cd17306 PIPKc_PIP5K1A_like 2 ATP binding site 0 1 1 0 103,112,114,164,165,166,167,179,200,246,286,287 5 -340444 cd17307 PIPKc_PIP5K1B 1 catalytic core residues KDD 0 1 1 111,239,270 1 -340444 cd17307 PIPKc_PIP5K1B 2 ATP binding site 0 1 1 0 100,109,111,161,162,163,164,176,197,243,269,270 5 -340445 cd17308 PIPKc_PIP5K1C 1 catalytic core residues KDD 0 1 1 112,240,271 1 -340445 cd17308 PIPKc_PIP5K1C 2 ATP binding site 0 1 1 0 101,110,112,162,163,164,165,177,198,244,270,271 5 -340439 cd17302 PIPKc_AtPIP5K_like 1 catalytic core residues KDD 0 1 1 114,240,269 1 -340439 cd17302 PIPKc_AtPIP5K_like 2 ATP binding site 0 1 1 0 103,112,114,165,166,167,168,180,202,244,268,269 5 -340440 cd17303 PIPKc_PIP5K_yeast_like 1 catalytic core residues KDD 0 1 1 111,240,274 1 -340440 cd17303 PIPKc_PIP5K_yeast_like 2 ATP binding site 0 1 1 0 100,109,111,162,163,164,165,177,199,244,273,274 5 -340441 cd17304 PIPKc_PIP5KL1 1 catalytic core residues KDD 0 1 1 106,232,274 1 -340441 cd17304 PIPKc_PIP5KL1 2 ATP binding site 0 1 1 0 95,104,106,157,158,159,160,172,194,236,273,274 5 -340442 cd17305 PIPKc_PIP5KII 1 catalytic core residues KDD 0 1 1 109,237,255 1 -340442 cd17305 PIPKc_PIP5KII 2 ATP binding site 0 1 1 0 98,107,109,160,161,162,163,175,196,241,254,255 5 -340446 cd17309 PIPKc_PIP5K2A 1 catalytic core residues KDD 0 1 1 118,246,264 1 -340446 cd17309 PIPKc_PIP5K2A 2 ATP binding site 0 1 1 0 107,116,118,169,170,171,172,184,205,250,263,264 5 -340447 cd17310 PIPKc_PIP5K2B 1 catalytic core residues KDD 0 1 1 120,248,266 1 -340447 cd17310 PIPKc_PIP5K2B 2 ATP binding site 0 1 1 0 109,118,120,171,172,173,174,186,207,252,265,266 5 -340448 cd17311 PIPKc_PIP5K2C 1 catalytic core residues KDD 0 1 1 107,235,253 1 -340448 cd17311 PIPKc_PIP5K2C 2 ATP binding site 0 1 1 0 96,105,107,158,159,160,161,173,194,239,252,253 5 -238082 cd00140 beta_clamp 1 dimer interface 0 1 1 1 73,76,101,103,271,302,303 2 -238082 cd00140 beta_clamp 2 putative DNA binding surface 0 1 1 1 23,72,79,197 3 -238082 cd00140 beta_clamp 3 beta-clamp/clamp loader binding surface 0 1 1 1 170,172,173,174,175,319,361,362,363,364 0 -238082 cd00140 beta_clamp 4 beta-clamp/translesion DNA polymerase binding surface 0 1 1 1 170,172,173,246,281,294,295,322,361,362,363,364 0 -238083 cd00143 PP2Cc 1 Active site 0 1 1 1 11,15,16,36,37,38,202,244 1 -99912 cd00145 POLBc 1 active site 0 1 1 1 22,25,26,27,79,107,111,161 1 -99912 cd00145 POLBc 2 metal-binding site 0 1 1 1 159,161,162 0 -99913 cd05530 POLBc_B1 1 active site 0 1 1 1 32,35,36,37,89,118,122,172 1 -99913 cd05530 POLBc_B1 2 metal-binding site 0 1 1 1 170,172,173 0 -99914 cd05531 POLBc_B2 1 active site 0 1 1 1 24,27,28,29,87,100,104,154 1 -99914 cd05531 POLBc_B2 2 metal-binding site 0 1 1 1 152,154,155 0 -99915 cd05532 POLBc_alpha 1 active site 0 1 1 1 28,31,32,33,83,110,114,164 1 -99915 cd05532 POLBc_alpha 2 metal-binding site 0 1 1 1 162,164,165 0 -99916 cd05533 POLBc_delta 1 active site 0 1 1 1 23,26,27,28,86,113,117,176 1 -99916 cd05533 POLBc_delta 2 metal-binding site 0 1 1 1 174,176,177 0 -99917 cd05534 POLBc_zeta 1 active site 0 1 1 1 56,59,60,61,141,169,173,227 1 -99917 cd05534 POLBc_zeta 2 metal-binding site 0 1 1 1 225,227,228 0 -99918 cd05535 POLBc_epsilon 1 active site 0 1 1 1 95,98,99,100,231,278,282,331 1 -99918 cd05535 POLBc_epsilon 2 metal-binding site 0 1 1 1 329,331,332 0 -99919 cd05536 POLBc_B3 1 active site 0 1 1 1 23,26,27,28,79,107,111,161 1 -99919 cd05536 POLBc_B3 2 metal-binding site 0 1 1 1 159,161,162 0 -99920 cd05537 POLBc_Pol_II 1 active site 0 1 1 1 22,25,26,27,80,96,100,150 1 -99920 cd05537 POLBc_Pol_II 2 metal-binding site 0 1 1 1 148,150,151 0 -99921 cd05538 POLBc_Pol_II_B 1 active site 0 1 1 1 22,25,26,27,57,84,88,138 1 -99921 cd05538 POLBc_Pol_II_B 2 metal-binding site 0 1 1 1 136,138,139 0 -238085 cd00148 PROF 1 actin interaction site 0 1 1 1 57,71,72,74,81,86,106,107,108,112,116 2 -238085 cd00148 PROF 2 poly-proline binding site 0 1 1 1 1,4,27,29,120,126 0 -238085 cd00148 PROF 3 putative PIP2-interaction site 0 0 1 1 67,81 0 -119410 cd00150 PlantTI 1 inhibitory residue 0 1 1 1 2 0 -238086 cd00152 PTX 1 intermolecular salt bridges 0 1 1 1 99,116,153,200 0 -238086 cd00152 PTX 2 calcium mediated ligand binding site 0 1 1 0 59,136,138,145,148 0 -238087 cd00155 RasGEF 1 Ras interaction site 0 1 1 0 33,34,35,46,47,49,50,51,53,54,57,58,61,94,97,98,100,101,102,104,105,106,107,109,110,130,133,138,139,140,143,158,159,160,163,164,165,167,168,169,171,172,173,174,189,193,228,231,232 2 -238088 cd00156 REC 1 active site 0 1 1 1 3,4,47,55,75,94,97,98 1 -238088 cd00156 REC 2 phosphorylation site 0 1 1 1 47 6 -238088 cd00156 REC 3 intermolecular recognition site 0 0 1 1 50,51,53,54,55 0 -238088 cd00156 REC 4 dimerization interface 0 1 1 1 97,98,99 2 -238089 cd00158 RHOD 1 active site residue 0 0 1 1 56 1 -238720 cd01443 Cdc25_Acr2p 1 active site residue 0 0 1 1 72 1 -238788 cd01530 Cdc25 1 active site residue 0 0 1 1 74 1 -238789 cd01531 Acr2p 1 active site residue 0 0 1 1 68 1 -238721 cd01444 GlpE_ST 1 active site residue 0 0 1 1 62 1 -238722 cd01445 TST_Repeats 1 active site residue 0 0 1 1 101 1 -238725 cd01448 TST_Repeat_1 1 active site residue 0 0 1 1 85 1 -238726 cd01449 TST_Repeat_2 1 active site residue 0 0 1 1 84 1 -238723 cd01446 DSP_MapKP 1 active site residue 0 0 1 1 81 1 -238724 cd01447 Polysulfide_ST 1 active site residue 0 0 1 1 67 1 -238776 cd01518 RHOD_YceA 1 active site residue 0 0 1 1 67 1 -238777 cd01519 RHOD_HSP67B2 1 active site residue 0 0 1 1 72 1 -238778 cd01520 RHOD_YbbB 1 active site residue 0 0 1 1 92 1 -238779 cd01521 RHOD_PspE2 1 active site residue 0 0 1 1 70 1 -238780 cd01522 RHOD_1 1 active site residue 0 0 1 1 70 1 -238781 cd01523 RHOD_Lact_B 1 active site residue 0 0 1 1 67 1 -238782 cd01524 RHOD_Pyr_redox 1 active site residue 0 0 1 1 57 1 -238783 cd01525 RHOD_Kc 1 active site residue 0 0 1 1 71 1 -238784 cd01526 RHOD_ThiF 1 active site residue 0 0 1 1 78 1 -238785 cd01527 RHOD_YgaP 1 active site residue 0 0 1 1 60 1 -238786 cd01528 RHOD_2 1 active site residue 0 0 1 1 64 1 -238787 cd01529 4RHOD_Repeats 1 active site residue 0 0 1 1 62 1 -238790 cd01532 4RHOD_Repeat_1 1 active site residue 0 0 1 1 56 1 -238791 cd01533 4RHOD_Repeat_2 1 active site residue 0 0 1 1 72 1 -238792 cd01534 4RHOD_Repeat_3 1 active site residue 0 0 1 1 62 1 -238793 cd01535 4RHOD_Repeat_4 1 active site residue 0 0 1 1 55 1 -238090 cd00159 RhoGAP 1 GTPase interaction site 0 1 1 0 22,59,63,132,135,136,159 0 -238090 cd00159 RhoGAP 2 catalytic residue 0 1 1 1 22 1 -239837 cd04372 RhoGAP_chimaerin 1 GTPase interaction site 0 1 1 0 38,78,82,151,154,155,179 0 -239837 cd04372 RhoGAP_chimaerin 2 catalytic residue 0 1 1 1 38 1 -239838 cd04373 RhoGAP_p190 1 GTPase interaction site 0 1 1 0 37,75,79,148,151,152,175 0 -239838 cd04373 RhoGAP_p190 2 catalytic residue 0 1 1 1 37 1 -239839 cd04374 RhoGAP_Graf 1 GTPase interaction site 0 1 1 0 50,93,97,166,169,170,193 0 -239839 cd04374 RhoGAP_Graf 2 catalytic residue 0 1 1 1 50 1 -239840 cd04375 RhoGAP_DLC1 1 GTPase interaction site 0 1 1 0 42,79,83,152,155,156,199 0 -239840 cd04375 RhoGAP_DLC1 2 catalytic residue 0 1 1 1 42 1 -239841 cd04376 RhoGAP_ARHGAP6 1 GTPase interaction site 0 1 1 0 31,68,72,151,154,155,185 0 -239841 cd04376 RhoGAP_ARHGAP6 2 catalytic residue 0 1 1 1 31 1 -239842 cd04377 RhoGAP_myosin_IX 1 GTPase interaction site 0 1 1 0 37,74,78,147,150,151,176 0 -239842 cd04377 RhoGAP_myosin_IX 2 catalytic residue 0 1 1 1 37 1 -239871 cd04406 RhoGAP_myosin_IXA 1 GTPase interaction site 0 1 1 0 37,74,78,147,150,151,176 0 -239871 cd04406 RhoGAP_myosin_IXA 2 catalytic residue 0 1 1 1 37 1 -239872 cd04407 RhoGAP_myosin_IXB 1 GTPase interaction site 0 1 1 0 37,74,78,147,150,151,176 0 -239872 cd04407 RhoGAP_myosin_IXB 2 catalytic residue 0 1 1 1 37 1 -239843 cd04378 RhoGAP_GMIP_PARG1 1 GTPase interaction site 0 1 1 0 38,75,79,162,165,166,193 0 -239843 cd04378 RhoGAP_GMIP_PARG1 2 catalytic residue 0 1 1 1 38 1 -239873 cd04408 RhoGAP_GMIP 1 GTPase interaction site 0 1 1 0 38,75,79,160,163,164,190 0 -239873 cd04408 RhoGAP_GMIP 2 catalytic residue 0 1 1 1 38 1 -239874 cd04409 RhoGAP_PARG1 1 GTPase interaction site 0 1 1 0 38,75,79,170,173,174,201 0 -239874 cd04409 RhoGAP_PARG1 2 catalytic residue 0 1 1 1 38 1 -239844 cd04379 RhoGAP_SYD1 1 GTPase interaction site 0 1 1 0 40,80,84,156,159,160,195 0 -239844 cd04379 RhoGAP_SYD1 2 catalytic residue 0 1 1 1 40 1 -239845 cd04380 RhoGAP_OCRL1 1 GTPase interaction site 0 1 1 0 72,111,115,180,183,184,210 0 -239845 cd04380 RhoGAP_OCRL1 2 catalytic residue 0 1 1 1 72 1 -239846 cd04381 RhoGap_RalBP1 1 GTPase interaction site 0 1 1 0 42,78,82,151,154,155,171 0 -239846 cd04381 RhoGap_RalBP1 2 catalytic residue 0 1 1 1 42 1 -239847 cd04382 RhoGAP_MgcRacGAP 1 GTPase interaction site 0 1 1 0 39,76,80,148,151,152,178 0 -239847 cd04382 RhoGAP_MgcRacGAP 2 catalytic residue 0 1 1 1 39 1 -239848 cd04383 RhoGAP_srGAP 1 GTPase interaction site 0 1 1 0 40,79,83,152,155,156,178 0 -239848 cd04383 RhoGAP_srGAP 2 catalytic residue 0 1 1 1 40 1 -239849 cd04384 RhoGAP_CdGAP 1 GTPase interaction site 0 1 1 0 39,79,83,152,155,156,185 0 -239849 cd04384 RhoGAP_CdGAP 2 catalytic residue 0 1 1 1 39 1 -239850 cd04385 RhoGAP_ARAP 1 GTPase interaction site 0 1 1 0 37,76,80,149,152,153,173 0 -239850 cd04385 RhoGAP_ARAP 2 catalytic residue 0 1 1 1 37 1 -239851 cd04386 RhoGAP_nadrin 1 GTPase interaction site 0 1 1 0 42,81,85,154,157,158,184 0 -239851 cd04386 RhoGAP_nadrin 2 catalytic residue 0 1 1 1 42 1 -239852 cd04387 RhoGAP_Bcr 1 GTPase interaction site 0 1 1 0 38,77,81,150,153,154,186 0 -239852 cd04387 RhoGAP_Bcr 2 catalytic residue 0 1 1 1 38 1 -239853 cd04388 RhoGAP_p85 1 GTPase interaction site 0 1 1 0 37,73,77,149,152,153,173 0 -239853 cd04388 RhoGAP_p85 2 catalytic residue 0 1 1 1 37 1 -239854 cd04389 RhoGAP_KIAA1688 1 GTPase interaction site 0 1 1 0 44,80,84,149,152,153,177 0 -239854 cd04389 RhoGAP_KIAA1688 2 catalytic residue 0 1 1 1 44 1 -239855 cd04390 RhoGAP_ARHGAP22_24_25 1 GTPase interaction site 0 1 1 0 44,81,85,156,159,160,184 0 -239855 cd04390 RhoGAP_ARHGAP22_24_25 2 catalytic residue 0 1 1 1 44 1 -239856 cd04391 RhoGAP_ARHGAP18 1 GTPase interaction site 0 1 1 0 44,83,87,156,159,160,190 0 -239856 cd04391 RhoGAP_ARHGAP18 2 catalytic residue 0 1 1 1 44 1 -239857 cd04392 RhoGAP_ARHGAP19 1 GTPase interaction site 0 1 1 0 30,68,72,153,156,157,181 0 -239857 cd04392 RhoGAP_ARHGAP19 2 catalytic residue 0 1 1 1 30 1 -239858 cd04393 RhoGAP_FAM13A1a 1 GTPase interaction site 0 1 1 0 42,79,83,153,156,157,179 0 -239858 cd04393 RhoGAP_FAM13A1a 2 catalytic residue 0 1 1 1 42 1 -239859 cd04394 RhoGAP-ARHGAP11A 1 GTPase interaction site 0 1 1 0 41,76,80,149,152,153,180 0 -239859 cd04394 RhoGAP-ARHGAP11A 2 catalytic residue 0 1 1 1 41 1 -239860 cd04395 RhoGAP_ARHGAP21 1 GTPase interaction site 0 1 1 0 40,80,84,153,156,157,181 0 -239860 cd04395 RhoGAP_ARHGAP21 2 catalytic residue 0 1 1 1 40 1 -239861 cd04396 RhoGAP_fSAC7_BAG7 1 GTPase interaction site 0 1 1 0 54,94,98,184,187,188,210 0 -239861 cd04396 RhoGAP_fSAC7_BAG7 2 catalytic residue 0 1 1 1 54 1 -239862 cd04397 RhoGAP_fLRG1 1 GTPase interaction site 0 1 1 0 49,87,91,165,168,169,192 0 -239862 cd04397 RhoGAP_fLRG1 2 catalytic residue 0 1 1 1 49 1 -239863 cd04398 RhoGAP_fRGD1 1 GTPase interaction site 0 1 1 0 38,80,84,153,156,157,177 0 -239863 cd04398 RhoGAP_fRGD1 2 catalytic residue 0 1 1 1 38 1 -239864 cd04399 RhoGAP_fRGD2 1 GTPase interaction site 0 1 1 0 39,85,89,163,166,167,193 0 -239864 cd04399 RhoGAP_fRGD2 2 catalytic residue 0 1 1 1 39 1 -239865 cd04400 RhoGAP_fBEM3 1 GTPase interaction site 0 1 1 0 45,85,89,159,162,163,179 0 -239865 cd04400 RhoGAP_fBEM3 2 catalytic residue 0 1 1 1 45 1 -239866 cd04401 RhoGAP_fMSB1 1 GTPase interaction site 0 1 1 0 31,77,81,151,154,155,185 0 -239866 cd04401 RhoGAP_fMSB1 2 catalytic residue 0 1 1 1 31 1 -239867 cd04402 RhoGAP_ARHGAP20 1 GTPase interaction site 0 1 1 0 37,73,77,146,149,150,173 0 -239867 cd04402 RhoGAP_ARHGAP20 2 catalytic residue 0 1 1 1 37 1 -239868 cd04403 RhoGAP_ARHGAP27_15_12_9 1 GTPase interaction site 0 1 1 0 38,77,81,150,153,154,177 0 -239868 cd04403 RhoGAP_ARHGAP27_15_12_9 2 catalytic residue 0 1 1 1 38 1 -239869 cd04404 RhoGAP-p50rhoGAP 1 GTPase interaction site 0 1 1 0 45,82,86,154,157,158,180 0 -239869 cd04404 RhoGAP-p50rhoGAP 2 catalytic residue 0 1 1 1 45 1 -239870 cd04405 RhoGAP_BRCC3-like 1 GTPase interaction site 0 1 1 0 60,112,116,188,191,192,213 0 -239870 cd04405 RhoGAP_BRCC3-like 2 catalytic residue 0 1 1 1 60 1 -238091 cd00160 RhoGEF 1 GTPase interaction site 0 1 1 1 6,10,105,131,132,135,136,138,139,142,143,146,147,150,176,180 2 -238092 cd00161 RICIN 1 Q-X-W motif 0 0 1 1 35,36,37,77,78,79,119,120,121 0 -238092 cd00161 RICIN 2 putative sugar binding sites 0 1 1 1 13,24,26,34,35,55,66,68,76,77,97,109,111,119 5 -319361 cd00162 RING_Ubox 1 cross-brace motif 0 0 0 1 0,3,16,18,21,24,36,39 0 -319362 cd16448 RING-H2 1 cross-brace motif 0 0 0 1 0,3,19,21,24,27,39,42 0 -319368 cd16454 RING-H2_PA-TM-RING 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319374 cd16460 RING-H2_DZIP3 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,38,41 0 -319579 cd16665 RING-H2_RNF13_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,40,43 0 -319710 cd16796 RING-H2_RNF13 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,41,44 0 -319711 cd16797 RING-H2_RNF167 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,40,43 0 -319580 cd16666 RING-H2_RNF43_like 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319712 cd16798 RING-H2_RNF43 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319713 cd16799 RING-H2_ZNRF3 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319581 cd16667 RING-H2_RNF126_like 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319714 cd16800 RING-H2_RNF115 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319715 cd16801 RING-H2_RNF126 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319582 cd16668 RING-H2_GRAIL 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319716 cd16802 RING-H2_RNF128_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319717 cd16803 RING-H2_RNF130 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319718 cd16804 RING-H2_RNF149 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319719 cd16805 RING-H2_RNF150 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319583 cd16669 RING-H2_RNF181 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319584 cd16670 RING-H2_RNF215 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319369 cd16455 RING-H2_AMFR 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,36,39 0 -319370 cd16456 RING-H2_APC11 1 cross-brace motif 0 0 0 1 3,6,31,33,36,39,53,56 0 -319371 cd16457 RING-H2_BRAP2 1 cross-brace motif 0 0 0 1 2,5,21,23,26,29,38,41 0 -319372 cd16458 RING-H2_Dmap_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,42,45 0 -319373 cd16459 RING-H2_DTX1_like 1 cross-brace motif 0 0 0 1 1,4,31,33,36,39,55,58 0 -319585 cd16671 RING-H2_DTX1_4 1 cross-brace motif 0 0 0 1 3,6,36,38,41,44,60,63 0 -319586 cd16672 RING-H2_DTX2 1 cross-brace motif 0 0 0 1 1,4,34,36,39,42,58,61 0 -319375 cd16461 RING-H2_EL5_like 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319376 cd16462 RING-H2_Pep3p_like 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,41,44 0 -319377 cd16463 RING-H2_PHR 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,50,53 0 -319378 cd16464 RING-H2_Pirh2 1 cross-brace motif 0 0 0 1 1,4,20,22,25,28,40,43 0 -319379 cd16465 RING-H2_PJA1_2 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319380 cd16466 RING-H2_RBX2 1 cross-brace motif 0 0 0 1 3,6,33,35,38,41,52,55 0 -319381 cd16467 RING-H2_RNF6_like 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319587 cd16673 RING-H2_RNF6 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319588 cd16674 RING-H2_RNF12 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319382 cd16468 RING-H2_RNF11 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319383 cd16469 RING-H2_RNF24_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319589 cd16675 RING-H2_RNF24 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319590 cd16676 RING-H2_RNF122 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319384 cd16470 RING-H2_RNF25 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,62,65 0 -319385 cd16471 RING-H2_RNF32 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,44,47 0 -319591 cd16677 RING1-H2_RNF32 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,39,42 0 -319592 cd16678 RING2-H2_RNF32 1 cross-brace motif 0 0 0 1 1,4,29,31,34,37,52,55 0 -319386 cd16472 RING-H2_RNF38_like 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,40,43 0 -319593 cd16679 RING-H2_RNF38 1 cross-brace motif 0 0 0 1 4,7,22,24,27,30,41,44 0 -319594 cd16680 RING-H2_RNF44 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,40,43 0 -319387 cd16473 RING-H2_RNF103 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,39,42 0 -319388 cd16474 RING-H2_RNF111_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319595 cd16681 RING-H2_RNF111 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319596 cd16682 RING-H2_RNF165 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319389 cd16475 RING-H2_RNF121_like 1 cross-brace motif 0 0 0 1 2,5,27,29,32,35,48,51 0 -319390 cd16476 RING-H2_RNF139_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,36,39 0 -319597 cd16683 RING-H2_RNF139 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,37,40 0 -319598 cd16684 RING-H2_RNF145 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,38,41 0 -319391 cd16477 RING-H2_RNF214 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,40,43 0 -319392 cd16478 RING-H2_Rapsyn 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,41,44 0 -319393 cd16479 RING-H2_synoviolin 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,38,41 0 -319394 cd16480 RING-H2_TRAIP 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,40,43 0 -319395 cd16481 RING-H2_TTC3 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,37,40 0 -319396 cd16482 RING-H2_UBR1_like 1 cross-brace motif 0 0 0 1 1,4,13,15,18,21,54,57 0 -319599 cd16685 RING-H2_UBR1 1 cross-brace motif 0 0 0 1 4,7,65,67,70,73,104,107 0 -319600 cd16686 RING-H2_UBR2 1 cross-brace motif 0 0 0 1 1,4,61,63,66,69,103,106 0 -319397 cd16483 RING-H2_UBR3 1 cross-brace motif 0 0 0 1 2,5,43,45,48,51,77,80 0 -319398 cd16484 RING-H2_Vps 1 cross-brace motif 0 0 0 1 1,4,22,24,27,30,41,44 0 -319601 cd16687 RING-H2_Vps8 1 cross-brace motif 0 0 0 1 2,5,24,26,29,32,50,53 0 -319602 cd16688 RING-H2_Vps11 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,37,40 0 -319603 cd16689 RING-H2_Vps18 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,32,35 0 -319604 cd16690 RING-H2_Vps41 1 cross-brace motif 0 0 0 1 4,7,27,29,32,35,44,47 0 -319399 cd16485 mRING-H2-C3H2C2D_RBX1 1 cross-brace motif 0 0 0 1 2,5,35,37,40,43,54,57 0 -319400 cd16486 mRING-H2-C3H2C2D_ZSWM2 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,39,42 0 -319401 cd16487 mRING-H2-C3DHC3_ZFPL1 1 cross-brace motif 0 0 0 1 3,6,20,22,25,28,47,50 0 -319402 cd16488 mRING-H2-C3H3C2_Mio_like 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,37,41 0 -319605 cd16691 mRING-H2-C3H3C2_Mio 1 cross-brace motif 0 0 0 1 3,6,44,46,49,52,63,68 0 -319606 cd16692 mRING-H2-C3H3C2_WDR59 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,38,42 0 -319607 cd16693 mRING-H2-C3H3C2_WDR24 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,37,41 0 -319403 cd16489 mRING-CH-C4HC2H_ZNRF 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319608 cd16694 mRING-CH-C4HC2H_ZNRF1 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319609 cd16695 mRING-CH-C4HC2H_ZNRF2 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319404 cd16490 RING-CH-C4HC3_FANCL 1 cross-brace motif 0 0 0 1 1,4,23,25,28,31,53,56 0 -319405 cd16491 RING-CH-C4HC3_LTN1 1 cross-brace motif 0 0 0 1 2,5,24,26,29,32,45,48 0 -319406 cd16492 RING-CH-C4HC3_NFX1_like 1 cross-brace motif 0 0 0 1 2,5,21,23,26,29,53,56 0 -319610 cd16696 RING-CH-C4HC3_NFX1 1 cross-brace motif 0 0 0 1 2,5,21,23,26,29,50,53 0 -319611 cd16697 RING-CH-C4HC3_NFXL1 1 cross-brace motif 0 0 0 1 2,5,21,23,26,29,58,61 0 -319407 cd16493 RING-CH-C4HC3_NSE1 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,40,43 0 -319408 cd16494 RING-CH-C4HC3_ZSWM2 1 cross-brace motif 0 0 0 1 3,6,24,26,29,32,50,53 0 -319409 cd16495 RING_CH-C4HC3_MARCH 1 cross-brace motif 0 0 0 1 0,3,20,25,28,31,47,50 0 -319612 cd16698 RING_CH-C4HC3_MARCH1_like 1 cross-brace motif 0 0 0 1 1,4,20,25,28,31,44,47 0 -319720 cd16806 RING_CH-C4HC3_MARCH1 1 cross-brace motif 0 0 0 1 2,5,21,26,29,32,45,48 0 -319721 cd16807 RING_CH-C4HC3_MARCH8 1 cross-brace motif 0 0 0 1 2,5,21,26,29,32,45,48 0 -319613 cd16699 RING_CH-C4HC3_MARCH2_like 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319722 cd16808 RING_CH-C4HC3_MARCH2 1 cross-brace motif 0 0 0 1 2,5,20,25,28,31,44,47 0 -319723 cd16809 RING_CH-C4HC3_MARCH3 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319614 cd16700 RING_CH-C4HC3_MARCH4_like 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319724 cd16810 RING_CH-C4HC3_MARCH11 1 cross-brace motif 0 0 0 1 2,5,20,25,28,31,44,47 0 -319725 cd16811 RING_CH-C4HC3_MARCH4_9 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319738 cd16824 RING_CH-C4HC3_MARCH4 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319739 cd16825 RING_CH-C4HC3_MARCH9 1 cross-brace motif 0 0 0 1 1,4,19,24,27,30,43,46 0 -319615 cd16701 RING_CH-C4HC3_MARCH5 1 cross-brace motif 0 0 0 1 2,5,23,28,31,34,53,56 0 -319616 cd16702 RING_CH-C4HC3_MARCH6 1 cross-brace motif 0 0 0 1 1,4,20,25,28,31,44,47 0 -319617 cd16703 RING_CH-C4HC3_MARCH7_like 1 cross-brace motif 0 0 0 1 4,7,24,29,32,35,56,59 0 -319726 cd16812 RING_CH-C4HC3_MARCH7 1 cross-brace motif 0 0 0 1 6,9,26,31,34,37,58,61 0 -319727 cd16813 RING_CH-C4HC3_MARCH10 1 cross-brace motif 0 0 0 1 4,7,24,29,32,35,56,59 0 -319363 cd16449 RING-HC 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,35,38 0 -319410 cd16496 RING-HC_BARD1 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,36,39 0 -319411 cd16497 RING-HC_BAR 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,38,41 0 -319412 cd16498 RING-HC_BRCA1 1 cross-brace motif 0 0 0 1 6,9,21,23,26,29,43,46 0 -319413 cd16499 RING-HC_BRE1_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319618 cd16704 RING-HC_RNF20_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319728 cd16814 RING-HC_RNF20 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319729 cd16815 RING-HC_RNF40 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319619 cd16705 RING-HC_dBre1_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319414 cd16500 RING-HC_CARP 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319620 cd16706 RING-HC_CARP1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319621 cd16707 RING-HC_CARP2 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,33,36 0 -319415 cd16501 RING-HC_CblA_like 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319416 cd16502 RING-HC_Cbl_like 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319622 cd16708 RING-HC_Cbl 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319623 cd16709 RING-HC_Cbl-b 1 cross-brace motif 0 0 0 1 19,22,34,36,39,42,54,57 0 -319624 cd16710 RING-HC_Cbl-c 1 cross-brace motif 0 0 0 1 6,9,21,23,26,29,41,44 0 -319417 cd16503 RING-HC_CHFR 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,39,42 0 -319418 cd16504 RING-HC_COP1 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,38,41 0 -319419 cd16505 RING-HC_CYHR1 1 cross-brace motif 0 0 0 1 3,6,17,21,24,27,44,47 0 -319420 cd16506 RING-HC_DTX3_like 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,36,39 0 -319625 cd16711 RING-HC_DTX3 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,36,39 0 -319626 cd16712 RING-HC_DTX3L 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,36,39 0 -319421 cd16507 RING-HC_GEFO_like 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,35,38 0 -319422 cd16508 RING-HC_HAKAI_like 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,34,37 0 -319423 cd16509 RING-HC_HLTF 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,38,41 0 -319424 cd16510 RING-HC_IAPs 1 cross-brace motif 0 0 0 1 3,6,18,20,24,27,34,37 0 -319627 cd16713 RING-HC_BIRC2_3_7 1 cross-brace motif 0 0 0 1 6,9,21,23,27,30,37,40 0 -319628 cd16714 RING-HC_BIRC4_8 1 cross-brace motif 0 0 0 1 14,17,29,31,35,38,45,48 0 -319425 cd16511 vRING-HC_IRF2BP1_like 1 cross-brace motif 0 0 0 1 2,5,19,23,26,29,45,51 0 -319629 cd16715 vRING-HC_IRF2BP1 1 cross-brace motif 0 0 0 1 2,5,19,23,26,29,45,51 0 -319630 cd16716 vRING-HC_IRF2BP2 1 cross-brace motif 0 0 0 1 2,5,19,23,26,29,45,51 0 -319631 cd16717 vRING-HC_IRF2BPL 1 cross-brace motif 0 0 0 1 2,5,19,23,26,29,45,51 0 -319426 cd16512 RING-HC_LNX3_like 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,39 0 -319632 cd16718 RING-HC_LNX3 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,39 0 -319633 cd16719 RING-HC_LNX4 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,39 0 -319427 cd16513 RING1-HC_LONFs 1 cross-brace motif 0 0 0 1 0,3,18,20,23,26,37,40 0 -319428 cd16514 RING2-HC_LONFs 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,37,40 0 -319429 cd16515 RING-HC_LRSAM1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319430 cd16516 RING-HC_malin 1 cross-brace motif 0 0 0 1 1,4,21,23,26,29,43,46 0 -319431 cd16517 RING-HC_MAT1 1 cross-brace motif 0 0 0 1 0,3,20,22,25,28,40,43 0 -319432 cd16518 RING-HC_MEX3 1 cross-brace motif 0 0 0 1 0,3,15,17,21,24,36,39 0 -319634 cd16720 RING-HC_MEX3A 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,38,41 0 -319635 cd16721 RING-HC_MEX3B 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,38,41 0 -319636 cd16722 RING-HC_MEX3C 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,38,41 0 -319637 cd16723 RING-HC_MEX3D 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,38,41 0 -319433 cd16519 RING-HC_MIBs 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319638 cd16724 RING1-HC_MIB1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319639 cd16725 RING2-HC_MIB1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319640 cd16726 RING1-HC_MIB2 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319434 cd16520 RING-HC_MIBs_like 1 cross-brace motif 0 0 0 1 1,4,15,17,20,23,30,33 0 -319641 cd16727 RING3-HC_MIB1 1 cross-brace motif 0 0 0 1 1,4,15,17,20,23,30,33 0 -319642 cd16728 RING2-HC_MIB2 1 cross-brace motif 0 0 0 1 1,4,15,17,20,23,30,33 0 -319643 cd16729 RING-HC_RGLG_plant 1 cross-brace motif 0 0 0 1 1,4,15,17,20,23,30,33 0 -319435 cd16521 RING-HC_MKRN 1 cross-brace motif 0 0 0 1 0,3,20,22,25,28,46,49 0 -319644 cd16730 RING-HC_MKRN1_3 1 cross-brace motif 0 0 0 1 3,6,27,29,32,35,53,56 0 -319645 cd16731 RING-HC_MKRN2 1 cross-brace motif 0 0 0 1 3,6,27,29,32,35,53,56 0 -319646 cd16732 RING-HC_MKRN4 1 cross-brace motif 0 0 0 1 3,6,27,29,32,35,53,56 0 -319436 cd16522 RING-HC_MSL2 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319437 cd16523 RING-HC_MYLIP 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319438 cd16524 RING-HC_NHL-1_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,26,40,43 0 -319439 cd16525 RING-HC_PCGF 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,37,40 0 -319647 cd16733 RING-HC_PCGF1 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,38,41 0 -319648 cd16734 RING-HC_PCGF2 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,38,41 0 -319649 cd16735 RING-HC_PCGF3 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,38,41 0 -319650 cd16736 RING-HC_PCGF4 1 cross-brace motif 0 0 0 1 6,9,22,24,27,30,41,44 0 -319651 cd16737 RING-HC_PCGF5 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,37,40 0 -319652 cd16738 RING-HC_PCGF6 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,39,42 0 -319440 cd16526 RING-HC_PEX2 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,38,41 0 -319441 cd16527 RING-HC_PEX10 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,38 0 -319442 cd16528 RING-HC_prokRING 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,34,37 0 -319443 cd16529 RING-HC_RAD18 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,37,40 0 -319444 cd16530 RING-HC_RAG1 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,39,42 0 -319445 cd16531 RING-HC_RING1_like 1 cross-brace motif 0 0 0 1 0,3,16,18,21,24,36,39 0 -319653 cd16739 RING-HC_RING1 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,37,40 0 -319654 cd16740 RING-HC_RING2 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,40,43 0 -319446 cd16532 RING-HC_RNFT1_like 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,38 0 -319655 cd16741 RING-HC_RNFT1 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,38 0 -319656 cd16742 RING-HC_RNFT2 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,36,39 0 -319447 cd16533 RING-HC_RNF4 1 cross-brace motif 0 0 0 1 5,8,27,29,32,35,46,49 0 -319448 cd16534 RING-HC_RNF5_like 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,38,41 0 -319657 cd16743 RING-HC_RNF5 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319658 cd16744 RING-HC_RNF185 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,38,41 0 -319659 cd16745 RING-HC_AtRMA_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319449 cd16535 RING-HC_RNF8 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,37,40 0 -319450 cd16536 RING-HC_RNF10 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,38,41 0 -319451 cd16537 RING-HC_RNF37 1 cross-brace motif 0 0 0 1 1,4,22,24,27,30,42,45 0 -319452 cd16538 RING-HC_RNF112 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319453 cd16539 RING-HC_RNF113A_B 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,36,39 0 -319454 cd16540 RING-HC_RNF114 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319455 cd16541 RING-HC_RNF123 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,36,39 0 -319456 cd16542 RING-HC_RNF125 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319457 cd16543 RING-HC_RNF135_like 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,32,35 0 -319458 cd16544 RING-HC_RNF138 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,40,43 0 -319459 cd16545 RING-HC_RNF141 1 cross-brace motif 0 0 0 1 1,4,15,17,20,23,34,37 0 -319460 cd16546 RING-HC_RNF146 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,38 0 -319461 cd16547 RING-HC_RNF151 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,34,37 0 -319462 cd16548 RING-HC_RNF152 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,40,43 0 -319463 cd16549 RING-HC_RNF166 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,39,42 0 -319464 cd16550 RING-HC_RNF168 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,35,38 0 -319465 cd16551 RING-HC_RNF169 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,36,39 0 -319466 cd16552 RING-HC_NEURL3 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,37,40 0 -319467 cd16553 RING-HC_RNF170 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,39,42 0 -319468 cd16554 RING-HC_RNF180 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,39,42 0 -319469 cd16555 RING-HC_RNF182 1 cross-brace motif 0 0 0 1 1,4,20,22,25,28,45,48 0 -319470 cd16556 RING-HC_RNF183_like 1 cross-brace motif 0 0 0 1 1,4,20,22,25,28,46,49 0 -319471 cd16557 RING-HC_RNF186 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,45,48 0 -319472 cd16558 RING-HC_RNF207 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319473 cd16559 RING-HC_RNF208 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,42,45 0 -319474 cd16560 RING-HC_RNF212_like 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,36,39 0 -319660 cd16746 RING-HC_RNF212 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,39,42 0 -319661 cd16747 RING-HC_RNF212B 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,36,39 0 -319475 cd16561 RING-HC_RNF213 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,36,39 0 -319476 cd16562 RING-HC_RNF219 1 cross-brace motif 0 0 0 1 3,6,16,20,23,26,37,40 0 -319477 cd16563 RING-HC_RNF220 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,36,39 0 -319478 cd16564 RING-HC_RNF222 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,42,45 0 -319479 cd16565 RING-HC_RNF224_like 1 cross-brace motif 0 0 0 1 1,4,20,22,25,28,44,47 0 -319480 cd16566 RING-HC_RSPRY1 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,33,36 0 -319481 cd16567 RING-HC_RAD16_like 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,39,42 0 -319482 cd16568 RING-HC_ScPSH1_like 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,40,43 0 -319483 cd16569 RING-HC_SHPRH 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,46,49 0 -319484 cd16570 RING-HC_SH3RFs 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,41,44 0 -319662 cd16748 RING-HC_SH3RF1 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,41,44 0 -319663 cd16749 RING-HC_SH3RF2 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,41,44 0 -319664 cd16750 RING-HC_SH3RF3 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,41,44 0 -319485 cd16571 RING-HC_SIAHs 1 cross-brace motif 0 0 0 1 2,5,16,20,23,26,33,36 0 -319665 cd16751 RING-HC_SIAH1 1 cross-brace motif 0 0 0 1 2,5,16,20,23,26,33,36 0 -319666 cd16752 RING-HC_SIAH2 1 cross-brace motif 0 0 0 1 2,5,16,20,23,26,33,36 0 -319486 cd16572 RING-HC_SpRad8_like 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,44,47 0 -319487 cd16573 RING-HC_TFB3_like 1 cross-brace motif 0 0 0 1 3,6,24,26,29,32,44,49 0 -319488 cd16574 RING-HC_Topors 1 cross-brace motif 0 0 0 1 0,3,16,18,21,24,35,38 0 -319489 cd16575 RING-HC_MID_C-I 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,46,49 0 -319667 cd16753 RING-HC_MID1 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,48,51 0 -319668 cd16754 RING-HC_MID2 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,46,49 0 -319490 cd16576 RING-HC_TRIM9_like_C-I 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,36,39 0 -319669 cd16755 RING-HC_TRIM9 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,45,48 0 -319670 cd16756 RING-HC_TRIM36 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,38,41 0 -319671 cd16757 RING-HC_TRIM46 1 cross-brace motif 0 0 0 1 6,9,21,23,26,29,37,40 0 -319672 cd16758 RING-HC_TRIM67 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,44,47 0 -319491 cd16577 RING-HC_MuRF_C-II 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,46,49 0 -319673 cd16759 RING-HC_MuRF1 1 cross-brace motif 0 0 0 1 5,8,21,23,26,29,57,60 0 -319674 cd16760 RING-HC_MuRF2 1 cross-brace motif 0 0 0 1 5,8,21,23,26,29,57,60 0 -319675 cd16761 RING-HC_MuRF3 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,54,57 0 -319492 cd16578 RING-HC_TRIM42_C-III 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,45,48 0 -319493 cd16579 RING-HC_PML_C-V 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,32,35 0 -319494 cd16580 RING-HC_TRIM8_C-V 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319495 cd16581 RING-HC_TRIM13_like_C-V 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,40,43 0 -319676 cd16762 RING-HC_TRIM13_C-V 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,49,52 0 -319677 cd16763 RING-HC_TRIM59_C-V 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,51,54 0 -319496 cd16582 RING-HC_TRIM31_C-V 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,37,40 0 -319497 cd16583 RING-HC_TRIM40-C-V 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,40,43 0 -319498 cd16584 RING-HC_TRIM56_C-V 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319499 cd16585 RING-HC_TIF1_C-VI 1 cross-brace motif 0 0 0 1 3,6,20,22,25,28,53,56 0 -319678 cd16764 RING-HC_TIF1alpha 1 cross-brace motif 0 0 0 1 3,6,20,22,25,28,69,72 0 -319679 cd16765 RING-HC_TIF1beta 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,53,56 0 -319680 cd16766 RING-HC_TIF1gamma 1 cross-brace motif 0 0 0 1 4,7,23,25,28,31,59,62 0 -319500 cd16586 RING-HC_TRIM2_like_C-VII 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319681 cd16767 RING-HC_TRIM2 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319682 cd16768 RING-HC_TRIM3 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319501 cd16587 RING-HC_TRIM32_C-VII 1 cross-brace motif 0 0 0 1 1,4,20,22,25,28,42,45 0 -319502 cd16588 RING-HC_TRIM45-C-VII 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,57,60 0 -319503 cd16589 RING-HC_TRIM71_C-VII 1 cross-brace motif 0 0 0 1 4,7,47,49,52,55,70,73 0 -319504 cd16590 RING-HC_TRIM4_C-IV_like 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319505 cd16591 RING-HC_TRIM5_like-C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,43,46 0 -319506 cd16592 RING-HC_TRIM7_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319507 cd16593 RING-HC_TRIM10_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,44,47 0 -319508 cd16594 RING-HC_TRIM11_like_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319509 cd16595 RING-HC_TRIM17_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,43,46 0 -319510 cd16596 RING-HC_TRIM21_C-IV 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,39,42 0 -319511 cd16597 RING-HC_TRIM25_C-IV 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319512 cd16598 RING-HC_TRIM26_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319513 cd16599 RING-HC_TRIM35_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319514 cd16600 RING-HC_TRIM38_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,46,49 0 -319515 cd16601 RING-HC_TRIM39_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319516 cd16602 RING-HC_TRIM41_like_C-IV 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,35,38 0 -319517 cd16603 RING-HC_TRIM43_like_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319518 cd16604 RING-HC_TRIM47_C-IV 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,42,45 0 -319519 cd16605 RING-HC_TRIM50_like_C-IV 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,39,42 0 -319520 cd16606 RING-HC_TRIM58_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,44,47 0 -319521 cd16607 RING-HC_TRIM60_like_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,40,43 0 -319522 cd16608 RING-HC_TRIM62_C-IV 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,44,47 0 -319523 cd16609 RING-HC_TRIM65_C-IV 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,42,45 0 -319524 cd16610 RING-HC_TRIM68_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,44,47 0 -319525 cd16611 RING-HC_TRIM69_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,39,42 0 -319526 cd16612 RING-HC_TRIM72_C-IV 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,42,45 0 -319527 cd16613 RING-HC_UHRF 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319683 cd16769 RING-HC_UHRF1 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319684 cd16770 RING-HC_UHRF2 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319528 cd16614 RING-HC_UNK_like 1 cross-brace motif 0 0 0 1 1,4,14,16,20,23,29,32 0 -319685 cd16771 RING-HC_UNK 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319686 cd16772 RING-HC_UNKL 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,33,36 0 -319529 cd16615 RING-HC_ZNF598 1 cross-brace motif 0 0 0 1 0,3,15,17,20,23,36,39 0 -319530 cd16616 mRING-HC-C4C4_Asi1p_like 1 cross-brace motif 0 0 0 1 0,3,15,17,21,24,36,39 0 -319531 cd16617 mRING-HC-C4C4_CesA_plant 1 cross-brace motif 0 0 0 1 2,5,24,26,29,32,44,47 0 -319532 cd16618 mRING-HC-C4C4_CNOT4 1 cross-brace motif 0 0 0 1 0,3,19,21,24,27,39,42 0 -319533 cd16619 mRING-HC-C4C4_TRIM37_C-VIII 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,38,41 0 -319534 cd16620 vRING-HC-C4C4_RBBP6 1 cross-brace motif 0 0 0 1 5,8,21,23,26,29,41,44 0 -319535 cd16621 vRING-HC-C4C4_RFPL1_like 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,39,42 0 -319536 cd16622 vRING-HC-C4C4_RBR_RNF217 1 cross-brace motif 0 0 0 1 0,3,14,16,20,23,41,46 0 -319537 cd16623 RING-HC_RBR_TRIAD1_like 1 cross-brace motif 0 0 0 1 0,3,17,19,22,25,44,49 0 -319687 cd16773 RING-HC_RBR_TRIAD1 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,46,51 0 -319688 cd16774 RING-HC_RBR_ANKIB1 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,46,51 0 -319538 cd16624 RING-HC_RBR_CUL9 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,46,51 0 -319539 cd16625 RING-HC_RBR_HEL2_like 1 cross-brace motif 0 0 0 1 2,5,19,21,24,27,47,52 0 -319540 cd16626 RING-HC_RBR_HHARI 1 cross-brace motif 0 0 0 1 1,4,18,20,23,26,46,51 0 -319541 cd16627 RING-HC_RBR_parkin 1 cross-brace motif 0 0 0 1 2,5,17,21,24,27,53,57 0 -319542 cd16628 RING-HC_RBR_RNF14 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,47,52 0 -319543 cd16629 RING-HC_RBR_RNF19 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,45,48 0 -319689 cd16775 RING-HC_RBR_RNF19A 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,45,48 0 -319690 cd16776 RING-HC_RBR_RNF19B 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,45,48 0 -319544 cd16630 RING-HC_RBR_RNF216 1 cross-brace motif 0 0 0 1 2,5,17,21,24,27,46,52 0 -319545 cd16631 mRING-HC-C4C4_RBR_HOIP 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,46,49 0 -319546 cd16632 mRING-HC-C4C4_RBR_RNF144 1 cross-brace motif 0 0 0 1 0,3,18,20,23,26,45,50 0 -319691 cd16777 mRING-HC-C4C4_RBR_RNF144A 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,46,51 0 -319692 cd16778 mRING-HC-C4C4_RBR_RNF144B 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,47,52 0 -319547 cd16633 mRING-HC-C3HC3D_RBR_HOIL1 1 cross-brace motif 0 0 0 1 4,7,22,24,27,30,45,49 0 -319548 cd16634 mRING-HC-C3HC3D_Nrdp1 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,38,41 0 -319549 cd16635 mRING-HC-C3HC3D_PHRF1 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,39,42 0 -319550 cd16636 mRING-HC-C3HC3D_SCAF11 1 cross-brace motif 0 0 0 1 1,4,19,21,24,27,38,41 0 -319551 cd16637 mRING-HC-C3HC3D_LNX1_like 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,37,40 0 -319693 cd16779 mRING-HC-C3HC3D_LNX1 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,37,40 0 -319694 cd16780 mRING-HC-C3HC3D_LNX2 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,39,42 0 -319552 cd16638 mRING-HC-C3HC3D_Roquin 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,39,42 0 -319695 cd16781 mRING-HC-C3HC3D_Roquin1 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,39,42 0 -319696 cd16782 mRING-HC-C3HC3D_Roquin2 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,39,42 0 -319553 cd16639 RING-HC_TRAF2 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319554 cd16640 RING-HC_TRAF3 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319555 cd16641 mRING-HC-C3HC3D_TRAF4 1 cross-brace motif 0 0 0 1 3,6,19,21,24,27,39,42 0 -319556 cd16642 mRING-HC-C3HC3D_TRAF5 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,38,41 0 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 1 cross-brace motif 0 0 0 1 3,6,18,20,23,26,38,41 0 -319558 cd16644 mRING-HC-C3HC3D_TRAF7 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,34,37 0 -319559 cd16645 mRING-HC-C3HC3D_TRIM23_C-IX 1 cross-brace motif 0 0 0 1 3,6,23,25,28,31,44,47 0 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like 1 cross-brace motif 0 0 0 1 0,3,17,19,23,26,37,40 0 -319697 cd16783 mRING-HC-C2H2C4_MDM2 1 cross-brace motif 0 0 0 1 3,6,20,22,26,29,40,43 0 -319698 cd16784 mRING-HC-C2H2C4_MDM4 1 cross-brace motif 0 0 0 1 5,8,22,24,28,31,42,45 0 -319561 cd16647 mRING-HC-C3HC5_NEU1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,37,40 0 -319699 cd16785 mRING-HC-C3HC5_NEU1A 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,38,41 0 -319700 cd16786 mRING-HC-C3HC5_NEU1B 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,37,40 0 -319562 cd16648 mRING-HC-C3HC5_MAPL 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,35,38 0 -319563 cd16649 mRING-HC-C3HC5_CGRF1_like 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,36,39 0 -319701 cd16787 mRING-HC-C3HC5_CGRF1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,32,35 0 -319702 cd16788 mRING-HC-C3HC5_RNF26 1 cross-brace motif 0 0 0 1 2,5,17,19,23,26,40,43 0 -319703 cd16789 mRING-HC-C3HC5_MGRN1_like---blasttree 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,36,39 0 -319730 cd16816 mRING-HC-C3HC5_MGRN1 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,36,39 0 -319731 cd16817 mRING-HC-C3HC5_RNF157 1 cross-brace motif 0 0 0 1 1,4,16,18,22,25,36,39 0 -319364 cd16450 mRING-C3HGC3_RFWD3 1 cross-brace motif 0 0 0 1 4,7,24,26,29,32,44,47 0 -319365 cd16451 mRING_PEX12 1 cross-brace motif 0 0 0 1 0,3,16,18,21,24,35,38 0 -319366 cd16452 SP-RING_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319564 cd16650 SP-RING_PIAS_like 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319704 cd16790 SP-RING_PIAS 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319732 cd16818 SP-RING_PIAS1 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319733 cd16819 SP-RING_PIAS2 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319734 cd16820 SP-RING_PIAS3 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319735 cd16821 SP-RING_PIAS4 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319705 cd16791 SP-RING_ZMIZ 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319736 cd16822 SP-RING_ZMIZ1 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319737 cd16823 SP-RING_ZMIZ2 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319706 cd16792 SP-RING_Siz_plant 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319707 cd16793 SP-RING_ScSiz_like 1 cross-brace motif 0 0 0 1 3,6,19,21,26,29,42,45 0 -319565 cd16651 SPL-RING_NSE2 1 cross-brace motif 0 0 0 1 2,5,18,20,23,26,40,45 0 -319566 cd16652 dRing_Rmd5p_like 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,42,45 0 -319708 cd16794 dRING_RMD5A 1 cross-brace motif 0 0 0 1 3,6,21,23,26,29,41,44 0 -319709 cd16795 dRING_RMD5B 1 cross-brace motif 0 0 0 1 2,5,20,22,25,28,40,43 0 -319567 cd16653 RING-like_Rtf2 1 cross-brace motif 0 0 0 1 2,5,21,23,26,29,38,41 0 -319367 cd16453 RING-Ubox 1 cross-brace motif 0 0 0 1 1,4,16,18,21,24,35,38 0 -319568 cd16654 RING-Ubox_CHIP 1 cross-brace motif 0 0 0 1 6,9,21,23,26,29,41,44 0 -319569 cd16655 RING-Ubox_WDSUB1_like 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -319570 cd16656 RING-Ubox_PRP19 1 cross-brace motif 0 0 0 1 1,4,17,19,22,25,36,39 0 -319571 cd16657 RING-Ubox_UBE4A 1 cross-brace motif 0 0 0 1 4,7,20,22,25,28,39,42 0 -319572 cd16658 RING-Ubox_UBE4B 1 cross-brace motif 0 0 0 1 10,13,25,27,30,33,44,47 0 -319573 cd16659 RING-Ubox_Emp 1 cross-brace motif 0 0 0 1 4,7,22,24,27,30,44,47 0 -319574 cd16660 RING-Ubox_RNF37 1 cross-brace motif 0 0 0 1 5,8,20,22,25,28,45,48 0 -319575 cd16661 RING-Ubox1_NOSIP 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,35,38 0 -319576 cd16662 RING-Ubox2_NOSIP 1 cross-brace motif 0 0 0 1 3,6,22,24,27,30,41,44 0 -319577 cd16663 RING-Ubox_PPIL2 1 cross-brace motif 0 0 0 1 4,7,19,21,24,27,38,41 0 -319578 cd16664 RING-Ubox_PUB 1 cross-brace motif 0 0 0 1 2,5,17,19,22,25,37,40 0 -119386 cd00163 RNase_A 1 catalytic site 0 1 1 1 9,38,42,68,80,116,117 1 -119386 cd00163 RNase_A 2 dimerization interface 0 1 1 0 39,71,82,97,99,101,102,104 2 -119387 cd06265 RNase_A_canonical 1 catalytic site 0 1 1 1 9,35,39,65,77,111,112 1 -119387 cd06265 RNase_A_canonical 2 dimerization interface 0 1 1 0 36,68,79,94,96,98,99,101 2 -238094 cd00164 S1_like 1 RNA binding site 0 0 1 1 5,13,23,25 3 -239898 cd04451 S1_IF1 1 RNA binding site 0 0 1 1 7,16,26,28 3 -239899 cd04452 S1_IF2_alpha 1 RNA binding site 0 0 1 1 11,19,31,33 3 -239900 cd04453 S1_RNase_E 1 RNA binding site 0 0 1 1 15,25,35,37 3 -239901 cd04454 S1_Rrp4_like 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240215 cd05789 S1_Rrp4 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240216 cd05790 S1_Rrp40 1 RNA binding site 0 0 1 1 14,22,32,34 3 -240217 cd05791 S1_CSL4 1 RNA binding site 0 0 1 1 14,22,42,44 3 -239902 cd04455 S1_NusA 1 RNA binding site 0 0 1 1 11,19,28,30 3 -239903 cd04456 S1_IF1A_like 1 RNA binding site 0 0 1 1 6,15,25,27 3 -240218 cd05792 S1_eIF1AD_like 1 RNA binding site 0 0 1 1 6,15,25,27 3 -240219 cd05793 S1_IF1A 1 RNA binding site 0 0 1 1 6,15,25,27 3 -239904 cd04457 S1_S28E 1 RNA binding site 0 0 1 1 5,21,33,35 3 -239905 cd04458 CSP_CDS 1 RNA binding site 0 0 1 1 5,15,26,28 3 -239906 cd04459 Rho_CSD 1 RNA binding site 0 0 1 1 5,13,29,31 3 -239907 cd04460 S1_RpoE 1 RNA binding site 0 0 1 1 7,15,24,26 3 -239908 cd04461 S1_Rrp5_repeat_hs8_sc7 1 RNA binding site 0 0 1 1 22,30,40,42 3 -239909 cd04462 S1_RNAPII_Rpb7 1 RNA binding site 0 0 1 1 9,17,26,28 3 -239910 cd04463 S1_EF_like 1 RNA binding site 0 0 1 1 5,13,24,26 3 -239913 cd04467 S1_aIF5A 1 RNA binding site 0 0 1 1 8,16,27,29 3 -239914 cd04468 S1_eIF5A 1 RNA binding site 0 0 1 1 8,16,28,30 3 -239915 cd04469 S1_Hex1 1 RNA binding site 0 0 1 1 7,15,25,27 3 -239916 cd04470 S1_EF-P_repeat_1 1 RNA binding site 0 0 1 1 7,15,26,28 3 -240220 cd05794 S1_EF-P_repeat_2 1 RNA binding site 0 0 1 1 5,23,32,34 3 -239911 cd04465 S1_RPS1_repeat_ec2_hs2 1 RNA binding site 0 0 1 1 8,16,25,27 3 -239912 cd04466 S1_YloQ_GTPase 1 RNA binding site 0 0 1 1 5,13,23,25 3 -239917 cd04471 S1_RNase_R 1 RNA binding site 0 0 1 1 9,17,28,30 3 -239918 cd04472 S1_PNPase 1 RNA binding site 0 0 1 1 8,16,26,28 3 -239919 cd04473 S1_RecJ_like 1 RNA binding site 0 0 1 1 24,32,42,44 3 -240189 cd05684 S1_DHX8_helicase 1 RNA binding site 0 0 1 1 8,16,29,31 3 -240190 cd05685 S1_Tex 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240191 cd05686 S1_pNO40 1 RNA binding site 0 0 1 1 11,19,30,32 3 -240192 cd05687 S1_RPS1_repeat_ec1_hs1 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240193 cd05688 S1_RPS1_repeat_ec3 1 RNA binding site 0 0 1 1 9,17,26,28 3 -240194 cd05689 S1_RPS1_repeat_ec4 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240195 cd05690 S1_RPS1_repeat_ec5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240196 cd05691 S1_RPS1_repeat_ec6 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240197 cd05692 S1_RPS1_repeat_hs4 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240198 cd05693 S1_Rrp5_repeat_hs1_sc1 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240199 cd05694 S1_Rrp5_repeat_hs2_sc2 1 RNA binding site 0 0 1 1 12,20,31,33 3 -240200 cd05695 S1_Rrp5_repeat_hs3 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240201 cd05696 S1_Rrp5_repeat_hs4 1 RNA binding site 0 0 1 1 8,18,28,30 3 -240202 cd05697 S1_Rrp5_repeat_hs5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240203 cd05698 S1_Rrp5_repeat_hs6_sc5 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240204 cd05699 S1_Rrp5_repeat_hs7 1 RNA binding site 0 0 1 1 8,16,27,29 3 -240205 cd05700 S1_Rrp5_repeat_hs9 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240206 cd05701 S1_Rrp5_repeat_hs10 1 RNA binding site 0 0 1 1 8,19,28,30 3 -240207 cd05702 S1_Rrp5_repeat_hs11_sc8 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240208 cd05703 S1_Rrp5_repeat_hs12_sc9 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240209 cd05704 S1_Rrp5_repeat_hs13 1 RNA binding site 0 0 1 1 11,20,30,32 3 -240210 cd05705 S1_Rrp5_repeat_hs14 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240211 cd05706 S1_Rrp5_repeat_sc10 1 RNA binding site 0 0 1 1 11,19,29,31 3 -240212 cd05707 S1_Rrp5_repeat_sc11 1 RNA binding site 0 0 1 1 8,16,26,28 3 -240213 cd05708 S1_Rrp5_repeat_sc12 1 RNA binding site 0 0 1 1 10,18,29,31 3 -238095 cd00165 S4 1 RNA binding surface 0 1 1 0 1,13,14,16,17,19,20,23,24,26,33,34,35,36,37,38,39,40,42 3 -238096 cd00167 SANT 1 DNA binding site 0 1 1 1 1,31,32,34,35,37,38,39,41,42,43 3 -238098 cd00169 Chemokine 1 putative receptor binding site 0 0 1 1 0,1,2,3,4,9,10,11,12,13,14,49,50,51,52,53,54,55,56,57,58 0 -238098 cd00169 Chemokine 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 11,12,13,37,39 5 -238098 cd00169 Chemokine 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 19,28,46,48,51,52,55 5 -238098 cd00169 Chemokine 4 N-loop 0 0 1 1 2,3,4,9,10,11,12,13 0 -238098 cd00169 Chemokine 5 30s-loop 0 0 1 1 20,28 0 -238098 cd00169 Chemokine 6 40s-loop 0 0 1 1 35,37 0 -238169 cd00271 Chemokine_C 1 putative receptor binding site 0 0 1 1 9,10,11,12,13,18,19,20,21,22,23,54,55,56,57,58,59,60,61,62,63 0 -238169 cd00271 Chemokine_C 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 20,21,22,42,44 5 -238169 cd00271 Chemokine_C 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 28,33,51,53,56,57,60 5 -238169 cd00271 Chemokine_C 4 N-loop 0 0 1 1 11,12,13,18,19,20,21,22 0 -238169 cd00271 Chemokine_C 5 30s-loop 0 0 1 1 29,33 0 -238169 cd00271 Chemokine_C 6 40s-loop 0 0 1 1 40,42 0 -238170 cd00272 Chemokine_CC 1 putative receptor binding site 0 0 1 1 0,1,2,3,4,9,10,11,12,13,14,47,48,49,50,51,52,53,54,55,56 0 -238170 cd00272 Chemokine_CC 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 11,12,13,35,37 5 -238170 cd00272 Chemokine_CC 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 19,26,44,46,49,50,53 5 -238170 cd00272 Chemokine_CC 4 N-loop 0 0 1 1 2,3,4,9,10,11,12,13 0 -238170 cd00272 Chemokine_CC 5 30s-loop 0 0 1 1 20,26 0 -238170 cd00272 Chemokine_CC 6 40s-loop 0 0 1 1 33,35 0 -238539 cd01119 Chemokine_CC_DCCL 1 putative receptor binding site 0 0 1 1 2,3,4,5,6,11,12,13,14,15,16,51,52,53,54,55,56,57,58,59,60 0 -238539 cd01119 Chemokine_CC_DCCL 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 13,14,15,39,41 5 -238539 cd01119 Chemokine_CC_DCCL 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 21,30,48,50,53,54,57 5 -238539 cd01119 Chemokine_CC_DCCL 4 N-loop 0 0 1 1 4,5,6,11,12,13,14,15 0 -238539 cd01119 Chemokine_CC_DCCL 5 30s-loop 0 0 1 1 22,30 0 -238539 cd01119 Chemokine_CC_DCCL 6 40s-loop 0 0 1 1 37,39 0 -238171 cd00273 Chemokine_CXC 1 putative receptor binding site 0 0 1 1 4,5,6,7,8,13,14,15,16,17,18,53,54,55,56,57,58,59,60,61,62 0 -238171 cd00273 Chemokine_CXC 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 15,16,17,41,43 5 -238171 cd00273 Chemokine_CXC 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 23,32,50,52,55,56,59 5 -238171 cd00273 Chemokine_CXC 4 N-loop 0 0 1 1 6,7,8,13,14,15,16,17 0 -238171 cd00273 Chemokine_CXC 5 30s-loop 0 0 1 1 24,32 0 -238171 cd00273 Chemokine_CXC 6 40s-loop 0 0 1 1 39,41 0 -238172 cd00274 Chemokine_CX3C 1 putative receptor binding site 0 0 1 1 10,11,12,13,14,18,19,20,21,22,23,56,57,58,59,60,61,62,63,64,65 0 -238172 cd00274 Chemokine_CX3C 2 putative glycosaminoglycan (GAG) binding site 0 0 1 1 20,21,22,44,46 5 -238172 cd00274 Chemokine_CX3C 3 putative glycosaminoglycan (GAG) binding site 0 0 1 1 28,35,53,55,58,59,62 5 -238172 cd00274 Chemokine_CX3C 4 N-loop 0 0 1 1 12,13,14,18,19,20,21,22 0 -238172 cd00274 Chemokine_CX3C 5 30s-loop 0 0 1 1 29,35 0 -238172 cd00274 Chemokine_CX3C 6 40s-loop 0 0 1 1 42,44 0 -238099 cd00170 SEC14 1 phospholipid binding pocket 0 1 1 1 21,23,25,52,67,69,84,88,92,96,99,102,104,111,118,130 5 -238099 cd00170 SEC14 2 salt bridge 0 0 1 1 97,129 0 -238100 cd00171 Sec7 1 active site/putative ARF binding site 0 1 1 1 91,92,93,94,95,96,97,98,128,129,130,131,132,133,134,135,136,137,138,139,140,141 1 -238101 cd00172 SERPIN 1 reactive center loop 0 1 1 1 317,318,319,320,339,340,341,342,343,344 0 -238998 cd02043 plant_SERPIN 1 reactive center loop 0 1 1 1 329,330,331,332,353,354,355,356,357,358 0 -238999 cd02044 ov-serpin 1 reactive center loop 0 1 1 1 322,323,324,325,342,343,344,345,346,347 0 -239012 cd02057 maspin_like 1 reactive center loop 0 1 1 1 326,327,328,329,344,345,346,347,348,349 0 -239013 cd02058 PAI-2 1 reactive center loop 0 1 1 1 330,331,332,333,352,353,354,355,356,357 0 -239014 cd02059 ovalbumin_like 1 reactive center loop 0 1 1 1 339,340,341,342,361,362,363,364,365,366 0 -239000 cd02045 antithrombin-III_like 1 reactive center loop 0 1 1 1 333,334,335,336,356,357,358,359,360,361 0 -239001 cd02046 hsp47 1 reactive center loop 0 1 1 1 322,323,324,325,341,342,343,344,345,346 0 -239002 cd02047 HCII 1 reactive center loop 0 1 1 1 387,388,389,390,407,408,409,410,411,412 0 -239003 cd02048 neuroserpin 1 reactive center loop 0 1 1 1 325,326,327,328,347,348,349,350,351,352 0 -239004 cd02049 bacterial_SERPIN 1 reactive center loop 0 1 1 1 315,316,317,318,339,340,341,342,343,344 0 -239005 cd02050 C1_inh 1 reactive center loop 0 1 1 1 309,310,311,312,327,328,329,330,331,332 0 -239006 cd02051 PAI-1_nexin-1 1 reactive center loop 0 1 1 1 329,330,331,332,349,350,351,352,353,354 0 -239007 cd02052 PEDF 1 reactive center loop 0 1 1 1 327,328,329,330,346,347,348,349,350,351 0 -239008 cd02053 alpha2AP 1 reactive center loop 0 1 1 1 308,309,310,311,326,327,328,329,330,331 0 -239009 cd02054 angiotensinogen 1 reactive center loop 0 1 1 1 326,327,328,329,344,345,346,347,348,349 0 -239010 cd02055 PZI 1 reactive center loop 0 1 1 1 320,321,322,323,340,341,342,343,344,345 0 -239011 cd02056 alpha-1-antitrypsin_like 1 reactive center loop 0 1 1 1 315,316,317,318,336,337,338,339,340,341 0 -198173 cd00173 SH2 1 phosphotyrosine binding pocket 0 1 1 1 8,26,48,50 2 -198173 cd00173 SH2 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -198174 cd09918 SH2_Nterm_SPT6_like 1 phosphotyrosine binding pocket 0 1 1 1 9,27,49,51 2 -198174 cd09918 SH2_Nterm_SPT6_like 2 hydrophobic binding pocket 0 1 1 1 50,83 2 -198175 cd09919 SH2_STAT_family 1 phosphotyrosine binding pocket 0 1 1 1 27,45,71,73 2 -198175 cd09919 SH2_STAT_family 2 hydrophobic binding pocket 0 1 1 1 72,88 2 -198235 cd10372 SH2_STAT1 1 phosphotyrosine binding pocket 0 1 1 1 27,45,73,75 2 -198235 cd10372 SH2_STAT1 2 hydrophobic binding pocket 0 1 1 1 74,90 2 -198236 cd10373 SH2_STAT2 1 phosphotyrosine binding pocket 0 1 1 1 27,45,71,73 2 -198236 cd10373 SH2_STAT2 2 hydrophobic binding pocket 0 1 1 1 72,88 2 -198237 cd10374 SH2_STAT3 1 phosphotyrosine binding pocket 0 1 1 1 37,55,82,84 2 -198237 cd10374 SH2_STAT3 2 hydrophobic binding pocket 0 1 1 1 83,99 2 -198238 cd10375 SH2_STAT4 1 phosphotyrosine binding pocket 0 1 1 1 27,45,71,73 2 -198238 cd10375 SH2_STAT4 2 hydrophobic binding pocket 0 1 1 1 72,88 2 -198239 cd10376 SH2_STAT5 1 phosphotyrosine binding pocket 0 1 1 1 27,45,69,71 2 -198239 cd10376 SH2_STAT5 2 hydrophobic binding pocket 0 1 1 1 70,86 2 -198283 cd10420 SH2_STAT5b 1 phosphotyrosine binding pocket 0 1 1 1 27,45,69,71 2 -198283 cd10420 SH2_STAT5b 2 hydrophobic binding pocket 0 1 1 1 70,86 2 -198284 cd10421 SH2_STAT5a 1 phosphotyrosine binding pocket 0 1 1 1 27,45,69,71 2 -198284 cd10421 SH2_STAT5a 2 hydrophobic binding pocket 0 1 1 1 70,86 2 -198240 cd10377 SH2_STAT6 1 phosphotyrosine binding pocket 0 1 1 1 27,45,71,73 2 -198240 cd10377 SH2_STAT6 2 hydrophobic binding pocket 0 1 1 1 72,88 2 -198176 cd09920 SH2_Cbl-b_TKB 1 phosphotyrosine binding pocket 0 1 1 1 18,38,60,62 2 -198176 cd09920 SH2_Cbl-b_TKB 2 hydrophobic binding pocket 0 1 1 1 61,74 2 -198177 cd09921 SH2_Jak_family 1 phosphotyrosine binding pocket 0 1 1 1 20,40,65,67 2 -198177 cd09921 SH2_Jak_family 2 hydrophobic binding pocket 0 1 1 1 66,94 2 -198241 cd10378 SH2_Jak1 1 phosphotyrosine binding pocket 0 1 1 1 20,40,71,73 2 -198241 cd10378 SH2_Jak1 2 hydrophobic binding pocket 0 1 1 1 72,99 2 -198242 cd10379 SH2_Jak2 1 phosphotyrosine binding pocket 0 1 1 1 20,40,65,67 2 -198242 cd10379 SH2_Jak2 2 hydrophobic binding pocket 0 1 1 1 66,94 2 -198243 cd10380 SH2_Jak3 1 phosphotyrosine binding pocket 0 1 1 1 20,40,65,67 2 -198243 cd10380 SH2_Jak3 2 hydrophobic binding pocket 0 1 1 1 66,93 2 -198244 cd10381 SH2_Jak_Tyk2 1 phosphotyrosine binding pocket 0 1 1 1 20,40,71,73 2 -198244 cd10381 SH2_Jak_Tyk2 2 hydrophobic binding pocket 0 1 1 1 72,99 2 -198178 cd09923 SH2_SOCS_family 1 phosphotyrosine binding pocket 0 1 1 1 8,26,47,49 2 -198178 cd09923 SH2_SOCS_family 2 hydrophobic binding pocket 0 1 1 1 48,78 2 -198245 cd10382 SH2_SOCS1 1 phosphotyrosine binding pocket 0 1 1 1 18,36,57,59 2 -198245 cd10382 SH2_SOCS1 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198246 cd10383 SH2_SOCS2 1 phosphotyrosine binding pocket 0 1 1 1 15,33,54,56 2 -198246 cd10383 SH2_SOCS2 2 hydrophobic binding pocket 0 1 1 1 55,88 2 -198247 cd10384 SH2_SOCS3 1 phosphotyrosine binding pocket 0 1 1 1 18,36,57,59 2 -198247 cd10384 SH2_SOCS3 2 hydrophobic binding pocket 0 1 1 1 58,91 2 -198248 cd10385 SH2_SOCS4 1 phosphotyrosine binding pocket 0 1 1 1 18,36,57,59 2 -198248 cd10385 SH2_SOCS4 2 hydrophobic binding pocket 0 1 1 1 58,88 2 -198249 cd10386 SH2_SOCS5 1 phosphotyrosine binding pocket 0 1 1 1 8,26,47,49 2 -198249 cd10386 SH2_SOCS5 2 hydrophobic binding pocket 0 1 1 1 48,78 2 -198250 cd10387 SH2_SOCS6 1 phosphotyrosine binding pocket 0 1 1 1 18,36,57,59 2 -198250 cd10387 SH2_SOCS6 2 hydrophobic binding pocket 0 1 1 1 58,87 2 -198251 cd10388 SH2_SOCS7 1 phosphotyrosine binding pocket 0 1 1 1 18,36,57,59 2 -198251 cd10388 SH2_SOCS7 2 hydrophobic binding pocket 0 1 1 1 58,88 2 -198285 cd10718 SH2_CIS 1 phosphotyrosine binding pocket 0 1 1 1 12,30,51,53 2 -198285 cd10718 SH2_CIS 2 hydrophobic binding pocket 0 1 1 1 52,85 2 -198179 cd09925 SH2_SHC 1 phosphotyrosine binding pocket 0 1 1 1 15,31,52,54 2 -198179 cd09925 SH2_SHC 2 hydrophobic binding pocket 0 1 1 1 53,78 2 -198180 cd09926 SH2_CRK_like 1 phosphotyrosine binding pocket 0 1 1 1 15,33,54,56 2 -198180 cd09926 SH2_CRK_like 2 hydrophobic binding pocket 0 1 1 1 55,86 2 -198181 cd09927 SH2_Tensin_like 1 phosphotyrosine binding pocket 0 1 1 1 11,29,67,69 2 -198181 cd09927 SH2_Tensin_like 2 hydrophobic binding pocket 0 1 1 1 68,97 2 -198182 cd09928 SH2_Cterm_SPT6_like 1 phosphotyrosine binding pocket 0 1 1 1 12,35,57,59 2 -198182 cd09928 SH2_Cterm_SPT6_like 2 hydrophobic binding pocket 0 1 1 1 58,83 2 -198183 cd09929 SH2_BLNK_SLP-76 1 phosphotyrosine binding pocket 0 1 1 1 19,38,61,63 2 -198183 cd09929 SH2_BLNK_SLP-76 2 hydrophobic binding pocket 0 1 1 1 62,94 2 -198184 cd09930 SH2_cSH2_p85_like 1 phosphotyrosine binding pocket 0 1 1 1 14,32,52,54 2 -198184 cd09930 SH2_cSH2_p85_like 2 hydrophobic binding pocket 0 1 1 1 53,80 2 -198185 cd09931 SH2_C-SH2_SHP_like 1 phosphotyrosine binding pocket 0 1 1 1 8,27,49,51 2 -198185 cd09931 SH2_C-SH2_SHP_like 2 hydrophobic binding pocket 0 1 1 1 50,76 2 -198186 cd09932 SH2_C-SH2_PLC_gamma_like 1 phosphotyrosine binding pocket 0 1 1 1 12,31,52,54 2 -198186 cd09932 SH2_C-SH2_PLC_gamma_like 2 hydrophobic binding pocket 0 1 1 1 53,78 2 -199827 cd09933 SH2_Src_family 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -199827 cd09933 SH2_Src_family 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198225 cd10362 SH2_Src_Lck 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198225 cd10362 SH2_Src_Lck 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198226 cd10363 SH2_Src_HCK 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198226 cd10363 SH2_Src_HCK 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198227 cd10364 SH2_Src_Lyn 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198227 cd10364 SH2_Src_Lyn 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198228 cd10365 SH2_Src_Src 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198228 cd10365 SH2_Src_Src 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198229 cd10366 SH2_Src_Yes 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198229 cd10366 SH2_Src_Yes 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198230 cd10367 SH2_Src_Fgr 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198230 cd10367 SH2_Src_Fgr 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198231 cd10368 SH2_Src_Fyn 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198231 cd10368 SH2_Src_Fyn 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198281 cd10418 SH2_Src_Fyn_isoform_a_like 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198281 cd10418 SH2_Src_Fyn_isoform_a_like 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198282 cd10419 SH2_Src_Fyn_isoform_b_like 1 phosphotyrosine binding pocket 0 1 1 1 11,31,57,59 2 -198282 cd10419 SH2_Src_Fyn_isoform_b_like 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -199831 cd10369 SH2_Src_Frk 1 phosphotyrosine binding pocket 0 1 1 1 11,31,52,54 2 -199831 cd10369 SH2_Src_Frk 2 hydrophobic binding pocket 0 1 1 1 53,80 2 -198233 cd10370 SH2_Src_Src42 1 phosphotyrosine binding pocket 0 1 1 1 11,31,52,54 2 -198233 cd10370 SH2_Src_Src42 2 hydrophobic binding pocket 0 1 1 1 53,80 2 -198234 cd10371 SH2_Src_Blk 1 phosphotyrosine binding pocket 0 1 1 1 11,31,56,58 2 -198234 cd10371 SH2_Src_Blk 2 hydrophobic binding pocket 0 1 1 1 57,84 2 -198188 cd09934 SH2_Tec_family 1 phosphotyrosine binding pocket 0 1 1 1 14,33,57,59 2 -198188 cd09934 SH2_Tec_family 2 hydrophobic binding pocket 0 1 1 1 58,85 2 -198259 cd10396 SH2_Tec_Itk 1 phosphotyrosine binding pocket 0 1 1 1 14,33,59,61 2 -198259 cd10396 SH2_Tec_Itk 2 hydrophobic binding pocket 0 1 1 1 60,89 2 -198260 cd10397 SH2_Tec_Btk 1 phosphotyrosine binding pocket 0 1 1 1 14,33,59,61 2 -198260 cd10397 SH2_Tec_Btk 2 hydrophobic binding pocket 0 1 1 1 60,87 2 -198261 cd10398 SH2_Tec_Txk 1 phosphotyrosine binding pocket 0 1 1 1 14,33,59,61 2 -198261 cd10398 SH2_Tec_Txk 2 hydrophobic binding pocket 0 1 1 1 60,87 2 -198262 cd10399 SH2_Tec_Bmx 1 phosphotyrosine binding pocket 0 1 1 1 14,33,59,61 2 -198262 cd10399 SH2_Tec_Bmx 2 hydrophobic binding pocket 0 1 1 1 60,87 2 -198189 cd09935 SH2_ABL 1 phosphotyrosine binding pocket 0 1 1 1 11,29,50,52 2 -198189 cd09935 SH2_ABL 2 hydrophobic binding pocket 0 1 1 1 51,78 2 -198190 cd09937 SH2_csk_like 1 phosphotyrosine binding pocket 0 1 1 1 11,29,50,52 2 -198190 cd09937 SH2_csk_like 2 hydrophobic binding pocket 0 1 1 1 51,77 2 -198191 cd09938 SH2_N-SH2_Zap70_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 9,29,50,52 2 -198191 cd09938 SH2_N-SH2_Zap70_Syk_like 2 hydrophobic binding pocket 0 1 1 1 51,78 2 -198192 cd09939 SH2_STAP_family 1 phosphotyrosine binding pocket 0 1 1 1 8,27,50,52 2 -198192 cd09939 SH2_STAP_family 2 hydrophobic binding pocket 0 1 1 1 51,79 2 -198266 cd10403 SH2_STAP1 1 phosphotyrosine binding pocket 0 1 1 1 8,27,50,52 2 -198266 cd10403 SH2_STAP1 2 hydrophobic binding pocket 0 1 1 1 51,79 2 -198267 cd10404 SH2_STAP2 1 phosphotyrosine binding pocket 0 1 1 1 8,27,52,54 2 -198267 cd10404 SH2_STAP2 2 hydrophobic binding pocket 0 1 1 1 53,81 2 -198193 cd09940 SH2_Vav_family 1 phosphotyrosine binding pocket 0 1 1 1 13,31,52,54 2 -198193 cd09940 SH2_Vav_family 2 hydrophobic binding pocket 0 1 1 1 53,80 2 -198268 cd10405 SH2_Vav1 1 phosphotyrosine binding pocket 0 1 1 1 13,31,52,54 2 -198268 cd10405 SH2_Vav1 2 hydrophobic binding pocket 0 1 1 1 53,79 2 -198269 cd10406 SH2_Vav2 1 phosphotyrosine binding pocket 0 1 1 1 13,31,52,54 2 -198269 cd10406 SH2_Vav2 2 hydrophobic binding pocket 0 1 1 1 53,79 2 -198270 cd10407 SH2_Vav3 1 phosphotyrosine binding pocket 0 1 1 1 13,31,52,54 2 -198270 cd10407 SH2_Vav3 2 hydrophobic binding pocket 0 1 1 1 53,79 2 -199828 cd09941 SH2_Grb2_like 1 phosphotyrosine binding pocket 0 1 1 1 11,30,51,53 2 -199828 cd09941 SH2_Grb2_like 2 hydrophobic binding pocket 0 1 1 1 52,78 2 -198195 cd09942 SH2_nSH2_p85_like 1 phosphotyrosine binding pocket 0 1 1 1 15,33,54,56 2 -198195 cd09942 SH2_nSH2_p85_like 2 hydrophobic binding pocket 0 1 1 1 55,81 2 -198196 cd09943 SH2_Nck_family 1 phosphotyrosine binding pocket 0 1 1 1 9,28,49,51 2 -198196 cd09943 SH2_Nck_family 2 hydrophobic binding pocket 0 1 1 1 50,75 2 -198271 cd10408 SH2_Nck1 1 phosphotyrosine binding pocket 0 1 1 1 9,28,49,51 2 -198271 cd10408 SH2_Nck1 2 hydrophobic binding pocket 0 1 1 1 50,75 2 -198272 cd10409 SH2_Nck2 1 phosphotyrosine binding pocket 0 1 1 1 9,28,49,51 2 -198272 cd10409 SH2_Nck2 2 hydrophobic binding pocket 0 1 1 1 50,75 2 -198197 cd09944 SH2_Grb7_family 1 phosphotyrosine binding pocket 0 1 1 1 13,33,54,56 2 -198197 cd09944 SH2_Grb7_family 2 hydrophobic binding pocket 0 1 1 1 55,86 2 -198276 cd10413 SH2_Grb7 1 phosphotyrosine binding pocket 0 1 1 1 13,33,54,56 2 -198276 cd10413 SH2_Grb7 2 hydrophobic binding pocket 0 1 1 1 55,86 2 -198277 cd10414 SH2_Grb14 1 phosphotyrosine binding pocket 0 1 1 1 13,33,54,56 2 -198277 cd10414 SH2_Grb14 2 hydrophobic binding pocket 0 1 1 1 55,86 2 -198278 cd10415 SH2_Grb10 1 phosphotyrosine binding pocket 0 1 1 1 13,33,54,56 2 -198278 cd10415 SH2_Grb10 2 hydrophobic binding pocket 0 1 1 1 55,86 2 -198198 cd09945 SH2_SHB_SHD_SHE_SHF_like 1 phosphotyrosine binding pocket 0 1 1 1 9,27,48,50 2 -198198 cd09945 SH2_SHB_SHD_SHE_SHF_like 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -198252 cd10389 SH2_SHB 1 phosphotyrosine binding pocket 0 1 1 1 9,27,48,50 2 -198252 cd10389 SH2_SHB 2 hydrophobic binding pocket 0 1 1 1 49,76 2 -198253 cd10390 SH2_SHD 1 phosphotyrosine binding pocket 0 1 1 1 9,27,48,50 2 -198253 cd10390 SH2_SHD 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -198254 cd10391 SH2_SHE 1 phosphotyrosine binding pocket 0 1 1 1 9,27,48,50 2 -198254 cd10391 SH2_SHE 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -198255 cd10392 SH2_SHF 1 phosphotyrosine binding pocket 0 1 1 1 9,27,48,50 2 -198255 cd10392 SH2_SHF 2 hydrophobic binding pocket 0 1 1 1 49,77 2 -198199 cd09946 SH2_HSH2_like 1 phosphotyrosine binding pocket 0 1 1 1 15,33,53,55 2 -198199 cd09946 SH2_HSH2_like 2 hydrophobic binding pocket 0 1 1 1 54,82 2 -198200 cd10337 SH2_BCAR3 1 phosphotyrosine binding pocket 0 1 1 1 14,30,51,53 2 -198200 cd10337 SH2_BCAR3 2 hydrophobic binding pocket 0 1 1 1 52,86 2 -198201 cd10338 SH2_SHA 1 phosphotyrosine binding pocket 0 1 1 1 18,36,58,60 2 -198201 cd10338 SH2_SHA 2 hydrophobic binding pocket 0 1 1 1 59,87 2 -198202 cd10339 SH2_RIN_family 1 phosphotyrosine binding pocket 0 1 1 1 18,36,61,63 2 -198202 cd10339 SH2_RIN_family 2 hydrophobic binding pocket 0 1 1 1 62,89 2 -198256 cd10393 SH2_RIN1 1 phosphotyrosine binding pocket 0 1 1 1 18,36,61,63 2 -198256 cd10393 SH2_RIN1 2 hydrophobic binding pocket 0 1 1 1 62,89 2 -198257 cd10394 SH2_RIN2 1 phosphotyrosine binding pocket 0 1 1 1 18,36,60,62 2 -198257 cd10394 SH2_RIN2 2 hydrophobic binding pocket 0 1 1 1 61,88 2 -198258 cd10395 SH2_RIN3 1 phosphotyrosine binding pocket 0 1 1 1 18,36,61,63 2 -198258 cd10395 SH2_RIN3 2 hydrophobic binding pocket 0 1 1 1 62,89 2 -198203 cd10340 SH2_N-SH2_SHP_like 1 phosphotyrosine binding pocket 0 1 1 1 8,27,48,50 2 -198203 cd10340 SH2_N-SH2_SHP_like 2 hydrophobic binding pocket 0 1 1 1 49,75 2 -199829 cd10341 SH2_N-SH2_PLC_gamma_like 1 phosphotyrosine binding pocket 0 1 1 1 14,35,56,58 2 -199829 cd10341 SH2_N-SH2_PLC_gamma_like 2 hydrophobic binding pocket 0 1 1 1 57,87 2 -198205 cd10342 SH2_SAP1 1 phosphotyrosine binding pocket 0 1 1 1 11,30,51,53 2 -198205 cd10342 SH2_SAP1 2 hydrophobic binding pocket 0 1 1 1 52,84 2 -198263 cd10400 SH2_SAP1a 1 phosphotyrosine binding pocket 0 1 1 1 11,30,51,53 2 -198263 cd10400 SH2_SAP1a 2 hydrophobic binding pocket 0 1 1 1 52,84 2 -198206 cd10343 SH2_SHIP 1 phosphotyrosine binding pocket 0 1 1 1 11,30,51,53 2 -198206 cd10343 SH2_SHIP 2 hydrophobic binding pocket 0 1 1 1 52,84 2 -198207 cd10344 SH2_SLAP 1 phosphotyrosine binding pocket 0 1 1 1 18,38,64,66 2 -198207 cd10344 SH2_SLAP 2 hydrophobic binding pocket 0 1 1 1 65,92 2 -198208 cd10345 SH2_C-SH2_Zap70_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 8,28,48,50 2 -198208 cd10345 SH2_C-SH2_Zap70_Syk_like 2 hydrophobic binding pocket 0 1 1 1 49,76 2 -198264 cd10401 SH2_C-SH2_Syk_like 1 phosphotyrosine binding pocket 0 1 1 1 11,31,51,53 2 -198264 cd10401 SH2_C-SH2_Syk_like 2 hydrophobic binding pocket 0 1 1 1 52,79 2 -198265 cd10402 SH2_C-SH2_Zap70 1 phosphotyrosine binding pocket 0 1 1 1 18,38,58,60 2 -198265 cd10402 SH2_C-SH2_Zap70 2 hydrophobic binding pocket 0 1 1 1 59,86 2 -198209 cd10346 SH2_SH2B_family 1 phosphotyrosine binding pocket 0 1 1 1 16,37,58,60 2 -198209 cd10346 SH2_SH2B_family 2 hydrophobic binding pocket 0 1 1 1 59,85 2 -198273 cd10410 SH2_SH2B1 1 phosphotyrosine binding pocket 0 1 1 1 16,37,58,60 2 -198273 cd10410 SH2_SH2B1 2 hydrophobic binding pocket 0 1 1 1 59,85 2 -198274 cd10411 SH2_SH2B2 1 phosphotyrosine binding pocket 0 1 1 1 16,37,58,60 2 -198274 cd10411 SH2_SH2B2 2 hydrophobic binding pocket 0 1 1 1 59,85 2 -198275 cd10412 SH2_SH2B3 1 phosphotyrosine binding pocket 0 1 1 1 16,37,58,60 2 -198275 cd10412 SH2_SH2B3 2 hydrophobic binding pocket 0 1 1 1 59,85 2 -198210 cd10347 SH2_Nterm_shark_like 1 phosphotyrosine binding pocket 0 1 1 1 9,29,50,52 2 -198210 cd10347 SH2_Nterm_shark_like 2 hydrophobic binding pocket 0 1 1 1 51,79 2 -198211 cd10348 SH2_Cterm_shark_like 1 phosphotyrosine binding pocket 0 1 1 1 8,28,49,51 2 -198211 cd10348 SH2_Cterm_shark_like 2 hydrophobic binding pocket 0 1 1 1 50,77 2 -199830 cd10349 SH2_SH2D2A_SH2D7 1 phosphotyrosine binding pocket 0 1 1 1 8,26,46,48 2 -199830 cd10349 SH2_SH2D2A_SH2D7 2 hydrophobic binding pocket 0 1 1 1 47,75 2 -198279 cd10416 SH2_SH2D2A 1 phosphotyrosine binding pocket 0 1 1 1 15,33,53,55 2 -198279 cd10416 SH2_SH2D2A 2 hydrophobic binding pocket 0 1 1 1 54,82 2 -199832 cd10417 SH2_SH2D7 1 phosphotyrosine binding pocket 0 1 1 1 15,33,53,55 2 -199832 cd10417 SH2_SH2D7 2 hydrophobic binding pocket 0 1 1 1 54,82 2 -198213 cd10350 SH2_SH2D4A 1 phosphotyrosine binding pocket 0 1 1 1 15,33,53,55 2 -198213 cd10350 SH2_SH2D4A 2 hydrophobic binding pocket 0 1 1 1 54,82 2 -198214 cd10351 SH2_SH2D4B 1 phosphotyrosine binding pocket 0 1 1 1 15,33,53,55 2 -198214 cd10351 SH2_SH2D4B 2 hydrophobic binding pocket 0 1 1 1 54,82 2 -198215 cd10352 SH2_a2chimerin_b2chimerin 1 phosphotyrosine binding pocket 0 1 1 1 14,32,53,55 2 -198215 cd10352 SH2_a2chimerin_b2chimerin 2 hydrophobic binding pocket 0 1 1 1 54,78 2 -198216 cd10353 SH2_Nterm_RasGAP 1 phosphotyrosine binding pocket 0 1 1 1 27,46,67,69 2 -198216 cd10353 SH2_Nterm_RasGAP 2 hydrophobic binding pocket 0 1 1 1 68,93 2 -198217 cd10354 SH2_Cterm_RasGAP 1 phosphotyrosine binding pocket 0 1 1 1 8,27,48,50 2 -198217 cd10354 SH2_Cterm_RasGAP 2 hydrophobic binding pocket 0 1 1 1 49,75 2 -198218 cd10355 SH2_DAPP1_BAM32_like 1 phosphotyrosine binding pocket 0 1 1 1 14,33,54,56 2 -198218 cd10355 SH2_DAPP1_BAM32_like 2 hydrophobic binding pocket 0 1 1 1 55,80 2 -198219 cd10356 SH2_ShkA_ShkC 1 phosphotyrosine binding pocket 0 1 1 1 18,36,58,60 2 -198219 cd10356 SH2_ShkA_ShkC 2 hydrophobic binding pocket 0 1 1 1 59,84 2 -198220 cd10357 SH2_ShkD_ShkE 1 phosphotyrosine binding pocket 0 1 1 1 18,36,59,61 2 -198220 cd10357 SH2_ShkD_ShkE 2 hydrophobic binding pocket 0 1 1 1 60,85 2 -198221 cd10358 SH2_PTK6_Brk 1 phosphotyrosine binding pocket 0 1 1 1 10,30,51,53 2 -198221 cd10358 SH2_PTK6_Brk 2 hydrophobic binding pocket 0 1 1 1 52,79 2 -198222 cd10359 SH2_SH3BP2 1 phosphotyrosine binding pocket 0 1 1 1 8,32,54,56 2 -198222 cd10359 SH2_SH3BP2 2 hydrophobic binding pocket 0 1 1 1 55,81 2 -198223 cd10360 SH2_Srm 1 phosphotyrosine binding pocket 0 1 1 1 8,28,49,51 2 -198223 cd10360 SH2_Srm 2 hydrophobic binding pocket 0 1 1 1 50,77 2 -198224 cd10361 SH2_Fps_family 1 phosphotyrosine binding pocket 0 1 1 1 14,30,54,56 2 -198224 cd10361 SH2_Fps_family 2 hydrophobic binding pocket 0 1 1 1 55,81 2 -212690 cd00174 SH3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212691 cd11757 SH3_SH3BP4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212692 cd11758 SH3_CRK_N 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,48,50,51 2 -212693 cd11759 SH3_CRK_C 1 peptide ligand binding site 0 1 1 1 7,9,12,18,36,37,50,52,53 2 -212694 cd11760 SH3_MIA_like 1 peptide ligand binding site 0 1 1 1 17,19,22,26,47,48,64,66,67 2 -212823 cd11890 MIA 1 peptide ligand binding site 0 1 1 1 19,21,24,28,49,50,71,73,74 2 -212824 cd11891 MIAL 1 peptide ligand binding site 0 1 1 1 17,19,22,26,49,50,71,73,74 2 -212825 cd11892 SH3_MIA2 1 peptide ligand binding site 0 1 1 1 17,19,22,26,47,48,61,63,64 2 -212826 cd11893 SH3_MIA3 1 peptide ligand binding site 0 1 1 1 17,19,22,26,47,48,61,63,64 2 -212695 cd11761 SH3_FCHSD_1 1 peptide ligand binding site 0 1 1 1 7,9,12,16,35,36,50,52,53 2 -212696 cd11762 SH3_FCHSD_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212827 cd11894 SH3_FCHSD2_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,49,51,52 2 -212828 cd11895 SH3_FCHSD1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212697 cd11763 SH3_SNX9_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -212829 cd11896 SH3_SNX33 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -212830 cd11897 SH3_SNX18 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -212831 cd11898 SH3_SNX9 1 peptide ligand binding site 0 1 1 1 5,7,10,15,34,35,49,51,52 2 -212698 cd11764 SH3_Eps8 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,46,48,49 2 -212699 cd11765 SH3_Nck_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,46,48,49 2 -212832 cd11899 SH3_Nck2_1 1 peptide ligand binding site 0 1 1 1 9,11,14,18,35,36,50,52,53 2 -212833 cd11900 SH3_Nck1_1 1 peptide ligand binding site 0 1 1 1 8,10,13,17,34,35,49,51,52 2 -212700 cd11766 SH3_Nck_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212834 cd11901 SH3_Nck1_2 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,48,50,51 2 -212835 cd11902 SH3_Nck2_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212701 cd11767 SH3_Nck_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,49,51,52 2 -212836 cd11903 SH3_Nck2_3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,35,36,50,52,53 2 -212837 cd11904 SH3_Nck1_3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,35,36,50,52,53 2 -212702 cd11768 SH3_Tec_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212838 cd11905 SH3_Tec 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,48,50,51 2 -212839 cd11906 SH3_BTK 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,48,50,51 2 -212840 cd11907 SH3_TXK 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,48,50,51 2 -212841 cd11908 SH3_ITK 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,48,50,51 2 -212703 cd11769 SH3_CSK 1 peptide ligand binding site 0 1 1 1 7,9,12,16,35,36,50,52,53 2 -212704 cd11770 SH3_Nephrocystin 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212705 cd11771 SH3_Pex13p_fungal 1 peptide ligand binding site 0 1 1 1 5,7,10,15,38,39,53,55,56 2 -212706 cd11772 SH3_OSTF1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212707 cd11773 SH3_Sla1p_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,53,55,56 2 -212708 cd11774 SH3_Sla1p_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212709 cd11775 SH3_Sla1p_3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,50,52,53 2 -212710 cd11776 SH3_PI3K_p85 1 peptide ligand binding site 0 1 1 1 6,8,11,15,48,49,64,66,67 2 -212842 cd11909 SH3_PI3K_p85beta 1 peptide ligand binding site 0 1 1 1 6,8,11,15,48,49,64,66,67 2 -212843 cd11910 SH3_PI3K_p85alpha 1 peptide ligand binding site 0 1 1 1 7,9,12,16,49,50,65,67,68 2 -212711 cd11777 SH3_CIP4_Bzz1_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -212844 cd11911 SH3_CIP4-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -213004 cd12071 SH3_FBP17 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,49,51,52 2 -213005 cd12072 SH3_FNBP1L 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,49,51,52 2 -212845 cd11912 SH3_Bzz1_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,48,50,51 2 -212712 cd11778 SH3_Bzz1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212713 cd11779 SH3_Irsp53_BAIAP2L 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,50,52,53 2 -212846 cd11913 SH3_BAIAP2L1 1 peptide ligand binding site 0 1 1 1 6,8,11,16,35,36,51,53,54 2 -212847 cd11914 SH3_BAIAP2L2 1 peptide ligand binding site 0 1 1 1 6,8,11,16,35,36,51,53,54 2 -212848 cd11915 SH3_Irsp53 1 peptide ligand binding site 0 1 1 1 6,8,11,16,35,36,51,53,54 2 -212714 cd11780 SH3_Sorbs_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212849 cd11916 SH3_Sorbs1_3 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,50,52,53 2 -212850 cd11917 SH3_Sorbs2_3 1 peptide ligand binding site 0 1 1 1 10,12,15,19,37,38,53,55,56 2 -212851 cd11918 SH3_Vinexin_3 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,50,52,53 2 -212715 cd11781 SH3_Sorbs_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212852 cd11919 SH3_Sorbs1_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212853 cd11920 SH3_Sorbs2_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212854 cd11921 SH3_Vinexin_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212716 cd11782 SH3_Sorbs_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212855 cd11922 SH3_Sorbs1_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212856 cd11923 SH3_Sorbs2_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212857 cd11924 SH3_Vinexin_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212717 cd11783 SH3_SH3RF_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212858 cd11925 SH3_SH3RF3_3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212859 cd11926 SH3_SH3RF1_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212718 cd11784 SH3_SH3RF2_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212719 cd11785 SH3_SH3RF_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212720 cd11786 SH3_SH3RF_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212860 cd11927 SH3_SH3RF1_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212861 cd11928 SH3_SH3RF3_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212862 cd11929 SH3_SH3RF2_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212721 cd11787 SH3_SH3RF_2 1 peptide ligand binding site 0 1 1 1 5,7,10,17,35,36,49,51,52 2 -212863 cd11930 SH3_SH3RF1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,18,36,37,50,52,53 2 -212864 cd11931 SH3_SH3RF3_2 1 peptide ligand binding site 0 1 1 1 5,7,10,18,36,37,50,52,53 2 -212865 cd11932 SH3_SH3RF2_2 1 peptide ligand binding site 0 1 1 1 5,7,10,20,38,39,52,54,55 2 -212722 cd11788 SH3_RasGAP 1 peptide ligand binding site 0 1 1 1 7,9,12,17,35,36,51,53,54 2 -212723 cd11789 SH3_Nebulin_family_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212866 cd11933 SH3_Nebulin_C 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,50,52,53 2 -212867 cd11934 SH3_Lasp1_C 1 peptide ligand binding site 0 1 1 1 8,10,13,17,35,36,51,53,54 2 -212868 cd11935 SH3_Nebulette_C 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212724 cd11790 SH3_Amphiphysin 1 peptide ligand binding site 0 1 1 1 8,10,13,17,40,41,56,58,59 2 -213015 cd12139 SH3_Bin1 1 peptide ligand binding site 0 1 1 1 8,10,13,17,40,41,64,66,67 2 -213016 cd12140 SH3_Amphiphysin_I 1 peptide ligand binding site 0 1 1 1 8,10,13,17,40,41,64,66,67 2 -212725 cd11791 SH3_UBASH3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,52,54,55 2 -212869 cd11936 SH3_UBASH3B 1 peptide ligand binding site 0 1 1 1 7,9,12,16,38,39,54,56,57 2 -212870 cd11937 SH3_UBASH3A 1 peptide ligand binding site 0 1 1 1 6,8,11,15,37,38,53,55,56 2 -212726 cd11792 SH3_Fut8 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212727 cd11793 SH3_ephexin1_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212871 cd11938 SH3_ARHGEF16_26 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212872 cd11939 SH3_ephexin1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212873 cd11940 SH3_ARHGEF5_19 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212728 cd11794 SH3_DNMBP_N1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212729 cd11795 SH3_DNMBP_N2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212730 cd11796 SH3_DNMBP_N3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212731 cd11797 SH3_DNMBP_N4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212732 cd11798 SH3_DNMBP_C1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212733 cd11799 SH3_ARHGEF37_C1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212734 cd11800 SH3_DNMBP_C2_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212874 cd11941 SH3_ARHGEF37_C2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -213017 cd12141 SH3_DNMBP_C2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,50,52,53 2 -212735 cd11801 SH3_JIP1_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212875 cd11942 SH3_JIP2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212876 cd11943 SH3_JIP1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212736 cd11802 SH3_Endophilin_B 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212877 cd11944 SH3_Endophilin_B2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212878 cd11945 SH3_Endophilin_B1 1 peptide ligand binding site 0 1 1 1 9,11,14,18,38,39,52,54,55 2 -212737 cd11803 SH3_Endophilin_A 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212738 cd11804 SH3_GRB2_like_N 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212879 cd11946 SH3_GRB2_N 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,48,50,51 2 -212880 cd11947 SH3_GRAP2_N 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212881 cd11948 SH3_GRAP_N 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212739 cd11805 SH3_GRB2_like_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212882 cd11949 SH3_GRB2_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212883 cd11950 SH3_GRAP2_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212884 cd11951 SH3_GRAP_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212740 cd11806 SH3_PRMT2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212741 cd11807 SH3_ASPP 1 peptide ligand binding site 0 1 1 1 6,8,11,15,36,37,50,52,53 2 -212885 cd11952 SH3_iASPP 1 peptide ligand binding site 0 1 1 1 6,8,11,15,35,36,49,51,52 2 -212886 cd11953 SH3_ASPP2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,36,37,50,52,53 2 -212887 cd11954 SH3_ASPP1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,36,37,50,52,53 2 -212742 cd11808 SH3_Alpha_Spectrin 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212743 cd11809 SH3_srGAP 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212888 cd11955 SH3_srGAP1-3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212889 cd11956 SH3_srGAP4 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,48,50,51 2 -212744 cd11810 SH3_RUSC1_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212890 cd11957 SH3_RUSC2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212891 cd11958 SH3_RUSC1 1 peptide ligand binding site 0 1 1 1 5,7,10,13,31,32,45,47,48 2 -212745 cd11811 SH3_CHK 1 peptide ligand binding site 0 1 1 1 7,9,12,16,35,36,51,53,54 2 -212746 cd11812 SH3_AHI-1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212747 cd11813 SH3_SGSM3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212748 cd11814 SH3_Eve1_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212749 cd11815 SH3_Eve1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212750 cd11816 SH3_Eve1_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212751 cd11817 SH3_Eve1_4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212752 cd11818 SH3_Eve1_5 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212753 cd11819 SH3_Cortactin_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212892 cd11959 SH3_Cortactin 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -213006 cd12073 SH3_HS1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212893 cd11960 SH3_Abp1_eu 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212894 cd11961 SH3_Abp1_fungi_C2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212895 cd11962 SH3_Abp1_fungi_C1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212754 cd11820 SH3_STAM 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212896 cd11963 SH3_STAM2 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,48,50,51 2 -212897 cd11964 SH3_STAM1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212755 cd11821 SH3_ASAP 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,49,51,52 2 -212898 cd11965 SH3_ASAP1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,49,51,52 2 -212899 cd11966 SH3_ASAP2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,49,51,52 2 -212756 cd11822 SH3_SASH_like 1 peptide ligand binding site 0 1 1 1 5,7,10,16,34,35,48,50,51 2 -212900 cd11967 SH3_SASH1 1 peptide ligand binding site 0 1 1 1 6,8,11,17,35,36,49,51,52 2 -212901 cd11968 SH3_SASH3 1 peptide ligand binding site 0 1 1 1 6,8,11,17,35,36,49,51,52 2 -212757 cd11823 SH3_Nostrin 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212758 cd11824 SH3_PSTPIP1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212759 cd11825 SH3_PLCgamma 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212902 cd11969 SH3_PLCgamma2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212903 cd11970 SH3_PLCgamma1 1 peptide ligand binding site 0 1 1 1 9,11,14,18,36,37,51,53,54 2 -212760 cd11826 SH3_Abi 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212904 cd11971 SH3_Abi1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212905 cd11972 SH3_Abi2 1 peptide ligand binding site 0 1 1 1 8,10,13,17,35,36,49,51,52 2 -212761 cd11827 SH3_MyoIe_If_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212762 cd11828 SH3_ARHGEF9_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212906 cd11973 SH3_ASEF 1 peptide ligand binding site 0 1 1 1 23,25,28,32,50,51,64,66,67 2 -212907 cd11974 SH3_ASEF2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212908 cd11975 SH3_ARHGEF9 1 peptide ligand binding site 0 1 1 1 10,12,15,19,37,38,51,53,54 2 -212763 cd11829 SH3_GAS7 1 peptide ligand binding site 0 1 1 1 5,7,10,15,33,34,47,49,50 2 -212764 cd11830 SH3_VAV_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212909 cd11976 SH3_VAV1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212910 cd11977 SH3_VAV2_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,35,36,49,51,52 2 -212911 cd11978 SH3_VAV3_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,48,50,51 2 -212765 cd11831 SH3_VAV_1 1 peptide ligand binding site 0 1 1 1 5,7,10,20,39,40,55,57,58 2 -212912 cd11979 SH3_VAV1_1 1 peptide ligand binding site 0 1 1 1 5,7,10,20,39,40,55,57,58 2 -212913 cd11980 SH3_VAV2_1 1 peptide ligand binding site 0 1 1 1 5,7,10,18,37,38,53,55,56 2 -212914 cd11981 SH3_VAV3_1 1 peptide ligand binding site 0 1 1 1 5,7,10,20,39,40,55,57,58 2 -212766 cd11832 SH3_Shank 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212915 cd11982 SH3_Shank1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212916 cd11983 SH3_Shank2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212917 cd11984 SH3_Shank3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212767 cd11833 SH3_Stac_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212918 cd11985 SH3_Stac2_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212919 cd11986 SH3_Stac3_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212768 cd11834 SH3_Stac_2 1 peptide ligand binding site 0 1 1 1 5,7,10,15,33,34,47,49,50 2 -212769 cd11835 SH3_ARHGAP32_33 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,49,51,52 2 -212770 cd11836 SH3_Intersectin_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212920 cd11987 SH3_Intersectin1_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212921 cd11988 SH3_Intersectin2_1 1 peptide ligand binding site 0 1 1 1 7,9,12,16,36,37,50,52,53 2 -212771 cd11837 SH3_Intersectin_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,46,48,49 2 -212922 cd11989 SH3_Intersectin1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212923 cd11990 SH3_Intersectin2_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212772 cd11838 SH3_Intersectin_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212924 cd11991 SH3_Intersectin1_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212925 cd11992 SH3_Intersectin2_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,45,47,48 2 -212773 cd11839 SH3_Intersectin_4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,51,53,54 2 -212926 cd11993 SH3_Intersectin1_4 1 peptide ligand binding site 0 1 1 1 9,11,14,18,36,37,55,57,58 2 -212927 cd11994 SH3_Intersectin2_4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,51,53,54 2 -212774 cd11840 SH3_Intersectin_5 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212928 cd11995 SH3_Intersectin1_5 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212929 cd11996 SH3_Intersectin2_5 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212775 cd11841 SH3_SH3YL1_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212776 cd11842 SH3_Ysc84p_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212777 cd11843 SH3_PACSIN 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212930 cd11997 SH3_PACSIN3 1 peptide ligand binding site 0 1 1 1 7,9,12,16,35,36,50,52,53 2 -212931 cd11998 SH3_PACSIN1-2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,49,51,52 2 -212932 cd11999 SH3_PACSIN_like 1 peptide ligand binding site 0 1 1 1 7,9,12,16,35,36,50,52,53 2 -212778 cd11844 SH3_CAS 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,49,51,52 2 -212933 cd12000 SH3_CASS4 1 peptide ligand binding site 0 1 1 1 6,8,11,15,36,37,50,52,53 2 -212934 cd12001 SH3_BCAR1 1 peptide ligand binding site 0 1 1 1 8,10,13,17,38,39,52,54,55 2 -212935 cd12002 SH3_NEDD9 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,49,51,52 2 -212936 cd12003 SH3_EFS 1 peptide ligand binding site 0 1 1 1 6,8,11,15,36,37,50,52,53 2 -212779 cd11845 SH3_Src_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212781 cd11847 SH3_Brk 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,51,53,54 2 -212937 cd12004 SH3_Lyn 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212938 cd12005 SH3_Lck 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212939 cd12006 SH3_Fyn_Yrk 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212940 cd12007 SH3_Yes 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,49,51,52 2 -212941 cd12008 SH3_Src 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212942 cd12009 SH3_Blk 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212780 cd11846 SH3_Srms 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212782 cd11848 SH3_SLAP-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212943 cd12010 SH3_SLAP 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212944 cd12011 SH3_SLAP2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,47,49,50 2 -212783 cd11849 SH3_SPIN90 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,47,49,50 2 -212784 cd11850 SH3_Abl 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,49,51,52 2 -212785 cd11851 SH3_RIM-BP 1 peptide ligand binding site 0 1 1 1 5,7,10,21,40,41,55,57,58 2 -212945 cd12012 SH3_RIM-BP_2 1 peptide ligand binding site 0 1 1 1 5,7,10,22,41,42,55,57,58 2 -212946 cd12013 SH3_RIM-BP_3 1 peptide ligand binding site 0 1 1 1 5,7,10,21,40,41,54,56,57 2 -212947 cd12014 SH3_RIM-BP_1 1 peptide ligand binding site 0 1 1 1 5,7,10,21,40,41,55,57,58 2 -212786 cd11852 SH3_Kalirin_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,35,36,55,57,58 2 -212787 cd11853 SH3_Kalirin_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,52,54,55 2 -212788 cd11854 SH3_Fus1p 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,50,52,53 2 -212789 cd11855 SH3_Sho1p 1 peptide ligand binding site 0 1 1 1 5,7,10,16,33,34,48,50,51 2 -212790 cd11856 SH3_p47phox_like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212792 cd11858 SH3_Myosin-I_fungi 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212948 cd12015 SH3_Tks_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -213007 cd12074 SH3_Tks5_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -213008 cd12075 SH3_Tks4_1 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212949 cd12016 SH3_Tks_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -213009 cd12076 SH3_Tks4_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -213010 cd12077 SH3_Tks5_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212950 cd12017 SH3_Tks_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -213011 cd12078 SH3_Tks4_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -213012 cd12079 SH3_Tks5_3 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212951 cd12018 SH3_Tks4_4 1 peptide ligand binding site 0 1 1 1 5,7,10,13,31,32,49,51,52 2 -212952 cd12019 SH3_Tks5_4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212953 cd12020 SH3_Tks5_5 1 peptide ligand binding site 0 1 1 1 5,7,10,13,31,32,49,51,52 2 -212954 cd12021 SH3_p47phox_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212955 cd12022 SH3_p47phox_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212956 cd12023 SH3_NoxO1_1 1 peptide ligand binding site 0 1 1 1 5,7,10,16,34,35,49,51,52 2 -212957 cd12024 SH3_NoxO1_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212958 cd12025 SH3_Obscurin_like 1 peptide ligand binding site 0 1 1 1 7,9,12,18,36,37,56,58,59 2 -212791 cd11857 SH3_DBS 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212793 cd11859 SH3_ZO 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,55,57,58 2 -212959 cd12026 SH3_ZO-1 1 peptide ligand binding site 0 1 1 1 8,10,13,17,38,39,58,60,61 2 -212960 cd12027 SH3_ZO-2 1 peptide ligand binding site 0 1 1 1 9,11,14,18,39,40,56,58,59 2 -212961 cd12028 SH3_ZO-3 1 peptide ligand binding site 0 1 1 1 8,10,13,17,38,39,58,60,61 2 -212794 cd11860 SH3_DLG5 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,55,57,58 2 -212795 cd11861 SH3_DLG-like 1 peptide ligand binding site 0 1 1 1 5,7,10,19,37,38,57,59,60 2 -212962 cd12029 SH3_DLG3 1 peptide ligand binding site 0 1 1 1 8,10,13,22,40,41,60,62,63 2 -212963 cd12030 SH3_DLG4 1 peptide ligand binding site 0 1 1 1 7,9,12,21,39,40,59,61,62 2 -212964 cd12031 SH3_DLG1 1 peptide ligand binding site 0 1 1 1 8,10,13,22,40,41,60,62,63 2 -212965 cd12032 SH3_DLG2 1 peptide ligand binding site 0 1 1 1 11,13,16,25,43,44,63,65,66 2 -212796 cd11862 SH3_MPP 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -212966 cd12033 SH3_MPP7 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -212967 cd12034 SH3_MPP4 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -212968 cd12035 SH3_MPP1-like 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -213013 cd12080 SH3_MPP1 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -213014 cd12081 SH3_CASK 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -212969 cd12036 SH3_MPP5 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,59,61,62 2 -212970 cd12037 SH3_MPP2 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,55,57,58 2 -212971 cd12038 SH3_MPP6 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,56,58,59 2 -212972 cd12039 SH3_MPP3 1 peptide ligand binding site 0 1 1 1 5,7,10,21,39,40,57,59,60 2 -212797 cd11863 SH3_CACNB 1 peptide ligand binding site 0 1 1 1 6,8,11,22,40,41,57,59,60 2 -212973 cd12040 SH3_CACNB2 1 peptide ligand binding site 0 1 1 1 11,13,16,27,45,46,62,64,65 2 -212974 cd12041 SH3_CACNB1 1 peptide ligand binding site 0 1 1 1 10,12,15,26,44,45,61,63,64 2 -212975 cd12042 SH3_CACNB3 1 peptide ligand binding site 0 1 1 1 10,12,15,26,44,45,61,63,64 2 -212976 cd12043 SH3_CACNB4 1 peptide ligand binding site 0 1 1 1 10,12,15,26,44,45,61,63,64 2 -212798 cd11864 SH3_PEX13_eumet 1 peptide ligand binding site 0 1 1 1 5,7,10,14,36,37,51,53,54 2 -212799 cd11865 SH3_Nbp2-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -212800 cd11866 SH3_SKAP1-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212977 cd12044 SH3_SKAP1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212978 cd12045 SH3_SKAP2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212801 cd11867 hSH3_ADAP 1 peptide ligand binding site 0 1 1 1 27,29,32,37,55,56,70,72,73 2 -212802 cd11869 SH3_p40phox 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212803 cd11870 SH3_p67phox-like_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212979 cd12046 SH3_p67phox_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212980 cd12047 SH3_Noxa1_C 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212804 cd11871 SH3_p67phox_N 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212805 cd11872 SH3_DOCK_AB 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212981 cd12048 SH3_DOCK3_B 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212982 cd12049 SH3_DOCK4_B 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212983 cd12050 SH3_DOCK2_A 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212984 cd12051 SH3_DOCK1_5_A 1 peptide ligand binding site 0 1 1 1 5,7,10,14,31,32,48,50,51 2 -212806 cd11873 SH3_CD2AP-like_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212985 cd12052 SH3_CIN85_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212986 cd12053 SH3_CD2AP_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212807 cd11874 SH3_CD2AP-like_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212987 cd12054 SH3_CD2AP_2 1 peptide ligand binding site 0 1 1 1 6,8,11,15,33,34,47,49,50 2 -212988 cd12055 SH3_CIN85_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212808 cd11875 SH3_CD2AP-like_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212989 cd12056 SH3_CD2AP_3 1 peptide ligand binding site 0 1 1 1 7,9,12,16,36,37,50,52,53 2 -212990 cd12057 SH3_CIN85_3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -213018 cd12142 SH3_D21-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212809 cd11876 SH3_MLK 1 peptide ligand binding site 0 1 1 1 5,7,10,14,37,38,51,53,54 2 -212991 cd12058 SH3_MLK4 1 peptide ligand binding site 0 1 1 1 5,7,10,14,37,38,51,53,54 2 -212992 cd12059 SH3_MLK1-3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,37,38,51,53,54 2 -212810 cd11877 SH3_PIX 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212993 cd12060 SH3_alphaPIX 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,48,50,51 2 -212994 cd12061 SH3_betaPIX 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,46,48,49 2 -212811 cd11878 SH3_Bem1p_1 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,49,51,52 2 -212812 cd11879 SH3_Bem1p_2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,49,51,52 2 -212813 cd11880 SH3_Caskin 1 peptide ligand binding site 0 1 1 1 6,8,11,16,34,35,54,56,57 2 -212995 cd12062 SH3_Caskin1 1 peptide ligand binding site 0 1 1 1 6,8,11,16,34,35,54,56,57 2 -212996 cd12063 SH3_Caskin2 1 peptide ligand binding site 0 1 1 1 6,8,11,16,34,35,54,56,57 2 -212814 cd11881 SH3_MYO7A 1 peptide ligand binding site 0 1 1 1 7,9,12,18,41,42,57,59,60 2 -212815 cd11882 SH3_GRAF-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212997 cd12064 SH3_GRAF 1 peptide ligand binding site 0 1 1 1 6,8,11,15,34,35,48,50,51 2 -212998 cd12065 SH3_GRAF2 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212999 cd12066 SH3_GRAF3 1 peptide ligand binding site 0 1 1 1 5,7,10,14,33,34,47,49,50 2 -212816 cd11883 SH3_Sdc25 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,51,53,54 2 -212817 cd11884 SH3_MYO15 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,49,51,52 2 -213000 cd12067 SH3_MYO15A 1 peptide ligand binding site 0 1 1 1 5,7,10,14,59,60,73,75,76 2 -213001 cd12068 SH3_MYO15B 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,48,50,51 2 -212818 cd11885 SH3_SH3TC 1 peptide ligand binding site 0 1 1 1 5,7,10,14,34,35,50,52,53 2 -212819 cd11886 SH3_BOI 1 peptide ligand binding site 0 1 1 1 5,7,10,14,35,36,51,53,54 2 -212820 cd11887 SH3_Bbc1 1 peptide ligand binding site 0 1 1 1 7,9,12,16,34,35,53,55,56 2 -212821 cd11888 SH3_ARHGAP9_like 1 peptide ligand binding site 0 1 1 1 5,7,10,16,34,35,50,52,53 2 -213002 cd12069 SH3_ARHGAP27 1 peptide ligand binding site 0 1 1 1 5,7,10,16,34,35,50,52,53 2 -213003 cd12070 SH3_ARHGAP12 1 peptide ligand binding site 0 1 1 1 6,8,11,16,34,35,50,52,53 2 -213019 cd12143 SH3_ARHGAP9 1 peptide ligand binding site 0 1 1 1 5,7,10,16,34,35,53,55,56 2 -212822 cd11889 SH3_Cyk3p-like 1 peptide ligand binding site 0 1 1 1 5,7,10,14,32,33,48,50,51 2 -238102 cd00175 SNc 1 Catalytic site 0 1 1 1 5,19,25,28,69,70,72 0 -238103 cd00176 SPEC 1 linker region 0 0 1 1 104,105,106,107,108,109 0 -238104 cd00178 STI 1 reactive site loop 0 1 1 1 59,65 0 -238105 cd00179 SynN 1 interdomain interaction site 0 1 0 1 31,42,45,46,53,57,60,67,89,94,97,103,110,111,114,115,117,118,121,147 0 -238105 cd00179 SynN 2 nSec1 interaction sites 0 1 1 1 0,4,11,83,84,87,88,91,94,95,101,104,135 0 -238105 cd00179 SynN 3 linker region 0 0 1 1 127,128,129,130,131,132,133,134,135,136,137,146,147,148,149,150 0 -206638 cd00181 Tar_Tsr_LBD 1 ligand binding site 0 1 1 1 20,25,29,104,105,107,109 5 -206638 cd00181 Tar_Tsr_LBD 2 dimer interface 0 1 1 0 0,3,13,14,17,18,20,21,24,25,28,29,31,32,104,105,107,109,110,113 2 -238106 cd00182 TBOX 1 dimerization interface 0 1 1 0 46,89,90,91,135 2 -238106 cd00182 TBOX 2 DNA binding site 0 1 1 1 22,24,25,26,27,28,29,31,60,110,122,160,161,162,168,172,175,176,177,178,179,180,181,182,183 3 -238107 cd00183 TFIIS_I 1 putative RNA polymerase binding site 0 0 1 1 8,9,12,52,53 2 -238108 cd00184 TNF 1 trimer interface 0 1 1 1 3,47,49,101,106,132,136 2 -238108 cd00184 TNF 2 receptor binding sites 0 1 1 1 19,20,25,65,72,77 0 -276900 cd00185 TNFRSF 1 CRD2 0 0 1 0 25,26,27,29,30,31,32,33,34,35,39,40,41,42,43,44,45,46,47,52,53,54,55,56,57,58,63,64,65 7 -276901 cd10575 TNFRSF6B 1 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,53,54,55,56,57,59,60,61,62,66,67,68,69,70,71,72,77,78,79 7 -276902 cd10576 TNFRSF1A 1 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,53,54,55,56,57,58,59,60,61,67,68,69,70,71,72,73,78,79,80 7 -276903 cd10577 TNFRSF1B 1 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,53,54,55,56,57,59,60,61,62,66,67,68,69,70,71,72,77,78,79 7 -276904 cd10578 TNFRSF3 1 CRD2 0 0 1 0 72,73,74,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94,100,101,102,103,104,105,106,111,112,113 7 -276905 cd10579 TNFRSF6 1 CRD2 0 0 1 0 46,47,48,51,52,53,54,55,56,57,61,62,63,64,65,66,67,68,69,75,76,77,78,79,80,81,86,87,88 7 -276906 cd10580 TNFRSF10 1 CRD2 0 0 1 0 20,21,22,25,26,27,28,29,30,31,35,36,37,38,39,40,41,42,43,47,48,49,50,51,52,53,58,59,60 7 -276907 cd10581 TNFRSF11B 1 CRD2 0 0 1 0 59,60,61,63,64,65,66,67,68,69,73,74,75,76,77,79,80,81,82,86,87,88,89,90,91,92,97,98,99 7 -276908 cd10582 TNFRSF14 1 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,64,65,66,67,68,69,70,75,76,77 7 -276909 cd10583 TNFRSF21 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,52,53,54,55,56,58,59,60,61,65,66,67,68,69,70,71,76,77,78 7 -276910 cd13405 TNFRSF14_teleost 1 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,64,65,66,67,68,69,70,75,76,77 7 -276911 cd13406 TNFRSF4 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,65,66,67,68,69,70,71,76,77,78 7 -276912 cd13407 TNFRSF5 1 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,64,65,66,67,68,69,70,75,76,77 7 -276913 cd13408 TNFRSF7 1 CRD2 0 0 1 0 61,62,63,66,67,68,69,70,71,72,76,77,78,79,80,81,82,83,84,87,88,89,90,91,92,93,98,99,100 7 -276914 cd13409 TNFRSF8 1 CRD2 0 0 1 0 66,67,68,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,91,92,93,94,95,96,97,102,103,104 7 -276915 cd13410 TNFRSF9 1 CRD2 0 0 1 0 25,26,27,29,30,31,32,33,34,35,38,39,40,41,42,43,44,45,46,50,51,52,53,54,55,56,61,62,63 7 -276916 cd13411 TNFRSF11A 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,52,53,54,55,56,57,58,59,60,66,67,68,69,70,71,72,77,78,79 7 -276917 cd13412 TNFRSF11B_teleost 1 CRD2 0 0 1 0 45,46,47,49,50,51,52,53,54,55,59,60,61,62,63,65,66,67,68,72,73,74,75,76,77,78,83,84,85 7 -276918 cd13413 TNFRSF12A 1 CRD2 0 0 1 0 26,27,28,31,32,33,34,35,36,37,41,42,43,44,45,52,53,54,55,81,82,83,84,85,86,87,92,93,94 7 -276919 cd13414 TNFRSF17 1 CRD2 0 0 1 0 20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,42,43,44,45,109,110,111,112,113,114,115,122,123,124 7 -276920 cd13415 TNFRSF13B 1 CRD2 0 0 1 0 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,72,73,74,75,126,127,128,129,130,131,132,134,135,136 7 -276921 cd13416 TNFRSF16 1 CRD2 0 0 1 0 37,38,39,42,43,44,45,46,47,48,52,53,54,55,56,57,58,59,60,64,65,66,67,68,69,70,75,76,77 7 -276922 cd13417 TNFRSF18 1 CRD2 0 0 1 0 38,39,40,50,51,52,53,54,55,56,60,61,62,63,64,68,69,70,71,78,79,80,81,82,83,84,98,99,100 7 -276923 cd13418 TNFRSF19 1 CRD2 0 0 1 0 42,43,44,46,47,48,49,50,51,52,55,56,57,58,59,60,61,62,63,68,69,70,71,72,73,74,80,81,82 7 -276924 cd13419 TNFRSF19L 1 CRD2 0 0 1 0 29,30,31,33,34,35,36,37,38,39,42,43,44,45,46,47,48,49,50,55,56,57,58,59,60,61,67,68,69 7 -276925 cd13420 TNFRSF25 1 CRD2 0 0 1 0 41,42,43,45,46,47,48,49,50,51,56,57,58,59,60,61,62,63,64,70,71,72,73,74,75,76,81,82,83 7 -276926 cd13421 TNFRSF_EDAR 1 CRD2 0 0 1 0 61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,99,100,101 7 -276927 cd13422 TNFRSF5_teleost 1 CRD2 0 0 1 0 36,37,38,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,64,65,66,67,68,69,70,75,76,77 7 -276928 cd13423 TNFRSF6_teleost 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,52,53,54,55,56,57,58,59,60,66,67,68,69,70,71,72,77,78,79 7 -276929 cd13424 TNFRSF9_teleost 1 CRD2 0 0 1 0 37,38,39,41,42,43,44,45,46,47,50,51,52,53,54,56,57,58,59,62,63,64,65,66,67,68,73,74,75 7 -276930 cd15834 TNFRSF1A_teleost 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,52,53,54,55,56,57,58,59,60,65,66,67,68,69,70,71,76,77,78 7 -276931 cd15835 TNFRSF1B_teleost 1 CRD2 0 0 1 0 44,45,46,48,49,50,51,52,53,54,58,59,60,61,62,63,64,65,66,72,73,74,75,76,77,78,83,84,85 7 -276932 cd15836 TNFRSF11A_teleost 1 CRD2 0 0 1 0 39,40,41,43,44,45,46,47,48,49,53,54,55,56,57,58,59,60,61,67,68,69,70,71,72,73,78,79,80 7 -276933 cd15837 TNFRSF26 1 CRD2 0 0 1 0 37,38,39,41,42,43,44,45,46,47,51,52,53,54,55,56,57,58,59,63,64,65,66,67,68,69,74,75,76 7 -276934 cd15838 TNFRSF27 1 CRD2 0 0 1 0 41,42,43,45,46,47,48,49,50,51,54,55,56,57,58,59,60,61,62,67,68,69,70,71,72,73,78,79,80 7 -276935 cd15839 TNFRSF_viral 1 CRD2 0 0 1 0 38,39,40,42,43,44,45,46,47,48,52,53,54,55,56,57,58,59,60,65,66,67,68,69,70,71,76,77,78 7 -238110 cd00186 TOP1Ac 1 nucleotide binding site 0 1 1 1 93,97,98,99,171,195,198,202,298,300,322 5 -238110 cd00186 TOP1Ac 2 phosphate binding site 0 1 1 0 45,49,336 4 -238110 cd00186 TOP1Ac 3 catalytic site 0 1 1 1 121,123,171 1 -238110 cd00186 TOP1Ac 4 DNA binding groove 0 1 1 1 9,10,13,17,21,111,115,123,300,301,304,305,307,311,312 3 -238110 cd00186 TOP1Ac 5 domain I 0 1 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 0 -238110 cd00186 TOP1Ac 6 domain II 0 1 0 1 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,267,268,269,270,271,272,273,274,275,276,277 0 -238110 cd00186 TOP1Ac 7 domain III 0 1 0 1 82,83,84,85,86,87,88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,170,171,172,173,174,175,176,177,178,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 0 -238110 cd00186 TOP1Ac 8 domain IV 0 1 0 1 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380 0 -238111 cd00187 TOP4c 1 Active site 0 0 1 1 92 1 -238111 cd00187 TOP4c 2 primary dimer interface 0 0 1 1 357,358,359,362,363,364,365,373,374,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407 2 -238111 cd00187 TOP4c 3 CAP-like domain 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,129 0 -173773 cd00188 TOPRIM 1 active site 0 1 1 1 6,7,10,54,56,58 1 -173773 cd00188 TOPRIM 2 metal binding site 0 1 1 0 6,54 4 -173774 cd00223 TOPRIM_TopoIIB_SPO 1 active site 0 1 1 1 6,7,10,58,60,62 1 -173774 cd00223 TOPRIM_TopoIIB_SPO 2 metal binding site 0 1 1 0 6,58 4 -173775 cd01025 TOPRIM_recR 1 active site 0 1 1 1 6,7,10,64,66,68 1 -173775 cd01025 TOPRIM_recR 2 metal binding site 0 1 1 0 6,64 4 -173776 cd01026 TOPRIM_OLD 1 active site 0 1 1 1 9,10,13,62,64,66 1 -173776 cd01026 TOPRIM_OLD 2 metal binding site 0 1 1 0 9,62 4 -173777 cd01027 TOPRIM_RNase_M5_like 1 active site 0 1 1 1 7,8,11,52,54,56 1 -173777 cd01027 TOPRIM_RNase_M5_like 2 metal binding site 0 1 1 0 7,52 4 -173778 cd01028 TOPRIM_TopoIA 1 active site 0 1 1 1 6,7,10,98,100,102 1 -173778 cd01028 TOPRIM_TopoIA 2 metal binding site 0 1 1 0 6,98 4 -173781 cd03361 TOPRIM_TopoIA_RevGyr 1 active site 0 1 1 1 6,7,10,126,128,130 1 -173781 cd03361 TOPRIM_TopoIA_RevGyr 2 metal binding site 0 1 1 0 6,126 4 -173782 cd03362 TOPRIM_TopoIA_TopoIII 1 active site 0 1 1 1 6,7,10,106,108,110 1 -173782 cd03362 TOPRIM_TopoIA_TopoIII 2 metal binding site 0 1 1 0 6,106 4 -173783 cd03363 TOPRIM_TopoIA_TopoI 1 active site 0 1 1 1 6,7,10,80,82,84 1 -173783 cd03363 TOPRIM_TopoIA_TopoI 2 metal binding site 0 1 1 0 6,80 4 -173779 cd01029 TOPRIM_primases 1 active site 0 1 1 1 6,7,10,50,52,54 1 -173779 cd01029 TOPRIM_primases 2 metal binding site 0 1 1 0 6,50 4 -173784 cd03364 TOPRIM_DnaG_primases 1 active site 0 1 1 1 6,7,10,50,52,54 1 -173784 cd03364 TOPRIM_DnaG_primases 2 metal binding site 0 1 1 0 6,50 4 -173780 cd01030 TOPRIM_TopoIIA_like 1 active site 0 1 1 1 6,7,10,80,82,84 1 -173780 cd01030 TOPRIM_TopoIIA_like 2 metal binding site 0 1 1 0 6,80 4 -173785 cd03365 TOPRIM_TopoIIA 1 active site 0 1 1 1 6,7,10,84,86,88 1 -173785 cd03365 TOPRIM_TopoIIA 2 metal binding site 0 1 1 0 6,84 4 -173786 cd03366 TOPRIM_TopoIIA_GyrB 1 active site 0 1 1 1 6,7,10,79,81,83 1 -173786 cd03366 TOPRIM_TopoIIA_GyrB 2 metal binding site 0 1 1 0 6,79 4 -238113 cd00190 Tryp_SPc 1 active site 0 0 1 1 41,89,185 1 -238113 cd00190 Tryp_SPc 2 cleavage site 0 0 1 1 0 0 -238113 cd00190 Tryp_SPc 3 substrate binding sites 0 1 1 1 179,204,206 5 -238114 cd00191 TY 1 protease interaction site 0 1 1 1 5,20,38,42 0 -277192 cd00193 SNARE 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277192 cd00193 SNARE 2 zero layer 0 1 1 1 26 0 -277193 cd15840 SNARE_Qa 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277193 cd15840 SNARE_Qa 2 zero layer 0 1 1 1 31 0 -277197 cd15844 SNARE_syntaxin5 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277197 cd15844 SNARE_syntaxin5 2 zero layer 0 1 1 1 31 0 -277198 cd15845 SNARE_syntaxin16 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277198 cd15845 SNARE_syntaxin16 2 zero layer 0 1 1 1 31 0 -277199 cd15846 SNARE_syntaxin17 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277199 cd15846 SNARE_syntaxin17 2 zero layer 0 1 1 1 34 0 -277200 cd15847 SNARE_syntaxin7_like 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277200 cd15847 SNARE_syntaxin7_like 2 zero layer 0 1 1 1 31 0 -277228 cd15875 SNARE_syntaxin7 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277228 cd15875 SNARE_syntaxin7 2 zero layer 0 1 1 1 31 0 -277229 cd15876 SNARE_syntaxin12 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277229 cd15876 SNARE_syntaxin12 2 zero layer 0 1 1 1 31 0 -277230 cd15877 SNARE_TSNARE1 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277230 cd15877 SNARE_TSNARE1 2 zero layer 0 1 1 1 34 0 -277201 cd15848 SNARE_syntaxin1-like 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277201 cd15848 SNARE_syntaxin1-like 2 zero layer 0 1 1 1 35 0 -277231 cd15878 SNARE_syntaxin11 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277231 cd15878 SNARE_syntaxin11 2 zero layer 0 1 1 1 35 0 -277232 cd15879 SNARE_syntaxin19 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277232 cd15879 SNARE_syntaxin19 2 zero layer 0 1 1 1 35 0 -277233 cd15880 SNARE_syntaxin1 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277233 cd15880 SNARE_syntaxin1 2 zero layer 0 1 1 1 35 0 -277234 cd15881 SNARE_syntaxin3 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277234 cd15881 SNARE_syntaxin3 2 zero layer 0 1 1 1 35 0 -277235 cd15882 SNARE_syntaxin2 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277235 cd15882 SNARE_syntaxin2 2 zero layer 0 1 1 1 35 0 -277236 cd15883 SNARE_syntaxin4 1 flanking leucine-zipper layers 0 1 1 1 32,39,42 0 -277236 cd15883 SNARE_syntaxin4 2 zero layer 0 1 1 1 35 0 -277202 cd15849 SNARE_Sso1 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277202 cd15849 SNARE_Sso1 2 zero layer 0 1 1 1 34 0 -277203 cd15850 SNARE_syntaxin18 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277203 cd15850 SNARE_syntaxin18 2 zero layer 0 1 1 1 31 0 -277194 cd15841 SNARE_Qc 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277194 cd15841 SNARE_Qc 2 zero layer 0 1 1 1 31 0 -277204 cd15851 SNARE_Syntaxin6 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277204 cd15851 SNARE_Syntaxin6 2 zero layer 0 1 1 1 31 0 -277205 cd15852 SNARE_Syntaxin8 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277205 cd15852 SNARE_Syntaxin8 2 zero layer 0 1 1 1 31 0 -277206 cd15853 SNARE_Bet1 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277206 cd15853 SNARE_Bet1 2 zero layer 0 1 1 1 31 0 -277207 cd15854 SNARE_SNAP47C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277207 cd15854 SNARE_SNAP47C 2 zero layer 0 1 1 1 31 0 -277208 cd15855 SNARE_SNAP25C_23C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277208 cd15855 SNARE_SNAP25C_23C 2 zero layer 0 1 1 1 31 0 -277237 cd15884 SNARE_SNAP23C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277237 cd15884 SNARE_SNAP23C 2 zero layer 0 1 1 1 31 0 -277238 cd15885 SNARE_SNAP25C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277238 cd15885 SNARE_SNAP25C 2 zero layer 0 1 1 1 31 0 -277209 cd15856 SNARE_SNAP29C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277209 cd15856 SNARE_SNAP29C 2 zero layer 0 1 1 1 31 0 -277210 cd15857 SNARE_SEC9C 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277210 cd15857 SNARE_SEC9C 2 zero layer 0 1 1 1 31 0 -277211 cd15858 SNARE_VAM7 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277211 cd15858 SNARE_VAM7 2 zero layer 0 1 1 1 31 0 -277212 cd15859 SNARE_SYN8 1 flanking leucine-zipper layers 0 1 1 1 28,35,38 0 -277212 cd15859 SNARE_SYN8 2 zero layer 0 1 1 1 31 0 -277213 cd15860 SNARE_USE1 1 flanking leucine-zipper layers 0 1 1 1 29,36,39 0 -277213 cd15860 SNARE_USE1 2 zero layer 0 1 1 1 32 0 -277195 cd15842 SNARE_Qb 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277195 cd15842 SNARE_Qb 2 zero layer 0 1 1 1 34 0 -277214 cd15861 SNARE_SNAP25N_23N_29N_SEC9N 1 flanking leucine-zipper layers 0 1 1 1 34,41,44 0 -277214 cd15861 SNARE_SNAP25N_23N_29N_SEC9N 2 zero layer 0 1 1 1 37 0 -277239 cd15886 SNARE_SEC9N 1 flanking leucine-zipper layers 0 1 1 1 34,41,44 0 -277239 cd15886 SNARE_SEC9N 2 zero layer 0 1 1 1 37 0 -277240 cd15887 SNARE_SNAP29N 1 flanking leucine-zipper layers 0 1 1 1 34,41,44 0 -277240 cd15887 SNARE_SNAP29N 2 zero layer 0 1 1 1 37 0 -277241 cd15888 SNARE_SNAP47N 1 flanking leucine-zipper layers 0 1 1 1 34,41,44 0 -277241 cd15888 SNARE_SNAP47N 2 zero layer 0 1 1 1 37 0 -277242 cd15889 SNARE_SNAP25N_23N 1 flanking leucine-zipper layers 0 1 1 1 34,41,44 0 -277242 cd15889 SNARE_SNAP25N_23N 2 zero layer 0 1 1 1 37 0 -277247 cd15894 SNARE_SNAP25N 1 flanking leucine-zipper layers 0 1 1 1 40,47,50 0 -277247 cd15894 SNARE_SNAP25N 2 zero layer 0 1 1 1 43 0 -277248 cd15895 SNARE_SNAP23N 1 flanking leucine-zipper layers 0 1 1 1 36,43,46 0 -277248 cd15895 SNARE_SNAP23N 2 zero layer 0 1 1 1 39 0 -277215 cd15862 SNARE_Vti1 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277215 cd15862 SNARE_Vti1 2 zero layer 0 1 1 1 34 0 -277243 cd15890 SNARE_Vti1b 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277243 cd15890 SNARE_Vti1b 2 zero layer 0 1 1 1 34 0 -277244 cd15891 SNARE_Vti1a 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277244 cd15891 SNARE_Vti1a 2 zero layer 0 1 1 1 34 0 -277216 cd15863 SNARE_GS27 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277216 cd15863 SNARE_GS27 2 zero layer 0 1 1 1 34 0 -277217 cd15864 SNARE_GS28 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277217 cd15864 SNARE_GS28 2 zero layer 0 1 1 1 34 0 -277218 cd15865 SNARE_SEC20 1 flanking leucine-zipper layers 0 1 1 1 31,38,41 0 -277218 cd15865 SNARE_SEC20 2 zero layer 0 1 1 1 34 0 -277196 cd15843 R-SNARE 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277196 cd15843 R-SNARE 2 zero layer 0 1 1 1 26 0 -277219 cd15866 R-SNARE_SEC22 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277219 cd15866 R-SNARE_SEC22 2 zero layer 0 1 1 1 27 0 -277220 cd15867 R-SNARE_YKT6 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277220 cd15867 R-SNARE_YKT6 2 zero layer 0 1 1 1 27 0 -277221 cd15868 R-SNARE_VAMP8 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277221 cd15868 R-SNARE_VAMP8 2 zero layer 0 1 1 1 27 0 -277222 cd15869 R-SNARE_VAMP4 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277222 cd15869 R-SNARE_VAMP4 2 zero layer 0 1 1 1 27 0 -277223 cd15870 R-SNARE_VAMP2 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277223 cd15870 R-SNARE_VAMP2 2 zero layer 0 1 1 1 26 0 -277224 cd15871 R-SNARE_VAMP7 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277224 cd15871 R-SNARE_VAMP7 2 zero layer 0 1 1 1 26 0 -277225 cd15872 R-SNARE_VAMP5 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277225 cd15872 R-SNARE_VAMP5 2 zero layer 0 1 1 1 27 0 -277226 cd15873 R-SNARE_STXBP5_6 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277226 cd15873 R-SNARE_STXBP5_6 2 zero layer 0 1 1 1 27 0 -277245 cd15892 R-SNARE_STXBP6 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277245 cd15892 R-SNARE_STXBP6 2 zero layer 0 1 1 1 27 0 -277246 cd15893 R-SNARE_STXBP5 1 flanking leucine-zipper layers 0 1 1 1 24,31,34 0 -277246 cd15893 R-SNARE_STXBP5 2 zero layer 0 1 1 1 27 0 -277227 cd15874 R-SNARE_Snc1 1 flanking leucine-zipper layers 0 1 1 1 23,30,33 0 -277227 cd15874 R-SNARE_Snc1 2 zero layer 0 1 1 1 26 0 -238117 cd00195 UBCc 1 active site cysteine 0 0 1 1 82 0 -238117 cd00195 UBCc 2 Ub thioester intermediate interaction residues 0 1 1 0 69,70,74,75,77,81,82,83,85,86,91,92,95,100,103,106,109,110,112,114,115 0 -238117 cd00195 UBCc 3 E3 interaction residues 0 1 1 0 1,58,59,93,94 0 -238119 cd00198 vWFA 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,79,109 0 -238727 cd01450 vWFA_subfamily_ECM 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,79,111 0 -238746 cd01469 vWA_integrins_alpha_subunit 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,78,111 0 -238747 cd01470 vWA_complement_factors 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,84,120 0 -238748 cd01471 vWA_micronemal_protein 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,84,116 0 -238749 cd01472 vWA_collagen 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,78,111 0 -238757 cd01480 vWA_collagen_alpha_1-VI-type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 9,87,117 0 -238758 cd01481 vWA_collagen_alpha3-VI-like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,79,114 0 -238759 cd01482 vWA_collagen_alphaI-XII-like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,78,111 0 -238750 cd01473 vWA_CTRP 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,84,116 0 -238751 cd01474 vWA_ATR 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 11,79,111 0 -238752 cd01475 vWA_Matrilin 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 9,80,116 0 -238753 cd01476 VWA_integrin_invertebrates 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,79,111 0 -238754 cd01477 vWA_F09G8-8_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 26,106,139 0 -238728 cd01451 vWA_Magnesium_chelatase 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,75,106 0 -238729 cd01452 VWA_26S_proteasome_subunit 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,84,114 0 -238730 cd01453 vWA_transcription_factor_IIH_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,85,115 0 -238731 cd01454 vWA_norD_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,83,111 0 -238732 cd01455 vWA_F11C1-5a_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,90,119 0 -238733 cd01456 vWA_ywmD_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 27,116,142 0 -238734 cd01457 vWA_ORF176_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 9,81,115 0 -238735 cd01458 vWA_ku 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 8,105,135 0 -238736 cd01459 vWA_copine_like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 44,134,164 0 -238737 cd01460 vWA_midasin 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 67,138,172 0 -238738 cd01461 vWA_interalpha_trypsin_inhibitor 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 9,77,107 0 -238739 cd01462 VWA_YIEM_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,74,102 0 -238740 cd01463 vWA_VGCC_like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 20,94,131 0 -238741 cd01464 vWA_subfamily 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,78,115 0 -238742 cd01465 vWA_subgroup 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,78,104 0 -238743 cd01466 vWA_C3HC4_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 7,76,106 0 -238744 cd01467 vWA_BatA_type 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 9,86,110 0 -238745 cd01468 trunk_domain 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,115,142 0 -238755 cd01478 Sec23-like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,140,169 0 -238756 cd01479 Sec24-like 1 metal ion-dependent adhesion site (MIDAS) 0 1 0 1 10,114,139 0 238120 cd00199 WAP 1 inhibitory loop 0 1 1 1 16,17,18,19,20,21,22 0 -238121 cd00200 WD40 1 structural tetrad 0 0 1 1 7,25,29,35,36,48,49,67,71,77,78,90,91,108,113,119,120,133,150,155,161,162,174,175,193,197,203,204,216,217,234,239,245,246,258,259,277,281,287,288 0 -238122 cd00201 WW 1 binding pocket 0 1 1 1 14,25 0 -238123 cd00202 ZnF_GATA 1 zinc binding site 0 1 1 1 1,4,23,26 4 -238123 cd00202 ZnF_GATA 2 DNA-binding region 0 1 1 1 10,11,13,23,24,25,26,27,28,29,30,31,32,33,50,52,53 3 -238124 cd00203 ZnMc 1 active site 0 1 1 1 101,102,105,111 1 -239795 cd04267 ZnMc_ADAM_like 1 active site 0 1 1 1 138,139,142,148 1 -239797 cd04269 ZnMc_adamalysin_II_like 1 active site 0 1 1 1 136,137,140,146 1 -239798 cd04270 ZnMc_TACE_like 1 active site 0 1 1 1 172,173,176,182 1 -239799 cd04271 ZnMc_ADAM_fungal 1 active site 0 1 1 1 150,151,154,160 1 -239800 cd04272 ZnMc_salivary_gland_MPs 1 active site 0 1 1 1 150,151,154,160 1 -239801 cd04273 ZnMc_ADAMTS_like 1 active site 0 1 1 1 145,146,149,155 1 -239802 cd04275 ZnMc_pappalysin_like 1 active site 0 1 1 1 142,143,146,152 1 -239796 cd04268 ZnMc_MMP_like 1 active site 0 1 1 1 99,100,103,109 1 -239803 cd04276 ZnMc_MMP_like_2 1 active site 0 1 1 1 121,122,125,131 1 -239804 cd04277 ZnMc_serralysin_like 1 active site 0 1 1 1 118,119,122,128 1 -239805 cd04278 ZnMc_MMP 1 active site 0 1 1 1 112,113,116,122 1 -239806 cd04279 ZnMc_MMP_like_1 1 active site 0 1 1 1 109,110,113,119 1 -239807 cd04280 ZnMc_astacin_like 1 active site 0 1 1 1 79,80,83,89 1 -239808 cd04281 ZnMc_BMP1_TLD 1 active site 0 1 1 1 92,93,96,102 1 -239809 cd04282 ZnMc_meprin 1 active site 0 1 1 1 125,126,129,135 1 -239810 cd04283 ZnMc_hatching_enzyme 1 active site 0 1 1 1 82,83,86,92 1 -239819 cd04327 ZnMc_MMP_like_3 1 active site 0 1 1 1 97,98,101,107 1 -119412 cd00205 rhv_like 1 drug-binding pocket 0 1 1 1 31,57,59,61,77,100,123,136,163 5 -119411 cd00206 snake_toxin 1 receptor binding site 0 1 1 1 5,12,27,28,33,34,35,36,37,38 0 -238126 cd00207 fer2 1 iron binding site 0 1 1 1 34,39,42,72 4 -238126 cd00207 fer2 2 catalytic loop 0 0 1 1 30,31,34,37,39,40,41,42,71,72 1 -100038 cd00208 LbetaH 1 putative trimer interface 0 1 1 1 7,9,13,15,25,31,33,51,56,57,59,69,73,75,77 2 -100038 cd00208 LbetaH 2 putative CoA binding site 0 1 1 1 51,53,54,59,71,77 5 -100041 cd03350 LbH_THP_succinylT 1 putative trimer interface 0 1 1 1 38,40,44,46,56,62,64,82,87,88,90,100,104,106,108 2 -100041 cd03350 LbH_THP_succinylT 2 putative CoA binding site 0 1 1 1 82,84,85,90,102,108 5 -100042 cd03351 LbH_UDP-GlcNAc_AT 1 putative trimer interface 0 1 1 1 36,38,42,44,54,60,62,84,89,90,92,109,113,115,117 2 -100042 cd03351 LbH_UDP-GlcNAc_AT 2 putative CoA binding site 0 1 1 1 84,86,87,92,111,117 5 -100043 cd03352 LbH_LpxD 1 putative trimer interface 0 1 1 1 44,46,50,52,62,68,70,99,104,105,107,121,125,127,129 2 -100043 cd03352 LbH_LpxD 2 putative CoA binding site 0 1 1 1 99,101,102,107,123,129 5 -100044 cd03353 LbH_GlmU_C 1 putative trimer interface 0 1 1 1 109,111,115,117,126,132,134,151,156,157,159,169,173,175,177 2 -100044 cd03353 LbH_GlmU_C 2 putative CoA binding site 0 1 1 1 151,153,154,159,171,177 5 -100045 cd03354 LbH_SAT 1 putative trimer interface 0 1 1 1 15,17,23,25,35,41,43,61,66,67,69,79,83,85,87 2 -100045 cd03354 LbH_SAT 2 putative CoA binding site 0 1 1 1 61,63,64,69,81,87 5 -100046 cd03356 LbH_G1P_AT_C_like 1 putative trimer interface 0 1 1 1 12,14,17,19,29,34,36,46,50,51,53,63,69,71,73 2 -100046 cd03356 LbH_G1P_AT_C_like 2 putative CoA binding site 0 1 1 1 46,48,49,53,65,73 5 -100056 cd04651 LbH_G1P_AT_C 1 putative trimer interface 0 1 1 1 24,26,29,31,41,46,48,58,62,63,65,75,94,96,98 2 -100056 cd04651 LbH_G1P_AT_C 2 putative CoA binding site 0 1 1 1 58,60,61,65,77,98 5 -100057 cd04652 LbH_eIF2B_gamma_C 1 putative trimer interface 0 1 1 1 12,14,17,19,29,34,36,46,50,51,53,63,68,70,72 2 -100057 cd04652 LbH_eIF2B_gamma_C 2 putative CoA binding site 0 1 1 1 46,48,49,53,65,72 5 -100061 cd05787 LbH_eIF2B_epsilon 1 putative trimer interface 0 1 1 1 12,14,17,19,29,34,36,46,50,51,53,63,69,71,73 2 -100061 cd05787 LbH_eIF2B_epsilon 2 putative CoA binding site 0 1 1 1 46,48,49,53,65,73 5 -100062 cd05824 LbH_M1P_guanylylT_C 1 putative trimer interface 0 1 1 1 12,14,18,20,30,35,37,47,51,52,54,64,70,72,74 2 -100062 cd05824 LbH_M1P_guanylylT_C 2 putative CoA binding site 0 1 1 1 47,49,50,54,66,74 5 -100049 cd03359 LbH_Dynactin_5 1 putative trimer interface 0 1 1 1 49,51,55,57,79,85,87,102,107,108,110,120,124,126,128 2 -100049 cd03359 LbH_Dynactin_5 2 putative CoA binding site 0 1 1 1 102,104,105,110,122,128 5 -100050 cd03360 LbH_AT_putative 1 putative trimer interface 0 1 1 1 109,111,115,117,127,133,135,145,150,151,153,163,167,169,171 2 -100050 cd03360 LbH_AT_putative 2 putative CoA binding site 0 1 1 1 145,147,148,153,165,171 5 -100051 cd04645 LbH_gamma_CA_like 1 putative trimer interface 0 1 1 1 24,26,30,32,45,51,53,67,72,73,75,84,88,90,92 2 -100051 cd04645 LbH_gamma_CA_like 2 putative CoA binding site 0 1 1 1 67,69,70,75,86,92 5 -100039 cd00710 LbH_gamma_CA 1 putative trimer interface 0 1 1 1 27,29,33,35,49,55,57,71,76,77,79,89,93,95,97 2 -100039 cd00710 LbH_gamma_CA 2 putative CoA binding site 0 1 1 1 71,73,74,79,91,97 5 -100055 cd04650 LbH_FBP 1 putative trimer interface 0 1 1 1 25,27,31,33,46,52,54,68,73,74,76,85,89,91,93 2 -100055 cd04650 LbH_FBP 2 putative CoA binding site 0 1 1 1 68,70,71,76,87,93 5 -100058 cd04745 LbH_paaY_like 1 putative trimer interface 0 1 1 1 25,27,31,33,46,52,54,68,73,74,76,85,89,91,93 2 -100058 cd04745 LbH_paaY_like 2 putative CoA binding site 0 1 1 1 68,70,71,76,87,93 5 -100052 cd04646 LbH_Dynactin_6 1 putative trimer interface 0 1 1 1 24,26,30,32,45,51,53,73,77,78,80,90,94,96,98 2 -100052 cd04646 LbH_Dynactin_6 2 putative CoA binding site 0 1 1 1 73,75,76,80,92,98 5 -100053 cd04647 LbH_MAT_like 1 putative trimer interface 0 1 1 1 8,10,14,16,28,34,36,65,70,71,73,83,87,89,91 2 -100053 cd04647 LbH_MAT_like 2 putative CoA binding site 0 1 1 1 65,67,68,73,85,91 5 -100040 cd03349 LbH_XAT 1 putative trimer interface 0 1 1 1 8,10,14,16,28,34,36,80,85,86,88,98,102,104,106 2 -100040 cd03349 LbH_XAT 2 putative CoA binding site 0 1 1 1 80,82,83,88,100,106 5 -100047 cd03357 LbH_MAT_GAT 1 putative trimer interface 0 1 1 1 69,71,75,77,89,95,97,125,130,131,133,143,147,149,151 2 -100047 cd03357 LbH_MAT_GAT 2 putative CoA binding site 0 1 1 1 125,127,128,133,145,151 5 -100048 cd03358 LbH_WxcM_N_like 1 putative trimer interface 0 1 1 1 23,25,29,31,41,47,49,74,79,80,82,92,96,98,100 2 -100048 cd03358 LbH_WxcM_N_like 2 putative CoA binding site 0 1 1 1 74,76,77,82,94,100 5 -100063 cd05825 LbH_wcaF_like 1 putative trimer interface 0 1 1 1 10,12,16,18,30,36,38,63,68,69,71,81,85,87,89 2 -100063 cd05825 LbH_wcaF_like 2 putative CoA binding site 0 1 1 1 63,65,66,71,83,89 5 -100054 cd04649 LbH_THP_succinylT_putative 1 putative trimer interface 0 1 1 1 38,40,42,44,54,60,62,80,85,86,88,96,100,102,104 2 -100054 cd04649 LbH_THP_succinylT_putative 2 putative CoA binding site 0 1 1 1 80,82,83,88,98,104 5 -100059 cd05635 LbH_unknown 1 putative trimer interface 0 1 1 1 18,20,24,26,36,42,44,58,62,63,65,75,78,80,82 2 -100059 cd05635 LbH_unknown 2 putative CoA binding site 0 1 1 1 58,60,61,65,77,82 5 -100060 cd05636 LbH_G1P_TT_C_like 1 putative trimer interface 0 1 1 1 77,79,83,85,94,100,102,136,141,142,144,154,158,160,162 2 -100060 cd05636 LbH_G1P_TT_C_like 2 putative CoA binding site 0 1 1 1 136,138,139,144,156,162 5 -238127 cd00209 DHFR 1 folate binding site 0 1 1 0 3,20,25,56,96,102,115 5 -238127 cd00209 DHFR 2 NADP+ binding site 0 1 1 0 5,12,42,43,44,63,97,98,99,100 5 -238128 cd00210 PTS_IIA_glc 1 HPr interaction site 0 1 1 1 16,17,18,19,23,24,46,47,49,50,56,57,58,64,65,66,68,72,74,75,87,119,122 0 -238128 cd00210 PTS_IIA_glc 2 phosphorylation site 0 1 1 1 68 6 -238128 cd00210 PTS_IIA_glc 3 active site 0 0 1 1 51,53,68,70 1 -238128 cd00210 PTS_IIA_glc 4 glycerol kinase (GK) interaction site 0 1 1 1 16,18,19,21,23,24,47,49,53,66,68,72,74,75,77,119 2 -238129 cd00211 PTS_IIA_fru 1 phosphorylation site 0 0 1 1 58 6 -238129 cd00211 PTS_IIA_fru 2 active site 0 1 1 1 42,58 1 -238130 cd00212 PTS_IIB_glc 1 phosphorylation site 0 0 1 1 22 6 -238130 cd00212 PTS_IIB_glc 2 active site turn 0 0 1 1 21,22,23,24,25,26,27 1 -238131 cd00213 S-100 1 Ca2+ binding site 0 1 1 1 17,22,25,30,31,60,62,64,66,68,71 4 -238131 cd00213 S-100 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,24,25,34,35,37,38,39,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -240149 cd05022 S-100A13 1 Ca2+ binding site 0 1 1 1 17,21,24,29,30,56,58,60,62,64,67 4 -240149 cd05022 S-100A13 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,22,23,24,33,34,36,37,38,63,64,65,66,68,69,71,72,73,74,76,77,78,79,80,81,82,83 2 -240150 cd05023 S-100A11 1 Ca2+ binding site 0 1 1 1 18,23,26,31,32,61,63,65,67,69,72 4 -240150 cd05023 S-100A11 2 dimerization interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,26,35,36,38,39,40,68,69,70,71,73,74,76,77,78,79,81,82,83,84,85,86,87,88 2 -240152 cd05025 S-100A1 1 Ca2+ binding site 0 1 1 1 18,23,26,31,32,61,63,65,67,69,72 4 -240152 cd05025 S-100A1 2 dimerization interface 0 1 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,26,35,36,38,39,40,68,69,70,71,73,74,76,77,78,79,81,82,83,84,85,86,87,88 2 -240153 cd05026 S-100Z 1 Ca2+ binding site 0 1 1 1 19,24,27,32,33,62,64,66,68,70,73 4 -240153 cd05026 S-100Z 2 dimerization interface 0 1 1 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,25,26,27,36,37,39,40,41,69,70,71,72,74,75,77,78,79,80,82,83,84,85,86,87,88,89 2 -240154 cd05027 S-100B 1 Ca2+ binding site 0 1 1 1 17,22,25,30,31,60,62,64,66,68,71 4 -240154 cd05027 S-100B 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,24,25,34,35,37,38,39,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -240155 cd05029 S-100A6 1 Ca2+ binding site 0 1 1 1 19,24,27,32,33,60,62,64,66,68,71 4 -240155 cd05029 S-100A6 2 dimerization interface 0 1 1 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,25,26,27,36,37,39,40,41,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -240156 cd05030 calgranulins 1 Ca2+ binding site 0 1 1 1 17,22,25,30,31,60,62,64,66,68,71 4 -240156 cd05030 calgranulins 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,24,25,34,35,37,38,39,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -240157 cd05031 S-100A10_like 1 Ca2+ binding site 0 1 1 1 17,22,25,30,31,60,62,64,66,68,71 4 -240157 cd05031 S-100A10_like 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,24,25,34,35,37,38,39,67,68,69,70,72,73,75,76,77,78,80,81,82,83,84,85,86,87 2 -240151 cd05024 S-100A10 1 Ca2+ binding site 0 1 1 1 17,19,22,27,28,57,59,61,63,65,68 4 -240151 cd05024 S-100A10 2 dimerization interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22,31,32,34,35,36,64,65,66,67,69,70,72,73,74,75,77,78,79,80,81,82,83,84 2 -238132 cd00214 Calpain_III 1 acidic loop 0 1 1 1 38,39,40,47 0 -238133 cd00215 PTS_IIA_lac 1 phosphorylation site 0 0 1 1 72 6 -238133 cd00215 PTS_IIA_lac 2 metal binding site 0 1 1 1 75 4 -238133 cd00215 PTS_IIA_lac 3 methionine cluster 0 1 1 1 0,54,70,71,78 0 -238133 cd00215 PTS_IIA_lac 4 active site 0 1 1 1 15,72,74,75,76 1 -199833 cd00216 PQQ_DH_like 1 active site 0 1 1 1 23,69,74,118,133,134,195,284,345 1 -199833 cd00216 PQQ_DH_like 2 Trp docking motif 0 0 1 1 5,6,7,10,44,46,49,50,51,54,94,96,99,100,101,104,145,147,150,151,152,155,236,238,241,242,243,246,290,292,295,296,297,300,326,328,331,332,333,336,367,369,372,373,374,377,431,433 2 -199834 cd10276 BamB_YfgL 1 active site 0 1 1 1 30,68,73,113,128,129,158,224,289 1 -199834 cd10276 BamB_YfgL 2 Trp docking motif 0 0 1 1 12,13,14,17,51,53,56,57,58,61,93,95,98,99,100,103,134,136,139,140,141,144,179,181,184,185,186,189,230,232,235,236,237,240,269,271,274,275,276,279,312,314,317,318,319,322,354,356 2 -199835 cd10277 PQQ_ADH_I 1 active site 0 1 1 1 52,97,102,146,162,163,213,300,438 1 -199835 cd10277 PQQ_ADH_I 2 Trp docking motif 0 0 1 1 35,36,37,40,73,75,78,79,80,83,122,124,127,128,129,132,173,175,178,179,180,183,252,254,257,258,259,262,306,308,311,312,313,316,419,421,424,425,426,429,460,462,465,466,467,470,525,527 2 -199836 cd10278 PQQ_MDH 1 active site 0 1 1 1 41,90,95,139,154,155,223,310,448 1 -199836 cd10278 PQQ_MDH 2 Trp docking motif 0 0 1 1 25,26,27,30,63,65,69,70,71,74,115,117,120,121,122,125,166,168,171,172,173,176,262,264,267,268,269,272,316,318,321,322,323,326,429,431,434,435,436,439,470,472,475,476,477,480,549,551 2 -199837 cd10279 PQQ_ADH_II 1 active site 0 1 1 1 43,90,95,139,154,155,216,306,452 1 -199837 cd10279 PQQ_ADH_II 2 Trp docking motif 0 0 1 1 27,28,29,32,64,66,69,70,71,74,115,117,120,121,122,125,166,168,171,172,173,176,258,260,263,264,265,268,312,314,317,318,319,322,433,435,438,439,440,443,474,476,479,480,481,484,538,540 2 -199838 cd10280 PQQ_mGDH 1 active site 0 1 1 1 48,92,97,161,176,177,230,318,536 1 -199838 cd10280 PQQ_mGDH 2 Trp docking motif 0 0 1 1 25,26,27,30,69,71,74,75,76,79,126,128,131,132,133,136,192,194,197,198,199,202,270,272,275,276,277,280,324,326,329,330,331,334,500,502,505,506,507,510,559,561,564,565,566,569,612,614 2 -119405 cd00219 ToxGAP 1 GTP binding residues 0 1 1 0 41,81,82,83 5 -119405 cd00219 ToxGAP 2 Rac1 P-loop interaction site 0 1 1 1 36,41 2 -119405 cd00219 ToxGAP 3 switch I binding region 0 1 1 0 41,45,78 0 -119405 cd00219 ToxGAP 4 switch II binding region 0 1 1 0 14,35,36,37,42,45 0 -238135 cd00220 VMO-I 1 putative carbohydrate binding site 0 0 1 1 10,33,40,41,95,102,103,156,163,164 5 -212461 cd00222 CollagenBindB 1 domain interaction interfaces 0 1 1 1 1,3,5,29,30,46,48,50,63,65,67,70,75,77,78 2 -238137 cd00224 Mog1 1 putative Ran binding site 0 0 1 1 2,5,6,21,22,28,29 2 -119406 cd00225 API3 1 protease binding region 0 1 1 0 3,4,5,6,7,148,149,150,151,152,153 0 -238138 cd00226 PRCH 1 subunit L interaction residues 0 1 1 0 38,42,61,64,67,77,93,96,108,123,171 2 -238138 cd00226 PRCH 2 subunit M interaction residues 0 1 1 0 10,19,31,34,37,61,109,111,115,116,120,139,141,144,173,176,194,196,198,230,231 2 -238138 cd00226 PRCH 3 subunit C interaction residues 0 1 1 0 0,2 0 -238138 cd00226 PRCH 4 putative proton transfer pathway, P1 0 1 1 1 67,69,120,128 0 -238138 cd00226 PRCH 5 putative proton transfer pathway, P2 0 1 1 1 172,173 0 -238139 cd00227 CPT 1 ATP binding site 0 1 1 0 10,11,13,14,15,90,126,130,133,160,162 5 -238139 cd00227 CPT 2 Chloramphenicol (Cm) binding site 0 1 1 0 34,35,38,52,92,133,137,141 5 -238139 cd00227 CPT 3 catalytic residue 0 1 1 1 35 1 -238139 cd00227 CPT 4 P-loop motif 0 0 1 1 8,9,10,11,12,13,14,15 0 -238140 cd00228 eu-GS 1 active site residues 0 0 1 1 119,144,365,446 1 -238140 cd00228 eu-GS 2 ATP binding pocket 0 1 1 0 123,136,302,358,360,366,369,371,394,395,396,397,421,448 5 -238140 cd00228 eu-GS 3 magnesium binding site 0 1 0 1 137,139,364 4 -238140 cd00228 eu-GS 4 glutathione (GSH) binding pocket 0 1 1 0 119,142,144,209,211,215,263,266,446,457,458 5 -238140 cd00228 eu-GS 5 dimerization unit 0 0 1 1 0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,25,26,27,28,37,38,39,40,41 0 -238140 cd00228 eu-GS 6 glycine rich loop 0 0 1 1 362,363,364,365,366,367,368,369,370,371,372 0 -238140 cd00228 eu-GS 7 alanine rich loop 0 0 1 1 450,451,452,453,454,455,456,457,458,459,460,461,462 0 -238141 cd00229 SGNH_hydrolase 1 active site 0 1 1 1 6,44,75,167,170 1 -238141 cd00229 SGNH_hydrolase 2 catalytic triad 0 1 1 1 6,167,170 1 -238141 cd00229 SGNH_hydrolase 3 oxyanion hole 0 1 1 1 6,44,75 1 -238858 cd01820 PAF_acetylesterase_like 1 active site 0 1 1 1 40,69,99,189,192 1 -238858 cd01820 PAF_acetylesterase_like 2 catalytic triad 0 1 1 1 40,189,192 1 -238858 cd01820 PAF_acetylesterase_like 3 oxyanion hole 0 1 1 1 40,69,99 1 -238859 cd01821 Rhamnogalacturan_acetylesterase_like 1 active site 0 1 1 1 8,43,75,177,180 1 -238859 cd01821 Rhamnogalacturan_acetylesterase_like 2 catalytic triad 0 1 1 1 8,177,180 1 -238859 cd01821 Rhamnogalacturan_acetylesterase_like 3 oxyanion hole 0 1 1 1 8,43,75 1 -238860 cd01822 Lysophospholipase_L1_like 1 active site 0 1 1 1 8,45,74,155,158 1 -238860 cd01822 Lysophospholipase_L1_like 2 catalytic triad 0 1 1 1 8,155,158 1 -238860 cd01822 Lysophospholipase_L1_like 3 oxyanion hole 0 1 1 1 8,45,74 1 -238861 cd01823 SEST_like 1 active site 0 1 1 1 8,55,90,239,242 1 -238861 cd01823 SEST_like 2 catalytic triad 0 1 1 1 8,239,242 1 -238861 cd01823 SEST_like 3 oxyanion hole 0 1 1 1 8,55,90 1 -238862 cd01824 Phospholipase_B_like 1 active site 0 1 1 1 18,69,129,262,265 1 -238862 cd01824 Phospholipase_B_like 2 catalytic triad 0 1 1 1 18,262,265 1 -238862 cd01824 Phospholipase_B_like 3 oxyanion hole 0 1 1 1 18,69,129 1 -238863 cd01825 SGNH_hydrolase_peri1 1 active site 0 1 1 1 7,33,66,164,167 1 -238863 cd01825 SGNH_hydrolase_peri1 2 catalytic triad 0 1 1 1 7,164,167 1 -238863 cd01825 SGNH_hydrolase_peri1 3 oxyanion hole 0 1 1 1 7,33,66 1 -238864 cd01826 acyloxyacyl_hydrolase_like 1 active site 0 1 1 1 19,100,132,285,288 1 -238864 cd01826 acyloxyacyl_hydrolase_like 2 catalytic triad 0 1 1 1 19,285,288 1 -238864 cd01826 acyloxyacyl_hydrolase_like 3 oxyanion hole 0 1 1 1 19,100,132 1 -238865 cd01827 sialate_O-acetylesterase_like1 1 active site 0 1 1 1 8,42,77,166,169 1 -238865 cd01827 sialate_O-acetylesterase_like1 2 catalytic triad 0 1 1 1 8,166,169 1 -238865 cd01827 sialate_O-acetylesterase_like1 3 oxyanion hole 0 1 1 1 8,42,77 1 -238866 cd01828 sialate_O-acetylesterase_like2 1 active site 0 1 1 1 7,30,58,147,150 1 -238866 cd01828 sialate_O-acetylesterase_like2 2 catalytic triad 0 1 1 1 7,147,150 1 -238866 cd01828 sialate_O-acetylesterase_like2 3 oxyanion hole 0 1 1 1 7,30,58 1 -238867 cd01829 SGNH_hydrolase_peri2 1 active site 0 1 1 1 7,35,69,177,180 1 -238867 cd01829 SGNH_hydrolase_peri2 2 catalytic triad 0 1 1 1 7,177,180 1 -238867 cd01829 SGNH_hydrolase_peri2 3 oxyanion hole 0 1 1 1 7,35,69 1 -238868 cd01830 XynE_like 1 active site 0 1 1 1 7,48,84,183,186 1 -238868 cd01830 XynE_like 2 catalytic triad 0 1 1 1 7,183,186 1 -238868 cd01830 XynE_like 3 oxyanion hole 0 1 1 1 7,48,84 1 -238869 cd01831 Endoglucanase_E_like 1 active site 0 1 1 1 7,52,65,147,150 1 -238869 cd01831 Endoglucanase_E_like 2 catalytic triad 0 1 1 1 7,147,150 1 -238869 cd01831 Endoglucanase_E_like 3 oxyanion hole 0 1 1 1 7,52,65 1 -238870 cd01832 SGNH_hydrolase_like_1 1 active site 0 1 1 1 7,48,77,165,168 1 -238870 cd01832 SGNH_hydrolase_like_1 2 catalytic triad 0 1 1 1 7,165,168 1 -238870 cd01832 SGNH_hydrolase_like_1 3 oxyanion hole 0 1 1 1 7,48,77 1 -238871 cd01833 XynB_like 1 active site 0 1 1 1 8,21,50,136,139 1 -238871 cd01833 XynB_like 2 catalytic triad 0 1 1 1 8,136,139 1 -238871 cd01833 XynB_like 3 oxyanion hole 0 1 1 1 8,21,50 1 -238872 cd01834 SGNH_hydrolase_like_2 1 active site 0 1 1 1 9,42,71,171,174 1 -238872 cd01834 SGNH_hydrolase_like_2 2 catalytic triad 0 1 1 1 9,171,174 1 -238872 cd01834 SGNH_hydrolase_like_2 3 oxyanion hole 0 1 1 1 9,42,71 1 -238873 cd01835 SGNH_hydrolase_like_3 1 active site 0 1 1 1 9,46,79,172,175 1 -238873 cd01835 SGNH_hydrolase_like_3 2 catalytic triad 0 1 1 1 9,172,175 1 -238873 cd01835 SGNH_hydrolase_like_3 3 oxyanion hole 0 1 1 1 9,46,79 1 -238874 cd01836 FeeA_FeeB_like 1 active site 0 1 1 1 10,49,77,168,171 1 -238874 cd01836 FeeA_FeeB_like 2 catalytic triad 0 1 1 1 10,168,171 1 -238874 cd01836 FeeA_FeeB_like 3 oxyanion hole 0 1 1 1 10,49,77 1 -238875 cd01837 SGNH_plant_lipase_like 1 active site 0 1 1 1 8,83,138,294,297 1 -238875 cd01837 SGNH_plant_lipase_like 2 catalytic triad 0 1 1 1 8,294,297 1 -238875 cd01837 SGNH_plant_lipase_like 3 oxyanion hole 0 1 1 1 8,83,138 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 1 active site 0 1 1 1 7,41,73,178,181 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 2 catalytic triad 0 1 1 1 7,178,181 1 -238876 cd01838 Isoamyl_acetate_hydrolase_like 3 oxyanion hole 0 1 1 1 7,41,73 1 -238877 cd01839 SGNH_arylesterase_like 1 active site 0 1 1 1 7,50,89,184,187 1 -238877 cd01839 SGNH_arylesterase_like 2 catalytic triad 0 1 1 1 7,184,187 1 -238877 cd01839 SGNH_arylesterase_like 3 oxyanion hole 0 1 1 1 7,50,89 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 1 active site 0 1 1 1 7,31,60,129,132 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 2 catalytic triad 0 1 1 1 7,129,132 1 -238878 cd01840 SGNH_hydrolase_yrhL_like 3 oxyanion hole 0 1 1 1 7,31,60 1 -238879 cd01841 NnaC_like 1 active site 0 1 1 1 8,32,61,153,156 1 -238879 cd01841 NnaC_like 2 catalytic triad 0 1 1 1 8,153,156 1 -238879 cd01841 NnaC_like 3 oxyanion hole 0 1 1 1 8,32,61 1 -238880 cd01842 SGNH_hydrolase_like_5 1 active site 0 1 1 1 7,47,60,161,164 1 -238880 cd01842 SGNH_hydrolase_like_5 2 catalytic triad 0 1 1 1 7,161,164 1 -238880 cd01842 SGNH_hydrolase_like_5 3 oxyanion hole 0 1 1 1 7,47,60 1 -238881 cd01844 SGNH_hydrolase_like_6 1 active site 0 1 1 1 7,40,67,156,159 1 -238881 cd01844 SGNH_hydrolase_like_6 2 catalytic triad 0 1 1 1 7,156,159 1 -238881 cd01844 SGNH_hydrolase_like_6 3 oxyanion hole 0 1 1 1 7,40,67 1 -238882 cd01846 fatty_acyltransferase_like 1 active site 0 1 1 1 7,63,109,250,253 1 -238882 cd01846 fatty_acyltransferase_like 2 catalytic triad 0 1 1 1 7,250,253 1 -238882 cd01846 fatty_acyltransferase_like 3 oxyanion hole 0 1 1 1 7,63,109 1 -238883 cd01847 Triacylglycerol_lipase_like 1 active site 0 1 1 1 9,66,112,260,263 1 -238883 cd01847 Triacylglycerol_lipase_like 2 catalytic triad 0 1 1 1 9,260,263 1 -238883 cd01847 Triacylglycerol_lipase_like 3 oxyanion hole 0 1 1 1 9,66,112 1 -239945 cd04501 SGNH_hydrolase_like_4 1 active site 0 1 1 1 8,40,69,162,165 1 -239945 cd04501 SGNH_hydrolase_like_4 2 catalytic triad 0 1 1 1 8,162,165 1 -239945 cd04501 SGNH_hydrolase_like_4 3 oxyanion hole 0 1 1 1 8,40,69 1 -239946 cd04502 SGNH_hydrolase_like_7 1 active site 0 1 1 1 7,31,60,150,153 1 -239946 cd04502 SGNH_hydrolase_like_7 2 catalytic triad 0 1 1 1 7,150,153 1 -239946 cd04502 SGNH_hydrolase_like_7 3 oxyanion hole 0 1 1 1 7,31,60 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 1 active site 0 1 1 1 7,46,78,184,187 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 2 catalytic triad 0 1 1 1 7,184,187 1 -239947 cd04506 SGNH_hydrolase_YpmR_like 3 oxyanion hole 0 1 1 1 7,46,78 1 -238142 cd00231 ZipA 1 FtsZ protein binding site 0 1 1 1 2,4,34,36,54,56,57,58,76,78,114 2 -350855 cd00232 HemeO-like 1 heme binding site 0 1 1 0 5,12,15,16,43,120,121,122,124,125,129,133,163,167,191,194,198 5 -350855 cd00232 HemeO-like 2 heme ligand H 1 1 1 12 5 -350855 cd00232 HemeO-like 3 kinked helix 0 1 1 1 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140 7 -350856 cd19165 HemeO 1 heme binding site 0 1 1 0 6,13,16,17,45,122,123,124,126,127,131,135,166,170,194,197,201 5 -350856 cd19165 HemeO 2 heme ligand H 1 1 1 13 5 -350856 cd19165 HemeO 3 kinked helix 0 1 1 1 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142 7 -350857 cd19166 HemeO-bac 1 heme binding site 0 1 1 0 5,12,15,16,41,103,104,105,107,108,111,115,144,148,172,175,179 5 -350857 cd19166 HemeO-bac 2 heme ligand H 1 1 1 12 5 -350857 cd19166 HemeO-bac 3 kinked helix 0 1 1 1 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -238144 cd00233 VIP2 1 active site 0 1 1 1 37,50,87,129,130,131,141,169,178 1 -238144 cd00233 VIP2 2 ADP-ribosylating toxin turn-turn motif 0 0 1 1 164,167,169 0 -238144 cd00233 VIP2 3 conformational flexibility of ligand binding pocket 0 1 0 1 50 0 -238145 cd00236 FinO_conjug_rep 1 putative RNA binding sites 0 0 1 1 4,8,11,18,19,23,63,81,82,106,134,139 3 -238145 cd00236 FinO_conjug_rep 2 putative kissing complex interaction region 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11 0 -119414 cd00239 PapG_CBD 1 receptor/carbohydrate binding site 0 1 1 1 56,57,58,88,99,100,101,102,103,104,167,169,172 0 -119414 cd00239 PapG_CBD 2 putative membrane interaction site 0 0 1 1 24,78,82,87,134 0 -238147 cd00240 TFIIFa 1 transcription initiation complex contacts 0 0 1 1 42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 0 -187675 cd00241 DOMON_like 1 putative ligand binding site 0 1 1 1 57,80,142 5 -187674 cd00005 CBM9_like_1 1 putative ligand binding site 0 1 1 1 74,95,148 5 -187676 cd09618 CBM9_like_2 1 putative ligand binding site 0 1 1 1 88,109,167 5 -187677 cd09619 CBM9_like_4 1 putative ligand binding site 0 1 1 1 75,94,155 5 -187678 cd09620 CBM9_like_3 1 putative ligand binding site 0 1 1 1 71,92,164 5 -187679 cd09621 CBM9_like_5 1 putative ligand binding site 0 1 1 1 67,91,154 5 -187680 cd09622 CBM9_like_HisKa 1 putative ligand binding site 0 1 1 1 132,146,202 5 -187681 cd09623 DOMON_EBDH 1 putative ligand binding site 0 1 1 1 107,133,200 5 -187682 cd09624 DOMON_b558_566 1 putative ligand binding site 0 1 1 1 56,138,255 5 -187683 cd09625 DOMON_like_cytochrome 1 putative ligand binding site 0 1 1 1 123,172,327 5 -187684 cd09626 DOMON_glucodextranase_like 1 putative ligand binding site 0 1 1 1 68,100,156 5 -187685 cd09627 DOMON_murB_like 1 putative ligand binding site 0 1 1 1 67,80,143 5 -187686 cd09628 DOMON_SDR_2_like 1 putative ligand binding site 0 1 1 1 53,70,144 5 -187687 cd09629 DOMON_CIL1_like 1 putative ligand binding site 0 1 1 1 40,57,121 5 -187688 cd09630 CDH_like_cytochrome 1 putative ligand binding site 0 1 1 1 52,66,138 5 -187689 cd09631 DOMON_DOH 1 putative ligand binding site 0 1 1 1 33,49,119 5 -153074 cd00242 Ecotin 1 primary substrate binding site 0 1 1 0 77,78,79,80 0 -153074 cd00242 Ecotin 2 secondary substrate binding site 0 1 1 0 61,62,63,64,65,102,103,104,105,106,107 0 -153074 cd00242 Ecotin 3 dimerization interface 0 1 1 0 124,125,126,127,128,129,130,131,132,133,134 2 -153074 cd00242 Ecotin 4 inhibition loop 0 1 1 0 79,80 0 -238148 cd00244 AlgLyase 1 active site 0 1 1 1 55,63,116,120,123,178,179,232,233,236,291,298,329 1 -238149 cd00245 Glm_e 1 B12 cofactor binding site 0 1 1 1 48,134,174,248,249,250,251,283,284,287,288,425 5 -238149 cd00245 Glm_e 2 substrate binding site 0 1 1 1 20,48,54,103,104,125,131,135,170 5 -238149 cd00245 Glm_e 3 heterodimer (sigma-epsilon) interface 0 1 1 1 51,52,55,76,77,134,135,137,285,286,421 2 -238149 cd00245 Glm_e 4 homodimer (epsilon-epsilon) interface 0 1 1 1 210,212,254,256,257,263,264,267,296,299,300,303,306,379,427 2 -238150 cd00246 RabGEF 1 zinc binding site 0 1 1 0 4,7,73,76 4 -238150 cd00246 RabGEF 2 putative Rab GTPase interaction site 0 0 1 1 52,53,54,58,75 2 -238151 cd00247 Endostatin-like 1 putative ligand binding site 0 0 1 1 31,40,46,55,56,59,121,122,132 5 -238153 cd00249 AGE 1 putative active cleft 0 0 1 1 52,56,59,114,118,121,172,175,176,179,239,242,245,246,300,301,305,363,367,368,371 1 -238153 cd00249 AGE 2 dimerization interface 0 1 1 0 9,16,65,78,378,382 2 -238154 cd00250 CAS_like 1 iron coordination sites 0 1 1 0 98,100,238 4 -238154 cd00250 CAS_like 2 active site 0 1 1 1 98,100,125,238,251 0 -238154 cd00250 CAS_like 3 substrate binding pocket 0 1 1 0 67,68,101,103,108,158,255,257 5 -119403 cd00251 Mth_Ecto 1 N-linked glycosylation sites 0 1 1 1 16,92,139 6 -119403 cd00251 Mth_Ecto 2 putative ligand binding site 0 0 1 0 113 5 -119403 cd00251 Mth_Ecto 3 putative transmembrane domain interaction surface 0 0 1 1 41,146,147 0 -320009 cd00252 EFh_SPARC_EC 1 Ca binding site 0 1 1 1 54,58,65,88,90,92,99 4 -320009 cd00252 EFh_SPARC_EC 2 EF-hand motif 0 0 0 1 42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320009 cd00252 EFh_SPARC_EC 3 EF-hand motif 0 0 0 1 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106 7 -320010 cd16231 EFh_SPARC_like 1 Ca binding site 0 1 1 1 60,65,72,95,97,99,106 4 -320010 cd16231 EFh_SPARC_like 2 EF-hand motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320010 cd16231 EFh_SPARC_like 3 EF-hand motif 0 0 0 1 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320014 cd16235 EFh_SPARC_SPARC 1 Ca binding site 0 1 1 1 40,45,52,75,77,79,86 4 -320014 cd16235 EFh_SPARC_SPARC 2 EF-hand motif 0 0 0 1 28,29,30,31,32,33,34,35,36,37,38,39,40,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320014 cd16235 EFh_SPARC_SPARC 3 EF-hand motif 0 0 0 1 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93 7 -320015 cd16236 EFh_SPARC_SPARCL1 1 Ca binding site 0 1 1 1 37,42,49,72,74,76,83 4 -320015 cd16236 EFh_SPARC_SPARCL1 2 EF-hand motif 0 0 0 1 25,26,27,28,29,30,31,32,33,34,35,36,37,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -320015 cd16236 EFh_SPARC_SPARCL1 3 EF-hand motif 0 0 0 1 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -320011 cd16232 EFh_SPARC_TICN 1 Ca binding site 0 1 1 1 55,59,66,87,89,91,98 4 -320011 cd16232 EFh_SPARC_TICN 2 EF-hand motif 0 0 0 1 43,44,45,46,47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320011 cd16232 EFh_SPARC_TICN 3 EF-hand motif 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320016 cd16237 EFh_SPARC_TICN1 1 Ca binding site 0 1 1 1 59,63,70,91,93,95,102 4 -320016 cd16237 EFh_SPARC_TICN1 2 EF-hand motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320016 cd16237 EFh_SPARC_TICN1 3 EF-hand motif 0 0 0 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320017 cd16238 EFh_SPARC_TICN2 1 Ca binding site 0 1 1 1 59,63,70,91,93,95,102 4 -320017 cd16238 EFh_SPARC_TICN2 2 EF-hand motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320017 cd16238 EFh_SPARC_TICN2 3 EF-hand motif 0 0 0 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320018 cd16239 EFh_SPARC_TICN3 1 Ca binding site 0 1 1 1 60,64,71,92,94,96,103 4 -320018 cd16239 EFh_SPARC_TICN3 2 EF-hand motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 7 -320018 cd16239 EFh_SPARC_TICN3 3 EF-hand motif 0 0 0 1 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -320012 cd16233 EFh_SPARC_FSTL1 1 Ca binding site 0 1 1 1 44,47,54,93,95,97,104 4 -320012 cd16233 EFh_SPARC_FSTL1 2 EF-hand motif 0 0 0 1 32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62 7 -320012 cd16233 EFh_SPARC_FSTL1 3 EF-hand motif 0 0 0 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -320013 cd16234 EFh_SPARC_SMOC 1 Ca binding site 0 1 1 1 48,52,59,85,87,89,96 4 -320013 cd16234 EFh_SPARC_SMOC 2 EF-hand motif 0 0 0 1 36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320013 cd16234 EFh_SPARC_SMOC 3 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320019 cd16240 EFh_SPARC_SMOC1 1 Ca binding site 0 1 1 1 57,61,68,94,96,98,105 4 -320019 cd16240 EFh_SPARC_SMOC1 2 EF-hand motif 0 0 0 1 45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 7 -320019 cd16240 EFh_SPARC_SMOC1 3 EF-hand motif 0 0 0 1 82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -320020 cd16241 EFh_SPARC_SMOC2 1 Ca binding site 0 1 1 1 56,60,67,93,95,97,104 4 -320020 cd16241 EFh_SPARC_SMOC2 2 EF-hand motif 0 0 0 1 44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 7 -320020 cd16241 EFh_SPARC_SMOC2 3 EF-hand motif 0 0 0 1 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -238158 cd00255 nidG2 1 collagen/perlecan interaction surface 0 1 1 1 4,28,30,37,39,41,204,209,213,215 2 -238159 cd00256 VATPase_H 1 putative peptide binding site 0 1 1 1 81,121,162,166 0 -238159 cd00256 VATPase_H 2 putative peptide binding site 0 0 1 1 230,271,272,273,278,312,316,317,321,326,327,329,334 0 -238159 cd00256 VATPase_H 3 armadillo-like superhelical repeats 0 0 1 1 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,100,101,102,103,104,105,106,107,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,146,147,148,149,150,151,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,186,187,188,189,190,191,192,193,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,243,244,245,246,247,248,249,250,251,252,253,254,255,256,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 0 -238160 cd00257 Fascin 1 PKC phosphorylation site 0 0 1 1 28 6 -119404 cd00259 STNV 1 Ca2+ binding site 0 1 1 1 24,54 4 -119404 cd00259 STNV 2 putative RNA binding site 0 0 1 0 6,7,8,13,16,17 3 -271229 cd00260 Sialidase 1 catalytic site RDERRYE 1 1 1 15,39,195,210,287,318,339 1 -271229 cd00260 Sialidase 2 Sialidase propeller 1 0 0 0 1 14,15,16,17,18,19,20,21,22,26,27,28,29,30,31,32,33,36,37,38,39,40,42,43,44,45,46,47,48,49,50,62,63,64,66,67,68,69,70 7 -271229 cd00260 Sialidase 3 Sialidase propeller 2 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,108,109,110,111,112,113,114,115,121,122,123,124,125,126 7 -271229 cd00260 Sialidase 4 Sialidase propeller 3 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,167,168,169,170,171,172,173,174,179,180,181,182,183,184,185,186 7 -271229 cd00260 Sialidase 5 Sialidase propeller 4 0 0 0 1 194,195,196,197,198,199,200,201,203,204,205,206,207,208,209,210,211,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233 7 -271229 cd00260 Sialidase 6 Sialidase propeller 5 0 0 0 1 260,261,262,263,264,265,266,267,268,275,276,277,278,279,280,281,282,283,286,287,288,289,290,291,292,293,294,295,296,302,303,304,305,306,307,308,309 7 -271229 cd00260 Sialidase 7 Sialidase propeller 6 0 0 0 1 317,318,319,320,321,322,323,324,333,334,335,336,337,338,339,340,353,354,355,356,357,358,359,360 7 -271230 cd15464 HN_like 1 catalytic site RDERRYE 1 1 1 16,40,233,250,326,354,373 1 -271230 cd15464 HN_like 2 Sialidase propeller 1 0 0 0 1 15,16,17,18,19,20,21,22,23,27,28,29,30,31,32,33,34,37,38,39,40,41,43,44,45,46,47,48,49,50,51,64,65,66,68,69,70,71,72 7 -271230 cd15464 HN_like 3 Sialidase propeller 2 0 0 0 1 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,110,111,112,113,114,115,116,117,123,124,125,126,127,128 7 -271230 cd15464 HN_like 4 Sialidase propeller 3 0 0 0 1 141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,203,204,205,206,207,208,209,210,216,217,218,219,220,221,222,223 7 -271230 cd15464 HN_like 5 Sialidase propeller 4 0 0 0 1 232,233,234,235,236,237,238,239,243,244,245,246,247,248,249,250,251,257,258,259,260,261,262,263,264,265,268,269,270,271,272,273 7 -271230 cd15464 HN_like 6 Sialidase propeller 5 0 0 0 1 300,301,302,303,304,305,306,307,308,314,315,316,317,318,319,320,321,322,325,326,327,328,329,330,331,332,333,334,335,338,339,340,341,342,343,344,345 7 -271230 cd15464 HN_like 7 Sialidase propeller 6 0 0 0 1 353,354,355,356,357,358,359,360,367,368,369,370,371,372,373,374,383,384,385,386,387,388,389,390 7 -271231 cd15467 MV-h 1 catalytic site RDERRYE 1 1 1 30,54,253,270,348,378,397 1 -271231 cd15467 MV-h 2 Sialidase propeller 1 0 0 0 1 29,30,31,32,33,34,35,36,37,41,42,43,44,45,46,47,48,51,52,53,54,55,63,64,65,66,67,68,69,70,71,84,85,86,88,89,90,91,92 7 -271231 cd15467 MV-h 3 Sialidase propeller 2 0 0 0 1 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,130,131,132,133,134,135,136,137,144,145,146,147,148,149 7 -271231 cd15467 MV-h 4 Sialidase propeller 3 0 0 0 1 161,162,163,164,165,166,167,168,169,170,171,172,174,175,176,177,178,179,180,181,223,224,225,226,227,228,229,230,236,237,238,239,240,241,242,243 7 -271231 cd15467 MV-h 5 Sialidase propeller 4 0 0 0 1 252,253,254,255,256,257,258,259,263,264,265,266,267,268,269,270,271,277,278,279,280,281,282,283,284,285,288,289,290,291,292,293 7 -271231 cd15467 MV-h 6 Sialidase propeller 5 0 0 0 1 322,323,324,325,326,327,328,329,330,336,337,338,339,340,341,342,343,344,347,348,349,350,351,352,353,354,355,356,357,359,360,361,362,363,364,365,366 7 -271231 cd15467 MV-h 7 Sialidase propeller 6 0 0 0 1 377,378,379,380,381,382,383,384,391,392,393,394,395,396,397,398,407,408,409,410,411,412,413,414 7 -271232 cd15468 HeV-G 1 catalytic site RDERRYE 1 1 1 30,54,252,267,343,371,390 1 -271232 cd15468 HeV-G 2 Sialidase propeller 1 0 0 0 1 29,30,31,32,33,34,35,36,37,41,42,43,44,45,46,47,48,51,52,53,54,55,57,58,59,60,61,62,63,64,65,78,79,80,82,83,84,85,86 7 -271232 cd15468 HeV-G 3 Sialidase propeller 2 0 0 0 1 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,124,125,126,127,128,129,130,131,144,145,146,147,148,149 7 -271232 cd15468 HeV-G 4 Sialidase propeller 3 0 0 0 1 158,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,177,178,222,223,224,225,226,227,228,229,235,236,237,238,239,240,241,242 7 -271232 cd15468 HeV-G 5 Sialidase propeller 4 0 0 0 1 251,252,253,254,255,256,257,258,260,261,262,263,264,265,266,267,268,274,275,276,277,278,279,280,281,282,285,286,287,288,289,290 7 -271232 cd15468 HeV-G 6 Sialidase propeller 5 0 0 0 1 317,318,319,320,321,322,323,324,325,331,332,333,334,335,336,337,338,339,342,343,344,345,346,347,348,349,350,351,352,355,356,357,358,359,360,361,362 7 -271232 cd15468 HeV-G 7 Sialidase propeller 6 0 0 0 1 370,371,372,373,374,375,376,377,384,385,386,387,388,389,390,391,400,401,402,403,404,405,406,407 7 -271233 cd15469 HN 1 catalytic site RDERRYE 1 1 1 14,38,240,255,341,369,390 1 -271233 cd15469 HN 2 Sialidase propeller 1 0 0 0 1 13,14,15,16,17,18,19,20,21,25,26,27,28,29,30,31,32,35,36,37,38,39,41,42,43,44,45,46,47,48,49,62,63,64,66,67,68,69,70 7 -271233 cd15469 HN 3 Sialidase propeller 2 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,108,109,110,111,112,113,114,115,121,122,123,124,125,126 7 -271233 cd15469 HN 4 Sialidase propeller 3 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,210,211,212,213,214,215,216,217,223,224,225,226,227,228,229,230 7 -271233 cd15469 HN 5 Sialidase propeller 4 0 0 0 1 239,240,241,242,243,244,245,246,248,249,250,251,252,253,254,255,256,262,263,264,265,266,267,268,269,270,279,280,281,282,283,284 7 -271233 cd15469 HN 6 Sialidase propeller 5 0 0 0 1 311,312,313,314,315,316,317,318,319,329,330,331,332,333,334,335,336,337,340,341,342,343,344,345,346,347,348,349,350,353,354,355,356,357,358,359,360 7 -271233 cd15469 HN 7 Sialidase propeller 6 0 0 0 1 368,369,370,371,372,373,374,375,384,385,386,387,388,389,390,391,400,401,402,403,404,405,406,407 7 -271234 cd15482 Sialidase_non-viral 1 catalytic site RDERRYE 1 1 1 14,39,200,216,277,306,322 1 -271234 cd15482 Sialidase_non-viral 2 Sialidase propeller 1 0 0 0 1 13,14,15,16,17,18,19,20,21,26,27,28,29,30,31,32,33,36,37,38,39,40,43,44,45,46,47,48,49,50,51,57,58,59,61,62,63,64,65 7 -271234 cd15482 Sialidase_non-viral 3 Sialidase propeller 2 0 0 0 1 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,110,111,112,113,114,115,116,117,125,126,127,128,129,130 7 -271234 cd15482 Sialidase_non-viral 4 Sialidase propeller 3 0 0 0 1 141,142,143,144,145,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,173,174,175,176,177,178,179,180,183,184,185,186,187,188,189,190 7 -271234 cd15482 Sialidase_non-viral 5 Sialidase propeller 4 0 0 0 1 199,200,201,202,203,204,205,206,209,210,211,212,213,214,215,216,217,223,224,225,226,227,228,229,230,231,234,235,236,237,238,239 7 -271234 cd15482 Sialidase_non-viral 6 Sialidase propeller 5 0 0 0 1 249,250,251,252,253,254,255,256,257,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,282,283,284,285,286,291,292,293,294,295,296,297,298 7 -271234 cd15482 Sialidase_non-viral 7 Sialidase propeller 6 0 0 0 1 305,306,307,308,309,310,311,312,316,317,318,319,320,321,322,323,331,332,333,334,335,336,337,338 7 -271235 cd15483 Influenza_NA 1 catalytic site RDERRYE 1 1 1 35,68,195,210,289,323,344 1 -271235 cd15483 Influenza_NA 2 Sialidase propeller 1 0 0 0 1 34,35,36,37,38,39,40,41,42,46,47,48,49,50,51,52,53,65,66,67,68,69,72,73,74,75,76,77,78,79,80,85,86,87,89,90,91,92,93 7 -271235 cd15483 Influenza_NA 3 Sialidase propeller 2 0 0 0 1 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -271235 cd15483 Influenza_NA 4 Sialidase propeller 3 0 0 0 1 140,141,142,143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,170,171,172,173,174,175,176,177,179,180,181,182,183,184,185,186 7 -271235 cd15483 Influenza_NA 5 Sialidase propeller 4 0 0 0 1 194,195,196,197,198,199,200,201,203,204,205,206,207,208,209,210,211,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233 7 -271235 cd15483 Influenza_NA 6 Sialidase propeller 5 0 0 0 1 266,267,268,269,270,271,272,273,274,277,278,279,280,281,282,283,284,285,288,289,290,291,292,293,294,295,296,297,298,307,308,309,310,311,312,313,314 7 -271235 cd15483 Influenza_NA 7 Sialidase propeller 6 0 0 0 1 322,323,324,325,326,327,328,329,338,339,340,341,342,343,344,345,361,362,363,364,365,366,367,368 7 -238164 cd00264 BPI 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,75,109,111,120,159,163,167,200 0 -238164 cd00264 BPI 2 BPI dimerizatation interface 0 1 1 1 0,1,2,3,4,5,6 2 -237992 cd00025 BPI1 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,72,113,115,125,172,176,180,213 0 -237992 cd00025 BPI1 2 BPI dimerizatation interface 0 1 1 1 0,1,2,3,4,5,6 2 -237993 cd00026 BPI2 1 apolar binding pocket 0 1 1 1 5,10,13,17,20,78,111,113,122,158,162,166,192 0 -237993 cd00026 BPI2 2 BPI dimerizatation interface 0 1 1 1 0,1,2,3,4,5,6 2 -213179 cd00267 ABC_ATPase 1 ATP binding site 0 1 1 1 34,35,37,38,39,79,104,105,137 5 -213179 cd00267 ABC_ATPase 2 ABC transporter signature motif 0 0 1 1 80,81,82,83,84,85,86,87,88,89 0 -213179 cd00267 ABC_ATPase 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213179 cd00267 ABC_ATPase 4 Walker B 0 0 1 1 100,101,102,103,104,105 0 -213179 cd00267 ABC_ATPase 5 D-loop 0 0 1 1 108,109,110,111 0 -213179 cd00267 ABC_ATPase 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213179 cd00267 ABC_ATPase 7 H-loop/switch region 0 0 1 1 133,134,135,136,137,138,139 0 -213180 cd03213 ABCG_EPDR 1 ATP binding site 0 1 1 1 44,45,47,48,49,88,135,136,168 5 -213180 cd03213 ABCG_EPDR 2 ABC transporter signature motif 0 0 1 1 111,112,113,114,115,116,117,118,119,120 0 -213180 cd03213 ABCG_EPDR 3 Walker A/P-loop 0 0 1 1 41,42,43,44,45,46,47,48 0 -213180 cd03213 ABCG_EPDR 4 Walker B 0 0 1 1 131,132,133,134,135,136 0 -213180 cd03213 ABCG_EPDR 5 D-loop 0 0 1 1 139,140,141,142 0 -213180 cd03213 ABCG_EPDR 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213180 cd03213 ABCG_EPDR 7 H-loop/switch region 0 0 1 1 164,165,166,167,168,169,170 0 -213199 cd03232 ABCG_PDR_domain2 1 ATP binding site 0 1 1 1 42,43,45,46,47,85,132,133,165 5 -213199 cd03232 ABCG_PDR_domain2 2 ABC transporter signature motif 0 0 1 1 108,109,110,111,112,113,114,115,116,117 0 -213199 cd03232 ABCG_PDR_domain2 3 Walker A/P-loop 0 0 1 1 39,40,41,42,43,44,45,46 0 -213199 cd03232 ABCG_PDR_domain2 4 Walker B 0 0 1 1 128,129,130,131,132,133 0 -213199 cd03232 ABCG_PDR_domain2 5 D-loop 0 0 1 1 136,137,138,139 0 -213199 cd03232 ABCG_PDR_domain2 6 Q-loop/lid 0 0 1 1 82,83,84,85 0 -213199 cd03232 ABCG_PDR_domain2 7 H-loop/switch region 0 0 1 1 161,162,163,164,165,166,167 0 -213200 cd03233 ABCG_PDR_domain1 1 ATP binding site 0 1 1 1 42,43,45,46,47,89,142,143,176 5 -213200 cd03233 ABCG_PDR_domain1 2 ABC transporter signature motif 0 0 1 1 118,119,120,121,122,123,124,125,126,127 0 -213200 cd03233 ABCG_PDR_domain1 3 Walker A/P-loop 0 0 1 1 39,40,41,42,43,44,45,46 0 -213200 cd03233 ABCG_PDR_domain1 4 Walker B 0 0 1 1 138,139,140,141,142,143 0 -213200 cd03233 ABCG_PDR_domain1 5 D-loop 0 0 1 1 146,147,148,149 0 -213200 cd03233 ABCG_PDR_domain1 6 Q-loop/lid 0 0 1 1 86,87,88,89 0 -213200 cd03233 ABCG_PDR_domain1 7 H-loop/switch region 0 0 1 1 172,173,174,175,176,177,178 0 -213201 cd03234 ABCG_White 1 ATP binding site 0 1 1 1 42,43,45,46,47,87,167,168,200 5 -213201 cd03234 ABCG_White 2 ABC transporter signature motif 0 0 1 1 143,144,145,146,147,148,149,150,151,152 0 -213201 cd03234 ABCG_White 3 Walker A/P-loop 0 0 1 1 39,40,41,42,43,44,45,46 0 -213201 cd03234 ABCG_White 4 Walker B 0 0 1 1 163,164,165,166,167,168 0 -213201 cd03234 ABCG_White 5 D-loop 0 0 1 1 171,172,173,174 0 -213201 cd03234 ABCG_White 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213201 cd03234 ABCG_White 7 H-loop/switch region 0 0 1 1 196,197,198,199,200,201,202 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 1 ATP binding site 0 1 1 1 34,35,37,38,39,79,121,122,155 5 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 2 ABC transporter signature motif 0 0 1 1 97,98,99,100,101,102,103,104,105,106 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 4 Walker B 0 0 1 1 117,118,119,120,121,122 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 5 D-loop 0 0 1 1 125,126,127,128 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin 7 H-loop/switch region 0 0 1 1 151,152,153,154,155,156,157 0 -213202 cd03235 ABC_Metallic_Cations 1 ATP binding site 0 1 1 1 34,35,37,38,39,74,156,157,189 5 -213202 cd03235 ABC_Metallic_Cations 2 ABC transporter signature motif 0 0 1 1 132,133,134,135,136,137,138,139,140,141 0 -213202 cd03235 ABC_Metallic_Cations 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213202 cd03235 ABC_Metallic_Cations 4 Walker B 0 0 1 1 152,153,154,155,156,157 0 -213202 cd03235 ABC_Metallic_Cations 5 D-loop 0 0 1 1 160,161,162,163 0 -213202 cd03235 ABC_Metallic_Cations 6 Q-loop/lid 0 0 1 1 71,72,73,74 0 -213202 cd03235 ABC_Metallic_Cations 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213182 cd03215 ABC_Carb_Monos_II 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,128,129,161 5 -213182 cd03215 ABC_Carb_Monos_II 2 ABC transporter signature motif 0 0 1 1 104,105,106,107,108,109,110,111,112,113 0 -213182 cd03215 ABC_Carb_Monos_II 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213182 cd03215 ABC_Carb_Monos_II 4 Walker B 0 0 1 1 124,125,126,127,128,129 0 -213182 cd03215 ABC_Carb_Monos_II 5 D-loop 0 0 1 1 132,133,134,135 0 -213182 cd03215 ABC_Carb_Monos_II 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213182 cd03215 ABC_Carb_Monos_II 7 H-loop/switch region 0 0 1 1 157,158,159,160,161,162,163 0 -213183 cd03216 ABC_Carb_Monos_I 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,106,107,139 5 -213183 cd03216 ABC_Carb_Monos_I 2 ABC transporter signature motif 0 0 1 1 82,83,84,85,86,87,88,89,90,91 0 -213183 cd03216 ABC_Carb_Monos_I 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213183 cd03216 ABC_Carb_Monos_I 4 Walker B 0 0 1 1 102,103,104,105,106,107 0 -213183 cd03216 ABC_Carb_Monos_I 5 D-loop 0 0 1 1 110,111,112,113 0 -213183 cd03216 ABC_Carb_Monos_I 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213183 cd03216 ABC_Carb_Monos_I 7 H-loop/switch region 0 0 1 1 135,136,137,138,139,140,141 0 -213184 cd03217 ABC_FeS_Assembly 1 ATP binding site 0 1 1 1 35,36,38,39,40,83,128,129,161 5 -213184 cd03217 ABC_FeS_Assembly 2 ABC transporter signature motif 0 0 1 1 104,105,106,107,108,109,110,111,112,113 0 -213184 cd03217 ABC_FeS_Assembly 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213184 cd03217 ABC_FeS_Assembly 4 Walker B 0 0 1 1 124,125,126,127,128,129 0 -213184 cd03217 ABC_FeS_Assembly 5 D-loop 0 0 1 1 132,133,134,135 0 -213184 cd03217 ABC_FeS_Assembly 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213184 cd03217 ABC_FeS_Assembly 7 H-loop/switch region 0 0 1 1 157,158,159,160,161,162,163 0 -213185 cd03218 ABC_YhbG 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,157,158,190 5 -213185 cd03218 ABC_YhbG 2 ABC transporter signature motif 0 0 1 1 133,134,135,136,137,138,139,140,141,142 0 -213185 cd03218 ABC_YhbG 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213185 cd03218 ABC_YhbG 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213185 cd03218 ABC_YhbG 5 D-loop 0 0 1 1 161,162,163,164 0 -213185 cd03218 ABC_YhbG 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213185 cd03218 ABC_YhbG 7 H-loop/switch region 0 0 1 1 186,187,188,189,190,191,192 0 -213186 cd03219 ABC_Mj1267_LivG_branched 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,167,168,200 5 -213186 cd03219 ABC_Mj1267_LivG_branched 2 ABC transporter signature motif 0 0 1 1 143,144,145,146,147,148,149,150,151,152 0 -213186 cd03219 ABC_Mj1267_LivG_branched 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213186 cd03219 ABC_Mj1267_LivG_branched 4 Walker B 0 0 1 1 163,164,165,166,167,168 0 -213186 cd03219 ABC_Mj1267_LivG_branched 5 D-loop 0 0 1 1 171,172,173,174 0 -213186 cd03219 ABC_Mj1267_LivG_branched 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213186 cd03219 ABC_Mj1267_LivG_branched 7 H-loop/switch region 0 0 1 1 196,197,198,199,200,201,202 0 -213187 cd03220 ABC_KpsT_Wzt 1 ATP binding site 0 1 1 1 57,58,60,61,62,95,166,167,199 5 -213187 cd03220 ABC_KpsT_Wzt 2 ABC transporter signature motif 0 0 1 1 142,143,144,145,146,147,148,149,150,151 0 -213187 cd03220 ABC_KpsT_Wzt 3 Walker A/P-loop 0 0 1 1 54,55,56,57,58,59,60,61 0 -213187 cd03220 ABC_KpsT_Wzt 4 Walker B 0 0 1 1 162,163,164,165,166,167 0 -213187 cd03220 ABC_KpsT_Wzt 5 D-loop 0 0 1 1 170,171,172,173 0 -213187 cd03220 ABC_KpsT_Wzt 6 Q-loop/lid 0 0 1 1 92,93,94,95 0 -213187 cd03220 ABC_KpsT_Wzt 7 H-loop/switch region 0 0 1 1 195,196,197,198,199,200,201 0 -213188 cd03221 ABCF_EF-3 1 ATP binding site 0 1 1 1 35,36,38,39,40,69,94,95,124 5 -213188 cd03221 ABCF_EF-3 2 ABC transporter signature motif 0 0 1 1 70,71,72,73,74,75,76,77,78,79 0 -213188 cd03221 ABCF_EF-3 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213188 cd03221 ABCF_EF-3 4 Walker B 0 0 1 1 90,91,92,93,94,95 0 -213188 cd03221 ABCF_EF-3 5 D-loop 0 0 1 1 98,99,100,101 0 -213188 cd03221 ABCF_EF-3 6 Q-loop/lid 0 0 1 1 66,67,68,69 0 -213188 cd03221 ABCF_EF-3 7 H-loop/switch region 0 0 1 1 120,121,122,123,124,125,126 0 -213189 cd03222 ABC_RNaseL_inhibitor 1 ATP binding site 0 1 1 1 34,35,37,38,39,67,95,96,129 5 -213189 cd03222 ABC_RNaseL_inhibitor 2 ABC transporter signature motif 0 0 1 1 71,72,73,74,75,76,77,78,79,80 0 -213189 cd03222 ABC_RNaseL_inhibitor 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213189 cd03222 ABC_RNaseL_inhibitor 4 Walker B 0 0 1 1 91,92,93,94,95,96 0 -213189 cd03222 ABC_RNaseL_inhibitor 5 D-loop 0 0 1 1 99,100,101,102 0 -213189 cd03222 ABC_RNaseL_inhibitor 6 Q-loop/lid 0 0 1 1 64,65,66,67 0 -213189 cd03222 ABC_RNaseL_inhibitor 7 H-loop/switch region 0 0 1 1 125,126,127,128,129,130,131 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 1 ATP binding site 0 1 1 1 35,36,38,39,40,93,163,164,196 5 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 5 D-loop 0 0 1 1 167,168,169,170 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 6 Q-loop/lid 0 0 1 1 90,91,92,93 0 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 7 H-loop/switch region 0 0 1 1 192,193,194,195,196,197,198 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 1 ATP binding site 0 1 1 1 34,35,37,38,39,67,139,140,173 5 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 2 ABC transporter signature motif 0 0 1 1 115,116,117,118,119,120,121,122,123,124 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 4 Walker B 0 0 1 1 135,136,137,138,139,140 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 5 D-loop 0 0 1 1 143,144,145,146 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 6 Q-loop/lid 0 0 1 1 64,65,66,67 0 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 7 H-loop/switch region 0 0 1 1 169,170,171,172,173,174,175 0 -213190 cd03223 ABCD_peroxisomal_ALDP 1 ATP binding site 0 1 1 1 36,37,39,40,41,70,115,116,145 5 -213190 cd03223 ABCD_peroxisomal_ALDP 2 ABC transporter signature motif 0 0 1 1 91,92,93,94,95,96,97,98,99,100 0 -213190 cd03223 ABCD_peroxisomal_ALDP 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213190 cd03223 ABCD_peroxisomal_ALDP 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213190 cd03223 ABCD_peroxisomal_ALDP 5 D-loop 0 0 1 1 119,120,121,122 0 -213190 cd03223 ABCD_peroxisomal_ALDP 6 Q-loop/lid 0 0 1 1 67,68,69,70 0 -213190 cd03223 ABCD_peroxisomal_ALDP 7 H-loop/switch region 0 0 1 1 141,142,143,144,145,146,147 0 -213191 cd03224 ABC_TM1139_LivF_branched 1 ATP binding site 0 1 1 1 35,36,38,39,40,81,156,157,189 5 -213191 cd03224 ABC_TM1139_LivF_branched 2 ABC transporter signature motif 0 0 1 1 132,133,134,135,136,137,138,139,140,141 0 -213191 cd03224 ABC_TM1139_LivF_branched 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213191 cd03224 ABC_TM1139_LivF_branched 4 Walker B 0 0 1 1 152,153,154,155,156,157 0 -213191 cd03224 ABC_TM1139_LivF_branched 5 D-loop 0 0 1 1 160,161,162,163 0 -213191 cd03224 ABC_TM1139_LivF_branched 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213191 cd03224 ABC_TM1139_LivF_branched 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 1 ATP binding site 0 1 1 1 36,37,39,40,41,81,158,159,191 5 -213192 cd03225 ABC_cobalt_CbiO_domain1 2 ABC transporter signature motif 0 0 1 1 134,135,136,137,138,139,140,141,142,143 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 4 Walker B 0 0 1 1 154,155,156,157,158,159 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 5 D-loop 0 0 1 1 162,163,164,165 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213192 cd03225 ABC_cobalt_CbiO_domain1 7 H-loop/switch region 0 0 1 1 187,188,189,190,191,192,193 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 1 ATP binding site 0 1 1 1 35,36,38,39,40,77,150,151,183 5 -213193 cd03226 ABC_cobalt_CbiO_domain2 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 4 Walker B 0 0 1 1 146,147,148,149,150,151 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 5 D-loop 0 0 1 1 154,155,156,157 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 6 Q-loop/lid 0 0 1 1 74,75,76,77 0 -213193 cd03226 ABC_cobalt_CbiO_domain2 7 H-loop/switch region 0 0 1 1 179,180,181,182,183,184,185 0 -213194 cd03227 ABC_Class2 1 ATP binding site 0 1 1 1 30,31,33,34,35,76,105,106,138 5 -213194 cd03227 ABC_Class2 2 ABC transporter signature motif 0 0 1 1 77,78,79,80,81,82,83,84,85,86 0 -213194 cd03227 ABC_Class2 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213194 cd03227 ABC_Class2 4 Walker B 0 0 1 1 101,102,103,104,105,106 0 -213194 cd03227 ABC_Class2 5 D-loop 0 0 1 1 109,110,111,112 0 -213194 cd03227 ABC_Class2 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213194 cd03227 ABC_Class2 7 H-loop/switch region 0 0 1 1 134,135,136,137,138,139,140 0 -213205 cd03238 ABC_UvrA 1 ATP binding site 0 1 1 1 30,31,33,34,35,66,113,114,146 5 -213205 cd03238 ABC_UvrA 2 ABC transporter signature motif 0 0 1 1 87,88,89,90,91,92,93,94,95,96 0 -213205 cd03238 ABC_UvrA 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213205 cd03238 ABC_UvrA 4 Walker B 0 0 1 1 109,110,111,112,113,114 0 -213205 cd03238 ABC_UvrA 5 D-loop 0 0 1 1 117,118,119,120 0 -213205 cd03238 ABC_UvrA 6 Q-loop/lid 0 0 1 1 63,64,65,66 0 -213205 cd03238 ABC_UvrA 7 H-loop/switch region 0 0 1 1 142,143,144,145,146,147,148 0 -213237 cd03270 ABC_UvrA_I 1 ATP binding site 0 1 1 1 30,31,33,34,35,83,163,164,196 5 -213237 cd03270 ABC_UvrA_I 2 ABC transporter signature motif 0 0 1 1 137,138,139,140,141,142,143,144,145,146 0 -213237 cd03270 ABC_UvrA_I 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213237 cd03270 ABC_UvrA_I 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213237 cd03270 ABC_UvrA_I 5 D-loop 0 0 1 1 167,168,169,170 0 -213237 cd03270 ABC_UvrA_I 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213237 cd03270 ABC_UvrA_I 7 H-loop/switch region 0 0 1 1 192,193,194,195,196,197,198 0 -213238 cd03271 ABC_UvrA_II 1 ATP binding site 0 1 1 1 30,31,33,34,35,76,196,197,229 5 -213238 cd03271 ABC_UvrA_II 2 ABC transporter signature motif 0 0 1 1 169,170,171,172,173,174,175,176,177,178 0 -213238 cd03271 ABC_UvrA_II 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213238 cd03271 ABC_UvrA_II 4 Walker B 0 0 1 1 192,193,194,195,196,197 0 -213238 cd03271 ABC_UvrA_II 5 D-loop 0 0 1 1 200,201,202,203 0 -213238 cd03271 ABC_UvrA_II 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213238 cd03271 ABC_UvrA_II 7 H-loop/switch region 0 0 1 1 225,226,227,228,229,230,231 0 -213206 cd03239 ABC_SMC_head 1 ATP binding site 0 1 1 1 31,32,34,35,36,87,122,123,155 5 -213206 cd03239 ABC_SMC_head 2 ABC transporter signature motif 0 0 1 1 94,95,96,97,98,99,100,101,102,103 0 -213206 cd03239 ABC_SMC_head 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213206 cd03239 ABC_SMC_head 4 Walker B 0 0 1 1 118,119,120,121,122,123 0 -213206 cd03239 ABC_SMC_head 5 D-loop 0 0 1 1 126,127,128,129 0 -213206 cd03239 ABC_SMC_head 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213206 cd03239 ABC_SMC_head 7 H-loop/switch region 0 0 1 1 151,152,153,154,155,156,157 0 -213239 cd03272 ABC_SMC3_euk 1 ATP binding site 0 1 1 1 32,33,35,36,37,138,186,187,218 5 -213239 cd03272 ABC_SMC3_euk 2 ABC transporter signature motif 0 0 1 1 158,159,160,161,162,163,164,165,166,167 0 -213239 cd03272 ABC_SMC3_euk 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213239 cd03272 ABC_SMC3_euk 4 Walker B 0 0 1 1 182,183,184,185,186,187 0 -213239 cd03272 ABC_SMC3_euk 5 D-loop 0 0 1 1 190,191,192,193 0 -213239 cd03272 ABC_SMC3_euk 6 Q-loop/lid 0 0 1 1 135,136,137,138 0 -213239 cd03272 ABC_SMC3_euk 7 H-loop/switch region 0 0 1 1 214,215,216,217,218,219,220 0 -213240 cd03273 ABC_SMC2_euk 1 ATP binding site 0 1 1 1 34,35,37,38,39,146,194,195,226 5 -213240 cd03273 ABC_SMC2_euk 2 ABC transporter signature motif 0 0 1 1 166,167,168,169,170,171,172,173,174,175 0 -213240 cd03273 ABC_SMC2_euk 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213240 cd03273 ABC_SMC2_euk 4 Walker B 0 0 1 1 190,191,192,193,194,195 0 -213240 cd03273 ABC_SMC2_euk 5 D-loop 0 0 1 1 198,199,200,201 0 -213240 cd03273 ABC_SMC2_euk 6 Q-loop/lid 0 0 1 1 143,144,145,146 0 -213240 cd03273 ABC_SMC2_euk 7 H-loop/switch region 0 0 1 1 222,223,224,225,226,227,228 0 -213241 cd03274 ABC_SMC4_euk 1 ATP binding site 0 1 1 1 34,35,37,38,39,107,155,156,187 5 -213241 cd03274 ABC_SMC4_euk 2 ABC transporter signature motif 0 0 1 1 127,128,129,130,131,132,133,134,135,136 0 -213241 cd03274 ABC_SMC4_euk 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213241 cd03274 ABC_SMC4_euk 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213241 cd03274 ABC_SMC4_euk 5 D-loop 0 0 1 1 159,160,161,162 0 -213241 cd03274 ABC_SMC4_euk 6 Q-loop/lid 0 0 1 1 104,105,106,107 0 -213241 cd03274 ABC_SMC4_euk 7 H-loop/switch region 0 0 1 1 183,184,185,186,187,188,189 0 -213242 cd03275 ABC_SMC1_euk 1 ATP binding site 0 1 1 1 31,32,34,35,36,133,183,184,216 5 -213242 cd03275 ABC_SMC1_euk 2 ABC transporter signature motif 0 0 1 1 155,156,157,158,159,160,161,162,163,164 0 -213242 cd03275 ABC_SMC1_euk 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213242 cd03275 ABC_SMC1_euk 4 Walker B 0 0 1 1 179,180,181,182,183,184 0 -213242 cd03275 ABC_SMC1_euk 5 D-loop 0 0 1 1 187,188,189,190 0 -213242 cd03275 ABC_SMC1_euk 6 Q-loop/lid 0 0 1 1 130,131,132,133 0 -213242 cd03275 ABC_SMC1_euk 7 H-loop/switch region 0 0 1 1 212,213,214,215,216,217,218 0 -213243 cd03276 ABC_SMC6_euk 1 ATP binding site 0 1 1 1 30,31,33,34,35,89,137,138,172 5 -213243 cd03276 ABC_SMC6_euk 2 ABC transporter signature motif 0 0 1 1 109,110,111,112,113,114,115,116,117,118 0 -213243 cd03276 ABC_SMC6_euk 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213243 cd03276 ABC_SMC6_euk 4 Walker B 0 0 1 1 133,134,135,136,137,138 0 -213243 cd03276 ABC_SMC6_euk 5 D-loop 0 0 1 1 141,142,143,144 0 -213243 cd03276 ABC_SMC6_euk 6 Q-loop/lid 0 0 1 1 86,87,88,89 0 -213243 cd03276 ABC_SMC6_euk 7 H-loop/switch region 0 0 1 1 168,169,170,171,172,173,174 0 -213244 cd03277 ABC_SMC5_euk 1 ATP binding site 0 1 1 1 32,33,35,36,37,94,154,155,189 5 -213244 cd03277 ABC_SMC5_euk 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213244 cd03277 ABC_SMC5_euk 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213244 cd03277 ABC_SMC5_euk 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213244 cd03277 ABC_SMC5_euk 5 D-loop 0 0 1 1 158,159,160,161 0 -213244 cd03277 ABC_SMC5_euk 6 Q-loop/lid 0 0 1 1 91,92,93,94 0 -213244 cd03277 ABC_SMC5_euk 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213245 cd03278 ABC_SMC_barmotin 1 ATP binding site 0 1 1 1 31,32,34,35,36,93,141,142,173 5 -213245 cd03278 ABC_SMC_barmotin 2 ABC transporter signature motif 0 0 1 1 113,114,115,116,117,118,119,120,121,122 0 -213245 cd03278 ABC_SMC_barmotin 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213245 cd03278 ABC_SMC_barmotin 4 Walker B 0 0 1 1 137,138,139,140,141,142 0 -213245 cd03278 ABC_SMC_barmotin 5 D-loop 0 0 1 1 145,146,147,148 0 -213245 cd03278 ABC_SMC_barmotin 6 Q-loop/lid 0 0 1 1 90,91,92,93 0 -213245 cd03278 ABC_SMC_barmotin 7 H-loop/switch region 0 0 1 1 169,170,171,172,173,174,175 0 -213207 cd03240 ABC_Rad50 1 ATP binding site 0 1 1 1 31,32,34,35,36,101,145,146,180 5 -213207 cd03240 ABC_Rad50 2 ABC transporter signature motif 0 0 1 1 115,116,117,118,119,120,121,122,123,124 0 -213207 cd03240 ABC_Rad50 3 Walker A/P-loop 0 0 1 1 28,29,30,31,32,33,34,35 0 -213207 cd03240 ABC_Rad50 4 Walker B 0 0 1 1 141,142,143,144,145,146 0 -213207 cd03240 ABC_Rad50 5 D-loop 0 0 1 1 149,150,151,152 0 -213207 cd03240 ABC_Rad50 6 Q-loop/lid 0 0 1 1 98,99,100,101 0 -213207 cd03240 ABC_Rad50 7 H-loop/switch region 0 0 1 1 176,177,178,179,180,181,182 0 -213246 cd03279 ABC_sbcCD 1 ATP binding site 0 1 1 1 37,38,40,41,42,109,157,158,190 5 -213246 cd03279 ABC_sbcCD 2 ABC transporter signature motif 0 0 1 1 123,124,125,126,127,128,129,130,131,132 0 -213246 cd03279 ABC_sbcCD 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213246 cd03279 ABC_sbcCD 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213246 cd03279 ABC_sbcCD 5 D-loop 0 0 1 1 161,162,163,164 0 -213246 cd03279 ABC_sbcCD 6 Q-loop/lid 0 0 1 1 106,107,108,109 0 -213246 cd03279 ABC_sbcCD 7 H-loop/switch region 0 0 1 1 186,187,188,189,190,191,192 0 -213208 cd03241 ABC_RecN 1 ATP binding site 0 1 1 1 30,31,33,34,35,137,198,199,230 5 -213208 cd03241 ABC_RecN 2 ABC transporter signature motif 0 0 1 1 170,171,172,173,174,175,176,177,178,179 0 -213208 cd03241 ABC_RecN 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213208 cd03241 ABC_RecN 4 Walker B 0 0 1 1 194,195,196,197,198,199 0 -213208 cd03241 ABC_RecN 5 D-loop 0 0 1 1 202,203,204,205 0 -213208 cd03241 ABC_RecN 6 Q-loop/lid 0 0 1 1 134,135,136,137 0 -213208 cd03241 ABC_RecN 7 H-loop/switch region 0 0 1 1 226,227,228,229,230,231,232 0 -213209 cd03242 ABC_RecF 1 ATP binding site 0 1 1 1 30,31,33,34,35,116,216,217,246 5 -213209 cd03242 ABC_RecF 2 ABC transporter signature motif 0 0 1 1 183,184,185,186,187,188,189,190,191,192 0 -213209 cd03242 ABC_RecF 3 Walker A/P-loop 0 0 1 1 27,28,29,30,31,32,33,34 0 -213209 cd03242 ABC_RecF 4 Walker B 0 0 1 1 212,213,214,215,216,217 0 -213209 cd03242 ABC_RecF 5 D-loop 0 0 1 1 220,221,222,223 0 -213209 cd03242 ABC_RecF 6 Q-loop/lid 0 0 1 1 113,114,115,116 0 -213209 cd03242 ABC_RecF 7 H-loop/switch region 0 0 1 1 242,243,244,245,246,247,248 0 -213210 cd03243 ABC_MutS_homologs 1 ATP binding site 0 1 1 1 38,39,41,42,43,79,114,115,148 5 -213210 cd03243 ABC_MutS_homologs 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213210 cd03243 ABC_MutS_homologs 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213210 cd03243 ABC_MutS_homologs 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213210 cd03243 ABC_MutS_homologs 5 D-loop 0 0 1 1 118,119,120,121 0 -213210 cd03243 ABC_MutS_homologs 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213210 cd03243 ABC_MutS_homologs 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213247 cd03280 ABC_MutS2 1 ATP binding site 0 1 1 1 37,38,40,41,42,79,114,115,148 5 -213247 cd03280 ABC_MutS2 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213247 cd03280 ABC_MutS2 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213247 cd03280 ABC_MutS2 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213247 cd03280 ABC_MutS2 5 D-loop 0 0 1 1 118,119,120,121 0 -213247 cd03280 ABC_MutS2 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213247 cd03280 ABC_MutS2 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213248 cd03281 ABC_MSH5_euk 1 ATP binding site 0 1 1 1 38,39,41,42,43,79,114,115,151 5 -213248 cd03281 ABC_MSH5_euk 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213248 cd03281 ABC_MSH5_euk 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213248 cd03281 ABC_MSH5_euk 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213248 cd03281 ABC_MSH5_euk 5 D-loop 0 0 1 1 118,119,120,121 0 -213248 cd03281 ABC_MSH5_euk 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213248 cd03281 ABC_MSH5_euk 7 H-loop/switch region 0 0 1 1 147,148,149,150,151,152,153 0 -213249 cd03282 ABC_MSH4_euk 1 ATP binding site 0 1 1 1 38,39,41,42,43,79,114,115,148 5 -213249 cd03282 ABC_MSH4_euk 2 ABC transporter signature motif 0 0 1 1 84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -213249 cd03282 ABC_MSH4_euk 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213249 cd03282 ABC_MSH4_euk 4 Walker B 0 0 1 1 110,111,112,113,114,115 0 -213249 cd03282 ABC_MSH4_euk 5 D-loop 0 0 1 1 118,119,120,121 0 -213249 cd03282 ABC_MSH4_euk 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213249 cd03282 ABC_MSH4_euk 7 H-loop/switch region 0 0 1 1 144,145,146,147,148,149,150 0 -213250 cd03283 ABC_MutS-like 1 ATP binding site 0 1 1 1 34,35,37,38,39,74,111,112,145 5 -213250 cd03283 ABC_MutS-like 2 ABC transporter signature motif 0 0 1 1 79,80,81,82,83,84,85,86,87,88,89,90,91,92 0 -213250 cd03283 ABC_MutS-like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213250 cd03283 ABC_MutS-like 4 Walker B 0 0 1 1 107,108,109,110,111,112 0 -213250 cd03283 ABC_MutS-like 5 D-loop 0 0 1 1 115,116,117,118 0 -213250 cd03283 ABC_MutS-like 6 Q-loop/lid 0 0 1 1 71,72,73,74 0 -213250 cd03283 ABC_MutS-like 7 H-loop/switch region 0 0 1 1 141,142,143,144,145,146,147 0 -213251 cd03284 ABC_MutS1 1 ATP binding site 0 1 1 1 39,40,42,43,44,80,115,116,150 5 -213251 cd03284 ABC_MutS1 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213251 cd03284 ABC_MutS1 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213251 cd03284 ABC_MutS1 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213251 cd03284 ABC_MutS1 5 D-loop 0 0 1 1 119,120,121,122 0 -213251 cd03284 ABC_MutS1 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213251 cd03284 ABC_MutS1 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213252 cd03285 ABC_MSH2_euk 1 ATP binding site 0 1 1 1 39,40,42,43,44,80,115,116,150 5 -213252 cd03285 ABC_MSH2_euk 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213252 cd03285 ABC_MSH2_euk 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213252 cd03285 ABC_MSH2_euk 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213252 cd03285 ABC_MSH2_euk 5 D-loop 0 0 1 1 119,120,121,122 0 -213252 cd03285 ABC_MSH2_euk 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213252 cd03285 ABC_MSH2_euk 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213253 cd03286 ABC_MSH6_euk 1 ATP binding site 0 1 1 1 39,40,42,43,44,80,115,116,150 5 -213253 cd03286 ABC_MSH6_euk 2 ABC transporter signature motif 0 0 1 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98 0 -213253 cd03286 ABC_MSH6_euk 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213253 cd03286 ABC_MSH6_euk 4 Walker B 0 0 1 1 111,112,113,114,115,116 0 -213253 cd03286 ABC_MSH6_euk 5 D-loop 0 0 1 1 119,120,121,122 0 -213253 cd03286 ABC_MSH6_euk 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213253 cd03286 ABC_MSH6_euk 7 H-loop/switch region 0 0 1 1 146,147,148,149,150,151,152 0 -213254 cd03287 ABC_MSH3_euk 1 ATP binding site 0 1 1 1 40,41,43,44,45,81,116,117,151 5 -213254 cd03287 ABC_MSH3_euk 2 ABC transporter signature motif 0 0 1 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99 0 -213254 cd03287 ABC_MSH3_euk 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213254 cd03287 ABC_MSH3_euk 4 Walker B 0 0 1 1 112,113,114,115,116,117 0 -213254 cd03287 ABC_MSH3_euk 5 D-loop 0 0 1 1 120,121,122,123 0 -213254 cd03287 ABC_MSH3_euk 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213254 cd03287 ABC_MSH3_euk 7 H-loop/switch region 0 0 1 1 147,148,149,150,151,152,153 0 -213195 cd03228 ABCC_MRP_Like 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,120,121,152 5 -213195 cd03228 ABCC_MRP_Like 2 ABC transporter signature motif 0 0 1 1 96,97,98,99,100,101,102,103,104,105 0 -213195 cd03228 ABCC_MRP_Like 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213195 cd03228 ABCC_MRP_Like 4 Walker B 0 0 1 1 116,117,118,119,120,121 0 -213195 cd03228 ABCC_MRP_Like 5 D-loop 0 0 1 1 124,125,126,127 0 -213195 cd03228 ABCC_MRP_Like 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213195 cd03228 ABCC_MRP_Like 7 H-loop/switch region 0 0 1 1 148,149,150,151,152,153,154 0 -213211 cd03244 ABCC_MRP_domain2 1 ATP binding site 0 1 1 1 39,40,42,43,44,84,163,164,198 5 -213211 cd03244 ABCC_MRP_domain2 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213211 cd03244 ABCC_MRP_domain2 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213211 cd03244 ABCC_MRP_domain2 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213211 cd03244 ABCC_MRP_domain2 5 D-loop 0 0 1 1 167,168,169,170 0 -213211 cd03244 ABCC_MRP_domain2 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213211 cd03244 ABCC_MRP_domain2 7 H-loop/switch region 0 0 1 1 194,195,196,197,198,199,200 0 -213255 cd03288 ABCC_SUR2 1 ATP binding site 0 1 1 1 56,57,59,60,61,101,180,181,215 5 -213255 cd03288 ABCC_SUR2 2 ABC transporter signature motif 0 0 1 1 156,157,158,159,160,161,162,163,164,165 0 -213255 cd03288 ABCC_SUR2 3 Walker A/P-loop 0 0 1 1 53,54,55,56,57,58,59,60 0 -213255 cd03288 ABCC_SUR2 4 Walker B 0 0 1 1 176,177,178,179,180,181 0 -213255 cd03288 ABCC_SUR2 5 D-loop 0 0 1 1 184,185,186,187 0 -213255 cd03288 ABCC_SUR2 6 Q-loop/lid 0 0 1 1 98,99,100,101 0 -213255 cd03288 ABCC_SUR2 7 H-loop/switch region 0 0 1 1 211,212,213,214,215,216,217 0 -213256 cd03289 ABCC_CFTR2 1 ATP binding site 0 1 1 1 39,40,42,43,44,83,162,163,197 5 -213256 cd03289 ABCC_CFTR2 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213256 cd03289 ABCC_CFTR2 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213256 cd03289 ABCC_CFTR2 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213256 cd03289 ABCC_CFTR2 5 D-loop 0 0 1 1 166,167,168,169 0 -213256 cd03289 ABCC_CFTR2 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213256 cd03289 ABCC_CFTR2 7 H-loop/switch region 0 0 1 1 193,194,195,196,197,198,199 0 -213269 cd03369 ABCC_NFT1 1 ATP binding site 0 1 1 1 43,44,46,47,48,88,149,150,184 5 -213269 cd03369 ABCC_NFT1 2 ABC transporter signature motif 0 0 1 1 125,126,127,128,129,130,131,132,133,134 0 -213269 cd03369 ABCC_NFT1 3 Walker A/P-loop 0 0 1 1 40,41,42,43,44,45,46,47 0 -213269 cd03369 ABCC_NFT1 4 Walker B 0 0 1 1 145,146,147,148,149,150 0 -213269 cd03369 ABCC_NFT1 5 D-loop 0 0 1 1 153,154,155,156 0 -213269 cd03369 ABCC_NFT1 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213269 cd03369 ABCC_NFT1 7 H-loop/switch region 0 0 1 1 180,181,182,183,184,185,186 0 -213212 cd03245 ABCC_bacteriocin_exporters 1 ATP binding site 0 1 1 1 39,40,42,43,44,84,164,165,196 5 -213212 cd03245 ABCC_bacteriocin_exporters 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213212 cd03245 ABCC_bacteriocin_exporters 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213212 cd03245 ABCC_bacteriocin_exporters 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213212 cd03245 ABCC_bacteriocin_exporters 5 D-loop 0 0 1 1 168,169,170,171 0 -213212 cd03245 ABCC_bacteriocin_exporters 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213212 cd03245 ABCC_bacteriocin_exporters 7 H-loop/switch region 0 0 1 1 192,193,194,195,196,197,198 0 -213213 cd03246 ABCC_Protease_Secretion 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,120,121,153 5 -213213 cd03246 ABCC_Protease_Secretion 2 ABC transporter signature motif 0 0 1 1 96,97,98,99,100,101,102,103,104,105 0 -213213 cd03246 ABCC_Protease_Secretion 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213213 cd03246 ABCC_Protease_Secretion 4 Walker B 0 0 1 1 116,117,118,119,120,121 0 -213213 cd03246 ABCC_Protease_Secretion 5 D-loop 0 0 1 1 124,125,126,127 0 -213213 cd03246 ABCC_Protease_Secretion 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213213 cd03246 ABCC_Protease_Secretion 7 H-loop/switch region 0 0 1 1 149,150,151,152,153,154,155 0 -213214 cd03247 ABCC_cytochrome_bd 1 ATP binding site 0 1 1 1 37,38,40,41,42,81,122,123,154 5 -213214 cd03247 ABCC_cytochrome_bd 2 ABC transporter signature motif 0 0 1 1 98,99,100,101,102,103,104,105,106,107 0 -213214 cd03247 ABCC_cytochrome_bd 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213214 cd03247 ABCC_cytochrome_bd 4 Walker B 0 0 1 1 118,119,120,121,122,123 0 -213214 cd03247 ABCC_cytochrome_bd 5 D-loop 0 0 1 1 126,127,128,129 0 -213214 cd03247 ABCC_cytochrome_bd 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213214 cd03247 ABCC_cytochrome_bd 7 H-loop/switch region 0 0 1 1 150,151,152,153,154,155,156 0 -213215 cd03248 ABCC_TAP 1 ATP binding site 0 1 1 1 49,50,52,53,54,94,174,175,206 5 -213215 cd03248 ABCC_TAP 2 ABC transporter signature motif 0 0 1 1 150,151,152,153,154,155,156,157,158,159 0 -213215 cd03248 ABCC_TAP 3 Walker A/P-loop 0 0 1 1 46,47,48,49,50,51,52,53 0 -213215 cd03248 ABCC_TAP 4 Walker B 0 0 1 1 170,171,172,173,174,175 0 -213215 cd03248 ABCC_TAP 5 D-loop 0 0 1 1 178,179,180,181 0 -213215 cd03248 ABCC_TAP 6 Q-loop/lid 0 0 1 1 91,92,93,94 0 -213215 cd03248 ABCC_TAP 7 H-loop/switch region 0 0 1 1 202,203,204,205,206,207,208 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 1 ATP binding site 0 1 1 1 38,39,41,42,43,83,163,164,195 5 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 5 D-loop 0 0 1 1 167,168,169,170 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 7 H-loop/switch region 0 0 1 1 191,192,193,194,195,196,197 0 -213217 cd03250 ABCC_MRP_domain1 1 ATP binding site 0 1 1 1 40,41,43,44,45,72,151,152,185 5 -213217 cd03250 ABCC_MRP_domain1 2 ABC transporter signature motif 0 0 1 1 127,128,129,130,131,132,133,134,135,136 0 -213217 cd03250 ABCC_MRP_domain1 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213217 cd03250 ABCC_MRP_domain1 4 Walker B 0 0 1 1 147,148,149,150,151,152 0 -213217 cd03250 ABCC_MRP_domain1 5 D-loop 0 0 1 1 155,156,157,158 0 -213217 cd03250 ABCC_MRP_domain1 6 Q-loop/lid 0 0 1 1 69,70,71,72 0 -213217 cd03250 ABCC_MRP_domain1 7 H-loop/switch region 0 0 1 1 181,182,183,184,185,186,187 0 -213257 cd03290 ABCC_SUR1_N 1 ATP binding site 0 1 1 1 36,37,39,40,41,85,164,165,199 5 -213257 cd03290 ABCC_SUR1_N 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213257 cd03290 ABCC_SUR1_N 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213257 cd03290 ABCC_SUR1_N 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213257 cd03290 ABCC_SUR1_N 5 D-loop 0 0 1 1 168,169,170,171 0 -213257 cd03290 ABCC_SUR1_N 6 Q-loop/lid 0 0 1 1 82,83,84,85 0 -213257 cd03290 ABCC_SUR1_N 7 H-loop/switch region 0 0 1 1 195,196,197,198,199,200,201 0 -213258 cd03291 ABCC_CFTR1 1 ATP binding site 0 1 1 1 72,73,75,76,77,104,183,184,216 5 -213258 cd03291 ABCC_CFTR1 2 ABC transporter signature motif 0 0 1 1 159,160,161,162,163,164,165,166,167,168 0 -213258 cd03291 ABCC_CFTR1 3 Walker A/P-loop 0 0 1 1 69,70,71,72,73,74,75,76 0 -213258 cd03291 ABCC_CFTR1 4 Walker B 0 0 1 1 179,180,181,182,183,184 0 -213258 cd03291 ABCC_CFTR1 5 D-loop 0 0 1 1 187,188,189,190 0 -213258 cd03291 ABCC_CFTR1 6 Q-loop/lid 0 0 1 1 101,102,103,104 0 -213258 cd03291 ABCC_CFTR1 7 H-loop/switch region 0 0 1 1 212,213,214,215,216,217,218 0 -213218 cd03251 ABCC_MsbA 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,162,163,194 5 -213218 cd03251 ABCC_MsbA 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213218 cd03251 ABCC_MsbA 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213218 cd03251 ABCC_MsbA 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213218 cd03251 ABCC_MsbA 5 D-loop 0 0 1 1 166,167,168,169 0 -213218 cd03251 ABCC_MsbA 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213218 cd03251 ABCC_MsbA 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213219 cd03252 ABCC_Hemolysin 1 ATP binding site 0 1 1 1 37,38,40,41,42,82,162,163,194 5 -213219 cd03252 ABCC_Hemolysin 2 ABC transporter signature motif 0 0 1 1 138,139,140,141,142,143,144,145,146,147 0 -213219 cd03252 ABCC_Hemolysin 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213219 cd03252 ABCC_Hemolysin 4 Walker B 0 0 1 1 158,159,160,161,162,163 0 -213219 cd03252 ABCC_Hemolysin 5 D-loop 0 0 1 1 166,167,168,169 0 -213219 cd03252 ABCC_Hemolysin 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213219 cd03252 ABCC_Hemolysin 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213220 cd03253 ABCC_ATM1_transporter 1 ATP binding site 0 1 1 1 36,37,39,40,41,81,161,162,193 5 -213220 cd03253 ABCC_ATM1_transporter 2 ABC transporter signature motif 0 0 1 1 137,138,139,140,141,142,143,144,145,146 0 -213220 cd03253 ABCC_ATM1_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213220 cd03253 ABCC_ATM1_transporter 4 Walker B 0 0 1 1 157,158,159,160,161,162 0 -213220 cd03253 ABCC_ATM1_transporter 5 D-loop 0 0 1 1 165,166,167,168 0 -213220 cd03253 ABCC_ATM1_transporter 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213220 cd03253 ABCC_ATM1_transporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213221 cd03254 ABCC_Glucan_exporter_like 1 ATP binding site 0 1 1 1 38,39,41,42,43,83,163,164,195 5 -213221 cd03254 ABCC_Glucan_exporter_like 2 ABC transporter signature motif 0 0 1 1 139,140,141,142,143,144,145,146,147,148 0 -213221 cd03254 ABCC_Glucan_exporter_like 3 Walker A/P-loop 0 0 1 1 35,36,37,38,39,40,41,42 0 -213221 cd03254 ABCC_Glucan_exporter_like 4 Walker B 0 0 1 1 159,160,161,162,163,164 0 -213221 cd03254 ABCC_Glucan_exporter_like 5 D-loop 0 0 1 1 167,168,169,170 0 -213221 cd03254 ABCC_Glucan_exporter_like 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213221 cd03254 ABCC_Glucan_exporter_like 7 H-loop/switch region 0 0 1 1 191,192,193,194,195,196,197 0 -213196 cd03229 ABC_Class3 1 ATP binding site 0 1 1 1 35,36,38,39,40,82,124,125,158 5 -213196 cd03229 ABC_Class3 2 ABC transporter signature motif 0 0 1 1 100,101,102,103,104,105,106,107,108,109 0 -213196 cd03229 ABC_Class3 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213196 cd03229 ABC_Class3 4 Walker B 0 0 1 1 120,121,122,123,124,125 0 -213196 cd03229 ABC_Class3 5 D-loop 0 0 1 1 128,129,130,131 0 -213196 cd03229 ABC_Class3 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213196 cd03229 ABC_Class3 7 H-loop/switch region 0 0 1 1 154,155,156,157,158,159,160 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 1 ATP binding site 0 1 1 1 39,40,42,43,44,88,164,165,198 5 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 5 D-loop 0 0 1 1 168,169,170,171 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE 7 H-loop/switch region 0 0 1 1 194,195,196,197,198,199,200 0 -213223 cd03256 ABC_PhnC_transporter 1 ATP binding site 0 1 1 1 36,37,39,40,41,84,168,169,202 5 -213223 cd03256 ABC_PhnC_transporter 2 ABC transporter signature motif 0 0 1 1 144,145,146,147,148,149,150,151,152,153 0 -213223 cd03256 ABC_PhnC_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213223 cd03256 ABC_PhnC_transporter 4 Walker B 0 0 1 1 164,165,166,167,168,169 0 -213223 cd03256 ABC_PhnC_transporter 5 D-loop 0 0 1 1 172,173,174,175 0 -213223 cd03256 ABC_PhnC_transporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213223 cd03256 ABC_PhnC_transporter 7 H-loop/switch region 0 0 1 1 198,199,200,201,202,203,204 0 -213259 cd03292 ABC_FtsE_transporter 1 ATP binding site 0 1 1 1 36,37,39,40,41,84,160,161,193 5 -213259 cd03292 ABC_FtsE_transporter 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213259 cd03292 ABC_FtsE_transporter 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213259 cd03292 ABC_FtsE_transporter 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213259 cd03292 ABC_FtsE_transporter 5 D-loop 0 0 1 1 164,165,166,167 0 -213259 cd03292 ABC_FtsE_transporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213259 cd03292 ABC_FtsE_transporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213224 cd03257 ABC_NikE_OppD_transporters 1 ATP binding site 0 1 1 1 40,41,43,44,45,88,169,170,203 5 -213224 cd03257 ABC_NikE_OppD_transporters 2 ABC transporter signature motif 0 0 1 1 145,146,147,148,149,150,151,152,153,154 0 -213224 cd03257 ABC_NikE_OppD_transporters 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213224 cd03257 ABC_NikE_OppD_transporters 4 Walker B 0 0 1 1 165,166,167,168,169,170 0 -213224 cd03257 ABC_NikE_OppD_transporters 5 D-loop 0 0 1 1 173,174,175,176 0 -213224 cd03257 ABC_NikE_OppD_transporters 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213224 cd03257 ABC_NikE_OppD_transporters 7 H-loop/switch region 0 0 1 1 199,200,201,202,203,204,205 0 -213225 cd03258 ABC_MetN_methionine_transporter 1 ATP binding site 0 1 1 1 40,41,43,44,45,88,164,165,198 5 -213225 cd03258 ABC_MetN_methionine_transporter 2 ABC transporter signature motif 0 0 1 1 140,141,142,143,144,145,146,147,148,149 0 -213225 cd03258 ABC_MetN_methionine_transporter 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213225 cd03258 ABC_MetN_methionine_transporter 4 Walker B 0 0 1 1 160,161,162,163,164,165 0 -213225 cd03258 ABC_MetN_methionine_transporter 5 D-loop 0 0 1 1 168,169,170,171 0 -213225 cd03258 ABC_MetN_methionine_transporter 6 Q-loop/lid 0 0 1 1 85,86,87,88 0 -213225 cd03258 ABC_MetN_methionine_transporter 7 H-loop/switch region 0 0 1 1 194,195,196,197,198,199,200 0 -213226 cd03259 ABC_Carb_Solutes_like 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,154,155,188 5 -213226 cd03259 ABC_Carb_Solutes_like 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213226 cd03259 ABC_Carb_Solutes_like 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213226 cd03259 ABC_Carb_Solutes_like 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213226 cd03259 ABC_Carb_Solutes_like 5 D-loop 0 0 1 1 158,159,160,161 0 -213226 cd03259 ABC_Carb_Solutes_like 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213226 cd03259 ABC_Carb_Solutes_like 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 1 ATP binding site 0 1 1 1 39,40,42,43,44,79,155,156,189 5 -213260 cd03293 ABC_NrtD_SsuB_transporters 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 3 Walker A/P-loop 0 0 1 1 36,37,38,39,40,41,42,43 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 5 D-loop 0 0 1 1 159,160,161,162 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213260 cd03293 ABC_NrtD_SsuB_transporters 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213261 cd03294 ABC_Pro_Gly_Betaine 1 ATP binding site 0 1 1 1 59,60,62,63,64,108,184,185,218 5 -213261 cd03294 ABC_Pro_Gly_Betaine 2 ABC transporter signature motif 0 0 1 1 160,161,162,163,164,165,166,167,168,169 0 -213261 cd03294 ABC_Pro_Gly_Betaine 3 Walker A/P-loop 0 0 1 1 56,57,58,59,60,61,62,63 0 -213261 cd03294 ABC_Pro_Gly_Betaine 4 Walker B 0 0 1 1 180,181,182,183,184,185 0 -213261 cd03294 ABC_Pro_Gly_Betaine 5 D-loop 0 0 1 1 188,189,190,191 0 -213261 cd03294 ABC_Pro_Gly_Betaine 6 Q-loop/lid 0 0 1 1 105,106,107,108 0 -213261 cd03294 ABC_Pro_Gly_Betaine 7 H-loop/switch region 0 0 1 1 214,215,216,217,218,219,220 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 1 ATP binding site 0 1 1 1 36,37,39,40,41,81,159,160,193 5 -213262 cd03295 ABC_OpuCA_Osmoprotection 2 ABC transporter signature motif 0 0 1 1 135,136,137,138,139,140,141,142,143,144 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 3 Walker A/P-loop 0 0 1 1 33,34,35,36,37,38,39,40 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 4 Walker B 0 0 1 1 155,156,157,158,159,160 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 5 D-loop 0 0 1 1 163,164,165,166 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213262 cd03295 ABC_OpuCA_Osmoprotection 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213263 cd03296 ABC_CysA_sulfate_importer 1 ATP binding site 0 1 1 1 37,38,40,41,42,80,160,161,194 5 -213263 cd03296 ABC_CysA_sulfate_importer 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213263 cd03296 ABC_CysA_sulfate_importer 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213263 cd03296 ABC_CysA_sulfate_importer 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213263 cd03296 ABC_CysA_sulfate_importer 5 D-loop 0 0 1 1 164,165,166,167 0 -213263 cd03296 ABC_CysA_sulfate_importer 6 Q-loop/lid 0 0 1 1 77,78,79,80 0 -213263 cd03296 ABC_CysA_sulfate_importer 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 1 ATP binding site 0 1 1 1 32,33,35,36,37,81,155,156,189 5 -213264 cd03297 ABC_ModC_molybdenum_transporter 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 3 Walker A/P-loop 0 0 1 1 29,30,31,32,33,34,35,36 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 5 D-loop 0 0 1 1 159,160,161,162 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213264 cd03297 ABC_ModC_molybdenum_transporter 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 1 ATP binding site 0 1 1 1 33,34,36,37,38,76,152,153,186 5 -213265 cd03298 ABC_ThiQ_thiamine_transporter 2 ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 3 Walker A/P-loop 0 0 1 1 30,31,32,33,34,35,36,37 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 4 Walker B 0 0 1 1 148,149,150,151,152,153 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 5 D-loop 0 0 1 1 156,157,158,159 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213265 cd03298 ABC_ThiQ_thiamine_transporter 7 H-loop/switch region 0 0 1 1 182,183,184,185,186,187,188 0 -213266 cd03299 ABC_ModC_like 1 ATP binding site 0 1 1 1 34,35,37,38,39,77,153,154,187 5 -213266 cd03299 ABC_ModC_like 2 ABC transporter signature motif 0 0 1 1 129,130,131,132,133,134,135,136,137,138 0 -213266 cd03299 ABC_ModC_like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213266 cd03299 ABC_ModC_like 4 Walker B 0 0 1 1 149,150,151,152,153,154 0 -213266 cd03299 ABC_ModC_like 5 D-loop 0 0 1 1 157,158,159,160 0 -213266 cd03299 ABC_ModC_like 6 Q-loop/lid 0 0 1 1 74,75,76,77 0 -213266 cd03299 ABC_ModC_like 7 H-loop/switch region 0 0 1 1 183,184,185,186,187,188,189 0 -213267 cd03300 ABC_PotA_N 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,154,155,188 5 -213267 cd03300 ABC_PotA_N 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213267 cd03300 ABC_PotA_N 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213267 cd03300 ABC_PotA_N 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213267 cd03300 ABC_PotA_N 5 D-loop 0 0 1 1 158,159,160,161 0 -213267 cd03300 ABC_PotA_N 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213267 cd03300 ABC_PotA_N 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -213268 cd03301 ABC_MalK_N 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,154,155,188 5 -213268 cd03301 ABC_MalK_N 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213268 cd03301 ABC_MalK_N 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213268 cd03301 ABC_MalK_N 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213268 cd03301 ABC_MalK_N 5 D-loop 0 0 1 1 158,159,160,161 0 -213268 cd03301 ABC_MalK_N 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213268 cd03301 ABC_MalK_N 7 H-loop/switch region 0 0 1 1 184,185,186,187,188,189,190 0 -213227 cd03260 ABC_PstB_phosphate_transporter 1 ATP binding site 0 1 1 1 35,36,38,39,40,87,165,166,197 5 -213227 cd03260 ABC_PstB_phosphate_transporter 2 ABC transporter signature motif 0 0 1 1 141,142,143,144,145,146,147,148,149,150 0 -213227 cd03260 ABC_PstB_phosphate_transporter 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213227 cd03260 ABC_PstB_phosphate_transporter 4 Walker B 0 0 1 1 161,162,163,164,165,166 0 -213227 cd03260 ABC_PstB_phosphate_transporter 5 D-loop 0 0 1 1 169,170,171,172 0 -213227 cd03260 ABC_PstB_phosphate_transporter 6 Q-loop/lid 0 0 1 1 84,85,86,87 0 -213227 cd03260 ABC_PstB_phosphate_transporter 7 H-loop/switch region 0 0 1 1 193,194,195,196,197,198,199 0 -213228 cd03261 ABC_Org_Solvent_Resistant 1 ATP binding site 0 1 1 1 35,36,38,39,40,83,160,161,194 5 -213228 cd03261 ABC_Org_Solvent_Resistant 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213228 cd03261 ABC_Org_Solvent_Resistant 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213228 cd03261 ABC_Org_Solvent_Resistant 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213228 cd03261 ABC_Org_Solvent_Resistant 5 D-loop 0 0 1 1 164,165,166,167 0 -213228 cd03261 ABC_Org_Solvent_Resistant 6 Q-loop/lid 0 0 1 1 80,81,82,83 0 -213228 cd03261 ABC_Org_Solvent_Resistant 7 H-loop/switch region 0 0 1 1 190,191,192,193,194,195,196 0 -213229 cd03262 ABC_HisP_GlnQ 1 ATP binding site 0 1 1 1 35,36,38,39,40,82,159,160,192 5 -213229 cd03262 ABC_HisP_GlnQ 2 ABC transporter signature motif 0 0 1 1 135,136,137,138,139,140,141,142,143,144 0 -213229 cd03262 ABC_HisP_GlnQ 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213229 cd03262 ABC_HisP_GlnQ 4 Walker B 0 0 1 1 155,156,157,158,159,160 0 -213229 cd03262 ABC_HisP_GlnQ 5 D-loop 0 0 1 1 163,164,165,166 0 -213229 cd03262 ABC_HisP_GlnQ 6 Q-loop/lid 0 0 1 1 79,80,81,82 0 -213229 cd03262 ABC_HisP_GlnQ 7 H-loop/switch region 0 0 1 1 188,189,190,191,192,193,194 0 -213197 cd03230 ABC_DR_subfamily_A 1 ATP binding site 0 1 1 1 35,36,38,39,40,79,119,120,152 5 -213197 cd03230 ABC_DR_subfamily_A 2 ABC transporter signature motif 0 0 1 1 95,96,97,98,99,100,101,102,103,104 0 -213197 cd03230 ABC_DR_subfamily_A 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213197 cd03230 ABC_DR_subfamily_A 4 Walker B 0 0 1 1 115,116,117,118,119,120 0 -213197 cd03230 ABC_DR_subfamily_A 5 D-loop 0 0 1 1 123,124,125,126 0 -213197 cd03230 ABC_DR_subfamily_A 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213197 cd03230 ABC_DR_subfamily_A 7 H-loop/switch region 0 0 1 1 148,149,150,151,152,153,154 0 -213230 cd03263 ABC_subfamily_A 1 ATP binding site 0 1 1 1 37,38,40,41,42,81,157,158,189 5 -213230 cd03263 ABC_subfamily_A 2 ABC transporter signature motif 0 0 1 1 133,134,135,136,137,138,139,140,141,142 0 -213230 cd03263 ABC_subfamily_A 3 Walker A/P-loop 0 0 1 1 34,35,36,37,38,39,40,41 0 -213230 cd03263 ABC_subfamily_A 4 Walker B 0 0 1 1 153,154,155,156,157,158 0 -213230 cd03263 ABC_subfamily_A 5 D-loop 0 0 1 1 161,162,163,164 0 -213230 cd03263 ABC_subfamily_A 6 Q-loop/lid 0 0 1 1 78,79,80,81 0 -213230 cd03263 ABC_subfamily_A 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213231 cd03264 ABC_drug_resistance_like 1 ATP binding site 0 1 1 1 34,35,37,38,39,78,154,155,186 5 -213231 cd03264 ABC_drug_resistance_like 2 ABC transporter signature motif 0 0 1 1 130,131,132,133,134,135,136,137,138,139 0 -213231 cd03264 ABC_drug_resistance_like 3 Walker A/P-loop 0 0 1 1 31,32,33,34,35,36,37,38 0 -213231 cd03264 ABC_drug_resistance_like 4 Walker B 0 0 1 1 150,151,152,153,154,155 0 -213231 cd03264 ABC_drug_resistance_like 5 D-loop 0 0 1 1 158,159,160,161 0 -213231 cd03264 ABC_drug_resistance_like 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213231 cd03264 ABC_drug_resistance_like 7 H-loop/switch region 0 0 1 1 182,183,184,185,186,187,188 0 -213232 cd03265 ABC_DrrA 1 ATP binding site 0 1 1 1 35,36,38,39,40,79,155,156,189 5 -213232 cd03265 ABC_DrrA 2 ABC transporter signature motif 0 0 1 1 131,132,133,134,135,136,137,138,139,140 0 -213232 cd03265 ABC_DrrA 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213232 cd03265 ABC_DrrA 4 Walker B 0 0 1 1 151,152,153,154,155,156 0 -213232 cd03265 ABC_DrrA 5 D-loop 0 0 1 1 159,160,161,162 0 -213232 cd03265 ABC_DrrA 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213232 cd03265 ABC_DrrA 7 H-loop/switch region 0 0 1 1 185,186,187,188,189,190,191 0 -213233 cd03266 ABC_NatA_sodium_exporter 1 ATP binding site 0 1 1 1 40,41,43,44,45,84,160,161,193 5 -213233 cd03266 ABC_NatA_sodium_exporter 2 ABC transporter signature motif 0 0 1 1 136,137,138,139,140,141,142,143,144,145 0 -213233 cd03266 ABC_NatA_sodium_exporter 3 Walker A/P-loop 0 0 1 1 37,38,39,40,41,42,43,44 0 -213233 cd03266 ABC_NatA_sodium_exporter 4 Walker B 0 0 1 1 156,157,158,159,160,161 0 -213233 cd03266 ABC_NatA_sodium_exporter 5 D-loop 0 0 1 1 164,165,166,167 0 -213233 cd03266 ABC_NatA_sodium_exporter 6 Q-loop/lid 0 0 1 1 81,82,83,84 0 -213233 cd03266 ABC_NatA_sodium_exporter 7 H-loop/switch region 0 0 1 1 189,190,191,192,193,194,195 0 -213234 cd03267 ABC_NatA_like 1 ATP binding site 0 1 1 1 56,57,59,60,61,101,177,178,211 5 -213234 cd03267 ABC_NatA_like 2 ABC transporter signature motif 0 0 1 1 153,154,155,156,157,158,159,160,161,162 0 -213234 cd03267 ABC_NatA_like 3 Walker A/P-loop 0 0 1 1 53,54,55,56,57,58,59,60 0 -213234 cd03267 ABC_NatA_like 4 Walker B 0 0 1 1 173,174,175,176,177,178 0 -213234 cd03267 ABC_NatA_like 5 D-loop 0 0 1 1 181,182,183,184 0 -213234 cd03267 ABC_NatA_like 6 Q-loop/lid 0 0 1 1 98,99,100,101 0 -213234 cd03267 ABC_NatA_like 7 H-loop/switch region 0 0 1 1 207,208,209,210,211,212,213 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 1 ATP binding site 0 1 1 1 35,36,38,39,40,78,150,151,183 5 -213235 cd03268 ABC_BcrA_bacitracin_resist 2 ABC transporter signature motif 0 0 1 1 126,127,128,129,130,131,132,133,134,135 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 4 Walker B 0 0 1 1 146,147,148,149,150,151 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 5 D-loop 0 0 1 1 154,155,156,157 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 6 Q-loop/lid 0 0 1 1 75,76,77,78 0 -213235 cd03268 ABC_BcrA_bacitracin_resist 7 H-loop/switch region 0 0 1 1 179,180,181,182,183,184,185 0 -213236 cd03269 ABC_putative_ATPase 1 ATP binding site 0 1 1 1 35,36,38,39,40,76,152,153,185 5 -213236 cd03269 ABC_putative_ATPase 2 ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137 0 -213236 cd03269 ABC_putative_ATPase 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213236 cd03269 ABC_putative_ATPase 4 Walker B 0 0 1 1 148,149,150,151,152,153 0 -213236 cd03269 ABC_putative_ATPase 5 D-loop 0 0 1 1 156,157,158,159 0 -213236 cd03269 ABC_putative_ATPase 6 Q-loop/lid 0 0 1 1 73,74,75,76 0 -213236 cd03269 ABC_putative_ATPase 7 H-loop/switch region 0 0 1 1 181,182,183,184,185,186,187 0 -213198 cd03231 ABC_CcmA_heme_exporter 1 ATP binding site 0 1 1 1 35,36,38,39,40,79,149,150,182 5 -213198 cd03231 ABC_CcmA_heme_exporter 2 ABC transporter signature motif 0 0 1 1 125,126,127,128,129,130,131,132,133,134 0 -213198 cd03231 ABC_CcmA_heme_exporter 3 Walker A/P-loop 0 0 1 1 32,33,34,35,36,37,38,39 0 -213198 cd03231 ABC_CcmA_heme_exporter 4 Walker B 0 0 1 1 145,146,147,148,149,150 0 -213198 cd03231 ABC_CcmA_heme_exporter 5 D-loop 0 0 1 1 153,154,155,156 0 -213198 cd03231 ABC_CcmA_heme_exporter 6 Q-loop/lid 0 0 1 1 76,77,78,79 0 -213198 cd03231 ABC_CcmA_heme_exporter 7 H-loop/switch region 0 0 1 1 178,179,180,181,182,183,184 0 -238173 cd00279 YlxR 1 putative RNA binding cleft 0 0 1 1 2,18,41 3 -238174 cd00280 TRFH 1 dimer interface 0 1 0 0 39,42,56,60,64,74,75,76,77,78,86,89,90,93 2 -176449 cd00281 DAP_dppA 1 metal binding site 0 1 1 0 7,9,59,103,133 4 -176449 cd00281 DAP_dppA 2 active site 0 1 1 1 7,9,59,103,115,133 1 -176449 cd00281 DAP_dppA 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,80,81,82,83,177,178,181,182,183,184,189 2 -176449 cd00281 DAP_dppA 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -176450 cd08663 DAP_dppA_1 1 metal binding site 0 1 1 0 7,9,59,103,134 4 -176450 cd08663 DAP_dppA_1 2 active site 0 1 1 1 7,9,59,103,115,134 1 -176450 cd08663 DAP_dppA_1 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,80,81,82,83,178,179,182,183,184,185,190 2 -176450 cd08663 DAP_dppA_1 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -176451 cd08769 DAP_dppA_2 1 metal binding site 0 1 1 0 7,9,59,103,134 4 -176451 cd08769 DAP_dppA_2 2 active site 0 1 1 1 7,9,59,103,115,134 1 -176451 cd08769 DAP_dppA_2 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,80,81,82,83,178,179,182,183,184,185,190 2 -176451 cd08769 DAP_dppA_2 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -176452 cd08770 DAP_dppA_3 1 metal binding site 0 1 1 0 7,9,59,104,134 4 -176452 cd08770 DAP_dppA_3 2 active site 0 1 1 1 7,9,59,104,116,134 1 -176452 cd08770 DAP_dppA_3 3 homopentamer interface 0 1 1 1 31,66,67,68,76,77,78,79,81,82,83,84,178,179,181,182,183,184,189 2 -176452 cd08770 DAP_dppA_3 4 SxDxEG motif 0 0 1 1 5,6,7,8,9,10 0 -238175 cd00283 GIY-YIG_Cterm 1 DNA binding site 0 1 1 0 38,39,40,41,45,49,53,54,58,59,63,64,66,83,87,92,95,97,98,99,110 3 -238176 cd00284 Cytochrome_b_N 1 heme bL binding site 0 1 1 1 32,35,36,39,40,42,43,46,57,71,74,75,78,119,120,123,124,126,127,175,176,179 5 -238176 cd00284 Cytochrome_b_N 2 heme bH binding site 0 1 1 1 22,25,26,28,29,81,85,88,89,91,105,106,109,110,112,113,186,189,190,193,198,199 5 -238176 cd00284 Cytochrome_b_N 3 Qo binding site 0 1 1 1 114,117,118,121,122,135,138,139,143,171,174 0 -238176 cd00284 Cytochrome_b_N 4 Qi binding site 0 1 1 1 8,9,26,29,190,198 0 -238176 cd00284 Cytochrome_b_N 5 interchain domain interface 0 1 0 0 10,11,13,16,37,41,44,45,54,55,58,59,62,63,64,65,66,68,69,70,73,101,194,195 2 -238176 cd00284 Cytochrome_b_N 6 intrachain domain interface 0 1 0 0 9,10,14,15,16,22,23,26,27,30,54,69,72,73,76,77,79,80,82,83,86,93,94,95,96,97,98,102,103,106,107,110,113,114,124,128,129,130,131,132,133,134,138,139,147,199 0 -276954 cd00286 Tubulin_FtsZ_Cetz-like 1 nucleotide binding site 0 1 1 1 7,8,9,12,98,101,103,104,129,131,163,181,184,185 5 -276960 cd02191 FtsZ_CetZ-like 1 nucleotide binding site 0 1 1 1 8,9,10,13,100,103,105,106,130,132,163,177,180,181 5 -276961 cd02201 FtsZ_type1 1 nucleotide binding site 0 1 1 1 8,9,10,13,92,95,97,98,121,123,154,171,174,175 5 -276962 cd02202 CetZ_tubulin-like 1 nucleotide binding site 0 1 1 1 8,9,10,13,105,108,110,111,135,137,168,182,185,186 5 -276963 cd06059 Tubulin 1 nucleotide binding site 0 1 1 1 7,8,9,12,98,101,103,104,129,131,164,185,188,189 5 -276955 cd02186 alpha_tubulin 1 nucleotide binding site 0 1 1 1 8,9,10,13,138,141,143,144,169,171,204,222,225,226 5 -276956 cd02187 beta_tubulin 1 nucleotide binding site 0 1 1 1 8,9,10,13,136,139,141,142,167,169,202,220,223,224 5 -276957 cd02188 gamma_tubulin 1 nucleotide binding site 0 1 1 1 8,9,10,13,137,140,142,143,168,170,204,222,225,226 5 -276958 cd02189 delta_zeta_tubulin-like 1 nucleotide binding site 0 1 1 1 7,8,9,12,131,134,136,137,162,164,196,215,218,219 5 -276959 cd02190 epsilon_tubulin 1 nucleotide binding site 0 1 1 1 8,9,10,13,143,146,148,149,174,176,208,248,251,252 5 -276964 cd06060 misato 1 nucleotide binding site 0 1 1 1 8,9,10,13,214,217,218,219,244,246,283,305,308,309 5 -238177 cd00287 ribokinase_pfkB_like 1 ATP binding site 0 1 1 0 115,151,179,182,183,186 5 -238177 cd00287 ribokinase_pfkB_like 2 substrate binding site 0 1 1 0 40,181,184 5 -238570 cd01164 FruK_PfkB_like 1 ATP binding site 0 1 1 0 183,219,246,249,250,253 5 -238570 cd01164 FruK_PfkB_like 2 substrate binding site 0 1 1 0 40,248,251 5 -238571 cd01166 KdgK 1 ATP binding site 0 1 1 0 191,222,251,254,255,258 5 -238571 cd01166 KdgK 2 substrate binding site 0 1 1 0 35,253,256 5 -238572 cd01167 bac_FRK 1 ATP binding site 0 1 1 0 187,218,245,248,249,252 5 -238572 cd01167 bac_FRK 2 substrate binding site 0 1 1 0 32,247,250 5 -238573 cd01168 adenosine_kinase 1 ATP binding site 0 1 1 0 206,239,267,270,271,274 5 -238573 cd01168 adenosine_kinase 2 substrate binding site 0 1 1 0 59,269,272 5 -238574 cd01169 HMPP_kinase 1 ATP binding site 0 1 1 0 134,170,202,205,206,209 5 -238574 cd01169 HMPP_kinase 2 substrate binding site 0 1 1 0 17,204,207 5 -238575 cd01170 THZ_kinase 1 ATP binding site 0 1 1 0 113,158,183,186,187,190 5 -238575 cd01170 THZ_kinase 2 substrate binding site 0 1 1 0 21,185,188 5 -238576 cd01171 YXKO-related 1 ATP binding site 0 1 1 0 134,171,196,199,200,203 5 -238576 cd01171 YXKO-related 2 substrate binding site 0 1 1 0 25,198,201 5 -238577 cd01172 RfaE_like 1 ATP binding site 0 1 1 0 187,224,252,255,256,259 5 -238577 cd01172 RfaE_like 2 substrate binding site 0 1 1 0 43,254,257 5 -238578 cd01173 pyridoxal_pyridoxamine_kinase 1 ATP binding site 0 1 1 0 142,178,212,215,216,219 5 -238578 cd01173 pyridoxal_pyridoxamine_kinase 2 substrate binding site 0 1 1 0 17,214,217 5 -238579 cd01174 ribokinase 1 ATP binding site 0 1 1 0 181,217,244,247,248,251 5 -238579 cd01174 ribokinase 2 substrate binding site 0 1 1 0 40,246,249 5 -238912 cd01937 ribokinase_group_D 1 ATP binding site 0 1 1 0 161,189,216,219,220,223 5 -238912 cd01937 ribokinase_group_D 2 substrate binding site 0 1 1 0 28,218,221 5 -238913 cd01938 ADPGK_ADPPFK 1 ATP binding site 0 1 1 0 276,334,428,431,432,435 5 -238913 cd01938 ADPGK_ADPPFK 2 substrate binding site 0 1 1 0 110,430,433 5 -238914 cd01939 Ketohexokinase 1 ATP binding site 0 1 1 0 185,217,246,249,250,253 5 -238914 cd01939 Ketohexokinase 2 substrate binding site 0 1 1 0 40,248,251 5 -238915 cd01940 Fructoselysine_kinase_like 1 ATP binding site 0 1 1 0 166,193,220,223,224,227 5 -238915 cd01940 Fructoselysine_kinase_like 2 substrate binding site 0 1 1 0 26,222,225 5 -238916 cd01941 YeiC_kinase_like 1 ATP binding site 0 1 1 0 182,218,249,252,253,256 5 -238916 cd01941 YeiC_kinase_like 2 substrate binding site 0 1 1 0 39,251,254 5 -238917 cd01942 ribokinase_group_A 1 ATP binding site 0 1 1 0 180,208,236,239,240,243 5 -238917 cd01942 ribokinase_group_A 2 substrate binding site 0 1 1 0 40,238,241 5 -238918 cd01943 MAK32 1 ATP binding site 0 1 1 0 186,230,262,265,266,269 5 -238918 cd01943 MAK32 2 substrate binding site 0 1 1 0 29,264,267 5 -238919 cd01944 YegV_kinase_like 1 ATP binding site 0 1 1 0 187,220,248,251,252,255 5 -238919 cd01944 YegV_kinase_like 2 substrate binding site 0 1 1 0 39,250,253 5 -238920 cd01945 ribokinase_group_B 1 ATP binding site 0 1 1 0 178,208,236,239,240,243 5 -238920 cd01945 ribokinase_group_B 2 substrate binding site 0 1 1 0 40,238,241 5 -238921 cd01946 ribokinase_group_C 1 ATP binding site 0 1 1 0 169,200,228,231,232,235 5 -238921 cd01946 ribokinase_group_C 2 substrate binding site 0 1 1 0 29,230,233 5 -238922 cd01947 Guanosine_kinase_like 1 ATP binding site 0 1 1 0 171,195,222,225,226,229 5 -238922 cd01947 Guanosine_kinase_like 2 substrate binding site 0 1 1 0 40,224,227 5 -238178 cd00288 Pyruvate_Kinase 1 active site 0 1 1 0 31,33,65,194,220,222,246,278 1 -238178 cd00288 Pyruvate_Kinase 2 domain interfaces 0 1 1 1 2,3,59,61,69,70,71,72,159,160,166,169,170,171,172,173,188,196,203,214,250,268,269,273,305,307,336,338,339,393,395,397,408,411,412,414,416,417,418 0 -238179 cd00290 cytochrome_b_C 1 Qo binding site 0 1 1 1 61,63,64,67,70,71,87 0 -238179 cd00290 cytochrome_b_C 2 Qi binding site 0 1 1 1 13,21 0 -238179 cd00290 cytochrome_b_C 3 interchain domain interface 0 1 0 0 0,1,2,4,5,6,7,8,9,10,11,12,15,16,17,19,20,23,26,27,30,33,34,37,38,40,46,49,50,104,105,109,110 2 -238179 cd00290 cytochrome_b_C 4 intrachain domain interface 0 1 0 0 0,1,6,9,10,11,13,17,20,21,24,25,28,32,33,35,36,37,40,45,47,48,50,51,52,53,54,56,57,58,61,63,64,65,66,81,91,94,95,97,98,99,101 0 -238180 cd00291 SirA_YedF_YeeD 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239512 cd03420 SirA_RHOD_Pry_redox 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239513 cd03421 SirA_like_N 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239514 cd03422 YedF 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -239515 cd03423 SirA 1 CPxP motif 0 0 1 1 1,2,5,8,9,10,11,13 0 -238181 cd00292 EF1B 1 EF1A interaction surface 0 1 1 1 2,6,10,11,12,36,37,42,45,53,55,58,61,64,65,80,85,86 2 -198286 cd00299 GST_C_family 1 dimer interface 0 1 1 1 1,2,5,6,9,46 2 -198286 cd00299 GST_C_family 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,72,75 5 -198286 cd00299 GST_C_family 3 N-terminal domain interface 0 1 1 0 1,8,64,67,68,71,75 2 -198287 cd03177 GST_C_Delta_Epsilon 1 dimer interface 0 1 1 1 6,7,10,11,14,48 2 -198287 cd03177 GST_C_Delta_Epsilon 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,74,77 5 -198287 cd03177 GST_C_Delta_Epsilon 3 N-terminal domain interface 0 1 1 0 6,13,66,69,70,73,77 2 -198288 cd03178 GST_C_Ure2p_like 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198288 cd03178 GST_C_Ure2p_like 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,76,79 5 -198288 cd03178 GST_C_Ure2p_like 3 N-terminal domain interface 0 1 1 0 5,12,68,71,72,75,79 2 -198324 cd10291 GST_C_YfcG_like 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198324 cd10291 GST_C_YfcG_like 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,76,79 5 -198324 cd10291 GST_C_YfcG_like 3 N-terminal domain interface 0 1 1 0 5,12,68,71,72,75,79 2 -198325 cd10292 GST_C_YghU_like 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198325 cd10292 GST_C_YghU_like 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,76,79 5 -198325 cd10292 GST_C_YghU_like 3 N-terminal domain interface 0 1 1 0 5,12,68,71,72,75,79 2 -198326 cd10293 GST_C_Ure2p 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198326 cd10293 GST_C_Ure2p 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,78,81 5 -198326 cd10293 GST_C_Ure2p 3 N-terminal domain interface 0 1 1 0 5,12,70,73,74,77,81 2 -198289 cd03180 GST_C_2 1 dimer interface 0 1 1 1 6,7,10,11,14,53 2 -198289 cd03180 GST_C_2 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,79,82 5 -198289 cd03180 GST_C_2 3 N-terminal domain interface 0 1 1 0 6,13,71,74,75,78,82 2 -198290 cd03181 GST_C_EF1Bgamma_like 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198290 cd03181 GST_C_EF1Bgamma_like 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,76,79 5 -198290 cd03181 GST_C_EF1Bgamma_like 3 N-terminal domain interface 0 1 1 0 5,12,68,71,72,75,79 2 -198327 cd10294 GST_C_ValRS_N 1 dimer interface 0 1 1 1 5,6,9,10,13,50 2 -198327 cd10294 GST_C_ValRS_N 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,76,79 5 -198327 cd10294 GST_C_ValRS_N 3 N-terminal domain interface 0 1 1 0 5,12,68,71,72,75,79 2 -198291 cd03182 GST_C_GTT2_like 1 dimer interface 0 1 1 1 8,9,12,13,16,58 2 -198291 cd03182 GST_C_GTT2_like 2 substrate binding pocket (H-site) 0 1 1 1 15,19,20,84,87 5 -198291 cd03182 GST_C_GTT2_like 3 N-terminal domain interface 0 1 1 0 8,15,76,79,80,83,87 2 -198292 cd03183 GST_C_Theta 1 dimer interface 0 1 1 1 5,6,9,10,13,55 2 -198292 cd03183 GST_C_Theta 2 substrate binding pocket (H-site) 0 1 1 1 12,16,17,82,85 5 -198292 cd03183 GST_C_Theta 3 N-terminal domain interface 0 1 1 0 5,12,74,77,78,81,85 2 -198293 cd03184 GST_C_Omega 1 dimer interface 0 1 1 1 6,7,10,11,14,42 2 -198293 cd03184 GST_C_Omega 2 substrate binding pocket (H-site) 0 1 1 1 13,16,17,70,73 5 -198293 cd03184 GST_C_Omega 3 N-terminal domain interface 0 1 1 0 6,13,62,65,66,69,73 2 -198294 cd03185 GST_C_Tau 1 dimer interface 0 1 1 1 7,8,11,12,15,45 2 -198294 cd03185 GST_C_Tau 2 substrate binding pocket (H-site) 0 1 1 1 14,18,19,72,75 5 -198294 cd03185 GST_C_Tau 3 N-terminal domain interface 0 1 1 0 7,14,64,67,68,71,75 2 -198295 cd03186 GST_C_SspA 1 dimer interface 0 1 1 1 7,8,11,12,15,46 2 -198295 cd03186 GST_C_SspA 2 substrate binding pocket (H-site) 0 1 1 1 14,18,19,72,75 5 -198295 cd03186 GST_C_SspA 3 N-terminal domain interface 0 1 1 0 7,14,64,67,68,71,75 2 -198296 cd03187 GST_C_Phi 1 dimer interface 0 1 1 1 6,7,10,11,14,55 2 -198296 cd03187 GST_C_Phi 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,81,84 5 -198296 cd03187 GST_C_Phi 3 N-terminal domain interface 0 1 1 0 6,13,73,76,77,80,84 2 -198297 cd03188 GST_C_Beta 1 dimer interface 0 1 1 1 6,7,10,11,14,52 2 -198297 cd03188 GST_C_Beta 2 substrate binding pocket (H-site) 0 1 1 1 13,17,18,78,81 5 -198297 cd03188 GST_C_Beta 3 N-terminal domain interface 0 1 1 0 6,13,70,73,74,77,81 2 -198298 cd03189 GST_C_GTT1_like 1 dimer interface 0 1 1 1 11,12,15,16,19,68 2 -198298 cd03189 GST_C_GTT1_like 2 substrate binding pocket (H-site) 0 1 1 1 18,22,23,94,97 5 -198298 cd03189 GST_C_GTT1_like 3 N-terminal domain interface 0 1 1 0 11,18,86,89,90,93,97 2 -198299 cd03190 GST_C_Omega_like 1 dimer interface 0 1 1 1 8,9,12,13,16,47 2 -198299 cd03190 GST_C_Omega_like 2 substrate binding pocket (H-site) 0 1 1 1 15,19,20,73,76 5 -198299 cd03190 GST_C_Omega_like 3 N-terminal domain interface 0 1 1 0 8,15,65,68,69,72,76 2 -198300 cd03191 GST_C_Zeta 1 dimer interface 0 1 1 1 7,8,11,12,15,54 2 -198300 cd03191 GST_C_Zeta 2 substrate binding pocket (H-site) 0 1 1 1 14,18,19,82,85 5 -198300 cd03191 GST_C_Zeta 3 N-terminal domain interface 0 1 1 0 7,14,74,77,78,81,85 2 -198301 cd03192 GST_C_Sigma_like 1 dimer interface 0 1 1 1 6,7,10,11,14,49 2 -198301 cd03192 GST_C_Sigma_like 2 substrate binding pocket (H-site) 0 1 1 1 13,16,17,77,80 5 -198301 cd03192 GST_C_Sigma_like 3 N-terminal domain interface 0 1 1 0 6,13,69,72,73,76,80 2 -198317 cd03208 GST_C_Alpha 1 dimer interface 0 1 1 1 7,8,11,12,15,49 2 -198317 cd03208 GST_C_Alpha 2 substrate binding pocket (H-site) 0 1 1 1 14,17,18,77,80 5 -198317 cd03208 GST_C_Alpha 3 N-terminal domain interface 0 1 1 0 7,14,69,72,73,76,80 2 -198318 cd03209 GST_C_Mu 1 dimer interface 0 1 1 1 6,7,10,11,14,45 2 -198318 cd03209 GST_C_Mu 2 substrate binding pocket (H-site) 0 1 1 1 13,16,17,71,74 5 -198318 cd03209 GST_C_Mu 3 N-terminal domain interface 0 1 1 0 6,13,63,66,67,70,74 2 -198319 cd03210 GST_C_Pi 1 dimer interface 0 1 1 1 7,8,11,12,15,45 2 -198319 cd03210 GST_C_Pi 2 substrate binding pocket (H-site) 0 1 1 1 14,17,18,74,77 5 -198319 cd03210 GST_C_Pi 3 N-terminal domain interface 0 1 1 0 7,14,66,69,70,73,77 2 -198328 cd10295 GST_C_Sigma 1 dimer interface 0 1 1 1 7,8,11,12,15,48 2 -198328 cd10295 GST_C_Sigma 2 substrate binding pocket (H-site) 0 1 1 1 14,17,18,74,77 5 -198328 cd10295 GST_C_Sigma 3 N-terminal domain interface 0 1 1 0 7,14,66,69,70,73,77 2 -198302 cd03193 GST_C_Metaxin 1 dimer interface 0 1 1 1 1,2,5,6,9,29 2 -198302 cd03193 GST_C_Metaxin 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,55,58 5 -198302 cd03193 GST_C_Metaxin 3 N-terminal domain interface 0 1 1 0 1,8,47,50,51,54,58 2 -198320 cd03211 GST_C_Metaxin2 1 dimer interface 0 1 1 1 1,2,5,6,9,67 2 -198320 cd03211 GST_C_Metaxin2 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,93,96 5 -198320 cd03211 GST_C_Metaxin2 3 N-terminal domain interface 0 1 1 0 1,8,85,88,89,92,96 2 -198321 cd03212 GST_C_Metaxin1_3 1 dimer interface 0 1 1 1 2,3,6,7,10,74 2 -198321 cd03212 GST_C_Metaxin1_3 2 substrate binding pocket (H-site) 0 1 1 1 9,13,14,100,103 5 -198321 cd03212 GST_C_Metaxin1_3 3 N-terminal domain interface 0 1 1 0 2,9,92,95,96,99,103 2 -198303 cd03194 GST_C_3 1 dimer interface 0 1 1 1 3,4,7,8,11,47 2 -198303 cd03194 GST_C_3 2 substrate binding pocket (H-site) 0 1 1 1 10,14,15,80,83 5 -198303 cd03194 GST_C_3 3 N-terminal domain interface 0 1 1 0 3,10,72,75,76,79,83 2 -198304 cd03195 GST_C_4 1 dimer interface 0 1 1 1 7,8,11,12,15,52 2 -198304 cd03195 GST_C_4 2 substrate binding pocket (H-site) 0 1 1 1 14,18,19,78,81 5 -198304 cd03195 GST_C_4 3 N-terminal domain interface 0 1 1 0 7,14,70,73,74,77,81 2 -198305 cd03196 GST_C_5 1 dimer interface 0 1 1 1 10,11,14,15,18,51 2 -198305 cd03196 GST_C_5 2 substrate binding pocket (H-site) 0 1 1 1 17,21,22,77,80 5 -198305 cd03196 GST_C_5 3 N-terminal domain interface 0 1 1 0 10,17,69,72,73,76,80 2 -198306 cd03197 GST_C_mPGES2 1 dimer interface 0 1 1 1 8,9,12,13,16,89 2 -198306 cd03197 GST_C_mPGES2 2 substrate binding pocket (H-site) 0 1 1 1 15,19,20,116,119 5 -198306 cd03197 GST_C_mPGES2 3 N-terminal domain interface 0 1 1 0 8,15,108,111,112,115,119 2 -198307 cd03198 GST_C_CLIC 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198307 cd03198 GST_C_CLIC 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,67,70 5 -198307 cd03198 GST_C_CLIC 3 N-terminal domain interface 0 1 1 0 1,8,59,62,63,66,70 2 -198329 cd10296 GST_C_CLIC4 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198329 cd10296 GST_C_CLIC4 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,83,86 5 -198329 cd10296 GST_C_CLIC4 3 N-terminal domain interface 0 1 1 0 1,8,75,78,79,82,86 2 -198330 cd10297 GST_C_CLIC5 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198330 cd10297 GST_C_CLIC5 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,83,86 5 -198330 cd10297 GST_C_CLIC5 3 N-terminal domain interface 0 1 1 0 1,8,75,78,79,82,86 2 -198331 cd10298 GST_C_CLIC2 1 dimer interface 0 1 1 1 1,2,5,6,9,38 2 -198331 cd10298 GST_C_CLIC2 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,82,85 5 -198331 cd10298 GST_C_CLIC2 3 N-terminal domain interface 0 1 1 0 1,8,74,77,78,81,85 2 -198332 cd10299 GST_C_CLIC3 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198332 cd10299 GST_C_CLIC3 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,81,84 5 -198332 cd10299 GST_C_CLIC3 3 N-terminal domain interface 0 1 1 0 1,8,73,76,77,80,84 2 -198333 cd10300 GST_C_CLIC1 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198333 cd10300 GST_C_CLIC1 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,83,86 5 -198333 cd10300 GST_C_CLIC1 3 N-terminal domain interface 0 1 1 0 1,8,75,78,79,82,86 2 -198334 cd10301 GST_C_CLIC6 1 dimer interface 0 1 1 1 1,2,5,6,9,39 2 -198334 cd10301 GST_C_CLIC6 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,83,86 5 -198334 cd10301 GST_C_CLIC6 3 N-terminal domain interface 0 1 1 0 1,8,75,78,79,82,86 2 -198308 cd03199 GST_C_GRX2 1 dimer interface 0 1 1 1 1,2,5,6,9,70 2 -198308 cd03199 GST_C_GRX2 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,95,98 5 -198308 cd03199 GST_C_GRX2 3 N-terminal domain interface 0 1 1 0 1,8,87,90,91,94,98 2 -198310 cd03201 GST_C_DHAR 1 dimer interface 0 1 1 1 1,2,5,6,9,40 2 -198310 cd03201 GST_C_DHAR 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,67,70 5 -198310 cd03201 GST_C_DHAR 3 N-terminal domain interface 0 1 1 0 1,8,59,62,63,66,70 2 -198311 cd03202 GST_C_etherase_LigE 1 dimer interface 0 1 1 1 2,3,6,7,10,68 2 -198311 cd03202 GST_C_etherase_LigE 2 substrate binding pocket (H-site) 0 1 1 1 9,13,14,94,97 5 -198311 cd03202 GST_C_etherase_LigE 3 N-terminal domain interface 0 1 1 0 2,9,86,89,90,93,97 2 -198312 cd03203 GST_C_Lambda 1 dimer interface 0 1 1 1 1,2,5,6,9,40 2 -198312 cd03203 GST_C_Lambda 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,68,71 5 -198312 cd03203 GST_C_Lambda 3 N-terminal domain interface 0 1 1 0 1,8,60,63,64,67,71 2 -198313 cd03204 GST_C_GDAP1_like 1 dimer interface 0 1 1 1 12,13,16,17,20,39 2 -198313 cd03204 GST_C_GDAP1_like 2 substrate binding pocket (H-site) 0 1 1 1 19,23,24,75,78 5 -198313 cd03204 GST_C_GDAP1_like 3 N-terminal domain interface 0 1 1 0 12,19,67,70,71,74,78 2 -198335 cd10302 GST_C_GDAP1L1 1 dimer interface 0 1 1 1 12,13,16,17,20,39 2 -198335 cd10302 GST_C_GDAP1L1 2 substrate binding pocket (H-site) 0 1 1 1 19,23,24,75,78 5 -198335 cd10302 GST_C_GDAP1L1 3 N-terminal domain interface 0 1 1 0 12,19,67,70,71,74,78 2 -198336 cd10303 GST_C_GDAP1 1 dimer interface 0 1 1 1 12,13,16,17,20,39 2 -198336 cd10303 GST_C_GDAP1 2 substrate binding pocket (H-site) 0 1 1 1 19,23,24,75,78 5 -198336 cd10303 GST_C_GDAP1 3 N-terminal domain interface 0 1 1 0 12,19,67,70,71,74,78 2 -198314 cd03205 GST_C_6 1 dimer interface 0 1 1 1 1,2,5,6,9,43 2 -198314 cd03205 GST_C_6 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,70,73 5 -198314 cd03205 GST_C_6 3 N-terminal domain interface 0 1 1 0 1,8,62,65,66,69,73 2 -198315 cd03206 GST_C_7 1 dimer interface 0 1 1 1 1,2,5,6,9,43 2 -198315 cd03206 GST_C_7 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,69,72 5 -198315 cd03206 GST_C_7 3 N-terminal domain interface 0 1 1 0 1,8,61,64,65,68,72 2 -198316 cd03207 GST_C_8 1 dimer interface 0 1 1 1 1,2,5,6,9,46 2 -198316 cd03207 GST_C_8 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,72,75 5 -198316 cd03207 GST_C_8 3 N-terminal domain interface 0 1 1 0 1,8,64,67,68,71,75 2 -198322 cd10289 GST_C_AaRS_like 1 dimer interface 0 1 1 1 1,2,5,6,9,26 2 -198322 cd10289 GST_C_AaRS_like 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,52,55 5 -198322 cd10289 GST_C_AaRS_like 3 N-terminal domain interface 0 1 1 0 1,8,44,47,48,51,55 2 -198309 cd03200 GST_C_AIMP2 1 dimer interface 0 1 1 1 17,18,21,22,25,45 2 -198309 cd03200 GST_C_AIMP2 2 substrate binding pocket (H-site) 0 1 1 1 24,27,28,71,74 5 -198309 cd03200 GST_C_AIMP2 3 N-terminal domain interface 0 1 1 0 17,24,63,66,67,70,74 2 -198337 cd10304 GST_C_Arc1p_N_like 1 dimer interface 0 1 1 1 3,4,7,8,11,28 2 -198337 cd10304 GST_C_Arc1p_N_like 2 substrate binding pocket (H-site) 0 1 1 1 10,13,14,55,58 5 -198337 cd10304 GST_C_Arc1p_N_like 3 N-terminal domain interface 0 1 1 0 3,10,47,50,51,54,58 2 -198338 cd10305 GST_C_AIMP3 1 dimer interface 0 1 1 1 3,4,7,8,11,32 2 -198338 cd10305 GST_C_AIMP3 2 substrate binding pocket (H-site) 0 1 1 1 10,13,14,58,61 5 -198338 cd10305 GST_C_AIMP3 3 N-terminal domain interface 0 1 1 0 3,10,50,53,54,57,61 2 -198339 cd10306 GST_C_GluRS_N 1 dimer interface 0 1 1 1 3,4,7,8,11,31 2 -198339 cd10306 GST_C_GluRS_N 2 substrate binding pocket (H-site) 0 1 1 1 10,13,14,57,60 5 -198339 cd10306 GST_C_GluRS_N 3 N-terminal domain interface 0 1 1 0 3,10,49,52,53,56,60 2 -198340 cd10307 GST_C_MetRS_N 1 dimer interface 0 1 1 1 27,28,31,32,35,47 2 -198340 cd10307 GST_C_MetRS_N 2 substrate binding pocket (H-site) 0 1 1 1 34,37,38,73,76 5 -198340 cd10307 GST_C_MetRS_N 3 N-terminal domain interface 0 1 1 0 27,34,65,68,69,72,76 2 -198341 cd10308 GST_C_eEF1b_like 1 dimer interface 0 1 1 1 1,2,5,6,9,32 2 -198341 cd10308 GST_C_eEF1b_like 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,58,61 5 -198341 cd10308 GST_C_eEF1b_like 3 N-terminal domain interface 0 1 1 0 1,8,50,53,54,57,61 2 -198343 cd10310 GST_C_CysRS_N 1 dimer interface 0 1 1 1 1,2,5,6,9,24 2 -198343 cd10310 GST_C_CysRS_N 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,50,53 5 -198343 cd10310 GST_C_CysRS_N 3 N-terminal domain interface 0 1 1 0 1,8,42,45,46,49,53 2 -198342 cd10309 GST_C_GluProRS_N 1 dimer interface 0 1 1 1 1,2,5,6,9,27 2 -198342 cd10309 GST_C_GluProRS_N 2 substrate binding pocket (H-site) 0 1 1 1 8,11,12,53,56 5 -198342 cd10309 GST_C_GluProRS_N 3 N-terminal domain interface 0 1 1 0 1,8,45,48,49,52,56 2 -198323 cd10290 GST_C_MetRS_N_fungi 1 dimer interface 0 1 1 1 15,16,19,20,23,45 2 -198323 cd10290 GST_C_MetRS_N_fungi 2 substrate binding pocket (H-site) 0 1 1 1 22,26,27,68,71 5 -198323 cd10290 GST_C_MetRS_N_fungi 3 N-terminal domain interface 0 1 1 0 15,22,60,63,64,67,71 2 -198344 cd10424 GST_C_9 1 dimer interface 0 1 1 1 1,2,5,6,9,46 2 -198344 cd10424 GST_C_9 2 substrate binding pocket (H-site) 0 1 1 1 8,12,13,72,75 5 -198344 cd10424 GST_C_9 3 N-terminal domain interface 0 1 1 0 1,8,64,67,68,71,75 2 -238185 cd00304 RT_like 1 active site 0 1 1 1 1,2,3,4,5,6,13,14,45,47,48,93,94 1 -238185 cd00304 RT_like 2 nucleic acid binding site 0 1 1 1 14 3 -238185 cd00304 RT_like 3 NTP binding site 0 1 1 1 1,2,3,4,5,6,13,47 5 -238822 cd01644 RT_pepA17 1 active site 0 1 1 1 64,65,66,67,68,69,105,106,139,141,142,208,209 1 -238822 cd01644 RT_pepA17 2 nucleic acid binding site 0 1 1 1 106 3 -238822 cd01644 RT_pepA17 3 NTP binding site 0 1 1 1 64,65,66,67,68,69,105,141 5 -238823 cd01645 RT_Rtv 1 active site 0 1 1 1 89,90,91,92,93,94,130,131,162,164,165,208,209 1 -238823 cd01645 RT_Rtv 2 nucleic acid binding site 0 1 1 1 131 3 -238823 cd01645 RT_Rtv 3 NTP binding site 0 1 1 1 89,90,91,92,93,94,130,164 5 -238824 cd01646 RT_Bac_retron_I 1 active site 0 1 1 1 1,2,3,4,5,6,55,56,87,89,90,139,140 1 -238824 cd01646 RT_Bac_retron_I 2 nucleic acid binding site 0 1 1 1 56 3 -238824 cd01646 RT_Bac_retron_I 3 NTP binding site 0 1 1 1 1,2,3,4,5,6,55,89 5 -238825 cd01647 RT_LTR 1 active site 0 1 1 1 63,64,65,66,67,68,97,98,125,127,128,172,173 1 -238825 cd01647 RT_LTR 2 nucleic acid binding site 0 1 1 1 98 3 -238825 cd01647 RT_LTR 3 NTP binding site 0 1 1 1 63,64,65,66,67,68,97,127 5 -238826 cd01648 TERT 1 active site 0 1 1 1 1,2,3,4,5,6,21,22,57,59,60,113,114 1 -238826 cd01648 TERT 2 nucleic acid binding site 0 1 1 1 22 3 -238826 cd01648 TERT 3 NTP binding site 0 1 1 1 1,2,3,4,5,6,21,59 5 -238827 cd01650 RT_nLTR_like 1 active site 0 1 1 1 87,88,89,90,91,92,108,109,146,148,149,215,216 1 -238827 cd01650 RT_nLTR_like 2 nucleic acid binding site 0 1 1 1 109 3 -238827 cd01650 RT_nLTR_like 3 NTP binding site 0 1 1 1 87,88,89,90,91,92,108,148 5 -238828 cd01651 RT_G2_intron 1 active site 0 1 1 1 75,76,77,78,79,80,128,129,171,173,174,221,222 1 -238828 cd01651 RT_G2_intron 2 nucleic acid binding site 0 1 1 1 129 3 -238828 cd01651 RT_G2_intron 3 NTP binding site 0 1 1 1 75,76,77,78,79,80,128,173 5 -238843 cd01699 RNA_dep_RNAP 1 active site 0 1 1 1 101,102,103,104,105,106,161,162,199,201,202,249,250 1 -238843 cd01699 RNA_dep_RNAP 2 nucleic acid binding site 0 1 1 1 162 3 -238843 cd01699 RNA_dep_RNAP 3 NTP binding site 0 1 1 1 101,102,103,104,105,106,161,201 5 -238844 cd01709 RT_like_1 1 active site 0 1 1 1 55,56,57,58,59,60,85,86,117,119,120,176,177 1 -238844 cd01709 RT_like_1 2 nucleic acid binding site 0 1 1 1 86 3 -238844 cd01709 RT_like_1 3 NTP binding site 0 1 1 1 55,56,57,58,59,60,85,119 5 -239569 cd03487 RT_Bac_retron_II 1 active site 0 1 1 1 62,63,64,65,66,67,105,106,139,141,142,190,191 1 -239569 cd03487 RT_Bac_retron_II 2 nucleic acid binding site 0 1 1 1 106 3 -239569 cd03487 RT_Bac_retron_II 3 NTP binding site 0 1 1 1 62,63,64,65,66,67,105,141 5 -239684 cd03714 RT_DIRS1 1 active site 0 1 1 1 1,2,3,4,5,6,35,36,65,67,68,114,115 1 -239684 cd03714 RT_DIRS1 2 nucleic acid binding site 0 1 1 1 36 3 -239684 cd03714 RT_DIRS1 3 NTP binding site 0 1 1 1 1,2,3,4,5,6,35,67 5 -239685 cd03715 RT_ZFREV_like 1 active site 0 1 1 1 92,93,94,95,96,97,126,127,158,160,161,205,206 1 -239685 cd03715 RT_ZFREV_like 2 nucleic acid binding site 0 1 1 1 127 3 -239685 cd03715 RT_ZFREV_like 3 NTP binding site 0 1 1 1 92,93,94,95,96,97,126,160 5 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 1 active site 0 1 1 0 43,45,60,77,80,117 1 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 2 Cu2+ binding site 0 1 1 0 43,45,60,117 4 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 3 Zn2+ binding site 0 1 1 0 60,68,77,80 4 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 4 E-class dimer interface 0 1 1 0 3,5,16,18,47,48,49,110,111 2 -238186 cd00305 Cu-Zn_Superoxide_Dismutase 5 P-class dimer interface 0 1 1 0 27,85 2 -173787 cd00306 Peptidases_S8_S53 1 active site 0 1 1 1 45,108,208 1 -173787 cd00306 Peptidases_S8_S53 2 catalytic residues 0 0 1 1 45,208 1 -173788 cd04056 Peptidases_S53 1 active site 0 1 1 1 74,126,280 1 -173788 cd04056 Peptidases_S53 2 catalytic residues 0 0 1 1 74,280 1 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 1 active site 0 1 1 1 85,145,262 1 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like 2 catalytic residues 0 0 1 1 85,262 1 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 1 active site 0 1 1 1 64,126,219 1 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like 2 catalytic residues 0 0 1 1 64,219 1 -173791 cd04842 Peptidases_S8_Kp43_protease 1 active site 0 1 1 1 55,122,250 1 -173791 cd04842 Peptidases_S8_Kp43_protease 2 catalytic residues 0 0 1 1 55,250 1 -173792 cd04843 Peptidases_S8_11 1 active site 0 1 1 1 52,117,237 1 -173792 cd04843 Peptidases_S8_11 2 catalytic residues 0 0 1 1 52,237 1 -173793 cd04847 Peptidases_S8_Subtilisin_like_2 1 active site 0 1 1 1 39,109,256 1 -173793 cd04847 Peptidases_S8_Subtilisin_like_2 2 catalytic residues 0 0 1 1 39,256 1 -173794 cd04848 Peptidases_S8_Autotransporter_serine_protease_like 1 active site 0 1 1 1 47,110,232 1 -173794 cd04848 Peptidases_S8_Autotransporter_serine_protease_like 2 catalytic residues 0 0 1 1 47,232 1 -173795 cd04852 Peptidases_S8_3 1 active site 0 1 1 1 109,180,272 1 -173795 cd04852 Peptidases_S8_3 2 catalytic residues 0 0 1 1 109,272 1 -173796 cd04857 Peptidases_S8_Tripeptidyl_Aminopeptidase_II 1 active site 0 1 1 1 186,251,371 1 -173796 cd04857 Peptidases_S8_Tripeptidyl_Aminopeptidase_II 2 catalytic residues 0 0 1 1 186,371 1 -173797 cd05561 Peptidases_S8_4 1 active site 0 1 1 1 37,100,191 1 -173797 cd05561 Peptidases_S8_4 2 catalytic residues 0 0 1 1 37,191 1 -173798 cd05562 Peptidases_S53_like 1 active site 0 1 1 1 49,102,216 1 -173798 cd05562 Peptidases_S53_like 2 catalytic residues 0 0 1 1 49,216 1 -173799 cd07473 Peptidases_S8_Subtilisin_like 1 active site 0 1 1 1 64,127,224 1 -173799 cd07473 Peptidases_S8_Subtilisin_like 2 catalytic residues 0 0 1 1 64,224 1 -173800 cd07474 Peptidases_S8_subtilisin_Vpr-like 1 active site 0 1 1 1 63,126,235 1 -173800 cd07474 Peptidases_S8_subtilisin_Vpr-like 2 catalytic residues 0 0 1 1 63,235 1 -173801 cd07475 Peptidases_S8_C5a_Peptidase 1 active site 0 1 1 1 83,151,274 1 -173801 cd07475 Peptidases_S8_C5a_Peptidase 2 catalytic residues 0 0 1 1 83,274 1 -173802 cd07476 Peptidases_S8_thiazoline_oxidase_subtilisin-like_protease 1 active site 0 1 1 1 51,113,211 1 -173802 cd07476 Peptidases_S8_thiazoline_oxidase_subtilisin-like_protease 2 catalytic residues 0 0 1 1 51,211 1 -173803 cd07477 Peptidases_S8_Subtilisin_subset 1 active site 0 1 1 1 41,103,196 1 -173803 cd07477 Peptidases_S8_Subtilisin_subset 2 catalytic residues 0 0 1 1 41,196 1 -173804 cd07478 Peptidases_S8_CspA-like 1 active site 0 1 1 1 79,157,399 1 -173804 cd07478 Peptidases_S8_CspA-like 2 catalytic residues 0 0 1 1 79,399 1 -173805 cd07479 Peptidases_S8_SKI-1_like 1 active site 0 1 1 1 46,106,212 1 -173805 cd07479 Peptidases_S8_SKI-1_like 2 catalytic residues 0 0 1 1 46,212 1 -173806 cd07480 Peptidases_S8_12 1 active site 0 1 1 1 47,109,253 1 -173806 cd07480 Peptidases_S8_12 2 catalytic residues 0 0 1 1 47,253 1 -173807 cd07481 Peptidases_S8_BacillopeptidaseF-like 1 active site 0 1 1 1 53,126,227 1 -173807 cd07481 Peptidases_S8_BacillopeptidaseF-like 2 catalytic residues 0 0 1 1 53,227 1 -173808 cd07482 Peptidases_S8_Lantibiotic_specific_protease 1 active site 0 1 1 1 54,113,260 1 -173808 cd07482 Peptidases_S8_Lantibiotic_specific_protease 2 catalytic residues 0 0 1 1 54,260 1 -173809 cd07483 Peptidases_S8_Subtilisin_Novo-like 1 active site 0 1 1 1 86,148,256 1 -173809 cd07483 Peptidases_S8_Subtilisin_Novo-like 2 catalytic residues 0 0 1 1 86,256 1 -173810 cd07484 Peptidases_S8_Thermitase_like 1 active site 0 1 1 1 69,132,223 1 -173810 cd07484 Peptidases_S8_Thermitase_like 2 catalytic residues 0 0 1 1 69,223 1 -173811 cd07485 Peptidases_S8_Fervidolysin_like 1 active site 0 1 1 1 62,131,239 1 -173811 cd07485 Peptidases_S8_Fervidolysin_like 2 catalytic residues 0 0 1 1 62,239 1 -173812 cd07487 Peptidases_S8_1 1 active site 0 1 1 1 45,113,229 1 -173812 cd07487 Peptidases_S8_1 2 catalytic residues 0 0 1 1 45,229 1 -173813 cd07488 Peptidases_S8_2 1 active site 0 1 1 1 38,92,207 1 -173813 cd07488 Peptidases_S8_2 2 catalytic residues 0 0 1 1 38,207 1 -173814 cd07489 Peptidases_S8_5 1 active site 0 1 1 1 69,131,230 1 -173814 cd07489 Peptidases_S8_5 2 catalytic residues 0 0 1 1 69,230 1 -173815 cd07490 Peptidases_S8_6 1 active site 0 1 1 1 44,105,219 1 -173815 cd07490 Peptidases_S8_6 2 catalytic residues 0 0 1 1 44,219 1 -173816 cd07491 Peptidases_S8_7 1 active site 0 1 1 1 50,109,212 1 -173816 cd07491 Peptidases_S8_7 2 catalytic residues 0 0 1 1 50,212 1 -173817 cd07492 Peptidases_S8_8 1 active site 0 1 1 1 45,98,187 1 -173817 cd07492 Peptidases_S8_8 2 catalytic residues 0 0 1 1 45,187 1 -173818 cd07493 Peptidases_S8_9 1 active site 0 1 1 1 48,111,226 1 -173818 cd07493 Peptidases_S8_9 2 catalytic residues 0 0 1 1 48,226 1 -173819 cd07494 Peptidases_S8_10 1 active site 0 1 1 1 62,111,248 1 -173819 cd07494 Peptidases_S8_10 2 catalytic residues 0 0 1 1 62,248 1 -173820 cd07496 Peptidases_S8_13 1 active site 0 1 1 1 72,144,252 1 -173820 cd07496 Peptidases_S8_13 2 catalytic residues 0 0 1 1 72,252 1 -173821 cd07497 Peptidases_S8_14 1 active site 0 1 1 1 57,138,271 1 -173821 cd07497 Peptidases_S8_14 2 catalytic residues 0 0 1 1 57,271 1 -173822 cd07498 Peptidases_S8_15 1 active site 0 1 1 1 41,104,209 1 -173822 cd07498 Peptidases_S8_15 2 catalytic residues 0 0 1 1 41,209 1 -238187 cd00307 RuBisCO_small_like 1 putative multimerization interface 0 1 0 1 6,9,20,26,27,29,30,57,72,74,75 2 -239603 cd03527 RuBisCO_small 1 putative multimerization interface 0 1 0 1 19,22,33,43,44,46,47,72,87,89,90 2 -238188 cd00308 enolase_like 1 metal binding site 0 1 1 0 99,125,150 4 -238188 cd00308 enolase_like 2 substrate binding pocket 0 1 1 0 174,227 5 -239429 cd03313 enolase 1 metal binding site 0 1 1 0 238,282,309 4 -239429 cd03313 enolase 2 substrate binding pocket 0 1 1 0 334,385 5 -239430 cd03314 MAL 1 metal binding site 0 1 1 0 197,232,266 4 -239430 cd03314 MAL 2 substrate binding pocket 0 1 1 0 290,343 5 -239431 cd03315 MLE_like 1 metal binding site 0 1 1 0 134,160,185 4 -239431 cd03315 MLE_like 2 substrate binding pocket 0 1 1 0 209,263 5 -239433 cd03317 NAAAR 1 metal binding site 0 1 1 0 183,208,233 4 -239433 cd03317 NAAAR 2 substrate binding pocket 0 1 1 0 257,310 5 -239434 cd03318 MLE 1 metal binding site 0 1 1 0 193,219,244 4 -239434 cd03318 MLE 2 substrate binding pocket 0 1 1 0 268,322 5 -239435 cd03319 L-Ala-DL-Glu_epimerase 1 metal binding site 0 1 1 0 182,208,233 4 -239435 cd03319 L-Ala-DL-Glu_epimerase 2 substrate binding pocket 0 1 1 0 257,308 5 -239436 cd03320 OSBS 1 metal binding site 0 1 1 0 132,158,181 4 -239436 cd03320 OSBS 2 substrate binding pocket 0 1 1 0 205,259 5 -239432 cd03316 MR_like 1 metal binding site 0 1 1 0 194,220,246 4 -239432 cd03316 MR_like 2 substrate binding pocket 0 1 1 0 269,321 5 -239437 cd03321 mandelate_racemase 1 metal binding site 0 1 1 0 191,217,243 4 -239437 cd03321 mandelate_racemase 2 substrate binding pocket 0 1 1 0 266,313 5 -239438 cd03322 rpsA 1 metal binding site 0 1 1 0 168,194,220 4 -239438 cd03322 rpsA 2 substrate binding pocket 0 1 1 0 243,297 5 -239439 cd03323 D-glucarate_dehydratase 1 metal binding site 0 1 1 0 218,243,266 4 -239439 cd03323 D-glucarate_dehydratase 2 substrate binding pocket 0 1 1 0 290,344 5 -239440 cd03324 rTSbeta_L-fuconate_dehydratase 1 metal binding site 0 1 1 0 245,271,300 4 -239440 cd03324 rTSbeta_L-fuconate_dehydratase 2 substrate binding pocket 0 1 1 0 323,381 5 -239441 cd03325 D-galactonate_dehydratase 1 metal binding site 0 1 1 0 181,207,233 4 -239441 cd03325 D-galactonate_dehydratase 2 substrate binding pocket 0 1 1 0 256,308 5 -239442 cd03326 MR_like_1 1 metal binding site 0 1 1 0 210,236,262 4 -239442 cd03326 MR_like_1 2 substrate binding pocket 0 1 1 0 289,338 5 -239443 cd03327 MR_like_2 1 metal binding site 0 1 1 0 176,202,228 4 -239443 cd03327 MR_like_2 2 substrate binding pocket 0 1 1 0 251,298 5 -239444 cd03328 MR_like_3 1 metal binding site 0 1 1 0 187,213,241 4 -239444 cd03328 MR_like_3 2 substrate binding pocket 0 1 1 0 264,311 5 -239445 cd03329 MR_like_4 1 metal binding site 0 1 1 0 194,220,246 4 -239445 cd03329 MR_like_4 2 substrate binding pocket 0 1 1 0 270,317 5 -238191 cd00312 Esterase_lipase 1 catalytic triad 0 1 1 0 183,308,420 1 -238191 cd00312 Esterase_lipase 2 substrate binding pocket 0 1 0 0 102,103,104,182,183,184,187,334,338,339,372,421,424 5 -173823 cd00314 plant_peroxidase_like 1 heme binding site 0 0 1 1 18,19,21,22,25,120,121,122,140,153,154,157,158,160,162,163,164,165,166,215,217,245,249 5 -173824 cd00649 catalase_peroxidase_1 1 heme binding site 0 0 1 1 70,71,73,74,77,201,202,203,223,236,237,240,241,243,244,245,246,247,248,350,352,380,384 5 -173825 cd00691 ascorbate_peroxidase 1 heme binding site 0 0 1 1 30,31,33,34,37,131,132,133,144,157,158,160,161,163,164,165,166,167,168,207,209,237,241 5 -173826 cd00692 ligninase 1 heme binding site 0 0 1 1 38,39,41,42,45,143,144,145,156,169,170,172,173,175,176,177,178,179,180,232,234,262,266 5 -173827 cd00693 secretory_peroxidase 1 heme binding site 0 0 1 1 33,34,36,37,40,136,137,138,149,162,163,165,166,168,169,170,171,172,173,240,242,270,274 5 -173828 cd08200 catalase_peroxidase_2 1 heme binding site 0 0 1 1 30,31,33,34,37,153,154,155,173,186,187,190,191,193,194,195,196,197,198,252,254,284,288 5 -173829 cd08201 plant_peroxidase_like_1 1 heme binding site 0 0 1 1 42,43,45,46,49,137,138,139,150,163,164,167,168,170,171,172,173,174,175,226,228,254,258 5 -238192 cd00315 Cyt_C5_DNA_methylase 1 cofactor binding site 0 1 1 1 6,7,8,9,10,11,27,28,29,30,48,49,50,51,68,70 0 -238192 cd00315 Cyt_C5_DNA_methylase 2 substrate interaction site 0 1 0 0 68,71,75,109,111,153,155,258 5 -238192 cd00315 Cyt_C5_DNA_methylase 3 DNA binding site 0 1 1 1 68,71,72,75,76,77,78,81,87,109,111,112,153,155,188,190,197,198,200,201,258 3 -238194 cd00317 cyclophilin 1 active site 0 1 1 0 40,42,45,46,48,85,86,95,97,105,106,110 1 -238901 cd01920 cyclophilin_EcCYP_like 1 active site 0 1 1 0 40,42,45,46,48,83,84,94,96,104,105,109 1 -238902 cd01921 cyclophilin_RRM 1 active site 0 1 1 0 40,42,45,46,48,93,94,103,105,114,115,119 1 -238903 cd01922 cyclophilin_SpCYP2_like 1 active site 0 1 1 0 40,42,45,46,48,86,87,96,98,106,107,111 1 -238904 cd01923 cyclophilin_RING 1 active site 0 1 1 0 42,44,47,48,50,88,89,98,100,108,109,113 1 -238905 cd01924 cyclophilin_TLP40_like 1 active site 0 1 1 0 40,42,45,46,48,111,112,123,125,140,141,145 1 -238906 cd01925 cyclophilin_CeCYP16-like 1 active site 0 1 1 0 48,50,53,54,56,94,95,104,106,114,115,119 1 -238907 cd01926 cyclophilin_ABH_like 1 active site 0 1 1 0 56,58,61,62,64,102,103,112,114,122,123,127 1 -238908 cd01927 cyclophilin_WD40 1 active site 0 1 1 0 40,42,45,46,48,86,87,96,98,106,107,111 1 -238909 cd01928 Cyclophilin_PPIL3_like 1 active site 0 1 1 0 43,45,48,49,51,89,90,99,101,109,110,114 1 -238195 cd00318 Phosphoglycerate_kinase 1 substrate binding site 0 1 1 0 15,17,30,53,112 5 -238195 cd00318 Phosphoglycerate_kinase 2 catalytic site 0 1 1 0 355 1 -238195 cd00318 Phosphoglycerate_kinase 3 ADP binding site 0 1 1 0 221,293,317,319,321,322,323,324,354,355,356 5 -238195 cd00318 Phosphoglycerate_kinase 4 hinge regions 0 0 1 1 183,184,185,186,372,373,374 0 -238196 cd00319 Ribosomal_S12_like 1 aminoacyl-tRNA interaction site (A-site) 0 1 1 1 29,30,31,32,33,34,54,55,56,57,58,59,60,61,62 3 -238196 cd00319 Ribosomal_S12_like 2 16S/18S rRNA interaction site 0 1 1 0 1,4,10,12,13,14,15,27,28,30,31,32,33,34,35,42,50,53,54,67,68,72,73,85 3 -238196 cd00319 Ribosomal_S12_like 3 23S/28S rRNA interaction site 0 1 1 1 28,29 3 -238196 cd00319 Ribosomal_S12_like 4 streptomycin interaction site 0 1 1 0 27,28,72 5 -239465 cd03367 Ribosomal_S23 1 aminoacyl-tRNA interaction site (A-site) 0 1 1 1 36,37,38,39,40,41,62,63,64,65,66,67,68,69,70,71,72 3 -239465 cd03367 Ribosomal_S23 2 16S/18S rRNA interaction site 0 1 1 0 8,11,17,19,20,21,22,34,35,37,38,39,40,41,42,49,58,61,62,77,78,86,87,88,102 3 -239465 cd03367 Ribosomal_S23 3 23S/28S rRNA interaction site 0 1 1 1 35,36 3 -239465 cd03367 Ribosomal_S23 4 streptomycin interaction site 0 1 1 0 34,35,86 5 -239466 cd03368 Ribosomal_S12 1 aminoacyl-tRNA interaction site (A-site) 0 1 1 1 42,43,44,45,46,47,67,68,69,70,71,72,73,74,75 3 -239466 cd03368 Ribosomal_S12 2 16S/18S rRNA interaction site 0 1 1 0 14,17,23,25,26,27,28,40,41,43,44,45,46,47,48,55,63,66,67,80,81,85,86,98 3 -239466 cd03368 Ribosomal_S12 3 23S/28S rRNA interaction site 0 1 1 1 41,42 3 -239466 cd03368 Ribosomal_S12 4 streptomycin interaction site 0 1 1 0 40,41,85 5 -238197 cd00320 cpn10 1 oligomerisation interface 0 1 0 1 0,2,4,7,34,35,56,66,71,73,89,90,91 2 -238197 cd00320 cpn10 2 roof hairpin 0 0 1 1 43,54 0 -238197 cd00320 cpn10 3 mobile loop 0 1 1 1 16,17,18,19,20,21,22,23,24,25,26,27,28,29 0 -238198 cd00321 SO_family_Moco 1 Moco binding site 0 1 1 0 0,2,4,49,98,127,132,140,143,145,146 0 -238198 cd00321 SO_family_Moco 2 metal coordination site 0 1 1 0 49 4 -239025 cd02107 YedY_like_Moco 1 Moco binding site 0 1 1 0 2,4,6,61,117,146,151,159,162,164,165 0 -239025 cd02107 YedY_like_Moco 2 metal coordination site 0 1 1 0 61 4 -239026 cd02108 bact_SO_family_Moco 1 Moco binding site 0 1 1 0 16,18,20,61,106,135,140,148,151,153,154 0 -239026 cd02108 bact_SO_family_Moco 2 metal coordination site 0 1 1 0 61 4 -239027 cd02109 arch_bact_SO_family_Moco 1 Moco binding site 0 1 1 0 10,12,14,59,99,128,133,141,144,146,147 0 -239027 cd02109 arch_bact_SO_family_Moco 2 metal coordination site 0 1 1 0 59 4 -239028 cd02110 SO_family_Moco_dimer 1 Moco binding site 0 1 1 0 2,4,6,50,114,143,148,156,159,161,162 0 -239028 cd02110 SO_family_Moco_dimer 2 metal coordination site 0 1 1 0 50 4 -239029 cd02111 eukary_SO_Moco 1 Moco binding site 0 1 1 0 30,32,34,79,147,178,183,191,194,196,197 0 -239029 cd02111 eukary_SO_Moco 2 metal coordination site 0 1 1 0 79 4 -239030 cd02112 eukary_NR_Moco 1 Moco binding site 0 1 1 0 45,47,49,94,163,194,199,207,210,212,213 0 -239030 cd02112 eukary_NR_Moco 2 metal coordination site 0 1 1 0 94 4 -239031 cd02113 bact_SoxC_Moco 1 Moco binding site 0 1 1 0 15,17,19,63,122,150,155,163,166,168,169 0 -239031 cd02113 bact_SoxC_Moco 2 metal coordination site 0 1 1 0 63 4 -239032 cd02114 bact_SorA_Moco 1 Moco binding site 0 1 1 0 47,49,51,98,162,191,196,204,207,209,210 0 -239032 cd02114 bact_SorA_Moco 2 metal coordination site 0 1 1 0 98 4 -99778 cd00322 FNR_like 1 FAD binding pocket 0 1 1 1 27,41,42,43,44,58,59,60,65,66,67,68,106 5 -99778 cd00322 FNR_like 2 NAD binding pocket 0 1 1 0 106,107,132,133,134,197,198 5 -99778 cd00322 FNR_like 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99778 cd00322 FNR_like 4 phosphate binding motif 0 0 1 1 65,68,71,77 4 -99778 cd00322 FNR_like 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99779 cd06182 CYPOR_like 1 FAD binding pocket 0 1 1 1 36,48,49,50,51,66,67,68,82,83,84,85,124 5 -99779 cd06182 CYPOR_like 2 NAD binding pocket 0 1 1 0 124,125,154,155,156,220,221 5 -99779 cd06182 CYPOR_like 3 conserved FAD binding motif 0 0 1 1 48,50,51 5 -99779 cd06182 CYPOR_like 4 phosphate binding motif 0 0 1 1 82,85,88,94 4 -99779 cd06182 CYPOR_like 5 beta-alpha-beta structure motif 0 0 1 1 119,123,124,125,126,128 0 -99796 cd06199 SiR 1 FAD binding pocket 0 1 1 1 35,146,147,148,149,164,165,166,179,180,181,182,222 5 -99796 cd06199 SiR 2 NAD binding pocket 0 1 1 0 222,223,248,249,250,313,314 5 -99796 cd06199 SiR 3 conserved FAD binding motif 0 0 1 1 146,148,149 5 -99796 cd06199 SiR 4 phosphate binding motif 0 0 1 1 179,182,185,192 4 -99796 cd06199 SiR 5 beta-alpha-beta structure motif 0 0 1 1 217,221,222,223,224,226 0 -99797 cd06200 SiR_like1 1 FAD binding pocket 0 1 1 1 36,48,49,50,51,64,65,66,76,77,78,79,118 5 -99797 cd06200 SiR_like1 2 NAD binding pocket 0 1 1 0 118,119,143,144,145,208,209 5 -99797 cd06200 SiR_like1 3 conserved FAD binding motif 0 0 1 1 48,50,51 5 -99797 cd06200 SiR_like1 4 phosphate binding motif 0 0 1 1 76,79,82,89 4 -99797 cd06200 SiR_like1 5 beta-alpha-beta structure motif 0 0 1 1 113,117,118,119,120,122 0 -99798 cd06201 SiR_like2 1 FAD binding pocket 0 1 1 1 88,100,101,102,103,116,117,118,123,124,125,126,164 5 -99798 cd06201 SiR_like2 2 NAD binding pocket 0 1 1 0 164,165,187,188,189,251,252 5 -99798 cd06201 SiR_like2 3 conserved FAD binding motif 0 0 1 1 100,102,103 5 -99798 cd06201 SiR_like2 4 phosphate binding motif 0 0 1 1 123,126,129,135 4 -99798 cd06201 SiR_like2 5 beta-alpha-beta structure motif 0 0 1 1 159,163,164,165,166,168 0 -99799 cd06202 Nitric_oxide_synthase 1 FAD binding pocket 0 1 1 1 36,177,178,179,180,195,196,197,213,214,215,216,255 5 -99799 cd06202 Nitric_oxide_synthase 2 NAD binding pocket 0 1 1 0 255,256,289,290,291,356,357 5 -99799 cd06202 Nitric_oxide_synthase 3 conserved FAD binding motif 0 0 1 1 177,179,180 5 -99799 cd06202 Nitric_oxide_synthase 4 phosphate binding motif 0 0 1 1 213,216,219,225 4 -99799 cd06202 Nitric_oxide_synthase 5 beta-alpha-beta structure motif 0 0 1 1 250,254,255,256,257,259 0 -99800 cd06203 methionine_synthase_red 1 FAD binding pocket 0 1 1 1 35,174,175,176,177,192,193,194,202,203,204,205,250 5 -99800 cd06203 methionine_synthase_red 2 NAD binding pocket 0 1 1 0 250,251,282,283,284,351,352 5 -99800 cd06203 methionine_synthase_red 3 conserved FAD binding motif 0 0 1 1 174,176,177 5 -99800 cd06203 methionine_synthase_red 4 phosphate binding motif 0 0 1 1 202,205,208,219 4 -99800 cd06203 methionine_synthase_red 5 beta-alpha-beta structure motif 0 0 1 1 245,249,250,251,252,254 0 -99801 cd06204 CYPOR 1 FAD binding pocket 0 1 1 1 42,178,179,180,181,196,197,198,212,213,214,215,274 5 -99801 cd06204 CYPOR 2 NAD binding pocket 0 1 1 0 274,275,304,305,306,369,370 5 -99801 cd06204 CYPOR 3 conserved FAD binding motif 0 0 1 1 178,180,181 5 -99801 cd06204 CYPOR 4 phosphate binding motif 0 0 1 1 212,215,218,245 4 -99801 cd06204 CYPOR 5 beta-alpha-beta structure motif 0 0 1 1 269,273,274,275,276,278 0 -99802 cd06206 bifunctional_CYPOR 1 FAD binding pocket 0 1 1 1 34,161,162,163,164,179,180,181,196,197,198,199,239 5 -99802 cd06206 bifunctional_CYPOR 2 NAD binding pocket 0 1 1 0 239,240,269,270,271,334,335 5 -99802 cd06206 bifunctional_CYPOR 3 conserved FAD binding motif 0 0 1 1 161,163,164 5 -99802 cd06206 bifunctional_CYPOR 4 phosphate binding motif 0 0 1 1 196,199,202,208 4 -99802 cd06206 bifunctional_CYPOR 5 beta-alpha-beta structure motif 0 0 1 1 234,238,239,240,241,243 0 -99803 cd06207 CyPoR_like 1 FAD binding pocket 0 1 1 1 35,164,165,166,167,182,183,184,198,199,200,201,239 5 -99803 cd06207 CyPoR_like 2 NAD binding pocket 0 1 1 0 239,240,269,270,271,335,336 5 -99803 cd06207 CyPoR_like 3 conserved FAD binding motif 0 0 1 1 164,166,167 5 -99803 cd06207 CyPoR_like 4 phosphate binding motif 0 0 1 1 198,201,204,210 4 -99803 cd06207 CyPoR_like 5 beta-alpha-beta structure motif 0 0 1 1 234,238,239,240,241,243 0 -99804 cd06208 CYPOR_like_FNR 1 FAD binding pocket 0 1 1 1 45,64,65,66,67,85,86,87,102,103,104,105,144 5 -99804 cd06208 CYPOR_like_FNR 2 NAD binding pocket 0 1 1 0 144,145,175,176,177,245,246 5 -99804 cd06208 CYPOR_like_FNR 3 conserved FAD binding motif 0 0 1 1 64,66,67 5 -99804 cd06208 CYPOR_like_FNR 4 phosphate binding motif 0 0 1 1 102,105,108,114 4 -99804 cd06208 CYPOR_like_FNR 5 beta-alpha-beta structure motif 0 0 1 1 139,143,144,145,146,148 0 -99780 cd06183 cyt_b5_reduct_like 1 FAD binding pocket 0 1 1 1 33,47,48,49,50,64,65,66,71,72,73,74,113 5 -99780 cd06183 cyt_b5_reduct_like 2 NAD binding pocket 0 1 1 0 113,114,140,141,142,207,208 5 -99780 cd06183 cyt_b5_reduct_like 3 conserved FAD binding motif 0 0 1 1 47,49,50 5 -99780 cd06183 cyt_b5_reduct_like 4 phosphate binding motif 0 0 1 1 71,74,77,83 4 -99780 cd06183 cyt_b5_reduct_like 5 beta-alpha-beta structure motif 0 0 1 1 108,112,113,114,115,117 0 -99781 cd06184 flavohem_like_fad_nad_binding 1 FAD binding pocket 0 1 1 1 41,57,58,59,60,73,74,75,80,81,82,83,122 5 -99781 cd06184 flavohem_like_fad_nad_binding 2 NAD binding pocket 0 1 1 0 122,123,148,149,150,215,216 5 -99781 cd06184 flavohem_like_fad_nad_binding 3 conserved FAD binding motif 0 0 1 1 57,59,60 5 -99781 cd06184 flavohem_like_fad_nad_binding 4 phosphate binding motif 0 0 1 1 80,83,86,93 4 -99781 cd06184 flavohem_like_fad_nad_binding 5 beta-alpha-beta structure motif 0 0 1 1 117,121,122,123,124,126 0 -99782 cd06185 PDR_like 1 FAD binding pocket 0 1 1 1 30,41,42,43,44,58,59,60,66,67,68,69,107 5 -99782 cd06185 PDR_like 2 NAD binding pocket 0 1 1 0 107,108,131,132,133,182,183 5 -99782 cd06185 PDR_like 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99782 cd06185 PDR_like 4 phosphate binding motif 0 0 1 1 66,69,72,79 4 -99782 cd06185 PDR_like 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99783 cd06186 NOX_Duox_like_FAD_NADP 1 FAD binding pocket 0 1 1 1 29,44,45,46,47,62,63,64,68,69,70,71,115 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 2 NAD binding pocket 0 1 1 0 115,116,145,146,147,182,183 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 3 conserved FAD binding motif 0 0 1 1 44,46,47 5 -99783 cd06186 NOX_Duox_like_FAD_NADP 4 phosphate binding motif 0 0 1 1 68,71,74,85 4 -99783 cd06186 NOX_Duox_like_FAD_NADP 5 beta-alpha-beta structure motif 0 0 1 1 110,114,115,116,117,119 0 -99784 cd06187 O2ase_reductase_like 1 FAD binding pocket 0 1 1 1 28,41,42,43,44,58,59,60,65,66,67,68,107 5 -99784 cd06187 O2ase_reductase_like 2 NAD binding pocket 0 1 1 0 107,108,133,134,135,196,197 5 -99784 cd06187 O2ase_reductase_like 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99784 cd06187 O2ase_reductase_like 4 phosphate binding motif 0 0 1 1 65,68,71,78 4 -99784 cd06187 O2ase_reductase_like 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99785 cd06188 NADH_quinone_reductase 1 FAD binding pocket 0 1 1 1 43,86,87,88,89,103,104,105,119,120,121,122,159 5 -99785 cd06188 NADH_quinone_reductase 2 NAD binding pocket 0 1 1 0 159,160,186,187,188,255,256 5 -99785 cd06188 NADH_quinone_reductase 3 conserved FAD binding motif 0 0 1 1 86,88,89 5 -99785 cd06188 NADH_quinone_reductase 4 phosphate binding motif 0 0 1 1 119,122,125,131 4 -99785 cd06188 NADH_quinone_reductase 5 beta-alpha-beta structure motif 0 0 1 1 154,158,159,160,161,163 0 -99786 cd06189 flavin_oxioreductase 1 FAD binding pocket 0 1 1 1 30,41,42,43,44,58,59,60,65,66,67,68,107 5 -99786 cd06189 flavin_oxioreductase 2 NAD binding pocket 0 1 1 0 107,108,133,134,135,196,197 5 -99786 cd06189 flavin_oxioreductase 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99786 cd06189 flavin_oxioreductase 4 phosphate binding motif 0 0 1 1 65,68,71,78 4 -99786 cd06189 flavin_oxioreductase 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99787 cd06190 T4MO_e_transfer_like 1 FAD binding pocket 0 1 1 1 28,40,41,42,43,57,58,59,64,65,66,67,106 5 -99787 cd06190 T4MO_e_transfer_like 2 NAD binding pocket 0 1 1 0 106,107,134,135,136,202,203 5 -99787 cd06190 T4MO_e_transfer_like 3 conserved FAD binding motif 0 0 1 1 40,42,43 5 -99787 cd06190 T4MO_e_transfer_like 4 phosphate binding motif 0 0 1 1 64,67,70,77 4 -99787 cd06190 T4MO_e_transfer_like 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99805 cd06209 BenDO_FAD_NAD 1 FAD binding pocket 0 1 1 1 35,47,48,49,50,63,64,65,70,71,72,73,111 5 -99805 cd06209 BenDO_FAD_NAD 2 NAD binding pocket 0 1 1 0 111,112,137,138,139,199,200 5 -99805 cd06209 BenDO_FAD_NAD 3 conserved FAD binding motif 0 0 1 1 47,49,50 5 -99805 cd06209 BenDO_FAD_NAD 4 phosphate binding motif 0 0 1 1 70,73,76,83 4 -99805 cd06209 BenDO_FAD_NAD 5 beta-alpha-beta structure motif 0 0 1 1 106,110,111,112,113,115 0 -99806 cd06210 MMO_FAD_NAD_binding 1 FAD binding pocket 0 1 1 1 39,51,52,53,54,68,69,70,75,76,77,78,117 5 -99806 cd06210 MMO_FAD_NAD_binding 2 NAD binding pocket 0 1 1 0 117,118,143,144,145,207,208 5 -99806 cd06210 MMO_FAD_NAD_binding 3 conserved FAD binding motif 0 0 1 1 51,53,54 5 -99806 cd06210 MMO_FAD_NAD_binding 4 phosphate binding motif 0 0 1 1 75,78,81,88 4 -99806 cd06210 MMO_FAD_NAD_binding 5 beta-alpha-beta structure motif 0 0 1 1 112,116,117,118,119,121 0 -99807 cd06211 phenol_2-monooxygenase_like 1 FAD binding pocket 0 1 1 1 40,52,53,54,55,69,70,71,76,77,78,79,118 5 -99807 cd06211 phenol_2-monooxygenase_like 2 NAD binding pocket 0 1 1 0 118,119,144,145,146,210,211 5 -99807 cd06211 phenol_2-monooxygenase_like 3 conserved FAD binding motif 0 0 1 1 52,54,55 5 -99807 cd06211 phenol_2-monooxygenase_like 4 phosphate binding motif 0 0 1 1 76,79,82,89 4 -99807 cd06211 phenol_2-monooxygenase_like 5 beta-alpha-beta structure motif 0 0 1 1 113,117,118,119,120,122 0 -99808 cd06212 monooxygenase_like 1 FAD binding pocket 0 1 1 1 34,46,47,48,49,63,64,65,70,71,72,73,112 5 -99808 cd06212 monooxygenase_like 2 NAD binding pocket 0 1 1 0 112,113,138,139,140,203,204 5 -99808 cd06212 monooxygenase_like 3 conserved FAD binding motif 0 0 1 1 46,48,49 5 -99808 cd06212 monooxygenase_like 4 phosphate binding motif 0 0 1 1 70,73,76,83 4 -99808 cd06212 monooxygenase_like 5 beta-alpha-beta structure motif 0 0 1 1 107,111,112,113,114,116 0 -99809 cd06213 oxygenase_e_transfer_subunit 1 FAD binding pocket 0 1 1 1 32,44,45,46,47,61,62,63,68,69,70,71,109 5 -99809 cd06213 oxygenase_e_transfer_subunit 2 NAD binding pocket 0 1 1 0 109,110,135,136,137,199,200 5 -99809 cd06213 oxygenase_e_transfer_subunit 3 conserved FAD binding motif 0 0 1 1 44,46,47 5 -99809 cd06213 oxygenase_e_transfer_subunit 4 phosphate binding motif 0 0 1 1 68,71,74,81 4 -99809 cd06213 oxygenase_e_transfer_subunit 5 beta-alpha-beta structure motif 0 0 1 1 104,108,109,110,111,113 0 -99788 cd06191 FNR_iron_sulfur_binding 1 FAD binding pocket 0 1 1 1 32,46,47,48,49,62,63,64,69,70,71,72,111 5 -99788 cd06191 FNR_iron_sulfur_binding 2 NAD binding pocket 0 1 1 0 111,112,137,138,139,203,204 5 -99788 cd06191 FNR_iron_sulfur_binding 3 conserved FAD binding motif 0 0 1 1 46,48,49 5 -99788 cd06191 FNR_iron_sulfur_binding 4 phosphate binding motif 0 0 1 1 69,72,75,82 4 -99788 cd06191 FNR_iron_sulfur_binding 5 beta-alpha-beta structure motif 0 0 1 1 106,110,111,112,113,115 0 -99810 cd06214 PA_degradation_oxidoreductase_like 1 FAD binding pocket 0 1 1 1 37,51,52,53,54,67,68,69,74,75,76,77,117 5 -99810 cd06214 PA_degradation_oxidoreductase_like 2 NAD binding pocket 0 1 1 0 117,118,143,144,145,212,213 5 -99810 cd06214 PA_degradation_oxidoreductase_like 3 conserved FAD binding motif 0 0 1 1 51,53,54 5 -99810 cd06214 PA_degradation_oxidoreductase_like 4 phosphate binding motif 0 0 1 1 74,77,80,87 4 -99810 cd06214 PA_degradation_oxidoreductase_like 5 beta-alpha-beta structure motif 0 0 1 1 112,116,117,118,119,121 0 -99811 cd06215 FNR_iron_sulfur_binding_1 1 FAD binding pocket 0 1 1 1 32,46,47,48,49,63,64,65,70,71,72,73,112 5 -99811 cd06215 FNR_iron_sulfur_binding_1 2 NAD binding pocket 0 1 1 0 112,113,138,139,140,203,204 5 -99811 cd06215 FNR_iron_sulfur_binding_1 3 conserved FAD binding motif 0 0 1 1 46,48,49 5 -99811 cd06215 FNR_iron_sulfur_binding_1 4 phosphate binding motif 0 0 1 1 70,73,76,83 4 -99811 cd06215 FNR_iron_sulfur_binding_1 5 beta-alpha-beta structure motif 0 0 1 1 107,111,112,113,114,116 0 -99812 cd06216 FNR_iron_sulfur_binding_2 1 FAD binding pocket 0 1 1 1 50,64,65,66,67,82,83,84,89,90,91,92,131 5 -99812 cd06216 FNR_iron_sulfur_binding_2 2 NAD binding pocket 0 1 1 0 131,132,157,158,159,216,217 5 -99812 cd06216 FNR_iron_sulfur_binding_2 3 conserved FAD binding motif 0 0 1 1 64,66,67 5 -99812 cd06216 FNR_iron_sulfur_binding_2 4 phosphate binding motif 0 0 1 1 89,92,95,102 4 -99812 cd06216 FNR_iron_sulfur_binding_2 5 beta-alpha-beta structure motif 0 0 1 1 126,130,131,132,133,135 0 -99813 cd06217 FNR_iron_sulfur_binding_3 1 FAD binding pocket 0 1 1 1 35,50,51,52,53,67,68,69,74,75,76,77,116 5 -99813 cd06217 FNR_iron_sulfur_binding_3 2 NAD binding pocket 0 1 1 0 116,117,142,143,144,207,208 5 -99813 cd06217 FNR_iron_sulfur_binding_3 3 conserved FAD binding motif 0 0 1 1 50,52,53 5 -99813 cd06217 FNR_iron_sulfur_binding_3 4 phosphate binding motif 0 0 1 1 74,77,80,87 4 -99813 cd06217 FNR_iron_sulfur_binding_3 5 beta-alpha-beta structure motif 0 0 1 1 111,115,116,117,118,120 0 -99789 cd06192 DHOD_e_trans_like 1 FAD binding pocket 0 1 1 1 29,43,44,45,46,60,61,62,67,68,69,70,106 5 -99789 cd06192 DHOD_e_trans_like 2 NAD binding pocket 0 1 1 0 106,107,130,131,132,184,185 5 -99789 cd06192 DHOD_e_trans_like 3 conserved FAD binding motif 0 0 1 1 43,45,46 5 -99789 cd06192 DHOD_e_trans_like 4 phosphate binding motif 0 0 1 1 67,70,73,77 4 -99789 cd06192 DHOD_e_trans_like 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99814 cd06218 DHOD_e_trans 1 FAD binding pocket 0 1 1 1 29,44,45,46,47,61,62,63,68,69,70,71,107 5 -99814 cd06218 DHOD_e_trans 2 NAD binding pocket 0 1 1 0 107,108,131,132,133,186,187 5 -99814 cd06218 DHOD_e_trans 3 conserved FAD binding motif 0 0 1 1 44,46,47 5 -99814 cd06218 DHOD_e_trans 4 phosphate binding motif 0 0 1 1 68,71,74,78 4 -99814 cd06218 DHOD_e_trans 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,111 0 -99815 cd06219 DHOD_e_trans_like1 1 FAD binding pocket 0 1 1 1 31,43,44,45,46,60,61,62,67,68,69,70,106 5 -99815 cd06219 DHOD_e_trans_like1 2 NAD binding pocket 0 1 1 0 106,107,130,131,132,186,187 5 -99815 cd06219 DHOD_e_trans_like1 3 conserved FAD binding motif 0 0 1 1 43,45,46 5 -99815 cd06219 DHOD_e_trans_like1 4 phosphate binding motif 0 0 1 1 67,70,73,77 4 -99815 cd06219 DHOD_e_trans_like1 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99816 cd06220 DHOD_e_trans_like2 1 FAD binding pocket 0 1 1 1 28,39,40,41,42,53,54,55,60,61,62,63,97 5 -99816 cd06220 DHOD_e_trans_like2 2 NAD binding pocket 0 1 1 0 97,98,120,121,122,173,174 5 -99816 cd06220 DHOD_e_trans_like2 3 conserved FAD binding motif 0 0 1 1 39,41,42 5 -99816 cd06220 DHOD_e_trans_like2 4 phosphate binding motif 0 0 1 1 60,63,66,70 4 -99816 cd06220 DHOD_e_trans_like2 5 beta-alpha-beta structure motif 0 0 1 1 92,96,97,98,99,101 0 -99817 cd06221 sulfite_reductase_like 1 FAD binding pocket 0 1 1 1 32,43,44,45,46,60,61,62,67,68,69,70,107 5 -99817 cd06221 sulfite_reductase_like 2 NAD binding pocket 0 1 1 0 107,108,134,135,136,196,197 5 -99817 cd06221 sulfite_reductase_like 3 conserved FAD binding motif 0 0 1 1 43,45,46 5 -99817 cd06221 sulfite_reductase_like 4 phosphate binding motif 0 0 1 1 67,70,73,77 4 -99817 cd06221 sulfite_reductase_like 5 beta-alpha-beta structure motif 0 0 1 1 102,106,107,108,109,114 0 -99790 cd06193 siderophore_interacting 1 FAD binding pocket 0 1 1 1 31,64,65,66,67,81,82,83,89,90,91,92,129 5 -99790 cd06193 siderophore_interacting 2 NAD binding pocket 0 1 1 0 129,130,152,153,154,204,205 5 -99790 cd06193 siderophore_interacting 3 conserved FAD binding motif 0 0 1 1 64,66,67 5 -99790 cd06193 siderophore_interacting 4 phosphate binding motif 0 0 1 1 89,92,95,101 4 -99790 cd06193 siderophore_interacting 5 beta-alpha-beta structure motif 0 0 1 1 124,128,129,130,131,133 0 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 1 FAD binding pocket 0 1 1 1 28,39,40,41,42,57,58,59,63,64,65,66,106 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 2 NAD binding pocket 0 1 1 0 106,107,132,133,134,193,194 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 3 conserved FAD binding motif 0 0 1 1 39,41,42 5 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 4 phosphate binding motif 0 0 1 1 63,66,69,76 4 -99791 cd06194 FNR_N-term_Iron_sulfur_binding 5 beta-alpha-beta structure motif 0 0 1 1 101,105,106,107,108,110 0 -99792 cd06195 FNR1 1 FAD binding pocket 0 1 1 1 29,44,45,46,47,60,61,62,67,68,69,70,110 5 -99792 cd06195 FNR1 2 NAD binding pocket 0 1 1 0 110,111,136,137,138,207,208 5 -99792 cd06195 FNR1 3 conserved FAD binding motif 0 0 1 1 44,46,47 5 -99792 cd06195 FNR1 4 phosphate binding motif 0 0 1 1 67,70,73,79 4 -99792 cd06195 FNR1 5 beta-alpha-beta structure motif 0 0 1 1 105,109,110,111,112,114 0 -99793 cd06196 FNR_like_1 1 FAD binding pocket 0 1 1 1 32,47,48,49,50,63,64,65,71,72,73,74,108 5 -99793 cd06196 FNR_like_1 2 NAD binding pocket 0 1 1 0 108,109,134,135,136,192,193 5 -99793 cd06196 FNR_like_1 3 conserved FAD binding motif 0 0 1 1 47,49,50 5 -99793 cd06196 FNR_like_1 4 phosphate binding motif 0 0 1 1 71,74,77,83 4 -99793 cd06196 FNR_like_1 5 beta-alpha-beta structure motif 0 0 1 1 103,107,108,109,110,112 0 -99794 cd06197 FNR_like_2 1 FAD binding pocket 0 1 1 1 30,60,61,62,63,80,81,82,85,86,87,88,134 5 -99794 cd06197 FNR_like_2 2 NAD binding pocket 0 1 1 0 134,135,161,162,163,196,197 5 -99794 cd06197 FNR_like_2 3 conserved FAD binding motif 0 0 1 1 60,62,63 5 -99794 cd06197 FNR_like_2 4 phosphate binding motif 0 0 1 1 85,88,91,102 4 -99794 cd06197 FNR_like_2 5 beta-alpha-beta structure motif 0 0 1 1 129,133,134,135,136,138 0 -99795 cd06198 FNR_like_3 1 FAD binding pocket 0 1 1 1 27,41,42,43,44,58,59,60,63,64,65,66,104 5 -99795 cd06198 FNR_like_3 2 NAD binding pocket 0 1 1 0 104,105,130,131,132,187,188 5 -99795 cd06198 FNR_like_3 3 conserved FAD binding motif 0 0 1 1 41,43,44 5 -99795 cd06198 FNR_like_3 4 phosphate binding motif 0 0 1 1 63,66,69,76 4 -99795 cd06198 FNR_like_3 5 beta-alpha-beta structure motif 0 0 1 1 99,103,104,105,106,108 0 -271245 cd00323 uS7 1 rRNA binding site 0 1 1 1 8,9,10,14,15,16,17,18,21,22,56,61,65,74,75,78,82,89,95,96,99 3 -271245 cd00323 uS7 2 S11 interface 0 1 1 1 129 2 -271245 cd00323 uS7 3 S9 interface 0 1 1 1 17,20,21,24 2 -271246 cd14867 uS7_Eukaryote 1 rRNA binding site 0 1 1 1 54,55,56,64,65,66,67,68,71,72,106,111,115,124,125,128,132,139,148,149,152 3 -271246 cd14867 uS7_Eukaryote 2 S11 interface 0 1 1 1 184 2 -271246 cd14867 uS7_Eukaryote 3 S9 interface 0 1 1 1 67,70,71,74 2 -271247 cd14868 uS7_Mitochondria_Fungi 1 rRNA binding site 0 1 1 1 29,30,31,35,36,37,38,39,42,43,77,82,86,95,96,99,103,110,116,117,120 3 -271247 cd14868 uS7_Mitochondria_Fungi 2 S11 interface 0 1 1 1 150 2 -271247 cd14868 uS7_Mitochondria_Fungi 3 S9 interface 0 1 1 1 38,41,42,45 2 -271248 cd14869 uS7_Bacteria 1 rRNA binding site 0 1 1 1 16,17,18,22,23,24,25,26,29,30,64,69,73,82,83,86,90,97,103,104,107 3 -271248 cd14869 uS7_Bacteria 2 S11 interface 0 1 1 1 137 2 -271248 cd14869 uS7_Bacteria 3 S9 interface 0 1 1 1 25,28,29,32 2 -271250 cd14871 uS7_Chloroplast 1 rRNA binding site 0 1 1 1 19,20,21,25,26,27,28,29,32,33,67,72,76,85,86,89,93,100,106,107,110 3 -271250 cd14871 uS7_Chloroplast 2 S11 interface 0 1 1 1 140 2 -271250 cd14871 uS7_Chloroplast 3 S9 interface 0 1 1 1 28,31,32,35 2 -271249 cd14870 uS7_Mitochondria_Mammalian 1 rRNA binding site 0 1 1 1 55,56,57,61,62,63,64,65,68,69,118,123,127,136,137,140,144,151,158,159,162 3 -271249 cd14870 uS7_Mitochondria_Mammalian 2 S11 interface 0 1 1 1 192 2 -271249 cd14870 uS7_Mitochondria_Mammalian 3 S9 interface 0 1 1 1 64,67,68,71 2 -271251 cd15484 uS7_plant 1 rRNA binding site 0 1 1 1 8,9,10,14,15,16,17,18,21,22,59,64,68,77,78,81,85,92,104,105,108 3 -271251 cd15484 uS7_plant 2 S11 interface 0 1 1 1 138 2 -271251 cd15484 uS7_plant 3 S9 interface 0 1 1 1 17,20,21,24 2 -238200 cd00326 alpha_CA 1 active site 0 1 1 1 39,65,67,69,79,92,172 1 -238200 cd00326 alpha_CA 2 zinc binding site 0 1 1 0 67,69,92 4 -239391 cd03117 alpha_CA_IV_XV_like 1 active site 0 1 1 1 41,66,68,70,80,93,175 1 -239391 cd03117 alpha_CA_IV_XV_like 2 zinc binding site 0 1 1 0 68,70,93 4 -239392 cd03118 alpha_CA_V 1 active site 0 1 1 1 39,67,69,71,81,94,174 1 -239392 cd03118 alpha_CA_V 2 zinc binding site 0 1 1 0 69,71,94 4 -239393 cd03119 alpha_CA_I_II_III_XIII 1 active site 0 1 1 1 63,91,93,95,105,118,197 1 -239393 cd03119 alpha_CA_I_II_III_XIII 2 zinc binding site 0 1 1 0 93,95,118 4 -239394 cd03120 alpha_CARP_VIII 1 active site 0 1 1 1 53,80,82,84,94,107,189 1 -239394 cd03120 alpha_CARP_VIII 2 zinc binding site 0 1 1 0 82,84,107 4 -239395 cd03121 alpha_CARP_X_XI_like 1 active site 0 1 1 1 56,83,85,87,97,110,193 1 -239395 cd03121 alpha_CARP_X_XI_like 2 zinc binding site 0 1 1 0 85,87,110 4 -239396 cd03122 alpha_CARP_receptor_like 1 active site 0 1 1 1 55,83,85,87,97,110,191 1 -239396 cd03122 alpha_CARP_receptor_like 2 zinc binding site 0 1 1 0 85,87,110 4 -239397 cd03123 alpha_CA_VI_IX_XII_XIV 1 active site 0 1 1 1 55,79,81,83,94,107,189 1 -239397 cd03123 alpha_CA_VI_IX_XII_XIV 2 zinc binding site 0 1 1 0 81,83,107 4 -239399 cd03125 alpha_CA_VI 1 active site 0 1 1 1 54,78,80,82,94,107,189 1 -239399 cd03125 alpha_CA_VI 2 zinc binding site 0 1 1 0 80,82,107 4 -239400 cd03126 alpha_CA_XII_XIV 1 active site 0 1 1 1 55,78,80,82,93,106,187 1 -239400 cd03126 alpha_CA_XII_XIV 2 zinc binding site 0 1 1 0 80,82,106 4 -239403 cd03150 alpha_CA_IX 1 active site 0 1 1 1 55,79,81,83,93,106,187 1 -239403 cd03150 alpha_CA_IX 2 zinc binding site 0 1 1 0 81,83,106 4 -239398 cd03124 alpha_CA_prokaryotic_like 1 active site 0 1 1 1 54,78,80,82,86,99,166 1 -239398 cd03124 alpha_CA_prokaryotic_like 2 zinc binding site 0 1 1 0 80,82,99 4 -239402 cd03149 alpha_CA_VII 1 active site 0 1 1 1 39,67,69,71,81,94,174 1 -239402 cd03149 alpha_CA_VII 2 zinc binding site 0 1 1 0 69,71,94 4 -238201 cd00327 cond_enzymes 1 active site 0 1 1 1 67,205 1 -238421 cd00825 decarbox_cond_enzymes 1 active site 0 1 1 1 95,265 1 -238423 cd00827 init_cond_enzymes 1 active site 0 1 1 1 108,282 1 -238426 cd00830 KAS_III 1 active site 0 1 1 1 110,278 1 -238427 cd00831 CHS_like 1 active site 0 1 1 1 146,319 1 -238424 cd00828 elong_cond_enzymes 1 active site 0 1 1 1 161,336 1 -238428 cd00832 CLF 1 active site 0 1 1 1 160,330 1 -238429 cd00833 PKS 1 active site 0 1 1 1 169,344 1 -238430 cd00834 KAS_I_II 1 active site 0 1 1 1 160,337 1 -238422 cd00826 nondecarbox_cond_enzymes 1 active site 0 1 1 1 84,344 1 -238383 cd00751 thiolase 1 active site 0 1 1 1 83,342 1 -238425 cd00829 SCP-x_thiolase 1 active site 0 1 1 1 76,326 1 -238202 cd00329 TopoII_MutL_Trans 1 ATP binding site 0 1 1 1 102 5 -238405 cd00782 MutL_Trans 1 ATP binding site 0 1 1 1 98 5 -239564 cd03482 MutL_Trans_MutL 1 ATP binding site 0 1 1 1 98 5 -239565 cd03483 MutL_Trans_MLH1 1 ATP binding site 0 1 1 1 102 5 -239566 cd03484 MutL_Trans_hPMS_2_like 1 ATP binding site 0 1 1 1 117 5 -239567 cd03485 MutL_Trans_hPMS_1_like 1 ATP binding site 0 1 1 1 107 5 -239568 cd03486 MutL_Trans_MLH3 1 ATP binding site 0 1 1 1 116 5 -238419 cd00822 TopoII_Trans_DNA_gyrase 1 ATP binding site 0 1 1 1 117 5 -238420 cd00823 TopoIIB_Trans 1 ATP binding site 0 1 1 1 110 5 -239563 cd03481 TopoIIA_Trans_ScTopoIIA 1 ATP binding site 0 1 1 1 113 5 -153075 cd00330 phosphagen_kinases 1 ADP binding site 0 1 1 0 2,4,6,65,101,109,160,162,163,164,189,191,204 5 -153075 cd00330 phosphagen_kinases 2 phosphagen binding site 0 1 1 0 105,151,153 0 -153075 cd00330 phosphagen_kinases 3 substrate specificity loop 0 0 1 1 186,187,188,189,190,191,202,203,204,205,206,207 0 -153077 cd07930 bacterial_phosphagen_kinase 1 ADP binding site 0 1 1 0 5,7,9,68,94,102,153,155,156,157,184,186,199 5 -153077 cd07930 bacterial_phosphagen_kinase 2 phosphagen binding site 0 1 1 0 98,144,146 0 -153077 cd07930 bacterial_phosphagen_kinase 3 substrate specificity loop 0 0 1 1 181,182,183,184,185,186,197,198,199,200,201,202 0 -153078 cd07931 eukaryotic_phosphagen_kinases 1 ADP binding site 0 1 1 0 102,104,106,165,201,209,262,264,265,266,291,293,306 5 -153078 cd07931 eukaryotic_phosphagen_kinases 2 phosphagen binding site 0 1 1 0 205,253,255 0 -153078 cd07931 eukaryotic_phosphagen_kinases 3 substrate specificity loop 0 0 1 1 288,289,290,291,292,293,304,305,306,307,308,309 0 -153076 cd00716 creatine_kinase_like 1 ADP binding site 0 1 1 0 111,113,115,174,211,219,275,277,278,279,303,305,318 5 -153076 cd00716 creatine_kinase_like 2 phosphagen binding site 0 1 1 0 215,266,268 0 -153076 cd00716 creatine_kinase_like 3 substrate specificity loop 0 0 1 1 300,301,302,303,304,305,316,317,318,319,320,321 0 -153079 cd07932 arginine_kinase_like 1 ADP binding site 0 1 1 0 115,117,119,178,214,222,273,275,276,277,302,304,317 5 -153079 cd07932 arginine_kinase_like 2 phosphagen binding site 0 1 1 0 218,264,266 0 -153079 cd07932 arginine_kinase_like 3 substrate specificity loop 0 0 1 1 299,300,301,302,303,304,315,316,317,318,319,320 0 -238204 cd00333 MIP 1 Asn-Pro-Ala signature motifs 0 0 1 1 60,61,62,186,187,188 0 -238204 cd00333 MIP 2 amphipathic channel 0 1 1 1 40,58,59,60,182,183,186,189 0 -238205 cd00336 Ribosomal_L22 1 protein-rRNA interface 0 1 1 1 3,5,8,10,11,12,15,19,22,50,54,57,70,72,73,74,76,79,91,92,93,94,95,96 3 -238205 cd00336 Ribosomal_L22 2 putative translocon binding site 0 1 1 1 0,1,23,24,25,27,28,30,31,52,53,54,55,56,57,66,67,68,69,70,71,103,104 0 -238206 cd00338 Ser_Recombinase 1 catalytic nucleophile 0 1 1 1 5 1 -238206 cd00338 Ser_Recombinase 2 catalytic residues 0 0 1 1 3,5,74,75,78 1 -239736 cd03767 SR_Res_par 1 catalytic nucleophile 0 1 1 1 7 1 -239736 cd03767 SR_Res_par 2 catalytic residues 0 0 1 1 5,7,68,69,72 1 -239737 cd03768 SR_ResInv 1 catalytic nucleophile 0 1 1 1 7 1 -239737 cd03768 SR_ResInv 2 catalytic residues 0 0 1 1 5,7,63,64,67 1 -239738 cd03769 SR_IS607_transposase_like 1 catalytic nucleophile 0 1 1 1 7 1 -239738 cd03769 SR_IS607_transposase_like 2 catalytic residues 0 0 1 1 5,7,71,72,75 1 -239739 cd03770 SR_TndX_transposase 1 catalytic nucleophile 0 1 1 1 7 1 -239739 cd03770 SR_TndX_transposase 2 catalytic residues 0 0 1 1 5,7,77,78,81 1 -100101 cd00349 Ribosomal_L11 1 23S rRNA interface 0 1 1 1 1,21,65,66,67,71,78,103,108,109,110,114,117,118,121,122,124,125,126 3 -100101 cd00349 Ribosomal_L11 2 L7/L12 interface 0 1 1 0 1,48,50,51,52,53,57,59,60,104,105,108,109 2 -100101 cd00349 Ribosomal_L11 3 L25 interface 0 1 1 0 84,87 2 -100101 cd00349 Ribosomal_L11 4 putative thiostrepton binding site 0 1 1 1 17,21 0 -238210 cd00350 rubredoxin_like 1 iron binding site 0 1 1 0 3,6,19,22 4 -238371 cd00729 rubredoxin_SM 1 iron binding site 0 1 1 0 4,7,20,23 4 -238372 cd00730 rubredoxin 1 iron binding site 0 1 1 0 3,6,36,39 4 -238211 cd00351 TS_Pyrimidine_HMase 1 active site 0 1 1 1 19,56,78,81,92,143,144,162,163,164,166,173,174,204,206 1 -238211 cd00351 TS_Pyrimidine_HMase 2 dimerization interface 0 1 0 1 13,18,26,28,123,124,131,132,146,148,152,161,163,164,201,202 2 -238212 cd00352 Gn_AT_II 1 active site 0 1 1 0 0,75,102,103,104,127 1 -238364 cd00712 AsnB 1 active site 0 1 1 0 0,47,72,73,74,97 1 -238365 cd00713 GltS 1 active site 0 1 1 0 0,208,229,230,231,271 1 -238366 cd00714 GFAT 1 active site 0 1 1 0 0,71,98,99,100,123 1 -238367 cd00715 GPATase_N 1 active site 0 1 1 0 0,71,100,101,102,125 1 -238888 cd01907 GlxB 1 active site 0 1 1 0 0,84,109,110,111,134 1 -238889 cd01908 YafJ 1 active site 0 1 1 0 1,87,112,113,114,138 1 -238890 cd01909 betaLS_CarA_N 1 active site 0 1 1 0 1,37,56,57,58,81 1 -238891 cd01910 Wali7 1 active site 0 1 1 0 0,57,77,78,79,102 1 -239735 cd03766 Gn_AT_II_novel 1 active site 0 1 1 0 1,54,78,79,80,93 1 -100098 cd00355 Ribosomal_L30_like 1 23S rRNA binding site - archaea 0 1 0 0 4,5,6,12,13,14,16,17,19,20,21,22,24,25,26,27,28,36,37,38,39,40,41,43,44,46,47,48 3 -100098 cd00355 Ribosomal_L30_like 2 5S rRNA binding site - archaea 0 1 1 0 43,44,46,47,48 0 -100098 cd00355 Ribosomal_L30_like 3 23S rRNA binding site - prokaryotes 0 1 0 0 5,6,12,13,16,17,20,21,22,24,27,32,33,36,37,38,40,41 3 -100099 cd01657 Ribosomal_L7_archeal_euk 1 23S rRNA binding site - archaea 0 1 0 0 6,7,8,14,15,16,18,19,21,22,23,24,26,27,28,29,30,38,39,40,41,42,43,45,46,48,49,50 3 -100099 cd01657 Ribosomal_L7_archeal_euk 2 5S rRNA binding site - archaea 0 1 1 0 45,46,48,49,50 0 -100099 cd01657 Ribosomal_L7_archeal_euk 3 23S rRNA binding site - prokaryotes 0 1 0 0 7,8,14,15,18,19,22,23,24,26,29,34,35,38,39,40,42,43 3 -100100 cd01658 Ribosomal_L30 1 23S rRNA binding site - archaea 0 1 0 0 5,6,7,13,14,15,17,18,20,21,22,23,25,26,27,28,29,37,38,39,40,41,42,44,45,47,48,49 3 -100100 cd01658 Ribosomal_L30 2 5S rRNA binding site - archaea 0 1 1 0 44,45,47,48,49 0 -100100 cd01658 Ribosomal_L30 3 23S rRNA binding site - prokaryotes 0 1 0 0 6,7,13,14,17,18,21,22,23,25,28,33,34,37,38,39,41,42 3 -238215 cd00361 arom_aa_hydroxylase 1 metal binding site 0 1 1 0 106,111,152 4 -238215 cd00361 arom_aa_hydroxylase 2 cofactor binding site 0 1 1 1 68,70,75,144,147 0 -239461 cd03345 eu_TyrOH 1 metal binding site 0 1 1 0 165,170,210 4 -239461 cd03345 eu_TyrOH 2 cofactor binding site 0 1 1 1 127,129,134,202,205 0 -239462 cd03346 eu_TrpOH 1 metal binding site 0 1 1 0 166,171,211 4 -239462 cd03346 eu_TrpOH 2 cofactor binding site 0 1 1 1 128,130,135,203,206 0 -239463 cd03347 eu_PheOH 1 metal binding site 0 1 1 0 166,171,211 4 -239463 cd03347 eu_PheOH 2 cofactor binding site 0 1 1 1 128,130,135,203,206 0 -239464 cd03348 pro_PheOH 1 metal binding site 0 1 1 0 112,117,158 4 -239464 cd03348 pro_PheOH 2 cofactor binding site 0 1 1 1 74,76,81,150,153 0 -238216 cd00363 PFK 1 active site 0 1 1 0 9,39,70,101,102,103,105,106,129,131,133,173,174,175,229,263,266 1 -238216 cd00363 PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 129,131,133,166,173,174,175,229,257,263,266 0 -238216 cd00363 PFK 3 ADP/pyrophosphate binding site 0 1 1 1 9,39,70,101,102,103,105,106 5 -238216 cd00363 PFK 4 allosteric effector site 0 1 1 1 19,23,52,53,56,57,158,189,191,218,220,221,222 0 -238216 cd00363 PFK 5 dimerization interface 0 1 0 1 19,23,52,57,60,139,151,155,158,186,187,189,220,275,276,280,287,302,337 2 -238388 cd00763 Bacterial_PFK 1 active site 0 1 1 0 9,39,70,101,102,103,105,106,123,125,127,167,168,169,220,247,250 1 -238388 cd00763 Bacterial_PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 123,125,127,160,167,168,169,220,241,247,250 0 -238388 cd00763 Bacterial_PFK 3 ADP/pyrophosphate binding site 0 1 1 1 9,39,70,101,102,103,105,106 5 -238388 cd00763 Bacterial_PFK 4 allosteric effector site 0 1 1 1 19,23,52,53,56,57,152,183,185,209,211,212,213 0 -238388 cd00763 Bacterial_PFK 5 dimerization interface 0 1 0 1 19,23,52,57,60,133,145,149,152,180,181,183,211,259,260,264,271,286,314 2 -238389 cd00764 Eukaryotic_PFK 1 active site 0 1 1 0 12,42,75,106,107,108,110,111,151,153,155,195,196,197,251,285,288 1 -238389 cd00764 Eukaryotic_PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 151,153,155,188,195,196,197,251,279,285,288 0 -238389 cd00764 Eukaryotic_PFK 3 ADP/pyrophosphate binding site 0 1 1 1 12,42,75,106,107,108,110,111 5 -238389 cd00764 Eukaryotic_PFK 4 allosteric effector site 0 1 1 1 22,26,57,58,61,62,180,211,213,240,242,243,244 0 -238389 cd00764 Eukaryotic_PFK 5 dimerization interface 0 1 0 1 22,26,57,62,65,161,173,177,180,208,209,211,242,297,298,302,309,324,370 2 -238390 cd00765 Pyrophosphate_PFK 1 active site 0 1 1 0 81,113,145,175,176,177,179,180,203,205,207,250,251,252,311,425,428 1 -238390 cd00765 Pyrophosphate_PFK 2 fructose-1,6-bisphosphate binding site 0 1 1 1 203,205,207,243,250,251,252,311,419,425,428 0 -238390 cd00765 Pyrophosphate_PFK 3 ADP/pyrophosphate binding site 0 1 1 1 81,113,145,175,176,177,179,180 5 -238390 cd00765 Pyrophosphate_PFK 4 allosteric effector site 0 1 1 1 91,95,126,127,130,131,234,266,268,300,302,303,304 0 -238390 cd00765 Pyrophosphate_PFK 5 dimerization interface 0 1 0 1 91,95,126,131,134,215,227,231,234,263,264,266,302,437,438,442,449,464,513 2 -153080 cd00365 HMG-CoA_reductase 1 catalytic residues 0 0 1 1 75,274,370 1 -153080 cd00365 HMG-CoA_reductase 2 NADH/NADPH cofactor binding site 0 1 1 1 170,171,172,173,174,175,176,177,179,274,317,318,319 5 -153080 cd00365 HMG-CoA_reductase 3 substrate binding pocket 0 1 1 0 75,80,81,84,87,259,262,356,357,360,366,369,373 5 -153080 cd00365 HMG-CoA_reductase 4 homodimer interface 0 1 1 0 2,11,12,36,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,72,73,74,75,76,77,78,79,80,105,107,109,162,164,199,200,201,202,203,236,239,240,241,243,248,249,261,262,265,269,270,274,275,276,277,279,280,283,320,324,326,327,361,364,365,366,367,371,373,374 2 -153080 cd00365 HMG-CoA_reductase 5 helix swapped region 0 1 0 1 0,1,2,3,10,11,12,13,14,15,16,23,24,25,26,27,28 0 -153081 cd00643 HMG-CoA_reductase_classI 1 catalytic residues 0 0 1 1 96,301,397 1 -153081 cd00643 HMG-CoA_reductase_classI 2 NADH/NADPH cofactor binding site 0 1 1 1 187,188,189,190,191,192,193,194,196,301,337,338,339 5 -153081 cd00643 HMG-CoA_reductase_classI 3 substrate binding pocket 0 1 1 0 96,101,102,105,108,286,289,383,384,387,393,396,400 5 -153081 cd00643 HMG-CoA_reductase_classI 4 homodimer interface 0 1 1 0 16,26,27,52,55,56,58,61,62,63,64,65,66,67,68,69,70,71,72,73,93,94,95,96,97,98,99,100,101,126,128,130,179,181,216,217,218,219,220,261,264,265,266,268,273,274,288,289,292,296,297,301,302,303,304,305,306,309,340,343,345,346,388,391,392,393,394,398,400,401 2 -153081 cd00643 HMG-CoA_reductase_classI 5 helix swapped region 0 1 0 1 14,15,16,17,25,26,27,28,29,30,31,39,40,41,42,43,44 0 -153082 cd00644 HMG-CoA_reductase_classII 1 catalytic residues 0 0 1 1 75,274,371 1 -153082 cd00644 HMG-CoA_reductase_classII 2 NADH/NADPH cofactor binding site 0 1 1 1 173,174,175,176,177,178,179,180,182,274,318,319,320 5 -153082 cd00644 HMG-CoA_reductase_classII 3 substrate binding pocket 0 1 1 0 75,80,81,84,87,259,262,357,358,361,367,370,374 5 -153082 cd00644 HMG-CoA_reductase_classII 4 homodimer interface 0 1 1 0 2,10,11,36,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,72,73,74,75,76,77,78,79,80,105,107,109,165,167,201,202,203,204,205,237,240,241,242,244,248,249,261,262,265,269,270,274,275,276,277,279,280,283,321,325,327,328,362,365,366,367,368,372,374,375 2 -153082 cd00644 HMG-CoA_reductase_classII 5 helix swapped region 0 1 0 1 0,1,2,3,9,10,11,12,13,14,15,22,23,24,25,26,27 0 -238217 cd00367 PTS-HPr_like 1 active site 0 1 1 1 10 1 -238217 cd00367 PTS-HPr_like 2 regulatory protein interface 0 1 1 0 9,11,12,14,15,19,22,40,41,42,43,46,47 2 -238217 cd00367 PTS-HPr_like 3 regulatory phosphorylation site 0 1 1 1 41 6 -238217 cd00367 PTS-HPr_like 4 dimerization domain swap beta strand 0 1 1 1 0,1,2,3 2 -238218 cd00368 Molybdopterin-Binding 1 molybdopterin cofactor binding site 0 1 1 1 40,127,129,130,131,162,163,165,168,169,190,191,192,212,250,286,287,288,312,313,314,317,329,330,335 0 -239151 cd02750 MopB_Nitrate-R-NarG-like 1 molybdopterin cofactor binding site 0 1 1 1 52,142,144,145,146,176,177,179,182,183,204,205,206,226,293,340,341,342,368,369,370,373,385,386,391 0 -239152 cd02751 MopB_DMSOR-like 1 molybdopterin cofactor binding site 0 1 1 1 33,135,137,138,139,175,176,178,181,182,211,212,213,234,312,413,414,415,439,440,441,444,456,457,462 0 -239170 cd02769 MopB_DMSOR-BSOR-TMAOR 1 molybdopterin cofactor binding site 0 1 1 1 32,135,137,138,139,176,177,179,182,183,213,214,215,236,314,415,416,417,441,442,443,446,458,459,464 0 -239171 cd02770 MopB_DmsA-EC 1 molybdopterin cofactor binding site 0 1 1 1 45,136,138,139,140,172,173,175,178,179,203,204,205,226,318,415,416,417,446,447,448,451,463,464,469 0 -239153 cd02752 MopB_Formate-Dh-Na-like 1 molybdopterin cofactor binding site 0 1 1 1 40,139,141,142,143,175,176,178,181,182,204,205,206,226,278,339,340,341,365,366,367,370,395,396,401 0 -239154 cd02753 MopB_Formate-Dh-H 1 molybdopterin cofactor binding site 0 1 1 1 40,126,128,129,130,162,163,165,168,169,190,191,192,212,285,351,352,353,377,378,379,382,394,395,400 0 -239155 cd02754 MopB_Nitrate-R-NapA-like 1 molybdopterin cofactor binding site 0 1 1 1 40,127,129,130,131,163,164,166,169,170,193,194,195,215,288,396,397,398,422,423,424,428,440,441,446 0 -239156 cd02755 MopB_Thiosulfate-R-like 1 molybdopterin cofactor binding site 0 1 1 1 41,127,129,130,131,162,163,165,168,169,191,192,193,213,288,337,338,339,363,364,365,368,380,381,386 0 -239157 cd02756 MopB_Arsenite-Ox 1 molybdopterin cofactor binding site 0 1 1 1 97,194,196,197,198,229,230,232,235,236,275,276,277,305,362,441,442,443,501,502,503,506,518,519,524 0 -239158 cd02757 MopB_Arsenate-R 1 molybdopterin cofactor binding site 0 1 1 1 42,134,136,137,138,168,169,171,174,175,198,199,200,220,317,365,366,367,391,392,393,396,408,409,414 0 -239159 cd02758 MopB_Tetrathionate-Ra 1 molybdopterin cofactor binding site 0 1 1 1 69,180,182,183,184,217,218,220,223,224,249,250,251,274,372,496,497,498,526,527,528,531,543,544,549 0 -239160 cd02759 MopB_Acetylene-hydratase 1 molybdopterin cofactor binding site 0 1 1 1 40,131,133,134,135,166,167,169,172,173,195,196,197,217,290,336,337,338,362,363,364,367,379,380,385 0 -239161 cd02760 MopB_Phenylacetyl-CoA-OR 1 molybdopterin cofactor binding site 0 1 1 1 44,137,139,140,141,179,180,182,185,186,208,209,210,230,392,520,521,522,546,547,548,551,563,564,569 0 -239162 cd02761 MopB_FmdB-FwdB 1 molybdopterin cofactor binding site 0 1 1 1 31,103,105,106,107,137,138,140,143,144,173,174,175,195,242,324,325,326,354,355,356,359,371,372,378 0 -239163 cd02762 MopB_1 1 molybdopterin cofactor binding site 0 1 1 1 40,123,125,126,127,162,163,165,168,169,196,197,198,218,291,384,385,386,410,411,412,415,427,428,433 0 -239164 cd02763 MopB_2 1 molybdopterin cofactor binding site 0 1 1 1 40,125,127,128,129,161,162,165,168,169,189,190,191,211,304,428,429,430,463,464,465,468,480,481,486 0 -239165 cd02764 MopB_PHLH 1 molybdopterin cofactor binding site 0 1 1 1 85,162,164,165,166,202,203,205,208,209,238,239,240,260,324,390,391,392,416,417,418,421,433,434,439 0 -239166 cd02765 MopB_4 1 molybdopterin cofactor binding site 0 1 1 1 41,127,129,130,131,165,166,168,171,172,193,194,195,215,350,393,394,395,419,420,421,424,436,437,442 0 -239167 cd02766 MopB_3 1 molybdopterin cofactor binding site 0 1 1 1 41,128,130,131,132,163,164,166,169,170,191,192,193,213,286,335,336,337,362,363,364,367,379,380,385 0 -239168 cd02767 MopB_ydeP 1 molybdopterin cofactor binding site 0 1 1 1 45,133,135,136,137,169,170,172,175,176,197,198,199,236,314,411,412,413,437,438,439,442,457,458,477 0 -239169 cd02768 MopB_NADH-Q-OR-NuoG2 1 molybdopterin cofactor binding site 0 1 1 1 40,121,123,124,125,154,155,157,160,161,183,184,185,205,267,300,301,302,324,325,326,329,341,342,347 0 -239172 cd02771 MopB_NDH-1_NuoG2-N7 1 molybdopterin cofactor binding site 0 1 1 1 40,121,123,124,125,151,152,154,157,158,205,206,207,234,304,344,345,346,370,371,372,375,387,388,393 0 -239173 cd02772 MopB_NDH-1_NuoG2 1 molybdopterin cofactor binding site 0 1 1 1 40,125,127,128,129,158,159,161,164,165,186,187,188,209,289,326,327,328,351,352,353,357,369,370,375 0 -239174 cd02773 MopB_Res-Cmplx1_Nad11 1 molybdopterin cofactor binding site 0 1 1 1 40,120,122,123,124,151,152,154,157,158,180,181,182,197,258,295,296,297,312,313,314,317,330,331,336 0 -239175 cd02774 MopB_Res-Cmplx1_Nad11-M 1 molybdopterin cofactor binding site 0 1 1 1 40,121,123,124,125,154,155,157,160,161,183,184,185,200,258,288,289,290,303,304,305,308,321,322,327 0 -238219 cd00371 HMA 1 metal-binding site 0 1 1 1 6,7,8,11 4 -238220 cd00374 RNase_T2 1 active site 0 0 1 0 33,36,84,85,88,89 1 -238220 cd00374 RNase_T2 2 CAS motifs 0 0 1 1 30,31,32,33,34,35,36,37,81,82,83,84,85,86,87,88,89,90,91,92 0 -238512 cd01061 RNase_T2_euk 1 active site 0 0 1 0 32,35,84,85,88,89 1 -238512 cd01061 RNase_T2_euk 2 CAS motifs 0 0 1 1 29,30,31,32,33,34,35,36,81,82,83,84,85,86,87,88,89,90,91,92 0 -238513 cd01062 RNase_T2_prok 1 active site 0 0 1 0 37,40,80,81,84,85 1 -238513 cd01062 RNase_T2_prok 2 CAS motifs 0 0 1 1 34,35,36,37,38,39,40,41,77,78,79,80,81,82,83,84,85,86,87,88 0 -238222 cd00379 Ribosomal_L10_P0 1 23S rRNA interface 0 1 1 0 2,3,6,50,51,52,53,56 3 -238222 cd00379 Ribosomal_L10_P0 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 84,107,110,126,129,130,133,134,136,137,138,139,143,144,145,148,149,151,152,154 2 -240221 cd05795 Ribosomal_P0_L10e 1 23S rRNA interface 0 1 1 0 2,3,6,49,50,51,52,55 3 -240221 cd05795 Ribosomal_P0_L10e 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 88,108,112,131,134,135,138,139,141,142,143,144,162,163,164,167,168,170,171,173 2 -240222 cd05796 Ribosomal_P0_like 1 23S rRNA interface 0 1 1 0 2,3,6,48,49,50,51,54 3 -240222 cd05796 Ribosomal_P0_like 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 89,109,113,131,134,135,138,139,141,142,143,144,147,148,149,152,153,155,156,158 2 -240223 cd05797 Ribosomal_L10 1 23S rRNA interface 0 1 1 0 4,5,8,52,53,54,55,58 3 -240223 cd05797 Ribosomal_L10 2 Interface with L7/L12 ribosomal proteins 0 1 1 1 86,109,112,128,131,132,135,136,138,139,140,141,145,146,147,150,151,153,154,156 2 -238224 cd00382 beta_CA 1 zinc binding site 0 1 1 0 9,11,65,68 4 -238224 cd00382 beta_CA 2 dimer interface 0 1 0 1 10,11,12,13,20,25,26,27,29,31,45,46,49,50,108,110,111,113,115 2 -238224 cd00382 beta_CA 3 active site clefts 0 1 1 1 0,2,9,11,12,13,25,28,50,55,65,68,108 1 -238448 cd00883 beta_CA_cladeA 1 zinc binding site 0 1 1 0 31,33,87,90 4 -238448 cd00883 beta_CA_cladeA 2 dimer interface 0 1 0 1 32,33,34,35,42,47,48,49,51,53,67,68,71,72,171,173,174,176,178 2 -238448 cd00883 beta_CA_cladeA 3 active site clefts 0 1 1 1 22,24,31,33,34,35,47,50,72,77,87,90,171 1 -238449 cd00884 beta_CA_cladeB 1 zinc binding site 0 1 1 0 32,34,93,96 4 -238449 cd00884 beta_CA_cladeB 2 dimer interface 0 1 0 1 33,34,35,36,43,48,49,50,52,54,73,74,77,78,179,181,182,184,186 2 -238449 cd00884 beta_CA_cladeB 3 active site clefts 0 1 1 1 23,25,32,34,35,36,48,51,78,83,93,96,179 1 -239473 cd03378 beta_CA_cladeC 1 zinc binding site 0 1 1 0 45,47,98,101 4 -239473 cd03378 beta_CA_cladeC 2 dimer interface 0 1 0 1 46,47,48,49,56,61,62,63,65,67,78,79,82,83,143,145,146,148,150 2 -239473 cd03378 beta_CA_cladeC 3 active site clefts 0 1 1 1 36,38,45,47,48,49,61,64,83,88,98,101,143 1 -239474 cd03379 beta_CA_cladeD 1 zinc binding site 0 1 1 0 9,11,62,65 4 -239474 cd03379 beta_CA_cladeD 2 dimer interface 0 1 0 1 10,11,12,13,20,25,26,27,29,31,42,43,46,47,131,133,134,136,138 2 -239474 cd03379 beta_CA_cladeD 3 active site clefts 0 1 1 1 0,2,9,11,12,13,25,28,47,52,62,65,131 1 -294013 cd00383 trans_reg_C 1 DNA binding site 0 1 1 0 19,38,39,57,60,68,69,80,85 3 -238226 cd00384 ALAD_PBGS 1 active site 0 1 1 1 109,111,113,121,156,186,192,195,196,201,208,212,239,262,265,304 1 -238226 cd00384 ALAD_PBGS 2 Schiff base residues 0 1 1 0 186,239 0 -238226 cd00384 ALAD_PBGS 3 dimer interface 0 1 1 1 0,3,4,15,39,42,131,132,159,160,189,190,191,211,214,220,223,224,242,243,244,245,246,270,288,292,295 2 -240127 cd04823 ALAD_PBGS_aspartate_rich 1 active site 0 1 1 1 114,116,118,126,161,191,197,200,201,206,213,217,244,267,270,309 1 -240127 cd04823 ALAD_PBGS_aspartate_rich 2 Schiff base residues 0 1 1 0 191,244 0 -240127 cd04823 ALAD_PBGS_aspartate_rich 3 dimer interface 0 1 1 1 3,6,7,18,42,45,136,137,164,165,194,195,196,216,219,225,228,229,247,248,249,250,251,275,293,297,300 2 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 1 active site 0 1 1 1 112,114,116,124,160,191,197,200,201,206,213,217,244,268,271,310 1 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 2 Schiff base residues 0 1 1 0 191,244 0 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich 3 dimer interface 0 1 1 1 0,3,4,15,39,42,135,136,163,164,194,195,196,216,219,225,228,229,247,248,249,250,251,276,294,298,301 2 -173830 cd00385 Isoprenoid_Biosyn_C1 1 substrate binding pocket 0 1 1 0 1,22,25,26,29,33,123,155,156,159,163,167 5 -173830 cd00385 Isoprenoid_Biosyn_C1 2 substrate-Mg2+ binding site 0 1 1 1 29,30,33,159,160,163,167 0 -173830 cd00385 Isoprenoid_Biosyn_C1 3 aspartate-rich region 1 0 1 1 1 29,30,31,32,33 0 -173830 cd00385 Isoprenoid_Biosyn_C1 4 aspartate-rich region 2 0 1 1 1 159,160,161,162,163,164,165,166,167 0 -173836 cd00867 Trans_IPPS 1 substrate binding pocket 0 1 1 0 1,30,33,34,37,41,129,161,162,165,169,173 5 -173836 cd00867 Trans_IPPS 2 substrate-Mg2+ binding site 0 1 1 1 37,38,41,165,166,169,173 0 -173836 cd00867 Trans_IPPS 3 aspartate-rich region 1 0 1 1 1 37,38,39,40,41 0 -173836 cd00867 Trans_IPPS 4 aspartate-rich region 2 0 1 1 1 165,166,167,168,169,170,171,172,173 0 -173831 cd00683 Trans_IPPS_HH 1 substrate binding pocket 0 1 1 0 13,32,35,36,39,43,127,154,155,158,162,166 5 -173831 cd00683 Trans_IPPS_HH 2 substrate-Mg2+ binding site 0 1 1 1 39,40,43,158,159,162,166 0 -173831 cd00683 Trans_IPPS_HH 3 aspartate-rich region 1 0 1 1 1 39,40,41,42,43 0 -173831 cd00683 Trans_IPPS_HH 4 aspartate-rich region 2 0 1 1 1 158,159,160,161,162,163,164,165,166 0 -173833 cd00685 Trans_IPPS_HT 1 substrate binding pocket 0 1 1 0 21,51,54,55,58,62,152,184,185,188,192,196 5 -173833 cd00685 Trans_IPPS_HT 2 substrate-Mg2+ binding site 0 1 1 1 58,59,62,188,189,192,196 0 -173833 cd00685 Trans_IPPS_HT 3 aspartate-rich region 1 0 1 1 1 58,59,60,61,62 0 -173833 cd00685 Trans_IPPS_HT 4 aspartate-rich region 2 0 1 1 1 188,189,190,191,192,193,194,195,196 0 -173837 cd00868 Terpene_cyclase_C1 1 substrate binding pocket 0 1 1 0 34,55,58,59,62,66,168,202,203,206,210,214 5 -173837 cd00868 Terpene_cyclase_C1 2 substrate-Mg2+ binding site 0 1 1 1 62,63,66,206,207,210,214 0 -173837 cd00868 Terpene_cyclase_C1 3 aspartate-rich region 1 0 1 1 1 62,63,64,65,66 0 -173837 cd00868 Terpene_cyclase_C1 4 aspartate-rich region 2 0 1 1 1 206,207,208,209,210,211,212,213,214 0 -173832 cd00684 Terpene_cyclase_plant_C1 1 substrate binding pocket 0 1 1 0 268,289,292,293,296,300,402,436,437,440,444,448 5 -173832 cd00684 Terpene_cyclase_plant_C1 2 substrate-Mg2+ binding site 0 1 1 1 296,297,300,440,441,444,448 0 -173832 cd00684 Terpene_cyclase_plant_C1 3 aspartate-rich region 1 0 1 1 1 296,297,298,299,300 0 -173832 cd00684 Terpene_cyclase_plant_C1 4 aspartate-rich region 2 0 1 1 1 440,441,442,443,444,445,446,447,448 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 1 substrate binding pocket 0 1 1 0 72,92,95,96,99,103,190,220,221,224,228,232 5 -173834 cd00686 Terpene_cyclase_cis_trans_C1 2 substrate-Mg2+ binding site 0 1 1 1 99,100,103,224,225,228,232 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 3 aspartate-rich region 1 0 1 1 1 99,100,101,102,103 0 -173834 cd00686 Terpene_cyclase_cis_trans_C1 4 aspartate-rich region 2 0 1 1 1 224,225,226,227,228,229,230,231,232 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 1 substrate binding pocket 0 1 1 0 45,65,68,69,72,76,175,208,209,212,216,220 5 -173835 cd00687 Terpene_cyclase_nonplant_C1 2 substrate-Mg2+ binding site 0 1 1 1 72,73,76,212,213,216,220 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 3 aspartate-rich region 1 0 1 1 1 72,73,74,75,76 0 -173835 cd00687 Terpene_cyclase_nonplant_C1 4 aspartate-rich region 2 0 1 1 1 212,213,214,215,216,217,218,219,220 0 -238227 cd00386 Heme_Cu_Oxidase_III_like 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,114,115,118,122 2 -238834 cd01665 Cyt_c_Oxidase_III 1 Subunit I/III interface 0 1 1 1 60,61,75,79,80,174,175,178,182 2 -239213 cd02862 NorE_like 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,117,118,121,125 2 -239214 cd02863 Ubiquinol_oxidase_III 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,116,117,120,124 2 -239215 cd02864 Heme_Cu_Oxidase_III_1 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,132,133,136,140 2 -239216 cd02865 Heme_Cu_Oxidase_III_2 1 Subunit I/III interface 0 1 1 1 6,7,21,25,26,115,116,119,123 2 -100102 cd00387 Ribosomal_L7_L12 1 core dimer interface 0 1 1 1 0,13,14,15,18,19,22,25,40,43,44,46,47,48,58,59,81,83,84,86,88,89,103,104,106,109 2 -100102 cd00387 Ribosomal_L7_L12 2 peripheral dimer interface 0 1 1 1 3,6,10,23,28 2 -100102 cd00387 Ribosomal_L7_L12 3 L10 interface 0 0 1 1 17,20,21,25,28 2 -100102 cd00387 Ribosomal_L7_L12 4 L11 interface 0 1 1 1 72,73,76,77,80,87,88,91 2 -100102 cd00387 Ribosomal_L7_L12 5 putative EF-G interaction site 0 0 1 1 73,76,77,80 2 -100102 cd00387 Ribosomal_L7_L12 6 putative EF-Tu interaction site 0 0 1 1 73,77,80,87,88,91 2 -238228 cd00389 microbial_RNases 1 active site 0 1 1 0 22,39,54,69 1 -238339 cd00606 fungal_RNase 1 active site 0 1 1 0 37,53,72,87 1 -238340 cd00607 RNase_Sa 1 active site 0 1 1 0 35,52,67,86 1 -238471 cd00933 barnase 1 active site 0 1 1 0 52,69,83,98 1 -238229 cd00390 Urease_gamma 1 alpha-gamma subunit interface 0 1 1 0 5,6,15,19,27,28,29,36,67,72,77,79 2 -238229 cd00390 Urease_gamma 2 beta-gamma subunit interface 0 1 1 1 67 2 -238230 cd00392 Ribosomal_L13 1 23S rRNA interface 0 1 0 0 9,11,12,15,18,22,50,52,80,81,87,88,89,91,92,93,95,96,97,99,101,105,108,109 3 -238230 cd00392 Ribosomal_L13 2 L3 interface 0 1 1 1 81 2 -132923 cd00394 Clp_protease_like 1 active site 0 1 1 1 69 1 -132924 cd07013 S14_ClpP 1 active site 0 1 1 1 70 1 -132927 cd07016 S14_ClpP_1 1 active site 0 1 1 1 70 1 -132928 cd07017 S14_ClpP_2 1 active site 0 1 1 1 79 1 -132925 cd07014 S49_SppA 1 active site 0 1 1 1 83 1 -132929 cd07018 S49_SppA_67K_type 1 active site 0 1 1 1 89 1 -132930 cd07019 S49_SppA_1 1 active site 0 1 1 1 82 1 -132933 cd07022 S49_Sppa_36K_type 1 active site 0 1 1 1 85 1 -132934 cd07023 S49_Sppa_N_C 1 active site 0 1 1 1 78 1 -132926 cd07015 Clp_protease_NfeD 1 active site 0 1 1 1 73 1 -132931 cd07020 Clp_protease_NfeD_1 1 active site 0 1 1 1 73 1 -132932 cd07021 Clp_protease_NfeD_like 1 active site 0 1 1 1 70 1 -100027 cd00396 PurM-like 1 ATP binding site 0 1 1 1 26,30,76,77,78 5 -100027 cd00396 PurM-like 2 dimerization interface 0 1 1 0 0,1,2,3,5,30,40,43,46,78,90,91,95 2 -100028 cd02192 PurM-like3 1 ATP binding site 0 1 1 1 73,77,120,121,122 5 -100028 cd02192 PurM-like3 2 dimerization interface 0 1 1 0 46,47,48,49,51,77,87,90,93,122,130,131,135 2 -100029 cd02193 PurL 1 ATP binding site 0 1 1 1 27,31,81,82,83 5 -100029 cd02193 PurL 2 dimerization interface 0 1 1 0 1,2,3,4,6,31,43,46,49,83,105,106,110 2 -100034 cd02203 PurL_repeat1 1 ATP binding site 0 1 1 1 52,56,113,114,115 5 -100034 cd02203 PurL_repeat1 2 dimerization interface 0 1 1 0 26,27,28,29,31,56,66,69,72,115,126,127,131 2 -100035 cd02204 PurL_repeat2 1 ATP binding site 0 1 1 1 39,43,93,94,95 5 -100035 cd02204 PurL_repeat2 2 dimerization interface 0 1 1 0 13,14,15,16,18,43,55,58,61,95,109,110,114 2 -100030 cd02194 ThiL 1 ATP binding site 0 1 1 1 65,69,115,116,117 5 -100030 cd02194 ThiL 2 dimerization interface 0 1 1 0 35,36,37,38,40,69,79,82,85,117,124,125,129 2 -100031 cd02195 SelD 1 ATP binding site 0 1 1 1 78,82,131,132,133 5 -100031 cd02195 SelD 2 dimerization interface 0 1 1 0 53,54,55,56,58,82,92,95,98,133,140,141,145 2 -100032 cd02196 PurM 1 ATP binding site 0 1 1 1 51,55,100,101,102 5 -100032 cd02196 PurM 2 dimerization interface 0 1 1 0 20,21,22,23,25,55,65,68,71,102,115,116,120 2 -100033 cd02197 HypE 1 ATP binding site 0 1 1 1 64,68,114,115,116 5 -100033 cd02197 HypE 2 dimerization interface 0 1 1 0 37,38,39,40,42,68,78,81,84,116,128,129,133 2 -100036 cd02691 PurM-like2 1 ATP binding site 0 1 1 1 73,77,123,124,125 5 -100036 cd02691 PurM-like2 2 dimerization interface 0 1 1 0 47,48,49,50,52,77,87,90,93,125,139,140,144 2 -100037 cd06061 PurM-like1 1 ATP binding site 0 1 1 1 65,69,115,116,117 5 -100037 cd06061 PurM-like1 2 dimerization interface 0 1 1 0 43,44,45,46,48,69,79,82,85,117,129,130,134 2 -271175 cd00397 DNA_BRE_C 1 active site 0 0 1 0 31,130,133,156,165 1 -271175 cd00397 DNA_BRE_C 2 DNA binding site 0 1 1 0 17,31,32,111,113,130,165 3 -271174 cd00217 INT_Flp_C 1 active site 0 0 1 0 180,291,294,316,331 1 -271174 cd00217 INT_Flp_C 2 DNA binding site 0 1 1 0 166,180,181,268,270,291,331 3 -271176 cd00659 Topo_IB_C 1 active site 0 0 1 0 51,146,149,191,200 1 -271176 cd00659 Topo_IB_C 2 DNA binding site 0 1 1 0 37,51,52,131,133,146,200 3 -271177 cd00796 INT_Rci_Hp1_C 1 active site 0 0 1 0 37,124,127,150,159 1 -271177 cd00796 INT_Rci_Hp1_C 2 DNA binding site 0 1 1 0 23,37,38,106,108,124,159 3 -271178 cd00797 INT_RitB_C_like 1 active site 0 0 1 0 39,139,142,173,182 1 -271178 cd00797 INT_RitB_C_like 2 DNA binding site 0 1 1 0 25,39,40,117,119,139,182 3 -271179 cd00798 INT_XerDC_C 1 active site 0 0 1 0 33,128,131,154,163 1 -271179 cd00798 INT_XerDC_C 2 DNA binding site 0 1 1 0 19,33,34,107,109,128,163 3 -271180 cd00799 INT_Cre_C 1 active site 0 0 1 0 30,137,140,163,172 1 -271180 cd00799 INT_Cre_C 2 DNA binding site 0 1 1 0 16,30,31,115,117,137,172 3 -271181 cd00800 INT_Lambda_C 1 active site 0 0 1 0 26,117,120,142,151 1 -271181 cd00800 INT_Lambda_C 2 DNA binding site 0 1 1 0 12,26,27,93,95,117,151 3 -271182 cd00801 INT_P4_C 1 active site 0 0 1 0 33,123,126,149,159 1 -271182 cd00801 INT_P4_C 2 DNA binding site 0 1 1 0 19,33,34,109,111,123,159 3 -271183 cd01182 INT_RitC_C_like 1 active site 0 0 1 0 35,135,138,161,170 1 -271183 cd01182 INT_RitC_C_like 2 DNA binding site 0 1 1 0 21,35,36,109,111,135,170 3 -271184 cd01184 INT_C_like_1 1 active site 0 0 1 0 37,141,144,167,177 1 -271184 cd01184 INT_C_like_1 2 DNA binding site 0 1 1 0 24,37,38,122,124,141,177 3 -271185 cd01185 INTN1_C_like 1 active site 0 0 1 0 32,117,120,143,152 1 -271185 cd01185 INTN1_C_like 2 DNA binding site 0 1 1 0 18,32,33,100,102,117,152 3 -271186 cd01186 INT_tnpA_C_Tn554 1 active site 0 0 1 0 31,136,139,162,172 1 -271186 cd01186 INT_tnpA_C_Tn554 2 DNA binding site 0 1 1 0 17,31,32,121,123,136,172 3 -271187 cd01187 INT_tnpB_C_Tn554 1 active site 0 0 1 0 27,104,107,130,139 1 -271187 cd01187 INT_tnpB_C_Tn554 2 DNA binding site 0 1 1 0 13,27,28,77,79,104,139 3 -271188 cd01188 INT_RitA_C_like 1 active site 0 0 1 0 34,130,133,156,165 1 -271188 cd01188 INT_RitA_C_like 2 DNA binding site 0 1 1 0 20,34,35,112,114,130,165 3 -271189 cd01189 INT_ICEBs1_C_like 1 active site 0 0 1 0 30,108,111,134,144 1 -271189 cd01189 INT_ICEBs1_C_like 2 DNA binding site 0 1 1 0 17,30,31,92,94,108,144 3 -271190 cd01190 INT_StrepXerD_C_like 1 active site 0 0 1 0 31,113,116,139,148 1 -271190 cd01190 INT_StrepXerD_C_like 2 DNA binding site 0 1 1 0 17,31,32,93,95,113,148 3 -271191 cd01191 INT_C_like_2 1 active site 0 0 1 0 34,122,125,148,157 1 -271191 cd01191 INT_C_like_2 2 DNA binding site 0 1 1 0 20,34,35,104,106,122,157 3 -271192 cd01192 INT_C_like_3 1 active site 0 0 1 0 38,131,134,157,166 1 -271192 cd01192 INT_C_like_3 2 DNA binding site 0 1 1 0 24,38,39,110,112,131,166 3 -271193 cd01193 INT_IntI_C 1 active site 0 0 1 0 35,137,140,163,172 1 -271193 cd01193 INT_IntI_C 2 DNA binding site 0 1 1 0 21,35,36,116,118,137,172 3 -271194 cd01194 INT_C_like_4 1 active site 0 0 1 0 36,136,139,162,171 1 -271194 cd01194 INT_C_like_4 2 DNA binding site 0 1 1 0 22,36,37,118,120,136,171 3 -271195 cd01195 INT_C_like_5 1 active site 0 0 1 0 34,128,131,155,164 1 -271195 cd01195 INT_C_like_5 2 DNA binding site 0 1 1 0 20,34,35,107,109,128,164 3 -271196 cd01196 INT_C_like_6 1 active site 0 0 1 0 34,135,138,161,170 1 -271196 cd01196 INT_C_like_6 2 DNA binding site 0 1 1 0 20,34,35,114,116,135,170 3 -271197 cd01197 INT_FimBE_like 1 active site 0 0 1 0 40,134,137,160,169 1 -271197 cd01197 INT_FimBE_like 2 DNA binding site 0 1 1 0 26,40,41,113,115,134,169 3 -238232 cd00398 Aldolase_II 1 active site 0 1 1 1 25,41,42,69,70,71,90,92,156 1 -238232 cd00398 Aldolase_II 2 Zn2+ binding site 0 1 1 1 90,92,156 4 -238232 cd00398 Aldolase_II 3 intersubunit interface 0 1 1 1 8,12,20,44,46,47,92,94,95,100,101,102,110,112,113,127,155,166,173,177,184,204 2 -259843 cd00399 RNAP_largest_subunit_N 1 active site region 0 1 1 1 146,151,158,164,197,198,199,232,234,236,509,510 1 -259843 cd00399 RNAP_largest_subunit_N 2 large subunit interface 0 1 1 1 0,4,7,8,55,56,57,59,70,88,92,97,98,119,139,142,143,153,156,158,159,160,161,162,163,164,165,170,171,172,181,182,183,184,187,188,194,196,198,202,203,206,215,217,218,220,223,232,233,234,235,237,239,241,244,245,246,247,248,250,251,253,254,255,256,261,276,277,280,289,290,328,329,330,368,369,370,371,416,420,425,426,431,434,435,444,445,475,476,478,479,480,481,482,483,484,487,488,490,491,492,495,496,498,499,513,516,520,525,526,527 2 -259843 cd00399 RNAP_largest_subunit_N 3 Zn-binding 0 1 1 1 45,48,55,58 4 -259843 cd00399 RNAP_largest_subunit_N 4 clamp 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,112,113,114,115,116,117,118,119,120,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,156,157,158,159,160 0 -259843 cd00399 RNAP_largest_subunit_N 5 catalytic site DDD 1 1 1 232,234,236 1 -259844 cd01435 RNAP_I_RPA1_N 1 active site region 0 1 1 1 236,241,248,254,364,365,366,400,402,404,760,761 1 -259844 cd01435 RNAP_I_RPA1_N 2 large subunit interface 0 1 1 1 4,8,11,12,58,59,60,62,73,131,135,140,141,213,229,232,233,243,246,248,249,250,251,252,253,254,255,260,261,262,271,272,273,274,277,278,361,363,365,369,370,373,382,385,386,388,391,400,401,402,403,405,407,409,412,413,414,415,416,418,419,421,422,423,424,429,444,445,448,502,503,598,599,600,638,639,640,641,667,671,676,677,682,685,686,695,696,726,727,729,730,731,732,733,734,735,738,739,741,742,743,746,747,749,750,764,767,771,776,777,778 2 -259844 cd01435 RNAP_I_RPA1_N 3 Zn-binding 0 1 1 1 48,51,58,61 4 -259844 cd01435 RNAP_I_RPA1_N 4 clamp 0 1 1 1 4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,197,198,199,200,201,202,203,206,207,208,209,210,211,212,213,214,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,250 0 -259844 cd01435 RNAP_I_RPA1_N 5 catalytic site DDD 1 1 1 400,402,404 1 -259845 cd01609 RNAP_beta'_N 1 active site region 0 1 1 1 238,243,250,256,329,330,331,364,366,368,639,640 1 -259845 cd01609 RNAP_beta'_N 2 large subunit interface 0 1 1 1 10,14,17,18,83,84,85,87,98,143,147,152,153,211,231,234,235,245,248,250,251,252,253,254,255,256,257,262,263,264,273,274,275,276,279,280,326,328,330,334,335,338,347,349,350,352,355,364,365,366,367,369,371,373,376,377,378,379,380,382,383,385,386,387,388,393,408,409,412,440,441,490,491,492,526,527,528,529,566,570,575,576,581,584,585,594,595,605,606,608,609,610,611,612,613,614,617,618,620,621,622,625,626,628,629,643,646,650,655,656,657 2 -259845 cd01609 RNAP_beta'_N 3 Zn-binding 0 1 1 1 73,76,83,86 4 -259845 cd01609 RNAP_beta'_N 4 clamp 0 1 1 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,195,196,197,198,199,200,201,204,205,206,207,208,209,210,211,212,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,248,249,250,251,252 0 -259845 cd01609 RNAP_beta'_N 5 catalytic site DDD 1 1 1 364,366,368 1 -259846 cd02582 RNAP_archeal_A' 1 active site region 0 1 1 1 302,307,314,320,417,418,419,452,454,456,813,814 1 -259846 cd02582 RNAP_archeal_A' 2 large subunit interface 0 1 1 1 11,15,18,19,65,66,67,69,80,206,210,215,216,274,295,298,299,309,312,314,315,316,317,318,319,320,321,326,327,328,337,338,339,340,343,344,414,416,418,422,423,426,435,437,438,440,443,452,453,454,455,457,459,461,464,465,466,467,468,470,471,473,474,475,476,481,496,497,500,545,546,635,636,637,675,676,677,678,720,724,729,730,735,738,739,748,749,779,780,782,783,784,785,786,787,788,791,792,794,795,796,799,800,802,803,817,820,824,829,830,831 2 -259846 cd02582 RNAP_archeal_A' 3 Zn-binding 0 1 1 1 55,58,65,68 4 -259846 cd02582 RNAP_archeal_A' 4 clamp 0 1 1 1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,258,259,260,261,262,263,264,267,268,269,270,271,272,273,274,275,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,312,313,314,315,316 0 -259846 cd02582 RNAP_archeal_A' 5 catalytic site DDD 1 1 1 452,454,456 1 -259847 cd02583 RNAP_III_RPC1_N 1 active site region 0 1 1 1 275,280,287,293,391,392,393,426,428,430,793,794 1 -259847 cd02583 RNAP_III_RPC1_N 2 large subunit interface 0 1 1 1 0,4,7,8,55,56,57,59,70,179,183,188,189,248,268,271,272,282,285,287,288,289,290,291,292,293,294,299,300,301,310,311,312,313,316,317,388,390,392,396,397,400,409,411,412,414,417,426,427,428,429,431,433,435,438,439,440,441,442,444,445,447,448,449,450,455,470,471,474,522,523,615,616,617,655,656,657,658,700,704,709,710,715,718,719,728,729,759,760,762,763,764,765,766,767,768,771,772,774,775,776,779,780,782,783,797,800,804,809,810,811 2 -259847 cd02583 RNAP_III_RPC1_N 3 Zn-binding 0 1 1 1 45,48,55,58 4 -259847 cd02583 RNAP_III_RPC1_N 4 clamp 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,232,233,234,235,236,237,238,241,242,243,244,245,246,247,248,249,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,285,286,287,288,289 0 -259847 cd02583 RNAP_III_RPC1_N 5 catalytic site DDD 1 1 1 426,428,430 1 -259848 cd02733 RNAP_II_RPB1_N 1 active site region 0 1 1 1 225,230,237,243,339,340,341,374,376,378,732,733 1 -259848 cd02733 RNAP_II_RPB1_N 2 large subunit interface 0 1 1 1 7,11,14,15,61,62,63,65,76,129,133,138,139,197,218,221,222,232,235,237,238,239,240,241,242,243,244,249,250,251,260,261,262,263,266,267,336,338,340,344,345,348,357,359,360,362,365,374,375,376,377,379,381,383,386,387,388,389,390,392,393,395,396,397,398,403,418,419,422,468,469,554,555,556,594,595,596,597,639,643,648,649,654,657,658,667,668,698,699,701,702,703,704,705,706,707,710,711,713,714,715,718,719,721,722,736,739,743,748,749,750 2 -259848 cd02733 RNAP_II_RPB1_N 3 Zn-binding 0 1 1 1 51,54,61,64 4 -259848 cd02733 RNAP_II_RPB1_N 4 clamp 0 1 1 1 7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238,239 0 -259848 cd02733 RNAP_II_RPB1_N 5 catalytic site DDD 1 1 1 374,376,378 1 -259849 cd10506 RNAP_IV_RPD1_N 1 active site region 0 1 1 1 202,207,213,219,308,309,310,344,346,348,721,722 1 -259849 cd10506 RNAP_IV_RPD1_N 2 large subunit interface 0 1 1 1 0,4,7,8,44,45,46,48,59,147,151,156,157,190,195,198,199,209,211,213,214,215,216,217,218,219,220,225,226,227,236,237,238,239,242,243,305,307,309,313,314,317,326,329,330,332,335,344,345,346,347,349,351,353,356,357,358,359,360,362,363,365,366,367,368,373,388,389,392,439,440,510,511,512,549,550,551,552,617,621,626,627,632,635,636,645,646,689,690,692,693,694,695,696,697,698,701,702,704,705,706,709,710,712,713,725,728,732,737,738,739 2 -259849 cd10506 RNAP_IV_RPD1_N 3 Zn-binding 0 1 1 1 33,36,44,47 4 -259849 cd10506 RNAP_IV_RPD1_N 4 clamp 0 1 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,173,174,175,176,177,178,179,183,184,185,186,187,188,189,190,191,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 0 -259849 cd10506 RNAP_IV_RPD1_N 5 catalytic site DDD 1 1 1 344,346,348 1 -238233 cd00400 Voltage_gated_ClC 1 Cl- selectivity filter 0 0 1 1 67,68,69,70,71,102,103,104,105,106,304,305,306,307,308 0 -238233 cd00400 Voltage_gated_ClC 2 pore gating glutamate residue 0 0 1 1 104 0 -238233 cd00400 Voltage_gated_ClC 3 Cl- binding residues 0 1 1 1 68,70,104,105,304,305,306 4 -238233 cd00400 Voltage_gated_ClC 4 dimer interface 0 1 1 0 149,158,173,180,352,355,363,371,378,379 2 -238504 cd01031 EriC 1 Cl- selectivity filter 0 0 1 1 63,64,65,66,67,103,104,105,106,107,306,307,308,309,310 0 -238504 cd01031 EriC 2 pore gating glutamate residue 0 0 1 1 105 0 -238504 cd01031 EriC 3 Cl- binding residues 0 1 1 1 64,66,105,106,306,307,308 4 -238504 cd01031 EriC 4 dimer interface 0 1 1 0 150,159,170,177,354,357,365,377,384,385 2 -238505 cd01033 ClC_like 1 Cl- selectivity filter 0 0 1 1 66,67,68,69,70,102,103,104,105,106,302,303,304,305,306 0 -238505 cd01033 ClC_like 2 pore gating glutamate residue 0 0 1 1 104 0 -238505 cd01033 ClC_like 3 Cl- binding residues 0 1 1 1 67,69,104,105,302,303,304 4 -238505 cd01033 ClC_like 4 dimer interface 0 1 1 0 149,158,175,182,348,351,359,368,375,376 2 -238506 cd01034 EriC_like 1 Cl- selectivity filter 0 0 1 1 52,53,54,55,56,97,98,99,100,101,304,305,306,307,308 0 -238506 cd01034 EriC_like 2 pore gating glutamate residue 0 0 1 1 99 0 -238506 cd01034 EriC_like 3 Cl- binding residues 0 1 1 1 53,55,99,100,304,305,306 4 -238506 cd01034 EriC_like 4 dimer interface 0 1 1 0 145,154,169,176,346,349,357,365,372,373 2 -238507 cd01036 ClC_euk 1 Cl- selectivity filter 0 0 1 1 63,64,65,66,67,105,106,107,108,109,317,318,319,320,321 0 -238507 cd01036 ClC_euk 2 pore gating glutamate residue 0 0 1 1 107 0 -238507 cd01036 ClC_euk 3 Cl- binding residues 0 1 1 1 64,66,107,108,317,318,319 4 -238507 cd01036 ClC_euk 4 dimer interface 0 1 1 0 165,174,185,192,373,376,384,396,403,404 2 -239655 cd03683 ClC_1_like 1 Cl- selectivity filter 0 0 1 1 71,72,73,74,75,113,114,115,116,117,316,317,318,319,320 0 -239655 cd03683 ClC_1_like 2 pore gating glutamate residue 0 0 1 1 115 0 -239655 cd03683 ClC_1_like 3 Cl- binding residues 0 1 1 1 72,74,115,116,316,317,318 4 -239655 cd03683 ClC_1_like 4 dimer interface 0 1 1 0 166,175,186,193,370,373,381,393,400,401 2 -239656 cd03684 ClC_3_like 1 Cl- selectivity filter 0 0 1 1 54,55,56,57,58,96,97,98,99,100,328,329,330,331,332 0 -239656 cd03684 ClC_3_like 2 pore gating glutamate residue 0 0 1 1 98 0 -239656 cd03684 ClC_3_like 3 Cl- binding residues 0 1 1 1 55,57,98,99,328,329,330 4 -239656 cd03684 ClC_3_like 4 dimer interface 0 1 1 0 146,155,166,173,390,393,401,413,420,421 2 -239657 cd03685 ClC_6_like 1 Cl- selectivity filter 0 0 1 1 104,105,106,107,108,146,147,148,149,150,357,358,359,360,361 0 -239657 cd03685 ClC_6_like 2 pore gating glutamate residue 0 0 1 1 148 0 -239657 cd03685 ClC_6_like 3 Cl- binding residues 0 1 1 1 105,107,148,149,357,358,359 4 -239657 cd03685 ClC_6_like 4 dimer interface 0 1 1 0 206,215,226,233,405,408,416,428,435,436 2 -239654 cd03682 ClC_sycA_like 1 Cl- selectivity filter 0 0 1 1 60,61,62,63,64,95,96,97,98,99,297,298,299,300,301 0 -239654 cd03682 ClC_sycA_like 2 pore gating glutamate residue 0 0 1 1 97 0 -239654 cd03682 ClC_sycA_like 3 Cl- binding residues 0 1 1 1 61,63,97,98,297,298,299 4 -239654 cd03682 ClC_sycA_like 4 dimer interface 0 1 1 0 142,151,167,174,338,341,349,356,363,364 2 -293928 cd00402 Riboflavin_synthase_like 1 active site 0 1 1 1 39,45,46,47,48,60,61,62,69,99,100,101 1 -293928 cd00402 Riboflavin_synthase_like 2 trimer interface 0 1 1 0 0,85,86,94,116,134,135,136,145,148,157,158,159,160,161 2 -293929 cd16256 LumP 1 active site 0 1 1 1 40,46,47,48,49,61,62,63,69,99,100,101 1 -293929 cd16256 LumP 2 trimer interface 0 1 1 0 0,85,86,94,116,134,135,136,145,148,157,158,159,160,161 2 -238235 cd00403 Ribosomal_L1 1 mRNA/rRNA interface 0 1 1 1 15,16,17,20,22,24,26,152,154,156,201,202,204 3 -238236 cd00404 Aconitase_swivel 1 substrate binding site 0 1 1 1 28,29,30 5 -238658 cd01356 AcnX_swivel 1 substrate binding site 0 1 1 1 54,55,56 5 -238808 cd01576 AcnB_Swivel 1 substrate binding site 0 1 1 1 63,64,65 5 -238809 cd01577 IPMI_Swivel 1 substrate binding site 0 1 1 1 30,31,32 5 -238810 cd01578 AcnA_Mitochon_Swivel 1 substrate binding site 0 1 1 1 82,83,84 5 -238811 cd01579 AcnA_Bact_Swivel 1 substrate binding site 0 1 1 1 61,62,63 5 -238812 cd01580 AcnA_IRP_Swivel 1 substrate binding site 0 1 1 1 109,110,111 5 -238837 cd01674 Homoaconitase_Swivel 1 substrate binding site 0 1 1 1 58,59,60 5 -238238 cd00407 Urease_beta 1 alpha-beta subunit interface 0 1 1 0 1,2,3,4,5,6,7,8,10,11,12,13,14,15,38,59,61,63,64,65,84,85,86,87,88,90,91,92 2 -238238 cd00407 Urease_beta 2 gamma-beta subunit interface 0 1 1 1 0 2 -199205 cd00411 L-asparaginase_like 1 active site 0 1 1 1 9,10,56,57,87,88,89,113,161 1 -199205 cd00411 L-asparaginase_like 2 homodimer interface 0 1 1 1 55,57,58,59,60,61,64,89,90,93,114,161,162,163,164,165,213,214,215,217,218,219,223,225,226,229,230,233,241,243,244,245,247,249,270,275,276,298,299,302 2 -199206 cd08962 GatD 1 active site 0 1 1 1 79,80,124,125,155,156,157,182,234 1 -199206 cd08962 GatD 2 homodimer interface 0 1 1 1 123,125,126,127,128,129,132,157,158,161,183,234,235,236,237,238,285,286,287,289,290,291,295,297,298,301,302,305,313,315,316,317,319,321,342,347,348,373,374,377 2 -199207 cd08963 L-asparaginase_I 1 active site 0 1 1 1 9,10,52,53,82,83,84,109,155 1 -199207 cd08963 L-asparaginase_I 2 homodimer interface 0 1 1 1 51,53,54,55,56,57,60,84,85,88,110,155,156,157,158,159,203,204,205,207,208,209,212,214,215,218,219,222,231,233,234,235,237,239,262,267,268,293,294,297 2 199208 cd08964 L-asparaginase_II 1 active site 0 1 1 1 9,10,54,55,86,87,88,112,160 1 199208 cd08964 L-asparaginase_II 2 homodimer interface 0 1 1 1 53,55,56,57,58,59,62,88,89,92,113,160,161,162,163,164,208,209,210,212,213,214,218,220,221,224,225,228,236,238,239,240,242,244,265,270,271,297,298,301 2 -238239 cd00412 pyrophosphatase 1 metal binding sites 0 1 1 0 17,51,56,83,88 4 -238239 cd00412 pyrophosphatase 2 substrate binding site 0 1 1 0 15,29,41,125,126 5 -238239 cd00412 pyrophosphatase 3 dimer interface 0 1 1 1 10,11,63,64 2 -185683 cd00413 Glyco_hydrolase_16 1 active site 0 1 1 0 82,84,86,99,101,103,113,115,132,181,183 1 -185683 cd00413 Glyco_hydrolase_16 2 catalytic residues 0 0 0 0 99,101,103 1 -185684 cd02175 GH16_lichenase 1 active site 0 1 1 0 83,85,87,100,102,104,114,116,128,180,182 1 -185684 cd02175 GH16_lichenase 2 catalytic residues 0 0 0 0 100,102,104 1 -185685 cd02176 GH16_XET 1 active site 0 1 1 0 65,67,69,80,82,84,97,99,111,167,169 1 -185685 cd02176 GH16_XET 2 catalytic residues 0 0 0 0 80,82,84 1 -185686 cd02177 GH16_kappa_carrageenase 1 active site 0 1 1 0 108,110,112,131,133,136,152,154,180,229,231 1 -185686 cd02177 GH16_kappa_carrageenase 2 catalytic residues 0 0 0 0 131,133,136 1 -185687 cd02178 GH16_beta_agarase 1 active site 0 1 1 0 112,114,116,127,129,132,147,149,169,225,227 1 -185687 cd02178 GH16_beta_agarase 2 catalytic residues 0 0 0 0 127,129,132 1 -185692 cd02183 GH16_fungal_CRH1_transglycosylase 1 active site 0 1 1 0 62,64,66,74,76,78,88,90,104,161,163 1 -185692 cd02183 GH16_fungal_CRH1_transglycosylase 2 catalytic residues 0 0 0 0 74,76,78 1 -185693 cd08023 GH16_laminarinase_like 1 active site 0 1 1 0 94,96,98,114,116,119,129,131,147,205,207 1 -185693 cd08023 GH16_laminarinase_like 2 catalytic residues 0 0 0 0 114,116,119 1 -185688 cd02179 GH16_beta_GRP 1 active site 0 1 1 0 126,128,130,147,149,152,168,170,191,262,264 1 -185688 cd02179 GH16_beta_GRP 2 catalytic residues 0 0 0 0 147,149,152 1 -185689 cd02180 GH16_fungal_KRE6_glucanase 1 active site 0 1 1 0 97,99,101,130,132,135,148,150,186,264,266 1 -185689 cd02180 GH16_fungal_KRE6_glucanase 2 catalytic residues 0 0 0 0 130,132,135 1 -185690 cd02181 GH16_fungal_Lam16A_glucanase 1 active site 0 1 1 0 96,98,100,111,113,116,125,127,164,242,244 1 -185690 cd02181 GH16_fungal_Lam16A_glucanase 2 catalytic residues 0 0 0 0 111,113,116 1 -185691 cd02182 GH16_Strep_laminarinase_like 1 active site 0 1 1 0 107,109,111,129,131,134,143,145,165,226,228 1 -185691 cd02182 GH16_Strep_laminarinase_like 2 catalytic residues 0 0 0 0 129,131,134 1 -185694 cd08024 GH16_CCF 1 active site 0 1 1 0 129,131,133,149,151,154,174,176,196,270,272 1 -185694 cd08024 GH16_CCF 2 catalytic residues 0 0 0 0 149,151,154 1 -238241 cd00421 intradiol_dioxygenase 1 Active site 0 1 1 0 33,41,77,81,84,86,114 1 -239540 cd03457 intradiol_dioxygenase_like 1 Active site 0 1 1 0 49,57,98,101,104,106,139 1 -239541 cd03458 Catechol_intradiol_dioxygenases 1 Active site 0 1 1 0 126,134,168,189,192,194,221 1 -239543 cd03460 1,2-CTD 1 Active site 0 1 1 0 146,154,188,209,212,214,241 1 -239544 cd03461 1,2-HQD 1 Active site 0 1 1 0 142,150,184,205,208,210,237 1 -239545 cd03462 1,2-CCD 1 Active site 0 1 1 0 121,129,163,184,187,189,216 1 -239542 cd03459 3,4-PCD 1 Active site 0 1 1 0 37,45,84,92,95,97,125 1 -239546 cd03463 3,4-PCD_alpha 1 Active site 0 1 1 0 58,66,104,112,115,117,145 1 -239547 cd03464 3,4-PCD_beta 1 Active site 0 1 1 0 87,95,134,144,147,149,177 1 -238242 cd00423 Pterin_binding 1 substrate binding pocket 0 1 1 1 7,81,100,102,125,171,204,208,242,244 5 -238242 cd00423 Pterin_binding 2 inhibitor binding site 0 1 1 1 206,207,208 0 -238242 cd00423 Pterin_binding 3 dimer interface 0 1 1 1 184,188,189,228,232,236,251,252 2 -238380 cd00739 DHPS 1 substrate binding pocket 0 1 1 1 7,81,100,102,125,171,203,207,241,243 5 -238380 cd00739 DHPS 2 inhibitor binding site 0 1 1 1 205,206,207 0 -238380 cd00739 DHPS 3 dimer interface 0 1 1 1 184,188,189,227,231,235,250,251 2 -238381 cd00740 MeTr 1 substrate binding pocket 0 1 1 1 8,75,96,98,124,163,202,206,235,237 5 -238381 cd00740 MeTr 2 inhibitor binding site 0 1 1 1 204,205,206 0 -238381 cd00740 MeTr 3 dimer interface 0 1 1 1 178,182,183,221,225,229,245,246 2 -176453 cd00424 PolY 1 active site 0 1 1 0 3,4,7,8,41,44,98,99,153 1 -176453 cd00424 PolY 2 DNA binding site 0 1 1 0 96,99,178,179,180,181,182,183,184,214,238,239,240,241,242,243,270,298,299,300,301,302,304 3 -176454 cd01700 PolY_Pol_V_umuC 1 active site 0 1 1 0 3,4,7,8,39,42,98,99,151 1 -176454 cd01700 PolY_Pol_V_umuC 2 DNA binding site 0 1 1 0 96,99,181,182,183,184,185,186,187,216,241,242,243,244,245,246,273,292,293,294,295,296,298 3 -176455 cd01701 PolY_Rev1 1 active site 0 1 1 0 52,53,56,57,90,93,147,148,202 1 -176455 cd01701 PolY_Rev1 2 DNA binding site 0 1 1 0 145,148,227,228,229,230,231,232,233,265,289,290,291,292,293,294,321,358,359,360,361,362,364 3 -176456 cd01702 PolY_Pol_eta 1 active site 0 1 1 0 3,4,7,8,37,40,117,118,162 1 -176456 cd01702 PolY_Pol_eta 2 DNA binding site 0 1 1 0 115,118,187,188,189,190,191,192,193,226,250,251,252,253,254,255,283,310,311,312,313,314,316 3 -176457 cd01703 PolY_Pol_iota 1 active site 0 1 1 0 3,4,7,8,37,40,97,98,149 1 -176457 cd01703 PolY_Pol_iota 2 DNA binding site 0 1 1 0 95,98,177,178,179,180,181,182,183,228,253,254,255,256,257,258,286,321,322,323,324,325,327 3 -176458 cd03468 PolY_like 1 active site 0 1 1 0 3,4,7,8,40,43,97,98,150 1 -176458 cd03468 PolY_like 2 DNA binding site 0 1 1 0 95,98,175,176,177,178,179,180,181,210,236,237,238,239,240,241,270,296,297,298,299,300,302 3 -176459 cd03586 PolY_Pol_IV_kappa 1 active site 0 1 1 0 3,4,7,8,40,43,97,98,151 1 -176459 cd03586 PolY_Pol_IV_kappa 2 DNA binding site 0 1 1 0 95,98,176,177,178,179,180,181,182,211,235,236,237,238,239,240,267,289,290,291,292,293,295 3 -238243 cd00427 Ribosomal_L29_HIP 1 23S rRNA interface 0 1 1 1 0,3,37,47,48,50,51,55 3 -238243 cd00427 Ribosomal_L29_HIP 2 L23 interface 0 1 0 1 22,25,26 2 -238243 cd00427 Ribosomal_L29_HIP 3 trigger factor interaction site 0 1 1 1 29,30 0 -238243 cd00427 Ribosomal_L29_HIP 4 signal recognition particle (SRP54) interaction site 0 1 1 1 16,20,23,27,42 0 -238243 cd00427 Ribosomal_L29_HIP 5 putative translocon interaction site 0 0 1 1 0,1,2,4,8,9,11,12,15,16,19,20,23,26,27,35,38,42,45,46,49,50,53 0 -238245 cd00431 cysteine_hydrolases 1 catalytic triad 0 0 1 1 5,89,122 1 -238245 cd00431 cysteine_hydrolases 2 conserved cis-peptide bond 0 0 1 1 117,118 0 -238493 cd01011 nicotinamidase 1 catalytic triad 0 0 1 1 7,105,150 1 -238493 cd01011 nicotinamidase 2 conserved cis-peptide bond 0 0 1 1 145,146 0 -238494 cd01012 YcaC_related 1 catalytic triad 0 0 1 1 5,67,100 1 -238494 cd01012 YcaC_related 2 conserved cis-peptide bond 0 0 1 1 95,96 0 -238495 cd01013 isochorismatase 1 catalytic triad 0 0 1 1 35,121,154 1 -238495 cd01013 isochorismatase 2 conserved cis-peptide bond 0 0 1 1 149,150 0 -238496 cd01014 nicotinamidase_related 1 catalytic triad 0 0 1 1 5,78,111 1 -238496 cd01014 nicotinamidase_related 2 conserved cis-peptide bond 0 0 1 1 106,107 0 -238497 cd01015 CSHase 1 catalytic triad 0 0 1 1 5,93,126 1 -238497 cd01015 CSHase 2 conserved cis-peptide bond 0 0 1 1 121,122 0 -238246 cd00432 Ribosomal_L18_L5e 1 5S rRNA interface 0 1 1 1 2,4,5,7,12,16,17,18,19,20,21,23,25,32,33,34,37,78,89 3 -238246 cd00432 Ribosomal_L18_L5e 2 23S rRNA interface 0 1 1 1 0,3,4,79,82,98 3 -238246 cd00432 Ribosomal_L18_L5e 3 L21e interface 0 1 1 0 0 2 -238246 cd00432 Ribosomal_L18_L5e 4 L27 interface 0 1 1 0 2,5,6 2 -238246 cd00432 Ribosomal_L18_L5e 5 L5 interface 0 1 1 0 84 2 -238247 cd00433 Peptidase_M17 1 Substrate-binding/catalytic site 0 1 1 1 239,244,251,262,321,323,325,349 0 -238247 cd00433 Peptidase_M17 2 Zn-binding sites 0 1 1 0 239,244,262,321,323 4 -238247 cd00433 Peptidase_M17 3 interface (dimer of trimers) 0 1 0 0 35,36,49,57,72,164,166,167,168,212,214,243,249,254,257,260,261,293,295,296,297,298,300,302,303,304,305,306,312,314,318,354,355,356,357,358,361,387,388,390,395,397,398,403,405,415,416,418,453 2 -238248 cd00435 ACBP 1 acyl-CoA binding pocket 0 1 0 0 8,11,12,14,17,18,20,23,24,26,27,30,31,48,49,52,53,72 5 -238248 cd00435 ACBP 2 CoA binding site 0 1 0 1 12,27,30,31,53,72 5 -340360 cd00442 Lyz_like 1 catalytic residue E 0 1 1 8 1 -340357 cd00119 LYZ 1 catalytic residue E 0 1 1 32 1 -340383 cd16897 LYZ_C 1 catalytic residue E 0 1 1 34 1 -340384 cd16898 LYZ_LA 1 catalytic residue E 0 1 1 34 1 -340385 cd16899 LYZ_C_invert 1 catalytic residue E 0 1 1 31 1 -340358 cd00254 LT_GEWL_like 1 catalytic residue E 0 1 1 10 1 -340365 cd01021 GEWL 1 catalytic residue E 0 1 1 61 1 -340367 cd13399 Slt35_like 1 catalytic residue E 0 1 1 13 1 -340368 cd13400 LT_IagB_like 1 catalytic residue E 0 1 1 14 1 -340369 cd13401 Slt70_like 1 catalytic residue E 0 1 1 30 1 -340371 cd13403 MLTF_like 1 catalytic residue E 0 1 1 21 1 -340377 cd16891 CwlT_like 1 catalytic residue E 0 1 1 27 1 -340378 cd16892 LT_VirB1_like 1 catalytic residue E 0 1 1 20 1 -340379 cd16893 LT_MltC_MltE 1 catalytic residue E 0 1 1 23 1 -340380 cd16894 MltD_like 1 catalytic residue E 0 1 1 16 1 -340381 cd16895 TraH_like 1 catalytic residue E 0 1 1 23 1 -340382 cd16896 LT_Slt70_like 1 catalytic residue E 0 1 1 28 1 -340362 cd00736 lambda_lys_like 1 catalytic residue E 0 1 1 13 1 -340370 cd13402 LT_TF_like 1 catalytic residue E 0 1 1 10 1 -340372 cd13925 RPF 1 catalytic residue E 0 1 1 9 1 -340374 cd16888 lyz_G_like1 1 catalytic residue E 0 1 1 54 1 -340375 cd16889 chitinase_like 1 catalytic residue E 0 1 1 8 1 -340359 cd00325 chitinase_GH19 1 catalytic residue E 0 1 1 58 1 -340363 cd00737 lyz_endolysin_autolysin 1 catalytic residue E 0 1 1 8 1 -340361 cd00735 T4_like_lys 1 catalytic residue E 0 1 1 9 1 -340386 cd16900 endolysin_R21_like 1 catalytic residue E 0 1 1 15 1 -340387 cd16901 lyz_P1 1 catalytic residue E 0 1 1 13 1 -340364 cd00978 chitosanase_GH46 1 catalytic residue E 0 1 1 14 1 -340366 cd12799 pesticin_lyz_like 1 catalytic residue E 0 1 1 8 1 -340388 cd16902 pesticin_lyz 1 catalytic residue E 0 1 1 8 1 -340389 cd16903 pesticin_lyz_like1 1 catalytic residue E 0 1 1 21 1 -340390 cd16904 pesticin_lyz_like2 1 catalytic residue E 0 1 1 22 1 -340373 cd13926 N-acetylmuramidase_GH108 1 catalytic residue E 0 1 1 9 1 -340376 cd16890 lyz_i 1 catalytic residue E 0 1 1 9 1 -271355 cd00446 GrpE 1 dimer interface 0 1 1 0 2,5,6,9,10,12,13,16,17,18,20,23,24,27,28,31,32,34,35,38,39,40,42,43,44,45,46,48,49,65,66,68,69,70,73,79,80 2 -271355 cd00446 GrpE 2 Hsp70 (ATPase domain) interactions 0 1 1 0 18,26,48,51,92,94,95,97,98,99,100,101,117,126,130,132,135 2 -271355 cd00446 GrpE 3 2-helical coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50 7 -271355 cd00446 GrpE 4 2-helical coiled coil 0 0 0 0 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -238253 cd00447 NusB_Sun 1 putative RNA binding site 0 1 1 1 0,1,2 3 -238342 cd00619 Terminator_NusB 1 putative RNA binding site 0 1 1 1 2,3,4 3 -238343 cd00620 Methyltransferase_Sun 1 putative RNA binding site 0 1 1 1 1,2,3 3 -100004 cd00448 YjgF_YER057c_UK114_family 1 homotrimer interaction site 0 1 1 0 0,1,4,6,9,11,13,14,53,55,56,58,60,71,74,84,85,86,87,88,89,90,91,101,103,105 2 -100004 cd00448 YjgF_YER057c_UK114_family 2 putative active site 0 1 1 0 0,67,71,86,101 1 -100005 cd02198 YjgH_like 1 homotrimer interaction site 0 1 1 0 2,3,6,8,11,13,15,16,54,56,57,59,61,73,76,85,86,87,88,89,90,91,92,103,105,107 2 -100005 cd02198 YjgH_like 2 putative active site 0 1 1 0 2,69,73,87,103 1 -100006 cd02199 YjgF_YER057c_UK114_like_1 1 homotrimer interaction site 0 1 1 0 15,16,19,21,24,26,28,29,80,82,83,85,87,102,105,118,119,120,121,122,123,124,125,135,137,139 2 -100006 cd02199 YjgF_YER057c_UK114_like_1 2 putative active site 0 1 1 0 15,98,102,120,135 1 -100007 cd06150 YjgF_YER057c_UK114_like_2 1 homotrimer interaction site 0 1 1 0 2,3,6,8,11,13,15,16,50,52,53,55,57,68,71,81,82,83,84,85,86,87,88,98,100,102 2 -100007 cd06150 YjgF_YER057c_UK114_like_2 2 putative active site 0 1 1 0 2,64,68,83,98 1 -100008 cd06151 YjgF_YER057c_UK114_like_3 1 homotrimer interaction site 0 1 1 0 0,1,4,6,12,14,16,17,62,64,65,67,69,86,89,102,103,104,105,106,107,108,109,120,122,124 2 -100008 cd06151 YjgF_YER057c_UK114_like_3 2 putative active site 0 1 1 0 0,82,86,104,120 1 -100009 cd06152 YjgF_YER057c_UK114_like_4 1 homotrimer interaction site 0 1 1 0 2,3,6,8,11,13,15,16,56,58,59,61,63,77,80,89,90,91,92,93,94,95,96,107,109,111 2 -100009 cd06152 YjgF_YER057c_UK114_like_4 2 putative active site 0 1 1 0 2,73,77,91,107 1 -100010 cd06153 YjgF_YER057c_UK114_like_5 1 homotrimer interaction site 0 1 1 0 0,1,4,6,13,15,17,18,62,64,65,67,69,80,83,91,92,93,94,95,96,97,98,108,110,112 2 -100010 cd06153 YjgF_YER057c_UK114_like_5 2 putative active site 0 1 1 0 0,76,80,93,108 1 -100011 cd06154 YjgF_YER057c_UK114_like_6 1 homotrimer interaction site 0 1 1 0 12,13,16,18,21,23,25,26,65,67,68,70,72,83,86,95,96,97,98,99,100,101,102,113,115,117 2 -100011 cd06154 YjgF_YER057c_UK114_like_6 2 putative active site 0 1 1 0 12,79,83,97,113 1 -100012 cd06155 eu_AANH_C_1 1 homotrimer interaction site 0 1 1 0 0,1,4,6,9,11,13,14,47,49,50,52,54,65,68,78,79,80,81,82,83,84,85,94,96,98 2 -100012 cd06155 eu_AANH_C_1 2 putative active site 0 1 1 0 0,61,65,80,94 1 -100013 cd06156 eu_AANH_C_2 1 homotrimer interaction site 0 1 1 0 0,1,4,6,9,11,13,14,52,54,55,57,59,70,73,95,96,97,98,99,100,101,102,112,114,116 2 -100013 cd06156 eu_AANH_C_2 2 putative active site 0 1 1 0 0,66,70,97,112 1 -238254 cd00449 PLPDE_IV 1 catalytic residue 0 0 1 1 127 1 -238254 cd00449 PLPDE_IV 2 substrate-cofactor binding pocket 0 1 0 1 10,29,127,160,187,188,224 0 -238254 cd00449 PLPDE_IV 3 pyridoxal 5'-phosphate binding site 0 1 1 0 29,127,160 5 -238254 cd00449 PLPDE_IV 4 homodimer interface 0 1 1 0 2,3,5,6,8,10,36,67,69,90,129,133,135,139,153 2 -238798 cd01557 BCAT_beta_family 1 catalytic residue 0 0 1 1 140 1 -238798 cd01557 BCAT_beta_family 2 substrate-cofactor binding pocket 0 1 0 1 15,39,140,175,202,203,239 0 -238798 cd01557 BCAT_beta_family 3 pyridoxal 5'-phosphate binding site 0 1 1 0 39,140,175 5 -238798 cd01557 BCAT_beta_family 4 homodimer interface 0 1 1 0 7,8,10,11,13,15,46,83,85,104,142,147,149,153,167 2 -238799 cd01558 D-AAT_like 1 catalytic residue 0 0 1 1 141 1 -238799 cd01558 D-AAT_like 2 substrate-cofactor binding pocket 0 1 0 1 27,46,141,174,201,202,238 0 -238799 cd01558 D-AAT_like 3 pyridoxal 5'-phosphate binding site 0 1 1 0 46,141,174 5 -238799 cd01558 D-AAT_like 4 homodimer interface 0 1 1 0 19,20,22,23,25,27,53,84,86,107,143,147,149,153,167 2 -238800 cd01559 ADCL_like 1 catalytic residue 0 0 1 1 123 1 -238800 cd01559 ADCL_like 2 substrate-cofactor binding pocket 0 1 0 1 10,29,123,156,183,184,220 0 -238800 cd01559 ADCL_like 3 pyridoxal 5'-phosphate binding site 0 1 1 0 29,123,156 5 -238800 cd01559 ADCL_like 4 homodimer interface 0 1 1 0 2,3,5,6,8,10,36,66,68,89,125,129,131,135,149 2 -238255 cd00453 FTBP_aldolase_II 1 active site 0 1 1 1 18,92,93,127,157,159,162,163,164,165,208,209,210,212,247,248,250,269,271,272 0 -238255 cd00453 FTBP_aldolase_II 2 zinc binding site 0 1 1 1 93,127,157,164,209,247 4 -238255 cd00453 FTBP_aldolase_II 3 Na+ binding site 0 1 1 1 208,210,212,248,250 4 -238255 cd00453 FTBP_aldolase_II 4 intersubunit interface 0 1 0 1 21,22,23,26,47,50,51,52,71,75,78,79,165,272,273,275,276,279,283,286 2 -238476 cd00946 FBP_aldolase_IIA 1 active site 0 1 1 1 21,94,95,129,159,161,164,165,166,167,210,211,212,214,250,251,253,272,274,275 0 -238476 cd00946 FBP_aldolase_IIA 2 zinc binding site 0 1 1 1 95,129,159,166,211,250 4 -238476 cd00946 FBP_aldolase_IIA 3 Na+ binding site 0 1 1 1 210,212,214,251,253 4 -238476 cd00946 FBP_aldolase_IIA 4 intersubunit interface 0 1 0 1 24,25,26,29,50,53,54,55,73,77,80,81,167,275,276,278,279,282,286,289 2 -238477 cd00947 TBP_aldolase_IIB 1 active site 0 1 1 1 18,76,77,98,128,130,133,134,135,136,171,172,173,175,201,202,204,223,225,226 0 -238477 cd00947 TBP_aldolase_IIB 2 zinc binding site 0 1 1 1 77,98,128,135,172,201 4 -238477 cd00947 TBP_aldolase_IIB 3 Na+ binding site 0 1 1 1 171,173,175,202,204 4 -238477 cd00947 TBP_aldolase_IIB 4 intersubunit interface 0 1 0 1 21,22,23,26,46,49,50,51,55,59,62,63,136,226,227,229,230,233,237,240 2 -238257 cd00455 nuc_hydro 1 active site 0 1 1 1 5,9,10,34,118,153,159,161,234 0 -239113 cd02647 nuc_hydro_TvIAG 1 active site 0 1 1 1 7,11,12,38,127,162,173,175,249 0 -239114 cd02648 nuc_hydro_1 1 active site 0 1 1 1 8,12,13,38,157,192,198,200,299 0 -239115 cd02649 nuc_hydro_CeIAG 1 active site 0 1 1 1 7,11,12,36,123,158,164,166,241 0 -239116 cd02650 nuc_hydro_CaPnhB 1 active site 0 1 1 1 6,10,11,35,121,156,162,164,238 0 -239117 cd02651 nuc_hydro_IU_UC_XIUA 1 active site 0 1 1 1 6,10,11,35,120,154,160,162,235 0 -239118 cd02652 nuc_hydro_2 1 active site 0 1 1 1 5,11,12,36,115,158,163,165,231 0 -239119 cd02653 nuc_hydro_3 1 active site 0 1 1 1 6,10,11,35,119,154,160,162,240 0 -239120 cd02654 nuc_hydro_CjNH 1 active site 0 1 1 1 6,14,15,39,135,173,179,181,252 0 -176642 cd00457 PEBP 1 substrate binding site 0 1 1 0 47,55,57,103,104,105,106,112,114 5 -176643 cd00865 PEBP_bact_arch 1 substrate binding site 0 1 1 0 48,56,58,99,100,101,102,107,109 5 -176644 cd00866 PEBP_euk 1 substrate binding site 0 1 1 0 48,61,63,91,92,93,94,100,102 5 -238258 cd00458 SugarP_isomerase 1 active site 0 1 1 0 27,29,30,55,120,121 1 -238692 cd01398 RPI_A 1 active site 0 1 1 0 22,24,25,49,79,80 1 -238693 cd01399 GlcN6P_deaminase 1 active site 0 1 1 0 26,28,29,56,122,123 1 -238694 cd01400 6PGL 1 active site 0 1 1 0 30,32,33,57,125,126 1 -132901 cd00460 RNAP_RPB11_RPB3 1 dimer interface 0 1 1 1 0,2,14,18,20,21,24,27,72,75,79,81,82,83,84,85 2 -132904 cd06928 RNAP_alpha_NTD 1 dimer interface 0 1 1 1 0,2,14,22,24,25,28,31,201,204,208,210,211,212,213,214 2 -132905 cd07027 RNAP_RPB11_like 1 dimer interface 0 1 1 1 0,2,14,18,20,21,24,27,67,70,74,76,77,78,79,80 2 -132902 cd06926 RNAP_II_RPB11 1 dimer interface 0 1 1 1 6,8,22,26,28,29,32,35,75,78,82,84,85,86,87,88 2 -132903 cd06927 RNAP_L 1 dimer interface 0 1 1 1 0,2,14,18,20,21,24,27,67,70,74,76,77,78,79,80 2 -132907 cd07029 RNAP_I_III_AC19 1 dimer interface 0 1 1 1 0,2,14,18,20,21,24,27,67,70,74,76,77,78,79,80 2 -132906 cd07028 RNAP_RPB3_like 1 dimer interface 0 1 1 1 2,4,16,20,22,23,26,29,195,198,202,204,205,206,207,208 2 -132908 cd07030 RNAP_D 1 dimer interface 0 1 1 1 2,4,16,20,22,23,26,29,241,244,248,250,251,252,253,254 2 -132909 cd07031 RNAP_II_RPB3 1 dimer interface 0 1 1 1 2,4,16,20,22,23,26,29,244,247,251,253,254,255,256,257 2 -132910 cd07032 RNAP_I_II_AC40 1 dimer interface 0 1 1 1 2,4,16,20,22,23,26,29,274,277,281,283,284,285,286,287 2 -238259 cd00462 PTH 1 catalytic residue 0 0 1 0 16 1 -238259 cd00462 PTH 2 putative active site 0 0 1 0 6,16,61,62,88,108 1 -239090 cd02406 CRS2 1 catalytic residue 0 0 1 0 19 1 -239090 cd02406 CRS2 2 putative active site 0 0 1 0 9,19,64,65,91,111 1 -199209 cd00463 Ribosomal_L31e 1 23S rRNA binding site 0 1 1 0 11,20,21,22,24,25,26,28,29,32,37,38,44,45,46,47,51,52,54,55,56,57,58,59,60,64,65 3 -238262 cd00466 DHQase_II 1 active site 0 1 1 1 15,20,71,73,74,77,84,97,98,99,108 1 -238262 cd00466 DHQase_II 2 trimer interface 0 1 1 0 8,10,49,50,51,52,53,56,59,74,81,84,85,88,108 2 -238262 cd00466 DHQase_II 3 dimer interface 0 1 1 1 100,102,103,114,115,117,118,119,120,122,123,124,127,131,135,138 2 -238263 cd00468 HIT_like 1 nucleotide binding site/active site 0 1 0 0 9,11,19,21,67,76,80,82 1 -238263 cd00468 HIT_like 2 HIT family signature motif 0 0 1 1 78,80,82,83,84 0 -238263 cd00468 HIT_like 3 catalytic residue 0 1 0 0 80 1 -238341 cd00608 GalT 1 nucleotide binding site/active site 0 1 0 0 62,64,93,95,142,151,155,157 1 -238341 cd00608 GalT 2 HIT family signature motif 0 0 1 1 153,155,157,158,159 0 -238341 cd00608 GalT 3 catalytic residue 0 1 0 0 155 1 -238606 cd01275 FHIT 1 nucleotide binding site/active site 0 1 0 0 25,27,35,37,83,92,96,98 1 -238606 cd01275 FHIT 2 HIT family signature motif 0 0 1 1 94,96,98,99,100 0 -238606 cd01275 FHIT 3 catalytic residue 0 1 0 0 96 1 -238607 cd01276 PKCI_related 1 nucleotide binding site/active site 0 1 0 0 25,27,35,37,84,93,97,99 1 -238607 cd01276 PKCI_related 2 HIT family signature motif 0 0 1 1 95,97,99,100,101 0 -238607 cd01276 PKCI_related 3 catalytic residue 0 1 0 0 97 1 -238608 cd01277 HINT_subgroup 1 nucleotide binding site/active site 0 1 0 0 25,27,35,37,83,92,96,98 1 -238608 cd01277 HINT_subgroup 2 HIT family signature motif 0 0 1 1 94,96,98,99,100 0 -238608 cd01277 HINT_subgroup 3 catalytic residue 0 1 0 0 96 1 -238609 cd01278 aprataxin_related 1 nucleotide binding site/active site 0 1 0 0 27,29,37,39,85,94,98,100 1 -238609 cd01278 aprataxin_related 2 HIT family signature motif 0 0 1 1 96,98,100,101,102 0 -238609 cd01278 aprataxin_related 3 catalytic residue 0 1 0 0 98 1 -100103 cd00472 Ribosomal_L24e_L24 1 23S rRNA interface 0 1 1 0 16,17,33,34,36,37,41,43,49,50 3 -100103 cd00472 Ribosomal_L24e_L24 2 L14 interface 0 1 1 1 15,17,18,19,21,23,24 2 -100103 cd00472 Ribosomal_L24e_L24 3 L3 interface 0 1 1 1 13,14,15 2 -100103 cd00472 Ribosomal_L24e_L24 4 zinc binding site 0 1 0 1 5,8,31,35 4 -275385 cd00473 bS6 1 rRNA binding site 0 1 1 1 1,47,51,66,69,70,77,84,87,88,89 3 -275385 cd00473 bS6 2 S18 interface 0 1 1 1 2,4,43,45,46,47,57,59,84,88 2 -275386 cd15465 bS6_mito 1 rRNA binding site 0 1 1 1 1,47,51,70,73,74,81,88,91,92,93 3 -275386 cd15465 bS6_mito 2 S18 interface 0 1 1 1 2,4,43,45,46,47,61,63,88,92 2 -275387 cd15487 bS6_chloro_cyano 1 rRNA binding site 0 1 1 1 4,50,54,69,72,73,80,87,90,91,92 3 -275387 cd15487 bS6_chloro_cyano 2 S18 interface 0 1 1 1 5,7,46,48,49,50,60,62,87,91 2 -211317 cd00474 eIF1_SUI1_like 1 putative rRNA binding site 0 1 1 0 8,11,12,14,31,34,35,36,38,39,40,42,53,56 3 -211318 cd11566 eIF1_SUI1 1 putative rRNA binding site 0 1 1 0 9,12,13,15,32,35,36,37,39,40,41,43,57,60 3 -211319 cd11567 YciH_like 1 putative rRNA binding site 0 1 1 0 9,13,14,16,34,37,38,39,41,42,43,45,54,57 3 -211320 cd11607 DENR_C 1 putative rRNA binding site 0 1 1 0 9,12,13,15,33,36,37,38,40,41,42,44,58,61 3 -211321 cd11608 eIF2D_C 1 putative rRNA binding site 0 1 1 0 8,11,12,14,32,35,36,37,39,40,41,43,59,62 3 -259850 cd00475 Cis_IPPS 1 active site 0 1 1 0 5,6,7,8,9,10,19,23,27,30,49,57,61,68,69,72,121,174,180,182 1 -259850 cd00475 Cis_IPPS 2 dimer interface 0 1 1 0 128,129,131,132,135,136,152,153,154,157,168,179,180,181,182,183,186,187,188,190,191,192,193,194,196 2 -133468 cd00476 SAICAR_synt 1 active site 0 1 1 0 2,4,5,6,7,9,17,29,63,74,75,76,77,79,83,85,87,91,92,93,115,117,123,169,170,171,173,186,191,192,193,194 1 -133468 cd00476 SAICAR_synt 2 ATP binding site 0 1 1 0 1,2,4,5,7,9,10,17,19,62,75,77,79,117,173,185,186 5 -133468 cd00476 SAICAR_synt 3 substrate binding site 0 1 1 1 29,83,85,87,91,92,93,115,123,169,170,171,191,192,193,194 5 -133469 cd01414 SAICAR_synt_Sc 1 active site 0 1 1 0 2,4,5,6,7,9,17,29,62,86,87,88,89,91,95,97,99,103,104,105,139,141,147,191,192,193,195,208,214,215,216,217 1 -133469 cd01414 SAICAR_synt_Sc 2 ATP binding site 0 1 1 0 1,2,4,5,7,9,10,17,19,61,87,89,91,141,195,207,208 5 -133469 cd01414 SAICAR_synt_Sc 3 substrate binding site 0 1 1 1 29,95,97,99,103,104,105,139,147,191,192,193,214,215,216,217 5 -133470 cd01415 SAICAR_synt_PurC 1 active site 0 1 1 0 2,4,5,6,7,9,18,30,64,75,76,77,78,80,84,86,88,92,93,94,115,117,123,169,170,171,173,186,191,192,193,194 1 -133470 cd01415 SAICAR_synt_PurC 2 ATP binding site 0 1 1 0 1,2,4,5,7,9,10,18,20,63,76,78,80,117,173,185,186 5 -133470 cd01415 SAICAR_synt_PurC 3 substrate binding site 0 1 1 1 30,84,86,88,92,93,94,115,123,169,170,171,191,192,193,194 5 -133471 cd01416 SAICAR_synt_Ade5 1 active site 0 1 1 0 7,9,10,11,12,14,24,36,70,81,82,83,84,86,90,92,94,98,99,100,122,124,130,182,183,184,186,200,205,206,207,208 1 -133471 cd01416 SAICAR_synt_Ade5 2 ATP binding site 0 1 1 0 6,7,9,10,12,14,15,24,26,69,82,84,86,124,186,199,200 5 -133471 cd01416 SAICAR_synt_Ade5 3 substrate binding site 0 1 1 1 36,90,92,94,98,99,100,122,130,182,183,184,205,206,207,208 5 -238267 cd00480 malate_synt 1 active site 0 1 1 0 142,226,252,254,424 1 -238369 cd00727 malate_synt_A 1 active site 0 1 1 0 142,226,252,254,423 1 -238370 cd00728 malate_synt_G 1 active site 0 1 1 0 331,423,449,451,622 1 -238268 cd00481 Ribosomal_L19e 1 putative intersubunit bridge 0 1 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144 0 -238268 cd00481 Ribosomal_L19e 2 putative translocon docking site 0 1 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238268 cd00481 Ribosomal_L19e 3 protein-rRNA interface 0 1 0 0 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,127,130,131 3 -238705 cd01417 Ribosomal_L19e_E 1 putative intersubunit bridge 0 1 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144 0 -238705 cd01417 Ribosomal_L19e_E 2 putative translocon docking site 0 1 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238705 cd01417 Ribosomal_L19e_E 3 protein-rRNA interface 0 1 0 0 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,127,130,131 3 -238706 cd01418 Ribosomal_L19e_A 1 putative intersubunit bridge 0 1 1 1 108,109,111,112,113,114,115,135,136,137,138,139,140,141,142,143,144 0 -238706 cd01418 Ribosomal_L19e_A 2 putative translocon docking site 0 1 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 0 -238706 cd01418 Ribosomal_L19e_A 3 protein-rRNA interface 0 1 0 0 0,4,5,14,15,16,17,18,19,20,22,25,34,38,49,51,52,53,54,55,56,58,60,62,63,65,66,68,70,71,72,73,74,75,77,78,79,84,85,88,91,92,93,96,97,99,106,113,114,116,117,120,121,127,130,131 3 -238269 cd00483 HPPK 1 catalytic center binding site 0 1 1 1 5,39,40,42,50,52,67,71,74,79,81,85,88,91,93,94,108,111,112,117,119 1 -238269 cd00483 HPPK 2 ATP binding site 0 1 1 1 67,71,74,79,81,88,93,94,108,111,112,117 5 -238271 cd00487 Pep_deformylase 1 active site 0 1 1 0 38,39,40,45,87,88,89,130,131,134 1 -238271 cd00487 Pep_deformylase 2 metal binding site 0 1 0 1 88,130,134 4 -238271 cd00487 Pep_deformylase 3 catalytic residues 0 0 1 1 40,45,89,131 1 -238272 cd00488 PCD_DCoH 1 substrate binding site 0 1 1 1 36,37,38,53,55,56 5 -238272 cd00488 PCD_DCoH 2 DCoH dimer interaction site 0 1 1 0 18,22,26,33,38,39,40,41,42,43,44,45 2 -238272 cd00488 PCD_DCoH 3 DCoH /HNF-1 dimer interaction site 0 1 1 1 19,20,26,27,30,33,34 2 -238272 cd00488 PCD_DCoH 4 DCoH tetramer interaction site 0 1 1 1 19,26,27,30,34 2 -238272 cd00488 PCD_DCoH 5 aromatic arch 0 1 1 1 18,22,38,41,55 0 -238455 cd00913 PCD_DCoH_subfamily_a 1 substrate binding site 0 1 1 1 37,38,39,54,56,57 5 -238455 cd00913 PCD_DCoH_subfamily_a 2 DCoH dimer interaction site 0 1 1 0 19,23,27,34,39,40,41,42,43,44,45,46 2 -238455 cd00913 PCD_DCoH_subfamily_a 3 DCoH /HNF-1 dimer interaction site 0 1 1 1 20,21,27,28,31,34,35 2 -238455 cd00913 PCD_DCoH_subfamily_a 4 DCoH tetramer interaction site 0 1 1 1 20,27,28,31,35 2 -238455 cd00913 PCD_DCoH_subfamily_a 5 aromatic arch 0 1 1 1 19,23,39,42,56 0 -238456 cd00914 PCD_DCoH_subfamily_b 1 substrate binding site 0 1 1 1 37,38,39,54,56,57 5 -238456 cd00914 PCD_DCoH_subfamily_b 2 DCoH dimer interaction site 0 1 1 0 19,23,27,34,39,40,41,42,43,44,45,46 2 -238456 cd00914 PCD_DCoH_subfamily_b 3 DCoH /HNF-1 dimer interaction site 0 1 1 1 20,21,27,28,31,34,35 2 -238456 cd00914 PCD_DCoH_subfamily_b 4 DCoH tetramer interaction site 0 1 1 1 20,27,28,31,35 2 -238456 cd00914 PCD_DCoH_subfamily_b 5 aromatic arch 0 1 1 1 19,23,39,42,56 0 -238273 cd00489 Barstar_like 1 RNAase interaction site 0 1 1 0 26,28,30,31,32,36,73 2 -240163 cd05140 Barstar_AU1054-like 1 RNAase interaction site 0 1 1 0 26,28,30,31,32,36,73 2 -240164 cd05141 Barstar_evA4336-like 1 RNAase interaction site 0 1 1 0 26,28,30,31,32,36,72 2 -240165 cd05142 Barstar 1 RNAase interaction site 0 1 1 0 27,29,31,32,33,37,74 2 -240166 cd05143 Barstar_SaI14_like 1 RNAase interaction site 0 1 1 0 27,29,31,32,33,37,77 2 -119402 cd00490 Met_repressor_MetJ 1 corepressor binding sites 0 1 0 0 38,41,42,55,58,59,60,62,63,64,66,69,70 0 -119402 cd00490 Met_repressor_MetJ 2 DNA binding site 0 1 1 0 16,20,21,22,23,24,26,39,51,52,53 3 -119402 cd00490 Met_repressor_MetJ 3 dimerization interface 0 1 0 0 8,9,11,18,19,20,21,22,23,24,25,26,27,28,29,31,32,34,35,38,53,56,57,59,60,62,63,64,69 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 1 dimer interface 0 1 0 0 0,1,2,3,4,5,6,18,21,22,25,29,30 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 2 hexamer interface 0 1 0 0 3,5,15,16,19,20,23,34,35,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55 2 -238274 cd00491 4Oxalocrotonate_Tautomerase 3 active site 1 0 1 0 0 0,1,36 1 -238274 cd00491 4Oxalocrotonate_Tautomerase 4 active site 2 0 1 0 0 5,49 1 -198379 cd00495 Ribosomal_L25_TL5_CTC 1 5S rRNA interface 0 1 1 0 6,14,15,16,18,28,29,30,34,71,72,74,84,86,88 3 -198379 cd00495 Ribosomal_L25_TL5_CTC 2 L16 interface 0 1 1 0 69,70,73,80,88 2 -198379 cd00495 Ribosomal_L25_TL5_CTC 3 CTC domain interface 0 1 1 0 30,55,67,71,88,89 2 -238278 cd00498 Hsp33 1 redox-dependent activation switch 0 0 1 1 231,233,264,267 0 -238278 cd00498 Hsp33 2 dimerization interface 0 0 1 1 11,141,145,146,147,173,231 2 -238278 cd00498 Hsp33 3 domain crossover interface 0 0 1 1 11,167,169,173,174,175,176 0 -238279 cd00501 Peptidase_C15 1 catalytic triad 0 1 1 0 78,141,165 1 -238279 cd00501 Peptidase_C15 2 AB domain interface 0 1 1 1 79,80,84,86,88,98,99,108,109,110,111,117,134,135,138 0 -238279 cd00501 Peptidase_C15 3 AC domain interface 0 1 1 0 72,73,74,124,127,128,129,130,131,170,171,173,179,180,182 0 -238279 cd00501 Peptidase_C15 4 interchain disulfide 0 1 0 0 182 0 -238279 cd00501 Peptidase_C15 5 putative substrate binding pocket 0 0 1 1 7,10,42,139,140,141 5 -238280 cd00503 Frataxin 1 putative iron binding site 0 0 1 1 2,10,11,14,18,21,22,28,30 4 -238281 cd00504 GXGXG 1 domain_subunit interface 0 1 1 1 4,5,28,31,32,36,47,48,49,54,57,73,74,77,80,83,92,93,94,95,96,99,100,102,111,112,113,114,115,118,119,121,134,137,140 0 -238480 cd00980 FwdC/FmdC 1 domain_subunit interface 0 1 1 1 34,35,46,49,50,54,65,66,67,72,75,91,92,95,98,101,110,111,112,113,114,117,118,120,129,130,131,132,133,136,137,139,152,155,158 0 -238481 cd00981 arch_gltB 1 domain_subunit interface 0 1 1 1 32,33,53,56,57,61,72,73,74,79,82,91,92,95,98,101,110,111,112,113,114,117,118,120,134,135,136,137,138,141,142,144,163,166,169 0 -238482 cd00982 gltB_C 1 domain_subunit interface 0 1 1 1 34,35,61,64,65,69,81,82,83,88,91,112,113,116,119,122,131,132,133,134,135,138,139,141,150,151,152,153,156,157,159,172,175,178 0 -238284 cd00513 Ribosomal_L32_L32e 1 23S rRNA interface 0 1 1 1 0,1,2,4,5,6,8,9,10,11,12,13,16,17,18,19,21,22,23,24,25,26,28,29,30,31,32,33,34,38,39,40,41,42,43,44,46,49,50,52,53,60,62,63,80,82,83,84,85,86,87,88,89,91,105,106 3 -238286 cd00516 PRTase_typeII 1 active site 0 1 1 1 117,118,119,140,141,211,244,245,264,266,267,270 1 -238801 cd01567 NAPRTase_PncB 1 active site 0 1 1 1 162,163,164,186,187,269,299,300,323,325,326,329 1 -238695 cd01401 PncB_like 1 active site 0 1 1 1 170,171,172,197,198,279,309,310,333,335,336,339 1 -238803 cd01569 PBEF_like 1 active site 0 1 1 1 177,178,179,201,202,291,330,331,359,361,362,365 1 -238804 cd01570 NAPRTase_A 1 active site 0 1 1 1 151,152,153,175,176,255,283,284,305,307,308,311 1 -238805 cd01571 NAPRTase_B 1 active site 0 1 1 1 117,118,119,140,141,217,250,251,270,272,273,276 1 -238802 cd01568 QPRTase_NadC 1 active site 0 1 1 1 122,123,124,145,146,207,232,233,252,254,255,258 1 -238806 cd01572 QPRTase 1 active site 0 1 1 1 123,124,125,146,147,208,231,232,251,253,254,257 1 -238807 cd01573 modD_like 1 active site 0 1 1 1 123,124,125,146,147,209,235,236,255,257,258,261 1 -99872 cd00518 H2MP 1 nickel binding site 0 1 1 1 12,57,86 4 -99873 cd06062 H2MP_MemB-H2up 1 nickel binding site 0 1 1 1 13,59,89 4 -99874 cd06063 H2MP_Cyano-H2up 1 nickel binding site 0 1 1 1 13,58,88 4 -99875 cd06064 H2MP_F420-Reduc 1 nickel binding site 0 1 1 1 12,62,92 4 -99876 cd06066 H2MP_NAD-link-bidir 1 nickel binding site 0 1 1 1 12,56,82 4 -99877 cd06067 H2MP_MemB-H2evol 1 nickel binding site 0 1 1 1 12,58,85 4 -99878 cd06068 H2MP_like-1 1 nickel binding site 0 1 1 1 12,58,87 4 -99879 cd06070 H2MP_like-2 1 nickel binding site 0 1 1 1 12,53,84 4 -238288 cd00520 RRF 1 hinge region 0 0 1 1 24,25,26,27,97,98,99,100 0 -213981 cd00522 Hemerythrin-like 1 Fe binding site HHEHH[ED] 1 1 1 6,36,40,59,92,97 4 -213982 cd12107 Hemerythrin 1 Fe binding site HHEHH[ED] 1 1 1 6,43,47,62,102,107 4 -213983 cd12108 Hr-like 1 Fe binding site HHEHH[ED] 1 1 1 6,48,52,77,119,123 4 -213984 cd12109 Hr_FBXL5 1 Fe binding site HHEHH[ED] 1 1 1 8,50,54,77,123,127 4 -238290 cd00524 SORL 1 non-heme iron binding site 0 1 1 1 1,3,27,33,78,81 4 -239421 cd03171 SORL_Dfx_classI 1 non-heme iron binding site 0 1 1 1 1,3,23,29,70,73 4 -239422 cd03172 SORL_classII 1 non-heme iron binding site 0 1 1 1 5,7,35,41,93,96 4 -238291 cd00525 AE_Prim_S_like 1 nucleotide binding site 0 1 1 0 41,59,61,94,97,98,100,107,116 5 -240129 cd04859 Prim_Pol 1 nucleotide binding site 0 1 1 0 42,54,56,83,86,87,89,112,119 5 -240130 cd04860 AE_Prim_S 1 nucleotide binding site 0 1 1 0 57,82,84,133,136,137,139,193,203 5 -240131 cd04861 LigD_Pol_like 1 nucleotide binding site 0 1 1 0 85,103,105,138,141,142,144,193,202 5 -240132 cd04862 PaeLigD_Pol_like 1 nucleotide binding site 0 1 1 0 85,103,105,138,141,142,144,193,202 5 -240133 cd04863 MtLigD_Pol_like 1 nucleotide binding site 0 1 1 0 86,107,109,142,145,146,148,197,206 5 -240134 cd04864 LigD_Pol_like_1 1 nucleotide binding site 0 1 1 0 87,105,107,139,142,143,145,194,203 5 -240135 cd04865 LigD_Pol_like_2 1 nucleotide binding site 0 1 1 0 86,104,106,139,142,143,145,194,203 5 -240136 cd04866 LigD_Pol_like_3 1 nucleotide binding site 0 1 1 0 81,98,100,133,136,137,139,189,198 5 -238292 cd00527 IF6 1 "Velcro" closure 0 0 1 1 0,1,2,199,200,201,202,203 0 -238293 cd00528 MoaC 1 putative active site 0 0 1 1 36,52,59,61,62,94,97,98,99,102,113,116 1 -238293 cd00528 MoaC 2 dimer interface 0 0 1 0 36,37,38,54,55,56,57,58,119,120,121 2 -238293 cd00528 MoaC 3 trimer interface 0 0 1 0 0,1,2,3,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,124,125,126,127,128,129,130,131,132,133,134,135 2 -238707 cd01419 MoaC_A 1 putative active site 0 0 1 1 36,52,59,61,62,92,95,96,97,100,111,114 1 -238707 cd01419 MoaC_A 2 dimer interface 0 0 1 0 36,37,38,54,55,56,57,58,117,118,119 2 -238707 cd01419 MoaC_A 3 trimer interface 0 0 1 0 0,1,2,3,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,129,130,131,132,133,134,135,136,137,138,139,140 2 -238708 cd01420 MoaC_PE 1 putative active site 0 0 1 1 36,52,59,61,62,94,97,98,99,102,113,116 1 -238708 cd01420 MoaC_PE 2 dimer interface 0 0 1 0 36,37,38,54,55,56,57,58,119,120,121 2 -238708 cd01420 MoaC_PE 3 trimer interface 0 0 1 0 0,1,2,3,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67,68,69,70,71,72,124,125,126,127,128,129,130,131,132,133,134,135 2 -340812 cd00529 RuvC_like 1 active site DE[DH][DNS] 0 1 1 4,65,102,105 1 -340812 cd00529 RuvC_like 2 nucleic acid substrate binding site 0 1 1 0 6,7,8,32,67,68,69,79 3 -340812 cd00529 RuvC_like 3 dimer interface 0 1 1 0 47,80,81,83,84,85,87,88 2 -340813 cd16962 RuvC 1 active site DE[DH][DNS] 0 1 1 4,64,137,140 1 -340813 cd16962 RuvC 2 nucleic acid substrate binding site 0 1 1 0 6,7,8,31,66,67,68,78 3 -340813 cd16962 RuvC 3 dimer interface 0 1 1 0 46,79,80,82,83,84,86,87 2 -340814 cd16963 CCE1 1 active site DE[DH][DNS] 0 1 1 51,124,265,268 1 -340814 cd16963 CCE1 2 nucleic acid substrate binding site 0 1 1 0 53,54,55,80,126,127,128,143 3 -340814 cd16963 CCE1 3 dimer interface 0 1 1 0 105,144,145,147,148,149,151,152 2 -340815 cd16964 YqgF 1 active site DE[DH][DNS] 0 1 1 4,55,117,120 1 -340815 cd16964 YqgF 2 nucleic acid substrate binding site 0 1 1 0 6,7,8,29,57,58,59,68 3 -340815 cd16964 YqgF 3 dimer interface 0 1 1 0 37,69,70,72,73,74,76,77 2 -238297 cd00532 MGS-like 1 substrate binding site 0 1 0 0 4,10,30,32,33,73 5 -238709 cd01421 IMPCH 1 substrate binding site 0 1 0 0 5,9,29,31,32,96 5 -238710 cd01422 MGS 1 substrate binding site 0 1 0 0 4,10,32,34,35,75 5 -238711 cd01423 MGS_CPS_I_III 1 substrate binding site 0 1 0 0 5,11,31,33,34,76 5 -238712 cd01424 MGS_CPS_II 1 substrate binding site 0 1 0 0 5,11,31,33,34,72 5 -238299 cd00537 MTHFR 1 FAD binding site 0 1 1 0 35,63,92,93,94,112,113,133,135,139,141,148,151,154,155,164,166,258 5 -238300 cd00538 PA 1 PA/protease or protease-like domain interface 0 1 1 0 84,85,86 2 -239035 cd02120 PA_subtilisin_like 1 PA/protease or protease-like domain interface 0 1 1 0 89,90,91 2 -239036 cd02121 PA_GCPII_like 1 PA/protease or protease-like domain interface 0 1 1 0 129,130,131 2 -239037 cd02122 PA_GRAIL_like 1 PA/protease or protease-like domain interface 0 1 1 0 98,99,100 2 -239038 cd02123 PA_C_RZF_like 1 PA/protease or protease-like domain interface 0 1 1 0 105,106,107 2 -239039 cd02124 PA_PoS1_like 1 PA/protease or protease-like domain interface 0 1 1 0 91,92,93 2 -239040 cd02125 PA_VSR 1 PA/protease or protease-like domain interface 0 1 1 0 80,81,82 2 -239041 cd02126 PA_EDEM3_like 1 PA/protease or protease-like domain interface 0 1 1 0 84,85,86 2 -239042 cd02127 PA_hPAP21_like 1 PA/protease or protease-like domain interface 0 1 1 0 75,76,77 2 -239043 cd02128 PA_TfR 1 PA/protease or protease-like domain interface 0 1 1 0 99,100,101 2 -239044 cd02129 PA_hSPPL_like 1 PA/protease or protease-like domain interface 0 1 1 0 80,81,82 2 -239045 cd02130 PA_ScAPY_like 1 PA/protease or protease-like domain interface 0 1 1 0 81,82,83 2 -239046 cd02131 PA_hNAALADL2_like 1 PA/protease or protease-like domain interface 0 1 1 0 86,87,88 2 -239047 cd02132 PA_GO-like 1 PA/protease or protease-like domain interface 0 1 1 0 96,97,98 2 -239048 cd02133 PA_C5a_like 1 PA/protease or protease-like domain interface 0 1 1 0 84,85,86 2 -240117 cd04813 PA_1 1 PA/protease or protease-like domain interface 0 1 1 0 74,75,76 2 -240118 cd04814 PA_M28_1 1 PA/protease or protease-like domain interface 0 1 1 0 102,103,104 2 -240124 cd04820 PA_M28_1_1 1 PA/protease or protease-like domain interface 0 1 1 0 96,97,98 2 -240125 cd04821 PA_M28_1_2 1 PA/protease or protease-like domain interface 0 1 1 0 105,106,107 2 -240126 cd04822 PA_M28_1_3 1 PA/protease or protease-like domain interface 0 1 1 0 108,109,110 2 -240119 cd04815 PA_M28_2 1 PA/protease or protease-like domain interface 0 1 1 0 93,94,95 2 -240120 cd04816 PA_SaNapH_like 1 PA/protease or protease-like domain interface 0 1 1 0 80,81,82 2 -240121 cd04817 PA_VapT_like 1 PA/protease or protease-like domain interface 0 1 1 0 99,100,101 2 -240122 cd04818 PA_subtilisin_1 1 PA/protease or protease-like domain interface 0 1 1 0 79,80,81 2 -240123 cd04819 PA_2 1 PA/protease or protease-like domain interface 0 1 1 0 84,85,86 2 -238301 cd00539 MCR_gamma 1 cofactor binding site 0 1 1 0 114,115,116,117,150,151,152,153,155 0 -238301 cd00539 MCR_gamma 2 multimer interface 0 1 1 0 0,1,2,3,12,49,53,56,58,61,62,63,64,66,67,68,69,70,73,79,80,81,89,94,95,96,99,100,103,104,106,107,108,109,110,111,112,113,115,117,121,123,149,151,153,155,156,157,158,159,161,166,167,170,214,216,221,222,226,228,231,232,233,234,235,236,238,239,241,242,243,244,245 2 -238302 cd00541 OMPLA 1 active site 0 0 1 1 109,111,123 1 -238302 cd00541 OMPLA 2 calcium binding site 0 1 1 1 116,119,153 4 -238302 cd00541 OMPLA 3 substrate binding site 0 1 1 1 10,38,40,42,44,59,65,73,76,109,111,113,205 5 -238302 cd00541 OMPLA 4 dimerization interface 0 1 1 1 2,38,40,61,76 2 -238305 cd00545 MCH 1 trimer interface I 0 0 1 0 43,47,62,73,170,171,211 2 -238305 cd00545 MCH 2 trimer interface II 0 0 1 0 201,203,233,291 2 -238305 cd00545 MCH 3 putative substrate binding pocket 0 0 1 0 106,180,183,187,219,227,262,266,273,274 5 -349426 cd00548 NrfA-like 1 heme binding site 0 1 1 0 4,8,11,12,15,55,56,58,59,60,61,63,64,67,68,71,73,79,83,86,87,118,119,120,123,124,131,154,158,161,162,165,166,169,171,217,219,223,227,228,235,238,239,240,242,250,251,253,257,258,259,265,266,269,270,277,281,284,340,344,345 5 -349426 cd00548 NrfA-like 2 homodimer interface 0 1 1 0 227,230,231,271,276,280,283,287,291,294,298,346,347,348,349,351,352,354,355,356,358,359,360,362,363,365,366,369 2 -349426 cd00548 NrfA-like 3 active site 0 1 0 0 58,59,60,61,63,64,67,86,87,118,161,162,165,166,235,239,240 1 -349426 cd00548 NrfA-like 4 heme-binding motif CXXC[HK] 0 1 1 83,84,85,86,87 0 -349426 cd00548 NrfA-like 5 heme-binding motif CxxCH 0 1 1 120,121,122,123,124 0 -349426 cd00548 NrfA-like 6 heme-binding motif CxxCH 0 1 1 162,163,164,165,166 0 -349426 cd00548 NrfA-like 7 heme-binding motif CxxCH 0 1 1 235,236,237,238,239 0 -349426 cd00548 NrfA-like 8 heme-binding motif CxxCH 0 1 1 266,267,268,269,270 0 -349426 cd00548 NrfA-like 9 coiled coil 0 0 1 1 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309 7 -349426 cd00548 NrfA-like 10 coiled coil 0 0 1 1 319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336 7 -349426 cd00548 NrfA-like 11 coiled coil 0 0 1 1 354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369 7 -200451 cd00551 AmyAc_family 1 active site 0 0 1 1 99,114,116,149,213,214 1 -200451 cd00551 AmyAc_family 2 catalytic site 0 0 1 1 116,149,214 1 -200452 cd11313 AmyAc_arch_bac_AmyA 1 active site 0 0 1 1 99,163,165,192,256,257 1 -200452 cd11313 AmyAc_arch_bac_AmyA 2 catalytic site 0 0 1 1 165,192,257 1 -200453 cd11314 AmyAc_arch_bac_plant_AmyA 1 active site 0 0 1 1 90,134,136,161,237,238 1 -200453 cd11314 AmyAc_arch_bac_plant_AmyA 2 catalytic site 0 0 1 1 136,161,238 1 -200454 cd11315 AmyAc_bac1_AmyA 1 active site 0 0 1 1 91,170,172,207,272,273 1 -200454 cd11315 AmyAc_bac1_AmyA 2 catalytic site 0 0 1 1 172,207,273 1 -200455 cd11316 AmyAc_bac2_AmyA 1 active site 0 0 1 1 93,181,183,224,292,293 1 -200455 cd11316 AmyAc_bac2_AmyA 2 catalytic site 0 0 1 1 183,224,293 1 -200456 cd11317 AmyAc_bac_euk_AmyA 1 active site 0 0 1 1 89,135,137,171,235,236 1 -200456 cd11317 AmyAc_bac_euk_AmyA 2 catalytic site 0 0 1 1 137,171,236 1 -200457 cd11318 AmyAc_bac_fung_AmyA 1 active site 0 0 1 1 102,228,230,260,326,327 1 -200457 cd11318 AmyAc_bac_fung_AmyA 2 catalytic site 0 0 1 1 230,260,327 1 -200458 cd11319 AmyAc_euk_AmyA 1 active site 0 0 1 1 121,203,205,229,295,296 1 -200458 cd11319 AmyAc_euk_AmyA 2 catalytic site 0 0 1 1 205,229,296 1 -200459 cd11320 AmyAc_AmyMalt_CGTase_like 1 active site 0 0 1 1 127,210,212,240,311,312 1 -200459 cd11320 AmyAc_AmyMalt_CGTase_like 2 catalytic site 0 0 1 1 212,240,312 1 -200460 cd11321 AmyAc_bac_euk_BE 1 active site 0 0 1 1 111,175,177,232,300,301 1 -200460 cd11321 AmyAc_bac_euk_BE 2 catalytic site 0 0 1 1 177,232,301 1 -200461 cd11322 AmyAc_Glg_BE 1 active site 0 0 1 1 131,194,196,249,316,317 1 -200461 cd11322 AmyAc_Glg_BE 2 catalytic site 0 0 1 1 196,249,317 1 -200462 cd11323 AmyAc_AGS 1 active site 0 0 1 1 170,301,303,337,417,418 1 -200462 cd11323 AmyAc_AGS 2 catalytic site 0 0 1 1 303,337,418 1 -200463 cd11324 AmyAc_Amylosucrase 1 active site 0 0 1 1 159,257,259,301,368,369 1 -200463 cd11324 AmyAc_Amylosucrase 2 catalytic site 0 0 1 1 259,301,369 1 -200464 cd11325 AmyAc_GTHase 1 active site 0 0 1 1 127,185,187,222,315,316 1 -200464 cd11325 AmyAc_GTHase 2 catalytic site 0 0 1 1 187,222,316 1 -200465 cd11326 AmyAc_Glg_debranch 1 active site 0 0 1 1 132,201,203,240,311,312 1 -200465 cd11326 AmyAc_Glg_debranch 2 catalytic site 0 0 1 1 203,240,312 1 -200466 cd11327 AmyAc_Glg_debranch_2 1 active site 0 0 1 1 114,206,208,285,324,325 1 -200466 cd11327 AmyAc_Glg_debranch_2 2 catalytic site 0 0 1 1 208,285,325 1 -200467 cd11328 AmyAc_maltase 1 active site 0 0 1 1 101,199,201,270,335,336 1 -200467 cd11328 AmyAc_maltase 2 catalytic site 0 0 1 1 201,270,336 1 -200468 cd11329 AmyAc_maltase-like 1 active site 0 0 1 1 138,230,232,304,366,367 1 -200468 cd11329 AmyAc_maltase-like 2 catalytic site 0 0 1 1 232,304,367 1 -200469 cd11330 AmyAc_OligoGlu 1 active site 0 0 1 1 99,194,196,264,325,326 1 -200469 cd11330 AmyAc_OligoGlu 2 catalytic site 0 0 1 1 196,264,326 1 -200470 cd11331 AmyAc_OligoGlu_like 1 active site 0 0 1 1 99,194,196,259,320,321 1 -200470 cd11331 AmyAc_OligoGlu_like 2 catalytic site 0 0 1 1 196,259,321 1 -200471 cd11332 AmyAc_OligoGlu_TS 1 active site 0 0 1 1 99,201,203,262,323,324 1 -200471 cd11332 AmyAc_OligoGlu_TS 2 catalytic site 0 0 1 1 203,262,324 1 -200472 cd11333 AmyAc_SI_OligoGlu_DGase 1 active site 0 0 1 1 96,190,192,248,321,322 1 -200472 cd11333 AmyAc_SI_OligoGlu_DGase 2 catalytic site 0 0 1 1 192,248,322 1 -200473 cd11334 AmyAc_TreS 1 active site 0 0 1 1 98,193,195,237,302,303 1 -200473 cd11334 AmyAc_TreS 2 catalytic site 0 0 1 1 195,237,303 1 -200474 cd11335 AmyAc_MTase_N 1 active site 0 0 1 1 167,348,350,379,434,435 1 -200474 cd11335 AmyAc_MTase_N 2 catalytic site 0 0 1 1 350,379,435 1 -200475 cd11336 AmyAc_MTSase 1 active site 0 0 1 1 86,228,230,258,445,446 1 -200475 cd11336 AmyAc_MTSase 2 catalytic site 0 0 1 1 230,258,446 1 -200476 cd11337 AmyAc_CMD_like 1 active site 0 0 1 1 97,141,143,172,237,238 1 -200476 cd11337 AmyAc_CMD_like 2 catalytic site 0 0 1 1 143,172,238 1 -200490 cd11353 AmyAc_euk_bac_CMD_like 1 active site 0 0 1 1 99,180,182,211,276,277 1 -200490 cd11353 AmyAc_euk_bac_CMD_like 2 catalytic site 0 0 1 1 182,211,277 1 -200491 cd11354 AmyAc_bac_CMD_like 1 active site 0 0 1 1 100,171,173,202,264,265 1 -200491 cd11354 AmyAc_bac_CMD_like 2 catalytic site 0 0 1 1 173,202,265 1 -200477 cd11338 AmyAc_CMD 1 active site 0 0 1 1 126,206,208,237,303,304 1 -200477 cd11338 AmyAc_CMD 2 catalytic site 0 0 1 1 208,237,304 1 -200478 cd11339 AmyAc_bac_CMD_like_2 1 active site 0 0 1 1 122,153,155,186,252,253 1 -200478 cd11339 AmyAc_bac_CMD_like_2 2 catalytic site 0 0 1 1 155,186,253 1 -200479 cd11340 AmyAc_bac_CMD_like_3 1 active site 0 0 1 1 119,205,207,236,314,315 1 -200479 cd11340 AmyAc_bac_CMD_like_3 2 catalytic site 0 0 1 1 207,236,315 1 -200480 cd11341 AmyAc_Pullulanase_LD-like 1 active site 0 0 1 1 130,194,196,225,316,317 1 -200480 cd11341 AmyAc_Pullulanase_LD-like 2 catalytic site 0 0 1 1 196,225,317 1 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like 1 active site 0 0 1 1 87,180,182,224,289,290 1 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like 2 catalytic site 0 0 1 1 182,224,290 1 -200492 cd11355 AmyAc_Sucrose_phosphorylase 1 active site 0 0 1 1 83,187,189,230,287,288 1 -200492 cd11355 AmyAc_Sucrose_phosphorylase 2 catalytic site 0 0 1 1 189,230,288 1 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 1 active site 0 0 1 1 89,182,184,226,291,292 1 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 2 catalytic site 0 0 1 1 184,226,292 1 -200482 cd11344 AmyAc_GlgE_like 1 active site 0 0 1 1 114,182,184,213,270,271 1 -200482 cd11344 AmyAc_GlgE_like 2 catalytic site 0 0 1 1 184,213,271 1 -200483 cd11345 AmyAc_SLC3A2 1 active site 0 0 1 1 103,137,139,173,231,232 1 -200483 cd11345 AmyAc_SLC3A2 2 catalytic site 0 0 1 1 139,173,232 1 -200484 cd11346 AmyAc_plant_IsoA 1 active site 0 0 1 1 110,180,182,219,272,273 1 -200484 cd11346 AmyAc_plant_IsoA 2 catalytic site 0 0 1 1 182,219,273 1 -200485 cd11347 AmyAc_1 1 active site 0 0 1 1 125,206,208,254,309,310 1 -200485 cd11347 AmyAc_1 2 catalytic site 0 0 1 1 208,254,310 1 -200486 cd11348 AmyAc_2 1 active site 0 0 1 1 93,197,199,258,317,318 1 -200486 cd11348 AmyAc_2 2 catalytic site 0 0 1 1 199,258,318 1 -200487 cd11349 AmyAc_3 1 active site 0 0 1 1 130,255,257,286,349,350 1 -200487 cd11349 AmyAc_3 2 catalytic site 0 0 1 1 257,286,350 1 -200488 cd11350 AmyAc_4 1 active site 0 0 1 1 105,173,175,220,284,285 1 -200488 cd11350 AmyAc_4 2 catalytic site 0 0 1 1 175,220,285 1 -200489 cd11352 AmyAc_5 1 active site 0 0 1 1 124,242,244,278,351,352 1 -200489 cd11352 AmyAc_5 2 catalytic site 0 0 1 1 244,278,352 1 -200494 cd11359 AmyAc_SLC3A1 1 active site 0 0 1 1 99,195,197,267,331,332 1 -200494 cd11359 AmyAc_SLC3A1 2 catalytic site 0 0 1 1 197,267,332 1 -238308 cd00552 RaiA 1 30S subunit binding site 0 1 1 1 2,4,6,24,27,33,34,38,42,54,57,58,59,60,63,65,68,70,73,87,88,92 0 -100025 cd00554 MECDP_synthase 1 CDP-binding sites 0 1 1 1 54,56,98,99,101,102,103,104,129,130,131 0 -100025 cd00554 MECDP_synthase 2 zinc binding site 0 1 1 0 6,8,40 4 -100025 cd00554 MECDP_synthase 3 homotrimer interaction site 0 1 1 0 0,1,3,5,7,8,9,13,48,50,51,53,54,91,93,95,102,104,126,128,129,132,133,134,147,149,151 2 -238312 cd00557 Translocase_SecB 1 SecA binding site 0 0 1 1 9,13,66,68 0 -238312 cd00557 Translocase_SecB 2 Preprotein binding site 0 0 1 1 65,67,69,71 0 -238313 cd00559 Cyanase_C 1 active site 0 1 1 1 9,35,36 1 -238313 cd00559 Cyanase_C 2 oligomer interface 0 1 1 1 3,4,5,6,8,9,11,12,14,17,22,24,26,27,28,29,31,32,33,34,37,38,43,45,53,54,56,58,60,61,62,65,68 2 -238316 cd00563 Dtyr_deacylase 1 dimerization interface 0 1 1 0 43,46,47,48,50,51,52,53,76,77,79,80,82,83,84,86,87,88,89,90,92,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 2 -238316 cd00563 Dtyr_deacylase 2 putative tRNAtyr binding site 0 0 1 1 47,52,86,89 3 -238316 cd00563 Dtyr_deacylase 3 putative active site 0 0 1 1 6,76,77,78,79,80,92,140 1 -173838 cd00567 ACAD 1 active site 0 1 1 1 42,72,74,105,107,312,313,314,316,318 1 -173839 cd01150 AXO 1 active site 0 1 1 1 107,137,139,177,179,425,426,427,429,431 1 -173840 cd01151 GCD 1 active site 0 1 1 1 99,129,131,162,164,363,364,365,367,369 1 -173841 cd01152 ACAD_fadE6_17_26 1 active site 0 1 1 1 90,120,122,153,155,361,362,363,365,367 1 -173842 cd01153 ACAD_fadE5 1 active site 0 1 1 1 90,120,122,154,156,388,389,390,392,394 1 -173843 cd01154 AidB 1 active site 0 1 1 1 117,150,152,184,186,399,400,401,403,405 1 -173844 cd01155 ACAD_FadE2 1 active site 0 1 1 1 98,128,130,162,164,375,376,377,379,381 1 -173845 cd01156 IVD 1 active site 0 1 1 1 89,119,121,152,154,357,358,359,361,363 1 -173846 cd01157 MCAD 1 active site 0 1 1 1 87,117,119,150,152,358,359,360,362,364 1 -173847 cd01158 SCAD_SBCAD 1 active site 0 1 1 1 86,116,118,149,151,354,355,356,358,360 1 -173848 cd01159 NcnH 1 active site 0 1 1 1 76,106,108,127,129,354,355,356,357,359,361 1 -173849 cd01160 LCAD 1 active site 0 1 1 1 85,115,117,148,150,353,354,355,357,359 1 -173850 cd01161 VLCAD 1 active site 0 1 1 1 111,141,143,176,178,387,388,389,391,393 1 -173851 cd01162 IBD 1 active site 0 1 1 1 87,117,119,150,152,355,356,357,359,361 1 -173852 cd01163 DszC 1 active site 0 1 1 1 77,106,108,138,140,359,360,361,363,365 1 -238318 cd00568 TPP_enzymes 1 TPP-binding site 0 1 1 1 47,71,72,73,74,99,101 5 -238958 cd02000 TPP_E1_PDC_ADC_BCADC 1 TPP-binding site 0 1 1 1 105,133,134,135,136,163,165 5 -238959 cd02001 TPP_ComE_PpyrDC 1 TPP-binding site 0 1 1 1 43,66,67,68,69,95,97 5 -239468 cd03371 TPP_PpyrDC 1 TPP-binding site 0 1 1 1 49,73,74,75,76,102,104 5 -239469 cd03372 TPP_ComE 1 TPP-binding site 0 1 1 1 43,66,67,68,69,95,97 5 -238960 cd02002 TPP_BFDC 1 TPP-binding site 0 1 1 1 50,74,75,76,77,102,104 5 -238961 cd02003 TPP_IolD 1 TPP-binding site 0 1 1 1 49,73,74,75,76,101,103 5 -238962 cd02004 TPP_BZL_OCoD_HPCL 1 TPP-binding site 0 1 1 1 49,73,74,75,76,101,103 5 -238963 cd02005 TPP_PDC_IPDC 1 TPP-binding site 0 1 1 1 51,75,76,77,78,103,105 5 -238964 cd02006 TPP_Gcl 1 TPP-binding site 0 1 1 1 58,82,83,84,85,110,112 5 -238965 cd02007 TPP_DXS 1 TPP-binding site 0 1 1 1 76,104,105,106,107,134,136 5 -238966 cd02008 TPP_IOR_alpha 1 TPP-binding site 0 1 1 1 52,76,77,78,79,105,107 5 -238967 cd02009 TPP_SHCHC_synthase 1 TPP-binding site 0 1 1 1 52,75,76,77,78,103,105 5 -238968 cd02010 TPP_ALS 1 TPP-binding site 0 1 1 1 49,73,74,75,76,101,103 5 -238969 cd02011 TPP_PK 1 TPP-binding site 0 1 1 1 63,87,88,89,90,121,123 5 -238970 cd02012 TPP_TK 1 TPP-binding site 0 1 1 1 106,134,135,136,137,165,167 5 -238971 cd02013 TPP_Xsc_like 1 TPP-binding site 0 1 1 1 54,78,79,80,81,106,108 5 -238972 cd02014 TPP_POX 1 TPP-binding site 0 1 1 1 52,76,77,78,79,104,106 5 -238973 cd02015 TPP_AHAS 1 TPP-binding site 0 1 1 1 51,75,76,77,78,103,105 5 -238974 cd02016 TPP_E1_OGDC_like 1 TPP-binding site 0 1 1 1 114,147,148,149,150,181,183 5 -238975 cd02017 TPP_E1_EcPDC_like 1 TPP-binding site 0 1 1 1 119,154,155,156,157,185,187 5 -238976 cd02018 TPP_PFOR 1 TPP-binding site 0 1 1 1 59,94,95,96,97,123,125 5 -239471 cd03376 TPP_PFOR_porB_like 1 TPP-binding site 0 1 1 1 57,87,88,89,90,116,118 5 -239472 cd03377 TPP_PFOR_PNO 1 TPP-binding site 0 1 1 1 65,158,159,160,161,187,189 5 -239470 cd03375 TPP_OGFOR 1 TPP-binding site 0 1 1 1 52,76,77,78,79,105,107 5 -259851 cd00569 HTH_Hin_like 1 DNA-binding interface 0 1 1 1 1,2,3,35,36,38,39,40 3 -238320 cd00571 UreE 1 catalytic residues 0 0 1 1 99,114 1 -238320 cd00571 UreE 2 dimer interface 0 1 1 0 92,93,94,96,97,99,100,106 2 -238321 cd00575 NOS_oxygenase 1 active site 0 1 1 1 62,125,209,231,232,234,235,239,243,244,324,325,353 1 -238321 cd00575 NOS_oxygenase 2 dimer interface 0 1 1 0 247,249,269,274,275,279,285,298,299,329,331,332,333,339,341,342,343,344,345 2 -238409 cd00794 NOS_oxygenase_prok 1 active site 0 1 1 1 60,123,206,228,229,231,232,236,240,241,321,322,350 1 -238409 cd00794 NOS_oxygenase_prok 2 dimer interface 0 1 1 0 244,246,266,271,272,276,282,295,296,326,328,329,330,336,338,339,340,341,342 2 -238410 cd00795 NOS_oxygenase_euk 1 active site 0 1 1 1 115,178,262,284,285,287,288,292,296,297,377,378,406 1 -238410 cd00795 NOS_oxygenase_euk 2 dimer interface 0 1 1 0 300,302,322,327,328,332,338,351,352,382,384,385,386,392,394,395,396,397,398 2 -238322 cd00577 PCNA 1 trimer interface 0 1 1 1 73,76,77,78,106,107,108,109,110,111,112,138,141,142,144,145,168,171,172,174,175,176,177,178 2 -238322 cd00577 PCNA 2 putative DNA binding site 0 1 1 1 9,10,16,73,76,141,144,201,208 3 -238322 cd00577 PCNA 3 PCNA/WAF1-CIP1 protein binding site 0 1 1 1 23,25,36,63,65,114,115,116,117,243,244,245,246 2 -238322 cd00577 PCNA 4 PCNA/RFCL protein interaction site 0 0 1 1 199,243,244,245 2 -238322 cd00577 PCNA 5 PCNA/FEN-1 protein interaction site 0 0 1 1 36,43,241 2 -238323 cd00578 L-fuc_L-ara-isomerases 1 Mn binding site 0 1 1 0 289,313,427 4 -238323 cd00578 L-fuc_L-ara-isomerases 2 substrate binding site 0 1 1 1 73,262,289,313,426,427 5 -238323 cd00578 L-fuc_L-ara-isomerases 3 trimer interface 0 1 1 0 73,75,76,77,119,122,123,132,134,135,143,170,171,173,262,263,315,317,319,375,413,416,424,451 2 -238323 cd00578 L-fuc_L-ara-isomerases 4 hexamer (dimer of trimers) interface 0 1 1 0 52,56,59,78,124,125,161,168,180,183,190,191,192,193,194,195,196,200,253,263,264 2 -239618 cd03556 L-fucose_isomerase 1 Mn binding site 0 1 1 0 330,354,521 4 -239618 cd03556 L-fucose_isomerase 2 substrate binding site 0 1 1 1 83,295,330,354,520,521 5 -239618 cd03556 L-fucose_isomerase 3 trimer interface 0 1 1 0 83,85,86,87,119,122,123,132,134,135,151,178,179,181,295,296,356,358,360,458,511,514,518,545 2 -239618 cd03556 L-fucose_isomerase 4 hexamer (dimer of trimers) interface 0 1 1 0 62,66,69,88,124,125,169,176,188,191,198,199,200,201,202,203,204,208,286,296,297 2 -239619 cd03557 L-arabinose_isomerase 1 Mn binding site 0 1 1 0 299,326,442 4 -239619 cd03557 L-arabinose_isomerase 2 substrate binding site 0 1 1 1 76,272,299,326,441,442 5 -239619 cd03557 L-arabinose_isomerase 3 trimer interface 0 1 1 0 76,78,79,80,128,131,132,141,143,144,152,179,180,182,272,273,328,330,332,390,428,431,439,466 2 -239619 cd03557 L-arabinose_isomerase 4 hexamer (dimer of trimers) interface 0 1 1 0 54,58,61,81,133,134,170,177,189,192,199,200,201,202,203,204,205,209,264,273,274 2 -238324 cd00580 CHMI 1 trimer interface 0 1 1 0 1,5,21,24,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,57,61,65,75,76,83,87,99,100,101,102,103,104,105,106,112 2 -238324 cd00580 CHMI 2 putative substrate binding pocket 0 1 1 0 0,37,39,67,70 5 -238330 cd00587 HCP_like 1 metal cluster binding site 0 1 1 1 102,131,160,196,198 4 -238330 cd00587 HCP_like 2 ACS interaction site 0 1 1 0 0,2,3,6,7,197,198 0 -238330 cd00587 HCP_like 3 CODH interaction site 0 1 1 0 3,6,10,13,196,197,198 0 -238895 cd01914 HCP 1 metal cluster binding site 0 1 1 1 279,307,332,366,368 4 -238895 cd01914 HCP 2 ACS interaction site 0 1 1 0 32,34,35,38,39,367,368 0 -238895 cd01914 HCP 3 CODH interaction site 0 1 1 0 35,38,42,45,366,367,368 0 -238896 cd01915 CODH 1 metal cluster binding site 0 1 1 1 433,463,504,539,541 4 -238896 cd01915 CODH 2 ACS interaction site 0 1 1 0 74,76,77,80,81,540,541 0 -238896 cd01915 CODH 3 CODH interaction site 0 1 1 0 77,80,84,87,539,540,541 0 -238897 cd01916 ACS_1 1 metal cluster binding site 0 1 1 1 472,501,536,584,586 4 -238897 cd01916 ACS_1 2 ACS interaction site 0 1 1 0 66,68,69,72,73,585,586 0 -238897 cd01916 ACS_1 3 CODH interaction site 0 1 1 0 69,72,76,79,584,585,586 0 -238898 cd01917 ACS_2 1 metal cluster binding site 0 1 1 1 135,161,185,232,234 4 -238898 cd01917 ACS_2 2 ACS interaction site 0 1 1 0 0,2,3,6,7,233,234 0 -238898 cd01917 ACS_2 3 CODH interaction site 0 1 1 0 3,6,10,13,232,233,234 0 -259852 cd00591 HU_IHF 1 dimer interface 0 1 1 0 3,6,7,10,19,20,21,22,24,25,26,28,29,30,32,33,37,38,39,40,41,44,72,73,74,76,78,82,83 2 -259852 cd00591 HU_IHF 2 DNA binding site 0 1 1 0 0,1,38,40,41,42,44,46,50,52,53,71,73,75,76,77,78,79,80,83 3 -259853 cd13831 HU 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,38,39,40,41,42,45,73,74,75,77,79,83,84 2 -259853 cd13831 HU 2 DNA binding site 0 1 1 0 1,2,39,41,42,43,45,47,51,53,54,72,74,76,77,78,79,80,81,84 3 -259854 cd13832 IHF 1 dimer interface 0 1 1 0 3,6,7,10,19,20,21,22,24,25,26,28,29,30,32,33,37,38,39,40,41,44,72,73,74,76,78,82,83 2 -259854 cd13832 IHF 2 DNA binding site 0 1 1 0 0,1,38,40,41,42,44,46,50,52,53,71,73,75,76,77,78,79,80,83 3 -259857 cd13835 IHF_A 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,38,39,40,41,42,45,73,74,75,77,79,83,84 2 -259857 cd13835 IHF_A 2 DNA binding site 0 1 1 0 1,2,39,41,42,43,45,47,51,53,54,72,74,76,77,78,79,80,81,84 3 -259858 cd13836 IHF_B 1 dimer interface 0 1 1 0 5,8,9,12,22,23,24,25,27,28,29,31,32,33,35,36,40,41,42,43,44,47,75,76,77,79,81,85,86 2 -259858 cd13836 IHF_B 2 DNA binding site 0 1 1 0 2,3,41,43,44,45,47,49,53,55,56,74,76,78,79,80,81,82,83,86 3 -259855 cd13833 HU_IHF_like 1 dimer interface 0 1 1 0 16,19,20,23,33,34,35,36,38,39,40,42,43,44,46,47,51,52,53,54,55,57,82,83,84,86,88,92,93 2 -259855 cd13833 HU_IHF_like 2 DNA binding site 0 1 1 0 13,14,52,54,55,56,57,59,63,65,66,81,83,85,86,87,88,89,90,93 3 -259856 cd13834 HU_like 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,40,41,42,43,44,50,81,82,83,85,87,91,92 2 -259856 cd13834 HU_like 2 DNA binding site 0 1 1 0 1,2,41,43,44,45,50,52,56,58,59,80,82,84,85,86,87,88,89,92 3 -259859 cd14435 SPO1_TF1_like 1 dimer interface 0 1 1 0 4,7,8,11,20,21,22,23,25,26,27,29,30,31,33,34,38,39,40,41,42,45,73,74,75,77,79,83,84 2 -259859 cd14435 SPO1_TF1_like 2 DNA binding site 0 1 1 0 1,2,39,41,42,43,45,47,51,53,54,72,74,76,77,78,79,80,81,84 3 -238333 cd00593 RIBOc 1 active site 0 0 1 0 21,24,28,97,100 1 -238333 cd00593 RIBOc 2 metal binding site 0 1 1 0 24,97,100 4 -238333 cd00593 RIBOc 3 dimerization interface 0 1 1 0 21,22,25,26,29,32,33,36,37,39,40,41,51,107,116 2 -238334 cd00594 KU 1 DNA binding site 0 1 1 1 1,21,31,46,147 3 -238334 cd00594 KU 2 heterodimer interface 0 1 1 1 14,21,23,24,25,26,31,32,33,34,39,42,43,44,45,47,48,49,56,60,61,62,64,66,67,70,71,74,93,95,96,106,124,143,176,177,178,180,210,215,220,221,222,235,268,271 2 -238407 cd00788 KU70 1 DNA binding site 0 1 1 1 1,23,33,51,154 3 -238407 cd00788 KU70 2 heterodimer interface 0 1 1 1 16,23,25,26,27,28,33,34,35,36,41,47,48,49,50,52,53,54,62,66,67,68,70,72,73,76,77,80,99,101,102,112,131,150,191,192,193,195,225,230,235,236,237,250,283,286 2 -238408 cd00789 KU_like 1 DNA binding site 0 1 1 1 1,20,29,44,141 3 -238408 cd00789 KU_like 2 heterodimer interface 0 1 1 1 13,20,21,22,23,24,29,30,31,32,37,40,41,42,43,45,46,47,53,57,58,59,61,63,64,68,69,72,91,93,94,104,118,137,164,165,166,168,197,201,206,207,208,221,248,251 2 -238445 cd00873 KU80 1 DNA binding site 0 1 1 1 1,21,32,50,155 3 -238445 cd00873 KU80 2 heterodimer interface 0 1 1 1 14,21,23,24,25,26,32,33,34,35,41,46,47,48,49,51,52,53,64,68,69,70,72,74,75,78,79,82,101,103,104,114,132,151,184,185,186,188,219,233,238,239,240,253,290,293 2 -238335 cd00595 NDPk 1 active site 0 1 1 1 7,47,55,83,89,103,113,116,118,119,127 1 -238335 cd00595 NDPk 2 multimer interface 0 1 1 1 11,16,17,18,21,24,33,34,35 2 -239875 cd04412 NDPk7B 1 active site 0 1 1 1 7,47,56,84,90,104,114,117,119,120,128 1 -239875 cd04412 NDPk7B 2 multimer interface 0 1 1 1 11,16,17,18,21,24,33,34,35 2 -239876 cd04413 NDPk_I 1 active site 0 1 1 1 7,47,55,83,89,100,110,113,115,116,124 1 -239876 cd04413 NDPk_I 2 multimer interface 0 1 1 1 11,16,17,18,21,24,33,34,35 2 -239877 cd04414 NDPk6 1 active site 0 1 1 1 7,48,56,84,90,104,114,117,119,120,128 1 -239877 cd04414 NDPk6 2 multimer interface 0 1 1 1 11,17,18,19,22,25,34,35,36 2 -239878 cd04415 NDPk7A 1 active site 0 1 1 1 7,45,53,81,87,101,111,114,116,117,125 1 -239878 cd04415 NDPk7A 2 multimer interface 0 1 1 1 11,14,15,16,19,22,31,32,33 2 -239879 cd04416 NDPk_TX 1 active site 0 1 1 1 7,46,54,82,88,102,112,115,117,118,126 1 -239879 cd04416 NDPk_TX 2 multimer interface 0 1 1 1 11,15,16,17,20,23,32,33,34 2 -239880 cd04418 NDPk5 1 active site 0 1 1 1 7,45,53,81,87,101,111,114,116,117,125 1 -239880 cd04418 NDPk5 2 multimer interface 0 1 1 1 11,14,15,16,19,22,31,32,33 2 -349427 cd00596 Peptidase_M14_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,121 4 -349427 cd00596 Peptidase_M14_like 2 active site 0 1 1 1 7,10,62,71,72,121,122,128,191 1 -349429 cd03856 M14_Nna1-like 1 Zn binding site [H][ED][H] 1 1 1 52,55,149 4 -349429 cd03856 M14_Nna1-like 2 active site 0 1 1 1 52,55,102,111,112,149,150,158,220 1 -349453 cd06234 M14_PaCCP-like 1 Zn binding site [H][ED][H] 1 1 1 54,57,147 4 -349453 cd06234 M14_PaCCP-like 2 active site 0 1 1 1 54,57,105,114,115,147,148,158,223 1 -349454 cd06235 M14_AGTPBP-like 1 Zn binding site [H][ED][H] 1 1 1 49,52,147 4 -349454 cd06235 M14_AGTPBP-like 2 active site 0 1 1 1 49,52,99,108,109,147,148,158,220 1 -349455 cd06236 M14_AGBL5_like 1 Zn binding site [H][ED][H] 1 1 1 69,72,156 4 -349455 cd06236 M14_AGBL5_like 2 active site 0 1 1 1 69,72,120,129,130,156,157,167,238 1 -349477 cd06906 M14_Nna1 1 Zn binding site [H][ED][H] 1 1 1 51,54,148 4 -349477 cd06906 M14_Nna1 2 active site 0 1 1 1 51,54,101,110,111,148,149,159,233 1 -349478 cd06907 M14_AGBL2-3_like 1 Zn binding site [H][ED][H] 1 1 1 46,49,142 4 -349478 cd06907 M14_AGBL2-3_like 2 active site 0 1 1 1 46,49,96,105,106,142,143,153,215 1 -349479 cd06908 M14_AGBL4_like 1 Zn binding site [H][ED][H] 1 1 1 45,48,143 4 -349479 cd06908 M14_AGBL4_like 2 active site 0 1 1 1 45,48,95,104,105,143,144,154,216 1 -349456 cd06237 M14_Nna1-like 1 Zn binding site [H][ED][H] 1 1 1 50,53,145 4 -349456 cd06237 M14_Nna1-like 2 active site 0 1 1 1 50,53,100,109,110,145,146,154,212 1 -349485 cd18429 M14_Nna1-like 1 Zn binding site [H][ED][H] 1 1 1 49,52,147 4 -349485 cd18429 M14_Nna1-like 2 active site 0 1 1 1 49,52,99,108,109,147,148,155,221 1 -349430 cd03857 M14-like 1 Zn binding site [H][ED][H] 1 1 1 8,11,109 4 -349430 cd03857 M14-like 2 active site 0 1 1 1 8,11,70,79,80,109,110,115,189 1 -349457 cd06238 M14-like 1 Zn binding site [H][ED][H] 1 1 1 10,13,126 4 -349457 cd06238 M14-like 2 active site 0 1 1 1 10,13,87,96,97,126,127,131,202 1 -349458 cd06239 M14-like 1 Zn binding site [H][ED][H] 1 1 1 8,11,96 4 -349458 cd06239 M14-like 2 active site 0 1 1 1 8,11,57,66,67,96,97,105,179 1 -349459 cd06240 M14-like 1 Zn binding site [H][ED][H] 1 1 1 10,13,119 4 -349459 cd06240 M14-like 2 active site 0 1 1 1 10,13,79,88,89,119,120,127,197 1 -349460 cd06241 M14-like 1 Zn binding site [H][ED][H] 1 1 1 10,13,111 4 -349460 cd06241 M14-like 2 active site 0 1 1 1 10,13,72,81,82,111,112,117,200 1 -349461 cd06242 M14-like 1 Zn binding site [H][ED][H] 1 1 1 10,13,97 4 -349461 cd06242 M14-like 2 active site 0 1 1 1 10,13,58,67,68,97,98,103,189 1 -349463 cd06244 M14-like 1 Zn binding site [H][ED][H] 1 1 1 8,11,113 4 -349463 cd06244 M14-like 2 active site 0 1 1 1 8,11,74,83,84,113,114,120,206 1 -349431 cd03858 M14_CP_N-E_like 1 Zn binding site [H][ED][H] 1 1 1 61,64,171 4 -349431 cd03858 M14_CP_N-E_like 2 active site 0 1 1 1 61,64,122,131,132,171,172,178,262 1 -349435 cd03863 M14_CPD_II 1 Zn binding site [H][ED][H] 1 1 1 68,71,175 4 -349435 cd03863 M14_CPD_II 2 active site 0 1 1 1 68,71,129,138,139,175,176,182,266 1 -349436 cd03864 M14_CPN 1 Zn binding site [H][ED][H] 1 1 1 61,64,191 4 -349436 cd03864 M14_CPN 2 active site 0 1 1 1 61,64,126,135,136,191,192,198,283 1 -349437 cd03865 M14_CPE 1 Zn binding site [H][ED][H] 1 1 1 61,64,195 4 -349437 cd03865 M14_CPE 2 active site 0 1 1 1 61,64,126,135,136,195,196,202,289 1 -349438 cd03866 M14_CPM 1 Zn binding site [H][ED][H] 1 1 1 61,64,168 4 -349438 cd03866 M14_CPM 2 active site 0 1 1 1 61,64,122,131,132,168,169,175,259 1 -349439 cd03867 M14_CPZ 1 Zn binding site [H][ED][H] 1 1 1 61,64,193 4 -349439 cd03867 M14_CPZ 2 active site 0 1 1 1 61,64,126,135,136,193,194,200,285 1 -349440 cd03868 M14_CPD_I 1 Zn binding site [H][ED][H] 1 1 1 61,64,175 4 -349440 cd03868 M14_CPD_I 2 active site 0 1 1 1 61,64,125,134,135,175,176,182,264 1 -349441 cd03869 M14_CPX_like 1 Zn binding site [H][ED][H] 1 1 1 61,64,199 4 -349441 cd03869 M14_CPX_like 2 active site 0 1 1 1 61,64,126,135,136,199,200,206,292 1 -349464 cd06245 M14_CPD_III 1 Zn binding site [H][ED][H] 1 1 1 61,64,168 4 -349464 cd06245 M14_CPD_III 2 active site 0 1 1 1 61,64,122,131,132,168,169,175,253 1 -349482 cd18172 M14_CP_plant 1 Zn binding site [H][ED][H] 1 1 1 60,63,164 4 -349482 cd18172 M14_CP_plant 2 active site 0 1 1 1 60,63,113,122,123,164,165,171,246 1 -349483 cd18173 M14_CP_bacteria 1 Zn binding site [H][ED][H] 1 1 1 63,66,172 4 -349483 cd18173 M14_CP_bacteria 2 active site 0 1 1 1 63,66,123,132,133,172,173,179,251 1 -349432 cd03859 M14_CPT 1 Zn binding site [H][ED][H] 1 1 1 63,66,195 4 -349432 cd03859 M14_CPT 2 active site 0 1 1 1 63,66,123,142,143,195,196,202,265 1 -349433 cd03860 M14_CP_A-B_like 1 Zn binding site [H][ED][H] 1 1 1 59,62,189 4 -349433 cd03860 M14_CP_A-B_like 2 active site 0 1 1 1 59,62,117,134,135,189,190,196,265 1 -349442 cd03870 M14_CPA 1 Zn binding site [H][ED][H] 1 1 1 62,65,189 4 -349442 cd03870 M14_CPA 2 active site 0 1 1 1 62,65,120,137,138,189,190,196,263 1 -349443 cd03871 M14_CPB 1 Zn binding site [H][ED][H] 1 1 1 62,65,190 4 -349443 cd03871 M14_CPB 2 active site 0 1 1 1 62,65,120,137,138,190,191,197,264 1 -349444 cd03872 M14_CPA6 1 Zn binding site [H][ED][H] 1 1 1 59,62,187 4 -349444 cd03872 M14_CPA6 2 active site 0 1 1 1 59,62,117,134,135,187,188,194,261 1 -349465 cd06246 M14_CPB2 1 Zn binding site [H][ED][H] 1 1 1 62,65,190 4 -349465 cd06246 M14_CPB2 2 active site 0 1 1 1 62,65,120,137,138,190,191,197,264 1 -349466 cd06247 M14_CPO 1 Zn binding site [H][ED][H] 1 1 1 61,64,189 4 -349466 cd06247 M14_CPO 2 active site 0 1 1 1 61,64,119,136,137,189,190,196,263 1 -349467 cd06248 M14_CP_insect 1 Zn binding site [H][ED][H] 1 1 1 60,63,188 4 -349467 cd06248 M14_CP_insect 2 active site 0 1 1 1 60,63,115,135,136,188,189,195,261 1 -349434 cd03862 M14-like 1 Zn binding site [H][ED][H] 1 1 1 9,12,130 4 -349434 cd03862 M14-like 2 active site 0 1 1 1 9,12,61,70,71,130,131,140,211 1 -349445 cd06226 M14_CPT_like 1 Zn binding site [H][ED][H] 1 1 1 27,30,171 4 -349445 cd06226 M14_CPT_like 2 active site 0 1 1 1 27,30,84,104,105,171,172,178,238 1 -349446 cd06227 M14-CPA-like 1 Zn binding site [H][ED][H] 1 1 1 10,13,132 4 -349446 cd06227 M14-CPA-like 2 active site 0 1 1 1 10,13,74,83,84,132,133,139,206 1 -349447 cd06228 M14-like 1 Zn binding site [H][ED][H] 1 1 1 9,12,159 4 -349447 cd06228 M14-like 2 active site 0 1 1 1 9,12,79,99,100,159,160,166,269 1 -349448 cd06229 M14_Endopeptidase_I 1 Zn binding site [H][ED][H] 1 1 1 7,10,152 4 -349448 cd06229 M14_Endopeptidase_I 2 active site 0 1 1 1 7,10,90,99,100,152,153,158,213 1 -349449 cd06230 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,93 4 -349449 cd06230 M14_ASTE_ASPA_like 2 active site 0 1 1 1 7,10,49,59,60,93,94,105,154 1 -349428 cd03855 M14_ASTE 1 Zn binding site [H][ED][H] 1 1 1 52,55,146 4 -349428 cd03855 M14_ASTE 2 active site 0 1 1 1 52,55,95,102,103,146,147,159,210 1 -349462 cd06243 M14_CP_Csd4-like 1 Zn binding site [H][ED][H] 1 1 1 25,28,106 4 -349462 cd06243 M14_CP_Csd4-like 2 active site 0 1 1 1 25,28,64,71,72,106,107,131,203 1 -349468 cd06250 M14_PaAOTO_like 1 Zn binding site [H][ED][H] 1 1 1 36,39,165 4 -349468 cd06250 M14_PaAOTO_like 2 active site 0 1 1 1 36,39,88,98,99,165,166,175,237 1 -349469 cd06251 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 21,24,107 4 -349469 cd06251 M14_ASTE_ASPA-like 2 active site 0 1 1 1 21,24,63,73,74,107,108,120,165 1 -349470 cd06252 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 43,46,129 4 -349470 cd06252 M14_ASTE_ASPA-like 2 active site 0 1 1 1 43,46,85,95,96,129,130,142,194 1 -349471 cd06253 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 31,34,121 4 -349471 cd06253 M14_ASTE_ASPA-like 2 active site 0 1 1 1 31,34,78,88,89,121,122,134,183 1 -349472 cd06254 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 20,23,107 4 -349472 cd06254 M14_ASTE_ASPA-like 2 active site 0 1 1 1 20,23,61,73,74,107,108,118,171 1 -349473 cd06255 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 32,35,118 4 -349473 cd06255 M14_ASTE_ASPA-like 2 active site 0 1 1 1 32,35,77,84,85,118,119,132,193 1 -349474 cd06256 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 43,46,126 4 -349474 cd06256 M14_ASTE_ASPA-like 2 active site 0 1 1 1 43,46,83,92,93,126,127,133,180 1 -349480 cd06909 M14_ASPA 1 Zn binding site [H][ED][H] 1 1 1 9,12,102 4 -349480 cd06909 M14_ASPA 2 active site 0 1 1 1 9,12,51,58,59,102,103,113,161 1 -349481 cd06910 M14_ASTE_ASPA-like 1 Zn binding site [H][ED][H] 1 1 1 33,36,124 4 -349481 cd06910 M14_ASTE_ASPA-like 2 active site 0 1 1 1 33,36,80,87,88,124,125,134,186 1 -349484 cd18174 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,94 4 -349484 cd18174 M14_ASTE_ASPA_like 2 active site 0 1 1 1 7,10,47,60,61,94,95,107,163 1 -349486 cd18430 M14_ASTE_ASPA_like 1 Zn binding site [H][ED][H] 1 1 1 7,10,90 4 -349486 cd18430 M14_ASTE_ASPA_like 2 active site 0 1 1 1 7,10,49,56,57,90,91,101,147 1 -349450 cd06231 M14_REP34-like 1 Zn binding site [H][ED][H] 1 1 1 51,54,135 4 -349450 cd06231 M14_REP34-like 2 active site 0 1 1 1 51,54,94,103,104,135,136,146,215 1 -349451 cd06232 M14-like 1 Zn binding site [H][ED][H] 1 1 1 43,46,144 4 -349451 cd06232 M14-like 2 active site 0 1 1 1 43,46,103,112,113,144,145,152,228 1 -349452 cd06233 M14-like 1 Zn binding site [H][ED][H] 1 1 1 7,10,109 4 -349452 cd06233 M14-like 2 active site 0 1 1 1 7,10,52,61,62,109,110,128,209 1 -349475 cd06904 M14_MpaA-like 1 Zn binding site [H][ED][H] 1 1 1 32,35,136 4 -349475 cd06904 M14_MpaA-like 2 active site 0 1 1 1 32,35,76,85,86,136,137,143,190 1 -349476 cd06905 M14-like 1 Zn binding site [H][ED][H] 1 1 1 66,69,256 4 -349476 cd06905 M14-like 2 active site 0 1 1 1 66,69,126,192,193,256,257,263,332 1 -119349 cd00598 GH18_chitinase-like 1 active site 0 1 1 1 2,30,108,110,112,175,176,184,204 1 -119350 cd02871 GH18_chitinase_D-like 1 active site 0 1 1 1 4,34,114,116,118,192,193,247,292 1 -119351 cd02872 GH18_chitolectin_chitotriosidase 1 active site 0 1 1 1 3,34,116,118,120,187,188,242,335 1 -119352 cd02873 GH18_IDGF 1 active site 0 1 1 1 3,37,125,127,129,219,220,273,386 1 -119353 cd02874 GH18_CFLE_spore_hydrolase 1 active site 0 1 1 1 4,32,107,109,111,176,177,217,299 1 -119354 cd02875 GH18_chitobiase 1 active site 0 1 1 1 24,52,116,118,120,186,187,232,333 1 -119355 cd02876 GH18_SI-CLP 1 active site 0 1 1 1 6,33,112,114,116,186,187,228,304 1 -119356 cd02877 GH18_hevamine_XipI_class_III 1 active site 0 1 1 1 4,31,125,127,129,187,188,228,262 1 -119357 cd02878 GH18_zymocin_alpha 1 active site 0 1 1 1 3,34,111,113,115,184,185,240,339 1 -119358 cd02879 GH18_plant_chitinase_class_V 1 active site 0 1 1 1 6,32,112,114,116,188,189,238,287 1 -119359 cd06542 GH18_EndoS-like 1 active site 0 1 1 1 4,34,108,110,112,175,176,205,235 1 -119360 cd06543 GH18_PF-ChiA-like 1 active site 0 1 1 1 4,32,108,110,112,178,179,227,259 1 -119361 cd06544 GH18_narbonin 1 active site 0 1 1 1 3,31,117,119,121,182,183,216,247 1 -119362 cd06545 GH18_3CO4_chitinase 1 active site 0 1 1 1 2,29,103,105,107,162,163,207,236 1 -119363 cd06546 GH18_CTS3_chitinase 1 active site 0 1 1 1 3,36,116,118,120,185,186,217,250 1 -119364 cd06547 GH85_ENGase 1 active site 0 1 1 1 7,35,107,109,111,179,180,239,333 1 -119365 cd06548 GH18_chitinase 1 active site 0 1 1 1 2,32,129,131,133,208,209,261,316 1 -119366 cd06549 GH18_trifunctional 1 active site 0 1 1 1 2,30,108,110,112,168,169,209,287 1 -119373 cd00599 GH25_muramidase 1 active site 0 0 1 0 3,27,56,58,88,90,123,144,166,181 1 -119374 cd06412 GH25_CH-type 1 active site 0 0 1 0 4,28,57,59,93,95,133,155,177,187 1 -119375 cd06413 GH25_muramidase_1 1 active site 0 0 1 0 6,30,59,61,91,93,129,149,169,184 1 -119376 cd06414 GH25_LytC-like 1 active site 0 0 1 0 4,28,60,62,94,96,131,152,170,185 1 -119377 cd06415 GH25_Cpl1-like 1 active site 0 0 1 0 4,27,56,58,93,95,126,150,178,189 1 -119378 cd06416 GH25_Lys1-like 1 active site 0 0 1 0 4,28,57,59,92,94,128,152,178,191 1 -119379 cd06417 GH25_LysA-like 1 active site 0 0 1 0 4,25,54,56,85,87,118,138,168,183 1 -119380 cd06418 GH25_BacA-like 1 active site 0 0 1 0 15,39,70,72,111,113,146,167,188,207 1 -119381 cd06419 GH25_muramidase_2 1 active site 0 0 1 0 11,35,64,66,96,98,132,151,168,185 1 -119382 cd06522 GH25_AtlA-like 1 active site 0 0 1 0 4,31,60,62,96,98,128,149,171,186 1 -119383 cd06523 GH25_PlyB-like 1 active site 0 0 1 0 3,28,57,59,89,91,120,140,157,172 1 -119384 cd06524 GH25_YegX-like 1 active site 0 0 1 0 3,31,60,62,93,95,128,149,172,187 1 -119385 cd06525 GH25_Lyc-like 1 active site 0 0 1 0 3,27,56,58,88,90,122,142,164,179 1 -212462 cd00600 Sm_like 1 RNA binding site 0 1 1 0 29,30,54,56 3 -212462 cd00600 Sm_like 2 heptamer interface 0 1 1 0 5,23,34,50,51,52,53,54,55,56,57,58,59,60,61,62 2 -212462 cd00600 Sm_like 3 hexamer interface 0 1 1 0 11,12,16,18,24,25,30,32,50,51,52,53,54,55,56,57,58,59,60 2 -212462 cd00600 Sm_like 4 Sm1 motif 0 0 1 1 8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,30,31,32,33,34 0 -212462 cd00600 Sm_like 5 Sm2 motif 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61 0 -212463 cd01716 Hfq 1 RNA binding site 0 1 1 0 36,37,50,52 3 -212463 cd01716 Hfq 2 heptamer interface 0 1 1 0 13,31,41,46,47,48,49,50,51,52,53,54,55,56,57,58 2 -212463 cd01716 Hfq 3 hexamer interface 0 1 1 0 19,20,24,26,32,33,37,39,46,47,48,49,50,51,52,53,54,55,56 2 -212463 cd01716 Hfq 4 Sm1 motif 0 0 1 1 16,17,18,19,20,24,25,26,27,28,29,30,31,32,33,34,37,38,39,40,41 0 -212463 cd01716 Hfq 5 Sm2 motif 0 0 1 1 46,47,48,49,50,51,52,53,54,55,56,57 0 -212464 cd01717 Sm_B 1 RNA binding site 0 1 1 0 33,34,69,71 3 -212464 cd01717 Sm_B 2 heptamer interface 0 1 1 0 9,27,38,65,66,67,68,69,70,71,72,73,74,75,76,77 2 -212464 cd01717 Sm_B 3 hexamer interface 0 1 1 0 15,16,20,22,28,29,34,36,65,66,67,68,69,70,71,72,73,74,75 2 -212464 cd01717 Sm_B 4 Sm1 motif 0 0 1 1 12,13,14,15,16,20,21,22,23,24,25,26,27,28,29,30,34,35,36,37,38 0 -212464 cd01717 Sm_B 5 Sm2 motif 0 0 1 1 65,66,67,68,69,70,71,72,73,74,75,76 0 -212465 cd01718 Sm_E 1 RNA binding site 0 1 1 0 43,44,69,71 3 -212465 cd01718 Sm_E 2 heptamer interface 0 1 1 0 19,37,48,65,66,67,68,69,70,71,72,73,74,75,76,77 2 -212465 cd01718 Sm_E 3 hexamer interface 0 1 1 0 25,26,30,32,38,39,44,46,65,66,67,68,69,70,71,72,73,74,75 2 -212465 cd01718 Sm_E 4 Sm1 motif 0 0 1 1 22,23,24,25,26,30,31,32,33,34,35,36,37,38,39,40,44,45,46,47,48 0 -212465 cd01718 Sm_E 5 Sm2 motif 0 0 1 1 65,66,67,68,69,70,71,72,73,74,75,76 0 -212466 cd01719 Sm_G 1 RNA binding site 0 1 1 0 33,34,58,60 3 -212466 cd01719 Sm_G 2 heptamer interface 0 1 1 0 9,27,38,54,55,56,57,58,59,60,61,62,63,64,65,66 2 -212466 cd01719 Sm_G 3 hexamer interface 0 1 1 0 15,16,20,22,28,29,34,36,54,55,56,57,58,59,60,61,62,63,64 2 -212466 cd01719 Sm_G 4 Sm1 motif 0 0 1 1 12,13,14,15,16,20,21,22,23,24,25,26,27,28,29,30,34,35,36,37,38 0 -212466 cd01719 Sm_G 5 Sm2 motif 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65 0 -212467 cd01720 Sm_D2 1 RNA binding site 0 1 1 0 39,40,77,79 3 -212467 cd01720 Sm_D2 2 heptamer interface 0 1 1 0 15,33,44,73,74,75,76,77,78,79,80,81,82,83,84,85 2 -212467 cd01720 Sm_D2 3 hexamer interface 0 1 1 0 21,22,26,28,34,35,40,42,73,74,75,76,77,78,79,80,81,82,83 2 -212467 cd01720 Sm_D2 4 Sm1 motif 0 0 1 1 18,19,20,21,22,26,27,28,29,30,31,32,33,34,35,36,40,41,42,43,44 0 -212467 cd01720 Sm_D2 5 Sm2 motif 0 0 1 1 73,74,75,76,77,78,79,80,81,82,83,84 0 -212468 cd01721 Sm_D3 1 RNA binding site 0 1 1 0 33,34,58,60 3 -212468 cd01721 Sm_D3 2 heptamer interface 0 1 1 0 9,27,38,54,55,56,57,58,59,60,61,62,63,64,65,66 2 -212468 cd01721 Sm_D3 3 hexamer interface 0 1 1 0 15,16,20,22,28,29,34,36,54,55,56,57,58,59,60,61,62,63,64 2 -212468 cd01721 Sm_D3 4 Sm1 motif 0 0 1 1 12,13,14,15,16,20,21,22,23,24,25,26,27,28,29,30,34,35,36,37,38 0 -212468 cd01721 Sm_D3 5 Sm2 motif 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65 0 -212469 cd01722 Sm_F 1 RNA binding site 0 1 1 0 34,35,59,61 3 -212469 cd01722 Sm_F 2 heptamer interface 0 1 1 0 10,28,39,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212469 cd01722 Sm_F 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,55,56,57,58,59,60,61,62,63,64,65 2 -212469 cd01722 Sm_F 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212469 cd01722 Sm_F 5 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212470 cd01723 LSm4 1 RNA binding site 0 1 1 0 34,35,60,62 3 -212470 cd01723 LSm4 2 heptamer interface 0 1 1 0 10,28,39,56,57,58,59,60,61,62,63,64,65,66,67,68 2 -212470 cd01723 LSm4 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,56,57,58,59,60,61,62,63,64,65,66 2 -212470 cd01723 LSm4 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212470 cd01723 LSm4 5 Sm2 motif 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67 0 -212471 cd01724 Sm_D1 1 RNA binding site 0 1 1 0 34,35,59,61 3 -212471 cd01724 Sm_D1 2 heptamer interface 0 1 1 0 10,28,39,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212471 cd01724 Sm_D1 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,55,56,57,58,59,60,61,62,63,64,65 2 -212471 cd01724 Sm_D1 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212471 cd01724 Sm_D1 5 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212472 cd01725 LSm2 1 RNA binding site 0 1 1 0 34,35,61,63 3 -212472 cd01725 LSm2 2 heptamer interface 0 1 1 0 10,28,39,57,58,59,60,61,62,63,64,65,66,67,68,69 2 -212472 cd01725 LSm2 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,57,58,59,60,61,62,63,64,65,66,67 2 -212472 cd01725 LSm2 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212472 cd01725 LSm2 5 Sm2 motif 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68 0 -212473 cd01726 LSm6 1 RNA binding site 0 1 1 0 34,35,59,61 3 -212473 cd01726 LSm6 2 heptamer interface 0 1 1 0 10,28,39,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212473 cd01726 LSm6 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,55,56,57,58,59,60,61,62,63,64,65 2 -212473 cd01726 LSm6 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212473 cd01726 LSm6 5 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212474 cd01727 LSm8 1 RNA binding site 0 1 1 0 32,33,61,63 3 -212474 cd01727 LSm8 2 heptamer interface 0 1 1 0 8,26,37,57,58,59,60,61,62,63,64,65,66,67,68,69 2 -212474 cd01727 LSm8 3 hexamer interface 0 1 1 0 14,15,19,21,27,28,33,35,57,58,59,60,61,62,63,64,65,66,67 2 -212474 cd01727 LSm8 4 Sm1 motif 0 0 1 1 11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,33,34,35,36,37 0 -212474 cd01727 LSm8 5 Sm2 motif 0 0 1 1 57,58,59,60,61,62,63,64,65,66,67,68 0 -212475 cd01728 LSm1 1 RNA binding site 0 1 1 0 35,36,63,65 3 -212475 cd01728 LSm1 2 heptamer interface 0 1 1 0 11,29,40,59,60,61,62,63,64,65,66,67,68,69,70,71 2 -212475 cd01728 LSm1 3 hexamer interface 0 1 1 0 17,18,22,24,30,31,36,38,59,60,61,62,63,64,65,66,67,68,69 2 -212475 cd01728 LSm1 4 Sm1 motif 0 0 1 1 14,15,16,17,18,22,23,24,25,26,27,28,29,30,31,32,36,37,38,39,40 0 -212475 cd01728 LSm1 5 Sm2 motif 0 0 1 1 59,60,61,62,63,64,65,66,67,68,69,70 0 -212476 cd01729 LSm7 1 RNA binding site 0 1 1 0 35,36,68,70 3 -212476 cd01729 LSm7 2 heptamer interface 0 1 1 0 11,29,40,64,65,66,67,68,69,70,71,72,73,74,75,76 2 -212476 cd01729 LSm7 3 hexamer interface 0 1 1 0 17,18,22,24,30,31,36,38,64,65,66,67,68,69,70,71,72,73,74 2 -212476 cd01729 LSm7 4 Sm1 motif 0 0 1 1 14,15,16,17,18,22,23,24,25,26,27,28,29,30,31,32,36,37,38,39,40 0 -212476 cd01729 LSm7 5 Sm2 motif 0 0 1 1 64,65,66,67,68,69,70,71,72,73,74,75 0 -212477 cd01730 LSm3 1 RNA binding site 0 1 1 0 34,35,72,74 3 -212477 cd01730 LSm3 2 heptamer interface 0 1 1 0 10,28,39,68,69,70,71,72,73,74,75,76,77,78,79,80 2 -212477 cd01730 LSm3 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,68,69,70,71,72,73,74,75,76,77,78 2 -212477 cd01730 LSm3 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212477 cd01730 LSm3 5 Sm2 motif 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78,79 0 -212478 cd01731 archaeal_Sm1 1 RNA binding site 0 1 1 0 34,35,59,61 3 -212478 cd01731 archaeal_Sm1 2 heptamer interface 0 1 1 0 10,28,39,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212478 cd01731 archaeal_Sm1 3 hexamer interface 0 1 1 0 16,17,21,23,29,30,35,37,55,56,57,58,59,60,61,62,63,64,65 2 -212478 cd01731 archaeal_Sm1 4 Sm1 motif 0 0 1 1 13,14,15,16,17,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212478 cd01731 archaeal_Sm1 5 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212479 cd01732 LSm5 1 RNA binding site 0 1 1 0 36,37,64,66 3 -212479 cd01732 LSm5 2 heptamer interface 0 1 1 0 12,30,41,60,61,62,63,64,65,66,67,68,69,70,71,72 2 -212479 cd01732 LSm5 3 hexamer interface 0 1 1 0 18,19,23,25,31,32,37,39,60,61,62,63,64,65,66,67,68,69,70 2 -212479 cd01732 LSm5 4 Sm1 motif 0 0 1 1 15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,37,38,39,40,41 0 -212479 cd01732 LSm5 5 Sm2 motif 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71 0 -212480 cd01733 LSm10 1 RNA binding site 0 1 1 0 42,43,67,69 3 -212480 cd01733 LSm10 2 heptamer interface 0 1 1 0 18,36,47,63,64,65,66,67,68,69,70,71,72,73,74,75 2 -212480 cd01733 LSm10 3 hexamer interface 0 1 1 0 24,25,29,31,37,38,43,45,63,64,65,66,67,68,69,70,71,72,73 2 -212480 cd01733 LSm10 4 Sm1 motif 0 0 1 1 21,22,23,24,25,29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,47 0 -212480 cd01733 LSm10 5 Sm2 motif 0 0 1 1 63,64,65,66,67,68,69,70,71,72,73,74 0 -212481 cd01734 YlxS_C 1 RNA binding site 0 1 1 0 43,44,58,60 3 -212481 cd01734 YlxS_C 2 heptamer interface 0 1 1 0 16,38,48,54,55,56,57,58,59,60,61,62,63,64,65,66 2 -212481 cd01734 YlxS_C 3 hexamer interface 0 1 1 0 22,23,31,33,39,40,44,46,54,55,56,57,58,59,60,61,62,63,64 2 -212481 cd01734 YlxS_C 4 Sm1 motif 0 0 1 1 19,20,21,22,23,31,32,33,34,35,36,37,38,39,40,41,44,45,46,47,48 0 -212481 cd01734 YlxS_C 5 Sm2 motif 0 0 1 1 54,55,56,57,58,59,60,61,62,63,64,65 0 -212482 cd01735 LSm12_N 1 RNA binding site 0 1 1 0 30,31,52,54 3 -212482 cd01735 LSm12_N 2 heptamer interface 0 1 1 0 5,23,35,48,49,50,51,52,53,54,55,56,57,58,59,60 2 -212482 cd01735 LSm12_N 3 hexamer interface 0 1 1 0 11,12,16,18,24,25,31,33,48,49,50,51,52,53,54,55,56,57,58 2 -212482 cd01735 LSm12_N 4 Sm1 motif 0 0 1 1 8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,31,32,33,34,35 0 -212482 cd01735 LSm12_N 5 Sm2 motif 0 0 1 1 48,49,50,51,52,53,54,55,56,57,58,59 0 -212483 cd01736 LSm14_N 1 RNA binding site 0 1 1 0 30,31,64,66 3 -212483 cd01736 LSm14_N 2 heptamer interface 0 1 1 0 5,23,35,60,61,62,63,64,65,66,67,68,69,70,71,72 2 -212483 cd01736 LSm14_N 3 hexamer interface 0 1 1 0 11,12,16,18,24,25,31,33,60,61,62,63,64,65,66,67,68,69,70 2 -212483 cd01736 LSm14_N 4 Sm1 motif 0 0 1 1 8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,31,32,33,34,35 0 -212483 cd01736 LSm14_N 5 Sm2 motif 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71 0 -212484 cd01737 LSm16_N 1 RNA binding site 0 1 1 0 31,32,53,55 3 -212484 cd01737 LSm16_N 2 heptamer interface 0 1 1 0 5,24,36,49,50,51,52,53,54,55,56,57,58,59,60,61 2 -212484 cd01737 LSm16_N 3 hexamer interface 0 1 1 0 11,12,17,19,25,26,32,34,49,50,51,52,53,54,55,56,57,58,59 2 -212484 cd01737 LSm16_N 4 Sm1 motif 0 0 1 1 8,9,10,11,12,17,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36 0 -212484 cd01737 LSm16_N 5 Sm2 motif 0 0 1 1 49,50,51,52,53,54,55,56,57,58,59,60 0 -212485 cd01739 LSm11_M 1 RNA binding site 0 1 1 0 35,36,54,56 3 -212485 cd01739 LSm11_M 2 heptamer interface 0 1 1 0 7,29,40,50,51,52,53,54,55,56,57,58,59,60,61,62 2 -212485 cd01739 LSm11_M 3 hexamer interface 0 1 1 0 13,14,22,24,30,31,36,38,50,51,52,53,54,55,56,57,58,59,60 2 -212485 cd01739 LSm11_M 4 Sm1 motif 0 0 1 1 10,11,12,13,14,22,23,24,25,26,27,28,29,30,31,32,36,37,38,39,40 0 -212485 cd01739 LSm11_M 5 Sm2 motif 0 0 1 1 50,51,52,53,54,55,56,57,58,59,60,61 0 -212486 cd06168 LSMD1 1 RNA binding site 0 1 1 0 32,33,62,64 3 -212486 cd06168 LSMD1 2 heptamer interface 0 1 1 0 8,26,37,58,59,60,61,62,63,64,65,66,67,68,69,70 2 -212486 cd06168 LSMD1 3 hexamer interface 0 1 1 0 14,15,19,21,27,28,33,35,58,59,60,61,62,63,64,65,66,67,68 2 -212486 cd06168 LSMD1 4 Sm1 motif 0 0 1 1 11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,33,34,35,36,37 0 -212486 cd06168 LSMD1 5 Sm2 motif 0 0 1 1 58,59,60,61,62,63,64,65,66,67,68,69 0 -212487 cd11676 Gemin6 1 RNA binding site 0 1 1 0 33,34,52,54 3 -212487 cd11676 Gemin6 2 heptamer interface 0 1 1 0 8,26,38,48,49,50,51,52,53,54,55,56,57,58,59,60 2 -212487 cd11676 Gemin6 3 hexamer interface 0 1 1 0 14,15,19,21,27,28,34,36,48,49,50,51,52,53,54,55,56,57,58 2 -212487 cd11676 Gemin6 4 Sm1 motif 0 0 1 1 11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,34,35,36,37,38 0 -212487 cd11676 Gemin6 5 Sm2 motif 0 0 1 1 48,49,50,51,52,53,54,55,56,57,58,59 0 -212488 cd11677 Gemin7 1 RNA binding site 0 1 1 0 46,47,66,68 3 -212488 cd11677 Gemin7 2 heptamer interface 0 1 1 0 21,39,51,62,63,64,65,66,67,68,69,70,71,72,73,74 2 -212488 cd11677 Gemin7 3 hexamer interface 0 1 1 0 27,28,32,34,40,41,47,49,62,63,64,65,66,67,68,69,70,71,72 2 -212488 cd11677 Gemin7 4 Sm1 motif 0 0 1 1 24,25,26,27,28,32,33,34,35,36,37,38,39,40,41,42,47,48,49,50,51 0 -212488 cd11677 Gemin7 5 Sm2 motif 0 0 1 1 62,63,64,65,66,67,68,69,70,71,72,73 0 -212489 cd11678 archaeal_LSm 1 RNA binding site 0 1 1 0 34,35,59,61 3 -212489 cd11678 archaeal_LSm 2 heptamer interface 0 1 1 0 9,28,39,55,56,57,58,59,60,61,62,63,64,65,66,67 2 -212489 cd11678 archaeal_LSm 3 hexamer interface 0 1 1 0 15,16,21,23,29,30,35,37,55,56,57,58,59,60,61,62,63,64,65 2 -212489 cd11678 archaeal_LSm 4 Sm1 motif 0 0 1 1 12,13,14,15,16,21,22,23,24,25,26,27,28,29,30,31,35,36,37,38,39 0 -212489 cd11678 archaeal_LSm 5 Sm2 motif 0 0 1 1 55,56,57,58,59,60,61,62,63,64,65,66 0 -212490 cd11679 archaeal_Sm_like 1 RNA binding site 0 1 1 0 34,35,55,57 3 -212490 cd11679 archaeal_Sm_like 2 heptamer interface 0 1 1 0 9,27,39,51,52,53,54,55,56,57,58,59,60,61,62,63 2 -212490 cd11679 archaeal_Sm_like 3 hexamer interface 0 1 1 0 15,16,20,22,28,29,35,37,51,52,53,54,55,56,57,58,59,60,61 2 -212490 cd11679 archaeal_Sm_like 4 Sm1 motif 0 0 1 1 12,13,14,15,16,20,21,22,23,24,25,26,27,28,29,30,35,36,37,38,39 0 -212490 cd11679 archaeal_Sm_like 5 Sm2 motif 0 0 1 1 51,52,53,54,55,56,57,58,59,60,61,62 0 -153092 cd00618 PLA2_like 1 catalytic residues 0 1 1 0 29,72 1 -153092 cd00618 PLA2_like 2 primary metal binding site 0 1 1 1 5,7,9,30 0 -153091 cd00125 PLA2c 1 catalytic residues 0 1 1 0 45,90 1 -153091 cd00125 PLA2c 2 primary metal binding site 0 1 1 1 25,27,29,46 0 -153093 cd04704 PLA2_bee_venom_like 1 catalytic residues 0 1 1 0 33,63 1 -153093 cd04704 PLA2_bee_venom_like 2 primary metal binding site 0 1 1 1 7,9,11,34 0 -153094 cd04705 PLA2_group_III_like 1 catalytic residues 0 1 1 0 40,70 1 -153094 cd04705 PLA2_group_III_like 2 primary metal binding site 0 1 1 1 7,9,11,41 0 -153095 cd04706 PLA2_plant 1 catalytic residues 0 1 1 0 50,91 1 -153095 cd04706 PLA2_plant 2 primary metal binding site 0 1 1 1 26,28,30,51 0 -153096 cd04707 otoconin_90 1 catalytic residues 0 1 1 0 42,87 1 -153096 cd04707 otoconin_90 2 primary metal binding site 0 1 1 1 22,24,26,43 0 -238344 cd00625 ArsB_NhaD_permease 1 transmembrane helices 0 0 1 1 0,1,2,3,10,11,12,13,14,15,16,17,18,19,20,21,22,23,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,209,210,211,212,213,214,215,216,217,218,219,220,221,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,381,382,383,384,385,386,387,388,389,390,391,392,393 0 -238535 cd01115 SLC13_permease 1 transmembrane helices 0 0 1 1 7,8,9,10,17,18,19,20,21,22,23,24,25,26,27,28,29,30,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,189,190,191,192,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,363,364,365,366,367,368,369,370,371,372,373,374,375 0 -238536 cd01116 P_permease 1 transmembrane helices 0 0 1 1 4,5,6,7,14,15,16,17,18,19,20,21,22,23,24,25,26,27,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,216,217,218,219,220,221,222,223,224,225,226,227,228,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,397,398,399,400,401,402,403,404,405,406,407,408,409 0 -238537 cd01117 YbiR_permease 1 transmembrane helices 0 0 1 1 0,1,2,3,12,13,14,15,16,17,18,19,20,21,22,23,24,25,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,209,210,211,212,213,214,215,216,217,218,219,220,221,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,369,370,371,372,373,374,375,376,377,378,379,380,381 0 -238538 cd01118 ArsB_permease 1 transmembrane helices 0 0 1 1 11,12,13,14,21,22,23,24,25,26,27,28,29,30,31,32,33,34,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,223,224,225,226,227,228,229,230,231,232,233,234,235,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,400,401,402,403,404,405,406,407,408,409,410,411,412 0 -132719 cd00630 RNAP_largest_subunit_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 2,5,127,137,138,139,145,146,148,150,155 2 -132719 cd00630 RNAP_largest_subunit_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 54,55,57,58,59,60,62,82,93,94 2 -132719 cd00630 RNAP_largest_subunit_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 1,155 2 -132719 cd00630 RNAP_largest_subunit_C 4 DNA binding site 0 1 1 1 47,103,120,121,124 3 -132719 cd00630 RNAP_largest_subunit_C 5 cleft 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,112 0 -132719 cd00630 RNAP_largest_subunit_C 6 clamp 0 0 1 1 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 0 -132720 cd02584 RNAP_II_Rpb1_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 28,31,373,383,384,385,391,392,394,396,401 2 -132720 cd02584 RNAP_II_Rpb1_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 300,301,303,304,305,306,308,328,339,340 2 -132720 cd02584 RNAP_II_Rpb1_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 27,401 2 -132720 cd02584 RNAP_II_Rpb1_C 4 DNA binding site 0 1 1 1 73,349,366,367,370 3 -132720 cd02584 RNAP_II_Rpb1_C 5 cleft 0 0 1 1 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,62,63,64,65,66,67,68,69,70,71,72,73,294,295,296,297,298,299,300,301,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,344,345,346,347,348,349,358 0 -132720 cd02584 RNAP_II_Rpb1_C 6 clamp 0 0 1 1 358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399 0 -132721 cd02655 RNAP_beta'_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 7,10,173,183,184,185,191,192,194,196,201 2 -132721 cd02655 RNAP_beta'_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 60,61,65,66,67,68,70,90,101,102 2 -132721 cd02655 RNAP_beta'_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 6,201 2 -132721 cd02655 RNAP_beta'_C 4 DNA binding site 0 1 1 1 51,151,166,167,170 3 -132721 cd02655 RNAP_beta'_C 5 cleft 0 0 1 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57,58,59,60,61,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,146,147,148,149,150,151,158 0 -132721 cd02655 RNAP_beta'_C 6 clamp 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 0 -132722 cd02735 RNAP_I_Rpa1_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 11,14,274,284,285,286,292,293,295,297,302 2 -132722 cd02735 RNAP_I_Rpa1_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 202,203,205,206,207,208,210,230,241,242 2 -132722 cd02735 RNAP_I_Rpa1_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 10,302 2 -132722 cd02735 RNAP_I_Rpa1_C 4 DNA binding site 0 1 1 1 56,251,267,268,271 3 -132722 cd02735 RNAP_I_Rpa1_C 5 cleft 0 0 1 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,45,46,47,48,49,50,51,52,53,54,55,56,196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,246,247,248,249,250,251,259 0 -132722 cd02735 RNAP_I_Rpa1_C 6 clamp 0 0 1 1 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300 0 -132723 cd02736 RNAP_III_Rpc1_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 11,14,268,278,279,280,286,287,289,291,296 2 -132723 cd02736 RNAP_III_Rpc1_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 195,196,198,199,200,201,203,223,234,235 2 -132723 cd02736 RNAP_III_Rpc1_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 10,296 2 -132723 cd02736 RNAP_III_Rpc1_C 4 DNA binding site 0 1 1 1 56,244,261,262,265 3 -132723 cd02736 RNAP_III_Rpc1_C 5 cleft 0 0 1 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,45,46,47,48,49,50,51,52,53,54,55,56,189,190,191,192,193,194,195,196,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,239,240,241,242,243,244,253 0 -132723 cd02736 RNAP_III_Rpc1_C 6 clamp 0 0 1 1 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 0 -132724 cd02737 RNAP_IV_NRPD1_C 1 Rpb1 - Rpb2 interaction site 0 1 1 1 2,5,344,354,355,356,362,363,365,367,372 2 -132724 cd02737 RNAP_IV_NRPD1_C 2 Rpb1 - Rpb5 interaction site 0 1 1 1 266,267,269,270,271,272,274,294,305,306 2 -132724 cd02737 RNAP_IV_NRPD1_C 3 Rpb1 - Rpb6 interaction site 0 1 1 1 1,372 2 -132724 cd02737 RNAP_IV_NRPD1_C 4 DNA binding site 0 1 1 1 49,315,337,338,341 3 -132724 cd02737 RNAP_IV_NRPD1_C 5 cleft 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,38,39,40,41,42,43,44,45,46,47,48,49,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,310,311,312,313,314,315,329 0 -132724 cd02737 RNAP_IV_NRPD1_C 6 clamp 0 0 1 1 329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370 0 -132725 cd06528 RNAP_A'' 1 Rpb1 - Rpb2 interaction site 0 1 1 1 41,44,325,335,336,337,343,344,346,348,353 2 -132725 cd06528 RNAP_A'' 2 Rpb1 - Rpb5 interaction site 0 1 1 1 252,253,255,256,257,258,260,280,291,292 2 -132725 cd06528 RNAP_A'' 3 Rpb1 - Rpb6 interaction site 0 1 1 1 40,353 2 -132725 cd06528 RNAP_A'' 4 DNA binding site 0 1 1 1 86,301,318,319,322 3 -132725 cd06528 RNAP_A'' 5 cleft 0 0 1 1 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,75,76,77,78,79,80,81,82,83,84,85,86,246,247,248,249,250,251,252,253,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,296,297,298,299,300,301,310 0 -132725 cd06528 RNAP_A'' 6 clamp 0 0 1 1 310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351 0 -238346 cd00633 Secretoglobin 1 Hydrophobic pocket - steroid binding site 0 1 1 0 3,10,18,35,38,53,56,57 5 -238346 cd00633 Secretoglobin 2 Dimer interface 0 1 1 0 2,3,6,18,22,25,30,31,32,33,34,35,37,38,41,49,51,52,53,55,56,59 2 -238347 cd00636 TroA-like 1 intersubunit interface 0 1 0 1 76,77,80,108 2 -238498 cd01016 TroA 1 intersubunit interface 0 1 0 1 65,66,69,118 2 -238499 cd01017 AdcA 1 intersubunit interface 0 1 0 1 67,68,71,130 2 -238500 cd01018 ZntC 1 intersubunit interface 0 1 0 1 67,68,71,129 2 -238501 cd01019 ZnuA 1 intersubunit interface 0 1 0 1 67,68,71,138 2 -238502 cd01020 TroA_b 1 intersubunit interface 0 1 0 1 67,68,71,112 2 -238557 cd01137 PsaA 1 intersubunit interface 0 1 0 1 81,82,85,134 2 -238558 cd01138 FeuA 1 intersubunit interface 0 1 0 1 80,81,84,107 2 -238559 cd01139 TroA_f 1 intersubunit interface 0 1 0 1 111,112,115,142 2 -238560 cd01140 FatB 1 intersubunit interface 0 1 0 1 87,88,91,121 2 -238561 cd01141 TroA_d 1 intersubunit interface 0 1 0 1 85,86,89,115 2 -238562 cd01142 TroA_e 1 intersubunit interface 0 1 0 1 101,102,105,131 2 -238563 cd01143 YvrC 1 intersubunit interface 0 1 0 1 75,76,79,105 2 -238564 cd01144 BtuF 1 intersubunit interface 0 1 0 1 73,74,77,102 2 -238565 cd01145 TroA_c 1 intersubunit interface 0 1 0 1 66,67,70,125 2 -238566 cd01146 FhuD 1 intersubunit interface 0 1 0 1 80,81,84,109 2 -238567 cd01147 HemV-2 1 intersubunit interface 0 1 0 1 90,91,94,121 2 -238568 cd01148 TroA_a 1 intersubunit interface 0 1 0 1 99,100,103,136 2 -238569 cd01149 HutB 1 intersubunit interface 0 1 0 1 71,72,75,104 2 -107202 cd00640 Trp-synth-beta_II 1 catalytic residue 0 1 1 1 30 1 -107202 cd00640 Trp-synth-beta_II 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 29,30,59,161,162,163,164,165,215,241,242 5 -107203 cd01560 Thr-synth_2 1 catalytic residue 0 1 1 1 110 1 -107203 cd01560 Thr-synth_2 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 109,110,141,255,256,257,258,259,387,411,412 5 -107204 cd01561 CBS_like 1 catalytic residue 0 1 1 1 32 1 -107204 cd01561 CBS_like 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 31,32,62,168,169,170,171,172,256,282,283 5 -107205 cd01562 Thr-dehyd 1 catalytic residue 0 1 1 1 47 1 -107205 cd01562 Thr-dehyd 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 46,47,74,173,174,175,176,177,273,298,299 5 -107206 cd01563 Thr-synth_1 1 catalytic residue 0 1 1 1 53 1 -107206 cd01563 Thr-synth_1 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 52,53,79,179,180,181,182,183,289,317,318 5 -107207 cd06446 Trp-synth_B 1 catalytic residue 0 1 1 1 65 1 -107207 cd06446 Trp-synth_B 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 64,65,92,210,211,212,213,214,328,354,355 5 -107208 cd06447 D-Ser-dehyd 1 catalytic residue 0 1 1 1 91 1 -107208 cd06447 D-Ser-dehyd 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 90,91,143,252,253,254,255,256,359,396,397 5 -107209 cd06448 L-Ser-dehyd 1 catalytic residue 0 1 1 1 31 1 -107209 cd06448 L-Ser-dehyd 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 30,31,60,164,165,166,167,168,265,298,299 5 -107210 cd06449 ACCD 1 catalytic residue 0 1 1 1 35 1 -107210 cd06449 ACCD 2 pyridoxal 5'-phosphate binding pocket 0 1 1 1 34,35,63,182,183,184,185,186,275,304,305 5 -238348 cd00641 GTP_cyclohydro2 1 active site 0 1 1 0 47,48,49,50,51,52,54,63,65,68,89,90,91,92,99,103,106,112,124,126,147,148,149,152 1 -238348 cd00641 GTP_cyclohydro2 2 dimerization interface 0 1 1 0 4,5,6,7,8,9,10,18,20,21,22,29,31,33,51,53,54,56,57,58,59,60,62,69,70,73,86,88,96,97,100,101,103,104,107 2 -133419 cd00650 LDH_MDH_like 1 NAD(P) binding site 0 1 1 0 7,8,9,32,33,76,77,97,117,118,119,142,145,173,186 5 -133419 cd00650 LDH_MDH_like 2 substrate binding site 0 1 1 0 119,149,173 5 -133419 cd00650 LDH_MDH_like 3 LDH/MDH dimer interface 0 1 1 1 11,15,37,41,43,44,46,47,48,148,149,151,152,158,188,192 2 -133418 cd00300 LDH_like 1 NAD(P) binding site 0 1 1 0 6,7,8,29,30,72,73,93,113,114,115,138,142,170,224 5 -133418 cd00300 LDH_like 2 substrate binding site 0 1 1 0 115,146,170 5 -133418 cd00300 LDH_like 3 LDH/MDH dimer interface 0 1 1 1 10,14,34,38,40,41,43,44,45,145,146,148,149,155,226,230 2 -133424 cd01339 LDH-like_MDH 1 NAD(P) binding site 0 1 1 0 6,7,8,28,29,72,73,93,113,114,115,138,142,170,224 5 -133424 cd01339 LDH-like_MDH 2 substrate binding site 0 1 1 0 115,146,170 5 -133424 cd01339 LDH-like_MDH 3 LDH/MDH dimer interface 0 1 1 1 10,14,33,37,39,40,42,43,44,145,146,148,149,155,226,230 2 -133430 cd05294 LDH-like_MDH_nadp 1 NAD(P) binding site 0 1 1 0 9,10,11,32,33,78,79,99,119,120,121,144,148,176,230 5 -133430 cd05294 LDH-like_MDH_nadp 2 substrate binding site 0 1 1 0 121,152,176 5 -133430 cd05294 LDH-like_MDH_nadp 3 LDH/MDH dimer interface 0 1 1 1 13,17,39,43,45,46,48,49,50,151,152,154,155,161,232,236 2 -133426 cd05290 LDH_3 1 NAD(P) binding site 0 1 1 0 7,8,9,30,31,74,75,97,117,118,119,142,146,174,231 5 -133426 cd05290 LDH_3 2 substrate binding site 0 1 1 0 119,150,174 5 -133426 cd05290 LDH_3 3 LDH/MDH dimer interface 0 1 1 1 11,15,35,39,41,42,44,45,46,149,150,152,153,159,233,237 2 -133427 cd05291 HicDH_like 1 NAD(P) binding site 0 1 1 0 8,9,10,31,32,74,75,95,115,116,117,140,144,172,229 5 -133427 cd05291 HicDH_like 2 substrate binding site 0 1 1 0 117,148,172 5 -133427 cd05291 HicDH_like 3 LDH/MDH dimer interface 0 1 1 1 12,16,36,40,42,43,45,46,47,147,148,150,151,157,231,235 2 -133428 cd05292 LDH_2 1 NAD(P) binding site 0 1 1 0 8,9,10,31,32,73,74,94,114,115,116,139,143,171,230 5 -133428 cd05292 LDH_2 2 substrate binding site 0 1 1 0 116,147,171 5 -133428 cd05292 LDH_2 3 LDH/MDH dimer interface 0 1 1 1 12,16,36,40,42,43,45,46,47,146,147,149,150,156,232,236 2 -133429 cd05293 LDH_1 1 NAD(P) binding site 0 1 1 0 11,12,13,34,35,77,78,98,118,119,120,143,147,175,234 5 -133429 cd05293 LDH_1 2 substrate binding site 0 1 1 0 120,151,175 5 -133429 cd05293 LDH_1 3 LDH/MDH dimer interface 0 1 1 1 15,19,39,43,45,46,48,49,50,150,151,153,154,160,236,240 2 -133420 cd00704 MDH 1 NAD(P) binding site 0 1 1 0 9,10,11,37,38,82,83,103,124,125,126,150,153,182,240 5 -133420 cd00704 MDH 2 substrate binding site 0 1 1 0 126,157,182 5 -133420 cd00704 MDH 3 LDH/MDH dimer interface 0 1 1 1 13,17,44,48,50,51,53,54,55,156,157,159,160,166,242,246 2 -133421 cd01336 MDH_cytoplasmic_cytosolic 1 NAD(P) binding site 0 1 1 0 11,12,13,39,40,84,85,105,126,127,128,152,155,184,243 5 -133421 cd01336 MDH_cytoplasmic_cytosolic 2 substrate binding site 0 1 1 0 128,159,184 5 -133421 cd01336 MDH_cytoplasmic_cytosolic 3 LDH/MDH dimer interface 0 1 1 1 15,19,46,50,52,53,55,56,57,158,159,161,162,168,245,249 2 -133423 cd01338 MDH_choloroplast_like 1 NAD(P) binding site 0 1 1 0 11,12,13,39,40,84,85,105,126,127,128,152,155,184,239 5 -133423 cd01338 MDH_choloroplast_like 2 substrate binding site 0 1 1 0 128,159,184 5 -133423 cd01338 MDH_choloroplast_like 3 LDH/MDH dimer interface 0 1 1 1 15,19,46,50,52,53,55,56,57,158,159,161,162,168,241,245 2 -133431 cd05295 MDH_like 1 NAD(P) binding site 0 1 1 0 132,133,134,160,161,205,206,226,247,249,250,274,277,306,369 5 -133431 cd05295 MDH_like 2 substrate binding site 0 1 1 0 250,281,306 5 -133431 cd05295 MDH_like 3 LDH/MDH dimer interface 0 1 1 1 136,140,167,171,173,174,176,177,178,280,281,283,284,290,371,375 2 -133422 cd01337 MDH_glyoxysomal_mitochondrial 1 NAD(P) binding site 0 1 1 0 9,10,11,32,33,74,75,95,115,116,117,144,147,175,226 5 -133422 cd01337 MDH_glyoxysomal_mitochondrial 2 substrate binding site 0 1 1 0 117,151,175 5 -133422 cd01337 MDH_glyoxysomal_mitochondrial 3 LDH/MDH dimer interface 0 1 1 1 13,17,35,39,41,42,44,45,46,150,151,153,154,160,228,232 2 -133425 cd05197 GH4_glycoside_hydrolases 1 NAD(P) binding site 0 1 1 0 9,10,11,35,36,80,81,121,141,142,143,164,166,194,311 5 -133425 cd05197 GH4_glycoside_hydrolases 2 substrate binding site 0 1 1 0 143,170,194 5 -133425 cd05197 GH4_glycoside_hydrolases 3 LDH/MDH dimer interface 0 1 1 1 13,17,40,44,46,47,49,50,51,169,170,172,173,179,313,317 2 -133432 cd05296 GH4_P_beta_glucosidase 1 NAD(P) binding site 0 1 1 0 9,10,11,35,36,81,82,122,142,143,144,164,166,194,300 5 -133432 cd05296 GH4_P_beta_glucosidase 2 substrate binding site 0 1 1 0 144,170,194 5 -133432 cd05296 GH4_P_beta_glucosidase 3 LDH/MDH dimer interface 0 1 1 1 13,17,41,45,47,48,50,51,52,169,170,172,173,179,302,306 2 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 1 NAD(P) binding site 0 1 1 0 9,10,12,35,36,80,81,123,143,144,145,165,167,195,308 5 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 2 substrate binding site 0 1 1 0 145,171,195 5 -133433 cd05297 GH4_alpha_glucosidase_galactosidase 3 LDH/MDH dimer interface 0 1 1 1 14,18,40,44,46,47,49,50,51,170,171,173,174,180,310,314 2 -133434 cd05298 GH4_GlvA_pagL_like 1 NAD(P) binding site 0 1 1 0 9,10,11,35,36,80,81,121,141,142,143,164,166,194,314 5 -133434 cd05298 GH4_GlvA_pagL_like 2 substrate binding site 0 1 1 0 143,170,194 5 -133434 cd05298 GH4_GlvA_pagL_like 3 LDH/MDH dimer interface 0 1 1 1 13,17,40,44,46,47,49,50,51,169,170,172,173,179,316,320 2 -238351 cd00651 TFold 1 active site 0 1 1 1 25,27,95,118 1 -238251 cd00445 Uricase 1 active site 0 1 1 1 21,23,96,123 1 -238264 cd00470 PTPS 1 active site 0 1 1 1 38,40,123,129 1 -238298 cd00534 DHNA_DHNTPE 1 active site 0 1 1 1 25,27,96,114 1 -238349 cd00642 GTP_cyclohydro1 1 active site 0 1 1 1 82,84,140,163 1 -238352 cd00652 TBP_TLF 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,91,96,98,127,128,133,144,146,148,152 3 -238352 cd00652 TBP_TLF 2 TFIIA interaction surface 0 1 1 1 19,26,27,28,30,35,41,43 2 -238352 cd00652 TBP_TLF 3 TFIIB interaction surface 0 1 1 1 108,109,121,122,123,124,125,128,133 2 -238352 cd00652 TBP_TLF 4 NC2 interaction surface 0 1 1 1 34,132,133,138,169,170 2 -239952 cd04516 TBP_eukaryotes 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,90,95,97,126,127,132,143,145,147,151 3 -239952 cd04516 TBP_eukaryotes 2 TFIIA interaction surface 0 1 1 1 19,26,27,28,30,35,41,43 2 -239952 cd04516 TBP_eukaryotes 3 TFIIB interaction surface 0 1 1 1 107,108,120,121,122,123,124,127,132 2 -239952 cd04516 TBP_eukaryotes 4 NC2 interaction surface 0 1 1 1 34,131,132,137,168,169 2 -239953 cd04517 TLF 1 DNA interaction surface 0 1 1 0 5,6,8,34,35,39,41,48,50,54,56,58,60,91,96,98,127,128,133,144,146,148,152 3 -239953 cd04517 TLF 2 TFIIA interaction surface 0 1 1 1 20,27,28,29,31,35,41,43 2 -239953 cd04517 TLF 3 TFIIB interaction surface 0 1 1 1 108,109,121,122,123,124,125,128,133 2 -239953 cd04517 TLF 4 NC2 interaction surface 0 1 1 1 34,132,133,138,169,170 2 -239954 cd04518 TBP_archaea 1 DNA interaction surface 0 1 1 0 4,5,7,34,35,39,41,48,50,54,56,58,60,91,96,98,126,127,132,143,145,147,151 3 -239954 cd04518 TBP_archaea 2 TFIIA interaction surface 0 1 1 1 19,26,27,28,30,35,41,43 2 -239954 cd04518 TBP_archaea 3 TFIIB interaction surface 0 1 1 1 108,109,120,121,122,123,124,127,132 2 -239954 cd04518 TBP_archaea 4 NC2 interaction surface 0 1 1 1 34,131,132,137,168,169 2 -238353 cd00653 RNA_pol_B_RPB2 1 RPB1 interaction site 0 1 1 0 344,346,347,348,350,353,358,398,416,417,418,420,483,484,485,486,489,491,492,493,642,644,646,668,670,673,676,681,685,702,729,737,738,739,741,754,757,758,759,761,762,783,784,785,789,791,792,794,796,797,798,799,800,801,803,804,805,806,807,808,812,845,849,851,853,854,856,858,859,860,861,863,865 2 -238353 cd00653 RNA_pol_B_RPB2 2 RPB3 interaction site 0 1 1 0 503,504,508,624,626,651,652,653,656,658,659,730,731,732,733,734,735,736,737,739 2 -238353 cd00653 RNA_pol_B_RPB2 3 RPB10 interaction site 0 1 1 0 456,457,478,480,501,504,651,664,691,692,694,725,742 2 -238353 cd00653 RNA_pol_B_RPB2 4 RPB11 interaction site 0 1 1 0 489,503,650,731 2 -238353 cd00653 RNA_pol_B_RPB2 5 RPB12 interaction site 0 1 1 0 66,508,546,548,552,553,554,556 2 -238354 cd00655 RNAP_Rpb7_N_like 1 protein interaction surface 0 1 1 1 0,1,2,3,4,6,33,40,44,45,46,71,76,78 2 -239820 cd04328 RNAP_I_Rpa43_N 1 protein interaction surface 0 1 1 1 8,9,10,11,12,14,41,47,51,52,53,80,85,87 2 -239821 cd04329 RNAP_II_Rpb7_N 1 protein interaction surface 0 1 1 1 0,1,2,3,4,6,33,40,44,45,46,71,76,78 2 -239822 cd04330 RNAP_III_Rpc25_N 1 protein interaction surface 0 1 1 1 0,1,2,3,4,6,33,40,44,45,46,71,76,78 2 -239823 cd04331 RNAP_E_N 1 protein interaction surface 0 1 1 1 0,1,2,3,4,6,33,40,44,45,46,71,76,78 2 -259791 cd00656 Zn-ribbon 1 Zn binding site 0 1 1 1 8,11,36,39 4 -259792 cd10507 Zn-ribbon_RPA12 1 Zn binding site 0 1 1 1 8,11,36,39 4 -259793 cd10508 Zn-ribbon_RPB9 1 Zn binding site 0 1 1 1 12,15,40,43 4 -259794 cd10509 Zn-ribbon_RPC11 1 Zn binding site 0 1 1 1 8,11,36,39 4 -259795 cd10511 Zn-ribbon_TFS 1 Zn binding site 0 1 1 1 8,11,36,39 4 -259796 cd13749 Zn-ribbon_TFIIS 1 Zn binding site 0 1 1 1 9,12,37,40 4 -153097 cd00657 Ferritin_like 1 dinuclear metal binding motif 0 0 1 1 9,39,42,88,118,121 4 -153098 cd00904 Ferritin 1 dinuclear metal binding motif 0 0 1 1 14,49,52,94,128,131 4 -153113 cd01055 Nonheme_Ferritin 1 dinuclear metal binding motif 0 0 1 1 14,47,50,91,124,127 4 -153114 cd01056 Euk_Ferritin 1 dinuclear metal binding motif 0 0 1 1 14,49,52,94,128,131 4 -153099 cd00907 Bacterioferritin 1 dinuclear metal binding motif 0 0 1 1 16,49,52,92,125,128 4 -153100 cd01041 Rubrerythrin 1 dinuclear metal binding motif 0 0 1 1 12,45,48,84,118,121 4 -153101 cd01042 DMQH 1 dinuclear metal binding motif 0 0 1 1 11,41,44,93,126,129 4 -153102 cd01043 DPS 1 dinuclear metal binding motif 0 0 1 1 9,42,45,94,127,130 4 -153103 cd01044 Ferritin_CCC1_N 1 dinuclear metal binding motif 0 0 1 1 9,39,42,87,111,114 4 -153104 cd01045 Ferritin_like_AB 1 dinuclear metal binding motif 0 0 1 1 9,39,42,97,127,130 4 -153105 cd01046 Rubrerythrin_like 1 dinuclear metal binding motif 0 0 1 1 12,45,48,74,107,110 4 -153106 cd01047 ACSF 1 dinuclear metal binding motif 0 0 1 1 74,106,109,151,187,190 4 -153107 cd01048 Ferritin_like_AB2 1 dinuclear metal binding motif 0 0 1 1 11,38,41,93,123,126 4 -153108 cd01049 RNRR2 1 dinuclear metal binding motif 0 0 1 1 58,89,92,155,189,192 4 -153109 cd01050 Acyl_ACP_Desat 1 dinuclear metal binding motif 0 0 1 1 70,105,108,158,190,193 4 -153110 cd01051 Mn_catalase 1 dinuclear metal binding motif 0 0 1 1 34,65,68,110,140,143 4 -153111 cd01052 DPSL 1 dinuclear metal binding motif 0 0 1 1 17,50,53,104,136,139 4 -153112 cd01053 AOX 1 dinuclear metal binding motif 0 0 1 1 12,51,54,104,153,156 4 -153115 cd01057 AAMH_A 1 dinuclear metal binding motif 0 0 1 1 89,119,122,181,215,218 4 -153116 cd01058 AAMH_B 1 dinuclear metal binding motif 0 0 1 1 111,141,144,205,239,242 4 -153117 cd07908 Mn_catalase_like 1 dinuclear metal binding motif 0 0 1 1 27,59,62,112,142,145 4 -153118 cd07909 YciF 1 dinuclear metal binding motif 0 0 1 1 14,44,47,102,135,138 4 -153119 cd07910 MiaE 1 dinuclear metal binding motif 0 0 1 1 29,60,63,113,143,146 4 -153120 cd07911 RNRR2_Rv0233_like 1 dinuclear metal binding motif 0 0 1 1 57,90,93,154,189,192 4 -238356 cd00660 Topoisomer_IB_N 1 DNA binding 0 1 1 0 0,50,140,141,146,148,151,158,194,195,196,209,210,212 0 -239570 cd03488 Topoisomer_IB_N_htopoI_like 1 DNA binding 0 1 1 0 0,50,140,141,146,148,151,158,194,195,196,209,210,212 0 -239571 cd03489 Topoisomer_IB_N_LdtopoI_like 1 DNA binding 0 1 1 0 0,48,137,138,143,145,148,155,191,192,193,206,207,209 0 -239572 cd03490 Topoisomer_IB_N_1 1 DNA binding 0 1 1 0 0,48,139,140,145,147,150,157,196,197,198,211,212,214 0 -238361 cd00677 S15_NS1_EPRS_RNA-bind 1 RNA binding site 0 1 1 1 2,9,16,28,39,43 3 -238213 cd00353 Ribosomal_S15p_S13e 1 RNA binding site 0 1 1 1 21,28,35,47,58,62 3 -238605 cd01200 WHEPGMRS_RNA 1 RNA binding site 0 1 1 1 2,9,16,21,32,36 3 -238472 cd00935 GlyRS_RNA 1 RNA binding site 0 1 1 1 6,13,20,25,36,40 3 -238473 cd00936 WEPRS_RNA 1 RNA binding site 0 1 1 1 3,10,17,22,33,37 3 -238474 cd00938 HisRS_RNA 1 RNA binding site 0 1 1 1 5,12,19,24,35,39 3 -238475 cd00939 MetRS_RNA 1 RNA binding site 0 1 1 1 3,10,17,22,33,37 3 -198380 cd00719 GIY-YIG_SF 1 active site 0 1 1 1 2,13,15,23,27,61 1 -198380 cd00719 GIY-YIG_SF 2 catalytic site 0 1 1 1 23,61 1 -198380 cd00719 GIY-YIG_SF 3 metal binding site 0 1 1 1 61 4 -198380 cd00719 GIY-YIG_SF 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198381 cd10434 GIY-YIG_UvrC_Cho 1 active site 0 1 1 1 7,18,20,28,32,67 1 -198381 cd10434 GIY-YIG_UvrC_Cho 2 catalytic site 0 1 1 1 28,67 1 -198381 cd10434 GIY-YIG_UvrC_Cho 3 metal binding site 0 1 1 1 67 4 -198381 cd10434 GIY-YIG_UvrC_Cho 4 GIY-YIG motif/motif A 0 0 1 1 5,6,7,18,19,20 0 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 1 active site 0 1 1 1 4,31,33,57,61,92 1 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 2 catalytic site 0 1 1 1 57,92 1 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 3 metal binding site 0 1 1 1 92 4 -198382 cd10435 GIY-YIG_RE_Eco29kI_like 4 GIY-YIG motif/motif A 0 0 1 1 2,3,4,31,32,33 0 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 1 active site 0 1 1 1 43,70,72,98,102,136 1 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 2 catalytic site 0 1 1 1 98,136 1 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 3 metal binding site 0 1 1 1 136 4 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII 4 GIY-YIG motif/motif A 0 0 1 1 41,42,43,70,71,72 0 -198400 cd10453 GIY-YIG_RE_Cfr42I 1 active site 0 1 1 1 37,65,67,92,96,127 1 -198400 cd10453 GIY-YIG_RE_Cfr42I 2 catalytic site 0 1 1 1 92,127 1 -198400 cd10453 GIY-YIG_RE_Cfr42I 3 metal binding site 0 1 1 1 127 4 -198400 cd10453 GIY-YIG_RE_Cfr42I 4 GIY-YIG motif/motif A 0 0 1 1 35,36,37,65,66,67 0 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 1 active site 0 1 1 1 3,13,15,23,27,82 1 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 2 catalytic site 0 1 1 1 23,82 1 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 3 metal binding site 0 1 1 1 82 4 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,13,14,15 0 -198384 cd10437 GIY-YIG_HE_I-TevI_like 1 active site 0 1 1 1 3,14,16,24,28,72 1 -198384 cd10437 GIY-YIG_HE_I-TevI_like 2 catalytic site 0 1 1 1 24,72 1 -198384 cd10437 GIY-YIG_HE_I-TevI_like 3 metal binding site 0 1 1 1 72 4 -198384 cd10437 GIY-YIG_HE_I-TevI_like 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,14,15,16 0 -198385 cd10438 GIY-YIG_MSH 1 active site 0 1 1 1 3,13,15,23,27,55 1 -198385 cd10438 GIY-YIG_MSH 2 catalytic site 0 1 1 1 23,55 1 -198385 cd10438 GIY-YIG_MSH 3 metal binding site 0 1 1 1 55 4 -198385 cd10438 GIY-YIG_MSH 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,13,14,15 0 -198386 cd10439 GIY-YIG_COG3410 1 active site 0 1 1 1 5,16,18,26,30,62 1 -198386 cd10439 GIY-YIG_COG3410 2 catalytic site 0 1 1 1 26,62 1 -198386 cd10439 GIY-YIG_COG3410 3 metal binding site 0 1 1 1 62 4 -198386 cd10439 GIY-YIG_COG3410 4 GIY-YIG motif/motif A 0 0 1 1 3,4,5,16,17,18 0 -198387 cd10440 GIY-YIG_COG3680 1 active site 0 1 1 1 3,15,17,23,27,77 1 -198387 cd10440 GIY-YIG_COG3680 2 catalytic site 0 1 1 1 23,77 1 -198387 cd10440 GIY-YIG_COG3680 3 metal binding site 0 1 1 1 77 4 -198387 cd10440 GIY-YIG_COG3680 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,15,16,17 0 -198401 cd10454 GIY-YIG_COG3680_Meta 1 active site 0 1 1 1 3,36,38,44,48,99 1 -198401 cd10454 GIY-YIG_COG3680_Meta 2 catalytic site 0 1 1 1 44,99 1 -198401 cd10454 GIY-YIG_COG3680_Meta 3 metal binding site 0 1 1 1 99 4 -198401 cd10454 GIY-YIG_COG3680_Meta 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,36,37,38 0 -198388 cd10441 GIY-YIG_COG1833 1 active site 0 1 1 1 3,32,34,44,48,81 1 -198388 cd10441 GIY-YIG_COG1833 2 catalytic site 0 1 1 1 44,81 1 -198388 cd10441 GIY-YIG_COG1833 3 metal binding site 0 1 1 1 81 4 -198388 cd10441 GIY-YIG_COG1833 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,32,33,34 0 -198389 cd10442 GIY-YIG_PLEs 1 active site 0 1 1 1 2,13,15,24,28,75 1 -198389 cd10442 GIY-YIG_PLEs 2 catalytic site 0 1 1 1 24,75 1 -198389 cd10442 GIY-YIG_PLEs 3 metal binding site 0 1 1 1 75 4 -198389 cd10442 GIY-YIG_PLEs 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 1 active site 0 1 1 1 3,14,16,25,29,71 1 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 2 catalytic site 0 1 1 1 25,71 1 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 3 metal binding site 0 1 1 1 71 4 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,14,15,16 0 -198391 cd10444 GIY-YIG_SegABCDEFG 1 active site 0 1 1 1 2,13,15,25,29,66 1 -198391 cd10444 GIY-YIG_SegABCDEFG 2 catalytic site 0 1 1 1 25,66 1 -198391 cd10444 GIY-YIG_SegABCDEFG 3 metal binding site 0 1 1 1 66 4 -198391 cd10444 GIY-YIG_SegABCDEFG 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198392 cd10445 GIY-YIG_bI1_like 1 active site 0 1 1 1 3,14,16,24,28,72 1 -198392 cd10445 GIY-YIG_bI1_like 2 catalytic site 0 1 1 1 24,72 1 -198392 cd10445 GIY-YIG_bI1_like 3 metal binding site 0 1 1 1 72 4 -198392 cd10445 GIY-YIG_bI1_like 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,14,15,16 0 -198393 cd10446 GIY-YIG_unchar_1 1 active site 0 1 1 1 11,22,24,35,39,85 1 -198393 cd10446 GIY-YIG_unchar_1 2 catalytic site 0 1 1 1 35,85 1 -198393 cd10446 GIY-YIG_unchar_1 3 metal binding site 0 1 1 1 85 4 -198393 cd10446 GIY-YIG_unchar_1 4 GIY-YIG motif/motif A 0 0 1 1 9,10,11,22,23,24 0 -198394 cd10447 GIY-YIG_unchar_2 1 active site 0 1 1 1 2,17,19,27,31,60 1 -198394 cd10447 GIY-YIG_unchar_2 2 catalytic site 0 1 1 1 27,60 1 -198394 cd10447 GIY-YIG_unchar_2 3 metal binding site 0 1 1 1 60 4 -198394 cd10447 GIY-YIG_unchar_2 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,17,18,19 0 -198395 cd10448 GIY-YIG_unchar_3 1 active site 0 1 1 1 3,14,16,24,28,61 1 -198395 cd10448 GIY-YIG_unchar_3 2 catalytic site 0 1 1 1 24,61 1 -198395 cd10448 GIY-YIG_unchar_3 3 metal binding site 0 1 1 1 61 4 -198395 cd10448 GIY-YIG_unchar_3 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,14,15,16 0 -198396 cd10449 GIY-YIG_SLX1_like 1 active site 0 1 1 1 2,13,15,23,27,59 1 -198396 cd10449 GIY-YIG_SLX1_like 2 catalytic site 0 1 1 1 23,59 1 -198396 cd10449 GIY-YIG_SLX1_like 3 metal binding site 0 1 1 1 59 4 -198396 cd10449 GIY-YIG_SLX1_like 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198402 cd10455 GIY-YIG_SLX1 1 active site 0 1 1 1 4,18,20,28,32,68 1 -198402 cd10455 GIY-YIG_SLX1 2 catalytic site 0 1 1 1 28,68 1 -198402 cd10455 GIY-YIG_SLX1 3 metal binding site 0 1 1 1 68 4 -198402 cd10455 GIY-YIG_SLX1 4 GIY-YIG motif/motif A 0 0 1 1 2,3,4,18,19,20 0 -198403 cd10456 GIY-YIG_UPF0213 1 active site 0 1 1 1 3,13,15,23,27,60 1 -198403 cd10456 GIY-YIG_UPF0213 2 catalytic site 0 1 1 1 23,60 1 -198403 cd10456 GIY-YIG_UPF0213 3 metal binding site 0 1 1 1 60 4 -198403 cd10456 GIY-YIG_UPF0213 4 GIY-YIG motif/motif A 0 0 1 1 1,2,3,13,14,15 0 -198397 cd10450 GIY-YIG_AtGrxS16_like 1 active site 0 1 1 1 2,13,15,23,27,55 1 -198397 cd10450 GIY-YIG_AtGrxS16_like 2 catalytic site 0 1 1 1 23,55 1 -198397 cd10450 GIY-YIG_AtGrxS16_like 3 metal binding site 0 1 1 1 55 4 -198397 cd10450 GIY-YIG_AtGrxS16_like 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198404 cd10457 GIY-YIG_AtGrxS16 1 active site 0 1 1 1 2,13,15,23,27,55 1 -198404 cd10457 GIY-YIG_AtGrxS16 2 catalytic site 0 1 1 1 23,55 1 -198404 cd10457 GIY-YIG_AtGrxS16 3 metal binding site 0 1 1 1 55 4 -198404 cd10457 GIY-YIG_AtGrxS16 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198405 cd10458 GIY-YIG_NifU 1 active site 0 1 1 1 2,13,15,23,27,59 1 -198405 cd10458 GIY-YIG_NifU 2 catalytic site 0 1 1 1 23,59 1 -198405 cd10458 GIY-YIG_NifU 3 metal binding site 0 1 1 1 59 4 -198405 cd10458 GIY-YIG_NifU 4 GIY-YIG motif/motif A 0 0 1 1 0,1,2,13,14,15 0 -198398 cd10451 GIY-YIG_LuxR_like 1 active site 0 1 1 1 16,27,29,46,50,93 1 -198398 cd10451 GIY-YIG_LuxR_like 2 catalytic site 0 1 1 1 46,93 1 -198398 cd10451 GIY-YIG_LuxR_like 3 metal binding site 0 1 1 1 93 4 -198398 cd10451 GIY-YIG_LuxR_like 4 GIY-YIG motif/motif A 0 0 1 1 14,15,16,27,28,29 0 -238379 cd00738 HGTP_anticodon 1 anticodon binding site 0 1 1 0 8,9,47,53,61,71,73 0 -238435 cd00858 GlyRS_anticodon 1 anticodon binding site 0 1 1 0 33,34,70,76,84,94,96 0 -238436 cd00859 HisRS_anticodon 1 anticodon binding site 0 1 1 0 8,9,44,50,58,68,70 0 -238437 cd00860 ThrRS_anticodon 1 anticodon binding site 0 1 1 0 8,9,44,50,58,68,70 0 -238438 cd00861 ProRS_anticodon_short 1 anticodon binding site 0 1 1 0 8,9,47,53,61,71,73 0 -238439 cd00862 ProRS_anticodon_zinc 1 anticodon binding site 0 1 1 0 17,18,60,66,74,84,86 0 -239106 cd02426 Pol_gamma_b_Cterm 1 anticodon binding site 0 1 1 0 34,35,76,82,90,100,102 0 -238382 cd00741 Lipase 1 catalytic triad 0 1 1 1 35,148 0 -238382 cd00741 Lipase 2 nucleophilic elbow 0 0 1 1 33,34,35,36,37 0 -238287 cd00519 Lipase_3 1 catalytic triad 0 1 1 1 135,218 0 -238287 cd00519 Lipase_3 2 nucleophilic elbow 0 0 1 1 133,134,135,136,137 0 -238363 cd00707 Pancreat_lipase_like 1 catalytic triad 0 1 1 1 119,212 0 -238363 cd00707 Pancreat_lipase_like 2 nucleophilic elbow 0 0 1 1 117,118,119,120,121 0 -238385 cd00756 MoaE 1 active site residues 0 1 1 0 105,112 1 -238385 cd00756 MoaE 2 MoaE homodimer interface 0 1 1 1 6,10,15,17,18,19,20,21,23,25,79,88,90,98,102 2 -238385 cd00756 MoaE 3 MoaD interaction 0 1 1 1 39,41,44,47,51,69,105,106,108,110,111,112,122 2 -238387 cd00758 MoCF_BD 1 MPT binding site 0 1 1 0 66,67,68,114,115,119,122 0 -238450 cd00885 cinA 1 MPT binding site 0 1 1 0 66,67,68,148,149,153,156 0 -238451 cd00886 MogA_MoaB 1 MPT binding site 0 1 1 0 69,70,71,127,128,132,135 0 -238452 cd00887 MoeA 1 MPT binding site 0 1 1 0 242,243,244,289,290,294,297 0 -239599 cd03522 MoeA_like 1 MPT binding site 0 1 1 0 227,228,229,274,275,279,282 0 -132997 cd00761 Glyco_tranf_GTA_type 1 active site 0 1 1 0 3,5,31,84,86 0 -132995 cd00218 GlcAT-I 1 active site 0 1 1 0 7,9,36,102,104 0 -132996 cd00505 Glyco_transf_8 1 active site 0 1 1 0 5,7,35,102,104 0 -133018 cd02537 GT8_Glycogenin 1 active site 0 1 1 0 5,7,34,96,98 0 -133037 cd04194 GT8_A4GalT_like 1 active site 0 1 1 0 5,7,35,102,104 0 -133051 cd06429 GT8_like_1 1 active site 0 1 1 0 5,7,34,120,122 0 -133052 cd06430 GT8_like_2 1 active site 0 1 1 0 5,7,34,103,105 0 -133053 cd06431 GT8_LARGE_C 1 active site 0 1 1 0 5,7,35,104,106 0 -133054 cd06432 GT8_HUGT1_C_like 1 active site 0 1 1 0 5,7,35,102,104 0 -133064 cd06914 GT8_GNT1 1 active site 0 1 1 0 5,7,34,98,100 0 -132999 cd00899 b4GalT 1 active site 0 1 1 0 8,10,39,73,75 0 -133000 cd02503 MobA 1 active site 0 1 1 0 5,7,45,90,92 0 -133001 cd02507 eIF-2B_gamma_N_like 1 active site 0 1 1 0 5,7,51,109,111 0 -133040 cd04197 eIF-2B_epsilon_N 1 active site 0 1 1 0 5,7,51,110,112 0 -133041 cd04198 eIF-2B_gamma_N 1 active site 0 1 1 0 5,7,51,107,109 0 -133002 cd02508 ADP_Glucose_PP 1 active site 0 1 1 0 3,5,50,117,119 0 -133003 cd02509 GDP-M1P_Guanylyltransferase 1 active site 0 1 1 0 5,7,54,109,111 0 -133004 cd02510 pp-GalNAc-T 1 active site 0 1 1 0 4,6,35,90,92 0 -133005 cd02511 Beta4Glucosyltransferase 1 active site 0 1 1 0 6,8,31,78,80 0 -133006 cd02513 CMP-NeuAc_Synthase 1 active site 0 1 1 0 6,8,47,104,106 0 -133007 cd02514 GT13_GLCNAC-TI 1 active site 0 1 1 0 6,8,36,104,106 0 -133008 cd02515 Glyco_transf_6 1 active site 0 1 1 0 40,42,71,130,132 0 -133009 cd02516 CDP-ME_synthetase 1 active site 0 1 1 0 5,7,49,102,104 0 -133010 cd02517 CMP-KDO-Synthetase 1 active site 0 1 1 0 6,8,47,96,98 0 -133011 cd02518 GT2_SpsF 1 active site 0 1 1 0 4,6,45,94,96 0 -133012 cd02520 Glucosylceramide_synthase 1 active site 0 1 1 0 7,9,35,93,95 0 -133013 cd02522 GT_2_like_a 1 active site 0 1 1 0 5,7,33,79,81 0 -133014 cd02523 PC_cytidylyltransferase 1 active site 0 1 1 0 3,5,49,99,101 0 -133016 cd02525 Succinoglycan_BP_ExoA 1 active site 0 1 1 0 6,8,35,94,96 0 -133017 cd02526 GT2_RfbF_like 1 active site 0 1 1 0 3,5,29,82,84 0 -133022 cd04179 DPM_DPG-synthase_like 1 active site 0 1 1 0 3,5,33,86,88 0 -133030 cd04187 DPM1_like_bac 1 active site 0 1 1 0 3,5,34,87,89 0 -133031 cd04188 DPG_synthase 1 active site 0 1 1 0 3,5,35,89,91 0 -133062 cd06442 DPM1_like 1 active site 0 1 1 0 3,5,32,85,87 0 -133023 cd04180 UGPase_euk_like 1 active site 0 1 1 0 5,7,58,141,143 0 -132998 cd00897 UGPase_euk 1 active site 0 1 1 0 8,10,57,143,145 0 -133036 cd04193 UDPGlcNAc_PPase 1 active site 0 1 1 0 20,22,77,163,165 0 -133046 cd06424 UGGPase 1 active site 0 1 1 0 5,7,60,149,151 0 -133024 cd04181 NTP_transferase 1 active site 0 1 1 0 3,5,49,102,104 0 -133015 cd02524 G1P_cytidylyltransferase 1 active site 0 1 1 0 3,5,49,124,126 0 -133019 cd02538 G1P_TT_short 1 active site 0 1 1 0 5,7,51,105,107 0 -133020 cd02540 GT2_GlmU_N_bac 1 active site 0 1 1 0 3,5,46,96,98 0 -133021 cd02541 UGPase_prokaryotic 1 active site 0 1 1 0 5,7,51,125,127 0 -133032 cd04189 G1P_TT_long 1 active site 0 1 1 0 5,7,51,104,106 0 -133044 cd06422 NTP_transferase_like_1 1 active site 0 1 1 0 4,6,50,103,105 0 -133047 cd06425 M1P_guanylylT_B_like_N 1 active site 0 1 1 0 5,7,51,107,109 0 -133048 cd06426 NTP_transferase_like_2 1 active site 0 1 1 0 3,5,49,101,103 0 -133050 cd06428 M1P_guanylylT_A_like_N 1 active site 0 1 1 0 3,5,52,109,111 0 -133065 cd06915 NTP_transferase_WcbM_like 1 active site 0 1 1 0 3,5,49,102,104 0 -133025 cd04182 GT_2_like_f 1 active site 0 1 1 0 5,7,45,97,99 0 -133026 cd04183 GT2_BcE_like 1 active site 0 1 1 0 3,5,49,104,106 0 -133027 cd04184 GT2_RfbC_Mx_like 1 active site 0 1 1 0 7,9,36,90,92 0 -133028 cd04185 GT_2_like_b 1 active site 0 1 1 0 3,5,31,86,88 0 -133029 cd04186 GT_2_like_c 1 active site 0 1 1 0 3,5,31,81,83 0 -133035 cd04192 GT_2_like_e 1 active site 0 1 1 0 3,5,33,89,91 0 -133038 cd04195 GT2_AmsE_like 1 active site 0 1 1 0 4,6,34,87,89 0 -133039 cd04196 GT_2_like_d 1 active site 0 1 1 0 4,6,32,86,88 0 -133042 cd06420 GT2_Chondriotin_Pol_N 1 active site 0 1 1 0 3,5,31,86,88 0 -133045 cd06423 CESA_like 1 active site 0 1 1 0 3,5,31,85,87 0 -133033 cd04190 Chitin_synth_C 1 active site 0 1 1 0 3,5,42,80,82 0 -133034 cd04191 Glucan_BSP_ModH 1 active site 0 1 1 0 5,7,39,102,104 0 -133043 cd06421 CESA_CelA_like 1 active site 0 1 1 0 7,9,38,91,93 0 -133049 cd06427 CESA_like_2 1 active site 0 1 1 0 7,9,37,91,93 0 -133056 cd06434 GT2_HAS 1 active site 0 1 1 0 6,8,33,84,86 0 -133057 cd06435 CESA_NdvC_like 1 active site 0 1 1 0 4,6,33,91,93 0 -133058 cd06436 GlcNAc-1-P_transferase 1 active site 0 1 1 0 3,5,30,96,98 0 -133059 cd06437 CESA_CaSu_A2 1 active site 0 1 1 0 7,9,37,94,96 0 -133060 cd06438 EpsO_like 1 active site 0 1 1 0 3,5,33,88,90 0 -133061 cd06439 CESA_like_1 1 active site 0 1 1 0 35,37,65,116,118 0 -133055 cd06433 GT_2_WfgS_like 1 active site 0 1 1 0 4,6,32,82,84 0 -133063 cd06913 beta3GnTL1_like 1 active site 0 1 1 0 3,5,32,91,93 0 -238391 cd00768 class_II_aaRS-like_core 1 active site 0 1 0 0 57,59,85,99,101,103,104,105,169,170,174,202,203,205,206,209 0 -238391 cd00768 class_II_aaRS-like_core 2 dimer interface 0 1 0 1 18,19,21,64,65,84,86,125 2 -238391 cd00768 class_II_aaRS-like_core 3 motif 1 0 0 0 1 17,18,19,20,21 0 -238391 cd00768 class_II_aaRS-like_core 4 motif 2 0 0 0 1 84,85,86 0 -238391 cd00768 class_II_aaRS-like_core 5 motif 3 0 0 0 1 206,209 0 -238277 cd00496 PheRS_alpha_core 1 active site 0 1 0 0 64,66,90,102,104,106,107,108,165,166,170,190,191,193,194,197 0 -238277 cd00496 PheRS_alpha_core 2 dimer interface 0 1 0 1 19,20,22,71,72,89,91,124 2 -238277 cd00496 PheRS_alpha_core 3 motif 1 0 0 0 1 18,19,20,21,22 0 -238277 cd00496 PheRS_alpha_core 4 motif 2 0 0 0 1 89,90,91 0 -238277 cd00496 PheRS_alpha_core 5 motif 3 0 0 0 1 194,197 0 -238350 cd00645 AsnA 1 active site 0 1 0 0 63,65,91,104,106,108,109,110,230,231,235,274,275,277,278,281 0 -238350 cd00645 AsnA 2 dimer interface 0 1 0 1 21,22,24,70,71,90,92,131 2 -238350 cd00645 AsnA 3 motif 1 0 0 0 1 20,21,22,23,24 0 -238350 cd00645 AsnA 4 motif 2 0 0 0 1 90,91,92 0 -238350 cd00645 AsnA 5 motif 3 0 0 0 1 278,281 0 -238358 cd00669 Asp_Lys_Asn_RS_core 1 active site 0 1 0 0 55,57,79,91,93,95,96,97,191,192,196,239,240,242,243,246 0 -238358 cd00669 Asp_Lys_Asn_RS_core 2 dimer interface 0 1 0 1 20,21,23,62,63,78,80,111 2 -238358 cd00669 Asp_Lys_Asn_RS_core 3 motif 1 0 0 0 1 19,20,21,22,23 0 -238358 cd00669 Asp_Lys_Asn_RS_core 4 motif 2 0 0 0 1 78,79,80 0 -238358 cd00669 Asp_Lys_Asn_RS_core 5 motif 3 0 0 0 1 243,246 0 -238398 cd00775 LysRS_core 1 active site 0 1 0 0 62,64,86,98,100,102,103,104,247,248,252,299,300,302,303,306 0 -238398 cd00775 LysRS_core 2 dimer interface 0 1 0 1 27,28,30,69,70,85,87,118 2 -238398 cd00775 LysRS_core 3 motif 1 0 0 0 1 26,27,28,29,30 0 -238398 cd00775 LysRS_core 4 motif 2 0 0 0 1 85,86,87 0 -238398 cd00775 LysRS_core 5 motif 3 0 0 0 1 303,306 0 -238399 cd00776 AsxRS_core 1 active site 0 1 0 0 76,78,99,112,114,116,117,118,248,249,253,292,293,295,296,299 0 -238399 cd00776 AsxRS_core 2 dimer interface 0 1 0 1 43,44,46,83,84,98,100,133 2 -238399 cd00776 AsxRS_core 3 motif 1 0 0 0 1 42,43,44,45,46 0 -238399 cd00776 AsxRS_core 4 motif 2 0 0 0 1 98,99,100 0 -238399 cd00776 AsxRS_core 5 motif 3 0 0 0 1 296,299 0 -238400 cd00777 AspRS_core 1 active site 0 1 0 0 55,57,79,91,93,95,96,97,202,203,207,250,251,253,254,257 0 -238400 cd00777 AspRS_core 2 dimer interface 0 1 0 1 20,21,23,62,63,78,80,111 2 -238400 cd00777 AspRS_core 3 motif 1 0 0 0 1 19,20,21,22,23 0 -238400 cd00777 AspRS_core 4 motif 2 0 0 0 1 78,79,80 0 -238400 cd00777 AspRS_core 5 motif 3 0 0 0 1 254,257 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 1 active site 0 1 0 0 67,69,98,113,115,117,118,119,189,190,194,221,222,224,225,228 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 2 dimer interface 0 1 0 1 21,22,24,74,75,97,99,139 2 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 3 motif 1 0 0 0 1 20,21,22,23,24 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 4 motif 2 0 0 0 1 97,98,99 0 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core 5 motif 3 0 0 0 1 225,228 0 -238393 cd00770 SerRS_core 1 active site 0 1 0 0 110,112,141,160,162,164,165,166,228,229,233,262,263,266,267,270 0 -238393 cd00770 SerRS_core 2 dimer interface 0 1 0 1 71,72,74,117,118,140,142,186 2 -238393 cd00770 SerRS_core 3 motif 1 0 0 0 1 70,71,72,73,74 0 -238393 cd00770 SerRS_core 4 motif 2 0 0 0 1 140,141,142 0 -238393 cd00770 SerRS_core 5 motif 3 0 0 0 1 267,270 0 -238394 cd00771 ThrRS_core 1 active site 0 1 0 0 90,92,121,137,139,141,142,143,237,238,242,269,270,274,275,278 0 -238394 cd00771 ThrRS_core 2 dimer interface 0 1 0 1 49,50,52,97,98,120,122,163 2 -238394 cd00771 ThrRS_core 3 motif 1 0 0 0 1 48,49,50,51,52 0 -238394 cd00771 ThrRS_core 4 motif 2 0 0 0 1 120,121,122 0 -238394 cd00771 ThrRS_core 5 motif 3 0 0 0 1 275,278 0 -238395 cd00772 ProRS_core 1 active site 0 1 0 0 98,100,129,144,146,148,149,150,213,214,218,248,249,251,252,255 0 -238395 cd00772 ProRS_core 2 dimer interface 0 1 0 1 51,52,54,105,106,128,130,171 2 -238395 cd00772 ProRS_core 3 motif 1 0 0 0 1 50,51,52,53,54 0 -238395 cd00772 ProRS_core 4 motif 2 0 0 0 1 128,129,130 0 -238395 cd00772 ProRS_core 5 motif 3 0 0 0 1 252,255 0 -238401 cd00778 ProRS_core_arch_euk 1 active site 0 1 0 0 98,100,129,144,146,148,149,150,213,214,218,246,247,249,250,252 0 -238401 cd00778 ProRS_core_arch_euk 2 dimer interface 0 1 0 1 51,52,54,105,106,128,130,171 2 -238401 cd00778 ProRS_core_arch_euk 3 motif 1 0 0 0 1 50,51,52,53,54 0 -238401 cd00778 ProRS_core_arch_euk 4 motif 2 0 0 0 1 128,129,130 0 -238401 cd00778 ProRS_core_arch_euk 5 motif 3 0 0 0 1 250,252 0 -238402 cd00779 ProRS_core_prok 1 active site 0 1 0 0 92,94,123,138,140,142,143,144,204,205,209,239,240,242,243,246 0 -238402 cd00779 ProRS_core_prok 2 dimer interface 0 1 0 1 50,51,53,99,100,122,124,165 2 -238402 cd00779 ProRS_core_prok 3 motif 1 0 0 0 1 49,50,51,52,53 0 -238402 cd00779 ProRS_core_prok 4 motif 2 0 0 0 1 122,123,124 0 -238402 cd00779 ProRS_core_prok 5 motif 3 0 0 0 1 243,246 0 -238396 cd00773 HisRS-like_core 1 active site 0 1 0 0 62,64,92,104,106,108,109,110,224,225,229,247,248,250,251,254 0 -238396 cd00773 HisRS-like_core 2 dimer interface 0 1 0 1 21,22,24,69,70,91,93,128 2 -238396 cd00773 HisRS-like_core 3 motif 1 0 0 0 1 20,21,22,23,24 0 -238396 cd00773 HisRS-like_core 4 motif 2 0 0 0 1 91,92,93 0 -238396 cd00773 HisRS-like_core 5 motif 3 0 0 0 1 251,254 0 -238397 cd00774 GlyRS-like_core 1 active site 0 1 0 0 85,87,117,132,134,136,137,138,201,202,206,240,241,243,244,247 0 -238397 cd00774 GlyRS-like_core 2 dimer interface 0 1 0 1 53,54,56,92,93,116,118,158 2 -238397 cd00774 GlyRS-like_core 3 motif 1 0 0 0 1 52,53,54,55,56 0 -238397 cd00774 GlyRS-like_core 4 motif 2 0 0 0 1 116,117,118 0 -238397 cd00774 GlyRS-like_core 5 motif 3 0 0 0 1 244,247 0 -238360 cd00673 AlaRS_core 1 active site 0 1 0 0 45,47,65,82,84,86,87,88,190,191,195,214,215,219,220,223 0 -238360 cd00673 AlaRS_core 2 dimer interface 0 1 0 1 19,20,22,52,53,64,66,103 2 -238360 cd00673 AlaRS_core 3 motif 1 0 0 0 1 18,19,20,21,22 0 -238360 cd00673 AlaRS_core 4 motif 2 0 0 0 1 64,65,66 0 -238360 cd00673 AlaRS_core 5 motif 3 0 0 0 1 220,223 0 -238375 cd00733 GlyRS_alpha_core 1 active site 0 1 0 0 29,31,56,72,74,76,77,78,133,134,138,154,155,157,158,161 0 -238375 cd00733 GlyRS_alpha_core 2 dimer interface 0 1 0 1 18,19,21,36,37,55,57,91 2 -238375 cd00733 GlyRS_alpha_core 3 motif 1 0 0 0 1 17,18,19,20,21 0 -238375 cd00733 GlyRS_alpha_core 4 motif 2 0 0 0 1 55,56,57 0 -238375 cd00733 GlyRS_alpha_core 5 motif 3 0 0 0 1 158,161 0 -238392 cd00769 PheRS_beta_core 1 active site 0 1 0 0 58,60,88,97,99,101,102,103,166,167,171,189,190,192,193,196 0 -238392 cd00769 PheRS_beta_core 2 dimer interface 0 1 0 1 18,19,21,65,66,87,89,130 2 -238392 cd00769 PheRS_beta_core 3 motif 1 0 0 0 1 17,18,19,20,21 0 -238392 cd00769 PheRS_beta_core 4 motif 2 0 0 0 1 87,88,89 0 -238392 cd00769 PheRS_beta_core 5 motif 3 0 0 0 1 193,196 0 -238406 cd00786 cytidine_deaminase-like 1 active site 0 1 1 0 48,49,50,74,75,78 1 -238406 cd00786 cytidine_deaminase-like 2 Zn binding site 0 1 1 1 48,50,75,78 4 -238610 cd01283 cytidine_deaminase 1 active site 0 1 1 0 46,47,48,78,79,82 1 -238610 cd01283 cytidine_deaminase 2 Zn binding site 0 1 1 1 46,48,79,82 4 -238611 cd01284 Riboflavin_deaminase-reductase 1 active site 0 1 1 0 44,45,46,69,70,79 1 -238611 cd01284 Riboflavin_deaminase-reductase 2 Zn binding site 0 1 1 1 44,46,70,79 4 -238612 cd01285 nucleoside_deaminase 1 active site 0 1 1 0 46,47,48,75,76,79 1 -238612 cd01285 nucleoside_deaminase 2 Zn binding site 0 1 1 1 46,48,76,79 4 -238613 cd01286 deoxycytidylate_deaminase 1 active site 0 1 1 0 69,70,71,96,97,100 1 -238613 cd01286 deoxycytidylate_deaminase 2 Zn binding site 0 1 1 1 69,71,97,100 4 -238418 cd00820 PEPCK_HprK 1 active site 0 1 1 0 5,23,24,25,26,27,28,29,44,45,67,69,84,98 1 -238418 cd00820 PEPCK_HprK 2 nucleotide-binding site 0 1 1 0 23,24,26,27,28,29,84,98 5 -238418 cd00820 PEPCK_HprK 3 metal-binding site 0 1 1 0 5,28,44,45,67 4 -238899 cd01918 HprK_C 1 active site 0 1 1 0 5,22,23,24,25,26,27,28,43,44,68,70,131,137 1 -238899 cd01918 HprK_C 2 nucleotide-binding site 0 1 1 0 22,23,25,26,27,28,131,137 5 -238899 cd01918 HprK_C 3 metal-binding site 0 1 1 0 5,27,43,44,68 4 -238900 cd01919 PEPCK 1 active site 0 1 1 0 207,225,226,227,228,229,230,231,243,244,261,263,416,433 1 -238900 cd01919 PEPCK 2 nucleotide-binding site 0 1 1 0 225,226,228,229,230,231,416,433 5 -238900 cd01919 PEPCK 3 metal-binding site 0 1 1 0 207,230,243,244,261 4 -238270 cd00484 PEPCK_ATP 1 active site 0 1 1 0 199,217,218,219,220,221,222,223,235,236,253,255,408,426 1 -238270 cd00484 PEPCK_ATP 2 nucleotide-binding site 0 1 1 0 217,218,220,221,222,223,408,426 5 -238270 cd00484 PEPCK_ATP 3 metal-binding site 0 1 1 0 199,222,235,236,253 4 -238417 cd00819 PEPCK_GTP 1 active site 0 1 1 0 227,249,250,251,252,253,254,255,273,274,296,298,479,496 1 -238417 cd00819 PEPCK_GTP 2 nucleotide-binding site 0 1 1 0 249,250,252,253,254,255,479,496 5 -238417 cd00819 PEPCK_GTP 3 metal-binding site 0 1 1 0 227,254,273,274,296 4 -277317 cd00838 MPP_superfamily 1 active site 0 1 1 1 4,6,34,65,66,72,109 1 -277317 cd00838 MPP_superfamily 2 metal binding site 0 1 1 0 4,6,34,65,72,109 4 -277316 cd00144 MPP_PPP_family 1 active site 0 1 1 1 4,6,32,64,65,117,191 1 -277316 cd00144 MPP_PPP_family 2 metal binding site 0 1 1 0 4,6,32,64,117,191 4 -277358 cd07413 MPP_PA3087 1 active site 0 1 1 1 5,7,41,71,72,138,183 1 -277358 cd07413 MPP_PA3087 2 metal binding site 0 1 1 0 5,7,41,71,138,183 4 -277359 cd07414 MPP_PP1_PPKL 1 active site 0 1 1 1 56,58,84,116,117,165,240 1 -277359 cd07414 MPP_PP1_PPKL 2 metal binding site 0 1 1 0 56,58,84,116,165,240 4 -277360 cd07415 MPP_PP2A_PP4_PP6 1 active site 0 1 1 1 48,50,76,108,109,158,232 1 -277360 cd07415 MPP_PP2A_PP4_PP6 2 metal binding site 0 1 1 0 48,50,76,108,158,232 4 -277361 cd07416 MPP_PP2B 1 active site 0 1 1 1 49,51,77,109,110,158,240 1 -277361 cd07416 MPP_PP2B 2 metal binding site 0 1 1 0 49,51,77,109,158,240 4 -277362 cd07417 MPP_PP5_C 1 active site 0 1 1 1 66,68,95,127,128,176,251 1 -277362 cd07417 MPP_PP5_C 2 metal binding site 0 1 1 0 66,68,95,127,176,251 4 -163661 cd07418 MPP_PP7 1 active site 0 1 1 1 72,74,101,133,134,185,291 1 -163661 cd07418 MPP_PP7 2 metal binding site 0 1 1 0 72,74,101,133,185,291 4 -277363 cd07419 MPP_Bsu1_C 1 active site 0 1 1 1 54,56,90,122,123,177,260 1 -277363 cd07419 MPP_Bsu1_C 2 metal binding site 0 1 1 0 54,56,90,122,177,260 4 -277364 cd07420 MPP_RdgC 1 active site 0 1 1 1 57,59,86,118,119,170,247 1 -277364 cd07420 MPP_RdgC 2 metal binding site 0 1 1 0 57,59,86,118,170,247 4 -163664 cd07421 MPP_Rhilphs 1 active site 0 1 1 1 8,10,42,75,76,208,261 1 -163664 cd07421 MPP_Rhilphs 2 metal binding site 0 1 1 0 8,10,42,75,208,261 4 -277365 cd07422 MPP_ApaH 1 active site 0 1 1 1 5,7,34,62,63,117,224 1 -277365 cd07422 MPP_ApaH 2 metal binding site 0 1 1 0 5,7,34,62,117,224 4 -277366 cd07423 MPP_Prp_like 1 active site 0 1 1 1 4,6,42,72,73,136,189 1 -277366 cd07423 MPP_Prp_like 2 metal binding site 0 1 1 0 4,6,42,72,136,189 4 -277367 cd07424 MPP_PrpA_PrpB 1 active site 0 1 1 1 7,9,36,62,63,122,169 1 -277367 cd07424 MPP_PrpA_PrpB 2 metal binding site 0 1 1 0 7,9,36,62,122,169 4 -277368 cd07425 MPP_Shelphs 1 active site 0 1 1 1 4,6,40,75,76,133,174 1 -277368 cd07425 MPP_Shelphs 2 metal binding site 0 1 1 0 4,6,40,75,133,174 4 -277318 cd00839 MPP_PAPs 1 active site 0 1 1 1 11,13,41,76,77,161,200 1 -277318 cd00839 MPP_PAPs 2 metal binding site 0 1 1 0 11,13,41,76,161,200 4 -277319 cd00840 MPP_Mre11_N 1 active site 0 1 1 1 6,8,47,82,83,127,159 1 -277319 cd00840 MPP_Mre11_N 2 metal binding site 0 1 1 0 6,8,47,82,127,159 4 -277320 cd00841 MPP_YfcE 1 active site 0 1 1 1 6,8,33,56,57,87,112 1 -277320 cd00841 MPP_YfcE 2 metal binding site 0 1 1 0 6,8,33,56,87,112 4 -277321 cd00842 MPP_ASMase 1 active site 0 1 1 1 5,7,77,117,118,220,254 1 -277321 cd00842 MPP_ASMase 2 metal binding site 0 1 1 0 5,7,77,117,220,254 4 -277322 cd00844 MPP_Dbr1_N 1 active site 0 1 1 1 5,7,36,81,82,171,223 1 -277322 cd00844 MPP_Dbr1_N 2 metal binding site 0 1 1 0 5,7,36,81,171,223 4 -277323 cd00845 MPP_UshA_N_like 1 active site 0 1 1 1 7,9,47,79,80,181,204 1 -277323 cd00845 MPP_UshA_N_like 2 metal binding site 0 1 1 0 7,9,47,79,181,204 4 -277350 cd07405 MPP_UshA_N 1 active site 0 1 1 1 7,9,50,82,83,183,218 1 -277350 cd07405 MPP_UshA_N 2 metal binding site 0 1 1 0 7,9,50,82,183,218 4 -277351 cd07406 MPP_CG11883_N 1 active site 0 1 1 1 7,9,46,78,79,179,202 1 -277351 cd07406 MPP_CG11883_N 2 metal binding site 0 1 1 0 7,9,46,78,179,202 4 -277352 cd07407 MPP_YHR202W_N 1 active site 0 1 1 1 12,14,58,92,93,195,226 1 -277352 cd07407 MPP_YHR202W_N 2 metal binding site 0 1 1 0 12,14,58,92,195,226 4 -277353 cd07408 MPP_SA0022_N 1 active site 0 1 1 1 7,9,41,73,74,171,207 1 -277353 cd07408 MPP_SA0022_N 2 metal binding site 0 1 1 0 7,9,41,73,171,207 4 -277354 cd07409 MPP_CD73_N 1 active site 0 1 1 1 7,9,57,89,90,188,211 1 -277354 cd07409 MPP_CD73_N 2 metal binding site 0 1 1 0 7,9,57,89,188,211 4 -277355 cd07410 MPP_CpdB_N 1 active site 0 1 1 1 7,9,52,90,91,191,224 1 -277355 cd07410 MPP_CpdB_N 2 metal binding site 0 1 1 0 7,9,52,90,191,224 4 -277356 cd07411 MPP_SoxB_N 1 active site 0 1 1 1 7,9,69,100,101,201,224 1 -277356 cd07411 MPP_SoxB_N 2 metal binding site 0 1 1 0 7,9,69,100,201,224 4 -277357 cd07412 MPP_YhcR_N 1 active site 0 1 1 1 7,9,57,90,91,207,246 1 -277357 cd07412 MPP_YhcR_N 2 metal binding site 0 1 1 0 7,9,57,90,207,246 4 -277369 cd08162 MPP_PhoA_N 1 active site 0 1 1 1 7,9,46,86,87,225,249 1 -277369 cd08162 MPP_PhoA_N 2 metal binding site 0 1 1 0 7,9,46,86,225,249 4 -277324 cd07378 MPP_ACP5 1 active site 0 1 1 1 7,9,44,82,83,179,214 1 -277324 cd07378 MPP_ACP5 2 metal binding site 0 1 1 0 7,9,44,82,179,214 4 -277325 cd07379 MPP_239FB 1 active site 0 1 1 1 6,8,27,58,59,74,111 1 -277325 cd07379 MPP_239FB 2 metal binding site 0 1 1 0 6,8,27,58,74,111 4 -277326 cd07380 MPP_CWF19_N 1 active site 0 1 1 1 4,6,34,65,66,75,117 1 -277326 cd07380 MPP_CWF19_N 2 metal binding site 0 1 1 0 4,6,34,65,75,117 4 -277327 cd07381 MPP_CapA 1 active site 0 1 1 1 5,7,44,84,85,182,214 1 -277327 cd07381 MPP_CapA 2 metal binding site 0 1 1 0 5,7,44,84,182,214 4 -277328 cd07382 MPP_DR1281 1 active site 0 1 1 1 6,8,37,65,66,148,173 1 -277328 cd07382 MPP_DR1281 2 metal binding site 0 1 1 0 6,8,37,65,148,173 4 -277329 cd07383 MPP_Dcr2 1 active site 0 1 1 1 9,11,50,86,87,123,173 1 -277329 cd07383 MPP_Dcr2 2 metal binding site 0 1 1 0 9,11,50,86,123,173 4 -277330 cd07384 MPP_Cdc1_like 1 active site 0 1 1 1 4,6,53,96,97,123,142 1 -277330 cd07384 MPP_Cdc1_like 2 metal binding site 0 1 1 0 4,6,53,96,123,142 4 -277370 cd08163 MPP_Cdc1 1 active site 0 1 1 1 4,6,53,92,93,169,223 1 -277370 cd08163 MPP_Cdc1 2 metal binding site 0 1 1 0 4,6,53,92,169,223 4 -277371 cd08164 MPP_Ted1 1 active site 0 1 1 1 4,6,52,106,107,132,151 1 -277371 cd08164 MPP_Ted1 2 metal binding site 0 1 1 0 4,6,52,106,132,151 4 -277372 cd08165 MPP_MPPE1 1 active site 0 1 1 1 4,6,46,84,85,110,129 1 -277372 cd08165 MPP_MPPE1 2 metal binding site 0 1 1 0 4,6,46,84,110,129 4 -277373 cd08166 MPP_Cdc1_like_1 1 active site 0 1 1 1 4,6,50,88,89,115,142 1 -277373 cd08166 MPP_Cdc1_like_1 2 metal binding site 0 1 1 0 4,6,50,88,115,142 4 -277331 cd07385 MPP_YkuE_C 1 active site 0 1 1 1 8,10,40,71,72,143,163 1 -277331 cd07385 MPP_YkuE_C 2 metal binding site 0 1 1 0 8,10,40,71,143,163 4 -277332 cd07386 MPP_DNA_pol_II_small_archeal_C 1 active site 0 1 1 1 5,7,43,89,90,135,198 1 -277332 cd07386 MPP_DNA_pol_II_small_archeal_C 2 metal binding site 0 1 1 0 5,7,43,89,135,198 4 -277333 cd07387 MPP_PolD2_C 1 active site 0 1 1 1 6,8,50,102,103,149,210 1 -277333 cd07387 MPP_PolD2_C 2 metal binding site 0 1 1 0 6,8,50,102,149,210 4 -277334 cd07388 MPP_Tt1561 1 active site 0 1 1 1 11,13,39,70,71,154,186 1 -277334 cd07388 MPP_Tt1561 2 metal binding site 0 1 1 0 11,13,39,70,154,186 4 -277335 cd07389 MPP_PhoD 1 active site 0 1 1 1 6,8,35,90,91,162,211 1 -277335 cd07389 MPP_PhoD 2 metal binding site 0 1 1 0 6,8,35,90,162,211 4 -277336 cd07390 MPP_AQ1575 1 active site 0 1 1 1 5,7,50,78,79,111,130 1 -277336 cd07390 MPP_AQ1575 2 metal binding site 0 1 1 0 5,7,50,78,111,130 4 -277337 cd07391 MPP_PF1019 1 active site 0 1 1 1 4,6,49,83,84,112,129 1 -277337 cd07391 MPP_PF1019 2 metal binding site 0 1 1 0 4,6,49,83,112,129 4 -277338 cd07392 MPP_PAE1087 1 active site 0 1 1 1 5,7,31,61,62,132,170 1 -277338 cd07392 MPP_PAE1087 2 metal binding site 0 1 1 0 5,7,31,61,132,170 4 -277339 cd07393 MPP_DR1119 1 active site 0 1 1 1 5,7,50,80,81,177,206 1 -277339 cd07393 MPP_DR1119 2 metal binding site 0 1 1 0 5,7,50,80,177,206 4 -163637 cd07394 MPP_Vps29 1 active site 0 1 1 1 6,8,37,60,61,84,113 1 -163637 cd07394 MPP_Vps29 2 metal binding site 0 1 1 0 6,8,37,60,84,113 4 -277340 cd07395 MPP_CSTP1 1 active site 0 1 1 1 11,13,58,95,96,173,214 1 -277340 cd07395 MPP_CSTP1 2 metal binding site 0 1 1 0 11,13,58,95,173,214 4 -277341 cd07396 MPP_Nbla03831 1 active site 0 1 1 1 7,9,54,89,90,163,200 1 -277341 cd07396 MPP_Nbla03831 2 metal binding site 0 1 1 0 7,9,54,89,163,200 4 -277342 cd07397 MPP_NostocDevT-like 1 active site 0 1 1 1 7,9,33,58,59,160,211 1 -277342 cd07397 MPP_NostocDevT-like 2 metal binding site 0 1 1 0 7,9,33,58,160,211 4 -277343 cd07398 MPP_YbbF-LpxH 1 active site 0 1 1 1 4,6,37,76,77,112,196 1 -277343 cd07398 MPP_YbbF-LpxH 2 metal binding site 0 1 1 0 4,6,37,76,112,196 4 -277344 cd07399 MPP_YvnB 1 active site 0 1 1 1 7,9,43,76,77,112,149 1 -277344 cd07399 MPP_YvnB 2 metal binding site 0 1 1 0 7,9,43,76,112,149 4 -277345 cd07400 MPP_1 1 active site 0 1 1 1 5,7,38,69,70,77,115 1 -277345 cd07400 MPP_1 2 metal binding site 0 1 1 0 5,7,38,69,77,115 4 -277346 cd07401 MPP_TMEM62_N 1 active site 0 1 1 1 6,8,41,85,86,173,207 1 -277346 cd07401 MPP_TMEM62_N 2 metal binding site 0 1 1 0 6,8,41,85,173,207 4 -277347 cd07402 MPP_GpdQ 1 active site 0 1 1 1 5,7,47,77,78,150,189 1 -277347 cd07402 MPP_GpdQ 2 metal binding site 0 1 1 0 5,7,47,77,150,189 4 -277348 cd07403 MPP_TTHA0053 1 active site 0 1 1 1 4,6,30,53,54,62,98 1 -277348 cd07403 MPP_TTHA0053 2 metal binding site 0 1 1 0 4,6,30,53,62,98 4 -277349 cd07404 MPP_MS158 1 active site 0 1 1 1 5,7,34,64,65,137,179 1 -277349 cd07404 MPP_MS158 2 metal binding site 0 1 1 0 5,7,34,64,137,179 4 -349487 cd00855 SWIB-MDM2 1 peptide binding site 0 1 1 0 17,20,21,23,24,27,28,33,38,39,41,61,62 2 -349488 cd10566 MDM2_like 1 peptide binding site 0 1 1 0 21,24,25,27,28,31,32,37,42,43,45,66,67 2 -349491 cd17672 MDM2 1 peptide binding site 0 1 1 0 26,29,30,32,33,36,37,42,47,48,50,74,75 2 -349492 cd17673 MDM4 1 peptide binding site 0 1 1 0 21,24,25,27,28,31,32,37,42,43,45,69,70 2 -349489 cd10567 SWIB-MDM2_like 1 peptide binding site 0 1 1 0 18,21,22,24,25,28,29,34,39,40,42,62,63 2 -349490 cd10568 SWIB_like 1 peptide binding site 0 1 1 0 16,19,20,22,23,26,27,32,37,38,40,60,61 2 -349493 cd17674 SWIB_BAF60A 1 peptide binding site 0 1 1 0 19,22,23,25,26,29,30,35,40,41,43,63,64 2 -349494 cd17675 SWIB_BAF60B 1 peptide binding site 0 1 1 0 22,25,26,28,29,32,33,38,43,44,46,66,67 2 -349495 cd17676 SWIB_BAF60C 1 peptide binding site 0 1 1 0 16,19,20,22,23,26,27,32,37,38,40,60,61 2 -206648 cd00882 Ras_like_GTPase 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,55,113,114,116,144,145,146 5 -206648 cd00882 Ras_like_GTPase 2 Switch I region 0 0 1 1 35,36,37 0 -206648 cd00882 Ras_like_GTPase 3 Switch II region 0 0 1 1 54,55,76,77 0 -206648 cd00882 Ras_like_GTPase 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206648 cd00882 Ras_like_GTPase 5 G2 box 0 0 1 1 31 0 -206648 cd00882 Ras_like_GTPase 6 G3 box 0 0 1 1 52,53,54,55 0 -206648 cd00882 Ras_like_GTPase 7 G4 box 0 0 1 1 113,114,115,116 0 -206648 cd00882 Ras_like_GTPase 8 G5 box 0 0 1 1 144,145,146 0 -206639 cd00066 G-alpha 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,169,235,236,238,291,292,293 5 -206639 cd00066 G-alpha 2 Switch I region 0 0 1 1 151,152,153 0 -206639 cd00066 G-alpha 3 Switch II region 0 0 1 1 168,169,185,186 0 -206639 cd00066 G-alpha 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206639 cd00066 G-alpha 5 G2 box 0 0 1 1 147 0 -206639 cd00066 G-alpha 6 G3 box 0 0 1 1 166,167,168,169 0 -206639 cd00066 G-alpha 7 G4 box 0 0 1 1 235,236,237,238 0 -206639 cd00066 G-alpha 8 G5 box 0 0 1 1 291,292,293 0 -206640 cd00154 Rab 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,142,143,144 5 -206640 cd00154 Rab 2 Switch I region 0 0 1 1 35,36,37 0 -206640 cd00154 Rab 3 Switch II region 0 0 1 1 56,57,73,74 0 -206640 cd00154 Rab 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206640 cd00154 Rab 5 G2 box 0 0 1 1 31 0 -206640 cd00154 Rab 6 G3 box 0 0 1 1 54,55,56,57 0 -206640 cd00154 Rab 7 G4 box 0 0 1 1 112,113,114,115 0 -206640 cd00154 Rab 8 G5 box 0 0 1 1 142,143,144 0 -206653 cd01860 Rab5_related 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,58,113,114,116,143,144,145 5 -206653 cd01860 Rab5_related 2 Switch I region 0 0 1 1 36,37,38 0 -206653 cd01860 Rab5_related 3 Switch II region 0 0 1 1 57,58,74,75 0 -206653 cd01860 Rab5_related 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206653 cd01860 Rab5_related 5 G2 box 0 0 1 1 32 0 -206653 cd01860 Rab5_related 6 G3 box 0 0 1 1 55,56,57,58 0 -206653 cd01860 Rab5_related 7 G4 box 0 0 1 1 113,114,115,116 0 -206653 cd01860 Rab5_related 8 G5 box 0 0 1 1 143,144,145 0 -206654 cd01861 Rab6 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,142,143,144 5 -206654 cd01861 Rab6 2 Switch I region 0 0 1 1 35,36,37 0 -206654 cd01861 Rab6 3 Switch II region 0 0 1 1 56,57,73,74 0 -206654 cd01861 Rab6 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206654 cd01861 Rab6 5 G2 box 0 0 1 1 31 0 -206654 cd01861 Rab6 6 G3 box 0 0 1 1 54,55,56,57 0 -206654 cd01861 Rab6 7 G4 box 0 0 1 1 112,113,114,115 0 -206654 cd01861 Rab6 8 G5 box 0 0 1 1 142,143,144 0 -206655 cd01862 Rab7 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,116,117,119,147,148,149 5 -206655 cd01862 Rab7 2 Switch I region 0 0 1 1 35,36,37 0 -206655 cd01862 Rab7 3 Switch II region 0 0 1 1 56,57,73,74 0 -206655 cd01862 Rab7 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206655 cd01862 Rab7 5 G2 box 0 0 1 1 31 0 -206655 cd01862 Rab7 6 G3 box 0 0 1 1 54,55,56,57 0 -206655 cd01862 Rab7 7 G4 box 0 0 1 1 116,117,118,119 0 -206655 cd01862 Rab7 8 G5 box 0 0 1 1 147,148,149 0 -206656 cd01863 Rab18 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,113,114,116,142,143,144 5 -206656 cd01863 Rab18 2 Switch I region 0 0 1 1 35,36,37 0 -206656 cd01863 Rab18 3 Switch II region 0 0 1 1 56,57,73,74 0 -206656 cd01863 Rab18 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206656 cd01863 Rab18 5 G2 box 0 0 1 1 31 0 -206656 cd01863 Rab18 6 G3 box 0 0 1 1 54,55,56,57 0 -206656 cd01863 Rab18 7 G4 box 0 0 1 1 113,114,115,116 0 -206656 cd01863 Rab18 8 G5 box 0 0 1 1 142,143,144 0 -133267 cd01864 Rab19 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,60,115,116,118,146,147,148 5 -133267 cd01864 Rab19 2 Switch I region 0 0 1 1 38,39,40 0 -133267 cd01864 Rab19 3 Switch II region 0 0 1 1 59,60,76,77 0 -133267 cd01864 Rab19 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -133267 cd01864 Rab19 5 G2 box 0 0 1 1 34 0 -133267 cd01864 Rab19 6 G3 box 0 0 1 1 57,58,59,60 0 -133267 cd01864 Rab19 7 G4 box 0 0 1 1 115,116,117,118 0 -133267 cd01864 Rab19 8 G5 box 0 0 1 1 146,147,148 0 -206657 cd01865 Rab3 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,58,113,114,116,143,144,145 5 -206657 cd01865 Rab3 2 Switch I region 0 0 1 1 36,37,38 0 -206657 cd01865 Rab3 3 Switch II region 0 0 1 1 57,58,74,75 0 -206657 cd01865 Rab3 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206657 cd01865 Rab3 5 G2 box 0 0 1 1 32 0 -206657 cd01865 Rab3 6 G3 box 0 0 1 1 55,56,57,58 0 -206657 cd01865 Rab3 7 G4 box 0 0 1 1 113,114,115,116 0 -206657 cd01865 Rab3 8 G5 box 0 0 1 1 143,144,145 0 -206658 cd01866 Rab2 1 GTP/Mg2+ binding site 0 1 0 0 12,13,14,15,16,17,18,61,116,117,119,146,147,148 5 -206658 cd01866 Rab2 2 Switch I region 0 0 1 1 39,40,41 0 -206658 cd01866 Rab2 3 Switch II region 0 0 1 1 60,61,77,78 0 -206658 cd01866 Rab2 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206658 cd01866 Rab2 5 G2 box 0 0 1 1 35 0 -206658 cd01866 Rab2 6 G3 box 0 0 1 1 58,59,60,61 0 -206658 cd01866 Rab2 7 G4 box 0 0 1 1 116,117,118,119 0 -206658 cd01866 Rab2 8 G5 box 0 0 1 1 146,147,148 0 -206659 cd01867 Rab8_Rab10_Rab13_like 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,60,115,116,118,145,146,147 5 -206659 cd01867 Rab8_Rab10_Rab13_like 2 Switch I region 0 0 1 1 38,39,40 0 -206659 cd01867 Rab8_Rab10_Rab13_like 3 Switch II region 0 0 1 1 59,60,76,77 0 -206659 cd01867 Rab8_Rab10_Rab13_like 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206659 cd01867 Rab8_Rab10_Rab13_like 5 G2 box 0 0 1 1 34 0 -206659 cd01867 Rab8_Rab10_Rab13_like 6 G3 box 0 0 1 1 57,58,59,60 0 -206659 cd01867 Rab8_Rab10_Rab13_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206659 cd01867 Rab8_Rab10_Rab13_like 8 G5 box 0 0 1 1 145,146,147 0 -206660 cd01868 Rab11_like 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,60,115,116,118,145,146,147 5 -206660 cd01868 Rab11_like 2 Switch I region 0 0 1 1 38,39,40 0 -206660 cd01868 Rab11_like 3 Switch II region 0 0 1 1 59,60,76,77 0 -206660 cd01868 Rab11_like 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206660 cd01868 Rab11_like 5 G2 box 0 0 1 1 34 0 -206660 cd01868 Rab11_like 6 G3 box 0 0 1 1 57,58,59,60 0 -206660 cd01868 Rab11_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206660 cd01868 Rab11_like 8 G5 box 0 0 1 1 145,146,147 0 -206661 cd01869 Rab1_Ypt1 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,59,114,115,117,144,145,146 5 -206661 cd01869 Rab1_Ypt1 2 Switch I region 0 0 1 1 37,38,39 0 -206661 cd01869 Rab1_Ypt1 3 Switch II region 0 0 1 1 58,59,75,76 0 -206661 cd01869 Rab1_Ypt1 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206661 cd01869 Rab1_Ypt1 5 G2 box 0 0 1 1 33 0 -206661 cd01869 Rab1_Ypt1 6 G3 box 0 0 1 1 56,57,58,59 0 -206661 cd01869 Rab1_Ypt1 7 G4 box 0 0 1 1 114,115,116,117 0 -206661 cd01869 Rab1_Ypt1 8 G5 box 0 0 1 1 144,145,146 0 -206688 cd04101 RabL4 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,61,117,118,120,147,148,149 5 -206688 cd04101 RabL4 2 Switch I region 0 0 1 1 37,38,39 0 -206688 cd04101 RabL4 3 Switch II region 0 0 1 1 60,61,77,78 0 -206688 cd04101 RabL4 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206688 cd04101 RabL4 5 G2 box 0 0 1 1 33 0 -206688 cd04101 RabL4 6 G3 box 0 0 1 1 58,59,60,61 0 -206688 cd04101 RabL4 7 G4 box 0 0 1 1 117,118,119,120 0 -206688 cd04101 RabL4 8 G5 box 0 0 1 1 147,148,149 0 -206689 cd04102 RabL3 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,62,140,141,143,182,183,184 5 -206689 cd04102 RabL3 2 Switch I region 0 0 1 1 35,36,37 0 -206689 cd04102 RabL3 3 Switch II region 0 0 1 1 61,62,82,83 0 -206689 cd04102 RabL3 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206689 cd04102 RabL3 5 G2 box 0 0 1 1 31 0 -206689 cd04102 RabL3 6 G3 box 0 0 1 1 59,60,61,62 0 -206689 cd04102 RabL3 7 G4 box 0 0 1 1 140,141,142,143 0 -206689 cd04102 RabL3 8 G5 box 0 0 1 1 182,183,184 0 -133306 cd04106 Rab23_like 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,59,113,114,116,143,144,145 5 -133306 cd04106 Rab23_like 2 Switch I region 0 0 1 1 35,36,37 0 -133306 cd04106 Rab23_like 3 Switch II region 0 0 1 1 58,59,75,76 0 -133306 cd04106 Rab23_like 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133306 cd04106 Rab23_like 5 G2 box 0 0 1 1 31 0 -133306 cd04106 Rab23_like 6 G3 box 0 0 1 1 56,57,58,59 0 -133306 cd04106 Rab23_like 7 G4 box 0 0 1 1 113,114,115,116 0 -133306 cd04106 Rab23_like 8 G5 box 0 0 1 1 143,144,145 0 -206692 cd04107 Rab32_Rab38 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,58,117,118,120,149,150,151 5 -206692 cd04107 Rab32_Rab38 2 Switch I region 0 0 1 1 35,36,37 0 -206692 cd04107 Rab32_Rab38 3 Switch II region 0 0 1 1 57,58,74,75 0 -206692 cd04107 Rab32_Rab38 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206692 cd04107 Rab32_Rab38 5 G2 box 0 0 1 1 31 0 -206692 cd04107 Rab32_Rab38 6 G3 box 0 0 1 1 55,56,57,58 0 -206692 cd04107 Rab32_Rab38 7 G4 box 0 0 1 1 117,118,119,120 0 -206692 cd04107 Rab32_Rab38 8 G5 box 0 0 1 1 149,150,151 0 -206693 cd04108 Rab36_Rab34 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,113,114,116,145,146,147 5 -206693 cd04108 Rab36_Rab34 2 Switch I region 0 0 1 1 35,36,37 0 -206693 cd04108 Rab36_Rab34 3 Switch II region 0 0 1 1 56,57,73,74 0 -206693 cd04108 Rab36_Rab34 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206693 cd04108 Rab36_Rab34 5 G2 box 0 0 1 1 31 0 -206693 cd04108 Rab36_Rab34 6 G3 box 0 0 1 1 54,55,56,57 0 -206693 cd04108 Rab36_Rab34 7 G4 box 0 0 1 1 113,114,115,116 0 -206693 cd04108 Rab36_Rab34 8 G5 box 0 0 1 1 145,146,147 0 -206694 cd04109 Rab28 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,58,116,117,119,146,147,148 5 -206694 cd04109 Rab28 2 Switch I region 0 0 1 1 35,36,37 0 -206694 cd04109 Rab28 3 Switch II region 0 0 1 1 57,58,74,75 0 -206694 cd04109 Rab28 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206694 cd04109 Rab28 5 G2 box 0 0 1 1 31 0 -206694 cd04109 Rab28 6 G3 box 0 0 1 1 55,56,57,58 0 -206694 cd04109 Rab28 7 G4 box 0 0 1 1 116,117,118,119 0 -206694 cd04109 Rab28 8 G5 box 0 0 1 1 146,147,148 0 -133310 cd04110 Rab35 1 GTP/Mg2+ binding site 0 1 0 0 14,15,16,17,18,19,20,63,117,118,120,147,148,149 5 -133310 cd04110 Rab35 2 Switch I region 0 0 1 1 41,42,43 0 -133310 cd04110 Rab35 3 Switch II region 0 0 1 1 62,63,79,80 0 -133310 cd04110 Rab35 4 G1 box 0 0 1 1 12,13,14,15,16,17,18,19 0 -133310 cd04110 Rab35 5 G2 box 0 0 1 1 37 0 -133310 cd04110 Rab35 6 G3 box 0 0 1 1 60,61,62,63 0 -133310 cd04110 Rab35 7 G4 box 0 0 1 1 117,118,119,120 0 -133310 cd04110 Rab35 8 G5 box 0 0 1 1 147,148,149 0 -133311 cd04111 Rab39 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,60,116,117,119,146,147,148 5 -133311 cd04111 Rab39 2 Switch I region 0 0 1 1 37,38,39 0 -133311 cd04111 Rab39 3 Switch II region 0 0 1 1 59,60,76,77 0 -133311 cd04111 Rab39 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133311 cd04111 Rab39 5 G2 box 0 0 1 1 33 0 -133311 cd04111 Rab39 6 G3 box 0 0 1 1 57,58,59,60 0 -133311 cd04111 Rab39 7 G4 box 0 0 1 1 116,117,118,119 0 -133311 cd04111 Rab39 8 G5 box 0 0 1 1 146,147,148 0 -206695 cd04112 Rab26 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,58,113,114,116,143,144,145 5 -206695 cd04112 Rab26 2 Switch I region 0 0 1 1 36,37,38 0 -206695 cd04112 Rab26 3 Switch II region 0 0 1 1 57,58,74,75 0 -206695 cd04112 Rab26 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206695 cd04112 Rab26 5 G2 box 0 0 1 1 32 0 -206695 cd04112 Rab26 6 G3 box 0 0 1 1 55,56,57,58 0 -206695 cd04112 Rab26 7 G4 box 0 0 1 1 113,114,115,116 0 -206695 cd04112 Rab26 8 G5 box 0 0 1 1 143,144,145 0 -206696 cd04113 Rab4 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,142,143,144 5 -206696 cd04113 Rab4 2 Switch I region 0 0 1 1 35,36,37 0 -206696 cd04113 Rab4 3 Switch II region 0 0 1 1 56,57,73,74 0 -206696 cd04113 Rab4 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206696 cd04113 Rab4 5 G2 box 0 0 1 1 31 0 -206696 cd04113 Rab4 6 G3 box 0 0 1 1 54,55,56,57 0 -206696 cd04113 Rab4 7 G4 box 0 0 1 1 112,113,114,115 0 -206696 cd04113 Rab4 8 G5 box 0 0 1 1 142,143,144 0 -133314 cd04114 Rab30 1 GTP/Mg2+ binding site 0 1 0 0 15,16,17,18,19,20,21,64,119,120,122,149,150,151 5 -133314 cd04114 Rab30 2 Switch I region 0 0 1 1 42,43,44 0 -133314 cd04114 Rab30 3 Switch II region 0 0 1 1 63,64,80,81 0 -133314 cd04114 Rab30 4 G1 box 0 0 1 1 13,14,15,16,17,18,19,20 0 -133314 cd04114 Rab30 5 G2 box 0 0 1 1 38 0 -133314 cd04114 Rab30 6 G3 box 0 0 1 1 61,62,63,64 0 -133314 cd04114 Rab30 7 G4 box 0 0 1 1 119,120,121,122 0 -133314 cd04114 Rab30 8 G5 box 0 0 1 1 149,150,151 0 -133315 cd04115 Rab33B_Rab33A 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,59,116,117,119,146,147,148 5 -133315 cd04115 Rab33B_Rab33A 2 Switch I region 0 0 1 1 37,38,39 0 -133315 cd04115 Rab33B_Rab33A 3 Switch II region 0 0 1 1 58,59,76,77 0 -133315 cd04115 Rab33B_Rab33A 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133315 cd04115 Rab33B_Rab33A 5 G2 box 0 0 1 1 33 0 -133315 cd04115 Rab33B_Rab33A 6 G3 box 0 0 1 1 56,57,58,59 0 -133315 cd04115 Rab33B_Rab33A 7 G4 box 0 0 1 1 116,117,118,119 0 -133315 cd04115 Rab33B_Rab33A 8 G5 box 0 0 1 1 146,147,148 0 -206697 cd04116 Rab9 1 GTP/Mg2+ binding site 0 1 0 0 13,14,15,16,17,18,19,62,121,122,124,151,152,153 5 -206697 cd04116 Rab9 2 Switch I region 0 0 1 1 40,41,42 0 -206697 cd04116 Rab9 3 Switch II region 0 0 1 1 61,62,78,79 0 -206697 cd04116 Rab9 4 G1 box 0 0 1 1 11,12,13,14,15,16,17,18 0 -206697 cd04116 Rab9 5 G2 box 0 0 1 1 36 0 -206697 cd04116 Rab9 6 G3 box 0 0 1 1 59,60,61,62 0 -206697 cd04116 Rab9 7 G4 box 0 0 1 1 121,122,123,124 0 -206697 cd04116 Rab9 8 G5 box 0 0 1 1 151,152,153 0 -206698 cd04117 Rab15 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,142,143,144 5 -206698 cd04117 Rab15 2 Switch I region 0 0 1 1 35,36,37 0 -206698 cd04117 Rab15 3 Switch II region 0 0 1 1 56,57,73,74 0 -206698 cd04117 Rab15 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206698 cd04117 Rab15 5 G2 box 0 0 1 1 31 0 -206698 cd04117 Rab15 6 G3 box 0 0 1 1 54,55,56,57 0 -206698 cd04117 Rab15 7 G4 box 0 0 1 1 112,113,114,115 0 -206698 cd04117 Rab15 8 G5 box 0 0 1 1 142,143,144 0 -133318 cd04118 Rab24 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,58,112,113,115,146,147,148 5 -133318 cd04118 Rab24 2 Switch I region 0 0 1 1 36,37,38 0 -133318 cd04118 Rab24 3 Switch II region 0 0 1 1 57,58,74,75 0 -133318 cd04118 Rab24 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133318 cd04118 Rab24 5 G2 box 0 0 1 1 32 0 -133318 cd04118 Rab24 6 G3 box 0 0 1 1 55,56,57,58 0 -133318 cd04118 Rab24 7 G4 box 0 0 1 1 112,113,114,115 0 -133318 cd04118 Rab24 8 G5 box 0 0 1 1 146,147,148 0 -133319 cd04119 RJL 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,117,118,120,147,148,149 5 -133319 cd04119 RJL 2 Switch I region 0 0 1 1 35,36,37 0 -133319 cd04119 RJL 3 Switch II region 0 0 1 1 56,57,73,74 0 -133319 cd04119 RJL 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133319 cd04119 RJL 5 G2 box 0 0 1 1 31 0 -133319 cd04119 RJL 6 G3 box 0 0 1 1 54,55,56,57 0 -133319 cd04119 RJL 7 G4 box 0 0 1 1 117,118,119,120 0 -133319 cd04119 RJL 8 G5 box 0 0 1 1 147,148,149 0 -206699 cd04120 Rab12 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,143,144,145 5 -206699 cd04120 Rab12 2 Switch I region 0 0 1 1 35,36,37 0 -206699 cd04120 Rab12 3 Switch II region 0 0 1 1 56,57,73,74 0 -206699 cd04120 Rab12 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206699 cd04120 Rab12 5 G2 box 0 0 1 1 31 0 -206699 cd04120 Rab12 6 G3 box 0 0 1 1 54,55,56,57 0 -206699 cd04120 Rab12 7 G4 box 0 0 1 1 112,113,114,115 0 -206699 cd04120 Rab12 8 G5 box 0 0 1 1 143,144,145 0 -133321 cd04121 Rab40 1 GTP/Mg2+ binding site 0 1 0 0 14,15,16,17,18,19,20,63,117,118,120,147,148,149 5 -133321 cd04121 Rab40 2 Switch I region 0 0 1 1 41,42,43 0 -133321 cd04121 Rab40 3 Switch II region 0 0 1 1 62,63,79,80 0 -133321 cd04121 Rab40 4 G1 box 0 0 1 1 12,13,14,15,16,17,18,19 0 -133321 cd04121 Rab40 5 G2 box 0 0 1 1 37 0 -133321 cd04121 Rab40 6 G3 box 0 0 1 1 60,61,62,63 0 -133321 cd04121 Rab40 7 G4 box 0 0 1 1 117,118,119,120 0 -133321 cd04121 Rab40 8 G5 box 0 0 1 1 147,148,149 0 -133322 cd04122 Rab14 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,59,114,115,117,144,145,146 5 -133322 cd04122 Rab14 2 Switch I region 0 0 1 1 37,38,39 0 -133322 cd04122 Rab14 3 Switch II region 0 0 1 1 58,59,75,76 0 -133322 cd04122 Rab14 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133322 cd04122 Rab14 5 G2 box 0 0 1 1 33 0 -133322 cd04122 Rab14 6 G3 box 0 0 1 1 56,57,58,59 0 -133322 cd04122 Rab14 7 G4 box 0 0 1 1 114,115,116,117 0 -133322 cd04122 Rab14 8 G5 box 0 0 1 1 144,145,146 0 -133323 cd04123 Rab21 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,112,113,115,142,143,144 5 -133323 cd04123 Rab21 2 Switch I region 0 0 1 1 35,36,37 0 -133323 cd04123 Rab21 3 Switch II region 0 0 1 1 56,57,73,74 0 -133323 cd04123 Rab21 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133323 cd04123 Rab21 5 G2 box 0 0 1 1 31 0 -133323 cd04123 Rab21 6 G3 box 0 0 1 1 54,55,56,57 0 -133323 cd04123 Rab21 7 G4 box 0 0 1 1 112,113,114,115 0 -133323 cd04123 Rab21 8 G5 box 0 0 1 1 142,143,144 0 -133324 cd04124 RabL2 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,111,112,114,138,139,140 5 -133324 cd04124 RabL2 2 Switch I region 0 0 1 1 35,36,37 0 -133324 cd04124 RabL2 3 Switch II region 0 0 1 1 56,57,73,74 0 -133324 cd04124 RabL2 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133324 cd04124 RabL2 5 G2 box 0 0 1 1 31 0 -133324 cd04124 RabL2 6 G3 box 0 0 1 1 54,55,56,57 0 -133324 cd04124 RabL2 7 G4 box 0 0 1 1 111,112,113,114 0 -133324 cd04124 RabL2 8 G5 box 0 0 1 1 138,139,140 0 -133326 cd04126 Rab20 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,52,107,108,110,170,171,172 5 -133326 cd04126 Rab20 2 Switch I region 0 0 1 1 34,35,36 0 -133326 cd04126 Rab20 3 Switch II region 0 0 1 1 51,52,68,69 0 -133326 cd04126 Rab20 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133326 cd04126 Rab20 5 G2 box 0 0 1 1 30 0 -133326 cd04126 Rab20 6 G3 box 0 0 1 1 49,50,51,52 0 -133326 cd04126 Rab20 7 G4 box 0 0 1 1 107,108,109,110 0 -133326 cd04126 Rab20 8 G5 box 0 0 1 1 170,171,172 0 -206700 cd04127 Rab27A 1 GTP/Mg2+ binding site 0 1 0 0 12,13,14,15,16,17,18,71,127,128,130,157,158,159 5 -206700 cd04127 Rab27A 2 Switch I region 0 0 1 1 39,40,41 0 -206700 cd04127 Rab27A 3 Switch II region 0 0 1 1 70,71,87,88 0 -206700 cd04127 Rab27A 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206700 cd04127 Rab27A 5 G2 box 0 0 1 1 35 0 -206700 cd04127 Rab27A 6 G3 box 0 0 1 1 68,69,70,71 0 -206700 cd04127 Rab27A 7 G4 box 0 0 1 1 127,128,129,130 0 -206700 cd04127 Rab27A 8 G5 box 0 0 1 1 157,158,159 0 -206701 cd04128 Spg1 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,111,112,114,146,147,148 5 -206701 cd04128 Spg1 2 Switch I region 0 0 1 1 35,36,37 0 -206701 cd04128 Spg1 3 Switch II region 0 0 1 1 56,57,73,74 0 -206701 cd04128 Spg1 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206701 cd04128 Spg1 5 G2 box 0 0 1 1 31 0 -206701 cd04128 Spg1 6 G3 box 0 0 1 1 54,55,56,57 0 -206701 cd04128 Spg1 7 G4 box 0 0 1 1 111,112,113,114 0 -206701 cd04128 Spg1 8 G5 box 0 0 1 1 146,147,148 0 -206641 cd00157 Rho 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,111,112,114,153,154,155 5 -206641 cd00157 Rho 2 Switch I region 0 0 1 1 34,35,36 0 -206641 cd00157 Rho 3 Switch II region 0 0 1 1 55,56,72,73 0 -206641 cd00157 Rho 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206641 cd00157 Rho 5 G2 box 0 0 1 1 31 0 -206641 cd00157 Rho 6 G3 box 0 0 1 1 53,54,55,56 0 -206641 cd00157 Rho 7 G4 box 0 0 1 1 111,112,113,114 0 -206641 cd00157 Rho 8 G5 box 0 0 1 1 153,154,155 0 -206662 cd01870 RhoA_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,155,156,157 5 -206662 cd01870 RhoA_like 2 Switch I region 0 0 1 1 35,36,37 0 -206662 cd01870 RhoA_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -206662 cd01870 RhoA_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206662 cd01870 RhoA_like 5 G2 box 0 0 1 1 32 0 -206662 cd01870 RhoA_like 6 G3 box 0 0 1 1 54,55,56,57 0 -206662 cd01870 RhoA_like 7 G4 box 0 0 1 1 112,113,114,115 0 -206662 cd01870 RhoA_like 8 G5 box 0 0 1 1 155,156,157 0 -206663 cd01871 Rac1_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,155,156,157 5 -206663 cd01871 Rac1_like 2 Switch I region 0 0 1 1 35,36,37 0 -206663 cd01871 Rac1_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -206663 cd01871 Rac1_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206663 cd01871 Rac1_like 5 G2 box 0 0 1 1 32 0 -206663 cd01871 Rac1_like 6 G3 box 0 0 1 1 54,55,56,57 0 -206663 cd01871 Rac1_like 7 G4 box 0 0 1 1 112,113,114,115 0 -206663 cd01871 Rac1_like 8 G5 box 0 0 1 1 155,156,157 0 -133275 cd01873 RhoBTB 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,74,127,128,130,176,177,178 5 -133275 cd01873 RhoBTB 2 Switch I region 0 0 1 1 44,45,46 0 -133275 cd01873 RhoBTB 3 Switch II region 0 0 1 1 73,74,88,89 0 -133275 cd01873 RhoBTB 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133275 cd01873 RhoBTB 5 G2 box 0 0 1 1 39 0 -133275 cd01873 RhoBTB 6 G3 box 0 0 1 1 71,72,73,74 0 -133275 cd01873 RhoBTB 7 G4 box 0 0 1 1 127,128,129,130 0 -133275 cd01873 RhoBTB 8 G5 box 0 0 1 1 176,177,178 0 -206664 cd01874 Cdc42 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,155,156,157 5 -206664 cd01874 Cdc42 2 Switch I region 0 0 1 1 35,36,37 0 -206664 cd01874 Cdc42 3 Switch II region 0 0 1 1 56,57,73,74 0 -206664 cd01874 Cdc42 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206664 cd01874 Cdc42 5 G2 box 0 0 1 1 32 0 -206664 cd01874 Cdc42 6 G3 box 0 0 1 1 54,55,56,57 0 -206664 cd01874 Cdc42 7 G4 box 0 0 1 1 112,113,114,115 0 -206664 cd01874 Cdc42 8 G5 box 0 0 1 1 155,156,157 0 -133277 cd01875 RhoG 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,59,114,115,117,157,158,159 5 -133277 cd01875 RhoG 2 Switch I region 0 0 1 1 37,38,39 0 -133277 cd01875 RhoG 3 Switch II region 0 0 1 1 58,59,75,76 0 -133277 cd01875 RhoG 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -133277 cd01875 RhoG 5 G2 box 0 0 1 1 34 0 -133277 cd01875 RhoG 6 G3 box 0 0 1 1 56,57,58,59 0 -133277 cd01875 RhoG 7 G4 box 0 0 1 1 114,115,116,117 0 -133277 cd01875 RhoG 8 G5 box 0 0 1 1 157,158,159 0 -206702 cd04129 Rho2 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,153,154,155 5 -206702 cd04129 Rho2 2 Switch I region 0 0 1 1 35,36,37 0 -206702 cd04129 Rho2 3 Switch II region 0 0 1 1 56,57,73,74 0 -206702 cd04129 Rho2 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206702 cd04129 Rho2 5 G2 box 0 0 1 1 32 0 -206702 cd04129 Rho2 6 G3 box 0 0 1 1 54,55,56,57 0 -206702 cd04129 Rho2 7 G4 box 0 0 1 1 112,113,114,115 0 -206702 cd04129 Rho2 8 G5 box 0 0 1 1 153,154,155 0 -133330 cd04130 Wrch_1 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,111,112,114,154,155,156 5 -133330 cd04130 Wrch_1 2 Switch I region 0 0 1 1 34,35,36 0 -133330 cd04130 Wrch_1 3 Switch II region 0 0 1 1 55,56,72,73 0 -133330 cd04130 Wrch_1 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133330 cd04130 Wrch_1 5 G2 box 0 0 1 1 31 0 -133330 cd04130 Wrch_1 6 G3 box 0 0 1 1 53,54,55,56 0 -133330 cd04130 Wrch_1 7 G4 box 0 0 1 1 111,112,113,114 0 -133330 cd04130 Wrch_1 8 G5 box 0 0 1 1 154,155,156 0 -206703 cd04131 Rnd 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,155,156,157 5 -206703 cd04131 Rnd 2 Switch I region 0 0 1 1 35,36,37 0 -206703 cd04131 Rnd 3 Switch II region 0 0 1 1 56,57,73,74 0 -206703 cd04131 Rnd 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206703 cd04131 Rnd 5 G2 box 0 0 1 1 32 0 -206703 cd04131 Rnd 6 G3 box 0 0 1 1 54,55,56,57 0 -206703 cd04131 Rnd 7 G4 box 0 0 1 1 112,113,114,115 0 -206703 cd04131 Rnd 8 G5 box 0 0 1 1 155,156,157 0 -206735 cd04172 Rnd3_RhoE_Rho8 1 GTP/Mg2+ binding site 0 1 0 0 13,14,15,16,17,18,19,61,116,117,119,159,160,161 5 -206735 cd04172 Rnd3_RhoE_Rho8 2 Switch I region 0 0 1 1 39,40,41 0 -206735 cd04172 Rnd3_RhoE_Rho8 3 Switch II region 0 0 1 1 60,61,77,78 0 -206735 cd04172 Rnd3_RhoE_Rho8 4 G1 box 0 0 1 1 11,12,13,14,15,16,17,18 0 -206735 cd04172 Rnd3_RhoE_Rho8 5 G2 box 0 0 1 1 36 0 -206735 cd04172 Rnd3_RhoE_Rho8 6 G3 box 0 0 1 1 58,59,60,61 0 -206735 cd04172 Rnd3_RhoE_Rho8 7 G4 box 0 0 1 1 116,117,118,119 0 -206735 cd04172 Rnd3_RhoE_Rho8 8 G5 box 0 0 1 1 159,160,161 0 -206736 cd04173 Rnd2_Rho7 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,155,156,157 5 -206736 cd04173 Rnd2_Rho7 2 Switch I region 0 0 1 1 35,36,37 0 -206736 cd04173 Rnd2_Rho7 3 Switch II region 0 0 1 1 56,57,73,74 0 -206736 cd04173 Rnd2_Rho7 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206736 cd04173 Rnd2_Rho7 5 G2 box 0 0 1 1 32 0 -206736 cd04173 Rnd2_Rho7 6 G3 box 0 0 1 1 54,55,56,57 0 -206736 cd04173 Rnd2_Rho7 7 G4 box 0 0 1 1 112,113,114,115 0 -206736 cd04173 Rnd2_Rho7 8 G5 box 0 0 1 1 155,156,157 0 -206737 cd04174 Rnd1_Rho6 1 GTP/Mg2+ binding site 0 1 0 0 21,22,23,24,25,26,27,69,124,125,127,167,168,169 5 -206737 cd04174 Rnd1_Rho6 2 Switch I region 0 0 1 1 47,48,49 0 -206737 cd04174 Rnd1_Rho6 3 Switch II region 0 0 1 1 68,69,85,86 0 -206737 cd04174 Rnd1_Rho6 4 G1 box 0 0 1 1 19,20,21,22,23,24,25,26 0 -206737 cd04174 Rnd1_Rho6 5 G2 box 0 0 1 1 44 0 -206737 cd04174 Rnd1_Rho6 6 G3 box 0 0 1 1 66,67,68,69 0 -206737 cd04174 Rnd1_Rho6 7 G4 box 0 0 1 1 124,125,126,127 0 -206737 cd04174 Rnd1_Rho6 8 G5 box 0 0 1 1 167,168,169 0 -206704 cd04132 Rho4_like 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,60,115,116,118,158,159,160 5 -206704 cd04132 Rho4_like 2 Switch I region 0 0 1 1 37,38,39 0 -206704 cd04132 Rho4_like 3 Switch II region 0 0 1 1 59,60,76,77 0 -206704 cd04132 Rho4_like 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206704 cd04132 Rho4_like 5 G2 box 0 0 1 1 34 0 -206704 cd04132 Rho4_like 6 G3 box 0 0 1 1 57,58,59,60 0 -206704 cd04132 Rho4_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206704 cd04132 Rho4_like 8 G5 box 0 0 1 1 158,159,160 0 -206705 cd04133 Rop_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,112,113,115,153,154,155 5 -206705 cd04133 Rop_like 2 Switch I region 0 0 1 1 35,36,37 0 -206705 cd04133 Rop_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -206705 cd04133 Rop_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206705 cd04133 Rop_like 5 G2 box 0 0 1 1 32 0 -206705 cd04133 Rop_like 6 G3 box 0 0 1 1 54,55,56,57 0 -206705 cd04133 Rop_like 7 G4 box 0 0 1 1 112,113,114,115 0 -206705 cd04133 Rop_like 8 G5 box 0 0 1 1 153,154,155 0 -206706 cd04134 Rho3 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,111,112,114,150,151,152 5 -206706 cd04134 Rho3 2 Switch I region 0 0 1 1 34,35,36 0 -206706 cd04134 Rho3 3 Switch II region 0 0 1 1 55,56,72,73 0 -206706 cd04134 Rho3 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206706 cd04134 Rho3 5 G2 box 0 0 1 1 31 0 -206706 cd04134 Rho3 6 G3 box 0 0 1 1 53,54,55,56 0 -206706 cd04134 Rho3 7 G4 box 0 0 1 1 111,112,113,114 0 -206706 cd04134 Rho3 8 G5 box 0 0 1 1 150,151,152 0 -206707 cd04135 Tc10 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,111,112,114,154,155,156 5 -206707 cd04135 Tc10 2 Switch I region 0 0 1 1 34,35,36 0 -206707 cd04135 Tc10 3 Switch II region 0 0 1 1 55,56,72,73 0 -206707 cd04135 Tc10 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206707 cd04135 Tc10 5 G2 box 0 0 1 1 31 0 -206707 cd04135 Tc10 6 G3 box 0 0 1 1 53,54,55,56 0 -206707 cd04135 Tc10 7 G4 box 0 0 1 1 111,112,113,114 0 -206707 cd04135 Tc10 8 G5 box 0 0 1 1 154,155,156 0 -206642 cd00876 Ras 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,55,111,112,114,141,142,143 5 -206642 cd00876 Ras 2 Switch I region 0 0 1 1 33,34,35 0 -206642 cd00876 Ras 3 Switch II region 0 0 1 1 54,55,71,72 0 -206642 cd00876 Ras 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206642 cd00876 Ras 5 G2 box 0 0 1 1 30 0 -206642 cd00876 Ras 6 G3 box 0 0 1 1 52,53,54,55 0 -206642 cd00876 Ras 7 G4 box 0 0 1 1 111,112,113,114 0 -206642 cd00876 Ras 8 G5 box 0 0 1 1 141,142,143 0 -206708 cd04136 Rap_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,144,145,146 5 -206708 cd04136 Rap_like 2 Switch I region 0 0 1 1 35,36,37 0 -206708 cd04136 Rap_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -206708 cd04136 Rap_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206708 cd04136 Rap_like 5 G2 box 0 0 1 1 32 0 -206708 cd04136 Rap_like 6 G3 box 0 0 1 1 54,55,56,57 0 -206708 cd04136 Rap_like 7 G4 box 0 0 1 1 113,114,115,116 0 -206708 cd04136 Rap_like 8 G5 box 0 0 1 1 144,145,146 0 -133375 cd04175 Rap1 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,143,144,145 5 -133375 cd04175 Rap1 2 Switch I region 0 0 1 1 35,36,37 0 -133375 cd04175 Rap1 3 Switch II region 0 0 1 1 56,57,73,74 0 -133375 cd04175 Rap1 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133375 cd04175 Rap1 5 G2 box 0 0 1 1 32 0 -133375 cd04175 Rap1 6 G3 box 0 0 1 1 54,55,56,57 0 -133375 cd04175 Rap1 7 G4 box 0 0 1 1 113,114,115,116 0 -133375 cd04175 Rap1 8 G5 box 0 0 1 1 143,144,145 0 -133376 cd04176 Rap2 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,143,144,145 5 -133376 cd04176 Rap2 2 Switch I region 0 0 1 1 35,36,37 0 -133376 cd04176 Rap2 3 Switch II region 0 0 1 1 56,57,73,74 0 -133376 cd04176 Rap2 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133376 cd04176 Rap2 5 G2 box 0 0 1 1 32 0 -133376 cd04176 Rap2 6 G3 box 0 0 1 1 54,55,56,57 0 -133376 cd04176 Rap2 7 G4 box 0 0 1 1 113,114,115,116 0 -133376 cd04176 Rap2 8 G5 box 0 0 1 1 143,144,145 0 -133377 cd04177 RSR1 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,144,145,146 5 -133377 cd04177 RSR1 2 Switch I region 0 0 1 1 35,36,37 0 -133377 cd04177 RSR1 3 Switch II region 0 0 1 1 56,57,73,74 0 -133377 cd04177 RSR1 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133377 cd04177 RSR1 5 G2 box 0 0 1 1 32 0 -133377 cd04177 RSR1 6 G3 box 0 0 1 1 54,55,56,57 0 -133377 cd04177 RSR1 7 G4 box 0 0 1 1 113,114,115,116 0 -133377 cd04177 RSR1 8 G5 box 0 0 1 1 144,145,146 0 -206709 cd04137 RheB 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,143,144,145 5 -206709 cd04137 RheB 2 Switch I region 0 0 1 1 35,36,37 0 -206709 cd04137 RheB 3 Switch II region 0 0 1 1 56,57,73,74 0 -206709 cd04137 RheB 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206709 cd04137 RheB 5 G2 box 0 0 1 1 32 0 -206709 cd04137 RheB 6 G3 box 0 0 1 1 54,55,56,57 0 -206709 cd04137 RheB 7 G4 box 0 0 1 1 113,114,115,116 0 -206709 cd04137 RheB 8 G5 box 0 0 1 1 143,144,145 0 -133338 cd04138 H_N_K_Ras_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,113,114,116,142,143,144 5 -133338 cd04138 H_N_K_Ras_like 2 Switch I region 0 0 1 1 35,36,37 0 -133338 cd04138 H_N_K_Ras_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -133338 cd04138 H_N_K_Ras_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -133338 cd04138 H_N_K_Ras_like 5 G2 box 0 0 1 1 32 0 -133338 cd04138 H_N_K_Ras_like 6 G3 box 0 0 1 1 54,55,56,57 0 -133338 cd04138 H_N_K_Ras_like 7 G4 box 0 0 1 1 113,114,115,116 0 -133338 cd04138 H_N_K_Ras_like 8 G5 box 0 0 1 1 142,143,144 0 -206710 cd04139 RalA_RalB 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,112,113,115,142,143,144 5 -206710 cd04139 RalA_RalB 2 Switch I region 0 0 1 1 34,35,36 0 -206710 cd04139 RalA_RalB 3 Switch II region 0 0 1 1 55,56,72,73 0 -206710 cd04139 RalA_RalB 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206710 cd04139 RalA_RalB 5 G2 box 0 0 1 1 31 0 -206710 cd04139 RalA_RalB 6 G3 box 0 0 1 1 53,54,55,56 0 -206710 cd04139 RalA_RalB 7 G4 box 0 0 1 1 112,113,114,115 0 -206710 cd04139 RalA_RalB 8 G5 box 0 0 1 1 142,143,144 0 -206711 cd04140 ARHI_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,57,115,116,118,145,146,147 5 -206711 cd04140 ARHI_like 2 Switch I region 0 0 1 1 35,36,37 0 -206711 cd04140 ARHI_like 3 Switch II region 0 0 1 1 56,57,73,74 0 -206711 cd04140 ARHI_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206711 cd04140 ARHI_like 5 G2 box 0 0 1 1 32 0 -206711 cd04140 ARHI_like 6 G3 box 0 0 1 1 54,55,56,57 0 -206711 cd04140 ARHI_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206711 cd04140 ARHI_like 8 G5 box 0 0 1 1 145,146,147 0 -206712 cd04141 Rit_Rin_Ric 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,58,114,115,117,144,145,146 5 -206712 cd04141 Rit_Rin_Ric 2 Switch I region 0 0 1 1 36,37,38 0 -206712 cd04141 Rit_Rin_Ric 3 Switch II region 0 0 1 1 57,58,74,75 0 -206712 cd04141 Rit_Rin_Ric 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206712 cd04141 Rit_Rin_Ric 5 G2 box 0 0 1 1 33 0 -206712 cd04141 Rit_Rin_Ric 6 G3 box 0 0 1 1 55,56,57,58 0 -206712 cd04141 Rit_Rin_Ric 7 G4 box 0 0 1 1 114,115,116,117 0 -206712 cd04141 Rit_Rin_Ric 8 G5 box 0 0 1 1 144,145,146 0 -133342 cd04142 RRP22 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,123,124,126,154,155,156 5 -133342 cd04142 RRP22 2 Switch I region 0 0 1 1 35,36,37 0 -133342 cd04142 RRP22 3 Switch II region 0 0 1 1 56,57,81,82 0 -133342 cd04142 RRP22 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133342 cd04142 RRP22 5 G2 box 0 0 1 1 31 0 -133342 cd04142 RRP22 6 G3 box 0 0 1 1 54,55,56,57 0 -133342 cd04142 RRP22 7 G4 box 0 0 1 1 123,124,125,126 0 -133342 cd04142 RRP22 8 G5 box 0 0 1 1 154,155,156 0 -133343 cd04143 Rhes_like 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,120,121,123,151,152,153 5 -133343 cd04143 Rhes_like 2 Switch I region 0 0 1 1 34,35,36 0 -133343 cd04143 Rhes_like 3 Switch II region 0 0 1 1 55,56,72,73 0 -133343 cd04143 Rhes_like 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133343 cd04143 Rhes_like 5 G2 box 0 0 1 1 31 0 -133343 cd04143 Rhes_like 6 G3 box 0 0 1 1 53,54,55,56 0 -133343 cd04143 Rhes_like 7 G4 box 0 0 1 1 120,121,122,123 0 -133343 cd04143 Rhes_like 8 G5 box 0 0 1 1 151,152,153 0 -133344 cd04144 Ras2 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,55,113,114,116,143,144,145 5 -133344 cd04144 Ras2 2 Switch I region 0 0 1 1 33,34,35 0 -133344 cd04144 Ras2 3 Switch II region 0 0 1 1 54,55,71,72 0 -133344 cd04144 Ras2 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133344 cd04144 Ras2 5 G2 box 0 0 1 1 30 0 -133344 cd04144 Ras2 6 G3 box 0 0 1 1 52,53,54,55 0 -133344 cd04144 Ras2 7 G4 box 0 0 1 1 113,114,115,116 0 -133344 cd04144 Ras2 8 G5 box 0 0 1 1 143,144,145 0 -133345 cd04145 M_R_Ras_like 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,58,114,115,117,144,145,146 5 -133345 cd04145 M_R_Ras_like 2 Switch I region 0 0 1 1 36,37,38 0 -133345 cd04145 M_R_Ras_like 3 Switch II region 0 0 1 1 57,58,74,75 0 -133345 cd04145 M_R_Ras_like 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -133345 cd04145 M_R_Ras_like 5 G2 box 0 0 1 1 33 0 -133345 cd04145 M_R_Ras_like 6 G3 box 0 0 1 1 55,56,57,58 0 -133345 cd04145 M_R_Ras_like 7 G4 box 0 0 1 1 114,115,116,117 0 -133345 cd04145 M_R_Ras_like 8 G5 box 0 0 1 1 144,145,146 0 -206713 cd04146 RERG_RasL11_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,55,114,115,117,144,145,146 5 -206713 cd04146 RERG_RasL11_like 2 Switch I region 0 0 1 1 33,34,35 0 -206713 cd04146 RERG_RasL11_like 3 Switch II region 0 0 1 1 54,55,73,74 0 -206713 cd04146 RERG_RasL11_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206713 cd04146 RERG_RasL11_like 5 G2 box 0 0 1 1 30 0 -206713 cd04146 RERG_RasL11_like 6 G3 box 0 0 1 1 52,53,54,55 0 -206713 cd04146 RERG_RasL11_like 7 G4 box 0 0 1 1 114,115,116,117 0 -206713 cd04146 RERG_RasL11_like 8 G5 box 0 0 1 1 144,145,146 0 -206714 cd04147 Ras_dva 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,55,111,112,114,142,143,144 5 -206714 cd04147 Ras_dva 2 Switch I region 0 0 1 1 33,34,35 0 -206714 cd04147 Ras_dva 3 Switch II region 0 0 1 1 54,55,71,72 0 -206714 cd04147 Ras_dva 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206714 cd04147 Ras_dva 5 G2 box 0 0 1 1 29 0 -206714 cd04147 Ras_dva 6 G3 box 0 0 1 1 52,53,54,55 0 -206714 cd04147 Ras_dva 7 G4 box 0 0 1 1 111,112,113,114 0 -206714 cd04147 Ras_dva 8 G5 box 0 0 1 1 142,143,144 0 -206715 cd04148 RGK 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,113,114,116,143,144,145 5 -206715 cd04148 RGK 2 Switch I region 0 0 1 1 35,36,37 0 -206715 cd04148 RGK 3 Switch II region 0 0 1 1 56,57,73,74 0 -206715 cd04148 RGK 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206715 cd04148 RGK 5 G2 box 0 0 1 1 31 0 -206715 cd04148 RGK 6 G3 box 0 0 1 1 54,55,56,57 0 -206715 cd04148 RGK 7 G4 box 0 0 1 1 113,114,115,116 0 -206715 cd04148 RGK 8 G5 box 0 0 1 1 143,144,145 0 -206643 cd00877 Ran 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,111,112,114,139,140,141 5 -206643 cd00877 Ran 2 Switch I region 0 0 1 1 35,36,37 0 -206643 cd00877 Ran 3 Switch II region 0 0 1 1 56,57,73,74 0 -206643 cd00877 Ran 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206643 cd00877 Ran 5 G2 box 0 0 1 1 31 0 -206643 cd00877 Ran 6 G3 box 0 0 1 1 54,55,56,57 0 -206643 cd00877 Ran 7 G4 box 0 0 1 1 111,112,113,114 0 -206643 cd00877 Ran 8 G5 box 0 0 1 1 139,140,141 0 -206644 cd00878 Arf_Arl 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,51,107,108,110,140,141,142 5 -206644 cd00878 Arf_Arl 2 Switch I region 0 0 1 1 33,34,35 0 -206644 cd00878 Arf_Arl 3 Switch II region 0 0 1 1 50,51,67,68 0 -206644 cd00878 Arf_Arl 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206644 cd00878 Arf_Arl 5 G2 box 0 0 1 1 29 0 -206644 cd00878 Arf_Arl 6 G3 box 0 0 1 1 48,49,50,51 0 -206644 cd00878 Arf_Arl 7 G4 box 0 0 1 1 107,108,109,110 0 -206644 cd00878 Arf_Arl 8 G5 box 0 0 1 1 140,141,142 0 -206645 cd00879 Sar1 1 GTP/Mg2+ binding site 0 1 0 0 27,28,29,30,31,32,33,71,127,128,130,172,173,174 5 -206645 cd00879 Sar1 2 Switch I region 0 0 1 1 53,54,55 0 -206645 cd00879 Sar1 3 Switch II region 0 0 1 1 70,71,87,88 0 -206645 cd00879 Sar1 4 G1 box 0 0 1 1 25,26,27,28,29,30,31,32 0 -206645 cd00879 Sar1 5 G2 box 0 0 1 1 49 0 -206645 cd00879 Sar1 6 G3 box 0 0 1 1 68,69,70,71 0 -206645 cd00879 Sar1 7 G4 box 0 0 1 1 127,128,129,130 0 -206645 cd00879 Sar1 8 G5 box 0 0 1 1 172,173,174 0 -206716 cd04149 Arf6 1 GTP/Mg2+ binding site 0 1 0 0 17,18,19,20,21,22,23,61,117,118,120,150,151,152 5 -206716 cd04149 Arf6 2 Switch I region 0 0 1 1 43,44,45 0 -206716 cd04149 Arf6 3 Switch II region 0 0 1 1 60,61,77,78 0 -206716 cd04149 Arf6 4 G1 box 0 0 1 1 15,16,17,18,19,20,21,22 0 -206716 cd04149 Arf6 5 G2 box 0 0 1 1 39 0 -206716 cd04149 Arf6 6 G3 box 0 0 1 1 58,59,60,61 0 -206716 cd04149 Arf6 7 G4 box 0 0 1 1 117,118,119,120 0 -206716 cd04149 Arf6 8 G5 box 0 0 1 1 150,151,152 0 -206717 cd04150 Arf1_5_like 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,52,108,109,111,141,142,143 5 -206717 cd04150 Arf1_5_like 2 Switch I region 0 0 1 1 34,35,36 0 -206717 cd04150 Arf1_5_like 3 Switch II region 0 0 1 1 51,52,68,69 0 -206717 cd04150 Arf1_5_like 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206717 cd04150 Arf1_5_like 5 G2 box 0 0 1 1 30 0 -206717 cd04150 Arf1_5_like 6 G3 box 0 0 1 1 49,50,51,52 0 -206717 cd04150 Arf1_5_like 7 G4 box 0 0 1 1 108,109,110,111 0 -206717 cd04150 Arf1_5_like 8 G5 box 0 0 1 1 141,142,143 0 -206718 cd04151 Arl1 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,51,107,108,110,140,141,142 5 -206718 cd04151 Arl1 2 Switch I region 0 0 1 1 33,34,35 0 -206718 cd04151 Arl1 3 Switch II region 0 0 1 1 50,51,67,68 0 -206718 cd04151 Arl1 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206718 cd04151 Arl1 5 G2 box 0 0 1 1 29 0 -206718 cd04151 Arl1 6 G3 box 0 0 1 1 48,49,50,51 0 -206718 cd04151 Arl1 7 G4 box 0 0 1 1 107,108,109,110 0 -206718 cd04151 Arl1 8 G5 box 0 0 1 1 140,141,142 0 -206719 cd04152 Arl4_Arl7 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,60,116,117,119,150,151,152 5 -206719 cd04152 Arl4_Arl7 2 Switch I region 0 0 1 1 37,38,39 0 -206719 cd04152 Arl4_Arl7 3 Switch II region 0 0 1 1 59,60,76,77 0 -206719 cd04152 Arl4_Arl7 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206719 cd04152 Arl4_Arl7 5 G2 box 0 0 1 1 33 0 -206719 cd04152 Arl4_Arl7 6 G3 box 0 0 1 1 57,58,59,60 0 -206719 cd04152 Arl4_Arl7 7 G4 box 0 0 1 1 116,117,118,119 0 -206719 cd04152 Arl4_Arl7 8 G5 box 0 0 1 1 150,151,152 0 -133353 cd04153 Arl5_Arl8 1 GTP/Mg2+ binding site 0 1 0 0 23,24,25,26,27,28,29,67,123,124,126,156,157,158 5 -133353 cd04153 Arl5_Arl8 2 Switch I region 0 0 1 1 49,50,51 0 -133353 cd04153 Arl5_Arl8 3 Switch II region 0 0 1 1 66,67,83,84 0 -133353 cd04153 Arl5_Arl8 4 G1 box 0 0 1 1 21,22,23,24,25,26,27,28 0 -133353 cd04153 Arl5_Arl8 5 G2 box 0 0 1 1 45 0 -133353 cd04153 Arl5_Arl8 6 G3 box 0 0 1 1 64,65,66,67 0 -133353 cd04153 Arl5_Arl8 7 G4 box 0 0 1 1 123,124,125,126 0 -133353 cd04153 Arl5_Arl8 8 G5 box 0 0 1 1 156,157,158 0 -206720 cd04154 Arl2 1 GTP/Mg2+ binding site 0 1 0 0 22,23,24,25,26,27,28,66,122,123,125,155,156,157 5 -206720 cd04154 Arl2 2 Switch I region 0 0 1 1 48,49,50 0 -206720 cd04154 Arl2 3 Switch II region 0 0 1 1 65,66,82,83 0 -206720 cd04154 Arl2 4 G1 box 0 0 1 1 20,21,22,23,24,25,26,27 0 -206720 cd04154 Arl2 5 G2 box 0 0 1 1 44 0 -206720 cd04154 Arl2 6 G3 box 0 0 1 1 63,64,65,66 0 -206720 cd04154 Arl2 7 G4 box 0 0 1 1 122,123,124,125 0 -206720 cd04154 Arl2 8 G5 box 0 0 1 1 155,156,157 0 -206721 cd04155 Arl3 1 GTP/Mg2+ binding site 0 1 0 0 23,24,25,26,27,28,29,67,123,124,126,156,157,158 5 -206721 cd04155 Arl3 2 Switch I region 0 0 1 1 49,50,51 0 -206721 cd04155 Arl3 3 Switch II region 0 0 1 1 66,67,83,84 0 -206721 cd04155 Arl3 4 G1 box 0 0 1 1 21,22,23,24,25,26,27,28 0 -206721 cd04155 Arl3 5 G2 box 0 0 1 1 45 0 -206721 cd04155 Arl3 6 G3 box 0 0 1 1 64,65,66,67 0 -206721 cd04155 Arl3 7 G4 box 0 0 1 1 123,124,125,126 0 -206721 cd04155 Arl3 8 G5 box 0 0 1 1 156,157,158 0 -133356 cd04156 ARLTS1 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,52,108,109,111,142,143,144 5 -133356 cd04156 ARLTS1 2 Switch I region 0 0 1 1 33,34,35 0 -133356 cd04156 ARLTS1 3 Switch II region 0 0 1 1 51,52,68,69 0 -133356 cd04156 ARLTS1 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133356 cd04156 ARLTS1 5 G2 box 0 0 1 1 29 0 -133356 cd04156 ARLTS1 6 G3 box 0 0 1 1 49,50,51,52 0 -133356 cd04156 ARLTS1 7 G4 box 0 0 1 1 108,109,110,111 0 -133356 cd04156 ARLTS1 8 G5 box 0 0 1 1 142,143,144 0 -206722 cd04157 Arl6 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,53,111,112,114,144,145,146 5 -206722 cd04157 Arl6 2 Switch I region 0 0 1 1 35,36,37 0 -206722 cd04157 Arl6 3 Switch II region 0 0 1 1 52,53,69,70 0 -206722 cd04157 Arl6 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206722 cd04157 Arl6 5 G2 box 0 0 1 1 31 0 -206722 cd04157 Arl6 6 G3 box 0 0 1 1 50,51,52,53 0 -206722 cd04157 Arl6 7 G4 box 0 0 1 1 111,112,113,114 0 -206722 cd04157 Arl6 8 G5 box 0 0 1 1 144,145,146 0 -206723 cd04158 ARD1 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,51,107,108,110,141,142,143 5 -206723 cd04158 ARD1 2 Switch I region 0 0 1 1 33,34,35 0 -206723 cd04158 ARD1 3 Switch II region 0 0 1 1 50,51,67,68 0 -206723 cd04158 ARD1 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206723 cd04158 ARD1 5 G2 box 0 0 1 1 29 0 -206723 cd04158 ARD1 6 G3 box 0 0 1 1 48,49,50,51 0 -206723 cd04158 ARD1 7 G4 box 0 0 1 1 107,108,109,110 0 -206723 cd04158 ARD1 8 G5 box 0 0 1 1 141,142,143 0 -206724 cd04159 Arl10_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,52,108,109,111,141,142,143 5 -206724 cd04159 Arl10_like 2 Switch I region 0 0 1 1 34,35,36 0 -206724 cd04159 Arl10_like 3 Switch II region 0 0 1 1 51,52,68,69 0 -206724 cd04159 Arl10_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206724 cd04159 Arl10_like 5 G2 box 0 0 1 1 30 0 -206724 cd04159 Arl10_like 6 G3 box 0 0 1 1 49,50,51,52 0 -206724 cd04159 Arl10_like 7 G4 box 0 0 1 1 108,109,110,111 0 -206724 cd04159 Arl10_like 8 G5 box 0 0 1 1 141,142,143 0 -206725 cd04160 Arfrp1 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,59,115,116,118,150,151,152 5 -206725 cd04160 Arfrp1 2 Switch I region 0 0 1 1 41,42,43 0 -206725 cd04160 Arfrp1 3 Switch II region 0 0 1 1 58,59,75,76 0 -206725 cd04160 Arfrp1 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206725 cd04160 Arfrp1 5 G2 box 0 0 1 1 37 0 -206725 cd04160 Arfrp1 6 G3 box 0 0 1 1 56,57,58,59 0 -206725 cd04160 Arfrp1 7 G4 box 0 0 1 1 115,116,117,118 0 -206725 cd04160 Arfrp1 8 G5 box 0 0 1 1 150,151,152 0 -133361 cd04161 Arl2l1_Arl13_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,51,107,108,110,143,144,145 5 -133361 cd04161 Arl2l1_Arl13_like 2 Switch I region 0 0 1 1 33,34,35 0 -133361 cd04161 Arl2l1_Arl13_like 3 Switch II region 0 0 1 1 50,51,67,68 0 -133361 cd04161 Arl2l1_Arl13_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133361 cd04161 Arl2l1_Arl13_like 5 G2 box 0 0 1 1 29 0 -133361 cd04161 Arl2l1_Arl13_like 6 G3 box 0 0 1 1 48,49,50,51 0 -133361 cd04161 Arl2l1_Arl13_like 7 G4 box 0 0 1 1 107,108,109,110 0 -133361 cd04161 Arl2l1_Arl13_like 8 G5 box 0 0 1 1 143,144,145 0 -133362 cd04162 Arl9_Arfrp2_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,52,106,107,109,140,141,142 5 -133362 cd04162 Arl9_Arfrp2_like 2 Switch I region 0 0 1 1 34,35,36 0 -133362 cd04162 Arl9_Arfrp2_like 3 Switch II region 0 0 1 1 51,52,68,69 0 -133362 cd04162 Arl9_Arfrp2_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -133362 cd04162 Arl9_Arfrp2_like 5 G2 box 0 0 1 1 30 0 -133362 cd04162 Arl9_Arfrp2_like 6 G3 box 0 0 1 1 49,50,51,52 0 -133362 cd04162 Arl9_Arfrp2_like 7 G4 box 0 0 1 1 106,107,108,109 0 -133362 cd04162 Arl9_Arfrp2_like 8 G5 box 0 0 1 1 140,141,142 0 -206646 cd00880 Era_like 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,54,111,112,114,142,143,144 5 -206646 cd00880 Era_like 2 Switch I region 0 0 1 1 35,36,37 0 -206646 cd00880 Era_like 3 Switch II region 0 0 1 1 53,54,77,78 0 -206646 cd00880 Era_like 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206646 cd00880 Era_like 5 G2 box 0 0 1 1 31 0 -206646 cd00880 Era_like 6 G3 box 0 0 1 1 51,52,53,54 0 -206646 cd00880 Era_like 7 G4 box 0 0 1 1 111,112,113,114 0 -206646 cd00880 Era_like 8 G5 box 0 0 1 1 142,143,144 0 -206665 cd01876 YihA_EngB 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,53,117,118,120,151,152,153 5 -206665 cd01876 YihA_EngB 2 Switch I region 0 0 1 1 38,39,40 0 -206665 cd01876 YihA_EngB 3 Switch II region 0 0 1 1 52,53,82,83 0 -206665 cd01876 YihA_EngB 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206665 cd01876 YihA_EngB 5 G2 box 0 0 1 1 34 0 -206665 cd01876 YihA_EngB 6 G3 box 0 0 1 1 50,51,52,53 0 -206665 cd01876 YihA_EngB 7 G4 box 0 0 1 1 117,118,119,120 0 -206665 cd01876 YihA_EngB 8 G5 box 0 0 1 1 151,152,153 0 -206666 cd01878 HflX 1 GTP/Mg2+ binding site 0 1 0 0 49,50,51,52,53,54,55,97,160,161,163,185,186,187 5 -206666 cd01878 HflX 2 Switch I region 0 0 1 1 78,79,80 0 -206666 cd01878 HflX 3 Switch II region 0 0 1 1 96,97,121,122 0 -206666 cd01878 HflX 4 G1 box 0 0 1 1 47,48,49,50,51,52,53,54 0 -206666 cd01878 HflX 5 G2 box 0 0 1 1 74 0 -206666 cd01878 HflX 6 G3 box 0 0 1 1 94,95,96,97 0 -206666 cd01878 HflX 7 G4 box 0 0 1 1 160,161,162,163 0 -206666 cd01878 HflX 8 G5 box 0 0 1 1 185,186,187 0 -206667 cd01879 FeoB 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,52,109,110,112,138,139,140 5 -206667 cd01879 FeoB 2 Switch I region 0 0 1 1 34,35,36 0 -206667 cd01879 FeoB 3 Switch II region 0 0 1 1 51,52,76,77 0 -206667 cd01879 FeoB 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206667 cd01879 FeoB 5 G2 box 0 0 1 1 30 0 -206667 cd01879 FeoB 6 G3 box 0 0 1 1 49,50,51,52 0 -206667 cd01879 FeoB 7 G4 box 0 0 1 1 109,110,111,112 0 -206667 cd01879 FeoB 8 G5 box 0 0 1 1 138,139,140 0 -206668 cd01881 Obg_like 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,53,120,121,123,148,149,150 5 -206668 cd01881 Obg_like 2 Switch I region 0 0 1 1 34,35,36 0 -206668 cd01881 Obg_like 3 Switch II region 0 0 1 1 52,53,76,77 0 -206668 cd01881 Obg_like 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206668 cd01881 Obg_like 5 G2 box 0 0 1 1 30 0 -206668 cd01881 Obg_like 6 G3 box 0 0 1 1 50,51,52,53 0 -206668 cd01881 Obg_like 7 G4 box 0 0 1 1 120,121,122,123 0 -206668 cd01881 Obg_like 8 G5 box 0 0 1 1 148,149,150 0 -206683 cd01896 DRG 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,55,183,184,186,206,207,208 5 -206683 cd01896 DRG 2 Switch I region 0 0 1 1 37,38,39 0 -206683 cd01896 DRG 3 Switch II region 0 0 1 1 54,55,78,79 0 -206683 cd01896 DRG 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206683 cd01896 DRG 5 G2 box 0 0 1 1 33 0 -206683 cd01896 DRG 6 G3 box 0 0 1 1 52,53,54,55 0 -206683 cd01896 DRG 7 G4 box 0 0 1 1 183,184,185,186 0 -206683 cd01896 DRG 8 G5 box 0 0 1 1 206,207,208 0 -206684 cd01897 NOG 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,55,119,120,122,147,148,149 5 -206684 cd01897 NOG 2 Switch I region 0 0 1 1 37,38,39 0 -206684 cd01897 NOG 3 Switch II region 0 0 1 1 54,55,80,81 0 -206684 cd01897 NOG 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206684 cd01897 NOG 5 G2 box 0 0 1 1 33 0 -206684 cd01897 NOG 6 G3 box 0 0 1 1 52,53,54,55 0 -206684 cd01897 NOG 7 G4 box 0 0 1 1 119,120,121,122 0 -206684 cd01897 NOG 8 G5 box 0 0 1 1 147,148,149 0 -206685 cd01898 Obg 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,56,121,122,124,151,152,153 5 -206685 cd01898 Obg 2 Switch I region 0 0 1 1 37,38,39 0 -206685 cd01898 Obg 3 Switch II region 0 0 1 1 55,56,79,80 0 -206685 cd01898 Obg 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206685 cd01898 Obg 5 G2 box 0 0 1 1 33 0 -206685 cd01898 Obg 6 G3 box 0 0 1 1 53,54,55,56 0 -206685 cd01898 Obg 7 G4 box 0 0 1 1 121,122,123,124 0 -206685 cd01898 Obg 8 G5 box 0 0 1 1 151,152,153 0 -206686 cd01899 Ygr210 1 GTP/Mg2+ binding site 0 1 0 0 6,7,8,9,10,11,12,77,221,222,224,248,249,250 5 -206686 cd01899 Ygr210 2 Switch I region 0 0 1 1 35,36,37 0 -206686 cd01899 Ygr210 3 Switch II region 0 0 1 1 76,77,100,101 0 -206686 cd01899 Ygr210 4 G1 box 0 0 1 1 4,5,6,7,8,9,10,11 0 -206686 cd01899 Ygr210 5 G2 box 0 0 1 1 31 0 -206686 cd01899 Ygr210 6 G3 box 0 0 1 1 74,75,76,77 0 -206686 cd01899 Ygr210 7 G4 box 0 0 1 1 221,222,223,224 0 -206686 cd01899 Ygr210 8 G5 box 0 0 1 1 248,249,250 0 -206687 cd01900 YchF 1 GTP/Mg2+ binding site 0 1 0 0 6,7,8,9,10,11,12,70,202,203,205,233,234,235 5 -206687 cd01900 YchF 2 Switch I region 0 0 1 1 35,36,37 0 -206687 cd01900 YchF 3 Switch II region 0 0 1 1 69,70,93,94 0 -206687 cd01900 YchF 4 G1 box 0 0 1 1 4,5,6,7,8,9,10,11 0 -206687 cd01900 YchF 5 G2 box 0 0 1 1 31 0 -206687 cd01900 YchF 6 G3 box 0 0 1 1 67,68,69,70 0 -206687 cd01900 YchF 7 G4 box 0 0 1 1 202,203,204,205 0 -206687 cd01900 YchF 8 G5 box 0 0 1 1 233,234,235 0 -206681 cd01894 EngA1 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,53,112,113,115,138,139,140 5 -206681 cd01894 EngA1 2 Switch I region 0 0 1 1 35,36,37 0 -206681 cd01894 EngA1 3 Switch II region 0 0 1 1 52,53,77,78 0 -206681 cd01894 EngA1 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206681 cd01894 EngA1 5 G2 box 0 0 1 1 31 0 -206681 cd01894 EngA1 6 G3 box 0 0 1 1 50,51,52,53 0 -206681 cd01894 EngA1 7 G4 box 0 0 1 1 112,113,114,115 0 -206681 cd01894 EngA1 8 G5 box 0 0 1 1 138,139,140 0 -206682 cd01895 EngA2 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,58,120,121,123,155,156,157 5 -206682 cd01895 EngA2 2 Switch I region 0 0 1 1 40,41,42 0 -206682 cd01895 EngA2 3 Switch II region 0 0 1 1 57,58,85,86 0 -206682 cd01895 EngA2 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206682 cd01895 EngA2 5 G2 box 0 0 1 1 36 0 -206682 cd01895 EngA2 6 G3 box 0 0 1 1 55,56,57,58 0 -206682 cd01895 EngA2 7 G4 box 0 0 1 1 120,121,122,123 0 -206682 cd01895 EngA2 8 G5 box 0 0 1 1 155,156,157 0 -206726 cd04163 Era 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,59,118,119,121,149,150,151 5 -206726 cd04163 Era 2 Switch I region 0 0 1 1 41,42,43 0 -206726 cd04163 Era 3 Switch II region 0 0 1 1 58,59,83,84 0 -206726 cd04163 Era 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206726 cd04163 Era 5 G2 box 0 0 1 1 37 0 -206726 cd04163 Era 6 G3 box 0 0 1 1 56,57,58,59 0 -206726 cd04163 Era 7 G4 box 0 0 1 1 118,119,120,121 0 -206726 cd04163 Era 8 G5 box 0 0 1 1 149,150,151 0 -206727 cd04164 trmE 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,59,116,117,119,139,140,141 5 -206727 cd04164 trmE 2 Switch I region 0 0 1 1 41,42,43 0 -206727 cd04164 trmE 3 Switch II region 0 0 1 1 58,59,83,84 0 -206727 cd04164 trmE 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206727 cd04164 trmE 5 G2 box 0 0 1 1 37 0 -206727 cd04164 trmE 6 G3 box 0 0 1 1 56,57,58,59 0 -206727 cd04164 trmE 7 G4 box 0 0 1 1 116,117,118,119 0 -206727 cd04164 trmE 8 G5 box 0 0 1 1 139,140,141 0 -206647 cd00881 GTP_translation_factor 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,70,121,122,124,161,162,163 5 -206647 cd00881 GTP_translation_factor 2 Switch I region 0 0 1 1 52,53,54 0 -206647 cd00881 GTP_translation_factor 3 Switch II region 0 0 1 1 69,70,86,87 0 -206647 cd00881 GTP_translation_factor 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206647 cd00881 GTP_translation_factor 5 G2 box 0 0 1 1 48 0 -206647 cd00881 GTP_translation_factor 6 G3 box 0 0 1 1 67,68,69,70 0 -206647 cd00881 GTP_translation_factor 7 G4 box 0 0 1 1 121,122,123,124 0 -206647 cd00881 GTP_translation_factor 8 G5 box 0 0 1 1 161,162,163 0 -206669 cd01882 BMS1 1 GTP/Mg2+ binding site 0 1 0 0 47,48,49,50,51,52,53,91,140,141,143,176,177,178 5 -206669 cd01882 BMS1 2 Switch I region 0 0 1 1 72,73,74 0 -206669 cd01882 BMS1 3 Switch II region 0 0 1 1 90,91,104,105 0 -206669 cd01882 BMS1 4 G1 box 0 0 1 1 45,46,47,48,49,50,51,52 0 -206669 cd01882 BMS1 5 G2 box 0 0 1 1 66 0 -206669 cd01882 BMS1 6 G3 box 0 0 1 1 88,89,90,91 0 -206669 cd01882 BMS1 7 G4 box 0 0 1 1 140,141,142,143 0 -206669 cd01882 BMS1 8 G5 box 0 0 1 1 176,177,178 0 -206670 cd01883 EF1_alpha 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,85,144,145,147,185,186,187 5 -206670 cd01883 EF1_alpha 2 Switch I region 0 0 1 1 67,68,69 0 -206670 cd01883 EF1_alpha 3 Switch II region 0 0 1 1 84,85,101,102 0 -206670 cd01883 EF1_alpha 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206670 cd01883 EF1_alpha 5 G2 box 0 0 1 1 63 0 -206670 cd01883 EF1_alpha 6 G3 box 0 0 1 1 82,83,84,85 0 -206670 cd01883 EF1_alpha 7 G4 box 0 0 1 1 144,145,146,147 0 -206670 cd01883 EF1_alpha 8 G5 box 0 0 1 1 185,186,187 0 -206671 cd01884 EF_Tu 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,73,125,126,128,163,164,165 5 -206671 cd01884 EF_Tu 2 Switch I region 0 0 1 1 55,56,57 0 -206671 cd01884 EF_Tu 3 Switch II region 0 0 1 1 72,73,89,90 0 -206671 cd01884 EF_Tu 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206671 cd01884 EF_Tu 5 G2 box 0 0 1 1 51 0 -206671 cd01884 EF_Tu 6 G3 box 0 0 1 1 70,71,72,73 0 -206671 cd01884 EF_Tu 7 G4 box 0 0 1 1 125,126,127,128 0 -206671 cd01884 EF_Tu 8 G5 box 0 0 1 1 163,164,165 0 -206672 cd01885 EF2 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,80,131,132,134,188,189,190 5 -206672 cd01885 EF2 2 Switch I region 0 0 1 1 53,54,55 0 -206672 cd01885 EF2 3 Switch II region 0 0 1 1 79,80,96,97 0 -206672 cd01885 EF2 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206672 cd01885 EF2 5 G2 box 0 0 1 1 49 0 -206672 cd01885 EF2 6 G3 box 0 0 1 1 77,78,79,80 0 -206672 cd01885 EF2 7 G4 box 0 0 1 1 131,132,133,134 0 -206672 cd01885 EF2 8 G5 box 0 0 1 1 188,189,190 0 -206673 cd01886 EF-G 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,72,123,124,126,248,249,250 5 -206673 cd01886 EF-G 2 Switch I region 0 0 1 1 54,55,56 0 -206673 cd01886 EF-G 3 Switch II region 0 0 1 1 71,72,88,89 0 -206673 cd01886 EF-G 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206673 cd01886 EF-G 5 G2 box 0 0 1 1 50 0 -206673 cd01886 EF-G 6 G3 box 0 0 1 1 69,70,71,72 0 -206673 cd01886 EF-G 7 G4 box 0 0 1 1 123,124,125,126 0 -206673 cd01886 EF-G 8 G5 box 0 0 1 1 248,249,250 0 -206674 cd01887 IF2_eIF5B 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,108,109,111,147,148,149 5 -206674 cd01887 IF2_eIF5B 2 Switch I region 0 0 1 1 37,38,39 0 -206674 cd01887 IF2_eIF5B 3 Switch II region 0 0 1 1 56,57,73,74 0 -206674 cd01887 IF2_eIF5B 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206674 cd01887 IF2_eIF5B 5 G2 box 0 0 1 1 33 0 -206674 cd01887 IF2_eIF5B 6 G3 box 0 0 1 1 54,55,56,57 0 -206674 cd01887 IF2_eIF5B 7 G4 box 0 0 1 1 108,109,110,111 0 -206674 cd01887 IF2_eIF5B 8 G5 box 0 0 1 1 147,148,149 0 -206675 cd01888 eIF2_gamma 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,85,138,139,141,173,174,175 5 -206675 cd01888 eIF2_gamma 2 Switch I region 0 0 1 1 40,41,42 0 -206675 cd01888 eIF2_gamma 3 Switch II region 0 0 1 1 84,85,101,102 0 -206675 cd01888 eIF2_gamma 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206675 cd01888 eIF2_gamma 5 G2 box 0 0 1 1 36 0 -206675 cd01888 eIF2_gamma 6 G3 box 0 0 1 1 82,83,84,85 0 -206675 cd01888 eIF2_gamma 7 G4 box 0 0 1 1 138,139,140,141 0 -206675 cd01888 eIF2_gamma 8 G5 box 0 0 1 1 173,174,175 0 -206676 cd01889 SelB_euk 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,76,127,128,130,166,167,168 5 -206676 cd01889 SelB_euk 2 Switch I region 0 0 1 1 44,45,46 0 -206676 cd01889 SelB_euk 3 Switch II region 0 0 1 1 75,76,92,93 0 -206676 cd01889 SelB_euk 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206676 cd01889 SelB_euk 5 G2 box 0 0 1 1 40 0 -206676 cd01889 SelB_euk 6 G3 box 0 0 1 1 73,74,75,76 0 -206676 cd01889 SelB_euk 7 G4 box 0 0 1 1 127,128,129,130 0 -206676 cd01889 SelB_euk 8 G5 box 0 0 1 1 166,167,168 0 -206677 cd01890 LepA 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,75,126,127,129,157,158,159 5 -206677 cd01890 LepA 2 Switch I region 0 0 1 1 52,53,54 0 -206677 cd01890 LepA 3 Switch II region 0 0 1 1 74,75,91,92 0 -206677 cd01890 LepA 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206677 cd01890 LepA 5 G2 box 0 0 1 1 48 0 -206677 cd01890 LepA 6 G3 box 0 0 1 1 72,73,74,75 0 -206677 cd01890 LepA 7 G4 box 0 0 1 1 126,127,128,129 0 -206677 cd01890 LepA 8 G5 box 0 0 1 1 157,158,159 0 -206678 cd01891 TypA_BipA 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,73,124,125,127,162,163,164 5 -206678 cd01891 TypA_BipA 2 Switch I region 0 0 1 1 55,56,57 0 -206678 cd01891 TypA_BipA 3 Switch II region 0 0 1 1 72,73,89,90 0 -206678 cd01891 TypA_BipA 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206678 cd01891 TypA_BipA 5 G2 box 0 0 1 1 51 0 -206678 cd01891 TypA_BipA 6 G3 box 0 0 1 1 70,71,72,73 0 -206678 cd01891 TypA_BipA 7 G4 box 0 0 1 1 124,125,126,127 0 -206678 cd01891 TypA_BipA 8 G5 box 0 0 1 1 162,163,164 0 -206728 cd04165 GTPBP1_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,92,145,146,148,203,204,205 5 -206728 cd04165 GTPBP1_like 2 Switch I region 0 0 1 1 55,56,57 0 -206728 cd04165 GTPBP1_like 3 Switch II region 0 0 1 1 91,92,110,111 0 -206728 cd04165 GTPBP1_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206728 cd04165 GTPBP1_like 5 G2 box 0 0 1 1 46 0 -206728 cd04165 GTPBP1_like 6 G3 box 0 0 1 1 89,90,91,92 0 -206728 cd04165 GTPBP1_like 7 G4 box 0 0 1 1 145,146,147,148 0 -206728 cd04165 GTPBP1_like 8 G5 box 0 0 1 1 203,204,205 0 -206729 cd04166 CysN_ATPS 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,86,138,139,141,175,176,177 5 -206729 cd04166 CysN_ATPS 2 Switch I region 0 0 1 1 68,69,70 0 -206729 cd04166 CysN_ATPS 3 Switch II region 0 0 1 1 85,86,102,103 0 -206729 cd04166 CysN_ATPS 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206729 cd04166 CysN_ATPS 5 G2 box 0 0 1 1 64 0 -206729 cd04166 CysN_ATPS 6 G3 box 0 0 1 1 83,84,85,86 0 -206729 cd04166 CysN_ATPS 7 G4 box 0 0 1 1 138,139,140,141 0 -206729 cd04166 CysN_ATPS 8 G5 box 0 0 1 1 175,176,177 0 -206730 cd04167 Snu114p 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,79,130,131,133,183,184,185 5 -206730 cd04167 Snu114p 2 Switch I region 0 0 1 1 56,57,58 0 -206730 cd04167 Snu114p 3 Switch II region 0 0 1 1 78,79,95,96 0 -206730 cd04167 Snu114p 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206730 cd04167 Snu114p 5 G2 box 0 0 1 1 52 0 -206730 cd04167 Snu114p 6 G3 box 0 0 1 1 76,77,78,79 0 -206730 cd04167 Snu114p 7 G4 box 0 0 1 1 130,131,132,133 0 -206730 cd04167 Snu114p 8 G5 box 0 0 1 1 183,184,185 0 -206731 cd04168 TetM_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,72,123,124,126,215,216,217 5 -206731 cd04168 TetM_like 2 Switch I region 0 0 1 1 54,55,56 0 -206731 cd04168 TetM_like 3 Switch II region 0 0 1 1 71,72,88,89 0 -206731 cd04168 TetM_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206731 cd04168 TetM_like 5 G2 box 0 0 1 1 50 0 -206731 cd04168 TetM_like 6 G3 box 0 0 1 1 69,70,71,72 0 -206731 cd04168 TetM_like 7 G4 box 0 0 1 1 123,124,125,126 0 -206731 cd04168 TetM_like 8 G5 box 0 0 1 1 215,216,217 0 -206732 cd04169 RF3 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,79,130,131,133,246,247,248 5 -206732 cd04169 RF3 2 Switch I region 0 0 1 1 61,62,63 0 -206732 cd04169 RF3 3 Switch II region 0 0 1 1 78,79,95,96 0 -206732 cd04169 RF3 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206732 cd04169 RF3 5 G2 box 0 0 1 1 57 0 -206732 cd04169 RF3 6 G3 box 0 0 1 1 76,77,78,79 0 -206732 cd04169 RF3 7 G4 box 0 0 1 1 130,131,132,133 0 -206732 cd04169 RF3 8 G5 box 0 0 1 1 246,247,248 0 -206733 cd04170 EF-G_bact 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,72,123,124,126,246,247,248 5 -206733 cd04170 EF-G_bact 2 Switch I region 0 0 1 1 54,55,56 0 -206733 cd04170 EF-G_bact 3 Switch II region 0 0 1 1 71,72,88,89 0 -206733 cd04170 EF-G_bact 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206733 cd04170 EF-G_bact 5 G2 box 0 0 1 1 49 0 -206733 cd04170 EF-G_bact 6 G3 box 0 0 1 1 69,70,71,72 0 -206733 cd04170 EF-G_bact 7 G4 box 0 0 1 1 123,124,125,126 0 -206733 cd04170 EF-G_bact 8 G5 box 0 0 1 1 246,247,248 0 -206734 cd04171 SelB 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,58,110,111,113,145,146,147 5 -206734 cd04171 SelB 2 Switch I region 0 0 1 1 39,40,41 0 -206734 cd04171 SelB 3 Switch II region 0 0 1 1 57,58,74,75 0 -206734 cd04171 SelB 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206734 cd04171 SelB 5 G2 box 0 0 1 1 35 0 -206734 cd04171 SelB 6 G3 box 0 0 1 1 55,56,57,58 0 -206734 cd04171 SelB 7 G4 box 0 0 1 1 110,111,112,113 0 -206734 cd04171 SelB 8 G5 box 0 0 1 1 145,146,147 0 -206649 cd01850 CDC_Septin 1 GTP/Mg2+ binding site 0 1 0 0 12,13,14,15,16,17,18,70,149,150,152,205,206,207 5 -206649 cd01850 CDC_Septin 2 Switch I region 0 0 1 1 48,49,50 0 -206649 cd01850 CDC_Septin 3 Switch II region 0 0 1 1 69,70,114,115 0 -206649 cd01850 CDC_Septin 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206649 cd01850 CDC_Septin 5 G2 box 0 0 1 1 41 0 -206649 cd01850 CDC_Septin 6 G3 box 0 0 1 1 67,68,69,70 0 -206649 cd01850 CDC_Septin 7 G4 box 0 0 1 1 149,150,151,152 0 -206649 cd01850 CDC_Septin 8 G5 box 0 0 1 1 205,206,207 0 -206650 cd01851 GBP 1 GTP/Mg2+ binding site 0 1 0 0 15,16,17,18,19,20,21,70,143,144,146,187,188,189 5 -206650 cd01851 GBP 2 Switch I region 0 0 1 1 47,48,49 0 -206650 cd01851 GBP 3 Switch II region 0 0 1 1 69,70,94,95 0 -206650 cd01851 GBP 4 G1 box 0 0 1 1 13,14,15,16,17,18,19,20 0 -206650 cd01851 GBP 5 G2 box 0 0 1 1 43 0 -206650 cd01851 GBP 6 G3 box 0 0 1 1 67,68,69,70 0 -206650 cd01851 GBP 7 G4 box 0 0 1 1 143,144,145,146 0 -206650 cd01851 GBP 8 G5 box 0 0 1 1 187,188,189 0 -206651 cd01852 AIG1 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,57,123,124,126,159,160,161 5 -206651 cd01852 AIG1 2 Switch I region 0 0 1 1 39,40,41 0 -206651 cd01852 AIG1 3 Switch II region 0 0 1 1 56,57,84,85 0 -206651 cd01852 AIG1 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206651 cd01852 AIG1 5 G2 box 0 0 1 1 35 0 -206651 cd01852 AIG1 6 G3 box 0 0 1 1 54,55,56,57 0 -206651 cd01852 AIG1 7 G4 box 0 0 1 1 123,124,125,126 0 -206651 cd01852 AIG1 8 G5 box 0 0 1 1 159,160,161 0 -206652 cd01853 Toc34_like 1 GTP/Mg2+ binding site 0 1 0 0 39,40,41,42,43,44,45,87,155,156,158,204,205,206 5 -206652 cd01853 Toc34_like 2 Switch I region 0 0 1 1 69,70,71 0 -206652 cd01853 Toc34_like 3 Switch II region 0 0 1 1 86,87,114,115 0 -206652 cd01853 Toc34_like 4 G1 box 0 0 1 1 37,38,39,40,41,42,43,44 0 -206652 cd01853 Toc34_like 5 G2 box 0 0 1 1 63 0 -206652 cd01853 Toc34_like 6 G3 box 0 0 1 1 84,85,86,87 0 -206652 cd01853 Toc34_like 7 G4 box 0 0 1 1 155,156,157,158 0 -206652 cd01853 Toc34_like 8 G5 box 0 0 1 1 204,205,206 0 -206679 cd01892 Miro2 1 GTP/Mg2+ binding site 0 1 0 0 12,13,14,15,16,17,18,61,115,116,118,146,147,148 5 -206679 cd01892 Miro2 2 Switch I region 0 0 1 1 39,40,41 0 -206679 cd01892 Miro2 3 Switch II region 0 0 1 1 60,61,78,79 0 -206679 cd01892 Miro2 4 G1 box 0 0 1 1 10,11,12,13,14,15,16,17 0 -206679 cd01892 Miro2 5 G2 box 0 0 1 1 34 0 -206679 cd01892 Miro2 6 G3 box 0 0 1 1 58,59,60,61 0 -206679 cd01892 Miro2 7 G4 box 0 0 1 1 115,116,117,118 0 -206679 cd01892 Miro2 8 G5 box 0 0 1 1 146,147,148 0 -206680 cd01893 Miro1 1 GTP/Mg2+ binding site 0 1 0 0 10,11,12,13,14,15,16,57,112,113,115,146,147,148 5 -206680 cd01893 Miro1 2 Switch I region 0 0 1 1 42,43,44 0 -206680 cd01893 Miro1 3 Switch II region 0 0 1 1 56,57,73,74 0 -206680 cd01893 Miro1 4 G1 box 0 0 1 1 8,9,10,11,12,13,14,15 0 -206680 cd01893 Miro1 5 G2 box 0 0 1 1 38 0 -206680 cd01893 Miro1 6 G3 box 0 0 1 1 54,55,56,57 0 -206680 cd01893 Miro1 7 G4 box 0 0 1 1 112,113,114,115 0 -206680 cd01893 Miro1 8 G5 box 0 0 1 1 146,147,148 0 -133303 cd04103 Centaurin_gamma 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,55,106,107,109,139,140,141 5 -133303 cd04103 Centaurin_gamma 2 Switch I region 0 0 1 1 33,34,35 0 -133303 cd04103 Centaurin_gamma 3 Switch II region 0 0 1 1 54,55,66,67 0 -133303 cd04103 Centaurin_gamma 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -133303 cd04103 Centaurin_gamma 5 G2 box 0 0 1 1 30 0 -133303 cd04103 Centaurin_gamma 6 G3 box 0 0 1 1 52,53,54,55 0 -133303 cd04103 Centaurin_gamma 7 G4 box 0 0 1 1 106,107,108,109 0 -133303 cd04103 Centaurin_gamma 8 G5 box 0 0 1 1 139,140,141 0 -206690 cd04104 p47_IIGP_like 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,60,114,115,117,162,163,164 5 -206690 cd04104 p47_IIGP_like 2 Switch I region 0 0 1 1 43,44,45 0 -206690 cd04104 p47_IIGP_like 3 Switch II region 0 0 1 1 59,60,81,82 0 -206690 cd04104 p47_IIGP_like 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206690 cd04104 p47_IIGP_like 5 G2 box 0 0 1 1 39 0 -206690 cd04104 p47_IIGP_like 6 G3 box 0 0 1 1 57,58,59,60 0 -206690 cd04104 p47_IIGP_like 7 G4 box 0 0 1 1 114,115,116,117 0 -206690 cd04104 p47_IIGP_like 8 G5 box 0 0 1 1 162,163,164 0 -206691 cd04105 SR_beta 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,55,115,116,118,183,184,185 5 -206691 cd04105 SR_beta 2 Switch I region 0 0 1 1 34,35,36 0 -206691 cd04105 SR_beta 3 Switch II region 0 0 1 1 54,55,72,73 0 -206691 cd04105 SR_beta 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206691 cd04105 SR_beta 5 G2 box 0 0 1 1 30 0 -206691 cd04105 SR_beta 6 G3 box 0 0 1 1 52,53,54,55 0 -206691 cd04105 SR_beta 7 G4 box 0 0 1 1 115,116,117,118 0 -206691 cd04105 SR_beta 8 G5 box 0 0 1 1 183,184,185 0 -206738 cd08771 DLP_1 1 GTP/Mg2+ binding site 0 1 0 0 11,12,13,14,15,16,17,118,184,185,187,217,218,219 5 -206738 cd08771 DLP_1 2 Switch I region 0 0 1 1 40,41,42 0 -206738 cd08771 DLP_1 3 Switch II region 0 0 1 1 117,118,148,149 0 -206738 cd08771 DLP_1 4 G1 box 0 0 1 1 9,10,11,12,13,14,15,16 0 -206738 cd08771 DLP_1 5 G2 box 0 0 1 1 36 0 -206738 cd08771 DLP_1 6 G3 box 0 0 1 1 115,116,117,118 0 -206738 cd08771 DLP_1 7 G4 box 0 0 1 1 184,185,186,187 0 -206738 cd08771 DLP_1 8 G5 box 0 0 1 1 217,218,219 0 -206739 cd09912 DLP_2 1 GTP/Mg2+ binding site 0 1 0 0 8,9,10,11,12,13,14,54,110,111,113,147,148,149 5 -206739 cd09912 DLP_2 2 Switch I region 0 0 1 1 37,38,39 0 -206739 cd09912 DLP_2 3 Switch II region 0 0 1 1 53,54,74,75 0 -206739 cd09912 DLP_2 4 G1 box 0 0 1 1 6,7,8,9,10,11,12,13 0 -206739 cd09912 DLP_2 5 G2 box 0 0 1 1 33 0 -206739 cd09912 DLP_2 6 G3 box 0 0 1 1 51,52,53,54 0 -206739 cd09912 DLP_2 7 G4 box 0 0 1 1 110,111,112,113 0 -206739 cd09912 DLP_2 8 G5 box 0 0 1 1 147,148,149 0 -206740 cd09913 EHD 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,96,159,160,162,196,197,198 5 -206740 cd09913 EHD 2 Switch I region 0 0 1 1 38,39,40 0 -206740 cd09913 EHD 3 Switch II region 0 0 1 1 95,96,123,124 0 -206740 cd09913 EHD 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206740 cd09913 EHD 5 G2 box 0 0 1 1 34 0 -206740 cd09913 EHD 6 G3 box 0 0 1 1 93,94,95,96 0 -206740 cd09913 EHD 7 G4 box 0 0 1 1 159,160,161,162 0 -206740 cd09913 EHD 8 G5 box 0 0 1 1 196,197,198 0 -206741 cd09914 RocCOR 1 GTP/Mg2+ binding site 0 1 0 0 9,10,11,12,13,14,15,59,113,114,116,143,144,145 5 -206741 cd09914 RocCOR 2 Switch I region 0 0 1 1 36,37,38 0 -206741 cd09914 RocCOR 3 Switch II region 0 0 1 1 58,59,75,76 0 -206741 cd09914 RocCOR 4 G1 box 0 0 1 1 7,8,9,10,11,12,13,14 0 -206741 cd09914 RocCOR 5 G2 box 0 0 1 1 32 0 -206741 cd09914 RocCOR 6 G3 box 0 0 1 1 56,57,58,59 0 -206741 cd09914 RocCOR 7 G4 box 0 0 1 1 113,114,115,116 0 -206741 cd09914 RocCOR 8 G5 box 0 0 1 1 143,144,145 0 -206742 cd09915 Rag 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,56,115,116,118,156,157,158 5 -206742 cd09915 Rag 2 Switch I region 0 0 1 1 37,38,39 0 -206742 cd09915 Rag 3 Switch II region 0 0 1 1 55,56,75,76 0 -206742 cd09915 Rag 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206742 cd09915 Rag 5 G2 box 0 0 1 1 33 0 -206742 cd09915 Rag 6 G3 box 0 0 1 1 53,54,55,56 0 -206742 cd09915 Rag 7 G4 box 0 0 1 1 115,116,117,118 0 -206742 cd09915 Rag 8 G5 box 0 0 1 1 156,157,158 0 -206744 cd11384 RagA_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,56,118,119,121,154,155,156 5 -206744 cd11384 RagA_like 2 Switch I region 0 0 1 1 37,38,39 0 -206744 cd11384 RagA_like 3 Switch II region 0 0 1 1 55,56,77,78 0 -206744 cd11384 RagA_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206744 cd11384 RagA_like 5 G2 box 0 0 1 1 33 0 -206744 cd11384 RagA_like 6 G3 box 0 0 1 1 53,54,55,56 0 -206744 cd11384 RagA_like 7 G4 box 0 0 1 1 118,119,120,121 0 -206744 cd11384 RagA_like 8 G5 box 0 0 1 1 154,155,156 0 -206745 cd11385 RagC_like 1 GTP/Mg2+ binding site 0 1 0 0 7,8,9,10,11,12,13,56,115,116,118,156,157,158 5 -206745 cd11385 RagC_like 2 Switch I region 0 0 1 1 37,38,39 0 -206745 cd11385 RagC_like 3 Switch II region 0 0 1 1 55,56,75,76 0 -206745 cd11385 RagC_like 4 G1 box 0 0 1 1 5,6,7,8,9,10,11,12 0 -206745 cd11385 RagC_like 5 G2 box 0 0 1 1 33 0 -206745 cd11385 RagC_like 6 G3 box 0 0 1 1 53,54,55,56 0 -206745 cd11385 RagC_like 7 G4 box 0 0 1 1 115,116,117,118 0 -206745 cd11385 RagC_like 8 G5 box 0 0 1 1 156,157,158 0 -206743 cd11383 YfjP 1 GTP/Mg2+ binding site 0 1 0 0 5,6,7,8,9,10,11,53,112,113,115,121,122,123 5 -206743 cd11383 YfjP 2 Switch I region 0 0 1 1 35,36,37 0 -206743 cd11383 YfjP 3 Switch II region 0 0 1 1 52,53,76,77 0 -206743 cd11383 YfjP 4 G1 box 0 0 1 1 3,4,5,6,7,8,9,10 0 -206743 cd11383 YfjP 5 G2 box 0 0 1 1 31 0 -206743 cd11383 YfjP 6 G3 box 0 0 1 1 50,51,52,53 0 -206743 cd11383 YfjP 7 G4 box 0 0 1 1 112,113,114,115 0 -206743 cd11383 YfjP 8 G5 box 0 0 1 1 121,122,123 0 -238454 cd00912 ML 1 putative lipid binding cavity 0 0 1 1 0,10,13,15,25,31,33,35,48,50,52,68,81,89,106,108,110,112,119,122,124,126 5 -238161 cd00258 GM2-AP 1 putative lipid binding cavity 0 0 1 1 4,16,19,21,26,32,34,36,50,52,54,79,108,115,136,138,140,142,149,152,154,156 5 -238457 cd00915 MD-1_MD-2 1 putative lipid binding cavity 0 0 1 1 0,8,10,12,30,36,38,40,53,55,57,71,84,92,109,111,113,115,122,125,127,129 5 -238458 cd00916 Npc2_like 1 putative lipid binding cavity 0 0 1 1 0,10,13,15,25,31,33,35,48,50,52,68,78,86,102,104,106,108,115,118,120,122 5 -238459 cd00917 PG-PI_TP 1 putative lipid binding cavity 0 0 1 1 0,13,16,18,23,29,31,33,47,49,51,65,78,85,100,102,104,106,114,117,119,121 5 -238460 cd00918 Der-p2_like 1 putative lipid binding cavity 0 0 1 1 0,8,11,13,23,29,31,33,46,48,50,66,74,82,98,100,102,104,110,113,115,117 5 -238461 cd00919 Heme_Cu_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 227,276,277,362 1 -238461 cd00919 Heme_Cu_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 22,26,42,49,53,54,58,113,357,364,367,368,424,425,454 5 -238461 cd00919 Heme_Cu_Oxidase_I 3 D-pathway 0 1 1 1 7,68,78,85,88,143,144,150,154 0 -238461 cd00919 Heme_Cu_Oxidase_I 4 K-pathway 0 1 1 1 227,231,242,276,277,302,305 0 -238461 cd00919 Heme_Cu_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 277,354,355,424,425 0 -238461 cd00919 Heme_Cu_Oxidase_I 6 Putative water exit pathway 0 1 1 0 214,219,220,350,354,355,424 0 -238830 cd01660 ba3-like_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 212,261,262,363 1 -238830 cd01660 ba3-like_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 23,27,43,50,54,55,59,112,358,365,368,369,426,427,463 5 -238830 cd01660 ba3-like_Oxidase_I 3 D-pathway 0 1 1 1 8,69,78,85,88,134,135,141,145 0 -238830 cd01660 ba3-like_Oxidase_I 4 K-pathway 0 1 1 1 212,216,227,261,262,288,291 0 -238830 cd01660 ba3-like_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 262,355,356,426,427 0 -238830 cd01660 ba3-like_Oxidase_I 6 Putative water exit pathway 0 1 1 0 199,204,205,351,355,356,426 0 -238831 cd01661 cbb3_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 241,291,292,379 1 -238831 cd01661 cbb3_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 22,26,41,48,52,53,57,108,374,381,384,385,443,444,472 5 -238831 cd01661 cbb3_Oxidase_I 3 D-pathway 0 1 1 1 7,67,70,78,81,140,141,147,151 0 -238831 cd01661 cbb3_Oxidase_I 4 K-pathway 0 1 1 1 241,245,256,291,292,317,320 0 -238831 cd01661 cbb3_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 292,371,372,443,444 0 -238831 cd01661 cbb3_Oxidase_I 6 Putative water exit pathway 0 1 1 0 228,233,234,367,371,372,443 0 -238832 cd01662 Ubiquinol_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 233,282,283,368 1 -238832 cd01662 Ubiquinol_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 28,32,48,55,59,60,64,119,363,370,373,374,430,431,462 5 -238832 cd01662 Ubiquinol_Oxidase_I 3 D-pathway 0 1 1 1 13,74,84,91,94,149,150,156,160 0 -238832 cd01662 Ubiquinol_Oxidase_I 4 K-pathway 0 1 1 1 233,237,248,282,283,308,311 0 -238832 cd01662 Ubiquinol_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 283,360,361,430,431 0 -238832 cd01662 Ubiquinol_Oxidase_I 6 Putative water exit pathway 0 1 1 0 220,225,226,356,360,361,430 0 -238833 cd01663 Cyt_c_Oxidase_I 1 Binuclear center (active site) 0 1 1 1 230,280,281,366 1 -238833 cd01663 Cyt_c_Oxidase_I 2 Low-spin heme binding site 0 1 1 1 24,28,44,51,55,56,60,116,361,368,371,372,428,429,458 5 -238833 cd01663 Cyt_c_Oxidase_I 3 D-pathway 0 1 1 1 9,70,81,88,91,146,147,153,157 0 -238833 cd01663 Cyt_c_Oxidase_I 4 K-pathway 0 1 1 1 230,234,245,280,281,306,309 0 -238833 cd01663 Cyt_c_Oxidase_I 5 Putative proton exit pathway 0 1 1 1 281,358,359,428,429 0 -238833 cd01663 Cyt_c_Oxidase_I 6 Putative water exit pathway 0 1 1 0 217,222,223,354,358,359,428 0 -238462 cd00922 Cyt_c_Oxidase_IV 1 Subunit IV/I interface 0 1 1 0 15,16,17,72,79,83,87,91,100,102,105,106 2 -238462 cd00922 Cyt_c_Oxidase_IV 2 Subunit IV/II interface 0 1 1 0 16,117,118,121,125,127,128,129 2 -238462 cd00922 Cyt_c_Oxidase_IV 3 Subunit IV/Va interface 0 1 1 0 14,16,18,19,20,21,39,41,43,51,55,56,58,59,61,62,63,64,67 2 -238462 cd00922 Cyt_c_Oxidase_IV 4 Subunit IV/Vb interface 0 1 1 0 8 2 -238462 cd00922 Cyt_c_Oxidase_IV 5 Subunit IV/VIc interface 0 1 1 0 122,127 2 -238462 cd00922 Cyt_c_Oxidase_IV 6 Subunit IV/VIIb interface 0 1 1 0 74,75,81,82,84,85,86,88,89,106,109,112,113,116,120,129,133 2 -238462 cd00922 Cyt_c_Oxidase_IV 7 Subunit IV/VIIIb interface 0 1 1 0 4,86,97 2 -238462 cd00922 Cyt_c_Oxidase_IV 8 putative ATP/ADP binding site 0 0 1 0 16,68,70,72,73 5 -238463 cd00923 Cyt_c_Oxidase_Va 1 Subunit Va/II interface 0 1 1 0 34,36,70 2 -238463 cd00923 Cyt_c_Oxidase_Va 2 Subunit Va/IV interface 0 1 1 0 26,30,52,55,56,57,58,59,62,65,66,69,93,95,102 2 -238463 cd00923 Cyt_c_Oxidase_Va 3 Subunit Va/Vb interface 0 1 1 0 23,27 2 -238463 cd00923 Cyt_c_Oxidase_Va 4 Subunit Va/VIc interface 0 1 1 0 4,7,8,36,37,38,39,40,74,77,80,83 2 -238464 cd00924 Cyt_c_Oxidase_Vb 1 Zinc binding site 0 1 1 1 59,61,81,84 4 -238464 cd00924 Cyt_c_Oxidase_Vb 2 Subunit Vb/I interface 0 1 0 0 32,35,46,50,51,55,56,57,58,60,66,67,70,72,88 2 -238464 cd00924 Cyt_c_Oxidase_Vb 3 Subunit Vb/III interface 0 1 0 0 0,3,4,5,6,8,11,13,16,30,31,93 2 -238464 cd00924 Cyt_c_Oxidase_Vb 4 Subunit Vb/IV interface 0 1 0 0 74 2 -238464 cd00924 Cyt_c_Oxidase_Vb 5 Subunit Vb/Va interface 0 1 0 0 80,81 2 -238464 cd00924 Cyt_c_Oxidase_Vb 6 Subunit Vb/VIa interface 0 1 0 0 0 2 -238464 cd00924 Cyt_c_Oxidase_Vb 7 Subunit Vb/VIIa interface 0 1 0 0 11,13 2 -238464 cd00924 Cyt_c_Oxidase_Vb 8 Subunit Vb/Va (of dimer complex) interface 0 1 0 0 0 2 -238464 cd00924 Cyt_c_Oxidase_Vb 9 Subunit Vb/VIa (of dimer complex) interface 0 1 0 0 66 2 -238465 cd00925 Cyt_c_Oxidase_VIa 1 Subunit VIa/I interface 0 1 0 0 54,58,59,60,62 2 -238465 cd00925 Cyt_c_Oxidase_VIa 2 Subunit VIa/III interface 0 1 0 0 12,16,19,31,33,34,40,41,54,56,57,58,60,63,73,74,78 2 -238465 cd00925 Cyt_c_Oxidase_VIa 3 Subunit VIa/Vb interface 0 1 0 0 16 2 -238465 cd00925 Cyt_c_Oxidase_VIa 4 Subunit VIa/VIb interface 0 1 0 0 50,51,52,53 2 -238465 cd00925 Cyt_c_Oxidase_VIa 5 Subunit VIa/I (of dimer complex) interface 0 1 0 0 2,3,4,6,13,14,17,21 2 -238466 cd00926 Cyt_c_Oxidase_VIb 1 Subunit VIb/I interface 0 1 1 0 16 2 -238466 cd00926 Cyt_c_Oxidase_VIb 2 Subunit VIb/II interface 0 1 1 0 4,5,6,7,16,17,18,19,48,51,52,53,54,55,56,57 2 -238466 cd00926 Cyt_c_Oxidase_VIb 3 Subunit VIb/III interface 0 1 1 0 20,23,72 2 -238466 cd00926 Cyt_c_Oxidase_VIb 4 Subunit VIb/VIa interface 0 1 1 0 65,68,69,70 2 -238466 cd00926 Cyt_c_Oxidase_VIb 5 Subunit VIb/VIb interface 0 1 1 1 36,38,39,40,41,42,43 2 -238467 cd00927 Cyt_c_Oxidase_VIc 1 Subunit VIc/I interface 0 1 1 0 10 2 -238467 cd00927 Cyt_c_Oxidase_VIc 2 Subunit VIc/II interface 0 1 1 0 1,3,4,6,7,9,10,13,17,21,25,32,40,43,44,48,51,53,56,57,59,63,65,66,67,68,69 2 -238467 cd00927 Cyt_c_Oxidase_VIc 3 Subunit VIc/IV interface 0 1 1 0 43,44,48,56,59 2 -238467 cd00927 Cyt_c_Oxidase_VIc 4 Subunit VIc/Va interface 0 1 1 0 1,3,4,6,7 2 -238467 cd00927 Cyt_c_Oxidase_VIc 5 Subunit VIc/VIIb interface 0 1 1 0 63 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 1 Subunit VIIa/I interface 0 1 1 0 49,53 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 2 Subunit VIIa/III interface 0 1 1 0 4,7,8,11,12,19,20,27,30,34 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 3 Subunit VIIa/Vb interface 0 1 1 0 2,4,8,12 2 -238468 cd00928 Cyt_c_Oxidase_VIIa 4 Subunit VIIa/VIIc interface 0 1 1 0 53 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 1 Subunit VIIc/I interface 0 1 1 0 2,3,4,6,8,9,11,14,15,17,27,30,31,32,35,36,38,41,42,45 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 2 Subunit VIIc/VIIa interface 0 1 1 0 41,45 2 -238469 cd00929 Cyt_c_Oxidase_VIIc 3 Subunit VIIc/VIIIb interface 0 1 1 0 17,32,36,40 2 -238470 cd00930 Cyt_c_Oxidase_VIII 1 Subunit VIIIb/I interface 0 1 1 0 0,1,2,3,5,6,7,9,14,21,22,25,40 2 -238470 cd00930 Cyt_c_Oxidase_VIII 2 Subunit VIIIb/IV interface 0 1 1 0 3,22 2 -238470 cd00930 Cyt_c_Oxidase_VIII 3 Subunit VIIIb/VIIc interface 0 1 1 0 7,8,9,13,24,25,29,31,32,39 2 -188634 cd00945 Aldolase_Class_I 1 catalytic residue 0 1 1 1 146 1 -188629 cd00344 FBP_aldolase_I 1 catalytic residue 0 1 1 1 217 1 -188635 cd00948 FBP_aldolase_I_a 1 catalytic residue 0 1 1 1 216 1 -188636 cd00949 FBP_aldolase_I_bact 1 catalytic residue 0 1 1 1 210 1 -188630 cd00408 DHDPS-like 1 catalytic residue 0 1 1 1 156 1 -188637 cd00950 DHDPS 1 catalytic residue 0 1 1 1 159 1 -188638 cd00951 KDGDH 1 catalytic residue 0 1 1 1 156 1 -188639 cd00952 CHBPH_aldolase 1 catalytic residue 0 1 1 1 168 1 -188640 cd00953 KDG_aldolase 1 catalytic residue 0 1 1 1 155 1 -188641 cd00954 NAL 1 catalytic residue 0 1 1 1 161 1 -188631 cd00439 Transaldolase 1 catalytic residue 0 1 1 1 164 1 -188642 cd00955 Transaldolase_like 1 catalytic residue 0 1 1 1 187 1 -188643 cd00956 Transaldolase_FSA 1 catalytic residue 0 1 1 1 126 1 -188644 cd00957 Transaldolase_TalAB 1 catalytic residue 0 1 1 1 173 1 -188632 cd00452 KDPG_aldolase 1 catalytic residue 0 1 1 1 121 1 -188633 cd00502 DHQase_I 1 catalytic residue 0 1 1 1 147 1 188645 cd00958 DhnA 1 catalytic residue 0 1 1 1 160 1 -188646 cd00959 DeoC 1 catalytic residue 0 1 1 1 148 1 -238478 cd00974 DSRD 1 non-heme iron binding site 0 1 1 1 6,9,25,26 4 -238478 cd00974 DSRD 2 dimer interface 0 1 1 0 11,12,13,14,16,17,19,21,22,23,24 2 -238485 cd00985 Maf_Ham1 1 putative active site 0 1 1 0 4,9,30,48,65 1 -238285 cd00515 HAM1 1 putative active site 0 1 1 0 4,9,35,47,63 1 -238310 cd00555 Maf 1 putative active site 0 1 1 0 4,9,29,48,66 1 -238508 cd01037 Restriction_endonuclease_like 1 putative active site 0 1 1 1 2,31,42,44 1 -238136 cd00221 Vsr 1 putative active site 0 1 1 1 20,46,57,59 1 -238289 cd00523 archeal_HJR 1 putative active site 0 1 1 1 8,37,50,52 1 -238326 cd00583 MutH_Sau3AI 1 putative active site 0 1 1 1 35,53,60,62 1 -238509 cd01038 Endonuclease_DUF559 1 putative active site 0 1 1 1 16,45,56,58 1 -238511 cd01060 Membrane-FADS-like 1 putative di-iron ligands 0 0 1 1 19,23,55,58,59,114,117,118 4 -239582 cd03505 Delta9-FADS-like 1 putative di-iron ligands 0 0 1 1 23,28,60,63,64,138,141,142 4 -239583 cd03506 Delta6-FADS-like 1 putative di-iron ligands 0 0 1 1 18,22,54,57,58,173,176,177 4 -239584 cd03507 Delta12-FADS-like 1 putative di-iron ligands 0 0 1 1 51,55,87,90,91,207,210,211 4 -239585 cd03508 Delta4-sphingolipid-FADS-like 1 putative di-iron ligands 0 0 1 1 63,67,100,103,104,232,235,236 4 -239586 cd03509 DesA_FADS-like 1 putative di-iron ligands 0 0 1 1 45,49,80,83,84,231,234,235 4 -239587 cd03510 Rhizobitoxine-FADS-like 1 putative di-iron ligands 0 0 1 1 39,43,76,79,80,153,156,157 4 -239588 cd03511 Rhizopine-oxygenase-like 1 putative di-iron ligands 0 0 1 1 62,66,98,101,102,247,250,251 4 -239589 cd03512 Alkane-hydroxylase 1 putative di-iron ligands 0 0 1 1 91,95,121,125,126,265,268,269 4 -239590 cd03513 CrtW_beta-carotene-ketolase 1 putative di-iron ligands 0 0 1 1 50,54,88,91,92,206,209,210 4 -239591 cd03514 CrtR_beta-carotene-hydroxylase 1 putative di-iron ligands 0 0 1 1 42,46,78,81,82,176,179,180 4 -238514 cd01066 APP_MetAP 1 active site 0 1 0 0 61,78,89,153,182,196 1 -238518 cd01085 APP 1 active site 0 1 0 0 67,87,98,165,194,208 1 -238519 cd01086 MetAP1 1 active site 0 1 0 0 67,84,95,158,191,222 1 -238520 cd01087 Prolidase 1 active site 0 1 0 0 61,78,89,172,203,227 1 -238521 cd01088 MetAP2 1 active site 0 1 0 0 59,79,90,150,183,275 1 -238522 cd01089 PA2G4-like 1 active site 0 1 0 0 70,91,102,180,195,212 1 -238523 cd01090 Creatinase 1 active site 0 1 0 0 68,85,96,160,194,212 1 -238524 cd01091 CDC68-like 1 active site 0 1 0 0 69,89,107,172,202,226 1 -238525 cd01092 APP-like 1 active site 0 1 0 0 62,79,90,154,183,197 1 -271267 cd01067 Globin_like 1 cofactor binding site 0 1 1 1 19,35,38,39,42,66,69,70,80,83 5 -271266 cd01040 Mb_like 1 cofactor binding site 0 1 1 1 22,51,54,55,58,79,82,83,93,96 5 -271272 cd08920 Ngb 1 cofactor binding site 0 1 1 1 30,63,66,67,70,91,94,95,105,108 5 -271273 cd08922 FHb-globin 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271309 cd14776 HmpEc-globin_like 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271310 cd14777 Yhb1-globin_like 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271311 cd14778 VtHb-like_SDgb 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271312 cd14779 FHP_Ae-globin_like 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271313 cd14780 HmpPa-globin_like 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271314 cd14781 FHb-globin_1 1 cofactor binding site 0 1 1 1 30,50,53,54,57,78,81,82,92,95 5 -271315 cd14782 FHb-globin_2 1 cofactor binding site 0 1 1 1 30,52,55,56,59,82,85,86,96,99 5 -271316 cd14783 FHb-globin_3 1 cofactor binding site 0 1 1 1 30,51,54,55,58,79,82,83,93,96 5 -271274 cd08923 class1-2_nsHbs_Lbs 1 cofactor binding site 0 1 1 1 30,60,63,64,67,91,94,95,105,108 5 -271317 cd14784 class1_nsHb_like 1 cofactor binding site 0 1 1 1 30,60,63,64,67,91,94,95,105,108 5 -271275 cd08924 Cygb 1 cofactor binding site 0 1 1 1 30,62,65,66,69,90,93,94,105,108 5 -271277 cd08926 Mb 1 cofactor binding site 0 1 1 1 27,58,61,62,65,83,86,87,98,101 5 -271286 cd12131 HGbI_like 1 cofactor binding site 0 1 1 1 26,45,48,49,52,73,76,77,87,90 5 -271287 cd12137 GbX 1 cofactor binding site 0 1 1 1 30,61,64,65,68,89,92,93,103,106 5 -271298 cd14765 Hb 1 cofactor binding site 0 1 1 1 25,51,54,55,58,76,79,80,91,94 5 -271276 cd08925 Hb-beta_like 1 cofactor binding site 0 1 1 1 25,57,60,61,64,82,85,86,97,100 5 -271278 cd08927 Hb-alpha_like 1 cofactor binding site 0 1 1 1 30,56,59,60,63,81,84,85,96,99 5 -271299 cd14766 CeGLB25_like 1 cofactor binding site 0 1 1 1 22,54,57,58,61,82,85,86,97,100 5 -271268 cd01068 globin_sensor 1 cofactor binding site 0 1 1 1 39,58,61,62,65,85,88,89,99,102 5 -271279 cd12124 Pgbs 1 cofactor binding site 0 1 1 1 59,84,87,88,91,111,114,115,137,140 5 -271290 cd14757 GS_EcDosC-like_GGDEF 1 cofactor binding site 0 1 1 1 40,59,62,63,66,89,92,93,103,106 5 -271291 cd14758 GS_GGDEF_1 1 cofactor binding site 0 1 1 1 40,59,62,63,66,86,89,90,100,103 5 -271292 cd14759 GS_GGDEF_2 1 cofactor binding site 0 1 1 1 39,60,63,64,67,88,91,92,102,105 5 -271293 cd14760 GS_PAS-GGDEF-EAL 1 cofactor binding site 0 1 1 1 39,58,61,62,65,85,88,89,99,102 5 -271294 cd14761 GS_GsGCS_like 1 cofactor binding site 0 1 1 1 41,60,63,64,67,87,90,91,101,104 5 -271295 cd14762 GS_STAS 1 cofactor binding site 0 1 1 1 39,57,60,61,64,84,87,88,98,101 5 -271296 cd14763 SSDgbs_1 1 cofactor binding site 0 1 1 1 39,57,60,61,64,84,87,88,98,101 5 -271297 cd14764 SSDgbs_2 1 cofactor binding site 0 1 1 1 39,57,60,61,64,84,87,88,98,101 5 -271271 cd08919 PBP_like 1 cofactor binding site 0 1 1 1 54,75,78,79,82,106,109,110,120,123 5 -271280 cd12125 APC_alpha 1 cofactor binding site 0 1 1 1 56,79,82,83,86,110,113,114,124,127 5 -271281 cd12126 APC_beta 1 cofactor binding site 0 1 1 1 58,81,84,85,88,112,115,116,126,129 5 -271282 cd12127 PE-PC-PEC_beta 1 cofactor binding site 0 1 1 1 58,81,84,85,88,112,115,116,126,129 5 -271300 cd14767 PE_beta_like 1 cofactor binding site 0 1 1 1 58,81,84,85,88,112,115,116,126,129 5 -271301 cd14768 PC_PEC_beta 1 cofactor binding site 0 1 1 1 58,81,84,85,88,112,115,116,126,129 5 -271283 cd12128 PBP_PBS-LCM 1 cofactor binding site 0 1 1 1 59,90,93,94,97,120,123,124,133,136 5 -271284 cd12129 PE-PC-PEC_alpha 1 cofactor binding site 0 1 1 1 57,82,85,86,89,113,116,117,127,130 5 -271302 cd14769 PE_alpha 1 cofactor binding site 0 1 1 1 58,81,84,85,88,112,115,116,126,129 5 -271303 cd14770 PC-PEC_alpha 1 cofactor binding site 0 1 1 1 58,83,86,87,90,114,117,118,128,131 5 -271285 cd12130 Apl 1 cofactor binding site 0 1 1 1 51,74,77,78,81,105,108,109,119,122 5 -271288 cd14755 GS_BA2291-HK_like 1 cofactor binding site 0 1 1 1 23,35,38,39,42,66,69,70,80,83 5 -271289 cd14756 TrHb 1 cofactor binding site 0 1 1 1 19,37,40,41,44,60,63,64,74,77 5 -271265 cd00454 TrHb1_N 1 cofactor binding site 0 1 1 1 19,37,40,41,44,60,63,64,74,77 5 -271269 cd08916 TrHb3_P 1 cofactor binding site 0 1 1 1 19,40,43,44,47,62,65,66,77,80 5 -271270 cd08917 TrHb2_O 1 cofactor binding site 0 1 1 1 19,38,41,42,45,65,68,69,79,82 5 -271304 cd14771 TrHb2_Mt-trHbO-like_O 1 cofactor binding site 0 1 1 1 21,39,42,43,46,66,69,70,80,83 5 -271305 cd14772 TrHb2_Bs-trHb-like_O 1 cofactor binding site 0 1 1 1 20,37,40,41,44,64,67,68,78,81 5 -271306 cd14773 TrHb2_PhHbO-like_O 1 cofactor binding site 0 1 1 1 20,40,43,44,47,67,70,71,81,84 5 -271307 cd14774 TrHb2_O_1 1 cofactor binding site 0 1 1 1 20,39,42,43,46,66,69,70,80,83 5 -271308 cd14775 TrHb2_O_2 1 cofactor binding site 0 1 1 1 20,37,40,41,44,65,68,69,79,82 5 -185695 cd01081 Aldose_epim 1 active site 0 1 1 0 50,75,146,148,201,239,252 1 -185695 cd01081 Aldose_epim 2 catalytic residues 0 1 1 0 146,252 1 -185696 cd09019 galactose_mutarotase_like 1 active site 0 1 1 0 62,87,158,160,229,268,293 1 -185696 cd09019 galactose_mutarotase_like 2 catalytic residues 0 1 1 0 158,293 1 -185697 cd09020 D-hex-6-P-epi_like 1 active site 0 1 1 0 58,68,142,144,186,220,245 1 -185697 cd09020 D-hex-6-P-epi_like 2 catalytic residues 0 1 1 0 142,245 1 -185698 cd09021 Aldose_epim_Ec_YphB 1 active site 0 1 1 0 48,75,142,144,193,227,239 1 -185698 cd09021 Aldose_epim_Ec_YphB 2 catalytic residues 0 1 1 0 142,239 1 -185699 cd09022 Aldose_epim_Ec_YihR 1 active site 0 1 1 0 45,72,140,142,196,236,253 1 -185699 cd09022 Aldose_epim_Ec_YihR 2 catalytic residues 0 1 1 0 140,253 1 -185700 cd09023 Aldose_epim_Ec_c4013 1 active site 0 1 1 0 56,73,148,150,193,241,251 1 -185700 cd09023 Aldose_epim_Ec_c4013 2 catalytic residues 0 1 1 0 148,251 1 -185701 cd09024 Aldose_epim_lacX 1 active site 0 1 1 0 52,70,140,142,202,237,249 1 -185701 cd09024 Aldose_epim_lacX 2 catalytic residues 0 1 1 0 140,249 1 -185702 cd09025 Aldose_epim_Slr1438 1 active site 0 1 1 0 62,80,151,153,194,228,239 1 -185702 cd09025 Aldose_epim_Slr1438 2 catalytic residues 0 1 1 0 151,239 1 -185703 cd09269 deoxyribose_mutarotase 1 active site 0 1 1 0 49,64,140,142,200,247,265 1 -185703 cd09269 deoxyribose_mutarotase 2 catalytic residues 0 1 1 0 140,265 1 -238517 cd01083 GAG_Lyase 1 substrate binding site 0 1 1 0 67,70,74,114,116,117,121,124,128,172,178,222,231,234,237,241,285,286,289,397,398 5 -238517 cd01083 GAG_Lyase 2 catalytic residues 0 0 1 1 172,222,231 1 -238534 cd01102 Link_Domain 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239592 cd03515 Link_domain_TSG_6_like 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239593 cd03516 Link_domain_CD44_like 1 putative hyaluronan binding site 0 0 1 1 15,16 5 -239594 cd03517 Link_domain_CSPGs_modules_1_3 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239595 cd03518 Link_domain_HAPLN_module_1 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -239596 cd03519 Link_domain_HAPLN_module_2 1 putative hyaluronan binding site 0 0 1 1 7,8 5 -239597 cd03520 Link_domain_CSPGs_modules_2_4 1 putative hyaluronan binding site 0 0 1 1 7,8 5 -239598 cd03521 Link_domain_KIAA0527_like 1 putative hyaluronan binding site 0 0 1 1 10,11 5 -238540 cd01120 RecA-like_NTPases 1 ATP binding site 0 1 1 1 6,10,11,12,31,33,34,91,92 5 -238540 cd01120 RecA-like_NTPases 2 Walker A motif 0 1 1 1 5,6,10,11,12 0 -238540 cd01120 RecA-like_NTPases 3 Walker B motif 0 0 0 1 87,88,89,90,91 0 -238304 cd00544 CobU 1 ATP binding site 0 1 1 1 6,10,11,12,28,30,31,79,80 5 -238304 cd00544 CobU 2 Walker A motif 0 1 1 1 5,6,10,11,12 0 -238304 cd00544 CobU 3 Walker B motif 0 0 0 1 75,76,77,78,79 0 -238314 cd00561 CobA_CobO_BtuR 1 ATP binding site 0 1 1 1 10,13,14,15,34,36,37,101,102 5 -238314 cd00561 CobA_CobO_BtuR 2 Walker A motif 0 1 1 1 9,10,13,14,15 0 -238314 cd00561 CobA_CobO_BtuR 3 Walker B motif 0 0 0 1 97,98,99,100,101 0 -238484 cd00984 DnaB_C 1 ATP binding site 0 1 1 1 20,24,25,26,46,48,49,129,130 5 -238484 cd00984 DnaB_C 2 Walker A motif 0 1 1 1 19,20,24,25,26 0 -238484 cd00984 DnaB_C 3 Walker B motif 0 0 0 1 125,126,127,128,129 0 -238541 cd01121 Sms 1 ATP binding site 0 1 1 1 89,93,94,95,114,116,117,164,165 5 -238541 cd01121 Sms 2 Walker A motif 0 1 1 1 88,89,93,94,95 0 -238541 cd01121 Sms 3 Walker B motif 0 0 0 1 160,161,162,163,164 0 -238542 cd01122 GP4d_helicase 1 ATP binding site 0 1 1 1 37,41,42,43,63,65,66,146,147 5 -238542 cd01122 GP4d_helicase 2 Walker A motif 0 1 1 1 36,37,41,42,43 0 -238542 cd01122 GP4d_helicase 3 Walker B motif 0 0 0 1 142,143,144,145,146 0 -238544 cd01124 KaiC 1 ATP binding site 0 1 1 1 6,10,11,12,31,33,34,101,102 5 -238544 cd01124 KaiC 2 Walker A motif 0 1 1 1 5,6,10,11,12 0 -238544 cd01124 KaiC 3 Walker B motif 0 0 0 1 97,98,99,100,101 0 -238545 cd01125 repA 1 ATP binding site 0 1 1 1 8,12,13,14,45,47,48,117,118 5 -238545 cd01125 repA 2 Walker A motif 0 1 1 1 7,8,12,13,14 0 -238545 cd01125 repA 3 Walker B motif 0 0 0 1 113,114,115,116,117 0 -238546 cd01126 TraG_VirD4 1 ATP binding site 0 1 1 1 6,10,11,12,29,31,32,269,270 5 -238546 cd01126 TraG_VirD4 2 Walker A motif 0 1 1 1 5,6,10,11,12 0 -238546 cd01126 TraG_VirD4 3 Walker B motif 0 0 0 1 265,266,267,268,269 0 -238547 cd01127 TrwB 1 ATP binding site 0 1 1 1 49,53,54,55,74,76,77,276,277 5 -238547 cd01127 TrwB 2 Walker A motif 0 1 1 1 48,49,53,54,55 0 -238547 cd01127 TrwB 3 Walker B motif 0 0 0 1 272,273,274,275,276 0 -238548 cd01128 rho_factor 1 ATP binding site 0 1 1 1 23,27,28,29,50,52,53,109,110 5 -238548 cd01128 rho_factor 2 Walker A motif 0 1 1 1 22,23,27,28,29 0 -238548 cd01128 rho_factor 3 Walker B motif 0 0 0 1 105,106,107,108,109 0 -238549 cd01129 PulE-GspE 1 ATP binding site 0 1 1 1 87,91,92,93,112,114,115,155,156 5 -238549 cd01129 PulE-GspE 2 Walker A motif 0 1 1 1 86,87,91,92,93 0 -238549 cd01129 PulE-GspE 3 Walker B motif 0 0 0 1 151,152,153,154,155 0 -238550 cd01130 VirB11-like_ATPase 1 ATP binding site 0 1 1 1 32,36,37,38,56,58,59,106,107 5 -238550 cd01130 VirB11-like_ATPase 2 Walker A motif 0 1 1 1 31,32,36,37,38 0 -238550 cd01130 VirB11-like_ATPase 3 Walker B motif 0 0 0 1 102,103,104,105,106 0 -238551 cd01131 PilT 1 ATP binding site 0 1 1 1 8,12,13,14,34,36,37,80,81 5 -238551 cd01131 PilT 2 Walker A motif 0 1 1 1 7,8,12,13,14 0 -238551 cd01131 PilT 3 Walker B motif 0 0 0 1 76,77,78,79,80 0 -238552 cd01132 F1_ATPase_alpha 1 ATP binding site 0 1 1 1 76,80,81,82,101,103,104,167,168 5 -238552 cd01132 F1_ATPase_alpha 2 Walker A motif 0 1 1 1 75,76,80,81,82 0 -238552 cd01132 F1_ATPase_alpha 3 Walker B motif 0 0 0 1 163,164,165,166,167 0 -238553 cd01133 F1-ATPase_beta 1 ATP binding site 0 1 1 1 76,80,81,82,102,104,105,169,170 5 -238553 cd01133 F1-ATPase_beta 2 Walker A motif 0 1 1 1 75,76,80,81,82 0 -238553 cd01133 F1-ATPase_beta 3 Walker B motif 0 0 0 1 165,166,167,168,169 0 -238554 cd01134 V_A-ATPase_A 1 ATP binding site 0 1 1 1 164,168,169,170,187,189,190,260,261 5 -238554 cd01134 V_A-ATPase_A 2 Walker A motif 0 1 1 1 163,164,168,169,170 0 -238554 cd01134 V_A-ATPase_A 3 Walker B motif 0 0 0 1 256,257,258,259,260 0 -238555 cd01135 V_A-ATPase_B 1 ATP binding site 0 1 1 1 76,80,81,82,105,107,108,172,173 5 -238555 cd01135 V_A-ATPase_B 2 Walker A motif 0 1 1 1 75,76,80,81,82 0 -238555 cd01135 V_A-ATPase_B 3 Walker B motif 0 0 0 1 168,169,170,171,172 0 -238556 cd01136 ATPase_flagellum-secretory_path_III 1 ATP binding site 0 1 1 1 76,80,81,82,99,101,102,165,166 5 -238556 cd01136 ATPase_flagellum-secretory_path_III 2 Walker A motif 0 1 1 1 75,76,80,81,82 0 -238556 cd01136 ATPase_flagellum-secretory_path_III 3 Walker B motif 0 0 0 1 161,162,163,164,165 0 -238687 cd01393 recA_like 1 ATP binding site 0 1 1 1 26,30,31,32,57,59,60,120,121 5 -238687 cd01393 recA_like 2 Walker A motif 0 1 1 1 25,26,30,31,32 0 -238687 cd01393 recA_like 3 Walker B motif 0 0 0 1 116,117,118,119,120 0 -238483 cd00983 recA 1 ATP binding site 0 1 1 1 62,66,67,68,87,89,90,139,140 5 -238483 cd00983 recA 2 Walker A motif 0 1 1 1 61,62,66,67,68 0 -238483 cd00983 recA 3 Walker B motif 0 0 0 1 135,136,137,138,139 0 -238543 cd01123 Rad51_DMC1_radA 1 ATP binding site 0 1 1 1 26,30,31,32,57,59,60,121,122 5 -238543 cd01123 Rad51_DMC1_radA 2 Walker A motif 0 1 1 1 25,26,30,31,32 0 -238543 cd01123 Rad51_DMC1_radA 3 Walker B motif 0 0 0 1 117,118,119,120,121 0 -238688 cd01394 radB 1 ATP binding site 0 1 1 1 26,30,31,32,51,53,54,109,110 5 -238688 cd01394 radB 2 Walker A motif 0 1 1 1 25,26,30,31,32 0 -238688 cd01394 radB 3 Walker B motif 0 0 0 1 105,106,107,108,109 0 -211324 cd01291 PseudoU_synth 1 active site 0 1 1 1 29,30,31,32,79 1 -211322 cd00497 PseudoU_synth_TruA_like 1 active site 0 1 1 1 41,42,43,44,167 1 -211335 cd02568 PseudoU_synth_PUS1_PUS2 1 active site 0 1 1 1 53,54,55,56,198 1 -211336 cd02569 PseudoU_synth_ScPus3 1 active site 0 1 1 1 48,49,50,51,206 1 -211337 cd02570 PseudoU_synth_EcTruA 1 active site 0 1 1 1 43,44,45,46,191 1 -211343 cd02866 PseudoU_synth_TruA_Archea 1 active site 0 1 1 1 45,46,47,48,171 1 -211323 cd00506 PseudoU_synth_TruB_like 1 active site 0 1 1 1 32,33,34,35,171 1 -211338 cd02572 PseudoU_synth_hDyskerin 1 active site 0 1 1 1 34,35,36,37,138 1 -211339 cd02573 PseudoU_synth_EcTruB 1 active site 0 1 1 1 32,33,34,35,171 1 -211344 cd02867 PseudoU_synth_TruB_4 1 active site 0 1 1 1 61,62,63,64,202 1 -211345 cd02868 PseudoU_synth_hTruB2_like 1 active site 0 1 1 1 37,38,39,40,178 1 -211325 cd02550 PseudoU_synth_Rsu_Rlu_like 1 active site 0 1 1 1 38,39,40,41,135 1 -211346 cd02869 PseudoU_synth_RluCD_like 1 active site 0 1 1 1 43,44,45,46,146 1 -211331 cd02557 PseudoU_synth_ScRIB2 1 active site 0 1 1 1 63,64,65,66,168 1 -211332 cd02558 PSRA_1 1 active site 0 1 1 1 86,87,88,89,188 1 -211333 cd02563 PseudoU_synth_TruC 1 active site 0 1 1 1 49,50,51,52,163 1 -211347 cd02870 PseudoU_synth_RsuA_like 1 active site 0 1 1 1 37,38,39,40,127 1 -211327 cd02553 PseudoU_synth_RsuA 1 active site 0 1 1 1 39,40,41,42,126 1 -211328 cd02554 PseudoU_synth_RluF 1 active site 0 1 1 1 36,37,38,39,122 1 -211329 cd02555 PSSA_1 1 active site 0 1 1 1 50,51,52,53,136 1 -211330 cd02556 PseudoU_synth_RluB 1 active site 0 1 1 1 39,40,41,42,129 1 -211334 cd02566 PseudoU_synth_RluE 1 active site 0 1 1 1 36,37,38,39,141 1 -211326 cd02552 PseudoU_synth_TruD_like 1 active site 0 1 1 1 65,66,67,68,224 1 -211340 cd02575 PseudoU_synth_EcTruD 1 active site 0 1 1 1 59,60,61,62,245 1 -211341 cd02576 PseudoU_synth_ScPUS7 1 active site 0 1 1 1 63,64,65,66,363 1 -211342 cd02577 PSTD1 1 active site 0 1 1 1 59,60,61,62,311 1 -238617 cd01292 metallo-dependent_hydrolases 1 active site 0 1 0 0 4,6,151,179,233 1 -238221 cd00375 Urease_alpha 1 active site 0 1 0 0 134,136,246,272,360 1 -238250 cd00443 ADA_AMPD 1 active site 0 1 0 0 6,8,172,195,252 1 -238644 cd01319 AMPD 1 active site 0 1 0 0 63,65,331,353,408 1 -238645 cd01320 ADA 1 active site 0 1 0 0 7,9,191,215,272 1 -238646 cd01321 ADGF 1 active site 0 1 0 0 30,32,199,227,284 1 -238295 cd00530 PTE 1 active site 0 1 0 0 5,7,154,183,243 1 -238434 cd00854 NagA 1 active site 0 1 0 0 56,58,190,212,270 1 -238618 cd01293 Bact_CD 1 active site 0 1 0 0 54,56,207,239,306 1 -238619 cd01294 DHOase 1 active site 0 1 0 0 9,11,131,168,241 1 -238620 cd01295 AdeC 1 active site 0 1 0 0 14,16,139,160,209 1 -238621 cd01296 Imidazolone-5PH 1 active site 0 1 0 0 42,44,211,234,285 1 -238622 cd01297 D-aminoacylase 1 active site 0 1 0 0 58,60,217,247,305 1 -238623 cd01298 ATZ_TRZ_like 1 active site 0 1 0 0 61,63,212,249,300 1 -238624 cd01299 Met_dep_hydrolase_A 1 active site 0 1 0 0 18,20,178,198,270 1 -238625 cd01300 YtcJ_like 1 active site 0 1 0 0 43,45,313,345,409 1 -238626 cd01301 rDP_like 1 active site 0 1 0 0 5,7,172,194,263 1 -238627 cd01302 Cyclic_amidohydrolases 1 active site 0 1 0 0 10,12,133,152,225 1 -238639 cd01314 D-HYD 1 active site 0 1 0 0 56,58,180,236,312 1 -238640 cd01315 L-HYD_ALN 1 active site 0 1 0 0 57,59,180,236,309 1 -238641 cd01316 CAD_DHOase 1 active site 0 1 0 0 11,13,130,154,223 1 -238642 cd01317 DHOase_IIa 1 active site 0 1 0 0 19,21,138,191,264 1 -238643 cd01318 DHOase_IIb 1 active site 0 1 0 0 11,13,126,177,247 1 -238628 cd01303 GDEase 1 active site 0 1 0 0 70,72,227,266,317 1 -238629 cd01304 FMDH_A 1 active site 0 1 0 0 54,56,229,265,379 1 -238630 cd01305 archeal_chlorohydrolases 1 active site 0 1 0 0 9,11,143,169,220 1 -238631 cd01306 PhnM 1 active site 0 1 0 0 7,9,153,181,253 1 -238632 cd01307 Met_dep_hydrolase_B 1 active site 0 1 0 0 39,41,167,190,250 1 -238633 cd01308 Isoaspartyl-dipeptidase 1 active site 0 1 0 0 59,61,193,222,283 1 -238634 cd01309 Met_dep_hydrolase_C 1 active site 0 1 0 0 34,36,197,222,278 1 -238635 cd01310 TatD_DNAse 1 active site 0 1 0 0 4,6,126,151,200 1 -238636 cd01311 PDC_hydrolase 1 active site 0 1 0 0 5,7,124,152,219 1 -238637 cd01312 Met_dep_hydrolase_D 1 active site 0 1 0 0 36,38,181,236,287 1 -238638 cd01313 Met_dep_hydrolase_E 1 active site 0 1 0 0 47,49,224,261,312 1 -100105 cd01335 Radical_SAM 1 FeS/SAM binding site 0 1 1 0 6,8,10,12,13,14,50,52,53,79,80,81,104,145,176,177 0 -238651 cd01341 ADP_ribosyl 1 nad+ binding pocket 0 1 0 0 2,3,4,5,6,9,13,17,18,19,21,36,37,38,48,122 5 -238716 cd01436 Dipth_tox_like 1 nad+ binding pocket 0 1 0 0 2,3,4,5,6,9,13,16,17,18,20,35,36,37,47,130 5 -238717 cd01437 parp_like 1 nad+ binding pocket 0 1 0 0 198,199,200,201,202,205,209,213,214,215,217,232,233,234,244,328 5 -238718 cd01438 tankyrase_like 1 nad+ binding pocket 0 1 0 0 92,93,94,95,96,99,103,107,108,109,111,121,122,123,133,200 5 -238719 cd01439 TCCD_inducible_PARP_like 1 nad+ binding pocket 0 1 0 0 2,3,4,5,6,9,13,17,18,19,21,34,35,36,46,103 5 -153129 cd01351 Aconitase 1 ligand binding site 0 1 1 0 92,275,335,338,339,357 5 -153129 cd01351 Aconitase 2 substrate binding site 0 1 1 0 4,7,90,91,339,358,363 5 -153130 cd01355 AcnX 1 ligand binding site 0 1 1 0 131,285,342,345,346,357 5 -153130 cd01355 AcnX 2 substrate binding site 0 1 1 0 4,7,129,130,346,358,363 5 -153131 cd01581 AcnB 1 ligand binding site 0 1 1 0 115,326,384,387,388,405 5 -153131 cd01581 AcnB 2 substrate binding site 0 1 1 0 30,33,113,114,388,406,411 5 -153132 cd01582 Homoaconitase 1 ligand binding site 0 1 1 0 91,242,309,312,313,331 5 -153132 cd01582 Homoaconitase 2 substrate binding site 0 1 1 0 4,7,89,90,313,332,337 5 -153133 cd01583 IPMI 1 ligand binding site 0 1 1 0 93,268,328,331,332,350 5 -153133 cd01583 IPMI 2 substrate binding site 0 1 1 0 4,7,91,92,332,351,356 5 -153134 cd01584 AcnA_Mitochondrial 1 ligand binding site 0 1 1 0 99,291,354,357,358,379 5 -153134 cd01584 AcnA_Mitochondrial 2 substrate binding site 0 1 1 0 4,7,97,98,358,380,385 5 -153135 cd01585 AcnA_Bact 1 ligand binding site 0 1 1 0 91,267,327,330,331,348 5 -153135 cd01585 AcnA_Bact 2 substrate binding site 0 1 1 0 5,8,89,90,331,349,354 5 -153136 cd01586 AcnA_IRP 1 ligand binding site 0 1 1 0 129,274,340,343,344,372 5 -153136 cd01586 AcnA_IRP 2 substrate binding site 0 1 1 0 4,7,127,128,344,373,378 5 -276814 cd01363 Motor_domain 1 ATP binding site 0 1 1 1 5,6,58,59,60,61,62,63,64,65,118,119,138,139,140,141,142,143 5 -276812 cd00106 KISc 1 ATP binding site 0 1 1 1 8,9,84,85,86,87,88,89,90,91,192,193,232,233,234,235,236,237 5 -276815 cd01364 KISc_BimC_Eg5 1 ATP binding site 0 1 1 1 10,11,89,90,91,92,93,94,95,96,208,209,249,250,251,252,253,254 5 -276816 cd01365 KISc_KIF1A_KIF1B 1 ATP binding site 0 1 1 1 9,10,99,100,101,102,103,104,105,106,209,210,251,252,253,254,255,256 5 -276817 cd01366 KISc_C_terminal 1 ATP binding site 0 1 1 1 10,11,84,85,86,87,88,89,90,91,194,195,232,233,234,235,236,237 5 -276818 cd01367 KISc_KIF2_like 1 ATP binding site 0 1 1 1 8,9,90,91,92,93,94,95,96,97,198,199,233,234,235,236,237,238 5 -276819 cd01368 KISc_KIF23_like 1 ATP binding site 0 1 1 1 9,10,95,96,97,98,99,100,101,102,201,202,247,248,249,250,251,252 5 -276820 cd01369 KISc_KHC_KIF5 1 ATP binding site 0 1 1 1 10,11,83,84,85,86,87,88,89,90,191,192,229,230,231,232,233,234 5 -276821 cd01370 KISc_KIP3_like 1 ATP binding site 0 1 1 1 8,9,101,102,103,104,105,106,107,108,206,207,247,248,249,250,251,252 5 -276822 cd01371 KISc_KIF3 1 ATP binding site 0 1 1 1 9,10,88,89,90,91,92,93,94,95,197,198,238,239,240,241,242,243 5 -276823 cd01372 KISc_KIF4 1 ATP binding site 0 1 1 1 9,10,80,81,82,83,84,85,86,87,194,195,242,243,244,245,246,247 5 -276824 cd01373 KISc_KLP2_like 1 ATP binding site 0 1 1 1 9,10,81,82,83,84,85,86,87,88,198,199,238,239,240,241,242,243 5 -276825 cd01374 KISc_CENP_E 1 ATP binding site 0 1 1 1 8,9,79,80,81,82,83,84,85,86,183,184,224,225,226,227,228,229 5 -276826 cd01375 KISc_KIF9_like 1 ATP binding site 0 1 1 1 8,9,87,88,89,90,91,92,93,94,200,201,240,241,242,243,244,245 5 -276827 cd01376 KISc_KID_like 1 ATP binding site 0 1 1 1 8,9,84,85,86,87,88,89,90,91,187,188,226,227,228,229,230,231 5 -276950 cd00124 MYSc 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,132,133,368,369,370,371,372,373 5 -276951 cd01377 MYSc_class_II 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,133,134,361,362,363,364,365,366 5 -276874 cd14909 MYSc_Myh1_insects_crustaceans 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,132,133,360,361,362,363,364,365 5 -276875 cd14910 MYSc_Myh1_mammals 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,136,137,364,365,366,367,368,369 5 -276876 cd14911 MYSc_Myh2_insects_mollusks 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,141,142,369,370,371,372,373,374 5 -276877 cd14912 MYSc_Myh2_mammals 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,136,137,364,365,366,367,368,369 5 -276878 cd14913 MYSc_Myh3 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,134,135,362,363,364,365,366,367 5 -276879 cd14915 MYSc_Myh4 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,136,137,364,365,366,367,368,369 5 -276880 cd14916 MYSc_Myh6 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,135,136,363,364,365,366,367,368 5 -276881 cd14917 MYSc_Myh7 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,134,135,362,363,364,365,366,367 5 -276882 cd14918 MYSc_Myh8 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,134,135,362,363,364,365,366,367 5 -276883 cd14919 MYSc_Myh9 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,129,130,357,358,359,360,361,362 5 -276952 cd14920 MYSc_Myh10 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,132,133,360,361,362,363,364,365 5 -276885 cd14921 MYSc_Myh11 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,132,133,360,361,362,363,364,365 5 -276887 cd14923 MYSc_Myh13 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,135,136,363,364,365,366,367,368 5 -276953 cd14927 MYSc_Myh7b 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,138,139,366,367,368,369,370,371 5 -276892 cd14929 MYSc_Myh15_mammals 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,129,130,356,357,358,359,360,361 5 -276893 cd14930 MYSc_Myh14_mammals 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,132,133,359,360,361,362,363,364 5 -276895 cd14932 MYSc_Myh18 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,136,137,364,365,366,367,368,369 5 -276896 cd14934 MYSc_Myh16 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,130,131,358,359,360,361,362,363 5 -276899 cd15896 MYSc_Myh19 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,136,137,364,365,366,367,368,369 5 -276829 cd01378 MYSc_Myo1 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,127,128,358,359,360,361,362,363 5 -276830 cd01379 MYSc_Myo3 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,124,125,363,364,365,366,367,368 5 -276831 cd01380 MYSc_Myo5 1 ATP binding site 0 1 1 1 28,29,80,81,82,83,84,85,86,87,127,128,357,358,359,360,361,362 5 -276832 cd01381 MYSc_Myo7 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,123,124,356,357,358,359,360,361 5 -276833 cd01382 MYSc_Myo6 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,125,126,345,346,347,348,349,350 5 -276834 cd01383 MYSc_Myo8 1 ATP binding site 0 1 1 1 27,28,77,78,79,80,81,82,83,84,121,122,350,351,352,353,354,355 5 -276835 cd01384 MYSc_Myo11 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,128,129,359,360,361,362,363,364 5 -276836 cd01385 MYSc_Myo9 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,125,126,359,360,361,362,363,364 5 -276837 cd01386 MYSc_Myo18 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,125,126,366,367,368,369,370,371 5 -276838 cd01387 MYSc_Myo15 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,124,125,354,355,356,357,358,359 5 -276839 cd14872 MYSc_Myo4 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,123,124,354,355,356,357,358,359 5 -276840 cd14873 MYSc_Myo10 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,133,134,357,358,359,360,361,362 5 -276841 cd14874 MYSc_Myo12 1 ATP binding site 0 1 1 1 27,28,70,71,72,73,74,75,76,77,113,114,337,338,339,340,341,342 5 -276842 cd14875 MYSc_Myo13 1 ATP binding site 0 1 1 1 28,29,82,83,84,85,86,87,88,89,136,137,369,370,371,372,373,374 5 -276843 cd14876 MYSc_Myo14 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,126,127,358,359,360,361,362,363 5 -276844 cd14878 MYSc_Myo16 1 ATP binding site 0 1 1 1 27,28,82,83,84,85,86,87,88,89,127,128,363,364,365,366,367,368 5 -276845 cd14879 MYSc_Myo17 1 ATP binding site 0 1 1 1 31,32,90,91,92,93,94,95,96,97,137,138,371,372,373,374,375,376 5 -276846 cd14880 MYSc_Myo19 1 ATP binding site 0 1 1 1 27,28,83,84,85,86,87,88,89,90,136,137,365,366,367,368,369,370 5 -276847 cd14881 MYSc_Myo20 1 ATP binding site 0 1 1 1 27,28,74,75,76,77,78,79,80,81,120,121,349,350,351,352,353,354 5 -276848 cd14882 MYSc_Myo21 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,123,124,361,362,363,364,365,366 5 -276849 cd14883 MYSc_Myo22 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,123,124,354,355,356,357,358,359 5 -276850 cd14884 MYSc_Myo23 1 ATP binding site 0 1 1 1 27,28,87,88,89,90,91,92,93,94,133,134,385,386,387,388,389,390 5 -276851 cd14886 MYSc_Myo25 1 ATP binding site 0 1 1 1 27,28,85,86,87,88,89,90,91,92,130,131,360,361,362,363,364,365 5 -276852 cd14887 MYSc_Myo26 1 ATP binding site 0 1 1 1 35,36,87,88,89,90,91,92,93,94,136,137,397,398,399,400,401,402 5 -276853 cd14888 MYSc_Myo27 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,127,128,391,392,393,394,395,396 5 -276854 cd14889 MYSc_Myo28 1 ATP binding site 0 1 1 1 27,28,83,84,85,86,87,88,89,90,127,128,358,359,360,361,362,363 5 -276855 cd14890 MYSc_Myo29 1 ATP binding site 0 1 1 1 27,28,84,85,86,87,88,89,90,91,147,148,375,376,377,378,379,380 5 -276856 cd14891 MYSc_Myo30 1 ATP binding site 0 1 1 1 29,30,81,82,83,84,85,86,87,88,144,145,377,378,379,380,381,382 5 -276857 cd14892 MYSc_Myo31 1 ATP binding site 0 1 1 1 27,28,86,87,88,89,90,91,92,93,143,144,384,385,386,387,388,389 5 -276858 cd14893 MYSc_Myo32 1 ATP binding site 0 1 1 1 27,28,89,90,91,92,93,94,95,96,146,147,405,406,407,408,409,410 5 -276859 cd14894 MYSc_Myo33 1 ATP binding site 0 1 1 1 28,29,107,108,109,110,111,112,113,114,261,262,537,538,539,540,541,542 5 -276860 cd14895 MYSc_Myo34 1 ATP binding site 0 1 1 1 27,28,86,87,88,89,90,91,92,93,140,141,405,406,407,408,409,410 5 -276861 cd14896 MYSc_Myo35 1 ATP binding site 0 1 1 1 27,28,79,80,81,82,83,84,85,86,124,125,355,356,357,358,359,360 5 -276862 cd14897 MYSc_Myo36 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,125,126,364,365,366,367,368,369 5 -276863 cd14898 MYSc_Myo37 1 ATP binding site 0 1 1 1 27,28,75,76,77,78,79,80,81,82,119,120,330,331,332,333,334,335 5 -276864 cd14899 MYSc_Myo38 1 ATP binding site 0 1 1 1 27,28,90,91,92,93,94,95,96,97,152,153,414,415,416,417,418,419 5 -276865 cd14900 MYSc_Myo39 1 ATP binding site 0 1 1 1 27,28,95,96,97,98,99,100,101,102,150,151,364,365,366,367,368,369 5 -276866 cd14901 MYSc_Myo40 1 ATP binding site 0 1 1 1 27,28,89,90,91,92,93,94,95,96,142,143,374,375,376,377,378,379 5 -276867 cd14902 MYSc_Myo41 1 ATP binding site 0 1 1 1 27,28,89,90,91,92,93,94,95,96,143,144,387,388,389,390,391,392 5 -276868 cd14903 MYSc_Myo42 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,125,126,353,354,355,356,357,358 5 -276869 cd14904 MYSc_Myo43 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,125,126,354,355,356,357,358,359 5 -276870 cd14905 MYSc_Myo44 1 ATP binding site 0 1 1 1 27,28,78,79,80,81,82,83,84,85,123,124,338,339,340,341,342,343 5 -276871 cd14906 MYSc_Myo45 1 ATP binding site 0 1 1 1 27,28,81,82,83,84,85,86,87,88,136,137,397,398,399,400,401,402 5 -276872 cd14907 MYSc_Myo46 1 ATP binding site 0 1 1 1 27,28,88,89,90,91,92,93,94,95,152,153,394,395,396,397,398,399 5 -276873 cd14908 MYSc_Myo47 1 ATP binding site 0 1 1 1 27,28,89,90,91,92,93,94,95,96,145,146,386,387,388,389,390,391 5 -276897 cd14937 MYSc_Myo24A 1 ATP binding site 0 1 1 1 27,28,75,76,77,78,79,80,81,82,119,120,350,351,352,353,354,355 5 -276898 cd14938 MYSc_Myo24B 1 ATP binding site 0 1 1 1 27,28,80,81,82,83,84,85,86,87,148,149,403,404,405,406,407,408 5 -143331 cd01392 HTH_LacI 1 DNA binding site 0 1 1 1 0,8,9,10,11,12,14,15,18,23,24,27,40,43,46,47,49,50 3 -143331 cd01392 HTH_LacI 2 domain linker motif 0 0 1 1 40,41,42,43,44,45,46,47,48,49 0 -238696 cd01403 Cyt_c_Oxidase_VIIb 1 Subunit I/VIIb interfae 0 1 1 0 35,36 2 -238696 cd01403 Cyt_c_Oxidase_VIIb 2 Subunit IV/VIIb interface 0 1 1 0 5,6,10,19,20,24,34,39,41,43,45,46,47,48 2 -238696 cd01403 Cyt_c_Oxidase_VIIb 3 Subunit VIc/VIIb interface 0 1 1 0 48 2 -100106 cd01425 RPS2 1 rRNA interaction site 0 1 1 0 16,17,26,27,28,86,88,89,90,93,94,144,147 3 -100106 cd01425 RPS2 2 S8 interaction site 0 1 1 0 146,147,149,163,164,165,166 0 -100106 cd01425 RPS2 3 putative laminin-1 binding site 0 0 1 1 181,182,183,184,185,186 0 -319763 cd01427 HAD_like 1 active site 0 1 1 0 4,5,6,7,8,29,30,66,86,87,90,91 1 -319763 cd01427 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319763 cd01427 HAD_like 3 HAD signature motif II [ST] 0 1 1 29 0 -319763 cd01427 HAD_like 4 HAD signature motif III [KR] 0 1 1 66 0 -319763 cd01427 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 86,87,91 0 -319764 cd01431 P-type_ATPases 1 active site 0 1 1 0 4,5,6,7,8,139,140,194,212,213,216,217 1 -319764 cd01431 P-type_ATPases 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319764 cd01431 P-type_ATPases 3 HAD signature motif II [ST] 0 1 1 139 0 -319764 cd01431 P-type_ATPases 4 HAD signature motif III [KR] 0 1 1 194 0 -319764 cd01431 P-type_ATPases 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 212,213,217 0 -319771 cd02076 P-type_ATPase_H 1 active site 0 1 1 0 289,290,291,292,293,460,461,518,536,537,540,541 1 -319771 cd02076 P-type_ATPase_H 2 HAD signature motif I Dxxx[TV] 0 1 1 289,290,291,292,293 0 -319771 cd02076 P-type_ATPase_H 3 HAD signature motif II [ST] 0 1 1 460 0 -319771 cd02076 P-type_ATPase_H 4 HAD signature motif III [KR] 0 1 1 518 0 -319771 cd02076 P-type_ATPase_H 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 536,537,541 0 -319772 cd02077 P-type_ATPase_Mg 1 active site 0 1 1 0 312,313,314,315,316,508,509,561,579,580,583,584 1 -319772 cd02077 P-type_ATPase_Mg 2 HAD signature motif I Dxxx[TV] 0 1 1 312,313,314,315,316 0 -319772 cd02077 P-type_ATPase_Mg 3 HAD signature motif II [ST] 0 1 1 508 0 -319772 cd02077 P-type_ATPase_Mg 4 HAD signature motif III [KR] 0 1 1 561 0 -319772 cd02077 P-type_ATPase_Mg 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 579,580,584 0 -319773 cd02078 P-type_ATPase_K 1 active site 0 1 1 0 294,295,296,297,298,458,459,486,504,505,508,509 1 -319773 cd02078 P-type_ATPase_K 2 HAD signature motif I Dxxx[TV] 0 1 1 294,295,296,297,298 0 -319773 cd02078 P-type_ATPase_K 3 HAD signature motif II [ST] 0 1 1 458 0 -319773 cd02078 P-type_ATPase_K 4 HAD signature motif III [KR] 0 1 1 486 0 -319773 cd02078 P-type_ATPase_K 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 504,505,509 0 -319774 cd02079 P-type_ATPase_HM 1 active site 0 1 1 0 322,323,324,325,326,470,471,498,516,517,520,521 1 -319774 cd02079 P-type_ATPase_HM 2 HAD signature motif I Dxxx[TV] 0 1 1 322,323,324,325,326 0 -319774 cd02079 P-type_ATPase_HM 3 HAD signature motif II [ST] 0 1 1 470 0 -319774 cd02079 P-type_ATPase_HM 4 HAD signature motif III [KR] 0 1 1 498 0 -319774 cd02079 P-type_ATPase_HM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 516,517,521 0 -319782 cd02092 P-type_ATPase_FixI-like 1 active site 0 1 1 0 324,325,326,327,328,456,457,484,502,503,506,507 1 -319782 cd02092 P-type_ATPase_FixI-like 2 HAD signature motif I Dxxx[TV] 0 1 1 324,325,326,327,328 0 -319782 cd02092 P-type_ATPase_FixI-like 3 HAD signature motif II [ST] 0 1 1 456 0 -319782 cd02092 P-type_ATPase_FixI-like 4 HAD signature motif III [KR] 0 1 1 484 0 -319782 cd02092 P-type_ATPase_FixI-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 502,503,507 0 -319783 cd02094 P-type_ATPase_Cu-like 1 active site 0 1 1 0 338,339,340,341,342,490,491,518,536,537,540,541 1 -319783 cd02094 P-type_ATPase_Cu-like 2 HAD signature motif I Dxxx[TV] 0 1 1 338,339,340,341,342 0 -319783 cd02094 P-type_ATPase_Cu-like 3 HAD signature motif II [ST] 0 1 1 490 0 -319783 cd02094 P-type_ATPase_Cu-like 4 HAD signature motif III [KR] 0 1 1 518 0 -319783 cd02094 P-type_ATPase_Cu-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 536,537,541 0 -319844 cd07544 P-type_ATPase_HM 1 active site 0 1 1 0 299,300,301,302,303,447,448,475,492,493,496,497 1 -319844 cd07544 P-type_ATPase_HM 2 HAD signature motif I Dxxx[TV] 0 1 1 299,300,301,302,303 0 -319844 cd07544 P-type_ATPase_HM 3 HAD signature motif II [ST] 0 1 1 447 0 -319844 cd07544 P-type_ATPase_HM 4 HAD signature motif III [KR] 0 1 1 475 0 -319844 cd07544 P-type_ATPase_HM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 492,493,497 0 -319845 cd07545 P-type_ATPase_Cd-like 1 active site 0 1 1 0 294,295,296,297,298,448,449,476,494,495,498,499 1 -319845 cd07545 P-type_ATPase_Cd-like 2 HAD signature motif I Dxxx[TV] 0 1 1 294,295,296,297,298 0 -319845 cd07545 P-type_ATPase_Cd-like 3 HAD signature motif II [ST] 0 1 1 448 0 -319845 cd07545 P-type_ATPase_Cd-like 4 HAD signature motif III [KR] 0 1 1 476 0 -319845 cd07545 P-type_ATPase_Cd-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 494,495,499 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 1 active site 0 1 1 0 297,298,299,300,301,447,448,474,491,492,495,496 1 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 2 HAD signature motif I Dxxx[TV] 0 1 1 297,298,299,300,301 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 3 HAD signature motif II [ST] 0 1 1 447 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 4 HAD signature motif III [KR] 0 1 1 474 0 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 491,492,496 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 1 active site 0 1 1 0 308,309,310,311,312,452,453,480,499,500,503,504 1 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 2 HAD signature motif I Dxxx[TV] 0 1 1 308,309,310,311,312 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 3 HAD signature motif II [ST] 0 1 1 452 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 4 HAD signature motif III [KR] 0 1 1 480 0 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 499,500,504 0 -319848 cd07550 P-type_ATPase_HM 1 active site 0 1 1 0 289,290,291,292,293,444,445,472,490,491,494,495 1 -319848 cd07550 P-type_ATPase_HM 2 HAD signature motif I Dxxx[TV] 0 1 1 289,290,291,292,293 0 -319848 cd07550 P-type_ATPase_HM 3 HAD signature motif II [ST] 0 1 1 444 0 -319848 cd07550 P-type_ATPase_HM 4 HAD signature motif III [KR] 0 1 1 472 0 -319848 cd07550 P-type_ATPase_HM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 490,491,495 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 1 active site 0 1 1 0 311,312,313,314,315,462,463,490,508,509,512,513 1 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 2 HAD signature motif I Dxxx[TV] 0 1 1 311,312,313,314,315 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 3 HAD signature motif II [ST] 0 1 1 462 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 4 HAD signature motif III [KR] 0 1 1 490 0 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 508,509,513 0 -319850 cd07552 P-type_ATPase_Cu-like 1 active site 0 1 1 0 327,328,329,330,331,477,478,505,523,524,527,528 1 -319850 cd07552 P-type_ATPase_Cu-like 2 HAD signature motif I Dxxx[TV] 0 1 1 327,328,329,330,331 0 -319850 cd07552 P-type_ATPase_Cu-like 3 HAD signature motif II [ST] 0 1 1 477 0 -319850 cd07552 P-type_ATPase_Cu-like 4 HAD signature motif III [KR] 0 1 1 505 0 -319850 cd07552 P-type_ATPase_Cu-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 523,524,528 0 -319851 cd07553 P-type_ATPase_HM 1 active site 0 1 1 0 323,324,325,326,327,456,457,486,502,503,506,507 1 -319851 cd07553 P-type_ATPase_HM 2 HAD signature motif I Dxxx[TV] 0 1 1 323,324,325,326,327 0 -319851 cd07553 P-type_ATPase_HM 3 HAD signature motif II [ST] 0 1 1 456 0 -319851 cd07553 P-type_ATPase_HM 4 HAD signature motif III [KR] 0 1 1 486 0 -319851 cd07553 P-type_ATPase_HM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 502,503,507 0 -319775 cd02080 P-type_ATPase_cation 1 active site 0 1 1 0 304,305,306,307,308,493,494,547,565,566,569,570 1 -319775 cd02080 P-type_ATPase_cation 2 HAD signature motif I Dxxx[TV] 0 1 1 304,305,306,307,308 0 -319775 cd02080 P-type_ATPase_cation 3 HAD signature motif II [ST] 0 1 1 493 0 -319775 cd02080 P-type_ATPase_cation 4 HAD signature motif III [KR] 0 1 1 547 0 -319775 cd02080 P-type_ATPase_cation 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 565,566,570 0 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 1 active site 0 1 1 0 320,321,322,323,324,505,506,570,588,589,592,593 1 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 2 HAD signature motif I Dxxx[TV] 0 1 1 320,321,322,323,324 0 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 3 HAD signature motif II [ST] 0 1 1 505 0 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 4 HAD signature motif III [KR] 0 1 1 570 0 -319776 cd02081 P-type_ATPase_Ca_PMCA-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 588,589,593 0 -319777 cd02082 P-type_ATPase_cation 1 active site 0 1 1 0 308,309,310,311,312,527,528,585,603,604,607,608 1 -319777 cd02082 P-type_ATPase_cation 2 HAD signature motif I Dxxx[TV] 0 1 1 308,309,310,311,312 0 -319777 cd02082 P-type_ATPase_cation 3 HAD signature motif II [ST] 0 1 1 527 0 -319777 cd02082 P-type_ATPase_cation 4 HAD signature motif III [KR] 0 1 1 585 0 -319777 cd02082 P-type_ATPase_cation 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 603,604,608 0 -319842 cd07542 P-type_ATPase_cation 1 active site 0 1 1 0 310,311,312,313,314,514,515,572,590,591,594,595 1 -319842 cd07542 P-type_ATPase_cation 2 HAD signature motif I Dxxx[TV] 0 1 1 310,311,312,313,314 0 -319842 cd07542 P-type_ATPase_cation 3 HAD signature motif II [ST] 0 1 1 514 0 -319842 cd07542 P-type_ATPase_cation 4 HAD signature motif III [KR] 0 1 1 572 0 -319842 cd07542 P-type_ATPase_cation 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 590,591,595 0 -319843 cd07543 P-type_ATPase_cation 1 active site 0 1 1 0 316,317,318,319,320,531,532,583,601,602,605,606 1 -319843 cd07543 P-type_ATPase_cation 2 HAD signature motif I Dxxx[TV] 0 1 1 316,317,318,319,320 0 -319843 cd07543 P-type_ATPase_cation 3 HAD signature motif II [ST] 0 1 1 531 0 -319843 cd07543 P-type_ATPase_cation 4 HAD signature motif III [KR] 0 1 1 583 0 -319843 cd07543 P-type_ATPase_cation 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 601,602,606 0 -319778 cd02083 P-type_ATPase_SERCA 1 active site 0 1 1 0 345,346,347,348,349,614,615,673,691,692,695,696 1 -319778 cd02083 P-type_ATPase_SERCA 2 HAD signature motif I Dxxx[TV] 0 1 1 345,346,347,348,349 0 -319778 cd02083 P-type_ATPase_SERCA 3 HAD signature motif II [ST] 0 1 1 614 0 -319778 cd02083 P-type_ATPase_SERCA 4 HAD signature motif III [KR] 0 1 1 673 0 -319778 cd02083 P-type_ATPase_SERCA 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 691,692,696 0 -319779 cd02085 P-type_ATPase_SPCA 1 active site 0 1 1 0 296,297,298,299,300,477,478,532,550,551,554,555 1 -319779 cd02085 P-type_ATPase_SPCA 2 HAD signature motif I Dxxx[TV] 0 1 1 296,297,298,299,300 0 -319779 cd02085 P-type_ATPase_SPCA 3 HAD signature motif II [ST] 0 1 1 477 0 -319779 cd02085 P-type_ATPase_SPCA 4 HAD signature motif III [KR] 0 1 1 532 0 -319779 cd02085 P-type_ATPase_SPCA 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 550,551,555 0 -319780 cd02086 P-type_ATPase_Na_ENA 1 active site 0 1 1 0 333,334,335,336,337,544,545,609,627,628,631,632 1 -319780 cd02086 P-type_ATPase_Na_ENA 2 HAD signature motif I Dxxx[TV] 0 1 1 333,334,335,336,337 0 -319780 cd02086 P-type_ATPase_Na_ENA 3 HAD signature motif II [ST] 0 1 1 544 0 -319780 cd02086 P-type_ATPase_Na_ENA 4 HAD signature motif III [KR] 0 1 1 609 0 -319780 cd02086 P-type_ATPase_Na_ENA 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 627,628,632 0 -319781 cd02089 P-type_ATPase_Ca_prok 1 active site 0 1 1 0 304,305,306,307,308,479,480,534,552,553,556,557 1 -319781 cd02089 P-type_ATPase_Ca_prok 2 HAD signature motif I Dxxx[TV] 0 1 1 304,305,306,307,308 0 -319781 cd02089 P-type_ATPase_Ca_prok 3 HAD signature motif II [ST] 0 1 1 479 0 -319781 cd02089 P-type_ATPase_Ca_prok 4 HAD signature motif III [KR] 0 1 1 534 0 -319781 cd02089 P-type_ATPase_Ca_prok 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 552,553,557 0 -319794 cd02608 P-type_ATPase_Na-K_like 1 active site 0 1 1 0 314,315,316,317,318,555,556,582,600,601,604,605 1 -319794 cd02608 P-type_ATPase_Na-K_like 2 HAD signature motif I Dxxx[TV] 0 1 1 314,315,316,317,318 0 -319794 cd02608 P-type_ATPase_Na-K_like 3 HAD signature motif II [ST] 0 1 1 555 0 -319794 cd02608 P-type_ATPase_Na-K_like 4 HAD signature motif III [KR] 0 1 1 582 0 -319794 cd02608 P-type_ATPase_Na-K_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 600,601,605 0 -319795 cd02609 P-type_ATPase 1 active site 0 1 1 0 291,292,293,294,295,456,457,508,526,527,530,531 1 -319795 cd02609 P-type_ATPase 2 HAD signature motif I Dxxx[TV] 0 1 1 291,292,293,294,295 0 -319795 cd02609 P-type_ATPase 3 HAD signature motif II [ST] 0 1 1 456 0 -319795 cd02609 P-type_ATPase 4 HAD signature motif III [KR] 0 1 1 508 0 -319795 cd02609 P-type_ATPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 526,527,531 0 -319838 cd07536 P-type_ATPase_APLT 1 active site 0 1 1 0 361,362,363,364,365,534,535,629,648,649,652,653 1 -319838 cd07536 P-type_ATPase_APLT 2 HAD signature motif I Dxxx[TV] 0 1 1 361,362,363,364,365 0 -319838 cd07536 P-type_ATPase_APLT 3 HAD signature motif II [ST] 0 1 1 534 0 -319838 cd07536 P-type_ATPase_APLT 4 HAD signature motif III [KR] 0 1 1 629 0 -319838 cd07536 P-type_ATPase_APLT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 648,649,653 0 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 1 active site 0 1 1 0 360,361,362,363,364,592,593,657,676,677,680,681 1 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 2 HAD signature motif I Dxxx[TV] 0 1 1 360,361,362,363,364 0 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 3 HAD signature motif II [ST] 0 1 1 592 0 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 4 HAD signature motif III [KR] 0 1 1 657 0 -319770 cd02073 P-type_ATPase_APLT_Dnf-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 676,677,681 0 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 1 active site 0 1 1 0 331,332,333,334,335,501,502,589,608,609,612,613 1 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 2 HAD signature motif I Dxxx[TV] 0 1 1 331,332,333,334,335 0 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 3 HAD signature motif II [ST] 0 1 1 501 0 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 4 HAD signature motif III [KR] 0 1 1 589 0 -319841 cd07541 P-type_ATPase_APLT_Neo1-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 608,609,613 0 -319839 cd07538 P-type_ATPase 1 active site 0 1 1 0 303,304,305,306,307,439,440,493,511,512,515,516 1 -319839 cd07538 P-type_ATPase 2 HAD signature motif I Dxxx[TV] 0 1 1 303,304,305,306,307 0 -319839 cd07538 P-type_ATPase 3 HAD signature motif II [ST] 0 1 1 439 0 -319839 cd07538 P-type_ATPase 4 HAD signature motif III [KR] 0 1 1 493 0 -319839 cd07538 P-type_ATPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 511,512,516 0 -319840 cd07539 P-type_ATPase 1 active site 0 1 1 0 304,305,306,307,308,452,453,506,524,525,528,529 1 -319840 cd07539 P-type_ATPase 2 HAD signature motif I Dxxx[TV] 0 1 1 304,305,306,307,308 0 -319840 cd07539 P-type_ATPase 3 HAD signature motif II [ST] 0 1 1 452 0 -319840 cd07539 P-type_ATPase 4 HAD signature motif III [KR] 0 1 1 506 0 -319840 cd07539 P-type_ATPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 524,525,529 0 -319765 cd01624 HAD_VSP_like 1 active site 0 1 1 0 18,19,20,21,22,77,78,118,137,138,141,142 1 -319765 cd01624 HAD_VSP_like 2 HAD signature motif I Dxxx[TV] 0 1 1 18,19,20,21,22 0 -319765 cd01624 HAD_VSP_like 3 HAD signature motif II [ST] 0 1 1 77 0 -319765 cd01624 HAD_VSP_like 4 HAD signature motif III [KR] 0 1 1 118 0 -319765 cd01624 HAD_VSP_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 137,138,142 0 -319837 cd07535 HAD_VSP 1 active site 0 1 1 0 40,41,42,43,44,100,101,141,160,161,164,165 1 -319837 cd07535 HAD_VSP 2 HAD signature motif I Dxxx[TV] 0 1 1 40,41,42,43,44 0 -319837 cd07535 HAD_VSP 3 HAD signature motif II [ST] 0 1 1 100 0 -319837 cd07535 HAD_VSP 4 HAD signature motif III [KR] 0 1 1 141 0 -319837 cd07535 HAD_VSP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319766 cd01625 HAD_PNP 1 active site 0 1 1 0 5,6,7,8,9,51,52,94,122,123,134,135 1 -319766 cd01625 HAD_PNP 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319766 cd01625 HAD_PNP 3 HAD signature motif II [ST] 0 1 1 51 0 -319766 cd01625 HAD_PNP 4 HAD signature motif III [KR] 0 1 1 94 0 -319766 cd01625 HAD_PNP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 122,123,135 0 -319767 cd01627 HAD_TPP 1 active site 0 1 1 0 4,5,6,7,8,44,45,164,186,187,190,191 1 -319767 cd01627 HAD_TPP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319767 cd01627 HAD_TPP 3 HAD signature motif II [ST] 0 1 1 44 0 -319767 cd01627 HAD_TPP 4 HAD signature motif III [KR] 0 1 1 164 0 -319767 cd01627 HAD_TPP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 186,187,191 0 -319768 cd01629 HAD_EP 1 active site 0 1 1 0 4,5,6,7,8,122,123,156,180,181,184,185 1 -319768 cd01629 HAD_EP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319768 cd01629 HAD_EP 3 HAD signature motif II [ST] 0 1 1 122 0 -319768 cd01629 HAD_EP 4 HAD signature motif III [KR] 0 1 1 156 0 -319768 cd01629 HAD_EP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 180,181,185 0 -319769 cd01630 HAD_KDO-like 1 active site 0 1 1 0 6,7,8,9,10,50,51,76,98,99,102,103 1 -319769 cd01630 HAD_KDO-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319769 cd01630 HAD_KDO-like 3 HAD signature motif II [ST] 0 1 1 50 0 -319769 cd01630 HAD_KDO-like 4 HAD signature motif III [KR] 0 1 1 76 0 -319769 cd01630 HAD_KDO-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 98,99,103 0 -319784 cd02585 HAD_PMM 1 active site 0 1 1 0 4,5,6,7,8,37,38,182,201,202,209,210 1 -319784 cd02585 HAD_PMM 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319784 cd02585 HAD_PMM 3 HAD signature motif II [ST] 0 1 1 37 0 -319784 cd02585 HAD_PMM 4 HAD signature motif III [KR] 0 1 1 182 0 -319784 cd02585 HAD_PMM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 201,202,210 0 -319785 cd02586 HAD_PHN 1 active site 0 1 1 0 6,7,8,9,10,120,121,154,179,180,183,184 1 -319785 cd02586 HAD_PHN 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319785 cd02586 HAD_PHN 3 HAD signature motif II [ST] 0 1 1 120 0 -319785 cd02586 HAD_PHN 4 HAD signature motif III [KR] 0 1 1 154 0 -319785 cd02586 HAD_PHN 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 179,180,184 0 -319786 cd02587 HAD_5-3dNT 1 active site 0 1 1 0 5,6,7,8,9,91,92,126,136,137,140,141 1 -319786 cd02587 HAD_5-3dNT 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319786 cd02587 HAD_5-3dNT 3 HAD signature motif II [ST] 0 1 1 91 0 -319786 cd02587 HAD_5-3dNT 4 HAD signature motif III [KR] 0 1 1 126 0 -319786 cd02587 HAD_5-3dNT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 136,137,141 0 -319787 cd02588 HAD_L2-DEX 1 active site 0 1 1 0 5,6,7,8,9,113,114,146,170,171,174,175 1 -319787 cd02588 HAD_L2-DEX 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319787 cd02588 HAD_L2-DEX 3 HAD signature motif II [ST] 0 1 1 113 0 -319787 cd02588 HAD_L2-DEX 4 HAD signature motif III [KR] 0 1 1 146 0 -319787 cd02588 HAD_L2-DEX 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 170,171,175 0 -319789 cd02601 HAD_Eya 1 active site 0 1 1 0 7,8,9,10,11,101,102,209,233,234,238,239 1 -319789 cd02601 HAD_Eya 2 HAD signature motif I Dxxx[TV] 0 1 1 7,8,9,10,11 0 -319789 cd02601 HAD_Eya 3 HAD signature motif II [ST] 0 1 1 101 0 -319789 cd02601 HAD_Eya 4 HAD signature motif III [KR] 0 1 1 209 0 -319789 cd02601 HAD_Eya 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 233,234,239 0 -319790 cd02603 HAD_sEH-N_like 1 active site 0 1 1 0 6,7,8,9,10,106,107,140,164,165,168,169 1 -319790 cd02603 HAD_sEH-N_like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319790 cd02603 HAD_sEH-N_like 3 HAD signature motif II [ST] 0 1 1 106 0 -319790 cd02603 HAD_sEH-N_like 4 HAD signature motif III [KR] 0 1 1 140 0 -319790 cd02603 HAD_sEH-N_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 164,165,169 0 -319791 cd02604 HAD_5NT 1 active site 0 1 1 0 4,5,6,7,8,102,103,136,160,161,164,165 1 -319791 cd02604 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319791 cd02604 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 102 0 -319791 cd02604 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 136 0 -319791 cd02604 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319792 cd02605 HAD_SPP 1 active site 0 1 1 0 4,5,6,7,8,41,42,169,191,192,195,196 1 -319792 cd02605 HAD_SPP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319792 cd02605 HAD_SPP 3 HAD signature motif II [ST] 0 1 1 41 0 -319792 cd02605 HAD_SPP 4 HAD signature motif III [KR] 0 1 1 169 0 -319792 cd02605 HAD_SPP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 191,192,196 0 -319793 cd02607 HAD_ThrH_like 1 active site 0 1 1 0 6,7,8,9,10,89,90,132,150,151,154,155 1 -319793 cd02607 HAD_ThrH_like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319793 cd02607 HAD_ThrH_like 3 HAD signature motif II [ST] 0 1 1 89 0 -319793 cd02607 HAD_ThrH_like 4 HAD signature motif III [KR] 0 1 1 132 0 -319793 cd02607 HAD_ThrH_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,155 0 -319796 cd02612 HAD_PGPPase 1 active site 0 1 1 0 4,5,6,7,8,106,107,151,173,174,177,178 1 -319796 cd02612 HAD_PGPPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319796 cd02612 HAD_PGPPase 3 HAD signature motif II [ST] 0 1 1 106 0 -319796 cd02612 HAD_PGPPase 4 HAD signature motif III [KR] 0 1 1 151 0 -319796 cd02612 HAD_PGPPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 173,174,178 0 -319797 cd02616 HAD_PPase 1 active site 0 1 1 0 6,7,8,9,10,102,103,135,159,160,163,164 1 -319797 cd02616 HAD_PPase 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319797 cd02616 HAD_PPase 3 HAD signature motif II [ST] 0 1 1 102 0 -319797 cd02616 HAD_PPase 4 HAD signature motif III [KR] 0 1 1 135 0 -319797 cd02616 HAD_PPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 159,160,164 0 -319798 cd04302 HAD_5NT 1 active site 0 1 1 0 4,5,6,7,8,103,104,138,160,161,164,165 1 -319798 cd04302 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319798 cd04302 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 103 0 -319798 cd04302 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 138 0 -319798 cd04302 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 160,161,165 0 -319799 cd04303 HAD_PGPase 1 active site 0 1 1 0 4,5,6,7,8,101,102,132,154,155,158,159 1 -319799 cd04303 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319799 cd04303 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 101 0 -319799 cd04303 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 132 0 -319799 cd04303 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 154,155,159 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 1 active site 0 1 1 0 4,5,6,7,8,30,31,63,87,88,92,93 1 -319800 cd04305 HAD_Neu5Ac-Pase_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 3 HAD signature motif II [ST] 0 1 1 30 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 4 HAD signature motif III [KR] 0 1 1 63 0 -319800 cd04305 HAD_Neu5Ac-Pase_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 87,88,93 0 -319801 cd04309 HAD_PSP_eu 1 active site 0 1 1 0 5,6,7,8,9,94,95,143,163,164,167,168 1 -319801 cd04309 HAD_PSP_eu 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319801 cd04309 HAD_PSP_eu 3 HAD signature motif II [ST] 0 1 1 94 0 -319801 cd04309 HAD_PSP_eu 4 HAD signature motif III [KR] 0 1 1 143 0 -319801 cd04309 HAD_PSP_eu 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -319802 cd07499 HAD_CBAP 1 active site 0 1 1 0 18,19,20,21,22,86,87,124,138,139,142,143 1 -319802 cd07499 HAD_CBAP 2 HAD signature motif I Dxxx[TV] 0 1 1 18,19,20,21,22 0 -319802 cd07499 HAD_CBAP 3 HAD signature motif II [ST] 0 1 1 86 0 -319802 cd07499 HAD_CBAP 4 HAD signature motif III [KR] 0 1 1 124 0 -319802 cd07499 HAD_CBAP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 138,139,143 0 -319803 cd07500 HAD_PSP 1 active site 0 1 1 0 4,5,6,7,8,92,93,137,159,160,163,164 1 -319803 cd07500 HAD_PSP 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319803 cd07500 HAD_PSP 3 HAD signature motif II [ST] 0 1 1 92 0 -319803 cd07500 HAD_PSP 4 HAD signature motif III [KR] 0 1 1 137 0 -319803 cd07500 HAD_PSP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 159,160,164 0 -319804 cd07501 HAD_MDP-1_like 1 active site 0 1 1 0 6,7,8,9,10,56,57,87,109,110,113,114 1 -319804 cd07501 HAD_MDP-1_like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319804 cd07501 HAD_MDP-1_like 3 HAD signature motif II [ST] 0 1 1 56 0 -319804 cd07501 HAD_MDP-1_like 4 HAD signature motif III [KR] 0 1 1 87 0 -319804 cd07501 HAD_MDP-1_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 109,110,114 0 -319805 cd07502 HAD_PNKP-C 1 active site 0 1 1 0 6,7,8,9,10,62,63,101,120,121,125,126 1 -319805 cd07502 HAD_PNKP-C 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319805 cd07502 HAD_PNKP-C 3 HAD signature motif II [ST] 0 1 1 62 0 -319805 cd07502 HAD_PNKP-C 4 HAD signature motif III [KR] 0 1 1 101 0 -319805 cd07502 HAD_PNKP-C 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 120,121,126 0 -319806 cd07503 HAD_HisB-N 1 active site 0 1 1 0 5,6,7,8,9,47,48,98,122,123,126,127 1 -319806 cd07503 HAD_HisB-N 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319806 cd07503 HAD_HisB-N 3 HAD signature motif II [ST] 0 1 1 47 0 -319806 cd07503 HAD_HisB-N 4 HAD signature motif III [KR] 0 1 1 98 0 -319806 cd07503 HAD_HisB-N 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 122,123,127 0 -319807 cd07504 HAD_5NT 1 active site 0 1 1 0 24,25,26,27,28,139,140,188,212,213,216,217 1 -319807 cd07504 HAD_5NT 2 HAD signature motif I Dxxx[TV] 0 1 1 24,25,26,27,28 0 -319807 cd07504 HAD_5NT 3 HAD signature motif II [ST] 0 1 1 139 0 -319807 cd07504 HAD_5NT 4 HAD signature motif III [KR] 0 1 1 188 0 -319807 cd07504 HAD_5NT 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 212,213,217 0 -319808 cd07505 HAD_BPGM-like 1 active site 0 1 1 0 4,5,6,7,8,63,64,97,121,122,125,126 1 -319808 cd07505 HAD_BPGM-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319808 cd07505 HAD_BPGM-like 3 HAD signature motif II [ST] 0 1 1 63 0 -319808 cd07505 HAD_BPGM-like 4 HAD signature motif III [KR] 0 1 1 97 0 -319808 cd07505 HAD_BPGM-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 121,122,126 0 -319788 cd02598 HAD_BPGM 1 active site 0 1 1 0 4,5,6,7,8,71,72,102,126,127,130,131 1 -319788 cd02598 HAD_BPGM 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319788 cd02598 HAD_BPGM 3 HAD signature motif II [ST] 0 1 1 71 0 -319788 cd02598 HAD_BPGM 4 HAD signature motif III [KR] 0 1 1 102 0 -319788 cd02598 HAD_BPGM 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 126,127,131 0 -319828 cd07526 HAD_BPGM_like 1 active site 0 1 1 0 5,6,7,8,9,61,62,95,119,120,123,124 1 -319828 cd07526 HAD_BPGM_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319828 cd07526 HAD_BPGM_like 3 HAD signature motif II [ST] 0 1 1 61 0 -319828 cd07526 HAD_BPGM_like 4 HAD signature motif III [KR] 0 1 1 95 0 -319828 cd07526 HAD_BPGM_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 119,120,124 0 -319829 cd07527 HAD_ScGPP-like 1 active site 0 1 1 0 4,5,6,7,8,99,100,131,155,156,159,160 1 -319829 cd07527 HAD_ScGPP-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319829 cd07527 HAD_ScGPP-like 3 HAD signature motif II [ST] 0 1 1 99 0 -319829 cd07527 HAD_ScGPP-like 4 HAD signature motif III [KR] 0 1 1 131 0 -319829 cd07527 HAD_ScGPP-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 155,156,160 0 -319830 cd07528 HAD_CbbY-like 1 active site 0 1 1 0 4,5,6,7,8,117,118,153,177,178,181,182 1 -319830 cd07528 HAD_CbbY-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319830 cd07528 HAD_CbbY-like 3 HAD signature motif II [ST] 0 1 1 117 0 -319830 cd07528 HAD_CbbY-like 4 HAD signature motif III [KR] 0 1 1 153 0 -319830 cd07528 HAD_CbbY-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 177,178,182 0 -319831 cd07529 HAD_AtGPP-like 1 active site 0 1 1 0 6,7,8,9,10,106,107,143,170,171,174,175 1 -319831 cd07529 HAD_AtGPP-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319831 cd07529 HAD_AtGPP-like 3 HAD signature motif II [ST] 0 1 1 106 0 -319831 cd07529 HAD_AtGPP-like 4 HAD signature motif III [KR] 0 1 1 143 0 -319831 cd07529 HAD_AtGPP-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 170,171,175 0 -319859 cd16423 HAD_BPGM-like 1 active site 0 1 1 0 4,5,6,7,8,66,67,99,123,124,127,128 1 -319859 cd16423 HAD_BPGM-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319859 cd16423 HAD_BPGM-like 3 HAD signature motif II [ST] 0 1 1 66 0 -319859 cd16423 HAD_BPGM-like 4 HAD signature motif III [KR] 0 1 1 99 0 -319859 cd16423 HAD_BPGM-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 123,124,128 0 -319809 cd07506 HAD_like 1 active site 0 1 1 0 4,5,6,7,8,32,33,64,92,93,96,97 1 -319809 cd07506 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319809 cd07506 HAD_like 3 HAD signature motif II [ST] 0 1 1 32 0 -319809 cd07506 HAD_like 4 HAD signature motif III [KR] 0 1 1 64 0 -319809 cd07506 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 92,93,97 0 -319810 cd07507 HAD_Pase 1 active site 0 1 1 0 4,5,6,7,8,38,39,185,209,210,213,214 1 -319810 cd07507 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319810 cd07507 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319810 cd07507 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 185 0 -319810 cd07507 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 209,210,214 0 -319811 cd07508 HAD_Pase_UmpH-like 1 active site 0 1 1 0 4,5,6,7,8,37,38,196,220,221,225,226 1 -319811 cd07508 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319811 cd07508 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 37 0 -319811 cd07508 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 196 0 -319811 cd07508 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 220,221,226 0 -319813 cd07510 HAD_Pase_UmpH-like 1 active site 0 1 1 0 6,7,8,9,10,39,40,203,227,228,232,233 1 -319813 cd07510 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319813 cd07510 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 39 0 -319813 cd07510 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 203 0 -319813 cd07510 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 227,228,233 0 -319832 cd07530 HAD_Pase_UmpH-like 1 active site 0 1 1 0 5,6,7,8,9,38,39,176,200,201,205,206 1 -319832 cd07530 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319832 cd07530 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319832 cd07530 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 176 0 -319832 cd07530 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 200,201,206 0 -319833 cd07531 HAD_Pase_UmpH-like 1 active site 0 1 1 0 5,6,7,8,9,38,39,179,203,204,208,209 1 -319833 cd07531 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319833 cd07531 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319833 cd07531 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 179 0 -319833 cd07531 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 203,204,209 0 -319834 cd07532 HAD_PNPase_UmpH-like 1 active site 0 1 1 0 11,12,13,14,15,44,45,205,229,230,234,235 1 -319834 cd07532 HAD_PNPase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 11,12,13,14,15 0 -319834 cd07532 HAD_PNPase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 44 0 -319834 cd07532 HAD_PNPase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 205 0 -319834 cd07532 HAD_PNPase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 229,230,235 0 -319858 cd16422 HAD_Pase_UmpH-like 1 active site 0 1 1 0 4,5,6,7,8,37,38,176,200,201,205,206 1 -319858 cd16422 HAD_Pase_UmpH-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319858 cd16422 HAD_Pase_UmpH-like 3 HAD signature motif II [ST] 0 1 1 37 0 -319858 cd16422 HAD_Pase_UmpH-like 4 HAD signature motif III [KR] 0 1 1 176 0 -319858 cd16422 HAD_Pase_UmpH-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 200,201,206 0 -319812 cd07509 HAD_PPase 1 active site 0 1 1 0 5,6,7,8,9,38,39,171,195,196,200,201 1 -319812 cd07509 HAD_PPase 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319812 cd07509 HAD_PPase 3 HAD signature motif II [ST] 0 1 1 38 0 -319812 cd07509 HAD_PPase 4 HAD signature motif III [KR] 0 1 1 171 0 -319812 cd07509 HAD_PPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 195,196,201 0 -319814 cd07511 HAD_like 1 active site 0 1 1 0 5,6,7,8,9,38,39,73,106,107,111,112 1 -319814 cd07511 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319814 cd07511 HAD_like 3 HAD signature motif II [ST] 0 1 1 38 0 -319814 cd07511 HAD_like 4 HAD signature motif III [KR] 0 1 1 73 0 -319814 cd07511 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 106,107,112 0 -319815 cd07512 HAD_PGPase 1 active site 0 1 1 0 4,5,6,7,8,108,109,141,165,166,169,170 1 -319815 cd07512 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319815 cd07512 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 108 0 -319815 cd07512 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 141 0 -319815 cd07512 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 165,166,170 0 -319816 cd07514 HAD_Pase 1 active site 0 1 1 0 4,5,6,7,8,38,39,67,89,90,93,94 1 -319816 cd07514 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319816 cd07514 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319816 cd07514 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 67 0 -319816 cd07514 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 89,90,94 0 -319817 cd07515 HAD-like 1 active site 0 1 1 0 4,5,6,7,8,38,39,67,90,91,95,96 1 -319817 cd07515 HAD-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319817 cd07515 HAD-like 3 HAD signature motif II [ST] 0 1 1 38 0 -319817 cd07515 HAD-like 4 HAD signature motif III [KR] 0 1 1 67 0 -319817 cd07515 HAD-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 90,91,96 0 -319818 cd07516 HAD_Pase 1 active site 0 1 1 0 4,5,6,7,8,38,39,183,205,206,209,210 1 -319818 cd07516 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319818 cd07516 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 38 0 -319818 cd07516 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 183 0 -319818 cd07516 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 205,206,210 0 -319819 cd07517 HAD_HPP 1 active site 0 1 1 0 5,6,7,8,9,39,40,141,163,164,167,168 1 -319819 cd07517 HAD_HPP 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319819 cd07517 HAD_HPP 3 HAD signature motif II [ST] 0 1 1 39 0 -319819 cd07517 HAD_HPP 4 HAD signature motif III [KR] 0 1 1 141 0 -319819 cd07517 HAD_HPP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -319820 cd07518 HAD_YbiV-Like 1 active site 0 1 1 0 5,6,7,8,9,40,41,115,137,138,141,142 1 -319820 cd07518 HAD_YbiV-Like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319820 cd07518 HAD_YbiV-Like 3 HAD signature motif II [ST] 0 1 1 40 0 -319820 cd07518 HAD_YbiV-Like 4 HAD signature motif III [KR] 0 1 1 115 0 -319820 cd07518 HAD_YbiV-Like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 137,138,142 0 -319821 cd07519 HAD_PTase 1 active site 0 1 1 0 4,5,6,7,8,35,36,69,86,87,90,91 1 -319821 cd07519 HAD_PTase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319821 cd07519 HAD_PTase 3 HAD signature motif II [ST] 0 1 1 35 0 -319821 cd07519 HAD_PTase 4 HAD signature motif III [KR] 0 1 1 69 0 -319821 cd07519 HAD_PTase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 86,87,91 0 -319822 cd07520 HAD_like 1 active site 0 1 1 0 4,5,6,7,8,79,80,102,125,126,129,130 1 -319822 cd07520 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319822 cd07520 HAD_like 3 HAD signature motif II [ST] 0 1 1 79 0 -319822 cd07520 HAD_like 4 HAD signature motif III [KR] 0 1 1 102 0 -319822 cd07520 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 125,126,130 0 -319823 cd07521 HAD_FCP1-like 1 active site 0 1 1 0 6,7,8,9,10,62,63,101,117,118,121,122 1 -319823 cd07521 HAD_FCP1-like 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319823 cd07521 HAD_FCP1-like 3 HAD signature motif II [ST] 0 1 1 62 0 -319823 cd07521 HAD_FCP1-like 4 HAD signature motif III [KR] 0 1 1 101 0 -319823 cd07521 HAD_FCP1-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 117,118,122 0 -319824 cd07522 HAD_cN-II 1 active site 0 1 1 0 16,17,18,19,20,205,206,243,300,301,305,306 1 -319824 cd07522 HAD_cN-II 2 HAD signature motif I Dxxx[TV] 0 1 1 16,17,18,19,20 0 -319824 cd07522 HAD_cN-II 3 HAD signature motif II [ST] 0 1 1 205 0 -319824 cd07522 HAD_cN-II 4 HAD signature motif III [KR] 0 1 1 243 0 -319824 cd07522 HAD_cN-II 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 300,301,306 0 -319825 cd07523 HAD_YsbA-like 1 active site 0 1 1 0 4,5,6,7,8,97,98,129,153,154,157,158 1 -319825 cd07523 HAD_YsbA-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319825 cd07523 HAD_YsbA-like 3 HAD signature motif II [ST] 0 1 1 97 0 -319825 cd07523 HAD_YsbA-like 4 HAD signature motif III [KR] 0 1 1 129 0 -319825 cd07523 HAD_YsbA-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 153,154,158 0 -319826 cd07524 HAD_Pase 1 active site 0 1 1 0 4,5,6,7,8,94,95,145,163,164,167,168 1 -319826 cd07524 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319826 cd07524 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 94 0 -319826 cd07524 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 145 0 -319826 cd07524 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 163,164,168 0 -319827 cd07525 HAD_like 1 active site 0 1 1 0 5,6,7,8,9,38,39,182,207,208,212,213 1 -319827 cd07525 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 5,6,7,8,9 0 -319827 cd07525 HAD_like 3 HAD signature motif II [ST] 0 1 1 38 0 -319827 cd07525 HAD_like 4 HAD signature motif III [KR] 0 1 1 182 0 -319827 cd07525 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 207,208,213 0 -319835 cd07533 HAD_like 1 active site 0 1 1 0 4,5,6,7,8,106,107,138,162,163,166,167 1 -319835 cd07533 HAD_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319835 cd07533 HAD_like 3 HAD signature motif II [ST] 0 1 1 106 0 -319835 cd07533 HAD_like 4 HAD signature motif III [KR] 0 1 1 138 0 -319835 cd07533 HAD_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 162,163,167 0 -319836 cd07534 HAD_CAP 1 active site 0 1 1 0 36,37,38,39,40,96,97,132,150,151,154,155 1 -319836 cd07534 HAD_CAP 2 HAD signature motif I Dxxx[TV] 0 1 1 36,37,38,39,40 0 -319836 cd07534 HAD_CAP 3 HAD signature motif II [ST] 0 1 1 96 0 -319836 cd07534 HAD_CAP 4 HAD signature motif III [KR] 0 1 1 132 0 -319836 cd07534 HAD_CAP 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,155 0 -319852 cd16415 HAD_dREG-2_like 1 active site 0 1 1 0 4,5,6,7,8,29,30,61,85,86,90,91 1 -319852 cd16415 HAD_dREG-2_like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319852 cd16415 HAD_dREG-2_like 3 HAD signature motif II [ST] 0 1 1 29 0 -319852 cd16415 HAD_dREG-2_like 4 HAD signature motif III [KR] 0 1 1 61 0 -319852 cd16415 HAD_dREG-2_like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 85,86,91 0 -319853 cd16416 HAD_BsYqeG-like 1 active site 0 1 1 0 4,5,6,7,8,39,40,63,87,88,92,93 1 -319853 cd16416 HAD_BsYqeG-like 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319853 cd16416 HAD_BsYqeG-like 3 HAD signature motif II [ST] 0 1 1 39 0 -319853 cd16416 HAD_BsYqeG-like 4 HAD signature motif III [KR] 0 1 1 63 0 -319853 cd16416 HAD_BsYqeG-like 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 87,88,93 0 -319854 cd16417 HAD_PGPase 1 active site 0 1 1 0 4,5,6,7,8,109,110,142,166,167,170,171 1 -319854 cd16417 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319854 cd16417 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 109 0 -319854 cd16417 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 142 0 -319854 cd16417 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 166,167,171 0 -319855 cd16418 HAD_Pase 1 active site 0 1 1 0 4,5,6,7,8,30,31,86,111,112,115,116 1 -319855 cd16418 HAD_Pase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319855 cd16418 HAD_Pase 3 HAD signature motif II [ST] 0 1 1 30 0 -319855 cd16418 HAD_Pase 4 HAD signature motif III [KR] 0 1 1 86 0 -319855 cd16418 HAD_Pase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 111,112,116 0 -319856 cd16419 HAD_SPS 1 active site 0 1 1 0 6,7,8,9,10,41,42,132,150,151,155,156 1 -319856 cd16419 HAD_SPS 2 HAD signature motif I Dxxx[TV] 0 1 1 6,7,8,9,10 0 -319856 cd16419 HAD_SPS 3 HAD signature motif II [ST] 0 1 1 41 0 -319856 cd16419 HAD_SPS 4 HAD signature motif III [KR] 0 1 1 132 0 -319856 cd16419 HAD_SPS 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 150,151,156 0 -319857 cd16421 HAD_PGPase 1 active site 0 1 1 0 4,5,6,7,8,29,30,61,85,86,89,90 1 -319857 cd16421 HAD_PGPase 2 HAD signature motif I Dxxx[TV] 0 1 1 4,5,6,7,8 0 -319857 cd16421 HAD_PGPase 3 HAD signature motif II [ST] 0 1 1 29 0 -319857 cd16421 HAD_PGPase 4 HAD signature motif III [KR] 0 1 1 61 0 -319857 cd16421 HAD_PGPase 5 HAD signature motif IV [GSTDE][DSEN][DSENVG] 0 1 1 85,86,90 0 -238714 cd01433 Ribosomal_L16_L10e 1 23S rRNA interface 0 1 1 0 0,2,3,6,22,23,26,29,33,36,43,44,45,47,49,53,54,61,62,63,64,65,79,98,99,102,103 3 -238714 cd01433 Ribosomal_L16_L10e 2 5S rRNA interface 0 1 1 0 15,16 3 -238714 cd01433 Ribosomal_L16_L10e 3 L25 interface 0 1 1 0 36,40,41,43,85 2 -238714 cd01433 Ribosomal_L16_L10e 4 L27 interface 0 1 1 0 59,60,63,64 2 -238714 cd01433 Ribosomal_L16_L10e 5 putative antibiotic binding site 0 0 1 1 27,28,29,32,33 5 -238760 cd01483 E1_enzyme_family 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,53,95,101 5 -238760 cd01483 E1_enzyme_family 2 substrate interface 0 1 1 0 9,102,120,121,127 5 -238384 cd00755 YgdL_like 1 ATP binding site 0 1 1 0 17,19,21,41,43,52,65,108,114 5 -238384 cd00755 YgdL_like 2 substrate interface 0 1 1 0 21,115,133,134,140 5 -238386 cd00757 ThiF_MoeB_HesA_family 1 ATP binding site 0 1 1 0 27,29,31,51,53,62,75,117,123 5 -238386 cd00757 ThiF_MoeB_HesA_family 2 substrate interface 0 1 1 0 31,124,142,143,149 5 -238761 cd01484 E1-2_like 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,53,97,103 5 -238761 cd01484 E1-2_like 2 substrate interface 0 1 1 0 9,104,122,123,129 5 -238765 cd01488 Uba3_RUB 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,53,94,100 5 -238765 cd01488 Uba3_RUB 2 substrate interface 0 1 1 0 9,101,127,128,134 5 -238766 cd01489 Uba2_SUMO 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,53,96,102 5 -238766 cd01489 Uba2_SUMO 2 substrate interface 0 1 1 0 9,103,121,122,128 5 -238767 cd01490 Ube1_repeat2 1 ATP binding site 0 1 1 0 5,7,9,34,36,45,58,104,110 5 -238767 cd01490 Ube1_repeat2 2 substrate interface 0 1 1 0 9,111,129,130,136 5 -238762 cd01485 E1-1_like 1 ATP binding site 0 1 1 0 25,27,29,49,51,60,75,119,125 5 -238762 cd01485 E1-1_like 2 substrate interface 0 1 1 0 29,126,144,145,151 5 -238768 cd01491 Ube1_repeat1 1 ATP binding site 0 1 1 0 25,27,29,49,51,60,73,111,117 5 -238768 cd01491 Ube1_repeat1 2 substrate interface 0 1 1 0 29,118,136,137,143 5 -238769 cd01492 Aos1_SUMO 1 ATP binding site 0 1 1 0 27,29,31,51,53,62,75,116,122 5 -238769 cd01492 Aos1_SUMO 2 substrate interface 0 1 1 0 31,123,141,142,148 5 -238770 cd01493 APPBP1_RUB 1 ATP binding site 0 1 1 0 26,28,30,50,52,61,74,118,124 5 -238770 cd01493 APPBP1_RUB 2 substrate interface 0 1 1 0 30,125,143,144,150 5 -238763 cd01486 Apg7 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,55,117,120 5 -238763 cd01486 Apg7 2 substrate interface 0 1 1 0 9,121,139,140,146 5 -238764 cd01487 E1_ThiF_like 1 ATP binding site 0 1 1 0 5,7,9,29,31,40,52,94,100 5 -238764 cd01487 E1_ThiF_like 2 substrate interface 0 1 1 0 9,101,120,121,127 5 -99742 cd01494 AAT_I 1 catalytic residue 0 1 1 1 156 1 -99742 cd01494 AAT_I 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 25,26,29,98,127,130,153,156 5 -99733 cd00378 SHMT 1 catalytic residue 0 1 1 1 223 1 -99733 cd00378 SHMT 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 89,90,93,167,194,197,220,223 5 -99734 cd00609 AAT_like 1 catalytic residue 0 1 1 1 203 1 -99734 cd00609 AAT_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 67,68,71,138,170,173,200,203 5 -99735 cd00610 OAT_like 1 catalytic residue 0 1 1 1 259 1 -99735 cd00610 OAT_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 104,105,108,197,230,233,258,259 5 -99736 cd00611 PSAT_like 1 catalytic residue 0 1 1 1 192 1 -99736 cd00611 PSAT_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 71,72,75,144,168,171,189,192 5 -99737 cd00613 GDC-P 1 catalytic residue 0 1 1 1 220 1 -99737 cd00613 GDC-P 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 90,91,94,165,194,197,217,220 5 -99738 cd00614 CGS_like 1 catalytic residue 0 1 1 1 185 1 -99738 cd00614 CGS_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 63,64,67,131,160,163,182,185 5 -99739 cd00615 Orn_deC_like 1 catalytic residue 0 1 1 1 219 1 -99739 cd00615 Orn_deC_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 83,84,87,160,188,191,216,219 5 -99740 cd00616 AHBA_syn 1 catalytic residue 0 1 1 1 167 1 -99740 cd00616 AHBA_syn 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 41,42,45,112,138,141,162,167 5 -99741 cd00617 Tnase_like 1 catalytic residue 0 1 1 1 234 1 -99741 cd00617 Tnase_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 76,77,80,158,191,194,231,234 5 -99743 cd06450 DOPA_deC_like 1 catalytic residue 0 1 1 1 215 1 -99743 cd06450 DOPA_deC_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 65,66,69,154,183,186,212,215 5 -99744 cd06451 AGAT_like 1 catalytic residue 0 1 1 1 185 1 -99744 cd06451 AGAT_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 58,59,62,130,159,162,182,185 5 -99745 cd06452 SepCysS 1 catalytic residue 0 1 1 1 200 1 -99745 cd06452 SepCysS 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 67,68,71,145,174,177,197,200 5 -99746 cd06453 SufS_like 1 catalytic residue 0 1 1 1 200 1 -99746 cd06453 SufS_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 69,70,73,146,174,177,197,200 5 -99747 cd06454 KBL_like 1 catalytic residue 0 1 1 1 201 1 -99747 cd06454 KBL_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 69,70,73,138,167,170,198,201 5 -99748 cd06502 TA_like 1 catalytic residue 0 1 1 1 195 1 -99748 cd06502 TA_like 2 pyridoxal 5'-phosphate binding pocket 0 1 0 0 55,56,59,133,164,167,192,195 5 -238794 cd01553 EPT_RTPC-like 1 putative active site 0 1 1 1 13,96,176,199 1 -238183 cd00295 RNA_Cyclase 1 putative active site 0 1 1 1 13,96,291,314 1 -238446 cd00874 RNA_Cyclase_Class_II 1 putative active site 0 1 1 1 13,96,283,305 1 -238447 cd00875 RNA_Cyclase_Class_I 1 putative active site 0 1 1 1 13,96,293,317 1 -238795 cd01554 EPT-like 1 putative active site 0 1 1 1 229,299,369,396 1 -238796 cd01555 UdpNAET 1 putative active site 0 1 1 1 226,298,361,388 1 -238797 cd01556 EPSP_synthase 1 putative active site 0 1 1 1 230,299,370,397 1 -176466 cd01594 Lyase_I_like 1 tetramer interface 0 1 1 0 104,111,114,115,118,123,133,134,137,140,141,174,177,180,183,184 2 -176460 cd00332 PAL-HAL 1 tetramer interface 0 1 1 0 275,282,285,286,289,327,337,338,341,344,345,378,381,384,387,388 2 -176461 cd01334 Lyase_I 1 tetramer interface 0 1 1 0 141,148,151,152,155,209,219,220,223,226,227,259,262,265,268,269 2 -176463 cd01359 Argininosuccinate_lyase 1 tetramer interface 0 1 1 0 148,155,158,159,162,214,224,225,228,231,232,264,267,270,273,274 2 -176467 cd01595 Adenylsuccinate_lyase_like 1 tetramer interface 0 1 1 0 150,157,160,161,164,218,228,229,232,235,236,269,272,275,278,279 2 -176464 cd01360 Adenylsuccinate_lyase_1 1 tetramer interface 0 1 1 0 152,159,162,163,166,217,227,228,231,234,235,268,271,274,277,278 2 -176469 cd01597 pCLME 1 tetramer interface 0 1 1 0 160,167,170,171,174,227,237,238,241,244,245,278,281,284,287,288 2 -176470 cd01598 PurB 1 tetramer interface 0 1 1 0 163,170,173,174,177,233,243,244,247,250,251,282,285,288,291,292 2 -176471 cd03302 Adenylsuccinate_lyase_2 1 tetramer interface 0 1 1 0 157,164,167,168,171,233,243,244,247,250,251,282,285,288,291,292 2 -176468 cd01596 Aspartase_like 1 tetramer interface 0 1 1 0 197,204,207,208,211,270,280,281,284,287,288,322,325,328,331,332 2 -176462 cd01357 Aspartase 1 tetramer interface 0 1 1 0 197,204,207,208,211,270,280,281,284,287,288,322,325,328,331,332 2 -176465 cd01362 Fumarase_classII 1 tetramer interface 0 1 1 0 198,205,208,209,212,271,281,282,285,288,289,323,326,329,332,333 2 -238813 cd01610 PAP2_like 1 active site 0 1 1 0 22,29,54,55,56,95,101,105 1 -239475 cd03380 PAP2_like_1 1 active site 0 1 1 0 112,119,146,147,148,181,187,191 1 -239491 cd03397 PAP2_acid_phosphatase 1 active site 0 1 1 0 120,127,153,154,155,188,194,198 1 -239492 cd03398 PAP2_haloperoxidase 1 active site 0 1 1 0 105,112,148,149,150,204,210,214 1 -239476 cd03381 PAP2_glucose_6_phosphatase 1 active site 0 1 1 0 34,41,75,76,77,124,130,134 1 -239477 cd03382 PAP2_dolichyldiphosphatase 1 active site 0 1 1 0 61,68,84,85,86,132,138,142 1 -239478 cd03383 PAP2_diacylglycerolkinase 1 active site 0 1 1 0 27,34,42,43,44,79,85,89 1 -239479 cd03384 PAP2_wunen 1 active site 0 1 1 0 23,30,75,76,77,123,129,133 1 -239480 cd03385 PAP2_BcrC_like 1 active site 0 1 1 0 53,59,80,81,82,116,122,126 1 -239481 cd03386 PAP2_Aur1_like 1 active site 0 1 1 0 74,82,120,121,122,156,162,166 1 -239482 cd03388 PAP2_SPPase1 1 active site 0 1 1 0 52,59,81,82,83,124,130,134 1 -239483 cd03389 PAP2_lipid_A_1_phosphatase 1 active site 0 1 1 0 88,95,121,122,123,156,162,166 1 -239484 cd03390 PAP2_containing_1_like 1 active site 0 1 1 0 65,72,113,114,115,163,169,173 1 -239485 cd03391 PAP2_containing_2_like 1 active site 0 1 1 0 66,73,94,95,96,132,138,142 1 -239486 cd03392 PAP2_like_2 1 active site 0 1 1 0 81,88,104,105,106,149,155,159 1 -239487 cd03393 PAP2_like_3 1 active site 0 1 1 0 32,39,61,62,63,98,104,108 1 -239488 cd03394 PAP2_like_5 1 active site 0 1 1 0 22,29,42,43,44,79,85,89 1 -239489 cd03395 PAP2_like_4 1 active site 0 1 1 0 76,83,107,108,109,144,150,154 1 -239490 cd03396 PAP2_like_6 1 active site 0 1 1 0 86,93,125,126,127,167,173,177 1 -133473 cd01614 EutN_CcmL 1 central pore 0 1 1 0 1,27,30,39,63,69,74 0 -133473 cd01614 EutN_CcmL 2 Hexamer/Pentamer interface 0 1 1 0 0,2,6,7,8,10,11,12,13,41,46,57,63,73,74,75,78,80,82 2 -119367 cd01615 CIDE_N 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,47,49,50,55,56,75,77 2 -119368 cd06535 CIDE_N_CAD 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,47,49,50,54,55,74,76 2 -119369 cd06536 CIDE_N_ICAD 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,49,51,52,57,58,77,79 2 -119370 cd06537 CIDE_N_B 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,46,48,49,54,55,74,76 2 -119371 cd06538 CIDE_N_FSP27 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,46,48,49,54,55,74,76 2 -119372 cd06539 CIDE_N_A 1 putative heterodimer interaction sites 0 1 1 1 5,14,15,17,18,28,32,47,49,50,55,56,75,77 2 -238814 cd01636 FIG 1 active site 0 1 1 0 40,63,64,83,84,85,86,87,165 1 -238774 cd01516 FBPase_glpX 1 active site 0 1 1 0 31,54,55,83,84,85,86,87,211 1 -238815 cd01637 IMPase_like 1 active site 0 1 1 0 38,61,62,79,80,81,82,83,203 1 -238214 cd00354 FBPase 1 active site 0 1 1 0 57,80,81,101,102,103,104,105,263 1 -238773 cd01515 Arch_FBPase_1 1 active site 0 1 1 0 41,63,64,81,82,83,84,85,206 1 -238775 cd01517 PAP_phosphatase 1 active site 0 1 1 0 41,64,65,77,78,79,80,81,219 1 -238816 cd01638 CysQ 1 active site 0 1 1 0 38,61,62,79,80,81,82,83,204 1 -238817 cd01639 IMPase 1 active site 0 1 1 0 40,63,64,80,81,82,83,84,209 1 -238818 cd01640 IPPase 1 active site 0 1 1 0 45,68,69,111,112,113,114,115,241 1 -238819 cd01641 Bacterial_IMPase_like_1 1 active site 0 1 1 0 38,61,62,77,78,79,80,81,204 1 -238820 cd01642 Arch_FBPase_2 1 active site 0 1 1 0 39,62,63,79,80,81,82,83,206 1 -238821 cd01643 Bacterial_IMPase_like_2 1 active site 0 1 1 0 37,60,61,76,77,78,79,80,200 1 -132836 cd01819 Patatin_and_cPLA2 1 active site 0 0 1 1 5,6,8,35,129 1 -132836 cd01819 Patatin_and_cPLA2 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132835 cd00147 cPLA2_like 1 active site 0 0 1 1 50,51,53,81,292 1 -132835 cd00147 cPLA2_like 2 nucleophile elbow 0 0 1 1 79,80,81,82,83 0 -132839 cd07200 cPLA2_Grp-IVA 1 active site 0 0 1 1 52,53,55,83,326 1 -132839 cd07200 cPLA2_Grp-IVA 2 nucleophile elbow 0 0 1 1 81,82,83,84,85 0 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF 1 active site 0 0 1 1 61,62,64,92,376 1 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF 2 nucleophile elbow 0 0 1 1 90,91,92,93,94 0 -132841 cd07202 cPLA2_Grp-IVC 1 active site 0 0 1 1 47,48,50,78,287 1 -132841 cd07202 cPLA2_Grp-IVC 2 nucleophile elbow 0 0 1 1 76,77,78,79,80 0 -132842 cd07203 cPLA2_Fungal_PLB 1 active site 0 0 1 1 71,72,74,112,361 1 -132842 cd07203 cPLA2_Fungal_PLB 2 nucleophile elbow 0 0 1 1 110,111,112,113,114 0 -132837 cd07198 Patatin 1 active site 0 0 1 1 5,6,8,33,151 1 -132837 cd07198 Patatin 2 nucleophile elbow 0 0 1 1 31,32,33,34,35 0 -132843 cd07204 Pat_PNPLA_like 1 active site 0 0 1 1 6,7,9,38,157 1 -132843 cd07204 Pat_PNPLA_like 2 nucleophile elbow 0 0 1 1 36,37,38,39,40 0 -132857 cd07218 Pat_iPLA2 1 active site 0 0 1 1 7,8,10,37,156 1 -132857 cd07218 Pat_iPLA2 2 nucleophile elbow 0 0 1 1 35,36,37,38,39 0 -132858 cd07219 Pat_PNPLA1 1 active site 0 0 1 1 19,20,22,51,170 1 -132858 cd07219 Pat_PNPLA1 2 nucleophile elbow 0 0 1 1 49,50,51,52,53 0 -132859 cd07220 Pat_PNPLA2 1 active site 0 0 1 1 11,12,14,43,162 1 -132859 cd07220 Pat_PNPLA2 2 nucleophile elbow 0 0 1 1 41,42,43,44,45 0 -132860 cd07221 Pat_PNPLA3 1 active site 0 0 1 1 7,8,10,39,158 1 -132860 cd07221 Pat_PNPLA3 2 nucleophile elbow 0 0 1 1 37,38,39,40,41 0 -132861 cd07222 Pat_PNPLA4 1 active site 0 0 1 1 6,7,9,38,158 1 -132861 cd07222 Pat_PNPLA4 2 nucleophile elbow 0 0 1 1 36,37,38,39,40 0 -132862 cd07223 Pat_PNPLA5-mammals 1 active site 0 0 1 1 16,17,19,48,167 1 -132862 cd07223 Pat_PNPLA5-mammals 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -132863 cd07224 Pat_like 1 active site 0 0 1 1 6,7,9,36,153 1 -132863 cd07224 Pat_like 2 nucleophile elbow 0 0 1 1 34,35,36,37,38 0 -132844 cd07205 Pat_PNPLA6_PNPLA7_NTE1_like 1 active site 0 0 1 1 7,8,10,35,149 1 -132844 cd07205 Pat_PNPLA6_PNPLA7_NTE1_like 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132864 cd07225 Pat_PNPLA6_PNPLA7 1 active site 0 0 1 1 22,23,25,50,170 1 -132864 cd07225 Pat_PNPLA6_PNPLA7 2 nucleophile elbow 0 0 1 1 48,49,50,51,52 0 -132865 cd07227 Pat_Fungal_NTE1 1 active site 0 0 1 1 17,18,20,45,163 1 -132865 cd07227 Pat_Fungal_NTE1 2 nucleophile elbow 0 0 1 1 43,44,45,46,47 0 -132866 cd07228 Pat_NTE_like_bacteria 1 active site 0 0 1 1 7,8,10,35,149 1 -132866 cd07228 Pat_NTE_like_bacteria 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132845 cd07206 Pat_TGL3-4-5_SDP1 1 active site 0 0 1 1 76,77,79,104,203 1 -132845 cd07206 Pat_TGL3-4-5_SDP1 2 nucleophile elbow 0 0 1 1 102,103,104,105,106 0 -132867 cd07229 Pat_TGL3_like 1 active site 0 0 1 1 90,91,93,118,284 1 -132867 cd07229 Pat_TGL3_like 2 nucleophile elbow 0 0 1 1 116,117,118,119,120 0 -132868 cd07230 Pat_TGL4-5_like 1 active site 0 0 1 1 80,81,83,108,259 1 -132868 cd07230 Pat_TGL4-5_like 2 nucleophile elbow 0 0 1 1 106,107,108,109,110 0 -132869 cd07231 Pat_SDP1-like 1 active site 0 0 1 1 75,76,78,103,215 1 -132869 cd07231 Pat_SDP1-like 2 nucleophile elbow 0 0 1 1 101,102,103,104,105 0 -132870 cd07232 Pat_PLPL 1 active site 0 0 1 1 74,75,77,102,248 1 -132870 cd07232 Pat_PLPL 2 nucleophile elbow 0 0 1 1 100,101,102,103,104 0 -132846 cd07207 Pat_ExoU_VipD_like 1 active site 0 0 1 1 6,7,9,34,174 1 -132846 cd07207 Pat_ExoU_VipD_like 2 nucleophile elbow 0 0 1 1 32,33,34,35,36 0 -132847 cd07208 Pat_hypo_Ecoli_yjju_like 1 active site 0 0 1 1 5,6,8,34,155 1 -132847 cd07208 Pat_hypo_Ecoli_yjju_like 2 nucleophile elbow 0 0 1 1 32,33,34,35,36 0 -132848 cd07209 Pat_hypo_Ecoli_Z1214_like 1 active site 0 0 1 1 5,6,8,33,139 1 -132848 cd07209 Pat_hypo_Ecoli_Z1214_like 2 nucleophile elbow 0 0 1 1 31,32,33,34,35 0 -132849 cd07210 Pat_hypo_W_succinogenes_WS1459_like 1 active site 0 0 1 1 7,8,10,35,149 1 -132849 cd07210 Pat_hypo_W_succinogenes_WS1459_like 2 nucleophile elbow 0 0 1 1 33,34,35,36,37 0 -132838 cd07199 Pat17_PNPLA8_PNPLA9_like 1 active site 0 0 1 1 6,7,9,41,136 1 -132838 cd07199 Pat17_PNPLA8_PNPLA9_like 2 nucleophile elbow 0 0 1 1 39,40,41,42,43 0 -132850 cd07211 Pat_PNPLA8 1 active site 0 0 1 1 15,16,18,48,192 1 -132850 cd07211 Pat_PNPLA8 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -132851 cd07212 Pat_PNPLA9 1 active site 0 0 1 1 6,7,9,39,170 1 -132851 cd07212 Pat_PNPLA9 2 nucleophile elbow 0 0 1 1 37,38,39,40,41 0 -132852 cd07213 Pat17_PNPLA8_PNPLA9_like1 1 active site 0 0 1 1 9,10,12,41,169 1 -132852 cd07213 Pat17_PNPLA8_PNPLA9_like1 2 nucleophile elbow 0 0 1 1 39,40,41,42,43 0 -132853 cd07214 Pat17_isozyme_like 1 active site 0 0 1 1 11,12,14,50,199 1 -132853 cd07214 Pat17_isozyme_like 2 nucleophile elbow 0 0 1 1 48,49,50,51,52 0 -132854 cd07215 Pat17_PNPLA8_PNPLA9_like2 1 active site 0 0 1 1 7,8,10,47,189 1 -132854 cd07215 Pat17_PNPLA8_PNPLA9_like2 2 nucleophile elbow 0 0 1 1 45,46,47,48,49 0 -132855 cd07216 Pat17_PNPLA8_PNPLA9_like3 1 active site 0 0 1 1 8,9,11,49,193 1 -132855 cd07216 Pat17_PNPLA8_PNPLA9_like3 2 nucleophile elbow 0 0 1 1 47,48,49,50,51 0 -132856 cd07217 Pat17_PNPLA8_PNPLA9_like4 1 active site 0 0 1 1 8,9,11,48,191 1 -132856 cd07217 Pat17_PNPLA8_PNPLA9_like4 2 nucleophile elbow 0 0 1 1 46,47,48,49,50 0 -206746 cd01849 YlqF_related_GTPase 1 GTP/Mg2+ binding site 0 1 1 0 35,36,38,39,64,65,99,100,101,102,103,104,105,144 5 -206746 cd01849 YlqF_related_GTPase 2 G1 box 0 0 1 1 97,98,99,100,101,102,103,104 0 -206746 cd01849 YlqF_related_GTPase 3 G2 box 0 0 1 1 125 0 -206746 cd01849 YlqF_related_GTPase 4 G3 box 0 0 1 1 141,142,143,144 0 -206746 cd01849 YlqF_related_GTPase 5 G4 box 0 0 1 1 35,36,37,38 0 -206746 cd01849 YlqF_related_GTPase 6 G5 box 0 0 1 1 64,65,66 0 -206746 cd01849 YlqF_related_GTPase 7 Switch I region 0 0 1 1 122,123,124,125,126,127,128,129 0 -206746 cd01849 YlqF_related_GTPase 8 Switch II region 0 0 1 1 143,144,145 0 -206747 cd01854 YjeQ_EngC 1 GTP/Mg2+ binding site 0 1 1 0 40,41,43,44,68,69,93,94,95,96,97,98,99,145 5 -206747 cd01854 YjeQ_EngC 2 G1 box 0 0 1 1 91,92,93,94,95,96,97,98 0 -206747 cd01854 YjeQ_EngC 3 G2 box 0 0 1 1 126 0 -206747 cd01854 YjeQ_EngC 4 G3 box 0 0 1 1 142,143,144,145 0 -206747 cd01854 YjeQ_EngC 5 G4 box 0 0 1 1 40,41,42,43 0 -206747 cd01854 YjeQ_EngC 6 G5 box 0 0 1 1 68,69,70 0 -206747 cd01854 YjeQ_EngC 7 Switch I region 0 0 1 1 123,124,125,126,127,128,129,130 0 -206747 cd01854 YjeQ_EngC 8 Switch II region 0 0 1 1 144,145,146 0 -206748 cd01855 YqeH 1 GTP/Mg2+ binding site 0 1 1 0 67,68,70,71,103,104,133,134,135,136,137,138,139,189 5 -206748 cd01855 YqeH 2 G1 box 0 0 1 1 131,132,133,134,135,136,137,138 0 -206748 cd01855 YqeH 3 G2 box 0 0 1 1 170 0 -206748 cd01855 YqeH 4 G3 box 0 0 1 1 186,187,188,189 0 -206748 cd01855 YqeH 5 G4 box 0 0 1 1 67,68,69,70 0 -206748 cd01855 YqeH 6 G5 box 0 0 1 1 103,104,105 0 -206748 cd01855 YqeH 7 Switch I region 0 0 1 1 167,168,169,170,171,172,173,174 0 -206748 cd01855 YqeH 8 Switch II region 0 0 1 1 188,189,190 0 -206749 cd01856 YlqF 1 GTP/Mg2+ binding site 0 1 1 0 53,54,56,57,81,82,123,124,125,126,127,128,129,168 5 -206749 cd01856 YlqF 2 G1 box 0 0 1 1 121,122,123,124,125,126,127,128 0 -206749 cd01856 YlqF 3 G2 box 0 0 1 1 149 0 -206749 cd01856 YlqF 4 G3 box 0 0 1 1 165,166,167,168 0 -206749 cd01856 YlqF 5 G4 box 0 0 1 1 53,54,55,56 0 -206749 cd01856 YlqF 6 G5 box 0 0 1 1 81,82,83 0 -206749 cd01856 YlqF 7 Switch I region 0 0 1 1 146,147,148,149,150,151,152,153 0 -206749 cd01856 YlqF 8 Switch II region 0 0 1 1 167,168,169 0 -206750 cd01857 HSR1_MMR1 1 GTP/Mg2+ binding site 0 1 1 0 49,50,52,53,77,78,90,91,92,93,94,95,96,135 5 -206750 cd01857 HSR1_MMR1 2 G1 box 0 0 1 1 88,89,90,91,92,93,94,95 0 -206750 cd01857 HSR1_MMR1 3 G2 box 0 0 1 1 116 0 -206750 cd01857 HSR1_MMR1 4 G3 box 0 0 1 1 132,133,134,135 0 -206750 cd01857 HSR1_MMR1 5 G4 box 0 0 1 1 49,50,51,52 0 -206750 cd01857 HSR1_MMR1 6 G5 box 0 0 1 1 77,78,79 0 -206750 cd01857 HSR1_MMR1 7 Switch I region 0 0 1 1 113,114,115,116,117,118,119,120 0 -206750 cd01857 HSR1_MMR1 8 Switch II region 0 0 1 1 134,135,136 0 -206751 cd01858 NGP_1 1 GTP/Mg2+ binding site 0 1 1 0 46,47,49,50,75,76,110,111,112,113,114,115,116,155 5 -206751 cd01858 NGP_1 2 G1 box 0 0 1 1 108,109,110,111,112,113,114,115 0 -206751 cd01858 NGP_1 3 G2 box 0 0 1 1 136 0 -206751 cd01858 NGP_1 4 G3 box 0 0 1 1 152,153,154,155 0 -206751 cd01858 NGP_1 5 G4 box 0 0 1 1 46,47,48,49 0 -206751 cd01858 NGP_1 6 G5 box 0 0 1 1 75,76,77 0 -206751 cd01858 NGP_1 7 Switch I region 0 0 1 1 133,134,135,136,137,138,139,140 0 -206751 cd01858 NGP_1 8 Switch II region 0 0 1 1 154,155,156 0 -206752 cd01859 MJ1464 1 GTP/Mg2+ binding site 0 1 1 0 47,48,50,51,75,76,107,108,109,110,111,112,113,155 5 -206752 cd01859 MJ1464 2 G1 box 0 0 1 1 105,106,107,108,109,110,111,112 0 -206752 cd01859 MJ1464 3 G2 box 0 0 1 1 136 0 -206752 cd01859 MJ1464 4 G3 box 0 0 1 1 152,153,154,155 0 -206752 cd01859 MJ1464 5 G4 box 0 0 1 1 47,48,49,50 0 -206752 cd01859 MJ1464 6 G5 box 0 0 1 1 75,76,77 0 -206752 cd01859 MJ1464 7 Switch I region 0 0 1 1 133,134,135,136,137,138,139,140 0 -206752 cd01859 MJ1464 8 Switch II region 0 0 1 1 154,155,156 0 -206753 cd04178 Nucleostemin_like 1 GTP/Mg2+ binding site 0 1 1 0 37,38,40,41,66,67,124,125,126,127,128,129,130,169 5 -206753 cd04178 Nucleostemin_like 2 G1 box 0 0 1 1 122,123,124,125,126,127,128,129 0 -206753 cd04178 Nucleostemin_like 3 G2 box 0 0 1 1 150 0 -206753 cd04178 Nucleostemin_like 4 G3 box 0 0 1 1 166,167,168,169 0 -206753 cd04178 Nucleostemin_like 5 G4 box 0 0 1 1 37,38,39,40 0 -206753 cd04178 Nucleostemin_like 6 G5 box 0 0 1 1 66,67,68 0 -206753 cd04178 Nucleostemin_like 7 Switch I region 0 0 1 1 147,148,149,150,151,152,153,154 0 -206753 cd04178 Nucleostemin_like 8 Switch II region 0 0 1 1 168,169,170 0 -238884 cd01901 Ntn_hydrolase 1 active site 0 1 1 0 0,16,18,32 1 -238887 cd01906 proteasome_protease_HslV 1 active site 0 1 1 0 0,16,18,32 1 -238892 cd01911 proteasome_alpha 1 active site 0 1 1 0 27,43,45,58 1 -239718 cd03749 proteasome_alpha_type_1 1 active site 0 1 1 0 27,43,45,56 1 -239719 cd03750 proteasome_alpha_type_2 1 active site 0 1 1 0 27,43,45,58 1 -239720 cd03751 proteasome_alpha_type_3 1 active site 0 1 1 0 30,46,48,61 1 -239721 cd03752 proteasome_alpha_type_4 1 active site 0 1 1 0 29,45,47,61 1 -239722 cd03753 proteasome_alpha_type_5 1 active site 0 1 1 0 27,43,45,58 1 -239723 cd03754 proteasome_alpha_type_6 1 active site 0 1 1 0 29,45,47,60 1 -239724 cd03755 proteasome_alpha_type_7 1 active site 0 1 1 0 27,43,45,58 1 -239725 cd03756 proteasome_alpha_archeal 1 active site 0 1 1 0 28,44,46,59 1 -238893 cd01912 proteasome_beta 1 active site 0 1 1 0 0,16,18,32 1 -239726 cd03757 proteasome_beta_type_1 1 active site 0 1 1 0 8,24,26,40 1 -239727 cd03758 proteasome_beta_type_2 1 active site 0 1 1 0 1,17,19,33 1 -239728 cd03759 proteasome_beta_type_3 1 active site 0 1 1 0 3,19,21,35 1 -239729 cd03760 proteasome_beta_type_4 1 active site 0 1 1 0 2,18,20,34 1 -239730 cd03761 proteasome_beta_type_5 1 active site 0 1 1 0 0,16,18,32 1 -239731 cd03762 proteasome_beta_type_6 1 active site 0 1 1 0 0,16,18,32 1 -239732 cd03763 proteasome_beta_type_7 1 active site 0 1 1 0 0,16,18,32 1 -239733 cd03764 proteasome_beta_archeal 1 active site 0 1 1 0 0,16,18,32 1 -239734 cd03765 proteasome_beta_bacterial 1 active site 0 1 1 0 0,16,18,31 1 -238894 cd01913 protease_HslV 1 active site 0 1 1 0 0,16,18,32 1 -238910 cd01935 Ntn_CGH_like 1 active site 0 1 1 0 0,17,19,64 1 -238303 cd00542 Ntn_PVA 1 active site 0 1 1 0 0,17,19,66 1 -238885 cd01902 Ntn_CGH 1 active site 0 1 1 0 1,18,20,66 1 -238886 cd01903 Ntn_AC_NAAA 1 active site 0 1 1 0 9,26,28,64 1 -239716 cd03747 Ntn_PGA_like 1 active site 0 1 1 0 0,20,22,55 1 -238911 cd01936 Ntn_CA 1 active site 0 1 1 0 61,81,83,117 1 -239717 cd03748 Ntn_PGA 1 active site 0 1 1 0 0,20,22,55 1 -173886 cd01951 lectin_L-type 1 metal binding site 0 1 1 0 107,109,123 4 -173886 cd01951 lectin_L-type 2 carbohydrate binding site 0 1 1 0 72,207 5 -173886 cd01951 lectin_L-type 3 homodimer interaction site 0 1 1 0 0,1,2,3,14,45,47 2 -173886 cd01951 lectin_L-type 4 homotetramer interaction site 0 1 1 1 0,1,3,14,45,48,142,159,170,172,173,185 2 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 1 metal binding site 0 1 1 0 120,122,136 4 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 2 carbohydrate binding site 0 1 1 0 80,218 5 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 3 homodimer interaction site 0 1 1 0 0,1,2,3,13,45,47 2 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA 4 homotetramer interaction site 0 1 1 1 0,1,3,13,45,48,148,168,179,181,182,196 2 -173888 cd06900 lectin_VcfQ 1 metal binding site 0 1 1 0 118,120,144 4 -173888 cd06900 lectin_VcfQ 2 carbohydrate binding site 0 1 1 0 76,239 5 -173888 cd06900 lectin_VcfQ 3 homodimer interaction site 0 1 1 0 0,1,2,3,14,48,50 2 -173888 cd06900 lectin_VcfQ 4 homotetramer interaction site 0 1 1 1 0,1,3,14,48,51,154,183,195,197,198,216 2 -173892 cd07308 lectin_leg-like 1 metal binding site 0 1 1 0 104,106,117 4 -173892 cd07308 lectin_leg-like 2 carbohydrate binding site 0 1 1 0 75,201 5 -173892 cd07308 lectin_leg-like 3 homodimer interaction site 0 1 1 0 4,5,6,7,20,49,51 2 -173892 cd07308 lectin_leg-like 4 homotetramer interaction site 0 1 1 1 4,5,7,20,49,52,141,157,166,168,169,182 2 -173889 cd06901 lectin_VIP36_VIPL 1 metal binding site 0 1 1 0 105,107,122 4 -173889 cd06901 lectin_VIP36_VIPL 2 carbohydrate binding site 0 1 1 0 76,206 5 -173889 cd06901 lectin_VIP36_VIPL 3 homodimer interaction site 0 1 1 0 5,6,7,8,20,49,51 2 -173889 cd06901 lectin_VIP36_VIPL 4 homotetramer interaction site 0 1 1 1 5,6,8,20,49,52,146,162,171,173,174,187 2 -173890 cd06902 lectin_ERGIC-53_ERGL 1 metal binding site 0 1 1 0 106,108,120 4 -173890 cd06902 lectin_ERGIC-53_ERGL 2 carbohydrate binding site 0 1 1 0 77,207 5 -173890 cd06902 lectin_ERGIC-53_ERGL 3 homodimer interaction site 0 1 1 0 6,7,8,9,22,51,53 2 -173890 cd06902 lectin_ERGIC-53_ERGL 4 homotetramer interaction site 0 1 1 1 6,7,9,22,51,54,144,160,169,171,172,188 2 -173891 cd06903 lectin_EMP46_EMP47 1 metal binding site 0 1 1 0 107,109,117 4 -173891 cd06903 lectin_EMP46_EMP47 2 carbohydrate binding site 0 1 1 0 76,197 5 -173891 cd06903 lectin_EMP46_EMP47 3 homodimer interaction site 0 1 1 0 4,5,6,7,21,49,51 2 -173891 cd06903 lectin_EMP46_EMP47 4 homotetramer interaction site 0 1 1 1 4,5,7,21,49,52,140,156,167,169,170,177 2 -349751 cd01983 SIMIBI 1 active site 0 1 1 0 10,11,12,13,14,15,37,43,105,106 1 -349750 cd00477 FTHFS 1 active site 0 1 1 0 52,53,54,55,56,57,79,282,363,364 1 -349754 cd02034 CooC1 1 active site 0 1 1 0 9,10,11,12,13,14,36,137,190,191 1 -349755 cd02035 ArsA 1 active site 0 1 1 0 9,10,11,12,13,14,36,130,194,195 1 -349756 cd02036 MinD 1 active site 0 1 1 0 10,11,12,13,14,15,37,116,169,170 1 -349757 cd02037 Mrp_NBP35 1 active site 0 1 1 0 10,11,12,13,14,15,37,113,168,169 1 -349758 cd02038 FlhG-like 1 active site 0 1 1 0 10,11,12,13,14,15,37,116,170,171 1 -349760 cd02042 ParAB_family 1 active site 0 1 1 0 10,11,12,13,14,15,37,53,112,113 1 -349761 cd02117 NifH-like 1 active site 0 1 1 0 9,10,11,12,13,14,36,122,181,182 1 -349752 cd02032 Bchl-like 1 active site 0 1 1 0 9,10,11,12,13,14,36,121,179,180 1 -349753 cd02033 BchX 1 active site 0 1 1 0 40,41,42,43,44,45,67,153,214,215 1 -349759 cd02040 NifH 1 active site 0 1 1 0 9,10,11,12,13,14,36,120,180,181 1 -349762 cd03108 AdSS 1 active site 0 1 1 0 11,12,13,14,15,16,32,171,280,281 1 -349763 cd03109 DTBS 1 active site 0 1 1 0 10,11,12,13,14,15,37,109,169,170 1 -349764 cd03110 SIMIBI_bact_arch 1 active site 0 1 1 0 9,10,11,12,13,14,32,165,217,218 1 -349765 cd03111 CpaE-like 1 active site 0 1 1 0 10,11,12,13,14,15,38,119,174,175 1 -349766 cd03112 CobW-like 1 active site 0 1 1 0 9,10,11,12,13,14,34,90,154,155 1 -349767 cd03113 CTPS_N 1 active site 0 1 1 0 11,12,13,14,15,16,38,138,209,210 1 -349768 cd03114 MMAA-like 1 active site 0 1 1 0 55,56,57,58,59,60,82,144,191,192 1 -349769 cd03115 SRP_G_like 1 active site 0 1 1 0 9,10,11,12,13,14,36,88,146,147 1 -349782 cd17873 FlhF 1 active site 0 1 1 0 9,10,11,12,13,14,37,83,141,142 1 -349783 cd17874 FtsY 1 active site 0 1 1 0 9,10,11,12,13,14,36,88,152,153 1 -349784 cd17875 SRP54_G 1 active site 0 1 1 0 9,10,11,12,13,14,36,88,146,147 1 -349785 cd17876 SRalpha_C 1 active site 0 1 1 0 9,10,11,12,13,14,36,88,156,157 1 -349786 cd18539 SRP_G 1 active site 0 1 1 0 9,10,11,12,13,14,36,88,146,147 1 -349770 cd03116 MobB 1 active site 0 1 1 0 9,10,11,12,13,14,36,97,132,133 1 -349771 cd05386 TraL 1 active site 0 1 1 0 10,11,12,13,14,15,37,84,150,151 1 -349772 cd05387 BY-kinase 1 active site 0 1 1 0 29,30,31,32,33,34,56,134,188,189 1 -349773 cd05388 CobB_N 1 active site 0 1 1 0 10,11,12,13,14,15,37,84,148,149 1 -349774 cd05389 CobQ_N 1 active site 0 1 1 0 10,11,12,13,14,15,37,129,194,195 1 -349775 cd05390 HypB 1 active site 0 1 1 0 30,31,32,33,34,35,56,107,154,155 1 -349776 cd05540 UreG 1 active site 0 1 1 0 9,10,11,12,13,14,35,96,143,144 1 -349777 cd17868 GPN 1 active site 0 1 1 0 9,10,11,12,13,14,36,102,170,171 1 -349779 cd17870 GPN1 1 active site 0 1 1 0 9,10,11,12,13,14,36,102,169,170 1 -349780 cd17871 GPN2 1 active site 0 1 1 0 9,10,11,12,13,14,36,100,168,169 1 -349781 cd17872 GPN3 1 active site 0 1 1 0 9,10,11,12,13,14,36,100,168,169 1 -349778 cd17869 TadZ-like 1 active site 0 1 1 0 13,14,15,16,17,18,40,125,178,179 1 -238942 cd01984 AANH_like 1 Ligand Binding Site 0 1 0 0 3,4,7,8,9,10,31,33 5 -238182 cd00293 USP_Like 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,32,34 5 -238945 cd01987 USP_OKCHK 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,32,34 5 -238946 cd01988 Na_H_Antiporter_C 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,32,34 5 -238947 cd01989 STK_N 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,32,34 5 -238943 cd01985 ETF 1 Ligand Binding Site 0 1 0 0 4,5,17,18,19,20,41,43 5 -238847 cd01714 ETF_beta 1 Ligand Binding Site 0 1 0 0 4,5,33,34,35,36,58,60 5 -238848 cd01715 ETF_alpha 1 Ligand Binding Site 0 1 0 0 4,5,13,14,15,16,34,36 5 -238944 cd01986 Alpha_ANH_like 1 Ligand Binding Site 0 1 0 0 3,4,7,8,9,10,28,30 5 -238309 cd00553 NAD_synthase 1 Ligand Binding Site 0 1 0 0 28,29,32,33,34,35,55,57 5 -238845 cd01712 ThiI 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,30,32 5 -238846 cd01713 PAPS_reductase 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,32,34 5 -238948 cd01990 Alpha_ANH_like_I 1 Ligand Binding Site 0 1 0 0 3,4,7,8,9,10,29,31 5 -238949 cd01991 Asn_Synthase_B_C 1 Ligand Binding Site 0 1 0 0 20,21,24,25,26,27,48,50 5 -238950 cd01992 PP-ATPase 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,33,35 5 -238951 cd01993 Alpha_ANH_like_II 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,35,37 5 -238952 cd01994 Alpha_ANH_like_IV 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,29,31 5 -238953 cd01995 ExsB 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,33,35 5 -238954 cd01996 Alpha_ANH_like_III 1 Ligand Binding Site 0 1 0 0 6,7,10,11,12,13,32,34 5 -238955 cd01997 GMP_synthase_C 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,29,31 5 -238956 cd01998 tRNA_Me_trans 1 Ligand Binding Site 0 1 0 0 4,5,8,9,10,11,29,31 5 -238957 cd01999 Argininosuccinate_Synthase 1 Ligand Binding Site 0 1 0 0 3,4,7,8,9,10,28,30 5 -238977 cd02019 NK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238026 cd00071 GMPK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238260 cd00464 SK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238713 cd01428 ADK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238835 cd01672 TMPK 1 Active site 0 0 1 1 6,11,12,13,14 1 -238836 cd01673 dNK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238988 cd02030 NDUO42 1 Active site 0 0 1 1 5,10,11,12,13 1 -238978 cd02020 CMPK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238979 cd02021 GntK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238980 cd02022 DPCK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238981 cd02023 UMPK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238982 cd02024 NRK1 1 Active site 0 0 1 1 5,10,11,12,13 1 -238983 cd02025 PanK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238984 cd02026 PRK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238985 cd02027 APSK 1 Active site 0 0 1 1 5,10,11,12,13 1 -238986 cd02028 UMPK_like 1 Active site 0 0 1 1 5,10,11,12,13 1 -238987 cd02029 PRK_like 1 Active site 0 0 1 1 5,10,11,12,13 1 -239015 cd02062 Nitro_FMN_reductase 1 FMN binding site 0 1 1 1 3,5,7,33,92,93 5 -239015 cd02062 Nitro_FMN_reductase 2 dimer interface 0 1 0 0 69,71,72,75,76,79 2 -239050 cd02135 Arsenite_oxidase 1 FMN binding site 0 1 1 1 7,9,11,36,130,131 5 -239050 cd02135 Arsenite_oxidase 2 dimer interface 0 1 0 0 107,109,110,113,114,117 2 -239051 cd02136 Nitroreductase 1 FMN binding site 0 1 1 1 7,9,11,37,127,128 5 -239051 cd02136 Nitroreductase 2 dimer interface 0 1 0 0 104,106,107,110,111,114 2 -239052 cd02137 Nitroreductase_1 1 FMN binding site 0 1 1 1 6,8,10,37,103,104 5 -239052 cd02137 Nitroreductase_1 2 dimer interface 0 1 0 0 80,82,83,86,87,90 2 -239053 cd02138 Nitroreductase_2 1 FMN binding site 0 1 1 1 11,13,15,41,125,126 5 -239053 cd02138 Nitroreductase_2 2 dimer interface 0 1 0 0 102,104,105,108,109,112 2 -239054 cd02139 Nitroreductase_3 1 FMN binding site 0 1 1 1 7,9,11,37,118,119 5 -239054 cd02139 Nitroreductase_3 2 dimer interface 0 1 0 0 95,97,98,101,102,105 2 -239055 cd02140 Nitroreductase_4 1 FMN binding site 0 1 1 1 7,9,11,39,144,145 5 -239055 cd02140 Nitroreductase_4 2 dimer interface 0 1 0 0 121,123,124,127,128,131 2 -239056 cd02142 mcbC-like_oxidoreductase 1 FMN binding site 0 1 1 1 3,5,7,39,151,152 5 -239056 cd02142 mcbC-like_oxidoreductase 2 dimer interface 0 1 0 0 128,130,131,134,135,138 2 -239057 cd02143 NADH_nitroreductase 1 FMN binding site 0 1 1 1 4,6,8,34,100,101 5 -239057 cd02143 NADH_nitroreductase 2 dimer interface 0 1 0 0 77,79,80,83,84,87 2 -239058 cd02144 iodotyrosine_dehalogenase 1 FMN binding site 0 1 1 1 7,9,11,37,146,147 5 -239058 cd02144 iodotyrosine_dehalogenase 2 dimer interface 0 1 0 0 123,125,126,129,130,133 2 -239059 cd02145 BluB 1 FMN binding site 0 1 1 1 6,8,10,36,142,143 5 -239059 cd02145 BluB 2 dimer interface 0 1 0 0 120,122,123,126,127,130 2 -239060 cd02146 NfsA_FRP 1 FMN binding site 0 1 1 1 7,9,11,37,131,132 5 -239060 cd02146 NfsA_FRP 2 dimer interface 0 1 0 0 108,110,111,114,115,118 2 -239061 cd02148 Nitroreductase_5 1 FMN binding site 0 1 1 1 8,10,12,38,138,139 5 -239061 cd02148 Nitroreductase_5 2 dimer interface 0 1 0 0 115,117,118,121,122,125 2 -239062 cd02149 NfsB_like_nitroreductase 1 FMN binding site 0 1 1 1 8,10,12,39,111,112 5 -239062 cd02149 NfsB_like_nitroreductase 2 dimer interface 0 1 0 0 88,90,91,94,95,98 2 -239063 cd02150 NADPH_oxidoreductase_1 1 FMN binding site 0 1 1 1 6,8,10,36,113,114 5 -239063 cd02150 NADPH_oxidoreductase_1 2 dimer interface 0 1 0 0 90,92,93,96,97,100 2 -239064 cd02151 NADPH_oxidoreductase_2 1 FMN binding site 0 1 1 1 7,9,11,37,112,113 5 -239064 cd02151 NADPH_oxidoreductase_2 2 dimer interface 0 1 0 0 89,91,92,95,96,99 2 -239467 cd03370 NADH_oxidase 1 FMN binding site 0 1 1 1 7,9,11,37,112,113 5 -239467 cd03370 NADH_oxidase 2 dimer interface 0 1 0 0 89,91,92,95,96,99 2 -239016 cd02065 B12-binding_like 1 B12 binding site 0 1 1 1 54,55,56,58,59,60,87,109,112,118 5 -239018 cd02067 B12-binding 1 B12 binding site 0 1 1 1 54,55,56,58,59,60,88,106,109,112 5 -239020 cd02069 methionine_synthase_B12_BD 1 B12 binding site 0 1 1 1 143,144,145,147,148,149,176,198,201,204 5 -239021 cd02070 corrinoid_protein_B12-BD 1 B12 binding site 0 1 1 1 137,138,139,141,142,143,172,188,191,194 5 -239022 cd02071 MM_CoA_mut_B12_BD 1 B12 binding site 0 1 1 1 54,55,56,58,59,60,88,106,109,115 5 -239023 cd02072 Glm_B12_BD 1 B12 binding site 0 1 1 1 54,55,56,58,59,60,88,112,115,121 5 -239019 cd02068 radical_SAM_B12_BD 1 B12 binding site 0 1 1 1 43,44,45,47,48,49,75,101,104,120 5 -239033 cd02115 AAK 1 nucleotide binding site 0 1 1 1 2,4,5,6,172,173,176,177 5 -239033 cd02115 AAK 2 substrate binding site 0 1 1 1 2,4,5,36,37,38,150,151,152 5 -239767 cd04234 AAK_AK 1 nucleotide binding site 0 1 1 1 4,6,7,8,158,159,162,163 5 -239767 cd04234 AAK_AK 2 substrate binding site 0 1 1 1 4,6,7,37,38,39,136,137,138 5 -239776 cd04243 AAK_AK-HSDH-like 1 nucleotide binding site 0 1 1 1 4,6,7,8,224,225,228,229 5 -239776 cd04243 AAK_AK-HSDH-like 2 substrate binding site 0 1 1 1 4,6,7,36,37,38,202,203,204 5 -239790 cd04257 AAK_AK-HSDH 1 nucleotide binding site 0 1 1 1 4,6,7,8,225,226,229,230 5 -239790 cd04257 AAK_AK-HSDH 2 substrate binding site 0 1 1 1 4,6,7,37,38,39,203,204,205 5 -239791 cd04258 AAK_AKiii-LysC-EC 1 nucleotide binding site 0 1 1 1 4,6,7,8,223,224,227,228 5 -239791 cd04258 AAK_AKiii-LysC-EC 2 substrate binding site 0 1 1 1 4,6,7,35,36,37,201,202,203 5 -239792 cd04259 AAK_AK-DapDC 1 nucleotide binding site 0 1 1 1 4,6,7,8,226,227,230,231 5 -239792 cd04259 AAK_AK-DapDC 2 substrate binding site 0 1 1 1 4,6,7,38,39,40,204,205,206 5 -239777 cd04244 AAK_AK-LysC-like 1 nucleotide binding site 0 1 1 1 4,6,7,8,229,230,233,234 5 -239777 cd04244 AAK_AK-LysC-like 2 substrate binding site 0 1 1 1 4,6,7,37,38,39,207,208,209 5 -239778 cd04245 AAK_AKiii-YclM-BS 1 nucleotide binding site 0 1 1 1 4,6,7,8,219,220,223,224 5 -239778 cd04245 AAK_AKiii-YclM-BS 2 substrate binding site 0 1 1 1 4,6,7,35,36,37,197,198,199 5 -239779 cd04246 AAK_AK-DapG-like 1 nucleotide binding site 0 1 1 1 4,6,7,8,171,172,175,176 5 -239779 cd04246 AAK_AK-DapG-like 2 substrate binding site 0 1 1 1 4,6,7,38,39,40,149,150,151 5 -239793 cd04260 AAK_AKi-DapG-BS 1 nucleotide binding site 0 1 1 1 4,6,7,8,176,177,180,181 5 -239793 cd04260 AAK_AKi-DapG-BS 2 substrate binding site 0 1 1 1 4,6,7,38,39,40,154,155,156 5 -239794 cd04261 AAK_AKii-LysC-BS 1 nucleotide binding site 0 1 1 1 4,6,7,8,171,172,175,176 5 -239794 cd04261 AAK_AKii-LysC-BS 2 substrate binding site 0 1 1 1 4,6,7,38,39,40,149,150,151 5 -239780 cd04247 AAK_AK-Hom3 1 nucleotide binding site 0 1 1 1 5,7,8,9,235,236,239,240 5 -239780 cd04247 AAK_AK-Hom3 2 substrate binding site 0 1 1 1 5,7,8,37,38,39,213,214,215 5 -239781 cd04248 AAK_AK-Ectoine 1 nucleotide binding site 0 1 1 1 4,6,7,8,234,235,238,239 5 -239781 cd04248 AAK_AK-Ectoine 2 substrate binding site 0 1 1 1 4,6,7,36,37,38,212,213,214 5 -239768 cd04235 AAK_CK 1 nucleotide binding site 0 1 1 1 4,6,7,8,230,231,234,235 5 -239768 cd04235 AAK_CK 2 substrate binding site 0 1 1 1 4,6,7,48,49,50,208,209,210 5 -239769 cd04236 AAK_NAGS-Urea 1 nucleotide binding site 0 1 1 1 40,42,43,44,194,195,198,199 5 -239769 cd04236 AAK_NAGS-Urea 2 substrate binding site 0 1 1 1 40,42,43,74,75,76,173,174,175 5 -239770 cd04237 AAK_NAGS-ABP 1 nucleotide binding site 0 1 1 1 23,25,26,27,202,203,206,207 5 -239770 cd04237 AAK_NAGS-ABP 2 substrate binding site 0 1 1 1 23,25,26,56,57,58,180,181,182 5 -239771 cd04238 AAK_NAGK-like 1 nucleotide binding site 0 1 1 1 3,5,6,7,179,180,183,184 5 -239771 cd04238 AAK_NAGK-like 2 substrate binding site 0 1 1 1 3,5,6,37,38,39,157,158,159 5 -239782 cd04249 AAK_NAGK-NC 1 nucleotide binding site 0 1 1 1 3,5,6,7,176,177,180,181 5 -239782 cd04249 AAK_NAGK-NC 2 substrate binding site 0 1 1 1 3,5,6,38,39,40,155,156,157 5 -239783 cd04250 AAK_NAGK-C 1 nucleotide binding site 0 1 1 1 19,21,22,23,199,200,203,204 5 -239783 cd04250 AAK_NAGK-C 2 substrate binding site 0 1 1 1 19,21,22,53,54,55,177,178,179 5 -239784 cd04251 AAK_NAGK-UC 1 nucleotide binding site 0 1 1 1 3,5,6,7,186,187,190,191 5 -239784 cd04251 AAK_NAGK-UC 2 substrate binding site 0 1 1 1 3,5,6,31,32,33,164,165,166 5 -239772 cd04239 AAK_UMPK-like 1 nucleotide binding site 0 1 1 1 4,6,7,8,154,155,158,159 5 -239772 cd04239 AAK_UMPK-like 2 substrate binding site 0 1 1 1 4,6,7,44,45,46,132,133,134 5 -239786 cd04253 AAK_UMPK-PyrH-Pf 1 nucleotide binding site 0 1 1 1 4,6,7,8,137,138,141,142 5 -239786 cd04253 AAK_UMPK-PyrH-Pf 2 substrate binding site 0 1 1 1 4,6,7,40,41,42,115,116,117 5 -239787 cd04254 AAK_UMPK-PyrH-Ec 1 nucleotide binding site 0 1 1 1 5,7,8,9,156,157,160,161 5 -239787 cd04254 AAK_UMPK-PyrH-Ec 2 substrate binding site 0 1 1 1 5,7,8,46,47,48,134,135,136 5 -239788 cd04255 AAK_UMPK-MosAB 1 nucleotide binding site 0 1 1 1 35,37,38,39,183,184,187,188 5 -239788 cd04255 AAK_UMPK-MosAB 2 substrate binding site 0 1 1 1 35,37,38,70,71,72,161,162,163 5 -239773 cd04240 AAK_UC 1 nucleotide binding site 0 1 1 1 2,4,5,6,136,137,140,141 5 -239773 cd04240 AAK_UC 2 substrate binding site 0 1 1 1 2,4,5,31,32,33,114,115,116 5 -239774 cd04241 AAK_FomA-like 1 nucleotide binding site 0 1 1 1 4,6,7,8,169,170,173,174 5 -239774 cd04241 AAK_FomA-like 2 substrate binding site 0 1 1 1 4,6,7,44,45,46,147,148,149 5 +410909 cd19501 RecA-like_FtsH 1 ATP binding site 0 1 1 1 48,49,50,66,68,69,102,103 5 239775 cd04242 AAK_G5K_ProB 1 nucleotide binding site 0 1 1 1 4,6,7,8,164,165,168,169 5 239775 cd04242 AAK_G5K_ProB 2 substrate binding site 0 1 1 1 4,6,7,44,45,46,142,143,144 5 -239789 cd04256 AAK_P5CS_ProBA 1 nucleotide binding site 0 1 1 1 13,15,16,17,200,201,204,205 5 -239789 cd04256 AAK_P5CS_ProBA 2 substrate binding site 0 1 1 1 13,15,16,54,55,56,178,179,180 5 -239785 cd04252 AAK_NAGK-fArgBP 1 nucleotide binding site 0 1 1 1 3,5,6,7,171,172,175,176 5 -239785 cd04252 AAK_NAGK-fArgBP 2 substrate binding site 0 1 1 1 3,5,6,35,36,37,149,150,151 5 -239066 cd02153 tRNA_bindingDomain 1 putative tRNA-binding site 0 0 1 1 16,29,55,59,66,69 3 -239196 cd02796 tRNA_bind_bactPheRS 1 putative tRNA-binding site 0 0 1 1 16,29,50,63,70,73 3 -239197 cd02798 tRNA_bind_CsaA 1 putative tRNA-binding site 0 0 1 1 27,40,66,70,77,80 3 -239198 cd02799 tRNA_bind_EMAP-II_like 1 putative tRNA-binding site 0 0 1 1 23,36,62,66,73,76 3 -239199 cd02800 tRNA_bind_EcMetRS_like 1 putative tRNA-binding site 0 0 1 1 26,38,64,68,75,78 3 -173912 cd02156 nt_trans 1 active site 0 1 0 1 11,12,13,14,101,102,103,104 1 -173912 cd02156 nt_trans 2 nucleotide binding site 0 1 1 0 11,14,102 5 -173912 cd02156 nt_trans 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173912 cd02156 nt_trans 4 KMSKS motif 0 0 0 1 101,102,103,104 0 -173901 cd00802 class_I_aaRS_core 1 active site 0 1 0 1 12,13,14,15,139,140,141,142 1 -173901 cd00802 class_I_aaRS_core 2 nucleotide binding site 0 1 1 0 12,15,140 5 -173901 cd00802 class_I_aaRS_core 3 HIGH motif 0 0 0 1 12,13,14,15 0 -173901 cd00802 class_I_aaRS_core 4 KMSKS motif 0 0 0 1 139,140,141,142 0 -173893 cd00395 Tyr_Trp_RS_core 1 active site 0 1 0 1 13,14,15,16,199,200,201,202 1 -173893 cd00395 Tyr_Trp_RS_core 2 nucleotide binding site 0 1 1 0 13,16,200 5 -173893 cd00395 Tyr_Trp_RS_core 3 HIGH motif 0 0 0 1 13,14,15,16 0 -173893 cd00395 Tyr_Trp_RS_core 4 KMSKS motif 0 0 0 1 199,200,201,202 0 -173902 cd00805 TyrRS_core 1 active site 0 1 0 1 14,15,16,17,196,197,198,199 1 -173902 cd00805 TyrRS_core 2 nucleotide binding site 0 1 1 0 14,17,197 5 -173902 cd00805 TyrRS_core 3 HIGH motif 0 0 0 1 14,15,16,17 0 -173902 cd00805 TyrRS_core 4 KMSKS motif 0 0 0 1 196,197,198,199 0 -173903 cd00806 TrpRS_core 1 active site 0 1 0 1 12,13,14,15,192,193,194,195 1 -173903 cd00806 TrpRS_core 2 nucleotide binding site 0 1 1 0 12,15,193 5 -173903 cd00806 TrpRS_core 3 HIGH motif 0 0 0 1 12,13,14,15 0 -173903 cd00806 TrpRS_core 4 KMSKS motif 0 0 0 1 192,193,194,195 0 -185672 cd00418 GlxRS_core 1 active site 0 1 0 1 14,15,16,17,154,155,156,157 1 -185672 cd00418 GlxRS_core 2 nucleotide binding site 0 1 1 0 14,17,155 5 -185672 cd00418 GlxRS_core 3 HIGH motif 0 0 0 1 14,15,16,17 0 -185672 cd00418 GlxRS_core 4 KMSKS motif 0 0 0 1 154,155,156,157 0 -185676 cd00807 GlnRS_core 1 active site 0 1 0 1 14,15,16,17,165,166,167,168 1 -185676 cd00807 GlnRS_core 2 nucleotide binding site 0 1 1 0 14,17,166 5 -185676 cd00807 GlnRS_core 3 HIGH motif 0 0 0 1 14,15,16,17 0 -185676 cd00807 GlnRS_core 4 KMSKS motif 0 0 0 1 165,166,167,168 0 -173905 cd00808 GluRS_core 1 active site 0 1 0 1 14,15,16,17,163,164,165,166 1 -173905 cd00808 GluRS_core 2 nucleotide binding site 0 1 1 0 14,17,164 5 -173905 cd00808 GluRS_core 3 HIGH motif 0 0 0 1 14,15,16,17 0 -173905 cd00808 GluRS_core 4 KMSKS motif 0 0 0 1 163,164,165,166 0 -185682 cd09287 GluRS_non_core 1 active site 0 1 0 1 14,15,16,17,167,168,169,170 1 -185682 cd09287 GluRS_non_core 2 nucleotide binding site 0 1 1 0 14,17,168 5 -185682 cd09287 GluRS_non_core 3 HIGH motif 0 0 0 1 14,15,16,17 0 -185682 cd09287 GluRS_non_core 4 KMSKS motif 0 0 0 1 167,168,169,170 0 -185674 cd00668 Ile_Leu_Val_MetRS_core 1 active site 0 1 0 1 15,16,17,18,274,275,276,277 1 -185674 cd00668 Ile_Leu_Val_MetRS_core 2 nucleotide binding site 0 1 1 0 15,18,275 5 -185674 cd00668 Ile_Leu_Val_MetRS_core 3 HIGH motif 0 0 0 1 15,16,17,18 0 -185674 cd00668 Ile_Leu_Val_MetRS_core 4 KMSKS motif 0 0 0 1 274,275,276,277 0 -173906 cd00812 LeuRS_core 1 active site 0 1 0 1 15,16,17,18,276,277,278,279 1 -173906 cd00812 LeuRS_core 2 nucleotide binding site 0 1 1 0 15,18,277 5 -173906 cd00812 LeuRS_core 3 HIGH motif 0 0 0 1 15,16,17,18 0 -173906 cd00812 LeuRS_core 4 KMSKS motif 0 0 0 1 276,277,278,279 0 -173907 cd00814 MetRS_core 1 active site 0 1 0 1 15,16,17,18,281,282,283,284 1 -173907 cd00814 MetRS_core 2 nucleotide binding site 0 1 1 0 15,18,282 5 -173907 cd00814 MetRS_core 3 HIGH motif 0 0 0 1 15,16,17,18 0 -173907 cd00814 MetRS_core 4 KMSKS motif 0 0 0 1 281,282,283,284 0 -185677 cd00817 ValRS_core 1 active site 0 1 0 1 16,17,18,19,344,345,346,347 1 -185677 cd00817 ValRS_core 2 nucleotide binding site 0 1 1 0 16,19,345 5 -185677 cd00817 ValRS_core 3 HIGH motif 0 0 0 1 16,17,18,19 0 -185677 cd00817 ValRS_core 4 KMSKS motif 0 0 0 1 344,345,346,347 0 -173909 cd00818 IleRS_core 1 active site 0 1 0 1 16,17,18,19,300,301,302,303 1 -173909 cd00818 IleRS_core 2 nucleotide binding site 0 1 1 0 16,19,301 5 -173909 cd00818 IleRS_core 3 HIGH motif 0 0 0 1 16,17,18,19 0 -173909 cd00818 IleRS_core 4 KMSKS motif 0 0 0 1 300,301,302,303 0 -185675 cd00671 ArgRS_core 1 active site 0 1 0 1 15,16,17,18,207,208,209,210 1 -185675 cd00671 ArgRS_core 2 nucleotide binding site 0 1 1 0 15,18,208 5 -185675 cd00671 ArgRS_core 3 HIGH motif 0 0 0 1 15,16,17,18 0 -185675 cd00671 ArgRS_core 4 KMSKS motif 0 0 0 1 207,208,209,210 0 -173899 cd00672 CysRS_core 1 active site 0 1 0 1 34,35,36,37,175,176,177,178 1 -173899 cd00672 CysRS_core 2 nucleotide binding site 0 1 1 0 34,37,176 5 -173899 cd00672 CysRS_core 3 HIGH motif 0 0 0 1 34,35,36,37 0 -173899 cd00672 CysRS_core 4 KMSKS motif 0 0 0 1 175,176,177,178 0 -173900 cd00674 LysRS_core_class_I 1 active site 0 1 0 1 33,34,35,36,276,277,278,279 1 -173900 cd00674 LysRS_core_class_I 2 nucleotide binding site 0 1 1 0 33,36,277 5 -173900 cd00674 LysRS_core_class_I 3 HIGH motif 0 0 0 1 33,34,35,36 0 -173900 cd00674 LysRS_core_class_I 4 KMSKS motif 0 0 0 1 276,277,278,279 0 -185678 cd02039 cytidylyltransferase_like 1 active site 0 1 0 1 11,12,13,14,135,136,137,138 1 -185678 cd02039 cytidylyltransferase_like 2 nucleotide binding site 0 1 1 0 11,14,136 5 -185678 cd02039 cytidylyltransferase_like 3 HIGH motif 0 0 0 1 11,12,13,14 0 -185678 cd02039 cytidylyltransferase_like 4 KMSKS motif 0 0 0 1 135,136,137,138 0 -173895 cd00517 ATPS 1 active site 0 1 0 1 168,169,170,171,322,323,324,325 1 -173895 cd00517 ATPS 2 nucleotide binding site 0 1 1 0 168,171,323 5 -173895 cd00517 ATPS 3 HIGH motif 0 0 0 1 168,169,170,171 0 -173895 cd00517 ATPS 4 KMSKS motif 0 0 0 1 322,323,324,325 0 -185673 cd00560 PanC 1 active site 0 1 0 1 33,34,35,36,185,186,187,188 1 -185673 cd00560 PanC 2 nucleotide binding site 0 1 1 0 33,36,186 5 -185673 cd00560 PanC 3 HIGH motif 0 0 0 1 33,34,35,36 0 -185673 cd00560 PanC 4 KMSKS motif 0 0 0 1 185,186,187,188 0 -185679 cd02064 FAD_synthetase_N 1 active site 0 1 0 1 11,12,13,14,146,147,148,149 1 -185679 cd02064 FAD_synthetase_N 2 nucleotide binding site 0 1 1 0 11,14,147 5 -185679 cd02064 FAD_synthetase_N 3 HIGH motif 0 0 0 1 11,12,13,14 0 -185679 cd02064 FAD_synthetase_N 4 KMSKS motif 0 0 0 1 146,147,148,149 0 -173914 cd02163 PPAT 1 active site 0 1 0 1 11,12,13,14,124,125,126,127 1 -173914 cd02163 PPAT 2 nucleotide binding site 0 1 1 0 11,14,125 5 -173914 cd02163 PPAT 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173914 cd02163 PPAT 4 KMSKS motif 0 0 0 1 124,125,126,127 0 -173915 cd02164 PPAT_CoAS 1 active site 0 1 0 1 11,12,13,14,135,136,137,138 1 -173915 cd02164 PPAT_CoAS 2 nucleotide binding site 0 1 1 0 11,14,136 5 -173915 cd02164 PPAT_CoAS 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173915 cd02164 PPAT_CoAS 4 KMSKS motif 0 0 0 1 135,136,137,138 0 -185680 cd02165 NMNAT 1 active site 0 1 0 1 11,12,13,14,159,160,161,162 1 -185680 cd02165 NMNAT 2 nucleotide binding site 0 1 1 0 11,14,160 5 -185680 cd02165 NMNAT 3 HIGH motif 0 0 0 1 11,12,13,14 0 -185680 cd02165 NMNAT 4 KMSKS motif 0 0 0 1 159,160,161,162 0 -173917 cd02166 NMNAT_Archaea 1 active site 0 1 0 1 11,12,13,14,126,127,128,129 1 -173917 cd02166 NMNAT_Archaea 2 nucleotide binding site 0 1 1 0 11,14,127 5 -173917 cd02166 NMNAT_Archaea 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173917 cd02166 NMNAT_Archaea 4 KMSKS motif 0 0 0 1 126,127,128,129 0 -173918 cd02167 NMNAT_NadR 1 active site 0 1 0 1 11,12,13,14,137,138,139,140 1 -173918 cd02167 NMNAT_NadR 2 nucleotide binding site 0 1 1 0 11,14,138 5 -173918 cd02167 NMNAT_NadR 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173918 cd02167 NMNAT_NadR 4 KMSKS motif 0 0 0 1 137,138,139,140 0 -173919 cd02168 NMNAT_Nudix 1 active site 0 1 0 1 11,12,13,14,133,134,135,136 1 -173919 cd02168 NMNAT_Nudix 2 nucleotide binding site 0 1 1 0 11,14,134 5 -173919 cd02168 NMNAT_Nudix 3 HIGH motif 0 0 0 1 11,12,13,14 0 -173919 cd02168 NMNAT_Nudix 4 KMSKS motif 0 0 0 1 133,134,135,136 0 -173920 cd02169 Citrate_lyase_ligase 1 active site 0 1 0 1 126,127,128,129,268,269,270,271 1 -173920 cd02169 Citrate_lyase_ligase 2 nucleotide binding site 0 1 1 0 126,129,269 5 -173920 cd02169 Citrate_lyase_ligase 3 HIGH motif 0 0 0 1 126,127,128,129 0 -173920 cd02169 Citrate_lyase_ligase 4 KMSKS motif 0 0 0 1 268,269,270,271 0 -173921 cd02170 cytidylyltransferase 1 active site 0 1 0 1 13,14,15,16,124,125,126,127 1 -173921 cd02170 cytidylyltransferase 2 nucleotide binding site 0 1 1 0 13,16,125 5 -173921 cd02170 cytidylyltransferase 3 HIGH motif 0 0 0 1 13,14,15,16 0 -173921 cd02170 cytidylyltransferase 4 KMSKS motif 0 0 0 1 124,125,126,127 0 -173922 cd02171 G3P_Cytidylyltransferase 1 active site 0 1 0 1 13,14,15,16,117,118,119,120 1 -173922 cd02171 G3P_Cytidylyltransferase 2 nucleotide binding site 0 1 1 0 13,16,118 5 -173922 cd02171 G3P_Cytidylyltransferase 3 HIGH motif 0 0 0 1 13,14,15,16 0 -173922 cd02171 G3P_Cytidylyltransferase 4 KMSKS motif 0 0 0 1 117,118,119,120 0 -173923 cd02172 RfaE_N 1 active site 0 1 0 1 16,17,18,19,130,131,132,133 1 -173923 cd02172 RfaE_N 2 nucleotide binding site 0 1 1 0 16,19,131 5 -173923 cd02172 RfaE_N 3 HIGH motif 0 0 0 1 16,17,18,19 0 -173923 cd02172 RfaE_N 4 KMSKS motif 0 0 0 1 130,131,132,133 0 -173924 cd02173 ECT 1 active site 0 1 0 1 14,15,16,17,128,129,130,131 1 -173924 cd02173 ECT 2 nucleotide binding site 0 1 1 0 14,17,129 5 -173924 cd02173 ECT 3 HIGH motif 0 0 0 1 14,15,16,17 0 -173924 cd02173 ECT 4 KMSKS motif 0 0 0 1 128,129,130,131 0 -173925 cd02174 CCT 1 active site 0 1 0 1 14,15,16,17,126,127,128,129 1 -173925 cd02174 CCT 2 nucleotide binding site 0 1 1 0 14,17,127 5 -173925 cd02174 CCT 3 HIGH motif 0 0 0 1 14,15,16,17 0 -173925 cd02174 CCT 4 KMSKS motif 0 0 0 1 126,127,128,129 0 -185681 cd09286 NMNAT_Eukarya 1 active site 0 1 0 1 12,13,14,15,192,193,194,195 1 -185681 cd09286 NMNAT_Eukarya 2 nucleotide binding site 0 1 1 0 12,15,193 5 -185681 cd09286 NMNAT_Eukarya 3 HIGH motif 0 0 0 1 12,13,14,15 0 -185681 cd09286 NMNAT_Eukarya 4 KMSKS motif 0 0 0 1 192,193,194,195 0 -100026 cd02185 AroH 1 active site 0 1 1 1 4,54,57,60,71,72,75,76,82,87,88,105,112 1 -100026 cd02185 AroH 2 homotrimer interaction site 0 1 1 0 0,1,2,4,39,40,41,50,51,54,55,60,69,70,72,74,75,76,77,78,79,91 2 -341358 cd02205 CBS_pair_SF 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341358 cd02205 CBS_pair_SF 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341358 cd02205 CBS_pair_SF 3 ligand binding site I 0 0 0 0 26,38,43,44,47,69,91,92,93,108 5 -341358 cd02205 CBS_pair_SF 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,91,104,106,108,109,112 5 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,55,56,57,58,59 7 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 3 ligand binding site I 0 0 0 0 29,41,46,47,50,64,86,87,88,103 5 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc 4 ligand binding site II 0 0 0 0 2,4,5,6,29,30,31,86,99,101,103,104,107 5 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,55,56,57,58,59 7 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 3 ligand binding site I 0 0 0 0 26,38,43,44,47,64,86,87,88,103 5 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,86,99,101,103,104,107 5 -341361 cd04584 CBS_pair_AcuB_like 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,75,76,77,78,79 7 -341361 cd04584 CBS_pair_AcuB_like 2 CBS repeat 0 0 0 0 84,85,86,87,90,91,92,93,94,95,96,97,98,99,100,106,107,108,109,110,111,114,115,116,117,118,119,120,122,123,124,125,126 7 -341361 cd04584 CBS_pair_AcuB_like 3 ligand binding site I 0 0 0 0 32,43,48,49,52,84,106,107,108,122 5 -341361 cd04584 CBS_pair_AcuB_like 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,106,118,120,122,123,126 5 -341362 cd04586 CBS_pair_BON_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,84,85,86,87,88 7 -341362 cd04586 CBS_pair_BON_assoc 2 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,123,124,125,126,127,128,129,131,132,133,134,135 7 -341362 cd04586 CBS_pair_BON_assoc 3 ligand binding site I 0 0 0 0 27,39,44,45,48,93,115,116,117,131 5 -341362 cd04586 CBS_pair_BON_assoc 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,115,127,129,131,132,135 5 -341425 cd17789 CBS_pair_plant_CBSX 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,87,88,89,90,91 7 -341425 cd17789 CBS_pair_plant_CBSX 2 CBS repeat 0 0 0 0 96,97,98,99,102,103,104,105,106,107,108,109,110,111,112,118,119,120,121,122,123,127,128,129,130,131,132,133,135,136,137,138,139 7 -341425 cd17789 CBS_pair_plant_CBSX 3 ligand binding site I 0 0 0 0 27,39,44,45,48,96,118,119,120,135 5 -341425 cd17789 CBS_pair_plant_CBSX 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,118,131,133,135,136,139 5 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,36,37,38,39,40,41,44,45,46,47,48,49,61,62,63,64,65 7 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 ligand binding site I 0 0 0 0 28,39,44,45,48,70,92,93,94,108 5 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,92,104,106,108,109,112 5 -341364 cd04588 CBS_pair_archHTH_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,57,58,59,60,61 7 -341364 cd04588 CBS_pair_archHTH_assoc 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,97,98,99,100,101,102,103,105,106,107,108,109 7 -341364 cd04588 CBS_pair_archHTH_assoc 3 ligand binding site I 0 0 0 0 26,37,42,43,46,66,88,89,90,105 5 -341364 cd04588 CBS_pair_archHTH_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,88,101,103,105,106,109 5 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,99,100,101,102,103,104,105,107,108,109,110,111 7 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 ligand binding site I 0 0 0 0 27,38,43,44,47,69,91,92,93,107 5 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,91,103,105,107,108,111 5 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,44,45,46,47,48,49,52,53,54,55,56,57,67,68,69,70,71 7 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 2 CBS repeat 0 0 0 0 75,76,77,78,81,82,83,84,85,86,87,88,89,90,91,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 3 ligand binding site I 0 0 0 0 34,47,52,53,56,75,97,98,99,114 5 -341366 cd04590 CBS_pair_CorC_HlyC_assoc 4 ligand binding site II 0 0 0 0 8,10,11,12,34,35,36,97,110,112,114,115,118 5 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,43,44,45,46,47,48,51,52,53,54,55,56,60,61,62,63,64 7 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 3 ligand binding site I 0 0 0 0 32,46,51,52,55,70,92,93,94,108 5 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,92,104,106,108,109,112 5 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,65,66,67,68,69 7 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 2 CBS repeat 0 0 0 0 80,81,82,83,86,87,88,89,90,91,92,93,94,95,96,102,103,104,105,106,107,116,117,118,119,120,121,122,123,124,125,126,127 7 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 3 ligand binding site I 0 0 0 0 27,39,44,45,48,80,102,103,104,123 5 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,102,120,122,123,124,127 5 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,53,54,55,56,57 7 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 2 CBS repeat 0 0 0 0 62,63,64,65,68,69,70,71,72,73,74,75,76,77,78,84,85,86,87,88,89,92,93,94,95,96,97,98,100,101,102,103,104 7 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 3 ligand binding site I 0 0 0 0 26,38,43,44,47,62,84,85,86,100 5 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea 4 ligand binding site II 0 0 0 0 1,3,4,5,26,27,28,84,96,98,100,101,104 5 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,57,58,59,60,61 7 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,96,97,98,99,100,101,102,104,105,106,107,108 7 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 3 ligand binding site I 0 0 0 0 26,37,42,43,46,66,88,89,90,104 5 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,88,100,102,104,105,108 5 -341371 cd04596 CBS_pair_DRTGG_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341371 cd04596 CBS_pair_DRTGG_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341371 cd04596 CBS_pair_DRTGG_assoc 3 ligand binding site I 0 0 0 0 26,38,43,44,47,63,85,86,87,102 5 -341371 cd04596 CBS_pair_DRTGG_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,98,100,102,103,106 5 -341372 cd04597 CBS_pair_inorgPPase 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,52,53,54,55,56 7 -341372 cd04597 CBS_pair_inorgPPase 2 CBS repeat 0 0 0 0 62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,84,85,86,87,88,89,93,94,95,96,97,98,99,101,102,103,104,105 7 -341372 cd04597 CBS_pair_inorgPPase 3 ligand binding site I 0 0 0 0 29,41,46,47,50,62,84,85,86,101 5 -341372 cd04597 CBS_pair_inorgPPase 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,84,97,99,101,102,105 5 -341373 cd04598 CBS_pair_GGDEF_EAL 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,28,29,30,31,32,33,36,37,38,39,40,41,44,45,46,47,48,49,64,65,66,67,68 7 -341373 cd04598 CBS_pair_GGDEF_EAL 2 CBS repeat 0 0 0 0 73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,98,99,100,101,102,103,107,108,109,110,111,112,113,115,116,117,118,119 7 -341373 cd04598 CBS_pair_GGDEF_EAL 3 ligand binding site I 0 0 0 0 28,39,44,45,48,73,98,99,100,115 5 -341373 cd04598 CBS_pair_GGDEF_EAL 4 ligand binding site II 0 0 0 0 1,3,4,5,28,29,30,98,111,113,115,116,119 5 -341374 cd04599 CBS_pair_GGDEF_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341374 cd04599 CBS_pair_GGDEF_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,84,85,86,87,88,89,93,94,95,96,97,98,99,101,102,103,104,105 7 -341374 cd04599 CBS_pair_GGDEF_assoc 3 ligand binding site I 0 0 0 0 27,38,43,44,47,63,84,85,86,101 5 -341374 cd04599 CBS_pair_GGDEF_assoc 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,84,97,99,101,102,105 5 -341375 cd04600 CBS_pair_HPP_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,76,77,78,79,80 7 -341375 cd04600 CBS_pair_HPP_assoc 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,116,117,118,119,120,121,122,124,125,126,127,128 7 -341375 cd04600 CBS_pair_HPP_assoc 3 ligand binding site I 0 0 0 0 27,39,44,45,48,85,107,108,109,124 5 -341375 cd04600 CBS_pair_HPP_assoc 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,107,120,122,124,125,128 5 -341376 cd04601 CBS_pair_IMPDH 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,55,56,57,58,59 7 -341376 cd04601 CBS_pair_IMPDH 2 CBS repeat 0 0 0 0 66,67,68,69,72,73,74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,97,98,99,100,101,102,103,105,106,107,108,109 7 -341376 cd04601 CBS_pair_IMPDH 3 ligand binding site I 0 0 0 0 26,38,43,44,47,66,88,89,90,105 5 -341376 cd04601 CBS_pair_IMPDH 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,88,101,103,105,106,109 5 -341377 cd04603 CBS_pair_KefB_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,58,59,60,61,62 7 -341377 cd04603 CBS_pair_KefB_assoc 2 CBS repeat 0 0 0 0 67,68,69,70,73,74,75,76,77,78,79,80,81,82,83,89,90,91,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110 7 -341377 cd04603 CBS_pair_KefB_assoc 3 ligand binding site I 0 0 0 0 26,38,43,44,47,67,89,90,91,106 5 -341377 cd04603 CBS_pair_KefB_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,89,102,104,106,107,110 5 -341378 cd04604 CBS_pair_SIS_assoc 1 CBS repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,37,38,39,40,41,42,46,47,48,49,50,51,54,55,56,57,58,59,71,72,73,74,75 7 -341378 cd04604 CBS_pair_SIS_assoc 2 CBS repeat 0 0 0 0 80,81,82,83,86,87,88,89,90,91,92,93,94,95,96,102,103,104,105,106,107,111,112,113,114,115,116,117,119,120,121,122,123 7 -341378 cd04604 CBS_pair_SIS_assoc 3 ligand binding site I 0 0 0 0 37,49,54,55,58,80,102,103,104,119 5 -341378 cd04604 CBS_pair_SIS_assoc 4 ligand binding site II 0 0 0 0 11,13,14,15,37,38,39,102,115,117,119,120,123 5 -341379 cd04605 CBS_pair_arch_MET2_assoc 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,41,42,43,44,45,46,49,50,51,52,53,54,62,63,64,65,66 7 -341379 cd04605 CBS_pair_arch_MET2_assoc 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341379 cd04605 CBS_pair_arch_MET2_assoc 3 ligand binding site I 0 0 0 0 32,44,49,50,53,71,93,94,95,110 5 -341379 cd04605 CBS_pair_arch_MET2_assoc 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,93,106,108,110,111,114 5 -341380 cd04606 CBS_pair_Mg_transporter 1 CBS repeat 0 0 0 0 7,8,9,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,38,39,40,41,42,43,47,48,49,50,51,52,55,56,57,58,59,60,66,67,68,69,70 7 -341380 cd04606 CBS_pair_Mg_transporter 2 CBS repeat 0 0 0 0 75,76,77,78,81,82,83,84,85,86,87,88,89,90,91,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341380 cd04606 CBS_pair_Mg_transporter 3 ligand binding site I 0 0 0 0 38,50,55,56,59,75,97,98,99,114 5 -341380 cd04606 CBS_pair_Mg_transporter 4 ligand binding site II 0 0 0 0 7,9,10,11,38,39,40,97,110,112,114,115,118 5 -341381 cd04607 CBS_pair_NTP_transferase_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,59,60,61,62,63 7 -341381 cd04607 CBS_pair_NTP_transferase_assoc 2 CBS repeat 0 0 0 0 68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,90,91,92,93,94,95,99,100,101,102,103,104,105,107,108,109,110,111 7 -341381 cd04607 CBS_pair_NTP_transferase_assoc 3 ligand binding site I 0 0 0 0 26,38,43,44,47,68,90,91,92,107 5 -341381 cd04607 CBS_pair_NTP_transferase_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,90,103,105,107,108,111 5 -341382 cd04608 CBS_pair_CBS 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,43,44,45,46,47,48,51,52,53,54,55,56,68,69,70,71,72 7 -341382 cd04608 CBS_pair_CBS 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,97,98,99,100,101,102,106,107,108,109,110,111,112,114,115,116,117,118 7 -341382 cd04608 CBS_pair_CBS 3 ligand binding site I 0 0 0 0 34,46,51,52,55,77,97,98,99,114 5 -341382 cd04608 CBS_pair_CBS 4 ligand binding site II 0 0 0 0 8,10,11,12,34,35,36,97,110,112,114,115,118 5 -341383 cd04610 CBS_pair_ParBc_assoc 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341383 cd04610 CBS_pair_ParBc_assoc 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341383 cd04610 CBS_pair_ParBc_assoc 3 ligand binding site I 0 0 0 0 27,38,43,44,47,63,85,86,87,102 5 -341383 cd04610 CBS_pair_ParBc_assoc 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,85,98,100,102,103,106 5 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 1 CBS repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,37,38,39,40,41,42,45,46,47,48,49,50,53,54,55,56,57,58,68,69,70,71,72 7 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 3 ligand binding site I 0 0 0 0 37,48,53,54,57,77,99,100,101,116 5 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 4 ligand binding site II 0 0 0 0 11,13,14,15,37,38,39,99,112,114,116,117,120 5 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,61,62,63,64,65 7 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,103,104,105,106,107,108,109,111,112,113,114,115 7 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 3 ligand binding site I 0 0 0 0 27,39,44,45,48,70,92,93,94,111 5 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac 4 ligand binding site II 0 0 0 0 0,2,3,4,27,28,29,92,107,109,111,112,115 5 -341386 cd04614 CBS_pair_arch2_repeat2 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,96,97,98,99,100 7 -341386 cd04614 CBS_pair_arch2_repeat2 2 CBS repeat 0 0 0 0 106,107,108,109,112,113,114,115,116,117,118,119,120,121,122,127,128,129,130,131,132,136,137,138,139,140,141,142,144,145,146,147,148 7 -341386 cd04614 CBS_pair_arch2_repeat2 3 ligand binding site I 0 0 0 0 28,40,45,46,49,106,127,128,129,144 5 -341386 cd04614 CBS_pair_arch2_repeat2 4 ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,127,140,142,144,145,148 5 -341387 cd04617 CBS_pair_CcpN 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341387 cd04617 CBS_pair_CcpN 2 CBS repeat 0 0 0 0 73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,95,96,97,98,99,100,107,108,109,110,111,112,113,115,116,117,118,119 7 -341387 cd04617 CBS_pair_CcpN 3 ligand binding site I 0 0 0 0 28,40,45,46,49,73,95,96,97,115 5 -341387 cd04617 CBS_pair_CcpN 4 ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,95,111,113,115,116,119 5 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,44,45,46,47,48,49,52,53,54,55,56,57,77,78,79,80,81 7 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 2 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137 7 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 3 ligand binding site I 0 0 0 0 34,47,52,53,56,93,115,116,117,133 5 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 4 ligand binding site II 0 0 0 0 8,10,11,12,34,35,36,115,129,131,133,134,137 5 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,47,48,49,50,51,52,55,56,57,58,59,60,63,64,65,66,67,68,80,81,82,83,84 7 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 2 CBS repeat 0 0 0 0 89,90,91,92,97,98,99,100,101,102,103,104,105,106,107,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134 7 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 3 ligand binding site I 0 0 0 0 47,58,63,64,67,89,113,114,115,130 5 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 4 ligand binding site II 0 0 0 0 5,7,8,9,47,48,49,113,126,128,130,131,134 5 -341390 cd04622 CBS_pair_HRP1_like 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341390 cd04622 CBS_pair_HRP1_like 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341390 cd04622 CBS_pair_HRP1_like 3 ligand binding site I 0 0 0 0 27,38,43,44,47,70,92,93,94,109 5 -341390 cd04622 CBS_pair_HRP1_like 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,92,105,107,109,110,113 5 -341391 cd04623 CBS_pair_bac_euk 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341391 cd04623 CBS_pair_bac_euk 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341391 cd04623 CBS_pair_bac_euk 3 ligand binding site I 0 0 0 0 26,38,43,44,47,70,92,93,94,108 5 -341391 cd04623 CBS_pair_bac_euk 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,104,106,108,109,112 5 -341392 cd04629 CBS_pair_bac 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,63,64,65,66,67 7 -341392 cd04629 CBS_pair_bac 2 CBS repeat 0 0 0 0 72,73,74,75,78,79,80,81,82,83,84,85,86,87,88,94,95,96,97,98,99,102,103,104,105,106,107,108,110,111,112,113,114 7 -341392 cd04629 CBS_pair_bac 3 ligand binding site I 0 0 0 0 27,39,44,45,48,72,94,95,96,110 5 -341392 cd04629 CBS_pair_bac 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,94,106,108,110,111,114 5 -341393 cd04630 CBS_pair_bac 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,41,42,43,44,45,46,49,50,51,52,53,54,67,68,69,70,71 7 -341393 cd04630 CBS_pair_bac 2 CBS repeat 0 0 0 0 76,77,78,79,82,83,84,85,86,87,88,89,90,91,92,98,99,100,101,102,103,106,107,108,109,110,111,112,114,115,116,117,118 7 -341393 cd04630 CBS_pair_bac 3 ligand binding site I 0 0 0 0 31,44,49,50,53,76,98,99,100,114 5 -341393 cd04630 CBS_pair_bac 4 ligand binding site II 0 0 0 0 5,7,8,9,31,32,33,98,110,112,114,115,118 5 -341394 cd04631 CBS_archAMPK_gamma-repeat2 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,76,77,78,79,80 7 -341394 cd04631 CBS_archAMPK_gamma-repeat2 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,115,116,117,118,119,120,121,123,124,125,126,127 7 -341394 cd04631 CBS_archAMPK_gamma-repeat2 3 ligand binding site I 0 0 0 0 32,43,48,49,52,85,107,108,109,123 5 -341394 cd04631 CBS_archAMPK_gamma-repeat2 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,107,119,121,123,124,127 5 -341395 cd04632 CBS_pair_arch1_repeat2 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,73,74,75,76,77 7 -341395 cd04632 CBS_pair_arch1_repeat2 2 CBS repeat 0 0 0 0 82,83,84,85,88,89,90,91,92,93,94,95,96,97,98,102,103,104,105,106,107,113,114,115,116,117,118,119,121,122,123,124,125 7 -341395 cd04632 CBS_pair_arch1_repeat2 3 ligand binding site I 0 0 0 0 26,38,43,44,47,82,102,103,104,121 5 -341395 cd04632 CBS_pair_arch1_repeat2 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,102,117,119,121,122,125 5 -341396 cd04638 CBS_pair_arch2_repeat1 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,37,38,39,40,41,42,45,46,47,48,49,50,56,57,58,59,60 7 -341396 cd04638 CBS_pair_arch2_repeat1 2 CBS repeat 0 0 0 0 65,66,67,68,71,72,73,74,75,76,77,78,79,80,81,87,88,89,90,91,92,95,96,97,98,99,100,101,103,104,105,106,107 7 -341396 cd04638 CBS_pair_arch2_repeat1 3 ligand binding site I 0 0 0 0 27,40,45,46,49,65,87,88,89,103 5 -341396 cd04638 CBS_pair_arch2_repeat1 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,87,99,101,103,104,107 5 -341397 cd04639 CBS_pair_peptidase_M50 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,63,64,65,66,67 7 -341397 cd04639 CBS_pair_peptidase_M50 2 CBS repeat 0 0 0 0 74,75,76,77,80,81,82,83,84,85,86,87,88,89,90,96,97,98,99,100,101,105,106,107,108,109,110,111,113,114,115,116,117 7 -341397 cd04639 CBS_pair_peptidase_M50 3 ligand binding site I 0 0 0 0 31,43,48,49,52,74,96,97,98,113 5 -341397 cd04639 CBS_pair_peptidase_M50 4 ligand binding site II 0 0 0 0 3,5,6,7,31,32,33,96,109,111,113,114,117 5 -341398 cd04640 CBS_pair_proteobact 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,38,39,40,41,42,43,46,47,48,49,50,51,69,70,71,72,73 7 -341398 cd04640 CBS_pair_proteobact 2 CBS repeat 0 0 0 0 80,81,82,83,90,91,92,93,94,95,96,97,98,99,100,106,107,108,109,110,111,119,120,121,122,123,124,125,127,128,129,130,131 7 -341398 cd04640 CBS_pair_proteobact 3 ligand binding site I 0 0 0 0 29,41,46,47,50,80,106,107,108,127 5 -341398 cd04640 CBS_pair_proteobact 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,106,123,125,127,128,131 5 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,62,63,64,65,66 7 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 2 CBS repeat 0 0 0 0 77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 3 ligand binding site I 0 0 0 0 27,39,44,45,48,77,99,100,101,116 5 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,99,112,114,116,117,120 5 -341400 cd04643 CBS_pair_bac 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,70,71,72,73,74 7 -341400 cd04643 CBS_pair_bac 2 CBS repeat 0 0 0 0 79,80,81,82,85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,108,109,110,111,112,113,114,116,117,118,119,120 7 -341400 cd04643 CBS_pair_bac 3 ligand binding site I 0 0 0 0 31,43,48,49,52,79,99,100,101,116 5 -341400 cd04643 CBS_pair_bac 4 ligand binding site II 0 0 0 0 5,7,8,9,31,32,33,99,112,114,116,117,120 5 -341401 cd04801 CBS_pair_peptidase_M50 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,37,38,39,40,41,42,45,46,47,48,49,50,60,61,62,63,64 7 -341401 cd04801 CBS_pair_peptidase_M50 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,91,92,93,94,95,96,99,100,101,102,103,104,105,107,108,109,110,111 7 -341401 cd04801 CBS_pair_peptidase_M50 3 ligand binding site I 0 0 0 0 29,40,45,46,49,69,91,92,93,107 5 -341401 cd04801 CBS_pair_peptidase_M50 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,91,103,105,107,108,111 5 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36,40,41,42,43,44,45,48,49,50,51,52,53,61,62,63,64,65 7 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 3 ligand binding site I 0 0 0 0 31,43,48,49,52,70,91,92,93,108 5 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc 4 ligand binding site II 0 0 0 0 3,5,6,7,31,32,33,91,104,106,108,109,112 5 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 3 ligand binding site I 0 0 0 0 29,40,45,46,49,71,93,94,95,110 5 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,93,106,108,110,111,114 5 -341404 cd09834 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,67,68,69,70,71 7 -341404 cd09834 CBS_pair_bac 2 CBS repeat 0 0 0 0 76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,104,105,106,107,108,109,110,112,113,114,115,116 7 -341404 cd09834 CBS_pair_bac 3 ligand binding site I 0 0 0 0 26,38,43,44,47,76,95,96,97,112 5 -341404 cd09834 CBS_pair_bac 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,95,108,110,112,113,116 5 -341405 cd09836 CBS_pair_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,60,61,62,63,64 7 -341405 cd09836 CBS_pair_arch 2 CBS repeat 0 0 0 0 68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,91,92,93,94,95,96,100,101,102,103,104,105,106,108,109,110,111,112 7 -341405 cd09836 CBS_pair_arch 3 ligand binding site I 0 0 0 0 27,39,44,45,48,68,91,92,93,108 5 -341405 cd09836 CBS_pair_arch 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,91,104,106,108,109,112 5 -341406 cd09837 CBS_pair_chlorobiales 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,59,60,61,62,63 7 -341406 cd09837 CBS_pair_chlorobiales 2 CBS repeat 0 0 0 0 67,68,69,70,73,74,75,76,77,78,79,80,81,82,83,89,90,91,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110 7 -341406 cd09837 CBS_pair_chlorobiales 3 ligand binding site I 0 0 0 0 26,37,42,43,46,67,89,90,91,106 5 -341406 cd09837 CBS_pair_chlorobiales 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,89,102,104,106,107,110 5 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 1 CBS repeat 0 0 0 0 2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,28,29,30,31,32,33,37,38,39,40,41,42,45,46,47,48,49,50,62,63,64,65,66 7 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,101,102,103,104,105,106,107,109,110,111,112,113 7 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 3 ligand binding site I 0 0 0 0 28,40,45,46,49,71,93,94,95,109 5 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc 4 ligand binding site II 0 0 0 0 2,4,5,6,28,29,30,93,105,107,109,110,113 5 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,36,37,38,39,40,41,44,45,46,47,48,49,59,60,61,62,63 7 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 2 CBS repeat 0 0 0 0 68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,90,91,92,93,94,95,98,99,100,101,102,103,104,106,107,108,109,110 7 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 3 ligand binding site I 0 0 0 0 26,39,44,45,48,68,90,91,92,106 5 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,90,102,104,106,107,110 5 -341409 cd17773 CBS_pair_NeuB 1 CBS repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,16,17,18,19,20,21,22,23,24,30,31,32,33,34,35,39,40,41,42,43,44,47,48,49,50,51,52,65,66,67,68,69 7 -341409 cd17773 CBS_pair_NeuB 2 CBS repeat 0 0 0 0 74,75,76,77,80,81,82,83,84,85,86,87,88,89,90,95,96,97,98,99,100,104,105,106,107,108,109,110,112,113,114,115,116 7 -341409 cd17773 CBS_pair_NeuB 3 ligand binding site I 0 0 0 0 30,42,47,48,51,74,95,96,97,112 5 -341409 cd17773 CBS_pair_NeuB 4 ligand binding site II 0 0 0 0 4,6,7,8,30,31,32,95,108,110,112,113,116 5 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 1 CBS repeat 0 0 0 0 3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,29,30,31,32,33,34,45,46,47,48,49,50,53,54,55,56,57,58,70,71,72,73,74 7 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 2 CBS repeat 0 0 0 0 79,80,81,82,85,86,87,88,89,90,91,92,93,94,95,101,102,103,104,105,106,110,111,112,113,114,115,116,118,119,120,121,122 7 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 3 ligand binding site I 0 0 0 0 29,48,53,54,57,79,101,102,103,118 5 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 4 ligand binding site II 0 0 0 0 3,5,6,7,29,30,31,101,114,116,118,119,122 5 -341411 cd17775 CBS_pair_bact_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,36,37,38,39,40,41,44,45,46,47,48,49,62,63,64,65,66 7 -341411 cd17775 CBS_pair_bact_arch 2 CBS repeat 0 0 0 0 71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,93,94,95,96,97,98,102,103,104,105,106,107,108,110,111,112,113,114 7 -341411 cd17775 CBS_pair_bact_arch 3 ligand binding site I 0 0 0 0 27,39,44,45,48,71,93,94,95,110 5 -341411 cd17775 CBS_pair_bact_arch 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,93,106,108,110,111,114 5 -341412 cd17776 CBS_pair_arch 1 CBS repeat 0 0 0 0 1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,27,28,29,30,31,32,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341412 cd17776 CBS_pair_arch 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,100,101,102,103,104,105,106,108,109,110,111,112 7 -341412 cd17776 CBS_pair_arch 3 ligand binding site I 0 0 0 0 27,38,43,44,47,70,92,93,94,108 5 -341412 cd17776 CBS_pair_arch 4 ligand binding site II 0 0 0 0 1,3,4,5,27,28,29,92,104,106,108,109,112 5 -341413 cd17777 CBS_arch_repeat1 1 CBS repeat 0 0 0 0 5,6,7,8,9,10,11,12,13,14,20,21,22,23,24,25,26,27,28,34,35,36,37,38,39,42,43,44,45,46,47,50,51,52,53,54,55,82,83,84,85,86 7 -341413 cd17777 CBS_arch_repeat1 2 CBS repeat 0 0 0 0 91,92,93,94,97,98,99,100,101,102,103,104,105,106,107,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134 7 -341413 cd17777 CBS_arch_repeat1 3 ligand binding site I 0 0 0 0 34,45,50,51,54,91,113,114,115,130 5 -341413 cd17777 CBS_arch_repeat1 4 ligand binding site II 0 0 0 0 5,8,9,10,34,35,36,113,126,128,130,131,134 5 -341414 cd17778 CBS_arch_repeat2 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,40,41,42,43,44,45,48,49,50,51,52,53,76,77,78,79,80 7 -341414 cd17778 CBS_arch_repeat2 2 CBS repeat 0 0 0 0 85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,107,108,109,110,111,112,116,117,118,119,120,121,122,124,125,126,127,128 7 -341414 cd17778 CBS_arch_repeat2 3 ligand binding site I 0 0 0 0 32,43,48,49,52,85,107,108,109,124 5 -341414 cd17778 CBS_arch_repeat2 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,107,120,122,124,125,128 5 -341415 cd17779 CBS_archAMPK_gamma-repeat1 1 CBS repeat 0 0 0 0 6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,32,33,34,35,36,37,42,43,44,45,46,47,50,51,52,53,54,55,81,82,83,84,85 7 -341415 cd17779 CBS_archAMPK_gamma-repeat1 2 CBS repeat 0 0 0 0 90,91,92,93,96,97,98,99,100,101,102,103,104,105,106,112,113,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133 7 -341415 cd17779 CBS_archAMPK_gamma-repeat1 3 ligand binding site I 0 0 0 0 32,45,50,51,54,90,112,113,114,129 5 -341415 cd17779 CBS_archAMPK_gamma-repeat1 4 ligand binding site II 0 0 0 0 6,8,9,10,32,33,34,112,125,127,129,130,133 5 -341416 cd17780 CBS_pair_arch1_repeat1 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,55,56,57,58,59 7 -341416 cd17780 CBS_pair_arch1_repeat1 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,93,94,95,96,97,98,99,101,102,103,104,105 7 -341416 cd17780 CBS_pair_arch1_repeat1 3 ligand binding site I 0 0 0 0 26,37,42,43,46,63,85,86,87,101 5 -341416 cd17780 CBS_pair_arch1_repeat1 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,97,99,101,102,105 5 -341417 cd17781 CBS_pair_MUG70_1 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341417 cd17781 CBS_pair_MUG70_1 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341417 cd17781 CBS_pair_MUG70_1 3 ligand binding site I 0 0 0 0 26,38,43,44,47,70,92,93,94,109 5 -341417 cd17781 CBS_pair_MUG70_1 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341418 cd17782 CBS_pair_MUG70_2 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341418 cd17782 CBS_pair_MUG70_2 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341418 cd17782 CBS_pair_MUG70_2 3 ligand binding site I 0 0 0 0 26,38,43,44,47,70,92,93,94,109 5 -341418 cd17782 CBS_pair_MUG70_2 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341419 cd17783 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,34,35,36,37,38,39,42,43,44,45,46,47,55,56,57,58,59 7 -341419 cd17783 CBS_pair_bac 2 CBS repeat 0 0 0 0 64,65,66,67,70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107 7 -341419 cd17783 CBS_pair_bac 3 ligand binding site I 0 0 0 0 26,37,42,43,46,64,86,87,88,103 5 -341419 cd17783 CBS_pair_bac 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,86,99,101,103,104,107 5 -341420 cd17784 CBS_pair_Euryarchaeota 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,60,61,62,63,64 7 -341420 cd17784 CBS_pair_Euryarchaeota 2 CBS repeat 0 0 0 0 69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,96,97,98,99,100,101,104,105,106,107,108,109,110,112,113,114,115,116 7 -341420 cd17784 CBS_pair_Euryarchaeota 3 ligand binding site I 0 0 0 0 26,38,43,44,47,69,96,97,98,112 5 -341420 cd17784 CBS_pair_Euryarchaeota 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,96,108,110,112,113,116 5 -341421 cd17785 CBS_pair_bac_arch 1 CBS repeat 0 0 0 0 8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26,27,28,35,36,37,38,39,40,44,45,46,47,48,49,52,53,54,55,56,57,84,85,86,87,88 7 -341421 cd17785 CBS_pair_bac_arch 2 CBS repeat 0 0 0 0 92,93,94,95,98,99,100,101,102,103,104,105,106,107,108,114,115,116,117,118,119,123,124,125,126,127,128,129,131,132,133,134,135 7 -341421 cd17785 CBS_pair_bac_arch 3 ligand binding site I 0 0 0 0 35,47,52,53,56,92,114,115,116,131 5 -341421 cd17785 CBS_pair_bac_arch 4 ligand binding site II 0 0 0 0 8,10,11,12,35,36,37,114,127,129,131,132,135 5 -341422 cd17786 CBS_pair_Thermoplasmatales 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,61,62,63,64,65 7 -341422 cd17786 CBS_pair_Thermoplasmatales 2 CBS repeat 0 0 0 0 70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,92,93,94,95,96,97,101,102,103,104,105,106,107,109,110,111,112,113 7 -341422 cd17786 CBS_pair_Thermoplasmatales 3 ligand binding site I 0 0 0 0 26,38,43,44,47,70,92,93,94,109 5 -341422 cd17786 CBS_pair_Thermoplasmatales 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,92,105,107,109,110,113 5 -341423 cd17787 CBS_pair_ACT 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,54,55,56,57,58 7 -341423 cd17787 CBS_pair_ACT 2 CBS repeat 0 0 0 0 63,64,65,66,69,70,71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,94,95,96,97,98,99,100,102,103,104,105,106 7 -341423 cd17787 CBS_pair_ACT 3 ligand binding site I 0 0 0 0 26,38,43,44,47,63,85,86,87,102 5 -341423 cd17787 CBS_pair_ACT 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,85,98,100,102,103,106 5 -341424 cd17788 CBS_pair_bac 1 CBS repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,18,19,20,26,27,28,29,30,31,35,36,37,38,39,40,43,44,45,46,47,48,81,82,83,84,85 7 -341424 cd17788 CBS_pair_bac 2 CBS repeat 0 0 0 0 93,94,95,96,99,100,101,102,103,104,105,106,107,108,109,115,116,117,118,119,120,124,125,126,127,128,129,130,132,133,134,135,136 7 -341424 cd17788 CBS_pair_bac 3 ligand binding site I 0 0 0 0 26,38,43,44,47,93,115,116,117,132 5 -341424 cd17788 CBS_pair_bac 4 ligand binding site II 0 0 0 0 0,2,3,4,26,27,28,115,128,130,132,133,136 5 -239069 cd02249 ZZ 1 Zinc-binding sites 0 1 1 1 2,5,16,19,25,28,36,40 4 -239069 cd02249 ZZ 2 zinc cluster 1 0 1 1 1 2,5,25,28 4 -239069 cd02249 ZZ 3 zinc cluster 2 0 1 1 1 16,19,36,40 4 -239069 cd02249 ZZ 4 putative hydrophobic binding surface 0 0 1 0 14,29,42,45 0 -239069 cd02249 ZZ 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239074 cd02334 ZZ_dystrophin 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,39,43 4 -239074 cd02334 ZZ_dystrophin 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239074 cd02334 ZZ_dystrophin 3 zinc cluster 2 0 1 1 1 17,20,39,43 4 -239074 cd02334 ZZ_dystrophin 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239074 cd02334 ZZ_dystrophin 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239075 cd02335 ZZ_ADA2 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,39,43 4 -239075 cd02335 ZZ_ADA2 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239075 cd02335 ZZ_ADA2 3 zinc cluster 2 0 1 1 1 17,20,39,43 4 -239075 cd02335 ZZ_ADA2 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239075 cd02335 ZZ_ADA2 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239076 cd02336 ZZ_RSC8 1 Zinc-binding sites 0 1 1 1 2,5,16,19,25,28,37,39 4 -239076 cd02336 ZZ_RSC8 2 zinc cluster 1 0 1 1 1 2,5,25,28 4 -239076 cd02336 ZZ_RSC8 3 zinc cluster 2 0 1 1 1 16,19,37,39 4 -239076 cd02336 ZZ_RSC8 4 putative hydrophobic binding surface 0 0 1 0 14,29,41,44 0 -239076 cd02336 ZZ_RSC8 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239077 cd02337 ZZ_CBP 1 Zinc-binding sites 0 1 1 1 2,5,15,18,24,27,33,35 4 -239077 cd02337 ZZ_CBP 2 zinc cluster 1 0 1 1 1 2,5,24,27 4 -239077 cd02337 ZZ_CBP 3 zinc cluster 2 0 1 1 1 15,18,33,35 4 -239077 cd02337 ZZ_CBP 4 putative hydrophobic binding surface 0 0 1 0 13,28,37,40 0 -239077 cd02337 ZZ_CBP 5 putative charged binding surface 0 0 1 0 3,12,14,20,22 0 -239078 cd02338 ZZ_PCMF_like 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,39,43 4 -239078 cd02338 ZZ_PCMF_like 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239078 cd02338 ZZ_PCMF_like 3 zinc cluster 2 0 1 1 1 17,20,39,43 4 -239078 cd02338 ZZ_PCMF_like 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239078 cd02338 ZZ_PCMF_like 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239079 cd02339 ZZ_Mind_bomb 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,35,39 4 -239079 cd02339 ZZ_Mind_bomb 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239079 cd02339 ZZ_Mind_bomb 3 zinc cluster 2 0 1 1 1 17,20,35,39 4 -239079 cd02339 ZZ_Mind_bomb 4 putative hydrophobic binding surface 0 0 1 0 15,30,41,44 0 -239079 cd02339 ZZ_Mind_bomb 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239080 cd02340 ZZ_NBR1_like 1 Zinc-binding sites 0 1 1 1 2,5,16,19,25,28,34,37 4 -239080 cd02340 ZZ_NBR1_like 2 zinc cluster 1 0 1 1 1 2,5,25,28 4 -239080 cd02340 ZZ_NBR1_like 3 zinc cluster 2 0 1 1 1 16,19,34,37 4 -239080 cd02340 ZZ_NBR1_like 4 putative hydrophobic binding surface 0 0 1 0 14,29,39,42 0 -239080 cd02340 ZZ_NBR1_like 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239081 cd02341 ZZ_ZZZ3 1 Zinc-binding sites 0 1 1 1 2,5,17,20,28,31,38,42 4 -239081 cd02341 ZZ_ZZZ3 2 zinc cluster 1 0 1 1 1 2,5,28,31 4 -239081 cd02341 ZZ_ZZZ3 3 zinc cluster 2 0 1 1 1 17,20,38,42 4 -239081 cd02341 ZZ_ZZZ3 4 putative hydrophobic binding surface 0 0 1 0 15,32,44,47 0 -239081 cd02341 ZZ_ZZZ3 5 putative charged binding surface 0 0 1 0 3,14,16,24,26 0 -239082 cd02342 ZZ_UBA_plant 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,35,37 4 -239082 cd02342 ZZ_UBA_plant 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239082 cd02342 ZZ_UBA_plant 3 zinc cluster 2 0 1 1 1 17,20,35,37 4 -239082 cd02342 ZZ_UBA_plant 4 putative hydrophobic binding surface 0 0 1 0 15,30,39,42 0 -239082 cd02342 ZZ_UBA_plant 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239083 cd02343 ZZ_EF 1 Zinc-binding sites 0 1 1 1 2,5,16,19,25,28,38,42 4 -239083 cd02343 ZZ_EF 2 zinc cluster 1 0 1 1 1 2,5,25,28 4 -239083 cd02343 ZZ_EF 3 zinc cluster 2 0 1 1 1 16,19,38,42 4 -239083 cd02343 ZZ_EF 4 putative hydrophobic binding surface 0 0 1 0 14,29,44,47 0 -239083 cd02343 ZZ_EF 5 putative charged binding surface 0 0 1 0 3,13,15,21,23 0 -239084 cd02344 ZZ_HERC2 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,35,39 4 -239084 cd02344 ZZ_HERC2 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239084 cd02344 ZZ_HERC2 3 zinc cluster 2 0 1 1 1 17,20,35,39 4 -239084 cd02344 ZZ_HERC2 4 putative hydrophobic binding surface 0 0 1 0 15,30,41,44 0 -239084 cd02344 ZZ_HERC2 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -239085 cd02345 ZZ_dah 1 Zinc-binding sites 0 1 1 1 2,5,17,20,26,29,39,43 4 -239085 cd02345 ZZ_dah 2 zinc cluster 1 0 1 1 1 2,5,26,29 4 -239085 cd02345 ZZ_dah 3 zinc cluster 2 0 1 1 1 17,20,39,43 4 -239085 cd02345 ZZ_dah 4 putative hydrophobic binding surface 0 0 1 0 15,30,45,48 0 -239085 cd02345 ZZ_dah 5 putative charged binding surface 0 0 1 0 3,14,16,22,24 0 -187736 cd02255 Peptidase_C12 1 catalytic site 0 1 1 0 83,89,163,178 1 -187737 cd09616 Peptidase_C12_UCH_L1_L3 1 catalytic site 0 1 1 0 83,89,163,178 1 -187738 cd09617 Peptidase_C12_UCH37_BAP1 1 catalytic site 0 1 1 0 74,80,158,173 1 -239072 cd02257 Peptidase_C19 1 Active Site 0 0 1 0 3,8,209,227 1 -239122 cd02657 Peptidase_C19A 1 Active Site 0 0 1 0 3,8,257,275 1 -239123 cd02658 Peptidase_C19B 1 Active Site 0 0 1 0 3,8,268,288 1 -239124 cd02659 peptidase_C19C 1 Active Site 0 0 1 0 6,11,267,285 1 -239125 cd02660 Peptidase_C19D 1 Active Site 0 0 1 0 4,9,288,305 1 -239126 cd02661 Peptidase_C19E 1 Active Site 0 0 1 0 5,10,264,281 1 -239127 cd02662 Peptidase_C19F 1 Active Site 0 0 1 0 3,8,178,216 1 -239128 cd02663 Peptidase_C19G 1 Active Site 0 0 1 0 3,8,253,269 1 -239129 cd02664 Peptidase_C19H 1 Active Site 0 0 1 0 3,8,259,297 1 -239130 cd02665 Peptidase_C19I 1 Active Site 0 0 1 0 3,8,179,197 1 -239131 cd02666 Peptidase_C19J 1 Active Site 0 0 1 0 5,10,296,314 1 -239132 cd02667 Peptidase_C19K 1 Active Site 0 0 1 0 3,8,217,256 1 -239133 cd02668 Peptidase_C19L 1 Active Site 0 0 1 0 3,8,262,280 1 -239134 cd02669 Peptidase_C19M 1 Active Site 0 0 1 0 123,128,399,417 1 -239135 cd02670 Peptidase_C19N 1 Active Site 0 0 1 0 3,9,183,212 1 -239136 cd02671 Peptidase_C19O 1 Active Site 0 0 1 0 28,33,288,300 1 -239137 cd02672 Peptidase_C19P 1 Active Site 0 0 1 0 20,26,229,251 1 -239138 cd02673 Peptidase_C19Q 1 Active Site 0 0 1 0 3,8,200,219 1 -239139 cd02674 Peptidase_C19R 1 Active Site 0 0 1 0 3,8,189,207 1 -199210 cd02258 Peptidase_C25_N 1 active site 0 1 1 1 248,249,250,251,282,284 1 -199211 cd10913 Peptidase_C25_N_gingipain 1 active site 0 1 1 1 208,209,210,211,241,243 1 -199212 cd10914 Peptidase_C25_N_1 1 active site 0 1 1 1 230,231,232,233,269,271 1 -199213 cd10915 Peptidase_C25_N_2 1 active site 0 1 1 1 264,265,266,267,300,302 1 -239073 cd02259 Peptidase_C39_like 1 putative active site 0 0 1 1 0,6,79,95 1 -239098 cd02417 Peptidase_C39_likeA 1 putative active site 0 0 1 1 0,6,79,95 1 -239099 cd02418 Peptidase_C39B 1 putative active site 0 0 1 1 5,11,90,106 1 -239100 cd02419 Peptidase_C39C 1 putative active site 0 0 1 1 5,11,84,100 1 -239101 cd02420 Peptidase_C39D 1 putative active site 0 0 1 1 5,11,84,100 1 -239102 cd02421 Peptidase_C39_likeD 1 putative active site 0 0 1 1 0,6,79,95 1 -239103 cd02423 Peptidase_C39G 1 putative active site 0 0 1 1 5,11,88,104 1 -239104 cd02424 Peptidase_C39E 1 putative active site 0 0 1 1 5,11,88,104 1 -239105 cd02425 Peptidase_C39F 1 putative active site 0 0 1 1 5,11,85,101 1 -239109 cd02549 Peptidase_C39A 1 putative active site 0 0 1 1 0,6,94,111 1 -187535 cd02266 SDR 1 active site 0 0 1 1 61,89,102,106 1 -187535 cd02266 SDR 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,37,38,39,87,88,89,102,106,132,133,134,135 5 -187537 cd05226 SDR_e_a 1 active site 0 0 1 1 82,106,125,129 1 -187537 cd05226 SDR_e_a 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,68,69,70,104,105,106,125,129,148,149,150,151 5 -187540 cd05229 SDR_a3 1 active site 0 0 1 1 79,102,122,126 1 -187540 cd05229 SDR_a3 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,67,68,69,100,101,102,122,126,153,154,155,156 5 -187553 cd05242 SDR_a8 1 active site 0 0 1 1 85,111,134,138 1 -187553 cd05242 SDR_a8 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,63,64,65,109,110,111,134,138,160,161,162,163 5 -187554 cd05243 SDR_a5 1 active site 0 0 1 1 84,108,124,128 1 -187554 cd05243 SDR_a5 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,69,70,71,106,107,108,124,128,147,148,149,150 5 -187555 cd05244 BVR-B_like_SDR_a 1 active site 0 0 1 1 81,105,131,135 1 -187555 cd05244 BVR-B_like_SDR_a 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,68,69,70,103,104,105,131,135,154,155,156,157 5 -187556 cd05245 SDR_a2 1 active site 0 0 1 1 83,107,118,122 1 -187556 cd05245 SDR_a2 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,69,70,71,105,106,107,118,122,141,142,143,144 5 -187560 cd05250 CC3_like_SDR_a 1 active site 0 0 1 1 89,113,124,128 1 -187560 cd05250 CC3_like_SDR_a 2 NAD(P) binding site 0 1 1 0 6,8,9,11,32,33,34,71,72,73,111,112,113,124,128,148,149,150,151 5 -187569 cd05259 PCBER_SDR_a 1 active site 0 0 1 1 76,100,115,119 1 -187569 cd05259 PCBER_SDR_a 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,71,72,73,98,99,100,115,119,140,141,142,143 5 -187572 cd05262 SDR_a7 1 active site 0 0 1 1 86,109,131,135 1 -187572 cd05262 SDR_a7 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,70,71,72,107,108,109,131,135,158,159,160,161 5 -187575 cd05265 SDR_a1 1 active site 0 0 1 1 74,97,128,132 1 -187575 cd05265 SDR_a1 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,60,61,62,95,96,97,128,132,152,153,154,155 5 -187576 cd05266 SDR_a4 1 active site 0 0 1 1 75,100,124,128 1 -187576 cd05266 SDR_a4 2 NAD(P) binding site 0 1 1 0 4,6,7,8,27,28,29,63,64,65,98,99,100,124,128,148,149,150,151 5 -187577 cd05267 SDR_a6 1 active site 0 0 1 1 77,101,123,127 1 -187577 cd05267 SDR_a6 2 NAD(P) binding site 0 1 1 0 6,8,9,11,31,32,33,71,72,73,99,100,101,123,127,146,147,148,149 5 -187579 cd05271 NDUFA9_like_SDR_a 1 active site 0 0 1 1 90,114,125,129 1 -187579 cd05271 NDUFA9_like_SDR_a 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,74,75,76,112,113,114,125,129,148,149,150,151 5 -212494 cd08946 SDR_e 1 active site 0 0 1 1 56,80,104,108 1 -212494 cd08946 SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,36,37,38,78,79,80,104,108,131,132,133,134 5 -187536 cd05193 AR_like_SDR_e 1 active site 0 0 1 1 94,119,156,160 1 -187536 cd05193 AR_like_SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,76,77,78,117,118,119,156,160,183,184,185,186 5 -187538 cd05227 AR_SDR_e 1 active site 0 0 1 1 97,122,157,161 1 -187538 cd05227 AR_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,78,79,80,120,121,122,157,161,186,187,188,189 5 -187539 cd05228 AR_FR_like_1_SDR_e 1 active site 0 0 1 1 86,110,137,141 1 -187539 cd05228 AR_FR_like_1_SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,68,69,70,108,109,110,137,141,163,164,165,166 5 -187661 cd08958 FR_SDR_e 1 active site 0 0 1 1 95,120,154,158 1 -187661 cd08958 FR_SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,76,77,78,118,119,120,154,158,181,182,183,184 5 -187541 cd05230 UGD_SDR_e 1 active site 0 0 1 1 90,113,142,146 1 -187541 cd05230 UGD_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,70,71,72,111,112,113,142,146,169,170,171,172 5 -187543 cd05232 UDP_G4E_4_SDR_e 1 active site 0 0 1 1 85,109,134,138 1 -187543 cd05232 UDP_G4E_4_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,63,64,65,107,108,109,134,138,161,162,163,164 5 -187545 cd05234 UDP_G4E_2_SDR_e 1 active site 0 0 1 1 93,117,141,145 1 -187545 cd05234 UDP_G4E_2_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,73,74,75,115,116,117,141,145,168,169,170,171 5 -187546 cd05235 SDR_e1 1 active site 0 0 1 1 112,136,167,171 1 -187546 cd05235 SDR_e1 2 NAD(P) binding site 0 1 1 0 5,7,8,10,31,32,33,95,96,97,134,135,136,167,171,193,194,195,196 5 -187547 cd05236 FAR-N_SDR_e 1 active site 0 0 1 1 120,142,193,197 1 -187547 cd05236 FAR-N_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,33,34,35,100,101,102,140,141,142,193,197,218,219,220,221 5 -187548 cd05237 UDP_invert_4-6DH_SDR_e 1 active site 0 0 1 1 103,127,137,141 1 -187548 cd05237 UDP_invert_4-6DH_SDR_e 2 NAD(P) binding site 0 1 1 0 8,10,11,13,33,34,35,83,84,85,125,126,127,137,141,165,166,167,168 5 -187549 cd05238 Gne_like_SDR_e 1 active site 0 0 1 1 91,116,140,144 1 -187549 cd05238 Gne_like_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,72,73,74,114,115,116,140,144,167,168,169,170 5 -187550 cd05239 GDP_FS_SDR_e 1 active site 0 0 1 1 78,102,131,135 1 -187550 cd05239 GDP_FS_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,57,58,59,100,101,102,131,135,158,159,160,161 5 -187551 cd05240 UDP_G4E_3_SDR_e 1 active site 0 0 1 1 85,109,137,141 1 -187551 cd05240 UDP_G4E_3_SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,68,69,70,107,108,109,137,141,165,166,167,168 5 -187552 cd05241 3b-HSD-like_SDR_e 1 active site 0 0 1 1 89,113,140,144 1 -187552 cd05241 3b-HSD-like_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,72,73,74,111,112,113,140,144,167,168,169,170 5 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e 1 active site 0 0 1 1 97,121,151,155 1 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,32,33,34,78,79,80,119,120,121,151,155,183,184,185,186 5 -187672 cd09812 3b-HSD_like_1_SDR_e 1 active site 0 0 1 1 87,111,140,144 1 -187672 cd09812 3b-HSD_like_1_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,67,68,69,109,110,111,140,144,173,174,175,176 5 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e 1 active site 0 0 1 1 89,113,140,144 1 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,73,74,75,111,112,113,140,144,168,169,170,171 5 -187557 cd05246 dTDP_GD_SDR_e 1 active site 0 0 1 1 100,124,149,153 1 -187557 cd05246 dTDP_GD_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,32,33,34,80,81,82,122,123,124,149,153,176,177,178,179 5 -187558 cd05247 UDP_G4E_1_SDR_e 1 active site 0 0 1 1 95,119,143,147 1 -187558 cd05247 UDP_G4E_1_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,75,76,77,117,118,119,143,147,170,171,172,173 5 -187559 cd05248 ADP_GME_SDR_e 1 active site 0 0 1 1 92,115,141,145 1 -187559 cd05248 ADP_GME_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,74,75,76,113,114,115,141,145,168,169,170,171 5 -187562 cd05252 CDP_GD_SDR_e 1 active site 0 0 1 1 101,126,151,155 1 -187562 cd05252 CDP_GD_SDR_e 2 NAD(P) binding site 0 1 1 0 10,12,13,15,34,35,36,81,82,83,124,125,126,151,155,187,188,189,190 5 -187563 cd05253 UDP_GE_SDE_e 1 active site 0 0 1 1 102,126,151,155 1 -187563 cd05253 UDP_GE_SDE_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,82,83,84,124,125,126,151,155,178,179,180,181 5 -187564 cd05254 dTDP_HR_like_SDR_e 1 active site 0 0 1 1 81,104,127,131 1 -187564 cd05254 dTDP_HR_like_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,61,62,63,102,103,104,127,131,150,151,152,153 5 -187565 cd05255 SQD1_like_SDR_e 1 active site 0 0 1 1 118,143,180,184 1 -187565 cd05255 SQD1_like_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,95,96,97,141,142,143,180,184,207,208,209,210 5 -187566 cd05256 UDP_AE_SDR_e 1 active site 0 0 1 1 92,116,140,144 1 -187566 cd05256 UDP_AE_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,72,73,74,114,115,116,140,144,167,168,169,170 5 -187567 cd05257 Arna_like_SDR_e 1 active site 0 0 1 1 95,118,146,150 1 -187567 cd05257 Arna_like_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,74,75,76,116,117,118,146,150,173,174,175,176 5 -187568 cd05258 CDP_TE_SDR_e 1 active site 0 0 1 1 99,124,169,173 1 -187568 cd05258 CDP_TE_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,79,80,81,122,123,124,169,173,196,197,198,199 5 -187570 cd05260 GDP_MD_SDR_e 1 active site 0 0 1 1 98,123,147,151 1 -187570 cd05260 GDP_MD_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,78,79,80,121,122,123,147,151,174,175,176,177 5 -187571 cd05261 CAPF_like_SDR_e 1 active site 0 0 1 1 68,93,102,106 1 -187571 cd05261 CAPF_like_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,31,32,33,52,53,54,91,92,93,102,106,129,130,131,132 5 -187573 cd05263 MupV_like_SDR_e 1 active site 0 0 1 1 99,123,149,153 1 -187573 cd05263 MupV_like_SDR_e 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,82,83,84,121,122,123,149,153,174,175,176,177 5 -187574 cd05264 UDP_G4E_5_SDR_e 1 active site 0 0 1 1 88,112,137,141 1 -187574 cd05264 UDP_G4E_5_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,68,69,70,110,111,112,137,141,164,165,166,167 5 -187580 cd05272 TDH_SDR_e 1 active site 0 0 1 1 90,113,138,142 1 -187580 cd05272 TDH_SDR_e 2 NAD(P) binding site 0 1 1 0 5,7,8,10,31,32,33,71,72,73,111,112,113,138,142,165,166,167,168 5 -187581 cd05273 GME-like_SDR_e 1 active site 0 0 1 1 91,115,146,150 1 -187581 cd05273 GME-like_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,70,71,72,113,114,115,146,150,173,174,175,176 5 -187660 cd08957 WbmH_like_SDR_e 1 active site 0 0 1 1 91,115,141,145 1 -187660 cd08957 WbmH_like_SDR_e 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,74,75,76,113,114,115,141,145,164,165,166,167 5 -187651 cd08947 NmrA_TMR_like_SDR_a 1 active site 0 0 1 1 79,103,113,117 1 -187651 cd08947 NmrA_TMR_like_SDR_a 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,69,70,71,101,102,103,113,117,136,137,138,139 5 -187542 cd05231 NmrA_TMR_like_1_SDR_a 1 active site 0 0 1 1 81,105,116,120 1 -187542 cd05231 NmrA_TMR_like_1_SDR_a 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,68,69,70,103,104,105,116,120,139,140,141,142 5 -187561 cd05251 NmrA_like_SDR_a 1 active site 0 0 1 1 82,107,118,122 1 -187561 cd05251 NmrA_like_SDR_a 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,71,72,73,105,106,107,118,122,141,142,143,144 5 -187578 cd05269 TMR_SDR_a 1 active site 0 0 1 1 76,100,111,115 1 -187578 cd05269 TMR_SDR_a 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,68,69,70,98,99,100,111,115,134,135,136,137 5 -187652 cd08948 5beta-POR_like_SDR_a 1 active site 0 0 1 1 91,117,146,150 1 -187652 cd08948 5beta-POR_like_SDR_a 2 NAD(P) binding site 0 1 1 0 5,7,8,10,32,33,34,76,77,78,115,116,117,146,150,173,174,175,176 5 -212491 cd05233 SDR_c 1 active site 0 0 1 1 104,132,145,149 1 -212491 cd05233 SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,80,81,82,130,131,132,145,149,175,176,177,178 5 -187583 cd05322 SDH_SDR_c_like 1 active site 0 0 1 1 110,139,152,156 1 -187583 cd05322 SDH_SDR_c_like 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,86,87,88,137,138,139,152,156,182,183,184,185 5 -187584 cd05323 ADH_SDR_c_like 1 active site 0 0 1 1 109,140,153,157 1 -187584 cd05323 ADH_SDR_c_like 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,83,84,85,138,139,140,153,157,184,185,186,187 5 -187585 cd05324 carb_red_PTCR-like_SDR_c 1 active site 0 0 1 1 109,137,146,150 1 -187585 cd05324 carb_red_PTCR-like_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,31,32,33,84,85,86,135,136,137,146,150,176,177,178,179 5 -187586 cd05325 carb_red_sniffer_like_SDR_c 1 active site 0 0 1 1 106,134,150,154 1 -187586 cd05325 carb_red_sniffer_like_SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,29,30,31,81,82,83,132,133,134,150,154,180,181,182,183 5 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c 2 NAD(P) binding site 0 1 1 0 10,12,13,15,34,35,36,85,86,87,137,138,139,152,156,182,183,184,185 5 -212492 cd05327 retinol-DH_like_SDR_c_like 1 active site 0 0 1 1 108,142,163,167 1 -212492 cd05327 retinol-DH_like_SDR_c_like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,86,87,88,140,141,142,163,167,193,194,195,196 5 -212495 cd09807 retinol-DH_like_SDR_c 1 active site 0 0 1 1 108,142,161,165 1 -212495 cd09807 retinol-DH_like_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,86,87,88,140,141,142,161,165,191,192,193,194 5 -187668 cd09808 DHRS-12_like_SDR_c-like 1 active site 0 0 1 1 108,142,162,166 1 -187668 cd09808 DHRS-12_like_SDR_c-like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,86,87,88,140,141,142,162,166,190,191,192,193 5 -187669 cd09809 human_WWOX_like_SDR_c-like 1 active site 0 0 1 1 108,142,169,173 1 -187669 cd09809 human_WWOX_like_SDR_c-like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,86,87,88,140,141,142,169,173,199,200,201,202 5 -187670 cd09810 LPOR_like_SDR_c_like 1 active site 0 0 1 1 110,146,186,190 1 -187670 cd09810 LPOR_like_SDR_c_like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,32,33,34,85,86,87,144,145,146,186,190,217,218,219,220 5 -187589 cd05328 3alpha_HSD_SDR_c 1 active site 0 0 1 1 82,110,150,154 1 -187589 cd05328 3alpha_HSD_SDR_c 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,66,67,68,108,109,110,150,154,181,182,183,184 5 -187590 cd05329 TR_SDR_c 1 active site 0 0 1 1 114,142,155,159 1 -187590 cd05329 TR_SDR_c 2 NAD(P) binding site 0 1 1 0 12,14,15,17,36,37,38,90,91,92,140,141,142,155,159,185,186,187,188 5 -187591 cd05330 cyclohexanol_reductase_SDR_c 1 active site 0 0 1 1 113,141,154,158 1 -187591 cd05330 cyclohexanol_reductase_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,88,89,90,139,140,141,154,158,184,185,186,187 5 -187592 cd05331 DH-DHB-DH_SDR_c 1 active site 0 0 1 1 98,126,139,143 1 -187592 cd05331 DH-DHB-DH_SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,74,75,76,124,125,126,139,143,169,170,171,172 5 -187593 cd05332 11beta-HSD1_like_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187593 cd05332 11beta-HSD1_like_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,87,88,89,137,138,139,152,156,182,183,184,185 5 -187594 cd05333 BKR_SDR_c 1 active site 0 0 1 1 107,135,148,152 1 -187594 cd05333 BKR_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,83,84,85,133,134,135,148,152,178,179,180,181 5 -187595 cd05334 DHPR_SDR_c_like 1 active site 0 0 1 1 99,125,138,142 1 -187595 cd05334 DHPR_SDR_c_like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,74,75,76,123,124,125,138,142,170,171,172,173 5 -187596 cd05337 BKR_1_SDR_c 1 active site 0 0 1 1 111,145,158,162 1 -187596 cd05337 BKR_1_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,85,86,87,143,144,145,158,162,188,189,190,191 5 -187597 cd05338 DHRS1_HSDL2-like_SDR_c 1 active site 0 0 1 1 122,150,163,167 1 -187597 cd05338 DHRS1_HSDL2-like_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,98,99,100,148,149,150,163,167,193,194,195,196 5 -187663 cd09762 HSDL2_SDR_c 1 active site 0 0 1 1 117,145,160,164 1 -187663 cd09762 HSDL2_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,93,94,95,143,144,145,160,164,190,191,192,193 5 -187664 cd09763 DHRS1-like_SDR_c 1 active site 0 0 1 1 119,147,159,163 1 -187664 cd09763 DHRS1-like_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,88,89,90,145,146,147,159,163,189,190,191,192 5 -187598 cd05339 17beta-HSDXI-like_SDR_c 1 active site 0 0 1 1 106,134,147,151 1 -187598 cd05339 17beta-HSDXI-like_SDR_c 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,82,83,84,132,133,134,147,151,180,181,182,183 5 -187599 cd05340 Ycik_SDR_c 1 active site 0 0 1 1 115,143,156,160 1 -187599 cd05340 Ycik_SDR_c 2 NAD(P) binding site 0 1 1 0 10,12,13,15,34,35,36,90,91,92,141,142,143,156,160,186,187,188,189 5 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 1 active site 0 0 1 1 109,137,150,154 1 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,85,86,87,135,136,137,150,154,182,183,184,185 5 -187601 cd05343 Mgc4172-like_SDR_c 1 active site 0 0 1 1 114,144,159,163 1 -187601 cd05343 Mgc4172-like_SDR_c 2 NAD(P) binding site 0 1 1 0 12,14,15,17,36,37,38,90,91,92,142,143,144,159,163,191,192,193,194 5 -187602 cd05344 BKR_like_SDR_like 1 active site 0 0 1 1 108,136,149,153 1 -187602 cd05344 BKR_like_SDR_like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,84,85,86,134,135,136,149,153,179,180,181,182 5 -187603 cd05345 BKR_3_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187603 cd05345 BKR_3_SDR_c 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,85,86,87,136,137,138,151,155,181,182,183,184 5 -187604 cd05346 SDR_c5 1 active site 0 0 1 1 109,137,150,154 1 -187604 cd05346 SDR_c5 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,84,85,86,135,136,137,150,154,180,181,182,183 5 -187605 cd05347 Ga5DH-like_SDR_c 1 active site 0 0 1 1 112,140,153,157 1 -187605 cd05347 Ga5DH-like_SDR_c 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,88,89,90,138,139,140,153,157,183,184,185,186 5 -187606 cd05348 BphB-like_SDR_c 1 active site 0 0 1 1 113,140,153,157 1 -187606 cd05348 BphB-like_SDR_c 2 NAD(P) binding site 0 1 1 0 10,12,13,15,34,35,36,84,85,86,138,139,140,153,157,182,183,184,185 5 -187607 cd05349 BKR_2_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187607 cd05349 BKR_2_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,81,82,83,137,138,139,152,156,182,183,184,185 5 -187608 cd05350 SDR_c6 1 active site 0 0 1 1 105,133,146,150 1 -187608 cd05350 SDR_c6 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,81,82,83,131,132,133,146,150,176,177,178,179 5 -187609 cd05351 XR_like_SDR_c 1 active site 0 0 1 1 106,135,148,152 1 -187609 cd05351 XR_like_SDR_c 2 NAD(P) binding site 0 1 1 0 13,15,16,18,37,38,39,82,83,84,133,134,135,148,152,178,179,180,181 5 -187610 cd05352 MDH-like_SDR_c 1 active site 0 0 1 1 116,144,159,163 1 -187610 cd05352 MDH-like_SDR_c 2 NAD(P) binding site 0 1 1 0 14,16,17,19,38,39,40,92,93,94,142,143,144,159,163,189,190,191,192 5 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like 1 active site 0 0 1 1 118,146,159,163 1 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,94,95,96,144,145,146,159,163,189,190,191,192 5 -187612 cd05354 SDR_c7 1 active site 0 0 1 1 105,133,146,150 1 -187612 cd05354 SDR_c7 2 NAD(P) binding site 0 1 1 0 9,11,12,14,34,35,36,80,81,82,131,132,133,146,150,176,177,178,179 5 -187613 cd05355 SDR_c1 1 active site 0 0 1 1 136,162,175,179 1 -187613 cd05355 SDR_c1 2 NAD(P) binding site 0 1 1 0 32,34,35,37,56,57,58,111,112,113,160,161,162,175,179,205,206,207,208 5 -187614 cd05356 17beta-HSD1_like_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187614 cd05356 17beta-HSD1_like_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,84,85,86,136,137,138,151,155,181,182,183,184 5 -187615 cd05357 PR_SDR_c 1 active site 0 0 1 1 108,136,149,153 1 -187615 cd05357 PR_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,84,85,86,134,135,136,149,153,178,179,180,181 5 -187616 cd05358 GlcDH_SDR_c 1 active site 0 0 1 1 111,140,153,157 1 -187616 cd05358 GlcDH_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,87,88,89,138,139,140,153,157,183,184,185,186 5 -187617 cd05359 ChcA_like_SDR_c 1 active site 0 0 1 1 106,134,147,151 1 -187617 cd05359 ChcA_like_SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,82,83,84,132,133,134,147,151,177,178,179,180 5 -187618 cd05360 SDR_c3 1 active site 0 0 1 1 107,135,148,152 1 -187618 cd05360 SDR_c3 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,83,84,85,133,134,135,148,152,180,181,182,183 5 -187619 cd05361 haloalcohol_DH_SDR_c-like 1 active site 0 0 1 1 103,131,144,148 1 -187619 cd05361 haloalcohol_DH_SDR_c-like 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,78,79,80,129,130,131,144,148,174,175,176,177 5 -187620 cd05362 THN_reductase-like_SDR_c 1 active site 0 0 1 1 111,137,150,154 1 -187620 cd05362 THN_reductase-like_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,87,88,89,135,136,137,150,154,180,181,182,183 5 -187621 cd05363 SDH_SDR_c 1 active site 0 0 1 1 107,136,149,153 1 -187621 cd05363 SDH_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,83,84,85,134,135,136,149,153,179,180,181,182 5 -187622 cd05364 SDR_c11 1 active site 0 0 1 1 113,140,153,157 1 -187622 cd05364 SDR_c11 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,89,90,91,138,139,140,153,157,183,184,185,186 5 -187623 cd05365 7_alpha_HSDH_SDR_c 1 active site 0 0 1 1 107,135,148,152 1 -187623 cd05365 7_alpha_HSDH_SDR_c 2 NAD(P) binding site 0 1 1 0 5,7,8,10,29,30,31,82,83,84,133,134,135,148,152,178,179,180,181 5 -187624 cd05366 meso-BDH-like_SDR_c 1 active site 0 0 1 1 110,139,152,156 1 -187624 cd05366 meso-BDH-like_SDR_c 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,86,87,88,137,138,139,152,156,182,183,184,185 5 -187625 cd05367 SPR-like_SDR_c 1 active site 0 0 1 1 108,137,150,154 1 -187625 cd05367 SPR-like_SDR_c 2 NAD(P) binding site 0 1 1 0 5,7,8,10,31,32,33,83,84,85,135,136,137,150,154,178,179,180,181 5 -187626 cd05368 DHRS6_like_SDR_c 1 active site 0 0 1 1 100,128,142,146 1 -187626 cd05368 DHRS6_like_SDR_c 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,76,77,78,126,127,128,142,146,172,173,174,175 5 -187627 cd05369 TER_DECR_SDR_a 1 active site 0 0 1 1 111,140,153,157 1 -187627 cd05369 TER_DECR_SDR_a 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,87,88,89,138,139,140,153,157,183,184,185,186 5 -187628 cd05370 SDR_c2 1 active site 0 0 1 1 110,138,151,155 1 -187628 cd05370 SDR_c2 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,84,85,86,136,137,138,151,155,181,182,183,184 5 -187629 cd05371 HSD10-like_SDR_c 1 active site 0 0 1 1 111,145,158,162 1 -187629 cd05371 HSD10-like_SDR_c 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,81,82,83,143,144,145,158,162,188,189,190,191 5 -187630 cd05372 ENR_SDR 1 active site 0 0 1 1 114,140,153,157 1 -187630 cd05372 ENR_SDR 2 NAD(P) binding site 0 1 1 0 7,9,10,14,33,34,35,86,87,88,138,139,140,153,157,183,184,185,186 5 -187631 cd05373 SDR_c10 1 active site 0 0 1 1 107,135,148,152 1 -187631 cd05373 SDR_c10 2 NAD(P) binding site 0 1 1 0 5,7,8,10,30,31,32,83,84,85,133,134,135,148,152,178,179,180,181 5 -187632 cd05374 17beta-HSD-like_SDR_c 1 active site 0 0 1 1 104,132,145,149 1 -187632 cd05374 17beta-HSD-like_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,80,81,82,130,131,132,145,149,175,176,177,178 5 -187665 cd09805 type2_17beta_HSD-like_SDR_c 1 active site 0 0 1 1 109,136,149,153 1 -187665 cd09805 type2_17beta_HSD-like_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,84,85,86,134,135,136,149,153,179,180,181,182 5 -187666 cd09806 type1_17beta-HSD-like_SDR_c 1 active site 0 0 1 1 109,137,150,154 1 -187666 cd09806 type1_17beta-HSD-like_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,33,34,35,85,86,87,135,136,137,150,154,180,181,182,183 5 -187634 cd08929 SDR_c4 1 active site 0 0 1 1 104,132,145,149 1 -187634 cd08929 SDR_c4 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,80,81,82,130,131,132,145,149,175,176,177,178 5 -187635 cd08930 SDR_c8 1 active site 0 0 1 1 113,141,164,168 1 -187635 cd08930 SDR_c8 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,86,87,88,139,140,141,164,168,194,195,196,197 5 -187636 cd08931 SDR_c9 1 active site 0 0 1 1 106,134,147,151 1 -187636 cd08931 SDR_c9 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,82,83,84,132,133,134,147,151,177,178,179,180 5 -212493 cd08932 HetN_like_SDR_c 1 active site 0 0 1 1 103,131,144,148 1 -212493 cd08932 HetN_like_SDR_c 2 NAD(P) binding site 0 1 1 0 6,8,9,11,30,31,32,79,80,81,129,130,131,144,148,174,175,176,177 5 -187638 cd08933 RDH_SDR_c 1 active site 0 0 1 1 118,145,158,162 1 -187638 cd08933 RDH_SDR_c 2 NAD(P) binding site 0 1 1 0 15,17,18,20,39,40,41,93,94,95,143,144,145,158,162,188,189,190,191 5 -187639 cd08934 CAD_SDR_c 1 active site 0 0 1 1 110,138,151,155 1 -187639 cd08934 CAD_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,86,87,88,136,137,138,151,155,181,182,183,184 5 -187640 cd08935 mannonate_red_SDR_c 1 active site 0 0 1 1 126,154,167,171 1 -187640 cd08935 mannonate_red_SDR_c 2 NAD(P) binding site 0 1 1 0 11,13,14,16,35,36,37,88,89,90,152,153,154,167,171,197,198,199,200 5 -187641 cd08936 CR_SDR_c 1 active site 0 0 1 1 118,146,159,163 1 -187641 cd08936 CR_SDR_c 2 NAD(P) binding site 0 1 1 0 16,18,19,21,40,41,42,93,94,95,144,145,146,159,163,189,190,191,192 5 -187642 cd08937 DHB_DH-like_SDR_c 1 active site 0 0 1 1 111,139,150,154 1 -187642 cd08937 DHB_DH-like_SDR_c 2 NAD(P) binding site 0 1 1 0 10,12,13,15,34,35,36,86,87,88,137,138,139,150,154,180,181,182,183 5 -187643 cd08939 KDSR-like_SDR_c 1 active site 0 0 1 1 112,140,153,157 1 -187643 cd08939 KDSR-like_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,88,89,90,138,139,140,153,157,183,184,185,186 5 -187644 cd08940 HBDH_SDR_c 1 active site 0 0 1 1 111,139,152,156 1 -187644 cd08940 HBDH_SDR_c 2 NAD(P) binding site 0 1 1 0 8,10,11,13,32,33,34,87,88,89,137,138,139,152,156,182,183,184,185 5 -187645 cd08941 3KS_SDR_c 1 active site 0 0 1 1 150,179,201,205 1 -187645 cd08941 3KS_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,36,37,38,93,94,95,177,178,179,201,205,231,232,233,234 5 -187646 cd08942 RhlG_SDR_c 1 active site 0 0 1 1 112,144,158,162 1 -187646 cd08942 RhlG_SDR_c 2 NAD(P) binding site 0 1 1 0 12,14,15,17,36,37,38,88,89,90,142,143,144,158,162,188,189,190,191 5 -187647 cd08943 R1PA_ADH_SDR_c 1 active site 0 0 1 1 107,136,149,153 1 -187647 cd08943 R1PA_ADH_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,83,84,85,134,135,136,149,153,179,180,181,182 5 -187648 cd08944 SDR_c12 1 active site 0 0 1 1 108,136,149,153 1 -187648 cd08944 SDR_c12 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,83,84,85,134,135,136,149,153,179,180,181,182 5 -187649 cd08945 PKR_SDR_c 1 active site 0 0 1 1 110,140,153,157 1 -187649 cd08945 PKR_SDR_c 2 NAD(P) binding site 0 1 1 0 9,11,12,14,33,34,35,86,87,88,138,139,140,153,157,183,184,185,186 5 -187662 cd09761 A3DFK9-like_SDR_c 1 active site 0 0 1 1 105,132,145,149 1 -187662 cd09761 A3DFK9-like_SDR_c 2 NAD(P) binding site 0 1 1 0 7,9,10,12,31,32,33,81,82,83,130,131,132,145,149,174,175,176,177 5 -212496 cd11730 Tthb094_like_SDR_c 1 active site 0 0 1 1 96,122,135,139 1 -212496 cd11730 Tthb094_like_SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,72,73,74,120,121,122,135,139,163,164,165,166 5 -212497 cd11731 Lin1944_like_SDR_c 1 active site 0 0 1 1 84,110,123,127 1 -212497 cd11731 Lin1944_like_SDR_c 2 NAD(P) binding site 0 1 1 0 4,6,7,9,28,29,30,60,61,62,108,109,110,123,127,152,153,154,155 5 -187582 cd05274 KR_FAS_SDR_x 1 active site 0 0 1 1 259,283,296,300 1 -187582 cd05274 KR_FAS_SDR_x 2 NAD(P) binding site 0 1 1 0 156,158,159,161,181,182,183,235,236,237,281,282,283,296,300,322,323,324,325 5 -187655 cd08952 KR_1_SDR_x 1 active site 0 0 1 1 340,364,377,381 1 -187655 cd08952 KR_1_SDR_x 2 NAD(P) binding site 0 1 1 0 236,238,239,241,261,262,263,316,317,318,362,363,364,377,381,403,404,405,406 5 -187656 cd08953 KR_2_SDR_x 1 active site 0 0 1 1 318,342,355,359 1 -187656 cd08953 KR_2_SDR_x 2 NAD(P) binding site 0 1 1 0 211,213,214,216,236,237,238,294,295,296,340,341,342,355,359,383,384,385,386 5 -187657 cd08954 KR_1_FAS_SDR_x 1 active site 0 0 1 1 331,357,370,374 1 -187657 cd08954 KR_1_FAS_SDR_x 2 NAD(P) binding site 0 1 1 0 224,226,227,229,250,251,252,307,308,309,355,356,357,370,374,396,397,398,399 5 -187658 cd08955 KR_2_FAS_SDR_x 1 active site 0 0 1 1 259,283,296,300 1 -187658 cd08955 KR_2_FAS_SDR_x 2 NAD(P) binding site 0 1 1 0 155,157,158,160,180,181,182,235,236,237,281,282,283,296,300,322,323,324,325 5 -187659 cd08956 KR_3_FAS_SDR_x 1 active site 0 0 1 1 304,328,341,345 1 -187659 cd08956 KR_3_FAS_SDR_x 2 NAD(P) binding site 0 1 1 0 199,201,202,204,225,226,227,280,281,282,326,327,328,341,345,367,368,369,370 5 -187633 cd08928 KR_fFAS_like_SDR_c_like 1 active site 0 0 1 1 115,147,159,163 1 -187633 cd08928 KR_fFAS_like_SDR_c_like 2 NAD(P) binding site 0 1 1 0 4,6,7,10,29,30,31,91,92,93,145,146,147,159,163,189,190,191,192 5 -187653 cd08950 KR_fFAS_SDR_c_like 1 active site 0 0 1 1 123,155,167,171 1 -187653 cd08950 KR_fFAS_SDR_c_like 2 NAD(P) binding site 0 1 1 0 13,15,16,19,38,39,40,100,101,102,153,154,155,167,171,197,198,199,200 5 -187654 cd08951 DR_C-13_KR_SDR_c_like 1 active site 0 0 1 1 116,148,157,161 1 -187654 cd08951 DR_C-13_KR_SDR_c_like 2 NAD(P) binding site 0 1 1 0 13,15,16,18,37,38,39,94,95,96,146,147,148,157,161,185,186,187,188 5 -100064 cd02325 R3H 1 RxxxH motif 0 0 1 1 29,33 0 -100065 cd02636 R3H_sperm-antigen 1 RxxxH motif 0 0 1 1 29,33 0 -100066 cd02637 R3H_PARN 1 RxxxH motif 0 0 1 1 28,32 0 -100067 cd02638 R3H_unknown_1 1 RxxxH motif 0 0 1 1 30,34 0 -100068 cd02639 R3H_RRM 1 RxxxH motif 0 0 1 1 30,34 0 -100069 cd02640 R3H_NRF 1 RxxxH motif 0 0 1 1 30,34 0 -100070 cd02641 R3H_Smubp-2_like 1 RxxxH motif 0 0 1 1 30,34 0 -100071 cd02642 R3H_encore_like 1 RxxxH motif 0 0 1 1 33,37 0 -100072 cd02643 R3H_NF-X1 1 RxxxH motif 0 0 1 1 44,48 0 -100073 cd02644 R3H_jag 1 RxxxH motif 0 0 1 1 35,39 0 -100074 cd02645 R3H_AAA 1 RxxxH motif 0 0 1 1 30,34 0 -100075 cd02646 R3H_G-patch 1 RxxxH motif 0 0 1 1 28,32 0 -100076 cd06006 R3H_unknown_2 1 RxxxH motif 0 0 1 1 29,33 0 -100077 cd06007 R3H_DEXH_helicase 1 RxxxH motif 0 0 1 1 29,33 0 -239091 cd02407 PTH2_family 1 dimer interface 0 1 1 0 14,21,22,23,26,29,30,33,44,50,114 2 -239091 cd02407 PTH2_family 2 putative active site 0 1 1 0 16,20,23,50,92 1 -239107 cd02429 PTH2_like 1 dimer interface 0 1 1 0 18,25,26,27,30,33,34,37,50,56,115 2 -239107 cd02429 PTH2_like 2 putative active site 0 1 1 0 20,24,27,56,93 1 -239108 cd02430 PTH2 1 dimer interface 0 1 1 0 14,21,22,23,26,29,30,33,44,50,114 2 -239108 cd02430 PTH2 2 putative active site 0 1 1 0 16,20,23,50,92 1 -239092 cd02409 KH-II 1 G-X-X-G motif 0 0 1 0 40,41,42,43 0 -239049 cd02134 NusA_KH 1 G-X-X-G motif 0 0 1 0 40,41,42,43 0 -239093 cd02410 archeal_CPSF_KH 1 G-X-X-G motif 0 0 1 0 91,92,93,94 0 -239094 cd02411 archeal_30S_S3_KH 1 G-X-X-G motif 0 0 1 0 53,54,55,56 0 -239095 cd02412 30S_S3_KH 1 G-X-X-G motif 0 0 1 0 76,77,78,79 0 -239096 cd02413 40S_S3_KH 1 G-X-X-G motif 0 0 1 0 45,46,47,48 0 -239097 cd02414 jag_KH 1 G-X-X-G motif 0 0 1 0 39,40,41,42 0 -143332 cd02439 DMB-PRT_CobT 1 active site pocket 0 1 1 1 0,2,3,47,53,57,144,145,146,147,148,149,150,234,235,236,261,285,286,287,310 1 -143332 cd02439 DMB-PRT_CobT 2 putative cataytic base 0 0 1 0 287 1 -143332 cd02439 DMB-PRT_CobT 3 putative dimer interface 0 1 1 1 0,1,2,3,4,5,6,7,8,9,48,53,56,57,65,66,67,70,71,73,262,276,278,279,280,281,282,283,285,293,296,300,303,304,308,309,314 2 -100107 cd02440 AdoMet_MTases 1 S-adenosylmethionine binding site 0 1 1 0 4,5,6,7,8,9,10,27,28,53,54,55,72 5 -239110 cd02619 Peptidase_C1 1 active site 0 1 1 1 14,20,172,194 1 -238328 cd00585 Peptidase_C1B 1 active site 0 1 1 1 59,65,359,381 1 -239068 cd02248 Peptidase_C1A 1 active site 0 1 1 1 17,23,159,179 1 -239111 cd02620 Peptidase_C1A_CathepsinB 1 active site 0 1 1 1 21,27,185,205 1 -239112 cd02621 Peptidase_C1A_CathepsinC 1 active site 0 1 1 1 22,28,187,209 1 -239149 cd02698 Peptidase_C1A_CathepsinX 1 active site 0 1 1 1 21,30,179,200 1 -119407 cd02696 MurNAc-LAA 1 active site 0 1 1 0 7,22,75,140 1 -119407 cd02696 MurNAc-LAA 2 metal binding site 0 1 1 0 7,22,75 4 -119331 cd02742 GH20_hexosaminidase 1 active site 0 1 1 1 9,96,156,157,189,208,275,277 1 -119332 cd06562 GH20_HexA_HexB-like 1 active site 0 1 1 1 11,94,157,158,207,227,296,298 1 -119333 cd06563 GH20_chitobiase-like 1 active site 0 1 1 1 11,110,173,174,223,240,315,317 1 -119336 cd06568 GH20_SpHex_like 1 active site 0 1 1 1 11,99,162,163,193,210,287,289 1 -119337 cd06569 GH20_Sm-chitobiase-like 1 active site 0 1 1 1 15,121,207,208,259,284,388,390 1 -119338 cd06570 GH20_chitobiase-like_1 1 active site 0 1 1 1 11,92,155,156,205,222,270,272 1 -119334 cd06564 GH20_DspB_LnbB-like 1 active site 0 1 1 1 10,106,165,166,198,220,294,296 1 -119335 cd06565 GH20_GcnA-like 1 active site 0 1 1 1 9,84,139,140,183,209,275,277 1 -239150 cd02749 Macro 1 ADP-ribose binding site 0 1 1 0 7,22,29,31,32,120,122,123,124 5 -239229 cd02900 Macro_Appr_pase 1 ADP-ribose binding site 0 1 1 0 26,50,57,59,60,162,164,165,166 5 -239230 cd02901 Macro_Poa1p_like 1 ADP-ribose binding site 0 1 1 0 7,22,29,31,32,117,119,120,121 5 -239447 cd03331 Macro_Poa1p_like_SNF2 1 ADP-ribose binding site 0 1 1 0 7,26,33,35,36,129,131,132,133 5 -239231 cd02903 Macro_BAL_like 1 ADP-ribose binding site 0 1 1 0 8,22,30,32,33,114,116,117,118 5 -239232 cd02904 Macro_H2A_like 1 ADP-ribose binding site 0 1 1 0 25,41,48,50,51,136,138,139,140 5 -239233 cd02905 Macro_GDAP2_like 1 ADP-ribose binding site 0 1 1 0 8,22,29,31,32,116,118,119,120 5 -239234 cd02906 Macro_1 1 ADP-ribose binding site 0 1 1 0 7,21,33,35,36,126,128,129,130 5 -239235 cd02907 Macro_Af1521_BAL_like 1 ADP-ribose binding site 0 1 1 0 9,23,30,32,33,121,123,124,125 5 -239236 cd02908 Macro_Appr_pase_like 1 ADP-ribose binding site 0 1 1 0 7,21,28,30,31,114,116,117,118 5 -239446 cd03330 Macro_2 1 ADP-ribose binding site 0 1 1 0 7,21,28,30,31,112,114,115,116 5 -239176 cd02775 MopB_CT 1 molybdopterin cofactor binding site 0 1 1 1 0,1,3,4,5,6,70,83,99,100 0 -238282 cd00508 MopB_CT_Fdh-Nap-like 1 molybdopterin cofactor binding site 0 1 1 1 11,12,14,15,16,17,82,94,110,111 0 -239191 cd02790 MopB_CT_Formate-Dh_H 1 molybdopterin cofactor binding site 0 1 1 1 11,12,14,15,16,17,82,90,106,107 0 -239192 cd02791 MopB_CT_Nitrate-R-NapA-like 1 molybdopterin cofactor binding site 0 1 1 1 11,12,14,15,16,17,82,95,111,112 0 -239193 cd02792 MopB_CT_Formate-Dh-Na-like 1 molybdopterin cofactor binding site 0 1 1 1 11,12,14,15,16,17,82,96,112,113 0 -239177 cd02776 MopB_CT_Nitrate-R-NarG-like 1 molybdopterin cofactor binding site 0 1 1 1 8,9,11,12,13,14,78,100,132,133 0 -239178 cd02777 MopB_CT_DMSOR-like 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,81,100,117,118 0 -239194 cd02793 MopB_CT_DMSOR-BSOR-TMAOR 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,80,102,119,120 0 -239195 cd02794 MopB_CT_DmsA-EC 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,77,95,111,112 0 -239179 cd02778 MopB_CT_Thiosulfate-R-like 1 molybdopterin cofactor binding site 0 1 1 1 8,9,11,12,13,14,77,97,114,115 0 -239180 cd02779 MopB_CT_Arsenite-Ox 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,80,89,104,105 0 -239181 cd02780 MopB_CT_Tetrathionate_Arsenate-R 1 molybdopterin cofactor binding site 0 1 1 1 4,5,6,7,8,9,77,106,136,137 0 -239182 cd02781 MopB_CT_Acetylene-hydratase 1 molybdopterin cofactor binding site 0 1 1 1 11,12,14,15,16,17,80,103,120,121 0 -239183 cd02782 MopB_CT_1 1 molybdopterin cofactor binding site 0 1 1 1 10,11,13,14,15,16,80,101,121,122 0 -239184 cd02783 MopB_CT_2 1 molybdopterin cofactor binding site 0 1 1 1 10,11,13,14,15,16,79,104,132,133 0 -239185 cd02784 MopB_CT_PHLH 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,87,97,113,114 0 -239186 cd02785 MopB_CT_4 1 molybdopterin cofactor binding site 0 1 1 1 10,11,13,14,15,16,79,92,113,114 0 -239187 cd02786 MopB_CT_3 1 molybdopterin cofactor binding site 0 1 1 1 9,10,12,13,14,15,78,92,108,109 0 -239188 cd02787 MopB_CT_ydeP 1 molybdopterin cofactor binding site 0 1 1 1 7,8,10,11,12,13,83,87,104,105 0 -239189 cd02788 MopB_CT_NDH-1_NuoG2-N7 1 molybdopterin cofactor binding site 0 1 1 1 5,6,8,9,10,11,76,81,93,94 0 -239190 cd02789 MopB_CT_FmdC-FwdD 1 molybdopterin cofactor binding site 0 1 1 1 0,1,3,4,5,6,78,83,98,99 0 -271143 cd02795 CBM6-CBM35-CBM36_like 1 metal binding site [EQ]E[DN] 1 1 1 2,4,119 4 -271144 cd04078 CBM36_xylanase-like 1 metal binding site [EQ]E[DN] 1 1 1 4,6,113 4 -271145 cd04079 CBM6_agarase-like 1 metal binding site [EQ]E[DN] 1 1 1 6,8,127 4 -271146 cd04080 CBM6_cellulase-like 1 metal binding site [EQ]E[DN] 1 1 1 5,7,138 4 -271147 cd04081 CBM35_galactosidase-like 1 metal binding site [EQ]E[DN] 1 1 1 3,5,120 4 -271148 cd04082 CBM35_pectate_lyase-like 1 metal binding site [EQ]E[DN] 1 1 1 3,5,119 4 -271149 cd04083 CBM35_Lmo2446-like 1 metal binding site [EQ]E[DN] 1 1 1 3,5,120 4 -271150 cd04084 CBM6_xylanase-like 1 metal binding site [EQ]E[DN] 1 1 1 3,5,118 4 -271151 cd04085 delta_endotoxin_C 1 metal binding site [EQ]E[DN] 1 1 1 19,21,143 4 -271152 cd04086 CBM35_mannanase-like 1 metal binding site [EQ]E[DN] 1 1 1 3,5,113 4 -271153 cd14487 AlgX_C 1 metal binding site [EQ]E[DN] 1 1 1 20,22,121 4 -271154 cd14488 CBM6-CBM35-CBM36_like_2 1 metal binding site [EQ]E[DN] 1 1 1 3,5,126 4 -271155 cd14489 CBM_SBP_bac_1_like 1 metal binding site [EQ]E[DN] 1 1 1 6,8,145 4 -271156 cd14490 CBM6-CBM35-CBM36_like_1 1 metal binding site [EQ]E[DN] 1 1 1 9,11,151 4 -239207 cd02825 PAZ 1 nucleic acid-binding interface 0 1 1 0 48,72,76,94,104,106 3 -239209 cd02843 PAZ_dicer_like 1 nucleic acid-binding interface 0 1 1 0 59,81,85,103,111,113 3 -239210 cd02844 PAZ_CAF_like 1 nucleic acid-binding interface 0 1 1 0 44,69,73,91,121,123 3 -239211 cd02845 PAZ_piwi_like 1 nucleic acid-binding interface 0 1 1 0 41,66,70,88,103,105 3 -239212 cd02846 PAZ_argonaute_like 1 nucleic acid-binding interface 0 1 1 0 48,74,78,96,103,105 3 -239208 cd02826 Piwi-like 1 active site 0 1 1 1 177,179,250,384 1 -239208 cd02826 Piwi-like 2 5' RNA guide strand anchoring site 0 1 1 0 111,115,126,127,128,129,132,142,145,149,153 0 -240015 cd04657 Piwi_ago-like 1 active site 0 1 1 1 204,206,277,415 1 -240015 cd04657 Piwi_ago-like 2 5' RNA guide strand anchoring site 0 1 1 0 135,139,151,152,153,154,157,166,169,173,177 0 -240016 cd04658 Piwi_piwi-like_Euk 1 active site 0 1 1 1 234,236,305,439 1 -240016 cd04658 Piwi_piwi-like_Euk 2 5' RNA guide strand anchoring site 0 1 1 0 167,171,183,184,185,186,189,199,202,206,210 0 -240017 cd04659 Piwi_piwi-like_ProArk 1 active site 0 1 1 1 195,197,267,393 1 -240017 cd04659 Piwi_piwi-like_ProArk 2 5' RNA guide strand anchoring site 0 1 1 0 131,135,146,147,148,149,152,162,165,169,173 0 -239217 cd02883 Nudix_Hydrolase 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -239218 cd02885 IPP_Isomerase 1 nudix motif 0 0 1 1 65,66,67,77,78,79,80,81,82,83,84,85 0 -239516 cd03424 ADPRase_NUDT5 1 nudix motif 0 0 1 1 35,36,37,47,48,49,50,51,52,53,54,55 0 -239517 cd03425 MutT_pyrophosphohydrolase 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -239518 cd03426 CoAse 1 nudix motif 0 0 1 1 38,39,40,51,52,53,54,55,56,57,58,59 0 -239519 cd03427 MTH1 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -239520 cd03428 Ap4A_hydrolase_human_like 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -239521 cd03429 NADH_pyrophosphatase 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -239522 cd03430 GDPMH 1 nudix motif 0 0 1 1 44,45,46,56,57,58,59,60,61,62,63,64 0 -239523 cd03431 DNA_Glycosylase_C 1 nudix motif 0 0 1 1 35,36,37,43,44,45,46,47,48,49,50,51 0 -239642 cd03670 ADPRase_NUDT9 1 nudix motif 0 0 1 1 66,67,68,78,79,80,81,82,83,84,85,86 0 -239643 cd03671 Ap4A_hydrolase_plant_like 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -239644 cd03672 Dcp2p 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -239645 cd03673 Ap6A_hydrolase 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -239646 cd03674 Nudix_Hydrolase_1 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -239647 cd03675 Nudix_Hydrolase_2 1 nudix motif 0 0 1 1 30,31,32,42,43,44,45,46,47,48,49,50 0 -239648 cd03676 Nudix_hydrolase_3 1 nudix motif 0 0 1 1 71,72,73,83,84,85,86,87,88,89,90,91 0 -239948 cd04511 Nudix_Hydrolase_4 1 nudix motif 0 0 1 1 44,45,46,56,57,58,59,60,61,62,63,64 0 -240019 cd04661 MRP_L46 1 nudix motif 0 0 1 1 32,33,34,39,40,41,42,43,44,45,46,47 0 -240020 cd04662 Nudix_Hydrolase_5 1 nudix motif 0 0 1 1 39,40,41,51,52,53,54,55,56,57,58,59 0 -240021 cd04663 Nudix_Hydrolase_6 1 nudix motif 0 0 1 1 30,31,32,42,43,44,45,46,47,48,49,50 0 -240022 cd04664 Nudix_Hydrolase_7 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -240023 cd04665 Nudix_Hydrolase_8 1 nudix motif 0 0 1 1 27,28,29,39,40,41,42,43,44,45,46,47 0 -240024 cd04666 Nudix_Hydrolase_9 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -240025 cd04667 Nudix_Hydrolase_10 1 nudix motif 0 0 1 1 27,28,29,39,40,41,42,43,44,45,46,47 0 -240026 cd04669 Nudix_Hydrolase_11 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -240027 cd04670 Nudix_Hydrolase_12 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -240028 cd04671 Nudix_Hydrolase_13 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -240029 cd04672 Nudix_Hydrolase_14 1 nudix motif 0 0 1 1 30,31,32,42,43,44,45,46,47,48,49,50 0 -240030 cd04673 Nudix_Hydrolase_15 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -240031 cd04674 Nudix_Hydrolase_16 1 nudix motif 0 0 1 1 35,36,37,47,48,49,50,51,52,53,54,55 0 -240032 cd04676 Nudix_Hydrolase_17 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -240033 cd04677 Nudix_Hydrolase_18 1 nudix motif 0 0 1 1 36,37,38,48,49,50,51,52,53,54,55,56 0 -240034 cd04678 Nudix_Hydrolase_19 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -240035 cd04679 Nudix_Hydrolase_20 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -240036 cd04680 Nudix_Hydrolase_21 1 nudix motif 0 0 1 1 29,30,31,41,42,43,44,45,46,47,48,49 0 -240037 cd04681 Nudix_Hydrolase_22 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -240038 cd04682 Nudix_Hydrolase_23 1 nudix motif 0 0 1 1 35,36,37,47,48,49,50,51,52,53,54,55 0 -240039 cd04683 Nudix_Hydrolase_24 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -240040 cd04684 Nudix_Hydrolase_25 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -240041 cd04685 Nudix_Hydrolase_26 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -240042 cd04686 Nudix_Hydrolase_27 1 nudix motif 0 0 1 1 28,29,30,40,41,42,43,44,45,46,47,48 0 -240043 cd04687 Nudix_Hydrolase_28 1 nudix motif 0 0 1 1 31,32,33,43,44,45,46,47,48,49,50,51 0 -240044 cd04688 Nudix_Hydrolase_29 1 nudix motif 0 0 1 1 29,30,31,41,42,43,44,45,46,47,48,49 0 -240045 cd04689 Nudix_Hydrolase_30 1 nudix motif 0 0 1 1 29,30,31,41,42,43,44,45,46,47,48,49 0 -240046 cd04690 Nudix_Hydrolase_31 1 nudix motif 0 0 1 1 29,30,31,41,42,43,44,45,46,47,48,49 0 -240047 cd04691 Nudix_Hydrolase_32 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -240048 cd04692 Nudix_Hydrolase_33 1 nudix motif 0 0 1 1 40,41,42,52,53,54,55,56,57,58,59,60 0 -240049 cd04693 Nudix_Hydrolase_34 1 nudix motif 0 0 1 1 34,35,36,46,47,48,49,50,51,52,53,54 0 -240050 cd04694 Nudix_Hydrolase_35 1 nudix motif 0 0 1 1 35,36,37,47,48,49,50,51,52,53,54,55 0 -240051 cd04695 Nudix_Hydrolase_36 1 nudix motif 0 0 1 1 33,34,35,45,46,47,48,49,50,51,52,53 0 -240052 cd04696 Nudix_Hydrolase_37 1 nudix motif 0 0 1 1 32,33,34,44,45,46,47,48,49,50,51,52 0 -240053 cd04697 Nudix_Hydrolase_38 1 nudix motif 0 0 1 1 34,35,36,47,48,49,50,51,52,53,54,55 0 -240054 cd04699 Nudix_Hydrolase_39 1 nudix motif 0 0 1 1 35,36,37,47,48,49,50,51,52,53,54,55 0 -240055 cd04700 DR1025_like 1 nudix motif 0 0 1 1 45,46,47,57,58,59,60,61,62,63,64,65 0 -100086 cd03084 phosphohexomutase 1 active site 0 1 1 0 2,4,7,37,38,39,47,181,183,185,186,225,246,247,248,265,267,269,323,325,326,327,332 1 -100086 cd03084 phosphohexomutase 2 metal binding site 0 1 1 0 37,181,183,185 4 -100086 cd03084 phosphohexomutase 3 substrate binding site 0 1 1 0 4,37,186,225,246,248,265,267,269,323,325,326,327,332 5 -100087 cd03085 PGM1 1 active site 0 1 1 0 13,15,18,111,112,113,124,277,279,281,282,324,345,346,347,364,366,368,488,490,491,492,500 1 -100087 cd03085 PGM1 2 metal binding site 0 1 1 0 111,277,279,281 4 -100087 cd03085 PGM1 3 substrate binding site 0 1 1 0 15,111,282,324,345,347,364,366,368,488,490,491,492,500 5 -100088 cd03086 PGM3 1 active site 0 1 1 0 2,4,7,43,44,45,53,260,262,264,265,315,337,338,339,356,358,360,481,483,484,485,490 1 -100088 cd03086 PGM3 2 metal binding site 0 1 1 0 43,260,262,264 4 -100088 cd03086 PGM3 3 substrate binding site 0 1 1 0 4,43,265,315,337,339,356,358,360,481,483,484,485,490 5 -100089 cd03087 PGM_like1 1 active site 0 1 1 0 2,4,7,91,92,93,101,232,234,236,237,274,295,296,297,314,316,318,407,409,410,411,416 1 -100089 cd03087 PGM_like1 2 metal binding site 0 1 1 0 91,232,234,236 4 -100089 cd03087 PGM_like1 3 substrate binding site 0 1 1 0 4,91,237,274,295,297,314,316,318,407,409,410,411,416 5 -100090 cd03088 ManB 1 active site 0 1 1 0 2,4,7,94,95,96,104,232,234,236,237,271,290,291,292,314,316,318,430,432,433,434,439 1 -100090 cd03088 ManB 2 metal binding site 0 1 1 0 94,232,234,236 4 -100090 cd03088 ManB 3 substrate binding site 0 1 1 0 4,94,237,271,290,292,314,316,318,430,432,433,434,439 5 -100091 cd03089 PMM_PGM 1 active site 0 1 1 0 2,4,7,95,96,97,105,232,234,236,237,275,296,297,298,315,317,319,411,413,414,415,420 1 -100091 cd03089 PMM_PGM 2 metal binding site 0 1 1 0 95,232,234,236 4 -100091 cd03089 PMM_PGM 3 substrate binding site 0 1 1 0 4,95,237,275,296,298,315,317,319,411,413,414,415,420 5 -100092 cd05799 PGM2 1 active site 0 1 1 0 4,6,9,105,106,107,115,259,261,263,264,313,334,335,336,358,360,362,454,456,457,458,463 1 -100092 cd05799 PGM2 2 metal binding site 0 1 1 0 105,259,261,263 4 -100092 cd05799 PGM2 3 substrate binding site 0 1 1 0 6,105,264,313,334,336,358,360,362,454,456,457,458,463 5 -100093 cd05800 PGM_like2 1 active site 0 1 1 0 3,5,8,99,100,101,109,241,243,245,246,285,306,307,308,325,327,329,429,431,432,433,438 1 -100093 cd05800 PGM_like2 2 metal binding site 0 1 1 0 99,241,243,245 4 -100093 cd05800 PGM_like2 3 substrate binding site 0 1 1 0 5,99,246,285,306,308,325,327,329,429,431,432,433,438 5 -100094 cd05801 PGM_like3 1 active site 0 1 1 0 23,25,28,127,128,129,137,285,287,289,290,332,353,354,355,372,374,376,489,491,492,493,498 1 -100094 cd05801 PGM_like3 2 metal binding site 0 1 1 0 127,285,287,289 4 -100094 cd05801 PGM_like3 3 substrate binding site 0 1 1 0 25,127,290,332,353,355,372,374,376,489,491,492,493,498 5 -100095 cd05802 GlmM 1 active site 0 1 1 0 2,4,7,96,97,98,106,235,237,239,240,280,301,302,303,320,322,324,405,407,408,409,414 1 -100095 cd05802 GlmM 2 metal binding site 0 1 1 0 96,235,237,239 4 -100095 cd05802 GlmM 3 substrate binding site 0 1 1 0 4,96,240,280,301,303,320,322,324,405,407,408,409,414 5 -100096 cd05803 PGM_like4 1 active site 0 1 1 0 2,4,7,96,97,98,106,240,242,244,245,284,305,306,307,324,326,328,416,418,419,420,425 1 -100096 cd05803 PGM_like4 2 metal binding site 0 1 1 0 96,240,242,244 4 -100096 cd05803 PGM_like4 3 substrate binding site 0 1 1 0 4,96,245,284,305,307,324,326,328,416,418,419,420,425 5 -100097 cd05805 MPG1_transferase 1 active site 0 1 1 0 2,4,7,93,94,95,103,235,237,239,240,278,299,300,301,317,319,321,409,411,412,413,418 1 -100097 cd05805 MPG1_transferase 2 metal binding site 0 1 1 0 93,235,237,239 4 -100097 cd05805 MPG1_transferase 3 substrate binding site 0 1 1 0 4,93,240,278,299,301,317,319,321,409,411,412,413,418 5 -239401 cd03127 tetraspanin_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239404 cd03151 CD81_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239405 cd03152 CD9_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239406 cd03153 PHEMX_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239407 cd03154 TM4SF3_like_LEL 1 dimer interface 0 1 1 1 2,7,11,13,14,17,35,38,39,42,43 2 -239408 cd03155 CD151_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,33,36,37,40,41 2 -239409 cd03156 uroplakin_I_like_LEL 1 dimer interface 0 1 1 1 2,7,11,13,14,17,33,36,37,40,41 2 -239410 cd03157 TM4SF12_like_LEL 1 dimer interface 0 1 1 1 7,12,16,18,19,22,33,36,37,40,41 2 -239411 cd03158 penumbra_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239412 cd03159 TM4SF9_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239413 cd03160 CD37_CD82_like_LEL 1 dimer interface 0 1 1 1 2,7,11,13,14,17,34,37,38,41,42 2 -239414 cd03161 TM4SF2_6_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239415 cd03162 peripherin_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,35,38,39,42,43 2 -239416 cd03163 TM4SF8_like_LEL 1 dimer interface 0 1 1 1 2,7,11,13,14,17,31,34,35,38,39 2 -239417 cd03164 CD53_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239418 cd03165 NET-5_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,32,35,36,39,40 2 -239419 cd03166 CD63_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -239420 cd03167 oculospanin_like_LEL 1 dimer interface 0 1 1 1 1,6,10,12,13,16,30,33,34,37,38 2 -153222 cd03128 GAT_1 1 conserved cys residue 0 0 1 0 85 1 -153210 cd01653 GATase1 1 conserved cys residue 0 0 1 0 85 1 -153211 cd01740 GATase1_FGAR_AT 1 conserved cys residue 0 0 1 0 88 1 -153212 cd01741 GATase1_1 1 conserved cys residue 0 0 1 0 87 1 -153213 cd01742 GATase1_GMP_Synthase 1 conserved cys residue 0 0 1 0 76 1 -153214 cd01743 GATase1_Anthranilate_Synthase 1 conserved cys residue 0 0 1 0 77 1 -153215 cd01744 GATase1_CPSase 1 conserved cys residue 0 0 1 0 75 1 -153216 cd01745 GATase1_2 1 conserved cys residue 0 0 1 0 106 1 -153217 cd01746 GATase1_CTP_Synthase 1 conserved cys residue 0 0 1 0 90 1 -153218 cd01747 GATase1_Glutamyl_Hydrolase 1 conserved cys residue 0 0 1 0 98 1 -153219 cd01748 GATase1_IGP_Synthase 1 conserved cys residue 0 0 1 0 77 1 -153220 cd01749 GATase1_PB 1 conserved cys residue 0 0 1 0 75 1 -153221 cd01750 GATase1_CobQ 1 conserved cys residue 0 0 1 0 78 1 -153224 cd03130 GATase1_CobB 1 conserved cys residue 0 0 1 0 81 1 -153225 cd03131 GATase1_HTS 1 conserved cys residue 0 0 1 0 104 1 -153226 cd03132 GATase1_catalase 1 conserved cys residue 0 0 1 0 101 1 -153227 cd03133 GATase1_ES1 1 conserved cys residue 0 0 1 0 131 1 -153228 cd03134 GATase1_PfpI_like 1 conserved cys residue 0 0 1 0 100 1 -153229 cd03135 GATase1_DJ-1 1 conserved cys residue 0 0 1 0 99 1 -153230 cd03136 GATase1_AraC_ArgR_like 1 conserved cys residue 0 0 1 0 101 1 -153231 cd03137 GATase1_AraC_1 1 conserved cys residue 0 0 1 0 102 1 -153232 cd03138 GATase1_AraC_2 1 conserved cys residue 0 0 1 0 110 1 -153233 cd03139 GATase1_PfpI_2 1 conserved cys residue 0 0 1 0 100 1 -153234 cd03140 GATase1_PfpI_3 1 conserved cys residue 0 0 1 0 97 1 -153235 cd03141 GATase1_Hsp31_like 1 conserved cys residue 0 0 1 0 129 1 -153241 cd03147 GATase1_Ydr533c_like 1 conserved cys residue 0 0 1 0 133 1 -153242 cd03148 GATase1_EcHsp31_like 1 conserved cys residue 0 0 1 0 135 1 -153236 cd03142 GATase1_ThuA 1 conserved cys residue 0 0 1 0 94 1 -153237 cd03143 A4_beta-galactosidase_middle_domain 1 conserved cys residue 0 0 1 0 86 1 -153238 cd03144 GATase1_ScBLP_like 1 conserved cys residue 0 0 1 0 83 1 -153243 cd03169 GATase1_PfpI_1 1 conserved cys residue 0 0 1 0 114 1 -153223 cd03129 GAT1_Peptidase_E_like 1 conserved cys residue 0 0 1 0 120 1 -153239 cd03145 GAT1_cyanophycinase 1 conserved cys residue 0 0 1 0 123 1 -153240 cd03146 GAT1_Peptidase_E 1 conserved cys residue 0 0 1 0 120 1 -163674 cd03174 DRE_TIM_metallolyase 1 active site 0 1 1 1 5,6,9,36,71,73,93,135,165,167,195,197,231 1 -163674 cd03174 DRE_TIM_metallolyase 2 catalytic residues 0 0 1 1 5,6,36 1 -163674 cd03174 DRE_TIM_metallolyase 3 metal binding site 0 1 1 0 6,165,195,197 4 -163675 cd07937 DRE_TIM_PC_TC_5S 1 active site 0 1 1 1 6,7,10,38,75,77,110,138,168,170,197,199,233 1 -163675 cd07937 DRE_TIM_PC_TC_5S 2 catalytic residues 0 0 1 1 6,7,38 1 -163675 cd07937 DRE_TIM_PC_TC_5S 3 metal binding site 0 1 1 0 7,168,197,199 4 -163676 cd07938 DRE_TIM_HMGL 1 active site 0 1 1 1 6,7,10,37,71,73,92,134,168,170,198,200,240 1 -163676 cd07938 DRE_TIM_HMGL 2 catalytic residues 0 0 1 1 6,7,37 1 -163676 cd07938 DRE_TIM_HMGL 3 metal binding site 0 1 1 0 7,168,198,200 4 -163677 cd07939 DRE_TIM_NifV 1 active site 0 1 1 1 6,7,10,37,66,68,88,130,158,160,187,189,223 1 -163677 cd07939 DRE_TIM_NifV 2 catalytic residues 0 0 1 1 6,7,37 1 -163677 cd07939 DRE_TIM_NifV 3 metal binding site 0 1 1 0 7,158,187,189 4 -163678 cd07940 DRE_TIM_IPMS 1 active site 0 1 1 1 6,7,10,37,66,68,92,134,162,164,194,196,230 1 -163678 cd07940 DRE_TIM_IPMS 2 catalytic residues 0 0 1 1 6,7,37 1 -163678 cd07940 DRE_TIM_IPMS 3 metal binding site 0 1 1 0 7,162,194,196 4 -163679 cd07941 DRE_TIM_LeuA3 1 active site 0 1 1 1 6,7,10,37,67,69,97,139,170,172,200,202,236 1 -163679 cd07941 DRE_TIM_LeuA3 2 catalytic residues 0 0 1 1 6,7,37 1 -163679 cd07941 DRE_TIM_LeuA3 3 metal binding site 0 1 1 0 7,170,200,202 4 -163680 cd07942 DRE_TIM_LeuA 1 active site 0 1 1 1 9,10,13,40,72,74,98,147,181,183,214,216,250 1 -163680 cd07942 DRE_TIM_LeuA 2 catalytic residues 0 0 1 1 9,10,40 1 -163680 cd07942 DRE_TIM_LeuA 3 metal binding site 0 1 1 0 10,181,214,216 4 -163681 cd07943 DRE_TIM_HOA 1 active site 0 1 1 1 8,9,12,39,79,81,104,132,160,162,190,192,226 1 -163681 cd07943 DRE_TIM_HOA 2 catalytic residues 0 0 1 1 8,9,39 1 -163681 cd07943 DRE_TIM_HOA 3 metal binding site 0 1 1 0 9,160,190,192 4 -163682 cd07944 DRE_TIM_HOA_like 1 active site 0 1 1 1 6,7,10,37,76,78,101,129,157,159,188,190,224 1 -163682 cd07944 DRE_TIM_HOA_like 2 catalytic residues 0 0 1 1 6,7,37 1 -163682 cd07944 DRE_TIM_HOA_like 3 metal binding site 0 1 1 0 7,157,188,190 4 -163683 cd07945 DRE_TIM_CMS 1 active site 0 1 1 1 5,6,9,37,70,72,93,135,166,168,196,198,232 1 -163683 cd07945 DRE_TIM_CMS 2 catalytic residues 0 0 1 1 5,6,37 1 -163683 cd07945 DRE_TIM_CMS 3 metal binding site 0 1 1 0 6,166,196,198 4 -163684 cd07947 DRE_TIM_Re_CS 1 active site 0 1 1 1 8,9,12,43,71,73,93,135,169,171,208,210,244 1 -163684 cd07947 DRE_TIM_Re_CS 2 catalytic residues 0 0 1 1 8,9,43 1 -163684 cd07947 DRE_TIM_Re_CS 3 metal binding site 0 1 1 0 9,169,208,210 4 -163685 cd07948 DRE_TIM_HCS 1 active site 0 1 1 1 8,9,12,39,68,70,90,132,160,162,189,191,225 1 -163685 cd07948 DRE_TIM_HCS 2 catalytic residues 0 0 1 1 8,9,39 1 -163685 cd07948 DRE_TIM_HCS 3 metal binding site 0 1 1 0 9,160,189,191 4 -239503 cd03409 Chelatase_Class_II 1 active site 0 1 1 1 6,73 1 -238240 cd00419 Ferrochelatase_C 1 active site 0 1 1 1 25,106 1 -239504 cd03411 Ferrochelatase_N 1 active site 0 1 1 1 7,128 1 -239505 cd03412 CbiK_N 1 active site 0 1 1 1 7,84 1 -239506 cd03413 CbiK_C 1 active site 0 1 1 1 7,70 1 -239507 cd03414 CbiX_SirB_C 1 active site 0 1 1 1 7,72 1 -239508 cd03415 CbiX_CbiC 1 active site 0 1 1 1 7,72 1 -239509 cd03416 CbiX_SirB_N 1 active site 0 1 1 1 6,72 1 -239524 cd03440 hot_dog 1 active site 1 0 1 1 0 24,27,28,31,45,46,47 1 -239524 cd03440 hot_dog 2 active site 2 0 1 1 0 18,19,53,54,55,56 1 -238275 cd00493 FabA_FabZ 1 active site 1 0 1 1 0 50,53,54,57,75,76,77 1 -238275 cd00493 FabA_FabZ 2 active site 2 0 1 1 0 44,45,84,85,86,87 1 -238614 cd01287 FabA 1 active site 1 0 1 1 0 58,61,62,65,85,86,87 1 -238614 cd01287 FabA 2 active site 2 0 1 1 0 52,53,94,95,96,97 1 -238615 cd01288 FabZ 1 active site 1 0 1 1 0 51,54,55,58,74,75,76 1 -238615 cd01288 FabZ 2 active site 2 0 1 1 0 45,46,83,84,85,86 1 -238616 cd01289 FabA_like 1 active site 1 0 1 1 0 53,56,57,60,78,79,80 1 -238616 cd01289 FabA_like 2 active site 2 0 1 1 0 47,48,87,88,89,90 1 -238311 cd00556 Thioesterase_II 1 active site 1 0 1 1 0 23,26,27,30,43,44,45 1 -238311 cd00556 Thioesterase_II 2 active site 2 0 1 1 0 17,18,51,52,53,54 1 -239528 cd03444 Thioesterase_II_repeat1 1 active site 1 0 1 1 0 23,26,27,30,48,49,50 1 -239528 cd03444 Thioesterase_II_repeat1 2 active site 2 0 1 1 0 17,18,56,57,58,59 1 -239529 cd03445 Thioesterase_II_repeat2 1 active site 1 0 1 1 0 24,27,28,31,39,40,41 1 -239529 cd03445 Thioesterase_II_repeat2 2 active site 2 0 1 1 0 18,19,47,48,49,50 1 -238329 cd00586 4HBT 1 active site 1 0 1 1 0 24,27,28,31,52,53,54 1 -238329 cd00586 4HBT 2 active site 2 0 1 1 0 18,19,60,61,62,63 1 -239525 cd03441 R_hydratase_like 1 active site 1 0 1 1 0 51,54,55,58,68,69,70 1 -239525 cd03441 R_hydratase_like 2 active site 2 0 1 1 0 45,46,76,77,78,79 1 -239530 cd03446 MaoC_like 1 active site 1 0 1 1 0 59,62,63,66,78,79,80 1 -239530 cd03446 MaoC_like 2 active site 2 0 1 1 0 53,54,86,87,88,89 1 -239531 cd03447 FAS_MaoC 1 active site 1 0 1 1 0 51,54,55,58,68,69,70 1 -239531 cd03447 FAS_MaoC 2 active site 2 0 1 1 0 45,46,76,77,78,79 1 -239532 cd03448 HDE_HSD 1 active site 1 0 1 1 0 53,56,57,60,70,71,72 1 -239532 cd03448 HDE_HSD 2 active site 2 0 1 1 0 47,48,78,79,80,81 1 -239533 cd03449 R_hydratase 1 active site 1 0 1 1 0 54,57,58,61,70,71,72 1 -239533 cd03449 R_hydratase 2 active site 2 0 1 1 0 48,49,78,79,80,81 1 -239534 cd03450 NodN 1 active site 1 0 1 1 0 65,68,69,72,85,86,87 1 -239534 cd03450 NodN 2 active site 2 0 1 1 0 59,60,93,94,95,96 1 -239535 cd03451 FkbR2 1 active site 1 0 1 1 0 62,65,66,69,79,80,81 1 -239535 cd03451 FkbR2 2 active site 2 0 1 1 0 56,57,87,88,89,90 1 -239536 cd03452 MaoC_C 1 active site 1 0 1 1 0 59,62,63,66,76,77,78 1 -239536 cd03452 MaoC_C 2 active site 2 0 1 1 0 53,54,84,85,86,87 1 -239537 cd03453 SAV4209_like 1 active site 1 0 1 1 0 53,56,57,60,68,69,70 1 -239537 cd03453 SAV4209_like 2 active site 2 0 1 1 0 47,48,76,77,78,79 1 -239538 cd03454 YdeM 1 active site 1 0 1 1 0 57,60,61,64,76,77,78 1 -239538 cd03454 YdeM 2 active site 2 0 1 1 0 51,52,84,85,86,87 1 -239539 cd03455 SAV4209 1 active site 1 0 1 1 0 52,55,56,59,67,68,69 1 -239539 cd03455 SAV4209 2 active site 2 0 1 1 0 46,47,75,76,77,78 1 -239526 cd03442 BFIT_BACH 1 active site 1 0 1 1 0 31,34,35,38,50,51,52 1 -239526 cd03442 BFIT_BACH 2 active site 2 0 1 1 0 25,26,59,60,61,62 1 -239527 cd03443 PaaI_thioesterase 1 active site 1 0 1 1 0 37,40,41,44,58,59,60 1 -239527 cd03443 PaaI_thioesterase 2 active site 2 0 1 1 0 31,32,66,67,68,69 1 -239550 cd03467 Rieske 1 iron-sulfur cluster 0 1 1 0 41,43,44,60,62,63,65,67 4 -239550 cd03467 Rieske 2 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,60,63,65 4 -239551 cd03469 Rieske_RO_Alpha_N 1 iron-sulfur cluster 0 1 1 0 42,44,45,62,64,65,67,69 4 -239551 cd03469 Rieske_RO_Alpha_N 2 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,62,65,67 4 -239554 cd03472 Rieske_RO_Alpha_BPDO_like 1 iron-sulfur cluster 0 1 1 0 50,52,53,70,72,73,75,77 4 -239554 cd03472 Rieske_RO_Alpha_BPDO_like 2 [2Fe-2S] cluster binding site 0 1 1 1 50,52,53,70,73,75 4 -239561 cd03479 Rieske_RO_Alpha_PhDO_like 1 iron-sulfur cluster 0 1 1 0 63,65,66,82,84,85,87,89 4 -239561 cd03479 Rieske_RO_Alpha_PhDO_like 2 [2Fe-2S] cluster binding site 0 1 1 1 63,65,66,82,85,87 4 -239562 cd03480 Rieske_RO_Alpha_PaO 1 iron-sulfur cluster 0 1 1 0 59,61,62,79,81,82,84,86 4 -239562 cd03480 Rieske_RO_Alpha_PaO 2 [2Fe-2S] cluster binding site 0 1 1 1 59,61,62,79,82,84 4 -239607 cd03531 Rieske_RO_Alpha_KSH 1 iron-sulfur cluster 0 1 1 0 42,44,45,61,63,64,66,68 4 -239607 cd03531 Rieske_RO_Alpha_KSH 2 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,61,64,66 4 -239608 cd03532 Rieske_RO_Alpha_VanA_DdmC 1 iron-sulfur cluster 0 1 1 0 45,47,48,64,66,67,69,71 4 -239608 cd03532 Rieske_RO_Alpha_VanA_DdmC 2 [2Fe-2S] cluster binding site 0 1 1 1 45,47,48,64,67,69 4 -239609 cd03535 Rieske_RO_Alpha_NDO 1 iron-sulfur cluster 0 1 1 0 44,46,47,64,66,67,69,71 4 -239609 cd03535 Rieske_RO_Alpha_NDO 2 [2Fe-2S] cluster binding site 0 1 1 1 44,46,47,64,67,69 4 -239610 cd03536 Rieske_RO_Alpha_DTDO 1 iron-sulfur cluster 0 1 1 0 42,44,45,62,64,65,67,69 4 -239610 cd03536 Rieske_RO_Alpha_DTDO 2 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,62,65,67 4 -239611 cd03537 Rieske_RO_Alpha_PrnD 1 iron-sulfur cluster 0 1 1 0 43,45,46,62,64,65,67,69 4 -239611 cd03537 Rieske_RO_Alpha_PrnD 2 [2Fe-2S] cluster binding site 0 1 1 1 43,45,46,62,65,67 4 -239612 cd03538 Rieske_RO_Alpha_AntDO 1 iron-sulfur cluster 0 1 1 0 64,66,67,85,87,88,90,92 4 -239612 cd03538 Rieske_RO_Alpha_AntDO 2 [2Fe-2S] cluster binding site 0 1 1 1 64,66,67,85,88,90 4 -239613 cd03539 Rieske_RO_Alpha_S5H 1 iron-sulfur cluster 0 1 1 0 42,44,45,62,64,65,67,69 4 -239613 cd03539 Rieske_RO_Alpha_S5H 2 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,62,65,67 4 -239614 cd03541 Rieske_RO_Alpha_CMO 1 iron-sulfur cluster 0 1 1 0 43,45,46,62,64,65,67,69 4 -239614 cd03541 Rieske_RO_Alpha_CMO 2 [2Fe-2S] cluster binding site 0 1 1 1 43,45,46,62,65,67 4 -239615 cd03542 Rieske_RO_Alpha_HBDO 1 iron-sulfur cluster 0 1 1 0 42,44,45,62,64,65,67,69 4 -239615 cd03542 Rieske_RO_Alpha_HBDO 2 [2Fe-2S] cluster binding site 0 1 1 1 42,44,45,62,65,67 4 -239616 cd03545 Rieske_RO_Alpha_OHBDO_like 1 iron-sulfur cluster 0 1 1 0 67,69,70,87,89,90,92,94 4 -239616 cd03545 Rieske_RO_Alpha_OHBDO_like 2 [2Fe-2S] cluster binding site 0 1 1 1 67,69,70,87,90,92 4 -239617 cd03548 Rieske_RO_Alpha_OMO_CARDO 1 iron-sulfur cluster 0 1 1 0 54,56,57,75,77,78,80,82 4 -239617 cd03548 Rieske_RO_Alpha_OMO_CARDO 2 [2Fe-2S] cluster binding site 0 1 1 1 54,56,57,75,78,80 4 -239829 cd04337 Rieske_RO_Alpha_Cao 1 iron-sulfur cluster 0 1 1 0 58,60,61,77,79,80,82,84 4 -239829 cd04337 Rieske_RO_Alpha_Cao 2 [2Fe-2S] cluster binding site 0 1 1 1 58,60,61,77,80,82 4 -239830 cd04338 Rieske_RO_Alpha_Tic55 1 iron-sulfur cluster 0 1 1 0 58,60,61,77,79,80,82,84 4 -239830 cd04338 Rieske_RO_Alpha_Tic55 2 [2Fe-2S] cluster binding site 0 1 1 1 58,60,61,77,80,82 4 -239552 cd03470 Rieske_cytochrome_bc1 1 iron-sulfur cluster 0 1 1 0 68,70,71,87,89,90,92,94 4 -239552 cd03470 Rieske_cytochrome_bc1 2 [2Fe-2S] cluster binding site 0 1 1 1 68,70,71,87,90,92 4 -239553 cd03471 Rieske_cytochrome_b6f 1 iron-sulfur cluster 0 1 1 0 54,56,57,72,74,75,77,79 4 -239553 cd03471 Rieske_cytochrome_b6f 2 [2Fe-2S] cluster binding site 0 1 1 1 54,56,57,72,75,77 4 -239555 cd03473 Rieske_CMP_Neu5Ac_hydrolase_N 1 iron-sulfur cluster 0 1 1 0 48,50,51,69,71,72,74,76 4 -239555 cd03473 Rieske_CMP_Neu5Ac_hydrolase_N 2 [2Fe-2S] cluster binding site 0 1 1 1 48,50,51,69,72,74 4 -239556 cd03474 Rieske_T4moC 1 iron-sulfur cluster 0 1 1 0 41,43,44,60,62,63,65,67 4 -239556 cd03474 Rieske_T4moC 2 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,60,63,65 4 -239557 cd03475 Rieske_SoxF_SoxL 1 iron-sulfur cluster 0 1 1 0 83,85,86,117,119,120,122,124 4 -239557 cd03475 Rieske_SoxF_SoxL 2 [2Fe-2S] cluster binding site 0 1 1 1 83,85,86,117,120,122 4 -239558 cd03476 Rieske_ArOX_small 1 iron-sulfur cluster 0 1 1 0 54,56,57,72,74,75,77,79 4 -239558 cd03476 Rieske_ArOX_small 2 [2Fe-2S] cluster binding site 0 1 1 1 54,56,57,72,75,77 4 -239559 cd03477 Rieske_YhfW_C 1 iron-sulfur cluster 0 1 1 0 39,41,42,57,59,60,62,64 4 -239559 cd03477 Rieske_YhfW_C 2 [2Fe-2S] cluster binding site 0 1 1 1 39,41,42,57,60,62 4 -239560 cd03478 Rieske_AIFL_N 1 iron-sulfur cluster 0 1 1 0 39,41,42,58,60,61,63,65 4 -239560 cd03478 Rieske_AIFL_N 2 [2Fe-2S] cluster binding site 0 1 1 1 39,41,42,58,61,63 4 -239604 cd03528 Rieske_RO_ferredoxin 1 iron-sulfur cluster 0 1 1 0 40,42,43,59,61,62,64,66 4 -239604 cd03528 Rieske_RO_ferredoxin 2 [2Fe-2S] cluster binding site 0 1 1 1 40,42,43,59,62,64 4 -239605 cd03529 Rieske_NirD 1 iron-sulfur cluster 0 1 1 0 41,43,44,65,67,68,70,72 4 -239605 cd03529 Rieske_NirD 2 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,65,68,70 4 -239606 cd03530 Rieske_NirD_small_Bacillus 1 iron-sulfur cluster 0 1 1 0 41,43,44,60,62,63,65,67 4 -239606 cd03530 Rieske_NirD_small_Bacillus 2 [2Fe-2S] cluster binding site 0 1 1 1 41,43,44,60,63,65 4 -239573 cd03493 SQR_QFR_TM 1 proximal heme binding site 0 1 1 1 9,56,60 5 -239573 cd03493 SQR_QFR_TM 2 Iron-sulfur protein interface 0 1 1 0 2,63 0 -238306 cd00546 QFR_TypeD_subunitC 1 proximal heme binding site 0 1 1 1 31,78,82 5 -238306 cd00546 QFR_TypeD_subunitC 2 Iron-sulfur protein interface 0 1 1 0 24,85 0 -238307 cd00547 QFR_TypeD_subunitD 1 proximal heme binding site 0 1 1 1 20,72,76 5 -238307 cd00547 QFR_TypeD_subunitD 2 Iron-sulfur protein interface 0 1 1 0 13,79 0 -239574 cd03494 SQR_TypeC_SdhD 1 proximal heme binding site 0 1 1 1 11,56,60 5 -239574 cd03494 SQR_TypeC_SdhD 2 Iron-sulfur protein interface 0 1 1 0 4,63 0 -239575 cd03495 SQR_TypeC_SdhD_like 1 proximal heme binding site 0 1 1 1 12,57,61 5 -239575 cd03495 SQR_TypeC_SdhD_like 2 Iron-sulfur protein interface 0 1 1 0 5,64 0 -239576 cd03496 SQR_TypeC_CybS 1 proximal heme binding site 0 1 1 1 16,44,48 5 -239576 cd03496 SQR_TypeC_CybS 2 Iron-sulfur protein interface 0 1 1 0 9,51 0 -239579 cd03499 SQR_TypeC_SdhC 1 proximal heme binding site 0 1 1 1 28,75,79 5 -239579 cd03499 SQR_TypeC_SdhC 2 Iron-sulfur protein interface 0 1 1 0 21,82 0 -239580 cd03500 SQR_TypeA_SdhD_like 1 proximal heme binding site 0 1 1 1 14,62,66 5 -239580 cd03500 SQR_TypeA_SdhD_like 2 Iron-sulfur protein interface 0 1 1 0 7,69 0 -239581 cd03501 SQR_TypeA_SdhC_like 1 proximal heme binding site 0 1 1 1 13,60,64 5 -239581 cd03501 SQR_TypeA_SdhC_like 2 Iron-sulfur protein interface 0 1 1 0 6,67 0 -239602 cd03526 SQR_QFR_TypeB_TM 1 proximal heme binding site 0 1 1 1 101,150,154 5 -239602 cd03526 SQR_QFR_TypeB_TM 2 Iron-sulfur protein interface 0 1 1 0 94,157 0 -238325 cd00581 QFR_TypeB_TM 1 proximal heme binding site 0 1 1 1 110,156,160 5 -238325 cd00581 QFR_TypeB_TM 2 Iron-sulfur protein interface 0 1 1 0 103,163 0 -239577 cd03497 SQR_TypeB_1_TM 1 proximal heme binding site 0 1 1 1 102,160,164 5 -239577 cd03497 SQR_TypeB_1_TM 2 Iron-sulfur protein interface 0 1 1 0 95,167 0 -239578 cd03498 SQR_TypeB_2_TM 1 proximal heme binding site 0 1 1 1 102,159,163 5 -239578 cd03498 SQR_TypeB_2_TM 2 Iron-sulfur protein interface 0 1 1 0 95,166 0 -239601 cd03524 RPA2_OBF_family 1 generic binding surface I 0 1 1 1 5,6,7,19,20,21,22,24,31,32,33,35,50,57,58,59,66,67,68 0 -239601 cd03524 RPA2_OBF_family 2 generic binding surface II 0 1 1 1 0,51,53,55,73 0 -239920 cd04474 RPA1_DBD_A 1 generic binding surface I 0 1 1 1 17,18,19,37,38,39,40,42,49,50,51,53,68,76,77,78,92,93,94 0 -239920 cd04474 RPA1_DBD_A 2 generic binding surface II 0 1 1 1 12,69,71,73,102 0 -239921 cd04475 RPA1_DBD_B 1 generic binding surface I 0 1 1 1 7,8,9,29,30,31,32,34,41,42,43,45,58,66,67,68,74,75,76 0 -239921 cd04475 RPA1_DBD_B 2 generic binding surface II 0 1 1 1 2,59,61,63,84 0 -239922 cd04476 RPA1_DBD_C 1 generic binding surface I 0 1 1 1 23,24,25,70,71,72,73,75,81,82,83,85,121,128,129,130,141,142,143 0 -239922 cd04476 RPA1_DBD_C 2 generic binding surface II 0 1 1 1 18,122,124,126,148 0 -239923 cd04477 RPA1N 1 generic binding surface I 0 1 1 1 21,22,23,38,39,40,41,43,49,50,51,53,69,77,78,79,86,87,88 0 -239923 cd04477 RPA1N 2 generic binding surface II 0 1 1 1 16,70,72,74,93 0 -239924 cd04478 RPA2_DBD_D 1 generic binding surface I 0 1 1 1 7,8,9,18,19,20,21,23,29,30,31,33,51,58,59,60,67,68,69 0 -239924 cd04478 RPA2_DBD_D 2 generic binding surface II 0 1 1 1 2,52,54,56,74 0 -239925 cd04479 RPA3 1 generic binding surface I 0 1 1 1 23,24,25,32,33,34,35,37,42,43,44,46,55,62,63,64,68,69,70 0 -239925 cd04479 RPA3 2 generic binding surface II 0 1 1 1 18,56,58,60,75 0 -239926 cd04480 RPA1_DBD_A_like 1 generic binding surface I 0 1 1 1 5,6,7,21,22,23,24,26,33,34,35,37,52,60,61,62,76,77,78 0 -239926 cd04480 RPA1_DBD_A_like 2 generic binding surface II 0 1 1 1 0,53,55,57,84 0 -239927 cd04481 RPA1_DBD_B_like 1 generic binding surface I 0 1 1 1 5,6,7,25,26,27,28,30,37,38,39,41,60,69,70,71,78,79,80 0 -239927 cd04481 RPA1_DBD_B_like 2 generic binding surface II 0 1 1 1 0,61,63,65,86 0 -239928 cd04482 RPA2_OBF_like 1 generic binding surface I 0 1 1 1 6,7,8,19,20,21,22,24,30,31,32,34,51,58,59,60,69,70,71 0 -239928 cd04482 RPA2_OBF_like 2 generic binding surface II 0 1 1 1 1,52,54,56,76 0 -239929 cd04483 hOBFC1_like 1 generic binding surface I 0 1 1 1 5,6,7,16,17,18,19,21,27,28,29,31,66,73,74,75,82,83,84 0 -239929 cd04483 hOBFC1_like 2 generic binding surface II 0 1 1 1 0,67,69,71,89 0 -239930 cd04484 polC_OBF 1 generic binding surface I 0 1 1 1 7,8,9,23,24,25,26,28,34,35,36,38,54,61,62,63,70,71,72 0 -239930 cd04484 polC_OBF 2 generic binding surface II 0 1 1 1 2,55,57,59,79 0 -239931 cd04485 DnaE_OBF 1 generic binding surface I 0 1 1 1 5,6,7,21,22,23,24,26,32,33,34,36,51,58,59,60,67,68,69 0 -239931 cd04485 DnaE_OBF 2 generic binding surface II 0 1 1 1 0,52,54,56,74 0 -239932 cd04486 YhcR_OBF_like 1 generic binding surface I 0 1 1 1 5,6,7,16,17,18,19,21,26,27,28,30,48,55,56,57,64,65,66 0 -239932 cd04486 YhcR_OBF_like 2 generic binding surface II 0 1 1 1 0,49,51,53,75 0 -239933 cd04487 RecJ_OBF2_like 1 generic binding surface I 0 1 1 1 6,7,8,17,18,19,20,22,28,29,30,32,47,54,55,56,63,64,65 0 -239933 cd04487 RecJ_OBF2_like 2 generic binding surface II 0 1 1 1 1,48,50,52,70 0 -239934 cd04488 RecG_wedge_OBF 1 generic binding surface I 0 1 1 1 5,6,7,20,21,22,23,25,31,32,33,35,49,56,57,58,66,67,68 0 -239934 cd04488 RecG_wedge_OBF 2 generic binding surface II 0 1 1 1 0,50,52,54,73 0 -239935 cd04489 ExoVII_LU_OBF 1 generic binding surface I 0 1 1 1 7,8,9,19,20,21,22,24,30,31,32,34,49,56,57,58,67,68,69 0 -239935 cd04489 ExoVII_LU_OBF 2 generic binding surface II 0 1 1 1 2,50,52,54,74 0 -239936 cd04490 PolII_SU_OBF 1 generic binding surface I 0 1 1 1 7,8,9,19,20,21,22,24,30,31,32,34,51,58,59,60,71,72,73 0 -239936 cd04490 PolII_SU_OBF 2 generic binding surface II 0 1 1 1 2,52,54,56,77 0 -239937 cd04491 SoSSB_OBF 1 generic binding surface I 0 1 1 1 5,6,7,25,26,27,28,30,36,37,38,40,52,60,61,62,69,70,71 0 -239937 cd04491 SoSSB_OBF 2 generic binding surface II 0 1 1 1 0,53,55,57,79 0 -239938 cd04492 YhaM_OBF_like 1 generic binding surface I 0 1 1 1 5,6,7,21,22,23,24,26,32,33,34,36,50,57,58,59,66,67,68 0 -239938 cd04492 YhaM_OBF_like 2 generic binding surface II 0 1 1 1 0,51,53,55,73 0 -239939 cd04493 BRCA2DBD_OB1 1 generic binding surface I 0 1 1 1 8,9,10,23,24,25,26,28,34,35,36,38,54,62,63,64,80,81,82 0 -239939 cd04493 BRCA2DBD_OB1 2 generic binding surface II 0 1 1 1 3,55,57,59,89 0 -239940 cd04494 BRCA2DBD_OB2 1 generic binding surface I 0 1 1 1 18,19,20,167,168,169,170,172,182,183,184,186,200,208,209,210,222,223,224 0 -239940 cd04494 BRCA2DBD_OB2 2 generic binding surface II 0 1 1 1 13,201,203,205,232 0 -239941 cd04495 BRCA2DBD_OB3 1 generic binding surface I 0 1 1 1 5,6,7,18,19,20,21,23,30,31,32,34,50,58,59,60,69,70,71 0 -239941 cd04495 BRCA2DBD_OB3 2 generic binding surface II 0 1 1 1 0,51,53,55,79 0 -239942 cd04496 SSB_OBF 1 generic binding surface I 0 1 1 1 6,7,8,23,24,25,26,28,46,47,48,50,65,72,73,74,90,91,92 0 -239942 cd04496 SSB_OBF 2 generic binding surface II 0 1 1 1 1,66,68,70,97 0 -239943 cd04497 hPOT1_OB1_like 1 generic binding surface I 0 1 1 1 22,23,24,39,40,41,42,44,54,55,56,58,72,80,81,82,89,90,91 0 -239943 cd04497 hPOT1_OB1_like 2 generic binding surface II 0 1 1 1 17,73,75,77,100 0 -239944 cd04498 hPOT1_OB2 1 generic binding surface I 0 1 1 1 7,8,9,19,20,21,22,24,62,63,64,66,80,88,89,90,105,106,107 0 -239944 cd04498 hPOT1_OB2 2 generic binding surface II 0 1 1 1 2,81,83,85,120 0 -349787 cd03558 LGIC_ECD 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,178 2 -349788 cd18987 LGIC_ECD_anion 1 pentamer interface 0 1 0 0 10,12,18,19,26,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,184 2 -349791 cd18990 LGIC_ECD_GABAAR 1 pentamer interface 0 1 0 0 10,12,18,19,26,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,183 2 -349799 cd18998 LGIC_ECD_GABAAR_A 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,183 2 -349835 cd19034 LGIC_ECD_GABAAR_A1 1 pentamer interface 0 1 0 0 20,22,28,29,36,54,56,68,69,71,73,74,87,88,89,91,101,103,105,109,131,193 2 -349836 cd19035 LGIC_ECD_GABAAR_A2 1 pentamer interface 0 1 0 0 29,31,37,38,45,63,65,77,78,80,82,83,96,97,98,100,110,112,114,118,140,202 2 -349837 cd19036 LGIC_ECD_GABAAR_A3 1 pentamer interface 0 1 0 0 26,28,34,35,42,60,62,74,75,77,79,80,93,94,95,97,107,109,111,115,137,199 2 -349838 cd19037 LGIC_ECD_GABAAR_A4 1 pentamer interface 0 1 0 0 25,27,33,34,41,59,61,73,74,76,78,79,92,93,94,96,106,108,110,114,136,198 2 -349839 cd19038 LGIC_ECD_GABAAR_A5 1 pentamer interface 0 1 0 0 25,27,33,34,41,59,61,73,74,76,78,79,92,93,94,96,106,108,110,114,136,198 2 -349840 cd19039 LGIC_ECD_GABAAR_A6 1 pentamer interface 0 1 0 0 24,26,32,33,40,58,60,72,73,75,77,78,91,92,93,95,105,107,109,113,135,197 2 -349800 cd18999 LGIC_ECD_GABAAR_B 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349841 cd19040 LGIC_ECD_GABAAR_B1 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349842 cd19041 LGIC_ECD_GABAAR_B2 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349843 cd19042 LGIC_ECD_GABAAR_B3 1 pentamer interface 0 1 0 0 11,13,19,20,27,45,47,59,60,62,64,65,78,79,80,82,92,94,96,100,122,182 2 -349801 cd19000 LGIC_ECD_GABAAR_G 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349844 cd19043 LGIC_ECD_GABAAR_G1 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349845 cd19044 LGIC_ECD_GABAAR_G2 1 pentamer interface 0 1 0 0 12,14,20,21,28,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,183 2 -349846 cd19045 LGIC_ECD_GABAAR_G3 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349802 cd19001 LGIC_ECD_GABAAR_delta 1 pentamer interface 0 1 0 0 11,13,19,20,27,45,47,59,60,62,64,65,78,79,80,82,92,94,96,100,122,183 2 -349803 cd19002 LGIC_ECD_GABAAR_E 1 pentamer interface 0 1 0 0 10,12,18,19,26,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349804 cd19003 LGIC_ECD_GABAAR_theta 1 pentamer interface 0 1 0 0 11,13,19,20,27,45,47,59,60,62,64,65,78,79,80,82,92,94,96,100,122,182 2 -349805 cd19004 LGIC_ECD_GABAAR_pi 1 pentamer interface 0 1 0 0 11,13,19,20,27,44,46,58,59,61,63,64,77,78,79,81,91,93,95,99,121,181 2 -349806 cd19005 LGIC_ECD_GABAAR_rho 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,184 2 -349847 cd19046 LGIC_ECD_GABAAR_rho1 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,184 2 -349848 cd19047 LGIC_ECD_GABAAR_rho2 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,184 2 -349849 cd19048 LGIC_ECD_GABAAR_rho3 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,184 2 -349807 cd19006 LGIC_ECD_GABAAR_LCCH3-like 1 pentamer interface 0 1 0 0 11,13,19,20,27,47,49,61,62,64,66,67,80,81,82,84,94,96,98,102,124,182 2 -349808 cd19007 LGIC_ECD_GABAR_GRD-like 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,182 2 -349809 cd19008 LGIC_ECD_GABAR_RDL-like 1 pentamer interface 0 1 0 0 10,12,18,19,26,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,183 2 -349792 cd18991 LGIC_ECD_GlyR 1 pentamer interface 0 1 0 0 11,13,19,20,27,47,49,61,62,64,66,67,80,81,82,84,94,96,98,102,124,184 2 -349810 cd19009 LGIC_ECD_GlyR_alpha 1 pentamer interface 0 1 0 0 11,13,19,20,27,46,48,60,61,63,65,66,79,80,81,83,93,95,97,101,123,183 2 -349811 cd19010 LGIC_ECD_GlyR_beta 1 pentamer interface 0 1 0 0 11,13,19,20,27,48,50,62,63,65,67,68,81,82,83,85,95,97,99,103,125,186 2 -349793 cd18992 LGIC_ECD_HisCl 1 pentamer interface 0 1 0 0 12,14,20,21,28,47,49,62,63,65,67,68,81,82,83,85,95,97,99,103,125,184 2 -349794 cd18993 LGIC_ECD_GluCl 1 pentamer interface 0 1 0 0 11,13,19,20,27,48,50,60,61,63,65,66,79,80,81,83,93,95,97,101,123,182 2 -349789 cd18988 LGIC_ECD_bact 1 pentamer interface 0 1 0 0 11,13,19,20,27,53,55,62,63,65,67,68,77,78,79,81,91,93,95,99,121,181 2 -349790 cd18989 LGIC_ECD_cation 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,77,78,79,81,91,93,95,99,121,179 2 -349795 cd18994 LGIC_ECD_ZAC 1 pentamer interface 0 1 0 0 10,12,18,19,26,47,49,58,59,61,63,64,74,75,76,78,88,90,92,96,118,169 2 -349796 cd18995 LGIC_AChBP 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,119,179 2 -349797 cd18996 LGIC_ECD_5-HT3 1 pentamer interface 0 1 0 0 42,44,50,51,58,80,82,91,92,94,96,97,107,108,109,111,121,123,125,129,151,214 2 -349812 cd19011 LGIC_ECD_5-HT3A 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,100,101,102,104,114,116,118,122,144,207 2 -349813 cd19012 LGIC_ECD_5-HT3B 1 pentamer interface 0 1 0 0 38,40,46,47,54,76,78,87,88,90,92,93,103,104,105,107,117,119,121,125,147,209 2 -349814 cd19013 LGIC_ECD_5-HT3C_E 1 pentamer interface 0 1 0 0 42,44,50,51,58,80,82,91,92,94,96,97,107,108,109,111,121,123,125,129,151,214 2 -349798 cd18997 LGIC_ECD_nAChR 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,180 2 -349815 cd19014 LGIC_ECD_nAChR_A1 1 pentamer interface 0 1 0 0 37,39,45,46,53,75,77,86,87,89,91,92,103,104,105,107,117,119,121,125,147,208 2 -349816 cd19015 LGIC_ECD_nAChR_A2 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,101,102,103,105,115,117,119,123,145,205 2 -349817 cd19016 LGIC_ECD_nAChR_A3 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,101,102,103,105,115,117,119,123,145,205 2 -349818 cd19017 LGIC_ECD_nAChR_A4 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,180 2 -349819 cd19018 LGIC_ECD_nAChR_A5 1 pentamer interface 0 1 0 0 37,39,45,46,53,75,77,86,87,89,91,92,102,103,104,106,116,118,120,124,146,204 2 -349820 cd19019 LGIC_ECD_nAChR_A6 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,180 2 -349821 cd19020 LGIC_ECD_nAChR_A7 1 pentamer interface 0 1 0 0 11,13,19,20,27,49,51,60,61,63,65,66,77,78,79,81,91,93,95,99,121,179 2 -349822 cd19021 LGIC_ECD_nAChR_A7L 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,178 2 -349823 cd19022 LGIC_ECD_nAChR_A9 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,101,102,103,105,115,117,119,123,145,205 2 -349824 cd19023 LGIC_ECD_nAChR_A10 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,180 2 -349825 cd19024 LGIC_ECD_nAChR_B1 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,101,102,103,105,115,117,119,123,145,211 2 -349826 cd19025 LGIC_ECD_nAChR_B2 1 pentamer interface 0 1 0 0 35,37,43,44,51,73,75,84,85,87,89,90,101,102,103,105,115,117,119,123,145,202 2 -349827 cd19026 LGIC_ECD_nAChR_B3 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,178 2 -349828 cd19027 LGIC_ECD_nAChR_B4 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,177 2 -349829 cd19028 LGIC_ECD_nAChR_D 1 pentamer interface 0 1 0 0 36,38,44,45,52,74,76,85,86,88,90,91,102,103,104,106,116,118,120,124,146,219 2 -349830 cd19029 LGIC_ECD_nAChR_G 1 pentamer interface 0 1 0 0 12,14,20,21,28,50,52,61,62,64,66,67,78,79,80,82,92,94,96,100,122,191 2 -349831 cd19030 LGIC_ECD_nAChR_E 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,190 2 -349832 cd19031 LGIC_ECD_nAChR_proto_alpha-like 1 pentamer interface 0 1 0 0 37,39,45,46,53,75,77,86,87,89,91,92,103,104,105,107,117,119,121,125,147,218 2 -349833 cd19032 LGIC_ECD_nAChR_proto_beta-like 1 pentamer interface 0 1 0 0 36,38,44,45,52,74,76,85,86,88,90,91,102,103,104,106,116,118,120,124,146,206 2 -349834 cd19033 LGIC_ECD_nAChR_proto-like 1 pentamer interface 0 1 0 0 10,12,18,19,26,48,50,59,60,62,64,65,76,77,78,80,90,92,94,98,120,182 2 -349850 cd03559 LGIC_TM 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,31,32,34,35,36,38,39,42,43,49,50,52,72,76,79,83,100 2 -349850 cd03559 LGIC_TM 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349850 cd03559 LGIC_TM 3 TM2 helix 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -349850 cd03559 LGIC_TM 4 TM3 helix 0 0 0 0 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349850 cd03559 LGIC_TM 5 TM4 helix 0 0 0 0 94,95,96,97,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349851 cd19049 LGIC_TM_anion 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,95 2 -349851 cd19049 LGIC_TM_anion 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349851 cd19049 LGIC_TM_anion 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349851 cd19049 LGIC_TM_anion 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349851 cd19049 LGIC_TM_anion 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,95 2 -349854 cd19052 LGIC_TM_GABAAR_alpha 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349854 cd19052 LGIC_TM_GABAAR_alpha 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349855 cd19053 LGIC_TM_GABAAR_beta 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,95 2 -349855 cd19053 LGIC_TM_GABAAR_beta 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349855 cd19053 LGIC_TM_GABAAR_beta 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349855 cd19053 LGIC_TM_GABAAR_beta 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349855 cd19053 LGIC_TM_GABAAR_beta 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,95 2 -349856 cd19054 LGIC_TM_GABAAR_gamma 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349856 cd19054 LGIC_TM_GABAAR_gamma 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349857 cd19055 LGIC_TM_GABAAR_delta 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,102 2 -349857 cd19055 LGIC_TM_GABAAR_delta 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349857 cd19055 LGIC_TM_GABAAR_delta 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349857 cd19055 LGIC_TM_GABAAR_delta 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349857 cd19055 LGIC_TM_GABAAR_delta 5 TM4 helix 0 0 0 0 96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349858 cd19056 LGIC_TM_GABAAR_theta 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,99 2 -349858 cd19056 LGIC_TM_GABAAR_theta 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349858 cd19056 LGIC_TM_GABAAR_theta 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349858 cd19056 LGIC_TM_GABAAR_theta 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349858 cd19056 LGIC_TM_GABAAR_theta 5 TM4 helix 0 0 0 0 93,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,96 2 -349859 cd19057 LGIC_TM_GABAAR_epsilon 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349859 cd19057 LGIC_TM_GABAAR_epsilon 5 TM4 helix 0 0 0 0 90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349860 cd19058 LGIC_TM_GABAAR_pi 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,33,34,36,37,38,40,41,44,45,51,52,54,75,79,82,86,101 2 -349860 cd19058 LGIC_TM_GABAAR_pi 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349860 cd19058 LGIC_TM_GABAAR_pi 3 TM2 helix 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -349860 cd19058 LGIC_TM_GABAAR_pi 4 TM3 helix 0 0 0 0 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349860 cd19058 LGIC_TM_GABAAR_pi 5 TM4 helix 0 0 0 0 95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349861 cd19059 LGIC_TM_GABAAR_rho 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,33,34,36,37,38,40,41,44,45,51,52,54,74,78,81,85,96 2 -349861 cd19059 LGIC_TM_GABAAR_rho 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349861 cd19059 LGIC_TM_GABAAR_rho 3 TM2 helix 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -349861 cd19059 LGIC_TM_GABAAR_rho 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349861 cd19059 LGIC_TM_GABAAR_rho 5 TM4 helix 0 0 0 0 90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349862 cd19060 LGIC_TM_GlyR_alpha 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,33,34,36,37,38,40,41,44,45,51,52,54,74,78,81,85,100 2 -349862 cd19060 LGIC_TM_GlyR_alpha 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349862 cd19060 LGIC_TM_GlyR_alpha 3 TM2 helix 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -349862 cd19060 LGIC_TM_GlyR_alpha 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349862 cd19060 LGIC_TM_GlyR_alpha 5 TM4 helix 0 0 0 0 94,95,96,97,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -349863 cd19061 LGIC_TM_GlyR_beta 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,95 2 -349863 cd19061 LGIC_TM_GlyR_beta 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349863 cd19061 LGIC_TM_GlyR_beta 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349863 cd19061 LGIC_TM_GlyR_beta 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349863 cd19061 LGIC_TM_GlyR_beta 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349864 cd19062 LGIC_TM_GluCl 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,97 2 -349864 cd19062 LGIC_TM_GluCl 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349864 cd19062 LGIC_TM_GluCl 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349864 cd19062 LGIC_TM_GluCl 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349864 cd19062 LGIC_TM_GluCl 5 TM4 helix 0 0 0 0 91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112 7 -349852 cd19050 LGIC_TM_bact 1 pentamer interface 0 1 1 0 3,4,11,12,14,15,18,21,22,23,32,33,35,36,37,39,40,43,44,50,51,53,73,77,80,84,102 2 -349852 cd19050 LGIC_TM_bact 2 TM1 helix 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -349852 cd19050 LGIC_TM_bact 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349852 cd19050 LGIC_TM_bact 4 TM3 helix 0 0 0 0 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349852 cd19050 LGIC_TM_bact 5 TM4 helix 0 0 0 0 96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117 7 -349853 cd19051 LGIC_TM_cation 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,32,33,35,36,37,39,40,43,44,50,51,53,74,78,81,85,95 2 -349853 cd19051 LGIC_TM_cation 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349853 cd19051 LGIC_TM_cation 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349853 cd19051 LGIC_TM_cation 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349853 cd19051 LGIC_TM_cation 5 TM4 helix 0 0 0 0 89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110 7 -349865 cd19063 LGIC_TM_5-HT3 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,32,33,35,36,37,39,40,43,44,50,51,53,74,78,81,85,101 2 -349865 cd19063 LGIC_TM_5-HT3 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349865 cd19063 LGIC_TM_5-HT3 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349865 cd19063 LGIC_TM_5-HT3 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349865 cd19063 LGIC_TM_5-HT3 5 TM4 helix 0 0 0 0 95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -349866 cd19064 LGIC_TM_nAChR 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,32,33,35,36,37,39,40,43,44,50,51,53,74,78,81,85,96 2 -349866 cd19064 LGIC_TM_nAChR 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349866 cd19064 LGIC_TM_nAChR 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349866 cd19064 LGIC_TM_nAChR 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349866 cd19064 LGIC_TM_nAChR 5 TM4 helix 0 0 0 0 90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 7 -349867 cd19065 LGIC_TM_ZAC 1 pentamer interface 0 1 1 0 4,5,12,13,15,16,19,22,23,24,32,33,35,36,37,39,40,43,44,50,51,53,74,78,81,85,139 2 -349867 cd19065 LGIC_TM_ZAC 2 TM1 helix 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -349867 cd19065 LGIC_TM_ZAC 3 TM2 helix 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -349867 cd19065 LGIC_TM_ZAC 4 TM3 helix 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349867 cd19065 LGIC_TM_ZAC 5 TM4 helix 0 0 0 0 133,134,135,136,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -239641 cd03587 SOCS 1 elongin B/C interaction 0 1 1 0 0,1,2,3,4,5,11,21,27 0 -239686 cd03716 SOCS_ASB_like 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239688 cd03718 SOCS_SSB1_4 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239712 cd03743 SOCS_SSB4 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239713 cd03744 SOCS_SSB1 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239689 cd03719 SOCS_SSB2 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239690 cd03720 SOCS_ASB1 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239691 cd03721 SOCS_ASB2 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239692 cd03722 SOCS_ASB3 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,25,31 0 -239693 cd03723 SOCS_ASB4_ASB18 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239694 cd03724 SOCS_ASB5 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239695 cd03725 SOCS_ASB6 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,23,29 0 -239696 cd03726 SOCS_ASB7 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239697 cd03727 SOCS_ASB8 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,23,29 0 -239698 cd03728 SOCS_ASB_9_11 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239699 cd03729 SOCS_ASB13 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,22,28 0 -239700 cd03730 SOCS_ASB14 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,25,31 0 -239701 cd03731 SOCS_ASB15 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,25,31 0 -239702 cd03733 SOCS_WSB_SWIP 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239714 cd03745 SOCS_WSB2_SWIP2 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239715 cd03746 SOCS_WSB1_SWIP1 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239687 cd03717 SOCS_SOCS_like 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239703 cd03734 SOCS_CIS1 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,17,23 0 -239704 cd03735 SOCS_SOCS1 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239705 cd03736 SOCS_SOCS2 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,17,23 0 -239706 cd03737 SOCS_SOCS3 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,20,26 0 -239707 cd03738 SOCS_SOCS4 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239708 cd03739 SOCS_SOCS5 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239709 cd03740 SOCS_SOCS6 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239710 cd03741 SOCS_SOCS7 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239711 cd03742 SOCS_Rab40 1 elongin B/C interaction 0 1 1 0 1,2,3,4,5,6,12,19,25 0 -239658 cd03687 Dehydratase_LU 1 active site 0 1 1 1 133,135,162,164,194,197,213,214,226,259,260,288,327,328,354,365,366 1 -239658 cd03687 Dehydratase_LU 2 cobalamin binding site 0 1 1 1 164,194,197,214,226,259,260,328,365,366 5 -239658 cd03687 Dehydratase_LU 3 substrate and K+ binding site 0 1 1 1 133,135,162,213,214,288,327,328,354 0 -239658 cd03687 Dehydratase_LU 4 K+ binding site 0 1 1 1 133,162,213,288 4 -239658 cd03687 Dehydratase_LU 5 alpha-gamma subunit interface 0 1 1 1 53,61,196,197,221,225,228,229,230,232,233,235,239,243,244,280,281,282,283,319,463,475,485,486,489,490,491,492,495,496,505,506,508 2 -239658 cd03687 Dehydratase_LU 6 alpha-beta subunit interface 0 1 1 1 10,18,139,169,226,227,259,262,293,296,328,329,332,362,364,366,367,368 2 -239658 cd03687 Dehydratase_LU 7 alpha-alpha subunit/dimer interface 0 1 1 1 1,4,7,11,12,13,15,81,85,87,111,113,116,122,149,152,300,302,303,305,306,333,335,336,338,358,373,374,375,377,378,381,384,385,397,433,435,439,516,518,519,524,540,542 2 -239753 cd03829 Sina 1 substrate binding site 0 1 1 1 7,8,9,11,13,22,23 5 -239753 cd03829 Sina 2 dimer interface 0 1 1 0 64,76,77,78,79,80,81,82,84,99,100,107,111 2 -349870 cd03873 Zinc_peptidase_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 19,52,86,87,115,181 4 -349868 cd02690 M28 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 22,34,68,69,96,173 4 -349871 cd03874 M28_PMSA_TfR_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 78,88,126,127,155,236 4 -349942 cd08022 M28_PSMA_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 81,91,128,129,157,244 4 -349946 cd09848 M28_TfR 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 77,87,125,126,154,240 4 -349872 cd03875 M28_Fxna_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 101,113,147,148,174,248 4 -349873 cd03876 M28_SGAP_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 83,95,127,128,156,254 4 -349874 cd03877 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 22,43,76,77,104,177 4 -349910 cd05660 M28_like_PA 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 80,101,135,136,163,251 4 -349912 cd05662 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 83,100,132,133,160,238 4 -349913 cd05663 M28_like_PA_PDZ_associated 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 77,103,139,140,167,237 4 -349875 cd03879 M28_AAP 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 95,114,148,149,176,254 4 -349876 cd03880 M28_QC_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 89,105,146,147,193,276 4 -349877 cd03881 M28_Nicastrin 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 217,233,269,270,314,399 4 -349878 cd03882 M28_nicalin_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 96,112,148,149,179,263 4 -349879 cd03883 M28_Pgcp_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 247,259,293,294,321,392 4 -349893 cd05640 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 73,85,117,118,150,252 4 -349894 cd05642 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 109,129,161,162,189,293 4 -349895 cd05643 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 90,100,135,136,159,239 4 -349896 cd05644 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 168,177,209,210,234,308 4 -349911 cd05661 M28_like_PA 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 83,95,127,128,156,233 4 -349937 cd08015 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 22,34,68,69,105,177 4 -349943 cd08656 M28_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 78,103,135,136,177,258 4 -349948 cd18669 M20_18_42 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 19,52,86,87,115,179 4 -349869 cd02697 M20_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 80,115,145,146,175,359 4 -349880 cd03884 M20_bAS 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 72,83,117,118,182,374 4 -349881 cd03885 M20_CPDG2 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 67,96,130,131,155,338 4 -349884 cd03888 M20_PepV 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 78,109,143,144,167,423 4 -349885 cd03890 M20_pepD 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 67,106,136,137,160,448 4 -349888 cd03893 M20_Dipept_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 70,103,137,138,164,401 4 -349925 cd05676 M20_dipept_like_CNDP 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 92,125,159,160,188,438 4 -349926 cd05677 M20_dipept_like_DUG2_type 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 78,111,144,145,172,410 4 -349927 cd05678 M20_dipept_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 67,122,156,157,183,441 4 -349928 cd05679 M20_dipept_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 79,113,148,149,175,416 4 -349929 cd05680 M20_dipept_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 70,103,137,138,164,411 4 -349930 cd05681 M20_dipept_Sso-CP2 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 66,99,133,134,160,404 4 -349931 cd05682 M20_dipept_dapE 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 80,113,146,147,174,425 4 -349891 cd03896 M20_PAAh_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,88,122,123,149,329 4 -193517 cd05638 M42 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 58,172,204,205,227,310 4 -349906 cd05656 M42_Frv 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 59,172,204,205,227,314 4 -349907 cd05657 M42_glucanase_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 62,180,214,215,235,315 4 -349892 cd05639 M18 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 76,237,266,267,312,406 4 -349908 cd05658 M18_DAP 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 76,241,275,276,321,415 4 -349909 cd05659 M18_API 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 85,246,276,277,323,422 4 -349897 cd05645 M20_peptidase_T 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 74,136,169,170,192,375 4 -349887 cd03892 M20_peptT 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 74,136,170,171,193,375 4 -349932 cd05683 M20_peptT_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 74,105,138,139,162,343 4 -349898 cd05646 M20_AcylaseI_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 71,104,138,139,181,364 4 -349899 cd05647 M20_DapE_actinobac 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 60,87,119,120,148,324 4 -349901 cd05650 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 76,109,143,144,171,366 4 -349905 cd05654 M20_ArgE_RocB 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 78,132,165,166,206,506 4 -349923 cd05674 M20_yscS 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 76,111,145,146,174,447 4 -349924 cd05675 M20_yscS_like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 72,104,138,139,171,407 4 -349934 cd08012 M20_ArgE-related 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 85,117,151,152,182,397 4 -349944 cd08659 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,94,128,129,154,338 4 -349886 cd03891 M20_DapE_proteobac 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,94,128,129,157,343 4 -349889 cd03894 M20_ArgE 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 64,96,128,129,156,343 4 -349890 cd03895 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 81,114,148,149,172,372 4 -349900 cd05649 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 59,92,127,128,153,355 4 -349902 cd05651 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 62,93,126,127,151,318 4 -349903 cd05652 M20_ArgE_DapE-like_fungal 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 65,91,125,126,150,316 4 -349904 cd05653 M20_ArgE_LysK 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,85,116,117,140,317 4 -349933 cd08011 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 67,100,134,135,160,332 4 -349935 cd08013 M20_ArgE_DapE-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 75,105,137,138,161,352 4 -349945 cd08660 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 63,89,123,124,148,342 4 -349882 cd03886 M20_Acy1 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 62,88,122,123,149,347 4 -349914 cd05664 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 63,98,132,133,160,371 4 -349915 cd05665 M20_Acy1_IAAspH 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 103,136,170,171,195,391 4 -349916 cd05666 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 64,90,123,124,150,348 4 -349917 cd05667 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 73,107,141,142,173,376 4 -349918 cd05668 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 66,92,125,126,152,344 4 -349919 cd05669 M20_Acy1_YxeP-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 65,91,125,126,150,342 4 -349920 cd05670 M20_Acy1_YkuR-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 65,91,123,124,150,343 4 -349936 cd08014 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 62,88,122,123,148,347 4 -349938 cd08017 M20_IAA_Hyd 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,87,121,122,146,349 4 -349939 cd08018 M20_Acy1_amhX-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 67,86,120,121,145,340 4 -349940 cd08019 M20_Acy1-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 61,87,121,122,146,345 4 -349941 cd08021 M20_Acy1_YhaA-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 73,99,133,134,159,357 4 -349883 cd03887 M20_Acy1L2 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 70,82,118,119,143,330 4 -349921 cd05672 M20_ACY1L2-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 70,82,118,119,143,330 4 -349922 cd05673 M20_Acy1L2_AbgB 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 69,98,134,135,159,391 4 -349947 cd09849 M20_Acy1L2-like 1 metal binding site [DH][ND]EE[HED][HR] 1 1 1 69,92,128,129,170,360 4 -239754 cd04087 PTPA 1 peptide binding pocket 0 1 1 1 162,163,226,227,230,231,234,243,244,254,255,256,257 0 -239754 cd04087 PTPA 2 peptide-induced dimer interface 0 1 1 1 47,55,101,153,154,156,159,160,162,168,216,218,219,223,260 2 -239754 cd04087 PTPA 3 ATP binding site 0 1 1 0 101,103,105,106,107,108,157,158,159,257,258,260,261 5 -239754 cd04087 PTPA 4 putative PP2A binding surface 0 0 1 1 162,223,234,243,247,255 2 -239754 cd04087 PTPA 5 putative interaction site 0 0 1 1 101,103,105,106,107,108,156,157,166,167,168,170,231,234,240,244,247,251,255,257,258,260,261 0 -239766 cd04100 Asp_Lys_Asn_RS_N 1 Dimer interface 0 1 1 0 6,24,52,83 2 -239766 cd04100 Asp_Lys_Asn_RS_N 2 anticodon binding site 0 1 1 1 9,11,12,18,29,31,48,62,73 0 -239811 cd04316 ND_PkAspRS_like_N 1 Dimer interface 0 1 1 0 19,37,66,94 2 -239811 cd04316 ND_PkAspRS_like_N 2 anticodon binding site 0 1 1 1 22,24,25,31,42,44,62,76,84 0 -239812 cd04317 EcAspRS_like_N 1 Dimer interface 0 1 1 0 21,39,66,101 2 -239812 cd04317 EcAspRS_like_N 2 anticodon binding site 0 1 1 1 24,26,27,33,44,46,62,76,91 0 -239813 cd04318 EcAsnRS_like_N 1 Dimer interface 0 1 1 0 6,24,52,80 2 -239813 cd04318 EcAsnRS_like_N 2 anticodon binding site 0 1 1 1 9,11,12,18,31,33,48,62,70 0 -239814 cd04319 PhAsnRS_like_N 1 Dimer interface 0 1 1 0 6,24,52,80 2 -239814 cd04319 PhAsnRS_like_N 2 anticodon binding site 0 1 1 1 9,11,12,18,29,31,48,62,70 0 -239815 cd04320 AspRS_cyto_N 1 Dimer interface 0 1 1 0 6,25,56,89 2 -239815 cd04320 AspRS_cyto_N 2 anticodon binding site 0 1 1 1 9,11,12,19,30,32,52,66,79 0 -239816 cd04321 ScAspRS_mt_like_N 1 Dimer interface 0 1 1 0 6,25,52,84 2 -239816 cd04321 ScAspRS_mt_like_N 2 anticodon binding site 0 1 1 1 9,11,12,19,31,33,48,62,74 0 -239817 cd04322 LysRS_N 1 Dimer interface 0 1 1 0 6,24,54,80 2 -239817 cd04322 LysRS_N 2 anticodon binding site 0 1 1 1 9,11,12,18,29,31,50,64,70 0 -239818 cd04323 AsnRS_cyto_like_N 1 Dimer interface 0 1 1 0 6,24,51,82 2 -239818 cd04323 AsnRS_cyto_like_N 2 anticodon binding site 0 1 1 1 9,11,12,18,29,31,47,61,72 0 -173926 cd04301 NAT_SF 1 Coenzyme A binding pocket 0 1 1 0 30,31,32,42,43 5 -239824 cd04332 YbaK_like 1 putative deacylase active site 0 0 1 1 29,82,83,110 1 -237976 cd00002 YbaK_deacylase 1 putative deacylase active site 0 0 1 1 44,97,98,125 1 -239825 cd04333 ProX_deacylase 1 putative deacylase active site 0 0 1 1 42,93,94,121 1 -239826 cd04334 ProRS-INS 1 putative deacylase active site 0 0 1 1 53,107,108,134 1 -239827 cd04335 PrdX_deacylase 1 putative deacylase active site 0 0 1 1 41,94,95,126 1 -239828 cd04336 YeaK 1 putative deacylase active site 0 0 1 1 41,96,97,125 1 -240137 cd04939 PA2301 1 putative deacylase active site 0 0 1 1 29,86,87,114 1 -99922 cd04369 Bromodomain 1 acetyllysine binding site 0 1 1 0 26,31,34,73,77,83 0 -99923 cd05491 Bromo_TBP7_like 1 acetyllysine binding site 0 1 1 0 46,53,56,95,99,103 0 -99924 cd05492 Bromo_ZMYND11 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99925 cd05493 Bromo_ALL-1 1 acetyllysine binding site 0 1 1 0 41,48,51,90,94,112 0 -99926 cd05494 Bromodomain_1 1 acetyllysine binding site 0 1 1 0 27,34,37,80,84,98 0 -99927 cd05495 Bromo_cbp_like 1 acetyllysine binding site 0 1 1 0 28,35,38,77,81,87 0 -99928 cd05496 Bromo_WDR9_II 1 acetyllysine binding site 0 1 1 0 29,34,37,76,80,87 0 -99929 cd05497 Bromo_Brdt_I_like 1 acetyllysine binding site 0 1 1 0 29,36,39,78,82,88 0 -99930 cd05498 Bromo_Brdt_II_like 1 acetyllysine binding site 0 1 1 0 27,34,37,76,80,86 0 -99931 cd05499 Bromo_BDF1_2_II 1 acetyllysine binding site 0 1 1 0 27,34,37,76,80,86 0 -99932 cd05500 Bromo_BDF1_2_I 1 acetyllysine binding site 0 1 1 0 28,35,38,77,81,87 0 -99933 cd05501 Bromo_SP100C_like 1 acetyllysine binding site 0 1 1 0 26,29,32,71,75,80 0 -99934 cd05502 Bromo_tif1_like 1 acetyllysine binding site 0 1 1 0 28,32,35,77,81,87 0 -99935 cd05503 Bromo_BAZ2A_B_like 1 acetyllysine binding site 0 1 1 0 24,29,32,71,75,81 0 -99936 cd05504 Bromo_Acf1_like 1 acetyllysine binding site 0 1 1 0 36,41,44,83,87,93 0 -99937 cd05505 Bromo_WSTF_like 1 acetyllysine binding site 0 1 1 0 24,29,32,71,75,81 0 -99938 cd05506 Bromo_plant1 1 acetyllysine binding site 0 1 1 0 24,31,34,73,77,83 0 -99939 cd05507 Bromo_brd8_like 1 acetyllysine binding site 0 1 1 0 27,32,35,74,78,84 0 -99940 cd05508 Bromo_RACK7 1 acetyllysine binding site 0 1 1 0 26,31,34,73,77,83 0 -99941 cd05509 Bromo_gcn5_like 1 acetyllysine binding site 0 1 1 0 25,30,33,72,76,82 0 -99942 cd05510 Bromo_SPT7_like 1 acetyllysine binding site 0 1 1 0 32,37,40,79,83,90 0 -99943 cd05511 Bromo_TFIID 1 acetyllysine binding site 0 1 1 0 24,29,32,71,75,81 0 -99944 cd05512 Bromo_brd1_like 1 acetyllysine binding site 0 1 1 0 25,30,33,72,76,82 0 -99945 cd05513 Bromo_brd7_like 1 acetyllysine binding site 0 1 1 0 25,30,33,72,76,82 0 -99946 cd05515 Bromo_polybromo_V 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99947 cd05516 Bromo_SNF2L2 1 acetyllysine binding site 0 1 1 0 31,36,39,78,82,88 0 -99948 cd05517 Bromo_polybromo_II 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99949 cd05518 Bromo_polybromo_IV 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99950 cd05519 Bromo_SNF2 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99951 cd05520 Bromo_polybromo_III 1 acetyllysine binding site 0 1 1 0 30,35,38,77,81,87 0 -99952 cd05521 Bromo_Rsc1_2_I 1 acetyllysine binding site 0 1 1 0 31,36,39,76,80,86 0 -99953 cd05522 Bromo_Rsc1_2_II 1 acetyllysine binding site 0 1 1 0 31,36,39,78,82,88 0 -99954 cd05524 Bromo_polybromo_I 1 acetyllysine binding site 0 1 1 0 32,37,40,79,83,89 0 -99955 cd05525 Bromo_ASH1 1 acetyllysine binding site 0 1 1 0 32,37,40,79,83,89 0 -99956 cd05526 Bromo_polybromo_VI 1 acetyllysine binding site 0 1 1 0 33,36,39,78,82,88 0 -99957 cd05528 Bromo_AAA 1 acetyllysine binding site 0 1 1 0 27,32,35,74,78,88 0 -99958 cd05529 Bromo_WDR9_I_like 1 acetyllysine binding site 0 1 1 0 51,57,60,99,103,109 0 -319870 cd04410 DMSOR_beta-like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,30,32,46,49,50,51,52,57,61,62,65,66,74,84,85,86,87,91,92,93,95,96,105,107,108,109,110,111,123,127,132 4 -319871 cd10549 MtMvhB_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,25,27,38,41,42,43,44,47,51,52,55,56,72,82,83,84,85,89,90,91,93,94,106,108,109,110,111,112,115,119,124 4 -319872 cd10550 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,30,32,45,48,49,50,51,56,60,61,64,65,74,84,85,86,87,91,92,93,95,96,105,107,108,109,110,111,117,121,126 4 -319873 cd10551 PsrB 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,30,32,49,52,53,54,55,60,64,65,68,69,77,87,88,89,90,94,95,96,98,99,120,122,123,124,125,126,138,142,147 4 -319874 cd10552 TH_beta_N 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,41,43,60,63,64,65,66,71,75,76,79,80,88,98,99,100,101,105,106,107,109,110,119,121,122,123,124,125,138,142,147 4 -319875 cd10553 PhsB_like 1 Fe-S cluster binding site 0 1 1 0 4,11,12,13,14,16,17,21,25,33,35,54,57,58,59,60,65,69,70,73,74,83,93,94,95,96,100,101,102,104,105,114,116,117,118,119,120,132,136,141 4 -319876 cd10554 HycB_like 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,39,41,52,55,56,57,58,63,67,68,71,72,79,89,90,91,92,96,97,98,100,101,121,123,124,125,126,127,136,140,145 4 -319885 cd10563 CooF_like 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,40,42,53,56,57,58,59,64,68,69,72,73,82,92,93,94,95,99,100,101,103,104,113,115,116,117,118,119,127,131,136 4 -319886 cd10564 NapF_like 1 Fe-S cluster binding site 0 1 1 0 7,14,15,16,17,19,20,24,28,34,36,43,46,47,48,49,52,56,57,60,61,73,87,88,89,90,94,95,96,98,99,115,117,118,119,120,121,124,128,133 4 -319887 cd16365 NarH_like 1 Fe-S cluster binding site 0 1 1 0 4,11,12,13,14,16,17,21,25,37,39,69,72,73,74,75,80,84,85,88,89,98,108,109,110,111,115,116,117,119,120,129,131,132,133,134,135,147,151,156 4 -319877 cd10555 EBDH_beta 1 Fe-S cluster binding site 0 1 1 0 6,13,14,15,16,18,19,23,27,39,41,129,132,133,134,135,140,144,145,148,149,158,168,169,170,171,175,176,177,179,180,189,191,192,193,194,195,207,211,216 4 -319878 cd10556 SER_beta 1 Fe-S cluster binding site 0 1 1 0 13,20,21,22,23,25,26,30,34,46,48,137,140,141,142,143,148,152,153,156,157,166,176,177,178,179,183,184,185,187,188,197,199,200,201,202,203,215,219,224 4 -319879 cd10557 NarH_beta-like 1 Fe-S cluster binding site 0 1 1 0 6,13,14,15,16,18,19,23,27,39,41,175,178,179,180,181,186,190,191,194,195,204,214,215,216,217,221,222,223,225,226,235,237,238,239,240,241,253,257,262 4 -319888 cd16366 FDH_beta_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,46,48,66,69,70,71,72,77,81,82,85,86,94,104,105,106,107,111,112,113,115,116,125,127,128,129,130,131,143,147,152 4 -319880 cd10558 FDH-N 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,47,49,66,69,70,71,72,77,81,82,86,87,95,105,106,107,108,112,113,114,116,117,126,128,129,130,131,132,144,148,153 4 -319881 cd10559 W-FDH 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,47,49,67,70,71,72,73,78,82,83,88,89,98,109,110,111,112,116,117,118,120,121,130,132,133,134,135,136,148,152,157 4 -319882 cd10560 FDH-O_like 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,48,50,74,77,78,79,80,85,89,90,93,94,102,112,113,114,115,119,120,121,123,124,133,135,136,137,138,139,151,155,160 4 -319883 cd10561 HybA_like 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,47,49,65,68,69,70,71,76,80,81,84,85,93,103,104,105,106,110,111,112,114,115,126,128,129,130,131,132,144,148,153 4 -319884 cd10562 FDH_b_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,44,46,66,69,70,71,72,77,81,82,85,86,94,104,105,106,107,111,112,113,115,116,125,127,128,129,130,131,143,147,152 4 -319889 cd16367 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 13,20,21,22,23,25,26,30,34,38,40,53,56,57,58,59,64,68,69,72,73,81,90,91,92,93,97,98,99,101,102,107,109,110,111,112,113,121,125,131 4 -319890 cd16368 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 2,9,10,11,12,19,20,24,28,68,70,87,90,91,92,93,98,102,103,106,107,115,125,126,127,128,132,133,134,136,137,159,161,162,163,164,165,177,181,186 4 -319891 cd16369 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 3,10,11,12,13,15,16,20,24,30,32,47,50,51,52,53,58,62,63,66,67,75,86,87,88,89,93,94,95,97,98,107,109,110,111,112,113,125,129,134 4 -319892 cd16370 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 3,10,11,12,13,15,16,20,24,33,35,49,52,53,54,55,60,64,65,68,69,77,87,88,89,90,94,95,96,98,99,108,110,111,112,113,114,117,121,126 4 -319893 cd16371 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 1,8,9,10,11,13,14,18,22,31,33,50,53,54,55,56,61,65,66,69,70,78,88,89,90,91,95,96,97,99,100,109,111,112,113,114,115,127,131,136 4 -319894 cd16372 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 2,9,10,11,12,14,15,19,23,32,34,45,48,49,50,51,54,58,59,62,63,71,81,82,83,84,88,89,90,92,93,102,104,105,106,107,108,111,115,120 4 -319895 cd16373 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 8,15,16,17,18,20,21,25,29,37,39,51,54,55,56,57,61,65,66,69,70,85,101,102,103,104,108,109,110,112,113,128,130,131,132,133,134,137,141,149 4 -319896 cd16374 DMSOR_beta_like 1 Fe-S cluster binding site 0 1 1 0 0,7,8,9,10,12,13,17,21,25,27,39,42,43,44,45,50,54,55,58,59,67,77,78,79,80,84,85,86,88,89,98,100,101,102,103,104,116,120,125 4 -341228 cd04433 AFD_class_I 1 active site 0 1 1 0 7,47,48,94,96,97,100,121,122,143,144,145,146,147,148,227,239,242,250,251,252,253,314 1 -341228 cd04433 AFD_class_I 2 AMP binding site 0 1 1 0 7,121,122,143,144,145,146,147,148,227,239,242,253,333 5 -341228 cd04433 AFD_class_I 3 CoA binding site 0 1 1 1 47,96,97,100,121,250,251,252,308,314 5 -341228 cd04433 AFD_class_I 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341229 cd05903 CHC_CoA_lg 1 active site 0 1 1 0 100,140,141,188,190,191,194,215,216,237,238,239,240,241,242,321,333,336,344,345,346,347,409 1 -341229 cd05903 CHC_CoA_lg 2 AMP binding site 0 1 1 0 100,215,216,237,238,239,240,241,242,321,333,336,347,428 5 -341229 cd05903 CHC_CoA_lg 3 CoA binding site 0 1 1 1 140,190,191,194,215,344,345,346,402,409 5 -341229 cd05903 CHC_CoA_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341231 cd05905 Dip2 1 active site 0 1 1 0 156,197,198,248,250,251,254,282,283,300,301,302,303,304,305,434,456,459,467,468,469,470,531 1 -341231 cd05905 Dip2 2 AMP binding site 0 1 1 0 156,282,283,300,301,302,303,304,305,434,456,459,470,550 5 -341231 cd05905 Dip2 3 CoA binding site 0 1 1 1 197,250,251,254,282,467,468,469,518,531 5 -341231 cd05905 Dip2 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341232 cd05906 A_NRPS_TubE_like 1 active site 0 1 1 0 174,214,215,266,268,269,272,296,297,324,325,326,327,328,329,414,425,428,436,437,438,439,505 1 -341232 cd05906 A_NRPS_TubE_like 2 AMP binding site 0 1 1 0 174,296,297,324,325,326,327,328,329,414,425,428,439,526 5 -341232 cd05906 A_NRPS_TubE_like 3 CoA binding site 0 1 1 1 214,268,269,272,296,436,437,438,501,505 5 -341232 cd05906 A_NRPS_TubE_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 171,174,175,176,177,178,179,181,182 0 -341233 cd05907 VL_LC_FACS_like 1 active site 0 1 1 0 94,134,135,180,182,183,186,218,219,239,240,241,242,243,244,312,324,327,336,337,338,339,420 1 -341233 cd05907 VL_LC_FACS_like 2 AMP binding site 0 1 1 0 94,218,219,239,240,241,242,243,244,312,324,327,339,445 5 -341233 cd05907 VL_LC_FACS_like 3 CoA binding site 0 1 1 1 134,182,183,186,218,336,337,338,411,420 5 -341233 cd05907 VL_LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 91,94,95,96,97,98,99,101,102 0 -341240 cd05914 LC_FACL_like 1 active site 0 1 1 0 96,136,137,185,187,188,191,241,242,262,263,264,265,266,267,341,353,356,365,366,367,368,436 1 -341240 cd05914 LC_FACL_like 2 AMP binding site 0 1 1 0 96,241,242,262,263,264,265,266,267,341,353,356,368,456 5 -341240 cd05914 LC_FACL_like 3 CoA binding site 0 1 1 1 136,187,188,191,241,365,366,367,427,436 5 -341240 cd05914 LC_FACL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -341250 cd05927 LC-FACS_euk 1 active site 0 1 1 0 121,165,166,211,213,214,217,281,282,303,304,305,306,307,308,389,401,404,413,414,415,416,500 1 -341250 cd05927 LC-FACS_euk 2 AMP binding site 0 1 1 0 121,281,282,303,304,305,306,307,308,389,401,404,416,525 5 -341250 cd05927 LC-FACS_euk 3 CoA binding site 0 1 1 1 165,213,214,217,281,413,414,415,489,500 5 -341250 cd05927 LC-FACS_euk 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 118,121,122,123,124,125,126,128,129 0 -341255 cd05932 LC_FACS_bac 1 active site 0 1 1 0 144,184,185,230,232,233,236,282,283,303,304,305,306,307,308,376,388,391,400,401,402,403,472 1 -341255 cd05932 LC_FACS_bac 2 AMP binding site 0 1 1 0 144,282,283,303,304,305,306,307,308,376,388,391,403,499 5 -341255 cd05932 LC_FACS_bac 3 CoA binding site 0 1 1 1 184,232,233,236,282,400,401,402,463,472 5 -341255 cd05932 LC_FACS_bac 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 141,144,145,146,147,148,149,151,152 0 -341256 cd05933 ACSBG_like 1 active site 0 1 1 0 157,201,202,250,252,253,256,327,328,348,349,350,351,352,353,426,438,441,450,451,452,453,552 1 -341256 cd05933 ACSBG_like 2 AMP binding site 0 1 1 0 157,327,328,348,349,350,351,352,353,426,438,441,453,577 5 -341256 cd05933 ACSBG_like 3 CoA binding site 0 1 1 1 201,252,253,256,327,450,451,452,542,552 5 -341256 cd05933 ACSBG_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 154,157,158,159,160,161,162,164,165 0 -341294 cd17639 LC_FACS_euk1 1 active site 0 1 1 0 95,137,138,189,191,192,195,257,258,278,279,280,281,282,283,364,376,379,388,389,390,391,475 1 -341294 cd17639 LC_FACS_euk1 2 AMP binding site 0 1 1 0 95,257,258,278,279,280,281,282,283,364,376,379,391,500 5 -341294 cd17639 LC_FACS_euk1 3 CoA binding site 0 1 1 1 137,191,192,195,257,388,389,390,460,475 5 -341294 cd17639 LC_FACS_euk1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341295 cd17640 LC_FACS_like 1 active site 0 1 1 0 95,135,136,179,181,182,185,220,221,241,242,243,244,245,246,325,337,340,349,350,351,352,437 1 -341295 cd17640 LC_FACS_like 2 AMP binding site 0 1 1 0 95,220,221,241,242,243,244,245,246,325,337,340,352,461 5 -341295 cd17640 LC_FACS_like 3 CoA binding site 0 1 1 1 135,181,182,185,220,349,350,351,427,437 5 -341295 cd17640 LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341296 cd17641 LC_FACS_bac1 1 active site 0 1 1 0 165,205,206,251,253,254,257,331,332,352,353,354,355,356,357,425,437,440,449,450,451,452,533 1 -341296 cd17641 LC_FACS_bac1 2 AMP binding site 0 1 1 0 165,331,332,352,353,354,355,356,357,425,437,440,452,558 5 -341296 cd17641 LC_FACS_bac1 3 CoA binding site 0 1 1 1 205,253,254,257,331,449,450,451,524,533 5 -341296 cd17641 LC_FACS_bac1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 162,165,166,167,168,169,170,172,173 0 -341234 cd05908 A_NRPS_MycA_like 1 active site 0 1 1 0 113,153,154,205,207,208,211,235,236,263,264,265,266,267,268,374,385,388,396,397,398,399,465 1 -341234 cd05908 A_NRPS_MycA_like 2 AMP binding site 0 1 1 0 113,235,236,263,264,265,266,267,268,374,385,388,399,483 5 -341234 cd05908 A_NRPS_MycA_like 3 CoA binding site 0 1 1 1 153,207,208,211,235,396,397,398,460,465 5 -341234 cd05908 A_NRPS_MycA_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341235 cd05909 AAS_C 1 active site 0 1 1 0 154,194,195,243,245,246,249,268,269,290,291,292,293,294,295,374,386,389,397,398,399,400,460 1 -341235 cd05909 AAS_C 2 AMP binding site 0 1 1 0 154,268,269,290,291,292,293,294,295,374,386,389,400,479 5 -341235 cd05909 AAS_C 3 CoA binding site 0 1 1 1 194,245,246,249,268,397,398,399,453,460 5 -341235 cd05909 AAS_C 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 151,154,155,156,157,158,159,161,162 0 -341236 cd05910 FACL_like_1 1 active site 0 1 1 0 92,132,133,179,181,182,185,206,207,230,231,232,233,234,235,336,348,351,359,360,361,362,425 1 -341236 cd05910 FACL_like_1 2 AMP binding site 0 1 1 0 92,206,207,230,231,232,233,234,235,336,348,351,362,446 5 -341236 cd05910 FACL_like_1 3 CoA binding site 0 1 1 1 132,181,182,185,206,359,360,361,420,425 5 -341236 cd05910 FACL_like_1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 89,92,93,94,95,96,97,99,100 0 -341237 cd05911 Firefly_Luc_like 1 active site 0 1 1 0 153,195,196,242,244,245,248,269,270,292,293,294,295,296,297,376,388,391,399,400,401,402,464 1 -341237 cd05911 Firefly_Luc_like 2 AMP binding site 0 1 1 0 153,269,270,292,293,294,295,296,297,376,388,391,402,483 5 -341237 cd05911 Firefly_Luc_like 3 CoA binding site 0 1 1 1 195,244,245,248,269,399,400,401,457,464 5 -341237 cd05911 Firefly_Luc_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 150,153,154,155,156,157,158,160,161 0 -341230 cd05904 4CL 1 active site 0 1 1 0 165,207,208,255,257,258,261,282,283,305,306,307,308,309,310,392,404,407,415,416,417,418,479 1 -341230 cd05904 4CL 2 AMP binding site 0 1 1 0 165,282,283,305,306,307,308,309,310,392,404,407,418,498 5 -341230 cd05904 4CL 3 CoA binding site 0 1 1 1 207,257,258,261,282,415,416,417,473,479 5 -341230 cd05904 4CL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 162,165,166,167,168,169,170,172,173 0 -341297 cd17642 Firefly_Luc 1 active site 0 1 1 0 191,234,235,281,283,284,287,308,309,331,332,333,334,335,336,415,427,430,438,439,440,441,503 1 -341297 cd17642 Firefly_Luc 2 AMP binding site 0 1 1 0 191,308,309,331,332,333,334,335,336,415,427,430,441,522 5 -341297 cd17642 Firefly_Luc 3 CoA binding site 0 1 1 1 234,283,284,287,308,438,439,440,496,503 5 -341297 cd17642 Firefly_Luc 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 188,191,192,193,194,195,196,198,199 0 -341238 cd05912 OSB_CoA_lg 1 active site 0 1 1 0 84,124,125,171,173,174,177,196,197,217,218,219,220,221,222,298,310,313,321,322,323,324,383 1 -341238 cd05912 OSB_CoA_lg 2 AMP binding site 0 1 1 0 84,196,197,217,218,219,220,221,222,298,310,313,324,402 5 -341238 cd05912 OSB_CoA_lg 3 CoA binding site 0 1 1 1 124,173,174,177,196,321,322,323,377,383 5 -341238 cd05912 OSB_CoA_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 81,84,85,86,87,88,89,91,92 0 -341239 cd05913 PaaK 1 active site 0 1 1 0 85,128,129,176,178,179,182,205,206,227,228,229,230,231,232,296,317,320,328,329,330,331,395 1 -341239 cd05913 PaaK 2 AMP binding site 0 1 1 0 85,205,206,227,228,229,230,231,232,296,317,320,331,415 5 -341239 cd05913 PaaK 3 CoA binding site 0 1 1 1 128,178,179,182,205,328,329,330,388,395 5 -341239 cd05913 PaaK 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 82,85,86,87,88,89,90,92,93 0 -213283 cd05915 ttLC_FACS_like 1 active site 0 1 1 0 160,202,203,250,252,253,256,277,278,298,299,300,301,302,303,394,406,409,417,418,419,420,481 1 -213283 cd05915 ttLC_FACS_like 2 AMP binding site 0 1 1 0 160,277,278,298,299,300,301,302,303,394,406,409,420,500 5 -213283 cd05915 ttLC_FACS_like 3 CoA binding site 0 1 1 1 202,252,253,256,277,417,418,419,474,481 5 -213283 cd05915 ttLC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 157,160,161,162,163,164,165,167,168 0 -341283 cd12118 ttLC_FACS_AEE21_like 1 active site 0 1 1 0 140,180,181,227,229,230,233,254,255,275,276,277,278,279,280,372,384,387,395,396,397,398,459 1 -341283 cd12118 ttLC_FACS_AEE21_like 2 AMP binding site 0 1 1 0 140,254,255,275,276,277,278,279,280,372,384,387,398,477 5 -341283 cd12118 ttLC_FACS_AEE21_like 3 CoA binding site 0 1 1 1 180,229,230,233,254,395,396,397,453,459 5 -341283 cd12118 ttLC_FACS_AEE21_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 137,140,141,142,143,144,145,147,148 0 -341284 cd12119 ttLC_FACS_AlkK_like 1 active site 0 1 1 0 170,212,213,260,262,263,266,287,288,308,309,310,311,312,313,403,415,418,426,427,428,429,490 1 -341284 cd12119 ttLC_FACS_AlkK_like 2 AMP binding site 0 1 1 0 170,287,288,308,309,310,311,312,313,403,415,418,429,509 5 -341284 cd12119 ttLC_FACS_AlkK_like 3 CoA binding site 0 1 1 1 212,262,263,266,287,426,427,428,484,490 5 -341284 cd12119 ttLC_FACS_AlkK_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 167,170,171,172,173,174,175,177,178 0 -341241 cd05917 FACL_like_2 1 active site 0 1 1 0 9,49,50,98,100,101,104,125,126,148,149,150,151,152,153,235,247,250,258,259,260,261,322 1 -341241 cd05917 FACL_like_2 2 AMP binding site 0 1 1 0 9,125,126,148,149,150,151,152,153,235,247,250,261,341 5 -341241 cd05917 FACL_like_2 3 CoA binding site 0 1 1 1 49,100,101,104,125,258,259,260,316,322 5 -341241 cd05917 FACL_like_2 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 6,9,10,11,12,13,14,16,17 0 -341243 cd05919 BCL_like 1 active site 0 1 1 0 98,139,140,188,190,191,194,215,216,237,238,239,240,241,242,319,331,334,342,343,344,345,409 1 -341243 cd05919 BCL_like 2 AMP binding site 0 1 1 0 98,215,216,237,238,239,240,241,242,319,331,334,345,428 5 -341243 cd05919 BCL_like 3 CoA binding site 0 1 1 1 139,190,191,194,215,342,343,344,403,409 5 -341243 cd05919 BCL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 95,98,99,100,101,102,103,105,106 0 -341268 cd05958 ABCL 1 active site 0 1 1 0 104,145,146,193,195,196,199,220,221,242,243,244,245,246,247,322,334,337,345,346,347,348,412 1 -341268 cd05958 ABCL 2 AMP binding site 0 1 1 0 104,220,221,242,243,244,245,246,247,322,334,337,348,431 5 -341268 cd05958 ABCL 3 CoA binding site 0 1 1 1 145,195,196,199,220,345,346,347,406,412 5 -341268 cd05958 ABCL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 101,104,105,106,107,108,109,111,112 0 -341269 cd05959 BCL_4HBCL 1 active site 0 1 1 0 170,211,212,260,262,263,266,287,288,309,310,311,312,313,314,391,403,406,414,415,416,417,481 1 -341269 cd05959 BCL_4HBCL 2 AMP binding site 0 1 1 0 170,287,288,309,310,311,312,313,314,391,403,406,417,500 5 -341269 cd05959 BCL_4HBCL 3 CoA binding site 0 1 1 1 211,262,263,266,287,414,415,416,475,481 5 -341269 cd05959 BCL_4HBCL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 167,170,171,172,173,174,175,177,178 0 -341244 cd05920 23DHB-AMP_lg 1 active site 0 1 1 0 146,186,187,235,237,238,241,262,263,284,285,286,287,288,289,369,381,384,392,393,394,395,456 1 -341244 cd05920 23DHB-AMP_lg 2 AMP binding site 0 1 1 0 146,262,263,284,285,286,287,288,289,369,381,384,395,475 5 -341244 cd05920 23DHB-AMP_lg 3 CoA binding site 0 1 1 1 186,237,238,241,262,392,393,394,449,456 5 -341244 cd05920 23DHB-AMP_lg 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 143,146,147,148,149,150,151,153,154 0 -341245 cd05921 FCS 1 active site 0 1 1 0 172,214,215,266,268,269,272,297,298,325,326,327,328,329,330,401,417,420,431,432,433,434,522 1 -341245 cd05921 FCS 2 AMP binding site 0 1 1 0 172,297,298,325,326,327,328,329,330,401,417,420,434,551 5 -341245 cd05921 FCS 3 CoA binding site 0 1 1 1 214,268,269,272,297,431,432,433,503,522 5 -341245 cd05921 FCS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 169,172,173,174,175,176,177,179,180 0 -341246 cd05922 FACL_like_6 1 active site 0 1 1 0 124,164,165,212,214,215,218,238,239,261,262,263,264,265,266,346,358,361,369,370,371,372,430 1 -341246 cd05922 FACL_like_6 2 AMP binding site 0 1 1 0 124,238,239,261,262,263,264,265,266,346,358,361,372,449 5 -341246 cd05922 FACL_like_6 3 CoA binding site 0 1 1 1 164,214,215,218,238,369,370,371,424,430 5 -341246 cd05922 FACL_like_6 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 121,124,125,126,127,128,129,131,132 0 -341247 cd05923 CBAL 1 active site 0 1 1 0 157,199,200,247,249,250,253,274,275,296,297,298,299,300,301,380,392,395,403,404,405,406,467 1 -341247 cd05923 CBAL 2 AMP binding site 0 1 1 0 157,274,275,296,297,298,299,300,301,380,392,395,406,486 5 -341247 cd05923 CBAL 3 CoA binding site 0 1 1 1 199,249,250,253,274,403,404,405,460,467 5 -341247 cd05923 CBAL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 154,157,158,159,160,161,162,164,165 0 -341248 cd05924 FACL_like_5 1 active site 0 1 1 0 10,64,65,112,114,115,118,141,142,164,165,166,167,168,169,250,262,265,273,274,275,276,337 1 -341248 cd05924 FACL_like_5 2 AMP binding site 0 1 1 0 10,141,142,164,165,166,167,168,169,250,262,265,276,356 5 -341248 cd05924 FACL_like_5 3 CoA binding site 0 1 1 1 64,114,115,118,141,273,274,275,331,337 5 -341248 cd05924 FACL_like_5 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 7,10,11,12,13,14,15,17,18 0 -341249 cd05926 FACL_fum10p_like 1 active site 0 1 1 0 156,196,197,244,246,247,250,272,273,294,295,296,297,298,299,378,390,393,401,402,403,404,465 1 -341249 cd05926 FACL_fum10p_like 2 AMP binding site 0 1 1 0 156,272,273,294,295,296,297,298,299,378,390,393,404,484 5 -341249 cd05926 FACL_fum10p_like 3 CoA binding site 0 1 1 1 196,246,247,250,272,401,402,403,459,465 5 -341249 cd05926 FACL_fum10p_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341252 cd05929 BACL_like 1 active site 0 1 1 0 132,175,176,222,224,225,228,251,252,273,274,275,276,277,278,355,367,370,378,379,380,381,445 1 -341252 cd05929 BACL_like 2 AMP binding site 0 1 1 0 132,251,252,273,274,275,276,277,278,355,367,370,381,464 5 -341252 cd05929 BACL_like 3 CoA binding site 0 1 1 1 175,224,225,228,251,378,379,380,439,445 5 -341252 cd05929 BACL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 129,132,133,134,135,136,137,139,140 0 -341253 cd05930 A_NRPS 1 active site 0 1 1 0 100,140,141,190,192,193,196,215,216,238,239,240,241,242,243,331,343,346,354,355,356,357,418 1 -341253 cd05930 A_NRPS 2 AMP binding site 0 1 1 0 100,215,216,238,239,240,241,242,243,331,343,346,357,437 5 -341253 cd05930 A_NRPS 3 CoA binding site 0 1 1 1 140,192,193,196,215,354,355,356,412,418 5 -341253 cd05930 A_NRPS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341242 cd05918 A_NRPS_SidN3_like 1 active site 0 1 1 0 113,153,154,201,203,204,207,222,223,242,243,244,245,246,247,340,352,355,363,364,365,366,447 1 -341242 cd05918 A_NRPS_SidN3_like 2 AMP binding site 0 1 1 0 113,222,223,242,243,244,245,246,247,340,352,355,366,466 5 -341242 cd05918 A_NRPS_SidN3_like 3 CoA binding site 0 1 1 1 153,203,204,207,222,363,364,365,441,447 5 -341242 cd05918 A_NRPS_SidN3_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341267 cd05945 DltA 1 active site 0 1 1 0 104,144,145,194,196,197,200,221,222,244,245,246,247,248,249,335,347,350,358,359,360,361,423 1 -341267 cd05945 DltA 2 AMP binding site 0 1 1 0 104,221,222,244,245,246,247,248,249,335,347,350,361,442 5 -341267 cd05945 DltA 3 CoA binding site 0 1 1 1 144,196,197,200,221,358,359,360,417,423 5 -341267 cd05945 DltA 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 101,104,105,106,107,108,109,111,112 0 -341279 cd12114 A_NRPS_TlmIV_like 1 active site 0 1 1 0 133,173,174,223,225,226,229,250,251,273,274,275,276,277,278,364,376,379,387,388,389,390,451 1 -341279 cd12114 A_NRPS_TlmIV_like 2 AMP binding site 0 1 1 0 133,250,251,273,274,275,276,277,278,364,376,379,390,470 5 -341279 cd12114 A_NRPS_TlmIV_like 3 CoA binding site 0 1 1 1 173,225,226,229,250,387,388,389,445,451 5 -341279 cd12114 A_NRPS_TlmIV_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 130,133,134,135,136,137,138,140,141 0 -341280 cd12115 A_NRPS_Sfm_like 1 active site 0 1 1 0 112,152,153,197,199,200,203,220,221,243,244,245,246,247,248,334,346,349,357,358,359,360,421 1 -341280 cd12115 A_NRPS_Sfm_like 2 AMP binding site 0 1 1 0 112,220,221,243,244,245,246,247,248,334,346,349,360,440 5 -341280 cd12115 A_NRPS_Sfm_like 3 CoA binding site 0 1 1 1 152,199,200,203,220,357,358,359,415,421 5 -341280 cd12115 A_NRPS_Sfm_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 109,112,113,114,115,116,117,119,120 0 -341281 cd12116 A_NRPS_Ta1_like 1 active site 0 1 1 0 133,173,174,223,225,226,229,246,247,267,268,269,270,271,272,358,370,373,381,382,383,384,444 1 -341281 cd12116 A_NRPS_Ta1_like 2 AMP binding site 0 1 1 0 133,246,247,267,268,269,270,271,272,358,370,373,384,463 5 -341281 cd12116 A_NRPS_Ta1_like 3 CoA binding site 0 1 1 1 173,225,226,229,246,381,382,383,438,444 5 -341281 cd12116 A_NRPS_Ta1_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 130,133,134,135,136,137,138,140,141 0 -341282 cd12117 A_NRPS_Srf_like 1 active site 0 1 1 0 143,182,183,232,234,235,238,256,257,279,280,281,282,283,284,372,384,387,395,396,397,398,457 1 -341282 cd12117 A_NRPS_Srf_like 2 AMP binding site 0 1 1 0 143,256,257,279,280,281,282,283,284,372,384,387,398,476 5 -341282 cd12117 A_NRPS_Srf_like 3 CoA binding site 0 1 1 1 182,234,235,238,256,395,396,397,451,457 5 -341282 cd12117 A_NRPS_Srf_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 140,143,144,145,146,147,148,150,151 0 -341298 cd17643 A_NRPS_Cytc1-like 1 active site 0 1 1 0 100,140,141,190,192,193,196,217,218,242,243,244,245,246,247,337,349,352,360,361,362,363,424 1 -341298 cd17643 A_NRPS_Cytc1-like 2 AMP binding site 0 1 1 0 100,217,218,242,243,244,245,246,247,337,349,352,363,443 5 -341298 cd17643 A_NRPS_Cytc1-like 3 CoA binding site 0 1 1 1 140,192,193,196,217,360,361,362,418,424 5 -341298 cd17643 A_NRPS_Cytc1-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341299 cd17644 A_NRPS_ApnA-like 1 active site 0 1 1 0 113,153,154,203,205,206,209,231,232,255,256,257,258,259,260,351,363,366,374,375,376,377,438 1 -341299 cd17644 A_NRPS_ApnA-like 2 AMP binding site 0 1 1 0 113,231,232,255,256,257,258,259,260,351,363,366,377,457 5 -341299 cd17644 A_NRPS_ApnA-like 3 CoA binding site 0 1 1 1 153,205,206,209,231,374,375,376,432,438 5 -341299 cd17644 A_NRPS_ApnA-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 110,113,114,115,116,117,118,120,121 0 -341300 cd17645 A_NRPS_LgrA-like 1 active site 0 1 1 0 111,151,152,201,203,204,207,222,223,238,239,240,241,242,243,328,340,343,351,352,353,354,413 1 -341300 cd17645 A_NRPS_LgrA-like 2 AMP binding site 0 1 1 0 111,222,223,238,239,240,241,242,243,328,340,343,354,432 5 -341300 cd17645 A_NRPS_LgrA-like 3 CoA binding site 0 1 1 1 151,203,204,207,222,351,352,353,407,413 5 -341300 cd17645 A_NRPS_LgrA-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 108,111,112,113,114,115,116,118,119 0 -341301 cd17646 A_NRPS_AB3403-like 1 active site 0 1 1 0 145,185,186,235,237,238,241,260,261,282,283,284,285,286,287,374,386,389,397,398,399,400,462 1 -341301 cd17646 A_NRPS_AB3403-like 2 AMP binding site 0 1 1 0 145,260,261,282,283,284,285,286,287,374,386,389,400,481 5 -341301 cd17646 A_NRPS_AB3403-like 3 CoA binding site 0 1 1 1 185,237,238,241,260,397,398,399,456,462 5 -341301 cd17646 A_NRPS_AB3403-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 142,145,146,147,148,149,150,152,153 0 -341302 cd17647 A_NRPS_alphaAR 1 active site 0 1 1 0 116,156,157,206,208,209,212,230,231,253,254,255,256,257,258,377,389,392,400,401,402,403,491 1 -341302 cd17647 A_NRPS_alphaAR 2 AMP binding site 0 1 1 0 116,230,231,253,254,255,256,257,258,377,389,392,403,510 5 -341302 cd17647 A_NRPS_alphaAR 3 CoA binding site 0 1 1 1 156,208,209,212,230,400,401,402,485,491 5 -341302 cd17647 A_NRPS_alphaAR 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 113,116,117,118,119,120,121,123,124 0 -341303 cd17648 A_NRPS_ACVS-like 1 active site 0 1 1 0 101,143,144,193,195,196,199,214,215,236,237,238,239,240,241,335,347,350,358,359,360,361,426 1 -341303 cd17648 A_NRPS_ACVS-like 2 AMP binding site 0 1 1 0 101,214,215,236,237,238,239,240,241,335,347,350,361,445 5 -341303 cd17648 A_NRPS_ACVS-like 3 CoA binding site 0 1 1 1 143,195,196,199,214,358,359,360,420,426 5 -341303 cd17648 A_NRPS_ACVS-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 98,101,102,103,104,105,106,108,109 0 -341304 cd17649 A_NRPS_PvdJ-like 1 active site 0 1 1 0 101,141,142,191,193,194,197,219,220,240,241,242,243,244,245,335,347,350,358,359,360,361,423 1 -341304 cd17649 A_NRPS_PvdJ-like 2 AMP binding site 0 1 1 0 101,219,220,240,241,242,243,244,245,335,347,350,361,442 5 -341304 cd17649 A_NRPS_PvdJ-like 3 CoA binding site 0 1 1 1 141,193,194,197,219,358,359,360,417,423 5 -341304 cd17649 A_NRPS_PvdJ-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 98,101,102,103,104,105,106,108,109 0 -341305 cd17650 A_NRPS_PpsD_like 1 active site 0 1 1 0 100,141,142,191,193,194,197,218,219,242,243,244,245,246,247,336,348,351,359,360,361,362,421 1 -341305 cd17650 A_NRPS_PpsD_like 2 AMP binding site 0 1 1 0 100,218,219,242,243,244,245,246,247,336,348,351,362,440 5 -341305 cd17650 A_NRPS_PpsD_like 3 CoA binding site 0 1 1 1 141,193,194,197,218,359,360,361,415,421 5 -341305 cd17650 A_NRPS_PpsD_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341306 cd17651 A_NRPS_VisG_like 1 active site 0 1 1 0 143,183,184,233,235,236,239,260,261,284,285,286,287,288,289,377,389,392,400,401,402,403,464 1 -341306 cd17651 A_NRPS_VisG_like 2 AMP binding site 0 1 1 0 143,260,261,284,285,286,287,288,289,377,389,392,403,483 5 -341306 cd17651 A_NRPS_VisG_like 3 CoA binding site 0 1 1 1 183,235,236,239,260,400,401,402,458,464 5 -341306 cd17651 A_NRPS_VisG_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 140,143,144,145,146,147,148,150,151 0 -341307 cd17652 A_NRPS_CmdD_like 1 active site 0 1 1 0 100,140,141,190,192,193,196,211,212,231,232,233,234,235,236,322,334,337,345,346,347,348,409 1 -341307 cd17652 A_NRPS_CmdD_like 2 AMP binding site 0 1 1 0 100,211,212,231,232,233,234,235,236,322,334,337,348,428 5 -341307 cd17652 A_NRPS_CmdD_like 3 CoA binding site 0 1 1 1 140,192,193,196,211,345,346,347,403,409 5 -341307 cd17652 A_NRPS_CmdD_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 97,100,101,102,103,104,105,107,108 0 -341308 cd17653 A_NRPS_GliP_like 1 active site 0 1 1 0 112,152,153,195,197,198,201,216,217,236,237,238,239,240,241,325,337,340,348,349,350,351,405 1 -341308 cd17653 A_NRPS_GliP_like 2 AMP binding site 0 1 1 0 112,216,217,236,237,238,239,240,241,325,337,340,351,424 5 -341308 cd17653 A_NRPS_GliP_like 3 CoA binding site 0 1 1 1 152,197,198,201,216,348,349,350,399,405 5 -341308 cd17653 A_NRPS_GliP_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 109,112,113,114,115,116,117,119,120 0 -341309 cd17654 A_NRPS_acs4 1 active site 0 1 1 0 125,164,165,216,218,219,222,245,246,269,270,271,272,273,274,344,355,358,366,367,368,369,423 1 -341309 cd17654 A_NRPS_acs4 2 AMP binding site 0 1 1 0 125,245,246,269,270,271,272,273,274,344,355,358,369,442 5 -341309 cd17654 A_NRPS_acs4 3 CoA binding site 0 1 1 1 164,218,219,222,245,366,367,368,416,423 5 -341309 cd17654 A_NRPS_acs4 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 122,125,126,127,128,129,130,132,133 0 -341310 cd17655 A_NRPS_Bac 1 active site 0 1 1 0 144,184,185,234,236,237,240,258,259,282,283,284,285,286,287,375,387,390,398,399,400,401,460 1 -341310 cd17655 A_NRPS_Bac 2 AMP binding site 0 1 1 0 144,258,259,282,283,284,285,286,287,375,387,390,401,479 5 -341310 cd17655 A_NRPS_Bac 3 CoA binding site 0 1 1 1 184,236,237,240,258,398,399,400,454,460 5 -341310 cd17655 A_NRPS_Bac 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 141,144,145,146,147,148,149,151,152 0 -341311 cd17656 A_NRPS_ProA 1 active site 0 1 1 0 135,175,176,225,227,228,231,252,253,275,276,277,278,279,280,367,379,382,390,391,392,393,452 1 -341311 cd17656 A_NRPS_ProA 2 AMP binding site 0 1 1 0 135,252,253,275,276,277,278,279,280,367,379,382,393,471 5 -341311 cd17656 A_NRPS_ProA 3 CoA binding site 0 1 1 1 175,227,228,231,252,390,391,392,446,452 5 -341311 cd17656 A_NRPS_ProA 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 132,135,136,137,138,139,140,142,143 0 -341254 cd05931 FAAL 1 active site 0 1 1 0 156,196,197,248,250,251,254,278,279,306,307,308,309,310,311,422,433,436,444,445,446,447,513 1 -341254 cd05931 FAAL 2 AMP binding site 0 1 1 0 156,278,279,306,307,308,309,310,311,422,433,436,447,534 5 -341254 cd05931 FAAL 3 CoA binding site 0 1 1 1 196,250,251,254,278,444,445,446,509,513 5 -341254 cd05931 FAAL 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 153,156,157,158,159,160,161,163,164 0 -341257 cd05934 FACL_DitJ_like 1 active site 0 1 1 0 88,128,129,178,180,181,184,203,204,223,224,225,226,227,228,308,320,323,331,332,333,334,395 1 -341257 cd05934 FACL_DitJ_like 2 AMP binding site 0 1 1 0 88,203,204,223,224,225,226,227,228,308,320,323,334,414 5 -341257 cd05934 FACL_DitJ_like 3 CoA binding site 0 1 1 1 128,180,181,184,203,331,332,333,389,395 5 -341257 cd05934 FACL_DitJ_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341258 cd05935 LC_FACS_like 1 active site 0 1 1 0 91,131,132,179,181,182,185,206,207,228,229,230,231,232,233,315,327,330,338,339,340,341,407 1 -341258 cd05935 LC_FACS_like 2 AMP binding site 0 1 1 0 91,206,207,228,229,230,231,232,233,315,327,330,341,423 5 -341258 cd05935 LC_FACS_like 3 CoA binding site 0 1 1 1 131,181,182,185,206,338,339,340,398,407 5 -341258 cd05935 LC_FACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 88,91,92,93,94,95,96,98,99 0 -341259 cd05936 FC-FACS_FadD_like 1 active site 0 1 1 0 132,174,175,222,224,225,228,249,250,271,272,273,274,275,276,354,366,369,377,378,379,380,441 1 -341259 cd05936 FC-FACS_FadD_like 2 AMP binding site 0 1 1 0 132,249,250,271,272,273,274,275,276,354,366,369,380,460 5 -341259 cd05936 FC-FACS_FadD_like 3 CoA binding site 0 1 1 1 174,224,225,228,249,377,378,379,435,441 5 -341259 cd05936 FC-FACS_FadD_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 129,132,133,134,135,136,137,139,140 0 -341263 cd05940 FATP_FACS 1 active site 0 1 1 0 88,128,129,185,187,188,191,203,204,224,225,226,227,228,229,328,340,343,351,352,353,354,416 1 -341263 cd05940 FATP_FACS 2 AMP binding site 0 1 1 0 88,203,204,224,225,226,227,228,229,328,340,343,354,435 5 -341263 cd05940 FATP_FACS 3 CoA binding site 0 1 1 1 128,187,188,191,203,351,352,353,407,416 5 -341263 cd05940 FATP_FACS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341260 cd05937 FATP_chFAT1_like 1 active site 0 1 1 0 94,134,135,191,193,194,197,209,210,230,231,232,233,234,235,343,355,358,366,367,368,369,435 1 -341260 cd05937 FATP_chFAT1_like 2 AMP binding site 0 1 1 0 94,209,210,230,231,232,233,234,235,343,355,358,369,454 5 -341260 cd05937 FATP_chFAT1_like 3 CoA binding site 0 1 1 1 134,193,194,197,209,366,367,368,426,435 5 -341260 cd05937 FATP_chFAT1_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 91,94,95,96,97,98,99,101,102 0 -341261 cd05938 hsFATP2a_ACSVL_like 1 active site 0 1 1 0 151,190,191,247,249,250,253,265,266,286,287,288,289,290,291,391,403,406,414,415,416,417,479 1 -341261 cd05938 hsFATP2a_ACSVL_like 2 AMP binding site 0 1 1 0 151,265,266,286,287,288,289,290,291,391,403,406,417,498 5 -341261 cd05938 hsFATP2a_ACSVL_like 3 CoA binding site 0 1 1 1 190,249,250,253,265,414,415,416,470,479 5 -341261 cd05938 hsFATP2a_ACSVL_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 148,151,152,153,154,155,156,158,159 0 -341262 cd05939 hsFATP4_like 1 active site 0 1 1 0 111,151,152,208,210,211,214,226,227,247,248,249,250,251,252,354,366,369,377,378,379,380,441 1 -341262 cd05939 hsFATP4_like 2 AMP binding site 0 1 1 0 111,226,227,247,248,249,250,251,252,354,366,369,380,460 5 -341262 cd05939 hsFATP4_like 3 CoA binding site 0 1 1 1 151,210,211,214,226,377,378,379,432,441 5 -341262 cd05939 hsFATP4_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 108,111,112,113,114,115,116,118,119 0 -341264 cd05941 MCS 1 active site 0 1 1 0 96,136,137,184,186,187,190,219,220,241,242,243,244,245,246,325,337,340,349,350,351,352,414 1 -341264 cd05941 MCS 2 AMP binding site 0 1 1 0 96,219,220,241,242,243,244,245,246,325,337,340,352,433 5 -341264 cd05941 MCS 3 CoA binding site 0 1 1 1 136,186,187,190,219,349,350,351,408,414 5 -341264 cd05941 MCS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -341265 cd05943 AACS 1 active site 0 1 1 0 256,297,298,347,349,350,353,376,377,400,401,402,403,404,405,489,501,504,512,513,514,515,579 1 -341265 cd05943 AACS 2 AMP binding site 0 1 1 0 256,376,377,400,401,402,403,404,405,489,501,504,515,598 5 -341265 cd05943 AACS 3 CoA binding site 0 1 1 1 297,349,350,353,376,512,513,514,573,579 5 -341265 cd05943 AACS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 253,256,257,258,259,260,261,263,264 0 -341266 cd05944 FACL_like_4 1 active site 0 1 1 0 9,49,50,103,105,106,109,128,129,150,151,152,153,154,155,238,250,253,261,262,263,264,326 1 -341266 cd05944 FACL_like_4 2 AMP binding site 0 1 1 0 9,128,129,150,151,152,153,154,155,238,250,253,264,345 5 -341266 cd05944 FACL_like_4 3 CoA binding site 0 1 1 1 49,105,106,109,128,261,262,263,319,326 5 -341266 cd05944 FACL_like_4 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 6,9,10,11,12,13,14,16,17 0 -341276 cd05972 MACS_like 1 active site 0 1 1 0 88,128,129,178,180,181,184,204,205,226,227,228,229,230,231,310,322,325,333,334,335,336,400 1 -341276 cd05972 MACS_like 2 AMP binding site 0 1 1 0 88,204,205,226,227,228,229,230,231,310,322,325,336,419 5 -341276 cd05972 MACS_like 3 CoA binding site 0 1 1 1 128,180,181,184,204,333,334,335,394,400 5 -341276 cd05972 MACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 85,88,89,90,91,92,93,95,96 0 -341251 cd05928 MACS_euk 1 active site 0 1 1 0 181,222,223,272,274,275,278,298,299,320,321,322,323,324,325,407,419,422,430,431,432,433,499 1 -341251 cd05928 MACS_euk 2 AMP binding site 0 1 1 0 181,298,299,320,321,322,323,324,325,407,419,422,433,518 5 -341251 cd05928 MACS_euk 3 CoA binding site 0 1 1 1 222,274,275,278,298,430,431,432,493,499 5 -341251 cd05928 MACS_euk 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 178,181,182,183,184,185,186,188,189 0 -341273 cd05969 MACS_like_4 1 active site 0 1 1 0 96,136,137,185,187,188,191,214,215,236,237,238,239,240,241,321,333,336,344,345,346,347,411 1 -341273 cd05969 MACS_like_4 2 AMP binding site 0 1 1 0 96,214,215,236,237,238,239,240,241,321,333,336,347,430 5 -341273 cd05969 MACS_like_4 3 CoA binding site 0 1 1 1 136,187,188,191,214,344,345,346,405,411 5 -341273 cd05969 MACS_like_4 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 93,96,97,98,99,100,101,103,104 0 -341274 cd05970 MACS_AAE_MA_like 1 active site 0 1 1 0 192,232,233,282,284,285,288,308,309,330,331,332,333,334,335,417,429,432,440,441,442,443,507 1 -341274 cd05970 MACS_AAE_MA_like 2 AMP binding site 0 1 1 0 192,308,309,330,331,332,333,334,335,417,429,432,443,526 5 -341274 cd05970 MACS_AAE_MA_like 3 CoA binding site 0 1 1 1 232,284,285,288,308,440,441,442,501,507 5 -341274 cd05970 MACS_AAE_MA_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 189,192,193,194,195,196,197,199,200 0 -341275 cd05971 MACS_like_3 1 active site 0 1 1 0 95,137,138,187,189,190,193,214,215,236,237,238,239,240,241,321,333,336,344,345,346,347,411 1 -341275 cd05971 MACS_like_3 2 AMP binding site 0 1 1 0 95,214,215,236,237,238,239,240,241,321,333,336,347,430 5 -341275 cd05971 MACS_like_3 3 CoA binding site 0 1 1 1 137,189,190,193,214,344,345,346,405,411 5 -341275 cd05971 MACS_like_3 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341277 cd05973 MACS_like_2 1 active site 0 1 1 0 95,135,136,184,186,187,190,212,213,234,235,236,237,238,239,319,331,334,342,343,344,345,409 1 -341277 cd05973 MACS_like_2 2 AMP binding site 0 1 1 0 95,212,213,234,235,236,237,238,239,319,331,334,345,428 5 -341277 cd05973 MACS_like_2 3 CoA binding site 0 1 1 1 135,186,187,190,212,342,343,344,403,409 5 -341277 cd05973 MACS_like_2 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 92,95,96,97,98,99,100,102,103 0 -341278 cd05974 MACS_like_1 1 active site 0 1 1 0 92,132,133,182,184,185,188,207,208,229,230,231,232,233,234,313,325,328,336,337,338,339,403 1 -341278 cd05974 MACS_like_1 2 AMP binding site 0 1 1 0 92,207,208,229,230,231,232,233,234,313,325,328,339,421 5 -341278 cd05974 MACS_like_1 3 CoA binding site 0 1 1 1 132,184,185,188,207,336,337,338,397,403 5 -341278 cd05974 MACS_like_1 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 89,92,93,94,95,96,97,99,100 0 -341285 cd17630 OSB_MenE-like 1 active site 0 1 1 0 7,47,48,92,94,95,98,118,119,139,140,141,142,143,144,210,222,225,233,234,235,236,295 1 -341285 cd17630 OSB_MenE-like 2 AMP binding site 0 1 1 0 7,118,119,139,140,141,142,143,144,210,222,225,236,314 5 -341285 cd17630 OSB_MenE-like 3 CoA binding site 0 1 1 1 47,94,95,98,118,233,234,235,289,295 5 -341285 cd17630 OSB_MenE-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341286 cd17631 FACL_FadD13-like 1 active site 0 1 1 0 105,145,146,193,195,196,199,220,221,241,242,243,244,245,246,325,337,340,348,349,350,351,412 1 -341286 cd17631 FACL_FadD13-like 2 AMP binding site 0 1 1 0 105,220,221,241,242,243,244,245,246,325,337,340,351,431 5 -341286 cd17631 FACL_FadD13-like 3 CoA binding site 0 1 1 1 145,195,196,199,220,348,349,350,406,412 5 -341286 cd17631 FACL_FadD13-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 102,105,106,107,108,109,110,112,113 0 -341287 cd17632 AFD_CAR-like 1 active site 0 1 1 0 230,271,272,318,320,321,324,360,361,391,392,393,394,395,396,469,481,484,493,494,495,496,565 1 -341287 cd17632 AFD_CAR-like 2 AMP binding site 0 1 1 0 230,360,361,391,392,393,394,395,396,469,481,484,496,583 5 -341287 cd17632 AFD_CAR-like 3 CoA binding site 0 1 1 1 271,320,321,324,360,493,494,495,550,565 5 -341287 cd17632 AFD_CAR-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 227,230,231,232,233,234,235,237,238 0 -341288 cd17633 AFD_YhfT-like 1 active site 0 1 1 0 7,47,48,94,96,97,100,117,118,140,141,142,143,144,145,213,225,228,236,237,238,239,297 1 -341288 cd17633 AFD_YhfT-like 2 AMP binding site 0 1 1 0 7,117,118,140,141,142,143,144,145,213,225,228,239,316 5 -341288 cd17633 AFD_YhfT-like 3 CoA binding site 0 1 1 1 47,96,97,100,117,236,237,238,291,297 5 -341288 cd17633 AFD_YhfT-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341289 cd17634 ACS-like 1 active site 0 1 1 0 239,280,281,332,334,335,338,361,362,386,387,388,389,390,391,475,487,490,498,499,500,501,565 1 -341289 cd17634 ACS-like 2 AMP binding site 0 1 1 0 239,361,362,386,387,388,389,390,391,475,487,490,501,584 5 -341289 cd17634 ACS-like 3 CoA binding site 0 1 1 1 280,334,335,338,361,498,499,500,559,565 5 -341289 cd17634 ACS-like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 236,239,240,241,242,243,244,246,247 0 -341270 cd05966 ACS 1 active site 0 1 1 0 238,279,280,331,333,334,337,360,361,385,386,387,388,389,390,474,486,489,497,498,499,500,564 1 -341270 cd05966 ACS 2 AMP binding site 0 1 1 0 238,360,361,385,386,387,388,389,390,474,486,489,500,583 5 -341270 cd05966 ACS 3 CoA binding site 0 1 1 1 279,333,334,337,360,497,498,499,558,564 5 -341270 cd05966 ACS 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 235,238,239,240,241,242,243,245,246 0 -341271 cd05967 PrpE 1 active site 0 1 1 0 237,278,279,331,333,334,337,362,363,384,385,386,387,388,389,476,488,491,499,500,501,502,567 1 -341271 cd05967 PrpE 2 AMP binding site 0 1 1 0 237,362,363,384,385,386,387,388,389,476,488,491,502,586 5 -341271 cd05967 PrpE 3 CoA binding site 0 1 1 1 278,333,334,337,362,499,500,501,561,567 5 -341271 cd05967 PrpE 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 234,237,238,239,240,241,242,244,245 0 -341272 cd05968 AACS_like 1 active site 0 1 1 0 243,284,285,335,337,338,341,364,365,389,390,391,392,393,394,476,488,491,499,500,501,502,566 1 -341272 cd05968 AACS_like 2 AMP binding site 0 1 1 0 243,364,365,389,390,391,392,393,394,476,488,491,502,585 5 -341272 cd05968 AACS_like 3 CoA binding site 0 1 1 1 284,337,338,341,364,499,500,501,560,566 5 -341272 cd05968 AACS_like 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 240,243,244,245,246,247,248,250,251 0 -341290 cd17635 FADD10 1 active site 0 1 1 0 8,49,50,97,99,100,103,124,125,146,147,148,149,150,151,229,241,244,252,253,254,255,317 1 -341290 cd17635 FADD10 2 AMP binding site 0 1 1 0 8,124,125,146,147,148,149,150,151,229,241,244,255,336 5 -341290 cd17635 FADD10 3 CoA binding site 0 1 1 1 49,99,100,103,124,252,253,254,303,317 5 -341290 cd17635 FADD10 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 5,8,9,10,11,12,13,15,16 0 -341291 cd17636 PtmA 1 active site 0 1 1 0 7,47,48,94,96,97,100,121,122,140,141,142,143,144,145,222,234,237,245,246,247,248,309 1 -341291 cd17636 PtmA 2 AMP binding site 0 1 1 0 7,121,122,140,141,142,143,144,145,222,234,237,248,328 5 -341291 cd17636 PtmA 3 CoA binding site 0 1 1 1 47,96,97,100,121,245,246,247,303,309 5 -341291 cd17636 PtmA 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341292 cd17637 ACLS-CaiC 1 active site 0 1 1 0 7,47,48,94,96,97,100,121,122,140,141,142,143,144,145,221,233,236,246,247,248,249,310 1 -341292 cd17637 ACLS-CaiC 2 AMP binding site 0 1 1 0 7,121,122,140,141,142,143,144,145,221,233,236,249,329 5 -341292 cd17637 ACLS-CaiC 3 CoA binding site 0 1 1 1 47,96,97,100,121,246,247,248,304,310 5 -341292 cd17637 ACLS-CaiC 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -341293 cd17638 FadD3 1 active site 0 1 1 0 7,47,48,95,97,98,101,122,123,145,146,147,148,149,150,220,232,235,243,244,245,246,307 1 -341293 cd17638 FadD3 2 AMP binding site 0 1 1 0 7,122,123,145,146,147,148,149,150,220,232,235,246,326 5 -341293 cd17638 FadD3 3 CoA binding site 0 1 1 1 47,97,98,101,122,243,244,245,301,307 5 -341293 cd17638 FadD3 4 acyl-activating enzyme (AAE) consensus motif 0 0 1 1 4,7,8,9,10,11,12,14,15 0 -271198 cd04434 LanC_like 1 zinc binding site CC[HC] 1 1 0 216,266,267 4 -271198 cd04434 LanC_like 2 active site HCC[HC] 1 1 0 157,216,266,267 1 -271199 cd04791 LanC_SerThrkinase 1 zinc binding site CC[HC] 1 1 0 200,244,245 4 -271199 cd04791 LanC_SerThrkinase 2 active site HCC[HC] 1 1 0 142,200,244,245 1 -271200 cd04792 LanM-like 1 zinc binding site CC[HC] 1 1 0 708,753,754 4 -271200 cd04792 LanM-like 2 active site HCC[HC] 1 1 0 650,708,753,754 1 -271201 cd04793 LanC 1 zinc binding site CC[HC] 1 1 0 242,291,292 4 -271201 cd04793 LanC 2 active site HCC[HC] 1 1 0 173,242,291,292 1 -271202 cd04794 euk_LANCL 1 zinc binding site CC[HC] 1 1 0 227,273,274 4 -271202 cd04794 euk_LANCL 2 active site HCC[HC] 1 1 0 168,227,273,274 1 -119391 cd04508 TUDOR 1 dimethylated arginine/lysine binding site 0 1 1 0 7,12,14,33,36 5 -271334 cd04512 Ntn_Asparaginase_2_like 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 5,57,128,129,146,148,149,156,158,159,160,180,182 1 -271334 cd04512 Ntn_Asparaginase_2_like 2 catalytic nucleophile T 0 1 1 128 1 -271334 cd04512 Ntn_Asparaginase_2_like 3 dimer interface 0 1 1 0 116,155,156,157,168,183,186,192,193 2 -271335 cd04513 Glycosylasparaginase 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 5,43,170,171,188,190,191,198,200,201,202,222,224 1 -271335 cd04513 Glycosylasparaginase 2 catalytic nucleophile T 0 1 1 170 1 -271335 cd04513 Glycosylasparaginase 3 dimer interface 0 1 1 0 102,197,198,199,210,225,228,234,235 2 -271336 cd04514 Taspase1_like 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 6,58,140,141,158,160,161,168,170,171,172,198,200 1 -271336 cd04514 Taspase1_like 2 catalytic nucleophile T 0 1 1 140 1 -271336 cd04514 Taspase1_like 3 dimer interface 0 1 1 0 126,167,168,169,180,201,204,210,211 2 -271337 cd04701 Asparaginase_2 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 5,62,138,139,156,158,159,166,168,169,170,190,192 1 -271337 cd04701 Asparaginase_2 2 catalytic nucleophile T 0 1 1 138 1 -271337 cd04701 Asparaginase_2 3 dimer interface 0 1 1 0 121,165,166,167,178,193,196,202,203 2 -271338 cd04702 ASRGL1_like 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 7,59,165,166,183,185,186,193,195,196,197,217,219 1 -271338 cd04702 ASRGL1_like 2 catalytic nucleophile T 0 1 1 165 1 -271338 cd04702 ASRGL1_like 3 dimer interface 0 1 1 0 118,192,193,194,205,220,223,229,230 2 -271339 cd04703 Asparaginase_2_like_1 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 6,53,127,128,144,146,147,154,156,157,158,177,179 1 -271339 cd04703 Asparaginase_2_like_1 2 catalytic nucleophile T 0 1 1 127 1 -271339 cd04703 Asparaginase_2_like_1 3 dimer interface 0 1 1 0 111,153,154,155,166,180,183,189,190 2 -271340 cd14949 Asparaginase_2_like_3 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 6,60,154,155,172,174,175,182,184,185,186,204,206 1 -271340 cd14949 Asparaginase_2_like_3 2 catalytic nucleophile T 0 1 1 154 1 -271340 cd14949 Asparaginase_2_like_3 3 dimer interface 0 1 1 0 118,181,182,183,193,207,210,216,217 2 -271341 cd14950 Asparaginase_2_like_2 1 active site xxTx[TS]GxR[GSP]xxGG 1 1 0 5,57,128,129,146,148,149,156,158,159,160,179,181 1 -271341 cd14950 Asparaginase_2_like_2 2 catalytic nucleophile T 0 1 1 128 1 -271341 cd14950 Asparaginase_2_like_2 3 dimer interface 0 1 1 0 116,155,156,157,168,182,185,191,192 2 -341214 cd04515 Alpha_kinase 1 ATP binding site 0 1 1 0 30,31,32,33,34,35,37,51,53,102,123,124,125,126,168,170,178 5 -341214 cd04515 Alpha_kinase 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 190,191,192,193,194,195 1 -341215 cd16965 Alpha_kinase_ChaK 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341215 cd16965 Alpha_kinase_ChaK 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341221 cd16971 Alpha_kinase_ChaK1_TRMP7 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341221 cd16971 Alpha_kinase_ChaK1_TRMP7 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341222 cd16972 Alpha_kinase_ChaK2_TRPM6 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,123,140,141,142,143,187,189,197 5 -341222 cd16972 Alpha_kinase_ChaK2_TRPM6 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 214,215,216,217,218,219 1 -341216 cd16966 Alpha_kinase_ALPK2_3 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -341216 cd16966 Alpha_kinase_ALPK2_3 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 216,217,218,219,220,221 1 -341223 cd16973 Alpha_kinase_ALPK3 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -341223 cd16973 Alpha_kinase_ALPK3 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 216,217,218,219,220,221 1 -341224 cd16974 Alpha_kinase_ALPK2 1 ATP binding site 0 1 1 0 39,40,41,42,43,44,46,66,68,125,143,144,145,146,193,195,203 5 -341224 cd16974 Alpha_kinase_ALPK2 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 216,217,218,219,220,221 1 -341217 cd16967 Alpha_kinase_eEF2K 1 ATP binding site 0 1 1 0 36,37,38,39,40,41,43,65,67,107,126,127,128,129,171,173,181 5 -341217 cd16967 Alpha_kinase_eEF2K 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 193,194,195,196,197,198 1 -341218 cd16968 Alpha_kinase_MHCK_like 1 ATP binding site 0 1 1 0 28,29,30,31,32,33,35,51,53,94,113,114,115,116,157,159,167 5 -341218 cd16968 Alpha_kinase_MHCK_like 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 179,180,181,182,183,184 1 -341219 cd16969 Alpha_kinase_ALPK1 1 ATP binding site 0 1 1 0 38,39,40,41,42,43,45,61,63,107,127,128,129,130,173,175,190 5 -341219 cd16969 Alpha_kinase_ALPK1 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 201,202,203,204,205,206 1 -341220 cd16970 Alpha_kinase_VwkA_like 1 ATP binding site 0 1 1 0 41,42,43,44,45,46,48,63,65,114,133,134,135,136,177,179,192 5 -341220 cd16970 Alpha_kinase_VwkA_like 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 204,205,206,207,208,209 1 -341225 cd17508 Alpha_kinase 1 ATP binding site 0 1 1 0 26,27,28,29,30,31,33,56,58,108,129,130,131,132,190,192,206 5 -341225 cd17508 Alpha_kinase 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 220,221,222,223,224,225 1 -341226 cd17509 Alpha_kinase 1 ATP binding site 0 1 1 0 36,37,38,39,40,41,43,59,61,104,127,128,129,130,172,174,186 5 -341226 cd17509 Alpha_kinase 2 glycine rich loop G-x-[AG]-x-x-G 0 1 1 198,199,200,201,202,203 1 -213328 cd04519 RasGAP 1 RAS interface 0 1 1 0 29,65,67,69,70,72,75,79,173,181,182,185,186,189,210,213,214,217,221,223,228,229 2 -213329 cd05127 RasGAP_IQGAP_like 1 RAS interface 0 1 1 0 34,65,67,69,70,73,76,80,172,180,181,184,185,188,213,216,217,220,224,226,231,232 2 -213333 cd05131 RasGAP_IQGAP2 1 RAS interface 0 1 1 0 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213335 cd05133 RasGAP_IQGAP1 1 RAS interface 0 1 1 0 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213346 cd12207 RasGAP_IQGAP3 1 RAS interface 0 1 1 0 44,75,77,79,80,83,86,90,182,190,191,194,195,198,223,226,227,230,234,236,241,242 2 -213330 cd05128 RasGAP_GAP1_like 1 RAS interface 0 1 1 0 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,238,239 2 -213336 cd05134 RasGAP_RASA3 1 RAS interface 0 1 1 0 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,237,238 2 -213337 cd05135 RasGAP_RASAL 1 RAS interface 0 1 1 0 39,75,77,79,80,82,85,89,200,208,209,212,213,216,237,240,241,244,248,250,257,258 2 -213342 cd05394 RasGAP_RASA2 1 RAS interface 0 1 1 0 34,70,72,74,75,77,80,84,179,187,188,191,192,195,216,219,220,223,227,229,240,241 2 -213343 cd05395 RasGAP_RASA4 1 RAS interface 0 1 1 0 39,75,77,79,80,82,85,89,200,208,209,212,213,216,237,240,241,244,248,250,257,258 2 -213331 cd05129 RasGAP_RAP6 1 RAS interface 0 1 1 0 45,84,86,88,89,95,98,102,220,228,229,232,233,236,258,261,262,265,269,271,275,276 2 -213332 cd05130 RasGAP_Neurofibromin 1 RAS interface 0 1 1 0 38,74,76,78,79,81,84,88,182,190,191,194,195,198,219,222,223,226,230,232,236,237 2 -213334 cd05132 RasGAP_GAPA 1 RAS interface 0 1 1 0 49,80,82,84,85,88,91,95,187,195,196,199,200,203,224,227,228,231,235,237,241,242 2 -213338 cd05136 RasGAP_DAB2IP 1 RAS interface 0 1 1 0 39,75,77,79,80,82,85,89,182,190,191,194,195,198,219,222,223,226,230,232,237,238 2 -213339 cd05137 RasGAP_CLA2_BUD2 1 RAS interface 0 1 1 0 41,92,94,96,97,99,102,106,208,216,217,220,221,224,245,248,249,252,256,258,263,264 2 -213340 cd05391 RasGAP_p120GAP 1 RAS interface 0 1 1 0 35,71,73,75,76,78,81,85,180,188,189,192,193,196,217,220,221,224,228,230,235,236 2 -213341 cd05392 RasGAP_Neurofibromin_like 1 RAS interface 0 1 1 0 31,67,69,71,72,74,77,81,172,180,181,184,185,188,209,212,213,216,220,222,227,228 2 -213344 cd12205 RasGAP_plexin 1 RAS interface 0 1 1 0 72,112,114,116,117,120,123,127,230,238,239,242,243,246,265,268,269,272,276,278,285,286 2 -213347 cd12787 RasGAP_plexin_B 1 RAS interface 0 1 1 0 74,113,115,117,118,121,124,128,235,243,244,247,248,251,270,273,274,277,281,283,290,291 2 -213351 cd12791 RasGAP_plexin_B3 1 RAS interface 0 1 1 0 74,113,115,117,118,121,124,128,237,245,246,249,250,253,272,275,276,279,283,285,292,293 2 -213352 cd12792 RasGAP_plexin_B2 1 RAS interface 0 1 1 0 76,116,118,120,121,124,127,131,240,248,249,252,253,256,275,278,279,282,286,288,295,296 2 -213353 cd12793 RasGAP_plexin_B1 1 RAS interface 0 1 1 0 72,111,113,115,116,119,122,126,234,242,243,246,247,250,269,272,273,276,280,282,289,290 2 -213348 cd12788 RasGAP_plexin_D1 1 RAS interface 0 1 1 0 97,136,138,140,141,144,147,151,255,263,264,267,268,271,290,293,294,297,301,303,310,311 2 -213349 cd12789 RasGAP_plexin_C1 1 RAS interface 0 1 1 0 75,114,116,118,119,122,125,129,233,241,242,245,246,249,268,271,272,275,279,281,288,289 2 -213350 cd12790 RasGAP_plexin_A 1 RAS interface 0 1 1 0 72,113,115,117,118,121,124,128,233,241,242,245,246,249,268,271,272,275,279,281,288,289 2 -213345 cd12206 RasGAP_IQGAP_related 1 RAS interface 0 1 1 0 55,85,87,89,90,93,96,100,180,188,189,192,193,196,212,215,216,219,223,225,231,232 2 -240073 cd04722 TIM_phosphate_binding 1 phosphate binding site 0 1 1 0 176,177,198,199 4 -238190 cd00311 TIM 1 phosphate binding site 0 1 1 0 205,206,227,228 4 -238203 cd00331 IGPS 1 phosphate binding site 0 1 1 0 178,179,200,201 4 -238223 cd00381 IMPDH 1 phosphate binding site 0 1 1 0 203,204,225,226 4 -238237 cd00405 PRAI 1 phosphate binding site 0 1 1 0 158,159,180,181 4 -238244 cd00429 RPE 1 phosphate binding site 0 1 1 0 172,173,193,194 4 -238317 cd00564 TMP_TenI 1 phosphate binding site 0 1 1 0 156,157,177,178 4 -239200 cd02801 DUS_like_FMN 1 phosphate binding site 0 1 1 0 189,190,212,213 4 -239201 cd02803 OYE_like_FMN_family 1 phosphate binding site 0 1 1 0 287,288,310,311 4 -239239 cd02929 TMADH_HD_FMN 1 phosphate binding site 0 1 1 0 295,296,318,319 4 -239240 cd02930 DCR_FMN 1 phosphate binding site 0 1 1 0 282,283,305,306 4 -239241 cd02931 ER_like_FMN 1 phosphate binding site 0 1 1 0 311,312,334,335 4 -239242 cd02932 OYE_YqiM_FMN 1 phosphate binding site 0 1 1 0 296,297,319,320 4 -239243 cd02933 OYE_like_FMN 1 phosphate binding site 0 1 1 0 291,292,313,314 4 -240084 cd04733 OYE_like_2_FMN 1 phosphate binding site 0 1 1 0 298,299,321,322 4 -240085 cd04734 OYE_like_3_FMN 1 phosphate binding site 0 1 1 0 291,292,314,315 4 -240086 cd04735 OYE_like_4_FMN 1 phosphate binding site 0 1 1 0 290,291,312,313 4 -240095 cd04747 OYE_like_5_FMN 1 phosphate binding site 0 1 1 0 286,287,327,328 4 -239202 cd02808 GltS_FMN 1 phosphate binding site 0 1 1 0 291,292,313,314 4 -239203 cd02809 alpha_hydroxyacid_oxid_FMN 1 phosphate binding site 0 1 1 0 233,234,255,256 4 -239238 cd02922 FCB2_FMN 1 phosphate binding site 0 1 1 0 277,278,299,300 4 -239448 cd03332 LMO_FMN 1 phosphate binding site 0 1 1 0 314,315,336,337 4 -240087 cd04736 MDH_FMN 1 phosphate binding site 0 1 1 0 295,296,317,318 4 -240088 cd04737 LOX_like_FMN 1 phosphate binding site 0 1 1 0 282,283,304,305 4 -239204 cd02810 DHOD_DHPD_FMN 1 phosphate binding site 0 1 1 0 249,250,271,272 4 -239244 cd02940 DHPD_FMN 1 phosphate binding site 0 1 1 0 258,259,280,281 4 -240089 cd04738 DHOD_2_like 1 phosphate binding site 0 1 1 0 286,287,308,309 4 -240090 cd04739 DHOD_like 1 phosphate binding site 0 1 1 0 243,244,265,266 4 -240091 cd04740 DHOD_1B_like 1 phosphate binding site 0 1 1 0 237,238,259,260 4 -240092 cd04741 DHOD_1A_like 1 phosphate binding site 0 1 1 0 249,250,271,272 4 -239205 cd02811 IDI-2_FMN 1 phosphate binding site 0 1 1 0 261,262,283,284 4 -239206 cd02812 PcrB_like 1 phosphate binding site 0 1 1 0 181,182,203,204 4 -239237 cd02911 arch_FMN 1 phosphate binding site 0 1 1 0 164,165,185,186 4 -240074 cd04723 HisA_HisF 1 phosphate binding site 0 1 1 0 195,196,217,218 4 -240082 cd04731 HisF 1 phosphate binding site 0 1 1 0 199,200,222,223 4 -240083 cd04732 HisA 1 phosphate binding site 0 1 1 0 196,197,218,219 4 -240075 cd04724 Tryptophan_synthase_alpha 1 phosphate binding site 0 1 1 0 193,194,214,215 4 -240076 cd04725 OMP_decarboxylase_like 1 phosphate binding site 0 1 1 0 169,170,199,200 4 -240077 cd04726 KGPDC_HPS 1 phosphate binding site 0 1 1 0 164,165,185,186 4 -240078 cd04727 pdxS 1 phosphate binding site 0 1 1 0 202,203,224,225 4 -240079 cd04728 ThiG 1 phosphate binding site 0 1 1 0 181,182,203,204 4 -240080 cd04729 NanE 1 phosphate binding site 0 1 1 0 183,184,205,206 4 -240081 cd04730 NPD_like 1 phosphate binding site 0 1 1 0 162,163,184,185 4 -240093 cd04742 NPD_FabD 1 phosphate binding site 0 1 1 0 225,226,247,248 4 -240094 cd04743 NPD_PKS 1 phosphate binding site 0 1 1 0 171,172,201,202 4 -212498 cd04759 Rib_hydrolase 1 NAD binding site 0 1 1 0 71,72,73,76,92,93,102,135,168,173 5 -133389 cd04761 HTH_MerR-SF 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133378 cd00592 HTH_MerR-like 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133380 cd01105 HTH_GlnR-like 1 DNA binding residues 0 1 1 1 2,3,4,18,35,36,37 3 -133384 cd01109 HTH_YyaN 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133385 cd01110 HTH_SoxR 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133386 cd01111 HTH_MerD 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133387 cd01279 HTH_HspR-like 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133394 cd04766 HTH_HspR 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133395 cd04767 HTH_HspR-like_MBC 1 DNA binding residues 0 1 1 1 2,3,4,18,33,34,35 3 -133388 cd01282 HTH_MerR-like_sg3 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133396 cd04768 HTH_BmrR-like 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133381 cd01106 HTH_TipAL-Mta 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133382 cd01107 HTH_BmrR 1 DNA binding residues 0 1 1 1 1,2,3,17,35,36,37 3 -133409 cd04782 HTH_BltR 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133397 cd04769 HTH_MerR2 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133398 cd04770 HTH_HMRTR 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133383 cd01108 HTH_CueR 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133410 cd04783 HTH_MerR1 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133411 cd04784 HTH_CadR-PbrR 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133412 cd04785 HTH_CadR-PbrR-like 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133414 cd04787 HTH_HMRTR_unk 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133399 cd04772 HTH_TioE_rpt1 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133400 cd04773 HTH_TioE_rpt2 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133401 cd04774 HTH_YfmP 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133402 cd04775 HTH_Cfa-like 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133416 cd04789 HTH_Cfa 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133417 cd04790 HTH_Cfa-like_unk 1 DNA binding residues 0 1 1 1 2,3,4,18,35,36,37 3 -133403 cd04776 HTH_GnyR 1 DNA binding residues 0 1 1 1 1,2,3,17,32,33,34 3 -133404 cd04777 HTH_MerR-like_sg1 1 DNA binding residues 0 1 1 1 1,2,3,17,32,33,34 3 -133405 cd04778 HTH_MerR-like_sg2 1 DNA binding residues 0 1 1 1 2,3,4,18,34,35,36 3 -133406 cd04779 HTH_MerR-like_sg4 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133407 cd04780 HTH_MerR-like_sg5 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133408 cd04781 HTH_MerR-like_sg6 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133413 cd04786 HTH_MerR-like_sg7 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133415 cd04788 HTH_NolA-AlbR 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133390 cd04762 HTH_MerR-trunc 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133391 cd04763 HTH_MlrA-like 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133379 cd01104 HTH_MlrA-CarA 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -133392 cd04764 HTH_MlrA-like_sg1 1 DNA binding residues 0 1 1 1 1,2,3,17,33,34,35 3 -133393 cd04765 HTH_MlrA-like_sg2 1 DNA binding residues 0 1 1 1 1,2,3,17,34,35,36 3 -99894 cd05162 PWWP 1 putative chromatin binding site 0 0 1 1 10,13,16,43,46,48 0 -99895 cd05834 HDGF_related 1 putative chromatin binding site 0 0 1 1 12,15,18,39,42,44 0 -99896 cd05835 Dnmt3b_related 1 putative chromatin binding site 0 0 1 1 10,13,16,40,43,45 0 -99897 cd05836 N_Pac_NP60 1 putative chromatin binding site 0 0 1 1 10,13,16,41,44,46 0 -99898 cd05837 MSH6_like 1 putative chromatin binding site 0 0 1 1 12,15,18,48,52,54 0 -99899 cd05838 WHSC1_related 1 putative chromatin binding site 0 0 1 1 10,13,16,44,47,49 0 -99900 cd05839 BR140_related 1 putative chromatin binding site 0 0 1 1 10,13,16,59,63,65 0 -99901 cd05840 SPBC215_ISWI_like 1 putative chromatin binding site 0 0 1 1 10,13,16,46,49,51 0 -99902 cd05841 BS69_related 1 putative chromatin binding site 0 0 1 1 16,19,22,38,42,44 0 -99903 cd06080 MUM1_like 1 putative chromatin binding site 0 0 1 1 10,13,16,34,42,44 0 -176178 cd05188 MDR 1 NAD(P) binding site 0 1 1 0 11,12,13,16,116,120,141,142,143,144,145,146,164,165,169,184,207,208,230,231,255,256,257 5 -176179 cd05195 enoyl_red 1 NAD(P) binding site 0 1 1 0 12,13,14,17,90,94,115,116,117,118,120,121,139,140,144,161,185,186,207,208,232,233,234 5 -176180 cd05276 p53_inducible_oxidoreductase 1 NAD(P) binding site 0 1 1 0 39,40,41,44,121,125,146,147,148,149,151,152,170,171,175,190,214,215,236,237,261,262,263 5 -176181 cd05278 FDH_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,150,154,174,175,176,177,178,179,198,199,203,218,242,243,265,266,290,291,292 5 -176242 cd08282 PFDH_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,159,163,183,184,185,186,187,188,207,208,212,226,249,250,283,284,320,321,322 5 -176243 cd08283 FDH_like_1 1 NAD(P) binding site 0 1 1 0 37,38,39,42,167,171,191,192,193,194,195,196,215,216,220,235,260,261,304,305,329,330,331 5 -176244 cd08284 FDH_like_2 1 NAD(P) binding site 0 1 1 0 37,38,39,42,150,154,174,175,176,177,178,179,198,199,203,217,241,242,264,265,289,290,291 5 -176245 cd08285 NADP_ADH 1 NAD(P) binding site 0 1 1 0 36,37,38,41,149,153,173,174,175,176,177,178,197,198,202,217,241,242,264,265,292,293,294 5 -176246 cd08286 FDH_like_ADH2 1 NAD(P) binding site 0 1 1 0 37,38,39,42,148,152,173,174,175,176,177,178,197,198,202,217,241,242,264,265,288,289,290 5 -176247 cd08287 FDH_like_ADH3 1 NAD(P) binding site 0 1 1 0 37,38,39,42,151,155,175,176,177,178,179,180,199,200,204,219,243,244,266,267,290,291,292 5 -176182 cd05279 Zn_ADH1 1 NAD(P) binding site 0 1 1 0 37,38,39,42,165,169,190,191,192,193,194,195,214,215,219,234,259,260,283,284,308,309,310 5 -176238 cd08277 liver_alcohol_DH_like 1 NAD(P) binding site 0 1 1 0 39,40,41,44,166,170,191,192,193,194,195,196,215,216,220,235,260,261,284,285,308,309,310 5 -176259 cd08299 alcohol_DH_class_I_II_IV 1 NAD(P) binding site 0 1 1 0 44,45,46,49,172,176,197,198,199,200,201,202,221,222,226,241,266,267,290,291,315,316,317 5 -176260 cd08300 alcohol_DH_class_III 1 NAD(P) binding site 0 1 1 0 39,40,41,44,168,172,193,194,195,196,197,198,217,218,222,237,262,263,286,287,311,312,313 5 -176261 cd08301 alcohol_DH_plants 1 NAD(P) binding site 0 1 1 0 39,40,41,44,169,173,194,195,196,197,198,199,218,219,223,238,263,264,287,288,312,313,314 5 -176239 cd08278 benzyl_alcohol_DH 1 NAD(P) binding site 0 1 1 0 39,40,41,44,168,172,193,194,195,196,197,198,217,218,222,237,260,261,283,284,309,310,311 5 -176240 cd08279 Zn_ADH_class_III 1 NAD(P) binding site 0 1 1 0 37,38,39,42,164,168,189,190,191,192,193,194,213,214,218,233,257,258,280,281,306,307,308 5 -176241 cd08281 liver_ADH_like1 1 NAD(P) binding site 0 1 1 0 45,46,47,50,173,177,198,199,200,201,202,203,222,223,227,242,265,266,288,289,314,315,316 5 -176183 cd05280 MDR_yhdh_yhfp 1 NAD(P) binding site 0 1 1 0 39,40,41,44,125,129,153,154,155,156,158,159,177,178,182,197,219,220,241,242,266,267,268 5 -176248 cd08288 MDR_yhdh 1 NAD(P) binding site 0 1 1 0 39,40,41,44,125,129,153,154,155,156,158,159,177,178,182,197,218,219,240,241,265,266,267 5 -176249 cd08289 MDR_yhfp_like 1 NAD(P) binding site 0 1 1 0 39,40,41,44,125,129,153,154,155,156,158,159,177,178,182,197,219,220,241,242,266,267,268 5 -176184 cd05281 TDH 1 NAD(P) binding site 0 1 1 0 37,38,39,42,147,151,170,171,172,173,174,175,194,195,199,214,237,238,260,261,285,286,287 5 -176645 cd05282 ETR_like 1 NAD(P) binding site 0 1 1 0 38,39,40,43,120,124,145,146,147,148,150,151,169,170,174,189,213,214,235,236,260,261,262 5 -176250 cd08290 ETR 1 NAD(P) binding site 0 1 1 0 41,42,43,46,128,132,153,154,155,156,158,159,177,178,186,201,227,228,249,250,274,275,276 5 -176251 cd08291 ETR_like_1 1 NAD(P) binding site 0 1 1 0 42,43,44,47,126,130,150,151,152,153,155,156,174,175,179,194,218,219,244,245,267,268,269 5 -176252 cd08292 ETR_like_2 1 NAD(P) binding site 0 1 1 0 40,41,42,45,122,126,146,147,148,149,151,152,170,171,175,190,214,215,236,237,261,262,263 5 -176187 cd05284 arabinose_DH_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,148,152,174,175,176,177,178,179,198,199,203,217,241,242,264,265,287,288,289 5 -176188 cd05285 sorbitol_DH 1 NAD(P) binding site 0 1 1 0 34,35,36,39,145,149,169,170,171,172,173,174,193,194,198,213,240,241,263,264,287,288,289 5 -176189 cd05286 QOR2 1 NAD(P) binding site 0 1 1 0 38,39,40,43,118,122,143,144,145,146,148,149,167,168,172,187,211,212,233,234,258,259,260 5 -176190 cd05288 PGDH 1 NAD(P) binding site 0 1 1 0 44,45,46,49,127,131,152,153,154,155,157,158,176,177,181,197,220,221,242,243,272,273,274 5 -176253 cd08293 PTGR2 1 NAD(P) binding site 0 1 1 0 48,49,50,53,134,138,161,162,163,164,166,167,186,187,191,207,230,231,252,253,286,287,288 5 -176254 cd08294 leukotriene_B4_DH_like 1 NAD(P) binding site 0 1 1 0 45,46,47,50,125,129,150,151,152,153,155,156,174,175,179,194,217,218,239,240,270,271,272 5 -176255 cd08295 double_bond_reductase_like 1 NAD(P) binding site 0 1 1 0 49,50,51,54,133,137,158,159,160,161,163,164,182,183,187,203,227,228,249,250,279,280,281 5 -176191 cd05289 MDR_like_2 1 NAD(P) binding site 0 1 1 0 39,40,41,44,126,130,152,153,154,155,156,157,176,177,179,193,214,215,236,237,256,257,258 5 -176192 cd08230 glucose_DH 1 NAD(P) binding site 0 1 1 0 37,38,39,42,148,152,179,180,181,182,183,184,202,203,206,224,244,245,267,268,297,298,299 5 -176193 cd08231 MDR_TM0436_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,159,163,184,185,186,187,188,189,208,209,213,228,255,256,278,279,304,305,306 5 -176194 cd08232 idonate-5-DH 1 NAD(P) binding site 0 1 1 0 33,34,35,38,148,152,172,173,174,175,176,177,196,197,201,216,237,238,260,261,284,285,286 5 -176195 cd08233 butanediol_DH_like 1 NAD(P) binding site 0 1 1 0 36,37,38,41,155,159,179,180,181,182,183,184,203,204,208,223,247,248,273,274,294,295,296 5 -176196 cd08234 threonine_DH_like 1 NAD(P) binding site 0 1 1 0 36,37,38,41,142,146,166,167,168,169,170,171,190,191,195,210,232,233,255,256,281,282,283 5 -176197 cd08235 iditol_2_DH_like 1 NAD(P) binding site 0 1 1 0 36,37,38,41,148,152,172,173,174,175,176,177,196,197,201,216,240,241,263,264,289,290,291 5 -176198 cd08236 sugar_DH 1 NAD(P) binding site 0 1 1 0 36,37,38,41,142,146,166,167,168,169,170,171,190,191,195,210,233,234,256,257,283,284,285 5 -176199 cd08237 ribitol-5-phosphate_DH 1 NAD(P) binding site 0 1 1 0 37,38,39,42,143,147,170,171,172,173,174,175,195,196,200,213,228,229,254,255,278,279,280 5 -176200 cd08238 sorbose_phosphate_red 1 NAD(P) binding site 0 1 1 0 38,39,40,43,146,150,183,184,185,186,187,188,209,210,214,238,263,264,286,287,313,314,315 5 -176201 cd08239 THR_DH_like 1 NAD(P) binding site 0 1 1 0 36,37,38,41,146,150,170,171,172,173,174,175,194,195,199,214,237,238,260,261,284,285,286 5 -176202 cd08240 6_hydroxyhexanoate_dh_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,157,161,182,183,184,185,186,187,206,207,211,226,249,250,272,273,296,297,298 5 -176203 cd08241 QOR1 1 NAD(P) binding site 0 1 1 0 39,40,41,44,121,125,146,147,148,149,151,152,170,171,175,190,214,215,236,237,261,262,263 5 -176204 cd08242 MDR_like 1 NAD(P) binding site 0 1 1 0 36,37,38,41,138,142,162,163,164,165,166,167,185,186,190,202,220,221,243,244,267,268,269 5 -176205 cd08243 quinone_oxidoreductase_like_1 1 NAD(P) binding site 0 1 1 0 39,40,41,44,124,128,149,150,151,152,154,155,173,174,178,193,214,215,236,237,265,266,267 5 -176206 cd08244 MDR_enoyl_red 1 NAD(P) binding site 0 1 1 0 39,40,41,44,125,129,149,150,151,152,154,155,173,174,178,194,217,218,239,240,264,265,266 5 -176207 cd08245 CAD 1 NAD(P) binding site 0 1 1 0 36,37,38,41,145,149,169,170,171,172,173,174,192,193,197,212,231,232,254,255,279,280,281 5 -176186 cd05283 CAD1 1 NAD(P) binding site 0 1 1 0 36,37,38,41,152,156,176,177,178,179,180,181,199,200,204,219,238,239,261,262,285,286,287 5 -176256 cd08296 CAD_like 1 NAD(P) binding site 0 1 1 0 37,38,39,42,146,150,170,171,172,173,174,175,193,194,198,213,234,235,257,258,281,282,283 5 -176257 cd08297 CAD3 1 NAD(P) binding site 0 1 1 0 38,39,40,43,148,152,172,173,174,175,177,178,196,197,201,216,240,241,263,264,288,289,290 5 -176258 cd08298 CAD2 1 NAD(P) binding site 0 1 1 0 41,42,43,46,150,154,174,175,176,177,178,179,197,198,202,227,231,232,254,255,278,279,280 5 -176208 cd08246 crotonyl_coA_red 1 NAD(P) binding site 0 1 1 0 54,55,56,59,173,177,200,201,202,203,205,206,224,225,229,244,291,292,313,314,338,339,340 5 -176209 cd08247 AST1_like 1 NAD(P) binding site 0 1 1 0 40,41,42,45,132,136,158,159,160,161,163,164,183,184,193,205,231,232,257,258,297,298,299 5 -176210 cd08248 RTN4I1 1 NAD(P) binding site 0 1 1 0 41,42,43,46,140,144,169,170,171,172,174,175,193,194,197,212,233,234,255,256,296,297,298 5 -176211 cd08249 enoyl_reductase_like 1 NAD(P) binding site 0 1 1 0 38,39,40,43,126,130,161,162,163,164,166,167,185,186,189,204,227,228,252,253,270,271,272 5 -176212 cd08250 Mgc45594_like 1 NAD(P) binding site 0 1 1 0 42,43,44,47,121,125,146,147,148,149,151,152,170,171,175,190,213,214,235,236,269,270,271 5 -176213 cd08251 polyketide_synthase 1 NAD(P) binding site 0 1 1 0 19,20,21,24,103,107,127,128,129,130,132,133,151,152,156,171,195,196,217,218,242,243,244 5 -176214 cd08252 AL_MDR 1 NAD(P) binding site 0 1 1 0 42,43,44,47,126,130,156,157,158,159,161,162,181,182,186,201,223,224,246,247,268,269,270 5 -176215 cd08253 zeta_crystallin 1 NAD(P) binding site 0 1 1 0 39,40,41,44,126,130,151,152,153,154,156,157,175,176,180,195,219,220,241,242,265,266,267 5 -176216 cd08254 hydroxyacyl_CoA_DH 1 NAD(P) binding site 0 1 1 0 38,39,40,43,147,151,172,173,174,175,176,177,194,195,200,215,238,239,261,262,285,286,287 5 -176217 cd08255 2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_like 1 NAD(P) binding site 0 1 1 0 11,13,14,17,80,84,104,105,106,107,108,109,128,129,133,148,165,166,188,189,213,214,215 5 -176218 cd08256 Zn_ADH2 1 NAD(P) binding site 0 1 1 0 36,37,38,41,157,161,181,182,183,184,185,186,205,206,210,233,249,250,272,273,297,298,299 5 -176219 cd08258 Zn_ADH4 1 NAD(P) binding site 0 1 1 0 38,39,40,43,146,150,171,172,173,174,175,176,194,195,201,223,239,240,262,263,287,288,289 5 -176220 cd08259 Zn_ADH5 1 NAD(P) binding site 0 1 1 0 37,38,39,42,145,149,169,170,171,172,174,175,193,194,197,213,232,233,254,255,279,280,281 5 -176221 cd08260 Zn_ADH6 1 NAD(P) binding site 0 1 1 0 37,38,39,42,147,151,172,173,174,175,176,177,195,196,200,215,239,240,262,263,289,290,291 5 -176222 cd08261 Zn_ADH7 1 NAD(P) binding site 0 1 1 0 36,37,38,41,142,146,166,167,168,169,170,171,189,190,194,209,233,234,256,257,280,281,282 5 -176223 cd08262 Zn_ADH8 1 NAD(P) binding site 0 1 1 0 35,36,37,40,144,148,168,169,170,171,172,173,192,193,197,211,239,240,262,263,286,287,288 5 -176224 cd08263 Zn_ADH10 1 NAD(P) binding site 0 1 1 0 37,38,39,42,169,173,194,195,196,197,198,199,218,219,223,238,262,263,285,286,311,312,313 5 -176225 cd08264 Zn_ADH_like2 1 NAD(P) binding site 0 1 1 0 38,39,40,43,145,149,169,170,171,172,174,175,193,194,196,209,229,230,251,252,276,277,278 5 -176226 cd08265 Zn_ADH3 1 NAD(P) binding site 0 1 1 0 63,64,65,68,184,188,210,211,212,213,214,215,234,235,239,254,281,282,305,306,329,330,331 5 -176227 cd08266 Zn_ADH_like1 1 NAD(P) binding site 0 1 1 0 39,40,41,44,148,152,173,174,175,176,178,179,197,198,202,217,241,242,263,264,288,289,290 5 -176228 cd08267 MDR1 1 NAD(P) binding site 0 1 1 0 38,39,40,43,125,129,150,151,152,153,155,156,174,175,178,193,214,215,238,239,266,267,268 5 -176229 cd08268 MDR2 1 NAD(P) binding site 0 1 1 0 39,40,41,44,120,130,151,152,153,154,156,157,175,176,180,195,219,220,241,242,266,267,268 5 -176230 cd08269 Zn_ADH9 1 NAD(P) binding site 0 1 1 0 31,32,33,36,112,116,136,137,138,139,145,146,160,161,165,188,204,205,227,228,247,248,249 5 -176231 cd08270 MDR4 1 NAD(P) binding site 0 1 1 0 38,39,40,43,115,119,139,140,141,142,144,145,163,164,168,183,198,199,220,221,244,245,246 5 -176232 cd08271 MDR5 1 NAD(P) binding site 0 1 1 0 39,40,41,44,123,127,148,149,150,151,153,154,172,173,176,191,215,216,237,238,258,259,260 5 -176233 cd08272 MDR6 1 NAD(P) binding site 0 1 1 0 39,40,41,44,126,130,151,152,153,154,156,157,175,176,179,193,217,218,239,240,260,261,262 5 -176234 cd08273 MDR8 1 NAD(P) binding site 0 1 1 0 39,40,41,44,121,125,146,147,148,149,151,152,170,171,174,188,209,210,231,232,270,271,272 5 -176235 cd08274 MDR9 1 NAD(P) binding site 0 1 1 0 40,41,42,45,160,164,184,185,186,187,189,190,209,210,212,227,249,250,271,272,296,297,298 5 -176236 cd08275 MDR3 1 NAD(P) binding site 0 1 1 0 38,39,40,43,120,124,145,146,147,148,150,151,170,171,174,189,212,213,234,235,275,276,277 5 -176237 cd08276 MDR7 1 NAD(P) binding site 0 1 1 0 39,40,41,44,142,146,167,168,169,170,171,172,190,191,195,210,235,236,257,258,282,283,284 5 -133449 cd05191 NAD_bind_amino_acid_DH 1 NAD(P) binding pocket 0 1 1 0 31,32,33,53,54,60,61,84 5 -133442 cd00762 NAD_bind_malic_enz 1 NAD(P) binding pocket 0 1 1 0 33,34,35,65,66,112,113,139 5 -133453 cd05311 NAD_bind_2_malic_enz 1 NAD(P) binding pocket 0 1 1 0 33,34,35,57,58,103,104,126 5 -133454 cd05312 NAD_bind_1_malic_enz 1 NAD(P) binding pocket 0 1 1 0 33,34,35,65,66,111,112,138 5 -133443 cd01065 NAD_bind_Shikimate_DH 1 NAD(P) binding pocket 0 1 1 0 27,28,29,49,50,87,88,114 5 -133446 cd01078 NAD_bind_H4MPT_DH 1 NAD(P) binding pocket 0 1 1 0 37,38,39,58,59,103,104,127 5 -133450 cd05211 NAD_bind_Glu_Leu_Phe_Val 1 NAD(P) binding pocket 0 1 1 0 31,32,33,53,54,103,104,125 5 -133444 cd01075 NAD_bind_Leu_Phe_Val_DH 1 NAD(P) binding pocket 0 1 1 0 36,37,38,57,58,91,92,113 5 -133445 cd01076 NAD_bind_1_Glu_DH 1 NAD(P) binding pocket 0 1 1 0 39,40,41,61,62,112,113,134 5 -133455 cd05313 NAD_bind_2_Glu_DH 1 NAD(P) binding pocket 0 1 1 0 46,47,48,68,69,127,128,152 5 -133451 cd05212 NAD_bind_m-THF_DH_Cyclohyd_like 1 NAD(P) binding pocket 0 1 1 0 37,38,39,58,59,77,78,98 5 -133447 cd01079 NAD_bind_m-THF_DH 1 NAD(P) binding pocket 0 1 1 0 71,72,73,92,93,132,133,154 5 -133448 cd01080 NAD_bind_m-THF_DH_Cyclohyd 1 NAD(P) binding pocket 0 1 1 0 53,54,55,74,75,93,94,114 5 -133452 cd05213 NAD_bind_Glutamyl_tRNA_reduct 1 NAD(P) binding pocket 0 1 1 0 186,187,188,208,209,244,245,271 5 -188647 cd05396 An_peroxidase_like 1 heme binding site 0 1 1 0 76,77,164,167,168,169,171,174,199,248,251,255 5 -188647 cd05396 An_peroxidase_like 2 substrate binding site 0 1 1 0 127,130,131,135,163,167,169,319,323,327,328,331,332,335 5 -188648 cd09816 prostaglandin_endoperoxide_synthase 1 heme binding site 0 1 1 0 207,208,295,298,299,300,301,304,321,359,362,366 5 -188648 cd09816 prostaglandin_endoperoxide_synthase 2 substrate binding site 0 1 1 0 258,261,262,266,294,298,300,430,434,438,439,442,443,446 5 -188649 cd09817 linoleate_diol_synthase_like 1 heme binding site 0 1 1 0 180,181,273,276,277,278,279,282,331,374,377,381 5 -188649 cd09817 linoleate_diol_synthase_like 2 substrate binding site 0 1 1 0 228,231,232,236,272,276,278,451,455,459,460,463,464,467 5 -188650 cd09818 PIOX_like 1 heme binding site 0 1 1 0 143,144,258,261,262,263,264,267,291,341,344,348 5 -188650 cd09818 PIOX_like 2 substrate binding site 0 1 1 0 194,197,198,202,257,261,263,413,417,421,422,425,426,429 5 -188651 cd09819 An_peroxidase_bacterial_1 1 heme binding site 0 1 1 0 152,153,241,244,245,246,248,251,270,337,340,344 5 -188651 cd09819 An_peroxidase_bacterial_1 2 substrate binding site 0 1 1 0 201,204,205,209,240,244,246,408,412,416,417,420,421,424 5 -188652 cd09820 dual_peroxidase_like 1 heme binding site 0 1 1 0 209,210,292,295,296,297,299,302,334,384,387,391 5 -188652 cd09820 dual_peroxidase_like 2 substrate binding site 0 1 1 0 260,263,264,268,291,295,297,459,463,467,468,471,472,475 5 -188653 cd09821 An_peroxidase_bacterial_2 1 heme binding site 0 1 1 0 186,187,287,290,291,292,294,297,322,373,376,380 5 -188653 cd09821 An_peroxidase_bacterial_2 2 substrate binding site 0 1 1 0 253,256,257,261,286,290,292,503,507,511,512,515,516,519 5 -188654 cd09822 peroxinectin_like_bacterial 1 heme binding site 0 1 1 0 121,122,205,208,209,210,212,215,238,287,290,294 5 -188654 cd09822 peroxinectin_like_bacterial 2 substrate binding site 0 1 1 0 172,175,176,180,204,208,210,358,362,366,367,370,371,374 5 -188655 cd09823 peroxinectin_like 1 heme binding site 0 1 1 0 74,75,168,171,172,173,175,178,201,252,255,259 5 -188655 cd09823 peroxinectin_like 2 substrate binding site 0 1 1 0 125,128,129,133,167,171,173,325,329,333,334,337,338,341 5 -188656 cd09824 myeloperoxidase_like 1 heme binding site 0 1 1 0 92,93,178,181,182,183,185,188,214,266,269,273 5 -188656 cd09824 myeloperoxidase_like 2 substrate binding site 0 1 1 0 143,146,147,151,177,181,183,340,344,348,349,352,353,356 5 -188657 cd09825 thyroid_peroxidase 1 heme binding site 0 1 1 0 229,230,317,320,321,322,324,327,353,405,408,412 5 -188657 cd09825 thyroid_peroxidase 2 substrate binding site 0 1 1 0 280,283,284,288,316,320,322,479,483,487,488,491,492,495 5 -188658 cd09826 peroxidasin_like 1 heme binding site 0 1 1 0 116,117,203,206,207,208,210,213,238,290,293,297 5 -188658 cd09826 peroxidasin_like 2 substrate binding site 0 1 1 0 167,170,171,175,202,206,208,364,368,372,373,376,377,380 5 -143387 cd05397 NT_Pol-beta-like 1 metal binding triad 0 1 1 1 35,37,44 4 -143386 cd00141 NT_POLXc 1 metal binding triad 0 1 1 1 177,179,233 4 -143388 cd05398 NT_ClassII-CCAase 1 metal binding triad 0 1 1 1 36,38,80 4 -143389 cd05399 NT_Rel-Spo_like 1 metal binding triad 0 1 1 1 51,54,114 4 -143390 cd05400 NT_2-5OAS_ClassI-CCAase 1 metal binding triad 0 1 1 1 46,48,104 4 -143391 cd05401 NT_GlnE_GlnD_like 1 metal binding triad 0 1 1 1 73,75,113 4 -143392 cd05402 NT_PAP_TUTase 1 metal binding triad 0 1 1 1 37,39,94 4 -143393 cd05403 NT_KNTase_like 1 metal binding triad 0 1 1 1 36,38,68 4 -143394 cd07749 NT_Pol-beta-like_1 1 metal binding triad 0 1 1 1 38,40,86 4 -176102 cd05466 PBP2_LTTR_substrate 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176103 cd08411 PBP2_OxyR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,127,128,129,130,131,132,138,139,141,142 2 -176104 cd08412 PBP2_PAO1_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176105 cd08413 PBP2_CysB_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176134 cd08443 PBP2_CysB 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176135 cd08444 PBP2_Cbl 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176106 cd08414 PBP2_LTTR_aromatics_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176107 cd08415 PBP2_LysR_opines_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176145 cd08456 PBP2_LysR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176146 cd08457 PBP2_OccR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176147 cd08458 PBP2_NocR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176136 cd08445 PBP2_BenM_CatM_CatR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,130,131,132,133,134,135,141,142,144,145 2 -176137 cd08446 PBP2_Chlorocatechol 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,129,130,131,132,133,134,140,141,143,144 2 -176174 cd08485 PBP2_ClcR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,129,130,131,132,133,134,140,141,143,144 2 -176175 cd08486 PBP2_CbnR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,129,130,131,132,133,134,140,141,143,144 2 -176138 cd08447 PBP2_LTTR_aromatics_like_1 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176139 cd08448 PBP2_LTTR_aromatics_like_2 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176140 cd08449 PBP2_XapR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,129,130,131,132,133,134,140,141,143,144 2 -176141 cd08450 PBP2_HcaR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176142 cd08451 PBP2_BudR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,130,131,132,133,134,135,141,142,144,145 2 -176143 cd08452 PBP2_AlsR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176144 cd08453 PBP2_IlvR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,131,132,133,134,135,136,142,143,145,146 2 -176108 cd08416 PBP2_MdcR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176109 cd08417 PBP2_Nitroaromatics_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176148 cd08459 PBP2_DntR_NahR_LinR_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176149 cd08460 PBP2_DntR_like_1 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,124,125,126,127,128,129,135,136,138,139 2 -176150 cd08461 PBP2_DntR_like_3 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176151 cd08462 PBP2_NodD 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176152 cd08463 PBP2_DntR_like_4 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176153 cd08464 PBP2_DntR_like_2 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176154 cd08465 PBP2_ToxR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176155 cd08466 PBP2_LeuO 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176156 cd08467 PBP2_SyrM 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176157 cd08468 PBP2_Pa0477 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176158 cd08469 PBP2_PnbR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,146,147,148,149,150,151,157,158,160,161 2 -176110 cd08418 PBP2_TdcA 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176111 cd08419 PBP2_CbbR_RubisCO_like 1 dimerization interface 0 1 1 1 14,15,17,18,21,25,27,28,29,30,31,32,33,125,126,127,128,129,130,136,137,139,140 2 -176112 cd08420 PBP2_CysL_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,129,130,131,132,133,134,140,141,143,144 2 -176113 cd08421 PBP2_LTTR_like_1 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176114 cd08422 PBP2_CrgA_like 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,125,126,127,128,129,130,136,137,139,140 2 -176159 cd08470 PBP2_CrgA_like_1 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,121,122,123,124,125,126,132,133,135,136 2 -176160 cd08471 PBP2_CrgA_like_2 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,125,126,127,128,129,130,136,137,139,140 2 -176161 cd08472 PBP2_CrgA_like_3 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,127,128,129,130,131,132,138,139,141,142 2 -176162 cd08473 PBP2_CrgA_like_4 1 dimerization interface 0 1 1 1 18,19,21,22,25,29,31,32,33,34,35,36,37,130,131,132,133,134,135,141,142,144,145 2 -176163 cd08474 PBP2_CrgA_like_5 1 dimerization interface 0 1 1 1 18,19,21,22,25,29,31,32,33,34,35,36,37,130,131,132,133,134,135,141,142,144,145 2 -176164 cd08475 PBP2_CrgA_like_6 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,127,128,129,130,131,132,138,139,141,142 2 -176165 cd08476 PBP2_CrgA_like_7 1 dimerization interface 0 1 1 1 14,15,17,18,21,25,27,28,29,30,31,32,33,125,126,127,128,129,130,136,137,139,140 2 -176166 cd08477 PBP2_CrgA_like_8 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,125,126,127,128,129,130,136,137,139,140 2 -176167 cd08478 PBP2_CrgA 1 dimerization interface 0 1 1 1 18,19,21,22,25,29,31,32,33,34,35,36,37,126,127,128,129,130,131,137,138,140,141 2 -176168 cd08479 PBP2_CrgA_like_9 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,126,127,128,129,130,131,137,138,140,141 2 -176169 cd08480 PBP2_CrgA_like_10 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,125,126,127,128,129,130,136,137,139,140 2 -176115 cd08423 PBP2_LTTR_like_6 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,131,132,133,134,135,136,142,143,145,146 2 -176116 cd08425 PBP2_CynR 1 dimerization interface 0 1 1 1 16,17,19,20,23,27,29,30,31,32,33,34,35,128,129,130,131,132,133,139,140,142,143 2 -176117 cd08426 PBP2_LTTR_like_5 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176118 cd08427 PBP2_LTTR_like_2 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,124,125,126,127,128,129,135,136,138,139 2 -176119 cd08428 PBP2_IciA_ArgP 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,29,30,31,32,33,34,35,126,127,128,129,130,131,137,138,140,141 2 -176120 cd08429 PBP2_NhaR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176121 cd08430 PBP2_IlvY 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176122 cd08431 PBP2_HupR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,124,125,126,127,128,129,135,136,138,139 2 -176123 cd08432 PBP2_GcdR_TrpI_HvrB_AmpR_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,122,123,124,125,126,127,133,134,136,137 2 -176170 cd08481 PBP2_GcdR_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,122,123,124,125,126,127,133,134,136,137 2 -176171 cd08482 PBP2_TrpI 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,125,126,127,128,129,130,136,137,139,140 2 -176172 cd08483 PBP2_HvrB 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,120,121,122,123,124,125,131,132,134,135 2 -176173 cd08484 PBP2_LTTR_beta_lactamase 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,118,119,120,121,122,123,129,130,132,133 2 -176176 cd08487 PBP2_BlaA 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,118,119,120,121,122,123,129,130,132,133 2 -176177 cd08488 PBP2_AmpR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,120,121,122,123,124,125,131,132,134,135 2 -176124 cd08433 PBP2_Nac 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176125 cd08434 PBP2_GltC_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176126 cd08435 PBP2_GbpR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,129,130,131,132,133,134,140,141,143,144 2 -176127 cd08436 PBP2_LTTR_like_3 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,127,128,129,130,131,132,138,139,141,142 2 -176128 cd08437 PBP2_MleR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,128,129,130,131,132,133,139,140,142,143 2 -176129 cd08438 PBP2_CidR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176130 cd08439 PBP2_LrhA_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,116,117,118,119,120,121,127,128,130,131 2 -176131 cd08440 PBP2_LTTR_like_4 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176132 cd08441 PBP2_MetR 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,126,127,128,129,130,131,137,138,140,141 2 -176133 cd08442 PBP2_YofA_SoxR_like 1 dimerization interface 0 1 1 1 15,16,18,19,22,26,28,29,30,31,32,33,34,122,123,124,125,126,127,133,134,136,137 2 -119437 cd05467 CBM20 1 starch-binding site 1 0 1 1 1 27,61,73,74,78 5 -119437 cd05467 CBM20 2 starch-binding site 2 0 1 1 1 9,10,11,12,13,14,37,42,44 5 -99881 cd05806 CBM20_laforin 1 starch-binding site 1 0 1 1 1 29,70,81,82,86 5 -99881 cd05806 CBM20_laforin 2 starch-binding site 2 0 1 1 1 11,12,13,14,15,16,39,50,52 5 -99882 cd05807 CBM20_CGTase 1 starch-binding site 1 0 1 1 1 31,66,78,79,83 5 -99882 cd05807 CBM20_CGTase 2 starch-binding site 2 0 1 1 1 13,14,15,16,17,18,42,49,51 5 -99883 cd05808 CBM20_alpha_amylase 1 starch-binding site 1 0 1 1 1 28,59,71,72,76 5 -99883 cd05808 CBM20_alpha_amylase 2 starch-binding site 2 0 1 1 1 10,11,12,13,14,15,38,42,44 5 -99884 cd05809 CBM20_beta_amylase 1 starch-binding site 1 0 1 1 1 31,64,77,78,81 5 -99884 cd05809 CBM20_beta_amylase 2 starch-binding site 2 0 1 1 1 13,14,15,16,17,18,42,47,49 5 -99885 cd05810 CBM20_alpha_MTH 1 starch-binding site 1 0 1 1 1 29,60,75,76,80 5 -99885 cd05810 CBM20_alpha_MTH 2 starch-binding site 2 0 1 1 1 11,12,13,14,15,16,39,43,45 5 -99886 cd05811 CBM20_glucoamylase 1 starch-binding site 1 0 1 1 1 34,69,81,82,86 5 -99886 cd05811 CBM20_glucoamylase 2 starch-binding site 2 0 1 1 1 16,17,18,19,20,21,44,52,54 5 -99887 cd05813 CBM20_genethonin_1 1 starch-binding site 1 0 1 1 1 29,58,70,71,75 5 -99887 cd05813 CBM20_genethonin_1 2 starch-binding site 2 0 1 1 1 11,12,13,14,15,16,39,41,43 5 -99888 cd05814 CBM20_Prei4 1 starch-binding site 1 0 1 1 1 29,62,82,83,88 5 -99888 cd05814 CBM20_Prei4 2 starch-binding site 2 0 1 1 1 11,12,13,14,15,16,39,45,47 5 -99889 cd05815 CBM20_DPE2_repeat1 1 starch-binding site 1 0 1 1 1 27,61,74,75,79 5 -99889 cd05815 CBM20_DPE2_repeat1 2 starch-binding site 2 0 1 1 1 9,10,11,12,13,14,37,44,46 5 -99890 cd05816 CBM20_DPE2_repeat2 1 starch-binding site 1 0 1 1 1 28,60,73,74,78 5 -99890 cd05816 CBM20_DPE2_repeat2 2 starch-binding site 2 0 1 1 1 10,11,12,13,14,15,38,42,44 5 -99891 cd05817 CBM20_DSP 1 starch-binding site 1 0 1 1 1 27,58,72,73,77 5 -99891 cd05817 CBM20_DSP 2 starch-binding site 2 0 1 1 1 9,10,11,12,13,14,37,41,43 5 -99892 cd05818 CBM20_water_dikinase 1 starch-binding site 1 0 1 1 1 29,57,69,70,74 5 -99892 cd05818 CBM20_water_dikinase 2 starch-binding site 2 0 1 1 1 11,12,13,14,15,16,37,40,42 5 -99893 cd05820 CBM20_novamyl 1 starch-binding site 1 0 1 1 1 32,66,78,79,83 5 -99893 cd05820 CBM20_novamyl 2 starch-binding site 2 0 1 1 1 14,15,16,17,18,19,45,49,51 5 -176472 cd05468 pVHL 1 pVHL-HIF-1alpha interaction 0 1 1 1 3,5,11,13,14,15,24,27,34,35,41,42,43,44,45,46,47,48,51,53 2 -176472 cd05468 pVHL 2 pVHL-ElonginB-ElonginC (VBC) interface 0 1 1 1 15,89,95,97,98,99,101,102,109,112,113,121 2 -100112 cd05469 Transthyretin_like 1 active site 0 1 1 0 5,7,44,96,98,100,107,109 1 -100112 cd05469 Transthyretin_like 2 homotetramer interface 0 1 1 0 9,10,11,12,77,78,80,84,85,86,102,104,105,106,107,108,109,110 2 -100113 cd05821 TLP_Transthyretin 1 active site 0 1 1 0 11,13,50,102,104,106,113,115 1 -100113 cd05821 TLP_Transthyretin 2 homotetramer interface 0 1 1 0 15,16,17,18,83,84,86,90,91,92,108,110,111,112,113,114,115,116 2 -100114 cd05822 TLP_HIUase 1 active site 0 1 1 0 5,7,43,95,97,99,106,108 1 -100114 cd05822 TLP_HIUase 2 homotetramer interface 0 1 1 0 9,10,11,12,77,78,80,84,85,86,101,103,104,105,106,107,108,109 2 -133137 cd05470 pepsin_retropepsin_like 1 inhibitor binding site 0 1 1 0 16,18,20,57,58,59,105 0 -133137 cd05470 pepsin_retropepsin_like 2 catalytic motif 0 0 1 1 16,17,18 1 -133137 cd05470 pepsin_retropepsin_like 3 Catalytic residue 0 1 1 0 16 1 -133137 cd05470 pepsin_retropepsin_like 4 Active site flap 0 1 1 1 57,58,59,60,64,65,66,67 1 -133136 cd00303 retropepsin_like 1 inhibitor binding site 0 1 1 0 14,16,18,43,44,45,84 0 -133136 cd00303 retropepsin_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133136 cd00303 retropepsin_like 3 Catalytic residue 0 1 1 0 14 1 -133136 cd00303 retropepsin_like 4 Active site flap 0 1 1 1 43,44,45,46,50,51,52,53 1 -133146 cd05479 RP_DDI 1 inhibitor binding site 0 1 1 0 32,34,36,61,62,63,101 0 -133146 cd05479 RP_DDI 2 catalytic motif 0 0 1 1 32,33,34 1 -133146 cd05479 RP_DDI 3 Catalytic residue 0 1 1 0 32 1 -133146 cd05479 RP_DDI 4 Active site flap 0 1 1 1 61,62,63,64,68,69,70,71 1 -133147 cd05480 NRIP_C 1 inhibitor binding site 0 1 1 0 14,16,18,39,40,41,85 0 -133147 cd05480 NRIP_C 2 catalytic motif 0 0 1 1 14,15,16 1 -133147 cd05480 NRIP_C 3 Catalytic residue 0 1 1 0 14 1 -133147 cd05480 NRIP_C 4 Active site flap 0 1 1 1 39,40,41,42,47,48,49,50 1 -133148 cd05481 retropepsin_like_LTR_1 1 inhibitor binding site 0 1 1 0 15,17,19,46,47,48,85 0 -133148 cd05481 retropepsin_like_LTR_1 2 catalytic motif 0 0 1 1 15,16,17 1 -133148 cd05481 retropepsin_like_LTR_1 3 Catalytic residue 0 1 1 0 15 1 -133148 cd05481 retropepsin_like_LTR_1 4 Active site flap 0 1 1 1 46,47,48,49,53,54,55,56 1 -133149 cd05482 HIV_retropepsin_like 1 inhibitor binding site 0 1 1 0 14,16,18,39,40,41,79 0 -133149 cd05482 HIV_retropepsin_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133149 cd05482 HIV_retropepsin_like 3 Catalytic residue 0 1 1 0 14 1 -133149 cd05482 HIV_retropepsin_like 4 Active site flap 0 1 1 1 39,40,41,42,46,47,48,49 1 -133150 cd05483 retropepsin_like_bacteria 1 inhibitor binding site 0 1 1 0 18,20,22,46,47,48,88 0 -133150 cd05483 retropepsin_like_bacteria 2 catalytic motif 0 0 1 1 18,19,20 1 -133150 cd05483 retropepsin_like_bacteria 3 Catalytic residue 0 1 1 0 18 1 -133150 cd05483 retropepsin_like_bacteria 4 Active site flap 0 1 1 1 46,47,48,49,53,54,55,56 1 -133151 cd05484 retropepsin_like_LTR_2 1 inhibitor binding site 0 1 1 0 16,18,20,44,45,46,83 0 -133151 cd05484 retropepsin_like_LTR_2 2 catalytic motif 0 0 1 1 16,17,18 1 -133151 cd05484 retropepsin_like_LTR_2 3 Catalytic residue 0 1 1 0 16 1 -133151 cd05484 retropepsin_like_LTR_2 4 Active site flap 0 1 1 1 44,45,46,47,51,52,53,54 1 -133158 cd06094 RP_Saci_like 1 inhibitor binding site 0 1 1 0 14,16,18,38,39,40,77 0 -133158 cd06094 RP_Saci_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133158 cd06094 RP_Saci_like 3 Catalytic residue 0 1 1 0 14 1 -133158 cd06094 RP_Saci_like 4 Active site flap 0 1 1 1 38,39,40,41,45,46,47,48 1 -133159 cd06095 RP_RTVL_H_like 1 inhibitor binding site 0 1 1 0 14,16,18,39,40,41,78 0 -133159 cd06095 RP_RTVL_H_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133159 cd06095 RP_RTVL_H_like 3 Catalytic residue 0 1 1 0 14 1 -133159 cd06095 RP_RTVL_H_like 4 Active site flap 0 1 1 1 39,40,41,42,49,50,51,52 1 -133138 cd05471 pepsin_like 1 inhibitor binding site 0 1 1 0 18,20,22,60,61,62,107 0 -133138 cd05471 pepsin_like 2 catalytic motif 0 0 1 1 18,19,20 1 -133138 cd05471 pepsin_like 3 Catalytic residue 0 1 1 0 18 1 -133138 cd05471 pepsin_like 4 Active site flap 0 1 1 1 60,61,62,63,67,68,69,70 1 -133140 cd05473 beta_secretase_like 1 inhibitor binding site 0 1 1 0 21,23,25,57,58,59,107 0 -133140 cd05473 beta_secretase_like 2 catalytic motif 0 0 1 1 21,22,23 1 -133140 cd05473 beta_secretase_like 3 Catalytic residue 0 1 1 0 21 1 -133140 cd05473 beta_secretase_like 4 Active site flap 0 1 1 1 57,58,59,60,64,65,66,67 1 -133141 cd05474 SAP_like 1 inhibitor binding site 0 1 1 0 20,22,24,32,33,34,74 0 -133141 cd05474 SAP_like 2 catalytic motif 0 0 1 1 20,21,22 1 -133141 cd05474 SAP_like 3 Catalytic residue 0 1 1 0 20 1 -133141 cd05474 SAP_like 4 Active site flap 0 1 1 1 32,33,34,35,40,41,42,43 1 -133143 cd05476 pepsin_A_like_plant 1 inhibitor binding site 0 1 1 0 19,21,23,33,34,35,82 0 -133143 cd05476 pepsin_A_like_plant 2 catalytic motif 0 0 1 1 19,20,21 1 -133143 cd05476 pepsin_A_like_plant 3 Catalytic residue 0 1 1 0 19 1 -133143 cd05476 pepsin_A_like_plant 4 Active site flap 0 1 1 1 33,34,35,36,40,41,42,43 1 -133139 cd05472 cnd41_like 1 inhibitor binding site 0 1 1 0 19,21,23,36,37,38,83 0 -133139 cd05472 cnd41_like 2 catalytic motif 0 0 1 1 19,20,21 1 -133139 cd05472 cnd41_like 3 Catalytic residue 0 1 1 0 19 1 -133139 cd05472 cnd41_like 4 Active site flap 0 1 1 1 36,37,38,39,43,44,45,46 1 -133142 cd05475 nucellin_like 1 inhibitor binding site 0 1 1 0 20,22,24,42,43,44,96 0 -133142 cd05475 nucellin_like 2 catalytic motif 0 0 1 1 20,21,22 1 -133142 cd05475 nucellin_like 3 Catalytic residue 0 1 1 0 20 1 -133142 cd05475 nucellin_like 4 Active site flap 0 1 1 1 42,43,44,45,49,50,51,52 1 -133144 cd05477 gastricsin 1 inhibitor binding site 0 1 1 0 21,23,25,61,62,63,109 0 -133144 cd05477 gastricsin 2 catalytic motif 0 0 1 1 21,22,23 1 -133144 cd05477 gastricsin 3 Catalytic residue 0 1 1 0 21 1 -133144 cd05477 gastricsin 4 Active site flap 0 1 1 1 61,62,63,64,68,69,70,71 1 -133145 cd05478 pepsin_A 1 inhibitor binding site 0 1 1 0 28,30,32,68,69,70,116 0 -133145 cd05478 pepsin_A 2 catalytic motif 0 0 1 1 28,29,30 1 -133145 cd05478 pepsin_A 3 Catalytic residue 0 1 1 0 28 1 -133145 cd05478 pepsin_A 4 Active site flap 0 1 1 1 68,69,70,71,75,76,77,78 1 -133152 cd05485 Cathepsin_D_like 1 inhibitor binding site 0 1 1 0 29,31,33,71,72,73,119 0 -133152 cd05485 Cathepsin_D_like 2 catalytic motif 0 0 1 1 29,30,31 1 -133152 cd05485 Cathepsin_D_like 3 Catalytic residue 0 1 1 0 29 1 -133152 cd05485 Cathepsin_D_like 4 Active site flap 0 1 1 1 71,72,73,74,78,79,80,81 1 -133153 cd05486 Cathespin_E 1 inhibitor binding site 0 1 1 0 18,20,22,58,59,60,106 0 -133153 cd05486 Cathespin_E 2 catalytic motif 0 0 1 1 18,19,20 1 -133153 cd05486 Cathespin_E 3 Catalytic residue 0 1 1 0 18 1 -133153 cd05486 Cathespin_E 4 Active site flap 0 1 1 1 58,59,60,61,65,66,67,68 1 -133154 cd05487 renin_like 1 inhibitor binding site 0 1 1 0 26,28,30,68,69,70,115 0 -133154 cd05487 renin_like 2 catalytic motif 0 0 1 1 26,27,28 1 -133154 cd05487 renin_like 3 Catalytic residue 0 1 1 0 26 1 -133154 cd05487 renin_like 4 Active site flap 0 1 1 1 68,69,70,71,75,76,77,78 1 -133155 cd05488 Proteinase_A_fungi 1 inhibitor binding site 0 1 1 0 28,30,32,68,69,70,116 0 -133155 cd05488 Proteinase_A_fungi 2 catalytic motif 0 0 1 1 28,29,30 1 -133155 cd05488 Proteinase_A_fungi 3 Catalytic residue 0 1 1 0 28 1 -133155 cd05488 Proteinase_A_fungi 4 Active site flap 0 1 1 1 68,69,70,71,75,76,77,78 1 -133156 cd05489 xylanase_inhibitor_I_like 1 inhibitor binding site 0 1 1 0 14,16,18,70,71,72,127 0 -133156 cd05489 xylanase_inhibitor_I_like 2 catalytic motif 0 0 1 1 14,15,16 1 -133156 cd05489 xylanase_inhibitor_I_like 3 Catalytic residue 0 1 1 0 14 1 -133156 cd05489 xylanase_inhibitor_I_like 4 Active site flap 0 1 1 1 70,71,72,73,79,80,81,82 1 -133157 cd05490 Cathepsin_D2 1 inhibitor binding site 0 1 1 0 24,26,28,66,67,68,114 0 -133157 cd05490 Cathepsin_D2 2 catalytic motif 0 0 1 1 24,25,26 1 -133157 cd05490 Cathepsin_D2 3 Catalytic residue 0 1 1 0 24 1 -133157 cd05490 Cathepsin_D2 4 Active site flap 0 1 1 1 66,67,68,69,73,74,75,76 1 -133160 cd06096 Plasmepsin_5 1 inhibitor binding site 0 1 1 0 21,23,25,77,78,79,132 0 -133160 cd06096 Plasmepsin_5 2 catalytic motif 0 0 1 1 21,22,23 1 -133160 cd06096 Plasmepsin_5 3 Catalytic residue 0 1 1 0 21 1 -133160 cd06096 Plasmepsin_5 4 Active site flap 0 1 1 1 77,78,79,80,84,85,86,87 1 -133161 cd06097 Aspergillopepsin_like 1 inhibitor binding site 0 1 1 0 18,20,22,59,60,61,108 0 -133161 cd06097 Aspergillopepsin_like 2 catalytic motif 0 0 1 1 18,19,20 1 -133161 cd06097 Aspergillopepsin_like 3 Catalytic residue 0 1 1 0 18 1 -133161 cd06097 Aspergillopepsin_like 4 Active site flap 0 1 1 1 59,60,61,62,67,68,69,70 1 -133162 cd06098 phytepsin 1 inhibitor binding site 0 1 1 0 28,30,32,69,70,71,117 0 -133162 cd06098 phytepsin 2 catalytic motif 0 0 1 1 28,29,30 1 -133162 cd06098 phytepsin 3 Catalytic residue 0 1 1 0 28 1 -133162 cd06098 phytepsin 4 Active site flap 0 1 1 1 69,70,71,72,76,77,78,79 1 -100078 cd05709 S2P-M50 1 active site 0 1 1 1 13,14,17,133,141 1 -100078 cd05709 S2P-M50 2 putative substrate binding region 0 0 1 1 133,134,135,136 5 -100079 cd06158 S2P-M50_like_1 1 active site 0 1 1 1 14,15,18,134,142 1 -100079 cd06158 S2P-M50_like_1 2 putative substrate binding region 0 0 1 1 134,135,136,137 5 -100080 cd06159 S2P-M50_PDZ_Arch 1 active site 0 1 1 1 123,124,127,207,215 1 -100080 cd06159 S2P-M50_PDZ_Arch 2 putative substrate binding region 0 0 1 1 207,208,209,210 5 -100081 cd06160 S2P-M50_like_2 1 active site 0 1 1 1 46,47,50,128,136 1 -100081 cd06160 S2P-M50_like_2 2 putative substrate binding region 0 0 1 1 128,129,130,131 5 -100082 cd06161 S2P-M50_SpoIVFB 1 active site 0 1 1 1 43,44,47,131,139 1 -100082 cd06161 S2P-M50_SpoIVFB 2 putative substrate binding region 0 0 1 1 131,132,133,134 5 -100085 cd06164 S2P-M50_SpoIVFB_CBS 1 active site 0 1 1 1 58,59,62,148,156 1 -100085 cd06164 S2P-M50_SpoIVFB_CBS 2 putative substrate binding region 0 0 1 1 148,149,150,151 5 -100083 cd06162 S2P-M50_PDZ_SREBP 1 active site 0 1 1 1 140,141,144,227,235 1 -100083 cd06162 S2P-M50_PDZ_SREBP 2 putative substrate binding region 0 0 1 1 227,228,229,230 5 -100084 cd06163 S2P-M50_PDZ_RseP-like 1 active site 0 1 1 1 14,15,18,126,134 1 -100084 cd06163 S2P-M50_PDZ_RseP-like 2 putative substrate binding region 0 0 1 1 126,127,128,129 5 -271320 cd05819 NHL 1 NHL repeat 0 0 0 0 9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,44,45,46,47,48 7 -271320 cd05819 NHL 2 NHL repeat 0 0 0 0 56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,74,75,76,77,78,79,80,81,82,83,84,85,88,89,90,91,92,93,94,95 7 -271320 cd05819 NHL 3 NHL repeat 0 0 0 0 103,104,105,106,107,108,109,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139 7 -271320 cd05819 NHL 4 NHL repeat 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,168,169,170,171,172,173,174,175,176,181,182,183,184,185,186,187 7 -271320 cd05819 NHL 5 NHL repeat 0 0 0 0 196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,217,218,219,220,221,230,231,232,233 7 -271320 cd05819 NHL 6 NHL repeat 0 0 0 1 242,243,244,245,246,247,248,249,250,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268 7 -271321 cd14951 NHL-2_like 1 NHL repeat 0 0 0 0 20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,58,59,60,61,62 7 -271321 cd14951 NHL-2_like 2 NHL repeat 0 0 0 0 78,79,80,81,82,83,84,87,88,89,90,91,92,93,94,97,98,99,100,101,102,103,104,105,106,107,108,111,112,113,114,115,116,117,118 7 -271321 cd14951 NHL-2_like 3 NHL repeat 0 0 0 0 135,136,137,138,139,140,141,145,146,147,148,149,150,155,156,157,158,159,160,161,162,163,164,165,176,177,178,179,180,181,182 7 -271321 cd14951 NHL-2_like 4 NHL repeat 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,215,216,217,218,219,220,221,222,223,228,229,230,231,232,233,234 7 -271321 cd14951 NHL-2_like 5 NHL repeat 0 0 0 0 248,249,250,251,252,253,254,255,256,257,260,261,262,263,264,265,269,270,271,272,273,279,280,281,282 7 -271321 cd14951 NHL-2_like 6 NHL repeat 0 0 0 1 292,293,294,295,296,297,298,299,300,307,308,309,310,311,312,313,314,327,328,329,330,331,332,333 7 -271322 cd14952 NHL_PKND_like 1 NHL repeat 0 0 0 0 11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,47 7 -271322 cd14952 NHL_PKND_like 2 NHL repeat 0 0 0 0 53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,71,72,73,74,75,76,77,78,79,80,81,82,85,86,87,88,89,90,91,92 7 -271322 cd14952 NHL_PKND_like 3 NHL repeat 0 0 0 0 95,96,97,98,99,100,101,105,106,107,108,109,110,113,114,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131 7 -271322 cd14952 NHL_PKND_like 4 NHL repeat 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,163,168,169,170,171,172,173,174 7 -271322 cd14952 NHL_PKND_like 5 NHL repeat 0 0 0 0 178,179,180,181,182,183,184,185,186,187,190,191,192,193,194,195,199,200,201,202,203,211,212,213,214 7 -271322 cd14952 NHL_PKND_like 6 NHL repeat 0 0 0 1 219,220,221,222,223,224,225,226,227,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245 7 -271323 cd14953 NHL_like_1 1 NHL repeat 0 0 0 0 24,25,26,27,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,61,62,63,64,65 7 -271323 cd14953 NHL_like_1 2 NHL repeat 0 0 0 0 78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,96,97,98,99,100,101,102,103,104,105,106,107,109,110,111,112,113,114,115,116 7 -271323 cd14953 NHL_like_1 3 NHL repeat 0 0 0 0 133,134,135,136,137,138,139,143,144,145,146,147,148,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169 7 -271323 cd14953 NHL_like_1 4 NHL repeat 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,197,198,199,200,201,202,203,206,207,208,209,210,211,212,213,214,219,220,221,222,223,224,225 7 -271323 cd14953 NHL_like_1 5 NHL repeat 0 0 0 0 242,243,244,245,246,247,248,249,250,251,254,255,256,257,258,259,263,264,265,266,267,269,270,271,272 7 -271323 cd14953 NHL_like_1 6 NHL repeat 0 0 0 1 296,297,298,299,300,301,302,303,304,307,308,309,310,311,312,313,314,316,317,318,319,320,321,322 7 -271324 cd14954 NHL_TRIM71_like 1 NHL repeat 0 0 0 0 25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,60,61,62,63,64 7 -271324 cd14954 NHL_TRIM71_like 2 NHL repeat 0 0 0 0 72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98,99,100,101,104,105,106,107,108,109,110,111 7 -271324 cd14954 NHL_TRIM71_like 3 NHL repeat 0 0 0 0 119,120,121,122,123,124,125,129,130,131,132,133,134,137,138,139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155 7 -271324 cd14954 NHL_TRIM71_like 4 NHL repeat 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,181,184,185,186,187,188,189,190,191,192,197,198,199,200,201,202,203 7 -271324 cd14954 NHL_TRIM71_like 5 NHL repeat 0 0 0 0 212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,233,234,235,236,237,239,240,241,242 7 -271324 cd14954 NHL_TRIM71_like 6 NHL repeat 0 0 0 1 258,259,260,261,262,263,264,265,266,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284 7 -271325 cd14955 NHL_like_4 1 NHL repeat 0 0 0 0 17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,52,53,54,55,56 7 -271325 cd14955 NHL_like_4 2 NHL repeat 0 0 0 0 64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,82,83,84,85,86,87,88,89,90,91,92,93,96,97,98,99,100,101,102,103 7 -271325 cd14955 NHL_like_4 3 NHL repeat 0 0 0 0 111,112,113,114,115,116,117,121,122,123,124,125,126,129,130,131,132,133,134,135,136,137,138,139,141,142,143,144,145,146,147 7 -271325 cd14955 NHL_like_4 4 NHL repeat 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184,189,190,191,192,193,194,195 7 -271325 cd14955 NHL_like_4 5 NHL repeat 0 0 0 0 204,205,206,207,208,209,210,211,212,213,216,217,218,219,220,221,225,226,227,228,229,238,239,240,241 7 -271325 cd14955 NHL_like_4 6 NHL repeat 0 0 0 1 250,251,252,253,254,255,256,257,258,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276 7 -271326 cd14956 NHL_like_3 1 NHL repeat 0 0 0 0 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,49,50,51,52,53 7 -271326 cd14956 NHL_like_3 2 NHL repeat 0 0 0 0 61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,79,80,81,82,83,84,85,86,87,88,89,90,93,94,95,96,97,98,99,100 7 -271326 cd14956 NHL_like_3 3 NHL repeat 0 0 0 0 108,109,110,111,112,113,114,118,119,120,121,122,123,126,127,128,129,130,131,132,133,134,135,136,138,139,140,141,142,143,144 7 -271326 cd14956 NHL_like_3 4 NHL repeat 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,173,174,175,176,177,178,179,180,181,186,187,188,189,190,191,192 7 -271326 cd14956 NHL_like_3 5 NHL repeat 0 0 0 0 201,202,203,204,205,206,207,208,209,210,213,214,215,216,217,218,222,223,224,225,226,235,236,237,238 7 -271326 cd14956 NHL_like_3 6 NHL repeat 0 0 0 1 247,248,249,250,251,252,253,254,255,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273 7 -271327 cd14957 NHL_like_2 1 NHL repeat 0 0 0 0 19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,54,55,56,57,58 7 -271327 cd14957 NHL_like_2 2 NHL repeat 0 0 0 0 66,67,68,69,70,71,72,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,104,105 7 -271327 cd14957 NHL_like_2 3 NHL repeat 0 0 0 0 113,114,115,116,117,118,119,123,124,125,126,127,128,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149 7 -271327 cd14957 NHL_like_2 4 NHL repeat 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186,191,192,193,194,195,196,197 7 -271327 cd14957 NHL_like_2 5 NHL repeat 0 0 0 0 206,207,208,209,210,211,212,213,214,215,218,219,220,221,222,223,227,228,229,230,231,233,234,235,236 7 -271327 cd14957 NHL_like_2 6 NHL repeat 0 0 0 1 252,253,254,255,256,257,258,259,260,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278 7 -271328 cd14958 NHL_PAL_like 1 NHL repeat 0 0 0 0 14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,55,56,57,58,59,60,61,62,63,67,68,69,70,71 7 -271328 cd14958 NHL_PAL_like 2 NHL repeat 0 0 0 0 77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,95,96,97,98,99,100,101,102,103,104,105,106,111,112,113,114,115,116,117,118 7 -271328 cd14958 NHL_PAL_like 3 NHL repeat 0 0 0 0 129,130,131,132,133,134,135,139,140,141,142,143,144,148,149,150,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166 7 -271328 cd14958 NHL_PAL_like 4 NHL repeat 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,186,187,188,189,190,191,192,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -271328 cd14958 NHL_PAL_like 5 NHL repeat 0 0 0 0 218,219,220,221,222,223,224,225,226,227,230,231,232,233,234,235,244,245,246,247,248,260,261,262,263 7 -271328 cd14958 NHL_PAL_like 6 NHL repeat 0 0 0 1 272,273,274,275,276,277,278,279,280,283,284,285,286,287,288,289,290,292,293,294,295,296,297,298 7 -271329 cd14959 NHL_brat_like 1 NHL repeat 0 0 0 0 23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58,59 7 -271329 cd14959 NHL_brat_like 2 NHL repeat 0 0 0 0 70,71,72,73,74,75,76,79,80,81,82,83,84,85,86,91,92,93,94,95,96,97,98,99,100,101,102,105,106,107,108,109,110,111,112 7 -271329 cd14959 NHL_brat_like 3 NHL repeat 0 0 0 0 115,116,117,118,119,120,121,125,126,127,128,129,130,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,149,150,151 7 -271329 cd14959 NHL_brat_like 4 NHL repeat 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183,188,189,190,191,192,193,194 7 -271329 cd14959 NHL_brat_like 5 NHL repeat 0 0 0 0 199,200,201,202,203,204,205,206,207,208,211,212,213,214,215,216,222,223,224,225,226,235,236,237,238 7 -271329 cd14959 NHL_brat_like 6 NHL repeat 0 0 0 1 244,245,246,247,248,249,250,251,252,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270 7 -271330 cd14960 NHL_TRIM2_like 1 NHL repeat 0 0 0 0 18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,53,54,55,56,57 7 -271330 cd14960 NHL_TRIM2_like 2 NHL repeat 0 0 0 0 65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,83,84,85,86,87,88,89,90,91,92,93,94,97,98,99,100,101,102,103,104 7 -271330 cd14960 NHL_TRIM2_like 3 NHL repeat 0 0 0 0 107,108,109,110,111,112,113,117,118,119,120,121,122,125,126,127,128,129,130,131,132,133,134,135,137,138,139,140,141,142,143 7 -271330 cd14960 NHL_TRIM2_like 4 NHL repeat 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,172,173,174,175,176,177,178,179,180,185,186,187,188,189,190,191 7 -271330 cd14960 NHL_TRIM2_like 5 NHL repeat 0 0 0 0 200,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,221,222,223,224,225,237,238,239,240 7 -271330 cd14960 NHL_TRIM2_like 6 NHL repeat 0 0 0 1 243,244,245,246,247,248,249,250,251,254,255,256,257,258,259,260,261,263,264,265,266,267,268,269 7 -271331 cd14961 NHL_TRIM32_like 1 NHL repeat 0 0 0 0 12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,47,48,49,50,51 7 -271331 cd14961 NHL_TRIM32_like 2 NHL repeat 0 0 0 0 59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,77,78,79,80,81,82,83,84,85,86,87,88,91,92,93,94,95,96,97,98 7 -271331 cd14961 NHL_TRIM32_like 3 NHL repeat 0 0 0 0 100,101,102,103,104,105,106,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,135,136,137,138,139,140,141 7 -271331 cd14961 NHL_TRIM32_like 4 NHL repeat 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,172,173,174,175,176,177,178,179,180,188,189,190,191,192,193,194 7 -271331 cd14961 NHL_TRIM32_like 5 NHL repeat 0 0 0 0 202,203,204,205,206,207,208,209,210,211,214,215,216,217,218,219,223,224,225,226,227,231,232,233,234 7 -271331 cd14961 NHL_TRIM32_like 6 NHL repeat 0 0 0 1 245,246,247,248,249,250,251,252,253,256,257,258,259,260,261,262,263,265,266,267,268,269,270,271 7 -271332 cd14962 NHL_like_6 1 NHL repeat 0 0 0 0 13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,48,49,50,51,52 7 -271332 cd14962 NHL_like_6 2 NHL repeat 0 0 0 0 58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,76,77,78,79,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97 7 -271332 cd14962 NHL_like_6 3 NHL repeat 0 0 0 0 101,102,103,104,105,106,107,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,132,133,134,135,136,137,138 7 -271332 cd14962 NHL_like_6 4 NHL repeat 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,167,168,169,170,171,172,173,174,175,180,181,182,183,184,185,186 7 -271332 cd14962 NHL_like_6 5 NHL repeat 0 0 0 0 195,196,197,198,199,200,201,202,203,204,207,208,209,210,211,212,216,217,218,219,220,222,223,224,225 7 -271332 cd14962 NHL_like_6 6 NHL repeat 0 0 0 1 241,242,243,244,245,246,247,248,249,252,253,254,255,256,257,258,259,261,262,263,264,265,266,267 7 -271333 cd14963 NHL_like_5 1 NHL repeat 0 0 0 0 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,45,46,47,48,49 7 -271333 cd14963 NHL_like_5 2 NHL repeat 0 0 0 0 57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,75,76,77,78,79,80,81,82,83,84,85,86,89,90,91,92,93,94,95,96 7 -271333 cd14963 NHL_like_5 3 NHL repeat 0 0 0 0 103,104,105,106,107,108,109,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,132,133,134,135,136,137,138 7 -271333 cd14963 NHL_like_5 4 NHL repeat 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,167,168,169,170,171,172,173,174,175,180,181,182,183,184,185,186 7 -271333 cd14963 NHL_like_5 5 NHL repeat 0 0 0 0 195,196,197,198,199,200,201,202,203,204,207,208,209,210,211,212,216,217,218,219,220,232,233,234,235 7 -271333 cd14963 NHL_like_5 6 NHL repeat 0 0 0 1 241,242,243,244,245,246,247,248,249,252,253,254,255,256,257,258,259,261,262,263,264,265,266,267 7 -320682 cd05843 Peptidase_M48_M56 1 Zn binding site 0 1 1 0 60,64,69 4 -320682 cd05843 Peptidase_M48_M56 2 putative active site 0 1 1 1 60,61,64,69,73 1 -320683 cd07324 M48C_Oma1-like 1 Zn binding site 0 1 1 0 61,65,83 4 -320683 cd07324 M48C_Oma1-like 2 putative active site 0 1 1 1 61,62,65,83,87 1 -320690 cd07331 M48C_Oma1_like 1 Zn binding site 0 1 1 0 65,69,125 4 -320690 cd07331 M48C_Oma1_like 2 putative active site 0 1 1 1 65,66,69,125,129 1 -320691 cd07332 M48C_Oma1_like 1 Zn binding site 0 1 1 0 109,113,164 4 -320691 cd07332 M48C_Oma1_like 2 putative active site 0 1 1 1 109,110,113,164,168 1 -320692 cd07333 M48C_bepA_like 1 Zn binding site 0 1 1 0 88,92,111 4 -320692 cd07333 M48C_bepA_like 2 putative active site 0 1 1 1 88,89,92,111,115 1 -320693 cd07334 M48C_loiP_like 1 Zn binding site 0 1 1 0 99,103,158 4 -320693 cd07334 M48C_loiP_like 2 putative active site 0 1 1 1 99,100,103,158,162 1 -320701 cd07342 M48C_Oma1_like 1 Zn binding site 0 1 1 0 61,65,98 4 -320701 cd07342 M48C_Oma1_like 2 putative active site 0 1 1 1 61,62,65,98,102 1 -320684 cd07325 M48_Ste24p_like 1 Zn binding site 0 1 1 0 75,79,122 4 -320684 cd07325 M48_Ste24p_like 2 putative active site 0 1 1 1 75,76,79,122,126 1 -320686 cd07327 M48B_HtpX_like 1 Zn binding site 0 1 1 0 86,90,109 4 -320686 cd07327 M48B_HtpX_like 2 putative active site 0 1 1 1 86,87,90,109,113 1 -320694 cd07335 M48B_HtpX_like 1 Zn binding site 0 1 1 0 96,100,173 4 -320694 cd07335 M48B_HtpX_like 2 putative active site 0 1 1 1 96,97,100,173,177 1 -320695 cd07336 M48B_HtpX_like 1 Zn binding site 0 1 1 0 117,121,191 4 -320695 cd07336 M48B_HtpX_like 2 putative active site 0 1 1 1 117,118,121,191,195 1 -320696 cd07337 M48B_HtpX_like 1 Zn binding site 0 1 1 0 99,103,149 4 -320696 cd07337 M48B_HtpX_like 2 putative active site 0 1 1 1 99,100,103,149,153 1 -320697 cd07338 M48B_HtpX_like 1 Zn binding site 0 1 1 0 95,99,167 4 -320697 cd07338 M48B_HtpX_like 2 putative active site 0 1 1 1 95,96,99,167,171 1 -320698 cd07339 M48B_HtpX_like 1 Zn binding site 0 1 1 0 90,94,165 4 -320698 cd07339 M48B_HtpX_like 2 putative active site 0 1 1 1 90,91,94,165,169 1 -320699 cd07340 M48B_Htpx_like 1 Zn binding site 0 1 1 0 91,95,173 4 -320699 cd07340 M48B_Htpx_like 2 putative active site 0 1 1 1 91,92,95,173,177 1 -320687 cd07328 M48_Ste24p_like 1 Zn binding site 0 1 1 0 90,94,112 4 -320687 cd07328 M48_Ste24p_like 2 putative active site 0 1 1 1 90,91,94,112,116 1 -320688 cd07329 M56_like 1 Zn binding site 0 1 1 0 55,59,113 4 -320688 cd07329 M56_like 2 putative active site 0 1 1 1 55,56,59,113,117 1 -320685 cd07326 M56_BlaR1_MecR1_like 1 Zn binding site 0 1 1 0 69,73,110 4 -320685 cd07326 M56_BlaR1_MecR1_like 2 putative active site 0 1 1 1 69,70,73,110,114 1 -320700 cd07341 M56_BlaR1_MecR1_like 1 Zn binding site 0 1 1 0 88,92,129 4 -320700 cd07341 M56_BlaR1_MecR1_like 2 putative active site 0 1 1 1 88,89,92,129,133 1 -320689 cd07330 M48A_Ste24p 1 Zn binding site 0 1 1 0 182,186,228 4 -320689 cd07330 M48A_Ste24p 2 putative active site 0 1 1 1 182,183,186,228,232 1 -320702 cd07343 M48A_Zmpste24p_like 1 Zn binding site 0 1 1 0 270,274,348 4 -320702 cd07343 M48A_Zmpste24p_like 2 putative active site 0 1 1 1 270,271,274,348,352 1 -320704 cd07345 M48A_Ste24p-like 1 Zn binding site 0 1 1 0 210,214,292 4 -320704 cd07345 M48A_Ste24p-like 2 putative active site 0 1 1 1 210,211,214,292,296 1 -320703 cd07344 M48_yhfN_like 1 Zn binding site 0 1 1 0 60,64,71 4 -320703 cd07344 M48_yhfN_like 2 putative active site 0 1 1 1 60,61,64,71,75 1 -99716 cd05992 PB1 1 PB1 interaction surface 0 1 1 1 3,32 2 -99716 cd05992 PB1 2 PB1 interaction 0 1 1 1 1,3,9,10,11,28,76 2 -99716 cd05992 PB1 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,28,32,76 2 -99716 cd05992 PB1 4 PB1 interaction site 0 1 1 1 46,59 2 -99716 cd05992 PB1 5 PB1 interaction surface 0 1 1 1 46,59 2 -99716 cd05992 PB1 6 PB1 interaction site 0 0 1 1 46,59 2 -99716 cd05992 PB1 7 PB1 interaction surface 0 1 1 1 46,59 2 -99717 cd06395 PB1_Map2k5 1 PB1 interaction surface 0 1 1 1 3,34 2 -99717 cd06395 PB1_Map2k5 2 PB1 interaction 0 1 1 1 1,3,10,11,12,30,86 2 -99717 cd06395 PB1_Map2k5 3 PB1 interaction surface 0 1 1 1 1,3,11,12,13,30,34,86 2 -99717 cd06395 PB1_Map2k5 4 PB1 interaction site 0 1 1 1 47,60 2 -99717 cd06395 PB1_Map2k5 5 PB1 interaction surface 0 1 1 1 47,60 2 -99717 cd06395 PB1_Map2k5 6 PB1 interaction site 0 0 1 1 47,60 2 -99717 cd06395 PB1_Map2k5 7 PB1 interaction surface 0 1 1 1 47,60 2 -99718 cd06396 PB1_NBR1 1 PB1 interaction surface 0 1 1 1 3,33 2 -99718 cd06396 PB1_NBR1 2 PB1 interaction 0 1 1 1 1,3,9,10,11,29,74 2 -99718 cd06396 PB1_NBR1 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,29,33,74 2 -99718 cd06396 PB1_NBR1 4 PB1 interaction site 0 1 1 1 45,58 2 -99718 cd06396 PB1_NBR1 5 PB1 interaction surface 0 1 1 1 45,58 2 -99718 cd06396 PB1_NBR1 6 PB1 interaction site 0 0 1 1 45,58 2 -99718 cd06396 PB1_NBR1 7 PB1 interaction surface 0 1 1 1 45,58 2 -99719 cd06397 PB1_UP1 1 PB1 interaction surface 0 1 1 1 3,31 2 -99719 cd06397 PB1_UP1 2 PB1 interaction 0 1 1 1 1,3,9,10,11,27,75 2 -99719 cd06397 PB1_UP1 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,27,31,75 2 -99719 cd06397 PB1_UP1 4 PB1 interaction site 0 1 1 1 45,58 2 -99719 cd06397 PB1_UP1 5 PB1 interaction surface 0 1 1 1 45,58 2 -99719 cd06397 PB1_UP1 6 PB1 interaction site 0 0 1 1 45,58 2 -99719 cd06397 PB1_UP1 7 PB1 interaction surface 0 1 1 1 45,58 2 -99720 cd06398 PB1_Joka2 1 PB1 interaction surface 0 1 1 1 3,36 2 -99720 cd06398 PB1_Joka2 2 PB1 interaction 0 1 1 1 1,3,9,10,11,32,86 2 -99720 cd06398 PB1_Joka2 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,32,36,86 2 -99720 cd06398 PB1_Joka2 4 PB1 interaction site 0 1 1 1 51,64 2 -99720 cd06398 PB1_Joka2 5 PB1 interaction surface 0 1 1 1 51,64 2 -99720 cd06398 PB1_Joka2 6 PB1 interaction site 0 0 1 1 51,64 2 -99720 cd06398 PB1_Joka2 7 PB1 interaction surface 0 1 1 1 51,64 2 -99721 cd06399 PB1_P40 1 PB1 interaction surface 0 1 1 1 3,39 2 -99721 cd06399 PB1_P40 2 PB1 interaction 0 1 1 1 1,3,13,14,15,35,85 2 -99721 cd06399 PB1_P40 3 PB1 interaction surface 0 1 1 1 1,3,14,15,16,35,39,85 2 -99721 cd06399 PB1_P40 4 PB1 interaction site 0 1 1 1 51,64 2 -99721 cd06399 PB1_P40 5 PB1 interaction surface 0 1 1 1 51,64 2 -99721 cd06399 PB1_P40 6 PB1 interaction site 0 0 1 1 51,64 2 -99721 cd06399 PB1_P40 7 PB1 interaction surface 0 1 1 1 51,64 2 -99722 cd06401 PB1_TFG 1 PB1 interaction surface 0 1 1 1 3,32 2 -99722 cd06401 PB1_TFG 2 PB1 interaction 0 1 1 1 1,3,9,10,11,28,76 2 -99722 cd06401 PB1_TFG 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,28,32,76 2 -99722 cd06401 PB1_TFG 4 PB1 interaction site 0 1 1 1 49,62 2 -99722 cd06401 PB1_TFG 5 PB1 interaction surface 0 1 1 1 49,62 2 -99722 cd06401 PB1_TFG 6 PB1 interaction site 0 0 1 1 49,62 2 -99722 cd06401 PB1_TFG 7 PB1 interaction surface 0 1 1 1 49,62 2 -99723 cd06402 PB1_p62 1 PB1 interaction surface 0 1 1 1 3,38 2 -99723 cd06402 PB1_p62 2 PB1 interaction 0 1 1 1 1,3,14,15,16,34,80 2 -99723 cd06402 PB1_p62 3 PB1 interaction surface 0 1 1 1 1,3,15,16,17,34,38,80 2 -99723 cd06402 PB1_p62 4 PB1 interaction site 0 1 1 1 53,66 2 -99723 cd06402 PB1_p62 5 PB1 interaction surface 0 1 1 1 53,66 2 -99723 cd06402 PB1_p62 6 PB1 interaction site 0 0 1 1 53,66 2 -99723 cd06402 PB1_p62 7 PB1 interaction surface 0 1 1 1 53,66 2 -99724 cd06403 PB1_Par6 1 PB1 interaction surface 0 1 1 1 3,33 2 -99724 cd06403 PB1_Par6 2 PB1 interaction 0 1 1 1 1,3,9,10,11,29,73 2 -99724 cd06403 PB1_Par6 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,29,33,73 2 -99724 cd06403 PB1_Par6 4 PB1 interaction site 0 1 1 1 47,60 2 -99724 cd06403 PB1_Par6 5 PB1 interaction surface 0 1 1 1 47,60 2 -99724 cd06403 PB1_Par6 6 PB1 interaction site 0 0 1 1 47,60 2 -99724 cd06403 PB1_Par6 7 PB1 interaction surface 0 1 1 1 47,60 2 -99725 cd06404 PB1_aPKC 1 PB1 interaction surface 0 1 1 1 3,31 2 -99725 cd06404 PB1_aPKC 2 PB1 interaction 0 1 1 1 1,3,9,10,11,27,76 2 -99725 cd06404 PB1_aPKC 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,27,31,76 2 -99725 cd06404 PB1_aPKC 4 PB1 interaction site 0 1 1 1 46,59 2 -99725 cd06404 PB1_aPKC 5 PB1 interaction surface 0 1 1 1 46,59 2 -99725 cd06404 PB1_aPKC 6 PB1 interaction site 0 0 1 1 46,59 2 -99725 cd06404 PB1_aPKC 7 PB1 interaction surface 0 1 1 1 46,59 2 -99726 cd06405 PB1_Mekk2_3 1 PB1 interaction surface 0 1 1 1 3,31 2 -99726 cd06405 PB1_Mekk2_3 2 PB1 interaction 0 1 1 1 1,3,9,10,11,27,72 2 -99726 cd06405 PB1_Mekk2_3 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,27,31,72 2 -99726 cd06405 PB1_Mekk2_3 4 PB1 interaction site 0 1 1 1 42,54 2 -99726 cd06405 PB1_Mekk2_3 5 PB1 interaction surface 0 1 1 1 42,54 2 -99726 cd06405 PB1_Mekk2_3 6 PB1 interaction site 0 0 1 1 42,54 2 -99726 cd06405 PB1_Mekk2_3 7 PB1 interaction surface 0 1 1 1 42,54 2 -99727 cd06406 PB1_P67 1 PB1 interaction surface 0 1 1 1 5,32 2 -99727 cd06406 PB1_P67 2 PB1 interaction 0 1 1 1 3,5,10,11,12,28,73 2 -99727 cd06406 PB1_P67 3 PB1 interaction surface 0 1 1 1 3,5,11,12,13,28,32,73 2 -99727 cd06406 PB1_P67 4 PB1 interaction site 0 1 1 1 46,59 2 -99727 cd06406 PB1_P67 5 PB1 interaction surface 0 1 1 1 46,59 2 -99727 cd06406 PB1_P67 6 PB1 interaction site 0 0 1 1 46,59 2 -99727 cd06406 PB1_P67 7 PB1 interaction surface 0 1 1 1 46,59 2 -99728 cd06407 PB1_NLP 1 PB1 interaction surface 0 1 1 1 3,31 2 -99728 cd06407 PB1_NLP 2 PB1 interaction 0 1 1 1 1,3,9,10,11,27,76 2 -99728 cd06407 PB1_NLP 3 PB1 interaction surface 0 1 1 1 1,3,10,11,12,27,31,76 2 -99728 cd06407 PB1_NLP 4 PB1 interaction site 0 1 1 1 46,59 2 -99728 cd06407 PB1_NLP 5 PB1 interaction surface 0 1 1 1 46,59 2 -99728 cd06407 PB1_NLP 6 PB1 interaction site 0 0 1 1 46,59 2 -99728 cd06407 PB1_NLP 7 PB1 interaction surface 0 1 1 1 46,59 2 -99729 cd06408 PB1_NoxR 1 PB1 interaction surface 0 1 1 1 5,33 2 -99729 cd06408 PB1_NoxR 2 PB1 interaction 0 1 1 1 3,5,10,11,12,29,81 2 -99729 cd06408 PB1_NoxR 3 PB1 interaction surface 0 1 1 1 3,5,11,12,13,29,33,81 2 -99729 cd06408 PB1_NoxR 4 PB1 interaction site 0 1 1 1 46,58 2 -99729 cd06408 PB1_NoxR 5 PB1 interaction surface 0 1 1 1 46,58 2 -99729 cd06408 PB1_NoxR 6 PB1 interaction site 0 0 1 1 46,58 2 -99729 cd06408 PB1_NoxR 7 PB1 interaction surface 0 1 1 1 46,58 2 -99730 cd06409 PB1_MUG70 1 PB1 interaction surface 0 1 1 1 3,32 2 -99730 cd06409 PB1_MUG70 2 PB1 interaction 0 1 1 1 1,3,10,11,12,28,79 2 -99730 cd06409 PB1_MUG70 3 PB1 interaction surface 0 1 1 1 1,3,11,12,13,28,32,79 2 -99730 cd06409 PB1_MUG70 4 PB1 interaction site 0 1 1 1 49,62 2 -99730 cd06409 PB1_MUG70 5 PB1 interaction surface 0 1 1 1 49,62 2 -99730 cd06409 PB1_MUG70 6 PB1 interaction site 0 0 1 1 49,62 2 -99730 cd06409 PB1_MUG70 7 PB1 interaction surface 0 1 1 1 49,62 2 -99731 cd06410 PB1_UP2 1 PB1 interaction surface 0 1 1 1 15,44 2 -99731 cd06410 PB1_UP2 2 PB1 interaction 0 1 1 1 13,15,21,22,23,40,92 2 -99731 cd06410 PB1_UP2 3 PB1 interaction surface 0 1 1 1 13,15,22,23,24,40,44,92 2 -99731 cd06410 PB1_UP2 4 PB1 interaction site 0 1 1 1 59,73 2 -99731 cd06410 PB1_UP2 5 PB1 interaction surface 0 1 1 1 59,73 2 -99731 cd06410 PB1_UP2 6 PB1 interaction site 0 0 1 1 59,73 2 -99731 cd06410 PB1_UP2 7 PB1 interaction surface 0 1 1 1 59,73 2 -99732 cd06411 PB1_p51 1 PB1 interaction surface 0 1 1 1 3,28 2 -99732 cd06411 PB1_p51 2 PB1 interaction 0 1 1 1 1,3,7,8,9,24,73 2 -99732 cd06411 PB1_p51 3 PB1 interaction surface 0 1 1 1 1,3,8,9,10,24,28,73 2 -99732 cd06411 PB1_p51 4 PB1 interaction site 0 1 1 1 44,57 2 -99732 cd06411 PB1_p51 5 PB1 interaction surface 0 1 1 1 44,57 2 -99732 cd06411 PB1_p51 6 PB1 interaction site 0 0 1 1 44,57 2 -99732 cd06411 PB1_p51 7 PB1 interaction surface 0 1 1 1 44,57 2 -132768 cd06093 PX_domain 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -132769 cd06859 PX_SNX1_2_like 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,83 5 -132771 cd06861 PX_Vps5p 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,81 5 -132814 cd07281 PX_SNX1 1 phosphoinositide binding site 0 1 1 1 41,42,43,69,70,93 5 -132815 cd07282 PX_SNX2 1 phosphoinositide binding site 0 1 1 1 41,42,43,69,70,93 5 -132770 cd06860 PX_SNX7_30_like 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,85 5 -132816 cd07283 PX_SNX30 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,85 5 -132817 cd07284 PX_SNX7 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,85 5 -132772 cd06862 PX_SNX9_18_like 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -132818 cd07285 PX_SNX9 1 phosphoinositide binding site 0 1 1 1 36,37,38,63,64,77 5 -132819 cd07286 PX_SNX18 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -132773 cd06863 PX_Atg24p 1 phosphoinositide binding site 0 1 1 1 42,43,44,68,69,87 5 -132774 cd06864 PX_SNX4 1 phosphoinositide binding site 0 1 1 1 50,51,52,76,77,98 5 -132775 cd06865 PX_SNX_like 1 phosphoinositide binding site 0 1 1 1 46,47,48,72,73,89 5 -132776 cd06866 PX_SNX8_Mvp1p_like 1 phosphoinositide binding site 0 1 1 1 34,35,36,60,61,74 5 -132777 cd06867 PX_SNX41_42 1 phosphoinositide binding site 0 1 1 1 32,33,34,58,59,81 5 -132778 cd06868 PX_HS1BP3 1 phosphoinositide binding site 0 1 1 1 51,52,53,77,78,89 5 -132779 cd06869 PX_UP2_fungi 1 phosphoinositide binding site 0 1 1 1 54,55,56,80,81,88 5 -132780 cd06870 PX_CISK 1 phosphoinositide binding site 0 1 1 1 38,39,40,63,64,78 5 -132781 cd06871 PX_MONaKA 1 phosphoinositide binding site 0 1 1 1 42,43,44,65,66,79 5 -132782 cd06872 PX_SNX19_like_plant 1 phosphoinositide binding site 0 1 1 1 37,38,39,61,62,76 5 -132783 cd06873 PX_SNX13 1 phosphoinositide binding site 0 1 1 1 45,46,47,71,72,85 5 -132784 cd06874 PX_KIF16B_SNX23 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -132785 cd06875 PX_IRAS 1 phosphoinositide binding site 0 1 1 1 35,36,37,60,61,74 5 -132786 cd06876 PX_MDM1p 1 phosphoinositide binding site 0 1 1 1 61,62,63,87,88,103 5 -132787 cd06877 PX_SNX14 1 phosphoinositide binding site 0 1 1 1 48,49,50,74,75,88 5 -132788 cd06878 PX_SNX25 1 phosphoinositide binding site 0 1 1 1 54,55,56,83,84,96 5 -132789 cd06879 PX_UP1_plant 1 phosphoinositide binding site 0 1 1 1 67,68,69,93,94,107 5 -132790 cd06880 PX_SNX22 1 phosphoinositide binding site 0 1 1 1 37,38,39,60,61,73 5 -132791 cd06881 PX_SNX15_like 1 phosphoinositide binding site 0 1 1 1 42,43,44,72,73,86 5 -132820 cd07287 PX_RPK118_like 1 phosphoinositide binding site 0 1 1 1 42,43,44,73,74,87 5 -132821 cd07288 PX_SNX15 1 phosphoinositide binding site 0 1 1 1 42,43,44,73,74,87 5 -132792 cd06882 PX_p40phox 1 phosphoinositide binding site 0 1 1 1 39,40,41,73,74,86 5 -132793 cd06883 PX_PI3K_C2 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,77 5 -132794 cd06884 PX_PI3K_C2_68D 1 phosphoinositide binding site 0 1 1 1 38,39,40,64,65,79 5 -132806 cd06896 PX_PI3K_C2_gamma 1 phosphoinositide binding site 0 1 1 1 31,32,33,57,58,69 5 -132822 cd07289 PX_PI3K_C2_alpha 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,77 5 -132823 cd07290 PX_PI3K_C2_beta 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,77 5 -132795 cd06885 PX_SNX17_31 1 phosphoinositide binding site 0 1 1 1 33,34,35,59,60,72 5 -132796 cd06886 PX_SNX27 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,75 5 -132797 cd06887 PX_p47phox 1 phosphoinositide binding site 0 1 1 1 37,38,39,72,73,84 5 -132798 cd06888 PX_FISH 1 phosphoinositide binding site 0 1 1 1 37,38,39,72,73,87 5 -132799 cd06889 PX_NoxO1 1 phosphoinositide binding site 0 1 1 1 38,39,40,73,74,89 5 -132800 cd06890 PX_Bem1p 1 phosphoinositide binding site 0 1 1 1 33,34,35,67,68,80 5 -132801 cd06891 PX_Vps17p 1 phosphoinositide binding site 0 1 1 1 68,69,70,94,95,109 5 -132802 cd06892 PX_SNX5_like 1 phosphoinositide binding site 0 1 1 1 39,40,41,67,68,110 5 -132824 cd07291 PX_SNX5 1 phosphoinositide binding site 0 1 1 1 39,40,41,67,68,110 5 -132825 cd07292 PX_SNX6 1 phosphoinositide binding site 0 1 1 1 39,40,41,67,68,110 5 -132803 cd06893 PX_SNX19 1 phosphoinositide binding site 0 1 1 1 55,56,57,91,92,101 5 -132804 cd06894 PX_SNX3_like 1 phosphoinositide binding site 0 1 1 1 42,43,44,67,68,90 5 -132826 cd07293 PX_SNX3 1 phosphoinositide binding site 0 1 1 1 42,43,44,67,68,90 5 -132827 cd07294 PX_SNX12 1 phosphoinositide binding site 0 1 1 1 44,45,46,69,70,92 5 -132828 cd07295 PX_Grd19 1 phosphoinositide binding site 0 1 1 1 42,43,44,68,69,82 5 -132805 cd06895 PX_PLD 1 phosphoinositide binding site 0 1 1 1 41,42,43,96,97,109 5 -132829 cd07296 PX_PLD1 1 phosphoinositide binding site 0 1 1 1 43,44,45,91,92,104 5 -132830 cd07297 PX_PLD2 1 phosphoinositide binding site 0 1 1 1 41,42,43,88,89,99 5 -132807 cd06897 PX_SNARE 1 phosphoinositide binding site 0 1 1 1 33,34,35,59,60,75 5 -132808 cd06898 PX_SNX10 1 phosphoinositide binding site 0 1 1 1 41,42,43,67,68,82 5 -132809 cd07276 PX_SNX16 1 phosphoinositide binding site 0 1 1 1 39,40,41,64,65,79 5 -132810 cd07277 PX_RUN 1 phosphoinositide binding site 0 1 1 1 36,37,38,62,63,76 5 -132811 cd07278 PX_RICS_like 1 phosphoinositide binding site 0 1 1 1 44,45,46,73,74,83 5 -132831 cd07298 PX_RICS 1 phosphoinositide binding site 0 1 1 1 45,46,47,74,75,84 5 -132832 cd07299 PX_TCGAP 1 phosphoinositide binding site 0 1 1 1 43,44,45,72,73,82 5 -132812 cd07279 PX_SNX20_21_like 1 phosphoinositide binding site 0 1 1 1 40,41,42,67,68,81 5 -132833 cd07300 PX_SNX20 1 phosphoinositide binding site 0 1 1 1 40,41,42,67,68,81 5 -132834 cd07301 PX_SNX21 1 phosphoinositide binding site 0 1 1 1 40,41,42,67,68,81 5 -132813 cd07280 PX_YPT35 1 phosphoinositide binding site 0 1 1 1 43,44,45,72,73,90 5 -99853 cd06099 CS_ACL-C_CCL 1 catalytic triad 0 0 1 0 67,108,162 1 -99853 cd06099 CS_ACL-C_CCL 2 oxalacetate binding site 0 1 1 1 32,35,67,108,109,117,187,207 5 -99853 cd06099 CS_ACL-C_CCL 3 coenzyme A binding site 0 1 1 1 65,66,67,70,73,102,103,104,105,106,107,108,109,157,160,162,204 5 -99853 cd06099 CS_ACL-C_CCL 4 citrylCoA binding site 0 1 1 1 32,35,66,67,102,103,105,106,107,108,109,117,160,187 5 -99854 cd06100 CCL_ACL-C 1 catalytic triad 0 0 1 0 79,123,173 1 -99854 cd06100 CCL_ACL-C 2 oxalacetate binding site 0 1 1 1 43,47,79,123,124,132,198,221 5 -99854 cd06100 CCL_ACL-C 3 coenzyme A binding site 0 1 1 1 77,78,79,82,85,117,118,119,120,121,122,123,124,168,171,173,218 5 -99854 cd06100 CCL_ACL-C 4 citrylCoA binding site 0 1 1 1 43,47,78,79,117,118,120,121,122,123,124,132,171,198 5 -99855 cd06101 citrate_synt 1 catalytic triad 0 0 1 0 119,160,214 1 -99855 cd06101 citrate_synt 2 oxalacetate binding site 0 1 1 1 84,87,119,160,161,169,239,259 5 -99855 cd06101 citrate_synt 3 coenzyme A binding site 0 1 1 1 117,118,119,122,125,154,155,156,157,158,159,160,161,209,212,214,256 5 -99855 cd06101 citrate_synt 4 citrylCoA binding site 0 1 1 1 84,87,118,119,154,155,157,158,159,160,161,169,212,239 5 -99856 cd06102 citrate_synt_like_2 1 catalytic triad 0 0 1 0 145,184,230 1 -99856 cd06102 citrate_synt_like_2 2 oxalacetate binding site 0 1 1 1 110,113,145,184,185,193,255,274 5 -99856 cd06102 citrate_synt_like_2 3 coenzyme A binding site 0 1 1 1 143,144,145,148,151,178,179,180,181,182,183,184,185,225,228,230,271 5 -99856 cd06102 citrate_synt_like_2 4 citrylCoA binding site 0 1 1 1 110,113,144,145,178,179,181,182,183,184,185,193,228,255 5 -99871 cd06118 citrate_synt_like_1 1 catalytic triad 0 0 1 0 214,253,307 1 -99871 cd06118 citrate_synt_like_1 2 oxalacetate binding site 0 1 1 1 179,182,214,253,254,262,332,352 5 -99871 cd06118 citrate_synt_like_1 3 coenzyme A binding site 0 1 1 1 212,213,214,217,220,247,248,249,250,251,252,253,254,302,305,307,349 5 -99871 cd06118 citrate_synt_like_1 4 citrylCoA binding site 0 1 1 1 179,182,213,214,247,248,250,251,252,253,254,262,305,332 5 -99857 cd06103 ScCS-like 1 catalytic triad 0 0 1 0 269,315,370 1 -99857 cd06103 ScCS-like 2 oxalacetate binding site 0 1 1 1 233,237,269,315,316,324,396,416 5 -99857 cd06103 ScCS-like 3 coenzyme A binding site 0 1 1 1 267,268,269,272,275,309,310,311,312,313,314,315,316,365,368,370,413 5 -99857 cd06103 ScCS-like 4 citrylCoA binding site 0 1 1 1 233,237,268,269,309,310,312,313,314,315,316,324,368,396 5 -99858 cd06105 ScCit1-2_like 1 catalytic triad 0 0 1 0 267,313,368 1 -99858 cd06105 ScCit1-2_like 2 oxalacetate binding site 0 1 1 1 231,235,267,313,314,322,394,414 5 -99858 cd06105 ScCit1-2_like 3 coenzyme A binding site 0 1 1 1 265,266,267,270,273,307,308,309,310,311,312,313,314,363,366,368,411 5 -99858 cd06105 ScCit1-2_like 4 citrylCoA binding site 0 1 1 1 231,235,266,267,307,308,310,311,312,313,314,322,366,394 5 -99859 cd06106 ScCit3_like 1 catalytic triad 0 0 1 0 269,315,372 1 -99859 cd06106 ScCit3_like 2 oxalacetate binding site 0 1 1 1 233,237,269,315,316,324,398,418 5 -99859 cd06106 ScCit3_like 3 coenzyme A binding site 0 1 1 1 267,268,269,272,275,309,310,311,312,313,314,315,316,367,370,372,415 5 -99859 cd06106 ScCit3_like 4 citrylCoA binding site 0 1 1 1 233,237,268,269,309,310,312,313,314,315,316,324,370,398 5 -99860 cd06107 EcCS_AthCS-per_like 1 catalytic triad 0 0 1 0 233,272,328 1 -99860 cd06107 EcCS_AthCS-per_like 2 oxalacetate binding site 0 1 1 1 198,201,233,272,273,281,353,374 5 -99860 cd06107 EcCS_AthCS-per_like 3 coenzyme A binding site 0 1 1 1 231,232,233,236,239,266,267,268,269,270,271,272,273,323,326,328,371 5 -99860 cd06107 EcCS_AthCS-per_like 4 citrylCoA binding site 0 1 1 1 198,201,232,233,266,267,269,270,271,272,273,281,326,353 5 -99867 cd06114 EcCS_like 1 catalytic triad 0 0 1 0 248,289,346 1 -99867 cd06114 EcCS_like 2 oxalacetate binding site 0 1 1 1 213,216,248,289,290,298,371,392 5 -99867 cd06114 EcCS_like 3 coenzyme A binding site 0 1 1 1 246,247,248,251,254,283,284,285,286,287,288,289,290,341,344,346,389 5 -99867 cd06114 EcCS_like 4 citrylCoA binding site 0 1 1 1 213,216,247,248,283,284,286,287,288,289,290,298,344,371 5 -99868 cd06115 AthCS_per_like 1 catalytic triad 0 0 1 0 253,292,348 1 -99868 cd06115 AthCS_per_like 2 oxalacetate binding site 0 1 1 1 218,221,253,292,293,301,373,394 5 -99868 cd06115 AthCS_per_like 3 coenzyme A binding site 0 1 1 1 251,252,253,256,259,286,287,288,289,290,291,292,293,343,346,348,391 5 -99868 cd06115 AthCS_per_like 4 citrylCoA binding site 0 1 1 1 218,221,252,253,286,287,289,290,291,292,293,301,346,373 5 -99869 cd06116 CaCS_like 1 catalytic triad 0 0 1 0 226,265,321 1 -99869 cd06116 CaCS_like 2 oxalacetate binding site 0 1 1 1 191,194,226,265,266,274,346,367 5 -99869 cd06116 CaCS_like 3 coenzyme A binding site 0 1 1 1 224,225,226,229,232,259,260,261,262,263,264,265,266,316,319,321,364 5 -99869 cd06116 CaCS_like 4 citrylCoA binding site 0 1 1 1 191,194,225,226,259,260,262,263,264,265,266,274,319,346 5 -99861 cd06108 Ec2MCS_like 1 catalytic triad 0 0 1 0 212,251,302 1 -99861 cd06108 Ec2MCS_like 2 oxalacetate binding site 0 1 1 1 177,180,212,251,252,260,327,346 5 -99861 cd06108 Ec2MCS_like 3 coenzyme A binding site 0 1 1 1 210,211,212,215,218,245,246,247,248,249,250,251,252,297,300,302,343 5 -99861 cd06108 Ec2MCS_like 4 citrylCoA binding site 0 1 1 1 177,180,211,212,245,246,248,249,250,251,252,260,300,327 5 -99870 cd06117 Ec2MCS_like_1 1 catalytic triad 0 0 1 0 215,254,305 1 -99870 cd06117 Ec2MCS_like_1 2 oxalacetate binding site 0 1 1 1 180,183,215,254,255,263,330,349 5 -99870 cd06117 Ec2MCS_like_1 3 coenzyme A binding site 0 1 1 1 213,214,215,218,221,248,249,250,251,252,253,254,255,300,303,305,346 5 -99870 cd06117 Ec2MCS_like_1 4 citrylCoA binding site 0 1 1 1 180,183,214,215,248,249,251,252,253,254,255,263,303,330 5 -99862 cd06109 BsCS-I_like 1 catalytic triad 0 0 1 0 203,242,297 1 -99862 cd06109 BsCS-I_like 2 oxalacetate binding site 0 1 1 1 168,171,203,242,243,251,322,341 5 -99862 cd06109 BsCS-I_like 3 coenzyme A binding site 0 1 1 1 201,202,203,206,209,236,237,238,239,240,241,242,243,292,295,297,338 5 -99862 cd06109 BsCS-I_like 4 citrylCoA binding site 0 1 1 1 168,171,202,203,236,237,239,240,241,242,243,251,295,322 5 -99863 cd06110 BSuCS-II_like 1 catalytic triad 0 0 1 0 214,253,304 1 -99863 cd06110 BSuCS-II_like 2 oxalacetate binding site 0 1 1 1 179,182,214,253,254,262,329,348 5 -99863 cd06110 BSuCS-II_like 3 coenzyme A binding site 0 1 1 1 212,213,214,217,220,247,248,249,250,251,252,253,254,299,302,304,345 5 -99863 cd06110 BSuCS-II_like 4 citrylCoA binding site 0 1 1 1 179,182,213,214,247,248,250,251,252,253,254,262,302,329 5 -99864 cd06111 DsCS_like 1 catalytic triad 0 0 1 0 214,253,304 1 -99864 cd06111 DsCS_like 2 oxalacetate binding site 0 1 1 1 179,182,214,253,254,262,329,348 5 -99864 cd06111 DsCS_like 3 coenzyme A binding site 0 1 1 1 212,213,214,217,220,247,248,249,250,251,252,253,254,299,302,304,345 5 -99864 cd06111 DsCS_like 4 citrylCoA binding site 0 1 1 1 179,182,213,214,247,248,250,251,252,253,254,262,302,329 5 -99865 cd06112 citrate_synt_like_1_1 1 catalytic triad 0 0 1 0 218,257,312 1 -99865 cd06112 citrate_synt_like_1_1 2 oxalacetate binding site 0 1 1 1 183,186,218,257,258,266,337,356 5 -99865 cd06112 citrate_synt_like_1_1 3 coenzyme A binding site 0 1 1 1 216,217,218,221,224,251,252,253,254,255,256,257,258,307,310,312,353 5 -99865 cd06112 citrate_synt_like_1_1 4 citrylCoA binding site 0 1 1 1 183,186,217,218,251,252,254,255,256,257,258,266,310,337 5 -99866 cd06113 citrate_synt_like_1_2 1 catalytic triad 0 0 1 0 243,294,353 1 -99866 cd06113 citrate_synt_like_1_2 2 oxalacetate binding site 0 1 1 1 207,211,243,294,295,303,378,398 5 -99866 cd06113 citrate_synt_like_1_2 3 coenzyme A binding site 0 1 1 1 241,242,243,246,249,288,289,290,291,292,293,294,295,348,351,353,395 5 -99866 cd06113 citrate_synt_like_1_2 4 citrylCoA binding site 0 1 1 1 207,211,242,243,288,289,291,292,293,294,295,303,351,378 5 -176647 cd06125 DnaQ_like_exo 1 active site 0 1 1 1 3,4,5,6,49,50,52,53,54,86 1 -176647 cd06125 DnaQ_like_exo 2 catalytic site 0 1 1 1 3,5,54,86 1 -176647 cd06125 DnaQ_like_exo 3 substrate binding site 0 1 1 1 4,5,6,49,50,52,53,86 5 -176646 cd05160 DEDDy_DNA_polB_exo 1 active site 0 1 1 1 4,5,6,7,84,85,88,89,90,189 1 -176646 cd05160 DEDDy_DNA_polB_exo 2 catalytic site 0 1 1 1 4,6,90,189 1 -176646 cd05160 DEDDy_DNA_polB_exo 3 substrate binding site 0 1 1 1 5,6,7,84,85,88,89,189 5 -99819 cd05776 DNA_polB_alpha_exo 1 active site 0 1 1 1 8,9,10,11,103,104,107,108,109,214 1 -99819 cd05776 DNA_polB_alpha_exo 2 catalytic site 0 1 1 1 8,10,109,214 1 -99819 cd05776 DNA_polB_alpha_exo 3 substrate binding site 0 1 1 1 9,10,11,103,104,107,108,214 5 -99820 cd05777 DNA_polB_delta_exo 1 active site 0 1 1 1 12,13,14,15,92,93,96,97,98,211 1 -99820 cd05777 DNA_polB_delta_exo 2 catalytic site 0 1 1 1 12,14,98,211 1 -99820 cd05777 DNA_polB_delta_exo 3 substrate binding site 0 1 1 1 13,14,15,92,93,96,97,211 5 -99821 cd05778 DNA_polB_zeta_exo 1 active site 0 1 1 1 17,18,19,20,102,103,106,107,108,221 1 -99821 cd05778 DNA_polB_zeta_exo 2 catalytic site 0 1 1 1 17,19,108,221 1 -99821 cd05778 DNA_polB_zeta_exo 3 substrate binding site 0 1 1 1 18,19,20,102,103,106,107,221 5 -99822 cd05779 DNA_polB_epsilon_exo 1 active site 0 1 1 1 7,8,9,10,94,95,98,99,100,194 1 -99822 cd05779 DNA_polB_epsilon_exo 2 catalytic site 0 1 1 1 7,9,100,194 1 -99822 cd05779 DNA_polB_epsilon_exo 3 substrate binding site 0 1 1 1 8,9,10,94,95,98,99,194 5 -99823 cd05780 DNA_polB_Kod1_like_exo 1 active site 0 1 1 1 8,9,10,11,77,78,81,82,83,183 1 -99823 cd05780 DNA_polB_Kod1_like_exo 2 catalytic site 0 1 1 1 8,10,83,183 1 -99823 cd05780 DNA_polB_Kod1_like_exo 3 substrate binding site 0 1 1 1 9,10,11,77,78,81,82,183 5 -99824 cd05781 DNA_polB_B3_exo 1 active site 0 1 1 1 8,9,10,11,69,70,73,74,75,176 1 -99824 cd05781 DNA_polB_B3_exo 2 catalytic site 0 1 1 1 8,10,75,176 1 -99824 cd05781 DNA_polB_B3_exo 3 substrate binding site 0 1 1 1 9,10,11,69,70,73,74,176 5 -99825 cd05782 DNA_polB_like1_exo 1 active site 0 1 1 1 4,5,6,7,98,99,102,103,104,197 1 -99825 cd05782 DNA_polB_like1_exo 2 catalytic site 0 1 1 1 4,6,104,197 1 -99825 cd05782 DNA_polB_like1_exo 3 substrate binding site 0 1 1 1 5,6,7,98,99,102,103,197 5 -99826 cd05783 DNA_polB_B1_exo 1 active site 0 1 1 1 10,11,12,13,92,93,96,97,98,192 1 -99826 cd05783 DNA_polB_B1_exo 2 catalytic site 0 1 1 1 10,12,98,192 1 -99826 cd05783 DNA_polB_B1_exo 3 substrate binding site 0 1 1 1 11,12,13,92,93,96,97,192 5 -99827 cd05784 DNA_polB_II_exo 1 active site 0 1 1 1 8,9,10,11,72,73,76,77,78,183 1 -99827 cd05784 DNA_polB_II_exo 2 catalytic site 0 1 1 1 8,10,78,183 1 -99827 cd05784 DNA_polB_II_exo 3 substrate binding site 0 1 1 1 9,10,11,72,73,76,77,183 5 -99828 cd05785 DNA_polB_like2_exo 1 active site 0 1 1 1 14,15,16,17,79,80,83,84,85,197 1 -99828 cd05785 DNA_polB_like2_exo 2 catalytic site 0 1 1 1 14,16,85,197 1 -99828 cd05785 DNA_polB_like2_exo 3 substrate binding site 0 1 1 1 15,16,17,79,80,83,84,197 5 -176648 cd06127 DEDDh 1 active site 0 1 1 1 3,4,5,6,84,85,87,88,89,149 1 -176648 cd06127 DEDDh 2 catalytic site 0 1 1 1 3,5,89,149 1 -176648 cd06127 DEDDh 3 substrate binding site 0 1 1 1 4,5,6,84,85,87,88,149 5 -99834 cd06130 DNA_pol_III_epsilon_like 1 active site 0 1 1 1 4,5,6,7,82,83,85,86,87,145 1 -99834 cd06130 DNA_pol_III_epsilon_like 2 catalytic site 0 1 1 1 4,6,87,145 1 -99834 cd06130 DNA_pol_III_epsilon_like 3 substrate binding site 0 1 1 1 5,6,7,82,83,85,86,145 5 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 1 active site 0 1 1 1 4,5,6,7,86,87,89,90,91,154 1 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 2 catalytic site 0 1 1 1 4,6,91,154 1 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like 3 substrate binding site 0 1 1 1 5,6,7,86,87,89,90,154 5 -99836 cd06133 ERI-1_3'hExo_like 1 active site 0 1 1 1 4,5,6,7,96,97,98,99,100,163 1 -99836 cd06133 ERI-1_3'hExo_like 2 catalytic site 0 1 1 1 4,6,100,163 1 -99836 cd06133 ERI-1_3'hExo_like 3 substrate binding site 0 1 1 1 5,6,7,96,97,98,99,163 5 -99837 cd06134 RNaseT 1 active site 0 1 1 1 10,11,12,13,107,108,110,111,112,173 1 -99837 cd06134 RNaseT 2 catalytic site 0 1 1 1 10,12,112,173 1 -99837 cd06134 RNaseT 3 substrate binding site 0 1 1 1 11,12,13,107,108,110,111,173 5 -99838 cd06135 Orn 1 active site 0 1 1 1 4,5,6,7,99,100,102,103,104,156 1 -99838 cd06135 Orn 2 catalytic site 0 1 1 1 4,6,104,156 1 -99838 cd06135 Orn 3 substrate binding site 0 1 1 1 5,6,7,99,100,102,103,156 5 -99839 cd06136 TREX1_2 1 active site 0 1 1 1 4,5,6,7,103,104,107,108,109,165 1 -99839 cd06136 TREX1_2 2 catalytic site 0 1 1 1 4,6,109,165 1 -99839 cd06136 TREX1_2 3 substrate binding site 0 1 1 1 5,6,7,103,104,107,108,165 5 -99840 cd06137 DEDDh_RNase 1 active site 0 1 1 1 3,4,5,6,89,90,92,93,94,151 1 -99840 cd06137 DEDDh_RNase 2 catalytic site 0 1 1 1 3,5,94,151 1 -99840 cd06137 DEDDh_RNase 3 substrate binding site 0 1 1 1 4,5,6,89,90,92,93,151 5 -99846 cd06143 PAN2_exo 1 active site 0 1 1 1 3,4,5,6,107,108,110,111,112,164 1 -99846 cd06143 PAN2_exo 2 catalytic site 0 1 1 1 3,5,112,164 1 -99846 cd06143 PAN2_exo 3 substrate binding site 0 1 1 1 4,5,6,107,108,110,111,164 5 -99847 cd06144 REX4_like 1 active site 0 1 1 1 3,4,5,6,82,83,85,86,87,142 1 -99847 cd06144 REX4_like 2 catalytic site 0 1 1 1 3,5,87,142 1 -99847 cd06144 REX4_like 3 substrate binding site 0 1 1 1 4,5,6,82,83,85,86,142 5 -99852 cd06149 ISG20 1 active site 0 1 1 1 3,4,5,6,82,83,85,86,87,147 1 -99852 cd06149 ISG20 2 catalytic site 0 1 1 1 3,5,87,147 1 -99852 cd06149 ISG20 3 substrate binding site 0 1 1 1 4,5,6,82,83,85,86,147 5 -99848 cd06145 REX1_like 1 active site 0 1 1 1 3,4,5,6,81,82,84,85,86,140 1 -99848 cd06145 REX1_like 2 catalytic site 0 1 1 1 3,5,86,140 1 -99848 cd06145 REX1_like 3 substrate binding site 0 1 1 1 4,5,6,81,82,84,85,140 5 -99841 cd06138 ExoI_N 1 active site 0 1 1 1 3,4,5,6,89,90,93,94,95,173 1 -99841 cd06138 ExoI_N 2 catalytic site 0 1 1 1 3,5,95,173 1 -99841 cd06138 ExoI_N 3 substrate binding site 0 1 1 1 4,5,6,89,90,93,94,173 5 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 1 active site 0 1 1 1 4,5,6,7,58,59,61,62,63,136 1 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 2 catalytic site 0 1 1 1 4,6,63,136 1 -176656 cd09018 DEDDy_polA_RNaseD_like_exo 3 substrate binding site 0 1 1 1 5,6,7,58,59,61,62,136 5 -176649 cd06128 DNA_polA_exo 1 active site 0 1 1 1 6,7,8,9,58,59,61,62,63,137 1 -176649 cd06128 DNA_polA_exo 2 catalytic site 0 1 1 1 6,8,63,137 1 -176649 cd06128 DNA_polA_exo 3 substrate binding site 0 1 1 1 7,8,9,58,59,61,62,137 5 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 1 active site 0 1 1 1 10,11,12,13,72,73,75,76,77,154 1 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 2 catalytic site 0 1 1 1 10,12,77,154 1 -176651 cd06139 DNA_polA_I_Ecoli_like_exo 3 substrate binding site 0 1 1 1 11,12,13,72,73,75,76,154 5 -176652 cd06140 DNA_polA_I_Bacillus_like_exo 1 active site 0 1 1 1 8,9,10,11,61,62,64,65,66,140 1 -176652 cd06140 DNA_polA_I_Bacillus_like_exo 2 catalytic site 0 1 1 1 8,10,66,140 1 -176652 cd06140 DNA_polA_I_Bacillus_like_exo 3 substrate binding site 0 1 1 1 9,10,11,61,62,64,65,140 5 -176650 cd06129 RNaseD_like 1 active site 0 1 1 1 18,19,20,21,72,73,75,76,77,147 1 -176650 cd06129 RNaseD_like 2 catalytic site 0 1 1 1 18,20,77,147 1 -176650 cd06129 RNaseD_like 3 substrate binding site 0 1 1 1 19,20,21,72,73,75,76,147 5 -176653 cd06141 WRN_exo 1 active site 0 1 1 1 23,24,25,26,78,79,81,82,83,156 1 -176653 cd06141 WRN_exo 2 catalytic site 0 1 1 1 23,25,83,156 1 -176653 cd06141 WRN_exo 3 substrate binding site 0 1 1 1 24,25,26,78,79,81,82,156 5 -176655 cd06146 mut-7_like_exo 1 active site 0 1 1 1 27,28,29,30,87,88,90,91,92,179 1 -176655 cd06146 mut-7_like_exo 2 catalytic site 0 1 1 1 27,29,92,179 1 -176655 cd06146 mut-7_like_exo 3 substrate binding site 0 1 1 1 28,29,30,87,88,90,91,179 5 -176654 cd06142 RNaseD_exo 1 active site 0 1 1 1 17,18,19,20,69,70,72,73,74,144 1 -176654 cd06142 RNaseD_exo 2 catalytic site 0 1 1 1 17,19,74,144 1 -176654 cd06142 RNaseD_exo 3 substrate binding site 0 1 1 1 18,19,20,69,70,72,73,144 5 -99850 cd06147 Rrp6p_like_exo 1 active site 0 1 1 1 29,30,31,32,82,83,85,86,87,156 1 -99850 cd06147 Rrp6p_like_exo 2 catalytic site 0 1 1 1 29,31,87,156 1 -99850 cd06147 Rrp6p_like_exo 3 substrate binding site 0 1 1 1 30,31,32,82,83,85,86,156 5 -99851 cd06148 Egl_like_exo 1 active site 0 1 1 1 15,16,17,18,70,71,73,74,75,161 1 -99851 cd06148 Egl_like_exo 2 catalytic site 0 1 1 1 15,17,75,161 1 -99851 cd06148 Egl_like_exo 3 substrate binding site 0 1 1 1 16,17,18,70,71,73,74,161 5 -132726 cd06157 NR_LBD 1 ligand binding site 0 1 1 0 2,3,6,9,10,39,40,43,44,47,50,87 5 -132726 cd06157 NR_LBD 2 coregulator recognition site 0 1 1 1 11,14,18,23,28,29,31,32,35,36 0 -132727 cd06929 NR_LBD_F1 1 ligand binding site 0 1 1 0 6,7,10,13,14,43,44,47,48,51,54,87 5 -132727 cd06929 NR_LBD_F1 2 coregulator recognition site 0 1 1 1 15,18,22,27,32,33,35,36,39,40 0 -132730 cd06932 NR_LBD_PPAR 1 ligand binding site 0 1 1 0 67,68,71,74,75,104,105,108,109,112,115,149 5 -132730 cd06932 NR_LBD_PPAR 2 coregulator recognition site 0 1 1 1 76,79,83,88,93,94,96,97,100,101 0 -132731 cd06933 NR_LBD_VDR 1 ligand binding site 0 1 1 0 41,42,45,48,49,78,79,82,83,86,89,124 5 -132731 cd06933 NR_LBD_VDR 2 coregulator recognition site 0 1 1 1 50,53,57,62,67,68,70,71,74,75 0 -132732 cd06934 NR_LBD_PXR_like 1 ligand binding site 0 1 1 0 39,40,43,46,47,76,77,80,81,84,87,120 5 -132732 cd06934 NR_LBD_PXR_like 2 coregulator recognition site 0 1 1 1 48,51,55,60,65,66,68,69,72,73 0 -132733 cd06935 NR_LBD_TR 1 ligand binding site 0 1 1 0 56,57,60,63,64,93,94,97,98,101,104,137 5 -132733 cd06935 NR_LBD_TR 2 coregulator recognition site 0 1 1 1 65,68,72,77,82,83,85,86,89,90 0 -132734 cd06936 NR_LBD_Fxr 1 ligand binding site 0 1 1 0 40,41,44,47,48,77,78,81,82,85,88,118 5 -132734 cd06936 NR_LBD_Fxr 2 coregulator recognition site 0 1 1 1 49,52,56,61,66,67,69,70,73,74 0 -132735 cd06937 NR_LBD_RAR 1 ligand binding site 0 1 1 0 42,43,46,49,50,79,80,83,84,87,90,123 5 -132735 cd06937 NR_LBD_RAR 2 coregulator recognition site 0 1 1 1 51,54,58,63,68,69,71,72,75,76 0 -132736 cd06938 NR_LBD_EcR 1 ligand binding site 0 1 1 0 43,44,47,50,51,80,81,84,85,88,91,124 5 -132736 cd06938 NR_LBD_EcR 2 coregulator recognition site 0 1 1 1 52,55,59,64,69,70,72,73,76,77 0 -132737 cd06939 NR_LBD_ROR_like 1 ligand binding site 0 1 1 0 52,53,56,59,60,89,90,93,94,97,100,132 5 -132737 cd06939 NR_LBD_ROR_like 2 coregulator recognition site 0 1 1 1 61,64,68,73,78,79,81,82,85,86 0 -132738 cd06940 NR_LBD_REV_ERB 1 ligand binding site 0 1 1 0 16,17,20,23,24,53,54,57,58,61,64,97 5 -132738 cd06940 NR_LBD_REV_ERB 2 coregulator recognition site 0 1 1 1 25,28,32,37,42,43,45,46,49,50 0 -132739 cd06941 NR_LBD_DmE78_like 1 ligand binding site 0 1 1 0 6,7,10,13,14,43,44,47,48,51,54,87 5 -132739 cd06941 NR_LBD_DmE78_like 2 coregulator recognition site 0 1 1 1 15,18,22,27,32,33,35,36,39,40 0 -132740 cd06942 NR_LBD_Sex_1_like 1 ligand binding site 0 1 1 0 6,7,10,13,14,43,44,47,48,51,54,86 5 -132740 cd06942 NR_LBD_Sex_1_like 2 coregulator recognition site 0 1 1 1 15,18,22,27,32,33,35,36,39,40 0 -132752 cd06954 NR_LBD_LXR 1 ligand binding site 0 1 1 0 47,48,51,54,55,84,85,88,89,92,95,129 5 -132752 cd06954 NR_LBD_LXR 2 coregulator recognition site 0 1 1 1 56,59,63,68,73,74,76,77,80,81 0 -132728 cd06930 NR_LBD_F2 1 ligand binding site 0 1 1 0 3,4,7,10,11,40,41,44,45,48,51,86 5 -132728 cd06930 NR_LBD_F2 2 coregulator recognition site 0 1 1 1 12,15,19,24,29,30,32,33,36,37 0 -132729 cd06931 NR_LBD_HNF4_like 1 ligand binding site 0 1 1 0 36,37,40,43,44,73,74,77,78,81,84,117 5 -132729 cd06931 NR_LBD_HNF4_like 2 coregulator recognition site 0 1 1 1 45,48,52,57,62,63,65,66,69,70 0 -132741 cd06943 NR_LBD_RXR_like 1 ligand binding site 0 1 1 0 34,35,38,41,42,71,72,75,76,79,82,116 5 -132741 cd06943 NR_LBD_RXR_like 2 coregulator recognition site 0 1 1 1 43,46,50,55,60,61,63,64,67,68 0 -132742 cd06944 NR_LBD_Ftz-F1_like 1 ligand binding site 0 1 1 0 42,43,46,49,50,79,80,83,84,87,90,128 5 -132742 cd06944 NR_LBD_Ftz-F1_like 2 coregulator recognition site 0 1 1 1 51,54,58,63,68,69,71,72,75,76 0 -132754 cd07069 NR_LBD_Lrh-1 1 ligand binding site 0 1 1 0 44,45,48,51,52,81,82,85,86,89,92,130 5 -132754 cd07069 NR_LBD_Lrh-1 2 coregulator recognition site 0 1 1 1 53,56,60,65,70,71,73,74,77,78 0 -132755 cd07070 NR_LBD_SF-1 1 ligand binding site 0 1 1 0 42,43,46,49,50,79,80,83,84,87,90,128 5 -132755 cd07070 NR_LBD_SF-1 2 coregulator recognition site 0 1 1 1 51,54,58,63,68,69,71,72,75,76 0 -132745 cd06947 NR_LBD_GR_Like 1 ligand binding site 0 1 1 0 32,33,36,39,40,69,70,73,74,77,80,115 5 -132745 cd06947 NR_LBD_GR_Like 2 coregulator recognition site 0 1 1 1 41,44,48,53,58,59,61,62,65,66 0 -132758 cd07073 NR_LBD_AR 1 ligand binding site 0 1 1 0 32,33,36,39,40,69,70,73,74,77,80,115 5 -132758 cd07073 NR_LBD_AR 2 coregulator recognition site 0 1 1 1 41,44,48,53,58,59,61,62,65,66 0 -132759 cd07074 NR_LBD_PR 1 ligand binding site 0 1 1 0 32,33,36,39,40,69,70,73,74,77,80,115 5 -132759 cd07074 NR_LBD_PR 2 coregulator recognition site 0 1 1 1 41,44,48,53,58,59,61,62,65,66 0 -132760 cd07075 NR_LBD_MR 1 ligand binding site 0 1 1 0 32,33,36,39,40,69,70,73,74,77,80,115 5 -132760 cd07075 NR_LBD_MR 2 coregulator recognition site 0 1 1 1 41,44,48,53,58,59,61,62,65,66 0 -132761 cd07076 NR_LBD_GR 1 ligand binding site 0 1 1 0 32,33,36,39,40,69,70,73,74,77,80,115 5 -132761 cd07076 NR_LBD_GR 2 coregulator recognition site 0 1 1 1 41,44,48,53,58,59,61,62,65,66 0 -132746 cd06948 NR_LBD_COUP-TF 1 ligand binding site 0 1 1 0 34,35,38,41,42,71,72,75,76,79,82,117 5 -132746 cd06948 NR_LBD_COUP-TF 2 coregulator recognition site 0 1 1 1 43,46,50,55,60,61,63,64,67,68 0 -132748 cd06950 NR_LBD_Tlx_PNR_like 1 ligand binding site 0 1 1 0 30,31,34,37,38,67,68,71,72,75,78,111 5 -132748 cd06950 NR_LBD_Tlx_PNR_like 2 coregulator recognition site 0 1 1 1 39,42,46,51,56,57,59,60,63,64 0 -132749 cd06951 NR_LBD_Dax1_like 1 ligand binding site 0 1 1 0 23,24,27,30,31,60,61,64,65,68,71,119 5 -132749 cd06951 NR_LBD_Dax1_like 2 coregulator recognition site 0 1 1 1 32,35,39,44,49,50,52,53,56,57 0 -132763 cd07349 NR_LBD_SHP 1 ligand binding site 0 1 1 0 23,24,27,30,31,60,61,64,65,68,71,116 5 -132763 cd07349 NR_LBD_SHP 2 coregulator recognition site 0 1 1 1 32,35,39,44,49,50,52,53,56,57 0 -132764 cd07350 NR_LBD_Dax1 1 ligand binding site 0 1 1 0 23,24,27,30,31,60,61,64,65,68,71,128 5 -132764 cd07350 NR_LBD_Dax1 2 coregulator recognition site 0 1 1 1 32,35,39,44,49,50,52,53,56,57 0 -132750 cd06952 NR_LBD_TR2_like 1 ligand binding site 0 1 1 0 25,26,29,32,33,62,63,66,67,70,73,114 5 -132750 cd06952 NR_LBD_TR2_like 2 coregulator recognition site 0 1 1 1 34,37,41,46,51,52,54,55,58,59 0 -132751 cd06953 NR_LBD_DHR4_like 1 ligand binding site 0 1 1 0 31,32,35,38,39,68,69,72,73,76,79,116 5 -132751 cd06953 NR_LBD_DHR4_like 2 coregulator recognition site 0 1 1 1 40,43,47,52,57,58,60,61,64,65 0 -132753 cd07068 NR_LBD_ER_like 1 ligand binding site 0 1 1 0 31,32,35,38,39,68,69,72,73,76,79,112 5 -132753 cd07068 NR_LBD_ER_like 2 coregulator recognition site 0 1 1 1 40,43,47,52,57,58,60,61,64,65 0 -132744 cd06946 NR_LBD_ERR 1 ligand binding site 0 1 1 0 31,32,35,38,39,68,69,72,73,76,79,112 5 -132744 cd06946 NR_LBD_ERR 2 coregulator recognition site 0 1 1 1 40,43,47,52,57,58,60,61,64,65 0 -132747 cd06949 NR_LBD_ER 1 ligand binding site 0 1 1 0 36,37,40,43,44,73,74,77,78,81,84,118 5 -132747 cd06949 NR_LBD_ER 2 coregulator recognition site 0 1 1 1 45,48,52,57,62,63,65,66,69,70 0 -132743 cd06945 NR_LBD_Nurr1_like 1 ligand binding site 0 1 1 0 45,46,49,52,53,82,83,86,87,90,93,125 5 -132743 cd06945 NR_LBD_Nurr1_like 2 coregulator recognition site 0 1 1 1 54,57,61,66,71,72,74,75,78,79 0 -132756 cd07071 NR_LBD_Nurr1 1 ligand binding site 0 1 1 0 45,46,49,52,53,82,83,86,87,90,93,125 5 -132756 cd07071 NR_LBD_Nurr1 2 coregulator recognition site 0 1 1 1 54,57,61,66,71,72,74,75,78,79 0 -132757 cd07072 NR_LBD_DHR38_like 1 ligand binding site 0 1 1 0 46,47,50,53,54,83,84,87,88,91,94,126 5 -132757 cd07072 NR_LBD_DHR38_like 2 coregulator recognition site 0 1 1 1 55,58,62,67,72,73,75,76,79,80 0 -132762 cd07348 NR_LBD_NGFI-B 1 ligand binding site 0 1 1 0 45,46,49,52,53,82,83,86,87,90,93,125 5 -132762 cd07348 NR_LBD_NGFI-B 2 coregulator recognition site 0 1 1 1 54,57,61,66,71,72,74,75,78,79 0 -132884 cd06169 BMC 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,38 2 -132884 cd06169 BMC 2 Hexagonal pore residue 0 1 1 1 32 0 -132885 cd07045 BMC_CcmK_like 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,37 2 -132885 cd07045 BMC_CcmK_like 2 Hexagonal pore residue 0 1 1 1 32 0 -132897 cd07057 BMC_CcmK 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,37 2 -132897 cd07057 BMC_CcmK 2 Hexagonal pore residue 0 1 1 1 32 0 -132898 cd07058 BMC_CsoS1 1 Hexamer interface 0 1 1 0 7,10,19,22,23,29,34,39 2 -132898 cd07058 BMC_CsoS1 2 Hexagonal pore residue 0 1 1 1 34 0 -132899 cd07059 BMC_PduA 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,37 2 -132899 cd07059 BMC_PduA 2 Hexagonal pore residue 0 1 1 1 32 0 -132886 cd07046 BMC_PduU-EutS 1 Hexamer interface 0 1 1 0 43,46,55,58,59,65,70,72 2 -132886 cd07046 BMC_PduU-EutS 2 Hexagonal pore residue 0 1 1 1 70 0 -132887 cd07047 BMC_PduB_repeat1 1 Hexamer interface 0 1 1 0 42,45,52,55,56,62,67,77 2 -132887 cd07047 BMC_PduB_repeat1 2 Hexagonal pore residue 0 1 1 1 67 0 -132888 cd07048 BMC_PduB_repeat2 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,42 2 -132888 cd07048 BMC_PduB_repeat2 2 Hexagonal pore residue 0 1 1 1 32 0 -132889 cd07049 BMC_EutL_repeat1 1 Hexamer interface 0 1 1 0 30,33,42,45,46,52,57,72 2 -132889 cd07049 BMC_EutL_repeat1 2 Hexagonal pore residue 0 1 1 1 57 0 -132890 cd07050 BMC_EutL_repeat2 1 Hexamer interface 0 1 1 0 21,24,32,35,36,42,47,54 2 -132890 cd07050 BMC_EutL_repeat2 2 Hexagonal pore residue 0 1 1 1 47 0 -132891 cd07051 BMC_like_1_repeat1 1 Hexamer interface 0 1 1 0 37,40,49,52,53,59,64,68 2 -132891 cd07051 BMC_like_1_repeat1 2 Hexagonal pore residue 0 1 1 1 64 0 -132892 cd07052 BMC_like_1_repeat2 1 Hexamer interface 0 1 1 0 23,26,35,38,39,45,50,54 2 -132892 cd07052 BMC_like_1_repeat2 2 Hexagonal pore residue 0 1 1 1 50 0 -132893 cd07053 BMC_PduT_repeat1 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,37 2 -132893 cd07053 BMC_PduT_repeat1 2 Hexagonal pore residue 0 1 1 1 32 0 -132894 cd07054 BMC_PduT_repeat2 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,39 2 -132894 cd07054 BMC_PduT_repeat2 2 Hexagonal pore residue 0 1 1 1 32 0 -132895 cd07055 BMC_like_2 1 Hexamer interface 0 1 1 0 5,8,16,19,20,26,31,37 2 -132895 cd07055 BMC_like_2 2 Hexagonal pore residue 0 1 1 1 31 0 -132896 cd07056 BMC_PduK 1 Hexamer interface 0 1 1 0 5,8,17,20,21,27,32,38 2 -132896 cd07056 BMC_PduK 2 Hexagonal pore residue 0 1 1 1 32 0 -99777 cd06170 LuxR_C_like 1 DNA binding residues 0 1 1 1 1,2,3,16,17,18,26,27,29,30,32,33,34,35,36,47 3 -99777 cd06170 LuxR_C_like 2 dimerization interface 0 1 1 1 12,14,16,47,48,49,52,55,56 2 -100119 cd06171 Sigma70_r4 1 DNA binding residues 0 1 1 1 11,21,27,28,38,40,41,43,44,45,47,48,50 3 -349949 cd06174 MFS 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,211,214,215,218,219,220,223,251,255,305,306,310,314,330,333,334,337,338,341 5 -340862 cd06172 MFS_LacY 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,109,110,112,113,114,117,135,138,139,142,217,220,221,224,225,226,229,260,264,313,314,318,322,339,342,343,346,347,350 5 -340863 cd06173 MFS_MefA_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,105,106,108,109,110,113,133,136,137,140,216,219,220,223,224,225,228,252,256,309,310,314,318,334,337,338,341,342,345 5 -340865 cd06175 MFS_POT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,123,124,126,127,128,131,154,157,158,161,210,213,214,217,218,219,222,253,257,333,334,338,342,358,361,362,365,366,369 5 -340904 cd17346 MFS_DtpA_like 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,56,108,109,111,112,113,116,138,141,142,145,202,205,206,209,210,211,214,246,250,315,316,320,324,340,343,344,347,348,351 5 -340905 cd17347 MFS_SLC15A1_2_like 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,112,113,115,116,117,120,143,146,147,150,213,216,217,220,221,222,225,256,260,344,345,349,353,369,372,373,376,377,380 5 -340969 cd17411 MFS_SLC15A2 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,114,115,117,118,119,122,145,148,149,152,215,218,219,222,223,224,227,258,262,320,321,325,329,345,348,349,352,353,356 5 -340970 cd17412 MFS_SLC15A1 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,123,124,126,127,128,131,154,157,158,161,226,229,230,233,234,235,238,269,273,331,332,336,340,356,359,360,363,364,367 5 -340906 cd17348 MFS_SLC15A3_4 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,55,105,106,108,109,110,113,136,139,140,143,200,203,204,207,208,209,212,254,258,342,343,347,351,367,370,371,374,375,378 5 -340907 cd17349 MFS_SLC15A5 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,126,127,129,130,131,134,157,160,161,164,221,224,225,228,229,230,233,264,268,348,349,353,357,373,376,377,380,381,384 5 -340908 cd17350 MFS_PTR2 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,62,122,123,125,126,127,130,169,172,173,176,240,243,244,247,248,249,252,279,283,362,363,367,371,387,390,391,394,395,398 5 -340909 cd17351 MFS_NPF 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,124,125,127,128,129,132,158,161,162,165,222,225,226,229,230,231,234,266,270,352,353,357,361,377,380,381,384,385,388 5 -340971 cd17413 MFS_NPF6 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,129,130,132,133,134,137,163,166,167,170,238,241,242,245,246,247,250,281,285,364,365,369,373,389,392,393,396,397,400 5 -340972 cd17414 MFS_NPF4 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,129,130,132,133,134,137,163,166,167,170,233,236,237,240,241,242,245,277,281,362,363,367,371,387,390,391,394,395,398 5 -340973 cd17415 MFS_NPF3 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,128,129,131,132,133,136,162,165,166,169,226,229,230,233,234,235,238,270,274,356,357,361,365,381,384,385,388,389,392 5 -340974 cd17416 MFS_NPF1_2 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,125,126,128,129,130,133,159,162,163,166,225,228,229,232,233,234,237,269,273,350,351,355,359,375,378,379,382,383,386 5 -340975 cd17417 MFS_NPF5 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,125,126,128,129,130,133,159,162,163,166,227,230,231,234,235,236,239,271,275,356,357,361,365,381,384,385,388,389,392 5 -340976 cd17418 MFS_NPF8 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,126,127,129,130,131,134,160,163,164,167,224,227,228,231,232,233,236,267,271,352,353,357,361,377,380,381,384,385,388 5 -340977 cd17419 MFS_NPF7 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,54,128,129,131,132,133,136,162,165,166,169,226,229,230,233,234,235,238,269,273,354,355,359,363,379,382,383,386,387,390 5 -349950 cd06176 MFS_BCD_PucC-like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,51,116,117,119,120,121,124,144,147,148,151,234,237,238,241,242,243,246,276,280,326,327,331,335,353,356,357,360,361,364 5 -340866 cd06177 MFS_NHS 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,49,100,101,103,104,105,108,126,129,130,133,207,210,211,214,215,216,219,246,250,302,303,307,311,327,330,331,334,335,338 5 -340868 cd06179 MFS_TRI12_like 1 putative chemical substrate binding pocket 0 1 1 1 9,10,13,14,17,48,98,99,101,102,103,106,125,128,129,132,270,273,274,277,278,279,282,310,314,366,367,371,375,391,394,395,398,399,402 5 -340869 cd06180 MFS_YjiJ 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,124,127,128,131,204,207,208,211,212,213,216,243,247,292,293,297,301,320,323,324,327,328,331 5 -340870 cd17312 MFS_OPA_SLC37 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,191,194,195,198,199,200,203,231,235,288,289,293,297,314,317,318,321,322,325 5 -340900 cd17342 MFS_SLC37A3 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,79,135,136,138,139,140,143,163,166,167,170,221,224,225,228,229,230,233,261,265,316,317,321,325,349,352,353,356,357,360 5 -340901 cd17343 MFS_SLC37A4 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,224,227,228,231,232,233,236,264,268,332,333,337,341,357,360,361,364,365,368 5 -340902 cd17344 MFS_SLC37A1_2 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,78,133,134,136,137,138,141,161,164,165,168,219,222,223,226,227,228,231,259,263,315,316,320,324,348,351,352,355,356,359 5 -340903 cd17345 MFS_GlpT 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,108,109,111,112,113,116,136,139,140,143,239,242,243,246,247,248,251,279,283,335,336,340,344,360,363,364,367,368,371 5 -341041 cd17488 MFS_UhpC 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,191,194,195,198,199,200,203,231,235,289,290,294,298,314,317,318,321,322,325 5 -340871 cd17313 MFS_SLC45_SUC 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,118,119,121,122,123,126,146,149,150,153,242,245,246,249,250,251,254,293,297,346,347,351,355,373,376,377,380,381,384 5 -340872 cd17314 MFS_MCT_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,214,217,218,221,222,223,226,254,258,310,311,315,319,335,338,339,342,343,346 5 -340910 cd17352 MFS_MCT_SLC16 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,285,286,290,294,310,313,314,317,318,321 5 -340978 cd17420 MFS_MCT8_10 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,229,232,233,236,237,238,241,268,272,324,325,329,333,349,352,353,356,357,360 5 -341022 cd17464 MFS_MCT10 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,224,227,228,231,232,233,236,263,267,319,320,324,328,344,347,348,351,352,355 5 -341023 cd17465 MFS_MCT8 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,59,110,111,113,114,115,118,137,140,141,144,196,199,200,203,204,205,208,235,239,291,292,296,300,316,319,320,323,324,327 5 -340979 cd17421 MFS_MCT5 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,130,133,134,137,195,198,199,202,203,204,207,234,238,289,290,294,298,314,317,318,321,322,325 5 -340980 cd17422 MFS_MCT7 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,285,286,290,294,312,315,316,319,320,323 5 -340981 cd17423 MFS_MCT11_13 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,213,216,217,220,221,222,225,252,256,307,308,312,316,332,335,336,339,340,343 5 -340982 cd17424 MFS_MCT12 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,230,234,287,288,292,296,312,315,316,319,320,323 5 -340983 cd17425 MFS_MCT6 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,192,195,196,199,200,201,204,231,235,288,289,293,297,313,316,317,320,321,324 5 -340984 cd17426 MFS_MCT1 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,202,205,206,209,210,211,214,241,245,298,299,303,307,323,326,327,330,331,334 5 -340985 cd17427 MFS_MCT2 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,195,198,199,202,203,204,207,234,238,291,292,296,300,316,319,320,323,324,327 5 -340986 cd17428 MFS_MCT9 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,231,235,286,287,291,295,310,313,314,317,318,321 5 -340987 cd17429 MFS_MCT14 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,191,194,195,198,199,200,203,231,235,286,287,291,295,310,313,314,317,318,321 5 -340988 cd17430 MFS_MCT3_4 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,196,199,200,203,204,205,208,235,239,292,293,297,301,317,320,321,324,325,328 5 -340911 cd17353 MFS_OFA_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,105,106,108,109,110,113,132,135,136,139,221,224,225,228,229,230,233,261,265,315,316,320,324,340,343,344,347,348,351 5 -340912 cd17354 MFS_Mch1p_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,53,110,111,113,114,115,118,137,140,141,144,204,207,208,211,212,213,216,242,246,301,302,306,310,326,329,330,333,334,337 5 -340913 cd17355 MFS_YcxA_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,54,101,102,104,105,106,109,133,136,137,140,215,218,219,222,223,224,227,257,261,311,312,316,320,336,339,340,343,344,347 5 -340873 cd17315 MFS_GLUT_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,50,100,101,103,104,105,108,128,131,132,135,187,190,191,194,195,196,199,226,230,288,289,293,297,313,316,317,320,321,324 5 -340914 cd17356 MFS_HXT 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,61,112,113,115,116,117,120,140,143,144,147,204,207,208,211,212,213,216,244,248,314,315,319,323,339,342,343,346,347,350 5 -340915 cd17357 MFS_GLUT_Class1_2_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,65,118,119,121,122,123,126,146,149,150,153,265,268,269,272,273,274,277,305,309,367,368,372,376,392,395,396,399,400,403 5 -340989 cd17431 MFS_GLUT_Class1 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,66,119,120,122,123,124,127,147,150,151,154,265,268,269,272,273,274,277,303,307,365,366,370,374,390,393,394,397,398,401 5 -340990 cd17432 MFS_GLUT_Class2 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,66,119,120,122,123,124,127,147,150,151,154,265,268,269,272,273,274,277,305,309,367,368,372,376,392,395,396,399,400,403 5 -340916 cd17358 MFS_GLUT6_8_Class3_like 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,57,107,108,110,111,112,115,135,138,139,142,247,250,251,254,255,256,259,286,290,351,352,356,360,376,379,380,383,384,387 5 -340991 cd17433 MFS_GLUT8_Class3 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,57,107,108,110,111,112,115,135,138,139,142,244,247,248,251,252,253,256,282,286,331,332,336,340,356,359,360,363,364,367 5 -340992 cd17434 MFS_GLUT6_Class3 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,57,107,108,110,111,112,115,135,138,139,142,244,247,248,251,252,253,256,283,287,332,333,337,341,357,360,361,364,365,368 5 -340917 cd17359 MFS_XylE_like 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,52,102,103,105,106,107,110,130,133,134,137,204,207,208,211,212,213,216,244,248,306,307,311,315,331,334,335,338,339,342 5 -340918 cd17360 MFS_HMIT_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,51,101,102,104,105,106,109,129,132,133,136,194,197,198,201,202,203,206,235,239,285,286,290,294,310,313,314,317,318,321 5 -340919 cd17361 MFS_STP 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,67,117,118,120,121,122,125,145,148,149,152,207,210,211,214,215,216,219,247,251,314,315,319,323,339,342,343,346,347,350 5 -340920 cd17362 MFS_GLUT10_12_Class3_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,55,105,106,108,109,110,113,133,136,137,140,199,202,203,206,207,208,211,240,244,303,304,308,312,328,331,332,335,336,339 5 -340993 cd17435 MFS_GLUT12_Class3 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,52,102,103,105,106,107,110,130,133,134,137,199,202,203,206,207,208,211,240,244,290,291,295,299,315,318,319,322,323,326 5 -340994 cd17436 MFS_GLUT10_Class3 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,52,102,103,105,106,107,110,130,133,134,137,199,202,203,206,207,208,211,240,244,290,291,295,299,315,318,319,322,323,326 5 -340995 cd17437 MFS_PLT 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,48,98,99,101,102,103,106,126,129,130,133,194,197,198,201,202,203,206,235,239,301,302,306,310,326,329,330,333,334,337 5 -340874 cd17316 MFS_SV2_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,52,102,103,105,106,107,110,130,133,134,137,185,188,189,192,193,194,197,225,229,280,281,285,289,305,308,309,312,313,316 5 -340921 cd17363 MFS_SV2 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,344,348,397,398,402,406,422,425,426,429,430,433 5 -340996 cd17438 MFS_SV2B 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,347,351,400,401,405,409,425,428,429,432,433,436 5 -340997 cd17439 MFS_SV2A 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,348,352,401,402,406,410,426,429,430,433,434,437 5 -340998 cd17440 MFS_SV2C 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,240,243,244,247,248,249,252,349,353,402,403,407,411,427,430,431,434,435,438 5 -340922 cd17364 MFS_PhT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,55,111,112,114,115,116,119,139,142,143,146,204,207,208,211,212,213,216,252,256,311,312,316,320,336,339,340,343,344,347 5 -340923 cd17365 MFS_PcaK_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,179,182,183,186,187,188,191,218,222,272,273,277,281,297,300,301,304,305,308 5 -340924 cd17366 MFS_ProP 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,201,204,205,208,209,210,213,241,245,297,298,302,306,322,325,326,329,330,333 5 -340925 cd17367 MFS_KgtP 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,231,234,235,238,239,240,243,271,275,328,329,333,337,353,356,357,360,361,364 5 -340926 cd17368 MFS_CitA 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,56,114,115,117,118,119,122,142,145,146,149,230,233,234,237,238,239,242,270,274,327,328,332,336,352,355,356,359,360,363 5 -340927 cd17369 MFS_ShiA_like 1 putative chemical substrate binding pocket 0 1 1 1 13,14,17,18,21,60,118,119,121,122,123,126,146,149,150,153,236,239,240,243,244,245,248,276,280,333,334,338,342,358,361,362,365,366,369 5 -340929 cd17371 MFS_MucK 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,217,220,221,224,225,226,229,257,261,311,312,316,320,336,339,340,343,344,347 5 -340930 cd17372 MFS_SVOP_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,182,185,186,189,190,191,194,241,245,294,295,299,303,319,322,323,326,327,330 5 -340999 cd17441 MFS_SVOP 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,187,190,191,194,195,196,199,245,249,298,299,303,307,323,326,327,330,331,334 5 -341000 cd17442 MFS_SVOPL 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,52,102,103,105,106,107,110,129,132,133,136,184,187,188,191,192,193,196,248,252,301,302,306,310,326,329,330,333,334,337 5 -340875 cd17317 MFS_SLC22 1 putative chemical substrate binding pocket 0 1 1 1 9,10,13,14,17,41,91,92,94,95,96,99,115,118,119,122,171,174,175,178,179,180,183,203,207,258,259,263,267,283,286,287,290,291,294 5 -340931 cd17373 MFS_SLC22A17_like 1 putative chemical substrate binding pocket 0 1 1 1 9,10,13,14,17,41,91,92,94,95,96,99,115,118,119,122,171,174,175,178,179,180,183,204,208,275,276,280,284,300,303,304,307,308,311 5 -341001 cd17443 MFS_SLC22A31 1 putative chemical substrate binding pocket 0 1 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,214,218,270,271,275,279,295,298,299,302,303,306 5 -341002 cd17444 MFS_SLC22A23 1 putative chemical substrate binding pocket 0 1 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,220,224,291,292,296,300,316,319,320,323,324,327 5 -341003 cd17445 MFS_SLC22A17 1 putative chemical substrate binding pocket 0 1 1 1 20,21,24,25,28,52,102,103,105,106,107,110,126,129,130,133,182,185,186,189,190,191,194,217,221,273,274,278,282,298,301,302,305,306,309 5 -340932 cd17374 MFS_OAT 1 putative chemical substrate binding pocket 0 1 1 1 17,18,21,22,25,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -341004 cd17446 MFS_SLC22A6_OAT1_like 1 putative chemical substrate binding pocket 0 1 1 1 17,18,21,22,25,49,99,100,102,103,104,107,123,126,127,130,179,182,183,186,187,188,191,211,215,266,267,271,275,291,294,295,298,299,302 5 -341005 cd17447 MFS_SLC22A7_OAT2 1 putative chemical substrate binding pocket 0 1 1 1 17,18,21,22,25,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -340933 cd17375 MFS_SLC22A16_CT2 1 putative chemical substrate binding pocket 0 1 1 1 19,20,23,24,27,51,101,102,104,105,106,109,125,128,129,132,181,184,185,188,189,190,193,213,217,268,269,273,277,293,296,297,300,301,304 5 -340934 cd17376 MFS_SLC22A4_5_OCTN1_2 1 putative chemical substrate binding pocket 0 1 1 1 19,20,23,24,27,51,101,102,104,105,106,109,126,129,130,133,182,185,186,189,190,191,194,214,218,269,270,274,278,294,297,298,301,302,305 5 -340935 cd17377 MFS_SLC22A15 1 putative chemical substrate binding pocket 0 1 1 1 23,24,27,28,31,55,105,106,108,109,110,113,129,132,133,136,185,188,189,192,193,194,197,217,221,280,281,285,289,305,308,309,312,313,316 5 -340936 cd17378 MFS_OCT_plant 1 putative chemical substrate binding pocket 0 1 1 1 17,18,21,22,25,49,100,101,103,104,105,108,124,127,128,131,181,184,185,188,189,190,193,213,217,269,270,274,278,294,297,298,301,302,305 5 -340937 cd17379 MFS_SLC22A1_2_3 1 putative chemical substrate binding pocket 0 1 1 1 17,18,21,22,25,49,99,100,102,103,104,107,123,126,127,130,179,182,183,186,187,188,191,211,215,266,267,271,275,291,294,295,298,299,302 5 -340876 cd17318 MFS_SLC17 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,72,124,125,127,128,129,132,152,155,156,159,207,210,211,214,215,216,219,247,251,310,311,315,319,335,338,339,342,343,346 5 -340938 cd17380 MFS_SLC17A9_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,102,103,105,106,107,110,130,133,134,137,185,188,189,192,193,194,197,224,228,285,286,290,294,310,313,314,317,318,321 5 -340939 cd17381 MFS_SLC17A5 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,81,133,134,136,137,138,141,161,164,165,168,216,219,220,223,224,225,228,256,260,319,320,324,328,344,347,348,351,352,355 5 -340940 cd17382 MFS_SLC17A6_7_8_VGluT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,65,117,118,120,121,122,125,145,148,149,152,200,203,204,207,208,209,212,240,244,302,303,307,311,327,330,331,334,335,338 5 -340877 cd17319 MFS_ExuT_GudP_like 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,104,105,107,108,109,112,132,135,136,139,187,190,191,194,195,196,199,227,231,283,284,288,292,308,311,312,315,316,319 5 -340878 cd17320 MFS_MdfA_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,209,212,213,216,217,218,221,249,253,307,308,312,316,331,334,335,338,339,342 5 -340879 cd17321 MFS_MMR_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,176,179,180,183,184,185,188,216,220,272,273,277,281,297,300,301,304,305,308 5 -341029 cd17476 MFS_Amf1_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 9,10,13,14,17,49,99,100,102,103,104,107,128,131,132,135,181,184,185,188,189,190,193,224,228,281,282,286,290,306,309,310,313,314,317 5 -341045 cd17502 MFS_Azr1_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,46,96,97,99,100,101,104,124,127,128,131,175,178,179,182,183,184,187,215,219,272,273,277,281,297,300,301,304,305,308 5 -341046 cd17503 MFS_LmrB_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,186,189,190,193,194,195,198,226,230,282,283,287,291,307,310,311,314,315,318 5 -341047 cd17504 MFS_MMR_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,185,188,189,192,193,194,197,229,233,283,284,288,292,308,311,312,315,316,319 5 -340880 cd17322 MFS_ARN_like 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,53,103,104,106,107,108,111,127,130,131,134,293,296,297,300,301,302,305,333,337,391,392,396,400,416,419,420,423,424,427 5 -340881 cd17323 MFS_Tpo1_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,183,186,187,190,191,192,195,219,223,295,296,300,304,319,322,323,326,327,330 5 -340882 cd17324 MFS_NepI_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,206,209,210,213,214,215,218,246,250,299,300,304,308,323,326,327,330,331,334 5 -340883 cd17325 MFS_MdtG_SLC18_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340941 cd17383 MFS_SLC18A3_VAChT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,46,96,97,99,100,101,104,125,128,129,132,205,208,209,212,213,214,217,245,249,298,299,303,307,328,331,332,335,336,339 5 -340942 cd17384 MFS_SLC18A1_2_VAT1_2 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,47,97,98,100,101,102,105,126,129,130,133,202,205,206,209,210,211,214,242,246,295,296,300,304,323,326,327,330,331,334 5 -340943 cd17385 MFS_SLC18B1 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,107,108,110,111,112,115,134,137,138,141,209,212,213,216,217,218,221,248,252,308,309,313,317,340,343,344,347,348,351 5 -340949 cd17391 MFS_MdtG_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,52,102,103,105,106,107,110,129,132,133,136,209,212,213,216,217,218,221,252,256,305,306,310,314,330,333,334,337,338,341 5 -341042 cd17489 MFS_YfcJ_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,202,205,206,209,210,211,214,239,243,292,293,297,301,317,320,321,324,325,328 5 -341043 cd17490 MFS_YxlH_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,98,99,101,102,103,106,125,128,129,132,203,206,207,210,211,212,215,242,246,296,297,301,305,321,324,325,328,329,332 5 -340885 cd17327 MFS_FEN2_like 1 putative chemical substrate binding pocket 0 1 1 1 16,17,20,21,24,57,107,108,110,111,112,115,135,138,139,142,241,244,245,248,249,250,253,280,284,334,335,339,343,360,363,364,367,368,371 5 -340886 cd17328 MFS_spinster_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,215,218,219,222,223,224,227,259,263,316,317,321,325,345,348,349,352,353,356 5 -340887 cd17329 MFS_MdtH_MDR_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,101,102,104,105,106,109,129,132,133,136,208,211,212,215,216,217,220,248,252,301,302,306,310,326,329,330,333,334,337 5 -340888 cd17330 MFS_SLC46_TetA_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,50,100,101,103,104,105,108,127,130,131,134,182,185,186,189,190,191,194,222,226,276,277,281,285,301,304,305,308,309,312 5 -340884 cd17326 MFS_MFSD8 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,52,108,109,111,112,113,116,135,138,139,142,205,208,209,212,213,214,217,246,250,295,296,300,304,320,323,324,327,328,331 5 -340889 cd17331 MFS_SLC22A18 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,51,100,101,103,104,105,108,127,130,131,134,215,218,219,222,223,224,227,255,259,309,310,314,318,334,337,338,341,342,345 5 -340944 cd17386 MFS_SLC46 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,46,102,103,105,106,107,110,132,135,136,139,187,190,191,194,195,196,199,227,231,282,283,287,291,307,310,311,314,315,318 5 -341006 cd17448 MFS_SLC46A3 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,85,139,140,142,143,144,147,170,173,174,177,225,228,229,232,233,234,237,266,270,318,319,323,327,343,346,347,350,351,354 5 -341007 cd17449 MFS_SLC46A1_PCFT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,81,135,136,138,139,140,143,165,168,169,172,254,257,258,261,262,263,266,295,299,347,348,352,356,372,375,376,379,380,383 5 -341008 cd17450 MFS_SLC46A2_TSCOT 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,67,121,122,124,125,126,129,151,154,155,158,212,215,216,219,220,221,224,253,257,305,306,310,314,330,333,334,337,338,341 5 -340945 cd17387 MFS_MFSD14 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,52,100,101,103,104,105,108,127,130,131,134,216,219,220,223,224,225,228,256,260,309,310,314,318,334,337,338,341,342,345 5 -340946 cd17388 MFS_TetA 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,54,104,105,107,108,109,112,131,134,135,138,214,217,218,221,222,223,226,254,258,307,308,312,316,332,335,336,339,340,343 5 -340947 cd17389 MFS_MFSD10 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,80,130,131,133,134,135,138,157,160,161,164,223,226,227,230,231,232,235,263,267,316,317,321,325,341,344,345,348,349,352 5 -340948 cd17390 MFS_MFSD9 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,180,183,184,187,188,189,192,220,224,275,276,280,284,300,303,304,307,308,311 5 -340890 cd17332 MFS_MelB_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,229,232,233,236,237,238,241,269,273,323,324,328,332,355,358,359,362,363,366 5 -340950 cd17392 MFS_MFSD2 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,250,253,254,257,258,259,262,290,294,343,344,348,352,377,380,381,384,385,388 5 -341009 cd17451 MFS_NLS1_MFSD2A 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,223,226,227,230,231,232,235,263,267,316,317,321,325,350,353,354,357,358,361 5 -341010 cd17452 MFS_MFSD2B 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,112,113,115,116,117,120,141,144,145,148,222,225,226,229,230,231,234,262,266,313,314,318,322,347,350,351,354,355,358 5 -341044 cd17491 MFS_MFSD12 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,119,120,122,123,124,127,148,151,152,155,252,255,256,259,260,261,264,294,298,348,349,353,357,375,378,379,382,383,386 5 -340891 cd17333 MFS_FucP_MFSD4_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340951 cd17393 MFS_MosC_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,207,210,211,214,215,216,219,247,251,300,301,305,309,325,328,329,332,333,336 5 -340952 cd17394 MFS_FucP_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,103,104,106,107,108,111,131,134,135,138,235,238,239,242,243,244,247,276,280,328,329,333,337,352,355,356,359,360,363 5 -340953 cd17395 MFS_MFSD4 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,48,98,99,101,102,103,106,125,128,129,132,200,203,204,207,208,209,212,240,244,294,295,299,303,318,321,322,325,326,329 5 -341011 cd17453 MFS_MFSD4A 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,101,102,104,105,106,109,128,131,132,135,249,252,253,256,257,258,261,290,294,344,345,349,353,368,371,372,375,376,379 5 -341012 cd17454 MFS_NaGLT1_MFSD4B 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,48,98,99,101,102,103,106,125,128,129,132,199,202,203,206,207,208,211,239,243,293,294,298,302,317,320,321,324,325,328 5 -340954 cd17396 MFS_YdiM_like 1 putative chemical substrate binding pocket 0 1 1 1 11,12,15,16,19,51,101,102,104,105,106,109,128,131,132,135,207,210,211,214,215,216,219,250,254,305,306,310,314,330,333,334,337,338,341 5 -340892 cd17334 MFS_SLC49 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,109,110,112,113,114,117,137,140,141,144,232,235,236,239,240,241,244,271,275,332,333,337,341,357,360,361,364,365,368 5 -340955 cd17397 MFS_DIRC2 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,54,109,110,112,113,114,117,137,140,141,144,213,216,217,220,221,222,225,252,256,313,314,318,322,338,341,342,345,346,349 5 -340956 cd17398 MFS_FLVCR_like 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,234,237,238,241,242,243,246,274,278,331,332,336,340,356,359,360,363,364,367 5 -341013 cd17455 MFS_FLVCR1 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,235,238,239,242,243,244,247,275,279,332,333,337,341,357,360,361,364,365,368 5 -341014 cd17456 MFS_FLVCR2 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,108,109,111,112,113,116,136,139,140,143,234,237,238,241,242,243,246,274,278,331,332,336,340,356,359,360,363,364,367 5 -340957 cd17399 MFS_MFSD7 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,113,114,116,117,118,121,141,144,145,148,227,230,231,234,235,236,239,266,270,324,325,329,333,349,352,353,356,357,360 5 -340893 cd17335 MFS_MFSD6 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,48,100,101,103,104,105,108,126,129,130,133,206,209,210,213,214,215,218,245,249,298,299,303,307,328,331,332,335,336,339 5 -340894 cd17336 MFS_SLCO_OATP 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,101,102,104,105,106,109,129,132,133,136,203,206,207,210,211,212,215,244,248,289,290,294,298,353,356,357,360,361,364 5 -340958 cd17400 MFS_SLCO1_OATP1 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,114,115,117,118,119,122,142,145,146,149,219,222,223,226,227,228,231,260,264,305,306,310,314,375,378,379,382,383,386 5 -341015 cd17457 MFS_SLCO1B_OATP1B 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,121,122,124,125,126,129,149,152,153,156,238,241,242,245,246,247,250,279,283,324,325,329,333,394,397,398,401,402,405 5 -341016 cd17458 MFS_SLCO1A_OATP1A 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,154,155,157,158,159,162,182,185,186,189,310,313,314,317,318,319,322,351,355,396,397,401,405,466,469,470,473,474,477 5 -341017 cd17459 MFS_SLCO1C_OATP1C 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,158,159,161,162,163,166,186,189,190,193,280,283,284,287,288,289,292,321,325,366,367,371,375,436,439,440,443,444,447 5 -340959 cd17401 MFS_SLCO2_OATP2 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,110,111,113,114,115,118,138,141,142,145,231,234,235,238,239,240,243,272,276,317,318,322,326,386,389,390,393,394,397 5 -341018 cd17460 MFS_SLCO2B_OATP2B 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,110,111,113,114,115,118,138,141,142,145,269,272,273,276,277,278,281,310,314,355,356,360,364,423,426,427,430,431,434 5 -341019 cd17461 MFS_SLCO2A_OATP2A 1 putative chemical substrate binding pocket 0 1 1 1 15,16,19,20,23,55,114,115,117,118,119,122,142,145,146,149,265,268,269,272,273,274,277,306,310,351,352,356,360,418,421,422,425,426,429 5 -340960 cd17402 MFS_SLCO3_OATP3 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,114,115,117,118,119,122,142,145,146,149,238,241,242,245,246,247,250,279,283,324,325,329,333,386,389,390,393,394,397 5 -340961 cd17403 MFS_SLCO4_OATP4 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,208,211,212,215,216,217,220,249,253,293,294,298,302,361,364,365,368,369,372 5 -341020 cd17462 MFS_SLCO4A_OATP4A 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,214,217,218,221,222,223,226,255,259,299,300,304,308,370,373,374,377,378,381 5 -341021 cd17463 MFS_SLCO4C_OATP4C 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,55,104,105,107,108,109,112,132,135,136,139,216,219,220,223,224,225,228,257,261,302,303,307,311,368,371,372,375,376,379 5 -340962 cd17404 MFS_SLCO5_OATP5 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,101,102,104,105,106,109,129,132,133,136,204,207,208,211,212,213,216,245,249,290,291,295,299,362,365,366,369,370,373 5 -340963 cd17405 MFS_SLCO6_OATP6 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,103,104,106,107,108,111,131,134,135,138,214,217,218,221,222,223,226,255,259,300,301,305,309,366,369,370,373,374,377 5 -340895 cd17337 MFS_CsbX 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,48,102,103,105,106,107,110,131,134,135,138,216,219,220,223,224,225,228,256,260,315,316,320,324,338,341,342,345,346,349 5 -340896 cd17338 MFS_unc93_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,45,94,95,97,98,99,102,126,129,130,133,215,218,219,222,223,224,227,254,258,308,309,313,317,340,343,344,347,348,351 5 -340867 cd06178 MFS_unc93-like 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,48,101,102,104,105,106,109,133,136,137,140,223,226,227,230,231,232,235,258,262,329,330,334,338,363,366,367,370,371,374 5 -340964 cd17406 MFS_unc93A_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,46,96,97,99,100,101,104,138,141,142,145,220,223,224,227,228,229,232,259,263,308,309,313,317,340,343,344,347,348,351 5 -340965 cd17407 MFS_MFSD11 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,54,103,104,106,107,108,111,135,138,139,142,198,201,202,205,206,207,210,241,245,307,308,312,316,339,342,343,346,347,350 5 -340966 cd17408 MFS_unc93B1 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,59,108,109,111,112,113,116,164,167,168,171,282,285,286,289,290,291,294,321,325,372,373,377,381,406,409,410,413,414,417 5 -340897 cd17339 MFS_NIMT_CynX_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,99,100,102,103,104,107,126,129,130,133,204,207,208,211,212,213,216,243,247,296,297,301,305,322,325,326,329,330,333 5 -340967 cd17409 MFS_NIMT_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,99,100,102,103,104,107,126,129,130,133,205,208,209,212,213,214,217,244,248,296,297,301,305,322,325,326,329,330,333 5 -340968 cd17410 MFS_CynX_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,127,130,131,134,202,205,206,209,210,211,214,241,245,294,295,299,303,320,323,324,327,328,331 5 -340898 cd17340 MFS_MFSD1 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,104,105,107,108,109,112,132,135,136,139,225,228,229,232,233,234,237,265,269,317,318,322,326,342,345,346,349,350,353 5 -340899 cd17341 MFS_NRT2_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,101,102,104,105,106,109,128,131,132,135,213,216,217,220,221,222,225,253,257,311,312,316,320,335,338,339,342,343,346 5 -340928 cd17370 MFS_MJ1317_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,101,102,104,105,106,109,129,132,133,136,207,210,211,214,215,216,219,246,250,299,300,304,308,324,327,328,331,332,335 5 -341024 cd17471 MFS_Set 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,48,96,97,99,100,101,104,130,133,134,137,207,210,211,214,215,216,219,247,251,300,301,305,309,324,327,328,331,332,335 5 -341025 cd17472 MFS_YajR_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,48,98,99,101,102,103,106,128,131,132,135,202,205,206,209,210,211,214,241,245,289,290,294,298,321,324,325,328,329,332 5 -341026 cd17473 MFS_arabinose_efflux_permease_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,51,101,102,104,105,106,109,129,132,133,136,205,208,209,212,213,214,217,245,249,298,299,303,307,323,326,327,330,331,334 5 -341027 cd17474 MFS_YfmO_like 1 putative chemical substrate binding pocket 0 1 1 1 10,11,14,15,18,50,100,101,103,104,105,108,128,131,132,135,206,209,210,213,214,215,218,246,250,300,301,305,309,325,328,329,332,333,336 5 -341028 cd17475 MFS_MT3072_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,206,209,210,213,214,215,218,246,250,305,306,310,314,330,333,334,337,338,341 5 -341030 cd17477 MFS_YcaD_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,125,128,129,132,199,202,203,206,207,208,211,235,239,289,290,294,298,314,317,318,321,322,325 5 -341031 cd17478 MFS_FsR 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,97,98,100,101,102,105,124,127,128,131,203,206,207,210,211,212,215,242,246,294,295,299,303,318,321,322,325,326,329 5 -341032 cd17479 MFS_MFSD6L 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,47,88,89,91,92,93,96,124,127,128,131,211,214,215,218,219,220,223,250,254,297,298,302,306,329,332,333,336,337,340 5 -341033 cd17480 MFS_SLC40A1_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,49,119,120,122,123,124,127,150,153,154,157,211,214,215,218,219,220,223,250,254,312,313,317,321,339,342,343,346,347,350 5 -341034 cd17481 MFS_MFSD13A 1 putative chemical substrate binding pocket 0 1 1 1 9,10,13,14,17,50,120,121,123,124,125,128,149,152,153,156,208,211,212,215,216,217,220,247,251,303,304,308,312,336,339,340,343,344,347 5 -341035 cd17482 MFS_YxiO_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,55,108,109,111,112,113,116,136,139,140,143,196,199,200,203,204,205,208,236,240,289,290,294,298,314,317,318,321,322,325 5 -341036 cd17483 MFS_Atg22_like 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,83,137,138,140,141,142,145,192,195,196,199,284,287,288,291,292,293,296,324,328,387,388,392,396,412,415,416,419,420,423 5 -341037 cd17484 MFS_FBT 1 putative chemical substrate binding pocket 0 1 1 1 12,13,16,17,20,48,105,106,108,109,110,113,136,139,140,143,217,220,221,224,225,226,229,256,260,311,312,316,320,344,347,348,351,352,355 5 -341038 cd17485 MFS_MFSD3 1 putative chemical substrate binding pocket 0 1 1 1 8,9,12,13,16,46,105,106,108,109,110,113,129,132,133,136,215,218,219,222,223,224,227,255,259,314,315,319,323,339,342,343,346,347,350 5 -341039 cd17486 MFS_AmpG_like 1 putative chemical substrate binding pocket 0 1 1 1 7,8,11,12,15,45,104,105,107,108,109,112,128,131,132,135,216,219,220,223,224,225,228,256,260,317,318,322,326,342,345,346,349,350,353 5 -341040 cd17487 MFS_MFSD5_like 1 putative chemical substrate binding pocket 0 1 1 1 14,15,18,19,22,54,103,104,106,107,108,111,133,136,137,140,219,222,223,226,227,228,231,258,262,315,316,320,324,337,340,341,344,345,348 5 -259998 cd06222 RNase_H_like 1 active site D[ND] 1 1 1 3,67 1 -259998 cd06222 RNase_H_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,39,40,43,67,106,120 3 -259999 cd06266 RNase_HII 1 active site D[ND] 1 1 1 3,100 1 -259999 cd06266 RNase_HII 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,75,76,79,100,123,142 3 -260000 cd06590 RNase_HII_bacteria_HIII_like 1 active site D[ND] 1 1 1 4,107 1 -260000 cd06590 RNase_HII_bacteria_HIII_like 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,79,80,83,107,131,150 3 -260001 cd07180 RNase_HII_archaea_like 1 active site D[ND] 1 1 1 3,103 1 -260001 cd07180 RNase_HII_archaea_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,78,79,82,103,128,147 3 -260002 cd07181 RNase_HII_eukaryota_like 1 active site D[ND] 1 1 1 3,111 1 -260002 cd07181 RNase_HII_eukaryota_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,83,84,87,111,134,153 3 -260003 cd07182 RNase_HII_bacteria_HII_like 1 active site D[ND] 1 1 1 3,95 1 -260003 cd07182 RNase_HII_bacteria_HII_like 2 RNA/DNA hybrid binding site 0 1 1 1 3,4,5,6,70,71,74,95,108,127 3 -260004 cd09272 RNase_HI_RT_Ty1 1 active site D[ND] 1 1 1 4,81 1 -260004 cd09272 RNase_HI_RT_Ty1 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,43,44,47,81,121,134 3 -260005 cd09273 RNase_HI_RT_Bel 1 active site D[ND] 1 1 1 4,57 1 -260005 cd09273 RNase_HI_RT_Bel 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,32,33,36,57,104,127 3 -260006 cd09274 RNase_HI_RT_Ty3 1 active site D[ND] 1 1 1 4,71 1 -260006 cd09274 RNase_HI_RT_Ty3 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,42,43,46,71,106,118 3 -260007 cd09275 RNase_HI_RT_DIRS1 1 active site D[ND] 1 1 1 4,61 1 -260007 cd09275 RNase_HI_RT_DIRS1 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,32,33,36,61,102,116 3 -260008 cd09276 Rnase_HI_RT_non_LTR 1 active site D[ND] 1 1 1 4,67 1 -260008 cd09276 Rnase_HI_RT_non_LTR 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,37,38,41,67,108,126 3 -260009 cd09277 RNase_HI_bacteria_like 1 active site D[ND] 1 1 1 5,70 1 -260009 cd09277 RNase_HI_bacteria_like 2 RNA/DNA hybrid binding site 0 1 1 1 5,6,7,8,44,45,48,70,109,126 3 -260010 cd09278 RNase_HI_prokaryote_like 1 active site D[ND] 1 1 1 6,66 1 -260010 cd09278 RNase_HI_prokaryote_like 2 RNA/DNA hybrid binding site 0 1 1 1 6,7,8,9,40,41,44,66,116,134 3 -260011 cd09279 RNase_HI_like 1 active site D[ND] 1 1 1 5,69 1 -260011 cd09279 RNase_HI_like 2 RNA/DNA hybrid binding site 0 1 1 1 5,6,7,8,41,42,45,69,109,123 3 -260012 cd09280 RNase_HI_eukaryote_like 1 active site D[ND] 1 1 1 4,70 1 -260012 cd09280 RNase_HI_eukaryote_like 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,42,43,46,70,122,140 3 -260013 cd13838 RNase_H_like_Prp8_IV 1 active site D[ND] 1 1 1 15,98 1 -260013 cd13838 RNase_H_like_Prp8_IV 2 RNA/DNA hybrid binding site 0 1 1 1 15,16,17,18,71,72,75,98,120,132 3 -260014 cd13934 RNase_H_Dikarya_like 1 active site D[ND] 1 1 1 4,79 1 -260014 cd13934 RNase_H_Dikarya_like 2 RNA/DNA hybrid binding site 0 1 1 1 4,5,6,7,45,46,49,79,134,148 3 -260015 cd13935 RNase_H_bacteria_like 1 active site D[ND] 1 1 1 7,68 1 -260015 cd13935 RNase_H_bacteria_like 2 RNA/DNA hybrid binding site 0 1 1 1 7,8,9,10,41,42,45,68,116,132 3 -206754 cd06223 PRTases_typeI 1 active site 0 1 1 0 22,24,77,78,79,81,82,83,84,85,109 1 -100121 cd06224 REM 1 GTPase interaction site 0 1 1 0 11,63,67,68,71,74,75,110,111,114,121 2 -100122 cd06225 HAMP 1 dimerization interface 0 1 1 1 0,1,4,5,7,8,11,12,14,30,31,33,34,37,38,40,41,44,45 2 -99751 cd06257 DnaJ 1 HSP70 interaction site 0 1 1 0 28,29,30,39,42,43,46,47 2 -99750 cd06259 YdcF-like 1 putative active site 0 0 1 1 78,81,101,105,108,145 1 -99749 cd06260 DUF820 1 putative active site 0 0 1 0 19,60,86,100,104 1 -119394 cd06261 TM_PBP2 1 putative PBP binding loops 0 1 1 1 56,76,148,160,163,173 0 -119394 cd06261 TM_PBP2 2 conserved gate region 0 0 1 1 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,142,143,144,145,146,147 0 -119394 cd06261 TM_PBP2 3 dimer interface 0 1 1 0 16,17,20,21,26,36,37,38,39,41,42,43,44,45,46,47,48,49,50,53,54,56,81,82,84,86,89,90,92,96,97,100,117,131,132,135,142,143,144,145,148,149,162,163,173,174,177,178,180,181,184,185,188,189 2 -119394 cd06261 TM_PBP2 4 ABC-ATPase subunit interface 0 1 1 1 101,102,103,104,105,106,107,108,109,110,111,112,113,119,120,124 0 -293792 cd06262 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,127,128,146,187 1 -293792 cd06262 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,127,146,187 4 -293792 cd06262 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,127,146 4 -293792 cd06262 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,146,187 4 -293793 cd07707 MBL-B1-B2-like 1 active site 0 1 1 1 65,67,69,70,144,145,163,202 1 -293793 cd07707 MBL-B1-B2-like 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 65,67,69,144,163,202 4 -293793 cd07707 MBL-B1-B2-like 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 65,67,144,163 4 -293793 cd07707 MBL-B1-B2-like 4 metal binding site [DE][DEC][DH] 1 1 1 69,163,202 4 -293843 cd16285 MBL-B1 1 active site 0 1 1 1 70,72,74,75,131,132,150,192 1 -293843 cd16285 MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,131,150,192 4 -293843 cd16285 MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,131,150 4 -293843 cd16285 MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 74,150,192 4 -293857 cd16299 IND_BlaB-like_MBL-B1 1 active site 0 1 1 1 70,72,74,75,133,134,152,194 1 -293857 cd16299 IND_BlaB-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,133,152,194 4 -293857 cd16299 IND_BlaB-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,133,152 4 -293857 cd16299 IND_BlaB-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 74,152,194 4 -293874 cd16316 BlaB-like_MBL-B1 1 active site 0 1 1 1 70,72,74,75,133,134,152,194 1 -293874 cd16316 BlaB-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,133,152,194 4 -293874 cd16316 BlaB-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,133,152 4 -293874 cd16316 BlaB-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 74,152,194 4 -293875 cd16317 IND_MBL-B1 1 active site 0 1 1 1 72,74,76,77,135,136,154,196 1 -293875 cd16317 IND_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 72,74,76,135,154,196 4 -293875 cd16317 IND_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 72,74,135,154 4 -293875 cd16317 IND_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 76,154,196 4 -293876 cd16318 MUS_TUS_MBL-B1 1 active site 0 1 1 1 70,72,74,75,133,134,152,194 1 -293876 cd16318 MUS_TUS_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,133,152,194 4 -293876 cd16318 MUS_TUS_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,133,152 4 -293876 cd16318 MUS_TUS_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 74,152,194 4 -293858 cd16300 NDM_FIM-like_MBL-B1 1 active site 0 1 1 1 71,73,75,76,135,136,154,196 1 -293858 cd16300 NDM_FIM-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 71,73,75,135,154,196 4 -293858 cd16300 NDM_FIM-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 71,73,135,154 4 -293858 cd16300 NDM_FIM-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 75,154,196 4 -293859 cd16301 IMP_DIM-like_MBL-B1 1 active site 0 1 1 1 72,74,76,77,134,135,153,195 1 -293859 cd16301 IMP_DIM-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 72,74,76,134,153,195 4 -293859 cd16301 IMP_DIM-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 72,74,134,153 4 -293859 cd16301 IMP_DIM-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 76,153,195 4 -293860 cd16302 CcrA-like_MBL-B1 1 active site 0 1 1 1 71,73,75,76,134,135,153,194 1 -293860 cd16302 CcrA-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 71,73,75,134,153,194 4 -293860 cd16302 CcrA-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 71,73,134,153 4 -293860 cd16302 CcrA-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 75,153,194 4 -293861 cd16303 VIM_type_MBL-B1 1 active site 0 1 1 1 72,74,76,77,137,138,156,198 1 -293861 cd16303 VIM_type_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 72,74,76,137,156,198 4 -293861 cd16303 VIM_type_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 72,74,137,156 4 -293861 cd16303 VIM_type_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 76,156,198 4 -293862 cd16304 BcII-like_MBL-B1 1 active site 0 1 1 1 70,72,74,75,133,134,152,194 1 -293862 cd16304 BcII-like_MBL-B1 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,133,152,194 4 -293862 cd16304 BcII-like_MBL-B1 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,133,152 4 -293862 cd16304 BcII-like_MBL-B1 4 metal binding site [DE][DEC][DH] 1 1 1 74,152,194 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 1 active site 0 1 1 1 72,74,76,77,161,162,180,218 1 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 72,74,76,161,180,218 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 72,74,161,180 4 -293844 cd16286 SPM-1-like_MBL-B1-B2-like 4 metal binding site [DE][DEC][DH] 1 1 1 76,180,218 4 -293845 cd16287 CphS_ImiS-like_MBL-B2 1 active site 0 1 1 1 65,67,69,70,144,145,163,205 1 -293845 cd16287 CphS_ImiS-like_MBL-B2 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 65,67,69,144,163,205 4 -293845 cd16287 CphS_ImiS-like_MBL-B2 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 65,67,144,163 4 -293845 cd16287 CphS_ImiS-like_MBL-B2 4 metal binding site [DE][DEC][DH] 1 1 1 69,163,205 4 -293863 cd16305 Sfh-1-like_MBL-B2 1 active site 0 1 1 1 65,67,69,70,144,145,163,205 1 -293863 cd16305 Sfh-1-like_MBL-B2 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 65,67,69,144,163,205 4 -293863 cd16305 Sfh-1-like_MBL-B2 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 65,67,144,163 4 -293863 cd16305 Sfh-1-like_MBL-B2 4 metal binding site [DE][DEC][DH] 1 1 1 69,163,205 4 -293864 cd16306 CphA_ImiS-like_MBL-B2 1 active site 0 1 1 1 65,67,69,70,144,145,163,201 1 -293864 cd16306 CphA_ImiS-like_MBL-B2 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 65,67,69,144,163,201 4 -293864 cd16306 CphA_ImiS-like_MBL-B2 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 65,67,144,163 4 -293864 cd16306 CphA_ImiS-like_MBL-B2 4 metal binding site [DE][DEC][DH] 1 1 1 69,163,201 4 -293794 cd07708 MBL-B3-like 1 active site 0 1 1 1 67,69,71,72,145,146,170,211 1 -293794 cd07708 MBL-B3-like 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,211 4 -293794 cd07708 MBL-B3-like 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293794 cd07708 MBL-B3-like 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,211 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,144,145,169,210 1 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,144,169,210 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,144,169 4 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,169,210 4 -293865 cd16307 FEZ-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,211 1 -293865 cd16307 FEZ-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,211 4 -293865 cd16307 FEZ-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293865 cd16307 FEZ-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,211 4 -293866 cd16308 GOB1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,144,145,169,210 1 -293866 cd16308 GOB1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,144,169,210 4 -293866 cd16308 GOB1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,144,169 4 -293866 cd16308 GOB1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,169,210 4 -293867 cd16309 BJP-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,142,143,168,208 1 -293867 cd16309 BJP-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,142,168,208 4 -293867 cd16309 BJP-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,142,168 4 -293867 cd16309 BJP-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,168,208 4 -293868 cd16310 Mbl1b-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,143,144,168,208 1 -293868 cd16310 Mbl1b-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,143,168,208 4 -293868 cd16310 Mbl1b-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,143,168 4 -293868 cd16310 Mbl1b-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,168,208 4 -293847 cd16289 L1_POM-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,143,144,168,208 1 -293847 cd16289 L1_POM-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,143,168,208 4 -293847 cd16289 L1_POM-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,143,168 4 -293847 cd16289 L1_POM-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,168,208 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,212 1 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,212 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,212 4 -293869 cd16311 THIN-B2-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,213 1 -293869 cd16311 THIN-B2-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,213 4 -293869 cd16311 THIN-B2-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293869 cd16311 THIN-B2-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,213 4 -293870 cd16312 THIN-B-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,147,148,172,215 1 -293870 cd16312 THIN-B-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,147,172,215 4 -293870 cd16312 THIN-B-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,147,172 4 -293870 cd16312 THIN-B-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,172,215 4 -293871 cd16313 SMB-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,210 1 -293871 cd16313 SMB-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,210 4 -293871 cd16313 SMB-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293871 cd16313 SMB-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,210 4 -293872 cd16314 AIM-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,210 1 -293872 cd16314 AIM-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,210 4 -293872 cd16314 AIM-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293872 cd16314 AIM-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,210 4 -293873 cd16315 EVM-1-like_MBL-B3 1 active site 0 1 1 1 67,69,71,72,145,146,170,210 1 -293873 cd16315 EVM-1-like_MBL-B3 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,145,170,210 4 -293873 cd16315 EVM-1-like_MBL-B3 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,145,170 4 -293873 cd16315 EVM-1-like_MBL-B3 4 metal binding site [DE][DEC][DH] 1 1 1 71,170,210 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 1 active site 0 1 1 1 75,77,79,80,142,143,161,218 1 -293795 cd07709 flavodiiron_proteins_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 75,77,79,142,161,218 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 75,77,142,161 4 -293795 cd07709 flavodiiron_proteins_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 79,161,218 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 1 active site 0 1 1 1 63,65,67,68,171,172,190,232 1 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 63,65,67,171,190,232 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 63,65,171,190 4 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 67,190,232 4 -293797 cd07711 MBLAC1-like_MBL-fold 1 active site 0 1 1 1 67,69,71,72,120,121,142,184 1 -293797 cd07711 MBLAC1-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 67,69,71,120,142,184 4 -293797 cd07711 MBLAC1-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 67,69,120,142 4 -293797 cd07711 MBLAC1-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 71,142,184 4 -293798 cd07712 MBLAC2-like_MBL-fold 1 active site 0 1 1 1 49,51,53,54,122,123,141,181 1 -293798 cd07712 MBLAC2-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 49,51,53,122,141,181 4 -293798 cd07712 MBLAC2-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 49,51,122,141 4 -293798 cd07712 MBLAC2-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 53,141,181 4 -293799 cd07713 DHPS-like_MBL-fold 1 active site 0 1 1 1 62,64,66,67,163,164,183,212 1 -293799 cd07713 DHPS-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 62,64,66,163,183,212 4 -293799 cd07713 DHPS-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 62,64,163,183 4 -293799 cd07713 DHPS-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 66,183,212 4 -293800 cd07714 RNaseJ_MBL-fold 1 active site 0 1 1 1 62,64,66,67,130,131,152,185 1 -293800 cd07714 RNaseJ_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 62,64,66,130,152,185 4 -293800 cd07714 RNaseJ_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 62,64,130,152 4 -293800 cd07714 RNaseJ_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 66,152,185 4 -293801 cd07715 TaR3-like_MBL-fold 1 active site 0 1 1 1 64,66,68,69,147,148,168,211 1 -293801 cd07715 TaR3-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 64,66,68,147,168,211 4 -293801 cd07715 TaR3-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 64,66,147,168 4 -293801 cd07715 TaR3-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 68,168,211 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 1 active site 0 1 1 1 58,60,62,63,150,151,173,192 1 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 58,60,62,150,173,192 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 58,60,150,173 4 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 62,173,192 4 -293806 cd07720 OPHC2-like_MBL-fold 1 active site 0 1 1 1 98,100,102,103,182,183,203,250 1 -293806 cd07720 OPHC2-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 98,100,102,182,203,250 4 -293806 cd07720 OPHC2-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 98,100,182,203 4 -293806 cd07720 OPHC2-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 102,203,250 4 -293807 cd07721 yflN-like_MBL-fold 1 active site 0 1 1 1 56,58,60,61,139,140,158,200 1 -293807 cd07721 yflN-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 56,58,60,139,158,200 4 -293807 cd07721 yflN-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 56,58,139,158 4 -293807 cd07721 yflN-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 60,158,200 4 -293808 cd07722 LACTB2-like_MBL-fold 1 active site 0 1 1 1 63,65,67,68,129,130,148,183 1 -293808 cd07722 LACTB2-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 63,65,67,129,148,183 4 -293808 cd07722 LACTB2-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 63,65,129,148 4 -293808 cd07722 LACTB2-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 67,148,183 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 1 active site 0 1 1 1 50,52,54,55,107,108,126,164 1 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 50,52,54,107,126,164 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 50,52,107,126 4 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 54,126,164 4 -293810 cd07724 POD-like_MBL-fold 1 active site 0 1 1 1 55,57,59,60,111,112,130,174 1 -293810 cd07724 POD-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 55,57,59,111,130,174 4 -293810 cd07724 POD-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 55,57,111,130 4 -293810 cd07724 POD-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 59,130,174 4 -293811 cd07725 TTHA1429-like_MBL-fold 1 active site 0 1 1 1 62,64,66,67,111,112,130,173 1 -293811 cd07725 TTHA1429-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 62,64,66,111,130,173 4 -293811 cd07725 TTHA1429-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 62,64,111,130 4 -293811 cd07725 TTHA1429-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 66,130,173 4 -293812 cd07726 ST1585-like_MBL-fold 1 active site 0 1 1 1 61,63,65,66,149,150,168,214 1 -293812 cd07726 ST1585-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 61,63,65,149,168,214 4 -293812 cd07726 ST1585-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 61,63,149,168 4 -293812 cd07726 ST1585-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 65,168,214 4 -293813 cd07727 YmaE-like_MBL-fold 1 active site 0 1 1 1 54,56,58,59,111,112,130,174 1 -293813 cd07727 YmaE-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 54,56,58,111,130,174 4 -293813 cd07727 YmaE-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 54,56,111,130 4 -293813 cd07727 YmaE-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 58,130,174 4 -293814 cd07728 YtnP-like_MBL-fold 1 active site 0 1 1 1 102,104,106,107,182,183,203,248 1 -293814 cd07728 YtnP-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 102,104,106,182,203,248 4 -293814 cd07728 YtnP-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 102,104,182,203 4 -293814 cd07728 YtnP-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 106,203,248 4 -293815 cd07729 AHL_lactonase_MBL-fold 1 active site 0 1 1 1 95,97,99,100,169,170,190,235 1 -293815 cd07729 AHL_lactonase_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 95,97,99,169,190,235 4 -293815 cd07729 AHL_lactonase_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 95,97,169,190 4 -293815 cd07729 AHL_lactonase_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 99,190,235 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 90,92,94,95,175,176,197,248 1 -293816 cd07730 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 90,92,94,175,197,248 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 90,92,175,197 4 -293816 cd07730 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 94,197,248 4 -293817 cd07731 ComA-like_MBL-fold 1 active site 0 1 1 1 55,57,59,60,131,132,152,177 1 -293817 cd07731 ComA-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 55,57,59,131,152,177 4 -293817 cd07731 ComA-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 55,57,131,152 4 -293817 cd07731 ComA-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 59,152,177 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 82,84,86,87,150,151,172,201 1 -293818 cd07732 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 82,84,86,150,172,201 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 82,84,150,172 4 -293818 cd07732 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 86,172,201 4 -293819 cd07733 YycJ-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,117,118,139,150 1 -293819 cd07733 YycJ-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,117,139,150 4 -293819 cd07733 YycJ-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,117,139 4 -293819 cd07733 YycJ-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,139,150 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 1 active site 0 1 1 1 56,58,60,61,145,146,166,192 1 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 56,58,60,145,166,192 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 56,58,145,166 4 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 60,166,192 4 -293849 cd16291 INTS11-like_MBL-fold 1 active site 0 1 1 1 62,64,66,67,151,152,172,198 1 -293849 cd16291 INTS11-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 62,64,66,151,172,198 4 -293849 cd16291 INTS11-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 62,64,151,172 4 -293849 cd16291 INTS11-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 66,172,198 4 -293850 cd16292 CPSF3-like_MBL-fold 1 active site 0 1 1 1 59,61,63,64,146,147,167,193 1 -293850 cd16292 CPSF3-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 59,61,63,146,167,193 4 -293850 cd16292 CPSF3-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 59,61,146,167 4 -293850 cd16292 CPSF3-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 63,167,193 4 -293851 cd16293 CPSF2-like_MBL-fold 1 active site 0 1 1 1 55,57,59,60,146,147,167,196 1 -293851 cd16293 CPSF2-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 55,57,59,146,167,196 4 -293851 cd16293 CPSF2-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 55,57,146,167 4 -293851 cd16293 CPSF2-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 59,167,196 4 -293852 cd16294 Int9-like_MBL-fold 1 active site 0 1 1 1 50,52,54,55,118,119,139,165 1 -293852 cd16294 Int9-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 50,52,54,118,139,165 4 -293852 cd16294 Int9-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 50,52,118,139 4 -293852 cd16294 Int9-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 54,139,165 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 1 active site 0 1 1 1 58,60,62,63,149,150,171,196 1 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 58,60,62,149,171,196 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 58,60,149,171 4 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 62,171,196 4 -293821 cd07735 class_II_PDE_MBL-fold 1 active site 0 1 1 1 72,74,76,77,157,158,179,258 1 -293821 cd07735 class_II_PDE_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 72,74,76,157,179,258 4 -293821 cd07735 class_II_PDE_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 72,74,157,179 4 -293821 cd07735 class_II_PDE_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 76,179,258 4 -293822 cd07736 PhnP-like_MBL-fold 1 active site 0 1 1 1 73,75,77,78,140,141,161,185 1 -293822 cd07736 PhnP-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 73,75,77,140,161,185 4 -293822 cd07736 PhnP-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 73,75,140,161 4 -293822 cd07736 PhnP-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 77,161,185 4 -293823 cd07737 YcbL-like_MBL-fold 1 active site 0 1 1 1 53,55,57,58,129,130,148,189 1 -293823 cd07737 YcbL-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 53,55,57,129,148,189 4 -293823 cd07737 YcbL-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 53,55,129,148 4 -293823 cd07737 YcbL-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 57,148,189 4 -293824 cd07738 DdPDE5-like_MBL-fold 1 active site 0 1 1 1 55,57,59,60,130,131,151,188 1 -293824 cd07738 DdPDE5-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 55,57,59,130,151,188 4 -293824 cd07738 DdPDE5-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 55,57,130,151 4 -293824 cd07738 DdPDE5-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 59,151,188 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 59,61,63,64,138,139,159,200 1 -293825 cd07739 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 59,61,63,138,159,200 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 59,61,138,159 4 -293825 cd07739 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 63,159,200 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 56,58,60,61,139,140,162,193 1 -293826 cd07740 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 56,58,60,139,162,193 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 56,58,139,162 4 -293826 cd07740 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 60,162,193 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 60,62,64,65,135,136,157,211 1 -293827 cd07741 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 60,62,64,135,157,211 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 60,62,135,157 4 -293827 cd07741 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 64,157,211 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 87,89,91,92,171,172,192,248 1 -293828 cd07742 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 87,89,91,171,192,248 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 87,89,171,192 4 -293828 cd07742 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 91,192,248 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,137,138,155,196 1 -293829 cd07743 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,137,155,196 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,137,155 4 -293829 cd07743 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,155,196 4 -293830 cd16272 RNaseZ_MBL-fold 1 active site 0 1 1 1 57,59,61,62,137,138,158,179 1 -293830 cd16272 RNaseZ_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 57,59,61,137,158,179 4 -293830 cd16272 RNaseZ_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 57,59,137,158 4 -293830 cd16272 RNaseZ_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 61,158,179 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 1 active site 0 1 1 1 57,59,61,62,132,133,153,174 1 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 57,59,61,132,153,174 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 57,59,132,153 4 -293802 cd07716 RNaseZ_short-form-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 61,153,174 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 1 active site 0 1 1 1 57,59,61,62,136,137,156,177 1 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 57,59,61,136,156,177 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 57,59,136,156 4 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 61,156,177 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 1 active site 0 1 1 1 64,66,68,69,159,160,181,202 1 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 64,66,68,159,181,202 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 64,66,159,181 4 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 68,181,202 4 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,111,112,143,174 1 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,111,143,174 4 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,111,143 4 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,143,174 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 1 active site 0 1 1 1 43,45,47,48,106,107,128,153 1 -293831 cd16273 SNM1A-1C-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 43,45,47,106,128,153 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 43,45,106,128 4 -293831 cd16273 SNM1A-1C-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 47,128,153 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 1 active site 0 1 1 1 32,34,36,37,114,115,135,164 1 -293855 cd16297 artemis-SNM1C-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 32,34,36,114,135,164 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 32,34,114,135 4 -293855 cd16297 artemis-SNM1C-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 36,135,164 4 -293856 cd16298 SNM1A-like_MBL-fold 1 active site 0 1 1 1 43,45,47,48,104,105,126,150 1 -293856 cd16298 SNM1A-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 43,45,47,104,126,150 4 -293856 cd16298 SNM1A-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 43,45,104,126 4 -293856 cd16298 SNM1A-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 47,126,150 4 -293832 cd16274 PQQB-like_MBL-fold 1 active site 0 1 1 1 87,89,91,92,174,175,197,218 1 -293832 cd16274 PQQB-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 87,89,91,174,197,218 4 -293832 cd16274 PQQB-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 87,89,174,197 4 -293832 cd16274 PQQB-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 91,197,218 4 -293833 cd16275 BaeB-like_MBL-fold 1 active site 0 1 1 1 54,56,58,59,115,116,132,173 1 -293833 cd16275 BaeB-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 54,56,58,115,132,173 4 -293833 cd16275 BaeB-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 54,56,115,132 4 -293833 cd16275 BaeB-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 58,132,173 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 52,54,56,57,118,119,137,177 1 -293834 cd16276 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 52,54,56,118,137,177 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 52,54,118,137 4 -293834 cd16276 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 56,137,177 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 70,72,74,75,154,155,175,221 1 -293835 cd16277 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 70,72,74,154,175,221 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 70,72,154,175 4 -293835 cd16277 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 74,175,221 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 60,62,64,65,122,123,141,180 1 -293836 cd16278 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 60,62,64,122,141,180 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 60,62,122,141 4 -293836 cd16278 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 64,141,180 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 73,75,77,78,152,153,170,192 1 -293837 cd16279 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 73,75,77,152,170,192 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 73,75,152,170 4 -293837 cd16279 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 77,170,192 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 68,70,72,73,141,142,166,204 1 -293838 cd16280 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 68,70,72,141,166,204 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 68,70,141,166 4 -293838 cd16280 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 72,166,204 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 101,103,105,106,185,186,206,251 1 -293839 cd16281 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 101,103,105,185,206,251 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 101,103,185,206 4 -293839 cd16281 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 105,206,251 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 1 active site 0 1 1 1 59,61,63,64,141,142,160,197 1 -293840 cd16282 metallo-hydrolase-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 59,61,63,141,160,197 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 59,61,141,160 4 -293840 cd16282 metallo-hydrolase-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 63,160,197 4 -293841 cd16283 RomA-like_MBL-fold 1 active site 0 1 1 1 56,58,60,61,127,128,148,180 1 -293841 cd16283 RomA-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 56,58,60,127,148,180 4 -293841 cd16283 RomA-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 56,58,127,148 4 -293841 cd16283 RomA-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 60,148,180 4 -293842 cd16284 UlaG-like_MBL-fold 1 active site 0 1 1 1 45,47,49,50,132,133,154,177 1 -293842 cd16284 UlaG-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 45,47,49,132,154,177 4 -293842 cd16284 UlaG-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 45,47,132,154 4 -293842 cd16284 UlaG-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 49,154,177 4 -293877 cd16322 TTHA1623-like_MBL-fold 1 active site 0 1 1 1 53,55,57,58,128,129,147,187 1 -293877 cd16322 TTHA1623-like_MBL-fold 2 metal binding site [HD][HQ][DHE][HDE][DC][HD] 1 1 1 53,55,57,128,147,187 4 -293877 cd16322 TTHA1623-like_MBL-fold 3 metal binding site [HDN][HEq][HDE][DEC] 1 1 1 53,55,128,147 4 -293877 cd16322 TTHA1623-like_MBL-fold 4 metal binding site [DE][DEC][DH] 1 1 1 57,147,187 4 -176473 cd06444 DNA_pol_A 1 active site 0 1 1 1 35,39,42,43,67,68,69,71,73,74,75,76,108,109,137,154,158,260,267,298,299,300 1 -176473 cd06444 DNA_pol_A 2 catalytic site 0 1 1 1 108,109,111,137,154,158,300 1 -176473 cd06444 DNA_pol_A 3 DNA binding site 0 1 1 1 35,39,42,43,67,68,69,71,73,74,75,76,166,259,260,263,267,298,299,300 3 -176474 cd08637 DNA_pol_A_pol_I_C 1 active site 0 1 1 1 82,86,89,90,115,116,117,119,121,122,123,124,156,157,185,205,209,293,300,331,332,333 1 -176474 cd08637 DNA_pol_A_pol_I_C 2 catalytic site 0 1 1 1 156,157,159,185,205,209,333 1 -176474 cd08637 DNA_pol_A_pol_I_C 3 DNA binding site 0 1 1 1 82,86,89,90,115,116,117,119,121,122,123,124,217,292,293,296,300,331,332,333 3 -176475 cd08638 DNA_pol_A_theta 1 active site 0 1 1 1 52,56,59,60,89,90,91,93,95,96,97,98,145,146,174,194,198,282,289,325,326,327 1 -176475 cd08638 DNA_pol_A_theta 2 catalytic site 0 1 1 1 145,146,148,174,194,198,327 1 -176475 cd08638 DNA_pol_A_theta 3 DNA binding site 0 1 1 1 52,56,59,60,89,90,91,93,95,96,97,98,206,281,282,285,289,325,326,327 3 -176476 cd08639 DNA_pol_A_Aquificae_like 1 active site 0 1 1 1 38,42,45,46,71,72,73,75,77,78,79,80,108,109,137,157,161,239,246,275,276,277 1 -176476 cd08639 DNA_pol_A_Aquificae_like 2 catalytic site 0 1 1 1 108,109,111,137,157,161,277 1 -176476 cd08639 DNA_pol_A_Aquificae_like 3 DNA binding site 0 1 1 1 38,42,45,46,71,72,73,75,77,78,79,80,169,238,239,242,246,275,276,277 3 -176477 cd08640 DNA_pol_A_plastid_like 1 active site 0 1 1 1 51,55,58,59,83,84,85,87,89,90,91,92,124,125,153,196,200,284,291,322,323,324 1 -176477 cd08640 DNA_pol_A_plastid_like 2 catalytic site 0 1 1 1 124,125,127,153,196,200,324 1 -176477 cd08640 DNA_pol_A_plastid_like 3 DNA binding site 0 1 1 1 51,55,58,59,83,84,85,87,89,90,91,92,208,283,284,287,291,322,323,324 3 -176478 cd08641 DNA_pol_gammaA 1 active site 0 1 1 1 53,57,60,61,107,108,109,111,113,114,115,116,148,149,187,201,205,316,323,354,355,356 1 -176478 cd08641 DNA_pol_gammaA 2 catalytic site 0 1 1 1 148,149,151,187,201,205,356 1 -176478 cd08641 DNA_pol_gammaA 3 DNA binding site 0 1 1 1 53,57,60,61,107,108,109,111,113,114,115,116,213,315,316,319,323,354,355,356 3 -176479 cd08642 DNA_pol_A_pol_I_A 1 active site 0 1 1 1 78,82,85,86,106,107,108,110,112,113,114,115,175,176,204,226,230,300,307,332,333,334 1 -176479 cd08642 DNA_pol_A_pol_I_A 2 catalytic site 0 1 1 1 175,176,178,204,226,230,334 1 -176479 cd08642 DNA_pol_A_pol_I_A 3 DNA binding site 0 1 1 1 78,82,85,86,106,107,108,110,112,113,114,115,238,299,300,303,307,332,333,334 3 -176480 cd08643 DNA_pol_A_pol_I_B 1 active site 0 1 1 1 115,119,122,123,150,151,152,154,156,157,158,159,192,193,223,235,239,335,342,377,378,379 1 -176480 cd08643 DNA_pol_A_pol_I_B 2 catalytic site 0 1 1 1 192,193,195,223,235,239,379 1 -176480 cd08643 DNA_pol_A_pol_I_B 3 DNA binding site 0 1 1 1 115,119,122,123,150,151,152,154,156,157,158,159,247,334,335,338,342,377,378,379 3 -119438 cd06445 ATase 1 active site 0 0 1 1 19,50,51,53,77 1 -119438 cd06445 ATase 2 DNA binding site 0 1 1 1 0,1,19,20,28,31,33,34,36,39,40,42,50,55,62 3 -119396 cd06462 Peptidase_S24_S26 1 Catalytic site 0 1 1 1 8,46 1 -119397 cd06529 S24_LexA-like 1 Catalytic site 0 1 1 1 8,44 1 -119398 cd06530 S26_SPase_I 1 Catalytic site 0 1 1 1 8,51 1 -133460 cd06499 GT_MraY-like 1 Mg++ binding site 0 0 1 1 45,46 4 -133460 cd06499 GT_MraY-like 2 putative catalytic motif 0 0 1 1 167,168,169,170 1 -133461 cd06851 GT_GPT_like 1 Mg++ binding site 0 0 1 1 64,65 4 -133461 cd06851 GT_GPT_like 2 putative catalytic motif 0 0 1 1 183,184,185,186 1 -133465 cd06855 GT_GPT_euk 1 Mg++ binding site 0 0 1 1 78,79 4 -133465 cd06855 GT_GPT_euk 2 putative catalytic motif 0 0 1 1 214,215,216,217 1 -133466 cd06856 GT_GPT_archaea 1 Mg++ binding site 0 0 1 1 57,58 4 -133466 cd06856 GT_GPT_archaea 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -133462 cd06852 GT_MraY 1 Mg++ binding site 0 0 1 1 54,55 4 -133462 cd06852 GT_MraY 2 putative catalytic motif 0 0 1 1 187,188,189,190 1 -133463 cd06853 GT_WecA_like 1 Mg++ binding site 0 0 1 1 54,55 4 -133463 cd06853 GT_WecA_like 2 putative catalytic motif 0 0 1 1 173,174,175,176 1 -133464 cd06854 GT_WbpL_WbcO_like 1 Mg++ binding site 0 0 1 1 61,62 4 -133464 cd06854 GT_WbpL_WbcO_like 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -133467 cd06912 GT_MraY_like 1 Mg++ binding site 0 0 1 1 54,55 4 -133467 cd06912 GT_MraY_like 2 putative catalytic motif 0 0 1 1 175,176,177,178 1 -143395 cd06534 ALDH-SF 1 catalytic residues 0 0 1 0 102,200,231,234 1 -143395 cd06534 ALDH-SF 2 NAD(P) binding site 0 1 0 0 98,99,100,101,102,110,125,127,128,176,177,178,179,182,185,186,200,201,202,234,271,273,299,338 5 -143396 cd07077 ALDH-like 1 catalytic residues 0 0 1 0 110,208,238,241 1 -143396 cd07077 ALDH-like 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,117,132,134,135,186,187,188,189,192,195,196,208,209,210,241,294,296,325,371 5 -143398 cd07079 ALDH_F18-19_ProA-GPR 1 catalytic residues 0 0 1 0 119,217,247,250 1 -143398 cd07079 ALDH_F18-19_ProA-GPR 2 NAD(P) binding site 0 1 0 0 115,116,117,118,119,125,140,142,143,196,197,198,199,202,205,206,217,218,219,250,305,307,333,379 5 -143399 cd07080 ALDH_Acyl-CoA-Red_LuxC 1 catalytic residues 0 0 1 0 122,221,256,259 1 -143399 cd07080 ALDH_Acyl-CoA-Red_LuxC 2 NAD(P) binding site 0 1 0 0 118,119,120,121,122,129,144,146,147,198,199,200,201,204,207,208,221,222,223,259,307,309,343,394 5 -143400 cd07081 ALDH_F20_ACDH_EutE-like 1 catalytic residues 0 0 1 0 105,203,234,237 1 -143400 cd07081 ALDH_F20_ACDH_EutE-like 2 NAD(P) binding site 0 1 0 0 101,102,103,104,105,113,128,130,131,183,184,185,186,189,192,193,203,204,205,237,327,329,358,408 5 -143439 cd07121 ALDH_EutE 1 catalytic residues 0 0 1 0 107,205,236,239 1 -143439 cd07121 ALDH_EutE 2 NAD(P) binding site 0 1 0 0 103,104,105,106,107,115,130,132,133,185,186,187,188,191,194,195,205,206,207,239,330,332,359,403 5 -143440 cd07122 ALDH_F20_ACDH 1 catalytic residues 0 0 1 0 105,203,234,237 1 -143440 cd07122 ALDH_F20_ACDH 2 NAD(P) binding site 0 1 0 0 101,102,103,104,105,113,128,130,131,183,184,185,186,189,192,193,203,204,205,237,328,330,359,405 5 -143397 cd07078 ALDH 1 catalytic residues 0 0 1 0 106,204,235,238 1 -143397 cd07078 ALDH 2 NAD(P) binding site 0 1 0 0 102,103,104,105,106,114,129,131,132,180,181,182,183,186,189,190,204,205,206,238,336,338,364,403 5 -143401 cd07082 ALDH_F11_NP-GAPDH 1 catalytic residues 0 0 1 0 151,247,278,281 1 -143401 cd07082 ALDH_F11_NP-GAPDH 2 NAD(P) binding site 0 1 0 0 147,148,149,150,151,159,174,176,177,225,226,227,228,231,234,235,247,248,249,281,376,378,404,443 5 -143402 cd07083 ALDH_P5CDH 1 catalytic residues 0 0 1 0 164,268,299,302 1 -143402 cd07083 ALDH_P5CDH 2 NAD(P) binding site 0 1 0 0 160,161,162,163,164,172,187,189,190,238,239,240,241,244,247,248,268,269,270,302,398,400,428,468 5 -143441 cd07123 ALDH_F4-17_P5CDH 1 catalytic residues 0 0 1 0 180,283,314,317 1 -143441 cd07123 ALDH_F4-17_P5CDH 2 NAD(P) binding site 0 1 0 0 176,177,178,179,180,187,202,204,205,253,254,255,256,259,262,263,283,284,285,317,415,417,445,488 5 -143442 cd07124 ALDH_PutA-P5CDH-RocA 1 catalytic residues 0 0 1 0 176,280,311,314 1 -143442 cd07124 ALDH_PutA-P5CDH-RocA 2 NAD(P) binding site 0 1 0 0 172,173,174,175,176,184,199,201,202,250,251,252,253,256,259,260,280,281,282,314,412,414,440,480 5 -143443 cd07125 ALDH_PutA-P5CDH 1 catalytic residues 0 0 1 0 177,278,309,312 1 -143443 cd07125 ALDH_PutA-P5CDH 2 NAD(P) binding site 0 1 0 0 173,174,175,176,177,185,200,202,203,251,252,253,254,257,260,261,278,279,280,312,406,408,436,476 5 -143403 cd07084 ALDH_KGSADH-like 1 catalytic residues 0 0 1 0 110,206,238,241 1 -143403 cd07084 ALDH_KGSADH-like 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,118,133,135,136,184,185,186,187,190,193,194,206,207,208,241,340,342,370,411 5 -143444 cd07126 ALDH_F12_P5CDH 1 catalytic residues 0 0 1 0 152,246,278,281 1 -143444 cd07126 ALDH_F12_P5CDH 2 NAD(P) binding site 0 1 0 0 148,149,150,151,152,160,175,177,178,225,226,227,228,231,234,235,246,247,248,281,385,387,415,454 5 -143445 cd07127 ALDH_PAD-PaaZ 1 catalytic residues 0 0 1 0 203,304,335,338 1 -143445 cd07127 ALDH_PAD-PaaZ 2 NAD(P) binding site 0 1 0 0 199,200,201,202,203,211,226,228,229,282,283,284,285,288,291,292,304,305,306,338,442,444,473,519 5 -143446 cd07128 ALDH_MaoC-N 1 catalytic residues 0 0 1 0 154,252,288,291 1 -143446 cd07128 ALDH_MaoC-N 2 NAD(P) binding site 0 1 0 0 150,151,152,153,154,162,177,179,180,226,227,228,229,232,235,236,252,253,254,291,396,398,424,473 5 -143447 cd07129 ALDH_KGSADH 1 catalytic residues 0 0 1 0 115,221,255,258 1 -143447 cd07129 ALDH_KGSADH 2 NAD(P) binding site 0 1 0 0 111,112,113,114,115,125,140,142,143,195,196,197,198,201,204,205,221,222,223,258,349,351,377,422 5 -143404 cd07085 ALDH_F6_MMSDH 1 catalytic residues 0 0 1 0 146,243,274,277 1 -143404 cd07085 ALDH_F6_MMSDH 2 NAD(P) binding site 0 1 0 0 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,277,378,380,406,445 5 -143405 cd07086 ALDH_F7_AASADH-like 1 catalytic residues 0 0 1 0 143,244,275,278 1 -143405 cd07086 ALDH_F7_AASADH-like 2 NAD(P) binding site 0 1 0 0 139,140,141,142,143,151,166,168,169,220,221,222,223,226,229,230,244,245,246,278,377,379,405,446 5 -143448 cd07130 ALDH_F7_AASADH 1 catalytic residues 0 0 1 0 142,243,274,277 1 -143448 cd07130 ALDH_F7_AASADH 2 NAD(P) binding site 0 1 0 0 138,139,140,141,142,150,165,167,168,219,220,221,222,225,228,229,243,244,245,277,373,375,401,442 5 -143449 cd07131 ALDH_AldH-CAJ73105 1 catalytic residues 0 0 1 0 145,243,274,277 1 -143449 cd07131 ALDH_AldH-CAJ73105 2 NAD(P) binding site 0 1 0 0 141,142,143,144,145,153,168,170,171,219,220,221,222,225,228,229,243,244,245,277,378,380,406,445 5 -143406 cd07087 ALDH_F3-13-14_CALDH-like 1 catalytic residues 0 0 1 0 110,205,236,239 1 -143406 cd07087 ALDH_F3-13-14_CALDH-like 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,118,133,135,136,181,182,183,184,187,190,191,205,206,207,239,329,331,357,397 5 -143450 cd07132 ALDH_F3AB 1 catalytic residues 0 0 1 0 110,205,236,239 1 -143450 cd07132 ALDH_F3AB 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,118,133,135,136,181,182,183,184,187,190,191,205,206,207,239,329,331,357,397 5 -143451 cd07133 ALDH_CALDH_CalB 1 catalytic residues 0 0 1 0 111,206,237,240 1 -143451 cd07133 ALDH_CALDH_CalB 2 NAD(P) binding site 0 1 0 0 107,108,109,110,111,119,134,136,137,182,183,184,185,188,191,192,206,207,208,240,337,339,365,405 5 -143452 cd07134 ALDH_AlkH-like 1 catalytic residues 0 0 1 0 110,205,236,239 1 -143452 cd07134 ALDH_AlkH-like 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,118,133,135,136,181,182,183,184,187,190,191,205,206,207,239,336,338,364,404 5 -143453 cd07135 ALDH_F14-YMR110C 1 catalytic residues 0 0 1 0 118,213,244,247 1 -143453 cd07135 ALDH_F14-YMR110C 2 NAD(P) binding site 0 1 0 0 114,115,116,117,118,126,141,143,144,189,190,191,192,195,198,199,213,214,215,247,339,341,367,407 5 -143454 cd07136 ALDH_YwdH-P39616 1 catalytic residues 0 0 1 0 110,205,236,239 1 -143454 cd07136 ALDH_YwdH-P39616 2 NAD(P) binding site 0 1 0 0 106,107,108,109,110,118,133,135,136,181,182,183,184,187,190,191,205,206,207,239,329,331,357,397 5 -143455 cd07137 ALDH_F3FHI 1 catalytic residues 0 0 1 0 111,206,238,241 1 -143455 cd07137 ALDH_F3FHI 2 NAD(P) binding site 0 1 0 0 107,108,109,110,111,119,134,136,137,182,183,184,185,188,191,192,206,207,208,241,335,337,363,403 5 -143407 cd07088 ALDH_LactADH-AldA 1 catalytic residues 0 0 1 0 143,241,272,275 1 -143407 cd07088 ALDH_LactADH-AldA 2 NAD(P) binding site 0 1 0 0 139,140,141,142,143,151,166,168,169,217,218,219,220,223,226,227,241,242,243,275,373,375,401,439 5 -143408 cd07089 ALDH_CddD-AldA-like 1 catalytic residues 0 0 1 0 133,231,262,265 1 -143408 cd07089 ALDH_CddD-AldA-like 2 NAD(P) binding site 0 1 0 0 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,231,232,233,265,364,366,392,430 5 -143456 cd07138 ALDH_CddD_SSP0762 1 catalytic residues 0 0 1 0 140,238,269,272 1 -143456 cd07138 ALDH_CddD_SSP0762 2 NAD(P) binding site 0 1 0 0 136,137,138,139,140,148,163,165,166,214,215,216,217,220,223,224,238,239,240,272,372,374,400,437 5 -143457 cd07139 ALDH_AldA-Rv0768 1 catalytic residues 0 0 1 0 147,244,275,278 1 -143457 cd07139 ALDH_AldA-Rv0768 2 NAD(P) binding site 0 1 0 0 143,144,145,146,147,155,170,172,173,220,221,222,223,226,229,230,244,245,246,278,377,379,405,442 5 -143409 cd07090 ALDH_F9_TMBADH 1 catalytic residues 0 0 1 0 126,223,254,257 1 -143409 cd07090 ALDH_F9_TMBADH 2 NAD(P) binding site 0 1 0 0 122,123,124,125,126,134,149,151,152,199,200,201,202,205,208,209,223,224,225,257,359,361,387,425 5 -143410 cd07091 ALDH_F1-2_Ald2-like 1 catalytic residues 0 0 1 0 151,250,281,284 1 -143410 cd07091 ALDH_F1-2_Ald2-like 2 NAD(P) binding site 0 1 0 0 147,148,149,150,151,159,174,176,177,225,226,227,228,231,234,235,250,251,252,284,381,383,409,447 5 -143458 cd07140 ALDH_F1L_FTFDH 1 catalytic residues 0 0 1 0 157,256,287,290 1 -143458 cd07140 ALDH_F1L_FTFDH 2 NAD(P) binding site 0 1 0 0 153,154,155,156,157,165,180,182,183,231,232,233,234,237,240,241,256,257,258,290,387,389,417,455 5 -143459 cd07141 ALDH_F1AB_F2_RALDH1 1 catalytic residues 0 0 1 0 155,254,285,288 1 -143459 cd07141 ALDH_F1AB_F2_RALDH1 2 NAD(P) binding site 0 1 0 0 151,152,153,154,155,163,178,180,181,229,230,231,232,235,238,239,254,255,256,288,385,387,413,451 5 -143460 cd07142 ALDH_F2BC 1 catalytic residues 0 0 1 0 151,250,281,284 1 -143460 cd07142 ALDH_F2BC 2 NAD(P) binding site 0 1 0 0 147,148,149,150,151,159,174,176,177,225,226,227,228,231,234,235,250,251,252,284,381,383,409,447 5 -143461 cd07143 ALDH_AldA_AN0554 1 catalytic residues 0 0 1 0 154,253,284,287 1 -143461 cd07143 ALDH_AldA_AN0554 2 NAD(P) binding site 0 1 0 0 150,151,152,153,154,162,177,179,180,228,229,230,231,234,237,238,253,254,255,287,384,386,412,450 5 -143462 cd07144 ALDH_ALD2-YMR170C 1 catalytic residues 0 0 1 0 154,252,283,286 1 -143462 cd07144 ALDH_ALD2-YMR170C 2 NAD(P) binding site 0 1 0 0 150,151,152,153,154,162,177,179,180,228,229,230,231,234,237,238,252,253,254,286,387,389,415,453 5 -143411 cd07092 ALDH_ABALDH-YdcW 1 catalytic residues 0 0 1 0 128,225,256,259 1 -143411 cd07092 ALDH_ABALDH-YdcW 2 NAD(P) binding site 0 1 0 0 124,125,126,127,128,136,151,153,154,201,202,203,204,207,210,211,225,226,227,259,355,357,383,421 5 -143412 cd07093 ALDH_F8_HMSADH 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143412 cd07093 ALDH_F8_HMSADH 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,360,362,388,426 5 -143413 cd07094 ALDH_F21_LactADH-like 1 catalytic residues 0 0 1 0 133,229,260,263 1 -143413 cd07094 ALDH_F21_LactADH-like 2 NAD(P) binding site 0 1 0 0 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,229,230,231,263,357,359,385,424 5 -143463 cd07145 ALDH_LactADH_F420-Bios 1 catalytic residues 0 0 1 0 133,231,262,265 1 -143463 cd07145 ALDH_LactADH_F420-Bios 2 NAD(P) binding site 0 1 0 0 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,231,232,233,265,360,362,388,427 5 -143464 cd07146 ALDH_PhpJ 1 catalytic residues 0 0 1 0 130,226,257,260 1 -143464 cd07146 ALDH_PhpJ 2 NAD(P) binding site 0 1 0 0 126,127,128,129,130,138,153,155,156,204,205,206,207,210,213,214,226,227,228,260,354,356,382,421 5 -143465 cd07147 ALDH_F21_RNP123 1 catalytic residues 0 0 1 0 133,228,259,262 1 -143465 cd07147 ALDH_F21_RNP123 2 NAD(P) binding site 0 1 0 0 129,130,131,132,133,141,156,158,159,206,207,208,209,212,215,216,228,229,230,262,356,358,384,423 5 -143466 cd07148 ALDH_RL0313 1 catalytic residues 0 0 1 0 134,230,261,264 1 -143466 cd07148 ALDH_RL0313 2 NAD(P) binding site 0 1 0 0 130,131,132,133,134,142,157,159,160,207,208,209,210,213,216,217,230,231,232,264,359,361,387,426 5 -143467 cd07149 ALDH_y4uC 1 catalytic residues 0 0 1 0 133,229,260,263 1 -143467 cd07149 ALDH_y4uC 2 NAD(P) binding site 0 1 0 0 129,130,131,132,133,141,156,158,159,207,208,209,210,213,216,217,229,230,231,263,357,359,385,424 5 -143414 cd07095 ALDH_SGSD_AstD 1 catalytic residues 0 0 1 0 107,205,236,239 1 -143414 cd07095 ALDH_SGSD_AstD 2 NAD(P) binding site 0 1 0 0 103,104,105,106,107,115,130,132,133,180,181,182,183,186,189,190,205,206,207,239,336,338,364,403 5 -143415 cd07097 ALDH_KGSADH-YcbD 1 catalytic residues 0 0 1 0 145,243,274,277 1 -143415 cd07097 ALDH_KGSADH-YcbD 2 NAD(P) binding site 0 1 0 0 141,142,143,144,145,153,168,170,171,219,220,221,222,225,228,229,243,244,245,277,376,378,404,443 5 -143416 cd07098 ALDH_F15-22 1 catalytic residues 0 0 1 0 130,231,262,265 1 -143416 cd07098 ALDH_F15-22 2 NAD(P) binding site 0 1 0 0 126,127,128,129,130,138,153,155,156,207,208,209,210,213,216,217,231,232,233,265,366,368,394,434 5 -143417 cd07099 ALDH_DDALDH 1 catalytic residues 0 0 1 0 129,225,256,259 1 -143417 cd07099 ALDH_DDALDH 2 NAD(P) binding site 0 1 0 0 125,126,127,128,129,137,152,154,155,201,202,203,204,207,210,211,225,226,227,259,356,358,384,424 5 -143418 cd07100 ALDH_SSADH1_GabD1 1 catalytic residues 0 0 1 0 106,203,234,237 1 -143418 cd07100 ALDH_SSADH1_GabD1 2 NAD(P) binding site 0 1 0 0 102,103,104,105,106,114,129,131,132,179,180,181,182,185,188,189,203,204,205,237,334,336,362,400 5 -143419 cd07101 ALDH_SSADH2_GabD2 1 catalytic residues 0 0 1 0 128,224,255,258 1 -143419 cd07101 ALDH_SSADH2_GabD2 2 NAD(P) binding site 0 1 0 0 124,125,126,127,128,136,151,153,154,200,201,202,203,206,209,210,224,225,226,258,356,358,384,425 5 -143420 cd07102 ALDH_EDX86601 1 catalytic residues 0 0 1 0 126,223,254,257 1 -143420 cd07102 ALDH_EDX86601 2 NAD(P) binding site 0 1 0 0 122,123,124,125,126,134,149,151,152,199,200,201,202,205,208,209,223,224,225,257,357,359,385,423 5 -143421 cd07103 ALDH_F5_SSADH_GabD 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143421 cd07103 ALDH_F5_SSADH_GabD 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,356,358,384,422 5 -143422 cd07104 ALDH_BenzADH-like 1 catalytic residues 0 0 1 0 108,207,238,241 1 -143422 cd07104 ALDH_BenzADH-like 2 NAD(P) binding site 0 1 0 0 104,105,106,107,108,116,131,133,134,183,184,185,186,189,192,193,207,208,209,241,335,337,363,402 5 -143468 cd07150 ALDH_VaniDH_like 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143468 cd07150 ALDH_VaniDH_like 2 NAD(P) binding site 0 1 0 0 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,355,357,383,422 5 -143469 cd07151 ALDH_HBenzADH 1 catalytic residues 0 0 1 0 140,239,270,273 1 -143469 cd07151 ALDH_HBenzADH 2 NAD(P) binding site 0 1 0 0 136,137,138,139,140,148,163,165,166,215,216,217,218,221,224,225,239,240,241,273,367,369,395,434 5 -143470 cd07152 ALDH_BenzADH 1 catalytic residues 0 0 1 0 120,218,249,252 1 -143470 cd07152 ALDH_BenzADH 2 NAD(P) binding site 0 1 0 0 116,117,118,119,120,128,143,145,146,194,195,196,197,200,203,204,218,219,220,252,346,348,374,413 5 -143423 cd07105 ALDH_SaliADH 1 catalytic residues 0 0 1 0 108,209,240,243 1 -143423 cd07105 ALDH_SaliADH 2 NAD(P) binding site 0 1 0 0 104,105,106,107,108,116,131,133,134,185,186,187,188,191,194,195,209,210,211,243,336,338,364,403 5 -143424 cd07106 ALDH_AldA-AAD23400 1 catalytic residues 0 0 1 0 124,220,251,254 1 -143424 cd07106 ALDH_AldA-AAD23400 2 NAD(P) binding site 0 1 0 0 120,121,122,123,124,132,147,149,150,196,197,198,199,202,205,206,220,221,222,254,351,353,379,417 5 -143425 cd07107 ALDH_PhdK-like 1 catalytic residues 0 0 1 0 126,223,255,258 1 -143425 cd07107 ALDH_PhdK-like 2 NAD(P) binding site 0 1 0 0 122,123,124,125,126,134,149,151,152,199,200,201,202,205,208,209,223,224,225,258,359,361,387,425 5 -143426 cd07108 ALDH_MGR_2402 1 catalytic residues 0 0 1 0 127,224,256,259 1 -143426 cd07108 ALDH_MGR_2402 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,200,201,202,203,206,209,210,224,225,226,259,361,363,389,427 5 -143427 cd07109 ALDH_AAS00426 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143427 cd07109 ALDH_AAS00426 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,358,360,386,425 5 -143428 cd07110 ALDH_F10_BADH 1 catalytic residues 0 0 1 0 130,228,259,262 1 -143428 cd07110 ALDH_F10_BADH 2 NAD(P) binding site 0 1 0 0 126,127,128,129,130,138,153,155,156,204,205,206,207,210,213,214,228,229,230,262,361,363,389,427 5 -143429 cd07111 ALDH_F16 1 catalytic residues 0 0 1 0 157,254,287,290 1 -143429 cd07111 ALDH_F16 2 NAD(P) binding site 0 1 0 0 153,154,155,156,157,165,180,182,183,230,231,232,233,236,239,240,254,255,256,290,385,387,413,451 5 -143430 cd07112 ALDH_GABALDH-PuuC 1 catalytic residues 0 0 1 0 134,233,265,268 1 -143430 cd07112 ALDH_GABALDH-PuuC 2 NAD(P) binding site 0 1 0 0 130,131,132,133,134,142,157,159,160,208,209,210,211,214,217,218,233,234,235,268,367,369,395,433 5 -143431 cd07113 ALDH_PADH_NahF 1 catalytic residues 0 0 1 0 152,249,280,283 1 -143431 cd07113 ALDH_PADH_NahF 2 NAD(P) binding site 0 1 0 0 148,149,150,151,152,160,175,177,178,225,226,227,228,231,234,235,249,250,251,283,380,382,408,446 5 -143432 cd07114 ALDH_DhaS 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143432 cd07114 ALDH_DhaS 2 NAD(P) binding site 0 1 0 0 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,362,364,390,428 5 -143433 cd07115 ALDH_HMSADH_HapE 1 catalytic residues 0 0 1 0 127,225,256,259 1 -143433 cd07115 ALDH_HMSADH_HapE 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,201,202,203,204,207,210,211,225,226,227,259,356,358,384,422 5 -143436 cd07118 ALDH_SNDH 1 catalytic residues 0 0 1 0 129,227,258,261 1 -143436 cd07118 ALDH_SNDH 2 NAD(P) binding site 0 1 0 0 125,126,127,128,129,137,152,154,155,203,204,205,206,209,212,213,227,228,229,261,359,361,387,425 5 -143437 cd07119 ALDH_BADH-GbsA 1 catalytic residues 0 0 1 0 144,242,273,276 1 -143437 cd07119 ALDH_BADH-GbsA 2 NAD(P) binding site 0 1 0 0 140,141,142,143,144,152,167,169,170,218,219,220,221,224,227,228,242,243,244,276,377,379,405,443 5 -143438 cd07120 ALDH_PsfA-ACA09737 1 catalytic residues 0 0 1 0 127,226,257,260 1 -143438 cd07120 ALDH_PsfA-ACA09737 2 NAD(P) binding site 0 1 0 0 123,124,125,126,127,135,150,152,153,202,203,204,205,208,211,212,226,227,228,260,360,362,388,426 5 -143471 cd07559 ALDH_ACDHII_AcoD-like 1 catalytic residues 0 0 1 0 146,243,279,282 1 -143471 cd07559 ALDH_ACDHII_AcoD-like 2 NAD(P) binding site 0 1 0 0 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,282,383,385,411,449 5 -143434 cd07116 ALDH_ACDHII-AcoD 1 catalytic residues 0 0 1 0 146,243,279,282 1 -143434 cd07116 ALDH_ACDHII-AcoD 2 NAD(P) binding site 0 1 0 0 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,282,382,384,410,448 5 -143435 cd07117 ALDH_StaphAldA1 1 catalytic residues 0 0 1 0 146,243,274,277 1 -143435 cd07117 ALDH_StaphAldA1 2 NAD(P) binding site 0 1 0 0 142,143,144,145,146,154,169,171,172,219,220,221,222,225,228,229,243,244,245,277,378,380,406,444 5 -119348 cd06550 TM_ABC_iron-siderophores_like 1 dimer interface 0 1 1 1 23,25,30,84,86,87,90,91,94,95,98,101,102,104,115,116,119,195,246,249,250,253,256,257,260 2 -119348 cd06550 TM_ABC_iron-siderophores_like 2 ABC-ATPase subunit interface 0 1 1 0 18,22,23,24,145,146,148,149,150,152,153,155,156,157,158,159,160,162,163,164,205,212 0 -119348 cd06550 TM_ABC_iron-siderophores_like 3 putative PBP binding regions 0 1 1 1 104,129,187,191,235,243 0 -153244 cd06551 LPLAT 1 putative acyl-acceptor binding pocket 0 1 1 0 33,36,38,58,59,60,61,109,110,111 0 -153245 cd07983 LPLAT_DUF374-like 1 putative acyl-acceptor binding pocket 0 1 1 0 33,36,38,53,54,55,56,105,106,107 0 -153246 cd07984 LPLAT_LABLAT-like 1 putative acyl-acceptor binding pocket 0 1 1 0 27,30,32,49,50,51,52,98,99,100 0 -153247 cd07985 LPLAT_GPAT 1 putative acyl-acceptor binding pocket 0 1 1 0 29,32,34,58,59,60,61,123,124,125 0 -153248 cd07986 LPLAT_ACT14924-like 1 putative acyl-acceptor binding pocket 0 1 1 0 29,32,35,54,55,56,57,106,107,108 0 -153249 cd07987 LPLAT_MGAT-like 1 putative acyl-acceptor binding pocket 0 1 1 0 27,30,33,49,50,51,52,97,98,99 0 -153250 cd07988 LPLAT_ABO13168-like 1 putative acyl-acceptor binding pocket 0 1 1 0 28,31,33,52,53,54,55,103,104,105 0 -153251 cd07989 LPLAT_AGPAT-like 1 putative acyl-acceptor binding pocket 0 1 1 0 31,34,36,52,53,54,55,105,106,107 0 -153252 cd07990 LPLAT_LCLAT1-like 1 putative acyl-acceptor binding pocket 0 1 1 0 31,34,36,57,58,59,60,112,113,114 0 -153253 cd07991 LPLAT_LPCAT1-like 1 putative acyl-acceptor binding pocket 0 1 1 0 31,34,36,50,51,52,53,105,106,107 0 -153254 cd07992 LPLAT_AAK14816-like 1 putative acyl-acceptor binding pocket 0 1 1 0 35,38,41,57,58,59,60,118,119,120 0 -153255 cd07993 LPLAT_DHAPAT-like 1 putative acyl-acceptor binding pocket 0 1 1 0 29,32,34,55,56,57,58,109,110,111 0 -119341 cd06556 ICL_KPHMT 1 active site 0 1 1 0 36,38,39,40,50,78,80,108,130,175,196,198,208 1 -119341 cd06556 ICL_KPHMT 2 metal binding site 0 1 1 1 78,80,106,108 4 -119341 cd06556 ICL_KPHMT 3 oligomerization interface 0 1 1 1 14,15,16,17,19,20,21,22,23,25,26,29,31,32,33,40,41,43,44,45,48,49,52,53,54,55,57,58,61,62,64,65,68,69,81,82,84,91,92,95,96,99,103,115,118,119,121,122,123,124,125,126,170,231,232,233,234,235,237,238,239 2 -119340 cd00377 ICL_PEPM 1 active site 0 1 1 0 33,35,36,37,47,74,76,103,147,179,201,203,225 1 -119340 cd00377 ICL_PEPM 2 metal binding site 0 1 1 1 74,76,101,103 4 -119340 cd00377 ICL_PEPM 3 oligomerization interface 0 1 1 1 11,12,13,14,16,17,18,19,20,22,23,26,28,29,30,37,38,40,41,42,45,46,49,50,51,52,54,55,58,59,61,62,65,66,77,78,80,86,87,90,91,94,98,127,130,131,133,134,135,136,142,143,174,233,234,235,236,237,239,240,241 2 -119342 cd06557 KPHMT-like 1 active site 0 1 1 0 36,38,39,40,50,78,80,110,132,177,198,200,210 1 -119342 cd06557 KPHMT-like 2 metal binding site 0 1 1 1 78,80,108,110 4 -119342 cd06557 KPHMT-like 3 oligomerization interface 0 1 1 1 14,15,16,17,19,20,21,22,23,25,26,29,31,32,33,40,41,43,44,45,48,49,52,53,54,55,57,58,61,62,64,65,68,69,81,82,84,92,93,96,97,100,105,117,120,121,123,124,125,126,127,128,172,233,234,235,236,237,239,240,241 2 -119339 cd06558 crotonase-like 1 substrate binding site 0 1 1 1 19,21,53,57,58,59,60,61,102,104,105,106,128,129,132 5 -119339 cd06558 crotonase-like 2 trimer interface 0 1 1 1 86,94,115,116,117,118,130,131,132,133,139,141,142,143,145,146,151,152,154,155,157,158,161,172,175,190,193,194 2 -119339 cd06558 crotonase-like 3 oxyanion hole (OAH) forming residues 0 0 1 1 59,106 0 -143472 cd06559 Endonuclease_V 1 Active_site 0 1 1 1 31,33,34,69,71,72,73,74,99,100,101,105,110,111,127,128,129,130,131,202,206 1 -143473 cd06560 PriL 1 PriL-PriS interface 0 1 1 1 113,114,117,121,134,135,136,137,138,139 2 -143474 cd07322 PriL_PriS_Eukaryotic 1 PriL-PriS interface 0 1 1 1 127,128,131,135,140,141,142,143,144,145 2 -132880 cd06561 AlkD_like 1 Active site 0 0 1 1 5,85,89,122,154,155,162 1 -132881 cd07064 AlkD_like_1 1 Active site 0 0 1 1 12,94,98,132,163,164,171 1 -143475 cd06567 Peptidase_S41 1 Active site serine 0 1 1 0 156 1 -143476 cd07560 Peptidase_S41_CPP 1 Active site serine 0 1 1 0 143 1 -143477 cd07561 Peptidase_S41_CPP_like 1 Active site serine 0 1 1 0 172 1 -143478 cd07562 Peptidase_S41_TRI 1 Active site serine 0 1 1 0 175 1 -143479 cd07563 Peptidase_S41_IRBP 1 Active site serine 0 1 1 0 169 1 -119330 cd06571 Bac_DnaA_C 1 DnaA box-binding interface 0 1 1 0 23,31,32,39,45,46,47,56,57,58,59,60,63,66,67 3 -119329 cd06572 Histidinol_dh 1 catalytic residues 0 1 1 1 296,297 1 -119329 cd06572 Histidinol_dh 2 NAD binding site 0 1 1 1 26,98,100,101,109,130,157,158,160,181,182,183,185,186,231 5 -119329 cd06572 Histidinol_dh 3 zinc binding site 0 1 1 1 228,231,330,389 4 -119329 cd06572 Histidinol_dh 4 substrate binding site 0 1 1 1 108,206,228,231,296,297,326,330,331,337,384,386,389 5 -119329 cd06572 Histidinol_dh 5 product binding site 0 1 1 1 106,108,206,231,296,297,326,330,331,337,384,386,389 0 -119329 cd06572 Histidinol_dh 6 dimerization interface 0 1 1 0 51,52,55,56,58,61,62,65,66,69,70,77,79,83,84,85,86,87,90,92,104,105,106,107,108,176,191,195,219,220,223,224,226,227,228,230,231,301,306,309,310,312,313,314,315,316,317,318,319,320,322,324,325,327,328,329,330,331,333,335,345,346,348,349,350,351,352,354,355,358,359,360,361,362,363,364,365,380,381,383,384,385,386,387,388,389 2 -119320 cd06574 TM_PBP1_branched-chain-AA_like 1 TM-ABC transporter signature motif 0 0 1 1 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 0 -119321 cd06579 TM_PBP1_transp_AraH_like 1 TM-ABC transporter signature motif 0 0 1 1 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 0 -119322 cd06580 TM_PBP1_transp_TpRbsC_like 1 TM-ABC transporter signature motif 0 0 1 1 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -119323 cd06581 TM_PBP1_LivM_like 1 TM-ABC transporter signature motif 0 0 1 1 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 0 -119324 cd06582 TM_PBP1_LivH_like 1 TM-ABC transporter signature motif 0 0 1 1 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 0 -119440 cd06578 HemD 1 active site 0 1 1 0 4,56,57,58,86,129,153,155,179,180,181,182,183 1 -133475 cd06583 PGRP 1 substrate binding site 0 1 1 0 8,9,33,37,51,58,59,65,112,116,119,120,121 5 -133475 cd06583 PGRP 2 Zn binding residues 0 1 1 1 7,112,121 4 -133475 cd06583 PGRP 3 amidase catalytic site 0 0 1 1 7,37,112,119,121 1 -132915 cd06586 TPP_enzyme_PYR 1 TPP binding site 0 1 1 1 18,43,72 5 -132915 cd06586 TPP_enzyme_PYR 2 PYR/PP interface 0 1 1 1 13,18,27,38,39,42,45,48,49,51,52,53,56,75,76,79 2 -132915 cd06586 TPP_enzyme_PYR 3 dimer interface 0 1 1 1 18,27,38,39,42,71,72,74,112,114 2 -132916 cd07033 TPP_PYR_DXS_TK_like 1 TPP binding site 0 1 1 1 22,47,75 5 -132916 cd07033 TPP_PYR_DXS_TK_like 2 PYR/PP interface 0 1 1 1 17,22,31,42,43,46,49,52,53,55,56,57,60,78,79,83 2 -132916 cd07033 TPP_PYR_DXS_TK_like 3 dimer interface 0 1 1 1 22,31,42,43,46,74,75,77,117,119 2 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 1 TPP binding site 0 1 1 1 22,52,81 5 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 2 PYR/PP interface 0 1 1 1 17,22,35,47,48,51,54,57,58,60,61,62,65,84,85,89 2 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like 3 dimer interface 0 1 1 1 22,35,47,48,51,80,81,83,128,130 2 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 1 TPP binding site 0 1 1 1 20,49,77 5 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 2 PYR/PP interface 0 1 1 1 15,20,29,44,45,48,51,54,55,57,58,59,62,80,81,84 2 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like 3 dimer interface 0 1 1 1 20,29,44,45,48,76,77,79,116,118 2 -132918 cd07035 TPP_PYR_POX_like 1 TPP binding site 0 1 1 1 18,42,72 5 -132918 cd07035 TPP_PYR_POX_like 2 PYR/PP interface 0 1 1 1 13,18,27,37,38,41,44,47,48,50,51,52,55,75,76,79 2 -132918 cd07035 TPP_PYR_POX_like 3 dimer interface 0 1 1 1 18,27,37,38,41,71,72,74,112,114 2 -132920 cd07037 TPP_PYR_MenD 1 TPP binding site 0 1 1 1 18,43,73 5 -132920 cd07037 TPP_PYR_MenD 2 PYR/PP interface 0 1 1 1 13,18,27,38,39,42,45,48,49,51,52,53,56,76,77,80 2 -132920 cd07037 TPP_PYR_MenD 3 dimer interface 0 1 1 1 18,27,38,39,42,72,73,75,113,115 2 -132921 cd07038 TPP_PYR_PDC_IPDC_like 1 TPP binding site 0 1 1 1 18,43,72 5 -132921 cd07038 TPP_PYR_PDC_IPDC_like 2 PYR/PP interface 0 1 1 1 13,18,27,38,39,42,45,48,49,51,52,53,56,75,76,79 2 -132921 cd07038 TPP_PYR_PDC_IPDC_like 3 dimer interface 0 1 1 1 18,27,38,39,42,71,72,74,120,122 2 -132922 cd07039 TPP_PYR_POX 1 TPP binding site 0 1 1 1 21,46,76 5 -132922 cd07039 TPP_PYR_POX 2 PYR/PP interface 0 1 1 1 16,21,30,41,42,45,48,51,52,54,55,56,59,79,80,83 2 -132922 cd07039 TPP_PYR_POX 3 dimer interface 0 1 1 1 21,30,41,42,45,75,76,78,116,118 2 -119408 cd06660 Aldo_ket_red 1 active site 0 1 1 0 16,17,18,46,51,78,116,117,147,148,169,197,198,199,200,201,202,236,253,254,255,256,261,264,265 1 -119408 cd06660 Aldo_ket_red 2 catalytic tetrad 0 0 1 0 46,51,78,116 1 -119400 cd06661 GGCT_like 1 putative catalytic residue 0 0 1 1 70 1 -119400 cd06661 GGCT_like 2 putative active site pocket 0 1 1 1 0,3,5,6,69,70,76,98 1 -119400 cd06661 GGCT_like 3 dimerization interface 0 1 1 0 44,45,47,76,77,78,79,80,82,94,97 2 -133456 cd06663 Biotinyl_lipoyl_domains 1 lipoyl-biotinyl attachment site 0 1 1 0 39 6 -133457 cd06848 GCS_H 1 lipoyl-biotinyl attachment site 0 1 1 0 55 6 -133458 cd06849 lipoyl_domain 1 lipoyl-biotinyl attachment site 0 1 1 0 40 6 -133459 cd06850 biotinyl_domain 1 lipoyl-biotinyl attachment site 0 1 1 0 33 6 -143480 cd06664 IscU_like 1 active site 0 1 1 1 32,57,111 1 -143480 cd06664 IscU_like 2 trimerization site 0 1 1 1 0,1,2,3,6,7,32,33,57,59,107,108,110,111 2 -143484 cd06808 PLPDE_III 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 20,22,64,111,147,149,207,208,209,210 5 -143484 cd06808 PLPDE_III 2 catalytic residue 0 1 1 1 22 1 -143481 cd00430 PLPDE_III_AR 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,78,123,157,159,215,216,217,218 5 -143481 cd00430 PLPDE_III_AR 2 catalytic residue 0 1 1 1 32 1 -143498 cd06825 PLPDE_III_VanT 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,78,119,152,154,213,214,215,216 5 -143498 cd06825 PLPDE_III_VanT 2 catalytic residue 0 1 1 1 32 1 -143499 cd06826 PLPDE_III_AR2 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,78,123,160,162,218,219,220,221 5 -143499 cd06826 PLPDE_III_AR2 2 catalytic residue 0 1 1 1 32 1 -143500 cd06827 PLPDE_III_AR_proteobact 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 29,31,75,119,153,155,205,206,207,208 5 -143500 cd06827 PLPDE_III_AR_proteobact 2 catalytic residue 0 1 1 1 31 1 -143483 cd00635 PLPDE_III_YBL036c_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,75,121,157,159,214,215,216,217 5 -143483 cd00635 PLPDE_III_YBL036c_like 2 catalytic residue 0 1 1 1 32 1 -143496 cd06822 PLPDE_III_YBL036c_euk 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 28,30,72,122,159,161,219,220,221,222 5 -143496 cd06822 PLPDE_III_YBL036c_euk 2 catalytic residue 0 1 1 1 30 1 -143497 cd06824 PLPDE_III_Yggs_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 31,33,77,123,159,161,215,216,217,218 5 -143497 cd06824 PLPDE_III_Yggs_like 2 catalytic residue 0 1 1 1 33 1 -143485 cd06810 PLPDE_III_ODC_DapDC_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,74,121,167,169,247,248,249,250 5 -143485 cd06810 PLPDE_III_ODC_DapDC_like 2 catalytic residue 0 1 1 1 32 1 -143482 cd00622 PLPDE_III_ODC 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 30,32,74,117,158,160,237,238,239,240 5 -143482 cd00622 PLPDE_III_ODC 2 catalytic residue 0 1 1 1 32 1 -143504 cd06831 PLPDE_III_ODC_like_AZI 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 41,43,85,128,169,171,245,246,247,248 5 -143504 cd06831 PLPDE_III_ODC_like_AZI 2 catalytic residue 0 1 1 1 43 1 -143501 cd06828 PLPDE_III_DapDC 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 33,35,77,124,172,174,254,255,256,257 5 -143501 cd06828 PLPDE_III_DapDC 2 catalytic residue 0 1 1 1 35 1 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 40,42,86,128,175,177,249,250,251,252 5 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC 2 catalytic residue 0 1 1 1 42 1 -143502 cd06829 PLPDE_III_CANSDC 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 31,33,74,117,158,160,227,228,229,230 5 -143502 cd06829 PLPDE_III_CANSDC 2 catalytic residue 0 1 1 1 33 1 -143503 cd06830 PLPDE_III_ADC 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 43,45,92,142,190,192,280,281,282,283 5 -143503 cd06830 PLPDE_III_ADC 2 catalytic residue 0 1 1 1 45 1 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 32,34,76,123,171,173,253,254,255,256 5 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 2 catalytic residue 0 1 1 1 34 1 -143506 cd06839 PLPDE_III_Btrk_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 36,38,80,127,174,176,257,258,259,260 5 -143506 cd06839 PLPDE_III_Btrk_like 2 catalytic residue 0 1 1 1 38 1 -143508 cd06841 PLPDE_III_MccE_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 39,41,83,129,171,173,258,259,260,261 5 -143508 cd06841 PLPDE_III_MccE_like 2 catalytic residue 0 1 1 1 41 1 -143509 cd06842 PLPDE_III_Y4yA_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 42,44,86,133,172,174,298,299,300,301 5 -143509 cd06842 PLPDE_III_Y4yA_like 2 catalytic residue 0 1 1 1 44 1 -143510 cd06843 PLPDE_III_PvsE_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 31,33,74,121,169,171,249,250,251,252 5 -143510 cd06843 PLPDE_III_PvsE_like 2 catalytic residue 0 1 1 1 33 1 -143486 cd06811 PLPDE_III_yhfX_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 58,60,106,150,190,192,253,254,255,256 5 -143486 cd06811 PLPDE_III_yhfX_like 2 catalytic residue 0 1 1 1 60 1 -143490 cd06815 PLPDE_III_AR_like_1 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 31,33,77,121,155,157,216,217,218,219 5 -143490 cd06815 PLPDE_III_AR_like_1 2 catalytic residue 0 1 1 1 33 1 -143511 cd07376 PLPDE_III_DSD_D-TA_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 22,24,65,116,152,154,215,216,217,218 5 -143511 cd07376 PLPDE_III_DSD_D-TA_like 2 catalytic residue 0 1 1 1 24 1 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 36,38,79,129,164,166,228,229,230,231 5 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 2 catalytic residue 0 1 1 1 38 1 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 39,41,83,134,178,180,254,255,256,257 5 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 2 catalytic residue 0 1 1 1 41 1 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 38,40,83,138,173,175,240,241,242,243 5 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 2 catalytic residue 0 1 1 1 40 1 -143491 cd06817 PLPDE_III_DSD 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 36,38,85,136,173,175,246,247,248,249 5 -143491 cd06817 PLPDE_III_DSD 2 catalytic residue 0 1 1 1 38 1 -143492 cd06818 PLPDE_III_cryptic_DSD 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 33,35,76,129,164,166,238,239,240,241 5 -143492 cd06818 PLPDE_III_cryptic_DSD 2 catalytic residue 0 1 1 1 35 1 -143493 cd06819 PLPDE_III_LS_D-TA 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 37,39,80,130,165,167,229,230,231,232 5 -143493 cd06819 PLPDE_III_LS_D-TA 2 catalytic residue 0 1 1 1 39 1 -143494 cd06820 PLPDE_III_LS_D-TA_like 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 33,35,76,126,161,163,222,223,224,225 5 -143494 cd06820 PLPDE_III_LS_D-TA_like 2 catalytic residue 0 1 1 1 35 1 -143495 cd06821 PLPDE_III_D-TA 1 pyridoxal 5'-phosphate (PLP) binding site 0 1 1 0 38,40,81,133,168,170,230,231,232,233 5 -143495 cd06821 PLPDE_III_D-TA 2 catalytic residue 0 1 1 1 40 1 -132900 cd06845 Bcl-2_like 1 BH3-homology region binding site 0 1 1 0 41,42,44,45,49,52,53,69,70,73,74,77,78,85,87,88,90,91,95,99,143 0 -132900 cd06845 Bcl-2_like 2 BH4 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 0 -132900 cd06845 Bcl-2_like 3 BH3 0 0 1 1 38,39,40,41,42,43,44,45,46 0 -132900 cd06845 Bcl-2_like 4 BH1 0 0 1 1 77,78,79,84,85,86,87,88,89,90,91,92,93,94,95,96 0 -132900 cd06845 Bcl-2_like 5 BH2 0 0 1 1 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 0 -185704 cd06846 Adenylation_DNA_ligase_like 1 active site 0 1 1 0 23,25,30,44,45,74,92,155,158,178,180 1 -185705 cd07894 Adenylation_RNA_ligase 1 active site 0 1 1 0 52,54,59,73,74,106,130,185,188,200,202 1 -185706 cd07895 Adenylation_mRNA_capping 1 active site 0 1 1 0 45,47,52,67,68,98,115,190,193,211,213 1 -185707 cd07896 Adenylation_kDNA_ligase_like 1 active site 0 1 1 0 20,22,27,37,38,61,94,149,152,170,172 1 -185709 cd07898 Adenylation_DNA_ligase 1 active site 0 1 1 0 25,27,32,46,47,75,114,174,177,196,198 1 -185708 cd07897 Adenylation_DNA_ligase_Bac1 1 active site 0 1 1 0 28,30,35,49,50,78,117,178,181,200,202 1 -185710 cd07900 Adenylation_DNA_ligase_I_Euk 1 active site 0 1 1 0 35,37,42,57,58,90,129,189,192,213,215 1 -185711 cd07901 Adenylation_DNA_ligase_Arch_LigB 1 active site 0 1 1 0 29,31,36,50,51,81,121,180,183,202,204 1 -185712 cd07902 Adenylation_DNA_ligase_III 1 active site 0 1 1 0 38,40,45,59,60,92,127,187,190,207,209 1 -185713 cd07903 Adenylation_DNA_ligase_IV 1 active site 0 1 1 0 37,39,44,58,59,97,135,195,198,217,219 1 -185715 cd07906 Adenylation_DNA_ligase_LigD_LigC 1 active site 0 1 1 0 20,22,27,41,42,71,107,163,166,185,187 1 -185714 cd07905 Adenylation_DNA_ligase_LigC 1 active site 0 1 1 0 20,22,27,41,42,71,110,168,171,188,190 1 -185716 cd08039 Adenylation_DNA_ligase_Fungal 1 active site 0 1 1 0 26,28,33,51,52,90,131,202,205,229,231 1 -185717 cd09232 Snurportin-1_C 1 active site 0 1 1 0 25,27,32,46,47,77,88,160,163,181,183 1 -271356 cd06857 SLC5-6-like_sbd 1 Na binding site 0 1 1 1 8,11,287,290,291 4 -271357 cd10322 SLC5sbd 1 Na binding site 0 1 1 1 47,50,318,321,322 4 -271360 cd10325 SLC5sbd_vSGLT 1 Na binding site 0 1 1 1 48,51,340,343,344 4 -271361 cd10326 SLC5sbd_NIS-like 1 Na binding site 0 1 1 1 46,49,331,334,335 4 -271383 cd11492 SLC5sbd_NIS-SMVT 1 Na binding site 0 1 1 1 50,53,335,338,339 4 -271393 cd11503 SLC5sbd_NIS 1 Na binding site 0 1 1 1 50,53,335,338,339 4 -271394 cd11504 SLC5sbd_SMVT 1 Na binding site 0 1 1 1 53,56,338,341,342 4 -271395 cd11505 SLC5sbd_SMCT 1 Na binding site 0 1 1 1 56,59,341,344,345 4 -271402 cd11519 SLC5sbd_SMCT1 1 Na binding site 0 1 1 1 56,59,341,344,345 4 -212089 cd11520 SLC5sbd_SMCT2 1 Na binding site 0 1 1 1 56,59,341,344,345 4 -271384 cd11493 SLC5sbd_NIS-like_u1 1 Na binding site 0 1 1 1 46,49,334,337,338 4 -271385 cd11494 SLC5sbd_NIS-like_u2 1 Na binding site 0 1 1 1 47,50,336,339,340 4 -271386 cd11495 SLC5sbd_NIS-like_u3 1 Na binding site 0 1 1 1 50,53,332,335,336 4 -212037 cd10327 SLC5sbd_PanF 1 Na binding site 0 1 1 1 51,54,327,330,331 4 -271362 cd10328 SLC5sbd_YidK 1 Na binding site 0 1 1 1 44,47,332,335,336 4 -271363 cd10329 SLC5sbd_SGLT1-like 1 Na binding site 0 1 1 1 46,49,332,335,336 4 -271379 cd11486 SLC5sbd_SGLT1 1 Na binding site 0 1 1 1 49,52,362,365,366 4 -212056 cd11487 SLC5sbd_SGLT2 1 Na binding site 0 1 1 1 49,52,365,368,369 4 -271380 cd11488 SLC5sbd_SGLT4 1 Na binding site 0 1 1 1 48,51,356,359,360 4 -212058 cd11489 SLC5sbd_SGLT5 1 Na binding site 0 1 1 1 51,54,359,362,363 4 -271381 cd11490 SLC5sbd_SGLT6 1 Na binding site 0 1 1 1 48,51,356,359,360 4 -271382 cd11491 SLC5sbd_SMIT 1 Na binding site 0 1 1 1 48,51,365,368,369 4 -271368 cd11474 SLC5sbd_CHT 1 Na binding site 0 1 1 1 45,48,321,324,325 4 -271369 cd11475 SLC5sbd_PutP 1 Na binding site 0 1 1 1 45,48,326,329,330 4 -271370 cd11476 SLC5sbd_DUR3 1 Na binding site 0 1 1 1 52,55,338,341,342 4 -271371 cd11477 SLC5sbd_u1 1 Na binding site 0 1 1 1 48,51,331,334,335 4 -271372 cd11478 SLC5sbd_u2 1 Na binding site 0 1 1 1 47,50,335,338,339 4 -271373 cd11479 SLC5sbd_u3 1 Na binding site 0 1 1 1 47,50,313,316,317 4 -271374 cd11480 SLC5sbd_u4 1 Na binding site 0 1 1 1 45,48,337,340,341 4 -271358 cd10323 SLC-NCS1sbd 1 Na binding site 0 1 1 1 12,15,272,275,276 4 -271375 cd11482 SLC-NCS1sbd_NRT1-like 1 Na binding site 0 1 1 1 26,29,314,317,318 4 -271376 cd11483 SLC-NCS1sbd_Mhp1-like 1 Na binding site 0 1 1 1 30,33,302,305,306 4 -271377 cd11484 SLC-NCS1sbd_CobB-like 1 Na binding site 0 1 1 1 17,20,264,267,268 4 -271378 cd11485 SLC-NCS1sbd_YbbW-like 1 Na binding site 0 1 1 1 29,32,304,307,308 4 -271404 cd11555 SLC-NCS1sbd_u1 1 Na binding site 0 1 1 1 29,32,308,311,312 4 -271359 cd10324 SLC6sbd 1 Na binding site 0 1 1 1 14,17,292,295,296 4 -271364 cd10332 SLC6sbd-B0AT-like 1 Na binding site 0 1 1 1 15,18,357,360,361 4 -271400 cd11515 SLC6sbd_NTT4-like 1 Na binding site 0 1 1 1 15,18,359,362,363 4 -271403 cd11521 SLC6sbd_NTT4 1 Na binding site 0 1 1 1 15,18,409,412,413 4 -212091 cd11522 SLC6sbd_SBAT1 1 Na binding site 0 1 1 1 15,18,409,412,413 4 -212085 cd11516 SLC6sbd_B0AT1 1 Na binding site 0 1 1 1 15,18,395,398,399 4 -212086 cd11517 SLC6sbd_B0AT3 1 Na binding site 0 1 1 1 16,19,396,399,400 4 -271401 cd11518 SLC6sbd_SIT1 1 Na binding site 0 1 1 1 18,21,400,403,404 4 -271365 cd10333 LeuT-like_sbd 1 Na binding site 0 1 1 1 15,18,331,334,335 4 -271366 cd10334 SLC6sbd_u1 1 Na binding site 0 1 1 1 15,18,325,328,329 4 -271367 cd10336 SLC6sbd_Tyt1-Like 1 Na binding site 0 1 1 1 14,17,310,313,314 4 -271387 cd11496 SLC6sbd-TauT-like 1 Na binding site 0 1 1 1 15,18,358,361,362 4 -212075 cd11506 SLC6sbd_GAT1 1 Na binding site 0 1 1 1 57,60,390,393,394 4 -271396 cd11507 SLC6sbd_GAT2 1 Na binding site 0 1 1 1 15,18,354,357,358 4 -212077 cd11508 SLC6sbd_GAT3 1 Na binding site 0 1 1 1 16,19,357,360,361 4 -271397 cd11509 SLC6sbd_CT1 1 Na binding site 0 1 1 1 15,18,366,369,370 4 -271398 cd11510 SLC6sbd_TauT 1 Na binding site 0 1 1 1 15,18,357,360,361 4 -212080 cd11511 SLC6sbd_BGT1 1 Na binding site 0 1 1 1 16,19,356,359,360 4 -271388 cd11497 SLC6sbd_SERT-like 1 Na binding site 0 1 1 1 15,18,356,359,360 4 -212081 cd11512 SLC6sbd_NET 1 Na binding site 0 1 1 1 15,18,359,362,363 4 -271399 cd11513 SLC6sbd_SERT 1 Na binding site 0 1 1 1 15,18,355,358,359 4 -212083 cd11514 SLC6sbd_DAT1 1 Na binding site 0 1 1 1 15,18,358,361,362 4 -271405 cd11556 SLC6sbd_SERT-like_u1 1 Na binding site 0 1 1 1 15,18,371,374,375 4 -212067 cd11498 SLC6sbd_GlyT1 1 Na binding site 0 1 1 1 31,34,385,388,389 4 -271389 cd11499 SLC6sbd_GlyT2 1 Na binding site 0 1 1 1 15,18,383,386,387 4 -271390 cd11500 SLC6sbd_PROT 1 Na binding site 0 1 1 1 15,18,354,357,358 4 -271391 cd11501 SLC6sbd_ATB0 1 Na binding site 0 1 1 1 15,18,379,382,383 4 -271392 cd11502 SLC6sbd_NTT5 1 Na binding site 0 1 1 1 15,18,369,372,373 4 -212092 cd11554 SLC6sbd_u2 1 Na binding site 0 1 1 1 14,17,289,292,293 4 -132874 cd06911 VirB9_CagX_TrbG 1 VirB7 interaction site 0 1 1 0 5,6,7,8,9,10,11,16,17,18,19,20,21,71,76,77,78,79,80,81,82 0 -143512 cd06916 NR_DBD_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143512 cd06916 NR_DBD_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143514 cd06956 NR_DBD_RXR 1 zinc binding site 0 1 1 1 2,5,19,22,38,44,54,57 4 -143514 cd06956 NR_DBD_RXR 2 DNA binding site 0 1 1 1 12,13,14,20,21,23,25,28,31,51,52,55,58,69,72 3 -143516 cd06958 NR_DBD_COUP_TF 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143516 cd06958 NR_DBD_COUP_TF 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143517 cd06959 NR_DBD_EcR_like 1 zinc binding site 0 1 1 1 1,4,18,21,37,43,53,56 4 -143517 cd06959 NR_DBD_EcR_like 2 DNA binding site 0 1 1 1 11,12,13,19,20,22,24,27,30,50,51,54,57,68,71 3 -143520 cd06962 NR_DBD_FXR 1 zinc binding site 0 1 1 1 3,6,20,23,39,45,55,58 4 -143520 cd06962 NR_DBD_FXR 2 DNA binding site 0 1 1 1 13,14,15,21,22,24,26,29,32,52,53,56,59,70,73 3 -143534 cd07160 NR_DBD_LXR 1 zinc binding site 0 1 1 1 20,23,37,40,56,62,72,75 4 -143534 cd07160 NR_DBD_LXR 2 DNA binding site 0 1 1 1 30,31,32,38,39,41,43,46,49,69,70,73,76,87,90 3 -143535 cd07161 NR_DBD_EcR 1 zinc binding site 0 1 1 1 3,6,20,23,39,45,55,58 4 -143535 cd07161 NR_DBD_EcR 2 DNA binding site 0 1 1 1 13,14,15,21,22,24,26,29,32,52,53,56,59,70,73 3 -143518 cd06960 NR_DBD_HNF4A 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143518 cd06960 NR_DBD_HNF4A 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143519 cd06961 NR_DBD_TR 1 zinc binding site 0 1 1 1 1,4,18,21,37,43,53,56 4 -143519 cd06961 NR_DBD_TR 2 DNA binding site 0 1 1 1 11,12,13,19,20,22,24,27,30,50,51,54,57,68,71 3 -143521 cd06963 NR_DBD_GR_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143521 cd06963 NR_DBD_GR_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143546 cd07172 NR_DBD_GR_PR 1 zinc binding site 0 1 1 1 4,7,21,24,40,46,56,59 4 -143546 cd07172 NR_DBD_GR_PR 2 DNA binding site 0 1 1 1 14,15,16,22,23,25,27,30,33,53,54,57,60,71,74 3 -143547 cd07173 NR_DBD_AR 1 zinc binding site 0 1 1 1 5,8,22,25,41,47,57,60 4 -143547 cd07173 NR_DBD_AR 2 DNA binding site 0 1 1 1 15,16,17,23,24,26,28,31,34,54,55,58,61,72,75 3 -143522 cd06964 NR_DBD_RAR 1 zinc binding site 0 1 1 1 6,9,23,26,42,48,58,61 4 -143522 cd06964 NR_DBD_RAR 2 DNA binding site 0 1 1 1 16,17,18,24,25,27,29,32,35,55,56,59,62,73,76 3 -143525 cd06967 NR_DBD_TR2_like 1 zinc binding site 0 1 1 1 5,8,22,25,41,47,57,60 4 -143525 cd06967 NR_DBD_TR2_like 2 DNA binding site 0 1 1 1 15,16,17,23,24,26,28,31,34,54,55,58,61,72,75 3 -143526 cd06968 NR_DBD_ROR 1 zinc binding site 0 1 1 1 7,10,24,27,43,49,59,62 4 -143526 cd06968 NR_DBD_ROR 2 DNA binding site 0 1 1 1 17,18,19,25,26,28,30,33,36,56,57,60,63,74,77 3 -143527 cd06969 NR_DBD_NGFI-B 1 zinc binding site 0 1 1 1 2,5,19,22,38,44,54,57 4 -143527 cd06969 NR_DBD_NGFI-B 2 DNA binding site 0 1 1 1 12,13,14,20,21,23,25,28,31,51,52,55,58,69,72 3 -143529 cd07154 NR_DBD_PNR_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,43,53,56 4 -143529 cd07154 NR_DBD_PNR_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,50,51,54,57,68,71 3 -143515 cd06957 NR_DBD_PNR_like_2 1 zinc binding site 0 1 1 1 0,3,17,20,36,43,53,56 4 -143515 cd06957 NR_DBD_PNR_like_2 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,50,51,54,57,68,71 3 -143528 cd06970 NR_DBD_PNR 1 zinc binding site 0 1 1 1 8,11,25,28,44,51,61,64 4 -143528 cd06970 NR_DBD_PNR 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,31,34,37,58,59,62,65,76,79 3 -143537 cd07163 NR_DBD_TLX 1 zinc binding site 0 1 1 1 8,11,25,28,44,52,62,65 4 -143537 cd07163 NR_DBD_TLX 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,31,34,37,59,60,63,66,77,80 3 -143538 cd07164 NR_DBD_PNR_like_1 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143538 cd07164 NR_DBD_PNR_like_1 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143530 cd07155 NR_DBD_ER_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143530 cd07155 NR_DBD_ER_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143544 cd07170 NR_DBD_ERR 1 zinc binding site 0 1 1 1 6,9,23,26,42,48,58,61 4 -143544 cd07170 NR_DBD_ERR 2 DNA binding site 0 1 1 1 16,17,18,24,25,27,29,32,35,55,56,59,62,73,76 3 -143545 cd07171 NR_DBD_ER 1 zinc binding site 0 1 1 1 5,8,22,25,41,47,57,60 4 -143545 cd07171 NR_DBD_ER 2 DNA binding site 0 1 1 1 15,16,17,23,24,26,28,31,34,54,55,58,61,72,75 3 -143531 cd07156 NR_DBD_VDR_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143531 cd07156 NR_DBD_VDR_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143513 cd06955 NR_DBD_VDR 1 zinc binding site 0 1 1 1 8,11,25,28,44,50,60,63 4 -143513 cd06955 NR_DBD_VDR 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,31,34,37,57,58,61,64,75,78 3 -143524 cd06966 NR_DBD_CAR 1 zinc binding site 0 1 1 1 2,5,19,22,38,44,54,57 4 -143524 cd06966 NR_DBD_CAR 2 DNA binding site 0 1 1 1 12,13,14,20,21,23,25,28,31,51,52,55,58,69,72 3 -143536 cd07162 NR_DBD_PXR 1 zinc binding site 0 1 1 1 1,4,18,21,37,43,53,56 4 -143536 cd07162 NR_DBD_PXR 2 DNA binding site 0 1 1 1 11,12,13,19,20,22,24,27,30,50,51,54,57,68,71 3 -143532 cd07157 2DBD_NR_DBD1 1 zinc binding site 0 1 1 1 2,5,19,22,40,46,56,59 4 -143532 cd07157 2DBD_NR_DBD1 2 DNA binding site 0 1 1 1 12,13,14,20,21,23,25,28,31,53,54,57,60,71,74 3 -143533 cd07158 NR_DBD_Ppar_like 1 zinc binding site 0 1 1 1 0,3,17,20,37,43,53,56 4 -143533 cd07158 NR_DBD_Ppar_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,50,51,54,57,68,71 3 -143523 cd06965 NR_DBD_Ppar 1 zinc binding site 0 1 1 1 1,4,18,21,38,42,52,55 4 -143523 cd06965 NR_DBD_Ppar 2 DNA binding site 0 1 1 1 11,12,13,19,20,22,24,27,30,49,50,53,56,67,70 3 -143539 cd07165 NR_DBD_DmE78_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143539 cd07165 NR_DBD_DmE78_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143540 cd07166 NR_DBD_REV_ERB 1 zinc binding site 0 1 1 1 5,8,22,25,42,48,58,61 4 -143540 cd07166 NR_DBD_REV_ERB 2 DNA binding site 0 1 1 1 15,16,17,23,24,26,28,31,34,55,56,59,62,73,76 3 -143541 cd07167 NR_DBD_Lrh-1_like 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143541 cd07167 NR_DBD_Lrh-1_like 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -143542 cd07168 NR_DBD_DHR4_like 1 zinc binding site 0 1 1 1 8,11,25,28,44,50,60,63 4 -143542 cd07168 NR_DBD_DHR4_like 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,31,34,37,57,58,61,64,75,78 3 -143543 cd07169 NR_DBD_GCNF_like 1 zinc binding site 0 1 1 1 8,11,25,28,44,50,60,63 4 -143543 cd07169 NR_DBD_GCNF_like 2 DNA binding site 0 1 1 1 18,19,20,26,27,29,31,34,37,57,58,61,64,75,78 3 -143548 cd07179 2DBD_NR_DBD2 1 zinc binding site 0 1 1 1 0,3,17,20,36,42,52,55 4 -143548 cd07179 2DBD_NR_DBD2 2 DNA binding site 0 1 1 1 10,11,12,18,19,21,23,26,29,49,50,53,56,67,70 3 -132994 cd06919 Asp_decarbox 1 active site 0 1 1 1 7,9,22,23,56 1 -132994 cd06919 Asp_decarbox 2 tetramerization interface 0 1 1 0 0,1,2,3,4,5,7,9,10,18,19,20,21,35,37,40,41,45,47,50,52,53,54,55,56,72,73,75,76,84,88,89,90,99 2 -132993 cd06920 NEAT 1 heme-binding site 0 1 1 1 11,19,20,23,48,94,96,101,105,107 5 -133477 cd06971 PgpA 1 binuclear metal-binding site 0 1 1 1 70,73,74,123,126,127 4 -133477 cd06971 PgpA 2 tetramer interfaces 0 1 1 0 3,25,43,46,47,50,51,67,70,71,72,75,76,78,79,82,92,93,94,96,97,98,100,101,103,104,141,142 2 -132992 cd06974 TerD_like 1 putative metal binding site 0 1 0 0 19,21,67 4 -132882 cd07025 Peptidase_S66 1 catalytic triad 0 0 1 1 97,198,267 1 -132882 cd07025 Peptidase_S66 2 dimer interface 0 1 1 1 75,76,179,180,182,183,205,206,208,209,212,213,250,251 2 -132883 cd07062 Peptidase_S66_mccF_like 1 catalytic triad 0 0 1 1 101,224,292 1 -132883 cd07062 Peptidase_S66_mccF_like 2 dimer interface 0 1 1 1 79,80,202,203,205,206,231,232,234,235,238,239,275,276 2 -197305 cd07026 Ribosomal_L20 1 23S rRNA binding site 0 1 1 0 0,1,2,3,4,5,7,8,9,10,15,16,17,18,19,20,21,22,24,25,26,27,30,31,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,57,60,64,70,71,74,75,78,86,87,88 3 -197305 cd07026 Ribosomal_L20 2 L21 binding site 0 1 1 0 30,34,37,38,40,41,44,83,84,85,86,89,95,96,102,103 2 -197305 cd07026 Ribosomal_L20 3 L13 binding site 0 1 1 0 51,54,55,58,61,62,64,88,91,94 2 -132716 cd07040 HP 1 catalytic core 0 1 1 1 5,6,57,106,107 1 -132717 cd07061 HP_HAP_like 1 catalytic core 0 1 1 1 9,10,60,181,182 1 -132718 cd07067 HP_PGM_like 1 catalytic core 0 1 1 1 5,6,57,106,107 1 -132871 cd07044 CofD_YvcK 1 phosphate binding site 0 1 1 0 5,6,7,182,183,187,216,217 4 -132871 cd07044 CofD_YvcK 2 dimer interface 0 1 1 0 88,89,92,93,95,96,106,109,110 2 -132872 cd07186 CofD_like 1 phosphate binding site 0 1 1 0 5,6,7,191,192,196,230,231 4 -132872 cd07186 CofD_like 2 dimer interface 0 1 1 0 92,93,96,97,99,100,114,117,118 2 -132873 cd07187 YvcK_like 1 phosphate binding site 0 1 1 0 5,6,7,183,184,188,217,218 4 -132873 cd07187 YvcK_like 2 dimer interface 0 1 1 0 88,89,92,93,95,96,106,109,110 2 -349952 cd07060 SPOUT_MTase 1 SAM binding site 0 1 1 0 35,36,37,59,60,61,62,78,79,80,85,87,90 5 -349953 cd18080 TrmD-like 1 SAM binding site 0 1 1 0 84,85,86,109,110,111,112,128,129,130,135,138,141 5 -349954 cd18081 RlmH-like 1 SAM binding site 0 1 1 0 68,69,70,99,100,101,102,117,118,119,124,126,129 5 -349955 cd18082 SpoU-like_family 1 SAM binding site 0 1 1 0 77,78,79,101,102,103,104,120,121,122,131,133,136 5 -349964 cd18091 SpoU-like_TRM3-like 1 SAM binding site 0 1 1 0 79,80,81,101,102,103,104,120,121,122,131,133,136 5 -349965 cd18092 SpoU-like_TrmH 1 SAM binding site 0 1 1 0 92,93,94,114,115,116,117,133,134,135,144,146,149 5 -349966 cd18093 SpoU-like_TrmJ 1 SAM binding site 0 1 1 0 75,76,77,109,110,111,112,128,129,130,139,141,144 5 -349967 cd18094 SpoU-like_TrmL 1 SAM binding site 0 1 1 0 75,76,77,96,97,98,99,116,117,118,127,129,132 5 -349968 cd18095 SpoU-like_rRNA-MTase 1 SAM binding site 0 1 1 0 78,79,80,99,100,101,102,118,119,120,129,131,134 5 -349976 cd18103 SpoU-like_RlmB 1 SAM binding site 0 1 1 0 78,79,80,99,100,101,102,118,119,120,129,131,134 5 -349977 cd18104 SpoU-like_RNA-MTase 1 SAM binding site 0 1 1 0 77,78,79,98,99,100,101,117,118,119,128,130,133 5 -349978 cd18105 SpoU-like_MRM1 1 SAM binding site 0 1 1 0 78,79,80,109,110,111,112,128,129,130,144,146,149 5 -349979 cd18106 SpoU-like_RNMTL1 1 SAM binding site 0 1 1 0 77,78,79,100,101,102,103,123,124,125,134,136,139 5 -349980 cd18107 SpoU-like_AviRb 1 SAM binding site 0 1 1 0 83,84,85,104,105,106,107,123,124,125,134,136,139 5 -349981 cd18108 SpoU-like_NHR 1 SAM binding site 0 1 1 0 78,79,80,100,101,102,103,119,120,121,130,132,135 5 -349982 cd18109 SpoU-like_RNA-MTase 1 SAM binding site 0 1 1 0 76,77,78,96,97,98,99,115,116,117,127,129,132 5 -349969 cd18096 SpoU-like 1 SAM binding site 0 1 1 0 73,74,75,95,96,97,98,114,115,116,126,128,131 5 -349970 cd18097 SpoU-like 1 SAM binding site 0 1 1 0 78,79,80,100,101,102,103,119,120,121,130,132,135 5 -349971 cd18098 SpoU-like 1 SAM binding site 0 1 1 0 75,76,77,97,98,99,100,116,117,118,124,126,129 5 -349956 cd18083 aTrm56-like 1 SAM binding site 0 1 1 0 80,81,82,105,106,107,108,122,123,124,129,131,134 5 -349957 cd18084 RsmE-like 1 SAM binding site 0 1 1 0 91,92,93,116,117,118,119,138,139,140,145,147,150 5 -349958 cd18085 TM1570-like 1 SAM binding site 0 1 1 0 106,107,108,134,135,136,137,152,153,154,164,166,169 5 -349959 cd18086 HsC9orf114-like 1 SAM binding site 0 1 1 0 110,111,112,137,138,139,140,162,163,164,173,175,178 5 -349960 cd18087 TrmY-like 1 SAM binding site 0 1 1 0 127,128,129,147,148,149,150,169,170,171,176,178,181 5 -349961 cd18088 Nep1-like 1 SAM binding site 0 1 1 0 137,138,139,163,164,165,166,182,183,184,189,191,194 5 -349962 cd18089 SPOUT_Trm10-like 1 SAM binding site 0 1 1 0 85,86,87,104,105,106,107,129,130,131,145,147,150 5 -349972 cd18099 Trm10arch 1 SAM binding site 0 1 1 0 77,78,79,98,99,100,101,128,129,130,141,143,146 5 -349973 cd18100 Trm10euk_B 1 SAM binding site 0 1 1 0 86,87,88,105,106,107,108,130,131,132,151,153,156 5 -349974 cd18101 Trm10euk_A 1 SAM binding site 0 1 1 0 83,84,85,102,103,104,105,127,128,129,143,145,148 5 -349975 cd18102 Trm10_MRRP1 1 SAM binding site 0 1 1 0 88,89,90,107,108,109,110,132,133,134,149,151,154 5 -349963 cd18090 Arginine_MT_Sfm1 1 SAM binding site 0 1 1 0 73,74,75,94,95,96,97,119,120,121,126,128,131 5 -143549 cd07066 CRD_FZ 1 putative Wnt binding site 0 0 1 1 8,10,11,14,15,16 2 -143550 cd07441 CRD_SFRP3 1 putative Wnt binding site 0 0 1 1 10,12,13,16,17,18 2 -143551 cd07442 CRD_SFRP4 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143552 cd07443 CRD_SFRP1 1 putative Wnt binding site 0 0 1 1 15,17,18,21,22,23 2 -143553 cd07444 CRD_SFRP5 1 putative Wnt binding site 0 0 1 1 15,17,18,21,22,23 2 -143554 cd07445 CRD_corin_1 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143555 cd07446 CRD_SFRP2 1 putative Wnt binding site 0 0 1 1 13,15,16,19,20,21 2 -143556 cd07447 CRD_Carboxypeptidase_Z 1 putative Wnt binding site 0 0 1 1 10,12,13,16,17,18 2 -143557 cd07448 CRD_FZ4 1 putative Wnt binding site 0 0 1 1 10,12,13,16,17,18 2 -143558 cd07449 CRD_FZ3 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143559 cd07450 CRD_FZ6 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143560 cd07451 CRD_SMO 1 putative Wnt binding site 0 0 1 1 11,13,14,19,20,21 2 -143561 cd07452 CRD_sizzled 1 putative Wnt binding site 0 0 1 1 17,19,20,23,24,25 2 -143562 cd07453 CRD_crescent 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143563 cd07454 CRD_LIN_17 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143564 cd07455 CRD_Collagen_XVIII 1 putative Wnt binding site 0 0 1 1 13,15,16,19,20,21 2 -143565 cd07456 CRD_FZ5_like 1 putative Wnt binding site 0 0 1 1 8,10,11,14,15,16 2 -143569 cd07460 CRD_FZ5 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143570 cd07461 CRD_FZ8 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143566 cd07457 CRD_FZ9_like 1 putative Wnt binding site 0 0 1 1 9,11,12,15,16,17 2 -143571 cd07462 CRD_FZ10 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143572 cd07463 CRD_FZ9 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143567 cd07458 CRD_FZ1_like 1 putative Wnt binding site 0 0 1 1 9,11,12,15,16,17 2 -143573 cd07464 CRD_FZ2 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143574 cd07465 CRD_FZ1 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143575 cd07466 CRD_FZ7 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143568 cd07459 CRD_TK_ROR_like 1 putative Wnt binding site 0 0 1 1 9,11,12,15,16,17 2 -143576 cd07467 CRD_TK_ROR1 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143577 cd07468 CRD_TK_ROR2 1 putative Wnt binding site 0 0 1 1 11,13,14,17,18,19 2 -143578 cd07469 CRD_TK_ROR_related 1 putative Wnt binding site 0 0 1 1 11,13,14,19,20,21 2 -143579 cd07888 CRD_corin_2 1 putative Wnt binding site 0 0 1 1 8,10,11,14,15,16 2 -133478 cd07153 Fur_like 1 putative DNA binding helix 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 0 -133478 cd07153 Fur_like 2 metal binding site 1 0 1 1 1 69,71,90,107 4 -133478 cd07153 Fur_like 3 metal binding site 2 0 1 1 1 15,63,70,72,83 4 -133478 cd07153 Fur_like 4 structural Zn2+ binding site 0 1 1 1 75,78,115 4 -133478 cd07153 Fur_like 5 dimer interface 0 1 1 1 74,75,76,92,93,102,103,104,106,107,108,109,110,111,112,113,114 2 -143581 cd07177 terB_like 1 metal binding site 0 1 0 0 12,19,82,85,92 4 -143580 cd07176 terB 1 metal binding site 0 1 0 0 15,22,87,90,97 4 -143582 cd07178 terB_like_YebE 1 metal binding site 0 1 0 0 12,19,74,77,81 4 -143583 cd07311 terB_like_1 1 metal binding site 0 1 0 0 36,43,98,101,108 4 -143584 cd07313 terB_like_2 1 metal binding site 0 1 0 0 12,19,82,85,92 4 -143585 cd07316 terB_like_DjlA 1 metal binding site 0 1 0 0 12,19,83,86,93 4 -143586 cd07185 OmpA_C-like 1 ligand binding site 0 1 1 0 7,8,41,42,45,49,50,53,95,99 5 -143587 cd07197 nitrilase 1 active site 0 1 1 1 38,109,113,117,142,143,145,146,167 1 -143587 cd07197 nitrilase 2 catalytic triad 0 0 1 1 38,109,142 1 -143587 cd07197 nitrilase 3 dimer interface 0 1 1 1 110,111,112,113,116,123,124,125,143,145,146,147,148,149,152,153,178,179,181,182,183,185,186,207,208,249,250,251,252 2 -143588 cd07564 nitrilases_CHs 1 active site 0 1 1 1 40,122,126,129,156,157,159,160,180 1 -143588 cd07564 nitrilases_CHs 2 catalytic triad 0 0 1 1 40,122,156 1 -143588 cd07564 nitrilases_CHs 3 dimer interface 0 1 1 1 123,124,125,126,128,135,136,137,157,159,160,161,162,163,165,166,195,196,198,199,200,202,203,239,240,283,284,285,286 2 -143589 cd07565 aliphatic_amidase 1 active site 0 1 1 1 46,119,123,127,152,153,155,156,177 1 -143589 cd07565 aliphatic_amidase 2 catalytic triad 0 0 1 1 46,119,152 1 -143589 cd07565 aliphatic_amidase 3 dimer interface 0 1 1 1 120,121,122,123,126,131,132,133,153,155,156,157,158,159,162,163,188,189,191,192,193,195,196,217,218,263,264,265,266 2 -143590 cd07566 ScNTA1_like 1 active site 0 1 1 1 43,118,122,125,166,167,169,170,196 1 -143590 cd07566 ScNTA1_like 2 catalytic triad 0 0 1 1 43,118,166 1 -143590 cd07566 ScNTA1_like 3 dimer interface 0 1 1 1 119,120,121,122,124,131,132,133,167,169,170,171,172,173,176,177,207,208,210,211,212,214,215,239,240,288,289,290,291 2 -143591 cd07567 biotinidase_like 1 active site 0 1 1 1 47,146,150,152,179,180,182,183,205 1 -143591 cd07567 biotinidase_like 2 catalytic triad 0 0 1 1 47,146,179 1 -143591 cd07567 biotinidase_like 3 dimer interface 0 1 1 1 147,148,149,150,151,158,159,160,180,182,183,184,185,186,189,190,211,212,214,215,216,218,219,243,244,294,295,296,297 2 -143592 cd07568 ML_beta-AS_like 1 active site 0 1 1 1 50,124,128,135,161,162,164,165,186 1 -143592 cd07568 ML_beta-AS_like 2 catalytic triad 0 0 1 1 50,124,161 1 -143592 cd07568 ML_beta-AS_like 3 dimer interface 0 1 1 1 125,126,127,128,134,141,142,143,162,164,165,166,167,168,171,172,198,199,201,202,203,205,206,230,231,273,274,275,276 2 -143611 cd07587 ML_beta-AS 1 active site 0 1 1 1 110,187,191,198,224,225,227,228,249 1 -143611 cd07587 ML_beta-AS 2 catalytic triad 0 0 1 1 110,187,224 1 -143611 cd07587 ML_beta-AS 3 dimer interface 0 1 1 1 188,189,190,191,197,204,205,206,225,227,228,229,230,231,234,235,261,262,264,265,266,268,269,306,307,349,350,351,352 2 -143593 cd07569 DCase 1 active site 0 1 1 1 45,125,129,144,170,171,173,174,195 1 -143593 cd07569 DCase 2 catalytic triad 0 0 1 1 45,125,170 1 -143593 cd07569 DCase 3 dimer interface 0 1 1 1 126,127,128,129,143,150,151,152,171,173,174,175,176,177,180,181,216,217,219,220,221,223,224,245,246,289,290,291,292 2 -143594 cd07570 GAT_Gln-NAD-synth 1 active site 0 1 1 1 39,108,112,119,144,145,147,148,170 1 -143594 cd07570 GAT_Gln-NAD-synth 2 catalytic triad 0 0 1 1 39,108,144 1 -143594 cd07570 GAT_Gln-NAD-synth 3 dimer interface 0 1 1 1 109,110,111,112,118,125,126,127,145,147,148,149,150,151,155,156,183,184,186,187,188,190,191,212,213,253,254,255,256 2 -143595 cd07571 ALP_N-acyl_transferase 1 active site 0 1 1 1 46,107,111,115,159,160,162,163,184 1 -143595 cd07571 ALP_N-acyl_transferase 2 catalytic triad 0 0 1 1 46,107,159 1 -143595 cd07571 ALP_N-acyl_transferase 3 dimer interface 0 1 1 1 108,109,110,111,114,121,122,123,160,162,163,164,165,166,169,170,199,200,202,203,204,206,207,219,220,262,263,264,265 2 -143596 cd07572 nit 1 active site 0 1 1 1 38,111,115,127,152,153,155,156,177 1 -143596 cd07572 nit 2 catalytic triad 0 0 1 1 38,111,152 1 -143596 cd07572 nit 3 dimer interface 0 1 1 1 112,113,114,115,126,133,134,135,153,155,156,157,158,159,162,163,189,190,192,193,194,196,197,219,220,261,262,263,264 2 -143597 cd07573 CPA 1 active site 0 1 1 1 39,113,117,124,150,151,153,154,175 1 -143597 cd07573 CPA 2 catalytic triad 0 0 1 1 39,113,150 1 -143597 cd07573 CPA 3 dimer interface 0 1 1 1 114,115,116,117,123,130,131,132,151,153,154,155,156,157,160,161,195,196,198,199,200,202,203,228,229,271,272,273,274 2 -143598 cd07574 nitrilase_Rim1_like 1 active site 0 1 1 1 41,118,122,127,152,153,155,156,177 1 -143598 cd07574 nitrilase_Rim1_like 2 catalytic triad 0 0 1 1 41,118,152 1 -143598 cd07574 nitrilase_Rim1_like 3 dimer interface 0 1 1 1 119,120,121,122,126,133,134,135,153,155,156,157,158,159,162,163,189,190,192,193,194,196,197,222,223,273,274,275,276 2 -143599 cd07575 Xc-1258_like 1 active site 0 1 1 1 39,105,109,114,139,140,142,143,162 1 -143599 cd07575 Xc-1258_like 2 catalytic triad 0 0 1 1 39,105,139 1 -143599 cd07575 Xc-1258_like 3 dimer interface 0 1 1 1 106,107,108,109,113,120,121,122,140,142,143,144,145,146,149,150,173,174,176,177,178,180,181,203,204,245,246,247,248 2 -143600 cd07576 R-amidase_like 1 active site 0 1 1 1 39,108,112,116,141,142,144,145,166 1 -143600 cd07576 R-amidase_like 2 catalytic triad 0 0 1 1 39,108,141 1 -143600 cd07576 R-amidase_like 3 dimer interface 0 1 1 1 109,110,111,112,115,122,123,124,142,144,145,146,147,148,151,152,177,178,180,181,182,184,185,206,207,248,249,250,251 2 -143601 cd07577 Ph0642_like 1 active site 0 1 1 1 36,107,111,114,140,141,143,144,165 1 -143601 cd07577 Ph0642_like 2 catalytic triad 0 0 1 1 36,107,140 1 -143601 cd07577 Ph0642_like 3 dimer interface 0 1 1 1 108,109,110,111,113,120,121,122,141,143,144,145,146,147,150,151,173,174,176,177,178,180,181,206,207,251,252,253,254 2 -143602 cd07578 nitrilase_1_R1 1 active site 0 1 1 1 40,112,116,119,145,146,148,149,170 1 -143602 cd07578 nitrilase_1_R1 2 catalytic triad 0 0 1 1 40,112,145 1 -143602 cd07578 nitrilase_1_R1 3 dimer interface 0 1 1 1 113,114,115,116,118,125,126,127,146,148,149,150,151,152,155,156,179,180,182,183,184,186,187,208,209,251,252,253,254 2 -143603 cd07579 nitrilase_1_R2 1 active site 0 1 1 1 38,103,107,110,135,136,138,139,160 1 -143603 cd07579 nitrilase_1_R2 2 catalytic triad 0 0 1 1 38,103,135 1 -143603 cd07579 nitrilase_1_R2 3 dimer interface 0 1 1 1 104,105,106,107,109,116,117,118,136,138,139,140,141,142,145,146,190,191,193,194,195,197,198,217,218,260,261,262,263 2 -143604 cd07580 nitrilase_2 1 active site 0 1 1 1 39,110,114,117,143,144,146,147,168 1 -143604 cd07580 nitrilase_2 2 catalytic triad 0 0 1 1 39,110,143 1 -143604 cd07580 nitrilase_2 3 dimer interface 0 1 1 1 111,112,113,114,116,123,124,125,144,146,147,148,149,150,153,154,185,186,188,189,190,192,193,214,215,260,261,262,263 2 -143605 cd07581 nitrilase_3 1 active site 0 1 1 1 37,108,112,119,146,147,149,150,171 1 -143605 cd07581 nitrilase_3 2 catalytic triad 0 0 1 1 37,108,146 1 -143605 cd07581 nitrilase_3 3 dimer interface 0 1 1 1 109,110,111,112,118,125,126,127,147,149,150,151,152,153,156,157,184,185,187,188,189,191,192,209,210,251,252,253,254 2 -143606 cd07582 nitrilase_4 1 active site 0 1 1 1 49,126,130,143,172,173,175,176,197 1 -143606 cd07582 nitrilase_4 2 catalytic triad 0 0 1 1 49,126,172 1 -143606 cd07582 nitrilase_4 3 dimer interface 0 1 1 1 127,128,129,130,142,149,150,151,173,175,176,177,178,179,182,183,209,210,212,213,214,216,217,242,243,289,290,291,292 2 -143607 cd07583 nitrilase_5 1 active site 0 1 1 1 39,108,112,117,142,143,145,146,167 1 -143607 cd07583 nitrilase_5 2 catalytic triad 0 0 1 1 39,108,142 1 -143607 cd07583 nitrilase_5 3 dimer interface 0 1 1 1 109,110,111,112,116,123,124,125,143,145,146,147,148,149,152,153,178,179,181,182,183,185,186,207,208,249,250,251,252 2 -143608 cd07584 nitrilase_6 1 active site 0 1 1 1 39,113,117,120,145,146,148,149,170 1 -143608 cd07584 nitrilase_6 2 catalytic triad 0 0 1 1 39,113,145 1 -143608 cd07584 nitrilase_6 3 dimer interface 0 1 1 1 114,115,116,117,119,126,127,128,146,148,149,150,151,152,155,156,181,182,184,185,186,188,189,210,211,253,254,255,256 2 -143609 cd07585 nitrilase_7 1 active site 0 1 1 1 39,107,111,115,139,140,142,143,164 1 -143609 cd07585 nitrilase_7 2 catalytic triad 0 0 1 1 39,107,139 1 -143609 cd07585 nitrilase_7 3 dimer interface 0 1 1 1 108,109,110,111,114,120,121,122,140,142,143,144,145,146,149,150,179,180,182,183,184,186,187,208,209,253,254,255,256 2 -143610 cd07586 nitrilase_8 1 active site 0 1 1 1 39,106,110,117,142,143,145,146,167 1 -143610 cd07586 nitrilase_8 2 catalytic triad 0 0 1 1 39,106,142 1 -143610 cd07586 nitrilase_8 3 dimer interface 0 1 1 1 107,108,109,110,116,123,124,125,143,145,146,147,148,149,152,153,185,186,188,189,190,192,193,214,215,258,259,260,261 2 -143612 cd07304 Chorismate_synthase 1 FMN-binding site 0 1 1 0 95,96,97,116,118,233,234,235,293,295,296,297,321,324,327 5 -143612 cd07304 Chorismate_synthase 2 Active site 0 1 1 0 9,38,95,96,117,118,119,120,123,234,235,292,293,295,296,297,324,328 1 -143612 cd07304 Chorismate_synthase 3 Tetramer interface 0 1 1 1 1,2,3,4,5,6,7,14,16,18,22,23,56,57,59,60,67,68,70,72,74,101,102,103,104,105,116,117,125,192,197,198,199,200,201,202,213,215,216,217,221,223,224,227,228,229,231,232,234,237,238,239,240,241,244,245,247,248,252,253,273,276,277,278,280,281,282,289,291,292,293,294,297,335 2 -153271 cd07307 BAR 1 dimer interface 0 1 1 0 0,3,4,8,10,11,14,15,17,18,28,29,31,32,35,36,38,39,42,58,61,62,155,158,159,161,166,169,170,172,173,176,177,180,181,183,184,187,188,190,191 2 -153270 cd00011 BAR_Arfaptin_like 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,63,66,67,164,167,168,170,175,178,179,181,182,185,186,189,190,192,193,196,197,199,200 2 -153343 cd07659 BAR_PICK1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,64,67,68,174,177,178,180,185,188,189,191,192,195,196,199,200,202,203,206,207,209,210 2 -153344 cd07660 BAR_Arfaptin 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,62,65,66,161,164,165,167,172,175,176,178,179,182,183,186,187,189,190,193,194,196,197 2 -153345 cd07661 BAR_ICA69 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,63,66,67,164,167,168,170,175,178,179,181,182,185,186,189,190,192,193,196,197,199,200 2 -153272 cd07588 BAR_Amphiphysin 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,47,48,50,51,54,55,57,58,61,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153295 cd07611 BAR_Amphiphysin_I_II 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,47,48,50,51,54,55,57,58,61,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153296 cd07612 BAR_Bin2 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,47,48,50,51,54,55,57,58,61,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153273 cd07589 BAR_DNMBP 1 dimer interface 0 1 1 0 12,15,16,20,22,23,26,27,29,30,44,45,47,48,51,52,54,55,58,67,70,71,153,156,157,159,164,167,168,170,171,174,175,178,179,181,182,187,188,190,191 2 -153274 cd07590 BAR_Bin3 1 dimer interface 0 1 1 0 18,21,22,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50,53,73,76,77,172,175,176,178,183,186,187,189,190,193,194,197,198,200,201,204,205,207,208 2 -153275 cd07591 BAR_Rvs161p 1 dimer interface 0 1 1 0 18,21,22,26,28,29,32,33,35,36,46,47,49,50,53,54,56,57,60,74,77,78,171,174,175,177,182,185,186,188,189,192,193,196,197,199,200,203,204,206,207 2 -153276 cd07592 BAR_Endophilin_A 1 dimer interface 0 1 1 0 14,17,18,22,24,25,28,29,31,32,64,65,67,68,71,72,74,75,78,92,95,96,177,180,181,183,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153297 cd07613 BAR_Endophilin_A1 1 dimer interface 0 1 1 0 14,17,18,22,24,25,28,29,31,32,64,65,67,68,71,72,74,75,78,92,95,96,177,180,181,183,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153298 cd07614 BAR_Endophilin_A2 1 dimer interface 0 1 1 0 14,17,18,22,24,25,28,29,31,32,64,65,67,68,71,72,74,75,78,92,95,96,177,180,181,183,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153299 cd07615 BAR_Endophilin_A3 1 dimer interface 0 1 1 0 14,17,18,22,24,25,28,29,31,32,64,65,67,68,71,72,74,75,78,92,95,96,177,180,181,183,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153277 cd07593 BAR_MUG137_fungi 1 dimer interface 0 1 1 0 14,17,18,22,24,25,28,29,31,32,51,52,54,55,58,59,61,62,65,79,82,83,169,172,173,175,179,182,183,185,186,189,190,193,194,196,197,200,201,203,204 2 -153278 cd07594 BAR_Endophilin_B 1 dimer interface 0 1 1 0 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,190,193,194,196,200,203,204,206,207,210,211,214,215,217,218,221,222,224,225 2 -153300 cd07616 BAR_Endophilin_B1 1 dimer interface 0 1 1 0 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,190,193,194,196,200,203,204,206,207,210,211,214,215,217,218,221,222,224,225 2 -153301 cd07617 BAR_Endophilin_B2 1 dimer interface 0 1 1 0 24,27,28,32,34,35,38,39,41,42,69,70,72,73,76,77,79,80,83,97,100,101,181,184,185,187,191,194,195,197,198,201,202,205,206,208,209,212,213,215,216 2 -153279 cd07595 BAR_RhoGAP_Rich-like 1 dimer interface 0 1 1 0 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,185,188,189,191,195,198,199,201,202,205,206,209,210,212,213,216,217,219,220 2 -153302 cd07618 BAR_Rich1 1 dimer interface 0 1 1 0 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,187,190,191,193,197,200,201,203,204,207,208,211,212,214,215,218,219,221,222 2 -153303 cd07619 BAR_Rich2 1 dimer interface 0 1 1 0 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,189,192,193,195,199,202,203,205,206,209,210,213,214,216,217,220,221,223,224 2 -153304 cd07620 BAR_SH3BP1 1 dimer interface 0 1 1 0 8,11,12,19,21,22,25,26,28,29,57,58,60,61,64,65,67,68,71,85,88,89,198,201,202,204,208,211,212,214,215,218,219,222,223,225,226,229,230,232,233 2 -153280 cd07596 BAR_SNX 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,39,40,42,43,46,47,49,50,53,68,71,72,179,182,183,185,190,193,194,196,197,200,201,204,205,207,208,211,212,214,215 2 -153305 cd07621 BAR_SNX5_6 1 dimer interface 0 1 1 0 31,34,35,39,41,42,45,46,48,49,59,60,62,63,66,67,69,70,73,85,88,89,178,181,182,184,189,192,193,195,196,199,200,203,204,206,207,210,211,213,214 2 -153346 cd07662 BAR_SNX6 1 dimer interface 0 1 1 0 30,33,34,38,40,41,44,45,47,48,58,59,61,62,65,66,68,69,72,84,87,88,177,180,181,183,188,191,192,194,195,198,199,202,203,205,206,209,210,212,213 2 -153347 cd07663 BAR_SNX5 1 dimer interface 0 1 1 0 30,33,34,38,40,41,44,45,47,48,58,59,61,62,65,66,68,69,72,84,87,88,177,180,181,183,188,191,192,194,195,198,199,202,203,205,206,209,210,212,213 2 -153306 cd07622 BAR_SNX4 1 dimer interface 0 1 1 0 21,24,25,29,31,32,35,36,38,39,49,50,52,53,56,57,59,60,63,73,76,77,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153307 cd07623 BAR_SNX1_2 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,47,48,50,51,54,55,57,58,61,74,77,78,183,186,187,189,194,197,198,200,201,204,205,208,209,211,212,215,216,218,219 2 -153348 cd07664 BAR_SNX2 1 dimer interface 0 1 1 0 29,32,33,37,39,40,43,44,46,47,57,58,60,61,64,65,67,68,71,84,87,88,193,196,197,199,204,207,208,210,211,214,215,218,219,221,222,225,226,228,229 2 -153349 cd07665 BAR_SNX1 1 dimer interface 0 1 1 0 29,32,33,37,39,40,43,44,46,47,57,58,60,61,64,65,67,68,71,84,87,88,193,196,197,199,204,207,208,210,211,214,215,218,219,221,222,225,226,228,229 2 -153308 cd07624 BAR_SNX7_30 1 dimer interface 0 1 1 0 21,24,25,29,31,32,35,36,38,39,49,50,52,53,56,57,59,60,63,74,77,78,161,164,165,167,172,175,176,178,179,182,183,186,187,189,190,193,194,196,197 2 -153350 cd07666 BAR_SNX7 1 dimer interface 0 1 1 0 61,64,65,69,71,72,75,76,78,79,89,90,92,93,96,97,99,100,103,114,117,118,204,207,208,210,215,218,219,221,222,225,226,229,230,232,233,236,237,239,240 2 -153351 cd07667 BAR_SNX30 1 dimer interface 0 1 1 0 58,61,62,66,68,69,72,73,75,76,86,87,89,90,93,94,96,97,100,111,114,115,201,204,205,207,212,215,216,218,219,222,223,226,227,229,230,233,234,236,237 2 -153309 cd07625 BAR_Vps17p 1 dimer interface 0 1 1 0 25,28,29,33,35,36,39,40,42,43,53,54,56,57,60,61,63,64,67,80,83,84,191,194,195,197,202,205,206,208,209,212,213,216,217,219,220,223,224,226,227 2 -153310 cd07626 BAR_SNX9_like 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,40,41,43,44,47,48,50,51,54,73,76,77,159,162,163,165,170,173,174,176,177,180,181,184,185,187,188,191,192,194,195 2 -153352 cd07668 BAR_SNX9 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,48,49,51,52,55,56,58,59,62,81,84,85,167,170,171,173,178,181,182,184,185,188,189,192,193,195,196,199,200,202,203 2 -153353 cd07669 BAR_SNX33 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,48,49,51,52,55,56,58,59,62,81,84,85,167,170,171,173,178,181,182,184,185,188,189,192,193,195,196,199,200,202,203 2 -153354 cd07670 BAR_SNX18 1 dimer interface 0 1 1 0 19,22,23,27,29,30,33,34,36,37,48,49,51,52,55,56,58,59,62,81,84,85,167,170,171,173,178,181,182,184,185,188,189,192,193,195,196,199,200,202,203 2 -153311 cd07627 BAR_Vps5p 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,39,40,42,43,46,47,49,50,53,66,69,70,177,180,181,183,188,191,192,194,195,198,199,202,203,205,206,209,210,212,213 2 -153312 cd07628 BAR_Atg24p 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,39,40,42,43,46,47,49,50,53,65,68,69,146,149,150,152,157,160,161,163,164,167,168,171,172,174,175,178,179,181,182 2 -153313 cd07629 BAR_Atg20p 1 dimer interface 0 1 1 0 11,14,15,20,22,23,26,27,29,30,40,41,43,44,47,48,50,51,54,67,70,71,148,151,152,154,159,162,163,165,166,169,170,173,174,176,177,180,181,183,184 2 -153314 cd07630 BAR_SNX_like 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,39,40,42,43,46,47,49,50,53,68,71,72,159,162,163,165,170,173,174,176,177,180,181,184,185,187,188,191,192,194,195 2 -153281 cd07597 BAR_SNX8 1 dimer interface 0 1 1 0 22,25,26,30,32,33,36,37,39,40,57,58,60,61,64,65,67,68,71,99,102,103,206,209,210,212,217,220,221,223,224,227,228,231,232,234,235,238,239,241,242 2 -153282 cd07598 BAR_FAM92 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,65,68,69,162,165,166,168,173,176,177,179,180,183,184,187,188,190,191,194,195,197,198 2 -153283 cd07599 BAR_Rvs167p 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,75,78,79,176,179,180,182,187,190,191,193,194,197,198,201,202,204,205,208,209,211,212 2 -153284 cd07600 BAR_Gvp36 1 dimer interface 0 1 1 0 37,40,41,46,48,49,52,53,55,56,74,75,77,78,81,82,84,85,88,111,114,115,204,207,208,210,213,216,217,219,220,223,224,227,228,230,231,234,235,237,238 2 -153285 cd07601 BAR_APPL 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153315 cd07631 BAR_APPL1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153316 cd07632 BAR_APPL2 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,69,72,73,166,169,170,172,177,180,181,183,184,187,188,191,192,194,195,198,199,201,202 2 -153286 cd07602 BAR_RhoGAP_OPHN1-like 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153317 cd07633 BAR_OPHN1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153318 cd07634 BAR_GAP10-like 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153319 cd07635 BAR_GRAF2 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153320 cd07636 BAR_GRAF 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,30,31,33,34,37,38,40,41,44,71,74,75,167,170,171,173,178,181,182,184,185,189,190,193,194,196,197,199,200,202,203 2 -153287 cd07603 BAR_ACAPs 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153321 cd07637 BAR_ACAP3 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153322 cd07638 BAR_ACAP2 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153323 cd07639 BAR_ACAP1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,65,68,69,160,163,164,166,171,174,175,177,178,181,182,185,186,188,189,192,193,195,196 2 -153288 cd07604 BAR_ASAPs 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153324 cd07640 BAR_ASAP3 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,170,173,174,176,178,181,182,184,185,191,192,195,196,198,199,202,203,205,206 2 -153325 cd07641 BAR_ASAP1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153326 cd07642 BAR_ASAP2 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,67,70,71,172,175,176,178,180,183,184,186,187,193,194,197,198,200,201,204,205,207,208 2 -153289 cd07605 I-BAR_IMD 1 dimer interface 0 1 1 0 8,11,12,17,19,20,23,24,26,27,38,39,41,42,45,46,48,49,52,76,79,80,176,179,180,182,183,186,187,189,190,193,194,197,198,200,201,204,205,207,208 2 -153327 cd07643 I-BAR_IMD_MIM 1 dimer interface 0 1 1 0 11,14,15,19,21,22,25,26,28,29,40,41,43,44,47,48,50,51,54,79,82,83,178,181,182,184,185,188,189,191,192,195,196,199,200,202,203,205,206,208,209 2 -153328 cd07644 I-BAR_IMD_BAIAP2L2 1 dimer interface 0 1 1 0 8,11,12,17,19,20,23,24,26,27,38,39,41,42,45,46,48,49,52,76,79,80,168,171,172,174,175,178,179,181,182,185,186,189,190,192,193,196,197,199,200 2 -153329 cd07645 I-BAR_IMD_BAIAP2L1 1 dimer interface 0 1 1 0 8,11,12,17,19,20,23,24,26,27,38,39,41,42,45,46,48,49,52,76,79,80,177,180,181,183,184,187,188,190,191,194,195,198,199,201,202,205,206,208,209 2 -153330 cd07646 I-BAR_IMD_IRSp53 1 dimer interface 0 1 1 0 10,13,14,19,21,22,25,26,28,29,40,41,43,44,47,48,50,51,54,78,81,82,179,182,183,185,186,189,190,192,193,196,197,200,201,203,204,207,208,210,211 2 -153290 cd07606 BAR_SFC_plant 1 dimer interface 0 1 1 0 8,11,12,16,18,19,22,23,25,26,36,37,39,40,43,44,46,47,50,67,70,71,163,166,167,169,174,177,178,180,181,184,185,188,189,191,192,195,196,198,199 2 -153291 cd07607 BAR_SH3P_plant 1 dimer interface 0 1 1 0 8,11,12,16,18,19,22,23,25,26,36,37,39,40,43,44,46,47,50,65,68,69,170,173,174,176,181,184,185,187,188,191,192,195,196,198,199,202,203,205,206 2 -153292 cd07608 BAR_ArfGAP_fungi 1 dimer interface 0 1 1 0 8,11,12,16,18,19,22,23,25,26,34,35,37,38,41,42,44,45,48,59,62,63,151,154,155,157,163,166,167,169,170,173,174,177,178,180,181,184,185,187,188 2 -153293 cd07609 BAR_SIP3_fungi 1 dimer interface 0 1 1 0 8,11,12,16,18,19,22,23,25,26,29,30,32,33,36,37,39,40,43,53,56,57,163,166,167,169,170,173,174,176,177,180,181,184,185,187,188,200,201,203,204 2 -153294 cd07610 FCH_F-BAR 1 dimer interface 0 1 1 0 0,3,4,8,10,11,14,15,17,18,28,29,31,32,35,36,38,39,42,67,70,71,149,152,153,155,157,160,161,163,164,167,168,171,172,174,175,178,179,181,182 2 -153331 cd07647 F-BAR_PSTPIP 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,70,73,74,197,200,201,203,205,208,209,211,212,215,216,219,220,222,223,226,227,229,230 2 -153355 cd07671 F-BAR_PSTPIP1 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,70,73,74,197,200,201,203,205,208,209,211,212,215,216,219,220,222,223,226,227,229,230 2 -153356 cd07672 F-BAR_PSTPIP2 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,71,74,75,198,201,202,204,206,209,210,212,213,216,217,220,221,223,224,227,228,230,231 2 -153332 cd07648 F-BAR_FCHO 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,71,74,75,187,190,191,193,195,198,199,201,202,205,206,209,210,212,213,216,217,219,220 2 -153357 cd07673 F-BAR_FCHO2 1 dimer interface 0 1 1 0 12,15,16,20,22,23,26,27,29,30,40,41,43,44,47,48,50,51,54,78,81,82,194,197,198,200,202,205,206,208,209,212,213,216,217,219,220,223,224,226,227 2 -153358 cd07674 F-BAR_FCHO1 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,71,74,75,187,190,191,193,195,198,199,201,202,205,206,209,210,212,213,216,217,219,220 2 -153333 cd07649 F-BAR_GAS7 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,70,73,74,191,194,195,197,199,202,203,205,206,209,210,213,214,216,217,220,221,223,224 2 -153334 cd07650 F-BAR_Syp1p_like 1 dimer interface 0 1 1 0 16,19,20,24,26,27,30,31,33,34,44,45,47,48,51,52,54,55,58,83,86,87,173,176,177,179,181,184,185,187,188,191,192,195,196,198,199,202,203,205,206 2 -153335 cd07651 F-BAR_PombeCdc15_like 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,70,73,74,194,197,198,200,202,205,206,208,209,212,213,216,217,219,220,223,224,226,227 2 -153336 cd07652 F-BAR_Rgd1 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,75,78,79,184,187,188,190,193,196,197,199,200,203,204,207,208,210,211,214,215,217,218 2 -153337 cd07653 F-BAR_CIP4-like 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,76,79,80,206,209,210,212,214,217,218,220,221,224,225,228,229,231,232,235,236,238,239 2 -153359 cd07675 F-BAR_FNBP1L 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,77,80,81,207,210,211,213,215,218,219,221,222,225,226,229,230,232,233,236,237,239,240 2 -153360 cd07676 F-BAR_FBP17 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,78,81,82,208,211,212,214,216,219,220,222,223,226,227,230,231,233,234,237,238,240,241 2 -153338 cd07654 F-BAR_FCHSD 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,80,83,84,207,210,211,213,216,219,220,222,223,226,227,230,231,233,234,237,238,240,241 2 -153361 cd07677 F-BAR_FCHSD2 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,80,83,84,203,206,207,209,212,215,216,218,219,222,223,226,227,229,230,233,234,236,237 2 -153362 cd07678 F-BAR_FCHSD1 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,79,82,83,206,209,210,212,215,218,219,221,222,225,226,229,230,232,233,236,237,239,240 2 -153339 cd07655 F-BAR_PACSIN 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,71,74,75,216,219,220,222,224,227,228,230,231,234,235,238,239,241,242,245,246,248,249 2 -153363 cd07679 F-BAR_PACSIN2 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,71,74,75,216,219,220,222,224,227,228,230,231,234,235,238,239,241,242,245,246,248,249 2 -153364 cd07680 F-BAR_PACSIN1 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,71,74,75,216,219,220,222,224,227,228,230,231,234,235,238,239,241,242,245,246,248,249 2 -153365 cd07681 F-BAR_PACSIN3 1 dimer interface 0 1 1 0 9,12,13,17,19,20,23,24,26,27,37,38,40,41,44,45,47,48,51,71,74,75,216,219,220,222,224,227,228,230,231,234,235,238,239,241,242,245,246,248,249 2 -153340 cd07656 F-BAR_srGAP 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,84,87,88,199,202,203,205,207,210,211,213,214,217,218,221,222,224,225,228,229,231,232 2 -153366 cd07682 F-BAR_srGAP2 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,86,89,90,221,224,225,227,229,232,233,235,236,239,240,243,244,246,247,250,251,253,254 2 -153367 cd07683 F-BAR_srGAP1 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,87,90,91,211,214,215,217,219,222,223,225,226,229,230,233,234,236,237,240,241,243,244 2 -153368 cd07684 F-BAR_srGAP3 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,86,89,90,211,214,215,217,219,222,223,225,226,229,230,233,234,236,237,240,241,243,244 2 -153341 cd07657 F-BAR_Fes_Fer 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,75,78,79,191,194,195,197,203,206,207,209,210,213,214,217,218,220,221,224,225,227,228 2 -153369 cd07685 F-BAR_Fes 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,79,82,83,191,194,195,197,203,206,207,209,210,213,214,217,218,220,221,224,225,227,228 2 -153370 cd07686 F-BAR_Fer 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,75,78,79,188,191,192,194,200,203,204,206,207,210,211,214,215,217,218,221,222,224,225 2 -153342 cd07658 F-BAR_NOSTRIN 1 dimer interface 0 1 1 0 5,8,9,13,15,16,19,20,22,23,33,34,36,37,40,41,43,44,47,72,75,76,197,200,201,203,205,208,209,211,212,215,216,219,220,222,223,226,227,229,230 2 -213985 cd07309 PHP 1 active site 0 1 1 1 3,5,36,69,84,86 1 -213986 cd07431 PHP_PolIIIA 1 active site 0 1 1 1 3,5,37,62,143,145 1 -213988 cd07433 PHP_PolIIIA_DnaE1 1 active site 0 1 1 1 5,7,39,64,196,198 1 -213989 cd07434 PHP_PolIIIA_DnaE2 1 active site 0 1 1 1 4,6,38,63,181,183 1 -213990 cd07435 PHP_PolIIIA_POLC 1 active site 0 1 1 1 4,6,38,63,195,197 1 -213997 cd12113 PHP_PolIIIA_DnaE3 1 active site 0 1 1 1 5,7,39,64,204,206 1 -213987 cd07432 PHP_HisPPase 1 active site 0 1 1 1 3,5,36,61,125,127 1 -213991 cd07436 PHP_PolX 1 active site 0 1 1 1 9,11,41,80,196,198 1 -213992 cd07437 PHP_HisPPase_Ycdx_like 1 active site 0 1 1 1 5,7,38,71,190,192 1 -213993 cd07438 PHP_HisPPase_AMP 1 active site 0 1 1 1 3,5,35,60,151,153 1 -213994 cd12110 PHP_HisPPase_Hisj_like 1 active site 0 1 1 1 3,5,36,81,227,229 1 -213995 cd12111 PHP_HisPPase_Thermotoga_like 1 active site 0 1 1 1 6,8,38,89,185,187 1 -213996 cd12112 PHP_HisPPase_Chlorobi_like 1 active site 0 1 1 1 17,19,49,87,188,190 1 -153371 cd07320 Extradiol_Dioxygenase_3B_like 1 metal binding site 0 1 1 1 6,222 4 -153371 cd07320 Extradiol_Dioxygenase_3B_like 2 active site 0 1 1 0 6,7,8,109,170,222,251,252 1 -153372 cd07359 PCA_45_Doxase_B_like 1 metal binding site 0 1 1 1 9,233 4 -153372 cd07359 PCA_45_Doxase_B_like 2 active site 0 1 1 0 9,10,11,120,185,233,261,262 1 -153376 cd07364 PCA_45_Dioxygenase_B 1 metal binding site 0 1 1 1 11,239 4 -153376 cd07364 PCA_45_Dioxygenase_B 2 active site 0 1 1 0 11,12,13,124,192,239,267,268 1 -153377 cd07365 MhpB_like 1 metal binding site 0 1 1 1 9,269 4 -153377 cd07365 MhpB_like 2 active site 0 1 1 0 9,10,11,114,178,269,300,301 1 -153378 cd07366 3MGA_Dioxygenase 1 metal binding site 0 1 1 1 10,284 4 -153378 cd07366 3MGA_Dioxygenase 2 active site 0 1 1 0 10,11,12,181,247,284,318,319 1 -153379 cd07367 CarBb 1 metal binding site 0 1 1 1 11,230 4 -153379 cd07367 CarBb 2 active site 0 1 1 0 11,12,13,116,182,230,258,259 1 -153380 cd07368 PhnC_Bs_like 1 metal binding site 0 1 1 1 11,239 4 -153380 cd07368 PhnC_Bs_like 2 active site 0 1 1 0 11,12,13,121,191,239,267,268 1 -153381 cd07369 PydA_Rs_like 1 metal binding site 0 1 1 1 11,291 4 -153381 cd07369 PydA_Rs_like 2 active site 0 1 1 0 11,12,13,126,191,291,319,320 1 -153386 cd07949 PCA_45_Doxase_B_like_1 1 metal binding site 0 1 1 1 11,238 4 -153386 cd07949 PCA_45_Doxase_B_like_1 2 active site 0 1 1 0 11,12,13,124,191,238,266,267 1 -153387 cd07950 Gallate_Doxase_N 1 metal binding site 0 1 1 1 11,239 4 -153387 cd07950 Gallate_Doxase_N 2 active site 0 1 1 0 11,12,13,124,192,239,266,267 1 -153373 cd07361 MEMO_like 1 metal binding site 0 1 1 1 42,220 4 -153373 cd07361 MEMO_like 2 active site 0 1 1 0 42,43,44,124,181,220,257,258 1 -153374 cd07362 HPCD_like 1 metal binding site 0 1 1 1 7,236 4 -153374 cd07362 HPCD_like 2 active site 0 1 1 0 7,8,9,120,180,236,263,264 1 -153382 cd07370 HPCD 1 metal binding site 0 1 1 1 9,238 4 -153382 cd07370 HPCD 2 active site 0 1 1 0 9,10,11,122,181,238,269,270 1 -153383 cd07371 2A5CPDO_AB 1 metal binding site 0 1 1 1 7,230 4 -153383 cd07371 2A5CPDO_AB 2 active site 0 1 1 0 7,8,9,115,175,230,257,258 1 -153384 cd07372 2A5CPDO_B 1 metal binding site 0 1 1 1 10,251 4 -153384 cd07372 2A5CPDO_B 2 active site 0 1 1 0 10,11,12,126,192,251,278,279 1 -153385 cd07373 2A5CPDO_A 1 metal binding site 0 1 1 1 10,233 4 -153385 cd07373 2A5CPDO_A 2 active site 0 1 1 0 10,11,12,118,178,233,260,261 1 -153375 cd07363 45_DOPA_Dioxygenase 1 metal binding site 0 1 1 1 6,217 4 -153375 cd07363 45_DOPA_Dioxygenase 2 active site 0 1 1 0 6,7,8,106,162,217,244,245 1 -153388 cd07951 ED_3B_N_AMMECR1 1 metal binding site 0 1 1 1 9,219 4 -153388 cd07951 ED_3B_N_AMMECR1 2 active site 0 1 1 0 9,10,11,112,171,219,247,248 1 -153389 cd07952 ED_3B_like 1 metal binding site 0 1 1 1 6,219 4 -153389 cd07952 ED_3B_like 2 active site 0 1 1 0 6,7,8,105,171,219,247,248 1 -153390 cd07321 Extradiol_Dioxygenase_3A_like 1 dimer interface 0 1 1 1 0,4,7,10,13,18,48,51,56,57,58,59,62,68,69,72,75,76 2 -153390 cd07321 Extradiol_Dioxygenase_3A_like 2 tetramer interface 0 1 1 1 1 2 -153391 cd07921 PCA_45_Doxase_A_like 1 dimer interface 0 1 1 1 9,13,17,20,23,28,58,61,66,67,68,69,72,81,82,85,88,89 2 -153391 cd07921 PCA_45_Doxase_A_like 2 tetramer interface 0 1 1 1 10 2 -153394 cd07924 PCA_45_Doxase_A 1 dimer interface 0 1 1 1 17,21,25,28,31,36,66,69,74,75,76,77,80,89,90,93,96,97 2 -153394 cd07924 PCA_45_Doxase_A 2 tetramer interface 0 1 1 1 18 2 -153395 cd07925 LigA_like_1 1 dimer interface 0 1 1 1 9,13,17,20,23,28,58,61,66,67,68,69,72,81,82,85,88,89 2 -153395 cd07925 LigA_like_1 2 tetramer interface 0 1 1 1 10 2 -153392 cd07922 CarBa 1 dimer interface 0 1 1 1 1,5,8,11,14,19,49,52,57,58,59,60,63,72,73,76,79,80 2 -153392 cd07922 CarBa 2 tetramer interface 0 1 1 1 2 2 -153393 cd07923 Gallate_dioxygenase_C 1 dimer interface 0 1 1 1 1,5,9,12,15,20,50,53,59,60,61,62,65,70,71,74,77,78 2 -153393 cd07923 Gallate_dioxygenase_C 2 tetramer interface 0 1 1 1 2 2 -153396 cd07323 LAM 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153397 cd08028 LARP_3 1 RNA binding site 0 1 1 0 10,13,14,19,22,23,25,45,46,47 3 -153398 cd08029 LA_like_fungal 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,42,43,44 3 -153399 cd08030 LA_like_plant 1 RNA binding site 0 1 1 0 7,10,11,16,19,20,22,43,44,45 3 -153400 cd08031 LARP_4_5_like 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153404 cd08035 LARP_4 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153405 cd08036 LARP_5 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153401 cd08032 LARP_7 1 RNA binding site 0 1 1 0 11,14,15,20,23,24,26,47,48,49 3 -153402 cd08033 LARP_6 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,42,43,44 3 -153403 cd08034 LARP_1_2 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153406 cd08037 LARP_1 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -153407 cd08038 LARP_2 1 RNA binding site 0 1 1 0 6,9,10,15,18,19,21,40,41,42 3 -349983 cd07346 ABC_6TM_exporters 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349983 cd07346 ABC_6TM_exporters 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349983 cd07346 ABC_6TM_exporters 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349983 cd07346 ABC_6TM_exporters 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349983 cd07346 ABC_6TM_exporters 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349983 cd07346 ABC_6TM_exporters 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -349984 cd18540 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -349984 cd18540 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349984 cd18540 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -349984 cd18540 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -349984 cd18540 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,213,214,215,216,217,218,219,220,221,222,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246,247 7 -349984 cd18540 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293 7 -349985 cd18541 ABC_6TM_TmrB_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349985 cd18541 ABC_6TM_TmrB_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349985 cd18541 ABC_6TM_TmrB_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -349985 cd18541 ABC_6TM_TmrB_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -349985 cd18541 ABC_6TM_TmrB_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245 7 -349985 cd18541 ABC_6TM_TmrB_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -349986 cd18542 ABC_6TM_YknU_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349986 cd18542 ABC_6TM_YknU_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349986 cd18542 ABC_6TM_YknU_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349986 cd18542 ABC_6TM_YknU_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349986 cd18542 ABC_6TM_YknU_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349986 cd18542 ABC_6TM_YknU_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,181,182,183,184,185 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,209,210,211,212,213,214,215,216,217,218,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238,239,240,241,242,243 7 -349987 cd18543 ABC_6TM_Rv0194_D1_like 6 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,268,269,270,271,272,273,274,275,276,277,278,280,281,282,283,284,285,286,287,288,289 7 -349988 cd18544 ABC_6TM_TmrA_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349988 cd18544 ABC_6TM_TmrA_like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -349988 cd18544 ABC_6TM_TmrA_like 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -349988 cd18544 ABC_6TM_TmrA_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -349988 cd18544 ABC_6TM_TmrA_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -349988 cd18544 ABC_6TM_TmrA_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -349989 cd18545 ABC_6TM_YknV_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24 7 -349989 cd18545 ABC_6TM_YknV_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -349989 cd18545 ABC_6TM_YknV_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -349989 cd18545 ABC_6TM_YknV_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -349989 cd18545 ABC_6TM_YknV_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -349989 cd18545 ABC_6TM_YknV_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349990 cd18546 ABC_6TM_Rv0194_D2_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -349991 cd18547 ABC_6TM_Tm288_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349991 cd18547 ABC_6TM_Tm288_like 2 TM helix 2 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -349991 cd18547 ABC_6TM_Tm288_like 3 TM helix 3 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,125,126,127,128,129,130,131,132,133,134,135,136,137,138,140,141,142 7 -349991 cd18547 ABC_6TM_Tm288_like 4 TM helix 4 0 0 0 0 143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,184,185,186,187,188,189,190,191,192 7 -349991 cd18547 ABC_6TM_Tm288_like 5 TM helix 5 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,216,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233,234,235,236,237,238,239,240,242,243,244,245,246,247,248,249,250 7 -349991 cd18547 ABC_6TM_Tm288_like 6 TM helix 6 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,275,276,277,278,279,280,281,282,283,284,285,287,288,289,290,291,292,293,294,295,296 7 -349992 cd18548 ABC_6TM_Tm287_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349992 cd18548 ABC_6TM_Tm287_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349992 cd18548 ABC_6TM_Tm287_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349992 cd18548 ABC_6TM_Tm287_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349992 cd18548 ABC_6TM_Tm287_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349992 cd18548 ABC_6TM_Tm287_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -349993 cd18549 ABC_6TM_YwjA_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -349993 cd18549 ABC_6TM_YwjA_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349993 cd18549 ABC_6TM_YwjA_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -349993 cd18549 ABC_6TM_YwjA_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -349993 cd18549 ABC_6TM_YwjA_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,213,214,215,216,217,218,219,220,221,222,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246,247 7 -349993 cd18549 ABC_6TM_YwjA_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293 7 -349994 cd18550 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349994 cd18550 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349994 cd18550 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349994 cd18550 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,180,181,182,183,184,185,186,187,188 7 -349994 cd18550 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -349994 cd18550 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -349995 cd18551 ABC_6TM_LmrA_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349995 cd18551 ABC_6TM_LmrA_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -349995 cd18551 ABC_6TM_LmrA_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -349995 cd18551 ABC_6TM_LmrA_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -349995 cd18551 ABC_6TM_LmrA_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,236,237,238,239,240,241 7 -349995 cd18551 ABC_6TM_LmrA_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -349996 cd18552 ABC_6TM_MsbA_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349996 cd18552 ABC_6TM_MsbA_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -349996 cd18552 ABC_6TM_MsbA_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -349996 cd18552 ABC_6TM_MsbA_like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -349996 cd18552 ABC_6TM_MsbA_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -349996 cd18552 ABC_6TM_MsbA_like 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -349997 cd18553 ABC_6TM_PglK_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349997 cd18553 ABC_6TM_PglK_like 2 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -349997 cd18553 ABC_6TM_PglK_like 3 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150 7 -349997 cd18553 ABC_6TM_PglK_like 4 TM helix 4 0 0 0 0 151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,172,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201 7 -349997 cd18553 ABC_6TM_PglK_like 5 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,237,238,239,240,241,242,243,244,245,246,247,248,249,251,252,253,254,255,256,257,258,259 7 -349997 cd18553 ABC_6TM_PglK_like 6 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,277,278,279,280,281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298 7 -349998 cd18554 ABC_6TM_Sav1866_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -349998 cd18554 ABC_6TM_Sav1866_like 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -349998 cd18554 ABC_6TM_Sav1866_like 3 TM helix 3 0 0 0 0 98,99,100,101,102,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,120,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,138,139,141,142,143 7 -349998 cd18554 ABC_6TM_Sav1866_like 4 TM helix 4 0 0 0 0 144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,185,186,187,188,189,190,191,192,193 7 -349998 cd18554 ABC_6TM_Sav1866_like 5 TM helix 5 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,217,218,219,220,221,222,223,224,225,226,229,230,231,232,233,234,235,236,237,238,239,240,241,243,244,245,246,247,248,249,250,251 7 -349998 cd18554 ABC_6TM_Sav1866_like 6 TM helix 6 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,276,277,278,279,280,281,282,283,284,285,286,288,289,290,291,292,293,294,295,296,297 7 -349999 cd18555 ABC_6TM_T1SS_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -349999 cd18555 ABC_6TM_T1SS_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -349999 cd18555 ABC_6TM_T1SS_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -349999 cd18555 ABC_6TM_T1SS_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -349999 cd18555 ABC_6TM_T1SS_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -349999 cd18555 ABC_6TM_T1SS_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350030 cd18586 ABC_6TM_PrtD_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350030 cd18586 ABC_6TM_PrtD_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350030 cd18586 ABC_6TM_PrtD_like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135 7 -350030 cd18586 ABC_6TM_PrtD_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,181,182,183,184,185 7 -350030 cd18586 ABC_6TM_PrtD_like 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,209,210,211,212,213,214,215,216,217,218,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238,239,240,241,242,243 7 -350030 cd18586 ABC_6TM_PrtD_like 6 TM helix 6 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,268,269,270,271,272,273,274,275,276,277,278,280,281,282,283,284,285,286,287,288,289 7 -350031 cd18587 ABC_6TM_LapB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350031 cd18587 ABC_6TM_LapB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350031 cd18587 ABC_6TM_LapB_like 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -350031 cd18587 ABC_6TM_LapB_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -350031 cd18587 ABC_6TM_LapB_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245 7 -350031 cd18587 ABC_6TM_LapB_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350032 cd18588 ABC_6TM_CyaB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350011 cd18567 ABC_6TM_CvaB_RaxB_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350012 cd18568 ABC_6TM_HetC_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350012 cd18568 ABC_6TM_HetC_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350012 cd18568 ABC_6TM_HetC_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350012 cd18568 ABC_6TM_HetC_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350012 cd18568 ABC_6TM_HetC_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350012 cd18568 ABC_6TM_HetC_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350013 cd18569 ABC_6TM_NHLM_bacteriocin 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350014 cd18570 ABC_6TM_PCAT1_LagD_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350015 cd18571 ABC_6TM_peptidase_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350015 cd18571 ABC_6TM_peptidase_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350015 cd18571 ABC_6TM_peptidase_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350015 cd18571 ABC_6TM_peptidase_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350015 cd18571 ABC_6TM_peptidase_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350015 cd18571 ABC_6TM_peptidase_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350052 cd18779 ABC_6TM_T1SS_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350052 cd18779 ABC_6TM_T1SS_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350052 cd18779 ABC_6TM_T1SS_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350052 cd18779 ABC_6TM_T1SS_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350052 cd18779 ABC_6TM_T1SS_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,238,239,240,241,242,243,244,245,246 7 -350052 cd18779 ABC_6TM_T1SS_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350000 cd18556 ABC_6TM_McjD_like 1 TM helix 1 0 0 1 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 7 -350000 cd18556 ABC_6TM_McjD_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89 7 -350000 cd18556 ABC_6TM_McjD_like 3 TM helix 3 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141 7 -350000 cd18556 ABC_6TM_McjD_like 4 TM helix 4 0 0 0 0 143,144,145,146,147,148,149,150,151,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,184,185,186,187,188,189,190,191,192 7 -350000 cd18556 ABC_6TM_McjD_like 5 TM helix 5 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,216,217,218,219,220,221,222,223,224,225,228,229,230,231,232,233,234,235,236,237,238,239,240,242,243,244,245,246,247,248,249,250 7 -350000 cd18556 ABC_6TM_McjD_like 6 TM helix 6 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,275,276,277,278,279,280,281,282,283,284,285,287,288,289,290,291,292,293,294,295,296 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350016 cd18572 ABC_6TM_TAP 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350016 cd18572 ABC_6TM_TAP 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350016 cd18572 ABC_6TM_TAP 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350016 cd18572 ABC_6TM_TAP 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350016 cd18572 ABC_6TM_TAP 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350016 cd18572 ABC_6TM_TAP 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350033 cd18589 ABC_6TM_TAP1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350033 cd18589 ABC_6TM_TAP1 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350033 cd18589 ABC_6TM_TAP1 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350033 cd18589 ABC_6TM_TAP1 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350033 cd18589 ABC_6TM_TAP1 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350033 cd18589 ABC_6TM_TAP1 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350034 cd18590 ABC_6TM_TAP2 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350034 cd18590 ABC_6TM_TAP2 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350034 cd18590 ABC_6TM_TAP2 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350034 cd18590 ABC_6TM_TAP2 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350034 cd18590 ABC_6TM_TAP2 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350034 cd18590 ABC_6TM_TAP2 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350057 cd18784 ABC_6TM_ABCB9_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350057 cd18784 ABC_6TM_ABCB9_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350057 cd18784 ABC_6TM_ABCB9_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350057 cd18784 ABC_6TM_ABCB9_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350057 cd18784 ABC_6TM_ABCB9_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350057 cd18784 ABC_6TM_ABCB9_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350017 cd18573 ABC_6TM_ABCB10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350017 cd18573 ABC_6TM_ABCB10_like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -350017 cd18573 ABC_6TM_ABCB10_like 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350017 cd18573 ABC_6TM_ABCB10_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350017 cd18573 ABC_6TM_ABCB10_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,213,214,215,216,217,218,219,220,221,222,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350017 cd18573 ABC_6TM_ABCB10_like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350018 cd18574 ABC_6TM_ABCB8_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350018 cd18574 ABC_6TM_ABCB8_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350018 cd18574 ABC_6TM_ABCB8_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -350018 cd18574 ABC_6TM_ABCB8_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -350018 cd18574 ABC_6TM_ABCB8_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350018 cd18574 ABC_6TM_ABCB8_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350053 cd18780 ABC_6TM_AtABCB27_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350053 cd18780 ABC_6TM_AtABCB27_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350053 cd18780 ABC_6TM_AtABCB27_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -350053 cd18780 ABC_6TM_AtABCB27_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -350053 cd18780 ABC_6TM_AtABCB27_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350053 cd18780 ABC_6TM_AtABCB27_like 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 2 TM helix 2 0 0 0 0 56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 3 TM helix 3 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 4 TM helix 4 0 0 0 0 157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,198,199,200,201,202,203,204,205,206 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 5 TM helix 5 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,235,236,237,238,239,240,241,242,243,244,246,247,248,249,250,251,252,253,254,255,256,257,258,260,261,262,263,264,265,266,267,268 7 -350002 cd18558 ABC_6TM_Pgp_ABCB1 6 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 2 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 3 TM helix 3 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,118,119,120,121,122,123,124,127,128,129,130,131,132,133,134,135,136,137,138,139,140,142,143,144 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 4 TM helix 4 0 0 0 0 145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 5 TM helix 5 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,223,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242,243,244,245,246,248,249,250,251,252,253,254,255,256 7 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like 6 TM helix 6 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 1 TM helix 1 0 0 1 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 2 TM helix 2 0 0 0 0 49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 3 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,151 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 4 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 5 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,230,231,232,233,234,235,236,237,238,239,241,242,243,244,245,246,247,248,249,250,251,252,253,255,256,257,258,259,260,261,262,263 7 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like 6 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299,300,301,302,303,304,305 7 -350003 cd18559 ABC_6TM_ABCC 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350003 cd18559 ABC_6TM_ABCC 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350003 cd18559 ABC_6TM_ABCC 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135 7 -350003 cd18559 ABC_6TM_ABCC 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184 7 -350003 cd18559 ABC_6TM_ABCC 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350003 cd18559 ABC_6TM_ABCC 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350023 cd18579 ABC_6TM_ABCC_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350023 cd18579 ABC_6TM_ABCC_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350023 cd18579 ABC_6TM_ABCC_D1 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -350023 cd18579 ABC_6TM_ABCC_D1 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,181,182,183,184,185 7 -350023 cd18579 ABC_6TM_ABCC_D1 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350023 cd18579 ABC_6TM_ABCC_D1 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 2 TM helix 2 0 0 0 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,123,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,196,197,198,199,200,201,202,203,204 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 5 TM helix 5 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -350035 cd18591 ABC_6TM_SUR1_D1_like 6 TM helix 6 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,286,287,288,289,290,291,292,293,294,295,296,298,299,300,301,302,303,304,305,306,307 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133,134 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 6 TM helix 6 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270,271,272,273,274,276,277,278,279,280,281,282,283,284,285 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -350037 cd18593 ABC_6TM_MRP4_D1_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,268,269,270,271,272,273,274,275,276,277,278,280,281,282,283,284,285,286,287,288,289 7 -350038 cd18594 ABC_6TM_CFTR_D1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350038 cd18594 ABC_6TM_CFTR_D1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350038 cd18594 ABC_6TM_CFTR_D1 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -350038 cd18594 ABC_6TM_CFTR_D1 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,181,182,183,184,185 7 -350038 cd18594 ABC_6TM_CFTR_D1 5 TM helix 5 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -350038 cd18594 ABC_6TM_CFTR_D1 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,123,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,196,197,198,199,200,201,202,203,204 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 5 TM helix 5 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -350040 cd18596 ABC_6TM_VMR1_D1_like 6 TM helix 6 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,286,287,288,289,290,291,292,293,294,295,296,298,299,300,301,302,303,304,305,306,307 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 4 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350041 cd18597 ABC_6TM_YOR1_D1_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -350042 cd18598 ABC_6TM_MRP7_D1_like 6 TM helix 6 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,265,266,267,268,269,270,271,272,273,274,275,277,278,279,280,281,282,283,284,285,286 7 -350024 cd18580 ABC_6TM_ABCC_D2 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350024 cd18580 ABC_6TM_ABCC_D2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -350024 cd18580 ABC_6TM_ABCC_D2 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -350024 cd18580 ABC_6TM_ABCC_D2 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -350024 cd18580 ABC_6TM_ABCC_D2 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -350024 cd18580 ABC_6TM_ABCC_D2 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,271,272,273,274,275,276,277,278,279,280,281,283,284,285,286,287,288,289,290,291,292 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 2 TM helix 2 0 0 0 0 54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 3 TM helix 3 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,123,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,155 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 4 TM helix 4 0 0 0 0 156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 5 TM helix 5 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 6 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,302,303,304,305,306,307,308,309,310,311 7 -350044 cd18600 ABC_6TM_CFTR_D2 1 TM helix 1 0 0 1 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,36,37 7 -350044 cd18600 ABC_6TM_CFTR_D2 2 TM helix 2 0 0 0 0 66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -350044 cd18600 ABC_6TM_CFTR_D2 3 TM helix 3 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,135,136,137,138,139,140,141,142,143,144,145,146,147,150,151,152,153,154,155,156,157,158,159,160,161,162,163,165,166,167 7 -350044 cd18600 ABC_6TM_CFTR_D2 4 TM helix 4 0 0 0 0 168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,209,210,211,212,213,214,215,216,217 7 -350044 cd18600 ABC_6TM_CFTR_D2 5 TM helix 5 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,241,242,243,244,245,246,247,248,249,250,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -350044 cd18600 ABC_6TM_CFTR_D2 6 TM helix 6 0 0 0 0 289,290,291,292,293,294,295,296,297,298,299,301,302,303,304,305,306,307,308,309,310,311,313,314,315,316,317,318,319,320,321,322 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 2 TM helix 2 0 0 0 0 55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 3 TM helix 3 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 4 TM helix 4 0 0 0 0 157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,198,199,200,201,202,203,204,205,206 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 5 TM helix 5 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,230,231,232,233,234,235,236,237,238,239,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -350045 cd18601 ABC_6TM_MRP4_D2_like 6 TM helix 6 0 0 0 0 279,280,281,282,283,284,285,286,287,288,289,291,292,293,294,295,296,297,298,299,300,301,303,304,305,306,307,308,309,310,311,312 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 2 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 3 TM helix 3 0 0 0 0 102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 4 TM helix 4 0 0 0 0 148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,189,190,191,192,193,194,195,196,197 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 5 TM helix 5 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -350046 cd18602 ABC_6TM_SUR1_D2_like 6 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299,300,301,302,303,304,305 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,180,181,182,183,184,185,186,187,188 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 5 TM helix 5 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like 6 TM helix 6 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,273,274,275,276,277,278,279,280,281,282,283,285,286,287,288,289,290,291,292,293,294 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 4 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 5 TM helix 5 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -350048 cd18604 ABC_6TM_VMR1_D2_like 6 TM helix 6 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,286,287,288,289,290,291,292,293,294,295 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,139 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,183,184,185,186,187,188,189 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 5 TM helix 5 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,213,214,215,216,217,218,219,220,221,222,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -350049 cd18605 ABC_6TM_MRP7_D2_like 6 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,277,278,279,280,281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 4 TM helix 4 0 0 0 0 133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,174,175,176,177,178,179,180,181,182 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 5 TM helix 5 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -350050 cd18606 ABC_6TM_YOR1_D2_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -350025 cd18581 ABC_6TM_ABCB6 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350025 cd18581 ABC_6TM_ABCB6 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -350025 cd18581 ABC_6TM_ABCB6 3 TM helix 3 0 0 0 0 98,99,100,101,102,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,120,121,122,123,127,128,129,130,131,132,133,134,135,136,137,138,139,140,142,143,144 7 -350025 cd18581 ABC_6TM_ABCB6 4 TM helix 4 0 0 0 0 145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194 7 -350025 cd18581 ABC_6TM_ABCB6 5 TM helix 5 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,230,231,232,233,234,235,236,237,238,239,240,241,242,244,245,246,247,248,249,250,251,252 7 -350025 cd18581 ABC_6TM_ABCB6 6 TM helix 6 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,277,278,279,280,281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125,126,127,128,129,130,131,132,134,135,136 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 5 TM helix 5 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244 7 -350026 cd18582 ABC_6TM_ATM1_ABCB7 6 TM helix 6 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290 7 -350027 cd18583 ABC_6TM_HMT1 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350027 cd18583 ABC_6TM_HMT1 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350027 cd18583 ABC_6TM_HMT1 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133,134 7 -350027 cd18583 ABC_6TM_HMT1 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,176,177,178,179,180,181,182,183,184 7 -350027 cd18583 ABC_6TM_HMT1 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242 7 -350027 cd18583 ABC_6TM_HMT1 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,175,176,177,178,179,180,181,182,183 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,236,237,238,239,240,241 7 -350005 cd18561 ABC_6TM_AarD_CydDC_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350028 cd18584 ABC_6TM_AarD_CydD 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24 7 -350028 cd18584 ABC_6TM_AarD_CydD 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350028 cd18584 ABC_6TM_AarD_CydD 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133,134 7 -350028 cd18584 ABC_6TM_AarD_CydD 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,171,172,173,176,177,178,179,180,181,182,183,184 7 -350028 cd18584 ABC_6TM_AarD_CydD 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242 7 -350028 cd18584 ABC_6TM_AarD_CydD 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350029 cd18585 ABC_6TM_CydC 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24 7 -350029 cd18585 ABC_6TM_CydC 2 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -350029 cd18585 ABC_6TM_CydC 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,132 7 -350029 cd18585 ABC_6TM_CydC 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,175,176,177,178,179,180,181,182,183 7 -350029 cd18585 ABC_6TM_CydC 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,236,237,238,239,240,241 7 -350029 cd18585 ABC_6TM_CydC 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 1 TM helix 1 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133,134 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,171,172,173,176,177,178,179,180,181,182,183,184 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 5 TM helix 5 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,208,209,210,211,212,213,214,215,216,217,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242 7 -350054 cd18781 ABC_6TM_AarD_CydDC_like 6 TM helix 6 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,288 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110,111,112,113,116,117,118,119,120,121,122,123,124,125,126,127,128,129,131,132,133 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,179,180,181,182,183 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 5 TM helix 5 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,216,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,236,237,238,239,240,241 7 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like 6 TM helix 6 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,266,267,268,269,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,287 7 -350007 cd18563 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350007 cd18563 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 7 -350007 cd18563 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140 7 -350007 cd18563 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 141,142,143,144,145,146,147,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190 7 -350007 cd18563 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,221,222,223,226,227,228,229,230,231,232,233,234,235,236,237,238,240,241,242,243,244,245,246,247,248 7 -350007 cd18563 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,273,274,275,276,277,278,279,280,281,282,283,285,286,287,288,289,290,291,292,293,294 7 -350008 cd18564 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350008 cd18564 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350008 cd18564 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,151 7 -350008 cd18564 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201 7 -350008 cd18564 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,237,238,239,240,241,242,243,244,245,246,247,248,249,251,252,253,254,255,256,257,258,259 7 -350008 cd18564 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299,300,301,302,303,304,305 7 -350009 cd18565 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350009 cd18565 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350009 cd18565 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,151 7 -350009 cd18565 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 152,153,154,155,156,157,158,159,160,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201 7 -350009 cd18565 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,237,238,239,240,241,242,243,244,245,246,247,248,249,251,252,253,254,255,256,257,258,259 7 -350009 cd18565 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,302,303,304,305,306,307,308,309,310,311 7 -350051 cd18778 ABC_6TM_exporter_like 1 TM helix 1 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23 7 -350051 cd18778 ABC_6TM_exporter_like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -350051 cd18778 ABC_6TM_exporter_like 3 TM helix 3 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,135,136,137 7 -350051 cd18778 ABC_6TM_exporter_like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,179,180,181,182,183,184,185,186,187 7 -350051 cd18778 ABC_6TM_exporter_like 5 TM helix 5 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245 7 -350051 cd18778 ABC_6TM_exporter_like 6 TM helix 6 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,270,271,272,273,274,275,276,277,278,279,280,282,283,284,285,286,287,288,289,290,291 7 -259818 cd07347 harmonin_N_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -259819 cd07353 harmonin_N 1 putative protein binding site 0 1 1 1 1,4,8,22,25,28,29,32 2 -259820 cd07354 HN_L-delphilin-R1_like 1 putative protein binding site 0 1 1 1 1,4,8,23,26,29,30,33 2 -259821 cd07355 HN_L-delphilin-R2_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -259822 cd07356 HN_L-whirlin_R1_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -259823 cd07357 HN_L-whirlin_R2_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -259824 cd07358 HN_PDZD7_like 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -259825 cd13516 HHD_CCM2 1 putative protein binding site 0 1 1 1 15,18,22,35,38,41,42,45 2 -259826 cd13932 HN_RTEL1 1 putative protein binding site 0 1 1 1 16,19,23,36,39,42,43,46 2 -259827 cd13933 harmonin_N_like_u1 1 putative protein binding site 0 1 1 1 1,4,8,21,24,27,28,31 2 -143620 cd07374 CYTH-like_Pase 1 putative active site 0 1 1 1 0,2,4,37,51,53,55,66,76,114,116,134,151,153 0 -143620 cd07374 CYTH-like_Pase 2 putative metal binding residues 0 1 1 1 0,2,132,151,153 4 -143620 cd07374 CYTH-like_Pase 3 putative triphosphate binding site 0 1 1 1 2,4,37,51,55,66,76,116,151 4 -143620 cd07374 CYTH-like_Pase 4 signature motif 0 0 1 1 0,2,4 0 -143621 cd07470 CYTH-like_mRNA_RTPase 1 putative active site 0 1 1 1 22,24,26,98,112,114,116,128,152,173,175,188,206,208 0 -143621 cd07470 CYTH-like_mRNA_RTPase 2 putative metal binding residues 0 1 1 1 22,24,186,206,208 4 -143621 cd07470 CYTH-like_mRNA_RTPase 3 putative triphosphate binding site 0 1 1 1 24,26,98,112,116,128,152,175,206 4 -143621 cd07470 CYTH-like_mRNA_RTPase 4 signature motif 0 0 1 1 22,24,26 0 -143622 cd07750 PolyPPase_VTC_like 1 putative active site 0 1 1 1 0,2,4,40,63,65,67,79,88,137,139,154,184,186 0 -143622 cd07750 PolyPPase_VTC_like 2 putative metal binding residues 0 1 1 1 0,2,152,184,186 4 -143622 cd07750 PolyPPase_VTC_like 3 putative triphosphate binding site 0 1 1 1 2,4,40,63,67,79,88,139,184 4 -143622 cd07750 PolyPPase_VTC_like 4 signature motif 0 0 1 1 0,2,4 0 -143623 cd07751 PolyPPase_VTC4_like 1 putative active site 0 1 1 1 6,8,10,59,82,84,86,100,113,178,180,196,237,239 0 -143623 cd07751 PolyPPase_VTC4_like 2 putative metal binding residues 0 1 1 1 6,8,194,237,239 4 -143623 cd07751 PolyPPase_VTC4_like 3 putative triphosphate binding site 0 1 1 1 8,10,59,82,86,100,113,180,237 4 -143623 cd07751 PolyPPase_VTC4_like 4 signature motif 0 0 1 1 6,8,10 0 -143630 cd07892 PolyPPase_VTC2-3_like 1 putative active site 0 1 1 1 6,8,10,59,82,84,86,100,111,172,174,190,243,245 0 -143630 cd07892 PolyPPase_VTC2-3_like 2 putative metal binding residues 0 1 1 1 6,8,188,243,245 4 -143630 cd07892 PolyPPase_VTC2-3_like 3 putative triphosphate binding site 0 1 1 1 8,10,59,82,86,100,111,174,243 4 -143630 cd07892 PolyPPase_VTC2-3_like 4 signature motif 0 0 1 1 6,8,10 0 -143624 cd07756 CYTH-like_Pase_CHAD 1 putative active site 0 1 1 1 0,2,4,38,54,56,58,67,81,122,124,141,158,160 0 -143624 cd07756 CYTH-like_Pase_CHAD 2 putative metal binding residues 0 1 1 1 0,2,139,158,160 4 -143624 cd07756 CYTH-like_Pase_CHAD 3 putative triphosphate binding site 0 1 1 1 2,4,38,54,58,67,81,124,158 4 -143624 cd07756 CYTH-like_Pase_CHAD 4 signature motif 0 0 1 1 0,2,4 0 -143625 cd07758 ThTPase 1 putative active site 0 1 1 1 1,3,5,35,51,53,55,60,78,120,122,136,146,148 0 -143625 cd07758 ThTPase 2 putative metal binding residues 0 1 1 1 1,3,134,146,148 4 -143625 cd07758 ThTPase 3 putative triphosphate binding site 0 1 1 1 3,5,35,51,55,60,78,122,146 4 -143625 cd07758 ThTPase 4 signature motif 0 0 1 1 1,3,5 0 -143626 cd07761 CYTH-like_CthTTM-like 1 putative active site 0 1 1 1 1,3,5,27,35,37,39,48,57,81,83,97,110,112 0 -143626 cd07761 CYTH-like_CthTTM-like 2 putative metal binding residues 0 1 1 1 1,3,95,110,112 4 -143626 cd07761 CYTH-like_CthTTM-like 3 putative triphosphate binding site 0 1 1 1 3,5,27,35,39,48,57,83,110 4 -143626 cd07761 CYTH-like_CthTTM-like 4 signature motif 0 0 1 1 1,3,5 0 -143629 cd07891 CYTH-like_CthTTM-like_1 1 putative active site 0 1 1 1 1,3,5,27,37,39,41,50,60,84,86,99,112,114 0 -143629 cd07891 CYTH-like_CthTTM-like_1 2 putative metal binding residues 0 1 1 1 1,3,97,112,114 4 -143629 cd07891 CYTH-like_CthTTM-like_1 3 putative triphosphate binding site 0 1 1 1 3,5,27,37,41,50,60,86,112 4 -143629 cd07891 CYTH-like_CthTTM-like_1 4 signature motif 0 0 1 1 1,3,5 0 -143627 cd07762 CYTH-like_Pase_1 1 putative active site 0 1 1 1 1,3,5,32,48,50,52,61,70,116,118,131,144,146 0 -143627 cd07762 CYTH-like_Pase_1 2 putative metal binding residues 0 1 1 1 1,3,129,144,146 4 -143627 cd07762 CYTH-like_Pase_1 3 putative triphosphate binding site 0 1 1 1 3,5,32,48,52,61,70,118,144 4 -143627 cd07762 CYTH-like_Pase_1 4 signature motif 0 0 1 1 1,3,5 0 -143628 cd07890 CYTH-like_AC_IV-like 1 putative active site 0 1 1 1 0,2,4,34,50,52,54,65,78,106,108,121,131,133 0 -143628 cd07890 CYTH-like_AC_IV-like 2 putative metal binding residues 0 1 1 1 0,2,119,131,133 4 -143628 cd07890 CYTH-like_AC_IV-like 3 putative triphosphate binding site 0 1 1 1 2,4,34,50,54,65,78,108,131 4 -143628 cd07890 CYTH-like_AC_IV-like 4 signature motif 0 0 1 1 0,2,4 0 -153408 cd07375 Anticodon_Ia_like 1 anticodon binding site 0 1 1 0 11,14,15,18,19,81 0 -153408 cd07375 Anticodon_Ia_like 2 tRNA binding surface 0 1 1 0 1,5,8,11,15,16,18,19,68,75,78,81 3 -153409 cd07955 Anticodon_Ia_Cys_like 1 anticodon binding site 0 1 1 0 11,14,15,18,19,61 0 -153409 cd07955 Anticodon_Ia_Cys_like 2 tRNA binding surface 0 1 1 0 1,5,8,11,15,16,18,19,47,54,58,61 3 -153417 cd07963 Anticodon_Ia_Cys 1 anticodon binding site 0 1 1 0 11,14,15,18,19,65 0 -153417 cd07963 Anticodon_Ia_Cys 2 tRNA binding surface 0 1 1 0 1,5,8,11,15,16,18,19,52,59,62,65 3 -153410 cd07956 Anticodon_Ia_Arg 1 anticodon binding site 0 1 1 0 40,43,44,47,48,113 0 -153410 cd07956 Anticodon_Ia_Arg 2 tRNA binding surface 0 1 1 0 25,29,32,40,44,45,47,48,100,107,110,113 3 -153411 cd07957 Anticodon_Ia_Met 1 anticodon binding site 0 1 1 0 13,16,17,20,21,78 0 -153411 cd07957 Anticodon_Ia_Met 2 tRNA binding surface 0 1 1 0 1,5,8,13,17,18,20,21,65,72,75,78 3 -153412 cd07958 Anticodon_Ia_Leu_BEm 1 anticodon binding site 0 1 1 0 13,16,17,20,21,80 0 -153412 cd07958 Anticodon_Ia_Leu_BEm 2 tRNA binding surface 0 1 1 0 3,7,10,13,17,18,20,21,67,74,77,80 3 -153413 cd07959 Anticodon_Ia_Leu_AEc 1 anticodon binding site 0 1 1 0 13,16,17,20,21,78 0 -153413 cd07959 Anticodon_Ia_Leu_AEc 2 tRNA binding surface 0 1 1 0 3,7,10,13,17,18,20,21,64,72,75,78 3 -153414 cd07960 Anticodon_Ia_Ile_BEm 1 anticodon binding site 0 1 1 0 13,16,17,20,21,88 0 -153414 cd07960 Anticodon_Ia_Ile_BEm 2 tRNA binding surface 0 1 1 0 3,7,10,13,17,18,20,21,73,80,85,88 3 -153415 cd07961 Anticodon_Ia_Ile_ABEc 1 anticodon binding site 0 1 1 0 14,17,18,21,22,90 0 -153415 cd07961 Anticodon_Ia_Ile_ABEc 2 tRNA binding surface 0 1 1 0 3,7,10,14,18,19,21,22,76,83,87,90 3 -153416 cd07962 Anticodon_Ia_Val 1 anticodon binding site 0 1 1 0 13,16,17,20,21,86 0 -153416 cd07962 Anticodon_Ia_Val 2 tRNA binding surface 0 1 1 0 3,7,10,13,17,18,20,21,71,78,83,86 3 -153418 cd07377 WHTH_GntR 1 DNA-binding site 0 1 1 0 0,2,25,27,28,36,37,38,39,40,42,43,46,56,57,59,60,61,62 3 -143632 cd07430 GH15_N 1 Domain interface 0 1 1 0 7,8,9,10,11,12,13,14,16,17,19,20,25,26,28,30,38,40,44,45,74,76,82,84,133,138,205,256,259 0 -143633 cd07439 FANCE_c-term 1 disease-associated mutation sites 0 0 1 1 74,83,89,222 0 -143633 cd07439 FANCE_c-term 2 predicted protein-protein interaction site 0 0 1 1 168,205,206,207,211,242,243 2 -143637 cd07556 Nucleotidyl_cyc_III 1 nucleotidyl binding site 0 1 1 0 7,8,9,10,11,12,51,120 0 -143637 cd07556 Nucleotidyl_cyc_III 2 metal binding site 0 1 1 0 7,51 4 -143635 cd01949 GGDEF 1 nucleotidyl binding site 0 1 1 0 37,38,39,40,41,42,80,142 0 -143635 cd01949 GGDEF 2 metal binding site 0 1 1 0 37,80 4 -143636 cd07302 CHD 1 nucleotidyl binding site 0 1 1 0 7,8,9,10,11,12,51,128 0 -143636 cd07302 CHD 2 metal binding site 0 1 1 0 7,51 4 -143638 cd07557 trimeric_dUTPase 1 active site 0 1 1 1 42,43,44,57,58,59,62,66,67 1 -143638 cd07557 trimeric_dUTPase 2 trimer interface 0 1 1 0 0,1,14,19,20,22,38,40,41,42,43,44,45,50,51,52,57,60,67,69,71,73,77,78,79,80,81,84,88 2 -341447 cd07766 DHQ_Fe-ADH 1 active site 0 1 1 1 29,85,86,87,90,93,110,111,113,149,157,164,168,196,200,210 1 -341447 cd07766 DHQ_Fe-ADH 2 metal binding site 0 1 1 1 164,196,210 4 -341447 cd07766 DHQ_Fe-ADH 3 NAD binding site 0 1 1 0 29,85,86,87,110,111,113,149,210 5 -341448 cd08169 DHQ-like 1 active site 0 1 1 1 30,91,92,93,96,99,116,117,119,156,164,171,175,234,238,250 1 -341448 cd08169 DHQ-like 2 metal binding site 0 1 1 1 171,234,250 4 -341448 cd08169 DHQ-like 3 NAD binding site 0 1 1 0 30,91,92,93,116,117,119,156,250 5 -341474 cd08195 DHQS 1 active site 0 1 1 1 30,92,93,94,97,100,117,118,120,157,165,172,176,235,239,251 1 -341474 cd08195 DHQS 2 metal binding site 0 1 1 1 172,235,251 4 -341474 cd08195 DHQS 3 NAD binding site 0 1 1 0 30,92,93,94,117,118,120,157,251 5 -341476 cd08197 DOIS 1 active site 0 1 1 1 30,92,93,94,97,100,117,118,120,157,165,172,176,235,239,251 1 -341476 cd08197 DOIS 2 metal binding site 0 1 1 1 172,235,251 4 -341476 cd08197 DOIS 3 NAD binding site 0 1 1 0 30,92,93,94,117,118,120,157,251 5 -341477 cd08198 DHQS-like 1 active site 0 1 1 1 37,107,108,109,112,115,132,133,135,172,180,187,191,252,256,268 1 -341477 cd08198 DHQS-like 2 metal binding site 0 1 1 1 187,252,268 4 -341477 cd08198 DHQS-like 3 NAD binding site 0 1 1 0 37,107,108,109,132,133,135,172,268 5 -341478 cd08199 EEVS 1 active site 0 1 1 1 33,95,96,97,100,103,120,121,123,160,168,175,179,241,245,257 1 -341478 cd08199 EEVS 2 metal binding site 0 1 1 1 175,241,257 4 -341478 cd08199 EEVS 3 NAD binding site 0 1 1 0 33,95,96,97,120,121,123,160,257 5 -341479 cd08549 G1PDH_related 1 active site 0 1 1 1 30,78,79,80,83,86,101,102,104,138,146,153,157,232,236,252 1 -341479 cd08549 G1PDH_related 2 metal binding site 0 1 1 1 153,232,252 4 -341479 cd08549 G1PDH_related 3 NAD binding site 0 1 1 0 30,78,79,80,101,102,104,138,252 5 -341452 cd08173 Gro1PDH 1 active site 0 1 1 1 32,88,89,90,93,96,111,112,114,148,156,163,167,243,247,259 1 -341452 cd08173 Gro1PDH 2 metal binding site 0 1 1 1 163,243,259 4 -341452 cd08173 Gro1PDH 3 NAD binding site 0 1 1 0 32,88,89,90,111,112,114,148,259 5 -341453 cd08174 G1PDH-like 1 active site 0 1 1 1 32,85,86,87,90,93,108,109,111,145,153,160,164,239,243,255 1 -341453 cd08174 G1PDH-like 2 metal binding site 0 1 1 1 160,239,255 4 -341453 cd08174 G1PDH-like 3 NAD binding site 0 1 1 0 32,85,86,87,108,109,111,145,255 5 -341454 cd08175 G1PDH 1 active site 0 1 1 1 31,90,91,92,95,98,113,114,116,150,158,165,169,245,249,265 1 -341454 cd08175 G1PDH 2 metal binding site 0 1 1 1 165,245,265 4 -341454 cd08175 G1PDH 3 NAD binding site 0 1 1 0 31,90,91,92,113,114,116,150,265 5 -341480 cd08550 GlyDH-like 1 active site 0 1 1 1 29,85,86,87,90,93,108,109,111,148,156,163,167,246,250,263 1 -341480 cd08550 GlyDH-like 2 metal binding site 0 1 1 1 163,246,263 4 -341480 cd08550 GlyDH-like 3 NAD binding site 0 1 1 0 29,85,86,87,108,109,111,148,263 5 -341449 cd08170 GlyDH 1 active site 0 1 1 1 29,85,86,87,90,93,108,109,111,148,156,163,167,246,250,263 1 -341449 cd08170 GlyDH 2 metal binding site 0 1 1 1 163,246,263 4 -341449 cd08170 GlyDH 3 NAD binding site 0 1 1 0 29,85,86,87,108,109,111,148,263 5 -341450 cd08171 GlyDH-like 1 active site 0 1 1 1 29,86,87,88,91,94,109,110,112,149,157,164,168,247,251,265 1 -341450 cd08171 GlyDH-like 2 metal binding site 0 1 1 1 164,247,265 4 -341450 cd08171 GlyDH-like 3 NAD binding site 0 1 1 0 29,86,87,88,109,110,112,149,265 5 -341451 cd08172 GlyDH-like 1 active site 0 1 1 1 30,83,84,85,88,91,106,107,109,146,154,161,165,245,249,262 1 -341451 cd08172 GlyDH-like 2 metal binding site 0 1 1 1 161,245,262 4 -341451 cd08172 GlyDH-like 3 NAD binding site 0 1 1 0 30,83,84,85,106,107,109,146,262 5 -341481 cd08551 Fe-ADH 1 active site 0 1 1 1 30,88,89,90,93,96,129,130,132,170,178,185,189,254,258,268 1 -341481 cd08551 Fe-ADH 2 metal binding site 0 1 1 1 185,254,268 4 -341481 cd08551 Fe-ADH 3 NAD binding site 0 1 1 0 30,88,89,90,129,130,132,170,268 5 -341455 cd08176 LPO 1 active site 0 1 1 1 35,93,94,95,98,101,135,136,138,176,184,191,195,260,264,274 1 -341455 cd08176 LPO 2 metal binding site 0 1 1 1 191,260,274 4 -341455 cd08176 LPO 3 NAD binding site 0 1 1 0 35,93,94,95,135,136,138,176,274 5 -341456 cd08177 MAR 1 active site 0 1 1 1 30,84,85,86,89,92,107,108,110,145,153,160,164,229,233,243 1 -341456 cd08177 MAR 2 metal binding site 0 1 1 1 160,229,243 4 -341456 cd08177 MAR 3 NAD binding site 0 1 1 0 30,84,85,86,107,108,110,145,243 5 -341457 cd08178 AAD_C 1 active site 0 1 1 1 30,88,89,90,93,96,140,141,143,181,189,196,200,265,269,279 1 -341457 cd08178 AAD_C 2 metal binding site 0 1 1 1 196,265,279 4 -341457 cd08178 AAD_C 3 NAD binding site 0 1 1 0 30,88,89,90,140,141,143,181,279 5 -341458 cd08179 NADPH_BDH 1 active site 0 1 1 1 30,89,90,91,94,97,133,134,136,174,182,189,193,258,262,272 1 -341458 cd08179 NADPH_BDH 2 metal binding site 0 1 1 1 189,258,272 4 -341458 cd08179 NADPH_BDH 3 NAD binding site 0 1 1 0 30,89,90,91,133,134,136,174,272 5 -341459 cd08180 PDD 1 active site 0 1 1 1 29,86,87,88,91,94,117,118,120,158,166,173,177,242,246,256 1 -341459 cd08180 PDD 2 metal binding site 0 1 1 1 173,242,256 4 -341459 cd08180 PDD 3 NAD binding site 0 1 1 0 29,86,87,88,117,118,120,158,256 5 -341460 cd08181 PPD-like 1 active site 0 1 1 1 32,91,92,93,96,99,131,132,134,172,180,187,191,256,260,270 1 -341460 cd08181 PPD-like 2 metal binding site 0 1 1 1 187,256,270 4 -341460 cd08181 PPD-like 3 NAD binding site 0 1 1 0 32,91,92,93,131,132,134,172,270 5 -341461 cd08182 HEPD 1 active site 0 1 1 1 30,87,88,89,92,95,130,131,133,171,179,186,190,255,259,269 1 -341461 cd08182 HEPD 2 metal binding site 0 1 1 1 186,255,269 4 -341461 cd08182 HEPD 3 NAD binding site 0 1 1 0 30,87,88,89,130,131,133,171,269 5 -341462 cd08183 Fe-ADH-like 1 active site 0 1 1 1 29,86,87,88,91,94,131,132,134,172,180,187,191,256,260,270 1 -341462 cd08183 Fe-ADH-like 2 metal binding site 0 1 1 1 187,256,270 4 -341462 cd08183 Fe-ADH-like 3 NAD binding site 0 1 1 0 29,86,87,88,131,132,134,172,270 5 -341463 cd08184 Fe-ADH_KdnB-like 1 active site 0 1 1 1 31,90,91,92,95,98,131,132,134,170,178,185,189,252,256,266 1 -341463 cd08184 Fe-ADH_KdnB-like 2 metal binding site 0 1 1 1 185,252,266 4 -341463 cd08184 Fe-ADH_KdnB-like 3 NAD binding site 0 1 1 0 31,90,91,92,131,132,134,170,266 5 -341464 cd08185 Fe-ADH-like 1 active site 0 1 1 1 32,91,92,93,96,99,136,137,139,177,185,192,196,261,265,276 1 -341464 cd08185 Fe-ADH-like 2 metal binding site 0 1 1 1 192,261,276 4 -341464 cd08185 Fe-ADH-like 3 NAD binding site 0 1 1 0 32,91,92,93,136,137,139,177,276 5 -341465 cd08186 Fe-ADH-like 1 active site 0 1 1 1 30,89,90,91,94,97,131,132,134,172,180,187,191,256,260,271 1 -341465 cd08186 Fe-ADH-like 2 metal binding site 0 1 1 1 187,256,271 4 -341465 cd08186 Fe-ADH-like 3 NAD binding site 0 1 1 0 30,89,90,91,131,132,134,172,271 5 -341466 cd08187 BDH 1 active site 0 1 1 1 35,94,95,96,99,102,135,136,138,176,184,191,195,264,268,278 1 -341466 cd08187 BDH 2 metal binding site 0 1 1 1 191,264,278 4 -341466 cd08187 BDH 3 NAD binding site 0 1 1 0 35,94,95,96,135,136,138,176,278 5 -341467 cd08188 PDDH 1 active site 0 1 1 1 35,93,94,95,98,101,134,135,137,175,183,190,194,259,263,273 1 -341467 cd08188 PDDH 2 metal binding site 0 1 1 1 190,259,273 4 -341467 cd08188 PDDH 3 NAD binding site 0 1 1 0 35,93,94,95,134,135,137,175,273 5 -341468 cd08189 Fe-ADH-like 1 active site 0 1 1 1 34,92,93,94,97,100,134,135,137,175,183,190,194,259,263,273 1 -341468 cd08189 Fe-ADH-like 2 metal binding site 0 1 1 1 190,259,273 4 -341468 cd08189 Fe-ADH-like 3 NAD binding site 0 1 1 0 34,92,93,94,134,135,137,175,273 5 -341469 cd08190 HOT 1 active site 0 1 1 1 30,88,89,90,93,96,134,135,137,175,183,190,194,277,281,304 1 -341469 cd08190 HOT 2 metal binding site 0 1 1 1 190,277,304 4 -341469 cd08190 HOT 3 NAD binding site 0 1 1 0 30,88,89,90,134,135,137,175,304 5 -341470 cd08191 Fe-ADH-like 1 active site 0 1 1 1 32,90,91,92,95,98,131,132,134,172,180,187,191,271,275,285 1 -341470 cd08191 Fe-ADH-like 2 metal binding site 0 1 1 1 187,271,285 4 -341470 cd08191 Fe-ADH-like 3 NAD binding site 0 1 1 0 32,90,91,92,131,132,134,172,285 5 -341471 cd08192 MAR-like 1 active site 0 1 1 1 30,87,88,89,92,95,136,137,139,176,184,191,195,261,265,275 1 -341471 cd08192 MAR-like 2 metal binding site 0 1 1 1 191,261,275 4 -341471 cd08192 MAR-like 3 NAD binding site 0 1 1 0 30,87,88,89,136,137,139,176,275 5 -341472 cd08193 HVD 1 active site 0 1 1 1 33,91,92,93,96,99,132,133,135,172,180,187,191,257,261,271 1 -341472 cd08193 HVD 2 metal binding site 0 1 1 1 187,257,271 4 -341472 cd08193 HVD 3 NAD binding site 0 1 1 0 33,91,92,93,132,133,135,172,271 5 -341473 cd08194 Fe-ADH-like 1 active site 0 1 1 1 30,88,89,90,93,96,129,130,132,170,178,185,189,254,258,268 1 -341473 cd08194 Fe-ADH-like 2 metal binding site 0 1 1 1 185,254,268 4 -341473 cd08194 Fe-ADH-like 3 NAD binding site 0 1 1 0 30,88,89,90,129,130,132,170,268 5 -341475 cd08196 Fe-ADH-like 1 active site 0 1 1 1 35,91,92,93,96,99,133,134,136,174,182,189,193,258,262,272 1 -341475 cd08196 Fe-ADH-like 2 metal binding site 0 1 1 1 189,258,272 4 -341475 cd08196 Fe-ADH-like 3 NAD binding site 0 1 1 0 35,91,92,93,133,134,136,174,272 5 -341482 cd14860 4HBD_NAD 1 active site 0 1 1 1 33,86,87,88,91,94,125,126,128,166,174,181,185,252,256,266 1 -341482 cd14860 4HBD_NAD 2 metal binding site 0 1 1 1 181,252,266 4 -341482 cd14860 4HBD_NAD 3 NAD binding site 0 1 1 0 33,86,87,88,125,126,128,166,266 5 -341483 cd14861 Fe-ADH-like 1 active site 0 1 1 1 32,90,91,92,95,98,135,136,138,176,184,191,195,259,263,273 1 -341483 cd14861 Fe-ADH-like 2 metal binding site 0 1 1 1 191,259,273 4 -341483 cd14861 Fe-ADH-like 3 NAD binding site 0 1 1 0 32,90,91,92,135,136,138,176,273 5 -341484 cd14862 Fe-ADH-like 1 active site 0 1 1 1 31,89,90,91,94,97,132,133,135,173,181,188,192,257,261,271 1 -341484 cd14862 Fe-ADH-like 2 metal binding site 0 1 1 1 188,257,271 4 -341484 cd14862 Fe-ADH-like 3 NAD binding site 0 1 1 0 31,89,90,91,132,133,135,173,271 5 -341485 cd14863 Fe-ADH-like 1 active site 0 1 1 1 34,92,93,94,97,100,134,135,137,175,183,190,194,259,263,273 1 -341485 cd14863 Fe-ADH-like 2 metal binding site 0 1 1 1 190,259,273 4 -341485 cd14863 Fe-ADH-like 3 NAD binding site 0 1 1 0 34,92,93,94,134,135,137,175,273 5 -341486 cd14864 Fe-ADH-like 1 active site 0 1 1 1 32,90,91,92,95,98,131,132,134,172,180,187,191,256,260,270 1 -341486 cd14864 Fe-ADH-like 2 metal binding site 0 1 1 1 187,256,270 4 -341486 cd14864 Fe-ADH-like 3 NAD binding site 0 1 1 0 32,90,91,92,131,132,134,172,270 5 -341487 cd14865 Fe-ADH-like 1 active site 0 1 1 1 35,93,94,95,98,101,135,136,138,176,184,191,195,260,264,274 1 -341487 cd14865 Fe-ADH-like 2 metal binding site 0 1 1 1 191,260,274 4 -341487 cd14865 Fe-ADH-like 3 NAD binding site 0 1 1 0 35,93,94,95,135,136,138,176,274 5 -341488 cd14866 Fe-ADH-like 1 active site 0 1 1 1 34,91,92,93,96,99,141,142,144,181,189,196,200,264,268,278 1 -341488 cd14866 Fe-ADH-like 2 metal binding site 0 1 1 1 196,264,278 4 -341488 cd14866 Fe-ADH-like 3 NAD binding site 0 1 1 0 34,91,92,93,141,142,144,181,278 5 -341489 cd17814 Fe-ADH-like 1 active site 0 1 1 1 33,91,92,93,96,99,132,133,135,173,181,188,192,257,261,271 1 -341489 cd17814 Fe-ADH-like 2 metal binding site 0 1 1 1 188,257,271 4 -341489 cd17814 Fe-ADH-like 3 NAD binding site 0 1 1 0 33,91,92,93,132,133,135,173,271 5 -176854 cd07812 SRPBCC 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,39,41,43,45,61,63,65,72,74,89,90,92,94,101,103,105,107,121,122,123,124,125,127,128,131,132,133,136 0 -176851 cd00177 START 1 hydrophobic ligand binding site 0 1 1 1 40,42,44,53,54,55,57,58,73,85,87,89,91,103,105,107,117,119,140,141,143,145,155,157,159,161,172,173,174,175,176,178,179,182,183,184,187 0 -176876 cd08867 START_STARD4_5_6-like 1 hydrophobic ligand binding site 0 1 1 1 47,49,51,60,61,62,64,65,82,93,95,97,99,114,116,118,128,130,151,152,154,156,168,170,172,174,185,186,187,188,189,191,192,195,196,197,200 0 -176911 cd08902 START_STARD4-like 1 hydrophobic ligand binding site 0 1 1 1 48,50,52,61,62,63,65,66,81,92,94,96,98,113,115,117,126,128,147,148,150,152,164,166,168,170,181,182,183,184,185,187,188,191,192,193,196 0 -176912 cd08903 START_STARD5-like 1 hydrophobic ligand binding site 0 1 1 1 47,49,51,60,61,62,64,65,82,93,95,97,99,114,116,118,128,130,151,152,154,156,168,170,172,174,185,186,187,188,189,191,192,195,196,197,200 0 -176913 cd08904 START_STARD6-like 1 hydrophobic ligand binding site 0 1 1 1 47,49,51,60,61,62,64,65,80,91,93,95,97,112,114,116,126,128,149,150,152,154,166,168,170,172,183,184,185,186,187,189,190,193,194,195,198 0 -176877 cd08868 START_STARD1_3_like 1 hydrophobic ligand binding site 0 1 1 1 49,51,53,62,63,64,66,67,83,94,96,98,100,115,117,119,128,130,151,152,154,156,168,170,172,174,185,186,187,188,189,191,192,195,196,197,200 0 -176914 cd08905 START_STARD1-like 1 hydrophobic ligand binding site 0 1 1 1 50,52,54,63,64,65,67,68,84,95,97,99,101,116,118,120,129,131,152,153,155,157,169,171,173,175,186,187,188,189,190,192,193,196,197,198,201 0 -176915 cd08906 START_STARD3-like 1 hydrophobic ligand binding site 0 1 1 1 50,52,54,63,64,65,67,68,84,95,97,99,101,116,118,120,129,131,152,153,155,157,169,171,173,175,186,187,188,189,190,192,193,196,197,198,201 0 -176878 cd08869 START_RhoGAP 1 hydrophobic ligand binding site 0 1 1 1 45,47,49,58,59,60,62,63,76,87,89,91,93,106,108,110,121,123,143,144,146,148,158,160,162,164,174,175,176,177,178,180,181,184,185,186,189 0 -176916 cd08907 START_STARD8-like 1 hydrophobic ligand binding site 0 1 1 1 53,55,57,66,67,68,70,71,84,95,97,99,101,114,116,118,129,131,151,152,154,156,166,168,170,172,182,183,184,185,186,188,189,192,193,194,197 0 -176917 cd08908 START_STARD12-like 1 hydrophobic ligand binding site 0 1 1 1 53,55,57,66,67,68,70,71,84,95,97,99,101,114,116,118,129,131,150,151,153,155,165,167,169,171,181,182,183,184,185,187,188,191,192,193,196 0 -176918 cd08909 START_STARD13-like 1 hydrophobic ligand binding site 0 1 1 1 53,55,57,66,67,68,70,71,84,95,97,99,101,114,116,118,129,131,151,152,154,156,166,168,170,172,182,183,184,185,186,188,189,192,193,194,197 0 -176879 cd08870 START_STARD2_7-like 1 hydrophobic ligand binding site 0 1 1 1 51,53,55,65,66,67,69,70,85,97,99,101,103,116,118,120,130,132,152,153,155,157,169,171,173,175,186,187,188,189,190,192,193,196,197,198,201 0 -176919 cd08910 START_STARD2-like 1 hydrophobic ligand binding site 0 1 1 1 50,52,54,64,65,66,68,69,84,93,95,97,99,112,114,116,129,131,152,153,155,157,167,169,171,173,184,185,186,187,188,190,191,194,195,196,199 0 -176920 cd08911 START_STARD7-like 1 hydrophobic ligand binding site 0 1 1 1 46,48,50,60,61,62,64,65,80,92,94,96,98,111,113,115,126,128,149,150,152,154,167,169,171,173,184,185,186,187,188,190,191,194,195,196,199 0 -176880 cd08871 START_STARD10-like 1 hydrophobic ligand binding site 0 1 1 1 48,50,52,62,63,64,66,67,82,94,96,98,100,112,114,116,125,127,148,149,151,153,163,165,167,169,180,181,182,183,184,186,187,190,191,192,195 0 -176881 cd08872 START_STARD11-like 1 hydrophobic ligand binding site 0 1 1 1 53,55,57,67,68,69,71,72,87,98,100,102,104,117,119,121,138,140,160,161,163,165,187,189,191,193,204,205,206,207,208,210,211,214,215,216,219 0 -176882 cd08873 START_STARD14_15-like 1 hydrophobic ligand binding site 0 1 1 1 78,80,82,91,92,93,95,96,111,122,124,126,128,141,143,145,157,159,180,181,183,185,195,197,199,201,210,211,212,213,214,218,219,222,223,224,227 0 -176921 cd08913 START_STARD14-like 1 hydrophobic ligand binding site 0 1 1 1 82,84,86,95,96,97,99,100,115,126,128,130,132,146,148,150,162,164,185,186,188,190,200,202,204,206,215,216,217,218,219,223,224,227,228,229,232 0 -176922 cd08914 START_STARD15-like 1 hydrophobic ligand binding site 0 1 1 1 79,81,83,92,93,94,96,97,112,123,125,127,129,142,144,146,158,160,181,182,184,186,196,198,200,202,211,212,213,214,215,219,220,223,224,225,228 0 -176883 cd08874 START_STARD9-like 1 hydrophobic ligand binding site 0 1 1 1 46,48,50,59,60,61,63,64,79,91,93,95,97,111,113,115,124,126,148,149,151,153,166,168,170,172,179,180,181,182,183,187,188,191,192,193,196 0 -176884 cd08875 START_ArGLABRA2_like 1 hydrophobic ligand binding site 0 1 1 1 61,63,65,74,75,76,78,79,95,115,117,119,121,134,136,138,148,150,172,173,175,177,187,189,191,193,203,204,205,206,207,209,210,213,214,215,218 0 -176885 cd08876 START_1 1 hydrophobic ligand binding site 0 1 1 1 42,44,46,55,56,57,59,60,75,87,89,91,93,105,107,109,120,122,142,143,145,147,157,159,161,163,174,175,176,177,178,180,181,184,185,186,189 0 -176886 cd08877 START_2 1 hydrophobic ligand binding site 0 1 1 1 47,49,51,60,61,62,64,65,81,92,94,96,98,110,112,114,126,128,159,160,162,164,174,176,178,180,192,193,194,195,196,198,199,202,203,204,207 0 -176852 cd00680 RHO_alpha_C 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,13,14,15,17,18,42,57,59,61,63,82,84,86,88,90,100,101,103,105,111,113,115,117,129,130,131,132,133,142,143,146,147,148,151 0 -176887 cd08878 RHO_alpha_C_DMO-like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,46,55,57,59,61,80,82,84,86,88,109,110,112,114,120,122,124,126,142,143,144,145,146,152,153,156,157,158,161 0 -176888 cd08879 RHO_alpha_C_AntDO-like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,44,65,67,69,71,113,115,117,119,121,129,130,132,134,140,142,144,146,160,161,162,163,164,173,174,177,178,179,182 0 -176889 cd08880 RHO_alpha_C_ahdA1c-like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,47,85,87,89,91,103,105,107,109,111,121,122,124,126,132,134,136,138,151,152,153,154,155,164,165,168,169,170,173 0 -176890 cd08881 RHO_alpha_C_NDO-like 1 hydrophobic ligand binding site 0 1 1 1 8,10,12,19,20,21,23,24,55,66,68,70,72,76,78,80,82,84,93,94,96,98,104,106,108,110,124,125,126,127,128,137,138,141,142,143,146 0 -176891 cd08882 RHO_alpha_C_MupW-like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,86,106,108,110,112,128,130,132,134,136,146,147,149,151,159,161,163,165,185,186,187,188,189,196,197,200,201,202,205 0 -176892 cd08883 RHO_alpha_C_CMO-like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,37,47,49,51,53,72,74,76,78,80,90,91,93,95,101,103,105,107,116,117,118,119,120,128,129,132,133,134,137 0 -176893 cd08884 RHO_alpha_C_GbcA-like 1 hydrophobic ligand binding site 0 1 1 1 13,15,17,24,25,26,28,29,74,83,85,87,89,101,103,105,107,109,119,120,122,124,130,132,134,136,146,147,148,149,150,159,160,163,164,165,168 0 -176894 cd08885 RHO_alpha_C_1 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,48,66,68,70,72,84,86,88,90,92,102,103,105,107,113,115,117,119,134,135,136,137,138,144,145,148,149,150,153 0 -176895 cd08886 RHO_alpha_C_2 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,37,58,60,62,64,73,75,77,79,81,93,94,96,98,104,106,108,110,118,119,120,121,122,130,131,135,136,137,140 0 -176896 cd08887 RHO_alpha_C_3 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,14,15,16,18,19,47,61,63,65,67,79,81,83,85,87,97,98,100,102,108,110,112,114,129,130,131,132,133,139,140,143,144,145,148 0 -176853 cd05018 CoxG 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,35,41,43,45,47,62,64,66,73,75,89,90,92,94,103,105,107,109,123,124,125,126,127,129,130,133,134,135,138 0 -176855 cd07813 COQ10p_like 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,43,45,47,49,60,62,64,70,72,83,84,86,88,98,100,102,104,115,116,117,118,119,121,122,125,126,127,130 0 -176856 cd07814 SRPBCC_CalC_Aha1-like 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,34,42,44,46,48,60,62,64,71,73,87,88,90,92,101,103,105,107,117,118,119,120,121,123,124,127,128,129,132 0 -176868 cd07826 SRPBCC_CalC_Aha1-like_9 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,38,46,48,50,52,64,66,68,75,77,90,91,93,95,104,106,108,110,120,121,122,123,124,126,127,130,131,132,135 0 -176900 cd08891 SRPBCC_CalC 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,40,48,50,52,54,63,65,67,74,76,93,94,96,98,108,110,112,114,127,128,129,130,131,133,134,137,138,139,142 0 -176901 cd08892 SRPBCC_Aha1 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,32,40,42,44,46,51,53,55,62,64,78,79,81,83,92,94,96,98,103,104,105,106,107,109,110,113,114,115,119 0 -176902 cd08893 SRPBCC_CalC_Aha1-like_GntR-HTH 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,33,40,42,44,46,57,59,61,68,70,87,88,90,92,101,103,105,107,114,115,116,117,118,120,121,124,125,126,129 0 -176903 cd08894 SRPBCC_CalC_Aha1-like_1 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,35,46,48,50,52,64,66,68,75,77,87,88,90,92,101,103,105,107,116,117,118,119,120,122,123,126,127,128,132 0 -176904 cd08895 SRPBCC_CalC_Aha1-like_2 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,38,46,48,50,52,71,73,75,82,84,98,99,101,103,112,114,116,118,124,125,126,127,128,130,131,134,135,136,139 0 -176905 cd08896 SRPBCC_CalC_Aha1-like_3 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,38,46,48,50,52,64,66,68,75,77,94,95,97,99,108,110,112,114,124,125,126,127,128,130,131,134,135,136,139 0 -176906 cd08897 SRPBCC_CalC_Aha1-like_4 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,30,47,49,51,53,66,68,70,77,79,86,87,89,91,100,102,104,106,111,112,113,114,115,117,118,121,122,123,126 0 -176907 cd08898 SRPBCC_CalC_Aha1-like_5 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,37,44,46,48,50,58,60,62,69,71,91,92,94,96,105,107,109,111,123,124,125,126,127,129,130,133,134,135,138 0 -176908 cd08899 SRPBCC_CalC_Aha1-like_6 1 hydrophobic ligand binding site 0 1 1 1 12,14,16,25,26,27,29,30,42,50,52,54,56,66,68,70,77,79,89,90,92,94,103,105,107,109,115,116,117,118,119,121,122,125,126,127,130 0 -176909 cd08900 SRPBCC_CalC_Aha1-like_7 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,39,47,49,51,53,65,67,69,76,78,93,94,96,98,107,109,111,113,121,122,123,124,125,127,128,131,132,133,136 0 -176910 cd08901 SRPBCC_CalC_Aha1-like_8 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,32,39,41,43,45,55,57,59,66,68,78,79,81,83,93,95,97,99,110,111,112,113,114,116,117,120,121,122,125 0 -176857 cd07815 SRPBCC_PITP 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,37,56,58,60,62,83,85,87,92,94,107,108,110,112,183,185,187,189,200,201,202,203,204,206,207,210,211,212,215 0 -176897 cd08888 SRPBCC_PITPNA-B_like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,37,56,58,60,62,83,85,87,92,94,108,109,111,113,190,192,194,196,207,208,209,210,211,213,214,217,218,219,222 0 -176898 cd08889 SRPBCC_PITPNM1-2_like 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,16,17,18,20,21,39,58,60,62,64,85,87,89,94,96,109,110,112,114,191,193,195,197,208,209,210,211,212,214,215,219,220,221,224 0 -176899 cd08890 SRPBCC_PITPNC1_like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,37,56,58,60,62,82,84,86,91,93,106,107,109,111,182,184,186,188,199,200,201,202,203,205,206,209,210,211,214 0 -176858 cd07816 Bet_v1-like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,37,48,50,52,54,65,67,69,77,79,95,96,98,100,110,112,114,116,128,129,130,131,132,134,135,138,139,140,143 0 -176859 cd07817 SRPBCC_8 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,34,40,42,44,46,58,60,62,69,71,81,82,84,86,96,98,100,102,117,118,119,120,121,123,124,127,128,129,132 0 -176860 cd07818 SRPBCC_1 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,16,17,18,20,21,32,46,48,50,52,67,69,71,78,80,94,95,97,99,107,109,111,113,128,129,130,131,132,134,135,138,139,140,143 0 -176861 cd07819 SRPBCC_2 1 hydrophobic ligand binding site 0 1 1 1 3,5,7,16,17,18,20,21,33,40,42,44,46,50,52,54,65,67,92,93,95,97,103,105,107,109,115,116,117,118,119,125,126,130,131,132,135 0 -176862 cd07820 SRPBCC_3 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,38,40,42,44,64,66,68,82,84,91,92,94,96,102,104,106,108,115,116,117,118,119,121,122,126,127,128,131 0 -176863 cd07821 PYR_PYL_RCAR_like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,35,46,48,50,52,60,62,64,72,74,87,88,90,92,102,104,106,108,119,120,121,122,123,125,126,129,130,131,134 0 -176864 cd07822 SRPBCC_4 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,31,40,42,44,46,61,63,65,72,74,88,89,91,93,102,104,106,108,120,121,122,123,124,126,127,130,131,132,135 0 -176865 cd07823 SRPBCC_5 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,30,39,41,43,45,60,62,64,72,74,89,90,92,94,104,106,108,110,124,125,126,127,128,130,131,134,135,136,139 0 -176866 cd07824 SRPBCC_6 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,32,42,44,46,48,66,68,70,77,79,89,90,92,94,102,104,106,108,122,123,124,125,126,131,132,136,137,138,141 0 -176867 cd07825 SRPBCC_7 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,14,15,16,18,19,30,41,43,45,47,64,66,68,72,74,93,94,96,98,105,107,109,111,123,124,125,126,127,129,130,133,134,135,138 0 -176869 cd08860 TcmN_ARO-CYC_like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,35,45,47,49,51,64,66,68,75,77,89,90,92,94,103,105,107,109,122,123,124,125,126,128,129,132,133,134,137 0 -176870 cd08861 OtcD1_ARO-CYC_like 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,32,38,40,42,44,53,55,57,71,73,89,90,92,94,101,103,105,107,120,121,122,123,124,126,127,130,131,132,135 0 -176871 cd08862 SRPBCC_Smu440-like 1 hydrophobic ligand binding site 0 1 1 1 2,4,6,15,16,17,19,20,35,46,48,50,52,60,62,64,71,73,83,84,86,88,98,100,102,104,116,117,118,119,120,122,123,126,127,128,131 0 -176872 cd08863 SRPBCC_DUF1857 1 hydrophobic ligand binding site 0 1 1 1 1,3,5,21,22,23,25,26,42,52,54,56,58,65,67,69,75,77,85,86,88,90,100,102,104,106,119,120,121,122,123,125,126,129,130,131,134 0 -176873 cd08864 SRPBCC_DUF3074 1 hydrophobic ligand binding site 0 1 1 1 95,97,99,107,108,109,111,112,115,122,124,126,128,141,143,145,146,148,152,153,155,157,169,171,173,175,181,182,183,184,185,188,189,192,193,194,198 0 -176874 cd08865 SRPBCC_10 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,39,41,43,45,62,64,66,70,72,88,89,91,93,99,101,103,105,118,119,120,121,122,124,125,128,129,130,133 0 -176875 cd08866 SRPBCC_11 1 hydrophobic ligand binding site 0 1 1 1 0,2,4,13,14,15,17,18,33,40,42,44,46,60,62,64,76,78,92,93,95,97,105,107,109,111,122,123,124,125,126,128,129,132,133,134,137 0 -143640 cd07827 RHD-n 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,103,105,106,173 3 -143643 cd07883 RHD-n_NFkB 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,101,103,104,196 3 -143650 cd07934 RHD-n_NFkB2 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,102,104,105,184 3 -143651 cd07935 RHD-n_NFkB1 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,101,103,104,201 3 -143644 cd07884 RHD-n_Relish 1 DNA binding site 0 1 1 0 13,15,16,18,19,22,23,24,25,106,108,109,158 3 -143645 cd07885 RHD-n_RelA 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,101,103,104,168 3 -143646 cd07886 RHD-n_RelB 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,104,106,107,171 3 -143647 cd07887 RHD-n_Dorsal_Dif 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,102,104,105,172 3 -143648 cd07927 RHD-n_NFAT_like 1 DNA binding site 0 1 1 0 13,15,16,18,19,20,21,22,23,109,111,112,160 3 -143641 cd07881 RHD-n_NFAT 1 DNA binding site 0 1 1 0 23,25,26,28,29,30,31,32,33,122,124,125,173 3 -143642 cd07882 RHD-n_TonEBP 1 DNA binding site 0 1 1 0 13,15,16,18,19,20,21,22,23,109,111,112,160 3 -143649 cd07933 RHD-n_c-Rel 1 DNA binding site 0 1 1 0 14,16,17,19,20,22,23,24,25,101,103,104,171 3 -143652 cd07828 nitrobindin 1 heme-binding site 0 1 0 0 20,21,24,26,46,55,56,77,113,115,128,130,132,140,141 5 -143653 cd07912 Tweety_N 1 putative pore region 0 0 1 1 363,366 0 -153419 cd07914 IGPD 1 putative active site pocket 0 1 1 1 8,34,38,41,42,60,61,64,86,94,95,108,132,156,157,160 1 -153419 cd07914 IGPD 2 metal binding residues 0 1 1 1 34,60,61,64,132,156,157,160 4 -153419 cd07914 IGPD 3 3-fold/trimer interface 0 1 1 0 85,87,89,90,91,93,94,95,97,98,102,103,104,108,110,144,146,148,150,168,171,177 2 -153419 cd07914 IGPD 4 4-fold oligomerization interface 0 1 1 0 30,31,34,56,57,58,60,61,119,120,121,122,123,126,128,131,132,153,154,155,156,157 2 -153420 cd07920 Pumilio 1 RNA binding site 0 1 1 1 57,58,61,93,94,97,130,133,165,166,169,198,199,201,202,205,234,235,237,238,241,276,277,279,280,283,313,316 3 -153421 cd07936 SCAN 1 dimerization interface 0 1 1 0 7,8,10,11,12,17,18,19,21,22,25,26,29,30,32,33,34,35,39,40,43,44,47,48,49,51,52,54,55,56,57,76,79,80,82,83,84 2 -176481 cd07964 RBP-H 1 trimer interface 0 1 1 1 16,18,20,23,25,56,57,61,63,64,94,98,102 2 -153422 cd07973 Spt4 1 Spt4-Spt5NGN interface 0 0 1 1 48,49,50,51,52,53,58 0 -153422 cd07973 Spt4 2 Zn binding site 0 1 1 0 5,8,22,25 4 -199899 cd07976 TFIIA_alpha_beta_like 1 TFIIA subunit interface 0 1 1 1 2,3,4,6,7,10,11,14,15,19,24,28,31,32,35,36,39,40,43,45,57,58,59,60,61,62,63,64,65,67,74,76,80,81,82,83,84,85,86,89,90,91,92,93,94,95,96,97,98,99,100,101 2 -199899 cd07976 TFIIA_alpha_beta_like 2 TBP interaction site 0 1 1 0 69,101 2 -199899 cd07976 TFIIA_alpha_beta_like 3 DNA binding site 0 1 1 0 66,69,71 3 -259828 cd07980 TFIIF_beta 1 heterodimer interface 0 1 1 1 0,1,7,9,12,13,14,15,16,17,18,19,22,25,28,34,35,36,37,38,39,40,41,42,50,78,79,80,81,82,83,84,85,86,87,88,108,110,111,117 2 -173964 cd07981 TAF12 1 heterodimer interface 0 1 1 1 0,1,5,9,12,13,27,30,31,32,34,35,36,39,40,43,46,52,54,55,56,59,60,63,67,69,71 2 -173964 cd07981 TAF12 2 Heterotetramer interface 0 1 1 1 20,22,23,26,29,30,33 2 -153431 cd07995 TPK 1 active site 0 1 1 1 4,5,6,27,28,29,47,49,50,73,74,75,76,77,78,98,100,101,102,105,109,169,171,183,184,185,186 1 -153431 cd07995 TPK 2 thiamine binding site 0 1 1 1 47,73,74,75,76,169,171,183,184,185,186 5 -153431 cd07995 TPK 3 dimerization interface 0 1 1 0 29,33,36,73,74,75,79,99,101,102,103,104,105,106,107,108,110,111,130,132,150,152,154,156,157,182,184,185,205 2 -153432 cd07999 GH7_CBH_EG 1 active site 0 1 1 0 27,29,30,99,133,137,163,165,167,190,192,195,206,337,339,348 1 -153433 cd08010 yceG_like 1 dimerization interface 0 1 0 0 0,2,3,4,5,6,7,16,20,27,28,31,160,162,179,182,229,230,237,240,241,244 2 -153434 cd08026 DUF326 1 dimerization interface 0 1 0 0 35,36,38,39,42,43,46,49,50,56,57,60,64,67,68 2 -153442 cd08040 OBF_DNA_ligase_family 1 DNA binding site 0 1 1 0 21,37,38,40,41,42,43,44,45,97,99,100,102 3 -153435 cd07893 OBF_DNA_ligase 1 DNA binding site 0 1 1 0 21,39,40,42,43,44,45,46,47,110,112,113,115 3 -153436 cd07967 OBF_DNA_ligase_III 1 DNA binding site 0 1 1 0 23,41,42,44,45,46,47,48,49,115,117,118,120 3 -153437 cd07968 OBF_DNA_ligase_IV 1 DNA binding site 0 1 1 0 22,46,47,49,50,51,52,53,54,118,120,121,123 3 -153438 cd07969 OBF_DNA_ligase_I 1 DNA binding site 0 1 1 0 22,40,41,43,44,45,46,47,48,113,115,116,118 3 -153441 cd07972 OBF_DNA_ligase_Arch_LigB 1 DNA binding site 0 1 1 0 21,39,40,42,43,44,45,46,47,95,97,98,100 3 -153439 cd07970 OBF_DNA_ligase_LigC 1 DNA binding site 0 1 1 0 17,33,34,36,37,38,39,40,41,101,103,104,106 3 -153440 cd07971 OBF_DNA_ligase_LigD 1 DNA binding site 0 1 1 0 20,36,37,39,40,41,42,43,44,96,98,99,101 3 -153443 cd08041 OBF_kDNA_ligase_like 1 DNA binding site 0 1 1 0 21,33,34,36,37,38,39,40,41,66,68,69,71 3 -176269 cd08044 TAF5_NTD2 1 Ca binding site 0 1 1 1 63,66,67 4 -176269 cd08044 TAF5_NTD2 2 homodimer interface 0 1 1 1 23,24,64,93,94,95,96,97,129 2 -173967 cd08048 TAF11 1 heterodimer interface 0 1 1 1 3,6,7,10,11,14,16,17,20,21,24,25,28,29,41,44,45,46,48,49,50,53,57,69,70,71,72,73,76,77,80 2 -173969 cd08148 RuBisCO_large 1 catalytic residue 0 1 1 0 160 1 -173969 cd08148 RuBisCO_large 2 metal binding site 0 1 1 0 162,163 4 -173969 cd08148 RuBisCO_large 3 dimer interface 0 1 1 0 23,24,25,26,42,65,66,73,76,77,78,81,82,134,135,163,166,167,168,170,173,174,203,210,211,226,231,232,233,234,236,237,240,253,254,255,256,257 2 -173970 cd08205 RuBisCO_IV_RLP 1 catalytic residue 0 1 1 0 163 1 -173970 cd08205 RuBisCO_IV_RLP 2 metal binding site 0 1 1 0 165,166 4 -173970 cd08205 RuBisCO_IV_RLP 3 dimer interface 0 1 1 0 23,24,25,26,43,72,73,79,82,83,84,87,88,137,138,166,169,170,171,173,176,177,206,213,214,229,234,235,236,237,239,240,243,254,255,256,257,258 2 -173972 cd08207 RLP_NonPhot 1 catalytic residue 0 1 1 0 176 1 -173972 cd08207 RLP_NonPhot 2 metal binding site 0 1 1 0 178,179 4 -173972 cd08207 RLP_NonPhot 3 dimer interface 0 1 1 0 23,24,25,26,43,82,83,89,92,93,94,97,98,150,151,179,182,183,184,186,189,190,219,226,227,242,247,248,249,250,252,253,256,267,268,269,270,271 2 -173973 cd08208 RLP_Photo 1 catalytic residue 0 1 1 0 193 1 -173973 cd08208 RLP_Photo 2 metal binding site 0 1 1 0 195,196 4 -173973 cd08208 RLP_Photo 3 dimer interface 0 1 1 0 39,40,41,42,58,98,99,105,108,109,110,113,114,167,168,196,199,200,201,203,206,207,236,243,244,259,264,265,266,267,269,270,273,284,285,286,287,288 2 -173974 cd08209 RLP_DK-MTP-1-P-enolase 1 catalytic residue 0 1 1 0 157 1 -173974 cd08209 RLP_DK-MTP-1-P-enolase 2 metal binding site 0 1 1 0 159,160 4 -173974 cd08209 RLP_DK-MTP-1-P-enolase 3 dimer interface 0 1 1 0 22,23,24,25,42,66,67,73,76,77,78,81,82,131,132,160,163,164,165,167,170,171,200,207,208,223,228,229,230,231,233,234,237,250,251,252,253,254 2 -173975 cd08210 RLP_RrRLP 1 catalytic residue 0 1 1 0 158 1 -173975 cd08210 RLP_RrRLP 2 metal binding site 0 1 1 0 160,161 4 -173975 cd08210 RLP_RrRLP 3 dimer interface 0 1 1 0 25,26,27,28,44,68,69,75,78,79,80,83,84,133,134,161,164,165,166,168,171,172,201,208,209,224,229,230,231,232,234,235,238,250,251,252,253,254 2 -173971 cd08206 RuBisCO_large_I_II_III 1 catalytic residue 0 1 1 0 165 1 -173971 cd08206 RuBisCO_large_I_II_III 2 metal binding site 0 1 1 0 167,168 4 -173971 cd08206 RuBisCO_large_I_II_III 3 dimer interface 0 1 1 0 26,27,28,29,46,70,71,78,81,82,83,86,87,139,140,168,171,172,173,175,178,179,208,216,217,232,237,238,239,240,242,243,246,260,261,262,263,264 2 -173976 cd08211 RuBisCO_large_II 1 catalytic residue 0 1 1 0 189 1 -173976 cd08211 RuBisCO_large_II 2 metal binding site 0 1 1 0 191,192 4 -173976 cd08211 RuBisCO_large_II 3 dimer interface 0 1 1 0 46,47,48,49,65,86,87,100,103,104,105,108,109,164,165,192,195,196,197,199,202,203,232,240,241,261,266,267,268,269,271,272,275,287,288,289,290,291 2 -173977 cd08212 RuBisCO_large_I 1 catalytic residue 0 1 1 0 178 1 -173977 cd08212 RuBisCO_large_I 2 metal binding site 0 1 1 0 180,181 4 -173977 cd08212 RuBisCO_large_I 3 dimer interface 0 1 1 0 37,38,39,40,57,83,84,91,94,95,96,99,100,152,153,181,184,185,186,188,191,192,221,229,230,245,249,250,251,252,254,255,258,272,273,274,275,276 2 -173978 cd08213 RuBisCO_large_III 1 catalytic residue 0 1 1 0 164 1 -173978 cd08213 RuBisCO_large_III 2 metal binding site 0 1 1 0 166,167 4 -173978 cd08213 RuBisCO_large_III 3 dimer interface 0 1 1 0 26,27,28,29,46,69,70,77,80,81,82,85,86,138,139,167,170,171,172,174,177,178,207,214,215,230,235,236,237,238,240,241,244,258,259,260,261,262 2 -163706 cd08150 catalase_like 1 heme binding pocket 0 1 1 1 5,43,76,81,89,270,274 5 -163705 cd00328 catalase 1 heme binding pocket 0 1 1 1 7,46,80,85,93,286,290 5 -163710 cd08154 catalase_clade_1 1 heme binding pocket 0 1 1 1 49,88,122,127,135,328,332 5 -163711 cd08155 catalase_clade_2 1 heme binding pocket 0 1 1 1 10,49,83,88,96,293,297 5 -163712 cd08156 catalase_clade_3 1 heme binding pocket 0 1 1 1 7,46,80,85,93,286,290 5 -163713 cd08157 catalase_fungal 1 heme binding pocket 0 1 1 1 23,62,96,101,109,302,306 5 -163707 cd08151 AOS 1 heme binding pocket 0 1 1 1 30,67,103,108,116,315,319 5 -163708 cd08152 y4iL_like 1 heme binding pocket 0 1 1 1 7,46,89,94,102,291,295 5 -163709 cd08153 srpA_like 1 heme binding pocket 0 1 1 1 17,54,89,94,103,282,286 5 -176482 cd08159 APC10-like 1 putative ligand binding site 0 0 1 1 26,54,60,62,121 5 -176483 cd08365 APC10-like1 1 putative ligand binding site 0 0 1 1 27,55,61,63,123 5 -176485 cd08664 APC10-HERC2 1 putative ligand binding site 0 0 1 1 49,77,83,85,144 5 -176486 cd08665 APC10-CUL7 1 putative ligand binding site 0 0 1 1 26,54,60,62,122 5 -176487 cd08666 APC10-HECTD3 1 putative ligand binding site 0 0 1 1 31,59,65,67,126 5 -176488 cd08667 APC10-ZZEF1 1 putative ligand binding site 0 0 1 1 26,54,60,62,122 5 -176484 cd08366 APC10 1 putative ligand binding site 0 0 1 1 30,57,64,66,130 5 -173979 cd08168 Cytochrom_C3 1 heme-binding residues 0 1 1 0 7,10,18,21,22,23,35,57,60,63,64,79,82,83 5 -350058 cd08204 ArfGap 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350058 cd08204 ArfGap 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -350061 cd08832 ArfGap_ADAP 1 Zn binding site 0 1 1 1 19,22,39,42 4 -350061 cd08832 ArfGap_ADAP 2 arginine finger 0 0 1 1 19,22,39,42,47 0 -350069 cd08843 ArfGap_ADAP1 1 Zn binding site 0 1 1 1 19,22,39,42 4 -350069 cd08843 ArfGap_ADAP1 2 arginine finger 0 0 1 1 19,22,39,42,47 0 -350070 cd08844 ArfGap_ADAP2 1 Zn binding site 0 1 1 1 19,22,39,42 4 -350070 cd08844 ArfGap_ADAP2 2 arginine finger 0 0 1 1 19,22,39,42,47 0 -350062 cd08833 ArfGap_GIT 1 Zn binding site 0 1 1 1 10,13,30,33 4 -350062 cd08833 ArfGap_GIT 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350071 cd08846 ArfGap_GIT1 1 Zn binding site 0 1 1 1 10,13,30,33 4 -350071 cd08846 ArfGap_GIT1 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350072 cd08847 ArfGap_GIT2 1 Zn binding site 0 1 1 1 10,13,30,33 4 -350072 cd08847 ArfGap_GIT2 2 arginine finger 0 0 1 1 10,13,30,33,38 0 -350063 cd08834 ArfGap_ASAP 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350063 cd08834 ArfGap_ASAP 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350073 cd08848 ArfGap_ASAP1 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350073 cd08848 ArfGap_ASAP1 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350074 cd08849 ArfGap_ASAP2 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350074 cd08849 ArfGap_ASAP2 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350087 cd17900 ArfGap_ASAP3 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350087 cd17900 ArfGap_ASAP3 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350064 cd08835 ArfGap_ACAP 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350064 cd08835 ArfGap_ACAP 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350075 cd08850 ArfGap_ACAP3 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350075 cd08850 ArfGap_ACAP3 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350076 cd08851 ArfGap_ACAP2 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350076 cd08851 ArfGap_ACAP2 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350077 cd08852 ArfGap_ACAP1 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350077 cd08852 ArfGap_ACAP1 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350065 cd08836 ArfGap_AGAP 1 Zn binding site 0 1 1 1 14,17,34,37 4 -350065 cd08836 ArfGap_AGAP 2 arginine finger 0 0 1 1 14,17,34,37,42 0 -350078 cd08853 ArfGap_AGAP2 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350078 cd08853 ArfGap_AGAP2 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350079 cd08854 ArfGap_AGAP1 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350079 cd08854 ArfGap_AGAP1 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350080 cd08855 ArfGap_AGAP3 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350080 cd08855 ArfGap_AGAP3 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350066 cd08837 ArfGap_ARAP 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350066 cd08837 ArfGap_ARAP 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350081 cd08856 ArfGap_ARAP2 1 Zn binding site 0 1 1 1 20,23,40,43 4 -350081 cd08856 ArfGap_ARAP2 2 arginine finger 0 0 1 1 20,23,40,43,48 0 -350088 cd17901 ArfGap_ARAP1 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350088 cd17901 ArfGap_ARAP1 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350089 cd17902 ArfGap_ARAP3 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350089 cd17902 ArfGap_ARAP3 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350067 cd08838 ArfGap_AGFG 1 Zn binding site 0 1 1 1 15,18,35,38 4 -350067 cd08838 ArfGap_AGFG 2 arginine finger 0 0 1 1 15,18,35,38,43 0 -350082 cd08857 ArfGap_AGFG1 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350082 cd08857 ArfGap_AGFG1 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350090 cd17903 ArfGap_AGFG2 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350090 cd17903 ArfGap_AGFG2 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350068 cd08839 ArfGap_SMAP 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350068 cd08839 ArfGap_SMAP 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -350083 cd08859 ArfGap_SMAP2 1 Zn binding site 0 1 1 1 12,15,32,35 4 -350083 cd08859 ArfGap_SMAP2 2 arginine finger 0 0 1 1 12,15,32,35,40 0 -350084 cd08959 ArfGap_ArfGap1_like 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350084 cd08959 ArfGap_ArfGap1_like 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350059 cd08830 ArfGap_ArfGap1 1 Zn binding site 0 1 1 1 16,19,36,39 4 -350059 cd08830 ArfGap_ArfGap1 2 arginine finger 0 0 1 1 16,19,36,39,44 0 -350060 cd08831 ArfGap_ArfGap2_3_like 1 Zn binding site 0 1 1 1 17,20,37,40 4 -350060 cd08831 ArfGap_ArfGap2_3_like 2 arginine finger 0 0 1 1 17,20,37,40,45 0 -350085 cd09028 ArfGap_ArfGap3 1 Zn binding site 0 1 1 1 21,24,41,44 4 -350085 cd09028 ArfGap_ArfGap3 2 arginine finger 0 0 1 1 21,24,41,44,49 0 -350086 cd09029 ArfGap_ArfGap2 1 Zn binding site 0 1 1 1 21,24,41,44 4 -350086 cd09029 ArfGap_ArfGap2 2 arginine finger 0 0 1 1 21,24,41,44,49 0 -176262 cd08367 P53 1 DNA binding site 0 1 1 0 128,130,137,162,164,165,166,169 3 -176262 cd08367 P53 2 zinc binding site 0 1 1 0 67,70,127,131 4 -176262 cd08367 P53 3 dimerization site 0 1 1 1 68,69,70,72 2 -259829 cd08368 LIM 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188712 cd09326 LIM_CRP_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188786 cd09402 LIM1_CRP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188863 cd09479 LIM1_CRP1 1 Zn binding site 0 1 1 1 2,5,23,26,29,32,50,53 4 -188864 cd09480 LIM1_CRP2 1 Zn binding site 0 1 1 1 1,4,22,25,28,31,49,52 4 -188865 cd09481 LIM1_CRP3 1 Zn binding site 0 1 1 1 1,4,22,25,28,31,49,52 4 -188787 cd09403 LIM2_CRP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188866 cd09482 LIM2_CRP3 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188871 cd09840 LIM2_CRP2 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188788 cd09404 LIM1_MLP84B_like 1 Zn binding site 0 1 1 1 1,4,22,25,28,31,49,52 4 -188713 cd09327 LIM1_abLIM 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188714 cd09328 LIM2_abLIM 1 Zn binding site 0 1 1 1 3,6,23,26,29,32,51,54 4 -188715 cd09329 LIM3_abLIM 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188716 cd09330 LIM4_abLIM 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188717 cd09331 LIM1_PINCH 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188718 cd09332 LIM2_PINCH 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188719 cd09333 LIM3_PINCH 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,46,49 4 -188720 cd09334 LIM4_PINCH 1 Zn binding site 0 1 1 1 2,5,22,25,28,31,49,52 4 -188721 cd09335 LIM5_PINCH 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -259830 cd09336 LIM1_Paxillin_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188789 cd09405 LIM1_Paxillin 1 Zn binding site 0 1 1 1 1,4,21,24,27,30,48,51 4 -188790 cd09406 LIM1_Leupaxin 1 Zn binding site 0 1 1 1 2,5,22,25,28,31,49,52 4 -188723 cd09337 LIM2_Paxillin_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188791 cd09407 LIM2_Paxillin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188792 cd09408 LIM2_Leupaxin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188724 cd09338 LIM3_Paxillin_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188793 cd09409 LIM3_Paxillin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188794 cd09410 LIM3_Leupaxin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188725 cd09339 LIM4_Paxillin_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188795 cd09411 LIM4_Paxillin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188796 cd09412 LIM4_Leupaxin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188726 cd09340 LIM1_Testin_like 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188797 cd09413 LIM1_Testin 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188798 cd09414 LIM1_LIMPETin 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188799 cd09415 LIM1_Prickle 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188867 cd09483 LIM1_Prickle_1 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188868 cd09484 LIM1_Prickle_2 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188872 cd09841 LIM1_Prickle_3 1 Zn binding site 0 1 1 1 0,3,26,29,32,35,53,56 4 -188727 cd09341 LIM2_Testin_like 1 Zn binding site 0 1 1 1 2,5,23,26,29,32,50,53 4 -188800 cd09416 LIM2_Testin 1 Zn binding site 0 1 1 1 2,5,23,26,29,32,50,53 4 -188801 cd09417 LIM2_LIMPETin_like 1 Zn binding site 0 1 1 1 2,5,23,26,29,32,50,53 4 -188802 cd09418 LIM2_Prickle 1 Zn binding site 0 1 1 1 2,5,23,26,29,32,50,53 4 -188728 cd09342 LIM3_Testin_like 1 Zn binding site 0 1 1 1 0,3,22,27,30,33,51,55 4 -188803 cd09419 LIM3_Testin 1 Zn binding site 0 1 1 1 0,3,22,27,30,33,51,55 4 -188804 cd09420 LIM3_Prickle 1 Zn binding site 0 1 1 1 2,5,24,29,32,35,53,57 4 -188729 cd09343 LIM1_FHL 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,53,56 4 -188805 cd09421 LIM3_LIMPETin 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,53,56 4 -188806 cd09422 LIM1_FHL2 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,53,56 4 -188807 cd09423 LIM1_FHL3 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,53,56 4 -188730 cd09344 LIM1_FHL1 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188731 cd09345 LIM2_FHL 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188808 cd09424 LIM2_FHL1 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188809 cd09425 LIM4_LIMPETin 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188810 cd09426 LIM2_FHL2 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188811 cd09427 LIM2_FHL3 1 Zn binding site 0 1 1 1 3,6,25,28,31,34,52,55 4 -188812 cd09428 LIM2_FHL5 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188732 cd09346 LIM3_FHL 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188813 cd09429 LIM3_FHL1 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188814 cd09430 LIM5_LIMPETin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188815 cd09431 LIM3_Fhl2 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188733 cd09347 LIM4_FHL 1 Zn binding site 0 1 1 1 0,3,24,27,30,33,51,54 4 -188816 cd09432 LIM6_LIMPETin 1 Zn binding site 0 1 1 1 0,3,24,27,30,33,51,54 4 -188817 cd09433 LIM4_FHL2 1 Zn binding site 0 1 1 1 0,3,24,27,30,33,51,54 4 -188818 cd09434 LIM4_FHL3 1 Zn binding site 0 1 1 1 0,3,24,27,30,33,51,54 4 -188734 cd09348 LIM4_FHL1 1 Zn binding site 0 1 1 1 4,7,29,32,35,38,56,59 4 -188735 cd09349 LIM1_Zyxin 1 Zn binding site 0 1 1 1 33,36,55,58,61,64,82,85 4 -188736 cd09350 LIM1_TRIP6 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188737 cd09351 LIM1_LPP 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188738 cd09352 LIM1_Ajuba_like 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188739 cd09353 LIM2_Zyxin 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188740 cd09354 LIM2_LPP 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188741 cd09355 LIM2_Ajuba_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188742 cd09356 LIM2_TRIP6 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188743 cd09357 LIM3_Zyxin_like 1 Zn binding site 0 1 1 1 0,3,27,30,33,36,58,61 4 -188819 cd09435 LIM3_Zyxin 1 Zn binding site 0 1 1 1 0,3,27,30,33,36,58,61 4 -188820 cd09436 LIM3_TRIP6 1 Zn binding site 0 1 1 1 0,3,27,30,33,36,57,60 4 -188821 cd09437 LIM3_LPP 1 Zn binding site 0 1 1 1 0,3,27,30,33,36,58,61 4 -188822 cd09438 LIM3_Ajuba_like 1 Zn binding site 0 1 1 1 0,3,27,30,33,36,57,60 4 -188744 cd09358 LIM_Mical_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188823 cd09439 LIM_Mical 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188824 cd09440 LIM1_SF3 1 Zn binding site 0 1 1 1 4,7,25,28,31,34,52,55 4 -188825 cd09441 LIM2_SF3 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188826 cd09442 LIM_Eplin_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188869 cd09485 LIM_Eplin_alpha_beta 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188870 cd09486 LIM_Eplin_like_1 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188827 cd09443 LIM_Ltd-1 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188828 cd09444 LIM_Mical_like_1 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188829 cd09445 LIM_Mical_like_2 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188745 cd09359 LIM_LASP_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188830 cd09446 LIM_N_RAP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188831 cd09447 LIM_LASP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188746 cd09360 LIM_ALP_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188832 cd09448 LIM_CLP36 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188833 cd09449 LIM_Mystique 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188834 cd09450 LIM_ALP 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188835 cd09451 LIM_RIL 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188747 cd09361 LIM1_Enigma_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188836 cd09452 LIM1_Enigma 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188837 cd09453 LIM1_ENH 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188838 cd09454 LIM1_ZASP_Cypher 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188839 cd09455 LIM1_Enigma_like_1 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,49,52 4 -188748 cd09362 LIM2_Enigma_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188840 cd09456 LIM2_Enigma 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188841 cd09457 LIM2_ENH 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,47,50 4 -188749 cd09363 LIM3_Enigma_like 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188842 cd09458 LIM3_Enigma 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188843 cd09459 LIM3_ENH 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188844 cd09460 LIM3_ZASP_Cypher 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188845 cd09461 LIM3_Enigma_like_1 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,49,52 4 -188750 cd09364 LIM1_LIMK 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188846 cd09462 LIM1_LIMK1 1 Zn binding site 0 1 1 1 21,24,42,45,48,51,68,71 4 -188847 cd09463 LIM1_LIMK2 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188751 cd09365 LIM2_LIMK 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,49,52 4 -188848 cd09464 LIM2_LIMK1 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188849 cd09465 LIM2_LIMK2 1 Zn binding site 0 1 1 1 5,8,25,28,31,34,54,57 4 -188752 cd09366 LIM1_Isl 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188753 cd09367 LIM1_Lhx1_Lhx5 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188754 cd09368 LIM1_Lhx3_Lhx4 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188850 cd09466 LIM1_Lhx3a 1 Zn binding site 0 1 1 1 3,6,24,27,30,33,50,53 4 -188851 cd09467 LIM1_Lhx3b 1 Zn binding site 0 1 1 1 3,6,24,27,30,33,50,53 4 -188852 cd09468 LIM1_Lhx4 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188755 cd09369 LIM1_Lhx2_Lhx9 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,49,52 4 -188853 cd09469 LIM1_Lhx2 1 Zn binding site 0 1 1 1 10,13,31,34,37,40,59,62 4 -188854 cd09470 LIM1_Lhx9 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,49,52 4 -188756 cd09370 LIM1_Lmx1a 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188757 cd09371 LIM1_Lmx1b 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,47,50 4 -188758 cd09372 LIM2_FBLP-1 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188759 cd09373 LIM1_AWH 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,49,52 4 -188760 cd09374 LIM2_Isl 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188855 cd09471 LIM2_Isl2 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188761 cd09375 LIM2_Lhx1_Lhx5 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,51,54 4 -188762 cd09376 LIM2_Lhx3_Lhx4 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,51,54 4 -188856 cd09472 LIM2_Lhx3b 1 Zn binding site 0 1 1 1 1,4,23,26,29,32,52,55 4 -188857 cd09473 LIM2_Lhx4 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,51,54 4 -188763 cd09377 LIM2_Lhx2_Lhx9 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,54,57 4 -188858 cd09474 LIM2_Lhx2 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,54,57 4 -188859 cd09475 LIM2_Lhx9 1 Zn binding site 0 1 1 1 4,7,26,29,32,35,54,57 4 -188764 cd09378 LIM2_Lmx1a_Lmx1b 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188765 cd09379 LIM2_AWH 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188766 cd09380 LIM1_Lhx6 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,49,52 4 -188767 cd09381 LIM1_Lhx7_Lhx8 1 Zn binding site 0 1 1 1 1,4,22,25,28,31,50,53 4 -188768 cd09382 LIM2_Lhx6 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188769 cd09383 LIM2_Lhx7_Lhx8 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188770 cd09384 LIM1_LMO2 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188771 cd09385 LIM2_LMO2 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188772 cd09386 LIM1_LMO4 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188773 cd09387 LIM2_LMO4 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188774 cd09388 LIM1_LMO1_LMO3 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188775 cd09389 LIM2_LMO1_LMO3 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188776 cd09390 LIM2_dLMO 1 Zn binding site 0 1 1 1 0,3,22,25,28,31,50,53 4 -188777 cd09391 LIM1_Lrg1p_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,52,55 4 -188778 cd09392 LIM2_Lrg1p_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,48,51 4 -188779 cd09393 LIM3_Lrg1p_like 1 Zn binding site 0 1 1 1 0,3,20,23,26,29,51,54 4 -188780 cd09394 LIM1_Rga 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,50,53 4 -188781 cd09395 LIM2_Rga 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188782 cd09396 LIM_DA1 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188783 cd09397 LIM1_UF1 1 Zn binding site 0 1 1 1 0,3,24,27,30,33,52,55 4 -188784 cd09400 LIM_like_1 1 Zn binding site 0 1 1 1 4,7,25,28,31,34,53,56 4 -188785 cd09401 LIM_TLP_like 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,51 4 -188860 cd09476 LIM1_TLP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,52 4 -188861 cd09477 LIM2_TLP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,52 4 -188862 cd09478 LIM_CRIP 1 Zn binding site 0 1 1 1 0,3,21,24,27,30,48,52 4 -187712 cd08369 FMT_core 1 active site 0 1 1 0 4,7,8,9,74,75,76,77,78,79,80,81,86,95,96,97,98,106,126,128,129,132,133 1 -187712 cd08369 FMT_core 2 catalytic site 0 0 1 1 95,97,133 1 -187712 cd08369 FMT_core 3 substrate binding site 0 1 1 0 7,8,75,76,96,98,162 5 -187712 cd08369 FMT_core 4 cosubstrate binding site 0 1 1 1 74,77,79,80,81,86,95,128,129,132,133 0 -187713 cd08644 FMT_core_ArnA_N 1 active site 0 1 1 0 6,9,10,11,80,81,82,83,84,85,86,87,92,101,102,103,104,112,132,134,135,138,139 1 -187713 cd08644 FMT_core_ArnA_N 2 catalytic site 0 0 1 1 101,103,139 1 -187713 cd08644 FMT_core_ArnA_N 3 substrate binding site 0 1 1 0 9,10,81,82,102,104,168 5 -187713 cd08644 FMT_core_ArnA_N 4 cosubstrate binding site 0 1 1 1 80,83,85,86,87,92,101,134,135,138,139 0 -187714 cd08645 FMT_core_GART 1 active site 0 1 1 0 5,10,11,12,83,84,85,86,87,88,89,90,95,104,105,106,107,115,135,137,138,141,142 1 -187714 cd08645 FMT_core_GART 2 catalytic site 0 0 1 1 104,106,142 1 -187714 cd08645 FMT_core_GART 3 substrate binding site 0 1 1 0 10,11,84,85,105,107,171 5 -187714 cd08645 FMT_core_GART 4 cosubstrate binding site 0 1 1 1 83,86,88,89,90,95,104,137,138,141,142 0 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 1 active site 0 1 1 0 6,9,10,11,83,84,85,86,87,88,89,90,95,104,105,106,107,115,135,137,138,141,142 1 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 2 catalytic site 0 0 1 1 104,106,142 1 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 3 substrate binding site 0 1 1 0 9,10,84,85,105,107,171 5 -187715 cd08646 FMT_core_Met-tRNA-FMT_N 4 cosubstrate binding site 0 1 1 1 83,86,88,89,90,95,104,137,138,141,142 0 -187716 cd08647 FMT_core_FDH_N 1 active site 0 1 1 0 6,9,10,11,82,83,84,85,86,87,88,89,94,103,104,105,106,114,134,136,137,140,141 1 -187716 cd08647 FMT_core_FDH_N 2 catalytic site 0 0 1 1 103,105,141 1 -187716 cd08647 FMT_core_FDH_N 3 substrate binding site 0 1 1 0 9,10,83,84,104,106,171 5 -187716 cd08647 FMT_core_FDH_N 4 cosubstrate binding site 0 1 1 1 82,85,87,88,89,94,103,136,137,140,141 0 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 1 active site 0 1 1 0 6,11,12,13,81,82,83,84,85,86,87,88,93,102,103,104,105,113,133,135,136,139,140 1 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 2 catalytic site 0 0 1 1 102,104,140 1 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 3 substrate binding site 0 1 1 0 11,12,82,83,103,105,169 5 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C 4 cosubstrate binding site 0 1 1 1 81,84,86,87,88,93,102,135,136,139,140 0 -187718 cd08649 FMT_core_NRPS_like 1 active site 0 1 1 0 5,8,9,10,66,67,68,69,70,71,72,73,78,87,88,89,90,98,118,120,121,124,125 1 -187718 cd08649 FMT_core_NRPS_like 2 catalytic site 0 0 1 1 87,89,125 1 -187718 cd08649 FMT_core_NRPS_like 3 substrate binding site 0 1 1 0 8,9,67,68,88,90,154 5 -187718 cd08649 FMT_core_NRPS_like 4 cosubstrate binding site 0 1 1 1 66,69,71,72,73,78,87,120,121,124,125 0 -187719 cd08650 FMT_core_HypX_N 1 active site 0 1 1 0 6,11,12,13,52,53,54,55,56,57,58,59,64,71,72,73,74,81,101,103,104,107,108 1 -187719 cd08650 FMT_core_HypX_N 2 catalytic site 0 0 1 1 71,73,108 1 -187719 cd08650 FMT_core_HypX_N 3 substrate binding site 0 1 1 0 11,12,53,54,72,74,138 5 -187719 cd08650 FMT_core_HypX_N 4 cosubstrate binding site 0 1 1 1 52,55,57,58,59,64,71,103,104,107,108 0 -187720 cd08651 FMT_core_like_4 1 active site 0 1 1 0 5,8,9,10,80,81,82,83,84,85,86,87,92,101,102,103,104,112,132,134,135,138,139 1 -187720 cd08651 FMT_core_like_4 2 catalytic site 0 0 1 1 101,103,139 1 -187720 cd08651 FMT_core_like_4 3 substrate binding site 0 1 1 0 8,9,81,82,102,104,168 5 -187720 cd08651 FMT_core_like_4 4 cosubstrate binding site 0 1 1 1 80,83,85,86,87,92,101,134,135,138,139 0 -187721 cd08653 FMT_core_like_3 1 active site 0 1 1 0 5,9,10,11,51,52,53,54,55,56,57,58,63,72,73,74,75,83,104,106,107,110,111 1 -187721 cd08653 FMT_core_like_3 2 catalytic site 0 0 1 1 72,74,111 1 -187721 cd08653 FMT_core_like_3 3 substrate binding site 0 1 1 0 9,10,52,53,73,75,140 5 -187721 cd08653 FMT_core_like_3 4 cosubstrate binding site 0 1 1 1 51,54,56,57,58,63,72,106,107,110,111 0 -187722 cd08820 FMT_core_like_6 1 active site 0 1 1 0 5,8,9,10,74,75,76,77,78,79,80,81,86,95,96,97,98,106,126,128,129,132,133 1 -187722 cd08820 FMT_core_like_6 2 catalytic site 0 0 1 1 95,97,133 1 -187722 cd08820 FMT_core_like_6 3 substrate binding site 0 1 1 0 8,9,75,76,96,98,162 5 -187722 cd08820 FMT_core_like_6 4 cosubstrate binding site 0 1 1 1 74,77,79,80,81,86,95,128,129,132,133 0 -187723 cd08821 FMT_core_like_1 1 active site 0 1 1 0 5,9,10,11,49,50,51,52,53,54,55,56,61,68,69,70,71,79,99,101,102,105,106 1 -187723 cd08821 FMT_core_like_1 2 catalytic site 0 0 1 1 68,70,106 1 -187723 cd08821 FMT_core_like_1 3 substrate binding site 0 1 1 0 9,10,50,51,69,71,133 5 -187723 cd08821 FMT_core_like_1 4 cosubstrate binding site 0 1 1 1 49,52,54,55,56,61,68,101,102,105,106 0 -187724 cd08822 FMT_core_like_2 1 active site 0 1 1 0 6,9,10,11,71,72,73,74,75,76,77,78,83,92,93,94,95,103,123,125,126,129,130 1 -187724 cd08822 FMT_core_like_2 2 catalytic site 0 0 1 1 92,94,130 1 -187724 cd08822 FMT_core_like_2 3 substrate binding site 0 1 1 0 9,10,72,73,93,95,160 5 -187724 cd08822 FMT_core_like_2 4 cosubstrate binding site 0 1 1 1 71,74,76,77,78,83,92,125,126,129,130 0 -187725 cd08823 FMT_core_like_5 1 active site 0 1 1 0 4,7,8,9,76,77,78,79,80,81,82,83,88,97,98,99,100,108,128,130,131,134,135 1 -187725 cd08823 FMT_core_like_5 2 catalytic site 0 0 1 1 97,99,135 1 -187725 cd08823 FMT_core_like_5 3 substrate binding site 0 1 1 0 7,8,77,78,98,100,164 5 -187725 cd08823 FMT_core_like_5 4 cosubstrate binding site 0 1 1 1 76,79,81,82,83,88,97,130,131,134,135 0 -187740 cd08371 Lumazine_synthase-like 1 active site 0 1 1 1 5,7,8,38,39,40,41,42,64,65,66,67,72,73,76,96,97,110,112,118,122 1 -187740 cd08371 Lumazine_synthase-like 2 homopentamer interface 0 1 1 1 7,34,35,36,37,38,41,42,44,45,46,48,49,50,52,67,72,73,74,75,77,78,79,81,82,83,85,86,87,88,89,92,93,94,97,103,108,112,118,121,125,128 2 -187741 cd09208 Lumazine_synthase-II 1 active site 0 1 1 1 7,9,10,41,42,43,44,45,67,68,69,70,75,76,79,99,100,119,121,125,129 1 -187741 cd09208 Lumazine_synthase-II 2 homopentamer interface 0 1 1 1 9,37,38,39,40,41,44,45,47,48,49,51,52,53,55,70,75,76,77,78,80,81,82,84,85,86,88,89,90,91,92,95,96,97,100,106,117,121,125,128,132,135 2 -187742 cd09209 Lumazine_synthase-I 1 active site 0 1 1 1 5,7,8,39,40,41,42,43,65,66,67,68,73,74,77,97,98,110,112,120,124 1 -187742 cd09209 Lumazine_synthase-I 2 homopentamer interface 0 1 1 1 7,35,36,37,38,39,42,43,45,46,47,49,50,51,53,68,73,74,75,76,78,79,80,82,83,84,86,87,88,89,90,93,94,95,98,104,108,112,120,123,127,130 2 -187743 cd09210 Riboflavin_synthase_archaeal 1 active site 0 1 1 1 5,7,8,35,36,37,38,39,61,62,63,64,67,68,71,91,92,107,109,113,117 1 -187743 cd09210 Riboflavin_synthase_archaeal 2 homopentamer interface 0 1 1 1 7,31,32,33,34,35,38,39,41,42,43,45,46,47,49,64,67,68,69,70,72,73,74,76,77,78,80,81,82,83,84,87,88,89,92,98,105,109,113,116,120,123 2 -187744 cd09211 Lumazine_synthase_archaeal 1 active site 0 1 1 1 5,7,8,37,38,39,40,41,63,64,65,66,71,72,75,95,96,109,111,118,122 1 -187744 cd09211 Lumazine_synthase_archaeal 2 homopentamer interface 0 1 1 1 7,33,34,35,36,37,40,41,43,44,45,47,48,49,51,66,71,72,73,74,76,77,78,80,81,82,84,85,86,87,88,91,92,93,96,102,107,111,118,121,125,128 2 -197306 cd08372 EEP 1 putative catalytic site 0 1 1 1 4,33,115,153,155,203,232,233 1 -197306 cd08372 EEP 2 putative metal binding site 0 1 1 1 33,232 4 -197306 cd08372 EEP 3 putative phosphate binding site 0 1 1 1 115,155,233 4 -197307 cd09073 ExoIII_AP-endo 1 putative catalytic site 0 1 1 1 5,33,106,146,148,217,242,243 1 -197307 cd09073 ExoIII_AP-endo 2 putative metal binding site 0 1 1 1 33,242 4 -197307 cd09073 ExoIII_AP-endo 3 putative phosphate binding site 0 1 1 1 106,148,243 4 -197319 cd09085 Mth212-like_AP-endo 1 putative catalytic site 0 1 1 1 6,34,107,147,149,218,243,244 1 -197319 cd09085 Mth212-like_AP-endo 2 putative metal binding site 0 1 1 1 34,243 4 -197319 cd09085 Mth212-like_AP-endo 3 putative phosphate binding site 0 1 1 1 107,149,244 4 -197320 cd09086 ExoIII-like_AP-endo 1 putative catalytic site 0 1 1 1 6,33,104,145,147,216,245,246 1 -197320 cd09086 ExoIII-like_AP-endo 2 putative metal binding site 0 1 1 1 33,245 4 -197320 cd09086 ExoIII-like_AP-endo 3 putative phosphate binding site 0 1 1 1 104,147,246 4 -197321 cd09087 Ape1-like_AP-endo 1 putative catalytic site 0 1 1 1 6,34,108,147,149,219,244,245 1 -197321 cd09087 Ape1-like_AP-endo 2 putative metal binding site 0 1 1 1 34,244 4 -197321 cd09087 Ape1-like_AP-endo 3 putative phosphate binding site 0 1 1 1 108,149,245 4 -197322 cd09088 Ape2-like_AP-endo 1 putative catalytic site 0 1 1 1 5,40,149,190,192,275,300,301 1 -197322 cd09088 Ape2-like_AP-endo 2 putative metal binding site 0 1 1 1 40,300 4 -197322 cd09088 Ape2-like_AP-endo 3 putative phosphate binding site 0 1 1 1 149,192,301 4 -197336 cd10281 Nape_like_AP-endo 1 putative catalytic site 0 1 1 1 6,34,107,147,149,219,244,245 1 -197336 cd10281 Nape_like_AP-endo 2 putative metal binding site 0 1 1 1 34,244 4 -197336 cd10281 Nape_like_AP-endo 3 putative phosphate binding site 0 1 1 1 107,149,245 4 -197308 cd09074 INPP5c 1 putative catalytic site 0 1 1 1 8,40,140,185,187,261,288,289 1 -197308 cd09074 INPP5c 2 putative metal binding site 0 1 1 1 40,288 4 -197308 cd09074 INPP5c 3 putative phosphate binding site 0 1 1 1 140,187,289 4 -197323 cd09089 INPP5c_Synj 1 putative catalytic site 0 1 1 1 8,59,157,198,200,274,317,318 1 -197323 cd09089 INPP5c_Synj 2 putative metal binding site 0 1 1 1 59,317 4 -197323 cd09089 INPP5c_Synj 3 putative phosphate binding site 0 1 1 1 157,200,318 4 -197332 cd09098 INPP5c_Synj1 1 putative catalytic site 0 1 1 1 8,58,156,197,199,273,325,326 1 -197332 cd09098 INPP5c_Synj1 2 putative metal binding site 0 1 1 1 58,325 4 -197332 cd09098 INPP5c_Synj1 3 putative phosphate binding site 0 1 1 1 156,199,326 4 -197333 cd09099 INPP5c_Synj2 1 putative catalytic site 0 1 1 1 8,58,156,197,199,273,325,326 1 -197333 cd09099 INPP5c_Synj2 2 putative metal binding site 0 1 1 1 58,325 4 -197333 cd09099 INPP5c_Synj2 3 putative phosphate binding site 0 1 1 1 156,199,326 4 -197324 cd09090 INPP5c_ScInp51p-like 1 putative catalytic site 0 1 1 1 8,40,140,181,183,257,280,281 1 -197324 cd09090 INPP5c_ScInp51p-like 2 putative metal binding site 0 1 1 1 40,280 4 -197324 cd09090 INPP5c_ScInp51p-like 3 putative phosphate binding site 0 1 1 1 140,183,281 4 -197325 cd09091 INPP5c_SHIP 1 putative catalytic site 0 1 1 1 8,49,137,183,185,269,296,297 1 -197325 cd09091 INPP5c_SHIP 2 putative metal binding site 0 1 1 1 49,296 4 -197325 cd09091 INPP5c_SHIP 3 putative phosphate binding site 0 1 1 1 137,185,297 4 -197334 cd09100 INPP5c_SHIP1-INPP5D 1 putative catalytic site 0 1 1 1 8,49,137,183,185,269,296,297 1 -197334 cd09100 INPP5c_SHIP1-INPP5D 2 putative metal binding site 0 1 1 1 49,296 4 -197334 cd09100 INPP5c_SHIP1-INPP5D 3 putative phosphate binding site 0 1 1 1 137,185,297 4 -197335 cd09101 INPP5c_SHIP2-INPPL1 1 putative catalytic site 0 1 1 1 8,49,137,183,185,266,293,294 1 -197335 cd09101 INPP5c_SHIP2-INPPL1 2 putative metal binding site 0 1 1 1 49,293 4 -197335 cd09101 INPP5c_SHIP2-INPPL1 3 putative phosphate binding site 0 1 1 1 137,185,294 4 -197326 cd09092 INPP5A 1 putative catalytic site 0 1 1 1 8,45,174,222,224,339,372,373 1 -197326 cd09092 INPP5A 2 putative metal binding site 0 1 1 1 45,372 4 -197326 cd09092 INPP5A 3 putative phosphate binding site 0 1 1 1 174,224,373 4 -197327 cd09093 INPP5c_INPP5B 1 putative catalytic site 0 1 1 1 8,38,135,180,182,257,281,282 1 -197327 cd09093 INPP5c_INPP5B 2 putative metal binding site 0 1 1 1 38,281 4 -197327 cd09093 INPP5c_INPP5B 3 putative phosphate binding site 0 1 1 1 135,182,282 4 -197328 cd09094 INPP5c_INPP5J-like 1 putative catalytic site 0 1 1 1 8,40,135,178,180,255,289,290 1 -197328 cd09094 INPP5c_INPP5J-like 2 putative metal binding site 0 1 1 1 40,289 4 -197328 cd09094 INPP5c_INPP5J-like 3 putative phosphate binding site 0 1 1 1 135,180,290 4 -197329 cd09095 INPP5c_INPP5E-like 1 putative catalytic site 0 1 1 1 12,45,129,181,183,260,287,288 1 -197329 cd09095 INPP5c_INPP5E-like 2 putative metal binding site 0 1 1 1 45,287 4 -197329 cd09095 INPP5c_INPP5E-like 3 putative phosphate binding site 0 1 1 1 129,183,288 4 -197309 cd09075 DNase1-like 1 putative catalytic site 0 1 1 1 5,37,132,166,168,210,249,250 1 -197309 cd09075 DNase1-like 2 putative metal binding site 0 1 1 1 37,249 4 -197309 cd09075 DNase1-like 3 putative phosphate binding site 0 1 1 1 132,168,250 4 -197337 cd10282 DNase1 1 putative catalytic site 0 1 1 1 5,37,130,164,166,208,247,248 1 -197337 cd10282 DNase1 2 putative metal binding site 0 1 1 1 37,247 4 -197337 cd10282 DNase1 3 putative phosphate binding site 0 1 1 1 130,166,248 4 -197338 cd10283 MnuA_DNase1-like 1 putative catalytic site 0 1 1 1 6,38,131,174,176,214,257,258 1 -197338 cd10283 MnuA_DNase1-like 2 putative metal binding site 0 1 1 1 38,257 4 -197338 cd10283 MnuA_DNase1-like 3 putative phosphate binding site 0 1 1 1 131,176,258 4 -197310 cd09076 L1-EN 1 putative catalytic site 0 1 1 1 4,33,105,140,142,203,227,228 1 -197310 cd09076 L1-EN 2 putative metal binding site 0 1 1 1 33,227 4 -197310 cd09076 L1-EN 3 putative phosphate binding site 0 1 1 1 105,142,228 4 -197311 cd09077 R1-I-EN 1 putative catalytic site 0 1 1 1 6,33,88,121,123,171,196,197 1 -197311 cd09077 R1-I-EN 2 putative metal binding site 0 1 1 1 33,196 4 -197311 cd09077 R1-I-EN 3 putative phosphate binding site 0 1 1 1 88,123,197 4 -197312 cd09078 nSMase 1 putative catalytic site 0 1 1 1 6,43,133,174,176,232,271,272 1 -197312 cd09078 nSMase 2 putative metal binding site 0 1 1 1 43,271 4 -197312 cd09078 nSMase 3 putative phosphate binding site 0 1 1 1 133,176,272 4 -197313 cd09079 RgfB-like 1 putative catalytic site 0 1 1 1 4,36,136,170,172,223,250,251 1 -197313 cd09079 RgfB-like 2 putative metal binding site 0 1 1 1 36,250 4 -197313 cd09079 RgfB-like 3 putative phosphate binding site 0 1 1 1 136,172,251 4 -197314 cd09080 TDP2 1 putative catalytic site 0 1 1 1 6,38,116,152,154,206,239,240 1 -197314 cd09080 TDP2 2 putative metal binding site 0 1 1 1 38,239 4 -197314 cd09080 TDP2 3 putative phosphate binding site 0 1 1 1 116,154,240 4 -197315 cd09081 CdtB 1 putative catalytic site 0 1 1 1 4,36,137,171,173,210,238,239 1 -197315 cd09081 CdtB 2 putative metal binding site 0 1 1 1 36,238 4 -197315 cd09081 CdtB 3 putative phosphate binding site 0 1 1 1 137,173,239 4 -197316 cd09082 Deadenylase 1 putative catalytic site 0 1 1 1 4,49,169,219,221,298,337,338 1 -197316 cd09082 Deadenylase 2 putative metal binding site 0 1 1 1 49,337 4 -197316 cd09082 Deadenylase 3 putative phosphate binding site 0 1 1 1 169,221,338 4 -197330 cd09096 Deadenylase_nocturnin 1 putative catalytic site 0 1 1 1 5,51,142,180,182,233,269,270 1 -197330 cd09096 Deadenylase_nocturnin 2 putative metal binding site 0 1 1 1 51,269 4 -197330 cd09096 Deadenylase_nocturnin 3 putative phosphate binding site 0 1 1 1 142,182,270 4 -197331 cd09097 Deadenylase_CCR4 1 putative catalytic site 0 1 1 1 4,49,164,211,213,280,318,319 1 -197331 cd09097 Deadenylase_CCR4 2 putative metal binding site 0 1 1 1 49,318 4 -197331 cd09097 Deadenylase_CCR4 3 putative phosphate binding site 0 1 1 1 164,213,319 4 -197339 cd10312 Deadenylase_CCR4b 1 putative catalytic site 0 1 1 1 4,49,169,219,221,298,337,338 1 -197339 cd10312 Deadenylase_CCR4b 2 putative metal binding site 0 1 1 1 49,337 4 -197339 cd10312 Deadenylase_CCR4b 3 putative phosphate binding site 0 1 1 1 169,221,338 4 -197340 cd10313 Deadenylase_CCR4a 1 putative catalytic site 0 1 1 1 4,49,170,221,223,300,339,340 1 -197340 cd10313 Deadenylase_CCR4a 2 putative metal binding site 0 1 1 1 49,339 4 -197340 cd10313 Deadenylase_CCR4a 3 putative phosphate binding site 0 1 1 1 170,223,340 4 -197317 cd09083 EEP-1 1 putative catalytic site 0 1 1 1 5,41,133,167,169,216,243,244 1 -197317 cd09083 EEP-1 2 putative metal binding site 0 1 1 1 41,243 4 -197317 cd09083 EEP-1 3 putative phosphate binding site 0 1 1 1 133,169,244 4 -197318 cd09084 EEP-2 1 putative catalytic site 0 1 1 1 4,36,112,173,175,215,237,238 1 -197318 cd09084 EEP-2 2 putative metal binding site 0 1 1 1 36,237 4 -197318 cd09084 EEP-2 3 putative phosphate binding site 0 1 1 1 112,175,238 4 -176489 cd08554 Cyt_b561 1 putative heme binding sites 0 0 0 1 4,38,72,111 5 -176490 cd08760 Cyt_b561_FRRS1_like 1 putative heme binding sites 0 0 0 1 38,71,104,140 5 -176491 cd08761 Cyt_b561_CYB561D2_like 1 putative heme binding sites 0 0 0 1 23,60,94,135 5 -176492 cd08762 Cyt_b561_CYBASC3 1 putative heme binding sites 0 0 0 1 37,73,107,146 5 -176493 cd08763 Cyt_b561_CYB561 1 putative heme binding sites 0 0 0 1 9,43,77,116 5 -176494 cd08764 Cyt_b561_CG1275_like 1 putative heme binding sites 0 0 0 1 26,60,96,135 5 -176495 cd08765 Cyt_b561_CYBRD1 1 putative heme binding sites 0 0 0 1 14,50,84,123 5 -176496 cd08766 Cyt_b561_ACYB-1_like 1 putative heme binding sites 0 0 0 1 10,43,77,116 5 -176498 cd08555 PI-PLCc_GDPD_SF 1 catalytic site 0 1 1 1 3,45 1 -176498 cd08555 PI-PLCc_GDPD_SF 2 active site 0 1 1 1 3,30,32,84,120,154 1 -176497 cd00137 PI-PLCc 1 catalytic site 0 1 1 1 16,66 1 -176497 cd00137 PI-PLCc 2 active site 0 1 1 1 16,51,53,99,150,216 1 -176500 cd08557 PI-PLCc_bacteria_like 1 catalytic site 0 1 1 1 17,70 1 -176500 cd08557 PI-PLCc_bacteria_like 2 active site 0 1 1 1 17,54,56,104,156,208 1 -176528 cd08586 PI-PLCc_BcPLC_like 1 catalytic site 0 1 1 1 18,65 1 -176528 cd08586 PI-PLCc_BcPLC_like 2 active site 0 1 1 1 18,50,52,98,147,218 1 -176529 cd08587 PI-PLCXDc_like 1 catalytic site 0 1 1 1 17,85 1 -176529 cd08587 PI-PLCXDc_like 2 active site 0 1 1 1 17,68,70,117,171,222 1 -176555 cd08616 PI-PLCXD1c 1 catalytic site 0 1 1 1 18,91 1 -176555 cd08616 PI-PLCXD1c 2 active site 0 1 1 1 18,75,77,122,173,223 1 -176556 cd08619 PI-PLCXDc_plant 1 catalytic site 0 1 1 1 37,84 1 -176556 cd08619 PI-PLCXDc_plant 2 active site 0 1 1 1 37,73,75,116,163,220 1 -176557 cd08620 PI-PLCXDc_like_1 1 catalytic site 0 1 1 1 17,70 1 -176557 cd08620 PI-PLCXDc_like_1 2 active site 0 1 1 1 17,47,49,102,160,203 1 -176558 cd08621 PI-PLCXDc_like_2 1 catalytic site 0 1 1 1 17,72 1 -176558 cd08621 PI-PLCXDc_like_2 2 active site 0 1 1 1 17,57,59,112,173,237 1 -176559 cd08622 PI-PLCXDc_CG14945_like 1 catalytic site 0 1 1 1 17,73 1 -176559 cd08622 PI-PLCXDc_CG14945_like 2 active site 0 1 1 1 17,56,58,104,159,210 1 -176530 cd08588 PI-PLCc_At5g67130_like 1 catalytic site 0 1 1 1 20,66 1 -176530 cd08588 PI-PLCc_At5g67130_like 2 active site 0 1 1 1 20,52,54,101,154,212 1 -176531 cd08589 PI-PLCc_SaPLC1_like 1 catalytic site 0 1 1 1 17,96 1 -176531 cd08589 PI-PLCc_SaPLC1_like 2 active site 0 1 1 1 17,61,63,134,207,248 1 -176532 cd08590 PI-PLCc_Rv2075c_like 1 catalytic site 0 1 1 1 18,72 1 -176532 cd08590 PI-PLCc_Rv2075c_like 2 active site 0 1 1 1 18,58,60,113,168,211 1 -176501 cd08558 PI-PLCc_eukaryota 1 catalytic site 0 1 1 1 16,61 1 -176501 cd08558 PI-PLCc_eukaryota 2 active site 0 1 1 1 16,46,48,95,145,180 1 -176533 cd08591 PI-PLCc_beta 1 catalytic site 0 1 1 1 16,63 1 -176533 cd08591 PI-PLCc_beta 2 active site 0 1 1 1 16,46,48,97,151,211 1 -176560 cd08623 PI-PLCc_beta1 1 catalytic site 0 1 1 1 16,63 1 -176560 cd08623 PI-PLCc_beta1 2 active site 0 1 1 1 16,46,48,97,152,212 1 -176561 cd08624 PI-PLCc_beta2 1 catalytic site 0 1 1 1 16,63 1 -176561 cd08624 PI-PLCc_beta2 2 active site 0 1 1 1 16,46,48,97,152,215 1 -176562 cd08625 PI-PLCc_beta3 1 catalytic site 0 1 1 1 16,63 1 -176562 cd08625 PI-PLCc_beta3 2 active site 0 1 1 1 16,46,48,97,152,212 1 -176563 cd08626 PI-PLCc_beta4 1 catalytic site 0 1 1 1 16,63 1 -176563 cd08626 PI-PLCc_beta4 2 active site 0 1 1 1 16,46,48,97,151,211 1 -176534 cd08592 PI-PLCc_gamma 1 catalytic site 0 1 1 1 16,61 1 -176534 cd08592 PI-PLCc_gamma 2 active site 0 1 1 1 16,46,48,95,145,183 1 -176564 cd08627 PI-PLCc_gamma1 1 catalytic site 0 1 1 1 16,61 1 -176564 cd08627 PI-PLCc_gamma1 2 active site 0 1 1 1 16,46,48,95,145,183 1 -176565 cd08628 PI-PLCc_gamma2 1 catalytic site 0 1 1 1 16,61 1 -176565 cd08628 PI-PLCc_gamma2 2 active site 0 1 1 1 16,46,48,95,145,208 1 -176535 cd08593 PI-PLCc_delta 1 catalytic site 0 1 1 1 16,61 1 -176535 cd08593 PI-PLCc_delta 2 active site 0 1 1 1 16,46,48,95,145,211 1 -176566 cd08629 PI-PLCc_delta1 1 catalytic site 0 1 1 1 16,61 1 -176566 cd08629 PI-PLCc_delta1 2 active site 0 1 1 1 16,46,48,95,145,212 1 -176567 cd08630 PI-PLCc_delta3 1 catalytic site 0 1 1 1 16,61 1 -176567 cd08630 PI-PLCc_delta3 2 active site 0 1 1 1 16,46,48,95,146,212 1 -176568 cd08631 PI-PLCc_delta4 1 catalytic site 0 1 1 1 16,61 1 -176568 cd08631 PI-PLCc_delta4 2 active site 0 1 1 1 16,46,48,95,146,212 1 -176536 cd08594 PI-PLCc_eta 1 catalytic site 0 1 1 1 16,61 1 -176536 cd08594 PI-PLCc_eta 2 active site 0 1 1 1 16,46,48,95,146,181 1 -176569 cd08632 PI-PLCc_eta1 1 catalytic site 0 1 1 1 16,61 1 -176569 cd08632 PI-PLCc_eta1 2 active site 0 1 1 1 16,46,48,95,146,207 1 -176570 cd08633 PI-PLCc_eta2 1 catalytic site 0 1 1 1 16,61 1 -176570 cd08633 PI-PLCc_eta2 2 active site 0 1 1 1 16,46,48,95,146,208 1 -176537 cd08595 PI-PLCc_zeta 1 catalytic site 0 1 1 1 16,61 1 -176537 cd08595 PI-PLCc_zeta 2 active site 0 1 1 1 16,46,48,95,146,211 1 -176538 cd08596 PI-PLCc_epsilon 1 catalytic site 0 1 1 1 16,61 1 -176538 cd08596 PI-PLCc_epsilon 2 active site 0 1 1 1 16,46,48,95,149,208 1 -176539 cd08597 PI-PLCc_PRIP_metazoa 1 catalytic site 0 1 1 1 16,61 1 -176539 cd08597 PI-PLCc_PRIP_metazoa 2 active site 0 1 1 1 16,46,48,95,145,214 1 -176540 cd08598 PI-PLC1c_yeast 1 catalytic site 0 1 1 1 16,61 1 -176540 cd08598 PI-PLC1c_yeast 2 active site 0 1 1 1 16,46,48,95,145,185 1 -176541 cd08599 PI-PLCc_plant 1 catalytic site 0 1 1 1 16,61 1 -176541 cd08599 PI-PLCc_plant 2 active site 0 1 1 1 16,46,48,95,145,182 1 -176499 cd08556 GDPD 1 catalytic site 0 1 1 1 3,45 1 -176499 cd08556 GDPD 2 active site 0 1 1 1 3,30,32,66,98,165 1 -176502 cd08559 GDPD_periplasmic_GlpQ_like 1 catalytic site 0 1 1 1 5,47 1 -176502 cd08559 GDPD_periplasmic_GlpQ_like 2 active site 0 1 1 1 5,32,34,133,172,261 1 -176542 cd08600 GDPD_EcGlpQ_like 1 catalytic site 0 1 1 1 5,47 1 -176542 cd08600 GDPD_EcGlpQ_like 2 active site 0 1 1 1 5,32,34,140,179,281 1 -176543 cd08601 GDPD_SaGlpQ_like 1 catalytic site 0 1 1 1 5,47 1 -176543 cd08601 GDPD_SaGlpQ_like 2 active site 0 1 1 1 5,32,34,116,154,223 1 -176544 cd08602 GDPD_ScGlpQ1_like 1 catalytic site 0 1 1 1 5,47 1 -176544 cd08602 GDPD_ScGlpQ1_like 2 active site 0 1 1 1 5,32,34,138,178,271 1 -176503 cd08560 GDPD_EcGlpQ_like_1 1 catalytic site 0 1 1 1 21,63 1 -176503 cd08560 GDPD_EcGlpQ_like_1 2 active site 0 1 1 1 21,48,50,169,211,296 1 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like 1 catalytic site 0 1 1 1 3,45 1 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like 2 active site 0 1 1 1 3,30,32,111,141,217 1 -176505 cd08562 GDPD_EcUgpQ_like 1 catalytic site 0 1 1 1 3,45 1 -176505 cd08562 GDPD_EcUgpQ_like 2 active site 0 1 1 1 3,30,32,105,139,204 1 -176506 cd08563 GDPD_TtGDE_like 1 catalytic site 0 1 1 1 5,47 1 -176506 cd08563 GDPD_TtGDE_like 2 active site 0 1 1 1 5,32,34,107,140,205 1 -176507 cd08564 GDPD_GsGDE_like 1 catalytic site 0 1 1 1 8,52 1 -176507 cd08564 GDPD_GsGDE_like 2 active site 0 1 1 1 8,37,39,125,155,228 1 -176508 cd08565 GDPD_pAtGDE_like 1 catalytic site 0 1 1 1 3,45 1 -176508 cd08565 GDPD_pAtGDE_like 2 active site 0 1 1 1 3,30,32,100,135,206 1 -176509 cd08566 GDPD_AtGDE_like 1 catalytic site 0 1 1 1 4,47 1 -176509 cd08566 GDPD_AtGDE_like 2 active site 0 1 1 1 4,32,34,105,132,202 1 -176510 cd08567 GDPD_SpGDE_like 1 catalytic site 0 1 1 1 5,47 1 -176510 cd08567 GDPD_SpGDE_like 2 active site 0 1 1 1 5,32,34,131,170,236 1 -176511 cd08568 GDPD_TmGDE_like 1 catalytic site 0 1 1 1 4,46 1 -176511 cd08568 GDPD_TmGDE_like 2 active site 0 1 1 1 4,31,33,97,125,199 1 -176512 cd08570 GDPD_YPL206cp_fungi 1 catalytic site 0 1 1 1 3,45 1 -176512 cd08570 GDPD_YPL206cp_fungi 2 active site 0 1 1 1 3,30,32,104,140,209 1 -176513 cd08571 GDPD_SHV3_plant 1 catalytic site 0 1 1 1 5,47 1 -176513 cd08571 GDPD_SHV3_plant 2 active site 0 1 1 1 5,32,34,137,175,256 1 -176545 cd08603 GDPD_SHV3_repeat_1 1 catalytic site 0 1 1 1 5,49 1 -176545 cd08603 GDPD_SHV3_repeat_1 2 active site 0 1 1 1 5,34,36,132,163,253 1 -176546 cd08604 GDPD_SHV3_repeat_2 1 catalytic site 0 1 1 1 5,47 1 -176546 cd08604 GDPD_SHV3_repeat_2 2 active site 0 1 1 1 5,32,34,139,178,255 1 -176514 cd08572 GDPD_GDE5_like 1 catalytic site 0 1 1 1 4,54 1 -176514 cd08572 GDPD_GDE5_like 2 active site 0 1 1 1 4,39,41,141,186,266 1 -176547 cd08605 GDPD_GDE5_like_1_plant 1 catalytic site 0 1 1 1 4,57 1 -176547 cd08605 GDPD_GDE5_like_1_plant 2 active site 0 1 1 1 4,42,44,138,177,255 1 -176548 cd08606 GDPD_YPL110cp_fungi 1 catalytic site 0 1 1 1 6,56 1 -176548 cd08606 GDPD_YPL110cp_fungi 2 active site 0 1 1 1 6,41,43,126,172,250 1 -176549 cd08607 GDPD_GDE5 1 catalytic site 0 1 1 1 4,53 1 -176549 cd08607 GDPD_GDE5 2 active site 0 1 1 1 4,38,40,135,182,263 1 -176515 cd08573 GDPD_GDE1 1 catalytic site 0 1 1 1 3,45 1 -176515 cd08573 GDPD_GDE1 2 active site 0 1 1 1 3,30,32,107,138,233 1 -176516 cd08574 GDPD_GDE_2_3_6 1 catalytic site 0 1 1 1 6,48 1 -176516 cd08574 GDPD_GDE_2_3_6 2 active site 0 1 1 1 6,33,35,132,170,228 1 -176550 cd08608 GDPD_GDE2 1 catalytic site 0 1 1 1 6,48 1 -176550 cd08608 GDPD_GDE2 2 active site 0 1 1 1 6,33,35,132,170,228 1 -176551 cd08609 GDPD_GDE3 1 catalytic site 0 1 1 1 31,73 1 -176551 cd08609 GDPD_GDE3 2 active site 0 1 1 1 31,58,60,157,195,250 1 -176552 cd08610 GDPD_GDE6 1 catalytic site 0 1 1 1 27,69 1 -176552 cd08610 GDPD_GDE6 2 active site 0 1 1 1 27,54,56,153,192,250 1 -176517 cd08575 GDPD_GDE4_like 1 catalytic site 0 1 1 1 5,47 1 -176517 cd08575 GDPD_GDE4_like 2 active site 0 1 1 1 5,32,34,114,145,236 1 -176522 cd08580 GDPD_Rv2277c_like 1 catalytic site 0 1 1 1 5,47 1 -176522 cd08580 GDPD_Rv2277c_like 2 active site 0 1 1 1 5,32,34,111,142,235 1 -176553 cd08612 GDPD_GDE4 1 catalytic site 0 1 1 1 31,73 1 -176553 cd08612 GDPD_GDE4 2 active site 0 1 1 1 31,58,60,139,169,266 1 -176554 cd08613 GDPD_GDE4_like_1 1 catalytic site 0 1 1 1 28,92 1 -176554 cd08613 GDPD_GDE4_like_1 2 active site 0 1 1 1 28,77,79,159,192,267 1 -176520 cd08578 GDPD_NUC-2_fungi 1 catalytic site 0 1 1 1 3,47 1 -176520 cd08578 GDPD_NUC-2_fungi 2 active site 0 1 1 1 3,32,34,116,171,272 1 -176521 cd08579 GDPD_memb_like 1 catalytic site 0 1 1 1 3,45 1 -176521 cd08579 GDPD_memb_like 2 active site 0 1 1 1 3,30,32,101,134,195 1 -176523 cd08581 GDPD_like_1 1 catalytic site 0 1 1 1 3,45 1 -176523 cd08581 GDPD_like_1 2 active site 0 1 1 1 3,30,32,108,142,204 1 -176524 cd08582 GDPD_like_2 1 catalytic site 0 1 1 1 3,45 1 -176524 cd08582 GDPD_like_2 2 active site 0 1 1 1 3,30,32,105,138,206 1 -176527 cd08585 GDPD_like_3 1 catalytic site 0 1 1 1 8,52 1 -176527 cd08585 GDPD_like_3 2 active site 0 1 1 1 8,37,39,105,136,214 1 -176518 cd08576 GDPD_like_SMaseD_PLD 1 catalytic site 0 1 1 1 4,40 1 -176518 cd08576 GDPD_like_SMaseD_PLD 2 active site 0 1 1 1 4,24,26,81,123,214 1 -176519 cd08577 PI-PLCc_GDPD_SF_unchar3 1 catalytic site 0 1 1 1 5,40 1 -176519 cd08577 PI-PLCc_GDPD_SF_unchar3 2 active site 0 1 1 1 5,26,28,83,126,203 1 -176525 cd08583 PI-PLCc_GDPD_SF_unchar1 1 catalytic site 0 1 1 1 3,47 1 -176525 cd08583 PI-PLCc_GDPD_SF_unchar1 2 active site 0 1 1 1 3,32,34,105,141,210 1 -176526 cd08584 PI-PLCc_GDPD_SF_unchar2 1 catalytic site 0 1 1 1 3,35 1 -176526 cd08584 PI-PLCc_GDPD_SF_unchar2 2 active site 0 1 1 1 3,21,23,60,88,155 1 -176571 cd08674 Cdt1_m 1 Cdt1-Geminin permissive interaction site 0 1 1 1 1,2,4,5,8,9,10,11,13,155,159,160,161,162,163,164,165,166,168 0 -176571 cd08674 Cdt1_m 2 Cdt1-Geminin inhibitory interaction site 0 1 1 1 0,1,2,4,5,8,9,10,11,14,30,60,119,120,121,124,127,146,155,159,160,161,162,163,164,165,166 0 -176572 cd08767 Cdt1_c 1 putative Cdt1-MCM complex binding site 0 0 1 1 17,21,57,58,62,84,88,92,99,101,104,122,125 0 -176573 cd08768 Cdc6_C 1 DNA binding site 0 1 1 1 25,46,47,65,67,74,75,76 3 -350091 cd08772 GH43_62_32_68_117_130 1 active site [DEN][DEN][DEN] 0 1 1 1,120,176 1 -350092 cd08978 GH_F 1 active site [DEN][DEN][DEN] 0 1 1 1,114,172 1 -350094 cd08980 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,129,191 1 -350138 cd18817 GH43f_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,117,178 1 -350139 cd18818 GH43_GbtXyl43B-like 1 active site [DEN][DEN][DEN] 0 1 1 1,124,190 1 -350140 cd18819 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,134,194 1 -350141 cd18820 GH43_LbAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,111,173 1 -350095 cd08981 GH43_Bt1873-like 1 active site [DEN][DEN][DEN] 0 1 1 7,124,195 1 -350096 cd08982 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 6,94,164 1 -350097 cd08983 GH43_Bt3655-like 1 active site [DEN][DEN][DEN] 0 1 1 19,139,190 1 -350098 cd08984 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 11,134,182 1 -350099 cd08985 GH43_CtGH43-like 1 active site [DEN][DEN][DEN] 0 1 1 4,125,173 1 -350142 cd18821 GH43_Pc3Gal43A-like 1 active site [DEN][DEN][DEN] 0 1 1 4,120,167 1 -350143 cd18822 GH43_CtGH43-like 1 active site [DEN][DEN][DEN] 0 1 1 4,121,170 1 -350144 cd18823 GH43_RcAra43A-like 1 active site [DEN][DEN][DEN] 0 1 1 4,139,190 1 -350145 cd18824 GH43_CtGH43-like 1 active site [DEN][DEN][DEN] 0 1 1 4,122,172 1 -350146 cd18825 GH43_CtGH43-like 1 active site [DEN][DEN][DEN] 0 1 1 4,138,187 1 -350147 cd18826 GH43_CtGH43-like 1 active site [DEN][DEN][DEN] 0 1 1 4,127,179 1 -350100 cd08986 GH43-like 1 active site [DEN][DEN][DEN] 0 1 1 3,125,173 1 -350101 cd08987 GH62 1 active site [DEN][DEN][DEN] 0 1 1 27,137,188 1 -350102 cd08988 GH43_ABN 1 active site [DEN][DEN][DEN] 0 1 1 1,119,171 1 -350112 cd08998 GH43_Arb43a-like 1 active site [DEN][DEN][DEN] 0 1 1 2,118,172 1 -350150 cd18829 GH43_BsArb43A-like 1 active site [DEN][DEN][DEN] 0 1 1 2,118,168 1 -350151 cd18830 GH43_CjArb43A-like 1 active site [DEN][DEN][DEN] 0 1 1 2,122,185 1 -350152 cd18831 GH43_AnAbnA-like 1 active site [DEN][DEN][DEN] 0 1 1 2,115,169 1 -350153 cd18832 GH43_GsAbnA-like 1 active site [DEN][DEN][DEN] 0 1 1 2,146,208 1 -350113 cd08999 GH43_ABN-like 1 active site [DEN][DEN][DEN] 0 1 1 9,122,182 1 -350128 cd18616 GH43_ABN-like 1 active site [DEN][DEN][DEN] 0 1 1 9,130,176 1 -350103 cd08989 GH43_XYL-like 1 active site [DEN][DEN][DEN] 0 1 1 9,121,170 1 -350114 cd09000 GH43_SXA-like 1 active site [DEN][DEN][DEN] 0 1 1 9,122,181 1 -350115 cd09001 GH43_FsAxh1-like 1 active site [DEN][DEN][DEN] 0 1 1 12,122,172 1 -350116 cd09002 GH43_XYL-like 1 active site [DEN][DEN][DEN] 0 1 1 11,107,162 1 -350129 cd18617 GH43_XynB-like 1 active site [DEN][DEN][DEN] 0 1 1 9,117,176 1 -350154 cd18833 GH43_PcXyl-like 1 active site [DEN][DEN][DEN] 0 1 1 9,130,183 1 -350104 cd08990 GH43_AXH_like 1 active site [DEN][DEN][DEN] 0 1 1 1,121,171 1 -350117 cd09003 GH43_XynD-like 1 active site [DEN][DEN][DEN] 0 1 1 10,143,199 1 -350130 cd18618 GH43_Xsa43E-like 1 active site [DEN][DEN][DEN] 0 1 1 3,129,178 1 -350131 cd18619 GH43_CoXyl43_like 1 active site [DEN][DEN][DEN] 0 1 1 9,129,217 1 -350132 cd18620 GH43_XylA-like 1 active site [DEN][DEN][DEN] 0 1 1 1,120,173 1 -350105 cd08991 GH43_HoAraf43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,108,175 1 -350118 cd09004 GH43_bXyl-like 1 active site [DEN][DEN][DEN] 0 1 1 1,112,159 1 -350148 cd18827 GH43_XlnD-like 1 active site [DEN][DEN][DEN] 0 1 1 1,119,171 1 -350149 cd18828 GH43_BT3675-like 1 active site [DEN][DEN][DEN] 0 1 1 1,122,171 1 -350120 cd18608 GH43_F5-8_typeC-like 1 active site [DEN][DEN][DEN] 0 1 1 2,116,168 1 -350093 cd08979 GH_J 1 active site [DEN][DEN][DEN] 0 1 1 1,129,183 1 -350109 cd08995 GH32_EcAec43-like 1 active site [DEN][DEN][DEN] 0 1 1 1,124,182 1 -350110 cd08996 GH32_FFase 1 active site [DEN][DEN][DEN] 0 1 1 4,125,181 1 -350133 cd18621 GH32_XdINV-like 1 active site [DEN][DEN][DEN] 0 1 1 4,144,220 1 -350134 cd18622 GH32_Inu-like 1 active site [DEN][DEN][DEN] 0 1 1 5,130,180 1 -350135 cd18623 GH32_ScrB-like 1 active site [DEN][DEN][DEN] 0 1 1 4,125,179 1 -350136 cd18624 GH32_Fruct1-like 1 active site [DEN][DEN][DEN] 0 1 1 4,128,182 1 -350137 cd18625 GH32_BfrA-like 1 active site [DEN][DEN][DEN] 0 1 1 4,131,185 1 -350111 cd08997 GH68 1 active site [DEN][DEN][DEN] 0 1 1 2,155,239 1 -350121 cd18609 GH32-like 1 active site [DEN][DEN][DEN] 0 1 1 10,147,205 1 -350106 cd08992 GH117 1 active site [DEN][DEN][DEN] 0 1 1 23,171,228 1 -350108 cd08994 GH43_62_32_68_117_130-like 1 active site [DEN][DEN][DEN] 0 1 1 14,151,209 1 -350119 cd18607 GH130 1 active site [DEN][DEN][DEN] 0 1 1 7,117,172 1 -350107 cd08993 GH130 1 active site [DEN][DEN][DEN] 0 1 1 7,115,176 1 -350122 cd18610 GH130_BT3780-like 1 active site [DEN][DEN][DEN] 0 1 1 16,136,200 1 -350123 cd18611 GH130 1 active site [DEN][DEN][DEN] 0 1 1 7,124,192 1 -350124 cd18612 GH130_Lin0857-like 1 active site [DEN][DEN][DEN] 0 1 1 7,107,167 1 -350125 cd18613 GH130 1 active site [DEN][DEN][DEN] 0 1 1 10,150,204 1 -350126 cd18614 GH130 1 active site [DEN][DEN][DEN] 0 1 1 7,123,180 1 -350127 cd18615 GH130 1 active site [DEN][DEN][DEN] 0 1 1 9,120,179 1 -176798 cd08773 FpgNei_N 1 catalytic residue 0 0 1 1 0 1 -176798 cd08773 FpgNei_N 2 putative catalytic residues 0 0 1 1 1,56 1 -176798 cd08773 FpgNei_N 3 DNA binding site 0 1 1 1 0,1,56,71,73,74,75,89,90 3 -176798 cd08773 FpgNei_N 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,53,54,55,56,57 2 -176799 cd08965 EcNei-like_N 1 catalytic residue 0 0 1 1 0 1 -176799 cd08965 EcNei-like_N 2 putative catalytic residues 0 0 1 1 1,51 1 -176799 cd08965 EcNei-like_N 3 DNA binding site 0 1 1 1 0,1,51,66,68,69,70,86,87 3 -176799 cd08965 EcNei-like_N 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,48,49,50,51,52 2 -176800 cd08966 EcFpg-like_N 1 catalytic residue 0 0 1 1 0 1 -176800 cd08966 EcFpg-like_N 2 putative catalytic residues 0 0 1 1 1,57 1 -176800 cd08966 EcFpg-like_N 3 DNA binding site 0 1 1 1 0,1,57,72,74,75,76,90,91 3 -176800 cd08966 EcFpg-like_N 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,54,55,56,57,58 2 -176801 cd08967 MeNeil1_N 1 catalytic residue 0 0 1 1 1 1 -176801 cd08967 MeNeil1_N 2 putative catalytic residues 0 0 1 1 2,53 1 -176801 cd08967 MeNeil1_N 3 DNA binding site 0 1 1 1 1,2,53,82,84,85,86,99,100 3 -176801 cd08967 MeNeil1_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,50,51,52,53,54 2 -176802 cd08968 MeNeil2_N 1 catalytic residue 0 0 1 1 1 1 -176802 cd08968 MeNeil2_N 2 putative catalytic residues 0 0 1 1 2,49 1 -176802 cd08968 MeNeil2_N 3 DNA binding site 0 1 1 1 1,2,49,74,76,77,78,92,93 3 -176802 cd08968 MeNeil2_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,46,47,48,49,50 2 -176803 cd08969 MeNeil3_N 1 catalytic residue 0 0 1 1 1 1 -176803 cd08969 MeNeil3_N 2 putative catalytic residues 0 0 1 1 2,69 1 -176803 cd08969 MeNeil3_N 3 DNA binding site 0 1 1 1 1,2,69,83,85,86,87,103,104 3 -176803 cd08969 MeNeil3_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,66,67,68,69,70 2 -176804 cd08970 AcNei1_N 1 catalytic residue 0 0 1 1 1 1 -176804 cd08970 AcNei1_N 2 putative catalytic residues 0 0 1 1 2,51 1 -176804 cd08970 AcNei1_N 3 DNA binding site 0 1 1 1 1,2,51,66,68,69,70,83,84 3 -176804 cd08970 AcNei1_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,48,49,50,51,52 2 -176805 cd08971 AcNei2_N 1 catalytic residue 0 0 1 1 1 1 -176805 cd08971 AcNei2_N 2 putative catalytic residues 0 0 1 1 2,50 1 -176805 cd08971 AcNei2_N 3 DNA binding site 0 1 1 1 1,2,50,65,67,68,69,86,87 3 -176805 cd08971 AcNei2_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,47,48,49,50,51 2 -176806 cd08972 PF_Nei_N 1 catalytic residue 0 0 1 1 1 1 -176806 cd08972 PF_Nei_N 2 putative catalytic residues 0 0 1 1 2,59 1 -176806 cd08972 PF_Nei_N 3 DNA binding site 0 1 1 1 1,2,59,75,77,78,79,108,109 3 -176806 cd08972 PF_Nei_N 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,56,57,58,59,60 2 -176807 cd08973 BaFpgNei_N_1 1 catalytic residue 0 0 1 1 1 1 -176807 cd08973 BaFpgNei_N_1 2 putative catalytic residues 0 0 1 1 2,56 1 -176807 cd08973 BaFpgNei_N_1 3 DNA binding site 0 1 1 1 1,2,56,71,73,74,75,90,91 3 -176807 cd08973 BaFpgNei_N_1 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,53,54,55,56,57 2 -176808 cd08974 BaFpgNei_N_2 1 catalytic residue 0 0 1 1 1 1 -176808 cd08974 BaFpgNei_N_2 2 putative catalytic residues 0 0 1 1 2,48 1 -176808 cd08974 BaFpgNei_N_2 3 DNA binding site 0 1 1 1 1,2,48,62,64,65,66,75,76 3 -176808 cd08974 BaFpgNei_N_2 4 H2TH interface 0 1 1 1 2,3,4,5,7,8,11,45,46,47,48,49 2 -176809 cd08975 BaFpgNei_N_3 1 catalytic residue 0 0 1 1 0 1 -176809 cd08975 BaFpgNei_N_3 2 putative catalytic residues 0 0 1 1 1,60 1 -176809 cd08975 BaFpgNei_N_3 3 DNA binding site 0 1 1 1 0,1,60,74,76,77,78,90,91 3 -176809 cd08975 BaFpgNei_N_3 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,57,58,59,60,61 2 -176810 cd08976 BaFpgNei_N_4 1 catalytic residue 0 0 1 1 0 1 -176810 cd08976 BaFpgNei_N_4 2 putative catalytic residues 0 0 1 1 1,56 1 -176810 cd08976 BaFpgNei_N_4 3 DNA binding site 0 1 1 1 0,1,56,71,73,74,75,89,90 3 -176810 cd08976 BaFpgNei_N_4 4 H2TH interface 0 1 1 1 1,2,3,4,6,7,10,53,54,55,56,57 2 -206755 cd08774 14-3-3 1 peptide binding site 0 1 1 1 45,52,118,125,126,167,170,171,174,177,178,215,218,221,222 2 -206755 cd08774 14-3-3 2 dimer interface 0 1 1 1 5,8,9,11,12,14,17,54,57,61,76,80,83,84,87 2 +409299 cd21157 PUA_G5K 1 putative RNA binding site 0 1 1 1 18,24,26,27,30,31,32,33,93,94,98,99,100,101 3 206756 cd10019 14-3-3_sigma 1 peptide binding site 0 1 1 1 48,55,121,128,129,170,173,174,177,180,181,218,221,224,225 2 206756 cd10019 14-3-3_sigma 2 dimer interface 0 1 1 1 8,11,12,14,15,17,20,57,60,64,79,83,86,87,90 2 -206757 cd10020 14-3-3_epsilon 1 peptide binding site 0 1 1 1 46,53,119,126,127,168,171,172,175,178,179,216,219,222,223 2 -206757 cd10020 14-3-3_epsilon 2 dimer interface 0 1 1 1 6,9,10,12,13,15,18,55,58,62,77,81,84,85,88 2 -206758 cd10022 14-3-3_beta_zeta 1 peptide binding site 0 1 1 1 47,54,118,125,126,167,170,171,174,177,178,215,218,221,222 2 -206758 cd10022 14-3-3_beta_zeta 2 dimer interface 0 1 1 1 7,10,11,13,14,16,19,56,59,63,76,80,83,84,87 2 -206759 cd10023 14-3-3_theta 1 peptide binding site 0 1 1 1 48,55,119,126,127,168,171,172,175,178,179,216,219,222,223 2 -206759 cd10023 14-3-3_theta 2 dimer interface 0 1 1 1 8,11,12,14,15,17,20,57,60,64,77,81,84,85,88 2 -206760 cd10024 14-3-3_gamma 1 peptide binding site 0 1 1 1 48,55,123,130,131,172,175,176,179,182,183,220,223,226,227 2 -206760 cd10024 14-3-3_gamma 2 dimer interface 0 1 1 1 8,11,12,14,15,17,20,57,60,64,79,83,86,87,90 2 -206761 cd10025 14-3-3_eta 1 peptide binding site 0 1 1 1 47,54,122,129,130,171,174,175,178,181,182,219,222,225,226 2 -206761 cd10025 14-3-3_eta 2 dimer interface 0 1 1 1 7,10,11,13,14,16,19,56,59,63,78,82,85,86,89 2 -206762 cd10026 14-3-3_plant 1 peptide binding site 0 1 1 1 48,55,121,128,129,170,173,174,177,180,181,218,221,224,225 2 -206762 cd10026 14-3-3_plant 2 dimer interface 0 1 1 1 6,9,10,12,13,15,18,57,60,64,79,83,86,87,90 2 -206763 cd11309 14-3-3_fungi 1 peptide binding site 0 1 1 1 46,53,119,126,127,168,171,172,175,178,179,216,219,222,223 2 -206763 cd11309 14-3-3_fungi 2 dimer interface 0 1 1 1 6,9,10,12,13,15,18,55,58,62,77,81,84,85,88 2 -206764 cd11310 14-3-3_1 1 peptide binding site 0 1 1 1 47,54,118,125,126,167,170,171,174,177,178,215,218,221,222 2 -206764 cd11310 14-3-3_1 2 dimer interface 0 1 1 1 7,10,11,13,14,16,19,56,59,63,76,80,83,84,87 2 -185746 cd08915 V_Alix_like 1 putative YPXnL-motif binding site 0 1 1 1 81,140,144,147,148,312,315,316,319,322 0 -185747 cd09234 V_HD-PTP_like 1 putative YPXnL-motif binding site 0 1 1 1 83,138,142,145,146,307,310,311,314,317 0 -185748 cd09235 V_Alix 1 putative YPXnL-motif binding site 0 1 1 1 80,138,142,145,146,309,312,313,316,319 0 -185749 cd09236 V_AnPalA_UmRIM20_like 1 putative YPXnL-motif binding site 0 1 1 1 82,141,145,148,149,323,326,327,330,333 0 -185750 cd09237 V_ScBro1_like 1 putative YPXnL-motif binding site 0 1 1 1 77,135,139,142,143,326,329,330,333,336 0 -185751 cd09238 V_Alix_like_1 1 putative YPXnL-motif binding site 0 1 1 1 83,141,145,148,149,309,312,313,316,319 0 -350156 cd09005 NP-I 1 active site 0 1 1 1 4,5,46,49,70,71,72,73,74,75,139,141,142,150,161,162,163,164,183,186,187,188,201,202 1 -350155 cd00436 UP_TbUP-like 1 active site 0 1 1 1 26,27,68,71,106,107,108,109,110,111,192,194,195,213,229,230,231,232,251,254,255,256,266,267 1 -350157 cd09006 PNP_EcPNPI-like 1 active site 0 1 1 1 15,16,58,61,83,84,85,86,87,88,152,154,155,163,174,175,176,177,196,199,200,201,213,214 1 -350158 cd09007 NP-I_spr0068 1 active site 0 1 1 1 10,11,51,54,75,76,77,78,79,80,143,145,146,154,165,166,167,168,187,190,191,192,206,207 1 -350160 cd09009 PNP-EcPNPII_like 1 active site 0 1 1 1 23,24,75,84,105,106,107,108,109,110,182,184,185,193,204,205,206,207,226,229,230,231,249,250 1 -350161 cd09010 MTAP_SsMTAPII_like_MTIP 1 active site 0 1 1 1 4,5,48,58,79,80,81,82,83,84,155,157,158,166,177,178,179,180,199,202,203,204,222,223 1 -350162 cd17762 AMN 1 active site 0 1 1 1 26,27,65,68,89,90,91,92,93,94,157,159,160,168,180,181,182,183,202,205,206,207,224,225 1 -350163 cd17763 UP_hUPP-like 1 active site 0 1 1 1 28,29,78,81,108,109,110,111,112,113,180,182,183,206,217,218,219,220,239,242,243,244,258,259 1 -350164 cd17764 MTAP_SsMTAPI_like 1 active site 0 1 1 1 5,6,47,50,71,72,73,74,75,76,141,143,144,152,163,164,165,166,185,188,189,190,204,205 1 -350165 cd17765 PNP_ThPNP_like 1 active site 0 1 1 1 18,19,61,64,85,86,87,88,89,90,154,156,157,165,176,177,178,179,198,201,202,203,216,217 1 -350167 cd17767 UP_EcUdp-like 1 active site 0 1 1 1 16,17,58,61,82,83,84,85,86,87,150,152,153,172,183,184,185,186,205,208,209,210,222,223 1 -350169 cd17769 NP_TgUP-like 1 active site 0 1 1 1 5,6,50,53,76,77,78,79,80,81,158,160,161,176,193,194,195,196,221,224,225,226,237,238 1 -350170 cd17877 NP_MTAN-like 1 active site 0 1 1 1 4,5,45,48,70,71,72,73,74,75,132,134,135,142,154,155,156,157,176,179,180,181,195,196 1 -350159 cd09008 MTAN 1 active site 0 1 1 1 4,5,45,48,70,71,72,73,74,75,145,147,148,155,167,168,169,170,189,192,193,194,207,208 1 -350166 cd17766 futalosine_nucleosidase_MqnB 1 active site 0 1 1 1 5,6,38,41,63,64,65,66,67,68,142,144,145,152,163,164,166,167,186,189,190,191,202,203 1 -350168 cd17768 adenosylhopane_nucleosidase_HpnG-like 1 active site 0 1 1 1 5,6,30,32,51,52,53,54,55,56,108,110,111,118,130,131,132,133,152,155,156,157,171,172 1 -176923 cd09030 DUF1425 1 putative dimer interface 0 1 0 0 0,1,2,3,4,9,19,21,23,70,96,97,98,99,100 2 -185761 cd09034 BRO1_Alix_like 1 putative ESCRT-III binding site 0 0 1 1 120,123,137,140,141,189,192,193,203,206,207,336,338,340,342 0 -185762 cd09239 BRO1_HD-PTP_like 1 putative ESCRT-III binding site 0 0 1 1 123,126,139,142,143,188,191,192,201,204,205,339,341,343,345 0 -185763 cd09240 BRO1_Alix 1 putative ESCRT-III binding site 0 0 1 1 128,131,144,147,148,196,199,200,209,212,213,335,337,339,341 0 -185764 cd09241 BRO1_ScRim20-like 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,181,184,185,194,197,198,322,324,326,328 0 -185765 cd09242 BRO1_ScBro1_like 1 putative ESCRT-III binding site 0 0 1 1 116,119,132,135,136,180,183,184,196,199,200,336,338,340,342 0 -185766 cd09243 BRO1_Brox_like 1 putative ESCRT-III binding site 0 0 1 1 118,125,137,140,141,191,194,195,204,207,208,343,345,347,349 0 -185767 cd09244 BRO1_Rhophilin 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,195,198,199,333,335,337,339 0 -185771 cd09248 BRO1_Rhophilin_1 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,196,199,200,367,369,371,373 0 -185772 cd09249 BRO1_Rhophilin_2 1 putative ESCRT-III binding site 0 0 1 1 115,118,131,134,135,179,182,183,194,197,198,368,370,372,374 0 -185768 cd09245 BRO1_UmRIM23-like 1 putative ESCRT-III binding site 0 0 1 1 126,129,159,162,163,216,219,220,247,250,251,401,403,405,407 0 -185769 cd09246 BRO1_Alix_like_1 1 putative ESCRT-III binding site 0 0 1 1 120,123,136,139,140,188,191,192,201,204,205,333,335,337,339 0 -185770 cd09247 BRO1_Alix_like_2 1 putative ESCRT-III binding site 0 0 1 1 122,125,136,139,140,193,196,197,206,209,210,337,339,341,343 0 -198416 cd09212 PUB 1 peptide binding site 0 1 1 1 18,21,22,25,34,35,37,38,39,42,44,48 2 -198417 cd10459 PUB_PNGase 1 peptide binding site 0 1 1 1 17,20,21,24,33,34,36,37,38,41,43,47 2 -198418 cd10460 PUB_UBXD1 1 peptide binding site 0 1 1 1 19,22,23,26,35,36,38,39,40,43,45,49 2 -198419 cd10461 PUB_UBA_plant 1 peptide binding site 0 1 1 1 20,23,24,27,36,37,39,40,41,44,46,50 2 -198420 cd10462 PUB_UBA 1 peptide binding site 0 1 1 1 21,24,25,28,37,38,40,41,42,45,47,51 2 -198421 cd10463 PUB_WLM 1 peptide binding site 0 1 1 1 19,22,23,26,35,36,38,39,40,43,45,49 2 -198422 cd10464 PUB_RNF31 1 peptide binding site 0 1 1 1 25,28,29,32,40,41,44,45,46,49,51,55 2 -188873 cd09213 Luminal_IRE1_like 1 homodimer interface 0 1 1 0 82,83,84,85,86,95,97,98,99,100,102,103,104,116,118,119,120,152,153,161,163,178,180,181,182 2 -188874 cd09768 Luminal_EIF2AK3 1 homodimer interface 0 1 1 0 81,82,83,84,85,90,92,93,94,95,97,98,99,111,113,114,115,136,137,145,147,162,164,165,166 2 -188875 cd09769 Luminal_IRE1 1 homodimer interface 0 1 1 0 80,81,82,83,84,90,92,93,94,95,97,98,99,111,113,114,115,146,147,155,157,172,174,175,176 2 -187745 cd09223 Photo_RC 1 chlorophyll binding site 0 1 1 0 33,37,64,67,68,71,93,94,97,98,100,113,114,116,117,118,120,121,122,125,188,191,195 0 -187745 cd09223 Photo_RC 2 pheophytin binding site 0 1 1 0 12,15,16,19,37,40,44,57,61,64,121,124,125,128,129,163,167,184,185,188 0 -187745 cd09223 Photo_RC 3 quinone binding site 0 1 1 0 125,130,133,159,163,170,171,176 0 -187745 cd09223 Photo_RC 4 Fe binding site 0 1 1 0 130,177 4 -187746 cd09288 Photosystem-II_D2 1 chlorophyll binding site 0 1 1 0 104,108,135,138,139,142,164,165,168,169,171,183,184,186,187,188,190,191,192,195,265,268,272 0 -187746 cd09288 Photosystem-II_D2 2 pheophytin binding site 0 1 1 0 27,30,31,34,108,111,115,128,132,135,191,194,195,198,199,239,243,261,262,265 0 -187746 cd09288 Photosystem-II_D2 3 quinone binding site 0 1 1 0 195,200,203,235,239,246,247,253 0 -187746 cd09288 Photosystem-II_D2 4 Fe binding site 0 1 1 0 200,254 4 -187747 cd09289 Photosystem-II_D1 1 chlorophyll binding site 0 1 1 0 112,116,143,146,147,150,172,173,176,177,179,191,192,194,195,196,198,199,200,203,276,279,283 0 -187747 cd09289 Photosystem-II_D1 2 pheophytin binding site 0 1 1 0 34,37,38,41,116,119,123,136,140,143,199,202,203,206,207,249,253,272,273,276 0 -187747 cd09289 Photosystem-II_D1 3 quinone binding site 0 1 1 0 203,208,211,245,249,256,257,264 0 -187747 cd09289 Photosystem-II_D1 4 Fe binding site 0 1 1 0 208,265 4 -187748 cd09290 Photo-RC_L 1 chlorophyll binding site 0 1 1 0 93,97,124,127,128,131,153,154,157,158,160,173,174,176,177,178,180,181,182,185,241,244,248 0 -187748 cd09290 Photo-RC_L 2 pheophytin binding site 0 1 1 0 41,44,45,48,97,100,104,117,121,124,181,184,185,188,189,216,220,237,238,241 0 -187748 cd09290 Photo-RC_L 3 quinone binding site 0 1 1 0 185,190,193,212,216,223,224,229 0 -187748 cd09290 Photo-RC_L 4 Fe binding site 0 1 1 0 190,230 4 -187749 cd09291 Photo-RC_M 1 chlorophyll binding site 0 1 1 0 110,114,141,144,145,148,170,171,174,175,177,190,191,193,194,195,197,198,199,202,265,268,272 0 -187749 cd09291 Photo-RC_M 2 pheophytin binding site 0 1 1 0 52,55,56,59,114,117,121,134,138,141,198,201,202,205,206,240,244,261,262,265 0 -187749 cd09291 Photo-RC_M 3 quinone binding site 0 1 1 0 202,207,210,236,240,247,248,253 0 -187749 cd09291 Photo-RC_M 4 Fe binding site 0 1 1 0 207,254 4 -198423 cd09224 CytoC_RC 1 Heme binding sites 0 1 1 1 52,53,54,55,56,57,58,66,70,73,74,77,83,85,86,87,92,93,98,99,100,102,103,104,106,107,109,110,120,121,124,125,126,127,128,131,132,136,137,138,141,188,189,190,191,211,212,215,216,218,219,222,224,225,226,228,229,230,235,236,244,245,247,248,249,251,252,253,254,255,270,282,285,286,289,290,294,295,296 5 -198423 cd09224 CytoC_RC 2 subunit interface 0 1 1 0 0,1,2,4,6,7,8,9,10,12,13,14,15,16,17,19,21,173,174,175,189,190,191,192,193,194,195,196,197,202,203,204,205,206,208,209,212,216,219,224,225,226,227,230,231,232,233,234,235,236,238,241,242,243,244,246,249,250,253 2 -187750 cd09233 ACE1-Sec16-like 1 homodimer interface 0 1 1 1 63,64,66,67,69,70,71,72,73,75,77,87,89,91,92,94,95,99,105,112,122,127,130,164,165 2 -187750 cd09233 ACE1-Sec16-like 2 heterodimer interface 0 1 1 1 234,256,257,259,260,263,264,267,296,297,300,301,304,308 2 -187751 cd09270 RNase_H2-B 1 heterotrimeric interface 0 1 1 1 2,3,4,17,40,50,51,52,53,54 0 -187752 cd09271 RNase_H2-C 1 heterotrimeric interface 0 1 1 1 0,1,2,3,4,23,32,34,35,36,37,38,39,53,54,55,56 0 -187753 cd09281 UPF0066 1 cofactor binding site 0 1 0 0 50,52,53,81,89,91,110,115 0 -187753 cd09281 UPF0066 2 homodimer interaction site 0 1 0 0 0,1,36,37,38,40,47,51,76,77,78,79,80,81,85,87,89,118,119,120,121,122,123 2 -187755 cd09294 SmpB 1 SmpB-tmRNA interface 0 1 1 1 14,15,16,17,18,19,21,22,24,25,28,45,73,74,75,76,77,78,106 0 -187756 cd09299 TDT 1 gating phenylalanine in ion channel 0 0 1 1 285 0 -187757 cd09317 TDT_Mae1_like 1 gating phenylalanine in ion channel 0 0 1 1 289 0 -187758 cd09318 TDT_SSU1 1 gating phenylalanine in ion channel 0 0 1 1 300 0 -187759 cd09319 TDT_like_1 1 gating phenylalanine in ion channel 0 0 1 1 274 0 -187760 cd09320 TDT_like_2 1 gating phenylalanine in ion channel 0 0 1 1 283 0 -187761 cd09321 TDT_like_3 1 gating phenylalanine in ion channel 0 0 1 1 282 0 -187762 cd09322 TDT_TehA_like 1 gating phenylalanine in ion channel 0 0 1 1 248 0 -187763 cd09323 TDT_SLAC1_like 1 gating phenylalanine in ion channel 0 0 1 1 253 0 -187764 cd09324 TDT_TehA 1 gating phenylalanine in ion channel 0 0 1 1 252 0 -187765 cd09325 TDT_C4-dicarb_trans 1 gating phenylalanine in ion channel 0 0 1 1 243 0 -350171 cd09300 DEAD-like_helicase_C 1 ATP binding site 0 1 1 0 44 5 -350172 cd18785 SF2_C 1 ATP binding site 0 1 1 0 61 5 -350174 cd18787 SF2_C_DEAD 1 ATP binding site 0 1 1 0 116 5 -350175 cd18788 SF2_C_XPD 1 ATP binding site 0 1 1 0 140 5 -350176 cd18789 SF2_C_XPB 1 ATP binding site 0 1 1 0 134 5 -350177 cd18790 SF2_C_UvrB 1 ATP binding site 0 1 1 0 121 5 -350178 cd18791 SF2_C_RHA 1 ATP binding site 0 1 1 0 157 5 -350179 cd18792 SF2_C_RecG_TRCF 1 ATP binding site 0 1 1 0 126 5 -350197 cd18810 SF2_C_TRCF 1 ATP binding site 0 1 1 0 117 5 -350198 cd18811 SF2_C_RecG 1 ATP binding site 0 1 1 0 127 5 -350180 cd18793 SF2_C_SNF 1 ATP binding site 0 1 1 0 118 5 -350181 cd18794 SF2_C_RecQ 1 ATP binding site 0 1 1 0 119 5 -350182 cd18795 SF2_C_Ski2 1 ATP binding site 0 1 1 0 136 5 -350183 cd18796 SF2_C_LHR 1 ATP binding site 0 1 1 0 133 5 -350184 cd18797 SF2_C_Hrq 1 ATP binding site 0 1 1 0 131 5 -350185 cd18798 SF2_C_reverse_gyrase 1 ATP binding site 0 1 1 0 114 5 -350186 cd18799 SF2_C_EcoAI-like 1 ATP binding site 0 1 1 0 98 5 -350188 cd18801 SF2_C_FANCM_Hef 1 ATP binding site 0 1 1 0 129 5 -350189 cd18802 SF2_C_dicer 1 ATP binding site 0 1 1 0 129 5 -350190 cd18803 SF2_C_secA 1 ATP binding site 0 1 1 0 125 5 -350191 cd18804 SF2_C_priA 1 ATP binding site 0 1 1 0 195 5 -350192 cd18805 SF2_C_suv3 1 ATP binding site 0 1 1 0 117 5 -350193 cd18806 SF2_C_viral 1 ATP binding site 0 1 1 0 128 5 -350173 cd18786 SF1_C 1 ATP binding site 0 1 1 0 79 5 -350194 cd18807 SF1_C_UvrD 1 ATP binding site 0 1 1 0 140 5 -350195 cd18808 SF1_C_Upf1 1 ATP binding site 0 1 1 0 155 5 -350196 cd18809 SF1_C_RecD 1 ATP binding site 0 1 1 0 70 5 -350187 cd18800 SF2_C_EcoR124I-like 1 ATP binding site 0 1 1 0 63 5 -187706 cd09302 Jacalin_like 1 putative sugar binding site 0 1 1 0 0,73,117,118,120 5 -187707 cd09611 Jacalin_ZG16_like 1 putative sugar binding site 0 1 1 0 4,72,117,118,120 5 -187708 cd09612 Jacalin 1 putative sugar binding site 0 1 1 0 0,77,119,120,122 5 -187709 cd09613 Jacalin_metallopeptidase_like 1 putative sugar binding site 0 1 1 0 4,68,113,114,116 5 -187710 cd09614 griffithsin_like 1 putative sugar binding site 0 1 1 0 6,72,116,117,119 5 -187711 cd09615 Jacalin_EEP 1 putative sugar binding site 0 1 1 0 4,78,121,122,124 5 -198424 cd09593 UDG_like 1 active site 0 1 1 0 5,6,8,89,90,121,122,124 1 -198424 cd09593 UDG_like 2 ligand binding site 0 1 1 0 4,5,6,7,8,48,122 5 -198425 cd10027 UDG_F1 1 active site 0 1 1 0 44,45,47,145,146,166,167,169 1 -198425 cd10027 UDG_F1 2 ligand binding site 0 1 1 0 43,44,45,46,47,103,167 5 -198426 cd10028 UDG_F2_MUG 1 active site 0 1 1 0 15,16,18,106,107,138,139,141 1 -198426 cd10028 UDG_F2_MUG 2 ligand binding site 0 1 1 0 14,15,16,17,18,66,139 5 -198427 cd10029 UDG_F3_SMUG 1 active site 0 1 1 0 55,56,58,185,186,208,209,211 1 -198427 cd10029 UDG_F3_SMUG 2 ligand binding site 0 1 1 0 54,55,56,57,58,134,209 5 -198428 cd10030 UDG_F4_TTUDGA_like 1 active site 0 1 1 0 28,29,31,107,108,140,141,143 1 -198428 cd10030 UDG_F4_TTUDGA_like 2 ligand binding site 0 1 1 0 27,28,29,30,31,67,141 5 -198429 cd10031 UDG_F5_TTUDGB_like 1 active site 0 1 1 0 44,45,47,138,139,176,177,179 1 -198429 cd10031 UDG_F5_TTUDGB_like 2 ligand binding site 0 1 1 0 43,44,45,46,47,98,177 5 -198430 cd10032 UDG_MUG_like 1 active site 0 1 1 0 16,17,19,108,109,132,133,135 1 -198430 cd10032 UDG_MUG_like 2 ligand binding site 0 1 1 0 15,16,17,18,19,68,133 5 -198431 cd10033 UDG_like_1 1 active site 0 1 1 0 21,22,24,105,106,139,140,142 1 -198431 cd10033 UDG_like_1 2 ligand binding site 0 1 1 0 20,21,22,23,24,63,140 5 -198432 cd10034 UDG_like_2 1 active site 0 1 1 0 15,16,18,93,94,123,124,126 1 -198432 cd10034 UDG_like_2 2 ligand binding site 0 1 1 0 14,15,16,17,18,54,124 5 -198433 cd10035 UDG_like_3 1 active site 0 1 1 0 19,20,22,109,110,129,130,132 1 -198433 cd10035 UDG_like_3 2 ligand binding site 0 1 1 0 18,19,20,21,22,65,130 5 -341057 cd09594 GluZincin 1 Zn binding site HHE 1 1 1 70,74,94 4 -341048 cd02699 M4_M36 1 Zn binding site HHE 1 1 1 124,128,151 4 -341059 cd09596 M36 1 Zn binding site HHE 1 1 1 138,142,168 4 -341060 cd09597 M4_TLP 1 Zn binding site HHE 1 1 1 103,107,127 4 -341061 cd09598 M4_like 1 Zn binding site HHE 1 1 1 95,99,122 4 -341049 cd06258 M3_like 1 Zn binding site HHE 1 1 1 261,265,289 4 -341053 cd06459 M3B_PepF 1 Zn binding site HHE 1 1 1 339,343,367 4 -341069 cd09606 M3B_PepF 1 Zn binding site HHE 1 1 1 345,349,373 4 -341070 cd09607 M3B_PepF 1 Zn binding site HHE 1 1 1 374,378,401 4 -341071 cd09608 M3B_PepF 1 Zn binding site HHE 1 1 1 355,359,383 4 -341072 cd09609 M3B_PepF 1 Zn binding site HHE 1 1 1 380,384,408 4 -341073 cd09610 M3B_PepF 1 Zn binding site HHE 1 1 1 333,337,360 4 -341054 cd06460 M32_Taq 1 Zn binding site HHE 1 1 1 252,256,282 4 -341055 cd06461 M2_ACE 1 Zn binding site HHE 1 1 1 338,342,366 4 -341068 cd09605 M3A 1 Zn binding site HHE 1 1 1 383,387,412 4 -341050 cd06455 M3A_TOP 1 Zn binding site HHE 1 1 1 436,440,465 4 -341051 cd06456 M3A_DCP 1 Zn binding site HHE 1 1 1 444,448,473 4 -341052 cd06457 M3A_MIP 1 Zn binding site HHE 1 1 1 408,412,437 4 -341056 cd08662 M13 1 Zn binding site HHE 1 1 1 480,484,541 4 -341058 cd09595 M1 1 Zn binding site HHE 1 1 1 281,285,304 4 -341062 cd09599 M1_LTA4H 1 Zn binding site HHE 1 1 1 287,291,310 4 -341063 cd09600 M1_APN 1 Zn binding site HHE 1 1 1 289,293,312 4 -341064 cd09601 M1_APN-Q_like 1 Zn binding site HHE 1 1 1 290,294,313 4 -341065 cd09602 M1_APN 1 Zn binding site HHE 1 1 1 291,295,314 4 -341066 cd09603 M1_APN_like 1 Zn binding site HHE 1 1 1 272,276,295 4 -341067 cd09604 M1_APN_like 1 Zn binding site HHE 1 1 1 298,302,321 4 -341074 cd09839 M1_like_TAF2 1 Zn binding site HHE 1 1 1 379,383,402 4 -193606 cd09632 PliI_like 1 dimer interface 0 1 1 0 0,2,16,18,19,20,21,22,25,26,27,28,29,31,33,45,48,49,50,52 2 -193606 cd09632 PliI_like 2 putative inhibitory loop 0 0 1 1 83,84,86 0 -193607 cd09633 Deltex_C 1 putative dimer interface 0 1 0 0 8,9,10,11,12,14,26,28,30,31,32,51,52,53,55,89,102,103,111 2 -197361 cd09803 UBAN 1 polyubiquitin binding site 0 1 1 0 38,42,43,45,46,49,50,51,53,54,56,57,58,61,62,65,66,69 2 -197361 cd09803 UBAN 2 dimer interface 0 1 1 0 1,2,5,6,8,9,12,15,16,19,20,22,23,26,30,33,40,43,46,47,50,53,54,57,58,60,61,64,65,68,72,75,79,82 2 -197362 cd09804 Dcp1 1 heterodimer interface 0 1 1 0 1,2,6,8,9,12,13,23,25,47,64,65,66,69,71 2 -212499 cd09815 TP_methylase 1 active site 0 1 1 0 7,87,88,89,92,93,94,117,118,138,160,161,188,190,191,218,219 1 -212499 cd09815 TP_methylase 2 SAM binding site 0 1 0 0 87,88,89,92,93,117,118,161,188,190,191,218,219 5 -212499 cd09815 TP_methylase 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,91,92,97,100,101,111,112,113,114,115,116,117,119,120,121,123,124,134,135,136,195 2 -212500 cd11641 Precorrin-4_C11-MT 1 active site 0 1 1 0 7,78,79,80,83,84,85,108,109,134,159,160,187,189,190,218,219 1 -212500 cd11641 Precorrin-4_C11-MT 2 SAM binding site 0 1 0 0 78,79,80,83,84,108,109,160,187,189,190,218,219 5 -212500 cd11641 Precorrin-4_C11-MT 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,82,83,88,91,92,102,103,104,105,106,107,108,110,111,112,114,115,130,131,132,194 2 -212501 cd11642 SUMT 1 active site 0 1 1 0 8,84,85,86,89,90,91,114,115,140,164,165,192,194,195,223,224 1 -212501 cd11642 SUMT 2 SAM binding site 0 1 0 0 84,85,86,89,90,114,115,165,192,194,195,223,224 5 -212501 cd11642 SUMT 3 homodimer interface 0 1 1 0 8,14,15,16,17,19,20,88,89,94,97,98,108,109,110,111,112,113,114,116,117,118,120,121,136,137,138,199 2 -212502 cd11643 Precorrin-6A-synthase 1 active site 0 1 1 0 7,107,108,109,112,113,114,140,141,164,181,182,202,204,205,240,241 1 -212502 cd11643 Precorrin-6A-synthase 2 SAM binding site 0 1 0 0 107,108,109,112,113,140,141,182,202,204,205,240,241 5 -212502 cd11643 Precorrin-6A-synthase 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,111,112,118,121,122,134,135,136,137,138,139,140,142,143,144,146,147,160,161,162,209 2 -212503 cd11644 Precorrin-6Y-methylase 1 active site 0 1 1 0 7,71,72,73,76,77,78,99,100,119,140,141,168,170,171,195,196 1 -212503 cd11644 Precorrin-6Y-methylase 2 SAM binding site 0 1 0 0 71,72,73,76,77,99,100,141,168,170,171,195,196 5 -212503 cd11644 Precorrin-6Y-methylase 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,75,76,81,84,85,93,94,95,96,97,98,99,101,102,103,105,106,115,116,117,175 2 -212504 cd11645 Precorrin_2_C20_MT 1 active site 0 1 1 0 8,95,96,97,100,101,102,125,126,149,169,170,195,197,198,220,221 1 -212504 cd11645 Precorrin_2_C20_MT 2 SAM binding site 0 1 0 0 95,96,97,100,101,125,126,170,195,197,198,220,221 5 -212504 cd11645 Precorrin_2_C20_MT 3 homodimer interface 0 1 1 0 8,14,15,16,17,19,20,99,100,105,108,109,119,120,121,122,123,124,125,127,128,129,131,132,145,146,147,202 2 -212505 cd11646 Precorrin_3B_C17_MT 1 active site 0 1 1 0 9,78,79,80,83,84,85,110,111,131,158,159,190,192,193,217,218 1 -212505 cd11646 Precorrin_3B_C17_MT 2 SAM binding site 0 1 0 0 78,79,80,83,84,110,111,159,190,192,193,217,218 5 -212505 cd11646 Precorrin_3B_C17_MT 3 homodimer interface 0 1 1 0 9,15,16,17,18,20,21,82,83,88,91,92,104,105,106,107,108,109,110,112,113,114,116,117,127,128,129,197 2 -212506 cd11647 Diphthine_synthase 1 active site 0 1 1 0 8,82,83,84,87,88,89,112,113,133,162,163,204,206,207,232,233 1 -212506 cd11647 Diphthine_synthase 2 SAM binding site 0 1 0 0 82,83,84,87,88,112,113,163,204,206,207,232,233 5 -212506 cd11647 Diphthine_synthase 3 homodimer interface 0 1 1 0 8,14,15,16,17,19,20,86,87,92,95,96,106,107,108,109,110,111,112,114,115,116,118,119,129,130,131,211 2 -212507 cd11648 RsmI 1 active site 0 1 1 0 7,79,80,81,84,85,86,109,110,129,154,155,180,182,183,211,212 1 -212507 cd11648 RsmI 2 SAM binding site 0 1 0 0 79,80,81,84,85,109,110,155,180,182,183,211,212 5 -212507 cd11648 RsmI 3 homodimer interface 0 1 1 0 7,13,14,15,16,18,19,83,84,89,92,93,103,104,105,106,107,108,109,111,112,113,115,116,125,126,127,187 2 -212508 cd11649 RsmI_like 1 active site 0 1 1 0 7,87,88,89,92,93,94,117,118,137,166,167,193,195,196,223,224 1 -212508 cd11649 RsmI_like 2 SAM binding site 0 1 0 0 87,88,89,92,93,117,118,167,193,195,196,223,224 5 -212508 cd11649 RsmI_like 3 homodimer interface 0 1 1 0 7,16,17,18,19,21,22,91,92,97,100,101,111,112,113,114,115,116,117,119,120,121,123,124,133,134,135,200 2 -212509 cd11723 YabN_N 1 active site 0 1 1 0 8,86,87,88,91,92,93,117,118,138,155,156,184,186,187,212,213 1 -212509 cd11723 YabN_N 2 SAM binding site 0 1 0 0 86,87,88,91,92,117,118,156,184,186,187,212,213 5 -212509 cd11723 YabN_N 3 homodimer interface 0 1 1 0 8,14,15,16,17,19,20,90,91,97,100,101,111,112,113,114,115,116,117,123,124,125,127,128,134,135,136,191 2 -212510 cd11724 TP_methylase_like 1 active site 0 1 1 0 9,107,108,109,112,113,114,135,136,162,186,187,213,215,216,245,246 1 -212510 cd11724 TP_methylase_like 2 SAM binding site 0 1 0 0 107,108,109,112,113,135,136,187,213,215,216,245,246 5 -212510 cd11724 TP_methylase_like 3 homodimer interface 0 1 1 0 9,15,16,17,18,20,21,111,112,117,120,121,129,130,131,132,133,134,135,137,138,139,141,142,158,159,160,221 2 -350203 cd09852 PIN_SF 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,78,97,99 1 -350201 cd06167 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,64,89,92 1 -350234 cd10910 PIN_limkain_b1_N_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 6,76,102,109 1 -350235 cd10911 PIN_LabA 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 7,89,112,114 1 -350237 cd11297 PIN_LabA-like_N_1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,69,94,96 1 -350287 cd18720 PIN_YqxD-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,56,73,76 1 -350288 cd18721 PIN_ZNF451-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,68,94,99 1 -350289 cd18722 PIN_NicB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 6,68,93,95 1 -350290 cd18723 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,61,87,91 1 -350291 cd18724 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,106,132,140 1 -350292 cd18725 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,84,108,110 1 -350293 cd18726 PIN_LabA-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,65,90,92 1 -350204 cd09853 PIN_FEN-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,120,143,145 1 -350199 cd00008 PIN_53EXO-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,110,133,135 1 -350209 cd09859 PIN_53EXO 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,104,127,129 1 -350210 cd09860 PIN_T4-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,110,133,135 1 -350200 cd00128 PIN_FEN1_EXO1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 24,110,129,131 1 -350206 cd09856 PIN_FEN1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 25,146,165,167 1 -350215 cd09867 PIN_FEN1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 24,151,170,172 1 -350216 cd09868 PIN_XPG_RAD2 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 28,119,138,140 1 -350217 cd09869 PIN_GEN1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 28,135,154,156 1 -350218 cd09870 PIN_YEN1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 39,130,149,151 1 -350207 cd09857 PIN_EXO1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 29,151,170,172 1 -350208 cd09858 PIN_MKT1 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 29,154,174,176 1 -350239 cd18672 PIN_FAM120B-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 39,156,175,177 1 -350240 cd18673 PIN_XRN1-2-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,150,178,180 1 -350241 cd18674 PIN_Pox_G5 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,101,125,127 1 -350242 cd18675 PIN_SpAst1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,108,126,128 1 -350243 cd18676 PIN_asteroid-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,115,133,135 1 -350205 cd09854 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,113,115 1 -350202 cd08553 PIN_Fcf1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,75,96,98 1 -350212 cd09864 PIN_Fcf1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 15,85,104,106 1 -350213 cd09865 PIN_ScUtp23p-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 28,98,121,123 1 -350214 cd09866 PIN_Fcf1-Utp23-H 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 12,82,103,105 1 -350211 cd09862 PIN_Rrp44-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 53,130,157,159 1 -350219 cd09871 PIN_MtVapC28-VapC30-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,98,116,118 1 -350221 cd09873 PIN_Pae0151-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,116 1 -350222 cd09874 PIN_MT3492-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,100,119,121 1 -350223 cd09875 PIN_VapC-FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,98,116,118 1 -350220 cd09872 PIN_Sll0205-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,114 1 -350229 cd09881 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,115 1 -350297 cd18730 PIN_PH0500-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,91,109,112 1 -350298 cd18731 PIN_NgFitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,102,120,123 1 -350299 cd18732 PIN_MtVapC4-C5_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,90,108,111 1 -350335 cd18768 PIN_MtVapC4-C5-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,91,109,111 1 -350300 cd18733 PIN_RfVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,98,116,119 1 -350301 cd18734 PIN_RfVapC2-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,116 1 -350302 cd18735 PIN_HiVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,115 1 -350303 cd18736 PIN_CcVapC1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,89,107,110 1 -350304 cd18737 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,81,99,102 1 -350305 cd18738 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,85,103,106 1 -350306 cd18739 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,92,110,112 1 -350307 cd18740 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,114 1 -350308 cd18741 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,88,106,109 1 -350309 cd18742 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,114 1 -350310 cd18743 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,92,110,113 1 -350311 cd18744 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,115 1 -350312 cd18745 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,95,113,116 1 -350313 cd18746 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,99,117,120 1 -350314 cd18747 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,97,115,118 1 -350315 cd18748 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,114 1 -350316 cd18749 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,114 1 -350317 cd18750 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,115 1 -350318 cd18751 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,116 1 -350319 cd18752 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,96,114,117 1 -350320 cd18753 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,113 1 -350321 cd18754 PIN_VapC4-5_FitB-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,116 1 -350230 cd09882 PIN_MtVapC3-like_start 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,113 1 -350322 cd18755 PIN_MtVapC3_VapC21-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,90,108,110 1 -350323 cd18756 PIN_MtVapC15-VapC11-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,114 1 -350324 cd18757 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,114 1 -350325 cd18758 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,92,110,112 1 -350326 cd18759 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,91,109,111 1 -350327 cd18760 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,113 1 -350328 cd18761 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,92,110,112 1 -350329 cd18762 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,115 1 -350330 cd18763 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,113 1 -350331 cd18764 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,112,114 1 -350332 cd18765 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,115 1 -350333 cd18766 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,113,115 1 -350334 cd18767 PIN_MtVapC3-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,91,109,111 1 -350224 cd09876 PIN_Nob1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,76,94,96 1 -350225 cd09877 PIN_YacL-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,82,100,102 1 -350226 cd09878 PIN_VapC_VirB11L-ATPase-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,89,107,109 1 -350227 cd09879 PIN_VapC_AF0591-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,76,94,96 1 -350228 cd09880 PIN_Smg5-6-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,98,128,130 1 -350231 cd09883 PIN_VapC_PhoHL-ATPase 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 6,98,122,124 1 -350232 cd09884 PIN_Smg5-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,88,123,134 1 -350233 cd09885 PIN_Smg6-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 10,114,153,155 1 -350294 cd18727 PIN_Swt1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,117,119 1 -350244 cd18677 PIN_MjVapC2-VapC6_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,103,122,124 1 -350245 cd18678 PIN_MtVapC25_VapC33-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,105,123,125 1 -350246 cd18679 PIN_VapC-Af1683-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,99,117,119 1 -350247 cd18680 PIN_MtVapC20-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,100,119,121 1 -350248 cd18681 PIN_MtVapC27-VapC40_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,96,114,116 1 -350249 cd18682 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,89,107,109 1 -350250 cd18683 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,93,112,114 1 -350251 cd18684 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,97,115,117 1 -350252 cd18685 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,77,95,97 1 -350253 cd18686 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,88,106,108 1 -350254 cd18687 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,85,104,107 1 -350255 cd18688 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,98,116,121 1 -350256 cd18689 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,111,113 1 -350257 cd18690 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,119,121 1 -350258 cd18691 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 5,95,113,115 1 -350259 cd18692 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,94,113,115 1 -350260 cd18693 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,93,112,113 1 -350261 cd18694 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,99,118,120 1 -350262 cd18695 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,90,103,105 1 -350263 cd18696 PIN_MtVapC26-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,114,117 1 -350264 cd18697 PIN_VapC_N-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,145,172,175 1 -350265 cd18698 PIN_VapC_C-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,103,121,124 1 -350266 cd18699 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,91,110,112 1 -350267 cd18700 PIN_GNAT-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,97,116,117 1 -350268 cd18701 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,74,93,95 1 -350269 cd18702 PIN_VapC_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,105,122,124 1 -350270 cd18703 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,95,117,118 1 -350271 cd18704 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,104,128,130 1 -350272 cd18705 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,98,117,119 1 -350273 cd18706 PIN_STKc_like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,80,102,104 1 -350274 cd18707 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,90,108,109 1 -350275 cd18708 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,75,99,101 1 -350276 cd18709 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,114,179,181 1 -350277 cd18710 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,88,113,115 1 -350278 cd18711 PIN_VapC-like_DUF411 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,100,118,119 1 -350279 cd18712 PIN_VapC-like_DUF411 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,116,137,139 1 -350280 cd18713 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,104,123,125 1 -350281 cd18714 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,186,211,213 1 -350282 cd18715 PIN_VapC-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,89,108,110 1 -350283 cd18716 PIN_SSO1118-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,67,85,87 1 -350284 cd18717 PIN_ScNmd4p-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 2,107,133,135 1 -350236 cd10912 PIN_YacP-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 4,79,102,105 1 -350238 cd18671 PIN_PRORP-Zc3h12a-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,81,99,103 1 -350285 cd18718 PIN_PRORP 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,75,95,99 1 -350286 cd18719 PIN_Zc3h12a-N4BP1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,85,103,107 1 -350295 cd18728 PIN_N4BP1-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,85,103,107 1 -350296 cd18729 PIN_Zc3h12-like 1 active site [DENQ][DENQ][DENQ][DENQ] 1 1 1 3,88,106,110 1 -197366 cd09916 CpxP_like 1 dimer interface 0 1 1 0 33,37,40,41,45,47,51,54,58,62,66,69,70,73,76,87,88,91 2 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 3 HR2 0 0 1 1 64,65,66,67,68,69,70,71,72 0 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,54,65,68,69,72 2 -197369 cd09909 HIV-1-like_HR1-HR2 1 HR1 0 0 1 1 22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54 0 -197369 cd09909 HIV-1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 49,50,51,52,53,54,55,56,57 0 -197369 cd09909 HIV-1-like_HR1-HR2 3 HR2 0 0 1 1 92,93,94,95,96,97,98,99,100 0 -197369 cd09909 HIV-1-like_HR1-HR2 4 homotrimer interface 0 1 1 1 22,23,24,26,27,29,32,33,34,36,37,38,40,41,43,44,48,50,51,52,54,73,93,96,97,100 2 -197371 cd09948 Ebola_RSV-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 3 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197371 cd09948 Ebola_RSV-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,54,64,67,68,71 2 -197367 cd09850 Ebola-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197367 cd09850 Ebola-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197367 cd09850 Ebola-like_HR1-HR2 3 HR2 0 0 1 1 68,69,70,71,72,73,74,75,76 0 -197367 cd09850 Ebola-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,55,69,72,73,76 2 -197368 cd09851 HTLV-1-like_HR1-HR2 1 HR1 0 0 1 1 8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40 0 -197368 cd09851 HTLV-1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 35,36,37,38,39,40,41,42,43 0 -197368 cd09851 HTLV-1-like_HR1-HR2 3 HR2 0 0 1 1 69,70,71,72,73,74,75,76,77 0 -197368 cd09851 HTLV-1-like_HR1-HR2 4 homotrimer interface 0 1 1 1 8,9,10,12,13,15,18,19,20,22,23,24,26,27,29,30,34,36,37,38,40,61,70,73,74,77 2 -197372 cd09949 RSV-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197372 cd09949 RSV-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197372 cd09949 RSV-like_HR1-HR2 3 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197372 cd09949 RSV-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,54,64,67,68,71 2 -197373 cd09950 ENVV1-like_HR1-HR2 1 HR1 0 0 1 1 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32 0 -197373 cd09950 ENVV1-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 27,28,29,30,31,32,33,34,35 0 -197373 cd09950 ENVV1-like_HR1-HR2 3 HR2 0 0 1 1 63,64,65,66,67,68,69,70,71 0 -197373 cd09950 ENVV1-like_HR1-HR2 4 homotrimer interface 0 1 1 1 0,1,2,4,5,7,10,11,12,14,15,16,18,19,21,22,26,28,29,30,32,54,64,67,68,71 2 -197374 cd09951 HERV-Rb-like_HR1-HR2 1 HR1 0 0 1 1 4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 2 immunosuppressive region 0 0 1 1 31,32,33,34,35,36,37,38,39 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 3 HR2 0 0 1 1 71,72,73,74,75,76,77,78,79 0 -197374 cd09951 HERV-Rb-like_HR1-HR2 4 homotrimer interface 0 1 1 1 4,5,6,8,9,11,14,15,16,18,19,20,22,23,25,26,30,32,33,34,36,58,72,75,76,79 2 -197380 cd09971 SdiA-regulated 1 putative active site 0 1 0 1 17,33,58,60,113,167,218,233 1 -212513 cd09987 Arginase_HDAC 1 active site 0 1 1 1 34,57,59,61,149,151,194 1 -212513 cd09987 Arginase_HDAC 2 metal binding site 0 1 1 1 57,59,151 4 -212511 cd09015 Ureohydrolase 1 active site 0 1 1 1 88,111,113,115,202,204,247 1 -212511 cd09015 Ureohydrolase 2 metal binding site 0 1 1 1 111,113,204 4 -212514 cd09988 Formimidoylglutamase 1 active site 0 1 1 1 83,107,109,111,194,196,239 1 -212514 cd09988 Formimidoylglutamase 2 metal binding site 0 1 1 1 107,109,196 4 -212516 cd09990 Agmatinase-like 1 active site 0 1 1 1 89,113,115,117,206,208,251 1 -212516 cd09990 Agmatinase-like 2 metal binding site 0 1 1 1 113,115,208 4 -212537 cd11589 Agmatinase_like_1 1 active site 0 1 1 1 95,117,119,121,204,206,249 1 -212537 cd11589 Agmatinase_like_1 2 metal binding site 0 1 1 1 117,119,206 4 -212538 cd11592 Agmatinase_PAH 1 active site 0 1 1 1 107,130,132,134,221,223,265 1 -212538 cd11592 Agmatinase_PAH 2 metal binding site 0 1 1 1 130,132,223 4 -212539 cd11593 Agmatinase-like_2 1 active site 0 1 1 1 88,111,113,115,195,197,240 1 -212539 cd11593 Agmatinase-like_2 2 metal binding site 0 1 1 1 111,113,197 4 -212536 cd11587 Arginase-like 1 active site 0 1 1 1 92,115,117,119,222,224,267 1 -212536 cd11587 Arginase-like 2 metal binding site 0 1 1 1 115,117,224 4 -212515 cd09989 Arginase 1 active site 0 1 1 1 94,118,120,122,222,224,267 1 -212515 cd09989 Arginase 2 metal binding site 0 1 1 1 118,120,224 4 -212523 cd09999 Arginase-like_1 1 active site 0 1 1 1 85,108,110,112,206,208,251 1 -212523 cd09999 Arginase-like_1 2 metal binding site 0 1 1 1 108,110,208 4 -212512 cd09301 HDAC 1 active site 0 1 1 1 105,141,143,145,219,221,260 1 -212512 cd09301 HDAC 2 metal binding site 0 1 1 1 141,143,221 4 -212517 cd09991 HDAC_classI 1 active site 0 1 1 1 127,162,164,166,248,250,287 1 -212517 cd09991 HDAC_classI 2 metal binding site 0 1 1 1 162,164,250 4 -212520 cd09994 HDAC_AcuC_like 1 active site 0 1 1 1 127,163,165,167,250,252,294 1 -212520 cd09994 HDAC_AcuC_like 2 metal binding site 0 1 1 1 163,165,252 4 -212524 cd10000 HDAC8 1 active site 0 1 1 1 129,164,166,168,251,253,290 1 -212524 cd10000 HDAC8 2 metal binding site 0 1 1 1 164,166,253 4 -212528 cd10004 RPD3-like 1 active site 0 1 1 1 133,168,170,172,254,256,293 1 -212528 cd10004 RPD3-like 2 metal binding site 0 1 1 1 168,170,256 4 -212529 cd10005 HDAC3 1 active site 0 1 1 1 132,167,169,171,254,256,293 1 -212529 cd10005 HDAC3 2 metal binding site 0 1 1 1 167,169,256 4 -212534 cd10010 HDAC1 1 active site 0 1 1 1 137,172,174,176,258,260,297 1 -212534 cd10010 HDAC1 2 metal binding site 0 1 1 1 172,174,260 4 -212535 cd10011 HDAC2 1 active site 0 1 1 1 133,168,170,172,254,256,293 1 -212535 cd10011 HDAC2 2 metal binding site 0 1 1 1 168,170,256 4 -212540 cd11598 HDAC_Hos2 1 active site 0 1 1 1 131,166,168,170,253,255,292 1 -212540 cd11598 HDAC_Hos2 2 metal binding site 0 1 1 1 166,168,255 4 -212543 cd11680 HDAC_Hos1 1 active site 0 1 1 1 115,151,153,155,234,236,275 1 -212543 cd11680 HDAC_Hos1 2 metal binding site 0 1 1 1 151,153,236 4 -212518 cd09992 HDAC_classII 1 active site 0 1 1 1 105,142,144,146,227,229,271 1 -212518 cd09992 HDAC_classII 2 metal binding site 0 1 1 1 142,144,229 4 -212521 cd09996 HDAC_classII_1 1 active site 0 1 1 1 137,174,176,178,260,262,304 1 -212521 cd09996 HDAC_classII_1 2 metal binding site 0 1 1 1 174,176,262 4 -212522 cd09998 HDAC_Hos3 1 active site 0 1 1 1 120,157,159,161,285,287,333 1 -212522 cd09998 HDAC_Hos3 2 metal binding site 0 1 1 1 157,159,287 4 -212525 cd10001 HDAC_classII_APAH 1 active site 0 1 1 1 117,152,154,156,239,241,278 1 -212525 cd10001 HDAC_classII_APAH 2 metal binding site 0 1 1 1 152,154,241 4 -212526 cd10002 HDAC10_HDAC6-dom1 1 active site 0 1 1 1 117,154,156,158,245,247,285 1 -212526 cd10002 HDAC10_HDAC6-dom1 2 metal binding site 0 1 1 1 154,156,247 4 -212545 cd11682 HDAC6-dom1 1 active site 0 1 1 1 117,154,156,158,245,247,285 1 -212545 cd11682 HDAC6-dom1 2 metal binding site 0 1 1 1 154,156,247 4 -212546 cd11683 HDAC10 1 active site 0 1 1 1 117,154,156,158,245,247,285 1 -212546 cd11683 HDAC10 2 metal binding site 0 1 1 1 154,156,247 4 -212527 cd10003 HDAC6-dom2 1 active site 0 1 1 1 126,163,165,167,254,256,294 1 -212527 cd10003 HDAC6-dom2 2 metal binding site 0 1 1 1 163,165,256 4 -212541 cd11599 HDAC_classII_2 1 active site 0 1 1 1 106,143,145,147,224,226,268 1 -212541 cd11599 HDAC_classII_2 2 metal binding site 0 1 1 1 143,145,226 4 -212542 cd11600 HDAC_Clr3 1 active site 0 1 1 1 115,154,156,158,245,247,285 1 -212542 cd11600 HDAC_Clr3 2 metal binding site 0 1 1 1 154,156,247 4 -212544 cd11681 HDAC_classIIa 1 active site 0 1 1 1 151,188,190,192,280,282,322 1 -212544 cd11681 HDAC_classIIa 2 metal binding site 0 1 1 1 188,190,282 4 -212530 cd10006 HDAC4 1 active site 0 1 1 1 154,191,193,195,283,285,325 1 -212530 cd10006 HDAC4 2 metal binding site 0 1 1 1 191,193,285 4 -212531 cd10007 HDAC5 1 active site 0 1 1 1 154,191,193,195,283,285,325 1 -212531 cd10007 HDAC5 2 metal binding site 0 1 1 1 191,193,285 4 -212532 cd10008 HDAC7 1 active site 0 1 1 1 152,189,191,193,281,283,323 1 -212532 cd10008 HDAC7 2 metal binding site 0 1 1 1 189,191,283 4 -212533 cd10009 HDAC9 1 active site 0 1 1 1 152,189,191,193,281,283,323 1 -212533 cd10009 HDAC9 2 metal binding site 0 1 1 1 189,191,283 4 -212519 cd09993 HDAC_classIV 1 active site 0 1 1 1 102,139,141,143,214,216,257 1 -212519 cd09993 HDAC_classIV 2 metal binding site 0 1 1 1 139,141,216 4 -199900 cd10014 TFIIA_gamma_C 1 TFIIA subunit interface 0 1 1 1 0,1,2,3,4,5,6,9,11,14,16,18,25,33,34,35,37,38,39,40,41,42,43,44 2 -199900 cd10014 TFIIA_gamma_C 2 TBP interface 0 1 1 1 6,7,8,9,10,11,12,13,14,16 2 -197381 cd10015 BfiI_C_EcoRII_N_B3 1 DNA binding site 0 1 1 0 4,7,19,22,24,61,73,75,76,78,79 3 -197382 cd10016 EcoRII_N 1 DNA binding site 0 1 1 0 7,10,22,25,27,64,81,83,84,86,87 3 -197383 cd10017 B3_DNA 1 DNA binding site 0 1 1 0 4,7,15,18,20,49,60,62,63,65,66 3 -197384 cd10018 BfiI_C 1 DNA binding site 0 1 1 0 4,7,27,30,32,73,85,87,88,90,91 3 -199901 cd10145 TFIIA_gamma_N 1 TFIIA subunit interface 0 1 1 1 3,4,7,8,9,12,13,15,16,17,19,20,30,34,37,41,42,43,45,46,47 2 -199902 cd10147 Wzt_C-like 1 putative carbohydrate binding site 0 0 1 1 4,51,66,103,116,118,119 5 -197385 cd10148 CsoR-like_DUF156 1 putative metal binding site 0 1 1 1 27,52,56 4 -197385 cd10148 CsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,72,75,76,77,78 2 -197385 cd10148 CsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,66,67,69,70,71,73,74 2 -197385 cd10148 CsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,66,67,69,70,71,72,73,74,75,76,77,78 2 -197385 cd10148 CsoR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 26,52,72 0 -197386 cd10151 TthCsoR-like_DUF156 1 putative metal binding site 0 1 1 1 29,54,58 4 -197386 cd10151 TthCsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,50,54,74,77,78,79,80 2 -197386 cd10151 TthCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 48,51,52,55,56,58,59,68,69,71,72,73,75,76 2 -197386 cd10151 TthCsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,48,50,51,52,54,55,56,59,68,69,71,72,73,74,75,76,77,78,79,80 2 -197386 cd10151 TthCsoR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 28,54,74 0 -197387 cd10152 SaCsoR-like_DUF156 1 putative metal binding site 0 1 1 1 27,52,56 4 -197387 cd10152 SaCsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,71,74,75,76,77 2 -197387 cd10152 SaCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,65,66,68,69,70,72,73 2 -197387 cd10152 SaCsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,65,66,68,69,70,71,72,73,74,75,76,77 2 -197387 cd10152 SaCsoR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 26,52,71 0 -197388 cd10153 RcnR-FrmR-like_DUF156 1 putative metal binding site 0 1 1 1 32,57,61 4 -197388 cd10153 RcnR-FrmR-like_DUF156 2 putative homodimer interface 0 1 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,53,57,78,81,82,83,84 2 -197388 cd10153 RcnR-FrmR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 51,54,55,58,59,61,62,72,73,75,76,77,79,80 2 -197388 cd10153 RcnR-FrmR-like_DUF156 4 putative homotetramer interface 0 1 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,51,53,54,55,57,58,59,62,72,73,75,76,77,78,79,80,81,82,83,84 2 -197388 cd10153 RcnR-FrmR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 31,57,78 0 -197389 cd10154 NreA-like_DUF156 1 putative metal binding site 0 1 1 1 30,55,59 4 -197389 cd10154 NreA-like_DUF156 2 putative homodimer interface 0 1 1 1 3,6,7,10,11,14,17,18,20,21,24,25,26,27,29,30,31,33,34,35,37,38,40,41,44,45,48,51,55,77,80,81,82,83 2 -197389 cd10154 NreA-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 49,52,53,56,57,59,60,71,72,74,75,76,78,79 2 -197389 cd10154 NreA-like_DUF156 4 putative homotetramer interface 0 1 1 1 3,6,7,10,11,14,17,18,20,21,24,25,26,27,29,30,31,33,34,35,37,38,40,41,44,45,48,49,51,52,53,55,56,57,60,71,72,74,75,76,77,78,79,80,81,82,83 2 -197389 cd10154 NreA-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 29,55,77 0 -197390 cd10155 BsYrkD-like_DUF156 1 putative metal binding site 0 1 1 1 27,52,56 4 -197390 cd10155 BsYrkD-like_DUF156 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,73,76,77,78,79 2 -197390 cd10155 BsYrkD-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,67,68,70,71,72,74,75 2 -197390 cd10155 BsYrkD-like_DUF156 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,67,68,70,71,72,73,74,75,76,77,78,79 2 -197390 cd10155 BsYrkD-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 26,52,73 0 -197391 cd10156 FpFrmR-Cterm-like_DUF156 1 putative metal binding site 0 1 1 1 32,57,61 4 -197391 cd10156 FpFrmR-Cterm-like_DUF156 2 putative homodimer interface 0 1 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,53,57,76,79,80,81,82 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 51,54,55,58,59,61,62,70,71,73,74,75,77,78 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 4 putative homotetramer interface 0 1 1 1 5,8,9,12,13,16,19,20,22,23,26,27,28,29,31,32,33,35,36,37,39,40,42,43,46,47,50,51,53,54,55,57,58,59,62,70,71,73,74,75,76,77,78,79,80,81,82 2 -197391 cd10156 FpFrmR-Cterm-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 31,57,76 0 -197392 cd10157 BsCsoR-like_DUF156 1 putative metal binding site 0 1 1 1 29,54,58 4 -197392 cd10157 BsCsoR-like_DUF156 2 putative homodimer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,50,54,74,77,78,79,80 2 -197392 cd10157 BsCsoR-like_DUF156 3 putative homodimer-homodimer interface 0 1 1 1 48,51,52,55,56,58,59,68,69,71,72,73,75,76 2 -197392 cd10157 BsCsoR-like_DUF156 4 putative homotetramer interface 0 1 1 1 2,5,6,9,10,13,16,17,19,20,23,24,25,26,28,29,30,32,33,34,36,37,39,40,43,44,47,48,50,51,52,54,55,56,59,68,69,71,72,73,74,75,76,77,78,79,80 2 -197392 cd10157 BsCsoR-like_DUF156 5 putative allosteric switch controlling residues 0 0 1 1 28,54,74 0 -197393 cd10158 CsoR-like_DUF156_1 1 putative metal binding site 0 1 1 1 27,52,56 4 -197393 cd10158 CsoR-like_DUF156_1 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,71,74,75,76,77 2 -197393 cd10158 CsoR-like_DUF156_1 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,65,66,68,69,70,72,73 2 -197393 cd10158 CsoR-like_DUF156_1 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,65,66,68,69,70,71,72,73,74,75,76,77 2 -197393 cd10158 CsoR-like_DUF156_1 5 putative allosteric switch controlling residues 0 0 1 1 26,52,71 0 -197394 cd10159 CsoR-like_DUF156_2 1 putative metal binding site 0 1 1 1 28,53,57 4 -197394 cd10159 CsoR-like_DUF156_2 2 putative homodimer interface 0 1 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,49,53,73,76,77,78,79 2 -197394 cd10159 CsoR-like_DUF156_2 3 putative homodimer-homodimer interface 0 1 1 1 47,50,51,54,55,57,58,67,68,70,71,72,74,75 2 -197394 cd10159 CsoR-like_DUF156_2 4 putative homotetramer interface 0 1 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,47,49,50,51,53,54,55,58,67,68,70,71,72,73,74,75,76,77,78,79 2 -197394 cd10159 CsoR-like_DUF156_2 5 putative allosteric switch controlling residues 0 0 1 1 27,53,73 0 -197395 cd10160 CsoR-like_DUF156_3 1 putative metal binding site 0 1 1 1 28,53,57 4 -197395 cd10160 CsoR-like_DUF156_3 2 putative homodimer interface 0 1 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,49,53,73,76,77,78,79 2 -197395 cd10160 CsoR-like_DUF156_3 3 putative homodimer-homodimer interface 0 1 1 1 47,50,51,54,55,57,58,67,68,70,71,72,74,75 2 -197395 cd10160 CsoR-like_DUF156_3 4 putative homotetramer interface 0 1 1 1 1,4,5,8,9,12,15,16,18,19,22,23,24,25,27,28,29,31,32,33,35,36,38,39,42,43,46,47,49,50,51,53,54,55,58,67,68,70,71,72,73,74,75,76,77,78,79 2 -197395 cd10160 CsoR-like_DUF156_3 5 putative allosteric switch controlling residues 0 0 1 1 27,53,73 0 -197396 cd10161 CsoR-like_DUF156_4 1 putative metal binding site 0 1 1 1 27,52,56 4 -197396 cd10161 CsoR-like_DUF156_4 2 putative homodimer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,48,52,73,76,77,78,79 2 -197396 cd10161 CsoR-like_DUF156_4 3 putative homodimer-homodimer interface 0 1 1 1 46,49,50,53,54,56,57,67,68,70,71,72,74,75 2 -197396 cd10161 CsoR-like_DUF156_4 4 putative homotetramer interface 0 1 1 1 0,3,4,7,8,11,14,15,17,18,21,22,23,24,26,27,28,30,31,32,34,35,37,38,41,42,45,46,48,49,50,52,53,54,57,67,68,70,71,72,73,74,75,76,77,78,79 2 -197396 cd10161 CsoR-like_DUF156_4 5 putative allosteric switch controlling residues 0 0 1 1 26,52,73 0 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,55,56,59,60,61 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,56,60,61 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,55,56,59,60,61 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,56,60,61 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,55,56,59,60,61 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,56,60,61 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,55,59 2 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 1 tetramer interface 0 1 1 1 1,2,4,5,8,12,15,16,19,20,22,23,26,27,29,30,33,34,35,37,38,39,41,42,44,45,46,48,49,64,65,68,69,70 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 2 dimer interface A, B 0 1 1 1 30,34,45,46,49,65,69,70 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 3 dimer interface A, C 0 1 1 1 1,2,4,5,8,12,15,19,22,26,27,29,30,33,34,37,41,44,48,64,68 2 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N 4 dimer interface A, D 0 1 1 1 12,16,20,23,27,30,34,35,38,39,42,46,49 2 -198434 cd10284 growth_hormone_like 1 receptor binding interface 0 1 1 0 0,3,4,6,7,9,12,13,16,38,48,54,55,104,107,110,111,114,152,155,156,159,160,162,163,164,166,167,170,177 2 -198435 cd10285 somatotropin_like 1 receptor binding interface 0 1 1 0 0,3,4,6,7,9,12,13,16,41,51,57,58,102,105,108,109,112,153,156,157,160,161,163,164,165,167,168,171,179 2 -198436 cd10286 somatolactin 1 receptor binding interface 0 1 1 0 22,25,26,28,29,31,34,35,38,62,72,78,79,128,131,134,135,138,179,182,183,186,187,189,190,191,193,194,197,205 2 -198437 cd10287 prolactin_2 1 receptor binding interface 0 1 1 0 3,6,7,9,10,12,15,16,19,39,49,55,56,105,108,111,112,115,157,160,161,164,165,167,168,169,171,172,175,183 2 -198438 cd10288 prolactin_like 1 receptor binding interface 0 1 1 0 17,20,21,23,24,26,29,30,33,55,65,71,72,121,124,127,128,131,172,175,176,179,180,182,183,184,186,187,190,198 2 -199215 cd10315 CBM41_pullulanase 1 carbohydrate binding site 0 1 1 0 19,21,60,68,73 5 -199905 cd10317 RGL4_C 1 substrate binding site 0 1 1 1 106,108,112 5 -199905 cd10317 RGL4_C 2 Ca binding site 0 1 1 1 6,155 4 -199906 cd10318 RGL11 1 active site 0 1 1 0 322,360,411,494,495,555 1 -199906 cd10318 RGL11 2 metal binding site 0 1 1 0 112,117,119,121,125,181,183,185,189,322,328,330,332,336,345,346,358,360,366,375,381,416,425,456,458,462,499,503,511,556 4 -198439 cd10319 EphR_LBD 1 ephrin binding site 0 1 1 0 11,25,26,27,28,30,31,36,38,41,74,76,128,135,136,137,164,165,166,168 2 -198440 cd10472 EphR_LBD_B 1 ephrin binding site 0 1 1 0 11,23,24,25,26,28,29,34,36,39,72,74,126,134,135,136,163,164,165,167 2 -198444 cd10476 EphR_LBD_B1 1 ephrin binding site 0 1 1 0 11,23,24,25,26,28,29,34,36,39,72,74,126,134,135,136,163,164,165,167 2 -198445 cd10477 EphR_LBD_B2 1 ephrin binding site 0 1 1 0 13,25,26,27,28,30,31,36,38,41,74,76,128,136,137,138,165,166,167,169 2 -198446 cd10478 EphR_LBD_B3 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,127,131,132,133,160,161,162,164 2 -198441 cd10473 EphR_LBD_A 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198447 cd10479 EphR_LBD_A1 1 ephrin binding site 0 1 1 0 12,25,26,27,28,30,31,35,37,40,75,77,127,135,136,137,164,165,166,168 2 -198448 cd10480 EphR_LBD_A2 1 ephrin binding site 0 1 1 0 12,25,26,27,28,30,31,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198449 cd10481 EphR_LBD_A3 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198450 cd10482 EphR_LBD_A4 1 ephrin binding site 0 1 1 0 12,25,26,27,28,30,31,36,38,41,74,76,124,132,133,134,161,162,163,165 2 -198451 cd10483 EphR_LBD_A5 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198452 cd10484 EphR_LBD_A6 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198453 cd10485 EphR_LBD_A7 1 ephrin binding site 0 1 1 0 14,26,27,28,29,31,32,37,39,42,75,77,125,133,134,135,162,163,164,166 2 -198454 cd10486 EphR_LBD_A8 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198455 cd10487 EphR_LBD_A10 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,73,75,123,131,132,133,160,161,162,164 2 -198442 cd10474 EphR_LBD_B4 1 ephrin binding site 0 1 1 0 12,26,27,28,29,31,32,37,39,42,76,78,130,138,139,140,167,168,169,171 2 -198443 cd10475 EphR_LBD_B6 1 ephrin binding site 0 1 1 0 12,24,25,26,27,29,30,35,37,40,75,77,129,138,139,140,167,168,169,171 2 -199907 cd10320 RGL4_N 1 active site 0 1 1 1 64,123,125,127,129,131,157,163,175,176,225,227,232 1 -199907 cd10320 RGL4_N 2 catalytic site 0 0 1 1 175,232 1 -199216 cd10321 RNase_Ire1_like 1 kinase interface 0 1 1 0 2,111,115,118,119,123 2 -199216 cd10321 RNase_Ire1_like 2 homodimer interface 0 1 1 1 4,8,11,12,76,79,80 2 -199216 cd10321 RNase_Ire1_like 3 ligand binding site 0 1 1 1 0,1,4,8,79 5 -199217 cd10422 RNase_Ire1 1 kinase interface 0 1 1 0 2,100,104,107,108,112 2 -199217 cd10422 RNase_Ire1 2 homodimer interface 0 1 1 1 4,8,11,12,71,74,75 2 -199217 cd10422 RNase_Ire1 3 ligand binding site 0 1 1 1 0,1,4,8,74 5 -199218 cd10423 RNase_RNase-L 1 kinase interface 0 1 1 0 2,103,107,110,111,115 2 -199218 cd10423 RNase_RNase-L 2 homodimer interface 0 1 1 1 4,8,11,12,77,80,81 2 -199218 cd10423 RNase_RNase-L 3 ligand binding site 0 1 1 1 0,1,4,8,80 5 -198456 cd10466 FimH_man-bind 1 mannosyl binding site 0 1 1 0 0,12,44,45,46,51,53,132,134,141,143 5 -198458 cd10467 FAM20_C_like 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198458 cd10467 FAM20_C_like 2 putative metal binding site 0 0 1 1 109,124 4 -198458 cd10467 FAM20_C_like 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198458 cd10467 FAM20_C_like 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198457 cd10314 FAM20_C 1 putative catalytic residues 0 0 1 1 94,101,121 1 -198457 cd10314 FAM20_C 2 putative metal binding site 0 0 1 1 106,121 4 -198457 cd10314 FAM20_C 3 putative catalytic loop 0 0 1 1 98,99,100,101,102,103,104,105,106 1 -198457 cd10314 FAM20_C 4 putative activation loop 0 0 1 1 121,122,123,124,125,126,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 0 -198460 cd10469 FAM20A_C 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198460 cd10469 FAM20A_C 2 putative metal binding site 0 0 1 1 109,124 4 -198460 cd10469 FAM20A_C 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198460 cd10469 FAM20A_C 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198461 cd10470 FAM20B_C 1 putative catalytic residues 0 0 1 1 94,101,120 1 -198461 cd10470 FAM20B_C 2 putative metal binding site 0 0 1 1 106,120 4 -198461 cd10470 FAM20B_C 3 putative catalytic loop 0 0 1 1 98,99,100,101,102,103,104,105,106 1 -198461 cd10470 FAM20B_C 4 putative activation loop 0 0 1 1 120,121,122,123,124,125,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 0 -198462 cd10471 FAM20C_C 1 putative catalytic residues 0 0 1 1 97,104,124 1 -198462 cd10471 FAM20C_C 2 putative metal binding site 0 0 1 1 109,124 4 -198462 cd10471 FAM20C_C 3 putative catalytic loop 0 0 1 1 101,102,103,104,105,106,107,108,109 1 -198462 cd10471 FAM20C_C 4 putative activation loop 0 0 1 1 124,125,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 0 -198459 cd10468 Four-jointed-like_C 1 putative catalytic residues 0 0 1 1 149,156,192 1 -198459 cd10468 Four-jointed-like_C 2 putative metal binding site 0 0 1 1 161,192 4 -198459 cd10468 Four-jointed-like_C 3 putative catalytic loop 0 0 1 1 153,154,155,156,157,158,159,160,161 1 -198459 cd10468 Four-jointed-like_C 4 putative activation loop 0 0 1 1 192,193,194,195,196,197,202,203,204,205,206,207,208,209,210,211,213,214,215,216,217,218 0 -240598 cd10546 VKOR 1 putative active site 0 0 1 1 29,37,43,108,111 1 -240598 cd10546 VKOR 2 redox center 0 1 1 1 108,109,110,111 1 -240599 cd12916 VKOR_1 1 putative active site 0 0 1 1 30,36,42,112,115 1 -240599 cd12916 VKOR_1 2 redox center 0 1 1 1 112,113,114,115 1 -240600 cd12917 VKOR_euk 1 putative active site 0 0 1 1 33,41,47,122,125 1 -240600 cd12917 VKOR_euk 2 redox center 0 1 1 1 122,123,124,125 1 -240601 cd12918 VKOR_arc 1 putative active site 0 0 1 1 29,37,43,108,111 1 -240601 cd12918 VKOR_arc 2 redox center 0 1 1 1 108,109,110,111 1 -240602 cd12919 VKOR_2 1 putative active site 0 0 1 1 42,48,54,123,126 1 -240602 cd12919 VKOR_2 2 redox center 0 1 1 1 123,124,125,126 1 -240603 cd12920 VKOR_3 1 putative active site 0 0 1 1 33,41,47,115,118 1 -240603 cd12920 VKOR_3 2 redox center 0 1 1 1 115,116,117,118 1 -240604 cd12921 VKOR_4 1 putative active site 0 0 1 1 32,40,46,110,113 1 -240604 cd12921 VKOR_4 2 redox center 0 1 1 1 110,111,112,113 1 -240605 cd12922 VKOR_5 1 putative active site 0 0 1 1 33,41,47,115,118 1 -240605 cd12922 VKOR_5 2 redox center 0 1 1 1 115,116,117,118 1 -199908 cd10719 DnaJ_zf 1 Zn binding sites CCCCCCCC 1 1 1 0,3,17,20,43,46,57,60 4 -199909 cd10747 DnaJ_C 1 substrate binding site 0 1 1 0 4,19,20,21,22,23,24,33,57 2 -199909 cd10747 DnaJ_C 2 dimer interface 0 1 1 0 95,96,99,100,120,121,122,123,153,154,155,156,157 2 -199910 cd10748 anti-TRAP 1 Zn binding site cccc 1 1 0 10,13,24,27 4 -199910 cd10748 anti-TRAP 2 TRAP binding interface 0 1 1 0 4,5,8,11,12,25,26,33,34,35,36,37,39,40 2 -199910 cd10748 anti-TRAP 3 trimer interface 0 1 1 0 0,1,2,5,6,7,30,34,37,38,40,41,42,44,45,46,47,48,49 2 -199910 cd10748 anti-TRAP 4 dodecamer interface 1 0 1 1 0 0,1,2,3,6,7,22,23,24,25,28,30,32,34,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51 2 -199910 cd10748 anti-TRAP 5 dodecamer interface 2 0 1 1 0 0,1,2,3,4,5,6,7,8,11,26,30,33,34,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51 2 -211380 cd10981 ZnPC_S1P1 1 Zn binding site HHHDHHE 1 1 1 4,55,113,117,123,139,143 4 -211381 cd11009 Zn_dep_PLPC 1 Zn binding site HHHDHHE 1 1 1 11,61,109,113,119,131,135 4 -211382 cd11010 S1-P1_nuclease 1 Zn binding site HHHDHHE 1 1 1 5,59,112,116,122,147,151 4 -199911 cd11005 M35_like 1 active site 0 1 0 1 122,123,126,135,138 1 -199911 cd11005 M35_like 2 Zn binding site 0 1 1 1 122,123,126,135 4 -199912 cd11006 M35_peptidyl-Lys_like 1 active site 0 1 0 1 117,118,121,130,133 1 -199912 cd11006 M35_peptidyl-Lys_like 2 Zn binding site 0 1 1 1 117,118,121,130 4 -199915 cd11306 M35_peptidyl-Lys 1 active site 0 1 0 1 114,115,118,127,130 1 -199915 cd11306 M35_peptidyl-Lys 2 Zn binding site 0 1 1 1 114,115,118,127 4 -199913 cd11007 M35_like_1 1 active site 0 1 0 1 135,136,139,148,151 1 -199913 cd11007 M35_like_1 2 Zn binding site 0 1 1 1 135,136,139,148 4 -199914 cd11008 M35_deuterolysin_like 1 active site 0 1 0 1 123,124,127,138,141 1 -199914 cd11008 M35_deuterolysin_like 2 Zn binding site 0 1 1 1 123,124,127,138 4 -199916 cd11307 M35_Asp_f2_like 1 active site 0 1 0 1 132,133,136,147,150 1 -199916 cd11307 M35_Asp_f2_like 2 Zn binding site 0 1 1 1 132,133,136,147 4 -199917 cd11295 Mago_nashi 1 exon junction core complex interaction site 0 1 1 0 7,8,9,10,11,12,13,16,17,25,30,32,33,34,36,37,38,39,40,42,44,47,48,49,51,52,55,58,59,99,101,102,103,119,120,123,124,126,127,128,130,131,132,135,136,137,138,139,140,141 2 -199917 cd11295 Mago_nashi 2 Y14 interface 0 1 1 0 25,47,48,49,51,52,55,58,59,120,123,124,127,128,131,132,135,136,137,138 2 -199917 cd11295 Mago_nashi 3 eIF4AIII interface 0 1 1 0 7,8,9,13,16,17,30,32,33,34,36,37,38,39,40,42,44,79,99,101,102,103,119,123,126,127,130,138,139,140,141,142 2 -199917 cd11295 Mago_nashi 4 Barentsz interface 0 1 1 0 9,10,11,12,13,36,37,78,79,99 2 -199917 cd11295 Mago_nashi 5 Imp13 interface 0 1 1 0 10,41,43,44,45,55,58,64,67,71,91,137 2 -199917 cd11295 Mago_nashi 6 Upf3b interface 0 1 1 0 62,64,103 2 -211383 cd11296 O-FucT_like 1 GDP-Fucose binding site 0 1 0 0 9,10,11,12,77,79,127,128,129,171,190,191,192 5 -211384 cd11298 O-FucT-2 1 GDP-Fucose binding site 0 1 0 0 10,11,12,13,249,251,288,289,290,327,346,347,348 5 -211385 cd11299 O-FucT_plant 1 GDP-Fucose binding site 0 1 0 0 8,9,10,11,167,169,208,209,210,252,271,272,273 5 -211386 cd11300 Fut8_like 1 GDP-Fucose binding site 0 1 0 0 45,46,47,48,189,191,235,236,237,278,297,298,299 5 -211387 cd11301 Fut1_Fut2_like 1 GDP-Fucose binding site 0 1 0 0 9,10,11,12,141,143,183,184,185,212,230,231,232 5 -211388 cd11302 O-FucT-1 1 GDP-Fucose binding site 0 1 0 0 13,14,15,16,207,209,275,276,277,304,323,324,325 5 -211389 cd11548 NodZ_like 1 GDP-Fucose binding site 0 1 0 0 8,9,10,11,170,172,209,210,211,251,270,271,272 5 -206765 cd11305 alpha_DG_C 1 CA-like domain interface 0 1 1 0 18,19,23,24,26,27,30,41,42,43,44,45,46,47 2 -206766 cd11358 RNase_PH 1 oligomer interface 0 1 0 0 12,14,29,31,32,33,49,51,56,73,76,80,97,102,107,125,126,127,147,186,187,188,189,190,191,192,193,194,195,196,197,198,203,207 2 -206766 cd11358 RNase_PH 2 RNA binding site 0 0 1 0 47,48,49,76,83 3 -206767 cd11362 RNase_PH_bact 1 oligomer interface 0 1 0 0 13,15,30,32,33,34,50,52,57,79,82,86,100,105,110,128,129,130,148,186,187,188,189,190,191,192,193,194,195,196,197,198,204,208 2 -206767 cd11362 RNase_PH_bact 2 RNA binding site 0 0 1 0 48,49,50,82,89 3 -206768 cd11363 RNase_PH_PNPase_1 1 oligomer interface 0 1 0 0 21,23,38,40,41,42,55,57,62,85,88,92,104,109,114,134,135,136,143,180,181,182,183,184,185,186,187,188,189,190,191,192,196,200 2 -206768 cd11363 RNase_PH_PNPase_1 2 RNA binding site 0 0 1 0 53,54,55,88,95 3 -206769 cd11364 RNase_PH_PNPase_2 1 oligomer interface 0 1 0 0 13,15,30,32,33,34,54,56,61,79,82,86,100,105,110,128,129,130,137,179,180,181,182,183,184,185,186,187,188,189,190,191,197,201 2 -206769 cd11364 RNase_PH_PNPase_2 2 RNA binding site 0 0 1 0 52,53,54,82,89 3 -206770 cd11365 RNase_PH_archRRP42 1 oligomer interface 0 1 0 0 37,39,54,56,57,58,73,75,80,97,100,104,126,131,136,154,155,156,183,221,222,223,224,225,226,227,228,229,230,231,232,233,238,242 2 -206770 cd11365 RNase_PH_archRRP42 2 RNA binding site 0 0 1 0 71,72,73,100,107 3 -206771 cd11366 RNase_PH_archRRP41 1 oligomer interface 0 1 0 0 13,15,30,32,33,34,51,53,58,75,78,82,96,101,106,124,125,126,133,172,173,174,175,176,177,178,179,180,181,182,183,184,187,191 2 -206771 cd11366 RNase_PH_archRRP41 2 RNA binding site 0 0 1 0 49,50,51,78,85 3 -206772 cd11367 RNase_PH_RRP42 1 oligomer interface 0 1 0 0 39,41,56,58,59,60,75,77,82,99,102,106,128,133,138,156,157,158,192,230,231,232,233,234,235,236,237,238,239,240,241,242,247,251 2 -206772 cd11367 RNase_PH_RRP42 2 RNA binding site 0 0 1 0 73,74,75,102,109 3 -206773 cd11368 RNase_PH_RRP45 1 oligomer interface 0 1 0 0 35,37,52,54,55,56,71,73,78,95,98,102,124,129,134,152,153,154,184,224,225,226,227,228,229,230,231,232,233,234,235,236,241,245 2 -206773 cd11368 RNase_PH_RRP45 2 RNA binding site 0 0 1 0 69,70,71,98,105 3 -206774 cd11369 RNase_PH_RRP43 1 oligomer interface 0 1 0 0 38,40,55,57,58,59,74,76,81,98,101,105,127,132,137,155,156,157,186,225,226,227,228,229,230,231,232,233,234,235,236,237,242,246 2 -206774 cd11369 RNase_PH_RRP43 2 RNA binding site 0 0 1 0 72,73,74,101,108 3 -206775 cd11370 RNase_PH_RRP41 1 oligomer interface 0 1 0 0 23,25,40,42,43,44,61,63,68,86,89,93,107,112,117,135,136,137,144,183,184,185,186,187,188,189,190,191,192,193,194,195,198,202 2 -206775 cd11370 RNase_PH_RRP41 2 RNA binding site 0 0 1 0 59,60,61,89,96 3 -206776 cd11371 RNase_PH_MTR3 1 oligomer interface 0 1 0 0 12,14,29,31,32,33,49,51,56,73,76,80,94,99,104,122,123,124,131,170,171,172,173,174,175,176,177,178,179,180,181,182,185,189 2 -206776 cd11371 RNase_PH_MTR3 2 RNA binding site 0 0 1 0 47,48,49,76,83 3 -206777 cd11372 RNase_PH_RRP46 1 oligomer interface 0 1 0 0 12,14,29,31,32,33,49,51,56,65,68,72,86,91,96,114,115,116,123,164,165,166,167,168,169,170,171,172,173,174,175,176,179,183 2 -206777 cd11372 RNase_PH_RRP46 2 RNA binding site 0 0 1 0 47,48,49,68,75 3 -213029 cd11375 Peptidase_M54 1 Zn binding site HHHCCCC 1 1 1 128,132,138,139,144,163,166 4 -213029 cd11375 Peptidase_M54 2 active site 0 0 1 1 85,87,128,129,132,138,139,144,146,163,166 1 -271138 cd11376 Imelysin-like 1 Conserved motif GHE 0 1 1 69,71,74 0 -271139 cd14656 Imelysin-like_EfeO 1 Conserved motif GHE 0 1 1 83,85,88 0 -271140 cd14657 Imelysin_IrpA-like 1 Conserved motif GHE 0 1 1 130,132,135 0 -271141 cd14658 Imelysin-like_IrpA 1 Conserved motif GHE 0 1 1 108,110,113 0 -271142 cd14659 Imelysin-like_IPPA 1 Conserved motif GHE 0 1 1 112,114,117 0 -206778 cd11377 Pro-peptidase_S53 1 peptidase domain interface 0 1 1 0 16,18,19,21,27,28,31,45,46,48,51,133,134,136,137 2 -211390 cd11378 DUF296 1 putative Zn binding site HHH 1 0 0 79,81,95 4 -211390 cd11378 DUF296 2 trimer interface 0 1 0 0 1,3,5,8,33,34,54,61,62,63,64,66,68,79,81,83,86,89,91,92,93,106,108,110,112 2 -211391 cd11379 DUF4425 1 dimer interface 0 1 0 0 17,19,21,23,25,43,44,45,46,47,48,64,65,67,69,71,73,74,75,109,110,111,113 2 -211392 cd11380 Ribosomal_S8e_like 1 18S rRNA binding interface 0 1 1 0 0,2,3,4,5,6,7,10,11,12,13,14,16,17,18,19,22,24,25,26,27,28,29,37,38,39,40,41,43,44,45,46,48,51,52,54,55,60,62,64,67,68,69,70,71,83,93,94,95,123,124,125,126,127,128,131,133 3 -211392 cd11380 Ribosomal_S8e_like 2 S11 protein interface 0 1 1 0 79,81,135 2 -211393 cd11381 NSA2 1 18S rRNA binding interface 0 1 1 0 116,118,119,120,121,122,123,126,127,128,129,130,132,133,134,135,138,140,141,142,143,144,145,155,156,157,158,159,161,162,163,164,166,169,170,172,173,178,180,182,185,186,187,188,189,201,211,212,213,241,242,243,244,245,246,249,251 3 -211393 cd11381 NSA2 2 S11 protein interface 0 1 1 0 197,199,253 2 -211394 cd11382 Ribosomal_S8e 1 18S rRNA binding interface 0 1 1 0 0,2,3,4,5,6,7,10,11,12,13,14,16,17,18,19,22,24,25,26,27,28,29,36,37,38,39,40,42,43,44,45,47,50,51,53,54,59,61,63,66,67,68,69,70,82,92,93,94,107,108,109,110,111,112,115,117 3 -211394 cd11382 Ribosomal_S8e 2 S11 protein interface 0 1 1 0 78,80,119 2 -206779 cd11386 MCP_signal 1 dimer interface 0 1 1 0 8,9,12,13,16,19,20,22,23,26,29,30,33,36,37,40,41,44,47,48,50,51,55,57,58,61,64,65,68,69,72,75,78,79,82,86,89,96,100,103,106,107,110,113,114,117,118,120,121,124,125,138,139,142,145,146,149,152,153,155,156,159,160,163,166,167,170,173,174,176,177,180,181,183,184,187,190,191,194,197,198 2 -206779 cd11386 MCP_signal 2 putative CheW interface 0 0 1 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111 2 -212133 cd11523 NTP-PPase 1 metal binding site EEED 1 1 1 28,31,56,59 4 -212134 cd11527 NTP-PPase_dUTPase 1 metal binding site EEED 1 1 1 34,37,62,65 4 -212135 cd11528 NTP-PPase_MazG_Nterm 1 metal binding site EEED 1 1 1 33,36,52,55 4 -212136 cd11529 NTP-PPase_MazG_Cterm 1 metal binding site EEED 1 1 1 32,35,51,54 4 -212137 cd11530 NTP-PPase_DR2231_like 1 metal binding site EEED 1 1 1 35,38,54,57 4 -212151 cd11544 NTP-PPase_DR2231 1 metal binding site EEED 1 1 1 37,40,56,59 4 -212152 cd11545 NTP-PPase_YP_001813558 1 metal binding site EEED 1 1 1 37,40,49,52 4 -212138 cd11531 NTP-PPase_BsYpjD 1 metal binding site EEED 1 1 1 30,33,58,61 4 -212139 cd11532 NTP-PPase_COG4997 1 metal binding site EEED 1 1 1 40,43,55,58 4 -212140 cd11533 NTP-PPase_Af0060_like 1 metal binding site EEED 1 1 1 30,33,59,62 4 -212141 cd11534 NTP-PPase_HisIE_like 1 metal binding site EEED 1 1 1 38,41,57,60 4 -212153 cd11546 NTP-PPase_His4 1 metal binding site EEED 1 1 1 38,41,54,57 4 -212154 cd11547 NTP-PPase_HisE 1 metal binding site EEED 1 1 1 40,43,59,62 4 -212142 cd11535 NTP-PPase_SsMazG 1 metal binding site EEED 1 1 1 28,31,47,50 4 -212143 cd11536 NTP-PPase_iMazG 1 metal binding site EEED 1 1 1 27,30,55,58 4 -212144 cd11537 NTP-PPase_RS21-C6_like 1 metal binding site EEED 1 1 1 28,31,59,62 4 -212145 cd11538 NTP-PPase_u1 1 metal binding site EEED 1 1 1 34,37,66,69 4 -212146 cd11539 NTP-PPase_u2 1 metal binding site EEED 1 1 1 23,26,47,50 4 -212147 cd11540 NTP-PPase_u3 1 metal binding site EEED 1 1 1 30,33,49,52 4 -212148 cd11541 NTP-PPase_u4 1 metal binding site EEED 1 1 1 29,32,56,59 4 -212149 cd11542 NTP-PPase_u5 1 metal binding site EEED 1 1 1 37,40,63,66 4 -212150 cd11543 NTP-PPase_u6 1 metal binding site EEED 1 1 1 36,39,60,63 4 -211400 cd11524 SYLF 1 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -211401 cd11525 SYLF_SH3YL1_like 1 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -211402 cd11526 SYLF_FYVE 1 putative amphipathic alpha helix 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13 0 -211408 cd11564 FAT-like_CAS_C 1 NSP binding site 0 1 1 1 2,6,7,10,14,43,46,47,50,53,57,58,61,62,76,77,80,84,87,91 2 -211409 cd11568 FAT-like_CASS4_C 1 NSP binding site 0 1 1 1 2,6,7,10,14,43,46,47,50,53,54,55,58,59,73,74,77,81,84,88 2 -211410 cd11569 FAT-like_BCAR1_C 1 NSP binding site 0 1 1 1 7,11,12,15,19,48,51,52,55,58,62,63,66,67,81,82,85,89,92,96 2 -211411 cd11570 FAT-like_NEDD9_C 1 NSP binding site 0 1 1 1 2,6,7,10,14,43,46,47,50,53,57,58,61,62,76,77,80,84,87,91 2 -211412 cd11571 FAT-like_EFS_C 1 NSP binding site 0 1 1 1 3,7,8,11,15,44,47,48,51,54,58,59,62,63,77,78,81,85,88,92 2 -211413 cd11572 RlmI_M_like 1 putative RNA binding site 0 0 1 1 25,49 3 -211414 cd11573 GH99_GH71_like 1 ligand binding site 0 1 1 1 4,6,32,66,108,158,199,243,245,246 5 -211414 cd11573 GH99_GH71_like 2 putative catalytic site [ED]E 0 1 1 243,246 1 -211415 cd11574 GH99 1 ligand binding site 0 1 1 1 5,7,84,119,161,216,253,297,299,300 5 -211415 cd11574 GH99 2 putative catalytic site [ED]E 0 1 1 297,300 1 -211416 cd11575 GH99_GH71_like_3 1 ligand binding site 0 1 1 1 12,14,86,129,169,214,253,299,301,302 5 -211416 cd11575 GH99_GH71_like_3 2 putative catalytic site [ED]E 0 1 1 299,302 1 -211417 cd11576 GH99_GH71_like_2 1 ligand binding site 0 1 1 1 10,12,100,136,180,240,281,325,327,328 5 -211417 cd11576 GH99_GH71_like_2 2 putative catalytic site [ED]E 0 1 1 325,328 1 -211418 cd11577 GH71 1 ligand binding site 0 1 1 1 10,12,43,72,108,158,194,235,237,238 5 -211418 cd11577 GH71 2 putative catalytic site [ED]E 0 1 1 235,238 1 -211419 cd11578 GH99_GH71_like_1 1 ligand binding site 0 1 1 1 4,6,55,83,133,192,238,282,284,285 5 -211419 cd11578 GH99_GH71_like_1 2 putative catalytic site [ED]E 0 1 1 282,285 1 -211420 cd11579 Glyco_tran_WbsX 1 ligand binding site 0 1 1 1 6,8,80,108,165,216,271,320,322,323 5 -211420 cd11579 Glyco_tran_WbsX 2 putative catalytic site [ED]E 0 1 1 320,323 1 -211421 cd11580 eIF2D_N_like 1 PUA domain interface 0 1 1 1 23,24,62,64,68,69,70,71 2 -211422 cd11609 MCT1_N 1 PUA domain interface 0 1 1 1 28,29,67,69,73,74,75,76 2 -211423 cd11610 eIF2D_N 1 PUA domain interface 0 1 1 1 23,24,66,68,72,73,74,75 2 -211424 cd11582 Axin_TNKS_binding 1 TNKS binding site xxxRPPVPGEExRxxLGEPEGxxx 1 1 0 7,9,10,11,12,13,14,15,16,17,18,19,50,54,55,56,57,59,60,61,62,63,64,66 2 -211425 cd11583 Orc6_mid 1 putative DNA binding site [RK][RK] 0 1 1 44,75 3 -211426 cd11585 SATB1_N 1 tetramer interface 0 1 1 0 1,3,24,25,26,27,28,30,62,64,67,68,74,75,76,77,85,86,89,90,91,93,94 2 -212155 cd11586 VbhA_like 1 FIC domain binding interface xxxxxxxxxx[STN]xxxE[GN]xxxxxxxxxxxxx 1 1 1 2,5,6,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,28,32,35,42,45,46,49,50,53 2 -211427 cd11602 Ndc10 1 DNA binding site 0 1 1 0 152,153,265,266,267,272,273,275,276,280,292,294,295 3 -211427 cd11602 Ndc10 2 dimer interface 0 1 1 0 128,129,130,132,133,135,289,290,291,403,404,407,408 2 -211428 cd11603 ThermoDBP 1 putative dimer interface 0 1 1 0 7,9,10,11,18,90,95,122,123,124,125,126,127,128,129 2 -211429 cd11604 RTT106_N 1 dimer interface 0 1 1 0 2,6,7,10,13,14,17,18,20,21,24,25,27,28,31,32,34,35,36,39 2 -212156 cd11606 COE_DBD 1 DNA binding site 0 1 1 1 27,28,29,30,31,121,124,125,126,127,133,134,135,136,138,161,163,165,166,167,168,169,197,199,200,201,202,203,204 3 -212156 cd11606 COE_DBD 2 Zinc binding site HCCC 1 1 1 121,125,128,134 4 -212163 cd11640 HutP 1 RNA binding site 0 1 1 0 37,38,39,40,41,52,55,56,59,93,94,95,96,114,122 3 -212163 cd11640 HutP 2 Histidine-zinc binding site 0 1 1 0 67,71,74,75,86,91,92,115,116,117,123 5 -212163 cd11640 HutP 3 hexamer interface 0 1 1 0 2,3,4,5,8,9,12,47,50,51,67,71,74,79,82,83,86,90,91,92,112,114,121,122,123,124,126,128,130 2 -212167 cd11653 rap1_RCT 1 recruitment target interaction site 0 1 1 1 0,5,8,9,12,23,24,27,28,30,31,34,35,36,96 2 -212553 cd11654 TRF2_RBM 1 heterodimer interface 0 1 1 1 7,8,9,10,11,12,13,15,16,17,19,20,21,30,33,34,35,36,37,38 2 -212554 cd11655 rap1_myb-like 1 putative DNA binding site x[YFHV][RHGDE]xxxx[RKHEQ][RK]x 1 1 1 0,3,41,42,44,47,48,49,51,53 3 -212555 cd11656 FBX4_GTPase_like 1 TRF1 binding interface 0 1 1 1 179,180,183,184,195,196,197,198,199,210 2 -212555 cd11656 FBX4_GTPase_like 2 SKP1 binding interface 0 1 1 0 3,9 2 -212555 cd11656 FBX4_GTPase_like 3 homodimer interface 0 0 1 1 178,180,181,183,194,195,197,199 2 -212556 cd11658 SANT_DMAP1_like 1 putative DNA binding site 0 0 1 1 0,32,33,35,36,38,39,40,42,43,44 3 -212556 cd11658 SANT_DMAP1_like 2 calcium ion 0 1 0 0 13,16 4 -212557 cd11659 SANT_CDC5_II 1 putative DNA binding site 0 0 1 1 3,4,26,27,37,38,41,45 3 -212557 cd11659 SANT_CDC5_II 2 putative Na binding site 0 0 0 1 30,33,35 4 -212558 cd11660 SANT_TRF 1 DNA binding site 0 1 1 0 0,1,2,20,22,23,35,37,38,39,41,42,43,45,46 3 -212559 cd11661 SANT_MTA3_like 1 putative DNA binding site 0 0 1 1 1,31,32,34,35,37,38,39,41,42,43 3 -212560 cd11662 apollo_TRF2_binding 1 heterodimer interface 0 1 1 1 2,4,5,6,7,8,9,10,11,12,13,14 2 -212168 cd11669 TTHB210-like 1 oligomer interface 0 1 1 1 13,17,20,21,22,31,32,34,45,46,47,49,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,77,78,79,80,81,86,87,88,89,97,99,101 2 -212561 cd11670 Sp_RAP1_RCT 1 RAP1-TAZ1 interaction site 0 1 1 1 3,6,7,9,10,11,13,21,22,24,25,28,29,33,34,35 2 -212562 cd11671 TAZ1_RBM 1 heterodimer interface 0 1 1 1 0,15,24,25,26,27,28,29,30,32,33 2 -212563 cd11673 hemoglobin_linker_C 1 hemoglobin interaction interface 0 1 1 0 14,16,33,35,36,39,66,105,106,109,110 2 -212563 cd11673 hemoglobin_linker_C 2 trimer interface 0 1 1 1 8,9,11,98,116,118 2 -212564 cd11674 lambda-1 1 Zn binding site 0 0 1 1 75,78,91,96 4 -212564 cd11674 lambda-1 2 homooligomer interface 0 1 1 0 60,61,62,63,74,79,119,120,382,383,385,387,448,452,455,456,643,644,645,646,649,650,666,670,671,672,675,681,683,684,685,687,691,694,695,697,699,786,787,789,792 2 -212564 cd11674 lambda-1 3 VP6 interface 0 1 1 0 329,330,331,332,333,334,340,342,356,359,360,363,364,366,368,370,371,373,374,387,388,389,390,391,392,393,394,401,617,911,913,916,1136,1137,1138,1152,1154 2 -212565 cd11675 SCAB1_middle 1 PH domain interface 0 1 1 0 9,10,11,34,43,44,45,46,47,48,50,52,54,55,56,57,58 2 -212566 cd11684 DHR2_DOCK 1 Rac/Cdc42 binding site 0 1 1 0 122,124,148,151,152,153,154,156,157,170,171,172,189,190,191,223,224,225,226,237,238,241,243,280,281,284,304,305,307,308,311,312,313,316,317,318,321,322,325,354,375,376,379 2 -212566 cd11684 DHR2_DOCK 2 dimer interface 0 1 1 0 84,94,96,97,99,100,103,104,106,107,110,111 2 -212566 cd11684 DHR2_DOCK 3 nucleotide sensor 0 0 1 1 316,317,318,321 0 -212567 cd11694 DHR2_DOCK_D 1 Rac/Cdc42 binding site 0 1 1 0 110,112,136,139,140,141,142,144,145,164,165,166,183,184,185,213,214,215,216,226,227,230,232,269,270,273,289,290,292,293,296,297,298,301,302,303,306,307,310,338,359,360,363 2 -212567 cd11694 DHR2_DOCK_D 2 dimer interface 0 1 1 0 68,78,80,81,83,84,87,88,90,91,94,95 2 -212567 cd11694 DHR2_DOCK_D 3 nucleotide sensor 0 0 1 1 301,302,303,306 0 -212571 cd11698 DHR2_DOCK9 1 Rac/Cdc42 binding site 0 1 1 0 146,148,172,175,176,177,178,180,181,200,201,202,219,220,221,249,250,251,252,262,263,266,268,305,306,309,325,326,328,329,332,333,334,337,338,339,342,343,346,374,395,396,399 2 -212571 cd11698 DHR2_DOCK9 2 dimer interface 0 1 1 0 104,114,116,117,119,120,123,124,126,127,130,131 2 -212571 cd11698 DHR2_DOCK9 3 nucleotide sensor 0 0 1 1 337,338,339,342 0 -212572 cd11699 DHR2_DOCK10 1 Rac/Cdc42 binding site 0 1 1 0 180,182,206,209,210,211,212,214,215,234,235,236,253,254,255,283,284,285,286,296,297,300,302,339,340,343,359,360,362,363,366,367,368,371,372,373,376,377,380,408,429,430,433 2 -212572 cd11699 DHR2_DOCK10 2 dimer interface 0 1 1 0 138,148,150,151,153,154,157,158,160,161,164,165 2 -212572 cd11699 DHR2_DOCK10 3 nucleotide sensor 0 0 1 1 371,372,373,376 0 -212573 cd11700 DHR2_DOCK11 1 Rac/Cdc42 binding site 0 1 1 0 147,149,173,176,177,178,179,181,182,201,202,203,220,221,222,250,251,252,253,263,264,267,269,306,307,310,326,327,329,330,333,334,335,338,339,340,343,344,347,375,396,397,400 2 -212573 cd11700 DHR2_DOCK11 2 dimer interface 0 1 1 0 105,115,117,118,120,121,124,125,127,128,131,132 2 -212573 cd11700 DHR2_DOCK11 3 nucleotide sensor 0 0 1 1 338,339,340,343 0 -212568 cd11695 DHR2_DOCK_C 1 Rac/Cdc42 binding site 0 1 1 0 102,104,127,130,131,132,133,135,136,155,156,157,174,175,176,204,205,206,207,217,218,221,223,260,261,264,280,281,283,284,287,288,289,292,293,294,297,298,301,330,351,352,355 2 -212568 cd11695 DHR2_DOCK_C 2 dimer interface 0 1 1 0 61,71,73,74,76,77,80,81,83,84,87,88 2 -212568 cd11695 DHR2_DOCK_C 3 nucleotide sensor 0 0 1 1 292,293,294,297 0 -212574 cd11701 DHR2_DOCK8 1 Rac/Cdc42 binding site 0 1 1 0 157,159,182,185,186,187,188,190,191,210,211,212,229,230,231,259,260,261,262,272,273,276,278,315,316,319,335,336,338,339,342,343,344,347,348,349,352,353,356,384,405,406,409 2 -212574 cd11701 DHR2_DOCK8 2 dimer interface 0 1 1 0 117,127,129,130,132,133,136,137,139,140,143,144 2 -212574 cd11701 DHR2_DOCK8 3 nucleotide sensor 0 0 1 1 347,348,349,352 0 -212575 cd11702 DHR2_DOCK6 1 Rac/Cdc42 binding site 0 1 1 0 158,160,183,186,187,188,189,191,192,211,212,213,230,231,232,260,261,262,263,273,274,277,279,316,317,320,336,337,339,340,343,344,345,348,349,350,353,354,357,385,406,407,410 2 -212575 cd11702 DHR2_DOCK6 2 dimer interface 0 1 1 0 116,126,128,129,131,132,135,136,138,139,142,143 2 -212575 cd11702 DHR2_DOCK6 3 nucleotide sensor 0 0 1 1 348,349,350,353 0 -212576 cd11703 DHR2_DOCK7 1 Rac/Cdc42 binding site 0 1 1 0 195,197,220,223,224,225,226,228,229,248,249,250,267,268,269,297,298,299,300,310,311,314,316,353,354,357,373,374,376,377,380,381,382,385,386,387,390,391,394,422,443,444,447 2 -212576 cd11703 DHR2_DOCK7 2 dimer interface 0 1 1 0 155,165,167,168,170,171,174,175,177,178,181,182 2 -212576 cd11703 DHR2_DOCK7 3 nucleotide sensor 0 0 1 1 385,386,387,390 0 -212569 cd11696 DHR2_DOCK_B 1 Rac/Cdc42 binding site 0 1 1 0 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,302,303,305,306,309,310,311,314,315,316,319,320,323,353,374,375,378 2 -212569 cd11696 DHR2_DOCK_B 2 dimer interface 0 1 1 0 80,90,92,93,95,96,99,100,102,103,106,107 2 -212569 cd11696 DHR2_DOCK_B 3 nucleotide sensor 0 0 1 1 314,315,316,319 0 -212577 cd11704 DHR2_DOCK3 1 Rac/Cdc42 binding site 0 1 1 0 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,303,304,306,307,310,311,312,315,316,317,320,321,324,354,375,376,379 2 -212577 cd11704 DHR2_DOCK3 2 dimer interface 0 1 1 0 80,90,92,93,95,96,99,100,102,103,106,107 2 -212577 cd11704 DHR2_DOCK3 3 nucleotide sensor 0 0 1 1 315,316,317,320 0 -212578 cd11705 DHR2_DOCK4 1 Rac/Cdc42 binding site 0 1 1 0 118,120,144,147,148,149,150,152,153,166,167,168,185,186,187,221,222,223,224,235,236,239,241,278,279,282,302,303,305,306,309,310,311,314,315,316,319,320,323,353,374,375,378 2 -212578 cd11705 DHR2_DOCK4 2 dimer interface 0 1 1 0 80,90,92,93,95,96,99,100,102,103,106,107 2 -212578 cd11705 DHR2_DOCK4 3 nucleotide sensor 0 0 1 1 314,315,316,319 0 -212570 cd11697 DHR2_DOCK_A 1 Rac/Cdc42 binding site 0 1 1 0 123,125,149,152,153,154,155,157,158,171,172,173,190,191,192,226,227,228,229,240,241,244,246,283,284,287,307,308,310,311,314,315,316,319,320,321,324,325,328,358,379,380,383 2 -212570 cd11697 DHR2_DOCK_A 2 dimer interface 0 1 1 0 84,95,97,98,100,101,104,105,107,108,111,112 2 -212570 cd11697 DHR2_DOCK_A 3 nucleotide sensor 0 0 1 1 319,320,321,324 0 -212579 cd11706 DHR2_DOCK2 1 Rac/Cdc42 binding site 0 1 1 0 141,143,167,170,171,172,173,175,176,189,190,191,208,209,210,244,245,246,247,258,259,262,264,301,302,305,325,326,328,329,332,333,334,337,338,339,342,343,346,376,397,398,401 2 -212579 cd11706 DHR2_DOCK2 2 dimer interface 0 1 1 0 102,113,115,116,118,119,122,123,125,126,129,130 2 -212579 cd11706 DHR2_DOCK2 3 nucleotide sensor 0 0 1 1 337,338,339,342 0 -212580 cd11707 DHR2_DOCK1 1 Rac/Cdc42 binding site 0 1 1 0 123,125,149,152,153,154,155,157,158,171,172,173,190,191,192,226,227,228,229,240,241,244,246,283,284,287,307,308,310,311,314,315,316,319,320,321,324,325,328,358,379,380,383 2 -212580 cd11707 DHR2_DOCK1 2 dimer interface 0 1 1 0 84,95,97,98,100,101,104,105,107,108,111,112 2 -212580 cd11707 DHR2_DOCK1 3 nucleotide sensor 0 0 1 1 319,320,321,324 0 -212581 cd11708 DHR2_DOCK5 1 Rac/Cdc42 binding site 0 1 1 0 123,125,149,152,153,154,155,157,158,171,172,173,190,191,192,226,227,228,229,240,241,244,246,283,284,287,307,308,310,311,314,315,316,319,320,321,324,325,328,358,379,380,383 2 -212581 cd11708 DHR2_DOCK5 2 dimer interface 0 1 1 0 84,95,97,98,100,101,104,105,107,108,111,112 2 -212581 cd11708 DHR2_DOCK5 3 nucleotide sensor 0 0 1 1 319,320,321,324 0 -212582 cd11687 PpPFK_gamma 1 oligomer interface 0 1 1 0 72,76,108,110,111,112,113,201,202,203,205,206,207,209,210,211,212,213,216,220,222,223,226,258,259,260,261,290,291,292,295,296,302,312,314,316,317,318,319,320,321,322,323,324,343,344,345 2 -212588 cd11689 SidM_DrrA_GEF 1 Rab1 interaction interface 0 1 1 0 34,37,41,64,67,68,71,72,75,76,78,79,82,83,84,87,88,89,91,92,93,95,96,97,98,99,100,102,105,106,109,110,111,112,113,114,115,135,139,140,141,144,173 2 -212589 cd11690 Tsi2_like 1 dimer interface 0 1 1 0 1,2,5,8,12,13,15,16,19,42,45,48,49,52 2 -212593 cd11719 FANC 1 heterodimer interface 0 1 1 0 0,1,2,3,7,11,46,49,50,53,54,56,57,87,90,91,92,138,141,142,174,178,184,232,236,237,239,335,343,346,394,397,398,401,405,408,438,441,444,445,448,477,480,481,484,486,539,540,541,543,544,547,548,550,551,552,555,574,577,578,579,580,583,586,636 2 -212593 cd11719 FANC 2 ubiquitination site K 0 1 1 481 6 -212593 cd11719 FANC 3 putative DNA binding site 0 0 1 1 244,245,246,247,248,249,250,251,252,253,254,286,287,288,289,290,291,292,293,294,295,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,887,888,889,890,891,892,893,894,895,896,897,898,899,900,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946 3 -212594 cd11720 FANCI 1 heterodimer interface 0 1 1 0 0,1,2,3,7,11,45,48,49,52,53,55,56,86,89,90,91,136,139,140,172,176,182,233,237,238,240,336,344,347,387,390,391,394,398,401,431,434,437,438,441,470,473,474,477,479,533,534,535,537,538,541,542,544,545,546,549,568,571,572,573,574,577,580,630 2 -212594 cd11720 FANCI 2 ubiquitination site K 0 1 1 474 6 -212594 cd11720 FANCI 3 putative DNA binding site 0 0 1 1 245,246,247,248,249,250,251,252,253,254,255,286,287,288,289,290,291,292,293,294,295,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090 3 -212595 cd11721 FANCD2 1 heterodimer interface 0 1 1 0 40,41,42,43,47,51,82,85,86,89,90,92,93,123,126,127,128,158,161,162,194,198,201,246,250,251,253,327,335,338,366,369,370,373,377,380,411,414,417,418,421,456,459,460,463,465,509,510,511,513,514,517,518,520,521,522,525,552,555,556,557,558,561,564,593 2 -212595 cd11721 FANCD2 2 ubiquitination site K 0 1 1 460 6 -212595 cd11721 FANCD2 3 putative DNA binding site 0 0 1 1 257,258,259,260,261,262,263,264,265,266,267,297,298,299,300,301,302,303,304,305,306,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,935,936,937,938,939,940,941,942,943,944,945,946,947,948,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007 3 -212596 cd11722 SOAR 1 dimer interface 0 1 1 0 0,3,4,6,7,10,11,14,15,18,82,83,86,89 2 -212596 cd11722 SOAR 2 putative inhibitory helix interface 0 1 1 0 1,2,5,90,91 2 -240666 cd11741 TIN2_TBM 1 Protein interaction interface [FY]LP 0 1 1 9,11,13 2 -213039 cd11743 Cthe_2751_like 1 dimer interface 0 1 1 0 11,12,15,36,42,43,45,46,49,50,77,80,81,85,87,120,121 2 -213354 cd11744 MIT_CorA-like 1 oligomer interface 0 1 1 1 23,26,27,36,38,87,91,104,107,111,115,118,119,122,125,126,128,129,132,144,145,147,148,151,152,155,156,158,159,163,165,166,169,170,173,174,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213355 cd12821 EcCorA_ZntB-like 1 oligomer interface 0 1 1 1 24,27,28,37,39,84,88,102,105,109,113,116,117,120,123,124,126,127,130,142,143,145,146,149,150,153,154,156,157,161,163,164,167,168,171,172,183,184,186,187,190,191,193,194,197,198,200,201,203,204,205,208,209,210,211,212,213,214,215,217,218,219,220,221,222,223,224,225,226,227,228,229,231,232,233,235,236,237,238,239,240,242,243,244,245,246,247,248,249,261,262,265,266,278,281 2 -213357 cd12823 Mrs2_Mfm1p-like 1 oligomer interface 0 1 1 1 28,31,32,43,45,82,86,112,115,119,123,126,127,130,133,134,136,137,140,152,153,155,156,159,160,163,164,166,167,171,173,174,177,178,181,182,215,216,218,219,222,223,225,226,229,230,232,233,235,236,237,240,241,242,243,244,245,246,247,249,250,251,252,253,254,255,256,257,258,259,260,261,263,264,265,267,268,269,270,271,272,274,275,276,277,281,282,283,284,295,296,299,300,316,319 2 -213358 cd12824 ZntB-like 1 oligomer interface 0 1 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213367 cd12833 ZntB-like_1 1 oligomer interface 0 1 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213368 cd12834 ZntB_u1 1 oligomer interface 0 1 1 1 25,28,29,39,41,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,265,266,269,270,282,285 2 -213359 cd12825 EcCorA-like 1 oligomer interface 0 1 1 1 26,29,30,36,38,86,90,103,106,110,114,117,118,121,124,125,127,128,131,145,146,148,149,152,153,156,157,159,160,164,166,167,170,171,174,175,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213369 cd12835 EcCorA-like_1 1 oligomer interface 0 1 1 1 26,29,30,36,38,85,89,102,105,109,113,116,117,120,123,124,126,127,130,145,146,148,149,152,153,156,157,159,160,164,166,167,170,171,174,175,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,262,263,266,267,279,282 2 -213370 cd12836 HpCorA-like 1 oligomer interface 0 1 1 1 28,31,32,38,40,87,91,104,107,111,115,118,119,122,125,126,128,129,132,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,185,186,188,189,192,193,195,196,199,200,202,203,205,206,207,210,211,212,213,214,215,216,217,219,220,221,222,223,224,225,226,227,228,229,230,231,233,234,235,237,238,239,240,241,242,244,245,246,247,248,249,250,251,263,264,267,268,280,283 2 -213371 cd12837 EcCorA-like_u1 1 oligomer interface 0 1 1 1 27,30,31,37,39,87,91,104,107,111,115,118,119,122,125,126,128,129,132,154,155,157,158,161,162,165,166,168,169,173,175,176,179,180,183,184,195,196,198,199,202,203,205,206,209,210,212,213,215,216,217,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,239,240,241,243,244,245,247,248,249,250,251,252,254,255,256,257,258,259,260,261,273,274,277,278,290,293 2 -213360 cd12826 EcCorA_ZntB-like_u1 1 oligomer interface 0 1 1 1 23,26,27,32,34,83,87,97,100,104,108,111,112,115,118,119,121,122,125,137,138,140,141,144,145,148,149,151,152,156,158,159,162,163,166,167,178,179,181,182,185,186,188,189,192,193,195,196,198,199,200,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,219,220,221,222,223,224,226,227,228,230,231,232,233,234,235,237,238,239,240,241,242,243,244,256,257,260,261,273,276 2 -213361 cd12827 EcCorA_ZntB-like_u2 1 oligomer interface 0 1 1 1 23,26,27,36,38,90,94,106,109,113,117,120,121,124,127,128,130,131,134,146,147,149,150,153,154,157,158,160,161,165,167,168,171,172,175,176,187,188,190,191,194,195,197,198,201,202,204,205,207,208,209,212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,239,240,241,242,243,244,246,247,248,249,250,251,252,253,264,265,268,269,282,285 2 -213356 cd12822 TmCorA-like 1 oligomer interface 0 1 1 1 23,26,27,36,38,87,91,105,108,112,116,119,120,123,126,127,129,130,133,145,146,148,149,152,153,156,157,159,160,164,166,167,170,171,174,175,186,187,189,190,193,194,196,197,200,201,203,204,206,207,208,211,212,213,214,215,216,217,218,220,221,222,223,224,225,226,227,228,229,230,231,232,234,235,236,238,239,240,241,242,243,245,246,247,248,249,250,251,252,263,264,267,268,282,285 2 -213362 cd12828 TmCorA-like_1 1 oligomer interface 0 1 1 1 27,30,31,40,42,91,95,110,113,117,121,124,125,128,131,132,134,135,138,150,151,153,154,157,158,161,162,164,165,169,171,172,175,176,179,180,191,192,194,195,198,199,201,202,205,206,208,209,211,212,213,216,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,243,244,245,246,247,248,250,251,252,253,254,255,256,257,268,269,272,273,287,290 2 -213363 cd12829 Alr1p-like 1 oligomer interface 0 1 1 1 23,26,27,36,38,89,93,107,110,114,118,121,122,125,128,129,131,132,135,150,151,153,154,157,158,161,162,164,165,169,171,172,175,176,179,180,195,196,198,199,202,203,205,206,209,210,212,213,215,216,217,227,228,229,230,231,232,233,234,236,237,238,239,240,241,242,243,244,245,246,247,248,250,251,252,254,255,256,257,258,259,261,262,263,264,265,266,267,268,278,279,282,283,298,301 2 -213364 cd12830 MtCorA-like 1 oligomer interface 0 1 1 1 26,29,30,39,41,90,94,108,111,115,119,122,123,126,129,130,132,133,136,148,149,151,152,155,156,159,160,162,163,167,169,170,173,174,177,178,189,190,192,193,196,197,199,200,203,204,206,207,209,210,211,214,215,216,217,218,219,220,221,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,241,242,243,244,245,246,248,249,250,251,252,253,254,255,266,267,270,271,285,288 2 -213365 cd12831 TmCorA-like_u2 1 oligomer interface 0 1 1 1 26,29,30,39,41,86,90,103,106,110,114,117,118,121,124,125,127,128,131,143,144,146,147,150,151,154,155,157,158,162,164,165,168,169,172,173,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,261,262,265,266,280,283 2 -213366 cd12832 TmCorA-like_u3 1 oligomer interface 0 1 1 1 23,26,27,36,38,91,95,108,111,115,119,122,123,126,129,130,132,133,136,149,150,152,153,156,157,160,161,163,164,168,170,171,174,175,178,179,184,185,187,188,191,192,194,195,198,199,201,202,204,205,206,209,210,211,212,213,214,215,216,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,236,237,238,239,240,241,243,244,245,246,247,248,249,250,261,262,265,266,280,283 2 -213372 cd11745 Yos9_DD 1 homodimer interface 0 1 0 0 76,78,93,95,97,103,105,107,118,119,120,121,122 2 -213373 cd12083 DD_cGKI 1 homodimer interface 0 1 1 0 0,2,3,6,9,10,13,14,17,20,21,24,27,28,31,34,35,38,39,41,42,46 2 -213373 cd12083 DD_cGKI 2 putative GKAP docking site 0 0 1 1 18,19,21,23 2 -213374 cd12085 DD_cGKI-alpha 1 homodimer interface 0 1 1 0 0,2,3,6,9,10,13,14,17,20,21,24,27,28,31,34,35,38,39,41,42,46 2 -213374 cd12085 DD_cGKI-alpha 2 putative GKAP docking site 0 0 1 1 18,19,21,23 2 -213375 cd12086 DD_cGKI-beta 1 homodimer interface 0 1 1 0 4,6,7,10,13,14,17,18,21,24,25,28,31,32,35,38,39,42,43,45,46,50 2 -213375 cd12086 DD_cGKI-beta 2 putative GKAP docking site 0 0 1 1 22,23,25,27 2 -213043 cd12084 DD_R_PKA 1 dimer interface 0 1 1 1 2,5,6,9,10,13,14,17,18,20,21,22,23,25,26,29,30,33 2 -213043 cd12084 DD_R_PKA 2 AKAP interaction site 0 1 1 1 2,3,6,7,10,11,14,15 2 -213044 cd12097 DD_RI_PKA 1 dimer interface 0 1 1 1 9,12,13,16,17,20,21,24,25,27,28,29,30,32,33,36,37,40 2 -213044 cd12097 DD_RI_PKA 2 AKAP interaction site 0 1 1 1 9,10,13,14,17,18,21,22 2 -213048 cd12101 DD_RIalpha_PKA 1 dimer interface 0 1 1 1 13,16,17,20,21,24,25,28,29,31,32,33,34,36,37,40,41,44 2 -213048 cd12101 DD_RIalpha_PKA 2 AKAP interaction site 0 1 1 1 13,14,17,18,21,22,25,26 2 -213049 cd12102 DD_RIbeta_PKA 1 dimer interface 0 1 1 1 16,19,20,23,24,27,28,31,32,34,35,36,37,39,40,43,44,47 2 -213049 cd12102 DD_RIbeta_PKA 2 AKAP interaction site 0 1 1 1 16,17,20,21,24,25,28,29 2 -213045 cd12098 DD_R_PKA_fungi 1 dimer interface 0 1 1 1 2,5,6,9,10,13,14,17,18,20,21,22,23,25,26,29,31,34 2 -213045 cd12098 DD_R_PKA_fungi 2 AKAP interaction site 0 1 1 1 2,3,6,7,10,11,14,15 2 -213046 cd12099 DD_RII_PKA 1 dimer interface 0 1 1 1 4,7,8,11,12,15,16,19,20,22,23,24,25,27,28,31,32,35 2 -213046 cd12099 DD_RII_PKA 2 AKAP interaction site 0 1 1 1 4,5,8,9,12,13,16,17 2 -213050 cd12103 DD_RIIalpha_PKA 1 dimer interface 0 1 1 1 6,9,10,13,14,17,18,21,22,24,25,26,27,29,30,33,34,37 2 -213050 cd12103 DD_RIIalpha_PKA 2 AKAP interaction site 0 1 1 1 6,7,10,11,14,15,18,19 2 -213051 cd12104 DD_RIIbeta_PKA 1 dimer interface 0 1 1 1 6,9,10,13,14,17,18,21,22,24,25,26,27,29,30,33,34,37 2 -213051 cd12104 DD_RIIbeta_PKA 2 AKAP interaction site 0 1 1 1 6,7,10,11,14,15,18,19 2 -213047 cd12100 DD_CABYR_SP17 1 dimer interface 0 1 1 1 4,7,8,11,12,15,16,19,20,22,23,24,25,27,28,31,32,35 2 -213047 cd12100 DD_CABYR_SP17 2 AKAP interaction site 0 1 1 1 4,5,8,9,12,13,16,17 2 -213052 cd12087 TM_EGFR-like 1 dimer interface 0 1 1 1 2,5,6,9,10,12,13,14,16,17,20 2 -213053 cd12092 TM_ErbB4 1 dimer interface 0 1 1 1 6,9,10,13,14,16,17,18,20,21,24 2 -213054 cd12093 TM_ErbB1 1 dimer interface 0 1 1 1 7,10,11,14,15,17,18,19,21,22,25 2 -213055 cd12094 TM_ErbB2 1 dimer interface 0 1 1 1 8,11,12,15,16,18,19,20,22,23,26 2 -213056 cd12095 TM_ErbB3 1 dimer interface 0 1 1 1 3,6,7,10,11,13,14,15,17,18,21 2 -213387 cd12144 SDH_N_domain 1 homodimer interface 0 1 0 0 9,10,11,12,28,37,38 2 -213388 cd12145 Rev1_C 1 Polymerase eta interaction site 0 1 1 0 1,2,3,4,5,6,14,15,18,22,24,25,26,28,29,32,33 2 -213389 cd12146 STING_C 1 cyclic di-GMP binding site 0 1 1 0 7,8,11,12,80,82,103,106,107,110 5 -213389 cd12146 STING_C 2 homodimer interface 0 1 1 0 0,2,3,4,6,7,9,10,14,110,113,114,144,145 2 -213392 cd12149 Flavi_E_C 1 homodimer interface 0 1 1 0 5,6,8,9,16,17,62 2 -213392 cd12149 Flavi_E_C 2 low pH trimer interface 0 1 1 0 13,29,46,47,48,66 2 -213392 cd12149 Flavi_E_C 3 low pH domain interface 0 1 1 0 12,29,48,49,50,51,53 2 -213393 cd12150 talin-RS 1 FERM domain interface 0 1 1 0 15,22,23,26,29,30,109,110,113,116,117,147,154 2 -213394 cd12151 F1-ATPase_gamma 1 core domain interface 0 1 1 1 3,8,14,18,21,22,24,25,28,29,83,85,86,87,88,116,117,120,121,124,247,250,251,254,260,263,264,266,267,270,271,274,276,277,278,279,280,281 2 -213394 cd12151 F1-ATPase_gamma 2 delta subunit interface 0 1 1 0 39,40,42,43,46,49,50,212,215,216,219 2 -213394 cd12151 F1-ATPase_gamma 3 epsilon subunit interface 0 1 1 1 119,130,131,132,133,134,135,215,218,219 2 -213395 cd12152 F1-ATPase_delta 1 epsilon subunit interface 0 1 1 0 8,24,40,41,43,59,61,62,63,77,78,80,83,84,86,93,111,112,114,115,118,120 2 -213395 cd12152 F1-ATPase_delta 2 gamma subunit interface 0 1 1 0 3,6,7,8,10,13,35,36,37,38,39,62,63,64,65,66,67,73,75,76,77 2 -213395 cd12152 F1-ATPase_delta 3 LBP interface 0 1 1 1 18,20,26,27,29,31,33,34,35,49 2 -213396 cd12153 F1-ATPase_epsilon 1 gamma subunit interface 0 1 1 0 1,2,6,7,8,9,12,13,17,34,35,36,37,38,39,40,41,42,43,44 2 -213396 cd12153 F1-ATPase_epsilon 2 delta subunit interface 0 1 1 0 8,11,12,13,14,15,16,21,22,23,24,27,34 2 -240631 cd12154 FDH_GDH_like 1 NAD binding site 0 1 1 1 166,167,168,170,188,189,190,222,223,251 5 -240619 cd00401 SAHH 1 NAD binding site 0 1 1 1 201,202,203,205,223,224,225,256,257,280 5 -240621 cd01620 Ala_dh_like 1 NAD binding site 0 1 1 1 168,169,170,172,190,191,192,229,230,258 5 -240623 cd05199 SDH_like 1 NAD binding site 0 1 1 1 182,183,184,186,204,205,206,217,218,246 5 -240664 cd12188 SDH 1 NAD binding site 0 1 1 1 189,190,192,194,212,213,214,235,236,264 5 -240665 cd12189 LKR_SDH_like 1 NAD binding site 0 1 1 1 199,200,201,203,221,222,223,286,287,321 5 -240629 cd05304 Rubrum_tdh 1 NAD binding site 0 1 1 1 172,173,174,176,194,195,196,255,256,284 5 -240630 cd05305 L-AlaDH 1 NAD binding site 0 1 1 1 174,175,176,178,196,197,198,237,238,266 5 -240658 cd12181 ceo_syn 1 NAD binding site 0 1 1 1 160,161,162,164,182,183,184,203,204,232 5 -240622 cd05198 formate_dh_like 1 NAD binding site 0 1 1 1 146,147,148,150,168,169,170,200,201,228 5 -240620 cd01619 LDH_like 1 NAD binding site 0 1 1 1 149,150,151,153,171,172,173,202,203,230 5 -240659 cd12183 LDH_like_2 1 NAD binding site 0 1 1 1 150,151,152,154,172,173,174,203,204,231 5 -240660 cd12184 HGDH_like 1 NAD binding site 0 1 1 1 151,152,153,155,173,174,175,203,204,232 5 -240661 cd12185 HGDH_LDH_like 1 NAD binding site 0 1 1 1 149,150,151,153,171,172,173,201,202,229 5 -240662 cd12186 LDH 1 NAD binding site 0 1 1 1 151,152,153,155,173,174,175,204,205,232 5 -240663 cd12187 LDH_like_1 1 NAD binding site 0 1 1 1 145,146,147,149,167,168,169,199,200,227 5 -240624 cd05299 CtBP_dh 1 NAD binding site 0 1 1 1 148,149,150,152,170,171,172,202,203,230 5 -240625 cd05300 2-Hacid_dh_1 1 NAD binding site 0 1 1 1 140,141,142,144,162,163,164,195,196,223 5 -240626 cd05301 GDH 1 NAD binding site 0 1 1 1 150,151,152,154,172,173,174,204,205,232 5 -240627 cd05302 FDH 1 NAD binding site 0 1 1 1 168,169,170,172,190,191,192,224,225,252 5 -240628 cd05303 PGDH_2 1 NAD binding site 0 1 1 1 145,146,147,149,167,168,169,199,200,227 5 -240632 cd12155 PGDH_1 1 NAD binding site 0 1 1 1 141,142,143,145,163,164,165,195,196,223 5 -240633 cd12156 HPPR 1 NAD binding site 0 1 1 1 147,148,149,151,169,170,171,198,199,226 5 -240634 cd12157 PTDH 1 NAD binding site 0 1 1 1 150,151,152,154,172,173,174,205,206,233 5 -240635 cd12158 ErythrP_dh 1 NAD binding site 0 1 1 1 121,122,123,125,143,144,145,172,173,204 5 -240636 cd12159 2-Hacid_dh_2 1 NAD binding site 0 1 1 1 131,132,133,135,153,154,155,185,186,213 5 -240637 cd12160 2-Hacid_dh_3 1 NAD binding site 0 1 1 1 149,150,151,153,171,172,173,202,203,230 5 -240638 cd12161 GDH_like_1 1 NAD binding site 0 1 1 1 150,151,152,154,172,173,174,203,204,231 5 -240639 cd12162 2-Hacid_dh_4 1 NAD binding site 0 1 1 1 153,154,155,157,175,176,177,203,204,231 5 -240640 cd12163 2-Hacid_dh_5 1 NAD binding site 0 1 1 1 139,140,141,143,161,162,163,216,217,245 5 -240641 cd12164 GDH_like_2 1 NAD binding site 0 1 1 1 138,139,140,142,160,161,162,192,193,220 5 -240642 cd12165 2-Hacid_dh_6 1 NAD binding site 0 1 1 1 143,144,145,147,165,166,167,197,198,225 5 -240643 cd12166 2-Hacid_dh_7 1 NAD binding site 0 1 1 1 138,139,140,142,160,161,162,189,190,217 5 -240644 cd12167 2-Hacid_dh_8 1 NAD binding site 0 1 1 1 156,157,158,160,178,179,180,210,211,238 5 -240645 cd12168 Mand_dh_like 1 NAD binding site 0 1 1 1 160,161,162,164,182,183,184,215,216,243 5 -240646 cd12169 PGDH_like_1 1 NAD binding site 0 1 1 1 148,149,150,152,170,171,172,203,204,231 5 -240647 cd12170 2-Hacid_dh_9 1 NAD binding site 0 1 1 1 144,145,146,148,166,167,168,197,198,222 5 -240648 cd12171 2-Hacid_dh_10 1 NAD binding site 0 1 1 1 153,154,155,157,175,176,177,207,208,235 5 -240649 cd12172 PGDH_like_2 1 NAD binding site 0 1 1 1 148,149,150,152,170,171,172,202,203,230 5 -240650 cd12173 PGDH_4 1 NAD binding site 0 1 1 1 144,145,146,148,166,167,168,198,199,226 5 -240651 cd12174 PGDH_like_3 1 NAD binding site 0 1 1 1 141,142,143,145,163,164,165,198,199,226 5 -240652 cd12175 2-Hacid_dh_11 1 NAD binding site 0 1 1 1 148,149,150,152,170,171,172,203,204,231 5 -240653 cd12176 PGDH_3 1 NAD binding site 0 1 1 1 146,147,148,150,168,169,170,198,199,226 5 -240654 cd12177 2-Hacid_dh_12 1 NAD binding site 0 1 1 1 153,154,155,157,176,177,178,208,209,236 5 -240655 cd12178 2-Hacid_dh_13 1 NAD binding site 0 1 1 1 150,151,152,154,172,173,174,205,206,233 5 -240656 cd12179 2-Hacid_dh_14 1 NAD binding site 0 1 1 1 144,145,146,148,166,167,168,195,196,223 5 -240657 cd12180 2-Hacid_dh_15 1 NAD binding site 0 1 1 1 141,142,143,145,163,164,165,194,195,222 5 -213398 cd12191 gal11_coact 1 heterodimer interface 0 1 1 1 0,1,2,3,7,8,47,48,51,54,55,59,64,67,68,71,72,75 2 -213399 cd12192 GCN4_cent 1 heterodimer interface 0 1 1 1 10,11,13,14,25,26,28,29,30,32,33,37,38,39 2 -213403 cd12208 septicolysin_like 1 oligomer interface 0 1 1 1 13,16,20,23,24,25,26,27,28,29,30,31,39,40,46,47,54,57,58,61,62,65,72,73,77,81,84,91,92,94,95,98,99,107,109,110,111,112,113,114,115,116,117,125 2 -213404 cd12211 Bc2l-C_N 1 trimer interface 0 1 1 0 0,1,2,3,29,37,39,41,43,44,52,67,68,69,70,71,72,73,74,75,76,79,80,82,83,85,86,87,88,89,90,91,118,120,122,123,124,126,127,129 2 -213404 cd12211 Bc2l-C_N 2 ligand binding site 0 1 1 1 46,72,80,81,82,83,109 5 -276936 cd12212 Fis1 1 heterodimer interface 0 1 1 1 5,8,9,12,24,25,26,28,29,32,41,44,45,47,48,51,54,55,57,60,61,62,63,65,67,75,77,80,83,84,87 2 -276936 cd12212 Fis1 2 TPR repeat 0 0 1 1 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -276936 cd12212 Fis1 3 TPR repeat 0 0 1 1 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 7 -213406 cd12213 ABD 1 ligand binding site 0 0 1 1 54,55 5 -213409 cd12216 Csn2_like 1 tetramer interface 0 1 1 0 23,24,26,27,28,30,31,34,61,65,77,81,85,95,98,99,101,102,105,106,108,109,110,112,113,114,115,118,119,120,121,123,124,127,128,129,131,132,133,134,135,140,141,142,143,144,150,153,157,167,168,171,172,184,198,201 2 -213407 cd09644 Csn2 1 tetramer interface 0 1 1 0 26,27,29,30,31,33,34,37,67,70,82,86,90,99,102,103,105,106,109,110,112,113,114,116,117,118,119,122,123,124,125,127,128,131,132,133,135,136,137,138,139,143,144,145,146,147,153,156,160,170,171,174,175,187,201,204 2 -213408 cd09758 Csn2 1 tetramer interface 0 1 1 0 24,25,27,28,29,31,32,35,62,66,78,82,86,96,99,100,102,103,106,107,109,110,111,113,114,115,116,117,118,119,120,122,123,126,127,128,130,131,132,133,134,139,140,141,142,143,149,152,156,166,167,170,171,183,197,200 2 -213410 cd12217 Stu0660_Csn2 1 tetramer interface 0 1 1 0 27,28,30,31,32,34,35,38,79,82,99,103,107,113,116,117,119,120,123,124,126,127,128,130,131,132,133,140,141,142,143,145,146,149,150,151,153,154,155,156,157,170,171,172,173,174,180,183,187,201,202,205,206,222,237,240 2 -213411 cd12218 Csn2 1 tetramer interface 0 1 1 0 24,25,27,28,29,31,32,35,58,61,72,76,80,92,95,96,98,99,102,103,105,106,107,109,110,111,112,115,116,117,118,120,121,124,125,126,128,129,130,131,132,137,138,139,140,141,147,150,154,164,165,168,169,181,195,198 2 -240617 cd12220 Pesticin_RB 1 TonB box 0 0 1 1 0,1,2,3,4,5,6,7 2 -240615 cd12222 Caa3-IV 1 dimer interface 0 1 1 0 0,3,6,7,10,14,21,22,23,26,27,28,31,33,34,35,37,38,41,42,45,48,49,52,53,55,56,57,58,59,60,61,62 2 -240614 cd12794 Hsm3_like 1 heterodimer interface 0 1 1 1 139,140,142,143,146,179,183,184,187,221,222,226,275,276,277,278,279,282 2 -240614 cd12794 Hsm3_like 2 homodimer interface 0 1 1 0 21,22,25,29,30,33,34,65,137,139,156,159,179,199,200,222,225,226,244,245,246,247,250,413,414,415,416,427,448,451,452,453,454 2 -240613 cd12795 FILIA_N_like 1 dimer interface 0 1 1 0 41,49,51,52,53,56,57,58,81,82,85,89,92,93,96 2 -213998 cd12798 Alt_A1 1 homodimer interface 0 0 1 1 58,59,60,71,73,85,86,87,98,99,100,101,102,103,105,125,127,129,130,131 2 -213999 cd12800 Sol_i_2 1 homodimer interface 0 1 1 0 18,23,24,25,26,29,30,32,33,80,94,97,98,101,104,105,106,107,109,110 2 -213999 cd12800 Sol_i_2 2 ligand binding site 0 1 1 1 35,45,57,100,103 5 -214000 cd12801 HopAB_KID 1 kinase binding site 0 1 1 1 31,32,33,52,56,57,58 2 -214001 cd12802 HopAB_PID 1 kinase binding site 0 1 1 1 32,33,34,52,56,57,58 2 -214002 cd12803 HopAB_BID 1 kinase binding site 0 1 1 1 35,36,37,56,59,60,61 2 -214003 cd12804 AKAP10_AKB 1 PKA R subunit binding site 0 1 1 1 12,13,14,16,17,18,20,21,22,23,24,25,27,28,29,31,32,33 2 -214005 cd12806 Esterase_713_like 1 catalytic site 0 0 1 1 147,171,239 1 -214006 cd12807 Esterase_713 1 catalytic site 0 0 1 1 196,220,292 1 -214007 cd12808 Esterase_713_like-1 1 catalytic site 0 0 1 1 195,219,287 1 -214008 cd12809 Esterase_713_like-2 1 catalytic site 0 0 1 1 178,202,258 1 -214009 cd12810 Esterase_713_like-3 1 catalytic site 0 0 1 1 182,205,303 1 -240610 cd12813 LbR-like 1 trimer interface 0 1 1 0 7,9,11,12,13,22,24,26,27,28,37,39,41,42,43,51,53,55,57,65,67,69,71,79,81,83,84,85,93,95 2 -240609 cd12796 LbR_Ice_bind 1 trimer interface 0 1 1 0 7,9,11,12,13,23,25,27,28,29,38,40,42,43,44,53,55,57,59,67,69,71,73,81,83,85,86,87,95,97 2 -240611 cd12819 LbR_vir_like 1 trimer interface 0 1 1 0 7,9,11,12,13,22,24,26,27,28,38,40,42,43,44,52,54,56,58,68,70,72,74,83,85,87,88,89,97,99 2 -240612 cd12820 LbR_YadA-like 1 trimer interface 0 1 1 0 14,16,18,19,20,28,30,32,33,34,42,44,46,47,48,56,58,60,62,70,72,74,76,84,86,88,89,90,98,100 2 -214011 cd12838 Killer_toxin_alpha 1 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,7,9,11,13,14,15,23,26,31,34,35,37,38,39,41,42,43,45,46,48,49,50,53,54,55,56,57,58,59,60,61 2 -214012 cd12839 Killer_toxin_beta 1 heterodimer interface 0 1 1 0 0,1,2,3,4,5,6,8,10,11,20,21,22,24,25,26,27,28,29,30,31,32,33,38,39,40,41,42,43,44,45,46,51,52,54,56,58,64,66,70,71,72,73 2 -214013 cd12840 CarS 1 putative repressor interaction site 0 0 1 1 57,69,71 2 -214014 cd12841 TM_EphA1 1 dimer interface 0 1 1 0 8,10,11,14,15,17,18,19,22,23,26,27,30,35 2 -240607 cd12869 MqsR 1 peptide binding site 0 1 1 0 22,23,24,25,26,28,29,32,38,39,59,62,67,92,97 2 -240606 cd12870 MqsA 1 Zn binding site 0 1 1 0 1,4,35,38 4 -240606 cd12870 MqsA 2 toxin interface 0 1 1 0 0,2,3,5,16,39,40,41,42,43,44,45,48,49,51,52,56,59 2 -214016 cd12923 iSH2_PI3K_IA_R 1 heterodimer interface 0 1 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,72,75,76,79,83,86,112,113,116,119 2 -214017 cd12924 iSH2_PIK3R1 1 heterodimer interface 0 1 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,80,83,84,87,91,94,120,121,124,127 2 -214018 cd12925 iSH2_PIK3R3 1 heterodimer interface 0 1 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,80,83,84,87,91,94,120,121,124,127 2 -214019 cd12926 iSH2_PIK3R2 1 heterodimer interface 0 1 1 1 23,30,41,42,43,45,46,47,49,50,53,54,56,57,60,61,64,80,83,84,87,91,94,120,121,124,127 2 -260087 cd12930 GAT_SF 1 ubiquitin binding site 0 1 1 0 2,3,6,7,9,10,13,14,17,29,32,33 2 -260088 cd14230 GAT_GGA 1 ubiquitin binding site 0 1 1 0 2,3,6,7,9,10,13,14,17,30,33,34 2 -260092 cd14234 GAT_GGA_meta 1 ubiquitin binding site 0 1 1 0 6,7,10,11,13,14,17,18,21,34,37,38 2 -260097 cd14239 GAT_GGA1_GGA2 1 ubiquitin binding site 0 1 1 0 9,10,13,14,16,17,20,21,24,37,40,41 2 -260098 cd14240 GAT_GGA3 1 ubiquitin binding site 0 1 1 0 6,7,10,11,13,14,17,18,21,34,37,38 2 -260093 cd14235 GAT_GGA_fungi 1 ubiquitin binding site 0 1 1 0 10,11,14,15,17,18,21,22,25,37,40,41 2 -260089 cd14231 GAT_GGA_like_plant 1 ubiquitin binding site 0 1 1 0 2,3,6,7,9,10,13,14,17,29,32,33 2 -260090 cd14232 GAT_LSB5 1 ubiquitin binding site 0 1 1 0 2,3,6,7,9,10,13,14,17,29,32,33 2 -260091 cd14233 GAT_TOM1_like 1 ubiquitin binding site 0 1 1 0 8,9,12,13,15,16,19,20,23,36,39,40 2 -260094 cd14236 GAT_TOM1 1 ubiquitin binding site 0 1 1 0 11,12,15,16,18,19,22,23,26,39,42,43 2 -260095 cd14237 GAT_TM1L1 1 ubiquitin binding site 0 1 1 0 11,12,15,16,18,19,22,23,26,39,42,43 2 -260096 cd14238 GAT_TM1L2 1 ubiquitin binding site 0 1 1 0 11,12,15,16,18,19,22,23,26,39,42,43 2 -240585 cd12934 LEM 1 polypeptide substrate binding site 0 1 1 0 15,16,17,18,19,20,22,23,26,27,29,30 2 -240586 cd12939 LEM_emerin 1 polypeptide substrate binding site 0 1 1 0 18,19,20,21,22,23,25,26,29,30,32,33 2 -240587 cd12940 LEM_LAP2_LEMD1 1 polypeptide substrate binding site 0 1 1 0 19,20,21,22,23,24,26,27,30,31,33,34 2 -240588 cd12941 LEM_LEMD2 1 polypeptide substrate binding site 0 1 1 0 15,16,17,18,19,20,22,23,26,27,29,30 2 -240589 cd12942 LEM_Man1 1 polypeptide substrate binding site 0 1 1 0 19,20,21,22,23,24,26,27,30,31,33,34 2 -240590 cd12943 LEM_ANKL1 1 polypeptide substrate binding site 0 1 1 0 15,16,17,18,19,20,22,23,26,27,29,30 2 -240591 cd12944 LEM_ANKL2 1 polypeptide substrate binding site 0 1 1 0 19,20,21,22,23,24,26,27,30,31,33,34 2 -214020 cd12955 SKA2 1 SKA1 interface 0 1 1 1 11,14,15,17,18,21,24,25,28,35,44,48,51,55,59,62,65,66,69,73,76,77,79,83 2 -214020 cd12955 SKA2 2 SKA3 interface 0 1 1 1 7,10,14,17,20,21,24,45,48,52,56,66,73,80,81,84,87,93,100,101,104,108 2 -214020 cd12955 SKA2 3 homodimer interface 0 1 1 1 0,1,2,3,4,6,7,10,11 2 -240562 cd12956 CBM_SusE-F_like 1 starch binding site 0 1 1 1 12,40,42,49,52 5 -240563 cd12964 CBM-Fa 1 starch binding site 0 1 1 1 10,43,45,58,61 5 -240564 cd12965 CBM-Eb_CBM-Fb 1 starch binding site 0 1 1 1 11,40,42,49,52 5 -240565 cd12966 CBM-Ec_CBM-Fc 1 starch binding site 0 1 1 1 13,43,45,53,56 5 -240566 cd12967 CBM_SusE-F_like_u1 1 starch binding site 0 1 1 1 10,38,40,47,50 5 -240570 cd12957 SKA3_N 1 SKA1 interface 0 1 1 1 7,11,14,18,22,25,26,34,38,39,42,45,46,49,50,52,53,56,57,59,60,63,64,66,67,71,74,77 2 -240570 cd12957 SKA3_N 2 SKA2 interface 0 1 1 1 8,11,15,19,22,23,26,45,49,52,55,56,59,66,70,73,76,77,79,80,87,91,94 2 -240570 cd12957 SKA3_N 3 homodimer interface 0 1 1 1 0,1,2,3,4,5,7,8,9,12,13,16 2 -214021 cd12958 SKA1_N 1 SKA2 interface 0 1 1 1 9,13,16,17,20,21,23,24,27,39,43,46,47,50,51,53,54,57,60,64,67,68,70,71,74 2 -214021 cd12958 SKA1_N 2 SKA3 interface 0 1 1 1 3,6,7,10,14,17,18,21,24,25,32,35,36,39,42,43,45,46,49,50,52,53,56,59,60,63,67,70,74 2 -214021 cd12958 SKA1_N 3 homodimer interface 0 1 1 1 1,2,3,6 2 -214022 cd12959 MMACHC-like 1 cobalamin binding site 0 1 1 0 28,29,30,99,108,110,111,112,113,114,117,124,126,141,143,144,153,154,155,191,195,200,201 5 -214022 cd12959 MMACHC-like 2 dimer interface 0 1 1 1 35,36,37,68,69,70,71,95,96,97,100,102,103,106,109 2 -240575 cd12960 Spider_toxin 1 Principal Structural Motif (PSM) 0 0 1 1 1,8,15,16 0 -240575 cd12960 Spider_toxin 2 Extra Structural Motif (ESM) 0 0 1 1 21,23,30,32 0 -240569 cd12961 CBM58_SusG 1 starch binding site 0 1 1 1 38,40,41,42,65,68,77,82,108 5 -240555 cd13122 MSL2_CXC 1 Zn binding site CCCCCCCCC 1 1 1 6,8,20,25,27,34,37,39,42 4 -240523 cd13150 DAXX_histone_binding 1 Histone H3.3 interface 0 1 1 0 12,13,16,19,20,22,23,24,25,26,27,28,30,31,32,33,35,36,37,38,40,41,44,47,48,51,64,65,66,96,97,98,99,100,103,130,134,135,138,141,144,145,148,149,151,152,153,155,179,182,183,186,187,189,190,193,194,197 2 -240523 cd13150 DAXX_histone_binding 2 Histone H4 interface 0 1 1 0 26,96,98,101,142,145,146,149,154,158,159,160,161,164,167,171,174,178,181,182,185,186,189,193 2 -240522 cd13151 DAXX_helical_bundle 1 Rassf1C interface 0 1 1 0 24,26,27,30,31,34,64,65,67,68,70,71,74,75,78,83 2 -240521 cd13394 Syo1_like 1 polypeptide substrate binding site 0 1 1 0 295,302,311,312,347,390,393,394,397,398,400,401,402,412,443,447,476,481,574,578 2 -259831 cd13404 UreI_AmiS_like 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,121,124,125 5 -259831 cd13404 UreI_AmiS_like 2 constriction site 1 0 0 1 1 3,64,121 5 -259831 cd13404 UreI_AmiS_like 3 constriction site 2 0 0 1 1 10,67,68,124,125 5 -259831 cd13404 UreI_AmiS_like 4 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,159,162 2 -259832 cd13428 UreI_AmiS 1 transport channel LLFTYWLW 0 1 1 3,10,63,66,67,116,119,120 5 -259832 cd13428 UreI_AmiS 2 constriction site 1 0 0 1 1 3,63,116 5 -259832 cd13428 UreI_AmiS 3 constriction site 2 0 0 1 1 10,66,67,119,120 5 -259832 cd13428 UreI_AmiS 4 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,54,55,57,58,61,62,65,68,69,79,81,82,85,86,89,92,93,96,154,157 2 -259833 cd13429 UreI_AmiS_like_2 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,118,121,122 5 -259833 cd13429 UreI_AmiS_like_2 2 constriction site 1 0 0 1 1 3,64,118 5 -259833 cd13429 UreI_AmiS_like_2 3 constriction site 2 0 0 1 1 10,67,68,121,122 5 -259833 cd13429 UreI_AmiS_like_2 4 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,157,160 2 -259834 cd13747 UreI_AmiS_like_1 1 transport channel LLFTYWLW 0 1 1 3,10,64,67,68,121,124,125 5 -259834 cd13747 UreI_AmiS_like_1 2 constriction site 1 0 0 1 1 3,64,121 5 -259834 cd13747 UreI_AmiS_like_1 3 constriction site 2 0 0 1 1 10,67,68,124,125 5 -259834 cd13747 UreI_AmiS_like_1 4 hexamer interface 0 1 1 0 1,4,5,8,15,16,21,22,24,25,28,29,32,43,45,55,56,58,59,62,63,66,69,70,80,82,83,86,87,90,93,94,97,159,162 2 -240441 cd13433 Na_channel_gate 1 putative hydrophobic latch 0 0 1 1 15,16,17,18 0 -240441 cd13433 Na_channel_gate 2 phosphorylation site [ST] 0 1 1 33 6 -259835 cd13442 CDI_toxin_Bp1026b_like 1 putative active site [EQ][DE][DEQ]x 0 1 1 21,50,59,78 1 -259835 cd13442 CDI_toxin_Bp1026b_like 2 putative metal binding site 0 0 1 1 21,50 4 -259835 cd13442 CDI_toxin_Bp1026b_like 3 inhibitor binding site 0 1 1 0 7,10,17,18,21,38,46,47,48,50,59,60,61,63,64,65,70,73,74,77,78,80 2 -259836 cd13443 CDI_inhibitor_Bp1026b_like 1 CDI toxin binding surface 0 1 1 0 0,1,2,4,36,39,44,45,48,61,65,67,70,71,73,93,94,95,96,97,99 2 -259837 cd13444 CDI_toxin_EC869_like 1 putative active site [EDQ]DSK 0 1 1 23,44,55,57 1 -259837 cd13444 CDI_toxin_EC869_like 2 Zn binding site [ED][ED] 1 1 0 23,44 4 -259837 cd13444 CDI_toxin_EC869_like 3 inhibitor binding site 0 1 1 0 33,35,36,37,41,46,88,89,90,91,93,94,95,97,99,100 2 -259838 cd13445 CDI_inhibitor_EC869_like 1 CDI toxin binding surface 0 1 1 0 0,2,4,17,20,21,22,23,24,25,75,100,104,113,118,119,121,122,123,124,125 2 -259839 cd13746 Sir4p-SID_like 1 Sir2p interface 0 1 1 1 3,31,34,35,38,39,42,45,46,48,49,50,53,54,56,57,58,60,61,62,64,66,67,68,71,73,74,75,76,77,79,80,81,82,85,86,88,90,91,93,94,98,101,102,103,104,105,107,108,109,110,111,112,114 2 -259840 cd13748 CBM29_CBM65 1 carbohydrate binding site 0 1 1 0 11,45,47,53,55,82,86 5 -259841 cd13768 DSS1_Sem1 1 nuclear mRNA export protein (Thp1) interaction site 0 1 1 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,33,34,35,36,37,38,40,41,43,47,49,50,52,53,54,56,57,58,59,60 2 -260099 cd13777 Aar2_N 1 inter-domain interface 0 1 1 0 16,38,40,42,52,53,54,55,56,57,62,65,76,78,110,112,113,114,115,116,117,119,121,122,123,124,125 2 -260099 cd13777 Aar2_N 2 heterodimer interface 0 1 1 1 42,52 2 -260100 cd13778 Aar2_C 1 inter-domain interface 0 1 1 0 0,1,2,3,5,6,7,47,48,51,52,55,56,58,59,60,64,92,96,99,100 2 -260100 cd13778 Aar2_C 2 heterodimer interface 0 1 1 1 60,98,99,145,148,152 2 -260101 cd13783 SPACA1 1 putative phosphorylation site 0 0 1 1 175,228,246 6 -260102 cd13784 SP_1775_like 1 oligomer interface 0 1 0 0 7,8,10,12,23,26,27,28,29,30,31,33,36,37,52,53,54,57,59,60,63,64 2 -260102 cd13784 SP_1775_like 2 putative ligand binding site 0 1 0 0 31,36 5 -260103 cd13839 MEF2_binding 1 MEF2 interaction interface 0 1 1 0 3,5,6,7,8,9,12,13,15,16,20,21,24,25,26,27,28 2 -260104 cd13840 SMBP_like 1 putative metal binding site 0 1 0 1 3,10,17,29,36,50,53,57,64,69,76,83 4 -260105 cd13841 ABBA-PTs 1 active site 0 1 1 0 40,53,55,117,119,121,173,175,177,217,232,234,273,285,289 1 -260106 cd13929 PT-DMATS_CymD 1 active site 0 1 1 0 61,75,77,161,163,165,230,232,234,300,315,317,372,383,387 1 -260107 cd13930 PT-Tnase 1 active site 0 1 1 0 60,74,76,142,144,146,203,205,207,255,269,271,323,339,343 1 -260108 cd13931 PT-CloQ_NphB 1 active site 0 1 1 0 38,51,53,108,110,112,159,161,163,202,218,220,254,265,269 1 -260109 cd14243 PT-AcyF_like 1 active site 0 1 1 0 41,55,57,124,126,128,176,178,180,219,231,233,269,284,288 1 -260116 cd13944 lytB_ispH 1 Fe-S cluster binding site 0 1 1 0 9,93,189 4 -260116 cd13944 lytB_ispH 2 substrate binding site 0 1 1 0 12,37,38,70,71,121,123,161,162,216,217,218,219,261 5 -260116 cd13944 lytB_ispH 3 catalytic site 0 0 1 1 121,123,217,219 1 -260117 cd13945 Chs5_N 1 homodimer interface 0 1 1 0 0,2,3,22,24,25,26,27,29,30,32,39,40,41,42,43,44,45,46,47,48,51,52 2 -260117 cd13945 Chs5_N 2 Bch1 interaction interface 0 1 1 0 7,8,9,15,17,21,22,23,29,55,58,59,62,63,66,67,69,70,71,72 2 -260117 cd13945 Chs5_N 3 Chs6 interaction interface 0 0 1 1 7,8,17,21,22,36,37,38,52,56,59,60,62,63,66,67,69,70,71,72 2 -260118 cd13946 LysW 1 Zn binding site CC[HC]C 1 1 0 2,5,23,26 4 -260118 cd13946 LysW 2 ArgX binding interface 0 1 1 1 4,5,6,14,17,18,19,20,26,27,31,33,42,45,48,49,50,51,52,53 2 -260118 cd13946 LysW 3 AAA attachment site 0 1 1 1 53 1 -260119 cd13956 PT_UbiA 1 putative active site dddd 0 1 1 55,59,175,179 1 -260120 cd13957 PT_UbiA_Cox10 1 putative active site dddd 0 1 1 54,58,176,180 1 -260121 cd13958 PT_UbiA_chlorophyll 1 putative active site dddd 0 1 1 59,63,183,187 1 -260122 cd13959 PT_UbiA_COQ2 1 putative active site dddd 0 1 1 56,60,176,180 1 -260123 cd13960 PT_UbiA_HPT1 1 putative active site dddd 0 1 1 61,65,191,195 1 -260124 cd13961 PT_UbiA_DGGGPS 1 putative active site dddd 0 1 1 58,62,176,180 1 -260125 cd13962 PT_UbiA_UBIAD1 1 putative active site dddd 0 1 1 56,60,186,190 1 -260126 cd13963 PT_UbiA_2 1 putative active site dddd 0 1 1 56,60,174,178 1 -260127 cd13964 PT_UbiA_1 1 putative active site dddd 0 1 1 55,59,173,177 1 -260128 cd13965 PT_UbiA_3 1 putative active site dddd 0 1 1 59,63,180,184 1 -260129 cd13966 PT_UbiA_4 1 putative active site dddd 0 1 1 56,60,179,183 1 -260130 cd13967 PT_UbiA_5 1 putative active site dddd 0 1 1 55,59,183,187 1 -270870 cd13968 PKc_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,54,70,71,72,73,115,119,120,122,132,133 5 -270621 cd00142 PI3Kc_like 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,68,80,81,82,83,131,135,136,138,148,149 5 -270624 cd00891 PI3Kc 1 ATP binding site 0 1 1 0 66,67,68,69,70,72,90,92,126,138,139,140,141,205,209,210,212,222,223 5 -270628 cd00896 PI3Kc_III 1 ATP binding site 0 1 1 0 73,74,75,76,77,79,95,97,131,143,144,145,146,205,209,210,212,222,223 5 -270709 cd05165 PI3Kc_I 1 ATP binding site 0 1 1 0 71,72,73,74,75,77,98,100,134,146,147,148,149,214,218,219,221,231,232 5 -270627 cd00894 PI3Kc_IB_gamma 1 ATP binding site 0 1 1 0 75,76,77,78,79,81,102,104,138,150,151,152,153,217,221,222,224,234,235 5 -270717 cd05173 PI3Kc_IA_beta 1 ATP binding site 0 1 1 0 73,74,75,76,77,79,97,99,133,145,146,147,148,213,217,218,220,230,231 5 -270718 cd05174 PI3Kc_IA_delta 1 ATP binding site 0 1 1 0 76,77,78,79,80,82,100,102,136,148,149,150,151,216,220,221,223,233,234 5 -270719 cd05175 PI3Kc_IA_alpha 1 ATP binding site 0 1 1 0 77,78,79,80,81,83,105,107,141,153,154,155,156,220,224,225,227,237,238 5 -270710 cd05166 PI3Kc_II 1 ATP binding site 0 1 1 0 69,70,71,72,73,75,93,95,129,141,142,143,144,207,211,212,214,224,225 5 -119421 cd00895 PI3Kc_C2_beta 1 ATP binding site 0 1 1 0 70,71,72,73,74,76,94,96,130,142,143,144,145,208,212,213,215,225,226 5 -270720 cd05176 PI3Kc_C2_alpha 1 ATP binding site 0 1 1 0 69,70,71,72,73,75,93,95,129,141,142,143,144,207,211,212,214,224,225 5 -270721 cd05177 PI3Kc_C2_gamma 1 ATP binding site 0 1 1 0 70,71,72,73,74,76,94,96,130,142,143,144,145,208,212,213,215,225,226 5 -270626 cd00893 PI4Kc_III 1 ATP binding site 0 1 1 0 10,11,12,13,15,17,30,32,66,78,79,80,81,141,145,146,148,158,159 5 -270711 cd05167 PI4Kc_III_alpha 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,52,54,88,100,101,102,103,161,165,166,168,178,179 5 -270712 cd05168 PI4Kc_III_beta 1 ATP binding site 0 1 1 0 13,14,15,16,18,20,33,35,69,81,82,83,84,144,148,149,151,161,162 5 -270708 cd05164 PIKKc 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,136,140,141,143,154,155 5 -270625 cd00892 PIKKc_ATR 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,144,148,149,151,162,163 5 -270707 cd05163 PIKK_TRRAP 1 ATP binding site 0 1 1 0 10,11,12,13,15,17,33,35,75,87,88,89,90,158,162,163,165,176,177 5 -270713 cd05169 PIKKc_TOR 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,185,189,190,192,203,204 5 -270714 cd05170 PIKKc_SMG1 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,211,215,216,218,229,230 5 -270715 cd05171 PIKKc_ATM 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,189,193,194,196,207,208 5 -270716 cd05172 PIKKc_DNA-PK 1 ATP binding site 0 1 1 0 10,11,12,13,14,16,32,34,72,84,85,86,87,141,145,146,148,159,160 5 -270622 cd00180 PKc 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,53,69,70,71,72,116,120,121,123,133,134 5 -270623 cd00192 PTKc 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,26,28,58,74,75,76,77,129,133,134,136,146,147 5 -173625 cd05032 PTKc_InsR_like 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,39,41,71,87,88,89,90,143,147,148,150,160,161 5 -133192 cd05061 PTKc_InsR 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,39,41,71,87,88,89,90,143,147,148,150,160,161 5 -133193 cd05062 PTKc_IGF-1R 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,39,41,71,87,88,89,90,143,147,148,150,160,161 5 -270629 cd05033 PTKc_EphR 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,35,37,67,83,84,85,86,130,134,135,137,147,148 5 -133194 cd05063 PTKc_EphR_A2 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,36,38,68,84,85,86,87,131,135,136,138,148,149 5 -133195 cd05064 PTKc_EphR_A10 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,36,38,68,84,85,86,87,131,135,136,138,148,149 5 -173638 cd05065 PTKc_EphR_B 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,35,37,67,83,84,85,86,130,134,135,137,147,148 5 -270651 cd05066 PTKc_EphR_A 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,35,37,67,83,84,85,86,130,134,135,137,147,148 5 -270630 cd05034 PTKc_Src_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,22,24,52,68,69,70,71,116,120,121,123,133,134 5 -270652 cd05067 PTKc_Lck_Blk 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,34,36,64,79,80,81,82,127,131,132,134,144,145 5 -270653 cd05068 PTKc_Frk_like 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,35,37,65,81,82,83,84,128,132,133,135,145,146 5 -270657 cd05072 PTKc_Lyn 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,34,36,64,80,81,82,83,128,132,133,135,145,146 5 -270658 cd05073 PTKc_Hck 1 ATP binding site 0 1 1 0 18,19,20,21,24,26,38,40,68,83,84,85,86,131,135,136,138,148,149 5 -133248 cd05148 PTKc_Srm_Brk 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,33,35,64,80,81,82,83,128,132,133,135,145,146 5 -271105 cd14203 PTKc_Src_Fyn_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,22,24,52,67,68,69,70,115,119,120,122,132,133 5 -270654 cd05069 PTKc_Yes 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,39,41,69,84,85,86,87,132,136,137,139,149,150 5 -270655 cd05070 PTKc_Fyn 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,36,38,66,81,82,83,84,129,133,134,136,146,147 5 -270656 cd05071 PTKc_Src 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,36,38,66,81,82,83,84,129,133,134,136,146,147 5 -270631 cd05035 PTKc_TAM 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,30,32,63,85,86,87,88,137,141,142,144,154,155 5 -270659 cd05074 PTKc_Tyro3 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,40,42,73,95,96,97,98,147,151,152,154,164,165 5 -270660 cd05075 PTKc_Axl 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,30,32,63,85,86,87,88,137,141,142,144,154,155 5 -271106 cd14204 PTKc_Mer 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,38,40,71,92,93,94,95,144,148,149,151,161,162 5 -270632 cd05036 PTKc_ALK_LTK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,39,41,71,87,88,89,90,140,144,145,147,160,161 5 -270634 cd05038 PTKc_Jak_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,36,38,68,86,87,88,89,133,137,138,140,150,151 5 -173644 cd05079 PTKc_Jak1_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,36,38,68,86,87,88,89,133,137,138,140,150,151 5 -270664 cd05080 PTKc_Tyk2_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,36,38,68,86,87,88,89,131,135,136,138,148,149 5 -270665 cd05081 PTKc_Jak3_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,36,38,67,85,86,87,88,132,136,137,139,149,150 5 -271107 cd14205 PTKc_Jak2_rpt2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,36,38,67,85,86,87,88,132,136,137,139,149,150 5 -270635 cd05039 PTKc_Csk_like 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,32,34,62,78,79,80,81,126,130,131,133,143,144 5 -133213 cd05082 PTKc_Csk 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,32,34,61,78,79,80,81,126,130,131,133,143,144 5 -270666 cd05083 PTKc_Chk 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,32,34,61,76,77,78,79,124,128,129,131,141,142 5 -270636 cd05040 PTKc_Ack_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,26,28,60,75,76,77,78,122,126,127,129,139,140 5 -270637 cd05041 PTKc_Fes_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,55,71,72,73,74,118,122,123,125,135,136 5 -270667 cd05084 PTKc_Fes 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,24,26,56,72,73,74,75,119,123,124,126,136,137 5 -270668 cd05085 PTKc_Fer 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,23,25,55,71,72,73,74,118,122,123,125,135,136 5 -270638 cd05042 PTKc_Aatyk 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,25,27,57,73,74,75,76,124,128,129,131,141,142 5 -270669 cd05086 PTKc_Aatyk2 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,27,29,59,75,76,77,78,126,130,131,133,143,144 5 -270670 cd05087 PTKc_Aatyk1 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,27,29,59,75,76,77,78,126,130,131,133,143,144 5 -271108 cd14206 PTKc_Aatyk3 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,27,29,59,75,76,77,78,131,135,136,138,148,149 5 -270639 cd05043 PTK_Ryk 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,37,39,69,86,87,88,89,140,144,145,147,157,158 5 -270640 cd05044 PTKc_c-ros 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,29,31,61,77,78,79,80,130,134,135,137,151,152 5 -173631 cd05045 PTKc_RET 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,33,35,65,81,82,83,84,151,155,156,158,168,169 5 -133178 cd05046 PTK_CCK4 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,70,86,87,88,89,141,145,146,148,158,159 5 -270641 cd05047 PTKc_Tie 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,25,27,58,74,75,76,77,136,140,141,143,153,154 5 -133219 cd05088 PTKc_Tie2 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,37,39,70,86,87,88,89,148,152,153,155,165,166 5 -270671 cd05089 PTKc_Tie1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,32,34,65,81,82,83,84,143,147,148,150,160,161 5 -270642 cd05048 PTKc_Ror 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,70,86,87,88,89,148,152,153,155,165,166 5 -270672 cd05090 PTKc_Ror1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,37,39,69,85,86,87,88,148,152,153,155,165,166 5 -270673 cd05091 PTKc_Ror2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,39,41,71,87,88,89,90,149,153,154,156,166,167 5 -270643 cd05049 PTKc_Trk 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,70,86,87,88,89,146,150,151,153,163,164 5 -270674 cd05092 PTKc_TrkA 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,69,85,86,87,88,146,150,151,153,163,164 5 -270675 cd05093 PTKc_TrkB 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,69,85,86,87,88,144,148,149,151,161,162 5 -270676 cd05094 PTKc_TrkC 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,69,85,86,87,88,147,151,152,154,164,165 5 -133181 cd05050 PTKc_Musk 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,38,40,70,86,87,88,89,154,158,159,161,171,172 5 -270644 cd05051 PTKc_DDR 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,49,51,81,97,98,99,100,155,159,160,162,172,173 5 -270677 cd05095 PTKc_DDR2 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,49,51,81,97,98,99,100,155,159,160,162,172,173 5 -133227 cd05096 PTKc_DDR1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,49,51,81,97,98,99,100,162,166,167,169,179,180 5 -133228 cd05097 PTKc_DDR_like 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,47,49,79,95,96,97,98,153,157,158,160,170,171 5 -270645 cd05052 PTKc_Abl 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,64,80,81,82,83,128,132,133,135,145,146 5 -270646 cd05053 PTKc_FGFR 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,46,48,79,95,96,97,98,157,161,162,164,174,175 5 -270678 cd05098 PTKc_FGFR1 1 ATP binding site 0 1 1 0 20,21,22,23,26,28,48,50,81,97,98,99,100,159,163,164,166,176,177 5 -133230 cd05099 PTKc_FGFR4 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,47,49,80,96,97,98,99,158,162,163,165,175,176 5 -173652 cd05100 PTKc_FGFR3 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,47,49,80,96,97,98,99,158,162,163,165,175,176 5 -270679 cd05101 PTKc_FGFR2 1 ATP binding site 0 1 1 0 31,32,33,34,37,39,59,61,92,108,109,110,111,170,174,175,177,187,188 5 -270647 cd05054 PTKc_VEGFR 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,40,42,73,90,91,92,93,162,166,167,169,179,180 5 -270680 cd05102 PTKc_VEGFR3 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,40,42,73,90,91,92,93,196,200,201,203,213,214 5 -270681 cd05103 PTKc_VEGFR2 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,40,42,73,90,91,92,93,203,207,208,210,220,221 5 -271109 cd14207 PTKc_VEGFR1 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,40,42,73,90,91,92,93,204,208,209,211,221,222 5 -133186 cd05055 PTKc_PDGFR 1 ATP binding site 0 1 1 0 42,43,44,45,48,50,68,70,101,117,118,119,120,165,169,170,172,182,183 5 -270682 cd05104 PTKc_Kit 1 ATP binding site 0 1 1 0 42,43,44,45,48,50,68,70,101,117,118,119,120,238,242,243,245,255,256 5 -173653 cd05105 PTKc_PDGFR_alpha 1 ATP binding site 0 1 1 0 44,45,46,47,50,52,70,72,103,119,120,121,122,261,265,266,268,278,279 5 -133237 cd05106 PTKc_CSF-1R 1 ATP binding site 0 1 1 0 45,46,47,48,51,53,71,73,104,120,121,122,123,236,240,241,243,253,254 5 -133238 cd05107 PTKc_PDGFR_beta 1 ATP binding site 0 1 1 0 44,45,46,47,50,52,70,72,103,119,120,121,122,263,267,268,270,280,281 5 -133187 cd05056 PTKc_FAK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,37,39,69,84,85,86,87,131,135,136,138,148,149 5 -270648 cd05057 PTKc_EGFR_like 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,39,41,71,86,87,88,89,133,137,138,140,150,151 5 -270683 cd05108 PTKc_EGFR 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,39,41,71,86,87,88,89,133,137,138,140,150,151 5 -270684 cd05109 PTKc_HER2 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,39,41,71,86,87,88,89,133,137,138,140,150,151 5 -173655 cd05110 PTKc_HER4 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,39,41,71,86,87,88,89,133,137,138,140,150,151 5 -173656 cd05111 PTK_HER3 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,39,41,71,86,87,88,89,133,137,138,140,150,151 5 -270649 cd05058 PTKc_Met_Ron 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,26,28,58,75,76,77,78,122,126,127,129,139,140 5 -173637 cd05059 PTKc_Tec_like 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,31,33,61,77,78,79,80,124,128,129,131,141,142 5 -133243 cd05112 PTKc_Itk 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,31,33,61,77,78,79,80,124,128,129,131,141,142 5 -173657 cd05113 PTKc_Btk_Bmx 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,31,33,61,77,78,79,80,124,128,129,131,141,142 5 -270685 cd05114 PTKc_Tec_Rlk 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,31,33,61,77,78,79,80,124,128,129,131,141,142 5 -270650 cd05060 PTKc_Syk_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,26,28,58,73,74,75,76,119,123,124,126,136,137 5 -270686 cd05115 PTKc_Zap-70 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,34,36,66,81,82,83,84,128,132,133,135,145,146 5 -133247 cd05116 PTKc_Syk 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,25,27,58,73,74,75,76,119,123,124,126,136,137 5 -270633 cd05037 PTK_Jak_rpt1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,33,35,64,79,80,81,82,126,130,131,133,149,150 5 -270661 cd05076 PTK_Tyk2_rpt1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,46,48,77,93,94,95,96,140,144,145,147,164,165 5 -270662 cd05077 PTK_Jak1_rpt1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,39,41,70,86,87,88,89,133,137,138,140,157,158 5 -270663 cd05078 PTK_Jak2_rpt1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,34,36,65,81,82,83,84,128,132,133,135,153,154 5 -271110 cd14208 PTK_Jak3_rpt1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,33,35,64,79,80,81,82,128,132,133,135,151,152 5 -270687 cd05117 STKc_CAMK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,143,144 5 -270984 cd14082 STKc_PKD 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,64,80,81,82,83,127,131,132,134,147,148 5 -270985 cd14083 STKc_CaMKI 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,63,79,80,81,82,125,129,130,132,145,146 5 -271068 cd14166 STKc_CaMKI_gamma 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,62,78,79,80,81,124,128,129,131,144,145 5 -271069 cd14167 STKc_CaMKI_alpha 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,63,79,80,81,82,125,129,130,132,145,146 5 -271070 cd14168 STKc_CaMKI_delta 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,70,86,87,88,89,132,136,137,139,152,153 5 -271071 cd14169 STKc_CaMKI_beta 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,63,79,80,81,82,125,129,130,132,145,146 5 -270986 cd14084 STKc_Chk2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,73,89,90,91,92,135,139,140,142,155,156 5 -270987 cd14085 STKc_CaMKIV 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,60,76,77,78,79,122,126,127,129,142,143 5 -270988 cd14086 STKc_CaMKII 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,144,145 5 -270989 cd14087 STKc_PSKH1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,59,75,76,77,78,121,125,126,128,141,142 5 -270990 cd14088 STKc_CaMK_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,123,127,128,130,143,144 5 -270991 cd14089 STKc_MAPKAPK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,56,76,77,78,79,124,128,129,131,144,145 5 -271072 cd14170 STKc_MAPKAPK2 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,57,77,78,79,80,125,129,130,132,145,146 5 -271073 cd14171 STKc_MAPKAPK5 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,61,87,88,89,90,133,137,138,140,153,154 5 -271074 cd14172 STKc_MAPKAPK3 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,59,79,80,81,82,127,131,132,134,147,148 5 -270992 cd14090 STKc_Mnk 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,62,78,79,80,81,124,128,129,131,144,145 5 -271075 cd14173 STKc_Mnk2 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,62,78,79,80,81,124,128,129,131,144,145 5 -271076 cd14174 STKc_Mnk1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,62,78,79,80,81,124,128,129,131,144,145 5 -270993 cd14091 STKc_RSK_C 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,56,72,73,74,75,118,122,123,125,139,140 5 -271077 cd14175 STKc_RSK1_C 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,57,73,74,75,76,119,123,124,126,140,141 5 -271078 cd14176 STKc_RSK2_C 1 ATP binding site 0 1 1 0 26,27,28,29,32,34,47,49,75,91,92,93,94,137,141,142,144,158,159 5 -271079 cd14177 STKc_RSK4_C 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,60,76,77,78,79,122,126,127,129,143,144 5 -271080 cd14178 STKc_RSK3_C 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,59,75,76,77,78,121,125,126,128,142,143 5 -270994 cd14092 STKc_MSK_C 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,61,77,78,79,80,123,127,128,130,143,144 5 -271081 cd14179 STKc_MSK1_C 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,64,80,81,82,83,126,130,131,133,146,147 5 -271082 cd14180 STKc_MSK2_C 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,63,79,80,81,82,125,129,130,132,145,146 5 -270995 cd14093 STKc_PhKG 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,71,87,88,89,90,133,137,138,140,150,151 5 -271083 cd14181 STKc_PhKG2 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,78,94,95,96,97,140,144,145,147,157,158 5 -271084 cd14182 STKc_PhKG1 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,72,88,89,90,91,134,138,139,141,151,152 5 -270996 cd14094 STKc_CASK 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,67,83,84,85,86,133,137,138,140,153,154 5 -270997 cd14095 STKc_DCKL 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,122,126,127,129,143,144 5 -271085 cd14183 STKc_DCKL1 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,66,82,83,84,85,128,132,133,135,149,150 5 -271086 cd14184 STKc_DCKL2 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,123,127,128,130,144,145 5 -271087 cd14185 STKc_DCKL3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,122,126,127,129,143,144 5 -270998 cd14096 STKc_RCK1-like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,30,32,68,84,85,86,87,130,134,135,137,180,181 5 -270999 cd14097 STKc_STK33 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,148,149 5 -271000 cd14098 STKc_Rad53_Cds1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,63,79,80,81,82,125,129,130,132,144,145 5 -270688 cd05118 STKc_CMGC 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,61,79,80,81,82,125,129,130,132,143,144 5 -270823 cd07829 STKc_CDK_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,60,76,77,78,79,122,126,127,129,139,140 5 -270829 cd07835 STKc_CDK1_CdkB_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,60,76,77,78,79,123,127,128,130,140,141 5 -270830 cd07837 STKc_CdkB_plant 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,83,84,85,86,133,137,138,140,151,152 5 -270844 cd07860 STKc_CDK2_3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,124,128,129,131,141,142 5 -270845 cd07861 STKc_CDK1_euk 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -143341 cd07836 STKc_Pho85 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,124,128,129,131,141,142 5 -270831 cd07838 STKc_CDK4_6_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,63,84,85,86,87,131,135,136,138,148,149 5 -270846 cd07862 STKc_CDK6 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,30,32,66,87,88,89,90,134,138,139,141,151,152 5 -143368 cd07863 STKc_CDK4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,64,85,86,87,88,132,136,137,139,149,150 5 -143344 cd07839 STKc_CDK5 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270832 cd07840 STKc_CDK9_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,60,82,83,84,85,128,132,133,135,145,146 5 -270847 cd07864 STKc_CDK12 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,68,94,95,96,97,140,144,145,147,157,158 5 -270848 cd07865 STKc_CDK9 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,40,42,73,97,98,99,100,143,147,148,150,160,161 5 -270849 cd07866 STKc_BUR1 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,36,38,69,93,94,95,96,139,143,144,146,156,157 5 -270833 cd07841 STKc_CDK7 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,64,80,81,82,83,126,130,131,133,143,144 5 -270834 cd07842 STKc_CDK8_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,30,32,64,82,83,84,85,132,136,137,139,153,154 5 -270850 cd07867 STKc_CDC2L6 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,32,34,61,79,80,81,82,133,137,138,140,154,155 5 -270851 cd07868 STKc_CDK8 1 ATP binding site 0 1 1 0 24,25,26,27,30,32,47,49,76,94,95,96,97,148,152,153,155,169,170 5 -173741 cd07843 STKc_CDC2L1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,66,84,85,86,87,130,134,135,137,147,148 5 -270835 cd07844 STKc_PCTAIRE_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,122,126,127,129,139,140 5 -143374 cd07869 STKc_PFTAIRE1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,81,82,83,84,127,131,132,134,144,145 5 -270852 cd07870 STKc_PFTAIRE2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,122,126,127,129,139,140 5 -270853 cd07871 STKc_PCTAIRE3 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,81,82,83,84,127,131,132,134,144,145 5 -143377 cd07872 STKc_PCTAIRE2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,66,82,83,84,85,128,132,133,135,145,146 5 -270854 cd07873 STKc_PCTAIRE1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,62,78,79,80,81,124,128,129,131,141,142 5 -173742 cd07845 STKc_CDK10 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,68,86,87,88,89,132,136,137,139,149,150 5 -270824 cd07830 STKc_MAK_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,60,76,77,78,79,123,127,128,130,140,141 5 -270825 cd07831 STKc_MOK 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,60,78,79,80,81,124,128,129,131,140,141 5 -270826 cd07832 STKc_CCRK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -270827 cd07833 STKc_CDKL 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,141,142 5 -270836 cd07846 STKc_CDKL2_3 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,141,142 5 -270837 cd07847 STKc_CDKL1_4 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,141,142 5 -270838 cd07848 STKc_CDKL5 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,141,142 5 -270828 cd07834 STKc_MAPK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,82,83,84,85,127,131,132,134,144,145 5 -270839 cd07849 STKc_ERK1_2_like 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,86,87,88,89,130,134,135,137,147,148 5 -270840 cd07850 STKc_JNK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,83,84,85,86,126,130,131,133,143,144 5 -143379 cd07874 STKc_JNK3 1 ATP binding site 0 1 1 0 24,25,26,27,30,32,45,47,78,100,101,102,103,143,147,148,150,160,161 5 -143380 cd07875 STKc_JNK1 1 ATP binding site 0 1 1 0 31,32,33,34,37,39,52,54,85,107,108,109,110,150,154,155,157,167,168 5 -143381 cd07876 STKc_JNK2 1 ATP binding site 0 1 1 0 28,29,30,31,34,36,49,51,82,104,105,106,107,147,151,152,154,164,165 5 -143356 cd07851 STKc_p38 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,76,98,99,100,101,142,146,147,149,159,160 5 -143382 cd07877 STKc_p38alpha 1 ATP binding site 0 1 1 0 24,25,26,27,30,32,45,47,78,100,101,102,103,144,148,149,151,161,162 5 -143383 cd07878 STKc_p38beta 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,76,98,99,100,101,142,146,147,149,159,160 5 -143384 cd07879 STKc_p38delta 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,76,98,99,100,101,141,145,146,148,158,159 5 -143385 cd07880 STKc_p38gamma 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,76,98,99,100,101,142,146,147,149,159,160 5 -270841 cd07852 STKc_MAPK15-like 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,69,87,88,89,90,131,135,136,138,148,149 5 -173748 cd07853 STKc_NLK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,82,83,84,85,127,131,132,134,144,145 5 -143359 cd07854 STKc_MAPK4_6 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,64,94,95,96,97,138,142,143,145,156,157 5 -270842 cd07855 STKc_ERK5 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,66,88,89,90,91,133,137,138,140,150,151 5 -270843 cd07856 STKc_Sty1_Hog1 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,71,88,89,90,91,132,136,137,139,149,150 5 -173750 cd07857 STKc_MPK1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,30,32,64,84,85,86,87,129,133,134,136,146,147 5 -143363 cd07858 STKc_TEY_MAPK 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,66,87,88,89,90,132,136,137,139,149,150 5 -143364 cd07859 STKc_TDY_MAPK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,82,83,84,85,127,131,132,134,144,145 5 -271034 cd14132 STKc_CK2_alpha 1 ATP binding site 0 1 1 0 25,26,27,28,31,33,46,48,75,93,94,95,96,136,140,141,143,154,155 5 -271035 cd14133 PKc_DYRK_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,63,79,80,81,82,126,130,131,133,145,146 5 -271112 cd14210 PKc_DYRK 1 ATP binding site 0 1 1 0 20,21,22,23,26,28,41,43,77,93,94,95,96,140,144,145,147,159,160 5 -271126 cd14224 PKc_DYRK2_3 1 ATP binding site 0 1 1 0 72,73,74,75,78,80,93,95,129,145,146,147,148,192,196,197,199,211,212 5 -271127 cd14225 PKc_DYRK4 1 ATP binding site 0 1 1 0 50,51,52,53,56,58,71,73,107,123,124,125,126,170,174,175,177,189,190 5 -271128 cd14226 PKc_DYRK1 1 ATP binding site 0 1 1 0 20,21,22,23,26,28,41,43,77,93,94,95,96,142,146,147,149,161,162 5 -271113 cd14211 STKc_HIPK 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,62,78,79,80,81,125,129,130,132,146,147 5 -271129 cd14227 STKc_HIPK2 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,78,94,95,96,97,141,145,146,148,162,163 5 -271130 cd14228 STKc_HIPK1 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,78,94,95,96,97,141,145,146,148,162,163 5 -271131 cd14229 STKc_HIPK3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,63,79,80,81,82,126,130,131,133,147,148 5 -271114 cd14212 PKc_YAK1 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,64,80,81,82,83,127,131,132,134,146,147 5 -271036 cd14134 PKc_CLK 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,40,42,76,92,93,94,95,139,143,144,146,175,176 5 -271115 cd14213 PKc_CLK1_4 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,41,43,77,93,94,95,96,140,144,145,147,176,177 5 -271116 cd14214 PKc_CLK3 1 ATP binding site 0 1 1 0 20,21,22,23,26,28,42,44,78,94,95,96,97,141,145,146,148,177,178 5 -271117 cd14215 PKc_CLK2 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,41,43,77,93,94,95,96,140,144,145,147,176,177 5 -271037 cd14135 STKc_PRP4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,29,31,65,81,82,83,84,129,133,134,136,147,148 5 -271038 cd14136 STKc_SRPK 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,76,96,97,98,99,144,148,149,151,162,163 5 -271118 cd14216 STKc_SRPK1 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,76,96,97,98,99,144,148,149,151,191,192 5 -271119 cd14217 STKc_SRPK2 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,40,42,78,98,99,100,101,146,150,151,153,208,209 5 -271120 cd14218 STKc_SRPK3 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,76,96,97,98,99,144,148,149,151,207,208 5 -271039 cd14137 STKc_GSK3 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,59,81,82,83,84,130,134,135,137,148,149 5 -270692 cd05122 PKc_STE 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,59,75,76,77,78,122,126,127,129,139,140 5 -270782 cd06605 PKc_MAPKK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,124,128,129,131,141,142 5 -132946 cd06615 PKc_MEK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,124,128,129,131,141,142 5 -132980 cd06649 PKc_MEK2 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,81,82,83,84,128,132,133,135,145,146 5 -270816 cd06650 PKc_MEK1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,81,82,83,84,128,132,133,135,145,146 5 -270790 cd06616 PKc_MKK4 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,67,83,84,85,86,134,138,139,141,151,152 5 -173729 cd06617 PKc_MKK3_6 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,128,132,133,135,145,146 5 -270791 cd06618 PKc_MKK7 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,76,92,93,94,95,139,143,144,146,156,157 5 -132950 cd06619 PKc_MKK5 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,119,123,124,126,136,137 5 -270792 cd06620 PKc_Byr1_like 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,65,82,83,84,85,129,133,134,136,146,147 5 -270793 cd06621 PKc_Pek1_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,79,80,81,82,129,133,134,136,146,147 5 -132953 cd06622 PKc_PBS2_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,127,131,132,134,144,145 5 -132954 cd06623 PKc_MAPKK_plant_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,124,128,129,131,141,142 5 -270783 cd06606 STKc_MAPKKK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270794 cd06624 STKc_ASK 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,36,38,67,83,84,85,86,132,136,137,139,150,151 5 -270795 cd06625 STKc_MEKK3_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,64,80,81,82,83,126,130,131,133,143,144 5 -270817 cd06651 STKc_MEKK3 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,71,89,90,91,92,135,139,140,142,152,153 5 -270818 cd06652 STKc_MEKK2 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,66,84,85,86,87,130,134,135,137,147,148 5 -270819 cd06653 STKc_MEKK3_like_u1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,66,84,85,86,87,130,134,135,137,147,148 5 -270796 cd06626 STKc_MEKK4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270797 cd06627 STKc_Cdc7_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270798 cd06628 STKc_Byr2_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,68,84,85,86,87,130,134,135,137,147,148 5 -270799 cd06629 STKc_Bck1_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,70,86,87,88,89,132,136,137,139,149,150 5 -270800 cd06630 STKc_MEKK1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,65,81,82,83,84,127,131,132,134,145,146 5 -270801 cd06631 STKc_YSK4 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,28,30,65,81,82,83,84,127,131,132,134,144,145 5 -270802 cd06632 STKc_MEKK1_plant 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,64,80,81,82,83,126,130,131,133,143,144 5 -270784 cd06607 STKc_TAO 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270803 cd06633 STKc_TAO3 1 ATP binding site 0 1 1 0 28,29,30,31,34,36,49,51,83,99,100,101,102,145,149,150,152,162,163 5 -270804 cd06634 STKc_TAO2 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,77,93,94,95,96,139,143,144,146,156,157 5 -270805 cd06635 STKc_TAO1 1 ATP binding site 0 1 1 0 32,33,34,35,38,40,53,55,87,103,104,105,106,149,153,154,156,166,167 5 -270785 cd06608 STKc_myosinIII_N_like 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,65,87,88,89,90,137,141,142,144,154,155 5 -270806 cd06636 STKc_MAP4K4_6_N 1 ATP binding site 0 1 1 0 23,24,25,26,29,31,44,46,75,97,98,99,100,145,149,150,152,162,163 5 -270807 cd06637 STKc_TNIK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,65,87,88,89,90,135,139,140,142,152,153 5 -132969 cd06638 STKc_myosinIIIA_N 1 ATP binding site 0 1 1 0 25,26,27,28,31,33,46,48,77,98,99,100,101,148,152,153,155,165,166 5 -270808 cd06639 STKc_myosinIIIB_N 1 ATP binding site 0 1 1 0 29,30,31,32,35,37,50,52,81,102,103,104,105,152,156,157,159,169,170 5 -270786 cd06609 STKc_MST3_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,122,126,127,129,139,140 5 -132971 cd06640 STKc_MST4 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,64,80,81,82,83,125,129,130,132,142,143 5 -270809 cd06641 STKc_MST3 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,64,80,81,82,83,125,129,130,132,142,143 5 -270810 cd06642 STKc_STK25 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,64,80,81,82,83,125,129,130,132,142,143 5 -270822 cd06917 STKc_NAK1_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,64,80,81,82,83,125,129,130,132,142,143 5 -270787 cd06610 STKc_OSR1_SPAK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,61,77,78,79,80,126,130,131,133,143,144 5 -132942 cd06611 STKc_SLK_like 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,64,80,81,82,83,127,131,132,134,144,145 5 -270811 cd06643 STKc_SLK 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,64,80,81,82,83,127,131,132,134,144,145 5 -132975 cd06644 STKc_STK10 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,40,42,71,87,88,89,90,134,138,139,141,151,152 5 -132943 cd06612 STKc_MST1_2 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,60,76,77,78,79,123,127,128,130,140,141 5 -270788 cd06613 STKc_MAP4K3_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,59,75,76,77,78,121,125,126,128,138,139 5 -270812 cd06645 STKc_MAP4K3 1 ATP binding site 0 1 1 0 18,19,20,21,24,26,39,41,70,86,87,88,89,132,136,137,139,149,150 5 -270813 cd06646 STKc_MAP4K5 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,37,39,68,84,85,86,87,130,134,135,137,147,148 5 -270789 cd06614 STKc_PAK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,121,125,126,128,138,139 5 -270814 cd06647 STKc_PAK_I 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,66,82,83,84,85,127,131,132,134,144,145 5 -270820 cd06654 STKc_PAK1 1 ATP binding site 0 1 1 0 27,28,29,30,33,35,48,50,79,95,96,97,98,140,144,145,147,157,158 5 -132986 cd06655 STKc_PAK2 1 ATP binding site 0 1 1 0 26,27,28,29,32,34,47,49,78,94,95,96,97,139,143,144,146,156,157 5 -132987 cd06656 STKc_PAK3 1 ATP binding site 0 1 1 0 26,27,28,29,32,34,47,49,78,94,95,96,97,139,143,144,146,156,157 5 -270815 cd06648 STKc_PAK_II 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,66,82,83,84,85,127,131,132,134,144,145 5 -132988 cd06657 STKc_PAK4 1 ATP binding site 0 1 1 0 27,28,29,30,33,35,48,50,79,95,96,97,98,140,144,145,147,157,158 5 -132989 cd06658 STKc_PAK5 1 ATP binding site 0 1 1 0 29,30,31,32,35,37,50,52,81,97,98,99,100,142,146,147,149,159,160 5 -270821 cd06659 STKc_PAK6 1 ATP binding site 0 1 1 0 28,29,30,31,34,36,49,51,80,96,97,98,99,141,145,146,148,158,159 5 -271033 cd14131 PKc_Mps1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,28,30,62,80,81,82,83,127,131,132,134,143,144 5 -270693 cd05123 STKc_AGC 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,55,71,72,73,74,117,121,122,124,134,135 5 -270722 cd05570 STKc_PKC 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270739 cd05587 STKc_cPKC 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,24,26,59,75,76,77,78,121,125,126,128,138,139 5 -270766 cd05615 STKc_cPKC_alpha 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,73,89,90,91,92,135,139,140,142,152,153 5 -270767 cd05616 STKc_cPKC_beta 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,63,79,80,81,82,125,129,130,132,142,143 5 -270740 cd05588 STKc_aPKC 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270768 cd05617 STKc_aPKC_zeta 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,78,94,95,96,97,140,144,145,147,157,158 5 -270769 cd05618 STKc_aPKC_iota 1 ATP binding site 0 1 1 0 27,28,29,30,33,35,48,50,83,99,100,101,102,145,149,150,152,162,163 5 -270741 cd05589 STKc_PKN 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,64,80,81,82,83,125,129,130,132,142,143 5 -270742 cd05590 STKc_nPKC_eta 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270743 cd05591 STKc_nPKC_epsilon 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270744 cd05592 STKc_nPKC_theta_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270770 cd05619 STKc_nPKC_theta 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,68,84,85,86,87,130,134,135,137,147,148 5 -173710 cd05620 STKc_nPKC_delta 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270723 cd05571 STKc_PKB 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,57,73,74,75,76,119,123,124,126,136,137 5 -270745 cd05593 STKc_PKB_gamma 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,43,45,77,93,94,95,96,139,143,144,146,156,157 5 -270746 cd05594 STKc_PKB_alpha 1 ATP binding site 0 1 1 0 32,33,34,35,38,40,53,55,87,103,104,105,106,150,154,155,157,167,168 5 -173686 cd05595 STKc_PKB_beta 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,57,73,74,75,76,119,123,124,126,136,137 5 -270724 cd05572 STKc_cGK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,55,71,72,73,74,117,121,122,124,134,135 5 -270725 cd05573 STKc_ROCK_NDR_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270747 cd05596 STKc_ROCK 1 ATP binding site 0 1 1 0 33,34,35,36,39,41,54,56,88,104,105,106,107,149,153,154,156,166,167 5 -270771 cd05621 STKc_ROCK2 1 ATP binding site 0 1 1 0 59,60,61,62,65,67,80,82,114,130,131,132,133,175,179,180,182,192,193 5 -270772 cd05622 STKc_ROCK1 1 ATP binding site 0 1 1 0 80,81,82,83,86,88,101,103,135,151,152,153,154,196,200,201,203,213,214 5 -270748 cd05597 STKc_DMPK_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,126,130,131,133,143,144 5 -270773 cd05623 STKc_MRCK_alpha 1 ATP binding site 0 1 1 0 79,80,81,82,85,87,100,102,134,150,151,152,153,197,201,202,204,214,215 5 -270774 cd05624 STKc_MRCK_beta 1 ATP binding site 0 1 1 0 79,80,81,82,85,87,100,102,134,150,151,152,153,197,201,202,204,214,215 5 -270749 cd05598 STKc_LATS 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270775 cd05625 STKc_LATS1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -173715 cd05626 STKc_LATS2 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270750 cd05599 STKc_NDR_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270776 cd05627 STKc_NDR2 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,64,80,81,82,83,126,130,131,133,143,144 5 -270777 cd05628 STKc_NDR1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270778 cd05629 STKc_NDR_like_fungal 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270751 cd05600 STKc_Sid2p_like 1 ATP binding site 0 1 1 0 18,19,20,21,24,26,39,41,73,89,90,91,92,135,139,140,142,152,153 5 -270752 cd05601 STKc_CRIK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,126,130,131,133,143,144 5 -270726 cd05574 STKc_phototropin_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,127,131,132,134,144,145 5 -270727 cd05575 STKc_SGK 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270753 cd05602 STKc_SGK1 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,70,86,87,88,89,132,136,137,139,149,150 5 -270754 cd05603 STKc_SGK2 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,23,25,58,74,75,76,77,120,124,125,127,137,138 5 -270755 cd05604 STKc_SGK3 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,24,26,59,75,76,77,78,121,125,126,128,138,139 5 -270728 cd05576 STKc_RPK118_like 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,27,29,53,69,70,71,72,137,141,142,144,154,155 5 -270729 cd05577 STKc_GRK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,55,71,72,73,74,119,123,124,126,136,137 5 -270756 cd05605 STKc_GRK4_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,126,130,131,133,143,144 5 -270779 cd05630 STKc_GRK6 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,126,130,131,133,143,144 5 -173720 cd05631 STKc_GRK4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,126,130,131,133,143,144 5 -270780 cd05632 STKc_GRK5 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,64,80,81,82,83,128,132,133,135,145,146 5 -270757 cd05606 STKc_beta_ARK 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,60,76,77,78,79,122,126,127,129,139,140 5 -270781 cd05633 STKc_GRK3 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,70,86,87,88,89,132,136,137,139,149,150 5 -271125 cd14223 STKc_GRK2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,65,81,82,83,84,127,131,132,134,144,145 5 -270758 cd05607 STKc_GRK7 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,64,80,81,82,83,128,132,133,135,145,146 5 -270759 cd05608 STKc_GRK1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,129,133,134,136,146,147 5 -270730 cd05578 STKc_Yank1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -270731 cd05579 STKc_MAST_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,55,71,72,73,74,117,121,122,124,134,135 5 -270760 cd05609 STKc_MAST 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -270761 cd05610 STKc_MASTL 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,66,82,83,84,85,128,132,133,135,145,146 5 -270762 cd05611 STKc_Rim15_like 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,24,26,59,75,76,77,78,121,125,126,128,138,139 5 -270732 cd05580 STKc_PKA_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270763 cd05612 STKc_PRKX_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -271111 cd14209 STKc_PKA 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270733 cd05581 STKc_PDK1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270734 cd05582 STKc_RSK_N 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,26,28,59,75,76,77,78,121,125,126,128,138,139 5 -270735 cd05583 STKc_MSK_N 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,25,27,61,77,78,79,80,123,127,128,130,140,141 5 -270764 cd05613 STKc_MSK1_N 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,31,33,67,83,84,85,86,129,133,134,136,146,147 5 -270765 cd05614 STKc_MSK2_N 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,31,33,67,83,84,85,86,129,133,134,136,146,147 5 -270736 cd05584 STKc_p70S6K 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,27,29,62,78,79,80,81,124,128,129,131,141,142 5 -270737 cd05585 STKc_YPK1_like 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,56,72,73,74,75,118,122,123,125,135,136 5 -270738 cd05586 STKc_Sck1_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,58,74,75,76,77,120,124,125,127,137,138 5 -270855 cd08215 STKc_Nek 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,127,131,132,134,144,145 5 -270857 cd08217 STKc_Nek2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,79,80,81,82,134,138,139,141,151,152 5 -270858 cd08218 STKc_Nek1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -173759 cd08219 STKc_Nek3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,76,77,78,79,124,128,129,131,141,142 5 -270859 cd08220 STKc_Nek8 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,143,144 5 -270860 cd08221 STKc_Nek9 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -270861 cd08222 STKc_Nek11 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,31,33,64,80,81,82,83,130,134,135,137,146,147 5 -270862 cd08223 STKc_Nek4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,78,79,80,81,126,130,131,133,143,144 5 -270863 cd08224 STKc_Nek6_7 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,128,132,133,135,145,146 5 -270865 cd08228 STKc_Nek6 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,64,80,81,82,83,130,134,135,137,147,148 5 -270866 cd08229 STKc_Nek7 1 ATP binding site 0 1 1 0 31,32,33,34,37,39,52,54,86,102,103,104,105,152,156,157,159,169,170 5 -173765 cd08225 STKc_Nek5 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,143,144 5 -270867 cd08528 STKc_Nek10 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,29,31,71,87,88,89,90,138,142,143,145,155,156 5 -270868 cd08529 STKc_FA2-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -270869 cd08530 STKc_CNK2-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,127,131,132,134,144,145 5 -270856 cd08216 PK_STRAD 1 ATP binding site 0 1 1 0 5,6,7,8,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -270864 cd08226 PK_STRAD_beta 1 ATP binding site 0 1 1 0 5,6,7,8,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -173767 cd08227 PK_STRAD_alpha 1 ATP binding site 0 1 1 0 5,6,7,8,13,15,28,30,61,77,78,79,80,125,129,130,132,142,143 5 -270875 cd13973 PK_MviN-like 1 ATP binding site 0 1 1 0 4,5,6,7,13,15,28,30,63,79,80,81,82,124,128,129,131,141,142 5 -270876 cd13974 STKc_SHIK 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,26,28,66,100,101,102,103,156,160,161,163,174,175 5 -270877 cd13975 PKc_Dusty 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,83,84,85,86,126,130,131,133,143,144 5 -270878 cd13976 PK_TRB 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,47,60,61,62,63,108,112,113,115,127,128 5 -270924 cd14022 PK_TRB2 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,47,60,61,62,63,108,112,113,115,127,128 5 -270925 cd14023 PK_TRB1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,47,60,61,62,63,108,112,113,115,127,128 5 -270926 cd14024 PK_TRB3 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,47,60,61,62,63,108,112,113,115,127,128 5 -270879 cd13977 STKc_PDIK1L 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,113,114,115,116,158,162,163,165,178,179 5 -270880 cd13978 STKc_RIP 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,54,70,71,72,73,119,123,124,126,136,137 5 -270927 cd14025 STKc_RIP4_like 1 ATP binding site 0 1 1 0 3,4,5,6,9,11,24,26,57,71,72,73,74,118,122,123,125,135,136 5 -270928 cd14026 STKc_RIP2 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,25,27,59,75,76,77,78,126,130,131,133,143,144 5 -270929 cd14027 STKc_RIP1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,53,69,70,71,72,114,118,119,121,131,132 5 -270881 cd13979 STKc_Mos 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,29,31,61,80,81,82,83,127,131,132,134,144,145 5 -270882 cd13980 STKc_Vps15 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,26,28,60,76,77,78,79,121,125,126,128,138,139 5 -270883 cd13981 STKc_Bub1_BubR1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,31,33,63,79,80,81,82,130,134,135,137,162,163 5 -270930 cd14028 STKc_Bub1_vert 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,33,35,64,80,81,82,83,131,135,136,138,161,162 5 -270931 cd14029 STKc_BubR1_vert 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,47,49,78,95,96,97,98,140,144,145,147,168,169 5 -270884 cd13982 STKc_IRE1 1 ATP binding site 0 1 1 0 8,9,10,11,15,17,28,30,57,73,74,75,76,123,127,128,130,145,146 5 -270885 cd13983 STKc_WNK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,80,81,82,83,128,132,133,135,146,147 5 -270932 cd14030 STKc_WNK1 1 ATP binding site 0 1 1 0 32,33,34,35,38,40,53,55,86,106,107,108,109,154,158,159,161,172,173 5 -270933 cd14031 STKc_WNK3 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,38,40,71,91,92,93,94,139,143,144,146,157,158 5 -270934 cd14032 STKc_WNK2_like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,82,83,84,85,130,134,135,137,148,149 5 -270935 cd14033 STKc_WNK4 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,82,83,84,85,130,134,135,137,148,149 5 -270886 cd13984 PK_NRBP1_like 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,57,77,78,79,80,129,133,134,136,146,147 5 -270936 cd14034 PK_NRBP1 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,37,39,72,92,93,94,95,144,148,149,151,161,162 5 -270937 cd14035 PK_MADML 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,57,77,78,79,80,129,133,134,136,146,147 5 -270887 cd13985 STKc_GAK_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,80,81,82,83,129,133,134,136,146,147 5 -270938 cd14036 STKc_GAK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,60,84,85,86,87,134,138,139,141,151,152 5 -270939 cd14037 STKc_NAK_like 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,63,84,85,86,87,134,138,139,141,151,152 5 -270888 cd13986 STKc_16 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,59,80,81,82,83,133,137,138,140,150,151 5 -270889 cd13987 STKc_SBK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,52,69,70,71,72,115,119,120,122,134,135 5 -270890 cd13988 STKc_TBK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,53,71,72,73,74,120,124,125,127,141,142 5 -270891 cd13989 STKc_IKK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,55,77,78,79,80,126,130,131,133,146,147 5 -270940 cd14038 STKc_IKK_beta 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,54,76,77,78,79,125,129,130,132,145,146 5 -270941 cd14039 STKc_IKK_alpha 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,53,74,75,76,77,123,127,128,130,143,144 5 -270892 cd13990 STKc_TLK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,66,83,84,85,86,131,135,136,138,151,152 5 -270942 cd14040 STKc_TLK1 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,72,89,90,91,92,137,141,142,144,157,158 5 -270943 cd14041 STKc_TLK2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,72,89,90,91,92,137,141,142,144,157,158 5 -270893 cd13991 STKc_NIK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,60,76,77,78,79,122,126,127,129,140,141 5 -270894 cd13992 PK_GC 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,28,30,58,74,75,76,77,122,126,127,129,139,140 5 -270944 cd14042 PK_GC-A_B 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,33,35,64,80,81,82,83,128,132,133,135,145,146 5 -270945 cd14043 PK_GC-2D 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,37,39,58,74,75,76,77,121,125,126,128,138,139 5 -270946 cd14044 PK_GC-C 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,37,39,65,81,82,83,84,134,138,139,141,151,152 5 -270947 cd14045 PK_GC_unk 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,33,35,64,80,81,82,83,127,131,132,134,144,145 5 -270895 cd13993 STKc_Pat1_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,67,83,84,85,86,131,135,136,138,149,150 5 -270896 cd13994 STKc_HAL4_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,23,25,59,76,77,78,79,122,126,127,129,139,140 5 -270897 cd13995 STKc_MAP3K8 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,58,74,75,76,77,120,124,125,127,136,137 5 -270898 cd13996 STKc_EIF2AK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,66,82,83,84,85,131,135,136,138,149,150 5 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,66,82,83,84,85,128,132,133,135,145,146 5 -270949 cd14047 STKc_EIF2AK2_PKR 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,61,93,94,95,96,141,145,146,148,158,159 5 -270950 cd14048 STKc_EIF2AK3_PERK 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,66,93,94,95,96,142,146,147,149,159,160 5 -270951 cd14049 STKc_EIF2AK1_HRI 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,67,85,86,87,88,144,148,149,151,162,163 5 -270899 cd13997 PKc_Wee1_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,127,131,132,134,144,145 5 -270952 cd14050 PKc_Myt1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,124,128,129,131,141,142 5 -270953 cd14051 PTKc_Wee1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,128,132,133,135,169,170 5 -271040 cd14138 PTKc_Wee1a 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,67,83,84,85,86,133,137,138,140,169,170 5 -271041 cd14139 PTKc_Wee1b 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,128,132,133,135,167,168 5 -270954 cd14052 PTKc_Wee1_fungi 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,29,31,65,81,82,83,84,130,134,135,137,147,148 5 -270900 cd13998 STKc_TGFbR-like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,125,129,130,132,142,143 5 -270955 cd14053 STKc_ACVR2 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,126,130,131,133,143,144 5 -271042 cd14140 STKc_ACVR2b 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,127,131,132,134,144,145 5 -271043 cd14141 STKc_ACVR2a 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,126,130,131,133,143,144 5 -270956 cd14054 STKc_BMPR2_AMHR2 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,72,73,74,75,126,130,131,133,143,144 5 -270957 cd14055 STKc_TGFbR2_like 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,27,29,57,77,78,79,80,131,135,136,138,148,149 5 -270958 cd14056 STKc_TGFbR_I 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,124,128,129,131,141,142 5 -271044 cd14142 STKc_ACVR1_ALK1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,31,33,61,81,82,83,84,134,138,139,141,151,152 5 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,124,128,129,131,141,142 5 -271046 cd14144 STKc_BMPR1 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,124,128,129,131,141,142 5 -271121 cd14219 STKc_BMPR1b 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,31,33,61,81,82,83,84,134,138,139,141,151,152 5 -271122 cd14220 STKc_BMPR1a 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,51,71,72,73,74,124,128,129,131,141,142 5 -270901 cd13999 STKc_MAP3K-like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,52,68,69,70,71,115,119,120,122,132,133 5 -270959 cd14057 PK_ILK 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,21,23,54,70,71,72,73,120,124,125,127,137,138 5 -270960 cd14058 STKc_TAK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,48,64,65,66,67,116,120,121,123,134,135 5 -270961 cd14059 STKc_MAP3K12_13 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,43,59,60,61,62,105,109,110,112,122,123 5 -270962 cd14060 STKc_MLTK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,44,60,61,62,63,111,115,116,118,128,129 5 -270963 cd14061 STKc_MLK 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,20,22,55,71,72,73,74,119,123,124,126,144,145 5 -271047 cd14145 STKc_MLK1 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,32,34,67,83,84,85,86,131,135,136,138,156,157 5 -271048 cd14146 STKc_MLK4 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,20,22,55,71,72,73,74,129,133,134,136,154,155 5 -271049 cd14147 STKc_MLK3 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,29,31,64,80,81,82,83,128,132,133,135,153,154 5 -271050 cd14148 STKc_MLK2 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,20,22,55,71,72,73,74,119,123,124,126,144,145 5 -270964 cd14062 STKc_Raf 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,18,20,51,66,67,68,69,113,117,118,120,130,131 5 -271051 cd14149 STKc_C-Raf 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,37,39,70,85,86,87,88,132,136,137,139,149,150 5 -271052 cd14150 STKc_A-Raf 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,25,27,58,73,74,75,76,120,124,125,127,137,138 5 -271053 cd14151 STKc_B-Raf 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,33,35,66,81,82,83,84,128,132,133,135,145,146 5 -270965 cd14063 PK_KSR 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,25,27,58,74,75,76,77,121,125,126,128,137,138 5 -271054 cd14152 STKc_KSR1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,25,27,58,74,75,76,77,121,125,126,128,137,138 5 -271055 cd14153 PK_KSR2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,25,27,58,74,75,76,77,121,125,126,128,137,138 5 -270966 cd14064 PKc_TNNI3K 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,53,70,71,72,73,119,123,124,126,136,137 5 -270967 cd14065 PKc_LIMK_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,50,66,67,68,69,113,117,118,120,133,134 5 -271056 cd14154 STKc_LIMK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,52,68,69,70,71,115,119,120,122,132,133 5 -271123 cd14221 STKc_LIMK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,52,68,69,70,71,115,119,120,122,132,133 5 -271124 cd14222 STKc_LIMK2 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,52,68,69,70,71,114,118,119,121,131,132 5 -271057 cd14155 PKc_TESK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,50,66,67,68,69,112,116,117,119,132,133 5 -271058 cd14156 PKc_LIMK_like_unk 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,50,66,67,68,69,113,117,118,120,133,134 5 -270968 cd14066 STKc_IRAK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,52,68,69,70,71,120,124,125,127,137,138 5 -271059 cd14157 STKc_IRAK2 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,54,70,71,72,73,119,123,124,126,136,137 5 -271060 cd14158 STKc_IRAK4 1 ATP binding site 0 1 1 0 22,23,24,25,28,30,41,43,76,92,93,94,95,141,145,146,148,158,159 5 -271061 cd14159 STKc_IRAK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,54,70,71,72,73,121,125,126,128,138,139 5 -271062 cd14160 PK_IRAK3 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,19,21,54,70,71,72,73,122,126,127,129,139,140 5 -271134 cd14664 STK_BAK1_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,52,68,69,70,71,121,125,126,128,138,139 5 -270902 cd14000 STKc_LRRK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,72,86,87,88,89,136,140,141,143,158,159 5 -270969 cd14067 STKc_LRRK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,72,86,87,88,89,138,142,143,145,160,161 5 -270970 cd14068 STKc_LRRK2 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,20,22,49,63,64,65,66,110,114,115,117,132,133 5 -270903 cd14001 PKc_TOPK 1 ATP binding site 0 1 1 0 6,7,8,9,12,14,31,33,67,84,85,86,87,135,139,140,142,153,154 5 -270904 cd14002 STKc_STK36 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,123,127,128,130,140,141 5 -270905 cd14003 STKc_AMPK-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270971 cd14069 STKc_Chk1 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,62,78,79,80,81,124,128,129,131,141,142 5 -270972 cd14070 STKc_HUNK 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,65,81,82,83,84,127,131,132,134,144,145 5 -270973 cd14071 STKc_SIK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270974 cd14072 STKc_MARK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,61,77,78,79,80,123,127,128,130,140,141 5 -270975 cd14073 STKc_NUAK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -271063 cd14161 STKc_NUAK2 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,30,32,64,80,81,82,83,126,130,131,133,143,144 5 -270976 cd14074 STKc_SNRK 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,64,80,81,82,83,127,131,132,134,145,146 5 -270977 cd14075 STKc_NIM1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,63,79,80,81,82,125,129,130,132,142,143 5 -270978 cd14076 STKc_Kin4 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,34,36,68,84,85,86,87,130,134,135,137,147,148 5 -270979 cd14077 STKc_Kin1_2 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,75,91,92,93,94,137,141,142,144,154,155 5 -270980 cd14078 STKc_MELK 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,63,79,80,81,82,125,129,130,132,142,143 5 -270981 cd14079 STKc_AMPK_alpha 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,64,80,81,82,83,126,130,131,133,143,144 5 -270982 cd14080 STKc_TSSK-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,30,32,64,80,81,82,83,126,130,131,133,143,144 5 -271064 cd14162 STKc_TSSK4-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -271065 cd14163 STKc_TSSK3-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,79,80,81,82,125,129,130,132,141,142 5 -271066 cd14164 STKc_TSSK6-like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,79,80,81,82,124,128,129,131,142,143 5 -271067 cd14165 STKc_TSSK1_2-like 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,80,81,82,83,126,130,131,133,143,144 5 -270983 cd14081 STKc_BRSK1_2 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -271132 cd14662 STKc_SnRK2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,139,140 5 -271135 cd14665 STKc_SnRK2-3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,139,140 5 -271133 cd14663 STKc_SnRK3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -270906 cd14004 STKc_PASK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,70,86,87,88,89,133,137,138,140,150,151 5 -270907 cd14005 STKc_PIM 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,68,84,85,86,87,131,135,136,138,149,150 5 -271002 cd14100 STKc_PIM1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,67,83,84,85,86,130,134,135,137,148,149 5 -271003 cd14101 STKc_PIM2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,69,85,86,87,88,132,136,137,139,150,151 5 -271004 cd14102 STKc_PIM3 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,66,82,83,84,85,129,133,134,136,147,148 5 -270908 cd14006 STKc_MLCK-like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,51,67,68,69,70,113,117,118,120,132,133 5 -271005 cd14103 STKc_MLCK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,52,68,69,70,71,115,119,120,122,134,135 5 -271092 cd14190 STKc_MLCK2 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,63,79,80,81,82,126,130,131,133,145,146 5 -271093 cd14191 STKc_MLCK1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,61,77,78,79,80,124,128,129,131,143,144 5 -271094 cd14192 STKc_MLCK3 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,63,79,80,81,82,126,130,131,133,145,146 5 -271095 cd14193 STKc_MLCK4 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,63,79,80,81,82,126,130,131,133,145,146 5 -271006 cd14104 STKc_Titin 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,121,125,126,128,140,141 5 -271007 cd14105 STKc_DAPK 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,70,86,87,88,89,132,136,137,139,153,154 5 -271096 cd14194 STKc_DAPK1 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,70,86,87,88,89,132,136,137,139,153,154 5 -271097 cd14195 STKc_DAPK3 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,70,86,87,88,89,132,136,137,139,153,154 5 -271098 cd14196 STKc_DAPK2 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,70,86,87,88,89,132,136,137,139,153,154 5 -271008 cd14106 STKc_DRAK 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,36,38,70,86,87,88,89,132,136,137,139,152,153 5 -271099 cd14197 STKc_DRAK1 1 ATP binding site 0 1 1 0 16,17,18,19,22,24,37,39,71,87,88,89,90,135,139,140,142,155,156 5 -271100 cd14198 STKc_DRAK2 1 ATP binding site 0 1 1 0 15,16,17,18,21,23,36,38,70,86,87,88,89,134,138,139,141,154,155 5 -271009 cd14107 STKc_obscurin_rpt1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,60,76,77,78,79,122,126,127,129,141,142 5 -271010 cd14108 STKc_SPEG_rpt1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,60,76,77,78,79,121,125,126,128,140,141 5 -271011 cd14109 PK_Unc-89_rpt1 1 ATP binding site 0 1 1 0 11,12,13,14,17,19,32,34,58,75,76,77,78,123,127,128,130,139,140 5 -271012 cd14110 STKc_obscurin_rpt2 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,61,77,78,79,80,123,127,128,130,140,141 5 -271013 cd14111 STKc_SPEG_rpt2 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,31,33,61,77,78,79,80,123,127,128,130,140,141 5 -271014 cd14112 STKc_Unc-89_rpt2 1 ATP binding site 0 1 1 0 10,11,12,13,16,18,33,35,62,78,79,80,81,123,127,128,130,142,143 5 -271015 cd14113 STKc_Trio_C 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,65,81,82,83,84,127,131,132,134,147,148 5 -271016 cd14114 STKc_Twitchin_like 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,61,77,78,79,80,124,128,129,131,143,144 5 -271017 cd14115 STKc_Kalirin_C 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,51,67,68,69,70,113,117,118,120,133,134 5 -270909 cd14007 STKc_Aurora 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -271018 cd14116 STKc_Aurora-A 1 ATP binding site 0 1 1 0 12,13,14,15,18,20,33,35,67,83,84,85,86,129,133,134,136,146,147 5 -271019 cd14117 STKc_Aurora-B_like 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,34,36,68,84,85,86,87,130,134,135,137,147,148 5 -270910 cd14008 STKc_LKB1_CaMKK 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,66,84,85,86,87,132,136,137,139,149,150 5 -271020 cd14118 STKc_CAMKK 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,22,24,76,94,95,96,97,139,143,144,146,156,157 5 -271101 cd14199 STKc_CaMKK2 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,30,32,87,105,106,107,108,150,154,155,157,167,168 5 -271102 cd14200 STKc_CaMKK1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,85,103,104,105,106,148,152,153,155,165,166 5 -271021 cd14119 STKc_LKB1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,56,74,75,76,77,121,125,126,128,138,139 5 -270911 cd14009 STKc_ATG1_ULK_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,21,23,54,70,71,72,73,116,120,121,123,136,137 5 -271022 cd14120 STKc_ULK1_2-like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,22,24,54,70,71,72,73,116,120,121,123,142,143 5 -271103 cd14201 STKc_ULK2 1 ATP binding site 0 1 1 0 13,14,15,16,19,21,35,37,67,83,84,85,86,129,133,134,136,155,156 5 -271104 cd14202 STKc_ULK1 1 ATP binding site 0 1 1 0 9,10,11,12,15,17,31,33,63,79,80,81,82,125,129,130,132,151,152 5 -271023 cd14121 STKc_ULK3 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,24,26,57,73,74,75,76,119,123,124,126,138,139 5 -270912 cd14010 STKc_ULK4 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,56,72,73,74,75,118,122,123,125,135,136 5 -270913 cd14011 PK_SCY1_like 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,24,26,64,81,82,83,84,139,143,144,146,156,157 5 -270914 cd14012 PK_eIF2AK_GCN2_rpt1 1 ATP binding site 0 1 1 0 1,2,3,4,7,9,36,38,60,82,83,84,85,128,132,133,135,148,149 5 -270915 cd14013 STKc_SNT7_plant 1 ATP binding site 0 1 1 0 2,3,4,5,8,10,28,30,59,78,79,80,81,144,148,149,151,162,163 5 -270916 cd14014 STKc_PknB_like 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,62,78,79,80,81,124,128,129,131,141,142 5 -270917 cd14015 STKc_VRK 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,43,45,85,105,106,107,108,151,155,156,158,171,172 5 -271024 cd14122 STKc_VRK1 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,43,45,85,105,106,107,108,151,155,156,158,170,171 5 -271025 cd14123 STKc_VRK2 1 ATP binding site 0 1 1 0 19,20,21,22,25,27,45,47,87,107,108,109,110,153,157,158,160,172,173 5 -271026 cd14124 PK_VRK3 1 ATP binding site 0 1 1 0 17,18,19,20,23,25,43,45,84,100,101,102,103,146,150,151,153,165,166 5 -270918 cd14016 STKc_CK1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,140,141 5 -271027 cd14125 STKc_CK1_delta_epsilon 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,140,141 5 -271028 cd14126 STKc_CK1_gamma 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,142,143 5 -271029 cd14127 STKc_CK1_fungal 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,142,143 5 -271030 cd14128 STKc_CK1_alpha 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,120,124,125,127,140,141 5 -270919 cd14017 STKc_TTBK 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,121,125,126,128,142,143 5 -271031 cd14129 STKc_TTBK2 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,121,125,126,128,142,143 5 -271032 cd14130 STKc_TTBK1 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,28,30,58,74,75,76,77,121,125,126,128,142,143 5 -270920 cd14018 STKc_PINK1 1 ATP binding site 0 1 1 0 0,1,2,3,6,8,17,19,75,118,119,120,121,162,166,167,169,183,184 5 -270921 cd14019 STKc_Cdc7 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,36,38,66,82,83,84,85,125,129,130,132,143,144 5 -270922 cd14020 STKc_KIS 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,30,32,66,87,88,89,90,134,138,139,141,152,153 5 -271001 cd14099 STKc_PLK 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -271088 cd14186 STKc_PLK4 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,126,130,131,133,143,144 5 -271089 cd14187 STKc_PLK1 1 ATP binding site 0 1 1 0 14,15,16,17,20,22,35,37,69,85,86,87,88,131,135,136,138,148,149 5 -271090 cd14188 STKc_PLK2 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -271091 cd14189 STKc_PLK3 1 ATP binding site 0 1 1 0 8,9,10,11,14,16,29,31,63,79,80,81,82,125,129,130,132,142,143 5 -270689 cd05119 RIO 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,27,29,84,96,97,98,99,145,149,150,152,160,161 5 -270695 cd05144 RIO2_C 1 ATP binding site 0 1 1 0 7,8,9,10,13,15,27,29,82,94,95,96,97,134,138,139,141,151,152 5 -270696 cd05145 RIO1_like 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,24,26,82,94,95,96,97,141,145,146,148,157,158 5 -270697 cd05146 RIO3_euk 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,30,32,89,101,102,103,104,148,152,153,155,164,165 5 -270698 cd05147 RIO1_euk 1 ATP binding site 0 1 1 0 4,5,6,7,10,12,24,26,83,95,96,97,98,142,146,147,149,158,159 5 -270690 cd05120 APH_ChoK_like 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,23,25,54,70,71,72,73,116,120,121,123,134,135 5 -270699 cd05150 APH 1 ATP binding site 0 1 1 0 5,6,7,8,12,14,25,27,54,70,71,72,73,168,172,173,175,185,186 5 -270700 cd05151 ChoK-like 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,24,26,55,69,70,71,72,112,116,117,119,128,129 5 -270923 cd14021 ChoK-like_euk 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,31,33,62,74,75,76,77,117,121,122,124,135,136 5 -270705 cd05156 ChoK_euk 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,33,35,64,76,77,78,79,178,182,183,185,201,202 5 -270706 cd05157 ETNK_euk 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,28,30,59,71,72,73,74,175,179,180,182,193,194 5 -270701 cd05152 MPH2' 1 ATP binding site 0 1 1 0 17,18,19,20,24,26,38,40,66,82,83,84,85,190,194,195,197,208,209 5 -270702 cd05153 HomoserineK_II 1 ATP binding site 0 1 1 0 21,22,23,24,27,29,40,42,71,93,94,95,96,184,188,189,191,201,202 5 -270703 cd05154 ACAD10_11_N-like 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,28,30,62,81,82,83,84,182,186,187,189,200,201 5 -270704 cd05155 APH_ChoK_like_1 1 ATP binding site 0 1 1 0 5,6,7,8,11,13,21,23,53,72,73,74,75,168,172,173,175,185,186 5 -270691 cd05121 ABC1_ADCK3-like 1 ATP binding site 0 1 1 0 50,51,52,53,54,56,66,68,130,149,150,151,152,194,198,199,201,211,212 5 -270871 cd13969 ADCK1-like 1 ATP binding site 0 1 1 0 50,51,52,53,54,56,66,68,127,146,147,148,149,191,195,196,198,213,214 5 -270872 cd13970 ABC1_ADCK3 1 ATP binding site 0 1 1 0 54,55,56,57,58,60,70,72,131,150,151,152,153,193,197,198,200,211,212 5 -270873 cd13971 ADCK2-like 1 ATP binding site 0 1 1 0 50,51,52,53,62,64,74,76,137,156,157,158,159,201,205,206,208,235,236 5 -270874 cd13972 UbiB 1 ATP binding site 0 1 1 0 50,51,52,53,54,56,66,68,130,149,150,151,152,194,198,199,201,211,212 5 -270694 cd05124 AFK 1 ATP binding site 0 1 1 0 7,8,9,10,12,14,26,28,51,96,97,98,99,140,154,155,157,169,170 5 -260131 cd14241 PAD 1 active site 0 1 1 0 7,9,15,27,29,34,37,60,64,68,81,83 1 -260131 cd14241 PAD 2 dimer interface 0 1 1 0 45,47,48,53,55,57,58,59,63,65,66,67,69,71,74,78,79,80,82,84,109,110,115,117,119,121,123 2 -271203 cd14244 GH_101_like 1 catalytic site DDE 0 1 1 58,168,195 1 -271203 cd14244 GH_101_like 2 active site 0 0 1 1 58,127,129,168,195,196,209,215 1 -271204 cd14245 DMP12 1 putative HU binding interface 0 0 1 1 8,14,17,20,53,70,72,79,85,106 2 -271205 cd14246 ADAM17_MPD 1 CxxC motif CxxC 0 1 1 19,20,21,22 0 -271205 cd14246 ADAM17_MPD 2 putative molecular switch CC 0 1 1 19,53 0 -271206 cd14247 Lmo2686_like 1 hexamer interface 0 1 0 1 2,4,5,7,9,13,14,15,16,17,18,19,20,21,22,25,28,29,30,31,32,33,34,41,42,43,44,45,46,47,48,56,73,74,75,76,77,78,79,80,81,83,84,85,86,101,104,106,108,109,110,111,112,113,114,115,116,117,118,119,120,123,124,134,135,137 2 -271207 cd14248 ESP 1 putative receptor binding site 0 0 1 1 5,9,22,24,25,43,47,51 2 -271208 cd14249 ESP1_like 1 putative receptor binding site 0 0 1 1 5,9,16,18,19,37,41,45 2 -271209 cd14250 ESP36_like 1 putative receptor binding site 0 0 1 1 8,12,25,27,28,46,50,54 2 -271210 cd14251 PL-6 1 substrate binding site 0 1 1 0 140,142,173,174,175,176,180,183,206,208,211,213,234,235,260 5 -271210 cd14251 PL-6 2 Ca binding site 0 1 1 0 174,206,208 4 -271210 cd14251 PL-6 3 catalytic site 0 0 1 1 213,234 1 -271211 cd14252 Dockerin_like 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 1,3,5,7,12,36,38,40,47 4 -271212 cd14253 Dockerin 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 1,3,5,7,12,35,37,39,46 4 -271213 cd14254 Dockerin_II 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 1,3,5,7,12,33,35,37,44 4 -271214 cd14255 Dockerin_III 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 1,3,5,7,12,40,42,44,51 4 -271215 cd14256 Dockerin_I 1 Ca binding site [DENT]xxxDD[DNTS][DNST][DE] 1 1 1 2,4,6,8,13,36,38,40,47 4 -271221 cd14257 CttA_X 1 dockerin interface 0 1 1 1 16,18,19,20,22,23,27,30,81,82,86,112,113,114,115 2 -271222 cd14259 PUFD_like 1 RAWUL domain interface 0 1 1 0 1,2,4,5,6,7,8,10,11,12,14,16,25,27,29,69,70,71,73,74,92,103,105 2 -271223 cd14260 PUFD_like_1 1 RAWUL domain interface 0 1 1 0 4,5,7,8,9,10,11,13,14,15,17,19,28,30,32,72,73,74,76,77,101,112,114 2 -271224 cd14261 PUFD 1 RAWUL domain interface 0 1 1 0 6,7,9,10,11,12,13,15,16,17,19,21,30,32,34,74,75,76,78,79,99,110,112 2 -271354 cd14262 VirB5_like 1 3-helical coiled coil 0 0 1 0 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -271354 cd14262 VirB5_like 2 3-helical coiled coil 0 0 1 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -271354 cd14262 VirB5_like 3 3-helical coiled coil 0 0 1 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -260132 cd14263 DAGK_IM_like 1 Zn binding site 0 1 1 0 17,65 4 -260132 cd14263 DAGK_IM_like 2 trimer interface 0 1 1 0 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260132 cd14263 DAGK_IM_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -260133 cd14264 DAGK_IM 1 Zn binding site 0 1 1 0 20,68 4 -260133 cd14264 DAGK_IM 2 trimer interface 0 1 1 0 7,8,9,10,11,12,13,15,16,44,45,46,48,49,52,55,59,60,62,63,65,66,67,69,70,71,73,74,81,82,85,88,91,92,95,96,99,103,106,107 2 -260133 cd14264 DAGK_IM 3 putative active site 0 0 1 1 11,20,61,68,72,86,87 1 -260134 cd14265 UDPK_IM_like 1 Zn binding site 0 1 1 0 17,65 4 -260134 cd14265 UDPK_IM_like 2 trimer interface 0 1 1 0 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260134 cd14265 UDPK_IM_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -260135 cd14266 UDPK_IM_PAP2_like 1 Zn binding site 0 1 1 0 17,65 4 -260135 cd14266 UDPK_IM_PAP2_like 2 trimer interface 0 1 1 0 4,5,6,7,8,9,10,12,13,41,42,43,45,46,49,52,56,57,59,60,62,63,64,66,67,68,70,71,78,79,82,85,88,89,92,93,96,100,103,104 2 -260135 cd14266 UDPK_IM_PAP2_like 3 putative active site 0 0 1 1 8,17,58,65,69,83,84 1 -341312 cd14267 Rif1_CTD_C-II_like 1 homodimer interface 0 1 1 1 0,1,2,3,5,6,8,9,10,12,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,31,32,33,35,36,37,39,40,42,43,44 2 -341312 cd14267 Rif1_CTD_C-II_like 2 interdimer interface 0 1 1 1 30,33,34,37,38,40,41,44,45 2 -341312 cd14267 Rif1_CTD_C-II_like 3 tetramer interface 0 1 1 1 0,1,2,3,5,6,8,9,10,12,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45 2 -271226 cd14436 LepB 1 catalytic site 0 1 1 0 103 1 -271226 cd14436 LepB 2 active site 0 1 1 0 103 1 -271226 cd14436 LepB 3 heterodimer interface 0 1 1 0 74,75,91,94,103,108,112,116,127,131,134,135,138,141,142,147,148 2 -271228 cd14438 Hip_N 1 homodimer interface 0 1 1 0 2,3,5,6,7,9,10,13,14,20,24,27,28,30,31,32,34,35,36,37,38,39,40 2 -270205 cd14439 AlgX_N_like 1 active site DHS 0 1 1 147,149,240 1 -270206 cd14440 AlgX_N_like_3 1 active site DHS 0 1 1 146,148,251 1 -270207 cd14441 AlgX_N 1 active site DHS 0 1 1 135,137,229 1 -270208 cd14442 AlgJ_like 1 active site DHS 0 1 1 147,149,243 1 -270209 cd14443 AlgX_N_like_2 1 active site DHS 0 1 1 138,140,228 1 -270210 cd14444 AlgX_N_like_1 1 active site DHS 0 1 1 132,134,228 1 -271220 cd14445 RILP-like 1 homodimer interface 0 1 1 0 1,5,9,10,12,20,27,28,30,39,40,43,46,47,49,50,51,53,54,56,57,58,60,68,71,74,75,78,79,81,82,85,86 2 -271220 cd14445 RILP-like 2 MyoVa-GTD binding interface 0 1 1 0 15,17,18,19,21,22,25,28,29,41,44,45,48,49,51,52,55 2 -271219 cd14446 bt3222_like 1 dimer interface 0 0 0 1 19,22,23,26,27,28,49,53,60,68,91,92,93,94,95,96,100,101,102,103,105,106,150,151,152,153,154,155,157,159,161,164,169,173,175,176,177,180,182,183,184,188,193,194,195,196,197,214,221,236,237,238,260 2 -271218 cd14456 Menin 1 MLL1 binding site 0 1 1 0 126,127,128,143,144,145,168,169,170,171,228,231,234,236,268,272,309,313,349,353 2 -271218 cd14456 Menin 2 LEDGF interaction interface 0 1 1 1 82,85,86,88,89,91,92,93,94,95 2 -271217 cd14458 DP_DD 1 heterodimer interface 0 1 1 1 0,4,7,8,10,11,14,15,17,18,21,22,25,28,29,32,35,36,38,39,41,42,43,46,56,57,58,59,60,61,62,63,64,65,66,67,69,80,81,82,83,84,85,86,87,88,90,92,94,100,101,103 2 -271217 cd14458 DP_DD 2 RbC binding site 0 1 1 1 24,27,28,31,63,72,74,89,90,91,92,93,94,95,96,103 2 -271217 cd14458 DP_DD 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46 7 -270615 cd14472 mltA_B_like 1 ligand binding site 0 1 1 1 55,56,57,58,73,74,75,82,84,131 5 -270616 cd14668 mlta_B 1 ligand binding site 0 1 1 1 82,83,84,85,99,100,101,108,110,156 5 -270617 cd14669 mlta_related_B 1 ligand binding site 0 1 1 1 58,59,60,61,75,76,77,84,86,125 5 -270619 cd14486 3D_domain 1 active site aspartates DDD 0 1 1 42,70,81 1 -270619 cd14486 3D_domain 2 ligand binding site 0 1 1 1 40,70,71,72,94,95 5 -270618 cd14485 mltA_like_LT_A 1 active site aspartates DDD 0 1 1 87,121,133 1 -270618 cd14485 mltA_like_LT_A 2 ligand binding site 0 1 1 1 85,121,122,123,146,147 5 -270620 cd14667 3D_containing_proteins 1 active site aspartates DDD 0 1 1 34,56,67 1 -270620 cd14667 3D_containing_proteins 2 ligand binding site 0 1 1 1 32,56,57,58,80,81 5 -350344 cd14494 PTP_DSP_cys 1 active site CxxxR 1 1 0 62,63,66,67,68 1 -350344 cd14494 PTP_DSP_cys 2 catalytic site CR 0 1 1 62,68 1 -350343 cd00047 PTPc 1 active site CxxxR 1 1 0 145,146,149,150,151 1 -350343 cd00047 PTPc 2 catalytic site CR 0 1 1 145,151 1 -350386 cd14538 PTPc-N20_13 1 active site CxxxR 1 1 0 146,147,150,151,152 1 -350386 cd14538 PTPc-N20_13 2 catalytic site CR 0 1 1 146,152 1 -350444 cd14596 PTPc-N20 1 active site CxxxR 1 1 0 145,146,149,150,151 1 -350444 cd14596 PTPc-N20 2 catalytic site CR 0 1 1 145,151 1 -350445 cd14597 PTPc-N13 1 active site CxxxR 1 1 0 173,174,177,178,179 1 -350445 cd14597 PTPc-N13 2 catalytic site CR 0 1 1 173,179 1 -350387 cd14539 PTP-N23 1 active site CxxxR 1 1 0 149,150,153,154,155 1 -350387 cd14539 PTP-N23 2 catalytic site CR 0 1 1 149,155 1 -350388 cd14540 PTPc-N21_14 1 active site CxxxR 1 1 0 158,159,162,163,164 1 -350388 cd14540 PTPc-N21_14 2 catalytic site CR 0 1 1 158,164 1 -350446 cd14598 PTPc-N21 1 active site CxxxR 1 1 0 158,159,162,163,164 1 -350446 cd14598 PTPc-N21 2 catalytic site CR 0 1 1 158,164 1 -350447 cd14599 PTPc-N14 1 active site CxxxR 1 1 0 225,226,229,230,231 1 -350447 cd14599 PTPc-N14 2 catalytic site CR 0 1 1 225,231 1 -350389 cd14541 PTPc-N3_4 1 active site CxxxR 1 1 0 149,150,153,154,155 1 -350389 cd14541 PTPc-N3_4 2 catalytic site CR 0 1 1 149,155 1 -350448 cd14600 PTPc-N3 1 active site CxxxR 1 1 0 211,212,215,216,217 1 -350448 cd14600 PTPc-N3 2 catalytic site CR 0 1 1 211,217 1 -350449 cd14601 PTPc-N4 1 active site CxxxR 1 1 0 149,150,153,154,155 1 -350449 cd14601 PTPc-N4 2 catalytic site CR 0 1 1 149,155 1 -350390 cd14542 PTPc-N22_18_12 1 active site CxxxR 1 1 0 144,145,148,149,150 1 -350390 cd14542 PTPc-N22_18_12 2 catalytic site CR 0 1 1 144,150 1 -350450 cd14602 PTPc-N22 1 active site CxxxR 1 1 0 170,171,174,175,176 1 -350450 cd14602 PTPc-N22 2 catalytic site CR 0 1 1 170,176 1 -350451 cd14603 PTPc-N18 1 active site CxxxR 1 1 0 202,203,206,207,208 1 -350451 cd14603 PTPc-N18 2 catalytic site CR 0 1 1 202,208 1 -350452 cd14604 PTPc-N12 1 active site CxxxR 1 1 0 229,230,233,234,235 1 -350452 cd14604 PTPc-N12 2 catalytic site CR 0 1 1 229,235 1 -350391 cd14543 PTPc-N9 1 active site CxxxR 1 1 0 216,217,220,221,222 1 -350391 cd14543 PTPc-N9 2 catalytic site CR 0 1 1 216,222 1 -350392 cd14544 PTPc-N11_6 1 active site CxxxR 1 1 0 185,186,189,190,191 1 -350392 cd14544 PTPc-N11_6 2 catalytic site CR 0 1 1 185,191 1 -350453 cd14605 PTPc-N11 1 active site CxxxR 1 1 0 187,188,191,192,193 1 -350453 cd14605 PTPc-N11 2 catalytic site CR 0 1 1 187,193 1 -350454 cd14606 PTPc-N6 1 active site CxxxR 1 1 0 200,201,204,205,206 1 -350454 cd14606 PTPc-N6 2 catalytic site CR 0 1 1 200,206 1 -350393 cd14545 PTPc-N1_2 1 active site CxxxR 1 1 0 174,175,178,179,180 1 -350393 cd14545 PTPc-N1_2 2 catalytic site CR 0 1 1 174,180 1 -350455 cd14607 PTPc-N2 1 active site CxxxR 1 1 0 198,199,202,203,204 1 -350455 cd14607 PTPc-N2 2 catalytic site CR 0 1 1 198,204 1 -350456 cd14608 PTPc-N1 1 active site CxxxR 1 1 0 199,200,203,204,205 1 -350456 cd14608 PTPc-N1 2 catalytic site CR 0 1 1 199,205 1 -350394 cd14546 R-PTP-N-N2 1 active site CxxxR 1 1 0 145,146,149,150,151 1 -350394 cd14546 R-PTP-N-N2 2 catalytic site CR 0 1 1 145,151 1 -350457 cd14609 R-PTP-N 1 active site CxxxR 1 1 0 216,217,220,221,222 1 -350457 cd14609 R-PTP-N 2 catalytic site CR 0 1 1 216,222 1 -350458 cd14610 R-PTP-N2 1 active site CxxxR 1 1 0 218,219,222,223,224 1 -350458 cd14610 R-PTP-N2 2 catalytic site CR 0 1 1 218,224 1 -350395 cd14547 PTPc-KIM 1 active site CxxxR 1 1 0 169,170,173,174,175 1 -350395 cd14547 PTPc-KIM 2 catalytic site CR 0 1 1 169,175 1 -350459 cd14611 R-PTPc-R 1 active site CxxxR 1 1 0 171,172,175,176,177 1 -350459 cd14611 R-PTPc-R 2 catalytic site CR 0 1 1 171,177 1 -350460 cd14612 PTPc-N7 1 active site CxxxR 1 1 0 187,188,191,192,193 1 -350460 cd14612 PTPc-N7 2 catalytic site CR 0 1 1 187,193 1 -350461 cd14613 PTPc-N5 1 active site CxxxR 1 1 0 198,199,202,203,204 1 -350461 cd14613 PTPc-N5 2 catalytic site CR 0 1 1 198,204 1 -350396 cd14548 R3-PTPc 1 active site CxxxR 1 1 0 167,168,171,172,173 1 -350396 cd14548 R3-PTPc 2 catalytic site CR 0 1 1 167,173 1 -350462 cd14614 R-PTPc-O 1 active site CxxxR 1 1 0 185,186,189,190,191 1 -350462 cd14614 R-PTPc-O 2 catalytic site CR 0 1 1 185,191 1 -350463 cd14615 R-PTPc-J 1 active site CxxxR 1 1 0 170,171,174,175,176 1 -350463 cd14615 R-PTPc-J 2 catalytic site CR 0 1 1 170,176 1 -350464 cd14616 R-PTPc-Q 1 active site CxxxR 1 1 0 169,170,173,174,175 1 -350464 cd14616 R-PTPc-Q 2 catalytic site CR 0 1 1 169,175 1 -350465 cd14617 R-PTPc-B 1 active site CxxxR 1 1 0 173,174,177,178,179 1 -350465 cd14617 R-PTPc-B 2 catalytic site CR 0 1 1 173,179 1 -350466 cd14618 R-PTPc-V 1 active site CxxxR 1 1 0 172,173,176,177,178 1 -350466 cd14618 R-PTPc-V 2 catalytic site CR 0 1 1 172,178 1 -350467 cd14619 R-PTPc-H 1 active site CxxxR 1 1 0 172,173,176,177,178 1 -350467 cd14619 R-PTPc-H 2 catalytic site CR 0 1 1 172,178 1 -350397 cd14549 R5-PTPc-1 1 active site CxxxR 1 1 0 149,150,153,154,155 1 -350397 cd14549 R5-PTPc-1 2 catalytic site CR 0 1 1 149,155 1 -350505 cd17667 R-PTPc-G-1 1 active site CxxxR 1 1 0 212,213,216,217,218 1 -350505 cd17667 R-PTPc-G-1 2 catalytic site CR 0 1 1 212,218 1 -350506 cd17668 R-PTPc-Z-1 1 active site CxxxR 1 1 0 151,152,155,156,157 1 -350506 cd17668 R-PTPc-Z-1 2 catalytic site CR 0 1 1 151,157 1 -350398 cd14550 R5-PTP-2 1 active site CxxxR 1 1 0 145,146,149,150,151 1 -350398 cd14550 R5-PTP-2 2 catalytic site CR 0 1 1 145,151 1 -350507 cd17669 R-PTP-Z-2 1 active site CxxxR 1 1 0 146,147,150,151,152 1 -350507 cd17669 R-PTP-Z-2 2 catalytic site CR 0 1 1 146,152 1 -350508 cd17670 R-PTP-G-2 1 active site CxxxR 1 1 0 146,147,150,151,152 1 -350508 cd17670 R-PTP-G-2 2 catalytic site CR 0 1 1 146,152 1 -350399 cd14551 R-PTPc-A-E-1 1 active site CxxxR 1 1 0 147,148,151,152,153 1 -350399 cd14551 R-PTPc-A-E-1 2 catalytic site CR 0 1 1 147,153 1 -350468 cd14620 R-PTPc-E-1 1 active site CxxxR 1 1 0 170,171,174,175,176 1 -350468 cd14620 R-PTPc-E-1 2 catalytic site CR 0 1 1 170,176 1 -350469 cd14621 R-PTPc-A-1 1 active site CxxxR 1 1 0 228,229,232,233,234 1 -350469 cd14621 R-PTPc-A-1 2 catalytic site CR 0 1 1 228,234 1 -350400 cd14552 R-PTPc-A-E-2 1 active site CxxxR 1 1 0 144,145,148,149,150 1 -350400 cd14552 R-PTPc-A-E-2 2 catalytic site CR 0 1 1 144,150 1 -350470 cd14622 R-PTPc-E-2 1 active site CxxxR 1 1 0 145,146,149,150,151 1 -350470 cd14622 R-PTPc-E-2 2 catalytic site CR 0 1 1 145,151 1 -350471 cd14623 R-PTPc-A-2 1 active site CxxxR 1 1 0 169,170,173,174,175 1 -350471 cd14623 R-PTPc-A-2 2 catalytic site CR 0 1 1 169,175 1 -350401 cd14553 R-PTPc-LAR-1 1 active site CxxxR 1 1 0 175,176,179,180,181 1 -350401 cd14553 R-PTPc-LAR-1 2 catalytic site CR 0 1 1 175,181 1 -350472 cd14624 R-PTPc-D-1 1 active site CxxxR 1 1 0 219,220,223,224,225 1 -350472 cd14624 R-PTPc-D-1 2 catalytic site CR 0 1 1 219,225 1 -350473 cd14625 R-PTPc-S-1 1 active site CxxxR 1 1 0 219,220,223,224,225 1 -350473 cd14625 R-PTPc-S-1 2 catalytic site CR 0 1 1 219,225 1 -350474 cd14626 R-PTPc-F-1 1 active site CxxxR 1 1 0 213,214,217,218,219 1 -350474 cd14626 R-PTPc-F-1 2 catalytic site CR 0 1 1 213,219 1 -350402 cd14554 R-PTP-LAR-2 1 active site CxxxR 1 1 0 180,181,184,185,186 1 -350402 cd14554 R-PTP-LAR-2 2 catalytic site CR 0 1 1 180,186 1 -350475 cd14627 R-PTP-S-2 1 active site CxxxR 1 1 0 227,228,231,232,233 1 -350475 cd14627 R-PTP-S-2 2 catalytic site CR 0 1 1 227,233 1 -350476 cd14628 R-PTP-D-2 1 active site CxxxR 1 1 0 226,227,230,231,232 1 -350476 cd14628 R-PTP-D-2 2 catalytic site CR 0 1 1 226,232 1 -350477 cd14629 R-PTP-F-2 1 active site CxxxR 1 1 0 227,228,231,232,233 1 -350477 cd14629 R-PTP-F-2 2 catalytic site CR 0 1 1 227,233 1 -350403 cd14555 R-PTPc-typeIIb-1 1 active site CxxxR 1 1 0 142,143,146,147,148 1 -350403 cd14555 R-PTPc-typeIIb-1 2 catalytic site CR 0 1 1 142,148 1 -350478 cd14630 R-PTPc-T-1 1 active site CxxxR 1 1 0 174,175,178,179,180 1 -350478 cd14630 R-PTPc-T-1 2 catalytic site CR 0 1 1 174,180 1 -350479 cd14631 R-PTPc-K-1 1 active site CxxxR 1 1 0 156,157,160,161,162 1 -350479 cd14631 R-PTPc-K-1 2 catalytic site CR 0 1 1 156,162 1 -350480 cd14632 R-PTPc-U-1 1 active site CxxxR 1 1 0 142,143,146,147,148 1 -350480 cd14632 R-PTPc-U-1 2 catalytic site CR 0 1 1 142,148 1 -350481 cd14633 R-PTPc-M-1 1 active site CxxxR 1 1 0 211,212,215,216,217 1 -350481 cd14633 R-PTPc-M-1 2 catalytic site CR 0 1 1 211,217 1 -350404 cd14556 R-PTPc-typeIIb-2 1 active site CxxxR 1 1 0 146,147,150,151,152 1 -350404 cd14556 R-PTPc-typeIIb-2 2 catalytic site CR 0 1 1 146,152 1 -350482 cd14634 R-PTPc-T-2 1 active site CxxxR 1 1 0 147,148,151,152,153 1 -350482 cd14634 R-PTPc-T-2 2 catalytic site CR 0 1 1 147,153 1 -350483 cd14635 R-PTPc-M-2 1 active site CxxxR 1 1 0 147,148,151,152,153 1 -350483 cd14635 R-PTPc-M-2 2 catalytic site CR 0 1 1 147,153 1 -350484 cd14636 R-PTPc-K-2 1 active site CxxxR 1 1 0 147,148,151,152,153 1 -350484 cd14636 R-PTPc-K-2 2 catalytic site CR 0 1 1 147,153 1 -350485 cd14637 R-PTPc-U-2 1 active site CxxxR 1 1 0 148,149,152,153,154 1 -350485 cd14637 R-PTPc-U-2 2 catalytic site CR 0 1 1 148,154 1 -350405 cd14557 R-PTPc-C-1 1 active site CxxxR 1 1 0 146,147,150,151,152 1 -350405 cd14557 R-PTPc-C-1 2 catalytic site CR 0 1 1 146,152 1 -350406 cd14558 R-PTP-C-2 1 active site CxxxR 1 1 0 148,149,152,153,154 1 -350406 cd14558 R-PTP-C-2 2 catalytic site CR 0 1 1 148,154 1 -350407 cd14559 PTP_YopH-like 1 active site CxxxR 1 1 0 174,175,178,179,180 1 -350407 cd14559 PTP_YopH-like 2 catalytic site CR 0 1 1 174,180 1 -350496 cd17658 PTPc_plant_PTP1 1 active site CxxxR 1 1 0 149,150,153,154,155 1 -350496 cd17658 PTPc_plant_PTP1 2 catalytic site CR 0 1 1 149,155 1 -350509 cd18533 PTP_fungal 1 active site CxxxR 1 1 0 148,149,152,153,154 1 -350509 cd18533 PTP_fungal 2 catalytic site CR 0 1 1 148,154 1 -350345 cd14495 PTPLP-like 1 active site CxxxR 1 1 0 192,193,196,197,198 1 -350345 cd14495 PTPLP-like 2 catalytic site CR 0 1 1 192,198 1 -350346 cd14496 PTP_paladin 1 active site CxxxR 1 1 0 136,137,140,141,142 1 -350346 cd14496 PTP_paladin 2 catalytic site CR 0 1 1 136,142 1 -350497 cd17659 PTP_paladin_1 1 active site CxxxR 1 1 0 139,140,143,144,145 1 -350497 cd17659 PTP_paladin_1 2 catalytic site CR 0 1 1 139,145 1 -350498 cd17660 PTP_paladin_2 1 active site CxxxR 1 1 0 143,144,147,148,149 1 -350498 cd17660 PTP_paladin_2 2 catalytic site CR 0 1 1 143,149 1 -350347 cd14497 PTP_PTEN-like 1 active site CxxxR 1 1 0 101,102,105,106,107 1 -350347 cd14497 PTP_PTEN-like 2 catalytic site CR 0 1 1 101,107 1 -350358 cd14508 PTP_tensin 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350358 cd14508 PTP_tensin 2 catalytic site CR 0 1 1 99,105 1 -350408 cd14560 PTP_tensin-1 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350408 cd14560 PTP_tensin-1 2 catalytic site CR 0 1 1 99,105 1 -350409 cd14561 PTP_tensin-3 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350409 cd14561 PTP_tensin-3 2 catalytic site CR 0 1 1 99,105 1 -350410 cd14562 PTP_tensin-2 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350410 cd14562 PTP_tensin-2 2 catalytic site CR 0 1 1 99,105 1 -350359 cd14509 PTP_PTEN 1 active site CxxxR 1 1 0 100,101,104,105,106 1 -350359 cd14509 PTP_PTEN 2 catalytic site CR 0 1 1 100,106 1 -350360 cd14510 PTP_VSP_TPTE 1 active site CxxxR 1 1 0 114,115,118,119,120 1 -350360 cd14510 PTP_VSP_TPTE 2 catalytic site CR 0 1 1 114,120 1 -350361 cd14511 PTP_auxilin-like 1 active site CxxxR 1 1 0 109,110,113,114,115 1 -350361 cd14511 PTP_auxilin-like 2 catalytic site CR 0 1 1 109,115 1 -350411 cd14563 PTP_auxilin_N 1 active site CxxxR 1 1 0 108,109,112,113,114 1 -350411 cd14563 PTP_auxilin_N 2 catalytic site CR 0 1 1 108,114 1 -350412 cd14564 PTP_GAK 1 active site CxxxR 1 1 0 108,109,112,113,114 1 -350412 cd14564 PTP_GAK 2 catalytic site CR 0 1 1 108,114 1 -350348 cd14498 DSP 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350348 cd14498 DSP 2 catalytic site CR 0 1 1 85,91 1 -350362 cd14512 DSP_MKP 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350362 cd14512 DSP_MKP 2 catalytic site CR 0 1 1 85,91 1 -350413 cd14565 DSP_MKP_classI 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350413 cd14565 DSP_MKP_classI 2 catalytic site CR 0 1 1 84,90 1 -350486 cd14638 DSP_DUSP1 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350486 cd14638 DSP_DUSP1 2 catalytic site CR 0 1 1 84,90 1 -350487 cd14639 DSP_DUSP5 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350487 cd14639 DSP_DUSP5 2 catalytic site CR 0 1 1 84,90 1 -350488 cd14640 DSP_DUSP4 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350488 cd14640 DSP_DUSP4 2 catalytic site CR 0 1 1 84,90 1 -350489 cd14641 DSP_DUSP2 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350489 cd14641 DSP_DUSP2 2 catalytic site CR 0 1 1 87,93 1 -350414 cd14566 DSP_MKP_classII 1 active site CxxxR 1 1 0 86,87,90,91,92 1 -350414 cd14566 DSP_MKP_classII 2 catalytic site CR 0 1 1 86,92 1 -350490 cd14642 DSP_DUSP6 1 active site CxxxR 1 1 0 88,89,92,93,94 1 -350490 cd14642 DSP_DUSP6 2 catalytic site CR 0 1 1 88,94 1 -350491 cd14643 DSP_DUSP7 1 active site CxxxR 1 1 0 91,92,95,96,97 1 -350491 cd14643 DSP_DUSP7 2 catalytic site CR 0 1 1 91,97 1 -350492 cd14644 DSP_DUSP9 1 active site CxxxR 1 1 0 88,89,92,93,94 1 -350492 cd14644 DSP_DUSP9 2 catalytic site CR 0 1 1 88,94 1 -350416 cd14568 DSP_MKP_classIII 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350416 cd14568 DSP_MKP_classIII 2 catalytic site CR 0 1 1 85,91 1 -350415 cd14567 DSP_DUSP10 1 active site CxxxR 1 1 0 86,87,90,91,92 1 -350415 cd14567 DSP_DUSP10 2 catalytic site CR 0 1 1 86,92 1 -350493 cd14645 DSP_DUSP8 1 active site CxxxR 1 1 0 96,97,100,101,102 1 -350493 cd14645 DSP_DUSP8 2 catalytic site CR 0 1 1 96,102 1 -350494 cd14646 DSP_DUSP16 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350494 cd14646 DSP_DUSP16 2 catalytic site CR 0 1 1 87,93 1 -350363 cd14513 DSP_slingshot 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350363 cd14513 DSP_slingshot 2 catalytic site CR 0 1 1 84,90 1 -350417 cd14569 DSP_slingshot_2 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350417 cd14569 DSP_slingshot_2 2 catalytic site CR 0 1 1 87,93 1 -350418 cd14570 DSP_slingshot_1 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350418 cd14570 DSP_slingshot_1 2 catalytic site CR 0 1 1 87,93 1 -350419 cd14571 DSP_slingshot_3 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350419 cd14571 DSP_slingshot_3 2 catalytic site CR 0 1 1 87,93 1 -350364 cd14514 DUSP14-like 1 active site CxxxR 1 1 0 83,84,87,88,89 1 -350364 cd14514 DUSP14-like 2 catalytic site CR 0 1 1 83,89 1 -350420 cd14572 DUSP14 1 active site CxxxR 1 1 0 91,92,95,96,97 1 -350420 cd14572 DUSP14 2 catalytic site CR 0 1 1 91,97 1 -350421 cd14573 DUSP18_21 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350421 cd14573 DUSP18_21 2 catalytic site CR 0 1 1 85,91 1 -350422 cd14574 DUSP28 1 active site CxxxR 1 1 0 84,85,88,89,90 1 -350422 cd14574 DUSP28 2 catalytic site CR 0 1 1 84,90 1 -350365 cd14515 DUSP3-like 1 active site CxxxR 1 1 0 94,95,98,99,100 1 -350365 cd14515 DUSP3-like 2 catalytic site CR 0 1 1 94,100 1 -350423 cd14575 DUPD1 1 active site CxxxR 1 1 0 102,103,106,107,108 1 -350423 cd14575 DUPD1 2 catalytic site CR 0 1 1 102,108 1 -350424 cd14576 DSP_iDUSP27 1 active site CxxxR 1 1 0 101,102,105,106,107 1 -350424 cd14576 DSP_iDUSP27 2 catalytic site CR 0 1 1 101,107 1 -350425 cd14577 DUSP13B 1 active site CxxxR 1 1 0 109,110,113,114,115 1 -350425 cd14577 DUSP13B 2 catalytic site CR 0 1 1 109,115 1 -350426 cd14578 DUSP26 1 active site CxxxR 1 1 0 90,91,94,95,96 1 -350426 cd14578 DUSP26 2 catalytic site CR 0 1 1 90,96 1 -350427 cd14579 DUSP3 1 active site CxxxR 1 1 0 114,115,118,119,120 1 -350427 cd14579 DUSP3 2 catalytic site CR 0 1 1 114,120 1 -350428 cd14580 DUSP13A 1 active site CxxxR 1 1 0 91,92,95,96,97 1 -350428 cd14580 DUSP13A 2 catalytic site CR 0 1 1 91,97 1 -350366 cd14516 DSP_fungal_PPS1 1 active site CxxxR 1 1 0 122,123,126,127,128 1 -350366 cd14516 DSP_fungal_PPS1 2 catalytic site CR 0 1 1 122,128 1 -350367 cd14517 DSP_STYXL1 1 active site CxxxR 1 1 0 96,97,100,101,102 1 -350367 cd14517 DSP_STYXL1 2 catalytic site CR 0 1 1 96,102 1 -350368 cd14518 DSP_fungal_YVH1 1 active site CxxxR 1 1 0 96,97,100,101,102 1 -350368 cd14518 DSP_fungal_YVH1 2 catalytic site CR 0 1 1 96,102 1 -350369 cd14519 DSP_DUSP22_15 1 active site CxxxR 1 1 0 83,84,87,88,89 1 -350369 cd14519 DSP_DUSP22_15 2 catalytic site CR 0 1 1 83,89 1 -350429 cd14581 DUSP22 1 active site CxxxR 1 1 0 86,87,90,91,92 1 -350429 cd14581 DUSP22 2 catalytic site CR 0 1 1 86,92 1 -350430 cd14582 DSP_DUSP15 1 active site CxxxR 1 1 0 87,88,91,92,93 1 -350430 cd14582 DSP_DUSP15 2 catalytic site CR 0 1 1 87,93 1 -350370 cd14520 DSP_DUSP12 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350370 cd14520 DSP_DUSP12 2 catalytic site CR 0 1 1 85,91 1 -350371 cd14521 DSP_fungal_SDP1-like 1 active site CxxxR 1 1 0 100,101,104,105,106 1 -350371 cd14521 DSP_fungal_SDP1-like 2 catalytic site CR 0 1 1 100,106 1 -350372 cd14522 DSP_STYX 1 active site CxxxR 1 1 0 95,96,99,100,101 1 -350372 cd14522 DSP_STYX 2 catalytic site CR 0 1 1 95,101 1 -350373 cd14523 DSP_DUSP19 1 active site CxxxR 1 1 0 85,86,89,90,91 1 -350373 cd14523 DSP_DUSP19 2 catalytic site CR 0 1 1 85,91 1 -350374 cd14524 PTPMT1 1 active site CxxxR 1 1 0 95,96,99,100,101 1 -350374 cd14524 PTPMT1 2 catalytic site CR 0 1 1 95,101 1 -350375 cd14526 DSP_laforin-like 1 active site CxxxR 1 1 0 100,101,104,105,106 1 -350375 cd14526 DSP_laforin-like 2 catalytic site CR 0 1 1 100,106 1 -350376 cd14527 DSP_bac 1 active site CxxxR 1 1 0 82,83,86,87,88 1 -350376 cd14527 DSP_bac 2 catalytic site CR 0 1 1 82,88 1 -350510 cd18534 DSP_plant_IBR5-like 1 active site CxxxR 1 1 0 79,80,83,84,85 1 -350510 cd18534 DSP_plant_IBR5-like 2 catalytic site CR 0 1 1 79,85 1 -350349 cd14499 CDC14_C 1 active site CxxxR 1 1 0 115,116,119,120,121 1 -350349 cd14499 CDC14_C 2 catalytic site CR 0 1 1 115,121 1 -350350 cd14500 PTP-IVa 1 active site CxxxR 1 1 0 101,102,105,106,107 1 -350350 cd14500 PTP-IVa 2 catalytic site CR 0 1 1 101,107 1 -350511 cd18535 PTP-IVa3 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350511 cd18535 PTP-IVa3 2 catalytic site CR 0 1 1 99,105 1 -350512 cd18536 PTP-IVa2 1 active site CxxxR 1 1 0 100,101,104,105,106 1 -350512 cd18536 PTP-IVa2 2 catalytic site CR 0 1 1 100,106 1 -350513 cd18537 PTP-IVa1 1 active site CxxxR 1 1 0 103,104,107,108,109 1 -350513 cd18537 PTP-IVa1 2 catalytic site CR 0 1 1 103,109 1 -350351 cd14501 PFA-DSP 1 active site CxxxR 1 1 0 100,101,104,105,106 1 -350351 cd14501 PFA-DSP 2 catalytic site CR 0 1 1 100,106 1 -350377 cd14528 PFA-DSP_Siw14 1 active site CxxxR 1 1 0 98,99,102,103,104 1 -350377 cd14528 PFA-DSP_Siw14 2 catalytic site CR 0 1 1 98,104 1 -350379 cd14531 PFA-DSP_Oca1 1 active site CxxxR 1 1 0 99,100,103,104,105 1 -350379 cd14531 PFA-DSP_Oca1 2 catalytic site CR 0 1 1 99,105 1 -350499 cd17661 PFA-DSP_Oca2 1 active site CxxxR 1 1 0 97,98,101,102,103 1 -350499 cd17661 PFA-DSP_Oca2 2 catalytic site CR 0 1 1 97,103 1 -350500 cd17662 PFA-DSP_Oca4 1 active site CxxxR 1 1 0 124,125,131,132,133 1 -350500 cd17662 PFA-DSP_Oca4 2 catalytic site CR 0 1 1 124,133 1 -350501 cd17663 PFA-DSP_Oca6 1 active site CxxxR 1 1 0 96,97,100,101,102 1 -350501 cd17663 PFA-DSP_Oca6 2 catalytic site CR 0 1 1 96,102 1 -350514 cd18538 PFA-DSP_unk 1 active site CxxxR 1 1 0 96,97,100,101,102 1 -350514 cd18538 PFA-DSP_unk 2 catalytic site CR 0 1 1 96,102 1 -350352 cd14502 RNA_5'-triphosphatase 1 active site CxxxR 1 1 0 117,118,121,122,123 1 -350352 cd14502 RNA_5'-triphosphatase 2 catalytic site CR 0 1 1 117,123 1 -350502 cd17664 Mce1_N 1 active site CxxxR 1 1 0 117,118,121,122,123 1 -350502 cd17664 Mce1_N 2 catalytic site CR 0 1 1 117,123 1 -350503 cd17665 DSP_DUSP11 1 active site CxxxR 1 1 0 119,120,123,124,125 1 -350503 cd17665 DSP_DUSP11 2 catalytic site CR 0 1 1 119,125 1 -350353 cd14503 PTP-bact 1 active site CxxxR 1 1 0 90,91,93,94,95 1 -350353 cd14503 PTP-bact 2 catalytic site CR 0 1 1 90,95 1 -350354 cd14504 DUSP23 1 active site CxxxR 1 1 0 88,89,92,93,94 1 -350354 cd14504 DUSP23 2 catalytic site CR 0 1 1 88,94 1 -350355 cd14505 CDKN3-like 1 active site CxxxR 1 1 0 112,113,116,117,118 1 -350355 cd14505 CDKN3-like 2 catalytic site CR 0 1 1 112,118 1 -350356 cd14506 PTP_PTPDC1 1 active site CxxxR 1 1 0 115,116,119,120,121 1 -350356 cd14506 PTP_PTPDC1 2 catalytic site CR 0 1 1 115,121 1 -350357 cd14507 PTP-MTM-like 1 active site CxxxR 1 1 0 153,154,157,158,159 1 -350357 cd14507 PTP-MTM-like 2 catalytic site CR 0 1 1 153,159 1 -350380 cd14532 PTP-MTMR6-like 1 active site CxxxR 1 1 0 205,206,209,210,211 1 -350380 cd14532 PTP-MTMR6-like 2 catalytic site CR 0 1 1 205,211 1 -350431 cd14583 PTP-MTMR7 1 active site CxxxR 1 1 0 206,207,210,211,212 1 -350431 cd14583 PTP-MTMR7 2 catalytic site CR 0 1 1 206,212 1 -350432 cd14584 PTP-MTMR8 1 active site CxxxR 1 1 0 212,213,216,217,218 1 -350432 cd14584 PTP-MTMR8 2 catalytic site CR 0 1 1 212,218 1 -350433 cd14585 PTP-MTMR6 1 active site CxxxR 1 1 0 206,207,210,211,212 1 -350433 cd14585 PTP-MTMR6 2 catalytic site CR 0 1 1 206,212 1 -350381 cd14533 PTP-MTMR3-like 1 active site CxxxR 1 1 0 156,157,160,161,162 1 -350381 cd14533 PTP-MTMR3-like 2 catalytic site CR 0 1 1 156,162 1 -350434 cd14586 PTP-MTMR3 1 active site CxxxR 1 1 0 244,245,248,249,250 1 -350434 cd14586 PTP-MTMR3 2 catalytic site CR 0 1 1 244,250 1 -350435 cd14587 PTP-MTMR4 1 active site CxxxR 1 1 0 235,236,239,240,241 1 -350435 cd14587 PTP-MTMR4 2 catalytic site CR 0 1 1 235,241 1 -350382 cd14534 PTP-MTMR5-like 1 active site CxxxR 1 1 0 198,199,202,203,204 1 -350382 cd14534 PTP-MTMR5-like 2 catalytic site CR 0 1 1 198,204 1 -350436 cd14588 PTP-MTMR5 1 active site CxxxR 1 1 0 215,216,219,220,221 1 -350436 cd14588 PTP-MTMR5 2 catalytic site CR 0 1 1 215,221 1 -350437 cd14589 PTP-MTMR13 1 active site CxxxR 1 1 0 221,222,225,226,227 1 -350437 cd14589 PTP-MTMR13 2 catalytic site CR 0 1 1 221,227 1 -350383 cd14535 PTP-MTM1-like 1 active site CxxxR 1 1 0 152,153,156,157,158 1 -350383 cd14535 PTP-MTM1-like 2 catalytic site CR 0 1 1 152,158 1 -350438 cd14590 PTP-MTMR2 1 active site CxxxR 1 1 0 165,166,169,170,171 1 -350438 cd14590 PTP-MTMR2 2 catalytic site CR 0 1 1 165,171 1 -350439 cd14591 PTP-MTM1 1 active site CxxxR 1 1 0 152,153,156,157,158 1 -350439 cd14591 PTP-MTM1 2 catalytic site CR 0 1 1 152,158 1 -350440 cd14592 PTP-MTMR1 1 active site CxxxR 1 1 0 152,153,156,157,158 1 -350440 cd14592 PTP-MTMR1 2 catalytic site CR 0 1 1 152,158 1 -350384 cd14536 PTP-MTMR9 1 active site CxxxR 1 1 0 150,151,154,155,156 1 -350384 cd14536 PTP-MTMR9 2 catalytic site CR 0 1 1 150,156 1 -350385 cd14537 PTP-MTMR10-like 1 active site CxxxR 1 1 0 127,128,131,132,133 1 -350385 cd14537 PTP-MTMR10-like 2 catalytic site CR 0 1 1 127,133 1 -350441 cd14593 PTP-MTMR10 1 active site CxxxR 1 1 0 124,125,128,129,130 1 -350441 cd14593 PTP-MTMR10 2 catalytic site CR 0 1 1 124,130 1 -350442 cd14594 PTP-MTMR12 1 active site CxxxR 1 1 0 131,132,135,136,137 1 -350442 cd14594 PTP-MTMR12 2 catalytic site CR 0 1 1 131,137 1 -350443 cd14595 PTP-MTMR11 1 active site CxxxR 1 1 0 123,124,127,128,129 1 -350443 cd14595 PTP-MTMR11 2 catalytic site CR 0 1 1 123,129 1 -350504 cd17666 PTP-MTM-like_fungal 1 active site CxxxR 1 1 0 163,164,167,168,169 1 -350504 cd17666 PTP-MTM-like_fungal 2 catalytic site CR 0 1 1 163,169 1 -350378 cd14529 TpbA-like 1 active site CxxxR 1 1 0 95,96,99,100,101 1 -350378 cd14529 TpbA-like 2 catalytic site CR 0 1 1 95,101 1 -350495 cd17657 CDC14_N 1 active site CxxxR 1 1 0 75,76,82,83,84 1 -350495 cd17657 CDC14_N 2 catalytic site CR 0 1 1 75,84 1 -271237 cd14653 ZIP_Gal4p-like 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271237 cd14653 ZIP_Gal4p-like 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271236 cd14651 ZIP_Put3 1 dimer interface 0 1 1 0 2,3,5,6,9,10,12,13,16,17,19,20,23,24 2 -271236 cd14651 ZIP_Put3 2 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -271238 cd14654 ZIP_Gal4 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271238 cd14654 ZIP_Gal4 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271239 cd14655 ZIP_Hap1 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271239 cd14655 ZIP_Hap1 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271240 cd14723 ZIP_Ppr1 1 dimer interface 0 1 1 0 1,2,4,5,8,9,11,12,15,16,18,19,22,23 2 -271240 cd14723 ZIP_Ppr1 2 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -271241 cd14724 ZIP_Gal4-like_1 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271241 cd14724 ZIP_Gal4-like_1 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271242 cd14725 ZIP_Gal4-like_2 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271242 cd14725 ZIP_Gal4-like_2 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271243 cd15485 ZIP_Cat8 1 dimer interface 0 1 1 0 1,2,4,5,8,9,11,12,15,16,18,19,22,23 2 -271243 cd15485 ZIP_Cat8 2 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -271244 cd15486 ZIP_Sip4 1 dimer interface 0 1 1 0 0,1,3,4,7,8,10,11,14,15,17,18,21,22 2 -271244 cd15486 ZIP_Sip4 2 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 7 -271137 cd14660 E2F_DD 1 heterodimer interface 0 1 1 1 1,2,5,6,8,9,12,13,15,16,19,20,22,23,25,26,27,29,30,33,41,42,43,44,45,46,49,50,53,57,58,59,60,61,62,63,64,65,83,84,85,86,87,88,89,90,92,93,94,95,97,103 2 -271137 cd14660 E2F_DD 2 RbC binding site 0 1 1 1 67,68,69,70,71,72,73,74,75,76,78,79,84 2 -271137 cd14660 E2F_DD 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -271136 cd14661 Imelysin_like_PIBO 1 Conserved motif GHE 0 1 1 334,336,339 0 -270614 cd14670 BslA_like 1 hydrophobic cap [LIMV][LIMV][LIMV][LIMV][LIMV][LIMV][LIMV][LIMV] 1 1 0 31,32,34,79,81,84,113,115 0 -269821 cd14671 PAAR_like 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 10,39,42,69 4 -269821 cd14671 PAAR_like 2 PAAR motifs 0 0 1 1 0,1,2,3,29,30,31,32,59,60,61,62 0 -269822 cd14737 PAAR_1 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 12,44,52,79 4 -269822 cd14737 PAAR_1 2 PAAR motifs 0 0 1 1 1,2,3,4,33,34,35,36,69,70,71,72 0 -269823 cd14738 PAAR_2 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 20,49,52,79 4 -269823 cd14738 PAAR_2 2 PAAR motifs 0 0 1 1 0,1,2,3,39,40,41,42,69,70,71,72 0 -269824 cd14739 PAAR_3 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 10,36,48,75 4 -269824 cd14739 PAAR_3 2 PAAR motifs 0 0 1 1 0,1,2,3,28,29,30,31,65,66,67,68 0 -269825 cd14740 PAAR_4 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 14,62,76,101 4 -269825 cd14740 PAAR_4 2 PAAR motifs 0 0 1 1 0,1,2,3,49,50,51,52,91,92,93,94 0 -269826 cd14741 PAAR_5 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 11,39,51,78 4 -269826 cd14741 PAAR_5 2 PAAR motifs 0 0 1 1 1,2,3,4,30,31,32,33,68,69,70,71 0 -269827 cd14742 PAAR_RHS 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 10,41,44,71 4 -269827 cd14742 PAAR_RHS 2 PAAR motifs 0 0 1 1 0,1,2,3,27,28,29,30,61,62,63,64 0 -269828 cd14743 PAAR_CT_1 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 10,39,42,69 4 -269828 cd14743 PAAR_CT_1 2 PAAR motifs 0 0 1 1 0,1,2,3,32,33,34,35,59,60,61,62 0 -269829 cd14744 PAAR_CT_2 1 Zn binding site [CHRKQ][HCRKQ][HCRKQ][CHRKQ] 1 1 1 9,38,42,70 4 -269829 cd14744 PAAR_CT_2 2 PAAR motifs 0 0 1 1 0,1,2,3,28,29,30,31,60,61,62,63 0 -269834 cd14686 bZIP 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269834 cd14686 bZIP 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269834 cd14686 bZIP 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269833 cd12193 bZIP_GCN4 1 DNA binding site 0 1 1 0 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269833 cd12193 bZIP_GCN4 2 dimer interface 0 1 1 1 20,23,24,27,28,30,31,34,35,37,38,41,42,44,45,48,49,51,52 2 -269833 cd12193 bZIP_GCN4 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269835 cd14687 bZIP_ATF2 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269835 cd14687 bZIP_ATF2 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269835 cd14687 bZIP_ATF2 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269836 cd14688 bZIP_YAP 1 DNA binding site 0 1 1 0 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269836 cd14688 bZIP_YAP 2 dimer interface 0 1 1 1 20,23,24,27,28,30,31,34,35,37,38,41,42,44,45,48,49,51,52 2 -269836 cd14688 bZIP_YAP 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269837 cd14689 bZIP_CREB3 1 DNA binding site 0 1 1 0 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269837 cd14689 bZIP_CREB3 2 dimer interface 0 1 1 1 20,23,24,27,28,30,31,34,35,37,38,41,42,44,45,48,49,51,52 2 -269837 cd14689 bZIP_CREB3 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269838 cd14690 bZIP_CREB1 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269838 cd14690 bZIP_CREB1 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269838 cd14690 bZIP_CREB1 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269839 cd14691 bZIP_XBP1 1 DNA binding site 0 1 1 0 6,7,9,10,11,13,14,15,16,17,18,20,21,22 3 -269839 cd14691 bZIP_XBP1 2 dimer interface 0 1 1 1 21,24,25,28,29,31,32,35,36,38,39,42,43,45,46,49,50,52,53 2 -269839 cd14691 bZIP_XBP1 3 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -269840 cd14692 bZIP_ATF4 1 DNA binding site 0 1 1 0 5,6,8,9,10,12,13,14,15,16,17,19,20,21 3 -269840 cd14692 bZIP_ATF4 2 dimer interface 0 1 1 1 20,23,24,27,28,30,31,34,35,37,38,41,42,44,45,48,49,51,52 2 -269840 cd14692 bZIP_ATF4 3 coiled coil 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53 7 -269841 cd14693 bZIP_CEBP 1 DNA binding site 0 1 1 0 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269841 cd14693 bZIP_CEBP 2 dimer interface 0 1 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269841 cd14693 bZIP_CEBP 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 7 -269859 cd14711 bZIP_CEBPA 1 DNA binding site 0 1 1 0 8,9,11,12,13,15,16,17,18,19,20,22,23,24 3 -269859 cd14711 bZIP_CEBPA 2 dimer interface 0 1 1 1 23,26,27,30,31,33,34,37,38,40,41,44,45,47,48,51,52,54,55 2 -269859 cd14711 bZIP_CEBPA 3 coiled coil 0 0 0 0 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -269860 cd14712 bZIP_CEBPB 1 DNA binding site 0 1 1 0 13,14,16,17,18,20,21,22,23,24,25,27,28,29 3 -269860 cd14712 bZIP_CEBPB 2 dimer interface 0 1 1 1 28,31,32,35,36,38,39,42,43,45,46,49,50,52,53,56,57,59,60 2 -269860 cd14712 bZIP_CEBPB 3 coiled coil 0 0 0 0 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -269861 cd14713 bZIP_CEBPG 1 DNA binding site 0 1 1 0 8,9,11,12,13,15,16,17,18,19,20,22,23,24 3 -269861 cd14713 bZIP_CEBPG 2 dimer interface 0 1 1 1 23,26,27,30,31,33,34,37,38,40,41,44,45,47,48,51,52,54,55 2 -269861 cd14713 bZIP_CEBPG 3 coiled coil 0 0 0 0 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -269862 cd14714 bZIP_CEBPD 1 DNA binding site 0 1 1 0 9,10,12,13,14,16,17,18,19,20,21,23,24,25 3 -269862 cd14714 bZIP_CEBPD 2 dimer interface 0 1 1 1 24,27,28,31,32,34,35,38,39,41,42,45,46,48,49,52,53,55,56 2 -269862 cd14714 bZIP_CEBPD 3 coiled coil 0 0 0 0 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -269863 cd14715 bZIP_CEBPE 1 DNA binding site 0 1 1 0 8,9,11,12,13,15,16,17,18,19,20,22,23,24 3 -269863 cd14715 bZIP_CEBPE 2 dimer interface 0 1 1 1 23,26,27,30,31,33,34,37,38,40,41,44,45,47,48,51,52,54,55 2 -269863 cd14715 bZIP_CEBPE 3 coiled coil 0 0 0 0 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56 7 -269864 cd14716 bZIP_CEBP-like_1 1 DNA binding site 0 1 1 0 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269864 cd14716 bZIP_CEBP-like_1 2 dimer interface 0 1 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269864 cd14716 bZIP_CEBP-like_1 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 7 -269842 cd14694 bZIP_NFIL3 1 DNA binding site 0 1 1 0 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269842 cd14694 bZIP_NFIL3 2 dimer interface 0 1 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269842 cd14694 bZIP_NFIL3 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 7 -269843 cd14695 bZIP_HLF 1 DNA binding site 0 1 1 0 7,8,10,11,12,14,15,16,17,18,19,21,22,23 3 -269843 cd14695 bZIP_HLF 2 dimer interface 0 1 1 1 22,25,26,29,30,32,33,36,37,39,40,43,44,46,47,50,51,53,54 2 -269843 cd14695 bZIP_HLF 3 coiled coil 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 7 -269844 cd14696 bZIP_Jun 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269844 cd14696 bZIP_Jun 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269844 cd14696 bZIP_Jun 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269845 cd14697 bZIP_Maf 1 DNA binding site 0 1 1 0 11,12,14,15,16,18,19,20,21,22,23,25,26,27 3 -269845 cd14697 bZIP_Maf 2 dimer interface 0 1 1 1 26,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269845 cd14697 bZIP_Maf 3 coiled coil 0 0 0 0 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269865 cd14717 bZIP_Maf_small 1 DNA binding site 0 1 1 0 11,12,14,15,16,18,19,20,21,22,23,25,26,27 3 -269865 cd14717 bZIP_Maf_small 2 dimer interface 0 1 1 1 26,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269865 cd14717 bZIP_Maf_small 3 coiled coil 0 0 0 0 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269866 cd14718 bZIP_Maf_large 1 DNA binding site 0 1 1 0 11,12,14,15,16,18,19,20,21,22,23,25,26,27 3 -269866 cd14718 bZIP_Maf_large 2 dimer interface 0 1 1 1 26,29,30,33,34,36,37,40,41,43,44,47,48,50,51,54,55,57,58 2 -269866 cd14718 bZIP_Maf_large 3 coiled coil 0 0 0 0 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -269846 cd14698 bZIP_CNC 1 DNA binding site 0 1 1 0 9,10,12,13,14,16,17,18,19,20,21,23,24,25 3 -269846 cd14698 bZIP_CNC 2 dimer interface 0 1 1 1 24,27,28,31,32,34,35,38,39,41,42,45,46,48,49,52,53,55,56 2 -269846 cd14698 bZIP_CNC 3 coiled coil 0 0 0 0 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -269867 cd14719 bZIP_BACH 1 DNA binding site 0 1 1 0 12,13,15,16,17,19,20,21,22,23,24,26,27,28 3 -269867 cd14719 bZIP_BACH 2 dimer interface 0 1 1 1 27,30,31,34,35,37,38,41,42,44,45,48,49,51,52,55,56,58,59 2 -269867 cd14719 bZIP_BACH 3 coiled coil 0 0 0 0 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -269868 cd14720 bZIP_NFE2-like 1 DNA binding site 0 1 1 0 9,10,12,13,14,16,17,18,19,20,21,23,24,25 3 -269868 cd14720 bZIP_NFE2-like 2 dimer interface 0 1 1 1 24,27,28,31,32,34,35,38,39,41,42,45,46,48,49,52,53,55,56 2 -269868 cd14720 bZIP_NFE2-like 3 coiled coil 0 0 0 0 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 7 -269847 cd14699 bZIP_Fos_like 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269847 cd14699 bZIP_Fos_like 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269847 cd14699 bZIP_Fos_like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269869 cd14721 bZIP_Fos 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269869 cd14721 bZIP_Fos 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269869 cd14721 bZIP_Fos 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269870 cd14722 bZIP_ATF3 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269870 cd14722 bZIP_ATF3 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269870 cd14722 bZIP_ATF3 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269848 cd14700 bZIP_ATF6 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269848 cd14700 bZIP_ATF6 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269848 cd14700 bZIP_ATF6 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269849 cd14701 bZIP_BATF 1 DNA binding site 0 1 1 0 6,7,9,10,11,13,14,15,16,17,18,20,21,22 3 -269849 cd14701 bZIP_BATF 2 dimer interface 0 1 1 1 21,24,25,28,29,31,32,35,36,38,39,42,43,45,46,49,50,52,53 2 -269849 cd14701 bZIP_BATF 3 coiled coil 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54 7 -269850 cd14702 bZIP_plant_GBF1 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269850 cd14702 bZIP_plant_GBF1 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269850 cd14702 bZIP_plant_GBF1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269851 cd14703 bZIP_plant_RF2 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269851 cd14703 bZIP_plant_RF2 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269851 cd14703 bZIP_plant_RF2 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269852 cd14704 bZIP_HY5-like 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269852 cd14704 bZIP_HY5-like 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269852 cd14704 bZIP_HY5-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269853 cd14705 bZIP_Zip1 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269853 cd14705 bZIP_Zip1 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269853 cd14705 bZIP_Zip1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269854 cd14706 bZIP_CREBZF 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269854 cd14706 bZIP_CREBZF 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269854 cd14706 bZIP_CREBZF 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269855 cd14707 bZIP_plant_BZIP46 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269855 cd14707 bZIP_plant_BZIP46 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269855 cd14707 bZIP_plant_BZIP46 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269856 cd14708 bZIP_HBP1b-like 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269856 cd14708 bZIP_HBP1b-like 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269856 cd14708 bZIP_HBP1b-like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269857 cd14709 bZIP_CREBL2 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269857 cd14709 bZIP_CREBL2 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269857 cd14709 bZIP_CREBL2 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269858 cd14710 bZIP_HAC1-like 1 DNA binding site 0 1 1 0 4,5,7,8,9,11,12,13,14,15,16,18,19,20 3 -269858 cd14710 bZIP_HAC1-like 2 dimer interface 0 1 1 1 19,22,23,26,27,29,30,33,34,36,37,40,41,43,44,47,48,50,51 2 -269858 cd14710 bZIP_HAC1-like 3 coiled coil 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 7 -269871 cd14809 bZIP_AUREO-like 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269871 cd14809 bZIP_AUREO-like 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269871 cd14809 bZIP_AUREO-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269872 cd14810 bZIP_u1 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269872 cd14810 bZIP_u1 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269872 cd14810 bZIP_u1 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269873 cd14811 bZIP_u2 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269873 cd14811 bZIP_u2 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269873 cd14811 bZIP_u2 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269874 cd14812 bZIP_u3 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269874 cd14812 bZIP_u3 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269874 cd14812 bZIP_u3 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269875 cd14813 bZIP_BmCbz-like 1 DNA binding site 0 1 1 0 3,4,6,7,8,10,11,12,13,14,15,17,18,19 3 -269875 cd14813 bZIP_BmCbz-like 2 dimer interface 0 1 1 1 18,21,22,25,26,28,29,32,33,35,36,39,40,42,43,46,47,49,50 2 -269875 cd14813 bZIP_BmCbz-like 3 coiled coil 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51 7 -269830 cd14730 LodA_like 1 putative active site x[CS]DC[QEH] 1 1 0 350,414,463,467,470 1 -269831 cd14731 LodA_like_1 1 putative active site x[CS]DC[QEH] 1 1 0 342,411,480,484,487 1 -269832 cd14732 LodA 1 putative active site x[CS]DC[QEH] 1 1 0 396,451,523,527,530 1 -270613 cd14745 GH66 1 chemical substrate binding site 0 1 1 0 36,37,39,57,60,87,89,163,164,204,225,302,303,304,305,307 5 -270613 cd14745 GH66 2 catalytic site 0 1 1 0 163,225 1 -270212 cd14752 GH31_N 1 active site 0 1 0 0 44 1 -270211 cd14785 V-ATPase_C 1 3-helical coiled coil 0 0 1 0 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -270211 cd14785 V-ATPase_C 2 3-helical coiled coil 0 0 1 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -270211 cd14785 V-ATPase_C 3 3-helical coiled coil 0 0 1 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300 7 -341075 cd14786 STAT_CCD 1 coiled-coil motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 0 -341076 cd16851 STAT1_CCD 1 coiled-coil motif 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 0 -341077 cd16852 STAT2_CCD 1 coiled-coil motif 0 0 0 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 0 -341078 cd16853 STAT3_CCD 1 coiled-coil motif 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 0 -341079 cd16854 STAT4_CCD 1 coiled-coil motif 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 0 -341080 cd16855 STAT5_CCD 1 coiled-coil motif 0 0 0 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 0 -341081 cd16856 STAT6_CCD 1 coiled-coil motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 0 -269891 cd14790 GH_D 1 active site 0 1 1 0 39,40,103,105,106,149,164,168,230,232 1 -269891 cd14790 GH_D 2 catalytic site 0 0 1 1 105,168 1 -269876 cd06589 GH31 1 active site 0 1 1 0 45,46,111,113,114,164,177,180,237,239 1 -269876 cd06589 GH31 2 catalytic site 0 0 1 1 113,180 1 -269877 cd06591 GH31_xylosidase_XylS 1 active site 0 1 1 0 45,46,150,152,153,208,222,225,290,292 1 -269877 cd06591 GH31_xylosidase_XylS 2 catalytic site 0 0 1 1 152,225 1 -269879 cd06593 GH31_xylosidase_YicI 1 active site 0 1 1 0 45,46,154,156,157,205,218,221,277,279 1 -269879 cd06593 GH31_xylosidase_YicI 2 catalytic site 0 0 1 1 156,221 1 -269880 cd06594 GH31_glucosidase_YihQ 1 active site 0 1 1 0 44,45,161,163,164,213,227,230,297,299 1 -269880 cd06594 GH31_glucosidase_YihQ 2 catalytic site 0 0 1 1 163,230 1 -269881 cd06595 GH31_u1 1 active site 0 1 1 0 46,47,151,153,154,192,205,208,265,267 1 -269881 cd06595 GH31_u1 2 catalytic site 0 0 1 1 153,208 1 -269882 cd06596 GH31_CPE1046 1 active site 0 1 1 0 65,66,113,115,116,150,163,166,220,222 1 -269882 cd06596 GH31_CPE1046 2 catalytic site 0 0 1 1 115,166 1 -269883 cd06597 GH31_transferase_CtsY 1 active site 0 1 1 0 45,46,161,163,164,212,225,228,285,287 1 -269883 cd06597 GH31_transferase_CtsY 2 catalytic site 0 0 1 1 163,228 1 -269884 cd06598 GH31_transferase_CtsZ 1 active site 0 1 1 0 45,46,161,163,164,214,228,231,289,291 1 -269884 cd06598 GH31_transferase_CtsZ 2 catalytic site 0 0 1 1 163,231 1 -269885 cd06599 GH31_glycosidase_Aec37 1 active site 0 1 1 0 49,50,161,163,164,218,231,234,291,293 1 -269885 cd06599 GH31_glycosidase_Aec37 2 catalytic site 0 0 1 1 163,234 1 -269886 cd06600 GH31_MGAM-like 1 active site 0 1 1 0 45,46,109,111,112,150,163,166,222,224 1 -269886 cd06600 GH31_MGAM-like 2 catalytic site 0 0 1 1 111,166 1 -269888 cd06602 GH31_MGAM_SI_GAA 1 active site 0 1 1 0 45,46,156,158,159,249,262,265,321,323 1 -269888 cd06602 GH31_MGAM_SI_GAA 2 catalytic site 0 0 1 1 158,265 1 -269889 cd06603 GH31_GANC_GANAB_alpha 1 active site 0 1 1 0 45,46,156,158,159,218,231,234,290,292 1 -269889 cd06603 GH31_GANC_GANAB_alpha 2 catalytic site 0 0 1 1 158,234 1 -269890 cd06604 GH31_glucosidase_II_MalA 1 active site 0 1 1 0 45,46,153,155,156,218,231,234,290,292 1 -269890 cd06604 GH31_glucosidase_II_MalA 2 catalytic site 0 0 1 1 155,234 1 -269887 cd06601 GH31_lyase_GLase 1 active site 0 1 1 0 45,46,135,137,138,212,225,228,292,294 1 -269887 cd06601 GH31_lyase_GLase 2 catalytic site 0 0 1 1 137,228 1 -269878 cd06592 GH31_NET37 1 active site 0 1 1 0 39,40,147,149,150,193,203,206,283,285 1 -269878 cd06592 GH31_NET37 2 catalytic site 0 0 1 1 149,206 1 -269892 cd14791 GH36 1 active site 0 1 1 0 38,39,148,150,151,196,215,218,273,275 1 -269892 cd14791 GH36 2 catalytic site 0 0 1 1 150,218 1 -269893 cd14792 GH27 1 active site 0 1 1 0 42,43,120,122,123,156,175,179,243,245 1 -269893 cd14792 GH27 2 catalytic site 0 0 1 1 122,179 1 -271353 cd14798 RX-CC_like 1 RanGAP2 interaction site 0 1 1 0 66,70,73,95,98,101,102,103,105,106,107,109,110 2 -269812 cd14803 RAP 1 3-helical coiled coil 0 0 1 0 5,6,7,8,9,10,11,12 7 -269812 cd14803 RAP 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -269812 cd14803 RAP 3 3-helical coiled coil 0 0 1 0 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 7 -269813 cd14806 RAP_D1 1 3-helical coiled coil 0 0 1 0 5,6,7,8,9,10,11,12 7 -269813 cd14806 RAP_D1 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -269813 cd14806 RAP_D1 3 3-helical coiled coil 0 0 1 0 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -269814 cd14807 RAP_D2 1 3-helical coiled coil 0 0 1 0 5,6,7,8,9,10,11,12 7 -269814 cd14807 RAP_D2 2 3-helical coiled coil 0 0 1 0 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43 7 -269814 cd14807 RAP_D2 3 3-helical coiled coil 0 0 1 0 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -269815 cd14808 RAP_D3 1 3-helical coiled coil 0 0 1 0 5,6,7,8,9,10,11,12 7 -269815 cd14808 RAP_D3 2 3-helical coiled coil 0 0 1 0 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -269815 cd14808 RAP_D3 3 3-helical coiled coil 0 0 1 0 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -271351 cd14804 Tra_M 1 tetramer interface 0 1 1 0 1,2,3,4,5,6,7,9,12,14,15,35,38,39,41,42,43,44,45,46,48,49,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,104,108,109,111,112,115,116,119,120 2 -271351 cd14804 Tra_M 2 DNA binding site 0 1 1 0 2,4,5,6,7,9,12,33,34,35 3 -271348 cd14805 Translin-like 1 heterodimer interface 0 1 1 0 0,1,4,7,8,73,74,128,129,161,164,165,168,171,172 2 -271349 cd14819 Translin 1 heterodimer interface 0 1 1 0 0,1,4,7,8,74,75,129,130,162,165,166,169,172,173 2 -271350 cd14820 TRAX 1 heterodimer interface 0 1 1 0 3,4,7,10,11,67,68,109,110,142,145,146,149,152,153 2 -350615 cd14814 Peptidase_M15 1 active site RHD[ED]H 1 1 1 27,57,64,103,106 1 -350615 cd14814 Peptidase_M15 2 Zn binding site HDH 1 1 1 57,64,106 4 -350619 cd14844 Zn-DD-carboxypeptidase_like 1 active site RHD[ED]H 1 1 1 37,58,65,95,98 1 -350619 cd14844 Zn-DD-carboxypeptidase_like 2 Zn binding site HDH 1 1 1 58,65,98 4 -350620 cd14845 L-Ala-D-Glu_peptidase_like 1 active site RHD[ED]H 1 1 1 36,66,73,118,121 1 -350620 cd14845 L-Ala-D-Glu_peptidase_like 2 Zn binding site HDH 1 1 1 66,73,121 4 -350621 cd14846 Peptidase_M15_like 1 active site RHD[ED]H 1 1 1 29,63,70,96,99 1 -350621 cd14846 Peptidase_M15_like 2 Zn binding site HDH 1 1 1 63,70,99 4 -350622 cd14847 DD-carboxypeptidase_like 1 active site RHD[ED]H 1 1 1 29,82,89,145,148 1 -350622 cd14847 DD-carboxypeptidase_like 2 Zn binding site HDH 1 1 1 82,89,148 4 -350623 cd14849 DD-dipeptidase_VanXYc 1 active site RHD[ED]H 1 1 1 28,61,68,118,121 1 -350623 cd14849 DD-dipeptidase_VanXYc 2 Zn binding site HDH 1 1 1 61,68,121 4 -350624 cd14852 LD-carboxypeptidase 1 active site RHD[ED]H 1 1 1 58,91,98,146,149 1 -350624 cd14852 LD-carboxypeptidase 2 Zn binding site HDH 1 1 1 91,98,149 4 -350625 cd17880 D-Ala-D-Ala_dipeptidase 1 active site RHD[ED]H 1 1 1 27,72,79,102,105 1 -350625 cd17880 D-Ala-D-Ala_dipeptidase 2 Zn binding site HDH 1 1 1 72,79,105 4 -350616 cd14817 D-Ala-D-Ala_dipeptidase_VanX 1 active site RHD[ED]H 1 1 1 68,113,120,178,181 1 -350616 cd14817 D-Ala-D-Ala_dipeptidase_VanX 2 Zn binding site HDH 1 1 1 113,120,181 4 -350617 cd14840 D-Ala-D-Ala_dipeptidase_Aad 1 active site RHD[ED]H 1 1 1 51,78,85,142,145 1 -350617 cd14840 D-Ala-D-Ala_dipeptidase_Aad 2 Zn binding site HDH 1 1 1 78,85,145 4 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 1 active site RHD[ED]H 1 1 1 28,77,84,147,150 1 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like 2 Zn binding site HDH 1 1 1 77,84,150 4 -271352 cd14815 BA_2398_like 1 tetramer interface 0 1 0 0 32,33,68,70,71,72,73,74 2 -275438 cd14859 PMEI_like 1 heterodimer interface 0 1 1 0 67,68,71,75,92,104,138 2 -275439 cd15795 PMEI-Pla_a_1_like 1 heterodimer interface 0 1 1 0 75,76,79,83,100,112,146 2 -275440 cd15796 CIF_like 1 heterodimer interface 0 1 1 0 75,76,79,83,101,113,145 2 -275441 cd15797 PMEI 1 heterodimer interface 0 1 1 0 75,76,79,83,100,112,146 2 -275442 cd15798 PMEI-like_3 1 heterodimer interface 0 1 1 0 70,71,74,78,102,114,149 2 -275443 cd15799 PMEI-like_4 1 heterodimer interface 0 1 1 0 73,74,77,81,101,113,147 2 -275444 cd15800 PMEI-like_2 1 heterodimer interface 0 1 1 0 75,76,79,83,100,112,145 2 -275445 cd15801 PMEI-like_1 1 heterodimer interface 0 1 1 0 72,73,76,80,97,109,143 2 -271344 cd14941 TRAPPC_bet3-like 1 heterodimer interface 0 1 1 0 3,4,6,7,10,11,15,16,28,32,36,39,40,43,44,115 2 -271345 cd14942 TRAPPC3_bet3 1 heterodimer interface 0 1 1 0 3,4,6,7,10,11,15,16,28,32,36,39,40,43,44,115 2 -271346 cd14943 TRAPPC5_Trs31 1 heterodimer interface 0 1 1 0 4,5,7,8,11,12,16,17,29,33,37,40,41,44,45,118 2 -271347 cd14944 TRAPPC6A_Trs33 1 heterodimer interface 0 1 1 0 3,4,6,7,10,11,15,16,42,46,50,53,54,57,58,131 2 -341315 cd14964 7tm_GPCRs 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -341315 cd14964 7tm_GPCRs 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -341315 cd14964 7tm_GPCRs 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341315 cd14964 7tm_GPCRs 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341315 cd14964 7tm_GPCRs 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341315 cd14964 7tm_GPCRs 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -341315 cd14964 7tm_GPCRs 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -341313 cd00637 7tm_classA_rhodopsin-like 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -341313 cd00637 7tm_classA_rhodopsin-like 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,52,53,54,55 7 -341313 cd00637 7tm_classA_rhodopsin-like 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341313 cd00637 7tm_classA_rhodopsin-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341313 cd00637 7tm_classA_rhodopsin-like 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -341313 cd00637 7tm_classA_rhodopsin-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -341313 cd00637 7tm_classA_rhodopsin-like 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320092 cd13954 7tmA_OR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320092 cd13954 7tmA_OR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320092 cd13954 7tmA_OR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320092 cd13954 7tmA_OR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320092 cd13954 7tmA_OR 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320092 cd13954 7tmA_OR 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320092 cd13954 7tmA_OR 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320352 cd15224 7tmA_OR6B-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320352 cd15224 7tmA_OR6B-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320352 cd15224 7tmA_OR6B-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320352 cd15224 7tmA_OR6B-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320352 cd15224 7tmA_OR6B-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320352 cd15224 7tmA_OR6B-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320352 cd15224 7tmA_OR6B-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320353 cd15225 7tmA_OR10A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320353 cd15225 7tmA_OR10A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320353 cd15225 7tmA_OR10A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320353 cd15225 7tmA_OR10A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320353 cd15225 7tmA_OR10A-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320353 cd15225 7tmA_OR10A-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320353 cd15225 7tmA_OR10A-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320354 cd15226 7tmA_OR4-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320354 cd15226 7tmA_OR4-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320354 cd15226 7tmA_OR4-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320354 cd15226 7tmA_OR4-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320354 cd15226 7tmA_OR4-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320354 cd15226 7tmA_OR4-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320354 cd15226 7tmA_OR4-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320601 cd15935 7tmA_OR4Q3-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320601 cd15935 7tmA_OR4Q3-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320601 cd15935 7tmA_OR4Q3-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320601 cd15935 7tmA_OR4Q3-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320601 cd15935 7tmA_OR4Q3-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320601 cd15935 7tmA_OR4Q3-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320601 cd15935 7tmA_OR4Q3-like 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320602 cd15936 7tmA_OR4D-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320602 cd15936 7tmA_OR4D-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320602 cd15936 7tmA_OR4D-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320602 cd15936 7tmA_OR4D-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320602 cd15936 7tmA_OR4D-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320602 cd15936 7tmA_OR4D-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320602 cd15936 7tmA_OR4D-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320603 cd15937 7tmA_OR4N-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320603 cd15937 7tmA_OR4N-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320603 cd15937 7tmA_OR4N-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320603 cd15937 7tmA_OR4N-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320603 cd15937 7tmA_OR4N-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320603 cd15937 7tmA_OR4N-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320603 cd15937 7tmA_OR4N-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320604 cd15938 7tmA_OR4Q2-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320604 cd15938 7tmA_OR4Q2-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320604 cd15938 7tmA_OR4Q2-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320604 cd15938 7tmA_OR4Q2-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320604 cd15938 7tmA_OR4Q2-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320604 cd15938 7tmA_OR4Q2-like 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320604 cd15938 7tmA_OR4Q2-like 7 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320605 cd15939 7tmA_OR4A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320605 cd15939 7tmA_OR4A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320605 cd15939 7tmA_OR4A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320605 cd15939 7tmA_OR4A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320605 cd15939 7tmA_OR4A-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320605 cd15939 7tmA_OR4A-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320605 cd15939 7tmA_OR4A-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320606 cd15940 7tmA_OR4E-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320606 cd15940 7tmA_OR4E-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320606 cd15940 7tmA_OR4E-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320606 cd15940 7tmA_OR4E-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320606 cd15940 7tmA_OR4E-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320606 cd15940 7tmA_OR4E-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320606 cd15940 7tmA_OR4E-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320355 cd15227 7tmA_OR14-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320355 cd15227 7tmA_OR14-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320355 cd15227 7tmA_OR14-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320355 cd15227 7tmA_OR14-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320355 cd15227 7tmA_OR14-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320355 cd15227 7tmA_OR14-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320355 cd15227 7tmA_OR14-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320356 cd15228 7tmA_OR10D-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320356 cd15228 7tmA_OR10D-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320356 cd15228 7tmA_OR10D-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320356 cd15228 7tmA_OR10D-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320356 cd15228 7tmA_OR10D-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320356 cd15228 7tmA_OR10D-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320356 cd15228 7tmA_OR10D-like 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320357 cd15229 7tmA_OR8S1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320357 cd15229 7tmA_OR8S1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320357 cd15229 7tmA_OR8S1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320357 cd15229 7tmA_OR8S1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320357 cd15229 7tmA_OR8S1-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320357 cd15229 7tmA_OR8S1-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320357 cd15229 7tmA_OR8S1-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320358 cd15230 7tmA_OR5-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320358 cd15230 7tmA_OR5-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320358 cd15230 7tmA_OR5-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320358 cd15230 7tmA_OR5-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320358 cd15230 7tmA_OR5-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320358 cd15230 7tmA_OR5-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320358 cd15230 7tmA_OR5-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320527 cd15405 7tmA_OR8B-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320527 cd15405 7tmA_OR8B-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320527 cd15405 7tmA_OR8B-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320527 cd15405 7tmA_OR8B-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320527 cd15405 7tmA_OR8B-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320527 cd15405 7tmA_OR8B-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320527 cd15405 7tmA_OR8B-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320528 cd15406 7tmA_OR8D-like 1 TM helix 1 0 0 0 1 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -320528 cd15406 7tmA_OR8D-like 2 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,63,64,65,66 7 -320528 cd15406 7tmA_OR8D-like 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320528 cd15406 7tmA_OR8D-like 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320528 cd15406 7tmA_OR8D-like 5 TM helix 5 0 0 0 0 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -320528 cd15406 7tmA_OR8D-like 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320528 cd15406 7tmA_OR8D-like 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320529 cd15407 7tmA_OR5B-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320529 cd15407 7tmA_OR5B-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320529 cd15407 7tmA_OR5B-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320529 cd15407 7tmA_OR5B-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320529 cd15407 7tmA_OR5B-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320529 cd15407 7tmA_OR5B-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320529 cd15407 7tmA_OR5B-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320530 cd15408 7tmA_OR5AK3-like 1 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320530 cd15408 7tmA_OR5AK3-like 2 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,68,69,70 7 -320530 cd15408 7tmA_OR5AK3-like 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -320530 cd15408 7tmA_OR5AK3-like 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320530 cd15408 7tmA_OR5AK3-like 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320530 cd15408 7tmA_OR5AK3-like 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320530 cd15408 7tmA_OR5AK3-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320531 cd15409 7tmA_OR5H-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320531 cd15409 7tmA_OR5H-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320531 cd15409 7tmA_OR5H-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320531 cd15409 7tmA_OR5H-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320531 cd15409 7tmA_OR5H-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320531 cd15409 7tmA_OR5H-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320531 cd15409 7tmA_OR5H-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320532 cd15410 7tmA_OR5D-like 1 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320532 cd15410 7tmA_OR5D-like 2 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,68,69,70 7 -320532 cd15410 7tmA_OR5D-like 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -320532 cd15410 7tmA_OR5D-like 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320532 cd15410 7tmA_OR5D-like 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320532 cd15410 7tmA_OR5D-like 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320532 cd15410 7tmA_OR5D-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320533 cd15411 7tmA_OR8H-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320533 cd15411 7tmA_OR8H-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320533 cd15411 7tmA_OR8H-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320533 cd15411 7tmA_OR8H-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320533 cd15411 7tmA_OR8H-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320533 cd15411 7tmA_OR8H-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320533 cd15411 7tmA_OR8H-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320534 cd15412 7tmA_OR5M-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320534 cd15412 7tmA_OR5M-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320534 cd15412 7tmA_OR5M-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320534 cd15412 7tmA_OR5M-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320534 cd15412 7tmA_OR5M-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320534 cd15412 7tmA_OR5M-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320534 cd15412 7tmA_OR5M-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320535 cd15413 7tmA_OR8K-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320535 cd15413 7tmA_OR8K-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320535 cd15413 7tmA_OR8K-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320535 cd15413 7tmA_OR8K-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320535 cd15413 7tmA_OR8K-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320535 cd15413 7tmA_OR8K-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320535 cd15413 7tmA_OR8K-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320536 cd15414 7tmA_OR5G-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320536 cd15414 7tmA_OR5G-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320536 cd15414 7tmA_OR5G-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320536 cd15414 7tmA_OR5G-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320536 cd15414 7tmA_OR5G-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320536 cd15414 7tmA_OR5G-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320536 cd15414 7tmA_OR5G-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320537 cd15415 7tmA_OR5J-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320537 cd15415 7tmA_OR5J-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320537 cd15415 7tmA_OR5J-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320537 cd15415 7tmA_OR5J-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320537 cd15415 7tmA_OR5J-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320537 cd15415 7tmA_OR5J-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320537 cd15415 7tmA_OR5J-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320538 cd15416 7tmA_OR5P-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320538 cd15416 7tmA_OR5P-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320538 cd15416 7tmA_OR5P-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320538 cd15416 7tmA_OR5P-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320538 cd15416 7tmA_OR5P-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320538 cd15416 7tmA_OR5P-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320538 cd15416 7tmA_OR5P-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320539 cd15417 7tmA_OR5A1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320539 cd15417 7tmA_OR5A1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320539 cd15417 7tmA_OR5A1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320539 cd15417 7tmA_OR5A1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320539 cd15417 7tmA_OR5A1-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320539 cd15417 7tmA_OR5A1-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320539 cd15417 7tmA_OR5A1-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320540 cd15418 7tmA_OR9G-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320540 cd15418 7tmA_OR9G-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320540 cd15418 7tmA_OR9G-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320540 cd15418 7tmA_OR9G-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320540 cd15418 7tmA_OR9G-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320540 cd15418 7tmA_OR9G-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320540 cd15418 7tmA_OR9G-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320541 cd15419 7tmA_OR9K2-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320541 cd15419 7tmA_OR9K2-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320541 cd15419 7tmA_OR9K2-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320541 cd15419 7tmA_OR9K2-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320541 cd15419 7tmA_OR9K2-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320541 cd15419 7tmA_OR9K2-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320541 cd15419 7tmA_OR9K2-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320609 cd15943 7tmA_OR5AP2-like 1 TM helix 1 0 0 0 1 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320609 cd15943 7tmA_OR5AP2-like 2 TM helix 2 0 0 0 0 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,68,69,70,71 7 -320609 cd15943 7tmA_OR5AP2-like 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,101,102,103,104,105,106,107,108,109 7 -320609 cd15943 7tmA_OR5AP2-like 4 TM helix 4 0 0 0 0 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320609 cd15943 7tmA_OR5AP2-like 5 TM helix 5 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320609 cd15943 7tmA_OR5AP2-like 6 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320609 cd15943 7tmA_OR5AP2-like 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320610 cd15944 7tmA_OR5AR1-like 1 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320610 cd15944 7tmA_OR5AR1-like 2 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,68,69,70 7 -320610 cd15944 7tmA_OR5AR1-like 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -320610 cd15944 7tmA_OR5AR1-like 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320610 cd15944 7tmA_OR5AR1-like 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320610 cd15944 7tmA_OR5AR1-like 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320610 cd15944 7tmA_OR5AR1-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320611 cd15945 7tmA_OR5C1-like 1 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320611 cd15945 7tmA_OR5C1-like 2 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,68,69,70 7 -320611 cd15945 7tmA_OR5C1-like 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -320611 cd15945 7tmA_OR5C1-like 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320611 cd15945 7tmA_OR5C1-like 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320611 cd15945 7tmA_OR5C1-like 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320611 cd15945 7tmA_OR5C1-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320359 cd15231 7tmA_OR5V1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320359 cd15231 7tmA_OR5V1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320359 cd15231 7tmA_OR5V1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320359 cd15231 7tmA_OR5V1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320359 cd15231 7tmA_OR5V1-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320359 cd15231 7tmA_OR5V1-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320359 cd15231 7tmA_OR5V1-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320360 cd15232 7tmA_OR13-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320360 cd15232 7tmA_OR13-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320360 cd15232 7tmA_OR13-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320360 cd15232 7tmA_OR13-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320360 cd15232 7tmA_OR13-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320360 cd15232 7tmA_OR13-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320360 cd15232 7tmA_OR13-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320361 cd15233 7tmA_OR3A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320361 cd15233 7tmA_OR3A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320361 cd15233 7tmA_OR3A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320361 cd15233 7tmA_OR3A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320361 cd15233 7tmA_OR3A-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320361 cd15233 7tmA_OR3A-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320361 cd15233 7tmA_OR3A-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320365 cd15237 7tmA_OR2-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320365 cd15237 7tmA_OR2-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320365 cd15237 7tmA_OR2-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320365 cd15237 7tmA_OR2-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320365 cd15237 7tmA_OR2-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320365 cd15237 7tmA_OR2-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320365 cd15237 7tmA_OR2-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320542 cd15420 7tmA_OR2A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320542 cd15420 7tmA_OR2A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320542 cd15420 7tmA_OR2A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320542 cd15420 7tmA_OR2A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320542 cd15420 7tmA_OR2A-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320542 cd15420 7tmA_OR2A-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320542 cd15420 7tmA_OR2A-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320543 cd15421 7tmA_OR2T-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320543 cd15421 7tmA_OR2T-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320543 cd15421 7tmA_OR2T-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320543 cd15421 7tmA_OR2T-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320543 cd15421 7tmA_OR2T-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320543 cd15421 7tmA_OR2T-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320543 cd15421 7tmA_OR2T-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320544 cd15424 7tmA_OR2_unk 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320544 cd15424 7tmA_OR2_unk 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320544 cd15424 7tmA_OR2_unk 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320544 cd15424 7tmA_OR2_unk 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320544 cd15424 7tmA_OR2_unk 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320544 cd15424 7tmA_OR2_unk 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320544 cd15424 7tmA_OR2_unk 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320545 cd15428 7tmA_OR2D-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320545 cd15428 7tmA_OR2D-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320545 cd15428 7tmA_OR2D-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320545 cd15428 7tmA_OR2D-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320545 cd15428 7tmA_OR2D-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320545 cd15428 7tmA_OR2D-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320545 cd15428 7tmA_OR2D-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320546 cd15429 7tmA_OR2F-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320546 cd15429 7tmA_OR2F-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320546 cd15429 7tmA_OR2F-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320546 cd15429 7tmA_OR2F-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320546 cd15429 7tmA_OR2F-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320546 cd15429 7tmA_OR2F-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320546 cd15429 7tmA_OR2F-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320547 cd15430 7tmA_OR13-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320547 cd15430 7tmA_OR13-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320547 cd15430 7tmA_OR13-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320547 cd15430 7tmA_OR13-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320547 cd15430 7tmA_OR13-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320547 cd15430 7tmA_OR13-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320547 cd15430 7tmA_OR13-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320548 cd15431 7tmA_OR13H-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320548 cd15431 7tmA_OR13H-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320548 cd15431 7tmA_OR13H-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320548 cd15431 7tmA_OR13H-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320548 cd15431 7tmA_OR13H-like 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320548 cd15431 7tmA_OR13H-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320548 cd15431 7tmA_OR13H-like 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320612 cd15946 7tmA_OR1330-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320612 cd15946 7tmA_OR1330-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320612 cd15946 7tmA_OR1330-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320612 cd15946 7tmA_OR1330-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320612 cd15946 7tmA_OR1330-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320612 cd15946 7tmA_OR1330-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320612 cd15946 7tmA_OR1330-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320613 cd15947 7tmA_OR2B-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320613 cd15947 7tmA_OR2B-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320613 cd15947 7tmA_OR2B-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320613 cd15947 7tmA_OR2B-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320613 cd15947 7tmA_OR2B-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320613 cd15947 7tmA_OR2B-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320613 cd15947 7tmA_OR2B-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320549 cd15432 7tmA_OR2B2-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320549 cd15432 7tmA_OR2B2-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320549 cd15432 7tmA_OR2B2-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320549 cd15432 7tmA_OR2B2-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320549 cd15432 7tmA_OR2B2-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320549 cd15432 7tmA_OR2B2-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320549 cd15432 7tmA_OR2B2-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320550 cd15433 7tmA_OR2Y-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320550 cd15433 7tmA_OR2Y-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320550 cd15433 7tmA_OR2Y-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320550 cd15433 7tmA_OR2Y-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320550 cd15433 7tmA_OR2Y-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320550 cd15433 7tmA_OR2Y-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320550 cd15433 7tmA_OR2Y-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320551 cd15434 7tmA_OR2W-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320551 cd15434 7tmA_OR2W-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320551 cd15434 7tmA_OR2W-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320551 cd15434 7tmA_OR2W-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320551 cd15434 7tmA_OR2W-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320551 cd15434 7tmA_OR2W-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320551 cd15434 7tmA_OR2W-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320577 cd15911 7tmA_OR11A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320577 cd15911 7tmA_OR11A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320577 cd15911 7tmA_OR11A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320577 cd15911 7tmA_OR11A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320577 cd15911 7tmA_OR11A-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320577 cd15911 7tmA_OR11A-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320577 cd15911 7tmA_OR11A-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320578 cd15912 7tmA_OR6C-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320578 cd15912 7tmA_OR6C-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320578 cd15912 7tmA_OR6C-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320578 cd15912 7tmA_OR6C-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320578 cd15912 7tmA_OR6C-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320578 cd15912 7tmA_OR6C-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320578 cd15912 7tmA_OR6C-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320579 cd15913 7tmA_OR11G-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320579 cd15913 7tmA_OR11G-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320579 cd15913 7tmA_OR11G-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320579 cd15913 7tmA_OR11G-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320579 cd15913 7tmA_OR11G-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320579 cd15913 7tmA_OR11G-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320579 cd15913 7tmA_OR11G-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320580 cd15914 7tmA_OR6N-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320580 cd15914 7tmA_OR6N-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320580 cd15914 7tmA_OR6N-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320580 cd15914 7tmA_OR6N-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320580 cd15914 7tmA_OR6N-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320580 cd15914 7tmA_OR6N-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320580 cd15914 7tmA_OR6N-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320581 cd15915 7tmA_OR12D-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320581 cd15915 7tmA_OR12D-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320581 cd15915 7tmA_OR12D-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320581 cd15915 7tmA_OR12D-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320581 cd15915 7tmA_OR12D-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320581 cd15915 7tmA_OR12D-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320581 cd15915 7tmA_OR12D-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320582 cd15916 7tmA_OR10G-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320582 cd15916 7tmA_OR10G-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320582 cd15916 7tmA_OR10G-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320582 cd15916 7tmA_OR10G-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320582 cd15916 7tmA_OR10G-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320582 cd15916 7tmA_OR10G-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320582 cd15916 7tmA_OR10G-like 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320607 cd15941 7tmA_OR10S1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320607 cd15941 7tmA_OR10S1-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320607 cd15941 7tmA_OR10S1-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320607 cd15941 7tmA_OR10S1-like 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320607 cd15941 7tmA_OR10S1-like 5 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320607 cd15941 7tmA_OR10S1-like 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320607 cd15941 7tmA_OR10S1-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320608 cd15942 7tmA_OR10G6-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320608 cd15942 7tmA_OR10G6-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320608 cd15942 7tmA_OR10G6-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320608 cd15942 7tmA_OR10G6-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320608 cd15942 7tmA_OR10G6-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320608 cd15942 7tmA_OR10G6-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320608 cd15942 7tmA_OR10G6-like 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -341351 cd15917 7tmA_OR51_52-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341351 cd15917 7tmA_OR51_52-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341351 cd15917 7tmA_OR51_52-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341351 cd15917 7tmA_OR51_52-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341351 cd15917 7tmA_OR51_52-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -341351 cd15917 7tmA_OR51_52-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -341351 cd15917 7tmA_OR51_52-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320349 cd15221 7tmA_OR52B-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320349 cd15221 7tmA_OR52B-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320349 cd15221 7tmA_OR52B-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320349 cd15221 7tmA_OR52B-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320349 cd15221 7tmA_OR52B-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320349 cd15221 7tmA_OR52B-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320349 cd15221 7tmA_OR52B-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320350 cd15222 7tmA_OR51-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320350 cd15222 7tmA_OR51-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320350 cd15222 7tmA_OR51-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320350 cd15222 7tmA_OR51-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320350 cd15222 7tmA_OR51-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320350 cd15222 7tmA_OR51-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320350 cd15222 7tmA_OR51-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320351 cd15223 7tmA_OR56-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320351 cd15223 7tmA_OR56-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320351 cd15223 7tmA_OR56-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320351 cd15223 7tmA_OR56-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320351 cd15223 7tmA_OR56-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320351 cd15223 7tmA_OR56-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320351 cd15223 7tmA_OR56-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320614 cd15948 7tmA_OR52K-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320614 cd15948 7tmA_OR52K-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320614 cd15948 7tmA_OR52K-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320614 cd15948 7tmA_OR52K-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320614 cd15948 7tmA_OR52K-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320614 cd15948 7tmA_OR52K-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320614 cd15948 7tmA_OR52K-like 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320615 cd15949 7tmA_OR52M-like 1 TM helix 1 0 0 0 1 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -320615 cd15949 7tmA_OR52M-like 2 TM helix 2 0 0 0 0 51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,70,71,72,73 7 -320615 cd15949 7tmA_OR52M-like 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,109,110,111 7 -320615 cd15949 7tmA_OR52M-like 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320615 cd15949 7tmA_OR52M-like 5 TM helix 5 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320615 cd15949 7tmA_OR52M-like 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320615 cd15949 7tmA_OR52M-like 7 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320616 cd15950 7tmA_OR52I-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320616 cd15950 7tmA_OR52I-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320616 cd15950 7tmA_OR52I-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320616 cd15950 7tmA_OR52I-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320616 cd15950 7tmA_OR52I-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320616 cd15950 7tmA_OR52I-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320616 cd15950 7tmA_OR52I-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320617 cd15951 7tmA_OR52R_52L-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320617 cd15951 7tmA_OR52R_52L-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320617 cd15951 7tmA_OR52R_52L-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320617 cd15951 7tmA_OR52R_52L-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320617 cd15951 7tmA_OR52R_52L-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320617 cd15951 7tmA_OR52R_52L-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320617 cd15951 7tmA_OR52R_52L-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320618 cd15952 7tmA_OR52E-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320618 cd15952 7tmA_OR52E-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320618 cd15952 7tmA_OR52E-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320618 cd15952 7tmA_OR52E-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320618 cd15952 7tmA_OR52E-like 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320618 cd15952 7tmA_OR52E-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320618 cd15952 7tmA_OR52E-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341354 cd15953 7tmA_OR52P-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341354 cd15953 7tmA_OR52P-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341354 cd15953 7tmA_OR52P-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341354 cd15953 7tmA_OR52P-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341354 cd15953 7tmA_OR52P-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -341354 cd15953 7tmA_OR52P-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -341354 cd15953 7tmA_OR52P-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320620 cd15954 7tmA_OR52N-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320620 cd15954 7tmA_OR52N-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320620 cd15954 7tmA_OR52N-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320620 cd15954 7tmA_OR52N-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320620 cd15954 7tmA_OR52N-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320620 cd15954 7tmA_OR52N-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320620 cd15954 7tmA_OR52N-like 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320621 cd15955 7tmA_OR52A-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320621 cd15955 7tmA_OR52A-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320621 cd15955 7tmA_OR52A-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320621 cd15955 7tmA_OR52A-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320621 cd15955 7tmA_OR52A-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320621 cd15955 7tmA_OR52A-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320621 cd15955 7tmA_OR52A-like 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320622 cd15956 7tmA_OR52W-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320622 cd15956 7tmA_OR52W-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320622 cd15956 7tmA_OR52W-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320622 cd15956 7tmA_OR52W-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320622 cd15956 7tmA_OR52W-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320622 cd15956 7tmA_OR52W-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320622 cd15956 7tmA_OR52W-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320584 cd15918 7tmA_OR1_7-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320584 cd15918 7tmA_OR1_7-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320584 cd15918 7tmA_OR1_7-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320584 cd15918 7tmA_OR1_7-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320584 cd15918 7tmA_OR1_7-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320584 cd15918 7tmA_OR1_7-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320584 cd15918 7tmA_OR1_7-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320362 cd15234 7tmA_OR7-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320362 cd15234 7tmA_OR7-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320362 cd15234 7tmA_OR7-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320362 cd15234 7tmA_OR7-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320362 cd15234 7tmA_OR7-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320362 cd15234 7tmA_OR7-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320362 cd15234 7tmA_OR7-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320363 cd15235 7tmA_OR1A-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320363 cd15235 7tmA_OR1A-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320363 cd15235 7tmA_OR1A-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320363 cd15235 7tmA_OR1A-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320363 cd15235 7tmA_OR1A-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320363 cd15235 7tmA_OR1A-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320363 cd15235 7tmA_OR1A-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320364 cd15236 7tmA_OR1E-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320364 cd15236 7tmA_OR1E-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320364 cd15236 7tmA_OR1E-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320364 cd15236 7tmA_OR1E-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320364 cd15236 7tmA_OR1E-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320364 cd15236 7tmA_OR1E-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320364 cd15236 7tmA_OR1E-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320098 cd14967 7tmA_amine_R-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320098 cd14967 7tmA_amine_R-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320098 cd14967 7tmA_amine_R-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320098 cd14967 7tmA_amine_R-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320098 cd14967 7tmA_amine_R-like 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320098 cd14967 7tmA_amine_R-like 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320098 cd14967 7tmA_amine_R-like 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320176 cd15048 7tmA_Histamine_H3R_H4R 7 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320422 cd15295 7tmA_Histamine_H4R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320422 cd15295 7tmA_Histamine_H4R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320422 cd15295 7tmA_Histamine_H4R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320422 cd15295 7tmA_Histamine_H4R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320422 cd15295 7tmA_Histamine_H4R 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320422 cd15295 7tmA_Histamine_H4R 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320422 cd15295 7tmA_Histamine_H4R 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320423 cd15296 7tmA_Histamine_H3R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320423 cd15296 7tmA_Histamine_H3R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320423 cd15296 7tmA_Histamine_H3R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320423 cd15296 7tmA_Histamine_H3R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320423 cd15296 7tmA_Histamine_H3R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320423 cd15296 7tmA_Histamine_H3R 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320423 cd15296 7tmA_Histamine_H3R 7 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -341322 cd15049 7tmA_mAChR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341322 cd15049 7tmA_mAChR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341322 cd15049 7tmA_mAChR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341322 cd15049 7tmA_mAChR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341322 cd15049 7tmA_mAChR 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -341322 cd15049 7tmA_mAChR 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -341322 cd15049 7tmA_mAChR 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320424 cd15297 7tmA_mAChR_M2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320424 cd15297 7tmA_mAChR_M2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320424 cd15297 7tmA_mAChR_M2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320424 cd15297 7tmA_mAChR_M2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320424 cd15297 7tmA_mAChR_M2 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320424 cd15297 7tmA_mAChR_M2 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320424 cd15297 7tmA_mAChR_M2 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -341344 cd15298 7tmA_mAChR_M4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341344 cd15298 7tmA_mAChR_M4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341344 cd15298 7tmA_mAChR_M4 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341344 cd15298 7tmA_mAChR_M4 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341344 cd15298 7tmA_mAChR_M4 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -341344 cd15298 7tmA_mAChR_M4 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -341344 cd15298 7tmA_mAChR_M4 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320426 cd15299 7tmA_mAChR_M3 1 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320426 cd15299 7tmA_mAChR_M3 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60 7 -320426 cd15299 7tmA_mAChR_M3 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320426 cd15299 7tmA_mAChR_M3 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320426 cd15299 7tmA_mAChR_M3 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320426 cd15299 7tmA_mAChR_M3 6 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320426 cd15299 7tmA_mAChR_M3 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320427 cd15300 7tmA_mAChR_M5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320427 cd15300 7tmA_mAChR_M5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320427 cd15300 7tmA_mAChR_M5 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320427 cd15300 7tmA_mAChR_M5 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320427 cd15300 7tmA_mAChR_M5 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320427 cd15300 7tmA_mAChR_M5 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320427 cd15300 7tmA_mAChR_M5 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320428 cd15301 7tmA_mAChR_DM1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320428 cd15301 7tmA_mAChR_DM1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320428 cd15301 7tmA_mAChR_DM1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320428 cd15301 7tmA_mAChR_DM1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320428 cd15301 7tmA_mAChR_DM1-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320428 cd15301 7tmA_mAChR_DM1-like 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320428 cd15301 7tmA_mAChR_DM1-like 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320429 cd15302 7tmA_mAChR_GAR-2-like 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -341356 cd17790 7tmA_mAChR_M1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341356 cd17790 7tmA_mAChR_M1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341356 cd17790 7tmA_mAChR_M1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341356 cd17790 7tmA_mAChR_M1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341356 cd17790 7tmA_mAChR_M1 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -341356 cd17790 7tmA_mAChR_M1 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -341356 cd17790 7tmA_mAChR_M1 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320178 cd15050 7tmA_Histamine_H1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320178 cd15050 7tmA_Histamine_H1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320178 cd15050 7tmA_Histamine_H1R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320178 cd15050 7tmA_Histamine_H1R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320178 cd15050 7tmA_Histamine_H1R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320178 cd15050 7tmA_Histamine_H1R 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320178 cd15050 7tmA_Histamine_H1R 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320179 cd15051 7tmA_Histamine_H2R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320179 cd15051 7tmA_Histamine_H2R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320179 cd15051 7tmA_Histamine_H2R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320179 cd15051 7tmA_Histamine_H2R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320179 cd15051 7tmA_Histamine_H2R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320179 cd15051 7tmA_Histamine_H2R 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320179 cd15051 7tmA_Histamine_H2R 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320180 cd15052 7tmA_5-HT2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320180 cd15052 7tmA_5-HT2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320180 cd15052 7tmA_5-HT2 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320180 cd15052 7tmA_5-HT2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320180 cd15052 7tmA_5-HT2 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320180 cd15052 7tmA_5-HT2 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320180 cd15052 7tmA_5-HT2 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -341345 cd15304 7tmA_5-HT2A 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341345 cd15304 7tmA_5-HT2A 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341345 cd15304 7tmA_5-HT2A 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -341345 cd15304 7tmA_5-HT2A 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341345 cd15304 7tmA_5-HT2A 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341345 cd15304 7tmA_5-HT2A 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -341345 cd15304 7tmA_5-HT2A 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -341346 cd15305 7tmA_5-HT2C 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341346 cd15305 7tmA_5-HT2C 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341346 cd15305 7tmA_5-HT2C 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -341346 cd15305 7tmA_5-HT2C 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341346 cd15305 7tmA_5-HT2C 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341346 cd15305 7tmA_5-HT2C 6 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -341346 cd15305 7tmA_5-HT2C 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -341347 cd15306 7tmA_5-HT2B 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341347 cd15306 7tmA_5-HT2B 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341347 cd15306 7tmA_5-HT2B 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -341347 cd15306 7tmA_5-HT2B 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -341347 cd15306 7tmA_5-HT2B 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -341347 cd15306 7tmA_5-HT2B 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -341347 cd15306 7tmA_5-HT2B 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320433 cd15307 7tmA_5-HT2_insect-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320433 cd15307 7tmA_5-HT2_insect-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320433 cd15307 7tmA_5-HT2_insect-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320433 cd15307 7tmA_5-HT2_insect-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320433 cd15307 7tmA_5-HT2_insect-like 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320433 cd15307 7tmA_5-HT2_insect-like 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320433 cd15307 7tmA_5-HT2_insect-like 7 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320181 cd15053 7tmA_D2-like_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320181 cd15053 7tmA_D2-like_dopamine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320181 cd15053 7tmA_D2-like_dopamine_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320181 cd15053 7tmA_D2-like_dopamine_R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320181 cd15053 7tmA_D2-like_dopamine_R 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320181 cd15053 7tmA_D2-like_dopamine_R 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320181 cd15053 7tmA_D2-like_dopamine_R 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320434 cd15308 7tmA_D4_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320434 cd15308 7tmA_D4_dopamine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320434 cd15308 7tmA_D4_dopamine_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320434 cd15308 7tmA_D4_dopamine_R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320434 cd15308 7tmA_D4_dopamine_R 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320434 cd15308 7tmA_D4_dopamine_R 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320434 cd15308 7tmA_D4_dopamine_R 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320435 cd15309 7tmA_D2_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320435 cd15309 7tmA_D2_dopamine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320435 cd15309 7tmA_D2_dopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320435 cd15309 7tmA_D2_dopamine_R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320435 cd15309 7tmA_D2_dopamine_R 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320435 cd15309 7tmA_D2_dopamine_R 6 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320435 cd15309 7tmA_D2_dopamine_R 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320436 cd15310 7tmA_D3_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320436 cd15310 7tmA_D3_dopamine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320436 cd15310 7tmA_D3_dopamine_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320436 cd15310 7tmA_D3_dopamine_R 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320436 cd15310 7tmA_D3_dopamine_R 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320436 cd15310 7tmA_D3_dopamine_R 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320436 cd15310 7tmA_D3_dopamine_R 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320182 cd15054 7tmA_5-HT6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320182 cd15054 7tmA_5-HT6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320182 cd15054 7tmA_5-HT6 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320182 cd15054 7tmA_5-HT6 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320182 cd15054 7tmA_5-HT6 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320182 cd15054 7tmA_5-HT6 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320182 cd15054 7tmA_5-HT6 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320183 cd15055 7tmA_TAARs 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320183 cd15055 7tmA_TAARs 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320183 cd15055 7tmA_TAARs 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320183 cd15055 7tmA_TAARs 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320183 cd15055 7tmA_TAARs 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320183 cd15055 7tmA_TAARs 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320183 cd15055 7tmA_TAARs 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320437 cd15312 7tmA_TAAR2_3_4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320437 cd15312 7tmA_TAAR2_3_4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320437 cd15312 7tmA_TAAR2_3_4 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320437 cd15312 7tmA_TAAR2_3_4 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320437 cd15312 7tmA_TAAR2_3_4 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320437 cd15312 7tmA_TAAR2_3_4 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320437 cd15312 7tmA_TAAR2_3_4 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320438 cd15314 7tmA_TAAR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320438 cd15314 7tmA_TAAR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320438 cd15314 7tmA_TAAR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320438 cd15314 7tmA_TAAR1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320438 cd15314 7tmA_TAAR1 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320438 cd15314 7tmA_TAAR1 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320438 cd15314 7tmA_TAAR1 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320440 cd15317 7tmA_TAAR5-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320440 cd15317 7tmA_TAAR5-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320440 cd15317 7tmA_TAAR5-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320440 cd15317 7tmA_TAAR5-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320440 cd15317 7tmA_TAAR5-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320440 cd15317 7tmA_TAAR5-like 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320440 cd15317 7tmA_TAAR5-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320439 cd15316 7tmA_TAAR6_8_9 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320439 cd15316 7tmA_TAAR6_8_9 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320439 cd15316 7tmA_TAAR6_8_9 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320439 cd15316 7tmA_TAAR6_8_9 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320439 cd15316 7tmA_TAAR6_8_9 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320439 cd15316 7tmA_TAAR6_8_9 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320439 cd15316 7tmA_TAAR6_8_9 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320441 cd15318 7tmA_TAAR5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320441 cd15318 7tmA_TAAR5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320441 cd15318 7tmA_TAAR5 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320441 cd15318 7tmA_TAAR5 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320441 cd15318 7tmA_TAAR5 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320441 cd15318 7tmA_TAAR5 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320441 cd15318 7tmA_TAAR5 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320184 cd15056 7tmA_5-HT4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320184 cd15056 7tmA_5-HT4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320184 cd15056 7tmA_5-HT4 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320184 cd15056 7tmA_5-HT4 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320184 cd15056 7tmA_5-HT4 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320184 cd15056 7tmA_5-HT4 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320184 cd15056 7tmA_5-HT4 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320185 cd15057 7tmA_D1-like_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320185 cd15057 7tmA_D1-like_dopamine_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320185 cd15057 7tmA_D1-like_dopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320185 cd15057 7tmA_D1-like_dopamine_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320185 cd15057 7tmA_D1-like_dopamine_R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320185 cd15057 7tmA_D1-like_dopamine_R 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320185 cd15057 7tmA_D1-like_dopamine_R 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320442 cd15319 7tmA_D1B_dopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320442 cd15319 7tmA_D1B_dopamine_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320442 cd15319 7tmA_D1B_dopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320442 cd15319 7tmA_D1B_dopamine_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320442 cd15319 7tmA_D1B_dopamine_R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320442 cd15319 7tmA_D1B_dopamine_R 6 TM helix 6 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320442 cd15319 7tmA_D1B_dopamine_R 7 TM helix 7 0 0 0 0 285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310 7 -320443 cd15320 7tmA_D1A_dopamine_R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320443 cd15320 7tmA_D1A_dopamine_R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,56,57,58,59 7 -320443 cd15320 7tmA_D1A_dopamine_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320443 cd15320 7tmA_D1A_dopamine_R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320443 cd15320 7tmA_D1A_dopamine_R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320443 cd15320 7tmA_D1A_dopamine_R 6 TM helix 6 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320443 cd15320 7tmA_D1A_dopamine_R 7 TM helix 7 0 0 0 0 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312 7 -320186 cd15058 7tmA_Beta_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320186 cd15058 7tmA_Beta_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320186 cd15058 7tmA_Beta_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320186 cd15058 7tmA_Beta_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320186 cd15058 7tmA_Beta_AR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320186 cd15058 7tmA_Beta_AR 6 TM helix 6 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320186 cd15058 7tmA_Beta_AR 7 TM helix 7 0 0 0 0 273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -341355 cd15957 7tmA_Beta2_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341355 cd15957 7tmA_Beta2_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341355 cd15957 7tmA_Beta2_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341355 cd15957 7tmA_Beta2_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341355 cd15957 7tmA_Beta2_AR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341355 cd15957 7tmA_Beta2_AR 6 TM helix 6 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -341355 cd15957 7tmA_Beta2_AR 7 TM helix 7 0 0 0 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -320624 cd15958 7tmA_Beta1_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320624 cd15958 7tmA_Beta1_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320624 cd15958 7tmA_Beta1_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320624 cd15958 7tmA_Beta1_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320624 cd15958 7tmA_Beta1_AR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320624 cd15958 7tmA_Beta1_AR 6 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320624 cd15958 7tmA_Beta1_AR 7 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320625 cd15959 7tmA_Beta3_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320625 cd15959 7tmA_Beta3_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320625 cd15959 7tmA_Beta3_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320625 cd15959 7tmA_Beta3_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320625 cd15959 7tmA_Beta3_AR 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320625 cd15959 7tmA_Beta3_AR 6 TM helix 6 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320625 cd15959 7tmA_Beta3_AR 7 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320187 cd15059 7tmA_alpha2_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320187 cd15059 7tmA_alpha2_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320187 cd15059 7tmA_alpha2_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320187 cd15059 7tmA_alpha2_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320187 cd15059 7tmA_alpha2_AR 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320187 cd15059 7tmA_alpha2_AR 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320187 cd15059 7tmA_alpha2_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320444 cd15321 7tmA_alpha2B_AR 1 TM helix 1 0 0 0 1 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32 7 -320444 cd15321 7tmA_alpha2B_AR 2 TM helix 2 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,60,61,62,63 7 -320444 cd15321 7tmA_alpha2B_AR 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320444 cd15321 7tmA_alpha2B_AR 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320444 cd15321 7tmA_alpha2B_AR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320444 cd15321 7tmA_alpha2B_AR 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320444 cd15321 7tmA_alpha2B_AR 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320445 cd15322 7tmA_alpha2A_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320445 cd15322 7tmA_alpha2A_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320445 cd15322 7tmA_alpha2A_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320445 cd15322 7tmA_alpha2A_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320445 cd15322 7tmA_alpha2A_AR 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320445 cd15322 7tmA_alpha2A_AR 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320445 cd15322 7tmA_alpha2A_AR 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320446 cd15323 7tmA_alpha2C_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320446 cd15323 7tmA_alpha2C_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320446 cd15323 7tmA_alpha2C_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320446 cd15323 7tmA_alpha2C_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320446 cd15323 7tmA_alpha2C_AR 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320446 cd15323 7tmA_alpha2C_AR 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320446 cd15323 7tmA_alpha2C_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320447 cd15324 7tmA_alpha-2D_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320447 cd15324 7tmA_alpha-2D_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320447 cd15324 7tmA_alpha-2D_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320447 cd15324 7tmA_alpha-2D_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320447 cd15324 7tmA_alpha-2D_AR 5 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320447 cd15324 7tmA_alpha-2D_AR 6 TM helix 6 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320447 cd15324 7tmA_alpha-2D_AR 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320188 cd15060 7tmA_tyramine_octopamine_R-like 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320189 cd15061 7tmA_tyramine_R-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320189 cd15061 7tmA_tyramine_R-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320189 cd15061 7tmA_tyramine_R-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320189 cd15061 7tmA_tyramine_R-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320189 cd15061 7tmA_tyramine_R-like 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320189 cd15061 7tmA_tyramine_R-like 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320189 cd15061 7tmA_tyramine_R-like 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320190 cd15062 7tmA_alpha1_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320190 cd15062 7tmA_alpha1_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320190 cd15062 7tmA_alpha1_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320190 cd15062 7tmA_alpha1_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320190 cd15062 7tmA_alpha1_AR 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320190 cd15062 7tmA_alpha1_AR 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320190 cd15062 7tmA_alpha1_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320448 cd15325 7tmA_alpha1A_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320448 cd15325 7tmA_alpha1A_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320448 cd15325 7tmA_alpha1A_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320448 cd15325 7tmA_alpha1A_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320448 cd15325 7tmA_alpha1A_AR 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320448 cd15325 7tmA_alpha1A_AR 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320448 cd15325 7tmA_alpha1A_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320449 cd15326 7tmA_alpha1B_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320449 cd15326 7tmA_alpha1B_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320449 cd15326 7tmA_alpha1B_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320449 cd15326 7tmA_alpha1B_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320449 cd15326 7tmA_alpha1B_AR 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320449 cd15326 7tmA_alpha1B_AR 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320449 cd15326 7tmA_alpha1B_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320450 cd15327 7tmA_alpha1D_AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320450 cd15327 7tmA_alpha1D_AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320450 cd15327 7tmA_alpha1D_AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320450 cd15327 7tmA_alpha1D_AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320450 cd15327 7tmA_alpha1D_AR 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320450 cd15327 7tmA_alpha1D_AR 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320450 cd15327 7tmA_alpha1D_AR 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320191 cd15063 7tmA_Octopamine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320191 cd15063 7tmA_Octopamine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320191 cd15063 7tmA_Octopamine_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320191 cd15063 7tmA_Octopamine_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320191 cd15063 7tmA_Octopamine_R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320191 cd15063 7tmA_Octopamine_R 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320191 cd15063 7tmA_Octopamine_R 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320192 cd15064 7tmA_5-HT1_5_7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320192 cd15064 7tmA_5-HT1_5_7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320192 cd15064 7tmA_5-HT1_5_7 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320192 cd15064 7tmA_5-HT1_5_7 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320192 cd15064 7tmA_5-HT1_5_7 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320192 cd15064 7tmA_5-HT1_5_7 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320192 cd15064 7tmA_5-HT1_5_7 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320451 cd15328 7tmA_5-HT5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320451 cd15328 7tmA_5-HT5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320451 cd15328 7tmA_5-HT5 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320451 cd15328 7tmA_5-HT5 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320451 cd15328 7tmA_5-HT5 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320451 cd15328 7tmA_5-HT5 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320451 cd15328 7tmA_5-HT5 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320452 cd15329 7tmA_5-HT7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320452 cd15329 7tmA_5-HT7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320452 cd15329 7tmA_5-HT7 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320452 cd15329 7tmA_5-HT7 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320452 cd15329 7tmA_5-HT7 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320452 cd15329 7tmA_5-HT7 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320452 cd15329 7tmA_5-HT7 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320453 cd15330 7tmA_5-HT1A_vertebrates 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320454 cd15331 7tmA_5-HT1A_invertebrates 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320455 cd15333 7tmA_5-HT1B_1D 1 TM helix 1 0 0 0 1 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320455 cd15333 7tmA_5-HT1B_1D 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,58,59,60,61 7 -320455 cd15333 7tmA_5-HT1B_1D 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320455 cd15333 7tmA_5-HT1B_1D 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320455 cd15333 7tmA_5-HT1B_1D 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320455 cd15333 7tmA_5-HT1B_1D 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320455 cd15333 7tmA_5-HT1B_1D 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320456 cd15334 7tmA_5-HT1F 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320456 cd15334 7tmA_5-HT1F 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320456 cd15334 7tmA_5-HT1F 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320456 cd15334 7tmA_5-HT1F 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320456 cd15334 7tmA_5-HT1F 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320456 cd15334 7tmA_5-HT1F 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320456 cd15334 7tmA_5-HT1F 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320457 cd15335 7tmA_5-HT1E 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320457 cd15335 7tmA_5-HT1E 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320457 cd15335 7tmA_5-HT1E 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320457 cd15335 7tmA_5-HT1E 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320457 cd15335 7tmA_5-HT1E 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320457 cd15335 7tmA_5-HT1E 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320457 cd15335 7tmA_5-HT1E 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320193 cd15065 7tmA_Ap5-HTB1-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320193 cd15065 7tmA_Ap5-HTB1-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320193 cd15065 7tmA_Ap5-HTB1-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320193 cd15065 7tmA_Ap5-HTB1-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320193 cd15065 7tmA_Ap5-HTB1-like 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320193 cd15065 7tmA_Ap5-HTB1-like 6 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320193 cd15065 7tmA_Ap5-HTB1-like 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320194 cd15066 7tmA_DmOct-betaAR-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320194 cd15066 7tmA_DmOct-betaAR-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320194 cd15066 7tmA_DmOct-betaAR-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320194 cd15066 7tmA_DmOct-betaAR-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320194 cd15066 7tmA_DmOct-betaAR-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320194 cd15066 7tmA_DmOct-betaAR-like 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320194 cd15066 7tmA_DmOct-betaAR-like 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320195 cd15067 7tmA_Dop1R2-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320195 cd15067 7tmA_Dop1R2-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320195 cd15067 7tmA_Dop1R2-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320195 cd15067 7tmA_Dop1R2-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320195 cd15067 7tmA_Dop1R2-like 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320195 cd15067 7tmA_Dop1R2-like 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320195 cd15067 7tmA_Dop1R2-like 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -341316 cd14968 7tmA_Adenosine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341316 cd14968 7tmA_Adenosine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341316 cd14968 7tmA_Adenosine_R 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341316 cd14968 7tmA_Adenosine_R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341316 cd14968 7tmA_Adenosine_R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341316 cd14968 7tmA_Adenosine_R 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -341316 cd14968 7tmA_Adenosine_R 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320196 cd15068 7tmA_Adenosine_R_A2A 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320196 cd15068 7tmA_Adenosine_R_A2A 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320196 cd15068 7tmA_Adenosine_R_A2A 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320196 cd15068 7tmA_Adenosine_R_A2A 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320196 cd15068 7tmA_Adenosine_R_A2A 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320196 cd15068 7tmA_Adenosine_R_A2A 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320196 cd15068 7tmA_Adenosine_R_A2A 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320197 cd15069 7tmA_Adenosine_R_A2B 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320197 cd15069 7tmA_Adenosine_R_A2B 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320197 cd15069 7tmA_Adenosine_R_A2B 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320197 cd15069 7tmA_Adenosine_R_A2B 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320197 cd15069 7tmA_Adenosine_R_A2B 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320197 cd15069 7tmA_Adenosine_R_A2B 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320197 cd15069 7tmA_Adenosine_R_A2B 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320198 cd15070 7tmA_Adenosine_R_A3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320198 cd15070 7tmA_Adenosine_R_A3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320198 cd15070 7tmA_Adenosine_R_A3 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320198 cd15070 7tmA_Adenosine_R_A3 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320198 cd15070 7tmA_Adenosine_R_A3 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320198 cd15070 7tmA_Adenosine_R_A3 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320198 cd15070 7tmA_Adenosine_R_A3 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341323 cd15071 7tmA_Adenosine_R_A1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341323 cd15071 7tmA_Adenosine_R_A1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341323 cd15071 7tmA_Adenosine_R_A1 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341323 cd15071 7tmA_Adenosine_R_A1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341323 cd15071 7tmA_Adenosine_R_A1 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -341323 cd15071 7tmA_Adenosine_R_A1 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -341323 cd15071 7tmA_Adenosine_R_A1 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320100 cd14969 7tmA_Opsins_type2_animals 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320100 cd14969 7tmA_Opsins_type2_animals 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320100 cd14969 7tmA_Opsins_type2_animals 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320100 cd14969 7tmA_Opsins_type2_animals 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320100 cd14969 7tmA_Opsins_type2_animals 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320100 cd14969 7tmA_Opsins_type2_animals 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320100 cd14969 7tmA_Opsins_type2_animals 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320200 cd15072 7tmA_Retinal_GPR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320200 cd15072 7tmA_Retinal_GPR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320200 cd15072 7tmA_Retinal_GPR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320200 cd15072 7tmA_Retinal_GPR 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320200 cd15072 7tmA_Retinal_GPR 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320200 cd15072 7tmA_Retinal_GPR 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320200 cd15072 7tmA_Retinal_GPR 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320201 cd15073 7tmA_Peropsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320201 cd15073 7tmA_Peropsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320201 cd15073 7tmA_Peropsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320201 cd15073 7tmA_Peropsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320201 cd15073 7tmA_Peropsin 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320201 cd15073 7tmA_Peropsin 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320201 cd15073 7tmA_Peropsin 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320202 cd15074 7tmA_Opsin5_neuropsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320202 cd15074 7tmA_Opsin5_neuropsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320202 cd15074 7tmA_Opsin5_neuropsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320202 cd15074 7tmA_Opsin5_neuropsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320202 cd15074 7tmA_Opsin5_neuropsin 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320202 cd15074 7tmA_Opsin5_neuropsin 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320202 cd15074 7tmA_Opsin5_neuropsin 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320203 cd15075 7tmA_Parapinopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320203 cd15075 7tmA_Parapinopsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320203 cd15075 7tmA_Parapinopsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320203 cd15075 7tmA_Parapinopsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320203 cd15075 7tmA_Parapinopsin 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320203 cd15075 7tmA_Parapinopsin 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320203 cd15075 7tmA_Parapinopsin 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320204 cd15076 7tmA_SWS1_opsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320204 cd15076 7tmA_SWS1_opsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320204 cd15076 7tmA_SWS1_opsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320204 cd15076 7tmA_SWS1_opsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320204 cd15076 7tmA_SWS1_opsin 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320204 cd15076 7tmA_SWS1_opsin 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320204 cd15076 7tmA_SWS1_opsin 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320205 cd15077 7tmA_SWS2_opsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320205 cd15077 7tmA_SWS2_opsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320205 cd15077 7tmA_SWS2_opsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320205 cd15077 7tmA_SWS2_opsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320205 cd15077 7tmA_SWS2_opsin 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320205 cd15077 7tmA_SWS2_opsin 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320205 cd15077 7tmA_SWS2_opsin 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320206 cd15078 7tmA_Encephalopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320206 cd15078 7tmA_Encephalopsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320206 cd15078 7tmA_Encephalopsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320206 cd15078 7tmA_Encephalopsin 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320206 cd15078 7tmA_Encephalopsin 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320206 cd15078 7tmA_Encephalopsin 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320206 cd15078 7tmA_Encephalopsin 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341324 cd15080 7tmA_MWS_opsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341324 cd15080 7tmA_MWS_opsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -341324 cd15080 7tmA_MWS_opsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341324 cd15080 7tmA_MWS_opsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341324 cd15080 7tmA_MWS_opsin 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341324 cd15080 7tmA_MWS_opsin 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -341324 cd15080 7tmA_MWS_opsin 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320209 cd15081 7tmA_LWS_opsin 1 TM helix 1 0 0 0 1 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 7 -320209 cd15081 7tmA_LWS_opsin 2 TM helix 2 0 0 0 0 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,67,68,69 7 -320209 cd15081 7tmA_LWS_opsin 3 TM helix 3 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,105,106,107 7 -320209 cd15081 7tmA_LWS_opsin 4 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320209 cd15081 7tmA_LWS_opsin 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320209 cd15081 7tmA_LWS_opsin 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320209 cd15081 7tmA_LWS_opsin 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320210 cd15082 7tmA_VA_opsin 1 TM helix 1 0 0 0 1 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320210 cd15082 7tmA_VA_opsin 2 TM helix 2 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,68,69,70 7 -320210 cd15082 7tmA_VA_opsin 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -320210 cd15082 7tmA_VA_opsin 4 TM helix 4 0 0 0 0 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146 7 -320210 cd15082 7tmA_VA_opsin 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320210 cd15082 7tmA_VA_opsin 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320210 cd15082 7tmA_VA_opsin 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320211 cd15083 7tmA_Melanopsin-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320211 cd15083 7tmA_Melanopsin-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320211 cd15083 7tmA_Melanopsin-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320211 cd15083 7tmA_Melanopsin-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320211 cd15083 7tmA_Melanopsin-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320211 cd15083 7tmA_Melanopsin-like 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320211 cd15083 7tmA_Melanopsin-like 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320207 cd15079 7tmA_photoreceptors_insect 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320207 cd15079 7tmA_photoreceptors_insect 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320207 cd15079 7tmA_photoreceptors_insect 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320207 cd15079 7tmA_photoreceptors_insect 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320207 cd15079 7tmA_photoreceptors_insect 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320207 cd15079 7tmA_photoreceptors_insect 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320207 cd15079 7tmA_photoreceptors_insect 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320458 cd15336 7tmA_Melanopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320458 cd15336 7tmA_Melanopsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320458 cd15336 7tmA_Melanopsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320458 cd15336 7tmA_Melanopsin 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320458 cd15336 7tmA_Melanopsin 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320458 cd15336 7tmA_Melanopsin 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320458 cd15336 7tmA_Melanopsin 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320459 cd15337 7tmA_Opsin_Gq_invertebrates 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320212 cd15084 7tmA_Pinopsin 1 TM helix 1 0 0 0 1 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 7 -320212 cd15084 7tmA_Pinopsin 2 TM helix 2 0 0 0 0 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,64,65,66,67 7 -320212 cd15084 7tmA_Pinopsin 3 TM helix 3 0 0 0 0 83,84,85,86,87,88,89,90,91,92,93,97,98,99,100,101,102,103,104,105 7 -320212 cd15084 7tmA_Pinopsin 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320212 cd15084 7tmA_Pinopsin 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320212 cd15084 7tmA_Pinopsin 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320212 cd15084 7tmA_Pinopsin 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320213 cd15085 7tmA_Parietopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320213 cd15085 7tmA_Parietopsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320213 cd15085 7tmA_Parietopsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320213 cd15085 7tmA_Parietopsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320213 cd15085 7tmA_Parietopsin 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320213 cd15085 7tmA_Parietopsin 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320213 cd15085 7tmA_Parietopsin 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320214 cd15086 7tmA_tmt_opsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320214 cd15086 7tmA_tmt_opsin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320214 cd15086 7tmA_tmt_opsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320214 cd15086 7tmA_tmt_opsin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320214 cd15086 7tmA_tmt_opsin 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320214 cd15086 7tmA_tmt_opsin 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320214 cd15086 7tmA_tmt_opsin 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320101 cd14970 7tmA_Opioid_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320101 cd14970 7tmA_Opioid_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320101 cd14970 7tmA_Opioid_R-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320101 cd14970 7tmA_Opioid_R-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320101 cd14970 7tmA_Opioid_R-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320101 cd14970 7tmA_Opioid_R-like 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320101 cd14970 7tmA_Opioid_R-like 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320215 cd15087 7tmA_NPBWR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320215 cd15087 7tmA_NPBWR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320215 cd15087 7tmA_NPBWR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320215 cd15087 7tmA_NPBWR 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320215 cd15087 7tmA_NPBWR 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320215 cd15087 7tmA_NPBWR 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320215 cd15087 7tmA_NPBWR 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320216 cd15088 7tmA_MCHR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320216 cd15088 7tmA_MCHR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320216 cd15088 7tmA_MCHR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320216 cd15088 7tmA_MCHR-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320216 cd15088 7tmA_MCHR-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320216 cd15088 7tmA_MCHR-like 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320216 cd15088 7tmA_MCHR-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320460 cd15338 7tmA_MCHR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320460 cd15338 7tmA_MCHR1 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320460 cd15338 7tmA_MCHR1 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320460 cd15338 7tmA_MCHR1 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320460 cd15338 7tmA_MCHR1 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320460 cd15338 7tmA_MCHR1 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320460 cd15338 7tmA_MCHR1 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320461 cd15339 7tmA_MCHR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320461 cd15339 7tmA_MCHR2 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320461 cd15339 7tmA_MCHR2 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320461 cd15339 7tmA_MCHR2 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320461 cd15339 7tmA_MCHR2 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320461 cd15339 7tmA_MCHR2 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320461 cd15339 7tmA_MCHR2 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320217 cd15089 7tmA_Delta_opioid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320217 cd15089 7tmA_Delta_opioid_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320217 cd15089 7tmA_Delta_opioid_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320217 cd15089 7tmA_Delta_opioid_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320217 cd15089 7tmA_Delta_opioid_R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320217 cd15089 7tmA_Delta_opioid_R 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320217 cd15089 7tmA_Delta_opioid_R 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320218 cd15090 7tmA_Mu_opioid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320218 cd15090 7tmA_Mu_opioid_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320218 cd15090 7tmA_Mu_opioid_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320218 cd15090 7tmA_Mu_opioid_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320218 cd15090 7tmA_Mu_opioid_R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320218 cd15090 7tmA_Mu_opioid_R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320218 cd15090 7tmA_Mu_opioid_R 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320219 cd15091 7tmA_Kappa_opioid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320219 cd15091 7tmA_Kappa_opioid_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320219 cd15091 7tmA_Kappa_opioid_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320219 cd15091 7tmA_Kappa_opioid_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320219 cd15091 7tmA_Kappa_opioid_R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320219 cd15091 7tmA_Kappa_opioid_R 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320219 cd15091 7tmA_Kappa_opioid_R 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320220 cd15092 7tmA_NOFQ_opioid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320220 cd15092 7tmA_NOFQ_opioid_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320220 cd15092 7tmA_NOFQ_opioid_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320220 cd15092 7tmA_NOFQ_opioid_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320220 cd15092 7tmA_NOFQ_opioid_R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320220 cd15092 7tmA_NOFQ_opioid_R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320220 cd15092 7tmA_NOFQ_opioid_R 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320221 cd15093 7tmA_SSTR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320221 cd15093 7tmA_SSTR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320221 cd15093 7tmA_SSTR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320221 cd15093 7tmA_SSTR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320221 cd15093 7tmA_SSTR 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320221 cd15093 7tmA_SSTR 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320221 cd15093 7tmA_SSTR 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320636 cd15970 7tmA_SSTR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320636 cd15970 7tmA_SSTR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320636 cd15970 7tmA_SSTR1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320636 cd15970 7tmA_SSTR1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320636 cd15970 7tmA_SSTR1 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320636 cd15970 7tmA_SSTR1 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320636 cd15970 7tmA_SSTR1 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320637 cd15971 7tmA_SSTR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320637 cd15971 7tmA_SSTR2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320637 cd15971 7tmA_SSTR2 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320637 cd15971 7tmA_SSTR2 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320637 cd15971 7tmA_SSTR2 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320637 cd15971 7tmA_SSTR2 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320637 cd15971 7tmA_SSTR2 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320638 cd15972 7tmA_SSTR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320638 cd15972 7tmA_SSTR3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320638 cd15972 7tmA_SSTR3 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320638 cd15972 7tmA_SSTR3 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320638 cd15972 7tmA_SSTR3 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320638 cd15972 7tmA_SSTR3 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320638 cd15972 7tmA_SSTR3 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320639 cd15973 7tmA_SSTR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320639 cd15973 7tmA_SSTR4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320639 cd15973 7tmA_SSTR4 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320639 cd15973 7tmA_SSTR4 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320639 cd15973 7tmA_SSTR4 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320639 cd15973 7tmA_SSTR4 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320639 cd15973 7tmA_SSTR4 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320640 cd15974 7tmA_SSTR5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320640 cd15974 7tmA_SSTR5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320640 cd15974 7tmA_SSTR5 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320640 cd15974 7tmA_SSTR5 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320640 cd15974 7tmA_SSTR5 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320640 cd15974 7tmA_SSTR5 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320640 cd15974 7tmA_SSTR5 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320222 cd15094 7tmA_AstC_insect 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320222 cd15094 7tmA_AstC_insect 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320222 cd15094 7tmA_AstC_insect 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320222 cd15094 7tmA_AstC_insect 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320222 cd15094 7tmA_AstC_insect 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320222 cd15094 7tmA_AstC_insect 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320222 cd15094 7tmA_AstC_insect 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320102 cd14971 7tmA_Galanin_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320102 cd14971 7tmA_Galanin_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320102 cd14971 7tmA_Galanin_R-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320102 cd14971 7tmA_Galanin_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320102 cd14971 7tmA_Galanin_R-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320102 cd14971 7tmA_Galanin_R-like 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320102 cd14971 7tmA_Galanin_R-like 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320223 cd15095 7tmA_KiSS1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320223 cd15095 7tmA_KiSS1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320223 cd15095 7tmA_KiSS1R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320223 cd15095 7tmA_KiSS1R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320223 cd15095 7tmA_KiSS1R 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320223 cd15095 7tmA_KiSS1R 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320223 cd15095 7tmA_KiSS1R 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320224 cd15096 7tmA_AstA_R_insect 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320224 cd15096 7tmA_AstA_R_insect 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320224 cd15096 7tmA_AstA_R_insect 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320224 cd15096 7tmA_AstA_R_insect 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320224 cd15096 7tmA_AstA_R_insect 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320224 cd15096 7tmA_AstA_R_insect 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320224 cd15096 7tmA_AstA_R_insect 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320225 cd15097 7tmA_Gal2_Gal3_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320225 cd15097 7tmA_Gal2_Gal3_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320225 cd15097 7tmA_Gal2_Gal3_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320225 cd15097 7tmA_Gal2_Gal3_R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320225 cd15097 7tmA_Gal2_Gal3_R 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320225 cd15097 7tmA_Gal2_Gal3_R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320225 cd15097 7tmA_Gal2_Gal3_R 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320226 cd15098 7tmA_Gal1_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320226 cd15098 7tmA_Gal1_R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,56,57,58,59 7 -320226 cd15098 7tmA_Gal1_R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320226 cd15098 7tmA_Gal1_R 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320226 cd15098 7tmA_Gal1_R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320226 cd15098 7tmA_Gal1_R 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320226 cd15098 7tmA_Gal1_R 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341317 cd14972 7tmA_EDG-like 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -341317 cd14972 7tmA_EDG-like 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -341317 cd14972 7tmA_EDG-like 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -341317 cd14972 7tmA_EDG-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -341317 cd14972 7tmA_EDG-like 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -341317 cd14972 7tmA_EDG-like 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -341317 cd14972 7tmA_EDG-like 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320227 cd15099 7tmA_Cannabinoid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320227 cd15099 7tmA_Cannabinoid_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320227 cd15099 7tmA_Cannabinoid_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320227 cd15099 7tmA_Cannabinoid_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320227 cd15099 7tmA_Cannabinoid_R 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320227 cd15099 7tmA_Cannabinoid_R 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320227 cd15099 7tmA_Cannabinoid_R 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320462 cd15340 7tmA_CB1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320462 cd15340 7tmA_CB1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320462 cd15340 7tmA_CB1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320462 cd15340 7tmA_CB1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320462 cd15340 7tmA_CB1 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320462 cd15340 7tmA_CB1 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320462 cd15340 7tmA_CB1 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320463 cd15341 7tmA_CB2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320463 cd15341 7tmA_CB2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320463 cd15341 7tmA_CB2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320463 cd15341 7tmA_CB2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320463 cd15341 7tmA_CB2 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320463 cd15341 7tmA_CB2 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320463 cd15341 7tmA_CB2 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320626 cd15960 7tmA_GPR185-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320626 cd15960 7tmA_GPR185-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320626 cd15960 7tmA_GPR185-like 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320626 cd15960 7tmA_GPR185-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320626 cd15960 7tmA_GPR185-like 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320626 cd15960 7tmA_GPR185-like 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320626 cd15960 7tmA_GPR185-like 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320627 cd15961 7tmA_GPR12 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320627 cd15961 7tmA_GPR12 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320627 cd15961 7tmA_GPR12 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320627 cd15961 7tmA_GPR12 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320627 cd15961 7tmA_GPR12 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320627 cd15961 7tmA_GPR12 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320627 cd15961 7tmA_GPR12 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320628 cd15962 7tmA_GPR6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320628 cd15962 7tmA_GPR6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320628 cd15962 7tmA_GPR6 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320628 cd15962 7tmA_GPR6 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320628 cd15962 7tmA_GPR6 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320628 cd15962 7tmA_GPR6 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320628 cd15962 7tmA_GPR6 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320629 cd15963 7tmA_GPR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320629 cd15963 7tmA_GPR3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320629 cd15963 7tmA_GPR3 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320629 cd15963 7tmA_GPR3 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320629 cd15963 7tmA_GPR3 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320629 cd15963 7tmA_GPR3 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320629 cd15963 7tmA_GPR3 7 TM helix 7 0 0 0 0 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -341325 cd15101 7tmA_LPAR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341325 cd15101 7tmA_LPAR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341325 cd15101 7tmA_LPAR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341325 cd15101 7tmA_LPAR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341325 cd15101 7tmA_LPAR 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -341325 cd15101 7tmA_LPAR 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -341325 cd15101 7tmA_LPAR 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320464 cd15342 7tmA_LPAR2_Edg4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320464 cd15342 7tmA_LPAR2_Edg4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320464 cd15342 7tmA_LPAR2_Edg4 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320464 cd15342 7tmA_LPAR2_Edg4 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320464 cd15342 7tmA_LPAR2_Edg4 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320464 cd15342 7tmA_LPAR2_Edg4 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320464 cd15342 7tmA_LPAR2_Edg4 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320465 cd15343 7tmA_LPAR3_Edg7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320465 cd15343 7tmA_LPAR3_Edg7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320465 cd15343 7tmA_LPAR3_Edg7 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320465 cd15343 7tmA_LPAR3_Edg7 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320465 cd15343 7tmA_LPAR3_Edg7 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320465 cd15343 7tmA_LPAR3_Edg7 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320465 cd15343 7tmA_LPAR3_Edg7 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -341348 cd15344 7tmA_LPAR1_Edg2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341348 cd15344 7tmA_LPAR1_Edg2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341348 cd15344 7tmA_LPAR1_Edg2 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341348 cd15344 7tmA_LPAR1_Edg2 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341348 cd15344 7tmA_LPAR1_Edg2 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -341348 cd15344 7tmA_LPAR1_Edg2 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -341348 cd15344 7tmA_LPAR1_Edg2 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320230 cd15102 7tmA_S1PR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320230 cd15102 7tmA_S1PR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320230 cd15102 7tmA_S1PR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320230 cd15102 7tmA_S1PR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320230 cd15102 7tmA_S1PR 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320230 cd15102 7tmA_S1PR 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320230 cd15102 7tmA_S1PR 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320467 cd15345 7tmA_S1PR3_Edg3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320467 cd15345 7tmA_S1PR3_Edg3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320467 cd15345 7tmA_S1PR3_Edg3 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320467 cd15345 7tmA_S1PR3_Edg3 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320467 cd15345 7tmA_S1PR3_Edg3 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320467 cd15345 7tmA_S1PR3_Edg3 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320467 cd15345 7tmA_S1PR3_Edg3 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320468 cd15346 7tmA_S1PR1_Edg1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320468 cd15346 7tmA_S1PR1_Edg1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320468 cd15346 7tmA_S1PR1_Edg1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320468 cd15346 7tmA_S1PR1_Edg1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320468 cd15346 7tmA_S1PR1_Edg1 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320468 cd15346 7tmA_S1PR1_Edg1 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320468 cd15346 7tmA_S1PR1_Edg1 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320469 cd15347 7tmA_S1PR2_Edg5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320469 cd15347 7tmA_S1PR2_Edg5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320469 cd15347 7tmA_S1PR2_Edg5 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320469 cd15347 7tmA_S1PR2_Edg5 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320469 cd15347 7tmA_S1PR2_Edg5 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320469 cd15347 7tmA_S1PR2_Edg5 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320469 cd15347 7tmA_S1PR2_Edg5 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320470 cd15348 7tmA_S1PR5_Edg8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320470 cd15348 7tmA_S1PR5_Edg8 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320470 cd15348 7tmA_S1PR5_Edg8 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320470 cd15348 7tmA_S1PR5_Edg8 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320470 cd15348 7tmA_S1PR5_Edg8 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320470 cd15348 7tmA_S1PR5_Edg8 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320470 cd15348 7tmA_S1PR5_Edg8 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320471 cd15349 7tmA_S1PR4_Edg6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320471 cd15349 7tmA_S1PR4_Edg6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320471 cd15349 7tmA_S1PR4_Edg6 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320471 cd15349 7tmA_S1PR4_Edg6 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320471 cd15349 7tmA_S1PR4_Edg6 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320471 cd15349 7tmA_S1PR4_Edg6 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320471 cd15349 7tmA_S1PR4_Edg6 7 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320231 cd15103 7tmA_MCR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320231 cd15103 7tmA_MCR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320231 cd15103 7tmA_MCR 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320231 cd15103 7tmA_MCR 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320231 cd15103 7tmA_MCR 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320231 cd15103 7tmA_MCR 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320231 cd15103 7tmA_MCR 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320472 cd15350 7tmA_MC2R_ACTH_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320472 cd15350 7tmA_MC2R_ACTH_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320472 cd15350 7tmA_MC2R_ACTH_R 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320472 cd15350 7tmA_MC2R_ACTH_R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320472 cd15350 7tmA_MC2R_ACTH_R 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320472 cd15350 7tmA_MC2R_ACTH_R 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320472 cd15350 7tmA_MC2R_ACTH_R 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320473 cd15351 7tmA_MC1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320473 cd15351 7tmA_MC1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320473 cd15351 7tmA_MC1R 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320473 cd15351 7tmA_MC1R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320473 cd15351 7tmA_MC1R 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320473 cd15351 7tmA_MC1R 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320473 cd15351 7tmA_MC1R 7 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320474 cd15352 7tmA_MC3R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320474 cd15352 7tmA_MC3R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320474 cd15352 7tmA_MC3R 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320474 cd15352 7tmA_MC3R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320474 cd15352 7tmA_MC3R 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320474 cd15352 7tmA_MC3R 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320474 cd15352 7tmA_MC3R 7 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320475 cd15353 7tmA_MC4R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320475 cd15353 7tmA_MC4R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320475 cd15353 7tmA_MC4R 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320475 cd15353 7tmA_MC4R 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320475 cd15353 7tmA_MC4R 5 TM helix 5 0 0 0 0 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168 7 -320475 cd15353 7tmA_MC4R 6 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320475 cd15353 7tmA_MC4R 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320476 cd15354 7tmA_MC5R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320476 cd15354 7tmA_MC5R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320476 cd15354 7tmA_MC5R 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320476 cd15354 7tmA_MC5R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320476 cd15354 7tmA_MC5R 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320476 cd15354 7tmA_MC5R 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320476 cd15354 7tmA_MC5R 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320104 cd14973 7tmA_Mrgpr 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320104 cd14973 7tmA_Mrgpr 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320104 cd14973 7tmA_Mrgpr 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93 7 -320104 cd14973 7tmA_Mrgpr 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320104 cd14973 7tmA_Mrgpr 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320104 cd14973 7tmA_Mrgpr 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320104 cd14973 7tmA_Mrgpr 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320233 cd15105 7tmA_MrgprA 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320233 cd15105 7tmA_MrgprA 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320233 cd15105 7tmA_MrgprA 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93 7 -320233 cd15105 7tmA_MrgprA 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320233 cd15105 7tmA_MrgprA 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320233 cd15105 7tmA_MrgprA 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320233 cd15105 7tmA_MrgprA 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320234 cd15106 7tmA_MrgprX-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320234 cd15106 7tmA_MrgprX-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320234 cd15106 7tmA_MrgprX-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92 7 -320234 cd15106 7tmA_MrgprX-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320234 cd15106 7tmA_MrgprX-like 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320234 cd15106 7tmA_MrgprX-like 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320234 cd15106 7tmA_MrgprX-like 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320235 cd15107 7tmA_MrgprB 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320235 cd15107 7tmA_MrgprB 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320235 cd15107 7tmA_MrgprB 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93 7 -320235 cd15107 7tmA_MrgprB 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320235 cd15107 7tmA_MrgprB 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320235 cd15107 7tmA_MrgprB 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320235 cd15107 7tmA_MrgprB 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320236 cd15108 7tmA_MrgprD 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320236 cd15108 7tmA_MrgprD 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,54,55,56,57 7 -320236 cd15108 7tmA_MrgprD 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,85,86,87,88,89,90,91,92,93 7 -320236 cd15108 7tmA_MrgprD 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320236 cd15108 7tmA_MrgprD 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320236 cd15108 7tmA_MrgprD 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320236 cd15108 7tmA_MrgprD 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320237 cd15109 7tmA_MrgprF 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320237 cd15109 7tmA_MrgprF 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320237 cd15109 7tmA_MrgprF 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94 7 -320237 cd15109 7tmA_MrgprF 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320237 cd15109 7tmA_MrgprF 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320237 cd15109 7tmA_MrgprF 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320237 cd15109 7tmA_MrgprF 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320238 cd15110 7tmA_MrgprH 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320238 cd15110 7tmA_MrgprH 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320238 cd15110 7tmA_MrgprH 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,93,94,95,96 7 -320238 cd15110 7tmA_MrgprH 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320238 cd15110 7tmA_MrgprH 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320238 cd15110 7tmA_MrgprH 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320238 cd15110 7tmA_MrgprH 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320239 cd15111 7tmA_MrgprG 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320239 cd15111 7tmA_MrgprG 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320239 cd15111 7tmA_MrgprG 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88 7 -320239 cd15111 7tmA_MrgprG 4 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320239 cd15111 7tmA_MrgprG 5 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320239 cd15111 7tmA_MrgprG 6 TM helix 6 0 0 0 0 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320239 cd15111 7tmA_MrgprG 7 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320240 cd15112 7tmA_MrgprE 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320240 cd15112 7tmA_MrgprE 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320240 cd15112 7tmA_MrgprE 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94 7 -320240 cd15112 7tmA_MrgprE 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320240 cd15112 7tmA_MrgprE 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320240 cd15112 7tmA_MrgprE 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320240 cd15112 7tmA_MrgprE 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320241 cd15113 7tmA_MAS1L 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320241 cd15113 7tmA_MAS1L 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320241 cd15113 7tmA_MAS1L 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94 7 -320241 cd15113 7tmA_MAS1L 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320241 cd15113 7tmA_MAS1L 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320241 cd15113 7tmA_MAS1L 6 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320241 cd15113 7tmA_MAS1L 7 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320105 cd14974 7tmA_Anaphylatoxin_R-like 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320242 cd15114 7tmA_C5aR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320242 cd15114 7tmA_C5aR 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320242 cd15114 7tmA_C5aR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320242 cd15114 7tmA_C5aR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320242 cd15114 7tmA_C5aR 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320242 cd15114 7tmA_C5aR 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320242 cd15114 7tmA_C5aR 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320243 cd15115 7tmA_C3aR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320243 cd15115 7tmA_C3aR 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320243 cd15115 7tmA_C3aR 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320243 cd15115 7tmA_C3aR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320243 cd15115 7tmA_C3aR 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320243 cd15115 7tmA_C3aR 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320243 cd15115 7tmA_C3aR 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320244 cd15116 7tmA_CMKLR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320244 cd15116 7tmA_CMKLR1 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320244 cd15116 7tmA_CMKLR1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320244 cd15116 7tmA_CMKLR1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320244 cd15116 7tmA_CMKLR1 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320244 cd15116 7tmA_CMKLR1 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320244 cd15116 7tmA_CMKLR1 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320245 cd15117 7tmA_FPR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320245 cd15117 7tmA_FPR-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320245 cd15117 7tmA_FPR-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320245 cd15117 7tmA_FPR-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320245 cd15117 7tmA_FPR-like 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320245 cd15117 7tmA_FPR-like 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320245 cd15117 7tmA_FPR-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320246 cd15118 7tmA_PD2R2_CRTH2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320246 cd15118 7tmA_PD2R2_CRTH2 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320246 cd15118 7tmA_PD2R2_CRTH2 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320246 cd15118 7tmA_PD2R2_CRTH2 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320246 cd15118 7tmA_PD2R2_CRTH2 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320246 cd15118 7tmA_PD2R2_CRTH2 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320246 cd15118 7tmA_PD2R2_CRTH2 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320247 cd15119 7tmA_GPR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320247 cd15119 7tmA_GPR1 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320247 cd15119 7tmA_GPR1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320247 cd15119 7tmA_GPR1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320247 cd15119 7tmA_GPR1 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320247 cd15119 7tmA_GPR1 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320247 cd15119 7tmA_GPR1 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320248 cd15120 7tmA_GPR33 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320248 cd15120 7tmA_GPR33 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320248 cd15120 7tmA_GPR33 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320248 cd15120 7tmA_GPR33 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320248 cd15120 7tmA_GPR33 5 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320248 cd15120 7tmA_GPR33 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320248 cd15120 7tmA_GPR33 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320106 cd14975 7tmA_LTB4R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320106 cd14975 7tmA_LTB4R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320106 cd14975 7tmA_LTB4R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320106 cd14975 7tmA_LTB4R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320106 cd14975 7tmA_LTB4R 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320106 cd14975 7tmA_LTB4R 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320106 cd14975 7tmA_LTB4R 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320249 cd15121 7tmA_LTB4R1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320249 cd15121 7tmA_LTB4R1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320249 cd15121 7tmA_LTB4R1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320249 cd15121 7tmA_LTB4R1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320249 cd15121 7tmA_LTB4R1 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320249 cd15121 7tmA_LTB4R1 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320249 cd15121 7tmA_LTB4R1 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320250 cd15122 7tmA_LTB4R2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320250 cd15122 7tmA_LTB4R2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320250 cd15122 7tmA_LTB4R2 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320250 cd15122 7tmA_LTB4R2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320250 cd15122 7tmA_LTB4R2 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320250 cd15122 7tmA_LTB4R2 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320250 cd15122 7tmA_LTB4R2 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320107 cd14976 7tmA_RNL3R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320107 cd14976 7tmA_RNL3R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320107 cd14976 7tmA_RNL3R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320107 cd14976 7tmA_RNL3R 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320107 cd14976 7tmA_RNL3R 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320107 cd14976 7tmA_RNL3R 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320107 cd14976 7tmA_RNL3R 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320591 cd15925 7tmA_RNL3R2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320591 cd15925 7tmA_RNL3R2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320591 cd15925 7tmA_RNL3R2 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320591 cd15925 7tmA_RNL3R2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320591 cd15925 7tmA_RNL3R2 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320591 cd15925 7tmA_RNL3R2 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320591 cd15925 7tmA_RNL3R2 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320592 cd15926 7tmA_RNL3R1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320592 cd15926 7tmA_RNL3R1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320592 cd15926 7tmA_RNL3R1 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320592 cd15926 7tmA_RNL3R1 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320592 cd15926 7tmA_RNL3R1 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320592 cd15926 7tmA_RNL3R1 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320592 cd15926 7tmA_RNL3R1 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320108 cd14977 7tmA_ET_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320108 cd14977 7tmA_ET_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320108 cd14977 7tmA_ET_R-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320108 cd14977 7tmA_ET_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320108 cd14977 7tmA_ET_R-like 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320108 cd14977 7tmA_ET_R-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320108 cd14977 7tmA_ET_R-like 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320254 cd15126 7tmA_ETBR-LP2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320254 cd15126 7tmA_ETBR-LP2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320254 cd15126 7tmA_ETBR-LP2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320254 cd15126 7tmA_ETBR-LP2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320254 cd15126 7tmA_ETBR-LP2 5 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320254 cd15126 7tmA_ETBR-LP2 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320254 cd15126 7tmA_ETBR-LP2 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320255 cd15127 7tmA_GPR37 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320255 cd15127 7tmA_GPR37 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320255 cd15127 7tmA_GPR37 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320255 cd15127 7tmA_GPR37 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320255 cd15127 7tmA_GPR37 5 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320255 cd15127 7tmA_GPR37 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320255 cd15127 7tmA_GPR37 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320256 cd15128 7tmA_ET_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320256 cd15128 7tmA_ET_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320256 cd15128 7tmA_ET_R 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320256 cd15128 7tmA_ET_R 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320256 cd15128 7tmA_ET_R 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320256 cd15128 7tmA_ET_R 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320256 cd15128 7tmA_ET_R 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320641 cd15975 7tmA_ET-AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320641 cd15975 7tmA_ET-AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320641 cd15975 7tmA_ET-AR 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320641 cd15975 7tmA_ET-AR 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320641 cd15975 7tmA_ET-AR 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320641 cd15975 7tmA_ET-AR 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320641 cd15975 7tmA_ET-AR 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320642 cd15976 7tmA_ET-BR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320642 cd15976 7tmA_ET-BR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320642 cd15976 7tmA_ET-BR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320642 cd15976 7tmA_ET-BR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320642 cd15976 7tmA_ET-BR 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320642 cd15976 7tmA_ET-BR 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320642 cd15976 7tmA_ET-BR 7 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320643 cd15977 7tmA_ET-CR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320643 cd15977 7tmA_ET-CR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320643 cd15977 7tmA_ET-CR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320643 cd15977 7tmA_ET-CR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320643 cd15977 7tmA_ET-CR 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320643 cd15977 7tmA_ET-CR 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320643 cd15977 7tmA_ET-CR 7 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320593 cd15927 7tmA_Bombesin_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320593 cd15927 7tmA_Bombesin_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320593 cd15927 7tmA_Bombesin_R-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320593 cd15927 7tmA_Bombesin_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320593 cd15927 7tmA_Bombesin_R-like 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320593 cd15927 7tmA_Bombesin_R-like 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320593 cd15927 7tmA_Bombesin_R-like 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320251 cd15123 7tmA_BRS-3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320251 cd15123 7tmA_BRS-3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320251 cd15123 7tmA_BRS-3 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320251 cd15123 7tmA_BRS-3 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320251 cd15123 7tmA_BRS-3 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320251 cd15123 7tmA_BRS-3 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320251 cd15123 7tmA_BRS-3 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320252 cd15124 7tmA_GRPR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320252 cd15124 7tmA_GRPR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320252 cd15124 7tmA_GRPR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320252 cd15124 7tmA_GRPR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320252 cd15124 7tmA_GRPR 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320252 cd15124 7tmA_GRPR 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320252 cd15124 7tmA_GRPR 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320253 cd15125 7tmA_NMBR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320253 cd15125 7tmA_NMBR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320253 cd15125 7tmA_NMBR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320253 cd15125 7tmA_NMBR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320253 cd15125 7tmA_NMBR 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320253 cd15125 7tmA_NMBR 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320253 cd15125 7tmA_NMBR 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320109 cd14978 7tmA_FMRFamide_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320109 cd14978 7tmA_FMRFamide_R-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320109 cd14978 7tmA_FMRFamide_R-like 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320109 cd14978 7tmA_FMRFamide_R-like 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320109 cd14978 7tmA_FMRFamide_R-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320109 cd14978 7tmA_FMRFamide_R-like 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320109 cd14978 7tmA_FMRFamide_R-like 7 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320257 cd15129 7tmA_GPR142 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320257 cd15129 7tmA_GPR142 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320257 cd15129 7tmA_GPR142 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320257 cd15129 7tmA_GPR142 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320257 cd15129 7tmA_GPR142 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320257 cd15129 7tmA_GPR142 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320257 cd15129 7tmA_GPR142 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320585 cd15919 7tmA_GPR139 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320585 cd15919 7tmA_GPR139 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320585 cd15919 7tmA_GPR139 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320585 cd15919 7tmA_GPR139 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320585 cd15919 7tmA_GPR139 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320585 cd15919 7tmA_GPR139 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320585 cd15919 7tmA_GPR139 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320110 cd14979 7tmA_NTSR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320110 cd14979 7tmA_NTSR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320110 cd14979 7tmA_NTSR-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320110 cd14979 7tmA_NTSR-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320110 cd14979 7tmA_NTSR-like 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320110 cd14979 7tmA_NTSR-like 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320110 cd14979 7tmA_NTSR-like 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320258 cd15130 7tmA_NTSR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320258 cd15130 7tmA_NTSR 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60 7 -320258 cd15130 7tmA_NTSR 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320258 cd15130 7tmA_NTSR 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320258 cd15130 7tmA_NTSR 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320258 cd15130 7tmA_NTSR 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320258 cd15130 7tmA_NTSR 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320477 cd15355 7tmA_NTSR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320477 cd15355 7tmA_NTSR1 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60 7 -320477 cd15355 7tmA_NTSR1 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320477 cd15355 7tmA_NTSR1 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320477 cd15355 7tmA_NTSR1 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320477 cd15355 7tmA_NTSR1 6 TM helix 6 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320477 cd15355 7tmA_NTSR1 7 TM helix 7 0 0 0 0 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302 7 -320478 cd15356 7tmA_NTSR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320478 cd15356 7tmA_NTSR2 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60 7 -320478 cd15356 7tmA_NTSR2 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320478 cd15356 7tmA_NTSR2 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320478 cd15356 7tmA_NTSR2 5 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320478 cd15356 7tmA_NTSR2 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320478 cd15356 7tmA_NTSR2 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320261 cd15133 7tmA_NMU-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320261 cd15133 7tmA_NMU-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320261 cd15133 7tmA_NMU-R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320261 cd15133 7tmA_NMU-R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320261 cd15133 7tmA_NMU-R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320261 cd15133 7tmA_NMU-R 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320261 cd15133 7tmA_NMU-R 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320479 cd15357 7tmA_NMU-R2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320479 cd15357 7tmA_NMU-R2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320479 cd15357 7tmA_NMU-R2 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320479 cd15357 7tmA_NMU-R2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320479 cd15357 7tmA_NMU-R2 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320479 cd15357 7tmA_NMU-R2 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320479 cd15357 7tmA_NMU-R2 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320480 cd15358 7tmA_NMU-R1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320480 cd15358 7tmA_NMU-R1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320480 cd15358 7tmA_NMU-R1 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320480 cd15358 7tmA_NMU-R1 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320480 cd15358 7tmA_NMU-R1 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320480 cd15358 7tmA_NMU-R1 6 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320480 cd15358 7tmA_NMU-R1 7 TM helix 7 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -320262 cd15134 7tmA_capaR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320262 cd15134 7tmA_capaR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320262 cd15134 7tmA_capaR 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320262 cd15134 7tmA_capaR 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320262 cd15134 7tmA_capaR 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320262 cd15134 7tmA_capaR 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320262 cd15134 7tmA_capaR 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320263 cd15135 7tmA_GPR39 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320263 cd15135 7tmA_GPR39 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60 7 -320263 cd15135 7tmA_GPR39 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320263 cd15135 7tmA_GPR39 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320263 cd15135 7tmA_GPR39 5 TM helix 5 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320263 cd15135 7tmA_GPR39 6 TM helix 6 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320263 cd15135 7tmA_GPR39 7 TM helix 7 0 0 0 0 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312 7 -320594 cd15928 7tmA_GHSR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320594 cd15928 7tmA_GHSR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320594 cd15928 7tmA_GHSR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320594 cd15928 7tmA_GHSR-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320594 cd15928 7tmA_GHSR-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320594 cd15928 7tmA_GHSR-like 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320594 cd15928 7tmA_GHSR-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320259 cd15131 7tmA_GHSR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320259 cd15131 7tmA_GHSR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320259 cd15131 7tmA_GHSR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320259 cd15131 7tmA_GHSR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320259 cd15131 7tmA_GHSR 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320259 cd15131 7tmA_GHSR 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320259 cd15131 7tmA_GHSR 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320260 cd15132 7tmA_motilin_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320260 cd15132 7tmA_motilin_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320260 cd15132 7tmA_motilin_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320260 cd15132 7tmA_motilin_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320260 cd15132 7tmA_motilin_R 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320260 cd15132 7tmA_motilin_R 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320260 cd15132 7tmA_motilin_R 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 3 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,101,102,103 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320264 cd15136 7tmA_Glyco_hormone_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320264 cd15136 7tmA_Glyco_hormone_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320264 cd15136 7tmA_Glyco_hormone_R 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320264 cd15136 7tmA_Glyco_hormone_R 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320264 cd15136 7tmA_Glyco_hormone_R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320264 cd15136 7tmA_Glyco_hormone_R 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320264 cd15136 7tmA_Glyco_hormone_R 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320481 cd15359 7tmA_LHCGR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320481 cd15359 7tmA_LHCGR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320481 cd15359 7tmA_LHCGR 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320481 cd15359 7tmA_LHCGR 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320481 cd15359 7tmA_LHCGR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320481 cd15359 7tmA_LHCGR 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320481 cd15359 7tmA_LHCGR 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320482 cd15360 7tmA_FSH-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320482 cd15360 7tmA_FSH-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320482 cd15360 7tmA_FSH-R 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320482 cd15360 7tmA_FSH-R 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320482 cd15360 7tmA_FSH-R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320482 cd15360 7tmA_FSH-R 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320482 cd15360 7tmA_FSH-R 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320630 cd15964 7tmA_TSH-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320630 cd15964 7tmA_TSH-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320630 cd15964 7tmA_TSH-R 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320630 cd15964 7tmA_TSH-R 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320630 cd15964 7tmA_TSH-R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320630 cd15964 7tmA_TSH-R 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320630 cd15964 7tmA_TSH-R 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320265 cd15137 7tmA_Relaxin_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320265 cd15137 7tmA_Relaxin_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320265 cd15137 7tmA_Relaxin_R 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320265 cd15137 7tmA_Relaxin_R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320265 cd15137 7tmA_Relaxin_R 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320265 cd15137 7tmA_Relaxin_R 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320265 cd15137 7tmA_Relaxin_R 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320631 cd15965 7tmA_RXFP1_LGR7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320631 cd15965 7tmA_RXFP1_LGR7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320631 cd15965 7tmA_RXFP1_LGR7 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320631 cd15965 7tmA_RXFP1_LGR7 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320631 cd15965 7tmA_RXFP1_LGR7 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320631 cd15965 7tmA_RXFP1_LGR7 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320631 cd15965 7tmA_RXFP1_LGR7 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320632 cd15966 7tmA_RXFP2_LGR8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320632 cd15966 7tmA_RXFP2_LGR8 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320632 cd15966 7tmA_RXFP2_LGR8 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320632 cd15966 7tmA_RXFP2_LGR8 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320632 cd15966 7tmA_RXFP2_LGR8 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320632 cd15966 7tmA_RXFP2_LGR8 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320632 cd15966 7tmA_RXFP2_LGR8 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320266 cd15138 7tmA_LRR_GPR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320266 cd15138 7tmA_LRR_GPR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320266 cd15138 7tmA_LRR_GPR 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320266 cd15138 7tmA_LRR_GPR 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320266 cd15138 7tmA_LRR_GPR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320266 cd15138 7tmA_LRR_GPR 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320266 cd15138 7tmA_LRR_GPR 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320483 cd15361 7tmA_LGR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320483 cd15361 7tmA_LGR4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320483 cd15361 7tmA_LGR4 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320483 cd15361 7tmA_LGR4 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320483 cd15361 7tmA_LGR4 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320483 cd15361 7tmA_LGR4 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320483 cd15361 7tmA_LGR4 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320484 cd15362 7tmA_LGR6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320484 cd15362 7tmA_LGR6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320484 cd15362 7tmA_LGR6 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320484 cd15362 7tmA_LGR6 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320484 cd15362 7tmA_LGR6 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320484 cd15362 7tmA_LGR6 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320484 cd15362 7tmA_LGR6 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320485 cd15363 7tmA_LGR5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320485 cd15363 7tmA_LGR5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320485 cd15363 7tmA_LGR5 3 TM helix 3 0 0 0 0 80,81,82,83,84,85,86,87,88,89,90,94,95,96,97,98,99,100,101,102 7 -320485 cd15363 7tmA_LGR5 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320485 cd15363 7tmA_LGR5 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320485 cd15363 7tmA_LGR5 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320485 cd15363 7tmA_LGR5 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320112 cd14981 7tmA_Prostanoid_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320112 cd14981 7tmA_Prostanoid_R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,56,57,58,59 7 -320112 cd14981 7tmA_Prostanoid_R 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320112 cd14981 7tmA_Prostanoid_R 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320112 cd14981 7tmA_Prostanoid_R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320112 cd14981 7tmA_Prostanoid_R 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320112 cd14981 7tmA_Prostanoid_R 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320267 cd15139 7tmA_PGE2_EP2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320267 cd15139 7tmA_PGE2_EP2 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,59,60,61,62 7 -320267 cd15139 7tmA_PGE2_EP2 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320267 cd15139 7tmA_PGE2_EP2 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320267 cd15139 7tmA_PGE2_EP2 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320267 cd15139 7tmA_PGE2_EP2 6 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320267 cd15139 7tmA_PGE2_EP2 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320268 cd15140 7tmA_PGD2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320268 cd15140 7tmA_PGD2 2 TM helix 2 0 0 0 0 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,64,65,66,67 7 -320268 cd15140 7tmA_PGD2 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,109,110,111 7 -320268 cd15140 7tmA_PGD2 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320268 cd15140 7tmA_PGD2 5 TM helix 5 0 0 0 0 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 7 -320268 cd15140 7tmA_PGD2 6 TM helix 6 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320268 cd15140 7tmA_PGD2 7 TM helix 7 0 0 0 0 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303 7 -320269 cd15141 7tmA_PGI2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320269 cd15141 7tmA_PGI2 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,58,59,60,61 7 -320269 cd15141 7tmA_PGI2 3 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,101,102,103 7 -320269 cd15141 7tmA_PGI2 4 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320269 cd15141 7tmA_PGI2 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320269 cd15141 7tmA_PGI2 6 TM helix 6 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320269 cd15141 7tmA_PGI2 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320270 cd15142 7tmA_PGE2_EP4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320270 cd15142 7tmA_PGE2_EP4 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,56,57,58,59 7 -320270 cd15142 7tmA_PGE2_EP4 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320270 cd15142 7tmA_PGE2_EP4 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320270 cd15142 7tmA_PGE2_EP4 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320270 cd15142 7tmA_PGE2_EP4 6 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320270 cd15142 7tmA_PGE2_EP4 7 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320271 cd15143 7tmA_TXA2_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320271 cd15143 7tmA_TXA2_R 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,59,60,61,62 7 -320271 cd15143 7tmA_TXA2_R 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320271 cd15143 7tmA_TXA2_R 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320271 cd15143 7tmA_TXA2_R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320271 cd15143 7tmA_TXA2_R 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320271 cd15143 7tmA_TXA2_R 7 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320272 cd15144 7tmA_PGE2_EP1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320272 cd15144 7tmA_PGE2_EP1 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,59,60,61,62 7 -320272 cd15144 7tmA_PGE2_EP1 3 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,101,102,103 7 -320272 cd15144 7tmA_PGE2_EP1 4 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320272 cd15144 7tmA_PGE2_EP1 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320272 cd15144 7tmA_PGE2_EP1 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320272 cd15144 7tmA_PGE2_EP1 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320273 cd15145 7tmA_FP 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320273 cd15145 7tmA_FP 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,59,60,61,62 7 -320273 cd15145 7tmA_FP 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320273 cd15145 7tmA_FP 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320273 cd15145 7tmA_FP 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320273 cd15145 7tmA_FP 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320273 cd15145 7tmA_FP 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320274 cd15146 7tmA_PGE2_EP3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320274 cd15146 7tmA_PGE2_EP3 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,59,60,61,62 7 -320274 cd15146 7tmA_PGE2_EP3 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320274 cd15146 7tmA_PGE2_EP3 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320274 cd15146 7tmA_PGE2_EP3 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320274 cd15146 7tmA_PGE2_EP3 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320274 cd15146 7tmA_PGE2_EP3 7 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -341318 cd14982 7tmA_purinoceptor-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341318 cd14982 7tmA_purinoceptor-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341318 cd14982 7tmA_purinoceptor-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341318 cd14982 7tmA_purinoceptor-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341318 cd14982 7tmA_purinoceptor-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341318 cd14982 7tmA_purinoceptor-like 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -341318 cd14982 7tmA_purinoceptor-like 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320114 cd14983 7tmA_FFAR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320114 cd14983 7tmA_FFAR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320114 cd14983 7tmA_FFAR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320114 cd14983 7tmA_FFAR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320114 cd14983 7tmA_FFAR 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320114 cd14983 7tmA_FFAR 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320114 cd14983 7tmA_FFAR 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320297 cd15169 7tmA_FFAR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320297 cd15169 7tmA_FFAR1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320297 cd15169 7tmA_FFAR1 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320297 cd15169 7tmA_FFAR1 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320297 cd15169 7tmA_FFAR1 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320297 cd15169 7tmA_FFAR1 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320297 cd15169 7tmA_FFAR1 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320298 cd15170 7tmA_FFAR2_FFAR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320298 cd15170 7tmA_FFAR2_FFAR3 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320298 cd15170 7tmA_FFAR2_FFAR3 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320298 cd15170 7tmA_FFAR2_FFAR3 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320298 cd15170 7tmA_FFAR2_FFAR3 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320298 cd15170 7tmA_FFAR2_FFAR3 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320298 cd15170 7tmA_FFAR2_FFAR3 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320122 cd14991 7tmA_HCAR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320122 cd14991 7tmA_HCAR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320122 cd14991 7tmA_HCAR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320122 cd14991 7tmA_HCAR-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320122 cd14991 7tmA_HCAR-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320122 cd14991 7tmA_HCAR-like 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320122 cd14991 7tmA_HCAR-like 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320327 cd15199 7tmA_GPR31 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320327 cd15199 7tmA_GPR31 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320327 cd15199 7tmA_GPR31 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320327 cd15199 7tmA_GPR31 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320327 cd15199 7tmA_GPR31 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320327 cd15199 7tmA_GPR31 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320327 cd15199 7tmA_GPR31 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320328 cd15200 7tmA_OXER1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320328 cd15200 7tmA_OXER1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320328 cd15200 7tmA_OXER1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320328 cd15200 7tmA_OXER1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320328 cd15200 7tmA_OXER1 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320328 cd15200 7tmA_OXER1 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320328 cd15200 7tmA_OXER1 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320329 cd15201 7tmA_HCAR1-3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320329 cd15201 7tmA_HCAR1-3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320329 cd15201 7tmA_HCAR1-3 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320329 cd15201 7tmA_HCAR1-3 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320329 cd15201 7tmA_HCAR1-3 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320329 cd15201 7tmA_HCAR1-3 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320329 cd15201 7tmA_HCAR1-3 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320125 cd14994 7tmA_GPR141 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320125 cd14994 7tmA_GPR141 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320125 cd14994 7tmA_GPR141 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320125 cd14994 7tmA_GPR141 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320125 cd14994 7tmA_GPR141 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320125 cd14994 7tmA_GPR141 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320125 cd14994 7tmA_GPR141 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320127 cd14996 7tmA_GPR82 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320127 cd14996 7tmA_GPR82 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320127 cd14996 7tmA_GPR82 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320127 cd14996 7tmA_GPR82 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320127 cd14996 7tmA_GPR82 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320127 cd14996 7tmA_GPR82 6 TM helix 6 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320127 cd14996 7tmA_GPR82 7 TM helix 7 0 0 0 0 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297 7 -320275 cd15147 7tmA_PAFR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320275 cd15147 7tmA_PAFR 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320275 cd15147 7tmA_PAFR 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320275 cd15147 7tmA_PAFR 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320275 cd15147 7tmA_PAFR 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320275 cd15147 7tmA_PAFR 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320275 cd15147 7tmA_PAFR 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320276 cd15148 7tmA_GPR34-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320276 cd15148 7tmA_GPR34-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320276 cd15148 7tmA_GPR34-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320276 cd15148 7tmA_GPR34-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320276 cd15148 7tmA_GPR34-like 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320276 cd15148 7tmA_GPR34-like 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320276 cd15148 7tmA_GPR34-like 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320280 cd15152 7tmA_GPR174-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320280 cd15152 7tmA_GPR174-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320280 cd15152 7tmA_GPR174-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320280 cd15152 7tmA_GPR174-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320280 cd15152 7tmA_GPR174-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320280 cd15152 7tmA_GPR174-like 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320280 cd15152 7tmA_GPR174-like 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320281 cd15153 7tmA_P2Y10 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320281 cd15153 7tmA_P2Y10 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320281 cd15153 7tmA_P2Y10 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320281 cd15153 7tmA_P2Y10 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320281 cd15153 7tmA_P2Y10 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320281 cd15153 7tmA_P2Y10 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320281 cd15153 7tmA_P2Y10 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320282 cd15154 7tmA_LPAR5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320282 cd15154 7tmA_LPAR5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320282 cd15154 7tmA_LPAR5 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320282 cd15154 7tmA_LPAR5 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320282 cd15154 7tmA_LPAR5 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320282 cd15154 7tmA_LPAR5 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320282 cd15154 7tmA_LPAR5 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320283 cd15155 7tmA_LPAR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320283 cd15155 7tmA_LPAR4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320283 cd15155 7tmA_LPAR4 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320283 cd15155 7tmA_LPAR4 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320283 cd15155 7tmA_LPAR4 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320283 cd15155 7tmA_LPAR4 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320283 cd15155 7tmA_LPAR4 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320284 cd15156 7tmA_LPAR6_P2Y5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320284 cd15156 7tmA_LPAR6_P2Y5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320284 cd15156 7tmA_LPAR6_P2Y5 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320284 cd15156 7tmA_LPAR6_P2Y5 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320284 cd15156 7tmA_LPAR6_P2Y5 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320284 cd15156 7tmA_LPAR6_P2Y5 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320284 cd15156 7tmA_LPAR6_P2Y5 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320287 cd15159 7tmA_EBI2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320287 cd15159 7tmA_EBI2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320287 cd15159 7tmA_EBI2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320287 cd15159 7tmA_EBI2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320287 cd15159 7tmA_EBI2 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320287 cd15159 7tmA_EBI2 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320287 cd15159 7tmA_EBI2 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320288 cd15160 7tmA_Proton-sensing_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320288 cd15160 7tmA_Proton-sensing_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320288 cd15160 7tmA_Proton-sensing_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320288 cd15160 7tmA_Proton-sensing_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320288 cd15160 7tmA_Proton-sensing_R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320288 cd15160 7tmA_Proton-sensing_R 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320288 cd15160 7tmA_Proton-sensing_R 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320486 cd15364 7tmA_GPR132_G2A 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320486 cd15364 7tmA_GPR132_G2A 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320486 cd15364 7tmA_GPR132_G2A 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320486 cd15364 7tmA_GPR132_G2A 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320486 cd15364 7tmA_GPR132_G2A 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320486 cd15364 7tmA_GPR132_G2A 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320486 cd15364 7tmA_GPR132_G2A 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320487 cd15365 7tmA_GPR65_TDAG8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320487 cd15365 7tmA_GPR65_TDAG8 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320487 cd15365 7tmA_GPR65_TDAG8 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320487 cd15365 7tmA_GPR65_TDAG8 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320487 cd15365 7tmA_GPR65_TDAG8 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320487 cd15365 7tmA_GPR65_TDAG8 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320487 cd15365 7tmA_GPR65_TDAG8 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320488 cd15366 7tmA_GPR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320488 cd15366 7tmA_GPR4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320488 cd15366 7tmA_GPR4 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320488 cd15366 7tmA_GPR4 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320488 cd15366 7tmA_GPR4 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320488 cd15366 7tmA_GPR4 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320488 cd15366 7tmA_GPR4 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320489 cd15367 7tmA_GPR68_OGR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320489 cd15367 7tmA_GPR68_OGR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320489 cd15367 7tmA_GPR68_OGR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320489 cd15367 7tmA_GPR68_OGR1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320489 cd15367 7tmA_GPR68_OGR1 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320489 cd15367 7tmA_GPR68_OGR1 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320489 cd15367 7tmA_GPR68_OGR1 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320289 cd15161 7tmA_GPR17 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320289 cd15161 7tmA_GPR17 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320289 cd15161 7tmA_GPR17 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320289 cd15161 7tmA_GPR17 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320289 cd15161 7tmA_GPR17 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320289 cd15161 7tmA_GPR17 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320289 cd15161 7tmA_GPR17 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -341328 cd15162 7tmA_PAR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341328 cd15162 7tmA_PAR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341328 cd15162 7tmA_PAR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341328 cd15162 7tmA_PAR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341328 cd15162 7tmA_PAR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -341328 cd15162 7tmA_PAR 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341328 cd15162 7tmA_PAR 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320490 cd15368 7tmA_P2Y8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320490 cd15368 7tmA_P2Y8 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320490 cd15368 7tmA_P2Y8 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320490 cd15368 7tmA_P2Y8 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320490 cd15368 7tmA_P2Y8 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320490 cd15368 7tmA_P2Y8 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320490 cd15368 7tmA_P2Y8 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320491 cd15369 7tmA_PAR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320491 cd15369 7tmA_PAR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320491 cd15369 7tmA_PAR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320491 cd15369 7tmA_PAR1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320491 cd15369 7tmA_PAR1 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320491 cd15369 7tmA_PAR1 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320491 cd15369 7tmA_PAR1 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -341349 cd15370 7tmA_PAR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341349 cd15370 7tmA_PAR2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341349 cd15370 7tmA_PAR2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341349 cd15370 7tmA_PAR2 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341349 cd15370 7tmA_PAR2 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -341349 cd15370 7tmA_PAR2 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341349 cd15370 7tmA_PAR2 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320493 cd15371 7tmA_PAR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320493 cd15371 7tmA_PAR3 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320493 cd15371 7tmA_PAR3 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320493 cd15371 7tmA_PAR3 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320493 cd15371 7tmA_PAR3 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320493 cd15371 7tmA_PAR3 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320493 cd15371 7tmA_PAR3 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320494 cd15372 7tmA_PAR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320494 cd15372 7tmA_PAR4 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320494 cd15372 7tmA_PAR4 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320494 cd15372 7tmA_PAR4 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320494 cd15372 7tmA_PAR4 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320494 cd15372 7tmA_PAR4 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320494 cd15372 7tmA_PAR4 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320291 cd15163 7tmA_GPR20 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320291 cd15163 7tmA_GPR20 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320291 cd15163 7tmA_GPR20 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320291 cd15163 7tmA_GPR20 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320291 cd15163 7tmA_GPR20 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320291 cd15163 7tmA_GPR20 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320291 cd15163 7tmA_GPR20 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320294 cd15166 7tmA_NAGly_R_GPR18 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320294 cd15166 7tmA_NAGly_R_GPR18 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320294 cd15166 7tmA_NAGly_R_GPR18 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320294 cd15166 7tmA_NAGly_R_GPR18 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320294 cd15166 7tmA_NAGly_R_GPR18 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320294 cd15166 7tmA_NAGly_R_GPR18 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320294 cd15166 7tmA_NAGly_R_GPR18 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320295 cd15167 7tmA_GPR171 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320295 cd15167 7tmA_GPR171 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320295 cd15167 7tmA_GPR171 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320295 cd15167 7tmA_GPR171 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320295 cd15167 7tmA_GPR171 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320295 cd15167 7tmA_GPR171 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320295 cd15167 7tmA_GPR171 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341329 cd15168 7tmA_P2Y1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341329 cd15168 7tmA_P2Y1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341329 cd15168 7tmA_P2Y1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341329 cd15168 7tmA_P2Y1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341329 cd15168 7tmA_P2Y1-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341329 cd15168 7tmA_P2Y1-like 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -341329 cd15168 7tmA_P2Y1-like 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320495 cd15373 7tmA_P2Y2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320495 cd15373 7tmA_P2Y2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320495 cd15373 7tmA_P2Y2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320495 cd15373 7tmA_P2Y2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320495 cd15373 7tmA_P2Y2 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320495 cd15373 7tmA_P2Y2 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320495 cd15373 7tmA_P2Y2 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320496 cd15374 7tmA_P2Y4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320496 cd15374 7tmA_P2Y4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320496 cd15374 7tmA_P2Y4 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320496 cd15374 7tmA_P2Y4 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320496 cd15374 7tmA_P2Y4 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320496 cd15374 7tmA_P2Y4 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320496 cd15374 7tmA_P2Y4 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320497 cd15375 7tmA_OXGR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320497 cd15375 7tmA_OXGR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320497 cd15375 7tmA_OXGR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320497 cd15375 7tmA_OXGR1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320497 cd15375 7tmA_OXGR1 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320497 cd15375 7tmA_OXGR1 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320497 cd15375 7tmA_OXGR1 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320498 cd15376 7tmA_P2Y11 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320498 cd15376 7tmA_P2Y11 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320498 cd15376 7tmA_P2Y11 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320498 cd15376 7tmA_P2Y11 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320498 cd15376 7tmA_P2Y11 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320498 cd15376 7tmA_P2Y11 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320498 cd15376 7tmA_P2Y11 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -341350 cd15377 7tmA_P2Y1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341350 cd15377 7tmA_P2Y1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341350 cd15377 7tmA_P2Y1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341350 cd15377 7tmA_P2Y1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341350 cd15377 7tmA_P2Y1 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341350 cd15377 7tmA_P2Y1 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -341350 cd15377 7tmA_P2Y1 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320500 cd15378 7tmA_SUCNR1_GPR91 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320500 cd15378 7tmA_SUCNR1_GPR91 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320500 cd15378 7tmA_SUCNR1_GPR91 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320500 cd15378 7tmA_SUCNR1_GPR91 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320500 cd15378 7tmA_SUCNR1_GPR91 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320500 cd15378 7tmA_SUCNR1_GPR91 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320500 cd15378 7tmA_SUCNR1_GPR91 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320633 cd15967 7tmA_P2Y1-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320633 cd15967 7tmA_P2Y1-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320633 cd15967 7tmA_P2Y1-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320633 cd15967 7tmA_P2Y1-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320633 cd15967 7tmA_P2Y1-like 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320633 cd15967 7tmA_P2Y1-like 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320633 cd15967 7tmA_P2Y1-like 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320634 cd15968 7tmA_P2Y6_P2Y3-like 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320501 cd15379 7tmA_P2Y6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320501 cd15379 7tmA_P2Y6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320501 cd15379 7tmA_P2Y6 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320501 cd15379 7tmA_P2Y6 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320501 cd15379 7tmA_P2Y6 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320501 cd15379 7tmA_P2Y6 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320501 cd15379 7tmA_P2Y6 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320667 cd16001 7tmA_P2Y3-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320667 cd16001 7tmA_P2Y3-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320667 cd16001 7tmA_P2Y3-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320667 cd16001 7tmA_P2Y3-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320667 cd16001 7tmA_P2Y3-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320667 cd16001 7tmA_P2Y3-like 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320667 cd16001 7tmA_P2Y3-like 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320586 cd15920 7tmA_GPR34-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320586 cd15920 7tmA_GPR34-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320586 cd15920 7tmA_GPR34-like 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320586 cd15920 7tmA_GPR34-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320586 cd15920 7tmA_GPR34-like 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320586 cd15920 7tmA_GPR34-like 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320586 cd15920 7tmA_GPR34-like 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320587 cd15921 7tmA_CysLTR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320587 cd15921 7tmA_CysLTR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320587 cd15921 7tmA_CysLTR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320587 cd15921 7tmA_CysLTR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320587 cd15921 7tmA_CysLTR 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320587 cd15921 7tmA_CysLTR 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320587 cd15921 7tmA_CysLTR 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320285 cd15157 7tmA_CysLTR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320285 cd15157 7tmA_CysLTR2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320285 cd15157 7tmA_CysLTR2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320285 cd15157 7tmA_CysLTR2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320285 cd15157 7tmA_CysLTR2 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320285 cd15157 7tmA_CysLTR2 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320285 cd15157 7tmA_CysLTR2 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320286 cd15158 7tmA_CysLTR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320286 cd15158 7tmA_CysLTR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320286 cd15158 7tmA_CysLTR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320286 cd15158 7tmA_CysLTR1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320286 cd15158 7tmA_CysLTR1 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320286 cd15158 7tmA_CysLTR1 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320286 cd15158 7tmA_CysLTR1 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320588 cd15922 7tmA_P2Y-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320588 cd15922 7tmA_P2Y-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320588 cd15922 7tmA_P2Y-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320588 cd15922 7tmA_P2Y-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320588 cd15922 7tmA_P2Y-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320588 cd15922 7tmA_P2Y-like 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320588 cd15922 7tmA_P2Y-like 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320589 cd15923 7tmA_GPR35_55-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320589 cd15923 7tmA_GPR35_55-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320589 cd15923 7tmA_GPR35_55-like 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320589 cd15923 7tmA_GPR35_55-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320589 cd15923 7tmA_GPR35_55-like 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320589 cd15923 7tmA_GPR35_55-like 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320589 cd15923 7tmA_GPR35_55-like 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320292 cd15164 7tmA_GPR35-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320292 cd15164 7tmA_GPR35-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320292 cd15164 7tmA_GPR35-like 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320292 cd15164 7tmA_GPR35-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320292 cd15164 7tmA_GPR35-like 5 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320292 cd15164 7tmA_GPR35-like 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320292 cd15164 7tmA_GPR35-like 7 TM helix 7 0 0 0 0 239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264 7 -320293 cd15165 7tmA_GPR55-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320293 cd15165 7tmA_GPR55-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320293 cd15165 7tmA_GPR55-like 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320293 cd15165 7tmA_GPR55-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320293 cd15165 7tmA_GPR55-like 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320293 cd15165 7tmA_GPR55-like 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320293 cd15165 7tmA_GPR55-like 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -341352 cd15924 7tmA_P2Y12-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341352 cd15924 7tmA_P2Y12-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -341352 cd15924 7tmA_P2Y12-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341352 cd15924 7tmA_P2Y12-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341352 cd15924 7tmA_P2Y12-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341352 cd15924 7tmA_P2Y12-like 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341352 cd15924 7tmA_P2Y12-like 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320277 cd15149 7tmA_P2Y14 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320277 cd15149 7tmA_P2Y14 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320277 cd15149 7tmA_P2Y14 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320277 cd15149 7tmA_P2Y14 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320277 cd15149 7tmA_P2Y14 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320277 cd15149 7tmA_P2Y14 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320277 cd15149 7tmA_P2Y14 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -341326 cd15150 7tmA_P2Y12 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341326 cd15150 7tmA_P2Y12 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -341326 cd15150 7tmA_P2Y12 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341326 cd15150 7tmA_P2Y12 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341326 cd15150 7tmA_P2Y12 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341326 cd15150 7tmA_P2Y12 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341326 cd15150 7tmA_P2Y12 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -341327 cd15151 7tmA_P2Y13 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341327 cd15151 7tmA_P2Y13 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -341327 cd15151 7tmA_P2Y13 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341327 cd15151 7tmA_P2Y13 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341327 cd15151 7tmA_P2Y13 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341327 cd15151 7tmA_P2Y13 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341327 cd15151 7tmA_P2Y13 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320635 cd15969 7tmA_GPR87 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320635 cd15969 7tmA_GPR87 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320635 cd15969 7tmA_GPR87 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320635 cd15969 7tmA_GPR87 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320635 cd15969 7tmA_GPR87 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320635 cd15969 7tmA_GPR87 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320635 cd15969 7tmA_GPR87 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -341319 cd14984 7tmA_Chemokine_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341319 cd14984 7tmA_Chemokine_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341319 cd14984 7tmA_Chemokine_R 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341319 cd14984 7tmA_Chemokine_R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341319 cd14984 7tmA_Chemokine_R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341319 cd14984 7tmA_Chemokine_R 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -341319 cd14984 7tmA_Chemokine_R 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341330 cd15172 7tmA_CCR6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341330 cd15172 7tmA_CCR6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341330 cd15172 7tmA_CCR6 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341330 cd15172 7tmA_CCR6 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341330 cd15172 7tmA_CCR6 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -341330 cd15172 7tmA_CCR6 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -341330 cd15172 7tmA_CCR6 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320301 cd15173 7tmA_CXCR6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320301 cd15173 7tmA_CXCR6 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320301 cd15173 7tmA_CXCR6 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320301 cd15173 7tmA_CXCR6 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320301 cd15173 7tmA_CXCR6 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320301 cd15173 7tmA_CXCR6 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320301 cd15173 7tmA_CXCR6 7 TM helix 7 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320302 cd15174 7tmA_CCR9 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320302 cd15174 7tmA_CCR9 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320302 cd15174 7tmA_CCR9 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320302 cd15174 7tmA_CCR9 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320302 cd15174 7tmA_CCR9 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320302 cd15174 7tmA_CCR9 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320302 cd15174 7tmA_CCR9 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341331 cd15175 7tmA_CCR7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341331 cd15175 7tmA_CCR7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341331 cd15175 7tmA_CCR7 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341331 cd15175 7tmA_CCR7 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341331 cd15175 7tmA_CCR7 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341331 cd15175 7tmA_CCR7 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -341331 cd15175 7tmA_CCR7 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320304 cd15176 7tmA_ACKR4_CCR11 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320304 cd15176 7tmA_ACKR4_CCR11 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320304 cd15176 7tmA_ACKR4_CCR11 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320304 cd15176 7tmA_ACKR4_CCR11 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320304 cd15176 7tmA_ACKR4_CCR11 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320304 cd15176 7tmA_ACKR4_CCR11 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -320304 cd15176 7tmA_ACKR4_CCR11 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -341332 cd15177 7tmA_CCR10 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341332 cd15177 7tmA_CCR10 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341332 cd15177 7tmA_CCR10 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341332 cd15177 7tmA_CCR10 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341332 cd15177 7tmA_CCR10 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341332 cd15177 7tmA_CCR10 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -341332 cd15177 7tmA_CCR10 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341333 cd15178 7tmA_CXCR1_2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341333 cd15178 7tmA_CXCR1_2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341333 cd15178 7tmA_CXCR1_2 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341333 cd15178 7tmA_CXCR1_2 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -341333 cd15178 7tmA_CXCR1_2 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341333 cd15178 7tmA_CXCR1_2 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -341333 cd15178 7tmA_CXCR1_2 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341334 cd15179 7tmA_CXCR4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341334 cd15179 7tmA_CXCR4 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341334 cd15179 7tmA_CXCR4 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341334 cd15179 7tmA_CXCR4 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341334 cd15179 7tmA_CXCR4 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341334 cd15179 7tmA_CXCR4 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -341334 cd15179 7tmA_CXCR4 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341335 cd15180 7tmA_CXCR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341335 cd15180 7tmA_CXCR3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341335 cd15180 7tmA_CXCR3 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341335 cd15180 7tmA_CXCR3 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341335 cd15180 7tmA_CXCR3 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341335 cd15180 7tmA_CXCR3 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -341335 cd15180 7tmA_CXCR3 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -341336 cd15181 7tmA_CXCR5 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341336 cd15181 7tmA_CXCR5 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341336 cd15181 7tmA_CXCR5 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341336 cd15181 7tmA_CXCR5 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341336 cd15181 7tmA_CXCR5 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -341336 cd15181 7tmA_CXCR5 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341336 cd15181 7tmA_CXCR5 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -341337 cd15182 7tmA_XCR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341337 cd15182 7tmA_XCR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341337 cd15182 7tmA_XCR1 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341337 cd15182 7tmA_XCR1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341337 cd15182 7tmA_XCR1 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -341337 cd15182 7tmA_XCR1 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -341337 cd15182 7tmA_XCR1 7 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320311 cd15183 7tmA_CCR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320311 cd15183 7tmA_CCR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320311 cd15183 7tmA_CCR1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320311 cd15183 7tmA_CCR1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320311 cd15183 7tmA_CCR1 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320311 cd15183 7tmA_CCR1 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320311 cd15183 7tmA_CCR1 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341338 cd15184 7tmA_CCR5_CCR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341338 cd15184 7tmA_CCR5_CCR2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341338 cd15184 7tmA_CCR5_CCR2 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -341338 cd15184 7tmA_CCR5_CCR2 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341338 cd15184 7tmA_CCR5_CCR2 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341338 cd15184 7tmA_CCR5_CCR2 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -341338 cd15184 7tmA_CCR5_CCR2 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341339 cd15185 7tmA_CCR3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341339 cd15185 7tmA_CCR3 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341339 cd15185 7tmA_CCR3 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -341339 cd15185 7tmA_CCR3 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341339 cd15185 7tmA_CCR3 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341339 cd15185 7tmA_CCR3 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -341339 cd15185 7tmA_CCR3 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320314 cd15186 7tmA_CX3CR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320314 cd15186 7tmA_CX3CR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320314 cd15186 7tmA_CX3CR1 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320314 cd15186 7tmA_CX3CR1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320314 cd15186 7tmA_CX3CR1 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320314 cd15186 7tmA_CX3CR1 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320314 cd15186 7tmA_CX3CR1 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320315 cd15187 7tmA_CCR8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320315 cd15187 7tmA_CCR8 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320315 cd15187 7tmA_CCR8 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320315 cd15187 7tmA_CCR8 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320315 cd15187 7tmA_CCR8 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320315 cd15187 7tmA_CCR8 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320315 cd15187 7tmA_CCR8 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320316 cd15188 7tmA_ACKR2_D6 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320316 cd15188 7tmA_ACKR2_D6 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320316 cd15188 7tmA_ACKR2_D6 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320316 cd15188 7tmA_ACKR2_D6 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320316 cd15188 7tmA_ACKR2_D6 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320316 cd15188 7tmA_ACKR2_D6 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320316 cd15188 7tmA_ACKR2_D6 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -341320 cd14985 7tmA_Angiotensin_R-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341320 cd14985 7tmA_Angiotensin_R-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341320 cd14985 7tmA_Angiotensin_R-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341320 cd14985 7tmA_Angiotensin_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -341320 cd14985 7tmA_Angiotensin_R-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -341320 cd14985 7tmA_Angiotensin_R-like 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341320 cd14985 7tmA_Angiotensin_R-like 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320317 cd15189 7tmA_Bradykinin_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320317 cd15189 7tmA_Bradykinin_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320317 cd15189 7tmA_Bradykinin_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320317 cd15189 7tmA_Bradykinin_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320317 cd15189 7tmA_Bradykinin_R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320317 cd15189 7tmA_Bradykinin_R 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320317 cd15189 7tmA_Bradykinin_R 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320502 cd15380 7tmA_BK-1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320502 cd15380 7tmA_BK-1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320502 cd15380 7tmA_BK-1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320502 cd15380 7tmA_BK-1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320502 cd15380 7tmA_BK-1 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320502 cd15380 7tmA_BK-1 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320502 cd15380 7tmA_BK-1 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320503 cd15381 7tmA_BK-2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320503 cd15381 7tmA_BK-2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320503 cd15381 7tmA_BK-2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320503 cd15381 7tmA_BK-2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320503 cd15381 7tmA_BK-2 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320503 cd15381 7tmA_BK-2 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320503 cd15381 7tmA_BK-2 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -341340 cd15190 7tmA_Apelin_R 1 TM helix 1 0 0 0 1 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 7 -341340 cd15190 7tmA_Apelin_R 2 TM helix 2 0 0 0 0 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,64,65,66,67 7 -341340 cd15190 7tmA_Apelin_R 3 TM helix 3 0 0 0 0 84,85,86,87,88,89,90,91,92,93,94,98,99,100,101,102,103,104,105,106 7 -341340 cd15190 7tmA_Apelin_R 4 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -341340 cd15190 7tmA_Apelin_R 5 TM helix 5 0 0 0 0 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203 7 -341340 cd15190 7tmA_Apelin_R 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -341340 cd15190 7tmA_Apelin_R 7 TM helix 7 0 0 0 0 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -341341 cd15191 7tmA_AT2R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -341341 cd15191 7tmA_AT2R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -341341 cd15191 7tmA_AT2R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -341341 cd15191 7tmA_AT2R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -341341 cd15191 7tmA_AT2R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -341341 cd15191 7tmA_AT2R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -341341 cd15191 7tmA_AT2R 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320320 cd15192 7tmA_AT1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320320 cd15192 7tmA_AT1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320320 cd15192 7tmA_AT1R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320320 cd15192 7tmA_AT1R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320320 cd15192 7tmA_AT1R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320320 cd15192 7tmA_AT1R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320320 cd15192 7tmA_AT1R 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320321 cd15193 7tmA_GPR25 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320321 cd15193 7tmA_GPR25 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320321 cd15193 7tmA_GPR25 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320321 cd15193 7tmA_GPR25 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320321 cd15193 7tmA_GPR25 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320321 cd15193 7tmA_GPR25 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320321 cd15193 7tmA_GPR25 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320322 cd15194 7tmA_GPR15 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320322 cd15194 7tmA_GPR15 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320322 cd15194 7tmA_GPR15 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320322 cd15194 7tmA_GPR15 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320322 cd15194 7tmA_GPR15 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320322 cd15194 7tmA_GPR15 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320322 cd15194 7tmA_GPR15 7 TM helix 7 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273 7 -320117 cd14986 7tmA_Vasopressin-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320117 cd14986 7tmA_Vasopressin-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320117 cd14986 7tmA_Vasopressin-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320117 cd14986 7tmA_Vasopressin-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320117 cd14986 7tmA_Vasopressin-like 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320117 cd14986 7tmA_Vasopressin-like 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320117 cd14986 7tmA_Vasopressin-like 7 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320323 cd15195 7tmA_GnRHR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320323 cd15195 7tmA_GnRHR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320323 cd15195 7tmA_GnRHR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320323 cd15195 7tmA_GnRHR-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320323 cd15195 7tmA_GnRHR-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320323 cd15195 7tmA_GnRHR-like 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320323 cd15195 7tmA_GnRHR-like 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320504 cd15382 7tmA_AKHR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320504 cd15382 7tmA_AKHR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,56,57,58,59 7 -320504 cd15382 7tmA_AKHR 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320504 cd15382 7tmA_AKHR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320504 cd15382 7tmA_AKHR 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320504 cd15382 7tmA_AKHR 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320504 cd15382 7tmA_AKHR 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320505 cd15383 7tmA_GnRHR_vertebrate 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320505 cd15383 7tmA_GnRHR_vertebrate 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,56,57,58,59 7 -320505 cd15383 7tmA_GnRHR_vertebrate 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320505 cd15383 7tmA_GnRHR_vertebrate 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320505 cd15383 7tmA_GnRHR_vertebrate 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320505 cd15383 7tmA_GnRHR_vertebrate 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320505 cd15383 7tmA_GnRHR_vertebrate 7 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320506 cd15384 7tmA_GnRHR_invertebrate 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320506 cd15384 7tmA_GnRHR_invertebrate 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320506 cd15384 7tmA_GnRHR_invertebrate 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320506 cd15384 7tmA_GnRHR_invertebrate 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320506 cd15384 7tmA_GnRHR_invertebrate 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320506 cd15384 7tmA_GnRHR_invertebrate 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320506 cd15384 7tmA_GnRHR_invertebrate 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320324 cd15196 7tmA_Vasopressin_Oxytocin 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320507 cd15385 7tmA_V1aR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320507 cd15385 7tmA_V1aR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320507 cd15385 7tmA_V1aR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320507 cd15385 7tmA_V1aR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320507 cd15385 7tmA_V1aR 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320507 cd15385 7tmA_V1aR 6 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320507 cd15385 7tmA_V1aR 7 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320508 cd15386 7tmA_V1bR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320508 cd15386 7tmA_V1bR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320508 cd15386 7tmA_V1bR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320508 cd15386 7tmA_V1bR 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320508 cd15386 7tmA_V1bR 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320508 cd15386 7tmA_V1bR 6 TM helix 6 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320508 cd15386 7tmA_V1bR 7 TM helix 7 0 0 0 0 269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294 7 -320509 cd15387 7tmA_OT_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320509 cd15387 7tmA_OT_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320509 cd15387 7tmA_OT_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320509 cd15387 7tmA_OT_R 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320509 cd15387 7tmA_OT_R 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320509 cd15387 7tmA_OT_R 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320509 cd15387 7tmA_OT_R 7 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320510 cd15388 7tmA_V2R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320510 cd15388 7tmA_V2R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320510 cd15388 7tmA_V2R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320510 cd15388 7tmA_V2R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320510 cd15388 7tmA_V2R 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320510 cd15388 7tmA_V2R 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320510 cd15388 7tmA_V2R 7 TM helix 7 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320325 cd15197 7tmA_NPSR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320325 cd15197 7tmA_NPSR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320325 cd15197 7tmA_NPSR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320325 cd15197 7tmA_NPSR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320325 cd15197 7tmA_NPSR 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320325 cd15197 7tmA_NPSR 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320325 cd15197 7tmA_NPSR 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320326 cd15198 7tmA_GPR150 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320326 cd15198 7tmA_GPR150 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320326 cd15198 7tmA_GPR150 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320326 cd15198 7tmA_GPR150 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320326 cd15198 7tmA_GPR150 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320326 cd15198 7tmA_GPR150 6 TM helix 6 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320326 cd15198 7tmA_GPR150 7 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320118 cd14987 7tmA_ACKR3_CXCR7 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320118 cd14987 7tmA_ACKR3_CXCR7 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320118 cd14987 7tmA_ACKR3_CXCR7 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320118 cd14987 7tmA_ACKR3_CXCR7 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320118 cd14987 7tmA_ACKR3_CXCR7 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320118 cd14987 7tmA_ACKR3_CXCR7 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320118 cd14987 7tmA_ACKR3_CXCR7 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320119 cd14988 7tmA_GPR182 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320119 cd14988 7tmA_GPR182 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320119 cd14988 7tmA_GPR182 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320119 cd14988 7tmA_GPR182 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320119 cd14988 7tmA_GPR182 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320119 cd14988 7tmA_GPR182 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320119 cd14988 7tmA_GPR182 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320120 cd14989 7tmA_GPER1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320120 cd14989 7tmA_GPER1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320120 cd14989 7tmA_GPER1 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320120 cd14989 7tmA_GPER1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320120 cd14989 7tmA_GPER1 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320120 cd14989 7tmA_GPER1 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320120 cd14989 7tmA_GPER1 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320121 cd14990 7tmA_GPR146 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320121 cd14990 7tmA_GPR146 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320121 cd14990 7tmA_GPR146 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320121 cd14990 7tmA_GPR146 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320121 cd14990 7tmA_GPR146 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320121 cd14990 7tmA_GPR146 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320121 cd14990 7tmA_GPR146 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320123 cd14992 7tmA_TACR_family 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320123 cd14992 7tmA_TACR_family 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320123 cd14992 7tmA_TACR_family 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320123 cd14992 7tmA_TACR_family 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320123 cd14992 7tmA_TACR_family 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320123 cd14992 7tmA_TACR_family 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320123 cd14992 7tmA_TACR_family 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320330 cd15202 7tmA_TACR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320330 cd15202 7tmA_TACR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320330 cd15202 7tmA_TACR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320330 cd15202 7tmA_TACR-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320330 cd15202 7tmA_TACR-like 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320330 cd15202 7tmA_TACR-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320330 cd15202 7tmA_TACR-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320511 cd15389 7tmA_GPR83 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320511 cd15389 7tmA_GPR83 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320511 cd15389 7tmA_GPR83 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320511 cd15389 7tmA_GPR83 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320511 cd15389 7tmA_GPR83 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320511 cd15389 7tmA_GPR83 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320511 cd15389 7tmA_GPR83 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320512 cd15390 7tmA_TACR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320512 cd15390 7tmA_TACR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320512 cd15390 7tmA_TACR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320512 cd15390 7tmA_TACR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320512 cd15390 7tmA_TACR 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320512 cd15390 7tmA_TACR 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320512 cd15390 7tmA_TACR 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320668 cd16002 7tmA_NK1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320668 cd16002 7tmA_NK1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320668 cd16002 7tmA_NK1R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320668 cd16002 7tmA_NK1R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320668 cd16002 7tmA_NK1R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320668 cd16002 7tmA_NK1R 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320668 cd16002 7tmA_NK1R 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320669 cd16003 7tmA_NKR_NK3R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320669 cd16003 7tmA_NKR_NK3R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320669 cd16003 7tmA_NKR_NK3R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320669 cd16003 7tmA_NKR_NK3R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320669 cd16003 7tmA_NKR_NK3R 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320669 cd16003 7tmA_NKR_NK3R 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320669 cd16003 7tmA_NKR_NK3R 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320670 cd16004 7tmA_SKR_NK2R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320670 cd16004 7tmA_SKR_NK2R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320670 cd16004 7tmA_SKR_NK2R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320670 cd16004 7tmA_SKR_NK2R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320670 cd16004 7tmA_SKR_NK2R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320670 cd16004 7tmA_SKR_NK2R 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320670 cd16004 7tmA_SKR_NK2R 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320514 cd15392 7tmA_PR4-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320514 cd15392 7tmA_PR4-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320514 cd15392 7tmA_PR4-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320514 cd15392 7tmA_PR4-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320514 cd15392 7tmA_PR4-like 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320514 cd15392 7tmA_PR4-like 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320514 cd15392 7tmA_PR4-like 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320515 cd15393 7tmA_leucokinin-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320515 cd15393 7tmA_leucokinin-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320515 cd15393 7tmA_leucokinin-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320515 cd15393 7tmA_leucokinin-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320515 cd15393 7tmA_leucokinin-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320515 cd15393 7tmA_leucokinin-like 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320515 cd15393 7tmA_leucokinin-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320332 cd15204 7tmA_prokineticin-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320332 cd15204 7tmA_prokineticin-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320332 cd15204 7tmA_prokineticin-R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320332 cd15204 7tmA_prokineticin-R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320332 cd15204 7tmA_prokineticin-R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320332 cd15204 7tmA_prokineticin-R 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320332 cd15204 7tmA_prokineticin-R 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320513 cd15391 7tmA_NPR-like_invertebrate 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320513 cd15391 7tmA_NPR-like_invertebrate 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320513 cd15391 7tmA_NPR-like_invertebrate 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320513 cd15391 7tmA_NPR-like_invertebrate 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320513 cd15391 7tmA_NPR-like_invertebrate 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320513 cd15391 7tmA_NPR-like_invertebrate 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320513 cd15391 7tmA_NPR-like_invertebrate 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320124 cd14993 7tmA_CCKR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320124 cd14993 7tmA_CCKR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320124 cd14993 7tmA_CCKR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320124 cd14993 7tmA_CCKR-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320124 cd14993 7tmA_CCKR-like 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320124 cd14993 7tmA_CCKR-like 6 TM helix 6 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320124 cd14993 7tmA_CCKR-like 7 TM helix 7 0 0 0 0 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288 7 -320333 cd15205 7tmA_QRFPR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320333 cd15205 7tmA_QRFPR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320333 cd15205 7tmA_QRFPR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320333 cd15205 7tmA_QRFPR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320333 cd15205 7tmA_QRFPR 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320333 cd15205 7tmA_QRFPR 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320333 cd15205 7tmA_QRFPR 7 TM helix 7 0 0 0 0 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290 7 -320334 cd15206 7tmA_CCK_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320334 cd15206 7tmA_CCK_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320334 cd15206 7tmA_CCK_R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320334 cd15206 7tmA_CCK_R 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320334 cd15206 7tmA_CCK_R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320334 cd15206 7tmA_CCK_R 6 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320334 cd15206 7tmA_CCK_R 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320644 cd15978 7tmA_CCK-AR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320644 cd15978 7tmA_CCK-AR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320644 cd15978 7tmA_CCK-AR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320644 cd15978 7tmA_CCK-AR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320644 cd15978 7tmA_CCK-AR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320644 cd15978 7tmA_CCK-AR 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320644 cd15978 7tmA_CCK-AR 7 TM helix 7 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320645 cd15979 7tmA_CCK-BR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320645 cd15979 7tmA_CCK-BR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320645 cd15979 7tmA_CCK-BR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320645 cd15979 7tmA_CCK-BR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320645 cd15979 7tmA_CCK-BR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320645 cd15979 7tmA_CCK-BR 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320645 cd15979 7tmA_CCK-BR 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320335 cd15207 7tmA_NPFFR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320335 cd15207 7tmA_NPFFR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320335 cd15207 7tmA_NPFFR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320335 cd15207 7tmA_NPFFR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320335 cd15207 7tmA_NPFFR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320335 cd15207 7tmA_NPFFR 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320335 cd15207 7tmA_NPFFR 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320646 cd15980 7tmA_NPFFR2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320646 cd15980 7tmA_NPFFR2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320646 cd15980 7tmA_NPFFR2 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320646 cd15980 7tmA_NPFFR2 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320646 cd15980 7tmA_NPFFR2 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320646 cd15980 7tmA_NPFFR2 6 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320646 cd15980 7tmA_NPFFR2 7 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320647 cd15981 7tmA_NPFFR1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320647 cd15981 7tmA_NPFFR1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320647 cd15981 7tmA_NPFFR1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320647 cd15981 7tmA_NPFFR1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320647 cd15981 7tmA_NPFFR1 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320647 cd15981 7tmA_NPFFR1 6 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320647 cd15981 7tmA_NPFFR1 7 TM helix 7 0 0 0 0 266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291 7 -320336 cd15208 7tmA_OXR 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320336 cd15208 7tmA_OXR 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320336 cd15208 7tmA_OXR 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320336 cd15208 7tmA_OXR 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320336 cd15208 7tmA_OXR 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320336 cd15208 7tmA_OXR 6 TM helix 6 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320336 cd15208 7tmA_OXR 7 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320126 cd14995 7tmA_TRH-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320126 cd14995 7tmA_TRH-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,56,57,58 7 -320126 cd14995 7tmA_TRH-R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320126 cd14995 7tmA_TRH-R 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320126 cd14995 7tmA_TRH-R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320126 cd14995 7tmA_TRH-R 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320126 cd14995 7tmA_TRH-R 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320128 cd14997 7tmA_ETH-R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320128 cd14997 7tmA_ETH-R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320128 cd14997 7tmA_ETH-R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320128 cd14997 7tmA_ETH-R 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320128 cd14997 7tmA_ETH-R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320128 cd14997 7tmA_ETH-R 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320128 cd14997 7tmA_ETH-R 7 TM helix 7 0 0 0 0 261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286 7 -320130 cd14999 7tmA_UII-R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320130 cd14999 7tmA_UII-R 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320130 cd14999 7tmA_UII-R 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320130 cd14999 7tmA_UII-R 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320130 cd14999 7tmA_UII-R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320130 cd14999 7tmA_UII-R 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320130 cd14999 7tmA_UII-R 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320131 cd15000 7tmA_BNGR-A34-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320131 cd15000 7tmA_BNGR-A34-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55 7 -320131 cd15000 7tmA_BNGR-A34-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320131 cd15000 7tmA_BNGR-A34-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320131 cd15000 7tmA_BNGR-A34-like 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320131 cd15000 7tmA_BNGR-A34-like 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320131 cd15000 7tmA_BNGR-A34-like 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320132 cd15001 7tmA_GPRnna14-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320132 cd15001 7tmA_GPRnna14-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320132 cd15001 7tmA_GPRnna14-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320132 cd15001 7tmA_GPRnna14-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320132 cd15001 7tmA_GPRnna14-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320132 cd15001 7tmA_GPRnna14-like 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320132 cd15001 7tmA_GPRnna14-like 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320133 cd15002 7tmA_GPR151 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320133 cd15002 7tmA_GPR151 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320133 cd15002 7tmA_GPR151 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320133 cd15002 7tmA_GPR151 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320133 cd15002 7tmA_GPR151 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320133 cd15002 7tmA_GPR151 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320133 cd15002 7tmA_GPR151 7 TM helix 7 0 0 0 0 247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272 7 -320134 cd15005 7tmA_SREB-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320134 cd15005 7tmA_SREB-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320134 cd15005 7tmA_SREB-like 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320134 cd15005 7tmA_SREB-like 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320134 cd15005 7tmA_SREB-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320134 cd15005 7tmA_SREB-like 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320134 cd15005 7tmA_SREB-like 7 TM helix 7 0 0 0 0 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321 7 -320344 cd15216 7tmA_SREB1_GPR27 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320344 cd15216 7tmA_SREB1_GPR27 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320344 cd15216 7tmA_SREB1_GPR27 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320344 cd15216 7tmA_SREB1_GPR27 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320344 cd15216 7tmA_SREB1_GPR27 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320344 cd15216 7tmA_SREB1_GPR27 6 TM helix 6 0 0 0 0 262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287 7 -320344 cd15216 7tmA_SREB1_GPR27 7 TM helix 7 0 0 0 0 299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324 7 -320345 cd15217 7tmA_SREB3_GPR173 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320345 cd15217 7tmA_SREB3_GPR173 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320345 cd15217 7tmA_SREB3_GPR173 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320345 cd15217 7tmA_SREB3_GPR173 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320345 cd15217 7tmA_SREB3_GPR173 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320345 cd15217 7tmA_SREB3_GPR173 6 TM helix 6 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320345 cd15217 7tmA_SREB3_GPR173 7 TM helix 7 0 0 0 0 296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321 7 -320346 cd15218 7tmA_SREB2_GPR85 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320346 cd15218 7tmA_SREB2_GPR85 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320346 cd15218 7tmA_SREB2_GPR85 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320346 cd15218 7tmA_SREB2_GPR85 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320346 cd15218 7tmA_SREB2_GPR85 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320346 cd15218 7tmA_SREB2_GPR85 6 TM helix 6 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320346 cd15218 7tmA_SREB2_GPR85 7 TM helix 7 0 0 0 0 297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322 7 -320135 cd15006 7tmA_GPR176 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320135 cd15006 7tmA_GPR176 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320135 cd15006 7tmA_GPR176 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320135 cd15006 7tmA_GPR176 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320135 cd15006 7tmA_GPR176 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320135 cd15006 7tmA_GPR176 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320135 cd15006 7tmA_GPR176 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320136 cd15007 7tmA_GPR75 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320136 cd15007 7tmA_GPR75 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,55,56,57,58 7 -320136 cd15007 7tmA_GPR75 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320136 cd15007 7tmA_GPR75 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320136 cd15007 7tmA_GPR75 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320136 cd15007 7tmA_GPR75 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320136 cd15007 7tmA_GPR75 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320137 cd15008 7tmA_GPR19 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320137 cd15008 7tmA_GPR19 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320137 cd15008 7tmA_GPR19 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320137 cd15008 7tmA_GPR19 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320137 cd15008 7tmA_GPR19 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320137 cd15008 7tmA_GPR19 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320137 cd15008 7tmA_GPR19 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320140 cd15012 7tmA_Trissin_R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320140 cd15012 7tmA_Trissin_R 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320140 cd15012 7tmA_Trissin_R 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320140 cd15012 7tmA_Trissin_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320140 cd15012 7tmA_Trissin_R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320140 cd15012 7tmA_Trissin_R 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320140 cd15012 7tmA_Trissin_R 7 TM helix 7 0 0 0 0 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320299 cd15171 7tmA_CCRL2 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320299 cd15171 7tmA_CCRL2 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56 7 -320299 cd15171 7tmA_CCRL2 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320299 cd15171 7tmA_CCRL2 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320299 cd15171 7tmA_CCRL2 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320299 cd15171 7tmA_CCRL2 6 TM helix 6 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320299 cd15171 7tmA_CCRL2 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320331 cd15203 7tmA_NPYR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320331 cd15203 7tmA_NPYR-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320331 cd15203 7tmA_NPYR-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320331 cd15203 7tmA_NPYR-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320331 cd15203 7tmA_NPYR-like 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320331 cd15203 7tmA_NPYR-like 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320331 cd15203 7tmA_NPYR-like 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320516 cd15394 7tmA_PrRP_R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320516 cd15394 7tmA_PrRP_R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320516 cd15394 7tmA_PrRP_R 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320516 cd15394 7tmA_PrRP_R 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320516 cd15394 7tmA_PrRP_R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320516 cd15394 7tmA_PrRP_R 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320516 cd15394 7tmA_PrRP_R 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320517 cd15395 7tmA_NPY1R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320517 cd15395 7tmA_NPY1R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320517 cd15395 7tmA_NPY1R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320517 cd15395 7tmA_NPY1R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320517 cd15395 7tmA_NPY1R 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320517 cd15395 7tmA_NPY1R 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320517 cd15395 7tmA_NPY1R 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320518 cd15396 7tmA_NPY6R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320518 cd15396 7tmA_NPY6R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320518 cd15396 7tmA_NPY6R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320518 cd15396 7tmA_NPY6R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320518 cd15396 7tmA_NPY6R 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320518 cd15396 7tmA_NPY6R 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320518 cd15396 7tmA_NPY6R 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320519 cd15397 7tmA_NPY4R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320519 cd15397 7tmA_NPY4R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320519 cd15397 7tmA_NPY4R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320519 cd15397 7tmA_NPY4R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320519 cd15397 7tmA_NPY4R 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320519 cd15397 7tmA_NPY4R 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320519 cd15397 7tmA_NPY4R 7 TM helix 7 0 0 0 0 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285 7 -320520 cd15398 7tmA_NPY5R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320520 cd15398 7tmA_NPY5R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320520 cd15398 7tmA_NPY5R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320520 cd15398 7tmA_NPY5R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320520 cd15398 7tmA_NPY5R 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320520 cd15398 7tmA_NPY5R 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320520 cd15398 7tmA_NPY5R 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320521 cd15399 7tmA_NPY2R 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320521 cd15399 7tmA_NPY2R 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320521 cd15399 7tmA_NPY2R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320521 cd15399 7tmA_NPY2R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320521 cd15399 7tmA_NPY2R 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320521 cd15399 7tmA_NPY2R 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320521 cd15399 7tmA_NPY2R 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320337 cd15209 7tmA_Mel1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320337 cd15209 7tmA_Mel1 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320337 cd15209 7tmA_Mel1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320337 cd15209 7tmA_Mel1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320337 cd15209 7tmA_Mel1 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320337 cd15209 7tmA_Mel1 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320337 cd15209 7tmA_Mel1 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320522 cd15400 7tmA_Mel1B 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320522 cd15400 7tmA_Mel1B 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320522 cd15400 7tmA_Mel1B 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320522 cd15400 7tmA_Mel1B 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320522 cd15400 7tmA_Mel1B 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320522 cd15400 7tmA_Mel1B 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320522 cd15400 7tmA_Mel1B 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320523 cd15401 7tmA_Mel1C 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320523 cd15401 7tmA_Mel1C 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320523 cd15401 7tmA_Mel1C 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320523 cd15401 7tmA_Mel1C 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320523 cd15401 7tmA_Mel1C 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320523 cd15401 7tmA_Mel1C 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320523 cd15401 7tmA_Mel1C 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320524 cd15402 7tmA_Mel1A 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320524 cd15402 7tmA_Mel1A 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320524 cd15402 7tmA_Mel1A 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320524 cd15402 7tmA_Mel1A 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320524 cd15402 7tmA_Mel1A 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320524 cd15402 7tmA_Mel1A 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320524 cd15402 7tmA_Mel1A 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320338 cd15210 7tmA_GPR84-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320338 cd15210 7tmA_GPR84-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320338 cd15210 7tmA_GPR84-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320338 cd15210 7tmA_GPR84-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320338 cd15210 7tmA_GPR84-like 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320338 cd15210 7tmA_GPR84-like 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320338 cd15210 7tmA_GPR84-like 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320339 cd15211 7tmA_GPR88-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320339 cd15211 7tmA_GPR88-like 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320339 cd15211 7tmA_GPR88-like 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320339 cd15211 7tmA_GPR88-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320339 cd15211 7tmA_GPR88-like 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320339 cd15211 7tmA_GPR88-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320339 cd15211 7tmA_GPR88-like 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320340 cd15212 7tmA_GPR135 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320340 cd15212 7tmA_GPR135 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320340 cd15212 7tmA_GPR135 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320340 cd15212 7tmA_GPR135 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320340 cd15212 7tmA_GPR135 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320340 cd15212 7tmA_GPR135 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320340 cd15212 7tmA_GPR135 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320341 cd15213 7tmA_PSP24-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320341 cd15213 7tmA_PSP24-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320341 cd15213 7tmA_PSP24-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320341 cd15213 7tmA_PSP24-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320341 cd15213 7tmA_PSP24-like 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320341 cd15213 7tmA_PSP24-like 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320341 cd15213 7tmA_PSP24-like 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320525 cd15403 7tmA_GPR45 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320525 cd15403 7tmA_GPR45 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320525 cd15403 7tmA_GPR45 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320525 cd15403 7tmA_GPR45 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320525 cd15403 7tmA_GPR45 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320525 cd15403 7tmA_GPR45 6 TM helix 6 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320525 cd15403 7tmA_GPR45 7 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320526 cd15404 7tmA_GPR63 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320526 cd15404 7tmA_GPR63 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320526 cd15404 7tmA_GPR63 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320526 cd15404 7tmA_GPR63 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320526 cd15404 7tmA_GPR63 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320526 cd15404 7tmA_GPR63 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320526 cd15404 7tmA_GPR63 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320342 cd15214 7tmA_GPR161 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320342 cd15214 7tmA_GPR161 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320342 cd15214 7tmA_GPR161 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320342 cd15214 7tmA_GPR161 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320342 cd15214 7tmA_GPR161 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320342 cd15214 7tmA_GPR161 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320342 cd15214 7tmA_GPR161 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320343 cd15215 7tmA_GPR101 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320343 cd15215 7tmA_GPR101 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320343 cd15215 7tmA_GPR101 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320343 cd15215 7tmA_GPR101 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320343 cd15215 7tmA_GPR101 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320343 cd15215 7tmA_GPR101 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320343 cd15215 7tmA_GPR101 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320347 cd15219 7tmA_GPR26_GPR78-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320347 cd15219 7tmA_GPR26_GPR78-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57 7 -320347 cd15219 7tmA_GPR26_GPR78-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320347 cd15219 7tmA_GPR26_GPR78-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320347 cd15219 7tmA_GPR26_GPR78-like 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320347 cd15219 7tmA_GPR26_GPR78-like 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320347 cd15219 7tmA_GPR26_GPR78-like 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320348 cd15220 7tmA_GPR61_GPR62-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320348 cd15220 7tmA_GPR61_GPR62-like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,51,52,53,54 7 -320348 cd15220 7tmA_GPR61_GPR62-like 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320348 cd15220 7tmA_GPR61_GPR62-like 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320348 cd15220 7tmA_GPR61_GPR62-like 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320348 cd15220 7tmA_GPR61_GPR62-like 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320348 cd15220 7tmA_GPR61_GPR62-like 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320571 cd15905 7tmA_GPBAR1 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -320571 cd15905 7tmA_GPBAR1 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -320571 cd15905 7tmA_GPBAR1 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320571 cd15905 7tmA_GPBAR1 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320571 cd15905 7tmA_GPBAR1 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320571 cd15905 7tmA_GPBAR1 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320571 cd15905 7tmA_GPBAR1 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320087 cd13949 7tm_V1R_pheromone 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320087 cd13949 7tm_V1R_pheromone 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320087 cd13949 7tm_V1R_pheromone 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320087 cd13949 7tm_V1R_pheromone 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320087 cd13949 7tm_V1R_pheromone 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320087 cd13949 7tm_V1R_pheromone 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320087 cd13949 7tm_V1R_pheromone 7 TM helix 7 0 0 0 0 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283 7 -320088 cd13950 7tm_TAS2R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320088 cd13950 7tm_TAS2R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320088 cd13950 7tm_TAS2R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320088 cd13950 7tm_TAS2R 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320088 cd13950 7tm_TAS2R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320088 cd13950 7tm_TAS2R 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320088 cd13950 7tm_TAS2R 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320141 cd15013 7tm_TAS2R4 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320141 cd15013 7tm_TAS2R4 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320141 cd15013 7tm_TAS2R4 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320141 cd15013 7tm_TAS2R4 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320141 cd15013 7tm_TAS2R4 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320141 cd15013 7tm_TAS2R4 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320141 cd15013 7tm_TAS2R4 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320144 cd15016 7tm_TAS2R1 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320144 cd15016 7tm_TAS2R1 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320144 cd15016 7tm_TAS2R1 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320144 cd15016 7tm_TAS2R1 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320144 cd15016 7tm_TAS2R1 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320144 cd15016 7tm_TAS2R1 6 TM helix 6 0 0 0 0 213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238 7 -320144 cd15016 7tm_TAS2R1 7 TM helix 7 0 0 0 0 249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274 7 -320145 cd15017 7tm_TAS2R16 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320145 cd15017 7tm_TAS2R16 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320145 cd15017 7tm_TAS2R16 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320145 cd15017 7tm_TAS2R16 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320145 cd15017 7tm_TAS2R16 5 TM helix 5 0 0 0 0 167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320145 cd15017 7tm_TAS2R16 6 TM helix 6 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320145 cd15017 7tm_TAS2R16 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320146 cd15018 7tm_TAS2R41-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320146 cd15018 7tm_TAS2R41-like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320146 cd15018 7tm_TAS2R41-like 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320146 cd15018 7tm_TAS2R41-like 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320146 cd15018 7tm_TAS2R41-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320146 cd15018 7tm_TAS2R41-like 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320146 cd15018 7tm_TAS2R41-like 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320147 cd15019 7tm_TAS2R14-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320147 cd15019 7tm_TAS2R14-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320147 cd15019 7tm_TAS2R14-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320147 cd15019 7tm_TAS2R14-like 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320147 cd15019 7tm_TAS2R14-like 5 TM helix 5 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 7 -320147 cd15019 7tm_TAS2R14-like 6 TM helix 6 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320147 cd15019 7tm_TAS2R14-like 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320148 cd15020 7tm_TAS2R3 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320148 cd15020 7tm_TAS2R3 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320148 cd15020 7tm_TAS2R3 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320148 cd15020 7tm_TAS2R3 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320148 cd15020 7tm_TAS2R3 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320148 cd15020 7tm_TAS2R3 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320148 cd15020 7tm_TAS2R3 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320149 cd15021 7tm_TAS2R10 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320149 cd15021 7tm_TAS2R10 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320149 cd15021 7tm_TAS2R10 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320149 cd15021 7tm_TAS2R10 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320149 cd15021 7tm_TAS2R10 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320149 cd15021 7tm_TAS2R10 6 TM helix 6 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320149 cd15021 7tm_TAS2R10 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320150 cd15022 7tm_TAS2R8 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320150 cd15022 7tm_TAS2R8 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320150 cd15022 7tm_TAS2R8 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320150 cd15022 7tm_TAS2R8 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320150 cd15022 7tm_TAS2R8 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320150 cd15022 7tm_TAS2R8 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320150 cd15022 7tm_TAS2R8 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320151 cd15023 7tm_TAS2R7-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320151 cd15023 7tm_TAS2R7-like 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320151 cd15023 7tm_TAS2R7-like 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320151 cd15023 7tm_TAS2R7-like 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320151 cd15023 7tm_TAS2R7-like 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320151 cd15023 7tm_TAS2R7-like 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320151 cd15023 7tm_TAS2R7-like 7 TM helix 7 0 0 0 0 257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282 7 -320152 cd15024 7tm_TAS2R42 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320152 cd15024 7tm_TAS2R42 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320152 cd15024 7tm_TAS2R42 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320152 cd15024 7tm_TAS2R42 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320152 cd15024 7tm_TAS2R42 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320152 cd15024 7tm_TAS2R42 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320152 cd15024 7tm_TAS2R42 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320153 cd15025 7tm_TAS2R38 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320153 cd15025 7tm_TAS2R38 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320153 cd15025 7tm_TAS2R38 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320153 cd15025 7tm_TAS2R38 4 TM helix 4 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320153 cd15025 7tm_TAS2R38 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320153 cd15025 7tm_TAS2R38 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320153 cd15025 7tm_TAS2R38 7 TM helix 7 0 0 0 0 259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284 7 -320154 cd15026 7tm_TAS2R13 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320154 cd15026 7tm_TAS2R13 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320154 cd15026 7tm_TAS2R13 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320154 cd15026 7tm_TAS2R13 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320154 cd15026 7tm_TAS2R13 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320154 cd15026 7tm_TAS2R13 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320154 cd15026 7tm_TAS2R13 7 TM helix 7 0 0 0 0 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278 7 -320155 cd15027 7tm_TAS2R43-like 1 TM helix 1 0 0 0 1 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320155 cd15027 7tm_TAS2R43-like 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63 7 -320155 cd15027 7tm_TAS2R43-like 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320155 cd15027 7tm_TAS2R43-like 4 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320155 cd15027 7tm_TAS2R43-like 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320155 cd15027 7tm_TAS2R43-like 6 TM helix 6 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320155 cd15027 7tm_TAS2R43-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320574 cd15908 7tm_TAS2R40-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320574 cd15908 7tm_TAS2R40-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320574 cd15908 7tm_TAS2R40-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320574 cd15908 7tm_TAS2R40-like 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320574 cd15908 7tm_TAS2R40-like 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320574 cd15908 7tm_TAS2R40-like 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320574 cd15908 7tm_TAS2R40-like 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320142 cd15014 7tm_TAS2R40 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320142 cd15014 7tm_TAS2R40 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320142 cd15014 7tm_TAS2R40 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320142 cd15014 7tm_TAS2R40 4 TM helix 4 0 0 0 0 125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320142 cd15014 7tm_TAS2R40 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320142 cd15014 7tm_TAS2R40 6 TM helix 6 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320142 cd15014 7tm_TAS2R40 7 TM helix 7 0 0 0 0 256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281 7 -320143 cd15015 7tm_TAS2R39 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320143 cd15015 7tm_TAS2R39 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320143 cd15015 7tm_TAS2R39 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320143 cd15015 7tm_TAS2R39 4 TM helix 4 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320143 cd15015 7tm_TAS2R39 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320143 cd15015 7tm_TAS2R39 6 TM helix 6 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320143 cd15015 7tm_TAS2R39 7 TM helix 7 0 0 0 0 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280 7 -320089 cd13951 7tmF_Frizzled_SMO 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320089 cd13951 7tmF_Frizzled_SMO 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320089 cd13951 7tmF_Frizzled_SMO 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,108,109,110,111,112,113,114,115,116 7 -320089 cd13951 7tmF_Frizzled_SMO 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320089 cd13951 7tmF_Frizzled_SMO 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320089 cd13951 7tmF_Frizzled_SMO 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320089 cd13951 7tmF_Frizzled_SMO 7 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -320158 cd15030 7tmF_SMO_homolog 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320158 cd15030 7tmF_SMO_homolog 2 TM helix 2 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,62,63,64,65 7 -320158 cd15030 7tmF_SMO_homolog 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320158 cd15030 7tmF_SMO_homolog 4 TM helix 4 0 0 0 0 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155 7 -320158 cd15030 7tmF_SMO_homolog 5 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320158 cd15030 7tmF_SMO_homolog 6 TM helix 6 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320158 cd15030 7tmF_SMO_homolog 7 TM helix 7 0 0 0 0 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316 7 -320159 cd15031 7tmF_FZD3_insect 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320159 cd15031 7tmF_FZD3_insect 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320159 cd15031 7tmF_FZD3_insect 3 TM helix 3 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,111,112,113,114,115,116,117,118,119 7 -320159 cd15031 7tmF_FZD3_insect 4 TM helix 4 0 0 0 0 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156 7 -320159 cd15031 7tmF_FZD3_insect 5 TM helix 5 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320159 cd15031 7tmF_FZD3_insect 6 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320159 cd15031 7tmF_FZD3_insect 7 TM helix 7 0 0 0 0 271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296 7 -320162 cd15034 7tmF_FZD1_2_7-like 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320162 cd15034 7tmF_FZD1_2_7-like 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320162 cd15034 7tmF_FZD1_2_7-like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,108,109,110,111,112,113,114,115,116 7 -320162 cd15034 7tmF_FZD1_2_7-like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320162 cd15034 7tmF_FZD1_2_7-like 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320162 cd15034 7tmF_FZD1_2_7-like 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320162 cd15034 7tmF_FZD1_2_7-like 7 TM helix 7 0 0 0 0 282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 7 -320373 cd15245 7tmF_FZD2 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320373 cd15245 7tmF_FZD2 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320373 cd15245 7tmF_FZD2 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,108,109,110,111,112,113,114,115,116 7 -320373 cd15245 7tmF_FZD2 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320373 cd15245 7tmF_FZD2 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320373 cd15245 7tmF_FZD2 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320373 cd15245 7tmF_FZD2 7 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320374 cd15246 7tmF_FZD7 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320374 cd15246 7tmF_FZD7 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320374 cd15246 7tmF_FZD7 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,108,109,110,111,112,113,114,115,116 7 -320374 cd15246 7tmF_FZD7 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320374 cd15246 7tmF_FZD7 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320374 cd15246 7tmF_FZD7 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320374 cd15246 7tmF_FZD7 7 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320375 cd15247 7tmF_FZD1 1 TM helix 1 0 0 0 1 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 7 -320375 cd15247 7tmF_FZD1 2 TM helix 2 0 0 0 0 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,71,72,73,74 7 -320375 cd15247 7tmF_FZD1 3 TM helix 3 0 0 0 0 104,105,106,107,108,109,110,111,112,113,114,118,119,120,121,122,123,124,125,126 7 -320375 cd15247 7tmF_FZD1 4 TM helix 4 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320375 cd15247 7tmF_FZD1 5 TM helix 5 0 0 0 0 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320375 cd15247 7tmF_FZD1 6 TM helix 6 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320375 cd15247 7tmF_FZD1 7 TM helix 7 0 0 0 0 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315 7 -320376 cd15248 7tmF_FZD1_insect 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320376 cd15248 7tmF_FZD1_insect 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320376 cd15248 7tmF_FZD1_insect 3 TM helix 3 0 0 0 0 101,102,103,104,105,106,107,108,109,110,111,115,116,117,118,119,120,121,122,123 7 -320376 cd15248 7tmF_FZD1_insect 4 TM helix 4 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320376 cd15248 7tmF_FZD1_insect 5 TM helix 5 0 0 0 0 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205 7 -320376 cd15248 7tmF_FZD1_insect 6 TM helix 6 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320376 cd15248 7tmF_FZD1_insect 7 TM helix 7 0 0 0 0 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315 7 -320163 cd15035 7tmF_FZD5_FZD8-like 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320163 cd15035 7tmF_FZD5_FZD8-like 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320163 cd15035 7tmF_FZD5_FZD8-like 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,109,110,111 7 -320163 cd15035 7tmF_FZD5_FZD8-like 4 TM helix 4 0 0 0 0 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320163 cd15035 7tmF_FZD5_FZD8-like 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320163 cd15035 7tmF_FZD5_FZD8-like 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320163 cd15035 7tmF_FZD5_FZD8-like 7 TM helix 7 0 0 0 0 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292 7 -320377 cd15249 7tmF_FZD5 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320377 cd15249 7tmF_FZD5 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320377 cd15249 7tmF_FZD5 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,105,106,107,108,109,110,111,112,113 7 -320377 cd15249 7tmF_FZD5 4 TM helix 4 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320377 cd15249 7tmF_FZD5 5 TM helix 5 0 0 0 0 172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195 7 -320377 cd15249 7tmF_FZD5 6 TM helix 6 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320377 cd15249 7tmF_FZD5 7 TM helix 7 0 0 0 0 270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295 7 -320378 cd15250 7tmF_FZD8 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320378 cd15250 7tmF_FZD8 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320378 cd15250 7tmF_FZD8 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320378 cd15250 7tmF_FZD8 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320378 cd15250 7tmF_FZD8 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320378 cd15250 7tmF_FZD8 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320378 cd15250 7tmF_FZD8 7 TM helix 7 0 0 0 0 274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299 7 -320575 cd15909 7tmF_FZD4_9_10-like 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320575 cd15909 7tmF_FZD4_9_10-like 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320575 cd15909 7tmF_FZD4_9_10-like 3 TM helix 3 0 0 0 0 94,95,96,97,98,99,100,101,102,103,104,108,109,110,111,112,113,114,115,116 7 -320575 cd15909 7tmF_FZD4_9_10-like 4 TM helix 4 0 0 0 0 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320575 cd15909 7tmF_FZD4_9_10-like 5 TM helix 5 0 0 0 0 175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198 7 -320575 cd15909 7tmF_FZD4_9_10-like 6 TM helix 6 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320575 cd15909 7tmF_FZD4_9_10-like 7 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320164 cd15036 7tmF_FZD9 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320164 cd15036 7tmF_FZD9 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320164 cd15036 7tmF_FZD9 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115 7 -320164 cd15036 7tmF_FZD9 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320164 cd15036 7tmF_FZD9 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320164 cd15036 7tmF_FZD9 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320164 cd15036 7tmF_FZD9 7 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320165 cd15037 7tmF_FZD10 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320165 cd15037 7tmF_FZD10 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320165 cd15037 7tmF_FZD10 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115 7 -320165 cd15037 7tmF_FZD10 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320165 cd15037 7tmF_FZD10 5 TM helix 5 0 0 0 0 174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320165 cd15037 7tmF_FZD10 6 TM helix 6 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320165 cd15037 7tmF_FZD10 7 TM helix 7 0 0 0 0 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305 7 -320166 cd15038 7tmF_FZD4 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320166 cd15038 7tmF_FZD4 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320166 cd15038 7tmF_FZD4 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320166 cd15038 7tmF_FZD4 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320166 cd15038 7tmF_FZD4 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320166 cd15038 7tmF_FZD4 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320166 cd15038 7tmF_FZD4 7 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320576 cd15910 7tmF_FZD3_FZD6-like 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320576 cd15910 7tmF_FZD3_FZD6-like 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320576 cd15910 7tmF_FZD3_FZD6-like 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320576 cd15910 7tmF_FZD3_FZD6-like 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320576 cd15910 7tmF_FZD3_FZD6-like 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320576 cd15910 7tmF_FZD3_FZD6-like 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320576 cd15910 7tmF_FZD3_FZD6-like 7 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -320160 cd15032 7tmF_FZD6 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320160 cd15032 7tmF_FZD6 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320160 cd15032 7tmF_FZD6 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320160 cd15032 7tmF_FZD6 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320160 cd15032 7tmF_FZD6 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320160 cd15032 7tmF_FZD6 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320160 cd15032 7tmF_FZD6 7 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -320161 cd15033 7tmF_FZD3 1 TM helix 1 0 0 0 1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -320161 cd15033 7tmF_FZD3 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,61,62,63,64 7 -320161 cd15033 7tmF_FZD3 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320161 cd15033 7tmF_FZD3 4 TM helix 4 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154 7 -320161 cd15033 7tmF_FZD3 5 TM helix 5 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 7 -320161 cd15033 7tmF_FZD3 6 TM helix 6 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320161 cd15033 7tmF_FZD3 7 TM helix 7 0 0 0 0 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306 7 -341314 cd13952 7tm_classB 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341314 cd13952 7tm_classB 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -341314 cd13952 7tm_classB 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -341314 cd13952 7tm_classB 4 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -341314 cd13952 7tm_classB 5 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -341314 cd13952 7tm_classB 6 TM helix 6 0 0 0 0 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 7 -341314 cd13952 7tm_classB 7 TM helix 7 0 0 0 0 227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252 7 -320167 cd15039 7tmB3_Methuselah-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320167 cd15039 7tmB3_Methuselah-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320167 cd15039 7tmB3_Methuselah-like 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320167 cd15039 7tmB3_Methuselah-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320167 cd15039 7tmB3_Methuselah-like 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320167 cd15039 7tmB3_Methuselah-like 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320167 cd15039 7tmB3_Methuselah-like 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320168 cd15040 7tmB2_Adhesion 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320168 cd15040 7tmB2_Adhesion 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320168 cd15040 7tmB2_Adhesion 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320168 cd15040 7tmB2_Adhesion 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320168 cd15040 7tmB2_Adhesion 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320168 cd15040 7tmB2_Adhesion 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320168 cd15040 7tmB2_Adhesion 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 5 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 6 TM helix 6 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209 7 -320379 cd15251 7tmB2_BAI_Adhesion_VII 7 TM helix 7 0 0 0 0 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 7 -320654 cd15988 7tmB2_BAI2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320654 cd15988 7tmB2_BAI2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320654 cd15988 7tmB2_BAI2 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320654 cd15988 7tmB2_BAI2 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320654 cd15988 7tmB2_BAI2 5 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320654 cd15988 7tmB2_BAI2 6 TM helix 6 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320654 cd15988 7tmB2_BAI2 7 TM helix 7 0 0 0 0 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320655 cd15989 7tmB2_BAI3 1 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320655 cd15989 7tmB2_BAI3 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320655 cd15989 7tmB2_BAI3 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320655 cd15989 7tmB2_BAI3 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320655 cd15989 7tmB2_BAI3 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320655 cd15989 7tmB2_BAI3 6 TM helix 6 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320655 cd15989 7tmB2_BAI3 7 TM helix 7 0 0 0 0 254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279 7 -320656 cd15990 7tmB2_BAI1 1 TM helix 1 0 0 0 1 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -320656 cd15990 7tmB2_BAI1 2 TM helix 2 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,58,59,60,61 7 -320656 cd15990 7tmB2_BAI1 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320656 cd15990 7tmB2_BAI1 4 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320656 cd15990 7tmB2_BAI1 5 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320656 cd15990 7tmB2_BAI1 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320656 cd15990 7tmB2_BAI1 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320552 cd15436 7tmB2_Latrophilin 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320552 cd15436 7tmB2_Latrophilin 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320552 cd15436 7tmB2_Latrophilin 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320552 cd15436 7tmB2_Latrophilin 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320552 cd15436 7tmB2_Latrophilin 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320552 cd15436 7tmB2_Latrophilin 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320552 cd15436 7tmB2_Latrophilin 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320671 cd16005 7tmB2_Latrophilin-3 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320671 cd16005 7tmB2_Latrophilin-3 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320671 cd16005 7tmB2_Latrophilin-3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320671 cd16005 7tmB2_Latrophilin-3 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320671 cd16005 7tmB2_Latrophilin-3 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320671 cd16005 7tmB2_Latrophilin-3 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320671 cd16005 7tmB2_Latrophilin-3 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320672 cd16006 7tmB2_Latrophilin-2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320672 cd16006 7tmB2_Latrophilin-2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320672 cd16006 7tmB2_Latrophilin-2 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320672 cd16006 7tmB2_Latrophilin-2 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320672 cd16006 7tmB2_Latrophilin-2 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320672 cd16006 7tmB2_Latrophilin-2 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320672 cd16006 7tmB2_Latrophilin-2 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320673 cd16007 7tmB2_Latrophilin-1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320673 cd16007 7tmB2_Latrophilin-1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320673 cd16007 7tmB2_Latrophilin-1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320673 cd16007 7tmB2_Latrophilin-1 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320673 cd16007 7tmB2_Latrophilin-1 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320673 cd16007 7tmB2_Latrophilin-1 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320673 cd16007 7tmB2_Latrophilin-1 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320553 cd15437 7tmB2_ETL 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320553 cd15437 7tmB2_ETL 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320553 cd15437 7tmB2_ETL 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320553 cd15437 7tmB2_ETL 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320553 cd15437 7tmB2_ETL 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320553 cd15437 7tmB2_ETL 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320553 cd15437 7tmB2_ETL 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320556 cd15440 7tmB2_latrophilin-like_invertebrate 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320385 cd15257 7tmB2_GPR128 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320385 cd15257 7tmB2_GPR128 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320385 cd15257 7tmB2_GPR128 3 TM helix 3 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115 7 -320385 cd15257 7tmB2_GPR128 4 TM helix 4 0 0 0 0 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320385 cd15257 7tmB2_GPR128 5 TM helix 5 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320385 cd15257 7tmB2_GPR128 6 TM helix 6 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320385 cd15257 7tmB2_GPR128 7 TM helix 7 0 0 0 0 264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320558 cd15442 7tmB2_GPR97 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320558 cd15442 7tmB2_GPR97 2 TM helix 2 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62 7 -320558 cd15442 7tmB2_GPR97 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320558 cd15442 7tmB2_GPR97 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320558 cd15442 7tmB2_GPR97 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320558 cd15442 7tmB2_GPR97 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320558 cd15442 7tmB2_GPR97 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320559 cd15443 7tmB2_GPR114 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320559 cd15443 7tmB2_GPR114 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320559 cd15443 7tmB2_GPR114 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320559 cd15443 7tmB2_GPR114 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320559 cd15443 7tmB2_GPR114 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320559 cd15443 7tmB2_GPR114 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320559 cd15443 7tmB2_GPR114 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320560 cd15444 7tmB2_GPR64 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320560 cd15444 7tmB2_GPR64 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320560 cd15444 7tmB2_GPR64 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320560 cd15444 7tmB2_GPR64 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320560 cd15444 7tmB2_GPR64 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320560 cd15444 7tmB2_GPR64 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320560 cd15444 7tmB2_GPR64 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320661 cd15995 7tmB2_GPR56 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320661 cd15995 7tmB2_GPR56 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320661 cd15995 7tmB2_GPR56 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320661 cd15995 7tmB2_GPR56 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320661 cd15995 7tmB2_GPR56 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320661 cd15995 7tmB2_GPR56 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320661 cd15995 7tmB2_GPR56 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320662 cd15996 7tmB2_GPR126 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320662 cd15996 7tmB2_GPR126 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320662 cd15996 7tmB2_GPR126 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320662 cd15996 7tmB2_GPR126 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320662 cd15996 7tmB2_GPR126 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320662 cd15996 7tmB2_GPR126 6 TM helix 6 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320662 cd15996 7tmB2_GPR126 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320663 cd15997 7tmB2_GPR112 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320663 cd15997 7tmB2_GPR112 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320663 cd15997 7tmB2_GPR112 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320663 cd15997 7tmB2_GPR112 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320663 cd15997 7tmB2_GPR112 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320663 cd15997 7tmB2_GPR112 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320663 cd15997 7tmB2_GPR112 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320664 cd15998 7tmB2_GPR124 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320664 cd15998 7tmB2_GPR124 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320664 cd15998 7tmB2_GPR124 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320664 cd15998 7tmB2_GPR124 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320664 cd15998 7tmB2_GPR124 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320664 cd15998 7tmB2_GPR124 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320664 cd15998 7tmB2_GPR124 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320665 cd15999 7tmB2_GPR125 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320665 cd15999 7tmB2_GPR125 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320665 cd15999 7tmB2_GPR125 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320665 cd15999 7tmB2_GPR125 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320665 cd15999 7tmB2_GPR125 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320665 cd15999 7tmB2_GPR125 6 TM helix 6 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320665 cd15999 7tmB2_GPR125 7 TM helix 7 0 0 0 0 273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298 7 -320666 cd16000 7tmB2_GPR123 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320666 cd16000 7tmB2_GPR123 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320666 cd16000 7tmB2_GPR123 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320666 cd16000 7tmB2_GPR123 4 TM helix 4 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320666 cd16000 7tmB2_GPR123 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320666 cd16000 7tmB2_GPR123 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320666 cd16000 7tmB2_GPR123 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320557 cd15441 7tmB2_CELSR_Adhesion_IV 7 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320657 cd15991 7tmB2_CELSR1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320657 cd15991 7tmB2_CELSR1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320657 cd15991 7tmB2_CELSR1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320657 cd15991 7tmB2_CELSR1 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320657 cd15991 7tmB2_CELSR1 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320657 cd15991 7tmB2_CELSR1 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320657 cd15991 7tmB2_CELSR1 7 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320658 cd15992 7tmB2_CELSR2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320658 cd15992 7tmB2_CELSR2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320658 cd15992 7tmB2_CELSR2 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320658 cd15992 7tmB2_CELSR2 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320658 cd15992 7tmB2_CELSR2 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320658 cd15992 7tmB2_CELSR2 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320658 cd15992 7tmB2_CELSR2 7 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320659 cd15993 7tmB2_CELSR3 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320659 cd15993 7tmB2_CELSR3 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320659 cd15993 7tmB2_CELSR3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320659 cd15993 7tmB2_CELSR3 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320659 cd15993 7tmB2_CELSR3 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320659 cd15993 7tmB2_CELSR3 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320659 cd15993 7tmB2_CELSR3 7 TM helix 7 0 0 0 0 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 5 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320597 cd15931 7tmB2_EMR_Adhesion_II 7 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320554 cd15438 7tmB2_CD97 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320554 cd15438 7tmB2_CD97 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320554 cd15438 7tmB2_CD97 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320554 cd15438 7tmB2_CD97 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320554 cd15438 7tmB2_CD97 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320554 cd15438 7tmB2_CD97 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320554 cd15438 7tmB2_CD97 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320555 cd15439 7tmB2_EMR 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320555 cd15439 7tmB2_EMR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320555 cd15439 7tmB2_EMR 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320555 cd15439 7tmB2_EMR 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320555 cd15439 7tmB2_EMR 5 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320555 cd15439 7tmB2_EMR 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320555 cd15439 7tmB2_EMR 7 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 6 TM helix 6 0 0 0 0 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320381 cd15253 7tmB2_GPR113 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320381 cd15253 7tmB2_GPR113 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63 7 -320381 cd15253 7tmB2_GPR113 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320381 cd15253 7tmB2_GPR113 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320381 cd15253 7tmB2_GPR113 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320381 cd15253 7tmB2_GPR113 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320381 cd15253 7tmB2_GPR113 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 3 TM helix 3 0 0 0 0 78,79,80,81,82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320382 cd15254 7tmB2_GPR116_Ig-Hepta 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320660 cd15994 7tmB2_GPR111_115 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320660 cd15994 7tmB2_GPR111_115 2 TM helix 2 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63 7 -320660 cd15994 7tmB2_GPR111_115 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320660 cd15994 7tmB2_GPR111_115 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320660 cd15994 7tmB2_GPR111_115 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320660 cd15994 7tmB2_GPR111_115 6 TM helix 6 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320660 cd15994 7tmB2_GPR111_115 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 4 TM helix 4 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 5 TM helix 5 0 0 0 0 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320383 cd15255 7tmB2_GPR144 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320383 cd15255 7tmB2_GPR144 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320383 cd15255 7tmB2_GPR144 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320383 cd15255 7tmB2_GPR144 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320383 cd15255 7tmB2_GPR144 5 TM helix 5 0 0 0 0 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320383 cd15255 7tmB2_GPR144 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320383 cd15255 7tmB2_GPR144 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320384 cd15256 7tmB2_GPR133 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320384 cd15256 7tmB2_GPR133 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320384 cd15256 7tmB2_GPR133 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320384 cd15256 7tmB2_GPR133 4 TM helix 4 0 0 0 0 111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -320384 cd15256 7tmB2_GPR133 5 TM helix 5 0 0 0 0 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169 7 -320384 cd15256 7tmB2_GPR133 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320384 cd15256 7tmB2_GPR133 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -341321 cd15041 7tmB1_hormone_R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341321 cd15041 7tmB1_hormone_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -341321 cd15041 7tmB1_hormone_R 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -341321 cd15041 7tmB1_hormone_R 4 TM helix 4 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -341321 cd15041 7tmB1_hormone_R 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -341321 cd15041 7tmB1_hormone_R 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -341321 cd15041 7tmB1_hormone_R 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 5 TM helix 5 0 0 0 0 150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 6 TM helix 6 0 0 0 0 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221 7 -320388 cd15260 7tmB1_NPR_B4_insect-like 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320389 cd15261 7tmB1_PDFR 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320389 cd15261 7tmB1_PDFR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320389 cd15261 7tmB1_PDFR 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,102,103,104,105,106,107,108,109,110 7 -320389 cd15261 7tmB1_PDFR 4 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320389 cd15261 7tmB1_PDFR 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320389 cd15261 7tmB1_PDFR 6 TM helix 6 0 0 0 0 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234 7 -320389 cd15261 7tmB1_PDFR 7 TM helix 7 0 0 0 0 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 3 TM helix 3 0 0 0 0 82,83,84,85,86,87,88,89,90,91,92,96,97,98,99,100,101,102,103,104 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320390 cd15262 7tmB1_NPR_B3_insect-like 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320391 cd15263 7tmB1_DH_R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320391 cd15263 7tmB1_DH_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320391 cd15263 7tmB1_DH_R 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320391 cd15263 7tmB1_DH_R 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320391 cd15263 7tmB1_DH_R 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320391 cd15263 7tmB1_DH_R 6 TM helix 6 0 0 0 0 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227 7 -320391 cd15263 7tmB1_DH_R 7 TM helix 7 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258 7 -320392 cd15264 7tmB1_CRF-R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320392 cd15264 7tmB1_CRF-R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320392 cd15264 7tmB1_CRF-R 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320392 cd15264 7tmB1_CRF-R 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320392 cd15264 7tmB1_CRF-R 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320392 cd15264 7tmB1_CRF-R 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320392 cd15264 7tmB1_CRF-R 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320561 cd15445 7tmB1_CRF-R1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320561 cd15445 7tmB1_CRF-R1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320561 cd15445 7tmB1_CRF-R1 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320561 cd15445 7tmB1_CRF-R1 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320561 cd15445 7tmB1_CRF-R1 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320561 cd15445 7tmB1_CRF-R1 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -320561 cd15445 7tmB1_CRF-R1 7 TM helix 7 0 0 0 0 226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251 7 -320562 cd15446 7tmB1_CRF-R2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320562 cd15446 7tmB1_CRF-R2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320562 cd15446 7tmB1_CRF-R2 3 TM helix 3 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,86,87,88,89,90,91,92,93,94 7 -320562 cd15446 7tmB1_CRF-R2 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320562 cd15446 7tmB1_CRF-R2 5 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320562 cd15446 7tmB1_CRF-R2 6 TM helix 6 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320562 cd15446 7tmB1_CRF-R2 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320393 cd15265 7tmB1_PTHR 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320393 cd15265 7tmB1_PTHR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320393 cd15265 7tmB1_PTHR 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320393 cd15265 7tmB1_PTHR 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320393 cd15265 7tmB1_PTHR 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320393 cd15265 7tmB1_PTHR 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320393 cd15265 7tmB1_PTHR 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320648 cd15982 7tmB1_PTH2R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320648 cd15982 7tmB1_PTH2R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320648 cd15982 7tmB1_PTH2R 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320648 cd15982 7tmB1_PTH2R 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320648 cd15982 7tmB1_PTH2R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320648 cd15982 7tmB1_PTH2R 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320648 cd15982 7tmB1_PTH2R 7 TM helix 7 0 0 0 0 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275 7 -320649 cd15983 7tmB1_PTH3R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320649 cd15983 7tmB1_PTH3R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320649 cd15983 7tmB1_PTH3R 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,104,105,106,107,108,109,110,111,112 7 -320649 cd15983 7tmB1_PTH3R 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320649 cd15983 7tmB1_PTH3R 5 TM helix 5 0 0 0 0 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 7 -320649 cd15983 7tmB1_PTH3R 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320649 cd15983 7tmB1_PTH3R 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320650 cd15984 7tmB1_PTH1R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320650 cd15984 7tmB1_PTH1R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320650 cd15984 7tmB1_PTH1R 3 TM helix 3 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,109,110,111,112,113,114,115,116,117 7 -320650 cd15984 7tmB1_PTH1R 4 TM helix 4 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320650 cd15984 7tmB1_PTH1R 5 TM helix 5 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192 7 -320650 cd15984 7tmB1_PTH1R 6 TM helix 6 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320650 cd15984 7tmB1_PTH1R 7 TM helix 7 0 0 0 0 251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276 7 -320400 cd15272 7tmB1_PTH-R_related 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320400 cd15272 7tmB1_PTH-R_related 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320400 cd15272 7tmB1_PTH-R_related 3 TM helix 3 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,104,105,106,107,108,109,110,111,112 7 -320400 cd15272 7tmB1_PTH-R_related 4 TM helix 4 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320400 cd15272 7tmB1_PTH-R_related 5 TM helix 5 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320400 cd15272 7tmB1_PTH-R_related 6 TM helix 6 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320400 cd15272 7tmB1_PTH-R_related 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 3 TM helix 3 0 0 0 0 91,92,93,94,95,96,97,98,99,100,101,105,106,107,108,109,110,111,112,113 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 4 TM helix 4 0 0 0 0 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 6 TM helix 6 0 0 0 0 211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236 7 -320401 cd15273 7tmB1_NPR_B7_insect-like 7 TM helix 7 0 0 0 0 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 7 -341343 cd15274 7tmB1_calcitonin_R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341343 cd15274 7tmB1_calcitonin_R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -341343 cd15274 7tmB1_calcitonin_R 3 TM helix 3 0 0 0 0 75,76,77,78,79,80,81,82,83,84,85,89,90,91,92,93,94,95,96,97 7 -341343 cd15274 7tmB1_calcitonin_R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -341343 cd15274 7tmB1_calcitonin_R 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -341343 cd15274 7tmB1_calcitonin_R 6 TM helix 6 0 0 0 0 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 7 -341343 cd15274 7tmB1_calcitonin_R 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -341353 cd15929 7tmB1_GlucagonR-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341353 cd15929 7tmB1_GlucagonR-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -341353 cd15929 7tmB1_GlucagonR-like 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -341353 cd15929 7tmB1_GlucagonR-like 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -341353 cd15929 7tmB1_GlucagonR-like 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341353 cd15929 7tmB1_GlucagonR-like 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341353 cd15929 7tmB1_GlucagonR-like 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320394 cd15266 7tmB1_GLP2R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320394 cd15266 7tmB1_GLP2R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320394 cd15266 7tmB1_GLP2R 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,101,102,103,104,105,106,107,108,109 7 -320394 cd15266 7tmB1_GLP2R 4 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320394 cd15266 7tmB1_GLP2R 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320394 cd15266 7tmB1_GLP2R 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320394 cd15266 7tmB1_GLP2R 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320395 cd15267 7tmB1_GCGR 1 TM helix 1 0 0 0 1 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320395 cd15267 7tmB1_GCGR 2 TM helix 2 0 0 0 0 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59 7 -320395 cd15267 7tmB1_GCGR 3 TM helix 3 0 0 0 0 88,89,90,91,92,93,94,95,96,97,98,102,103,104,105,106,107,108,109,110 7 -320395 cd15267 7tmB1_GCGR 4 TM helix 4 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320395 cd15267 7tmB1_GCGR 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320395 cd15267 7tmB1_GCGR 6 TM helix 6 0 0 0 0 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233 7 -320395 cd15267 7tmB1_GCGR 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -341342 cd15268 7tmB1_GLP1R 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -341342 cd15268 7tmB1_GLP1R 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -341342 cd15268 7tmB1_GLP1R 3 TM helix 3 0 0 0 0 86,87,88,89,90,91,92,93,94,95,96,100,101,102,103,104,105,106,107,108 7 -341342 cd15268 7tmB1_GLP1R 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -341342 cd15268 7tmB1_GLP1R 5 TM helix 5 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -341342 cd15268 7tmB1_GLP1R 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -341342 cd15268 7tmB1_GLP1R 7 TM helix 7 0 0 0 0 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320651 cd15985 7tmB1_GlucagonR-like_1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320651 cd15985 7tmB1_GlucagonR-like_1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320651 cd15985 7tmB1_GlucagonR-like_1 3 TM helix 3 0 0 0 0 87,88,89,90,91,92,93,94,95,96,97,101,102,103,104,105,106,107,108,109 7 -320651 cd15985 7tmB1_GlucagonR-like_1 4 TM helix 4 0 0 0 0 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320651 cd15985 7tmB1_GlucagonR-like_1 5 TM helix 5 0 0 0 0 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320651 cd15985 7tmB1_GlucagonR-like_1 6 TM helix 6 0 0 0 0 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232 7 -320651 cd15985 7tmB1_GlucagonR-like_1 7 TM helix 7 0 0 0 0 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320596 cd15930 7tmB1_Secretin_R-like 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320596 cd15930 7tmB1_Secretin_R-like 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320596 cd15930 7tmB1_Secretin_R-like 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320596 cd15930 7tmB1_Secretin_R-like 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320596 cd15930 7tmB1_Secretin_R-like 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320596 cd15930 7tmB1_Secretin_R-like 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320596 cd15930 7tmB1_Secretin_R-like 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320397 cd15269 7tmB1_VIP-R1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320397 cd15269 7tmB1_VIP-R1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320397 cd15269 7tmB1_VIP-R1 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320397 cd15269 7tmB1_VIP-R1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320397 cd15269 7tmB1_VIP-R1 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320397 cd15269 7tmB1_VIP-R1 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320397 cd15269 7tmB1_VIP-R1 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320398 cd15270 7tmB1_GHRHR 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320398 cd15270 7tmB1_GHRHR 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320398 cd15270 7tmB1_GHRHR 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320398 cd15270 7tmB1_GHRHR 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320398 cd15270 7tmB1_GHRHR 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320398 cd15270 7tmB1_GHRHR 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320398 cd15270 7tmB1_GHRHR 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320399 cd15271 7tmB1_GHRHR2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320399 cd15271 7tmB1_GHRHR2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320399 cd15271 7tmB1_GHRHR2 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320399 cd15271 7tmB1_GHRHR2 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320399 cd15271 7tmB1_GHRHR2 5 TM helix 5 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174 7 -320399 cd15271 7tmB1_GHRHR2 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320399 cd15271 7tmB1_GHRHR2 7 TM helix 7 0 0 0 0 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320403 cd15275 7tmB1_secretin 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320403 cd15275 7tmB1_secretin 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320403 cd15275 7tmB1_secretin 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320403 cd15275 7tmB1_secretin 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320403 cd15275 7tmB1_secretin 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320403 cd15275 7tmB1_secretin 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320403 cd15275 7tmB1_secretin 7 TM helix 7 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257 7 -320652 cd15986 7tmB1_VIP-R2 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320652 cd15986 7tmB1_VIP-R2 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320652 cd15986 7tmB1_VIP-R2 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320652 cd15986 7tmB1_VIP-R2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320652 cd15986 7tmB1_VIP-R2 5 TM helix 5 0 0 0 0 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320652 cd15986 7tmB1_VIP-R2 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320652 cd15986 7tmB1_VIP-R2 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320653 cd15987 7tmB1_PACAP-R1 1 TM helix 1 0 0 0 1 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 7 -320653 cd15987 7tmB1_PACAP-R1 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320653 cd15987 7tmB1_PACAP-R1 3 TM helix 3 0 0 0 0 77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99 7 -320653 cd15987 7tmB1_PACAP-R1 4 TM helix 4 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320653 cd15987 7tmB1_PACAP-R1 5 TM helix 5 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 7 -320653 cd15987 7tmB1_PACAP-R1 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320653 cd15987 7tmB1_PACAP-R1 7 TM helix 7 0 0 0 0 229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 7 -320091 cd13953 7tm_classC_mGluR-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320091 cd13953 7tm_classC_mGluR-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320091 cd13953 7tm_classC_mGluR-like 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320091 cd13953 7tm_classC_mGluR-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320091 cd13953 7tm_classC_mGluR-like 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320091 cd13953 7tm_classC_mGluR-like 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320091 cd13953 7tm_classC_mGluR-like 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320170 cd15042 7tmC_Boss 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320170 cd15042 7tmC_Boss 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320170 cd15042 7tmC_Boss 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320170 cd15042 7tmC_Boss 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320170 cd15042 7tmC_Boss 5 TM helix 5 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320170 cd15042 7tmC_Boss 6 TM helix 6 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320170 cd15042 7tmC_Boss 7 TM helix 7 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320171 cd15043 7tmC_RAIG_GPRC5 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320171 cd15043 7tmC_RAIG_GPRC5 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320171 cd15043 7tmC_RAIG_GPRC5 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320171 cd15043 7tmC_RAIG_GPRC5 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320171 cd15043 7tmC_RAIG_GPRC5 5 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320171 cd15043 7tmC_RAIG_GPRC5 6 TM helix 6 0 0 0 0 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320171 cd15043 7tmC_RAIG_GPRC5 7 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 5 TM helix 5 0 0 0 0 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 6 TM helix 6 0 0 0 0 183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 7 -320404 cd15277 7tmC_RAIG3_GPRC5C 7 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 5 TM helix 5 0 0 0 0 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 6 TM helix 6 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320405 cd15278 7tmC_RAIG2_GPRC5B 7 TM helix 7 0 0 0 0 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 2 TM helix 2 0 0 0 0 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 5 TM helix 5 0 0 0 0 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 6 TM helix 6 0 0 0 0 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206 7 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D 7 TM helix 7 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320407 cd15280 7tmC_V2R-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320407 cd15280 7tmC_V2R-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320407 cd15280 7tmC_V2R-like 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320407 cd15280 7tmC_V2R-like 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320407 cd15280 7tmC_V2R-like 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320407 cd15280 7tmC_V2R-like 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320407 cd15280 7tmC_V2R-like 7 TM helix 7 0 0 0 0 219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 7 -320408 cd15281 7tmC_GPRC6A 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320408 cd15281 7tmC_GPRC6A 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320408 cd15281 7tmC_GPRC6A 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320408 cd15281 7tmC_GPRC6A 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320408 cd15281 7tmC_GPRC6A 5 TM helix 5 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178 7 -320408 cd15281 7tmC_GPRC6A 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320408 cd15281 7tmC_GPRC6A 7 TM helix 7 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320409 cd15282 7tmC_CaSR 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320409 cd15282 7tmC_CaSR 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320409 cd15282 7tmC_CaSR 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320409 cd15282 7tmC_CaSR 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320409 cd15282 7tmC_CaSR 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320409 cd15282 7tmC_CaSR 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320409 cd15282 7tmC_CaSR 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320410 cd15283 7tmC_V2R_pheromone 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320410 cd15283 7tmC_V2R_pheromone 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320410 cd15283 7tmC_V2R_pheromone 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320410 cd15283 7tmC_V2R_pheromone 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320410 cd15283 7tmC_V2R_pheromone 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320410 cd15283 7tmC_V2R_pheromone 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320410 cd15283 7tmC_V2R_pheromone 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320173 cd15045 7tmC_mGluRs 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320173 cd15045 7tmC_mGluRs 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320173 cd15045 7tmC_mGluRs 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320173 cd15045 7tmC_mGluRs 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320173 cd15045 7tmC_mGluRs 5 TM helix 5 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180 7 -320173 cd15045 7tmC_mGluRs 6 TM helix 6 0 0 0 0 189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214 7 -320173 cd15045 7tmC_mGluRs 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320412 cd15285 7tmC_mGluR_group1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320412 cd15285 7tmC_mGluR_group1 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320412 cd15285 7tmC_mGluR_group1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320412 cd15285 7tmC_mGluR_group1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320412 cd15285 7tmC_mGluR_group1 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320412 cd15285 7tmC_mGluR_group1 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320412 cd15285 7tmC_mGluR_group1 7 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320565 cd15449 7tmC_mGluR1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320565 cd15449 7tmC_mGluR1 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320565 cd15449 7tmC_mGluR1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320565 cd15449 7tmC_mGluR1 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320565 cd15449 7tmC_mGluR1 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320565 cd15449 7tmC_mGluR1 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320565 cd15449 7tmC_mGluR1 7 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320566 cd15450 7tmC_mGluR5 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320566 cd15450 7tmC_mGluR5 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320566 cd15450 7tmC_mGluR5 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320566 cd15450 7tmC_mGluR5 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320566 cd15450 7tmC_mGluR5 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320566 cd15450 7tmC_mGluR5 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320566 cd15450 7tmC_mGluR5 7 TM helix 7 0 0 0 0 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243 7 -320600 cd15934 7tmC_mGluRs_group2_3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320600 cd15934 7tmC_mGluRs_group2_3 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320600 cd15934 7tmC_mGluRs_group2_3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320600 cd15934 7tmC_mGluRs_group2_3 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320600 cd15934 7tmC_mGluRs_group2_3 5 TM helix 5 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179 7 -320600 cd15934 7tmC_mGluRs_group2_3 6 TM helix 6 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320600 cd15934 7tmC_mGluRs_group2_3 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320411 cd15284 7tmC_mGluR_group2 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320411 cd15284 7tmC_mGluR_group2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320411 cd15284 7tmC_mGluR_group2 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320411 cd15284 7tmC_mGluR_group2 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320411 cd15284 7tmC_mGluR_group2 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320411 cd15284 7tmC_mGluR_group2 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320411 cd15284 7tmC_mGluR_group2 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320563 cd15447 7tmC_mGluR2 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320563 cd15447 7tmC_mGluR2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320563 cd15447 7tmC_mGluR2 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320563 cd15447 7tmC_mGluR2 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320563 cd15447 7tmC_mGluR2 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320563 cd15447 7tmC_mGluR2 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320563 cd15447 7tmC_mGluR2 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320564 cd15448 7tmC_mGluR3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320564 cd15448 7tmC_mGluR3 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320564 cd15448 7tmC_mGluR3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320564 cd15448 7tmC_mGluR3 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320564 cd15448 7tmC_mGluR3 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320564 cd15448 7tmC_mGluR3 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320564 cd15448 7tmC_mGluR3 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320413 cd15286 7tmC_mGluR_group3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320413 cd15286 7tmC_mGluR_group3 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320413 cd15286 7tmC_mGluR_group3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320413 cd15286 7tmC_mGluR_group3 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320413 cd15286 7tmC_mGluR_group3 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320413 cd15286 7tmC_mGluR_group3 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320413 cd15286 7tmC_mGluR_group3 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320567 cd15451 7tmC_mGluR7 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320567 cd15451 7tmC_mGluR7 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320567 cd15451 7tmC_mGluR7 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320567 cd15451 7tmC_mGluR7 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320567 cd15451 7tmC_mGluR7 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320567 cd15451 7tmC_mGluR7 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320567 cd15451 7tmC_mGluR7 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320568 cd15452 7tmC_mGluR4 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320568 cd15452 7tmC_mGluR4 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320568 cd15452 7tmC_mGluR4 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320568 cd15452 7tmC_mGluR4 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320568 cd15452 7tmC_mGluR4 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320568 cd15452 7tmC_mGluR4 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320568 cd15452 7tmC_mGluR4 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320569 cd15453 7tmC_mGluR6 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320569 cd15453 7tmC_mGluR6 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320569 cd15453 7tmC_mGluR6 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320569 cd15453 7tmC_mGluR6 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320569 cd15453 7tmC_mGluR6 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320569 cd15453 7tmC_mGluR6 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320569 cd15453 7tmC_mGluR6 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320570 cd15454 7tmC_mGluR8 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320570 cd15454 7tmC_mGluR8 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320570 cd15454 7tmC_mGluR8 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320570 cd15454 7tmC_mGluR8 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320570 cd15454 7tmC_mGluR8 5 TM helix 5 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186 7 -320570 cd15454 7tmC_mGluR8 6 TM helix 6 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320570 cd15454 7tmC_mGluR8 7 TM helix 7 0 0 0 0 230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 7 -320174 cd15046 7tmC_TAS1R 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320174 cd15046 7tmC_TAS1R 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320174 cd15046 7tmC_TAS1R 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320174 cd15046 7tmC_TAS1R 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320174 cd15046 7tmC_TAS1R 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320174 cd15046 7tmC_TAS1R 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320174 cd15046 7tmC_TAS1R 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320414 cd15287 7tmC_TAS1R2a-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320414 cd15287 7tmC_TAS1R2a-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320414 cd15287 7tmC_TAS1R2a-like 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320414 cd15287 7tmC_TAS1R2a-like 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320414 cd15287 7tmC_TAS1R2a-like 5 TM helix 5 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320414 cd15287 7tmC_TAS1R2a-like 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320414 cd15287 7tmC_TAS1R2a-like 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320415 cd15288 7tmC_TAS1R2 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320415 cd15288 7tmC_TAS1R2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320415 cd15288 7tmC_TAS1R2 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320415 cd15288 7tmC_TAS1R2 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320415 cd15288 7tmC_TAS1R2 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320415 cd15288 7tmC_TAS1R2 6 TM helix 6 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320415 cd15288 7tmC_TAS1R2 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320416 cd15289 7tmC_TAS1R1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320416 cd15289 7tmC_TAS1R1 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320416 cd15289 7tmC_TAS1R1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320416 cd15289 7tmC_TAS1R1 4 TM helix 4 0 0 0 0 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320416 cd15289 7tmC_TAS1R1 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320416 cd15289 7tmC_TAS1R1 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320416 cd15289 7tmC_TAS1R1 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320175 cd15047 7tmC_GABA-B-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320175 cd15047 7tmC_GABA-B-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320175 cd15047 7tmC_GABA-B-like 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,84,85,86,87,88,89,90,91,92 7 -320175 cd15047 7tmC_GABA-B-like 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320175 cd15047 7tmC_GABA-B-like 5 TM helix 5 0 0 0 0 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320175 cd15047 7tmC_GABA-B-like 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320175 cd15047 7tmC_GABA-B-like 7 TM helix 7 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320418 cd15291 7tmC_GABA-B-R1 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320418 cd15291 7tmC_GABA-B-R1 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320418 cd15291 7tmC_GABA-B-R1 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320418 cd15291 7tmC_GABA-B-R1 4 TM helix 4 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320418 cd15291 7tmC_GABA-B-R1 5 TM helix 5 0 0 0 0 177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200 7 -320418 cd15291 7tmC_GABA-B-R1 6 TM helix 6 0 0 0 0 210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235 7 -320418 cd15291 7tmC_GABA-B-R1 7 TM helix 7 0 0 0 0 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320419 cd15292 7tmC_GPR156 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320419 cd15292 7tmC_GPR156 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320419 cd15292 7tmC_GPR156 3 TM helix 3 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,89,90,91,92,93 7 -320419 cd15292 7tmC_GPR156 4 TM helix 4 0 0 0 0 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320419 cd15292 7tmC_GPR156 5 TM helix 5 0 0 0 0 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320419 cd15292 7tmC_GPR156 6 TM helix 6 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320419 cd15292 7tmC_GPR156 7 TM helix 7 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320420 cd15293 7tmC_GPR158-like 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320420 cd15293 7tmC_GPR158-like 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320420 cd15293 7tmC_GPR158-like 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320420 cd15293 7tmC_GPR158-like 4 TM helix 4 0 0 0 0 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128 7 -320420 cd15293 7tmC_GPR158-like 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320420 cd15293 7tmC_GPR158-like 6 TM helix 6 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -320420 cd15293 7tmC_GPR158-like 7 TM helix 7 0 0 0 0 220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 7 -320421 cd15294 7tmC_GABA-B-R2 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320421 cd15294 7tmC_GABA-B-R2 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320421 cd15294 7tmC_GABA-B-R2 3 TM helix 3 0 0 0 0 74,75,76,77,78,79,80,81,82,83,84,88,89,90,91,92,93,94,95,96 7 -320421 cd15294 7tmC_GABA-B-R2 4 TM helix 4 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320421 cd15294 7tmC_GABA-B-R2 5 TM helix 5 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196 7 -320421 cd15294 7tmC_GABA-B-R2 6 TM helix 6 0 0 0 0 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320421 cd15294 7tmC_GABA-B-R2 7 TM helix 7 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263 7 -320417 cd15290 7tmC_TAS1R3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320417 cd15290 7tmC_TAS1R3 2 TM helix 2 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58 7 -320417 cd15290 7tmC_TAS1R3 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320417 cd15290 7tmC_TAS1R3 4 TM helix 4 0 0 0 0 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320417 cd15290 7tmC_TAS1R3 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320417 cd15290 7tmC_TAS1R3 6 TM helix 6 0 0 0 0 191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216 7 -320417 cd15290 7tmC_TAS1R3 7 TM helix 7 0 0 0 0 221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246 7 -320093 cd14939 7tmD_STE2 1 TM helix 1 0 0 0 1 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 7 -320093 cd14939 7tmD_STE2 2 TM helix 2 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,62,63,64,65 7 -320093 cd14939 7tmD_STE2 3 TM helix 3 0 0 0 0 89,90,91,92,93,94,95,96,97,98,99,103,104,105,106,107,108,109,110,111 7 -320093 cd14939 7tmD_STE2 4 TM helix 4 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320093 cd14939 7tmD_STE2 5 TM helix 5 0 0 0 0 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193 7 -320093 cd14939 7tmD_STE2 6 TM helix 6 0 0 0 0 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224 7 -320093 cd14939 7tmD_STE2 7 TM helix 7 0 0 0 0 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 2 TM helix 2 0 0 0 0 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 4 TM helix 4 0 0 0 0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 5 TM helix 5 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 6 TM helix 6 0 0 0 0 190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215 7 -320094 cd14940 7tmE_cAMP_R_Slime_mold 7 TM helix 7 0 0 0 0 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249 7 -320096 cd14965 7tm_Opsins_type1 1 TM helix 1 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 7 -320096 cd14965 7tm_Opsins_type1 2 TM helix 2 0 0 0 0 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51 7 -320096 cd14965 7tm_Opsins_type1 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320096 cd14965 7tm_Opsins_type1 4 TM helix 4 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320096 cd14965 7tm_Opsins_type1 5 TM helix 5 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320096 cd14965 7tm_Opsins_type1 6 TM helix 6 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320096 cd14965 7tm_Opsins_type1 7 TM helix 7 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320156 cd15028 7tm_Opsin-1_euk 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320156 cd15028 7tm_Opsin-1_euk 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53 7 -320156 cd15028 7tm_Opsin-1_euk 3 TM helix 3 0 0 0 0 84,85,86,87,88,89,90,91,92,93,94,98,99,100,101,102,103,104,105,106 7 -320156 cd15028 7tm_Opsin-1_euk 4 TM helix 4 0 0 0 0 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320156 cd15028 7tm_Opsin-1_euk 5 TM helix 5 0 0 0 0 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 7 -320156 cd15028 7tm_Opsin-1_euk 6 TM helix 6 0 0 0 0 169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194 7 -320156 cd15028 7tm_Opsin-1_euk 7 TM helix 7 0 0 0 0 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320157 cd15029 7tm_SRI_SRII 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320157 cd15029 7tm_SRI_SRII 2 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,49,50,51,52 7 -320157 cd15029 7tm_SRI_SRII 3 TM helix 3 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,81,82,83,84,85,86,87,88,89 7 -320157 cd15029 7tm_SRI_SRII 4 TM helix 4 0 0 0 0 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320157 cd15029 7tm_SRI_SRII 5 TM helix 5 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -320157 cd15029 7tm_SRI_SRII 6 TM helix 6 0 0 0 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -320157 cd15029 7tm_SRI_SRII 7 TM helix 7 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320366 cd15238 7tm_ARII-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320366 cd15238 7tm_ARII-like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53 7 -320366 cd15238 7tm_ARII-like 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320366 cd15238 7tm_ARII-like 4 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320366 cd15238 7tm_ARII-like 5 TM helix 5 0 0 0 0 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320366 cd15238 7tm_ARII-like 6 TM helix 6 0 0 0 0 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320366 cd15238 7tm_ARII-like 7 TM helix 7 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320367 cd15239 7tm_YRO2_fungal-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320367 cd15239 7tm_YRO2_fungal-like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53 7 -320367 cd15239 7tm_YRO2_fungal-like 3 TM helix 3 0 0 0 0 81,82,83,84,85,86,87,88,89,90,91,95,96,97,98,99,100,101,102,103 7 -320367 cd15239 7tm_YRO2_fungal-like 4 TM helix 4 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -320367 cd15239 7tm_YRO2_fungal-like 5 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 7 -320367 cd15239 7tm_YRO2_fungal-like 6 TM helix 6 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320367 cd15239 7tm_YRO2_fungal-like 7 TM helix 7 0 0 0 0 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320368 cd15240 7tm_ASR-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320368 cd15240 7tm_ASR-like 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53 7 -320368 cd15240 7tm_ASR-like 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,83,84,85,86,87,88,89,90,91 7 -320368 cd15240 7tm_ASR-like 4 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320368 cd15240 7tm_ASR-like 5 TM helix 5 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320368 cd15240 7tm_ASR-like 6 TM helix 6 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320368 cd15240 7tm_ASR-like 7 TM helix 7 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320369 cd15241 7tm_ChRs 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320369 cd15241 7tm_ChRs 2 TM helix 2 0 0 0 0 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,49,50,51,52 7 -320369 cd15241 7tm_ChRs 3 TM helix 3 0 0 0 0 68,69,70,71,72,73,74,75,76,77,78,82,83,84,85,86,87,88,89,90 7 -320369 cd15241 7tm_ChRs 4 TM helix 4 0 0 0 0 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113 7 -320369 cd15241 7tm_ChRs 5 TM helix 5 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320369 cd15241 7tm_ChRs 6 TM helix 6 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181 7 -320369 cd15241 7tm_ChRs 7 TM helix 7 0 0 0 0 193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218 7 -320370 cd15242 7tm_Proteorhodopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320370 cd15242 7tm_Proteorhodopsin 2 TM helix 2 0 0 0 0 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53 7 -320370 cd15242 7tm_Proteorhodopsin 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320370 cd15242 7tm_Proteorhodopsin 4 TM helix 4 0 0 0 0 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320370 cd15242 7tm_Proteorhodopsin 5 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 7 -320370 cd15242 7tm_Proteorhodopsin 6 TM helix 6 0 0 0 0 165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320370 cd15242 7tm_Proteorhodopsin 7 TM helix 7 0 0 0 0 203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228 7 -320371 cd15243 7tm_Halorhodopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320371 cd15243 7tm_Halorhodopsin 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -320371 cd15243 7tm_Halorhodopsin 3 TM helix 3 0 0 0 0 79,80,81,82,83,84,85,86,87,88,89,93,94,95,96,97,98,99,100,101 7 -320371 cd15243 7tm_Halorhodopsin 4 TM helix 4 0 0 0 0 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320371 cd15243 7tm_Halorhodopsin 5 TM helix 5 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157 7 -320371 cd15243 7tm_Halorhodopsin 6 TM helix 6 0 0 0 0 163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320371 cd15243 7tm_Halorhodopsin 7 TM helix 7 0 0 0 0 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320372 cd15244 7tm_bacteriorhodopsin 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320372 cd15244 7tm_bacteriorhodopsin 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -320372 cd15244 7tm_bacteriorhodopsin 3 TM helix 3 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91,92,93,94,95 7 -320372 cd15244 7tm_bacteriorhodopsin 4 TM helix 4 0 0 0 0 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320372 cd15244 7tm_bacteriorhodopsin 5 TM helix 5 0 0 0 0 127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320372 cd15244 7tm_bacteriorhodopsin 6 TM helix 6 0 0 0 0 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320372 cd15244 7tm_bacteriorhodopsin 7 TM helix 7 0 0 0 0 195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220 7 -320097 cd14966 7tmD_STE3 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320097 cd14966 7tmD_STE3 2 TM helix 2 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,53,54,55,56 7 -320097 cd14966 7tmD_STE3 3 TM helix 3 0 0 0 0 64,65,66,67,68,69,70,71,72,73,74,78,79,80,81,82,83,84,85,86 7 -320097 cd14966 7tmD_STE3 4 TM helix 4 0 0 0 0 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129 7 -320097 cd14966 7tmD_STE3 5 TM helix 5 0 0 0 0 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177 7 -320097 cd14966 7tmD_STE3 6 TM helix 6 0 0 0 0 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223 7 -320097 cd14966 7tmD_STE3 7 TM helix 7 0 0 0 0 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250 7 -320129 cd14998 7tmA_GPR153_GPR162-like 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320129 cd14998 7tmA_GPR153_GPR162-like 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55 7 -320129 cd14998 7tmA_GPR153_GPR162-like 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320129 cd14998 7tmA_GPR153_GPR162-like 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320129 cd14998 7tmA_GPR153_GPR162-like 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320129 cd14998 7tmA_GPR153_GPR162-like 6 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320129 cd14998 7tmA_GPR153_GPR162-like 7 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320572 cd15906 7tmA_GPR162 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320572 cd15906 7tmA_GPR162 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55 7 -320572 cd15906 7tmA_GPR162 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320572 cd15906 7tmA_GPR162 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320572 cd15906 7tmA_GPR162 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320572 cd15906 7tmA_GPR162 6 TM helix 6 0 0 0 0 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270 7 -320572 cd15906 7tmA_GPR162 7 TM helix 7 0 0 0 0 282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 7 -320573 cd15907 7tmA_GPR153 1 TM helix 1 0 0 0 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 7 -320573 cd15907 7tmA_GPR153 2 TM helix 2 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55 7 -320573 cd15907 7tmA_GPR153 3 TM helix 3 0 0 0 0 76,77,78,79,80,81,82,83,84,85,86,90,91,92,93,94,95,96,97,98 7 -320573 cd15907 7tmA_GPR153 4 TM helix 4 0 0 0 0 121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320573 cd15907 7tmA_GPR153 5 TM helix 5 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320573 cd15907 7tmA_GPR153 6 TM helix 6 0 0 0 0 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320573 cd15907 7tmA_GPR153 7 TM helix 7 0 0 0 0 268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293 7 -320138 cd15010 7tmA_ACKR1_DARC 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320138 cd15010 7tmA_ACKR1_DARC 2 TM helix 2 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,57 7 -320138 cd15010 7tmA_ACKR1_DARC 3 TM helix 3 0 0 0 0 70,71,72,73,74,75,76,77,78,79,80,86,87,88,89,90,91,92,93,94 7 -320138 cd15010 7tmA_ACKR1_DARC 4 TM helix 4 0 0 0 0 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320138 cd15010 7tmA_ACKR1_DARC 5 TM helix 5 0 0 0 0 148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171 7 -320138 cd15010 7tmA_ACKR1_DARC 6 TM helix 6 0 0 0 0 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201 7 -320138 cd15010 7tmA_ACKR1_DARC 7 TM helix 7 0 0 0 0 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248 7 -320139 cd15011 7tmA_GPR149 1 TM helix 1 0 0 0 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -320139 cd15011 7tmA_GPR149 2 TM helix 2 0 0 0 0 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51,52,53,54 7 -320139 cd15011 7tmA_GPR149 3 TM helix 3 0 0 0 0 69,70,71,72,73,74,75,76,77,78,79,84,85,86,87,88,89,90,91,92 7 -320139 cd15011 7tmA_GPR149 4 TM helix 4 0 0 0 0 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130 7 -320139 cd15011 7tmA_GPR149 5 TM helix 5 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182 7 -320139 cd15011 7tmA_GPR149 6 TM helix 6 0 0 0 0 187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212 7 -320139 cd15011 7tmA_GPR149 7 TM helix 7 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -271319 cd15457 NADAR 1 putative active site 0 0 1 1 15,33,40,113 1 -271252 cd15481 SRP68-RBD 1 RNA binding site 0 1 1 0 11,20,21,23,25,27,28,29,30,31,32,34,35,36,63,74,78,95,96,98,99,102,103,106,109 3 -350626 cd15488 Tm-1-like 1 ATP binding site 0 1 1 0 6,8,9,10,34,35,36,67,70,99,101,102 5 -276966 cd15489 PHD_SF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,44,47 4 -276966 cd15489 PHD_SF 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,42 2 -276967 cd15492 PHD_BRPF_JADE_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,42,45 4 -276967 cd15492 PHD_BRPF_JADE_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,40 2 -277047 cd15572 PHD_BRPF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 3,6,20,23,28,31,44,47 4 -277047 cd15572 PHD_BRPF 2 histone H3 binding site 0 1 1 0 2,17,18,19,20,24,42 2 -277146 cd15676 PHD_BRPF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 9,12,26,29,34,37,50,53 4 -277146 cd15676 PHD_BRPF1 2 histone H3 binding site 0 1 1 0 8,23,24,25,26,30,48 2 -277147 cd15677 PHD_BRPF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 3,6,20,23,28,31,44,47 4 -277147 cd15677 PHD_BRPF2 2 histone H3 binding site 0 1 1 0 2,17,18,19,20,24,42 2 -277148 cd15678 PHD_BRPF3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 3,6,20,23,28,31,44,47 4 -277148 cd15678 PHD_BRPF3 2 histone H3 binding site 0 1 1 0 2,17,18,19,20,24,42 2 -277048 cd15573 PHD_JADE 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,42,45 4 -277048 cd15573 PHD_JADE 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,40 2 -277149 cd15679 PHD_JADE1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,42,45 4 -277149 cd15679 PHD_JADE1 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,40 2 -277150 cd15680 PHD_JADE2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,42,45 4 -277150 cd15680 PHD_JADE2 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,40 2 -277151 cd15681 PHD_JADE3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,42,45 4 -277151 cd15681 PHD_JADE3 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,40 2 -277049 cd15574 PHD_AF10_AF17 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,23,28,31,44,47 4 -277049 cd15574 PHD_AF10_AF17 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,24,42 2 -276968 cd15493 PHD_JMJD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,12,15,20,23,38,41 4 -276968 cd15493 PHD_JMJD2 2 histone H3 binding site 0 1 1 0 0,9,10,11,12,16,36 2 -277050 cd15575 PHD_JMJD2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,71,74,79,82,96,99 4 -277050 cd15575 PHD_JMJD2A 2 histone H3 binding site 0 1 1 0 0,68,69,70,71,75,94 2 -277051 cd15576 PHD_JMJD2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,70,73,78,81,95,98 4 -277051 cd15576 PHD_JMJD2B 2 histone H3 binding site 0 1 1 0 0,67,68,69,70,74,93 2 -277052 cd15577 PHD_JMJD2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,75,78,83,86,100,103 4 -277052 cd15577 PHD_JMJD2C 2 histone H3 binding site 0 1 1 0 0,72,73,74,75,79,98 2 -276969 cd15494 PHD_ATX1_2_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,43,46 4 -276969 cd15494 PHD_ATX1_2_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,41 2 -276970 cd15495 PHD_ATX3_4_5_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,43,46 4 -276970 cd15495 PHD_ATX3_4_5_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,41 2 -276971 cd15496 PHD_PHF7_G2E3_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,6,26,29,35,38,50,53 4 -276971 cd15496 PHD_PHF7_G2E3_like 2 histone H3 binding site 0 1 1 0 0,23,24,25,26,30,48 2 -276972 cd15497 PHD1_Snt2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,44,47 4 -276972 cd15497 PHD1_Snt2p_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,42 2 -276973 cd15498 PHD2_Snt2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,51,54 4 -276973 cd15498 PHD2_Snt2p_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,49 2 -276974 cd15499 PHD1_MTF2_PHF19_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,47,50 4 -276974 cd15499 PHD1_MTF2_PHF19_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,45 2 -277053 cd15578 PHD1_MTF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,47,50 4 -277053 cd15578 PHD1_MTF2 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,45 2 -277054 cd15579 PHD1_PHF19 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,47,50 4 -277054 cd15579 PHD1_PHF19 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,45 2 -276975 cd15500 PHD1_PHF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,47,50 4 -276975 cd15500 PHD1_PHF1 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,45 2 -276976 cd15501 PHD_Int12 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,48,51 4 -276976 cd15501 PHD_Int12 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,46 2 -276977 cd15502 PHD_Phf1p_Phf2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,48,51 4 -276977 cd15502 PHD_Phf1p_Phf2p_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,46 2 -276978 cd15503 PHD2_MTF2_PHF19_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -276978 cd15503 PHD2_MTF2_PHF19_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -277055 cd15580 PHD2_MTF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -277055 cd15580 PHD2_MTF2 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -277056 cd15581 PHD2_PHF19 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -277056 cd15581 PHD2_PHF19 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -277057 cd15582 PHD2_PHF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -277057 cd15582 PHD2_PHF1 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -276979 cd15504 PHD_PRHA_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,22,27,30,49,52 4 -276979 cd15504 PHD_PRHA_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,23,47 2 -276980 cd15505 PHD_ING 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,19,25,28,41,44 4 -276980 cd15505 PHD_ING 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,39 2 -277059 cd15584 PHD_ING1_2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,19,25,28,41,44 4 -277059 cd15584 PHD_ING1_2 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,39 2 -277152 cd15682 PHD_ING1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,15,20,26,29,42,45 4 -277152 cd15682 PHD_ING1 2 histone H3 binding site 0 1 1 0 1,12,13,14,15,21,40 2 -277153 cd15683 PHD_ING2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,15,20,26,29,42,45 4 -277153 cd15683 PHD_ING2 2 histone H3 binding site 0 1 1 0 1,12,13,14,15,21,40 2 -277060 cd15585 PHD_ING3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,19,25,28,41,44 4 -277060 cd15585 PHD_ING3 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,39 2 -277061 cd15586 PHD_ING4_5 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,19,25,28,41,44 4 -277061 cd15586 PHD_ING4_5 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,39 2 -277154 cd15684 PHD_ING4 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,15,20,26,29,42,45 4 -277154 cd15684 PHD_ING4 2 histone H3 binding site 0 1 1 0 1,12,13,14,15,21,40 2 -277155 cd15685 PHD_ING5 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,15,20,26,29,42,45 4 -277155 cd15685 PHD_ING5 2 histone H3 binding site 0 1 1 0 1,12,13,14,15,21,40 2 -277062 cd15587 PHD_Yng1p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,19,25,28,41,44 4 -277062 cd15587 PHD_Yng1p_like 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,39 2 -276981 cd15506 PHD1_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,15,18,23,26,43,46 4 -276981 cd15506 PHD1_KMT2A_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,41 2 -277063 cd15588 PHD1_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,15,18,23,26,43,46 4 -277063 cd15588 PHD1_KMT2A 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,41 2 -277064 cd15589 PHD1_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,15,18,23,26,43,46 4 -277064 cd15589 PHD1_KMT2B 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,41 2 -276982 cd15507 PHD2_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,46,49 4 -276982 cd15507 PHD2_KMT2A_like 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,44 2 -277065 cd15590 PHD2_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,46,49 4 -277065 cd15590 PHD2_KMT2A 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,44 2 -277066 cd15591 PHD2_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,46,49 4 -277066 cd15591 PHD2_KMT2B 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,44 2 -276983 cd15508 PHD3_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,20,23,28,31,53,56 4 -276983 cd15508 PHD3_KMT2A_like 2 histone H3 binding site 0 1 1 0 0,17,18,19,20,24,51 2 -277067 cd15592 PHD3_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,20,23,28,31,53,56 4 -277067 cd15592 PHD3_KMT2A 2 histone H3 binding site 0 1 1 0 0,17,18,19,20,24,51 2 -277068 cd15593 PHD3_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,20,23,28,31,53,56 4 -277068 cd15593 PHD3_KMT2B 2 histone H3 binding site 0 1 1 0 0,17,18,19,20,24,51 2 -276984 cd15509 PHD1_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,44,47 4 -276984 cd15509 PHD1_KMT2C_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,42 2 -276985 cd15510 PHD2_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -276985 cd15510 PHD2_KMT2C_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277069 cd15594 PHD2_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277069 cd15594 PHD2_KMT2C 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277070 cd15595 PHD2_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277070 cd15595 PHD2_KMT2D 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -276986 cd15511 PHD3_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,19,22,27,30,48,51 4 -276986 cd15511 PHD3_KMT2C 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,23,46 2 -276987 cd15512 PHD4_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,45,48 4 -276987 cd15512 PHD4_KMT2C_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,43 2 -277071 cd15596 PHD4_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 8,11,25,28,33,36,52,55 4 -277071 cd15596 PHD4_KMT2C 2 histone H3 binding site 0 1 1 0 7,22,23,24,25,29,50 2 -277072 cd15597 PHD3_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,5,19,22,27,30,46,49 4 -277072 cd15597 PHD3_KMT2D 2 histone H3 binding site 0 1 1 0 1,16,17,18,19,23,44 2 -276988 cd15513 PHD5_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -276988 cd15513 PHD5_KMT2C_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -276989 cd15514 PHD6_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,47,50 4 -276989 cd15514 PHD6_KMT2C_like 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,45 2 -277073 cd15600 PHD6_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,47,50 4 -277073 cd15600 PHD6_KMT2C 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,45 2 -277074 cd15601 PHD5_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,47,50 4 -277074 cd15601 PHD5_KMT2D 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,45 2 -276990 cd15515 PHD1_KDM5A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -276990 cd15515 PHD1_KDM5A_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277075 cd15602 PHD1_KDM5A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277075 cd15602 PHD1_KDM5A 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277076 cd15603 PHD1_KDM5B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277076 cd15603 PHD1_KDM5B 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277077 cd15604 PHD1_KDM5C_5D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277077 cd15604 PHD1_KDM5C_5D 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277078 cd15605 PHD1_Lid_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277078 cd15605 PHD1_Lid_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -276991 cd15516 PHD2_KDM5A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,17,22,25,49,52 4 -276991 cd15516 PHD2_KDM5A_like 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,47 2 -277079 cd15606 PHD2_KDM5A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,17,22,25,52,55 4 -277079 cd15606 PHD2_KDM5A 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,50 2 -277080 cd15607 PHD2_KDM5B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,17,22,25,40,43 4 -277080 cd15607 PHD2_KDM5B 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,38 2 -277081 cd15608 PHD2_KDM5C_5D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,17,22,25,54,57 4 -277081 cd15608 PHD2_KDM5C_5D 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,52 2 -276992 cd15517 PHD_TCF19_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,45,48 4 -276992 cd15517 PHD_TCF19_like 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,43 2 -277082 cd15609 PHD_TCF19 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,6,19,22,27,30,47,49 4 -277082 cd15609 PHD_TCF19 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,23,45 2 -277083 cd15610 PHD3_KDM5A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,6,19,22,27,30,46,49 4 -277083 cd15610 PHD3_KDM5A_like 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,23,44 2 -277156 cd15686 PHD3_KDM5A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,7,20,24,29,32,47,50 4 -277156 cd15686 PHD3_KDM5A 2 histone H3 binding site 0 1 1 0 1,17,18,19,20,25,45 2 -277157 cd15687 PHD3_KDM5B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,6,19,23,28,31,46,49 4 -277157 cd15687 PHD3_KDM5B 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,24,44 2 -277084 cd15612 PHD_OBE1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,19,22,27,30,56,59 4 -277084 cd15612 PHD_OBE1_like 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,23,54 2 -277085 cd15613 PHD_AL_plant 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,20,25,28,44,47 4 -277085 cd15613 PHD_AL_plant 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,42 2 -277086 cd15614 PHD_HAC_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,41,44,49,52,69,72 4 -277086 cd15614 PHD_HAC_like 2 histone H3 binding site 0 1 1 0 0,38,39,40,41,45,67 2 -277087 cd15615 PHD_ARID4_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,21,24,29,32,53,56 4 -277087 cd15615 PHD_ARID4_like 2 histone H3 binding site 0 1 1 0 0,18,19,20,21,25,51 2 -276993 cd15518 PHD_Ecm5p_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,14,17,22,25,41,44 4 -276993 cd15518 PHD_Ecm5p_Lid2p_like 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,39 2 -276994 cd15519 PHD1_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -276994 cd15519 PHD1_Lid2p_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -276995 cd15520 PHD3_Lid2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,43,46 4 -276995 cd15520 PHD3_Lid2p_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -276996 cd15521 PHD_VIN3_plant 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,19,30,35,38,60,63 4 -276996 cd15521 PHD_VIN3_plant 2 histone H3 binding site 0 1 1 0 0,16,17,18,19,31,58 2 -276997 cd15522 PHD_TAF3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -276997 cd15522 PHD_TAF3 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -276998 cd15523 PHD_PHF21A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -276998 cd15523 PHD_PHF21A 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -276999 cd15524 PHD_PHF21B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -276999 cd15524 PHD_PHF21B 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277000 cd15525 PHD_UHRF1_2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,43,46 4 -277000 cd15525 PHD_UHRF1_2 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277088 cd15616 PHD_UHRF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,43,46 4 -277088 cd15616 PHD_UHRF1 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277089 cd15617 PHD_UHRF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,43,46 4 -277089 cd15617 PHD_UHRF2 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277001 cd15526 PHD1_MOZ_d4 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,23,26,31,34,52,55 4 -277001 cd15526 PHD1_MOZ_d4 2 histone H3 binding site 0 1 1 0 0,20,21,22,23,27,50 2 -277090 cd15618 PHD1_MOZ_MORF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 4,7,25,28,33,36,54,57 4 -277090 cd15618 PHD1_MOZ_MORF 2 histone H3 binding site 0 1 1 0 3,22,23,24,25,29,52 2 -277158 cd15688 PHD1_MOZ 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 4,7,25,28,33,36,54,57 4 -277158 cd15688 PHD1_MOZ 2 histone H3 binding site 0 1 1 0 3,22,23,24,25,29,52 2 -277159 cd15689 PHD1_MORF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 4,7,25,28,33,36,54,57 4 -277159 cd15689 PHD1_MORF 2 histone H3 binding site 0 1 1 0 3,22,23,24,25,29,52 2 -277091 cd15619 PHD1_d4 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,23,26,31,34,52,55 4 -277091 cd15619 PHD1_d4 2 histone H3 binding site 0 1 1 0 0,20,21,22,23,27,50 2 -277160 cd15690 PHD1_DPF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 5,8,24,27,32,35,53,56 4 -277160 cd15690 PHD1_DPF1 2 histone H3 binding site 0 1 1 0 4,21,22,23,24,28,51 2 -277161 cd15691 PHD1_DPF2_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,23,26,31,34,52,55 4 -277161 cd15691 PHD1_DPF2_like 2 histone H3 binding site 0 1 1 0 0,20,21,22,23,27,50 2 -277162 cd15692 PHD1_DPF3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,23,26,31,34,52,55 4 -277162 cd15692 PHD1_DPF3 2 histone H3 binding site 0 1 1 0 0,20,21,22,23,27,50 2 -277002 cd15527 PHD2_KAT6A_6B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277002 cd15527 PHD2_KAT6A_6B 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277003 cd15528 PHD1_PHF10 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,21,24,29,32,50,53 4 -277003 cd15528 PHD1_PHF10 2 histone H3 binding site 0 1 1 0 0,18,19,20,21,25,48 2 -277004 cd15529 PHD2_PHF10 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,40,43 4 -277004 cd15529 PHD2_PHF10 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,38 2 -277005 cd15530 PHD2_d4 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277005 cd15530 PHD2_d4 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277006 cd15531 PHD1_CHD_II 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277006 cd15531 PHD1_CHD_II 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277007 cd15532 PHD2_CHD_II 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277007 cd15532 PHD2_CHD_II 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277008 cd15533 PHD1_PHF12 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,41,44 4 -277008 cd15533 PHD1_PHF12 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,39 2 -277009 cd15534 PHD2_PHF12_Rco1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,43,46 4 -277009 cd15534 PHD2_PHF12_Rco1 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277010 cd15535 PHD1_Rco1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,41,44 4 -277010 cd15535 PHD1_Rco1 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,39 2 -277011 cd15536 PHD_PHRF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277011 cd15536 PHD_PHRF1 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277012 cd15537 PHD_BS69 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277012 cd15537 PHD_BS69 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277013 cd15538 PHD_PRKCBP1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,37,40 4 -277013 cd15538 PHD_PRKCBP1 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,35 2 -277014 cd15539 PHD1_AIRE 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277014 cd15539 PHD1_AIRE 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277015 cd15540 PHD2_AIRE 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,14,17,22,25,38,41 4 -277015 cd15540 PHD2_AIRE 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,18,36 2 -277016 cd15541 PHD_TIF1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277016 cd15541 PHD_TIF1_like 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277092 cd15622 PHD_TIF1alpha 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277092 cd15622 PHD_TIF1alpha 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277093 cd15623 PHD_TIF1beta 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277093 cd15623 PHD_TIF1beta 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277094 cd15624 PHD_TIF1gamma 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277094 cd15624 PHD_TIF1gamma 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277095 cd15625 PHD_TIF1delta 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 4,7,16,19,24,27,42,45 4 -277095 cd15625 PHD_TIF1delta 2 histone H3 binding site 0 1 1 0 3,13,14,15,16,20,40 2 -277096 cd15626 PHD_SP110_140 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,38,41 4 -277096 cd15626 PHD_SP110_140 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,36 2 -277017 cd15542 PHD_UBR7 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,21,24,29,32,50,53 4 -277017 cd15542 PHD_UBR7 2 histone H3 binding site 0 1 1 0 0,18,19,20,21,25,48 2 -277018 cd15543 PHD_RSF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277018 cd15543 PHD_RSF1 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277019 cd15544 PHD_BAZ1A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277019 cd15544 PHD_BAZ1A_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277097 cd15627 PHD_BAZ1A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277097 cd15627 PHD_BAZ1A 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277098 cd15628 PHD_BAZ1B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277098 cd15628 PHD_BAZ1B 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277020 cd15545 PHD_BAZ2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277020 cd15545 PHD_BAZ2A_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277099 cd15629 PHD_BAZ2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,42,45 4 -277099 cd15629 PHD_BAZ2A 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277100 cd15630 PHD_BAZ2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,5,17,20,25,28,43,46 4 -277100 cd15630 PHD_BAZ2B 2 histone H3 binding site 0 1 1 0 1,14,15,16,17,21,41 2 -277021 cd15546 PHD_PHF13_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,40,43 4 -277021 cd15546 PHD_PHF13_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,38 2 -277101 cd15631 PHD_PHF23 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,40,43 4 -277101 cd15631 PHD_PHF23 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,38 2 -277102 cd15632 PHD_PHF13 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 3,5,17,20,25,28,42,45 4 -277102 cd15632 PHD_PHF13 2 histone H3 binding site 0 1 1 0 2,14,15,16,17,21,40 2 -277022 cd15547 PHD_SHPRH 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,17,20,25,28,43,46 4 -277022 cd15547 PHD_SHPRH 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,21,41 2 -277023 cd15548 PHD_ASH1L 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,16,19,24,27,39,42 4 -277023 cd15548 PHD_ASH1L 2 histone H3 binding site 0 1 1 0 1,13,14,15,16,20,37 2 -277024 cd15549 PHD_PHF20_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,41,44 4 -277024 cd15549 PHD_PHF20_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,39 2 -277103 cd15633 PHD_PHF20L1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,40,43 4 -277103 cd15633 PHD_PHF20L1 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,38 2 -277104 cd15634 PHD_PHF20 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,40,43 4 -277104 cd15634 PHD_PHF20 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,38 2 -277025 cd15550 PHD_MLL5 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,40,43 4 -277025 cd15550 PHD_MLL5 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,38 2 -277026 cd15551 PHD_PYGO 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,21,26,29,50,53 4 -277026 cd15551 PHD_PYGO 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,22,48 2 -277105 cd15635 PHD_PYGO1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,5,18,22,27,30,51,54 4 -277105 cd15635 PHD_PYGO1 2 histone H3 binding site 0 1 1 0 1,15,16,17,18,23,49 2 -277106 cd15636 PHD_PYGO2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,21,26,29,50,53 4 -277106 cd15636 PHD_PYGO2 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,22,48 2 -277107 cd15637 PHD_dPYGO 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,21,26,29,50,53 4 -277107 cd15637 PHD_dPYGO 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,22,48 2 -277027 cd15552 PHD_PHF3_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,46,49 4 -277027 cd15552 PHD_PHF3_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,44 2 -277108 cd15638 PHD_PHF3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,47,50 4 -277108 cd15638 PHD_PHF3 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,45 2 -277109 cd15639 PHD_DIDO1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 5,7,19,22,27,30,50,53 4 -277109 cd15639 PHD_DIDO1_like 2 histone H3 binding site 0 1 1 0 4,16,17,18,19,23,48 2 -277028 cd15553 PHD_Cfp1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,42,45 4 -277028 cd15553 PHD_Cfp1 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,40 2 -277029 cd15554 PHD_PHF2_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,43,46 4 -277029 cd15554 PHD_PHF2_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277110 cd15640 PHD_KDM7 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,43,46 4 -277110 cd15640 PHD_KDM7 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277111 cd15641 PHD_PHF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,43,46 4 -277111 cd15641 PHD_PHF2 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277112 cd15642 PHD_PHF8 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 2,4,17,20,25,28,44,47 4 -277112 cd15642 PHD_PHF8 2 histone H3 binding site 0 1 1 0 1,14,15,16,17,21,42 2 -277030 cd15555 PHD_KDM2A_2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,20,23,28,31,51,54 4 -277030 cd15555 PHD_KDM2A_2B 2 histone H3 binding site 0 1 1 0 0,17,18,19,20,24,49 2 -277113 cd15643 PHD_KDM2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,23,26,31,34,53,56 4 -277113 cd15643 PHD_KDM2A 2 histone H3 binding site 0 1 1 0 0,20,21,22,23,27,51 2 -277114 cd15644 PHD_KDM2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,27,30,35,38,58,61 4 -277114 cd15644 PHD_KDM2B 2 histone H3 binding site 0 1 1 0 0,24,25,26,27,31,56 2 -277115 cd15645 PHD_FXL19 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,27,30,35,38,58,61 4 -277115 cd15645 PHD_FXL19 2 histone H3 binding site 0 1 1 0 0,24,25,26,27,31,56 2 -277031 cd15556 PHD_MMD1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,42,45 4 -277031 cd15556 PHD_MMD1_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,40 2 -277032 cd15557 PHD_CBP_p300 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,2,8,11,16,19,33,36 4 -277032 cd15557 PHD_CBP_p300 2 histone H3 binding site 0 1 1 0 0,5,6,7,8,12,31 2 -277116 cd15646 PHD_p300 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,2,9,12,17,20,34,37 4 -277116 cd15646 PHD_p300 2 histone H3 binding site 0 1 1 0 0,6,7,8,9,13,32 2 -277117 cd15647 PHD_CBP 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,2,9,12,17,20,34,37 4 -277117 cd15647 PHD_CBP 2 histone H3 binding site 0 1 1 0 0,6,7,8,9,13,32 2 -277033 cd15558 PHD_Hop1p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,43,46 4 -277033 cd15558 PHD_Hop1p_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,41 2 -277034 cd15559 PHD1_BPTF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,39,42 4 -277034 cd15559 PHD1_BPTF 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,37 2 -277035 cd15560 PHD2_3_BPTF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,43,46 4 -277035 cd15560 PHD2_3_BPTF 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,41 2 -277036 cd15561 PHD1_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,52,55 4 -277036 cd15561 PHD1_PHF14 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,50 2 -277037 cd15562 PHD2_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,46,49 4 -277037 cd15562 PHD2_PHF14 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -277038 cd15563 PHD3_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,16,19,24,27,45,48 4 -277038 cd15563 PHD3_PHF14 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,43 2 -277039 cd15564 PHD1_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,17,22,25,38,41 4 -277039 cd15564 PHD1_NSD 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,18,36 2 -277118 cd15648 PHD1_NSD1_2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,17,22,25,38,41 4 -277118 cd15648 PHD1_NSD1_2 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,18,36 2 -277119 cd15649 PHD1_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,14,18,23,26,39,42 4 -277119 cd15649 PHD1_NSD3 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,19,37 2 -277040 cd15565 PHD2_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,17,22,27,30,47,50 4 -277040 cd15565 PHD2_NSD 2 histone H3 binding site 0 1 1 0 0,14,15,16,17,23,45 2 -277120 cd15650 PHD2_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,14,19,24,27,43,46 4 -277120 cd15650 PHD2_NSD1 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,41 2 -277121 cd15651 PHD2_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,14,19,24,27,43,46 4 -277121 cd15651 PHD2_NSD2 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,41 2 -277122 cd15652 PHD2_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,14,19,24,27,43,46 4 -277122 cd15652 PHD2_NSD3 2 histone H3 binding site 0 1 1 0 0,11,12,13,14,20,41 2 -277041 cd15566 PHD3_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,18,21,26,29,44,47 4 -277041 cd15566 PHD3_NSD 2 histone H3 binding site 0 1 1 0 0,15,16,17,18,22,42 2 -277123 cd15653 PHD3_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,22,25,30,35,50,53 4 -277123 cd15653 PHD3_NSD1 2 histone H3 binding site 0 1 1 0 0,19,20,21,22,26,48 2 -277124 cd15654 PHD3_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,22,25,30,35,50,53 4 -277124 cd15654 PHD3_NSD2 2 histone H3 binding site 0 1 1 0 0,19,20,21,22,26,48 2 -277125 cd15655 PHD3_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,21,24,29,34,49,52 4 -277125 cd15655 PHD3_NSD3 2 histone H3 binding site 0 1 1 0 0,18,19,20,21,25,47 2 -277042 cd15567 PHD4_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,37,40 4 -277042 cd15567 PHD4_NSD 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,35 2 -277126 cd15656 PHD4_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,36,39 4 -277126 cd15656 PHD4_NSD1 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,34 2 -277127 cd15657 PHD4_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,36,39 4 -277127 cd15657 PHD4_NSD2 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,34 2 -277128 cd15658 PHD4_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,16,21,24,36,39 4 -277128 cd15658 PHD4_NSD3 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,17,34 2 -277043 cd15568 PHD5_NSD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,18,23,26,39,42 4 -277043 cd15568 PHD5_NSD 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,19,37 2 -277129 cd15659 PHD5_NSD1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,18,23,26,39,42 4 -277129 cd15659 PHD5_NSD1 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,19,37 2 -277130 cd15660 PHD5_NSD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,18,23,26,39,42 4 -277130 cd15660 PHD5_NSD2 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,19,37 2 -277131 cd15661 PHD5_NSD3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,4,13,18,23,26,39,42 4 -277131 cd15661 PHD5_NSD3 2 histone H3 binding site 0 1 1 0 0,10,11,12,13,19,37 2 -277044 cd15569 PHD_RAG2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 4,8,31,37,40,43,63,66 4 -277044 cd15569 PHD_RAG2 2 histone H3 binding site 0 1 1 0 3,28,29,30,31,38,61 2 -277045 cd15570 PHD_Bye1p_SIZ1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,46,49 4 -277045 cd15570 PHD_Bye1p_SIZ1_like 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,44 2 -277046 cd15571 ePHD 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 61,64,74,79,84,87,108,111 4 -277046 cd15571 ePHD 2 histone H3 binding site 0 1 1 0 60,71,72,73,74,80,106 2 -277132 cd15662 ePHD_ATX1_2_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,69,74,79,82,111,114 4 -277132 cd15662 ePHD_ATX1_2_like 2 histone H3 binding site 0 1 1 0 55,66,67,68,69,75,109 2 -277133 cd15663 ePHD_ATX3_4_5_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,70,73,78,81,108,111 4 -277133 cd15663 ePHD_ATX3_4_5_like 2 histone H3 binding site 0 1 1 0 56,67,68,69,70,74,106 2 -277134 cd15664 ePHD_KMT2A_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,72,77,82,85,101,104 4 -277134 cd15664 ePHD_KMT2A_like 2 histone H3 binding site 0 1 1 0 59,69,70,71,72,78,99 2 -277163 cd15693 ePHD_KMT2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 62,65,74,79,84,87,103,106 4 -277163 cd15693 ePHD_KMT2A 2 histone H3 binding site 0 1 1 0 61,71,72,73,74,80,101 2 -277164 cd15694 ePHD_KMT2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,72,77,82,85,101,104 4 -277164 cd15694 ePHD_KMT2B 2 histone H3 binding site 0 1 1 0 59,69,70,71,72,78,99 2 -277135 cd15665 ePHD1_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 44,47,56,61,66,69,86,89 4 -277135 cd15665 ePHD1_KMT2C_like 2 histone H3 binding site 0 1 1 0 43,53,54,55,56,62,84 2 -277165 cd15695 ePHD1_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 44,47,56,61,66,69,86,89 4 -277165 cd15695 ePHD1_KMT2D 2 histone H3 binding site 0 1 1 0 43,53,54,55,56,62,84 2 -277166 cd15696 ePHD1_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 44,47,56,61,66,69,86,89 4 -277166 cd15696 ePHD1_KMT2C 2 histone H3 binding site 0 1 1 0 43,53,54,55,56,62,84 2 -277136 cd15666 ePHD2_KMT2C_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,72,77,82,85,101,104 4 -277136 cd15666 ePHD2_KMT2C_like 2 histone H3 binding site 0 1 1 0 59,69,70,71,72,78,99 2 -277167 cd15697 ePHD2_KMT2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,72,77,82,85,101,104 4 -277167 cd15697 ePHD2_KMT2C 2 histone H3 binding site 0 1 1 0 59,69,70,71,72,78,99 2 -277168 cd15698 ePHD2_KMT2D 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,72,77,82,85,101,104 4 -277168 cd15698 ePHD2_KMT2D 2 histone H3 binding site 0 1 1 0 59,69,70,71,72,78,99 2 -277137 cd15667 ePHD_Snt2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 71,74,84,87,92,95,137,140 4 -277137 cd15667 ePHD_Snt2p_like 2 histone H3 binding site 0 1 1 0 70,81,82,83,84,88,135 2 -277138 cd15668 ePHD_RAI1_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,69,74,79,82,99,102 4 -277138 cd15668 ePHD_RAI1_like 2 histone H3 binding site 0 1 1 0 56,66,67,68,69,75,97 2 -277169 cd15699 ePHD_TCF20 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,69,74,79,82,99,102 4 -277169 cd15699 ePHD_TCF20 2 histone H3 binding site 0 1 1 0 56,66,67,68,69,75,97 2 -277170 cd15700 ePHD_RAI1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 58,61,70,75,80,83,100,103 4 -277170 cd15700 ePHD_RAI1 2 histone H3 binding site 0 1 1 0 57,67,68,69,70,76,98 2 -277139 cd15669 ePHD_PHF7_G2E3_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 65,68,77,82,87,90,108,111 4 -277139 cd15669 ePHD_PHF7_G2E3_like 2 histone H3 binding site 0 1 1 0 64,74,75,76,77,83,106 2 -277140 cd15670 ePHD_BRPF 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,69,74,79,82,112,115 4 -277140 cd15670 ePHD_BRPF 2 histone H3 binding site 0 1 1 0 55,66,67,68,69,75,110 2 -277171 cd15701 ePHD_BRPF1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,70,75,80,83,114,117 4 -277171 cd15701 ePHD_BRPF1 2 histone H3 binding site 0 1 1 0 55,67,68,69,70,76,112 2 -277172 cd15702 ePHD_BRPF2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,70,75,80,83,114,117 4 -277172 cd15702 ePHD_BRPF2 2 histone H3 binding site 0 1 1 0 55,67,68,69,70,76,112 2 -277173 cd15703 ePHD_BRPF3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,70,75,80,83,114,117 4 -277173 cd15703 ePHD_BRPF3 2 histone H3 binding site 0 1 1 0 55,67,68,69,70,76,112 2 -277141 cd15671 ePHD_JADE 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,70,75,80,83,108,111 4 -277141 cd15671 ePHD_JADE 2 histone H3 binding site 0 1 1 0 56,67,68,69,70,76,106 2 -277174 cd15704 ePHD_JADE1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 60,63,73,78,83,86,110,113 4 -277174 cd15704 ePHD_JADE1 2 histone H3 binding site 0 1 1 0 59,70,71,72,73,79,108 2 -277175 cd15705 ePHD_JADE2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,70,75,80,83,107,110 4 -277175 cd15705 ePHD_JADE2 2 histone H3 binding site 0 1 1 0 56,67,68,69,70,76,105 2 -277176 cd15706 ePHD_JADE3 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,70,75,80,83,107,110 4 -277176 cd15706 ePHD_JADE3 2 histone H3 binding site 0 1 1 0 56,67,68,69,70,76,105 2 -277177 cd15707 ePHD_RNO 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 57,60,70,75,80,83,109,112 4 -277177 cd15707 ePHD_RNO 2 histone H3 binding site 0 1 1 0 56,67,68,69,70,76,107 2 -277142 cd15672 ePHD_AF10_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 55,58,75,80,85,88,112,115 4 -277142 cd15672 ePHD_AF10_like 2 histone H3 binding site 0 1 1 0 54,72,73,74,75,81,110 2 -277178 cd15708 ePHD_AF10 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 59,62,79,84,89,92,116,119 4 -277178 cd15708 ePHD_AF10 2 histone H3 binding site 0 1 1 0 58,76,77,78,79,85,114 2 -277179 cd15709 ePHD_AF17 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 59,62,79,84,89,92,116,119 4 -277179 cd15709 ePHD_AF17 2 histone H3 binding site 0 1 1 0 58,76,77,78,79,85,114 2 -277143 cd15673 ePHD_PHF6_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 66,69,78,83,88,91,112,115 4 -277143 cd15673 ePHD_PHF6_like 2 histone H3 binding site 0 1 1 0 65,75,76,77,78,84,110 2 -277180 cd15710 ePHD1_PHF6 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 65,68,77,82,87,90,111,114 4 -277180 cd15710 ePHD1_PHF6 2 histone H3 binding site 0 1 1 0 64,74,75,76,77,83,109 2 -277181 cd15711 ePHD2_PHF6 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 68,71,80,85,90,93,114,117 4 -277181 cd15711 ePHD2_PHF6 2 histone H3 binding site 0 1 1 0 67,77,78,79,80,86,112 2 -277182 cd15712 ePHD_PHF11 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 65,68,77,82,87,90,111,114 4 -277182 cd15712 ePHD_PHF11 2 histone H3 binding site 0 1 1 0 64,74,75,76,77,83,109 2 -277144 cd15674 ePHD_PHF14 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 56,59,73,78,83,86,110,113 4 -277144 cd15674 ePHD_PHF14 2 histone H3 binding site 0 1 1 0 55,70,71,72,73,79,108 2 -277145 cd15675 ePHD_JMJD2 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 55,58,74,79,84,87,108,111 4 -277145 cd15675 ePHD_JMJD2 2 histone H3 binding site 0 1 1 0 54,71,72,73,74,80,106 2 -277183 cd15713 ePHD_JMJD2A 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 55,58,72,77,82,85,106,109 4 -277183 cd15713 ePHD_JMJD2A 2 histone H3 binding site 0 1 1 0 54,69,70,71,72,78,104 2 -277184 cd15714 ePHD_JMJD2B 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 55,58,72,77,82,85,106,109 4 -277184 cd15714 ePHD_JMJD2B 2 histone H3 binding site 0 1 1 0 54,69,70,71,72,78,104 2 -277185 cd15715 ePHD_JMJD2C 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 55,58,72,77,82,85,106,109 4 -277185 cd15715 ePHD_JMJD2C 2 histone H3 binding site 0 1 1 0 54,69,70,71,72,78,104 2 -277058 cd15583 PHD_ash2p_like 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,16,19,24,27,46,49 4 -277058 cd15583 PHD_ash2p_like 2 histone H3 binding site 0 1 1 0 0,13,14,15,16,20,44 2 -277186 cd16039 PHD_SPP1 1 Zn binding site CCC[CH]H[CH]C[CH] 1 1 1 1,3,15,18,23,26,42,45 4 -277186 cd16039 PHD_SPP1 2 histone H3 binding site 0 1 1 0 0,12,13,14,15,19,40 2 -276805 cd15802 RING_CBP-p300 1 Zn binding site CCCC 1 1 0 7,11,34,37 4 -276805 cd15802 RING_CBP-p300 2 HAT interface 0 1 1 1 0,3,4,70,72 2 -276941 cd15803 RLR_C_like 1 Zn binding site CCCC 1 1 0 2,5,57,60 4 -276940 cd15777 CRBN_C_like 1 Zn binding site CCCC 1 1 0 2,5,69,72 4 -276942 cd15804 RLR_C 1 Zn binding site CCCC 1 1 0 4,7,59,62 4 -276943 cd15805 RIG-I_C 1 Zn binding site CCCC 1 1 0 5,8,59,62 4 -276944 cd15806 LGP2_C 1 Zn binding site CCCC 1 1 0 4,7,59,62 4 -276945 cd15807 MDA5_C 1 Zn binding site CCCC 1 1 0 7,10,62,65 4 -276939 cd15830 BamD 1 heterodimer interface 0 1 1 0 3,6,14,15,16,18,36,37,40,43,44,47,50,51,74,77,80,84,111,114,122,128,131,132,134,135,136,137,138,139,141,144,172,174,175,176,182,203,206,207,210,211 2 -276939 cd15830 BamD 2 TPR repeat 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -276939 cd15830 BamD 3 TPR repeat 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68 7 -276939 cd15830 BamD 4 TPR repeat 0 0 1 1 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -276939 cd15830 BamD 5 TPR repeat 0 0 1 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176 7 -276939 cd15830 BamD 6 TPR repeat 0 0 1 1 181,182,183,184,185,186,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 7 -276938 cd15831 BTAD 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -276938 cd15831 BTAD 2 TPR repeat 0 0 1 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -276938 cd15831 BTAD 3 TPR repeat 0 0 1 1 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -276937 cd15832 SNAP 1 TPR repeat 0 0 1 1 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -276937 cd15832 SNAP 2 TPR repeat 0 0 1 1 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -276937 cd15832 SNAP 3 TPR repeat 0 0 1 1 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 7 -276937 cd15832 SNAP 4 TPR repeat 0 0 1 1 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183 7 -320054 cd15897 EFh_PEF 1 Ca binding site 0 1 1 1 12,19,49,51,53,60,79,81,83,90 4 -320054 cd15897 EFh_PEF 2 dimer interface 0 1 1 0 40,42,52,106,109,112,113,114,115,125,129,132,133,136,137,140,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164 2 -320054 cd15897 EFh_PEF 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320054 cd15897 EFh_PEF 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320054 cd15897 EFh_PEF 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320054 cd15897 EFh_PEF 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134 7 -320054 cd15897 EFh_PEF 7 EF-hand motif 0 0 0 0 136,137,138,139,140,141,142,143,144,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164 7 -320055 cd16180 EFh_PEF_Group_I 1 Ca binding site 0 1 1 1 13,20,46,48,50,57,76,78,80,87 4 -320055 cd16180 EFh_PEF_Group_I 2 dimer interface 0 1 1 0 37,39,49,103,106,109,110,111,112,123,127,130,131,134,135,138,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162 2 -320055 cd16180 EFh_PEF_Group_I 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320055 cd16180 EFh_PEF_Group_I 4 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320055 cd16180 EFh_PEF_Group_I 5 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320055 cd16180 EFh_PEF_Group_I 6 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320055 cd16180 EFh_PEF_Group_I 7 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320058 cd16183 EFh_PEF_ALG-2 1 Ca binding site 0 1 1 1 13,20,46,48,50,57,76,78,80,87 4 -320058 cd16183 EFh_PEF_ALG-2 2 dimer interface 0 1 1 0 37,39,49,103,106,109,110,111,112,123,127,130,131,134,135,138,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162 2 -320058 cd16183 EFh_PEF_ALG-2 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320058 cd16183 EFh_PEF_ALG-2 4 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320058 cd16183 EFh_PEF_ALG-2 5 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320058 cd16183 EFh_PEF_ALG-2 6 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320058 cd16183 EFh_PEF_ALG-2 7 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320059 cd16184 EFh_PEF_peflin 1 Ca binding site 0 1 1 1 13,20,46,48,50,57,76,78,80,87 4 -320059 cd16184 EFh_PEF_peflin 2 dimer interface 0 1 1 0 37,39,49,103,106,109,110,111,112,123,127,130,131,134,135,138,147,148,149,150,151,152,153,154,156,157,158,159,160,161,162 2 -320059 cd16184 EFh_PEF_peflin 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320059 cd16184 EFh_PEF_peflin 4 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320059 cd16184 EFh_PEF_peflin 5 EF-hand motif 0 0 0 0 67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -320059 cd16184 EFh_PEF_peflin 6 EF-hand motif 0 0 0 0 103,104,105,106,107,108,109,110,111,112,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132 7 -320059 cd16184 EFh_PEF_peflin 7 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162 7 -320060 cd16185 EFh_PEF_ALG-2_like 1 Ca binding site 0 1 1 1 13,20,45,47,49,56,75,77,79,86 4 -320060 cd16185 EFh_PEF_ALG-2_like 2 dimer interface 0 1 1 0 36,38,48,102,105,108,109,110,111,122,126,129,130,133,134,137,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161 2 -320060 cd16185 EFh_PEF_ALG-2_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320060 cd16185 EFh_PEF_ALG-2_like 4 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320060 cd16185 EFh_PEF_ALG-2_like 5 EF-hand motif 0 0 0 0 66,67,68,69,70,71,72,73,74,75,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95 7 -320060 cd16185 EFh_PEF_ALG-2_like 6 EF-hand motif 0 0 0 0 102,103,104,105,106,107,108,109,110,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131 7 -320060 cd16185 EFh_PEF_ALG-2_like 7 EF-hand motif 0 0 0 0 133,134,135,136,137,138,139,140,141,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 1 Ca binding site 0 1 1 1 12,19,49,51,53,60,79,81,83,90 4 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 2 dimer interface 0 1 1 0 40,42,52,106,109,112,113,114,115,124,128,131,132,135,136,139,148,149,150,151,152,153,154,155,157,158,159,160,161,162,163 2 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320056 cd16181 EFh_PEF_Group_II_sorcin_like 7 EF-hand motif 0 0 0 0 135,136,137,138,139,140,141,142,143,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320061 cd16186 EFh_PEF_grancalcin 1 Ca binding site 0 1 1 1 12,19,49,51,53,60,79,81,83,90 4 -320061 cd16186 EFh_PEF_grancalcin 2 dimer interface 0 1 1 0 40,42,52,106,109,112,113,114,115,124,128,131,132,135,136,139,148,149,150,151,152,153,154,155,157,158,159,160,161,162,163 2 -320061 cd16186 EFh_PEF_grancalcin 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320061 cd16186 EFh_PEF_grancalcin 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320061 cd16186 EFh_PEF_grancalcin 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320061 cd16186 EFh_PEF_grancalcin 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320061 cd16186 EFh_PEF_grancalcin 7 EF-hand motif 0 0 0 0 135,136,137,138,139,140,141,142,143,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320062 cd16187 EFh_PEF_sorcin 1 Ca binding site 0 1 1 1 12,19,49,51,53,60,79,81,83,90 4 -320062 cd16187 EFh_PEF_sorcin 2 dimer interface 0 1 1 0 40,42,52,106,109,112,113,114,115,124,128,131,132,135,136,139,148,149,150,151,152,153,154,155,157,158,159,160,161,162,163 2 -320062 cd16187 EFh_PEF_sorcin 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320062 cd16187 EFh_PEF_sorcin 4 EF-hand motif 0 0 0 0 40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,63,64,65,66,67,68,69 7 -320062 cd16187 EFh_PEF_sorcin 5 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320062 cd16187 EFh_PEF_sorcin 6 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -320062 cd16187 EFh_PEF_sorcin 7 EF-hand motif 0 0 0 0 135,136,137,138,139,140,141,142,143,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 1 Ca binding site 0 1 1 1 12,19,51,53,55,62,81,83,85,92 4 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 2 dimer interface 0 1 1 0 42,44,54,108,111,114,115,116,117,127,131,134,135,138,139,142,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166 2 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 4 EF-hand motif 0 0 0 0 42,43,44,45,46,47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,65,66,67,68,69,70,71 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 5 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 6 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320057 cd16182 EFh_PEF_Group_II_CAPN_like 7 EF-hand motif 0 0 0 0 138,139,140,141,142,143,144,145,146,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320063 cd16188 EFh_PEF_CPNS1_2 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320063 cd16188 EFh_PEF_CPNS1_2 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320063 cd16188 EFh_PEF_CPNS1_2 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320063 cd16188 EFh_PEF_CPNS1_2 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320063 cd16188 EFh_PEF_CPNS1_2 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320063 cd16188 EFh_PEF_CPNS1_2 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320063 cd16188 EFh_PEF_CPNS1_2 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320064 cd16189 EFh_PEF_CAPN1_like 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320064 cd16189 EFh_PEF_CAPN1_like 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320064 cd16189 EFh_PEF_CAPN1_like 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320064 cd16189 EFh_PEF_CAPN1_like 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320064 cd16189 EFh_PEF_CAPN1_like 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320064 cd16189 EFh_PEF_CAPN1_like 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320064 cd16189 EFh_PEF_CAPN1_like 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320073 cd16198 EFh_PEF_CAPN1 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320073 cd16198 EFh_PEF_CAPN1 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320073 cd16198 EFh_PEF_CAPN1 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320073 cd16198 EFh_PEF_CAPN1 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320073 cd16198 EFh_PEF_CAPN1 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320073 cd16198 EFh_PEF_CAPN1 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320073 cd16198 EFh_PEF_CAPN1 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320074 cd16199 EFh_PEF_CAPN2 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320074 cd16199 EFh_PEF_CAPN2 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320074 cd16199 EFh_PEF_CAPN2 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320074 cd16199 EFh_PEF_CAPN2 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320074 cd16199 EFh_PEF_CAPN2 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320074 cd16199 EFh_PEF_CAPN2 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320074 cd16199 EFh_PEF_CAPN2 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320065 cd16190 EFh_PEF_CAPN3 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320065 cd16190 EFh_PEF_CAPN3 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320065 cd16190 EFh_PEF_CAPN3 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320065 cd16190 EFh_PEF_CAPN3 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320065 cd16190 EFh_PEF_CAPN3 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320065 cd16190 EFh_PEF_CAPN3 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320065 cd16190 EFh_PEF_CAPN3 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320066 cd16191 EFh_PEF_CAPN8 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320066 cd16191 EFh_PEF_CAPN8 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320066 cd16191 EFh_PEF_CAPN8 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320066 cd16191 EFh_PEF_CAPN8 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320066 cd16191 EFh_PEF_CAPN8 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320066 cd16191 EFh_PEF_CAPN8 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320066 cd16191 EFh_PEF_CAPN8 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320067 cd16192 EFh_PEF_CAPN9 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320067 cd16192 EFh_PEF_CAPN9 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320067 cd16192 EFh_PEF_CAPN9 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320067 cd16192 EFh_PEF_CAPN9 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320067 cd16192 EFh_PEF_CAPN9 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320067 cd16192 EFh_PEF_CAPN9 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320067 cd16192 EFh_PEF_CAPN9 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320068 cd16193 EFh_PEF_CAPN11 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320068 cd16193 EFh_PEF_CAPN11 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320068 cd16193 EFh_PEF_CAPN11 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320068 cd16193 EFh_PEF_CAPN11 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320068 cd16193 EFh_PEF_CAPN11 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320068 cd16193 EFh_PEF_CAPN11 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320068 cd16193 EFh_PEF_CAPN11 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320069 cd16194 EFh_PEF_CAPN12 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320069 cd16194 EFh_PEF_CAPN12 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167 2 -320069 cd16194 EFh_PEF_CAPN12 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320069 cd16194 EFh_PEF_CAPN12 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320069 cd16194 EFh_PEF_CAPN12 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320069 cd16194 EFh_PEF_CAPN12 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320069 cd16194 EFh_PEF_CAPN12 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167 7 -320070 cd16195 EFh_PEF_CAPN13_14 1 Ca binding site 0 1 1 1 12,19,52,54,56,63,82,84,86,93 4 -320070 cd16195 EFh_PEF_CAPN13_14 2 dimer interface 0 1 1 0 43,45,55,109,112,115,116,117,118,128,132,135,136,139,140,143,151,152,153,154,155,156,157,158,160,161,162,163,164,165,166 2 -320070 cd16195 EFh_PEF_CAPN13_14 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320070 cd16195 EFh_PEF_CAPN13_14 4 EF-hand motif 0 0 0 0 43,44,45,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -320070 cd16195 EFh_PEF_CAPN13_14 5 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320070 cd16195 EFh_PEF_CAPN13_14 6 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320070 cd16195 EFh_PEF_CAPN13_14 7 EF-hand motif 0 0 0 0 139,140,141,142,143,144,145,146,147,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166 7 -320071 cd16196 EFh_PEF_CalpA_B 1 Ca binding site 0 1 1 1 12,19,50,52,54,61,80,82,84,91 4 -320071 cd16196 EFh_PEF_CalpA_B 2 dimer interface 0 1 1 0 41,43,53,107,110,113,114,115,116,126,130,133,134,137,138,141,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165 2 -320071 cd16196 EFh_PEF_CalpA_B 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320071 cd16196 EFh_PEF_CalpA_B 4 EF-hand motif 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320071 cd16196 EFh_PEF_CalpA_B 5 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320071 cd16196 EFh_PEF_CalpA_B 6 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320071 cd16196 EFh_PEF_CalpA_B 7 EF-hand motif 0 0 0 0 137,138,139,140,141,142,143,144,145,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320072 cd16197 EFh_PEF_CalpC 1 Ca binding site 0 1 1 1 12,19,50,52,54,61,80,82,84,91 4 -320072 cd16197 EFh_PEF_CalpC 2 dimer interface 0 1 1 0 41,43,53,107,110,113,114,115,116,126,130,133,134,137,138,141,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165 2 -320072 cd16197 EFh_PEF_CalpC 3 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320072 cd16197 EFh_PEF_CalpC 4 EF-hand motif 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320072 cd16197 EFh_PEF_CalpC 5 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320072 cd16197 EFh_PEF_CalpC 6 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320072 cd16197 EFh_PEF_CalpC 7 EF-hand motif 0 0 0 0 137,138,139,140,141,142,143,144,145,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320029 cd15898 EFh_PI-PLC 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320029 cd15898 EFh_PI-PLC 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320029 cd15898 EFh_PI-PLC 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320029 cd15898 EFh_PI-PLC 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 7 -320030 cd16200 EFh_PI-PLCbeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320030 cd16200 EFh_PI-PLCbeta 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320030 cd16200 EFh_PI-PLCbeta 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320030 cd16200 EFh_PI-PLCbeta 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320038 cd16208 EFh_PI-PLCbeta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320038 cd16208 EFh_PI-PLCbeta1 2 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320038 cd16208 EFh_PI-PLCbeta1 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320038 cd16208 EFh_PI-PLCbeta1 4 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320039 cd16209 EFh_PI-PLCbeta2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320039 cd16209 EFh_PI-PLCbeta2 2 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320039 cd16209 EFh_PI-PLCbeta2 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320039 cd16209 EFh_PI-PLCbeta2 4 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320040 cd16210 EFh_PI-PLCbeta3 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320040 cd16210 EFh_PI-PLCbeta3 2 EF-hand motif 0 0 0 0 33,34,35,36,37,38,39,40,41,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61 7 -320040 cd16210 EFh_PI-PLCbeta3 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320040 cd16210 EFh_PI-PLCbeta3 4 EF-hand motif 0 0 0 0 117,118,119,120,121,122,123,124,125,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150 7 -320041 cd16211 EFh_PI-PLCbeta4 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320041 cd16211 EFh_PI-PLCbeta4 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320041 cd16211 EFh_PI-PLCbeta4 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320041 cd16211 EFh_PI-PLCbeta4 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320042 cd16212 EFh_NorpA_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320042 cd16212 EFh_NorpA_like 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320042 cd16212 EFh_NorpA_like 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320042 cd16212 EFh_NorpA_like 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320043 cd16213 EFh_PI-PLC21 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320043 cd16213 EFh_PI-PLC21 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320043 cd16213 EFh_PI-PLC21 3 EF-hand motif 0 0 0 0 74,75,76,77,78,79,80,81,82,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 7 -320043 cd16213 EFh_PI-PLC21 4 EF-hand motif 0 0 0 0 120,121,122,123,124,125,126,127,128,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320031 cd16201 EFh_PI-PLCgamma 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320031 cd16201 EFh_PI-PLCgamma 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320031 cd16201 EFh_PI-PLCgamma 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320031 cd16201 EFh_PI-PLCgamma 4 EF-hand motif 0 0 0 0 110,111,112,113,114,115,116,117,118,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144 7 -320044 cd16214 EFh_PI-PLCgamma1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320044 cd16214 EFh_PI-PLCgamma1 2 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320044 cd16214 EFh_PI-PLCgamma1 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320044 cd16214 EFh_PI-PLCgamma1 4 EF-hand motif 0 0 0 0 111,112,113,114,115,116,117,118,119,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145 7 -320045 cd16215 EFh_PI-PLCgamma2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320045 cd16215 EFh_PI-PLCgamma2 2 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320045 cd16215 EFh_PI-PLCgamma2 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -320045 cd16215 EFh_PI-PLCgamma2 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320046 cd16216 EFh_PI-PLCgamma1_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320046 cd16216 EFh_PI-PLCgamma1_like 2 EF-hand motif 0 0 0 0 37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320046 cd16216 EFh_PI-PLCgamma1_like 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -320046 cd16216 EFh_PI-PLCgamma1_like 4 EF-hand motif 0 0 0 0 115,116,117,118,119,120,121,122,123,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149 7 -320032 cd16202 EFh_PI-PLCdelta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320032 cd16202 EFh_PI-PLCdelta 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320032 cd16202 EFh_PI-PLCdelta 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320032 cd16202 EFh_PI-PLCdelta 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320047 cd16217 EFh_PI-PLCdelta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320047 cd16217 EFh_PI-PLCdelta1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320047 cd16217 EFh_PI-PLCdelta1 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320047 cd16217 EFh_PI-PLCdelta1 4 EF-hand motif 0 0 0 0 105,106,107,108,109,110,111,112,113,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 7 -320048 cd16218 EFh_PI-PLCdelta3 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320048 cd16218 EFh_PI-PLCdelta3 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320048 cd16218 EFh_PI-PLCdelta3 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320048 cd16218 EFh_PI-PLCdelta3 4 EF-hand motif 0 0 0 0 104,105,106,107,108,109,110,111,112,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137 7 -320049 cd16219 EFh_PI-PLCdelta4 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320049 cd16219 EFh_PI-PLCdelta4 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320049 cd16219 EFh_PI-PLCdelta4 3 EF-hand motif 0 0 0 0 69,70,71,72,73,74,75,76,77,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97 7 -320049 cd16219 EFh_PI-PLCdelta4 4 EF-hand motif 0 0 0 0 106,107,108,109,110,111,112,113,114,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139 7 -320033 cd16203 EFh_PI-PLCepsilon 1 EF-hand motif 0 0 0 0 1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320033 cd16203 EFh_PI-PLCepsilon 2 EF-hand motif 0 0 0 0 34,35,36,37,38,39,40,41,42,72,73,74,75,76,77,78,79,80,83,84,85,86,87,88,89,90 7 -320033 cd16203 EFh_PI-PLCepsilon 3 EF-hand motif 0 0 0 0 100,101,102,103,104,105,106,107,108,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135 7 -320033 cd16203 EFh_PI-PLCepsilon 4 EF-hand motif 0 0 0 0 140,141,142,143,144,145,146,147,148,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173 7 -320034 cd16204 EFh_PI-PLCzeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -320034 cd16204 EFh_PI-PLCzeta 2 EF-hand motif 0 0 0 0 38,39,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320034 cd16204 EFh_PI-PLCzeta 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -320034 cd16204 EFh_PI-PLCzeta 4 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320035 cd16205 EFh_PI-PLCeta 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320035 cd16205 EFh_PI-PLCeta 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320035 cd16205 EFh_PI-PLCeta 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320035 cd16205 EFh_PI-PLCeta 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320050 cd16220 EFh_PI-PLCeta1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320050 cd16220 EFh_PI-PLCeta1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320050 cd16220 EFh_PI-PLCeta1 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320050 cd16220 EFh_PI-PLCeta1 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320051 cd16221 EFh_PI-PLCeta2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320051 cd16221 EFh_PI-PLCeta2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320051 cd16221 EFh_PI-PLCeta2 3 EF-hand motif 0 0 0 0 70,71,72,73,74,75,76,77,78,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98 7 -320051 cd16221 EFh_PI-PLCeta2 4 EF-hand motif 0 0 0 0 107,108,109,110,111,112,113,114,115,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 7 -320036 cd16206 EFh_PRIP 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320036 cd16206 EFh_PRIP 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320036 cd16206 EFh_PRIP 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320036 cd16206 EFh_PRIP 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320052 cd16222 EFh_PRIP1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320052 cd16222 EFh_PRIP1 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320052 cd16222 EFh_PRIP1 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320052 cd16222 EFh_PRIP1 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320053 cd16223 EFh_PRIP2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320053 cd16223 EFh_PRIP2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 7 -320053 cd16223 EFh_PRIP2 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320053 cd16223 EFh_PRIP2 4 EF-hand motif 0 0 0 0 109,110,111,112,113,114,115,116,117,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142 7 -320037 cd16207 EFh_ScPlc1p_like 1 EF-hand motif 0 0 0 0 1,2,3,4,5,6,7,8,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 7 -320037 cd16207 EFh_ScPlc1p_like 2 EF-hand motif 0 0 0 0 38,39,40,41,42,43,44,45,46,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320037 cd16207 EFh_ScPlc1p_like 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320037 cd16207 EFh_ScPlc1p_like 4 EF-hand motif 0 0 0 0 108,109,110,111,112,113,114,115,116,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141 7 -320021 cd15899 EFh_CREC 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320021 cd15899 EFh_CREC 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320021 cd15899 EFh_CREC 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320021 cd15899 EFh_CREC 4 EF-hand motif 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320021 cd15899 EFh_CREC 5 EF-hand motif 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320021 cd15899 EFh_CREC 6 EF-hand motif 0 0 0 0 201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320021 cd15899 EFh_CREC 7 EF-hand motif 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320022 cd16224 EFh_CREC_RCN2 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29 7 -320022 cd16224 EFh_CREC_RCN2 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320022 cd16224 EFh_CREC_RCN2 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320022 cd16224 EFh_CREC_RCN2 4 EF-hand motif 0 0 0 0 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320022 cd16224 EFh_CREC_RCN2 5 EF-hand motif 0 0 0 0 161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190 7 -320022 cd16224 EFh_CREC_RCN2 6 EF-hand motif 0 0 0 0 202,203,204,205,206,207,208,209,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231 7 -320022 cd16224 EFh_CREC_RCN2 7 EF-hand motif 0 0 0 0 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267 7 -320023 cd16225 EFh_CREC_cab45 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320023 cd16225 EFh_CREC_cab45 2 EF-hand motif 0 0 0 0 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -320023 cd16225 EFh_CREC_cab45 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320023 cd16225 EFh_CREC_cab45 4 EF-hand motif 0 0 0 0 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160 7 -320023 cd16225 EFh_CREC_cab45 5 EF-hand motif 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197 7 -320023 cd16225 EFh_CREC_cab45 6 EF-hand motif 0 0 0 0 212,213,214,215,216,217,218,219,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 7 -320023 cd16225 EFh_CREC_cab45 7 EF-hand motif 0 0 0 0 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277 7 -320024 cd16226 EFh_CREC_Calumenin_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320024 cd16226 EFh_CREC_Calumenin_like 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320024 cd16226 EFh_CREC_Calumenin_like 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320024 cd16226 EFh_CREC_Calumenin_like 4 EF-hand motif 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 7 -320024 cd16226 EFh_CREC_Calumenin_like 5 EF-hand motif 0 0 0 0 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185 7 -320024 cd16226 EFh_CREC_Calumenin_like 6 EF-hand motif 0 0 0 0 197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226 7 -320024 cd16226 EFh_CREC_Calumenin_like 7 EF-hand motif 0 0 0 0 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262 7 -320026 cd16228 EFh_CREC_Calumenin 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320026 cd16228 EFh_CREC_Calumenin 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320026 cd16228 EFh_CREC_Calumenin 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320026 cd16228 EFh_CREC_Calumenin 4 EF-hand motif 0 0 0 0 118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147 7 -320026 cd16228 EFh_CREC_Calumenin 5 EF-hand motif 0 0 0 0 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184 7 -320026 cd16228 EFh_CREC_Calumenin 6 EF-hand motif 0 0 0 0 196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320026 cd16228 EFh_CREC_Calumenin 7 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320027 cd16229 EFh_CREC_RCN1 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320027 cd16229 EFh_CREC_RCN1 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -320027 cd16229 EFh_CREC_RCN1 3 EF-hand motif 0 0 0 0 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -320027 cd16229 EFh_CREC_RCN1 4 EF-hand motif 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320027 cd16229 EFh_CREC_RCN1 5 EF-hand motif 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320027 cd16229 EFh_CREC_RCN1 6 EF-hand motif 0 0 0 0 200,201,202,203,204,205,206,207,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229 7 -320027 cd16229 EFh_CREC_RCN1 7 EF-hand motif 0 0 0 0 236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265 7 -320028 cd16230 EFh_CREC_RCN3 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28 7 -320028 cd16230 EFh_CREC_RCN3 2 EF-hand motif 0 0 0 0 35,36,37,38,39,40,41,42,43,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -320028 cd16230 EFh_CREC_RCN3 3 EF-hand motif 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -320028 cd16230 EFh_CREC_RCN3 4 EF-hand motif 0 0 0 0 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320028 cd16230 EFh_CREC_RCN3 5 EF-hand motif 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189 7 -320028 cd16230 EFh_CREC_RCN3 6 EF-hand motif 0 0 0 0 201,202,203,204,205,206,207,208,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230 7 -320028 cd16230 EFh_CREC_RCN3 7 EF-hand motif 0 0 0 0 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266 7 -320025 cd16227 EFh_CREC_RCN2_like 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29 7 -320025 cd16227 EFh_CREC_RCN2_like 2 EF-hand motif 0 0 0 0 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -320025 cd16227 EFh_CREC_RCN2_like 3 EF-hand motif 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101 7 -320025 cd16227 EFh_CREC_RCN2_like 4 EF-hand motif 0 0 0 0 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320025 cd16227 EFh_CREC_RCN2_like 5 EF-hand motif 0 0 0 0 159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188 7 -320025 cd16227 EFh_CREC_RCN2_like 6 EF-hand motif 0 0 0 0 196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225 7 -320025 cd16227 EFh_CREC_RCN2_like 7 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261 7 -320080 cd15900 EFh_MICU 1 Ca binding site 0 1 1 0 9,11,13,20,131,133,135,142 4 -320080 cd15900 EFh_MICU 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320080 cd15900 EFh_MICU 3 EF-hand motif 0 0 0 1 54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320080 cd15900 EFh_MICU 4 EF-hand motif 0 0 0 1 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320080 cd15900 EFh_MICU 5 EF-hand motif 0 0 0 1 122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151 7 -320081 cd16173 EFh_MICU1 1 Ca binding site 0 1 1 0 9,11,13,20,132,134,136,143 4 -320081 cd16173 EFh_MICU1 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320081 cd16173 EFh_MICU1 3 EF-hand motif 0 0 0 1 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 7 -320081 cd16173 EFh_MICU1 4 EF-hand motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115 7 -320081 cd16173 EFh_MICU1 5 EF-hand motif 0 0 0 1 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152 7 -320082 cd16174 EFh_MICU2 1 Ca binding site 0 1 1 0 9,11,13,20,133,135,137,144 4 -320082 cd16174 EFh_MICU2 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320082 cd16174 EFh_MICU2 3 EF-hand motif 0 0 0 1 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 7 -320082 cd16174 EFh_MICU2 4 EF-hand motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116 7 -320082 cd16174 EFh_MICU2 5 EF-hand motif 0 0 0 1 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153 7 -320083 cd16175 EFh_MICU3 1 Ca binding site 0 1 1 0 9,11,13,20,107,109,111,118 4 -320083 cd16175 EFh_MICU3 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -320083 cd16175 EFh_MICU3 3 EF-hand motif 0 0 0 1 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 7 -320083 cd16175 EFh_MICU3 4 EF-hand motif 0 0 0 1 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 7 -320083 cd16175 EFh_MICU3 5 EF-hand motif 0 0 0 1 98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127 7 -319999 cd15901 EFh_DMD_DYTN_DTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -319999 cd15901 EFh_DMD_DYTN_DTN 2 EF-hand-like motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -319999 cd15901 EFh_DMD_DYTN_DTN 3 EF-hand-like motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -319999 cd15901 EFh_DMD_DYTN_DTN 4 EF-hand-like motif 0 0 0 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,156,157,158,159,160,161,162 7 -320000 cd16242 EFh_DMD_like 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320000 cd16242 EFh_DMD_like 2 EF-hand-like motif 0 0 0 1 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 7 -320000 cd16242 EFh_DMD_like 3 EF-hand-like motif 0 0 0 1 87,88,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 7 -320000 cd16242 EFh_DMD_like 4 EF-hand-like motif 0 0 0 1 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,156,157,158,159,160,161,162 7 -320004 cd16246 EFh_DMD 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 7 -320004 cd16246 EFh_DMD 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320004 cd16246 EFh_DMD 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320004 cd16246 EFh_DMD 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,155,156,157,158,159,160,161 7 -320005 cd16247 EFh_UTRO 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 7 -320005 cd16247 EFh_UTRO 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320005 cd16247 EFh_UTRO 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320005 cd16247 EFh_UTRO 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,155,156,157,158,159,160,161 7 -320006 cd16248 EFh_DRP-2 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 7 -320006 cd16248 EFh_DRP-2 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320006 cd16248 EFh_DRP-2 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122 7 -320006 cd16248 EFh_DRP-2 4 EF-hand-like motif 0 0 0 1 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,155,156,157,158,159,160,161 7 -320001 cd16243 EFh_DYTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -320001 cd16243 EFh_DYTN 2 EF-hand-like motif 0 0 0 1 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 7 -320001 cd16243 EFh_DYTN 3 EF-hand-like motif 0 0 0 1 86,87,88,89,90,91,92,93,94,95,96,97,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320001 cd16243 EFh_DYTN 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,156,157,158,159,160,161,162 7 -320002 cd16244 EFh_DTN 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320002 cd16244 EFh_DTN 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320002 cd16244 EFh_DTN 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320002 cd16244 EFh_DTN 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,154,155,156,157,158,159,160 7 -320007 cd16249 EFh_DTNA 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320007 cd16249 EFh_DTNA 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320007 cd16249 EFh_DTNA 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320007 cd16249 EFh_DTNA 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,154,155,156,157,158,159,160 7 -320008 cd16250 EFh_DTNB 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320008 cd16250 EFh_DTNB 2 EF-hand-like motif 0 0 0 1 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 7 -320008 cd16250 EFh_DTNB 3 EF-hand-like motif 0 0 0 1 90,91,92,93,94,95,96,97,98,99,100,101,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126 7 -320008 cd16250 EFh_DTNB 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,154,155,156,157,158,159,160 7 -320003 cd16245 EFh_DAH 1 EF-hand-like motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 7 -320003 cd16245 EFh_DAH 2 EF-hand-like motif 0 0 0 1 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 7 -320003 cd16245 EFh_DAH 3 EF-hand-like motif 0 0 0 1 88,89,90,91,92,93,94,95,96,97,98,99,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320003 cd16245 EFh_DAH 4 EF-hand-like motif 0 0 0 1 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,157,158,159,160,161,162,163 7 -320075 cd15902 EFh_HEF 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320075 cd15902 EFh_HEF 2 EF-hand motif 0 0 0 0 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 7 -320075 cd15902 EFh_HEF 3 EF-hand motif 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320075 cd15902 EFh_HEF 4 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320075 cd15902 EFh_HEF 5 EF-hand motif 0 0 0 0 181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210 7 -320075 cd15902 EFh_HEF 6 EF-hand motif 0 0 0 0 225,226,227,228,229,230,231,232,233,234,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253 7 -320076 cd16176 EFh_HEF_CB 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320076 cd16176 EFh_HEF_CB 2 EF-hand motif 0 0 0 0 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70 7 -320076 cd16176 EFh_HEF_CB 3 EF-hand motif 0 0 0 0 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114 7 -320076 cd16176 EFh_HEF_CB 4 EF-hand motif 0 0 0 0 129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 7 -320076 cd16176 EFh_HEF_CB 5 EF-hand motif 0 0 0 0 173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202 7 -320076 cd16176 EFh_HEF_CB 6 EF-hand motif 0 0 0 0 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242 7 -320077 cd16177 EFh_HEF_CR 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320077 cd16177 EFh_HEF_CR 2 EF-hand motif 0 0 0 0 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75 7 -320077 cd16177 EFh_HEF_CR 3 EF-hand motif 0 0 0 0 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -320077 cd16177 EFh_HEF_CR 4 EF-hand motif 0 0 0 0 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163 7 -320077 cd16177 EFh_HEF_CR 5 EF-hand motif 0 0 0 0 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 7 -320077 cd16177 EFh_HEF_CR 6 EF-hand motif 0 0 0 0 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247 7 -320078 cd16178 EFh_HEF_SCGN 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320078 cd16178 EFh_HEF_SCGN 2 EF-hand motif 0 0 0 0 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74 7 -320078 cd16178 EFh_HEF_SCGN 3 EF-hand motif 0 0 0 0 92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121 7 -320078 cd16178 EFh_HEF_SCGN 4 EF-hand motif 0 0 0 0 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165 7 -320078 cd16178 EFh_HEF_SCGN 5 EF-hand motif 0 0 0 0 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213 7 -320078 cd16178 EFh_HEF_SCGN 6 EF-hand motif 0 0 0 0 228,229,230,231,232,233,234,235,236,237,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256 7 -320079 cd16179 EFh_HEF_CBN 1 EF-hand motif 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -320079 cd16179 EFh_HEF_CBN 2 EF-hand motif 0 0 0 0 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78 7 -320079 cd16179 EFh_HEF_CBN 3 EF-hand motif 0 0 0 0 95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124 7 -320079 cd16179 EFh_HEF_CBN 4 EF-hand motif 0 0 0 0 141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -320079 cd16179 EFh_HEF_CBN 5 EF-hand motif 0 0 0 0 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217 7 -320079 cd16179 EFh_HEF_CBN 6 EF-hand motif 0 0 0 0 232,233,234,235,236,237,238,239,240,241,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260 7 -320706 cd15904 TSPO_MBR 1 dimer interface 0 1 1 0 2,3,5,6,8,9,12,56,66,68,69,70,72,73,75,76,77,79,80,83,84,103 2 -320706 cd15904 TSPO_MBR 2 lipid binding site 0 1 1 1 11,37,38,40,41,81,129,132,133,136 5 -293880 cd16074 OCRE 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293880 cd16074 OCRE 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293880 cd16074 OCRE 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293880 cd16074 OCRE 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293880 cd16074 OCRE 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293881 cd16162 OCRE_RBM5_like 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293881 cd16162 OCRE_RBM5_like 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293881 cd16162 OCRE_RBM5_like 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293881 cd16162 OCRE_RBM5_like 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293881 cd16162 OCRE_RBM5_like 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293886 cd16167 OCRE_RBM10 1 OCRE repeat 1 0 0 1 1 6,7,8,9,10,11,12,13 7 -293886 cd16167 OCRE_RBM10 2 OCRE repeat 2 0 0 1 1 14,15,16,17,18,19,20,21 7 -293886 cd16167 OCRE_RBM10 3 OCRE repeat 3 0 0 1 1 22,23,24,25,26,27,28,29 7 -293886 cd16167 OCRE_RBM10 4 OCRE repeat 4 0 0 1 1 30,31,32,33,34,35,36 7 -293886 cd16167 OCRE_RBM10 5 OCRE repeat 5 0 0 1 1 38,39,40,41,42,43,44,45 7 -293887 cd16168 OCRE_RBM5 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293887 cd16168 OCRE_RBM5 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293887 cd16168 OCRE_RBM5 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293887 cd16168 OCRE_RBM5 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293887 cd16168 OCRE_RBM5 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293882 cd16163 OCRE_RBM6 1 OCRE repeat 1 0 0 1 1 6,7,8,9,10,11,12,13 7 -293882 cd16163 OCRE_RBM6 2 OCRE repeat 2 0 0 1 1 14,15,16,17,18,19,20,21 7 -293882 cd16163 OCRE_RBM6 3 OCRE repeat 3 0 0 1 1 22,23,24,25,26,27,28,29 7 -293882 cd16163 OCRE_RBM6 4 OCRE repeat 4 0 0 1 1 30,31,32,33,34,35,36 7 -293882 cd16163 OCRE_RBM6 5 OCRE repeat 5 0 0 1 1 39,40,41,42,43,44,45,46 7 -293883 cd16164 OCRE_VG5Q 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293883 cd16164 OCRE_VG5Q 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293883 cd16164 OCRE_VG5Q 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293883 cd16164 OCRE_VG5Q 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293883 cd16164 OCRE_VG5Q 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293884 cd16165 OCRE_ZOP1_plant 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293884 cd16165 OCRE_ZOP1_plant 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293884 cd16165 OCRE_ZOP1_plant 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293884 cd16165 OCRE_ZOP1_plant 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293884 cd16165 OCRE_ZOP1_plant 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293885 cd16166 OCRE_SUA_like 1 OCRE repeat 1 0 0 1 1 5,6,7,8,9,10,11,12 7 -293885 cd16166 OCRE_SUA_like 2 OCRE repeat 2 0 0 1 1 13,14,15,16,17,18,19,20 7 -293885 cd16166 OCRE_SUA_like 3 OCRE repeat 3 0 0 1 1 21,22,23,24,25,26,27,28 7 -293885 cd16166 OCRE_SUA_like 4 OCRE repeat 4 0 0 1 1 29,30,31,32,33,34,35 7 -293885 cd16166 OCRE_SUA_like 5 OCRE repeat 5 0 0 1 1 37,38,39,40,41,42,43,44 7 -293922 cd16075 ORC6_CTD 1 ORC3-binding site 0 1 1 0 33,34,35,38,39,42,43,46,49 2 -293922 cd16075 ORC6_CTD 2 MGS mutation site 0 0 1 1 35 0 -293923 cd16076 TSPcc 1 chemical substrate binding site 0 1 1 0 8,19,22 5 -293923 cd16076 TSPcc 2 oligomer interface 0 1 1 0 0,1,2,4,5,6,7,8,9,12,14,15,16,18,19,20,22,23,25,26,27,28,29,30,32,33,34,36,37,38,39 2 -293923 cd16076 TSPcc 3 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 7 -293923 cd16076 TSPcc 4 glutamine ring Q 1 1 1 22 0 -293924 cd16077 TSP-5cc 1 chemical substrate binding site 0 1 1 0 11,22,25 5 -293924 cd16077 TSP-5cc 2 oligomer interface 0 1 1 0 3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293924 cd16077 TSP-5cc 3 coiled coil 0 0 1 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -293924 cd16077 TSP-5cc 4 glutamine ring Q 1 1 1 25 0 -293925 cd16079 TSP-3cc 1 chemical substrate binding site 0 1 1 0 11,22,25 5 -293925 cd16079 TSP-3cc 2 oligomer interface 0 1 1 0 3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293925 cd16079 TSP-3cc 3 coiled coil 0 0 1 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -293925 cd16079 TSP-3cc 4 glutamine ring Q 1 1 1 25 0 -293926 cd16080 TSP-4cc 1 chemical substrate binding site 0 1 1 0 11,22,25 5 -293926 cd16080 TSP-4cc 2 oligomer interface 0 1 1 0 3,4,5,7,8,9,10,11,12,15,17,18,19,21,22,23,25,26,28,29,30,31,32,33,35,36,37,39,40,41,42 2 -293926 cd16080 TSP-4cc 3 coiled coil 0 0 1 0 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42 7 -293926 cd16080 TSP-4cc 4 glutamine ring Q 1 1 1 25 0 -293927 cd16081 TSPcc_insect 1 chemical substrate binding site 0 1 1 0 10,21,24 5 -293927 cd16081 TSPcc_insect 2 oligomer interface 0 1 1 0 2,3,4,6,7,8,9,10,11,14,16,17,18,20,21,22,24,25,27,28,29,30,31,32,34,35,36,38,39,40,41 2 -293927 cd16081 TSPcc_insect 3 coiled coil 0 0 1 0 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 7 -293927 cd16081 TSPcc_insect 4 glutamine ring Q 1 1 1 24 0 -294015 cd16098 FliS 1 heterodimer interface 0 1 1 0 0,1,4,6,7,10,36,39,40,43,44,47,48,56,59,62,63,64,66,85,86,88,89,92,93,96,97,99,100 2 -294015 cd16098 FliS 2 coiled coil 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 7 -294015 cd16098 FliS 3 coiled coil 0 0 1 0 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 7 -294015 cd16098 FliS 4 coiled coil 0 0 1 0 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72 7 -294015 cd16098 FliS 5 coiled coil 0 0 1 0 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -350627 cd16100 ARID 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350628 cd16864 ARID_JARID 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350637 cd16873 ARID_KDM5A 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350638 cd16874 ARID_KDM5B 1 putative DNA binding site 0 1 1 0 25,26,27,28,29,30,31,56,58,59,62,72,74,75,76,78 3 -350639 cd16875 ARID_KDM5C_5D 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350629 cd16865 ARID_ARID1A-like 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350640 cd16876 ARID_ARID1A 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350641 cd16877 ARID_ARID1B 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,69,71,72,73,75 3 -350630 cd16866 ARID_ARID2 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350631 cd16867 ARID_ARID3 1 putative DNA binding site 0 1 1 0 32,33,34,35,36,37,38,63,65,66,69,80,82,83,84,86 3 -350642 cd16878 ARID_ARID3A 1 putative DNA binding site 0 1 1 0 42,43,44,45,46,47,48,73,75,76,79,90,92,93,94,96 3 -350643 cd16879 ARID_ARID3B 1 putative DNA binding site 0 1 1 0 34,35,36,37,38,39,40,65,67,68,71,82,84,85,86,88 3 -350644 cd16880 ARID_ARID3C 1 putative DNA binding site 0 1 1 0 35,36,37,38,39,40,41,66,68,69,72,83,85,86,87,89 3 -350645 cd16881 ARID_Dri-like 1 putative DNA binding site 0 1 1 0 39,40,41,42,43,44,45,70,72,73,76,87,89,90,91,93 3 -350632 cd16868 ARID_ARID4 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350646 cd16882 ARID_ARID4A 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350647 cd16883 ARID_ARID4B 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350633 cd16869 ARID_ARID5 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350648 cd16884 ARID_ARID5A 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350649 cd16885 ARID_ARID5B 1 putative DNA binding site 0 1 1 0 21,22,23,24,25,26,27,52,54,55,58,69,71,72,73,75 3 -350634 cd16870 ARID_JARD2 1 putative DNA binding site 0 1 1 0 24,25,26,27,28,29,30,55,57,58,61,72,74,75,76,78 3 -350635 cd16871 ARID_Swi1p-like 1 putative DNA binding site 0 1 1 0 22,23,24,25,26,27,28,53,55,56,59,71,73,74,75,77 3 -350636 cd16872 ARID_HMGB9-like 1 putative DNA binding site 0 1 1 0 20,21,22,23,24,25,26,51,53,54,57,68,70,71,72,74 3 -341089 cd16101 ING 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341090 cd16857 ING_ING1_2 1 dimer interface 0 1 1 1 3,6,7,8,11,14,17,21,28,31,32,52,53,56,59,60,63,66,67,70,73,76,77,80,81,83,84,87,88 2 -341093 cd16860 ING_ING1 1 dimer interface 0 1 1 1 3,6,7,8,11,14,17,21,28,31,32,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341094 cd16861 ING_ING2 1 dimer interface 0 1 1 1 3,6,7,8,11,14,17,21,28,31,32,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341091 cd16858 ING_ING3_Yng2p 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,55,56,59,62,63,66,69,70,73,76,79,80,83,84,86,87,90,91 2 -341092 cd16859 ING_ING4_5 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,51,52,55,58,59,62,65,66,69,72,75,76,79,80,82,83,86,87 2 -341095 cd16862 ING_ING4 1 dimer interface 0 1 1 1 3,6,7,8,11,14,17,21,28,31,32,54,55,58,61,62,65,68,69,72,75,78,79,82,83,85,86,89,90 2 -341096 cd16863 ING_ING5 1 dimer interface 0 1 1 1 2,5,6,7,10,13,16,20,27,30,31,53,54,57,60,61,64,67,68,71,74,77,78,81,82,84,85,88,89 2 -341097 cd17015 ING_plant 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,58,59,62,65,66,69,72,73,76,79,82,83,86,87,89,90,93,94 2 -341098 cd17016 ING_Pho23p_like 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,52,53,56,59,60,63,66,67,70,73,76,77,80,81,83,84,87,88 2 -341099 cd17017 ING_Yng1p 1 dimer interface 0 1 1 1 0,3,4,5,8,11,14,18,25,28,29,60,61,64,67,68,71,74,75,78,81,84,85,88,89,91,92,95,96 2 -320084 cd16170 MvaT_DBD 1 DNA binding site 0 1 1 0 0,1,3,5,16,17,18,19,20,22,24,25,28,37 3 -293930 cd16172 TorS_sensor_domain 1 homodimer interface 0 1 1 0 1,4,5,8,11,12,15,19,110,114,121,124,125,137,138,141,142,144,145,151,152,155,158,159,162,163,166,169,170,173,179,238,242,245,246,249,256 2 -293930 cd16172 TorS_sensor_domain 2 TorT interface 0 1 1 0 101,104,108,111,112,116,118,119,120,122,123,125,138,142,143,145,146,149,152,153,155,196,197,200,202,205,206 2 -319994 cd16251 EFh_parvalbumin_like 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319994 cd16251 EFh_parvalbumin_like 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319994 cd16251 EFh_parvalbumin_like 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319994 cd16251 EFh_parvalbumin_like 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319995 cd16252 EFh_calglandulin_like 1 Ca binding site 0 1 1 0 46,48,50,54,57,87,89,91,98 4 -319995 cd16252 EFh_calglandulin_like 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319995 cd16252 EFh_calglandulin_like 3 EF-hand motif 0 0 0 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -319995 cd16252 EFh_calglandulin_like 4 EF-hand motif 0 0 0 1 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -319996 cd16253 EFh_parvalbumins 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319996 cd16253 EFh_parvalbumins 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319996 cd16253 EFh_parvalbumins 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319996 cd16253 EFh_parvalbumins 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319997 cd16254 EFh_parvalbumin_alpha 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319997 cd16254 EFh_parvalbumin_alpha 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319997 cd16254 EFh_parvalbumin_alpha 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319997 cd16254 EFh_parvalbumin_alpha 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -319998 cd16255 EFh_parvalbumin_beta 1 Ca binding site 0 1 1 0 43,45,47,51,54,82,84,86,93 4 -319998 cd16255 EFh_parvalbumin_beta 2 EF-hand motif 0 0 0 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -319998 cd16255 EFh_parvalbumin_beta 3 EF-hand motif 0 0 0 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -319998 cd16255 EFh_parvalbumin_beta 4 EF-hand motif 0 0 0 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 7 -293879 cd16269 GBP_C 1 coiled coil 0 0 1 0 259,260,261,262,263,264,265,266,267,268,269,270 7 -293879 cd16269 GBP_C 2 coiled coil 0 0 1 0 279,280,281,282,283,284,285,286,287,288,289,290 7 -293878 cd16270 Apc5_N 1 Apc4 interaction interface 0 1 1 0 12,13,24,27,28,31,32,34,35,39,96,106,107,108,109 2 -293878 cd16270 Apc5_N 2 APC subunit 15 interaction interface 0 1 1 0 111,114,115,118,121,122 2 -293878 cd16270 Apc5_N 3 CDC23 interaction interface 0 1 1 0 76,77,78,81,85,120,124,125,126,127,129,130 2 -293782 cd16319 MraZ 1 oligomer interface 0 1 1 1 0,28,36,45,46,49 2 -293782 cd16319 MraZ 2 DXXXR DXXR 1 1 0 6,8,9,10 7 -293783 cd16320 MraZ_N 1 oligomer interface 0 1 1 1 2,31,39,48,49,52 2 -293783 cd16320 MraZ_N 2 DXXXR DXXR 1 1 0 8,10,11,12 7 -293784 cd16321 MraZ_C 1 oligomer interface 0 1 1 1 10,38,45,54,55,58 2 -293784 cd16321 MraZ_C 2 DXXXR DXXR 1 1 0 16,18,19,20 7 -319982 cd16324 LolA_fold-like 1 hydrophobic core 0 1 1 1 3,5,7,9,19,21,23,34,36,45,47,56,58,115,127,129,138,141,143,152,154,156,159 0 -319983 cd16325 LolA 1 hydrophobic core 0 1 1 1 15,17,19,21,32,34,36,46,48,54,56,65,67,116,128,130,139,142,144,152,154,156,163 0 -319984 cd16326 LolB 1 hydrophobic core 0 1 1 1 14,16,18,20,29,31,33,42,44,53,55,62,64,120,127,129,141,144,146,153,155,157,160 0 -319985 cd16327 RseB 1 hydrophobic core 0 1 1 1 19,21,23,25,30,32,34,47,49,55,57,66,68,120,130,132,141,144,146,155,157,159,162 0 -319986 cd16329 LolA_like 1 hydrophobic core 0 1 1 1 18,20,23,25,35,37,39,51,53,62,64,78,80,164,177,179,191,194,196,205,207,209,212 0 -319987 cd16330 LolA_VioE 1 hydrophobic core 0 1 1 1 10,12,14,16,26,28,30,41,43,59,61,72,74,133,141,143,152,155,157,165,167,169,172 0 -319988 cd16334 LppX-like 1 hydrophobic core 0 1 1 1 24,26,28,30,42,44,46,54,56,71,73,78,80,138,159,161,170,173,175,185,187,189,192 0 -319992 cd16328 RseA_N 1 heterodimer interface 0 1 1 0 0,1,4,5,6,7,8,9,10,17,18,20,21,31,33,34,35,36,37,38,39,40,41,42,43,44,54,55,56,58,59,60,62,63 2 -319990 cd16332 YsxB-like 1 putative active site HCS 0 0 1 20,32,36 1 -319990 cd16332 YsxB-like 2 homodimer interface 0 1 0 0 29,30,33,34,37,38,41,44,45,75,78,79,81,82,85,86,89 2 -319989 cd16333 RELM 1 trimer interface 0 1 1 1 2,3,6,7,9,10,13,14,17,27,29,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,70,76,80,83,84 2 -319989 cd16333 RELM 2 oligomer interface 0 1 1 1 0,1,2,3,5,6 2 -319981 cd16335 MukF_N 1 homodimer interface 0 1 1 0 2,3,6,7,8,9,10,11,13,16,17,24,26,34,50,69,75,76,77,78,79,87,89,90,91,92,93,95,97,100,101,103,108,110,111,114,115,118,122,140,145,146,148,149,150,153,156,160,163,164,166,167,169,170,173,248,252,259 2 -319981 cd16335 MukF_N 2 MukE-MukF interface 0 1 1 0 176,180,184,259,262,263,266,267,270,273,274,283,286,287,288,290,291,292,294,295,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313 2 -319980 cd16336 MukE 1 MukE-MukF interface 0 1 1 0 20,21,22,23,67,74,75,76,77,78,80,83,84,87,90,91,93,94,96,99,100,101,102,103,104,117,122,126,155,161,167,169,175,176,177,178,180,181,182,183,184,185,188,191,198,199,200,201,203 2 -319980 cd16336 MukE 2 homodimer interface 0 1 1 0 0,8,13,14,15,17,18,21,50,51,73 2 -319979 cd16337 MukF_C 1 MukF-MukB interface 0 1 1 0 0,2,5,6,7,9,52,53,56,57,60,61,64,73,74,75,77,78,80,87,88,89,90,91 2 -319975 cd16341 FdhE 1 Fe binding site 0 1 0 1 151,154,176,179,190,193,217,220 4 -319974 cd16342 FusC_FusB 1 Zn binding site CCCC 1 1 1 149,152,181,187 4 -319974 cd16342 FusC_FusB 2 dimer interface 0 1 1 0 13,16,17,26,27,29,30,33,139,141,145,146,148,153,154,160,162,175,177,179,192,199 2 -319897 cd16363 Col_Im_like 1 heterodimer interface 0 1 1 0 19,20,26,29,30,33,34,37,44,45,46,47,49,50,51,52,58 2 -341100 cd16364 T3SC_I_like 1 dimer interface 0 1 1 0 41,43,75,77,78,79,80,90,92 2 -341101 cd17018 T3SC_IA_ExsC-like 1 dimer interface 0 1 1 0 42,44,74,76,77,78,79,89,91 2 -341102 cd17019 T3SC_IA_ShcA-like 1 dimer interface 0 1 1 0 43,45,78,80,81,82,83,93,95 2 -341103 cd17020 T3SC_IA_ShcM-like 1 dimer interface 0 1 1 0 44,46,78,80,81,82,83,93,95 2 -341104 cd17021 T3SC_IA_SicP-like 1 dimer interface 0 1 1 0 40,42,74,76,77,78,79,89,91 2 -341105 cd17022 T3SC_IA_SigE-like 1 dimer interface 0 1 1 0 36,38,64,66,67,68,69,79,81 2 -341106 cd17023 T3SC_IA_CesT-like 1 dimer interface 0 1 1 0 43,45,77,79,80,81,82,92,94 2 -341107 cd17024 T3SC_IA_DspF-like 1 dimer interface 0 1 1 0 42,44,76,78,79,80,81,91,93 2 -341108 cd17025 T3SC_IA_ShcF-like 1 dimer interface 0 1 1 0 44,46,78,80,81,82,83,93,95 2 -341109 cd17026 T3SC_IA_SpcU-like 1 dimer interface 0 1 1 0 38,40,72,74,75,76,77,86,88 2 -341110 cd17027 T3SC_IA_YscB_AscB-like 1 dimer interface 0 1 1 0 40,42,78,80,81,82,83,92,94 2 -341111 cd17028 T3SC_IA_SycE_Scc1-like 1 dimer interface 0 1 1 0 43,45,77,79,80,81,82,92,94 2 -341112 cd17029 T3SC_IA_SycE_SpcS-like 1 dimer interface 0 1 1 0 42,44,72,74,75,76,77,87,89 2 -341113 cd17030 T3SC_IA_SycH-like 1 dimer interface 0 1 1 0 43,45,74,76,77,78,79,88,90 2 -341114 cd17031 T3SC_IA_SycN-like 1 dimer interface 0 1 1 0 42,44,76,78,79,80,81,90,92 2 -341115 cd17032 T3SC_IA_SycT-like 1 dimer interface 0 1 1 0 42,44,67,69,70,71,72,80,82 2 -341116 cd17033 DR1245-like 1 dimer interface 0 1 1 0 46,48,78,80,81,82,83,93,95 2 -341117 cd17034 T3SC_IA_ShcO1-like 1 dimer interface 0 1 1 0 42,44,76,78,79,80,81,91,93 2 -341118 cd17035 T3SC_IB_Spa15-like 1 dimer interface 0 1 1 0 46,48,83,85,86,87,88,96,98 2 -341119 cd17036 T3SC_YbjN-like_1 1 dimer interface 0 1 1 0 47,49,78,80,81,82,83,91,93 2 -341120 cd17037 T3SC_IA_ShcV-like 1 dimer interface 0 1 1 0 43,45,78,80,81,82,83,93,95 2 -341121 cd17510 T3SC_YbjN-like_2 1 dimer interface 0 1 1 0 48,50,88,90,91,92,93,106,108 2 -341122 cd17511 YbjN_AmyR-like 1 dimer interface 0 1 1 0 44,46,73,75,76,77,78,87,89 2 -319867 cd16375 Avd_IVP_like 1 pentamer interface 0 1 1 0 1,5,8,9,12,16,25,26,28,29,31,32,35,38,39,42,46,57,58,61,62,65,66,68,69 2 -319868 cd16376 Avd_like 1 pentamer interface 0 1 1 0 1,5,8,9,12,16,25,26,28,29,31,32,35,38,39,42,46,60,61,64,65,68,69,71,72 2 -319869 cd16377 23S_rRNA_IVP_like 1 pentamer interface 0 1 1 0 2,6,9,10,13,17,26,27,29,30,32,33,36,39,40,43,47,62,63,66,67,70,71,73,74 2 -319866 cd16378 CcmH_N 1 putative catalytic site 0 0 1 1 13,16 1 -319863 cd16379 YitT_C_like 1 dimer interface 0 1 0 0 4,30,31,32,36,38,54,57,58,64,65,66,67,69 2 -319864 cd16380 YitT_C 1 dimer interface 0 1 0 0 8,34,35,36,41,43,59,62,63,69,70,71,72,74 2 -319865 cd16381 YitT_C_like_1 1 dimer interface 0 1 0 0 5,31,32,33,36,38,54,57,58,64,65,66,67,69 2 -341357 cd16382 XisI-like 1 homodimer interface 0 1 1 1 27,28,29,30,31,34,36,38,40,42,44,49,51,53,56,58,65,67,68,92,93,94,96,99 2 -319862 cd16383 GUN4 1 ligand binding site 0 1 1 0 26,101,107,110,113,126,127,128,129,130,131 5 -319760 cd16384 VirB8_like 1 dimerization motif NPXG 1 1 1 119,120,121,122 2 -319761 cd16424 VirB8 1 dimerization motif NPXG 1 1 1 123,124,125,126 2 -319762 cd16425 TrbF 1 dimerization motif NPXG 1 1 1 119,120,121,122 2 -319860 cd16386 TcpC_N 1 trimer interface 0 1 1 1 4,6,7,8,10,11,15,18,19,38,39,40,44,48,51,53,58,59,65,66,67,68,69,71,75,76,77,81,83,95,96,97,98,100,102,103,104,109,110,111,113,114,115,116,117,118,119,120,121 2 -319246 cd16387 ParB_N_Srx 1 putative active site 0 0 1 1 1,3,34,37,38 1 -319247 cd16388 SbnI_like_N 1 putative active site 0 0 1 1 16,18,50,53,54 1 -319248 cd16389 FIN 1 putative active site 0 0 1 1 44,46,83,86,87 1 -319249 cd16390 ParB_N_Srx_like 1 putative active site 0 0 1 1 17,19,58,61,62 1 -319250 cd16392 toxin-ParB 1 putative active site 0 0 1 1 4,6,46,49,50 1 -319251 cd16393 SPO0J_N 1 putative active site 0 0 1 1 21,23,54,57,58 1 -319252 cd16394 sopB_N 1 putative active site 0 0 1 1 13,15,45,48,49 1 -319253 cd16395 Srx 1 putative active site 0 0 1 1 18,20,56,59,60 1 -319254 cd16396 Noc_N 1 putative active site 0 0 1 1 23,25,56,59,60 1 -319255 cd16397 IbrB_like 1 putative active site 0 0 1 1 24,26,58,61,62 1 -319256 cd16398 KorB_N_like 1 putative active site 0 0 1 1 16,18,51,54,55 1 -319257 cd16400 ParB_Srx_like_nuclease 1 putative active site 0 0 1 1 14,16,45,48,49 1 -319258 cd16401 ParB_N_like_MT 1 putative active site 0 0 1 1 13,15,43,46,47 1 -319259 cd16402 ParB_N_like_MT 1 putative active site 0 0 1 1 15,17,44,47,48 1 -319260 cd16403 ParB_N_like_MT 1 putative active site 0 0 1 1 16,18,45,48,49 1 -319261 cd16404 pNOB8_ParB_N_like 1 putative active site 0 0 1 1 13,15,42,45,46 1 -319262 cd16405 RepB_like_N 1 putative active site 0 0 1 1 20,22,55,58,59 1 -319263 cd16406 ParB_N_like 1 putative active site 0 0 1 1 2,4,36,39,40 1 -319264 cd16407 ParB_N_like 1 putative active site 0 0 1 1 16,18,49,52,53 1 -319265 cd16408 ParB_N_like 1 putative active site 0 0 1 1 13,15,46,49,50 1 -319266 cd16409 ParB_N_like 1 putative active site 0 0 1 1 2,4,35,38,39 1 -319267 cd16410 ParB_N_like 1 putative active site 0 0 1 1 13,15,42,45,46 1 -319268 cd16411 ParB_N_like 1 putative active site 0 0 1 1 14,16,52,55,56 1 -319269 cd16412 dndB 1 putative active site 0 0 1 1 30,32,104,107,108 1 -319270 cd16413 DGQHR_domain 1 putative active site 0 0 1 1 8,10,85,88,89 1 -319271 cd16414 dndB_like 1 putative active site 0 0 1 1 8,10,82,85,86 1 -319272 cd16844 ParB_N_like_MT 1 putative active site 0 0 1 1 2,4,31,34,35 1 -319754 cd16426 VirB10_like 1 oligomer interface 0 1 1 1 2,3,4,5,9,10,12,13,14,15,19,21,22,27,28,29,31,43,45,47,49,55,59,61,63,66,68,70,73,74,75,76,77,78,81,87,88,89,99,101,104,107,109,112,115,116,117,118,119,120,121,122,123,124,130,132,134,135,136,138,142,145,146,147,148,149 2 -319755 cd16429 VirB10 1 oligomer interface 0 1 1 1 2,3,4,5,9,10,12,13,14,15,19,21,22,27,28,29,31,43,45,47,49,55,60,62,64,67,69,71,74,75,76,77,78,79,82,88,89,90,100,102,105,108,110,113,144,145,146,147,148,149,150,151,152,153,159,161,163,164,165,167,171,174,175,176,177,178 2 -319756 cd16430 TraB 1 oligomer interface 0 1 1 1 2,3,5,6,10,11,13,14,15,16,27,29,30,35,36,37,39,50,52,54,56,62,65,67,69,72,74,76,81,82,83,84,85,86,92,96,97,98,108,110,113,116,118,121,167,168,169,170,171,172,173,174,175,176,182,184,186,187,188,190,194,197,198,199,200,201 2 -319757 cd16431 IcmE 1 oligomer interface 0 1 1 1 2,3,5,6,10,11,13,14,15,16,20,22,23,28,29,30,32,34,36,38,40,45,47,49,51,54,56,58,61,62,63,64,65,66,67,72,73,74,86,88,91,94,96,99,140,141,142,143,144,145,146,147,148,149,158,160,162,163,164,166,170,173,174,175,176,177 2 -319758 cd16427 TraM-like 1 trimer interface 0 1 1 1 7,8,11,12,14,15,31,51,52,53,54,65,67,69,78,93,94,95 2 -319759 cd16428 TcpC_C 1 trimer interface 0 1 1 1 19,37,38,39,43,44,73,75,76,77,78,79,80,81 2 -319740 cd16435 BPL_LplA_LipB 1 active site 0 1 1 0 12,13,34,40,41,42,43,72,73,74,75,76,82,83,84,124,125,132,135,136,137,148,149,150,152 1 -319740 cd16435 BPL_LplA_LipB 2 catalytic site K 1 1 0 132 1 -319741 cd16442 BPL 1 active site 0 1 1 0 10,11,30,36,37,38,39,42,43,44,45,46,53,54,55,96,97,104,107,108,109,125,126,127,129 1 -319741 cd16442 BPL 2 catalytic site K 1 1 0 104 1 -319742 cd16443 LplA 1 active site 0 1 1 0 13,14,35,41,42,43,44,73,74,75,76,77,83,84,85,125,126,133,136,137,138,149,150,151,153 1 -319742 cd16443 LplA 2 catalytic site K 1 1 0 133 1 -319743 cd16444 LipB 1 active site 0 1 1 0 12,13,35,41,42,43,44,68,69,70,71,72,78,79,80,121,122,129,132,133,134,145,146,147,149 1 -319743 cd16444 LipB 2 catalytic site K 1 1 0 129 1 -319353 cd16832 CNF1_CheD_YfiH-like 1 putative catalytic site [CS]H 0 1 1 30,47 1 -319352 cd16352 CheD 1 putative catalytic site [CS]H 0 1 1 24,41 1 -319354 cd16833 YfiH 1 putative catalytic site [CS]H 0 1 1 46,63 1 -319355 cd16834 CNF1-like 1 putative catalytic site [CS]H 0 1 1 38,53 1 -319351 cd16837 BldD_C_like 1 c-di-GMP binding site xxxRxDxxxxxRxD 1 1 0 2,4,28,32,33,34,36,39,40,41,42,43,44,46 5 -319349 cd16840 toxin_MLD 1 putative membrane interaction residues [KR]S[KR] 0 1 1 15,63,65 0 -319245 cd16841 RraA_family 1 trimer interface 0 1 1 0 0,3,4,12,92,93,94,95,109,110,111,112,143,144,145,147 2 -341123 cd16887 YEATS 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 21,47,49,50,68,69,70,71,72 2 -341124 cd16905 YEATS_Taf14_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 25,54,56,57,75,76,77,78,79 2 -341125 cd16906 YEATS_AF-9_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 21,47,49,50,68,69,70,71,72 2 -341126 cd16907 YEATS_YEATS2_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 23,50,52,53,72,73,74,75,76 2 -341127 cd16908 YEATS_Yaf9_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 28,54,56,57,75,76,77,78,79 2 -341128 cd16909 YEATS_GAS41_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 26,52,54,55,73,74,75,76,77 2 -341129 cd16910 YEATS_TFIID14_like 1 putative peptide binding site [HRK]H[TS][FY]G[YW][AG][EG]F 1 1 0 23,49,51,52,70,71,72,73,74 2 -350650 cd16911 AfaD_SafA-like 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,21,58,76,83,105,107,108,109,110,111,112,113,114,115,116,117,118,119 2 -350651 cd18775 SafA-like 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,21,56,76,83,105,107,108,109,110,111,112,113,114,115,116,117,118,119 2 -350652 cd18776 AfaD-like 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,21,56,75,81,103,105,106,107,108,109,110,111,112,113,114,115,116,117 2 -350653 cd18777 PsaA_MyfA 1 polymer interface 0 1 1 1 0,2,4,6,10,11,12,22,52,67,72,95,97,98,99,100,101,102,103,104,105,106,107,108,109 2 -341130 cd16913 YkuD_like 1 polypeptide substrate binding site 0 1 1 0 76,77,80,93,94,95,96,98 2 -341130 cd16913 YkuD_like 2 putative active site HC 1 1 1 80,96 1 -341131 cd16961 RMtype1_S_TRD-CR_like 1 TRD-CR/TRD-CR interface 0 1 1 1 103,106,107,109,110,137,139,145,149,152,153,174,176,177 2 -341132 cd17243 RMtype1_S_AchA6I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,138,140,146,150,153,154,175,177,178 2 -341133 cd17244 RMtype1_S_Apa101655I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,136,138,144,148,151,152,173,175,176 2 -341134 cd17245 RMtype1_S_TteMORF1547P-TRD2-CR2_Aco12261I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 95,98,99,101,102,128,130,136,140,143,144,169,171,172 2 -341185 cd17494 RMtype1_S_Sma198ORF994P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 92,95,96,98,99,125,127,133,137,140,141,166,168,169 2 -341186 cd17495 RMtype1_S_Cep9333ORF4827P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 94,97,98,100,101,128,130,136,140,143,144,169,171,172 2 -341187 cd17496 RMtype1_S_BliBORF2384P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 96,99,100,102,103,129,131,137,141,144,145,170,172,173 2 -341188 cd17497 RMtype1_S_TteMORF1547P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 95,98,99,101,102,128,130,136,140,143,144,169,171,172 2 -341189 cd17498 RMtype1_S_Aco12261I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 94,97,98,100,101,127,129,135,139,142,143,168,170,171 2 -341190 cd17499 RMtype1_S_CloLW9ORF3270P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 96,99,100,102,103,129,131,137,141,144,145,170,172,173 2 -341135 cd17246 RMtype1_S_SonII-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,142,144,150,154,157,158,183,185,186 2 -341137 cd17248 RMtype1_S_AmiI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,143,145,151,155,158,159,180,182,183 2 -341138 cd17249 RMtype1_S_EcoR124I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,140,142,148,152,155,156,177,179,180 2 -341139 cd17250 RMtype1_S_Eco4255II_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 108,111,112,114,115,139,141,147,151,154,155,176,178,179 2 -341141 cd17252 RMtype1_S_EcoKI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,146,148,154,158,161,162,183,185,186 2 -341143 cd17254 RMtype1_S_FclI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 94,97,98,100,101,127,129,135,139,142,143,164,166,167 2 -341144 cd17255 RMtype1_S_Fco49512ORF2615P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 91,94,95,97,98,121,123,129,133,136,137,158,160,161 2 -341145 cd17256 RMtype1_S_EcoJA65PI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,139,141,147,151,154,155,176,178,179 2 -341146 cd17257 RMtype1_S_EcoBI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 99,102,103,105,106,132,134,140,144,147,148,169,171,172 2 -341147 cd17258 RMtype1_S_Sau13435ORF2165P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 92,95,96,98,99,127,129,135,139,142,143,164,166,167 2 -341148 cd17259 RMtype1_S_StySKI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,145,147,153,157,160,161,182,184,185 2 -341149 cd17260 RMtype1_S_EcoEI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 83,86,87,89,90,119,121,127,131,134,135,156,158,159 2 -341151 cd17262 RMtype1_S_Aco12261I-TRD2-CR2 1 TRD-CR/TRD-CR interface 0 1 1 1 96,99,100,102,103,127,129,135,139,142,143,164,166,167 2 -341152 cd17263 RMtype1_S_AbaB8300I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 97,100,101,103,104,131,133,139,143,146,147,168,170,171 2 -341153 cd17264 RMtype1_S_Eco3763I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,140,142,148,152,155,156,177,179,180 2 -341154 cd17265 RMtype1_S_Eco4255III-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 101,104,105,107,108,135,137,143,147,150,151,172,174,175 2 -341155 cd17266 RMtype1_S_Sau1132ORF3780P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 85,88,89,91,92,116,118,124,128,131,132,153,155,156 2 -341156 cd17267 RMtype1_S_EcoAO83I-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 83,86,87,89,90,114,116,122,126,129,130,151,153,154 2 -341157 cd17268 RMtype1_S_Ara36733I_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,142,144,150,154,157,158,179,181,182 2 -341158 cd17269 RMtype1_S_PluTORF4319P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 85,88,89,91,92,119,121,127,131,134,135,160,162,163 2 -341159 cd17270 RMtype1_S_Sba223ORF3470P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,138,140,146,150,153,154,175,177,178 2 -341161 cd17272 RMtype1_S_Eco2747II-TRD2-CR2-like 1 TRD-CR/TRD-CR interface 0 1 1 1 103,106,107,109,110,136,138,144,148,151,152,173,175,176 2 -341162 cd17273 RMtype1_S_EcoJA69PI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,140,142,148,152,155,156,177,179,180 2 -341163 cd17274 RMtype1_S_Eco540ANI-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 97,100,101,103,104,124,126,132,136,139,140,161,163,164 2 -341167 cd17278 RMtype1_S_LdeBORF1052P-TRD2-CR2 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,142,144,150,154,157,158,179,181,182 2 -341168 cd17279 RMtype1_S_BmuCF2ORF3362P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,137,139,145,149,152,153,174,176,177 2 -341170 cd17281 RMtype1_S_HpyAXIII_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,143,145,151,155,158,159,180,182,183 2 -341171 cd17282 RMtype1_S_Eco16444ORF1681_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,140,142,148,152,155,156,177,179,180 2 -341172 cd17283 RMtype1_S_Hpy180ORF7835P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,138,140,146,150,153,154,175,177,178 2 -341173 cd17284 RMtype1_S_Cbo7060ORF11580P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 106,109,110,112,113,139,141,147,151,154,155,176,178,179 2 -341174 cd17285 RMtype1_S_Csp16704I_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 102,105,106,108,109,135,137,143,147,150,151,172,174,175 2 -341177 cd17288 RMtype1_S_LlaAI06ORF1089P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 84,87,88,90,91,115,117,123,127,130,131,150,152,153 2 -341178 cd17289 RMtype1_S_BamJRS5ORF1993P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,145,147,153,157,160,161,182,184,185 2 -341179 cd17290 RMtype1_S_AleSS8ORF2795P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,138,140,146,150,153,154,175,177,178 2 -341180 cd17291 RMtype1_S_MgeORF438P-TRD-CR_like 1 TRD-CR/TRD-CR interface 0 1 1 1 86,89,90,92,93,119,121,127,131,134,135,152,154,155 2 -341181 cd17292 RMtype1_S_LlaA17I_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 73,76,77,79,80,103,105,111,115,118,119,140,142,143 2 -341193 cd17512 RMtype1_S_BceB55ORF5615P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 115,118,119,121,122,151,153,159,163,166,167,188,190,191 2 -341194 cd17513 RMtype1_S_AveSPN6ORF1907P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 103,106,107,109,110,136,138,144,148,151,152,173,175,176 2 -341195 cd17514 RMtype1_S_Eco2747I_MmaC7ORF19P-TRD-CR_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,140,142,148,152,155,156,178,180,181 2 -341136 cd17247 RMtype1_S_Eco2747I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 112,115,116,118,119,145,147,153,157,160,161,182,184,185 2 -341166 cd17277 RMtype1_M_Cni19672ORF1405P_RMtype11G_Hci611ORFHP_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,141,143,149,153,156,157,179,181,182 2 -341183 cd17294 RMtype1_S_MmaC7ORF19P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,142,144,150,154,157,158,183,185,186 2 -341184 cd17296 RMtype1_S_MmaC5ORF1169P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,136,138,144,148,151,152,172,174,175 2 -341196 cd17515 RMtype1_S_MjaORF132P_Sau1132ORF3780P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 102,105,106,108,109,135,137,143,147,150,151,172,174,175 2 -341160 cd17271 RMtype1_S_NmaSCMORF606P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 105,108,109,111,112,139,141,147,151,154,155,176,178,179 2 -341164 cd17275 RMtype1_S_MjaORF132P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,140,142,148,152,155,156,177,179,180 2 -341165 cd17276 RMtype1_S_Sau1132ORF3780P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,141,143,149,153,156,157,178,180,181 2 -341169 cd17280 RMtype1_S_MspEN3ORF6650P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,137,139,145,149,152,153,178,180,181 2 -341176 cd17287 RMtype1_S_EcoN10ORF171P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 104,107,108,110,111,137,139,145,149,152,153,174,176,177 2 -341191 cd17500 RMtype1_S_MmaGORF2198P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 106,109,110,112,113,139,141,147,151,154,155,176,178,179 2 -341192 cd17501 RMtype1_S_Vch69ORF1407P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,144,146,152,156,159,160,181,183,184 2 -341197 cd17516 RMtype1_S_HinAWORF1578P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 106,109,110,112,113,138,140,146,150,153,154,175,177,178 2 -341140 cd17251 RMtype1_S_HinAWORF1578P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,139,141,147,151,154,155,176,178,179 2 -341175 cd17286 RMtype1_S_Lla161ORF747P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 102,105,106,108,109,133,135,141,145,148,149,170,172,173 2 -341182 cd17293 RMtype1_S_Ppo21ORF8840P_TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 103,106,107,109,110,134,136,142,146,149,150,171,173,174 2 -341198 cd17517 RMtype1_S_EcoKI_StySPI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,147,149,155,159,162,163,184,186,187 2 -341142 cd17253 RMtype1_S_Eco933I-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 111,114,115,117,118,147,149,155,159,162,163,184,186,187 2 -341150 cd17261 RMtype1_S_EcoKI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,146,148,154,158,161,162,183,185,186 2 -341202 cd17521 RMtype1_S_Sau13435ORF2165P_TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,142,144,150,154,157,158,179,181,182 2 -341203 cd17522 RMtype1_S_MjaORF1531P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,145,147,153,157,160,161,182,184,185 2 -341204 cd17523 RMtype1_S_StySPI-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,145,147,153,157,160,161,182,184,185 2 -341205 cd17524 RMtype1_S_EcoUTORF5051P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 108,111,112,114,115,144,146,152,156,159,160,181,183,184 2 -341206 cd17525 RMtype1_S_Eco15ORF14057P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 109,112,113,115,116,145,147,153,157,160,161,182,184,185 2 -341207 cd17526 RMtype1_S_Cje2232P-TRD2-CR2_like 1 TRD-CR/TRD-CR interface 0 1 1 1 110,113,114,116,117,146,148,154,158,161,162,183,185,186 2 -341199 cd17518 RMtype1_S_Asp27244ORF1181P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,142,144,150,154,157,158,176,178,179 2 -341200 cd17519 RMtype1_S_HpyCR35ORFAP-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 107,110,111,113,114,139,141,147,151,154,155,176,178,179 2 -341201 cd17520 RMtype1_S_HmoORF3075P-TRD1-CR1_like 1 TRD-CR/TRD-CR interface 0 1 1 1 102,105,106,108,109,137,139,145,149,152,153,175,177,178 2 -341208 cd17038 Flavi_M 1 glycoprotein E binding interface 0 1 1 0 0,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,27,57,68 2 -341209 cd17297 AldB-like 1 Zn binding site HHH 1 1 0 172,174,185 4 -341209 cd17297 AldB-like 2 putative active site 0 1 1 0 35,43,123,172,174,185 1 -341210 cd17298 DUF1907 1 Zn binding site HHH 1 1 0 248,250,260 4 -341210 cd17298 DUF1907 2 putative active site 0 1 1 0 84,96,200,248,250,260 1 -341211 cd17299 acetolactate_decarboxylase 1 Zn binding site HHH 1 1 0 172,174,185 4 -341211 cd17299 acetolactate_decarboxylase 2 putative active site 0 1 1 0 35,43,123,172,174,185 1 -341212 cd17492 toxin_CptN 1 RNA binding site 0 1 1 0 18,19,20,21,22,24,29,30,31,50,51,52,53,56,57,60,63,64,70,71,72,73,78,81,82,84,87,89,90,101,103,104,105,108,111,113,114,115,122,125,126,129,130,132,133,135,136,137,138,139 3 -350658 cd17706 MCM 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,273,274 5 -350658 cd17706 MCM 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,244,246,256,260,261,272,273,276,277,280 2 -350659 cd17753 MCM2 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,287,288 5 -350659 cd17753 MCM2 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,258,260,270,274,275,286,287,290,291,294 2 -350660 cd17754 MCM3 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,261,262 5 -350660 cd17754 MCM3 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,228,230,240,244,245,260,261,264,265,268 2 -350661 cd17755 MCM4 1 ATP binding site 0 1 1 0 9,51,53,54,55,56,113,181,200,271,272 5 -350661 cd17755 MCM4 2 oligomer interface 0 1 1 1 49,50,51,67,83,96,97,102,103,126,127,130,131,134,135,145,146,190,197,198,200,201,241,243,253,257,258,270,271,274,275,278 2 -350662 cd17756 MCM5 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,279,280 5 -350662 cd17756 MCM5 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,243,245,255,259,260,278,279,282,283,286 2 -350663 cd17757 MCM6 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,112,180,199,269,270 5 -350663 cd17757 MCM6 2 oligomer interface 0 1 1 1 48,49,50,66,82,95,96,101,102,125,126,129,130,133,134,144,145,189,196,197,199,200,237,239,249,253,254,268,269,272,273,276 2 -350664 cd17758 MCM7 1 ATP binding site 0 1 1 0 9,49,51,52,53,54,111,179,198,268,269 5 -350664 cd17758 MCM7 2 oligomer interface 0 1 1 1 47,48,49,65,81,94,95,100,101,124,125,128,129,132,133,143,144,188,195,196,198,199,238,240,250,254,255,267,268,271,272,275 2 -350665 cd17759 MCM8 1 ATP binding site 0 1 1 0 9,52,54,55,56,57,114,181,200,251,252 5 -350665 cd17759 MCM8 2 oligomer interface 0 1 1 1 50,51,52,68,84,97,98,103,104,126,127,130,131,134,135,145,146,190,197,198,200,201,222,224,234,238,239,250,251,254,255,258 2 -350666 cd17760 MCM9 1 ATP binding site 0 1 1 0 9,50,52,53,54,55,110,177,196,261,262 5 -350666 cd17760 MCM9 2 oligomer interface 0 1 1 1 48,49,50,66,82,93,94,99,100,123,124,127,128,131,132,142,143,186,193,194,196,197,233,235,245,249,250,260,261,264,265,268 2 -350667 cd17761 MCM_arch 1 ATP binding site 0 1 1 0 10,51,53,54,55,56,113,181,200,270,271 5 -350667 cd17761 MCM_arch 2 oligomer interface 0 1 1 1 49,50,51,67,83,96,97,102,103,126,127,130,131,134,135,145,146,190,197,198,200,201,240,242,252,256,257,269,270,273,274,277 2 -341490 cd17791 HipA-like 1 ATP binding site 0 1 1 0 1,2,3,4,5,7,29,31,66,81,82,83,84,85,100,157,159,162,179,180 5 -341491 cd17792 CtkA 1 ATP binding site 0 1 1 0 5,6,7,8,9,12,23,25,61,76,77,78,79,80,86,146,148,151,169,170 5 -341492 cd17793 HipA 1 ATP binding site 0 1 1 0 92,93,94,95,96,98,120,122,150,165,166,167,168,169,183,241,243,246,262,263 5 -341493 cd17808 HipA_Ec_like 1 ATP binding site 0 1 1 0 132,133,134,135,136,138,160,162,190,205,206,207,208,209,223,280,282,285,302,303 5 -341494 cd17809 HipA_So_like 1 ATP binding site 0 1 1 0 126,127,128,129,130,132,154,156,186,200,201,202,203,204,218,286,288,291,307,308 5 -350670 cd17912 DEAD-like_helicase_N 1 putative ATP binding site 0 1 1 1 7,8,9,10,11,12,13,47 5 -350670 cd17912 DEAD-like_helicase_N 2 DEAD box helicase motif DEx[DH] 0 1 1 47,48,49,50 0 -350668 cd00046 SF2-N 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,110 5 -350668 cd00046 SF2-N 2 DEAD box helicase motif DEx[DH] 0 1 1 110,111,112,113 0 -350669 cd00268 DEADc 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,142 5 -350669 cd00268 DEADc 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350696 cd17938 DEADc_DDX1 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,143 5 -350696 cd17938 DEADc_DDX1 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350697 cd17939 DEADc_EIF4A 1 putative ATP binding site 0 1 1 1 42,43,44,45,46,47,48,145 5 -350697 cd17939 DEADc_EIF4A 2 DEAD box helicase motif DEx[DH] 0 1 1 145,146,147,148 0 -350803 cd18045 DEADc_EIF4AIII_DDX48 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,147 5 -350803 cd18045 DEADc_EIF4AIII_DDX48 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,147 5 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350698 cd17940 DEADc_DDX6 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,147 5 -350698 cd17940 DEADc_DDX6 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350699 cd17941 DEADc_DDX10 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,142 5 -350699 cd17941 DEADc_DDX10 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350700 cd17942 DEADc_DDX18 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,143 5 -350700 cd17942 DEADc_DDX18 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350701 cd17943 DEADc_DDX20 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,138 5 -350701 cd17943 DEADc_DDX20 2 DEAD box helicase motif DEx[DH] 0 1 1 138,139,140,141 0 -350702 cd17944 DEADc_DDX21_DDX50 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,142 5 -350702 cd17944 DEADc_DDX21_DDX50 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350703 cd17945 DEADc_DDX23 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,146 5 -350703 cd17945 DEADc_DDX23 2 DEAD box helicase motif DEx[DH] 0 1 1 146,147,148,149 0 -350704 cd17946 DEADc_DDX24 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,151 5 -350704 cd17946 DEADc_DDX24 2 DEAD box helicase motif DEx[DH] 0 1 1 151,152,153,154 0 -350705 cd17947 DEADc_DDX27 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,142 5 -350705 cd17947 DEADc_DDX27 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350706 cd17948 DEADc_DDX28 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,145 5 -350706 cd17948 DEADc_DDX28 2 DEAD box helicase motif DEx[DH] 0 1 1 145,146,147,148 0 -350707 cd17949 DEADc_DDX31 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,147 5 -350707 cd17949 DEADc_DDX31 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350708 cd17950 DEADc_DDX39 1 putative ATP binding site 0 1 1 1 47,48,49,50,51,52,53,152 5 -350708 cd17950 DEADc_DDX39 2 DEAD box helicase motif DEx[DH] 0 1 1 152,153,154,155 0 -350709 cd17951 DEADc_DDX41 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,152 5 -350709 cd17951 DEADc_DDX41 2 DEAD box helicase motif DEx[DH] 0 1 1 152,153,154,155 0 -350710 cd17952 DEADc_DDX42 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,143 5 -350710 cd17952 DEADc_DDX42 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350711 cd17953 DEADc_DDX46 1 putative ATP binding site 0 1 1 1 57,58,59,60,61,62,63,168 5 -350711 cd17953 DEADc_DDX46 2 DEAD box helicase motif DEx[DH] 0 1 1 168,169,170,171 0 -350712 cd17954 DEADc_DDX47 1 putative ATP binding site 0 1 1 1 45,46,47,48,49,50,51,149 5 -350712 cd17954 DEADc_DDX47 2 DEAD box helicase motif DEx[DH] 0 1 1 149,150,151,152 0 -350713 cd17955 DEADc_DDX49 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,150 5 -350713 cd17955 DEADc_DDX49 2 DEAD box helicase motif DEx[DH] 0 1 1 150,151,152,153 0 -350714 cd17956 DEADc_DDX51 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,157 5 -350714 cd17956 DEADc_DDX51 2 DEAD box helicase motif DEx[DH] 0 1 1 157,158,159,160 0 -350715 cd17957 DEADc_DDX52 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,141 5 -350715 cd17957 DEADc_DDX52 2 DEAD box helicase motif DEx[DH] 0 1 1 141,142,143,144 0 -350716 cd17958 DEADc_DDX43_DDX53 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,143 5 -350716 cd17958 DEADc_DDX43_DDX53 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350717 cd17959 DEADc_DDX54 1 putative ATP binding site 0 1 1 1 46,47,48,49,50,51,52,151 5 -350717 cd17959 DEADc_DDX54 2 DEAD box helicase motif DEx[DH] 0 1 1 151,152,153,154 0 -350718 cd17960 DEADc_DDX55 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,148 5 -350718 cd17960 DEADc_DDX55 2 DEAD box helicase motif DEx[DH] 0 1 1 148,149,150,151 0 -350719 cd17961 DEADc_DDX56 1 putative ATP binding site 0 1 1 1 39,40,41,42,43,44,45,151 5 -350719 cd17961 DEADc_DDX56 2 DEAD box helicase motif DEx[DH] 0 1 1 151,152,153,154 0 -350720 cd17962 DEADc_DDX59 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,139 5 -350720 cd17962 DEADc_DDX59 2 DEAD box helicase motif DEx[DH] 0 1 1 139,140,141,142 0 -350721 cd17963 DEADc_DDX19_DDX25 1 putative ATP binding site 0 1 1 1 41,42,43,44,45,46,47,141 5 -350721 cd17963 DEADc_DDX19_DDX25 2 DEAD box helicase motif DEx[DH] 0 1 1 141,142,143,144 0 -350805 cd18047 DEADc_DDX19 1 putative ATP binding site 0 1 1 1 48,49,50,51,52,53,54,150 5 -350805 cd18047 DEADc_DDX19 2 DEAD box helicase motif DEx[DH] 0 1 1 150,151,152,153 0 -350806 cd18048 DEADc_DDX25 1 putative ATP binding site 0 1 1 1 65,66,67,68,69,70,71,167 5 -350806 cd18048 DEADc_DDX25 2 DEAD box helicase motif DEx[DH] 0 1 1 167,168,169,170 0 -350722 cd17964 DEADc_MSS116 1 putative ATP binding site 0 1 1 1 40,41,42,43,44,45,46,152 5 -350722 cd17964 DEADc_MSS116 2 DEAD box helicase motif DEx[DH] 0 1 1 152,153,154,155 0 -350723 cd17965 DEADc_MRH4 1 putative ATP binding site 0 1 1 1 69,70,71,72,73,74,75,191 5 -350723 cd17965 DEADc_MRH4 2 DEAD box helicase motif DEx[DH] 0 1 1 191,192,193,194 0 -350724 cd17966 DEADc_DDX5_DDX17 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,143 5 -350724 cd17966 DEADc_DDX5_DDX17 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350807 cd18049 DEADc_DDX5 1 putative ATP binding site 0 1 1 1 69,70,71,72,73,74,75,177 5 -350807 cd18049 DEADc_DDX5 2 DEAD box helicase motif DEx[DH] 0 1 1 177,178,179,180 0 -350808 cd18050 DEADc_DDX17 1 putative ATP binding site 0 1 1 1 107,108,109,110,111,112,113,215 5 -350808 cd18050 DEADc_DDX17 2 DEAD box helicase motif DEx[DH] 0 1 1 215,216,217,218 0 -350725 cd17967 DEADc_DDX3_DDX4 1 putative ATP binding site 0 1 1 1 45,46,47,48,49,50,51,158 5 -350725 cd17967 DEADc_DDX3_DDX4 2 DEAD box helicase motif DEx[DH] 0 1 1 158,159,160,161 0 -350809 cd18051 DEADc_DDX3 1 putative ATP binding site 0 1 1 1 66,67,68,69,70,71,72,185 5 -350809 cd18051 DEADc_DDX3 2 DEAD box helicase motif DEx[DH] 0 1 1 185,186,187,188 0 -350810 cd18052 DEADc_DDX4 1 putative ATP binding site 0 1 1 1 88,89,90,91,92,93,94,200 5 -350810 cd18052 DEADc_DDX4 2 DEAD box helicase motif DEx[DH] 0 1 1 200,201,202,203 0 -350673 cd17915 DEAHc_XPD-like 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,100 5 -350673 cd17915 DEAHc_XPD-like 2 DEAD box helicase motif DEx[DH] 0 1 1 100,101,102,103 0 -350726 cd17968 DEAHc_DDX11_starthere 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,97 5 -350726 cd17968 DEAHc_DDX11_starthere 2 DEAD box helicase motif DEx[DH] 0 1 1 97,98,99,100 0 -350727 cd17969 DEAHc_XPD 1 putative ATP binding site 0 1 1 1 18,19,20,21,22,23,24,120 5 -350727 cd17969 DEAHc_XPD 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350728 cd17970 DEAHc_FancJ 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,143 5 -350728 cd17970 DEAHc_FancJ 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350674 cd17916 DEXHc_UvrB 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,223 5 -350674 cd17916 DEXHc_UvrB 2 DEAD box helicase motif DEx[DH] 0 1 1 223,224,225,226 0 -350675 cd17917 DEXHc_RHA-like 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,106 5 -350675 cd17917 DEXHc_RHA-like 2 DEAD box helicase motif DEx[DH] 0 1 1 106,107,108,109 0 -350689 cd17931 DEXHc_viral_Ns3 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,98 5 -350689 cd17931 DEXHc_viral_Ns3 2 DEAD box helicase motif DEx[DH] 0 1 1 98,99,100,101 0 -350729 cd17971 DEXHc_DHX8 1 putative ATP binding site 0 1 1 1 30,31,32,33,34,35,36,125 5 -350729 cd17971 DEXHc_DHX8 2 DEAD box helicase motif DEx[DH] 0 1 1 125,126,127,128 0 -350730 cd17972 DEXHc_DHX9 1 putative ATP binding site 0 1 1 1 83,84,85,86,87,88,89,181 5 -350730 cd17972 DEXHc_DHX9 2 DEAD box helicase motif DEx[DH] 0 1 1 181,182,183,184 0 -350731 cd17973 DEXHc_DHX15 1 putative ATP binding site 0 1 1 1 37,38,39,40,41,42,43,133 5 -350731 cd17973 DEXHc_DHX15 2 DEAD box helicase motif DEx[DH] 0 1 1 133,134,135,136 0 -350732 cd17974 DEXHc_DHX16 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,121 5 -350732 cd17974 DEXHc_DHX16 2 DEAD box helicase motif DEx[DH] 0 1 1 121,122,123,124 0 -350733 cd17975 DEXHc_DHX29 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,130 5 -350733 cd17975 DEXHc_DHX29 2 DEAD box helicase motif DEx[DH] 0 1 1 130,131,132,133 0 -350734 cd17976 DEXHc_DHX30 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,125 5 -350734 cd17976 DEXHc_DHX30 2 DEAD box helicase motif DEx[DH] 0 1 1 125,126,127,128 0 -350735 cd17977 DEXHc_DHX32 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,123 5 -350735 cd17977 DEXHc_DHX32 2 DEAD box helicase motif DEx[DH] 0 1 1 123,124,125,126 0 -350736 cd17978 DEXHc_DHX33 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,121 5 -350736 cd17978 DEXHc_DHX33 2 DEAD box helicase motif DEx[DH] 0 1 1 121,122,123,124 0 -350737 cd17979 DEXHc_DHX34 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,117 5 -350737 cd17979 DEXHc_DHX34 2 DEAD box helicase motif DEx[DH] 0 1 1 117,118,119,120 0 -350738 cd17980 DEXHc_DHX35 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,122 5 -350738 cd17980 DEXHc_DHX35 2 DEAD box helicase motif DEx[DH] 0 1 1 122,123,124,125 0 -350739 cd17981 DEXHc_DHX36 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,127 5 -350739 cd17981 DEXHc_DHX36 2 DEAD box helicase motif DEx[DH] 0 1 1 127,128,129,130 0 -350740 cd17982 DEXHc_DHX37 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,124 5 -350740 cd17982 DEXHc_DHX37 2 DEAD box helicase motif DEx[DH] 0 1 1 124,125,126,127 0 -350741 cd17983 DEXHc_DHX38 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,120 5 -350741 cd17983 DEXHc_DHX38 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350742 cd17984 DEXHc_DHX40 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,120 5 -350742 cd17984 DEXHc_DHX40 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350743 cd17985 DEXHc_DHX57 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,124 5 -350743 cd17985 DEXHc_DHX57 2 DEAD box helicase motif DEx[DH] 0 1 1 124,125,126,127 0 -350744 cd17986 DEXQc_DQX1 1 putative ATP binding site 0 1 1 1 26,27,28,29,30,31,32,124 5 -350744 cd17986 DEXQc_DQX1 2 DEAD box helicase motif DEx[DH] 0 1 1 124,125,126,127 0 -350745 cd17987 DEXHc_YTHDC2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,123 5 -350745 cd17987 DEXHc_YTHDC2 2 DEAD box helicase motif DEx[DH] 0 1 1 123,124,125,126 0 -350746 cd17988 DEXHc_TDRD9 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,122 5 -350746 cd17988 DEXHc_TDRD9 2 DEAD box helicase motif DEx[DH] 0 1 1 122,123,124,125 0 -350747 cd17989 DEXHc_HrpA 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,120 5 -350747 cd17989 DEXHc_HrpA 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350748 cd17990 DEXHc_HrpB 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,120 5 -350748 cd17990 DEXHc_HrpB 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350676 cd17918 DEXHc_RecG 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,132 5 -350676 cd17918 DEXHc_RecG 2 DEAD box helicase motif DEx[DH] 0 1 1 132,133,134,135 0 -350749 cd17991 DEXHc_TRCF 1 putative ATP binding site 0 1 1 1 44,45,46,47,48,49,50,143 5 -350749 cd17991 DEXHc_TRCF 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350750 cd17992 DEXHc_RecG 1 putative ATP binding site 0 1 1 1 74,75,76,77,78,79,80,173 5 -350750 cd17992 DEXHc_RecG 2 DEAD box helicase motif DEx[DH] 0 1 1 173,174,175,176 0 -350677 cd17919 DEXHc_Snf 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,127 5 -350677 cd17919 DEXHc_Snf 2 DEAD box helicase motif DEx[DH] 0 1 1 127,128,129,130 0 -350751 cd17993 DEXHc_CHD1_2 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,134 5 -350751 cd17993 DEXHc_CHD1_2 2 DEAD box helicase motif DEx[DH] 0 1 1 134,135,136,137 0 -350811 cd18053 DEXHc_CHD1 1 putative ATP binding site 0 1 1 1 47,48,49,50,51,52,53,153 5 -350811 cd18053 DEXHc_CHD1 2 DEAD box helicase motif DEx[DH] 0 1 1 153,154,155,156 0 -350812 cd18054 DEXHc_CHD2 1 putative ATP binding site 0 1 1 1 47,48,49,50,51,52,53,153 5 -350812 cd18054 DEXHc_CHD2 2 DEAD box helicase motif DEx[DH] 0 1 1 153,154,155,156 0 -350752 cd17994 DEXHc_CHD3_4_5 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,111 5 -350752 cd17994 DEXHc_CHD3_4_5 2 DEAD box helicase motif DEx[DH] 0 1 1 111,112,113,114 0 -350813 cd18055 DEXHc_CHD3 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,147 5 -350813 cd18055 DEXHc_CHD3 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350814 cd18056 DEXHc_CHD4 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,147 5 -350814 cd18056 DEXHc_CHD4 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350815 cd18057 DEXHc_CHD5 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,147 5 -350815 cd18057 DEXHc_CHD5 2 DEAD box helicase motif DEx[DH] 0 1 1 147,148,149,150 0 -350753 cd17995 DEXHc_CHD6_7_8_9 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,138 5 -350753 cd17995 DEXHc_CHD6_7_8_9 2 DEAD box helicase motif DEx[DH] 0 1 1 138,139,140,141 0 -350816 cd18058 DEXHc_CHD6 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,137 5 -350816 cd18058 DEXHc_CHD6 2 DEAD box helicase motif DEx[DH] 0 1 1 137,138,139,140 0 -350817 cd18059 DEXHc_CHD7 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,137 5 -350817 cd18059 DEXHc_CHD7 2 DEAD box helicase motif DEx[DH] 0 1 1 137,138,139,140 0 -350818 cd18060 DEXHc_CHD8 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,137 5 -350818 cd18060 DEXHc_CHD8 2 DEAD box helicase motif DEx[DH] 0 1 1 137,138,139,140 0 -350819 cd18061 DEXHc_CHD9 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,137 5 -350819 cd18061 DEXHc_CHD9 2 DEAD box helicase motif DEx[DH] 0 1 1 137,138,139,140 0 -350754 cd17996 DEXHc_SMARCA2_SMARCA4 1 putative ATP binding site 0 1 1 1 30,31,32,33,34,35,36,130 5 -350754 cd17996 DEXHc_SMARCA2_SMARCA4 2 DEAD box helicase motif DEx[DH] 0 1 1 130,131,132,133 0 -350820 cd18062 DEXHc_SMARCA4 1 putative ATP binding site 0 1 1 1 50,51,52,53,54,55,56,150 5 -350820 cd18062 DEXHc_SMARCA4 2 DEAD box helicase motif DEx[DH] 0 1 1 150,151,152,153 0 -350821 cd18063 DEXHc_SMARCA2 1 putative ATP binding site 0 1 1 1 50,51,52,53,54,55,56,150 5 -350821 cd18063 DEXHc_SMARCA2 2 DEAD box helicase motif DEx[DH] 0 1 1 150,151,152,153 0 -350755 cd17997 DEXHc_SMARCA1_SMARCA5 1 putative ATP binding site 0 1 1 1 30,31,32,33,34,35,36,131 5 -350755 cd17997 DEXHc_SMARCA1_SMARCA5 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350822 cd18064 DEXHc_SMARCA5 1 putative ATP binding site 0 1 1 1 42,43,44,45,46,47,48,143 5 -350822 cd18064 DEXHc_SMARCA5 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350823 cd18065 DEXHc_SMARCA1 1 putative ATP binding site 0 1 1 1 42,43,44,45,46,47,48,143 5 -350823 cd18065 DEXHc_SMARCA1 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350756 cd17998 DEXHc_SMARCAD1 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,131 5 -350756 cd17998 DEXHc_SMARCAD1 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350757 cd17999 DEXHc_Mot1 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,132 5 -350757 cd17999 DEXHc_Mot1 2 DEAD box helicase motif DEx[DH] 0 1 1 132,133,134,135 0 -350758 cd18000 DEXHc_ERCC6 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,138 5 -350758 cd18000 DEXHc_ERCC6 2 DEAD box helicase motif DEx[DH] 0 1 1 138,139,140,141 0 -350759 cd18001 DEXHc_ERCC6L 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,131 5 -350759 cd18001 DEXHc_ERCC6L 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350760 cd18002 DEXQc_INO80 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,134 5 -350760 cd18002 DEXQc_INO80 2 DEAD box helicase motif DEx[DH] 0 1 1 134,135,136,137 0 -350761 cd18003 DEXQc_SRCAP 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,128 5 -350761 cd18003 DEXQc_SRCAP 2 DEAD box helicase motif DEx[DH] 0 1 1 128,129,130,131 0 -350762 cd18004 DEXHc_RAD54 1 putative ATP binding site 0 1 1 1 32,33,34,35,36,37,38,140 5 -350762 cd18004 DEXHc_RAD54 2 DEAD box helicase motif DEx[DH] 0 1 1 140,141,142,143 0 -350824 cd18066 DEXHc_RAD54B 1 putative ATP binding site 0 1 1 1 32,33,34,35,36,37,38,135 5 -350824 cd18066 DEXHc_RAD54B 2 DEAD box helicase motif DEx[DH] 0 1 1 135,136,137,138 0 -350825 cd18067 DEXHc_RAD54A 1 putative ATP binding site 0 1 1 1 32,33,34,35,36,37,38,143 5 -350825 cd18067 DEXHc_RAD54A 2 DEAD box helicase motif DEx[DH] 0 1 1 143,144,145,146 0 -350763 cd18005 DEXHc_ERCC6L2 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,145 5 -350763 cd18005 DEXHc_ERCC6L2 2 DEAD box helicase motif DEx[DH] 0 1 1 145,146,147,148 0 -350764 cd18006 DEXHc_CHD1L 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,128 5 -350764 cd18006 DEXHc_CHD1L 2 DEAD box helicase motif DEx[DH] 0 1 1 128,129,130,131 0 -350765 cd18007 DEXHc_ATRX-like 1 putative ATP binding site 0 1 1 1 34,35,36,37,38,39,40,154 5 -350765 cd18007 DEXHc_ATRX-like 2 DEAD box helicase motif DEx[DH] 0 1 1 154,155,156,157 0 -350826 cd18068 DEXHc_ATRX 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,161 5 -350826 cd18068 DEXHc_ATRX 2 DEAD box helicase motif DEx[DH] 0 1 1 161,162,163,164 0 -350827 cd18069 DEXHc_ARIP4 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,142 5 -350827 cd18069 DEXHc_ARIP4 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350766 cd18008 DEXDc_SHPRH-like 1 putative ATP binding site 0 1 1 1 22,23,24,25,26,27,28,153 5 -350766 cd18008 DEXDc_SHPRH-like 2 DEAD box helicase motif DEx[DH] 0 1 1 153,154,155,156 0 -350828 cd18070 DEXQc_SHPRH 1 putative ATP binding site 0 1 1 1 22,23,24,25,26,27,28,171 5 -350828 cd18070 DEXQc_SHPRH 2 DEAD box helicase motif DEx[DH] 0 1 1 171,172,173,174 0 -350829 cd18071 DEXHc_HLTF1_SMARC3 1 putative ATP binding site 0 1 1 1 56,57,58,59,60,61,62,151 5 -350829 cd18071 DEXHc_HLTF1_SMARC3 2 DEAD box helicase motif DEx[DH] 0 1 1 151,152,153,154 0 -350830 cd18072 DEXHc_TTF2 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,157 5 -350830 cd18072 DEXHc_TTF2 2 DEAD box helicase motif DEx[DH] 0 1 1 157,158,159,160 0 -350767 cd18009 DEXHc_HELLS_SMARCA6 1 putative ATP binding site 0 1 1 1 30,31,32,33,34,35,36,134 5 -350767 cd18009 DEXHc_HELLS_SMARCA6 2 DEAD box helicase motif DEx[DH] 0 1 1 134,135,136,137 0 -350768 cd18010 DEXHc_HARP_SMARCAL1 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,116 5 -350768 cd18010 DEXHc_HARP_SMARCAL1 2 DEAD box helicase motif DEx[DH] 0 1 1 116,117,118,119 0 -350769 cd18011 DEXDc_RapA 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,126 5 -350769 cd18011 DEXDc_RapA 2 DEAD box helicase motif DEx[DH] 0 1 1 126,127,128,129 0 -350770 cd18012 DEXQc_arch_SWI2_SNF2 1 putative ATP binding site 0 1 1 1 31,32,33,34,35,36,37,127 5 -350770 cd18012 DEXQc_arch_SWI2_SNF2 2 DEAD box helicase motif DEx[DH] 0 1 1 127,128,129,130 0 -350771 cd18013 DEXQc_bact_SNF2 1 putative ATP binding site 0 1 1 1 23,24,25,26,27,28,29,122 5 -350771 cd18013 DEXQc_bact_SNF2 2 DEAD box helicase motif DEx[DH] 0 1 1 122,123,124,125 0 -350678 cd17920 DEXHc_RecQ 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,136 5 -350678 cd17920 DEXHc_RecQ 2 DEAD box helicase motif DEx[DH] 0 1 1 136,137,138,139 0 -350772 cd18014 DEXHc_RecQ5 1 putative ATP binding site 0 1 1 1 37,38,39,40,41,42,43,140 5 -350772 cd18014 DEXHc_RecQ5 2 DEAD box helicase motif DEx[DH] 0 1 1 140,141,142,143 0 -350773 cd18015 DEXHc_RecQ1 1 putative ATP binding site 0 1 1 1 41,42,43,44,45,46,47,145 5 -350773 cd18015 DEXHc_RecQ1 2 DEAD box helicase motif DEx[DH] 0 1 1 145,146,147,148 0 -350774 cd18016 DEXHc_RecQ2_BLM 1 putative ATP binding site 0 1 1 1 40,41,42,43,44,45,46,144 5 -350774 cd18016 DEXHc_RecQ2_BLM 2 DEAD box helicase motif DEx[DH] 0 1 1 144,145,146,147 0 -350775 cd18017 DEXHc_RecQ3 1 putative ATP binding site 0 1 1 1 36,37,38,39,40,41,42,129 5 -350775 cd18017 DEXHc_RecQ3 2 DEAD box helicase motif DEx[DH] 0 1 1 129,130,131,132 0 -350776 cd18018 DEXHc_RecQ4-like 1 putative ATP binding site 0 1 1 1 35,36,37,38,39,40,41,136 5 -350776 cd18018 DEXHc_RecQ4-like 2 DEAD box helicase motif DEx[DH] 0 1 1 136,137,138,139 0 -350679 cd17921 DEXHc_Ski2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,124 5 -350679 cd17921 DEXHc_Ski2 2 DEAD box helicase motif DEx[DH] 0 1 1 124,125,126,127 0 -350777 cd18019 DEXHc_Brr2_1 1 putative ATP binding site 0 1 1 1 41,42,43,44,45,46,47,151 5 -350777 cd18019 DEXHc_Brr2_1 2 DEAD box helicase motif DEx[DH] 0 1 1 151,152,153,154 0 -350778 cd18020 DEXHc_ASCC3_1 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,136 5 -350778 cd18020 DEXHc_ASCC3_1 2 DEAD box helicase motif DEx[DH] 0 1 1 136,137,138,139 0 -350779 cd18021 DEXHc_Brr2_2 1 putative ATP binding site 0 1 1 1 27,28,29,30,31,32,33,129 5 -350779 cd18021 DEXHc_Brr2_2 2 DEAD box helicase motif DEx[DH] 0 1 1 129,130,131,132 0 -350780 cd18022 DEXHc_ASCC3_2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,127 5 -350780 cd18022 DEXHc_ASCC3_2 2 DEAD box helicase motif DEx[DH] 0 1 1 127,128,129,130 0 -350781 cd18023 DEXHc_HFM1 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,133 5 -350781 cd18023 DEXHc_HFM1 2 DEAD box helicase motif DEx[DH] 0 1 1 133,134,135,136 0 -350782 cd18024 DEXHc_Mtr4-like 1 putative ATP binding site 0 1 1 1 55,56,57,58,59,60,61,144 5 -350782 cd18024 DEXHc_Mtr4-like 2 DEAD box helicase motif DEx[DH] 0 1 1 144,145,146,147 0 -350783 cd18025 DEXHc_DDX60 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,128 5 -350783 cd18025 DEXHc_DDX60 2 DEAD box helicase motif DEx[DH] 0 1 1 128,129,130,131 0 -350784 cd18026 DEXHc_POLQ-like 1 putative ATP binding site 0 1 1 1 41,42,43,44,45,46,47,142 5 -350784 cd18026 DEXHc_POLQ-like 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350785 cd18027 DEXHc_SKIV2L 1 putative ATP binding site 0 1 1 1 31,32,33,34,35,36,37,120 5 -350785 cd18027 DEXHc_SKIV2L 2 DEAD box helicase motif DEx[DH] 0 1 1 120,121,122,123 0 -350786 cd18028 DEXHc_archSki2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,121 5 -350786 cd18028 DEXHc_archSki2 2 DEAD box helicase motif DEx[DH] 0 1 1 121,122,123,124 0 -350680 cd17922 DEXHc_LHR-like 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,117 5 -350680 cd17922 DEXHc_LHR-like 2 DEAD box helicase motif DEx[DH] 0 1 1 117,118,119,120 0 -350681 cd17923 DEXHc_Hrq1-like 1 putative ATP binding site 0 1 1 1 23,24,25,26,27,28,29,131 5 -350681 cd17923 DEXHc_Hrq1-like 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350682 cd17924 DDXDc_reverse_gyrase 1 putative ATP binding site 0 1 1 1 40,41,42,43,44,45,46,144 5 -350682 cd17924 DDXDc_reverse_gyrase 2 DEAD box helicase motif DEx[DH] 0 1 1 144,145,146,147 0 -350683 cd17925 DEXDc_ComFA 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,109 5 -350683 cd17925 DEXDc_ComFA 2 DEAD box helicase motif DEx[DH] 0 1 1 109,110,111,112 0 -350684 cd17926 DEXHc_RE 1 putative ATP binding site 0 1 1 1 26,27,28,29,30,31,32,116 5 -350684 cd17926 DEXHc_RE 2 DEAD box helicase motif DEx[DH] 0 1 1 116,117,118,119 0 -350787 cd18029 DEXHc_XPB 1 putative ATP binding site 0 1 1 1 34,35,36,37,38,39,40,133 5 -350787 cd18029 DEXHc_XPB 2 DEAD box helicase motif DEx[DH] 0 1 1 133,134,135,136 0 -350788 cd18030 DEXHc_RE_I_HsdR 1 putative ATP binding site 0 1 1 1 55,56,57,58,59,60,61,155 5 -350788 cd18030 DEXHc_RE_I_HsdR 2 DEAD box helicase motif DEx[DH] 0 1 1 155,156,157,158 0 -350789 cd18031 DEXHc_UvsW 1 putative ATP binding site 0 1 1 1 23,24,25,26,27,28,29,118 5 -350789 cd18031 DEXHc_UvsW 2 DEAD box helicase motif DEx[DH] 0 1 1 118,119,120,121 0 -350790 cd18032 DEXHc_RE_I_III_res 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,121 5 -350790 cd18032 DEXHc_RE_I_III_res 2 DEAD box helicase motif DEx[DH] 0 1 1 121,122,123,124 0 -350685 cd17927 DEXHc_RIG-I 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,131 5 -350685 cd17927 DEXHc_RIG-I 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350791 cd18033 DEXDc_FANCM 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,125 5 -350791 cd18033 DEXDc_FANCM 2 DEAD box helicase motif DEx[DH] 0 1 1 125,126,127,128 0 -350792 cd18034 DEXHc_dicer 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,132 5 -350792 cd18034 DEXHc_dicer 2 DEAD box helicase motif DEx[DH] 0 1 1 132,133,134,135 0 -350793 cd18035 DEXHc_Hef 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,123 5 -350793 cd18035 DEXHc_Hef 2 DEAD box helicase motif DEx[DH] 0 1 1 123,124,125,126 0 -350794 cd18036 DEXHc_RLR 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,134 5 -350794 cd18036 DEXHc_RLR 2 DEAD box helicase motif DEx[DH] 0 1 1 134,135,136,137 0 -350831 cd18073 DEXHc_RIG-I_DDX58 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,131 5 -350831 cd18073 DEXHc_RIG-I_DDX58 2 DEAD box helicase motif DEx[DH] 0 1 1 131,132,133,134 0 -350832 cd18074 DEXHc_RLR-2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,137 5 -350832 cd18074 DEXHc_RLR-2 2 DEAD box helicase motif DEx[DH] 0 1 1 137,138,139,140 0 -350833 cd18075 DEXHc_RLR-3 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,130 5 -350833 cd18075 DEXHc_RLR-3 2 DEAD box helicase motif DEx[DH] 0 1 1 130,131,132,133 0 -350686 cd17928 DEXDc_SecA 1 putative ATP binding site 0 1 1 1 62,63,64,65,66,67,68,167 5 -350686 cd17928 DEXDc_SecA 2 DEAD box helicase motif DEx[DH] 0 1 1 167,168,169,170 0 -350687 cd17929 DEXHc_priA 1 putative ATP binding site 0 1 1 1 23,24,25,26,27,28,29,117 5 -350687 cd17929 DEXHc_priA 2 DEAD box helicase motif DEx[DH] 0 1 1 117,118,119,120 0 -350688 cd17930 DEXHc_cas3 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,136 5 -350688 cd17930 DEXHc_cas3 2 DEAD box helicase motif DEx[DH] 0 1 1 136,137,138,139 0 -350671 cd17913 DEXQc_Suv3 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,87 5 -350671 cd17913 DEXQc_Suv3 2 DEAD box helicase motif DEx[DH] 0 1 1 87,88,89,90 0 -350672 cd17914 DExxQc_SF1-N 1 putative ATP binding site 0 1 1 1 7,8,9,10,11,12,13,50 5 -350672 cd17914 DExxQc_SF1-N 2 DEAD box helicase motif DEx[DH] 0 1 1 50,51,52,53 0 -350690 cd17932 DEXQc_UvrD 1 putative ATP binding site 0 1 1 1 20,21,22,23,24,25,26,125 5 -350690 cd17932 DEXQc_UvrD 2 DEAD box helicase motif DEx[DH] 0 1 1 125,126,127,128 0 -350691 cd17933 DEXSc_RecD-like 1 putative ATP binding site 0 1 1 1 20,21,22,23,24,25,26,95 5 -350691 cd17933 DEXSc_RecD-like 2 DEAD box helicase motif DEx[DH] 0 1 1 95,96,97,98 0 -350795 cd18037 DEXSc_Pif1_like 1 putative ATP binding site 0 1 1 1 20,21,22,23,24,25,26,99 5 -350795 cd18037 DEXSc_Pif1_like 2 DEAD box helicase motif DEx[DH] 0 1 1 99,100,101,102 0 -350692 cd17934 DEXXQc_Upf1-like 1 putative ATP binding site 0 1 1 1 21,22,23,24,25,26,27,63 5 -350692 cd17934 DEXXQc_Upf1-like 2 DEAD box helicase motif DEx[DH] 0 1 1 63,64,65,66 0 -350796 cd18038 DEXXQc_Helz-like 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,148 5 -350796 cd18038 DEXXQc_Helz-like 2 DEAD box helicase motif DEx[DH] 0 1 1 148,149,150,151 0 -350834 cd18076 DEXXQc_HELZ2-N 1 putative ATP binding site 0 1 1 1 31,32,33,34,35,36,37,152 5 -350834 cd18076 DEXXQc_HELZ2-N 2 DEAD box helicase motif DEx[DH] 0 1 1 152,153,154,155 0 -350835 cd18077 DEXXQc_HELZ 1 putative ATP binding site 0 1 1 1 29,30,31,32,33,34,35,152 5 -350835 cd18077 DEXXQc_HELZ 2 DEAD box helicase motif DEx[DH] 0 1 1 152,153,154,155 0 -350836 cd18078 DEXXQc_Mov10L1 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,142 5 -350836 cd18078 DEXXQc_Mov10L1 2 DEAD box helicase motif DEx[DH] 0 1 1 142,143,144,145 0 -350797 cd18039 DEXXQc_UPF1 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,166 5 -350797 cd18039 DEXXQc_UPF1 2 DEAD box helicase motif DEx[DH] 0 1 1 166,167,168,169 0 -350798 cd18040 DEXXc_HELZ2-C 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,204 5 -350798 cd18040 DEXXc_HELZ2-C 2 DEAD box helicase motif DEx[DH] 0 1 1 204,205,206,207 0 -350799 cd18041 DEXXQc_DNA2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,135 5 -350799 cd18041 DEXXQc_DNA2 2 DEAD box helicase motif DEx[DH] 0 1 1 135,136,137,138 0 -350800 cd18042 DEXXQc_SETX 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,149 5 -350800 cd18042 DEXXQc_SETX 2 DEAD box helicase motif DEx[DH] 0 1 1 149,150,151,152 0 -350801 cd18043 DEXXQc_SF1 1 putative ATP binding site 0 1 1 1 22,23,24,25,26,27,28,86 5 -350801 cd18043 DEXXQc_SF1 2 DEAD box helicase motif DEx[DH] 0 1 1 86,87,88,89 0 -350802 cd18044 DEXXQc_SMUBP2 1 putative ATP binding site 0 1 1 1 25,26,27,28,29,30,31,122 5 -350802 cd18044 DEXXQc_SMUBP2 2 DEAD box helicase motif DEx[DH] 0 1 1 122,123,124,125 0 -350693 cd17935 EEXXQc_AQR 1 putative ATP binding site 0 1 1 1 28,29,30,31,32,33,34,116 5 -350693 cd17935 EEXXQc_AQR 2 DEAD box helicase motif DEx[DH] 0 1 1 116,117,118,119 0 -350694 cd17936 EEXXEc_NFX1 1 putative ATP binding site 0 1 1 1 24,25,26,27,28,29,30,109 5 -350694 cd17936 EEXXEc_NFX1 2 DEAD box helicase motif DEx[DH] 0 1 1 109,110,111,112 0 -350695 cd17937 DEXXYc_viral_SF1-N 1 putative ATP binding site 0 1 1 1 9,10,11,12,13,14,15,84 5 -350695 cd17937 DEXXYc_viral_SF1-N 2 DEAD box helicase motif DEx[DH] 0 1 1 84,85,86,87 0 -350837 cd18079 S-AdoMet_synt 1 active site 0 1 1 0 4,10,11,12,36,51,94,97,98,114,115,160,162,183,224,226,227,229,235,241,242,256,257,258,262,266,268,299 1 -350837 cd18079 S-AdoMet_synt 2 ATP binding site 0 1 1 0 4,10,11,160,162,242 5 -350837 cd18079 S-AdoMet_synt 3 homodimer interface 0 1 1 1 0,1,2,4,38,40,42,47,49,50,51,115,116,117,118,120,162,164,166,179,181,220,223,234,235,236,238,239,240,241,244,249,250,251,252,253,254,255,256,258,262,294,296,297,298,299,300,305,306,308 2 -350838 cd18133 HLD_clamp 1 ATP binding site 0 1 1 0 36,37,40 5 -350839 cd18137 HLD_clamp_pol_III_gamma_tau 1 ATP binding site 0 1 1 0 36,37,40 5 -350840 cd18138 HLD_clamp_pol_III_delta 1 ATP binding site 0 1 1 0 36,37,40 5 -350841 cd18139 HLD_clamp_RarA 1 ATP binding site 0 1 1 0 42,43,46 5 -350842 cd18140 HLD_clamp_RFC 1 ATP binding site 0 1 1 0 36,37,40 5 -350845 cd18643 CBD 1 putative peptide binding site 0 0 1 1 15,16,17,18,36,38,39,40,41,45,47,48,49,50,52,53,54,57,58 2 -350845 cd18643 CBD 2 putative methylated histone tail binding site 0 0 1 1 15,38,41,45 5 -350845 cd18643 CBD 3 DNA binding site 0 1 1 1 35,37,38,39,40,41,42,44,45,46,47,48 3 -350845 cd18643 CBD 4 putative RNA binding site 0 0 1 1 35,38,42,44,48 3 -350843 cd18641 CBD_RBP1_like 1 putative peptide binding site 0 0 1 1 15,16,17,18,33,35,36,37,38,42,44,45,46,47,49,50,51,54,55 2 -350843 cd18641 CBD_RBP1_like 2 putative methylated histone tail binding site 0 0 1 1 15,35,38,42 5 -350843 cd18641 CBD_RBP1_like 3 DNA binding site 0 1 1 1 32,34,35,36,37,38,39,41,42,43,44,45 3 -350843 cd18641 CBD_RBP1_like 4 putative RNA binding site 0 0 1 1 32,35,39,41,45 3 -350844 cd18642 CBD_MOF_like 1 putative peptide binding site 0 0 1 1 13,14,15,16,32,34,35,36,37,41,43,44,45,46,48,49,58,61,62 2 -350844 cd18642 CBD_MOF_like 2 putative methylated histone tail binding site 0 0 1 1 13,34,37,41 5 -350844 cd18642 CBD_MOF_like 3 DNA binding site 0 1 1 1 31,33,34,35,36,37,38,40,41,42,43,44 3 -350844 cd18642 CBD_MOF_like 4 putative RNA binding site 0 0 1 1 31,34,38,40,44 3 -350847 cd18984 CBD_MOF_like 1 putative peptide binding site 0 0 1 1 13,14,15,16,33,35,36,37,38,42,44,45,46,47,49,50,61,64,65 2 -350847 cd18984 CBD_MOF_like 2 putative methylated histone tail binding site 0 0 1 1 13,35,38,42 5 -350847 cd18984 CBD_MOF_like 3 DNA binding site 0 1 1 1 32,34,35,36,37,38,39,41,42,43,44,45 3 -350847 cd18984 CBD_MOF_like 4 putative RNA binding site 0 0 1 1 32,35,39,41,45 3 -350848 cd18985 CBD_TIP60_like 1 putative peptide binding site 0 0 1 1 13,14,15,16,31,33,34,35,36,40,42,43,44,45,47,48,55,58,59 2 -350848 cd18985 CBD_TIP60_like 2 putative methylated histone tail binding site 0 0 1 1 13,33,36,40 5 -350848 cd18985 CBD_TIP60_like 3 DNA binding site 0 1 1 1 30,32,33,34,35,36,37,39,40,41,42,43 3 -350848 cd18985 CBD_TIP60_like 4 putative RNA binding site 0 0 1 1 30,33,37,39,43 3 -350849 cd18986 CBD_ESA1_like 1 putative peptide binding site 0 0 1 1 13,14,15,16,31,33,34,35,36,40,42,43,44,45,47,48,56,59,60 2 -350849 cd18986 CBD_ESA1_like 2 putative methylated histone tail binding site 0 0 1 1 13,33,36,40 5 -350849 cd18986 CBD_ESA1_like 3 DNA binding site 0 1 1 1 30,32,33,34,35,36,37,39,40,41,42,43 3 -350849 cd18986 CBD_ESA1_like 4 putative RNA binding site 0 0 1 1 30,33,37,39,43 3 -350846 cd18983 CBD_MSL3_like 1 putative peptide binding site 0 0 1 1 11,12,13,14,29,31,32,33,34,38,40,41,42,43,45,46,47,50,51 2 -350846 cd18983 CBD_MSL3_like 2 putative methylated histone tail binding site 0 0 1 1 11,31,34,38 5 -350846 cd18983 CBD_MSL3_like 3 DNA binding site 0 1 1 1 28,30,31,32,33,34,35,37,38,39,40,41 3 -350846 cd18983 CBD_MSL3_like 4 putative RNA binding site 0 0 1 1 28,31,35,37,41 3 -350850 cd18670 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,28,47 1 -350851 cd18769 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,44,62 1 -350852 cd18770 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,37,56 1 -350853 cd18771 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,28,46 1 -350854 cd18772 PIN_Mut7-C-like 1 active site [DENQ][DENQ][DENQ] 0 1 1 3,29,61 1 -275365 sd00001 TSP3 1 C-type Ca binding site_TSP3-short [DEN][DEN][DEN][DEN][DEN][NDE] 1 1 1 1,3,5,9,12,19 4 -275365 sd00001 TSP3 2 N-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 1 24,26,28,32,35 4 -275365 sd00001 TSP3 3 C-type Ca binding site_TSP3-long [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 37,39,41,45,48,55 4 -275365 sd00001 TSP3 4 TSP3 repeat_short 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 7 -275365 sd00001 TSP3 5 TSP3 repeat_long 0 0 1 1 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,50,51,52,53,54,55,56,57,58 7 -275366 sd00002 TSP3 1 TSP3 repeat_long 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35 7 -275366 sd00002 TSP3 2 TSP3 repeat_short 0 0 1 1 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 7 -275366 sd00002 TSP3 3 N-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 1 1,3,5,9,12 4 -275366 sd00002 TSP3 4 C-type Ca binding site_TSP3-long [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 14,16,18,22,25,32 4 -275366 sd00002 TSP3 5 C-type Ca binding site_TSP3-short [DEN][DEN][DEN][DEN][DEN][DEN] 1 1 1 37,39,41,45,48,55 4 -275367 sd00003 TSP3_1C 1 TSP3 repeat_1C 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -275367 sd00003 TSP3_1C 2 C-type Ca binding site [DEN][DEN][DEN][DEN][DEN] 1 1 0 1,3,5,24,31 4 -276811 sd00004 PPR 1 PPR repeat 0 0 1 1 2,3,4,5,6,7,8,9,10,11,12,16,17,18,19,20,21,22,23,24,25,26,27,28,29 7 -276811 sd00004 PPR 2 PPR repeat 0 0 1 1 35,36,37,38,39,40,41,42,43,44,45,46,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64 7 -276811 sd00004 PPR 3 PPR repeat 0 0 1 1 70,71,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99 7 -276810 sd00005 TPR 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 7 -276810 sd00005 TPR 2 TPR repeat 0 0 1 1 29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 7 -276809 sd00006 TPR 1 putative protein binding surface 0 1 1 1 1,4,5,8,9,11,35,38,39,42,43,45,46,69,72,73,76,77,80 2 -276809 sd00006 TPR 2 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 7 -276809 sd00006 TPR 3 TPR repeat 0 0 1 1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 7 -276809 sd00006 TPR 4 TPR repeat 0 0 1 1 68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 7 -276808 sd00008 TPR_YbbN 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,28,29 7 -276808 sd00008 TPR_YbbN 2 TPR repeat 0 0 1 1 34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,58,59,60,61 7 -276808 sd00008 TPR_YbbN 3 TPR repeat 0 0 1 1 102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133 7 -276808 sd00008 TPR_YbbN 4 TPR repeat 0 0 1 1 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,157,158,159,160,161,162,163,164,165,166,167,168,169,170 7 -276807 sd00010 SLR 1 SLR repeat 0 0 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30 7 -276807 sd00010 SLR 2 SLR repeat 0 0 1 1 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,64,65,66 7 -276807 sd00010 SLR 3 SLR repeat 0 0 1 1 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101,102 7 -276806 sd00016 Apc5 1 TPR repeat 0 0 1 1 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 7 -276806 sd00016 Apc5 2 TPR repeat 0 0 1 1 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -275368 sd00017 ZF_C2H2 1 Zn binding site CCHH 1 1 1 1,4,17,21 4 -275368 sd00017 ZF_C2H2 2 Zn binding site CCHH 1 1 1 29,32,45,49 4 -275368 sd00017 ZF_C2H2 3 Zn binding site CCHH 1 1 1 57,60,73,77 4 -275368 sd00017 ZF_C2H2 4 putative nucleic acid binding site 0 1 1 1 6,8,10,12,13,16,17,20,34,36,40,41,44,45,48,62,64,66,68,69,72,73,76 3 -275368 sd00017 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21 7 -275368 sd00017 ZF_C2H2 6 C2H2 Zn finger 0 0 0 0 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 7 -275368 sd00017 ZF_C2H2 7 C2H2 Zn finger 0 0 0 0 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 7 -275369 sd00018 ZF_C2H2 1 Zn binding site CCHH 1 1 1 2,5,18,22 4 -275369 sd00018 ZF_C2H2 2 putative nucleic acid binding site 0 1 1 1 0,7,9,10,11,13,14,18,21 3 -275369 sd00018 ZF_C2H2 3 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23 7 -275370 sd00019 ZF_C2H2 1 Zn binding site CCHH 1 1 1 0,3,16,20 4 -275370 sd00019 ZF_C2H2 2 Zn binding site CCHH 1 1 1 28,31,44,48 4 -275370 sd00019 ZF_C2H2 3 putative nucleic acid binding site 0 1 1 1 5,7,9,11,12,15,16,19,33,35,36,37,39,40,44,47 3 -275370 sd00019 ZF_C2H2 4 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 7 -275370 sd00019 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 7 -275371 sd00020 ZF_C2H2 1 Zn binding site CCHH 1 1 1 0,3,16,22 4 -275371 sd00020 ZF_C2H2 2 Zn binding site CCHH 1 1 1 23,26,39,45 4 -275371 sd00020 ZF_C2H2 3 putative nucleic acid binding site 0 1 1 1 7,8,9,11,12,16,21,28,31,32,33,34,35,37,38 3 -275371 sd00020 ZF_C2H2 4 C2H2 Zn finger 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22 7 -275371 sd00020 ZF_C2H2 5 C2H2 Zn finger 0 0 0 0 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,43,44,45 7 -275375 sd00025 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275375 sd00025 zf-RanBP2 2 Zn binding site CCCC 0 1 0 46,49,60,63 4 -275375 sd00025 zf-RanBP2 3 Zn binding site CCCC 0 1 0 89,92,103,106 4 -275375 sd00025 zf-RanBP2 4 Zn binding site CCCC 0 1 0 140,143,154,157 4 -275375 sd00025 zf-RanBP2 5 Zn binding site CCCC 0 1 0 183,186,197,200 4 -275375 sd00025 zf-RanBP2 6 Zn binding site CCCC 0 1 0 226,229,240,243 4 -275375 sd00025 zf-RanBP2 7 Zn binding site CCCC 0 1 0 275,278,289,292 4 -275375 sd00025 zf-RanBP2 8 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275375 sd00025 zf-RanBP2 9 RanBP2-type Zn finger 0 0 1 0 44,45,46,47,49,50,53,54,55,60,61,62,63 7 -275375 sd00025 zf-RanBP2 10 RanBP2-type Zn finger 0 0 1 0 87,88,89,90,92,93,96,97,98,103,104,105,106 7 -275375 sd00025 zf-RanBP2 11 RanBP2-type Zn finger 0 0 1 0 138,139,140,141,143,144,147,148,149,154,155,156,157 7 -275375 sd00025 zf-RanBP2 12 RanBP2-type Zn finger 0 0 1 0 181,182,183,184,186,187,190,191,192,197,198,199,200 7 -275375 sd00025 zf-RanBP2 13 RanBP2-type Zn finger 0 0 1 0 224,225,226,227,229,230,233,234,235,240,241,242,243 7 -275375 sd00025 zf-RanBP2 14 RanBP2-type Zn finger 0 0 1 0 273,274,275,276,278,279,282,283,284,289,290,291,292 7 -275376 sd00029 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275376 sd00029 zf-RanBP2 2 Zn binding site CCCC 0 1 0 56,59,70,73 4 -275376 sd00029 zf-RanBP2 3 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275376 sd00029 zf-RanBP2 4 RanBP2-type Zn finger 0 0 1 0 54,55,56,57,59,60,63,64,65,70,71,72,73 7 -275377 sd00030 zf-RanBP2 1 Zn binding site CCCC 0 1 0 2,5,16,19 4 -275377 sd00030 zf-RanBP2 2 Zn binding site CCCC 0 1 0 22,25,36,39 4 -275377 sd00030 zf-RanBP2 3 Zn binding site CCCC 0 1 0 42,45,56,59 4 -275377 sd00030 zf-RanBP2 4 RanBP2-type Zn finger 0 0 1 0 0,1,2,3,5,6,9,10,11,16,17,18,19 7 -275377 sd00030 zf-RanBP2 5 RanBP2-type Zn finger 0 0 1 0 20,21,22,23,25,26,29,30,31,36,37,38,39 7 -275377 sd00030 zf-RanBP2 6 RanBP2-type Zn finger 0 0 1 0 40,41,42,43,45,46,49,50,51,56,57,58,59 7 -275378 sd00031 LRR_1 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,21,22,23 7 -275378 sd00031 LRR_1 2 leucine-rich repeat 0 0 0 0 24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,45,46,47 7 -275378 sd00031 LRR_1 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,58,59,60,61,62,69,70,71 7 -275378 sd00031 LRR_1 4 leucine-rich repeat 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,92,93,94,95 7 -275378 sd00031 LRR_1 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,108,109 7 -275379 sd00032 LRR_2 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,17,18,19,20,21 7 -275379 sd00032 LRR_2 2 leucine-rich repeat 0 0 0 0 22,23,24,25,26,27,28,29,30,31,32,41,42,43,44,45,46,47 7 -275379 sd00032 LRR_2 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,65,66,67,68,69,70 7 -275379 sd00032 LRR_2 4 leucine-rich repeat 0 0 0 0 71,72,73,74,75,76,89,90,91,92,93,94,95 7 -275379 sd00032 LRR_2 5 leucine-rich repeat 0 0 0 0 119,120,121,122,123,124,125,126,127,128,129,148,149,150,151 7 -275379 sd00032 LRR_2 6 leucine-rich repeat 0 0 0 0 152,153,154,155,156,157,158,159,160,161,162,174,175,176,177,178 7 -275379 sd00032 LRR_2 7 leucine-rich repeat 0 0 0 0 179,180,181,182,183,184,185,186,197,198,199,200,201,202,203,204 7 -275380 sd00033 LRR_RI 1 leucine-rich repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23 7 -275380 sd00033 LRR_RI 2 leucine-rich repeat 0 0 0 0 24,25,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,47 7 -275380 sd00033 LRR_RI 3 leucine-rich repeat 0 0 0 0 48,49,50,51,52,53,54,55,56,57,58,61,62,63,64,65,66,67,68,69,71 7 -275380 sd00033 LRR_RI 4 leucine-rich repeat 0 0 0 0 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,95 7 -275380 sd00033 LRR_RI 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,107,112,113,114,115,116,119 7 -275380 sd00033 LRR_RI 6 leucine-rich repeat 0 0 0 0 120,121,122,123,124,125,126,127,128,129,130,133,134,135,136,137,138,139,140,141,143 7 -275380 sd00033 LRR_RI 7 leucine-rich repeat 0 0 0 0 144,145,146,147,148,149,150,151,152,153,154,155,161,162,163,164,165,167 7 -275380 sd00033 LRR_RI 8 leucine-rich repeat 0 0 0 0 168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,191 7 -275380 sd00033 LRR_RI 9 leucine-rich repeat 0 0 0 0 192,193,194,195,196,197,198,199,200,201,202,203,205,206,207,208,209,210,211,212,213,215 7 -275380 sd00033 LRR_RI 10 leucine-rich repeat 0 0 0 0 216,217,218,219,220,221,222,223,224,225,226,230,231,232,233,234,235,236,237 7 -275381 sd00034 LRR_AMN1 1 leucine-rich repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,17,27,28,29 7 -275381 sd00034 LRR_AMN1 2 leucine-rich repeat 0 0 0 0 30,31,32,33,34,35,39,40,41,42,43,44,45,46,47,48,49,53,54,55 7 -275381 sd00034 LRR_AMN1 3 leucine-rich repeat 0 0 0 0 56,57,58,59,60,61,62,63,64,67,68,69,70,71,72,73,74,75,76,78,79,80,81 7 -275381 sd00034 LRR_AMN1 4 leucine-rich repeat 0 0 0 0 82,83,84,85,86,87,88,92,93,94,95,96,97,98,99,100,101,102,103,107 7 -275381 sd00034 LRR_AMN1 5 leucine-rich repeat 0 0 0 0 108,109,110,111,112,113,114,115,116,117,119,120,121,122,123,124,125,126,133 7 -275381 sd00034 LRR_AMN1 6 leucine-rich repeat 0 0 0 0 134,135,136,137,138,139,140,141,142,146,147,148,149,150,151,152,153,154,155,156,157,159 7 -275381 sd00034 LRR_AMN1 7 leucine-rich repeat 0 0 0 0 160,161,162,163,164,165,166,167,168,169,170,173,174,175,176,177,178,179,181,182,183,184,185 7 -275381 sd00034 LRR_AMN1 8 leucine-rich repeat 0 0 0 0 186,187,188,189,190,191,192,193,194,195,196,201,202,203,204,205,208,209,210,211 7 -275382 sd00035 LRR_NTF 1 leucine-rich repeat 0 0 0 0 14,15,16,17,18,19,20,21,22,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,55,56 7 -275382 sd00035 LRR_NTF 2 leucine-rich repeat 0 0 0 0 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,81,82 7 -275382 sd00035 LRR_NTF 3 leucine-rich repeat 0 0 0 0 83,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,104,105,106 7 -275382 sd00035 LRR_NTF 4 leucine-rich repeat 0 0 0 0 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,127,128,129,130,131,132,133,134,135,136,137 7 -275383 sd00036 LRR_3 1 leucine-rich repeat 0 0 0 0 4,5,6,7,8,9,10,11,12,13,14,15,16,20,21,22,23,24,25,26 7 -275383 sd00036 LRR_3 2 leucine-rich repeat 0 0 0 0 27,28,29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,47,48 7 -275383 sd00036 LRR_3 3 leucine-rich repeat 0 0 0 0 49,50,51,52,53,54,55,56,57,61,62,63,64,65,66,67,68,69,72 7 -275383 sd00036 LRR_3 4 leucine-rich repeat 0 0 0 0 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,95 7 -275383 sd00036 LRR_3 5 leucine-rich repeat 0 0 0 0 96,97,98,99,100,101,102,103,104,105,106,112,113,114,115,116,117,118 7 -275383 sd00036 LRR_3 6 leucine-rich repeat 0 0 0 0 119,120,121,122,123,124,125,126,127,134,135,136,137,138,139,140,141 7 -275384 sd00037 PASTA 1 PASTA domain 0 0 0 0 0,1,2,3,4,5,6,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,38,39,40,41,53,54,55,56,57,58,59 7 -275384 sd00037 PASTA 2 PASTA domain 0 0 0 0 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,102,103,104,105,106,107,108,109,110,111,112,113,114,115,119,120,121,122,123,124,125 7 -276965 sd00038 Kelch 1 KELCH repeat 0 0 0 0 0,1,2,3,4,5,6,7,8,12,13,14,15,16,17,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43 7 -276965 sd00038 Kelch 2 KELCH repeat 0 0 0 0 47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,71,72,73,74,75,76,77,78,81,82,83,84,85,86,87,88,89,90,91 7 -276965 sd00038 Kelch 3 KELCH repeat 0 0 0 0 94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,118,119,120,121,122,123,124,125,128,129,130,131,132,133,134,135,136,137,138,139 7 -293791 sd00039 7WD40 1 WD40 repeat 0 0 0 0 0,1,2,3,4,5,11,12,13,14,15,16,19,20,21,22,23,24,25,33,34,36,37,38,39,40 7 -293791 sd00039 7WD40 2 WD40 repeat 0 0 0 0 46,47,48,49,50,51,56,57,58,59,60,61,65,66,67,68,69,78,79,80,81,82,83,84 7 -293791 sd00039 7WD40 3 WD40 repeat 0 0 0 0 89,90,91,92,93,94,95,100,101,102,103,104,105,109,110,111,112,113,114,115,121,122,123,124,125 7 -293791 sd00039 7WD40 4 WD40 repeat 0 0 0 0 133,134,135,136,137,138,143,144,145,146,147,148,152,153,154,155,156,157,158,162,163,165,166,167,168 7 -293791 sd00039 7WD40 5 WD40 repeat 0 0 0 0 175,176,177,178,179,180,181,186,187,188,189,190,191,195,196,197,198,199,200,201,206,207,209,210,211,212 7 -293791 sd00039 7WD40 6 WD40 repeat 0 0 0 0 220,221,222,223,224,225,226,231,232,233,234,235,236,240,241,242,243,244,245,246,257,258,259,260 7 -293791 sd00039 7WD40 7 WD40 repeat 0 0 0 1 267,268,269,270,271,272,278,279,280,281,282,288,289,290,291,292 7 -293790 sd00041 GyrA-ParC_C 1 GyrA_CTD repeat 0 0 1 0 0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,26,27,28,29,30,31,37,38,39,40,41,42,43,44,45,46,47 7 -293790 sd00041 GyrA-ParC_C 2 GyrA_CTD repeat 0 0 1 0 50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,76,77,78,79,80,81,82,83,84,85,90,91,92,93,94,95,96,97,98,99,100 7 -293790 sd00041 GyrA-ParC_C 3 GyrA_CTD repeat 0 0 1 0 106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,131,132,133,134,135,136,137,142,143,144,145,146,147,148,149,150 7 -293790 sd00041 GyrA-ParC_C 4 GyrA_CTD repeat 0 0 1 0 154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,172,173,174,175,176,177,178,180,181,182,183,184,185,186,187,188,192,193,194,195,196,197,198,199,200,201 7 -293790 sd00041 GyrA-ParC_C 5 GyrA_CTD repeat 0 0 1 0 204,205,206,207,208,209,210,213,214,215,216,217,218,219,224,225,226,227,228,229,230,231,232,233,234,243,244,245,246,247,248,249,250,251,252 7 -293789 sd00042 LVIVD 1 LVIVD repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 7 -293789 sd00042 LVIVD 2 LVIVD repeat 0 0 1 0 42,43,44,45,46,47,48,49,50,51,52,53,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77 7 -293789 sd00042 LVIVD 3 LVIVD repeat 0 0 1 0 84,85,86,87,88,89,90,91,92,93,94,95,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119 7 -293788 sd00043 ARM 1 putative peptide binding site 0 1 1 1 23,27,31,65,69,73,107,111,115 2 -293788 sd00043 ARM 2 armadillo repeat 0 0 1 0 0,1,2,7,8,9,10,11,12,13,14,15,21,22,23,24,25,26,27,28,29,30,31,32 7 -293788 sd00043 ARM 3 armadillo repeat 0 0 1 0 40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76 7 -293788 sd00043 ARM 4 armadillo repeat 0 0 1 0 82,83,84,85,86,87,91,92,93,94,95,96,97,98,105,106,107,108,109,110,111,112,113,114,115,116 7 -293787 sd00044 HEAT 1 putative peptide binding site 0 1 1 0 17,18,21,24,25,54,55,58,61,62,65,93,94,97,100,101,104,132,133,136,139,140,171,172,175,178,179 2 -293787 sd00044 HEAT 2 HEAT repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,22,23,24,25 7 -293787 sd00044 HEAT 3 HEAT repeat 0 0 1 0 37,38,39,40,41,42,43,44,45,46,47,52,53,54,55,56,57,58,59,60,61,62,63,64,65 7 -293787 sd00044 HEAT 4 HEAT repeat 0 0 1 0 75,76,77,78,79,80,81,82,83,84,85,86,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105 7 -293787 sd00044 HEAT 5 HEAT repeat 0 0 1 0 114,115,116,117,118,119,120,121,122,123,124,125,130,131,132,133,134,135,136,137,138,139,140 7 -293787 sd00044 HEAT 6 HEAT repeat 0 0 1 0 151,152,153,154,155,156,157,158,159,160,161,162,163,164,169,170,171,172,173,174,175,176,177,178,179,180 7 -293786 sd00045 ANK 1 ANK repeat 0 0 1 0 0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,28,29,30,31 7 -293786 sd00045 ANK 2 ANK repeat 0 0 1 0 33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64 7 -293786 sd00045 ANK 3 ANK repeat 0 0 1 0 66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,94,95,96,97 7 -293786 sd00045 ANK 4 oligomer interface 0 1 1 1 0,2,6,7,10,11,12,14,15,19,22,31,33,35,39,40,43,44,45,47,48,52,55,64,66,68,72,73,76,77,78,80,81,85,88,97 2 -293785 sd00046 FHA_bHelix 1 FHA beta-helical repeat 0 0 1 1 0,1,2,3,5,6,7,8,9,10,11,13,14,15,16,17,18 7 -293785 sd00046 FHA_bHelix 2 FHA beta-helical repeat 0 0 1 1 20,21,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39 7 -293785 sd00046 FHA_bHelix 3 FHA beta-helical repeat 0 0 1 1 41,42,43,46,47,48,49,50,51,52,55,56,57,58,59,60 7 -293785 sd00046 FHA_bHelix 4 FHA beta-helical repeat 0 0 1 1 62,63,64,65,67,68,69,70,71,72,73,75,76,77,78,79,80 7 -293785 sd00046 FHA_bHelix 5 FHA beta-helical repeat 0 0 1 1 82,83,84,85,87,88,89,90,91,92,93,96,97,98,99,100,101 7 -293785 sd00046 FHA_bHelix 6 FHA beta-helical repeat 0 0 1 1 103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120 7 -293785 sd00046 FHA_bHelix 7 FHA beta-helical repeat 0 0 1 1 123,124,125,126,128,129,130,131,132,135,136,137,138,139,140,141 7 -293785 sd00046 FHA_bHelix 8 FHA beta-helical repeat 0 0 1 1 143,144,145,146,148,149,150,151,152,153,155,156,157,158,159,160,161,162 7 -293785 sd00046 FHA_bHelix 9 FHA beta-helical repeat 0 0 1 1 164,165,166,167,169,170,171,172,173,176,177,178,179,180,181,182 7 -293785 sd00046 FHA_bHelix 10 FHA beta-helical repeat 0 0 1 1 184,185,186,187,189,190,191,192,193,194,196,197,198,199,200,201,202,203 7 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddid.tbl b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddid.tbl index 19eeb80bf5..54b204f205 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddid.tbl +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cddid.tbl @@ -1,57242 +1,8 @@ -214330 CHL00001 rpoB RNA polymerase beta subunit 1070 -214331 CHL00002 matK maturase K 504 -176948 CHL00003 psbA photosystem II protein D1 338 -176949 CHL00004 psbD photosystem II protein D2 353 -176950 CHL00005 rps16 ribosomal protein S16 82 -176951 CHL00008 petG cytochrome b6/f complex subunit V 37 -176952 CHL00009 petN cytochrome b6/f complex subunit VIII 29 -214332 CHL00010 infA translation initiation factor 1 78 -176954 CHL00011 ndhD NADH dehydrogenase subunit 4 498 -176955 CHL00012 ndhJ NADH dehydrogenase subunit J 158 -214333 CHL00013 rpoA RNA polymerase alpha subunit 327 -214334 CHL00014 ndhI NADH dehydrogenase subunit I 167 -176958 CHL00015 ndhE NADH dehydrogenase subunit 4L 101 -214335 CHL00016 ndhG NADH dehydrogenase subunit 6 182 -176960 CHL00017 ndhH NADH dehydrogenase subunit 7 393 -214336 CHL00018 rpoC1 RNA polymerase beta' subunit 663 -176962 CHL00019 atpF ATP synthase CF0 B subunit 184 -176963 CHL00020 psbN photosystem II protein N 43 -176964 CHL00022 ndhC NADH dehydrogenase subunit 3 120 -214337 CHL00023 ndhK NADH dehydrogenase subunit K 225 -176966 CHL00024 psbI photosystem II protein I 36 -214338 CHL00025 ndhF NADH dehydrogenase subunit 5 741 -214339 CHL00027 rps15 ribosomal protein S15 90 -214340 CHL00028 clpP ATP-dependent Clp protease proteolytic subunit 200 -176970 CHL00029 rpl36 ribosomal protein L36 26 -176971 CHL00030 rpl23 ribosomal protein L23 93 -176972 CHL00031 psbT photosystem II protein T 33 -214341 CHL00032 ndhA NADH dehydrogenase subunit 1 363 -176974 CHL00033 ycf3 photosystem I assembly protein Ycf3 168 -214342 CHL00034 rpl22 ribosomal protein L22 117 -214343 CHL00035 psbC photosystem II 44 kDa protein 473 -176977 CHL00036 ycf4 photosystem I assembly protein Ycf4 184 -176978 CHL00037 petA cytochrome f 320 -176979 CHL00038 psbL photosystem II protein L 38 -176980 CHL00039 psbF photosystem II protein VI 39 -176981 CHL00040 rbcL ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 475 -176982 CHL00041 rps11 ribosomal protein S11 116 -214344 CHL00042 rps8 ribosomal protein S8 132 -214345 CHL00043 cemA envelope membrane protein 261 -176985 CHL00044 rpl16 ribosomal protein L16 135 -214346 CHL00045 ccsA cytochrome c biogenesis protein 319 -176987 CHL00046 atpI ATP synthase CF0 A subunit 228 -214347 CHL00047 psbK photosystem II protein K 58 -214348 CHL00048 rps3 ribosomal protein S3 214 -176990 CHL00049 ndhB NADH dehydrogenase subunit 2 494 -176991 CHL00050 rps19 ribosomal protein S19 92 -176992 CHL00051 rps12 ribosomal protein S12 123 -176993 CHL00052 rpl2 ribosomal protein L2 273 -176994 CHL00053 rps7 ribosomal protein S7 155 -176995 CHL00054 psaB photosystem I P700 chlorophyll a apoprotein A2 734 -176996 CHL00056 psaA photosystem I P700 chlorophyll a apoprotein A1 750 -176997 CHL00057 rpl14 ribosomal protein L14 122 -176998 CHL00058 petD cytochrome b6/f complex subunit IV 160 -176999 CHL00059 atpA ATP synthase CF1 alpha subunit 485 -214349 CHL00060 atpB ATP synthase CF1 beta subunit 494 -177001 CHL00061 atpH ATP synthase CF0 C subunit 81 -214350 CHL00062 psbB photosystem II 47 kDa protein 504 -214351 CHL00063 atpE ATP synthase CF1 epsilon subunit 134 -177004 CHL00064 psbE photosystem II protein V 83 -177005 CHL00065 psaC photosystem I subunit VII 81 -177006 CHL00066 psbH photosystem II protein H 73 -177007 CHL00067 rps2 ribosomal protein S2 230 -214352 CHL00068 rpl20 ribosomal protein L20 115 -177009 CHL00070 petB cytochrome b6 215 -177010 CHL00071 tufA elongation factor Tu 409 -177011 CHL00072 chlL photochlorophyllide reductase subunit L 290 -214353 CHL00073 chlN photochlorophyllide reductase subunit N 457 -214354 CHL00074 rps14 ribosomal protein S14 100 -177014 CHL00075 rpl21 ribosomal protein L21 108 -214355 CHL00076 chlB photochlorophyllide reductase subunit B 513 -177016 CHL00077 rps18 ribosomal protein S18 86 -214356 CHL00078 rpl5 ribosomal protein L5 181 -214357 CHL00079 rps9 ribosomal protein S9 130 -177019 CHL00080 psbM photosystem II protein M 34 -177020 CHL00081 chlI Mg-protoporyphyrin IX chelatase 350 -177021 CHL00082 psbZ photosystem II protein Z 62 -214358 CHL00083 rpl12 ribosomal protein L12 131 -177023 CHL00084 rpl19 ribosomal protein L19 117 -214359 CHL00085 ycf24 putative ABC transporter 485 -164492 CHL00086 apcA allophycocyanin alpha subunit 161 -164493 CHL00088 apcB allophycocyanin beta subunit 161 -100206 CHL00089 apcF allophycocyanin beta 18 subunit 169 -164494 CHL00090 apcD allophycocyanin gamma subunit 161 -164495 CHL00091 apcE phycobillisome linker protein 877 -177025 CHL00093 groEL chaperonin GroEL 529 -214360 CHL00094 dnaK heat shock protein 70 621 -214361 CHL00095 clpC Clp protease ATP binding subunit 821 -214362 CHL00098 tsf elongation factor Ts 200 -214363 CHL00099 ilvB acetohydroxyacid synthase large subunit 585 -214364 CHL00100 ilvH acetohydroxyacid synthase small subunit 174 -214365 CHL00101 trpG anthranilate synthase component 2 190 -214366 CHL00102 rps20 ribosomal protein S20 93 -214367 CHL00103 rpl35 ribosomal protein L35 65 -177033 CHL00104 rpl33 ribosomal protein L33 66 -177034 CHL00105 psaJ photosystem I subunit IX 42 -177035 CHL00106 petL cytochrome b6/f complex subunit VI 31 -177036 CHL00108 psbJ photosystem II protein J 40 -177037 CHL00112 rpl28 ribosomal protein L28; Provisional 63 -177038 CHL00113 rps4 ribosomal protein S4; Reviewed 201 -100224 CHL00114 psbX photosystem II protein X; Reviewed 39 -177039 CHL00115 rpl34 ribosomal protein L34; Reviewed 46 -214368 CHL00117 rpoC2 RNA polymerase beta'' subunit; Reviewed 1364 -214369 CHL00118 atpG ATP synthase CF0 B' subunit; Validated 156 -177042 CHL00119 atpD ATP synthase CF1 delta subunit; Validated 184 -177043 CHL00120 psaL photosystem I subunit XI; Validated 143 -214370 CHL00121 rpl27 ribosomal protein L27; Reviewed 86 -214371 CHL00122 secA preprotein translocase subunit SecA; Validated 870 -177046 CHL00123 rps6 ribosomal protein S6; Validated 97 -177047 CHL00124 acpP acyl carrier protein; Validated 82 -177048 CHL00125 psaE photosystem I subunit IV; Reviewed 64 -177049 CHL00127 rpl11 ribosomal protein L11; Validated 140 -177050 CHL00128 psbW photosystem II protein W; Reviewed 113 -177051 CHL00129 rpl1 ribosomal protein L1; Reviewed 229 -177052 CHL00130 rbcS ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit; Reviewed 138 -214372 CHL00131 ycf16 sulfate ABC transporter protein; Validated 252 -177054 CHL00132 psaF photosystem I subunit III; Validated 185 -177055 CHL00133 psbV photosystem II cytochrome c550; Validated 163 -177056 CHL00134 petF ferredoxin; Validated 99 -177057 CHL00135 rps10 ribosomal protein S10; Validated 101 -177058 CHL00136 rpl31 ribosomal protein L31; Validated 68 -177059 CHL00137 rps13 ribosomal protein S13; Validated 122 -177060 CHL00138 rps5 ribosomal protein S5; Validated 143 -214373 CHL00139 rpl18 ribosomal protein L18; Validated 109 -177062 CHL00140 rpl6 ribosomal protein L6; Validated 178 -214374 CHL00141 rpl24 ribosomal protein L24; Validated 83 -177064 CHL00142 rps17 ribosomal protein S17; Validated 84 -177065 CHL00143 rpl3 ribosomal protein L3; Validated 207 -177066 CHL00144 odpB pyruvate dehydrogenase E1 component beta subunit; Validated 327 -177067 CHL00145 psaD photosystem I subunit II; Validated 139 -214375 CHL00147 rpl4 ribosomal protein L4; Validated 215 -214376 CHL00148 orf27 Ycf27; Reviewed 240 -177069 CHL00149 odpA pyruvate dehydrogenase E1 component alpha subunit; Reviewed 341 -164542 CHL00151 preA prenyl transferase; Reviewed 323 -214377 CHL00152 rpl32 ribosomal protein L32; Validated 53 -177071 CHL00154 rpl29 ribosomal protein L29; Validated 67 -177072 CHL00159 rpl13 ribosomal protein L13; Validated 143 -214378 CHL00160 rpl9 ribosomal protein L9; Provisional 153 -214379 CHL00161 secY preprotein translocase subunit SecY; Validated 417 -214380 CHL00162 thiG thiamin biosynthesis protein G; Validated 267 -214381 CHL00163 ycf65 putative ribosomal protein 3; Validated 99 -164550 CHL00164 psaK photosystem I subunit X; Validated 86 -214382 CHL00165 ftrB ferredoxin thioreductase subunit beta; Validated 116 -214383 CHL00168 pbsA heme oxygenase; Provisional 238 -100270 CHL00170 cpcA phycocyanin alpha subunit; Reviewed 162 -100271 CHL00171 cpcB phycocyanin beta subunit; Reviewed 172 -133617 CHL00172 cpeB phycoerythrin beta subunit; Provisional 177 -100273 CHL00173 cpeA phycoerythrin alpha subunit; Provisional 164 -214384 CHL00174 accD acetyl-CoA carboxylase beta subunit; Reviewed 296 -214385 CHL00175 minD septum-site determining protein; Validated 281 -214386 CHL00176 ftsH cell division protein; Validated 638 -214387 CHL00177 ccs1 c-type cytochrome biogenensis protein; Validated 426 -177082 CHL00180 rbcR LysR transcriptional regulator; Provisional 305 -177083 CHL00181 cbbX CbbX; Provisional 287 -177084 CHL00182 tatC Sec-independent translocase component C; Provisional 249 -177085 CHL00183 petJ cytochrome c553; Provisional 108 -177086 CHL00184 ycf12 Ycf12; Provisional 33 -177087 CHL00185 ycf59 magnesium-protoporphyrin IX monomethyl ester cyclase; Provisional 351 -177088 CHL00186 psaI photosystem I subunit VIII; Validated 36 -214388 CHL00187 cysT sulfate transport protein; Provisional 237 -214389 CHL00188 hisH imidazole glycerol phosphate synthase subunit hisH; Provisional 210 -177089 CHL00189 infB translation initiation factor 2; Provisional 742 -177090 CHL00190 psaM photosystem I subunit XII; Provisional 30 -214390 CHL00191 ycf61 DNA-directed RNA polymerase subunit omega; Provisional 76 -214391 CHL00192 syfB phenylalanyl-tRNA synthetase beta chain; Provisional 704 -177092 CHL00193 ycf35 Ycf35; Provisional 128 -177093 CHL00194 ycf39 Ycf39; Provisional 317 -177094 CHL00195 ycf46 Ycf46; Provisional 489 -177095 CHL00196 psbY photosystem II protein Y; Provisional 36 -214392 CHL00197 carA carbamoyl-phosphate synthase arginine-specific small subunit; Provisional 382 -214393 CHL00198 accA acetyl-CoA carboxylase carboxyltransferase alpha subunit; Provisional 322 -164575 CHL00199 infC translation initiation factor 3; Provisional 182 -214394 CHL00200 trpA tryptophan synthase alpha subunit; Provisional 263 -164576 CHL00201 syh histidine-tRNA synthetase; Provisional 430 -133644 CHL00202 argB acetylglutamate kinase; Provisional 284 -164577 CHL00203 fabH 3-oxoacyl-acyl-carrier-protein synthase 3; Provisional 326 -214395 CHL00204 ycf1 Ycf1; Provisional 1832 -214396 CHL00206 ycf2 Ycf2; Provisional 2281 -214397 CHL00207 rpoB RNA polymerase beta subunit; Provisional 1077 -223080 COG0001 HemL Glutamate-1-semialdehyde aminotransferase [Coenzyme transport and metabolism]. 432 -223081 COG0002 ArgC N-acetyl-gamma-glutamylphosphate reductase [Amino acid transport and metabolism]. 349 -223082 COG0003 ArsA Anion-transporting ATPase, ArsA/GET3 family [Inorganic ion transport and metabolism]. 322 -223083 COG0004 AmtB Ammonia channel protein AmtB [Inorganic ion transport and metabolism]. 409 -223084 COG0005 XapA Purine nucleoside phosphorylase [Nucleotide transport and metabolism]. 262 -223085 COG0006 PepP Xaa-Pro aminopeptidase [Amino acid transport and metabolism]. 384 -223086 COG0007 CysG Uroporphyrinogen-III methylase (siroheme synthase) [Coenzyme transport and metabolism]. 244 -223087 COG0008 GlnS Glutamyl- or glutaminyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 472 -223088 COG0009 SUA5 tRNA A37 threonylcarbamoyladenosine synthetase subunit TsaC/SUA5/YrdC [Translation, ribosomal structure and biogenesis]. 211 -223089 COG0010 SpeB Arginase family enzyme [Amino acid transport and metabolism]. 305 -223090 COG0011 YqgV Uncharacterized conserved protein YqgV, UPF0045/DUF77 family [Function unknown]. 100 -223091 COG0012 GTP1 Ribosome-binding ATPase YchF, GTP1/OBG family [Translation, ribosomal structure and biogenesis]. 372 -223092 COG0013 AlaS Alanyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 879 -223093 COG0014 ProA Gamma-glutamyl phosphate reductase [Amino acid transport and metabolism]. 417 -223094 COG0015 PurB Adenylosuccinate lyase [Nucleotide transport and metabolism]. 438 -223095 COG0016 PheS Phenylalanyl-tRNA synthetase alpha subunit [Translation, ribosomal structure and biogenesis]. 335 -223096 COG0017 AsnS Aspartyl/asparaginyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 435 -223097 COG0018 ArgS Arginyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 577 -223098 COG0019 LysA Diaminopimelate decarboxylase [Amino acid transport and metabolism]. 394 -223099 COG0020 UppS Undecaprenyl pyrophosphate synthase [Lipid transport and metabolism]. 245 -223100 COG0021 TktA Transketolase [Carbohydrate transport and metabolism]. 663 -223101 COG0022 AcoB Pyruvate/2-oxoglutarate/acetoin dehydrogenase complex, dehydrogenase (E1) component [Energy production and conversion]. 324 -223102 COG0023 SUI1 Translation initiation factor 1 (eIF-1/SUI1) [Translation, ribosomal structure and biogenesis]. 104 -223103 COG0024 Map Methionine aminopeptidase [Translation, ribosomal structure and biogenesis]. 255 -223104 COG0025 NhaP NhaP-type Na+/H+ or K+/H+ antiporter [Inorganic ion transport and metabolism]. 429 -223105 COG0026 PurK Phosphoribosylaminoimidazole carboxylase (NCAIR synthetase) [Nucleotide transport and metabolism]. 375 -223106 COG0027 PurT Formate-dependent phosphoribosylglycinamide formyltransferase (GAR transformylase) [Nucleotide transport and metabolism]. 394 -223107 COG0028 IlvB Acetolactate synthase large subunit or other thiamine pyrophosphate-requiring enzyme [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 550 -223108 COG0029 NadB Aspartate oxidase [Coenzyme transport and metabolism]. 518 -223109 COG0030 RsmA 16S rRNA A1518 and A1519 N6-dimethyltransferase RsmA/KsgA/DIM1 (may also have DNA glycosylase/AP lyase activity) [Translation, ribosomal structure and biogenesis]. 259 -223110 COG0031 CysK Cysteine synthase [Amino acid transport and metabolism]. 300 -223111 COG0033 Pgm Phosphoglucomutase [Carbohydrate transport and metabolism]. 524 -223112 COG0034 PurF Glutamine phosphoribosylpyrophosphate amidotransferase [Nucleotide transport and metabolism]. 470 -223113 COG0035 Upp Uracil phosphoribosyltransferase [Nucleotide transport and metabolism]. 210 -223114 COG0036 Rpe Pentose-5-phosphate-3-epimerase [Carbohydrate transport and metabolism]. 220 -223115 COG0037 TilS tRNA(Ile)-lysidine synthase TilS/MesJ [Translation, ribosomal structure and biogenesis]. 298 -223116 COG0038 ClcA H+/Cl- antiporter ClcA [Inorganic ion transport and metabolism]. 443 -223117 COG0039 Mdh Malate/lactate dehydrogenase [Energy production and conversion]. 313 -223118 COG0040 HisG ATP phosphoribosyltransferase [Amino acid transport and metabolism]. 290 -223119 COG0041 PurE Phosphoribosylcarboxyaminoimidazole (NCAIR) mutase [Nucleotide transport and metabolism]. 162 -223120 COG0042 DusA tRNA-dihydrouridine synthase [Translation, ribosomal structure and biogenesis]. 323 -223121 COG0043 UbiD 3-polyprenyl-4-hydroxybenzoate decarboxylase [Coenzyme transport and metabolism]. 477 -223122 COG0044 AllB Dihydroorotase or related cyclic amidohydrolase [Nucleotide transport and metabolism]. 430 -223123 COG0045 SucC Succinyl-CoA synthetase, beta subunit [Energy production and conversion]. 387 -223124 COG0046 PurL1 Phosphoribosylformylglycinamidine (FGAM) synthase, synthetase domain [Nucleotide transport and metabolism]. 743 -223125 COG0047 PurL2 Phosphoribosylformylglycinamidine (FGAM) synthase, glutamine amidotransferase domain [Nucleotide transport and metabolism]. 231 -223126 COG0048 RpsL Ribosomal protein S12 [Translation, ribosomal structure and biogenesis]. 129 -223127 COG0049 RpsG Ribosomal protein S7 [Translation, ribosomal structure and biogenesis]. 148 -223128 COG0050 TufB Translation elongation factor EF-Tu, a GTPase [Translation, ribosomal structure and biogenesis]. 394 -223129 COG0051 RpsJ Ribosomal protein S10 [Translation, ribosomal structure and biogenesis]. 104 -223130 COG0052 RpsB Ribosomal protein S2 [Translation, ribosomal structure and biogenesis]. 252 -223131 COG0053 FieF Divalent metal cation (Fe/Co/Zn/Cd) transporter [Inorganic ion transport and metabolism]. 304 -223132 COG0054 RibE 6,7-dimethyl-8-ribityllumazine synthase (Riboflavin synthase beta chain) [Coenzyme transport and metabolism]. 152 -223133 COG0055 AtpD FoF1-type ATP synthase, beta subunit [Energy production and conversion]. 468 -223134 COG0056 AtpA FoF1-type ATP synthase, alpha subunit [Energy production and conversion]. 504 -223135 COG0057 GapA Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase [Carbohydrate transport and metabolism]. 335 -223136 COG0058 GlgP Glucan phosphorylase [Carbohydrate transport and metabolism]. 750 -223137 COG0059 IlvC Ketol-acid reductoisomerase [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 338 -223138 COG0060 IleS Isoleucyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 933 -223139 COG0061 NadF NAD kinase [Nucleotide transport and metabolism]. 281 -223140 COG0062 Nnr1 NAD(P)H-hydrate repair enzyme Nnr, NAD(P)H-hydrate epimerase domain [Nucleotide transport and metabolism]. 203 -223141 COG0063 Nnr2 NAD(P)H-hydrate repair enzyme Nnr, NAD(P)H-hydrate dehydratase domain [Nucleotide transport and metabolism]. 284 -223142 COG0064 GatB Asp-tRNAAsn/Glu-tRNAGln amidotransferase B subunit [Translation, ribosomal structure and biogenesis]. 483 -223143 COG0065 LeuC Homoaconitase/3-isopropylmalate dehydratase large subunit [Amino acid transport and metabolism]. 423 -223144 COG0066 LeuD 3-isopropylmalate dehydratase small subunit [Amino acid transport and metabolism]. 191 -223145 COG0067 GltB1 Glutamate synthase domain 1 [Amino acid transport and metabolism]. 371 -223146 COG0068 HypF Hydrogenase maturation factor HypF (carbamoyltransferase) [Posttranslational modification, protein turnover, chaperones]. 750 -223147 COG0069 GltB2 Glutamate synthase domain 2 [Amino acid transport and metabolism]. 485 -223148 COG0070 GltB3 Glutamate synthase domain 3 [Amino acid transport and metabolism]. 301 -223149 COG0071 IbpA Molecular chaperone IbpA, HSP20 family [Posttranslational modification, protein turnover, chaperones]. 146 -223150 COG0072 PheT Phenylalanyl-tRNA synthetase beta subunit [Translation, ribosomal structure and biogenesis]. 650 -223151 COG0073 EMAP tRNA-binding EMAP/Myf domain [Translation, ribosomal structure and biogenesis]. 123 -223152 COG0074 SucD Succinyl-CoA synthetase, alpha subunit [Energy production and conversion]. 293 -223153 COG0075 PucG Archaeal aspartate aminotransferase or a related aminotransferase, includes purine catabolism protein PucG [Amino acid transport and metabolism, Nucleotide transport and metabolism]. 383 -223154 COG0076 GadA Glutamate or tyrosine decarboxylase or a related PLP-dependent protein [Amino acid transport and metabolism]. 460 -223155 COG0077 PheA2 Prephenate dehydratase [Amino acid transport and metabolism]. 279 -223156 COG0078 ArgF Ornithine carbamoyltransferase [Amino acid transport and metabolism]. 310 -223157 COG0079 HisC Histidinol-phosphate/aromatic aminotransferase or cobyric acid decarboxylase [Amino acid transport and metabolism]. 356 -223158 COG0080 RplK Ribosomal protein L11 [Translation, ribosomal structure and biogenesis]. 141 -223159 COG0081 RplA Ribosomal protein L1 [Translation, ribosomal structure and biogenesis]. 228 -223160 COG0082 AroC Chorismate synthase [Amino acid transport and metabolism]. 369 -223161 COG0083 ThrB Homoserine kinase [Amino acid transport and metabolism]. 299 -223162 COG0084 TatD Tat protein secretion system quality control protein TatD (DNase activity) [Cell motility]. 256 -223163 COG0085 RpoB DNA-directed RNA polymerase, beta subunit/140 kD subunit [Transcription]. 1060 -223164 COG0086 RpoC DNA-directed RNA polymerase, beta' subunit/160 kD subunit [Transcription]. 808 -223165 COG0087 RplC Ribosomal protein L3 [Translation, ribosomal structure and biogenesis]. 218 -223166 COG0088 RplD Ribosomal protein L4 [Translation, ribosomal structure and biogenesis]. 214 -223167 COG0089 RplW Ribosomal protein L23 [Translation, ribosomal structure and biogenesis]. 94 -223168 COG0090 RplB Ribosomal protein L2 [Translation, ribosomal structure and biogenesis]. 275 -223169 COG0091 RplV Ribosomal protein L22 [Translation, ribosomal structure and biogenesis]. 120 -223170 COG0092 RpsC Ribosomal protein S3 [Translation, ribosomal structure and biogenesis]. 233 -223171 COG0093 RplN Ribosomal protein L14 [Translation, ribosomal structure and biogenesis]. 122 -223172 COG0094 RplE Ribosomal protein L5 [Translation, ribosomal structure and biogenesis]. 180 -223173 COG0095 LplA Lipoate-protein ligase A [Coenzyme transport and metabolism]. 248 -223174 COG0096 RpsH Ribosomal protein S8 [Translation, ribosomal structure and biogenesis]. 132 -223175 COG0097 RplF Ribosomal protein L6P/L9E [Translation, ribosomal structure and biogenesis]. 178 -223176 COG0098 RpsE Ribosomal protein S5 [Translation, ribosomal structure and biogenesis]. 181 -223177 COG0099 RpsM Ribosomal protein S13 [Translation, ribosomal structure and biogenesis]. 121 -223178 COG0100 RpsK Ribosomal protein S11 [Translation, ribosomal structure and biogenesis]. 129 -223179 COG0101 TruA tRNA U38,U39,U40 pseudouridine synthase TruA [Translation, ribosomal structure and biogenesis]. 266 -223180 COG0102 RplM Ribosomal protein L13 [Translation, ribosomal structure and biogenesis]. 148 -223181 COG0103 RpsI Ribosomal protein S9 [Translation, ribosomal structure and biogenesis]. 130 -223182 COG0104 PurA Adenylosuccinate synthase [Nucleotide transport and metabolism]. 430 -223183 COG0105 Ndk Nucleoside diphosphate kinase [Nucleotide transport and metabolism]. 135 -223184 COG0106 HisA Phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide (ProFAR) isomerase [Amino acid transport and metabolism]. 241 -223185 COG0107 HisF Imidazole glycerol phosphate synthase subunit HisF [Amino acid transport and metabolism]. 256 -223186 COG0108 RibB 3,4-dihydroxy-2-butanone 4-phosphate synthase [Coenzyme transport and metabolism]. 203 -223187 COG0109 CyoE Polyprenyltransferase (heme O synthase) [Coenzyme transport and metabolism, Lipid transport and metabolism]. 304 -223188 COG0110 WbbJ Acetyltransferase (isoleucine patch superfamily) [General function prediction only]. 190 -223189 COG0111 SerA Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism, General function prediction only]. 324 -223190 COG0112 GlyA Glycine/serine hydroxymethyltransferase [Amino acid transport and metabolism]. 413 -223191 COG0113 HemB Delta-aminolevulinic acid dehydratase, porphobilinogen synthase [Coenzyme transport and metabolism]. 330 -223192 COG0114 FumC Fumarate hydratase class II [Energy production and conversion]. 462 -223193 COG0115 IlvE Branched-chain amino acid aminotransferase/4-amino-4-deoxychorismate lyase [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 284 -223194 COG0116 RlmL 23S rRNA G2445 N2-methylase RlmL [Translation, ribosomal structure and biogenesis]. 381 -223195 COG0117 RibD1 Pyrimidine deaminase domain of riboflavin biosynthesis protein RibD [Coenzyme transport and metabolism]. 146 -223196 COG0118 HisH Imidazoleglycerol phosphate synthase glutamine amidotransferase subunit HisH [Amino acid transport and metabolism]. 204 -223197 COG0119 LeuA Isopropylmalate/homocitrate/citramalate synthases [Amino acid transport and metabolism]. 409 -223198 COG0120 RpiA Ribose 5-phosphate isomerase [Carbohydrate transport and metabolism]. 227 -223199 COG0121 YafJ Predicted glutamine amidotransferase [General function prediction only]. 252 -223200 COG0122 AlkA 3-methyladenine DNA glycosylase/8-oxoguanine DNA glycosylase [Replication, recombination and repair]. 285 -223201 COG0123 AcuC Acetoin utilization deacetylase AcuC or a related deacetylase [Chromatin structure and dynamics, Secondary metabolites biosynthesis, transport and catabolism]. 340 -223202 COG0124 HisS Histidyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 429 -223203 COG0125 Tmk Thymidylate kinase [Nucleotide transport and metabolism]. 208 -223204 COG0126 Pgk 3-phosphoglycerate kinase [Carbohydrate transport and metabolism]. 395 -223205 COG0127 RdgB Inosine/xanthosine triphosphate pyrophosphatase, all-alpha NTP-PPase family [Nucleotide transport and metabolism]. 194 -223206 COG0128 AroA 5-enolpyruvylshikimate-3-phosphate synthase [Amino acid transport and metabolism]. 428 -223207 COG0129 IlvD Dihydroxyacid dehydratase/phosphogluconate dehydratase [Amino acid transport and metabolism, Carbohydrate transport and metabolism]. 575 -223208 COG0130 TruB tRNA U55 pseudouridine synthase TruB, may also work on U342 of tmRNA [Translation, ribosomal structure and biogenesis]. 271 -223209 COG0131 HisB2 Imidazoleglycerol phosphate dehydratase HisB [Amino acid transport and metabolism]. 195 -223210 COG0132 BioD Dethiobiotin synthetase [Coenzyme transport and metabolism]. 223 -223211 COG0133 TrpB Tryptophan synthase beta chain [Amino acid transport and metabolism]. 396 -223212 COG0134 TrpC Indole-3-glycerol phosphate synthase [Amino acid transport and metabolism]. 254 -223213 COG0135 TrpF Phosphoribosylanthranilate isomerase [Amino acid transport and metabolism]. 208 -223214 COG0136 Asd Aspartate-semialdehyde dehydrogenase [Amino acid transport and metabolism]. 334 -223215 COG0137 ArgG Argininosuccinate synthase [Amino acid transport and metabolism]. 403 -223216 COG0138 PurH AICAR transformylase/IMP cyclohydrolase PurH [Nucleotide transport and metabolism]. 515 -223217 COG0139 HisI1 Phosphoribosyl-AMP cyclohydrolase [Amino acid transport and metabolism]. 111 -223218 COG0140 HisI2 Phosphoribosyl-ATP pyrophosphohydrolase [Amino acid transport and metabolism]. 92 -223219 COG0141 HisD Histidinol dehydrogenase [Amino acid transport and metabolism]. 425 -223220 COG0142 IspA Geranylgeranyl pyrophosphate synthase [Coenzyme transport and metabolism]. 322 -223221 COG0143 MetG Methionyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 558 -223222 COG0144 RsmB 16S rRNA C967 or C1407 C5-methylase, RsmB/RsmF family [Translation, ribosomal structure and biogenesis]. 355 -223223 COG0145 HyuA N-methylhydantoinase A/oxoprolinase/acetone carboxylase, beta subunit [Amino acid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 674 -223224 COG0146 HyuB N-methylhydantoinase B/oxoprolinase/acetone carboxylase, alpha subunit [Amino acid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 563 -223225 COG0147 TrpE Anthranilate/para-aminobenzoate synthases component I [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 462 -223226 COG0148 Eno Enolase [Carbohydrate transport and metabolism]. 423 -223227 COG0149 TpiA Triosephosphate isomerase [Carbohydrate transport and metabolism]. 251 -223228 COG0150 PurM Phosphoribosylaminoimidazole (AIR) synthetase [Nucleotide transport and metabolism]. 345 -223229 COG0151 PurD Phosphoribosylamine-glycine ligase [Nucleotide transport and metabolism]. 428 -223230 COG0152 PurC Phosphoribosylaminoimidazole-succinocarboxamide synthase [Nucleotide transport and metabolism]. 247 -223231 COG0153 GalK Galactokinase [Carbohydrate transport and metabolism]. 390 -223232 COG0154 GatA Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit or related amidase [Translation, ribosomal structure and biogenesis]. 475 -223233 COG0155 CysI Sulfite reductase, beta subunit (hemoprotein) [Inorganic ion transport and metabolism]. 510 -223234 COG0156 BioF 7-keto-8-aminopelargonate synthetase or related enzyme [Coenzyme transport and metabolism]. 388 -223235 COG0157 NadC Nicotinate-nucleotide pyrophosphorylase [Coenzyme transport and metabolism]. 280 -223236 COG0158 Fbp Fructose-1,6-bisphosphatase [Carbohydrate transport and metabolism]. 326 -223237 COG0159 TrpA Tryptophan synthase alpha chain [Amino acid transport and metabolism]. 265 -223238 COG0160 GabT 4-aminobutyrate aminotransferase or related aminotransferase [Amino acid transport and metabolism]. 447 -223239 COG0161 BioA Adenosylmethionine-8-amino-7-oxononanoate aminotransferase [Coenzyme transport and metabolism]. 449 -223240 COG0162 TyrS Tyrosyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 401 -223241 COG0163 UbiX UbiX family flavin prenyltransferase [Coenzyme transport and metabolism]. 191 -223242 COG0164 RnhB Ribonuclease HII [Replication, recombination and repair]. 199 -223243 COG0165 ArgH Argininosuccinate lyase [Amino acid transport and metabolism]. 459 -223244 COG0166 Pgi Glucose-6-phosphate isomerase [Carbohydrate transport and metabolism]. 446 -223245 COG0167 PyrD Dihydroorotate dehydrogenase [Nucleotide transport and metabolism]. 310 -223246 COG0168 TrkG Trk-type K+ transport system, membrane component [Inorganic ion transport and metabolism]. 499 -223247 COG0169 AroE Shikimate 5-dehydrogenase [Amino acid transport and metabolism]. 283 -223248 COG0170 SEC59 Dolichol kinase [Posttranslational modification, protein turnover, chaperones]. 216 -223249 COG0171 NadE NH3-dependent NAD+ synthetase [Coenzyme transport and metabolism]. 268 -223250 COG0172 SerS Seryl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 429 -223251 COG0173 AspS Aspartyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 585 -223252 COG0174 GlnA Glutamine synthetase [Amino acid transport and metabolism]. 443 -223253 COG0175 CysH 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 261 -223254 COG0176 TalA Transaldolase [Carbohydrate transport and metabolism]. 239 -223255 COG0177 Nth Endonuclease III [Replication, recombination and repair]. 211 -223256 COG0178 UvrA Excinuclease UvrABC ATPase subunit [Replication, recombination and repair]. 935 -223257 COG0179 MhpD 2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic acid hydratase (catechol pathway) [Secondary metabolites biosynthesis, transport and catabolism]. 266 -223258 COG0180 TrpS Tryptophanyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 314 -223259 COG0181 HemC Porphobilinogen deaminase [Coenzyme transport and metabolism]. 307 -223260 COG0182 MtnA Methylthioribose-1-phosphate isomerase (methionine salvage pathway), a paralog of eIF-2B alpha subunit [Amino acid transport and metabolism]. 346 -223261 COG0183 PaaJ Acetyl-CoA acetyltransferase [Lipid transport and metabolism]. 392 -223262 COG0184 RpsO Ribosomal protein S15P/S13E [Translation, ribosomal structure and biogenesis]. 89 -223263 COG0185 RpsS Ribosomal protein S19 [Translation, ribosomal structure and biogenesis]. 93 -223264 COG0186 RpsQ Ribosomal protein S17 [Translation, ribosomal structure and biogenesis]. 87 -223265 COG0187 GyrB DNA gyrase/topoisomerase IV, subunit B [Replication, recombination and repair]. 635 -223266 COG0188 GyrA DNA gyrase/topoisomerase IV, subunit A [Replication, recombination and repair]. 804 -223267 COG0189 RimK Glutathione synthase/RimK-type ligase, ATP-grasp superfamily [Coenzyme transport and metabolism, Translation, ribosomal structure and biogenesis]. 318 -223268 COG0190 FolD 5,10-methylene-tetrahydrofolate dehydrogenase/Methenyl tetrahydrofolate cyclohydrolase [Coenzyme transport and metabolism]. 283 -223269 COG0191 Fba Fructose/tagatose bisphosphate aldolase [Carbohydrate transport and metabolism]. 286 -223270 COG0192 MetK S-adenosylmethionine synthetase [Coenzyme transport and metabolism]. 388 -223271 COG0193 Pth Peptidyl-tRNA hydrolase [Translation, ribosomal structure and biogenesis]. 190 -223272 COG0194 Gmk Guanylate kinase [Nucleotide transport and metabolism]. 191 -223273 COG0195 NusA Transcription antitermination factor NusA, contains S1 and KH domains [Transcription]. 190 -223274 COG0196 RibF FAD synthase [Coenzyme transport and metabolism]. 304 -223275 COG0197 RplP Ribosomal protein L16/L10AE [Translation, ribosomal structure and biogenesis]. 146 -223276 COG0198 RplX Ribosomal protein L24 [Translation, ribosomal structure and biogenesis]. 104 -223277 COG0199 RpsN Ribosomal protein S14 [Translation, ribosomal structure and biogenesis]. 61 -223278 COG0200 RplO Ribosomal protein L15 [Translation, ribosomal structure and biogenesis]. 152 -223279 COG0201 SecY Preprotein translocase subunit SecY [Intracellular trafficking, secretion, and vesicular transport]. 436 -223280 COG0202 RpoA DNA-directed RNA polymerase, alpha subunit/40 kD subunit [Transcription]. 317 -223281 COG0203 RplQ Ribosomal protein L17 [Translation, ribosomal structure and biogenesis]. 116 -223282 COG0204 PlsC 1-acyl-sn-glycerol-3-phosphate acyltransferase [Lipid transport and metabolism]. 255 -223283 COG0205 PfkA 6-phosphofructokinase [Carbohydrate transport and metabolism]. 347 -223284 COG0206 FtsZ Cell division GTPase FtsZ [Cell cycle control, cell division, chromosome partitioning]. 338 -223285 COG0207 ThyA Thymidylate synthase [Nucleotide transport and metabolism]. 268 -223286 COG0208 NrdF Ribonucleotide reductase beta subunit, ferritin-like domain [Nucleotide transport and metabolism]. 348 -223287 COG0209 NrdA Ribonucleotide reductase alpha subunit [Nucleotide transport and metabolism]. 651 -223288 COG0210 UvrD Superfamily I DNA or RNA helicase [Replication, recombination and repair]. 655 -223289 COG0211 RpmA Ribosomal protein L27 [Translation, ribosomal structure and biogenesis]. 87 -223290 COG0212 FAU1 5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism]. 191 -223291 COG0213 DeoA Thymidine phosphorylase [Nucleotide transport and metabolism]. 435 -223292 COG0214 PdxS Pyridoxal biosynthesis lyase PdxS [Coenzyme transport and metabolism]. 296 -223293 COG0215 CysS Cysteinyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 464 -223294 COG0216 PrfA Protein chain release factor A [Translation, ribosomal structure and biogenesis]. 363 -223295 COG0217 TACO1 Transcriptional and/or translational regulatory protein YebC/TACO1 [Transcription, Translation, ribosomal structure and biogenesis]. 241 -223296 COG0218 EngB GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, chromosome partitioning]. 200 -223297 COG0219 TrmL tRNA(Leu) C34 or U34 (ribose-2'-O)-methylase TrmL, contains SPOUT domain [Translation, ribosomal structure and biogenesis]. 155 -223298 COG0220 TrmB tRNA G46 methylase TrmB [Translation, ribosomal structure and biogenesis]. 227 -223299 COG0221 Ppa Inorganic pyrophosphatase [Energy production and conversion, Inorganic ion transport and metabolism]. 171 -223300 COG0222 RplL Ribosomal protein L7/L12 [Translation, ribosomal structure and biogenesis]. 124 -223301 COG0223 Fmt Methionyl-tRNA formyltransferase [Translation, ribosomal structure and biogenesis]. 307 -223302 COG0224 AtpG FoF1-type ATP synthase, gamma subunit [Energy production and conversion]. 287 -223303 COG0225 MsrA Peptide methionine sulfoxide reductase MsrA [Posttranslational modification, protein turnover, chaperones]. 174 -223304 COG0226 PstS ABC-type phosphate transport system, periplasmic component [Inorganic ion transport and metabolism]. 318 -223305 COG0227 RpmB Ribosomal protein L28 [Translation, ribosomal structure and biogenesis]. 77 -223306 COG0228 RpsP Ribosomal protein S16 [Translation, ribosomal structure and biogenesis]. 87 -223307 COG0229 MsrB Peptide methionine sulfoxide reductase MsrB [Posttranslational modification, protein turnover, chaperones]. 140 -223308 COG0230 RpmH Ribosomal protein L34 [Translation, ribosomal structure and biogenesis]. 44 -223309 COG0231 Efp Translation elongation factor P (EF-P)/translation initiation factor 5A (eIF-5A) [Translation, ribosomal structure and biogenesis]. 131 -223310 COG0232 Dgt dGTP triphosphohydrolase [Nucleotide transport and metabolism]. 412 -223311 COG0233 Frr Ribosome recycling factor [Translation, ribosomal structure and biogenesis]. 187 -223312 COG0234 GroES Co-chaperonin GroES (HSP10) [Posttranslational modification, protein turnover, chaperones]. 96 -223313 COG0235 AraD Ribulose-5-phosphate 4-epimerase/Fuculose-1-phosphate aldolase [Carbohydrate transport and metabolism]. 219 -223314 COG0236 AcpP Acyl carrier protein [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 80 -223315 COG0237 CoaE Dephospho-CoA kinase [Coenzyme transport and metabolism]. 201 -223316 COG0238 RpsR Ribosomal protein S18 [Translation, ribosomal structure and biogenesis]. 75 -223317 COG0239 CrcB Fluoride ion exporter CrcB/FEX, affects chromosome condensation [Cell cycle control, cell division, chromosome partitioning, Inorganic ion transport and metabolism]. 126 -223318 COG0240 GpsA Glycerol-3-phosphate dehydrogenase [Energy production and conversion]. 329 -223319 COG0241 HisB1 Histidinol phosphatase or a related phosphatase [Amino acid transport and metabolism]. 181 -223320 COG0242 Def Peptide deformylase [Translation, ribosomal structure and biogenesis]. 168 -223321 COG0243 BisC Anaerobic selenocysteine-containing dehydrogenase [Energy production and conversion]. 765 -223322 COG0244 RplJ Ribosomal protein L10 [Translation, ribosomal structure and biogenesis]. 175 -223323 COG0245 IspF 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase [Lipid transport and metabolism]. 159 -223324 COG0246 MtlD Mannitol-1-phosphate/altronate dehydrogenases [Carbohydrate transport and metabolism]. 473 -223325 COG0247 GlpC Fe-S oxidoreductase [Energy production and conversion]. 388 -223326 COG0248 GppA Exopolyphosphatase/pppGpp-phosphohydrolase [Nucleotide transport and metabolism, Signal transduction mechanisms, Inorganic ion transport and metabolism]. 492 -223327 COG0249 MutS DNA mismatch repair ATPase MutS [Replication, recombination and repair]. 843 -223328 COG0250 NusG Transcription antitermination factor NusG [Transcription]. 178 -223329 COG0251 RidA Enamine deaminase RidA, house cleaning of reactive enamine intermediates, YjgF/YER057c/UK114 family [Defense mechanisms]. 130 -223330 COG0252 AnsA L-asparaginase/archaeal Glu-tRNAGln amidotransferase subunit D [Translation, ribosomal structure and biogenesis, Intracellular trafficking, secretion, and vesicular transport]. 351 -223331 COG0253 DapF Diaminopimelate epimerase [Amino acid transport and metabolism]. 272 -223332 COG0254 RpmE Ribosomal protein L31 [Translation, ribosomal structure and biogenesis]. 75 -223333 COG0255 RpmC Ribosomal protein L29 [Translation, ribosomal structure and biogenesis]. 69 -223334 COG0256 RplR Ribosomal protein L18 [Translation, ribosomal structure and biogenesis]. 125 -223335 COG0257 RpmJ Ribosomal protein L36 [Translation, ribosomal structure and biogenesis]. 38 -223336 COG0258 Exo 5'-3' exonuclease [Replication, recombination and repair]. 310 -223337 COG0259 PdxH Pyridoxine/pyridoxamine 5'-phosphate oxidase [Coenzyme transport and metabolism]. 214 -223338 COG0260 PepB Leucyl aminopeptidase [Amino acid transport and metabolism]. 485 -223339 COG0261 RplU Ribosomal protein L21 [Translation, ribosomal structure and biogenesis]. 103 -223340 COG0262 FolA Dihydrofolate reductase [Coenzyme transport and metabolism]. 167 -223341 COG0263 ProB Glutamate 5-kinase [Amino acid transport and metabolism]. 369 -223342 COG0264 Tsf Translation elongation factor EF-Ts [Translation, ribosomal structure and biogenesis]. 296 -223343 COG0265 DegQ Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational modification, protein turnover, chaperones]. 347 -223344 COG0266 Nei Formamidopyrimidine-DNA glycosylase [Replication, recombination and repair]. 273 -223345 COG0267 RpmG Ribosomal protein L33 [Translation, ribosomal structure and biogenesis]. 50 -223346 COG0268 RpsT Ribosomal protein S20 [Translation, ribosomal structure and biogenesis]. 88 -223347 COG0269 SgbH 3-keto-L-gulonate-6-phosphate decarboxylase [Carbohydrate transport and metabolism]. 217 -223348 COG0270 Dcm Site-specific DNA-cytosine methylase [Replication, recombination and repair]. 328 -223349 COG0271 BolA Stress-induced morphogen (activity unknown) [Signal transduction mechanisms]. 90 -223350 COG0272 Lig NAD-dependent DNA ligase [Replication, recombination and repair]. 667 -223351 COG0274 DeoC Deoxyribose-phosphate aldolase [Nucleotide transport and metabolism]. 228 -223352 COG0275 RmsH 16S rRNA C1402 N4-methylase RsmH [Translation, ribosomal structure and biogenesis]. 314 -223353 COG0276 HemH Protoheme ferro-lyase (ferrochelatase) [Coenzyme transport and metabolism]. 320 -223354 COG0277 GlcD FAD/FMN-containing dehydrogenase [Energy production and conversion]. 459 -223355 COG0278 GrxD Glutaredoxin-related protein [Posttranslational modification, protein turnover, chaperones]. 105 -223356 COG0279 GmhA Phosphoheptose isomerase [Carbohydrate transport and metabolism]. 176 -223357 COG0280 Pta Phosphotransacetylase [Energy production and conversion]. 327 -223358 COG0281 SfcA Malic enzyme [Energy production and conversion]. 432 -223359 COG0282 AckA Acetate kinase [Energy production and conversion]. 396 -223360 COG0283 Cmk Cytidylate kinase [Nucleotide transport and metabolism]. 222 -223361 COG0284 PyrF Orotidine-5'-phosphate decarboxylase [Nucleotide transport and metabolism]. 240 -223362 COG0285 FolC Folylpolyglutamate synthase/Dihydropteroate synthase [Coenzyme transport and metabolism]. 427 -223363 COG0286 HsdM Type I restriction-modification system, DNA methylase subunit [Defense mechanisms]. 489 -223364 COG0287 TyrA Prephenate dehydrogenase [Amino acid transport and metabolism]. 279 -223365 COG0288 CynT Carbonic anhydrase [Inorganic ion transport and metabolism]. 207 -223366 COG0289 DapB Dihydrodipicolinate reductase [Amino acid transport and metabolism]. 266 -223367 COG0290 InfC Translation initiation factor IF-3 [Translation, ribosomal structure and biogenesis]. 176 -223368 COG0291 RpmI Ribosomal protein L35 [Translation, ribosomal structure and biogenesis]. 65 -223369 COG0292 RplT Ribosomal protein L20 [Translation, ribosomal structure and biogenesis]. 118 -223370 COG0293 RlmE 23S rRNA U2552 (ribose-2'-O)-methylase RlmE/FtsJ [Translation, ribosomal structure and biogenesis]. 205 -223371 COG0294 FolP Dihydropteroate synthase [Coenzyme transport and metabolism]. 274 -223372 COG0295 Cdd Cytidine deaminase [Nucleotide transport and metabolism]. 134 -223373 COG0296 GlgB 1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism]. 628 -223374 COG0297 GlgA Glycogen synthase [Carbohydrate transport and metabolism]. 487 -223375 COG0298 HypC Hydrogenase maturation factor [Posttranslational modification, protein turnover, chaperones]. 82 -223376 COG0299 PurN Folate-dependent phosphoribosylglycinamide formyltransferase PurN [Nucleotide transport and metabolism]. 200 -223377 COG0300 DltE Short-chain dehydrogenase [General function prediction only]. 265 -223378 COG0301 ThiI Adenylyl- and sulfurtransferase ThiI, participates in tRNA 4-thiouridine and thiamine biosynthesis [Coenzyme transport and metabolism, Translation, ribosomal structure and biogenesis]. 383 -223379 COG0302 FolE GTP cyclohydrolase I [Coenzyme transport and metabolism]. 195 -223380 COG0303 MoeA Molybdopterin biosynthesis enzyme [Coenzyme transport and metabolism]. 404 -223381 COG0304 FabB 3-oxoacyl-(acyl-carrier-protein) synthase [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 412 -223382 COG0305 DnaB Replicative DNA helicase [Replication, recombination and repair]. 435 -223383 COG0306 PitA Phosphate/sulfate permease [Inorganic ion transport and metabolism]. 326 -223384 COG0307 RibC Riboflavin synthase alpha chain [Coenzyme transport and metabolism]. 204 -223385 COG0308 PepN Aminopeptidase N [Amino acid transport and metabolism]. 859 -223386 COG0309 HypE Hydrogenase maturation factor [Posttranslational modification, protein turnover, chaperones]. 339 -223387 COG0310 CbiM ABC-type Co2+ transport system, permease component [Inorganic ion transport and metabolism]. 204 -223388 COG0311 PdxT Glutamine amidotransferase PdxT (pyridoxal biosynthesis) [Coenzyme transport and metabolism]. 194 -223389 COG0312 TldD Predicted Zn-dependent protease or its inactivated homolog [General function prediction only]. 454 -223390 COG0313 RsmI 16S rRNA C1402 (ribose-2'-O) methylase RsmI [Translation, ribosomal structure and biogenesis]. 275 -223391 COG0314 MoaE Molybdopterin synthase catalytic subunit [Coenzyme transport and metabolism]. 149 -223392 COG0315 MoaC Molybdenum cofactor biosynthesis enzyme [Coenzyme transport and metabolism]. 157 -223393 COG0316 IscA Fe-S cluster assembly iron-binding protein IscA [Posttranslational modification, protein turnover, chaperones]. 110 -223394 COG0317 SpoT (p)ppGpp synthase/hydrolase, HD superfamily [Signal transduction mechanisms, Transcription]. 701 -223395 COG0318 CaiC Acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 534 -223396 COG0319 YbeY ssRNA-specific RNase YbeY, 16S rRNA maturation enzyme [Translation, ribosomal structure and biogenesis]. 153 -223397 COG0320 LipA Lipoate synthase [Coenzyme transport and metabolism]. 306 -223398 COG0321 LipB Lipoate-protein ligase B [Coenzyme transport and metabolism]. 221 -223399 COG0322 UvrC Excinuclease UvrABC, nuclease subunit [Replication, recombination and repair]. 581 -223400 COG0323 MutL DNA mismatch repair ATPase MutL [Replication, recombination and repair]. 638 -223401 COG0324 MiaA tRNA A37 N6-isopentenylltransferase MiaA [Translation, ribosomal structure and biogenesis]. 308 -223402 COG0325 YggS Uncharacterized pyridoxal phosphate-containing protein, affects Ilv metabolism, UPF0001 family [General function prediction only]. 228 -223403 COG0326 HtpG Molecular chaperone, HSP90 family [Posttranslational modification, protein turnover, chaperones]. 623 -223404 COG0327 NIF3 Putative GTP cyclohydrolase 1 type 2, NIF3 family [Coenzyme transport and metabolism]. 250 -223405 COG0328 RnhA Ribonuclease HI [Replication, recombination and repair]. 154 -223406 COG0329 DapA Dihydrodipicolinate synthase/N-acetylneuraminate lyase [Amino acid transport and metabolism, Cell wall/membrane/envelope biogenesis]. 299 -223407 COG0330 HflC Regulator of protease activity HflC, stomatin/prohibitin superfamily [Posttranslational modification, protein turnover, chaperones]. 291 -223408 COG0331 FabD Malonyl CoA-acyl carrier protein transacylase [Lipid transport and metabolism]. 310 -223409 COG0332 FabH 3-oxoacyl-[acyl-carrier-protein] synthase III [Lipid transport and metabolism]. 323 -223410 COG0333 RpmF Ribosomal protein L32 [Translation, ribosomal structure and biogenesis]. 57 -223411 COG0334 GdhA Glutamate dehydrogenase/leucine dehydrogenase [Amino acid transport and metabolism]. 411 -223412 COG0335 RplS Ribosomal protein L19 [Translation, ribosomal structure and biogenesis]. 115 -223413 COG0336 TrmD tRNA G37 N-methylase TrmD [Translation, ribosomal structure and biogenesis]. 240 -223414 COG0337 AroB 3-dehydroquinate synthetase [Amino acid transport and metabolism]. 360 -223415 COG0338 Dam Site-specific DNA-adenine methylase [Replication, recombination and repair]. 274 -223416 COG0339 Dcp Zn-dependent oligopeptidase [Posttranslational modification, protein turnover, chaperones]. 683 -223417 COG0340 BirA2 Biotin-(acetyl-CoA carboxylase) ligase [Coenzyme transport and metabolism]. 238 -223418 COG0341 SecF Preprotein translocase subunit SecF [Intracellular trafficking, secretion, and vesicular transport]. 305 -223419 COG0342 SecD Preprotein translocase subunit SecD [Intracellular trafficking, secretion, and vesicular transport]. 506 -223420 COG0343 Tgt Queuine/archaeosine tRNA-ribosyltransferase [Translation, ribosomal structure and biogenesis]. 372 -223421 COG0344 PlsY Phospholipid biosynthesis protein PlsY, probable glycerol-3-phosphate acyltransferase [Lipid transport and metabolism]. 200 -223422 COG0345 ProC Pyrroline-5-carboxylate reductase [Amino acid transport and metabolism]. 266 -223423 COG0346 GloA Catechol 2,3-dioxygenase or other lactoylglutathione lyase family enzyme [Secondary metabolites biosynthesis, transport and catabolism]. 138 -223424 COG0347 GlnK Nitrogen regulatory protein PII [Signal transduction mechanisms, Amino acid transport and metabolism]. 112 -223425 COG0348 NapH Polyferredoxin [Energy production and conversion]. 386 -223426 COG0349 Rnd Ribonuclease D [Translation, ribosomal structure and biogenesis]. 361 -223427 COG0350 AdaB O6-methylguanine-DNA--protein-cysteine methyltransferase [Replication, recombination and repair]. 168 -223428 COG0351 ThiD Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase [Coenzyme transport and metabolism]. 263 -223429 COG0352 ThiE Thiamine monophosphate synthase [Coenzyme transport and metabolism]. 211 -223430 COG0353 RecR Recombinational DNA repair protein RecR [Replication, recombination and repair]. 198 -223431 COG0354 YgfZ Folate-binding Fe-S cluster repair protein YgfZ, possible role in tRNA modification [Posttranslational modification, protein turnover, chaperones]. 305 -223432 COG0355 AtpC FoF1-type ATP synthase, epsilon subunit [Energy production and conversion]. 135 -223433 COG0356 AtpB FoF1-type ATP synthase, membrane subunit a [Energy production and conversion]. 246 -223434 COG0357 RsmG 16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ribosomal structure and biogenesis]. 215 -223435 COG0358 DnaG DNA primase (bacterial type) [Replication, recombination and repair]. 568 -223436 COG0359 RplI Ribosomal protein L9 [Translation, ribosomal structure and biogenesis]. 148 -223437 COG0360 RpsF Ribosomal protein S6 [Translation, ribosomal structure and biogenesis]. 112 -223438 COG0361 InfA Translation initiation factor IF-1 [Translation, ribosomal structure and biogenesis]. 75 -223439 COG0362 Gnd 6-phosphogluconate dehydrogenase [Carbohydrate transport and metabolism]. 473 -223440 COG0363 NagB 6-phosphogluconolactonase/Glucosamine-6-phosphate isomerase/deaminase [Carbohydrate transport and metabolism]. 238 -223441 COG0364 Zwf Glucose-6-phosphate 1-dehydrogenase [Carbohydrate transport and metabolism]. 483 -223442 COG0365 Acs Acyl-coenzyme A synthetase/AMP-(fatty) acid ligase [Lipid transport and metabolism]. 528 -223443 COG0366 AmyA Glycosidase [Carbohydrate transport and metabolism]. 505 -223444 COG0367 AsnB Asparagine synthetase B (glutamine-hydrolyzing) [Amino acid transport and metabolism]. 542 -223445 COG0368 CobS Cobalamin synthase [Coenzyme transport and metabolism]. 246 -223446 COG0369 CysJ Sulfite reductase, alpha subunit (flavoprotein) [Inorganic ion transport and metabolism]. 587 -223447 COG0370 FeoB Fe2+ transport system protein B [Inorganic ion transport and metabolism]. 653 -223448 COG0371 GldA Glycerol dehydrogenase or related enzyme, iron-containing ADH family [Energy production and conversion]. 360 -223449 COG0372 GltA Citrate synthase [Energy production and conversion]. 390 -223450 COG0373 HemA Glutamyl-tRNA reductase [Coenzyme transport and metabolism]. 414 -223451 COG0374 HyaB Ni,Fe-hydrogenase I large subunit [Energy production and conversion]. 545 -223452 COG0375 HybF Hydrogenase maturation metallochaperone HypA/HybF, involved in Ni insertion [Posttranslational modification, protein turnover, chaperones]. 115 -223453 COG0376 KatG Catalase (peroxidase I) [Inorganic ion transport and metabolism]. 730 -223454 COG0377 NuoB NADH:ubiquinone oxidoreductase 20 kD subunit (chhain B) or related Fe-S oxidoreductase [Energy production and conversion]. 194 -223455 COG0378 HypB Ni2+-binding GTPase involved in regulation of expression and maturation of urease and hydrogenase [Posttranslational modification, protein turnover, chaperones]. 202 -223456 COG0379 NadA Quinolinate synthase [Coenzyme transport and metabolism]. 324 -223457 COG0380 OtsA Trehalose-6-phosphate synthase [Carbohydrate transport and metabolism]. 486 -223458 COG0381 WecB UDP-N-acetylglucosamine 2-epimerase [Cell wall/membrane/envelope biogenesis]. 383 -223459 COG0382 UbiA 4-hydroxybenzoate polyprenyltransferase [Coenzyme transport and metabolism]. 289 -223460 COG0383 AMS1 Alpha-mannosidase [Carbohydrate transport and metabolism]. 943 -223461 COG0384 YHI9 Predicted epimerase YddE/YHI9, PhzF superfamily [General function prediction only]. 291 -223462 COG0385 YfeH Predicted Na+-dependent transporter [General function prediction only]. 319 -223463 COG0386 BtuE Glutathione peroxidase, house-cleaning role in reducing lipid peroxides [Defense mechanisms, Lipid transport and metabolism]. 162 -223464 COG0387 ChaA Ca2+/H+ antiporter [Inorganic ion transport and metabolism]. 368 -223465 COG0388 YafV Predicted amidohydrolase [General function prediction only]. 274 -223466 COG0389 DinP Nucleotidyltransferase/DNA polymerase involved in DNA repair [Replication, recombination and repair]. 354 -223467 COG0390 FetB ABC-type iron transport system FetAB, permease component [Inorganic ion transport and metabolism]. 256 -223468 COG0391 CofD Archaeal 2-phospho-L-lactate transferase/Bacterial gluconeogenesis factor, CofD/UPF0052 family [Coenzyme transport and metabolism, Carbohydrate transport and metabolism]. 323 -223469 COG0392 AglD2 Uncharacterized membrane protein YbhN, UPF0104 family [Function unknown]. 322 -223470 COG0393 YbjQ Uncharacterized conserved protein YbjQ, UPF0145 family [Function unknown]. 108 -223471 COG0394 Wzb Protein-tyrosine-phosphatase [Signal transduction mechanisms]. 139 -223472 COG0395 UgpE ABC-type glycerol-3-phosphate transport system, permease component [Carbohydrate transport and metabolism]. 281 -223473 COG0396 SufC Fe-S cluster assembly ATPase SufC [Posttranslational modification, protein turnover, chaperones]. 251 -223474 COG0397 YdiU Uncharacterized conserved protein YdiU, UPF0061 family [Function unknown]. 488 -223475 COG0398 TVP38 Uncharacterized membrane protein YdjX, TVP38/TMEM64 family, SNARE-associated domain [Function unknown]. 223 -223476 COG0399 WecE dTDP-4-amino-4,6-dideoxygalactose transaminase [Cell wall/membrane/envelope biogenesis]. 374 -223477 COG0400 YpfH Predicted esterase [General function prediction only]. 207 -223478 COG0401 YqaE Uncharacterized membrane protein YqaE, homolog of Blt101, UPF0057 family [Function unknown]. 56 -223479 COG0402 SsnA Cytosine/adenosine deaminase or related metal-dependent hydrolase [Nucleotide transport and metabolism, General function prediction only]. 421 -223480 COG0403 GcvP1 Glycine cleavage system protein P (pyridoxal-binding), N-terminal domain [Amino acid transport and metabolism]. 450 -223481 COG0404 GcvT Glycine cleavage system T protein (aminomethyltransferase) [Amino acid transport and metabolism]. 379 -223482 COG0405 Ggt Gamma-glutamyltranspeptidase [Amino acid transport and metabolism]. 539 -223483 COG0406 PhoE Broad specificity phosphatase PhoE [Carbohydrate transport and metabolism]. 208 -223484 COG0407 HemE Uroporphyrinogen-III decarboxylase [Coenzyme transport and metabolism]. 352 -223485 COG0408 HemF Coproporphyrinogen III oxidase [Coenzyme transport and metabolism]. 303 -223486 COG0409 HypD Hydrogenase maturation factor [Posttranslational modification, protein turnover, chaperones]. 364 -223487 COG0410 LivF ABC-type branched-chain amino acid transport system, ATPase component [Amino acid transport and metabolism]. 237 -223488 COG0411 LivG ABC-type branched-chain amino acid transport system, ATPase component [Amino acid transport and metabolism]. 250 -223489 COG0412 DLH Dienelactone hydrolase [Secondary metabolites biosynthesis, transport and catabolism]. 236 -223490 COG0413 PanB Ketopantoate hydroxymethyltransferase [Coenzyme transport and metabolism]. 268 -223491 COG0414 PanC Panthothenate synthetase [Coenzyme transport and metabolism]. 285 -223492 COG0415 PhrB Deoxyribodipyrimidine photolyase [Replication, recombination and repair]. 461 -223493 COG0416 PlsX Fatty acid/phospholipid biosynthesis enzyme [Lipid transport and metabolism]. 338 -223494 COG0417 PolB DNA polymerase elongation subunit (family B) [Replication, recombination and repair]. 792 -223495 COG0418 PyrC Dihydroorotase [Nucleotide transport and metabolism]. 344 -223496 COG0419 SbcC DNA repair exonuclease SbcCD ATPase subunit [Replication, recombination and repair]. 908 -223497 COG0420 SbcD DNA repair exonuclease SbcCD nuclease subunit [Replication, recombination and repair]. 390 -223498 COG0421 SpeE Spermidine synthase [Amino acid transport and metabolism]. 282 -223499 COG0422 ThiC Thiamine biosynthesis protein ThiC [Coenzyme transport and metabolism]. 432 -223500 COG0423 GRS1 Glycyl-tRNA synthetase (class II) [Translation, ribosomal structure and biogenesis]. 558 -223501 COG0424 Maf Predicted house-cleaning NTP pyrophosphatase, Maf/HAM1 superfamily [Secondary metabolites biosynthesis, transport and catabolism]. 193 -223502 COG0425 TusA TusA-related sulfurtransferase [Posttranslational modification, protein turnover, chaperones]. 78 -223503 COG0426 NorV Flavorubredoxin [Energy production and conversion]. 388 -223504 COG0427 ACH1 Acyl-CoA hydrolase [Energy production and conversion]. 501 -223505 COG0428 ZupT Zinc transporter ZupT [Inorganic ion transport and metabolism]. 266 -223506 COG0429 YheT Predicted hydrolase of the alpha/beta-hydrolase fold [General function prediction only]. 345 -223507 COG0430 RCL1 RNA 3'-terminal phosphate cyclase [RNA processing and modification]. 341 -223508 COG0431 SsuE NAD(P)H-dependent FMN reductase [Energy production and conversion]. 184 -223509 COG0432 YjbQ Thiamin phosphate synthase YjbQ, UPF0047 family [Coenzyme transport and metabolism]. 137 -223510 COG0433 YjgR Archaeal DNA helicase HerA or a related bacterial ATPase, contains HAS-barrel and ATPase domains [Replication, recombination and repair]. 520 -223511 COG0434 SgcQ Predicted TIM-barrel enzyme [General function prediction only]. 263 -223512 COG0435 ECM4 Glutathionyl-hydroquinone reductase [Energy production and conversion]. 324 -223513 COG0436 AspB Aspartate/methionine/tyrosine aminotransferase [Amino acid transport and metabolism]. 393 -223514 COG0437 HybA Fe-S-cluster-containing dehydrogenase component [Energy production and conversion]. 203 -223515 COG0438 RfaB Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. 381 -223516 COG0439 AccC Biotin carboxylase [Lipid transport and metabolism]. 449 -223517 COG0440 IlvH Acetolactate synthase, small subunit [Amino acid transport and metabolism]. 163 -223518 COG0441 ThrS Threonyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 589 -223519 COG0442 ProS Prolyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 500 -223520 COG0443 DnaK Molecular chaperone DnaK (HSP70) [Posttranslational modification, protein turnover, chaperones]. 579 -223521 COG0444 DppD ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component [Amino acid transport and metabolism, Inorganic ion transport and metabolism]. 316 -223522 COG0445 MnmG tRNA U34 5-carboxymethylaminomethyl modifying enzyme MnmG/GidA [Translation, ribosomal structure and biogenesis]. 621 -223523 COG0446 FadH2 NADPH-dependent 2,4-dienoyl-CoA reductase, sulfur reductase, or a related oxidoreductase [Lipid transport and metabolism]. 415 -223524 COG0447 MenB 1,4-Dihydroxy-2-naphthoyl-CoA synthase [Coenzyme transport and metabolism]. 282 -223525 COG0448 GlgC ADP-glucose pyrophosphorylase [Carbohydrate transport and metabolism]. 393 -223526 COG0449 GlmS Glucosamine 6-phosphate synthetase, contains amidotransferase and phosphosugar isomerase domains [Cell wall/membrane/envelope biogenesis]. 597 -223527 COG0450 AhpC Alkyl hydroperoxide reductase subunit AhpC (peroxiredoxin) [Defense mechanisms]. 194 -223528 COG0451 WcaG Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]. 314 -223529 COG0452 CoaBC Phosphopantothenoylcysteine synthetase/decarboxylase [Coenzyme transport and metabolism]. 392 -223530 COG0454 PhnO N-acetyltransferase, GNAT superfamily (includes histone acetyltransferase HPA2) [Transcription, General function prediction only]. 156 -223531 COG0455 FlhG MinD-like ATPase involved in chromosome partitioning or flagellar assembly [Cell cycle control, cell division, chromosome partitioning, Cell motility]. 262 -223532 COG0456 RimI Ribosomal protein S18 acetylase RimI and related acetyltransferases [Translation, ribosomal structure and biogenesis]. 177 -223533 COG0457 TPR Tetratricopeptide (TPR) repeat [General function prediction only]. 291 -223534 COG0458 CarB Carbamoylphosphate synthase large subunit [Amino acid transport and metabolism, Nucleotide transport and metabolism]. 400 -223535 COG0459 GroEL Chaperonin GroEL (HSP60 family) [Posttranslational modification, protein turnover, chaperones]. 524 -223536 COG0460 ThrA Homoserine dehydrogenase [Amino acid transport and metabolism]. 333 -223537 COG0461 PyrE Orotate phosphoribosyltransferase [Nucleotide transport and metabolism]. 201 -223538 COG0462 PrsA Phosphoribosylpyrophosphate synthetase [Nucleotide transport and metabolism, Amino acid transport and metabolism]. 314 -223539 COG0463 WcaA Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. 291 -223540 COG0464 SpoVK AAA+-type ATPase, SpoVK/Ycf46/Vps4 family [Cell wall/membrane/envelope biogenesis, Cell cycle control, cell division, chromosome partitioning, Signal transduction mechanisms]. 494 -223541 COG0465 HflB ATP-dependent Zn proteases [Posttranslational modification, protein turnover, chaperones]. 596 -223542 COG0466 Lon ATP-dependent Lon protease, bacterial type [Posttranslational modification, protein turnover, chaperones]. 782 -223543 COG0467 RAD55 RecA-superfamily ATPase, KaiC/GvpD/RAD55 family [Signal transduction mechanisms]. 260 -223544 COG0468 RecA RecA/RadA recombinase [Replication, recombination and repair]. 279 -223545 COG0469 PykF Pyruvate kinase [Carbohydrate transport and metabolism]. 477 -223546 COG0470 HolB DNA polymerase III, delta prime subunit [Replication, recombination and repair]. 230 -223547 COG0471 CitT Di- and tricarboxylate transporter [Carbohydrate transport and metabolism]. 461 -223548 COG0472 Rfe UDP-N-acetylmuramyl pentapeptide phosphotransferase/UDP-N-acetylglucosamine-1-phosphate transferase [Cell wall/membrane/envelope biogenesis]. 319 -223549 COG0473 LeuB Isocitrate/isopropylmalate dehydrogenase [Energy production and conversion, Amino acid transport and metabolism]. 348 -223550 COG0474 MgtA Magnesium-transporting ATPase (P-type) [Inorganic ion transport and metabolism]. 917 -223551 COG0475 KefB Kef-type K+ transport system, membrane component KefB [Inorganic ion transport and metabolism]. 397 -223552 COG0476 ThiF Molybdopterin or thiamine biosynthesis adenylyltransferase [Coenzyme transport and metabolism]. 254 -223553 COG0477 ProP MFS family permease [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]. 338 -223554 COG0478 RIO2 RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction mechanisms]. 304 -223555 COG0479 FrdB Succinate dehydrogenase/fumarate reductase, Fe-S protein subunit [Energy production and conversion]. 234 -223556 COG0480 FusA Translation elongation factor EF-G, a GTPase [Translation, ribosomal structure and biogenesis]. 697 -223557 COG0481 LepA Translation elongation factor EF-4, membrane-bound GTPase [Translation, ribosomal structure and biogenesis]. 603 -223558 COG0482 MnmA tRNA U34 2-thiouridine synthase MnmA/TrmU, contains the PP-loop ATPase domain [Translation, ribosomal structure and biogenesis]. 356 -223559 COG0483 SuhB Archaeal fructose-1,6-bisphosphatase or related enzyme of inositol monophosphatase family [Carbohydrate transport and metabolism]. 260 -223560 COG0484 DnaJ DnaJ-class molecular chaperone with C-terminal Zn finger domain [Posttranslational modification, protein turnover, chaperones]. 371 -223561 COG0486 MnmE tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]. 454 -223562 COG0488 Uup ATPase components of ABC transporters with duplicated ATPase domains [General function prediction only]. 530 -223563 COG0489 Mrp Chromosome partitioning ATPase, Mrp family, contains Fe-S cluster [Cell cycle control, cell division, chromosome partitioning]. 265 -223564 COG0490 KhtT K+/H+ antiporter YhaU, regulatory subunit KhtT [Inorganic ion transport and metabolism]. 162 -223565 COG0491 GloB Glyoxylase or a related metal-dependent hydrolase, beta-lactamase superfamily II [General function prediction only]. 252 -223566 COG0492 TrxB Thioredoxin reductase [Posttranslational modification, protein turnover, chaperones]. 305 -223567 COG0493 GltD NADPH-dependent glutamate synthase beta chain or related oxidoreductase [Amino acid transport and metabolism, General function prediction only]. 457 -223568 COG0494 MutT 8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms]. 161 -223569 COG0495 LeuS Leucyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 814 -223570 COG0496 SurE Broad specificity polyphosphatase and 5'/3'-nucleotidase SurE [Replication, recombination and repair]. 252 -223571 COG0497 RecN DNA repair ATPase RecN [Replication, recombination and repair]. 557 -223572 COG0498 ThrC Threonine synthase [Amino acid transport and metabolism]. 411 -223573 COG0499 SAM1 S-adenosylhomocysteine hydrolase [Coenzyme transport and metabolism]. 420 -223574 COG0500 SmtA SAM-dependent methyltransferase [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]. 257 -223575 COG0501 HtpX Zn-dependent protease with chaperone function [Posttranslational modification, protein turnover, chaperones]. 302 -223576 COG0502 BioB Biotin synthase or related enzyme [Coenzyme transport and metabolism]. 335 -223577 COG0503 Apt Adenine/guanine phosphoribosyltransferase or related PRPP-binding protein [Nucleotide transport and metabolism]. 179 -223578 COG0504 PyrG CTP synthase (UTP-ammonia lyase) [Nucleotide transport and metabolism]. 533 -223579 COG0505 CarA Carbamoylphosphate synthase small subunit [Amino acid transport and metabolism, Nucleotide transport and metabolism]. 368 -223580 COG0506 PutA Proline dehydrogenase [Amino acid transport and metabolism]. 391 -223581 COG0507 RecD ATP-dependent exoDNAse (exonuclease V), alpha subunit, helicase superfamily I [Replication, recombination and repair]. 696 -223582 COG0508 AceF Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide acyltransferase (E2) component [Energy production and conversion]. 404 -223583 COG0509 GcvH Glycine cleavage system H protein (lipoate-binding) [Amino acid transport and metabolism]. 131 -223584 COG0510 CotS Thiamine kinase and related kinases [Coenzyme transport and metabolism]. 269 -223585 COG0511 AccB Biotin carboxyl carrier protein [Coenzyme transport and metabolism, Lipid transport and metabolism]. 140 -223586 COG0512 PabA Anthranilate/para-aminobenzoate synthase component II [Amino acid transport and metabolism, Coenzyme transport and metabolism]. 191 -223587 COG0513 SrmB Superfamily II DNA and RNA helicase [Replication, recombination and repair]. 513 -223588 COG0514 RecQ Superfamily II DNA helicase RecQ [Replication, recombination and repair]. 590 -223589 COG0515 SPS1 Serine/threonine protein kinase [Signal transduction mechanisms]. 384 -223590 COG0516 GuaB IMP dehydrogenase/GMP reductase [Nucleotide transport and metabolism]. 170 -223591 COG0517 CBS CBS domain [Signal transduction mechanisms]. 117 -223592 COG0518 GuaA1 GMP synthase - Glutamine amidotransferase domain [Nucleotide transport and metabolism]. 198 -223593 COG0519 GuaA2 GMP synthase, PP-ATPase domain/subunit [Nucleotide transport and metabolism]. 315 -223594 COG0520 CsdA Selenocysteine lyase/Cysteine desulfurase [Amino acid transport and metabolism]. 405 -223595 COG0521 MoaB Molybdopterin biosynthesis enzyme MoaB [Coenzyme transport and metabolism]. 169 -223596 COG0522 RpsD Ribosomal protein S4 or related protein [Translation, ribosomal structure and biogenesis]. 205 -223597 COG0523 YejR GTPase, G3E family [General function prediction only]. 323 -223598 COG0524 RbsK Sugar or nucleoside kinase, ribokinase family [Carbohydrate transport and metabolism]. 311 -223599 COG0525 ValS Valyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]. 877 -223600 COG0526 TrxA Thiol-disulfide isomerase or thioredoxin [Posttranslational modification, protein turnover, chaperones]. 127 -223601 COG0527 LysC Aspartokinase [Amino acid transport and metabolism]. 447 -223602 COG0528 PyrH Uridylate kinase [Nucleotide transport and metabolism]. 238 -223603 COG0529 CysC Adenylylsulfate kinase or related kinase [Inorganic ion transport and metabolism]. 197 -223604 COG0530 ECM27 Ca2+/Na+ antiporter [Inorganic ion transport and metabolism]. 320 -223605 COG0531 PotE Amino acid transporter [Amino acid transport and metabolism]. 466 -223606 COG0532 InfB Translation initiation factor IF-2, a GTPase [Translation, ribosomal structure and biogenesis]. 509 -223607 COG0533 TsaD tRNA A37 threonylcarbamoyltransferase TsaD [Translation, ribosomal structure and biogenesis]. 342 -223608 COG0534 NorM Na+-driven multidrug efflux pump [Defense mechanisms]. 455 -223609 COG0535 SkfB Radical SAM superfamily enzyme, MoaA/NifB/PqqE/SkfB family [General function prediction only]. 347 -223610 COG0536 Obg GTPase involved in cell partioning and DNA repair [Cell cycle control, cell division, chromosome partitioning, Replication, recombination and repair]. 369 -223611 COG0537 Hit Diadenosine tetraphosphate (Ap4A) hydrolase or other HIT family hydrolase [Nucleotide transport and metabolism, Carbohydrate transport and metabolism, General function prediction only]. 138 -223612 COG0538 Icd Isocitrate dehydrogenase [Energy production and conversion]. 407 -223613 COG0539 RpsA Ribosomal protein S1 [Translation, ribosomal structure and biogenesis]. 541 -223614 COG0540 PyrB Aspartate carbamoyltransferase, catalytic chain [Nucleotide transport and metabolism]. 316 -223615 COG0541 Ffh Signal recognition particle GTPase [Intracellular trafficking, secretion, and vesicular transport]. 451 -223616 COG0542 ClpA ATP-dependent Clp protease ATP-binding subunit ClpA [Posttranslational modification, protein turnover, chaperones]. 786 -223617 COG0543 Mcr1 NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]. 252 -223618 COG0544 Tig FKBP-type peptidyl-prolyl cis-trans isomerase (trigger factor) [Posttranslational modification, protein turnover, chaperones]. 441 -223619 COG0545 FkpA FKBP-type peptidyl-prolyl cis-trans isomerase [Posttranslational modification, protein turnover, chaperones]. 205 -223620 COG0546 Gph Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]. 220 -223621 COG0547 TrpD Anthranilate phosphoribosyltransferase [Amino acid transport and metabolism]. 338 -223622 COG0548 ArgB Acetylglutamate kinase [Amino acid transport and metabolism]. 265 -223623 COG0549 ArcC Carbamate kinase [Amino acid transport and metabolism]. 312 -223624 COG0550 TopA DNA topoisomerase IA [Replication, recombination and repair]. 570 -223625 COG0551 YrdD ssDNA-binding Zn-finger and Zn-ribbon domains of topoisomerase 1 [Replication, recombination and repair]. 140 -223626 COG0552 FtsY Signal recognition particle GTPase [Intracellular trafficking, secretion, and vesicular transport]. 340 -223627 COG0553 HepA Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination and repair]. 866 -223628 COG0554 GlpK Glycerol kinase [Energy production and conversion]. 499 -223629 COG0555 CysU ABC-type sulfate transport system, permease component [Inorganic ion transport and metabolism]. 274 -223630 COG0556 UvrB Excinuclease UvrABC helicase subunit UvrB [Replication, recombination and repair]. 663 -223631 COG0557 VacB Exoribonuclease R [Transcription]. 706 -223632 COG0558 PgsA Phosphatidylglycerophosphate synthase [Lipid transport and metabolism]. 192 -223633 COG0559 LivH Branched-chain amino acid ABC-type transport system, permease component [Amino acid transport and metabolism]. 297 -223634 COG0560 SerB Phosphoserine phosphatase [Amino acid transport and metabolism]. 212 -223635 COG0561 Cof Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases [Coenzyme transport and metabolism, General function prediction only]. 264 -223636 COG0562 Glf UDP-galactopyranose mutase [Cell wall/membrane/envelope biogenesis]. 374 -223637 COG0563 Adk Adenylate kinase or related kinase [Nucleotide transport and metabolism]. 178 -223638 COG0564 RluA Pseudouridylate synthase, 23S rRNA- or tRNA-specific [Translation, ribosomal structure and biogenesis]. 289 -223639 COG0565 TrmJ tRNA C32,U32 (ribose-2'-O)-methylase TrmJ or a related methyltransferase [Translation, ribosomal structure and biogenesis]. 242 -223640 COG0566 SpoU tRNA G18 (ribose-2'-O)-methylase SpoU [Translation, ribosomal structure and biogenesis]. 260 -223641 COG0567 SucA 2-oxoglutarate dehydrogenase complex, dehydrogenase (E1) component, and related enzymes [Energy production and conversion]. 906 -223642 COG0568 RpoD DNA-directed RNA polymerase, sigma subunit (sigma70/sigma32) [Transcription]. 342 -223643 COG0569 TrkA Trk K+ transport system, NAD-binding component [Inorganic ion transport and metabolism]. 225 -223644 COG0571 Rnc dsRNA-specific ribonuclease [Transcription]. 235 -223645 COG0572 Udk Uridine kinase [Nucleotide transport and metabolism]. 218 -223646 COG0573 PstC ABC-type phosphate transport system, permease component [Inorganic ion transport and metabolism]. 310 -223647 COG0574 PpsA Phosphoenolpyruvate synthase/pyruvate phosphate dikinase [Carbohydrate transport and metabolism]. 740 -223648 COG0575 CdsA CDP-diglyceride synthetase [Lipid transport and metabolism]. 265 -223649 COG0576 GrpE Molecular chaperone GrpE (heat shock protein) [Posttranslational modification, protein turnover, chaperones]. 193 -223650 COG0577 SalY ABC-type antimicrobial peptide transport system, permease component [Defense mechanisms]. 419 -223651 COG0578 GlpA Glycerol-3-phosphate dehydrogenase [Energy production and conversion]. 532 -223652 COG0579 LhgO L-2-hydroxyglutarate oxidase LhgO [Carbohydrate transport and metabolism]. 429 -223653 COG0580 GlpF Glycerol uptake facilitator and related aquaporins (Major Intrinsic Protein Family) [Carbohydrate transport and metabolism]. 241 -223654 COG0581 PstA ABC-type phosphate transport system, permease component [Inorganic ion transport and metabolism]. 292 -223655 COG0582 XerC Integrase [Replication, recombination and repair, Mobilome: prophages, transposons]. 309 -223656 COG0583 LysR DNA-binding transcriptional regulator, LysR family [Transcription]. 297 -223657 COG0584 UgpQ Glycerophosphoryl diester phosphodiesterase [Lipid transport and metabolism]. 257 -223658 COG0585 TruD tRNA(Glu) U13 pseudouridine synthase TruD [Translation, ribosomal structure and biogenesis]. 406 -223659 COG0586 DedA Uncharacterized membrane protein DedA, SNARE-associated domain [Function unknown]. 208 -223660 COG0587 DnaE DNA polymerase III, alpha subunit [Replication, recombination and repair]. 1139 -223661 COG0588 GpmA Phosphoglycerate mutase (BPG-dependent) [Carbohydrate transport and metabolism]. 230 -223662 COG0589 UspA Nucleotide-binding universal stress protein, UspA family [Signal transduction mechanisms]. 154 -223663 COG0590 TadA tRNA(Arg) A34 adenosine deaminase TadA [Translation, ribosomal structure and biogenesis]. 152 -223664 COG0591 PutP Na+/proline symporter [Amino acid transport and metabolism]. 493 -223665 COG0592 DnaN DNA polymerase III sliding clamp (beta) subunit, PCNA homolog [Replication, recombination and repair]. 364 -223666 COG0593 DnaA Chromosomal replication initiation ATPase DnaA [Replication, recombination and repair]. 408 -223667 COG0594 RnpA RNase P protein component [Translation, ribosomal structure and biogenesis]. 117 -223668 COG0595 RnjA mRNA degradation ribonuclease J1/J2 [Translation, ribosomal structure and biogenesis]. 555 -223669 COG0596 MhpC Pimeloyl-ACP methyl ester carboxylesterase [Coenzyme transport and metabolism, General function prediction only]. 282 -223670 COG0597 LspA Lipoprotein signal peptidase [Cell wall/membrane/envelope biogenesis, Intracellular trafficking, secretion, and vesicular transport]. 167 -223671 COG0598 CorA Mg2+ and Co2+ transporter CorA [Inorganic ion transport and metabolism]. 322 -223672 COG0599 YurZ Uncharacterized conserved protein YurZ, alkylhydroperoxidase/carboxymuconolactone decarboxylase family [General function prediction only]. 124 -223673 COG0600 TauC ABC-type nitrate/sulfonate/bicarbonate transport system, permease component [Inorganic ion transport and metabolism]. 258 -223674 COG0601 DppB ABC-type dipeptide/oligopeptide/nickel transport system, permease component [Amino acid transport and metabolism, Inorganic ion transport and metabolism]. 317 -223675 COG0602 NrdG Organic radical activating enzyme [General function prediction only]. 212 -223676 COG0603 QueC 7-cyano-7-deazaguanine synthase (queuosine biosynthesis) [Translation, ribosomal structure and biogenesis]. 222 -223677 COG0604 Qor NADPH:quinone reductase or related Zn-dependent oxidoreductase [Energy production and conversion, General function prediction only]. 326 -223678 COG0605 SodA Superoxide dismutase [Inorganic ion transport and metabolism]. 204 -223679 COG0606 YifB Predicted ATPase with chaperone activity [Posttranslational modification, protein turnover, chaperones]. 490 -223680 COG0607 PspE Rhodanese-related sulfurtransferase [Inorganic ion transport and metabolism]. 110 -223681 COG0608 RecJ Single-stranded DNA-specific exonuclease, DHH superfamily, may be involved in archaeal DNA replication intiation [Replication, recombination and repair]. 491 -223682 COG0609 FepD ABC-type Fe3+-siderophore transport system, permease component [Inorganic ion transport and metabolism]. 334 -223683 COG0610 COG0610 Type I site-specific restriction-modification system, R (restriction) subunit and related helicases ... [Defense mechanisms]. 962 -223684 COG0611 ThiL Thiamine monophosphate kinase [Coenzyme transport and metabolism]. 317 -223685 COG0612 PqqL Predicted Zn-dependent peptidase [General function prediction only]. 438 -223686 COG0613 YciV Predicted metal-dependent phosphoesterase TrpH, contains PHP domain [General function prediction only]. 258 -223687 COG0614 FepB ABC-type Fe3+-hydroxamate transport system, periplasmic component [Inorganic ion transport and metabolism]. 319 -223688 COG0615 TagD Glycerol-3-phosphate cytidylyltransferase, cytidylyltransferase family [Cell wall/membrane/envelope biogenesis]. 140 -223689 COG0616 SppA Periplasmic serine protease, ClpP class [Posttranslational modification, protein turnover, chaperones]. 317 -223690 COG0617 PcnB tRNA nucleotidyltransferase/poly(A) polymerase [Translation, ribosomal structure and biogenesis]. 412 -223691 COG0618 NrnA nanoRNase/pAp phosphatase, hydrolyzes c-di-AMP and oligoRNAs [Nucleotide transport and metabolism]. 332 -223692 COG0619 EcfT Energy-coupling factor transporter transmembrane protein EcfT [Coenzyme transport and metabolism]. 252 -223693 COG0620 MetE Methionine synthase II (cobalamin-independent) [Amino acid transport and metabolism]. 330 -223694 COG0621 MiaB tRNA A37 methylthiotransferase MiaB [Translation, ribosomal structure and biogenesis]. 437 -223695 COG0622 YfcE Predicted phosphodiesterase [General function prediction only]. 172 -223696 COG0623 FabI Enoyl-[acyl-carrier-protein] reductase (NADH) [Lipid transport and metabolism]. 259 -223697 COG0624 ArgE Acetylornithine deacetylase/Succinyl-diaminopimelate desuccinylase or related deacylase [Amino acid transport and metabolism]. 409 -223698 COG0625 GstA Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]. 211 -223699 COG0626 MetC Cystathionine beta-lyase/cystathionine gamma-synthase [Amino acid transport and metabolism]. 396 -223700 COG0627 FrmB S-formylglutathione hydrolase FrmB [Defense mechanisms]. 316 -223701 COG0628 PerM Predicted PurR-regulated permease PerM [General function prediction only]. 355 -223702 COG0629 Ssb Single-stranded DNA-binding protein [Replication, recombination and repair]. 167 -223703 COG0630 VirB11 Type IV secretory pathway ATPase VirB11/Archaellum biosynthesis ATPase [Intracellular trafficking, secretion, and vesicular transport]. 312 -223704 COG0631 PTC1 Serine/threonine protein phosphatase PrpC [Signal transduction mechanisms]. 262 -223705 COG0632 RuvA Holliday junction resolvasome RuvABC DNA-binding subunit [Replication, recombination and repair]. 201 -223706 COG0633 Fdx Ferredoxin [Energy production and conversion]. 102 -223707 COG0634 HptA Hypoxanthine-guanine phosphoribosyltransferase [Nucleotide transport and metabolism]. 178 -223708 COG0635 HemN Coproporphyrinogen III oxidase or related Fe-S oxidoreductase [Coenzyme transport and metabolism]. 416 -223709 COG0636 AtpE FoF1-type ATP synthase, membrane subunit c/Archaeal/vacuolar-type H+-ATPase, subunit K [Energy production and conversion]. 79 -223710 COG0637 YcjU Beta-phosphoglucomutase or related phosphatase, HAD superfamily [Carbohydrate transport and metabolism, General function prediction only]. 221 -223711 COG0638 PRE1 20S proteasome, alpha and beta subunits [Posttranslational modification, protein turnover, chaperones]. 236 -223712 COG0639 ApaH Diadenosine tetraphosphatase ApaH/serine/threonine protein phosphatase, PP2A family [Signal transduction mechanisms]. 155 -223713 COG0640 ArsR DNA-binding transcriptional regulator, ArsR family [Transcription]. 110 -223714 COG0641 AslB Sulfatase maturation enzyme AslB, radical SAM superfamily [Posttranslational modification, protein turnover, chaperones]. 378 -223715 COG0642 BaeS Signal transduction histidine kinase [Signal transduction mechanisms]. 336 -223716 COG0643 CheA Chemotaxis protein histidine kinase CheA [Cell motility, Signal transduction mechanisms]. 716 -223717 COG0644 FixC Dehydrogenase (flavoprotein) [Energy production and conversion]. 396 -223718 COG0645 COG0645 Predicted kinase [General function prediction only]. 170 -223719 COG0646 MetH1 Methionine synthase I (cobalamin-dependent), methyltransferase domain [Amino acid transport and metabolism]. 311 -223720 COG0647 NagD Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]. 269 -223721 COG0648 Nfo Endonuclease IV [Replication, recombination and repair]. 280 -223722 COG0649 NuoD NADH:ubiquinone oxidoreductase 49 kD subunit (chain D) [Energy production and conversion]. 398 -223723 COG0650 HyfC Formate hydrogenlyase subunit 4 [Energy production and conversion]. 309 -223724 COG0651 HyfB Formate hydrogenlyase subunit 3/Multisubunit Na+/H+ antiporter, MnhD subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 504 -223725 COG0652 PpiB Peptidyl-prolyl cis-trans isomerase (rotamase) - cyclophilin family [Posttranslational modification, protein turnover, chaperones]. 158 -223726 COG0653 SecA Preprotein translocase subunit SecA (ATPase, RNA helicase) [Intracellular trafficking, secretion, and vesicular transport]. 822 -223727 COG0654 UbiH 2-polyprenyl-6-methoxyphenol hydroxylase and related FAD-dependent oxidoreductases [Coenzyme transport and metabolism, Energy production and conversion]. 387 -223728 COG0655 WrbA Multimeric flavodoxin WrbA [Energy production and conversion]. 207 -223729 COG0656 ARA1 Aldo/keto reductase, related to diketogulonate reductase [Secondary metabolites biosynthesis, transport and catabolism]. 280 -223730 COG0657 Aes Acetyl esterase/lipase [Lipid transport and metabolism]. 312 -223731 COG0658 ComEC Predicted membrane metal-binding protein [General function prediction only]. 453 -223732 COG0659 SUL1 Sulfate permease or related transporter, MFS superfamily [Inorganic ion transport and metabolism]. 554 -223733 COG0661 AarF Predicted unusual protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme transport and metabolism, Signal transduction mechanisms]. 517 -223734 COG0662 ManC Mannose-6-phosphate isomerase, cupin superfamily [Carbohydrate transport and metabolism]. 127 -223735 COG0663 PaaY Carbonic anhydrase or acetyltransferase, isoleucine patch superfamily [General function prediction only]. 176 -223736 COG0664 Crp cAMP-binding domain of CRP or a regulatory subunit of cAMP-dependent protein kinases [Signal transduction mechanisms]. 214 -223737 COG0665 DadA Glycine/D-amino acid oxidase (deaminating) [Amino acid transport and metabolism]. 387 -223738 COG0666 ANKYR Ankyrin repeat [Signal transduction mechanisms]. 235 -223739 COG0667 Tas Predicted oxidoreductase (related to aryl-alcohol dehydrogenase) [General function prediction only]. 316 -223740 COG0668 MscS Small-conductance mechanosensitive channel [Cell wall/membrane/envelope biogenesis]. 316 -223741 COG0669 CoaD Phosphopantetheine adenylyltransferase [Coenzyme transport and metabolism]. 159 -223742 COG0670 YbhL Integral membrane protein, interacts with FtsH [General function prediction only]. 233 -223743 COG0671 PgpB Membrane-associated phospholipid phosphatase [Lipid transport and metabolism]. 232 -223744 COG0672 FTR1 High-affinity Fe2+/Pb2+ permease [Inorganic ion transport and metabolism]. 383 -223745 COG0673 MviM Predicted dehydrogenase [General function prediction only]. 342 -223746 COG0674 PorA Pyruvate:ferredoxin oxidoreductase or related 2-oxoacid:ferredoxin oxidoreductase, alpha subunit [Energy production and conversion]. 365 -223747 COG0675 InsQ Transposase [Mobilome: prophages, transposons]. 364 -223748 COG0676 YeaD D-hexose-6-phosphate mutarotase [Carbohydrate transport and metabolism]. 287 -223749 COG0677 WecC UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]. 436 -223750 COG0678 AHP1 Peroxiredoxin [Posttranslational modification, protein turnover, chaperones]. 165 -223751 COG0679 YfdV Predicted permease [General function prediction only]. 311 -223752 COG0680 HyaD Ni,Fe-hydrogenase maturation factor [Energy production and conversion]. 160 -223753 COG0681 LepB Signal peptidase I [Intracellular trafficking, secretion, and vesicular transport]. 166 -223754 COG0682 Lgt Prolipoprotein diacylglyceryltransferase [Cell wall/membrane/envelope biogenesis]. 287 -223755 COG0683 LivK ABC-type branched-chain amino acid transport system, periplasmic component [Amino acid transport and metabolism]. 366 -223756 COG0684 RraA Regulator of RNase E activity RraA [Translation, ribosomal structure and biogenesis]. 210 -223757 COG0685 MetF 5,10-methylenetetrahydrofolate reductase [Amino acid transport and metabolism]. 291 -223758 COG0686 Ald Alanine dehydrogenase [Amino acid transport and metabolism]. 371 -223759 COG0687 PotD Spermidine/putrescine-binding periplasmic protein [Amino acid transport and metabolism]. 363 -223760 COG0688 Psd Phosphatidylserine decarboxylase [Lipid transport and metabolism]. 239 -223761 COG0689 Rph Ribonuclease PH [Translation, ribosomal structure and biogenesis]. 230 -223762 COG0690 SecE Preprotein translocase subunit SecE [Intracellular trafficking, secretion, and vesicular transport]. 73 -223763 COG0691 SmpB tmRNA-binding protein [Posttranslational modification, protein turnover, chaperones]. 153 -223764 COG0692 Ung Uracil DNA glycosylase [Replication, recombination and repair]. 223 -223765 COG0693 ThiJ Putative intracellular protease/amidase [General function prediction only]. 188 -223766 COG0694 NifU Fe-S cluster biogenesis protein NfuA, 4Fe-4S-binding domain [Posttranslational modification, protein turnover, chaperones]. 93 -223767 COG0695 GrxC Glutaredoxin [Posttranslational modification, protein turnover, chaperones]. 80 -223768 COG0696 GpmI Phosphoglycerate mutase (BPG-independent, AlkP superfamily) [Carbohydrate transport and metabolism]. 509 -223769 COG0697 RhaT Permease of the drug/metabolite transporter (DMT) superfamily [Carbohydrate transport and metabolism, Amino acid transport and metabolism, General function prediction only]. 292 -223770 COG0698 RpiB Ribose 5-phosphate isomerase RpiB [Carbohydrate transport and metabolism]. 151 -223771 COG0699 CrfC Replication fork clamp-binding protein CrfC (dynamin-like GTPase family) [Replication, recombination and repair]. 546 -223772 COG0700 SpmB Spore maturation protein SpmB (function unknown) [Function unknown]. 162 -223773 COG0701 YraQ Uncharacterized membrane protein YraQ, UPF0718 family [Function unknown]. 317 -223774 COG0702 YbjT Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]. 275 -223775 COG0703 AroK Shikimate kinase [Amino acid transport and metabolism]. 172 -223776 COG0704 PhoU Phosphate uptake regulator [Inorganic ion transport and metabolism]. 240 -223777 COG0705 GlpG Membrane associated serine protease, rhomboid family [Posttranslational modification, protein turnover, chaperones]. 228 -223778 COG0706 YidC Membrane protein insertase Oxa1/YidC/SpoIIIJ, required for the localization of integral membrane proteins [Cell wall/membrane/envelope biogenesis]. 314 -223779 COG0707 MurG UDP-N-acetylglucosamine:LPS N-acetylglucosamine transferase [Cell wall/membrane/envelope biogenesis]. 357 -223780 COG0708 XthA Exonuclease III [Replication, recombination and repair]. 261 -223781 COG0709 SelD Selenophosphate synthase [Amino acid transport and metabolism]. 346 -223782 COG0710 AroD 3-dehydroquinate dehydratase [Amino acid transport and metabolism]. 231 -223783 COG0711 AtpF FoF1-type ATP synthase, membrane subunit b or b' [Energy production and conversion]. 161 -223784 COG0712 AtpH FoF1-type ATP synthase, delta subunit [Energy production and conversion]. 178 -223785 COG0713 NuoK NADH:ubiquinone oxidoreductase subunit 11 or 4L (chain K) [Energy production and conversion]. 100 -223786 COG0714 MoxR MoxR-like ATPase [General function prediction only]. 329 -223787 COG0715 TauA ABC-type nitrate/sulfonate/bicarbonate transport system, periplasmic component [Inorganic ion transport and metabolism]. 335 -223788 COG0716 FldA Flavodoxin [Energy production and conversion]. 151 -223789 COG0717 Dcd Deoxycytidine triphosphate deaminase [Nucleotide transport and metabolism]. 183 -223790 COG0718 YbaB Conserved DNA-binding protein YbaB (function unknown) [General function prediction only]. 105 -223791 COG0719 SufB Fe-S cluster assembly scaffold protein SufB [Posttranslational modification, protein turnover, chaperones]. 412 -223792 COG0720 QueD 6-pyruvoyl-tetrahydropterin synthase [Coenzyme transport and metabolism]. 127 -223793 COG0721 GatC Asp-tRNAAsn/Glu-tRNAGln amidotransferase C subunit [Translation, ribosomal structure and biogenesis]. 96 -223794 COG0722 AroG1 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase [Amino acid transport and metabolism]. 351 -223795 COG0723 QcrA Rieske Fe-S protein [Energy production and conversion]. 177 -223796 COG0724 RRM RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis]. 306 -223797 COG0725 ModA ABC-type molybdate transport system, periplasmic component [Inorganic ion transport and metabolism]. 258 -223798 COG0726 CDA1 Peptidoglycan/xylan/chitin deacetylase, PgdA/CDA1 family [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 267 -223799 COG0727 YkgJ Fe-S-cluster containining protein [General function prediction only]. 132 -223800 COG0728 MviN Peptidoglycan biosynthesis protein MviN/MurJ, putative lipid II flippase [Cell wall/membrane/envelope biogenesis]. 518 -223801 COG0729 TamA Outer membrane translocation and assembly module TamA [Cell wall/membrane/envelope biogenesis]. 594 -223802 COG0730 YfcA Uncharacterized membrane protein YfcA [Function unknown]. 258 -223803 COG0731 Tyw1 Wyosine [tRNA(Phe)-imidazoG37] synthetase, radical SAM superfamily [Translation, ribosomal structure and biogenesis]. 296 -223804 COG0732 HsdS Restriction endonuclease S subunit [Defense mechanisms]. 391 -223805 COG0733 YocR Na+-dependent transporter, SNF family [General function prediction only]. 439 -223806 COG0735 Fur Fe2+ or Zn2+ uptake regulation protein [Inorganic ion transport and metabolism]. 145 -223807 COG0736 AcpS Phosphopantetheinyl transferase (holo-ACP synthase) [Lipid transport and metabolism]. 127 -223808 COG0737 UshA 2',3'-cyclic-nucleotide 2'-phosphodiesterase/5'- or 3'-nucleotidase, 5'-nucleotidase family [Nucleotide transport and metabolism, Defense mechanisms]. 517 -223809 COG0738 FucP Fucose permease [Carbohydrate transport and metabolism]. 422 -223810 COG0739 NlpD Murein DD-endopeptidase MepM and murein hydrolase activator NlpD, contain LysM domain [Cell wall/membrane/envelope biogenesis]. 277 -223811 COG0740 ClpP ATP-dependent protease ClpP, protease subunit [Posttranslational modification, protein turnover, chaperones]. 200 -223812 COG0741 MltE Soluble lytic murein transglycosylase and related regulatory proteins (some contain LysM/invasin domains) [Cell wall/membrane/envelope biogenesis]. 296 -223813 COG0742 RsmD 16S rRNA G966 N2-methylase RsmD [Translation, ribosomal structure and biogenesis]. 187 -223814 COG0743 Dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Lipid transport and metabolism]. 385 -223815 COG0744 MrcB Membrane carboxypeptidase (penicillin-binding protein) [Cell wall/membrane/envelope biogenesis]. 661 -223816 COG0745 OmpR DNA-binding response regulator, OmpR family, contains REC and winged-helix (wHTH) domain [Signal transduction mechanisms, Transcription]. 229 -223817 COG0746 MobA Molybdopterin-guanine dinucleotide biosynthesis protein A [Coenzyme transport and metabolism]. 192 -223818 COG0747 DdpA ABC-type transport system, periplasmic component [Amino acid transport and metabolism]. 556 -223819 COG0748 HugZ Putative heme iron utilization protein [Inorganic ion transport and metabolism]. 245 -223820 COG0749 PolA DNA polymerase I - 3'-5' exonuclease and polymerase domains [Replication, recombination and repair]. 593 -223821 COG0750 RseP Membrane-associated protease RseP, regulator of RpoE activity [Posttranslational modification, protein turnover, chaperones, Transcription]. 375 -223822 COG0751 GlyS Glycyl-tRNA synthetase, beta subunit [Translation, ribosomal structure and biogenesis]. 691 -223823 COG0752 GlyQ Glycyl-tRNA synthetase, alpha subunit [Translation, ribosomal structure and biogenesis]. 298 -223824 COG0753 KatE Catalase [Inorganic ion transport and metabolism]. 496 -223825 COG0754 Gsp Glutathionylspermidine synthase [Amino acid transport and metabolism]. 387 -223826 COG0755 CcmC ABC-type transport system involved in cytochrome c biogenesis, permease component [Posttranslational modification, protein turnover, chaperones]. 281 -223827 COG0756 Dut dUTPase [Nucleotide transport and metabolism, Defense mechanisms]. 148 -223828 COG0757 AroQ 3-dehydroquinate dehydratase [Amino acid transport and metabolism]. 146 -223829 COG0758 Smf Predicted Rossmann fold nucleotide-binding protein DprA/Smf involved in DNA uptake [Replication, recombination and repair]. 350 -223830 COG0759 YidD Membrane-anchored protein YidD, putatitve component of membrane protein insertase Oxa1/YidC/SpoIIIJ [Cell wall/membrane/envelope biogenesis]. 92 -223831 COG0760 SurA Parvulin-like peptidyl-prolyl isomerase [Posttranslational modification, protein turnover, chaperones]. 320 -223832 COG0761 IspH 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase IspH [Lipid transport and metabolism]. 294 -223833 COG0762 Ycf19 Uncharacterized conserved protein YggT, Ycf19 family [Function unknown]. 96 -223834 COG0763 LpxB Lipid A disaccharide synthetase [Cell wall/membrane/envelope biogenesis]. 381 -223835 COG0764 FabA 3-hydroxymyristoyl/3-hydroxydecanoyl-(acyl carrier protein) dehydratase [Lipid transport and metabolism]. 147 -223836 COG0765 HisM ABC-type amino acid transport system, permease component [Amino acid transport and metabolism]. 222 -223837 COG0766 MurA UDP-N-acetylglucosamine enolpyruvyl transferase [Cell wall/membrane/envelope biogenesis]. 421 -223838 COG0767 MlaE ABC-type transporter Mla maintaining outer membrane lipid asymmetry, permease component MlaE [Cell wall/membrane/envelope biogenesis]. 267 -223839 COG0768 FtsI Cell division protein FtsI/penicillin-binding protein 2 [Cell cycle control, cell division, chromosome partitioning, Cell wall/membrane/envelope biogenesis]. 599 -223840 COG0769 MurE UDP-N-acetylmuramyl tripeptide synthase [Cell wall/membrane/envelope biogenesis]. 475 -223841 COG0770 MurF UDP-N-acetylmuramyl pentapeptide synthase [Cell wall/membrane/envelope biogenesis]. 451 -223842 COG0771 MurD UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell wall/membrane/envelope biogenesis]. 448 -223843 COG0772 FtsW Bacterial cell division protein FtsW, lipid II flippase [Cell cycle control, cell division, chromosome partitioning]. 381 -223844 COG0773 MurC UDP-N-acetylmuramate-alanine ligase [Cell wall/membrane/envelope biogenesis]. 459 -223845 COG0774 LpxC UDP-3-O-acyl-N-acetylglucosamine deacetylase [Cell wall/membrane/envelope biogenesis]. 300 -223846 COG0775 Pfs Nucleoside phosphorylase [Nucleotide transport and metabolism]. 234 -223847 COG0776 HimA Bacterial nucleoid DNA-binding protein [Replication, recombination and repair]. 94 -223848 COG0777 AccD Acetyl-CoA carboxylase beta subunit [Lipid transport and metabolism]. 294 -223849 COG0778 NfnB Nitroreductase [Energy production and conversion]. 207 -223850 COG0779 RimP Ribosome maturation factor RimP [Translation, ribosomal structure and biogenesis]. 153 -223851 COG0780 QueFC NADPH-dependent 7-cyano-7-deazaguanine reductase QueF, C-terminal domain, T-fold superfamily [Translation, ribosomal structure and biogenesis]. 149 -223852 COG0781 NusB Transcription termination factor NusB [Transcription]. 151 -223853 COG0782 GreA Transcription elongation factor, GreA/GreB family [Transcription]. 151 -223854 COG0783 Dps DNA-binding ferritin-like protein (oxidative damage protectant) [Inorganic ion transport and metabolism, Defense mechanisms]. 156 -223855 COG0784 CheY CheY chemotaxis protein or a CheY-like REC (receiver) domain [Signal transduction mechanisms]. 130 -223856 COG0785 CcdA Cytochrome c biogenesis protein CcdA [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 220 -223857 COG0786 GltS Na+/glutamate symporter [Amino acid transport and metabolism]. 404 -223858 COG0787 Alr Alanine racemase [Cell wall/membrane/envelope biogenesis]. 360 -223859 COG0788 PurU Formyltetrahydrofolate hydrolase [Nucleotide transport and metabolism]. 287 -223860 COG0789 SoxR DNA-binding transcriptional regulator, MerR family [Transcription]. 124 -223861 COG0790 TPR TPR repeat [Signal transduction mechanisms]. 292 -223862 COG0791 Spr Cell wall-associated hydrolase, NlpC family [Cell wall/membrane/envelope biogenesis]. 197 -223863 COG0792 YraN Predicted endonuclease distantly related to archaeal Holliday junction resolvase [Replication, recombination and repair]. 114 -223864 COG0793 CtpA C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones]. 406 -223865 COG0794 GutQ D-arabinose 5-phosphate isomerase GutQ [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 202 -223866 COG0795 LptF Lipopolysaccharide export LptBFGC system, permease protein LptF [Cell wall/membrane/envelope biogenesis, Cell motility]. 364 -223867 COG0796 MurI Glutamate racemase [Cell wall/membrane/envelope biogenesis]. 269 -223868 COG0797 RlpA Rare lipoprotein A, peptidoglycan hydrolase digesting "naked" glycans, contains C-terminal SPOR domain [Cell wall/membrane/envelope biogenesis]. 233 -223869 COG0798 ACR3 Arsenite efflux pump ArsB, ACR3 family [Inorganic ion transport and metabolism]. 342 -223870 COG0799 RsfS Ribosomal silencing factor RsfS, regulates association of 30S and 50S subunits [Translation, ribosomal structure and biogenesis]. 115 -223871 COG0800 Eda 2-keto-3-deoxy-6-phosphogluconate aldolase [Carbohydrate transport and metabolism]. 211 -223872 COG0801 FolK 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase [Coenzyme transport and metabolism]. 160 -223873 COG0802 TsaE tRNA A37 threonylcarbamoyladenosine biosynthesis protein TsaE [Translation, ribosomal structure and biogenesis]. 149 -223874 COG0803 ZnuA ABC-type Zn uptake system ZnuABC, Zn-binding component ZnuA [Inorganic ion transport and metabolism]. 303 -223875 COG0804 UreC Urease alpha subunit [Amino acid transport and metabolism]. 568 -223876 COG0805 TatC Sec-independent protein secretion pathway component TatC [Intracellular trafficking, secretion, and vesicular transport]. 255 -223877 COG0806 RimM Ribosomal 30S subunit maturation factor RimM, required for 16S rRNA processing [Translation, ribosomal structure and biogenesis]. 174 -223878 COG0807 RibA GTP cyclohydrolase II [Coenzyme transport and metabolism]. 193 -223879 COG0809 QueA S-adenosylmethionine:tRNA-ribosyltransferase-isomerase (queuine synthetase) [Translation, ribosomal structure and biogenesis]. 348 -223880 COG0810 TonB Periplasmic protein TonB, links inner and outer membranes [Cell wall/membrane/envelope biogenesis]. 244 -223881 COG0811 TolQ Biopolymer transport protein ExbB/TolQ [Intracellular trafficking, secretion, and vesicular transport]. 216 -223882 COG0812 MurB UDP-N-acetylenolpyruvoylglucosamine reductase [Cell wall/membrane/envelope biogenesis]. 291 -223883 COG0813 DeoD Purine-nucleoside phosphorylase [Nucleotide transport and metabolism]. 236 -223884 COG0814 SdaC Amino acid permease [Amino acid transport and metabolism]. 415 -223885 COG0815 Lnt Apolipoprotein N-acyltransferase [Cell wall/membrane/envelope biogenesis]. 518 -223886 COG0816 YqgF RNase H-fold protein, predicted Holliday junction resolvase in Firmicutes and mycoplasms, involved in anti-termination at Rho-dependent terminators [Transcription]. 141 -223887 COG0817 RuvC Holliday junction resolvasome RuvABC endonuclease subunit [Replication, recombination and repair]. 160 -223888 COG0818 DgkA Diacylglycerol kinase [Lipid transport and metabolism]. 123 -223889 COG0819 TenA Thiaminase [Coenzyme transport and metabolism]. 218 -223890 COG0820 RlmN Adenine C2-methylase RlmN of 23S rRNA A2503 and tRNA A37 [Translation, ribosomal structure and biogenesis]. 349 -223891 COG0821 IspG 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG/GcpE [Lipid transport and metabolism]. 361 -223892 COG0822 IscU NifU homolog involved in Fe-S cluster formation [Posttranslational modification, protein turnover, chaperones]. 150 -223893 COG0823 TolB Periplasmic component of the Tol biopolymer transport system [Intracellular trafficking, secretion, and vesicular transport]. 425 -223894 COG0824 FadM Acyl-CoA thioesterase FadM [Lipid transport and metabolism]. 137 -223895 COG0825 AccA Acetyl-CoA carboxylase alpha subunit [Lipid transport and metabolism]. 317 -223896 COG0826 PrtC Collagenase-like protease, PrtC family [Posttranslational modification, protein turnover, chaperones]. 347 -223897 COG0827 YtxK Adenine-specific DNA methylase [Replication, recombination and repair]. 381 -223898 COG0828 RpsU Ribosomal protein S21 [Translation, ribosomal structure and biogenesis]. 67 -223899 COG0829 UreH Urease accessory protein UreH [Posttranslational modification, protein turnover, chaperones]. 269 -223900 COG0830 UreF Urease accessory protein UreF [Posttranslational modification, protein turnover, chaperones]. 229 -223901 COG0831 UreA Urease gamma subunit [Amino acid transport and metabolism]. 100 -223902 COG0832 UreB Urease beta subunit [Amino acid transport and metabolism]. 106 -223903 COG0833 LysP Amino acid permease [Amino acid transport and metabolism]. 541 -223904 COG0834 HisJ ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]. 275 -223905 COG0835 CheW Chemotaxis signal transduction protein [Cell motility, Signal transduction mechanisms]. 165 -223906 COG0836 CpsB Mannose-1-phosphate guanylyltransferase [Cell wall/membrane/envelope biogenesis]. 333 -223907 COG0837 Glk Glucokinase [Carbohydrate transport and metabolism]. 320 -223908 COG0838 NuoA NADH:ubiquinone oxidoreductase subunit 3 (chain A) [Energy production and conversion]. 123 -223909 COG0839 NuoJ NADH:ubiquinone oxidoreductase subunit 6 (chain J) [Energy production and conversion]. 166 -223910 COG0840 Tar Methyl-accepting chemotaxis protein [Cell motility, Signal transduction mechanisms]. 408 -223911 COG0841 AcrB Multidrug efflux pump subunit AcrB [Defense mechanisms]. 1009 -223912 COG0842 YadH ABC-type multidrug transport system, permease component [Defense mechanisms]. 286 -223913 COG0843 CyoB Heme/copper-type cytochrome/quinol oxidase, subunit 1 [Energy production and conversion]. 566 -223914 COG0845 AcrA Multidrug efflux pump subunit AcrA (membrane-fusion protein) [Cell wall/membrane/envelope biogenesis, Defense mechanisms]. 372 -223915 COG0846 SIR2 NAD-dependent protein deacetylase, SIR2 family [Posttranslational modification, protein turnover, chaperones]. 250 -223916 COG0847 DnaQ DNA polymerase III, epsilon subunit or related 3'-5' exonuclease [Replication, recombination and repair]. 243 -223917 COG0848 ExbD Biopolymer transport protein ExbD [Intracellular trafficking, secretion, and vesicular transport]. 137 -223918 COG0849 FtsA Cell division ATPase FtsA [Cell cycle control, cell division, chromosome partitioning]. 418 -223919 COG0850 MinC Septum formation inhibitor MinC [Cell cycle control, cell division, chromosome partitioning]. 219 -223920 COG0851 MinE Septum formation topological specificity factor MinE [Cell cycle control, cell division, chromosome partitioning]. 88 -223921 COG0852 NuoC NADH:ubiquinone oxidoreductase 27 kD subunit (chain C) [Energy production and conversion]. 176 -223922 COG0853 PanD Aspartate 1-decarboxylase [Coenzyme transport and metabolism]. 126 -223923 COG0854 PdxJ Pyridoxine 5'-phosphate synthase PdxJ [Coenzyme transport and metabolism]. 243 -223924 COG0855 Ppk Polyphosphate kinase [Inorganic ion transport and metabolism]. 696 -223925 COG0856 PyrE2 Orotate phosphoribosyltransferase homolog [Nucleotide transport and metabolism]. 203 -223926 COG0857 PtaN BioD-like N-terminal domain of phosphotransacetylase [General function prediction only]. 354 -223927 COG0858 RbfA Ribosome-binding factor A [Translation, ribosomal structure and biogenesis]. 118 -223928 COG0859 RfaF ADP-heptose:LPS heptosyltransferase [Cell wall/membrane/envelope biogenesis]. 334 -223929 COG0860 AmiC N-acetylmuramoyl-L-alanine amidase [Cell wall/membrane/envelope biogenesis]. 231 -223930 COG0861 TerC Membrane protein TerC, possibly involved in tellurium resistance [Inorganic ion transport and metabolism]. 254 -223931 COG0863 YhdJ DNA modification methylase [Replication, recombination and repair]. 302 -223932 COG0864 NikR Metal-responsive transcriptional regulator, contains CopG/Arc/MetJ DNA-binding domain [Transcription]. 136 -223933 COG1001 AdeC Adenine deaminase [Nucleotide transport and metabolism]. 584 -223934 COG1002 YeeA Type II restriction/modification system, DNA methylase subunit YeeA [Defense mechanisms]. 786 -223935 COG1003 GcvP2 Glycine cleavage system protein P (pyridoxal-binding), C-terminal domain [Amino acid transport and metabolism]. 496 -223936 COG1004 Ugd UDP-glucose 6-dehydrogenase [Cell wall/membrane/envelope biogenesis]. 414 -223937 COG1005 NuoH NADH:ubiquinone oxidoreductase subunit 1 (chain H) [Energy production and conversion]. 332 -223938 COG1006 MnhC Multisubunit Na+/H+ antiporter, MnhC subunit [Inorganic ion transport and metabolism]. 115 -223939 COG1007 NuoN NADH:ubiquinone oxidoreductase subunit 2 (chain N) [Energy production and conversion]. 475 -223940 COG1008 NuoM NADH:ubiquinone oxidoreductase subunit 4 (chain M) [Energy production and conversion]. 497 -223941 COG1009 NuoL NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 606 -223942 COG1010 CobJ Precorrin-3B methylase [Coenzyme transport and metabolism]. 249 -223943 COG1011 YigB FMN phosphatase YigB, HAD superfamily [Coenzyme transport and metabolism]. 229 -223944 COG1012 AdhE Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase [Energy production and conversion]. 472 -223945 COG1013 PorB Pyruvate:ferredoxin oxidoreductase or related 2-oxoacid:ferredoxin oxidoreductase, beta subunit [Energy production and conversion]. 294 -223946 COG1014 PorG Pyruvate:ferredoxin oxidoreductase or related 2-oxoacid:ferredoxin oxidoreductase, gamma subunit [Energy production and conversion]. 203 -223947 COG1015 DeoB Phosphopentomutase [Carbohydrate transport and metabolism]. 397 -223948 COG1017 Hmp Hemoglobin-like flavoprotein [Energy production and conversion]. 150 -223949 COG1018 Fpr Ferredoxin-NADP reductase [Energy production and conversion]. 266 -223950 COG1019 CAB4 Phosphopantetheine adenylyltransferase [Coenzyme transport and metabolism]. 158 -223951 COG1020 EntF Non-ribosomal peptide synthetase component F [Secondary metabolites biosynthesis, transport and catabolism]. 642 -223952 COG1021 EntE Non-ribosomal peptide synthetase component E (peptide arylation enzyme) [Secondary metabolites biosynthesis, transport and catabolism]. 542 -223953 COG1022 FAA1 Long-chain acyl-CoA synthetase (AMP-forming) [Lipid transport and metabolism]. 613 -223954 COG1023 YqeC 6-phosphogluconate dehydrogenase (decarboxylating) [Carbohydrate transport and metabolism]. 300 -223955 COG1024 CaiD Enoyl-CoA hydratase/carnithine racemase [Lipid transport and metabolism]. 257 -223956 COG1025 Ptr Secreted/periplasmic Zn-dependent peptidases, insulinase-like [Posttranslational modification, protein turnover, chaperones]. 937 -223957 COG1026 Cym1 Zn-dependent peptidase, M16 (insulinase) family [Posttranslational modification, protein turnover, chaperones]. 978 -223958 COG1027 AspA Aspartate ammonia-lyase [Amino acid transport and metabolism]. 471 -223959 COG1028 FabG NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family [Lipid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]. 251 -223960 COG1029 FwdB Formylmethanofuran dehydrogenase subunit B [Energy production and conversion]. 429 -223961 COG1030 NfeD Membrane-bound serine protease (ClpP class) [Posttranslational modification, protein turnover, chaperones]. 436 -223962 COG1031 TM1601 Radical SAM superfamily enzyme with C-terminal helix-hairpin-helix motif [General function prediction only]. 560 -223963 COG1032 YgiQ Radical SAM superfamily enzyme YgiQ, UPF0313 family [General function prediction only]. 490 -223964 COG1033 COG1033 Predicted exporter protein, RND superfamily [General function prediction only]. 727 -223965 COG1034 NuoG NADH dehydrogenase/NADH:ubiquinone oxidoreductase 75 kD subunit (chain G) [Energy production and conversion]. 693 -223966 COG1035 FrhB Coenzyme F420-reducing hydrogenase, beta subunit [Energy production and conversion]. 332 -223967 COG1036 COG1036 Archaeal flavoprotein [Energy production and conversion]. 187 -223968 COG1038 PycA Pyruvate carboxylase [Energy production and conversion]. 1149 -223969 COG1039 RnhC Ribonuclease HIII [Replication, recombination and repair]. 297 -223970 COG1040 ComFC Predicted amidophosphoribosyltransferases [General function prediction only]. 225 -223971 COG1041 Trm11 tRNA G10 N-methylase Trm11 [Translation, ribosomal structure and biogenesis]. 347 -223972 COG1042 ACCS Acyl-CoA synthetase (NDP forming) [Energy production and conversion]. 598 -223973 COG1043 LpxA Acyl-[acyl carrier protein]--UDP-N-acetylglucosamine O-acyltransferase [Cell wall/membrane/envelope biogenesis]. 260 -223974 COG1044 LpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase [Cell wall/membrane/envelope biogenesis]. 338 -223975 COG1045 CysE Serine acetyltransferase [Amino acid transport and metabolism]. 194 -223976 COG1047 SlpA FKBP-type peptidyl-prolyl cis-trans isomerase 2 [Posttranslational modification, protein turnover, chaperones]. 174 -223977 COG1048 AcnA Aconitase A [Energy production and conversion]. 861 -223978 COG1049 AcnB Aconitase B [Energy production and conversion]. 852 -223979 COG1051 YjhB ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]. 145 -223980 COG1052 LdhA Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, Coenzyme transport and metabolism, General function prediction only]. 324 -223981 COG1053 SdhA Succinate dehydrogenase/fumarate reductase, flavoprotein subunit [Energy production and conversion]. 562 -223982 COG1054 YceA Predicted sulfurtransferase [General function prediction only]. 308 -223983 COG1055 ArsB Na+/H+ antiporter NhaD or related arsenite permease [Inorganic ion transport and metabolism]. 424 -223984 COG1056 NadR Nicotinamide mononucleotide adenylyltransferase [Coenzyme transport and metabolism]. 172 -223985 COG1057 NadD Nicotinic acid mononucleotide adenylyltransferase [Coenzyme transport and metabolism]. 197 -223986 COG1058 CinA Predicted nucleotide-utilizing enzyme related to molybdopterin-biosynthesis enzyme MoeA [General function prediction only]. 255 -223987 COG1059 ENDO3c Thermostable 8-oxoguanine DNA glycosylase [Replication, recombination and repair, Defense mechanisms]. 210 -223988 COG1060 ThiH 2-iminoacetate synthase ThiH/Menaquinone biosynthesis enzyme MqnC [Coenzyme transport and metabolism]. 370 -223989 COG1061 SSL2 Superfamily II DNA or RNA helicase [Transcription, Replication, recombination and repair]. 442 -223990 COG1062 FrmA Zn-dependent alcohol dehydrogenase [General function prediction only]. 366 -223991 COG1063 Tdh Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and metabolism, General function prediction only]. 350 -223992 COG1064 AdhP D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family [Carbohydrate transport and metabolism]. 339 -223993 COG1066 Sms Predicted ATP-dependent serine protease [Posttranslational modification, protein turnover, chaperones]. 456 -223994 COG1067 LonB Predicted ATP-dependent protease [Posttranslational modification, protein turnover, chaperones]. 647 -223995 COG1069 AraB Ribulose kinase [Carbohydrate transport and metabolism]. 544 -223996 COG1070 XylB Sugar (pentulose or hexulose) kinase [Carbohydrate transport and metabolism]. 502 -223997 COG1071 AcoA TPP-dependent pyruvate or acetoin dehydrogenase subunit alpha [Energy production and conversion]. 358 -223998 COG1072 CoaA Panthothenate kinase [Coenzyme transport and metabolism]. 283 -223999 COG1073 FrsA Fermentation-respiration switch protein FrsA, has esterase activity, DUF1100 family [Signal transduction mechanisms]. 299 -224000 COG1074 RecB ATP-dependent exoDNAse (exonuclease V) beta subunit (contains helicase and exonuclease domains) [Replication, recombination and repair]. 1139 -224001 COG1075 EstA Triacylglycerol esterase/lipase EstA, alpha/beta hydrolase fold [Lipid transport and metabolism]. 336 -224002 COG1076 DjlA DnaJ-domain-containing proteins 1 [Posttranslational modification, protein turnover, chaperones]. 174 -224003 COG1077 MreB Actin-like ATPase involved in cell morphogenesis [Cell cycle control, cell division, chromosome partitioning]. 342 -224004 COG1078 YdhJ HD superfamily phosphohydrolase [General function prediction only]. 421 -224005 COG1079 YufQ ABC-type uncharacterized transport system, permease component [General function prediction only]. 304 -224006 COG1080 PtsA Phosphoenolpyruvate-protein kinase (PTS system EI component in bacteria) [Carbohydrate transport and metabolism]. 574 -224007 COG1082 YcjR Sugar phosphate isomerase/epimerase [Carbohydrate transport and metabolism]. 274 -224008 COG1083 NeuA CMP-N-acetylneuraminic acid synthetase [Cell wall/membrane/envelope biogenesis]. 228 -224009 COG1084 Nog1 GTP-binding protein, GTP1/Obg family [General function prediction only]. 346 -224010 COG1085 GalT Galactose-1-phosphate uridylyltransferase [Carbohydrate transport and metabolism]. 338 -224011 COG1086 FlaA1 NDP-sugar epimerase, includes UDP-GlcNAc-inverting 4,6-dehydratase FlaA1 and capsular polysaccharide biosynthesis protein EpsC [Cell wall/membrane/envelope biogenesis, Posttranslational modification, protein turnover, chaperones]. 588 -224012 COG1087 GalE UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]. 329 -224013 COG1088 RfbB dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis]. 340 -224014 COG1089 Gmd GDP-D-mannose dehydratase [Cell wall/membrane/envelope biogenesis]. 345 -224015 COG1090 YfcH NAD dependent epimerase/dehydratase family enzyme [General function prediction only]. 297 -224016 COG1091 RfbD dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis]. 281 -224017 COG1092 RlmK 23S rRNA G2069 N7-methylase RlmK or C1962 C5-methylase RlmI [Translation, ribosomal structure and biogenesis]. 393 -224018 COG1093 SUI2 Translation initiation factor 2, alpha subunit (eIF-2alpha) [Translation, ribosomal structure and biogenesis]. 269 -224019 COG1094 Krr1 rRNA processing protein Krr1/Pno1, contains KH domain [Translation, ribosomal structure and biogenesis]. 194 -224020 COG1095 RPB7 DNA-directed RNA polymerase, subunit E'/Rpb7 [Transcription]. 183 -224021 COG1096 Csl4 Exosome complex RNA-binding protein Csl4, contains S1 and Zn-ribbon domains [Translation, ribosomal structure and biogenesis]. 188 -224022 COG1097 Rrp4 Exosome complex RNA-binding protein Rrp4, contains S1 and KH domains [Translation, ribosomal structure and biogenesis]. 239 -224023 COG1098 YabR Predicted RNA-binding protein, contains ribosomal protein S1 (RPS1) domain [General function prediction only]. 129 -224024 COG1099 COG1099 Predicted metal-dependent hydrolase, TIM-barrel fold [General function prediction only]. 254 -224025 COG1100 Gem1 GTPase SAR1 family domain [General function prediction only]. 219 -224026 COG1101 PhnK ABC-type uncharacterized transport system, ATPase component [General function prediction only]. 263 -224027 COG1102 CmkB Cytidylate kinase [Nucleotide transport and metabolism]. 179 -224028 COG1103 COG1103 Archaeal Cys-tRNA synthase (O-phospho-L-seryl-tRNA:Cys-tRNA synthase) [Translation, ribosomal structure and biogenesis]. 382 -224029 COG1104 NifS Cysteine sulfinate desulfinase/cysteine desulfurase or related enzyme [Amino acid transport and metabolism]. 386 -224030 COG1105 FruK Fructose-1-phosphate kinase or kinase (PfkB) [Carbohydrate transport and metabolism]. 310 -224031 COG1106 AAA15 ATPase/GTPase, AAA15 family [General function prediction only]. 371 -224032 COG1107 COG1107 Archaea-specific RecJ-like exonuclease, contains DnaJ-type Zn finger domain [Replication, recombination and repair]. 715 -224033 COG1108 ZnuB ABC-type Mn2+/Zn2+ transport system, permease component [Inorganic ion transport and metabolism]. 274 -224034 COG1109 ManB Phosphomannomutase [Carbohydrate transport and metabolism]. 464 -224035 COG1110 TopG2 Reverse gyrase [Replication, recombination and repair]. 1187 -224036 COG1111 MPH1 ERCC4-related helicase [Replication, recombination and repair]. 542 -224037 COG1112 DNA2 Superfamily I DNA and/or RNA helicase [Replication, recombination and repair]. 767 -224038 COG1113 AnsP L-asparagine transporter and related permeases [Amino acid transport and metabolism]. 462 -224039 COG1114 BrnQ Branched-chain amino acid permeases [Amino acid transport and metabolism]. 431 -224040 COG1115 AlsT Na+/alanine symporter [Amino acid transport and metabolism]. 452 -224041 COG1116 TauB ABC-type nitrate/sulfonate/bicarbonate transport system, ATPase component [Inorganic ion transport and metabolism]. 248 -224042 COG1117 PstB ABC-type phosphate transport system, ATPase component [Inorganic ion transport and metabolism]. 253 -224043 COG1118 CysA ABC-type sulfate/molybdate transport systems, ATPase component [Inorganic ion transport and metabolism]. 345 -224044 COG1119 ModF ABC-type molybdenum transport system, ATPase component/photorepair protein PhrA [Inorganic ion transport and metabolism]. 257 -224045 COG1120 FepC ABC-type cobalamin/Fe3+-siderophores transport system, ATPase component [Inorganic ion transport and metabolism, Coenzyme transport and metabolism]. 258 -224046 COG1121 ZnuC ABC-type Mn2+/Zn2+ transport system, ATPase component [Inorganic ion transport and metabolism]. 254 -224047 COG1122 EcfA2 Energy-coupling factor transporter ATP-binding protein EcfA2 [Inorganic ion transport and metabolism, General function prediction only]. 235 -224048 COG1123 GsiA ABC-type glutathione transport system ATPase component, contains duplicated ATPase domain [Posttranslational modification, protein turnover, chaperones]. 539 -224049 COG1124 DppF ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component [Amino acid transport and metabolism, Inorganic ion transport and metabolism]. 252 -224050 COG1125 OpuBA ABC-type proline/glycine betaine transport system, ATPase component [Amino acid transport and metabolism]. 309 -224051 COG1126 GlnQ ABC-type polar amino acid transport system, ATPase component [Amino acid transport and metabolism]. 240 -224052 COG1127 MlaF ABC-type transporter Mla maintaining outer membrane lipid asymmetry, ATPase component MlaF [Cell wall/membrane/envelope biogenesis]. 263 -224053 COG1129 MglA ABC-type sugar transport system, ATPase component [Carbohydrate transport and metabolism]. 500 -224054 COG1131 CcmA ABC-type multidrug transport system, ATPase component [Defense mechanisms]. 293 -224055 COG1132 MdlB ABC-type multidrug transport system, ATPase and permease component [Defense mechanisms]. 567 -224056 COG1133 SbmA ABC-type long-chain fatty acid transport system, fused permease and ATPase components [Lipid transport and metabolism]. 405 -224057 COG1134 TagH ABC-type polysaccharide/polyol phosphate transport system, ATPase component [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 249 -224058 COG1135 AbcC ABC-type methionine transport system, ATPase component [Amino acid transport and metabolism]. 339 -224059 COG1136 LolD ABC-type lipoprotein export system, ATPase component [Cell wall/membrane/envelope biogenesis]. 226 -224060 COG1137 LptB ABC-type lipopolysaccharide export system, ATPase component [Cell wall/membrane/envelope biogenesis]. 243 -224061 COG1138 CcmF Cytochrome c biogenesis factor [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 648 -224062 COG1139 LutB L-lactate utilization protein LutB, contains a ferredoxin-type domain [Energy production and conversion]. 459 -224063 COG1140 NarY Nitrate reductase beta subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 513 -224064 COG1141 Fer Ferredoxin [Energy production and conversion]. 68 -224065 COG1142 HycB Fe-S-cluster-containing hydrogenase component 2 [Energy production and conversion]. 165 -224066 COG1143 NuoI Formate hydrogenlyase subunit 6/NADH:ubiquinone oxidoreductase 23 kD subunit (chain I) [Energy production and conversion]. 172 -224067 COG1144 PorD Pyruvate:ferredoxin oxidoreductase or related 2-oxoacid:ferredoxin oxidoreductase, delta subunit [Energy production and conversion]. 91 -224068 COG1145 NapF Ferredoxin [Energy production and conversion]. 99 -224069 COG1146 PreA NAD-dependent dihydropyrimidine dehydrogenase, PreA subunit [Nucleotide transport and metabolism]. 68 -224070 COG1148 HdrA Heterodisulfide reductase, subunit A (polyferredoxin) [Energy production and conversion]. 622 -224071 COG1149 COG1149 MinD superfamily P-loop ATPase, contains an inserted ferredoxin domain [General function prediction only]. 284 -224072 COG1150 HdrC Heterodisulfide reductase, subunit C [Energy production and conversion]. 195 -224073 COG1151 Hcp Hydroxylamine reductase (hybrid-cluster protein) [Inorganic ion transport and metabolism, Energy production and conversion]. 576 -224074 COG1152 CdhA CO dehydrogenase/acetyl-CoA synthase alpha subunit [Energy production and conversion]. 772 -224075 COG1153 FwdD Formylmethanofuran dehydrogenase subunit D [Energy production and conversion]. 128 -224076 COG1154 Dxs Deoxyxylulose-5-phosphate synthase [Coenzyme transport and metabolism, Lipid transport and metabolism]. 627 -224077 COG1155 NtpA Archaeal/vacuolar-type H+-ATPase catalytic subunit A/Vma1 [Energy production and conversion]. 588 -224078 COG1156 NtpB Archaeal/vacuolar-type H+-ATPase subunit B/Vma2 [Energy production and conversion]. 463 -224079 COG1157 FliI Flagellar biosynthesis/type III secretory pathway ATPase [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 441 -224080 COG1158 Rho Transcription termination factor Rho [Transcription]. 422 -224081 COG1159 Era GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]. 298 -224082 COG1160 Der Predicted GTPases [General function prediction only]. 444 -224083 COG1161 RbgA Ribosome biogenesis GTPase A [Translation, ribosomal structure and biogenesis]. 322 -224084 COG1162 RsgA Putative ribosome biogenesis GTPase RsgA [Translation, ribosomal structure and biogenesis]. 301 -224085 COG1163 Rbg1 Ribosome-interacting GTPase 1 [Translation, ribosomal structure and biogenesis]. 365 -224086 COG1164 PepF Oligoendopeptidase F [Amino acid transport and metabolism]. 598 -224087 COG1165 MenD 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase [Coenzyme transport and metabolism]. 566 -224088 COG1166 SpeA Arginine decarboxylase (spermidine biosynthesis) [Amino acid transport and metabolism]. 652 -224089 COG1167 ARO8 DNA-binding transcriptional regulator, MocR family, contains an aminotransferase domain [Transcription, Amino acid transport and metabolism]. 459 -224090 COG1168 MalY Bifunctional PLP-dependent enzyme with beta-cystathionase and maltose regulon repressor activities [Amino acid transport and metabolism, General function prediction only]. 388 -224091 COG1169 MenF Isochorismate synthase EntC [Coenzyme transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 423 -224092 COG1171 IlvA Threonine dehydratase [Amino acid transport and metabolism]. 347 -224093 COG1172 AraH Ribose/xylose/arabinose/galactoside ABC-type transport system, permease component [Carbohydrate transport and metabolism]. 316 -224094 COG1173 DppC ABC-type dipeptide/oligopeptide/nickel transport system, permease component [Amino acid transport and metabolism, Inorganic ion transport and metabolism]. 289 -224095 COG1174 OpuBB ABC-type proline/glycine betaine transport system, permease component [Amino acid transport and metabolism]. 221 -224096 COG1175 UgpA ABC-type sugar transport system, permease component [Carbohydrate transport and metabolism]. 295 -224097 COG1176 PotB ABC-type spermidine/putrescine transport system, permease component I [Amino acid transport and metabolism]. 287 -224098 COG1177 PotC ABC-type spermidine/putrescine transport system, permease component II [Amino acid transport and metabolism]. 267 -224099 COG1178 FbpB ABC-type Fe3+ transport system, permease component [Inorganic ion transport and metabolism]. 540 -224100 COG1179 TcdA tRNA A37 threonylcarbamoyladenosine dehydratase [Translation, ribosomal structure and biogenesis]. 263 -224101 COG1180 PflA Pyruvate-formate lyase-activating enzyme [Posttranslational modification, protein turnover, chaperones]. 260 -224102 COG1181 DdlA D-alanine-D-alanine ligase and related ATP-grasp enzymes [Cell wall/membrane/envelope biogenesis, General function prediction only]. 317 -224103 COG1182 AzoR FMN-dependent NADH-azoreductase [Energy production and conversion]. 202 -224104 COG1183 PssA Phosphatidylserine synthase [Lipid transport and metabolism]. 234 -224105 COG1184 GCD2 Translation initiation factor 2B subunit, eIF-2B alpha/beta/delta family [Translation, ribosomal structure and biogenesis]. 301 -224106 COG1185 Pnp Polyribonucleotide nucleotidyltransferase (polynucleotide phosphorylase) [Translation, ribosomal structure and biogenesis]. 692 -224107 COG1186 PrfB Protein chain release factor B [Translation, ribosomal structure and biogenesis]. 239 -224108 COG1187 RsuA 16S rRNA U516 pseudouridylate synthase RsuA and related 23S rRNA U2605, pseudouridylate synthases [Translation, ribosomal structure and biogenesis]. 248 -224109 COG1188 HslR Ribosomal 50S subunit-recycling heat shock protein, contains S4 domain [Translation, ribosomal structure and biogenesis]. 100 -224110 COG1189 YqxC Predicted rRNA methylase YqxC, contains S4 and FtsJ domains [Translation, ribosomal structure and biogenesis]. 245 -224111 COG1190 LysU Lysyl-tRNA synthetase (class II) [Translation, ribosomal structure and biogenesis]. 502 -224112 COG1191 FliA DNA-directed RNA polymerase specialized sigma subunit [Transcription]. 247 -224113 COG1192 BcsQ Cellulose biosynthesis protein BcsQ [Cell motility]. 259 -224114 COG1193 MutS2 dsDNA-specific endonuclease/ATPase MutS2 [Replication, recombination and repair]. 753 -224115 COG1194 MutY Adenine-specific DNA glycosylase, acts on AG and A-oxoG pairs [Replication, recombination and repair]. 342 -224116 COG1195 RecF Recombinational DNA repair ATPase RecF [Replication, recombination and repair]. 363 -224117 COG1196 Smc Chromosome segregation ATPase [Cell cycle control, cell division, chromosome partitioning]. 1163 -224118 COG1197 Mfd Transcription-repair coupling factor (superfamily II helicase) [Replication, recombination and repair, Transcription]. 1139 -224119 COG1198 PriA Primosomal protein N' (replication factor Y) - superfamily II helicase [Replication, recombination and repair]. 730 -224120 COG1199 DinG Rad3-related DNA helicase [Replication, recombination and repair]. 654 -224121 COG1200 RecG RecG-like helicase [Replication, recombination and repair]. 677 -224122 COG1201 Lhr Lhr-like helicase [Replication, recombination and repair]. 814 -224123 COG1202 COG1202 Superfamily II helicase, archaea-specific [Replication, recombination and repair]. 830 -224124 COG1203 Cas3 CRISPR/Cas system-associated endonuclease/helicase Cas3 [Defense mechanisms]. 733 -224125 COG1204 BRR2 Replicative superfamily II helicase [Replication, recombination and repair]. 766 -224126 COG1205 YprA ATP-dependent helicase YprA, contains C-terminal metal-binding DUF1998 domain [Replication, recombination and repair]. 851 -224127 COG1206 TrmFO Folate-dependent tRNA-U54 methylase TrmFO/GidA [Translation, ribosomal structure and biogenesis]. 439 -224128 COG1207 GlmU Bifunctional protein GlmU, N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase [Cell wall/membrane/envelope biogenesis]. 460 -224129 COG1208 GCD1 NDP-sugar pyrophosphorylase, includes eIF-2Bgamma, eIF-2Bepsilon, and LPS biosynthesis proteins [Translation, ribosomal structure and biogenesis, Cell wall/membrane/envelope biogenesis]. 358 -224130 COG1209 RmlA1 dTDP-glucose pyrophosphorylase [Cell wall/membrane/envelope biogenesis]. 286 -224131 COG1210 GalU UTP-glucose-1-phosphate uridylyltransferase [Cell wall/membrane/envelope biogenesis]. 291 -224132 COG1211 IspD 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase [Lipid transport and metabolism]. 230 -224133 COG1212 KdsB CMP-2-keto-3-deoxyoctulosonic acid synthetase [Cell wall/membrane/envelope biogenesis]. 247 -224134 COG1213 COG1213 Choline kinase [Lipid transport and metabolism]. 239 -224135 COG1214 TsaB tRNA A37 threonylcarbamoyladenosine modification protein TsaB [Translation, ribosomal structure and biogenesis]. 220 -224136 COG1215 BcsA Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]. 439 -224137 COG1216 GT2 Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]. 305 -224138 COG1217 TypA Predicted membrane GTPase involved in stress response [Signal transduction mechanisms]. 603 -224139 COG1218 CysQ 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) 3'-phosphatase [Inorganic ion transport and metabolism]. 276 -224140 COG1219 ClpX ATP-dependent protease Clp, ATPase subunit [Posttranslational modification, protein turnover, chaperones]. 408 -224141 COG1220 HslU ATP-dependent protease HslVU (ClpYQ), ATPase subunit [Posttranslational modification, protein turnover, chaperones]. 444 -224142 COG1221 PspF Transcriptional regulators containing an AAA-type ATPase domain and a DNA-binding domain [Transcription, Signal transduction mechanisms]. 403 -224143 COG1222 RPT1 ATP-dependent 26S proteasome regulatory subunit [Posttranslational modification, protein turnover, chaperones]. 406 -224144 COG1223 COG1223 Predicted ATPase, AAA+ superfamily [General function prediction only]. 368 -224145 COG1224 TIP49 DNA helicase TIP49, TBP-interacting protein [Transcription]. 450 -224146 COG1225 Bcp Peroxiredoxin [Posttranslational modification, protein turnover, chaperones]. 157 -224147 COG1226 Kch Voltage-gated potassium channel Kch [Inorganic ion transport and metabolism]. 212 -224148 COG1227 PPX1 Inorganic pyrophosphatase/exopolyphosphatase [Energy production and conversion, Inorganic ion transport and metabolism]. 311 -224149 COG1228 HutI Imidazolonepropionase or related amidohydrolase [Secondary metabolites biosynthesis, transport and catabolism]. 406 -224150 COG1229 FwdA Formylmethanofuran dehydrogenase subunit A [Energy production and conversion]. 575 -224151 COG1230 CzcD Co/Zn/Cd efflux system component [Inorganic ion transport and metabolism]. 296 -224152 COG1231 YobN Monoamine oxidase [Amino acid transport and metabolism]. 450 -224153 COG1232 HemY Protoporphyrinogen oxidase [Coenzyme transport and metabolism]. 444 -224154 COG1233 COG1233 Phytoene dehydrogenase-related protein [Secondary metabolites biosynthesis, transport and catabolism]. 487 -224155 COG1234 ElaC Ribonuclease BN, tRNA processing enzyme [Translation, ribosomal structure and biogenesis]. 292 -224156 COG1235 PhnP Phosphoribosyl 1,2-cyclic phosphodiesterase [Inorganic ion transport and metabolism]. 269 -224157 COG1236 YSH1 RNA processing exonuclease, beta-lactamase fold, Cft2 family [Translation, ribosomal structure and biogenesis]. 427 -224158 COG1237 COG1237 Metal-dependent hydrolase, beta-lactamase superfamily II [General function prediction only]. 259 -224159 COG1238 YgaA Uncharacterized membrane protein YqaA, SNARE-associated domain [Function unknown]. 161 -224160 COG1239 ChlI Mg-chelatase subunit ChlI [Coenzyme transport and metabolism]. 423 -224161 COG1240 ChlD Mg-chelatase subunit ChlD [Coenzyme transport and metabolism]. 261 -224162 COG1241 Mcm2 DNA replicative helicase MCM subunit Mcm2, Cdc46/Mcm family [Replication, recombination and repair]. 682 -224163 COG1242 YhcC Radical SAM superfamily enzyme [General function prediction only]. 312 -224164 COG1243 ELP3 Histone acetyltransferase, component of the RNA polymerase elongator complex [Transcription, Chromatin structure and dynamics]. 515 -224165 COG1244 COG1244 Uncharacterized Fe-S cluster-containing protein. MiaB family [General function prediction only]. 358 -224166 COG1245 Rli1 Translation initiation factor RLI1, contains Fe-S and AAA+ ATPase domains [Translation, ribosomal structure and biogenesis]. 591 -224167 COG1246 ArgA N-acetylglutamate synthase or related acetyltransferase, GNAT family [Amino acid transport and metabolism]. 153 -224168 COG1247 YncA L-amino acid N-acyltransferase YncA [Amino acid transport and metabolism]. 169 -224169 COG1249 Lpd Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component or related enzyme [Energy production and conversion]. 454 -224170 COG1250 FadB 3-hydroxyacyl-CoA dehydrogenase [Lipid transport and metabolism]. 307 -224171 COG1251 NirB NAD(P)H-nitrite reductase, large subunit [Energy production and conversion]. 793 -224172 COG1252 Ndh NADH dehydrogenase, FAD-containing subunit [Energy production and conversion]. 405 -224173 COG1253 TlyC Hemolysin or related protein, contains CBS domains [General function prediction only]. 429 -224174 COG1254 AcyP Acylphosphatase [Energy production and conversion]. 92 -224175 COG1255 COG1255 Uncharacterized protein, UPF0146 family [Function unknown]. 129 -224176 COG1256 FlgK Flagellar hook-associated protein FlgK [Cell motility]. 552 -224177 COG1257 HMG1 Hydroxymethylglutaryl-CoA reductase [Lipid transport and metabolism]. 436 -224178 COG1258 Pus10 tRNA U54 and U55 pseudouridine synthase Pus10 [Translation, ribosomal structure and biogenesis]. 398 -224179 COG1259 COG1259 Bifunctional DNase/RNase [General function prediction only]. 151 -224180 COG1260 INO1 Myo-inositol-1-phosphate synthase [Lipid transport and metabolism]. 362 -224181 COG1261 FlgA Flagella basal body P-ring formation protein FlgA [Cell motility]. 220 -224182 COG1262 YfmG Formylglycine-generating enzyme, required for sulfatase activity, contains SUMF1/FGE domain [Posttranslational modification, protein turnover, chaperones]. 314 -224183 COG1263 PtsG1 Phosphotransferase system IIC components, glucose/maltose/N-acetylglucosamine-specific [Carbohydrate transport and metabolism]. 393 -224184 COG1264 PtsG2 Phosphotransferase system IIB components [Carbohydrate transport and metabolism]. 88 -224185 COG1266 YdiL Membrane protease YdiL, CAAX protease family [Posttranslational modification, protein turnover, chaperones]. 226 -224186 COG1267 PgpA Phosphatidylglycerophosphatase A [Lipid transport and metabolism]. 160 -224187 COG1268 BioY Biotin transporter BioY [Coenzyme transport and metabolism]. 184 -224188 COG1269 NtpI Archaeal/vacuolar-type H+-ATPase subunit I/STV1 [Energy production and conversion]. 660 -224189 COG1270 CbiB Cobalamin biosynthesis protein CobD/CbiB [Coenzyme transport and metabolism]. 320 -224190 COG1271 AppC Cytochrome bd-type quinol oxidase, subunit 1 [Energy production and conversion]. 457 -224191 COG1272 YqfA Predicted membrane channel-forming protein YqfA, hemolysin III family [Intracellular trafficking, secretion, and vesicular transport]. 226 -224192 COG1273 YkoV Non-homologous end joining protein Ku, dsDNA break repair [Replication, recombination and repair]. 278 -224193 COG1274 PepCK Phosphoenolpyruvate carboxykinase, GTP-dependent [Energy production and conversion]. 608 -224194 COG1275 TehA Tellurite resistance protein TehA and related permeases [Defense mechanisms]. 329 -224195 COG1276 PcoD Putative copper export protein [Inorganic ion transport and metabolism]. 289 -224196 COG1277 NosY ABC-type transport system involved in multi-copper enzyme maturation, permease component [Posttranslational modification, protein turnover, chaperones]. 278 -224197 COG1278 CspC Cold shock protein, CspA family [Transcription]. 67 -224198 COG1279 ArgO Arginine exporter protein ArgO [Amino acid transport and metabolism]. 202 -224199 COG1280 RhtB Threonine/homoserine/homoserine lactone efflux protein [Amino acid transport and metabolism]. 208 -224200 COG1281 HslO Redox-regulated molecular chaperone, HSP33 family [Posttranslational modification, protein turnover, chaperones]. 286 -224201 COG1282 PntB NAD/NADP transhydrogenase beta subunit [Energy production and conversion]. 463 -224202 COG1283 NptA Na+/phosphate symporter [Inorganic ion transport and metabolism]. 533 -224203 COG1284 YitT Uncharacterized membrane-anchored protein YitT, contains DUF161 and DUF2179 domains [Function unknown]. 289 -224204 COG1285 SapB Uncharacterized membrane protein YhiD, involved in acid resistance [Function unknown]. 221 -224205 COG1286 CvpA Uncharacterized membrane protein, required for colicin V production [Function unknown]. 182 -224206 COG1287 Stt3 Asparagine N-glycosylation enzyme, membrane subunit Stt3 [Posttranslational modification, protein turnover, chaperones]. 773 -224207 COG1288 YfcC Uncharacterized membrane protein YfcC, ion transporter superfamily [General function prediction only]. 481 -224208 COG1289 YccC Uncharacterized membrane protein YccC [Function unknown]. 674 -224209 COG1290 QcrB Cytochrome b subunit of the bc complex [Energy production and conversion]. 381 -224210 COG1291 MotA Flagellar motor component MotA [Cell motility]. 266 -224211 COG1292 BetT Choline-glycine betaine transporter [Cell wall/membrane/envelope biogenesis]. 537 -224212 COG1293 YloA Predicted component of the ribosome quality control (RQC) complex, YloA/Tae2 family, contains fibronectin-binding (FbpA) and DUF814 domains [Translation, ribosomal structure and biogenesis]. 564 -224213 COG1294 AppB Cytochrome bd-type quinol oxidase, subunit 2 [Energy production and conversion]. 346 -224214 COG1295 BrkB Uncharacterized membrane protein, BrkB/YihY/UPF0761 family (not an RNase) [Function unknown]. 303 -224215 COG1296 AzlC Predicted branched-chain amino acid permease (azaleucine resistance) [Amino acid transport and metabolism]. 238 -224216 COG1297 OPT Uncharacterized membrane protein, oligopeptide transporter (OPT) family [Function unknown]. 624 -224217 COG1298 FlhA Flagellar biosynthesis pathway, component FlhA [Cell motility]. 696 -224218 COG1299 FrwC Phosphotransferase system, fructose-specific IIC component [Carbohydrate transport and metabolism]. 343 -224219 COG1300 SpoIIM Uncharacterized membrane protein SpoIIM, required for sporulation [Cell cycle control, cell division, chromosome partitioning]. 207 -224220 COG1301 GltP Na+/H+-dicarboxylate symporter [Energy production and conversion]. 415 -224221 COG1302 YloU Uncharacterized conserved protein YloU, alkaline shock protein (Asp23) family [Function unknown]. 131 -224222 COG1303 COG1303 Predicted rRNA methylase, SpoU family [General function prediction only]. 179 -224223 COG1304 LldD FMN-dependent dehydrogenase, includes L-lactate dehydrogenase and type II isopentenyl diphosphate isomerase [Energy production and conversion, Lipid transport and metabolism, General function prediction only]. 360 -224224 COG1305 YebA Transglutaminase-like enzyme, putative cysteine protease [Posttranslational modification, protein turnover, chaperones]. 319 -224225 COG1306 COG1306 Predicted glycosyl hydrolase, alpha amylase family [General function prediction only]. 400 -224226 COG1307 DegV Fatty acid-binding protein DegV (function unknown) [Lipid transport and metabolism]. 282 -224227 COG1308 EGD2 Transcription factor homologous to NACalpha-BTF3 [Transcription]. 122 -224228 COG1309 AcrR DNA-binding transcriptional regulator, AcrR family [Transcription]. 201 -224229 COG1310 Rri1 Proteasome lid subunit RPN8/RPN11, contains Jab1/MPN domain metalloenzyme (JAMM) motif [Posttranslational modification, protein turnover, chaperones]. 134 -224230 COG1311 HYS2 Archaeal DNA polymerase II, small subunit/DNA polymerase delta, subunit B [Replication, recombination and repair]. 481 -224231 COG1312 UxuA D-mannonate dehydratase [Carbohydrate transport and metabolism]. 362 -224232 COG1313 PflX Uncharacterized Fe-S protein PflX, radical SAM superfamily [General function prediction only]. 335 -224233 COG1314 SecG Preprotein translocase subunit SecG [Intracellular trafficking, secretion, and vesicular transport]. 86 -224234 COG1315 COG1315 Uncharacterized conserved protein, DUF342 family [Function unknown]. 543 -224235 COG1316 Cps2a Anionic cell wall polymer biosynthesis enzyme, LytR-Cps2A-Psr (LCP) family [Cell wall/membrane/envelope biogenesis]. 307 -224236 COG1317 FliH Flagellar biosynthesis/type III secretory pathway protein FliH [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 234 -224237 COG1318 COG1318 Predicted transcriptional regulator [Transcription]. 182 -224238 COG1319 CoxM CO or xanthine dehydrogenase, FAD-binding subunit [Energy production and conversion]. 284 -224239 COG1320 MnhG Multisubunit Na+/H+ antiporter, MnhG subunit [Inorganic ion transport and metabolism]. 113 -224240 COG1321 MntR Mn-dependent transcriptional regulator, DtxR family [Transcription]. 154 -224241 COG1322 RmuC DNA anti-recombination protein (rearrangement mutator) RmuC [Replication, recombination and repair]. 448 -224242 COG1323 YlbM Predicted nucleotidyltransferase [General function prediction only]. 358 -224243 COG1324 CutA Uncharacterized protein involved in tolerance to divalent cations [Inorganic ion transport and metabolism]. 104 -224244 COG1325 COG1325 Exosome subunit, RNA binding protein with dsRBD fold [Translation, ribosomal structure and biogenesis]. 149 -224245 COG1326 COG1326 Uncharacterized archaeal Zn-finger protein [General function prediction only]. 201 -224246 COG1327 NrdR Transcriptional regulator NrdR, contains Zn-ribbon and ATP-cone domains [Transcription]. 156 -224247 COG1328 NrdD Anaerobic ribonucleoside-triphosphate reductase [Nucleotide transport and metabolism]. 700 -224248 COG1329 CdnL RNA polymerase-interacting regulator, CarD/CdnL/TRCF family [Transcription]. 166 -224249 COG1330 RecC Exonuclease V gamma subunit [Replication, recombination and repair]. 1078 -224250 COG1331 YyaL Uncharacterized conserved protein YyaL, SSP411 family, contains thoiredoxin and six-hairpin glycosidase-like domains [General function prediction only]. 667 -224251 COG1332 Csm5 CRISPR/Cas system CSM-associated protein Csm5, group 7 of RAMP superfamily [Defense mechanisms]. 369 -224252 COG1333 ResB Cytochrome c biogenesis protein ResB [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 478 -224253 COG1334 FlaG Uncharacterized conserved protein, FlaG/YvyC family [General function prediction only]. 120 -224254 COG1335 PncA Nicotinamidase-related amidase [Coenzyme transport and metabolism, General function prediction only]. 205 -224255 COG1336 Cmr4 CRISPR/Cas system CMR subunit Cmr4, Cas7 group, RAMP superfamily [Defense mechanisms]. 298 -224256 COG1337 Csm3 CRISPR/Cas system CSM-associated protein Csm3, group 7 of RAMP superfamily [Defense mechanisms]. 249 -224257 COG1338 FliP Flagellar biosynthetic protein FliP [Cell motility]. 248 -224258 COG1339 Rfk Archaeal CTP-dependent riboflavin kinase [Coenzyme transport and metabolism]. 214 -224259 COG1340 COG1340 Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]. 294 -224260 COG1341 Grc3 Polynucleotide 5'-kinase, involved in rRNA processing [Translation, ribosomal structure and biogenesis]. 398 -224261 COG1342 COG1342 Predicted DNA-binding protein, UPF0251 family [General function prediction only]. 99 -224262 COG1343 Cas2 CRISPR/Cas system-associated endoribonuclease Cas2 [Defense mechanisms]. 89 -224263 COG1344 FlgL Flagellin and related hook-associated protein FlgL [Cell motility]. 360 -224264 COG1345 FliD Flagellar capping protein FliD [Cell motility]. 483 -224265 COG1346 LrgB Putative effector of murein hydrolase [Cell wall/membrane/envelope biogenesis]. 230 -224266 COG1347 NqrD Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrD [Energy production and conversion]. 208 -224267 COG1348 NifH Nitrogenase subunit NifH, an ATPase [Inorganic ion transport and metabolism]. 278 -224268 COG1349 GlpR DNA-binding transcriptional regulator of sugar metabolism, DeoR/GlpR family [Transcription, Carbohydrate transport and metabolism]. 253 -224269 COG1350 COG1350 Predicted alternative tryptophan synthase beta-subunit (paralog of TrpB) [Amino acid transport and metabolism]. 432 -224270 COG1351 ThyX Thymidylate synthase ThyX [Nucleotide transport and metabolism]. 273 -224271 COG1352 CheR Methylase of chemotaxis methyl-accepting proteins [Cell motility, Signal transduction mechanisms]. 268 -224272 COG1353 Cas10 CRISPR/Cas system-associated protein Cas10, large subunit of type III CRISPR-Cas systems, contains HD superfamily nuclease domain [Defense mechanisms]. 799 -224273 COG1354 ScpA Chromatin segregation and condensation protein Rec8/ScpA/Scc1, kleisin family [Replication, recombination and repair]. 248 -224274 COG1355 Mho1 Predicted class III extradiol dioxygenase, MEMO1 family [General function prediction only]. 279 -224275 COG1356 COG1356 Transcriptional regulator [Transcription]. 143 -224276 COG1357 YjbI Uncharacterized protein YjbI, contains pentapeptide repeats [Function unknown]. 238 -224277 COG1358 Rpl7Ae Ribosomal protein L7Ae or related RNA K-turn-binding protein [Translation, ribosomal structure and biogenesis]. 116 -224278 COG1359 YgiN Quinol monooxygenase YgiN [Energy production and conversion]. 100 -224279 COG1360 MotB Flagellar motor protein MotB [Cell motility]. 244 -224280 COG1361 COG1361 Uncharacterized conserved protein [Function unknown]. 500 -224281 COG1362 LAP4 Aspartyl aminopeptidase [Amino acid transport and metabolism]. 437 -224282 COG1363 FrvX Putative aminopeptidase FrvX [Amino acid transport and metabolism, Carbohydrate transport and metabolism]. 355 -224283 COG1364 ArgJ N-acetylglutamate synthase (N-acetylornithine aminotransferase) [Amino acid transport and metabolism]. 404 -224284 COG1365 COG1365 Predicted ATPase, PP-loop superfamily [General function prediction only]. 255 -224285 COG1366 SpoIIAA Anti-anti-sigma regulatory factor (antagonist of anti-sigma factor) [Signal transduction mechanisms]. 117 -224286 COG1367 Cmr1 CRISPR/Cas system CMR-associated protein Cmr1, group 7 of RAMP superfamily [Defense mechanisms]. 393 -224287 COG1368 MdoB Phosphoglycerol transferase MdoB or a related enzyme of AlkP superfamily [Cell wall/membrane/envelope biogenesis]. 650 -224288 COG1369 POP5 RNase P/RNase MRP subunit POP5 [Translation, ribosomal structure and biogenesis]. 124 -224289 COG1370 COG1370 tRNA-guanine transglycosylase, archaeosine-15-forming [Translation, ribosomal structure and biogenesis]. 155 -224290 COG1371 COG1371 SHS2 domain protein implicated in nucleic acid metabolism [General function prediction only]. 137 -224291 COG1372 Hop Intein/homing endonuclease [Replication, recombination and repair, Mobilome: prophages, transposons]. 420 -224292 COG1373 COG1373 Predicted ATPase, AAA+ superfamily [General function prediction only]. 398 -224293 COG1374 NIP7 Rbosome biogenesis protein Nip4, contains PUA domain [Translation, ribosomal structure and biogenesis]. 176 -224294 COG1376 ErfK Lipoprotein-anchoring transpeptidase ErfK/SrfK [Cell wall/membrane/envelope biogenesis]. 232 -224295 COG1377 FlhB Flagellar biosynthesis protein FlhB [Cell motility]. 363 -224296 COG1378 TrmB Sugar-specific transcriptional regulator TrmB [Transcription]. 247 -224297 COG1379 YqxK PHP family phosphoesterase with a Zn ribbon [General function prediction only]. 403 -224298 COG1380 YohJ Putative effector of murein hydrolase LrgA, UPF0299 family [General function prediction only]. 128 -224299 COG1381 RecO Recombinational DNA repair protein (RecF pathway) [Replication, recombination and repair]. 251 -224300 COG1382 GimC Prefoldin, chaperonin cofactor [Posttranslational modification, protein turnover, chaperones]. 119 -224301 COG1383 RPS17A Ribosomal protein S17E [Translation, ribosomal structure and biogenesis]. 74 -224302 COG1384 LysS Lysyl-tRNA synthetase, class I [Translation, ribosomal structure and biogenesis]. 521 -224303 COG1385 RsmE 16S rRNA U1498 N3-methylase RsmE [Translation, ribosomal structure and biogenesis]. 246 -224304 COG1386 ScpB Chromosome segregation and condensation protein ScpB [Transcription]. 184 -224305 COG1387 HIS2 Histidinol phosphatase or related hydrolase of the PHP family [Amino acid transport and metabolism, General function prediction only]. 237 -224306 COG1388 LysM LysM repeat [Cell wall/membrane/envelope biogenesis]. 124 -224307 COG1389 COG1389 DNA topoisomerase VI, subunit B [Replication, recombination and repair]. 538 -224308 COG1390 NtpE Archaeal/vacuolar-type H+-ATPase subunit E/Vma4 [Energy production and conversion]. 194 -224309 COG1391 GlnE Glutamine synthetase adenylyltransferase [Posttranslational modification, protein turnover, chaperones]. 963 -224310 COG1392 YkaA Uncharacterized conserved protein YkaA, distantly related to PhoU, UPF0111/DUF47 family [Function unknown]. 217 -224311 COG1393 ArsC Arsenate reductase and related proteins, glutaredoxin family [Inorganic ion transport and metabolism]. 117 -224312 COG1394 NtpD Archaeal/vacuolar-type H+-ATPase subunit D/Vma8 [Energy production and conversion]. 211 -224313 COG1395 COG1395 Predicted transcriptional regulator [Transcription]. 313 -224314 COG1396 HipB Transcriptional regulator, contains XRE-family HTH domain [Transcription]. 120 -224315 COG1397 DraG ADP-ribosylglycohydrolase [Posttranslational modification, protein turnover, chaperones]. 314 -224316 COG1398 OLE1 Fatty-acid desaturase [Lipid transport and metabolism]. 289 -224317 COG1399 YceD Uncharacterized metal-binding protein YceD, DUF177 family [Function unknown]. 176 -224318 COG1400 SEC65 Signal recognition particle subunit SEC65 [Intracellular trafficking, secretion, and vesicular transport]. 93 -224319 COG1401 McrB 5-methylcytosine-specific restriction endonuclease McrBC, GTP-binding regulatory subunit McrB [Defense mechanisms]. 601 -224320 COG1402 ArfB Creatinine amidohydrolase/Fe(II)-dependent formamide hydrolase involved in riboflavin and F420 biosynthesis [Coenzyme transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 250 -224321 COG1403 McrA 5-methylcytosine-specific restriction endonuclease McrA [Defense mechanisms]. 146 -224322 COG1404 AprE Serine protease, subtilisin family [Posttranslational modification, protein turnover, chaperones]. 508 -224323 COG1405 SUA7 Transcription initiation factor TFIIIB, Brf1 subunit/Transcription initiation factor TFIIB [Transcription]. 285 -224324 COG1406 CheX Chemotaxis protein CheX, a CheY~P-specific phosphatase [Cell motility]. 153 -224325 COG1407 COG1407 Metallophosphoesterase superfamily enzyme [General function prediction only]. 235 -224326 COG1408 YaeI Predicted phosphohydrolase, MPP superfamily [General function prediction only]. 284 -224327 COG1409 CpdA 3',5'-cyclic AMP phosphodiesterase CpdA [Signal transduction mechanisms]. 301 -224328 COG1410 MetH2 Methionine synthase I, cobalamin-binding domain [Amino acid transport and metabolism]. 842 -224329 COG1411 COG1411 Uncharacterized protein related to proFAR isomerase (HisA) [General function prediction only]. 229 -224330 COG1412 Fcf1 rRNA-processing protein FCF1 [Translation, ribosomal structure and biogenesis]. 136 -224331 COG1413 HEAT HEAT repeat [General function prediction only]. 335 -224332 COG1414 IclR DNA-binding transcriptional regulator, IclR family [Transcription]. 246 -224333 COG1415 COG1415 Uncharacterized protein [Function unknown]. 373 -224334 COG1416 COG1416 Intracellular sulfur oxidation protein, DsrE/DsrF family [Inorganic ion transport and metabolism]. 112 -224335 COG1417 COG1417 Uncharacterized protein [Function unknown]. 288 -224336 COG1418 RnaY HD superfamily phosphodieaserase, includes HD domain of RNase Y [Translation, ribosomal structure and biogenesis, General function prediction only]. 222 -224337 COG1419 FlhF Flagellar biosynthesis GTPase FlhF [Cell motility]. 407 -224338 COG1420 HrcA Transcriptional regulator of heat shock response [Transcription]. 346 -224339 COG1421 Csm2 CRISPR/Cas system CSM-associated protein Csm2, small subunit [Defense mechanisms]. 137 -224340 COG1422 COG1422 Uncharacterized archaeal membrane protein, DUF106 family, distantly related to YidC/Oxa1 [Function unknown]. 201 -224341 COG1423 COG1423 ATP-dependent RNA circularization protein, DNA/RNA ligase (PAB1020) family [Replication, recombination and repair]. 382 -224342 COG1424 BioW Pimeloyl-CoA synthetase [Coenzyme transport and metabolism]. 239 -224343 COG1426 RodZ Cytoskeletal protein RodZ, contains Xre-like HTH and DUF4115 domains [Cell cycle control, cell division, chromosome partitioning]. 284 -224344 COG1427 MqnA Menaquinone biosynthesis enzyme MqnA [Coenzyme transport and metabolism]. 252 -224345 COG1428 Dck Deoxyadenosine/deoxycytidine kinase [Nucleotide transport and metabolism]. 216 -224346 COG1429 CobN Cobalamin biosynthesis protein CobN, Mg-chelatase [Coenzyme transport and metabolism]. 1388 -224347 COG1430 COG1430 Uncharacterized conserved membrane protein, UPF0127 family [Function unknown]. 126 -224348 COG1431 COG1431 Argonaute homolog, implicated in RNA metabolism and viral defense [Translation, ribosomal structure and biogenesis, Defense mechanisms]. 685 -224349 COG1432 LabA Uncharacterized conserved protein, LabA/DUF88 family [Function unknown]. 181 -224350 COG1433 NifX Predicted Fe-Mo cluster-binding protein, NifX family [Posttranslational modification, protein turnover, chaperones]. 121 -224351 COG1434 YdcF Uncharacterized SAM-binding protein YcdF, DUF218 family [General function prediction only]. 223 -224352 COG1435 Tdk Thymidine kinase [Nucleotide transport and metabolism]. 201 -224353 COG1436 NtpF Archaeal/vacuolar-type H+-ATPase subunit F/Vma7 [Energy production and conversion]. 104 -224354 COG1437 CyaB Adenylate cyclase class IV, CYTH domain (includes archaeal enzymes of unknown function) [Signal transduction mechanisms, General function prediction only]. 178 -224355 COG1438 ArgR Arginine repressor [Transcription]. 150 -224356 COG1439 Nob1 rRNA maturation endonuclease Nob1 [Translation, ribosomal structure and biogenesis]. 177 -224357 COG1440 CelA Phosphotransferase system cellobiose-specific component IIB [Carbohydrate transport and metabolism]. 102 -224358 COG1441 MenC O-succinylbenzoate synthase [Coenzyme transport and metabolism]. 321 -224359 COG1442 RfaJ Lipopolysaccharide biosynthesis protein, LPS:glycosyltransferase [Cell wall/membrane/envelope biogenesis]. 325 -224360 COG1443 Idi Isopentenyldiphosphate isomerase [Lipid transport and metabolism]. 185 -224361 COG1444 TmcA tRNA(Met) C34 N-acetyltransferase TmcA [Translation, ribosomal structure and biogenesis]. 758 -224362 COG1445 FrwB Phosphotransferase system fructose-specific component IIB [Carbohydrate transport and metabolism]. 122 -224363 COG1446 IaaA Isoaspartyl peptidase or L-asparaginase, Ntn-hydrolase superfamily [Amino acid transport and metabolism]. 307 -224364 COG1447 CelC Phosphotransferase system cellobiose-specific component IIA [Carbohydrate transport and metabolism]. 105 -224365 COG1448 TyrB Aspartate/tyrosine/aromatic aminotransferase [Amino acid transport and metabolism]. 396 -224366 COG1449 COG1449 Alpha-amylase/alpha-mannosidase, GH57 family [Carbohydrate transport and metabolism]. 615 -224367 COG1450 PulD Type II secretory pathway component GspD/PulD (secretin) [Intracellular trafficking, secretion, and vesicular transport]. 587 -224368 COG1451 YgjP Predicted metal-dependent hydrolase [General function prediction only]. 223 -224369 COG1452 LptD LPS assembly outer membrane protein LptD (organic solvent tolerance protein OstA) [Cell wall/membrane/envelope biogenesis]. 784 -224370 COG1453 COG1453 Predicted oxidoreductase of the aldo/keto reductase family [General function prediction only]. 391 -224371 COG1454 EutG Alcohol dehydrogenase, class IV [Energy production and conversion]. 377 -224372 COG1455 CelB Phosphotransferase system cellobiose-specific component IIC [Carbohydrate transport and metabolism]. 432 -224373 COG1456 CdhE CO dehydrogenase/acetyl-CoA synthase gamma subunit (corrinoid Fe-S protein) [Energy production and conversion]. 467 -224374 COG1457 CodB Purine-cytosine permease or related protein [Nucleotide transport and metabolism]. 442 -224375 COG1458 COG1458 Predicted DNA-binding protein containing PIN domain, UPF0278 family [General function prediction only]. 221 -224376 COG1459 PulF Type II secretory pathway, component PulF [Cell motility, Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 397 -224377 COG1460 RpoF DNA-directed RNA polymerase, subunit F [Transcription]. 114 -224378 COG1461 YloV Predicted kinase related to dihydroxyacetone kinase [General function prediction only]. 542 -224379 COG1462 CsgG Curli biogenesis system outer membrane secretion channel CsgG [Cell wall/membrane/envelope biogenesis]. 252 -224380 COG1463 MlaD ABC-type transporter Mla maintaining outer membrane lipid asymmetry, periplasmic component MlaD [Cell wall/membrane/envelope biogenesis]. 359 -224381 COG1464 NlpA ABC-type metal ion transport system, periplasmic component/surface antigen [Inorganic ion transport and metabolism]. 268 -224382 COG1465 AroB2 3-dehydroquinate synthase, class II [Amino acid transport and metabolism]. 376 -224383 COG1466 HolA DNA polymerase III, delta subunit [Replication, recombination and repair]. 334 -224384 COG1467 PRI1 Eukaryotic-type DNA primase, catalytic (small) subunit [Replication, recombination and repair]. 341 -224385 COG1468 Cas4 CRISPR/Cas system-associated exonuclease Cas4, RecB family [Defense mechanisms]. 190 -224386 COG1469 FolE2 GTP cyclohydrolase FolE2 [Coenzyme transport and metabolism]. 289 -224387 COG1470 COG1470 Uncharacterized membrane protein [Function unknown]. 513 -224388 COG1471 RPS4A Ribosomal protein S4E [Translation, ribosomal structure and biogenesis]. 241 -224389 COG1472 BglX Periplasmic beta-glucosidase and related glycosidases [Carbohydrate transport and metabolism]. 397 -224390 COG1473 AbgB Metal-dependent amidase/aminoacylase/carboxypeptidase [General function prediction only]. 392 -224391 COG1474 CDC6 Cdc6-related protein, AAA superfamily ATPase [Replication, recombination and repair]. 366 -224392 COG1475 Spo0J Chromosome segregation protein Spo0J, contains ParB-like nuclease domain [Cell cycle control, cell division, chromosome partitioning]. 240 -224393 COG1476 XRE DNA-binding transcriptional regulator, XRE-family HTH domain [Transcription]. 68 -224394 COG1477 ApbE Thiamine biosynthesis lipoprotein ApbE [Coenzyme transport and metabolism]. 337 -224395 COG1478 CofE F420-0:Gamma-glutamyl ligase (F420 biosynthesis) [Coenzyme transport and metabolism]. 257 -224396 COG1479 COG1479 Uncharacterized conserved protein, contains ParB-like and HNH nuclease domains [Function unknown]. 409 -224397 COG1480 YqfF Membrane-associated HD superfamily phosphohydrolase [General function prediction only]. 700 -224398 COG1481 WhiA DNA-binding transcriptional regulator WhiA, involved in cell division [Transcription]. 308 -224399 COG1482 ManA Mannose-6-phosphate isomerase, class I [Carbohydrate transport and metabolism]. 312 -224400 COG1483 COG1483 Predicted ATPase, AAA+ superfamily [General function prediction only]. 774 -224401 COG1484 DnaC DNA replication protein DnaC [Replication, recombination and repair]. 254 -224402 COG1485 YhcM Predicted ATPase [General function prediction only]. 367 -224403 COG1486 CelF Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism]. 442 -224404 COG1487 VapC Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 133 -224405 COG1488 PncB Nicotinic acid phosphoribosyltransferase [Coenzyme transport and metabolism]. 405 -224406 COG1489 SfsA DNA-binding protein, stimulates sugar fermentation [Carbohydrate transport and metabolism, Signal transduction mechanisms]. 235 -224407 COG1490 Dtd D-Tyr-tRNAtyr deacylase [Translation, ribosomal structure and biogenesis]. 145 -224408 COG1491 COG1491 Predicted nucleic acid-binding OB-fold protein [General function prediction only]. 202 -224409 COG1492 CobQ Cobyric acid synthase [Coenzyme transport and metabolism]. 486 -224410 COG1493 HprK Serine kinase of the HPr protein, regulates carbohydrate metabolism [Signal transduction mechanisms]. 308 -224411 COG1494 GlpX Fructose-1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase or related protein [Carbohydrate transport and metabolism]. 332 -224412 COG1495 DsbB Disulfide bond formation protein DsbB [Posttranslational modification, protein turnover, chaperones]. 170 -224413 COG1496 YfiH Copper oxidase (laccase) domain [Inorganic ion transport and metabolism]. 249 -224414 COG1497 COG1497 Predicted transcriptional regulator [Transcription]. 260 -224415 COG1498 SIK1 RNA processing factor Prp31, contains Nop domain [Translation, ribosomal structure and biogenesis]. 395 -224416 COG1499 NMD3 NMD protein affecting ribosome stability and mRNA decay [Translation, ribosomal structure and biogenesis]. 355 -224417 COG1500 Sdo1 Ribosome maturation protein Sdo1 [Translation, ribosomal structure and biogenesis]. 234 -224418 COG1501 YicI Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism]. 772 -224419 COG1502 Cls Phosphatidylserine/phosphatidylglycerophosphate/cardiolipin synthase or related enzyme [Lipid transport and metabolism]. 438 -224420 COG1503 eRF1 Peptide chain release factor 1 (eRF1) [Translation, ribosomal structure and biogenesis]. 411 -224421 COG1504 COG1504 Uncharacterized protein [Function unknown]. 121 -224422 COG1505 PreP Prolyl oligopeptidase PreP, S9A serine peptidase family [Amino acid transport and metabolism]. 648 -224423 COG1506 DAP2 Dipeptidyl aminopeptidase/acylaminoacyl peptidase [Amino acid transport and metabolism]. 620 -224424 COG1507 COG1507 Uncharacterized protein, DUF501 family [Function unknown]. 167 -224425 COG1508 RpoN DNA-directed RNA polymerase specialized sigma subunit, sigma54 homolog [Transcription]. 444 -224426 COG1509 EpmB L-lysine 2,3-aminomutase (EF-P beta-lysylation pathway) [Amino acid transport and metabolism]. 369 -224427 COG1510 GbsR DNA-binding transcriptional regulator GbsR, MarR family [Transcription]. 177 -224428 COG1511 YhgE Uncharacterized membrane protein YhgE, phage infection protein (PIP) family [Function unknown]. 780 -224429 COG1512 YgcG Uncharacterized membrane protein YgcG, contains a TPM-fold domain [Function unknown]. 271 -224430 COG1513 CynS Cyanate lyase [Inorganic ion transport and metabolism]. 151 -224431 COG1514 LigT 2'-5' RNA ligase [Translation, ribosomal structure and biogenesis]. 180 -224432 COG1515 Nfi Deoxyinosine 3'endonuclease (endonuclease V) [Replication, recombination and repair]. 212 -224433 COG1516 FliS Flagellin-specific chaperone FliS [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 132 -224434 COG1517 Csx1 CRISPR/Cas system-associated protein Csx1, contains CARF domain [Defense mechanisms]. 406 -224435 COG1518 Cas1 CRISPR/Cas system-associated endonuclease Cas1 [Defense mechanisms]. 327 -224436 COG1519 KdtA 3-deoxy-D-manno-octulosonic-acid transferase [Cell wall/membrane/envelope biogenesis]. 419 -224437 COG1520 PQQ Outer membrane protein assembly factor BamB, contains PQQ-like beta-propeller repeat [Cell wall/membrane/envelope biogenesis]. 370 -224438 COG1521 CoaX Pantothenate kinase type III [Coenzyme transport and metabolism]. 251 -224439 COG1522 Lrp DNA-binding transcriptional regulator, Lrp family [Transcription]. 154 -224440 COG1523 PulA Pullulanase/glycogen debranching enzyme [Carbohydrate transport and metabolism]. 697 -224441 COG1524 Npp1 Predicted pyrophosphatase or phosphodiesterase, AlkP superfamily [General function prediction only]. 450 -224442 COG1525 YncB Endonuclease YncB, thermonuclease family [Replication, recombination and repair]. 192 -224443 COG1526 FdhD Formate dehydrogenase assembly factor FdhD [Energy production and conversion]. 266 -224444 COG1527 NtpC Archaeal/vacuolar-type H+-ATPase subunit C/Vma6 [Energy production and conversion]. 346 -224445 COG1528 Ftn Ferritin [Inorganic ion transport and metabolism]. 167 -224446 COG1529 CoxL CO or xanthine dehydrogenase, Mo-binding subunit [Energy production and conversion]. 731 -224447 COG1530 CafA Ribonuclease G or E [Translation, ribosomal structure and biogenesis]. 487 -224448 COG1531 COG1531 Uncharacterized protein, UPF0248 family [Function unknown]. 77 -224449 COG1532 COG1532 CooT family nickel-binding protein [General function prediction only]. 57 -224450 COG1533 SplB DNA repair photolyase [Replication, recombination and repair]. 297 -224451 COG1534 YhbY RNA-binding protein YhbY [Translation, ribosomal structure and biogenesis]. 97 -224452 COG1535 EntB Isochorismate hydrolase [Secondary metabolites biosynthesis, transport and catabolism]. 218 -224453 COG1536 FliG Flagellar motor switch protein FliG [Cell motility]. 339 -224454 COG1537 PelA Stalled ribosome rescue protein Dom34, pelota family [Translation, ribosomal structure and biogenesis]. 352 -224455 COG1538 TolC Outer membrane protein TolC [Cell wall/membrane/envelope biogenesis]. 457 -224456 COG1539 FolB Dihydroneopterin aldolase [Coenzyme transport and metabolism]. 121 -224457 COG1540 YbgL Lactam utilization protein B (function unknown) [General function prediction only]. 252 -224458 COG1541 PaaK Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and metabolism]. 438 -224459 COG1542 COG1542 Uncharacterized protein [Function unknown]. 593 -224460 COG1543 COG1543 Predicted glycosyl hydrolase, contains GH57 and DUF1957 domains [Carbohydrate transport and metabolism]. 504 -224461 COG1544 RaiA Ribosome-associated translation inhibitor RaiA [Translation, ribosomal structure and biogenesis]. 110 -224462 COG1545 COG1545 Uncharacterized OB-fold protein, contains Zn-ribbon domain [General function prediction only]. 140 -224463 COG1546 PncC Nicotinamide mononucleotide (NMN) deamidase PncC [Coenzyme transport and metabolism]. 162 -224464 COG1547 YpuF Predicted metal-dependent hydrolase [Function unknown]. 156 -224465 COG1548 COG1548 Uncharacterized protein, hydantoinase/oxoprolinase family [Function unknown]. 330 -224466 COG1549 COG1549 Archaeosine tRNA-guanine transglycosylase, contains uracil-DNA-glycosylase and PUA domains [Translation, ribosomal structure and biogenesis]. 519 -224467 COG1550 YlxP Uncharacterized conserved protein YlxP, DUF503 family [Function unknown]. 95 -224468 COG1551 CsrA sRNA-binding carbon storage regulator CsrA [Signal transduction mechanisms]. 73 -224469 COG1552 RPL40A Ribosomal protein L40E [Translation, ribosomal structure and biogenesis]. 50 -224470 COG1553 DsrE Sulfur relay (sulfurtransferase) complex TusBCD TusD component, DsrE family [Inorganic ion transport and metabolism]. 126 -224471 COG1554 ATH1 Trehalose and maltose hydrolase (possible phosphorylase) [Carbohydrate transport and metabolism]. 772 -224472 COG1555 ComEA DNA uptake protein ComE and related DNA-binding proteins [Replication, recombination and repair]. 149 -224473 COG1556 LutC L-lactate utilization protein LutC, contains LUD domain [Energy production and conversion]. 218 -224474 COG1558 FlgC Flagellar basal body rod protein FlgC [Cell motility]. 137 -224475 COG1559 YceG Cell division protein YceG, involved in septum cleavage [Cell cycle control, cell division, chromosome partitioning]. 342 -224476 COG1560 HtrB Lauroyl/myristoyl acyltransferase [Lipid transport and metabolism]. 308 -224477 COG1561 YicC Uncharacterized conserved protein YicC, UPF0701 family [Function unknown]. 290 -224478 COG1562 ERG9 Phytoene/squalene synthetase [Lipid transport and metabolism]. 288 -224479 COG1563 COG1563 Uncharacterized MnhB-related membrane protein [General function prediction only]. 87 -224480 COG1564 ThiN Thiamine pyrophosphokinase [Coenzyme transport and metabolism]. 212 -224481 COG1565 MidA SAM-dependent methyltransferase, MidA family [General function prediction only]. 370 -224482 COG1566 EmrA Multidrug resistance efflux pump [Defense mechanisms]. 352 -224483 COG1567 Csm4 CRISPR/Cas system CSM-associated protein Csm4, group 5 of RAMP superfamily [Defense mechanisms]. 313 -224484 COG1568 COG1568 Predicted methyltransferase [General function prediction only]. 354 -224485 COG1569 COG1569 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 142 -224486 COG1570 XseA Exonuclease VII, large subunit [Replication, recombination and repair]. 440 -224487 COG1571 TiaS tRNA(Ile2) C34 agmatinyltransferase TiaS [Translation, ribosomal structure and biogenesis]. 421 -224488 COG1572 COG1572 Serine protease, subtilase family [Posttranslational modification, protein turnover, chaperones]. 606 -224489 COG1573 Udg4 Uracil-DNA glycosylase [Replication, recombination and repair]. 202 -224490 COG1574 YtcJ Predicted amidohydrolase YtcJ [General function prediction only]. 535 -224491 COG1575 MenA 1,4-dihydroxy-2-naphthoate octaprenyltransferase [Coenzyme transport and metabolism]. 303 -224492 COG1576 RlmH 23S rRNA pseudoU1915 N3-methylase RlmH [Translation, ribosomal structure and biogenesis]. 155 -224493 COG1577 ERG12 Mevalonate kinase [Lipid transport and metabolism]. 307 -224494 COG1578 COG1578 Uncharacterized conserved protein, contains ATP-grasp and redox domains [Function unknown]. 285 -224495 COG1579 COG1579 Predicted nucleic acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 239 -224496 COG1580 FliL Flagellar basal body-associated protein FliL [Cell motility]. 159 -224497 COG1581 AlbA Archaeal DNA-binding protein [Transcription]. 91 -224498 COG1582 FlgEa Uncharacterized protein YlzI, FlbEa/FlbD family [General function prediction only]. 67 -224499 COG1583 Cas6 CRISPR/Cas system endoribonuclease Cas6, RAMP superfamily [Defense mechanisms]. 240 -224500 COG1584 SatP Succinate-acetate transporter protein [Energy production and conversion]. 207 -224501 COG1585 YbbJ Membrane protein implicated in regulation of membrane protease activity [Posttranslational modification, protein turnover, chaperones]. 140 -224502 COG1586 SpeD S-adenosylmethionine decarboxylase or arginine decarboxylase [Amino acid transport and metabolism]. 136 -224503 COG1587 HemD Uroporphyrinogen-III synthase [Coenzyme transport and metabolism]. 248 -224504 COG1588 POP4 RNase P/RNase MRP subunit p29 [Translation, ribosomal structure and biogenesis]. 95 -224505 COG1589 FtsQ Cell division septal protein FtsQ [Cell cycle control, cell division, chromosome partitioning]. 269 -224506 COG1590 Tyw3 tRNA(Phe) wybutosine-synthesizing methylase Tyw3 [Translation, ribosomal structure and biogenesis]. 208 -224507 COG1591 COG1591 Holliday junction resolvase, archaeal type [Replication, recombination and repair]. 137 -224508 COG1592 YotD Rubrerythrin [Energy production and conversion]. 166 -224509 COG1593 DctQ TRAP-type C4-dicarboxylate transport system, large permease component [Carbohydrate transport and metabolism]. 379 -224510 COG1594 RPB9 DNA-directed RNA polymerase, subunit M/Transcription elongation factor TFIIS [Transcription]. 113 -224511 COG1595 RpoE DNA-directed RNA polymerase specialized sigma subunit, sigma24 family [Transcription]. 182 -224512 COG1596 Wza Periplasmic protein involved in polysaccharide export, contains SLBB domain of the beta-grasp fold [Cell wall/membrane/envelope biogenesis]. 239 -224513 COG1597 LCB5 Diacylglycerol kinase family enzyme [Lipid transport and metabolism, General function prediction only]. 301 -224514 COG1598 HicB Predicted nuclease of the RNAse H fold, HicB family [Defense mechanisms]. 73 -224515 COG1599 RFA1 ssDNA-binding replication factor A, large subunit [Replication, recombination and repair]. 407 -224516 COG1600 QueG Epoxyqueuosine reductase QueG (queuosine biosynthesis) [Translation, ribosomal structure and biogenesis]. 337 -224517 COG1601 GCD7 Translation initiation factor 2, beta subunit (eIF-2beta)/eIF-5 N-terminal domain [Translation, ribosomal structure and biogenesis]. 151 -224518 COG1602 COG1602 Uncharacterized protein [Function unknown]. 402 -224519 COG1603 RPP1 RNase P/RNase MRP subunit p30 [Translation, ribosomal structure and biogenesis]. 229 -224520 COG1604 Cmr6 CRISPR/Cas system CMR subunit Cmr6, Cas7 group, RAMP superfamily [Defense mechanisms]. 257 -224521 COG1605 PheA Chorismate mutase [Amino acid transport and metabolism]. 101 -224522 COG1606 COG1606 ATP-utilizing enzyme, PP-loop superfamily [General function prediction only]. 269 -224523 COG1607 YciA Acyl-CoA hydrolase [Lipid transport and metabolism]. 157 -224524 COG1608 COG1608 Isopentenyl phosphate kinase [Lipid transport and metabolism]. 252 -224525 COG1609 PurR DNA-binding transcriptional regulator, LacI/PurR family [Transcription]. 333 -224526 COG1610 YqeY Uncharacterized conserved protein YqeY [Function unknown]. 148 -224527 COG1611 YgdH Predicted Rossmann fold nucleotide-binding protein [General function prediction only]. 205 -224528 COG1612 CtaA Heme A synthase [Coenzyme transport and metabolism]. 323 -224529 COG1613 Sbp ABC-type sulfate transport system, periplasmic component [Inorganic ion transport and metabolism]. 348 -224530 COG1614 CdhC CO dehydrogenase/acetyl-CoA synthase beta subunit [Energy production and conversion]. 470 -224531 COG1615 COG1615 Uncharacterized membrane protein, UPF0182 family [Function unknown]. 885 -224532 COG1617 Cgi121 tRNA threonylcarbamoyladenosine modification (KEOPS) complex, Cgi121 subunit [Translation, ribosomal structure and biogenesis]. 158 -224533 COG1618 THEP1 Nucleoside-triphosphatase THEP1 [Nucleotide transport and metabolism]. 179 -224534 COG1619 LdcA Muramoyltetrapeptide carboxypeptidase LdcA (peptidoglycan recycling) [Cell wall/membrane/envelope biogenesis]. 313 -224535 COG1620 LldP L-lactate permease [Energy production and conversion]. 522 -224536 COG1621 SacC Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. 486 -224537 COG1622 CyoA Heme/copper-type cytochrome/quinol oxidase, subunit 2 [Energy production and conversion]. 247 -224538 COG1623 DisA Diadenylate cyclase (c-di-AMP synthetase), DNA integrity scanning protein DisA [Signal transduction mechanisms]. 349 -224539 COG1624 DisA_N Diadenylate cyclase (c-di-AMP synthetase), DisA_N domain [Signal transduction mechanisms]. 247 -224540 COG1625 NifB Fe-S oxidoreductase, related to NifB/MoaA family [Energy production and conversion]. 414 -224541 COG1626 TreA Neutral trehalase [Carbohydrate transport and metabolism]. 558 -224542 COG1627 COG1627 Uncharacterized protein [Function unknown]. 419 -224543 COG1628 COG1628 Endonuclease V homolog, UPF0215 family [General function prediction only]. 185 -224544 COG1629 CirA Outer membrane receptor proteins, mostly Fe transport [Inorganic ion transport and metabolism]. 768 -224545 COG1630 NurA NurA 5'-3' nuclease [Replication, recombination and repair]. 379 -224546 COG1631 RPL42A Ribosomal protein L44E [Translation, ribosomal structure and biogenesis]. 94 -224547 COG1632 RPL15A Ribosomal protein L15E [Translation, ribosomal structure and biogenesis]. 195 -224548 COG1633 YhjR Rubrerythrin [Inorganic ion transport and metabolism]. 176 -224549 COG1634 COG1634 Uncharacterized Rossmann fold enzyme [Function unknown]. 232 -224550 COG1635 THI4 Archaeal ribulose 1,5-bisphosphate synthetase/yeast thiazole synthase [Coenzyme transport and metabolism]. 262 -224551 COG1636 COG1636 Predicted ATPase, Adenine nucleotide alpha hydrolases (AANH) superfamily [General function prediction only]. 204 -224552 COG1637 NucS Endonuclease NucS, RecB family [Replication, recombination and repair]. 253 -224553 COG1638 DctP TRAP-type C4-dicarboxylate transport system, periplasmic component [Carbohydrate transport and metabolism]. 332 -224554 COG1639 HDOD HD-like signal output (HDOD) domain, no enzymatic activity [Signal transduction mechanisms]. 289 -224555 COG1640 MalQ 4-alpha-glucanotransferase [Carbohydrate transport and metabolism]. 520 -224556 COG1641 COG1641 Uncharacterized conserved protein, DUF111 family [Function unknown]. 387 -224557 COG1643 HrpA HrpA-like RNA helicase [Translation, ribosomal structure and biogenesis]. 845 -224558 COG1644 RPB10 DNA-directed RNA polymerase, subunit N (RpoN/RPB10) [Transcription]. 63 -224559 COG1645 COG1645 Uncharacterized Zn-finger containing protein, UPF0148 family [General function prediction only]. 131 -224560 COG1646 PcrB Heptaprenylglyceryl phosphate synthase [Lipid transport and metabolism]. 240 -224561 COG1647 YvaK Esterase/lipase [Secondary metabolites biosynthesis, transport and catabolism]. 243 -224562 COG1648 CysG2 Siroheme synthase (precorrin-2 oxidase/ferrochelatase domain) [Coenzyme transport and metabolism]. 210 -224563 COG1649 YddW Uncharacterized lipoprotein YddW, UPF0748 family [Function unknown]. 418 -224564 COG1650 COG1650 D-tyrosyl-tRNA(Tyr) deacylase [Translation, ribosomal structure and biogenesis]. 266 -224565 COG1651 DsbG Protein-disulfide isomerase [Posttranslational modification, protein turnover, chaperones]. 244 -224566 COG1652 XkdP Nucleoid-associated protein YgaU, contains BON and LysM domains [Function unknown]. 269 -224567 COG1653 UgpB ABC-type glycerol-3-phosphate transport system, periplasmic component [Carbohydrate transport and metabolism]. 433 -224568 COG1654 BirA Biotin operon repressor [Transcription]. 79 -224569 COG1655 COG1655 Uncharacterized protein, DUF2225 family [Function unknown]. 267 -224570 COG1656 COG1656 Uncharacterized conserved protein, contains PIN domain [Function unknown]. 165 -224571 COG1657 SqhC Squalene cyclase [Lipid transport and metabolism]. 517 -224572 COG1658 RnmV 5S rRNA maturation endonuclease (Ribonuclease M5), contains TOPRIM domain [Translation, ribosomal structure and biogenesis]. 127 -224573 COG1659 COG1659 Uncharacterized protein, linocin/CFP29 family [Function unknown]. 267 -224574 COG1660 RapZ RNase adaptor protein for sRNA GlmZ degradation, contains a P-loop ATPase domain [Signal transduction mechanisms]. 286 -224575 COG1661 COG1661 Predicted DNA-binding protein with PD1-like DNA-binding motif [General function prediction only]. 141 -224576 COG1662 InsB Transposase and inactivated derivatives, IS1 family [Mobilome: prophages, transposons]. 121 -224577 COG1663 LpxK Tetraacyldisaccharide-1-P 4'-kinase [Cell wall/membrane/envelope biogenesis]. 336 -224578 COG1664 CcmA Cytoskeletal protein CcmA, bactofilin family [Cytoskeleton]. 146 -224579 COG1665 COG1665 Predicted nucleotidyltransferase [General function prediction only]. 315 -224580 COG1666 YajQ Uncharacterized conserved protein YajQ, UPF0234 family [Function unknown]. 165 -224581 COG1667 COG1667 Uncharacterized protein [Function unknown]. 254 -224582 COG1668 NatB ABC-type Na+ efflux pump, permease component [Energy production and conversion, Inorganic ion transport and metabolism]. 407 -224583 COG1669 COG1669 Predicted nucleotidyltransferase [General function prediction only]. 97 -224584 COG1670 RimL Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, Posttranslational modification, protein turnover, chaperones]. 187 -224585 COG1671 YaiI Uncharacterized conserved protein YaiI, UPF0178 family [Function unknown]. 150 -224586 COG1672 AAAA Predicted ATPase, archaeal AAA+ ATPase superfamily [General function prediction only]. 359 -224587 COG1673 COG1673 Predicted RNA-binding protein, contains PUA-like EVE domain [General function prediction only]. 151 -224588 COG1674 FtsK DNA segregation ATPase FtsK/SpoIIIE and related proteins [Cell cycle control, cell division, chromosome partitioning]. 858 -224589 COG1675 TFA1 Transcription initiation factor IIE, alpha subunit [Transcription]. 176 -224590 COG1676 SEN2 tRNA splicing endonuclease [Translation, ribosomal structure and biogenesis]. 181 -224591 COG1677 FliE Flagellar hook-basal body complex protein FliE [Cell motility]. 105 -224592 COG1678 AlgH Putative transcriptional regulator, AlgH/UPF0301 family [Transcription]. 194 -224593 COG1679 COG1679 Predicted aconitase [Energy production and conversion]. 403 -224594 COG1680 AmpC CubicO group peptidase, beta-lactamase class C family [Defense mechanisms]. 390 -224595 COG1681 FlaB Archaellin (archaeal flagellin) [Cell motility]. 209 -224596 COG1682 TagG ABC-type polysaccharide/polyol phosphate export permease [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 263 -224597 COG1683 YbbK Uncharacterized conserved protein YbbK, DUF523 family [Function unknown]. 156 -224598 COG1684 FliR Flagellar biosynthesis protein FliR [Cell motility]. 258 -224599 COG1685 AroK2 Archaeal shikimate kinase [Amino acid transport and metabolism]. 278 -224600 COG1686 DacC D-alanyl-D-alanine carboxypeptidase [Cell wall/membrane/envelope biogenesis]. 389 -224601 COG1687 AzlD Branched-chain amino acid transport protein AzlD [Amino acid transport and metabolism]. 106 -224602 COG1688 Cas5 CRISPR/Cas system-associated protein Cas5, RAMP superfamily [Defense mechanisms]. 240 -224603 COG1689 COG1689 Uncharacterized protein [Function unknown]. 274 -224604 COG1690 RtcB RNA-splicing ligase RtcB, repairs tRNA damage [Translation, ribosomal structure and biogenesis]. 432 -224605 COG1691 COG1691 NCAIR mutase (PurE)-related protein [Nucleotide transport and metabolism]. 254 -224606 COG1692 YmdB Calcineurin-like phosphoesterase [General function prediction only]. 266 -224607 COG1693 COG1693 Repressor of nif and glnA expression [Transcription]. 325 -224608 COG1694 MazG NTP pyrophosphatase, house-cleaning of non-canonical NTPs [Defense mechanisms]. 102 -224609 COG1695 PadR DNA-binding transcriptional regulator, PadR family [Transcription]. 138 -224610 COG1696 DltB D-alanyl-lipoteichoic acid acyltransferase DltB, MBOAT superfamily [Cell wall/membrane/envelope biogenesis]. 425 -224611 COG1697 Spo11 DNA topoisomerase VI, subunit A [Replication, recombination and repair]. 356 -224612 COG1698 COG1698 Uncharacterized protein, UPF0147 family [Function unknown]. 93 -224613 COG1699 FliW Flagellar assembly factor FliW [Cell motility]. 146 -224614 COG1700 COG1700 Predicted component of virus defense system, contains PD-(D/E)xK nuclease domain, DUF524 [Defense mechanisms]. 503 -224615 COG1701 COG1701 Archaeal phosphopantothenate synthetase [Coenzyme transport and metabolism]. 256 -224616 COG1702 PhoH Phosphate starvation-inducible protein PhoH, predicted ATPase [Signal transduction mechanisms]. 348 -224617 COG1703 ArgK Putative periplasmic protein kinase ArgK or related GTPase of G3E family [Posttranslational modification, protein turnover, chaperones]. 323 -224618 COG1704 LemA Uncharacterized conserved protein [Function unknown]. 185 -224619 COG1705 FlgJ Flagellum-specific peptidoglycan hydrolase FlgJ [Cell wall/membrane/envelope biogenesis, Cell motility]. 201 -224620 COG1706 FlgI Flagellar basal body P-ring protein FlgI [Cell motility]. 365 -224621 COG1707 COG1707 Uncharacterized protein, contains ACT and thioredoxin-like domains [General function prediction only]. 218 -224622 COG1708 COG1708 Predicted nucleotidyltransferase [General function prediction only]. 128 -224623 COG1709 COG1709 Predicted transcriptional regulator [Transcription]. 241 -224624 COG1710 COG1710 Uncharacterized protein [Function unknown]. 139 -224625 COG1711 COG1711 DNA replication initiation complex subunit, GINS family [Replication, recombination and repair]. 223 -224626 COG1712 COG1712 Predicted dinucleotide-utilizing enzyme [General function prediction only]. 255 -224627 COG1713 YqeK HD superfamily phosphohydrolase YqeK (fused to NMNAT in mycoplasms) [General function prediction only]. 187 -224628 COG1714 YckC Uncharacterized membrane protein YckC, RDD family [Function unknown]. 172 -224629 COG1715 Mrr Restriction endonuclease Mrr [Defense mechanisms]. 308 -224630 COG1716 FHA Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]. 191 -224631 COG1717 Rpl32e Ribosomal protein L32E [Translation, ribosomal structure and biogenesis]. 133 -224632 COG1718 RIO1 Serine/threonine-protein kinase RIO1 [Signal transduction mechanisms]. 268 -224633 COG1719 COG1719 Predicted hydrocarbon binding protein, contains 4VR domain [General function prediction only]. 158 -224634 COG1720 TsaA tRNA (Thr-GGU) A37 N-methylase [Translation, ribosomal structure and biogenesis]. 156 -224635 COG1721 YeaD2 Uncharacterized conserved protein, DUF58 family, contains vWF domain [Function unknown]. 416 -224636 COG1722 XseB Exonuclease VII small subunit [Replication, recombination and repair]. 81 -224637 COG1723 Rmd1 Uncharacterized protein, Rmd1/YagE family [Function unknown]. 331 -224638 COG1724 YcfA Predicted RNA binding protein YcfA, dsRBD-like fold, HicA-like mRNA interferase family [General function prediction only]. 66 -224639 COG1725 YhcF DNA-binding transcriptional regulator YhcF, GntR family [Transcription]. 125 -224640 COG1726 NqrA Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrA [Energy production and conversion]. 447 -224641 COG1727 RPL18A Ribosomal protein L18E [Translation, ribosomal structure and biogenesis]. 122 -224642 COG1728 YaaR Uncharacterized protein YaaR, TM1646/DUF327 family [Function unknown]. 151 -224643 COG1729 YbgF Periplasmic TolA-binding protein (function unknown) [General function prediction only]. 262 -224644 COG1730 GIM5 Prefoldin subunit 5 [Posttranslational modification, protein turnover, chaperones]. 145 -224645 COG1731 RibC2 Archaeal riboflavin synthase [Coenzyme transport and metabolism]. 154 -224646 COG1732 OsmF Periplasmic glycine betaine/choline-binding (lipo)protein of an ABC-type transport system (osmoprotectant binding protein) [Cell wall/membrane/envelope biogenesis]. 300 -224647 COG1733 HxlR DNA-binding transcriptional regulator, HxlR family [Transcription]. 120 -224648 COG1734 DksA RNA polymerase-binding transcription factor DksA [Translation, ribosomal structure and biogenesis]. 120 -224649 COG1735 Php Predicted metal-dependent hydrolase, phosphotriesterase family [General function prediction only]. 316 -224650 COG1736 DPH2 Diphthamide synthase subunit DPH2 [Translation, ribosomal structure and biogenesis]. 347 -224651 COG1737 RpiR DNA-binding transcriptional regulator, MurR/RpiR family, contains HTH and SIS domains [Transcription]. 281 -224652 COG1738 YhhQ Uncharacterized PurR-regulated membrane protein YhhQ, DUF165 family [Function unknown]. 233 -224653 COG1739 YIH1 Putative translation regulator, IMPACT (imprinted ancient) protein family [General function prediction only]. 203 -224654 COG1740 HyaA Ni,Fe-hydrogenase I small subunit [Energy production and conversion]. 355 -224655 COG1741 YhaK Redox-sensitive bicupin YhaK, pirin superfamily [General function prediction only]. 276 -224656 COG1742 YnfA Uncharacterized inner membrane protein YnfA, drug/metabolite transporter superfamily [General function prediction only]. 109 -224657 COG1743 COG1743 Adenine-specific DNA methylase, contains a Zn-ribbon domain [Replication, recombination and repair]. 875 -224658 COG1744 Med Basic membrane lipoprotein Med, periplasmic binding protein (PBP1-ABC) superfamily [Cell wall/membrane/envelope biogenesis]. 345 -224659 COG1745 COG1745 Uncharacterized euryarchaeal protein, UPF0058 family [Function unknown]. 94 -224660 COG1746 CCA1 tRNA nucleotidyltransferase (CCA-adding enzyme) [Translation, ribosomal structure and biogenesis]. 443 -224661 COG1747 COG1747 Uncharacterized N-terminal domain of the transcription elongation factor GreA [Function unknown]. 711 -224662 COG1748 Lys9 Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]. 389 -224663 COG1749 FlgE Flagellar hook protein FlgE [Cell motility]. 423 -224664 COG1750 COG1750 Predicted archaeal serine protease, S18 family [General function prediction only]. 579 -224665 COG1751 COG1751 Uncharacterized protein [Function unknown]. 186 -224666 COG1752 RssA Predicted acylesterase/phospholipase RssA, containd patatin domain [General function prediction only]. 306 -224667 COG1753 VapB3 Predicted antitoxin, CopG family [Defense mechanisms]. 74 -224668 COG1754 COG1754 Uncharacterized C-terminal domain of topoisomerase IA [Function unknown]. 298 -224669 COG1755 YpbQ Uncharacterized protein YpbQ, isoprenylcysteine carboxyl methyltransferase (ICMT) family [Function unknown]. 172 -224670 COG1756 Emg1 rRNA pseudouridine-1189 N-methylase Emg1, Nep1/Mra1 family [Translation, ribosomal structure and biogenesis]. 223 -224671 COG1757 NhaC Na+/H+ antiporter NhaC [Energy production and conversion]. 485 -224672 COG1758 RpoZ DNA-directed RNA polymerase, subunit K/omega [Transcription]. 74 -224673 COG1759 PurP 5-formaminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate synthetase (purine biosynthesis) [Nucleotide transport and metabolism]. 361 -224674 COG1760 SdaA L-serine deaminase [Amino acid transport and metabolism]. 262 -224675 COG1761 RPB11 DNA-directed RNA polymerase, subunit L [Transcription]. 99 -224676 COG1762 PtsN Phosphotransferase system mannitol/fructose-specific IIA domain (Ntr-type) [Carbohydrate transport and metabolism, Signal transduction mechanisms]. 152 -224677 COG1763 MobB Molybdopterin-guanine dinucleotide biosynthesis protein [Coenzyme transport and metabolism]. 161 -224678 COG1764 OsmC Organic hydroperoxide reductase OsmC/OhrA [Defense mechanisms]. 143 -224679 COG1765 YhfA Uncharacterized OsmC-related protein [General function prediction only]. 137 -224680 COG1766 FliF Flagellar biosynthesis/type III secretory pathway M-ring protein FliF/YscJ [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 545 -224681 COG1767 CitG Triphosphoribosyl-dephospho-CoA synthetase [Coenzyme transport and metabolism]. 288 -224682 COG1768 COG1768 Predicted phosphohydrolase [General function prediction only]. 230 -224683 COG1769 Cmr3 CRISPR/Cas system CMR-associated protein Cmr3, group 5 of RAMP superfamily [Defense mechanisms]. 335 -224684 COG1770 PtrB Protease II [Amino acid transport and metabolism]. 682 -224685 COG1771 COG1771 Uncharacterized protein, contains N-terminal Zn-finger domain [Function unknown]. 471 -224686 COG1772 COG1772 Uncharacterized protein [Function unknown]. 178 -224687 COG1773 YgaK Rubredoxin [Energy production and conversion]. 55 -224688 COG1774 YaaT Cell fate regulator YaaT, PSP1 superfamily (controls sporulation, competence, biofilm development) [Signal transduction mechanisms]. 265 -224689 COG1775 HgdB Benzoyl-CoA reductase/2-hydroxyglutaryl-CoA dehydratase subunit, BcrC/BadD/HgdB [Secondary metabolites biosynthesis, transport and catabolism]. 379 -224690 COG1776 CheC Chemotaxis protein CheY-P-specific phosphatase CheC [Signal transduction mechanisms]. 203 -224691 COG1777 COG1777 Predicted transcriptional regulator [Transcription]. 217 -224692 COG1778 KdsC 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC and related HAD superfamily phosphatases [Cell wall/membrane/envelope biogenesis, General function prediction only]. 170 -224693 COG1779 Zpr1 C4-type Zn-finger protein [General function prediction only]. 201 -224694 COG1780 NrdI Protein involved in ribonucleotide reduction [Nucleotide transport and metabolism]. 141 -224695 COG1781 PyrI Aspartate carbamoyltransferase, regulatory subunit [Nucleotide transport and metabolism]. 153 -224696 COG1782 COG1782 Predicted metal-dependent RNase, contains metallo-beta-lactamase and KH domains [General function prediction only]. 637 -224697 COG1783 XtmB Phage terminase large subunit [Mobilome: prophages, transposons]. 414 -224698 COG1784 COG1784 TctA family transporter [General function prediction only]. 395 -224699 COG1785 PhoA Alkaline phosphatase [Inorganic ion transport and metabolism, General function prediction only]. 482 -224700 COG1786 COG1786 Swiveling domain associated with predicted aconitase [General function prediction only]. 131 -224701 COG1787 COG1787 Endonuclease, HJR/Mrr/RecB family [Defense mechanisms]. 217 -224702 COG1788 AtoD Acyl CoA:acetate/3-ketoacid CoA transferase, alpha subunit [Lipid transport and metabolism]. 220 -224703 COG1790 COG1790 Uncharacterized protein [Function unknown]. 209 -224704 COG1791 Adi1 Acireductone dioxygenase (methionine salvage), cupin superfamily [Amino acid transport and metabolism]. 181 -224705 COG1792 MreC Cell shape-determining protein MreC [Cell cycle control, cell division, chromosome partitioning]. 284 -224706 COG1793 CDC9 ATP-dependent DNA ligase [Replication, recombination and repair]. 444 -224707 COG1794 RacX Aspartate/glutamate racemase [Cell wall/membrane/envelope biogenesis]. 230 -224708 COG1795 COG1795 Formaldehyde-activating enzyme nesessary for methanogenesis [Energy production and conversion]. 170 -224709 COG1796 PolX DNA polymerase/3'-5' exonuclease PolX [Replication, recombination and repair]. 326 -224710 COG1797 CobB Cobyrinic acid a,c-diamide synthase [Coenzyme transport and metabolism]. 451 -224711 COG1798 DPH5 Diphthamide biosynthesis methyltransferase [Translation, ribosomal structure and biogenesis]. 260 -224712 COG1799 YlmF FtsZ-interacting cell division protein YlmF [Cell cycle control, cell division, chromosome partitioning]. 167 -224713 COG1800 COG1800 Predicted transglutaminase-like protease [General function prediction only]. 335 -224714 COG1801 YecE Uncharacterized conserved protein YecE, DUF72 family [Function unknown]. 263 -224715 COG1802 GntR DNA-binding transcriptional regulator, GntR family [Transcription]. 230 -224716 COG1803 MgsA Methylglyoxal synthase [Carbohydrate transport and metabolism]. 142 -224717 COG1804 CaiB Crotonobetainyl-CoA:carnitine CoA-transferase CaiB and related acyl-CoA transferases [Lipid transport and metabolism]. 396 -224718 COG1805 NqrB Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrB [Energy production and conversion]. 400 -224719 COG1806 PpsR Regulator of PEP synthase PpsR, kinase-PPPase family (combines ADP:protein kinase and phosphorylase activities) [Signal transduction mechanisms]. 273 -224720 COG1807 ArnT 4-amino-4-deoxy-L-arabinose transferase or related glycosyltransferase of PMT family [Cell wall/membrane/envelope biogenesis]. 535 -224721 COG1808 COG1808 Uncharacterized membrane protein [Function unknown]. 334 -224722 COG1809 ComA Phosphosulfolactate synthase, CoM biosynthesis protein A [Coenzyme transport and metabolism]. 258 -224723 COG1810 COG1810 Uncharacterized conserved protein [Function unknown]. 224 -224724 COG1811 YqgA Uncharacterized membrane protein YqgA, affects biofilm formation [Function unknown]. 228 -224725 COG1812 MetK2 Archaeal S-adenosylmethionine synthetase [Coenzyme transport and metabolism]. 400 -224726 COG1813 aMBF1 Archaeal ribosome-binding protein aMBF1, putative translation factor, contains Zn-ribbon and HTH domains [Translation, ribosomal structure and biogenesis]. 165 -224727 COG1814 Ccc1 Predicted Fe2+/Mn2+ transporter, VIT1/CCC1 family [Inorganic ion transport and metabolism]. 229 -224728 COG1815 FlgB Flagellar basal body rod protein FlgB [Cell motility]. 133 -224729 COG1816 Add Adenosine deaminase [Nucleotide transport and metabolism]. 345 -224730 COG1817 COG1817 Predicted glycosyltransferase [General function prediction only]. 346 -224731 COG1818 Tan1 tRNA(Ser,Leu) C12 N-acetylase TAN1, contains THUMP domain [Translation, ribosomal structure and biogenesis]. 175 -224732 COG1819 YjiC UDP:flavonoid glycosyltransferase YjiC, YdhE family [Carbohydrate transport and metabolism]. 406 -224733 COG1820 NagA N-acetylglucosamine-6-phosphate deacetylase [Carbohydrate transport and metabolism]. 380 -224734 COG1821 COG1821 Predicted ATP-dependent carboligase, ATP-grasp superfamily [General function prediction only]. 307 -224735 COG1822 COG1822 Uncharacterized membrane protein [Function unknown]. 349 -224736 COG1823 TcyP L-cystine uptake protein TcyP, sodium:dicarboxylate symporter family [Amino acid transport and metabolism]. 458 -224737 COG1824 MgtE2 Permease, similar to cation transporters [Inorganic ion transport and metabolism]. 203 -224738 COG1825 RplY Ribosomal protein L25 (general stress protein Ctc) [Translation, ribosomal structure and biogenesis]. 93 -224739 COG1826 TatA Sec-independent protein translocase protein TatA [Intracellular trafficking, secretion, and vesicular transport]. 94 -224740 COG1827 NiaR Transcriptional regulator of NAD metabolism, contains HTH and 3H domains [Transcription, Coenzyme transport and metabolism]. 168 -224741 COG1828 PurS Phosphoribosylformylglycinamidine (FGAM) synthase, PurS component [Nucleotide transport and metabolism]. 83 -224742 COG1829 COG1829 Archaeal pantoate kinase [Coenzyme transport and metabolism]. 283 -224743 COG1830 FbaB Fructose-bisphosphate aldolase class Ia, DhnA family [Carbohydrate transport and metabolism]. 265 -224744 COG1831 COG1831 Predicted metal-dependent hydrolase, urease superfamily [General function prediction only]. 285 -224745 COG1832 YccU Predicted CoA-binding protein [General function prediction only]. 140 -224746 COG1833 COG1833 Uri superfamily endonuclease [General function prediction only]. 132 -224747 COG1834 DdaH N-Dimethylarginine dimethylaminohydrolase [Amino acid transport and metabolism]. 267 -224748 COG1835 OafA Peptidoglycan/LPS O-acetylase OafA/YrhL, contains acyltransferase and SGNH-hydrolase domains [Cell wall/membrane/envelope biogenesis]. 386 -224749 COG1836 COG1836 Uncharacterized membrane protein [Function unknown]. 247 -224750 COG1837 YlqC Predicted RNA-binding protein YlqC, contains KH domain, UPF0109 family [General function prediction only]. 76 -224751 COG1838 FumA Tartrate dehydratase beta subunit/Fumarate hydratase class I, C-terminal domain [Energy production and conversion]. 184 -224752 COG1839 COG1839 Adenosine/AMP kinase [Nucleotide transport and metabolism]. 162 -224753 COG1840 AfuA ABC-type Fe3+ transport system, periplasmic component [Inorganic ion transport and metabolism]. 299 -224754 COG1841 RpmD Ribosomal protein L30/L7E [Translation, ribosomal structure and biogenesis]. 55 -224755 COG1842 PspA Phage shock protein A [Transcription, Signal transduction mechanisms]. 225 -224756 COG1843 FlgD Flagellar hook assembly protein FlgD [Cell motility]. 222 -224757 COG1844 COG1844 Uncharacterized protein [Function unknown]. 125 -224758 COG1845 CyoC Heme/copper-type cytochrome/quinol oxidase, subunit 3 [Energy production and conversion]. 209 -224759 COG1846 MarR DNA-binding transcriptional regulator, MarR family [Transcription]. 126 -224760 COG1847 Jag Predicted RNA-binding protein Jag, conains KH and R3H domains [General function prediction only]. 208 -224761 COG1848 COG1848 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 140 -224762 COG1849 COG1849 Uncharacterized protein [Function unknown]. 90 -224763 COG1850 RbcL Ribulose 1,5-bisphosphate carboxylase, large subunit, or a RuBisCO-like protein [Carbohydrate transport and metabolism]. 429 -224764 COG1851 COG1851 Uncharacterized protein, UPF0128 family [Function unknown]. 229 -224765 COG1852 COG1852 Uncharacterized protein, DUF116 family [Function unknown]. 209 -224766 COG1853 RutF NADH-FMN oxidoreductase RutF, flavin reductase (DIM6/NTAB) family [Energy production and conversion]. 176 -224767 COG1854 LuxS S-ribosylhomocysteine lyase LuxS, autoinducer biosynthesis [Signal transduction mechanisms]. 161 -224768 COG1855 COG1855 Predicted ATPase, PilT family [General function prediction only]. 604 -224769 COG1856 COG1856 Uncharacterized protein, radical SAM superfamily [General function prediction only]. 275 -224770 COG1857 Cas7 CRISPR/Cas system-associated protein Cas7, RAMP superfamily [Defense mechanisms]. 334 -224771 COG1858 MauG Cytochrome c peroxidase [Posttranslational modification, protein turnover, chaperones]. 364 -224772 COG1859 KptA RNA:NAD 2'-phosphotransferase, TPT1/KptA family [Translation, ribosomal structure and biogenesis]. 211 -224773 COG1860 COG1860 Uncharacterized conserved protein, UPF0179 family [Nucleotide transport and metabolism, Replication, recombination and repair]. 147 -224774 COG1861 SpsF Spore coat polysaccharide biosynthesis protein SpsF, cytidylyltransferase family [Cell wall/membrane/envelope biogenesis]. 241 -224775 COG1862 YajC Preprotein translocase subunit YajC [Intracellular trafficking, secretion, and vesicular transport]. 97 -224776 COG1863 MnhE Multisubunit Na+/H+ antiporter, MnhE subunit [Inorganic ion transport and metabolism]. 158 -224777 COG1864 NUC1 DNA/RNA endonuclease G, NUC1 [Nucleotide transport and metabolism]. 281 -224778 COG1865 CbiZ Adenosylcobinamide amidohydrolase [Coenzyme transport and metabolism]. 200 -224779 COG1866 PckA Phosphoenolpyruvate carboxykinase, ATP-dependent [Energy production and conversion]. 529 -224780 COG1867 TRM1 tRNA G26 N,N-dimethylase Trm1 [Translation, ribosomal structure and biogenesis]. 380 -224781 COG1868 FliM Flagellar motor switch protein FliM [Cell motility]. 332 -224782 COG1869 RbsD D-ribose pyranose/furanose isomerase RbsD [Carbohydrate transport and metabolism]. 135 -224783 COG1871 CheD Chemotaxis receptor (MCP) glutamine deamidase CheD [Cell motility, Signal transduction mechanisms]. 164 -224784 COG1872 YggU Uncharacterized conserved protein YggU, UPF0235/DUF167 family [Function unknown]. 102 -224785 COG1873 YlmC Sporulation protein YlmC, PRC-barrel domain family [General function prediction only]. 87 -224786 COG1874 GanA Beta-galactosidase GanA [Carbohydrate transport and metabolism]. 673 -224787 COG1875 YlaK Predicted ribonuclease YlaK, contains NYN-type RNase and PhoH-family ATPase domains [General function prediction only]. 436 -224788 COG1876 LdcB LD-carboxypeptidase LdcB, LAS superfamily [Cell wall/membrane/envelope biogenesis]. 241 -224789 COG1877 OtsB Trehalose-6-phosphatase [Carbohydrate transport and metabolism]. 266 -224790 COG1878 COG1878 Kynurenine formamidase [Amino acid transport and metabolism]. 218 -224791 COG1879 RbsB ABC-type sugar transport system, periplasmic component, contains N-terminal xre family HTH domain [Carbohydrate transport and metabolism]. 322 -224792 COG1880 CdhB CO dehydrogenase/acetyl-CoA synthase epsilon subunit [Energy production and conversion]. 170 -224793 COG1881 PEBP Uncharacterized conserved protein, phosphatidylethanolamine-binding protein (PEBP) family [General function prediction only]. 174 -224794 COG1882 PflD Pyruvate-formate lyase [Energy production and conversion]. 755 -224795 COG1883 OadB Na+-transporting methylmalonyl-CoA/oxaloacetate decarboxylase, beta subunit [Energy production and conversion]. 375 -224796 COG1884 Sbm Methylmalonyl-CoA mutase, N-terminal domain/subunit [Lipid transport and metabolism]. 548 -224797 COG1885 COG1885 Uncharacterized protein, UPF0212 family [Function unknown]. 115 -224798 COG1886 FliN Flagellar motor switch/type III secretory pathway protein FliN [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 136 -224799 COG1887 TagB CDP-glycerol glycerophosphotransferase, TagB/SpsB family [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism]. 388 -224800 COG1888 COG1888 Uncharacterized protein [Function unknown]. 97 -224801 COG1889 NOP1 Fibrillarin-like rRNA methylase [Translation, ribosomal structure and biogenesis]. 231 -224802 COG1890 RPS3A Ribosomal protein S3AE [Translation, ribosomal structure and biogenesis]. 214 -224803 COG1891 COG1891 Uncharacterized protein, UPF0264 family [Function unknown]. 235 -224804 COG1892 PpcA Phosphoenolpyruvate carboxylase [Carbohydrate transport and metabolism]. 488 -224805 COG1893 PanE Ketopantoate reductase [Coenzyme transport and metabolism]. 307 -224806 COG1894 NuoF NADH:ubiquinone oxidoreductase, NADH-binding 51 kD subunit (chain F) [Energy production and conversion]. 424 -224807 COG1895 COG1895 Uncharacterized protein, contains HEPN domain, UPF0332 family [Function unknown]. 129 -224808 COG1896 YfbR 5'-deoxynucleotidase YfbR and related HD superfamily hydrolases [Nucleotide transport and metabolism, General function prediction only]. 193 -224809 COG1897 MetA Homoserine trans-succinylase [Amino acid transport and metabolism]. 307 -224810 COG1898 RfbC dTDP-4-dehydrorhamnose 3,5-epimerase or related enzyme [Cell wall/membrane/envelope biogenesis]. 173 -224811 COG1899 DYS1 Deoxyhypusine synthase [Posttranslational modification, protein turnover, chaperones, Translation, ribosomal structure and biogenesis]. 318 -224812 COG1900 COG1900 Uncharacterized conserved protein, DUF39 family [Function unknown]. 365 -224813 COG1901 COG1901 tRNA pseudouridine-54 N-methylase [Translation, ribosomal structure and biogenesis]. 197 -224814 COG1902 FadH 2,4-dienoyl-CoA reductase or related NADH-dependent reductase, Old Yellow Enzyme (OYE) family [Energy production and conversion]. 363 -224815 COG1903 CbiD Cobalamin biosynthesis protein CbiD [Coenzyme transport and metabolism]. 367 -224816 COG1904 UxaC Glucuronate isomerase [Carbohydrate transport and metabolism]. 463 -224817 COG1905 NuoE NADH:ubiquinone oxidoreductase 24 kD subunit (chain E) [Energy production and conversion]. 160 -224818 COG1906 COG1906 Uncharacterized protein [Function unknown]. 388 -224819 COG1907 COG1907 Predicted archaeal sugar kinase [General function prediction only]. 312 -224820 COG1908 FrhD Coenzyme F420-reducing hydrogenase, delta subunit [Energy production and conversion]. 132 -224821 COG1909 COG1909 Uncharacterized protein, UPF0218 family [Function unknown]. 167 -224822 COG1910 YvgK Periplasmic molybdate-binding protein/domain [Inorganic ion transport and metabolism]. 223 -224823 COG1911 RPL30E Ribosomal protein L30E [Translation, ribosomal structure and biogenesis]. 100 -224824 COG1912 COG1912 S-adenosylmethionine hydrolase (SAM-hydroxide adenosyltransferase) [Coenzyme transport and metabolism]. 268 -224825 COG1913 COG1913 Predicted Zn-dependent protease [General function prediction only]. 181 -224826 COG1914 MntH Mn2+ and Fe2+ transporters of the NRAMP family [Inorganic ion transport and metabolism]. 416 -224827 COG1915 COG1915 Uncharacterized conserved protein, contains Saccharopine dehydrogenase N-terminal (SDHN) domain [Function unknown]. 415 -224828 COG1916 COG1916 Pheromone shutdown protein TraB, contains GTxH motif (function unknown) [Function unknown]. 388 -224829 COG1917 QdoI Cupin domain protein related to quercetin dioxygenase [General function prediction only]. 131 -224830 COG1918 FeoA Fe2+ transport system protein FeoA [Inorganic ion transport and metabolism]. 75 -224831 COG1920 COG1920 2-phospho-L-lactate guanylyltransferase, coenzyme F420 biosynthesis enzyme, CobY/MobA/RfbA family [Coenzyme transport and metabolism]. 210 -224832 COG1921 SelA Seryl-tRNA(Sec) selenium transferase [Translation, ribosomal structure and biogenesis]. 395 -224833 COG1922 WecG UDP-N-acetyl-D-mannosaminuronic acid transferase, WecB/TagA/CpsF family [Cell wall/membrane/envelope biogenesis]. 253 -224834 COG1923 Hfq sRNA-binding regulator protein Hfq [Signal transduction mechanisms]. 77 -224835 COG1924 YjiL Activator of 2-hydroxyglutaryl-CoA dehydratase (HSP70-class ATPase domain) [Lipid transport and metabolism]. 396 -224836 COG1925 PtsH Phosphotransferase system, HPr and related phosphotransfer proteins [Signal transduction mechanisms, Carbohydrate transport and metabolism]. 88 -224837 COG1926 COG1926 Predicted phosphoribosyltransferase [General function prediction only]. 220 -224838 COG1927 Mtd F420-dependent methylenetetrahydromethanopterin dehydrogenase [Energy production and conversion]. 277 -224839 COG1928 PMT1 Dolichyl-phosphate-mannose--protein O-mannosyl transferase [Posttranslational modification, protein turnover, chaperones]. 699 -224840 COG1929 GlxK Glycerate kinase [Carbohydrate transport and metabolism]. 378 -224841 COG1930 CbiN ABC-type cobalt transport system, periplasmic component [Inorganic ion transport and metabolism]. 97 -224842 COG1931 COG1931 Predicted RNA binding protein with dsRBD fold, UPF0201 family [General function prediction only]. 140 -224843 COG1932 SerC Phosphoserine aminotransferase [Coenzyme transport and metabolism, Amino acid transport and metabolism]. 365 -224844 COG1933 PolC Archaeal DNA polymerase II, large subunit [Replication, recombination and repair]. 253 -224845 COG1934 LptA Lipopolysaccharide export system protein LptA [Cell wall/membrane/envelope biogenesis]. 173 -224846 COG1935 COG1935 Uncharacterized protein [Function unknown]. 122 -224847 COG1936 Fap7 Broad-specificity NMP kinase [Nucleotide transport and metabolism]. 180 -224848 COG1937 FrmR DNA-binding transcriptional regulator, FrmR family [Transcription]. 89 -224849 COG1938 COG1938 Predicted ATP-dependent carboligase, ATP-grasp superfamily [General function prediction only]. 244 -224850 COG1939 MrnC 23S rRNA maturation mini-RNase III [Translation, ribosomal structure and biogenesis]. 132 -224851 COG1940 NagC Sugar kinase of the NBD/HSP70 family, may contain an N-terminal HTH domain [Transcription, Carbohydrate transport and metabolism]. 314 -224852 COG1941 FrhG Coenzyme F420-reducing hydrogenase, gamma subunit [Energy production and conversion]. 247 -224853 COG1942 PptA Phenylpyruvate tautomerase PptA, 4-oxalocrotonate tautomerase family [Secondary metabolites biosynthesis, transport and catabolism]. 69 -224854 COG1943 RAYT REP element-mobilizing transposase RayT [Mobilome: prophages, transposons]. 136 -224855 COG1944 YcaO Ribosomal protein S12 methylthiotransferase accessory factor YcaO [Translation, ribosomal structure and biogenesis]. 398 -224856 COG1945 PdaD Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) [Amino acid transport and metabolism]. 163 -224857 COG1946 TesB Acyl-CoA thioesterase [Lipid transport and metabolism]. 289 -224858 COG1947 IspE 4-diphosphocytidyl-2C-methyl-D-erythritol kinase [Lipid transport and metabolism]. 289 -224859 COG1948 MUS81 ERCC4-type nuclease [Replication, recombination and repair]. 254 -224860 COG1949 Orn Oligoribonuclease (3'-5' exoribonuclease) [RNA processing and modification]. 184 -224861 COG1950 YvlD Uncharacterized membrane protein YvlD, DUF360 family [Function unknown]. 120 -224862 COG1951 TtdA Tartrate dehydratase alpha subunit/Fumarate hydratase class I, N-terminal domain [Energy production and conversion]. 297 -224863 COG1952 SecB Preprotein translocase subunit SecB [Intracellular trafficking, secretion, and vesicular transport]. 157 -224864 COG1953 FUI1 Cytosine/uracil/thiamine/allantoin permease [Nucleotide transport and metabolism, Coenzyme transport and metabolism]. 497 -224865 COG1954 GlpP Glycerol-3-phosphate responsive antiterminator (mRNA-binding) [Transcription]. 181 -224866 COG1955 FlaJ Archaellum biogenesis protein FlaJ, TadC family [Cell motility]. 527 -224867 COG1956 GAF GAF domain-containing protein, putative methionine-R-sulfoxide reductase [Defense mechanisms, Signal transduction mechanisms]. 163 -224868 COG1957 URH1 Inosine-uridine nucleoside N-ribohydrolase [Nucleotide transport and metabolism]. 311 -224869 COG1958 LSM1 Small nuclear ribonucleoprotein (snRNP) homolog [Transcription]. 79 -224870 COG1959 IscR DNA-binding transcriptional regulator, IscR family [Transcription]. 150 -224871 COG1960 CaiA Acyl-CoA dehydrogenase related to the alkylation response protein AidB [Lipid transport and metabolism]. 393 -224872 COG1961 PinE Site-specific DNA recombinase related to the DNA invertase Pin [Replication, recombination and repair]. 222 -224873 COG1962 MtrH Tetrahydromethanopterin S-methyltransferase, subunit H [Coenzyme transport and metabolism]. 313 -224874 COG1963 YuiD Acid phosphatase family membrane protein YuiD [General function prediction only]. 153 -224875 COG1964 COG1964 Uncharacterized Fe-S cluster-containing enzyme, radical SAM superfamily [General function prediction only]. 475 -224876 COG1965 CyaY Iron-binding protein CyaY, frataxin homolog [Inorganic ion transport and metabolism]. 106 -224877 COG1966 CstA Carbon starvation protein CstA [Signal transduction mechanisms]. 575 -224878 COG1967 COG1967 Uncharacterized membrane protein [Function unknown]. 271 -224879 COG1968 UppP Undecaprenyl pyrophosphate phosphatase [Lipid transport and metabolism]. 270 -224880 COG1969 HyaC Ni,Fe-hydrogenase I cytochrome b subunit [Energy production and conversion]. 227 -224881 COG1970 MscL Large-conductance mechanosensitive channel [Cell wall/membrane/envelope biogenesis]. 130 -224882 COG1971 MntP Putative Mn2+ efflux pump MntP [Inorganic ion transport and metabolism]. 190 -224883 COG1972 NupC Nucleoside permease NupC [Nucleotide transport and metabolism]. 404 -224884 COG1973 HypE Hydrogenase maturation factor HypE [Posttranslational modification, protein turnover, chaperones]. 449 -224885 COG1974 LexA SOS-response transcriptional repressor LexA (RecA-mediated autopeptidase) [Transcription, Signal transduction mechanisms]. 201 -224886 COG1975 XdhC Xanthine and CO dehydrogenase maturation factor, XdhC/CoxF family [Posttranslational modification, protein turnover, chaperones]. 278 -224887 COG1976 TIF6 Translation initiation factor 6 (eIF-6) [Translation, ribosomal structure and biogenesis]. 222 -224888 COG1977 MoaD Molybdopterin converting factor, small subunit [Coenzyme transport and metabolism]. 84 -224889 COG1978 YkuK Predicted RNase H-related nuclease YkuK, DUF458 family [General function prediction only]. 152 -224890 COG1979 YqdH Alcohol dehydrogenase YqhD, Fe-dependent ADH family [Energy production and conversion]. 384 -224891 COG1980 COG1980 Archaeal fructose 1,6-bisphosphatase [Carbohydrate transport and metabolism]. 369 -224892 COG1981 COG1981 Uncharacterized membrane protein [Function unknown]. 149 -224893 COG1982 LdcC Arginine/lysine/ornithine decarboxylase [Amino acid transport and metabolism]. 557 -224894 COG1983 PspC Phage shock protein PspC (stress-responsive transcriptional regulator) [Transcription, Signal transduction mechanisms]. 70 -224895 COG1984 DUR1B Allophanate hydrolase subunit 2 [Amino acid transport and metabolism]. 314 -224896 COG1985 RibD Pyrimidine reductase, riboflavin biosynthesis [Coenzyme transport and metabolism]. 218 -224897 COG1986 YjjX Non-canonical (house-cleaning) NTP pyrophosphatase, all-alpha NTP-PPase family [Nucleotide transport and metabolism, Defense mechanisms]. 175 -224898 COG1987 FliQ Flagellar biosynthesis protein FliQ [Cell motility]. 89 -224899 COG1988 YbcI Membrane-bound metal-dependent hydrolase YbcI, DUF457 family [General function prediction only]. 190 -224900 COG1989 PulO Prepilin signal peptidase PulO (type II secretory pathway) or related peptidase [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 254 -224901 COG1990 Pth2 Peptidyl-tRNA hydrolase [Translation, ribosomal structure and biogenesis]. 122 -224902 COG1991 COG1991 Uncharacterized protein, UPF0333 family [Function unknown]. 131 -224903 COG1992 COG1992 Predicted transcriptional regulator fused phosphomethylpyrimidine kinase (thiamin biosynthesis) [General function prediction only]. 181 -224904 COG1993 COG1993 PII-like signaling protein [Signal transduction mechanisms]. 109 -224905 COG1994 SpoIVFB Zn-dependent protease (includes SpoIVFB) [Posttranslational modification, protein turnover, chaperones]. 230 -224906 COG1995 PdxA 4-hydroxy-L-threonine phosphate dehydrogenase PdxA [Coenzyme transport and metabolism]. 332 -224907 COG1996 RPC10 DNA-directed RNA polymerase, subunit RPC12/RpoP, contains C4-type Zn-finger [Transcription]. 49 -224908 COG1997 RPL43A Ribosomal protein L37AE/L43A [Translation, ribosomal structure and biogenesis]. 89 -224909 COG1998 RPS27AE Ribosomal protein S27AE [Translation, ribosomal structure and biogenesis]. 51 -224910 COG1999 Sco1 Cytochrome oxidase Cu insertion factor, SCO1/SenC/PrrC family [Posttranslational modification, protein turnover, chaperones]. 207 -224911 COG2000 COG2000 Uncharacterized Fe-S cluster-containing protein [General function prediction only]. 226 -224912 COG2001 MraZ MraZ, DNA-binding transcriptional regulator and inhibitor of RsmH methyltransferase activity [Translation, ribosomal structure and biogenesis]. 146 -224913 COG2002 AbrB Bifunctional DNA-binding transcriptional regulator of stationary/sporulation/toxin gene expression and antitoxin component of the YhaV-PrlF toxin-antitoxin module [Transcription, Defense mechanisms]. 89 -224914 COG2003 RadC DNA repair protein RadC, contains a helix-hairpin-helix DNA-binding motif [Replication, recombination and repair]. 224 -224915 COG2004 RPS24A Ribosomal protein S24E [Translation, ribosomal structure and biogenesis]. 107 -224916 COG2005 ModE DNA-binding transcriptional regulator ModE (molybdenum-dependent) [Transcription]. 130 -224917 COG2006 COG2006 Uncharacterized conserved protein, DUF362 family [Function unknown]. 293 -224918 COG2007 RPS8A Ribosomal protein S8E [Translation, ribosomal structure and biogenesis]. 127 -224919 COG2008 GLY1 Threonine aldolase [Amino acid transport and metabolism]. 342 -224920 COG2009 SdhC Succinate dehydrogenase/fumarate reductase, cytochrome b subunit [Energy production and conversion]. 132 -224921 COG2010 CccA Cytochrome c, mono- and diheme variants [Energy production and conversion]. 150 -224922 COG2011 MetP ABC-type methionine transport system, permease component [Amino acid transport and metabolism]. 222 -224923 COG2012 RPB5 DNA-directed RNA polymerase, subunit H, RpoH/RPB5 [Transcription]. 80 -224924 COG2013 AIM24 Uncharacterized conserved protein, AIM24 family [Function unknown]. 227 -224925 COG2014 COG2014 Uncharacterized conserved protein, contains DUF4213 and DUF364 domains [Function unknown]. 250 -224926 COG2015 BDS1 Alkyl sulfatase BDS1 and related hydrolases, metallo-beta-lactamase superfamily [Secondary metabolites biosynthesis, transport and catabolism]. 655 -224927 COG2016 Tma20 Predicted ribosome-associated RNA-binding protein Tma20, contains PUA domain [Translation, ribosomal structure and biogenesis]. 161 -224928 COG2017 GalM Galactose mutarotase or related enzyme [Carbohydrate transport and metabolism]. 308 -224929 COG2018 COG2018 Predicted regulator of Ras-like GTPase activity, Roadblock/LC7/MglB family [Signal transduction mechanisms]. 119 -224930 COG2019 AdkA Archaeal adenylate kinase [Nucleotide transport and metabolism]. 189 -224931 COG2020 STE14 Protein-S-isoprenylcysteine O-methyltransferase Ste14 [Posttranslational modification, protein turnover, chaperones]. 187 -224932 COG2021 MET2 Homoserine acetyltransferase [Amino acid transport and metabolism]. 368 -224933 COG2022 ThiG Thiamin biosynthesis thiazole synthase ThiGH, ThiG subunit [Coenzyme transport and metabolism]. 262 -224934 COG2023 RPR2 RNase P subunit RPR2 [Translation, ribosomal structure and biogenesis]. 105 -224935 COG2024 SepRS O-phosphoseryl-tRNA(Cys) synthetase [Translation, ribosomal structure and biogenesis]. 536 -224936 COG2025 FixB Electron transfer flavoprotein, alpha subunit [Energy production and conversion]. 313 -224937 COG2026 RelE mRNA-degrading endonuclease RelE, toxin component of the RelBE toxin-antitoxin system [Defense mechanisms]. 90 -224938 COG2027 DacB D-alanyl-D-alanine carboxypeptidase [Cell wall/membrane/envelope biogenesis]. 470 -224939 COG2028 COG2028 Uncharacterized protein [Function unknown]. 145 -224940 COG2029 COG2029 Uncharacterized protein [Function unknown]. 189 -224941 COG2030 MaoC Acyl dehydratase [Lipid transport and metabolism]. 159 -224942 COG2031 AtoE Short chain fatty acids transporter [Lipid transport and metabolism]. 446 -224943 COG2032 SodC Cu/Zn superoxide dismutase [Inorganic ion transport and metabolism]. 179 -224944 COG2033 SORL Desulfoferrodoxin, superoxide reductase-like (SORL) domain [Energy production and conversion]. 126 -224945 COG2034 COG2034 Uncharacterized membrane protein [Function unknown]. 85 -224946 COG2035 COG2035 Uncharacterized membrane protein [Function unknown]. 276 -224947 COG2036 HHT1 Archaeal histone H3/H4 [Chromatin structure and dynamics]. 91 -224948 COG2037 Ftr Formylmethanofuran:tetrahydromethanopterin formyltransferase [Energy production and conversion]. 297 -224949 COG2038 CobT NaMN:DMB phosphoribosyltransferase [Coenzyme transport and metabolism]. 347 -224950 COG2039 Pcp Pyrrolidone-carboxylate peptidase (N-terminal pyroglutamyl peptidase) [Posttranslational modification, protein turnover, chaperones]. 207 -224951 COG2040 MHT1 Homocysteine/selenocysteine methylase (S-methylmethionine-dependent) [Amino acid transport and metabolism]. 300 -224952 COG2041 YedY Periplasmic DMSO/TMAO reductase YedYZ, molybdopterin-dependent catalytic subunit [Energy production and conversion]. 271 -224953 COG2042 Tsr3 Ribosome biogenesis protein Tsr3 (rRNA maturation) [Translation, ribosomal structure and biogenesis]. 179 -224954 COG2043 COG2043 Uncharacterized conserved protein, DUF169 family [Function unknown]. 237 -224955 COG2044 COG2044 Predicted peroxiredoxin [General function prediction only]. 120 -224956 COG2045 ComB Phosphosulfolactate phosphohydrolase or related enzyme [Coenzyme transport and metabolism, General function prediction only]. 230 -224957 COG2046 MET3 ATP sulfurylase (sulfate adenylyltransferase) [Inorganic ion transport and metabolism]. 397 -224958 COG2047 COG2047 Proteasome assembly chaperone (PAC2) family protein [General function prediction only]. 258 -224959 COG2048 HdrB Heterodisulfide reductase, subunit B [Energy production and conversion]. 293 -224960 COG2049 DUR1A Allophanate hydrolase subunit 1 [Amino acid transport and metabolism]. 223 -224961 COG2050 PaaI Acyl-coenzyme A thioesterase PaaI, contains HGG motif [Secondary metabolites biosynthesis, transport and catabolism]. 141 -224962 COG2051 RPS27A Ribosomal protein S27E [Translation, ribosomal structure and biogenesis]. 67 -224963 COG2052 RemA Regulator of extracellular matrix RemA, YlzA/DUF370 family [Cell wall/membrane/envelope biogenesis]. 89 -224964 COG2053 RPS28A Ribosomal protein S28E/S33 [Translation, ribosomal structure and biogenesis]. 69 -224965 COG2054 COG2054 Uncharacterized archaeal kinase related to aspartokinase [General function prediction only]. 212 -224966 COG2055 AllD Malate/lactate/ureidoglycolate dehydrogenase, LDH2 family [Energy production and conversion]. 349 -224967 COG2056 YuiF Predicted histidine transporter YuiF, NhaC family [Amino acid transport and metabolism]. 444 -224968 COG2057 AtoA Acyl CoA:acetate/3-ketoacid CoA transferase, beta subunit [Lipid transport and metabolism]. 225 -224969 COG2058 RPP1A Ribosomal protein L12E/L44/L45/RPP1/RPP2 [Translation, ribosomal structure and biogenesis]. 109 -224970 COG2059 ChrA Chromate transport protein ChrA [Inorganic ion transport and metabolism]. 195 -224971 COG2060 KdpA K+-transporting ATPase, A chain [Inorganic ion transport and metabolism]. 560 -224972 COG2061 COG2061 Uncharacterized conserved protein, contains ACT domain [General function prediction only]. 170 -224973 COG2062 SixA Phosphohistidine phosphatase SixA [Signal transduction mechanisms]. 163 -224974 COG2063 FlgH Flagellar basal body L-ring protein FlgH [Cell motility]. 230 -224975 COG2064 TadC Pilus assembly protein TadC [Extracellular structures]. 320 -224976 COG2065 PyrR Pyrimidine operon attenuation protein/uracil phosphoribosyltransferase [Nucleotide transport and metabolism]. 179 -224977 COG2066 GlsA Glutaminase [Amino acid transport and metabolism]. 309 -224978 COG2067 FadL Long-chain fatty acid transport protein [Lipid transport and metabolism]. 440 -224979 COG2068 MocA CTP:molybdopterin cytidylyltransferase MocA [Coenzyme transport and metabolism]. 199 -224980 COG2069 CdhD CO dehydrogenase/acetyl-CoA synthase delta subunit (corrinoid Fe-S protein) [Energy production and conversion]. 403 -224981 COG2070 YrpB NAD(P)H-dependent flavin oxidoreductase YrpB, nitropropane dioxygenase family [General function prediction only]. 336 -224982 COG2071 PuuD Gamma-glutamyl-gamma-aminobutyrate hydrolase PuuD (putrescine degradation), contains GATase1-like domain [Amino acid transport and metabolism]. 243 -224983 COG2072 CzcO Predicted flavoprotein CzcO associated with the cation diffusion facilitator CzcD [Inorganic ion transport and metabolism]. 443 -224984 COG2073 CbiG Cobalamin biosynthesis protein CbiG [Coenzyme transport and metabolism]. 298 -224985 COG2074 Pgk2 2-phosphoglycerate kinase [Carbohydrate transport and metabolism]. 299 -224986 COG2075 RPL24A Ribosomal protein L24E [Translation, ribosomal structure and biogenesis]. 66 -224987 COG2076 EmrE Multidrug transporter EmrE and related cation transporters [Defense mechanisms]. 106 -224988 COG2077 Tpx Peroxiredoxin [Posttranslational modification, protein turnover, chaperones]. 158 -224989 COG2078 AMMECR1 Uncharacterized conserved protein, AMMECR1 domain [Function unknown]. 203 -224990 COG2079 PrpD 2-methylcitrate dehydratase PrpD [Carbohydrate transport and metabolism]. 453 -224991 COG2080 CoxS Aerobic-type carbon monoxide dehydrogenase, small subunit, CoxS/CutS family [Energy production and conversion]. 156 -224992 COG2081 YhiN Predicted flavoprotein YhiN [General function prediction only]. 408 -224993 COG2082 CobH Precorrin isomerase [Coenzyme transport and metabolism]. 210 -224994 COG2083 COG2083 Uncharacterized protein, UPF0216 family [Function unknown]. 140 -224995 COG2084 MmsB 3-hydroxyisobutyrate dehydrogenase or related beta-hydroxyacid dehydrogenase [Lipid transport and metabolism]. 286 -224996 COG2085 COG2085 Predicted dinucleotide-binding enzyme [General function prediction only]. 211 -224997 COG2086 FixA Electron transfer flavoprotein, alpha and beta subunits [Energy production and conversion]. 260 -224998 COG2087 CobU Adenosyl cobinamide kinase/adenosyl cobinamide phosphate guanylyltransferase [Coenzyme transport and metabolism]. 175 -224999 COG2088 SpoVG DNA-binding protein SpoVG, cell septation regulator [Cell cycle control, cell division, chromosome partitioning]. 95 -225000 COG2089 SpsE Sialic acid synthase SpsE, contains C-terminal SAF domain [Cell wall/membrane/envelope biogenesis]. 347 -225001 COG2090 COG2090 Uncharacterized protein [Function unknown]. 141 -225002 COG2091 Sfp Phosphopantetheinyl transferase [Coenzyme transport and metabolism]. 223 -225003 COG2092 EFB1 Translation elongation factor EF-1beta [Translation, ribosomal structure and biogenesis]. 88 -225004 COG2093 Spt4 RNA polymerase subunit RPABC4/transcription elongation factor Spt4 [Transcription]. 64 -225005 COG2094 Mpg 3-methyladenine DNA glycosylase Mpg [Replication, recombination and repair]. 200 -225006 COG2095 MarC Small neutral amino acid transporter SnatA, MarC family [Amino acid transport and metabolism]. 203 -225007 COG2096 PduO Cob(I)alamin adenosyltransferase [Coenzyme transport and metabolism]. 184 -225008 COG2097 RPL31A Ribosomal protein L31E [Translation, ribosomal structure and biogenesis]. 89 -225009 COG2098 COG2098 Uncharacterized protein [Function unknown]. 116 -225010 COG2099 CobK Precorrin-6x reductase [Coenzyme transport and metabolism]. 257 -225011 COG2100 COG2100 Uncharacterized Fe-S cluster-containing enzyme, radical SAM superfamily [General function prediction only]. 414 -225012 COG2101 SPT15 TATA-box binding protein (TBP), component of TFIID and TFIIIB [Transcription]. 185 -225013 COG2102 Dph6 Diphthamide synthase (EF-2-diphthine--ammonia ligase) [Translation, ribosomal structure and biogenesis]. 223 -225014 COG2103 MurQ N-acetylmuramic acid 6-phosphate (MurNAc-6-P) etherase [Cell wall/membrane/envelope biogenesis]. 298 -225015 COG2104 ThiS Sulfur carrier protein ThiS (thiamine biosynthesis) [Coenzyme transport and metabolism]. 68 -225016 COG2105 YtfP Uncharacterized conserved protein YtfP, gamma-glutamylcyclotransferase (GGCT)/AIG2-like family [General function prediction only]. 120 -225017 COG2106 MTH1 Predicted RNA methylase MTH1, SPOUT superfamily [General function prediction only]. 272 -225018 COG2107 MqnD Menaquinone biosynthesis enzyme MqnD [Coenzyme transport and metabolism]. 272 -225019 COG2108 COG2108 Uncharacterized conserved protein related to pyruvate formate-lyase activating enzyme [Function unknown]. 353 -225020 COG2109 BtuR ATP:corrinoid adenosyltransferase [Coenzyme transport and metabolism]. 198 -225021 COG2110 YmdB O-acetyl-ADP-ribose deacetylase (regulator of RNase III), contains Macro domain [Translation, ribosomal structure and biogenesis]. 179 -225022 COG2111 MnhB Multisubunit Na+/H+ antiporter, MnhB subunit [Inorganic ion transport and metabolism]. 162 -225023 COG2112 COG2112 Predicted Ser/Thr protein kinase [Signal transduction mechanisms]. 201 -225024 COG2113 ProX ABC-type proline/glycine betaine transport system, periplasmic component [Amino acid transport and metabolism]. 302 -225025 COG2114 AcyC Adenylate cyclase, class 3 [Signal transduction mechanisms]. 227 -225026 COG2115 XylA Xylose isomerase [Carbohydrate transport and metabolism]. 438 -225027 COG2116 FocA Formate/nitrite transporter FocA, FNT family [Inorganic ion transport and metabolism]. 265 -225028 COG2117 COG2117 Predicted subunit of tRNA(5-methylaminomethyl-2-thiouridylate) methyltransferase, contains the PP-loop ATPase domain [Translation, ribosomal structure and biogenesis]. 198 -225029 COG2118 PDCD5 DNA-binding TFAR19-related protein, PDSD5 family [General function prediction only]. 116 -225030 COG2119 Gdt1 Putative Ca2+/H+ antiporter, TMEM165/GDT1 family [General function prediction only]. 190 -225031 COG2120 LmbE N-acetylglucosaminyl deacetylase, LmbE family [Carbohydrate transport and metabolism]. 237 -225032 COG2121 COG2121 Uncharacterized conserved protein, lysophospholipid acyltransferase (LPLAT) superfamily [Function unknown]. 214 -225033 COG2122 COG2122 Uncharacterized protein, UPF0280 family, ApbE superfamily [Function unknown]. 256 -225034 COG2123 Rrp42 Exosome complex RNA-binding protein Rrp42, RNase PH superfamily [Translation, ribosomal structure and biogenesis]. 272 -225035 COG2124 CypX Cytochrome P450 [Secondary metabolites biosynthesis, transport and catabolism, Defense mechanisms]. 411 -225036 COG2125 RPS6A Ribosomal protein S6E (S10) [Translation, ribosomal structure and biogenesis]. 120 -225037 COG2126 RPL37A Ribosomal protein L37E [Translation, ribosomal structure and biogenesis]. 61 -225038 COG2127 ClpS ATP-dependent Clp protease adapter protein ClpS [Posttranslational modification, protein turnover, chaperones]. 107 -225039 COG2128 YciW Alkylhydroperoxidase family enzyme, contains CxxC motif [Inorganic ion transport and metabolism]. 177 -225040 COG2129 COG2129 Predicted phosphoesterase, related to the Icc protein [General function prediction only]. 226 -225041 COG2130 CurA NADPH-dependent curcumin reductase CurA [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]. 340 -225042 COG2131 ComEB Deoxycytidylate deaminase [Nucleotide transport and metabolism]. 164 -225043 COG2132 SufI Multicopper oxidase with three cupredoxin domains (includes cell division protein FtsP and spore coat protein CotA) [Cell cycle control, cell division, chromosome partitioning, Inorganic ion transport and metabolism, Cell wall/membrane/envelope biogenesis]. 451 -225044 COG2133 YliI Glucose/arabinose dehydrogenase, beta-propeller fold [Carbohydrate transport and metabolism]. 399 -225045 COG2134 Cdh CDP-diacylglycerol pyrophosphatase [Lipid transport and metabolism]. 252 -225046 COG2135 SRAP Putative SOS response-associated peptidase YedK [Posttranslational modification, protein turnover, chaperones]. 226 -225047 COG2136 IMP4 rRNA maturation protein Rpf1, contains Brix/IMP4 (anticodon-binding) domain [Translation, ribosomal structure and biogenesis]. 191 -225048 COG2137 RecX SOS response regulatory protein OraA/RecX, interacts with RecA [Posttranslational modification, protein turnover, chaperones]. 174 -225049 COG2138 SirB Sirohydrochlorin ferrochelatase [Coenzyme transport and metabolism]. 245 -225050 COG2139 RPL21A Ribosomal protein L21E [Translation, ribosomal structure and biogenesis]. 98 -225051 COG2140 OxdD Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily [Carbohydrate transport and metabolism]. 209 -225052 COG2141 SsuD Flavin-dependent oxidoreductase, luciferase family (includes alkanesulfonate monooxygenase SsuD and methylene tetrahydromethanopterin reductase) [Coenzyme transport and metabolism, General function prediction only]. 336 -225053 COG2142 SdhD Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]. 117 -225054 COG2143 SoxW Thioredoxin-related protein [Posttranslational modification, protein turnover, chaperones]. 182 -225055 COG2144 COG2144 Selenophosphate synthetase-related protein [General function prediction only]. 324 -225056 COG2145 ThiM Hydroxyethylthiazole kinase, sugar kinase family [Coenzyme transport and metabolism]. 265 -225057 COG2146 NirD Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 106 -225058 COG2147 RPL19A Ribosomal protein L19E [Translation, ribosomal structure and biogenesis]. 150 -225059 COG2148 WcaJ Sugar transferase involved in LPS biosynthesis (colanic, teichoic acid) [Cell wall/membrane/envelope biogenesis]. 226 -225060 COG2149 YidH Uncharacterized membrane protein YidH, DUF202 family [Function unknown]. 120 -225061 COG2150 COG2150 Predicted regulator of amino acid metabolism, contains ACT domain [General function prediction only]. 167 -225062 COG2151 PaaD Metal-sulfur cluster biosynthetic enzyme [Posttranslational modification, protein turnover, chaperones]. 111 -225063 COG2152 COG2152 Predicted glycosyl hydrolase, GH43/DUF377 family [Carbohydrate transport and metabolism]. 314 -225064 COG2153 ElaA Predicted N-acyltransferase, GNAT family [General function prediction only]. 155 -225065 COG2154 PhhB Pterin-4a-carbinolamine dehydratase [Coenzyme transport and metabolism]. 101 -225066 COG2155 YuzA Uncharacterized membrane protein YuzA, DUF378 family [Function unknown]. 79 -225067 COG2156 KdpC K+-transporting ATPase, c chain [Inorganic ion transport and metabolism]. 190 -225068 COG2157 RPL20A Ribosomal protein L20A (L18A) [Translation, ribosomal structure and biogenesis]. 85 -225069 COG2158 COG2158 Uncharacterized protein, contains a Zn-finger-like domain [General function prediction only]. 112 -225070 COG2159 COG2159 Predicted metal-dependent hydrolase, TIM-barrel fold [General function prediction only]. 293 -225071 COG2160 AraA L-arabinose isomerase [Carbohydrate transport and metabolism]. 497 -225072 COG2161 StbD Antitoxin component YafN of the YafNO toxin-antitoxin module, PHD/YefM family [Defense mechanisms]. 86 -225073 COG2162 NhoA Arylamine N-acetyltransferase [Secondary metabolites biosynthesis, transport and catabolism]. 275 -225074 COG2163 RPL14A Ribosomal protein L14E/L6E/L27E [Translation, ribosomal structure and biogenesis]. 125 -225075 COG2164 COG2164 Uncharacterized protein [Function unknown]. 126 -225076 COG2165 PulG Type II secretory pathway, pseudopilin PulG [Cell motility, Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 149 -225077 COG2166 SufE Sulfur transfer protein SufE, Fe-S cluster assembly [Posttranslational modification, protein turnover, chaperones]. 144 -225078 COG2167 RPL39 Ribosomal protein L39E [Translation, ribosomal structure and biogenesis]. 51 -225079 COG2168 DsrH Sulfur transfer complex TusBCD TusB component, DsrH family [Posttranslational modification, protein turnover, chaperones]. 96 -225080 COG2169 AdaA Methylphosphotriester-DNA--protein-cysteine methyltransferase (N-terminal fragment of Ada), contains Zn-binding and two AraC-type DNA-binding domains [Replication, recombination and repair]. 187 -225081 COG2170 YbdK Gamma-glutamyl:cysteine ligase YbdK, ATP-grasp superfamily [Posttranslational modification, protein turnover, chaperones]. 369 -225082 COG2171 DapD Tetrahydrodipicolinate N-succinyltransferase [Amino acid transport and metabolism]. 271 -225083 COG2172 RsbW Anti-sigma regulatory factor (Ser/Thr protein kinase) [Signal transduction mechanisms]. 146 -225084 COG2173 DdpX D-alanyl-D-alanine dipeptidase [Cell wall/membrane/envelope biogenesis]. 211 -225085 COG2174 RPL34A Ribosomal protein L34E [Translation, ribosomal structure and biogenesis]. 93 -225086 COG2175 TauD Taurine dioxygenase, alpha-ketoglutarate-dependent [Secondary metabolites biosynthesis, transport and catabolism]. 286 -225087 COG2176 PolC DNA polymerase III, alpha subunit (gram-positive type) [Replication, recombination and repair]. 1444 -225088 COG2177 FtsX Cell division protein FtsX [Cell cycle control, cell division, chromosome partitioning]. 297 -225089 COG2178 COG2178 Predicted RNA- or ssDNA-binding protein, translin family [General function prediction only]. 204 -225090 COG2179 YqeG Predicted phosphohydrolase YqeG, HAD superfamily [General function prediction only]. 175 -225091 COG2180 NarJ Nitrate reductase assembly protein NarJ, required for insertion of molybdenum cofactor [Energy production and conversion, Inorganic ion transport and metabolism, Posttranslational modification, protein turnover, chaperones]. 179 -225092 COG2181 NarI Nitrate reductase gamma subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 228 -225093 COG2182 MalE Maltose-binding periplasmic protein MalE [Carbohydrate transport and metabolism]. 420 -225094 COG2183 Tex Transcriptional accessory protein Tex/SPT6 [Transcription]. 780 -225095 COG2184 FIDO Fido, protein-threonine AMPylation domain [Signal transduction mechanisms]. 201 -225096 COG2185 Sbm Methylmalonyl-CoA mutase, C-terminal domain/subunit (cobalamin-binding) [Lipid transport and metabolism]. 143 -225097 COG2186 FadR DNA-binding transcriptional regulator, FadR family [Transcription]. 241 -225098 COG2187 COG2187 Aminoglycoside phosphotransferase family enzyme [General function prediction only]. 337 -225099 COG2188 MngR DNA-binding transcriptional regulator, GntR family [Transcription]. 236 -225100 COG2189 Mod Adenine specific DNA methylase Mod [Replication, recombination and repair]. 590 -225101 COG2190 NagE Phosphotransferase system IIA component [Carbohydrate transport and metabolism]. 156 -225102 COG2191 FwdE Formylmethanofuran dehydrogenase subunit E [Energy production and conversion]. 206 -225103 COG2192 COG2192 Predicted carbamoyl transferase, NodU family [General function prediction only]. 555 -225104 COG2193 Bfr Bacterioferritin (cytochrome b1) [Inorganic ion transport and metabolism]. 157 -225105 COG2194 OpgE Phosphoethanolamine transferase for periplasmic glucans (OPG), alkaline phosphatase superfamily [Cell wall/membrane/envelope biogenesis]. 555 -225106 COG2195 PepD2 Di- or tripeptidase [Amino acid transport and metabolism]. 414 -225107 COG2197 CitB DNA-binding response regulator, NarL/FixJ family, contains REC and HTH domains [Signal transduction mechanisms, Transcription]. 211 -225108 COG2198 HPtr HPt (histidine-containing phosphotransfer) domain [Signal transduction mechanisms]. 122 -225109 COG2199 GGDEF GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants [Signal transduction mechanisms]. 181 -225110 COG2200 EAL EAL domain, c-di-GMP-specific phosphodiesterase class I (or its enzymatically inactive variant) [Signal transduction mechanisms]. 256 -225111 COG2201 CheB Chemotaxis response regulator CheB, contains REC and protein-glutamate methylesterase domains [Cell motility, Signal transduction mechanisms]. 350 -225112 COG2202 PAS PAS domain [Signal transduction mechanisms]. 232 -225113 COG2203 FhlA GAF domain [Signal transduction mechanisms]. 175 -225114 COG2204 AtoC DNA-binding transcriptional response regulator, NtrC family, contains REC, AAA-type ATPase, and a Fis-type DNA-binding domains [Signal transduction mechanisms]. 464 -225115 COG2205 KdpD K+-sensing histidine kinase KdpD [Signal transduction mechanisms]. 890 -225116 COG2206 HDGYP HD-GYP domain, c-di-GMP phosphodiesterase class II (or its inactivated variant) [Signal transduction mechanisms]. 344 -225117 COG2207 AraC AraC-type DNA-binding domain and AraC-containing proteins [Transcription]. 127 -225118 COG2208 RsbU Serine phosphatase RsbU, regulator of sigma subunit [Signal transduction mechanisms, Transcription]. 367 -225119 COG2209 NqrE Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrE [Energy production and conversion]. 198 -225120 COG2210 YrkE Peroxiredoxin family protein [Energy production and conversion]. 137 -225121 COG2211 MelB Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]. 467 -225122 COG2212 MnhF Multisubunit Na+/H+ antiporter, MnhF subunit [Inorganic ion transport and metabolism]. 89 -225123 COG2213 MtlA Phosphotransferase system, mannitol-specific IIBC component [Carbohydrate transport and metabolism]. 472 -225124 COG2214 CbpA Curved DNA-binding protein CbpA, contains a DnaJ-like domain [Transcription]. 237 -225125 COG2215 RcnA ABC-type nickel/cobalt efflux system, permease component RcnA [Inorganic ion transport and metabolism]. 303 -225126 COG2216 KdpB High-affinity K+ transport system, ATPase chain B [Inorganic ion transport and metabolism]. 681 -225127 COG2217 ZntA Cation transport ATPase [Inorganic ion transport and metabolism]. 713 -225128 COG2218 FwdC Formylmethanofuran dehydrogenase subunit C [Energy production and conversion]. 264 -225129 COG2219 PRI2 Eukaryotic-type DNA primase, large subunit [Replication, recombination and repair]. 363 -225130 COG2220 UlaG L-ascorbate metabolism protein UlaG, beta-lactamase superfamily [Carbohydrate transport and metabolism]. 258 -225131 COG2221 DsrA Dissimilatory sulfite reductase (desulfoviridin), alpha and beta subunits [Inorganic ion transport and metabolism]. 317 -225132 COG2222 AgaS Fructoselysine-6-P-deglycase FrlB and related proteins with duplicated sugar isomerase (SIS) domain [Cell wall/membrane/envelope biogenesis]. 340 -225133 COG2223 NarK Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]. 417 -225134 COG2224 AceA Isocitrate lyase [Energy production and conversion]. 433 -225135 COG2225 AceB Malate synthase [Energy production and conversion]. 545 -225136 COG2226 UbiE Ubiquinone/menaquinone biosynthesis C-methylase UbiE [Coenzyme transport and metabolism]. 238 -225137 COG2227 UbiG 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol methylase [Coenzyme transport and metabolism]. 243 -225138 COG2229 Srp102 Signal recognition particle receptor subunit beta, a GTPase [Intracellular trafficking, secretion, and vesicular transport]. 187 -225139 COG2230 Cfa Cyclopropane fatty-acyl-phospholipid synthase and related methyltransferases [Lipid transport and metabolism]. 283 -225140 COG2231 COG2231 Uncharacterized protein related to Endonuclease III [General function prediction only]. 215 -225141 COG2232 COG2232 Predicted ATP-dependent carboligase, ATP-grasp superfamily [General function prediction only]. 389 -225142 COG2233 UraA Xanthine/uracil permease [Nucleotide transport and metabolism]. 451 -225143 COG2234 Iap Zn-dependent amino- or carboxypeptidase, M28 family [Posttranslational modification, protein turnover, chaperones, Amino acid transport and metabolism]. 435 -225144 COG2235 ArcA Arginine deiminase [Amino acid transport and metabolism]. 409 -225145 COG2236 Hpt1 Hypoxanthine phosphoribosyltransferase [Coenzyme transport and metabolism]. 192 -225146 COG2237 COG2237 Uncharacterized membrane protein [Function unknown]. 364 -225147 COG2238 RPS19A Ribosomal protein S19E (S16A) [Translation, ribosomal structure and biogenesis]. 147 -225148 COG2239 MgtE Mg/Co/Ni transporter MgtE (contains CBS domain) [Inorganic ion transport and metabolism]. 451 -225149 COG2240 PdxK Pyridoxal/pyridoxine/pyridoxamine kinase [Coenzyme transport and metabolism]. 281 -225150 COG2241 CobL Precorrin-6B methylase 1 [Coenzyme transport and metabolism]. 210 -225151 COG2242 CobL Precorrin-6B methylase 2 [Coenzyme transport and metabolism]. 187 -225152 COG2243 CobF Precorrin-2 methylase [Coenzyme transport and metabolism]. 234 -225153 COG2244 RfbX Membrane protein involved in the export of O-antigen and teichoic acid [Cell wall/membrane/envelope biogenesis]. 480 -225154 COG2245 COG2245 Uncharacterized membrane protein [Function unknown]. 182 -225155 COG2246 GtrA Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid transport and metabolism]. 139 -225156 COG2247 LytB Putative cell wall-binding domain [Cell wall/membrane/envelope biogenesis]. 337 -225157 COG2248 COG2248 Predicted hydrolase, metallo-beta-lactamase superfamily [General function prediction only]. 304 -225158 COG2249 MdaB Putative NADPH-quinone reductase (modulator of drug activity B) [General function prediction only]. 189 -225159 COG2250 HEPN HEPN domain [Function unknown]. 132 -225160 COG2251 COG2251 Predicted nuclease, RecB family [General function prediction only]. 474 -225161 COG2252 AzgA Xanthine/uracil/vitamin C permease, AzgA family [Nucleotide transport and metabolism]. 436 -225162 COG2253 COG2253 Predicted nucleotidyltransferase component of viral defense system [Defense mechanisms]. 258 -225163 COG2254 Cas3 CRISPR/Cas system-associated endonuclease Cas3-HD [Defense mechanisms]. 230 -225164 COG2255 RuvB Holliday junction resolvasome RuvABC, ATP-dependent DNA helicase subunit [Replication, recombination and repair]. 332 -225165 COG2256 RarA Replication-associated recombination protein RarA (DNA-dependent ATPase) [Replication, recombination and repair]. 436 -225166 COG2257 YlqH Type III secretion system substrate exporter, FlhB-like [Intracellular trafficking, secretion, and vesicular transport]. 92 -225167 COG2258 YiiM Uncharacterized conserved protein YiiM, contains MOSC domain [Function unknown]. 210 -225168 COG2259 DoxX Uncharacterized membrane protein YphA, DoxX/SURF4 family [Function unknown]. 142 -225169 COG2260 Nop10 rRNA maturation protein Nop10, contains Zn-ribbon domain [Translation, ribosomal structure and biogenesis]. 59 -225170 COG2261 YeaQ Uncharacterized membrane protein YeaQ/YmgE, transglycosylase-associated protein family [General function prediction only]. 82 -225171 COG2262 HflX 50S ribosomal subunit-associated GTPase HflX [Translation, ribosomal structure and biogenesis]. 411 -225172 COG2263 COG2263 Predicted RNA methylase [General function prediction only]. 198 -225173 COG2264 PrmA Ribosomal protein L11 methylase PrmA [Translation, ribosomal structure and biogenesis]. 300 -225174 COG2265 TrmA tRNA/tmRNA/rRNA uracil-C5-methylase, TrmA/RlmC/RlmD family [Translation, ribosomal structure and biogenesis]. 432 -225175 COG2266 COG2266 GTP:adenosylcobinamide-phosphate guanylyltransferase [Coenzyme transport and metabolism]. 177 -225176 COG2267 PldB Lysophospholipase, alpha-beta hydrolase superfamily [Lipid transport and metabolism]. 298 -225177 COG2268 YqiK Uncharacterized membrane protein YqiK, contains Band7/PHB/SPFH domain [Function unknown]. 548 -225178 COG2269 EpmA Elongation factor P--beta-lysine ligase (EF-P beta-lysylation pathway) [Translation, ribosomal structure and biogenesis]. 322 -225179 COG2270 BtlA MFS-type transporter involved in bile tolerance, Atg22 family [General function prediction only]. 438 -225180 COG2271 UhpC Sugar phosphate permease [Carbohydrate transport and metabolism]. 448 -225181 COG2272 PnbA Carboxylesterase type B [Lipid transport and metabolism]. 491 -225182 COG2273 BglS Beta-glucanase, GH16 family [Carbohydrate transport and metabolism]. 355 -225183 COG2274 SunT ABC-type bacteriocin/lantibiotic exporters, contain an N-terminal double-glycine peptidase domain [Defense mechanisms]. 709 -225184 COG2301 CitE Citrate lyase beta subunit [Carbohydrate transport and metabolism]. 283 -225185 COG2302 YlmH RNA-binding protein YlmH, contains S4-like domain [General function prediction only]. 257 -225186 COG2303 BetA Choline dehydrogenase or related flavoprotein [Lipid transport and metabolism, General function prediction only]. 542 -225187 COG2304 YfbK Secreted protein containing bacterial Ig-like domain and vWFA domain [General function prediction only]. 399 -225188 COG2306 COG2306 Predicted RNA-binding protein, associated with RNAse of E/G family [General function prediction only]. 183 -225189 COG2307 COG2307 Uncharacterized conserved protein, Alpha-E superfamily [Function unknown]. 313 -225190 COG2308 COG2308 Uncharacterized conserved protein, circularly permuted ATPgrasp superfamily [Function unknown]. 488 -225191 COG2309 AmpS Leucyl aminopeptidase (aminopeptidase T) [Amino acid transport and metabolism]. 385 -225192 COG2310 TerZ Stress response protein SCP2 [Signal transduction mechanisms]. 182 -225193 COG2311 YeiB Uncharacterized membrane protein YeiB [Function unknown]. 394 -225194 COG2312 YbfO Erythromycin esterase homolog [Secondary metabolites biosynthesis, transport and catabolism]. 405 -225195 COG2313 PsuG Pseudouridine-5'-phosphate glycosidase (pseudoU degradation) [Nucleotide transport and metabolism]. 310 -225196 COG2314 TM2 Uncharacterized membrane protein YozV, TM2 domain [Function unknown]. 95 -225197 COG2315 MmcQ Predicted DNA-binding protein with double-wing structural motif, MmcQ/YjbR family [Transcription]. 118 -225198 COG2316 COG2316 Predicted hydrolase, HD superfamily [General function prediction only]. 212 -225199 COG2317 YpwA Zn-dependent carboxypeptidase, M32 family [Posttranslational modification, protein turnover, chaperones]. 497 -225200 COG2318 DinB Uncharacterized damage-inducible protein DinB (forms a four-helix bundle) [Function unknown]. 172 -225201 COG2319 WD40 WD40 repeat [General function prediction only]. 466 -225202 COG2320 GrpB GrpB domain, predicted nucleotidyltransferase, UPF0157 family [General function prediction only]. 185 -225203 COG2321 YpfJ Predicted metalloprotease [General function prediction only]. 295 -225204 COG2322 YozB Uncharacterized membrane protein YozB, DUF420 family [Function unknown]. 177 -225205 COG2323 YcaP Uncharacterized membrane protein YcaP, DUF421 family [Function unknown]. 224 -225206 COG2324 COG2324 Uncharacterized membrane protein [Function unknown]. 281 -225207 COG2326 COG2326 Polyphosphate kinase 2, PPK2 family [Energy production and conversion]. 270 -225208 COG2327 WcaK Polysaccharide pyruvyl transferase family protein WcaK [Cell wall/membrane/envelope biogenesis]. 385 -225209 COG2329 HmoA Heme-degrading monooxygenase HmoA and related ABM domain proteins [Coenzyme transport and metabolism]. 105 -225210 COG2331 COG2331 Predicted nucleic acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 82 -225211 COG2332 CcmE Cytochrome c-type biogenesis protein CcmE [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 153 -225212 COG2333 ComEC Metal-dependent hydrolase, beta-lactamase superfamily II [General function prediction only]. 293 -225213 COG2334 SrkA Ser/Thr protein kinase RdoA involved in Cpx stress response, MazF antagonist [Signal transduction mechanisms]. 331 -225214 COG2335 FAS1 Uncaracterized surface protein containing fasciclin (FAS1) repeats [General function prediction only]. 187 -225215 COG2336 MazE Antitoxin component of the MazEF toxin-antitoxin module [Signal transduction mechanisms]. 82 -225216 COG2337 MazF mRNA-degrading endonuclease, toxin component of the MazEF toxin-antitoxin module [Defense mechanisms]. 112 -225217 COG2339 PrsW Membrane proteinase PrsW, cleaves anti-sigma factor RsiW, M82 family [Signal transduction mechanisms]. 274 -225218 COG2340 YkwD Uncharacterized conserved protein YkwD, contains CAP (CSP/antigen 5/PR1) domain [Function unknown]. 207 -225219 COG2342 COG2342 Endo alpha-1,4 polygalactosaminidase, GH114 family (was erroneously annotated as Cys-tRNA synthetase) [Carbohydrate transport and metabolism]. 300 -225220 COG2343 COG2343 Uncharacterized conserved protein, DUF427 family [Function unknown]. 132 -225221 COG2344 Rex NADH/NAD ratio-sensing transcriptional regulator Rex [Transcription]. 211 -225222 COG2345 COG2345 Predicted transcriptional regulator, ArsR family [Transcription]. 218 -225223 COG2346 YjbI Truncated hemoglobin YjbI [Inorganic ion transport and metabolism]. 133 -225224 COG2348 FmhB Lipid II:glycine glycyltransferase (Peptidoglycan interpeptide bridge formation enzyme) [Cell wall/membrane/envelope biogenesis]. 418 -225225 COG2350 YciI Uncharacterized conserved protein YciI, contains a putative active-site phosphohistidine [General function prediction only]. 92 -225226 COG2351 HiuH 5-hydroxyisourate hydrolase (purine catabolism), transthyretin-related family [Nucleotide transport and metabolism]. 124 -225227 COG2352 Ppc Phosphoenolpyruvate carboxylase [Energy production and conversion]. 910 -225228 COG2353 YceI Polyisoprenoid-binding periplasmic protein YceI [General function prediction only]. 192 -225229 COG2354 MutK Uncharacterized membrane protein MutK, may be involved in DNA repair [Function unknown]. 303 -225230 COG2355 COG2355 Zn-dependent dipeptidase, microsomal dipeptidase homolog [Posttranslational modification, protein turnover, chaperones, Amino acid transport and metabolism]. 313 -225231 COG2356 EndA Endonuclease I [Replication, recombination and repair]. 237 -225232 COG2357 YjbM ppGpp synthetase catalytic domain (RelA/SpoT-type nucleotidyltranferase) [Nucleotide transport and metabolism, Signal transduction mechanisms]. 231 -225233 COG2358 Imp TRAP-type uncharacterized transport system, periplasmic component [General function prediction only]. 321 -225234 COG2359 SpoVS Stage V sporulation protein SpoVS (function unknown) [Function unknown]. 87 -225235 COG2360 Aat Leu/Phe-tRNA-protein transferase [Posttranslational modification, protein turnover, chaperones]. 221 -225236 COG2361 COG2361 Uncharacterized conserved protein, contains HEPN domain [Function unknown]. 117 -225237 COG2362 DppA D-aminopeptidase [Amino acid transport and metabolism]. 274 -225238 COG2363 YgdD Uncharacterized membrane protein YgdD, TMEM256/DUF423 family [Function unknown]. 124 -225239 COG2364 YczE Uncharacterized membrane protein YczE [Function unknown]. 210 -225240 COG2365 Oca4 Protein tyrosine/serine phosphatase [Signal transduction mechanisms]. 249 -225241 COG2366 PvdQ Acyl-homoserine lactone (AHL) acylase PvdQ [Secondary metabolites biosynthesis, transport and catabolism]. 768 -225242 COG2367 PenP Beta-lactamase class A [Defense mechanisms]. 329 -225243 COG2368 YoaI Aromatic ring hydroxylase [Secondary metabolites biosynthesis, transport and catabolism]. 493 -225244 COG2369 COG2369 Uncharacterized conserved protein, contains phage Mu gpF-like domain [Function unknown]. 432 -225245 COG2370 HupE Hydrogenase/urease accessory protein HupE [Posttranslational modification, protein turnover, chaperones]. 201 -225246 COG2371 UreE Urease accessory protein UreE [Posttranslational modification, protein turnover, chaperones]. 155 -225247 COG2372 CopC Copper-binding protein CopC (methionine-rich) [Inorganic ion transport and metabolism]. 127 -225248 COG2373 YfaS Uncharacterized conserved protein YfaS, alpha-2-macroglobulin family [General function prediction only]. 1621 -225249 COG2374 COG2374 Predicted extracellular nuclease [General function prediction only]. 798 -225250 COG2375 ViuB NADPH-dependent ferric siderophore reductase, contains FAD-binding and SIP domains [Inorganic ion transport and metabolism]. 265 -225251 COG2376 DAK1 Dihydroxyacetone kinase [Carbohydrate transport and metabolism]. 323 -225252 COG2377 AnmK 1,6-Anhydro-N-acetylmuramate kinase [Cell wall/membrane/envelope biogenesis]. 371 -225253 COG2378 YafY Predicted DNA-binding transcriptional regulator YafY, contains an HTH and WYL domains [Transcription]. 311 -225254 COG2379 GckA Glycerate-2-kinase [Carbohydrate transport and metabolism]. 422 -225255 COG2380 COG2380 Uncharacterized protein [Function unknown]. 327 -225256 COG2382 Fes Enterochelin esterase or related enzyme [Inorganic ion transport and metabolism]. 299 -225257 COG2383 COG2383 Uncharacterized membrane protein, Fun14 family [Function unknown]. 109 -225258 COG2384 TrmK tRNA A22 N-methylase [Translation, ribosomal structure and biogenesis]. 226 -225259 COG2385 SpoIID Peptidoglycan hydrolase (amidase) enhancer domain [Cell wall/membrane/envelope biogenesis]. 397 -225260 COG2386 CcmB ABC-type transport system involved in cytochrome c biogenesis, permease component [Posttranslational modification, protein turnover, chaperones]. 221 -225261 COG2388 YidJ Predicted acetyltransferase, GNAT superfamily [General function prediction only]. 99 -225262 COG2389 COG2389 Uncharacterized metal-binding protein, DUF2227 family [Function unknown]. 179 -225263 COG2390 DeoR DNA-binding transcriptional regulator LsrR, DeoR family [Transcription]. 321 -225264 COG2391 YedE Uncharacterized membrane protein YedE/YeeE, contains two sulfur transport domains [General function prediction only]. 198 -225265 COG2401 MK0520 ABC-type ATPase fused to a predicted acetyltransferase domain [General function prediction only]. 593 -225266 COG2402 COG2402 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 135 -225267 COG2403 COG2403 Predicted GTPase [General function prediction only]. 449 -225268 COG2404 NrnB Oligoribonuclease NrnB or cAMP/cGMP phosphodiesterase, DHH superfamily [Translation, ribosomal structure and biogenesis, Signal transduction mechanisms]. 339 -225269 COG2405 COG2405 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 157 -225270 COG2406 COG2406 Protein distantly related to bacterial ferritins [General function prediction only]. 172 -225271 COG2407 FucI L-fucose isomerase or related protein [Carbohydrate transport and metabolism]. 470 -225272 COG2409 YdfJ Uncharacterized membrane protein YdfJ, MMPL/SSD domain [Function unknown]. 937 -225273 COG2410 COG2410 Predicted nuclease (RNAse H fold) [General function prediction only]. 178 -225274 COG2411 COG2411 Uncharacterized protein [Function unknown]. 188 -225275 COG2412 COG2412 Uncharacterized protein [Function unknown]. 101 -225276 COG2413 COG2413 Predicted nucleotidyltransferase [General function prediction only]. 228 -225277 COG2414 YdhV Aldehyde:ferredoxin oxidoreductase [Energy production and conversion]. 614 -225278 COG2419 COG2419 Trm5-related predicted tRNA methylase [Translation, ribosomal structure and biogenesis]. 336 -225279 COG2421 FmdA Acetamidase/formamidase [Energy production and conversion]. 305 -225280 COG2423 OCDMu Ornithine cyclodeaminase/archaeal alanine dehydrogenase, mu-crystallin family [Amino acid transport and metabolism]. 330 -225281 COG2425 ViaA Uncharacterized protein, contains a von Willebrand factor type A (vWA) domain [Function unknown]. 437 -225282 COG2426 COG2426 Uncharacterized membrane protein [Function unknown]. 142 -225283 COG2427 YjgD Uncharacterized conserved protein YjgD, DUF1641 family [Function unknown]. 148 -225284 COG2428 Sfm1 Rps3 or RNA methylase involved in ribosome biogenesis, SPOUT family, [Translation, ribosomal structure and biogenesis]. 196 -225285 COG2429 Gch31 Archaeal GTP cyclohydrolase III [Nucleotide transport and metabolism]. 250 -225286 COG2430 COG2430 Uncharacterized protein [Function unknown]. 236 -225287 COG2431 YbjE Uncharacterized membrane protein YbjE, DUF340 family [Function unknown]. 297 -225288 COG2433 COG2433 Possible nuclease of RNase H fold, RuvC/YqgF family [General function prediction only]. 652 -225289 COG2440 FixX Ferredoxin-like protein FixX [Energy production and conversion]. 99 -225290 COG2441 COG2441 Predicted butyrate kinase, DUF1464 family [General function prediction only]. 374 -225291 COG2442 COG2442 Uncharacterized conserved protein, DUF433 family [Function unknown]. 79 -225292 COG2443 Sss1 Preprotein translocase subunit Sss1 [Intracellular trafficking, secretion, and vesicular transport]. 65 -225293 COG2445 YutE Uncharacterized conserved protein YutE, UPF0331/DUF86 family [Function unknown]. 138 -225294 COG2450 COG2450 Predicted archaeal cell division protein, SepF homolog, DUF552 family [Cell cycle control, cell division, chromosome partitioning]. 124 -225295 COG2451 Rpl35A Ribosomal protein L35AE/L33A [Translation, ribosomal structure and biogenesis]. 100 -225296 COG2452 COG2452 Predicted site-specific integrase-resolvase [Mobilome: prophages, transposons]. 193 -225297 COG2453 CDC14 Protein-tyrosine phosphatase [Signal transduction mechanisms]. 180 -225298 COG2454 COG2454 Uncharacterized protein [Function unknown]. 211 -225299 COG2456 COG2456 Uncharacterized protein [Function unknown]. 121 -225300 COG2457 COG2457 Uncharacterized protein [Function unknown]. 199 -225301 COG2461 COG2461 Uncharacterized conserved protein, DUF438 domain, may contain hemerythrin domain [Function unknown]. 409 -225302 COG2469 COG2469 Uncharacterized protein, contains HTH domain [Function unknown]. 284 -225303 COG2501 YbcJ Ribosome-associated protein YbcJ, S4-like RNA binding protein [Translation, ribosomal structure and biogenesis]. 73 -225304 COG2502 AsnA Asparagine synthetase A [Amino acid transport and metabolism]. 330 -225305 COG2503 COG2503 Predicted secreted acid phosphatase [General function prediction only]. 274 -225306 COG2508 PucR DNA-binding transcriptional regulator, PucR family [Transcription]. 421 -225307 COG2509 COG2509 FAD-dependent dehydrogenase [General function prediction only]. 486 -225308 COG2510 COG2510 Uncharacterized membrane protein [Function unknown]. 140 -225309 COG2511 GatE Archaeal Glu-tRNAGln amidotransferase subunit E, contains GAD domain [Translation, ribosomal structure and biogenesis]. 631 -225310 COG2512 COG2512 Uncharacterized membrane protein [Function unknown]. 258 -225311 COG2513 PrpB 2-Methylisocitrate lyase and related enzymes, PEP mutase family [Carbohydrate transport and metabolism]. 289 -225312 COG2514 CatE Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]. 265 -225313 COG2515 Acd 1-aminocyclopropane-1-carboxylate deaminase/D-cysteine desulfhydrase, PLP-dependent ACC family [Amino acid transport and metabolism]. 323 -225314 COG2516 COG2516 Biotin synthase-related protein, radical SAM superfamily [General function prediction only]. 339 -225315 COG2517 COG2517 Predicted RNA-binding protein, contains C-terminal EMAP domain [General function prediction only]. 219 -225316 COG2518 Pcm Protein-L-isoaspartate O-methyltransferase [Posttranslational modification, protein turnover, chaperones]. 209 -225317 COG2519 Gcd14 tRNA A58 N-methylase Trm61 [Translation, ribosomal structure and biogenesis]. 256 -225318 COG2520 Trm5 tRNA G37 N-methylase Trm5 [Translation, ribosomal structure and biogenesis]. 341 -225319 COG2521 COG2521 Predicted archaeal methyltransferase [General function prediction only]. 287 -225320 COG2522 COG2522 Predicted transcriptional regulator [General function prediction only]. 119 -225321 COG2524 COG2524 Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]. 294 -225322 COG2602 YbxI Beta-lactamase class D [Defense mechanisms]. 254 -225323 COG2603 SelU tRNA 2-selenouridine synthase SelU, contains rhodanese domain [Translation, ribosomal structure and biogenesis]. 334 -225324 COG2604 COG2604 Uncharacterized conserved protein [Function unknown]. 594 -225325 COG2605 COG2605 Predicted kinase related to galactokinase and mevalonate kinase [General function prediction only]. 333 -225326 COG2606 EbsC Cys-tRNA(Pro) deacylase, prolyl-tRNA editing enzyme YbaK/EbsC [Translation, ribosomal structure and biogenesis]. 155 -225327 COG2607 COG2607 Predicted ATPase, AAA+ superfamily [General function prediction only]. 287 -225328 COG2608 CopZ Copper chaperone CopZ [Inorganic ion transport and metabolism]. 71 -225329 COG2609 AceE Pyruvate dehydrogenase complex, dehydrogenase (E1) component [Energy production and conversion]. 887 -225330 COG2610 GntT H+/gluconate symporter or related permease [Carbohydrate transport and metabolism, General function prediction only]. 442 -225331 COG2703 COG2703 Hemerythrin [Signal transduction mechanisms]. 144 -225332 COG2704 DcuA Anaerobic C4-dicarboxylate transporter [Carbohydrate transport and metabolism]. 436 -225333 COG2706 Pgl 6-phosphogluconolactonase, cycloisomerase 2 family [Carbohydrate transport and metabolism]. 346 -225334 COG2707 YeaL Uncharacterized membrane protein, DUF441 family [Function unknown]. 151 -225335 COG2710 NifD Nitrogenase molybdenum-iron protein, alpha and beta chains [Inorganic ion transport and metabolism]. 456 -225336 COG2715 SpmA Spore maturation protein SpmA (function unknown) [General function prediction only]. 206 -225337 COG2716 GcvR Glycine cleavage system regulatory protein [Amino acid transport and metabolism]. 176 -225338 COG2717 YedZ Periplasmic DMSO/TMAO reductase YedYZ, heme-binding membrane subunit [Energy production and conversion]. 209 -225339 COG2718 YeaH Uncharacterized conserved protein YeaH/YhbH, required for sporulation, DUF444 family [General function prediction only]. 423 -225340 COG2719 SpoVR Stage V sporulation protein SpoVR/YcgB, involved in spore cortex formation (function unknown) [Cell cycle control, cell division, chromosome partitioning]. 495 -225341 COG2720 YoaR Vancomycin resistance protein YoaR (function unknown), contains peptidoglycan-binding and VanW domains [Defense mechanisms]. 376 -225342 COG2721 UxaA Altronate dehydratase [Carbohydrate transport and metabolism]. 381 -225343 COG2723 BglB Beta-glucosidase/6-phospho-beta-glucosidase/beta-galactosidase [Carbohydrate transport and metabolism]. 460 -225344 COG2730 BglC Aryl-phospho-beta-D-glucosidase BglC, GH1 family [Carbohydrate transport and metabolism]. 407 -225345 COG2731 EbgC Beta-galactosidase, beta subunit [Carbohydrate transport and metabolism]. 154 -225346 COG2732 BarS Barstar, RNAse (barnase) inhibitor [Transcription]. 91 -225347 COG2733 YjiN Uncharacterized membrane-anchored protein YjiN, DUF445 family [Function unknown]. 415 -225348 COG2738 YugP Zn-dependent membrane protease YugP [Posttranslational modification, protein turnover, chaperones]. 226 -225349 COG2739 YlxM Predicted DNA-binding protein YlxM, UPF0122 family [Transcription]. 105 -225350 COG2740 YlxR Predicted RNA-binding protein YlxR, DUF448 family [General function prediction only]. 95 -225351 COG2746 YokD Aminoglycoside N3'-acetyltransferase [Defense mechanisms]. 251 -225352 COG2747 FlgM Negative regulator of flagellin synthesis (anti-sigma28 factor) [Transcription, Cell motility]. 93 -225353 COG2755 TesA Lysophospholipase L1 or related esterase [Amino acid transport and metabolism]. 216 -225354 COG2759 MIS1 Formyltetrahydrofolate synthetase [Nucleotide transport and metabolism]. 554 -225355 COG2761 FrnE Predicted dithiol-disulfide isomerase, DsbA family [Posttranslational modification, protein turnover, chaperones]. 225 -225356 COG2764 PhnB Uncharacterized conserved protein PhnB, glyoxalase superfamily [General function prediction only]. 136 -225357 COG2766 PrkA Predicted Ser/Thr protein kinase [Signal transduction mechanisms]. 649 -225358 COG2768 COG2768 Uncharacterized Fe-S cluster protein [Function unknown]. 354 -225359 COG2770 HAMP HAMP domain [Signal transduction mechanisms]. 83 -225360 COG2771 CsgD DNA-binding transcriptional regulator, CsgD family [Transcription]. 65 -225361 COG2801 Tra5 Transposase InsO and inactivated derivatives [Mobilome: prophages, transposons]. 232 -225362 COG2802 LON Uncharacterized protein, LON-like domain, ASCH/PUA-like superfamily [Function unknown]. 221 -225363 COG2804 PulE Type II secretory pathway ATPase GspE/PulE or T4P pilus assembly pathway ATPase PilB [Cell motility, Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 500 -225364 COG2805 PilT Tfp pilus assembly protein PilT, pilus retraction ATPase [Cell motility, Extracellular structures]. 353 -225365 COG2807 CynX Cyanate permease [Inorganic ion transport and metabolism]. 395 -225366 COG2808 PaiB Predicted FMN-binding regulatory protein PaiB [Signal transduction mechanisms]. 209 -225367 COG2810 COG2810 Predicted type IV restriction endonuclease [Defense mechanisms]. 284 -225368 COG2811 NtpH Archaeal/vacuolar-type H+-ATPase subunit H [Energy production and conversion]. 108 -225369 COG2812 DnaX DNA polymerase III, gamma/tau subunits [Replication, recombination and repair]. 515 -225370 COG2813 RsmC 16S rRNA G1207 methylase RsmC [Translation, ribosomal structure and biogenesis]. 300 -225371 COG2814 AraJ Predicted arabinose efflux permease, MFS family [Carbohydrate transport and metabolism]. 394 -225372 COG2815 PASTA PASTA domain, binds beta-lactams [Cell wall/membrane/envelope biogenesis]. 303 -225373 COG2816 NPY1 NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism]. 279 -225374 COG2818 Tag 3-methyladenine DNA glycosylase Tag [Replication, recombination and repair]. 188 -225375 COG2819 YbbA Predicted hydrolase of the alpha/beta superfamily [General function prediction only]. 264 -225376 COG2820 Udp Uridine phosphorylase [Nucleotide transport and metabolism]. 248 -225377 COG2821 MltA Membrane-bound lytic murein transglycosylase [Cell wall/membrane/envelope biogenesis]. 373 -225378 COG2822 EfeO Iron uptake system EfeUOB, periplasmic (or lipoprotein) component EfeO/EfeM [Inorganic ion transport and metabolism]. 376 -225379 COG2823 OsmY Osmotically-inducible protein OsmY, contains BON domain [Function unknown]. 196 -225380 COG2824 PhnA Uncharacterized Zn-ribbon-containing protein [General function prediction only]. 112 -225381 COG2825 HlpA Periplasmic chaperone for outer membrane proteins, Skp family [Cell wall/membrane/envelope biogenesis, Posttranslational modification, protein turnover, chaperones]. 170 -225382 COG2826 Tra8 Transposase and inactivated derivatives, IS30 family [Mobilome: prophages, transposons]. 318 -225383 COG2827 YhbQ Predicted endonuclease, GIY-YIG superfamily [Replication, recombination and repair]. 95 -225384 COG2828 PrpF 2-Methylaconitate cis-trans-isomerase PrpF (2-methyl citrate pathway) [Energy production and conversion]. 378 -225385 COG2829 PldA Outer membrane phospholipase A [Cell wall/membrane/envelope biogenesis]. 317 -225386 COG2830 COG2830 Uncharacterized protein [Function unknown]. 214 -225387 COG2831 FhaC Hemolysin activation/secretion protein [Intracellular trafficking, secretion, and vesicular transport]. 554 -225388 COG2832 YbaN Uncharacterized membrane protein YbaN, DUF454 family [Function unknown]. 119 -225389 COG2833 COG2833 Uncharacterized conserved protein, contains ferritin-like DUF455 domain [Function unknown]. 268 -225390 COG2834 LolA Outer membrane lipoprotein-sorting protein [Cell wall/membrane/envelope biogenesis]. 211 -225391 COG2835 YcaR Uncharacterized conserved protein YbaR, Trm112 family [Function unknown]. 60 -225392 COG2836 TauE Sulfite exporter TauE/SafE [Inorganic ion transport and metabolism]. 232 -225393 COG2837 EfeB Periplasmic deferrochelatase/peroxidase EfeB [Inorganic ion transport and metabolism]. 352 -225394 COG2838 IcdM Monomeric isocitrate dehydrogenase [Energy production and conversion]. 744 -225395 COG2839 YqgC Uncharacterized conserved protein YqgC, DUF456 family [Function unknown]. 160 -225396 COG2840 SmrA DNA-nicking endonuclease, Smr domain [Replication, recombination and repair]. 184 -225397 COG2841 YdcH Uncharacterized conserved protein YdcH, DUF465 family [Function unknown]. 72 -225398 COG2842 COG2842 Bacteriophage DNA transposition protein, AAA+ family ATPase [Mobilome: prophages, transposons]. 297 -225399 COG2843 COG2843 Poly-gamma-glutamate biosynthesis protein CapA/YwtB (capsule formation), metallophosphatase superfamily [Cell wall/membrane/envelope biogenesis]. 372 -225400 COG2844 GlnD UTP:GlnB (protein PII) uridylyltransferase [Posttranslational modification, protein turnover, chaperones, Signal transduction mechanisms]. 867 -225401 COG2845 COG2845 Uncharacterized protein [Function unknown]. 354 -225402 COG2846 RIC Iron-sulfur cluster repair protein YtfE, RIC family, contains ScdAN and hemerythrin domains [Posttranslational modification, protein turnover, chaperones]. 221 -225403 COG2847 COG2847 Copper(I)-binding protein [Inorganic ion transport and metabolism]. 151 -225404 COG2848 COG2848 Uncharacterized conserved protein, UPF0210 family [Cell cycle control, cell division, chromosome partitioning]. 445 -225405 COG2849 YwqK Antitoxin component YwqK of the YwqJK toxin-antitoxin module [Defense mechanisms]. 230 -225406 COG2850 RoxA Ribosomal protein L16 Arg81 hydroxylase, contains JmjC domain [Translation, ribosomal structure and biogenesis]. 383 -225407 COG2851 CitM Mg2+/citrate symporter [Energy production and conversion]. 433 -225408 COG2852 YcjD Very-short-patch-repair endonuclease [Replication, recombination and repair]. 129 -225409 COG2853 VacJ ABC-type transporter Mla maintaining outer membrane lipid asymmetry, lipoprotein component MlaA [Cell wall/membrane/envelope biogenesis]. 250 -225410 COG2854 MlaC ABC-type transporter Mla maintaining outer membrane lipid asymmetry, periplasmic MlaC component [Lipid transport and metabolism]. 202 -225411 COG2855 YeiH Uncharacterized membrane protein YadS [Function unknown]. 334 -225412 COG2856 ImmA Zn-dependent peptidase ImmA, M78 family [Posttranslational modification, protein turnover, chaperones]. 213 -225413 COG2857 CYT1 Cytochrome c1 [Energy production and conversion]. 250 -225414 COG2859 COG2859 Uncharacterized protein [Function unknown]. 237 -225415 COG2860 YadS Uncharacterized membrane protein YeiH [Function unknown]. 209 -225416 COG2861 YibQ Uncharacterized conserved protein YibQ, putative polysaccharide deacetylase 2 family [Carbohydrate transport and metabolism]. 250 -225417 COG2862 YqhA Uncharacterized membrane protein YqhA [Function unknown]. 169 -225418 COG2863 CytC553 Cytochrome c553 [Energy production and conversion]. 121 -225419 COG2864 FdnI Cytochrome b subunit of formate dehydrogenase [Energy production and conversion]. 218 -225420 COG2865 COG2865 Predicted transcriptional regulator, contains HTH domain [Transcription]. 467 -225421 COG2866 MpaA Murein tripeptide amidase MpaA [Cell wall/membrane/envelope biogenesis]. 374 -225422 COG2867 PasT Ribosome association toxin PasT (RatA) of the RatAB toxin-antitoxin module [Translation, ribosomal structure and biogenesis]. 146 -225423 COG2868 YsxB Uncharacterized conserved protein YsxB, DUF464 family [Function unknown]. 109 -225424 COG2869 NqrC Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrC [Energy production and conversion]. 264 -225425 COG2870 RfaE ADP-heptose synthase, bifunctional sugar kinase/adenylyltransferase [Cell wall/membrane/envelope biogenesis]. 467 -225426 COG2871 NqrF Na+-transporting NADH:ubiquinone oxidoreductase, subunit NqrF [Energy production and conversion]. 410 -225427 COG2872 AlaX Ser-tRNA(Ala) deacylase AlaX (editing enzyme) [Translation, ribosomal structure and biogenesis]. 241 -225428 COG2873 MET17 O-acetylhomoserine/O-acetylserine sulfhydrylase, pyridoxal phosphate-dependent [Amino acid transport and metabolism]. 426 -225429 COG2874 FlaH Archaellum biogenesis protein FlaH, an ATPase [Cell motility]. 235 -225430 COG2875 CobM Precorrin-4 methylase [Coenzyme transport and metabolism]. 254 -225431 COG2876 AroGA 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase [Amino acid transport and metabolism]. 286 -225432 COG2877 KdsA 3-deoxy-D-manno-octulosonic acid (KDO) 8-phosphate synthase [Cell wall/membrane/envelope biogenesis]. 279 -225433 COG2878 RnfB Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfB subunit [Energy production and conversion]. 198 -225434 COG2879 YbdD Uncharacterized short protein YbdD, DUF466 family [Function unknown]. 65 -225435 COG2880 COG2880 Predicted DNA-binding protein, potential antitoxin AbrB/MazE fold [General function prediction only]. 67 -225436 COG2881 COG2881 Uncharacterized protein [Function unknown]. 181 -225437 COG2882 FliJ Flagellar biosynthesis chaperone FliJ [Cell motility]. 148 -225438 COG2884 FtsE ABC-type ATPase involved in cell division [Cell cycle control, cell division, chromosome partitioning]. 223 -225439 COG2885 OmpA Outer membrane protein OmpA and related peptidoglycan-associated (lipo)proteins [Cell wall/membrane/envelope biogenesis]. 190 -225440 COG2886 COG2886 Predicted antitoxin, contains HTH domain [General function prediction only]. 88 -225441 COG2887 COG2887 RecB family exonuclease [Replication, recombination and repair]. 269 -225442 COG2888 COG2888 Predicted RNA-binding protein involved in translation, contains Zn-ribbon domain, DUF1610 family [General function prediction only]. 61 -225443 COG2890 HemK Methylase of polypeptide chain release factors [Translation, ribosomal structure and biogenesis]. 280 -225444 COG2891 MreD Cell shape-determining protein MreD [Cell wall/membrane/envelope biogenesis]. 167 -225445 COG2892 Pcc1 tRNA threonylcarbamoyladenosine modification (KEOPS) complex, Pcc1 subunit [Translation, ribosomal structure and biogenesis]. 82 -225446 COG2893 ManX Phosphotransferase system, mannose/fructose-specific component IIA [Carbohydrate transport and metabolism]. 143 -225447 COG2894 MinD Septum formation inhibitor-activating ATPase MinD [Cell cycle control, cell division, chromosome partitioning]. 272 -225448 COG2895 CysN Sulfate adenylyltransferase subunit 1, EFTu-like GTPase family [Inorganic ion transport and metabolism]. 431 -225449 COG2896 MoaA Molybdenum cofactor biosynthesis enzyme MoaA [Coenzyme transport and metabolism]. 322 -225450 COG2897 SseA 3-mercaptopyruvate sulfurtransferase SseA, contains two rhodanese domains [Inorganic ion transport and metabolism]. 285 -225451 COG2898 MprF Lysylphosphatidylglycerol synthetase, C-terminal domain, DUF2156 family [Function unknown]. 538 -225452 COG2899 COG2899 Uncharacterized protein [Function unknown]. 346 -225453 COG2900 SlyX Uncharacterized coiled-coil protein SlyX (sensitive to lysis X) [Function unknown]. 72 -225454 COG2901 Fis DNA-binding protein Fis (factor for inversion stimulation) [Transcription]. 98 -225455 COG2902 Gdh2 NAD-specific glutamate dehydrogenase [Amino acid transport and metabolism]. 1592 -225456 COG2904 QueFN NADPH-dependent 7-cyano-7-deazaguanine reductase QueF, N-terminal domain [Translation, ribosomal structure and biogenesis]. 137 -225457 COG2905 COG2905 Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]. 610 -225458 COG2906 Bfd Bacterioferritin-associated ferredoxin [Inorganic ion transport and metabolism]. 63 -225459 COG2907 COG2907 Predicted NAD/FAD-binding protein [General function prediction only]. 447 -225460 COG2908 LpxH UDP-2,3-diacylglucosamine pyrophosphatase LpxH [Cell wall/membrane/envelope biogenesis]. 237 -225461 COG2909 MalT ATP-, maltotriose- and DNA-dependent transcriptional regulator MalT [Transcription]. 894 -225462 COG2910 YwnB Putative NADH-flavin reductase [General function prediction only]. 211 -225463 COG2911 TamB Autotransporter translocation and assembly factor TamB [Intracellular trafficking, secretion, and vesicular transport]. 1278 -225464 COG2912 SirB1 Regulator of sirC expression, contains transglutaminase-like and TPR domains [Signal transduction mechanisms]. 269 -225465 COG2913 BamE Outer membrane protein assembly factor BamE, lipoprotein component of the BamABCDE complex [Cell wall/membrane/envelope biogenesis]. 147 -225466 COG2914 PasI Putative antitoxin component PasI (RatB) of the RatAB toxin-antitoxin module, ubiquitin-RnfH superfamily [Defense mechanisms]. 99 -225467 COG2915 HflD Regulator of phage lambda lysogenization HflD, binds to CII and stimulates its degradation [Mobilome: prophages, transposons, Signal transduction mechanisms]. 207 -225468 COG2916 Hns DNA-binding protein H-NS [Transcription]. 128 -225469 COG2917 YciB Intracellular septation protein A [Cell cycle control, cell division, chromosome partitioning]. 180 -225470 COG2918 GshA Gamma-glutamylcysteine synthetase [Coenzyme transport and metabolism]. 518 -225471 COG2919 FtsB Cell division protein FtsB [Cell cycle control, cell division, chromosome partitioning]. 117 -225472 COG2920 DsrC Sulfur relay (sulfurtransferase) protein, DsrC/TusE family [Inorganic ion transport and metabolism]. 111 -225473 COG2921 YbeD Putative lipoic acid-binding regulatory protein [Signal transduction mechanisms]. 90 -225474 COG2922 Smg Uncharacterized conserved protein Smg, DUF494 family [Function unknown]. 157 -225475 COG2923 DsrF Sulfur relay (sulfurtransferase) complex TusC component, DsrF/TusC family [Inorganic ion transport and metabolism]. 118 -225476 COG2924 YggX Fe-S cluster biosynthesis and repair protein YggX [Inorganic ion transport and metabolism, Posttranslational modification, protein turnover, chaperones]. 90 -225477 COG2925 SbcB Exonuclease I [Replication, recombination and repair]. 475 -225478 COG2926 YeeX Uncharacterized conserved protein YeeX, DUF496 family [Function unknown]. 109 -225479 COG2927 HolC DNA polymerase III, chi subunit [Replication, recombination and repair]. 144 -225480 COG2928 COG2928 Uncharacterized membrane protein [Function unknown]. 222 -225481 COG2929 COG2929 Uncharacterized conserved protein, DUF497 family [Function unknown]. 93 -225482 COG2930 SYLF Lipid-binding SYLF domain [Lipid transport and metabolism]. 227 -225483 COG2931 COG2931 Ca2+-binding protein, RTX toxin-related [Secondary metabolites biosynthesis, transport and catabolism]. 510 -225484 COG2932 COG2932 Phage repressor protein C, contains Cro/C1-type HTH and peptidase s24 domains [Mobilome: prophages, transposons]. 214 -225485 COG2933 RlmM 23S rRNA C2498 (ribose-2'-O)-methylase RlmM [Translation, ribosomal structure and biogenesis]. 358 -225486 COG2935 Ate1 Arginyl-tRNA--protein-N-Asp/Glu arginylyltransferase [Posttranslational modification, protein turnover, chaperones]. 253 -225487 COG2936 COG2936 Predicted acyl esterase [General function prediction only]. 563 -225488 COG2937 PlsB Glycerol-3-phosphate O-acyltransferase [Lipid transport and metabolism]. 810 -225489 COG2938 SdhE Succinate dehydrogenase flavin-adding protein, antitoxin component of the CptAB toxin-antitoxin module [Posttranslational modification, protein turnover, chaperones]. 94 -225490 COG2939 Kex1 Carboxypeptidase C (cathepsin A) [Amino acid transport and metabolism]. 498 -225491 COG2940 SET SET domain-containing protein (function unknown) [General function prediction only]. 480 -225492 COG2941 Coq7 Demethoxyubiquinone hydroxylase, CLK1/Coq7/Cat5 family [Coenzyme transport and metabolism]. 204 -225493 COG2942 YihS Mannose or cellobiose epimerase, N-acyl-D-glucosamine 2-epimerase family [Carbohydrate transport and metabolism]. 388 -225494 COG2943 MdoH Membrane glycosyltransferase [Cell wall/membrane/envelope biogenesis, Carbohydrate transport and metabolism]. 736 -225495 COG2944 YiaG DNA-binding transcriptional regulator YiaG, XRE-type HTH domain [Transcription]. 104 -225496 COG2945 COG2945 Alpha/beta superfamily hydrolase [General function prediction only]. 210 -225497 COG2946 NicK DNA relaxase NicK [Replication, recombination and repair]. 377 -225498 COG2947 COG2947 Predicted RNA-binding protein, contains PUA-like domain [General function prediction only]. 156 -225499 COG2948 VirB10 Type IV secretory pathway, VirB10 components [Intracellular trafficking, secretion, and vesicular transport]. 360 -225500 COG2949 SanA Uncharacterized periplasmic protein SanA, affects membrane permeability for vancomycin [Cell wall/membrane/envelope biogenesis]. 235 -225501 COG2951 MltB Membrane-bound lytic murein transglycosylase B [Cell wall/membrane/envelope biogenesis]. 343 -225502 COG2952 COG2952 Uncharacterized protein [Function unknown]. 183 -225503 COG2954 CYTH CYTH domain, found in class IV adenylate cyclase and various triphosphatases [General function prediction only]. 156 -225504 COG2956 YciM Lipopolysaccharide biosynthesis regulator YciM, contains six TPR domains and a predicted metal-binding C-terminal domain [Cell wall/membrane/envelope biogenesis]. 389 -225505 COG2957 AguA Agmatine/peptidylarginine deiminase [Amino acid transport and metabolism]. 346 -225506 COG2958 COG2958 Uncharacterized protein [Function unknown]. 307 -225507 COG2959 HemX Uncharacterized conserved protein HemX (no evidence of involvement in heme biosynthesis) [Function unknown]. 391 -225508 COG2960 YqiC Uncharacterized conserved protein YqiC, BMFP domain [Function unknown]. 103 -225509 COG2961 RlmJ 23S rRNA A2030 N6-methylase RlmJ [Translation, ribosomal structure and biogenesis]. 279 -225510 COG2962 RarD Uncharacterized membrane protein RarD, contains two EamA domains [Function unknown]. 293 -225511 COG2963 InsE Transposase and inactivated derivatives [Mobilome: prophages, transposons]. 116 -225512 COG2964 YheO Predicted transcriptional regulator YheO, contains PAS and DNA-binding HTH domains [Transcription]. 220 -225513 COG2965 PriB Primosomal replication protein N [Replication, recombination and repair]. 103 -225514 COG2966 YjjP Uncharacterized membrane protein YjjP, DUF1212 family [Function unknown]. 250 -225515 COG2967 ApaG Uncharacterized protein affecting Mg2+/Co2+ transport [Inorganic ion transport and metabolism]. 126 -225516 COG2968 YggE Uncharacterized conserved protein YggE, contains kinase-interacting SIMPL domain [Function unknown]. 243 -225517 COG2969 SspB Stringent starvation protein B, binds SsrA peptide [Posttranslational modification, protein turnover, chaperones]. 155 -225518 COG2971 BadF BadF-type ATPase, related to human N-acetylglucosamine kinase [Carbohydrate transport and metabolism]. 301 -225519 COG2972 YesM Sensor histidine kinase YesM [Signal transduction mechanisms]. 456 -225520 COG2973 TrpR Trp operon repressor [Transcription]. 103 -225521 COG2974 RdgC DNA recombination-dependent growth factor C [Replication, recombination and repair]. 303 -225522 COG2975 IscX Fe-S-cluster formation regulator IscX/YfhJ [Posttranslational modification, protein turnover, chaperones]. 64 -225523 COG2976 YfgM Putative negative regulator of RcsB-dependent stress response [Signal transduction mechanisms]. 207 -225524 COG2977 EntD 4'-phosphopantetheinyl transferase EntD (siderophore biosynthesis) [Secondary metabolites biosynthesis, transport and catabolism]. 228 -225525 COG2978 AbgT p-Aminobenzoyl-glutamate transporter AbgT [Coenzyme transport and metabolism]. 516 -225526 COG2979 YebE Uncharacterized membrane protein YebE, DUF533 family [Function unknown]. 225 -225527 COG2980 LptE Outer membrane lipoprotein LptE/RlpB (LPS assembly) [Cell wall/membrane/envelope biogenesis]. 178 -225528 COG2981 CysZ Uncharacterized protein involved in cysteine biosynthesis [Amino acid transport and metabolism]. 250 -225529 COG2982 AsmA Uncharacterized protein involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]. 648 -225530 COG2983 YcgN Uncharacterized cysteine cluster protein YcgN, CxxCxxCC family [Function unknown]. 153 -225531 COG2984 COG2984 ABC-type uncharacterized transport system, periplasmic component [General function prediction only]. 322 -225532 COG2985 YbjL Uncharacterized membrane protein YbjL, putative transporter [General function prediction only]. 544 -225533 COG2986 HutH Histidine ammonia-lyase [Amino acid transport and metabolism]. 498 -225534 COG2987 HutU Urocanate hydratase [Amino acid transport and metabolism]. 561 -225535 COG2988 AstE Succinylglutamate desuccinylase [Amino acid transport and metabolism]. 324 -225536 COG2989 YcbB Murein L,D-transpeptidase YcbB/YkuD [Cell wall/membrane/envelope biogenesis]. 561 -225537 COG2990 VirK Uncharacterized protein VirK/YbjX, DUF535 family [Function unknown]. 300 -225538 COG2991 COG2991 Uncharacterized protein [Function unknown]. 77 -225539 COG2992 Bax Uncharacterized FlgJ-related protein [General function prediction only]. 262 -225540 COG2993 CcoO Cbb3-type cytochrome oxidase, cytochrome c subunit [Energy production and conversion]. 227 -225541 COG2994 HlyC ACP:hemolysin acyltransferase (hemolysin-activating protein) [Posttranslational modification, protein turnover, chaperones]. 148 -225542 COG2995 PqiA Uncharacterized paraquat-inducible protein A [Function unknown]. 418 -225543 COG2996 CvfB Predicted RNA-binding protein, contains S1 domains, virulence factor B family [General function prediction only]. 287 -225544 COG2998 TupB ABC-type tungstate transport system, permease component [Inorganic ion transport and metabolism]. 280 -225545 COG2999 GrxB Glutaredoxin 2 [Posttranslational modification, protein turnover, chaperones]. 215 -225546 COG3000 ERG3 Sterol desaturase/sphingolipid hydroxylase, fatty acid hydroxylase superfamily [Lipid transport and metabolism]. 271 -225547 COG3001 FN3K Fructosamine-3-kinase [Carbohydrate transport and metabolism]. 286 -225548 COG3002 YbcC Uncharacterized conserved protein YbcC, UPF0753/DUF2309 family [Function unknown]. 880 -225549 COG3004 NhaA Na+/H+ antiporter NhaA [Energy production and conversion, Inorganic ion transport and metabolism]. 390 -225550 COG3005 NapC Tetraheme cytochrome c subunit of nitrate or TMAO reductase [Energy production and conversion]. 190 -225551 COG3006 MukF Chromosome condensin MukBEF complex, kleisin-like MukF subunit [Cell cycle control, cell division, chromosome partitioning]. 440 -225552 COG3007 COG3007 Trans-2-enoyl-CoA reductase [Lipid transport and metabolism]. 398 -225553 COG3008 PqiB Paraquat-inducible protein B (function unknown) [Function unknown]. 553 -225554 COG3009 YmbA Uncharacterized lipoprotein YmbA [Function unknown]. 190 -225555 COG3010 NanE Putative N-acetylmannosamine-6-phosphate epimerase [Carbohydrate transport and metabolism]. 229 -225556 COG3011 YuxK Predicted thiol-disulfide oxidoreductase YuxK, DCC family [General function prediction only]. 137 -225557 COG3012 YchJ Uncharacterized conserved protein YchJ, contains N- and C-terminal SEC-C domains [Function unknown]. 151 -225558 COG3013 YfbU Uncharacterized protein YfbU, UPF0304 family [Function unknown]. 168 -225559 COG3014 COG3014 Uncharacterized protein [Function unknown]. 449 -225560 COG3015 CutF Uncharacterized lipoprotein NlpE involved in copper resistance [Cell wall/membrane/envelope biogenesis, Defense mechanisms]. 178 -225561 COG3016 PhuW Uncharacterized iron-regulated protein [Function unknown]. 295 -225562 COG3017 LolB Outer membrane lipoprotein LolB, involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]. 206 -225563 COG3018 COG3018 Uncharacterized protein [Function unknown]. 115 -225564 COG3019 COG3019 Uncharacterized conserved protein [Function unknown]. 149 -225565 COG3021 YafD Uncharacterized conserved protein YafD, endonuclease/exonuclease/phosphatase (EEP) superfamily [General function prediction only]. 309 -225566 COG3022 YaaA Cytoplasmic iron level regulating protein YaaA, DUF328/UPF0246 family [Inorganic ion transport and metabolism]. 253 -225567 COG3023 AmpD N-acetyl-anhydromuramyl-L-alanine amidase AmpD [Cell wall/membrane/envelope biogenesis]. 257 -225568 COG3024 YacG Endogenous inhibitor of DNA gyrase, YacG/DUF329 family [Replication, recombination and repair]. 65 -225569 COG3025 PPPi Inorganic triphosphatase YgiF, contains CYTH and CHAD domains [Inorganic ion transport and metabolism]. 432 -225570 COG3026 RseB Negative regulator of sigma E activity [Signal transduction mechanisms]. 320 -225571 COG3027 ZapA Cell division protein ZapA, inhibits GTPase activity of FtsZ [Cell cycle control, cell division, chromosome partitioning]. 105 -225572 COG3028 YjgA Ribosomal 50S subunit-associated protein YjgA (function unknown), DUF615 family [Translation, ribosomal structure and biogenesis]. 187 -225573 COG3029 FrdC Fumarate reductase subunit C [Energy production and conversion]. 129 -225574 COG3030 FxsA Protein affecting phage T7 exclusion by the F plasmid, UPF0716 family [General function prediction only]. 158 -225575 COG3031 PulC Type II secretory pathway, component PulC [Intracellular trafficking, secretion, and vesicular transport]. 275 -225576 COG3033 TnaA Tryptophanase [Amino acid transport and metabolism]. 471 -225577 COG3034 YafK Murein L,D-transpeptidase YafK [Cell wall/membrane/envelope biogenesis]. 298 -225578 COG3036 ArfA Stalled ribosome alternative rescue factor ArfA [Translation, ribosomal structure and biogenesis]. 66 -225579 COG3037 UlaA Ascorbate-specific PTS system EIIC-type component UlaA [Carbohydrate transport and metabolism]. 481 -225580 COG3038 CybB Cytochrome b561 [Energy production and conversion]. 181 -225581 COG3039 IS5 Transposase and inactivated derivatives, IS5 family [Mobilome: prophages, transposons]. 230 -225582 COG3040 Blc Bacterial lipocalin [Cell wall/membrane/envelope biogenesis]. 174 -225583 COG3041 YafQ mRNA-degrading endonuclease (mRNA interferase) YafQ, toxin component of the YafQ-DinJ toxin-antitoxin module [Translation, ribosomal structure and biogenesis]. 91 -225584 COG3042 Hlx Putative hemolysin [General function prediction only]. 85 -225585 COG3043 NapB Nitrate reductase cytochrome c-type subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 155 -225586 COG3044 COG3044 Predicted ATPase of the ABC class [General function prediction only]. 554 -225587 COG3045 CreA Periplasmic catabolite regulation protein CreA (function unknown) [Signal transduction mechanisms]. 165 -225588 COG3046 COG3046 Uncharacterized protein related to deoxyribodipyrimidine photolyase [General function prediction only]. 505 -225589 COG3047 OmpW Outer membrane protein W [Cell wall/membrane/envelope biogenesis]. 213 -225590 COG3048 DsdA D-serine dehydratase [Amino acid transport and metabolism]. 443 -225591 COG3049 YxeI Penicillin V acylase or related amidase, Ntn superfamily [Cell wall/membrane/envelope biogenesis, General function prediction only]. 353 -225592 COG3050 HolD DNA polymerase III, psi subunit [Replication, recombination and repair]. 133 -225593 COG3051 CitF Citrate lyase, alpha subunit [Energy production and conversion]. 513 -225594 COG3052 CitD Citrate lyase, gamma subunit [Energy production and conversion]. 98 -225595 COG3053 CitC Citrate lyase synthetase [Energy production and conversion]. 352 -225596 COG3054 YtfJ Predicted transcriptional regulator [General function prediction only]. 184 -225597 COG3055 NanM N-acetylneuraminic acid mutarotase [Cell wall/membrane/envelope biogenesis]. 381 -225598 COG3056 YajG Uncharacterized lipoprotein YajG [Function unknown]. 204 -225599 COG3057 SeqA Negative regulator of replication initiation [Replication, recombination and repair]. 181 -225600 COG3058 FdhE Formate dehydrogenase maturation protein FdhE [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 308 -225601 COG3059 YkgB Uncharacterized membrane protein YkgB [Function unknown]. 182 -225602 COG3060 MetJ Transcriptional regulator of met regulon [Transcription, Amino acid transport and metabolism]. 105 -225603 COG3061 OapA Cell envelope opacity-associated protein A (function unknown) [Function unknown]. 242 -225604 COG3062 NapD Cytoplasmic chaperone NapD for the signal peptide of periplasmic nitrate reductase NapAB [Posttranslational modification, protein turnover, chaperones]. 94 -225605 COG3063 PilF Tfp pilus assembly protein PilF [Cell motility, Extracellular structures]. 250 -225606 COG3064 TolA Membrane protein involved in colicin uptake [Cell wall/membrane/envelope biogenesis]. 387 -225607 COG3065 Slp Starvation-inducible outer membrane lipoprotein [Cell wall/membrane/envelope biogenesis]. 191 -225608 COG3066 MutH DNA mismatch repair protein MutH [Replication, recombination and repair]. 229 -225609 COG3067 NhaB Na+/H+ antiporter NhaB [Energy production and conversion, Inorganic ion transport and metabolism]. 516 -225610 COG3068 YjaG Uncharacterized protein YjaG, DUF416 family [Function unknown]. 194 -225611 COG3069 DcuC C4-dicarboxylate transporter [Energy production and conversion]. 451 -225612 COG3070 TfoX Transcriptional regulator of competence genes, TfoX/Sxy family [Transcription]. 121 -225613 COG3071 HemY Uncharacterized conserved protein HemY, contains two TPR repeats [Function unknown]. 400 -225614 COG3072 CyaA Adenylate cyclase [Nucleotide transport and metabolism]. 853 -225615 COG3073 RseA Negative regulator of sigma E activity [Signal transduction mechanisms]. 213 -225616 COG3074 ZapB Cell division protein ZapB, interacts with FtsZ [Cell cycle control, cell division, chromosome partitioning]. 79 -225617 COG3075 GlpB Anaerobic glycerol-3-phosphate dehydrogenase [Amino acid transport and metabolism]. 421 -225618 COG3076 RraB Regulator of RNase E activity RraB [Translation, ribosomal structure and biogenesis]. 135 -225619 COG3077 RelB Antitoxin component of the RelBE or YafQ-DinJ toxin-antitoxin module [Defense mechanisms]. 88 -225620 COG3078 YihI Ribosome assembly protein YihI, activator of Der GTPase [Translation, ribosomal structure and biogenesis]. 169 -225621 COG3079 YgfB Uncharacterized conserved protein YgfB, UPF0149 family [Function unknown]. 186 -225622 COG3080 FrdD Fumarate reductase subunit D [Energy production and conversion]. 118 -225623 COG3081 NdpA Nucleoid-associated protein YejK (function unknown) [Function unknown]. 335 -225624 COG3082 YejL Uncharacterized conserved protein YejL, UPF0352 family [Function unknown]. 74 -225625 COG3083 YejM Membrane-anchored periplasmic protein YejM, alkaline phosphatase superfamily [Cell wall/membrane/envelope biogenesis]. 600 -225626 COG3084 YihD Uncharacterized protein YihD, DUF1040 family [Function unknown]. 88 -225627 COG3085 YifE Uncharacterized conserved protein YifE, UPF0438 family [Function unknown]. 112 -225628 COG3086 RseC Positive regulator of sigma E activity [Signal transduction mechanisms]. 150 -225629 COG3087 FtsN Cell division protein FtsN [Cell cycle control, cell division, chromosome partitioning]. 264 -225630 COG3088 NrfF Cytochrome c-type biogenesis protein CcmH/NrfF [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 153 -225631 COG3089 YheU Uncharacterized conserved protein YheU, UPF0270 family [Function unknown]. 72 -225632 COG3090 DctM TRAP-type C4-dicarboxylate transport system, small permease component [Carbohydrate transport and metabolism]. 177 -225633 COG3091 SprT Predicted Zn-dependent metalloprotease, SprT family [General function prediction only]. 156 -225634 COG3092 YfbV Uncharacterized membrane protein YfbV, UPF0208 family [Function unknown]. 149 -225635 COG3093 VapI Plasmid maintenance system antidote protein VapI, contains XRE-type HTH domain [Defense mechanisms]. 104 -225636 COG3094 SirB2 Uncharacterized membrane protein SirB2 [Function unknown]. 129 -225637 COG3095 MukE Chromosome condensin MukBEF, MukE localization factor [Cell cycle control, cell division, chromosome partitioning]. 238 -225638 COG3096 MukB Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Escherichia coli str. K-12 substr. MG1655 [Cell cycle control, cell division, chromosome partitioning]. 1480 -225639 COG3097 YqfB Uncharacterized protein YqfB, UPF0267 family [Function unknown]. 106 -225640 COG3098 YqcC Uncharacterized conserved protein YqcC, DUF446 family [Function unknown]. 109 -225641 COG3099 YciU Uncharacterized conserved protein YciU, UPF0263 family [Function unknown]. 108 -225642 COG3100 YcgL Uncharacterized conserved protein YcgL, UPF0745 family [Function unknown]. 103 -225643 COG3101 EpmC Elongation factor P hydroxylase (EF-P beta-lysylation pathway) [Translation, ribosomal structure and biogenesis]. 180 -225644 COG3102 YecM Uncharacterized conserved protein YecM, predicted metalloenzyme [General function prediction only]. 185 -225645 COG3103 YgiM Uncharacterized conserved protein YgiM, contains N-terminal SH3 domain, DUF1202 family [General function prediction only]. 205 -225646 COG3104 PTR2 Dipeptide/tripeptide permease [Amino acid transport and metabolism]. 498 -225647 COG3105 YhcB Uncharacterized membrane-anchored protein YhcB, DUF1043 family [Function unknown]. 138 -225648 COG3106 YcjX Predicted ATPase, YcjX-like family [General function prediction only]. 467 -225649 COG3107 LpoA Outer membrane lipoprotein LpoA, binds and activates PBP1a [Cell wall/membrane/envelope biogenesis]. 604 -225650 COG3108 YcbK Uncharacterized conserved protein YcbK, DUF882 family [Function unknown]. 185 -225651 COG3109 ProQ sRNA-binding protein [Signal transduction mechanisms]. 208 -225652 COG3110 YccT Uncharacterized conserved protein YccT, UPF0319 family [Function unknown]. 216 -225653 COG3111 YdeI Predicted periplasmic protein YdeI with OB-fold, BOF family [Function unknown]. 128 -225654 COG3112 YacL Uncharacterized protein YacL, UPF0231 family [Function unknown]. 121 -225655 COG3113 MlaB ABC-type transporter Mla maintaining outer membrane lipid asymmetry, MlaB component, contains STAS domain [Cell wall/membrane/envelope biogenesis]. 99 -225656 COG3114 CcmD Heme exporter protein D [Intracellular trafficking, secretion, and vesicular transport]. 67 -225657 COG3115 ZipA Cell division protein ZipA, interacts with FtsZ [Cell cycle control, cell division, chromosome partitioning]. 324 -225658 COG3116 FtsL Cell division protein FtsL, interacts with FtsB, FtsL and FtsQ [Cell cycle control, cell division, chromosome partitioning]. 105 -225659 COG3117 YrbK Lipopolysaccharide export system protein LptC [Cell wall/membrane/envelope biogenesis]. 188 -225660 COG3118 YbbN Negative regulator of GroEL, contains thioredoxin-like and TPR-like domains [Posttranslational modification, protein turnover, chaperones]. 304 -225661 COG3119 AslA Arylsulfatase A or related enzyme [Inorganic ion transport and metabolism]. 475 -225662 COG3120 MatP Macrodomain Ter protein organizer, MatP/YcbG family [Replication, recombination and repair]. 149 -225663 COG3121 FimC P pilus assembly protein, chaperone PapD [Extracellular structures]. 235 -225664 COG3122 YaiL Uncharacterized conserved protein YaiL, DUF2058 family [Function unknown]. 215 -225665 COG3123 YaiE Uncharacterized conserved protein YaiE, UPF0345 family [Function unknown]. 94 -225666 COG3124 AcpH Acyl carrier protein phosphodiesterase [Lipid transport and metabolism]. 193 -225667 COG3125 CyoD Heme/copper-type cytochrome/quinol oxidase, subunit 4 [Energy production and conversion]. 111 -225668 COG3126 YbaY Uncharacterized lipoprotein YbaY [Function unknown]. 158 -225669 COG3127 YbbP Predicted ABC-type transport system involved in lysophospholipase L1 biosynthesis, permease component [Secondary metabolites biosynthesis, transport and catabolism]. 829 -225670 COG3128 PiuC Predicted 2-oxoglutarate- and Fe(II)-dependent dioxygenase YbiX [General function prediction only]. 229 -225671 COG3129 RlmF 23S rRNA A1618 N6-methylase RlmF [Translation, ribosomal structure and biogenesis]. 292 -225672 COG3130 Rmf Ribosome modulation factor [Translation, ribosomal structure and biogenesis]. 55 -225673 COG3131 MdoG Periplasmic glucans biosynthesis protein [Cell wall/membrane/envelope biogenesis]. 534 -225674 COG3132 YceH Uncharacterized conserved protein YceH, UPF0502 family [Function unknown]. 215 -225675 COG3133 SlyB Outer membrane lipoprotein SlyB [Cell wall/membrane/envelope biogenesis]. 154 -225676 COG3134 YcfJ Uncharacterized conserved protein YcfJ, contains glycine zipper 2TM domain [Function unknown]. 179 -225677 COG3135 BenE Predicted benzoate:H+ symporter BenE [Secondary metabolites biosynthesis, transport and catabolism]. 402 -225678 COG3136 GlpM Uncharacterized membrane protein, GlpM family [Function unknown]. 111 -225679 COG3137 YdiY Putative salt-induced outer membrane protein YdiY [Cell wall/membrane/envelope biogenesis]. 262 -225680 COG3138 AstA Arginine/ornithine N-succinyltransferase beta subunit [Amino acid transport and metabolism]. 336 -225681 COG3139 yeaC Uncharacterized conserved protein YeaC, DUF1315 family [Function unknown]. 90 -225682 COG3140 yoaH Uncharacterized conserved protein YoaH, UPF0181 family [Function unknown]. 60 -225683 COG3141 YebG dsDNA-binding SOS-regulon protein, induction by DNA damage requires cAMP [Replication, recombination and repair]. 97 -225684 COG3142 CutC Copper homeostasis protein CutC [Inorganic ion transport and metabolism]. 241 -225685 COG3143 CheZ Chemotaxis regulator CheZ, phosphatase of CheY~P [Cell motility, Signal transduction mechanisms]. 217 -225686 COG3144 FliK Flagellar hook-length control protein FliK [Cell motility]. 417 -225687 COG3145 AlkB Alkylated DNA repair dioxygenase AlkB [Replication, recombination and repair]. 194 -225688 COG3146 COG3146 Predicted N-acyltransferase [General function prediction only]. 387 -225689 COG3147 DedD Cell division protein DedD (periplasmic protein involved in septation) [Cell cycle control, cell division, chromosome partitioning]. 226 -225690 COG3148 YfiP Uncharacterized conserved protein YfiP, DTW domain [Function unknown]. 231 -225691 COG3149 PulM Type II secretory pathway, component PulM [Intracellular trafficking, secretion, and vesicular transport]. 181 -225692 COG3150 ycfP Predicted esterase YcpF, UPF0227 family [General function prediction only]. 191 -225693 COG3151 yqiB Uncharacterized protein YqiB, DUF1249 family [Function unknown]. 147 -225694 COG3152 yhaH Uncharacterized membrane protein YhaH, DUF805 family [Function unknown]. 125 -225695 COG3153 yhbS Predicted N-acetyltransferase YhbS [General function prediction only]. 171 -225696 COG3154 SCP2 Predicted lipid carrier protein YhbT, SCP2 domain [Lipid transport and metabolism]. 168 -225697 COG3155 ElbB Enhancing lycopene biosynthesis protein 2 [Secondary metabolites biosynthesis, transport and catabolism]. 217 -225698 COG3156 PulK Type II secretory pathway, component PulK [Intracellular trafficking, secretion, and vesicular transport]. 323 -225699 COG3157 Hcp Type VI protein secretion system component Hcp (secreted cytotoxin) [Intracellular trafficking, secretion, and vesicular transport]. 162 -225700 COG3158 Kup K+ transporter [Inorganic ion transport and metabolism]. 627 -225701 COG3159 YigA Uncharacterized conserved protein YigA, DUF484 family [Function unknown]. 218 -225702 COG3160 Rsd Regulator of sigma D [Transcription]. 162 -225703 COG3161 UbiC 4-hydroxybenzoate synthetase (chorismate-pyruvate lyase) [Coenzyme transport and metabolism]. 174 -225704 COG3162 YjcH Uncharacterized membrane protein, DUF485 family [Function unknown]. 102 -225705 COG3164 YhdR Uncharacterized conserved protein YhdP, contains DUF3971 and AsmA2 domains [Function unknown]. 1271 -225706 COG3165 UbiJ Ubiquinone biosynthesis protein UbiJ, contains SCP2 domain [Coenzyme transport and metabolism]. 204 -225707 COG3166 PilN Tfp pilus assembly protein PilN [Cell motility, Extracellular structures]. 206 -225708 COG3167 PilO Tfp pilus assembly protein PilO [Cell motility, Extracellular structures]. 211 -225709 COG3168 PilP Tfp pilus assembly protein PilP [Cell motility, Extracellular structures]. 170 -225710 COG3169 COG3169 Uncharacterized conserved protein, DUF486 family [Function unknown]. 116 -225711 COG3170 FimV Tfp pilus assembly protein FimV [Cell motility, Extracellular structures]. 755 -225712 COG3171 YggL Uncharacterized conserved protein YggL, DUF469 family [Function unknown]. 119 -225713 COG3172 NadR3 Nicotinamide riboside kinase [Coenzyme transport and metabolism]. 187 -225714 COG3173 YcbJ Predicted kinase, aminoglycoside phosphotransferase (APT) family [General function prediction only]. 321 -225715 COG3174 COG3174 Uncharacterized membrane protein, DUF4010 family [Function unknown]. 371 -225716 COG3175 COX11 Cytochrome c oxidase assembly protein Cox11 [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 195 -225717 COG3176 COG3176 Putative hemolysin [General function prediction only]. 292 -225718 COG3177 COG3177 Fic family protein [Transcription]. 348 -225719 COG3178 COG3178 Predicted phosphotransferase, aminoglycoside/choline kinase (APH/ChoK) family [General function prediction only]. 351 -225720 COG3179 COG3179 Predicted chitinase [General function prediction only]. 206 -225721 COG3180 AbrB Uncharacterized membrane protein AbrB, regulator of aidB expression [General function prediction only]. 352 -225722 COG3181 TctC Tripartite-type tricarboxylate transporter, receptor component TctC [Energy production and conversion]. 319 -225723 COG3182 PiuB Uncharacterized iron-regulated membrane protein [Function unknown]. 442 -225724 COG3183 COG3183 Predicted restriction endonuclease, HNH family [Defense mechanisms]. 272 -225725 COG3184 COG3184 Uncharacterized protein, contains DUF2059 domain [Function unknown]. 183 -225726 COG3185 HppD 4-hydroxyphenylpyruvate dioxygenase and related hemolysins [Amino acid transport and metabolism, General function prediction only]. 363 -225727 COG3186 PhhA Phenylalanine-4-hydroxylase [Amino acid transport and metabolism]. 291 -225728 COG3187 HslJ Heat shock protein HslJ [Posttranslational modification, protein turnover, chaperones]. 142 -225729 COG3188 FimD Outer membrane usher protein FimD/PapC [Cell motility, Extracellular structures]. 835 -225730 COG3189 YeaO Uncharacterized conserved protein YeaO, DUF488 family [Function unknown]. 117 -225731 COG3190 FliO Flagellar biogenesis protein FliO [Cell motility]. 137 -225732 COG3191 DmpA L-aminopeptidase/D-esterase [Amino acid transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]. 348 -225733 COG3192 EutH Ethanolamine transporter EutH, required for ethanolamine utilization at low pH [Amino acid transport and metabolism]. 389 -225734 COG3193 GlcG Uncharacterized conserved protein GlcG, DUF336 family [Function unknown]. 141 -225735 COG3194 AllA Ureidoglycolate hydrolase (allantoin degradation) [Nucleotide transport and metabolism]. 168 -225736 COG3195 PucL 2-oxo-4-hydroxy-4-carboxy--5-ureidoimidazoline (OHCU) decarboxylase [Nucleotide transport and metabolism]. 176 -225737 COG3196 CbrC Uncharacterized protein CbrC, UPF0167 family [Function unknown]. 183 -225738 COG3197 FixS Cytochrome oxidase maturation protein, CcoS/FixS family [Posttranslational modification, protein turnover, chaperones]. 58 -225739 COG3198 COG3198 Uncharacterized protein [Function unknown]. 172 -225740 COG3199 COG3199 Predicted polyphosphate- or ATP-dependent NAD kinase [Nucleotide transport and metabolism]. 355 -225741 COG3200 AroG2 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, class II [Amino acid transport and metabolism]. 445 -225742 COG3201 PnuC Nicotinamide riboside transporter PnuC [Coenzyme transport and metabolism]. 222 -225743 COG3202 TlcC ATP/ADP translocase [Energy production and conversion]. 509 -225744 COG3203 OmpC Outer membrane protein (porin) [Cell wall/membrane/envelope biogenesis]. 354 -225745 COG3204 YjiK Uncharacterized protein YjiK [Function unknown]. 316 -225746 COG3205 COG3205 Uncharacterized membrane protein [Function unknown]. 72 -225747 COG3206 GumC Uncharacterized protein involved in exopolysaccharide biosynthesis [Cell wall/membrane/envelope biogenesis]. 458 -225748 COG3207 Dit1 Pyoverdine/dityrosine biosynthesis protein Dit1 [Secondary metabolites biosynthesis, transport and catabolism]. 330 -225749 COG3208 GrsT Surfactin synthase thioesterase subunit [Secondary metabolites biosynthesis, transport and catabolism]. 244 -225750 COG3209 RhsA Uncharacterized conserved protein RhaS, contains 28 RHS repeats [General function prediction only]. 796 -225751 COG3210 FhaB Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]. 1013 -225752 COG3211 PhoX Secreted phosphatase, PhoX family [General function prediction only]. 616 -225753 COG3212 YkoI Uncharacterized membrane protein YkoI [Function unknown]. 144 -225754 COG3213 NnrS Uncharacterized protein involved in response to NO [Defense mechanisms]. 396 -225755 COG3214 YcaQ Uncharacterized conserved protein YcaQ, contains winged helix DNA-binding domain [General function prediction only]. 400 -225756 COG3215 PilZ Tfp pilus assembly protein PilZ [Cell motility, Extracellular structures]. 117 -225757 COG3216 COG3216 Uncharacterized conserved protein, DUF2062 family [Function unknown]. 184 -225758 COG3217 YcbX Uncharacterized conserved protein YcbX, contains MOSC and Fe-S domains [General function prediction only]. 270 -225759 COG3218 COG3218 ABC-type uncharacterized transport system, auxiliary component [General function prediction only]. 205 -225760 COG3219 COG3219 Uncharacterized protein, DUF2063 family [Function unknown]. 237 -225761 COG3220 COG3220 Uncharacterized conserved protein, UPF0276 family [Function unknown]. 282 -225762 COG3221 PhnD ABC-type phosphate/phosphonate transport system, periplasmic component [Inorganic ion transport and metabolism]. 299 -225763 COG3222 COG3222 Uncharacterized conserved protein, glycosyltransferase A (GT-A) superfamily, DUF2064 family [Function unknown]. 211 -225764 COG3223 PsiE Phosphate starvation-inducible membrane PsiE (function unknown) [General function prediction only]. 138 -225765 COG3224 COG3224 Antibiotic biosynthesis monooxygenase (ABM) superfamily enzyme [General function prediction only]. 195 -225766 COG3225 GldG ABC-type uncharacterized transport system involved in gliding motility, auxiliary component [Cell motility]. 538 -225767 COG3226 YbjK DNA-binding transcriptional regulator YbjK [Transcription]. 204 -225768 COG3227 LasB Zn-dependent metalloprotease [Posttranslational modification, protein turnover, chaperones]. 507 -225769 COG3228 MtfA Mlc titration factor MtfA, regulates ptsG expression [Signal transduction mechanisms]. 266 -225770 COG3230 HemO Heme oxygenase [Inorganic ion transport and metabolism]. 196 -225771 COG3231 Aph Aminoglycoside phosphotransferase [Translation, ribosomal structure and biogenesis]. 266 -225772 COG3232 HpaF 5-carboxymethyl-2-hydroxymuconate isomerase [Amino acid transport and metabolism]. 127 -225773 COG3233 COG3233 Predicted deacetylase [General function prediction only]. 233 -225774 COG3234 yfaT Uncharacterized conserved protein YfaT, DUF1175 family [Function unknown]. 215 -225775 COG3235 COG3235 Uncharacterized membrane protein [Function unknown]. 223 -225776 COG3236 ybiA N-glycosylase of 5-amino-6-ribosylamino-2,4-pyrimidinedione 5?-phosphate (riboflavin biosynthesis damage control) [Coenzyme transport and metabolism]. 162 -225777 COG3237 yjbJ Uncharacterized conserved protein YjbJ, UPF0337 family [Function unknown]. 67 -225778 COG3238 ydcZ Uncharacterized membrane protein YdcZ, DUF606 family [Function unknown]. 150 -225779 COG3239 DesA Fatty acid desaturase [Lipid transport and metabolism]. 343 -225780 COG3240 COG3240 Phospholipase/lecithinase/hemolysin [Lipid transport and metabolism, General function prediction only]. 370 -225781 COG3241 COG3241 Azurin [Energy production and conversion]. 151 -225782 COG3242 yjeT Uncharacterized conserved protein YjeT, DUF2065 family [Function unknown]. 62 -225783 COG3243 PhaC Poly(3-hydroxyalkanoate) synthetase [Lipid transport and metabolism]. 445 -225784 COG3245 CytC5 Cytochrome c5 [Energy production and conversion]. 126 -225785 COG3246 COG3246 Uncharacterized conserved protein, DUF849 family [Function unknown]. 298 -225786 COG3247 HdeD Uncharacterized membrane protein HdeD, DUF308 family [Function unknown]. 185 -225787 COG3248 Tsx Nucleoside-specific outer membrane channel protein Tsx [Cell wall/membrane/envelope biogenesis]. 284 -225788 COG3249 COG3249 Uncharacterized protein [Function unknown]. 343 -225789 COG3250 LacZ Beta-galactosidase/beta-glucuronidase [Carbohydrate transport and metabolism]. 808 -225790 COG3251 MbtH Uncharacterized conserved protein YbdZ, MbtH family [Function unknown]. 71 -225791 COG3252 Mch Methenyltetrahydromethanopterin cyclohydrolase [Coenzyme transport and metabolism]. 314 -225792 COG3253 YwfI Chlorite dismutase [Inorganic ion transport and metabolism]. 230 -225793 COG3254 RhaM L-rhamnose mutarotase [Cell wall/membrane/envelope biogenesis]. 105 -225794 COG3255 SCP2 Putative sterol carrier protein [Lipid transport and metabolism]. 134 -225795 COG3256 NorB Nitric oxide reductase large subunit [Inorganic ion transport and metabolism]. 717 -225796 COG3257 AllE Ureidoglycine aminohydrolase [Nucleotide transport and metabolism]. 264 -225797 COG3258 CytC Cytochrome c [Energy production and conversion]. 293 -225798 COG3259 FrhA Coenzyme F420-reducing hydrogenase, alpha subunit [Energy production and conversion]. 441 -225799 COG3260 HycG Ni,Fe-hydrogenase III small subunit [Energy production and conversion]. 148 -225800 COG3261 HycE2 Ni,Fe-hydrogenase III large subunit [Energy production and conversion]. 382 -225801 COG3262 HycE1 Ni,Fe-hydrogenase III component G [Energy production and conversion]. 165 -225802 COG3263 NhaP2 NhaP-type Na+/H+ and K+/H+ antiporter with C-terminal TrkAC and CorC domains [Energy production and conversion, Inorganic ion transport and metabolism]. 574 -225803 COG3264 MscK Small-conductance mechanosensitive channel [Cell wall/membrane/envelope biogenesis]. 835 -225804 COG3265 GntK Gluconate kinase [Carbohydrate transport and metabolism]. 161 -225805 COG3266 DamX Cell division protein DamX, binds to the septal ring, contains C-terminal SPOR domain [Cell cycle control, cell division, chromosome partitioning]. 292 -225806 COG3267 ExeA Type II secretory pathway, component ExeA (predicted ATPase) [Intracellular trafficking, secretion, and vesicular transport]. 269 -225807 COG3268 COG3268 Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]. 382 -225808 COG3269 COG3269 Predicted RNA-binding protein, contains TRAM domain [General function prediction only]. 73 -225809 COG3270 Ncl1 Ribosome biogenesis protein, NOL1/NOP2/fmu family [Translation, ribosomal structure and biogenesis]. 127 -225810 COG3271 COG3271 Predicted double-glycine peptidase [General function prediction only]. 201 -225811 COG3272 YbgA Uncharacterized conserved protein YbgA, DUF1722 family [Function unknown]. 163 -225812 COG3273 COG3273 Uncharacterized conserved protein, contains PhoU and TrkA_C domains [Function unknown]. 204 -225813 COG3274 WecH Surface polysaccharide O-acyltransferase, integral membrane enzyme [Cell wall/membrane/envelope biogenesis]. 332 -225814 COG3275 LytS Sensor histidine kinase, LytS/YehU family [Signal transduction mechanisms]. 557 -225815 COG3276 SelB Selenocysteine-specific translation elongation factor [Translation, ribosomal structure and biogenesis]. 447 -225816 COG3277 GAR1 rRNA processing protein Gar1 [Translation, ribosomal structure and biogenesis]. 98 -225817 COG3278 CcoN Cbb3-type cytochrome oxidase, subunit 1 [Energy production and conversion]. 482 -225818 COG3279 LytT DNA-binding response regulator, LytR/AlgR family [Transcription, Signal transduction mechanisms]. 244 -225819 COG3280 TreY Maltooligosyltrehalose synthase [Carbohydrate transport and metabolism]. 889 -225820 COG3281 Ble Predicted trehalose synthase [Carbohydrate transport and metabolism]. 438 -225821 COG3283 TyrR Transcriptional regulator of aromatic amino acids metabolism [Transcription, Amino acid transport and metabolism]. 511 -225822 COG3284 AcoR Transcriptional regulator of acetoin/glycerol metabolism [Transcription]. 606 -225823 COG3285 LigD Eukaryotic-type DNA primase [Replication, recombination and repair]. 299 -225824 COG3286 COG3286 Uncharacterized protein [Function unknown]. 204 -225825 COG3287 COG3287 Uncharacterized conserved protein, contains FIST_N domain [Function unknown]. 379 -225826 COG3288 PntA NAD/NADP transhydrogenase alpha subunit [Energy production and conversion]. 356 -225827 COG3290 CitA Sensor histidine kinase regulating citrate/malate metabolism [Signal transduction mechanisms]. 537 -225828 COG3291 COG3291 PKD repeat [Function unknown]. 297 -225829 COG3292 COG3292 Periplasmic ligand-binding sensor domain [Signal transduction mechanisms]. 671 -225830 COG3293 COG3293 Transposase [Mobilome: prophages, transposons]. 124 -225831 COG3294 COG3294 Metal-dependent phosphatase/phosphodiesterase, HD supefamily [General function prediction only]. 269 -225832 COG3295 COG3295 Uncharacterized protein [Function unknown]. 213 -225833 COG3296 Tic20 Uncharacterized conserved protein, Tic20 family [Function unknown]. 143 -225834 COG3297 PulL Type II secretory pathway, component PulL [Intracellular trafficking, secretion, and vesicular transport]. 390 -225835 COG3298 COG3298 Predicted 3'-5' exonuclease related to the exonuclease domain of PolB [Replication, recombination and repair]. 122 -225836 COG3299 JayE Uncharacterized phage protein gp47/JayE [Mobilome: prophages, transposons]. 353 -225837 COG3300 MHYT MHYT domain, NO-binding membrane sensor [Signal transduction mechanisms]. 236 -225838 COG3301 NrfD Formate-dependent nitrite reductase, membrane component NrfD [Inorganic ion transport and metabolism]. 305 -225839 COG3302 DmsC DMSO reductase anchor subunit [Energy production and conversion]. 281 -225840 COG3303 NrfA Formate-dependent nitrite reductase, periplasmic cytochrome c552 subunit [Inorganic ion transport and metabolism]. 501 -225841 COG3304 YccF Uncharacterized membrane protein YccF, DUF307 family [Function unknown]. 145 -225842 COG3305 COG3305 Uncharacterized membrane protein, DUF2068 family [Function unknown]. 152 -225843 COG3306 COG3306 Glycosyltransferase involved in LPS biosynthesis, GR25 family [Cell wall/membrane/envelope biogenesis]. 255 -225844 COG3307 RfaL O-antigen ligase [Cell wall/membrane/envelope biogenesis]. 424 -225845 COG3308 COG3308 Uncharacterized membrane protein [Function unknown]. 131 -225846 COG3309 VapD Virulence-associated protein VapD (function unknown) [Function unknown]. 96 -225847 COG3310 COG3310 Uncharacterized protein, DUF1415 family [Function unknown]. 196 -225848 COG3311 AlpA Predicted DNA-binding transcriptional regulator AlpA [Transcription, Mobilome: prophages, transposons]. 70 -225849 COG3312 AtpI FoF1-type ATP synthase assembly protein I [Energy production and conversion]. 128 -225850 COG3313 YdhL Predicted Fe-S protein YdhL, DUF1289 family [General function prediction only]. 74 -225851 COG3314 YjiH Uncharacterized membrane protein YjiH, contains nucleoside recognition GATE domain [Function unknown]. 427 -225852 COG3315 YktD O-Methyltransferase involved in polyketide biosynthesis [Secondary metabolites biosynthesis, transport and catabolism]. 297 -225853 COG3316 Rve Transposase (or an inactivated derivative) [Mobilome: prophages, transposons]. 215 -225854 COG3317 NlpB Uncharacterized lipoprotein, NlpB/DapX family [Function unknown]. 342 -225855 COG3318 YecA Uncharacterized conserved protein YecA, UPF0149 family, contains C-terminal Zn-binding SEC-C motif [Function unknown]. 216 -225856 COG3319 EntF Thioesterase domain of type I polyketide synthase or non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]. 257 -225857 COG3320 Lys2b Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]. 382 -225858 COG3321 PksD Acyl transferase domain in polyketide synthase (PKS) enzymes [Secondary metabolites biosynthesis, transport and catabolism]. 1061 -225859 COG3322 CHASE4 Extracellular (periplasmic) sensor domain CHASE (specificity unknown) [Signal transduction mechanisms]. 295 -225860 COG3323 YqfO Uncharacterized protein YbgI, a toroidal structure with a dinuclear metal site [Function unknown]. 109 -225861 COG3324 COG3324 Predicted enzyme related to lactoylglutathione lyase [General function prediction only]. 127 -225862 COG3325 ChiA Chitinase, GH18 family [Carbohydrate transport and metabolism]. 441 -225863 COG3326 YsdA Uncharacterized membrane protein YsdA, DUF1294 family [Function unknown]. 94 -225864 COG3327 PaaX DNA-binding transcriptional regulator PaaX (phenylacetic acid degradation) [Transcription]. 291 -225865 COG3328 IS285 Transposase (or an inactivated derivative) [Mobilome: prophages, transposons]. 379 -225866 COG3329 COG3329 Uncharacterized conserved protein [Function unknown]. 372 -225867 COG3330 COG3330 Uncharacterized conserved protein [Function unknown]. 215 -225868 COG3331 PrfA Penicillin-binding protein-related factor A, putative recombinase [General function prediction only]. 177 -225869 COG3332 NRDE Uncharacterized conserved protein, contains NRDE domain [Function unknown]. 270 -225870 COG3333 COG3333 TctA family transporter [General function prediction only]. 504 -225871 COG3334 MotE Flagellar motility protein MotE, a chaperone for MotC folding [Cell motility]. 192 -225872 COG3335 COG3335 Transposase [Mobilome: prophages, transposons]. 132 -225873 COG3336 CtaG Cytochrome c oxidase assembly factor CtaG [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 299 -225874 COG3337 Cmr5 CRISPR/Cas system CMR-associated protein Cmr5, small subunit [Defense mechanisms]. 134 -225875 COG3338 Cah Carbonic anhydrase [Inorganic ion transport and metabolism]. 250 -225876 COG3339 YkvA Uncharacterized membrane protein YkvA, DUF1232 family [Function unknown]. 116 -225877 COG3340 PepE Peptidase E [Amino acid transport and metabolism]. 224 -225878 COG3341 Rnh1 RNase HI-related protein, contains viroplasmin and RNaseH domains [General function prediction only]. 225 -225879 COG3342 COG3342 Uncharacterized conserved protein, Ntn-hydrolase superfamily [General function prediction only]. 265 -225880 COG3343 RpoE DNA-directed RNA polymerase, delta subunit [Transcription]. 175 -225881 COG3344 YkfC Retron-type reverse transcriptase [Mobilome: prophages, transposons]. 328 -225882 COG3345 GalA Alpha-galactosidase [Carbohydrate transport and metabolism]. 687 -225883 COG3346 Shy1 Cytochrome oxidase assembly protein ShyY1 [Posttranslational modification, protein turnover, chaperones]. 252 -225884 COG3347 RhaD Rhamnose utilisation protein RhaD, predicted bifunctional aldolase and dehydrogenase [Carbohydrate transport and metabolism]. 404 -225885 COG3349 COG3349 Uncharacterized conserved protein, contains NAD-binding domain and a Fe-S cluster [General function prediction only]. 485 -225886 COG3350 COG3350 Uncharacterized conserved protein, YHS domain [Function unknown]. 53 -225887 COG3351 FlaD Archaellum component FlaD/FlaE [Cell motility]. 214 -225888 COG3352 FlaC Archaellum component FlaC [Cell motility]. 157 -225889 COG3353 FlaF Archaellum component FlaF, FlaF/FlaG flagellin family [Cell motility]. 137 -225890 COG3354 FlaG Archaellum component FlaG, FlaF/FlaG flagellin family [Cell motility]. 154 -225891 COG3355 COG3355 Predicted transcriptional regulator [Transcription]. 126 -225892 COG3356 COG3356 Predicted membrane-associated lipid hydrolase, neutral ceramidase superfamily [Lipid transport and metabolism]. 578 -225893 COG3357 COG3357 Predicted transcriptional regulator containing an HTH domain fused to a Zn-ribbon [Transcription]. 97 -225894 COG3358 COG3358 Uncharacterized conserved protein, DUF1684 family [Function unknown]. 262 -225895 COG3359 YprB Uncharacterized conserved protein YprB, contains RNaseH-like and TPR domains [General function prediction only]. 278 -225896 COG3360 COG3360 Flavin-binding protein dodecin [General function prediction only]. 71 -225897 COG3361 YqjF Uncharacterized protein YqjF, DUF2071 family [Function unknown]. 240 -225898 COG3363 PurO Archaeal IMP cyclohydrolase [Nucleotide transport and metabolism]. 200 -225899 COG3364 COG3364 Predicted nucleic acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 112 -225900 COG3365 COG3365 Uncharacterized protein, DUF2073 family [Function unknown]. 118 -225901 COG3366 COG3366 Uncharacterized protein [Function unknown]. 311 -225902 COG3367 COG3367 Uncharacterized conserved protein, NAD-dependent epimerase/dehydratase family [General function prediction only]. 339 -225903 COG3368 COG3368 Predicted permease [General function prediction only]. 465 -225904 COG3369 COG3369 Uncharacterized protein, contains Zn-finger domain of CDGSH type [Function unknown]. 78 -225905 COG3370 COG3370 Uncharacterized protein [Function unknown]. 113 -225906 COG3371 COG3371 Uncharacterized membrane protein [Function unknown]. 181 -225907 COG3372 COG3372 Predicted nuclease of restriction endonuclease-like (RecB) superfamily, implicated in nucleotide excision repair [General function prediction only]. 396 -225908 COG3373 COG3373 Predicted transcriptional regulator, contains HTH domain [Transcription]. 108 -225909 COG3374 COG3374 Uncharacterized membrane protein [Function unknown]. 197 -225910 COG3375 COG3375 Predicted acetyltransferase, GNAT superfamily [General function prediction only]. 266 -225911 COG3376 HoxN High-affinity nickel permease [Inorganic ion transport and metabolism]. 342 -225912 COG3377 YunC Uncharacterized protein YunC, DUF1805 family [Function unknown]. 95 -225913 COG3378 COG3378 Phage- or plasmid-associated DNA primase [Mobilome: prophages, transposons]. 517 -225914 COG3379 COG3379 Predicted phosphohydrolase or phosphomutase, AlkP superfamily [General function prediction only]. 471 -225915 COG3380 COG3380 Predicted NAD/FAD-dependent oxidoreductase [General function prediction only]. 331 -225916 COG3381 TorD Cytoplasmic chaperone TorD involved in molybdoenzyme TorA maturation [Posttranslational modification, protein turnover, chaperones]. 204 -225917 COG3382 B3/B4 B3/B4 domain (DNA/RNA-binding domain of Phe-tRNA-synthetase) [General function prediction only]. 229 -225918 COG3383 YjgC Predicted molibdopterin-dependent oxidoreductase YjgC [General function prediction only]. 978 -225919 COG3384 LigB Aromatic ring-opening dioxygenase, catalytic subunit, LigB family [Secondary metabolites biosynthesis, transport and catabolism]. 268 -225920 COG3385 InsG IS4 transposase [Mobilome: prophages, transposons]. 292 -225921 COG3386 YvrE Sugar lactone lactonase YvrE [Carbohydrate transport and metabolism]. 307 -225922 COG3387 SGA1 Glucoamylase (glucan-1,4-alpha-glucosidase), GH15 family [Carbohydrate transport and metabolism]. 612 -225923 COG3388 COG3388 Predicted transcriptional regulator [Transcription]. 101 -225924 COG3389 COG3389 Presenilin-like membrane protease, A22 family [Posttranslational modification, protein turnover, chaperones]. 277 -225925 COG3390 COG3390 Replication protein A (RPA) family protein [Replication, recombination and repair]. 196 -225926 COG3391 YncE DNA-binding beta-propeller fold protein YncE [General function prediction only]. 381 -225927 COG3392 COG3392 Adenine-specific DNA methylase [Replication, recombination and repair]. 330 -225928 COG3393 COG3393 Predicted acetyltransferase, GNAT family [General function prediction only]. 268 -225929 COG3394 ChbG Predicted glycoside hydrolase or deacetylase ChbG, UPF0249 family [Function unknown]. 257 -225930 COG3395 YgbK Uncharacterized conserved protein YgbK, DUF1537 family [Function unknown]. 413 -225931 COG3396 YdbO 1,2-phenylacetyl-CoA epoxidase, catalytic subunit [Secondary metabolites biosynthesis, transport and catabolism]. 265 -225932 COG3397 COG3397 Predicted carbohydrate-binding protein, contains CBM5 and CBM33 domains [General function prediction only]. 308 -225933 COG3398 COG3398 Predicted transcriptional regulator, containsd two HTH domains [Transcription]. 240 -225934 COG3399 COG3399 Uncharacterized protein [Function unknown]. 148 -225935 COG3400 COG3400 Uncharacterized protein [Function unknown]. 471 -225936 COG3401 FN3 Fibronectin type 3 domain [General function prediction only]. 343 -225937 COG3402 YdbS Uncharacterized membrane protein YdbS, contains bPH2 (bacterial pleckstrin homology) domain [Function unknown]. 161 -225938 COG3403 YcgG Uncharacterized protein YcgG, contains conserved FPC and CPF motifs [Function unknown]. 257 -225939 COG3404 FtcD Formiminotetrahydrofolate cyclodeaminase [Amino acid transport and metabolism]. 208 -225940 COG3405 BcsZ Endo-1,4-beta-D-glucanase Y [Carbohydrate transport and metabolism]. 360 -225941 COG3407 MVD1 Mevalonate pyrophosphate decarboxylase [Lipid transport and metabolism]. 329 -225942 COG3408 GDB1 Glycogen debranching enzyme (alpha-1,6-glucosidase) [Carbohydrate transport and metabolism]. 641 -225943 COG3409 PGRP Peptidoglycan-binding (PGRP) domain of peptidoglycan hydrolases [Cell wall/membrane/envelope biogenesis]. 185 -225944 COG3410 BH3996 Uncharacterized protein, DUF2075 family [Function unknown]. 191 -225945 COG3411 2Fe2S (2Fe-2S) ferredoxin [Energy production and conversion]. 64 -225946 COG3412 DhaM PTS-EIIA-like component DhaM of the dihydroxyacetone kinase DhaKLM complex [Signal transduction mechanisms]. 129 -225947 COG3413 COG3413 Predicted DNA binding protein, contains HTH domain [General function prediction only]. 215 -225948 COG3414 SgaB Phosphotransferase system, galactitol-specific IIB component [Carbohydrate transport and metabolism]. 93 -225949 COG3415 COG3415 Transposase [Mobilome: prophages, transposons]. 138 -225950 COG3416 COG3416 Uncharacterized protein [Function unknown]. 233 -225951 COG3417 LpoB Outer membrane lipoprotein LpoB, binds and activates PBP1b [Cell wall/membrane/envelope biogenesis]. 200 -225952 COG3418 FlgN Flagellar biosynthesis/type III secretory pathway chaperone [Cell motility, Intracellular trafficking, secretion, and vesicular transport]. 146 -225953 COG3419 PilY1 Tfp pilus assembly protein, tip-associated adhesin PilY1 [Cell motility, Extracellular structures]. 1036 -225954 COG3420 NosD Nitrous oxidase accessory protein NosD, contains tandem CASH domains [Inorganic ion transport and metabolism]. 408 -225955 COG3421 COG3421 Uncharacterized protein [Function unknown]. 812 -225956 COG3422 YegP Uncharacterized conserved protein YegP, UPF0339 family [Function unknown]. 59 -225957 COG3423 SfsB Predicted transcriptional regulator, lambda repressor-like DNA-binding domain [Transcription]. 82 -225958 COG3424 BH0617 Predicted naringenin-chalcone synthase [Secondary metabolites biosynthesis, transport and catabolism]. 356 -225959 COG3425 PksG 3-hydroxy-3-methylglutaryl CoA synthase [Lipid transport and metabolism]. 377 -225960 COG3426 Buk Butyrate kinase [Energy production and conversion]. 358 -225961 COG3427 CoxG Carbon monoxide dehydrogenase subunit G [Energy production and conversion]. 146 -225962 COG3428 YdbT Uncharacterized membrane protein YdbT, contains bPH2 (bacterial pleckstrin homology) domain [Function unknown]. 494 -225963 COG3429 OpcA Glucose-6-phosphate dehydrogenase assembly protein OpcA, contains a peptidoglycan-binding domain [Carbohydrate transport and metabolism]. 314 -225964 COG3430 COG3430 Archaeal flagellin (archaellin), FlaG/FlaF family [Cell motility]. 161 -225965 COG3431 COG3431 Uncharacterized membrane protein, DUF373 family [Function unknown]. 142 -225966 COG3432 COG3432 Predicted transcriptional regulator [Transcription]. 95 -225967 COG3433 DhbB2 Aryl carrier domain [Secondary metabolites biosynthesis, transport and catabolism]. 74 -225968 COG3434 YuxH c-di-GMP-related signal transduction protein, contains EAL and HDOD domains [Signal transduction mechanisms]. 407 -225969 COG3435 COG3435 Gentisate 1,2-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]. 351 -225970 COG3436 COG3436 Transposase [Mobilome: prophages, transposons]. 157 -225971 COG3437 RpfG Response regulator c-di-GMP phosphodiesterase, RpfG family, contains REC and HD-GYP domains [Signal transduction mechanisms]. 360 -225972 COG3439 COG3439 Uncharacterized conserved protein, DUF302 family [Function unknown]. 137 -225973 COG3440 COG3440 Predicted restriction endonuclease [Defense mechanisms]. 301 -225974 COG3442 COG3442 Glutamine amidotransferase related to the GATase domain of CobQ [General function prediction only]. 250 -225975 COG3443 ZinT Periplasmic Zn/Cd-binding protein ZinT [Inorganic ion transport and metabolism]. 193 -225976 COG3444 AgaB Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IIB [Carbohydrate transport and metabolism]. 159 -225977 COG3445 GrcA Autonomous glycyl radical cofactor GrcA [Coenzyme transport and metabolism]. 127 -225978 COG3447 MASE1 Integral membrane sensor domain MASE1 [Signal transduction mechanisms]. 308 -225979 COG3448 COG3448 CBS-domain-containing membrane protein [Signal transduction mechanisms]. 382 -225980 COG3449 SbmC DNA gyrase inhibitor GyrI [Replication, recombination and repair]. 154 -225981 COG3450 COG3450 Predicted enzyme of the cupin superfamily [General function prediction only]. 116 -225982 COG3451 VirB4 Type IV secretory pathway, VirB4 component [Intracellular trafficking, secretion, and vesicular transport]. 796 -225983 COG3452 CHASE Extracellular (periplasmic) sensor domain CHASE (specificity unknown) [Signal transduction mechanisms]. 297 -225984 COG3453 COG3453 Predicted phosphohydrolase, protein tyrosine phosphatase (PTP) superfamily, DUF442 family [General function prediction only]. 130 -225985 COG3454 PhnM Alpha-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase PhnM [Inorganic ion transport and metabolism]. 377 -225986 COG3455 COG3455 Type VI protein secretion system component VasF [Intracellular trafficking, secretion, and vesicular transport]. 262 -225987 COG3456 COG3456 Predicted component of the type VI protein secretion system, contains a FHA domain [Signal transduction mechanisms, Intracellular trafficking, secretion, and vesicular transport]. 430 -225988 COG3457 YhfX Predicted amino acid racemase [Amino acid transport and metabolism]. 353 -225989 COG3458 Axe1 Cephalosporin-C deacetylase or related acetyl esterase [Secondary metabolites biosynthesis, transport and catabolism]. 321 -225990 COG3459 COG3459 Cellobiose phosphorylase [Carbohydrate transport and metabolism]. 1056 -225991 COG3460 PaaB 1,2-phenylacetyl-CoA epoxidase, PaaB subunit [Secondary metabolites biosynthesis, transport and catabolism]. 117 -225992 COG3461 COG3461 Uncharacterized protein [Function unknown]. 103 -225993 COG3462 COG3462 Uncharacterized membrane protein [Function unknown]. 117 -225994 COG3463 COG3463 Uncharacterized membrane protein [Function unknown]. 458 -225995 COG3464 COG3464 Transposase [Mobilome: prophages, transposons]. 402 -225996 COG3465 YwgA Uncharacterized protein YwgA [Function unknown]. 171 -225997 COG3466 ISA1214 Putative transposon-encoded protein [Mobilome: prophages, transposons]. 52 -225998 COG3467 NimA Nitroimidazol reductase NimA or a related FMN-containing flavoprotein, pyridoxamine 5'-phosphate oxidase superfamily [Defense mechanisms]. 166 -225999 COG3468 AidA Type V secretory pathway, adhesin AidA [Cell wall/membrane/envelope biogenesis, Intracellular trafficking, secretion, and vesicular transport]. 592 -226000 COG3469 Chi1 Chitinase [Carbohydrate transport and metabolism]. 332 -226001 COG3470 Tpd Uncharacterized protein probably involved in high-affinity Fe2+ transport [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism]. 179 -226002 COG3471 COG3471 Predicted secreted (periplasmic) protein [Function unknown]. 235 -226003 COG3472 COG3472 Uncharacterized protein [Function unknown]. 342 -226004 COG3473 COG3473 Maleate cis-trans isomerase [Secondary metabolites biosynthesis, transport and catabolism]. 238 -226005 COG3474 Cyc7 Cytochrome c2 [Energy production and conversion]. 135 -226006 COG3475 LicD Phosphorylcholine metabolism protein LicD [Lipid transport and metabolism]. 256 -226007 COG3476 TspO Tryptophan-rich sensory protein (mitochondrial benzodiazepine receptor homolog) [Signal transduction mechanisms]. 161 -226008 COG3477 YagU Uncharacterized membrane protein YagU, involved in acid resistance, DUF1440 family [Function unknown]. 176 -226009 COG3478 YpzJ Predicted nucleic-acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 68 -226010 COG3479 PadC Phenolic acid decarboxylase [Secondary metabolites biosynthesis, transport and catabolism]. 175 -226011 COG3480 SdrC Predicted secreted protein containing a PDZ domain [Signal transduction mechanisms]. 342 -226012 COG3481 YhaM 3'-5' exoribonuclease YhaM, can participate in 23S rRNA maturation, HD superfamily [Translation, ribosomal structure and biogenesis]. 287 -226013 COG3482 COG3482 Uncharacterized protein [Function unknown]. 237 -226014 COG3483 TDO2 Tryptophan 2,3-dioxygenase (vermilion) [Amino acid transport and metabolism]. 262 -226015 COG3484 COG3484 Predicted proteasome-type protease [Posttranslational modification, protein turnover, chaperones]. 255 -226016 COG3485 PcaH Protocatechuate 3,4-dioxygenase beta subunit [Secondary metabolites biosynthesis, transport and catabolism]. 226 -226017 COG3486 IucD Lysine/ornithine N-monooxygenase [Secondary metabolites biosynthesis, transport and catabolism]. 436 -226018 COG3487 IrpA Uncharacterized iron-regulated protein [Function unknown]. 446 -226019 COG3488 COG3488 Uncharacterized conserved protein with two CxxC motifs, DUF1111 family [General function prediction only]. 481 -226020 COG3489 COG3489 Predicted periplasmic lipoprotein [Function unknown]. 359 -226021 COG3490 COG3490 Uncharacterized protein [Function unknown]. 366 -226022 COG3491 PcbC Isopenicillin N synthase and related dioxygenases [Secondary metabolites biosynthesis, transport and catabolism]. 322 -226023 COG3492 COG3492 Uncharacterized protein, DUF1244 family [Function unknown]. 104 -226024 COG3493 CitS Na+/citrate or Na+/malate symporter [Energy production and conversion]. 438 -226025 COG3494 COG3494 Uncharacterized conserved protein, DUF1009 family [Function unknown]. 279 -226026 COG3495 COG3495 Uncharacterized protein, DUF3299 family [Function unknown]. 166 -226027 COG3496 COG3496 Uncharacterized conserved protein, DUF1365 family [Function unknown]. 261 -226028 COG3497 COG3497 Phage tail sheath protein FI [Mobilome: prophages, transposons]. 394 -226029 COG3498 COG3498 Phage tail tube protein FII [Mobilome: prophages, transposons]. 169 -226030 COG3499 COG3499 Phage protein U [Mobilome: prophages, transposons]. 147 -226031 COG3500 gpD Phage protein D [Mobilome: prophages, transposons]. 350 -226032 COG3501 VgrG Uncharacterized conserved protein, implicated in type VI secretion and phage assembly [Intracellular trafficking, secretion, and vesicular transport, Mobilome: prophages, transposons, General function prediction only]. 550 -226033 COG3502 COG3502 Uncharacterized conserved protein, DUF952 family [Function unknown]. 115 -226034 COG3503 COG3503 Uncharacterized membrane protein [Function unknown]. 323 -226035 COG3504 VirB9 Type IV secretory pathway, VirB9 components [Intracellular trafficking, secretion, and vesicular transport]. 265 -226036 COG3505 VirD4 Type IV secretory pathway, VirD4 component, TraG/TraD family ATPase [Intracellular trafficking, secretion, and vesicular transport]. 596 -226037 COG3506 Ree1 Regulation of enolase protein 1 (function unknown), concanavalin A-like superfamily [Function unknown]. 189 -226038 COG3507 XynB2 Beta-xylosidase [Carbohydrate transport and metabolism]. 549 -226039 COG3508 HmgA Homogentisate 1,2-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]. 427 -226040 COG3509 LpqC Poly(3-hydroxybutyrate) depolymerase [Secondary metabolites biosynthesis, transport and catabolism]. 312 -226041 COG3510 CmcI Cephalosporin hydroxylase [Defense mechanisms]. 237 -226042 COG3511 PlcC Phospholipase C [Cell wall/membrane/envelope biogenesis]. 527 -226043 COG3512 Cas2 CRISPR/Cas system-associated protein Cas2, endoribonuclease [Defense mechanisms]. 116 -226044 COG3513 Cas9 CRISPR/Cas system Type II associated protein, contains McrA/HNH and RuvC-like nuclease domains [Defense mechanisms]. 1088 -226045 COG3514 COG3514 Uncharacterized conserved protein, DUF4415 family [Function unknown]. 93 -226046 COG3515 COG3515 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 346 -226047 COG3516 COG3516 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 169 -226048 COG3517 COG3517 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 495 -226049 COG3518 COG3518 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 157 -226050 COG3519 COG3519 Type VI protein secretion system component VasA [Intracellular trafficking, secretion, and vesicular transport]. 621 -226051 COG3520 COG3520 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 335 -226052 COG3521 COG3521 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 159 -226053 COG3522 COG3522 Predicted component of the type VI protein secretion system [Intracellular trafficking, secretion, and vesicular transport]. 446 -226054 COG3523 IcmF Type VI protein secretion system component VasK [Intracellular trafficking, secretion, and vesicular transport]. 1188 -226055 COG3524 KpsE Capsule polysaccharide export protein KpsE/RkpR [Cell wall/membrane/envelope biogenesis]. 372 -226056 COG3525 Chb N-acetyl-beta-hexosaminidase [Carbohydrate transport and metabolism]. 732 -226057 COG3526 COG3526 Predicted selenoprotein, Rdx family [Function unknown]. 99 -226058 COG3527 AlsD Alpha-acetolactate decarboxylase [Secondary metabolites biosynthesis, transport and catabolism]. 234 -226059 COG3528 COG3528 Uncharacterized protein, DUF2219 family [Function unknown]. 330 -226060 COG3529 COG3529 Predicted nucleic-acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 66 -226061 COG3530 COG3530 Uncharacterized conserved protein, DUF3820 family [Function unknown]. 71 -226062 COG3531 COG3531 Predicted protein-disulfide isomerase , contains CxxC motif [Posttranslational modification, protein turnover, chaperones]. 212 -226063 COG3533 COG3533 Uncharacterized conserved protein, DUF1680 family [Function unknown]. 589 -226064 COG3534 AbfA Alpha-L-arabinofuranosidase [Carbohydrate transport and metabolism]. 501 -226065 COG3535 COG3535 Uncharacterized conserved protein, DUF917 family [Function unknown]. 357 -226066 COG3536 COG3536 Uncharacterized conserved protein, DUF971 family [Function unknown]. 120 -226067 COG3537 COG3537 Putative alpha-1,2-mannosidase [Carbohydrate transport and metabolism]. 768 -226068 COG3538 COG3538 Meiotically up-regulated gene 157 (Mug157) protein (function unknown) [Function unknown]. 434 -226069 COG3539 FimA Pilin (type 1 fimbria component protein) [Cell motility]. 184 -226070 COG3540 PhoD Phosphodiesterase/alkaline phosphatase D [Inorganic ion transport and metabolism]. 522 -226071 COG3541 YcgL Predicted nucleotidyltransferase [General function prediction only]. 248 -226072 COG3542 CFF1 Predicted sugar epimerase, cupin superfamily [General function prediction only]. 162 -226073 COG3543 COG3543 Uncharacterized protein [Function unknown]. 135 -226074 COG3544 COG3544 Uncharacterized conserved protein, DUF305 family [Function unknown]. 190 -226075 COG3545 YdeN Predicted esterase of the alpha/beta hydrolase fold [General function prediction only]. 181 -226076 COG3546 CotJC Mn-containing catalase (includes spore coat protein CotJC) [Inorganic ion transport and metabolism]. 277 -226077 COG3547 COG3547 Transposase [Mobilome: prophages, transposons]. 303 -226078 COG3548 COG3548 Uncharacterized membrane protein [Function unknown]. 197 -226079 COG3549 HigB Plasmid maintenance system killer protein [Defense mechanisms]. 94 -226080 COG3550 HipA Serine/threonine protein kinase HipA, toxin component of the HipAB toxin-antitoxin module [Signal transduction mechanisms]. 392 -226081 COG3551 COG3551 Uncharacterized protein [Function unknown]. 402 -226082 COG3552 CoxE Uncharacterized conserved protein, contains von Willebrand factor type A (vWA) domain [Function unknown]. 395 -226083 COG3553 COG3553 Uncharacterized protein [Function unknown]. 96 -226084 COG3554 COG3554 Uncharacterized protein [Function unknown]. 190 -226085 COG3555 LpxO2 Aspartyl/asparaginyl beta-hydroxylase, cupin superfamily [Posttranslational modification, protein turnover, chaperones]. 291 -226086 COG3556 COG3556 Uncharacterized membrane protein [Function unknown]. 150 -226087 COG3557 YgaC Uncharacterized protein associated with RNAses G and E, UPF0374/DUF402 family [Function unknown]. 177 -226088 COG3558 COG3558 Uncharacterized conserved protein, nuclear transport factor 2 (NTF2) superfamily [Function unknown]. 154 -226089 COG3559 TnrB3 Putative exporter of polyketide antibiotics [Intracellular trafficking, secretion, and vesicular transport]. 536 -226090 COG3560 FMR2 Fatty acid repression mutant protein (predicted oxidoreductase) [General function prediction only]. 200 -226091 COG3561 COG3561 Phage anti-repressor protein [Mobilome: prophages, transposons]. 110 -226092 COG3562 KpsS Capsule polysaccharide modification protein KpsS [Cell wall/membrane/envelope biogenesis]. 403 -226093 COG3563 KpsC Capsule polysaccharide export protein KpsC/LpsZ [Cell wall/membrane/envelope biogenesis]. 671 -226094 COG3564 COG3564 Uncharacterized conserved protein, DUF779 family [Function unknown]. 116 -226095 COG3565 COG3565 Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]. 138 -226096 COG3566 COG3566 Uncharacterized protein [Function unknown]. 379 -226097 COG3567 COG3567 Uncharacterized protein [Function unknown]. 452 -226098 COG3568 ElsH Metal-dependent hydrolase, endonuclease/exonuclease/phosphatase family [General function prediction only]. 259 -226099 COG3569 Top1 DNA topoisomerase IB [Replication, recombination and repair]. 354 -226100 COG3570 StrB Streptomycin 6-kinase [Defense mechanisms]. 274 -226101 COG3571 COG3571 Predicted hydrolase of the alpha/beta-hydrolase fold [General function prediction only]. 213 -226102 COG3572 Gsh2 Gamma-glutamylcysteine synthetase [Coenzyme transport and metabolism]. 456 -226103 COG3573 COG3573 Predicted oxidoreductase [General function prediction only]. 552 -226104 COG3575 COG3575 Uncharacterized protein [Function unknown]. 184 -226105 COG3576 COG3576 Predicted flavin-nucleotide-binding protein, pyridoxine 5'-phosphate oxidase superfamily [General function prediction only]. 173 -226106 COG3577 COG3577 Predicted aspartyl protease [General function prediction only]. 215 -226107 COG3579 PepC Aminopeptidase C [Amino acid transport and metabolism]. 444 -226108 COG3580 COG3580 Predicted nucleotide-binding protein, sugar kinase/HSP70/actin superfamily [General function prediction only]. 351 -226109 COG3581 COG3581 Predicted nucleotide-binding protein, sugar kinase/HSP70/actin superfamily [General function prediction only]. 420 -226110 COG3582 COG3582 Predicted nucleic acid binding protein containing the AN1-type Zn-finger [General function prediction only]. 162 -226111 COG3583 YabE Uncharacterized conserved protein YabE, contains G5 and tandem DUF348 domains [Function unknown]. 309 -226112 COG3584 3D 3D (Asp-Asp-Asp) domain [Function unknown]. 109 -226113 COG3585 MopI Molybdopterin-binding protein [Coenzyme transport and metabolism]. 69 -226114 COG3586 COG3586 Predicted transport protein [Function unknown]. 101 -226115 COG3587 COG3587 Restriction endonuclease [Defense mechanisms]. 985 -226116 COG3588 Fba1 Fructose-bisphosphate aldolase class 1 [Carbohydrate transport and metabolism]. 332 -226117 COG3589 COG3589 Uncharacterized protein [Function unknown]. 360 -226118 COG3590 PepO Predicted metalloendopeptidase [Posttranslational modification, protein turnover, chaperones]. 654 -226119 COG3591 eMpr V8-like Glu-specific endopeptidase [Posttranslational modification, protein turnover, chaperones]. 251 -226120 COG3592 YjdI Uncharacterized Fe-S cluster protein YjdI [Function unknown]. 74 -226121 COG3593 YbjD Predicted ATP-dependent endonuclease of the OLD family, contains P-loop ATPase and TOPRIM domains [Replication, recombination and repair]. 581 -226122 COG3594 NolL Fucose 4-O-acetylase or related acetyltransferase [Carbohydrate transport and metabolism]. 343 -226123 COG3595 YvlB Uncharacterized conserved protein YvlB, contains DUF4097 and DUF4098 domains [Function unknown]. 318 -226124 COG3596 YeeP Predicted GTPase [General function prediction only]. 296 -226125 COG3597 COG3597 Uncharacterized conserved protein, DUF697 family [Function unknown]. 139 -226126 COG3598 RepA RecA-family ATPase [Replication, recombination and repair]. 402 -226127 COG3599 DivIVA Cell division septum initiation DivIVA, interacts with FtsZ, MinD and other proteins [Cell cycle control, cell division, chromosome partitioning]. 212 -226128 COG3600 GepA Uncharacterized phage-associated protein [Mobilome: prophages, transposons]. 154 -226129 COG3601 FmnP Riboflavin transporter FmnP [Coenzyme transport and metabolism]. 186 -226130 COG3602 COG3602 Uncharacterized protein [Function unknown]. 134 -226131 COG3603 COG3603 Uncharacterized protein [Function unknown]. 128 -226132 COG3604 FhlA Transcriptional regulator containing GAF, AAA-type ATPase, and DNA-binding Fis domains [Transcription, Signal transduction mechanisms]. 550 -226133 COG3605 PtsP Signal transduction protein containing GAF and PtsI domains [Signal transduction mechanisms]. 756 -226134 COG3607 COG3607 Predicted lactoylglutathione lyase [General function prediction only]. 133 -226135 COG3608 COG3608 Predicted deacylase [General function prediction only]. 331 -226136 COG3609 ParD Transcriptional regulator, contains Arc/MetJ-type RHH (ribbon-helix-helix) DNA-binding domain [Transcription]. 89 -226137 COG3610 YjjB Uncharacterized membrane protein YjjB, DUF3815 family [Function unknown]. 156 -226138 COG3611 DnaB Replication initiation and membrane attachment protein DnaB [Replication, recombination and repair]. 417 -226139 COG3612 COG3612 Uncharacterized protein [Function unknown]. 157 -226140 COG3613 RCL Nucleoside 2-deoxyribosyltransferase [Nucleotide transport and metabolism]. 172 -226141 COG3614 CHASE1 Extracellular (periplasmic) sensor domain CHASE1 (specificity unknown) [Signal transduction mechanisms]. 348 -226142 COG3615 TehB Uncharacterized protein/domain, possibly involved in tellurite resistance [Function unknown]. 99 -226143 COG3616 Dsd1 D-serine deaminase, pyridoxal phosphate-dependent [Amino acid transport and metabolism]. 368 -226144 COG3617 COG3617 Prophage antirepressor [Mobilome: prophages, transposons]. 176 -226145 COG3618 COG3618 Predicted metal-dependent hydrolase, TIM-barrel fold [General function prediction only]. 279 -226146 COG3619 YoaK Uncharacterized membrane protein YoaK, UPF0700 family [Function unknown]. 226 -226147 COG3620 COG3620 Predicted transcriptional regulator with C-terminal CBS domains [Transcription]. 187 -226148 COG3621 PATA Patatin-like phospholipase/acyl hydrolase [General function prediction only]. 394 -226149 COG3622 Hyi Hydroxypyruvate isomerase [Carbohydrate transport and metabolism]. 260 -226150 COG3623 SgaU L-ribulose-5-phosphate 3-epimerase UlaE [Carbohydrate transport and metabolism]. 287 -226151 COG3624 PhnG Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnG [Inorganic ion transport and metabolism]. 151 -226152 COG3625 PhnH Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnH [Inorganic ion transport and metabolism]. 196 -226153 COG3626 PhnI Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnI [Inorganic ion transport and metabolism]. 367 -226154 COG3627 PhnJ Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase [Inorganic ion transport and metabolism]. 291 -226155 COG3628 COG3628 Phage baseplate assembly protein W [Mobilome: prophages, transposons]. 116 -226156 COG3629 DnrI DNA-binding transcriptional activator of the SARP family [Signal transduction mechanisms]. 280 -226157 COG3630 OadG Na+-transporting methylmalonyl-CoA/oxaloacetate decarboxylase, gamma subunit [Energy production and conversion]. 84 -226158 COG3631 YesE Ketosteroid isomerase-related protein [General function prediction only]. 133 -226159 COG3633 SstT Na+/serine symporter [Amino acid transport and metabolism]. 407 -226160 COG3634 AhpF Alkyl hydroperoxide reductase subunit AhpF [Defense mechanisms]. 520 -226161 COG3635 ApgM 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, archeal type [Carbohydrate transport and metabolism]. 408 -226162 COG3636 COG3636 DNA-binding prophage protein [Mobilome: prophages, transposons]. 100 -226163 COG3637 LomR Opacity protein and related surface antigens [Cell wall/membrane/envelope biogenesis]. 199 -226164 COG3638 PhnC ABC-type phosphate/phosphonate transport system, ATPase component [Inorganic ion transport and metabolism]. 258 -226165 COG3639 PhnE ABC-type phosphate/phosphonate transport system, permease component [Inorganic ion transport and metabolism]. 283 -226166 COG3640 CooC CO dehydrogenase nickel-insertion accessory protein CooC1 [Posttranslational modification, protein turnover, chaperones]. 255 -226167 COG3641 PfoR Uncharacterized membrane protein PfoR (does not regulate perfringolysin O expression) [Function unknown]. 348 -226168 COG3642 Bud32 tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and biogenesis]. 204 -226169 COG3643 GluFT Glutamate formiminotransferase [Amino acid transport and metabolism]. 302 -226170 COG3644 COG3644 Uncharacterized protein [Function unknown]. 194 -226171 COG3645 KilAC Phage antirepressor protein YoqD, KilAC domain [Mobilome: prophages, transposons]. 135 -226172 COG3646 pRha Phage regulatory protein Rha [Mobilome: prophages, transposons]. 167 -226173 COG3647 YjdF Uncharacterized membrane protein YjdF [Function unknown]. 205 -226174 COG3648 UriC Uricase (urate oxidase) [Secondary metabolites biosynthesis, transport and catabolism]. 299 -226175 COG3649 Csh2 CRISPR/Cas system type I-B associated protein Csh2, Cas7 group, RAMP superfamily [Defense mechanisms]. 283 -226176 COG3650 COG3650 Uncharacterized membrane protein [Function unknown]. 149 -226177 COG3651 COG3651 Uncharacterized conserved protein, DUF2237 family [Function unknown]. 125 -226178 COG3652 COG3652 Predicted outer membrane protein [Function unknown]. 170 -226179 COG3653 COG3653 N-acyl-D-aspartate/D-glutamate deacylase [Secondary metabolites biosynthesis, transport and catabolism]. 579 -226180 COG3654 Doc Prophage maintenance system killer protein [Mobilome: prophages, transposons]. 132 -226181 COG3655 YozG DNA-binding transcriptional regulator, XRE family [Transcription]. 73 -226182 COG3656 COG3656 Predicted periplasmic protein [Function unknown]. 172 -226183 COG3657 COG3657 Putative component of the toxin-antitoxin plasmid stabilization module [Defense mechanisms]. 100 -226184 COG3658 CytB Cytochrome b [Energy production and conversion]. 192 -226185 COG3659 OprB Carbohydrate-selective porin OprB [Cell wall/membrane/envelope biogenesis]. 439 -226186 COG3660 ELM1 Mitochondrial fission protein ELM1 [Cell cycle control, cell division, chromosome partitioning]. 329 -226187 COG3661 AguA2 Alpha-glucuronidase [Carbohydrate transport and metabolism]. 684 -226188 COG3662 COG3662 Uncharacterized conserved protein, DUF2236 family [Function unknown]. 300 -226189 COG3663 Mug G:T/U-mismatch repair DNA glycosylase [Replication, recombination and repair]. 169 -226190 COG3664 XynB Beta-xylosidase [Carbohydrate transport and metabolism]. 428 -226191 COG3665 YcgI Uncharacterized conserved protein YcgI, DUF1989 family [Function unknown]. 264 -226192 COG3666 COG3666 Transposase [Mobilome: prophages, transposons]. 161 -226193 COG3667 PcoB Uncharacterized protein involved in copper resistance [Inorganic ion transport and metabolism]. 321 -226194 COG3668 ParE Plasmid stabilization system protein ParE [Mobilome: prophages, transposons]. 98 -226195 COG3669 AfuC Alpha-L-fucosidase [Carbohydrate transport and metabolism]. 430 -226196 COG3670 COG3670 Carotenoid cleavage dioxygenase or a related enzyme [Secondary metabolites biosynthesis, transport and catabolism]. 490 -226197 COG3671 COG3671 Uncharacterized membrane protein [Function unknown]. 125 -226198 COG3672 COG3672 Predicted transglutaminase-like cysteine proteinase [Posttranslational modification, protein turnover, chaperones]. 191 -226199 COG3673 COG3673 Uncharacterized protein, PA2063/DUF2235 family [Function unknown]. 423 -226200 COG3675 Lip2 Predicted lipase [Lipid transport and metabolism]. 332 -226201 COG3676 COG3676 Transposase and inactivated derivatives [Mobilome: prophages, transposons]. 126 -226202 COG3677 InsA Transposase [Mobilome: prophages, transposons]. 129 -226203 COG3678 CpxP Periplasmic protein refolding chaperone Spy/CpxP family [Posttranslational modification, protein turnover, chaperones]. 160 -226204 COG3679 YlbF Cell fate regulator YlbF, YheA/YmcA/DUF963 family (controls sporulation, competence, biofilm development) [Signal transduction mechanisms]. 118 -226205 COG3680 COG3680 Uncharacterized protein [Function unknown]. 259 -226206 COG3681 CdsB L-cysteine desulfidase [Amino acid transport and metabolism]. 433 -226207 COG3682 COG3682 Predicted transcriptional regulator [Transcription]. 123 -226208 COG3683 COG3683 ABC-type uncharacterized transport system, periplasmic component [General function prediction only]. 213 -226209 COG3684 LacD Tagatose-1,6-bisphosphate aldolase [Carbohydrate transport and metabolism]. 306 -226210 COG3685 YciE Ferritin-like metal-binding protein YciE [Inorganic ion transport and metabolism]. 167 -226211 COG3686 COG3686 Uncharacterized conserved protein, MAPEG superfamily [Function unknown]. 125 -226212 COG3687 COG3687 Predicted metal-dependent hydrolase [General function prediction only]. 280 -226213 COG3688 YacP Predicted RNA-binding protein containing a PIN domain [General function prediction only]. 173 -226214 COG3689 YcgQ Uncharacterized membrane protein YcgQ, UPF0703/DUF1980 family [Function unknown]. 271 -226215 COG3691 YfcZ Uncharacterized conserved protein YfcZ, UPF0381/DUF406 family [Function unknown]. 98 -226216 COG3692 YifN Uncharacterized protein YifN, PemK superfamily [Function unknown]. 142 -226217 COG3693 XynA Endo-1,4-beta-xylanase, GH35 family [Carbohydrate transport and metabolism]. 345 -226218 COG3694 COG3694 ABC-type uncharacterized transport system, permease component [General function prediction only]. 260 -226219 COG3695 Atl1 Alkylated DNA nucleotide flippase Atl1, participates in nucleotide excision repair, Ada-like DNA-binding domain [Transcription]. 103 -226220 COG3696 CusA Cu/Ag efflux pump CusA [Inorganic ion transport and metabolism]. 1027 -226221 COG3697 CitX Phosphoribosyl-dephospho-CoA transferase (holo-ACP synthetase) [Coenzyme transport and metabolism, Lipid transport and metabolism]. 182 -226222 COG3698 YigE Uncharacterized protein YigE, DUF2233 family [Function unknown]. 250 -226223 COG3700 AphA Acid phosphatase (class B) [Inorganic ion transport and metabolism, General function prediction only]. 237 -226224 COG3701 TrbF Type IV secretory pathway, TrbF components [Intracellular trafficking, secretion, and vesicular transport]. 228 -226225 COG3702 VirB3 Type IV secretory pathway, VirB3 components [Intracellular trafficking, secretion, and vesicular transport]. 105 -226226 COG3703 ChaC Cation transport regulator ChaC [Inorganic ion transport and metabolism]. 190 -226227 COG3704 VirB6 Type IV secretory pathway, VirB6 components [Intracellular trafficking, secretion, and vesicular transport]. 406 -226228 COG3705 HisZ ATP phosphoribosyltransferase regulatory subunit HisZ [Amino acid transport and metabolism]. 390 -226229 COG3706 PleD Two-component response regulator, PleD family, consists of two REC domains and a diguanylate cyclase (GGDEF) domain [Signal transduction mechanisms, Transcription]. 435 -226230 COG3707 AmiR Two-component response regulator, AmiR/NasT family, consists of REC and RNA-binding antiterminator (ANTAR) domains [Signal transduction mechanisms, Transcription]. 194 -226231 COG3708 YdeE Predicted transcriptional regulator YdeE, contains AraC-type DNA-binding domain [Transcription]. 157 -226232 COG3709 PhnN Ribose 1,5-bisphosphokinase PhnN [Carbohydrate transport and metabolism]. 192 -226233 COG3710 CadC1 DNA-binding winged helix-turn-helix (wHTH) domain [Transcription]. 148 -226234 COG3711 BglG Transcriptional antiterminator [Transcription]. 491 -226235 COG3712 FecR periplasmic ferric-dicitrate binding protein FecR, regulates iron transport through sigma-19 [Inorganic ion transport and metabolism, Signal transduction mechanisms]. 322 -226236 COG3713 OmpV Outer membrane scaffolding protein for murein synthesis, MipA/OmpV family [Cell wall/membrane/envelope biogenesis]. 258 -226237 COG3714 YhhN Uncharacterized membrane protein YhhN [Function unknown]. 212 -226238 COG3715 ManY Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IIC [Carbohydrate transport and metabolism]. 265 -226239 COG3716 ManZ Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific component IID [Carbohydrate transport and metabolism]. 269 -226240 COG3717 KduI 5-keto 4-deoxyuronate isomerase [Carbohydrate transport and metabolism]. 278 -226241 COG3718 IolB 5-deoxy-D-glucuronate isomerase [Carbohydrate transport and metabolism]. 270 -226242 COG3719 RnaI Ribonuclease I [Translation, ribosomal structure and biogenesis]. 249 -226243 COG3720 HemS Putative heme degradation protein [Inorganic ion transport and metabolism]. 349 -226244 COG3721 HugX Putative heme iron utilization protein [Inorganic ion transport and metabolism]. 176 -226245 COG3722 MtlR DNA-binding transcriptional regulator, MltR family [Transcription]. 174 -226246 COG3723 RecT Recombinational DNA repair protein RecT [Replication, recombination and repair]. 276 -226247 COG3724 AstB Succinylarginine dihydrolase [Amino acid transport and metabolism]. 442 -226248 COG3725 AmpE Membrane protein required for beta-lactamase induction [Defense mechanisms]. 282 -226249 COG3726 AhpA Uncharacterized membrane protein affecting hemolysin expression [Function unknown]. 214 -226250 COG3727 Vsr G:T-mismatch repair DNA endonuclease, very short patch repair protein [Replication, recombination and repair]. 150 -226251 COG3728 XtmA Phage terminase, small subunit [Mobilome: prophages, transposons]. 179 -226252 COG3729 GsiB General stress protein YciG, contains tandem KGG domains [General function prediction only]. 73 -226253 COG3730 SrlA Phosphotransferase system sorbitol-specific component IIC [Carbohydrate transport and metabolism]. 176 -226254 COG3731 SrlB Phosphotransferase system sorbitol-specific component IIA [Carbohydrate transport and metabolism]. 123 -226255 COG3732 SrlE Phosphotransferase system sorbitol-specific component IIBC [Carbohydrate transport and metabolism]. 328 -226256 COG3733 TynA Cu2+-containing amine oxidase [Secondary metabolites biosynthesis, transport and catabolism]. 654 -226257 COG3734 DgoK 2-keto-3-deoxy-galactonokinase [Carbohydrate transport and metabolism]. 306 -226258 COG3735 TraB Uncharacterized conserved protein YbaP, TraB family [Function unknown]. 299 -226259 COG3736 VirB8 Type IV secretory pathway, component VirB8 [Intracellular trafficking, secretion, and vesicular transport]. 239 -226260 COG3737 COG3737 Uncharacterized conserved protein, contains Mth938-like domain [Function unknown]. 127 -226261 COG3738 YiijF Uncharacterized protein YijF, DUF1287 family [Function unknown]. 200 -226262 COG3739 YoaT Uncharacterized membrane protein YoaT, DUF817 family [Function unknown]. 263 -226263 COG3740 COG3740 Phage head maturation protease [Mobilome: prophages, transposons]. 194 -226264 COG3741 HutG N-formylglutamate amidohydrolase [Amino acid transport and metabolism]. 272 -226265 COG3742 COG3742 Uncharacterized protein, contains PIN domain [Function unknown]. 131 -226266 COG3743 H3TH Predicted 5' DNA nuclease, flap endonuclease-1-like, helix-3-turn-helix (H3TH) domain [Replication, recombination and repair]. 133 -226267 COG3744 COG3744 PIN domain nuclease, a component of toxin-antitoxin system (PIN domain) [Defense mechanisms]. 130 -226268 COG3745 CpaB Flp pilus assembly protein CpaB [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 276 -226269 COG3746 OprP Phosphate-selective porin [Inorganic ion transport and metabolism]. 426 -226270 COG3747 COG3747 Phage terminase, small subunit [Mobilome: prophages, transposons]. 160 -226271 COG3748 COG3748 Uncharacterized membrane protein [Function unknown]. 407 -226272 COG3749 COG3749 Uncharacterized conserved protein, DUF934 family [Function unknown]. 167 -226273 COG3750 COG3750 Uncharacterized conserved protein, UPF0335 family [Function unknown]. 85 -226274 COG3751 EGL9 Proline 4-hydroxylase (includes Rps23 Pro-64 3,4-dihydroxylase Tpa1), contains SM-20 domain [Translation, ribosomal structure and biogenesis, Posttranslational modification, protein turnover, chaperones]. 252 -226275 COG3752 COG3752 Steroid 5-alpha reductase family enzyme [General function prediction only]. 272 -226276 COG3753 YidB Uncharacterized conserved protein YidB, DUF937 family [Function unknown]. 143 -226277 COG3754 RgpF Lipopolysaccharide biosynthesis protein [Cell wall/membrane/envelope biogenesis]. 595 -226278 COG3755 YecT Uncharacterized conserved protein YecT, DUF1311 family [Function unknown]. 127 -226279 COG3756 YdaU Uncharacterized conserved protein YdaU, DUF1376 family [Function unknown]. 153 -226280 COG3757 Acm Lyzozyme M1 (1,4-beta-N-acetylmuramidase), GH25 family [Cell wall/membrane/envelope biogenesis]. 269 -226281 COG3758 Ves Various environmental stresses-induced protein Ves (function unknown) [Function unknown]. 193 -226282 COG3759 COG3759 Uncharacterized membrane protein [Function unknown]. 121 -226283 COG3760 ProX Predicted aminoacyl-tRNA deacylase, YbaK-like aminoacyl-tRNA editing domain [General function prediction only]. 164 -226284 COG3761 NDUFA12 NADH:ubiquinone oxidoreductase 17.2 kD subunit [Energy production and conversion]. 118 -226285 COG3762 COG3762 Uncharacterized membrane protein [Function unknown]. 213 -226286 COG3763 YneF Uncharacterized protein YneF, UPF0154 family [Function unknown]. 71 -226287 COG3764 SrtA Sortase (surface protein transpeptidase) [Cell wall/membrane/envelope biogenesis]. 210 -226288 COG3765 WzzB LPS O-antigen chain length determinant protein, WzzB/FepE family [Cell wall/membrane/envelope biogenesis]. 347 -226289 COG3766 YjfL Uncharacterized membrane protein YjfL, UPF0719 family [Function unknown]. 133 -226290 COG3767 COG3767 Uncharacterized low-complexity protein [Function unknown]. 95 -226291 COG3768 YcjF Uncharacterized membrane protein YcjF, UPF0283 family [Function unknown]. 350 -226292 COG3769 YedP Predicted mannosyl-3-phosphoglycerate phosphatase, HAD superfamily [Carbohydrate transport and metabolism]. 274 -226293 COG3770 MepA Murein endopeptidase [Cell wall/membrane/envelope biogenesis]. 284 -226294 COG3771 YciS Uncharacterized membrane protein YciS, DUF1049 family [Function unknown]. 97 -226295 COG3772 RrrD Phage-related lysozyme (muramidase), GH24 family [Cell wall/membrane/envelope biogenesis]. 152 -226296 COG3773 CwlJ Cell wall hydrolase CwlJ, involved in spore germination [Cell cycle control, cell division, chromosome partitioning, Cell wall/membrane/envelope biogenesis]. 249 -226297 COG3774 OCH1 Mannosyltransferase OCH1 or related enzyme [Cell wall/membrane/envelope biogenesis]. 347 -226298 COG3775 SgcC Phosphotransferase system, galactitol-specific IIC component [Carbohydrate transport and metabolism]. 446 -226299 COG3776 YhhL Uncharacterized conserved protein YhhL, DUF1145 family [Function unknown]. 91 -226300 COG3777 HTD2 Hydroxyacyl-ACP dehydratase HTD2, hotdog domain [Lipid transport and metabolism]. 273 -226301 COG3778 YmfQ Uncharacterized protein YmfQ in lambdoid prophage, DUF2313 family [Mobilome: prophages, transposons]. 188 -226302 COG3779 YegJ Uncharacterized conserved protein YegJ, DUF2314 family [Function unknown]. 151 -226303 COG3780 COG3780 DNA endonuclease related to intein-encoded endonucleases [Replication, recombination and repair]. 266 -226304 COG3781 YneE Predicted membrane chloride channel, bestrophin family [Inorganic ion transport and metabolism]. 306 -226305 COG3782 COG3782 Uncharacterized protein [Function unknown]. 289 -226306 COG3783 CybC Soluble cytochrome b562 [Energy production and conversion]. 100 -226307 COG3784 YdbL Uncharacterized conserved protein YdbL, DUF1318 family [Function unknown]. 109 -226308 COG3785 HspQ Heat shock protein HspQ [Posttranslational modification, protein turnover, chaperones]. 116 -226309 COG3786 COG3786 L,D-peptidoglycan transpeptidase YkuD, ErfK/YbiS/YcfS/YnhG family [Cell wall/membrane/envelope biogenesis]. 217 -226310 COG3787 YhbP Uncharacterized conserved protein YhbP, UPF0306 family [Function unknown]. 145 -226311 COG3788 YecN Uncharacterized membrane protein YecN, MAPEG domain [Function unknown]. 131 -226312 COG3789 YjfI Uncharacterized protein YjfI, DUF2170 family [Function unknown]. 146 -226313 COG3790 YbgE Predicted membrane protein, encoded in cydAB operon [Function unknown]. 97 -226314 COG3791 COG3791 Uncharacterized conserved protein [Function unknown]. 133 -226315 COG3792 COG3792 Uncharacterized protein [Function unknown]. 122 -226316 COG3793 TerB Tellurite resistance protein [Inorganic ion transport and metabolism]. 144 -226317 COG3794 PetE Plastocyanin [Energy production and conversion]. 128 -226318 COG3795 COG3795 Uncharacterized conserved protein [Function unknown]. 123 -226319 COG3797 COG3797 Uncharacterized conserved protein, DUF1697 family [Function unknown]. 178 -226320 COG3798 COG3798 Uncharacterized protein [Function unknown]. 75 -226321 COG3799 Mal Methylaspartate ammonia-lyase [Amino acid transport and metabolism]. 410 -226322 COG3800 COG3800 Predicted transcriptional regulator [General function prediction only]. 332 -226323 COG3801 COG3801 Uncharacterized protein [Function unknown]. 124 -226324 COG3802 GguC Uncharacterized protein [Function unknown]. 333 -226325 COG3803 COG3803 Uncharacterized conserved protein, DUF924 family [Function unknown]. 182 -226326 COG3804 COG3804 Uncharacterized protein [Function unknown]. 350 -226327 COG3805 DodA Aromatic ring-cleaving dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]. 120 -226328 COG3806 ChrR Anti-sigma factor ChrR, cupin superfamily [Signal transduction mechanisms]. 216 -226329 COG3807 SH3 SH3-like domain [Function unknown]. 171 -226330 COG3808 OVP1 Na+ or H+-translocating membrane pyrophosphatase [Energy production and conversion]. 703 -226331 COG3809 COG3809 Predicted nucleic acid-binding protein, contains Zn-finger domain [General function prediction only]. 88 -226332 COG3811 YjhX Uncharacterized protein YjhX, UPF0386/DUF2084 family [Function unknown]. 85 -226333 COG3812 COG3812 Uncharacterized protein [Function unknown]. 193 -226334 COG3813 COG3813 Uncharacterized protein [Function unknown]. 84 -226335 COG3814 SspB2 SspB-like protein, predicted to bind SsrA peptide [Posttranslational modification, protein turnover, chaperones]. 157 -226336 COG3815 COG3815 Uncharacterized membrane protein [Function unknown]. 113 -226337 COG3816 COG3816 Uncharacterized protein, DUF1285 family [Function unknown]. 205 -226338 COG3817 COG3817 Uncharacterized membrane protein [Function unknown]. 313 -226339 COG3818 COG3818 Predicted acetyltransferase, GNAT superfamily [General function prediction only]. 167 -226340 COG3819 COG3819 Uncharacterized membrane protein [Function unknown]. 229 -226341 COG3820 COG3820 Uncharacterized protein, DUF1013 family [Function unknown]. 230 -226342 COG3821 COG3821 Uncharacterized membrane protein [Function unknown]. 234 -226343 COG3822 YdaE D-lyxose ketol-isomerase [Carbohydrate transport and metabolism]. 225 -226344 COG3823 COG3823 Glutamine cyclotransferase [Posttranslational modification, protein turnover, chaperones]. 262 -226345 COG3824 COG3824 Predicted Zn-dependent protease, minimal metalloprotease (MMP)-like domain [Posttranslational modification, protein turnover, chaperones]. 136 -226346 COG3825 CoxE Uncharacterized conserved protein, contains von Willebrand factor type A (vWA) domain [Function unknown]. 393 -226347 COG3826 COG3826 Uncharacterized protein [Function unknown]. 236 -226348 COG3827 PopZ Cell pole-organizing protein PopZ [Cell cycle control, cell division, chromosome partitioning]. 231 -226349 COG3828 COG3828 Type 1 glutamine amidotransferase (GATase1)-like domain [General function prediction only]. 239 -226350 COG3829 RocR Transcriptional regulator containing PAS, AAA-type ATPase, and DNA-binding Fis domains [Transcription, Signal transduction mechanisms]. 560 -226351 COG3830 ACT ACT domain, binds amino acids and other small ligands [Signal transduction mechanisms]. 90 -226352 COG3831 WGR WGR domain, predicted DNA-binding domain in MolR [Transcription]. 85 -226353 COG3832 YndB Uncharacterized conserved protein YndB, AHSA1/START domain [Function unknown]. 149 -226354 COG3833 MalG ABC-type maltose transport system, permease component [Carbohydrate transport and metabolism]. 282 -226355 COG3835 CdaR Sugar diacid utilization regulator [Transcription, Signal transduction mechanisms]. 376 -226356 COG3836 HpcH 2-keto-3-deoxy-L-rhamnonate aldolase RhmA [Carbohydrate transport and metabolism]. 255 -226357 COG3837 COG3837 Uncharacterized conserved protein, cupin superfamily [Function unknown]. 161 -226358 COG3838 VirB2 Type IV secretory pathway, VirB2 components (pilins) [Intracellular trafficking, secretion, and vesicular transport]. 108 -226359 COG3839 MalK ABC-type sugar transport system, ATPase component [Carbohydrate transport and metabolism]. 338 -226360 COG3840 ThiQ ABC-type thiamine transport system, ATPase component [Coenzyme transport and metabolism]. 231 -226361 COG3842 PotA ABC-type Fe3+/spermidine/putrescine transport systems, ATPase components [Amino acid transport and metabolism]. 352 -226362 COG3843 VirD2 Type IV secretory pathway, VirD2 components (relaxase) [Intracellular trafficking, secretion, and vesicular transport]. 326 -226363 COG3844 Bna5 Kynureninase [Amino acid transport and metabolism]. 407 -226364 COG3845 YufO ABC-type uncharacterized transport system, ATPase component [General function prediction only]. 501 -226365 COG3846 TrbL Type IV secretory pathway, TrbL components [Intracellular trafficking, secretion, and vesicular transport]. 452 -226366 COG3847 Flp Flp pilus assembly protein, pilin Flp [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 58 -226367 COG3848 PykA2 Phosphohistidine swiveling domain of PEP-utilizing enzymes [Signal transduction mechanisms]. 111 -226368 COG3850 NarQ Signal transduction histidine kinase, nitrate/nitrite-specific [Signal transduction mechanisms]. 574 -226369 COG3851 UhpB Signal transduction histidine kinase, glucose-6-phosphate specific [Signal transduction mechanisms]. 497 -226370 COG3852 NtrB Signal transduction histidine kinase, nitrogen specific [Signal transduction mechanisms]. 363 -226371 COG3853 TelA Uncharacterized conserved protein YaaN involved in tellurite resistance [Defense mechanisms]. 386 -226372 COG3854 SpoIIIAA Stage III sporulation protein SpoIIIAA [Cell cycle control, cell division, chromosome partitioning]. 308 -226373 COG3855 Fbp2 Fructose-1,6-bisphosphatase [Carbohydrate transport and metabolism]. 648 -226374 COG3856 Sbp Small basic protein (function unknown) [Function unknown]. 113 -226375 COG3857 AddB ATP-dependent helicase/DNAse subunit B [Replication, recombination and repair]. 1108 -226376 COG3858 YaaH Spore germination protein YaaH [Cell cycle control, cell division, chromosome partitioning]. 423 -226377 COG3859 ThiT Thiamine transporter ThiT [Coenzyme transport and metabolism]. 185 -226378 COG3860 COG3860 Uncharacterized protein, DUF2087 family [Function unknown]. 89 -226379 COG3861 YsnF Stress response protein YsnF (function unknown) [Function unknown]. 195 -226380 COG3862 COG3862 Uncharacterized protein with two CxxC motifs [Function unknown]. 117 -226381 COG3863 YycO Uncharacterized protein YycO, NlpC/P60 family [Function unknown]. 231 -226382 COG3864 COG3864 Predicted metal-dependent peptidase [General function prediction only]. 396 -226383 COG3865 COG3865 Glyoxalase superfamily enzyme, possibly 3-demethylubiquinone-9 3-methyltransferase [General function prediction only]. 151 -226384 COG3866 PelB Pectate lyase [Carbohydrate transport and metabolism]. 345 -226385 COG3867 GanB Arabinogalactan endo-1,4-beta-galactosidase [Carbohydrate transport and metabolism]. 403 -226386 COG3868 COG3868 Predicted glycosyl hydrolase, GH114 family [Carbohydrate transport and metabolism]. 306 -226387 COG3869 McsB Protein-arginine kinase [Posttranslational modification, protein turnover, chaperones]. 352 -226388 COG3870 YaaQ Uncharacterized protein YaaQ, DUF970 family [Function unknown]. 109 -226389 COG3871 YzzA General stress protein 26 (function unknown) [Function unknown]. 145 -226390 COG3872 YqhQ Uncharacterized conserved protein YqhQ [Function unknown]. 318 -226391 COG3874 YtfJ Uncharacterized spore protein YtfJ [Function unknown]. 138 -226392 COG3875 LarA Nickel-dependent lactate racemase [Cell wall/membrane/envelope biogenesis]. 423 -226393 COG3876 YbbC Uncharacterized conserved protein YbbC, DUF1343 family [Function unknown]. 409 -226394 COG3877 COG3877 Uncharacterized protein, DUF2089 family [Function unknown]. 122 -226395 COG3878 YwqG Uncharacterized protein YwqG, DUF1963 family [Function unknown]. 261 -226396 COG3879 YlxW Uncharacterized conserved protein YlxW, UPF0749 family [Function unknown]. 247 -226397 COG3880 McsA Protein-arginine kinase activator protein McsA [Posttranslational modification, protein turnover, chaperones]. 176 -226398 COG3881 YrrD Uncharacterized protein YrrD, contains PRC-barrel domain [Function unknown]. 176 -226399 COG3882 FkbH Predicted enzyme involved in methoxymalonyl-ACP biosynthesis [Lipid transport and metabolism]. 574 -226400 COG3883 CwlO1 Uncharacterized N-terminal domain of peptidoglycan hydrolase CwlO [Function unknown]. 265 -226401 COG3884 FatA Acyl-ACP thioesterase [Lipid transport and metabolism]. 250 -226402 COG3885 COG3885 Aromatic ring-opening dioxygenase, LigB subunit [Secondary metabolites biosynthesis, transport and catabolism]. 261 -226403 COG3886 COG3886 HKD family nuclease [Replication, recombination and repair]. 198 -226404 COG3887 GdpP c-di-AMP phosphodiesterase, consists of a GGDEF-like and DHH domains [Signal transduction mechanisms]. 655 -226405 COG3888 COG3888 Predicted transcriptional regulator [Transcription]. 321 -226406 COG3889 COG3889 Predicted periplasmic protein [Function unknown]. 872 -226407 COG3890 ERG8 Phosphomevalonate kinase [Lipid transport and metabolism]. 337 -226408 COG3892 IolC Myo-inositol catabolism protein IolC [Carbohydrate transport and metabolism]. 310 -226409 COG3893 COG3893 Inactivated superfamily I helicase [Replication, recombination and repair]. 697 -226410 COG3894 COG3894 Uncharacterized 2Fe-2 and 4Fe-4S clusters-containing protein, contains DUF4445 domain [Function unknown]. 614 -226411 COG3895 MliC Membrane-bound inhibitor of C-type lysozyme [Cell wall/membrane/envelope biogenesis]. 112 -226412 COG3896 COG3896 Chloramphenicol 3-O-phosphotransferase [Defense mechanisms]. 205 -226413 COG3897 Nnt1 Predicted nicotinamide N-methyase [General function prediction only]. 218 -226414 COG3898 COG3898 Uncharacterized membrane-anchored protein [Function unknown]. 531 -226415 COG3899 COG3899 Predicted ATPase [General function prediction only]. 849 -226416 COG3900 COG3900 Predicted periplasmic protein [Function unknown]. 262 -226417 COG3901 NosR Regulator of nitric oxide reductase transcription [Transcription]. 482 -226418 COG3903 COG3903 Predicted ATPase [General function prediction only]. 414 -226419 COG3904 COG3904 Predicted periplasmic protein [Function unknown]. 245 -226420 COG3905 COG3905 Predicted transcriptional regulator [Transcription]. 83 -226421 COG3906 YrzB Uncharacterized protein YrzB, UPF0473 family [Function unknown]. 105 -226422 COG3907 COG3907 Membrane-associated enzyme, PAP2 (acid phosphatase) superfamily [General function prediction only]. 249 -226423 COG3908 COG3908 Uncharacterized protein [Function unknown]. 77 -226424 COG3909 CytC556 Cytochrome c556 [Energy production and conversion]. 147 -226425 COG3910 COG3910 Predicted ATPase [General function prediction only]. 233 -226426 COG3911 COG3911 Predicted ATPase [General function prediction only]. 183 -226427 COG3913 SciT Uncharacterized protein [Function unknown]. 227 -226428 COG3914 Spy Predicted O-linked N-acetylglucosamine transferase, SPINDLY family [Posttranslational modification, protein turnover, chaperones]. 620 -226429 COG3915 COG3915 Uncharacterized protein [Function unknown]. 155 -226430 COG3916 LasI N-acyl-L-homoserine lactone synthetase [Signal transduction mechanisms]. 209 -226431 COG3917 NahD 2-hydroxychromene-2-carboxylate isomerase [Secondary metabolites biosynthesis, transport and catabolism]. 203 -226432 COG3918 COG3918 Uncharacterized membrane protein [Function unknown]. 153 -226433 COG3919 COG3919 Predicted ATP-dependent carboligase, ATP-grasp superfamily [General function prediction only]. 415 -226434 COG3920 COG3920 Two-component sensor histidine kinase, HisKA and HATPase domains [Signal transduction mechanisms]. 221 -226435 COG3921 COG3921 Uncharacterized conserved protein [Function unknown]. 300 -226436 COG3923 PriC Primosomal replication protein N'' [Replication, recombination and repair]. 175 -226437 COG3924 YhdT Uncharacterized membrane protein YhdT [Function unknown]. 80 -226438 COG3925 FruA N-terminal domain of the phosphotransferase system fructose-specific component IIB [Carbohydrate transport and metabolism, Signal transduction mechanisms]. 103 -226439 COG3926 ZliS Lysozyme family protein [General function prediction only]. 252 -226440 COG3930 COG3930 Uncharacterized protein [Function unknown]. 434 -226441 COG3931 HutG2 Predicted N-formylglutamate amidohydrolase [Amino acid transport and metabolism]. 263 -226442 COG3932 COG3932 Uncharacterized conserved protein [Function unknown]. 209 -226443 COG3933 LevR Transcriptional regulatory protein LevR, contains PRD, AAA+ and EIIA domains [Transcription]. 470 -226444 COG3934 COG3934 Endo-1,4-beta-mannosidase [Carbohydrate transport and metabolism]. 587 -226445 COG3935 DnaD DNA replication protein DnaD [Replication, recombination and repair]. 246 -226446 COG3936 YfiQ Membrane-bound acyltransferase YfiQ, involved in biofilm formation [Carbohydrate transport and metabolism]. 349 -226447 COG3937 PhaF Polyhydroxyalkanoate synthesis regulator phasin [Secondary metabolites biosynthesis, transport and catabolism, Signal transduction mechanisms]. 108 -226448 COG3938 PrdF Proline racemase [Amino acid transport and metabolism]. 341 -226449 COG3940 COG3940 Beta-xylosidase, GH43 family [Carbohydrate transport and metabolism]. 324 -226450 COG3941 HI1514 Phage tail tape-measure protein, controls tail length [Mobilome: prophages, transposons]. 633 -226451 COG3942 COG3942 Surface antigen [Cell wall/membrane/envelope biogenesis]. 173 -226452 COG3943 COG3943 Uncharacterized conserved protein [Function unknown]. 329 -226453 COG3944 YveK Capsular polysaccharide biosynthesis protein [Cell wall/membrane/envelope biogenesis]. 226 -226454 COG3945 COG3945 Hemerythrin-like domain [General function prediction only]. 189 -226455 COG3946 VirJ Type IV secretory pathway, VirJ component [Intracellular trafficking, secretion, and vesicular transport]. 456 -226456 COG3947 SAPR Two-component response regulator, SAPR family, consists of REC, wHTH and BTAD domains [Signal transduction mechanisms, Transcription]. 361 -226457 COG3948 COG3948 Phage-related baseplate assembly protein [Mobilome: prophages, transposons]. 306 -226458 COG3949 YkvI Uncharacterized membrane protein YkvI [Function unknown]. 349 -226459 COG3950 COG3950 Predicted ATP-binding protein involved in virulence [General function prediction only]. 440 -226460 COG3951 FlgJ1 Rod binding protein domain [Cell motility]. 166 -226461 COG3952 LABN Uncharacterized N-terminal domain of lipid-A-disaccharide synthase [General function prediction only]. 113 -226462 COG3953 SLT SLT domain protein [Mobilome: prophages, transposons]. 235 -226463 COG3954 PrkB Phosphoribulokinase [Carbohydrate transport and metabolism]. 289 -226464 COG3955 COG3955 Uncharacterized protein, DUF1919 family [Cell wall/membrane/envelope biogenesis]. 211 -226465 COG3956 YabN Uncharacterized conserved protein YabN, contains tetrapyrrole methylase and MazG-like pyrophosphatase domain [General function prediction only]. 488 -226466 COG3957 XFP Phosphoketolase [Carbohydrate transport and metabolism]. 793 -226467 COG3958 TktA2 Transketolase, C-terminal subunit [Carbohydrate transport and metabolism]. 312 -226468 COG3959 TktA1 Transketolase, N-terminal subunit [Carbohydrate transport and metabolism]. 243 -226469 COG3960 Gcl Glyoxylate carboligase [Secondary metabolites biosynthesis, transport and catabolism]. 592 -226470 COG3961 PDC1 TPP-dependent 2-oxoacid decarboxylase, includes indolepyruvate decarboxylase [Carbohydrate transport and metabolism, Coenzyme transport and metabolism, General function prediction only]. 557 -226471 COG3962 IolD TPP-dependent trihydroxycyclohexane-1,2-dione (THcHDO) dehydratase, myo-inositol metabolism [Carbohydrate transport and metabolism]. 617 -226472 COG3963 COG3963 Phospholipid N-methyltransferase [Lipid transport and metabolism]. 194 -226473 COG3964 COG3964 Predicted amidohydrolase [General function prediction only]. 386 -226474 COG3965 COG3965 Predicted Co/Zn/Cd cation transporter, cation efflux family [Inorganic ion transport and metabolism]. 314 -226475 COG3966 DltD Poly D-alanine transfer protein DltD, involved inesterification of teichoic acids [Cell wall/membrane/envelope biogenesis]. 415 -226476 COG3967 DltE Short-chain dehydrogenase involved in D-alanine esterification of teichoic acids [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism]. 245 -226477 COG3968 GlnA3 Glutamine synthetase type III [Amino acid transport and metabolism]. 724 -226478 COG3969 YbdN Predicted phosphoadenosine phosphosulfate sulfurtransferase, contains C-terminal DUF3440 domain [General function prediction only]. 407 -226479 COG3970 COG3970 Fumarylacetoacetate (FAA) hydrolase family protein [General function prediction only]. 379 -226480 COG3971 MhpD 2-keto-4-pentenoate hydratase [Secondary metabolites biosynthesis, transport and catabolism]. 264 -226481 COG3972 COG3972 Superfamily I DNA and RNA helicases [Replication, recombination and repair]. 660 -226482 COG3973 HelD DNA helicase IV [Replication, recombination and repair]. 747 -226483 COG3975 COG3975 Predicted metalloprotease, contains C-terminal PDZ domain [General function prediction only]. 558 -226484 COG3976 COG3976 Uncharacterized protein, contains FMN-binding domain [General function prediction only]. 135 -226485 COG3977 AvtA Alanine-alpha-ketoisovalerate (or valine-pyruvate) aminotransferase [Amino acid transport and metabolism]. 417 -226486 COG3978 IlvM Acetolactate synthase small subunit, contains ACT domain [Energy production and conversion]. 86 -226487 COG3979 COG3979 Chitodextrinase [Carbohydrate transport and metabolism]. 181 -226488 COG3980 SpsG Spore coat polysaccharide biosynthesis protein SpsG, predicted glycosyltransferase [Cell wall/membrane/envelope biogenesis]. 318 -226489 COG3981 COG3981 Predicted acetyltransferase [General function prediction only]. 174 -226490 COG4001 COG4001 Uncharacterized protein [Function unknown]. 102 -226491 COG4002 COG4002 Predicted methyltransferase MtxX, methanogen marker protein 4 [General function prediction only]. 256 -226492 COG4003 COG4003 Uncharacterized protein, DUF2095 family [Function unknown]. 98 -226493 COG4004 COG4004 Uncharacterized protein [Function unknown]. 96 -226494 COG4006 COG4006 CRISPR/Cas system-associated protein Csm6, COG1517 family [Defense mechanisms]. 278 -226495 COG4007 COG4007 Predicted dehydrogenase related to H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase [General function prediction only]. 340 -226496 COG4008 COG4008 Predicted metal-binding transcription factor, methanogenesis marker domain 9 [Transcription]. 153 -226497 COG4009 COG4009 Uncharacterized protein [Function unknown]. 88 -226498 COG4010 COG4010 Uncharacterized protein [Function unknown]. 170 -226499 COG4012 COG4012 Uncharacterized protein, DUF1786 family [Function unknown]. 342 -226500 COG4013 COG4013 Uncharacterized protein [Function unknown]. 91 -226501 COG4014 COG4014 Uncharacterized protein [Function unknown]. 97 -226502 COG4015 COG4015 Predicted dinucleotide-utilizing enzyme of the ThiF/HesA family [General function prediction only]. 217 -226503 COG4016 COG4016 Uncharacterized protein, UPF0254 family [Function unknown]. 165 -226504 COG4017 COG4017 Uncharacterized protein [Function unknown]. 254 -226505 COG4018 COG4018 Uncharacterized protein [Function unknown]. 505 -226506 COG4019 COG4019 Uncharacterized protein [Function unknown]. 156 -226507 COG4020 COG4020 Uncharacterized protein [Function unknown]. 332 -226508 COG4021 Thg1 tRNA(His) 5'-end guanylyltransferase [Translation, ribosomal structure and biogenesis]. 249 -226509 COG4022 COG4022 Uncharacterized protein [Function unknown]. 286 -226510 COG4023 SBH1 Preprotein translocase subunit Sec61beta [Intracellular trafficking, secretion, and vesicular transport]. 57 -226511 COG4024 COG4024 Uncharacterized protein [Function unknown]. 218 -226512 COG4025 COG4025 Uncharacterized membrane protein [Function unknown]. 284 -226513 COG4026 COG4026 Uncharacterized protein, contains TOPRIM domain, potential nuclease [General function prediction only]. 290 -226514 COG4027 COG4027 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase [Nucleotide transport and metabolism]. 194 -226515 COG4028 COG4028 Predicted P-loop ATPase/GTPase [General function prediction only]. 271 -226516 COG4029 COG4029 Uncharacterized protein [Function unknown]. 142 -226517 COG4030 COG4030 Predicted phosphohydrolase, HAD superfamily [General function prediction only]. 315 -226518 COG4031 COG4031 Uncharacterized protein, DUF2103 family [Function unknown]. 227 -226519 COG4032 COG4032 Sulfopyruvate decarboxylase, TPP-binding subunit (coenzyme M biosynthesis) [Coenzyme transport and metabolism]. 172 -226520 COG4033 COG4033 Uncharacterized protein [Function unknown]. 102 -226521 COG4034 COG4034 Uncharacterized protein [Function unknown]. 328 -226522 COG4035 COG4035 Uncharacterized membrane protein [Function unknown]. 108 -226523 COG4036 EhaG Energy-converting hydrogenase Eha subunit G [Energy production and conversion]. 224 -226524 COG4037 EhaF Energy-converting hydrogenase Eha subunit F [Energy production and conversion]. 163 -226525 COG4038 EhaE Energy-converting hydrogenase Eha subunit E [Energy production and conversion]. 87 -226526 COG4039 EhaC Energy-converting hydrogenase Eha subunit C [Energy production and conversion]. 86 -226527 COG4040 COG4040 Uncharacterized membrane protein [Function unknown]. 85 -226528 COG4041 EhaB Energy-converting hydrogenase Eha subunit B [Energy production and conversion]. 171 -226529 COG4042 EhaA Energy-converting hydrogenase Eha subunit A [Energy production and conversion]. 104 -226530 COG4043 ASCH ASC-1 homology (ASCH) domain, predicted RNA-binding domain [General function prediction only]. 111 -226531 COG4044 COG4044 Uncharacterized protein [Function unknown]. 247 -226532 COG4046 COG4046 Uncharacterized protein [Function unknown]. 368 -226533 COG4047 COG4047 N-glycosylase/DNA lyase [Replication, recombination and repair]. 243 -226534 COG4048 COG4048 Uncharacterized protein [Function unknown]. 123 -226535 COG4049 COG4049 Uncharacterized protein, contains archaeal-type C2H2 Zn-finger [General function prediction only]. 65 -226536 COG4050 COG4050 Uncharacterized protein [Function unknown]. 152 -226537 COG4051 COG4051 Uncharacterized protein [Function unknown]. 202 -226538 COG4052 COG4052 Uncharacterized protein related to methyl coenzyme M reductase subunit C, methanogenesis marker protein 7 [General function prediction only]. 310 -226539 COG4053 COG4053 Uncharacterized protein [Function unknown]. 244 -226540 COG4054 McrB Methyl coenzyme M reductase, beta subunit [Coenzyme transport and metabolism]. 447 -226541 COG4055 McrD Methyl coenzyme M reductase, subunit D [Coenzyme transport and metabolism]. 165 -226542 COG4056 McrC Methyl coenzyme M reductase, subunit C [Coenzyme transport and metabolism]. 204 -226543 COG4057 McrG Methyl coenzyme M reductase, gamma subunit [Coenzyme transport and metabolism]. 257 -226544 COG4058 McrA Methyl coenzyme M reductase, alpha subunit [Coenzyme transport and metabolism]. 553 -226545 COG4059 MtrE Tetrahydromethanopterin S-methyltransferase, subunit E [Coenzyme transport and metabolism]. 304 -226546 COG4060 MtrD Tetrahydromethanopterin S-methyltransferase, subunit D [Coenzyme transport and metabolism]. 230 -226547 COG4061 MtrC Tetrahydromethanopterin S-methyltransferase, subunit C [Coenzyme transport and metabolism]. 262 -226548 COG4062 MtrB Tetrahydromethanopterin S-methyltransferase, subunit B [Coenzyme transport and metabolism]. 108 -226549 COG4063 MtrA Tetrahydromethanopterin S-methyltransferase, subunit A [Coenzyme transport and metabolism]. 238 -226550 COG4064 MtrG Tetrahydromethanopterin S-methyltransferase, subunit G [Coenzyme transport and metabolism]. 75 -226551 COG4065 COG4065 Uncharacterized protein [Function unknown]. 480 -226552 COG4066 COG4066 Uncharacterized protein, UPF0305 family [Function unknown]. 165 -226553 COG4067 COG4067 Uncharacterized conserved protein [Function unknown]. 162 -226554 COG4068 COG4068 Predicted nucleic acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 64 -226555 COG4069 COG4069 Uncharacterized protein [Function unknown]. 367 -226556 COG4070 COG4070 Uncharacterized protein, methanogenesis marker protein 3, UPF0288 family [Function unknown]. 512 -226557 COG4071 COG4071 Uncharacterized protein, related to F420-0:gamma-glutamyl ligase [Function unknown]. 278 -226558 COG4072 COG4072 Uncharacterized protein [Function unknown]. 161 -226559 COG4073 COG4073 Uncharacterized protein [Function unknown]. 198 -226560 COG4074 Mth 5,10-methenyltetrahydromethanopterin hydrogenase [Energy production and conversion]. 343 -226561 COG4075 COG4075 Uncharacterized protein, distantly related to nitrogen regulatory protein PII [Function unknown]. 110 -226562 COG4076 COG4076 Predicted RNA methylase [General function prediction only]. 252 -226563 COG4077 COG4077 Uncharacterized protein [Function unknown]. 156 -226564 COG4078 EhaH Energy-converting hydrogenase Eha subunit H [Energy production and conversion]. 221 -226565 COG4079 COG4079 Uncharacterized protein [Function unknown]. 293 -226566 COG4080 COG4080 SpoU rRNA Methylase family enzyme [Translation, ribosomal structure and biogenesis]. 147 -226567 COG4081 COG4081 Uncharacterized protein [Function unknown]. 148 -226568 COG4083 COG4083 Exosortase/Archaeosortase [Replication, recombination and repair]. 239 -226569 COG4084 COG4084 Energy-converting hydrogenase A subunit M [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 135 -226570 COG4085 YhcR DNA/RNA endonuclease YhcR, contains UshA esterase domain [RNA processing and modification]. 204 -226571 COG4086 YpuA Uncharacterized protein YpuA, DUF1002 family [Function unknown]. 299 -226572 COG4087 COG4087 Soluble P-type ATPase [General function prediction only]. 152 -226573 COG4088 Kti12 tRNA Uridine 5-carbamoylmethylation protein Kti12 (Killer toxin insensitivity protein) [Translation, ribosomal structure and biogenesis]. 261 -226574 COG4089 COG4089 Uncharacterized membrane protein [Function unknown]. 235 -226575 COG4090 COG4090 Uncharacterized protein [Function unknown]. 154 -226576 COG4091 COG4091 Predicted homoserine dehydrogenase, contains C-terminal SAF domain [Amino acid transport and metabolism]. 438 -226577 COG4092 COG4092 Predicted glycosyltransferase involved in capsule biosynthesis [Cell wall/membrane/envelope biogenesis]. 346 -226578 COG4093 COG4093 Uncharacterized protein [Function unknown]. 338 -226579 COG4094 COG4094 Uncharacterized membrane protein [Function unknown]. 219 -226580 COG4095 SWEET Sugar transporter, SemiSWEET family, contains PQ motif [Carbohydrate transport and metabolism]. 89 -226581 COG4096 HsdR Type I site-specific restriction endonuclease, part of a restriction-modification system [Defense mechanisms]. 875 -226582 COG4097 COG4097 Predicted ferric reductase [Inorganic ion transport and metabolism]. 438 -226583 COG4098 comFA Superfamily II DNA/RNA helicase required for DNA uptake (late competence protein) [Replication, recombination and repair]. 441 -226584 COG4099 COG4099 Predicted peptidase [General function prediction only]. 387 -226585 COG4100 YnbB Cystathionine beta-lyase family protein involved in aluminum resistance [Inorganic ion transport and metabolism, General function prediction only]. 416 -226586 COG4101 RmlC Uncharacterized protein, RmlC-like cupin domain [General function prediction only]. 142 -226587 COG4102 COG4102 Uncharacterized conserved protein, DUF1501 family [Function unknown]. 418 -226588 COG4103 TerB Uncharacterized conserved protein, tellurite resistance protein B (TerB) family [Function unknown]. 148 -226589 COG4104 PAAR Zn-binding Pro-Ala-Ala-Arg (PAAR) domain, incolved in TypeVI secretion [Intracellular trafficking, secretion, and vesicular transport]. 98 -226590 COG4105 BamD Outer membrane protein assembly factor BamD, BamD/ComL family [Cell wall/membrane/envelope biogenesis]. 254 -226591 COG4106 Tam Trans-aconitate methyltransferase [Energy production and conversion]. 257 -226592 COG4107 PhnK ABC-type phosphonate transport system, ATPase component [Inorganic ion transport and metabolism]. 258 -226593 COG4108 PrfC Peptide chain release factor RF-3 [Translation, ribosomal structure and biogenesis]. 528 -226594 COG4109 YtoI Predicted transcriptional regulator containing CBS domains [Transcription]. 432 -226595 COG4110 TerA Uncharacterized protein involved in tellurium resistance [Defense mechanisms]. 200 -226596 COG4111 COG4111 Uncharacterized conserved protein [Function unknown]. 322 -226597 COG4112 YmaB Predicted phosphoesterase, NUDIX family [General function prediction only]. 203 -226598 COG4113 COG4113 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 134 -226599 COG4114 FhuF Ferric iron reductase protein FhuF, involved in iron transport [Inorganic ion transport and metabolism]. 251 -226600 COG4115 COG4115 Toxin component of the Txe-Axe toxin-antitoxin module, Txe/YoeB family [Defense mechanisms]. 84 -226601 COG4116 YjbK Predicted triphosphatase or cyclase YjbK, contains CYTH domain [General function prediction only]. 193 -226602 COG4117 YdhU Thiosulfate reductase cytochrome b subunit [Inorganic ion transport and metabolism]. 221 -226603 COG4118 Phd Antitoxin component of toxin-antitoxin stability system, DNA-binding transcriptional repressor [Defense mechanisms]. 84 -226604 COG4119 COG4119 Predicted NTP pyrophosphohydrolase, NUDIX family [Nucleotide transport and metabolism, General function prediction only]. 161 -226605 COG4120 COG4120 ABC-type uncharacterized transport system, permease component [General function prediction only]. 293 -226606 COG4121 MnmC tRNA U34 5-methylaminomethyl-2-thiouridine-forming methyltransferase MnmC [Translation, ribosomal structure and biogenesis]. 252 -226607 COG4122 YrrM Predicted O-methyltransferase YrrM [General function prediction only]. 219 -226608 COG4123 TrmN6 tRNA1(Val) A37 N6-methylase TrmN6 [Translation, ribosomal structure and biogenesis]. 248 -226609 COG4124 ManB2 Beta-mannanase [Carbohydrate transport and metabolism]. 355 -226610 COG4125 COG4125 Uncharacterized membrane protein [Function unknown]. 149 -226611 COG4126 Dcg1 Asp/Glu/hydantoin racemase [Amino acid transport and metabolism]. 230 -226612 COG4127 COG4127 Predicted restriction endonuclease, Mrr-cat superfamily [General function prediction only]. 318 -226613 COG4128 Zot Zona occludens toxin, predicted ATPase [General function prediction only]. 398 -226614 COG4129 YgaE Uncharacterized membrane protein YgaE, UPF0421/DUF939 family [Function unknown]. 332 -226615 COG4130 COG4130 Predicted sugar epimerase, xylose isomerase-like family [Carbohydrate transport and metabolism]. 272 -226616 COG4132 COG4132 ABC-type uncharacterized transport system, permease component [General function prediction only]. 282 -226617 COG4133 CcmA ABC-type transport system involved in cytochrome c biogenesis, ATPase component [Posttranslational modification, protein turnover, chaperones]. 209 -226618 COG4134 YnjB ABC-type uncharacterized transport system YnjBCD, periplasmic component [General function prediction only]. 384 -226619 COG4135 YnjC ABC-type uncharacterized transport system YnjBCD, permease component [General function prediction only]. 551 -226620 COG4136 YnjD ABC-type uncharacterized transport system YnjBCD, ATPase component [General function prediction only]. 213 -226621 COG4137 YpjD ABC-type uncharacterized transport system, permease component [General function prediction only]. 265 -226622 COG4138 BtuD ABC-type cobalamin transport system, ATPase component [Coenzyme transport and metabolism]. 248 -226623 COG4139 BtuC ABC-type cobalamin transport system, permease component [Coenzyme transport and metabolism]. 326 -226624 COG4143 TbpA ABC-type thiamine transport system, periplasmic component [Coenzyme transport and metabolism]. 336 -226625 COG4145 PanF Na+/panthothenate symporter [Coenzyme transport and metabolism]. 473 -226626 COG4146 YidK Uncharacterized membrane permease YidK, sodium:solute symporter family [General function prediction only]. 571 -226627 COG4147 ActP Na+(or H+)/acetate symporter ActP [Energy production and conversion]. 529 -226628 COG4148 ModC ABC-type molybdate transport system, ATPase component [Inorganic ion transport and metabolism]. 352 -226629 COG4149 ModC ABC-type molybdate transport system, permease component [Inorganic ion transport and metabolism]. 225 -226630 COG4150 CysP ABC-type sulfate transport system, periplasmic component [Inorganic ion transport and metabolism]. 341 -226631 COG4152 YhaQ ABC-type uncharacterized transport system, ATPase component [General function prediction only]. 300 -226632 COG4154 FucU L-fucose mutarotase/ribose pyranase, RbsD/FucU family [Carbohydrate transport and metabolism]. 144 -226633 COG4158 COG4158 Predicted ABC-type sugar transport system, permease component [General function prediction only]. 329 -226634 COG4160 ArtM ABC-type arginine/histidine transport system, permease component [Amino acid transport and metabolism]. 228 -226635 COG4161 ArtP ABC-type arginine transport system, ATPase component [Amino acid transport and metabolism]. 242 -226636 COG4166 OppA ABC-type oligopeptide transport system, periplasmic component [Amino acid transport and metabolism]. 562 -226637 COG4167 SapF ABC-type antimicrobial peptide transport system, ATPase component [Defense mechanisms]. 267 -226638 COG4168 SapB ABC-type antimicrobial peptide transport system, permease component [Defense mechanisms]. 321 -226639 COG4170 SapD ABC-type antimicrobial peptide transport system, ATPase component [Defense mechanisms]. 330 -226640 COG4171 SapC ABC-type antimicrobial peptide transport system, permease component [Defense mechanisms]. 296 -226641 COG4172 YejF ABC-type microcin C transport system, duplicated ATPase component YejF [Secondary metabolites biosynthesis, transport and catabolism]. 534 -226642 COG4174 YejB ABC-type microcin C transport system, permease component YejB [Secondary metabolites biosynthesis, transport and catabolism]. 364 -226643 COG4175 ProV ABC-type proline/glycine betaine transport system, ATPase component [Amino acid transport and metabolism]. 386 -226644 COG4176 ProW ABC-type proline/glycine betaine transport system, permease component [Amino acid transport and metabolism]. 290 -226645 COG4177 LivM ABC-type branched-chain amino acid transport system, permease component [Amino acid transport and metabolism]. 314 -226646 COG4178 YddA ABC-type uncharacterized transport system, permease and ATPase components [General function prediction only]. 604 -226647 COG4181 YbbA Predicted ABC-type transport system involved in lysophospholipase L1 biosynthesis, ATPase component [Secondary metabolites biosynthesis, transport and catabolism]. 228 -226648 COG4185 COG4185 Predicted ABC-type ATPase [General function prediction only]. 187 -226649 COG4186 COG4186 Calcineurin-like phosphoesterase superfamily protein [General function prediction only]. 186 -226650 COG4187 RocB Arginine utilization protein RocB [Amino acid transport and metabolism]. 553 -226651 COG4188 COG4188 Predicted dienelactone hydrolase [General function prediction only]. 365 -226652 COG4189 COG4189 Predicted transcriptional regulator [Transcription]. 308 -226653 COG4190 COG4190 Predicted transcriptional regulator [Transcription]. 144 -226654 COG4191 COG4191 Signal transduction histidine kinase regulating C4-dicarboxylate transport system [Signal transduction mechanisms]. 603 -226655 COG4192 COG4192 Signal transduction histidine kinase regulating phosphoglycerate transport system [Signal transduction mechanisms]. 673 -226656 COG4193 LytD Beta- N-acetylglucosaminidase [Carbohydrate transport and metabolism]. 245 -226657 COG4194 COG4194 Uncharacterized membrane protein, DUF1648 family [Function unknown]. 350 -226658 COG4195 YjqB Phage-related replication protein YjqB, UPF0714/DUF867 family [Mobilome: prophages, transposons]. 208 -226659 COG4196 COG4196 Uncharacterized conserved protein, DUF2126 family [Function unknown]. 808 -226660 COG4197 YdaS DNA-binding transcriptional regulator YdaS, prophage-encoded, Cro superfamily [Transcription]. 96 -226661 COG4198 COG4198 Uncharacterized conserved protein, DUF1015 family [Function unknown]. 405 -226662 COG4199 RecJ ssDNA-specific exonuclease RecJ [Replication, recombination and repair]. 201 -226663 COG4200 EfiE Predicted lantabiotic-exporting membrane pepmease, EfiE/EfiG/ABC2 family [Defense mechanisms]. 239 -226664 COG4206 BtuB Outer membrane cobalamin receptor protein [Coenzyme transport and metabolism]. 608 -226665 COG4208 CysW ABC-type sulfate transport system, permease component [Inorganic ion transport and metabolism]. 287 -226666 COG4209 LplB ABC-type polysaccharide transport system, permease component [Carbohydrate transport and metabolism]. 309 -226667 COG4211 MglC ABC-type glucose/galactose transport system, permease component [Carbohydrate transport and metabolism]. 336 -226668 COG4213 XylF ABC-type xylose transport system, periplasmic component [Carbohydrate transport and metabolism]. 341 -226669 COG4214 XylH ABC-type xylose transport system, permease component [Carbohydrate transport and metabolism]. 394 -226670 COG4215 ArtQ ABC-type arginine transport system, permease component [Amino acid transport and metabolism]. 230 -226671 COG4218 MtrF Tetrahydromethanopterin S-methyltransferase, subunit F [Coenzyme transport and metabolism]. 73 -226672 COG4219 MecR1 Signal transducer regulating beta-lactamase production, contains metallopeptidase domain [Signal transduction mechanisms]. 337 -226673 COG4220 Nu1 Phage DNA packaging protein, Nu1 subunit of terminase [Mobilome: prophages, transposons]. 174 -226674 COG4221 YdfG NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]. 246 -226675 COG4222 COG4222 Uncharacterized conserved protein [Function unknown]. 391 -226676 COG4223 COG4223 Uncharacterized conserved protein [Function unknown]. 422 -226677 COG4224 YnzC Uncharacterized protein YnzC, UPF0291/DUF896 family [Function unknown]. 77 -226678 COG4225 YesR Rhamnogalacturonyl hydrolase YesR [Carbohydrate transport and metabolism]. 357 -226679 COG4226 HicB Predicted nuclease of the RNAse H fold, HicB family [General function prediction only]. 111 -226680 COG4227 ArdC Antirestriction protein ArdC [Replication, recombination and repair]. 316 -226681 COG4228 COG4228 Mu-like prophage DNA circulation protein [Mobilome: prophages, transposons]. 451 -226682 COG4229 Utr4 Enolase-phosphatase E1 involved in merthionine salvage [Amino acid transport and metabolism]. 229 -226683 COG4230 PutA2 Delta 1-pyrroline-5-carboxylate dehydrogenase [Amino acid transport and metabolism]. 769 -226684 COG4231 IorA TPP-dependent indolepyruvate ferredoxin oxidoreductase, alpha subunit [Energy production and conversion]. 640 -226685 COG4232 DsbD Thiol:disulfide interchange protein [Posttranslational modification, protein turnover, chaperones]. 569 -226686 COG4233 COG4233 Thiol-disulfide interchange protein, contains DsbC and DsbD domains [Posttranslational modification, protein turnover, chaperones, Energy production and conversion]. 273 -226687 COG4235 NrfG Cytochrome c-type biogenesis protein CcmH/NrfG [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 287 -226688 COG4237 HyfE Hydrogenase-4 membrane subunit HyfE [Energy production and conversion]. 218 -226689 COG4238 Lpp Outer membrane murein-binding lipoprotein Lpp [Cell wall/membrane/envelope biogenesis]. 78 -226690 COG4239 YejE ABC-type microcin C transport system, permease component YejE [Secondary metabolites biosynthesis, transport and catabolism]. 341 -226691 COG4240 Tda10 Pantothenate kinase-related protein Tda10 (topoisomerase I damage affected protein) [General function prediction only]. 300 -226692 COG4241 YybS Uncharacterized conserved protein YybS, DUF2232 family [Function unknown]. 314 -226693 COG4242 CphB Cyanophycinase and related exopeptidases [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]. 293 -226694 COG4243 COG4243 Uncharacterized membrane protein [Function unknown]. 156 -226695 COG4244 COG4244 Uncharacterized membrane protein [Function unknown]. 160 -226696 COG4245 TerY Uncharacterized conserved protein YegL, contains vWA domain of TerY type [Function unknown]. 207 -226697 COG4246 COG4246 Uncharacterized protein [Function unknown]. 340 -226698 COG4247 Phy 3-phytase (myo-inositol-hexaphosphate 3-phosphohydrolase) [Lipid transport and metabolism]. 364 -226699 COG4248 YegI Uncharacterized protein with protein kinase and helix-hairpin-helix DNA-binding domains [General function prediction only]. 637 -226700 COG4249 COG4249 Uncharacterized protein, contains caspase domain [General function prediction only]. 380 -226701 COG4250 DICT Sensory domain found in diguanylate cyclases and two-component systems (DICT domain) [Signal transduction mechanisms]. 226 -226702 COG4251 COG4251 Bacteriophytochrome (light-regulated signal transduction histidine kinase) [Signal transduction mechanisms]. 750 -226703 COG4252 CHASE2 Extracellular (periplasmic) sensor domain CHASE2 (specificity unknown) [Signal transduction mechanisms]. 400 -226704 COG4253 COG4253 Uncharacterized conserved protein, DUF2345 family [Function unknown]. 278 -226705 COG4254 COG4254 Uncharacterized conserved protein, contains LysM and FecR domains [General function prediction only]. 339 -226706 COG4255 COG4255 Uncharacterized protein [Function unknown]. 318 -226707 COG4256 HemP Hemin uptake protein HemP [Coenzyme transport and metabolism]. 63 -226708 COG4257 Vgb Streptogramin lyase [Defense mechanisms]. 353 -226709 COG4258 COG4258 Predicted exporter [General function prediction only]. 788 -226710 COG4259 COG4259 Uncharacterized protein [Function unknown]. 121 -226711 COG4260 YdjI Membrane protease subunit, stomatin/prohibitin family, contains C-terminal Zn-ribbon domain [Posttranslational modification, protein turnover, chaperones]. 345 -226712 COG4261 COG4261 Predicted acyltransferase, LPLAT superfamily [General function prediction only]. 309 -226713 COG4262 COG4262 Predicted spermidine synthase with an N-terminal membrane domain [General function prediction only]. 508 -226714 COG4263 NosZ Nitrous oxide reductase [Inorganic ion transport and metabolism]. 637 -226715 COG4264 RhbC Siderophore synthetase component [Inorganic ion transport and metabolism]. 602 -226716 COG4266 Alc Allantoicase [Nucleotide transport and metabolism]. 334 -226717 COG4267 COG4267 Uncharacterized membrane protein [Function unknown]. 467 -226718 COG4268 McrC 5-methylcytosine-specific restriction endonuclease McrBC, regulatory subunit McrC [Defense mechanisms]. 439 -226719 COG4269 YjgN Uncharacterized membrane protein YjgN, DUF898 family [Function unknown]. 364 -226720 COG4270 COG4270 Uncharacterized membrane protein [Function unknown]. 131 -226721 COG4271 COG4271 Predicted nucleotide-binding protein containing TIR -like domain [General function prediction only]. 233 -226722 COG4272 COG4272 Uncharacterized membrane protein [Function unknown]. 125 -226723 COG4273 COG4273 Uncharacterized protein, contains metal-binding DGC domain [Function unknown]. 135 -226724 COG4274 COG4274 Uncharacterized protein, contains GYD domain [Function unknown]. 104 -226725 COG4275 ChrB1 Chromate resistance protein ChrB1 [Inorganic ion transport and metabolism]. 143 -226726 COG4276 SRPBCC Ligand-binding SRPBCC domain [General function prediction only]. 153 -226727 COG4277 COG4277 Predicted DNA-binding protein with the Helix-hairpin-helix motif [General function prediction only]. 404 -226728 COG4278 COG4278 Uncharacterized protein [Function unknown]. 269 -226729 COG4279 COG4279 Uncharacterized conserved protein, contains Zn finger domain [Function unknown]. 266 -226730 COG4280 COG4280 Uncharacterized membrane protein [Function unknown]. 236 -226731 COG4281 ACB Acyl-CoA-binding protein [Lipid transport and metabolism]. 87 -226732 COG4282 SMI1 Cell wall assembly regulator SMI1 [Cell wall/membrane/envelope biogenesis]. 191 -226733 COG4283 DinB Uncharacterized protein DinB, DUF1706 family [Function unknown]. 170 -226734 COG4284 QRI1 UDP-N-acetylglucosamine pyrophosphorylase [Carbohydrate transport and metabolism]. 472 -226735 COG4285 COG4285 Uncharacterized conserved protein , conains N-terminal glutamine amidotransferase (GATase1)-like domain [General function prediction only]. 253 -226736 COG4286 COG4286 Uncharacterized protein, UPF0160 family [Function unknown]. 306 -226737 COG4287 PqaA PhoPQ-activated pathogenicity-related protein [General function prediction only]. 507 -226738 COG4288 COG4288 Uncharacterized protein [Function unknown]. 124 -226739 COG4289 COG4289 Uncharacterized protein [Function unknown]. 458 -226740 COG4290 COG4290 Guanyl-specific ribonuclease Sa [Nucleotide transport and metabolism]. 152 -226741 COG4291 COG4291 Uncharacterized membrane protein [Function unknown]. 228 -226742 COG4292 LtrA Low temperature requirement protein LtrA (function unknown) [Function unknown]. 387 -226743 COG4293 COG4293 Uncharacterized protein, DUF1802 family [Function unknown]. 184 -226744 COG4294 Uve UV DNA damage repair endonuclease [Replication, recombination and repair]. 347 -226745 COG4295 COG4295 Uncharacterized protein [Function unknown]. 285 -226746 COG4296 COG4296 Uncharacterized protein [Function unknown]. 156 -226747 COG4297 YjlB Uncharacterized protein YjlB, cupin superfamily [Function unknown]. 163 -226748 COG4298 COG4298 Uncharacterized protein [Function unknown]. 95 -226749 COG4299 COG4299 Predicted acyltransferase [General function prediction only]. 371 -226750 COG4300 CadD Cadmium resistance protein CadD, predicted permease [Inorganic ion transport and metabolism]. 205 -226751 COG4301 COG4301 Uncharacterized conserved protein, contains predicted SAM-dependent methyltransferase domain [General function prediction only]. 321 -226752 COG4302 EutC Ethanolamine ammonia-lyase, small subunit [Amino acid transport and metabolism]. 294 -226753 COG4303 EutB Ethanolamine ammonia-lyase, large subunit [Amino acid transport and metabolism]. 453 -226754 COG4304 COG4304 Uncharacterized protein [Function unknown]. 166 -226755 COG4305 YoaJ Peptidoglycan-binding domain, expansin [Cell wall/membrane/envelope biogenesis]. 232 -226756 COG4306 COG4306 Uncharacterized protein [Function unknown]. 160 -226757 COG4307 COG4307 Uncharacterized protein, DUF2248 family [Function unknown]. 349 -226758 COG4308 LimA Limonene-1,2-epoxide hydrolase [Secondary metabolites biosynthesis, transport and catabolism]. 130 -226759 COG4309 COG4309 Uncharacterized conserved protein, DUF2249 family [Function unknown]. 98 -226760 COG4310 COG4310 Uncharacterized protein, cotains an aminopeptidase-like domain [General function prediction only]. 435 -226761 COG4311 SoxD Sarcosine oxidase delta subunit [Amino acid transport and metabolism]. 97 -226762 COG4312 COG4312 Predicted dithiol-disulfide oxidoreductase, DUF899 family [General function prediction only]. 247 -226763 COG4313 SphA Uncharacterized conserved protein [Function unknown]. 304 -226764 COG4314 NosL Nitrous oxide reductase accessory protein NosL [Inorganic ion transport and metabolism]. 176 -226765 COG4315 COG4315 Predicted lipoprotein with conserved Yx(FWY)xxD motif (function unknown) [Function unknown]. 138 -226766 COG4316 COG4316 Uncharacterized protein [Function unknown]. 138 -226767 COG4317 XapX Xanthosine utilization system component, XapX domain [Nucleotide transport and metabolism]. 93 -226768 COG4318 COG4318 Uncharacterized protein [Function unknown]. 221 -226769 COG4319 YybH Ketosteroid isomerase homolog [General function prediction only]. 137 -226770 COG4320 COG4320 Uncharacterized conserved protein, DUF2252 family [Function unknown]. 410 -226771 COG4321 COG4321 Predicted DNA-binding protein, contains Ribbon-helix-helix (RHH) domain [General function prediction only]. 102 -226772 COG4322 COG4322 Uncharacterized protein [Function unknown]. 304 -226773 COG4323 COG4323 Uncharacterized protein [Function unknown]. 105 -226774 COG4324 COG4324 Predicted aminopeptidase [General function prediction only]. 376 -226775 COG4325 COG4325 Uncharacterized membrane protein [Function unknown]. 464 -226776 COG4326 Spo0M Sporulation-control protein spo0M [Cell cycle control, cell division, chromosome partitioning]. 270 -226777 COG4327 COG4327 Uncharacterized membrane protein [Function unknown]. 101 -226778 COG4328 COG4328 Predicted nuclease (RNAse H fold) [General function prediction only]. 266 -226779 COG4329 COG4329 Uncharacterized membrane protein [Function unknown]. 160 -226780 COG4330 COG4330 Uncharacterized membrane protein [Function unknown]. 211 -226781 COG4331 COG4331 Uncharacterized membrane protein [Function unknown]. 167 -226782 COG4332 COG4332 Uncharacterized protein [Function unknown]. 203 -226783 COG4333 COG4333 Uncharacterized protein [Function unknown]. 167 -226784 COG4334 COG4334 Uncharacterized protein [Function unknown]. 131 -226785 COG4335 AlkC 3-methyladenine DNA glycosylase AlkC [Replication, recombination and repair]. 167 -226786 COG4336 YcsI Uncharacterized protein YcsI, UPF0317 family [Function unknown]. 265 -226787 COG4337 COG4337 Uncharacterized protein [Function unknown]. 206 -226788 COG4338 COG4338 Uncharacterized protein, DUF2256 family [Function unknown]. 54 -226789 COG4339 COG4339 Predicted metal-dependent phosphohydrolase, HD superfamily [General function prediction only]. 208 -226790 COG4340 COG4340 Predicted dioxygenase, 2-oxoglutarate and Fe-dependent (2OG-Fe) dioxygenase superfamily [General function prediction only]. 226 -226791 COG4341 COG4341 Predicted HD phosphohydrolase [General function prediction only]. 186 -226792 COG4342 COG4342 Intergrase/Recombinase [Mobilome: prophages, transposons]. 291 -226793 COG4343 Cas4 CRISPR/Cas system-associated exonuclease Cas4, RecB family [Defense mechanisms]. 281 -226794 COG4344 COG4344 Predicted transciptional regulator, contains HTH domain [Transcription]. 175 -226795 COG4345 COG4345 Uncharacterized protein [Function unknown]. 181 -226796 COG4346 COG4346 Predicted membrane-bound dolichyl-phosphate-mannose-protein mannosyltransferase [Posttranslational modification, protein turnover, chaperones]. 438 -226797 COG4347 YpjA Uncharacterized membrane protein YpjA [Function unknown]. 200 -226798 COG4352 RPL13 Ribosomal protein L13E [Translation, ribosomal structure and biogenesis]. 113 -226799 COG4353 COG4353 Uncharacterized protein [Function unknown]. 192 -226800 COG4354 COG4354 Uncharacterized protein, contains GBA2_N and DUF608 domains [Function unknown]. 721 -226801 COG4357 COG4357 Uncharacterized protein, contains Zn-finger domain of CHY type [Function unknown]. 105 -226802 COG4359 MtnX 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase (methionine salvage) [Amino acid transport and metabolism]. 220 -226803 COG4360 APA2 ATP adenylyltransferase (5',5'''-P-1,P-4-tetraphosphate phosphorylase II) [Nucleotide transport and metabolism]. 298 -226804 COG4362 COG4362 Nitric oxide synthase, oxygenase domain [Inorganic ion transport and metabolism]. 355 -226805 COG4365 YllA Uncharacterized protein YllA, UPF0747 family [Function unknown]. 537 -226806 COG4367 COG4367 Uncharacterized protein [Function unknown]. 97 -226807 COG4370 COG4370 Uncharacterized protein [Function unknown]. 412 -226808 COG4371 COG4371 Uncharacterized membrane protein [Function unknown]. 334 -226809 COG4372 COG4372 Uncharacterized conserved protein, contains DUF3084 domain [Function unknown]. 499 -226810 COG4373 COG4373 Mu-like prophage FluMu protein gp28 [Mobilome: prophages, transposons]. 509 -226811 COG4374 COG4374 PIN domain nuclease, a component of toxin-antitoxin system (PIN domain) [Defense mechanisms]. 130 -226812 COG4377 YhfC Uncharacterized membrane protein YhfC [Function unknown]. 258 -226813 COG4378 COG4378 Uncharacterized protein [Function unknown]. 103 -226814 COG4379 COG4379 Mu-like prophage tail protein gpP [Mobilome: prophages, transposons]. 386 -226815 COG4380 COG4380 Uncharacterized protein [Function unknown]. 216 -226816 COG4381 gp46 Mu-like prophage protein gp46 [Mobilome: prophages, transposons]. 135 -226817 COG4382 gp16 Mu-like prophage protein gp16 [Mobilome: prophages, transposons]. 170 -226818 COG4383 gp29 Mu-like prophage protein gp29 [Mobilome: prophages, transposons]. 517 -226819 COG4384 gp45 Mu-like prophage protein gp45 [Mobilome: prophages, transposons]. 203 -226820 COG4385 gpI Bacteriophage P2-related tail formation protein [Mobilome: prophages, transposons]. 206 -226821 COG4386 COG4386 Mu-like prophage tail sheath protein gpL [Mobilome: prophages, transposons]. 487 -226822 COG4387 gp436 Mu-like prophage protein gp36 [Mobilome: prophages, transposons]. 139 -226823 COG4388 COG4388 Mu-like prophage I protein [Mobilome: prophages, transposons]. 357 -226824 COG4389 COG4389 Site-specific recombinase [Replication, recombination and repair]. 677 -226825 COG4390 COG4390 Uncharacterized protein [Function unknown]. 106 -226826 COG4391 COG4391 Uncharacterized conserved protein, contains Zn-finger domain [Function unknown]. 62 -226827 COG4392 AzlD2 Branched-chain amino acid transport protein [Amino acid transport and metabolism]. 107 -226828 COG4393 COG4393 Uncharacterized membrane protein [Function unknown]. 405 -226829 COG4394 COG4394 Uncharacterized protein [Function unknown]. 370 -226830 COG4395 Tim44 Predicted lipid-binding transport protein, Tim44 family [Lipid transport and metabolism]. 281 -226831 COG4396 COG4396 Mu-like prophage host-nuclease inhibitor protein Gam [Mobilome: prophages, transposons]. 170 -226832 COG4397 COG4397 Mu-like prophage major head subunit gpT [Mobilome: prophages, transposons]. 308 -226833 COG4398 FIST Small ligand-binding sensory domain FIST [Signal transduction mechanisms]. 389 -226834 COG4399 YheB Uncharacterized membrane protein YheB, UPF0754 family [Function unknown]. 376 -226835 COG4401 AroH Chorismate mutase [Amino acid transport and metabolism]. 125 -226836 COG4402 COG4402 Uncharacterized protein [Function unknown]. 457 -226837 COG4403 LcnDR2 Lantibiotic modifying enzyme [Defense mechanisms]. 963 -226838 COG4405 YhfF Predicted RNA-binding protein YhfF, contains PUA-like ASCH domain [General function prediction only]. 140 -226839 COG4408 COG4408 Uncharacterized protein [Function unknown]. 431 -226840 COG4409 NanH Neuraminidase (sialidase) [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 728 -226841 COG4412 COG4412 Bacillopeptidase F, M6 metalloprotease family [Posttranslational modification, protein turnover, chaperones]. 760 -226842 COG4413 Utp Urea transporter [Amino acid transport and metabolism]. 319 -226843 COG4416 Com Mu-like prophage FluMu protein Com [Mobilome: prophages, transposons]. 60 -226844 COG4420 COG4420 Uncharacterized membrane protein [Function unknown]. 191 -226845 COG4421 COG4421 Capsular polysaccharide biosynthesis protein [Cell wall/membrane/envelope biogenesis]. 368 -226846 COG4422 COG4422 Bacteriophage protein gp37 [Mobilome: prophages, transposons]. 250 -226847 COG4423 COG4423 Uncharacterized protein [Function unknown]. 81 -226848 COG4424 LpsS LPS sulfotransferase NodH [Cell wall/membrane/envelope biogenesis]. 250 -226849 COG4425 COG4425 Uncharacterized membrane protein [Function unknown]. 588 -226850 COG4427 COG4427 Uncharacterized protein [Function unknown]. 350 -226851 COG4430 YdeI Uncharacterized conserved protein YdeI, YjbR/CyaY-like superfamily, DUF1801 family [Function unknown]. 200 -226852 COG4443 COG4443 Uncharacterized protein [Function unknown]. 72 -226853 COG4445 MiaE tRNA isopentenyl-2-thiomethyl-A-37 hydroxylase MiaE (synthesis of 2-methylthio-cis-ribozeatin) [Translation, ribosomal structure and biogenesis]. 203 -226854 COG4446 COG4446 Uncharacterized conserved protein, DUF1499 family [Function unknown]. 141 -226855 COG4447 COG4447 Uncharacterized protein related to plant photosystem II stability/assembly factor [General function prediction only]. 339 -226856 COG4448 AnsA2 L-asparaginase II [Amino acid transport and metabolism]. 339 -226857 COG4449 COG4449 Predicted protease, Abi (CAAX) family [General function prediction only]. 827 -226858 COG4451 RbcS Ribulose bisphosphate carboxylase small subunit [Carbohydrate transport and metabolism]. 127 -226859 COG4452 CreD Inner membrane protein involved in colicin E2 resistance [Defense mechanisms]. 443 -226860 COG4453 COG4453 Uncharacterized conserved protein, DUF1778 family [Function unknown]. 95 -226861 COG4454 COG4454 Uncharacterized copper-binding protein, cupredoxin-like subfamily [General function prediction only]. 158 -226862 COG4455 ImpE Protein of avirulence locus involved in temperature-dependent protein secretion [General function prediction only]. 273 -226863 COG4456 VagC Virulence-associated protein VagC (function unknown) [Function unknown]. 74 -226864 COG4457 SrfB Uncharacterized protein [Function unknown]. 1014 -226865 COG4458 SrfC Uncharacterized protein [Function unknown]. 821 -226866 COG4459 NapE Periplasmic nitrate reductase system, NapE component [Energy production and conversion]. 62 -226867 COG4460 COG4460 Uncharacterized protein [Function unknown]. 130 -226868 COG4461 LprI Uncharacterized protein LprI [Function unknown]. 185 -226869 COG4463 CtsR Transcriptional regulator CtsR [Transcription]. 153 -226870 COG4464 YwqE Tyrosine-protein phosphatase YwqE [Signal transduction mechanisms]. 254 -226871 COG4465 CodY GTP-sensing pleiotropic transcriptional regulator CodY [Transcription]. 261 -226872 COG4466 COG4466 Uncharacterized protein Veg, DUF1021 family [Function unknown]. 80 -226873 COG4467 YabA Regulator of replication initiation timing [Replication, recombination and repair]. 114 -226874 COG4468 GalT2 Galactose-1-phosphate uridylyltransferase [Carbohydrate transport and metabolism]. 503 -226875 COG4469 CoiA Competence protein CoiA-like family, contains a predicted nuclease domain [General function prediction only]. 342 -226876 COG4470 YutD Uncharacterized protein YutD, DUF1027 family [Function unknown]. 126 -226877 COG4471 YlbG Uncharacterized protein YlbG, UPF0298 family [Function unknown]. 90 -226878 COG4472 IreB-like IreB family regulatory phosphoprotein. IreB (EF1202) was characterized in Enterococcus faecalis as a small protein, well-conserved in the Firmicutes. It belongs to a system that includes the Ser/Thr protein kinase IreK, and phosphatase IreP, undergoes phosphorylation on threonine residues, and is involved in regulating cephalosporin resistance. This family was previously named DUF965 by Pfam model pfam06135 88 -226879 COG4473 EcsB Predicted ABC-type exoprotein transport system, permease component [Intracellular trafficking, secretion, and vesicular transport]. 379 -226880 COG4474 YoqJ Uncharacterized SPBc2 prophage-derived protein YoqJ [Mobilome: prophages, transposons]. 180 -226881 COG4475 YwlG Uncharacterized protein YwlG, UPF0340 family [Function unknown]. 180 -226882 COG4476 YktA Uncharacterized protein YktA, UPF0223 family [Function unknown]. 90 -226883 COG4477 EzrA Septation ring formation regulator EzrA [Cell cycle control, cell division, chromosome partitioning]. 570 -226884 COG4478 COG4478 Uncharacterized membrane protein [Function unknown]. 210 -226885 COG4479 YozE Uncharacterized protein YozE, UPF0346 family [Function unknown]. 74 -226886 COG4481 COG4481 Uncharacterized protein, DUF951 family [Function unknown]. 60 -226887 COG4483 YqgQ Uncharacterized protein YqgQ, DUF910 family [Function unknown]. 68 -226888 COG4485 YfhO Uncharacterized membrane protein YfhO [Function unknown]. 858 -226889 COG4487 COG4487 Uncharacterized protein, contains DUF2130 domain [Function unknown]. 438 -226890 COG4492 PheB ACT domain-containing protein [General function prediction only]. 150 -226891 COG4493 YktB Uncharacterized protein YktB, UPF0637 family [Function unknown]. 209 -226892 COG4495 COG4495 Uncharacterized protein [Function unknown]. 109 -226893 COG4496 YerC Predicted DNA-binding transcriptional regulator YerC, contains ArsR-like HTH domain [General function prediction only]. 100 -226894 COG4499 YukC Uncharacterized membrane protein YukC [Function unknown]. 434 -226895 COG4502 YorC 5'(3')-deoxyribonucleotidase [Nucleotide transport and metabolism]. 180 -226896 COG4506 YwiB Uncharacterized beta-barrel protein YwiB, DUF1934 family [Function unknown]. 143 -226897 COG4508 Dut2 Dimeric dUTPase, all-alpha-NTP-PPase (MazG) superfamily [Nucleotide transport and metabolism]. 161 -226898 COG4509 SrtB class B sortase (surface protein transpeptidase) [Cell wall/membrane/envelope biogenesis]. 244 -226899 COG4512 AgrB Accessory gene regulator protein AgrB [Transcription, Signal transduction mechanisms]. 198 -226900 COG4517 COG4517 Uncharacterized protein [Function unknown]. 109 -226901 COG4518 gp41 Mu-like prophage FluMu protein gp41 [Mobilome: prophages, transposons]. 122 -226902 COG4519 COG4519 Uncharacterized protein [Function unknown]. 95 -226903 COG4520 LipA17 Surface antigen [Cell wall/membrane/envelope biogenesis]. 136 -226904 COG4521 TauA ABC-type taurine transport system, periplasmic component [Inorganic ion transport and metabolism]. 334 -226905 COG4525 TauB ABC-type taurine transport system, ATPase component [Inorganic ion transport and metabolism]. 259 -226906 COG4529 YdhS Uncharacterized NAD(P)/FAD-binding protein YdhS [General function prediction only]. 474 -226907 COG4530 COG4530 Uncharacterized protein [Function unknown]. 129 -226908 COG4531 ZnuA ABC-type Zn2+ transport system, periplasmic component/surface adhesin [Inorganic ion transport and metabolism]. 318 -226909 COG4533 SgrR DNA-binding transcriptional regulator SgrR of sgrS sRNA, contains a MarR-type HTH domain and a periplasmic-type solute-binding domain [Transcription]. 564 -226910 COG4535 CorC Mg2+ and Co2+ transporter CorC, contains CBS pair and CorC-HlyC domains [Inorganic ion transport and metabolism]. 293 -226911 COG4536 CorB Mg2+ and Co2+ transporter CorB, contains DUF21, CBS pair, and CorC-HlyC domains [Inorganic ion transport and metabolism]. 423 -226912 COG4537 ComGC Competence protein ComGC [Mobilome: prophages, transposons]. 107 -226913 COG4538 COG4538 Uncharacterized protein [Function unknown]. 112 -226914 COG4539 COG4539 Uncharacterized membrane protein YGL010W [Function unknown]. 180 -226915 COG4540 gpV Phage P2 baseplate assembly protein gpV [Mobilome: prophages, transposons]. 184 -226916 COG4541 COG4541 Uncharacterized membrane protein [Function unknown]. 100 -226917 COG4542 PduX Protein involved in propanediol utilization, and related proteins (includes coumermycin biosynthetic... [Secondary metabolites biosynthesis, transport and catabolism]. 293 -226918 COG4544 COG4544 Uncharacterized conserved protein [Function unknown]. 260 -226919 COG4545 COG4545 Glutaredoxin-related protein [Posttranslational modification, protein turnover, chaperones]. 85 -226920 COG4547 CobT2 Cobalamin biosynthesis protein CobT (nicotinate-mononucleotide:5, 6-dimethylbenzimidazole phosphorib... [Coenzyme transport and metabolism]. 620 -226921 COG4548 NorD Nitric oxide reductase activation protein [Inorganic ion transport and metabolism]. 637 -226922 COG4549 YcnI Uncharacterized protein YcnI, contains cohesin/reeler-like domain [Function unknown]. 178 -226923 COG4550 YmcA Cell fate regulator YmcA, YheA/YmcA/DUF963 family (controls sporulation, competence, biofilm development) [Signal transduction mechanisms]. 120 -226924 COG4551 COG4551 Predicted protein tyrosine phosphatase [General function prediction only]. 109 -226925 COG4552 Eis Predicted acetyltransferase [General function prediction only]. 389 -226926 COG4553 DepA Poly-beta-hydroxyalkanoate depolymerase [Lipid transport and metabolism]. 415 -226927 COG4555 NatA ABC-type Na+ transport system, ATPase component NatA [Energy production and conversion, Inorganic ion transport and metabolism]. 245 -226928 COG4558 ChuT ABC-type hemin transport system, periplasmic component [Inorganic ion transport and metabolism]. 300 -226929 COG4559 COG4559 ABC-type hemin transport system, ATPase component [Inorganic ion transport and metabolism]. 259 -226930 COG4564 COG4564 Signal transduction histidine kinase [Signal transduction mechanisms]. 459 -226931 COG4565 CitB Response regulator of citrate/malate metabolism [Transcription, Signal transduction mechanisms]. 224 -226932 COG4566 FixJ Two-component response regulator, FixJ family, consists of REC and HTH domains [Signal transduction mechanisms, Transcription]. 202 -226933 COG4567 COG4567 Two-component response regulator, ActR/RegA family, consists of REC and Fis-type HTH domains [Signal transduction mechanisms, Transcription]. 182 -226934 COG4568 Rof Transcriptional antiterminator Rof (Rho-off) [Transcription]. 84 -226935 COG4569 MhpF Acetaldehyde dehydrogenase (acetylating) [Secondary metabolites biosynthesis, transport and catabolism]. 310 -226936 COG4570 RusA Holliday junction resolvase RusA (prophage-encoded endonuclease) [Replication, recombination and repair]. 132 -226937 COG4571 OmpT Outer membrane protease [Cell wall/membrane/envelope biogenesis]. 314 -226938 COG4572 ChaB Cation transport regulator ChaB [Inorganic ion transport and metabolism]. 76 -226939 COG4573 GatZ Tagatose-1,6-bisphosphate aldolase non-catalytic subunit AgaZ/GatZ [Carbohydrate transport and metabolism]. 426 -226940 COG4574 Eco Serine protease inhibitor ecotin [Posttranslational modification, protein turnover, chaperones]. 162 -226941 COG4575 ElaB Membrane-anchored ribosome-binding protein, inhibits growth in stationary phase, ElaB/YqjD/DUF883 family [Translation, ribosomal structure and biogenesis]. 104 -226942 COG4576 CcmL Carboxysome shell and ethanolamine utilization microcompartment protein CcmK/EutM [Secondary metabolites biosynthesis, transport and catabolism, Energy production and conversion]. 89 -226943 COG4577 CcmK Carboxysome shell and ethanolamine utilization microcompartment protein CcmL/EutN [Secondary metabolites biosynthesis, transport and catabolism, Energy production and conversion]. 150 -226944 COG4578 GutM DNA-binding transcriptional regulator of glucitol operon [Transcription]. 128 -226945 COG4579 AceK Isocitrate dehydrogenase kinase/phosphatase [Signal transduction mechanisms]. 578 -226946 COG4580 LamB Maltoporin (phage lambda and maltose receptor) [Carbohydrate transport and metabolism]. 429 -226947 COG4581 Dob10 Superfamily II RNA helicase [Replication, recombination and repair]. 1041 -226948 COG4582 ZapD Cell division protein ZapD, interacts with FtsZ [Cell cycle control, cell division, chromosome partitioning]. 244 -226949 COG4583 SoxG Sarcosine oxidase gamma subunit [Amino acid transport and metabolism]. 189 -226950 COG4584 COG4584 Transposase [Mobilome: prophages, transposons]. 278 -226951 COG4585 COG4585 Signal transduction histidine kinase [Signal transduction mechanisms]. 365 -226952 COG4586 COG4586 ABC-type uncharacterized transport system, ATPase component [General function prediction only]. 325 -226953 COG4587 COG4587 ABC-type uncharacterized transport system, permease component [General function prediction only]. 268 -226954 COG4588 AcfC Accessory colonization factor AcfC, contains ABC-type periplasmic domain [Cell wall/membrane/envelope biogenesis]. 252 -226955 COG4589 YnbB CDP-diglyceride synthetase [Lipid transport and metabolism]. 303 -226956 COG4590 COG4590 ABC-type uncharacterized transport system, permease component [General function prediction only]. 733 -226957 COG4591 LolE ABC-type transport system, involved in lipoprotein release, permease component [Cell wall/membrane/envelope biogenesis]. 408 -226958 COG4592 FepB ABC-type Fe2+-enterobactin transport system, periplasmic component [Inorganic ion transport and metabolism]. 319 -226959 COG4594 FecB ABC-type Fe3+-citrate transport system, periplasmic component [Inorganic ion transport and metabolism]. 310 -226960 COG4597 BatB ABC-type amino acid transport system, permease component [Amino acid transport and metabolism]. 397 -226961 COG4598 HisP ABC-type histidine transport system, ATPase component [Amino acid transport and metabolism]. 256 -226962 COG4603 COG4603 ABC-type uncharacterized transport system, permease component [General function prediction only]. 356 -226963 COG4604 CeuD ABC-type enterochelin transport system, ATPase component [Inorganic ion transport and metabolism]. 252 -226964 COG4605 CeuC ABC-type enterochelin transport system, permease component [Inorganic ion transport and metabolism]. 316 -226965 COG4606 CeuB ABC-type enterochelin transport system, permease component [Inorganic ion transport and metabolism]. 321 -226966 COG4607 CeuA ABC-type enterochelin transport system, periplasmic component [Inorganic ion transport and metabolism]. 320 -226967 COG4608 AppF ABC-type oligopeptide transport system, ATPase component [Amino acid transport and metabolism]. 268 -226968 COG4615 PvdE ABC-type siderophore export system, fused ATPase and permease components [Inorganic ion transport and metabolism]. 546 -226969 COG4618 ArpD ABC-type protease/lipase transport system, ATPase and permease components [Intracellular trafficking, secretion, and vesicular transport]. 580 -226970 COG4619 FetA ABC-type iron transport system FetAB, ATPase component [Inorganic ion transport and metabolism]. 223 -226971 COG4623 MltF Membrane-bound lytic murein transglycosylase MltF [Cell wall/membrane/envelope biogenesis, Signal transduction mechanisms]. 473 -226972 COG4624 Nar1 Iron only hydrogenase large subunit, C-terminal domain [Energy production and conversion]. 411 -226973 COG4625 COG4625 Uncharacterized conserved protein, contains a C-terminal beta-barrel porin domain [Function unknown]. 577 -226974 COG4626 YmfN Phage terminase-like protein, large subunit, contains N-terminal HTH domain [Mobilome: prophages, transposons]. 546 -226975 COG4627 COG4627 Predicted SAM-depedendent methyltransferase [General function prediction only]. 185 -226976 COG4628 COG4628 Uncharacterized conserved protein, DUF2132 family [Function unknown]. 136 -226977 COG4630 XdhA Xanthine dehydrogenase, Fe-S cluster and FAD-binding subunit XdhA [Nucleotide transport and metabolism]. 493 -226978 COG4631 XdhB Xanthine dehydrogenase, molybdopterin-binding subunit XdhB [Nucleotide transport and metabolism]. 781 -226979 COG4632 EpsL Exopolysaccharide biosynthesis protein related to N-acetylglucosamine-1-phosphodiester alpha-N-acety... [Carbohydrate transport and metabolism]. 320 -226980 COG4633 COG4633 Plastocyanin domain containing protein [General function prediction only]. 272 -226981 COG4634 COG4634 Predicted nuclease, contains PIN domain, potential toxin-antitoxin system component [General function prediction only]. 113 -226982 COG4635 HemG Protoporphyrinogen IX oxidase, menaquinone-dependent (flavodoxin domain) [Coenzyme transport and metabolism]. 175 -226983 COG4636 Uma2 Endonuclease, Uma2 family (restriction endonuclease fold) [General function prediction only]. 200 -226984 COG4637 COG4637 Predicted ATPase [General function prediction only]. 373 -226985 COG4638 HcaE Phenylpropionate dioxygenase or related ring-hydroxylating dioxygenase, large terminal subunit [Inorganic ion transport and metabolism, General function prediction only]. 367 -226986 COG4639 COG4639 Predicted kinase [General function prediction only]. 168 -226987 COG4640 YvbJ Uncharacterized membrane protein YvbJ [Function unknown]. 465 -226988 COG4641 COG4641 Spore maturation protein CgeB [Cell cycle control, cell division, chromosome partitioning]. 373 -226989 COG4642 COG4642 Uncharacterized conserved protein [Function unknown]. 139 -226990 COG4643 COG4643 Uncharacterized domain associated with phage/plasmid primase [Mobilome: prophages, transposons]. 366 -226991 COG4644 COG4644 Transposase and inactivated derivatives, TnpA family [Mobilome: prophages, transposons]. 323 -226992 COG4645 OpgC Predicted acyltransferase [General function prediction only]. 410 -226993 COG4646 COG4646 Adenine-specific DNA methylase, N12 class [Replication, recombination and repair]. 637 -226994 COG4647 AcxC Acetone carboxylase, gamma subunit [Secondary metabolites biosynthesis, transport and catabolism]. 165 -226995 COG4648 COG4648 Uncharacterized membrane protein [Function unknown]. 201 -226996 COG4649 COG4649 Uncharacterized protein [Function unknown]. 221 -226997 COG4650 RtcR Sigma54-dependent transcription regulator containing an AAA-type ATPase domain and a DNA-binding domain [Transcription, Signal transduction mechanisms]. 531 -226998 COG4651 RosB Predicted Kef-type K+ transport protein, K+/H+ antiporter domain [Inorganic ion transport and metabolism]. 408 -226999 COG4652 COG4652 Uncharacterized protein [Function unknown]. 657 -227000 COG4653 COG4653 Predicted phage phi-C31 gp36 major capsid-like protein [Mobilome: prophages, transposons]. 422 -227001 COG4654 CytC552 Cytochrome c551/c552 [Energy production and conversion]. 110 -227002 COG4655 COG4655 Uncharacterized membrane protein [Function unknown]. 565 -227003 COG4656 RnfC Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfC subunit [Energy production and conversion]. 529 -227004 COG4657 RnfA Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfA subunit [Energy production and conversion]. 193 -227005 COG4658 RnfD Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfD subunit [Energy production and conversion]. 338 -227006 COG4659 RnfG Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfG subunit [Energy production and conversion]. 195 -227007 COG4660 RnfE Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfE subunit [Energy production and conversion]. 212 -227008 COG4662 TupA ABC-type tungstate transport system, periplasmic component [Inorganic ion transport and metabolism]. 227 -227009 COG4663 FcbT1 TRAP-type mannitol/chloroaromatic compound transport system, periplasmic component [Secondary metabolites biosynthesis, transport and catabolism]. 363 -227010 COG4664 FcbT3 TRAP-type mannitol/chloroaromatic compound transport system, large permease component [Secondary metabolites biosynthesis, transport and catabolism]. 447 -227011 COG4665 FcbT2 TRAP-type mannitol/chloroaromatic compound transport system, small permease component [Secondary metabolites biosynthesis, transport and catabolism]. 182 -227012 COG4666 COG4666 TRAP-type uncharacterized transport system, fused permease components [General function prediction only]. 642 -227013 COG4667 YjjU Predicted phospholipase, patatin/cPLA2 family [Lipid transport and metabolism]. 292 -227014 COG4668 MtlA2 Mannitol/fructose-specific phosphotransferase system, IIA domain [Carbohydrate transport and metabolism]. 142 -227015 COG4669 EscJ Type III secretory pathway, lipoprotein EscJ [Intracellular trafficking, secretion, and vesicular transport]. 246 -227016 COG4670 YdiF Acyl CoA:acetate/3-ketoacid CoA transferase [Lipid transport and metabolism]. 527 -227017 COG4671 COG4671 Predicted glycosyl transferase [General function prediction only]. 400 -227018 COG4672 gp18 Phage-related protein [Mobilome: prophages, transposons]. 231 -227019 COG4674 COG4674 ABC-type uncharacterized transport system, ATPase component [General function prediction only]. 249 -227020 COG4675 MdpB Microcystin-dependent protein (function unknown) [Function unknown]. 170 -227021 COG4676 YfaP Uncharacterized conserved protein YfaP, DUF2135 family [Function unknown]. 268 -227022 COG4677 PemB Pectin methylesterase and related acyl-CoA thioesterases [Carbohydrate transport and metabolism, Lipid transport and metabolism]. 405 -227023 COG4678 COG4678 Muramidase (phage lambda lysozyme) [Cell wall/membrane/envelope biogenesis, Mobilome: prophages, transposons]. 180 -227024 COG4679 COG4679 Phage-related protein [Mobilome: prophages, transposons]. 116 -227025 COG4680 HigB mRNA-degrading endonuclease (mRNA interferase) HigB, toxic component of the HigAB toxin-antitoxin module [Translation, ribosomal structure and biogenesis]. 98 -227026 COG4681 YaeQ Uncharacterized conserved protein YaeQ, suppresses RfaH defect [Function unknown]. 181 -227027 COG4682 YiaA Uncharacterized membrane protein YiaA [Function unknown]. 128 -227028 COG4683 COG4683 Uncharacterized protein [Function unknown]. 120 -227029 COG4684 COG4684 Uncharacterized membrane protein [Function unknown]. 189 -227030 COG4685 YfaA Uncharacterized conserved protein YfaA, DUF2138 family [Function unknown]. 571 -227031 COG4687 COG4687 Uncharacterized protein [Function unknown]. 122 -227032 COG4688 COG4688 Uncharacterized protein [Function unknown]. 665 -227033 COG4689 Adc Acetoacetate decarboxylase [Secondary metabolites biosynthesis, transport and catabolism]. 247 -227034 COG4690 PepD Dipeptidase [Amino acid transport and metabolism]. 464 -227035 COG4691 StbC Plasmid stability protein [Defense mechanisms]. 80 -227036 COG4692 COG4692 Predicted neuraminidase (sialidase) [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 381 -227037 COG4693 PchG Oxidoreductase (NAD-binding), involved in siderophore biosynthesis [Inorganic ion transport and metabolism]. 361 -227038 COG4694 RloC Wobble nucleotide-excising tRNase [Translation, ribosomal structure and biogenesis]. 758 -227039 COG4695 BeeE Phage portal protein BeeE [Mobilome: prophages, transposons]. 398 -227040 COG4696 COG4696 Predicted phosphohydrolase, Cof family, HAD superfamily [General function prediction only]. 180 -227041 COG4697 COG4697 Uncharacterized protein [Function unknown]. 319 -227042 COG4698 YpmS Uncharacterized protein YpmS, DUF2140 family [Function unknown]. 197 -227043 COG4699 COG4699 Uncharacterized protein [Function unknown]. 120 -227044 COG4700 COG4700 Uncharacterized protein [Function unknown]. 251 -227045 COG4701 COG4701 Uncharacterized protein [Function unknown]. 162 -227046 COG4702 COG4702 Uncharacterized protein, UPF0303 family [Function unknown]. 168 -227047 COG4703 YkuJ Uncharacterized protein YkuJ, DUF1797 family [Function unknown]. 74 -227048 COG4704 COG4704 Uncharacterized conserved protein, DUF2141 family [Function unknown]. 151 -227049 COG4705 COG4705 Uncharacterized membrane-anchored protein [Function unknown]. 258 -227050 COG4706 COG4706 Predicted 3-hydroxylacyl-ACP dehydratase, HotDog domain [Lipid transport and metabolism]. 161 -227051 COG4707 COG4707 Prophage pi2 protein 07 [Mobilome: prophages, transposons]. 107 -227052 COG4708 COG4708 Uncharacterized membrane protein [Function unknown]. 169 -227053 COG4709 COG4709 Uncharacterized membrane protein [Function unknown]. 195 -227054 COG4710 COG4710 Predicted DNA-binding protein with an HTH domain [General function prediction only]. 80 -227055 COG4711 COG4711 Uncharacterized membrane protein [Function unknown]. 217 -227056 COG4712 COG4712 Uncharacterized protein [Function unknown]. 234 -227057 COG4713 COG4713 Uncharacterized membrane protein [Function unknown]. 489 -227058 COG4714 COG4714 Uncharacterized membrane-anchored protein [Function unknown]. 303 -227059 COG4715 COG4715 Uncharacterized conserved protein, contains Zn finger domain [Function unknown]. 587 -227060 COG4716 COG4716 Myosin-crossreactive antigen (function unknown) [Function unknown]. 587 -227061 COG4717 YhaN Uncharacterized protein YhaN, contains AAA domain [Function unknown]. 984 -227062 COG4718 COG4718 Phage-related protein [Mobilome: prophages, transposons]. 111 -227063 COG4719 COG4719 Uncharacterized protein [Function unknown]. 176 -227064 COG4720 COG4720 Uncharacterized membrane protein [Function unknown]. 177 -227065 COG4721 YkoE ABC-type thiamine/hydroxymethylpyrimidine transport system, permease component [Coenzyme transport and metabolism]. 192 -227066 COG4722 YomH Phage-related protein [Mobilome: prophages, transposons]. 239 -227067 COG4723 COG4723 Phage-related protein, tail component [Mobilome: prophages, transposons]. 198 -227068 COG4724 COG4724 Endo-beta-N-acetylglucosaminidase D [Carbohydrate transport and metabolism]. 553 -227069 COG4725 IME4 N6-adenosine-specific RNA methylase IME4 [Translation, ribosomal structure and biogenesis]. 198 -227070 COG4726 PilX Tfp pilus assembly protein PilX [Cell motility, Extracellular structures]. 196 -227071 COG4727 COG4727 Uncharacterized protein [Function unknown]. 287 -227072 COG4728 COG4728 Uncharacterized protein, DUF1653 family [Function unknown]. 124 -227073 COG4729 COG4729 Uncharacterized protein, DUF1850 family [Function unknown]. 156 -227074 COG4731 COG4731 Uncharacterized conserved protein, DUF2147 family [Function unknown]. 162 -227075 COG4732 ThiW Predicted membrane protein [Function unknown]. 177 -227076 COG4733 COG4733 Phage-related protein, tail component [Mobilome: prophages, transposons]. 952 -227077 COG4734 ArdA Antirestriction protein [Defense mechanisms]. 193 -227078 COG4735 YaaW Uncharacterized protein YaaW, UPF0174 family [Function unknown]. 211 -227079 COG4736 CcoQ Cbb3-type cytochrome oxidase, subunit 3 [Energy production and conversion]. 60 -227080 COG4737 COG4737 Uncharacterized protein [Function unknown]. 123 -227081 COG4738 COG4738 Predicted transcriptional regulator [Transcription]. 124 -227082 COG4739 COG4739 Uncharacterized protein, contains ferredoxin domain [Function unknown]. 182 -227083 COG4740 COG4740 Predicted metalloprotease [General function prediction only]. 176 -227084 COG4741 COG4741 Predicted secreted endonuclease distantly related to archaeal Holliday junction resolvase [Nucleotide transport and metabolism]. 175 -227085 COG4742 COG4742 Predicted transcriptional regulator, contains HTH domain [Transcription]. 260 -227086 COG4743 COG4743 Uncharacterized membrane protein [Function unknown]. 316 -227087 COG4744 COG4744 Uncharacterized protein [Function unknown]. 121 -227088 COG4745 COG4745 Predicted membrane-bound mannosyltransferase [General function prediction only]. 556 -227089 COG4746 COG4746 Uncharacterized protein [Function unknown]. 80 -227090 COG4747 ACTx2 Uncharacterized conserved protein, contains tandem ACT domains [Function unknown]. 142 -227091 COG4748 COG4748 Uncharacterized protein, contains restriction enzyme R protein N terminal (HSDR_N) domain [Function unknown]. 365 -227092 COG4749 COG4749 Uncharacterized protein [Function unknown]. 196 -227093 COG4750 LicC CTP:phosphocholine cytidylyltransferase involved in choline phosphorylation for cell surface LPS epi... [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism]. 231 -227094 COG4752 COG4752 Uncharacterized protein [Function unknown]. 190 -227095 COG4753 YesN Two-component response regulator, YesN/AraC family, consists of REC and AraC-type DNA-binding domains [Signal transduction mechanisms, Transcription]. 475 -227096 COG4754 COG4754 Uncharacterized protein [Function unknown]. 157 -227097 COG4755 COG4755 Uncharacterized protein [Function unknown]. 151 -227098 COG4756 COG4756 Predicted cation transporter [General function prediction only]. 367 -227099 COG4757 COG4757 Predicted alpha/beta hydrolase [General function prediction only]. 281 -227100 COG4758 LiaF Predicted membrane protein [Function unknown]. 235 -227101 COG4759 COG4759 Uncharacterized protein, contains thioredoxin-like domain [General function prediction only]. 316 -227102 COG4760 COG4760 Uncharacterized membrane protein, YccA/Bax inhibitor family [Function unknown]. 276 -227103 COG4762 COG4762 Uncharacterized protein, UPF0548 family [Function unknown]. 168 -227104 COG4763 YcfT Uncharacterized membrane protein YcfT [Function unknown]. 388 -227105 COG4764 COG4764 Uncharacterized protein [Function unknown]. 197 -227106 COG4765 COG4765 Uncharacterized protein [Function unknown]. 164 -227107 COG4766 EutQ Ethanolamine utilization protein EutQ, cupin superfamily (function unknown) [Amino acid transport and metabolism]. 176 -227108 COG4767 VanZ Glycopeptide antibiotics resistance protein [Defense mechanisms]. 199 -227109 COG4768 COG4768 Uncharacterized protein YoxC, contains an MCP-like domain [Function unknown]. 139 -227110 COG4769 COG4769 Uncharacterized membrane protein [Function unknown]. 181 -227111 COG4770 PccA Acetyl/propionyl-CoA carboxylase, alpha subunit [Lipid transport and metabolism]. 645 -227112 COG4771 FepA Outer membrane receptor for ferrienterochelin and colicins [Inorganic ion transport and metabolism]. 699 -227113 COG4772 FecA Outer membrane receptor for Fe3+-dicitrate [Inorganic ion transport and metabolism]. 753 -227114 COG4773 FhuE Outer membrane receptor for ferric coprogen and ferric-rhodotorulic acid [Inorganic ion transport and metabolism]. 719 -227115 COG4774 Fiu Outer membrane receptor for monomeric catechols [Inorganic ion transport and metabolism]. 750 -227116 COG4775 BamA Outer membrane protein assembly factor BamA [Cell wall/membrane/envelope biogenesis]. 766 -227117 COG4776 Rnb Exoribonuclease II [Transcription]. 645 -227118 COG4778 PhnL Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnL [Inorganic ion transport and metabolism]. 235 -227119 COG4779 FepG ABC-type enterobactin transport system, permease component [Inorganic ion transport and metabolism]. 346 -227120 COG4781 UgpQ1 Membrane-anchored glycerophosphoryl diester phosphodiesterase (GDPDase), membrane domain [Lipid transport and metabolism]. 340 -227121 COG4782 COG4782 Esterase/lipase superfamily enzyme [General function prediction only]. 377 -227122 COG4783 YfgC Putative Zn-dependent protease, contains TPR repeats [General function prediction only]. 484 -227123 COG4784 COG4784 Putative Zn-dependent protease [General function prediction only]. 479 -227124 COG4785 NlpI Lipoprotein NlpI, contains TPR repeats [Cell wall/membrane/envelope biogenesis]. 297 -227125 COG4786 FlgG Flagellar basal body rod protein FlgG [Cell motility]. 265 -227126 COG4787 FlgF Flagellar basal body rod protein FlgF [Cell motility]. 251 -227127 COG4789 EscV Type III secretory pathway, component EscV [Intracellular trafficking, secretion, and vesicular transport]. 689 -227128 COG4790 EscR Type III secretory pathway, component EscR [Intracellular trafficking, secretion, and vesicular transport]. 214 -227129 COG4791 EscT Type III secretory pathway, component EscT [Intracellular trafficking, secretion, and vesicular transport]. 259 -227130 COG4792 EscU Type III secretory pathway, component EscU [Intracellular trafficking, secretion, and vesicular transport]. 349 -227131 COG4794 EscS Type III secretory pathway, component EscS [Intracellular trafficking, secretion, and vesicular transport]. 89 -227132 COG4795 PulJ Type II secretory pathway, component PulJ [Intracellular trafficking, secretion, and vesicular transport]. 194 -227133 COG4796 HofQ Type II secretory pathway, component HofQ [Intracellular trafficking, secretion, and vesicular transport]. 709 -227134 COG4797 COG4797 Predicted regulatory domain of a methyltransferase [General function prediction only]. 268 -227135 COG4798 COG4798 Predicted methyltransferase [General function prediction only]. 238 -227136 COG4799 MmdA Acetyl-CoA carboxylase, carboxyltransferase component [Lipid transport and metabolism]. 526 -227137 COG4800 COG4800 Predicted transcriptional regulator with an HTH domain [Transcription]. 170 -227138 COG4801 COG4801 Predicted acyltransferase, contains DUF342 domain [General function prediction only]. 277 -227139 COG4802 FtrB Ferredoxin-thioredoxin reductase, catalytic subunit [Energy production and conversion]. 110 -227140 COG4803 COG4803 Uncharacterized membrane protein [Function unknown]. 170 -227141 COG4804 YhcG Predicted nuclease of restriction endonuclease-like (RecB) superfamily, DUF1016 family [General function prediction only]. 159 -227142 COG4805 COG4805 Uncharacterized conserved protein, DUF885 familyt [Function unknown]. 588 -227143 COG4806 RhaA L-rhamnose isomerase [Carbohydrate transport and metabolism]. 419 -227144 COG4807 YehS Uncharacterized conserved protein YehS, DUF1456 family [Function unknown]. 155 -227145 COG4808 YehR Uncharacterized lipoprotein YehR, DUF1307 family [Function unknown]. 152 -227146 COG4809 Pfk2 Archaeal ADP-dependent phosphofructokinase/glucokinase [Carbohydrate transport and metabolism]. 466 -227147 COG4810 EutS Ethanolamine utilization protein EutS, ethanolamine utilization microcompartment shell protein [Amino acid transport and metabolism]. 121 -227148 COG4811 YobD Uncharacterized membrane protein YobD, UPF0266 family [Function unknown]. 152 -227149 COG4812 EutT Ethanolamine utilization cobalamin adenosyltransferase [Amino acid transport and metabolism]. 255 -227150 COG4813 ThuA Trehalose utilization protein [Carbohydrate transport and metabolism]. 261 -227151 COG4814 COG4814 Uncharacterized protein with an alpha/beta hydrolase fold [Function unknown]. 288 -227152 COG4815 COG4815 Uncharacterized protein [Function unknown]. 145 -227153 COG4816 EutL Ethanolamine utilization protein EutL, ethanolamine utilization microcompartment shell protein [Amino acid transport and metabolism]. 219 -227154 COG4817 GINS DNA-binding ferritin-like protein (Dps family) [Replication, recombination and repair]. 111 -227155 COG4818 COG4818 Uncharacterized membrane protein [Function unknown]. 105 -227156 COG4819 EutA Ethanolamine utilization protein EutA, possible chaperonin protecting lyase from inhibition [Amino acid transport and metabolism]. 473 -227157 COG4820 EutJ Ethanolamine utilization protein EutJ, possible chaperonin [Amino acid transport and metabolism]. 277 -227158 COG4821 COG4821 Uncharacterized protein, contains SIS (Sugar ISomerase) phosphosugar binding domain [General function prediction only]. 243 -227159 COG4822 CbiK Cobalamin biosynthesis protein CbiK, Co2+ chelatase [Coenzyme transport and metabolism]. 265 -227160 COG4823 AbiF Abortive infection bacteriophage resistance protein [Defense mechanisms]. 299 -227161 COG4824 COG4824 Phage-related holin (Lysis protein) [Mobilome: prophages, transposons]. 133 -227162 COG4825 COG4825 Uncharacterized membrane-anchored protein [Function unknown]. 395 -227163 COG4826 SERPIN Serine protease inhibitor [Posttranslational modification, protein turnover, chaperones]. 410 -227164 COG4827 COG4827 Predicted transporter [General function prediction only]. 239 -227165 COG4828 COG4828 Uncharacterized membrane protein [Function unknown]. 113 -227166 COG4829 CatC1 Muconolactone delta-isomerase [Secondary metabolites biosynthesis, transport and catabolism]. 98 -227167 COG4830 RPS26B Ribosomal protein S26 [Translation, ribosomal structure and biogenesis]. 108 -227168 COG4831 COG4831 Roadblock/LC7 domain [Signal transduction mechanisms]. 109 -227169 COG4832 COG4832 Uncharacterized protein [Function unknown]. 207 -227170 COG4833 COG4833 Predicted alpha-1,6-mannanase, GH76 family [Carbohydrate transport and metabolism]. 377 -227171 COG4834 COG4834 Uncharacterized protein [Function unknown]. 334 -227172 COG4835 COG4835 Uncharacterized protein [Function unknown]. 124 -227173 COG4836 YwzB Uncharacterized membrane protein YwzB [Function unknown]. 77 -227174 COG4837 YuzD Disulfide oxidoreductase YuzD [Posttranslational modification, protein turnover, chaperones]. 106 -227175 COG4838 YlaN Uncharacterized protein YlaN, UPF0358 family [Function unknown]. 92 -227176 COG4839 FtsL2 Cell division protein FtsL [Cell cycle control, cell division, chromosome partitioning]. 120 -227177 COG4840 YfkK Uncharacterized protein YfkK, UPF0435 family [Function unknown]. 71 -227178 COG4841 YneR Uncharacterized protein YneR, related to HesB/YadR/YfhF family [Function unknown]. 95 -227179 COG4842 YukE Uncharacterized conserved protein YukE [Function unknown]. 97 -227180 COG4843 YebE Uncharacterized protein YebE, UPF0316/DUF2179 family [Function unknown]. 179 -227181 COG4844 YuzB Uncharacterized protein YuzB, UPF0349 family [Function unknown]. 78 -227182 COG4845 CatA Chloramphenicol O-acetyltransferase [Defense mechanisms]. 219 -227183 COG4846 CcdC Membrane protein CcdC involved in cytochrome C biogenesis [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 163 -227184 COG4847 COG4847 Uncharacterized protein [Function unknown]. 103 -227185 COG4848 YtpQ Uncharacterized protein YtpQ, UPF0354 family [Function unknown]. 265 -227186 COG4849 COG4849 Predicted nucleotidyltransferase [General function prediction only]. 269 -227187 COG4850 App1 Phosphatidate phosphatase APP1 [Lipid transport and metabolism]. 373 -227188 COG4851 CamS Protein involved in sex pheromone biosynthesis [General function prediction only]. 382 -227189 COG4852 COG4852 Uncharacterized membrane protein [Function unknown]. 134 -227190 COG4853 YycI Two-component signal transduction system YycFG, regulatory protein YycI [Signal transduction mechanisms]. 264 -227191 COG4854 COG4854 Uncharacterized membrane protein [Function unknown]. 126 -227192 COG4855 COG4855 Uncharacterized protein [Nucleotide transport and metabolism]. 76 -227193 COG4856 YbbR Uncharacterized protein, YbbR domain [Function unknown]. 403 -227194 COG4857 COG4857 5-Methylthioribose kinase, methionine salvage pathway [Amino acid transport and metabolism]. 408 -227195 COG4858 COG4858 Uncharacterized membrane-anchored protein [Function unknown]. 226 -227196 COG4859 COG4859 Uncharacterized protein [Function unknown]. 105 -227197 COG4860 COG4860 Predicted DNA-binding transcriptional regulator, ArsR family [Transcription]. 170 -227198 COG4861 COG4861 Uncharacterized protein [Function unknown]. 345 -227199 COG4862 MecA Negative regulator of genetic competence, sporulation and motility [Transcription, Signal transduction mechanisms, Cell motility]. 224 -227200 COG4863 YycH Two-component signal transduction system YycFG, regulatory protein YycH [Signal transduction mechanisms]. 439 -227201 COG4864 YqfA Uncharacterized protein YqfA, UPF0365 family [Function unknown]. 328 -227202 COG4865 GlmE Glutamate mutase epsilon subunit [Amino acid transport and metabolism]. 485 -227203 COG4866 COG4866 Uncharacterized protein [Function unknown]. 294 -227204 COG4867 COG4867 Uncharacterized protein, contains von Willebrand factor type A (vWA) domain [Function unknown]. 652 -227205 COG4868 COG4868 Uncharacterized protein, UPF0371 family [Function unknown]. 493 -227206 COG4869 PduL Propanediol utilization protein [Secondary metabolites biosynthesis, transport and catabolism]. 210 -227207 COG4870 COG4870 Cysteine protease, C1A family [Posttranslational modification, protein turnover, chaperones]. 372 -227208 COG4871 COG4871 Metal-binding trascriptional regulator, contains putative Fe-S cluster and ArsR family DNA binding domain [Transcription]. 193 -227209 COG4872 COG4872 Uncharacterized membrane protein [Function unknown]. 394 -227210 COG4873 YkvS Uncharacterized protein YkvS, DUF2187 family [Function unknown]. 81 -227211 COG4874 COG4874 Uncharacterized protein [Function unknown]. 318 -227212 COG4875 COG4875 Uncharacterized protein [Function unknown]. 156 -227213 COG4876 YdaT Uncharacterized protein YdaT [Function unknown]. 138 -227214 COG4877 COG4877 Uncharacterized protein [Function unknown]. 63 -227215 COG4878 COG4878 Uncharacterized protein [Function unknown]. 309 -227216 COG4879 COG4879 Uncharacterized protein [Function unknown]. 243 -227217 COG4880 COG4880 Secreted protein containing C-terminal beta-propeller domain distantly related to WD-40 repeats [General function prediction only]. 603 -227218 COG4881 COG4881 Predicted membrane protein [Function unknown]. 371 -227219 COG4882 COG4882 Predicted aminopeptidase, Iap family [General function prediction only]. 486 -227220 COG4883 COG4883 Uncharacterized protein [Function unknown]. 500 -227221 COG4884 YfeS Uncharacterized conserved protein YfeS, contains WGR domain [Function unknown]. 176 -227222 COG4885 COG4885 Uncharacterized protein [Function unknown]. 312 -227223 COG4886 LRR Leucine-rich repeat (LRR) protein [Transcription]. 394 -227224 COG4887 COG4887 Uncharacterized metal-binding protein, DUF1847 family [Function unknown]. 191 -227225 COG4888 Elf1 Transcription elongation factor Elf1, contains Zn-ribbon domain [Transcription]. 104 -227226 COG4889 COG4889 Predicted helicase [General function prediction only]. 1518 -227227 COG4890 COG4890 Predicted outer membrane lipoprotein [Function unknown]. 37 -227228 COG4891 COG4891 Uncharacterized protein [Function unknown]. 93 -227229 COG4892 COG4892 Predicted heme/steroid binding protein [General function prediction only]. 81 -227230 COG4893 COG4893 Uncharacterized protein [Function unknown]. 123 -227231 COG4894 YxjI Uncharacterized protein YxjI, Tubby2 superfamily [Function unknown]. 159 -227232 COG4895 YwbE Uncharacterized protein YwbE, DUF2196 family [Function unknown]. 63 -227233 COG4896 YlaI Uncharacterized protein YlaI, DUF2197 family [Function unknown]. 68 -227234 COG4897 CsbA General stress protein CsbA (function unknown) [Function unknown]. 78 -227235 COG4898 COG4898 Uncharacterized protein [Function unknown]. 115 -227236 COG4899 COG4899 Uncharacterized protein [Function unknown]. 166 -227237 COG4900 COG4900 Predicted metallopeptidase [General function prediction only]. 133 -227238 COG4901 RPS25 Ribosomal protein S25 [Translation, ribosomal structure and biogenesis]. 107 -227239 COG4902 COG4902 Uncharacterized protein [Function unknown]. 189 -227240 COG4903 ComK Competence transcription factor ComK [Transcription]. 190 -227241 COG4904 COG4904 Uncharacterized protein [Function unknown]. 174 -227242 COG4905 COG4905 Uncharacterized membrane protein [Function unknown]. 243 -227243 COG4906 COG4906 Uncharacterized membrane protein [Function unknown]. 696 -227244 COG4907 COG4907 Uncharacterized membrane protein [Function unknown]. 595 -227245 COG4908 COG4908 Uncharacterized protein, contains a NRPS condensation (elongation) domain [General function prediction only]. 439 -227246 COG4909 PduC Propanediol dehydratase, large subunit [Secondary metabolites biosynthesis, transport and catabolism]. 554 -227247 COG4910 PduE Propanediol dehydratase, small subunit [Secondary metabolites biosynthesis, transport and catabolism]. 170 -227248 COG4911 COG4911 Uncharacterized protein [Function unknown]. 123 -227249 COG4912 AlkD 3-methyladenine DNA glycosylase AlkD [Replication, recombination and repair]. 222 -227250 COG4913 COG4913 Uncharacterized protein, contains a C-terminal ATPase domain [Function unknown]. 1104 -227251 COG4914 COG4914 Predicted nucleotidyltransferase [General function prediction only]. 190 -227252 COG4915 XpaC 5-bromo-4-chloroindolyl phosphate hydrolysis protein [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]. 204 -227253 COG4916 COG4916 Uncharacterized protein [Function unknown]. 329 -227254 COG4917 EutP Ethanolamine utilization protein EutP, contains a P-loop NTPase domain [Amino acid transport and metabolism]. 148 -227255 COG4918 YqkB Predicted Fe-S cluster biosynthesis protein [General function prediction only]. 114 -227256 COG4919 RPS30 Ribosomal protein S30 [Translation, ribosomal structure and biogenesis]. 54 -227257 COG4920 COG4920 Uncharacterized membrane protein [Function unknown]. 249 -227258 COG4921 COG4921 Uncharacterized protein [Function unknown]. 131 -227259 COG4922 COG4922 Predicted SnoaL-like aldol condensation-catalyzing enzyme [General function prediction only]. 129 -227260 COG4923 COG4923 Predicted nuclease (RNAse H fold) [General function prediction only]. 245 -227261 COG4924 COG4924 Uncharacterized protein [Function unknown]. 386 -227262 COG4925 COG4925 Uncharacterized protein [Function unknown]. 166 -227263 COG4926 PblB Phage-related protein [Mobilome: prophages, transposons]. 698 -227264 COG4927 COG4927 Predicted choloylglycine hydrolase [General function prediction only]. 336 -227265 COG4928 COG4928 Predicted P-loop ATPase, KAP-like [General function prediction only]. 646 -227266 COG4929 COG4929 Uncharacterized membrane-anchored protein [Function unknown]. 190 -227267 COG4930 COG4930 Predicted ATP-dependent Lon-type protease [Posttranslational modification, protein turnover, chaperones]. 683 -227268 COG4932 COG4932 Uncharacterized surface anchored protein [Function unknown]. 1531 -227269 COG4933 COG4933 Predicted transcriptional regulator, contains an HTH and PUA-like domains [Transcription]. 124 -227270 COG4934 COG4934 Serine protease, subtilase family [Posttranslational modification, protein turnover, chaperones]. 1174 -227271 COG4935 COG4935 Regulatory P domain of the subtilisin-like proprotein convertases and other proteases [Posttranslational modification, protein turnover, chaperones]. 177 -227272 COG4936 PocR Ligand-binding sensor domain [Signal transduction mechanisms]. 169 -227273 COG4937 FDXACB Ferredoxin-fold anticodon binding domain [Translation, ribosomal structure and biogenesis]. 171 -227274 COG4938 COG4938 Predicted ATPase [General function prediction only]. 374 -227275 COG4939 Tpp15 Major membrane immunogen, membrane-anchored lipoprotein [Function unknown]. 147 -227276 COG4940 ComGF Competence protein ComGF [Mobilome: prophages, transposons]. 154 -227277 COG4941 COG4941 Predicted RNA polymerase sigma factor, contains C-terminal TPR domain [Transcription]. 415 -227278 COG4942 EnvC Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]. 420 -227279 COG4943 YjcC Environmental sensor c-di-GMP phosphodiesterase, contains periplasmic CSS-motif sensor and cytoplasmic EAL domain [Signal transduction mechanisms]. 524 -227280 COG4944 COG4944 Uncharacterized protein [Function unknown]. 213 -227281 COG4945 DOMON Carbohydrate-binding DOMON domain [Carbohydrate transport and metabolism, Signal transduction mechanisms]. 570 -227282 COG4946 COG4946 Uncharacterized N-terminal domain of tricorn protease [Function unknown]. 668 -227283 COG4947 COG4947 Esterase/lipase superfamily enzyme [General function prediction only]. 227 -227284 COG4948 RspA L-alanine-DL-glutamate epimerase or related enzyme of enolase superfamily [Cell wall/membrane/envelope biogenesis, General function prediction only]. 372 -227285 COG4949 COG4949 Uncharacterized membrane-anchored protein [Function unknown]. 424 -227286 COG4950 YciW1 N-terminal domain of uncharacterized protein YciW (function unknown) [Function unknown]. 193 -227287 COG4951 COG4951 Uncharacterized protein [Function unknown]. 361 -227288 COG4952 COG4952 L-rhamnose isomerase [Cell wall/membrane/envelope biogenesis]. 430 -227289 COG4953 PbpC Membrane carboxypeptidase/penicillin-binding protein PbpC [Cell wall/membrane/envelope biogenesis]. 733 -227290 COG4954 COG4954 Uncharacterized protein [Function unknown]. 135 -227291 COG4955 YpbB Uncharacterized protein YpbB, contains C-terminal HTH domain [Function unknown]. 343 -227292 COG4956 COG4956 Uncharacterized conserved protein YacL, contains PIN and TRAM domains [General function prediction only]. 356 -227293 COG4957 COG4957 Predicted transcriptional regulator [Transcription]. 148 -227294 COG4959 TraF Type IV secretory pathway, protease TraF [Posttranslational modification, protein turnover, chaperones, Intracellular trafficking, secretion, and vesicular transport]. 173 -227295 COG4960 CpaA Flp pilus assembly protein, protease CpaA [Posttranslational modification, protein turnover, chaperones, Signal transduction mechanisms]. 168 -227296 COG4961 TadG Flp pilus assembly protein TadG [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 185 -227297 COG4962 CpaF Pilus assembly protein, ATPase of CpaF family [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 355 -227298 COG4963 CpaE Flp pilus assembly protein, ATPase CpaE [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 366 -227299 COG4964 CpaC Flp pilus assembly protein, secretin CpaC [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 455 -227300 COG4965 TadB Flp pilus assembly protein TadB [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 309 -227301 COG4966 PilW Tfp pilus assembly protein PilW [Cell motility, Extracellular structures]. 318 -227302 COG4967 PilV Tfp pilus assembly protein PilV [Cell motility, Extracellular structures]. 162 -227303 COG4968 PilE Tfp pilus assembly protein PilE [Cell motility, Extracellular structures]. 139 -227304 COG4969 PilA Tfp pilus assembly protein, major pilin PilA [Cell motility, Extracellular structures]. 125 -227305 COG4970 FimT Tfp pilus assembly protein FimT [Cell motility, Extracellular structures]. 181 -227306 COG4972 PilM Tfp pilus assembly protein, ATPase PilM [Cell motility, Extracellular structures]. 354 -227307 COG4973 XerC Site-specific recombinase XerC [Replication, recombination and repair]. 299 -227308 COG4974 XerD Site-specific recombinase XerD [Replication, recombination and repair]. 300 -227309 COG4975 GlcU Glucose uptake protein GlcU [Carbohydrate transport and metabolism]. 288 -227310 COG4976 COG4976 Predicted methyltransferase, contains TPR repeat [General function prediction only]. 287 -227311 COG4977 GlxA Transcriptional regulator GlxA family, contains an amidase domain and an AraC-type DNA-binding HTH domain [Transcription]. 328 -227312 COG4978 BltR2 Bacterial effector-binding domain [Signal transduction mechanisms]. 153 -227313 COG4980 GvpP Gas vesicle protein [General function prediction only]. 115 -227314 COG4981 COG4981 Enoyl reductase domain of yeast-type FAS1 [Lipid transport and metabolism]. 717 -227315 COG4982 FabG2 3-oxoacyl-ACP reductase domain of yeast-type FAS1 [Lipid transport and metabolism]. 866 -227316 COG4983 COG4983 Uncharacterized protein, contains Primase-polymerase (Primpol) domain [Function unknown]. 495 -227317 COG4984 COG4984 Uncharacterized membrane protein [Function unknown]. 644 -227318 COG4985 COG4985 ABC-type phosphate transport system, auxiliary component [Inorganic ion transport and metabolism]. 289 -227319 COG4986 COG4986 ABC-type anion transport system, duplicated permease component [Inorganic ion transport and metabolism]. 523 -227320 COG4987 CydC ABC-type transport system involved in cytochrome bd biosynthesis, fused ATPase and permease components [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 573 -227321 COG4988 CydD ABC-type transport system involved in cytochrome bd biosynthesis, ATPase and permease components [Energy production and conversion, Posttranslational modification, protein turnover, chaperones]. 559 -227322 COG4989 YdhF Predicted oxidoreductase [General function prediction only]. 298 -227323 COG4990 YvpB Predicted cysteine peptidase, C39 family [General function prediction only]. 195 -227324 COG4991 YraI Uncharacterized conserved protein YraI [Function unknown]. 155 -227325 COG4992 ArgD Acetylornithine/succinyldiaminopimelate/putrescine aminotransferase [Amino acid transport and metabolism]. 404 -227326 COG4993 Gcd Glucose dehydrogenase [Carbohydrate transport and metabolism]. 773 -227327 COG4994 COG4994 Uncharacterized protein [Function unknown]. 120 -227328 COG4995 COG4995 Uncharacterized conserved protein, contains CHAT domain [Function unknown]. 420 -227329 COG4996 COG4996 Predicted phosphatase [General function prediction only]. 164 -227330 COG4997 COG4997 Predicted house-cleaning noncanonical NTP pyrophosphatase, all-alpha NTP-PPase (MazG) superfamily [General function prediction only]. 95 -227331 COG4998 RecB Predicted endonuclease, RecB family [Replication, recombination and repair]. 209 -227332 COG4999 BarA5 Uncharacterized domain of BarA-like signal transduction histidine kinase [Signal transduction mechanisms]. 140 -227333 COG5000 NtrY Signal transduction histidine kinase involved in nitrogen fixation and metabolism regulation [Signal transduction mechanisms]. 712 -227334 COG5001 COG5001 Predicted signal transduction protein containing a membrane domain, an EAL and a GGDEF domain [Signal transduction mechanisms]. 663 -227335 COG5002 VicK Signal transduction histidine kinase [Signal transduction mechanisms]. 459 -227336 COG5003 COG5003 Mu-like prophage protein gp37 [Mobilome: prophages, transposons]. 151 -227337 COG5004 COG5004 P2-like prophage tail protein X [Mobilome: prophages, transposons]. 70 -227338 COG5005 COG5005 Mu-like prophage protein gpG [Mobilome: prophages, transposons]. 140 -227339 COG5006 RhtA Threonine/homoserine efflux transporter RhtA [Amino acid transport and metabolism]. 292 -227340 COG5007 IbaG Acid stress-induced BolA-like protein IbaG/YrbA, predicted regulator of iron metabolism [Signal transduction mechanisms]. 80 -227341 COG5008 PilU Tfp pilus assembly protein, ATPase PilU [Cell motility, Extracellular structures]. 375 -227342 COG5009 MrcA Membrane carboxypeptidase/penicillin-binding protein [Cell wall/membrane/envelope biogenesis]. 797 -227343 COG5010 TadD Flp pilus assembly protein TadD, contains TPR repeats [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 257 -227344 COG5011 COG5011 Uncharacterized conserved protein, DUF2344 family [Function unknown]. 228 -227345 COG5012 MtbC1 Methanogenic corrinoid protein MtbC1 [Energy production and conversion]. 227 -227346 COG5013 NarG Nitrate reductase alpha subunit [Energy production and conversion, Inorganic ion transport and metabolism]. 1227 -227347 COG5014 COG5014 Uncharacterized Fe-S cluster-containing protein, radical SAM superfamily [General function prediction only]. 228 -227348 COG5015 COG5015 Uncharacterized protein, pyridoxamine 5'-phosphate oxidase (PNPOx-like) family [Function unknown]. 132 -227349 COG5016 OadA1 Pyruvate/oxaloacetate carboxyltransferase [Energy production and conversion]. 472 -227350 COG5017 COG5017 UDP-N-acetylglucosamine transferase subunit ALG13 [Carbohydrate transport and metabolism]. 161 -227351 COG5018 KapD Inhibitor of the KinA pathway to sporulation, predicted exonuclease [General function prediction only]. 210 -227352 COG5019 CDC3 Septin family protein [Cell cycle control, cell division, chromosome partitioning, Cytoskeleton]. 373 -227353 COG5020 KTR1 Mannosyltransferase [Carbohydrate transport and metabolism]. 399 -227354 COG5021 HUL4 Ubiquitin-protein ligase [Posttranslational modification, protein turnover, chaperones]. 872 -227355 COG5022 COG5022 Myosin heavy chain [General function prediction only]. 1463 -227356 COG5023 COG5023 Tubulin [Cytoskeleton]. 443 -227357 COG5024 COG5024 Cyclin [Cell division and chromosome partitioning]. 440 -227358 COG5025 COG5025 Transcription factor of the Forkhead/HNF3 family [Transcription]. 610 -227359 COG5026 COG5026 Hexokinase [Carbohydrate transport and metabolism]. 466 -227360 COG5027 SAS2 Histone acetyltransferase (MYST family) [Chromatin structure and dynamics]. 395 -227361 COG5028 COG5028 Vesicle coat complex COPII, subunit SEC24/subunit SFB2/subunit SFB3 [Intracellular trafficking and secretion]. 861 -227362 COG5029 CAL1 Prenyltransferase, beta subunit [Posttranslational modification, protein turnover, chaperones, Lipid transport and metabolism]. 342 -227363 COG5030 APS2 Clathrin adaptor complex, small subunit [Intracellular trafficking and secretion]. 152 -227364 COG5031 COQ4 Ubiquinone biosynthesis protein Coq4 [Coenzyme transport and metabolism]. 235 -227365 COG5032 TEL1 Phosphatidylinositol kinase or protein kinase, PI-3 family [Signal transduction mechanisms]. 2105 -227366 COG5033 TFG3 Transcription initiation factor IIF, auxiliary subunit [Transcription]. 225 -227367 COG5034 TNG2 Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]. 271 -227368 COG5035 CDC50 Cell cycle control protein [Cell division and chromosome partitioning / Transcription / Signal transduction mechanisms]. 372 -227369 COG5036 COG5036 SPX domain-containing protein involved in vacuolar polyphosphate accumulation [Inorganic ion transport and metabolism, Intracellular trafficking, secretion, and vesicular transport]. 509 -227370 COG5037 TOS9 Gluconate transport-inducing protein [Signal transduction mechanisms / Carbohydrate transport and metabolism]. 248 -227371 COG5038 COG5038 Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]. 1227 -227372 COG5039 EpsI Exopolysaccharide biosynthesis protein EpsI, predicted pyruvyl transferase [Carbohydrate transport and metabolism, Cell wall/membrane/envelope biogenesis]. 339 -227373 COG5040 BMH1 14-3-3 family protein [Signal transduction mechanisms]. 268 -227374 COG5041 SKB2 Casein kinase II, beta subunit [Signal transduction mechanisms / Cell division and chromosome partitioning / Transcription]. 242 -227375 COG5042 NUP Purine nucleoside permease [Nucleotide transport and metabolism]. 349 -227376 COG5043 MRS6 Vacuolar protein sorting-associated protein [Intracellular trafficking and secretion]. 2552 -227377 COG5044 MRS6 RAB proteins geranylgeranyltransferase component A (RAB escort protein) [Posttranslational modification, protein turnover, chaperones]. 434 -227378 COG5045 COG5045 Ribosomal protein S10E [Translation, ribosomal structure and biogenesis]. 105 -227379 COG5046 MAF1 Protein involved in Mod5 protein sorting [Posttranslational modification, protein turnover, chaperones]. 282 -227380 COG5047 SEC23 Vesicle coat complex COPII, subunit SEC23 [Intracellular trafficking and secretion]. 755 -227381 COG5048 COG5048 FOG: Zn-finger [General function prediction only]. 467 -227382 COG5049 XRN1 5'-3' exonuclease [Replication, recombination and repair]. 953 -227383 COG5050 EPT1 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferases [Lipid metabolism]. 384 -227384 COG5051 RPL36A Ribosomal protein L36E [Translation, ribosomal structure and biogenesis]. 97 -227385 COG5052 YOP1 Protein involved in membrane traffic [Intracellular trafficking and secretion]. 186 -227386 COG5053 CDC33 Translation initiation factor 4E (eIF-4E) [Translation, ribosomal structure and biogenesis]. 217 -227387 COG5054 ERV1 Mitochondrial sulfhydryl oxidase involved in the biogenesis of cytosolic Fe/S proteins [Posttranslational modification, protein turnover, chaperones]. 181 -227388 COG5055 RAD52 Recombination DNA repair protein (RAD52 pathway) [Replication, recombination and repair]. 375 -227389 COG5056 ARE1 Acyl-CoA cholesterol acyltransferase [Lipid metabolism]. 512 -227390 COG5057 LAG1 Phosphotyrosyl phosphatase activator [Cell division and chromosome partitioning / Signal transduction mechanisms]. 353 -227391 COG5058 LAG1 Protein transporter of the TRAM (translocating chain-associating membrane) superfamily, longevity assurance factor [Intracellular trafficking and secretion]. 395 -227392 COG5059 KIP1 Kinesin-like protein [Cytoskeleton]. 568 -227393 COG5061 ERO1 Oxidoreductin, endoplasmic reticulum membrane-associated protein involved in disulfide bond formation [Posttranslational modification, protein turnover, chaperones / Intracellular trafficking and secretion]. 425 -227394 COG5062 COG5062 Uncharacterized membrane protein [Function unknown]. 429 -227395 COG5063 CTH1 CCCH-type Zn-finger protein [General function prediction only]. 351 -227396 COG5064 SRP1 Karyopherin (importin) alpha [Intracellular trafficking and secretion]. 526 -227397 COG5065 PHO88 Protein involved in inorganic phosphate transport [Inorganic ion transport and metabolism]. 185 -227398 COG5066 SCS2 VAMP-associated protein involved in inositol metabolism [Intracellular trafficking and secretion]. 242 -227399 COG5067 DBF4 Protein kinase essential for the initiation of DNA replication [DNA replication, recombination, and repair / Cell division and chromosome partitioning]. 468 -227400 COG5068 ARG80 Regulator of arginine metabolism and related MADS box-containing transcription factors [Transcription]. 412 -227401 COG5069 SAC6 Ca2+-binding actin-bundling protein fimbrin/plastin (EF-Hand superfamily) [Cytoskeleton]. 612 -227402 COG5070 VRG4 Nucleotide-sugar transporter [Carbohydrate transport and metabolism / Posttranslational modification, protein turnover, chaperones / Intracellular trafficking and secretion]. 309 -227403 COG5071 RPN5 26S proteasome regulatory complex component [Posttranslational modification, protein turnover, chaperones]. 439 -227404 COG5072 ALK1 Serine/threonine kinase of the haspin family [Cell division and chromosome partitioning]. 488 -227405 COG5073 VID24 Vacuolar import and degradation protein [Intracellular trafficking and secretion]. 272 -227406 COG5074 COG5074 t-SNARE complex subunit, syntaxin [Intracellular trafficking, secretion, and vesicular transport]. 280 -227407 COG5075 COG5075 Uncharacterized conserved protein [Function unknown]. 305 -227408 COG5076 COG5076 Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin structure and dynamics / Transcription]. 371 -227409 COG5077 COG5077 Ubiquitin carboxyl-terminal hydrolase [Posttranslational modification, protein turnover, chaperones]. 1089 -227410 COG5078 COG5078 Ubiquitin-protein ligase [Posttranslational modification, protein turnover, chaperones]. 153 -227411 COG5079 SAC3 Nuclear protein export factor [Intracellular trafficking and secretion / Cell division and chromosome partitioning]. 646 -227412 COG5080 YIP1 Rab GTPase interacting factor, Golgi membrane protein [Intracellular trafficking and secretion]. 227 -227413 COG5081 COG5081 Predicted membrane protein [Function unknown]. 180 -227414 COG5082 AIR1 Arginine methyltransferase-interacting protein, contains RING Zn-finger [Posttranslational modification, protein turnover, chaperones / Intracellular trafficking and secretion]. 190 -227415 COG5083 SMP2 Phosphatidate phosphatase PAH1, contains Lipin and LNS2 domains. can be involved in plasmid maintenance [Lipid transport and metabolism]. 580 -227416 COG5084 YTH1 Cleavage and polyadenylation specificity factor (CPSF) Clipper subunit and related makorin family Zn-finger proteins [General function prediction only]. 285 -227417 COG5085 COG5085 Predicted membrane protein [Function unknown]. 230 -227418 COG5086 COG5086 Uncharacterized conserved protein [Function unknown]. 218 -227419 COG5087 RTT109 Uncharacterized conserved protein [Function unknown]. 349 -227420 COG5088 SOH1 Rad5p-binding protein [General function prediction only]. 114 -227421 COG5090 TFG2 Transcription initiation factor IIF, small subunit (RAP30) [Transcription]. 297 -227422 COG5091 SGT1 Suppressor of G2 allele of skp1 and related proteins [General function prediction only]. 368 -227423 COG5092 NMT1 N-myristoyl transferase [Lipid metabolism]. 451 -227424 COG5093 COG5093 Uncharacterized conserved protein [Function unknown]. 185 -227425 COG5094 TAF9 Transcription initiation factor TFIID, subunit TAF9 (also component of histone acetyltransferase SAGA) [Transcription]. 145 -227426 COG5095 TAF6 Transcription initiation factor TFIID, subunit TAF6 (also component of histone acetyltransferase SAGA) [Transcription]. 450 -227427 COG5096 COG5096 Vesicle coat complex, various subunits [Intracellular trafficking, secretion, and vesicular transport]. 757 -227428 COG5097 MED6 RNA polymerase II transcriptional regulation mediator [Transcription]. 210 -227429 COG5098 COG5098 Chromosome condensation complex Condensin, subunit D2 [Chromatin structure and dynamics / Cell division and chromosome partitioning]. 1128 -227430 COG5099 COG5099 RNA-binding protein of the Puf family, translational repressor [Translation, ribosomal structure and biogenesis]. 777 -227431 COG5100 NPL4 Nuclear pore protein [Nuclear structure]. 571 -227432 COG5101 CRM1 Importin beta-related nuclear transport receptor [Nuclear structure / Intracellular trafficking and secretion]. 1053 -227433 COG5102 SFT2 Membrane protein involved in ER to Golgi transport [Intracellular trafficking and secretion]. 201 -227434 COG5103 CDC39 Cell division control protein, negative regulator of transcription [Cell division and chromosome partitioning / Transcription]. 2005 -227435 COG5104 PRP40 Splicing factor [RNA processing and modification]. 590 -227436 COG5105 MIH1 Mitotic inducer, protein phosphatase [Cell division and chromosome partitioning]. 427 -227437 COG5106 RPF2 Uncharacterized conserved protein [Function unknown]. 316 -227438 COG5107 RNA14 Pre-mRNA 3'-end processing (cleavage and polyadenylation) factor [RNA processing and modification]. 660 -227439 COG5108 RPO41 Mitochondrial DNA-directed RNA polymerase [Transcription]. 1117 -227440 COG5109 COG5109 Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]. 396 -227441 COG5110 RPN1 26S proteasome regulatory complex component [Posttranslational modification, protein turnover, chaperones]. 881 -227442 COG5111 RPC34 DNA-directed RNA polymerase III, subunit C34 [Transcription]. 301 -227443 COG5112 UFD2 U1-like Zn-finger-containing protein [General function prediction only]. 126 -227444 COG5113 UFD2 Ubiquitin fusion degradation protein 2 [Posttranslational modification, protein turnover, chaperones]. 929 -227445 COG5114 COG5114 Histone acetyltransferase complex SAGA/ADA, subunit ADA2 [Chromatin structure and dynamics]. 432 -227446 COG5116 RPN2 26S proteasome regulatory complex component [Posttranslational modification, protein turnover, chaperones]. 926 -227447 COG5117 NOC3 Protein involved in the nuclear export of pre-ribosomes [Translation, ribosomal structure and biogenesis / Intracellular trafficking and secretion]. 657 -227448 COG5118 BDP1 Transcription initiation factor TFIIIB, Bdp1 subunit [Transcription]. 507 -227449 COG5119 COG5119 Uncharacterized protein, contains ParB-like nuclease domain [General function prediction only]. 119 -227450 COG5120 GOT1 Membrane protein involved in Golgi transport [Intracellular trafficking and secretion]. 129 -227451 COG5122 TRS23 Transport protein particle (TRAPP) complex subunit [Intracellular trafficking and secretion]. 134 -227452 COG5123 TOA2 Transcription initiation factor IIA, gamma subunit [Transcription]. 113 -227453 COG5124 COG5124 Protein predicted to be involved in meiotic recombination [Cell division and chromosome partitioning / General function prediction only]. 209 -227454 COG5125 COG5125 Uncharacterized conserved protein [Function unknown]. 259 -227455 COG5126 FRQ1 Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms]. 160 -227456 COG5127 COG5127 Vacuolar H+-ATPase V1 sector, subunit C [Energy production and conversion]. 383 -227457 COG5128 COG5128 Transport protein particle (TRAPP) complex subunit [Intracellular trafficking and secretion]. 208 -227458 COG5129 MAK16 Nuclear protein with HMG-like acidic region [General function prediction only]. 303 -227459 COG5130 YIP3 Prenylated rab acceptor 1 and related proteins [Intracellular trafficking and secretion / Signal transduction mechanisms]. 169 -227460 COG5131 URM1 Ubiquitin-like protein [Posttranslational modification, protein turnover, chaperones]. 96 -227461 COG5132 BUD31 Cell cycle control protein, G10 family [Transcription / Cell division and chromosome partitioning]. 146 -227462 COG5133 COG5133 Uncharacterized conserved protein [Function unknown]. 181 -227463 COG5134 COG5134 Uncharacterized conserved protein [Function unknown]. 272 -227464 COG5135 COG5135 Uncharacterized protein [Function unknown]. 245 -227465 COG5136 COG5136 U1 snRNP-specific protein C [RNA processing and modification]. 188 -227466 COG5137 COG5137 Histone chaperone involved in gene silencing [Transcription / Chromatin structure and dynamics]. 279 -227467 COG5138 COG5138 Uncharacterized conserved protein [Function unknown]. 168 -227468 COG5139 COG5139 Uncharacterized conserved protein [Function unknown]. 397 -227469 COG5140 UFD1 Ubiquitin fusion-degradation protein [Posttranslational modification, protein turnover, chaperones]. 331 -227470 COG5141 COG5141 PHD zinc finger-containing protein [General function prediction only]. 669 -227471 COG5142 OXR1 Oxidation resistance protein [DNA replication, recombination, and repair]. 212 -227472 COG5143 SNC1 Synaptobrevin/VAMP-like protein [Intracellular trafficking and secretion]. 190 -227473 COG5144 TFB2 RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH, subunit TFB2 [Transcription / DNA replication, recombination, and repair]. 447 -227474 COG5145 RAD14 DNA excision repair protein [DNA replication, recombination, and repair]. 292 -227475 COG5146 PanK Pantothenate kinase [Coenzyme transport and metabolism]. 342 -227476 COG5147 REB1 Myb superfamily proteins, including transcription factors and mRNA splicing factors [Transcription / RNA processing and modification / Cell division and chromosome partitioning]. 512 -227477 COG5148 RPN10 26S proteasome regulatory complex, subunit RPN10/PSMD4 [Posttranslational modification, protein turnover, chaperones]. 243 -227478 COG5149 TOA1 Transcription initiation factor IIA, large chain [Transcription]. 293 -227479 COG5150 COG5150 Class 2 transcription repressor NC2, beta subunit (Dr1) [Transcription]. 148 -227480 COG5151 SSL1 RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH, subunit SSL1 [Transcription / DNA replication, recombination, and repair]. 421 -227481 COG5152 COG5152 Uncharacterized conserved protein, contains RING and CCCH-type Zn-fingers [General function prediction only]. 259 -227482 COG5153 CVT17 Putative lipase essential for disintegration of autophagic bodies inside the vacuole [Intracellular trafficking, secretion, and vesicular transport]. 425 -227483 COG5154 BRX1 RNA-binding protein required for 60S ribosomal subunit biogenesis [Translation, ribosomal structure and biogenesis]. 283 -227484 COG5155 ESP1 Separase, a protease involved in sister chromatid separation [Cell division and chromosome partitioning / Posttranslational modification, protein turnover, chaperones]. 1622 -227485 COG5156 DOC1 Anaphase-promoting complex (APC), subunit 10 [Cell division and chromosome partitioning / Posttranslational modification, protein turnover, chaperones]. 189 -227486 COG5157 CDC73 RNA polymerase II assessory factor [Transcription]. 362 -227487 COG5158 SEC1 Proteins involved in synaptic transmission and general secretion, Sec1 family [Intracellular trafficking and secretion]. 582 -227488 COG5159 RPN6 26S proteasome regulatory complex component [Posttranslational modification, protein turnover, chaperones]. 421 -227489 COG5160 ULP1 Protease, Ulp1 family [Posttranslational modification, protein turnover, chaperones]. 578 -227490 COG5161 SFT1 Pre-mRNA cleavage and polyadenylation specificity factor [RNA processing and modification]. 1319 -227491 COG5162 COG5162 Transcription initiation factor TFIID, subunit TAF10 (also component of histone acetyltransferase SAGA) [Transcription]. 197 -227492 COG5163 NOP7 Protein required for biogenesis of the 60S ribosomal subunit [Translation, ribosomal structure and biogenesis]. 591 -227493 COG5164 SPT5 Transcription elongation factor [Transcription]. 607 -227494 COG5165 POB3 Nucleosome-binding factor SPN, POB3 subunit [Transcription / DNA replication, recombination, and repair / Chromatin structure and dynamics]. 508 -227495 COG5166 COG5166 Uncharacterized conserved protein [Function unknown]. 657 -227496 COG5167 VID27 Protein involved in vacuole import and degradation [Intracellular trafficking and secretion]. 776 -227497 COG5169 HSF1 Heat shock transcription factor [Transcription]. 282 -227498 COG5170 CDC55 Serine/threonine protein phosphatase 2A, regulatory subunit [Signal transduction mechanisms]. 460 -227499 COG5171 YRB1 Ran GTPase-activating protein (Ran-binding protein) [Intracellular trafficking and secretion]. 211 -227500 COG5173 SEC6 Exocyst complex subunit SEC6 [Intracellular trafficking and secretion]. 742 -227501 COG5174 TFA2 Transcription initiation factor IIE, beta subunit [Transcription]. 285 -227502 COG5175 MOT2 Transcriptional repressor [Transcription]. 480 -227503 COG5176 MSL5 Splicing factor (branch point binding protein) [RNA processing and modification]. 269 -227504 COG5177 COG5177 Uncharacterized conserved protein [Function unknown]. 769 -227505 COG5178 PRP8 U5 snRNP spliceosome subunit [RNA processing and modification]. 2365 -227506 COG5179 TAF1 Transcription initiation factor TFIID, subunit TAF1 [Transcription]. 968 -227507 COG5180 PBP1 PAB1-binding protein PBP1, interacts with poly(A)-binding protein [RNA processing and modification]. 654 -227508 COG5181 HSH155 U2 snRNP spliceosome subunit [RNA processing and modification]. 975 -227509 COG5182 CUS1 Splicing factor 3b, subunit 2 [RNA processing and modification]. 429 -227510 COG5183 SSM4 E3 ubiquitin-protein ligase DOA10 [Posttranslational modification, protein turnover, chaperones]. 1175 -227511 COG5184 ATS1 Alpha-tubulin suppressor and related RCC1 domain-containing proteins [Cell cycle control, cell division, chromosome partitioning, Cytoskeleton]. 476 -227512 COG5185 HEC1 Protein involved in chromosome segregation, interacts with SMC proteins [Cell cycle control, cell division, chromosome partitioning]. 622 -227513 COG5186 PAP1 Poly(A) polymerase Pap1 [RNA processing and modification]. 552 -227514 COG5187 RPN7 26S proteasome regulatory complex component, contains PCI domain [Posttranslational modification, protein turnover, chaperones]. 412 -227515 COG5188 PRP9 Splicing factor 3a, subunit 3 [RNA processing and modification]. 470 -227516 COG5189 SFP1 Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division and chromosome partitioning]. 423 -227517 COG5190 FCP1 TFIIF-interacting CTD phosphatase, includes NLI-interacting factor [Transcription]. 390 -227518 COG5191 COG5191 Uncharacterized conserved protein, contains HAT (Half-A-TPR) repeat [General function prediction only]. 435 -227519 COG5192 BMS1 GTP-binding protein required for 40S ribosome biogenesis [Translation, ribosomal structure and biogenesis]. 1077 -227520 COG5193 LHP1 La protein, small RNA-binding pol III transcript stabilizing protein and related La-motif-containing proteins involved in translation [Posttranslational modification, protein turnover, chaperones / Translation, ribosomal structure and biogenesis]. 438 -227521 COG5194 APC11 Component of SCF ubiquitin ligase and anaphase-promoting complex [Posttranslational modification, protein turnover, chaperones / Cell division and chromosome partitioning]. 88 -227522 COG5195 COG5195 Uncharacterized conserved protein [Function unknown]. 118 -227523 COG5196 ERD2 ER lumen protein retaining receptor [Intracellular trafficking and secretion]. 214 -227524 COG5197 COG5197 Predicted membrane protein [Function unknown]. 284 -227525 COG5198 Ptpl Protein tyrosine phosphatase-like protein (contains Pro instead of catalytic Arg) [General function prediction only]. 209 -227526 COG5199 SCP1 Calponin [Cytoskeleton]. 178 -227527 COG5200 LUC7 U1 snRNP component, mediates U1 snRNP association with cap-binding complex [RNA processing and modification]. 258 -227528 COG5201 SKP1 SCF ubiquitin ligase, SKP1 component [Posttranslational modification, protein turnover, chaperones]. 158 -227529 COG5202 COG5202 Predicted membrane protein [Function unknown]. 512 -227530 COG5204 SPT4 Transcription elongation factor SPT4 [Transcription]. 112 -227531 COG5206 GPI8 Glycosylphosphatidylinositol transamidase (GPIT), subunit GPI8 [Posttranslational modification, protein turnover, chaperones]. 382 -227532 COG5207 UBP14 Uncharacterized Zn-finger protein, UBP-type [General function prediction only]. 749 -227533 COG5208 HAP5 CCAAT-binding factor, subunit C [Transcription]. 286 -227534 COG5209 RCD1 Uncharacterized protein involved in cell differentiation/sexual development [General function prediction only]. 315 -227535 COG5210 COG5210 GTPase-activating protein [General function prediction only]. 496 -227536 COG5211 SSU72 RNA polymerase II-interacting protein involved in transcription start site selection [Transcription]. 197 -227537 COG5212 PDE1 cAMP phosphodiesterase [Signal transduction mechanisms]. 356 -227538 COG5213 FIP1 Polyadenylation factor I complex, subunit FIP1 [RNA processing and modification]. 266 -227539 COG5214 POL12 DNA polymerase alpha-primase complex, polymerase-associated subunit B [DNA replication, recombination, and repair]. 581 -227540 COG5215 KAP95 Karyopherin (importin) beta [Intracellular trafficking and secretion]. 858 -227541 COG5216 COG5216 Uncharacterized conserved protein [Function unknown]. 67 -227542 COG5217 BIM1 Microtubule-binding protein involved in cell cycle control [Cell division and chromosome partitioning / Cytoskeleton]. 342 -227543 COG5218 YCG1 Chromosome condensation complex Condensin, subunit G [Chromatin structure and dynamics / Cell division and chromosome partitioning]. 885 -227544 COG5219 COG5219 Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]. 1525 -227545 COG5220 TFB3 Cdk activating kinase (CAK)/RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH, subunit TFB3 [Cell division and chromosome partitioning / Transcription / DNA replication, recombination, and repair]. 314 -227546 COG5221 DOP1 Dopey and related predicted leucine zipper transcription factors [Transcription]. 1618 -227547 COG5222 COG5222 Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]. 427 -227548 COG5223 COG5223 Uncharacterized conserved protein [Function unknown]. 240 -227549 COG5224 HAP2 CCAAT-binding factor, subunit B [Transcription]. 248 -227550 COG5225 RRS1 Uncharacterized protein involved in ribosome biogenesis [Translation, ribosomal structure and biogenesis]. 172 -227551 COG5226 CEG1 mRNA capping enzyme, guanylyltransferase (alpha) subunit [RNA processing and modification]. 404 -227552 COG5227 SMT3 Ubiquitin-like protein (sentrin) [Posttranslational modification, protein turnover, chaperones]. 103 -227553 COG5228 POP2 mRNA deadenylase subunit [RNA processing and modification]. 299 -227554 COG5229 LOC7 Chromosome condensation complex Condensin, subunit H [Chromatin structure and dynamics / Cell division and chromosome partitioning]. 662 -227555 COG5230 COG5230 Uncharacterized conserved protein [Function unknown]. 194 -227556 COG5231 VMA13 Vacuolar H+-ATPase V1 sector, subunit H [Energy production and conversion]. 432 -227557 COG5232 SEC62 Preprotein translocase subunit Sec62 [Intracellular trafficking and secretion]. 259 -227558 COG5233 GRH1 Peripheral Golgi membrane protein [Intracellular trafficking and secretion]. 417 -227559 COG5234 CIN1 Beta-tubulin folding cofactor D [Posttranslational modification, protein turnover, chaperones / Cytoskeleton]. 993 -227560 COG5235 RFA2 Single-stranded DNA-binding replication protein A (RPA), medium (30 kD) subunit [DNA replication, recombination, and repair]. 258 -227561 COG5236 COG5236 Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]. 493 -227562 COG5237 PER1 Predicted membrane protein [Function unknown]. 319 -227563 COG5238 RNA1 Ran GTPase-activating protein (RanGAP) involved in mRNA processing and transport [Signal transduction mechanisms, RNA processing and modification]. 388 -227564 COG5239 CCR4 mRNA deadenylase, 3'-5' endonuclease subunit Ccr4 [RNA processing and modification]. 378 -227565 COG5240 SEC21 Vesicle coat complex COPI, gamma subunit [Intracellular trafficking and secretion]. 898 -227566 COG5241 RAD10 Nucleotide excision repair endonuclease NEF1, RAD10 subunit [DNA replication, recombination, and repair]. 224 -227567 COG5242 TFB4 RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH, subunit TFB4 [Transcription / DNA replication, recombination, and repair]. 296 -227568 COG5243 HRD1 HRD ubiquitin ligase complex, ER membrane component [Posttranslational modification, protein turnover, chaperones]. 491 -227569 COG5244 NIP100 Dynactin complex subunit involved in mitotic spindle partitioning in anaphase B [Cell cycle control, cell division, chromosome partitioning]. 669 -227570 COG5245 DYN1 Dynein, heavy chain [Cytoskeleton]. 3164 -227571 COG5246 PRP11 Splicing factor 3a, subunit 2 [RNA processing and modification]. 222 -227572 COG5247 BUR6 Class 2 transcription repressor NC2, alpha subunit (DRAP1 homolog) [Transcription]. 113 -227573 COG5248 TAF19 Transcription initiation factor TFIID, subunit TAF13 [Transcription]. 126 -227574 COG5249 RER1 Golgi protein involved in Golgi-to-ER retrieval [Intracellular trafficking and secretion]. 180 -227575 COG5250 RPB4 RNA polymerase II, fourth largest subunit [Transcription]. 138 -227576 COG5251 TAF40 Transcription initiation factor TFIID, subunit TAF11 [Transcription]. 199 -227577 COG5252 COG5252 Uncharacterized conserved protein, contains CCCH-type Zn-finger protein [General function prediction only]. 299 -227578 COG5253 MSS4 Phosphatidylinositol-4-phosphate 5-kinase [Signal transduction mechanisms]. 612 -227579 COG5254 ARV1 Predicted membrane protein [Function unknown]. 239 -227580 COG5255 COG5255 Uncharacterized protein [Function unknown]. 239 -227581 COG5256 TEF1 Translation elongation factor EF-1alpha (GTPase) [Translation, ribosomal structure and biogenesis]. 428 -227582 COG5257 GCD11 Translation initiation factor 2, gamma subunit (eIF-2gamma; GTPase) [Translation, ribosomal structure and biogenesis]. 415 -227583 COG5258 GTPBP1 GTPase [General function prediction only]. 527 -227584 COG5259 RSC8 RSC chromatin remodeling complex subunit RSC8 [Chromatin structure and dynamics / Transcription]. 531 -227585 COG5260 TRF4 DNA polymerase sigma [Replication, recombination and repair]. 482 -227586 COG5261 IQG1 Protein involved in regulation of cellular morphogenesis/cytokinesis [Cell division and chromosome partitioning / Signal transduction mechanisms]. 1054 -227587 COG5262 HTA1 Histone H2A [Chromatin structure and dynamics]. 132 -227588 COG5263 COG5263 Glucan-binding domain (YG repeat) [Carbohydrate transport and metabolism]. 313 -227589 COG5264 VTC1 Vacuolar transporter chaperone [Posttranslational modification, protein turnover, chaperones]. 126 -227590 COG5265 ATM1 ABC-type transport system involved in Fe-S cluster assembly, permease and ATPase components [Posttranslational modification, protein turnover, chaperones]. 497 -227591 COG5266 COG5266 Uncharacterized conserved protein, contains GH25 family domain [General function prediction only]. 264 -227592 COG5267 COG5267 Uncharacterized conserved protein, DUF1800 family [Function unknown]. 496 -227593 COG5268 TrbD Type IV secretory pathway, TrbD component [Intracellular trafficking, secretion, and vesicular transport]. 93 -227594 COG5269 ZUO1 Ribosome-associated chaperone zuotin [Translation, ribosomal structure and biogenesis / Posttranslational modification, protein turnover, chaperones]. 379 -227595 COG5270 PUA PUA domain (predicted RNA-binding domain) [Translation, ribosomal structure and biogenesis]. 202 -227596 COG5271 MDN1 Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]. 4600 -319244 COG5272 UBI4 UBI4; linked to 3D-structure 74 -227598 COG5273 COG5273 Uncharacterized protein containing DHHC-type Zn finger [General function prediction only]. 309 -227599 COG5274 CYB5 Cytochrome b involved in lipid metabolism [Energy production and conversion, Lipid transport and metabolism]. 164 -227600 COG5275 COG5275 BRCT domain type II [General function prediction only]. 276 -227601 COG5276 COG5276 Uncharacterized conserved protein [Function unknown]. 370 -227602 COG5277 COG5277 Actin-related protein [Cytoskeleton]. 444 -227603 COG5278 CHASE3 Extracellular (periplasmic) sensor domain CHASE3 (specificity unknown) [Signal transduction mechanisms]. 207 -227604 COG5279 CYK3 Cytokinesis protein 3, contains TGc (transglutaminase/protease-like) domain [Cell cycle control, cell division, chromosome partitioning]. 521 -227605 COG5280 YqbO Phage-related minor tail protein [Mobilome: prophages, transposons]. 634 -227606 COG5281 COG5281 Phage-related minor tail protein [Mobilome: prophages, transposons]. 833 -227607 COG5282 COG5282 Uncharacterized conserved protein, DUF2342 family [Function unknown]. 359 -227608 COG5283 COG5283 Phage-related tail protein [Mobilome: prophages, transposons]. 1213 -227609 COG5285 PhyH Ectoine hydroxylase-related dioxygenase, phytanoyl-CoA dioxygenase (PhyH) family [Secondary metabolites biosynthesis, transport and catabolism]. 299 -227610 COG5290 COG5290 IkappaB kinase complex, IKAP component [Transcription]. 1243 -227611 COG5291 COG5291 Predicted membrane protein [Function unknown]. 313 -227612 COG5293 YydB Uncharacterized protein YydD, contains DUF2326 domain [Function unknown]. 591 -227613 COG5294 YxeA Uncharacterized protein YxeA, DUF1093 family [Function unknown]. 113 -227614 COG5295 Hia Autotransporter adhesin [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 715 -227615 COG5296 COG5296 Transcription factor involved in TATA site selection and in elongation by RNA polymerase II [Transcription]. 521 -227616 COG5297 CelA1 Cellulase/cellobiase CelA1 [Carbohydrate transport and metabolism]. 544 -227617 COG5298 YdaL Predicted metal-dependent carbohydrate esterase YdaL, contains NodB-like catalytic (CE4) domain [General function prediction only]. 530 -227618 COG5301 COG5301 Phage-related tail fibre protein [Mobilome: prophages, transposons]. 587 -227619 COG5302 COG5302 Post-segregation antitoxin (ccd killing mechanism protein) encoded by the F plasmid [Mobilome: prophages, transposons]. 80 -227620 COG5304 COG5304 Predicted DNA binding protein, CopG/RHH family [Transcription]. 92 -227621 COG5305 COG5305 Uncharacterized membrane protein [Function unknown]. 552 -227622 COG5306 COG5306 Uncharacterized protein [Function unknown]. 621 -227623 COG5307 COG5307 Guanine-nucleotide exchange factor, contains Sec7 domain [General function prediction only]. 1024 -227624 COG5308 NUP170 Nuclear pore complex subunit [Intracellular trafficking and secretion]. 1263 -227625 COG5309 Scw11 Exo-beta-1,3-glucanase, GH17 family [Carbohydrate transport and metabolism]. 305 -227626 COG5310 COG5310 Homospermidine synthase [Secondary metabolites biosynthesis, transport and catabolism]. 481 -227627 COG5314 COG5314 Conjugal transfer/entry exclusion protein [Mobilome: prophages, transposons]. 252 -227628 COG5316 COG5316 Uncharacterized protein [Function unknown]. 421 -227629 COG5317 COG5317 Uncharacterized protein [Function unknown]. 175 -227630 COG5319 COG5319 Uncharacterized protein [Function unknown]. 142 -227631 COG5321 COG5321 Uncharacterized protein [Function unknown]. 164 -227632 COG5322 COG5322 Predicted amino acid dehydrogenase [General function prediction only]. 351 -227633 COG5323 COG5323 Large terminase phage packaging protein [Mobilome: prophages, transposons]. 410 -227634 COG5324 Trl1 tRNA splicing ligase [Translation, ribosomal structure and biogenesis]. 758 -227635 COG5325 COG5325 t-SNARE complex subunit, syntaxin [Intracellular trafficking and secretion]. 283 -227636 COG5328 COG5328 Uncharacterized protein, UPF0262 family [Function unknown]. 160 -227637 COG5329 COG5329 Phosphoinositide polyphosphatase (Sac family) [Signal transduction mechanisms]. 570 -227638 COG5330 COG5330 Uncharacterized conserved protein, DUF2336 family [Function unknown]. 364 -227639 COG5331 COG5331 Uncharacterized protein [Function unknown]. 139 -227640 COG5333 CCL1 Cdk activating kinase (CAK)/RNA polymerase II transcription initiation/nucleotide excision repair factor TFIIH/TFIIK, cyclin H subunit [Cell division and chromosome partitioning / Transcription / DNA replication, recombination, and repair]. 297 -227641 COG5336 AtpI2 FoF1-type ATP synthase assembly protein I [Energy production and conversion]. 116 -227642 COG5337 CotH Spore coat protein CotH [Cell wall/membrane/envelope biogenesis]. 473 -227643 COG5338 COG5338 Uncharacterized protein [Function unknown]. 468 -227644 COG5339 YdgA Uncharacterized conserved protein YdgA, DUF945 family [Function unknown]. 479 -227645 COG5340 COG5340 Transcriptional regulator, predicted component of viral defense system [Defense mechanisms]. 269 -227646 COG5341 COG5341 Uncharacterized protein [Function unknown]. 132 -227647 COG5342 IalB Invasion protein IalB, involved in pathogenesis [General function prediction only]. 181 -227648 COG5343 RskA Anti-sigma-K factor RskA [Signal transduction mechanisms]. 240 -227649 COG5345 COG5345 Uncharacterized protein [Function unknown]. 358 -227650 COG5346 COG5346 Uncharacterized membrane protein [Function unknown]. 136 -227651 COG5347 COG5347 GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion]. 319 -227652 COG5349 COG5349 Uncharacterized conserved protein, DUF983 family [Function unknown]. 126 -227653 COG5350 COG5350 Predicted protein tyrosine phosphatase [General function prediction only]. 172 -227654 COG5351 COG5351 Uncharacterized protein [Function unknown]. 367 -227655 COG5352 COG5352 Uncharacterized protein [Function unknown]. 169 -227656 COG5353 YpmB Uncharacterized protein YpmB, contains C-terminal PepSY domain [Function unknown]. 161 -227657 COG5354 COG5354 Uncharacterized protein, contains Trp-Asp (WD) repeat [General function prediction only]. 561 -227658 COG5360 COG5360 Uncharacterized conserved protein, heparinase superfamily [Function unknown]. 566 -227659 COG5361 COG5361 Uncharacterized conserved protein [Mobilome: prophages, transposons]. 458 -227660 COG5362 COG5362 Phage terminase large subunit [Mobilome: prophages, transposons]. 202 -227661 COG5366 COG5366 Protein involved in propagation of M2 dsRNA satellite of L-A virus [General function prediction only]. 531 -227662 COG5368 COG5368 Uncharacterized protein [Function unknown]. 451 -227663 COG5369 COG5369 Uncharacterized conserved protein [Function unknown]. 743 -227664 COG5371 COG5371 Golgi nucleoside diphosphatase [Nucleotide transport and metabolism]. 549 -227665 COG5373 COG5373 Uncharacterized membrane protein [Function unknown]. 931 -227666 COG5374 COG5374 Uncharacterized conserved protein [Function unknown]. 192 -227667 COG5375 COG5375 Uncharacterized protein [Function unknown]. 216 -227668 COG5377 COG5377 Phage-related protein, predicted endonuclease [Mobilome: prophages, transposons]. 319 -227669 COG5378 COG5378 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 175 -227670 COG5379 BtaA S-adenosylmethionine:diacylglycerol 3-amino-3-carboxypropyl transferase [Lipid transport and metabolism]. 414 -227671 COG5380 LimK Lipase chaperone LimK [Posttranslational modification, protein turnover, chaperones]. 283 -227672 COG5381 COG5381 Uncharacterized protein [Function unknown]. 184 -227673 COG5383 YdcJ Uncharacterized metalloenzyme YdcJ, glyoxalase superfamily [General function prediction only]. 295 -227674 COG5384 Mpp10 U3 small nucleolar ribonucleoprotein component [Translation, ribosomal structure and biogenesis]. 569 -227675 COG5385 COG5385 Uncharacterized protein [Function unknown]. 214 -227676 COG5386 NEAT Heme-binding NEAT domain [Inorganic ion transport and metabolism]. 352 -227677 COG5387 Atp12 Chaperone required for the assembly of the mitochondrial F1-ATPase [Posttranslational modification, protein turnover, chaperones]. 264 -227678 COG5388 COG5388 Uncharacterized protein [Function unknown]. 209 -227679 COG5389 COG5389 Uncharacterized protein [Function unknown]. 181 -227680 COG5391 COG5391 Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]. 524 -227681 COG5393 YqjE Uncharacterized membrane protein YqjE [Function unknown]. 131 -227682 COG5394 COG5394 Polyhydroxyalkanoate (PHA) synthesis regulator protein, binds DNA and PHA [Secondary metabolites biosynthesis, transport and catabolism, Signal transduction mechanisms]. 193 -227683 COG5395 COG5395 Uncharacterized membrane protein [Function unknown]. 131 -227684 COG5397 COG5397 Uncharacterized protein [Function unknown]. 349 -227685 COG5398 COG5398 Heme oxygenase [Coenzyme transport and metabolism]. 238 -227686 COG5399 COG5399 Uncharacterized protein [Function unknown]. 139 -227687 COG5400 COG5400 Uncharacterized protein [Function unknown]. 205 -227688 COG5401 GerM Spore germination protein GerM [Cell cycle control, cell division, chromosome partitioning]. 250 -227689 COG5402 COG5402 Uncharacterized protein [Function unknown]. 194 -227690 COG5403 COG5403 Uncharacterized protein [Function unknown]. 285 -227691 COG5404 SulA Cell division inhibitor SulA, prevents FtsZ ring assembly [Cell cycle control, cell division, chromosome partitioning]. 169 -227692 COG5405 HslV ATP-dependent protease HslVU (ClpYQ), peptidase subunit [Posttranslational modification, protein turnover, chaperones]. 178 -227693 COG5406 COG5406 Nucleosome binding factor SPN, SPT16 subunit [Transcription, Replication, recombination and repair, Chromatin structure and dynamics]. 1001 -227694 COG5407 SEC63 Preprotein translocase subunit Sec63 [Intracellular trafficking, secretion, and vesicular transport]. 610 -227695 COG5408 COG5408 SPX domain-containing protein [Signal transduction mechanisms]. 296 -227696 COG5409 COG5409 EXS domain-containing protein [Signal transduction mechanisms]. 384 -227697 COG5410 COG5410 Uncharacterized protein [Function unknown]. 305 -227698 COG5411 COG5411 Phosphatidylinositol 5-phosphate phosphatase [Signal transduction mechanisms]. 460 -227699 COG5412 COG5412 Phage-related protein [Mobilome: prophages, transposons]. 637 -227700 COG5413 COG5413 Uncharacterized integral membrane protein [Function unknown]. 168 -227701 COG5414 Taf7 TATA-binding protein-associated factor Taf7, part of the TFIID transcription initiation complex [Transcription]. 392 -227702 COG5415 COG5415 Predicted integral membrane metal-binding protein [General function prediction only]. 251 -227703 COG5416 YrvD Uncharacterized integral membrane protein [Function unknown]. 98 -227704 COG5417 YukD Uncharacterized ubiquitin-like protein YukD [Function unknown]. 81 -227705 COG5418 COG5418 Predicted secreted protein [Function unknown]. 164 -227706 COG5419 COG5419 Uncharacterized protein [Function unknown]. 160 -227707 COG5420 COG5420 Uncharacterized protein [Function unknown]. 71 -227708 COG5421 COG5421 Transposase [Mobilome: prophages, transposons]. 480 -227709 COG5422 ROM1 RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms]. 1175 -227710 COG5423 COG5423 Predicted metal-binding protein [Function unknown]. 167 -227711 COG5424 PqqC Pyrroloquinoline quinone (PQQ) biosynthesis protein C [Coenzyme transport and metabolism]. 242 -227712 COG5425 Usg Usg protein (tryptophan operon, function unknown) [Function unknown]. 90 -227713 COG5426 COG5426 Uncharacterized membrane protein [Function unknown]. 254 -227714 COG5427 COG5427 Uncharacterized membrane protein [Function unknown]. 684 -227715 COG5428 YuzE Uncharacterized protein YuzE, DUF2283 family [Function unknown]. 69 -227716 COG5429 COG5429 Uncharacterized protein [Function unknown]. 261 -227717 COG5430 SCPU Spore coat protein U (SCPU) domain, function unknown [Function unknown]. 174 -227718 COG5431 COG5431 Predicted nucleic acid-binding protein, contains Zn-finger domain [General function prediction only]. 117 -227719 COG5432 RAD18 RING-finger-containing E3 ubiquitin ligase [Signal transduction mechanisms]. 391 -227720 COG5433 YhhI Predicted transposase YbfD/YdcC associated with H repeats [Mobilome: prophages, transposons]. 121 -227721 COG5434 Pgu1 Polygalacturonase [Carbohydrate transport and metabolism]. 542 -227722 COG5435 COG5435 Uncharacterized protein [Function unknown]. 147 -227723 COG5436 COG5436 Uncharacterized membrane protein [Function unknown]. 182 -227724 COG5437 COG5437 Predicted secreted protein [Function unknown]. 138 -227725 COG5438 COG5438 Uncharacterized membrane protein [Function unknown]. 385 -227726 COG5439 COG5439 Uncharacterized protein [Function unknown]. 112 -227727 COG5440 COG5440 Uncharacterized protein [Function unknown]. 161 -227728 COG5441 COG5441 Uncharacterized protein, UPF0261 family [Function unknown]. 401 -227729 COG5442 FlaF Flagellar biosynthesis regulator FlaF [Cell motility]. 115 -227730 COG5443 FlbT Flagellar biosynthesis regulator FlbT [Cell motility]. 148 -227731 COG5444 YeeF Predicted ribonuclease, toxin component of the YeeF-YezG toxin-antitoxin module [Defense mechanisms]. 565 -227732 COG5445 YfaQ Uncharacterized conserved protein YfaQ, DUF2300 domain [Function unknown]. 268 -227733 COG5446 CbtA Uncharacterized membrane protein, predicted cobalt tansporter CbtA [General function prediction only]. 233 -227734 COG5447 COG5447 Uncharacterized protein [Function unknown]. 115 -227735 COG5448 COG5448 Uncharacterized protein [Function unknown]. 184 -227736 COG5449 COG5449 Uncharacterized protein [Function unknown]. 225 -227737 COG5450 VapB6 Transcription regulator of the Arc/MetJ class [Transcription]. 84 -227738 COG5451 COG5451 Predicted secreted protein [Function unknown]. 128 -227739 COG5452 COG5452 Uncharacterized protein [Function unknown]. 180 -227740 COG5453 COG5453 Uncharacterized protein [Function unknown]. 96 -227741 COG5454 COG5454 Predicted secreted protein [Function unknown]. 89 -227742 COG5455 RcnB Periplasmic regulator RcnB of Ni and Co efflux [Inorganic ion transport and metabolism]. 129 -227743 COG5456 FixH Nitrogen fixation protein FixH [Inorganic ion transport and metabolism]. 166 -227744 COG5457 YjiS Uncharacterized conserved protein YjiS, DUF1127 family [Function unknown]. 63 -227745 COG5458 COG5458 Uncharacterized protein [Function unknown]. 144 -227746 COG5459 Rsm22 Ribosomal protein RSM22 (predicted mitochondrial rRNA methylase) [Translation, ribosomal structure and biogenesis]. 484 -227747 COG5460 COG5460 Uncharacterized conserved protein, DUF2164 family [Function unknown]. 82 -227748 COG5461 CpaD Type IV pilus biogenesis protein CpaD/CtpE [Extracellular structures]. 224 -227749 COG5462 COG5462 Predicted secreted (periplasmic) protein [Function unknown]. 138 -227750 COG5463 YgiB Uncharacterized conserved protein YgiB, involved in bioifilm formation, UPF0441/DUF1190 family [Function unknown]. 198 -227751 COG5464 YadD Predicted transposase YdaD [Replication, recombination and repair]. 289 -227752 COG5465 COG5465 Uncharacterized protein [Function unknown]. 166 -227753 COG5466 COG5466 Predicted small metal-binding protein [Function unknown]. 59 -227754 COG5467 COG5467 Uncharacterized protein [Function unknown]. 104 -227755 COG5468 COG5468 Predicted secreted (periplasmic) protein [Function unknown]. 172 -227756 COG5469 COG5469 Predicted metal-binding protein [Function unknown]. 143 -227757 COG5470 COG5470 Uncharacterized conserved protein, DUF1330 family [Function unknown]. 96 -227758 COG5471 COG5471 Predicted phage recombinase, RecA/RadA family [Mobilome: prophages, transposons]. 107 -227759 COG5472 COG5472 Predicted small integral membrane protein [Function unknown]. 164 -227760 COG5473 COG5473 Uncharacterized membrane protein [Function unknown]. 290 -227761 COG5474 COG5474 Uncharacterized protein [Function unknown]. 159 -227762 COG5475 YodC Uncharacterized conserved protein YodC, DUF2158 family [Function unknown]. 60 -227763 COG5476 COG5476 Microcystin degradation protein MlrC, contains DUF1485 domain [General function prediction only]. 488 -227764 COG5477 COG5477 Predicted small integral membrane protein [Function unknown]. 97 -227765 COG5478 Fet4 Low affinity Fe/Cu permease [Inorganic ion transport and metabolism]. 141 -227766 COG5479 Psp3 Uncharacterized conserved protein, contains LGFP repeats [Function unknown]. 556 -227767 COG5480 COG5480 Uncharacterized membrane protein [Function unknown]. 147 -227768 COG5481 COG5481 Uncharacterized protein [Function unknown]. 67 -227769 COG5482 COG5482 Uncharacterized protein [Function unknown]. 229 -227770 COG5483 COG5483 Uncharacterized conserved protein, DUF488 family [Function unknown]. 289 -227771 COG5484 YjcR Uncharacterized protein YjcR, contains N-terminal HTH domain [Function unknown]. 279 -227772 COG5485 COG5485 Predicted ester cyclase [General function prediction only]. 131 -227773 COG5486 COG5486 Predicted metal-binding membrane protein [Function unknown]. 283 -227774 COG5487 YtjA Uncharacterized membrane protein YtjA, UPF0391 family [Function unknown]. 54 -227775 COG5488 COG5488 Uncharacterized membrane protein [Function unknown]. 164 -227776 COG5489 COG5489 Uncharacterized conserved protein, DUF736 family [Function unknown]. 107 -227777 COG5490 COG5490 Uncharacterized protein [Function unknown]. 158 -227778 COG5491 Did4 Archaeal division protein CdvB, Snf7/Vps24/ESCRT-III family [Cell cycle control, cell division, chromosome partitioning]. 204 -227779 COG5492 YjdB Uncharacterized conserved protein YjdB, contains Ig-like domain [General function prediction only]. 329 -227780 COG5493 COG5493 Uncharacterized protein [Function unknown]. 231 -227781 COG5494 COG5494 Predicted thioredoxin/glutaredoxin [Posttranslational modification, protein turnover, chaperones]. 265 -227782 COG5495 COG5495 Predicted oxidoreductase, contains short-chain dehydrogenase (SDR) and DUF2520 domains [General function prediction only]. 289 -227783 COG5496 COG5496 Predicted thioesterase [General function prediction only]. 130 -227784 COG5497 COG5497 Predicted secreted protein [Function unknown]. 228 -227785 COG5498 Acf2 Endoglucanase Acf2 [Carbohydrate transport and metabolism]. 760 -227786 COG5499 HigA Antitoxin component HigA of the HigAB toxin-antitoxin module, contains an N-terminal HTH domain [Defense mechanisms]. 120 -227787 COG5500 COG5500 Uncharacterized membrane protein [Function unknown]. 159 -227788 COG5501 COG5501 Predicted secreted protein [Function unknown]. 148 -227789 COG5502 COG5502 Uncharacterized conserved protein, DUF2267 family [Function unknown]. 135 -227790 COG5503 RpoEps DNA-dependent RNA polymerase auxiliary subunit epsilon [Transcription, Defense mechanisms]. 69 -227791 COG5504 YjaZ Predicted Zn-dependent protease YjaZ, DUF2268 family [General function prediction only]. 280 -227792 COG5505 COG5505 Uncharacterized membrane protein [Function unknown]. 384 -227793 COG5506 YueI Uncharacterized protein YueI, DUF2278 family [Function unknown]. 144 -227794 COG5507 YbaA Uncharacterized conserved protein YbaA, DUF1428 family [Function unknown]. 117 -227795 COG5508 COG5508 Uncharacterized protein [Function unknown]. 84 -227796 COG5509 COG5509 Uncharacterized small protein, DUF1192 family [Function unknown]. 65 -227797 COG5510 COG5510 Predicted small secreted protein [Function unknown]. 44 -227798 COG5511 COG5511 Bacteriophage capsid protein [Mobilome: prophages, transposons]. 492 -227799 COG5512 COG5512 Predicted nucleic acid-binding protein, contains Zn-ribbon domain (includes truncated derivatives) [General function prediction only]. 194 -227800 COG5513 COG5513 Predicted secreted protein [Function unknown]. 113 -227801 COG5514 COG5514 Uncharacterized protein [Function unknown]. 203 -227802 COG5515 COG5515 Uncharacterized protein [Function unknown]. 70 -227803 COG5516 COG5516 Conserved protein containing a Zn-ribbon-like motif, possibly RNA-binding [General function prediction only]. 196 -227804 COG5517 HcaF 3-phenylpropionate/cinnamic acid dioxygenase, small subunit [Secondary metabolites biosynthesis, transport and catabolism]. 164 -227805 COG5518 COG5518 Bacteriophage capsid portal protein [Mobilome: prophages, transposons]. 492 -227806 COG5519 COG5519 Uncharcterized protein, DUF927 family [Function unknown]. 562 -227807 COG5520 XynC O-Glycosyl hydrolase [Cell wall/membrane/envelope biogenesis]. 433 -227808 COG5521 YvdJ Maltodextrin utilization protein YvdJ (function unknown) [Carbohydrate transport and metabolism]. 275 -227809 COG5522 YwaF Uncharacterized membrane protein YwaF [Function unknown]. 236 -227810 COG5523 COG5523 Uncharacterized membrane protein [Function unknown]. 271 -227811 COG5524 COG5524 Bacteriorhodopsin [Energy production and conversion, Signal transduction mechanisms]. 285 -227812 COG5525 YbcX Phage terminase, large subunit GpA [Mobilome: prophages, transposons]. 611 -227813 COG5526 COG5526 Lysozyme family protein [General function prediction only]. 191 -227814 COG5527 COG5527 Protein involved in initiation of plasmid replication [Mobilome: prophages, transposons]. 342 -227815 COG5528 COG5528 Uncharacterized membrane protein [Function unknown]. 155 -227816 COG5529 COG5529 Pyocin large subunit [Secondary metabolites biosynthesis, transport and catabolism]. 326 -227817 COG5530 COG5530 Uncharacterized membrane protein [Function unknown]. 247 -227818 COG5531 Rsc6 Chromatin remodeling complex protein RSC6, contains SWIB domain [Chromatin structure and dynamics]. 237 -227819 COG5532 yfdQ Uncharacterized conserved protein YfdQ, DUF2303 family [Function unknown]. 269 -227820 COG5533 COG5533 Ubiquitin C-terminal hydrolase [Posttranslational modification, protein turnover, chaperones]. 415 -227821 COG5534 RepA Plasmid replication initiator protein [Mobilome: prophages, transposons]. 383 -227822 COG5535 RAD4 DNA repair protein RAD4 [DNA replication, recombination, and repair]. 650 -227823 COG5536 BET4 Protein prenyltransferase, alpha subunit [Posttranslational modification, protein turnover, chaperones]. 328 -227824 COG5537 IRR1 Cohesin [Cell division and chromosome partitioning]. 740 -227825 COG5538 SEC66 Endoplasmic reticulum translocation complex, subunit SEC66 [Cell motility and secretion]. 180 -227826 COG5539 COG5539 Predicted cysteine protease (OTU family) [Posttranslational modification, protein turnover, chaperones]. 306 -227827 COG5540 COG5540 RING-finger-containing ubiquitin ligase [Posttranslational modification, protein turnover, chaperones]. 374 -227828 COG5541 RET3 Vesicle coat complex COPI, zeta subunit [Posttranslational modification, protein turnover, chaperones]. 187 -227829 COG5542 COG5542 Mannosyltransferase related to Gpi18 [Carbohydrate transport and metabolism]. 420 -227830 COG5543 COG5543 Uncharacterized conserved protein [Function unknown]. 1400 -227831 COG5544 yfiM Uncharacterized conserved protein YfiM, DUF2279 family [Function unknown]. 101 -227832 COG5545 COG5545 Predicted P-loop ATPase and inactivated derivatives [Mobilome: prophages, transposons]. 517 -227833 COG5546 COG5546 Uncharacterized membrane protein [Function unknown]. 80 -227834 COG5547 COG5547 Uncharacterized membrane protein [Function unknown]. 62 -227835 COG5548 COG5548 Uncharacterized membrane protein, UPF0136 family [Function unknown]. 105 -227836 COG5549 COG5549 Predicted Zn-dependent protease [Posttranslational modification, protein turnover, chaperones]. 236 -227837 COG5550 COG5550 Predicted aspartyl protease [Posttranslational modification, protein turnover, chaperones]. 125 -227838 COG5551 Cas6 CRISPR/Cas system endoribonuclease Cas6, RAMP superfamily [Defense mechanisms]. 261 -227839 COG5552 COG5552 Uncharacterized protein [Function unknown]. 88 -227840 COG5553 COG5553 Predicted metal-dependent enzyme of the double-stranded beta helix superfamily [General function prediction only]. 191 -227841 COG5554 NifT Nitrogen fixation protein [Secondary metabolites biosynthesis, transport and catabolism]. 69 -227842 COG5555 COG5555 Cytolysin, a secreted calcineurin-like phosphatase [Intracellular trafficking, secretion, and vesicular transport]. 392 -227843 COG5556 COG5556 Uncharacterized protein [Function unknown]. 110 -227844 COG5557 HybB Ni/Fe-hydrogenase 2 integral membrane subunit HybB [Energy production and conversion]. 401 -227845 COG5558 COG5558 Transposase [Mobilome: prophages, transposons]. 261 -227846 COG5559 COG5559 Uncharacterized conserved small protein [Function unknown]. 65 -227847 COG5560 UBP12 Ubiquitin C-terminal hydrolase [Posttranslational modification, protein turnover, chaperones]. 823 -227848 COG5561 COG5561 Predicted metal-binding protein [Function unknown]. 101 -227849 COG5562 YbcV Prophage-encoded protein YbcV, DUF1398 family [Mobilome: prophages, transposons]. 137 -227850 COG5563 COG5563 Uncharacterized membrane protein [Function unknown]. 379 -227851 COG5564 COG5564 Predicted TIM-barrel enzyme [Function unknown]. 276 -227852 COG5565 COG5565 Bacteriophage terminase large (ATPase) subunit and inactivated derivatives [Mobilome: prophages, transposons]. 79 -227853 COG5566 COG5566 Transcriptional regulator, Middle operon regulator (Mor) family [Transcription]. 137 -227854 COG5567 YifL Predicted small periplasmic lipoprotein YifL (function unknown0 [Function unknown]. 58 -227855 COG5568 COG5568 Uncharacterized protein [Function unknown]. 85 -227856 COG5569 CusF Periplasmic Cu and Ag efflux protein CusF [Inorganic ion transport and metabolism]. 108 -227857 COG5570 COG5570 Uncharacterized protein [Function unknown]. 57 -227858 COG5571 YhjY Uncharacterized protein YhjY, contains autotransporter beta-barrel domain [General function prediction only]. 239 -227859 COG5572 COG5572 Uncharacterized membrane protein [Function unknown]. 104 -227860 COG5573 COG5573 Predicted nucleic acid-binding protein, contains PIN domain [General function prediction only]. 142 -227861 COG5574 PEX10 RING-finger-containing E3 ubiquitin ligase [Posttranslational modification, protein turnover, chaperones]. 271 -227862 COG5575 ORC2 Origin recognition complex, subunit 2 [DNA replication, recombination, and repair]. 535 -227863 COG5576 COG5576 Homeodomain-containing transcription factor [Transcription]. 156 -227864 COG5577 CotF Spore coat protein CotF [Cell wall/membrane/envelope biogenesis]. 145 -227865 COG5578 YesL Uncharacterized membrane protein YesL [Function unknown]. 208 -227866 COG5579 COG5579 Uncharacterized protein, DUF1810 family [Function unknown]. 143 -227867 COG5580 COG5580 Activator of HSP90 ATPase [Posttranslational modification, protein turnover, chaperones]. 272 -227868 COG5581 YcgR c-di-GMP-binding flagellar brake protein YcgR, contains PilZNR and PilZ domains [Cell motility]. 233 -227869 COG5582 YpiB Uncharacterized protein YpiB, UPF0302 family [Function unknown]. 182 -227870 COG5583 COG5583 Uncharacterized protein [Function unknown]. 54 -227871 COG5584 COG5584 Predicted small secreted protein [Function unknown]. 103 -227872 COG5585 COG5585 NAD+--asparagine ADP-ribosyltransferase [Signal transduction mechanisms]. 417 -227873 COG5586 COG5586 Uncharacterized protein [Function unknown]. 110 -227874 COG5587 COG5587 Uncharacterized conserved protein, DUF2461 family [Function unknown]. 228 -227875 COG5588 COG5588 Uncharacterized protein [Function unknown]. 207 -227876 COG5589 COG5589 Uncharacterized protein [Function unknown]. 164 -227877 COG5590 COG5590 Ubiquinone biosynthesis protein COQ9 [Coenzyme transport and metabolism]. 229 -227878 COG5591 COG5591 Uncharacterized protein [Function unknown]. 103 -227879 COG5592 COG5592 Hemerythrin superfamily protein [General function prediction only]. 171 -227880 COG5593 COG5593 Nucleic-acid-binding protein possibly involved in ribosomal biogenesis [Translation, ribosomal structure and biogenesis]. 821 -227881 COG5594 COG5594 Uncharacterized integral membrane protein [Function unknown]. 827 -227882 COG5595 COG5595 Predicted nucleic acid-binding protein, contains Zn-ribbon domain [General function prediction only]. 256 -227883 COG5596 TIM22 Mitochondrial import inner membrane translocase, subunit TIM22 [Posttranslational modification, protein turnover, chaperones]. 191 -227884 COG5597 Gnt1 Alpha-N-acetylglucosamine transferase [Cell wall/membrane/envelope biogenesis]. 368 -227885 COG5598 MttB2 Trimethylamine:corrinoid methyltransferase [Coenzyme transport and metabolism]. 526 -227886 COG5599 COG5599 Protein tyrosine phosphatase [Signal transduction mechanisms]. 302 -227887 COG5600 COG5600 Transcription-associated recombination protein [DNA replication, recombination, and repair]. 413 -227888 COG5601 CDC36 General negative regulator of transcription subunit [Transcription]. 172 -227889 COG5602 Sin3 Histone deacetylase complex, regulatory component SIN3 [Chromatin structure and dynamics]. 1163 -227890 COG5603 TRS20 Subunit of TRAPP, an ER-Golgi tethering complex [Cell motility and secretion]. 136 -227891 COG5604 COG5604 Uncharacterized conserved protein [Function unknown]. 523 -227892 COG5605 COG5605 Cytochrome c oxidase subunit IV [Energy production and conversion]. 115 -227893 COG5606 COG5606 Predicted DNA-binding protein, XRE-type HTH domain [General function prediction only]. 91 -227894 COG5607 CHAD CHAD domain (function unknown) [Function unknown]. 283 -227895 COG5608 COG5608 LEA14-like dessication related protein [Defense mechanisms]. 161 -227896 COG5609 YbcI Uncharacterized protein YbcI, DUF2294 family [Function unknown]. 124 -227897 COG5610 COG5610 Predicted hydrolase, HAD superfamily [General function prediction only]. 635 -227898 COG5611 COG5611 Predicted nucleic-acid-binding protein, contains PIN domain [General function prediction only]. 130 -227899 COG5612 COG5612 Uncharacterized membrane protein [Function unknown]. 148 -227900 COG5613 COG5613 Uncharacterized protein [Function unknown]. 400 -227901 COG5614 COG5614 Bacteriophage head-tail adaptor [Mobilome: prophages, transposons]. 109 -227902 COG5615 COG5615 Uncharacterized membrane protein [Function unknown]. 161 -227903 COG5616 TolBN TolB amino-terminal domain (function unknown) [General function prediction only]. 152 -227904 COG5617 COG5617 Uncharacterized membrane protein [Function unknown]. 801 -227905 COG5618 COG5618 Predicted periplasmic lipoprotein [Function unknown]. 206 -227906 COG5619 COG5619 Uncharacterized protein [Function unknown]. 224 -227907 COG5620 COG5620 Uncharacterized protein [Function unknown]. 200 -227908 COG5621 COG5621 Predicted secreted hydrolase [General function prediction only]. 354 -227909 COG5622 COG5622 Protein required for attachment to host cells [Cell wall/membrane/envelope biogenesis]. 139 -227910 COG5623 CLP1 Predicted GTPase subunit of the pre-mRNA cleavage complex [Translation, ribosomal structure and biogenesis]. 424 -227911 COG5624 COG5624 Transcription initiation factor TFIID, subunit TAF12 [Transcription]. 505 -227912 COG5625 COG5625 Predicted DNA-binding transcriptional regulator, contains HTH domain [Transcription]. 113 -227913 COG5626 COG5626 Uncharacterized protein [Function unknown]. 97 -227914 COG5627 COG5627 SUMO ligase MMS21, Smc5/6 complex, required for cell growth and DNA repair [Replication, recombination and repair]. 275 -227915 COG5628 COG5628 Predicted acetyltransferase [General function prediction only]. 143 -227916 COG5629 COG5629 Predicted metal-binding protein [Function unknown]. 321 -227917 COG5630 Arg2 Acetylglutamate synthase [Amino acid transport and metabolism]. 495 -227918 COG5631 COG5631 Predicted transcription regulator, contains HTH domain, MarR family [Transcription]. 199 -227919 COG5632 CwlA N-acetylmuramoyl-L-alanine amidase CwlA [Cell wall/membrane/envelope biogenesis]. 302 -227920 COG5633 YcfL Uncharacterized conserved protein YcfL [Function unknown]. 123 -227921 COG5634 YukJ Uncharacterized protein YukJ, DUF2278 family [Function unknown]. 223 -227922 COG5635 COG5635 Predicted NTPase, NACHT family domain [Signal transduction mechanisms]. 824 -227923 COG5636 COG5636 Uncharacterized conserved protein, contains Zn-ribbon-like motif [Function unknown]. 284 -227924 COG5637 COG5637 Uncharacterized membrane protein [Function unknown]. 217 -227925 COG5638 COG5638 Uncharacterized conserved protein [Function unknown]. 622 -227926 COG5639 COG5639 Uncharacterized protein [Function unknown]. 77 -227927 COG5640 COG5640 Secreted trypsin-like serine protease [Posttranslational modification, protein turnover, chaperones]. 413 -227928 COG5641 GAT1 GATA Zn-finger-containing transcription factor [Transcription]. 498 -227929 COG5642 COG5642 Uncharacterized conserved protein, DUF2384 family [Function unknown]. 149 -227930 COG5643 COG5643 Protein containing a metal-binding domain shared with formylmethanofuran dehydrogenase subunit E [General function prediction only]. 685 -227931 COG5644 COG5644 U3 small nucleolar RNA-associated protein 14 [Function unknown]. 869 -227932 COG5645 YceK Uncharacterized conserved protein YceK [Function unknown]. 80 -227933 COG5646 YdhG Uncharacterized conserved protein YdhG, YjbR/CyaY-like superfamily, DUF1801 family [Function unknown]. 126 -227934 COG5647 COG5647 Cullin, a subunit of E3 ubiquitin ligase [Posttranslational modification, protein turnover, chaperones]. 773 -227935 COG5648 NHP6B Chromatin-associated proteins containing the HMG domain [Chromatin structure and dynamics]. 211 -227936 COG5649 COG5649 Uncharacterized protein [Function unknown]. 132 -227937 COG5650 COG5650 Uncharacterized membrane protein [Function unknown]. 536 -227938 COG5651 COG5651 PPE-repeat protein [Function unknown]. 490 -227939 COG5652 COG5652 VanZ-like family protein (function unknown) [Function unknown]. 148 -227940 COG5653 BcsL Acetyltransferase involved in cellulose biosynthesis, CelD/BcsL family [Cell motility]. 406 -227941 COG5654 COG5654 Uncharacterized conserved protein, contains RES domain [Function unknown]. 163 -227942 COG5655 REP Plasmid rolling circle replication initiator protein REP and truncated derivatives [Mobilome: prophages, transposons]. 256 -227943 COG5656 SXM1 Importin, protein involved in nuclear import [Posttranslational modification, protein turnover, chaperones]. 970 -227944 COG5657 CSE1 CAS/CSE protein involved in chromosome segregation [Cell division and chromosome partitioning]. 947 -227945 COG5658 COG5658 Uncharacterized membrane protein [Function unknown]. 204 -227946 COG5659 COG5659 SRSO17 transposase [Mobilome: prophages, transposons]. 385 -227947 COG5660 YlaC Predicted anti-sigma-YlaC factor YlaD, contains Zn-finger domain [Signal transduction mechanisms]. 238 -227948 COG5661 COG5661 Predicted secreted Zn-dependent protease [Posttranslational modification, protein turnover, chaperones]. 210 -227949 COG5662 RsiW Transmembrane transcriptional regulator (anti-sigma factor RsiW) [Transcription]. 256 -227950 COG5663 YqfW Uncharacterized protein, HAD superfamily [General function prediction only]. 194 -227951 COG5664 COG5664 Predicted secreted Zn-dependent protease [Posttranslational modification, protein turnover, chaperones]. 201 -227952 COG5665 COG5665 CCR4-NOT transcriptional regulation complex, NOT5 subunit [Transcription]. 548 -177099 MTH00001 ND4L NADH dehydrogenase subunit 4L; Provisional 99 -214398 MTH00004 ND5 NADH dehydrogenase subunit 5; Validated 602 -164583 MTH00005 ATP6 ATP synthase F0 subunit 6; Provisional 231 -133649 MTH00007 COX1 cytochrome c oxidase subunit I; Validated 511 -164584 MTH00008 COX2 cytochrome c oxidase subunit II; Validated 228 -177101 MTH00009 COX3 cytochrome c oxidase subunit III; Validated 259 -164586 MTH00010 ND1 NADH dehydrogenase subunit 1; Validated 311 -164587 MTH00011 ND2 NADH dehydrogenase subunit 2; Validated 330 -164588 MTH00012 ND3 NADH dehydrogenase subunit 3; Validated 117 -133655 MTH00013 ND4L NADH dehydrogenase subunit 4L; Validated 97 -214399 MTH00014 ND4 NADH dehydrogenase subunit 4; Validated 452 -164590 MTH00015 ND6 NADH dehydrogenase subunit 6; Validated 155 -177102 MTH00016 CYTB cytochrome b; Validated 378 -164592 MTH00018 ND3 NADH dehydrogenase subunit 3; Validated 113 -214400 MTH00020 ND5 NADH dehydrogenase subunit 5; Reviewed 610 -214401 MTH00021 ND6 NADH dehydrogenase subunit 6; Validated 188 -164595 MTH00022 CYTB cytochrome b; Validated 379 -214402 MTH00023 COX2 cytochrome c oxidase subunit II; Validated 240 -214403 MTH00024 COX3 cytochrome c oxidase subunit III; Validated 261 -214404 MTH00025 ATP8 ATP synthase F0 subunit 8; Validated 70 -164599 MTH00026 COX1 cytochrome c oxidase subunit I; Provisional 534 -214405 MTH00027 COX2 cytochrome c oxidase subunit II; Provisional 262 -214406 MTH00028 COX3 cytochrome c oxidase subunit III; Provisional 297 -177108 MTH00029 ND1 NADH dehydrogenase subunit 1; Provisional 343 -164603 MTH00030 ND3 NADH dehydrogenase subunit 3; Provisional 123 -214407 MTH00032 ND5 NADH dehydrogenase subunit 5; Provisional 669 -133672 MTH00033 CYTB cytochrome b; Provisional 383 -177109 MTH00034 CYTB cytochrome b; Validated 379 -177110 MTH00035 ATP6 ATP synthase F0 subunit 6; Validated 229 -214408 MTH00036 ATP8 ATP synthase F0 subunit 8; Validated 54 -177112 MTH00037 COX1 cytochrome c oxidase subunit I; Provisional 517 -177113 MTH00038 COX2 cytochrome c oxidase subunit II; Provisional 229 -177114 MTH00039 COX3 cytochrome c oxidase subunit III; Validated 260 -214409 MTH00040 ND1 NADH dehydrogenase subunit 1; Validated 323 -177116 MTH00041 ND2 NADH dehydrogenase subunit 2; Validated 349 -177117 MTH00042 ND3 NADH dehydrogenase subunit 3; Validated 116 -214410 MTH00043 ND4L NADH dehydrogenase subunit 4L; Validated 98 -214411 MTH00044 ND4 NADH dehydrogenase subunit 4; Validated 458 -177120 MTH00045 ND6 NADH dehydrogenase subunit 6; Validated 162 -177121 MTH00046 CYTB cytochrome b; Validated 355 -214412 MTH00047 COX2 cytochrome c oxidase subunit II; Provisional 194 -177123 MTH00048 COX1 cytochrome c oxidase subunit I; Provisional 511 -177124 MTH00049 COX3 cytochrome c oxidase subunit III; Validated 215 -177125 MTH00050 ATP6 ATP synthase F0 subunit 6; Validated 170 -177126 MTH00051 COX2 cytochrome c oxidase subunit II; Provisional 234 -164623 MTH00052 COX3 cytochrome c oxidase subunit III; Provisional 262 -164624 MTH00053 CYTB cytochrome b; Provisional 381 -177127 MTH00054 ND1 NADH dehydrogenase subunit 1; Provisional 324 -177128 MTH00055 ND3 NADH dehydrogenase subunit 3; Provisional 118 -177129 MTH00057 ND6 NADH dehydrogenase subunit 6; Provisional 186 -177130 MTH00058 ND1 NADH dehydrogenase subunit 1; Provisional 293 -177131 MTH00059 ND2 NADH dehydrogenase subunit 2; Provisional 289 -177132 MTH00060 ND3 NADH dehydrogenase subunit 3; Provisional 116 -177133 MTH00061 ND4L NADH dehydrogenase subunit 4L; Provisional 86 -214413 MTH00062 ND4 NADH dehydrogenase subunit 4; Provisional 417 -214414 MTH00063 ND5 NADH dehydrogenase subunit 5; Provisional 522 -177136 MTH00064 ND6 NADH dehydrogenase subunit 6; Provisional 151 -214415 MTH00065 ND6 NADH dehydrogenase subunit 6; Provisional 172 -214416 MTH00066 ND5 NADH dehydrogenase subunit 5; Provisional 598 -177139 MTH00067 ND4L NADH dehydrogenase subunit 4L; Provisional 98 -214417 MTH00068 ND4 NADH dehydrogenase subunit 4; Provisional 458 -177141 MTH00069 ND3 NADH dehydrogenase subunit 3; Provisional 114 -177142 MTH00070 ND2 NADH dehydrogenase subunit 2; Provisional 346 -214418 MTH00071 ND1 NADH dehydrogenase subunit 1; Provisional 322 -164642 MTH00072 ATP8 ATP synthase F0 subunit 8; Provisional 54 -177144 MTH00073 ATP6 ATP synthase F0 subunit 6; Provisional 227 -177145 MTH00074 CYTB cytochrome b; Provisional 380 -177146 MTH00075 COX3 cytochrome c oxidase subunit III; Provisional 261 -164646 MTH00076 COX2 cytochrome c oxidase subunit II; Provisional 228 -214419 MTH00077 COX1 cytochrome c oxidase subunit I; Provisional 514 -177148 MTH00079 COX1 cytochrome c oxidase subunit I; Provisional 508 -177149 MTH00080 COX2 cytochrome c oxidase subunit II; Provisional 231 -177150 MTH00083 COX3 cytochrome c oxidase subunit III; Provisional 256 -177151 MTH00086 CYTB cytochrome b; Provisional 355 -177152 MTH00087 ATP6 ATP synthase F0 subunit 6; Provisional 195 -177153 MTH00090 ND1 NADH dehydrogenase subunit 1; Provisional 284 -177154 MTH00091 ND2 NADH dehydrogenase subunit 2; Provisional 273 -177155 MTH00092 ND3 NADH dehydrogenase subunit 3; Provisional 111 -177156 MTH00093 ND4L NADH dehydrogenase subunit 4L; Provisional 77 -177157 MTH00094 ND4 NADH dehydrogenase subunit 4; Provisional 403 -177158 MTH00095 ND5 NADH dehydrogenase subunit 5; Provisional 527 -177159 MTH00097 ND6 NADH dehydrogenase subunit 6; Provisional 121 -177160 MTH00098 COX2 cytochrome c oxidase subunit II; Validated 227 -177161 MTH00099 COX3 cytochrome c oxidase subunit III; Validated 261 -177162 MTH00100 CYTB cytochrome b; Provisional 379 -177163 MTH00101 ATP6 ATP synthase F0 subunit 6; Validated 226 -214420 MTH00102 ATP8 ATP synthase F0 subunit 8; Validated 67 -177165 MTH00103 COX1 cytochrome c oxidase subunit I; Validated 513 -177166 MTH00104 ND1 NADH dehydrogenase subunit 1; Provisional 318 -177167 MTH00105 ND2 NADH dehydrogenase subunit 2; Provisional 347 -177168 MTH00106 ND3 NADH dehydrogenase subunit 3; Provisional 115 -177169 MTH00107 ND4L NADH dehydrogenase subunit 4L; Provisional 98 -177170 MTH00108 ND5 NADH dehydrogenase subunit 5; Provisional 602 -214421 MTH00109 ND6 NADH dehydrogenase subunit 6; Provisional 175 -177172 MTH00110 ND4 NADH dehydrogenase subunit 4; Provisional 459 -214422 MTH00111 ND1 NADH dehydrogenase subunit 1; Provisional 323 -214423 MTH00112 ND2 NADH dehydrogenase subunit 2; Provisional 346 -177175 MTH00113 ND3 NADH dehydrogenase subunit 3; Provisional 114 -214424 MTH00115 ND6 NADH dehydrogenase subunit 6; Provisional 174 -177177 MTH00116 COX1 cytochrome c oxidase subunit I; Provisional 515 -177178 MTH00117 COX2 cytochrome c oxidase subunit II; Provisional 227 -177179 MTH00118 COX3 cytochrome c oxidase subunit III; Provisional 261 -214425 MTH00119 CYTB cytochrome b; Provisional 380 -177181 MTH00120 ATP6 ATP synthase F0 subunit 6; Provisional 227 -214426 MTH00123 ATP8 ATP synthase F0 subunit 8; Provisional 54 -214427 MTH00124 ND4 NADH dehydrogenase subunit 4; Provisional 457 -177184 MTH00125 ND4L NADH dehydrogenase subunit 4L; Provisional 98 -177185 MTH00126 ND4L NADH dehydrogenase subunit 4L; Provisional 98 -177186 MTH00127 ND4 NADH dehydrogenase subunit 4; Provisional 459 -177187 MTH00129 COX2 cytochrome c oxidase subunit II; Provisional 230 -177188 MTH00130 COX3 cytochrome c oxidase subunit III; Provisional 261 -177189 MTH00131 CYTB cytochrome b; Provisional 380 -177190 MTH00132 ATP6 ATP synthase F0 subunit 6; Provisional 227 -177191 MTH00133 ATP8 ATP synthase F0 subunit 8; Provisional 55 -177192 MTH00134 ND1 NADH dehydrogenase subunit 1; Provisional 324 -177193 MTH00135 ND2 NADH dehydrogenase subunit 2; Provisional 347 -177194 MTH00136 ND3 NADH dehydrogenase subunit 3; Provisional 116 -214428 MTH00137 ND5 NADH dehydrogenase subunit 5; Provisional 611 -177196 MTH00138 ND6 NADH dehydrogenase subunit 6; Provisional 173 -214429 MTH00139 COX2 cytochrome c oxidase subunit II; Provisional 226 -214430 MTH00140 COX2 cytochrome c oxidase subunit II; Provisional 228 -177199 MTH00141 COX3 cytochrome c oxidase subunit III; Provisional 259 -214431 MTH00142 COX1 cytochrome c oxidase subunit I; Provisional 511 -177201 MTH00143 ND1 NADH dehydrogenase subunit 1; Provisional 307 -214432 MTH00144 ND2 NADH dehydrogenase subunit 2; Provisional 328 -177203 MTH00145 CYTB cytochrome b; Provisional 379 -177204 MTH00147 ATP8 ATP synthase F0 subunit 8; Provisional 51 -214433 MTH00148 ND3 NADH dehydrogenase subunit 3; Provisional 117 -214434 MTH00149 ND4L NADH dehydrogenase subunit 4L; Provisional 97 -214435 MTH00150 ND4 NADH dehydrogenase subunit 4; Provisional 417 -214436 MTH00151 ND5 NADH dehydrogenase subunit 5; Provisional 565 -214437 MTH00152 ND6 NADH dehydrogenase subunit 6; Provisional 163 -177210 MTH00153 COX1 cytochrome c oxidase subunit I; Provisional 511 -214438 MTH00154 COX2 cytochrome c oxidase subunit II; Provisional 227 -214439 MTH00155 COX3 cytochrome c oxidase subunit III; Provisional 255 -214440 MTH00156 CYTB cytochrome b; Provisional 356 -214441 MTH00157 ATP6 ATP synthase F0 subunit 6; Provisional 223 -177215 MTH00158 ATP8 ATP synthase F0 subunit 8; Provisional 32 -214442 MTH00160 ND2 NADH dehydrogenase subunit 2; Provisional 335 -177217 MTH00161 ND3 NADH dehydrogenase subunit 3; Provisional 113 -177218 MTH00162 ND4L NADH dehydrogenase subunit 4L; Provisional 89 -214443 MTH00163 ND4 NADH dehydrogenase subunit 4; Provisional 445 -214444 MTH00165 ND5 NADH dehydrogenase subunit 5; Provisional 573 -214445 MTH00166 ND6 NADH dehydrogenase subunit 6; Provisional 160 -177222 MTH00167 COX1 cytochrome c oxidase subunit I; Provisional 512 -177223 MTH00168 COX2 cytochrome c oxidase subunit II; Provisional 225 -214446 MTH00169 ATP8 ATP synthase F0 subunit 8; Provisional 67 -177225 MTH00171 ATP8 ATP synthase F0 subunit 8; Provisional 54 -214447 MTH00172 ATP6 ATP synthase F0 subunit 6; Provisional 232 -214448 MTH00173 ATP6 ATP synthase F0 subunit 6; Provisional 231 -133799 MTH00174 ATP6 ATP synthase F0 subunit 6; Provisional 252 -177228 MTH00175 ATP6 ATP synthase F0 subunit 6; Provisional 244 -214449 MTH00176 ATP6 ATP synthase F0 subunit 6; Provisional 229 -177230 MTH00179 ATP6 ATP synthase F0 subunit 6; Provisional 227 -177231 MTH00180 ND4L NADH dehydrogenase subunit 4L; Provisional 99 -214450 MTH00181 ND4L NADH dehydrogenase subunit 4L; Provisional 93 -214451 MTH00182 COX1 cytochrome c oxidase subunit I; Provisional 525 -177234 MTH00183 COX1 cytochrome c oxidase subunit I; Provisional 516 -177235 MTH00184 COX1 cytochrome c oxidase subunit I; Provisional 519 -164736 MTH00185 COX2 cytochrome c oxidase subunit II; Provisional 230 -177236 MTH00186 ATP8 ATP synthase F0 subunit 8; Provisional 52 -177237 MTH00188 ND4L NADH dehydrogenase subunit 4L; Provisional 97 -177238 MTH00189 COX3 cytochrome c oxidase subunit III; Provisional 260 -177239 MTH00191 CYTB cytochrome b; Provisional 365 -177240 MTH00192 ND4L NADH dehydrogenase subunit 4L; Provisional 99 -177241 MTH00193 ND1 NADH dehydrogenase subunit 1; Provisional 306 -214452 MTH00195 ND1 NADH dehydrogenase subunit 1; Provisional 307 -214453 MTH00196 ND2 NADH dehydrogenase subunit 2; Provisional 365 -177244 MTH00197 ND2 NADH dehydrogenase subunit 2; Provisional 323 -214454 MTH00198 ND2 NADH dehydrogenase subunit 2; Provisional 607 -177245 MTH00199 ND2 NADH dehydrogenase subunit 2; Provisional 460 -177246 MTH00200 ND2 NADH dehydrogenase subunit 2; Provisional 347 -214455 MTH00202 ND3 NADH dehydrogenase subunit 3; Provisional 117 -214456 MTH00203 ND3 NADH dehydrogenase subunit 3; Provisional 112 -164750 MTH00204 ND4 NADH dehydrogenase subunit 4; Provisional 485 -214457 MTH00205 ND4 NADH dehydrogenase subunit 4; Provisional 448 -214458 MTH00206 ND4 NADH dehydrogenase subunit 4; Provisional 450 -164753 MTH00207 ND5 NADH dehydrogenase subunit 5; Provisional 572 -177251 MTH00208 ND5 NADH dehydrogenase subunit 5; Provisional 628 -177252 MTH00209 ND5 NADH dehydrogenase subunit 5; Provisional 564 -177253 MTH00210 ND5 NADH dehydrogenase subunit 5; Provisional 616 -214459 MTH00211 ND5 NADH dehydrogenase subunit 5; Provisional 597 -214460 MTH00212 ND6 NADH dehydrogenase subunit 6; Provisional 160 -177256 MTH00213 ND6 NADH dehydrogenase subunit 6; Provisional 239 -214461 MTH00214 ND6 NADH dehydrogenase subunit 6; Provisional 168 -164761 MTH00216 ND1 NADH dehydrogenase subunit 1; Provisional 327 -214462 MTH00217 ND4 NADH dehydrogenase subunit 4; Provisional 482 -214463 MTH00218 ND1 NADH dehydrogenase subunit 1; Provisional 311 -214464 MTH00219 COX3 cytochrome c oxidase subunit III; Provisional 262 -164765 MTH00222 ATP9 ATP synthase F0 subunit 9; Provisional 77 -177260 MTH00223 COX1 cytochrome c oxidase subunit I; Provisional 512 -164767 MTH00224 CYTB cytochrome b; Provisional 379 -214465 MTH00225 ND1 NADH dehydrogenase subunit 1; Provisional 305 -214466 MTH00226 ND4 NADH dehydrogenase subunit 4; Provisional 505 -164770 MTH00260 ATP8 ATP synthase F0 subunit 8; Provisional 53 -177263 MTH00261 ATP8 ATP synthase F0 subunit 8; Provisional 68 -333719 NF000535 MSCRAMM_SdrC MSCRAMM family adhesin SdrC. Features of this protein family include a YSIRK-type signal peptide at the N-terminus and a variable-length C-terminal region of Ser-Asp (SD) repeats followed by an LPXTG motif for surface immobilization by sortase. 963 -333720 NF000536 YmiA YmiA family putative membrane protein. 42 -333721 NF000537 YncL stress response membrane protein YncL. 30 -333722 NF000539 plantaricin plantaricin.SEED. This family describes plantaricin C-like lantibiotic precursors. The seed alignment straddles the cleavage motif (typically GG), and includes both an extended leader peptide region and a Cys-rich core peptide region. Because of the mosaic structure of lant 65 -333723 NF000540 alt_ValS valine--tRNA ligase. 827 -333724 NF012136 SecA2_Lm accessory Sec system translocase SecA2. Members of this family are SecA2, part of a Sec-like preprotein translocase called accessory Sec. This SecA2 family is characteristic of Listeria species. 776 -333725 NF012138 exosort_XrtR exosortase R. 160 -333726 NF012139 exosort_XrtP exosortase P. 159 -333727 NF012162 surf_Nterm_1 surface protein N-terminal domain. This model describes a conserved region, fairly rich in insertions and deletions, located just past the signal peptide region in long, variable, and typically highly repetitive and sortase-dependent surface proteins. Members are found in a broad range of t 140 -333728 NF012164 AlbA subtilosin maturase AlbA. AlbA is a radical SAM/SPASM domain-containing protein responsible for introducing thioether crosslinks during that maturation of bacteriocins such subtilosin A. 442 -333729 NF012179 CptA phosphoethanolamine transferase CptA. 556 -333730 NF012181 MSCRAMM_SdrD MSCRAMM family adhesin SdrD. Features of this protein family include a YSIRK-type signal peptide at the N-terminus and a variable-length C-terminal region of Ser-Asp (SD) repeats followed by an LPXTG motif for surface immobilization by sortase. 1379 -333731 NF012182 exosortase_XrtQ exosortase Q. 256 -333732 NF012196 Ig_like_ice Ig-like domain. This variant form of the Ig-like domain occurs as a repeat in a number of large adhesins, including a 1.5-MDa ice-binding adhesin, the Marinomonas primoryensis antifreeze protein. 108 -333733 NF012197 lonely_Cys lonely Cys domain. This model describes an unusual domain, over 700 amino acids long, that is largely restricted to the Streptomyces (prodigious producers of natural products) and that may occur ten or more times in giant proteins. The most striking feature is an extremely l 706 -333734 NF012200 choice_anch_D choice-of-anchor D domain. This HMM describes a repeat domain just over 100 amino acids long and usually found in tandem copies. Members appear to be extracellular proteins that have some C-terminal anchoring domain, such as type IX secrection (T9SS) or PEP-CTERM. 107 -333735 NF012201 WIAG-tail WIAG-tail domain. This 80-amino acid domain occurs in proteins in a single copy at the C-terminus. In most proteins, the domain immediately follows a long, variable run of tandem 10-amino acid repeats. The domain is named for its C-terminal motif, WIAxGx, hence the name WI 80 -333736 NF012204 adhes_FxxPxG leukotoxin LktA family filamentous adhesin N-terminal domain. This model, related to TIGR01901, describes a conserved single-copy N-terminal domain found in repeat-rich, extremely long proteins such as the leukotoxin LktA of Fusobacterium necrophorum. 152 -333737 NF012206 LktA_tand_53 leukotoxin LktA-type filamentous protein tandem repeat. This repeat, about 53 amino acids in length, may comprise most of the length of proteins over 3000 amino acids long. The best characterized protein with this repeat is the leukotoxin LktA of Fusobacterium necrophorum, where it is the major virulence factor 53 -333738 NF012209 LEPR-8K LEPR-XLL family repeat protein signature domain. This model, just 24 amino acids long, describes an N-terminal single-copy region that contains the most highly conserved motif in a collection of repeat-filled giant proteins. Member proteins average over 8000 amino acids and include at least one longer th 24 -333739 NF012210 PDxFFG PDxFFG domain. This model represents the conserved N-terminal domain of family of large proteins with signal peptides, found in Mycoplasma and Ureaplasma. A short conserved N-terminal domain and a large conserved C-terminal domain are separated by poorly conserved region 269 -333740 NF012211 tand_rpt_95 tandem-95 repeat. This 95-amino acid repeat occurs in tandem in proteins that may be several thousand amino acids long. 98 -333741 NF012221 MARTX_Nterm MARTX multifunctional-autoprocessing repeats-in-toxin holotoxin N-terminal region. This model describes the N-terminal 1900 amino acids of MARTX family multifunctional-autoprocessing repeats-in-toxin holotoxins, which contain both repeat regions that facilitate their entry into eukaryotic target cells, and multiple effector domains. 1848 -333742 NF012230 LWXIA_domain LWXIA domain. This domain occurs exclusively at the C-terminus of a set of long proteins (average length 4000 residues), and is separated form the rest of the protein sequence by a Pro and Ser-rich spacer region of poorly conserved, low-complexity sequence. This domain 74 -333743 NF028536 PAP2_near_MCR1 PAP2 family protein. Members of this family belong to the PAP2 superfamily (see PF01569). The founding members of this family are notable for being encoded next to mcr-1, a phosphoethanolamine--lipid A transferase that confers resistance to colistin. 237 -333744 NF028538 PAP2_lipid_A PAP2 family lipid A phosphatase. All members of the seed alignment for this family belong to the PAP2 superfamily and therefore share homology with the lipid A 1-phosphatase LpxE of Helicobacter pylori. LpxE removes one of two KDO sugar phosphates from lipid A, making it possible for a p 224 -333745 NF032891 tail_200_repeat tandem large repeat. This HMM describes a domain of nearly 200 amino acids, found in up to 14 tandem repeats in the C-terminal region of very large protein, in Vibrio parahaemolyticus and related species. 192 -333746 NF032893 tail-700 PLxRFG domain. This domain, nearly 700 residues long, begins with a nearly invariant motif YxPLxRFGx[YF]. It occurs as the extreme C-terminal domain of large size, some over 5000 amino acids long with an average of nearly 3000. The function is unknown. 681 -333747 NF033069 acnA_upstr_60 acnA regulatory region 60-length spurious protein. This HMM describes an apparently spurious protein translation from the region upstream of the aconitase A gene acnA in Escherichia coli str. K-12 substr. MG1655, positions 1335595-1335774, and in related strains. Evidence against its expression as a real p 60 -333748 NF033070 rSAM_AprD4 AprD4 family radical SAM diol-dehydratase. AprD4 is a radical SAM enzyme involved in C3-deoxygenation of the intermediate paromamine during biosynthesis of the aminoglycoside apramycin. It acts as a diol-dehydratase, and works with the partner protein, AprD3, a reductase. 456 -333749 NF033071 SusD starch-binding outer membrane lipoprotein SusD. SusD (Starch Uptake System D) is an outer membrane lipoprotein that binds starch and participates in a TonB-dependent nutrient uptake complex. Related proteins from similar TonB-dependent complexes that import other, usually multimeric nutrient substrates 558 -333750 NF033072 NanU SusD family outer membrane lipoprotein NanU. NanU, related to SusD and RagB, is an outer membrane lipoprotein from a TonB-dependent nutrient uptake complex. 521 -333751 NF033073 LPXTG_double doubled motif LPXTG anchor domain. This unusual LPXTG-type C-terminal protein sorting domain occurs largely in the genus Clostridium and typically is separated from the main body of the protein by a glycine-rich linker sequence. In this domain, the classical sortase cleavage motif, LPXTG, h 66 -333752 NF033092 HK_WalK cell wall metabolism sensor histidine kinase WalK. This model describes WalK as found in Staphylococcus aureus (sp|Q2G2U4.1|WALK_STAA8). A shorter version, as found in Streptococcus pneumoniae, called WalK(Spn) or VicK, is not included. WalK is part of a two-component system and works with partner protein 594 -333753 NF033093 HK_VicK cell wall metabolism sensor histidine kinase VicK. This model describes the protein VicK (or WalK) as found in Streptococcus pneumoniae, This protein is shorter than the WalK of Staphylococcus aureus, although apparently is functionally similar. Compare to model NF033092 (HK_WalK). VicK is a sensor histi 448 -222768 PHA00002 A DNA replication initiation protein gpA 515 -222769 PHA00003 B internal scaffolding protein 120 -164773 PHA00006 D external scaffolding protein 151 -164774 PHA00007 E cell lysis protein 91 -222770 PHA00008 J DNA packaging protein 25 -164775 PHA00009 F capsid protein 427 -164776 PHA00010 G major spike protein 179 -222771 PHA00012 I assembly protein 361 -222772 PHA00019 IV phage assembly protein 428 -164777 PHA00022 VII minor coat protein 28 -106880 PHA00024 IX minor coat protein 33 -222773 PHA00025 VIII major coat protein 76 -133846 PHA00026 cp coat protein 129 -133847 PHA00027 lys lysis protein 58 -222774 PHA00028 rep RNA replicase, beta subunit 561 -222775 PHA00080 PHA00080 DksA-like zinc finger domain containing protein 72 -106886 PHA00094 VI minor coat protein 112 -164779 PHA00097 K protein K 56 -222776 PHA00098 PHA00098 hypothetical protein 112 -164781 PHA00099 PHA00099 minor capsid protein 147 -177266 PHA00101 PHA00101 internal virion protein B 194 -222777 PHA00144 PHA00144 major head protein 438 -133855 PHA00147 PHA00147 upper collar protein 308 -222778 PHA00148 PHA00148 lower collar protein 242 -222779 PHA00149 PHA00149 DNA encapsidation protein 331 -177267 PHA00159 PHA00159 endonuclease I 148 -222780 PHA00198 PHA00198 nonstructural protein 86 -177268 PHA00201 PHA00201 major capsid protein 343 -164786 PHA00202 PHA00202 DNA replication initiation protein 388 -164787 PHA00212 PHA00212 putative transcription regulator 63 -222781 PHA00276 PHA00276 phage lambda Rz-like lysis protein 144 -106901 PHA00280 PHA00280 putative NHN endonuclease 121 -164789 PHA00327 PHA00327 minor capsid protein 187 -222782 PHA00330 PHA00330 putative replication initiation protein 316 -222783 PHA00350 PHA00350 putative assembly protein 399 -177271 PHA00360 II replication initiation protein 421 -222784 PHA00363 PHA00363 major capsid protein 557 -222785 PHA00368 PHA00368 internal virion protein D 1315 -164794 PHA00369 H minor spike protein 325 -164795 PHA00370 III attachment protein 297 -222786 PHA00371 mat maturation protein 418 -133872 PHA00380 PHA00380 tail protein 599 -164796 PHA00404 PHA00404 hypothetical protein 42 -222787 PHA00405 PHA00405 hypothetical protein 85 -164797 PHA00406 PHA00406 hypothetical protein 48 -164798 PHA00407 PHA00407 phage lambda Rz1-like protein 84 -222788 PHA00415 25 baseplate wedge subunit 131 -133878 PHA00422 PHA00422 hypothetical protein 69 -164800 PHA00425 PHA00425 DNA packaging protein, small subunit 88 -164801 PHA00426 PHA00426 type II holin 67 -222789 PHA00428 PHA00428 tail tubular protein A 193 -222790 PHA00430 PHA00430 tail fiber protein 568 -222791 PHA00431 PHA00431 internal virion protein C 746 -177277 PHA00432 PHA00432 internal virion protein A 137 -222792 PHA00435 PHA00435 capsid assembly protein 306 -222793 PHA00437 PHA00437 tail assembly protein 94 -133887 PHA00438 PHA00438 hypothetical protein 81 -222794 PHA00439 PHA00439 exonuclease 286 -133889 PHA00440 PHA00440 host protein H-NS-interacting protein 98 -222795 PHA00441 PHA00441 hypothetical protein 89 -222796 PHA00442 PHA00442 host recBCD nuclease inhibitor 59 -177281 PHA00446 PHA00446 hypothetical protein 89 -177282 PHA00447 PHA00447 lysozyme 142 -133894 PHA00448 PHA00448 hypothetical protein 70 -164812 PHA00450 PHA00450 host dGTPase inhibitor 85 -177283 PHA00451 PHA00451 protein kinase 362 -222797 PHA00452 PHA00452 T3/T7-like RNA polymerase 807 -164815 PHA00453 PHA00453 hypothetical protein 41 -222798 PHA00454 PHA00454 ATP-dependent DNA ligase 315 -133900 PHA00455 PHA00455 hypothetical protein 85 -164817 PHA00456 PHA00456 hypothetical protein 34 -222799 PHA00457 PHA00457 inhibitor of host bacterial RNA polymerase 63 -222800 PHA00458 PHA00458 single-stranded DNA-binding protein 233 -222801 PHA00476 PHA00476 hypothetical protein 110 -133905 PHA00489 PHA00489 scaffolding protein 101 -133906 PHA00490 PHA00490 terminal protein 266 -222802 PHA00497 pol RNA-dependent RNA polymerase 673 -133907 PHA00510 PHA00510 transcriptional regulator 125 -222803 PHA00514 PHA00514 dsDNA binding protein 98 -133909 PHA00515 PHA00515 hypothetical protein 53 -222804 PHA00520 PHA00520 packaging NTPase P4 330 -222805 PHA00527 PHA00527 hypothetical protein 129 -133910 PHA00540 PHA00540 hypothetical protein 715 -106954 PHA00542 PHA00542 putative Cro-like protein 82 -164822 PHA00547 PHA00547 hypothetical protein 337 -177288 PHA00616 PHA00616 hypothetical protein 44 -177289 PHA00617 PHA00617 ribbon-helix-helix domain containing protein 80 -177290 PHA00619 PHA00619 CRISPR-associated Cas4-like protein 201 -106959 PHA00626 PHA00626 hypothetical protein 59 -222806 PHA00645 PHA00645 hypothetical protein 125 -133916 PHA00646 PHA00646 hypothetical protein 65 -106962 PHA00649 PHA00649 hypothetical protein 83 -106963 PHA00650 PHA00650 hypothetical protein 82 -106964 PHA00652 PHA00652 hypothetical protein 128 -164824 PHA00653 mtd major tropism determinant 381 -106966 PHA00657 PHA00657 crystallin beta/gamma motif-containing protein 2052 -106967 PHA00658 PHA00658 putative lysin 720 -133918 PHA00660 PHA00660 hypothetical protein 215 -106970 PHA00661 PHA00661 hypothetical protein 734 -222807 PHA00662 PHA00662 hypothetical protein 215 -106972 PHA00663 PHA00663 hypothetical protein 68 -106973 PHA00664 PHA00664 hypothetical protein 140 -106974 PHA00665 PHA00665 major capsid protein 329 -222808 PHA00666 PHA00666 putative protease 233 -106976 PHA00667 PHA00667 hypothetical protein 158 -222809 PHA00669 PHA00669 hypothetical protein 114 -106978 PHA00670 PHA00670 hypothetical protein 540 -106979 PHA00671 PHA00671 hypothetical protein 135 -133920 PHA00672 PHA00672 hypothetical protein 152 -106981 PHA00673 PHA00673 acetyltransferase domain containing protein 154 -106982 PHA00675 PHA00675 hypothetical protein 78 -106983 PHA00676 PHA00676 hypothetical protein 96 -106984 PHA00679 PHA00679 hypothetical protein 71 -106985 PHA00680 PHA00680 hypothetical protein 143 -222810 PHA00684 PHA00684 hypothetical protein 128 -106987 PHA00687 PHA00687 hypothetical protein 56 -106988 PHA00689 PHA00689 hypothetical protein 62 -106989 PHA00691 PHA00691 hypothetical protein 68 -106990 PHA00692 PHA00692 hypothetical protein 74 -222811 PHA00724 PHA00724 hypothetical protein 83 -177293 PHA00725 PHA00725 hypothetical protein 81 -177294 PHA00726 PHA00726 hypothetical protein 89 -222812 PHA00727 PHA00727 hypothetical protein 278 -177296 PHA00728 PHA00728 hypothetical protein 151 -177297 PHA00729 PHA00729 NTP-binding motif containing protein 226 -222813 PHA00730 int integrase 337 -222814 PHA00731 PHA00731 hypothetical protein 96 -177300 PHA00732 PHA00732 hypothetical protein 79 -177301 PHA00733 PHA00733 hypothetical protein 128 -177302 PHA00734 PHA00734 hypothetical protein 95 -177303 PHA00735 PHA00735 hypothetical protein 808 -177304 PHA00736 PHA00736 hypothetical protein 79 -177305 PHA00738 PHA00738 putative HTH transcription regulator 108 -177306 PHA00739 V3 structural protein VP3 92 -222815 PHA00742 PHA00742 hypothetical protein 211 -177308 PHA00743 PHA00743 helix-turn-helix protein 51 -164842 PHA00771 PHA00771 head assembly protein 151 -107010 PHA00780 PHA00780 hypothetical protein 80 -133939 PHA00781 PHA00781 hypothetical protein 59 -164843 PHA00821 PHA00821 hypothetical protein 295 -222816 PHA00911 21 prohead core scaffolding protein and protease 212 -222817 PHA00965 PHA00965 tail protein 588 -177310 PHA00979 PHA00979 putative major coat protein 77 -222818 PHA01075 PHA01075 major capsid protein 408 -107017 PHA01076 PHA01076 putative encapsidation protein 378 -222819 PHA01077 PHA01077 putative lower collar protein 251 -164848 PHA01078 PHA01078 putative upper collar protein 249 -164849 PHA01079 PHA01079 hypothetical protein 48 -164850 PHA01080 PHA01080 hypothetical protein 80 -133945 PHA01081 PHA01081 putative minor coat protein 104 -222820 PHA01082 PHA01082 putative transcription regulator 133 -164851 PHA01083 PHA01083 hypothetical protein 149 -107025 PHA01159 PHA01159 hypothetical protein 114 -107026 PHA01160 PHA01160 nonstructural protein 40 -222821 PHA01327 PHA01327 hypothetical protein 49 -164853 PHA01346 PHA01346 hypothetical protein 53 -107029 PHA01351 PHA01351 putative minor structural protein 1070 -107030 PHA01365 PHA01365 hypothetical protein 91 -222822 PHA01366 PHA01366 hypothetical protein 337 -133949 PHA01399 PHA01399 membrane protein P6 242 -164854 PHA01474 PHA01474 nonstructural protein 52 -107034 PHA01486 PHA01486 nonstructural protein 32 -107035 PHA01511 PHA01511 coat protein 430 -164855 PHA01513 mnt Mnt 82 -107037 PHA01514 PHA01514 O-antigen conversion protein C 485 -107038 PHA01516 PHA01516 hypothetical protein 98 -107039 PHA01519 PHA01519 hypothetical protein 115 -177311 PHA01547 PHA01547 putative internal virion protein A 206 -222823 PHA01548 PHA01548 hypothetical protein 167 -164858 PHA01622 PHA01622 CRISPR-associated Cas4-like protein 204 -222824 PHA01623 PHA01623 hypothetical protein 56 -222825 PHA01624 PHA01624 hypothetical protein 102 -164860 PHA01625 PHA01625 hypothetical protein 249 -222826 PHA01627 PHA01627 DNA binding protein 107 -164861 PHA01630 PHA01630 putative group 1 glycosyl transferase 331 -164862 PHA01631 PHA01631 hypothetical protein 176 -133953 PHA01632 PHA01632 hypothetical protein 64 -107050 PHA01633 PHA01633 putative glycosyl transferase group 1 335 -133954 PHA01634 PHA01634 hypothetical protein 156 -222827 PHA01635 PHA01635 hypothetical protein 231 -107053 PHA01707 dut 2'-deoxyuridine 5'-triphosphatase 158 -222828 PHA01732 PHA01732 proline-rich protein 94 -107055 PHA01733 PHA01733 hypothetical protein 153 -222829 PHA01735 PHA01735 hypothetical protein 76 -133956 PHA01740 PHA01740 putative single-stranded DNA-binding protein 158 -222830 PHA01745 PHA01745 hypothetical protein 306 -107059 PHA01746 PHA01746 hypothetical protein 131 -222831 PHA01747 PHA01747 putative ATP-dependent protease 425 -222832 PHA01748 PHA01748 hypothetical protein 60 -177316 PHA01749 PHA01749 coat protein 134 -107063 PHA01750 PHA01750 hypothetical protein 75 -222833 PHA01751 PHA01751 hypothetical protein 110 -177317 PHA01752 PHA01752 hypothetical protein 488 -133958 PHA01753 PHA01753 Holliday junction resolvase 121 -133959 PHA01754 PHA01754 hypothetical protein 69 -222834 PHA01755 PHA01755 hypothetical protein 562 -107069 PHA01756 PHA01756 hypothetical protein 268 -222835 PHA01757 PHA01757 hypothetical protein 98 -222836 PHA01769 PHA01769 hypothetical protein 98 -177318 PHA01782 PHA01782 hypothetical protein 177 -164869 PHA01790 PHA01790 streptodornase 326 -222837 PHA01794 PHA01794 hypothetical protein 134 -177320 PHA01795 PHA01795 hypothetical protein 280 -222838 PHA01806 PHA01806 hypothetical protein 200 -222839 PHA01807 PHA01807 hypothetical protein 153 -164872 PHA01808 PHA01808 putative structural protein 98 -107079 PHA01809 PHA01809 hypothetical protein 65 -177323 PHA01810 PHA01810 hypothetical protein 100 -177324 PHA01811 PHA01811 hypothetical protein 78 -177325 PHA01812 PHA01812 hypothetical protein 122 -107083 PHA01813 PHA01813 hypothetical protein 58 -107084 PHA01814 PHA01814 hypothetical protein 137 -107085 PHA01815 PHA01815 hypothetical protein 55 -107086 PHA01816 PHA01816 hypothetical protein 160 -177326 PHA01817 PHA01817 hypothetical protein 479 -107088 PHA01818 PHA01818 hypothetical protein 458 -107089 PHA01819 PHA01819 hypothetical protein 129 -222840 PHA01886 PHA01886 TM2 domain-containing protein 78 -177328 PHA01929 PHA01929 putative scaffolding protein 306 -222841 PHA01971 PHA01971 hypothetical protein 123 -222842 PHA01972 PHA01972 structural protein 828 -177330 PHA01976 PHA01976 helix-turn-helix protein 67 -177331 PHA02004 PHA02004 capsid protein 332 -222843 PHA02030 PHA02030 hypothetical protein 336 -222844 PHA02031 PHA02031 putative DnaG-like primase 266 -222845 PHA02046 PHA02046 hypothetical protein 99 -222846 PHA02047 PHA02047 phage lambda Rz1-like protein 101 -177336 PHA02053 PHA02053 hypothetical protein 115 -177337 PHA02054 PHA02054 hypothetical protein 94 -177338 PHA02057 PHA02057 ADP-ribosylation superfamily-like protein 319 -164889 PHA02067 PHA02067 hypothetical protein 221 -177339 PHA02078 PHA02078 hypothetical protein 54 -164890 PHA02085 PHA02085 hypothetical protein 87 -107108 PHA02086 PHA02086 hypothetical protein 88 -107109 PHA02087 PHA02087 hypothetical protein 83 -107110 PHA02088 PHA02088 hypothetical protein 125 -177340 PHA02090 PHA02090 hypothetical protein 79 -177341 PHA02091 PHA02091 hypothetical protein 72 -177342 PHA02092 PHA02092 hypothetical protein 108 -177343 PHA02094 PHA02094 hypothetical protein 81 -107115 PHA02095 PHA02095 hypothetical protein 84 -107116 PHA02096 PHA02096 hypothetical protein 103 -177344 PHA02097 PHA02097 hypothetical protein 59 -107118 PHA02098 PHA02098 hypothetical protein 56 -107119 PHA02099 PHA02099 hypothetical protein 84 -107120 PHA02100 PHA02100 hypothetical protein 112 -177345 PHA02101 PHA02101 hypothetical protein 101 -222847 PHA02102 PHA02102 hypothetical protein 72 -222848 PHA02103 PHA02103 hypothetical protein 135 -177347 PHA02104 PHA02104 hypothetical protein 89 -133990 PHA02105 PHA02105 hypothetical protein 68 -177348 PHA02106 PHA02106 hypothetical protein 91 -164900 PHA02107 PHA02107 hypothetical protein 216 -177349 PHA02108 PHA02108 hypothetical protein 48 -222849 PHA02109 PHA02109 hypothetical protein 233 -107130 PHA02110 PHA02110 hypothetical protein 98 -107131 PHA02114 PHA02114 hypothetical protein 127 -164902 PHA02115 PHA02115 hypothetical protein 105 -177351 PHA02117 PHA02117 glutathionylspermidine synthase domain-containing protein 397 -107134 PHA02118 PHA02118 hypothetical protein 202 -107135 PHA02119 PHA02119 hypothetical protein 87 -177352 PHA02122 PHA02122 hypothetical protein 65 -107137 PHA02123 PHA02123 hypothetical protein 146 -133998 PHA02125 PHA02125 thioredoxin-like protein 75 -222850 PHA02126 PHA02126 hypothetical protein 153 -107140 PHA02127 PHA02127 hypothetical protein 57 -107141 PHA02128 PHA02128 hypothetical protein 151 -107142 PHA02130 PHA02130 hypothetical protein 81 -107143 PHA02131 PHA02131 hypothetical protein 70 -107144 PHA02132 PHA02132 hypothetical protein 86 -107145 PHA02135 PHA02135 hypothetical protein 122 -177353 PHA02141 PHA02141 hypothetical protein 105 -134000 PHA02142 PHA02142 putative RNA ligase 366 -107148 PHA02145 PHA02145 hypothetical protein 230 -107149 PHA02146 PHA02146 hypothetical protein 86 -107150 PHA02148 PHA02148 hypothetical protein 110 -134001 PHA02150 PHA02150 hypothetical protein 77 -177354 PHA02151 PHA02151 hypothetical protein 217 -107153 PHA02152 PHA02152 hypothetical protein 96 -107154 PHA02239 PHA02239 putative protein phosphatase 235 -107155 PHA02241 PHA02241 hypothetical protein 182 -107156 PHA02243 PHA02243 hypothetical protein 160 -107157 PHA02244 PHA02244 ATPase-like protein 383 -177355 PHA02246 PHA02246 hypothetical protein 192 -134004 PHA02248 PHA02248 hypothetical protein 204 -177356 PHA02256 PHA02256 hypothetical protein 113 -107161 PHA02264 PHA02264 hypothetical protein 152 -164905 PHA02265 PHA02265 hypothetical protein 103 -107163 PHA02275 PHA02275 hypothetical protein 125 -107164 PHA02277 PHA02277 hypothetical protein 150 -177357 PHA02278 PHA02278 thioredoxin-like protein 103 -107166 PHA02283 PHA02283 hypothetical protein 210 -107167 PHA02284 PHA02284 hypothetical protein 251 -107168 PHA02290 PHA02290 hypothetical protein 234 -177358 PHA02291 PHA02291 hypothetical protein 132 -177359 PHA02310 PHA02310 hypothetical protein 130 -164907 PHA02324 PHA02324 hypothetical protein 47 -177360 PHA02325 PHA02325 hypothetical protein 72 -164909 PHA02334 PHA02334 hypothetical protein 64 -164910 PHA02335 PHA02335 hypothetical protein 118 -177361 PHA02337 PHA02337 putative high light inducible protein 35 -164912 PHA02357 PHA02357 hypothetical protein 81 -222851 PHA02358 PHA02358 hypothetical protein 194 -107178 PHA02360 PHA02360 hypothetical protein 70 -107179 PHA02414 PHA02414 hypothetical protein 111 -177362 PHA02415 PHA02415 DNA primase domain-containing protein 930 -107181 PHA02416 PHA02416 hypothetical protein 167 -164914 PHA02417 PHA02417 hypothetical protein 83 -107183 PHA02436 PHA02436 hypothetical protein 52 -177363 PHA02446 PHA02446 hypothetical protein 166 -164916 PHA02447 PHA02447 hypothetical protein 86 -107186 PHA02448 PHA02448 hypothetical protein 192 -134010 PHA02450 PHA02450 hypothetical protein 53 -177364 PHA02451 PHA02451 hypothetical protein 54 -164918 PHA02456 PHA02456 zinc metallopeptidase motif-containing protein 141 -164919 PHA02458 A protein A*; Reviewed 341 -177365 PHA02503 PHA02503 putative transcription regulator; Provisional 57 -107192 PHA02508 PHA02508 putative minor coat protein; Provisional 93 -222852 PHA02510 X gene X product; Reviewed 116 -177367 PHA02513 V1 structural protein V1; Reviewed 135 -107197 PHA02515 PHA02515 hypothetical protein; Provisional 508 -134016 PHA02516 W baseplate wedge subunit; Provisional 103 -222853 PHA02517 PHA02517 putative transposase OrfB; Reviewed 277 -222854 PHA02518 PHA02518 ParA-like protein; Provisional 211 -107201 PHA02519 PHA02519 plasmid partition protein SopA; Reviewed 387 -164924 PHA02523 43B DNA polymerase subunit B; Provisional 391 -164925 PHA02524 43A DNA polymerase subunit A; Provisional 498 -177369 PHA02528 43 DNA polymerase; Provisional 881 -222855 PHA02529 O capsid-scaffolding protein; Provisional 278 -222856 PHA02530 pseT polynucleotide kinase; Provisional 300 -222857 PHA02531 20 portal vertex protein; Provisional 514 -222858 PHA02533 17 large terminase protein; Provisional 534 -222859 PHA02535 P terminase ATPase subunit; Provisional 581 -222860 PHA02536 Q portal vertex protein; Provisional 346 -222861 PHA02537 M terminase endonuclease subunit; Provisional 230 -164934 PHA02538 N capsid protein; Provisional 348 -222862 PHA02539 18 tail sheath protein; Provisional 648 -222863 PHA02540 61 DNA primase; Provisional 337 -177376 PHA02541 23 major capsid protein; Provisional 518 -222864 PHA02542 41 41 helicase; Provisional 473 -222865 PHA02543 regA translation repressor protein; Provisional 125 -222866 PHA02544 44 clamp loader, small subunit; Provisional 316 -177380 PHA02545 45 sliding clamp; Provisional 223 -222867 PHA02546 47 endonuclease subunit; Provisional 340 -222868 PHA02547 55 RNA polymerase sigma factor; Provisional 179 -177383 PHA02548 24 capsid vertex protein; Provisional 412 -222869 PHA02550 32 single-stranded DNA binding protein; Provisional 304 -177385 PHA02551 19 tail tube protein; Provisional 163 -222870 PHA02552 4 head completion protein; Provisional 151 -222871 PHA02553 6 baseplate wedge subunit; Provisional 611 -177388 PHA02554 13 neck protein; Provisional 311 -222872 PHA02555 14 neck protein; Provisional 216 -222873 PHA02556 15 tail sheath stabilizer and completion protein; Provisional 273 -222874 PHA02557 22 prohead core protein; Provisional 271 -222875 PHA02558 uvsW UvsW helicase; Provisional 501 -222876 PHA02559 59 59 protein; Provisional 216 -164955 PHA02560 FI major tail sheath protein; Provisional 388 -222877 PHA02561 D tail protein; Provisional 351 -222878 PHA02562 46 endonuclease subunit; Provisional 562 -222879 PHA02563 PHA02563 DNA polymerase; Provisional 630 -222880 PHA02564 V virion protein; Provisional 141 -177395 PHA02565 49 recombination endonuclease VII; Provisional 157 -222881 PHA02566 alt ADP-ribosyltransferase; Provisional 684 -222882 PHA02567 rnh RnaseH; Provisional 304 -164963 PHA02568 J baseplate assembly protein; Provisional 300 -177398 PHA02569 39 DNA topoisomerase II large subunit; Provisional 602 -177399 PHA02570 dexA exonuclease; Provisional 220 -177400 PHA02571 a-gt.4 hypothetical protein; Provisional 109 -222883 PHA02572 nrdA ribonucleoside-diphosphate reductase subunit alpha; Provisional 753 -222884 PHA02573 30.3 hypothetical protein; Provisional 148 -177403 PHA02574 57B hypothetical protein; Provisional 149 -222885 PHA02575 1 deoxynucleoside monophosphate kinase; Provisional 227 -177405 PHA02576 3 tail completion and sheath stabilizer protein; Provisional 177 -222886 PHA02577 2 DNA end protector protein; Provisional 181 -177407 PHA02578 53 baseplate wedge subunit; Provisional 181 -177408 PHA02579 7 baseplate wedge subunit; Provisional 1030 -177409 PHA02580 8 baseplate wedge subunit; Provisional 331 -222887 PHA02581 9 baseplate wedge tail fiber connector; Provisional 284 -222888 PHA02582 10 baseplate wedge subunit and tail pin; Provisional 604 -222889 PHA02583 11 baseplate wedge subunit and tail pin; Provisional 218 -222890 PHA02584 34 long tail fiber, proximal subunit; Provisional 1229 -222891 PHA02585 16 small terminase protein; Provisional 161 -222892 PHA02586 68 prohead core protein; Provisional 140 -222893 PHA02587 30 DNA ligase; Provisional 488 -222894 PHA02588 cd deoxycytidylate deaminase; Provisional 168 -222895 PHA02589 rnlA RNA ligase A; Provisional 378 -164985 PHA02590 PHA02590 hypothetical protein; Provisional 105 -164986 PHA02591 PHA02591 hypothetical protein; Provisional 83 -222896 PHA02592 52 DNA topisomerase II medium subunit; Provisional 439 -222897 PHA02593 62 clamp loader small subunit; Provisional 191 -222898 PHA02594 nadV nicotinamide phosphoribosyl transferase; Provisional 470 -222899 PHA02595 tk.4 hypothetical protein; Provisional 154 -222900 PHA02596 5 baseplate hub subunit and tail lysozyme; Provisional 576 -222901 PHA02597 30.2 hypothetical protein; Provisional 197 -222902 PHA02598 denA endonuclease II; Provisional 138 -222903 PHA02599 dsbA double-stranded DNA binding protein; Provisional 91 -164995 PHA02600 FII major tail tube protein; Provisional 169 -222904 PHA02601 int integrase; Provisional 333 -177427 PHA02602 56 dCTP pyrophosphatase; Provisional 172 -222905 PHA02603 nrdC.11 hypothetical protein; Provisional 330 -177429 PHA02604 rI.-1 hypothetical protein; Provisional 126 -177430 PHA02605 54 baseplate subunit; Provisional 305 -222906 PHA02606 5.1 hypothetical protein; Provisional 179 -177432 PHA02607 wac fibritin; Provisional 454 -177433 PHA02608 67 prohead core protein; Provisional 80 -165004 PHA02609 uvsW.1 hypothetical protein; Provisional 76 -165005 PHA02610 uvsY.-2 hypothetical protein; Provisional 53 -222907 PHA02611 51 baseplate hub assembly protein; Provisional 249 -222908 PHA02612 27 baseplate hub subunit; Provisional 372 -222909 PHA02613 48 baseplate subunit; Provisional 361 -222910 PHA02614 PHA02614 Major capsid protein VP1; Provisional 363 -222911 PHA02616 PHA02616 VP2/VP3; Provisional 259 -177439 PHA02620 PHA02620 VP3; Provisional 353 -177440 PHA02621 PHA02621 agnoprotein; Provisional 68 -222912 PHA02624 PHA02624 large T antigen; Provisional 647 -177442 PHA02627 PHA02627 hypothetical protein; Provisional 73 -165015 PHA02629 PHA02629 A-type inclusion body protein; Provisional 61 -165016 PHA02633 PHA02633 hypothetical protein; Provisional 63 -165017 PHA02634 PHA02634 hypothetical protein; Provisional 49 -165018 PHA02635 PHA02635 ankyrin-like protein; Provisional 61 -165019 PHA02636 PHA02636 hypothetical protein; Provisional 47 -222913 PHA02637 PHA02637 TNF-alpha-receptor-like protein; Provisional 127 -165021 PHA02638 PHA02638 CC chemokine receptor-like protein; Provisional 417 -165022 PHA02639 PHA02639 EEV host range protein; Provisional 295 -165023 PHA02641 PHA02641 hypothetical protein; Provisional 188 -165024 PHA02642 PHA02642 C-type lectin-like protein; Provisional 216 -165025 PHA02643 PHA02643 hypothetical protein; Provisional 82 -165026 PHA02644 PHA02644 hypothetical protein; Provisional 112 -165027 PHA02646 PHA02646 virion protein; Provisional 156 -165029 PHA02649 PHA02649 hypothetical protein; Provisional 95 -165030 PHA02650 PHA02650 hypothetical protein; Provisional 81 -165031 PHA02651 PHA02651 IL-1 receptor antagonist; Provisional 165 -165032 PHA02652 PHA02652 hypothetical protein; Provisional 70 -177443 PHA02653 PHA02653 RNA helicase NPH-II; Provisional 675 -165034 PHA02655 PHA02655 hypothetical protein; Provisional 94 -165035 PHA02656 PHA02656 viral TNFR II-like protein; Provisional 199 -165036 PHA02657 PHA02657 hypothetical protein; Provisional 95 -165037 PHA02658 PHA02658 hypothetical protein; Provisional 92 -165038 PHA02659 PHA02659 endothelin precursor; Provisional 70 -165039 PHA02660 PHA02660 serpin-like protein; Provisional 364 -177444 PHA02661 PHA02661 vascular endothelial growth factor like protein; Provisional 146 -177445 PHA02662 PHA02662 ORF131 putative membrane protein; Provisional 226 -177446 PHA02663 PHA02663 hypothetical protein; Provisional 172 -177447 PHA02664 PHA02664 hypothetical protein; Provisional 534 -177448 PHA02665 PHA02665 hypothetical protein; Provisional 322 -222914 PHA02666 PHA02666 hypothetical protein; Provisional 287 -177450 PHA02668 PHA02668 GM-CSF/IL-2 inhibition factor; Provisional 265 -177451 PHA02669 PHA02669 hypothetical protein; Provisional 210 -222915 PHA02670 PHA02670 ORF112 putative chemokine-binding protein; Provisional 287 -177453 PHA02671 PHA02671 hypothetical protein; Provisional 179 -177454 PHA02672 PHA02672 ORF110 EEV glycoprotein; Provisional 166 -177455 PHA02673 PHA02673 ORF109 EEV glycoprotein; Provisional 161 -177456 PHA02674 PHA02674 ORF107 virion morphogenesis; Provisional 60 -177457 PHA02675 PHA02675 ORF104 fusion protein; Provisional 90 -177458 PHA02676 PHA02676 A-type inclusion protein; Provisional 520 -222916 PHA02677 PHA02677 hypothetical protein; Provisional 108 -177460 PHA02678 PHA02678 hypothetical protein; Provisional 89 -177461 PHA02679 PHA02679 ORF091 IMV membrane protein; Provisional 53 -177462 PHA02680 PHA02680 ORF090 IMV phosphorylated membrane protein; Provisional 91 -222917 PHA02681 PHA02681 ORF089 virion membrane protein; Provisional 92 -177464 PHA02682 PHA02682 ORF080 virion core protein; Provisional 280 -177465 PHA02683 PHA02683 ORF078 thioredoxin-like protein; Provisional 75 -177466 PHA02684 PHA02684 ORF066 virion protein; Provisional 221 -177467 PHA02685 PHA02685 ORF065 virion protein; Provisional 155 -177468 PHA02686 PHA02686 hypothetical protein; Provisional 138 -222918 PHA02687 PHA02687 ORF061 late transcription factor VLTF-4; Provisional 231 -222919 PHA02688 PHA02688 ORF059 IMV protein VP55; Provisional 323 -177471 PHA02689 PHA02689 ORF051 putative membrane protein; Provisional 128 -222920 PHA02690 PHA02690 hypothetical protein; Provisional 90 -177473 PHA02691 PHA02691 hypothetical protein; Provisional 110 -177474 PHA02692 PHA02692 hypothetical protein; Provisional 70 -177475 PHA02693 PHA02693 hypothetical protein; Provisional 710 -177476 PHA02694 PHA02694 hypothetical protein; Provisional 292 -177477 PHA02695 PHA02695 hypothetical protein; Provisional 725 -222921 PHA02696 PHA02696 hypothetical protein; Provisional 79 -222922 PHA02697 PHA02697 hypothetical protein; Provisional 255 -177480 PHA02698 PHA02698 hypothetical protein; Provisional 89 -165075 PHA02699 PHA02699 hypothetical protein; Provisional 466 -177481 PHA02700 PHA02700 ORF017 DNA-binding phosphoprotein; Provisional 106 -177482 PHA02701 PHA02701 ORF020 dsRNA-binding PKR inhibitor; Provisional 183 -177483 PHA02702 PHA02702 ORF033 IMV membrane protein; Provisional 78 -165079 PHA02703 PHA02703 ORF007 dUTPase; Provisional 165 -165080 PHA02705 PHA02705 hypothetical protein; Provisional 72 -165081 PHA02706 PHA02706 hypothetical protein; Provisional 58 -165082 PHA02707 PHA02707 hypothetical protein; Provisional 37 -177484 PHA02708 PHA02708 hypothetical protein; Provisional 148 -165084 PHA02709 PHA02709 hypothetical protein; Provisional 44 -165085 PHA02711 PHA02711 Toll/IL-receptor-like protein; Provisional 190 -165086 PHA02713 PHA02713 hypothetical protein; Provisional 557 -165087 PHA02714 PHA02714 CD-30-like protein; Provisional 110 -165088 PHA02715 PHA02715 hypothetical protein; Provisional 202 -165089 PHA02716 PHA02716 CPXV016; CPX019; EVM010; Provisional 764 -165090 PHA02718 PHA02718 hypothetical protein; Provisional 69 -165092 PHA02723 PHA02723 hypothetical protein; Provisional 77 -165093 PHA02724 PHA02724 hydrophobic IMV membrane protein; Provisional 53 -165094 PHA02725 PHA02725 hypothetical protein; Provisional 170 -165095 PHA02726 PHA02726 hypothetical protein; Provisional 94 -165096 PHA02728 PHA02728 uncharacterized protein; Provisional 184 -165097 PHA02729 PHA02729 hypothetical protein; Provisional 94 -165098 PHA02730 PHA02730 ankyrin-like protein; Provisional 672 -177485 PHA02731 PHA02731 putative integrase; Provisional 231 -165099 PHA02732 PHA02732 hypothetical protein; Provisional 1467 -165101 PHA02734 PHA02734 coat protein; Provisional 149 -165102 PHA02735 PHA02735 putative DNA polymerase type B; Provisional 716 -165103 PHA02736 PHA02736 Viral ankyrin protein; Provisional 154 -165104 PHA02737 PHA02737 hypothetical protein; Provisional 72 -222923 PHA02738 PHA02738 hypothetical protein; Provisional 320 -222924 PHA02739 PHA02739 hypothetical protein; Provisional 116 -165107 PHA02740 PHA02740 protein tyrosine phosphatase; Provisional 298 -165108 PHA02741 PHA02741 hypothetical protein; Provisional 169 -165109 PHA02742 PHA02742 protein tyrosine phosphatase; Provisional 303 -222925 PHA02743 PHA02743 Viral ankyrin protein; Provisional 166 -165111 PHA02744 PHA02744 hypothetical protein; Provisional 88 -222926 PHA02745 PHA02745 hypothetical protein; Provisional 265 -165113 PHA02746 PHA02746 protein tyrosine phosphatase; Provisional 323 -165114 PHA02747 PHA02747 protein tyrosine phosphatase; Provisional 312 -165115 PHA02748 PHA02748 viral inexin-like protein; Provisional 360 -165116 PHA02749 PHA02749 hypothetical protein; Provisional 322 -165117 PHA02750 PHA02750 hypothetical protein; Provisional 240 -165118 PHA02751 PHA02751 hypothetical protein; Provisional 233 -177486 PHA02752 PHA02752 hypothetical protein; Provisional 242 -165120 PHA02753 PHA02753 hypothetical protein; Provisional 298 -165121 PHA02754 PHA02754 hypothetical protein; Provisional 67 -165122 PHA02755 PHA02755 hypothetical protein; Provisional 96 -165123 PHA02756 PHA02756 hypothetical protein; Provisional 164 -165124 PHA02757 PHA02757 hypothetical protein; Provisional 75 -165125 PHA02758 PHA02758 hypothetical protein; Provisional 321 -165126 PHA02759 PHA02759 virus coat protein VP2; Provisional 245 -165127 PHA02762 PHA02762 hypothetical protein; Provisional 62 -177487 PHA02763 PHA02763 hypothetical protein; Provisional 102 -165129 PHA02764 PHA02764 hypothetical protein; Provisional 399 -165130 PHA02765 PHA02765 hypothetical protein; Provisional 117 -165131 PHA02766 PHA02766 hypothetical protein; Provisional 73 -165132 PHA02767 PHA02767 hypothetical protein; Provisional 101 -165133 PHA02768 PHA02768 hypothetical protein; Provisional 55 -165134 PHA02769 PHA02769 hypothetical protein; Provisional 154 -165135 PHA02770 PHA02770 hypothetical protein; Provisional 81 -165136 PHA02771 PHA02771 hypothetical protein; Provisional 90 -165137 PHA02772 PHA02772 hypothetical protein; Provisional 95 -165138 PHA02773 PHA02773 hypothetical protein; Provisional 112 -222927 PHA02774 PHA02774 E1; Provisional 613 -165140 PHA02775 PHA02775 E6; Provisional 160 -165141 PHA02776 PHA02776 E7 protein; Provisional 101 -165142 PHA02777 PHA02777 major capsid L1 protein; Provisional 555 -222928 PHA02778 PHA02778 major capsid L1 protein; Provisional 503 -222929 PHA02779 PHA02779 E6 protein; Provisional 150 -177490 PHA02780 PHA02780 hypothetical protein; Provisional 73 -165146 PHA02781 PHA02781 hypothetical protein; Provisional 78 -165147 PHA02782 PHA02782 hypothetical protein; Provisional 503 -165148 PHA02783 PHA02783 uncharacterized protein; Provisional 181 -165149 PHA02785 PHA02785 IL-beta-binding protein; Provisional 326 -222930 PHA02786 PHA02786 uncharacterized protein; Provisional 192 -165152 PHA02789 PHA02789 uncharacterized protein; Provisional 173 -165153 PHA02790 PHA02790 Kelch-like protein; Provisional 480 -165154 PHA02791 PHA02791 ankyrin-like protein; Provisional 284 -165155 PHA02792 PHA02792 ankyrin-like protein; Provisional 631 -165156 PHA02793 PHA02793 hypothetical protein; Provisional 66 -165157 PHA02795 PHA02795 ankyrin-like protein; Provisional 437 -222931 PHA02798 PHA02798 ankyrin-like protein; Provisional 489 -165159 PHA02800 PHA02800 hypothetical protein; Provisional 161 -165161 PHA02807 PHA02807 hypothetical protein; Provisional 155 -222932 PHA02809 PHA02809 hypothetical protein; Provisional 111 -165163 PHA02811 PHA02811 putative host range protein; Provisional 197 -165164 PHA02813 PHA02813 hypothetical protein; Provisional 354 -165165 PHA02815 PHA02815 hypothetical protein; Provisional 64 -222933 PHA02816 PHA02816 hypothetical protein; Provisional 106 -165167 PHA02817 PHA02817 EEV Host range protein; Provisional 225 -165168 PHA02818 PHA02818 hypothetical protein; Provisional 92 -165169 PHA02819 PHA02819 hypothetical protein; Provisional 71 -222934 PHA02820 PHA02820 phospholipase-D-like protein; Provisional 424 -222935 PHA02823 PHA02823 chemokine binding protein; Provisional 255 -177491 PHA02825 PHA02825 LAP/PHD finger-like protein; Provisional 162 -165173 PHA02826 PHA02826 IL-1 receptor-like protein; Provisional 227 -177492 PHA02827 PHA02827 hypothetical protein; Provisional 150 -165175 PHA02828 PHA02828 putative transmembrane protein; Provisional 100 -165176 PHA02831 PHA02831 EEV host range protein; Provisional 268 -165177 PHA02834 PHA02834 chemokine receptor-like protein; Provisional 323 -165178 PHA02835 PHA02835 putative secreted protein; Provisional 186 -165179 PHA02836 PHA02836 putative transmembrane protein; Provisional 153 -165180 PHA02837 PHA02837 uncharacterized protein; Provisional 190 -165181 PHA02838 PHA02838 hypothetical protein; Provisional 68 -165182 PHA02839 PHA02839 Il-24-like protein; Provisional 156 -165183 PHA02840 PHA02840 hypothetical protein; Provisional 82 -165184 PHA02841 PHA02841 hypothetical protein; Provisional 103 -165185 PHA02843 PHA02843 hypothetical protein; Provisional 73 -165186 PHA02844 PHA02844 putative transmembrane protein; Provisional 75 -165187 PHA02845 PHA02845 hypothetical protein; Provisional 91 -165188 PHA02849 PHA02849 putative transmembrane protein; Provisional 82 -165189 PHA02851 PHA02851 EEV glycoprotein; Provisional 223 -165190 PHA02852 PHA02852 putative virion structural protein; Provisional 153 -165191 PHA02854 PHA02854 putative host range protein; Provisional 178 -222936 PHA02855 PHA02855 anti-apoptotic membrane protein; Provisional 180 -165193 PHA02857 PHA02857 monoglyceride lipase; Provisional 276 -165194 PHA02858 PHA02858 EIF2a-like PKR inhibitor; Provisional 86 -165195 PHA02859 PHA02859 ankyrin repeat protein; Provisional 209 -165196 PHA02861 PHA02861 uncharacterized protein; Provisional 149 -165197 PHA02862 PHA02862 5L protein; Provisional 156 -222937 PHA02864 PHA02864 hypothetical protein; Provisional 240 -165199 PHA02865 PHA02865 MHC-like TNF binding protein; Provisional 338 -165200 PHA02866 PHA02866 Hypothetical protein; Provisional 333 -165201 PHA02867 PHA02867 C-type lectin protein; Provisional 167 -165202 PHA02869 PHA02869 C4L/C10L-like gene family protein; Provisional 418 -165203 PHA02871 PHA02871 hypothetical protein; Provisional 222 -222938 PHA02872 PHA02872 EFc gene family protein; Provisional 124 -165205 PHA02874 PHA02874 ankyrin repeat protein; Provisional 434 -165206 PHA02875 PHA02875 ankyrin repeat protein; Provisional 413 -165207 PHA02876 PHA02876 ankyrin repeat protein; Provisional 682 -222939 PHA02878 PHA02878 ankyrin repeat protein; Provisional 477 -222940 PHA02880 PHA02880 hypothetical protein; Provisional 189 -165210 PHA02881 PHA02881 hypothetical protein; Provisional 161 -165211 PHA02882 PHA02882 putative serine/threonine kinase; Provisional 294 -165212 PHA02884 PHA02884 ankyrin repeat protein; Provisional 300 -165213 PHA02885 PHA02885 putative interleukin binding protein; Provisional 135 -165214 PHA02887 PHA02887 EGF-like protein; Provisional 126 -165215 PHA02888 PHA02888 hypothetical protein; Provisional 96 -165216 PHA02889 PHA02889 hypothetical protein; Provisional 241 -165217 PHA02890 PHA02890 hypothetical protein; Provisional 278 -165218 PHA02891 PHA02891 hypothetical protein; Provisional 120 -165219 PHA02892 PHA02892 hypothetical protein; Provisional 75 -165220 PHA02893 PHA02893 hypothetical protein; Provisional 88 -165221 PHA02894 PHA02894 hypothetical protein; Provisional 97 -165222 PHA02896 PHA02896 A-type inclusion like protein; Provisional 616 -165223 PHA02898 PHA02898 virion envelope protein; Provisional 92 -222941 PHA02901 PHA02901 virus redox protein; Provisional 75 -165225 PHA02902 PHA02902 putative IMV membrane protein; Provisional 70 -165226 PHA02907 PHA02907 hypothetical protein; Provisional 182 -165227 PHA02909 PHA02909 hypothetical protein; Provisional 72 -165228 PHA02910 PHA02910 hypothetical protein; Provisional 171 -177496 PHA02911 PHA02911 C-type lectin-like protein; Provisional 213 -177497 PHA02913 PHA02913 TGF-beta-like protein; Provisional 172 -165230 PHA02914 PHA02914 Immunoglobulin-like domain protein; Provisional 500 -165231 PHA02917 PHA02917 ankyrin-like protein; Provisional 661 -165232 PHA02919 PHA02919 host-range protein; Provisional 150 -165233 PHA02920 PHA02920 putative virulence factor; Provisional 117 -165234 PHA02922 PHA02922 hypothetical protein; Provisional 153 -165235 PHA02923 PHA02923 hypothetical protein; Provisional 315 -222942 PHA02924 PHA02924 hypothetical protein; Provisional 156 -165237 PHA02926 PHA02926 zinc finger-like protein; Provisional 242 -222943 PHA02927 PHA02927 secreted complement-binding protein; Provisional 263 -165239 PHA02928 PHA02928 Hypothetical protein; Provisional 214 -222944 PHA02929 PHA02929 N1R/p28-like protein; Provisional 238 -165241 PHA02930 PHA02930 hypothetical protein; Provisional 81 -165242 PHA02931 PHA02931 hypothetical protein; Provisional 72 -222945 PHA02932 PHA02932 hypothetical protein; Provisional 221 -165244 PHA02933 PHA02933 unchracterized protein; Provisional 149 -165245 PHA02934 PHA02934 Hypothetical protein; Provisional 253 -222946 PHA02935 PHA02935 Hypothetical protein; Provisional 349 -165247 PHA02937 PHA02937 hypothetical protein; Provisional 310 -165248 PHA02938 PHA02938 hypothetical protein; Provisional 361 -222947 PHA02939 PHA02939 hypothetical protein; Provisional 144 -165250 PHA02940 PHA02940 hypothetical protein; Provisional 315 -222948 PHA02941 PHA02941 hypothetical protein; Provisional 356 -165252 PHA02942 PHA02942 putative transposase; Provisional 383 -165253 PHA02943 PHA02943 hypothetical protein; Provisional 165 -165254 PHA02944 PHA02944 hypothetical protein; Provisional 180 -165255 PHA02945 PHA02945 interferon resistance protein; Provisional 88 -165256 PHA02946 PHA02946 ankyin-like protein; Provisional 446 -222949 PHA02947 PHA02947 S-S bond formation pathway protein; Provisional 215 -165258 PHA02948 PHA02948 serine protease inhibitor-like protein; Provisional 373 -165259 PHA02949 PHA02949 Hypothetical protein; Provisional 65 -177499 PHA02951 PHA02951 Hypothetical protein; Provisional 337 -222950 PHA02952 PHA02952 EEV maturation protein; Provisional 648 -165262 PHA02953 PHA02953 IEV and EEV membrane glycoprotein; Provisional 170 -165263 PHA02954 PHA02954 EEV membrane glycoprotein; Provisional 317 -165264 PHA02955 PHA02955 hypothetical protein; Provisional 213 -165265 PHA02956 PHA02956 hypothetical protein; Provisional 189 -165266 PHA02957 PHA02957 hypothetical protein; Provisional 206 -165267 PHA02961 PHA02961 hypothetical protein; Provisional 658 -165268 PHA02962 PHA02962 hypothetical protein; Provisional 722 -165269 PHA02963 PHA02963 hypothetical protein; Provisional 210 -165270 PHA02965 PHA02965 hypothetical protein; Provisional 466 -165271 PHA02966 PHA02966 hypothetical protein; Provisional 67 -165272 PHA02967 PHA02967 hypothetical protein; Provisional 128 -165273 PHA02968 PHA02968 hypothetical protein; Provisional 414 -165274 PHA02969 PHA02969 hypothetical protein; Provisional 111 -222951 PHA02970 PHA02970 hypothetical protein; Provisional 115 -165276 PHA02972 PHA02972 hypothetical protein; Provisional 109 -165277 PHA02973 PHA02973 hypothetical protein; Provisional 102 -165278 PHA02974 PHA02974 putative IMV membrane protein; Provisional 81 -165279 PHA02975 PHA02975 hypothetical protein; Provisional 69 -165280 PHA02976 PHA02976 hypothetical protein; Provisional 181 -165281 PHA02977 PHA02977 hypothetical protein; Provisional 201 -165282 PHA02978 PHA02978 hypothetical protein; Provisional 135 -165283 PHA02979 PHA02979 hypothetical protein; Provisional 140 -165284 PHA02980 PHA02980 hypothetical protein; Provisional 160 -165285 PHA02982 PHA02982 hypothetical protein; Provisional 251 -222952 PHA02983 PHA02983 hypothetical protein; Provisional 180 -165287 PHA02984 PHA02984 hypothetical protein; Provisional 286 -165288 PHA02985 PHA02985 hypothetical protein; Provisional 271 -222953 PHA02986 PHA02986 hypothetical protein; Provisional 141 -165290 PHA02987 PHA02987 Ig domain OX-2-like protein; Provisional 189 -165291 PHA02988 PHA02988 hypothetical protein; Provisional 283 -222954 PHA02989 PHA02989 ankyrin repeat protein; Provisional 494 -222955 PHA02991 PHA02991 HT motif gene family protein; Provisional 120 -222956 PHA02992 PHA02992 hypothetical protein; Provisional 728 -165295 PHA02993 PHA02993 hypothetical protein; Provisional 147 -222957 PHA02994 PHA02994 hypothetical protein; Provisional 218 -165297 PHA02995 PHA02995 DNA-binding virion core protein; Provisional 101 -177503 PHA02996 PHA02996 poly(A) polymerase large subunit; Provisional 467 -222958 PHA02998 PHA02998 RNA polymerase subunit; Provisional 195 -222959 PHA02999 PHA02999 Hypothetical protein; Provisional 382 -177505 PHA03000 PHA03000 Hypothetical protein; Provisional 566 -222960 PHA03001 PHA03001 putative virion core protein; Provisional 132 -165303 PHA03002 PHA03002 Hypothetical protein; Provisional 679 -177506 PHA03003 PHA03003 palmytilated EEV membrane glycoprotein; Provisional 369 -177507 PHA03004 PHA03004 putative membrane protein; Provisional 270 -222961 PHA03005 PHA03005 sulfhydryl oxidase; Provisional 96 -165307 PHA03006 PHA03006 hypothetical protein; Provisional 323 -165308 PHA03007 PHA03007 hypothetical protein; Provisional 540 -165309 PHA03008 PHA03008 hypothetical protein; Provisional 234 -165310 PHA03010 PHA03010 hypothetical protein; Provisional 546 -165311 PHA03011 PHA03011 hypothetical protein; Provisional 120 -165312 PHA03012 PHA03012 hypothetical protein; Provisional 279 -165313 PHA03013 PHA03013 hypothetical protein; Provisional 109 -165314 PHA03014 PHA03014 hypothetical protein; Provisional 163 -165315 PHA03016 PHA03016 hypothetical protein; Provisional 441 -165316 PHA03017 PHA03017 hypothetical protein; Provisional 228 -165317 PHA03018 PHA03018 hypothetical protein; Provisional 174 -165318 PHA03019 PHA03019 hypothetical protein; Provisional 77 -165319 PHA03020 PHA03020 hypothetical protein; Provisional 352 -165320 PHA03022 PHA03022 hypothetical protein; Provisional 335 -165321 PHA03023 PHA03023 hypothetical protein; Provisional 112 -165322 PHA03024 PHA03024 hypothetical protein; Provisional 229 -165323 PHA03025 PHA03025 hypothetical protein; Provisional 68 -165324 PHA03026 PHA03026 hypothetical protein; Provisional 421 -165325 PHA03027 PHA03027 hypothetical protein; Provisional 325 -165326 PHA03028 PHA03028 hypothetical protein; Provisional 185 -165327 PHA03029 PHA03029 hypothetical protein; Provisional 92 -165328 PHA03030 PHA03030 hypothetical protein; Provisional 122 -165329 PHA03031 PHA03031 hypothetical protein; Provisional 449 -165330 PHA03033 PHA03033 hypothetical protein; Provisional 142 -165331 PHA03034 PHA03034 hypothetical protein; Provisional 145 -165332 PHA03035 PHA03035 hypothetical protein; Provisional 158 -222962 PHA03036 PHA03036 DNA polymerase; Provisional 1004 -222963 PHA03041 PHA03041 virion core protein; Provisional 153 -222964 PHA03042 PHA03042 CD47-like protein; Provisional 286 -165336 PHA03043 PHA03043 hypothetical protein; Provisional 130 -165337 PHA03044 PHA03044 IMV membrane protein; Provisional 74 -177510 PHA03045 PHA03045 IMV membrane protein; Provisional 113 -165339 PHA03046 PHA03046 Hypothetical protein; Provisional 142 -165340 PHA03047 PHA03047 IMV membrane receptor-like protein; Provisional 53 -165341 PHA03048 PHA03048 IMV membrane protein; Provisional 93 -165342 PHA03049 PHA03049 IMV membrane protein; Provisional 68 -165343 PHA03050 PHA03050 glutaredoxin; Provisional 108 -165344 PHA03051 PHA03051 Hypothetical protein; Provisional 88 -165345 PHA03052 PHA03052 Hypothetical protein; Provisional 69 -165346 PHA03054 PHA03054 IMV membrane protein; Provisional 72 -165347 PHA03055 PHA03055 Hypothetical protein; Provisional 79 -165348 PHA03056 PHA03056 putative myristoylated protein; Provisional 165 -222965 PHA03057 PHA03057 Hypothetical protein; Provisional 146 -222966 PHA03058 PHA03058 Hypothetical protein; Provisional 124 -222967 PHA03060 PHA03060 Hypothetical protein; Provisional 71 -177511 PHA03061 PHA03061 putative DNA-binding virion core protein; Provisional 311 -177512 PHA03062 PHA03062 putative IMV membrane protein; Provisional 78 -222968 PHA03065 PHA03065 Hypothetical protein; Provisional 438 -165355 PHA03066 PHA03066 Hypothetical protein; Provisional 110 -222969 PHA03067 PHA03067 hypothetical protein; Provisional 383 -177515 PHA03068 PHA03068 DNA-binding phosphoprotein; Provisional 270 -165358 PHA03069 PHA03069 DNA-binding protein; Provisional 119 -177516 PHA03070 PHA03070 DNA-binding virion core protein; Provisional 249 -165360 PHA03071 PHA03071 late transcription factor VLTF-1; Provisional 260 -222970 PHA03072 PHA03072 putative viral membrane protein; Provisional 190 -177518 PHA03073 PHA03073 late transcription factor VLTF-2; Provisional 150 -165363 PHA03074 PHA03074 late transcription factor VLTF-3; Provisional 225 -177519 PHA03075 PHA03075 glutaredoxin-like protein; Provisional 123 -222971 PHA03078 PHA03078 transcriptional elongation factor; Provisional 219 -165366 PHA03079 PHA03079 hypothetical protein; Provisional 87 -222972 PHA03080 PHA03080 putative virion core protein; Provisional 366 -222973 PHA03081 PHA03081 putative metalloprotease; Provisional 595 -222974 PHA03082 PHA03082 DNA-dependent RNA polymerase subunit; Provisional 63 -222975 PHA03083 PHA03083 poxvirus myristoylprotein; Provisional 334 -222976 PHA03087 PHA03087 G protein-coupled chemokine receptor-like protein; Provisional 335 -222977 PHA03089 PHA03089 late transcription factor VLTF-4; Provisional 191 -222978 PHA03091 PHA03091 putative alpha aminitin-sensitive protein; Provisional 232 -165374 PHA03092 PHA03092 semaphorin-like protein; Provisional 134 -222979 PHA03093 PHA03093 EEV glycoprotein; Provisional 185 -165376 PHA03094 PHA03094 dUTPase; Provisional 144 -222980 PHA03095 PHA03095 ankyrin-like protein; Provisional 471 -222981 PHA03096 PHA03096 p28-like protein; Provisional 284 -222982 PHA03097 PHA03097 C-type lectin-like protein; Provisional 157 -222983 PHA03098 PHA03098 kelch-like protein; Provisional 534 -165381 PHA03099 PHA03099 epidermal growth factor-like protein (EGF-like protein); Provisional 139 -222984 PHA03100 PHA03100 ankyrin repeat protein; Provisional 422 -222985 PHA03101 PHA03101 DNA topoisomerase type I; Provisional 314 -222986 PHA03102 PHA03102 Small T antigen; Reviewed 153 -222987 PHA03103 PHA03103 double-strand RNA-binding protein; Provisional 183 -222988 PHA03105 PHA03105 EEV glycoprotein; Provisional 188 -165387 PHA03108 PHA03108 poly(A) polymerase small subunit; Provisional 300 -222989 PHA03111 PHA03111 Ser/Thr kinase; Provisional 444 -222990 PHA03112 PHA03112 IL-18 binding protein; Provisional 141 -177532 PHA03115 PHA03115 hypothetical protein; Provisional 340 -165391 PHA03118 PHA03118 multifunctional expression regulator; Provisional 474 -222991 PHA03119 PHA03119 helicase-primase primase subunit; Provisional 1085 -165393 PHA03120 PHA03120 tegument protein VP22; Provisional 310 -165395 PHA03123 PHA03123 dUTPase; Provisional 402 -165396 PHA03124 PHA03124 dUTPase; Provisional 418 -222992 PHA03125 PHA03125 dUTPase; Provisional 376 -165398 PHA03126 PHA03126 dUTPase; Provisional 326 -222993 PHA03127 PHA03127 dUTPase; Provisional 322 -165400 PHA03128 PHA03128 dUTPase; Provisional 376 -222994 PHA03129 PHA03129 dUTPase; Provisional 436 -222995 PHA03130 PHA03130 dUTPase; Provisional 368 -222996 PHA03131 PHA03131 dUTPase; Provisional 286 -222997 PHA03132 PHA03132 thymidine kinase; Provisional 580 -165405 PHA03133 PHA03133 thymidine kinase; Provisional 368 -177537 PHA03134 PHA03134 thymidine kinase; Provisional 340 -165407 PHA03135 PHA03135 thymidine kinase; Provisional 343 -177538 PHA03136 PHA03136 thymidine kinase; Provisional 378 -165410 PHA03138 PHA03138 thymidine kinase; Provisional 340 -165411 PHA03139 PHA03139 helicase-primase primase subunit; Provisional 860 -222998 PHA03140 PHA03140 helicase-primase primase subunit; Provisional 772 -177540 PHA03141 PHA03141 helicase-primase primase subunit; Provisional 101 -222999 PHA03142 PHA03142 helicase-primase primase subunit BSLF1; Provisional 835 -223000 PHA03144 PHA03144 helicase-primase primase subunit; Provisional 746 -165416 PHA03145 PHA03145 helicase-primase primase subunit; Provisional 1058 -177543 PHA03146 PHA03146 helicase-primase primase subunit; Provisional 1075 -165418 PHA03147 PHA03147 hypothetical protein; Provisional 280 -223001 PHA03148 PHA03148 hypothetical protein; Provisional 289 -165420 PHA03149 PHA03149 hypothetical protein; Provisional 66 -223002 PHA03150 PHA03150 hypothetical protein; Provisional 456 -177546 PHA03151 PHA03151 hypothetical protein; Provisional 259 -165423 PHA03152 PHA03152 hypothetical protein; Provisional 138 -165425 PHA03154 PHA03154 hypothetical protein; Provisional 304 -165426 PHA03155 PHA03155 hypothetical protein; Provisional 115 -165427 PHA03156 PHA03156 hypothetical protein; Provisional 90 -165429 PHA03158 PHA03158 hypothetical protein; Provisional 273 -165430 PHA03159 PHA03159 hypothetical protein; Provisional 160 -165431 PHA03160 PHA03160 hypothetical protein; Provisional 499 -165432 PHA03161 PHA03161 hypothetical protein; Provisional 150 -165433 PHA03162 PHA03162 hypothetical protein; Provisional 135 -165434 PHA03163 PHA03163 hypothetical protein; Provisional 92 -177547 PHA03164 PHA03164 hypothetical protein; Provisional 88 -165436 PHA03165 PHA03165 hypothetical protein; Provisional 57 -177548 PHA03166 PHA03166 hypothetical protein; Provisional 580 -223003 PHA03169 PHA03169 hypothetical protein; Provisional 413 -165441 PHA03170 PHA03170 UL37 tegument protein; Provisional 293 -165442 PHA03171 PHA03171 UL37 tegument protein; Provisional 499 -165443 PHA03172 PHA03172 UL37 tegument protein; Provisional 951 -223004 PHA03173 PHA03173 UL37 tegument protein; Provisional 1028 -177551 PHA03175 PHA03175 UL43 envelope protein; Provisional 413 -223005 PHA03176 PHA03176 UL43 envelope protein; Provisional 420 -177552 PHA03178 PHA03178 UL43 envelope protein; Provisional 403 -223006 PHA03179 PHA03179 UL43 envelope protein; Provisional 387 -165451 PHA03180 PHA03180 helicase-primase primase subunit; Provisional 1071 -165452 PHA03181 PHA03181 helicase-primase primase subunit; Provisional 764 -177553 PHA03185 PHA03185 UL14 tegument protein; Provisional 214 -223007 PHA03187 PHA03187 UL14 tegument protein; Provisional 322 -165458 PHA03188 PHA03188 UL14 tegument protein; Provisional 199 -223008 PHA03189 PHA03189 UL14 tegument protein; Provisional 348 -165460 PHA03190 PHA03190 UL14 tegument protein; Provisional 196 -165461 PHA03191 PHA03191 UL14 tegument protein; Provisional 238 -177555 PHA03193 PHA03193 tegument protein VP11/12; Provisional 594 -177556 PHA03195 PHA03195 tegument protein VP11/12; Provisional 746 -165466 PHA03199 PHA03199 uracil DNA glycosylase; Provisional 304 -165467 PHA03200 PHA03200 uracil DNA glycosylase; Provisional 255 -165468 PHA03201 PHA03201 uracil DNA glycosylase; Provisional 318 -165469 PHA03202 PHA03202 uracil DNA glycosylase; Provisional 313 -165471 PHA03204 PHA03204 uracil DNA glycosylase; Provisional 322 -165473 PHA03207 PHA03207 serine/threonine kinase US3; Provisional 392 -177557 PHA03209 PHA03209 serine/threonine kinase US3; Provisional 357 -165476 PHA03210 PHA03210 serine/threonine kinase US3; Provisional 501 -223009 PHA03211 PHA03211 serine/threonine kinase US3; Provisional 461 -165478 PHA03212 PHA03212 serine/threonine kinase US3; Provisional 391 -165479 PHA03214 PHA03214 nuclear protein UL24; Provisional 252 -223010 PHA03215 PHA03215 nuclear protein UL24; Provisional 262 -177558 PHA03216 PHA03216 nuclear protein UL24; Provisional 272 -223011 PHA03218 PHA03218 nuclear protein UL24; Provisional 306 -165484 PHA03219 PHA03219 nuclear protein UL24; Provisional 300 -165485 PHA03222 PHA03222 single-stranded binding protein UL29; Provisional 337 -165486 PHA03225 PHA03225 DNA packaging protein UL33; Provisional 125 -223012 PHA03229 PHA03229 DNA packaging protein UL33; Provisional 132 -223013 PHA03230 PHA03230 nuclear protein UL55; Provisional 180 -223014 PHA03231 PHA03231 glycoprotein BALF4; Provisional 829 -223015 PHA03232 PHA03232 DNA packaging protein UL32; Provisional 586 -223016 PHA03233 PHA03233 DNA packaging protein UL32; Provisional 518 -177562 PHA03234 PHA03234 DNA packaging protein UL33; Provisional 338 -223017 PHA03235 PHA03235 DNA packaging protein UL33; Provisional 409 -223018 PHA03236 PHA03236 DNA packaging protein UL33; Provisional 127 -223019 PHA03237 PHA03237 envelope glycoprotein M; Provisional 424 -177565 PHA03239 PHA03239 envelope glycoprotein M; Provisional 429 -165499 PHA03240 PHA03240 envelope glycoprotein M; Provisional 258 -177566 PHA03242 PHA03242 envelope glycoprotein M; Provisional 428 -177567 PHA03244 PHA03244 large tegument protein UL36; Provisional 478 -223020 PHA03246 PHA03246 large tegument protein UL36; Provisional 3095 -223021 PHA03247 PHA03247 large tegument protein UL36; Provisional 3151 -223022 PHA03248 PHA03248 DNA packaging tegument protein UL25; Provisional 583 -223023 PHA03249 PHA03249 DNA packaging tegument protein UL25; Provisional 653 -165509 PHA03250 PHA03250 UL35; Provisional 564 -223024 PHA03252 PHA03252 DNA packaging tegument protein UL25; Provisional 589 -223025 PHA03253 PHA03253 UL35; Provisional 609 -165513 PHA03255 PHA03255 BDLF3; Provisional 234 -165514 PHA03256 PHA03256 BDLF3; Provisional 77 -177569 PHA03257 PHA03257 Capsid triplex subunit 2; Provisional 316 -165516 PHA03258 PHA03258 Capsid triplex subunit 2; Provisional 304 -165517 PHA03259 PHA03259 Capsid triplex subunit 2; Provisional 302 -165518 PHA03260 PHA03260 Capsid triplex subunit 2; Provisional 339 -223026 PHA03261 PHA03261 Capsid triplex subunit 1; Provisional 469 -223027 PHA03262 PHA03262 Capsid triplex subunit 1; Provisional 264 -223028 PHA03263 PHA03263 Capsid triplex subunit 1; Provisional 332 -223029 PHA03264 PHA03264 envelope glycoprotein D; Provisional 416 -165523 PHA03265 PHA03265 envelope glycoprotein D; Provisional 402 -165527 PHA03269 PHA03269 envelope glycoprotein C; Provisional 566 -165528 PHA03270 PHA03270 envelope glycoprotein C; Provisional 466 -223030 PHA03271 PHA03271 envelope glycoprotein C; Provisional 490 -223031 PHA03273 PHA03273 envelope glycoprotein C; Provisional 486 -177573 PHA03275 PHA03275 envelope glycoprotein K; Provisional 340 -165533 PHA03276 PHA03276 envelope glycoprotein K; Provisional 337 -177574 PHA03278 PHA03278 envelope glycoprotein K; Provisional 347 -165536 PHA03279 PHA03279 envelope glycoprotein K; Provisional 361 -165538 PHA03281 PHA03281 envelope glycoprotein E; Provisional 642 -165539 PHA03282 PHA03282 envelope glycoprotein E; Provisional 540 -223032 PHA03283 PHA03283 envelope glycoprotein E; Provisional 542 -177576 PHA03286 PHA03286 envelope glycoprotein E; Provisional 492 -165546 PHA03289 PHA03289 envelope glycoprotein I; Provisional 352 -165547 PHA03290 PHA03290 envelope glycoprotein I; Provisional 357 -223033 PHA03291 PHA03291 envelope glycoprotein I; Provisional 401 -177577 PHA03292 PHA03292 envelope glycoprotein I; Provisional 413 -223034 PHA03293 PHA03293 deoxyribonuclease; Provisional 523 -223035 PHA03294 PHA03294 envelope glycoprotein H; Provisional 835 -223036 PHA03295 PHA03295 envelope glycoprotein H; Provisional 714 -165553 PHA03296 PHA03296 envelope glycoprotein H; Provisional 814 -165554 PHA03297 PHA03297 envelope glycoprotein L; Provisional 185 -165555 PHA03298 PHA03298 envelope glycoprotein L; Provisional 167 -165556 PHA03299 PHA03299 envelope glycoprotein L; Provisional 195 -223037 PHA03301 PHA03301 envelope glycoprotein L; Provisional 226 -223038 PHA03302 PHA03302 envelope glycoprotein L; Provisional 253 -165560 PHA03303 PHA03303 envelope glycoprotein L; Provisional 159 -223039 PHA03307 PHA03307 transcriptional regulator ICP4; Provisional 1352 -165563 PHA03308 PHA03308 transcriptional regulator ICP4; Provisional 1463 -165564 PHA03309 PHA03309 transcriptional regulator ICP4; Provisional 2033 -223040 PHA03311 PHA03311 helicase-primase subunit BBLF4; Provisional 782 -177582 PHA03312 PHA03312 helicase-primase subunit BBLF2/3; Provisional 709 -223041 PHA03321 PHA03321 tegument protein VP11/12; Provisional 694 -223042 PHA03322 PHA03322 tegument protein VP11/12; Provisional 674 -223043 PHA03323 PHA03323 nuclear egress membrane protein UL34; Provisional 272 -165570 PHA03324 PHA03324 nuclear egress membrane protein UL34; Provisional 274 -223044 PHA03325 PHA03325 nuclear-egress-membrane-like protein; Provisional 418 -223045 PHA03326 PHA03326 nuclear egress membrane protein; Provisional 275 -223046 PHA03328 PHA03328 nuclear egress lamina protein UL31; Provisional 316 -165574 PHA03330 PHA03330 putative primase; Provisional 771 -223047 PHA03332 PHA03332 membrane glycoprotein; Provisional 1328 -223048 PHA03333 PHA03333 putative ATPase subunit of terminase; Provisional 752 -223049 PHA03334 PHA03334 putative DNA polymerase catalytic subunit; Provisional 1545 -223050 PHA03335 PHA03335 hypothetical protein; Provisional 385 -223051 PHA03336 PHA03336 uncharacterized protein; Provisional 462 -165582 PHA03338 PHA03338 US22 family homolog; Provisional 344 -165586 PHA03342 PHA03342 US22 family homolog; Provisional 511 -165587 PHA03343 PHA03343 US22 family homolog; Provisional 578 -165588 PHA03344 PHA03344 US22 family homolog; Provisional 672 -223052 PHA03346 PHA03346 US22 family homolog; Provisional 520 -177588 PHA03347 PHA03347 uracil DNA glycosylase; Provisional 252 -177589 PHA03348 PHA03348 tegument protein UL21; Provisional 526 -177590 PHA03349 PHA03349 tegument protein UL16; Provisional 343 -177591 PHA03351 PHA03351 tegument protein UL16; Provisional 235 -223053 PHA03352 PHA03352 tegument protein UL16; Provisional 340 -177593 PHA03354 PHA03354 Alkaline exonuclease; Provisional 81 -177594 PHA03356 PHA03356 tegument protein UL11; Provisional 93 -177595 PHA03357 PHA03357 Alkaline exonuclease; Provisional 81 -177596 PHA03358 PHA03358 Alkaline exonuclease; Provisional 75 -223054 PHA03359 PHA03359 UL17 tegument protein; Provisional 686 -177598 PHA03360 PHA03360 tegument protein; Provisional 442 -223055 PHA03361 PHA03361 UL7 tegument protein; Provisional 302 -223056 PHA03362 PHA03362 single-stranded binding protein UL29; Provisional 1189 -223057 PHA03364 PHA03364 hypothetical protein; Provisional 264 -177602 PHA03365 PHA03365 hypothetical protein; Provisional 419 -223058 PHA03366 PHA03366 FGAM-synthase; Provisional 1304 -223059 PHA03367 PHA03367 single-stranded DNA binding protein; Provisional 1115 -223060 PHA03368 PHA03368 DNA packaging terminase subunit 1; Provisional 738 -223061 PHA03369 PHA03369 capsid maturational protease; Provisional 663 -177607 PHA03370 PHA03370 virion protein US2; Provisional 269 -177608 PHA03371 PHA03371 circ protein; Provisional 240 -177609 PHA03372 PHA03372 DNA packaging terminase subunit 1; Provisional 668 -223062 PHA03373 PHA03373 tegument protein; Provisional 247 -223063 PHA03374 PHA03374 hypothetical protein; Provisional 730 -223064 PHA03375 PHA03375 hypothetical protein; Provisional 844 -177613 PHA03376 PHA03376 BARF1; Provisional 221 -177614 PHA03377 PHA03377 EBNA-3C; Provisional 1000 -223065 PHA03378 PHA03378 EBNA-3B; Provisional 991 -223066 PHA03379 PHA03379 EBNA-3A; Provisional 935 -223067 PHA03380 PHA03380 transactivating tegument protein VP16; Provisional 432 -177618 PHA03381 PHA03381 tegument protein VP22; Provisional 290 -177619 PHA03383 PHA03383 PCNA-like protein; Provisional 262 -223068 PHA03384 PHA03384 early DNA-binding protein E2A; Provisional 445 -177621 PHA03385 IX capsid protein IX,hexon associated protein IX; Provisional 135 -177622 PHA03386 P10 fibrous body protein; Provisional 94 -177623 PHA03387 gp37 spherodin-like protein; Provisional 267 -177624 PHA03388 ORF1_granulin Granulin; Provisional 248 -177625 PHA03389 polh polyhedrin; Provisional 246 -223069 PHA03390 pk1 serine/threonine-protein kinase 1; Provisional 267 -223070 PHA03391 p47 viral transcription regulator p47; Provisional 395 -223071 PHA03392 egt ecdysteroid UDP-glucosyltransferase; Provisional 507 -223072 PHA03393 odv-e66 occlusion-derived virus envelope protein E66; Provisional 682 -223073 PHA03394 lef-8 DNA-directed RNA polymerase subunit beta-like protein; Provisional 865 -177631 PHA03395 p10 fibrous body protein; Provisional 87 -223074 PHA03396 lef-9 late expression factor 9; Provisional 493 -177633 PHA03397 vlf-1 very late expression factor 1; Provisional 363 -223075 PHA03398 PHA03398 viral phosphatase superfamily protein; Provisional 303 -223076 PHA03399 pif3 per os infectivity factor 3; Provisional 200 -223077 PHA03402 PHA03402 hypothetical protein; Provisional 81 -177637 PHA03405 PHA03405 hypothetical protein; Provisional 130 -223078 PHA03410 PHA03410 hypothetical protein; Provisional 170 -177639 PHA03411 PHA03411 putative methyltransferase; Provisional 279 -177640 PHA03412 PHA03412 putative methyltransferase; Provisional 241 -177641 PHA03413 PHA03413 putative internal core protein; Provisional 1304 -177642 PHA03414 PHA03414 virion protein; Provisional 1337 -177643 PHA03415 PHA03415 putative internal virion protein; Provisional 1019 -177644 PHA03416 PHA03416 hypothetical E4 protein; Provisional 92 -177645 PHA03417 PHA03417 E4 protein; Provisional 118 -177646 PHA03418 PHA03418 hypothetical E4 protein; Provisional 230 -223079 PHA03419 PHA03419 E4 protein; Provisional 200 -177648 PHA03420 PHA03420 E4 protein; Provisional 137 -177649 PLN00009 PLN00009 cyclin-dependent kinase A; Provisional 294 -215027 PLN00010 PLN00010 cyclin-dependent kinases regulatory subunit; Provisional 86 -177651 PLN00011 PLN00011 cysteine synthase 323 -215028 PLN00012 PLN00012 chlorophyll synthetase; Provisional 375 -177653 PLN00014 PLN00014 light-harvesting-like protein 3; Provisional 250 -177654 PLN00015 PLN00015 protochlorophyllide reductase 308 -215029 PLN00016 PLN00016 RNA-binding protein; Provisional 378 -177656 PLN00017 PLN00017 photosystem I reaction centre subunit VI; Provisional 90 -215030 PLN00019 PLN00019 photosystem I reaction center subunit III; Provisional 223 -215031 PLN00020 PLN00020 ribulose bisphosphate carboxylase/oxygenase activase -RuBisCO activase (RCA); Provisional 413 -177659 PLN00021 PLN00021 chlorophyllase 313 -215032 PLN00022 PLN00022 electron transfer flavoprotein subunit alpha; Provisional 356 -177661 PLN00023 PLN00023 GTP-binding protein; Provisional 334 -215033 PLN00025 PLN00025 photosystem II light harvesting chlorophyll a/b binding protein; Provisional 262 -177663 PLN00026 PLN00026 aquaporin NIP; Provisional 298 -177664 PLN00027 PLN00027 aquaporin TIP; Provisional 252 -177665 PLN00028 PLN00028 nitrate transmembrane transporter; Provisional 476 -215034 PLN00032 PLN00032 DNA-directed RNA polymerase; Provisional 71 -215035 PLN00033 PLN00033 photosystem II stability/assembly factor; Provisional 398 -215036 PLN00034 PLN00034 mitogen-activated protein kinase kinase; Provisional 353 -177669 PLN00035 PLN00035 histone H4; Provisional 103 -177670 PLN00036 PLN00036 40S ribosomal protein S4; Provisional 261 -177671 PLN00037 PLN00037 photosystem II oxygen-evolving enhancer protein 1; Provisional 313 -215037 PLN00038 PLN00038 photosystem I reaction center subunit XI (PsaL); Provisional 165 -177673 PLN00039 PLN00039 photosystem II reaction center Psb28 protein; Provisional 111 -215038 PLN00040 PLN00040 Protein MAK16 homolog; Provisional 233 -215039 PLN00041 PLN00041 photosystem I reaction center subunit II; Provisional 196 -177676 PLN00042 PLN00042 photosystem II oxygen-evolving enhancer protein 2; Provisional 260 -165621 PLN00043 PLN00043 elongation factor 1-alpha; Provisional 447 -165622 PLN00044 PLN00044 multi-copper oxidase-related protein; Provisional 596 -177677 PLN00045 PLN00045 photosystem I reaction center subunit IV; Provisional 101 -215040 PLN00046 PLN00046 photosystem I reaction center subunit O; Provisional 141 -177679 PLN00047 PLN00047 photosystem II biogenesis protein Psb29; Provisional 283 -177680 PLN00048 PLN00048 photosystem I light harvesting chlorophyll a/b binding protein 3; Provisional 262 -177681 PLN00049 PLN00049 carboxyl-terminal processing protease; Provisional 389 -165628 PLN00050 PLN00050 expansin A; Provisional 247 -177682 PLN00051 PLN00051 RNA-binding S4 domain-containing protein; Provisional 267 -177683 PLN00052 PLN00052 prolyl 4-hydroxylase; Provisional 310 -215041 PLN00053 PLN00053 photosystem II subunit R; Provisional 117 -215042 PLN00054 PLN00054 photosystem I reaction center subunit N; Provisional 139 -177686 PLN00055 PLN00055 photosystem II reaction center protein H; Provisional 73 -177687 PLN00056 PLN00056 photosystem Q(B) protein; Provisional 353 -177688 PLN00057 PLN00057 proliferating cell nuclear antigen; Provisional 263 -177689 PLN00058 PLN00058 photosystem II reaction center subunit T; Provisional 103 -177690 PLN00059 PLN00059 PsbP domain-containing protein 1; Provisional 286 -177691 PLN00060 PLN00060 meiotic recombination protein SPO11-2; Provisional 384 -215043 PLN00061 PLN00061 photosystem II protein Psb27; Provisional 150 -177693 PLN00062 PLN00062 TATA-box-binding protein; Provisional 179 -215044 PLN00063 PLN00063 photosystem II core complex proteins psbY; Provisional 194 -215045 PLN00064 PLN00064 photosystem II protein Psb27; Provisional 166 -215046 PLN00066 PLN00066 PsbP domain-containing protein 4; Provisional 262 -177697 PLN00067 PLN00067 PsbP domain-containing protein 6; Provisional 263 -177698 PLN00068 PLN00068 photosystem II CP47 chlorophyll A apoprotein; Provisional 508 -215047 PLN00070 PLN00070 aconitate hydratase 936 -177700 PLN00071 PLN00071 photosystem I subunit VII; Provisional 81 -177701 PLN00072 PLN00072 3-isopropylmalate isomerase/dehydratase small subunit; Provisional 246 -215048 PLN00074 PLN00074 photosystem II D2 protein (PsbD); Provisional 353 -215049 PLN00075 PLN00075 Photosystem II reaction center protein K; Provisional 52 -215050 PLN00077 PLN00077 photosystem II reaction centre W protein; Provisional 128 -165653 PLN00078 PLN00078 photosystem I reaction center subunit N (PsaN); Provisional 122 -165655 PLN00081 PLN00081 photosystem I reaction center subunit V (PsaG); Provisional 141 -215051 PLN00082 PLN00082 photosystem II reaction centre W protein (PsbW); Provisional 67 -177706 PLN00083 PLN00083 photosystem II subunit R; Provisional 101 -177707 PLN00084 PLN00084 photosystem II subunit S (PsbS); Provisional 214 -177708 PLN00085 PLN00085 photosystem II reaction center protein M (PsbM); Provisional 149 -177709 PLN00088 PLN00088 predicted protein; Provisional 127 -177710 PLN00089 PLN00089 fucoxanthin-chlorophyll a/c binding protein; Provisional 209 -165663 PLN00090 PLN00090 photosystem II reaction center M protein; Provisional 113 -215052 PLN00091 PLN00091 photosystem I reaction center subunit V (PsaG); Provisional 160 -177712 PLN00092 PLN00092 photosystem I reaction center subunit V (PsaG); Provisional 137 -177713 PLN00093 PLN00093 geranylgeranyl diphosphate reductase; Provisional 450 -215053 PLN00094 PLN00094 aconitate hydratase 2; Provisional 938 -165668 PLN00095 PLN00095 chlorophyllide a oxygenase; Provisional 394 -177715 PLN00096 PLN00096 isocitrate dehydrogenase (NADP+); Provisional 393 -165670 PLN00097 PLN00097 photosystem I light harvesting complex Lhca2/4, chlorophyll a/b binding; Provisional 244 -177716 PLN00098 PLN00098 light-harvesting complex I chlorophyll a/b-binding protein (Lhac); Provisional 267 -177717 PLN00099 PLN00099 light-harvesting complex IChlorophyll A-B binding protein Lhca1; Provisional 243 -215054 PLN00100 PLN00100 light-harvesting complex chlorophyll-a/b protein of photosystem I (Lhca); Provisional 246 -215055 PLN00101 PLN00101 Photosystem I light-harvesting complex type 4 protein; Provisional 250 -177720 PLN00103 PLN00103 isocitrate dehydrogenase (NADP+); Provisional 410 -215056 PLN00104 PLN00104 MYST -like histone acetyltransferase; Provisional 450 -215057 PLN00105 PLN00105 malate/L-lactate dehydrogenase; Provisional 330 -215058 PLN00106 PLN00106 malate dehydrogenase 323 -165679 PLN00107 PLN00107 FAD-dependent oxidoreductase; Provisional 257 -177724 PLN00108 PLN00108 unknown protein; Provisional 257 -177725 PLN00110 PLN00110 flavonoid 3',5'-hydroxylase (F3'5'H); Provisional 504 -215059 PLN00111 PLN00111 accumulation of photosystem one; Provisional 399 -215060 PLN00112 PLN00112 malate dehydrogenase (NADP); Provisional 444 -215061 PLN00113 PLN00113 leucine-rich repeat receptor-like protein kinase; Provisional 968 -177729 PLN00115 PLN00115 pollen allergen group 3; Provisional 118 -177730 PLN00116 PLN00116 translation elongation factor EF-2 subunit; Provisional 843 -215062 PLN00118 PLN00118 isocitrate dehydrogenase (NAD+) 372 -177732 PLN00119 PLN00119 endoglucanase 489 -215063 PLN00120 PLN00120 fucoxanthin-chlorophyll a-c binding protein; Provisional 202 -177733 PLN00121 PLN00121 histone H3; Provisional 136 -215064 PLN00122 PLN00122 serine/threonine protein phosphatase 2A; Provisional 170 -215065 PLN00123 PLN00123 isocitrate dehydrogenase (NAD+) 360 -177736 PLN00124 PLN00124 succinyl-CoA ligase [GDP-forming] subunit beta; Provisional 422 -215066 PLN00125 PLN00125 Succinyl-CoA ligase [GDP-forming] subunit alpha 300 -165695 PLN00126 PLN00126 succinate dehydrogenase, cytochrome b subunit family; Provisional 129 -177738 PLN00127 PLN00127 succinate dehydrogenase (ubiquinone) cytochrome b subunit; Provisional 178 -177739 PLN00128 PLN00128 Succinate dehydrogenase [ubiquinone] flavoprotein subunit 635 -215067 PLN00129 PLN00129 succinate dehydrogenase [ubiquinone] iron-sulfur subunit 276 -177741 PLN00130 PLN00130 succinate dehydrogenase (SDH3); Provisional 213 -165700 PLN00131 PLN00131 hypothetical protein; Provisional 218 -215068 PLN00133 PLN00133 class I-fumerate hydratase; Provisional 576 -215069 PLN00134 PLN00134 fumarate hydratase; Provisional 458 -177744 PLN00135 PLN00135 malate dehydrogenase 309 -215070 PLN00136 PLN00136 silicon transporter; Provisional 482 -215071 PLN00137 PLN00137 NHAD transporter family protein; Provisional 424 -165706 PLN00138 PLN00138 large subunit ribosomal protein LP2; Provisional 113 -165707 PLN00139 PLN00139 hypothetical protein; Provisional 320 -165708 PLN00140 PLN00140 alcohol acetyltransferase family protein; Provisional 444 -215072 PLN00141 PLN00141 Tic62-NAD(P)-related group II protein; Provisional 251 -215073 PLN00142 PLN00142 sucrose synthase 815 -165711 PLN00143 PLN00143 tyrosine/nicotianamine aminotransferase; Provisional 409 -177748 PLN00144 PLN00144 acetylornithine transaminase 382 -215074 PLN00145 PLN00145 tyrosine/nicotianamine aminotransferase; Provisional 430 -215075 PLN00146 PLN00146 40S ribosomal protein S15a; Provisional 130 -215076 PLN00147 PLN00147 light-harvesting complex I chlorophyll-a/b binding protein Lhca5; Provisional 252 -215077 PLN00148 PLN00148 potassium transporter; Provisional 785 -177753 PLN00149 PLN00149 potassium transporter; Provisional 779 -215078 PLN00150 PLN00150 potassium ion transporter family protein; Provisional 779 -215079 PLN00151 PLN00151 potassium transporter; Provisional 852 -177755 PLN00152 PLN00152 DNA-directed RNA polymerase; Provisional 130 -165721 PLN00153 PLN00153 histone H2A; Provisional 129 -177756 PLN00154 PLN00154 histone H2A; Provisional 136 -165723 PLN00155 PLN00155 histone H2A; Provisional 58 -215080 PLN00156 PLN00156 histone H2AX; Provisional 139 -177758 PLN00157 PLN00157 histone H2A; Provisional 132 -215081 PLN00158 PLN00158 histone H2B; Provisional 116 -165727 PLN00160 PLN00160 histone H3; Provisional 97 -215082 PLN00161 PLN00161 histone H3; Provisional 135 -215083 PLN00162 PLN00162 transport protein sec23; Provisional 761 -165730 PLN00163 PLN00163 histone H4; Provisional 59 -215084 PLN00164 PLN00164 glucosyltransferase; Provisional 480 -165732 PLN00165 PLN00165 hypothetical protein; Provisional 88 -165733 PLN00166 PLN00166 aquaporin TIP2; Provisional 250 -215085 PLN00167 PLN00167 aquaporin TIP5; Provisional 256 -215086 PLN00168 PLN00168 Cytochrome P450; Provisional 519 -177765 PLN00169 PLN00169 CETS family protein; Provisional 175 -215087 PLN00170 PLN00170 photosystem II light-harvesting-Chl-binding protein Lhcb6 (CP24); Provisional 255 -215088 PLN00171 PLN00171 photosystem light-harvesting complex -chlorophyll a/b binding protein Lhcb7; Provisional 324 -177768 PLN00172 PLN00172 ubiquitin conjugating enzyme; Provisional 147 -177769 PLN00174 PLN00174 predicted protein; Provisional 160 -215089 PLN00175 PLN00175 aminotransferase family protein; Provisional 413 -215090 PLN00176 PLN00176 galactinol synthase 333 -177772 PLN00177 PLN00177 sulfite oxidase; Provisional 393 -177773 PLN00178 PLN00178 sulfite reductase 623 -215091 PLN00179 PLN00179 acyl- [acyl-carrier protein] desaturase 390 -177775 PLN00180 PLN00180 NDF6 (NDH-dependent flow 6); Provisional 180 -177776 PLN00181 PLN00181 protein SPA1-RELATED; Provisional 793 -165748 PLN00182 PLN00182 putative aquaporin NIP4; Provisional 283 -215092 PLN00183 PLN00183 putative aquaporin NIP7; Provisional 274 -177778 PLN00184 PLN00184 aquaporin NIP1; Provisional 296 -177779 PLN00185 PLN00185 60S ribosomal protein L4-1; Provisional 405 -215093 PLN00186 PLN00186 ribosomal protein S26; Provisional 109 -177781 PLN00187 PLN00187 photosystem II light-harvesting complex II protein Lhcb4; Provisional 286 -215094 PLN00188 PLN00188 enhanced disease resistance protein (EDR2); Provisional 719 -177783 PLN00189 PLN00189 40S ribosomal protein S9; Provisional 194 -177784 PLN00190 PLN00190 60S ribosomal protein L21; Provisional 158 -215095 PLN00191 PLN00191 enolase 457 -215096 PLN00192 PLN00192 aldehyde oxidase 1344 -215097 PLN00193 PLN00193 expansin-A; Provisional 256 -215098 PLN00194 PLN00194 aldose 1-epimerase; Provisional 337 -165762 PLN00196 PLN00196 alpha-amylase; Provisional 428 -215099 PLN00197 PLN00197 beta-amylase; Provisional 573 -215100 PLN00198 PLN00198 anthocyanidin reductase; Provisional 338 -177791 PLN00200 PLN00200 argininosuccinate synthase; Provisional 404 -177792 PLN00202 PLN00202 beta-ureidopropionase 405 -215101 PLN00203 PLN00203 glutamyl-tRNA reductase 519 -215102 PLN00204 PLN00204 CP12 gene family protein; Provisional 126 -177795 PLN00205 PLN00205 ribisomal protein L13 family protein; Provisional 191 -215103 PLN00206 PLN00206 DEAD-box ATP-dependent RNA helicase; Provisional 518 -215104 PLN00207 PLN00207 polyribonucleotide nucleotidyltransferase; Provisional 891 -177798 PLN00208 PLN00208 translation initiation factor (eIF); Provisional 145 -165774 PLN00209 PLN00209 ribosomal protein S27; Provisional 86 -177799 PLN00210 PLN00210 40S ribosomal protein S16; Provisional 141 -215105 PLN00211 PLN00211 predicted protein; Provisional 61 -215106 PLN00212 PLN00212 glutelin; Provisional 493 -165778 PLN00213 PLN00213 predicted protein; Provisional 118 -177800 PLN00214 PLN00214 putative protein; Provisional 115 -165780 PLN00215 PLN00215 predicted protein; Provisional 110 -165781 PLN00216 PLN00216 predicted protein; Provisional 69 -165782 PLN00217 PLN00217 predicted protein; Provisional 210 -165783 PLN00218 PLN00218 predicted protein; Provisional 151 -165784 PLN00219 PLN00219 predicted protein; Provisional 65 -215107 PLN00220 PLN00220 tubulin beta chain; Provisional 447 -177802 PLN00221 PLN00221 tubulin alpha chain; Provisional 450 -215108 PLN00222 PLN00222 tubulin gamma chain; Provisional 454 -165788 PLN00223 PLN00223 ADP-ribosylation factor; Provisional 181 -215109 PLN00410 PLN00410 U5 snRNP protein, DIM1 family; Provisional 142 -177805 PLN00411 PLN00411 nodulin MtN21 family protein; Provisional 358 -215110 PLN00412 PLN00412 NADP-dependent glyceraldehyde-3-phosphate dehydrogenase; Provisional 496 -165792 PLN00413 PLN00413 triacylglycerol lipase 479 -177807 PLN00414 PLN00414 glycosyltransferase family protein 446 -177808 PLN00415 PLN00415 3-ketoacyl-CoA synthase 466 -177809 PLN00416 PLN00416 carbonate dehydratase 258 -177810 PLN00417 PLN00417 oxidoreductase, 2OG-Fe(II) oxygenase family protein 348 -177811 PLN02150 PLN02150 terpene synthase/cyclase family protein 96 -177812 PLN02151 PLN02151 trehalose-phosphatase 354 -177813 PLN02152 PLN02152 indole-3-acetate beta-glucosyltransferase 455 -177814 PLN02153 PLN02153 epithiospecifier protein 341 -215111 PLN02154 PLN02154 carbonic anhydrase 290 -165802 PLN02155 PLN02155 polygalacturonase 394 -177816 PLN02156 PLN02156 gibberellin 2-beta-dioxygenase 335 -177817 PLN02157 PLN02157 3-hydroxyisobutyryl-CoA hydrolase-like protein 401 -177818 PLN02159 PLN02159 Fe(2+) transport protein 337 -177819 PLN02160 PLN02160 thiosulfate sulfurtransferase 136 -177820 PLN02161 PLN02161 beta-amylase 531 -177821 PLN02162 PLN02162 triacylglycerol lipase 475 -177822 PLN02164 PLN02164 sulfotransferase 346 -177823 PLN02165 PLN02165 adenylate isopentenyltransferase 334 -165812 PLN02166 PLN02166 dTDP-glucose 4,6-dehydratase 436 -215112 PLN02167 PLN02167 UDP-glycosyltransferase family protein 475 -215113 PLN02168 PLN02168 copper ion binding / pectinesterase 545 -177826 PLN02169 PLN02169 fatty acid (omega-1)-hydroxylase/midchain alkane hydroxylase 500 -215114 PLN02170 PLN02170 probable pectinesterase/pectinesterase inhibitor 529 -215115 PLN02171 PLN02171 endoglucanase 629 -215116 PLN02172 PLN02172 flavin-containing monooxygenase FMO GS-OX 461 -177830 PLN02173 PLN02173 UDP-glucosyl transferase family protein 449 -177831 PLN02174 PLN02174 aldehyde dehydrogenase family 3 member H1 484 -177832 PLN02175 PLN02175 endoglucanase 484 -215117 PLN02176 PLN02176 putative pectinesterase 340 -215118 PLN02177 PLN02177 glycerol-3-phosphate acyltransferase 497 -177834 PLN02178 PLN02178 cinnamyl-alcohol dehydrogenase 375 -177835 PLN02179 PLN02179 carbonic anhydrase 235 -177836 PLN02180 PLN02180 gamma-glutamyl transpeptidase 4 639 -177837 PLN02182 PLN02182 cytidine deaminase 339 -165828 PLN02183 PLN02183 ferulate 5-hydroxylase 516 -177838 PLN02184 PLN02184 superoxide dismutase [Fe] 212 -215119 PLN02187 PLN02187 rooty/superroot1 462 -215120 PLN02188 PLN02188 polygalacturonase/glycoside hydrolase family protein 404 -215121 PLN02189 PLN02189 cellulose synthase 1040 -215122 PLN02190 PLN02190 cellulose synthase-like protein 756 -177843 PLN02191 PLN02191 L-ascorbate oxidase 574 -215123 PLN02192 PLN02192 3-ketoacyl-CoA synthase 511 -177844 PLN02193 PLN02193 nitrile-specifier protein 470 -177845 PLN02194 PLN02194 cytochrome-c oxidase 265 -215124 PLN02195 PLN02195 cellulose synthase A 977 -177847 PLN02196 PLN02196 abscisic acid 8'-hydroxylase 463 -177848 PLN02197 PLN02197 pectinesterase 588 -177849 PLN02198 PLN02198 glutathione gamma-glutamylcysteinyltransferase 573 -177850 PLN02199 PLN02199 shikimate kinase 303 -215125 PLN02200 PLN02200 adenylate kinase family protein 234 -177852 PLN02201 PLN02201 probable pectinesterase/pectinesterase inhibitor 520 -177853 PLN02202 PLN02202 carbonate dehydratase 284 -165847 PLN02203 PLN02203 aldehyde dehydrogenase 484 -215126 PLN02204 PLN02204 diacylglycerol kinase 601 -177855 PLN02205 PLN02205 alpha,alpha-trehalose-phosphate synthase [UDP-forming] 854 -177856 PLN02206 PLN02206 UDP-glucuronate decarboxylase 442 -177857 PLN02207 PLN02207 UDP-glycosyltransferase 468 -177858 PLN02208 PLN02208 glycosyltransferase family protein 442 -177859 PLN02209 PLN02209 serine carboxypeptidase 437 -215127 PLN02210 PLN02210 UDP-glucosyl transferase 456 -215128 PLN02211 PLN02211 methyl indole-3-acetate methyltransferase 273 -165857 PLN02213 PLN02213 sinapoylglucose-malate O-sinapoyltransferase/ carboxypeptidase 319 -177862 PLN02214 PLN02214 cinnamoyl-CoA reductase 342 -215129 PLN02216 PLN02216 protein SRG1 357 -215130 PLN02217 PLN02217 probable pectinesterase/pectinesterase inhibitor 670 -177865 PLN02218 PLN02218 polygalacturonase ADPG 431 -165863 PLN02219 PLN02219 probable galactinol--sucrose galactosyltransferase 2 775 -177866 PLN02220 PLN02220 delta-9 acyl-lipid desaturase 299 -177867 PLN02221 PLN02221 asparaginyl-tRNA synthetase 572 -177868 PLN02222 PLN02222 phosphoinositide phospholipase C 2 581 -165867 PLN02223 PLN02223 phosphoinositide phospholipase C 537 -177869 PLN02224 PLN02224 methionine-tRNA ligase 616 -177870 PLN02225 PLN02225 1-deoxy-D-xylulose-5-phosphate synthase 701 -177871 PLN02226 PLN02226 2-oxoglutarate dehydrogenase E2 component 463 -177872 PLN02227 PLN02227 fructose-bisphosphate aldolase I 399 -177873 PLN02228 PLN02228 Phosphoinositide phospholipase C 567 -177874 PLN02229 PLN02229 alpha-galactosidase 427 -177875 PLN02230 PLN02230 phosphoinositide phospholipase C 4 598 -177876 PLN02231 PLN02231 alanine transaminase 534 -165876 PLN02232 PLN02232 ubiquinone biosynthesis methyltransferase 160 -177877 PLN02233 PLN02233 ubiquinone biosynthesis methyltransferase 261 -177878 PLN02234 PLN02234 1-deoxy-D-xylulose-5-phosphate synthase 641 -177879 PLN02235 PLN02235 ATP citrate (pro-S)-lyase 423 -177880 PLN02236 PLN02236 choline kinase 344 -215131 PLN02237 PLN02237 glyceraldehyde-3-phosphate dehydrogenase B 442 -215132 PLN02238 PLN02238 hypoxanthine phosphoribosyltransferase 189 -177883 PLN02240 PLN02240 UDP-glucose 4-epimerase 352 -215133 PLN02241 PLN02241 glucose-1-phosphate adenylyltransferase 436 -215134 PLN02242 PLN02242 methionine gamma-lyase 418 -177886 PLN02243 PLN02243 S-adenosylmethionine synthase 386 -215135 PLN02244 PLN02244 tocopherol O-methyltransferase 340 -215136 PLN02245 PLN02245 ATP phosphoribosyl transferase 403 -215137 PLN02246 PLN02246 4-coumarate--CoA ligase 537 -165890 PLN02247 PLN02247 indole-3-acetic acid-amido synthetase 606 -215138 PLN02248 PLN02248 cellulose synthase-like protein 1135 -177891 PLN02249 PLN02249 indole-3-acetic acid-amido synthetase 597 -215139 PLN02250 PLN02250 lipid phosphate phosphatase 314 -215140 PLN02251 PLN02251 pyrophosphate-dependent phosphofructokinase 568 -215141 PLN02252 PLN02252 nitrate reductase [NADPH] 888 -177895 PLN02253 PLN02253 xanthoxin dehydrogenase 280 -215142 PLN02254 PLN02254 gibberellin 3-beta-dioxygenase 358 -215143 PLN02255 PLN02255 H(+) -translocating inorganic pyrophosphatase 765 -215144 PLN02256 PLN02256 arogenate dehydrogenase 304 -177899 PLN02257 PLN02257 phosphoribosylamine--glycine ligase 434 -215145 PLN02258 PLN02258 9-cis-epoxycarotenoid dioxygenase NCED 590 -177901 PLN02259 PLN02259 branched-chain-amino-acid aminotransferase 2 388 -215146 PLN02260 PLN02260 probable rhamnose biosynthetic enzyme 668 -215147 PLN02262 PLN02262 fructose-1,6-bisphosphatase 340 -177904 PLN02263 PLN02263 serine decarboxylase 470 -215148 PLN02264 PLN02264 lipoxygenase 919 -215149 PLN02265 PLN02265 probable phenylalanyl-tRNA synthetase beta chain 597 -215150 PLN02266 PLN02266 endoglucanase 510 -215151 PLN02267 PLN02267 enoyl-CoA hydratase/isomerase family protein 239 -177909 PLN02268 PLN02268 probable polyamine oxidase 435 -215152 PLN02269 PLN02269 Pyruvate dehydrogenase E1 component subunit alpha 362 -165912 PLN02270 PLN02270 phospholipase D alpha 808 -215153 PLN02271 PLN02271 serine hydroxymethyltransferase 586 -177912 PLN02272 PLN02272 glyceraldehyde-3-phosphate dehydrogenase 421 -215154 PLN02274 PLN02274 inosine-5'-monophosphate dehydrogenase 505 -215155 PLN02275 PLN02275 transferase, transferring glycosyl groups 371 -215156 PLN02276 PLN02276 gibberellin 20-oxidase 361 -177916 PLN02277 PLN02277 H(+) -translocating inorganic pyrophosphatase 730 -215157 PLN02278 PLN02278 succinic semialdehyde dehydrogenase 498 -177918 PLN02279 PLN02279 ent-kaur-16-ene synthase 784 -215158 PLN02280 PLN02280 IAA-amino acid hydrolase 478 -177920 PLN02281 PLN02281 chlorophyllide a oxygenase 536 -165923 PLN02282 PLN02282 phosphoglycerate kinase 401 -177921 PLN02283 PLN02283 alpha-dioxygenase 633 -177922 PLN02284 PLN02284 glutamine synthetase 354 -215159 PLN02285 PLN02285 methionyl-tRNA formyltransferase 334 -215160 PLN02286 PLN02286 arginine-tRNA ligase 576 -215161 PLN02287 PLN02287 3-ketoacyl-CoA thiolase 452 -215162 PLN02288 PLN02288 mannose-6-phosphate isomerase 394 -215163 PLN02289 PLN02289 ribulose-bisphosphate carboxylase small chain 176 -215164 PLN02290 PLN02290 cytokinin trans-hydroxylase 516 -177928 PLN02291 PLN02291 phospho-2-dehydro-3-deoxyheptonate aldolase 474 -215165 PLN02292 PLN02292 ferric-chelate reductase 702 -177930 PLN02293 PLN02293 adenine phosphoribosyltransferase 187 -177931 PLN02294 PLN02294 cytochrome c oxidase subunit Vb 174 -215166 PLN02295 PLN02295 glycerol kinase 512 -215167 PLN02296 PLN02296 carbonate dehydratase 269 -177934 PLN02297 PLN02297 ribose-phosphate pyrophosphokinase 326 -165939 PLN02298 PLN02298 hydrolase, alpha/beta fold family protein 330 -215168 PLN02299 PLN02299 1-aminocyclopropane-1-carboxylate oxidase 321 -215169 PLN02300 PLN02300 lactoylglutathione lyase 286 -215170 PLN02301 PLN02301 pectinesterase/pectinesterase inhibitor 548 -215171 PLN02302 PLN02302 ent-kaurenoic acid oxidase 490 -215172 PLN02303 PLN02303 urease 837 -215173 PLN02304 PLN02304 probable pectinesterase 379 -215174 PLN02305 PLN02305 lipoxygenase 918 -177941 PLN02306 PLN02306 hydroxypyruvate reductase 386 -177942 PLN02307 PLN02307 phosphoglucomutase 579 -177943 PLN02308 PLN02308 endoglucanase 492 -215175 PLN02309 PLN02309 5'-adenylylsulfate reductase 457 -215176 PLN02310 PLN02310 triacylglycerol lipase 405 -215177 PLN02311 PLN02311 chalcone isomerase 271 -215178 PLN02312 PLN02312 acyl-CoA oxidase 680 -177947 PLN02313 PLN02313 Pectinesterase/pectinesterase inhibitor 587 -215179 PLN02314 PLN02314 pectinesterase 586 -177949 PLN02315 PLN02315 aldehyde dehydrogenase family 7 member 508 -215180 PLN02316 PLN02316 synthase/transferase 1036 -215181 PLN02317 PLN02317 arogenate dehydratase 382 -177952 PLN02318 PLN02318 phosphoribulokinase/uridine kinase 656 -177953 PLN02319 PLN02319 aminomethyltransferase 404 -177954 PLN02320 PLN02320 seryl-tRNA synthetase 502 -215182 PLN02321 PLN02321 2-isopropylmalate synthase 632 -177956 PLN02322 PLN02322 acyl-CoA thioesterase 154 -215183 PLN02323 PLN02323 probable fructokinase 330 -177958 PLN02324 PLN02324 triacylglycerol lipase 415 -215184 PLN02325 PLN02325 nudix hydrolase 144 -215185 PLN02326 PLN02326 3-oxoacyl-[acyl-carrier-protein] synthase III 379 -215186 PLN02327 PLN02327 CTP synthase 557 -215187 PLN02328 PLN02328 lysine-specific histone demethylase 1 homolog 808 -215188 PLN02329 PLN02329 3-isopropylmalate dehydrogenase 409 -215189 PLN02330 PLN02330 4-coumarate--CoA ligase-like 1 546 -177965 PLN02331 PLN02331 phosphoribosylglycinamide formyltransferase 207 -215190 PLN02332 PLN02332 membrane bound O-acyl transferase (MBOAT) family protein 465 -215191 PLN02333 PLN02333 glucose-6-phosphate 1-dehydrogenase 604 -215192 PLN02334 PLN02334 ribulose-phosphate 3-epimerase 229 -177969 PLN02335 PLN02335 anthranilate synthase 222 -177970 PLN02336 PLN02336 phosphoethanolamine N-methyltransferase 475 -215193 PLN02337 PLN02337 lipoxygenase 866 -177972 PLN02338 PLN02338 3-phosphoshikimate 1-carboxyvinyltransferase 443 -177973 PLN02339 PLN02339 NAD+ synthase (glutamine-hydrolysing) 700 -215194 PLN02340 PLN02340 endoglucanase 614 -215195 PLN02341 PLN02341 pfkB-type carbohydrate kinase family protein 470 -177976 PLN02342 PLN02342 ornithine carbamoyltransferase 348 -177977 PLN02343 PLN02343 allene oxide cyclase 229 -177978 PLN02344 PLN02344 chorismate mutase 284 -177979 PLN02345 PLN02345 endoglucanase 469 -215196 PLN02346 PLN02346 histidine biosynthesis bifunctional protein hisIE 271 -215197 PLN02347 PLN02347 GMP synthetase 536 -215198 PLN02348 PLN02348 phosphoribulokinase 395 -215199 PLN02349 PLN02349 glycerol-3-phosphate acyltransferase 426 -215200 PLN02350 PLN02350 phosphogluconate dehydrogenase (decarboxylating) 493 -215201 PLN02351 PLN02351 cytochromes b561 family protein 242 -215202 PLN02352 PLN02352 phospholipase D epsilon 758 -177986 PLN02353 PLN02353 probable UDP-glucose 6-dehydrogenase 473 -177987 PLN02354 PLN02354 copper ion binding / oxidoreductase 552 -215203 PLN02355 PLN02355 probable galactinol--sucrose galactosyltransferase 1 758 -215204 PLN02356 PLN02356 phosphateglycerate kinase 423 -215205 PLN02357 PLN02357 serine acetyltransferase 360 -165999 PLN02358 PLN02358 glyceraldehyde-3-phosphate dehydrogenase 338 -166000 PLN02359 PLN02359 ethanolaminephosphotransferase 389 -166001 PLN02360 PLN02360 probable 6-phosphogluconolactonase 268 -177990 PLN02361 PLN02361 alpha-amylase 401 -215206 PLN02362 PLN02362 hexokinase 509 -215207 PLN02363 PLN02363 phosphoribosylanthranilate isomerase 256 -166005 PLN02364 PLN02364 L-ascorbate peroxidase 1 250 -177993 PLN02365 PLN02365 2-oxoglutarate-dependent dioxygenase 300 -215208 PLN02366 PLN02366 spermidine synthase 308 -177995 PLN02367 PLN02367 lactoylglutathione lyase 233 -177996 PLN02368 PLN02368 alanine transaminase 407 -215209 PLN02369 PLN02369 ribose-phosphate pyrophosphokinase 302 -215210 PLN02370 PLN02370 acyl-ACP thioesterase 419 -215211 PLN02371 PLN02371 phosphoglucosamine mutase family protein 583 -215212 PLN02372 PLN02372 violaxanthin de-epoxidase 455 -178001 PLN02373 PLN02373 soluble inorganic pyrophosphatase 188 -215213 PLN02374 PLN02374 pyruvate dehydrogenase (acetyl-transferring) 433 -178003 PLN02375 PLN02375 molybderin biosynthesis protein CNX3 270 -178004 PLN02376 PLN02376 1-aminocyclopropane-1-carboxylate synthase 496 -166018 PLN02377 PLN02377 3-ketoacyl-CoA synthase 502 -166019 PLN02378 PLN02378 glutathione S-transferase DHAR1 213 -178005 PLN02379 PLN02379 pfkB-type carbohydrate kinase family protein 367 -178006 PLN02380 PLN02380 1-acyl-sn-glycerol-3-phosphate acyltransferase 376 -215214 PLN02381 PLN02381 valyl-tRNA synthetase 1066 -178008 PLN02382 PLN02382 probable sucrose-phosphatase 413 -178009 PLN02383 PLN02383 aspartate semialdehyde dehydrogenase 344 -215215 PLN02384 PLN02384 ribose-5-phosphate isomerase 264 -215216 PLN02385 PLN02385 hydrolase; alpha/beta fold family protein 349 -166027 PLN02386 PLN02386 superoxide dismutase [Cu-Zn] 152 -215217 PLN02387 PLN02387 long-chain-fatty-acid-CoA ligase family protein 696 -215218 PLN02388 PLN02388 phosphopantetheine adenylyltransferase 177 -215219 PLN02389 PLN02389 biotin synthase 379 -178014 PLN02390 PLN02390 molybdopterin synthase catalytic subunit 111 -178015 PLN02392 PLN02392 probable steroid reductase DET2 260 -215220 PLN02393 PLN02393 leucoanthocyanidin dioxygenase like protein 362 -215221 PLN02394 PLN02394 trans-cinnamate 4-monooxygenase 503 -166036 PLN02395 PLN02395 glutathione S-transferase 215 -178018 PLN02396 PLN02396 hexaprenyldihydroxybenzoate methyltransferase 322 -215222 PLN02397 PLN02397 aspartate transaminase 423 -215223 PLN02398 PLN02398 hydroxyacylglutathione hydrolase 329 -178021 PLN02399 PLN02399 phospholipid hydroperoxide glutathione peroxidase 236 -215224 PLN02400 PLN02400 cellulose synthase 1085 -215225 PLN02401 PLN02401 diacylglycerol o-acyltransferase 446 -178024 PLN02402 PLN02402 cytidine deaminase 303 -178025 PLN02403 PLN02403 aminocyclopropanecarboxylate oxidase 303 -178026 PLN02404 PLN02404 6,7-dimethyl-8-ribityllumazine synthase 141 -215226 PLN02405 PLN02405 hexokinase 497 -215227 PLN02406 PLN02406 ethanolamine-phosphate cytidylyltransferase 418 -178029 PLN02407 PLN02407 diphosphomevalonate decarboxylase 343 -215228 PLN02408 PLN02408 phospholipase A1 365 -178031 PLN02409 PLN02409 serine--glyoxylate aminotransaminase 401 -178032 PLN02410 PLN02410 UDP-glucoronosyl/UDP-glucosyl transferase family protein 451 -178033 PLN02411 PLN02411 12-oxophytodienoate reductase 391 -166053 PLN02412 PLN02412 probable glutathione peroxidase 167 -215229 PLN02413 PLN02413 choline-phosphate cytidylyltransferase 294 -178035 PLN02414 PLN02414 glycine dehydrogenase (decarboxylating) 993 -178036 PLN02415 PLN02415 uricase 304 -178037 PLN02416 PLN02416 probable pectinesterase/pectinesterase inhibitor 541 -178038 PLN02417 PLN02417 dihydrodipicolinate synthase 280 -215230 PLN02418 PLN02418 delta-1-pyrroline-5-carboxylate synthase 718 -166060 PLN02419 PLN02419 methylmalonate-semialdehyde dehydrogenase [acylating] 604 -178040 PLN02420 PLN02420 endoglucanase 525 -215231 PLN02421 PLN02421 phosphotransferase, alcohol group as acceptor/kinase 330 -215232 PLN02422 PLN02422 dephospho-CoA kinase 232 -178043 PLN02423 PLN02423 phosphomannomutase 245 -215233 PLN02424 PLN02424 ketopantoate hydroxymethyltransferase 332 -215234 PLN02425 PLN02425 probable fructose-bisphosphate aldolase 390 -215235 PLN02426 PLN02426 cytochrome P450, family 94, subfamily C protein 502 -178047 PLN02427 PLN02427 UDP-apiose/xylose synthase 386 -215236 PLN02428 PLN02428 lipoic acid synthase 349 -166070 PLN02429 PLN02429 triosephosphate isomerase 315 -178049 PLN02430 PLN02430 long-chain-fatty-acid-CoA ligase 660 -178050 PLN02431 PLN02431 ferredoxin--nitrite reductase 587 -178051 PLN02432 PLN02432 putative pectinesterase 293 -215237 PLN02433 PLN02433 uroporphyrinogen decarboxylase 345 -178053 PLN02434 PLN02434 fatty acid hydroxylase 237 -215238 PLN02435 PLN02435 probable UDP-N-acetylglucosamine pyrophosphorylase 493 -215239 PLN02436 PLN02436 cellulose synthase A 1094 -178056 PLN02437 PLN02437 ribonucleoside--diphosphate reductase large subunit 813 -178057 PLN02438 PLN02438 inositol-3-phosphate synthase 510 -215240 PLN02439 PLN02439 arginine decarboxylase 559 -215241 PLN02440 PLN02440 amidophosphoribosyltransferase 479 -215242 PLN02441 PLN02441 cytokinin dehydrogenase 525 -178061 PLN02442 PLN02442 S-formylglutathione hydrolase 283 -178062 PLN02443 PLN02443 acyl-coenzyme A oxidase 664 -215243 PLN02444 PLN02444 HMP-P synthase 642 -215244 PLN02445 PLN02445 anthranilate synthase component I 523 -215245 PLN02446 PLN02446 (5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase 262 -215246 PLN02447 PLN02447 1,4-alpha-glucan-branching enzyme 758 -215247 PLN02448 PLN02448 UDP-glycosyltransferase family protein 459 -178068 PLN02449 PLN02449 ferrochelatase 485 -178069 PLN02450 PLN02450 1-aminocyclopropane-1-carboxylate synthase 468 -215248 PLN02451 PLN02451 homoserine kinase 370 -178071 PLN02452 PLN02452 phosphoserine transaminase 365 -178072 PLN02453 PLN02453 complex I subunit 105 -215249 PLN02454 PLN02454 triacylglycerol lipase 414 -178074 PLN02455 PLN02455 fructose-bisphosphate aldolase 358 -215250 PLN02456 PLN02456 citrate synthase 455 -215251 PLN02457 PLN02457 phenylalanine ammonia-lyase 706 -215252 PLN02458 PLN02458 transferase, transferring glycosyl groups 346 -215253 PLN02459 PLN02459 probable adenylate kinase 261 -215254 PLN02460 PLN02460 indole-3-glycerol-phosphate synthase 338 -215255 PLN02461 PLN02461 Probable pyruvate kinase 511 -215256 PLN02462 PLN02462 sedoheptulose-1,7-bisphosphatase 304 -178082 PLN02463 PLN02463 lycopene beta cyclase 447 -215257 PLN02464 PLN02464 glycerol-3-phosphate dehydrogenase 627 -215258 PLN02465 PLN02465 L-galactono-1,4-lactone dehydrogenase 573 -215259 PLN02466 PLN02466 aldehyde dehydrogenase family 2 member 538 -215260 PLN02467 PLN02467 betaine aldehyde dehydrogenase 503 -178087 PLN02468 PLN02468 putative pectinesterase/pectinesterase inhibitor 565 -178088 PLN02469 PLN02469 hydroxyacylglutathione hydrolase 258 -215261 PLN02470 PLN02470 acetolactate synthase 585 -215262 PLN02471 PLN02471 superoxide dismutase [Mn] 231 -215263 PLN02472 PLN02472 uncharacterized protein 246 -166114 PLN02473 PLN02473 glutathione S-transferase 214 -178092 PLN02474 PLN02474 UTP--glucose-1-phosphate uridylyltransferase 469 -215264 PLN02475 PLN02475 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase 766 -178094 PLN02476 PLN02476 O-methyltransferase 278 -178095 PLN02477 PLN02477 glutamate dehydrogenase 410 -215265 PLN02478 PLN02478 alternative oxidase 328 -178097 PLN02479 PLN02479 acetate-CoA ligase 567 -178098 PLN02480 PLN02480 Probable pectinesterase 343 -215266 PLN02481 PLN02481 Omega-hydroxypalmitate O-feruloyl transferase 436 -178100 PLN02482 PLN02482 glutamate-1-semialdehyde 2,1-aminomutase 474 -178101 PLN02483 PLN02483 serine palmitoyltransferase 489 -178102 PLN02484 PLN02484 probable pectinesterase/pectinesterase inhibitor 587 -215267 PLN02485 PLN02485 oxidoreductase 329 -178104 PLN02486 PLN02486 aminoacyl-tRNA ligase 383 -215268 PLN02487 PLN02487 zeta-carotene desaturase 569 -178106 PLN02488 PLN02488 probable pectinesterase/pectinesterase inhibitor 509 -215269 PLN02489 PLN02489 homocysteine S-methyltransferase 335 -215270 PLN02490 PLN02490 MPBQ/MSBQ methyltransferase 340 -215271 PLN02491 PLN02491 carotenoid 9,10(9',10')-cleavage dioxygenase 545 -215272 PLN02492 PLN02492 ribonucleoside-diphosphate reductase 324 -166134 PLN02493 PLN02493 probable peroxisomal (S)-2-hydroxy-acid oxidase 367 -178111 PLN02494 PLN02494 adenosylhomocysteinase 477 -215273 PLN02495 PLN02495 oxidoreductase, acting on the CH-CH group of donors 385 -215274 PLN02496 PLN02496 probable phosphopantothenoylcysteine decarboxylase 209 -178113 PLN02497 PLN02497 probable pectinesterase 331 -215275 PLN02498 PLN02498 omega-3 fatty acid desaturase 450 -178115 PLN02499 PLN02499 glycerol-3-phosphate acyltransferase 498 -215276 PLN02500 PLN02500 cytochrome P450 90B1 490 -215277 PLN02501 PLN02501 digalactosyldiacylglycerol synthase 794 -215278 PLN02502 PLN02502 lysyl-tRNA synthetase 553 -215279 PLN02503 PLN02503 fatty acyl-CoA reductase 2 605 -178120 PLN02504 PLN02504 nitrilase 346 -178121 PLN02505 PLN02505 omega-6 fatty acid desaturase 381 -215280 PLN02506 PLN02506 putative pectinesterase/pectinesterase inhibitor 537 -215281 PLN02507 PLN02507 glutathione reductase 499 -178124 PLN02508 PLN02508 magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase 357 -178125 PLN02509 PLN02509 cystathionine beta-lyase 464 -178126 PLN02510 PLN02510 probable 1-acyl-sn-glycerol-3-phosphate acyltransferase 374 -215282 PLN02511 PLN02511 hydrolase 388 -178128 PLN02512 PLN02512 acetylglutamate kinase 309 -178129 PLN02513 PLN02513 adenylosuccinate synthase 427 -166155 PLN02514 PLN02514 cinnamyl-alcohol dehydrogenase 357 -178130 PLN02515 PLN02515 naringenin,2-oxoglutarate 3-dioxygenase 358 -178131 PLN02516 PLN02516 methylenetetrahydrofolate dehydrogenase (NADP+) 299 -178132 PLN02517 PLN02517 phosphatidylcholine-sterol O-acyltransferase 642 -215283 PLN02518 PLN02518 pheophorbide a oxygenase 539 -215284 PLN02519 PLN02519 isovaleryl-CoA dehydrogenase 404 -178135 PLN02520 PLN02520 bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase 529 -215285 PLN02521 PLN02521 galactokinase 497 -178137 PLN02522 PLN02522 ATP citrate (pro-S)-lyase 608 -215286 PLN02523 PLN02523 galacturonosyltransferase 559 -215287 PLN02524 PLN02524 S-adenosylmethionine decarboxylase 355 -215288 PLN02525 PLN02525 phosphatidic acid phosphatase family protein 352 -178141 PLN02526 PLN02526 acyl-coenzyme A oxidase 412 -178142 PLN02527 PLN02527 aspartate carbamoyltransferase 306 -215289 PLN02528 PLN02528 2-oxoisovalerate dehydrogenase E2 component 416 -178144 PLN02529 PLN02529 lysine-specific histone demethylase 1 738 -178145 PLN02530 PLN02530 histidine-tRNA ligase 487 -215290 PLN02531 PLN02531 GTP cyclohydrolase I 469 -215291 PLN02532 PLN02532 asparagine-tRNA synthetase 633 -215292 PLN02533 PLN02533 probable purple acid phosphatase 427 -215293 PLN02534 PLN02534 UDP-glycosyltransferase 491 -215294 PLN02535 PLN02535 glycolate oxidase 364 -178151 PLN02536 PLN02536 diaminopimelate epimerase 267 -178152 PLN02537 PLN02537 diaminopimelate decarboxylase 410 -215295 PLN02538 PLN02538 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 558 -178154 PLN02539 PLN02539 glucose-6-phosphate 1-dehydrogenase 491 -215296 PLN02540 PLN02540 methylenetetrahydrofolate reductase 565 -215297 PLN02541 PLN02541 uracil phosphoribosyltransferase 244 -215298 PLN02542 PLN02542 fructose-1,6-bisphosphatase 412 -215299 PLN02543 PLN02543 pfkB-type carbohydrate kinase family protein 496 -178159 PLN02544 PLN02544 phosphoribosylaminoimidazole-succinocarboxamide synthase 370 -215300 PLN02545 PLN02545 3-hydroxybutyryl-CoA dehydrogenase 295 -215301 PLN02546 PLN02546 glutathione reductase 558 -215302 PLN02547 PLN02547 dUTP pyrophosphatase 157 -178163 PLN02548 PLN02548 adenosine kinase 332 -178164 PLN02549 PLN02549 asparagine synthase (glutamine-hydrolyzing) 578 -178165 PLN02550 PLN02550 threonine dehydratase 591 -178166 PLN02551 PLN02551 aspartokinase 521 -215303 PLN02552 PLN02552 isopentenyl-diphosphate delta-isomerase 247 -178168 PLN02553 PLN02553 inositol-phosphate phosphatase 270 -215304 PLN02554 PLN02554 UDP-glycosyltransferase family protein 481 -178170 PLN02555 PLN02555 limonoid glucosyltransferase 480 -178171 PLN02556 PLN02556 cysteine synthase/L-3-cyanoalanine synthase 368 -178172 PLN02557 PLN02557 phosphoribosylformylglycinamidine cyclo-ligase 379 -166199 PLN02558 PLN02558 CDP-diacylglycerol-glycerol-3-phosphate/ 3-phosphatidyltransferase 203 -178173 PLN02559 PLN02559 chalcone--flavonone isomerase 230 -178174 PLN02560 PLN02560 enoyl-CoA reductase 308 -178175 PLN02561 PLN02561 triosephosphate isomerase 253 -215305 PLN02562 PLN02562 UDP-glycosyltransferase 448 -178177 PLN02563 PLN02563 aminoacyl-tRNA ligase 963 -178178 PLN02564 PLN02564 6-phosphofructokinase 484 -166206 PLN02565 PLN02565 cysteine synthase 322 -215306 PLN02566 PLN02566 amine oxidase (copper-containing) 646 -215307 PLN02567 PLN02567 alpha,alpha-trehalase 554 -215308 PLN02568 PLN02568 polyamine oxidase 539 -178182 PLN02569 PLN02569 threonine synthase 484 -215309 PLN02571 PLN02571 triacylglycerol lipase 413 -215310 PLN02572 PLN02572 UDP-sulfoquinovose synthase 442 -215311 PLN02573 PLN02573 pyruvate decarboxylase 578 -215312 PLN02574 PLN02574 4-coumarate--CoA ligase-like 560 -215313 PLN02575 PLN02575 haloacid dehalogenase-like hydrolase 381 -215314 PLN02576 PLN02576 protoporphyrinogen oxidase 496 -178189 PLN02577 PLN02577 hydroxymethylglutaryl-CoA synthase 459 -215315 PLN02578 PLN02578 hydrolase 354 -215316 PLN02579 PLN02579 sphingolipid delta-4 desaturase 323 -215317 PLN02580 PLN02580 trehalose-phosphatase 384 -215318 PLN02581 PLN02581 red chlorophyll catabolite reductase 267 -178194 PLN02582 PLN02582 1-deoxy-D-xylulose-5-phosphate synthase 677 -178195 PLN02583 PLN02583 cinnamoyl-CoA reductase 297 -178196 PLN02584 PLN02584 5'-methylthioadenosine nucleosidase 249 -215319 PLN02585 PLN02585 magnesium protoporphyrin IX methyltransferase 315 -166227 PLN02586 PLN02586 probable cinnamyl alcohol dehydrogenase 360 -178198 PLN02587 PLN02587 L-galactose dehydrogenase 314 -215320 PLN02588 PLN02588 glycerol-3-phosphate acyltransferase 525 -166230 PLN02589 PLN02589 caffeoyl-CoA O-methyltransferase 247 -178200 PLN02590 PLN02590 probable tyrosine decarboxylase 539 -178201 PLN02591 PLN02591 tryptophan synthase 250 -215321 PLN02592 PLN02592 ent-copalyl diphosphate synthase 800 -178203 PLN02593 PLN02593 adrenodoxin-like ferredoxin protein 117 -215322 PLN02594 PLN02594 phosphatidate cytidylyltransferase 342 -178205 PLN02595 PLN02595 cytochrome c oxidase subunit VI protein 102 -178206 PLN02596 PLN02596 hexokinase-like 490 -178207 PLN02597 PLN02597 phosphoenolpyruvate carboxykinase [ATP] 555 -215323 PLN02598 PLN02598 omega-6 fatty acid desaturase 421 -178209 PLN02599 PLN02599 dihydroorotase 364 -178210 PLN02600 PLN02600 enoyl-CoA hydratase 251 -178211 PLN02601 PLN02601 beta-carotene hydroxylase 303 -178212 PLN02602 PLN02602 lactate dehydrogenase 350 -178213 PLN02603 PLN02603 asparaginyl-tRNA synthetase 565 -215324 PLN02604 PLN02604 oxidoreductase 566 -215325 PLN02605 PLN02605 monogalactosyldiacylglycerol synthase 382 -215326 PLN02606 PLN02606 palmitoyl-protein thioesterase 306 -215327 PLN02607 PLN02607 1-aminocyclopropane-1-carboxylate synthase 447 -178218 PLN02608 PLN02608 L-ascorbate peroxidase 289 -215328 PLN02609 PLN02609 catalase 492 -215329 PLN02610 PLN02610 probable methionyl-tRNA synthetase 801 -178221 PLN02611 PLN02611 glutamate--cysteine ligase 482 -215330 PLN02612 PLN02612 phytoene desaturase 567 -215331 PLN02613 PLN02613 endoglucanase 498 -166255 PLN02614 PLN02614 long-chain acyl-CoA synthetase 666 -178224 PLN02615 PLN02615 arginase 338 -215332 PLN02616 PLN02616 tetrahydrofolate dehydrogenase/cyclohydrolase, putative 364 -178226 PLN02617 PLN02617 imidazole glycerol phosphate synthase hisHF 538 -215333 PLN02618 PLN02618 tryptophan synthase, beta chain 410 -178228 PLN02619 PLN02619 nucleoside-diphosphate kinase 238 -166261 PLN02620 PLN02620 indole-3-acetic acid-amido synthetase 612 -178229 PLN02621 PLN02621 nicotinamidase 197 -166263 PLN02622 PLN02622 iron superoxide dismutase 261 -215334 PLN02623 PLN02623 pyruvate kinase 581 -215335 PLN02624 PLN02624 ornithine-delta-aminotransferase 474 -178232 PLN02625 PLN02625 uroporphyrin-III C-methyltransferase 263 -215336 PLN02626 PLN02626 malate synthase 551 -178234 PLN02627 PLN02627 glutamyl-tRNA synthetase 535 -215337 PLN02628 PLN02628 fructose-1,6-bisphosphatase family protein 351 -215338 PLN02629 PLN02629 powdery mildew resistance 5 387 -178237 PLN02630 PLN02630 pfkB-type carbohydrate kinase family protein 335 -178238 PLN02631 PLN02631 ferric-chelate reductase 699 -215339 PLN02632 PLN02632 phytoene synthase 334 -178240 PLN02633 PLN02633 palmitoyl protein thioesterase family protein 314 -215340 PLN02634 PLN02634 probable pectinesterase 359 -215341 PLN02635 PLN02635 disproportionating enzyme 538 -215342 PLN02636 PLN02636 acyl-coenzyme A oxidase 686 -215343 PLN02638 PLN02638 cellulose synthase A (UDP-forming), catalytic subunit 1079 -178245 PLN02639 PLN02639 oxidoreductase, 2OG-Fe(II) oxygenase family protein 337 -215344 PLN02640 PLN02640 glucose-6-phosphate 1-dehydrogenase 573 -215345 PLN02641 PLN02641 anthranilate phosphoribosyltransferase 343 -178248 PLN02642 PLN02642 copper, zinc superoxide dismutase 164 -215346 PLN02643 PLN02643 ADP-glucose phosphorylase 336 -215347 PLN02644 PLN02644 acetyl-CoA C-acetyltransferase 394 -178251 PLN02645 PLN02645 phosphoglycolate phosphatase 311 -215348 PLN02646 PLN02646 argininosuccinate lyase 474 -215349 PLN02647 PLN02647 acyl-CoA thioesterase 437 -215350 PLN02648 PLN02648 allene oxide synthase 480 -215351 PLN02649 PLN02649 glucose-6-phosphate isomerase 560 -178256 PLN02650 PLN02650 dihydroflavonol-4-reductase 351 -178257 PLN02651 PLN02651 cysteine desulfurase 364 -215352 PLN02652 PLN02652 hydrolase; alpha/beta fold family protein 395 -178259 PLN02653 PLN02653 GDP-mannose 4,6-dehydratase 340 -215353 PLN02654 PLN02654 acetate-CoA ligase 666 -215354 PLN02655 PLN02655 ent-kaurene oxidase 466 -178262 PLN02656 PLN02656 tyrosine transaminase 409 -178263 PLN02657 PLN02657 3,8-divinyl protochlorophyllide a 8-vinyl reductase 390 -215355 PLN02658 PLN02658 homogentisate 1,2-dioxygenase 435 -215356 PLN02659 PLN02659 Probable galacturonosyltransferase 534 -178266 PLN02660 PLN02660 pantoate--beta-alanine ligase 284 -178267 PLN02661 PLN02661 Putative thiazole synthesis 357 -178268 PLN02662 PLN02662 cinnamyl-alcohol dehydrogenase family protein 322 -166304 PLN02663 PLN02663 hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase 431 -178269 PLN02664 PLN02664 enoyl-CoA hydratase/delta3,5-delta2,4-dienoyl-CoA isomerase 275 -215357 PLN02665 PLN02665 pectinesterase family protein 366 -215358 PLN02666 PLN02666 5-oxoprolinase 1275 -215359 PLN02667 PLN02667 inositol polyphosphate multikinase 286 -178273 PLN02668 PLN02668 indole-3-acetate carboxyl methyltransferase 386 -178274 PLN02669 PLN02669 xylulokinase 556 -178275 PLN02670 PLN02670 transferase, transferring glycosyl groups 472 -178276 PLN02671 PLN02671 pectinesterase 359 -215360 PLN02672 PLN02672 methionine S-methyltransferase 1082 -215361 PLN02673 PLN02673 quinolinate synthetase A 724 -178279 PLN02674 PLN02674 adenylate kinase 244 -215362 PLN02676 PLN02676 polyamine oxidase 487 -215363 PLN02677 PLN02677 mevalonate kinase 387 -215364 PLN02678 PLN02678 seryl-tRNA synthetase 448 -178283 PLN02679 PLN02679 hydrolase, alpha/beta fold family protein 360 -215365 PLN02680 PLN02680 carbon-monoxide oxygenase 232 -215366 PLN02681 PLN02681 proline dehydrogenase 455 -215367 PLN02682 PLN02682 pectinesterase family protein 369 -215368 PLN02683 PLN02683 pyruvate dehydrogenase E1 component subunit beta 356 -166325 PLN02684 PLN02684 Probable galactinol--sucrose galactosyltransferase 750 -215369 PLN02685 PLN02685 iron superoxide dismutase 299 -215370 PLN02686 PLN02686 cinnamoyl-CoA reductase 367 -215371 PLN02687 PLN02687 flavonoid 3'-monooxygenase 517 -178291 PLN02688 PLN02688 pyrroline-5-carboxylate reductase 266 -215372 PLN02689 PLN02689 Bifunctional isoaspartyl peptidase/L-asparaginase 318 -178293 PLN02690 PLN02690 Agmatine deiminase 374 -215373 PLN02691 PLN02691 porphobilinogen deaminase 351 -178295 PLN02692 PLN02692 alpha-galactosidase 412 -178296 PLN02693 PLN02693 IAA-amino acid hydrolase 437 -178297 PLN02694 PLN02694 serine O-acetyltransferase 294 -178298 PLN02695 PLN02695 GDP-D-mannose-3',5'-epimerase 370 -215374 PLN02696 PLN02696 1-deoxy-D-xylulose-5-phosphate reductoisomerase 454 -215375 PLN02697 PLN02697 lycopene epsilon cyclase 529 -178301 PLN02698 PLN02698 Probable pectinesterase/pectinesterase inhibitor 497 -215376 PLN02699 PLN02699 Bifunctional molybdopterin adenylyltransferase/molybdopterin molybdenumtransferase 659 -215377 PLN02700 PLN02700 homoserine dehydrogenase family protein 377 -178304 PLN02701 PLN02701 alpha-mannosidase 1050 -215378 PLN02702 PLN02702 L-idonate 5-dehydrogenase 364 -178306 PLN02703 PLN02703 beta-fructofuranosidase 618 -166345 PLN02704 PLN02704 flavonol synthase 335 -178307 PLN02705 PLN02705 beta-amylase 681 -178308 PLN02706 PLN02706 glucosamine 6-phosphate N-acetyltransferase 150 -178309 PLN02707 PLN02707 Soluble inorganic pyrophosphatase 267 -215379 PLN02708 PLN02708 Probable pectinesterase/pectinesterase inhibitor 553 -178311 PLN02709 PLN02709 nudix hydrolase 222 -215380 PLN02710 PLN02710 farnesyltranstransferase subunit beta 439 -215381 PLN02711 PLN02711 Probable galactinol--sucrose galactosyltransferase 777 -215382 PLN02712 PLN02712 arogenate dehydrogenase 667 -215383 PLN02713 PLN02713 Probable pectinesterase/pectinesterase inhibitor 566 -178316 PLN02714 PLN02714 thiamin pyrophosphokinase 229 -178317 PLN02715 PLN02715 lipid phosphate phosphatase 327 -178318 PLN02716 PLN02716 nicotinate-nucleotide diphosphorylase (carboxylating) 308 -178319 PLN02717 PLN02717 uridine nucleosidase 316 -178320 PLN02718 PLN02718 Probable galacturonosyltransferase 603 -178321 PLN02719 PLN02719 triacylglycerol lipase 518 -178322 PLN02720 PLN02720 complex II 140 -178323 PLN02721 PLN02721 threonine aldolase 353 -166363 PLN02722 PLN02722 indole-3-acetamide amidohydrolase 422 -178324 PLN02723 PLN02723 3-mercaptopyruvate sulfurtransferase 320 -215384 PLN02724 PLN02724 Molybdenum cofactor sulfurase 805 -178326 PLN02725 PLN02725 GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase 306 -215385 PLN02726 PLN02726 dolichyl-phosphate beta-D-mannosyltransferase 243 -215386 PLN02727 PLN02727 NAD kinase 986 -215387 PLN02728 PLN02728 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 252 -215388 PLN02729 PLN02729 PSII-Q subunit 220 -178331 PLN02730 PLN02730 enoyl-[acyl-carrier-protein] reductase 303 -178332 PLN02731 PLN02731 Putative lipid phosphate phosphatase 333 -215389 PLN02732 PLN02732 Probable NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 159 -215390 PLN02733 PLN02733 phosphatidylcholine-sterol O-acyltransferase 440 -178335 PLN02734 PLN02734 glycyl-tRNA synthetase 684 -215391 PLN02735 PLN02735 carbamoyl-phosphate synthase 1102 -178337 PLN02736 PLN02736 long-chain acyl-CoA synthetase 651 -215392 PLN02737 PLN02737 inositol monophosphatase family protein 363 -215393 PLN02738 PLN02738 carotene beta-ring hydroxylase 633 -215394 PLN02739 PLN02739 serine acetyltransferase 355 -178341 PLN02740 PLN02740 Alcohol dehydrogenase-like 381 -178342 PLN02741 PLN02741 riboflavin synthase 194 -215395 PLN02742 PLN02742 Probable galacturonosyltransferase 534 -215396 PLN02743 PLN02743 nicotinamidase 239 -215397 PLN02744 PLN02744 dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex 539 -178346 PLN02745 PLN02745 Putative pectinesterase/pectinesterase inhibitor 596 -178347 PLN02746 PLN02746 hydroxymethylglutaryl-CoA lyase 347 -215398 PLN02747 PLN02747 N-carbamolyputrescine amidase 296 -215399 PLN02748 PLN02748 tRNA dimethylallyltransferase 468 -178350 PLN02749 PLN02749 Uncharacterized protein At1g47420 173 -178351 PLN02750 PLN02750 oxidoreductase, 2OG-Fe(II) oxygenase family protein 345 -215400 PLN02751 PLN02751 glutamyl-tRNA(Gln) amidotransferase 544 -215401 PLN02752 PLN02752 [acyl-carrier protein] S-malonyltransferase 343 -178354 PLN02753 PLN02753 triacylglycerol lipase 531 -215402 PLN02754 PLN02754 chorismate synthase 413 -178356 PLN02755 PLN02755 complex I subunit 71 -166397 PLN02756 PLN02756 S-methyl-5-thioribose kinase 418 -215403 PLN02757 PLN02757 sirohydrochlorine ferrochelatase 154 -215404 PLN02758 PLN02758 oxidoreductase, 2OG-Fe(II) oxygenase family protein 361 -178359 PLN02759 PLN02759 Formate--tetrahydrofolate ligase 637 -215405 PLN02760 PLN02760 4-aminobutyrate:pyruvate transaminase 504 -215406 PLN02761 PLN02761 lipase class 3 family protein 527 -215407 PLN02762 PLN02762 pyruvate kinase complex alpha subunit 509 -215408 PLN02763 PLN02763 hydrolase, hydrolyzing O-glycosyl compounds 978 -178364 PLN02764 PLN02764 glycosyltransferase family protein 453 -215409 PLN02765 PLN02765 pyruvate kinase 526 -215410 PLN02766 PLN02766 coniferyl-aldehyde dehydrogenase 501 -215411 PLN02768 PLN02768 AMP deaminase 835 -215412 PLN02769 PLN02769 Probable galacturonosyltransferase 629 -215413 PLN02770 PLN02770 haloacid dehalogenase-like hydrolase family protein 248 -178370 PLN02771 PLN02771 carbamoyl-phosphate synthase (glutamine-hydrolyzing) 415 -215414 PLN02772 PLN02772 guanylate kinase 398 -178372 PLN02773 PLN02773 pectinesterase 317 -178373 PLN02774 PLN02774 brassinosteroid-6-oxidase 463 -178374 PLN02775 PLN02775 Probable dihydrodipicolinate reductase 286 -215415 PLN02776 PLN02776 prenyltransferase 341 -178376 PLN02777 PLN02777 photosystem I P subunit (PSI-P) 167 -178377 PLN02778 PLN02778 3,5-epimerase/4-reductase 298 -215416 PLN02779 PLN02779 haloacid dehalogenase-like hydrolase family protein 286 -166421 PLN02780 PLN02780 ketoreductase/ oxidoreductase 320 -215417 PLN02781 PLN02781 Probable caffeoyl-CoA O-methyltransferase 234 -215418 PLN02782 PLN02782 Branched-chain amino acid aminotransferase 403 -178380 PLN02783 PLN02783 diacylglycerol O-acyltransferase 315 -215419 PLN02784 PLN02784 alpha-amylase 894 -215420 PLN02785 PLN02785 Protein HOTHEAD 587 -178383 PLN02786 PLN02786 isochorismate synthase 533 -215421 PLN02787 PLN02787 3-oxoacyl-[acyl-carrier-protein] synthase II 540 -215422 PLN02788 PLN02788 phenylalanine-tRNA synthetase 402 -215423 PLN02789 PLN02789 farnesyltranstransferase 320 -215424 PLN02790 PLN02790 transketolase 654 -215425 PLN02791 PLN02791 Nudix hydrolase homolog 770 -178389 PLN02792 PLN02792 oxidoreductase 536 -215426 PLN02793 PLN02793 Probable polygalacturonase 443 -178391 PLN02794 PLN02794 cardiolipin synthase 341 -178392 PLN02795 PLN02795 allantoinase 505 -215427 PLN02796 PLN02796 D-glycerate 3-kinase 347 -178394 PLN02797 PLN02797 phosphatidyl-N-dimethylethanolamine N-methyltransferase 164 -215428 PLN02798 PLN02798 nitrilase 286 -215429 PLN02799 PLN02799 Molybdopterin synthase sulfur carrier subunit 82 -215430 PLN02800 PLN02800 imidazoleglycerol-phosphate dehydratase 261 -215431 PLN02801 PLN02801 beta-amylase 517 -215432 PLN02802 PLN02802 triacylglycerol lipase 509 -178400 PLN02803 PLN02803 beta-amylase 548 -178401 PLN02804 PLN02804 chalcone isomerase 206 -178402 PLN02805 PLN02805 D-lactate dehydrogenase [cytochrome] 555 -178403 PLN02806 PLN02806 complex I subunit 81 -215433 PLN02807 PLN02807 diaminohydroxyphosphoribosylaminopyrimidine deaminase 380 -166449 PLN02808 PLN02808 alpha-galactosidase 386 -178405 PLN02809 PLN02809 4-hydroxybenzoate nonaprenyltransferase 289 -178406 PLN02810 PLN02810 carbon-monoxide oxygenase 231 -178407 PLN02811 PLN02811 hydrolase 220 -178408 PLN02812 PLN02812 5-formyltetrahydrofolate cyclo-ligase 211 -215434 PLN02813 PLN02813 pfkB-type carbohydrate kinase family protein 426 -215435 PLN02814 PLN02814 beta-glucosidase 504 -215436 PLN02815 PLN02815 L-aspartate oxidase 594 -215437 PLN02816 PLN02816 mannosyltransferase 546 -166458 PLN02817 PLN02817 glutathione dehydrogenase (ascorbate) 265 -215438 PLN02818 PLN02818 tocopherol cyclase 403 -215439 PLN02819 PLN02819 lysine-ketoglutarate reductase/saccharopine dehydrogenase 1042 -178415 PLN02820 PLN02820 3-methylcrotonyl-CoA carboxylase, beta chain 569 -215440 PLN02821 PLN02821 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase 460 -178417 PLN02822 PLN02822 serine palmitoyltransferase 481 -178418 PLN02823 PLN02823 spermine synthase 336 -178419 PLN02824 PLN02824 hydrolase, alpha/beta fold family protein 294 -215441 PLN02825 PLN02825 amino-acid N-acetyltransferase 515 -178421 PLN02826 PLN02826 dihydroorotate dehydrogenase 409 -215442 PLN02827 PLN02827 Alcohol dehydrogenase-like 378 -178422 PLN02828 PLN02828 formyltetrahydrofolate deformylase 268 -215443 PLN02829 PLN02829 Probable galacturonosyltransferase 639 -215444 PLN02830 PLN02830 UDP-sugar pyrophosphorylase 615 -215445 PLN02831 PLN02831 Bifunctional GTP cyclohydrolase II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase 450 -215446 PLN02832 PLN02832 glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase complex 248 -215447 PLN02833 PLN02833 glycerol acyltransferase family protein 376 -215448 PLN02834 PLN02834 3-dehydroquinate synthase 433 -178429 PLN02835 PLN02835 oxidoreductase 539 -215449 PLN02836 PLN02836 3-oxoacyl-[acyl-carrier-protein] synthase 437 -215450 PLN02837 PLN02837 threonine-tRNA ligase 614 -166479 PLN02838 PLN02838 3-hydroxyacyl-CoA dehydratase subunit of elongase 221 -178432 PLN02839 PLN02839 nudix hydrolase 372 -215451 PLN02840 PLN02840 tRNA dimethylallyltransferase 421 -178434 PLN02841 PLN02841 GPI mannosyltransferase 440 -178435 PLN02842 PLN02842 nucleotide kinase 505 -215452 PLN02843 PLN02843 isoleucyl-tRNA synthetase 974 -215453 PLN02844 PLN02844 oxidoreductase/ferric-chelate reductase 722 -215454 PLN02845 PLN02845 Branched-chain-amino-acid aminotransferase-like protein 336 -166487 PLN02846 PLN02846 digalactosyldiacylglycerol synthase 462 -178439 PLN02847 PLN02847 triacylglycerol lipase 633 -178440 PLN02848 PLN02848 adenylosuccinate lyase 458 -215455 PLN02849 PLN02849 beta-glucosidase 503 -215456 PLN02850 PLN02850 aspartate-tRNA ligase 530 -178443 PLN02851 PLN02851 3-hydroxyisobutyryl-CoA hydrolase-like protein 407 -215457 PLN02852 PLN02852 ferredoxin-NADP+ reductase 491 -215458 PLN02853 PLN02853 Probable phenylalanyl-tRNA synthetase alpha chain 492 -215459 PLN02854 PLN02854 3-ketoacyl-CoA synthase 521 -215460 PLN02855 PLN02855 Bifunctional selenocysteine lyase/cysteine desulfurase 424 -215461 PLN02856 PLN02856 fumarylacetoacetase 424 -215462 PLN02857 PLN02857 octaprenyl-diphosphate synthase 416 -215463 PLN02858 PLN02858 fructose-bisphosphate aldolase 1378 -178450 PLN02859 PLN02859 glutamine-tRNA ligase 788 -215464 PLN02860 PLN02860 o-succinylbenzoate-CoA ligase 563 -178452 PLN02861 PLN02861 long-chain-fatty-acid-CoA ligase 660 -178453 PLN02862 PLN02862 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 216 -215465 PLN02863 PLN02863 UDP-glucoronosyl/UDP-glucosyl transferase family protein 477 -178455 PLN02864 PLN02864 enoyl-CoA hydratase 310 -215466 PLN02865 PLN02865 galactokinase 423 -215467 PLN02866 PLN02866 phospholipase D 1068 -178458 PLN02867 PLN02867 Probable galacturonosyltransferase 535 -178459 PLN02868 PLN02868 acyl-CoA thioesterase family protein 413 -166510 PLN02869 PLN02869 fatty aldehyde decarbonylase 620 -215468 PLN02870 PLN02870 Probable galacturonosyltransferase 533 -215469 PLN02871 PLN02871 UDP-sulfoquinovose:DAG sulfoquinovosyltransferase 465 -215470 PLN02872 PLN02872 triacylglycerol lipase 395 -215471 PLN02873 PLN02873 coproporphyrinogen-III oxidase 274 -178462 PLN02874 PLN02874 3-hydroxyisobutyryl-CoA hydrolase-like protein 379 -215472 PLN02875 PLN02875 4-hydroxyphenylpyruvate dioxygenase 398 -215473 PLN02876 PLN02876 acyl-CoA dehydrogenase 822 -215474 PLN02877 PLN02877 alpha-amylase/limit dextrinase 970 -178466 PLN02878 PLN02878 homogentisate phytyltransferase 280 -178467 PLN02879 PLN02879 L-ascorbate peroxidase 251 -215475 PLN02880 PLN02880 tyrosine decarboxylase 490 -215476 PLN02881 PLN02881 tetrahydrofolylpolyglutamate synthase 530 -215477 PLN02882 PLN02882 aminoacyl-tRNA ligase 1159 -178471 PLN02883 PLN02883 Branched-chain amino acid aminotransferase 384 -178472 PLN02884 PLN02884 6-phosphofructokinase 411 -178473 PLN02885 PLN02885 nicotinate phosphoribosyltransferase 545 -215478 PLN02886 PLN02886 aminoacyl-tRNA ligase 389 -215479 PLN02887 PLN02887 hydrolase family protein 580 -215480 PLN02888 PLN02888 enoyl-CoA hydratase 265 -215481 PLN02889 PLN02889 oxo-acid-lyase/anthranilate synthase 918 -178478 PLN02890 PLN02890 geranyl diphosphate synthase 422 -178479 PLN02891 PLN02891 IMP cyclohydrolase 547 -215482 PLN02892 PLN02892 isocitrate lyase 570 -215483 PLN02893 PLN02893 Cellulose synthase-like protein 734 -215484 PLN02894 PLN02894 hydrolase, alpha/beta fold family protein 402 -215485 PLN02895 PLN02895 phosphoacetylglucosamine mutase 562 -178484 PLN02896 PLN02896 cinnamyl-alcohol dehydrogenase 353 -178485 PLN02897 PLN02897 tetrahydrofolate dehydrogenase/cyclohydrolase, putative 345 -215486 PLN02898 PLN02898 HMP-P kinase/thiamin-monophosphate pyrophosphorylase 502 -178487 PLN02899 PLN02899 alpha-galactosidase 633 -215487 PLN02900 PLN02900 alanyl-tRNA synthetase 936 -215488 PLN02901 PLN02901 1-acyl-sn-glycerol-3-phosphate acyltransferase 214 -215489 PLN02902 PLN02902 pantothenate kinase 876 -215490 PLN02903 PLN02903 aminoacyl-tRNA ligase 652 -178492 PLN02904 PLN02904 oxidoreductase 357 -178493 PLN02905 PLN02905 beta-amylase 702 -215491 PLN02906 PLN02906 xanthine dehydrogenase 1319 -215492 PLN02907 PLN02907 glutamate-tRNA ligase 722 -178496 PLN02908 PLN02908 threonyl-tRNA synthetase 686 -178497 PLN02909 PLN02909 Endoglucanase 486 -215493 PLN02910 PLN02910 polygalacturonate 4-alpha-galacturonosyltransferase 657 -178499 PLN02911 PLN02911 inositol-phosphate phosphatase 296 -178500 PLN02912 PLN02912 oxidoreductase, 2OG-Fe(II) oxygenase family protein 348 -178501 PLN02913 PLN02913 dihydrofolate synthetase 510 -178502 PLN02914 PLN02914 hexokinase 490 -215494 PLN02915 PLN02915 cellulose synthase A [UDP-forming], catalytic subunit 1044 -178504 PLN02916 PLN02916 pectinesterase family protein 502 -215495 PLN02917 PLN02917 CMP-KDO synthetase 293 -215496 PLN02918 PLN02918 pyridoxine (pyridoxamine) 5'-phosphate oxidase 544 -215497 PLN02919 PLN02919 haloacid dehalogenase-like hydrolase family protein 1057 -215498 PLN02920 PLN02920 pantothenate kinase 1 398 -178509 PLN02921 PLN02921 naphthoate synthase 327 -215499 PLN02922 PLN02922 prenyltransferase 315 -178511 PLN02923 PLN02923 xylose isomerase 478 -178512 PLN02924 PLN02924 thymidylate kinase 220 -178513 PLN02925 PLN02925 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase 733 -215500 PLN02926 PLN02926 histidinol dehydrogenase 431 -178515 PLN02927 PLN02927 antheraxanthin epoxidase/zeaxanthin epoxidase 668 -215501 PLN02928 PLN02928 oxidoreductase family protein 347 -215502 PLN02929 PLN02929 NADH kinase 301 -178518 PLN02930 PLN02930 CDP-diacylglycerol-serine O-phosphatidyltransferase 353 -215503 PLN02931 PLN02931 nucleoside diphosphate kinase family protein 177 -178520 PLN02932 PLN02932 3-ketoacyl-CoA synthase 478 -178521 PLN02933 PLN02933 Probable pectinesterase/pectinesterase inhibitor 530 -215504 PLN02934 PLN02934 triacylglycerol lipase 515 -215505 PLN02935 PLN02935 Bifunctional NADH kinase/NAD(+) kinase 508 -178524 PLN02936 PLN02936 epsilon-ring hydroxylase 489 -215506 PLN02937 PLN02937 Putative isoaspartyl peptidase/L-asparaginase 414 -178526 PLN02938 PLN02938 phosphatidylserine decarboxylase 428 -215507 PLN02939 PLN02939 transferase, transferring glycosyl groups 977 -178528 PLN02940 PLN02940 riboflavin kinase 382 -215508 PLN02941 PLN02941 inositol-tetrakisphosphate 1-kinase 328 -178530 PLN02942 PLN02942 dihydropyrimidinase 486 -215509 PLN02943 PLN02943 aminoacyl-tRNA ligase 958 -178531 PLN02945 PLN02945 nicotinamide-nucleotide adenylyltransferase/nicotinate-nucleotide adenylyltransferase 236 -178532 PLN02946 PLN02946 cysteine-tRNA ligase 557 -215510 PLN02947 PLN02947 oxidoreductase 374 -178534 PLN02948 PLN02948 phosphoribosylaminoimidazole carboxylase 577 -215511 PLN02949 PLN02949 transferase, transferring glycosyl groups 463 -215512 PLN02950 PLN02950 4-alpha-glucanotransferase 909 -215513 PLN02951 PLN02951 Molybderin biosynthesis protein CNX2 373 -178538 PLN02952 PLN02952 phosphoinositide phospholipase C 599 -178539 PLN02953 PLN02953 phosphatidate cytidylyltransferase 403 -215514 PLN02954 PLN02954 phosphoserine phosphatase 224 -178541 PLN02955 PLN02955 8-amino-7-oxononanoate synthase 476 -215515 PLN02956 PLN02956 PSII-Q subunit 185 -215516 PLN02957 PLN02957 copper, zinc superoxide dismutase 238 -215517 PLN02958 PLN02958 diacylglycerol kinase/D-erythro-sphingosine kinase 481 -215518 PLN02959 PLN02959 aminoacyl-tRNA ligase 1084 -215519 PLN02960 PLN02960 alpha-amylase 897 -178546 PLN02961 PLN02961 alanine-tRNA ligase 223 -178547 PLN02962 PLN02962 hydroxyacylglutathione hydrolase 251 -215520 PLN02964 PLN02964 phosphatidylserine decarboxylase 644 -178549 PLN02965 PLN02965 Probable pheophorbidase 255 -178550 PLN02966 PLN02966 cytochrome P450 83A1 502 -215521 PLN02967 PLN02967 kinase 581 -215522 PLN02968 PLN02968 Probable N-acetyl-gamma-glutamyl-phosphate reductase 381 -215523 PLN02969 PLN02969 9-cis-epoxycarotenoid dioxygenase 610 -215524 PLN02970 PLN02970 serine racemase 328 -166612 PLN02971 PLN02971 tryptophan N-hydroxylase 543 -215525 PLN02972 PLN02972 Histidyl-tRNA synthetase 763 -178556 PLN02973 PLN02973 beta-fructofuranosidase 571 -215526 PLN02974 PLN02974 adenosylmethionine-8-amino-7-oxononanoate transaminase 817 -166616 PLN02975 PLN02975 complex I subunit 97 -215527 PLN02976 PLN02976 amine oxidase 1713 -215528 PLN02977 PLN02977 glutathione synthetase 478 -215529 PLN02978 PLN02978 pyridoxal kinase 308 -166620 PLN02979 PLN02979 glycolate oxidase 366 -215530 PLN02980 PLN02980 2-oxoglutarate decarboxylase/ hydro-lyase/ magnesium ion binding / thiamin pyrophosphate binding 1655 -215531 PLN02981 PLN02981 glucosamine:fructose-6-phosphate aminotransferase 680 -215532 PLN02982 PLN02982 galactinol-raffinose galactosyltransferase/ghydrolase, hydrolyzing O-glycosyl compounds 865 -215533 PLN02983 PLN02983 biotin carboxyl carrier protein of acetyl-CoA carboxylase 274 -215534 PLN02984 PLN02984 oxidoreductase, 2OG-Fe(II) oxygenase family protein 341 -178566 PLN02985 PLN02985 squalene monooxygenase 514 -178567 PLN02986 PLN02986 cinnamyl-alcohol dehydrogenase family protein 322 -166628 PLN02987 PLN02987 Cytochrome P450, family 90, subfamily A 472 -178568 PLN02988 PLN02988 3-hydroxyisobutyryl-CoA hydrolase 381 -178569 PLN02989 PLN02989 cinnamyl-alcohol dehydrogenase family protein 325 -215535 PLN02990 PLN02990 Probable pectinesterase/pectinesterase inhibitor 572 -215536 PLN02991 PLN02991 oxidoreductase 543 -178572 PLN02992 PLN02992 coniferyl-alcohol glucosyltransferase 481 -215537 PLN02993 PLN02993 lupeol synthase 763 -166635 PLN02994 PLN02994 1-aminocyclopropane-1-carboxylate synthase 153 -178574 PLN02995 PLN02995 Probable pectinesterase/pectinesterase inhibitor 539 -215538 PLN02996 PLN02996 fatty acyl-CoA reductase 491 -178576 PLN02997 PLN02997 flavonol synthase 325 -215539 PLN02998 PLN02998 beta-glucosidase 497 -178577 PLN02999 PLN02999 photosystem II oxygen-evolving enhancer 3 protein (PsbQ) 190 -178578 PLN03000 PLN03000 amine oxidase 881 -166642 PLN03001 PLN03001 oxidoreductase, 2OG-Fe(II) oxygenase family protein 262 -178579 PLN03002 PLN03002 oxidoreductase, 2OG-Fe(II) oxygenase family protein 332 -178580 PLN03003 PLN03003 Probable polygalacturonase At3g15720 456 -178581 PLN03004 PLN03004 UDP-glycosyltransferase 451 -178582 PLN03005 PLN03005 beta-fructofuranosidase 550 -178583 PLN03006 PLN03006 carbonate dehydratase 301 -178584 PLN03007 PLN03007 UDP-glucosyltransferase family protein 482 -178585 PLN03008 PLN03008 Phospholipase D delta 868 -166650 PLN03009 PLN03009 cellulase 495 -215540 PLN03010 PLN03010 polygalacturonase 409 -166653 PLN03012 PLN03012 Camelliol C synthase 759 -178587 PLN03013 PLN03013 cysteine synthase 429 -178588 PLN03014 PLN03014 carbonic anhydrase 347 -178589 PLN03015 PLN03015 UDP-glucosyl transferase 470 -178590 PLN03016 PLN03016 sinapoylglucose-malate O-sinapoyltransferase 433 -178591 PLN03017 PLN03017 trehalose-phosphatase 366 -178592 PLN03018 PLN03018 homomethionine N-hydroxylase 534 -166660 PLN03019 PLN03019 carbonic anhydrase 330 -215541 PLN03020 PLN03020 low-temperature-induced protein; Provisional 556 -178593 PLN03021 PLN03021 Low-temperature-induced protein; Provisional 619 -215542 PLN03023 PLN03023 Expansin-like B1; Provisional 247 -178595 PLN03024 PLN03024 Putative EG45-like domain containing protein 1; Provisional 125 -178596 PLN03025 PLN03025 replication factor C subunit; Provisional 319 -178597 PLN03026 PLN03026 histidinol-phosphate aminotransferase; Provisional 380 -215543 PLN03028 PLN03028 pyrophosphate--fructose-6-phosphate 1-phosphotransferase; Provisional 610 -215544 PLN03029 PLN03029 type-a response regulator protein; Provisional 222 -215545 PLN03030 PLN03030 cationic peroxidase; Provisional 324 -215546 PLN03031 PLN03031 hypothetical protein; Provisional 102 -166673 PLN03032 PLN03032 serine decarboxylase; Provisional 374 -178601 PLN03033 PLN03033 2-dehydro-3-deoxyphosphooctonate aldolase; Provisional 290 -178602 PLN03034 PLN03034 phosphoglycerate kinase; Provisional 481 -178603 PLN03036 PLN03036 glutamine synthetase; Provisional 432 -215547 PLN03037 PLN03037 lipase class 3 family protein; Provisional 525 -166679 PLN03039 PLN03039 ethanolaminephosphotransferase; Provisional 337 -215548 PLN03042 PLN03042 Lactoylglutathione lyase; Provisional 185 -178606 PLN03043 PLN03043 Probable pectinesterase/pectinesterase inhibitor; Provisional 538 -215549 PLN03044 PLN03044 GTP cyclohydrolase I; Provisional 188 -178608 PLN03046 PLN03046 D-glycerate 3-kinase; Provisional 460 -215550 PLN03049 PLN03049 pyridoxine (pyridoxamine) 5'-phosphate oxidase; Provisional 462 -215551 PLN03050 PLN03050 pyridoxine (pyridoxamine) 5'-phosphate oxidase; Provisional 246 -215552 PLN03051 PLN03051 acyl-activating enzyme; Provisional 499 -215553 PLN03052 PLN03052 acetate--CoA ligase; Provisional 728 -178613 PLN03055 PLN03055 AMP deaminase; Provisional 602 -166697 PLN03058 PLN03058 dynein light chain type 1 family protein; Provisional 128 -166698 PLN03059 PLN03059 beta-galactosidase; Provisional 840 -215554 PLN03060 PLN03060 inositol phosphatase-like protein; Provisional 206 -215555 PLN03063 PLN03063 alpha,alpha-trehalose-phosphate synthase (UDP-forming); Provisional 797 -215556 PLN03064 PLN03064 alpha,alpha-trehalose-phosphate synthase (UDP-forming); Provisional 934 -178617 PLN03065 PLN03065 isocitrate dehydrogenase (NADP+); Provisional 483 -215557 PLN03069 PLN03069 magnesiumprotoporphyrin-IX chelatase subunit H; Provisional 1220 -178619 PLN03070 PLN03070 photosystem I reaction center subunit psaK 247; Provisional 128 -178620 PLN03071 PLN03071 GTP-binding nuclear protein Ran; Provisional 219 -178621 PLN03072 PLN03072 60S ribosomal protein L12; Provisional 166 -215558 PLN03073 PLN03073 ABC transporter F family; Provisional 718 -215559 PLN03074 PLN03074 auxin influx permease; Provisional 473 -178624 PLN03075 PLN03075 nicotianamine synthase; Provisional 296 -215560 PLN03076 PLN03076 ARF guanine nucleotide exchange factor (ARF-GEF); Provisional 1780 -215561 PLN03077 PLN03077 Protein ECB2; Provisional 857 -215562 PLN03078 PLN03078 Putative tRNA pseudouridine synthase; Provisional 513 -178628 PLN03079 PLN03079 Uncharacterized protein At4g33100; Provisional 91 -178629 PLN03080 PLN03080 Probable beta-xylosidase; Provisional 779 -215563 PLN03081 PLN03081 pentatricopeptide (PPR) repeat-containing protein; Provisional 697 -215564 PLN03082 PLN03082 Iron-sulfur cluster assembly; Provisional 163 -215565 PLN03083 PLN03083 E3 UFM1-protein ligase 1 homolog; Provisional 803 -178633 PLN03084 PLN03084 alpha/beta hydrolase fold protein; Provisional 383 -215566 PLN03085 PLN03085 nucleobase:cation symporter-1; Provisional 221 -178635 PLN03086 PLN03086 PRLI-interacting factor K; Provisional 567 -215567 PLN03087 PLN03087 BODYGUARD 1 domain containing hydrolase; Provisional 481 -215568 PLN03088 PLN03088 SGT1, suppressor of G2 allele of SKP1; Provisional 356 -215569 PLN03089 PLN03089 hypothetical protein; Provisional 373 -178639 PLN03090 PLN03090 auxin-responsive family protein; Provisional 104 -215570 PLN03091 PLN03091 hypothetical protein; Provisional 459 -178641 PLN03093 PLN03093 Protein SENSITIVITY TO RED LIGHT REDUCED 1; Provisional 273 -178642 PLN03094 PLN03094 Substrate binding subunit of ER-derived-lipid transporter; Provisional 370 -215571 PLN03095 PLN03095 NADH:ubiquinone oxidoreductase 18 kDa subunit; Provisional 115 -215572 PLN03096 PLN03096 glyceraldehyde-3-phosphate dehydrogenase A; Provisional 395 -178645 PLN03097 FHY3 Protein FAR-RED ELONGATED HYPOCOTYL 3; Provisional 846 -215573 PLN03098 LPA1 LOW PSII ACCUMULATION1; Provisional 453 -215574 PLN03099 PIR Protein PIR; Provisional 1232 -215575 PLN03100 PLN03100 Permease subunit of ER-derived-lipid transporter; Provisional 292 -215576 PLN03102 PLN03102 acyl-activating enzyme; Provisional 579 -215577 PLN03103 PLN03103 GDP-L-galactose-hexose-1-phosphate guanyltransferase; Provisional 403 -215578 PLN03104 FHL FAR-RED-ELONGATED HYPOCOTYL1-LIKE; Provisional 201 -178652 PLN03105 TCP24 transcription factor TCP24 (TEOSINTE BRANCHED1, CYCLOIDEA, AND PCF FAMILY 24); Provisional 324 -215579 PLN03106 TCP2 Protein TCP2; Provisional 447 -215580 PLN03107 PLN03107 eukaryotic translation initiation factor 5A; Provisional 159 -178655 PLN03108 PLN03108 Rab family protein; Provisional 210 -215581 PLN03109 PLN03109 ETHYLENE-INSENSITIVE3-like3 protein; Provisional 599 -178657 PLN03110 PLN03110 Rab GTPase; Provisional 216 -215582 PLN03111 PLN03111 DNA-directed RNA polymerase II subunit family protein; Provisional 206 -215583 PLN03112 PLN03112 cytochrome P450 family protein; Provisional 514 -215584 PLN03113 PLN03113 DNA ligase 1; Provisional 744 -178661 PLN03114 PLN03114 ADP-ribosylation factor GTPase-activating protein AGD10; Provisional 395 -215585 PLN03115 PLN03115 ferredoxin--NADP(+) reductase; Provisional 367 -215586 PLN03116 PLN03116 ferredoxin--NADP+ reductase; Provisional 307 -178664 PLN03117 PLN03117 Branched-chain-amino-acid aminotransferase; Provisional 355 -215587 PLN03118 PLN03118 Rab family protein; Provisional 211 -178666 PLN03119 PLN03119 putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional 648 -215588 PLN03120 PLN03120 nucleic acid binding protein; Provisional 260 -215589 PLN03121 PLN03121 nucleic acid binding protein; Provisional 243 -178669 PLN03122 PLN03122 Poly [ADP-ribose] polymerase; Provisional 815 -215590 PLN03123 PLN03123 poly [ADP-ribose] polymerase; Provisional 981 -215591 PLN03124 PLN03124 poly [ADP-ribose] polymerase; Provisional 643 -215592 PLN03126 PLN03126 Elongation factor Tu; Provisional 478 -178673 PLN03127 PLN03127 Elongation factor Tu; Provisional 447 -215593 PLN03128 PLN03128 DNA topoisomerase 2; Provisional 1135 -215594 PLN03129 PLN03129 NADP-dependent malic enzyme; Provisional 581 -215595 PLN03130 PLN03130 ABC transporter C family member; Provisional 1622 -178677 PLN03131 PLN03131 hypothetical protein; Provisional 705 -178678 PLN03132 PLN03132 NADH dehydrogenase (ubiquinone) flavoprotein 1; Provisional 461 -215596 PLN03133 PLN03133 beta-1,3-galactosyltransferase; Provisional 636 -178680 PLN03134 PLN03134 glycine-rich RNA-binding protein 4; Provisional 144 -178681 PLN03136 PLN03136 Ferredoxin; Provisional 148 -215597 PLN03137 PLN03137 ATP-dependent DNA helicase; Q4-like; Provisional 1195 -215598 PLN03138 PLN03138 Protein TOC75; Provisional 796 -178684 PLN03139 PLN03139 formate dehydrogenase; Provisional 386 -215599 PLN03140 PLN03140 ABC transporter G family member; Provisional 1470 -215600 PLN03141 PLN03141 3-epi-6-deoxocathasterone 23-monooxygenase; Provisional 452 -215601 PLN03142 PLN03142 Probable chromatin-remodeling complex ATPase chain; Provisional 1033 -215602 PLN03143 PLN03143 nudix hydrolase; Provisional 291 -178689 PLN03144 PLN03144 Carbon catabolite repressor protein 4 homolog; Provisional 606 -215603 PLN03145 PLN03145 Protein phosphatase 2c; Provisional 365 -178691 PLN03146 PLN03146 aspartyl protease family protein; Provisional 431 -178692 PLN03147 PLN03147 ribosomal protein S19; Provisional 92 -178693 PLN03148 PLN03148 Blue copper-like protein; Provisional 167 -178694 PLN03149 PLN03149 peptidyl-prolyl isomerase H (cyclophilin H); Provisional 186 -178695 PLN03150 PLN03150 hypothetical protein; Provisional 623 -215604 PLN03151 PLN03151 cation/calcium exchanger; Provisional 650 -178697 PLN03152 PLN03152 hypothetical protein; Provisional 241 -215605 PLN03153 PLN03153 hypothetical protein; Provisional 537 -215606 PLN03154 PLN03154 putative allyl alcohol dehydrogenase; Provisional 348 -178700 PLN03155 PLN03155 cytochrome c oxidase subunit 5C; Provisional 63 -178701 PLN03156 PLN03156 GDSL esterase/lipase; Provisional 351 -178702 PLN03157 PLN03157 spermidine hydroxycinnamoyl transferase; Provisional 447 -215607 PLN03158 PLN03158 methionine aminopeptidase; Provisional 396 -215608 PLN03159 PLN03159 cation/H(+) antiporter 15; Provisional 832 -215609 PLN03160 PLN03160 uncharacterized protein; Provisional 219 -178706 PLN03161 PLN03161 Probable xyloglucan endotransglucosylase/hydrolase protein; Provisional 291 -178707 PLN03162 PLN03162 golden-2 like transcription factor; Provisional 526 -215610 PLN03164 PLN03164 3-oxo-5-alpha-steroid 4-dehydrogenase, C-terminal domain containing protein; Provisional 323 -178709 PLN03165 PLN03165 chaperone protein dnaJ-related; Provisional 111 -178710 PLN03166 PLN03166 60S ribosomal protein L34; Provisional 96 -215611 PLN03167 PLN03167 Chaperonin-60 beta subunit; Provisional 600 -178712 PLN03168 PLN03168 chalcone synthase; Provisional 389 -215612 PLN03169 PLN03169 chalcone synthase family protein; Provisional 391 -178714 PLN03170 PLN03170 chalcone synthase; Provisional 401 -178715 PLN03171 PLN03171 chalcone synthase-like protein; Provisional 399 -178716 PLN03172 PLN03172 chalcone synthase family protein; Provisional 393 -178717 PLN03173 PLN03173 chalcone synthase; Provisional 391 -215613 PLN03174 PLN03174 Chalcone-flavanone isomerase-related; Provisional 278 -178719 PLN03175 PLN03175 hypothetical protein; Provisional 415 -178720 PLN03176 PLN03176 flavanone-3-hydroxylase; Provisional 120 -215614 PLN03178 PLN03178 leucoanthocyanidin dioxygenase; Provisional 360 -215615 PLN03180 PLN03180 reversibly glycosylated polypeptide; Provisional 346 -215616 PLN03181 PLN03181 glycosyltransferase; Provisional 453 -215617 PLN03182 PLN03182 xyloglucan 6-xylosyltransferase; Provisional 429 -178725 PLN03183 PLN03183 acetylglucosaminyltransferase family protein; Provisional 421 -215618 PLN03184 PLN03184 chloroplast Hsp70; Provisional 673 -215619 PLN03185 PLN03185 phosphatidylinositol phosphate kinase; Provisional 765 -178728 PLN03186 PLN03186 DNA repair protein RAD51 homolog; Provisional 342 -215620 PLN03187 PLN03187 meiotic recombination protein DMC1 homolog; Provisional 344 -215621 PLN03188 PLN03188 kinesin-12 family protein; Provisional 1320 -215622 PLN03189 PLN03189 Protease specific for SMALL UBIQUITIN-RELATED MODIFIER (SUMO); Provisional 490 -215623 PLN03190 PLN03190 aminophospholipid translocase; Provisional 1178 -215624 PLN03191 PLN03191 Type I inositol-1,4,5-trisphosphate 5-phosphatase 2; Provisional 621 -215625 PLN03192 PLN03192 Voltage-dependent potassium channel; Provisional 823 -178735 PLN03193 PLN03193 beta-1,3-galactosyltransferase; Provisional 408 -215626 PLN03194 PLN03194 putative disease resistance protein; Provisional 187 -215627 PLN03195 PLN03195 fatty acid omega-hydroxylase; Provisional 516 -215628 PLN03196 PLN03196 MOC1-like protein; Provisional 487 -178739 PLN03198 PLN03198 delta6-acyl-lipid desaturase; Provisional 526 -178740 PLN03199 PLN03199 delta6-acyl-lipid desaturase-like protein; Provisional 485 -215629 PLN03200 PLN03200 cellulose synthase-interactive protein; Provisional 2102 -215630 PLN03201 PLN03201 RAB geranylgeranyl transferase beta-subunit; Provisional 316 -215631 PLN03202 PLN03202 protein argonaute; Provisional 900 -178744 PLN03205 PLN03205 ATR interacting protein; Provisional 652 -178745 PLN03206 PLN03206 phosphoribosylformylglycinamidine synthase; Provisional 1307 -215632 PLN03207 PLN03207 stomagen; Provisional 113 -178747 PLN03208 PLN03208 E3 ubiquitin-protein ligase RMA2; Provisional 193 -178748 PLN03209 PLN03209 translocon at the inner envelope of chloroplast subunit 62; Provisional 576 -215633 PLN03210 PLN03210 Resistant to P. syringae 6; Provisional 1153 -215634 PLN03211 PLN03211 ABC transporter G-25; Provisional 659 -178751 PLN03212 PLN03212 Transcription repressor MYB5; Provisional 249 -178752 PLN03213 PLN03213 repressor of silencing 3; Provisional 759 -215635 PLN03214 PLN03214 probable enoyl-CoA hydratase/isomerase; Provisional 278 -178754 PLN03215 PLN03215 ascorbic acid mannose pathway regulator 1; Provisional 373 -178755 PLN03216 PLN03216 actin depolymerizing factor; Provisional 141 -178756 PLN03217 PLN03217 transcription factor ATBS1; Provisional 93 -215636 PLN03218 PLN03218 maturation of RBCL 1; Provisional 1060 -178758 PLN03219 PLN03219 uncharacterized protein; Provisional 108 -178759 PLN03220 PLN03220 uncharacterized protein; Provisional 105 -178760 PLN03221 PLN03221 rapid alkalinization factor 23; Provisional 137 -178761 PLN03222 PLN03222 rapid alkalinization factor 23-like protein; Provisional 119 -215637 PLN03223 PLN03223 Polycystin cation channel protein; Provisional 1634 -178763 PLN03224 PLN03224 probable serine/threonine protein kinase; Provisional 507 -215638 PLN03225 PLN03225 Serine/threonine-protein kinase SNT7; Provisional 566 -215639 PLN03226 PLN03226 serine hydroxymethyltransferase; Provisional 475 -178766 PLN03227 PLN03227 serine palmitoyltransferase-like protein; Provisional 392 -178767 PLN03228 PLN03228 methylthioalkylmalate synthase; Provisional 503 -178768 PLN03229 PLN03229 acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha; Provisional 762 -178769 PLN03230 PLN03230 acetyl-coenzyme A carboxylase carboxyl transferase; Provisional 431 -178770 PLN03231 PLN03231 putative alpha-galactosidase; Provisional 357 -215640 PLN03232 PLN03232 ABC transporter C family member; Provisional 1495 -178772 PLN03233 PLN03233 putative glutamate-tRNA ligase; Provisional 523 -178773 PLN03234 PLN03234 cytochrome P450 83B1; Provisional 499 -178774 PLN03236 PLN03236 4-alpha-glucanotransferase; Provisional 745 -215641 PLN03237 PLN03237 DNA topoisomerase 2; Provisional 1465 -215642 PLN03238 PLN03238 probable histone acetyltransferase MYST; Provisional 290 -178777 PLN03239 PLN03239 histone acetyltransferase; Provisional 351 -178778 PLN03240 PLN03240 putative Low-temperature-induced protein; Provisional 626 -215643 PLN03241 PLN03241 magnesium chelatase subunit H; Provisional 1315 -178780 PLN03242 PLN03242 diacylglycerol o-acyltransferase; Provisional 410 -215644 PLN03243 PLN03243 haloacid dehalogenase-like hydrolase; Provisional 260 -178782 PLN03244 PLN03244 alpha-amylase; Provisional 872 -215645 PLN03246 PLN03246 26S proteasome regulatory subunit; Provisional 303 -234564 PRK00001 rplC 50S ribosomal protein L3; Validated 210 -234565 PRK00002 aroB 3-dehydroquinate synthase; Reviewed 358 -234566 PRK00004 rplX 50S ribosomal protein L24; Reviewed 105 -234567 PRK00005 fmt methionyl-tRNA formyltransferase; Reviewed 309 -234568 PRK00006 fabZ (3R)-hydroxymyristoyl-ACP dehydratase; Reviewed 147 -234569 PRK00007 PRK00007 elongation factor G; Reviewed 693 -234570 PRK00009 PRK00009 phosphoenolpyruvate carboxylase; Reviewed 911 -178791 PRK00010 rplE 50S ribosomal protein L5; Validated 179 -234571 PRK00011 glyA serine hydroxymethyltransferase; Reviewed 416 -234572 PRK00012 gatA aspartyl/glutamyl-tRNA amidotransferase subunit A; Reviewed 459 -234573 PRK00013 groEL chaperonin GroEL; Reviewed 542 -134031 PRK00014 ribB 3,4-dihydroxy-2-butanone 4-phosphate synthase; Provisional 230 -234574 PRK00015 rnhB ribonuclease HII; Validated 197 -234575 PRK00016 PRK00016 metal-binding heat shock protein; Provisional 159 -234576 PRK00019 rpmE 50S ribosomal protein L31; Reviewed 72 -134035 PRK00020 truB tRNA pseudouridine synthase B; Provisional 244 -234577 PRK00021 truA tRNA pseudouridine synthase A; Validated 244 -234578 PRK00022 lolB outer membrane lipoprotein LolB; Provisional 202 -234579 PRK00023 cmk cytidylate kinase; Provisional 225 -178801 PRK00024 PRK00024 hypothetical protein; Reviewed 224 -234580 PRK00025 lpxB lipid-A-disaccharide synthase; Reviewed 380 -234581 PRK00026 trmD tRNA (guanine-N(1)-)-methyltransferase; Reviewed 244 -234582 PRK00028 infC translation initiation factor IF-3; Reviewed 177 -234583 PRK00029 PRK00029 hypothetical protein; Validated 487 -178806 PRK00030 minC septum formation inhibitor; Provisional 292 -178807 PRK00031 lolA lipoprotein chaperone; Reviewed 195 -234584 PRK00032 PRK00032 Maf-like protein; Reviewed 190 -178809 PRK00033 clpS ATP-dependent Clp protease adaptor protein ClpS; Reviewed 100 -178810 PRK00034 gatC aspartyl/glutamyl-tRNA amidotransferase subunit C; Reviewed 95 -234585 PRK00035 hemH ferrochelatase; Reviewed 333 -134050 PRK00036 PRK00036 primosomal replication protein N; Reviewed 107 -234586 PRK00037 hisS histidyl-tRNA synthetase; Reviewed 412 -134052 PRK00038 rnpA ribonuclease P; Reviewed 123 -234587 PRK00039 ruvC Holliday junction resolvase; Reviewed 164 -234588 PRK00040 rpsP 30S ribosomal protein S16; Reviewed 75 -178815 PRK00041 PRK00041 hypothetical protein; Validated 93 -234589 PRK00042 tpiA triosephosphate isomerase; Provisional 250 -234590 PRK00043 thiE thiamine-phosphate pyrophosphorylase; Reviewed 212 -234591 PRK00044 psd phosphatidylserine decarboxylase; Reviewed 288 -234592 PRK00045 hemA glutamyl-tRNA reductase; Reviewed 423 -234593 PRK00046 murB UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 334 -234594 PRK00047 glpK glycerol kinase; Provisional 498 -234595 PRK00048 PRK00048 dihydrodipicolinate reductase; Provisional 257 -234596 PRK00049 PRK00049 elongation factor Tu; Reviewed 396 -234597 PRK00050 PRK00050 16S rRNA m(4)C1402 methyltranserfase; Provisional 296 -234598 PRK00051 hisI phosphoribosyl-AMP cyclohydrolase; Reviewed 125 -234599 PRK00052 PRK00052 prolipoprotein diacylglyceryl transferase; Reviewed 269 -234600 PRK00053 alr alanine racemase; Reviewed 363 -234601 PRK00054 PRK00054 dihydroorotate dehydrogenase electron transfer subunit; Reviewed 250 -234602 PRK00055 PRK00055 ribonuclease Z; Reviewed 270 -234603 PRK00056 mtgA monofunctional biosynthetic peptidoglycan transglycosylase; Provisional 236 -234604 PRK00058 PRK00058 methionine sulfoxide reductase A; Provisional 213 -234605 PRK00059 prsA peptidylprolyl isomerase; Provisional 336 -234606 PRK00061 ribH 6,7-dimethyl-8-ribityllumazine synthase; Provisional 154 -234607 PRK00062 PRK00062 glutamate-1-semialdehyde aminotransferase; Provisional 426 -234608 PRK00064 recF recombination protein F; Reviewed 361 -178836 PRK00066 ldh L-lactate dehydrogenase; Reviewed 315 -234609 PRK00068 PRK00068 hypothetical protein; Validated 970 -234610 PRK00070 acpS 4'-phosphopantetheinyl transferase; Provisional 126 -234611 PRK00071 nadD nicotinic acid mononucleotide adenylyltransferase; Provisional 203 -234612 PRK00072 hemC porphobilinogen deaminase; Reviewed 295 -234613 PRK00073 pgk phosphoglycerate kinase; Provisional 389 -234614 PRK00074 guaA GMP synthase; Reviewed 511 -234615 PRK00075 cbiD cobalt-precorrin-6A synthase; Reviewed 361 -234616 PRK00076 recR recombination protein RecR; Reviewed 196 -234617 PRK00077 eno enolase; Provisional 425 -234618 PRK00078 PRK00078 Maf-like protein; Reviewed 192 -234619 PRK00080 ruvB Holliday junction DNA helicase RuvB; Reviewed 328 -234620 PRK00081 coaE dephospho-CoA kinase; Reviewed 194 -234621 PRK00082 hrcA heat-inducible transcription repressor; Provisional 339 -178850 PRK00083 frr ribosome recycling factor; Reviewed 185 -178851 PRK00084 ispF 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; Reviewed 159 -234622 PRK00085 recO DNA repair protein RecO; Reviewed 247 -234623 PRK00087 PRK00087 4-hydroxy-3-methylbut-2-enyl diphosphate reductase/S1 RNA-binding domain protein; Reviewed 647 -234624 PRK00089 era GTPase Era; Reviewed 292 -234625 PRK00090 bioD dithiobiotin synthetase; Reviewed 222 -234626 PRK00091 miaA tRNA delta(2)-isopentenylpyrophosphate transferase; Reviewed 307 -234627 PRK00092 PRK00092 ribosome maturation protein RimP; Reviewed 154 -234628 PRK00093 PRK00093 GTP-binding protein Der; Reviewed 435 -234629 PRK00094 gpsA NAD(P)H-dependent glycerol-3-phosphate dehydrogenase; Validated 325 -234630 PRK00095 mutL DNA mismatch repair protein; Reviewed 617 -234631 PRK00098 PRK00098 GTPase RsgA; Reviewed 298 -234632 PRK00099 rplJ 50S ribosomal protein L10; Reviewed 172 -234633 PRK00102 rnc ribonuclease III; Reviewed 229 -234634 PRK00103 PRK00103 rRNA large subunit methyltransferase; Provisional 157 -234635 PRK00104 scpA segregation and condensation protein A; Reviewed 242 -234636 PRK00105 cobT nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase; Reviewed 335 -178867 PRK00106 PRK00106 hypothetical protein; Provisional 535 -234637 PRK00107 gidB 16S rRNA methyltransferase GidB; Reviewed 187 -234638 PRK00108 mraY phospho-N-acetylmuramoyl-pentapeptide-transferase; Provisional 344 -234639 PRK00109 PRK00109 Holliday junction resolvase-like protein; Reviewed 138 -234640 PRK00110 PRK00110 hypothetical protein; Validated 245 -234641 PRK00111 PRK00111 hypothetical protein; Provisional 180 -234642 PRK00112 tgt queuine tRNA-ribosyltransferase; Provisional 366 -234643 PRK00114 hslO Hsp33-like chaperonin; Reviewed 293 -234644 PRK00115 hemE uroporphyrinogen decarboxylase; Validated 346 -234645 PRK00116 ruvA Holliday junction DNA helicase RuvA; Reviewed 192 -234646 PRK00117 recX recombination regulator RecX; Reviewed 157 -234647 PRK00118 PRK00118 putative DNA-binding protein; Validated 104 -234648 PRK00120 PRK00120 dITP/XTP pyrophosphatase; Reviewed 196 -234649 PRK00121 trmB tRNA (guanine-N(7)-)-methyltransferase; Reviewed 202 -234650 PRK00122 rimM 16S rRNA-processing protein RimM; Provisional 172 -178882 PRK00124 PRK00124 hypothetical protein; Validated 151 -234651 PRK00125 pyrF orotidine 5'-phosphate decarboxylase; Reviewed 278 -234652 PRK00128 ipk 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 286 -234653 PRK00129 upp uracil phosphoribosyltransferase; Reviewed 209 -178886 PRK00130 truB tRNA pseudouridine synthase B; Provisional 290 -234654 PRK00131 aroK shikimate kinase; Reviewed 175 -178888 PRK00132 rpsI 30S ribosomal protein S9; Reviewed 130 -234655 PRK00133 metG methionyl-tRNA synthetase; Reviewed 673 -234656 PRK00134 ccrB camphor resistance protein CrcB; Provisional 104 -234657 PRK00135 scpB segregation and condensation protein B; Reviewed 188 -234658 PRK00136 rpsH 30S ribosomal protein S8; Validated 130 -234659 PRK00137 rplI 50S ribosomal protein L9; Reviewed 147 -234660 PRK00139 murE UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-diaminopimelate ligase; Provisional 460 -234661 PRK00140 rplK 50S ribosomal protein L11; Validated 141 -234662 PRK00141 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 473 -234663 PRK00142 PRK00142 putative rhodanese-related sulfurtransferase; Provisional 314 -234664 PRK00143 mnmA tRNA-specific 2-thiouridylase MnmA; Reviewed 346 -234665 PRK00145 PRK00145 putative inner membrane protein translocase component YidC; Provisional 223 -234666 PRK00147 queA S-adenosylmethionine:tRNA ribosyltransferase-isomerase; Provisional 342 -178901 PRK00148 PRK00148 Maf-like protein; Reviewed 194 -234667 PRK00149 dnaA chromosomal replication initiation protein; Reviewed 401 -234668 PRK00150 def peptide deformylase; Reviewed 165 -234669 PRK00153 PRK00153 hypothetical protein; Validated 104 -234670 PRK00155 ispD 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Reviewed 227 -234671 PRK00157 rplL 50S ribosomal protein L7/L12; Reviewed 123 -178907 PRK00159 PRK00159 putative septation inhibitor protein; Reviewed 87 -178908 PRK00162 glpE thiosulfate sulfurtransferase; Validated 108 -234672 PRK00164 moaA molybdenum cofactor biosynthesis protein A; Reviewed 331 -234673 PRK00166 apaH diadenosine tetraphosphatase; Reviewed 275 -234674 PRK00168 coaD phosphopantetheine adenylyltransferase; Provisional 159 -234675 PRK00170 PRK00170 azoreductase; Reviewed 201 -234676 PRK00172 rpmI 50S ribosomal protein L35; Reviewed 65 -178914 PRK00173 rph ribonuclease PH; Reviewed 238 -234677 PRK00174 PRK00174 acetyl-CoA synthetase; Provisional 637 -234678 PRK00175 metX homoserine O-acetyltransferase; Provisional 379 -166839 PRK00178 tolB translocation protein TolB; Provisional 430 -234679 PRK00179 pgi glucose-6-phosphate isomerase; Reviewed 548 -234680 PRK00180 PRK00180 acetate kinase A/propionate kinase 2; Reviewed 402 -234681 PRK00182 tatB sec-independent translocase; Provisional 160 -166842 PRK00183 PRK00183 hypothetical protein; Provisional 157 -166843 PRK00187 PRK00187 multidrug efflux protein NorA; Provisional 464 -234682 PRK00188 trpD anthranilate phosphoribosyltransferase; Provisional 339 -234683 PRK00191 tatA twin arginine translocase protein A; Provisional 84 -234684 PRK00192 PRK00192 mannosyl-3-phosphoglycerate phosphatase; Reviewed 273 -178923 PRK00194 PRK00194 hypothetical protein; Validated 90 -234685 PRK00197 proA gamma-glutamyl phosphate reductase; Provisional 417 -178925 PRK00199 ihfB integration host factor subunit beta; Reviewed 94 -234686 PRK00202 nusB transcription antitermination protein NusB; Reviewed 137 -178927 PRK00203 rnhA ribonuclease H; Reviewed 150 -178928 PRK00207 PRK00207 sulfur transfer complex subunit TusD; Validated 128 -234687 PRK00208 thiG thiazole synthase; Reviewed 250 -178930 PRK00211 PRK00211 sulfur relay protein TusC; Validated 119 -234688 PRK00215 PRK00215 LexA repressor; Validated 205 -234689 PRK00216 ubiE ubiquinone/menaquinone biosynthesis methyltransferase; Reviewed 239 -234690 PRK00218 PRK00218 putative lysogenization regulator; Reviewed 207 -234691 PRK00220 PRK00220 putative glycerol-3-phosphate acyltransferase PlsY; Provisional 198 -234692 PRK00222 PRK00222 methionine sulfoxide reductase B; Provisional 142 -234693 PRK00226 greA transcription elongation factor GreA; Reviewed 157 -178937 PRK00227 glnD PII uridylyl-transferase; Provisional 693 -234694 PRK00228 PRK00228 hypothetical protein; Validated 191 -234695 PRK00230 PRK00230 orotidine 5'-phosphate decarboxylase; Reviewed 230 -234696 PRK00232 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Reviewed 332 -166864 PRK00234 PRK00234 Maf-like protein; Reviewed 192 -234697 PRK00235 cobS cobalamin synthase; Reviewed 249 -234698 PRK00236 xerC site-specific tyrosine recombinase XerC; Reviewed 297 -178943 PRK00239 rpsT 30S ribosomal protein S20; Reviewed 88 -234699 PRK00241 nudC NADH pyrophosphatase; Reviewed 256 -178945 PRK00247 PRK00247 putative inner membrane protein translocase component YidC; Validated 429 -234700 PRK00249 flgH flagellar basal body L-ring protein; Reviewed 222 -234701 PRK00252 alaS alanyl-tRNA synthetase; Reviewed 865 -178948 PRK00253 fliE flagellar hook-basal body protein FliE; Reviewed 108 -234702 PRK00254 PRK00254 ski2-like helicase; Provisional 720 -166874 PRK00257 PRK00257 erythronate-4-phosphate dehydrogenase; Validated 381 -234703 PRK00258 aroE shikimate 5-dehydrogenase; Reviewed 278 -234704 PRK00259 PRK00259 intracellular septation protein A; Reviewed 179 -234705 PRK00260 cysS cysteinyl-tRNA synthetase; Validated 463 -234706 PRK00269 zipA cell division protein ZipA; Reviewed 293 -234707 PRK00270 rpsU 30S ribosomal protein S21; Reviewed 64 -234708 PRK00274 ksgA 16S ribosomal RNA methyltransferase KsgA/Dim1 family protein; Reviewed 272 -234709 PRK00275 glnD PII uridylyl-transferase; Provisional 895 -178954 PRK00276 infA translation initiation factor IF-1; Validated 72 -178955 PRK00277 clpP ATP-dependent Clp protease proteolytic subunit; Reviewed 200 -234710 PRK00278 trpC indole-3-glycerol-phosphate synthase; Reviewed 260 -234711 PRK00279 adk adenylate kinase; Reviewed 215 -234712 PRK00281 PRK00281 undecaprenyl pyrophosphate phosphatase; Reviewed 268 -234713 PRK00283 xerD site-specific tyrosine recombinase XerD; Reviewed 299 -178960 PRK00284 pqqA coenzyme PQQ synthesis protein PqqA; Provisional 23 -178961 PRK00285 ihfA integration host factor subunit alpha; Reviewed 99 -234714 PRK00286 xseA exodeoxyribonuclease VII large subunit; Reviewed 438 -234715 PRK00290 dnaK molecular chaperone DnaK; Provisional 627 -234716 PRK00292 glk glucokinase; Provisional 316 -234717 PRK00293 dipZ thiol:disulfide interchange protein precursor; Provisional 571 -166894 PRK00294 hscB co-chaperone HscB; Provisional 173 -166895 PRK00295 PRK00295 hypothetical protein; Provisional 68 -234718 PRK00296 minE cell division topological specificity factor MinE; Reviewed 86 -178967 PRK00299 PRK00299 sulfur transfer protein SirA; Reviewed 81 -234719 PRK00300 gmk guanylate kinase; Provisional 205 -234720 PRK00301 aat leucyl/phenylalanyl-tRNA--protein transferase; Reviewed 233 -234721 PRK00302 lnt apolipoprotein N-acyltransferase; Reviewed 505 -166901 PRK00304 PRK00304 hypothetical protein; Provisional 75 -178971 PRK00306 PRK00306 50S ribosomal protein L29; Reviewed 66 -234722 PRK00310 rpsC 30S ribosomal protein S3; Reviewed 232 -234723 PRK00311 panB 3-methyl-2-oxobutanoate hydroxymethyltransferase; Reviewed 264 -178974 PRK00312 pcm protein-L-isoaspartate O-methyltransferase; Reviewed 212 -234724 PRK00315 PRK00315 potassium-transporting ATPase subunit C; Reviewed 193 -234725 PRK00317 mobA molybdopterin-guanine dinucleotide biosynthesis protein MobA; Reviewed 193 -234726 PRK00321 rdgC recombination associated protein; Reviewed 303 -234727 PRK00325 algL poly(beta-D-mannuronate) lyase; Provisional 359 -234728 PRK00326 PRK00326 cell division protein MraZ; Reviewed 139 -178979 PRK00329 PRK00329 GIY-YIG nuclease superfamily protein; Validated 86 -234729 PRK00331 PRK00331 glucosamine--fructose-6-phosphate aminotransferase; Reviewed 604 -234730 PRK00339 minC septum formation inhibitor; Reviewed 249 -166914 PRK00341 PRK00341 hypothetical protein; Provisional 91 -234731 PRK00343 ipk 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 271 -234732 PRK00346 surE 5'(3')-nucleotidase/polyphosphatase; Provisional 250 -234733 PRK00347 PRK00347 putative DNA-binding transcriptional regulator; Reviewed 234 -234734 PRK00349 uvrA excinuclease ABC subunit A; Reviewed 943 -178985 PRK00357 rpsS 30S ribosomal protein S19; Reviewed 92 -234735 PRK00358 pyrH uridylate kinase; Provisional 231 -234736 PRK00359 rpmB 50S ribosomal protein L28; Reviewed 76 -178988 PRK00364 groES co-chaperonin GroES; Reviewed 95 -234737 PRK00366 ispG 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Reviewed 360 -234738 PRK00369 pyrC dihydroorotase; Provisional 392 -178991 PRK00373 PRK00373 V-type ATP synthase subunit D; Reviewed 204 -234739 PRK00376 lspA lipoprotein signal peptidase; Reviewed 160 -234740 PRK00377 cbiT cobalt-precorrin-6Y C(15)-methyltransferase; Provisional 198 -178993 PRK00378 PRK00378 nucleoid-associated protein NdpA; Validated 334 -234741 PRK00380 panC pantoate--beta-alanine ligase; Reviewed 281 -234742 PRK00389 gcvT glycine cleavage system aminomethyltransferase T; Reviewed 359 -234743 PRK00390 leuS leucyl-tRNA synthetase; Validated 805 -178997 PRK00391 rpsR 30S ribosomal protein S18; Reviewed 79 -234744 PRK00392 rpoZ DNA-directed RNA polymerase subunit omega; Reviewed 69 -234745 PRK00393 ribA GTP cyclohydrolase II; Reviewed 197 -234746 PRK00394 PRK00394 transcription factor; Reviewed 179 -179001 PRK00395 hfq RNA-binding protein Hfq; Provisional 79 -179002 PRK00396 rnpA ribonuclease P; Reviewed 130 -234747 PRK00398 rpoP DNA-directed RNA polymerase subunit P; Provisional 46 -179004 PRK00399 rpmH 50S ribosomal protein L34; Reviewed 44 -179005 PRK00400 hisE phosphoribosyl-ATP pyrophosphatase; Validated 105 -234748 PRK00402 PRK00402 3-isopropylmalate dehydratase large subunit; Reviewed 418 -166942 PRK00404 tatB sec-independent translocase; Provisional 141 -234749 PRK00405 rpoB DNA-directed RNA polymerase subunit beta; Reviewed 1112 -179008 PRK00407 PRK00407 hypothetical protein; Provisional 139 -234750 PRK00409 PRK00409 recombination and DNA strand exchange inhibitor protein; Reviewed 782 -234751 PRK00411 cdc6 cell division control protein 6; Reviewed 394 -234752 PRK00413 thrS threonyl-tRNA synthetase; Reviewed 638 -179012 PRK00414 gmhA phosphoheptose isomerase; Reviewed 192 -179013 PRK00415 rps27e 30S ribosomal protein S27e; Reviewed 59 -234753 PRK00416 dcd deoxycytidine triphosphate deaminase; Reviewed 177 -234754 PRK00418 PRK00418 DNA gyrase inhibitor; Reviewed 62 -234755 PRK00419 PRK00419 DNA primase small subunit; Reviewed 376 -234756 PRK00420 PRK00420 hypothetical protein; Validated 112 -234757 PRK00421 murC UDP-N-acetylmuramate--L-alanine ligase; Provisional 461 -234758 PRK00423 tfb transcription initiation factor IIB; Reviewed 310 -179020 PRK00430 fis global DNA-binding transcriptional dual regulator Fis; Provisional 95 -234759 PRK00431 PRK00431 RNase III inhibitor; Provisional 177 -234760 PRK00432 PRK00432 30S ribosomal protein S27ae; Validated 50 -179023 PRK00435 ef1B elongation factor 1-beta; Validated 88 -234761 PRK00436 argC N-acetyl-gamma-glutamyl-phosphate reductase; Validated 343 -234762 PRK00439 leuD 3-isopropylmalate dehydratase small subunit; Reviewed 163 -234763 PRK00440 rfc replication factor C small subunit; Reviewed 319 -179027 PRK00441 argR arginine repressor; Provisional 149 -234764 PRK00442 tatA twin arginine translocase protein A; Provisional 92 -179028 PRK00443 nagB glucosamine-6-phosphate deaminase; Provisional 261 -234765 PRK00446 cyaY frataxin-like protein; Provisional 105 -234766 PRK00447 PRK00447 hypothetical protein; Provisional 144 -234767 PRK00448 polC DNA polymerase III PolC; Validated 1437 -234768 PRK00450 dapF diaminopimelate epimerase; Provisional 274 -234769 PRK00451 PRK00451 glycine dehydrogenase subunit 1; Validated 447 -179034 PRK00453 rpsF 30S ribosomal protein S6; Reviewed 108 -234770 PRK00454 engB GTP-binding protein YsxC; Reviewed 196 -234771 PRK00455 pyrE orotate phosphoribosyltransferase; Validated 202 -234772 PRK00458 PRK00458 S-adenosylmethionine decarboxylase proenzyme; Provisional 127 -234773 PRK00461 rpmC 50S ribosomal protein L29; Reviewed 87 -234774 PRK00464 nrdR transcriptional regulator NrdR; Validated 154 -179039 PRK00465 rpmJ 50S ribosomal protein L36; Reviewed 37 -166979 PRK00466 PRK00466 acetyl-lysine deacetylase; Validated 346 -179040 PRK00468 PRK00468 hypothetical protein; Provisional 75 -179041 PRK00474 rps9p 30S ribosomal protein S9P; Reviewed 134 -234775 PRK00476 aspS aspartyl-tRNA synthetase; Validated 588 -234776 PRK00478 scpA segregation and condensation protein A/unknown domain fusion protein; Provisional 505 -234777 PRK00481 PRK00481 NAD-dependent deacetylase; Provisional 242 -234778 PRK00484 lysS lysyl-tRNA synthetase; Reviewed 491 -234779 PRK00485 fumC fumarate hydratase; Reviewed 464 -234780 PRK00488 pheS phenylalanyl-tRNA synthetase subunit alpha; Validated 339 -234781 PRK00489 hisG ATP phosphoribosyltransferase; Reviewed 287 -234782 PRK00499 rnpA ribonuclease P; Reviewed 114 -234783 PRK00504 rpmG 50S ribosomal protein L33; Validated 50 -234784 PRK00507 PRK00507 deoxyribose-phosphate aldolase; Provisional 221 -234785 PRK00509 PRK00509 argininosuccinate synthase; Provisional 399 -179052 PRK00513 minC septum formation inhibitor; Reviewed 214 -234786 PRK00517 prmA ribosomal protein L11 methyltransferase; Reviewed 250 -234787 PRK00521 rbfA ribosome-binding factor A; Validated 120 -179055 PRK00522 tpx lipid hydroperoxide peroxidase; Provisional 167 -179056 PRK00523 PRK00523 hypothetical protein; Provisional 72 -179057 PRK00528 rpmE 50S ribosomal protein L31; Reviewed 71 -234788 PRK00529 PRK00529 elongation factor P; Validated 186 -134311 PRK00536 speE spermidine synthase; Provisional 262 -179059 PRK00539 atpC F0F1 ATP synthase subunit epsilon; Validated 133 -234789 PRK00549 PRK00549 competence damage-inducible protein A; Provisional 414 -234790 PRK00550 rpsE 30S ribosomal protein S5; Validated 168 -179062 PRK00553 PRK00553 ribose-phosphate pyrophosphokinase; Provisional 332 -179063 PRK00555 PRK00555 galactokinase; Provisional 363 -234791 PRK00556 minC septum formation inhibitor; Reviewed 194 -234792 PRK00558 uvrC excinuclease ABC subunit C; Validated 598 -167003 PRK00560 PRK00560 molybdopterin-guanine dinucleotide biosynthesis protein A; Provisional 196 -100598 PRK00561 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 259 -179066 PRK00564 hypA hydrogenase nickel incorporation protein; Provisional 117 -234793 PRK00565 rplV 50S ribosomal protein L22; Reviewed 112 -234794 PRK00566 PRK00566 DNA-directed RNA polymerase subunit beta'; Provisional 1156 -234795 PRK00567 mscL large-conductance mechanosensitive channel; Reviewed 134 -134322 PRK00568 PRK00568 carbon storage regulator; Provisional 76 -234796 PRK00571 atpC F0F1 ATP synthase subunit epsilon; Validated 135 -100605 PRK00573 lspA signal peptidase II; Provisional 184 -234797 PRK00575 tatA twin arginine translocase protein A; Provisional 92 -234798 PRK00576 PRK00576 molybdopterin-guanine dinucleotide biosynthesis protein A; Provisional 178 -234799 PRK00578 prfB peptide chain release factor 2; Validated 367 -234800 PRK00587 PRK00587 hypothetical protein; Provisional 99 -179073 PRK00588 rnpA ribonuclease P; Reviewed 118 -234801 PRK00591 prfA peptide chain release factor 1; Validated 359 -179075 PRK00595 rpmG 50S ribosomal protein L33; Validated 53 -179076 PRK00596 rpsJ 30S ribosomal protein S10; Reviewed 102 -234802 PRK00601 dut deoxyuridine 5'-triphosphate nucleotidohydrolase; Provisional 150 -100616 PRK00611 PRK00611 putative disulfide oxidoreductase; Provisional 135 -234803 PRK00615 PRK00615 glutamate-1-semialdehyde aminotransferase; Provisional 433 -167014 PRK00624 PRK00624 glycine cleavage system protein H; Provisional 114 -134335 PRK00625 PRK00625 shikimate kinase; Provisional 173 -234804 PRK00629 pheT phenylalanyl-tRNA synthetase subunit beta; Reviewed 791 -234805 PRK00630 PRK00630 nickel responsive regulator; Provisional 148 -234806 PRK00635 PRK00635 excinuclease ABC subunit A; Provisional 1809 -179080 PRK00642 PRK00642 inorganic pyrophosphatase; Provisional 205 -100624 PRK00647 PRK00647 hypothetical protein; Validated 96 -234807 PRK00648 PRK00648 Maf-like protein; Reviewed 191 -134340 PRK00650 PRK00650 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 288 -234808 PRK00652 lpxK tetraacyldisaccharide 4'-kinase; Reviewed 325 -234809 PRK00654 glgA glycogen synthase; Provisional 466 -179084 PRK00665 petG cytochrome b6-f complex subunit PetG; Reviewed 37 -179085 PRK00668 ndk mulitfunctional nucleoside diphosphate kinase/apyrimidinic endonuclease/3'-; Validated 134 -234810 PRK00676 hemA glutamyl-tRNA reductase; Validated 338 -179086 PRK00683 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 418 -234811 PRK00685 PRK00685 metal-dependent hydrolase; Provisional 228 -234812 PRK00694 PRK00694 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Validated 606 -234813 PRK00696 sucC succinyl-CoA synthetase subunit beta; Provisional 388 -234814 PRK00698 tmk thymidylate kinase; Validated 205 -234815 PRK00701 PRK00701 manganese transport protein MntH; Reviewed 439 -234816 PRK00702 PRK00702 ribose-5-phosphate isomerase A; Provisional 220 -234817 PRK00704 PRK00704 photosystem I reaction center protein subunit XI; Provisional 160 -234818 PRK00708 PRK00708 sec-independent translocase; Provisional 209 -234819 PRK00711 PRK00711 D-amino acid dehydrogenase small subunit; Validated 416 -234820 PRK00714 PRK00714 RNA pyrophosphohydrolase; Reviewed 156 -234821 PRK00719 PRK00719 alkanesulfonate monooxygenase; Provisional 378 -234822 PRK00720 tatA twin arginine translocase protein A; Provisional 78 -179097 PRK00723 PRK00723 phosphatidylserine decarboxylase; Provisional 297 -234823 PRK00724 PRK00724 formate dehydrogenase accessory protein; Reviewed 263 -234824 PRK00725 glgC glucose-1-phosphate adenylyltransferase; Provisional 425 -234825 PRK00726 murG undecaprenyldiphospho-muramoylpentapeptide beta-N- acetylglucosaminyltransferase; Provisional 357 -234826 PRK00730 rnpA ribonuclease P; Reviewed 138 -179101 PRK00732 fliE flagellar hook-basal body protein FliE; Reviewed 102 -234827 PRK00733 hppA membrane-bound proton-translocating pyrophosphatase; Validated 666 -179103 PRK00736 PRK00736 hypothetical protein; Provisional 68 -179104 PRK00737 PRK00737 small nuclear ribonucleoprotein; Provisional 72 -179105 PRK00741 prfC peptide chain release factor 3; Provisional 526 -234828 PRK00742 PRK00742 chemotaxis-specific methylesterase; Provisional 354 -179107 PRK00745 PRK00745 4-oxalocrotonate tautomerase; Provisional 62 -179108 PRK00748 PRK00748 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Validated 233 -234829 PRK00750 lysK lysyl-tRNA synthetase; Reviewed 510 -134373 PRK00753 psbL photosystem II reaction center L; Provisional 39 -179110 PRK00754 PRK00754 signal recognition particle protein Srp19; Provisional 95 -179111 PRK00756 PRK00756 acyltransferase NodA; Provisional 196 -179112 PRK00758 PRK00758 GMP synthase subunit A; Validated 184 -179113 PRK00762 hypA hydrogenase nickel incorporation protein; Provisional 124 -234830 PRK00766 PRK00766 hypothetical protein; Provisional 194 -179115 PRK00767 PRK00767 transcriptional regulator BetI; Validated 197 -234831 PRK00768 nadE NAD synthetase; Reviewed 268 -179117 PRK00770 PRK00770 deoxyhypusine synthase-like protein; Provisional 384 -179118 PRK00771 PRK00771 signal recognition particle protein Srp54; Provisional 437 -234832 PRK00772 PRK00772 3-isopropylmalate dehydrogenase; Provisional 358 -234833 PRK00773 rplX 50S ribosomal protein LX; Validated 76 -234834 PRK00777 PRK00777 phosphopantetheine adenylyltransferase; Provisional 153 -234835 PRK00779 PRK00779 ornithine carbamoyltransferase; Provisional 304 -234836 PRK00782 PRK00782 hypothetical protein; Provisional 267 -234837 PRK00783 PRK00783 DNA-directed RNA polymerase subunit D; Provisional 263 -234838 PRK00784 PRK00784 cobyric acid synthase; Provisional 488 -179126 PRK00790 fliE flagellar hook-basal body protein FliE; Reviewed 109 -179127 PRK00794 flbT flagellar biosynthesis repressor FlbT; Reviewed 132 -234839 PRK00801 PRK00801 hypothetical protein; Provisional 201 -234840 PRK00802 PRK00802 3-methyladenine DNA glycosylase; Reviewed 188 -234841 PRK00805 PRK00805 putative deoxyhypusine synthase; Provisional 329 -179131 PRK00807 PRK00807 50S ribosomal protein L24e; Validated 52 -179132 PRK00808 PRK00808 hypothetical protein; Provisional 150 -179133 PRK00809 PRK00809 hypothetical protein; Provisional 144 -234842 PRK00810 nifW nitrogenase stabilizing/protective protein; Provisional 113 -234843 PRK00811 PRK00811 spermidine synthase; Provisional 283 -234844 PRK00816 rnfD electron transport complex protein RnfD; Reviewed 350 -179136 PRK00819 PRK00819 RNA 2'-phosphotransferase; Reviewed 179 -234845 PRK00823 phhB pterin-4-alpha-carbinolamine dehydratase; Validated 97 -179138 PRK00831 rpmJ 50S ribosomal protein L36; Validated 41 -179139 PRK00843 egsA NAD(P)-dependent glycerol-1-phosphate dehydrogenase; Reviewed 350 -234846 PRK00844 glgC glucose-1-phosphate adenylyltransferase; Provisional 407 -179141 PRK00846 PRK00846 hypothetical protein; Provisional 77 -234847 PRK00847 thyX FAD-dependent thymidylate synthase; Reviewed 217 -234848 PRK00854 rocD ornithine--oxo-acid transaminase; Reviewed 401 -179143 PRK00855 PRK00855 argininosuccinate lyase; Provisional 459 -234849 PRK00856 pyrB aspartate carbamoyltransferase catalytic subunit; Provisional 305 -234850 PRK00861 PRK00861 putative lipid kinase; Reviewed 300 -234851 PRK00865 PRK00865 glutamate racemase; Provisional 261 -179147 PRK00870 PRK00870 haloalkane dehalogenase; Provisional 302 -234852 PRK00871 PRK00871 glutathione-regulated potassium-efflux system ancillary protein KefF; Provisional 176 -179149 PRK00872 PRK00872 hypothetical protein; Provisional 157 -179150 PRK00876 nadE NAD synthetase; Reviewed 326 -234853 PRK00877 hisD bifunctional histidinal dehydrogenase/ histidinol dehydrogenase; Reviewed 425 -234854 PRK00881 purH bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Provisional 513 -234855 PRK00884 PRK00884 Maf-like protein; Reviewed 194 -234856 PRK00885 PRK00885 phosphoribosylamine--glycine ligase; Provisional 420 -234857 PRK00886 PRK00886 2-phosphosulfolactate phosphatase; Provisional 240 -179156 PRK00888 ftsB cell division protein FtsB; Reviewed 105 -179157 PRK00889 PRK00889 adenylylsulfate kinase; Provisional 175 -234858 PRK00892 lpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase; Provisional 343 -234859 PRK00893 PRK00893 aspartate carbamoyltransferase regulatory subunit; Reviewed 152 -234860 PRK00901 PRK00901 methylated-DNA--protein-cysteine methyltransferase; Provisional 155 -179161 PRK00907 PRK00907 hypothetical protein; Provisional 92 -179162 PRK00910 ribB 3,4-dihydroxy-2-butanone 4-phosphate synthase; Provisional 218 -234861 PRK00911 PRK00911 dihydroxy-acid dehydratase; Provisional 552 -234862 PRK00912 PRK00912 ribonuclease P protein component 3; Provisional 237 -234863 PRK00913 PRK00913 multifunctional aminopeptidase A; Provisional 483 -234864 PRK00915 PRK00915 2-isopropylmalate synthase; Validated 513 -179167 PRK00919 PRK00919 GMP synthase subunit B; Validated 307 -234865 PRK00923 PRK00923 sirohydrochlorin cobaltochelatase; Reviewed 126 -179169 PRK00924 PRK00924 5-keto-4-deoxyuronate isomerase; Provisional 276 -234866 PRK00927 PRK00927 tryptophanyl-tRNA synthetase; Reviewed 333 -234867 PRK00933 PRK00933 ribosomal biogenesis protein; Validated 165 -234868 PRK00934 PRK00934 ribose-phosphate pyrophosphokinase; Provisional 285 -179173 PRK00939 PRK00939 translation initiation factor Sui1; Reviewed 99 -179174 PRK00941 PRK00941 acetyl-CoA decarbonylase/synthase complex subunit alpha; Validated 781 -234869 PRK00942 PRK00942 acetylglutamate kinase; Provisional 283 -234870 PRK00943 PRK00943 selenophosphate synthetase; Provisional 347 -234871 PRK00944 PRK00944 hypothetical protein; Provisional 195 -179177 PRK00945 PRK00945 acetyl-CoA decarbonylase/synthase complex subunit epsilon; Provisional 171 -234872 PRK00950 PRK00950 histidinol-phosphate aminotransferase; Validated 361 -234873 PRK00951 hisB imidazoleglycerol-phosphate dehydratase; Validated 195 -234874 PRK00955 PRK00955 hypothetical protein; Provisional 620 -179181 PRK00956 thyA thymidylate synthase; Provisional 208 -234875 PRK00957 PRK00957 methionine synthase; Provisional 305 -234876 PRK00960 PRK00960 seryl-tRNA synthetase; Provisional 517 -179184 PRK00961 PRK00961 H(2)-dependent methylenetetrahydromethanopterin dehydrogenase; Provisional 342 -179185 PRK00962 PRK00962 hypothetical protein; Provisional 165 -234877 PRK00964 PRK00964 tetrahydromethanopterin S-methyltransferase subunit A; Provisional 225 -179187 PRK00965 PRK00965 tetrahydromethanopterin S-methyltransferase subunit B; Provisional 96 -179188 PRK00967 PRK00967 hypothetical protein; Provisional 105 -234878 PRK00968 PRK00968 tetrahydromethanopterin S-methyltransferase subunit D; Provisional 240 -234879 PRK00969 PRK00969 hypothetical protein; Provisional 508 -234880 PRK00971 PRK00971 glutaminase; Provisional 307 -234881 PRK00972 PRK00972 tetrahydromethanopterin S-methyltransferase subunit E; Provisional 292 -179193 PRK00973 PRK00973 glucose-6-phosphate isomerase; Provisional 446 -234882 PRK00976 PRK00976 hypothetical protein; Provisional 326 -179195 PRK00977 PRK00977 exodeoxyribonuclease VII small subunit; Provisional 80 -234883 PRK00979 PRK00979 tetrahydromethanopterin S-methyltransferase subunit H; Provisional 308 -179197 PRK00982 acpP acyl carrier protein; Provisional 78 -234884 PRK00984 truD tRNA pseudouridine synthase D; Reviewed 341 -179199 PRK00989 truB tRNA pseudouridine synthase B; Provisional 230 -234885 PRK00994 PRK00994 F420-dependent methylenetetrahydromethanopterin dehydrogenase; Provisional 277 -234886 PRK00996 PRK00996 ribonuclease HIII; Provisional 304 -234887 PRK01001 PRK01001 putative inner membrane protein translocase component YidC; Provisional 795 -179203 PRK01002 PRK01002 nickel responsive regulator; Provisional 141 -179204 PRK01005 PRK01005 V-type ATP synthase subunit E; Provisional 207 -134464 PRK01008 PRK01008 queuine tRNA-ribosyltransferase; Provisional 372 -179205 PRK01018 PRK01018 50S ribosomal protein L30e; Reviewed 99 -167141 PRK01021 lpxB lipid-A-disaccharide synthase; Reviewed 608 -234888 PRK01022 PRK01022 hypothetical protein; Provisional 167 -179207 PRK01024 PRK01024 Na(+)-translocating NADH-quinone reductase subunit B; Provisional 503 -179208 PRK01026 PRK01026 tetrahydromethanopterin S-methyltransferase subunit G; Provisional 77 -234889 PRK01029 tolB translocation protein TolB; Provisional 428 -234890 PRK01030 PRK01030 tetrahydromethanopterin S-methyltransferase subunit C; Provisional 264 -234891 PRK01033 PRK01033 imidazole glycerol phosphate synthase subunit HisF; Provisional 258 -234892 PRK01037 trmD tRNA (guanine-N(1)-)-methyltransferase/unknown domain fusion protein; Reviewed 357 -234893 PRK01045 ispH 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Reviewed 298 -234894 PRK01059 PRK01059 ATP:guanido phosphotransferase; Provisional 346 -179214 PRK01060 PRK01060 endonuclease IV; Provisional 281 -234895 PRK01061 PRK01061 Na(+)-translocating NADH-quinone reductase subunit E; Provisional 244 -179216 PRK01064 PRK01064 hypothetical protein; Provisional 78 -167150 PRK01066 PRK01066 porphobilinogen deaminase; Provisional 231 -179217 PRK01076 PRK01076 L-rhamnose isomerase; Provisional 419 -234896 PRK01077 PRK01077 cobyrinic acid a,c-diamide synthase; Validated 451 -234897 PRK01096 PRK01096 deoxyguanosinetriphosphate triphosphohydrolase-like protein; Provisional 440 -179220 PRK01099 rpoK DNA-directed RNA polymerase subunit K; Provisional 62 -234898 PRK01100 PRK01100 putative accessory gene regulator protein; Provisional 210 -234899 PRK01103 PRK01103 formamidopyrimidine/5-formyluracil/ 5-hydroxymethyluracil DNA glycosylase; Validated 274 -234900 PRK01109 PRK01109 ATP-dependent DNA ligase; Provisional 590 -234901 PRK01110 rpmF 50S ribosomal protein L32; Validated 60 -234902 PRK01112 PRK01112 phosphoglyceromutase; Provisional 228 -234903 PRK01115 PRK01115 DNA polymerase sliding clamp; Validated 247 -234904 PRK01117 PRK01117 adenylosuccinate synthetase; Provisional 430 -179228 PRK01119 PRK01119 hypothetical protein; Provisional 106 -234905 PRK01122 PRK01122 potassium-transporting ATPase subunit B; Provisional 679 -234906 PRK01123 PRK01123 shikimate kinase; Provisional 282 -234907 PRK01130 PRK01130 N-acetylmannosamine-6-phosphate 2-epimerase; Provisional 221 -234908 PRK01143 rpl11p 50S ribosomal protein L11P; Validated 163 -234909 PRK01146 PRK01146 DNA-directed RNA polymerase subunit L; Provisional 85 -179234 PRK01151 rps17E 30S ribosomal protein S17e; Validated 58 -179235 PRK01153 PRK01153 nicotinamide-nucleotide adenylyltransferase; Provisional 174 -100796 PRK01156 PRK01156 chromosome segregation protein; Provisional 895 -234910 PRK01158 PRK01158 phosphoglycolate phosphatase; Provisional 230 -234911 PRK01160 PRK01160 hypothetical protein; Provisional 178 -234912 PRK01170 PRK01170 phosphopantetheine adenylyltransferase/unknown domain fusion protein; Provisional 322 -100801 PRK01172 PRK01172 ski2-like helicase; Provisional 674 -234913 PRK01175 PRK01175 phosphoribosylformylglycinamidine synthase I; Provisional 261 -167170 PRK01177 PRK01177 hypothetical protein; Provisional 140 -179239 PRK01178 rps24e 30S ribosomal protein S24e; Reviewed 99 -234914 PRK01184 PRK01184 hypothetical protein; Provisional 184 -179241 PRK01185 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 271 -100807 PRK01189 PRK01189 V-type ATP synthase subunit F; Provisional 104 -234915 PRK01191 rpl24p 50S ribosomal protein L24P; Validated 120 -234916 PRK01192 PRK01192 50S ribosomal protein L31e; Reviewed 89 -100810 PRK01194 PRK01194 V-type ATP synthase subunit E; Provisional 185 -234917 PRK01198 PRK01198 V-type ATP synthase subunit C; Provisional 352 -234918 PRK01202 PRK01202 glycine cleavage system protein H; Provisional 127 -100813 PRK01203 PRK01203 prefoldin subunit alpha; Provisional 130 -100814 PRK01207 PRK01207 methionine synthase; Provisional 343 -234919 PRK01209 cobD cobalamin biosynthesis protein; Provisional 312 -179247 PRK01211 PRK01211 dihydroorotase; Provisional 409 -234920 PRK01212 PRK01212 homoserine kinase; Provisional 301 -234921 PRK01213 PRK01213 phosphoribosylformylglycinamidine synthase II; Provisional 724 -179250 PRK01215 PRK01215 competence damage-inducible protein A; Provisional 264 -179251 PRK01216 PRK01216 DNA polymerase IV; Validated 351 -179252 PRK01217 PRK01217 hypothetical protein; Provisional 114 -179253 PRK01220 PRK01220 malonate decarboxylase subunit delta; Provisional 99 -234922 PRK01221 PRK01221 putative deoxyhypusine synthase; Provisional 312 -234923 PRK01222 PRK01222 N-(5'-phosphoribosyl)anthranilate isomerase; Provisional 210 -234924 PRK01229 PRK01229 N-glycosylase/DNA lyase; Provisional 208 -179257 PRK01231 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 295 -234925 PRK01233 glyS glycyl-tRNA synthetase subunit beta; Validated 682 -234926 PRK01236 PRK01236 S-adenosylmethionine decarboxylase proenzyme; Provisional 131 -234927 PRK01237 PRK01237 triphosphoribosyl-dephospho-CoA synthase; Validated 289 -179261 PRK01242 rpl39e 50S ribosomal protein L39e; Validated 50 -179262 PRK01250 PRK01250 inorganic pyrophosphatase; Provisional 176 -179263 PRK01253 PRK01253 preprotein translocase subunit SecG; Reviewed 54 -234928 PRK01254 PRK01254 hypothetical protein; Provisional 707 -234929 PRK01259 PRK01259 ribose-phosphate pyrophosphokinase; Provisional 309 -234930 PRK01261 aroD 3-dehydroquinate dehydratase; Provisional 229 -234931 PRK01265 PRK01265 heat shock protein HtpX; Provisional 324 -234932 PRK01269 PRK01269 tRNA s(4)U8 sulfurtransferase; Provisional 482 -179269 PRK01271 PRK01271 4-oxalocrotonate tautomerase; Provisional 76 -179270 PRK01278 argD acetylornithine transaminase protein; Provisional 389 -234933 PRK01285 PRK01285 pyruvoyl-dependent arginine decarboxylase; Reviewed 155 -234934 PRK01286 PRK01286 deoxyguanosinetriphosphate triphosphohydrolase-like protein; Provisional 336 -234935 PRK01287 xerC site-specific tyrosine recombinase XerC; Reviewed 358 -234936 PRK01293 PRK01293 phosphoribosyl-dephospho-CoA transferase; Provisional 207 -234937 PRK01294 PRK01294 lipase chaperone; Provisional 336 -167205 PRK01295 PRK01295 phosphoglyceromutase; Provisional 206 -234938 PRK01297 PRK01297 ATP-dependent RNA helicase RhlB; Provisional 475 -234939 PRK01305 PRK01305 arginyl-tRNA-protein transferase; Provisional 240 -167208 PRK01310 PRK01310 hypothetical protein; Validated 104 -234940 PRK01313 rnpA ribonuclease P; Reviewed 129 -234941 PRK01315 PRK01315 putative inner membrane protein translocase component YidC; Provisional 329 -234942 PRK01318 PRK01318 membrane protein insertase; Provisional 521 -179280 PRK01322 PRK01322 6-carboxyhexanoate--CoA ligase; Provisional 242 -179281 PRK01326 prsA foldase protein PrsA; Reviewed 310 -234943 PRK01343 PRK01343 zinc-binding protein; Provisional 57 -234944 PRK01345 PRK01345 heat shock protein HtpX; Provisional 317 -234945 PRK01346 PRK01346 hypothetical protein; Provisional 411 -234946 PRK01355 PRK01355 azoreductase; Reviewed 199 -167217 PRK01356 hscB co-chaperone HscB; Provisional 166 -234947 PRK01362 PRK01362 putative translaldolase; Provisional 214 -179286 PRK01368 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 454 -179287 PRK01371 PRK01371 sec-independent translocase; Provisional 137 -234948 PRK01372 ddl D-alanine--D-alanine ligase; Reviewed 304 -134546 PRK01379 cyaY frataxin-like protein; Provisional 103 -179289 PRK01381 PRK01381 Trp operon repressor; Provisional 99 -234949 PRK01388 PRK01388 arginine deiminase; Provisional 406 -234950 PRK01390 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 460 -234951 PRK01392 citX 2'-(5''-triphosphoribosyl)-3'-dephospho-CoA:apo-citrate lyase; Reviewed 180 -179293 PRK01395 PRK01395 V-type ATP synthase subunit F; Provisional 104 -179294 PRK01397 PRK01397 50S ribosomal protein L31; Provisional 78 -234952 PRK01402 hslO Hsp33-like chaperonin; Reviewed 328 -234953 PRK01406 gltX glutamyl-tRNA synthetase; Reviewed 476 -167229 PRK01415 PRK01415 hypothetical protein; Validated 247 -234954 PRK01424 PRK01424 S-adenosylmethionine:tRNA ribosyltransferase-isomerase; Provisional 366 -234955 PRK01433 hscA chaperone protein HscA; Provisional 595 -179297 PRK01438 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 480 -167232 PRK01441 PRK01441 Maf-like protein; Reviewed 207 -179298 PRK01470 tatA twin arginine translocase protein A; Provisional 51 -100879 PRK01474 atpC F0F1 ATP synthase subunit epsilon; Validated 112 -134562 PRK01482 fliE flagellar hook-basal body protein FliE; Reviewed 108 -234956 PRK01490 tig trigger factor; Provisional 435 -100883 PRK01492 rnpA ribonuclease P; Reviewed 118 -234957 PRK01526 PRK01526 Maf-like protein; Reviewed 205 -179300 PRK01528 truB tRNA pseudouridine synthase B; Provisional 292 -134567 PRK01530 PRK01530 hypothetical protein; Reviewed 105 -134568 PRK01533 PRK01533 histidinol-phosphate aminotransferase; Validated 366 -234958 PRK01544 PRK01544 bifunctional N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase/tRNA (m7G46) methyltransferase; Reviewed 506 -100891 PRK01546 PRK01546 hypothetical protein; Provisional 79 -234959 PRK01550 truB tRNA pseudouridine synthase B; Provisional 304 -179302 PRK01558 PRK01558 V-type ATP synthase subunit E; Provisional 198 -234960 PRK01565 PRK01565 thiamine biosynthesis protein ThiI; Provisional 394 -179304 PRK01574 lspA signal peptidase II; Provisional 163 -234961 PRK01581 speE spermidine synthase; Validated 374 -234962 PRK01584 PRK01584 alanyl-tRNA synthetase; Provisional 594 -234963 PRK01610 PRK01610 putative voltage-gated ClC-type chloride channel ClcB; Provisional 418 -234964 PRK01611 argS arginyl-tRNA synthetase; Reviewed 507 -234965 PRK01614 tatE twin arginine translocase protein A; Validated 85 -234966 PRK01617 PRK01617 hypothetical protein; Provisional 154 -179310 PRK01622 PRK01622 OxaA-like protein precursor; Validated 256 -179311 PRK01625 sspH acid-soluble spore protein H; Provisional 59 -167247 PRK01631 PRK01631 hypothetical protein; Provisional 76 -179312 PRK01636 ccrB camphor resistance protein CrcB; Provisional 118 -179313 PRK01637 PRK01637 hypothetical protein; Reviewed 286 -179314 PRK01641 leuD isopropylmalate isomerase small subunit; Provisional 200 -234967 PRK01642 cls cardiolipin synthetase; Reviewed 483 -179316 PRK01655 spxA transcriptional regulator Spx; Reviewed 131 -167253 PRK01658 PRK01658 holin-like protein; Validated 122 -234968 PRK01663 PRK01663 C4-dicarboxylate transporter DctA; Reviewed 428 -234969 PRK01678 rpmE2 50S ribosomal protein L31 type B; Reviewed 87 -234970 PRK01683 PRK01683 trans-aconitate 2-methyltransferase; Provisional 258 -234971 PRK01686 hisG ATP phosphoribosyltransferase catalytic subunit; Reviewed 215 -234972 PRK01688 PRK01688 histidinol-phosphate aminotransferase; Provisional 351 -179322 PRK01699 fliE flagellar hook-basal body protein FliE; Reviewed 99 -167260 PRK01706 PRK01706 S-adenosylmethionine decarboxylase proenzyme; Validated 123 -179323 PRK01710 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 458 -234973 PRK01712 PRK01712 carbon storage regulator; Provisional 64 -167263 PRK01713 PRK01713 ornithine carbamoyltransferase; Provisional 334 -234974 PRK01722 PRK01722 formimidoylglutamase; Provisional 320 -234975 PRK01723 PRK01723 3-deoxy-D-manno-octulosonic-acid kinase; Reviewed 239 -179327 PRK01732 rnpA ribonuclease P; Reviewed 114 -234976 PRK01736 PRK01736 hypothetical protein; Reviewed 190 -234977 PRK01741 PRK01741 cell division protein ZipA; Provisional 332 -179329 PRK01742 tolB translocation protein TolB; Provisional 429 -234978 PRK01747 mnmC bifunctional tRNA (mnm(5)s(2)U34)-methyltransferase/FAD-dependent cmnm(5)s(2)U34 oxidoreductase; Reviewed 662 -234979 PRK01749 PRK01749 disulfide bond formation protein B; Provisional 176 -179332 PRK01752 PRK01752 hypothetical protein; Provisional 156 -234980 PRK01759 glnD PII uridylyl-transferase; Provisional 854 -234981 PRK01766 PRK01766 multidrug efflux protein; Reviewed 456 -179334 PRK01770 PRK01770 sec-independent translocase; Provisional 171 -179335 PRK01773 hscB co-chaperone HscB; Provisional 173 -234982 PRK01777 PRK01777 hypothetical protein; Validated 95 -167278 PRK01792 ribB 3,4-dihydroxy-2-butanone 4-phosphate synthase; Provisional 214 -179337 PRK01810 PRK01810 DNA polymerase IV; Validated 407 -179338 PRK01816 PRK01816 hypothetical protein; Provisional 143 -234983 PRK01821 PRK01821 hypothetical protein; Provisional 133 -234984 PRK01827 thyA thymidylate synthase; Reviewed 264 -167284 PRK01833 tatA twin arginine translocase protein A; Provisional 74 -179341 PRK01839 PRK01839 Maf-like protein; Reviewed 209 -234985 PRK01842 PRK01842 hypothetical protein; Provisional 149 -100947 PRK01844 PRK01844 hypothetical protein; Provisional 72 -234986 PRK01851 truB tRNA pseudouridine synthase B; Provisional 303 -234987 PRK01862 PRK01862 putative voltage-gated ClC-type chloride channel ClcB; Provisional 574 -179345 PRK01885 greB transcription elongation factor GreB; Reviewed 157 -234988 PRK01889 PRK01889 GTPase RsgA; Reviewed 356 -234989 PRK01903 rnpA ribonuclease P; Reviewed 133 -234990 PRK01904 PRK01904 hypothetical protein; Provisional 219 -179348 PRK01905 PRK01905 DNA-binding protein Fis; Provisional 77 -179349 PRK01906 PRK01906 tetraacyldisaccharide 4'-kinase; Provisional 338 -179350 PRK01908 PRK01908 electron transport complex protein RnfG; Validated 205 -234991 PRK01909 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Validated 329 -179352 PRK01911 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 292 -179353 PRK01917 PRK01917 cation-binding hemerythrin HHE family protein; Provisional 139 -234992 PRK01919 tatB sec-independent translocase; Provisional 169 -179355 PRK01964 PRK01964 4-oxalocrotonate tautomerase; Provisional 64 -234993 PRK01966 ddl D-alanyl-alanine synthetase A; Reviewed 333 -234994 PRK01973 PRK01973 septum formation inhibitor; Reviewed 271 -179358 PRK02001 PRK02001 hypothetical protein; Validated 152 -234995 PRK02006 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 498 -179360 PRK02047 PRK02047 hypothetical protein; Provisional 91 -179361 PRK02048 PRK02048 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Provisional 611 -179362 PRK02079 PRK02079 pyrroloquinoline quinone biosynthesis protein PqqD; Provisional 88 -234996 PRK02083 PRK02083 imidazole glycerol phosphate synthase subunit HisF; Provisional 253 -234997 PRK02090 PRK02090 phosphoadenosine phosphosulfate reductase; Provisional 241 -234998 PRK02098 PRK02098 phosphoribosyl-dephospho-CoA transferase; Provisional 221 -234999 PRK02101 PRK02101 hypothetical protein; Validated 255 -179366 PRK02102 PRK02102 ornithine carbamoyltransferase; Validated 331 -179367 PRK02103 PRK02103 malonate decarboxylase subunit delta; Provisional 105 -235000 PRK02106 PRK02106 choline dehydrogenase; Validated 560 -235001 PRK02107 PRK02107 glutamate--cysteine ligase; Provisional 523 -235002 PRK02110 PRK02110 disulfide bond formation protein B; Provisional 169 -179371 PRK02113 PRK02113 putative hydrolase; Provisional 252 -235003 PRK02114 PRK02114 formylmethanofuran--tetrahydromethanopterin formyltransferase; Provisional 297 -179373 PRK02118 PRK02118 V-type ATP synthase subunit B; Provisional 436 -235004 PRK02119 PRK02119 hypothetical protein; Provisional 73 -235005 PRK02122 PRK02122 glucosamine-6-phosphate deaminase-like protein; Validated 652 -235006 PRK02126 PRK02126 ribonuclease Z; Provisional 334 -235007 PRK02134 PRK02134 hypothetical protein; Provisional 249 -235008 PRK02135 PRK02135 hypothetical protein; Provisional 201 -235009 PRK02141 PRK02141 Maf-like protein; Reviewed 207 -179379 PRK02155 ppnK NAD(+)/NADH kinase family protein; Provisional 291 -167325 PRK02166 PRK02166 hypothetical protein; Reviewed 184 -235010 PRK02186 PRK02186 argininosuccinate lyase; Provisional 887 -235011 PRK02190 PRK02190 agmatinase; Provisional 301 -179381 PRK02193 truB tRNA pseudouridine synthase B; Provisional 279 -179382 PRK02195 PRK02195 V-type ATP synthase subunit D; Provisional 201 -235012 PRK02201 PRK02201 putative inner membrane protein translocase component YidC; Provisional 357 -235013 PRK02220 PRK02220 4-oxalocrotonate tautomerase; Provisional 61 -179385 PRK02224 PRK02224 chromosome segregation protein; Provisional 880 -235014 PRK02227 PRK02227 hypothetical protein; Provisional 238 -179387 PRK02228 PRK02228 V-type ATP synthase subunit F; Provisional 100 -179388 PRK02230 PRK02230 inorganic pyrophosphatase; Provisional 184 -167337 PRK02231 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 272 -235015 PRK02234 recU Holliday junction-specific endonuclease; Reviewed 195 -235016 PRK02237 PRK02237 hypothetical protein; Provisional 109 -179391 PRK02240 PRK02240 GTP cyclohydrolase III; Provisional 254 -179392 PRK02249 PRK02249 DNA primase large subunit; Validated 343 -179393 PRK02250 PRK02250 hypothetical protein; Provisional 166 -179394 PRK02251 PRK02251 putative septation inhibitor protein; Reviewed 87 -179395 PRK02253 PRK02253 deoxyuridine 5'-triphosphate nucleotidohydrolase; Provisional 167 -235017 PRK02255 PRK02255 putrescine carbamoyltransferase; Provisional 338 -235018 PRK02256 PRK02256 putative aminopeptidase 1; Provisional 462 -235019 PRK02259 PRK02259 aspartoacylase; Provisional 288 -179399 PRK02260 PRK02260 S-ribosylhomocysteinase; Provisional 158 -179400 PRK02261 PRK02261 methylaspartate mutase subunit S; Provisional 137 -235020 PRK02264 PRK02264 N(5),N(10)-methenyltetrahydromethanopterin cyclohydrolase; Provisional 317 -179402 PRK02265 PRK02265 acetoacetate decarboxylase; Provisional 246 -235021 PRK02268 PRK02268 hypothetical protein; Provisional 141 -167353 PRK02269 PRK02269 ribose-phosphate pyrophosphokinase; Provisional 320 -235022 PRK02271 PRK02271 methylenetetrahydromethanopterin reductase; Provisional 325 -235023 PRK02277 PRK02277 orotate phosphoribosyltransferase-like protein; Provisional 200 -235024 PRK02287 PRK02287 hypothetical protein; Provisional 171 -179406 PRK02289 PRK02289 4-oxalocrotonate tautomerase; Provisional 60 -235025 PRK02290 PRK02290 3-dehydroquinate synthase; Provisional 344 -235026 PRK02292 PRK02292 V-type ATP synthase subunit E; Provisional 188 -235027 PRK02301 PRK02301 putative deoxyhypusine synthase; Provisional 316 -179410 PRK02302 PRK02302 hypothetical protein; Provisional 89 -235028 PRK02304 PRK02304 adenine phosphoribosyltransferase; Provisional 175 -235029 PRK02308 uvsE putative UV damage endonuclease; Provisional 303 -235030 PRK02315 PRK02315 adaptor protein; Provisional 233 -235031 PRK02318 PRK02318 mannitol-1-phosphate 5-dehydrogenase; Provisional 381 -235032 PRK02362 PRK02362 ski2-like helicase; Provisional 737 -235033 PRK02363 PRK02363 DNA-directed RNA polymerase subunit delta; Reviewed 129 -179417 PRK02382 PRK02382 dihydroorotase; Provisional 443 -179418 PRK02391 PRK02391 heat shock protein HtpX; Provisional 296 -235034 PRK02395 PRK02395 hypothetical protein; Provisional 279 -179420 PRK02399 PRK02399 hypothetical protein; Provisional 406 -235035 PRK02406 PRK02406 DNA polymerase IV; Validated 343 -235036 PRK02412 aroD 3-dehydroquinate dehydratase; Provisional 253 -235037 PRK02427 PRK02427 3-phosphoshikimate 1-carboxyvinyltransferase; Provisional 435 -235038 PRK02436 xerD site-specific tyrosine recombinase XerD-like protein; Reviewed 245 -235039 PRK02458 PRK02458 ribose-phosphate pyrophosphokinase; Provisional 323 -235040 PRK02463 PRK02463 OxaA-like protein precursor; Provisional 307 -179427 PRK02471 PRK02471 bifunctional glutamate--cysteine ligase/glutathione synthetase; Provisional 752 -235041 PRK02472 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 447 -167380 PRK02478 PRK02478 Maf-like protein; Reviewed 199 -235042 PRK02484 truB tRNA pseudouridine synthase B; Provisional 294 -179430 PRK02487 PRK02487 hypothetical protein; Provisional 163 -179431 PRK02491 PRK02491 putative deoxyribonucleotide triphosphate pyrophosphatase/unknown domain fusion protein; Reviewed 328 -235043 PRK02492 PRK02492 deoxyhypusine synthase-like protein; Provisional 347 -179433 PRK02496 adk adenylate kinase; Provisional 184 -235044 PRK02504 PRK02504 NAD(P)H-quinone oxidoreductase subunit 2; Provisional 513 -235045 PRK02506 PRK02506 dihydroorotate dehydrogenase 1A; Reviewed 310 -235046 PRK02507 PRK02507 proton extrusion protein PcxA; Provisional 422 -235047 PRK02509 PRK02509 hypothetical protein; Provisional 973 -235048 PRK02515 psbU photosystem II complex extrinsic protein precursor U; Provisional 132 -134722 PRK02529 petN cytochrome b6-f complex subunit PetN; Provisional 33 -235049 PRK02534 PRK02534 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 312 -179440 PRK02539 PRK02539 hypothetical protein; Provisional 85 -179441 PRK02542 PRK02542 photosystem I assembly protein Ycf4; Provisional 188 -235050 PRK02546 PRK02546 NAD(P)H-quinone oxidoreductase subunit 4; Provisional 525 -179443 PRK02551 PRK02551 flavoprotein NrdI; Provisional 154 -167396 PRK02553 psbK photosystem II reaction center protein K; Provisional 45 -179444 PRK02557 psbE cytochrome b559 subunit alpha; Provisional 81 -235051 PRK02561 psbF cytochrome b559 subunit beta; Provisional 44 -179446 PRK02565 PRK02565 photosystem II reaction center protein J; Provisional 39 -167400 PRK02576 psbZ photosystem II reaction center protein Z; Provisional 62 -235052 PRK02597 rpoC2 DNA-directed RNA polymerase subunit beta'; Provisional 1331 -179448 PRK02603 PRK02603 photosystem I assembly protein Ycf3; Provisional 172 -235053 PRK02610 PRK02610 histidinol-phosphate aminotransferase; Provisional 374 -235054 PRK02615 PRK02615 thiamine-phosphate pyrophosphorylase; Provisional 347 -179451 PRK02624 psbH photosystem II reaction center protein H; Provisional 64 -235055 PRK02625 rpoC1 DNA-directed RNA polymerase subunit gamma; Provisional 627 -235056 PRK02627 PRK02627 acetylornithine aminotransferase; Provisional 396 -235057 PRK02628 nadE NAD synthetase; Reviewed 679 -179455 PRK02645 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 305 -179456 PRK02649 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 305 -179457 PRK02651 PRK02651 photosystem I subunit VII; Provisional 81 -235058 PRK02654 PRK02654 putative inner membrane protein translocase component YidC; Provisional 375 -179459 PRK02655 psbI photosystem II reaction center I protein I; Provisional 38 -179460 PRK02693 PRK02693 apocytochrome f; Reviewed 312 -235059 PRK02705 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 459 -235060 PRK02710 PRK02710 plastocyanin; Provisional 119 -235061 PRK02714 PRK02714 O-succinylbenzoate synthase; Provisional 320 -235062 PRK02724 PRK02724 hypothetical protein; Provisional 104 -235063 PRK02726 PRK02726 molybdopterin-guanine dinucleotide biosynthesis protein A; Provisional 200 -235064 PRK02731 PRK02731 histidinol-phosphate aminotransferase; Validated 367 -235065 PRK02733 PRK02733 photosystem I reaction center subunit IX; Provisional 42 -235066 PRK02746 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Provisional 345 -179468 PRK02749 PRK02749 photosystem I reaction center subunit IV; Provisional 71 -179469 PRK02755 truB tRNA pseudouridine synthase B; Provisional 295 -235067 PRK02759 PRK02759 bifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase protein; Reviewed 203 -235068 PRK02769 PRK02769 histidine decarboxylase; Provisional 380 -235069 PRK02770 PRK02770 S-adenosylmethionine decarboxylase proenzyme; Provisional 139 -179472 PRK02793 PRK02793 phi X174 lysis protein; Provisional 72 -179473 PRK02794 PRK02794 DNA polymerase IV; Provisional 419 -235070 PRK02797 PRK02797 4-alpha-L-fucosyltransferase; Provisional 322 -235071 PRK02801 PRK02801 primosomal replication protein N; Provisional 101 -235072 PRK02812 PRK02812 ribose-phosphate pyrophosphokinase; Provisional 330 -235073 PRK02813 PRK02813 putative aminopeptidase 2; Provisional 428 -179478 PRK02816 PRK02816 phycocyanobilin:ferredoxin oxidoreductase; Validated 243 -179479 PRK02821 PRK02821 hypothetical protein; Provisional 77 -235074 PRK02830 PRK02830 Na(+)-translocating NADH-quinone reductase subunit E; Provisional 202 -235075 PRK02833 PRK02833 phosphate-starvation-inducible protein PsiE; Provisional 133 -235076 PRK02842 PRK02842 light-independent protochlorophyllide reductase subunit N; Provisional 427 -235077 PRK02853 PRK02853 hypothetical protein; Provisional 161 -179484 PRK02854 PRK02854 primosomal protein DnaI; Provisional 179 -235078 PRK02858 PRK02858 germination protease; Provisional 369 -179486 PRK02862 glgC glucose-1-phosphate adenylyltransferase; Provisional 429 -235079 PRK02866 PRK02866 cyanate hydratase; Validated 147 -235080 PRK02868 PRK02868 hypothetical protein; Provisional 245 -235081 PRK02870 PRK02870 heat shock protein HtpX; Provisional 336 -179490 PRK02877 PRK02877 hypothetical protein; Provisional 106 -179491 PRK02886 PRK02886 hypothetical protein; Provisional 87 -235082 PRK02888 PRK02888 nitrous-oxide reductase; Validated 635 -235083 PRK02889 tolB translocation protein TolB; Provisional 427 -179494 PRK02898 PRK02898 cobalt transport protein CbiN; Provisional 100 -179495 PRK02899 PRK02899 adaptor protein; Provisional 197 -235084 PRK02901 PRK02901 O-succinylbenzoate synthase; Provisional 327 -179497 PRK02909 PRK02909 transcriptional activator FlhD; Provisional 105 -235085 PRK02910 PRK02910 light-independent protochlorophyllide reductase subunit B; Provisional 519 -179499 PRK02913 PRK02913 hypothetical protein; Provisional 150 -235086 PRK02919 PRK02919 oxaloacetate decarboxylase subunit gamma; Provisional 82 -179501 PRK02922 PRK02922 glycogen synthesis protein GlgS; Provisional 67 -235087 PRK02925 PRK02925 glucuronate isomerase; Reviewed 466 -179503 PRK02929 PRK02929 L-arabinose isomerase; Provisional 499 -179504 PRK02935 PRK02935 hypothetical protein; Provisional 110 -179505 PRK02936 argD acetylornithine aminotransferase; Provisional 377 -179506 PRK02939 PRK02939 lipoprotein; Reviewed 236 -235088 PRK02943 PRK02943 SecA regulator SecM; Provisional 167 -179508 PRK02944 PRK02944 OxaA-like protein precursor; Validated 255 -235089 PRK02946 aceK bifunctional isocitrate dehydrogenase kinase/phosphatase protein; Validated 575 -179510 PRK02947 PRK02947 hypothetical protein; Provisional 246 -179511 PRK02948 PRK02948 cysteine desulfurase; Provisional 381 -235090 PRK02951 PRK02951 DNA replication terminus site-binding protein; Provisional 309 -179513 PRK02955 PRK02955 small acid-soluble spore protein SspI; Provisional 68 -235091 PRK02958 tatA twin arginine translocase protein A; Provisional 73 -235092 PRK02963 PRK02963 carbon starvation induced protein; Validated 316 -235093 PRK02967 PRK02967 nickel responsive regulator; Provisional 139 -235094 PRK02971 PRK02971 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol flippase subunit ArnF; Provisional 129 -179518 PRK02975 PRK02975 putative common antigen polymerase; Provisional 450 -235095 PRK02983 lysS lysyl-tRNA synthetase; Provisional 1094 -179520 PRK02984 sspO acid-soluble spore protein O; Provisional 49 -235096 PRK02991 PRK02991 D-serine dehydratase; Provisional 441 -179522 PRK02998 prsA peptidylprolyl isomerase; Reviewed 283 -235097 PRK02999 PRK02999 malate synthase G; Provisional 726 -179524 PRK03001 PRK03001 M48 family peptidase; Provisional 283 -101162 PRK03002 prsA peptidylprolyl isomerase; Reviewed 285 -179525 PRK03003 PRK03003 GTP-binding protein Der; Reviewed 472 -235098 PRK03007 PRK03007 deoxyguanosinetriphosphate triphosphohydrolase-like protein; Provisional 428 -235099 PRK03011 PRK03011 butyrate kinase; Provisional 358 -235100 PRK03031 rnpA ribonuclease P; Reviewed 122 -179529 PRK03057 PRK03057 hypothetical protein; Provisional 180 -235101 PRK03059 PRK03059 PII uridylyl-transferase; Provisional 856 -179531 PRK03065 hutP anti-terminator HutP; Provisional 148 -235102 PRK03072 PRK03072 heat shock protein HtpX; Provisional 288 -235103 PRK03080 PRK03080 phosphoserine aminotransferase; Provisional 378 -179534 PRK03081 sspK acid-soluble spore protein K; Provisional 50 -179535 PRK03092 PRK03092 ribose-phosphate pyrophosphokinase; Provisional 304 -179536 PRK03094 PRK03094 hypothetical protein; Provisional 80 -179537 PRK03095 prsA peptidylprolyl isomerase; Reviewed 287 -179538 PRK03100 PRK03100 sec-independent translocase; Provisional 136 -235104 PRK03103 PRK03103 DNA polymerase IV; Reviewed 409 -179540 PRK03113 PRK03113 putative disulfide oxidoreductase; Provisional 139 -179541 PRK03114 PRK03114 NTPase; Reviewed 169 -235105 PRK03124 PRK03124 S-adenosylmethionine decarboxylase proenzyme; Provisional 127 -179543 PRK03137 PRK03137 1-pyrroline-5-carboxylate dehydrogenase; Provisional 514 -179544 PRK03140 PRK03140 phosphatidylserine decarboxylase; Provisional 259 -179545 PRK03147 PRK03147 thiol-disulfide oxidoreductase; Provisional 173 -235106 PRK03158 PRK03158 histidinol-phosphate aminotransferase; Provisional 359 -235107 PRK03170 PRK03170 dihydrodipicolinate synthase; Provisional 292 -179548 PRK03174 sspH acid-soluble spore protein H; Provisional 59 -235108 PRK03180 ligB ATP-dependent DNA ligase; Reviewed 508 -235109 PRK03187 tgl transglutaminase; Provisional 272 -235110 PRK03188 PRK03188 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 300 -179552 PRK03195 PRK03195 hypothetical protein; Provisional 186 -235111 PRK03202 PRK03202 6-phosphofructokinase; Provisional 320 -179554 PRK03204 PRK03204 haloalkane dehalogenase; Provisional 286 -235112 PRK03244 argD acetylornithine aminotransferase; Provisional 398 -235113 PRK03287 truB tRNA pseudouridine synthase B; Provisional 298 -235114 PRK03298 PRK03298 hypothetical protein; Provisional 224 -235115 PRK03317 PRK03317 histidinol-phosphate aminotransferase; Provisional 368 -179559 PRK03321 PRK03321 putative aminotransferase; Provisional 352 -179560 PRK03333 coaE dephospho-CoA kinase/protein folding accessory domain-containing protein; Provisional 395 -235116 PRK03341 PRK03341 arginine repressor; Provisional 168 -235117 PRK03343 PRK03343 transaldolase; Validated 368 -235118 PRK03348 PRK03348 DNA polymerase IV; Provisional 454 -179564 PRK03352 PRK03352 DNA polymerase IV; Validated 346 -235119 PRK03353 ribB 3,4-dihydroxy-2-butanone 4-phosphate synthase; Provisional 217 -179566 PRK03354 PRK03354 crotonobetainyl-CoA dehydrogenase; Validated 380 -179567 PRK03355 PRK03355 glycerol-3-phosphate acyltransferase; Validated 783 -179568 PRK03356 PRK03356 L-carnitine/gamma-butyrobetaine antiporter; Provisional 504 -179569 PRK03359 PRK03359 putative electron transfer flavoprotein FixA; Reviewed 256 -235120 PRK03363 fixB putative electron transfer flavoprotein FixB; Provisional 313 -179571 PRK03369 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 488 -179572 PRK03371 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase 2; Provisional 326 -235121 PRK03372 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 306 -235122 PRK03378 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 292 -179575 PRK03379 PRK03379 vitamin B12-transporter protein BtuF; Provisional 260 -235123 PRK03381 PRK03381 PII uridylyl-transferase; Provisional 774 -235124 PRK03427 PRK03427 cell division protein ZipA; Provisional 333 -235125 PRK03430 PRK03430 hypothetical protein; Validated 157 -179579 PRK03437 PRK03437 3-isopropylmalate dehydrogenase; Provisional 344 -179580 PRK03449 PRK03449 putative inner membrane protein translocase component YidC; Provisional 304 -235126 PRK03459 rnpA ribonuclease P; Reviewed 122 -235127 PRK03467 PRK03467 hypothetical protein; Provisional 144 -179583 PRK03482 PRK03482 phosphoglycerate mutase; Provisional 215 -179584 PRK03501 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 264 -179585 PRK03511 minC septum formation inhibitor; Reviewed 228 -179586 PRK03512 PRK03512 thiamine-phosphate pyrophosphorylase; Provisional 211 -179587 PRK03515 PRK03515 ornithine carbamoyltransferase subunit I; Provisional 336 -235128 PRK03522 rumB 23S rRNA methyluridine methyltransferase; Reviewed 315 -179589 PRK03525 PRK03525 crotonobetainyl-CoA:carnitine CoA-transferase; Provisional 405 -235129 PRK03537 PRK03537 molybdate ABC transporter periplasmic molybdate-binding protein; Provisional 188 -179591 PRK03545 PRK03545 putative arabinose transporter; Provisional 390 -179592 PRK03554 tatA twin arginine translocase protein A; Provisional 89 -235130 PRK03557 PRK03557 zinc transporter ZitB; Provisional 312 -235131 PRK03562 PRK03562 glutathione-regulated potassium-efflux system protein KefC; Provisional 621 -179595 PRK03564 PRK03564 formate dehydrogenase accessory protein FdhE; Provisional 309 -179596 PRK03573 PRK03573 transcriptional regulator SlyA; Provisional 144 -235132 PRK03577 PRK03577 acid shock protein precursor; Provisional 102 -235133 PRK03578 hscB co-chaperone HscB; Provisional 176 -179599 PRK03580 PRK03580 carnitinyl-CoA dehydratase; Provisional 261 -235134 PRK03584 PRK03584 acetoacetyl-CoA synthetase; Provisional 655 -235135 PRK03592 PRK03592 haloalkane dehalogenase; Provisional 295 -235136 PRK03598 PRK03598 putative efflux pump membrane fusion protein; Provisional 331 -179603 PRK03600 nrdI ribonucleotide reductase stimulatory protein; Reviewed 134 -235137 PRK03601 PRK03601 transcriptional regulator HdfR; Provisional 275 -235138 PRK03604 moaC bifunctional molybdenum cofactor biosynthesis protein MoaC/MogA; Provisional 312 -179606 PRK03606 PRK03606 ureidoglycolate hydrolase; Provisional 162 -179607 PRK03609 umuC DNA polymerase V subunit UmuC; Reviewed 422 -235139 PRK03612 PRK03612 spermidine synthase; Provisional 521 -235140 PRK03619 PRK03619 phosphoribosylformylglycinamidine synthase I; Provisional 219 -235141 PRK03620 PRK03620 5-dehydro-4-deoxyglucarate dehydratase; Provisional 303 -235142 PRK03624 PRK03624 putative acetyltransferase; Provisional 140 -179612 PRK03625 tatE twin arginine translocase protein E; Validated 67 -235143 PRK03629 tolB translocation protein TolB; Provisional 429 -179614 PRK03633 PRK03633 putative MFS family transporter protein; Provisional 381 -179615 PRK03634 PRK03634 rhamnulose-1-phosphate aldolase; Provisional 274 -235144 PRK03635 PRK03635 chromosome replication initiation inhibitor protein; Validated 294 -235145 PRK03636 PRK03636 hypothetical protein; Provisional 179 -235146 PRK03640 PRK03640 O-succinylbenzoic acid--CoA ligase; Provisional 483 -179619 PRK03641 PRK03641 hypothetical protein; Provisional 220 -179620 PRK03642 PRK03642 putative periplasmic esterase; Provisional 432 -235147 PRK03643 PRK03643 altronate oxidoreductase; Provisional 471 -179622 PRK03646 dadX alanine racemase; Reviewed 355 -235148 PRK03655 PRK03655 putative ion channel protein; Provisional 414 -235149 PRK03657 PRK03657 hypothetical protein; Validated 170 -179625 PRK03659 PRK03659 glutathione-regulated potassium-efflux system protein KefB; Provisional 601 -179626 PRK03660 PRK03660 anti-sigma F factor; Provisional 146 -179627 PRK03661 PRK03661 hypothetical protein; Validated 164 -179628 PRK03669 PRK03669 mannosyl-3-phosphoglycerate phosphatase; Reviewed 271 -167581 PRK03670 PRK03670 competence damage-inducible protein A; Provisional 252 -179629 PRK03673 PRK03673 hypothetical protein; Provisional 396 -179630 PRK03681 hypA hydrogenase nickel incorporation protein; Validated 114 -179631 PRK03692 PRK03692 putative UDP-N-acetyl-D-mannosaminuronic acid transferase; Provisional 243 -235150 PRK03695 PRK03695 vitamin B12-transporter ATPase; Provisional 248 -235151 PRK03699 PRK03699 putative transporter; Provisional 394 -235152 PRK03705 PRK03705 glycogen debranching enzyme; Provisional 658 -179635 PRK03708 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 277 -179636 PRK03715 argD acetylornithine transaminase protein; Provisional 395 -167589 PRK03717 PRK03717 ribonuclease P protein component 2; Provisional 120 -179637 PRK03719 PRK03719 ecotin; Provisional 166 -235153 PRK03731 aroL shikimate kinase II; Reviewed 171 -167593 PRK03732 PRK03732 hypothetical protein; Provisional 114 -179639 PRK03735 PRK03735 cytochrome b6; Provisional 223 -235154 PRK03739 PRK03739 2-isopropylmalate synthase; Validated 552 -179641 PRK03743 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Validated 332 -235155 PRK03745 PRK03745 signal recognition particle protein Srp19; Provisional 100 -179642 PRK03757 PRK03757 hypothetical protein; Provisional 191 -235156 PRK03759 PRK03759 isopentenyl-diphosphate delta-isomerase; Provisional 184 -235157 PRK03760 PRK03760 hypothetical protein; Provisional 117 -235158 PRK03761 PRK03761 LPS assembly outer membrane complex protein LptD; Provisional 778 -179646 PRK03762 PRK03762 hypothetical protein; Provisional 103 -179647 PRK03767 PRK03767 NAD(P)H:quinone oxidoreductase; Provisional 200 -179648 PRK03776 PRK03776 phosphoglycerol transferase I; Provisional 762 -235159 PRK03784 PRK03784 vtamin B12-transporter permease; Provisional 331 -235160 PRK03803 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 448 -179651 PRK03806 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 438 -235161 PRK03814 PRK03814 oxaloacetate decarboxylase subunit gamma; Provisional 85 -235162 PRK03815 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 401 -235163 PRK03817 PRK03817 galactokinase; Provisional 351 -179654 PRK03818 PRK03818 putative transporter; Validated 552 -179655 PRK03822 lplA lipoate-protein ligase A; Provisional 338 -235164 PRK03824 hypA hydrogenase nickel incorporation protein; Provisional 135 -235165 PRK03826 PRK03826 5'-nucleotidase; Provisional 195 -179658 PRK03830 PRK03830 small acid-soluble spore protein Tlp; Provisional 73 -235166 PRK03837 PRK03837 transcriptional regulator NanR; Provisional 241 -179660 PRK03839 PRK03839 putative kinase; Provisional 180 -179661 PRK03846 PRK03846 adenylylsulfate kinase; Provisional 198 -235167 PRK03854 opgC glucans biosynthesis protein; Provisional 375 -179663 PRK03858 PRK03858 DNA polymerase IV; Validated 396 -235168 PRK03868 PRK03868 glucose-6-phosphate isomerase; Provisional 410 -235169 PRK03879 PRK03879 ribonuclease P protein component 1; Validated 96 -235170 PRK03881 PRK03881 hypothetical protein; Provisional 467 -167628 PRK03887 PRK03887 methylated-DNA--protein-cysteine methyltransferase; Provisional 175 -179667 PRK03892 PRK03892 ribonuclease P protein component 3; Provisional 216 -179668 PRK03893 PRK03893 putative sialic acid transporter; Provisional 496 -179669 PRK03902 PRK03902 manganese transport transcriptional regulator; Provisional 142 -235171 PRK03903 PRK03903 transaldolase; Provisional 274 -235172 PRK03906 PRK03906 mannonate dehydratase; Provisional 385 -235173 PRK03907 fliE flagellar hook-basal body protein FliE; Reviewed 97 -179673 PRK03910 PRK03910 D-cysteine desulfhydrase; Validated 331 -235174 PRK03911 PRK03911 heat-inducible transcription repressor; Provisional 260 -235175 PRK03918 PRK03918 chromosome segregation protein; Provisional 880 -179676 PRK03922 PRK03922 hypothetical protein; Provisional 113 -179677 PRK03926 PRK03926 mevalonate kinase; Provisional 302 -235176 PRK03932 asnC asparaginyl-tRNA synthetase; Validated 450 -235177 PRK03934 PRK03934 phosphatidylserine decarboxylase; Provisional 265 -235178 PRK03941 PRK03941 NTPase; Reviewed 174 -179681 PRK03946 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Provisional 307 -235179 PRK03947 PRK03947 prefoldin subunit alpha; Reviewed 140 -235180 PRK03954 PRK03954 ribonuclease P protein component 4; Validated 121 -179684 PRK03955 PRK03955 hypothetical protein; Reviewed 131 -179685 PRK03957 PRK03957 V-type ATP synthase subunit F; Provisional 100 -235181 PRK03958 PRK03958 tRNA 2'-O-methylase; Reviewed 176 -167649 PRK03963 PRK03963 V-type ATP synthase subunit E; Provisional 198 -167650 PRK03967 PRK03967 histidinol-phosphate aminotransferase; Provisional 337 -235182 PRK03968 PRK03968 DNA primase large subunit; Validated 399 -179688 PRK03971 PRK03971 putative deoxyhypusine synthase; Provisional 334 -179689 PRK03972 PRK03972 ribosomal biogenesis protein; Validated 208 -179690 PRK03975 tfx putative transcriptional regulator; Provisional 141 -235183 PRK03976 rpl37ae 50S ribosomal protein L37Ae; Reviewed 90 -235184 PRK03979 PRK03979 ADP-specific phosphofructokinase; Provisional 463 -235185 PRK03980 PRK03980 flap endonuclease-1; Provisional 292 -235186 PRK03982 PRK03982 heat shock protein HtpX; Provisional 288 -235187 PRK03983 PRK03983 exosome complex exonuclease Rrp41; Provisional 244 -235188 PRK03987 PRK03987 translation initiation factor IF-2 subunit alpha; Validated 262 -235189 PRK03988 PRK03988 translation initiation factor IF-2 subunit beta; Validated 138 -235190 PRK03991 PRK03991 threonyl-tRNA synthetase; Validated 613 -179699 PRK03992 PRK03992 proteasome-activating nucleotidase; Provisional 389 -235191 PRK03995 PRK03995 hypothetical protein; Provisional 267 -235192 PRK03996 PRK03996 proteasome subunit alpha; Provisional 241 -235193 PRK03999 PRK03999 translation initiation factor IF-5A; Provisional 129 -235194 PRK04000 PRK04000 translation initiation factor IF-2 subunit gamma; Validated 411 -235195 PRK04004 PRK04004 translation initiation factor IF-2; Validated 586 -235196 PRK04005 PRK04005 50S ribosomal protein L18e; Provisional 111 -235197 PRK04007 rps28e 30S ribosomal protein S28e; Validated 70 -235198 PRK04011 PRK04011 peptide chain release factor 1; Provisional 411 -179708 PRK04012 PRK04012 translation initiation factor IF-1A; Provisional 100 -101376 PRK04013 argD acetylornithine/acetyl-lysine aminotransferase; Provisional 364 -235199 PRK04015 PRK04015 DNA/RNA-binding protein albA; Provisional 91 -235200 PRK04016 PRK04016 DNA-directed RNA polymerase subunit N; Provisional 62 -179711 PRK04017 PRK04017 hypothetical protein; Provisional 132 -179712 PRK04019 rplP0 acidic ribosomal protein P0; Validated 330 -235201 PRK04020 rps2P 30S ribosomal protein S2; Provisional 204 -167678 PRK04021 PRK04021 hypothetical protein; Reviewed 92 -235202 PRK04023 PRK04023 DNA polymerase II large subunit; Validated 1121 -235203 PRK04024 PRK04024 cofactor-independent phosphoglycerate mutase; Provisional 412 -179716 PRK04025 PRK04025 S-adenosylmethionine decarboxylase proenzyme; Validated 139 -235204 PRK04027 PRK04027 30S ribosomal protein S7P; Reviewed 195 -235205 PRK04028 PRK04028 glutamyl-tRNA(Gln) amidotransferase subunit E; Validated 630 -235206 PRK04031 PRK04031 DNA primase; Provisional 408 -235207 PRK04032 PRK04032 hypothetical protein; Provisional 159 -179721 PRK04034 rps8p 30S ribosomal protein S8P; Reviewed 130 -235208 PRK04036 PRK04036 DNA polymerase II small subunit; Validated 504 -235209 PRK04038 rps19p 30S ribosomal protein S19P; Provisional 134 -235210 PRK04040 PRK04040 adenylate kinase; Provisional 188 -235211 PRK04042 rpl4lp 50S ribosomal protein L4P; Provisional 254 -235212 PRK04043 tolB translocation protein TolB; Provisional 419 -235213 PRK04044 rps5p 30S ribosomal protein S5P; Reviewed 211 -179728 PRK04046 PRK04046 translation initiation factor IF-6; Provisional 222 -235214 PRK04049 PRK04049 30S ribosomal protein S8e; Validated 127 -179730 PRK04051 rps4p 30S ribosomal protein S4P; Validated 177 -235215 PRK04053 rps13p 30S ribosomal protein S13P; Reviewed 149 -179732 PRK04056 PRK04056 Maf-like protein; Reviewed 180 -235216 PRK04057 PRK04057 30S ribosomal protein S3Ae; Validated 203 -179734 PRK04059 rpl34e 50S ribosomal protein L34e; Validated 88 -235217 PRK04069 PRK04069 serine-protein kinase RsbW; Provisional 161 -179736 PRK04073 rocD ornithine--oxo-acid transaminase; Provisional 396 -235218 PRK04081 PRK04081 hypothetical protein; Provisional 207 -235219 PRK04098 PRK04098 sec-independent translocase; Provisional 158 -179739 PRK04099 truB tRNA pseudouridine synthase B; Provisional 273 -179740 PRK04101 PRK04101 fosfomycin resistance protein FosB; Provisional 139 -235220 PRK04115 PRK04115 hypothetical protein; Provisional 137 -235221 PRK04123 PRK04123 ribulokinase; Provisional 548 -235222 PRK04125 PRK04125 murein hydrolase regulator LrgA; Provisional 141 -167709 PRK04128 PRK04128 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Provisional 228 -235223 PRK04132 PRK04132 replication factor C small subunit; Provisional 846 -179745 PRK04135 PRK04135 cofactor-independent phosphoglycerate mutase; Provisional 395 -179746 PRK04136 rpl40e 50S ribosomal protein L40e; Provisional 48 -235224 PRK04140 PRK04140 hypothetical protein; Provisional 317 -235225 PRK04143 PRK04143 hypothetical protein; Provisional 264 -179749 PRK04147 PRK04147 N-acetylneuraminate lyase; Provisional 293 -235226 PRK04148 PRK04148 hypothetical protein; Provisional 134 -235227 PRK04149 sat sulfate adenylyltransferase; Reviewed 391 -179752 PRK04151 PRK04151 IMP cyclohydrolase; Provisional 197 -235228 PRK04155 PRK04155 chaperone protein HchA; Provisional 287 -235229 PRK04156 gltX glutamyl-tRNA synthetase; Provisional 567 -235230 PRK04158 PRK04158 transcriptional repressor CodY; Validated 256 -235231 PRK04160 PRK04160 diphthine synthase; Provisional 258 -235232 PRK04161 PRK04161 tagatose 1,6-diphosphate aldolase; Reviewed 329 -235233 PRK04163 PRK04163 exosome complex RNA-binding protein Rrp4; Provisional 235 -235234 PRK04164 PRK04164 hypothetical protein; Provisional 181 -235235 PRK04165 PRK04165 acetyl-CoA decarbonylase/synthase complex subunit gamma; Provisional 450 -235236 PRK04168 PRK04168 molybdate ABC transporter periplasmic substrate-binding protein; Provisional 334 -235237 PRK04169 PRK04169 geranylgeranylglyceryl phosphate synthase-like protein; Reviewed 232 -235238 PRK04171 PRK04171 ribosome biogenesis protein; Provisional 222 -235239 PRK04172 pheS phenylalanyl-tRNA synthetase subunit alpha; Provisional 489 -235240 PRK04173 PRK04173 glycyl-tRNA synthetase; Provisional 456 -179766 PRK04175 rpl7ae 50S ribosomal protein L7Ae; Validated 122 -235241 PRK04176 PRK04176 ribulose-1,5-biphosphate synthetase; Provisional 257 -235242 PRK04179 rpl37e 50S ribosomal protein L37e; Reviewed 62 -179769 PRK04180 PRK04180 pyridoxal biosynthesis lyase PdxS; Provisional 293 -235243 PRK04181 PRK04181 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 257 -235244 PRK04182 PRK04182 cytidylate kinase; Provisional 180 -235245 PRK04183 PRK04183 glutamyl-tRNA(Gln) amidotransferase subunit D; Validated 419 -235246 PRK04184 PRK04184 DNA topoisomerase VI subunit B; Validated 535 -179774 PRK04190 PRK04190 glucose-6-phosphate isomerase; Provisional 191 -235247 PRK04191 rps3p 30S ribosomal protein S3P; Reviewed 207 -235248 PRK04192 PRK04192 V-type ATP synthase subunit A; Provisional 586 -235249 PRK04194 PRK04194 hypothetical protein; Provisional 392 -235250 PRK04195 PRK04195 replication factor C large subunit; Provisional 482 -235251 PRK04196 PRK04196 V-type ATP synthase subunit B; Provisional 460 -235252 PRK04199 rpl10e 50S ribosomal protein L10e; Reviewed 172 -179781 PRK04200 PRK04200 cofactor-independent phosphoglycerate mutase; Provisional 395 -235253 PRK04201 PRK04201 zinc transporter ZupT; Provisional 265 -235254 PRK04203 rpl1P 50S ribosomal protein L1P; Reviewed 215 -235255 PRK04204 PRK04204 RNA 3'-terminal-phosphate cyclase; Provisional 343 -179785 PRK04205 PRK04205 hypothetical protein; Provisional 229 -179786 PRK04207 PRK04207 glyceraldehyde-3-phosphate dehydrogenase; Provisional 341 -179787 PRK04208 rbcL ribulose bisophosphate carboxylase; Reviewed 468 -235256 PRK04210 PRK04210 phosphoenolpyruvate carboxykinase; Provisional 601 -235257 PRK04211 rps12P 30S ribosomal protein S12P; Reviewed 145 -179790 PRK04213 PRK04213 GTP-binding protein; Provisional 201 -179791 PRK04214 rbn ribonuclease BN/unknown domain fusion protein; Reviewed 412 -235258 PRK04217 PRK04217 hypothetical protein; Provisional 110 -235259 PRK04219 rpl5p 50S ribosomal protein L5P; Reviewed 177 -179793 PRK04220 PRK04220 2-phosphoglycerate kinase; Provisional 301 -179794 PRK04223 rpl22p 50S ribosomal protein L22P; Reviewed 153 -235260 PRK04231 rpl3p 50S ribosomal protein L3P; Reviewed 337 -235261 PRK04233 PRK04233 hypothetical protein; Provisional 129 -235262 PRK04235 PRK04235 hypothetical protein; Provisional 196 -179798 PRK04239 PRK04239 hypothetical protein; Provisional 110 -235263 PRK04243 PRK04243 50S ribosomal protein L15e; Validated 196 -235264 PRK04247 PRK04247 hypothetical protein; Provisional 238 -235265 PRK04250 PRK04250 dihydroorotase; Provisional 398 -179802 PRK04257 PRK04257 hypothetical protein; Provisional 78 -179803 PRK04260 PRK04260 acetylornithine aminotransferase; Provisional 375 -235266 PRK04262 PRK04262 hypothetical protein; Provisional 347 -235267 PRK04266 PRK04266 fibrillarin; Provisional 226 -179806 PRK04270 PRK04270 H/ACA RNA-protein complex component Cbf5p; Reviewed 300 -179807 PRK04280 PRK04280 arginine repressor; Provisional 148 -235268 PRK04282 PRK04282 exosome complex RNA-binding protein Rrp42; Provisional 271 -235269 PRK04284 PRK04284 ornithine carbamoyltransferase; Provisional 332 -235270 PRK04286 PRK04286 hypothetical protein; Provisional 298 -179810 PRK04288 PRK04288 antiholin-like protein LrgB; Provisional 232 -235271 PRK04290 PRK04290 30S ribosomal protein S6e; Validated 115 -179812 PRK04293 PRK04293 adenylosuccinate synthetase; Provisional 333 -235272 PRK04296 PRK04296 thymidine kinase; Provisional 190 -235273 PRK04301 radA DNA repair and recombination protein RadA; Validated 317 -235274 PRK04302 PRK04302 triosephosphate isomerase; Provisional 223 -235275 PRK04306 PRK04306 50S ribosomal protein L21e; Reviewed 98 -235276 PRK04307 PRK04307 putative disulfide oxidoreductase; Provisional 218 -167786 PRK04308 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 445 -235277 PRK04309 PRK04309 DNA-directed RNA polymerase subunit A''; Validated 383 -235278 PRK04311 PRK04311 selenocysteine synthase; Provisional 464 -179820 PRK04313 PRK04313 30S ribosomal protein S4e; Validated 237 -235279 PRK04319 PRK04319 acetyl-CoA synthetase; Provisional 570 -235280 PRK04322 PRK04322 peptidyl-tRNA hydrolase; Provisional 113 -179823 PRK04323 PRK04323 hypothetical protein; Provisional 91 -179824 PRK04325 PRK04325 hypothetical protein; Provisional 74 -179825 PRK04326 PRK04326 methionine synthase; Provisional 330 -235281 PRK04328 PRK04328 hypothetical protein; Provisional 249 -235282 PRK04330 PRK04330 hypothetical protein; Provisional 88 -235283 PRK04333 PRK04333 50S ribosomal protein L14e; Validated 84 -235284 PRK04334 PRK04334 hypothetical protein; Provisional 251 -235285 PRK04335 PRK04335 cell division protein ZipA; Provisional 313 -179831 PRK04337 PRK04337 50S ribosomal protein L35Ae; Validated 87 -235286 PRK04338 PRK04338 N(2),N(2)-dimethylguanosine tRNA methyltransferase; Provisional 382 -235287 PRK04342 PRK04342 DNA topoisomerase VI subunit A; Provisional 367 -235288 PRK04346 PRK04346 tryptophan synthase subunit beta; Validated 397 -235289 PRK04350 PRK04350 thymidine phosphorylase; Provisional 490 -235290 PRK04351 PRK04351 hypothetical protein; Provisional 149 -235291 PRK04358 PRK04358 hypothetical protein; Provisional 217 -235292 PRK04366 PRK04366 glycine dehydrogenase subunit 2; Validated 481 -179839 PRK04374 PRK04374 PII uridylyl-transferase; Provisional 869 -235293 PRK04375 PRK04375 protoheme IX farnesyltransferase; Provisional 296 -179841 PRK04387 PRK04387 hypothetical protein; Provisional 90 -235294 PRK04388 PRK04388 disulfide bond formation protein B; Provisional 172 -179843 PRK04390 rnpA ribonuclease P; Reviewed 120 -235295 PRK04405 prsA peptidylprolyl isomerase; Provisional 298 -235296 PRK04406 PRK04406 hypothetical protein; Provisional 75 -235297 PRK04423 PRK04423 organic solvent tolerance protein; Provisional 798 -179847 PRK04424 PRK04424 fatty acid biosynthesis transcriptional regulator; Provisional 185 -167814 PRK04425 PRK04425 Maf-like protein; Reviewed 196 -179848 PRK04435 PRK04435 hypothetical protein; Provisional 147 -235298 PRK04439 PRK04439 S-adenosylmethionine synthetase; Provisional 399 -235299 PRK04443 PRK04443 acetyl-lysine deacetylase; Provisional 348 -235300 PRK04447 PRK04447 hypothetical protein; Provisional 351 -235301 PRK04452 PRK04452 acetyl-CoA decarbonylase/synthase complex subunit delta; Provisional 319 -235302 PRK04456 PRK04456 acetyl-CoA decarbonylase/synthase complex subunit beta; Reviewed 463 -179854 PRK04457 PRK04457 spermidine synthase; Provisional 262 -179855 PRK04460 PRK04460 nickel responsive regulator; Provisional 137 -179856 PRK04516 minC septum formation inhibitor; Reviewed 235 -235303 PRK04517 PRK04517 hypothetical protein; Provisional 216 -235304 PRK04523 PRK04523 N-acetylornithine carbamoyltransferase; Reviewed 335 -235305 PRK04527 PRK04527 argininosuccinate synthase; Provisional 400 -235306 PRK04531 PRK04531 acetylglutamate kinase; Provisional 398 -235307 PRK04537 PRK04537 ATP-dependent RNA helicase RhlB; Provisional 572 -179862 PRK04539 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 296 -179863 PRK04542 PRK04542 elongation factor P; Provisional 189 -179864 PRK04561 tatA twin arginine translocase protein A; Provisional 75 -235308 PRK04570 PRK04570 cell division protein ZipA; Provisional 243 -235309 PRK04596 minC septum formation inhibitor; Reviewed 248 -179867 PRK04598 tatA twin arginine translocase protein A; Provisional 81 -179868 PRK04612 argD acetylornithine transaminase protein; Provisional 408 -179869 PRK04635 PRK04635 histidinol-phosphate aminotransferase; Provisional 354 -179870 PRK04642 truB tRNA pseudouridine synthase B; Provisional 300 -135173 PRK04654 PRK04654 sec-independent translocase; Provisional 214 -179871 PRK04663 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 438 -179872 PRK04690 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 468 -179873 PRK04694 PRK04694 Maf-like protein; Reviewed 190 -235310 PRK04750 ubiB putative ubiquinone biosynthesis protein UbiB; Reviewed 537 -179875 PRK04758 PRK04758 hypothetical protein; Validated 181 -179876 PRK04761 ppnK inorganic polyphosphate/ATP-NAD kinase; Reviewed 246 -179877 PRK04778 PRK04778 septation ring formation regulator EzrA; Provisional 569 -235311 PRK04781 PRK04781 histidinol-phosphate aminotransferase; Provisional 364 -235312 PRK04792 tolB translocation protein TolB; Provisional 448 -179880 PRK04804 minC septum formation inhibitor; Reviewed 221 -235313 PRK04813 PRK04813 D-alanine--poly(phosphoribitol) ligase subunit 1; Provisional 503 -179882 PRK04820 rnpA ribonuclease P; Reviewed 145 -179883 PRK04833 PRK04833 argininosuccinate lyase; Provisional 455 -235314 PRK04837 PRK04837 ATP-dependent RNA helicase RhlB; Provisional 423 -235315 PRK04841 PRK04841 transcriptional regulator MalT; Provisional 903 -179886 PRK04860 PRK04860 hypothetical protein; Provisional 160 -235316 PRK04863 mukB cell division protein MukB; Provisional 1486 -179888 PRK04870 PRK04870 histidinol-phosphate aminotransferase; Provisional 356 -235317 PRK04885 ppnK inorganic polyphosphate/ATP-NAD kinase; Provisional 265 -235318 PRK04897 PRK04897 heat shock protein HtpX; Provisional 298 -235319 PRK04914 PRK04914 ATP-dependent helicase HepA; Validated 956 -179892 PRK04922 tolB translocation protein TolB; Provisional 433 -179893 PRK04923 PRK04923 ribose-phosphate pyrophosphokinase; Provisional 319 -235320 PRK04926 dgt deoxyguanosinetriphosphate triphosphohydrolase; Provisional 503 -179895 PRK04930 PRK04930 glutathione-regulated potassium-efflux system ancillary protein KefG; Provisional 184 -179896 PRK04940 PRK04940 hypothetical protein; Provisional 180 -235321 PRK04946 PRK04946 hypothetical protein; Provisional 181 -179898 PRK04949 PRK04949 putative sulfate transport protein CysZ; Validated 251 -235322 PRK04950 PRK04950 ProP expression regulator; Provisional 213 -235323 PRK04960 PRK04960 universal stress protein UspB; Provisional 111 -179901 PRK04964 PRK04964 hypothetical protein; Provisional 66 -179902 PRK04965 PRK04965 NADH:flavorubredoxin oxidoreductase; Provisional 377 -179903 PRK04966 PRK04966 hypothetical protein; Provisional 72 -235324 PRK04968 PRK04968 SecY interacting protein Syd; Provisional 181 -179905 PRK04972 PRK04972 putative transporter; Provisional 558 -235325 PRK04974 PRK04974 glycerol-3-phosphate acyltransferase; Validated 818 -235326 PRK04976 torD chaperone protein TorD; Validated 202 -179908 PRK04980 PRK04980 hypothetical protein; Provisional 102 -179909 PRK04984 PRK04984 fatty acid metabolism regulator; Provisional 239 -235327 PRK04987 PRK04987 fumarate reductase subunit C; Provisional 130 -235328 PRK04989 psbM photosystem II reaction center protein M; Provisional 35 -179912 PRK04998 PRK04998 hypothetical protein; Provisional 88 -235329 PRK05007 PRK05007 PII uridylyl-transferase; Provisional 884 -179914 PRK05014 hscB co-chaperone HscB; Provisional 171 -235330 PRK05015 PRK05015 aminopeptidase B; Provisional 424 -235331 PRK05022 PRK05022 anaerobic nitric oxide reductase transcription regulator; Provisional 509 -235332 PRK05031 PRK05031 tRNA (uracil-5-)-methyltransferase; Validated 362 -235333 PRK05033 truB tRNA pseudouridine synthase B; Provisional 312 -235334 PRK05035 PRK05035 electron transport complex protein RnfC; Provisional 695 -179920 PRK05054 PRK05054 exoribonuclease II; Provisional 644 -235335 PRK05057 aroK shikimate kinase I; Reviewed 172 -179922 PRK05066 PRK05066 arginine repressor; Provisional 156 -179923 PRK05070 PRK05070 DNA mismatch repair protein; Provisional 218 -235336 PRK05074 PRK05074 inosine/xanthosine triphosphatase; Reviewed 173 -235337 PRK05077 frsA fermentation/respiration switch protein; Reviewed 414 -235338 PRK05082 PRK05082 N-acetylmannosamine kinase; Provisional 291 -235339 PRK05084 xerS site-specific tyrosine recombinase XerS; Reviewed 357 -235340 PRK05086 PRK05086 malate dehydrogenase; Provisional 312 -179929 PRK05087 PRK05087 D-alanine--poly(phosphoribitol) ligase subunit 2; Validated 78 -235341 PRK05089 PRK05089 cytochrome C oxidase assembly protein; Provisional 188 -179931 PRK05090 PRK05090 hypothetical protein; Validated 95 -235342 PRK05092 PRK05092 PII uridylyl-transferase; Provisional 931 -179933 PRK05093 argD bifunctional N-succinyldiaminopimelate-aminotransferase/acetylornithine transaminase protein; Reviewed 403 -179934 PRK05094 PRK05094 dsDNA-mimic protein; Reviewed 107 -235343 PRK05096 PRK05096 guanosine 5'-monophosphate oxidoreductase; Provisional 346 -235344 PRK05097 PRK05097 Ter macrodomain organizer matS-binding protein; Provisional 150 -179937 PRK05101 PRK05101 galactokinase; Provisional 382 -235345 PRK05105 PRK05105 O-succinylbenzoate synthase; Provisional 322 -235346 PRK05111 PRK05111 acetylornithine deacetylase; Provisional 383 -235347 PRK05113 PRK05113 electron transport complex protein RnfB; Provisional 191 -179941 PRK05114 PRK05114 hypothetical protein; Provisional 59 -235348 PRK05122 PRK05122 major facilitator superfamily transporter; Provisional 399 -235349 PRK05124 cysN sulfate adenylyltransferase subunit 1; Provisional 474 -235350 PRK05134 PRK05134 bifunctional 3-demethylubiquinone-9 3-methyltransferase/ 2-octaprenyl-6-hydroxy phenol methylase; Provisional 233 -235351 PRK05137 tolB translocation protein TolB; Provisional 435 -235352 PRK05151 PRK05151 electron transport complex protein RsxA; Provisional 193 -235353 PRK05157 PRK05157 pyrroloquinoline quinone biosynthesis protein PqqC; Provisional 246 -235354 PRK05159 aspC aspartyl-tRNA synthetase; Provisional 437 -235355 PRK05163 rpsL 30S ribosomal protein S12; Validated 124 -179950 PRK05166 PRK05166 histidinol-phosphate aminotransferase; Provisional 371 -179951 PRK05168 PRK05168 ribonuclease T; Provisional 211 -235356 PRK05170 PRK05170 hypothetical protein; Provisional 147 -179953 PRK05174 PRK05174 3-hydroxydecanoyl-(acyl carrier protein) dehydratase; Validated 172 -235357 PRK05177 minC septum formation inhibitor; Reviewed 239 -235358 PRK05179 rpsM 30S ribosomal protein S13; Validated 122 -235359 PRK05182 PRK05182 DNA-directed RNA polymerase subunit alpha; Provisional 310 -235360 PRK05183 hscA chaperone protein HscA; Provisional 616 -235361 PRK05184 PRK05184 pyrroloquinoline quinone biosynthesis protein PqqB; Provisional 302 -179959 PRK05185 rplT 50S ribosomal protein L20; Provisional 114 -235362 PRK05192 PRK05192 tRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA; Validated 618 -235363 PRK05198 PRK05198 2-dehydro-3-deoxyphosphooctonate aldolase; Provisional 264 -235364 PRK05201 hslU ATP-dependent protease ATP-binding subunit HslU; Provisional 443 -235365 PRK05205 PRK05205 bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase; Provisional 176 -179964 PRK05208 PRK05208 hypothetical protein; Provisional 168 -235366 PRK05218 PRK05218 heat shock protein 90; Provisional 613 -235367 PRK05222 PRK05222 5-methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase; Provisional 758 -235368 PRK05225 PRK05225 ketol-acid reductoisomerase; Validated 487 -235369 PRK05231 PRK05231 homoserine kinase; Provisional 319 -179969 PRK05234 mgsA methylglyoxal synthase; Validated 142 -235370 PRK05244 PRK05244 Der GTPase activator; Provisional 177 -235371 PRK05246 PRK05246 glutathione synthetase; Provisional 316 -235372 PRK05248 PRK05248 hypothetical protein; Provisional 121 -235373 PRK05249 PRK05249 soluble pyridine nucleotide transhydrogenase; Provisional 461 -235374 PRK05250 PRK05250 S-adenosylmethionine synthetase; Validated 384 -235375 PRK05253 PRK05253 sulfate adenylyltransferase subunit 2; Provisional 301 -235376 PRK05254 PRK05254 uracil-DNA glycosylase; Provisional 224 -235377 PRK05255 PRK05255 hypothetical protein; Provisional 171 -235378 PRK05256 PRK05256 condesin subunit E; Provisional 238 -179979 PRK05257 PRK05257 malate:quinone oxidoreductase; Validated 494 -179980 PRK05260 PRK05260 condesin subunit F; Provisional 440 -235379 PRK05261 PRK05261 putative phosphoketolase; Provisional 785 -179982 PRK05264 PRK05264 transcriptional repressor protein MetJ; Provisional 105 -235380 PRK05265 PRK05265 pyridoxine 5'-phosphate synthase; Provisional 239 -235381 PRK05269 PRK05269 transaldolase B; Provisional 318 -235382 PRK05270 PRK05270 galactose-1-phosphate uridylyltransferase; Provisional 493 -235383 PRK05273 PRK05273 D-tyrosyl-tRNA(Tyr) deacylase; Provisional 147 -235384 PRK05274 PRK05274 2-keto-3-deoxygluconate permease; Provisional 326 -235385 PRK05277 PRK05277 chloride channel protein; Provisional 438 -235386 PRK05279 PRK05279 N-acetylglutamate synthase; Validated 441 -179990 PRK05282 PRK05282 (alpha)-aspartyl dipeptidase; Validated 233 -235387 PRK05283 PRK05283 deoxyribose-phosphate aldolase; Provisional 257 -235388 PRK05286 PRK05286 dihydroorotate dehydrogenase 2; Reviewed 344 -235389 PRK05287 PRK05287 hypothetical protein; Provisional 250 -235390 PRK05289 PRK05289 UDP-N-acetylglucosamine acyltransferase; Provisional 262 -235391 PRK05290 PRK05290 hybrid cluster protein; Provisional 546 -235392 PRK05291 trmE tRNA modification GTPase TrmE; Reviewed 449 -179997 PRK05293 glgC glucose-1-phosphate adenylyltransferase; Provisional 380 -235393 PRK05294 carB carbamoyl phosphate synthase large subunit; Reviewed 1066 -235394 PRK05297 PRK05297 phosphoribosylformylglycinamidine synthase; Provisional 1290 -235395 PRK05298 PRK05298 excinuclease ABC subunit B; Provisional 652 -235396 PRK05299 rpsB 30S ribosomal protein S2; Provisional 258 -235397 PRK05301 PRK05301 pyrroloquinoline quinone biosynthesis protein PqqE; Provisional 378 -235398 PRK05302 PRK05302 30S ribosomal protein S7; Validated 156 -235399 PRK05303 flgI flagellar basal body P-ring protein; Provisional 367 -235400 PRK05305 PRK05305 phosphatidylserine decarboxylase; Provisional 206 -235401 PRK05306 infB translation initiation factor IF-2; Validated 746 -180007 PRK05309 PRK05309 30S ribosomal protein S11; Validated 128 -235402 PRK05312 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase; Provisional 336 -180009 PRK05313 PRK05313 hypothetical protein; Provisional 452 -235403 PRK05318 PRK05318 deoxyguanosinetriphosphate triphosphohydrolase-like protein; Provisional 432 -235404 PRK05319 rplD 50S ribosomal protein L4; Provisional 205 -235405 PRK05320 PRK05320 rhodanese superfamily protein; Provisional 257 -235406 PRK05321 PRK05321 nicotinate phosphoribosyltransferase; Provisional 400 -235407 PRK05322 PRK05322 galactokinase; Provisional 387 -235408 PRK05324 PRK05324 succinylglutamate desuccinylase; Provisional 329 -235409 PRK05325 PRK05325 hypothetical protein; Provisional 401 -235410 PRK05326 PRK05326 potassium/proton antiporter; Reviewed 562 -235411 PRK05327 rpsD 30S ribosomal protein S4; Validated 203 -235412 PRK05329 PRK05329 anaerobic glycerol-3-phosphate dehydrogenase subunit B; Validated 422 -235413 PRK05330 PRK05330 coproporphyrinogen III oxidase; Provisional 300 -235414 PRK05331 PRK05331 putative phosphate acyltransferase; Provisional 334 -235415 PRK05333 PRK05333 NAD-dependent deacetylase; Provisional 285 -235416 PRK05335 PRK05335 tRNA (uracil-5-)-methyltransferase Gid; Reviewed 436 -235417 PRK05337 PRK05337 beta-hexosaminidase; Provisional 337 -235418 PRK05338 rplS 50S ribosomal protein L19; Provisional 116 -235419 PRK05339 PRK05339 PEP synthetase regulatory protein; Provisional 269 -235420 PRK05340 PRK05340 UDP-2,3-diacylglucosamine hydrolase; Provisional 241 -235421 PRK05341 PRK05341 homogentisate 1,2-dioxygenase; Provisional 438 -235422 PRK05342 clpX ATP-dependent protease ATP-binding subunit ClpX; Provisional 412 -235423 PRK05346 PRK05346 Na(+)-translocating NADH-quinone reductase subunit C; Provisional 256 -235424 PRK05347 PRK05347 glutaminyl-tRNA synthetase; Provisional 554 -235425 PRK05349 PRK05349 Na(+)-translocating NADH-quinone reductase subunit B; Provisional 405 -180033 PRK05350 PRK05350 acyl carrier protein; Provisional 82 -235426 PRK05352 PRK05352 Na(+)-translocating NADH-quinone reductase subunit A; Provisional 448 -235427 PRK05354 PRK05354 arginine decarboxylase; Provisional 634 -235428 PRK05355 PRK05355 3-phosphoserine/phosphohydroxythreonine aminotransferase; Provisional 360 -235429 PRK05359 PRK05359 oligoribonuclease; Provisional 181 -235430 PRK05362 PRK05362 phosphopentomutase; Provisional 394 -235431 PRK05363 PRK05363 TMAO/DMSO reductase; Reviewed 280 -180040 PRK05365 PRK05365 malonic semialdehyde reductase; Provisional 195 -235432 PRK05367 PRK05367 glycine dehydrogenase; Provisional 954 -235433 PRK05368 PRK05368 homoserine O-succinyltransferase; Provisional 302 -235434 PRK05370 PRK05370 argininosuccinate synthase; Validated 447 -235435 PRK05371 PRK05371 x-prolyl-dipeptidyl aminopeptidase; Provisional 767 -180045 PRK05377 PRK05377 fructose-1,6-bisphosphate aldolase; Reviewed 296 -235436 PRK05379 PRK05379 bifunctional nicotinamide mononucleotide adenylyltransferase/ADP-ribose pyrophosphatase; Provisional 340 -235437 PRK05380 pyrG CTP synthetase; Validated 533 -235438 PRK05382 PRK05382 chorismate synthase; Validated 359 -235439 PRK05385 PRK05385 phosphoribosylaminoimidazole synthetase; Provisional 327 -235440 PRK05387 PRK05387 histidinol-phosphate aminotransferase; Provisional 353 -235441 PRK05388 argJ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase protein; Validated 395 -235442 PRK05389 truB tRNA pseudouridine synthase B; Provisional 305 -235443 PRK05395 PRK05395 3-dehydroquinate dehydratase; Provisional 146 -180054 PRK05396 tdh L-threonine 3-dehydrogenase; Validated 341 -180055 PRK05398 PRK05398 formyl-coenzyme A transferase; Provisional 416 -235444 PRK05399 PRK05399 DNA mismatch repair protein MutS; Provisional 854 -235445 PRK05402 PRK05402 glycogen branching enzyme; Provisional 726 -235446 PRK05406 PRK05406 LamB/YcsF family protein; Provisional 246 -180059 PRK05408 PRK05408 oxidative damage protection protein; Provisional 90 -235447 PRK05409 PRK05409 hypothetical protein; Provisional 281 -180061 PRK05412 PRK05412 putative nucleotide-binding protein; Reviewed 161 -235448 PRK05414 PRK05414 urocanate hydratase; Provisional 556 -235449 PRK05415 PRK05415 hypothetical protein; Provisional 341 -235450 PRK05416 PRK05416 glmZ(sRNA)-inactivating NTPase; Provisional 288 -235451 PRK05417 PRK05417 glutathione-dependent formaldehyde-activating enzyme; Provisional 191 -235452 PRK05419 PRK05419 putative sulfite oxidase subunit YedZ; Reviewed 205 -235453 PRK05420 PRK05420 aquaporin Z; Provisional 231 -235454 PRK05421 PRK05421 hypothetical protein; Provisional 263 -235455 PRK05422 smpB SsrA-binding protein; Validated 148 -180070 PRK05423 PRK05423 hypothetical protein; Provisional 104 -180071 PRK05424 rplA 50S ribosomal protein L1; Validated 230 -235456 PRK05425 PRK05425 asparagine synthetase AsnA; Provisional 327 -235457 PRK05426 PRK05426 peptidyl-tRNA hydrolase; Provisional 189 -235458 PRK05427 PRK05427 putative manganese-dependent inorganic pyrophosphatase; Provisional 308 -235459 PRK05428 PRK05428 HPr kinase/phosphorylase; Provisional 308 -235460 PRK05429 PRK05429 gamma-glutamyl kinase; Provisional 372 -235461 PRK05431 PRK05431 seryl-tRNA synthetase; Provisional 425 -235462 PRK05433 PRK05433 GTP-binding protein LepA; Provisional 600 -235463 PRK05434 PRK05434 phosphoglyceromutase; Provisional 507 -235464 PRK05435 rpmA 50S ribosomal protein L27; Validated 82 -235465 PRK05437 PRK05437 isopentenyl pyrophosphate isomerase; Provisional 352 -235466 PRK05439 PRK05439 pantothenate kinase; Provisional 311 -235467 PRK05441 murQ N-acetylmuramic acid-6-phosphate etherase; Reviewed 299 -235468 PRK05442 PRK05442 malate dehydrogenase; Provisional 326 -235469 PRK05443 PRK05443 polyphosphate kinase; Provisional 691 -235470 PRK05444 PRK05444 1-deoxy-D-xylulose-5-phosphate synthase; Provisional 580 -180087 PRK05445 PRK05445 hypothetical protein; Validated 164 -235471 PRK05446 PRK05446 imidazole glycerol-phosphate dehydratase/histidinol phosphatase; Provisional 354 -235472 PRK05447 PRK05447 1-deoxy-D-xylulose 5-phosphate reductoisomerase; Provisional 385 -180090 PRK05449 PRK05449 aspartate alpha-decarboxylase; Provisional 126 -235473 PRK05450 PRK05450 3-deoxy-manno-octulosonate cytidylyltransferase; Provisional 245 -235474 PRK05451 PRK05451 dihydroorotase; Provisional 345 -235475 PRK05452 PRK05452 anaerobic nitric oxide reductase flavorubredoxin; Provisional 479 -235476 PRK05454 PRK05454 glucosyltransferase MdoH; Provisional 605 -235477 PRK05456 PRK05456 ATP-dependent protease subunit HslV; Provisional 172 -235478 PRK05457 PRK05457 heat shock protein HtpX; Provisional 284 -235479 PRK05458 PRK05458 guanosine 5'-monophosphate oxidoreductase; Provisional 326 -180098 PRK05461 apaG CO2+/MG2+ efflux protein ApaG; Reviewed 127 -235480 PRK05462 PRK05462 S-adenosylmethionine decarboxylase; Provisional 266 -180100 PRK05463 PRK05463 hypothetical protein; Provisional 262 -235481 PRK05464 PRK05464 Na(+)-translocating NADH-quinone reductase subunit F; Provisional 409 -235482 PRK05465 PRK05465 ethanolamine ammonia-lyase small subunit; Provisional 260 -235483 PRK05467 PRK05467 Fe(II)-dependent oxygenase superfamily protein; Provisional 226 -235484 PRK05469 PRK05469 peptidase T; Provisional 408 -180105 PRK05470 PRK05470 fumarate reductase subunit D; Provisional 118 -235485 PRK05471 PRK05471 CDP-diacylglycerol pyrophosphatase; Provisional 252 -235486 PRK05472 PRK05472 redox-sensing transcriptional repressor Rex; Provisional 213 -180108 PRK05473 IreB-like IreB family regulatory phosphoprotein. IreB (EF1202) was characterized in Enterococcus faecalis as a small protein, well-conserved in the Firmicutes. It belongs to a system that includes the Ser/Thr protein kinase IreK, and phosphatase IreP, undergoes phosphorylation on threonine residues, and is involved in regulating cephalosporin resistance. This family was previously named DUF965 by Pfam model pfam06135 86 -235487 PRK05474 PRK05474 xylose isomerase; Provisional 437 -235488 PRK05476 PRK05476 S-adenosyl-L-homocysteine hydrolase; Provisional 425 -235489 PRK05477 gatB aspartyl/glutamyl-tRNA amidotransferase subunit B; Validated 474 -235490 PRK05478 PRK05478 isopropylmalate isomerase large subunit; Validated 466 -235491 PRK05479 PRK05479 ketol-acid reductoisomerase; Provisional 330 -235492 PRK05480 PRK05480 uridine/cytidine kinase; Provisional 209 -235493 PRK05481 PRK05481 lipoyl synthase; Provisional 289 -235494 PRK05482 PRK05482 potassium-transporting ATPase subunit A; Provisional 559 -180117 PRK05483 rplN 50S ribosomal protein L14; Validated 122 -235495 PRK05498 rplF 50S ribosomal protein L6; Validated 178 -180119 PRK05500 PRK05500 bifunctional orotidine 5'-phosphate decarboxylase/orotate phosphoribosyltransferase protein; Validated 477 -180120 PRK05506 PRK05506 bifunctional sulfate adenylyltransferase subunit 1/adenylylsulfate kinase protein; Provisional 632 -180121 PRK05508 PRK05508 methionine sulfoxide reductase B; Provisional 119 -235496 PRK05518 rpl6p 50S ribosomal protein L6P; Reviewed 180 -235497 PRK05528 PRK05528 methionine sulfoxide reductase A; Provisional 156 -135428 PRK05529 PRK05529 cell division protein FtsQ; Provisional 255 -180124 PRK05537 PRK05537 bifunctional sulfate adenylyltransferase subunit 1/adenylylsulfate kinase protein; Validated 568 -235498 PRK05541 PRK05541 adenylylsulfate kinase; Provisional 176 -235499 PRK05550 PRK05550 bifunctional methionine sulfoxide reductase B/A protein; Provisional 283 -235500 PRK05557 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Validated 248 -235501 PRK05559 PRK05559 DNA topoisomerase IV subunit B; Reviewed 631 -235502 PRK05560 PRK05560 DNA gyrase subunit A; Validated 805 -235503 PRK05561 PRK05561 DNA topoisomerase IV subunit A; Validated 742 -235504 PRK05562 PRK05562 precorrin-2 dehydrogenase; Provisional 223 -235505 PRK05563 PRK05563 DNA polymerase III subunits gamma and tau; Validated 559 -180132 PRK05564 PRK05564 DNA polymerase III subunit delta'; Validated 313 -235506 PRK05565 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 247 -235507 PRK05567 PRK05567 inosine 5'-monophosphate dehydrogenase; Reviewed 486 -235508 PRK05568 PRK05568 flavodoxin; Provisional 142 -135442 PRK05569 PRK05569 flavodoxin; Provisional 141 -235509 PRK05571 PRK05571 ribose-5-phosphate isomerase B; Provisional 148 -180137 PRK05572 PRK05572 sporulation sigma factor SigF; Validated 252 -235510 PRK05573 rplU 50S ribosomal protein L21; Validated 103 -235511 PRK05574 holA DNA polymerase III subunit delta; Reviewed 340 -180140 PRK05575 cbiC precorrin-8X methylmutase; Validated 204 -235512 PRK05576 PRK05576 cobalt-precorrin-2 C(20)-methyltransferase; Validated 229 -180142 PRK05578 PRK05578 cytidine deaminase; Validated 131 -235513 PRK05579 PRK05579 bifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Validated 399 -235514 PRK05580 PRK05580 primosome assembly protein PriA; Validated 679 -235515 PRK05581 PRK05581 ribulose-phosphate 3-epimerase; Validated 220 -235516 PRK05582 PRK05582 DNA topoisomerase I; Validated 650 -235517 PRK05583 PRK05583 ribosomal protein L7Ae family protein; Provisional 104 -180148 PRK05584 PRK05584 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Validated 230 -235518 PRK05585 yajC preprotein translocase subunit YajC; Validated 106 -180150 PRK05586 PRK05586 biotin carboxylase; Validated 447 -235519 PRK05588 PRK05588 histidinol-phosphatase; Provisional 255 -235520 PRK05589 PRK05589 peptide chain release factor 2; Provisional 325 -235521 PRK05590 PRK05590 hypothetical protein; Provisional 166 -235522 PRK05591 rplQ 50S ribosomal protein L17; Validated 113 -235523 PRK05592 rplO 50S ribosomal protein L15; Reviewed 146 -235524 PRK05593 rplR 50S ribosomal protein L18; Reviewed 117 -235525 PRK05595 PRK05595 replicative DNA helicase; Provisional 444 -235526 PRK05597 PRK05597 molybdopterin biosynthesis protein MoeB; Validated 355 -235527 PRK05599 PRK05599 hypothetical protein; Provisional 246 -235528 PRK05600 PRK05600 thiamine biosynthesis protein ThiF; Validated 370 -235529 PRK05601 PRK05601 DNA polymerase III subunit epsilon; Validated 377 -235530 PRK05602 PRK05602 RNA polymerase sigma factor; Reviewed 186 -235531 PRK05605 PRK05605 long-chain-fatty-acid--CoA ligase; Validated 573 -180161 PRK05609 nusG transcription antitermination protein NusG; Validated 181 -235532 PRK05610 rpsQ 30S ribosomal protein S17; Reviewed 84 -180163 PRK05611 rpmD 50S ribosomal protein L30; Reviewed 59 -168128 PRK05613 PRK05613 O-acetylhomoserine aminocarboxypropyltransferase; Validated 437 -180164 PRK05614 gltA type II citrate synthase; Reviewed 419 -235533 PRK05617 PRK05617 3-hydroxyisobutyryl-CoA hydrolase; Provisional 342 -235534 PRK05618 PRK05618 50S ribosomal protein L25/general stress protein Ctc; Reviewed 197 -180167 PRK05620 PRK05620 long-chain-fatty-acid--CoA ligase; Validated 576 -235535 PRK05621 PRK05621 F0F1 ATP synthase subunit gamma; Validated 284 -180169 PRK05625 PRK05625 5-amino-6-(5-phosphoribosylamino)uracil reductase; Validated 217 -180170 PRK05626 rpsO 30S ribosomal protein S15; Reviewed 89 -235536 PRK05627 PRK05627 bifunctional riboflavin kinase/FMN adenylyltransferase; Reviewed 305 -180172 PRK05628 PRK05628 coproporphyrinogen III oxidase; Validated 375 -180173 PRK05629 PRK05629 hypothetical protein; Validated 318 -180174 PRK05630 PRK05630 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 422 -235537 PRK05632 PRK05632 phosphate acetyltransferase; Reviewed 684 -235538 PRK05634 PRK05634 nucleosidase; Provisional 185 -180177 PRK05636 PRK05636 replicative DNA helicase; Provisional 505 -180178 PRK05637 PRK05637 anthranilate synthase component II; Provisional 208 -235539 PRK05638 PRK05638 threonine synthase; Validated 442 -168145 PRK05639 PRK05639 4-aminobutyrate aminotransferase; Provisional 457 -101884 PRK05640 PRK05640 putative monovalent cation/H+ antiporter subunit B; Reviewed 151 -235540 PRK05641 PRK05641 putative acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; Validated 153 -168147 PRK05642 PRK05642 DNA replication initiation factor; Validated 234 -235541 PRK05643 PRK05643 DNA polymerase III subunit beta; Validated 367 -235542 PRK05644 gyrB DNA gyrase subunit B; Validated 638 -135493 PRK05645 PRK05645 lipid A biosynthesis lauroyl acyltransferase; Provisional 295 -235543 PRK05646 PRK05646 lipid A biosynthesis lauroyl acyltransferase; Provisional 310 -235544 PRK05647 purN phosphoribosylglycinamide formyltransferase; Reviewed 200 -235545 PRK05650 PRK05650 short chain dehydrogenase; Provisional 270 -235546 PRK05653 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Validated 246 -235547 PRK05654 PRK05654 acetyl-CoA carboxylase subunit beta; Validated 292 -168156 PRK05656 PRK05656 acetyl-CoA acetyltransferase; Provisional 393 -235548 PRK05657 PRK05657 RNA polymerase sigma factor RpoS; Validated 325 -235549 PRK05658 PRK05658 RNA polymerase sigma factor RpoD; Validated 619 -168159 PRK05659 PRK05659 sulfur carrier protein ThiS; Validated 66 -235550 PRK05660 PRK05660 HemN family oxidoreductase; Provisional 378 -180188 PRK05664 PRK05664 threonine-phosphate decarboxylase; Reviewed 330 -168162 PRK05665 PRK05665 amidotransferase; Provisional 240 -235551 PRK05667 dnaG DNA primase; Validated 580 -235552 PRK05670 PRK05670 anthranilate synthase component II; Provisional 189 -168165 PRK05671 PRK05671 aspartate-semialdehyde dehydrogenase; Reviewed 336 -235553 PRK05672 dnaE2 error-prone DNA polymerase; Validated 1046 -235554 PRK05673 dnaE DNA polymerase III subunit alpha; Validated 1135 -168168 PRK05674 PRK05674 gamma-carboxygeranoyl-CoA hydratase; Validated 265 -180193 PRK05675 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 570 -168170 PRK05677 PRK05677 long-chain-fatty-acid--CoA ligase; Validated 562 -180194 PRK05678 PRK05678 succinyl-CoA synthetase subunit alpha; Validated 291 -235555 PRK05679 PRK05679 pyridoxamine 5'-phosphate oxidase; Provisional 195 -180196 PRK05680 flgB flagellar basal body rod protein FlgB; Reviewed 137 -235556 PRK05681 flgC flagellar basal body rod protein FlgC; Reviewed 135 -235557 PRK05682 flgE flagellar hook protein FlgE; Validated 407 -235558 PRK05683 flgK flagellar hook-associated protein FlgK; Validated 676 -235559 PRK05684 flgJ flagellar rod assembly protein/muramidase FlgJ; Validated 312 -235560 PRK05685 fliS flagellar protein FliS; Validated 132 -235561 PRK05686 fliG flagellar motor switch protein G; Validated 339 -235562 PRK05687 fliH flagellar assembly protein H; Validated 246 -168181 PRK05688 fliI flagellum-specific ATP synthase; Validated 451 -235563 PRK05689 fliJ flagellar biosynthesis chaperone; Validated 147 -180204 PRK05690 PRK05690 molybdopterin biosynthesis protein MoeB; Provisional 245 -235564 PRK05691 PRK05691 peptide synthase; Validated 4334 -180206 PRK05692 PRK05692 hydroxymethylglutaryl-CoA lyase; Provisional 287 -168186 PRK05693 PRK05693 short chain dehydrogenase; Provisional 274 -180207 PRK05696 fliL flagellar basal body-associated protein FliL; Reviewed 170 -235565 PRK05697 PRK05697 flagellar basal body-associated protein FliL-like protein; Validated 137 -168189 PRK05698 fliN flagellar motor switch protein; Validated 155 -235566 PRK05699 fliP flagellar biosynthesis protein FliP; Reviewed 245 -235567 PRK05700 fliQ flagellar biosynthesis protein FliQ; Validated 89 -235568 PRK05701 fliR flagellar biosynthesis protein FliR; Reviewed 242 -235569 PRK05702 flhB flagellar biosynthesis protein FlhB; Reviewed 359 -235570 PRK05703 flhF flagellar biosynthesis regulator FlhF; Validated 424 -235571 PRK05704 PRK05704 dihydrolipoamide succinyltransferase; Validated 407 -180215 PRK05707 PRK05707 DNA polymerase III subunit delta'; Validated 328 -235572 PRK05708 PRK05708 2-dehydropantoate 2-reductase; Provisional 305 -235573 PRK05710 PRK05710 glutamyl-Q tRNA(Asp) synthetase; Reviewed 299 -235574 PRK05711 PRK05711 DNA polymerase III subunit epsilon; Provisional 240 -235575 PRK05713 PRK05713 hypothetical protein; Provisional 312 -168201 PRK05714 PRK05714 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Provisional 405 -180218 PRK05715 PRK05715 NADH:ubiquinone oxidoreductase subunit K; Validated 100 -235576 PRK05716 PRK05716 methionine aminopeptidase; Validated 252 -168204 PRK05717 PRK05717 oxidoreductase; Validated 255 -235577 PRK05718 PRK05718 keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase; Provisional 212 -235578 PRK05720 mtnA methylthioribose-1-phosphate isomerase; Reviewed 344 -235579 PRK05722 PRK05722 glucose-6-phosphate 1-dehydrogenase; Validated 495 -168208 PRK05723 PRK05723 flavodoxin; Provisional 151 -235580 PRK05724 PRK05724 acetyl-CoA carboxylase carboxyltransferase subunit alpha; Validated 319 -235581 PRK05728 PRK05728 DNA polymerase III subunit chi; Validated 142 -235582 PRK05729 valS valyl-tRNA synthetase; Reviewed 874 -235583 PRK05731 PRK05731 thiamine monophosphate kinase; Provisional 318 -235584 PRK05732 PRK05732 2-octaprenyl-6-methoxyphenyl hydroxylase; Validated 395 -235585 PRK05733 PRK05733 single-stranded DNA-binding protein; Provisional 172 -235586 PRK05738 rplW 50S ribosomal protein L23; Reviewed 92 -235587 PRK05740 secE preprotein translocase subunit SecE; Reviewed 92 -180230 PRK05742 PRK05742 nicotinate-nucleotide pyrophosphorylase; Provisional 277 -235588 PRK05743 ileS isoleucyl-tRNA synthetase; Reviewed 912 -180232 PRK05748 PRK05748 replicative DNA helicase; Provisional 448 -235589 PRK05749 PRK05749 3-deoxy-D-manno-octulosonic-acid transferase; Reviewed 425 -180234 PRK05751 PRK05751 preprotein translocase subunit SecB; Validated 156 -235590 PRK05752 PRK05752 uroporphyrinogen-III synthase; Validated 255 -180236 PRK05753 PRK05753 nucleoside diphosphate kinase regulator; Provisional 137 -235591 PRK05755 PRK05755 DNA polymerase I; Provisional 880 -235592 PRK05756 PRK05756 pyridoxamine kinase; Validated 286 -235593 PRK05758 PRK05758 F0F1 ATP synthase subunit delta; Validated 177 -180240 PRK05759 PRK05759 F0F1 ATP synthase subunit B; Validated 156 -180241 PRK05760 PRK05760 F0F1 ATP synthase subunit I; Validated 124 -235594 PRK05761 PRK05761 DNA polymerase I; Reviewed 787 -235595 PRK05762 PRK05762 DNA polymerase II; Reviewed 786 -235596 PRK05764 PRK05764 aspartate aminotransferase; Provisional 393 -235597 PRK05765 PRK05765 precorrin-3B C17-methyltransferase; Provisional 246 -235598 PRK05766 rps14P 30S ribosomal protein S14P; Reviewed 52 -180247 PRK05767 rpl44e 50S ribosomal protein L44e; Validated 92 -235599 PRK05769 PRK05769 4-aminobutyrate aminotransferase; Provisional 441 -235600 PRK05771 PRK05771 V-type ATP synthase subunit I; Validated 646 -168237 PRK05772 PRK05772 translation initiation factor IF-2B subunit alpha; Provisional 363 -235601 PRK05773 PRK05773 3,4-dihydroxy-2-butanone 4-phosphate synthase; Validated 219 -235602 PRK05776 PRK05776 DNA topoisomerase I; Provisional 670 -235603 PRK05777 PRK05777 NADH:ubiquinone oxidoreductase subunit N; Provisional 476 -235604 PRK05778 PRK05778 2-oxoglutarate ferredoxin oxidoreductase subunit beta; Validated 301 -235605 PRK05782 PRK05782 bifunctional sirohydrochlorin cobalt chelatase/precorrin-8X methylmutase; Validated 335 -235606 PRK05783 PRK05783 hypothetical protein; Provisional 84 -180256 PRK05784 PRK05784 phosphoribosylamine--glycine ligase; Provisional 486 -235607 PRK05785 PRK05785 hypothetical protein; Provisional 226 -235608 PRK05786 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 238 -235609 PRK05787 PRK05787 cobalt-precorrin-6Y C(5)-methyltransferase; Validated 210 -235610 PRK05788 PRK05788 cobalamin biosynthesis protein CbiG; Validated 315 -180261 PRK05790 PRK05790 putative acyltransferase; Provisional 393 -235611 PRK05793 PRK05793 amidophosphoribosyltransferase; Provisional 469 -180263 PRK05799 PRK05799 coproporphyrinogen III oxidase; Provisional 374 -235612 PRK05800 cobU adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase; Validated 170 -235613 PRK05802 PRK05802 hypothetical protein; Provisional 320 -180266 PRK05803 PRK05803 sporulation sigma factor SigK; Reviewed 233 -180267 PRK05805 PRK05805 phosphate butyryltransferase; Validated 301 -235614 PRK05807 PRK05807 hypothetical protein; Provisional 136 -180269 PRK05808 PRK05808 3-hydroxybutyryl-CoA dehydrogenase; Validated 282 -180270 PRK05809 PRK05809 3-hydroxybutyryl-CoA dehydratase; Validated 260 -235615 PRK05812 secD preprotein translocase subunit SecD; Reviewed 462 -235616 PRK05813 PRK05813 single-stranded DNA-binding protein; Provisional 219 -235617 PRK05815 PRK05815 F0F1 ATP synthase subunit A; Validated 227 -235618 PRK05818 PRK05818 DNA polymerase III subunit delta'; Validated 261 -180275 PRK05819 deoD purine nucleoside phosphorylase; Reviewed 235 -180276 PRK05820 deoA thymidine phosphorylase; Reviewed 440 -235619 PRK05826 PRK05826 pyruvate kinase; Provisional 465 -180278 PRK05828 PRK05828 acyl carrier protein; Validated 84 -180279 PRK05834 PRK05834 hypothetical protein; Provisional 194 -180280 PRK05835 PRK05835 fructose-bisphosphate aldolase; Provisional 307 -180281 PRK05839 PRK05839 hypothetical protein; Provisional 374 -235620 PRK05841 flgE flagellar hook protein FlgE; Validated 603 -235621 PRK05842 flgD flagellar basal body rod modification protein; Reviewed 295 -180284 PRK05844 PRK05844 pyruvate flavodoxin oxidoreductase subunit gamma; Validated 186 -235622 PRK05846 PRK05846 NADH:ubiquinone oxidoreductase subunit M; Reviewed 497 -180286 PRK05848 PRK05848 nicotinate-nucleotide pyrophosphorylase; Provisional 273 -235623 PRK05849 PRK05849 hypothetical protein; Provisional 783 -235624 PRK05850 PRK05850 acyl-CoA synthetase; Validated 578 -180289 PRK05851 PRK05851 long-chain-fatty-acid--[acyl-carrier-protein] ligase; Validated 525 -235625 PRK05852 PRK05852 acyl-CoA synthetase; Validated 534 -235626 PRK05853 PRK05853 hypothetical protein; Validated 161 -235627 PRK05854 PRK05854 short chain dehydrogenase; Provisional 313 -235628 PRK05855 PRK05855 short chain dehydrogenase; Validated 582 -180293 PRK05857 PRK05857 acyl-CoA synthetase; Validated 540 -235629 PRK05858 PRK05858 hypothetical protein; Provisional 542 -180295 PRK05862 PRK05862 enoyl-CoA hydratase; Provisional 257 -135627 PRK05863 PRK05863 sulfur carrier protein ThiS; Provisional 65 -168278 PRK05864 PRK05864 enoyl-CoA hydratase; Provisional 276 -235630 PRK05865 PRK05865 hypothetical protein; Provisional 854 -235631 PRK05866 PRK05866 short chain dehydrogenase; Provisional 293 -135631 PRK05867 PRK05867 short chain dehydrogenase; Provisional 253 -180297 PRK05868 PRK05868 hypothetical protein; Validated 372 -235632 PRK05869 PRK05869 enoyl-CoA hydratase; Validated 222 -180298 PRK05870 PRK05870 enoyl-CoA hydratase; Provisional 249 -235633 PRK05872 PRK05872 short chain dehydrogenase; Provisional 296 -102036 PRK05874 PRK05874 L-fuculose-phosphate aldolase; Validated 217 -180300 PRK05875 PRK05875 short chain dehydrogenase; Provisional 276 -135637 PRK05876 PRK05876 short chain dehydrogenase; Provisional 275 -235634 PRK05877 PRK05877 aminodeoxychorismate synthase component I; Provisional 405 -235635 PRK05878 PRK05878 pyruvate phosphate dikinase; Provisional 530 -180303 PRK05880 PRK05880 F0F1 ATP synthase subunit C; Validated 81 -180304 PRK05883 PRK05883 acyl carrier protein; Validated 91 -135642 PRK05884 PRK05884 short chain dehydrogenase; Provisional 223 -235636 PRK05886 yajC preprotein translocase subunit YajC; Validated 109 -235637 PRK05888 PRK05888 NADH dehydrogenase subunit I; Provisional 164 -180306 PRK05889 PRK05889 putative acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; Provisional 71 -180307 PRK05892 PRK05892 nucleoside diphosphate kinase regulator; Provisional 158 -235638 PRK05896 PRK05896 DNA polymerase III subunits gamma and tau; Validated 605 -135648 PRK05898 dnaE DNA polymerase III DnaE; Validated 971 -235639 PRK05899 PRK05899 transketolase; Reviewed 586 -235640 PRK05901 PRK05901 RNA polymerase sigma factor; Provisional 509 -235641 PRK05904 PRK05904 coproporphyrinogen III oxidase; Provisional 353 -235642 PRK05905 PRK05905 hypothetical protein; Provisional 258 -168292 PRK05906 PRK05906 lipid A biosynthesis lauroyl acyltransferase; Provisional 454 -235643 PRK05907 PRK05907 hypothetical protein; Provisional 311 -168293 PRK05910 PRK05910 type III secretion system protein; Validated 584 -235644 PRK05911 PRK05911 RNA polymerase sigma factor sigma-28; Reviewed 257 -235645 PRK05912 PRK05912 tyrosyl-tRNA synthetase; Validated 408 -102059 PRK05917 PRK05917 DNA polymerase III subunit delta'; Validated 290 -180312 PRK05920 PRK05920 aromatic acid decarboxylase; Validated 204 -102061 PRK05922 PRK05922 type III secretion system ATPase; Validated 434 -235646 PRK05925 PRK05925 aspartate kinase; Provisional 440 -168296 PRK05926 PRK05926 hypothetical protein; Provisional 370 -135660 PRK05927 PRK05927 hypothetical protein; Provisional 350 -235647 PRK05928 hemD uroporphyrinogen-III synthase; Reviewed 249 -235648 PRK05932 PRK05932 RNA polymerase factor sigma-54; Reviewed 455 -180315 PRK05933 PRK05933 type III secretion system protein; Validated 372 -168300 PRK05934 PRK05934 type III secretion system protein; Validated 341 -235649 PRK05935 PRK05935 biotin--protein ligase; Provisional 190 -102071 PRK05937 PRK05937 8-amino-7-oxononanoate synthase; Provisional 370 -235650 PRK05939 PRK05939 hypothetical protein; Provisional 397 -235651 PRK05940 PRK05940 anthranilate synthase component I-like protein; Validated 463 -180317 PRK05942 PRK05942 aspartate aminotransferase; Provisional 394 -180318 PRK05943 PRK05943 50S ribosomal protein L25; Reviewed 94 -180319 PRK05945 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 575 -180320 PRK05948 PRK05948 precorrin-2 methyltransferase; Provisional 238 -180321 PRK05949 PRK05949 RNA polymerase sigma factor; Validated 327 -235652 PRK05950 sdhB succinate dehydrogenase iron-sulfur subunit; Reviewed 232 -180323 PRK05951 ubiA prenyltransferase; Reviewed 296 -235653 PRK05952 PRK05952 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 381 -180325 PRK05953 PRK05953 precorrin-8X methylmutase; Validated 208 -180326 PRK05954 PRK05954 precorrin-8X methylmutase; Provisional 203 -235654 PRK05957 PRK05957 aspartate aminotransferase; Provisional 389 -235655 PRK05958 PRK05958 8-amino-7-oxononanoate synthase; Reviewed 385 -168315 PRK05962 PRK05962 amidase; Validated 424 -180328 PRK05963 PRK05963 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 326 -235656 PRK05964 PRK05964 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 423 -180330 PRK05965 PRK05965 hypothetical protein; Provisional 459 -235657 PRK05967 PRK05967 cystathionine beta-lyase; Provisional 395 -168320 PRK05968 PRK05968 hypothetical protein; Provisional 389 -235658 PRK05972 ligD ATP-dependent DNA ligase; Reviewed 860 -168322 PRK05973 PRK05973 replicative DNA helicase; Provisional 237 -235659 PRK05974 PRK05974 phosphoribosylformylglycinamidine synthase subunit PurS; Reviewed 80 -168324 PRK05975 PRK05975 3-carboxy-cis,cis-muconate cycloisomerase; Provisional 351 -235660 PRK05976 PRK05976 dihydrolipoamide dehydrogenase; Validated 472 -180334 PRK05978 PRK05978 hypothetical protein; Provisional 148 -180335 PRK05980 PRK05980 enoyl-CoA hydratase; Provisional 260 -235661 PRK05981 PRK05981 enoyl-CoA hydratase; Provisional 266 -180337 PRK05985 PRK05985 cytosine deaminase; Provisional 391 -235662 PRK05986 PRK05986 cob(I)alamin adenolsyltransferase/cobinamide ATP-dependent adenolsyltransferase; Validated 191 -180339 PRK05988 PRK05988 formate dehydrogenase subunit gamma; Validated 156 -235663 PRK05989 cobN cobaltochelatase subunit CobN; Reviewed 1244 -180341 PRK05990 PRK05990 precorrin-2 C(20)-methyltransferase; Reviewed 241 -180342 PRK05991 PRK05991 precorrin-3B C17-methyltransferase; Provisional 250 -180343 PRK05993 PRK05993 short chain dehydrogenase; Provisional 277 -180344 PRK05994 PRK05994 O-acetylhomoserine aminocarboxypropyltransferase; Validated 427 -235664 PRK05995 PRK05995 enoyl-CoA hydratase; Provisional 262 -235665 PRK05996 motB flagellar motor protein MotB; Validated 423 -235666 PRK06002 fliI flagellum-specific ATP synthase; Validated 450 -168340 PRK06003 flgB flagellar basal body rod protein FlgB; Reviewed 126 -235667 PRK06004 flgB flagellar basal body rod protein FlgB; Reviewed 127 -180347 PRK06005 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 160 -235668 PRK06007 fliF flagellar MS-ring protein; Reviewed 542 -235669 PRK06008 flgL flagellar hook-associated protein FlgL; Validated 348 -235670 PRK06009 flgD flagellar basal body rod modification protein; Reviewed 140 -235671 PRK06010 fliQ flagellar biosynthesis protein FliQ; Reviewed 88 -235672 PRK06012 flhA flagellar biosynthesis protein FlhA; Validated 697 -168348 PRK06015 PRK06015 keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase; Provisional 201 -235673 PRK06018 PRK06018 putative acyl-CoA synthetase; Provisional 542 -235674 PRK06019 PRK06019 phosphoribosylaminoimidazole carboxylase ATPase subunit; Reviewed 372 -168351 PRK06023 PRK06023 enoyl-CoA hydratase; Provisional 251 -235675 PRK06025 PRK06025 acetyl-CoA acetyltransferase; Provisional 417 -180353 PRK06026 PRK06026 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Validated 212 -235676 PRK06027 purU formyltetrahydrofolate deformylase; Reviewed 286 -235677 PRK06029 PRK06029 3-octaprenyl-4-hydroxybenzoate carboxy-lyase; Provisional 185 -180356 PRK06030 PRK06030 hypothetical protein; Provisional 124 -235678 PRK06031 PRK06031 phosphoribosyltransferase; Provisional 233 -235679 PRK06032 fliH flagellar assembly protein H; Validated 199 -180359 PRK06033 PRK06033 hypothetical protein; Validated 83 -235680 PRK06034 PRK06034 hypothetical protein; Provisional 279 -180361 PRK06035 PRK06035 3-hydroxyacyl-CoA dehydrogenase; Validated 291 -180362 PRK06036 PRK06036 translation initiation factor IF-2B subunit alpha; Provisional 339 -180363 PRK06038 PRK06038 N-ethylammeline chlorohydrolase; Provisional 430 -235681 PRK06039 ileS isoleucyl-tRNA synthetase; Reviewed 975 -235682 PRK06041 PRK06041 flagellar assembly protein J; Reviewed 553 -180366 PRK06043 PRK06043 fumarate hydratase; Provisional 192 -180367 PRK06046 PRK06046 alanine dehydrogenase; Validated 326 -180368 PRK06048 PRK06048 acetolactate synthase 3 catalytic subunit; Reviewed 561 -235683 PRK06049 rpl30p 50S ribosomal protein L30P; Reviewed 154 -235684 PRK06052 PRK06052 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; Provisional 344 -180371 PRK06057 PRK06057 short chain dehydrogenase; Provisional 255 -235685 PRK06058 PRK06058 4-aminobutyrate aminotransferase; Provisional 443 -180373 PRK06059 PRK06059 lipid-transfer protein; Provisional 399 -180374 PRK06060 PRK06060 acyl-CoA synthetase; Validated 705 -235686 PRK06061 PRK06061 amidase; Provisional 483 -235687 PRK06062 PRK06062 hypothetical protein; Provisional 451 -180377 PRK06063 PRK06063 DNA polymerase III subunit epsilon; Provisional 313 -235688 PRK06064 PRK06064 acetyl-CoA acetyltransferase; Provisional 389 -180379 PRK06065 PRK06065 acetyl-CoA acetyltransferase; Provisional 392 -180380 PRK06066 PRK06066 acetyl-CoA acetyltransferase; Provisional 385 -180381 PRK06067 PRK06067 flagellar accessory protein FlaH; Validated 234 -235689 PRK06069 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 577 -168377 PRK06072 PRK06072 enoyl-CoA hydratase; Provisional 248 -235690 PRK06073 PRK06073 NADH dehydrogenase subunit A; Validated 124 -235691 PRK06074 PRK06074 NADH dehydrogenase subunit C; Provisional 189 -180385 PRK06075 PRK06075 NADH dehydrogenase subunit D; Validated 392 -235692 PRK06076 PRK06076 NADH:ubiquinone oxidoreductase subunit H; Provisional 322 -235693 PRK06077 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 252 -180387 PRK06078 PRK06078 pyrimidine-nucleoside phosphorylase; Reviewed 434 -235694 PRK06079 PRK06079 enoyl-(acyl carrier protein) reductase; Provisional 252 -235695 PRK06080 PRK06080 1,4-dihydroxy-2-naphthoate octaprenyltransferase; Validated 293 -180390 PRK06082 PRK06082 4-aminobutyrate aminotransferase; Provisional 459 -180391 PRK06083 PRK06083 sulfur carrier protein ThiS; Provisional 84 -180392 PRK06084 PRK06084 O-acetylhomoserine aminocarboxypropyltransferase; Validated 425 -180393 PRK06087 PRK06087 short chain acyl-CoA synthetase; Reviewed 547 -180394 PRK06090 PRK06090 DNA polymerase III subunit delta'; Validated 319 -180395 PRK06091 PRK06091 membrane protein FdrA; Validated 555 -235696 PRK06092 PRK06092 4-amino-4-deoxychorismate lyase; Reviewed 268 -180397 PRK06096 PRK06096 molybdenum transport protein ModD; Provisional 284 -235697 PRK06099 PRK06099 F0F1 ATP synthase subunit I; Validated 126 -180398 PRK06100 PRK06100 DNA polymerase III subunit psi; Provisional 132 -180399 PRK06101 PRK06101 short chain dehydrogenase; Provisional 240 -235698 PRK06102 PRK06102 hypothetical protein; Provisional 452 -180401 PRK06105 PRK06105 aminotransferase; Provisional 460 -180402 PRK06106 PRK06106 nicotinate-nucleotide pyrophosphorylase; Provisional 281 -180403 PRK06107 PRK06107 aspartate aminotransferase; Provisional 402 -180404 PRK06108 PRK06108 aspartate aminotransferase; Provisional 382 -235699 PRK06110 PRK06110 hypothetical protein; Provisional 322 -180406 PRK06111 PRK06111 acetyl-CoA carboxylase biotin carboxylase subunit; Validated 450 -235700 PRK06112 PRK06112 acetolactate synthase catalytic subunit; Validated 578 -135765 PRK06113 PRK06113 7-alpha-hydroxysteroid dehydrogenase; Validated 255 -180408 PRK06114 PRK06114 short chain dehydrogenase; Provisional 254 -180409 PRK06115 PRK06115 dihydrolipoamide dehydrogenase; Reviewed 466 -235701 PRK06116 PRK06116 glutathione reductase; Validated 450 -180411 PRK06123 PRK06123 short chain dehydrogenase; Provisional 248 -235702 PRK06124 PRK06124 gluconate 5-dehydrogenase; Provisional 256 -235703 PRK06125 PRK06125 short chain dehydrogenase; Provisional 259 -235704 PRK06126 PRK06126 hypothetical protein; Provisional 545 -235705 PRK06127 PRK06127 enoyl-CoA hydratase; Provisional 269 -180413 PRK06128 PRK06128 oxidoreductase; Provisional 300 -235706 PRK06129 PRK06129 3-hydroxyacyl-CoA dehydrogenase; Validated 308 -235707 PRK06130 PRK06130 3-hydroxybutyryl-CoA dehydrogenase; Validated 311 -235708 PRK06131 PRK06131 dihydroxy-acid dehydratase; Validated 571 -235709 PRK06132 PRK06132 hypothetical protein; Provisional 359 -235710 PRK06133 PRK06133 glutamate carboxypeptidase; Reviewed 410 -180419 PRK06134 PRK06134 putative FAD-binding dehydrogenase; Reviewed 581 -235711 PRK06136 PRK06136 uroporphyrin-III C-methyltransferase; Reviewed 249 -235712 PRK06138 PRK06138 short chain dehydrogenase; Provisional 252 -235713 PRK06139 PRK06139 short chain dehydrogenase; Provisional 330 -180421 PRK06141 PRK06141 ornithine cyclodeaminase; Validated 314 -235714 PRK06142 PRK06142 enoyl-CoA hydratase; Provisional 272 -180423 PRK06143 PRK06143 enoyl-CoA hydratase; Provisional 256 -180424 PRK06144 PRK06144 enoyl-CoA hydratase; Provisional 262 -102207 PRK06145 PRK06145 acyl-CoA synthetase; Validated 497 -235715 PRK06147 PRK06147 3-oxoacyl-(acyl carrier protein) synthase; Validated 348 -180426 PRK06148 PRK06148 hypothetical protein; Provisional 1013 -235716 PRK06149 PRK06149 hypothetical protein; Provisional 972 -180428 PRK06151 PRK06151 N-ethylammeline chlorohydrolase; Provisional 488 -235717 PRK06153 PRK06153 hypothetical protein; Provisional 393 -235718 PRK06154 PRK06154 hypothetical protein; Provisional 565 -235719 PRK06155 PRK06155 crotonobetaine/carnitine-CoA ligase; Provisional 542 -235720 PRK06156 PRK06156 hypothetical protein; Provisional 520 -180433 PRK06157 PRK06157 acetyl-CoA acetyltransferase; Validated 398 -180434 PRK06158 PRK06158 thiolase; Provisional 384 -180435 PRK06161 PRK06161 putative monovalent cation/H+ antiporter subunit F; Reviewed 89 -235721 PRK06163 PRK06163 hypothetical protein; Provisional 202 -235722 PRK06164 PRK06164 acyl-CoA synthetase; Validated 540 -180437 PRK06169 PRK06169 putative amidase; Provisional 466 -235723 PRK06170 PRK06170 amidase; Provisional 490 -180439 PRK06171 PRK06171 sorbitol-6-phosphate 2-dehydrogenase; Provisional 266 -180440 PRK06172 PRK06172 short chain dehydrogenase; Provisional 253 -180441 PRK06173 PRK06173 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 429 -180442 PRK06175 PRK06175 L-aspartate oxidase; Provisional 433 -180443 PRK06176 PRK06176 cystathionine gamma-synthase/cystathionine beta-lyase; Validated 380 -235724 PRK06178 PRK06178 acyl-CoA synthetase; Validated 567 -235725 PRK06179 PRK06179 short chain dehydrogenase; Provisional 270 -180446 PRK06180 PRK06180 short chain dehydrogenase; Provisional 277 -235726 PRK06181 PRK06181 short chain dehydrogenase; Provisional 263 -180448 PRK06182 PRK06182 short chain dehydrogenase; Validated 273 -235727 PRK06183 mhpA 3-(3-hydroxyphenyl)propionate hydroxylase; Validated 500 -235728 PRK06184 PRK06184 hypothetical protein; Provisional 502 -235729 PRK06185 PRK06185 hypothetical protein; Provisional 407 -180452 PRK06186 PRK06186 hypothetical protein; Validated 229 -235730 PRK06187 PRK06187 long-chain-fatty-acid--CoA ligase; Validated 521 -235731 PRK06188 PRK06188 acyl-CoA synthetase; Validated 524 -235732 PRK06189 PRK06189 allantoinase; Provisional 451 -235733 PRK06190 PRK06190 enoyl-CoA hydratase; Provisional 258 -235734 PRK06193 PRK06193 hypothetical protein; Provisional 206 -180458 PRK06194 PRK06194 hypothetical protein; Provisional 287 -235735 PRK06195 PRK06195 DNA polymerase III subunit epsilon; Validated 309 -235736 PRK06196 PRK06196 oxidoreductase; Provisional 315 -235737 PRK06197 PRK06197 short chain dehydrogenase; Provisional 306 -180462 PRK06198 PRK06198 short chain dehydrogenase; Provisional 260 -235738 PRK06199 PRK06199 ornithine cyclodeaminase; Validated 379 -235739 PRK06200 PRK06200 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase; Provisional 263 -180465 PRK06201 PRK06201 hypothetical protein; Validated 221 -180466 PRK06202 PRK06202 hypothetical protein; Provisional 232 -235740 PRK06203 aroB 3-dehydroquinate synthase; Reviewed 389 -235741 PRK06205 PRK06205 acetyl-CoA acetyltransferase; Provisional 404 -235742 PRK06207 PRK06207 aspartate aminotransferase; Provisional 405 -235743 PRK06208 PRK06208 hypothetical protein; Provisional 274 -180471 PRK06209 PRK06209 glutamate-1-semialdehyde 2,1-aminomutase; Provisional 431 -180472 PRK06210 PRK06210 enoyl-CoA hydratase; Provisional 272 -235744 PRK06213 PRK06213 enoyl-CoA hydratase; Provisional 229 -235745 PRK06214 PRK06214 sulfite reductase; Provisional 530 -235746 PRK06215 PRK06215 hypothetical protein; Provisional 238 -168472 PRK06217 PRK06217 hypothetical protein; Validated 183 -235747 PRK06222 PRK06222 ferredoxin-NADP(+) reductase subunit alpha; Reviewed 281 -180477 PRK06223 PRK06223 malate dehydrogenase; Reviewed 307 -235748 PRK06224 PRK06224 citrate synthase; Provisional 263 -235749 PRK06225 PRK06225 aspartate aminotransferase; Provisional 380 -235750 PRK06228 PRK06228 F0F1 ATP synthase subunit epsilon; Validated 131 -180481 PRK06231 PRK06231 F0F1 ATP synthase subunit B; Validated 205 -180482 PRK06233 PRK06233 hypothetical protein; Provisional 372 -168478 PRK06234 PRK06234 methionine gamma-lyase; Provisional 400 -235751 PRK06241 PRK06241 phosphoenolpyruvate synthase; Validated 871 -180484 PRK06242 PRK06242 flavodoxin; Provisional 150 -180485 PRK06245 cofG FO synthase subunit 1; Reviewed 336 -180486 PRK06246 PRK06246 fumarate hydratase; Provisional 280 -180487 PRK06247 PRK06247 pyruvate kinase; Provisional 476 -180488 PRK06249 PRK06249 2-dehydropantoate 2-reductase; Provisional 313 -235752 PRK06251 PRK06251 V-type ATP synthase subunit K; Validated 102 -235753 PRK06252 PRK06252 methylcobalamin:coenzyme M methyltransferase; Validated 339 -235754 PRK06253 PRK06253 O-phosphoseryl-tRNA synthetase; Reviewed 529 -235755 PRK06256 PRK06256 biotin synthase; Validated 336 -235756 PRK06259 PRK06259 succinate dehydrogenase/fumarate reductase iron-sulfur subunit; Provisional 486 -235757 PRK06260 PRK06260 threonine synthase; Validated 397 -235758 PRK06263 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 543 -235759 PRK06264 cbiC precorrin-8X methylmutase; Validated 210 -235760 PRK06265 PRK06265 cobalt transport protein CbiM; Validated 199 -235761 PRK06266 PRK06266 transcription initiation factor E subunit alpha; Validated 178 -235762 PRK06267 PRK06267 hypothetical protein; Provisional 350 -235763 PRK06270 PRK06270 homoserine dehydrogenase; Provisional 341 -180501 PRK06271 PRK06271 V-type ATP synthase subunit K; Validated 213 -235764 PRK06273 PRK06273 ferredoxin; Provisional 165 -235765 PRK06274 PRK06274 indolepyruvate oxidoreductase subunit B; Reviewed 197 -235766 PRK06276 PRK06276 acetolactate synthase catalytic subunit; Reviewed 586 -235767 PRK06277 PRK06277 hydrogenase subunit F; Validated 478 -180505 PRK06278 PRK06278 cobyrinic acid a,c-diamide synthase; Validated 476 -180506 PRK06279 PRK06279 putative monovalent cation/H+ antiporter subunit E; Reviewed 100 -235768 PRK06280 PRK06280 hypothetical protein; Provisional 77 -180508 PRK06281 PRK06281 putative monovalent cation/H+ antiporter subunit B; Reviewed 154 -180509 PRK06285 PRK06285 chorismate mutase; Provisional 96 -235769 PRK06286 PRK06286 putative monovalent cation/H+ antiporter subunit G; Reviewed 91 -180511 PRK06287 PRK06287 cobalt transport protein CbiN; Validated 107 -235770 PRK06288 PRK06288 RNA polymerase sigma factor WhiG; Reviewed 268 -235771 PRK06289 PRK06289 acetyl-CoA acetyltransferase; Provisional 403 -235772 PRK06290 PRK06290 aspartate aminotransferase; Provisional 410 -235773 PRK06291 PRK06291 aspartate kinase; Provisional 465 -235774 PRK06292 PRK06292 dihydrolipoamide dehydrogenase; Validated 460 -180517 PRK06293 PRK06293 single-stranded DNA-binding protein; Provisional 161 -180518 PRK06294 PRK06294 coproporphyrinogen III oxidase; Provisional 370 -180519 PRK06298 PRK06298 type III secretion system protein; Validated 356 -235775 PRK06299 rpsA 30S ribosomal protein S1; Reviewed 565 -235776 PRK06300 PRK06300 enoyl-(acyl carrier protein) reductase; Provisional 299 -235777 PRK06302 PRK06302 acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; Validated 155 -180523 PRK06305 PRK06305 DNA polymerase III subunits gamma and tau; Validated 451 -180524 PRK06309 PRK06309 DNA polymerase III subunit epsilon; Validated 232 -180525 PRK06310 PRK06310 DNA polymerase III subunit epsilon; Validated 250 -180526 PRK06315 PRK06315 type III secretion system ATPase; Provisional 442 -235778 PRK06319 PRK06319 DNA topoisomerase I/SWI domain fusion protein; Validated 860 -180528 PRK06321 PRK06321 replicative DNA helicase; Provisional 472 -235779 PRK06327 PRK06327 dihydrolipoamide dehydrogenase; Validated 475 -180530 PRK06328 PRK06328 type III secretion system protein; Validated 223 -235780 PRK06330 PRK06330 transcript cleavage factor/unknown domain fusion protein; Validated 718 -235781 PRK06333 PRK06333 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 424 -180533 PRK06334 PRK06334 long chain fatty acid--[acyl-carrier-protein] ligase; Validated 539 -235782 PRK06341 PRK06341 single-stranded DNA-binding protein; Provisional 166 -180535 PRK06342 PRK06342 transcription elongation factor regulatory protein; Validated 160 -180536 PRK06347 PRK06347 autolysin; Reviewed 592 -180537 PRK06348 PRK06348 aspartate aminotransferase; Provisional 384 -235783 PRK06349 PRK06349 homoserine dehydrogenase; Provisional 426 -180539 PRK06352 PRK06352 threonine synthase; Validated 351 -235784 PRK06354 PRK06354 pyruvate kinase; Provisional 590 -180541 PRK06357 PRK06357 hypothetical protein; Provisional 216 -180542 PRK06358 PRK06358 threonine-phosphate decarboxylase; Provisional 354 -180543 PRK06361 PRK06361 hypothetical protein; Provisional 212 -235785 PRK06365 PRK06365 acetyl-CoA acetyltransferase; Provisional 430 -102340 PRK06366 PRK06366 acetyl-CoA acetyltransferase; Provisional 388 -235786 PRK06369 nac nascent polypeptide-associated complex protein; Reviewed 115 -235787 PRK06370 PRK06370 mercuric reductase; Validated 463 -180547 PRK06371 PRK06371 translation initiation factor IF-2B subunit alpha; Provisional 329 -235788 PRK06372 PRK06372 translation initiation factor IF-2B subunit delta; Provisional 253 -180548 PRK06380 PRK06380 metal-dependent hydrolase; Provisional 418 -235789 PRK06381 PRK06381 threonine synthase; Validated 319 -180550 PRK06382 PRK06382 threonine dehydratase; Provisional 406 -235790 PRK06386 PRK06386 replication factor A; Reviewed 358 -102351 PRK06388 PRK06388 amidophosphoribosyltransferase; Provisional 474 -235791 PRK06389 PRK06389 argininosuccinate lyase; Provisional 434 -235792 PRK06390 PRK06390 adenylosuccinate lyase; Provisional 451 -102354 PRK06392 PRK06392 homoserine dehydrogenase; Provisional 326 -102355 PRK06393 rpoE DNA-directed RNA polymerase subunit E''; Validated 64 -235793 PRK06394 rpl13p 50S ribosomal protein L13P; Reviewed 146 -102357 PRK06395 PRK06395 phosphoribosylamine--glycine ligase; Provisional 435 -135898 PRK06397 PRK06397 V-type ATP synthase subunit H; Validated 111 -235794 PRK06398 PRK06398 aldose dehydrogenase; Validated 258 -235795 PRK06402 rpl12p 50S ribosomal protein L12P; Reviewed 106 -102361 PRK06404 PRK06404 anthranilate synthase component I; Reviewed 351 -235796 PRK06406 PRK06406 ribonucleotide-diphosphate reductase subunit alpha; Validated 771 -180556 PRK06407 PRK06407 ornithine cyclodeaminase; Provisional 301 -235797 PRK06411 PRK06411 NADH dehydrogenase subunit B; Validated 183 -235798 PRK06416 PRK06416 dihydrolipoamide dehydrogenase; Reviewed 462 -180559 PRK06418 PRK06418 transcription elongation factor NusA-like protein; Validated 166 -235799 PRK06419 rpl15p 50S ribosomal protein L15P; Reviewed 148 -102368 PRK06423 PRK06423 phosphoribosylformylglycinamidine synthase; Provisional 73 -102369 PRK06424 PRK06424 transcription factor; Provisional 144 -102370 PRK06425 PRK06425 histidinol-phosphate aminotransferase; Validated 332 -180561 PRK06427 PRK06427 bifunctional hydroxy-methylpyrimidine kinase/ hydroxy-phosphomethylpyrimidine kinase; Reviewed 266 -102372 PRK06432 PRK06432 NADH dehydrogenase subunit A; Validated 144 -180562 PRK06433 PRK06433 NADH dehydrogenase subunit J; Provisional 88 -102374 PRK06434 PRK06434 cystathionine gamma-lyase; Validated 384 -235800 PRK06436 PRK06436 glycerate dehydrogenase; Provisional 303 -135906 PRK06437 PRK06437 hypothetical protein; Provisional 67 -102377 PRK06438 PRK06438 hypothetical protein; Provisional 292 -102378 PRK06439 PRK06439 NADH dehydrogenase subunit J; Provisional 72 -235801 PRK06443 PRK06443 chorismate mutase; Validated 177 -102381 PRK06444 PRK06444 prephenate dehydrogenase; Provisional 197 -180563 PRK06445 PRK06445 acetyl-CoA acetyltransferase; Provisional 394 -235802 PRK06446 PRK06446 hypothetical protein; Provisional 436 -180565 PRK06450 PRK06450 threonine synthase; Validated 338 -235803 PRK06451 PRK06451 isocitrate dehydrogenase; Validated 412 -180567 PRK06452 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 566 -235804 PRK06455 PRK06455 riboflavin synthase; Provisional 155 -180569 PRK06456 PRK06456 acetolactate synthase catalytic subunit; Reviewed 572 -180570 PRK06457 PRK06457 pyruvate dehydrogenase; Provisional 549 -235805 PRK06458 PRK06458 hydrogenase 4 subunit F; Validated 490 -235806 PRK06459 PRK06459 hydrogenase 4 subunit B; Validated 585 -235807 PRK06460 PRK06460 hypothetical protein; Provisional 376 -180574 PRK06461 PRK06461 single-stranded DNA-binding protein; Reviewed 129 -235808 PRK06462 PRK06462 asparagine synthetase A; Reviewed 335 -180576 PRK06463 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 255 -235809 PRK06464 PRK06464 phosphoenolpyruvate synthase; Validated 795 -180578 PRK06466 PRK06466 acetolactate synthase 3 catalytic subunit; Validated 574 -180579 PRK06467 PRK06467 dihydrolipoamide dehydrogenase; Reviewed 471 -235810 PRK06473 PRK06473 NAD(P)H-quinone oxidoreductase subunit D4; Validated 500 -235811 PRK06474 PRK06474 hypothetical protein; Provisional 178 -180582 PRK06475 PRK06475 salicylate hydroxylase; Provisional 400 -235812 PRK06476 PRK06476 pyrroline-5-carboxylate reductase; Reviewed 258 -180584 PRK06481 PRK06481 fumarate reductase flavoprotein subunit; Validated 506 -235813 PRK06482 PRK06482 short chain dehydrogenase; Provisional 276 -180586 PRK06483 PRK06483 dihydromonapterin reductase; Provisional 236 -168574 PRK06484 PRK06484 short chain dehydrogenase; Validated 520 -235814 PRK06486 PRK06486 hypothetical protein; Provisional 262 -180588 PRK06487 PRK06487 glycerate dehydrogenase; Provisional 317 -168577 PRK06488 PRK06488 sulfur carrier protein ThiS; Validated 65 -235815 PRK06489 PRK06489 hypothetical protein; Provisional 360 -180590 PRK06490 PRK06490 glutamine amidotransferase; Provisional 239 -180591 PRK06494 PRK06494 enoyl-CoA hydratase; Provisional 259 -168580 PRK06495 PRK06495 enoyl-CoA hydratase; Provisional 257 -180592 PRK06498 PRK06498 isocitrate lyase; Provisional 531 -235816 PRK06500 PRK06500 short chain dehydrogenase; Provisional 249 -235817 PRK06501 PRK06501 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 425 -180595 PRK06504 PRK06504 acetyl-CoA acetyltransferase; Provisional 390 -180596 PRK06505 PRK06505 enoyl-(acyl carrier protein) reductase; Provisional 271 -180597 PRK06508 PRK06508 acyl carrier protein; Provisional 93 -180598 PRK06512 PRK06512 thiamine-phosphate pyrophosphorylase; Provisional 221 -235818 PRK06518 PRK06518 hypothetical protein; Provisional 177 -235819 PRK06519 PRK06519 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 398 -180601 PRK06520 PRK06520 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; Provisional 368 -235820 PRK06521 PRK06521 hydrogenase 4 subunit B; Validated 667 -235821 PRK06522 PRK06522 2-dehydropantoate 2-reductase; Reviewed 304 -180604 PRK06523 PRK06523 short chain dehydrogenase; Provisional 260 -180605 PRK06524 PRK06524 biotin carboxylase-like protein; Validated 493 -180606 PRK06525 PRK06525 hydrogenase 4 subunit D; Validated 479 -180607 PRK06526 PRK06526 transposase; Provisional 254 -180608 PRK06529 PRK06529 amidase; Provisional 482 -235822 PRK06531 yajC preprotein translocase subunit YajC; Validated 113 -180610 PRK06539 PRK06539 ribonucleotide-diphosphate reductase subunit alpha; Validated 822 -235823 PRK06541 PRK06541 hypothetical protein; Provisional 460 -180612 PRK06543 PRK06543 nicotinate-nucleotide pyrophosphorylase; Provisional 281 -235824 PRK06545 PRK06545 prephenate dehydrogenase; Validated 359 -180614 PRK06546 PRK06546 pyruvate dehydrogenase; Provisional 578 -235825 PRK06547 PRK06547 hypothetical protein; Provisional 172 -75628 PRK06548 PRK06548 ribonuclease H; Provisional 161 -235826 PRK06549 PRK06549 acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; Validated 130 -180617 PRK06550 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 235 -180618 PRK06552 PRK06552 keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase; Provisional 213 -235827 PRK06553 PRK06553 lipid A biosynthesis lauroyl acyltransferase; Provisional 308 -180620 PRK06555 PRK06555 pyrophosphate--fructose-6-phosphate 1-phosphotransferase; Validated 403 -235828 PRK06556 PRK06556 vitamin B12-dependent ribonucleotide reductase; Validated 953 -235829 PRK06557 PRK06557 L-ribulose-5-phosphate 4-epimerase; Validated 221 -235830 PRK06558 PRK06558 V-type ATP synthase subunit K; Validated 159 -235831 PRK06559 PRK06559 nicotinate-nucleotide pyrophosphorylase; Provisional 290 -180625 PRK06563 PRK06563 enoyl-CoA hydratase; Provisional 255 -180626 PRK06565 PRK06565 amidase; Validated 566 -235832 PRK06567 PRK06567 putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Validated 1028 -168615 PRK06568 PRK06568 F0F1 ATP synthase subunit B; Validated 154 -180627 PRK06569 PRK06569 F0F1 ATP synthase subunit B'; Validated 155 -180628 PRK06580 PRK06580 putative monovalent cation/H+ antiporter subunit E; Reviewed 103 -235833 PRK06581 PRK06581 DNA polymerase III subunit delta'; Validated 263 -180630 PRK06582 PRK06582 coproporphyrinogen III oxidase; Provisional 390 -235834 PRK06585 holA DNA polymerase III subunit delta; Reviewed 343 -168619 PRK06588 PRK06588 putative monovalent cation/H+ antiporter subunit D; Reviewed 506 -235835 PRK06589 PRK06589 putative monovalent cation/H+ antiporter subunit D; Reviewed 489 -235836 PRK06590 PRK06590 NADH:ubiquinone oxidoreductase subunit L; Reviewed 624 -235837 PRK06591 PRK06591 putative monovalent cation/H+ antiporter subunit D; Reviewed 432 -235838 PRK06596 PRK06596 RNA polymerase factor sigma-32; Reviewed 284 -235839 PRK06598 PRK06598 aspartate-semialdehyde dehydrogenase; Reviewed 369 -235840 PRK06599 PRK06599 DNA topoisomerase I; Validated 675 -180638 PRK06602 PRK06602 NADH:ubiquinone oxidoreductase subunit A; Validated 121 -168626 PRK06603 PRK06603 enoyl-(acyl carrier protein) reductase; Provisional 260 -235841 PRK06606 PRK06606 branched-chain amino acid aminotransferase; Validated 306 -235842 PRK06608 PRK06608 threonine dehydratase; Provisional 338 -168629 PRK06617 PRK06617 2-octaprenyl-6-methoxyphenyl hydroxylase; Validated 374 -168630 PRK06620 PRK06620 hypothetical protein; Validated 214 -102471 PRK06628 PRK06628 lipid A biosynthesis lauroyl acyltransferase; Provisional 290 -168631 PRK06630 PRK06630 hypothetical protein; Provisional 99 -168632 PRK06633 PRK06633 acetyl-CoA acetyltransferase; Provisional 392 -235843 PRK06635 PRK06635 aspartate kinase; Reviewed 404 -235844 PRK06638 PRK06638 NADH:ubiquinone oxidoreductase subunit J; Provisional 198 -135984 PRK06642 PRK06642 single-stranded DNA-binding protein; Provisional 152 -180643 PRK06645 PRK06645 DNA polymerase III subunits gamma and tau; Validated 507 -102480 PRK06646 PRK06646 DNA polymerase III subunit chi; Provisional 154 -235845 PRK06647 PRK06647 DNA polymerase III subunits gamma and tau; Validated 563 -180645 PRK06649 PRK06649 V-type ATP synthase subunit K; Validated 143 -235846 PRK06654 fliL flagellar basal body-associated protein FliL; Reviewed 181 -235847 PRK06655 flgD flagellar basal body rod modification protein; Reviewed 225 -168637 PRK06661 PRK06661 hypothetical protein; Provisional 231 -180648 PRK06663 PRK06663 flagellar hook-associated protein FlgL; Validated 419 -235848 PRK06664 fliD flagellar hook-associated protein FliD; Validated 661 -180650 PRK06665 flgK flagellar hook-associated protein FlgK; Validated 627 -235849 PRK06666 fliM flagellar motor switch protein FliM; Validated 337 -180652 PRK06667 motB flagellar motor protein MotB; Validated 252 -235850 PRK06669 fliH flagellar assembly protein H; Validated 281 -180654 PRK06672 PRK06672 hypothetical protein; Validated 341 -135998 PRK06673 PRK06673 DNA polymerase III subunit beta; Validated 376 -235851 PRK06676 rpsA 30S ribosomal protein S1; Reviewed 390 -180656 PRK06680 PRK06680 D-amino acid aminotransferase; Reviewed 286 -136002 PRK06683 PRK06683 hypothetical protein; Provisional 82 -180657 PRK06687 PRK06687 chlorohydrolase; Validated 419 -235852 PRK06688 PRK06688 enoyl-CoA hydratase; Provisional 259 -180659 PRK06690 PRK06690 acetyl-CoA acetyltransferase; Provisional 361 -180660 PRK06696 PRK06696 uridine kinase; Validated 223 -136007 PRK06698 PRK06698 bifunctional 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase/phosphatase; Validated 459 -235853 PRK06701 PRK06701 short chain dehydrogenase; Provisional 290 -102505 PRK06702 PRK06702 O-acetylhomoserine aminocarboxypropyltransferase; Validated 432 -235854 PRK06703 PRK06703 flavodoxin; Provisional 151 -180663 PRK06704 PRK06704 RNA polymerase factor sigma-70; Validated 228 -180664 PRK06705 PRK06705 argininosuccinate lyase; Provisional 502 -235855 PRK06707 PRK06707 amidase; Provisional 536 -180666 PRK06710 PRK06710 long-chain-fatty-acid--CoA ligase; Validated 563 -168652 PRK06714 PRK06714 S-adenosylhomocysteine nucleosidase; Validated 236 -180667 PRK06718 PRK06718 precorrin-2 dehydrogenase; Reviewed 202 -180668 PRK06719 PRK06719 precorrin-2 dehydrogenase; Validated 157 -180669 PRK06720 PRK06720 hypothetical protein; Provisional 169 -136018 PRK06721 PRK06721 threonine synthase; Reviewed 352 -180670 PRK06722 PRK06722 exonuclease; Provisional 281 -180671 PRK06724 PRK06724 hypothetical protein; Provisional 128 -180672 PRK06725 PRK06725 acetolactate synthase 3 catalytic subunit; Validated 570 -136022 PRK06728 PRK06728 aspartate-semialdehyde dehydrogenase; Provisional 347 -75717 PRK06731 flhF flagellar biosynthesis regulator FlhF; Validated 270 -235856 PRK06732 PRK06732 phosphopantothenate--cysteine ligase; Validated 229 -180674 PRK06733 PRK06733 hypothetical protein; Provisional 151 -180675 PRK06737 PRK06737 acetolactate synthase 1 regulatory subunit; Validated 76 -180676 PRK06739 PRK06739 pyruvate kinase; Validated 352 -180677 PRK06740 PRK06740 histidinol-phosphatase; Validated 331 -102525 PRK06742 PRK06742 flagellar motor protein MotS; Reviewed 225 -136027 PRK06743 PRK06743 flagellar motor protein MotP; Reviewed 254 -75726 PRK06746 PRK06746 peptide chain release factor 2; Provisional 326 -180678 PRK06748 PRK06748 hypothetical protein; Validated 83 -168658 PRK06749 PRK06749 replicative DNA helicase; Provisional 428 -168659 PRK06751 PRK06751 single-stranded DNA-binding protein; Provisional 173 -168660 PRK06752 PRK06752 single-stranded DNA-binding protein; Validated 112 -168661 PRK06753 PRK06753 hypothetical protein; Provisional 373 -180679 PRK06754 mtnB methylthioribulose-1-phosphate dehydratase; Reviewed 208 -102532 PRK06755 PRK06755 hypothetical protein; Validated 209 -168663 PRK06756 PRK06756 flavodoxin; Provisional 148 -136035 PRK06758 PRK06758 hypothetical protein; Provisional 128 -235857 PRK06759 PRK06759 RNA polymerase factor sigma-70; Validated 154 -180681 PRK06760 PRK06760 hypothetical protein; Provisional 223 -180682 PRK06761 PRK06761 hypothetical protein; Provisional 282 -235858 PRK06762 PRK06762 hypothetical protein; Provisional 166 -136040 PRK06763 PRK06763 F0F1 ATP synthase subunit alpha; Validated 213 -102540 PRK06764 PRK06764 hypothetical protein; Provisional 105 -235859 PRK06765 PRK06765 homoserine O-acetyltransferase; Provisional 389 -180685 PRK06767 PRK06767 methionine gamma-lyase; Provisional 386 -180686 PRK06769 PRK06769 hypothetical protein; Validated 173 -180687 PRK06770 PRK06770 hypothetical protein; Provisional 180 -180688 PRK06771 PRK06771 hypothetical protein; Provisional 93 -102546 PRK06772 PRK06772 salicylate synthase Irp9; Reviewed 434 -180689 PRK06774 PRK06774 para-aminobenzoate synthase component II; Provisional 191 -180690 PRK06777 PRK06777 4-aminobutyrate aminotransferase; Provisional 421 -235860 PRK06778 PRK06778 hypothetical protein; Validated 289 -136048 PRK06781 PRK06781 amidophosphoribosyltransferase; Provisional 471 -235861 PRK06782 PRK06782 flagellar motor switch protein; Reviewed 528 -180693 PRK06788 PRK06788 flagellar motor switch protein; Validated 119 -180694 PRK06789 PRK06789 flagellar motor switch protein; Validated 74 -180695 PRK06792 flgD flagellar basal body rod modification protein; Validated 190 -180696 PRK06793 fliI flagellum-specific ATP synthase; Validated 432 -180697 PRK06797 flgB flagellar basal body rod protein FlgB; Reviewed 135 -180698 PRK06798 fliD flagellar capping protein; Validated 440 -180699 PRK06799 flgK flagellar hook-associated protein FlgK; Validated 431 -180700 PRK06800 fliH flagellar assembly protein H; Validated 228 -180701 PRK06801 PRK06801 hypothetical protein; Provisional 286 -180702 PRK06802 flgC flagellar basal body rod protein FlgC; Reviewed 141 -235862 PRK06803 flgE flagellar hook protein FlgE; Validated 402 -235863 PRK06804 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 261 -180705 PRK06806 PRK06806 fructose-bisphosphate aldolase; Provisional 281 -235864 PRK06807 PRK06807 DNA polymerase III subunit epsilon; Validated 313 -180707 PRK06811 PRK06811 RNA polymerase factor sigma-70; Validated 189 -168683 PRK06813 PRK06813 homoserine dehydrogenase; Validated 346 -235865 PRK06814 PRK06814 acylglycerophosphoethanolamine acyltransferase; Provisional 1140 -180709 PRK06815 PRK06815 hypothetical protein; Provisional 317 -235866 PRK06816 PRK06816 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 378 -235867 PRK06819 PRK06819 flagellin; Validated 376 -180712 PRK06820 PRK06820 type III secretion system ATPase; Validated 440 -136070 PRK06823 PRK06823 ornithine cyclodeaminase; Validated 315 -168689 PRK06824 PRK06824 translation initiation factor Sui1; Validated 118 -235868 PRK06826 dnaE DNA polymerase III DnaE; Reviewed 1151 -180714 PRK06827 PRK06827 phosphoribosylpyrophosphate synthetase; Provisional 382 -180715 PRK06828 PRK06828 amidase; Provisional 491 -235869 PRK06830 PRK06830 diphosphate--fructose-6-phosphate 1-phosphotransferase; Provisional 443 -180717 PRK06833 PRK06833 L-fuculose phosphate aldolase; Provisional 214 -235870 PRK06834 PRK06834 hypothetical protein; Provisional 488 -235871 PRK06835 PRK06835 DNA replication protein DnaC; Validated 329 -180720 PRK06836 PRK06836 aspartate aminotransferase; Provisional 394 -180721 PRK06837 PRK06837 acetylornithine deacetylase; Provisional 427 -168698 PRK06839 PRK06839 acyl-CoA synthetase; Validated 496 -235872 PRK06840 PRK06840 hypothetical protein; Validated 339 -180723 PRK06841 PRK06841 short chain dehydrogenase; Provisional 255 -180724 PRK06842 PRK06842 fumarate hydratase; Provisional 185 -180725 PRK06843 PRK06843 inosine 5-monophosphate dehydrogenase; Validated 404 -235873 PRK06846 PRK06846 putative deaminase; Validated 410 -235874 PRK06847 PRK06847 hypothetical protein; Provisional 375 -235875 PRK06848 PRK06848 hypothetical protein; Validated 139 -235876 PRK06849 PRK06849 hypothetical protein; Provisional 389 -235877 PRK06850 PRK06850 hypothetical protein; Provisional 507 -235878 PRK06851 PRK06851 hypothetical protein; Provisional 367 -180731 PRK06852 PRK06852 aldolase; Validated 304 -180732 PRK06853 PRK06853 indolepyruvate oxidoreductase subunit beta; Reviewed 197 -235879 PRK06854 PRK06854 adenylylsulfate reductase subunit alpha; Validated 608 -180734 PRK06855 PRK06855 aminotransferase; Validated 433 -180735 PRK06856 PRK06856 DNA polymerase III subunit psi; Validated 128 -235880 PRK06860 PRK06860 lipid A biosynthesis lauroyl acyltransferase; Provisional 309 -136097 PRK06863 PRK06863 single-stranded DNA-binding protein; Provisional 168 -235881 PRK06870 secG preprotein translocase subunit SecG; Reviewed 76 -180738 PRK06871 PRK06871 DNA polymerase III subunit delta'; Validated 325 -180739 PRK06876 PRK06876 F0F1 ATP synthase subunit C; Validated 78 -168717 PRK06882 PRK06882 acetolactate synthase 3 catalytic subunit; Validated 574 -180740 PRK06886 PRK06886 hypothetical protein; Validated 329 -168719 PRK06893 PRK06893 DNA replication initiation factor; Validated 229 -235882 PRK06895 PRK06895 putative anthranilate synthase component II; Provisional 190 -235883 PRK06901 PRK06901 aspartate-semialdehyde dehydrogenase; Provisional 322 -136106 PRK06904 PRK06904 replicative DNA helicase; Validated 472 -180742 PRK06911 rpsN 30S ribosomal protein S14; Reviewed 100 -180743 PRK06912 acoL dihydrolipoamide dehydrogenase; Validated 458 -180744 PRK06914 PRK06914 short chain dehydrogenase; Provisional 280 -180745 PRK06915 PRK06915 acetylornithine deacetylase; Validated 422 -180746 PRK06916 PRK06916 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 460 -235884 PRK06917 PRK06917 hypothetical protein; Provisional 447 -235885 PRK06918 PRK06918 4-aminobutyrate aminotransferase; Reviewed 451 -180749 PRK06920 dnaE DNA polymerase III DnaE; Reviewed 1107 -180750 PRK06921 PRK06921 hypothetical protein; Provisional 266 -180751 PRK06922 PRK06922 hypothetical protein; Provisional 677 -235886 PRK06923 PRK06923 isochorismate synthase DhbC; Validated 399 -180753 PRK06924 PRK06924 short chain dehydrogenase; Provisional 251 -235887 PRK06925 PRK06925 flagellar motor protein MotS; Reviewed 230 -180755 PRK06926 PRK06926 flagellar motor protein MotP; Reviewed 271 -235888 PRK06928 PRK06928 pyrroline-5-carboxylate reductase; Reviewed 277 -180757 PRK06930 PRK06930 positive control sigma-like factor; Validated 170 -235889 PRK06931 PRK06931 diaminobutyrate--2-oxoglutarate aminotransferase; Provisional 459 -235890 PRK06932 PRK06932 glycerate dehydrogenase; Provisional 314 -235891 PRK06933 PRK06933 type III secretion system protein; Validated 308 -180760 PRK06934 PRK06934 flavodoxin; Provisional 221 -180761 PRK06935 PRK06935 2-deoxy-D-gluconate 3-dehydrogenase; Provisional 258 -180762 PRK06936 PRK06936 type III secretion system ATPase; Provisional 439 -180763 PRK06937 PRK06937 type III secretion system protein; Reviewed 204 -235892 PRK06938 PRK06938 diaminobutyrate--2-oxoglutarate aminotransferase; Provisional 464 -235893 PRK06939 PRK06939 2-amino-3-ketobutyrate coenzyme A ligase; Provisional 397 -180766 PRK06940 PRK06940 short chain dehydrogenase; Provisional 275 -235894 PRK06943 PRK06943 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 453 -180768 PRK06944 PRK06944 sulfur carrier protein ThiS; Provisional 65 -235895 PRK06945 flgK flagellar hook-associated protein FlgK; Validated 651 -180770 PRK06946 PRK06946 lipid A biosynthesis lauroyl acyltransferase; Provisional 293 -180771 PRK06947 PRK06947 glucose-1-dehydrogenase; Provisional 248 -180772 PRK06948 PRK06948 ribonucleotide reductase-like protein; Provisional 595 -180773 PRK06949 PRK06949 short chain dehydrogenase; Provisional 258 -180774 PRK06953 PRK06953 short chain dehydrogenase; Provisional 222 -180775 PRK06954 PRK06954 acetyl-CoA acetyltransferase; Provisional 397 -235896 PRK06955 PRK06955 biotin--protein ligase; Provisional 300 -180777 PRK06958 PRK06958 single-stranded DNA-binding protein; Provisional 182 -235897 PRK06959 PRK06959 putative threonine-phosphate decarboxylase; Provisional 339 -235898 PRK06964 PRK06964 DNA polymerase III subunit delta'; Validated 342 -180780 PRK06965 PRK06965 acetolactate synthase 3 catalytic subunit; Validated 587 -180781 PRK06973 PRK06973 nicotinic acid mononucleotide adenylyltransferase; Provisional 243 -235899 PRK06975 PRK06975 bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase; Reviewed 656 -235900 PRK06978 PRK06978 nicotinate-nucleotide pyrophosphorylase; Provisional 294 -235901 PRK06986 fliA flagellar biosynthesis sigma factor; Validated 236 -235902 PRK06988 PRK06988 putative formyltransferase; Provisional 312 -235903 PRK06991 PRK06991 ferredoxin; Provisional 270 -235904 PRK06995 flhF flagellar biosynthesis regulator FlhF; Validated 484 -235905 PRK06996 PRK06996 hypothetical protein; Provisional 398 -180789 PRK06997 PRK06997 enoyl-(acyl carrier protein) reductase; Provisional 260 -235906 PRK07003 PRK07003 DNA polymerase III subunits gamma and tau; Validated 830 -235907 PRK07004 PRK07004 replicative DNA helicase; Provisional 460 -180792 PRK07006 PRK07006 isocitrate dehydrogenase; Reviewed 409 -235908 PRK07008 PRK07008 long-chain-fatty-acid--CoA ligase; Validated 539 -180794 PRK07018 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 235 -235909 PRK07021 fliL flagellar basal body-associated protein FliL; Reviewed 162 -180796 PRK07023 PRK07023 short chain dehydrogenase; Provisional 243 -235910 PRK07024 PRK07024 short chain dehydrogenase; Provisional 257 -235911 PRK07027 PRK07027 cobalamin biosynthesis protein CbiG; Provisional 126 -235912 PRK07028 PRK07028 bifunctional hexulose-6-phosphate synthase/ribonuclease regulator; Validated 430 -180800 PRK07030 PRK07030 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 466 -180801 PRK07033 PRK07033 hypothetical protein; Provisional 427 -168775 PRK07034 PRK07034 hypothetical protein; Provisional 536 -180802 PRK07035 PRK07035 short chain dehydrogenase; Provisional 252 -235913 PRK07036 PRK07036 hypothetical protein; Provisional 466 -180803 PRK07037 PRK07037 extracytoplasmic-function sigma-70 factor; Validated 163 -235914 PRK07041 PRK07041 short chain dehydrogenase; Provisional 230 -235915 PRK07042 PRK07042 amidase; Provisional 464 -235916 PRK07044 PRK07044 aldolase II superfamily protein; Provisional 252 -136171 PRK07045 PRK07045 putative monooxygenase; Reviewed 388 -235917 PRK07046 PRK07046 aminotransferase; Validated 453 -235918 PRK07048 PRK07048 serine/threonine dehydratase; Validated 321 -180809 PRK07049 PRK07049 methionine gamma-lyase; Validated 427 -180810 PRK07050 PRK07050 cystathionine beta-lyase; Provisional 394 -180811 PRK07051 PRK07051 hypothetical protein; Validated 80 -235919 PRK07053 PRK07053 glutamine amidotransferase; Provisional 234 -235920 PRK07054 PRK07054 salicylate biosynthesis isochorismate synthase; Validated 475 -235921 PRK07056 PRK07056 amidase; Provisional 454 -180814 PRK07057 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 591 -235922 PRK07058 PRK07058 acetate kinase; Provisional 396 -235923 PRK07059 PRK07059 Long-chain-fatty-acid--CoA ligase; Validated 557 -180817 PRK07060 PRK07060 short chain dehydrogenase; Provisional 245 -180818 PRK07062 PRK07062 short chain dehydrogenase; Provisional 265 -235924 PRK07063 PRK07063 short chain dehydrogenase; Provisional 260 -180820 PRK07064 PRK07064 hypothetical protein; Provisional 544 -168796 PRK07066 PRK07066 3-hydroxybutyryl-CoA dehydrogenase; Validated 321 -235925 PRK07067 PRK07067 sorbitol dehydrogenase; Provisional 257 -180822 PRK07069 PRK07069 short chain dehydrogenase; Validated 251 -180823 PRK07074 PRK07074 short chain dehydrogenase; Provisional 257 -136191 PRK07075 PRK07075 isochorismate-pyruvate lyase; Reviewed 101 -235926 PRK07077 PRK07077 hypothetical protein; Provisional 238 -235927 PRK07078 PRK07078 hypothetical protein; Validated 759 -235928 PRK07079 PRK07079 hypothetical protein; Provisional 469 -235929 PRK07080 PRK07080 hypothetical protein; Validated 317 -180828 PRK07081 PRK07081 acyl carrier protein; Provisional 83 -180829 PRK07084 PRK07084 fructose-bisphosphate aldolase; Provisional 321 -235930 PRK07085 PRK07085 diphosphate--fructose-6-phosphate 1-phosphotransferase; Provisional 555 -180831 PRK07088 PRK07088 ribonucleotide-diphosphate reductase subunit alpha; Validated 764 -180832 PRK07090 PRK07090 class II aldolase/adducin domain protein; Provisional 260 -235931 PRK07092 PRK07092 benzoylformate decarboxylase; Reviewed 530 -235932 PRK07093 PRK07093 para-aminobenzoate synthase component I; Validated 323 -180835 PRK07094 PRK07094 biotin synthase; Provisional 323 -235933 PRK07097 PRK07097 gluconate 5-dehydrogenase; Provisional 265 -235934 PRK07101 PRK07101 hypothetical protein; Provisional 187 -180838 PRK07102 PRK07102 short chain dehydrogenase; Provisional 243 -180839 PRK07103 PRK07103 polyketide beta-ketoacyl:acyl carrier protein synthase; Validated 410 -180840 PRK07105 PRK07105 pyridoxamine kinase; Validated 284 -180841 PRK07106 PRK07106 5-aminoimidazole-4-carboxamide ribonucleotide transformylase; Provisional 390 -180842 PRK07107 PRK07107 inosine 5-monophosphate dehydrogenase; Validated 502 -180843 PRK07108 PRK07108 acetyl-CoA acetyltransferase; Provisional 392 -235935 PRK07109 PRK07109 short chain dehydrogenase; Provisional 334 -235936 PRK07110 PRK07110 polyketide biosynthesis enoyl-CoA hydratase; Validated 249 -235937 PRK07111 PRK07111 anaerobic ribonucleoside triphosphate reductase; Provisional 735 -235938 PRK07112 PRK07112 polyketide biosynthesis enoyl-CoA hydratase; Validated 255 -235939 PRK07114 PRK07114 keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase; Provisional 222 -235940 PRK07115 PRK07115 AMP nucleosidase; Provisional 258 -180850 PRK07116 PRK07116 flavodoxin; Provisional 160 -180851 PRK07117 PRK07117 acyl carrier protein; Validated 79 -235941 PRK07118 PRK07118 ferredoxin; Validated 280 -235942 PRK07119 PRK07119 2-ketoisovalerate ferredoxin reductase; Validated 352 -180854 PRK07121 PRK07121 hypothetical protein; Validated 492 -168831 PRK07122 PRK07122 RNA polymerase sigma factor SigF; Reviewed 264 -180855 PRK07132 PRK07132 DNA polymerase III subunit delta'; Validated 299 -235943 PRK07133 PRK07133 DNA polymerase III subunits gamma and tau; Validated 725 -235944 PRK07135 dnaE DNA polymerase III DnaE; Validated 973 -235945 PRK07139 PRK07139 amidase; Provisional 439 -235946 PRK07143 PRK07143 hypothetical protein; Provisional 279 -235947 PRK07152 nadD putative nicotinate-nucleotide adenylyltransferase; Validated 342 -235948 PRK07157 PRK07157 acetate kinase; Provisional 400 -235949 PRK07159 PRK07159 F0F1 ATP synthase subunit C; Validated 100 -235950 PRK07164 PRK07164 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Provisional 218 -235951 PRK07165 PRK07165 F0F1 ATP synthase subunit alpha; Validated 507 -180864 PRK07168 PRK07168 bifunctional uroporphyrinogen-III methyltransferase/uroporphyrinogen-III synthase; Reviewed 474 -180865 PRK07178 PRK07178 pyruvate carboxylase subunit A; Validated 472 -180866 PRK07179 PRK07179 hypothetical protein; Provisional 407 -75964 PRK07182 flgB flagellar basal body rod protein FlgB; Reviewed 148 -235952 PRK07187 PRK07187 ribonucleotide-diphosphate reductase subunit alpha; Validated 721 -235953 PRK07188 PRK07188 nicotinate phosphoribosyltransferase; Provisional 352 -235954 PRK07189 PRK07189 malonate decarboxylase subunit beta; Reviewed 301 -235955 PRK07190 PRK07190 hypothetical protein; Provisional 487 -180871 PRK07191 flgK flagellar hook-associated protein FlgK; Validated 456 -235956 PRK07192 flgL flagellar hook-associated protein FlgL; Reviewed 305 -235957 PRK07193 fliF flagellar MS-ring protein; Reviewed 552 -235958 PRK07194 fliG flagellar motor switch protein G; Reviewed 334 -180875 PRK07196 fliI flagellum-specific ATP synthase; Validated 434 -235959 PRK07198 PRK07198 hypothetical protein; Validated 418 -235960 PRK07199 PRK07199 phosphoribosylpyrophosphate synthetase; Provisional 301 -235961 PRK07200 PRK07200 aspartate/ornithine carbamoyltransferase family protein; Validated 395 -235962 PRK07201 PRK07201 short chain dehydrogenase; Provisional 657 -235963 PRK07203 PRK07203 putative chlorohydrolase/aminohydrolase; Validated 442 -235964 PRK07204 PRK07204 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 329 -235965 PRK07205 PRK07205 hypothetical protein; Provisional 444 -180883 PRK07206 PRK07206 hypothetical protein; Provisional 416 -235966 PRK07207 PRK07207 ribonucleotide-diphosphate reductase subunit alpha; Validated 965 -235967 PRK07208 PRK07208 hypothetical protein; Provisional 479 -235968 PRK07209 PRK07209 ribonucleotide-diphosphate reductase subunit beta; Validated 369 -180887 PRK07211 PRK07211 replication factor A; Reviewed 485 -235969 PRK07213 PRK07213 chlorohydrolase; Provisional 375 -235970 PRK07217 PRK07217 replication factor A; Reviewed 311 -180890 PRK07218 PRK07218 replication factor A; Provisional 423 -235971 PRK07219 PRK07219 DNA topoisomerase I; Validated 822 -180892 PRK07220 PRK07220 DNA topoisomerase I; Validated 740 -235972 PRK07225 PRK07225 DNA-directed RNA polymerase subunit B'; Validated 605 -235973 PRK07226 PRK07226 fructose-bisphosphate aldolase; Provisional 267 -180895 PRK07228 PRK07228 N-ethylammeline chlorohydrolase; Provisional 445 -235974 PRK07229 PRK07229 aconitate hydratase; Validated 646 -235975 PRK07231 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 251 -235976 PRK07232 PRK07232 bifunctional malic enzyme oxidoreductase/phosphotransacetylase; Reviewed 752 -235977 PRK07233 PRK07233 hypothetical protein; Provisional 434 -235978 PRK07234 PRK07234 putative monovalent cation/H+ antiporter subunit D; Reviewed 470 -235979 PRK07235 PRK07235 amidase; Provisional 502 -235980 PRK07236 PRK07236 hypothetical protein; Provisional 386 -180903 PRK07238 PRK07238 bifunctional RNase H/acid phosphatase; Provisional 372 -235981 PRK07239 PRK07239 bifunctional uroporphyrinogen-III synthetase/response regulator domain protein; Validated 381 -180905 PRK07246 PRK07246 bifunctional ATP-dependent DNA helicase/DNA polymerase III subunit epsilon; Validated 820 -180906 PRK07247 PRK07247 DNA polymerase III subunit epsilon; Validated 195 -168880 PRK07248 PRK07248 hypothetical protein; Provisional 87 -180907 PRK07251 PRK07251 pyridine nucleotide-disulfide oxidoreductase; Provisional 438 -180908 PRK07252 PRK07252 hypothetical protein; Provisional 120 -235982 PRK07259 PRK07259 dihydroorotate dehydrogenase 1B; Reviewed 301 -180910 PRK07260 PRK07260 enoyl-CoA hydratase; Provisional 255 -180911 PRK07261 PRK07261 topology modulation protein; Provisional 171 -235983 PRK07269 PRK07269 cystathionine gamma-synthase; Reviewed 364 -235984 PRK07272 PRK07272 amidophosphoribosyltransferase; Provisional 484 -180914 PRK07274 PRK07274 single-stranded DNA-binding protein; Provisional 131 -180915 PRK07275 PRK07275 single-stranded DNA-binding protein; Provisional 162 -180916 PRK07276 PRK07276 DNA polymerase III subunit delta'; Validated 290 -180917 PRK07279 dnaE DNA polymerase III DnaE; Reviewed 1034 -180918 PRK07281 PRK07281 methionine aminopeptidase; Reviewed 286 -180919 PRK07282 PRK07282 acetolactate synthase catalytic subunit; Reviewed 566 -180920 PRK07283 PRK07283 hypothetical protein; Provisional 98 -180921 PRK07306 PRK07306 ribonucleotide-diphosphate reductase subunit alpha; Validated 720 -180922 PRK07308 PRK07308 flavodoxin; Validated 146 -235985 PRK07309 PRK07309 aromatic amino acid aminotransferase; Validated 391 -235986 PRK07313 PRK07313 phosphopantothenoylcysteine decarboxylase; Validated 182 -235987 PRK07314 PRK07314 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 411 -180926 PRK07315 PRK07315 fructose-bisphosphate aldolase; Provisional 293 -235988 PRK07318 PRK07318 dipeptidase PepV; Reviewed 466 -180928 PRK07322 PRK07322 adenine phosphoribosyltransferase; Provisional 178 -235989 PRK07324 PRK07324 transaminase; Validated 373 -235990 PRK07326 PRK07326 short chain dehydrogenase; Provisional 237 -235991 PRK07327 PRK07327 enoyl-CoA hydratase; Provisional 268 -235992 PRK07328 PRK07328 histidinol-phosphatase; Provisional 269 -180933 PRK07329 PRK07329 hypothetical protein; Provisional 246 -235993 PRK07331 PRK07331 cobalt transport protein CbiM; Provisional 322 -180935 PRK07333 PRK07333 2-octaprenyl-6-methoxyphenyl hydroxylase; Provisional 403 -235994 PRK07334 PRK07334 threonine dehydratase; Provisional 403 -180937 PRK07337 PRK07337 aminotransferase; Validated 388 -235995 PRK07338 PRK07338 hypothetical protein; Provisional 402 -235996 PRK07340 PRK07340 ornithine cyclodeaminase; Validated 304 -235997 PRK07342 PRK07342 peptide chain release factor 2; Provisional 339 -235998 PRK07349 PRK07349 amidophosphoribosyltransferase; Provisional 500 -180941 PRK07352 PRK07352 F0F1 ATP synthase subunit B; Validated 174 -235999 PRK07353 PRK07353 F0F1 ATP synthase subunit B'; Validated 140 -180942 PRK07354 PRK07354 F0F1 ATP synthase subunit C; Validated 81 -236000 PRK07360 PRK07360 FO synthase subunit 2; Reviewed 371 -180944 PRK07362 PRK07362 isocitrate dehydrogenase; Validated 474 -180945 PRK07363 PRK07363 NAD(P)H-quinone oxidoreductase subunit M; Validated 501 -236001 PRK07364 PRK07364 2-octaprenyl-6-methoxyphenyl hydroxylase; Validated 415 -180947 PRK07366 PRK07366 succinyldiaminopimelate transaminase; Validated 388 -236002 PRK07369 PRK07369 dihydroorotase; Provisional 418 -180949 PRK07370 PRK07370 enoyl-(acyl carrier protein) reductase; Validated 258 -236003 PRK07373 PRK07373 DNA polymerase III subunit alpha; Reviewed 449 -168927 PRK07374 dnaE DNA polymerase III subunit alpha; Validated 1170 -236004 PRK07375 PRK07375 putative monovalent cation/H+ antiporter subunit C; Reviewed 112 -236005 PRK07376 PRK07376 NAD(P)H-quinone oxidoreductase subunit F; Validated 673 -236006 PRK07377 PRK07377 hypothetical protein; Provisional 184 -236007 PRK07379 PRK07379 coproporphyrinogen III oxidase; Provisional 400 -180954 PRK07380 PRK07380 adenylosuccinate lyase; Provisional 431 -236008 PRK07390 PRK07390 NAD(P)H-quinone oxidoreductase subunit F; Validated 613 -236009 PRK07392 PRK07392 threonine-phosphate decarboxylase; Validated 360 -168934 PRK07394 PRK07394 hypothetical protein; Provisional 342 -236010 PRK07395 PRK07395 L-aspartate oxidase; Provisional 553 -180958 PRK07396 PRK07396 dihydroxynaphthoic acid synthetase; Validated 273 -236011 PRK07399 PRK07399 DNA polymerase III subunit delta'; Validated 314 -180960 PRK07400 PRK07400 30S ribosomal protein S1; Reviewed 318 -180961 PRK07402 PRK07402 precorrin-6B methylase; Provisional 196 -180962 PRK07403 PRK07403 glyceraldehyde-3-phosphate dehydrogenase; Reviewed 337 -180963 PRK07405 PRK07405 RNA polymerase sigma factor SigD; Validated 317 -236012 PRK07406 PRK07406 RNA polymerase sigma factor RpoD; Validated 373 -180965 PRK07408 PRK07408 RNA polymerase sigma factor SigF; Reviewed 256 -236013 PRK07409 PRK07409 threonine synthase; Validated 353 -180967 PRK07411 PRK07411 hypothetical protein; Validated 390 -180968 PRK07413 PRK07413 hypothetical protein; Validated 382 -168945 PRK07414 PRK07414 cob(I)yrinic acid a,c-diamide adenosyltransferase; Validated 178 -180969 PRK07415 PRK07415 NAD(P)H-quinone oxidoreductase subunit H; Validated 394 -180970 PRK07417 PRK07417 arogenate dehydrogenase; Reviewed 279 -236014 PRK07418 PRK07418 acetolactate synthase 3 catalytic subunit; Reviewed 616 -236015 PRK07419 PRK07419 1,4-dihydroxy-2-naphthoate octaprenyltransferase; Provisional 304 -236016 PRK07424 PRK07424 bifunctional sterol desaturase/short chain dehydrogenase; Validated 406 -236017 PRK07428 PRK07428 nicotinate-nucleotide pyrophosphorylase; Provisional 288 -180975 PRK07429 PRK07429 phosphoribulokinase; Provisional 327 -236018 PRK07431 PRK07431 aspartate kinase; Provisional 587 -180977 PRK07432 PRK07432 5'-methylthioadenosine phosphorylase; Provisional 290 -180978 PRK07440 PRK07440 hypothetical protein; Provisional 70 -236019 PRK07445 PRK07445 O-succinylbenzoic acid--CoA ligase; Reviewed 452 -236020 PRK07449 PRK07449 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase; Validated 568 -236021 PRK07451 PRK07451 translation initiation factor Sui1; Validated 115 -180982 PRK07452 PRK07452 DNA polymerase III subunit delta; Validated 326 -180983 PRK07453 PRK07453 protochlorophyllide oxidoreductase; Validated 322 -180984 PRK07454 PRK07454 short chain dehydrogenase; Provisional 241 -180985 PRK07455 PRK07455 keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase; Provisional 187 -180986 PRK07459 PRK07459 single-stranded DNA-binding protein; Provisional 121 -180987 PRK07468 PRK07468 enoyl-CoA hydratase; Provisional 262 -180988 PRK07470 PRK07470 acyl-CoA synthetase; Validated 528 -236022 PRK07471 PRK07471 DNA polymerase III subunit delta'; Validated 365 -168961 PRK07473 PRK07473 carboxypeptidase; Provisional 376 -236023 PRK07474 PRK07474 sulfur oxidation protein SoxY; Provisional 154 -236024 PRK07475 PRK07475 hypothetical protein; Provisional 245 -236025 PRK07476 eutB threonine dehydratase; Provisional 322 -180993 PRK07478 PRK07478 short chain dehydrogenase; Provisional 254 -180994 PRK07480 PRK07480 putative aminotransferase; Validated 456 -168967 PRK07481 PRK07481 hypothetical protein; Provisional 449 -236026 PRK07482 PRK07482 hypothetical protein; Provisional 461 -236027 PRK07483 PRK07483 hypothetical protein; Provisional 443 -236028 PRK07486 PRK07486 amidase; Provisional 484 -236029 PRK07487 PRK07487 amidase; Provisional 469 -236030 PRK07488 PRK07488 indole acetimide hydrolase; Validated 472 -236031 PRK07490 PRK07490 hypothetical protein; Provisional 245 -181000 PRK07492 PRK07492 adenylosuccinate lyase; Provisional 435 -181001 PRK07494 PRK07494 2-octaprenyl-6-methoxyphenyl hydroxylase; Provisional 388 -236032 PRK07495 PRK07495 4-aminobutyrate aminotransferase; Provisional 425 -236033 PRK07500 rpoH2 RNA polymerase factor sigma-32; Reviewed 289 -236034 PRK07502 PRK07502 cyclohexadienyl dehydrogenase; Validated 307 -181005 PRK07503 PRK07503 methionine gamma-lyase; Provisional 403 -168979 PRK07504 PRK07504 O-succinylhomoserine sulfhydrylase; Reviewed 398 -181006 PRK07505 PRK07505 hypothetical protein; Provisional 402 -236035 PRK07508 PRK07508 aminodeoxychorismate synthase; Provisional 378 -181008 PRK07509 PRK07509 enoyl-CoA hydratase; Provisional 262 -181009 PRK07511 PRK07511 enoyl-CoA hydratase; Provisional 260 -236036 PRK07512 PRK07512 L-aspartate oxidase; Provisional 513 -181011 PRK07514 PRK07514 malonyl-CoA synthase; Validated 504 -236037 PRK07515 PRK07515 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 372 -181013 PRK07516 PRK07516 acetyl-CoA acetyltransferase; Provisional 389 -236038 PRK07521 flgK flagellar hook-associated protein FlgK; Validated 483 -236039 PRK07522 PRK07522 acetylornithine deacetylase; Provisional 385 -236040 PRK07523 PRK07523 gluconate 5-dehydrogenase; Provisional 255 -236041 PRK07524 PRK07524 hypothetical protein; Provisional 535 -236042 PRK07525 PRK07525 sulfoacetaldehyde acetyltransferase; Validated 588 -236043 PRK07529 PRK07529 AMP-binding domain protein; Validated 632 -181018 PRK07530 PRK07530 3-hydroxybutyryl-CoA dehydrogenase; Validated 292 -236044 PRK07531 PRK07531 bifunctional 3-hydroxyacyl-CoA dehydrogenase/thioesterase; Validated 495 -181020 PRK07533 PRK07533 enoyl-(acyl carrier protein) reductase; Provisional 258 -236045 PRK07534 PRK07534 methionine synthase I; Validated 336 -181022 PRK07535 PRK07535 methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase; Validated 261 -236046 PRK07538 PRK07538 hypothetical protein; Provisional 413 -181024 PRK07539 PRK07539 NADH dehydrogenase subunit E; Validated 154 -181025 PRK07544 PRK07544 branched-chain amino acid aminotransferase; Validated 292 -169002 PRK07546 PRK07546 hypothetical protein; Provisional 209 -181026 PRK07550 PRK07550 hypothetical protein; Provisional 386 -181027 PRK07558 PRK07558 F0F1 ATP synthase subunit C; Validated 74 -181028 PRK07559 PRK07559 2'-deoxycytidine 5'-triphosphate deaminase; Provisional 365 -236047 PRK07560 PRK07560 elongation factor EF-2; Reviewed 731 -236048 PRK07561 PRK07561 DNA topoisomerase I subunit omega; Validated 859 -236049 PRK07562 PRK07562 ribonucleotide-diphosphate reductase subunit alpha; Validated 1220 -236050 PRK07564 PRK07564 phosphoglucomutase; Validated 543 -236051 PRK07565 PRK07565 dihydroorotate dehydrogenase 2; Reviewed 334 -236052 PRK07566 PRK07566 bacteriochlorophyll/chlorophyll a synthase; Reviewed 314 -181035 PRK07567 PRK07567 glutamine amidotransferase; Provisional 242 -181036 PRK07568 PRK07568 aspartate aminotransferase; Provisional 397 -181037 PRK07569 PRK07569 bidirectional hydrogenase complex protein HoxU; Validated 234 -181038 PRK07570 PRK07570 succinate dehydrogenase/fumarate reductase iron-sulfur subunit; Validated 250 -236053 PRK07571 PRK07571 bidirectional hydrogenase complex protein HoxE; Reviewed 169 -181039 PRK07572 PRK07572 cytosine deaminase; Validated 426 -236054 PRK07573 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 640 -181041 PRK07574 PRK07574 formate dehydrogenase; Provisional 385 -236055 PRK07575 PRK07575 dihydroorotase; Provisional 438 -236056 PRK07576 PRK07576 short chain dehydrogenase; Provisional 264 -181044 PRK07577 PRK07577 short chain dehydrogenase; Provisional 234 -236057 PRK07578 PRK07578 short chain dehydrogenase; Provisional 199 -236058 PRK07579 PRK07579 hypothetical protein; Provisional 245 -236059 PRK07580 PRK07580 Mg-protoporphyrin IX methyl transferase; Validated 230 -236060 PRK07581 PRK07581 hypothetical protein; Validated 339 -236061 PRK07582 PRK07582 cystathionine gamma-lyase; Validated 366 -236062 PRK07583 PRK07583 cytosine deaminase-like protein; Validated 438 -236063 PRK07586 PRK07586 hypothetical protein; Validated 514 -169028 PRK07588 PRK07588 hypothetical protein; Provisional 391 -236064 PRK07589 PRK07589 ornithine cyclodeaminase; Validated 346 -181053 PRK07590 PRK07590 L,L-diaminopimelate aminotransferase; Validated 409 -236065 PRK07591 PRK07591 threonine synthase; Validated 421 -136438 PRK07594 PRK07594 type III secretion system ATPase SsaN; Validated 433 -236066 PRK07597 secE preprotein translocase subunit SecE; Reviewed 64 -236067 PRK07598 PRK07598 RNA polymerase sigma factor SigC; Validated 415 -181057 PRK07608 PRK07608 ubiquinone biosynthesis hydroxylase family protein; Provisional 388 -181058 PRK07609 PRK07609 CDP-6-deoxy-delta-3,4-glucoseen reductase; Validated 339 -181059 PRK07627 PRK07627 dihydroorotase; Provisional 425 -236068 PRK07630 PRK07630 CobD/CbiB family protein; Provisional 312 -181061 PRK07631 PRK07631 amidophosphoribosyltransferase; Provisional 475 -236069 PRK07632 PRK07632 ribonucleotide-diphosphate reductase subunit alpha; Validated 699 -181063 PRK07634 PRK07634 pyrroline-5-carboxylate reductase; Reviewed 245 -236070 PRK07636 ligB ATP-dependent DNA ligase; Reviewed 275 -236071 PRK07638 PRK07638 acyl-CoA synthetase; Validated 487 -181065 PRK07639 PRK07639 acyl carrier protein; Provisional 86 -181066 PRK07649 PRK07649 para-aminobenzoate/anthranilate synthase glutamine amidotransferase component II; Validated 195 -181067 PRK07650 PRK07650 4-amino-4-deoxychorismate lyase; Provisional 283 -236072 PRK07656 PRK07656 long-chain-fatty-acid--CoA ligase; Validated 513 -181069 PRK07657 PRK07657 enoyl-CoA hydratase; Provisional 260 -181070 PRK07658 PRK07658 enoyl-CoA hydratase; Provisional 257 -236073 PRK07659 PRK07659 enoyl-CoA hydratase; Provisional 260 -181072 PRK07661 PRK07661 acetyl-CoA acetyltransferase; Provisional 391 -236074 PRK07666 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 239 -169051 PRK07667 PRK07667 uridine kinase; Provisional 193 -181074 PRK07668 PRK07668 hypothetical protein; Validated 254 -181075 PRK07670 PRK07670 RNA polymerase sigma factor SigD; Validated 251 -181076 PRK07671 PRK07671 cystathionine beta-lyase; Provisional 377 -181077 PRK07677 PRK07677 short chain dehydrogenase; Provisional 252 -181078 PRK07678 PRK07678 aminotransferase; Validated 451 -181079 PRK07679 PRK07679 pyrroline-5-carboxylate reductase; Reviewed 279 -181080 PRK07680 PRK07680 late competence protein ComER; Validated 273 -181081 PRK07681 PRK07681 aspartate aminotransferase; Provisional 399 -181082 PRK07682 PRK07682 hypothetical protein; Validated 378 -236075 PRK07683 PRK07683 aminotransferase A; Validated 387 -181084 PRK07688 PRK07688 thiamine/molybdopterin biosynthesis ThiF/MoeB-like protein; Validated 339 -181085 PRK07691 PRK07691 putative monovalent cation/H+ antiporter subunit D; Reviewed 496 -181086 PRK07695 PRK07695 transcriptional regulator TenI; Provisional 201 -169065 PRK07696 PRK07696 sulfur carrier protein ThiS; Provisional 67 -181087 PRK07701 flgL flagellar hook-associated protein FlgL; Validated 298 -181088 PRK07708 PRK07708 hypothetical protein; Validated 219 -169068 PRK07709 PRK07709 fructose-bisphosphate aldolase; Provisional 285 -236076 PRK07710 PRK07710 acetolactate synthase catalytic subunit; Reviewed 571 -236077 PRK07714 PRK07714 hypothetical protein; Provisional 100 -181090 PRK07718 fliL flagellar basal body-associated protein FliL; Reviewed 142 -181091 PRK07720 fliJ flagellar biosynthesis chaperone; Validated 146 -181092 PRK07721 fliI flagellum-specific ATP synthase; Validated 438 -236078 PRK07726 PRK07726 DNA topoisomerase III; Provisional 658 -236079 PRK07729 PRK07729 glyceraldehyde-3-phosphate dehydrogenase; Validated 343 -236080 PRK07734 motB flagellar motor protein MotB; Reviewed 259 -236081 PRK07735 PRK07735 NADH dehydrogenase subunit C; Validated 430 -236082 PRK07737 fliD flagellar capping protein; Validated 501 -236083 PRK07738 PRK07738 flagellar protein FlaG; Provisional 117 -236084 PRK07739 flgK flagellar hook-associated protein FlgK; Validated 507 -236085 PRK07740 PRK07740 hypothetical protein; Provisional 244 -236086 PRK07742 PRK07742 phosphate butyryltransferase; Validated 299 -236087 PRK07748 PRK07748 sporulation inhibitor KapD; Provisional 207 -169084 PRK07756 PRK07756 NADH dehydrogenase subunit A; Validated 122 -236088 PRK07757 PRK07757 acetyltransferase; Provisional 152 -181104 PRK07758 PRK07758 hypothetical protein; Provisional 95 -236089 PRK07761 PRK07761 DNA polymerase III subunit beta; Validated 376 -236090 PRK07764 PRK07764 DNA polymerase III subunits gamma and tau; Validated 824 -181107 PRK07765 PRK07765 para-aminobenzoate synthase component II; Provisional 214 -236091 PRK07768 PRK07768 long-chain-fatty-acid--CoA ligase; Validated 545 -181109 PRK07769 PRK07769 long-chain-fatty-acid--CoA ligase; Validated 631 -236092 PRK07772 PRK07772 single-stranded DNA-binding protein; Provisional 186 -236093 PRK07773 PRK07773 replicative DNA helicase; Validated 886 -236094 PRK07774 PRK07774 short chain dehydrogenase; Provisional 250 -181113 PRK07775 PRK07775 short chain dehydrogenase; Provisional 274 -236095 PRK07777 PRK07777 aminotransferase; Validated 387 -181115 PRK07785 PRK07785 NADH dehydrogenase subunit C; Provisional 235 -169098 PRK07786 PRK07786 long-chain-fatty-acid--CoA ligase; Validated 542 -236096 PRK07787 PRK07787 acyl-CoA synthetase; Validated 471 -236097 PRK07788 PRK07788 acyl-CoA synthetase; Validated 549 -236098 PRK07789 PRK07789 acetolactate synthase 1 catalytic subunit; Validated 612 -236099 PRK07791 PRK07791 short chain dehydrogenase; Provisional 286 -181120 PRK07792 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 306 -236100 PRK07798 PRK07798 acyl-CoA synthetase; Validated 533 -181122 PRK07799 PRK07799 enoyl-CoA hydratase; Provisional 263 -181123 PRK07801 PRK07801 acetyl-CoA acetyltransferase; Provisional 382 -236101 PRK07803 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 626 -236102 PRK07804 PRK07804 L-aspartate oxidase; Provisional 541 -181126 PRK07806 PRK07806 short chain dehydrogenase; Provisional 248 -181127 PRK07807 PRK07807 inosine 5-monophosphate dehydrogenase; Validated 479 -236103 PRK07810 PRK07810 O-succinylhomoserine sulfhydrylase; Provisional 403 -236104 PRK07811 PRK07811 cystathionine gamma-synthase; Provisional 388 -236105 PRK07812 PRK07812 O-acetylhomoserine aminocarboxypropyltransferase; Validated 436 -181131 PRK07814 PRK07814 short chain dehydrogenase; Provisional 263 -236106 PRK07818 PRK07818 dihydrolipoamide dehydrogenase; Reviewed 466 -181133 PRK07819 PRK07819 3-hydroxybutyryl-CoA dehydrogenase; Validated 286 -236107 PRK07823 PRK07823 5'-methylthioadenosine phosphorylase; Validated 264 -236108 PRK07824 PRK07824 O-succinylbenzoic acid--CoA ligase; Provisional 358 -181136 PRK07825 PRK07825 short chain dehydrogenase; Provisional 273 -236109 PRK07827 PRK07827 enoyl-CoA hydratase; Provisional 260 -236110 PRK07831 PRK07831 short chain dehydrogenase; Provisional 262 -181139 PRK07832 PRK07832 short chain dehydrogenase; Provisional 272 -236111 PRK07843 PRK07843 3-ketosteroid-delta-1-dehydrogenase; Reviewed 557 -236112 PRK07845 PRK07845 flavoprotein disulfide reductase; Reviewed 466 -181142 PRK07846 PRK07846 mycothione reductase; Reviewed 451 -236113 PRK07847 PRK07847 amidophosphoribosyltransferase; Provisional 510 -236114 PRK07849 PRK07849 4-amino-4-deoxychorismate lyase; Provisional 292 -181145 PRK07850 PRK07850 acetyl-CoA acetyltransferase; Provisional 387 -181146 PRK07851 PRK07851 acetyl-CoA acetyltransferase; Provisional 406 -236115 PRK07854 PRK07854 enoyl-CoA hydratase; Provisional 243 -181147 PRK07855 PRK07855 lipid-transfer protein; Provisional 386 -236116 PRK07856 PRK07856 short chain dehydrogenase; Provisional 252 -236117 PRK07857 PRK07857 hypothetical protein; Provisional 106 -236118 PRK07860 PRK07860 NADH dehydrogenase subunit G; Validated 797 -236119 PRK07865 PRK07865 N-succinyldiaminopimelate aminotransferase; Reviewed 364 -236120 PRK07867 PRK07867 acyl-CoA synthetase; Validated 529 -236121 PRK07868 PRK07868 acyl-CoA synthetase; Validated 994 -181154 PRK07869 PRK07869 amidase; Provisional 468 -169138 PRK07874 PRK07874 F0F1 ATP synthase subunit C; Validated 80 -236122 PRK07877 PRK07877 hypothetical protein; Provisional 722 -181156 PRK07878 PRK07878 molybdopterin biosynthesis-like protein MoeZ; Validated 392 -236123 PRK07883 PRK07883 hypothetical protein; Validated 557 -236124 PRK07889 PRK07889 enoyl-(acyl carrier protein) reductase; Provisional 256 -181159 PRK07890 PRK07890 short chain dehydrogenase; Provisional 258 -236125 PRK07896 PRK07896 nicotinate-nucleotide pyrophosphorylase; Provisional 289 -236126 PRK07899 rpsA 30S ribosomal protein S1; Reviewed 486 -181162 PRK07904 PRK07904 short chain dehydrogenase; Provisional 253 -181163 PRK07906 PRK07906 hypothetical protein; Provisional 426 -236127 PRK07907 PRK07907 hypothetical protein; Provisional 449 -236128 PRK07908 PRK07908 hypothetical protein; Provisional 349 -236129 PRK07910 PRK07910 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 418 -169151 PRK07912 PRK07912 salicylate synthase MbtI; Reviewed 449 -236130 PRK07914 PRK07914 hypothetical protein; Reviewed 320 -236131 PRK07920 PRK07920 lipid A biosynthesis lauroyl acyltransferase; Provisional 298 -181169 PRK07921 PRK07921 RNA polymerase sigma factor SigB; Reviewed 324 -236132 PRK07922 PRK07922 N-acetylglutamate synthase; Validated 169 -181171 PRK07928 PRK07928 NADH dehydrogenase subunit A; Validated 119 -236133 PRK07933 PRK07933 thymidylate kinase; Validated 213 -181173 PRK07937 PRK07937 lipid-transfer protein; Provisional 352 -181174 PRK07938 PRK07938 enoyl-CoA hydratase; Provisional 249 -236134 PRK07940 PRK07940 DNA polymerase III subunit delta'; Validated 394 -181176 PRK07942 PRK07942 DNA polymerase III subunit epsilon; Provisional 232 -236135 PRK07945 PRK07945 hypothetical protein; Provisional 335 -236136 PRK07946 PRK07946 putative monovalent cation/H+ antiporter subunit C; Reviewed 163 -181179 PRK07948 PRK07948 putative monovalent cation/H+ antiporter subunit F; Reviewed 86 -181180 PRK07952 PRK07952 DNA replication protein DnaC; Validated 244 -236137 PRK07956 ligA NAD-dependent DNA ligase LigA; Validated 665 -181182 PRK07960 fliI flagellum-specific ATP synthase; Validated 455 -181183 PRK07963 fliN flagellar motor switch protein FliN; Validated 137 -181184 PRK07967 PRK07967 3-oxoacyl-(acyl carrier protein) synthase I; Reviewed 406 -181185 PRK07979 PRK07979 acetolactate synthase 3 catalytic subunit; Validated 574 -181186 PRK07983 PRK07983 exodeoxyribonuclease X; Provisional 219 -181187 PRK07984 PRK07984 enoyl-(acyl carrier protein) reductase; Provisional 262 -181188 PRK07985 PRK07985 oxidoreductase; Provisional 294 -181189 PRK07986 PRK07986 adenosylmethionine--8-amino-7-oxononanoate transaminase; Validated 428 -181190 PRK07993 PRK07993 DNA polymerase III subunit delta'; Validated 334 -236138 PRK07994 PRK07994 DNA polymerase III subunits gamma and tau; Validated 647 -181192 PRK07998 gatY putative fructose-1,6-bisphosphate aldolase; Reviewed 283 -169179 PRK08005 PRK08005 epimerase; Validated 210 -181193 PRK08006 PRK08006 replicative DNA helicase; Provisional 471 -181194 PRK08007 PRK08007 para-aminobenzoate synthase component II; Provisional 187 -181195 PRK08008 caiC putative crotonobetaine/carnitine-CoA ligase; Validated 517 -181196 PRK08010 PRK08010 pyridine nucleotide-disulfide oxidoreductase; Provisional 441 -236139 PRK08013 PRK08013 oxidoreductase; Provisional 400 -181198 PRK08017 PRK08017 oxidoreductase; Provisional 256 -181199 PRK08020 ubiF 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Reviewed 391 -181200 PRK08025 PRK08025 lipid A biosynthesis palmitoleoyl acyltransferase; Reviewed 305 -236140 PRK08026 PRK08026 flagellin; Validated 529 -181202 PRK08027 flgL flagellar hook-associated protein FlgL; Reviewed 317 -236141 PRK08032 fliD flagellar capping protein; Reviewed 462 -181204 PRK08035 PRK08035 type III secretion system protein SsaQ; Validated 323 -181205 PRK08040 PRK08040 putative semialdehyde dehydrogenase; Provisional 336 -181206 PRK08042 PRK08042 formate hydrogenlyase subunit 3; Reviewed 593 -181207 PRK08043 PRK08043 bifunctional acyl-[acyl carrier protein] synthetase/2-acylglycerophosphoethanolamine acyltransferase; Validated 718 -169193 PRK08044 PRK08044 allantoinase; Provisional 449 -169194 PRK08045 PRK08045 cystathionine gamma-synthase; Provisional 386 -181208 PRK08049 PRK08049 F0F1 ATP synthase subunit I; Validated 124 -236142 PRK08051 fre FMN reductase; Validated 232 -181210 PRK08053 PRK08053 sulfur carrier protein ThiS; Provisional 66 -236143 PRK08055 PRK08055 chorismate mutase; Provisional 181 -181212 PRK08056 PRK08056 threonine-phosphate decarboxylase; Provisional 356 -236144 PRK08057 PRK08057 cobalt-precorrin-6x reductase; Reviewed 248 -181214 PRK08058 PRK08058 DNA polymerase III subunit delta'; Validated 329 -181215 PRK08059 PRK08059 general stress protein 13; Validated 123 -181216 PRK08061 rpsN 30S ribosomal protein S14; Reviewed 61 -236145 PRK08063 PRK08063 enoyl-(acyl carrier protein) reductase; Provisional 250 -236146 PRK08064 PRK08064 cystathionine beta-lyase; Provisional 390 -181219 PRK08068 PRK08068 transaminase; Reviewed 389 -236147 PRK08071 PRK08071 L-aspartate oxidase; Provisional 510 -181221 PRK08072 PRK08072 nicotinate-nucleotide pyrophosphorylase; Provisional 277 -181222 PRK08073 flgL flagellar hook-associated protein FlgL; Validated 287 -236148 PRK08074 PRK08074 bifunctional ATP-dependent DNA helicase/DNA polymerase III subunit epsilon; Validated 928 -181224 PRK08084 PRK08084 DNA replication initiation factor; Provisional 235 -181225 PRK08085 PRK08085 gluconate 5-dehydrogenase; Provisional 254 -181226 PRK08087 PRK08087 L-fuculose phosphate aldolase; Provisional 215 -236149 PRK08088 PRK08088 4-aminobutyrate aminotransferase; Validated 425 -169215 PRK08091 PRK08091 ribulose-phosphate 3-epimerase; Validated 228 -236150 PRK08097 ligB NAD-dependent DNA ligase LigB; Reviewed 562 -236151 PRK08099 PRK08099 bifunctional DNA-binding transcriptional repressor/ NMN adenylyltransferase; Provisional 399 -181230 PRK08105 PRK08105 flavodoxin; Provisional 149 -181231 PRK08114 PRK08114 cystathionine beta-lyase; Provisional 395 -236152 PRK08115 PRK08115 ribonucleotide-diphosphate reductase subunit alpha; Validated 858 -236153 PRK08116 PRK08116 hypothetical protein; Validated 268 -181234 PRK08117 PRK08117 4-aminobutyrate aminotransferase; Provisional 433 -181235 PRK08118 PRK08118 topology modulation protein; Reviewed 167 -236154 PRK08119 PRK08119 flagellar motor switch protein; Validated 382 -236155 PRK08123 PRK08123 histidinol-phosphatase; Reviewed 270 -181238 PRK08124 PRK08124 flagellar motor protein MotA; Validated 263 -236156 PRK08125 PRK08125 bifunctional UDP-glucuronic acid decarboxylase/UDP-4-amino-4-deoxy-L-arabinose formyltransferase; Validated 660 -236157 PRK08126 PRK08126 hypothetical protein; Provisional 432 -181241 PRK08130 PRK08130 putative aldolase; Validated 213 -181242 PRK08131 PRK08131 acetyl-CoA acetyltransferase; Provisional 401 -236158 PRK08132 PRK08132 FAD-dependent oxidoreductase; Provisional 547 -181244 PRK08133 PRK08133 O-succinylhomoserine sulfhydrylase; Validated 390 -236159 PRK08134 PRK08134 O-acetylhomoserine aminocarboxypropyltransferase; Validated 433 -236160 PRK08136 PRK08136 glycosyl transferase family protein; Provisional 317 -236161 PRK08137 PRK08137 amidase; Provisional 497 -236162 PRK08138 PRK08138 enoyl-CoA hydratase; Provisional 261 -181249 PRK08139 PRK08139 enoyl-CoA hydratase; Validated 266 -236163 PRK08140 PRK08140 enoyl-CoA hydratase; Provisional 262 -236164 PRK08142 PRK08142 acetyl-CoA acetyltransferase; Provisional 388 -236165 PRK08147 flgK flagellar hook-associated protein FlgK; Validated 547 -236166 PRK08149 PRK08149 ATP synthase SpaL; Validated 428 -181254 PRK08150 PRK08150 enoyl-CoA hydratase; Provisional 255 -181255 PRK08153 PRK08153 histidinol-phosphate aminotransferase; Provisional 369 -236167 PRK08154 PRK08154 anaerobic benzoate catabolism transcriptional regulator; Reviewed 309 -181257 PRK08155 PRK08155 acetolactate synthase catalytic subunit; Validated 564 -236168 PRK08156 PRK08156 type III secretion system protein SpaS; Validated 361 -181259 PRK08158 PRK08158 type III secretion system protein SpaO; Validated 303 -181260 PRK08159 PRK08159 enoyl-(acyl carrier protein) reductase; Provisional 272 -236169 PRK08162 PRK08162 acyl-CoA synthetase; Validated 545 -181262 PRK08163 PRK08163 salicylate hydroxylase; Provisional 396 -236170 PRK08166 PRK08166 NADH dehydrogenase subunit G; Validated 791 -236171 PRK08168 PRK08168 NADH dehydrogenase subunit L; Provisional 516 -181265 PRK08170 PRK08170 acetyl-CoA acetyltransferase; Provisional 426 -181266 PRK08172 PRK08172 putative acyl carrier protein IacP; Validated 82 -236172 PRK08173 PRK08173 DNA topoisomerase III; Validated 862 -181268 PRK08175 PRK08175 aminotransferase; Validated 395 -181269 PRK08176 pdxK pyridoxal-pyridoxamine kinase/hydroxymethylpyrimidine kinase; Reviewed 281 -236173 PRK08177 PRK08177 short chain dehydrogenase; Provisional 225 -236174 PRK08178 PRK08178 acetolactate synthase 1 regulatory subunit; Reviewed 96 -181271 PRK08179 prfH peptide chain release factor-like protein; Reviewed 200 -236175 PRK08180 PRK08180 feruloyl-CoA synthase; Reviewed 614 -136670 PRK08181 PRK08181 transposase; Validated 269 -169261 PRK08182 PRK08182 single-stranded DNA-binding protein; Provisional 148 -236176 PRK08183 PRK08183 NADH dehydrogenase; Validated 133 -181274 PRK08184 PRK08184 benzoyl-CoA-dihydrodiol lyase; Provisional 550 -181275 PRK08185 PRK08185 hypothetical protein; Provisional 283 -236177 PRK08186 PRK08186 allophanate hydrolase; Provisional 600 -236178 PRK08187 PRK08187 pyruvate kinase; Validated 493 -236179 PRK08188 PRK08188 ribonucleotide-diphosphate reductase subunit alpha; Validated 714 -236180 PRK08190 PRK08190 bifunctional enoyl-CoA hydratase/phosphate acetyltransferase; Validated 466 -169269 PRK08192 PRK08192 aspartate carbamoyltransferase; Provisional 338 -236181 PRK08193 araD L-ribulose-5-phosphate 4-epimerase; Reviewed 231 -181281 PRK08194 PRK08194 tartrate dehydrogenase; Provisional 352 -181282 PRK08195 PRK08195 4-hyroxy-2-oxovalerate/4-hydroxy-2-oxopentanoic acid aldolase,; Validated 337 -181283 PRK08197 PRK08197 threonine synthase; Validated 394 -236182 PRK08198 PRK08198 threonine dehydratase; Provisional 404 -181285 PRK08199 PRK08199 thiamine pyrophosphate protein; Validated 557 -169276 PRK08201 PRK08201 hypothetical protein; Provisional 456 -236183 PRK08202 PRK08202 purine nucleoside phosphorylase; Provisional 272 -236184 PRK08203 PRK08203 hydroxydechloroatrazine ethylaminohydrolase; Reviewed 451 -181288 PRK08204 PRK08204 hypothetical protein; Provisional 449 -236185 PRK08205 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 583 -236186 PRK08206 PRK08206 diaminopropionate ammonia-lyase; Provisional 399 -236187 PRK08207 PRK08207 coproporphyrinogen III oxidase; Provisional 488 -181292 PRK08208 PRK08208 coproporphyrinogen III oxidase; Validated 430 -236188 PRK08210 PRK08210 aspartate kinase I; Reviewed 403 -236189 PRK08211 PRK08211 putative dehydratase; Provisional 655 -181295 PRK08213 PRK08213 gluconate 5-dehydrogenase; Provisional 259 -181296 PRK08215 PRK08215 sporulation sigma factor SigG; Reviewed 258 -181297 PRK08217 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 253 -181298 PRK08219 PRK08219 short chain dehydrogenase; Provisional 227 -236190 PRK08220 PRK08220 2,3-dihydroxybenzoate-2,3-dehydrogenase; Validated 252 -181300 PRK08221 PRK08221 anaerobic sulfite reductase subunit B; Provisional 263 -181301 PRK08222 PRK08222 hydrogenase 4 subunit H; Validated 181 -181302 PRK08223 PRK08223 hypothetical protein; Validated 287 -236191 PRK08224 ligC ATP-dependent DNA ligase; Reviewed 350 -181304 PRK08225 PRK08225 acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; Validated 70 -181305 PRK08226 PRK08226 short chain dehydrogenase; Provisional 263 -181306 PRK08227 PRK08227 autoinducer 2 aldolase; Validated 264 -236192 PRK08228 PRK08228 L(+)-tartrate dehydratase subunit beta; Validated 204 -236193 PRK08229 PRK08229 2-dehydropantoate 2-reductase; Provisional 341 -181309 PRK08230 PRK08230 tartrate dehydratase subunit alpha; Validated 299 -181310 PRK08233 PRK08233 hypothetical protein; Provisional 182 -181311 PRK08235 PRK08235 acetyl-CoA acetyltransferase; Provisional 393 -236194 PRK08236 PRK08236 hypothetical protein; Provisional 212 -236195 PRK08238 PRK08238 hypothetical protein; Validated 479 -236196 PRK08241 PRK08241 RNA polymerase factor sigma-70; Validated 339 -236197 PRK08242 PRK08242 acetyl-CoA acetyltransferase; Validated 402 -236198 PRK08243 PRK08243 4-hydroxybenzoate 3-monooxygenase; Validated 392 -236199 PRK08244 PRK08244 hypothetical protein; Provisional 493 -236200 PRK08245 PRK08245 hypothetical protein; Validated 240 -181319 PRK08246 PRK08246 threonine dehydratase; Provisional 310 -181320 PRK08247 PRK08247 cystathionine gamma-synthase; Reviewed 366 -236201 PRK08248 PRK08248 O-acetylhomoserine aminocarboxypropyltransferase; Validated 431 -236202 PRK08249 PRK08249 cystathionine gamma-synthase; Provisional 398 -181323 PRK08250 PRK08250 glutamine amidotransferase; Provisional 235 -181324 PRK08251 PRK08251 short chain dehydrogenase; Provisional 248 -181325 PRK08252 PRK08252 enoyl-CoA hydratase; Provisional 254 -236203 PRK08255 PRK08255 salicylyl-CoA 5-hydroxylase; Reviewed 765 -181327 PRK08256 PRK08256 lipid-transfer protein; Provisional 391 -236204 PRK08257 PRK08257 acetyl-CoA acetyltransferase; Validated 498 -181329 PRK08258 PRK08258 enoyl-CoA hydratase; Provisional 277 -236205 PRK08259 PRK08259 enoyl-CoA hydratase; Provisional 254 -236206 PRK08260 PRK08260 enoyl-CoA hydratase; Provisional 296 -236207 PRK08261 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 450 -236208 PRK08262 PRK08262 hypothetical protein; Provisional 486 -181334 PRK08263 PRK08263 short chain dehydrogenase; Provisional 275 -181335 PRK08264 PRK08264 short chain dehydrogenase; Validated 238 -236209 PRK08265 PRK08265 short chain dehydrogenase; Provisional 261 -181337 PRK08266 PRK08266 hypothetical protein; Provisional 542 -236210 PRK08267 PRK08267 short chain dehydrogenase; Provisional 260 -236211 PRK08268 PRK08268 3-hydroxy-acyl-CoA dehydrogenase; Validated 507 -181340 PRK08269 PRK08269 3-hydroxybutyryl-CoA dehydrogenase; Validated 314 -236212 PRK08270 PRK08270 anaerobic ribonucleoside triphosphate reductase; Provisional 656 -181342 PRK08271 PRK08271 anaerobic ribonucleoside triphosphate reductase; Provisional 623 -236213 PRK08272 PRK08272 enoyl-CoA hydratase; Provisional 302 -181344 PRK08273 PRK08273 thiamine pyrophosphate protein; Provisional 597 -236214 PRK08274 PRK08274 tricarballylate dehydrogenase; Validated 466 -181346 PRK08275 PRK08275 putative oxidoreductase; Provisional 554 -236215 PRK08276 PRK08276 long-chain-fatty-acid--CoA ligase; Validated 502 -236216 PRK08277 PRK08277 D-mannonate oxidoreductase; Provisional 278 -181349 PRK08278 PRK08278 short chain dehydrogenase; Provisional 273 -236217 PRK08279 PRK08279 long-chain-acyl-CoA synthetase; Validated 600 -236218 PRK08284 PRK08284 precorrin 6A synthase; Provisional 253 -181352 PRK08285 cobH precorrin-8X methylmutase; Reviewed 208 -181353 PRK08286 cbiC cobalt-precorrin-8X methylmutase; Validated 214 -181354 PRK08287 PRK08287 cobalt-precorrin-6Y C(15)-methyltransferase; Validated 187 -236219 PRK08289 PRK08289 glyceraldehyde-3-phosphate dehydrogenase; Reviewed 477 -236220 PRK08290 PRK08290 enoyl-CoA hydratase; Provisional 288 -236221 PRK08291 PRK08291 ectoine utilization protein EutC; Validated 330 -236222 PRK08292 PRK08292 AMP nucleosidase; Provisional 489 -181359 PRK08293 PRK08293 3-hydroxybutyryl-CoA dehydrogenase; Validated 287 -236223 PRK08294 PRK08294 phenol 2-monooxygenase; Provisional 634 -181361 PRK08295 PRK08295 RNA polymerase factor sigma-70; Validated 208 -181362 PRK08296 PRK08296 hypothetical protein; Provisional 603 -236224 PRK08297 PRK08297 L-lysine aminotransferase; Provisional 443 -236225 PRK08298 PRK08298 cytidine deaminase; Validated 136 -236226 PRK08299 PRK08299 isocitrate dehydrogenase; Validated 402 -236227 PRK08300 PRK08300 acetaldehyde dehydrogenase; Validated 302 -236228 PRK08301 PRK08301 sporulation sigma factor SigE; Reviewed 234 -236229 PRK08303 PRK08303 short chain dehydrogenase; Provisional 305 -236230 PRK08304 PRK08304 stage V sporulation protein AD; Validated 337 -181370 PRK08305 spoVFB dipicolinate synthase subunit B; Reviewed 196 -181371 PRK08306 PRK08306 dipicolinate synthase subunit A; Reviewed 296 -181372 PRK08307 PRK08307 stage III sporulation protein SpoAB; Provisional 171 -236231 PRK08308 PRK08308 acyl-CoA synthetase; Validated 414 -236232 PRK08309 PRK08309 short chain dehydrogenase; Provisional 177 -181375 PRK08310 PRK08310 amidase; Provisional 395 -236233 PRK08311 PRK08311 putative RNA polymerase sigma factor SigI; Reviewed 237 -236234 PRK08312 PRK08312 putative indolepyruvate oxidoreductase subunit B; Reviewed 510 -181378 PRK08313 PRK08313 acetyl-CoA acetyltransferase; Provisional 386 -236235 PRK08314 PRK08314 long-chain-fatty-acid--CoA ligase; Validated 546 -236236 PRK08315 PRK08315 AMP-binding domain protein; Validated 559 -181381 PRK08316 PRK08316 acyl-CoA synthetase; Validated 523 -181382 PRK08317 PRK08317 hypothetical protein; Provisional 241 -236237 PRK08318 PRK08318 dihydropyrimidine dehydrogenase subunit B; Validated 420 -181384 PRK08319 PRK08319 cobalt transport protein CbiM; Validated 224 -236238 PRK08320 PRK08320 branched-chain amino acid aminotransferase; Reviewed 288 -181386 PRK08321 PRK08321 naphthoate synthase; Validated 302 -236239 PRK08322 PRK08322 acetolactate synthase; Reviewed 547 -236240 PRK08323 PRK08323 phenylhydantoinase; Validated 459 -236241 PRK08324 PRK08324 short chain dehydrogenase; Validated 681 -236242 PRK08326 PRK08326 ribonucleotide-diphosphate reductase subunit beta; Validated 311 -236243 PRK08327 PRK08327 acetolactate synthase catalytic subunit; Validated 569 -169382 PRK08328 PRK08328 hypothetical protein; Provisional 231 -236244 PRK08329 PRK08329 threonine synthase; Validated 347 -169384 PRK08330 PRK08330 biotin--protein ligase; Provisional 236 -181392 PRK08332 PRK08332 ribonucleotide-diphosphate reductase subunit alpha; Validated 1740 -181393 PRK08333 PRK08333 L-fuculose phosphate aldolase; Provisional 184 -169386 PRK08334 PRK08334 translation initiation factor IF-2B subunit beta; Validated 356 -169387 PRK08335 PRK08335 translation initiation factor IF-2B subunit alpha; Validated 275 -181394 PRK08338 PRK08338 2-oxoglutarate ferredoxin oxidoreductase subunit gamma; Validated 170 -169389 PRK08339 PRK08339 short chain dehydrogenase; Provisional 263 -169390 PRK08340 PRK08340 glucose-1-dehydrogenase; Provisional 259 -181395 PRK08341 PRK08341 amidophosphoribosyltransferase; Provisional 442 -236245 PRK08343 secD preprotein translocase subunit SecD; Reviewed 417 -236246 PRK08344 PRK08344 V-type ATP synthase subunit K; Validated 157 -236247 PRK08345 PRK08345 cytochrome-c3 hydrogenase subunit gamma; Provisional 289 -181399 PRK08348 PRK08348 NADH-plastoquinone oxidoreductase subunit; Provisional 120 -169396 PRK08349 PRK08349 hypothetical protein; Validated 198 -169397 PRK08350 PRK08350 hypothetical protein; Provisional 341 -181400 PRK08351 PRK08351 DNA-directed RNA polymerase subunit E''; Validated 61 -169399 PRK08354 PRK08354 putative aminotransferase; Provisional 311 -169400 PRK08356 PRK08356 hypothetical protein; Provisional 195 -169401 PRK08359 PRK08359 transcription factor; Validated 176 -181401 PRK08360 PRK08360 4-aminobutyrate aminotransferase; Provisional 443 -236248 PRK08361 PRK08361 aspartate aminotransferase; Provisional 391 -181402 PRK08363 PRK08363 alanine aminotransferase; Validated 398 -236249 PRK08364 PRK08364 sulfur carrier protein ThiS; Provisional 70 -169406 PRK08366 vorA 2-ketoisovalerate ferredoxin oxidoreductase subunit alpha; Reviewed 390 -181403 PRK08367 porA pyruvate ferredoxin oxidoreductase subunit alpha; Reviewed 394 -236250 PRK08373 PRK08373 aspartate kinase; Validated 341 -169409 PRK08374 PRK08374 homoserine dehydrogenase; Provisional 336 -236251 PRK08375 PRK08375 putative monovalent cation/H+ antiporter subunit D; Reviewed 487 -236252 PRK08376 PRK08376 putative monovalent cation/H+ antiporter subunit D; Reviewed 521 -181406 PRK08377 PRK08377 NADH dehydrogenase subunit N; Validated 494 -236253 PRK08378 PRK08378 hypothetical protein; Provisional 93 -169414 PRK08381 PRK08381 putative monovalent cation/H+ antiporter subunit F; Reviewed 87 -169415 PRK08382 PRK08382 putative monovalent cation/H+ antiporter subunit E; Reviewed 201 -181407 PRK08383 PRK08383 putative monovalent cation/H+ antiporter subunit E; Reviewed 168 -236254 PRK08384 PRK08384 thiamine biosynthesis protein ThiI; Provisional 381 -236255 PRK08385 PRK08385 nicotinate-nucleotide pyrophosphorylase; Provisional 278 -236256 PRK08386 PRK08386 putative monovalent cation/H+ antiporter subunit B; Reviewed 151 -169420 PRK08387 PRK08387 putative monovalent cation/H+ antiporter subunit B; Reviewed 131 -236257 PRK08388 PRK08388 putative monovalent cation/H+ antiporter subunit C; Reviewed 119 -236258 PRK08389 PRK08389 putative monovalent cation/H+ antiporter subunit C; Reviewed 114 -169423 PRK08392 PRK08392 hypothetical protein; Provisional 215 -181411 PRK08393 PRK08393 N-ethylammeline chlorohydrolase; Provisional 424 -169425 PRK08395 PRK08395 fumarate hydratase; Provisional 162 -236259 PRK08401 PRK08401 L-aspartate oxidase; Provisional 466 -169427 PRK08402 PRK08402 replication factor A; Reviewed 355 -169428 PRK08404 PRK08404 V-type ATP synthase subunit H; Validated 103 -181413 PRK08406 PRK08406 transcription elongation factor NusA-like protein; Validated 140 -181414 PRK08410 PRK08410 2-hydroxyacid dehydrogenase; Provisional 311 -236260 PRK08411 PRK08411 flagellin; Reviewed 572 -236261 PRK08412 flgL flagellar hook-associated protein FlgL; Validated 827 -181416 PRK08415 PRK08415 enoyl-(acyl carrier protein) reductase; Provisional 274 -181417 PRK08416 PRK08416 7-alpha-hydroxysteroid dehydrogenase; Provisional 260 -236262 PRK08417 PRK08417 dihydroorotase; Provisional 386 -181419 PRK08418 PRK08418 chlorohydrolase; Provisional 408 -181420 PRK08419 PRK08419 lipid A biosynthesis lauroyl acyltransferase; Reviewed 298 -236263 PRK08425 flgE flagellar hook protein FlgE; Validated 731 -236264 PRK08432 PRK08432 flagellar motor switch protein FliY; Validated 283 -181423 PRK08433 PRK08433 flagellar motor switch protein; Validated 111 -236265 PRK08439 PRK08439 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 406 -181425 PRK08441 oorC 2-oxoglutarate-acceptor oxidoreductase subunit OorC; Reviewed 183 -181426 PRK08444 PRK08444 hypothetical protein; Provisional 353 -181427 PRK08445 PRK08445 hypothetical protein; Provisional 348 -181428 PRK08446 PRK08446 coproporphyrinogen III oxidase; Provisional 350 -236266 PRK08447 PRK08447 ribonucleotide-diphosphate reductase subunit alpha; Validated 789 -236267 PRK08451 PRK08451 DNA polymerase III subunits gamma and tau; Validated 535 -236268 PRK08452 PRK08452 flagellar protein FlaG; Provisional 124 -181432 PRK08453 fliD flagellar capping protein; Validated 673 -181433 PRK08455 fliL flagellar basal body-associated protein FliL; Reviewed 182 -181434 PRK08456 PRK08456 flagellar motor protein MotA; Validated 257 -181435 PRK08457 motB flagellar motor protein MotB; Reviewed 257 -236269 PRK08462 PRK08462 biotin carboxylase; Validated 445 -169452 PRK08463 PRK08463 acetyl-CoA carboxylase subunit A; Validated 478 -181437 PRK08470 PRK08470 adenylosuccinate lyase; Provisional 442 -236270 PRK08471 flgK flagellar hook-associated protein FlgK; Validated 613 -181439 PRK08472 fliI flagellum-specific ATP synthase; Validated 434 -236271 PRK08474 PRK08474 F0F1 ATP synthase subunit delta; Validated 176 -236272 PRK08475 PRK08475 F0F1 ATP synthase subunit B; Validated 167 -181442 PRK08476 PRK08476 F0F1 ATP synthase subunit B'; Validated 141 -236273 PRK08477 PRK08477 biotin--protein ligase; Provisional 211 -181444 PRK08482 PRK08482 F0F1 ATP synthase subunit C; Validated 105 -236274 PRK08485 PRK08485 DNA polymerase III subunit delta'; Validated 206 -236275 PRK08486 PRK08486 single-stranded DNA-binding protein; Provisional 182 -236276 PRK08487 PRK08487 DNA polymerase III subunit delta; Validated 328 -181448 PRK08489 PRK08489 NADH dehydrogenase subunit A; Validated 129 -181449 PRK08491 PRK08491 NADH dehydrogenase subunit C; Provisional 263 -236277 PRK08493 PRK08493 NADH dehydrogenase subunit G; Validated 819 -236278 PRK08506 PRK08506 replicative DNA helicase; Provisional 472 -181452 PRK08507 PRK08507 prephenate dehydrogenase; Validated 275 -236279 PRK08508 PRK08508 biotin synthase; Provisional 279 -236280 PRK08515 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 222 -236281 PRK08517 PRK08517 DNA polymerase III subunit epsilon; Provisional 257 -181456 PRK08525 PRK08525 amidophosphoribosyltransferase; Provisional 445 -181457 PRK08526 PRK08526 threonine dehydratase; Provisional 403 -181458 PRK08527 PRK08527 acetolactate synthase 3 catalytic subunit; Validated 563 -181459 PRK08533 PRK08533 flagellar accessory protein FlaH; Reviewed 230 -181460 PRK08534 PRK08534 pyruvate ferredoxin oxidoreductase subunit gamma; Reviewed 181 -236282 PRK08535 PRK08535 translation initiation factor IF-2B subunit delta; Provisional 310 -181462 PRK08537 PRK08537 2-oxoglutarate ferredoxin oxidoreductase subunit gamma; Validated 177 -236283 PRK08540 PRK08540 adenylosuccinate lyase; Reviewed 449 -236284 PRK08541 PRK08541 flagellin; Validated 211 -236285 PRK08554 PRK08554 peptidase; Reviewed 438 -181465 PRK08557 PRK08557 hypothetical protein; Provisional 417 -181466 PRK08558 PRK08558 adenine phosphoribosyltransferase; Provisional 238 -181467 PRK08559 nusG transcription antitermination protein NusG; Validated 153 -236286 PRK08560 PRK08560 tyrosyl-tRNA synthetase; Validated 329 -236287 PRK08561 rps15p 30S ribosomal protein S15P; Reviewed 151 -236288 PRK08562 rpl32e 50S ribosomal protein L32e; Validated 125 -236289 PRK08563 PRK08563 DNA-directed RNA polymerase subunit E'; Provisional 187 -236290 PRK08564 PRK08564 5'-methylthioadenosine phosphorylase II; Reviewed 267 -236291 PRK08565 PRK08565 DNA-directed RNA polymerase subunit B; Provisional 1103 -236292 PRK08566 PRK08566 DNA-directed RNA polymerase subunit A'; Validated 882 -236293 PRK08568 PRK08568 preprotein translocase subunit SecY; Reviewed 462 -236294 PRK08569 rpl18p 50S ribosomal protein L18P; Reviewed 193 -236295 PRK08570 rpl19e 50S ribosomal protein L19e; Reviewed 150 -181478 PRK08571 rpl14p 50S ribosomal protein L14P; Reviewed 132 -236296 PRK08572 rps17p 30S ribosomal protein S17P; Reviewed 108 -236297 PRK08573 PRK08573 phosphomethylpyrimidine kinase; Provisional 448 -236298 PRK08574 PRK08574 cystathionine gamma-synthase; Provisional 385 -236299 PRK08575 PRK08575 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; Provisional 326 -236300 PRK08576 PRK08576 hypothetical protein; Provisional 438 -236301 PRK08577 PRK08577 hypothetical protein; Provisional 136 -236302 PRK08578 PRK08578 preprotein translocase subunit SecF; Reviewed 292 -236303 PRK08579 PRK08579 anaerobic ribonucleoside triphosphate reductase; Provisional 625 -236304 PRK08581 PRK08581 N-acetylmuramoyl-L-alanine amidase; Validated 619 -236305 PRK08582 PRK08582 hypothetical protein; Provisional 139 -236306 PRK08583 PRK08583 RNA polymerase sigma factor SigB; Validated 257 -181490 PRK08588 PRK08588 succinyl-diaminopimelate desuccinylase; Reviewed 377 -181491 PRK08589 PRK08589 short chain dehydrogenase; Validated 272 -236307 PRK08591 PRK08591 acetyl-CoA carboxylase biotin carboxylase subunit; Validated 451 -181493 PRK08593 PRK08593 4-aminobutyrate aminotransferase; Provisional 445 -236308 PRK08594 PRK08594 enoyl-(acyl carrier protein) reductase; Provisional 257 -181495 PRK08596 PRK08596 acetylornithine deacetylase; Validated 421 -236309 PRK08599 PRK08599 coproporphyrinogen III oxidase; Provisional 377 -181497 PRK08600 PRK08600 putative monovalent cation/H+ antiporter subunit C; Reviewed 113 -236310 PRK08601 PRK08601 NADH dehydrogenase subunit 5; Validated 509 -181499 PRK08605 PRK08605 D-lactate dehydrogenase; Validated 332 -236311 PRK08609 PRK08609 hypothetical protein; Provisional 570 -181501 PRK08610 PRK08610 fructose-bisphosphate aldolase; Reviewed 286 -181502 PRK08611 PRK08611 pyruvate oxidase; Provisional 576 -236312 PRK08617 PRK08617 acetolactate synthase; Reviewed 552 -236313 PRK08618 PRK08618 ornithine cyclodeaminase; Validated 325 -181505 PRK08621 PRK08621 galactose-6-phosphate isomerase subunit LacA; Reviewed 142 -181506 PRK08622 PRK08622 galactose-6-phosphate isomerase subunit LacB; Reviewed 171 -236314 PRK08624 PRK08624 hypothetical protein; Provisional 373 -181507 PRK08626 PRK08626 fumarate reductase flavoprotein subunit; Provisional 657 -181508 PRK08628 PRK08628 short chain dehydrogenase; Provisional 258 -181509 PRK08629 PRK08629 coproporphyrinogen III oxidase; Provisional 433 -236315 PRK08633 PRK08633 2-acyl-glycerophospho-ethanolamine acyltransferase; Validated 1146 -236316 PRK08636 PRK08636 aspartate aminotransferase; Provisional 403 -181512 PRK08637 PRK08637 hypothetical protein; Provisional 388 -236317 PRK08638 PRK08638 threonine dehydratase; Validated 333 -236318 PRK08639 PRK08639 threonine dehydratase; Validated 420 -181515 PRK08640 sdhB succinate dehydrogenase iron-sulfur subunit; Reviewed 249 -236319 PRK08641 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 589 -181517 PRK08642 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 253 -181518 PRK08643 PRK08643 acetoin reductase; Validated 256 -236320 PRK08644 PRK08644 thiamine biosynthesis protein ThiF; Provisional 212 -236321 PRK08645 PRK08645 bifunctional homocysteine S-methyltransferase/5,10-methylenetetrahydrofolate reductase protein; Reviewed 612 -236322 PRK08649 PRK08649 inosine 5-monophosphate dehydrogenase; Validated 368 -236323 PRK08651 PRK08651 succinyl-diaminopimelate desuccinylase; Reviewed 394 -236324 PRK08652 PRK08652 acetylornithine deacetylase; Provisional 347 -236325 PRK08654 PRK08654 pyruvate carboxylase subunit A; Validated 499 -236326 PRK08655 PRK08655 prephenate dehydrogenase; Provisional 437 -181526 PRK08659 PRK08659 2-oxoglutarate ferredoxin oxidoreductase subunit alpha; Validated 376 -181527 PRK08660 PRK08660 L-fuculose phosphate aldolase; Provisional 181 -236327 PRK08661 PRK08661 prolyl-tRNA synthetase; Provisional 477 -236328 PRK08662 PRK08662 nicotinate phosphoribosyltransferase; Reviewed 343 -236329 PRK08664 PRK08664 aspartate-semialdehyde dehydrogenase; Reviewed 349 -236330 PRK08665 PRK08665 ribonucleotide-diphosphate reductase subunit alpha; Validated 752 -169548 PRK08666 PRK08666 5'-methylthioadenosine phosphorylase; Validated 261 -236331 PRK08667 PRK08667 hydrogenase membrane subunit; Validated 644 -236332 PRK08668 PRK08668 NADH dehydrogenase subunit M; Validated 610 -181534 PRK08671 PRK08671 methionine aminopeptidase; Provisional 291 -181535 PRK08673 PRK08673 3-deoxy-7-phosphoheptulonate synthase; Reviewed 335 -181536 PRK08674 PRK08674 bifunctional phosphoglucose/phosphomannose isomerase; Validated 337 -181537 PRK08676 PRK08676 hydrogenase membrane subunit; Validated 485 -169553 PRK08690 PRK08690 enoyl-(acyl carrier protein) reductase; Provisional 261 -236333 PRK08691 PRK08691 DNA polymerase III subunits gamma and tau; Validated 709 -181538 PRK08699 PRK08699 DNA polymerase III subunit delta'; Validated 325 -169556 PRK08703 PRK08703 short chain dehydrogenase; Provisional 239 -169557 PRK08706 PRK08706 lipid A biosynthesis lauroyl acyltransferase; Provisional 289 -236334 PRK08719 PRK08719 ribonuclease H; Reviewed 147 -181539 PRK08722 PRK08722 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 414 -236335 PRK08724 fliD flagellar capping protein; Validated 673 -181541 PRK08727 PRK08727 hypothetical protein; Validated 233 -181542 PRK08733 PRK08733 lipid A biosynthesis lauroyl acyltransferase; Provisional 306 -181543 PRK08734 PRK08734 lipid A biosynthesis lauroyl acyltransferase; Provisional 305 -181544 PRK08737 PRK08737 acetylornithine deacetylase; Provisional 364 -236336 PRK08742 PRK08742 adenosylmethionine--8-amino-7-oxononanoate transaminase; Provisional 472 -136958 PRK08745 PRK08745 ribulose-phosphate 3-epimerase; Provisional 223 -181546 PRK08751 PRK08751 putative long-chain fatty acyl CoA ligase; Provisional 560 -181547 PRK08760 PRK08760 replicative DNA helicase; Provisional 476 -236337 PRK08762 PRK08762 molybdopterin biosynthesis protein MoeB; Validated 376 -181549 PRK08763 PRK08763 single-stranded DNA-binding protein; Provisional 164 -181550 PRK08764 PRK08764 ferredoxin; Provisional 135 -181551 PRK08769 PRK08769 DNA polymerase III subunit delta'; Validated 319 -181552 PRK08773 PRK08773 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Validated 392 -181553 PRK08775 PRK08775 homoserine O-acetyltransferase; Provisional 343 -181554 PRK08776 PRK08776 cystathionine gamma-synthase; Provisional 405 -181555 PRK08780 PRK08780 DNA topoisomerase I; Provisional 780 -136970 PRK08787 PRK08787 peptide chain release factor 2; Provisional 313 -236338 PRK08788 PRK08788 enoyl-CoA hydratase; Validated 287 -181557 PRK08808 PRK08808 general secretion pathway protein J; Validated 211 -181558 PRK08811 PRK08811 uroporphyrinogen-III synthase; Validated 266 -236339 PRK08813 PRK08813 threonine dehydratase; Provisional 349 -236340 PRK08815 PRK08815 GTP cyclohydrolase; Provisional 375 -181561 PRK08818 PRK08818 prephenate dehydrogenase; Provisional 370 -181562 PRK08840 PRK08840 replicative DNA helicase; Provisional 464 -181563 PRK08841 PRK08841 aspartate kinase; Validated 392 -181564 PRK08849 PRK08849 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; Provisional 384 -236341 PRK08850 PRK08850 2-octaprenyl-6-methoxyphenol hydroxylase; Validated 405 -181566 PRK08857 PRK08857 para-aminobenzoate synthase component II; Provisional 193 -181567 PRK08861 PRK08861 cystathionine gamma-synthase; Provisional 388 -236342 PRK08862 PRK08862 short chain dehydrogenase; Provisional 227 -236343 PRK08868 PRK08868 flagellar protein FlaG; Provisional 144 -236344 PRK08869 PRK08869 flagellin; Reviewed 376 -236345 PRK08870 flgL flagellar hook-associated protein FlgL; Reviewed 404 -181572 PRK08871 flgK flagellar hook-associated protein FlgK; Validated 626 -181573 PRK08878 PRK08878 adenosylcobinamide-phosphate synthase; Provisional 317 -181574 PRK08881 rpsN 30S ribosomal protein S14; Reviewed 101 -181575 PRK08883 PRK08883 ribulose-phosphate 3-epimerase; Provisional 220 -181576 PRK08887 PRK08887 nicotinic acid mononucleotide adenylyltransferase; Provisional 174 -236346 PRK08898 PRK08898 coproporphyrinogen III oxidase; Provisional 394 -236347 PRK08903 PRK08903 DnaA regulatory inactivator Hda; Validated 227 -236348 PRK08905 PRK08905 lipid A biosynthesis lauroyl acyltransferase; Validated 289 -181580 PRK08912 PRK08912 hypothetical protein; Provisional 387 -236349 PRK08913 flgL flagellar hook-associated protein FlgL; Validated 301 -236350 PRK08916 PRK08916 flagellar motor switch protein; Reviewed 116 -236351 PRK08927 fliI flagellum-specific ATP synthase; Validated 442 -181584 PRK08931 PRK08931 5'-methylthioadenosine phosphorylase; Provisional 289 -181585 PRK08936 PRK08936 glucose-1-dehydrogenase; Provisional 261 -236352 PRK08937 PRK08937 adenylosuccinate lyase; Provisional 216 -236353 PRK08939 PRK08939 primosomal protein DnaI; Reviewed 306 -236354 PRK08942 PRK08942 D,D-heptose 1,7-bisphosphate phosphatase; Validated 181 -236355 PRK08943 PRK08943 lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase; Validated 314 -236356 PRK08944 motB flagellar motor protein MotB; Reviewed 302 -236357 PRK08945 PRK08945 putative oxoacyl-(acyl carrier protein) reductase; Provisional 247 -181592 PRK08947 fadA 3-ketoacyl-CoA thiolase; Reviewed 387 -181593 PRK08951 PRK08951 malate synthase; Provisional 190 -169599 PRK08955 PRK08955 glyceraldehyde-3-phosphate dehydrogenase; Validated 334 -181594 PRK08958 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 588 -181595 PRK08960 PRK08960 hypothetical protein; Provisional 387 -236358 PRK08961 PRK08961 bifunctional aspartate kinase/diaminopimelate decarboxylase protein; Provisional 861 -181597 PRK08963 fadI 3-ketoacyl-CoA thiolase; Reviewed 428 -181598 PRK08965 PRK08965 putative monovalent cation/H+ antiporter subunit E; Reviewed 162 -181599 PRK08972 fliI flagellum-specific ATP synthase; Validated 444 -236359 PRK08974 PRK08974 long-chain-fatty-acid--CoA ligase; Validated 560 -181601 PRK08978 PRK08978 acetolactate synthase 2 catalytic subunit; Reviewed 548 -181602 PRK08979 PRK08979 acetolactate synthase 3 catalytic subunit; Validated 572 -236360 PRK08983 fliN flagellar motor switch protein; Validated 127 -181604 PRK08990 PRK08990 flagellar motor protein PomA; Reviewed 254 -181605 PRK08993 PRK08993 2-deoxy-D-gluconate 3-dehydrogenase; Validated 253 -181606 PRK08997 PRK08997 isocitrate dehydrogenase; Provisional 334 -236361 PRK08999 PRK08999 hypothetical protein; Provisional 312 -181608 PRK09004 PRK09004 FMN-binding protein MioC; Provisional 146 -181609 PRK09009 PRK09009 C factor cell-cell signaling protein; Provisional 235 -236362 PRK09010 PRK09010 single-stranded DNA-binding protein; Provisional 177 -181611 PRK09014 rfaH transcriptional activator RfaH; Provisional 162 -181612 PRK09016 PRK09016 quinolinate phosphoribosyltransferase; Validated 296 -181613 PRK09019 PRK09019 translation initiation factor Sui1; Validated 108 -181614 PRK09027 PRK09027 cytidine deaminase; Provisional 295 -181615 PRK09028 PRK09028 cystathionine beta-lyase; Provisional 394 -236363 PRK09029 PRK09029 O-succinylbenzoic acid--CoA ligase; Provisional 458 -236364 PRK09034 PRK09034 aspartate kinase; Reviewed 454 -181618 PRK09038 PRK09038 flagellar motor protein MotD; Reviewed 281 -181619 PRK09039 PRK09039 hypothetical protein; Validated 343 -181620 PRK09040 PRK09040 hypothetical protein; Provisional 214 -236365 PRK09041 motB flagellar motor protein MotB; Validated 317 -236366 PRK09045 PRK09045 N-ethylammeline chlorohydrolase; Provisional 443 -236367 PRK09047 PRK09047 RNA polymerase factor sigma-70; Validated 161 -181624 PRK09050 PRK09050 beta-ketoadipyl CoA thiolase; Validated 401 -181625 PRK09051 PRK09051 beta-ketothiolase; Provisional 394 -181626 PRK09052 PRK09052 acetyl-CoA acetyltransferase; Provisional 399 -181627 PRK09053 PRK09053 3-carboxy-cis,cis-muconate cycloisomerase; Provisional 452 -181628 PRK09054 PRK09054 phosphogluconate dehydratase; Validated 603 -181629 PRK09057 PRK09057 coproporphyrinogen III oxidase; Provisional 380 -236368 PRK09058 PRK09058 coproporphyrinogen III oxidase; Provisional 449 -181631 PRK09059 PRK09059 dihydroorotase; Validated 429 -181632 PRK09060 PRK09060 dihydroorotase; Validated 444 -236369 PRK09061 PRK09061 D-glutamate deacylase; Validated 509 -236370 PRK09064 PRK09064 5-aminolevulinate synthase; Validated 407 -181635 PRK09065 PRK09065 glutamine amidotransferase; Provisional 237 -236371 PRK09070 PRK09070 hypothetical protein; Validated 447 -181637 PRK09071 PRK09071 hypothetical protein; Validated 323 -236372 PRK09072 PRK09072 short chain dehydrogenase; Provisional 263 -236373 PRK09076 PRK09076 enoyl-CoA hydratase; Provisional 258 -236374 PRK09077 PRK09077 L-aspartate oxidase; Provisional 536 -236375 PRK09078 sdhA succinate dehydrogenase flavoprotein subunit; Reviewed 598 -181642 PRK09082 PRK09082 methionine aminotransferase; Validated 386 -236376 PRK09084 PRK09084 aspartate kinase III; Validated 448 -169652 PRK09087 PRK09087 hypothetical protein; Validated 226 -181644 PRK09088 PRK09088 acyl-CoA synthetase; Validated 488 -236377 PRK09094 PRK09094 putative monovalent cation/H+ antiporter subunit C; Reviewed 114 -181646 PRK09098 PRK09098 type III secretion system protein HrpB; Validated 233 -169656 PRK09099 PRK09099 type III secretion system ATPase; Provisional 441 -181647 PRK09101 nrdB ribonucleotide-diphosphate reductase subunit beta; Reviewed 376 -236378 PRK09102 PRK09102 ribonucleotide-diphosphate reductase subunit alpha; Validated 601 -181649 PRK09103 PRK09103 ribonucleotide-diphosphate reductase subunit alpha; Validated 758 -236379 PRK09104 PRK09104 hypothetical protein; Validated 464 -181651 PRK09105 PRK09105 putative aminotransferase; Provisional 370 -236380 PRK09107 PRK09107 acetolactate synthase 3 catalytic subunit; Validated 595 -236381 PRK09108 PRK09108 type III secretion system protein HrcU; Validated 353 -181654 PRK09109 motC flagellar motor protein; Reviewed 246 -181655 PRK09110 PRK09110 flagellar motor protein MotA; Validated 283 -236382 PRK09111 PRK09111 DNA polymerase III subunits gamma and tau; Validated 598 -169667 PRK09112 PRK09112 DNA polymerase III subunit delta'; Validated 351 -181657 PRK09116 PRK09116 3-oxoacyl-(acyl carrier protein) synthase II; Reviewed 405 -236383 PRK09120 PRK09120 p-hydroxycinnamoyl CoA hydratase/lyase; Validated 275 -181659 PRK09121 PRK09121 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; Provisional 339 -236384 PRK09123 PRK09123 amidophosphoribosyltransferase; Provisional 479 -181661 PRK09124 PRK09124 pyruvate dehydrogenase; Provisional 574 -181662 PRK09125 PRK09125 DNA ligase; Provisional 282 -236385 PRK09126 PRK09126 hypothetical protein; Provisional 392 -236386 PRK09129 PRK09129 NADH dehydrogenase subunit G; Validated 776 -236387 PRK09130 PRK09130 NADH dehydrogenase subunit G; Validated 687 -236388 PRK09133 PRK09133 hypothetical protein; Provisional 472 -236389 PRK09134 PRK09134 short chain dehydrogenase; Provisional 258 -181668 PRK09135 PRK09135 pteridine reductase; Provisional 249 -236390 PRK09136 PRK09136 5'-methylthioadenosine phosphorylase; Validated 245 -181670 PRK09140 PRK09140 2-dehydro-3-deoxy-6-phosphogalactonate aldolase; Reviewed 206 -236391 PRK09145 PRK09145 DNA polymerase III subunit epsilon; Validated 202 -236392 PRK09146 PRK09146 DNA polymerase III subunit epsilon; Validated 239 -236393 PRK09147 PRK09147 succinyldiaminopimelate transaminase; Provisional 396 -181674 PRK09148 PRK09148 aminotransferase; Validated 405 -181675 PRK09162 PRK09162 hypoxanthine-guanine phosphoribosyltransferase; Provisional 181 -181676 PRK09165 PRK09165 replicative DNA helicase; Provisional 497 -236394 PRK09169 PRK09169 hypothetical protein; Validated 2316 -169691 PRK09173 PRK09173 F0F1 ATP synthase subunit B; Validated 159 -169692 PRK09174 PRK09174 F0F1 ATP synthase subunit B'; Validated 204 -236395 PRK09177 PRK09177 xanthine-guanine phosphoribosyltransferase; Validated 156 -236396 PRK09181 PRK09181 aspartate kinase; Validated 475 -236397 PRK09182 PRK09182 DNA polymerase III subunit epsilon; Validated 294 -181681 PRK09183 PRK09183 transposase/IS protein; Provisional 259 -181682 PRK09184 PRK09184 acyl carrier protein; Provisional 89 -236398 PRK09185 PRK09185 3-oxoacyl-(acyl carrier protein) synthase I; Reviewed 392 -236399 PRK09186 PRK09186 flagellin modification protein A; Provisional 256 -236400 PRK09188 PRK09188 serine/threonine protein kinase; Provisional 365 -169701 PRK09189 PRK09189 uroporphyrinogen-III synthase; Validated 240 -236401 PRK09190 PRK09190 hypothetical protein; Provisional 220 -236402 PRK09191 PRK09191 two-component response regulator; Provisional 261 -236403 PRK09192 PRK09192 acyl-CoA synthetase; Validated 579 -236404 PRK09193 PRK09193 indolepyruvate ferredoxin oxidoreductase; Validated 1165 -236405 PRK09194 PRK09194 prolyl-tRNA synthetase; Provisional 565 -181690 PRK09195 gatY tagatose-bisphosphate aldolase; Reviewed 284 -181691 PRK09196 PRK09196 fructose-1,6-bisphosphate aldolase; Reviewed 347 -236406 PRK09197 PRK09197 fructose-bisphosphate aldolase; Provisional 350 -236407 PRK09198 PRK09198 putative nicotinate phosphoribosyltransferase; Provisional 463 -236408 PRK09200 PRK09200 preprotein translocase subunit SecA; Reviewed 790 -236409 PRK09201 PRK09201 amidase; Provisional 465 -236410 PRK09202 nusA transcription elongation factor NusA; Validated 470 -236411 PRK09203 rplP 50S ribosomal protein L16; Reviewed 138 -236412 PRK09204 secY preprotein translocase subunit SecY; Reviewed 426 -181699 PRK09206 PRK09206 pyruvate kinase; Provisional 470 -181700 PRK09209 PRK09209 ribonucleotide-diphosphate reductase subunit alpha; Validated 761 -236413 PRK09210 PRK09210 RNA polymerase sigma factor RpoD; Validated 367 -169719 PRK09212 PRK09212 pyruvate dehydrogenase subunit beta; Validated 327 -236414 PRK09213 PRK09213 pur operon repressor; Provisional 271 -181703 PRK09216 rplM 50S ribosomal protein L13; Reviewed 144 -181704 PRK09218 PRK09218 peptide deformylase; Validated 136 -181705 PRK09219 PRK09219 xanthine phosphoribosyltransferase; Validated 189 -236415 PRK09220 PRK09220 methylthioribulose-1-phosphate dehydratase; Provisional 204 -181707 PRK09221 PRK09221 beta alanine--pyruvate transaminase; Provisional 445 -236416 PRK09222 PRK09222 isocitrate dehydrogenase; Validated 482 -236417 PRK09224 PRK09224 threonine dehydratase; Reviewed 504 -236418 PRK09225 PRK09225 threonine synthase; Validated 462 -236419 PRK09228 PRK09228 guanine deaminase; Provisional 433 -236420 PRK09229 PRK09229 N-formimino-L-glutamate deiminase; Validated 456 -181713 PRK09230 PRK09230 cytosine deaminase; Provisional 426 -236421 PRK09231 PRK09231 fumarate reductase flavoprotein subunit; Validated 582 -236422 PRK09234 fbiC FO synthase; Reviewed 843 -181716 PRK09236 PRK09236 dihydroorotase; Reviewed 444 -236423 PRK09237 PRK09237 dihydroorotase; Provisional 380 -236424 PRK09238 PRK09238 bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Validated 835 -181719 PRK09239 PRK09239 chorismate mutase; Provisional 104 -236425 PRK09240 thiH thiamine biosynthesis protein ThiH; Reviewed 371 -181721 PRK09242 PRK09242 tropinone reductase; Provisional 257 -236426 PRK09243 PRK09243 nicotinate phosphoribosyltransferase; Validated 464 -181723 PRK09245 PRK09245 enoyl-CoA hydratase; Provisional 266 -236427 PRK09246 PRK09246 amidophosphoribosyltransferase; Provisional 501 -236428 PRK09247 PRK09247 ATP-dependent DNA ligase; Validated 539 -236429 PRK09248 PRK09248 putative hydrolase; Validated 246 -236430 PRK09249 PRK09249 coproporphyrinogen III oxidase; Provisional 453 -236431 PRK09250 PRK09250 fructose-bisphosphate aldolase; Provisional 348 -236432 PRK09255 PRK09255 malate synthase; Validated 531 -181730 PRK09256 PRK09256 hypothetical protein; Provisional 138 -181731 PRK09257 PRK09257 aromatic amino acid aminotransferase; Provisional 396 -181732 PRK09258 PRK09258 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 338 -236433 PRK09259 PRK09259 putative oxalyl-CoA decarboxylase; Validated 569 -236434 PRK09260 PRK09260 3-hydroxybutyryl-CoA dehydrogenase; Validated 288 -236435 PRK09261 PRK09261 phospho-2-dehydro-3-deoxyheptonate aldolase; Validated 349 -181735 PRK09262 PRK09262 hypothetical protein; Provisional 225 -236436 PRK09263 PRK09263 anaerobic ribonucleoside triphosphate reductase; Provisional 711 -236437 PRK09264 PRK09264 diaminobutyrate--2-oxoglutarate aminotransferase; Validated 425 -181738 PRK09265 PRK09265 aminotransferase AlaT; Validated 404 -236438 PRK09266 PRK09266 hypothetical protein; Provisional 266 -236439 PRK09267 PRK09267 flavodoxin FldA; Validated 169 -236440 PRK09268 PRK09268 acetyl-CoA acetyltransferase; Provisional 427 -236441 PRK09269 PRK09269 chorismate mutase; Provisional 193 -236442 PRK09270 PRK09270 nucleoside triphosphate hydrolase domain-containing protein; Reviewed 229 -181744 PRK09271 PRK09271 flavodoxin; Provisional 160 -181745 PRK09272 PRK09272 hypothetical protein; Provisional 109 -181746 PRK09273 PRK09273 hypothetical protein; Provisional 211 -236443 PRK09274 PRK09274 peptide synthase; Provisional 552 -236444 PRK09275 PRK09275 aspartate aminotransferase; Provisional 527 -181749 PRK09276 PRK09276 LL-diaminopimelate aminotransferase; Provisional 385 -236445 PRK09277 PRK09277 aconitate hydratase; Validated 888 -236446 PRK09279 PRK09279 pyruvate phosphate dikinase; Provisional 879 -236447 PRK09280 PRK09280 F0F1 ATP synthase subunit beta; Validated 463 -236448 PRK09281 PRK09281 F0F1 ATP synthase subunit alpha; Validated 502 -236449 PRK09282 PRK09282 pyruvate carboxylase subunit B; Validated 592 -236450 PRK09283 PRK09283 delta-aminolevulinic acid dehydratase; Validated 323 -236451 PRK09284 PRK09284 thiamine biosynthesis protein ThiC; Provisional 607 -236452 PRK09285 PRK09285 adenylosuccinate lyase; Provisional 456 -236453 PRK09287 PRK09287 6-phosphogluconate dehydrogenase; Validated 459 -236454 PRK09288 purT phosphoribosylglycinamide formyltransferase 2; Validated 395 -236455 PRK09289 PRK09289 riboflavin synthase subunit alpha; Provisional 194 -236456 PRK09290 PRK09290 allantoate amidohydrolase; Reviewed 413 -181762 PRK09291 PRK09291 short chain dehydrogenase; Provisional 257 -236457 PRK09292 PRK09292 Na(+)-translocating NADH-quinone reductase subunit D; Validated 209 -236458 PRK09293 PRK09293 fructose-1,6-bisphosphatase; Provisional 327 -181765 PRK09294 PRK09294 acyltransferase PapA5; Provisional 416 -181766 PRK09295 PRK09295 bifunctional cysteine desulfurase/selenocysteine lyase; Validated 406 -181767 PRK09296 PRK09296 cysteine desufuration protein SufE; Provisional 138 -236459 PRK09297 PRK09297 tRNA-splicing endonuclease subunit alpha; Reviewed 169 -236460 PRK09300 PRK09300 tRNA splicing endonuclease; Reviewed 330 -181770 PRK09301 PRK09301 circadian clock protein KaiB; Provisional 103 -236461 PRK09302 PRK09302 circadian clock protein KaiC; Reviewed 509 -236462 PRK09303 PRK09303 adaptive-response sensory kinase; Validated 380 -236463 PRK09304 PRK09304 arginine exporter protein; Provisional 207 -137204 PRK09310 aroDE bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase protein; Reviewed 477 -181774 PRK09311 PRK09311 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II protein; Provisional 402 -181775 PRK09314 PRK09314 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II protein; Provisional 339 -236464 PRK09318 PRK09318 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II protein; Provisional 387 -236465 PRK09319 PRK09319 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II/unknown domain fusion protein; Provisional 555 -236466 PRK09325 PRK09325 coenzyme F420-reducing hydrogenase subunit beta; Validated 282 -181779 PRK09326 PRK09326 F420H2 dehydrogenase subunit F; Provisional 341 -236467 PRK09328 PRK09328 N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase; Provisional 275 -236468 PRK09330 PRK09330 cell division protein FtsZ; Validated 384 -236469 PRK09331 PRK09331 Sep-tRNA:Cys-tRNA synthetase; Provisional 387 -236470 PRK09333 PRK09333 30S ribosomal protein S19e; Provisional 150 -181784 PRK09334 PRK09334 30S ribosomal protein S25e; Provisional 86 -181785 PRK09335 PRK09335 30S ribosomal protein S26e; Provisional 95 -181786 PRK09336 PRK09336 30S ribosomal protein S30e; Provisional 50 -181787 PRK09343 PRK09343 prefoldin subunit beta; Provisional 121 -236471 PRK09344 PRK09344 phosphoenolpyruvate carboxykinase; Provisional 526 -236472 PRK09347 folE GTP cyclohydrolase I; Provisional 188 -236473 PRK09348 glyQ glycyl-tRNA synthetase subunit alpha; Validated 283 -236474 PRK09350 PRK09350 poxB regulator PoxA; Provisional 306 -236475 PRK09352 PRK09352 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 319 -236476 PRK09354 recA recombinase A; Provisional 349 -236477 PRK09355 PRK09355 hydroxyethylthiazole kinase; Validated 263 -236478 PRK09356 PRK09356 imidazolonepropionase; Validated 406 -236479 PRK09357 pyrC dihydroorotase; Validated 423 -236480 PRK09358 PRK09358 adenosine deaminase; Provisional 340 -236481 PRK09360 lamB maltoporin; Provisional 415 -236482 PRK09361 radB DNA repair and recombination protein RadB; Provisional 225 -181800 PRK09362 PRK09362 phosphoribosylaminoimidazole-succinocarboxamide synthase; Reviewed 238 -236483 PRK09364 moaC molybdenum cofactor biosynthesis protein MoaC; Provisional 159 -236484 PRK09367 PRK09367 histidine ammonia-lyase; Provisional 500 -236485 PRK09368 PRK09368 gas vesicle synthesis-like protein; Reviewed 140 -236486 PRK09369 PRK09369 UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Validated 417 -181805 PRK09371 PRK09371 gas vesicle synthesis protein GvpA; Provisional 68 -236487 PRK09372 PRK09372 ribonuclease activity regulator protein RraA; Provisional 159 -236488 PRK09374 rplB 50S ribosomal protein L2; Validated 276 -236489 PRK09375 PRK09375 quinolinate synthetase; Provisional 319 -236490 PRK09376 rho transcription termination factor Rho; Provisional 416 -236491 PRK09377 tsf elongation factor Ts; Provisional 290 -181811 PRK09379 PRK09379 membrane-bound transcriptional regulator LytR; Provisional 303 -181812 PRK09381 trxA thioredoxin; Provisional 109 -236492 PRK09382 ispDF bifunctional 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase/2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase protein; Provisional 378 -236493 PRK09389 PRK09389 (R)-citramalate synthase; Provisional 488 -181815 PRK09390 fixJ response regulator FixJ; Provisional 202 -236494 PRK09391 fixK transcriptional regulator FixK; Provisional 230 -181817 PRK09392 ftrB transcriptional activator FtrB; Provisional 236 -181818 PRK09393 ftrA transcriptional activator FtrA; Provisional 322 -236495 PRK09395 actP acetate permease; Provisional 551 -236496 PRK09398 sspN acid-soluble spore protein N; Provisional 47 -181821 PRK09399 sspP acid-soluble spore protein P; Provisional 48 -236497 PRK09400 secE preprotein translocase subunit SecE; Reviewed 61 -236498 PRK09401 PRK09401 reverse gyrase; Reviewed 1176 -236499 PRK09404 sucA 2-oxoglutarate dehydrogenase E1 component; Reviewed 924 -236500 PRK09405 aceE pyruvate dehydrogenase subunit E1; Reviewed 891 -181826 PRK09406 gabD1 succinic semialdehyde dehydrogenase; Reviewed 457 -236501 PRK09407 gabD2 succinic semialdehyde dehydrogenase; Reviewed 524 -181828 PRK09408 ompX outer membrane protein X; Provisional 171 -181829 PRK09409 PRK09409 IS2 transposase TnpB; Reviewed 301 -236502 PRK09410 ulaA PTS system ascorbate-specific transporter subunit IIC; Reviewed 452 -181831 PRK09411 PRK09411 carbamate kinase; Reviewed 297 -236503 PRK09412 PRK09412 anaerobic C4-dicarboxylate transporter; Reviewed 433 -181833 PRK09413 PRK09413 IS2 repressor TnpA; Reviewed 121 -181834 PRK09414 PRK09414 glutamate dehydrogenase; Provisional 445 -181835 PRK09415 PRK09415 RNA polymerase factor sigma C; Reviewed 179 -181836 PRK09416 lstR lineage-specific thermal regulator protein; Provisional 135 -181837 PRK09417 mogA molybdenum cofactor biosynthesis protein MogA; Provisional 193 -236504 PRK09418 PRK09418 bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase precursor protein; Reviewed 780 -236505 PRK09419 PRK09419 bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase precursor protein; Reviewed 1163 -236506 PRK09420 cpdB bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase periplasmic precursor protein; Reviewed 649 -181841 PRK09421 modB molybdate ABC transporter permease protein; Reviewed 229 -181842 PRK09422 PRK09422 ethanol-active dehydrogenase/acetaldehyde-active reductase; Provisional 338 -181843 PRK09423 gldA glycerol dehydrogenase; Provisional 366 -236507 PRK09424 pntA NAD(P) transhydrogenase subunit alpha; Provisional 509 -181845 PRK09425 prpD 2-methylcitrate dehydratase; Provisional 480 -236508 PRK09426 PRK09426 methylmalonyl-CoA mutase; Reviewed 714 -236509 PRK09427 PRK09427 bifunctional indole-3-glycerol phosphate synthase/phosphoribosylanthranilate isomerase; Provisional 454 -236510 PRK09428 pssA phosphatidylserine synthase; Provisional 451 -236511 PRK09429 mepA penicillin-insensitive murein endopeptidase; Reviewed 275 -236512 PRK09430 djlA Dna-J like membrane chaperone protein; Provisional 267 -236513 PRK09431 asnB asparagine synthetase B; Provisional 554 -181852 PRK09432 metF 5,10-methylenetetrahydrofolate reductase; Provisional 296 -181853 PRK09433 thiP thiamine transporter membrane protein; Reviewed 525 -236514 PRK09434 PRK09434 aminoimidazole riboside kinase; Provisional 304 -236515 PRK09435 PRK09435 membrane ATPase/protein kinase; Provisional 332 -181856 PRK09436 thrA bifunctional aspartokinase I/homoserine dehydrogenase I; Provisional 819 -181857 PRK09437 bcp thioredoxin-dependent thiol peroxidase; Reviewed 154 -236516 PRK09438 nudB dihydroneopterin triphosphate pyrophosphatase; Provisional 148 -181859 PRK09439 PRK09439 PTS system glucose-specific transporter subunit; Provisional 169 -236517 PRK09440 avtA valine--pyruvate transaminase; Provisional 416 -236518 PRK09441 PRK09441 cytoplasmic alpha-amylase; Reviewed 479 -236519 PRK09442 panF sodium/panthothenate symporter; Provisional 483 -236520 PRK09444 pntB pyridine nucleotide transhydrogenase; Provisional 462 -236521 PRK09448 PRK09448 DNA starvation/stationary phase protection protein Dps; Provisional 162 -181865 PRK09449 PRK09449 dUMP phosphatase; Provisional 224 -236522 PRK09450 cyaA adenylate cyclase; Provisional 830 -181867 PRK09451 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 456 -236523 PRK09452 potA putrescine/spermidine ABC transporter ATPase protein; Reviewed 375 -181869 PRK09453 PRK09453 phosphodiesterase; Provisional 182 -236524 PRK09454 ugpQ cytoplasmic glycerophosphodiester phosphodiesterase; Provisional 249 -236525 PRK09455 rseB anti-sigma E factor; Provisional 319 -181872 PRK09456 PRK09456 ?-D-glucose-1-phosphatase; Provisional 199 -181873 PRK09457 astD succinylglutamic semialdehyde dehydrogenase; Reviewed 487 -236526 PRK09458 pspB phage shock protein B; Provisional 75 -181875 PRK09459 pspG phage shock protein G; Reviewed 76 -181876 PRK09461 ansA cytoplasmic asparaginase I; Provisional 335 -236527 PRK09462 fur ferric uptake regulator; Provisional 148 -236528 PRK09463 fadE acyl-CoA dehydrogenase; Reviewed 777 -181879 PRK09464 pdhR transcriptional regulator PdhR; Reviewed 254 -236529 PRK09465 tolC outer membrane channel protein; Reviewed 446 -236530 PRK09466 metL bifunctional aspartate kinase II/homoserine dehydrogenase II; Provisional 810 -236531 PRK09467 envZ osmolarity sensor protein; Provisional 435 -181883 PRK09468 ompR osmolarity response regulator; Provisional 239 -181884 PRK09469 glnA glutamine synthetase; Provisional 469 -236532 PRK09470 cpxA two-component sensor protein; Provisional 461 -181886 PRK09471 oppB oligopeptide transporter permease; Reviewed 306 -181887 PRK09472 ftsA cell division protein FtsA; Reviewed 420 -181888 PRK09473 oppD oligopeptide transporter ATP-binding component; Provisional 330 -236533 PRK09474 malE maltose ABC transporter periplasmic protein; Reviewed 396 -236534 PRK09476 napG quinol dehydrogenase periplasmic component; Provisional 254 -236535 PRK09477 napH quinol dehydrogenase membrane component; Provisional 271 -181892 PRK09478 mglC beta-methylgalactoside transporter inner membrane component; Provisional 336 -236536 PRK09479 glpX fructose 1,6-bisphosphatase II; Reviewed 319 -181894 PRK09480 slmA division inhibitor protein; Provisional 194 -236537 PRK09481 sspA stringent starvation protein A; Provisional 211 -181896 PRK09482 PRK09482 flap endonuclease-like protein; Provisional 256 -236538 PRK09483 PRK09483 response regulator; Provisional 217 -181898 PRK09484 PRK09484 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase; Provisional 183 -181899 PRK09485 mmuM homocysteine methyltransferase; Provisional 304 -181900 PRK09487 sdhC succinate dehydrogenase cytochrome b556 large membrane subunit; Provisional 129 -181901 PRK09488 sdhD succinate dehydrogenase cytochrome b556 small membrane subunit; Provisional 115 -181902 PRK09489 rsmC 16S ribosomal RNA m2G1207 methyltransferase; Provisional 342 -236539 PRK09490 metH B12-dependent methionine synthase; Provisional 1229 -181904 PRK09491 rimI ribosomal-protein-alanine N-acetyltransferase; Provisional 146 -181905 PRK09492 treR trehalose repressor; Provisional 315 -181906 PRK09493 glnQ glutamine ABC transporter ATP-binding protein; Reviewed 240 -181907 PRK09494 glnP glutamine ABC transporter permease protein; Reviewed 219 -236540 PRK09495 glnH glutamine ABC transporter periplasmic protein; Reviewed 247 -236541 PRK09496 trkA potassium transporter peripheral membrane component; Reviewed 453 -181910 PRK09497 potB spermidine/putrescine ABC transporter membrane protein; Reviewed 285 -181911 PRK09498 sifA secreted effector protein SifA; Reviewed 336 -137339 PRK09499 sifB secreted effector protein SifB; Provisional 316 -236542 PRK09500 potC spermidine/putrescine ABC transporter membrane protein; Reviewed 256 -181913 PRK09501 potD spermidine/putrescine ABC transporter periplasmic substrate-binding protein; Reviewed 348 -181914 PRK09502 iscA iron-sulfur cluster assembly protein; Provisional 107 -181915 PRK09504 sufA iron-sulfur cluster assembly scaffold protein; Provisional 122 -236543 PRK09505 malS alpha-amylase; Reviewed 683 -236544 PRK09506 mrcB bifunctional glycosyl transferase/transpeptidase; Reviewed 830 -169931 PRK09507 cspE cold shock protein CspE; Reviewed 69 -181918 PRK09508 leuO leucine transcriptional activator; Reviewed 314 -181919 PRK09509 fieF ferrous iron efflux protein F; Reviewed 299 -236545 PRK09510 tolA cell envelope integrity inner membrane protein TolA; Provisional 387 -181921 PRK09511 nirD nitrite reductase small subunit; Provisional 108 -181922 PRK09512 rbsC ribose ABC transporter permease protein; Reviewed 320 -181923 PRK09513 fruK 1-phosphofructokinase; Provisional 312 -181924 PRK09514 zntR zinc-responsive transcriptional regulator; Provisional 140 -169939 PRK09517 PRK09517 multifunctional thiamine-phosphate pyrophosphorylase/synthase/phosphomethylpyrimidine kinase; Provisional 755 -236546 PRK09518 PRK09518 bifunctional cytidylate kinase/GTPase Der; Reviewed 712 -77219 PRK09519 recA DNA recombination protein RecA; Reviewed 790 -236547 PRK09521 PRK09521 exosome complex RNA-binding protein Csl4; Provisional 189 -181927 PRK09522 PRK09522 bifunctional glutamine amidotransferase/anthranilate phosphoribosyltransferase; Provisional 531 -236548 PRK09525 lacZ beta-D-galactosidase; Reviewed 1027 -181929 PRK09526 lacI lac repressor; Reviewed 342 -181930 PRK09527 lacA galactoside O-acetyltransferase; Reviewed 203 -236549 PRK09528 lacY galactoside permease; Reviewed 420 -236550 PRK09529 PRK09529 bifunctional acetyl-CoA decarbonylase/synthase complex subunit alpha/beta; Reviewed 711 -181933 PRK09532 PRK09532 DNA polymerase III subunit alpha; Reviewed 874 -236551 PRK09533 PRK09533 bifunctional transaldolase/phosoglucose isomerase; Validated 948 -236552 PRK09534 btuF corrinoid ABC transporter substrate-binding protein; Reviewed 359 -236553 PRK09535 btuC corrinoid ABC transporter permease; Reviewed 366 -236554 PRK09536 btuD corrinoid ABC transporter ATPase; Reviewed 402 -236555 PRK09537 pylS pyrolysyl-tRNA synthetase; Reviewed 417 -236556 PRK09539 PRK09539 tRNA-splicing endonuclease subunit beta; Reviewed 124 -137367 PRK09541 emrE multidrug efflux protein; Reviewed 110 -236557 PRK09542 manB phosphomannomutase/phosphoglucomutase; Reviewed 445 -181938 PRK09543 znuB high-affinity zinc transporter membrane component; Reviewed 261 -181939 PRK09544 znuC high-affinity zinc transporter ATPase; Reviewed 251 -236558 PRK09545 znuA high-affinity zinc transporter periplasmic component; Reviewed 311 -181941 PRK09546 zntB zinc transporter; Reviewed 324 -181942 PRK09547 nhaB sodium/proton antiporter; Reviewed 513 -236559 PRK09548 PRK09548 PTS system ascorbate-specific transporter subunits IICB; Provisional 602 -236560 PRK09549 mtnW 2,3-diketo-5-methylthiopentyl-1-phosphate enolase; Reviewed 407 -236561 PRK09550 mtnK methylthioribose kinase; Reviewed 401 -236562 PRK09552 mtnX 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase; Reviewed 219 -181947 PRK09553 tauD taurine dioxygenase; Reviewed 277 -236563 PRK09554 feoB ferrous iron transport protein B; Reviewed 772 -181949 PRK09555 feoA ferrous iron transport protein A; Reviewed 74 -236564 PRK09556 uhpT sugar phosphate antiporter; Reviewed 467 -236565 PRK09557 PRK09557 fructokinase; Reviewed 301 -236566 PRK09558 ushA bifunctional UDP-sugar hydrolase/5'-nucleotidase periplasmic precursor; Reviewed 551 -236567 PRK09559 PRK09559 putative global regulator; Reviewed 327 -236568 PRK09560 nhaA pH-dependent sodium/proton antiporter; Reviewed 389 -181955 PRK09561 nhaA pH-dependent sodium/proton antiporter; Reviewed 388 -236569 PRK09562 mazG nucleoside triphosphate pyrophosphohydrolase; Reviewed 262 -236570 PRK09563 rbgA GTPase YlqF; Reviewed 287 -181958 PRK09564 PRK09564 coenzyme A disulfide reductase; Reviewed 444 -236571 PRK09565 PRK09565 hypothetical protein; Reviewed 533 -236572 PRK09566 nirA ferredoxin-nitrite reductase; Reviewed 513 -236573 PRK09567 nirA ferredoxin-nitrite reductase; Reviewed 593 -236574 PRK09568 PRK09568 DNA primase large subunit; Reviewed 306 -181961 PRK09569 PRK09569 type I citrate synthase; Reviewed 437 -236575 PRK09570 rpoH DNA-directed RNA polymerase subunit H; Reviewed 79 -181963 PRK09573 PRK09573 (S)-2,3-di-O-geranylgeranylglyceryl phosphate synthase; Reviewed 279 -236576 PRK09575 vmrA multidrug efflux pump VmrA; Reviewed 453 -169981 PRK09577 PRK09577 multidrug efflux protein; Reviewed 1032 -169982 PRK09578 PRK09578 periplasmic multidrug efflux lipoprotein precursor; Reviewed 385 -169983 PRK09579 PRK09579 multidrug efflux protein; Reviewed 1017 -181965 PRK09580 sufC cysteine desulfurase ATPase component; Reviewed 248 -236577 PRK09581 pleD response regulator PleD; Reviewed 457 -181967 PRK09582 chaB cation transport regulator; Reviewed 76 -236578 PRK09583 PRK09583 mycothiol-dependent maleylpyruvate isomerase; Reviewed 241 -181969 PRK09584 tppB putative tripeptide transporter permease; Reviewed 500 -236579 PRK09585 anmK anhydro-N-acetylmuramic acid kinase; Reviewed 365 -181971 PRK09586 murP PTS system N-acetylmuramic acid transporter subunits EIIBC; Reviewed 476 -181972 PRK09588 PRK09588 hypothetical protein; Reviewed 376 -181973 PRK09589 celA 6-phospho-beta-glucosidase; Reviewed 476 -181974 PRK09590 celB cellobiose phosphotransferase system IIB component; Reviewed 104 -181975 PRK09591 celC cellobiose phosphotransferase system IIA component; Reviewed 104 -181976 PRK09592 celD cellobiose phosphotransferase system IIC component; Reviewed 449 -236580 PRK09593 arb 6-phospho-beta-glucosidase; Reviewed 478 -181978 PRK09597 PRK09597 lipid A 1-phosphatase; Reviewed 190 -236581 PRK09598 PRK09598 lipid A phosphoethanolamine transferase; Reviewed 522 -236582 PRK09599 PRK09599 6-phosphogluconate dehydrogenase-like protein; Reviewed 301 -236583 PRK09601 PRK09601 GTP-binding protein YchF; Reviewed 364 -236584 PRK09602 PRK09602 translation-associated GTPase; Reviewed 396 -181983 PRK09603 PRK09603 bifunctional DNA-directed RNA polymerase subunit beta/beta'; Reviewed 2890 -236585 PRK09604 PRK09604 UGMP family protein; Validated 332 -236586 PRK09605 PRK09605 bifunctional UGMP family protein/serine/threonine protein kinase; Validated 535 -236587 PRK09606 PRK09606 DNA-directed RNA polymerase subunit B''; Validated 494 -236588 PRK09607 rps11p 30S ribosomal protein S11P; Reviewed 132 -181988 PRK09609 PRK09609 hypothetical protein; Provisional 312 -236589 PRK09612 rpl2p 50S ribosomal protein L2P; Validated 238 -236590 PRK09613 thiH thiamine biosynthesis protein ThiH; Reviewed 469 -236591 PRK09614 nrdF ribonucleotide-diphosphate reductase subunit beta; Reviewed 324 -181992 PRK09615 ggt gamma-glutamyltranspeptidase; Reviewed 581 -236592 PRK09616 pheT phenylalanyl-tRNA synthetase subunit beta; Reviewed 552 -236593 PRK09617 PRK09617 type III secretion system protein; Reviewed 243 -236594 PRK09618 flgD flagellar basal body rod modification protein; Provisional 142 -181996 PRK09619 flgD flagellar basal body rod modification protein; Reviewed 218 -181997 PRK09620 PRK09620 hypothetical protein; Provisional 229 -236595 PRK09621 PRK09621 V-type ATP synthase subunit K; Provisional 141 -181999 PRK09622 porA pyruvate flavodoxin oxidoreductase subunit alpha; Reviewed 407 -170016 PRK09623 vorD 2-ketoisovalerate ferredoxin oxidoreductase subunit delta; Reviewed 105 -170017 PRK09624 porD pyruvate ferredoxin oxidoreductase subunit delta; Reviewed 105 -236596 PRK09625 porD pyruvate flavodoxin oxidoreductase subunit delta; Reviewed 133 -236597 PRK09626 oorD 2-oxoglutarate-acceptor oxidoreductase subunit OorD; Reviewed 103 -182002 PRK09627 oorA 2-oxoglutarate-acceptor oxidoreductase subunit OorA; Reviewed 375 -182003 PRK09628 oorB 2-oxoglutarate-acceptor oxidoreductase subunit OorB; Reviewed 277 -104071 PRK09629 PRK09629 bifunctional thiosulfate sulfurtransferase/phosphatidylserine decarboxylase; Provisional 610 -170022 PRK09630 PRK09630 DNA topoisomerase IV subunit A; Provisional 479 -236598 PRK09631 PRK09631 DNA topoisomerase IV subunit A; Provisional 635 -236599 PRK09632 PRK09632 ATP-dependent DNA ligase; Reviewed 764 -182006 PRK09633 ligD ATP-dependent DNA ligase; Reviewed 610 -182007 PRK09634 nusB transcription antitermination protein NusB; Provisional 207 -182008 PRK09635 sigI RNA polymerase sigma factor SigI; Provisional 290 -236600 PRK09636 PRK09636 RNA polymerase sigma factor SigJ; Provisional 293 -236601 PRK09637 PRK09637 RNA polymerase sigma factor SigZ; Provisional 181 -182010 PRK09638 PRK09638 RNA polymerase sigma factor SigY; Reviewed 176 -236602 PRK09639 PRK09639 RNA polymerase sigma factor SigX; Provisional 166 -236603 PRK09640 PRK09640 RNA polymerase sigma factor SigX; Reviewed 188 -182012 PRK09641 PRK09641 RNA polymerase sigma factor SigW; Provisional 187 -170031 PRK09642 PRK09642 RNA polymerase sigma factor SigW; Reviewed 160 -236604 PRK09643 PRK09643 RNA polymerase sigma factor SigM; Reviewed 192 -170033 PRK09644 PRK09644 RNA polymerase sigma factor SigM; Provisional 165 -236605 PRK09645 PRK09645 RNA polymerase sigma factor SigL; Provisional 173 -182015 PRK09646 PRK09646 RNA polymerase sigma factor SigK; Reviewed 194 -236606 PRK09647 PRK09647 RNA polymerase sigma factor SigE; Reviewed 203 -236607 PRK09648 PRK09648 RNA polymerase sigma factor SigD; Reviewed 189 -137458 PRK09649 PRK09649 RNA polymerase sigma factor SigC; Reviewed 185 -182018 PRK09651 PRK09651 RNA polymerase sigma factor FecI; Provisional 172 -236608 PRK09652 PRK09652 RNA polymerase sigma factor RpoE; Provisional 182 -236609 PRK09653 eutD phosphotransacetylase; Reviewed 324 -182021 PRK09662 PRK09662 GspL-like protein; Provisional 286 -182022 PRK09664 PRK09664 tryptophan permease TnaB; Provisional 415 -182023 PRK09665 PRK09665 PTS system galactitol-specific transporter subunit IIA; Provisional 150 -236610 PRK09669 PRK09669 putative symporter YagG; Provisional 444 -236611 PRK09672 PRK09672 phage exclusion protein Lit; Provisional 305 -182026 PRK09674 PRK09674 enoyl-CoA hydratase-isomerase; Provisional 255 -137467 PRK09677 PRK09677 putative lipopolysaccharide biosynthesis O-acetyl transferase WbbJ; Provisional 192 -137468 PRK09678 PRK09678 DNA-binding transcriptional regulator; Provisional 72 -182027 PRK09681 PRK09681 putative type II secretion protein GspC; Provisional 276 -236612 PRK09685 PRK09685 DNA-binding transcriptional activator FeaR; Provisional 302 -170047 PRK09687 PRK09687 putative lyase; Provisional 280 -182029 PRK09689 PRK09689 prophage protein NinE; Provisional 56 -170049 PRK09692 PRK09692 integrase; Provisional 413 -236613 PRK09693 PRK09693 Cascade antiviral complex protein; Validated 489 -182031 PRK09694 PRK09694 helicase Cas3; Provisional 878 -182032 PRK09695 PRK09695 glycolate transporter; Provisional 560 -182033 PRK09697 PRK09697 protein secretion protein GspB; Provisional 139 -182034 PRK09698 PRK09698 D-allose kinase; Provisional 302 -182035 PRK09699 PRK09699 D-allose transporter subunit; Provisional 312 -182036 PRK09700 PRK09700 D-allose transporter ATP-binding protein; Provisional 510 -182037 PRK09701 PRK09701 D-allose transporter subunit; Provisional 311 -77355 PRK09702 PRK09702 PTS system arbutin-specific transporter subunit IIB; Provisional 161 -236614 PRK09705 cynX putative cyanate transporter; Provisional 393 -182039 PRK09706 PRK09706 transcriptional repressor DicA; Reviewed 135 -182040 PRK09707 PRK09707 putative lipoprotein; Provisional 1343 -236615 PRK09709 PRK09709 exonuclease VIII; Reviewed 877 -182042 PRK09710 lar restriction alleviation and modification protein; Reviewed 64 -137485 PRK09713 focB putative formate transporter; Provisional 282 -182043 PRK09716 PRK09716 hypothetical protein; Provisional 395 -182044 PRK09717 PRK09717 stationary phase growth adaptation protein; Provisional 179 -182045 PRK09718 PRK09718 hypothetical protein; Validated 512 -182046 PRK09719 PRK09719 hypothetical protein; Provisional 89 -182047 PRK09720 cybC cytochrome b562; Provisional 100 -236616 PRK09722 PRK09722 allulose-6-phosphate 3-epimerase; Provisional 229 -236617 PRK09723 PRK09723 putative fimbrial-like adhesin protein; Provisional 421 -182049 PRK09726 PRK09726 antitoxin HipB; Provisional 88 -137493 PRK09727 PRK09727 his operon leader peptide; Provisional 16 -182050 PRK09729 PRK09729 hypothetical protein; Provisional 68 -182051 PRK09730 PRK09730 putative NAD(P)-binding oxidoreductase; Provisional 247 -182052 PRK09731 PRK09731 putative general secretion pathway protein YghD; Provisional 178 -170072 PRK09732 PRK09732 hypothetical protein; Provisional 134 -182053 PRK09733 PRK09733 putative fimbrial protein; Provisional 181 -236618 PRK09736 PRK09736 5-methylcytosine-specific restriction enzyme subunit McrC; Provisional 352 -236619 PRK09737 PRK09737 EcoKI restriction-modification system protein HsdS; Provisional 461 -182055 PRK09738 PRK09738 small toxic polypeptide; Provisional 52 -236620 PRK09739 PRK09739 hypothetical protein; Provisional 199 -182057 PRK09741 PRK09741 hypothetical protein; Provisional 148 -137503 PRK09744 PRK09744 DNA-binding transcriptional regulator DicC; Provisional 75 -182058 PRK09750 PRK09750 hypothetical protein; Provisional 64 -137505 PRK09751 PRK09751 putative ATP-dependent helicase Lhr; Provisional 1490 -182059 PRK09752 PRK09752 adhesin; Provisional 1250 -170080 PRK09754 PRK09754 phenylpropionate dioxygenase ferredoxin reductase subunit; Provisional 396 -182060 PRK09755 PRK09755 putative ABC transporter periplasmic-binding protein; Provisional 535 -182061 PRK09756 PRK09756 PTS system N-acetylgalactosamine-specific transporter subunit IIB; Provisional 158 -236621 PRK09757 PRK09757 PTS system N-acetylgalactosamine-specific transporter subunit IIC; Provisional 267 -182063 PRK09759 PRK09759 small toxic polypeptide; Provisional 50 -182064 PRK09762 PRK09762 galactosamine-6-phosphate isomerase; Provisional 232 -182065 PRK09764 PRK09764 DNA-binding transcriptional repressor MngR; Provisional 240 -182066 PRK09765 PRK09765 PTS system 2-O-a-mannosyl-D-glycerate specific transporter subunit IIABC; Provisional 631 -182067 PRK09767 PRK09767 hypothetical protein; Provisional 117 -170086 PRK09772 PRK09772 transcriptional antiterminator BglG; Provisional 278 -236622 PRK09774 PRK09774 fec operon regulator FecR; Reviewed 319 -236623 PRK09775 PRK09775 putative DNA-binding transcriptional regulator; Provisional 442 -182070 PRK09776 PRK09776 putative diguanylate cyclase; Provisional 1092 -182071 PRK09777 fecD iron-dicitrate transporter subunit FecD; Reviewed 318 -170091 PRK09778 PRK09778 putative antitoxin of the YafO-YafN toxin-antitoxin system; Provisional 97 -170092 PRK09781 PRK09781 hypothetical protein; Provisional 181 -236624 PRK09782 PRK09782 bacteriophage N4 receptor, outer membrane subunit; Provisional 987 -236625 PRK09783 PRK09783 copper/silver efflux system membrane fusion protein CusB; Provisional 409 -182074 PRK09784 PRK09784 hypothetical protein; Provisional 417 -182075 PRK09786 PRK09786 endodeoxyribonuclease RUS; Reviewed 120 -182076 PRK09790 PRK09790 hypothetical protein; Reviewed 91 -182077 PRK09791 PRK09791 putative DNA-binding transcriptional regulator; Provisional 302 -182078 PRK09792 PRK09792 4-aminobutyrate transaminase; Provisional 421 -182079 PRK09793 PRK09793 methyl-accepting protein IV; Provisional 533 -182080 PRK09795 PRK09795 aminopeptidase; Provisional 361 -182081 PRK09796 PRK09796 PTS system cellobiose/arbutin/salicin-specific transporter subunits IIBC; Provisional 472 -182082 PRK09798 PRK09798 antitoxin MazE; Provisional 82 -182083 PRK09799 PRK09799 putative oxidoreductase; Provisional 258 -182084 PRK09800 PRK09800 putative hypoxanthine oxidase; Provisional 956 -182085 PRK09801 PRK09801 transcriptional activator TtdR; Provisional 310 -182086 PRK09802 PRK09802 DNA-binding transcriptional regulator AgaR; Provisional 269 -182087 PRK09804 PRK09804 putative cryptic C4-dicarboxylate transporter DcuD; Provisional 455 -77417 PRK09806 PRK09806 tryptophanase leader peptide; Provisional 24 -182088 PRK09807 PRK09807 hypothetical protein; Provisional 161 -137533 PRK09810 PRK09810 entericidin A; Provisional 41 -182089 PRK09812 PRK09812 toxin ChpB; Provisional 116 -182090 PRK09813 PRK09813 fructoselysine 6-kinase; Provisional 260 -236626 PRK09814 PRK09814 beta-1,6-galactofuranosyltransferase; Provisional 333 -77423 PRK09816 thrL thr operon leader peptide; Provisional 21 -182092 PRK09818 PRK09818 putative kinase inhibitor; Provisional 183 -182093 PRK09819 PRK09819 alpha-mannosidase; Provisional 875 -182094 PRK09821 PRK09821 putative transporter; Provisional 454 -182095 PRK09822 PRK09822 lipopolysaccharide core biosynthesis protein; Provisional 269 -170114 PRK09823 PRK09823 putative inner membrane protein; Provisional 160 -236627 PRK09824 PRK09824 PTS system beta-glucoside-specific transporter subunits IIABC; Provisional 627 -182097 PRK09825 idnK D-gluconate kinase; Provisional 176 -182098 PRK09828 PRK09828 putative fimbrial outer membrane usher protein; Provisional 865 -182099 PRK09831 PRK09831 putative acyltransferase; Provisional 147 -182100 PRK09834 PRK09834 DNA-binding transcriptional activator MhpR; Provisional 263 -182101 PRK09835 PRK09835 sensor kinase CusS; Provisional 482 -182102 PRK09836 PRK09836 DNA-binding transcriptional activator CusR; Provisional 227 -182103 PRK09837 PRK09837 copper/silver efflux system outer membrane protein CusC; Provisional 461 -182104 PRK09838 PRK09838 periplasmic copper-binding protein; Provisional 115 -182105 PRK09840 PRK09840 catecholate siderophore receptor Fiu; Provisional 761 -182106 PRK09841 PRK09841 cryptic autophosphorylating protein tyrosine kinase Etk; Provisional 726 -236628 PRK09846 recT recombination and repair protein RecT; Reviewed 266 -182108 PRK09847 PRK09847 gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase; Provisional 494 -182109 PRK09848 PRK09848 glucuronide transporter; Provisional 448 -236629 PRK09849 PRK09849 putative oxidoreductase; Provisional 702 -182111 PRK09850 PRK09850 pseudouridine kinase; Provisional 313 -182112 PRK09852 PRK09852 cryptic 6-phospho-beta-glucosidase; Provisional 474 -236630 PRK09853 PRK09853 putative selenate reductase subunit YgfK; Provisional 1019 -182114 PRK09854 cmtB putative PTS system mannitol-specific transporter subunit IIA; Provisional 147 -182115 PRK09855 PRK09855 PTS system N-acetylgalactosamine-specific transporter subunit IID; Provisional 263 -182116 PRK09856 PRK09856 fructoselysine 3-epimerase; Provisional 275 -182117 PRK09857 PRK09857 putative transposase; Provisional 292 -137559 PRK09859 PRK09859 multidrug efflux system protein MdtE; Provisional 385 -182118 PRK09860 PRK09860 putative alcohol dehydrogenase; Provisional 383 -182119 PRK09861 PRK09861 cytoplasmic membrane lipoprotein-28; Provisional 272 -182120 PRK09862 PRK09862 putative ATP-dependent protease; Provisional 506 -182121 PRK09863 PRK09863 putative frv operon regulatory protein; Provisional 584 -182122 PRK09864 PRK09864 putative peptidase; Provisional 356 -182123 PRK09866 PRK09866 hypothetical protein; Provisional 741 -182124 PRK09867 PRK09867 hypothetical protein; Provisional 209 -182125 PRK09870 PRK09870 tyrosine recombinase; Provisional 200 -182126 PRK09871 PRK09871 tyrosine recombinase; Provisional 198 -182127 PRK09874 PRK09874 drug efflux system protein MdtG; Provisional 408 -182128 PRK09875 PRK09875 putative hydrolase; Provisional 292 -182129 PRK09877 PRK09877 2,3-diketo-L-gulonate TRAP transporter small permease protein YiaM; Provisional 157 -182130 PRK09880 PRK09880 L-idonate 5-dehydrogenase; Provisional 343 -182131 PRK09881 PRK09881 D-ala-D-ala transporter subunit; Provisional 296 -236631 PRK09885 PRK09885 putative toxin YafO; Provisional 132 -77467 PRK09890 PRK09890 cold shock protein CspG; Provisional 70 -170147 PRK09891 PRK09891 cold shock gene; Provisional 76 -182133 PRK09894 PRK09894 diguanylate cyclase; Provisional 296 -182134 PRK09897 PRK09897 hypothetical protein; Provisional 534 -182135 PRK09898 PRK09898 hypothetical protein; Provisional 208 -182136 PRK09902 PRK09902 hypothetical protein; Provisional 216 -104216 PRK09903 PRK09903 putative transporter YfdV; Provisional 314 -182137 PRK09906 PRK09906 DNA-binding transcriptional regulator HcaR; Provisional 296 -182138 PRK09907 PRK09907 toxin MazF; Provisional 111 -182139 PRK09908 PRK09908 xanthine dehydrogenase subunit XdhC; Provisional 159 -182140 PRK09912 PRK09912 L-glyceraldehyde 3-phosphate reductase; Provisional 346 -182141 PRK09913 PRK09913 putative fructose-like phosphotransferase system subunit EIIA; Provisional 148 -182142 PRK09915 PRK09915 putative outer membrane efflux protein MdtP; Provisional 488 -182143 PRK09917 PRK09917 hypothetical protein; Provisional 157 -236632 PRK09918 PRK09918 putative fimbrial chaperone protein; Provisional 230 -236633 PRK09919 PRK09919 anti-adapter protein IraM; Provisional 114 -182146 PRK09920 PRK09920 acetyl-CoA:acetoacetyl-CoA transferase subunit alpha; Provisional 219 -182147 PRK09921 PRK09921 permease DsdX; Provisional 445 -182148 PRK09922 PRK09922 UDP-D-galactose:(glucosyl)lipopolysaccharide-1,6-D-galactosyltransferase; Provisional 359 -137592 PRK09925 PRK09925 leu operon leader peptide; Provisional 28 -236634 PRK09926 PRK09926 putative chaperone protein EcpD; Provisional 246 -236635 PRK09928 PRK09928 choline transport protein BetT; Provisional 679 -182151 PRK09929 PRK09929 hypothetical protein; Provisional 91 -182152 PRK09932 PRK09932 glycerate kinase II; Provisional 381 -182153 PRK09934 PRK09934 fimbrial-like adhesin protein SfmF; Provisional 171 -182154 PRK09935 PRK09935 transcriptional regulator FimZ; Provisional 210 -182155 PRK09936 PRK09936 hypothetical protein; Provisional 296 -77494 PRK09937 PRK09937 stationary phase/starvation inducible regulatory protein CspD; Provisional 74 -182156 PRK09939 PRK09939 putative oxidoreductase; Provisional 759 -182157 PRK09940 PRK09940 transcriptional regulator YdeO; Provisional 253 -182158 PRK09943 PRK09943 DNA-binding transcriptional repressor PuuR; Provisional 185 -137602 PRK09945 PRK09945 hypothetical protein; Provisional 418 -182159 PRK09946 PRK09946 hypothetical protein; Provisional 270 -182160 PRK09947 PRK09947 hypothetical protein; Provisional 215 -236636 PRK09950 PRK09950 putative transporter; Provisional 506 -182162 PRK09951 PRK09951 hypothetical protein; Provisional 222 -182163 PRK09952 PRK09952 shikimate transporter; Provisional 438 -182164 PRK09953 wcaD putative colanic acid biosynthesis protein; Provisional 404 -182165 PRK09954 PRK09954 putative kinase; Provisional 362 -182166 PRK09955 rihB ribonucleoside hydrolase 2; Provisional 313 -182167 PRK09956 PRK09956 hypothetical protein; Provisional 308 -182168 PRK09958 PRK09958 DNA-binding transcriptional activator EvgA; Provisional 204 -182169 PRK09959 PRK09959 hybrid sensory histidine kinase in two-component regulatory system with EvgA; Provisional 1197 -182170 PRK09961 PRK09961 exoaminopeptidase; Provisional 344 -170182 PRK09965 PRK09965 3-phenylpropionate dioxygenase ferredoxin subunit; Provisional 106 -182171 PRK09966 PRK09966 putative inner membrane diguanylate cyclase; Provisional 407 -182172 PRK09967 PRK09967 putative outer membrane lipoprotein; Provisional 160 -182173 PRK09968 PRK09968 serine/threonine-specific protein phosphatase 2; Provisional 218 -236637 PRK09970 PRK09970 xanthine dehydrogenase subunit XdhA; Provisional 759 -182175 PRK09971 PRK09971 xanthine dehydrogenase subunit XdhB; Provisional 291 -170188 PRK09973 PRK09973 putative outer membrane lipoprotein; Provisional 85 -236638 PRK09974 PRK09974 putative regulator PrlF; Provisional 111 -182177 PRK09975 PRK09975 DNA-binding transcriptional regulator EnvR; Provisional 213 -182178 PRK09977 PRK09977 putative Mg(2+) transport ATPase; Provisional 215 -137624 PRK09978 PRK09978 DNA-binding transcriptional regulator GadX; Provisional 274 -77522 PRK09979 PRK09979 putative rho operon leader peptide; Provisional 33 -182179 PRK09980 ompL outer membrane porin L; Provisional 230 -182180 PRK09981 PRK09981 hypothetical protein; Provisional 99 -137627 PRK09982 PRK09982 universal stress protein UspD; Provisional 142 -182181 PRK09983 pflD putative formate acetyltransferase 2; Provisional 765 -182182 PRK09984 PRK09984 phosphonate/organophosphate ester transporter subunit; Provisional 262 -182183 PRK09986 PRK09986 DNA-binding transcriptional activator XapR; Provisional 294 -182184 PRK09987 PRK09987 dTDP-4-dehydrorhamnose reductase; Provisional 299 -182185 PRK09989 PRK09989 hypothetical protein; Provisional 258 -182186 PRK09990 PRK09990 DNA-binding transcriptional regulator GlcC; Provisional 251 -182187 PRK09993 PRK09993 C-lysozyme inhibitor; Provisional 153 -182188 PRK09997 PRK09997 hydroxypyruvate isomerase; Provisional 258 -182189 PRK10001 PRK10001 D-alanyl-D-alanine carboxypeptidase fraction C; Provisional 400 -236639 PRK10002 PRK10002 outer membrane protein F; Provisional 362 -236640 PRK10003 PRK10003 ferric-rhodotorulic acid outer membrane transporter; Provisional 729 -182192 PRK10005 PRK10005 dihydroxyacetone kinase subunit DhaL; Provisional 210 -182193 PRK10014 PRK10014 DNA-binding transcriptional repressor MalI; Provisional 342 -182194 PRK10015 PRK10015 oxidoreductase; Provisional 429 -182195 PRK10016 PRK10016 DNA gyrase inhibitor; Provisional 156 -182196 PRK10017 PRK10017 colanic acid biosynthesis protein; Provisional 426 -182197 PRK10018 PRK10018 putative glycosyl transferase; Provisional 279 -236641 PRK10019 PRK10019 nickel/cobalt efflux protein RcnA; Provisional 279 -182199 PRK10022 PRK10022 putative DNA-binding transcriptional regulator; Provisional 167 -182200 PRK10026 PRK10026 arsenate reductase; Provisional 141 -182201 PRK10027 PRK10027 cryptic adenine deaminase; Provisional 588 -236642 PRK10030 PRK10030 hypothetical protein; Provisional 197 -182203 PRK10034 PRK10034 fructuronate transporter; Provisional 447 -182204 PRK10037 PRK10037 cell division protein; Provisional 250 -170217 PRK10039 PRK10039 hypothetical protein; Provisional 127 -182205 PRK10040 PRK10040 hypothetical protein; Provisional 52 -236643 PRK10044 PRK10044 ferrichrome outer membrane transporter; Provisional 727 -182207 PRK10045 PRK10045 acyl carrier protein phosphodiesterase; Provisional 193 -182208 PRK10046 dpiA two-component response regulator DpiA; Provisional 225 -236644 PRK10049 pgaA outer membrane protein PgaA; Provisional 765 -182210 PRK10050 PRK10050 curli assembly protein CsgF; Provisional 138 -182211 PRK10051 csgA major curlin subunit; Provisional 151 -182212 PRK10053 PRK10053 hypothetical protein; Provisional 130 -182213 PRK10054 PRK10054 putative transporter; Provisional 395 -182214 PRK10057 rpsV 30S ribosomal subunit S22; Reviewed 44 -236645 PRK10060 PRK10060 RNase II stability modulator; Provisional 663 -182216 PRK10061 PRK10061 DNA damage-inducible protein YebG; Provisional 96 -182217 PRK10062 PRK10062 hypothetical protein; Provisional 303 -182218 PRK10063 PRK10063 putative glycosyl transferase; Provisional 248 -236646 PRK10064 PRK10064 catecholate siderophore receptor CirA; Provisional 663 -236647 PRK10069 PRK10069 3-phenylpropionate dioxygenase subunit beta; Provisional 183 -182221 PRK10070 PRK10070 glycine betaine transporter ATP-binding subunit; Provisional 400 -182222 PRK10072 PRK10072 putative transcriptional regulator; Provisional 96 -182223 PRK10073 PRK10073 putative glycosyl transferase; Provisional 328 -182224 PRK10076 PRK10076 pyruvate formate lyase II activase; Provisional 213 -182225 PRK10077 xylE D-xylose transporter XylE; Provisional 479 -236648 PRK10078 PRK10078 ribose 1,5-bisphosphokinase; Provisional 186 -182227 PRK10079 PRK10079 phosphonate metabolism transcriptional regulator PhnF; Provisional 241 -170240 PRK10081 PRK10081 entericidin B membrane lipoprotein; Provisional 48 -182228 PRK10082 PRK10082 cell density-dependent motility repressor; Provisional 303 -182229 PRK10083 PRK10083 putative oxidoreductase; Provisional 339 -236649 PRK10084 PRK10084 dTDP-glucose 4,6 dehydratase; Provisional 352 -182231 PRK10086 PRK10086 DNA-binding transcriptional regulator DsdC; Provisional 311 -182232 PRK10089 PRK10089 tRNA-binding protein; Provisional 112 -182233 PRK10090 PRK10090 aldehyde dehydrogenase A; Provisional 409 -182234 PRK10091 PRK10091 MFS transport protein AraJ; Provisional 382 -182235 PRK10092 PRK10092 maltose O-acetyltransferase; Provisional 183 -182236 PRK10093 PRK10093 primosomal replication protein N''; Provisional 171 -182237 PRK10094 PRK10094 DNA-binding transcriptional activator AllS; Provisional 308 -236650 PRK10095 PRK10095 ribonuclease I; Provisional 268 -182239 PRK10096 citG triphosphoribosyl-dephospho-CoA synthase; Provisional 292 -182240 PRK10098 PRK10098 putative dehydrogenase; Provisional 350 -182241 PRK10100 PRK10100 DNA-binding transcriptional regulator CsgD; Provisional 216 -182242 PRK10101 csgB curlin minor subunit CsgB; Provisional 151 -182243 PRK10102 csgC curli assembly protein CsgC; Provisional 110 -236651 PRK10106 PRK10106 hypothetical protein; Provisional 65 -182245 PRK10110 PRK10110 bifunctional PTS system maltose and glucose-specific transporter subunits IICB; Provisional 530 -182246 PRK10113 PRK10113 cell division modulator; Provisional 80 -182247 PRK10115 PRK10115 protease 2; Provisional 686 -182248 PRK10116 PRK10116 universal stress protein UspC; Provisional 142 -182249 PRK10117 PRK10117 trehalose-6-phosphate synthase; Provisional 474 -236652 PRK10118 PRK10118 flagellar hook-length control protein; Provisional 408 -182251 PRK10119 PRK10119 putative hydrolase; Provisional 231 -182252 PRK10122 PRK10122 GalU regulator GalF; Provisional 297 -182253 PRK10123 wcaM putative colanic acid biosynthesis protein; Provisional 464 -182254 PRK10124 PRK10124 putative UDP-glucose lipid carrier transferase; Provisional 463 -182255 PRK10125 PRK10125 putative glycosyl transferase; Provisional 405 -182256 PRK10126 PRK10126 tyrosine phosphatase; Provisional 147 -182257 PRK10128 PRK10128 2-keto-3-deoxy-L-rhamnonate aldolase; Provisional 267 -182258 PRK10130 PRK10130 transcriptional regulator EutR; Provisional 350 -182259 PRK10132 PRK10132 hypothetical protein; Provisional 108 -182260 PRK10133 PRK10133 L-fucose transporter; Provisional 438 -236653 PRK10137 PRK10137 alpha-glucosidase; Provisional 786 -182262 PRK10139 PRK10139 serine endoprotease; Provisional 455 -182263 PRK10140 PRK10140 putative acetyltransferase YhhY; Provisional 162 -236654 PRK10141 PRK10141 DNA-binding transcriptional repressor ArsR; Provisional 117 -182265 PRK10144 PRK10144 formate-dependent nitrite reductase complex subunit NrfF; Provisional 126 -182266 PRK10146 PRK10146 aminoalkylphosphonic acid N-acetyltransferase; Provisional 144 -236655 PRK10147 phnH carbon-phosphorus lyase complex subunit; Validated 196 -236656 PRK10148 PRK10148 hypothetical protein; Provisional 147 -236657 PRK10150 PRK10150 beta-D-glucuronidase; Provisional 604 -182270 PRK10151 PRK10151 ribosomal-protein-L7/L12-serine acetyltransferase; Provisional 179 -236658 PRK10153 PRK10153 DNA-binding transcriptional activator CadC; Provisional 517 -182272 PRK10154 PRK10154 hypothetical protein; Provisional 134 -182273 PRK10157 PRK10157 putative oxidoreductase FixC; Provisional 428 -236659 PRK10158 PRK10158 23S rRNA/tRNA pseudouridine synthase A; Provisional 219 -182275 PRK10159 PRK10159 outer membrane phosphoporin protein E; Provisional 351 -182276 PRK10160 PRK10160 taurine transporter subunit; Provisional 275 -182277 PRK10161 PRK10161 transcriptional regulator PhoB; Provisional 229 -236660 PRK10162 PRK10162 acetyl esterase; Provisional 318 -182279 PRK10163 PRK10163 DNA-binding transcriptional repressor AllR; Provisional 271 -182280 PRK10167 PRK10167 hypothetical protein; Provisional 169 -182281 PRK10170 PRK10170 hydrogenase 1 large subunit; Provisional 597 -182282 PRK10171 PRK10171 hydrogenase 1 b-type cytochrome subunit; Provisional 235 -182283 PRK10172 PRK10172 phosphoanhydride phosphorylase; Provisional 436 -182284 PRK10173 PRK10173 glucose-1-phosphatase/inositol phosphatase; Provisional 413 -182285 PRK10174 PRK10174 hypothetical protein; Provisional 75 -182286 PRK10175 PRK10175 lipoprotein; Provisional 75 -236661 PRK10177 PRK10177 putative invasin; Provisional 465 -236662 PRK10178 PRK10178 D-alanyl-D-alanine dipeptidase; Provisional 184 -182289 PRK10179 PRK10179 formate dehydrogenase-N subunit gamma; Provisional 217 -182290 PRK10183 PRK10183 hypothetical protein; Provisional 56 -182291 PRK10187 PRK10187 trehalose-6-phosphate phosphatase; Provisional 266 -182292 PRK10188 PRK10188 DNA-binding transcriptional activator SdiA; Provisional 240 -182293 PRK10189 PRK10189 MATE family multidrug exporter; Provisional 478 -182294 PRK10190 PRK10190 L,D-transpeptidase; Provisional 310 -182295 PRK10191 PRK10191 putative acyl transferase; Provisional 146 -182296 PRK10194 PRK10194 ferredoxin-type protein; Provisional 163 -182297 PRK10197 PRK10197 gamma-aminobutyrate transporter; Provisional 446 -182298 PRK10198 PRK10198 formate hydrogenlyase regulatory protein HycA; Provisional 152 -182299 PRK10199 PRK10199 alkaline phosphatase isozyme conversion aminopeptidase; Provisional 346 -182300 PRK10200 PRK10200 putative racemase; Provisional 230 -182301 PRK10201 PRK10201 G/U mismatch-specific DNA glycosylase; Provisional 168 -182302 PRK10202 ebgC cryptic beta-D-galactosidase subunit beta; Reviewed 149 -182303 PRK10203 PRK10203 hypothetical protein; Provisional 122 -182304 PRK10204 PRK10204 hypothetical protein; Provisional 55 -182305 PRK10206 PRK10206 putative oxidoreductase; Provisional 344 -182306 PRK10207 PRK10207 dipeptide/tripeptide permease B; Provisional 489 -182307 PRK10208 PRK10208 acid-resistance protein; Provisional 114 -182308 PRK10209 PRK10209 acid-resistance membrane protein; Provisional 190 -182309 PRK10213 nepI ribonucleoside transporter; Reviewed 394 -182310 PRK10214 PRK10214 ilvB operon leader peptide; Provisional 32 -236663 PRK10215 PRK10215 hypothetical protein; Provisional 218 -182312 PRK10216 PRK10216 DNA-binding transcriptional regulator YidZ; Provisional 319 -182313 PRK10217 PRK10217 dTDP-glucose 4,6-dehydratase; Provisional 355 -104396 PRK10218 PRK10218 GTP-binding protein; Provisional 607 -182314 PRK10219 PRK10219 DNA-binding transcriptional regulator SoxS; Provisional 107 -182315 PRK10220 PRK10220 hypothetical protein; Provisional 111 -182316 PRK10222 PRK10222 PTS system L-ascorbate-specific transporter subunit IIB; Provisional 85 -236664 PRK10224 PRK10224 pyrBI operon leader peptide; Provisional 44 -182318 PRK10225 PRK10225 DNA-binding transcriptional repressor UxuR; Provisional 257 -182319 PRK10226 PRK10226 isoaspartyl peptidase; Provisional 313 -182320 PRK10227 PRK10227 DNA-binding transcriptional regulator CueR; Provisional 135 -236665 PRK10229 PRK10229 threonine efflux system; Provisional 206 -182322 PRK10234 PRK10234 DNA-binding transcriptional activator GutM; Provisional 118 -182323 PRK10236 PRK10236 hypothetical protein; Provisional 237 -182324 PRK10238 PRK10238 aromatic amino acid transporter; Provisional 456 -182325 PRK10239 PRK10239 2-amino-4-hydroxy-6-hydroxymethyldihyropteridine pyrophosphokinase; Provisional 159 -182326 PRK10240 PRK10240 undecaprenyl pyrophosphate synthase; Provisional 229 -182327 PRK10241 PRK10241 hydroxyacylglutathione hydrolase; Provisional 251 -236666 PRK10244 PRK10244 anti-RssB factor; Provisional 88 -182329 PRK10245 adrA diguanylate cyclase AdrA; Provisional 366 -182330 PRK10246 PRK10246 exonuclease subunit SbcC; Provisional 1047 -182331 PRK10247 PRK10247 putative ABC transporter ATP-binding protein YbbL; Provisional 225 -236667 PRK10249 PRK10249 phenylalanine transporter; Provisional 458 -182333 PRK10250 PRK10250 hypothetical protein; Provisional 122 -182334 PRK10251 PRK10251 phosphopantetheinyltransferase component of enterobactin synthase multienzyme complex; Provisional 207 -236668 PRK10252 entF enterobactin synthase subunit F; Provisional 1296 -182336 PRK10253 PRK10253 iron-enterobactin transporter ATP-binding protein; Provisional 265 -182337 PRK10254 PRK10254 thioesterase; Provisional 137 -182338 PRK10255 PRK10255 PTS system N-acetyl glucosamine specific transporter subunits IIABC; Provisional 648 -182339 PRK10257 PRK10257 putative kinase inhibitor protein; Provisional 158 -182340 PRK10258 PRK10258 biotin biosynthesis protein BioC; Provisional 251 -137782 PRK10259 PRK10259 hypothetical protein; Provisional 86 -182341 PRK10260 PRK10260 L,D-transpeptidase; Provisional 306 -182342 PRK10261 PRK10261 glutathione transporter ATP-binding protein; Provisional 623 -182343 PRK10262 PRK10262 thioredoxin reductase; Provisional 321 -236669 PRK10263 PRK10263 DNA translocase FtsK; Provisional 1355 -182345 PRK10264 PRK10264 hydrogenase 1 maturation protease; Provisional 195 -182346 PRK10265 PRK10265 chaperone-modulator protein CbpM; Provisional 101 -182347 PRK10266 PRK10266 curved DNA-binding protein CbpA; Provisional 306 -182348 PRK10270 PRK10270 putative aminodeoxychorismate lyase; Provisional 340 -182349 PRK10271 thiK thiamine kinase; Provisional 188 -182350 PRK10276 PRK10276 DNA polymerase V subunit UmuD; Provisional 139 -182351 PRK10278 PRK10278 hypothetical protein; Provisional 130 -182352 PRK10279 PRK10279 hypothetical protein; Provisional 300 -182353 PRK10280 PRK10280 dipeptidyl carboxypeptidase II; Provisional 681 -182354 PRK10281 PRK10281 hypothetical protein; Provisional 299 -182355 PRK10286 PRK10286 O-6-alkylguanine-DNA:cysteine-protein methyltransferase; Provisional 171 -182356 PRK10287 PRK10287 thiosulfate:cyanide sulfurtransferase; Provisional 104 -182357 PRK10290 PRK10290 superoxide dismutase; Provisional 173 -182358 PRK10291 PRK10291 glyoxalase I; Provisional 129 -182359 PRK10292 PRK10292 hypothetical protein; Provisional 69 -182360 PRK10293 PRK10293 acyl-CoA esterase; Provisional 136 -182361 PRK10294 PRK10294 6-phosphofructokinase 2; Provisional 309 -182362 PRK10296 PRK10296 DNA-binding transcriptional regulator ChbR; Provisional 278 -182363 PRK10297 PRK10297 PTS system N,N'-diacetylchitobiose-specific transporter subunit IIC; Provisional 452 -182364 PRK10299 PRK10299 PhoPQ regulatory protein; Provisional 47 -182365 PRK10301 PRK10301 hypothetical protein; Provisional 124 -182366 PRK10302 PRK10302 hypothetical protein; Provisional 272 -182367 PRK10304 PRK10304 ferritin; Provisional 165 -182368 PRK10306 PRK10306 zinc/cadmium-binding protein; Provisional 216 -236670 PRK10307 PRK10307 putative glycosyl transferase; Provisional 412 -236671 PRK10308 PRK10308 3-methyl-adenine DNA glycosylase II; Provisional 283 -182371 PRK10309 PRK10309 galactitol-1-phosphate dehydrogenase; Provisional 347 -182372 PRK10310 PRK10310 PTS system galactitol-specific transporter subunit IIB; Provisional 94 -182373 PRK10314 PRK10314 putative acyltransferase; Provisional 153 -182374 PRK10316 PRK10316 hypothetical protein; Provisional 209 -236672 PRK10318 PRK10318 hypothetical protein; Provisional 121 -182376 PRK10319 PRK10319 N-acetylmuramoyl-l-alanine amidase I; Provisional 287 -182377 PRK10323 PRK10323 cysteine/O-acetylserine exporter; Provisional 195 -182378 PRK10324 PRK10324 translation inhibitor protein RaiA; Provisional 113 -182379 PRK10325 PRK10325 heat shock protein GrpE; Provisional 197 -182380 PRK10328 PRK10328 DNA binding protein, nucleoid-associated; Provisional 134 -182381 PRK10329 PRK10329 glutaredoxin-like protein; Provisional 81 -182382 PRK10330 PRK10330 formate dehydrogenase-H ferredoxin subunit; Provisional 181 -182383 PRK10331 PRK10331 L-fuculokinase; Provisional 470 -182384 PRK10332 PRK10332 hypothetical protein; Provisional 107 -182385 PRK10333 PRK10333 5-formyltetrahydrofolate cyclo-ligase family protein; Provisional 182 -182386 PRK10334 PRK10334 mechanosensitive channel MscS; Provisional 286 -182387 PRK10336 PRK10336 DNA-binding transcriptional regulator QseB; Provisional 219 -182388 PRK10337 PRK10337 sensor protein QseC; Provisional 449 -182389 PRK10339 PRK10339 DNA-binding transcriptional repressor EbgR; Provisional 327 -236673 PRK10340 ebgA cryptic beta-D-galactosidase subunit alpha; Reviewed 1021 -182391 PRK10341 PRK10341 DNA-binding transcriptional activator TdcA; Provisional 312 -182392 PRK10342 PRK10342 glycerate kinase I; Provisional 381 -182393 PRK10343 PRK10343 RNA-binding protein YhbY; Provisional 97 -182394 PRK10344 PRK10344 DNA-binding transcriptional regulator Nlp; Provisional 92 -182395 PRK10345 PRK10345 hypothetical protein; Provisional 210 -182396 PRK10347 PRK10347 cell filamentation protein Fic; Provisional 200 -182397 PRK10348 PRK10348 ribosome-associated heat shock protein Hsp15; Provisional 133 -137836 PRK10349 PRK10349 carboxylesterase BioH; Provisional 256 -182398 PRK10350 PRK10350 hypothetical protein; Provisional 145 -182399 PRK10351 PRK10351 holo-(acyl carrier protein) synthase 2; Provisional 187 -182400 PRK10352 PRK10352 nickel transporter permease NikB; Provisional 314 -182401 PRK10353 PRK10353 3-methyl-adenine DNA glycosylase I; Provisional 187 -182402 PRK10354 PRK10354 RNA chaperone/anti-terminator; Provisional 70 -182403 PRK10355 xylF D-xylose transporter subunit XylF; Provisional 330 -182404 PRK10356 PRK10356 hypothetical protein; Provisional 274 -182405 PRK10357 PRK10357 putative glutathione S-transferase; Provisional 202 -182406 PRK10358 PRK10358 putative rRNA methylase; Provisional 157 -182407 PRK10359 PRK10359 lipopolysaccharide core biosynthesis protein; Provisional 232 -182408 PRK10360 PRK10360 DNA-binding transcriptional activator UhpA; Provisional 196 -182409 PRK10361 PRK10361 DNA recombination protein RmuC; Provisional 475 -182410 PRK10363 cpxP periplasmic repressor CpxP; Reviewed 166 -236674 PRK10364 PRK10364 sensor protein ZraS; Provisional 457 -182412 PRK10365 PRK10365 transcriptional regulatory protein ZraR; Provisional 441 -182413 PRK10367 PRK10367 DNA-damage-inducible SOS response protein; Provisional 441 -236675 PRK10369 PRK10369 heme lyase subunit NrfE; Provisional 571 -182415 PRK10370 PRK10370 formate-dependent nitrite reductase complex subunit NrfG; Provisional 198 -182416 PRK10371 PRK10371 DNA-binding transcriptional regulator MelR; Provisional 302 -182417 PRK10372 PRK10372 PTS system L-ascorbate-specific transporter subunit IIA; Provisional 154 -236676 PRK10376 PRK10376 putative oxidoreductase; Provisional 290 -182419 PRK10377 PRK10377 PTS system glucitol/sorbitol-specific transporter subunit IIA; Provisional 120 -236677 PRK10378 PRK10378 inactive ferrous ion transporter periplasmic protein EfeO; Provisional 375 -182421 PRK10380 PRK10380 hypothetical protein; Provisional 63 -182422 PRK10381 PRK10381 LPS O-antigen length regulator; Provisional 377 -182423 PRK10382 PRK10382 alkyl hydroperoxide reductase subunit C; Provisional 187 -236678 PRK10386 PRK10386 curli assembly protein CsgE; Provisional 130 -236679 PRK10387 PRK10387 glutaredoxin 2; Provisional 210 -182426 PRK10391 PRK10391 oriC-binding nucleoid-associated protein; Provisional 71 -236680 PRK10396 PRK10396 hypothetical protein; Provisional 221 -182428 PRK10397 PRK10397 lipoprotein; Provisional 137 -236681 PRK10401 PRK10401 DNA-binding transcriptional regulator GalS; Provisional 346 -236682 PRK10402 PRK10402 DNA-binding transcriptional activator YeiL; Provisional 226 -182431 PRK10403 PRK10403 transcriptional regulator NarP; Provisional 215 -182432 PRK10404 PRK10404 hypothetical protein; Provisional 101 -182433 PRK10406 PRK10406 alpha-ketoglutarate transporter; Provisional 432 -182434 PRK10408 PRK10408 putative L-valine exporter; Provisional 111 -182435 PRK10409 PRK10409 hydrogenase assembly chaperone; Provisional 90 -236683 PRK10410 PRK10410 hypothetical protein; Provisional 100 -236684 PRK10411 PRK10411 DNA-binding transcriptional activator FucR; Provisional 240 -182438 PRK10413 PRK10413 hydrogenase 2 accessory protein HypG; Provisional 82 -236685 PRK10414 PRK10414 biopolymer transport protein ExbB; Provisional 244 -182440 PRK10415 PRK10415 tRNA-dihydrouridine synthase B; Provisional 321 -236686 PRK10416 PRK10416 signal recognition particle-docking protein FtsY; Provisional 318 -236687 PRK10417 nikC nickel transporter permease NikC; Provisional 272 -236688 PRK10418 nikD nickel transporter ATP-binding protein NikD; Provisional 254 -236689 PRK10419 nikE nickel transporter ATP-binding protein NikE; Provisional 268 -182445 PRK10420 PRK10420 L-lactate permease; Provisional 551 -236690 PRK10421 PRK10421 DNA-binding transcriptional repressor LldR; Provisional 253 -182447 PRK10422 PRK10422 lipopolysaccharide core biosynthesis protein; Provisional 352 -182448 PRK10423 PRK10423 transcriptional repressor RbsR; Provisional 327 -170429 PRK10424 PRK10424 ilvG operon leader peptide; Provisional 32 -182449 PRK10425 PRK10425 DNase TatD; Provisional 258 -236691 PRK10426 PRK10426 alpha-glucosidase; Provisional 635 -182451 PRK10427 PRK10427 putative PTS system fructose-like transporter subunit EIIB; Provisional 114 -182452 PRK10428 PRK10428 hypothetical protein; Provisional 69 -182453 PRK10429 PRK10429 melibiose:sodium symporter; Provisional 473 -182454 PRK10430 PRK10430 DNA-binding transcriptional activator DcuR; Provisional 239 -236692 PRK10431 PRK10431 N-acetylmuramoyl-l-alanine amidase II; Provisional 445 -236693 PRK10433 PRK10433 putative RNA methyltransferase; Provisional 228 -182457 PRK10434 srlR DNA-bindng transcriptional repressor SrlR; Provisional 256 -182458 PRK10435 cadB lysine/cadaverine antiporter; Provisional 435 -236694 PRK10436 PRK10436 hypothetical protein; Provisional 462 -182460 PRK10437 PRK10437 carbonic anhydrase; Provisional 220 -182461 PRK10438 PRK10438 C-N hydrolase family amidase; Provisional 256 -236695 PRK10439 PRK10439 enterobactin/ferric enterobactin esterase; Provisional 411 -182463 PRK10440 PRK10440 iron-enterobactin transporter permease; Provisional 330 -182464 PRK10441 PRK10441 iron-enterobactin transporter membrane protein; Provisional 335 -182465 PRK10443 rihA ribonucleoside hydrolase 1; Provisional 311 -182466 PRK10444 PRK10444 UMP phosphatase; Provisional 248 -182467 PRK10445 PRK10445 endonuclease VIII; Provisional 263 -182468 PRK10446 PRK10446 ribosomal protein S6 modification protein; Provisional 300 -182469 PRK10447 PRK10447 HflBKC-binding inner membrane protein; Provisional 219 -182470 PRK10449 PRK10449 heat-inducible protein; Provisional 140 -182471 PRK10452 PRK10452 multidrug efflux system protein MdtJ; Provisional 120 -182472 PRK10454 PRK10454 PTS system N,N'-diacetylchitobiose-specific transporter subunit IIA; Provisional 115 -182473 PRK10455 PRK10455 periplasmic protein; Reviewed 161 -182474 PRK10456 PRK10456 arginine succinyltransferase; Provisional 344 -182475 PRK10457 PRK10457 hypothetical protein; Provisional 82 -236696 PRK10458 PRK10458 DNA cytosine methylase; Provisional 467 -236697 PRK10459 PRK10459 colanic acid exporter; Provisional 492 -182478 PRK10461 PRK10461 thiamine biosynthesis lipoprotein ApbE; Provisional 350 -182479 PRK10463 PRK10463 hydrogenase nickel incorporation protein HypB; Provisional 290 -182480 PRK10465 PRK10465 hydrogenase 2-specific chaperone; Provisional 159 -182481 PRK10466 hybD hydrogenase 2 maturation endopeptidase; Provisional 164 -182482 PRK10467 PRK10467 hydrogenase 2 large subunit; Provisional 567 -182483 PRK10468 PRK10468 hydrogenase 2 small subunit; Provisional 371 -182484 PRK10470 PRK10470 ribosome hibernation promoting factor HPF; Provisional 95 -182485 PRK10472 PRK10472 low affinity gluconate transporter; Provisional 445 -182486 PRK10473 PRK10473 multidrug efflux system protein MdtL; Provisional 392 -170468 PRK10474 PRK10474 putative PTS system fructose-like transporter subunit EIIB; Provisional 88 -236698 PRK10475 PRK10475 23S rRNA pseudouridine synthase F; Provisional 290 -182488 PRK10476 PRK10476 multidrug resistance protein MdtN; Provisional 346 -182489 PRK10477 PRK10477 outer membrane lipoprotein Blc; Provisional 177 -182490 PRK10478 PRK10478 putative PTS system fructose-like transporter subunit EIIC; Provisional 359 -182491 PRK10481 PRK10481 hypothetical protein; Provisional 224 -182492 PRK10483 PRK10483 tryptophan permease; Provisional 414 -236699 PRK10484 PRK10484 putative transporter; Provisional 523 -182494 PRK10486 PRK10486 autoinducer-2 (AI-2) modifying protein LsrG; Provisional 96 -236700 PRK10489 PRK10489 enterobactin exporter EntS; Provisional 417 -236701 PRK10490 PRK10490 sensor protein KdpD; Provisional 895 -236702 PRK10494 PRK10494 hypothetical protein; Provisional 259 -182498 PRK10497 PRK10497 peripheral inner membrane phage-shock protein; Provisional 73 -182499 PRK10499 PRK10499 PTS system N,N'-diacetylchitobiose-specific transporter subunit IIB; Provisional 106 -236703 PRK10502 PRK10502 putative acyl transferase; Provisional 182 -182501 PRK10503 PRK10503 multidrug efflux system subunit MdtB; Provisional 1040 -182502 PRK10504 PRK10504 putative transporter; Provisional 471 -236704 PRK10506 PRK10506 hypothetical protein; Provisional 162 -182504 PRK10507 PRK10507 bifunctional glutathionylspermidine amidase/glutathionylspermidine synthetase; Provisional 619 -182505 PRK10508 PRK10508 hypothetical protein; Provisional 333 -182506 PRK10509 PRK10509 bacterioferritin-associated ferredoxin; Provisional 64 -182507 PRK10510 PRK10510 putative outer membrane lipoprotein; Provisional 219 -182508 PRK10512 PRK10512 selenocysteinyl-tRNA-specific translation factor; Provisional 614 -182509 PRK10513 PRK10513 sugar phosphate phosphatase; Provisional 270 -182510 PRK10514 PRK10514 putative acetyltransferase; Provisional 145 -170492 PRK10515 PRK10515 hypothetical protein; Provisional 90 -236705 PRK10517 PRK10517 magnesium-transporting ATPase MgtA; Provisional 902 -236706 PRK10518 PRK10518 alkaline phosphatase; Provisional 476 -182513 PRK10519 PRK10519 hypothetical protein; Provisional 151 -182514 PRK10520 rhtB homoserine/homoserine lactone efflux protein; Provisional 205 -236707 PRK10522 PRK10522 multidrug transporter membrane component/ATP-binding component; Provisional 547 -236708 PRK10523 PRK10523 lipoprotein involved with copper homeostasis and adhesion; Provisional 234 -182517 PRK10524 prpE propionyl-CoA synthetase; Provisional 629 -182518 PRK10525 PRK10525 cytochrome o ubiquinol oxidase subunit II; Provisional 315 -182519 PRK10526 PRK10526 acyl-CoA thioesterase II; Provisional 286 -182520 PRK10527 PRK10527 hypothetical protein; Provisional 125 -182521 PRK10528 PRK10528 multifunctional acyl-CoA thioesterase I and protease I and lysophospholipase L1; Provisional 191 -182522 PRK10529 PRK10529 DNA-binding transcriptional activator KdpE; Provisional 225 -182523 PRK10530 PRK10530 pyridoxal phosphate (PLP) phosphatase; Provisional 272 -236709 PRK10531 PRK10531 acyl-CoA thioesterase; Provisional 422 -182525 PRK10532 PRK10532 threonine and homoserine efflux system; Provisional 293 -182526 PRK10533 PRK10533 putative lipoprotein; Provisional 171 -236710 PRK10534 PRK10534 L-threonine aldolase; Provisional 333 -182528 PRK10535 PRK10535 macrolide transporter ATP-binding /permease protein; Provisional 648 -182529 PRK10536 PRK10536 hypothetical protein; Provisional 262 -236711 PRK10537 PRK10537 voltage-gated potassium channel; Provisional 393 -182531 PRK10538 PRK10538 malonic semialdehyde reductase; Provisional 248 -182532 PRK10540 PRK10540 lipoprotein; Provisional 72 -182533 PRK10542 PRK10542 glutathionine S-transferase; Provisional 201 -182534 PRK10543 PRK10543 superoxide dismutase; Provisional 193 -182535 PRK10545 PRK10545 nucleotide excision repair endonuclease; Provisional 286 -182536 PRK10546 PRK10546 pyrimidine (deoxy)nucleoside triphosphate pyrophosphohydrolase; Provisional 135 -236712 PRK10547 PRK10547 chemotaxis protein CheA; Provisional 670 -182538 PRK10548 PRK10548 flagellar biosynthesis protein FliT; Provisional 121 -182539 PRK10549 PRK10549 signal transduction histidine-protein kinase BaeS; Provisional 466 -236713 PRK10550 PRK10550 tRNA-dihydrouridine synthase C; Provisional 312 -182541 PRK10551 PRK10551 phage resistance protein; Provisional 518 -182542 PRK10553 PRK10553 assembly protein for periplasmic nitrate reductase; Provisional 87 -182543 PRK10554 PRK10554 outer membrane porin protein C; Provisional 355 -182544 PRK10555 PRK10555 aminoglycoside/multidrug efflux system; Provisional 1037 -182545 PRK10556 PRK10556 hypothetical protein; Provisional 111 -236714 PRK10557 PRK10557 hypothetical protein; Provisional 192 -182547 PRK10558 PRK10558 alpha-dehydro-beta-deoxy-D-glucarate aldolase; Provisional 256 -182548 PRK10559 PRK10559 p-hydroxybenzoic acid efflux subunit AaeA; Provisional 310 -182549 PRK10560 hofQ outer membrane porin HofQ; Provisional 386 -182550 PRK10561 PRK10561 glycerol-3-phosphate transporter permease; Provisional 280 -236715 PRK10562 PRK10562 putative acetyltransferase; Provisional 145 -182552 PRK10563 PRK10563 6-phosphogluconate phosphatase; Provisional 221 -236716 PRK10564 PRK10564 maltose regulon periplasmic protein; Provisional 303 -182554 PRK10565 PRK10565 putative carbohydrate kinase; Provisional 508 -182555 PRK10566 PRK10566 esterase; Provisional 249 -182556 PRK10568 PRK10568 periplasmic protein; Provisional 203 -182557 PRK10569 PRK10569 NAD(P)H-dependent FMN reductase; Provisional 191 -236717 PRK10572 PRK10572 DNA-binding transcriptional regulator AraC; Provisional 290 -182559 PRK10573 PRK10573 type IV pilin biogenesis protein; Provisional 399 -236718 PRK10574 PRK10574 putative major pilin subunit; Provisional 146 -182561 PRK10575 PRK10575 iron-hydroxamate transporter ATP-binding subunit; Provisional 265 -236719 PRK10576 PRK10576 iron-hydroxamate transporter substrate-binding subunit; Provisional 292 -236720 PRK10577 PRK10577 iron-hydroxamate transporter permease subunit; Provisional 668 -182564 PRK10578 PRK10578 hypothetical protein; Provisional 207 -182565 PRK10579 PRK10579 hypothetical protein; Provisional 94 -182566 PRK10580 proY putative proline-specific permease; Provisional 457 -182567 PRK10581 PRK10581 geranyltranstransferase; Provisional 299 -182568 PRK10582 PRK10582 cytochrome o ubiquinol oxidase subunit IV; Provisional 109 -182569 PRK10584 PRK10584 putative ABC transporter ATP-binding protein YbbA; Provisional 228 -182570 PRK10586 PRK10586 putative oxidoreductase; Provisional 362 -236721 PRK10588 PRK10588 hypothetical protein; Provisional 97 -236722 PRK10590 PRK10590 ATP-dependent RNA helicase RhlE; Provisional 456 -182573 PRK10591 PRK10591 hypothetical protein; Provisional 92 -182574 PRK10592 PRK10592 putrescine transporter subunit: membrane component of ABC superfamily; Provisional 281 -182575 PRK10593 PRK10593 hypothetical protein; Provisional 297 -236723 PRK10594 PRK10594 murein L,D-transpeptidase; Provisional 608 -182577 PRK10595 PRK10595 SOS cell division inhibitor; Provisional 164 -182578 PRK10597 PRK10597 DNA damage-inducible protein I; Provisional 81 -182579 PRK10598 PRK10598 lipoprotein; Provisional 186 -182580 PRK10599 PRK10599 calcium/sodium:proton antiporter; Provisional 366 -182581 PRK10600 PRK10600 nitrate/nitrite sensor protein NarX; Provisional 569 -182582 PRK10602 PRK10602 murein peptide amidase A; Provisional 237 -236724 PRK10604 PRK10604 sensor protein RstB; Provisional 433 -182584 PRK10605 PRK10605 N-ethylmaleimide reductase; Provisional 362 -182585 PRK10606 btuE putative glutathione peroxidase; Provisional 183 -170568 PRK10610 PRK10610 chemotaxis regulatory protein CheY; Provisional 129 -236725 PRK10611 PRK10611 chemotaxis methyltransferase CheR; Provisional 287 -182587 PRK10612 PRK10612 purine-binding chemotaxis protein; Provisional 167 -182588 PRK10613 PRK10613 hypothetical protein; Provisional 74 -182589 PRK10614 PRK10614 multidrug efflux system subunit MdtC; Provisional 1025 -182590 PRK10617 PRK10617 cytochrome c-type protein NapC; Provisional 200 -236726 PRK10618 PRK10618 phosphotransfer intermediate protein in two-component regulatory system with RcsBC; Provisional 894 -182592 PRK10619 PRK10619 histidine/lysine/arginine/ornithine transporter subunit; Provisional 257 -182593 PRK10621 PRK10621 hypothetical protein; Provisional 266 -182594 PRK10622 pheA bifunctional chorismate mutase/prephenate dehydratase; Provisional 386 -182595 PRK10624 PRK10624 L-1,2-propanediol oxidoreductase; Provisional 382 -236727 PRK10625 tas putative aldo-keto reductase; Provisional 346 -182597 PRK10626 PRK10626 hypothetical protein; Provisional 239 -182598 PRK10628 PRK10628 LigB family dioxygenase; Provisional 246 -236728 PRK10629 PRK10629 EnvZ/OmpR regulon moderator; Provisional 127 -182600 PRK10631 PRK10631 p-hydroxybenzoic acid efflux subunit AaeB; Provisional 652 -182601 PRK10632 PRK10632 transcriptional regulator; Provisional 309 -182602 PRK10633 PRK10633 hypothetical protein; Provisional 80 -182603 PRK10634 PRK10634 tRNA(ANN) t(6)A37 threonylcarbamoyladenosine modification protein; Provisional 190 -182604 PRK10635 PRK10635 bacterioferritin; Provisional 158 -236729 PRK10636 PRK10636 putative ABC transporter ATP-binding protein; Provisional 638 -182606 PRK10637 cysG siroheme synthase; Provisional 457 -182607 PRK10638 PRK10638 glutaredoxin 3; Provisional 83 -182608 PRK10639 PRK10639 formate dehydrogenase-O subunit gamma; Provisional 211 -182609 PRK10640 rhaB rhamnulokinase; Provisional 471 -236730 PRK10641 btuB vitamin B12/cobalamin outer membrane transporter; Provisional 614 -182611 PRK10642 PRK10642 proline/glycine betaine transporter; Provisional 490 -182612 PRK10643 PRK10643 DNA-binding transcriptional regulator BasR; Provisional 222 -182613 PRK10644 PRK10644 arginine:agmatin antiporter; Provisional 445 -182614 PRK10645 PRK10645 divalent-cation tolerance protein CutA; Provisional 112 -182615 PRK10646 PRK10646 ADP-binding protein; Provisional 153 -182616 PRK10647 PRK10647 ferric iron reductase involved in ferric hydroximate transport; Provisional 262 -182617 PRK10649 PRK10649 hypothetical protein; Provisional 577 -182618 PRK10650 PRK10650 multidrug efflux system protein MdtI; Provisional 109 -182619 PRK10651 PRK10651 transcriptional regulator NarL; Provisional 216 -182620 PRK10653 PRK10653 D-ribose transporter subunit RbsB; Provisional 295 -182621 PRK10654 dcuC C4-dicarboxylate transporter DcuC; Provisional 455 -182622 PRK10655 potE putrescine transporter; Provisional 438 -182623 PRK10657 PRK10657 isoaspartyl dipeptidase; Provisional 388 -236731 PRK10658 PRK10658 putative alpha-glucosidase; Provisional 665 -182625 PRK10659 PRK10659 hypothetical protein; Provisional 188 -182626 PRK10660 tilS tRNA(Ile)-lysidine synthetase; Provisional 436 -236732 PRK10662 PRK10662 beta-lactam binding protein AmpH; Provisional 378 -182628 PRK10663 PRK10663 cytochrome o ubiquinol oxidase subunit III; Provisional 204 -170612 PRK10664 PRK10664 transcriptional regulator HU subunit beta; Provisional 90 -182629 PRK10665 PRK10665 nitrogen regulatory protein P-II 2; Provisional 112 -182630 PRK10666 PRK10666 ammonium transporter; Provisional 428 -182631 PRK10667 PRK10667 Hha toxicity attenuator; Provisional 122 -182632 PRK10668 PRK10668 DNA-binding transcriptional repressor AcrR; Provisional 215 -182633 PRK10669 PRK10669 putative cation:proton antiport protein; Provisional 558 -182634 PRK10670 PRK10670 hypothetical protein; Provisional 159 -182635 PRK10671 copA copper exporting ATPase; Provisional 834 -236733 PRK10672 PRK10672 rare lipoprotein A; Provisional 361 -182637 PRK10673 PRK10673 acyl-CoA esterase; Provisional 255 -236734 PRK10674 PRK10674 deoxyribodipyrimidine photolyase; Provisional 472 -182639 PRK10675 PRK10675 UDP-galactose-4-epimerase; Provisional 338 -182640 PRK10676 PRK10676 DNA-binding transcriptional regulator ModE; Provisional 263 -182641 PRK10677 modA molybdate transporter periplasmic protein; Provisional 257 -182642 PRK10678 moaE molybdopterin guanine dinucleotide biosynthesis protein MoaE; Provisional 150 -182643 PRK10680 PRK10680 molybdopterin biosynthesis protein MoeA; Provisional 411 -182644 PRK10681 PRK10681 DNA-binding transcriptional repressor DeoR; Provisional 252 -182645 PRK10682 PRK10682 putrescine transporter subunit: periplasmic-binding component of ABC superfamily; Provisional 370 -182646 PRK10683 PRK10683 putrescine transporter subunit: membrane component of ABC superfamily; Provisional 317 -236735 PRK10684 PRK10684 HCP oxidoreductase, NADH-dependent; Provisional 332 -182648 PRK10687 PRK10687 purine nucleoside phosphoramidase; Provisional 119 -182649 PRK10689 PRK10689 transcription-repair coupling factor; Provisional 1147 -182650 PRK10691 PRK10691 hypothetical protein; Provisional 219 -182651 PRK10692 PRK10692 hypothetical protein; Provisional 92 -182652 PRK10693 PRK10693 response regulator of RpoS; Provisional 303 -236736 PRK10694 PRK10694 acyl-CoA esterase; Provisional 133 -182654 PRK10695 PRK10695 hypothetical protein; Provisional 859 -236737 PRK10696 PRK10696 tRNA 2-thiocytidine biosynthesis protein TtcA; Provisional 258 -182656 PRK10697 PRK10697 DNA-binding transcriptional activator PspC; Provisional 118 -182657 PRK10698 PRK10698 phage shock protein PspA; Provisional 222 -182658 PRK10699 PRK10699 phosphatidylglycerophosphatase B; Provisional 244 -182659 PRK10700 PRK10700 23S rRNA pseudouridylate synthase B; Provisional 289 -236738 PRK10701 PRK10701 DNA-binding transcriptional regulator RstA; Provisional 240 -182661 PRK10702 PRK10702 endonuclease III; Provisional 211 -236739 PRK10703 PRK10703 DNA-binding transcriptional repressor PurR; Provisional 341 -182663 PRK10707 PRK10707 putative NUDIX hydrolase; Provisional 190 -182664 PRK10708 PRK10708 hypothetical protein; Provisional 62 -182665 PRK10710 PRK10710 DNA-binding transcriptional regulator BaeR; Provisional 240 -182666 PRK10711 PRK10711 hypothetical protein; Provisional 231 -236740 PRK10712 PRK10712 PTS system fructose-specific transporter subunits IIBC; Provisional 563 -182668 PRK10713 PRK10713 2Fe-2S ferredoxin YfaE; Provisional 84 -182669 PRK10714 PRK10714 undecaprenyl phosphate 4-deoxy-4-formamido-L-arabinose transferase; Provisional 325 -182670 PRK10715 flk flagella biosynthesis regulator; Provisional 335 -236741 PRK10716 PRK10716 long-chain fatty acid outer membrane transporter; Provisional 435 -182672 PRK10717 PRK10717 cysteine synthase A; Provisional 330 -236742 PRK10718 PRK10718 RpoE-regulated lipoprotein; Provisional 191 -236743 PRK10719 eutA reactivating factor for ethanolamine ammonia lyase; Provisional 475 -236744 PRK10720 PRK10720 uracil transporter; Provisional 428 -170660 PRK10721 PRK10721 hypothetical protein; Provisional 66 -236745 PRK10722 PRK10722 hypothetical protein; Provisional 247 -182677 PRK10723 PRK10723 hypothetical protein; Provisional 243 -182678 PRK10724 PRK10724 hypothetical protein; Provisional 158 -182679 PRK10725 PRK10725 fructose-1-P/6-phosphogluconate phosphatase; Provisional 188 -236746 PRK10726 PRK10726 hypothetical protein; Provisional 105 -182681 PRK10727 PRK10727 DNA-binding transcriptional regulator GalR; Provisional 343 -182682 PRK10729 nudF ADP-ribose pyrophosphatase NudF; Provisional 202 -182683 PRK10733 hflB ATP-dependent metalloprotease; Reviewed 644 -182684 PRK10734 PRK10734 putative calcium/sodium:proton antiporter; Provisional 325 -182685 PRK10735 tldD protease TldD; Provisional 481 -236747 PRK10736 PRK10736 hypothetical protein; Provisional 374 -236748 PRK10737 PRK10737 FKBP-type peptidyl-prolyl cis-trans isomerase; Provisional 196 -182688 PRK10738 PRK10738 hypothetical protein; Provisional 134 -170674 PRK10739 PRK10739 putative antibiotic transporter; Provisional 197 -182689 PRK10740 PRK10740 branched-chain amino acid transporter permease subunit LivH; Reviewed 308 -236749 PRK10742 PRK10742 putative methyltransferase; Provisional 250 -182691 PRK10743 PRK10743 heat shock protein IbpA; Provisional 137 -182692 PRK10744 pstB phosphate transporter ATP-binding protein; Provisional 260 -182693 PRK10745 trkD potassium transport protein Kup; Provisional 622 -182694 PRK10746 PRK10746 putative transport protein YifK; Provisional 461 -182695 PRK10747 PRK10747 putative protoheme IX biogenesis protein; Provisional 398 -182696 PRK10748 PRK10748 flavin mononucleotide phosphatase; Provisional 238 -182697 PRK10749 PRK10749 lysophospholipase L2; Provisional 330 -182698 PRK10750 PRK10750 potassium transporter; Provisional 483 -236750 PRK10751 PRK10751 molybdopterin-guanine dinucleotide biosynthesis protein B; Provisional 173 -182700 PRK10752 PRK10752 sulfate transporter subunit; Provisional 329 -138142 PRK10753 PRK10753 transcriptional regulator HU subunit alpha; Provisional 90 -182701 PRK10754 PRK10754 quinone oxidoreductase, NADPH-dependent; Provisional 327 -236751 PRK10755 PRK10755 sensor protein BasS/PmrB; Provisional 356 -236752 PRK10756 PRK10756 hypothetical protein; Provisional 157 -236753 PRK10757 PRK10757 inositol monophosphatase; Provisional 267 -182705 PRK10759 PRK10759 lipoprotein; Provisional 106 -236754 PRK10760 PRK10760 murein hydrolase B; Provisional 359 -236755 PRK10762 PRK10762 D-ribose transporter ATP binding protein; Provisional 501 -182708 PRK10763 PRK10763 phospholipase A; Provisional 289 -236756 PRK10764 PRK10764 potassium-tellurite ethidium and proflavin transporter; Provisional 324 -182710 PRK10765 PRK10765 nitroreductase A; Provisional 240 -182711 PRK10766 PRK10766 DNA-binding transcriptional regulator TorR; Provisional 221 -236757 PRK10767 PRK10767 chaperone protein DnaJ; Provisional 371 -182713 PRK10768 PRK10768 ribonucleoside hydrolase RihC; Provisional 304 -182714 PRK10769 folA dihydrofolate reductase; Provisional 159 -236758 PRK10770 PRK10770 peptidyl-prolyl cis-trans isomerase SurA; Provisional 413 -182716 PRK10771 thiQ thiamine transporter ATP-binding subunit; Provisional 232 -182717 PRK10772 PRK10772 cell division protein FtsL; Provisional 108 -182718 PRK10773 murF UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase; Reviewed 453 -182719 PRK10774 PRK10774 cell division protein FtsW; Provisional 404 -182720 PRK10775 PRK10775 cell division protein FtsQ; Provisional 276 -182721 PRK10776 PRK10776 nucleoside triphosphate pyrophosphohydrolase; Provisional 129 -182722 PRK10778 dksA RNA polymerase-binding transcription factor; Provisional 151 -182723 PRK10779 PRK10779 zinc metallopeptidase RseP; Provisional 449 -182724 PRK10780 PRK10780 periplasmic chaperone; Provisional 165 -182725 PRK10781 rcsF outer membrane lipoprotein; Reviewed 133 -182726 PRK10782 PRK10782 DL-methionine transporter permease subunit; Provisional 217 -182727 PRK10783 mltD membrane-bound lytic murein transglycosylase D; Provisional 456 -236759 PRK10785 PRK10785 maltodextrin glucosidase; Provisional 598 -182729 PRK10786 ribD bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase; Provisional 367 -182730 PRK10787 PRK10787 DNA-binding ATP-dependent protease La; Provisional 784 -182731 PRK10788 PRK10788 periplasmic folding chaperone; Provisional 623 -182732 PRK10789 PRK10789 putative multidrug transporter membrane\ATP-binding components; Provisional 569 -182733 PRK10790 PRK10790 putative multidrug transporter membrane\ATP-binding components; Provisional 592 -182734 PRK10791 PRK10791 peptidyl-prolyl cis-trans isomerase B (rotamase B); Provisional 164 -236760 PRK10792 PRK10792 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 285 -182736 PRK10793 PRK10793 D-alanyl-D-alanine carboxypeptidase fraction A; Provisional 403 -182737 PRK10794 PRK10794 cell wall shape-determining protein; Provisional 370 -236761 PRK10795 PRK10795 penicillin-binding protein 2; Provisional 634 -236762 PRK10796 PRK10796 LPS-assembly lipoprotein RlpB; Provisional 188 -236763 PRK10797 PRK10797 glutamate and aspartate transporter subunit; Provisional 302 -182741 PRK10799 PRK10799 metal-binding protein; Provisional 247 -182742 PRK10800 PRK10800 acyl-CoA thioesterase YbgC; Provisional 130 -182743 PRK10801 PRK10801 colicin uptake protein TolQ; Provisional 227 -182744 PRK10802 PRK10802 peptidoglycan-associated outer membrane lipoprotein; Provisional 173 -182745 PRK10803 PRK10803 tol-pal system protein YbgF; Provisional 263 -182746 PRK10805 PRK10805 formate transporter; Provisional 285 -182747 PRK10807 PRK10807 paraquat-inducible protein B; Provisional 547 -236764 PRK10808 PRK10808 outer membrane protein A; Reviewed 351 -182749 PRK10809 PRK10809 ribosomal-protein-S5-alanine N-acetyltransferase; Provisional 194 -236765 PRK10810 PRK10810 anti-sigma28 factor FlgM; Provisional 98 -236766 PRK10811 rne ribonuclease E; Reviewed 1068 -236767 PRK10812 PRK10812 putative DNAse; Provisional 265 -182753 PRK10814 PRK10814 outer membrane-specific lipoprotein transporter subunit LolC; Provisional 399 -182754 PRK10815 PRK10815 sensor protein PhoQ; Provisional 485 -182755 PRK10816 PRK10816 DNA-binding transcriptional regulator PhoP; Provisional 223 -182756 PRK10818 PRK10818 cell division inhibitor MinD; Provisional 270 -236768 PRK10819 PRK10819 transport protein TonB; Provisional 246 -236769 PRK10820 PRK10820 DNA-binding transcriptional regulator TyrR; Provisional 520 -182759 PRK10824 PRK10824 glutaredoxin-4; Provisional 115 -236770 PRK10826 PRK10826 2-deoxyglucose-6-phosphatase; Provisional 222 -182761 PRK10828 PRK10828 putative oxidoreductase; Provisional 183 -236771 PRK10829 PRK10829 ribonuclease D; Provisional 373 -182763 PRK10832 PRK10832 phosphatidylglycerophosphate synthetase; Provisional 182 -236772 PRK10833 PRK10833 putative assembly protein; Provisional 617 -182765 PRK10834 PRK10834 vancomycin high temperature exclusion protein; Provisional 239 -182766 PRK10835 PRK10835 hypothetical protein; Provisional 373 -182767 PRK10836 PRK10836 lysine transporter; Provisional 489 -182768 PRK10837 PRK10837 putative DNA-binding transcriptional regulator; Provisional 290 -236773 PRK10838 spr outer membrane lipoprotein; Provisional 190 -236774 PRK10839 PRK10839 16S rRNA pseudouridylate synthase A; Provisional 232 -182771 PRK10840 PRK10840 transcriptional regulator RcsB; Provisional 216 -182772 PRK10841 PRK10841 hybrid sensory kinase in two-component regulatory system with RcsB and YojN; Provisional 924 -182773 PRK10845 PRK10845 colicin V production protein; Provisional 162 -182774 PRK10846 PRK10846 bifunctional folylpolyglutamate synthase/ dihydrofolate synthase; Provisional 416 -182775 PRK10847 PRK10847 hypothetical protein; Provisional 219 -182776 PRK10848 PRK10848 phosphohistidine phosphatase; Provisional 159 -182777 PRK10850 PRK10850 PTS system phosphohistidinoprotein-hexose phosphotransferase subunit Hpr; Provisional 85 -182778 PRK10851 PRK10851 sulfate/thiosulfate transporter subunit; Provisional 353 -236775 PRK10852 PRK10852 thiosulfate transporter subunit; Provisional 338 -182780 PRK10853 PRK10853 putative reductase; Provisional 118 -182781 PRK10854 PRK10854 exopolyphosphatase; Provisional 513 -236776 PRK10856 PRK10856 cytoskeletal protein RodZ; Provisional 331 -236777 PRK10857 PRK10857 DNA-binding transcriptional regulator IscR; Provisional 164 -182784 PRK10858 PRK10858 nitrogen regulatory protein P-II 1; Provisional 112 -236778 PRK10859 PRK10859 membrane-bound lytic transglycosylase F; Provisional 482 -182786 PRK10860 PRK10860 tRNA-specific adenosine deaminase; Provisional 172 -182787 PRK10861 PRK10861 signal peptidase I; Provisional 324 -182788 PRK10862 PRK10862 SoxR reducing system protein RseC; Provisional 154 -182789 PRK10863 PRK10863 anti-RNA polymerase sigma factor SigE; Provisional 216 -236779 PRK10864 PRK10864 putative methyltransferase; Provisional 346 -182791 PRK10865 PRK10865 protein disaggregation chaperone; Provisional 857 -182792 PRK10866 PRK10866 outer membrane biogenesis protein BamD; Provisional 243 -236780 PRK10867 PRK10867 signal recognition particle protein; Provisional 433 -236781 PRK10869 PRK10869 recombination and repair protein; Provisional 553 -182795 PRK10870 PRK10870 transcriptional repressor MprA; Provisional 176 -236782 PRK10871 nlpD lipoprotein NlpD; Provisional 319 -182797 PRK10872 relA (p)ppGpp synthetase I/GTP pyrophosphokinase; Provisional 743 -182798 PRK10873 PRK10873 hypothetical protein; Provisional 131 -182799 PRK10874 PRK10874 cysteine sulfinate desulfinase; Provisional 401 -236783 PRK10875 recD exonuclease V subunit alpha; Provisional 615 -236784 PRK10876 recB exonuclease V subunit beta; Provisional 1181 -182802 PRK10877 PRK10877 protein disulfide isomerase II DsbC; Provisional 232 -182803 PRK10878 PRK10878 hypothetical protein; Provisional 72 -182804 PRK10879 PRK10879 proline aminopeptidase P II; Provisional 438 -182805 PRK10880 PRK10880 adenine DNA glycosylase; Provisional 350 -236785 PRK10881 PRK10881 putative hydrogenase 2 b cytochrome subunit; Provisional 394 -236786 PRK10882 PRK10882 hydrogenase 2 protein HybA; Provisional 328 -182808 PRK10883 PRK10883 FtsI repressor; Provisional 471 -182809 PRK10884 PRK10884 SH3 domain-containing protein; Provisional 206 -182810 PRK10885 cca multifunctional tRNA nucleotidyl transferase/2'3'-cyclic phosphodiesterase/2'nucleotidase/phosphatase; Reviewed 409 -182811 PRK10886 PRK10886 DnaA initiator-associating protein DiaA; Provisional 196 -236787 PRK10887 glmM phosphoglucosamine mutase; Provisional 443 -182813 PRK10888 PRK10888 octaprenyl diphosphate synthase; Provisional 323 -182814 PRK10892 PRK10892 D-arabinose 5-phosphate isomerase; Provisional 326 -236788 PRK10893 PRK10893 lipopolysaccharide exporter periplasmic protein; Provisional 192 -182816 PRK10894 PRK10894 lipopolysaccharide transport periplasmic protein LptA; Provisional 180 -182817 PRK10895 PRK10895 lipopolysaccharide ABC transporter ATP-binding protein; Provisional 241 -182818 PRK10896 PRK10896 PTS system sugar transporter subunit IIA; Provisional 154 -182819 PRK10897 PRK10897 phosphohistidinoprotein-hexose phosphotransferase component of N-regulated PTS system (Npr); Provisional 90 -182820 PRK10898 PRK10898 serine endoprotease; Provisional 353 -236789 PRK10899 PRK10899 hypothetical protein; Provisional 1022 -236790 PRK10901 PRK10901 16S rRNA methyltransferase B; Provisional 427 -236791 PRK10902 PRK10902 FKBP-type peptidyl-prolyl cis-trans isomerase; Provisional 269 -182824 PRK10903 PRK10903 peptidyl-prolyl cis-trans isomerase A (rotamase A); Provisional 190 -182825 PRK10904 PRK10904 DNA adenine methylase; Provisional 271 -236792 PRK10905 PRK10905 cell division protein DamX; Validated 328 -182827 PRK10906 PRK10906 DNA-binding transcriptional repressor GlpR; Provisional 252 -182828 PRK10907 PRK10907 intramembrane serine protease GlpG; Provisional 276 -182829 PRK10908 PRK10908 cell division protein FtsE; Provisional 222 -236793 PRK10909 rsmD 16S rRNA m(2)G966-methyltransferase; Provisional 199 -182831 PRK10910 PRK10910 hypothetical protein; Provisional 89 -182832 PRK10911 PRK10911 oligopeptidase A; Provisional 680 -182833 PRK10913 PRK10913 dipeptide transporter; Provisional 300 -182834 PRK10914 PRK10914 dipeptide transporter permease DppB; Provisional 339 -182835 PRK10916 PRK10916 ADP-heptose:LPS heptosyltransferase II; Provisional 348 -236794 PRK10917 PRK10917 ATP-dependent DNA helicase RecG; Provisional 681 -182837 PRK10918 PRK10918 phosphate ABC transporter periplasmic substrate-binding protein PstS; Provisional 346 -182838 PRK10919 PRK10919 ATP-dependent DNA helicase Rep; Provisional 672 -236795 PRK10920 PRK10920 putative uroporphyrinogen III C-methyltransferase; Provisional 390 -182840 PRK10921 PRK10921 twin-arginine protein translocation system subunit TatC; Provisional 258 -236796 PRK10922 PRK10922 3-octaprenyl-4-hydroxybenzoate decarboxylase; Provisional 497 -182842 PRK10923 glnG nitrogen regulation protein NR(I); Provisional 469 -182843 PRK10925 PRK10925 superoxide dismutase; Provisional 206 -182844 PRK10926 PRK10926 ferredoxin-NADP reductase; Provisional 248 -236797 PRK10927 PRK10927 essential cell division protein FtsN; Provisional 319 -236798 PRK10929 PRK10929 putative mechanosensitive channel protein; Provisional 1109 -236799 PRK10930 PRK10930 FtsH protease regulator HflK; Provisional 419 -182848 PRK10931 PRK10931 adenosine-3'(2'),5'-bisphosphate nucleotidase; Provisional 246 -182849 PRK10933 PRK10933 trehalose-6-phosphate hydrolase; Provisional 551 -236800 PRK10935 PRK10935 nitrate/nitrite sensor protein NarQ; Provisional 565 -236801 PRK10936 PRK10936 TMAO reductase system periplasmic protein TorT; Provisional 343 -182852 PRK10938 PRK10938 putative molybdenum transport ATP-binding protein ModF; Provisional 490 -182853 PRK10939 PRK10939 autoinducer-2 (AI-2) kinase; Provisional 520 -182854 PRK10941 PRK10941 hypothetical protein; Provisional 269 -236802 PRK10942 PRK10942 serine endoprotease; Provisional 473 -170841 PRK10943 PRK10943 cold shock-like protein CspC; Provisional 69 -182856 PRK10945 PRK10945 gene expression modulator; Provisional 72 -236803 PRK10946 entE enterobactin synthase subunit E; Provisional 536 -182858 PRK10947 PRK10947 global DNA-binding transcriptional dual regulator H-NS; Provisional 135 -236804 PRK10948 PRK10948 cysteine desulfurase activator complex subunit SufD; Provisional 424 -182860 PRK10949 PRK10949 protease 4; Provisional 618 -236805 PRK10952 PRK10952 glycine betaine transporter membrane protein; Provisional 355 -182862 PRK10953 cysJ sulfite reductase subunit alpha; Provisional 600 -182863 PRK10954 PRK10954 periplasmic protein disulfide isomerase I; Provisional 207 -182864 PRK10955 PRK10955 DNA-binding transcriptional regulator CpxR; Provisional 232 -236806 PRK10957 PRK10957 iron-enterobactin transporter periplasmic binding protein; Provisional 317 -236807 PRK10958 PRK10958 leucine export protein LeuE; Provisional 212 -182867 PRK10959 PRK10959 outer membrane protein W; Provisional 212 -236808 PRK10963 PRK10963 hypothetical protein; Provisional 223 -236809 PRK10964 PRK10964 ADP-heptose:LPS heptosyl transferase I; Provisional 322 -236810 PRK10965 PRK10965 multicopper oxidase; Provisional 523 -182871 PRK10966 PRK10966 exonuclease subunit SbcD; Provisional 407 -182872 PRK10969 PRK10969 DNA polymerase III subunit theta; Reviewed 75 -182873 PRK10971 PRK10971 sulfate/thiosulfate transporter subunit; Provisional 277 -182874 PRK10972 PRK10972 Z-ring-associated protein; Provisional 109 -182875 PRK10973 PRK10973 glycerol-3-phosphate transporter membrane protein; Provisional 281 -182876 PRK10974 PRK10974 glycerol-3-phosphate transporter periplasmic binding protein; Provisional 438 -182877 PRK10975 PRK10975 TDP-fucosamine acetyltransferase; Provisional 194 -182878 PRK10976 PRK10976 putative hydrolase; Provisional 266 -182879 PRK10977 PRK10977 hypothetical protein; Provisional 509 -182880 PRK10982 PRK10982 galactose/methyl galaxtoside transporter ATP-binding protein; Provisional 491 -182881 PRK10983 PRK10983 putative inner membrane protein; Provisional 368 -182882 PRK10984 PRK10984 DNA-binding transcriptional regulator Crl; Provisional 127 -182883 PRK10985 PRK10985 putative hydrolase; Provisional 324 -236811 PRK10987 PRK10987 regulatory protein AmpE; Provisional 284 -182885 PRK10991 fucI L-fucose isomerase; Provisional 588 -236812 PRK10992 PRK10992 iron-sulfur cluster repair di-iron protein; Provisional 220 -236813 PRK10993 PRK10993 outer membrane protease; Reviewed 314 -236814 PRK10995 PRK10995 inner membrane protein; Provisional 221 -182889 PRK10996 PRK10996 thioredoxin 2; Provisional 139 -236815 PRK10997 yieM hypothetical protein; Provisional 487 -182891 PRK10998 malG maltose transporter permease; Provisional 296 -236816 PRK10999 malF maltose transporter membrane protein; Provisional 520 -182893 PRK11000 PRK11000 maltose/maltodextrin transporter ATP-binding protein; Provisional 369 -236817 PRK11001 mtlR mannitol repressor protein; Provisional 171 -182895 PRK11006 phoR phosphate regulon sensor protein; Provisional 430 -182896 PRK11007 PRK11007 PTS system trehalose(maltose)-specific transporter subunits IIBC; Provisional 473 -236818 PRK11009 aphA acid phosphatase/phosphotransferase; Provisional 237 -182898 PRK11010 ampG muropeptide transporter; Validated 491 -236819 PRK11013 PRK11013 DNA-binding transcriptional regulator LysR; Provisional 309 -236820 PRK11014 PRK11014 transcriptional repressor NsrR; Provisional 141 -236821 PRK11017 codB cytosine permease; Provisional 404 -236822 PRK11018 PRK11018 hypothetical protein; Provisional 78 -182903 PRK11019 PRK11019 hypothetical protein; Provisional 88 -182904 PRK11020 PRK11020 hypothetical protein; Provisional 118 -236823 PRK11021 PRK11021 putative transporter; Provisional 410 -182906 PRK11022 dppD dipeptide transporter ATP-binding subunit; Provisional 326 -182907 PRK11023 PRK11023 outer membrane lipoprotein; Provisional 191 -236824 PRK11024 PRK11024 colicin uptake protein TolR; Provisional 141 -182909 PRK11025 PRK11025 23S rRNA pseudouridylate synthase C; Provisional 317 -182910 PRK11026 ftsX cell division ABC transporter subunit FtsX; Provisional 309 -236825 PRK11027 PRK11027 hypothetical protein; Provisional 112 -182912 PRK11028 PRK11028 6-phosphogluconolactonase; Provisional 330 -182913 PRK11029 PRK11029 FtsH protease regulator HflC; Provisional 334 -236826 PRK11031 PRK11031 guanosine pentaphosphate phosphohydrolase; Provisional 496 -182915 PRK11032 PRK11032 hypothetical protein; Provisional 160 -236827 PRK11033 zntA zinc/cadmium/mercury/lead-transporting ATPase; Provisional 741 -236828 PRK11034 clpA ATP-dependent Clp protease ATP-binding subunit; Provisional 758 -182918 PRK11036 PRK11036 putative S-adenosyl-L-methionine-dependent methyltransferase; Provisional 255 -182919 PRK11037 PRK11037 hypothetical protein; Provisional 83 -182920 PRK11038 PRK11038 hypothetical protein; Provisional 47 -182921 PRK11039 PRK11039 putative dehydrogenase; Provisional 140 -182922 PRK11040 PRK11040 peptidase PmbA; Provisional 446 -182923 PRK11041 PRK11041 DNA-binding transcriptional regulator CytR; Provisional 309 -182924 PRK11043 PRK11043 putative transporter; Provisional 401 -236829 PRK11045 pagP phospholipid:lipid A palmitoyltransferase; Provisional 184 -236830 PRK11049 PRK11049 D-alanine/D-serine/glycine permease; Provisional 469 -182927 PRK11050 PRK11050 manganese transport regulator MntR; Provisional 152 -236831 PRK11052 malQ 4-alpha-glucanotransferase; Provisional 695 -182929 PRK11053 PRK11053 dihydropteridine reductase; Provisional 217 -182930 PRK11054 helD DNA helicase IV; Provisional 684 -182931 PRK11055 galM galactose-1-epimerase; Provisional 342 -236832 PRK11056 PRK11056 hypothetical protein; Provisional 120 -182933 PRK11057 PRK11057 ATP-dependent DNA helicase RecQ; Provisional 607 -182934 PRK11058 PRK11058 GTPase HflX; Provisional 426 -236833 PRK11059 PRK11059 regulatory protein CsrD; Provisional 640 -182936 PRK11060 PRK11060 rod shape-determining protein MreD; Provisional 162 -182937 PRK11061 PRK11061 fused phosphoenolpyruvate-protein phosphotransferase PtsP/GAF domain; Provisional 748 -182938 PRK11062 nhaR transcriptional activator NhaR; Provisional 296 -182939 PRK11063 metQ DL-methionine transporter substrate-binding subunit; Provisional 271 -182940 PRK11064 wecC UDP-N-acetyl-D-mannosamine dehydrogenase; Provisional 415 -236834 PRK11067 PRK11067 outer membrane protein assembly factor YaeT; Provisional 803 -182942 PRK11068 PRK11068 phosphatidylglycerophosphatase A; Provisional 164 -236835 PRK11069 recC exonuclease V subunit gamma; Provisional 1122 -182944 PRK11070 PRK11070 ssDNA exonuclease RecJ; Provisional 575 -182945 PRK11071 PRK11071 esterase YqiA; Provisional 190 -236836 PRK11072 PRK11072 bifunctional glutamine-synthetase adenylyltransferase/deadenyltransferase; Reviewed 943 -182947 PRK11073 glnL nitrogen regulation protein NR(II); Provisional 348 -182948 PRK11074 PRK11074 putative DNA-binding transcriptional regulator; Provisional 300 -236837 PRK11081 PRK11081 tRNA guanosine-2'-O-methyltransferase; Provisional 229 -236838 PRK11083 PRK11083 DNA-binding response regulator CreB; Provisional 228 -182951 PRK11085 PRK11085 magnesium/nickel/cobalt transporter CorA; Provisional 316 -236839 PRK11086 PRK11086 sensory histidine kinase DcuS; Provisional 542 -236840 PRK11087 PRK11087 oxidative stress defense protein; Provisional 231 -236841 PRK11088 rrmA 23S rRNA methyltransferase A; Provisional 272 -182955 PRK11089 PRK11089 PTS system glucose-specific transporter subunits IIBC; Provisional 477 -236842 PRK11091 PRK11091 aerobic respiration control sensor protein ArcB; Provisional 779 -236843 PRK11092 PRK11092 bifunctional (p)ppGpp synthetase II/ guanosine-3',5'-bis pyrophosphate 3'-pyrophosphohydrolase; Provisional 702 -182958 PRK11096 ansB L-asparaginase II; Provisional 347 -236844 PRK11097 PRK11097 endo-1,4-D-glucanase; Provisional 376 -182960 PRK11098 PRK11098 microcin B17 transporter; Reviewed 409 -236845 PRK11099 PRK11099 putative inner membrane protein; Provisional 399 -236846 PRK11100 PRK11100 sensory histidine kinase CreC; Provisional 475 -236847 PRK11101 glpA sn-glycerol-3-phosphate dehydrogenase subunit A; Provisional 546 -182964 PRK11102 PRK11102 bicyclomycin/multidrug efflux system; Provisional 377 -182965 PRK11103 PRK11103 PTS system mannose-specific transporter subunit IID; Provisional 282 -182966 PRK11104 hemG protoporphyrinogen oxidase; Provisional 177 -182967 PRK11106 PRK11106 queuosine biosynthesis protein QueC; Provisional 231 -236848 PRK11107 PRK11107 hybrid sensory histidine kinase BarA; Provisional 919 -236849 PRK11109 PRK11109 bifunctional PTS system fructose-specific transporter subunit IIA/HPr protein; Provisional 375 -236850 PRK11111 PRK11111 hypothetical protein; Provisional 214 -182971 PRK11112 PRK11112 tRNA pseudouridine synthase C; Provisional 257 -182972 PRK11113 PRK11113 D-alanyl-D-alanine carboxypeptidase/endopeptidase; Provisional 477 -236851 PRK11114 PRK11114 cellulose synthase regulator protein; Provisional 756 -182974 PRK11115 PRK11115 transcriptional regulator PhoU; Provisional 236 -182975 PRK11118 PRK11118 putative monooxygenase; Provisional 100 -236852 PRK11119 proX glycine betaine transporter periplasmic subunit; Provisional 331 -236853 PRK11121 nrdG anaerobic ribonucleotide reductase-activating protein; Provisional 154 -182978 PRK11122 artM arginine transporter permease subunit ArtM; Provisional 222 -182979 PRK11123 PRK11123 arginine transporter permease subunit ArtQ; Provisional 238 -182980 PRK11124 artP arginine transporter ATP-binding subunit; Provisional 242 -236854 PRK11125 nrfA cytochrome c nitrite reductase subunit c552; Provisional 480 -236855 PRK11126 PRK11126 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase; Provisional 242 -182983 PRK11127 PRK11127 autonomous glycyl radical cofactor GrcA; Provisional 127 -236856 PRK11128 PRK11128 putative 3-phenylpropionic acid transporter; Provisional 382 -182985 PRK11130 moaD molybdopterin synthase small subunit; Provisional 81 -182986 PRK11131 PRK11131 ATP-dependent RNA helicase HrpA; Provisional 1294 -182987 PRK11132 cysE serine acetyltransferase; Provisional 273 -182988 PRK11133 serB phosphoserine phosphatase; Provisional 322 -236857 PRK11138 PRK11138 outer membrane biogenesis protein BamB; Provisional 394 -182990 PRK11139 PRK11139 DNA-binding transcriptional activator GcvA; Provisional 297 -236858 PRK11142 PRK11142 ribokinase; Provisional 306 -236859 PRK11143 glpQ glycerophosphodiester phosphodiesterase; Provisional 355 -182993 PRK11144 modC molybdate transporter ATP-binding protein; Provisional 352 -182994 PRK11145 pflA pyruvate formate lyase-activating enzyme 1; Provisional 246 -236860 PRK11146 PRK11146 outer membrane-specific lipoprotein transporter subunit LolE; Provisional 412 -236861 PRK11147 PRK11147 ABC transporter ATPase component; Reviewed 635 -182997 PRK11148 PRK11148 cyclic 3',5'-adenosine monophosphate phosphodiesterase; Provisional 275 -182998 PRK11150 rfaD ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional 308 -182999 PRK11151 PRK11151 DNA-binding transcriptional regulator OxyR; Provisional 305 -236862 PRK11152 ilvM acetolactate synthase 2 regulatory subunit; Provisional 76 -236863 PRK11153 metN DL-methionine transporter ATP-binding subunit; Provisional 343 -236864 PRK11154 fadJ multifunctional fatty acid oxidation complex subunit alpha; Reviewed 708 -236865 PRK11160 PRK11160 cysteine/glutathione ABC transporter membrane/ATP-binding component; Reviewed 574 -183004 PRK11161 PRK11161 fumarate/nitrate reduction transcriptional regulator; Provisional 235 -236866 PRK11162 mltA murein transglycosylase A; Provisional 355 -236867 PRK11165 PRK11165 diaminopimelate decarboxylase; Provisional 420 -236868 PRK11166 PRK11166 chemotaxis regulator CheZ; Provisional 214 -236869 PRK11168 glpC sn-glycerol-3-phosphate dehydrogenase subunit C; Provisional 396 -183009 PRK11169 PRK11169 leucine-responsive transcriptional regulator; Provisional 164 -183010 PRK11170 nagA N-acetylglucosamine-6-phosphate deacetylase; Provisional 382 -183011 PRK11171 PRK11171 hypothetical protein; Provisional 266 -183012 PRK11172 dkgB 2,5-diketo-D-gluconate reductase B; Provisional 267 -183013 PRK11173 PRK11173 two-component response regulator; Provisional 237 -236870 PRK11174 PRK11174 cysteine/glutathione ABC transporter membrane/ATP-binding component; Reviewed 588 -236871 PRK11175 PRK11175 universal stress protein UspE; Provisional 305 -183016 PRK11176 PRK11176 lipid transporter ATP-binding/permease protein; Provisional 582 -183017 PRK11177 PRK11177 phosphoenolpyruvate-protein phosphotransferase; Provisional 575 -183018 PRK11178 PRK11178 uridine phosphorylase; Provisional 251 -183019 PRK11179 PRK11179 DNA-binding transcriptional regulator AsnC; Provisional 153 -183020 PRK11180 rluD 23S rRNA pseudouridine synthase D; Provisional 325 -183021 PRK11181 PRK11181 23S rRNA (guanosine-2'-O-)-methyltransferase; Provisional 244 -236872 PRK11183 PRK11183 D-lactate dehydrogenase; Provisional 564 -236873 PRK11186 PRK11186 carboxy-terminal protease; Provisional 667 -236874 PRK11187 PRK11187 replication initiation regulator SeqA; Provisional 182 -183025 PRK11188 rrmJ 23S rRNA methyltransferase J; Provisional 209 -236875 PRK11189 PRK11189 lipoprotein NlpI; Provisional 296 -183027 PRK11190 PRK11190 Fe/S biogenesis protein NfuA; Provisional 192 -236876 PRK11191 PRK11191 RNase E inhibitor protein; Provisional 138 -236877 PRK11192 PRK11192 ATP-dependent RNA helicase SrmB; Provisional 434 -236878 PRK11193 PRK11193 hypothetical protein; Provisional 172 -183031 PRK11194 PRK11194 ribosomal RNA large subunit methyltransferase N; Provisional 372 -236879 PRK11195 PRK11195 lysophospholipid transporter LplT; Provisional 393 -183033 PRK11197 lldD L-lactate dehydrogenase; Provisional 381 -236880 PRK11198 PRK11198 LysM domain/BON superfamily protein; Provisional 147 -183035 PRK11199 tyrA bifunctional chorismate mutase/prephenate dehydrogenase; Provisional 374 -183036 PRK11200 grxA glutaredoxin 1; Provisional 85 -236881 PRK11202 PRK11202 DNA-binding transcriptional repressor FabR; Provisional 203 -236882 PRK11204 PRK11204 N-glycosyltransferase; Provisional 420 -236883 PRK11205 tbpA thiamine transporter substrate binding subunit; Provisional 330 -183040 PRK11207 PRK11207 tellurite resistance protein TehB; Provisional 197 -183041 PRK11212 PRK11212 hypothetical protein; Provisional 210 -183042 PRK11228 fecC iron-dicitrate transporter permease subunit; Provisional 323 -183043 PRK11230 PRK11230 glycolate oxidase subunit GlcD; Provisional 499 -183044 PRK11231 fecE iron-dicitrate transporter ATP-binding subunit; Provisional 255 -183045 PRK11233 PRK11233 nitrogen assimilation transcriptional regulator; Provisional 305 -236884 PRK11234 nfrB bacteriophage N4 adsorption protein B; Provisional 727 -183047 PRK11235 PRK11235 bifunctional antitoxin/transcriptional repressor RelB; Provisional 80 -183048 PRK11239 PRK11239 hypothetical protein; Provisional 215 -183049 PRK11240 PRK11240 penicillin-binding protein 1C; Provisional 772 -183050 PRK11241 gabD succinate-semialdehyde dehydrogenase I; Provisional 482 -183051 PRK11242 PRK11242 DNA-binding transcriptional regulator CynR; Provisional 296 -183052 PRK11244 phnP carbon-phosphorus lyase complex accessory protein; Provisional 250 -183053 PRK11245 folX D-erythro-7,8-dihydroneopterin triphosphate 2'-epimerase; Provisional 120 -236885 PRK11246 PRK11246 hypothetical protein; Provisional 218 -183055 PRK11247 ssuB aliphatic sulfonates transport ATP-binding subunit; Provisional 257 -183056 PRK11248 tauB taurine transporter ATP-binding subunit; Provisional 255 -236886 PRK11249 katE hydroperoxidase II; Provisional 752 -183058 PRK11251 PRK11251 DNA-binding transcriptional activator OsmE; Provisional 109 -183059 PRK11253 ldcA L,D-carboxypeptidase A; Provisional 305 -236887 PRK11259 solA N-methyltryptophan oxidase; Provisional 376 -183061 PRK11260 PRK11260 cystine transporter subunit; Provisional 266 -236888 PRK11263 PRK11263 cardiolipin synthase 2; Provisional 411 -183063 PRK11264 PRK11264 putative amino-acid ABC transporter ATP-binding protein YecC; Provisional 250 -183064 PRK11267 PRK11267 biopolymer transport protein ExbD; Provisional 141 -183065 PRK11268 pstA phosphate transporter permease subunit PtsA; Provisional 295 -183066 PRK11269 PRK11269 glyoxylate carboligase; Provisional 591 -183067 PRK11272 PRK11272 putative DMT superfamily transporter inner membrane protein; Provisional 292 -236889 PRK11273 glpT sn-glycerol-3-phosphate transporter; Provisional 452 -236890 PRK11274 glcF glycolate oxidase iron-sulfur subunit; Provisional 407 -183070 PRK11275 pstC phosphate transporter permease subunit PstC; Provisional 319 -236891 PRK11278 PRK11278 NADH dehydrogenase I subunit F; Provisional 448 -183072 PRK11280 PRK11280 hypothetical protein; Provisional 170 -236892 PRK11281 PRK11281 hypothetical protein; Provisional 1113 -236893 PRK11282 glcE glycolate oxidase FAD binding subunit; Provisional 352 -183075 PRK11283 gltP glutamate/aspartate:proton symporter; Provisional 437 -183076 PRK11285 araH L-arabinose transporter permease protein; Provisional 333 -183077 PRK11288 araG L-arabinose transporter ATP-binding protein; Provisional 501 -236894 PRK11289 ampC beta-lactamase/D-alanine carboxypeptidase; Provisional 384 -236895 PRK11295 PRK11295 hypothetical protein; Provisional 113 -183080 PRK11300 livG leucine/isoleucine/valine transporter ATP-binding subunit; Provisional 255 -236896 PRK11301 livM leucine/isoleucine/valine transporter permease subunit; Provisional 419 -183082 PRK11302 PRK11302 DNA-binding transcriptional regulator HexR; Provisional 284 -236897 PRK11303 PRK11303 DNA-binding transcriptional regulator FruR; Provisional 328 -236898 PRK11308 dppF dipeptide transporter ATP-binding subunit; Provisional 327 -183085 PRK11316 PRK11316 bifunctional heptose 7-phosphate kinase/heptose 1-phosphate adenyltransferase; Provisional 473 -183086 PRK11320 prpB 2-methylisocitrate lyase; Provisional 292 -183087 PRK11325 PRK11325 scaffold protein; Provisional 127 -183088 PRK11331 PRK11331 5-methylcytosine-specific restriction enzyme subunit McrB; Provisional 459 -183089 PRK11337 PRK11337 DNA-binding transcriptional repressor RpiR; Provisional 292 -183090 PRK11339 abgT putative aminobenzoyl-glutamate transporter; Provisional 508 -236899 PRK11340 PRK11340 phosphodiesterase YaeI; Provisional 271 -183092 PRK11342 mhpD 2-keto-4-pentenoate hydratase; Provisional 262 -183093 PRK11346 PRK11346 hypothetical protein; Provisional 285 -183094 PRK11347 PRK11347 antitoxin ChpS; Provisional 83 -183095 PRK11352 PRK11352 regulator protein FrmR; Provisional 91 -236900 PRK11354 kil FtsZ inhibitor protein; Reviewed 73 -183096 PRK11357 frlA putative fructoselysine transporter; Provisional 445 -183097 PRK11359 PRK11359 cyclic-di-GMP phosphodiesterase; Provisional 799 -236901 PRK11360 PRK11360 sensory histidine kinase AtoS; Provisional 607 -183099 PRK11361 PRK11361 acetoacetate metabolism regulatory protein AtoC; Provisional 457 -183100 PRK11365 ssuC alkanesulfonate transporter permease subunit; Provisional 263 -183101 PRK11366 puuD gamma-glutamyl-gamma-aminobutyrate hydrolase; Provisional 254 -183102 PRK11367 PRK11367 hypothetical protein; Provisional 476 -183103 PRK11370 PRK11370 YciI-like protein; Reviewed 99 -183104 PRK11371 PRK11371 hypothetical protein; Provisional 126 -236902 PRK11372 PRK11372 lysozyme inhibitor; Provisional 109 -183106 PRK11375 PRK11375 allantoin permease; Provisional 484 -183107 PRK11376 hlyE hemolysin E; Provisional 303 -183108 PRK11377 PRK11377 dihydroxyacetone kinase subunit M; Provisional 473 -183109 PRK11379 PRK11379 putative outer membrane porin protein; Provisional 417 -236903 PRK11380 PRK11380 hypothetical protein; Provisional 353 -183111 PRK11382 frlB fructoselysine-6-P-deglycase; Provisional 340 -105206 PRK11383 PRK11383 hypothetical protein; Provisional 145 -183112 PRK11385 PRK11385 putativi pili assembly chaperone; Provisional 236 -236904 PRK11387 PRK11387 S-methylmethionine transporter; Provisional 471 -183114 PRK11388 PRK11388 DNA-binding transcriptional regulator DhaR; Provisional 638 -138553 PRK11391 etp phosphotyrosine-protein phosphatase; Provisional 144 -183115 PRK11394 PRK11394 23S rRNA pseudouridine synthase E; Provisional 217 -236905 PRK11396 PRK11396 hypothetical protein; Provisional 191 -183117 PRK11397 dacD D-alanyl-D-alanine carboxypeptidase; Provisional 388 -105214 PRK11401 PRK11401 putative endoribonuclease L-PSP; Provisional 129 -183118 PRK11402 PRK11402 DNA-binding transcriptional regulator FrlR; Provisional 241 -183119 PRK11403 PRK11403 hypothetical protein; Provisional 113 -183120 PRK11404 PRK11404 putative PTS system transporter subunits IIBC; Provisional 482 -236906 PRK11408 PRK11408 hypothetical protein; Provisional 145 -171099 PRK11409 PRK11409 antitoxin YefM; Provisional 83 -236907 PRK11410 PRK11410 hypothetical protein; Provisional 561 -183123 PRK11411 fecB iron-dicitrate transporter substrate-binding subunit; Provisional 303 -183124 PRK11412 PRK11412 putative uracil/xanthine transporter; Provisional 433 -183125 PRK11413 PRK11413 putative hydratase; Provisional 751 -183126 PRK11414 PRK11414 colanic acid/biofilm transcriptional regulator; Provisional 221 -183127 PRK11415 PRK11415 hypothetical protein; Provisional 74 -236908 PRK11423 PRK11423 methylmalonyl-CoA decarboxylase; Provisional 261 -236909 PRK11424 PRK11424 DNA-binding transcriptional activator TdcR; Provisional 114 -183129 PRK11425 PRK11425 PTS system N-acetylgalactosamine-specific transporter subunit IIB; Provisional 157 -183130 PRK11426 PRK11426 hypothetical protein; Provisional 132 -183131 PRK11427 PRK11427 multidrug efflux system protein MdtO; Provisional 683 -183132 PRK11430 PRK11430 putative CoA-transferase; Provisional 381 -171110 PRK11431 PRK11431 multidrug efflux system protein; Provisional 105 -183133 PRK11432 fbpC ferric transporter ATP-binding subunit; Provisional 351 -236910 PRK11433 PRK11433 aldehyde oxidoreductase 2Fe-2S subunit; Provisional 217 -183135 PRK11436 PRK11436 biofilm-dependent modulation protein; Provisional 71 -236911 PRK11439 pphA serine/threonine protein phosphatase 1; Provisional 218 -183137 PRK11440 PRK11440 putative hydrolase; Provisional 188 -183138 PRK11443 PRK11443 lipoprotein; Provisional 124 -183139 PRK11445 PRK11445 putative oxidoreductase; Provisional 351 -183140 PRK11447 PRK11447 cellulose synthase subunit BcsC; Provisional 1157 -236912 PRK11448 hsdR type I restriction enzyme EcoKI subunit R; Provisional 1123 -171118 PRK11449 PRK11449 putative deoxyribonuclease YjjV; Provisional 258 -183142 PRK11453 PRK11453 O-acetylserine/cysteine export protein; Provisional 299 -183143 PRK11459 PRK11459 multidrug resistance outer membrane protein MdtQ; Provisional 478 -183144 PRK11460 PRK11460 putative hydrolase; Provisional 232 -183145 PRK11462 PRK11462 putative transporter; Provisional 460 -236913 PRK11463 fxsA phage T7 F exclusion suppressor FxsA; Reviewed 148 -183147 PRK11465 PRK11465 putative mechanosensitive channel protein; Provisional 741 -236914 PRK11466 PRK11466 hybrid sensory histidine kinase TorS; Provisional 914 -183149 PRK11467 PRK11467 secY/secA suppressor protein; Provisional 124 -183150 PRK11468 PRK11468 dihydroxyacetone kinase subunit DhaK; Provisional 356 -183151 PRK11469 PRK11469 hypothetical protein; Provisional 188 -183152 PRK11470 PRK11470 hypothetical protein; Provisional 200 -236915 PRK11475 PRK11475 DNA-binding transcriptional activator BglJ; Provisional 207 -183154 PRK11476 PRK11476 DNA-binding transcriptional activator CaiF; Provisional 113 -183155 PRK11477 PRK11477 carbohydrate diacid transcriptional activator CdaR; Provisional 385 -183156 PRK11478 PRK11478 putative lyase; Provisional 129 -183157 PRK11479 PRK11479 hypothetical protein; Provisional 274 -183158 PRK11480 tauA taurine transporter substrate binding subunit; Provisional 320 -183159 PRK11482 PRK11482 putative DNA-binding transcriptional regulator; Provisional 317 -183160 PRK11486 PRK11486 flagellar biosynthesis protein FliO; Provisional 124 -236916 PRK11492 hyfE hydrogenase 4 membrane subunit; Provisional 216 -236917 PRK11493 sseA 3-mercaptopyruvate sulfurtransferase; Provisional 281 -236918 PRK11498 bcsA cellulose synthase catalytic subunit; Provisional 852 -236919 PRK11504 tynA tyramine oxidase; Provisional 647 -183165 PRK11505 PRK11505 hypothetical protein; Provisional 106 -183166 PRK11507 PRK11507 ribosome-associated protein; Provisional 70 -183167 PRK11508 PRK11508 sulfur transfer protein TusE; Provisional 109 -183168 PRK11509 PRK11509 hydrogenase-1 operon protein HyaE; Provisional 132 -236920 PRK11511 PRK11511 DNA-binding transcriptional activator MarA; Provisional 127 -183170 PRK11512 PRK11512 DNA-binding transcriptional repressor MarR; Provisional 144 -236921 PRK11513 PRK11513 cytochrome b561; Provisional 176 -183172 PRK11517 PRK11517 transcriptional regulatory protein YedW; Provisional 223 -183173 PRK11519 PRK11519 tyrosine kinase; Provisional 719 -183174 PRK11521 PRK11521 hypothetical protein; Provisional 124 -183175 PRK11522 PRK11522 putrescine--2-oxoglutarate aminotransferase; Provisional 459 -183176 PRK11523 PRK11523 DNA-binding transcriptional repressor ExuR; Provisional 253 -183177 PRK11524 PRK11524 putative methyltransferase; Provisional 284 -183178 PRK11525 dinD DNA-damage-inducible protein D; Provisional 279 -236922 PRK11528 PRK11528 hypothetical protein; Provisional 254 -236923 PRK11530 PRK11530 hypothetical protein; Provisional 183 -183181 PRK11534 PRK11534 DNA-binding transcriptional regulator CsiR; Provisional 224 -183182 PRK11536 PRK11536 6-N-hydroxylaminopurine resistance protein; Provisional 223 -183183 PRK11537 PRK11537 putative GTP-binding protein YjiA; Provisional 318 -183184 PRK11538 PRK11538 ribosome-associated protein; Provisional 105 -236924 PRK11539 PRK11539 ComEC family competence protein; Provisional 755 -183186 PRK11543 gutQ D-arabinose 5-phosphate isomerase; Provisional 321 -236925 PRK11544 hycI hydrogenase 3 maturation protease; Provisional 156 -236926 PRK11545 gntK gluconate kinase 1; Provisional 163 -183189 PRK11546 zraP zinc resistance protein; Provisional 143 -183190 PRK11548 PRK11548 outer membrane biogenesis protein BamE; Provisional 113 -236927 PRK11551 PRK11551 putative 3-hydroxyphenylpropionic transporter MhpT; Provisional 406 -236928 PRK11552 PRK11552 putative DNA-binding transcriptional regulator; Provisional 225 -236929 PRK11553 PRK11553 alkanesulfonate transporter substrate-binding subunit; Provisional 314 -183194 PRK11556 PRK11556 multidrug efflux system subunit MdtA; Provisional 415 -183195 PRK11557 PRK11557 putative DNA-binding transcriptional regulator; Provisional 278 -236930 PRK11558 PRK11558 putative ssRNA endonuclease; Provisional 97 -183197 PRK11559 garR tartronate semialdehyde reductase; Provisional 296 -183198 PRK11560 PRK11560 phosphoethanolamine transferase; Provisional 558 -183199 PRK11561 PRK11561 isovaleryl CoA dehydrogenase; Provisional 538 -183200 PRK11562 PRK11562 nitrite transporter NirC; Provisional 268 -236931 PRK11563 PRK11563 bifunctional aldehyde dehydrogenase/enoyl-CoA hydratase; Provisional 675 -236932 PRK11564 PRK11564 stationary phase inducible protein CsiE; Provisional 426 -183203 PRK11565 dkgA 2,5-diketo-D-gluconate reductase A; Provisional 275 -183204 PRK11566 hdeB acid-resistance protein; Provisional 102 -183205 PRK11568 PRK11568 hypothetical protein; Provisional 204 -183206 PRK11569 PRK11569 transcriptional repressor IclR; Provisional 274 -183207 PRK11570 PRK11570 peptidyl-prolyl cis-trans isomerase; Provisional 206 -183208 PRK11572 PRK11572 copper homeostasis protein CutC; Provisional 248 -236933 PRK11573 PRK11573 hypothetical protein; Provisional 413 -183210 PRK11574 PRK11574 oxidative-stress-resistance chaperone; Provisional 196 -183211 PRK11578 PRK11578 macrolide transporter subunit MacA; Provisional 370 -183212 PRK11579 PRK11579 putative oxidoreductase; Provisional 346 -183213 PRK11582 PRK11582 flagella biosynthesis protein FliZ; Provisional 169 -183214 PRK11586 napB nitrate reductase cytochrome C550 subunit; Provisional 149 -183215 PRK11587 PRK11587 putative phosphatase; Provisional 218 -236934 PRK11588 PRK11588 hypothetical protein; Provisional 506 -236935 PRK11589 gcvR glycine cleavage system transcriptional repressor; Provisional 190 -183218 PRK11590 PRK11590 hypothetical protein; Provisional 211 -183219 PRK11593 folB bifunctional dihydroneopterin aldolase/dihydroneopterin triphosphate 2'-epimerase; Provisional 119 -183220 PRK11594 PRK11594 efflux system membrane protein; Provisional 67 -183221 PRK11595 PRK11595 DNA utilization protein GntX; Provisional 227 -183222 PRK11596 PRK11596 cyclic-di-GMP phosphodiesterase; Provisional 255 -183223 PRK11597 PRK11597 heat shock chaperone IbpB; Provisional 142 -183224 PRK11598 PRK11598 putative metal dependent hydrolase; Provisional 545 -183225 PRK11602 cysW sulfate/thiosulfate transporter permease subunit; Provisional 283 -183226 PRK11607 potG putrescine transporter ATP-binding subunit; Provisional 377 -236936 PRK11608 pspF phage shock protein operon transcriptional activator; Provisional 326 -183228 PRK11609 PRK11609 nicotinamidase/pyrazinamidase; Provisional 212 -183229 PRK11611 PRK11611 enhanced serine sensitivity protein SseB; Provisional 246 -183230 PRK11613 folP dihydropteroate synthase; Provisional 282 -183231 PRK11614 livF leucine/isoleucine/valine transporter ATP-binding subunit; Provisional 237 -183232 PRK11615 PRK11615 hypothetical protein; Provisional 185 -183233 PRK11616 PRK11616 hypothetical protein; Provisional 109 -236937 PRK11617 PRK11617 endonuclease V; Provisional 224 -183235 PRK11618 PRK11618 inner membrane ABC transporter permease protein YjfF; Provisional 317 -183236 PRK11619 PRK11619 lytic murein transglycosylase; Provisional 644 -236938 PRK11621 PRK11621 twin-argninine leader-binding protein DmsD; Provisional 204 -183238 PRK11622 PRK11622 hypothetical protein; Provisional 401 -236939 PRK11623 pcnB poly(A) polymerase I; Provisional 472 -183240 PRK11624 cdsA CDP-diglyceride synthase; Provisional 285 -183241 PRK11625 PRK11625 Rho-binding antiterminator; Provisional 84 -183242 PRK11627 PRK11627 hypothetical protein; Provisional 192 -183243 PRK11628 PRK11628 transcriptional regulator BolA; Provisional 105 -183244 PRK11629 lolD lipoprotein transporter ATP-binding subunit; Provisional 233 -183245 PRK11630 PRK11630 hypothetical protein; Provisional 206 -236940 PRK11633 PRK11633 cell division protein DedD; Provisional 226 -236941 PRK11634 PRK11634 ATP-dependent RNA helicase DeaD; Provisional 629 -183248 PRK11636 mrcA penicillin-binding protein 1a; Provisional 850 -236942 PRK11637 PRK11637 AmiB activator; Provisional 428 -236943 PRK11638 PRK11638 lipopolysaccharide biosynthesis protein WzzE; Provisional 342 -183251 PRK11639 PRK11639 zinc uptake transcriptional repressor; Provisional 169 -183252 PRK11640 PRK11640 putative transcriptional regulator; Provisional 191 -236944 PRK11642 PRK11642 exoribonuclease R; Provisional 813 -236945 PRK11644 PRK11644 sensory histidine kinase UhpB; Provisional 495 -183255 PRK11646 PRK11646 multidrug resistance protein MdtH; Provisional 400 -183256 PRK11648 PRK11648 inner membrane protein; Provisional 195 -236946 PRK11649 PRK11649 putative peptidase; Provisional 439 -236947 PRK11650 ugpC glycerol-3-phosphate transporter ATP-binding subunit; Provisional 356 -183259 PRK11652 emrD multidrug resistance protein D; Provisional 394 -236948 PRK11653 PRK11653 hypothetical protein; Provisional 225 -236949 PRK11655 ubiC chorismate pyruvate lyase; Provisional 169 -183262 PRK11657 dsbG disulfide isomerase/thiol-disulfide oxidase; Provisional 251 -183263 PRK11658 PRK11658 UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase; Provisional 379 -183264 PRK11659 PRK11659 cytochrome c nitrite reductase pentaheme subunit; Provisional 183 -183265 PRK11660 PRK11660 putative transporter; Provisional 568 -183266 PRK11663 PRK11663 regulatory protein UhpC; Provisional 434 -236950 PRK11664 PRK11664 ATP-dependent RNA helicase HrpB; Provisional 812 -236951 PRK11667 PRK11667 hypothetical protein; Provisional 163 -236952 PRK11669 pbpG D-alanyl-D-alanine endopeptidase; Provisional 306 -183270 PRK11670 PRK11670 antiporter inner membrane protein; Provisional 369 -183271 PRK11671 mltC murein transglycosylase C; Provisional 359 -183272 PRK11675 PRK11675 LexA regulated protein; Provisional 90 -236953 PRK11677 PRK11677 hypothetical protein; Provisional 134 -236954 PRK11678 PRK11678 putative chaperone; Provisional 450 -236955 PRK11679 PRK11679 lipoprotein; Provisional 346 -183276 PRK11688 PRK11688 hypothetical protein; Provisional 154 -183277 PRK11689 PRK11689 aromatic amino acid exporter; Provisional 295 -236956 PRK11697 PRK11697 putative two-component response-regulatory protein YehT; Provisional 238 -236957 PRK11700 PRK11700 hypothetical protein; Provisional 187 -183280 PRK11701 phnK phosphonate C-P lyase system protein PhnK; Provisional 258 -183281 PRK11702 PRK11702 hypothetical protein; Provisional 108 -183282 PRK11705 PRK11705 cyclopropane fatty acyl phospholipid synthase; Provisional 383 -183283 PRK11706 PRK11706 TDP-4-oxo-6-deoxy-D-glucose transaminase; Provisional 375 -236958 PRK11709 PRK11709 putative L-ascorbate 6-phosphate lactonase; Provisional 355 -183285 PRK11712 PRK11712 ribonuclease G; Provisional 489 -236959 PRK11713 PRK11713 16S ribosomal RNA methyltransferase RsmE; Provisional 234 -236960 PRK11715 PRK11715 inner membrane protein; Provisional 436 -236961 PRK11716 PRK11716 DNA-binding transcriptional regulator IlvY; Provisional 269 -236962 PRK11718 PRK11718 anti-RNA polymerase sigma 70 factor; Provisional 161 -236963 PRK11720 PRK11720 galactose-1-phosphate uridylyltransferase; Provisional 346 -236964 PRK11727 PRK11727 23S rRNA mA1618 methyltransferase; Provisional 321 -183292 PRK11728 PRK11728 hydroxyglutarate oxidase; Provisional 393 -183293 PRK11730 fadB multifunctional fatty acid oxidation complex subunit alpha; Reviewed 715 -236965 PRK11742 PRK11742 bifunctional NADH:ubiquinone oxidoreductase subunit C/D; Provisional 575 -236966 PRK11747 dinG ATP-dependent DNA helicase DinG; Provisional 697 -236967 PRK11749 PRK11749 dihydropyrimidine dehydrogenase subunit A; Provisional 457 -236968 PRK11750 gltB glutamate synthase subunit alpha; Provisional 1485 -183298 PRK11752 PRK11752 putative S-transferase; Provisional 264 -236969 PRK11753 PRK11753 DNA-binding transcriptional dual regulator Crp; Provisional 211 -236970 PRK11756 PRK11756 exonuclease III; Provisional 268 -236971 PRK11760 PRK11760 putative 23S rRNA C2498 ribose 2'-O-ribose methyltransferase; Provisional 357 -236972 PRK11761 cysM cysteine synthase B; Provisional 296 -183303 PRK11762 nudE adenosine nucleotide hydrolase NudE; Provisional 185 -236973 PRK11767 PRK11767 SpoVR family protein; Provisional 498 -236974 PRK11768 PRK11768 serine/threonine protein kinase; Provisional 325 -236975 PRK11770 PRK11770 hypothetical protein; Provisional 135 -236976 PRK11773 uvrD DNA-dependent helicase II; Provisional 721 -236977 PRK11776 PRK11776 ATP-dependent RNA helicase DbpA; Provisional 460 -236978 PRK11778 PRK11778 putative inner membrane peptidase; Provisional 330 -236979 PRK11779 sbcB exonuclease I; Provisional 476 -236980 PRK11780 PRK11780 isoprenoid biosynthesis protein with amidotransferase-like domain; Provisional 217 -236981 PRK11783 rlmL 23S rRNA m(2)G2445 methyltransferase; Provisional 702 -236982 PRK11784 PRK11784 tRNA 2-selenouridine synthase; Provisional 345 -236983 PRK11788 PRK11788 tetratricopeptide repeat protein; Provisional 389 -236984 PRK11789 PRK11789 N-acetyl-anhydromuranmyl-L-alanine amidase; Provisional 185 -236985 PRK11790 PRK11790 D-3-phosphoglycerate dehydrogenase; Provisional 409 -236986 PRK11792 queF 7-cyano-7-deazaguanine reductase; Provisional 273 -183318 PRK11797 PRK11797 D-ribose pyranase; Provisional 139 -236987 PRK11798 PRK11798 ClpXP protease specificity-enhancing factor; Provisional 138 -236988 PRK11805 PRK11805 N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase; Provisional 307 -236989 PRK11809 putA trifunctional transcriptional regulator/proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase; Reviewed 1318 -236990 PRK11814 PRK11814 cysteine desulfurase activator complex subunit SufB; Provisional 486 -236991 PRK11815 PRK11815 tRNA-dihydrouridine synthase A; Provisional 333 -236992 PRK11819 PRK11819 putative ABC transporter ATP-binding protein; Reviewed 556 -236993 PRK11820 PRK11820 hypothetical protein; Provisional 288 -236994 PRK11823 PRK11823 DNA repair protein RadA; Provisional 446 -236995 PRK11824 PRK11824 polynucleotide phosphorylase/polyadenylase; Provisional 693 -183328 PRK11827 PRK11827 hypothetical protein; Provisional 60 -183329 PRK11829 PRK11829 biofilm formation regulator HmsP; Provisional 660 -236996 PRK11830 dapD 2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase; Provisional 272 -236997 PRK11831 PRK11831 putative ABC transporter ATP-binding protein YrbF; Provisional 269 -183332 PRK11832 PRK11832 putative DNA-binding transcriptional regulator; Provisional 207 -183333 PRK11835 PRK11835 hypothetical protein; Provisional 114 -183334 PRK11836 PRK11836 deubiquitinase; Provisional 403 -183335 PRK11837 PRK11837 undecaprenyl pyrophosphate phosphatase; Provisional 202 -236998 PRK11840 PRK11840 bifunctional sulfur carrier protein/thiazole synthase protein; Provisional 326 -236999 PRK11854 aceF pyruvate dehydrogenase dihydrolipoyltransacetylase; Validated 633 -237000 PRK11855 PRK11855 dihydrolipoamide acetyltransferase; Reviewed 547 -237001 PRK11856 PRK11856 branched-chain alpha-keto acid dehydrogenase subunit E2; Reviewed 411 -237002 PRK11857 PRK11857 dihydrolipoamide acetyltransferase; Reviewed 306 -183341 PRK11858 aksA trans-homoaconitate synthase; Reviewed 378 -237003 PRK11860 PRK11860 bifunctional 3-phosphoshikimate 1-carboxyvinyltransferase/cytidine monophosphate kinase; Provisional 661 -183343 PRK11861 PRK11861 bifunctional prephenate dehydrogenase/3-phosphoshikimate 1-carboxyvinyltransferase; Provisional 673 -237004 PRK11863 PRK11863 N-acetyl-gamma-glutamyl-phosphate reductase; Provisional 313 -237005 PRK11864 PRK11864 2-ketoisovalerate ferredoxin oxidoreductase subunit beta; Provisional 300 -183346 PRK11865 PRK11865 pyruvate ferredoxin oxidoreductase subunit beta; Provisional 299 -183347 PRK11866 PRK11866 2-oxoacid ferredoxin oxidoreductase subunit beta; Provisional 279 -237006 PRK11867 PRK11867 2-oxoglutarate ferredoxin oxidoreductase subunit beta; Reviewed 286 -183349 PRK11869 PRK11869 2-oxoacid ferredoxin oxidoreductase subunit beta; Provisional 280 -183350 PRK11872 antC anthranilate dioxygenase reductase; Provisional 340 -237007 PRK11873 arsM arsenite S-adenosylmethyltransferase; Reviewed 272 -183352 PRK11874 petL cytochrome b6-f complex subunit PetL; Reviewed 30 -183353 PRK11875 psbT photosystem II reaction center protein T; Reviewed 31 -183354 PRK11876 petM cytochrome b6-f complex subunit PetM; Reviewed 32 -183355 PRK11877 psaI photosystem I reaction center subunit VIII; Reviewed 38 -183356 PRK11878 psaM photosystem I reaction center subunit XII; Reviewed 34 -237008 PRK11880 PRK11880 pyrroline-5-carboxylate reductase; Reviewed 267 -237009 PRK11883 PRK11883 protoporphyrinogen oxidase; Reviewed 451 -237010 PRK11886 PRK11886 bifunctional biotin--[acetyl-CoA-carboxylase] synthetase/biotin operon repressor; Provisional 319 -183360 PRK11889 flhF flagellar biosynthesis regulator FlhF; Provisional 436 -183361 PRK11890 PRK11890 phosphate acetyltransferase; Provisional 312 -183362 PRK11891 PRK11891 aspartate carbamoyltransferase; Provisional 429 -237011 PRK11892 PRK11892 pyruvate dehydrogenase subunit beta; Provisional 464 -237012 PRK11893 PRK11893 methionyl-tRNA synthetase; Reviewed 511 -183365 PRK11895 ilvH acetolactate synthase 3 regulatory subunit; Reviewed 161 -237013 PRK11898 PRK11898 prephenate dehydratase; Provisional 283 -237014 PRK11899 PRK11899 prephenate dehydratase; Provisional 279 -237015 PRK11901 PRK11901 hypothetical protein; Reviewed 327 -183369 PRK11902 ampG muropeptide transporter; Reviewed 402 -237016 PRK11903 PRK11903 aldehyde dehydrogenase; Provisional 521 -237017 PRK11904 PRK11904 bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase; Reviewed 1038 -237018 PRK11905 PRK11905 bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase; Reviewed 1208 -183373 PRK11906 PRK11906 transcriptional regulator; Provisional 458 -237019 PRK11907 PRK11907 bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase precursor protein; Reviewed 814 -183375 PRK11908 PRK11908 NAD-dependent epimerase/dehydratase family protein; Provisional 347 -183376 PRK11909 PRK11909 cobalt transport protein CbiM; Provisional 230 -183377 PRK11910 PRK11910 amidase; Provisional 615 -138812 PRK11911 flgD flagellar basal body rod modification protein; Provisional 140 -237020 PRK11913 phhA phenylalanine 4-monooxygenase; Reviewed 275 -237021 PRK11914 PRK11914 diacylglycerol kinase; Reviewed 306 -237022 PRK11915 PRK11915 glycerol-3-phosphate acyltransferase; Reviewed 621 -183380 PRK11916 PRK11916 electron transfer flavoprotein subunit YdiR; Provisional 312 -183381 PRK11917 PRK11917 bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein; Reviewed 259 -171344 PRK11920 rirA iron-responsive transcriptional regulator; Reviewed 153 -237023 PRK11921 PRK11921 metallo-beta-lactamase/flavodoxin domain-containing protein; Provisional 394 -237024 PRK11922 PRK11922 RNA polymerase sigma factor; Provisional 231 -171347 PRK11923 algU RNA polymerase sigma factor AlgU; Provisional 193 -183384 PRK11924 PRK11924 RNA polymerase sigma factor; Provisional 179 -237025 PRK11929 PRK11929 putative bifunctional UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-diaminopimelate ligase/UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase; Provisional 958 -237026 PRK11930 PRK11930 putative bifunctional UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase/alanine racemase; Provisional 822 -183387 PRK11933 yebU rRNA (cytosine-C(5)-)-methyltransferase RsmF; Reviewed 470 -237027 PRK12266 glpD glycerol-3-phosphate dehydrogenase; Reviewed 508 -237028 PRK12267 PRK12267 methionyl-tRNA synthetase; Reviewed 648 -237029 PRK12268 PRK12268 methionyl-tRNA synthetase; Reviewed 556 -105491 PRK12269 PRK12269 bifunctional cytidylate kinase/ribosomal protein S1; Provisional 863 -237030 PRK12270 kgd alpha-ketoglutarate decarboxylase; Reviewed 1228 -183392 PRK12271 rps10p 30S ribosomal protein S10P; Reviewed 102 -237031 PRK12273 aspA aspartate ammonia-lyase; Provisional 472 -237032 PRK12274 PRK12274 serine/threonine protein kinase; Provisional 218 -183395 PRK12275 PRK12275 hypothetical protein; Reviewed 116 -237033 PRK12276 PRK12276 putative heme peroxidase; Provisional 248 -183397 PRK12277 PRK12277 50S ribosomal protein L13e; Provisional 83 -237034 PRK12278 PRK12278 50S ribosomal protein L21/unknown domain fusion protein; Provisional 221 -138835 PRK12279 PRK12279 50S ribosomal protein L22/unknown domain fusion protein; Provisional 311 -237035 PRK12280 rplW 50S ribosomal protein L23; Reviewed 158 -183399 PRK12281 rplX 50S ribosomal protein L24; Reviewed 76 -183400 PRK12282 PRK12282 tryptophanyl-tRNA synthetase II; Reviewed 333 -183401 PRK12283 PRK12283 tryptophanyl-tRNA synthetase; Reviewed 398 -237036 PRK12284 PRK12284 tryptophanyl-tRNA synthetase; Reviewed 431 -237037 PRK12285 PRK12285 tryptophanyl-tRNA synthetase; Reviewed 368 -237038 PRK12286 rpmF 50S ribosomal protein L32; Reviewed 57 -183405 PRK12287 tqsA pheromone autoinducer 2 transporter; Reviewed 344 -237039 PRK12288 PRK12288 GTPase RsgA; Reviewed 347 -237040 PRK12289 PRK12289 GTPase RsgA; Reviewed 352 -237041 PRK12290 thiE thiamine-phosphate pyrophosphorylase; Reviewed 437 -237042 PRK12291 PRK12291 apolipoprotein N-acyltransferase; Reviewed 418 -237043 PRK12292 hisZ ATP phosphoribosyltransferase regulatory subunit; Provisional 391 -183411 PRK12293 hisZ ATP phosphoribosyltransferase regulatory subunit; Provisional 281 -237044 PRK12294 hisZ ATP phosphoribosyltransferase regulatory subunit; Provisional 272 -183413 PRK12295 hisZ ATP phosphoribosyltransferase regulatory subunit; Provisional 373 -237045 PRK12296 obgE GTPase CgtA; Reviewed 500 -237046 PRK12297 obgE GTPase CgtA; Reviewed 424 -237047 PRK12298 obgE GTPase CgtA; Reviewed 390 -237048 PRK12299 obgE GTPase CgtA; Reviewed 335 -237049 PRK12300 leuS leucyl-tRNA synthetase; Reviewed 897 -183419 PRK12301 bssS biofilm formation regulatory protein BssS; Reviewed 84 -183420 PRK12302 bssR biofilm formation regulatory protein BssR; Reviewed 127 -183421 PRK12303 PRK12303 tumor necrosis factor alpha-inducing protein; Reviewed 192 -237050 PRK12305 thrS threonyl-tRNA synthetase; Reviewed 575 -183423 PRK12306 uvrC excinuclease ABC subunit C; Reviewed 519 -237051 PRK12307 PRK12307 putative sialic acid transporter; Provisional 426 -183425 PRK12308 PRK12308 bifunctional argininosuccinate lyase/N-acetylglutamate synthase; Provisional 614 -183426 PRK12309 PRK12309 transaldolase/EF-hand domain-containing protein; Provisional 391 -183427 PRK12310 PRK12310 hydroxylamine reductase; Provisional 433 -183428 PRK12311 rpsB 30S ribosomal protein S2/unknown domain fusion protein; Provisional 326 -237052 PRK12313 PRK12313 glycogen branching enzyme; Provisional 633 -183430 PRK12314 PRK12314 gamma-glutamyl kinase; Provisional 266 -237053 PRK12315 PRK12315 1-deoxy-D-xylulose-5-phosphate synthase; Provisional 581 -237054 PRK12316 PRK12316 peptide synthase; Provisional 5163 -237055 PRK12317 PRK12317 elongation factor 1-alpha; Reviewed 425 -183434 PRK12318 PRK12318 methionine aminopeptidase; Provisional 291 -183435 PRK12319 PRK12319 acetyl-CoA carboxylase subunit alpha; Provisional 256 -138873 PRK12320 PRK12320 hypothetical protein; Provisional 699 -237056 PRK12321 cobN cobaltochelatase subunit CobN; Reviewed 1100 -183437 PRK12322 PRK12322 NADH dehydrogenase subunit D; Provisional 366 -237057 PRK12323 PRK12323 DNA polymerase III subunits gamma and tau; Provisional 700 -237058 PRK12324 PRK12324 phosphoribose diphosphate:decaprenyl-phosphate phosphoribosyltransferase; Provisional 295 -237059 PRK12325 PRK12325 prolyl-tRNA synthetase; Provisional 439 -237060 PRK12326 PRK12326 preprotein translocase subunit SecA; Reviewed 764 -237061 PRK12327 nusA transcription elongation factor NusA; Provisional 362 -237062 PRK12328 nusA transcription elongation factor NusA; Provisional 374 -237063 PRK12329 nusA transcription elongation factor NusA; Provisional 449 -183445 PRK12330 PRK12330 oxaloacetate decarboxylase; Provisional 499 -183446 PRK12331 PRK12331 oxaloacetate decarboxylase; Provisional 448 -183447 PRK12332 tsf elongation factor Ts; Reviewed 198 -237064 PRK12333 PRK12333 nucleoside triphosphate pyrophosphohydrolase; Reviewed 204 -237065 PRK12334 PRK12334 nucleoside triphosphate pyrophosphohydrolase; Reviewed 277 -183450 PRK12335 PRK12335 tellurite resistance protein TehB; Provisional 287 -183451 PRK12336 PRK12336 translation initiation factor IF-2 subunit beta; Provisional 201 -183452 PRK12337 PRK12337 2-phosphoglycerate kinase; Provisional 475 -237066 PRK12338 PRK12338 hypothetical protein; Provisional 319 -105560 PRK12339 PRK12339 2-phosphoglycerate kinase; Provisional 197 -183454 PRK12341 PRK12341 putative acyl-CoA dehydrogenase; Provisional 381 -183455 PRK12342 PRK12342 hypothetical protein; Provisional 254 -237067 PRK12343 PRK12343 putative molybdenum cofactor biosynthesis protein MoaC; Reviewed 151 -237068 PRK12344 PRK12344 putative alpha-isopropylmalate/homocitrate synthase family transferase; Provisional 524 -183458 PRK12346 PRK12346 transaldolase A; Provisional 316 -183459 PRK12347 sgbE L-ribulose-5-phosphate 4-epimerase; Reviewed 231 -183460 PRK12348 sgaE L-ribulose-5-phosphate 4-epimerase; Reviewed 228 -237069 PRK12349 PRK12349 citrate synthase 3; Provisional 369 -237070 PRK12350 PRK12350 citrate synthase 2; Provisional 353 -183463 PRK12351 PRK12351 methylcitrate synthase; Provisional 378 -183464 PRK12352 PRK12352 putative carbamate kinase; Reviewed 316 -237071 PRK12353 PRK12353 putative amino acid kinase; Reviewed 314 -183466 PRK12354 PRK12354 carbamate kinase; Reviewed 307 -237072 PRK12355 PRK12355 conjugal transfer mating pair stabilization protein TraN; Reviewed 558 -237073 PRK12356 PRK12356 glutaminase; Reviewed 319 -237074 PRK12357 PRK12357 glutaminase; Reviewed 326 -183470 PRK12358 PRK12358 putative 6-phosphogluconolactonase; Provisional 239 -183471 PRK12359 PRK12359 flavodoxin FldB; Provisional 172 -237075 PRK12360 PRK12360 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Provisional 281 -183473 PRK12361 PRK12361 hypothetical protein; Provisional 547 -237076 PRK12362 PRK12362 germination protease; Provisional 318 -171438 PRK12363 PRK12363 phosphoglycerol transferase I; Provisional 703 -237077 PRK12364 PRK12364 ribonucleotide-diphosphate reductase subunit alpha; Provisional 842 -171440 PRK12365 PRK12365 ribonucleotide-diphosphate reductase subunit alpha; Provisional 1046 -237078 PRK12366 PRK12366 replication factor A; Reviewed 637 -237079 PRK12367 PRK12367 short chain dehydrogenase; Provisional 245 -171443 PRK12369 PRK12369 putative transporter; Reviewed 326 -237080 PRK12370 PRK12370 invasion protein regulator; Provisional 553 -171444 PRK12371 PRK12371 ribonuclease III; Reviewed 235 -237081 PRK12372 PRK12372 ribonuclease III; Reviewed 413 -237082 PRK12373 PRK12373 NADH dehydrogenase subunit E; Provisional 400 -237083 PRK12374 PRK12374 putative dithiobiotin synthetase; Provisional 231 -183481 PRK12376 PRK12376 putative translaldolase; Provisional 236 -183482 PRK12377 PRK12377 putative replication protein; Provisional 248 -237084 PRK12378 PRK12378 hypothetical protein; Provisional 235 -183484 PRK12379 PRK12379 propionate/acetate kinase; Provisional 396 -183485 PRK12380 PRK12380 hydrogenase nickel incorporation protein HybF; Provisional 113 -183486 PRK12381 PRK12381 bifunctional succinylornithine transaminase/acetylornithine transaminase; Provisional 406 -183487 PRK12382 PRK12382 putative transporter; Provisional 392 -237085 PRK12383 PRK12383 putative mutase; Provisional 406 -183489 PRK12384 PRK12384 sorbitol-6-phosphate dehydrogenase; Provisional 259 -183490 PRK12385 PRK12385 fumarate reductase iron-sulfur subunit; Provisional 244 -237086 PRK12386 PRK12386 fumarate reductase iron-sulfur subunit; Provisional 251 -183492 PRK12387 PRK12387 formate hydrogenlyase complex iron-sulfur subunit; Provisional 180 -171459 PRK12388 PRK12388 fructose-1,6-bisphosphatase II-like protein; Reviewed 321 -183493 PRK12389 PRK12389 glutamate-1-semialdehyde aminotransferase; Provisional 428 -183494 PRK12390 PRK12390 1-aminocyclopropane-1-carboxylate deaminase; Provisional 337 -237087 PRK12391 PRK12391 tryptophan synthase subunit beta; Reviewed 427 -171463 PRK12392 PRK12392 bacteriochlorophyll c synthase; Provisional 331 -237088 PRK12393 PRK12393 amidohydrolase; Provisional 457 -183497 PRK12394 PRK12394 putative metallo-dependent hydrolase; Provisional 379 -183498 PRK12395 PRK12395 maltoporin; Provisional 419 -183499 PRK12396 PRK12396 5-methylribose kinase; Reviewed 409 -183500 PRK12397 PRK12397 propionate kinase; Reviewed 404 -237089 PRK12398 PRK12398 pyruvoyl-dependent arginine decarboxylase; Provisional 162 -183502 PRK12399 PRK12399 tagatose 1,6-diphosphate aldolase; Reviewed 324 -171470 PRK12400 PRK12400 D-amino acid aminotransferase; Reviewed 290 -237090 PRK12402 PRK12402 replication factor C small subunit 2; Reviewed 337 -171472 PRK12403 PRK12403 putative aminotransferase; Provisional 460 -183504 PRK12404 PRK12404 stage V sporulation protein AD; Provisional 334 -237091 PRK12405 PRK12405 electron transport complex RsxE subunit; Provisional 231 -183506 PRK12406 PRK12406 long-chain-fatty-acid--CoA ligase; Provisional 509 -183507 PRK12407 flgH flagellar basal body L-ring protein; Reviewed 221 -237092 PRK12408 PRK12408 glucokinase; Provisional 336 -237093 PRK12409 PRK12409 D-amino acid dehydrogenase small subunit; Provisional 410 -237094 PRK12410 PRK12410 glutamylglutaminyl-tRNA synthetase; Provisional 433 -183511 PRK12411 PRK12411 cytidine deaminase; Provisional 132 -183512 PRK12412 PRK12412 pyridoxal kinase; Reviewed 268 -183513 PRK12413 PRK12413 phosphomethylpyrimidine kinase; Provisional 253 -183514 PRK12414 PRK12414 putative aminotransferase; Provisional 384 -183515 PRK12415 PRK12415 fructose 1,6-bisphosphatase II; Reviewed 322 -183516 PRK12416 PRK12416 protoporphyrinogen oxidase; Provisional 463 -237095 PRK12417 secY preprotein translocase subunit SecY; Reviewed 404 -183518 PRK12418 PRK12418 cysteinyl-tRNA synthetase; Provisional 384 -237096 PRK12419 PRK12419 riboflavin synthase subunit beta; Provisional 158 -237097 PRK12420 PRK12420 histidyl-tRNA synthetase; Provisional 423 -237098 PRK12421 PRK12421 ATP phosphoribosyltransferase regulatory subunit; Provisional 392 -183521 PRK12422 PRK12422 chromosomal replication initiation protein; Provisional 445 -171489 PRK12423 PRK12423 LexA repressor; Provisional 202 -171490 PRK12425 PRK12425 fumarate hydratase; Provisional 464 -183522 PRK12426 PRK12426 elongation factor P; Provisional 185 -183523 PRK12427 PRK12427 flagellar biosynthesis sigma factor; Provisional 231 -237099 PRK12428 PRK12428 3-alpha-hydroxysteroid dehydrogenase; Provisional 241 -237100 PRK12429 PRK12429 3-hydroxybutyrate dehydrogenase; Provisional 258 -237101 PRK12430 PRK12430 putative bifunctional flagellar biosynthesis protein FliO/FliP; Provisional 379 -171495 PRK12434 PRK12434 tRNA pseudouridine synthase A; Reviewed 245 -183526 PRK12435 PRK12435 ferrochelatase; Provisional 311 -171497 PRK12436 PRK12436 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 305 -183527 PRK12437 PRK12437 prolipoprotein diacylglyceryl transferase; Reviewed 269 -171499 PRK12438 PRK12438 hypothetical protein; Provisional 991 -171500 PRK12439 PRK12439 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase; Provisional 341 -183528 PRK12440 PRK12440 acetate kinase; Reviewed 397 -237102 PRK12442 PRK12442 translation initiation factor IF-1; Reviewed 87 -183530 PRK12444 PRK12444 threonyl-tRNA synthetase; Reviewed 639 -171504 PRK12445 PRK12445 lysyl-tRNA synthetase; Reviewed 505 -171505 PRK12446 PRK12446 undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase; Reviewed 352 -237103 PRK12447 PRK12447 histidinol dehydrogenase; Reviewed 426 -237104 PRK12448 PRK12448 dihydroxy-acid dehydratase; Provisional 615 -183533 PRK12449 PRK12449 acyl carrier protein; Provisional 80 -138982 PRK12450 PRK12450 foldase protein PrsA; Reviewed 309 -183534 PRK12451 PRK12451 arginyl-tRNA synthetase; Reviewed 562 -171510 PRK12452 PRK12452 cardiolipin synthetase; Reviewed 509 -183535 PRK12454 PRK12454 carbamate kinase-like carbamoyl phosphate synthetase; Reviewed 313 -84141 PRK12456 PRK12456 Na(+)-translocating NADH-quinone reductase subunit E; Provisional 199 -237105 PRK12457 PRK12457 2-dehydro-3-deoxyphosphooctonate aldolase; Provisional 281 -183536 PRK12458 PRK12458 glutathione synthetase; Provisional 338 -237106 PRK12459 PRK12459 S-adenosylmethionine synthetase; Provisional 386 -183538 PRK12460 PRK12460 2-keto-3-deoxygluconate permease; Provisional 312 -183539 PRK12461 PRK12461 UDP-N-acetylglucosamine acyltransferase; Provisional 255 -183540 PRK12462 PRK12462 phosphoserine aminotransferase; Provisional 364 -171518 PRK12463 PRK12463 chorismate synthase; Reviewed 390 -237107 PRK12464 PRK12464 1-deoxy-D-xylulose 5-phosphate reductoisomerase; Provisional 383 -183542 PRK12465 PRK12465 xylose isomerase; Provisional 445 -183543 PRK12466 PRK12466 isopropylmalate isomerase large subunit; Provisional 471 -237108 PRK12467 PRK12467 peptide synthase; Provisional 3956 -171522 PRK12468 flhB flagellar biosynthesis protein FlhB; Reviewed 386 -237109 PRK12469 PRK12469 RNA polymerase factor sigma-54; Provisional 481 -171524 PRK12470 PRK12470 amidase; Provisional 462 -237110 PRK12472 PRK12472 hypothetical protein; Provisional 508 -183546 PRK12473 PRK12473 hypothetical protein; Provisional 198 -139002 PRK12474 PRK12474 hypothetical protein; Provisional 518 -183547 PRK12475 PRK12475 thiamine/molybdopterin biosynthesis MoeB-like protein; Provisional 338 -171527 PRK12476 PRK12476 putative fatty-acid--CoA ligase; Provisional 612 -183548 PRK12478 PRK12478 enoyl-CoA hydratase; Provisional 298 -183549 PRK12479 PRK12479 branched-chain amino acid aminotransferase; Provisional 299 -183550 PRK12480 PRK12480 D-lactate dehydrogenase; Provisional 330 -171531 PRK12481 PRK12481 2-deoxy-D-gluconate 3-dehydrogenase; Provisional 251 -171532 PRK12482 PRK12482 flagellar motor protein MotA; Provisional 287 -237111 PRK12483 PRK12483 threonine dehydratase; Reviewed 521 -237112 PRK12484 PRK12484 nicotinate phosphoribosyltransferase; Provisional 443 -171535 PRK12485 PRK12485 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II-like protein; Provisional 369 -237113 PRK12486 dmdA putative dimethyl sulfoniopropionate demethylase; Reviewed 368 -183553 PRK12487 PRK12487 ribonuclease activity regulator protein RraA; Reviewed 163 -237114 PRK12488 PRK12488 acetate permease; Provisional 549 -237115 PRK12489 PRK12489 anaerobic C4-dicarboxylate transporter; Reviewed 443 -237116 PRK12490 PRK12490 6-phosphogluconate dehydrogenase-like protein; Reviewed 299 -105695 PRK12491 PRK12491 pyrroline-5-carboxylate reductase; Reviewed 272 -171539 PRK12492 PRK12492 long-chain-fatty-acid--CoA ligase; Provisional 562 -237117 PRK12493 PRK12493 magnesium chelatase subunit H; Provisional 1310 -183557 PRK12494 PRK12494 NADH dehydrogenase subunit J; Provisional 172 -183558 PRK12495 PRK12495 hypothetical protein; Provisional 226 -237118 PRK12496 PRK12496 hypothetical protein; Provisional 164 -237119 PRK12497 PRK12497 hypothetical protein; Reviewed 119 -183561 PRK12504 PRK12504 putative monovalent cation/H+ antiporter subunit B; Reviewed 178 -237120 PRK12505 PRK12505 putative monovalent cation/H+ antiporter subunit B; Reviewed 159 -237121 PRK12507 PRK12507 putative monovalent cation/H+ antiporter subunit B; Reviewed 332 -183563 PRK12508 PRK12508 putative monovalent cation/H+ antiporter subunit B; Reviewed 139 -237122 PRK12509 PRK12509 putative monovalent cation/H+ antiporter subunit B; Reviewed 137 -237123 PRK12511 PRK12511 RNA polymerase sigma factor; Provisional 182 -171551 PRK12512 PRK12512 RNA polymerase sigma factor; Provisional 184 -183566 PRK12513 PRK12513 RNA polymerase sigma factor; Provisional 194 -105710 PRK12514 PRK12514 RNA polymerase sigma factor; Provisional 179 -183567 PRK12515 PRK12515 RNA polymerase sigma factor; Provisional 189 -183568 PRK12516 PRK12516 RNA polymerase sigma factor; Provisional 187 -183569 PRK12517 PRK12517 RNA polymerase sigma factor; Provisional 188 -237124 PRK12518 PRK12518 RNA polymerase sigma factor; Provisional 175 -237125 PRK12519 PRK12519 RNA polymerase sigma factor; Provisional 194 -237126 PRK12520 PRK12520 RNA polymerase sigma factor; Provisional 191 -183571 PRK12522 PRK12522 RNA polymerase sigma factor; Provisional 173 -183572 PRK12523 PRK12523 RNA polymerase sigma factor; Reviewed 172 -183573 PRK12524 PRK12524 RNA polymerase sigma factor; Provisional 196 -139037 PRK12525 PRK12525 RNA polymerase sigma factor; Provisional 168 -237127 PRK12526 PRK12526 RNA polymerase sigma factor; Provisional 206 -171560 PRK12527 PRK12527 RNA polymerase sigma factor; Reviewed 159 -171561 PRK12528 PRK12528 RNA polymerase sigma factor; Provisional 161 -183574 PRK12529 PRK12529 RNA polymerase sigma factor; Provisional 178 -237128 PRK12530 PRK12530 RNA polymerase sigma factor; Provisional 189 -105726 PRK12531 PRK12531 RNA polymerase sigma factor; Provisional 194 -171564 PRK12532 PRK12532 RNA polymerase sigma factor; Provisional 195 -237129 PRK12533 PRK12533 RNA polymerase sigma factor; Provisional 216 -183576 PRK12534 PRK12534 RNA polymerase sigma factor; Provisional 187 -237130 PRK12535 PRK12535 RNA polymerase sigma factor; Provisional 196 -237131 PRK12536 PRK12536 RNA polymerase sigma factor; Provisional 181 -171568 PRK12537 PRK12537 RNA polymerase sigma factor; Provisional 182 -139048 PRK12538 PRK12538 RNA polymerase sigma factor; Provisional 233 -237132 PRK12539 PRK12539 RNA polymerase sigma factor; Provisional 184 -183579 PRK12540 PRK12540 RNA polymerase sigma factor; Provisional 182 -183580 PRK12541 PRK12541 RNA polymerase sigma factor; Provisional 161 -183581 PRK12542 PRK12542 RNA polymerase sigma factor; Provisional 185 -183582 PRK12543 PRK12543 RNA polymerase sigma factor; Provisional 179 -183583 PRK12544 PRK12544 RNA polymerase sigma factor; Provisional 206 -183584 PRK12545 PRK12545 RNA polymerase sigma factor; Provisional 201 -139055 PRK12546 PRK12546 RNA polymerase sigma factor; Provisional 188 -139056 PRK12547 PRK12547 RNA polymerase sigma factor; Provisional 164 -183585 PRK12548 PRK12548 shikimate 5-dehydrogenase; Provisional 289 -183586 PRK12549 PRK12549 shikimate 5-dehydrogenase; Reviewed 284 -183587 PRK12550 PRK12550 shikimate 5-dehydrogenase; Reviewed 272 -139060 PRK12551 PRK12551 ATP-dependent Clp protease proteolytic subunit; Reviewed 196 -183588 PRK12552 PRK12552 ATP-dependent Clp protease-like protein; Reviewed 222 -237133 PRK12553 PRK12553 ATP-dependent Clp protease proteolytic subunit; Reviewed 207 -237134 PRK12554 PRK12554 undecaprenyl pyrophosphate phosphatase; Reviewed 276 -237135 PRK12555 PRK12555 chemotaxis-specific methylesterase; Provisional 337 -183592 PRK12556 PRK12556 tryptophanyl-tRNA synthetase; Provisional 332 -237136 PRK12557 PRK12557 H(2)-dependent methylenetetrahydromethanopterin dehydrogenase-related protein; Provisional 342 -183594 PRK12558 PRK12558 glutamyl-tRNA synthetase; Provisional 445 -79035 PRK12559 PRK12559 transcriptional regulator Spx; Provisional 131 -183595 PRK12560 PRK12560 adenine phosphoribosyltransferase; Provisional 187 -237137 PRK12561 PRK12561 NAD(P)H-quinone oxidoreductase subunit 4; Provisional 504 -105755 PRK12562 PRK12562 ornithine carbamoyltransferase subunit F; Provisional 334 -237138 PRK12563 PRK12563 sulfate adenylyltransferase subunit 2; Provisional 312 -237139 PRK12564 PRK12564 carbamoyl phosphate synthase small subunit; Reviewed 360 -171585 PRK12566 PRK12566 glycine dehydrogenase; Provisional 954 -237140 PRK12567 PRK12567 putative monovalent cation/H+ antiporter subunit B; Reviewed 218 -139075 PRK12568 PRK12568 glycogen branching enzyme; Provisional 730 -237141 PRK12569 PRK12569 hypothetical protein; Provisional 245 -237142 PRK12570 PRK12570 N-acetylmuramic acid-6-phosphate etherase; Reviewed 296 -183601 PRK12571 PRK12571 1-deoxy-D-xylulose-5-phosphate synthase; Provisional 641 -183602 PRK12573 PRK12573 putative monovalent cation/H+ antiporter subunit B; Reviewed 140 -183603 PRK12574 PRK12574 putative monovalent cation/H+ antiporter subunit B; Reviewed 141 -171592 PRK12575 PRK12575 succinate dehydrogenase iron-sulfur subunit; Provisional 235 -237143 PRK12576 PRK12576 succinate dehydrogenase iron-sulfur subunit; Provisional 279 -183605 PRK12577 PRK12577 succinate dehydrogenase iron-sulfur subunit; Provisional 329 -183606 PRK12578 PRK12578 acetyl-CoA acetyltransferase; Provisional 385 -183607 PRK12579 PRK12579 putative monovalent cation/H+ antiporter subunit B; Reviewed 258 -79055 PRK12580 PRK12580 outer membrane protease; Reviewed 312 -79056 PRK12581 PRK12581 oxaloacetate decarboxylase; Provisional 468 -237144 PRK12582 PRK12582 acyl-CoA synthetase; Provisional 624 -237145 PRK12583 PRK12583 acyl-CoA synthetase; Provisional 558 -237146 PRK12584 PRK12584 flagellin A; Reviewed 510 -183610 PRK12585 PRK12585 putative monovalent cation/H+ antiporter subunit G; Reviewed 197 -237147 PRK12586 PRK12586 putative monovalent cation/H+ antiporter subunit G; Reviewed 145 -183612 PRK12587 PRK12587 putative monovalent cation/H+ antiporter subunit G; Reviewed 118 -183613 PRK12592 PRK12592 putative monovalent cation/H+ antiporter subunit G; Reviewed 126 -183614 PRK12595 PRK12595 bifunctional 3-deoxy-7-phosphoheptulonate synthase/chorismate mutase; Reviewed 360 -105779 PRK12596 PRK12596 putative monovalent cation/H+ antiporter subunit E; Reviewed 171 -183615 PRK12597 PRK12597 F0F1 ATP synthase subunit beta; Provisional 461 -237148 PRK12599 PRK12599 putative monovalent cation/H+ antiporter subunit F; Reviewed 91 -183617 PRK12600 PRK12600 putative monovalent cation/H+ antiporter subunit F; Reviewed 94 -183618 PRK12603 PRK12603 putative monovalent cation/H+ antiporter subunit F; Reviewed 86 -183619 PRK12604 PRK12604 putative monovalent cation/H+ antiporter subunit F; Reviewed 84 -237149 PRK12606 PRK12606 GTP cyclohydrolase I; Reviewed 201 -183621 PRK12607 PRK12607 phosphoribosylaminoimidazole-succinocarboxamide synthase; Provisional 313 -237150 PRK12608 PRK12608 transcription termination factor Rho; Provisional 380 -237151 PRK12612 PRK12612 putative monovalent cation/H+ antiporter subunit F; Reviewed 87 -171609 PRK12613 PRK12613 galactose-6-phosphate isomerase subunit LacA; Provisional 141 -171610 PRK12615 PRK12615 galactose-6-phosphate isomerase subunit LacB; Reviewed 171 -183624 PRK12616 PRK12616 pyridoxal kinase; Reviewed 270 -183625 PRK12617 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 214 -183626 PRK12618 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 141 -183627 PRK12619 flgB flagellar basal body rod protein FlgB; Provisional 130 -183628 PRK12620 flgB flagellar basal body rod protein FlgB; Provisional 132 -171613 PRK12621 flgB flagellar basal body rod protein FlgB; Provisional 136 -183629 PRK12622 flgB flagellar basal body rod protein FlgB; Provisional 135 -183630 PRK12623 flgB flagellar basal body rod protein FlgB; Provisional 131 -139107 PRK12624 flgB flagellar basal body rod protein FlgB; Provisional 143 -183631 PRK12625 flgB flagellar basal body rod protein FlgB; Provisional 132 -183632 PRK12626 flgB flagellar basal body rod protein FlgB; Provisional 162 -237152 PRK12627 flgB flagellar basal body rod protein FlgB; Provisional 128 -79089 PRK12628 flgC flagellar basal body rod protein FlgC; Provisional 140 -183634 PRK12629 flgC flagellar basal body rod protein FlgC; Provisional 135 -183635 PRK12630 flgC flagellar basal body rod protein FlgC; Provisional 143 -183636 PRK12631 flgC flagellar basal body rod protein FlgC; Provisional 138 -183637 PRK12632 flgC flagellar basal body rod protein FlgC; Provisional 130 -183638 PRK12633 flgD flagellar basal body rod modification protein; Provisional 230 -183639 PRK12634 flgD flagellar basal body rod modification protein; Reviewed 221 -183640 PRK12636 flgG flagellar basal body rod protein FlgG; Provisional 263 -183641 PRK12637 flgE flagellar hook protein FlgE; Provisional 473 -183642 PRK12640 flgF flagellar basal body rod protein FlgF; Reviewed 246 -105809 PRK12641 flgF flagellar basal body rod protein FlgF; Reviewed 252 -237153 PRK12642 flgF flagellar basal body rod protein FlgF; Reviewed 241 -139117 PRK12643 flgF flagellar basal body rod protein FlgF; Reviewed 209 -237154 PRK12644 PRK12644 putative monovalent cation/H+ antiporter subunit A; Reviewed 965 -237155 PRK12645 PRK12645 monovalent cation/H+ antiporter subunit A; Reviewed 800 -183646 PRK12646 PRK12646 putative monovalent cation/H+ antiporter subunit A; Reviewed 800 -237156 PRK12647 PRK12647 putative monovalent cation/H+ antiporter subunit A; Reviewed 761 -237157 PRK12648 PRK12648 putative monovalent cation/H+ antiporter subunit A; Reviewed 948 -183649 PRK12649 PRK12649 putative monovalent cation/H+ antiporter subunit A; Reviewed 789 -237158 PRK12650 PRK12650 putative monovalent cation/H+ antiporter subunit A; Reviewed 962 -237159 PRK12651 PRK12651 putative monovalent cation/H+ antiporter subunit E; Reviewed 158 -237160 PRK12652 PRK12652 putative monovalent cation/H+ antiporter subunit E; Reviewed 357 -183653 PRK12653 PRK12653 fructose-6-phosphate aldolase; Reviewed 220 -237161 PRK12654 PRK12654 putative monovalent cation/H+ antiporter subunit E; Reviewed 151 -183655 PRK12655 PRK12655 fructose-6-phosphate aldolase; Reviewed 220 -183656 PRK12656 PRK12656 fructose-6-phosphate aldolase; Reviewed 222 -183657 PRK12657 PRK12657 putative monovalent cation/H+ antiporter subunit F; Reviewed 100 -183658 PRK12658 PRK12658 putative monovalent cation/H+ antiporter subunit C; Reviewed 125 -183659 PRK12659 PRK12659 putative monovalent cation/H+ antiporter subunit C; Reviewed 117 -183660 PRK12660 PRK12660 putative monovalent cation/H+ antiporter subunit C; Reviewed 114 -237162 PRK12661 PRK12661 putative monovalent cation/H+ antiporter subunit C; Reviewed 140 -183662 PRK12662 PRK12662 putative monovalent cation/H+ antiporter subunit D; Reviewed 492 -237163 PRK12663 PRK12663 putative monovalent cation/H+ antiporter subunit D; Reviewed 497 -237164 PRK12664 PRK12664 putative monovalent cation/H+ antiporter subunit D; Reviewed 527 -237165 PRK12665 PRK12665 putative monovalent cation/H+ antiporter subunit D; Reviewed 521 -237166 PRK12666 PRK12666 putative monovalent cation/H+ antiporter subunit D; Reviewed 528 -237167 PRK12667 PRK12667 putative monovalent cation/H+ antiporter subunit D; Reviewed 520 -237168 PRK12668 PRK12668 putative monovalent cation/H+ antiporter subunit D; Reviewed 581 -183669 PRK12670 PRK12670 putative monovalent cation/H+ antiporter subunit G; Reviewed 99 -183670 PRK12671 PRK12671 putative monovalent cation/H+ antiporter subunit G; Reviewed 120 -183671 PRK12672 PRK12672 putative monovalent cation/H+ antiporter subunit G; Reviewed 118 -237169 PRK12674 PRK12674 putative monovalent cation/H+ antiporter subunit G; Reviewed 99 -171652 PRK12675 PRK12675 putative monovalent cation/H+ antiporter subunit G; Reviewed 104 -183673 PRK12676 PRK12676 bifunctional inositol-1 monophosphatase/fructose-1,6-bisphosphatase; Reviewed 263 -237170 PRK12677 PRK12677 xylose isomerase; Provisional 384 -237171 PRK12678 PRK12678 transcription termination factor Rho; Provisional 672 -183676 PRK12679 cbl transcriptional regulator Cbl; Reviewed 316 -183677 PRK12680 PRK12680 transcriptional regulator CysB-like protein; Reviewed 327 -183678 PRK12681 cysB transcriptional regulator CysB; Reviewed 324 -183679 PRK12682 PRK12682 transcriptional regulator CysB-like protein; Reviewed 309 -237172 PRK12683 PRK12683 transcriptional regulator CysB-like protein; Reviewed 309 -237173 PRK12684 PRK12684 transcriptional regulator CysB-like protein; Reviewed 313 -183682 PRK12685 flgB flagellar basal body rod protein FlgB; Reviewed 116 -183683 PRK12686 PRK12686 carbamate kinase; Reviewed 312 -105853 PRK12687 PRK12687 flagellin; Reviewed 311 -171664 PRK12688 PRK12688 flagellin; Reviewed 751 -183684 PRK12689 flgF flagellar basal body rod protein FlgF; Reviewed 253 -183685 PRK12690 flgF flagellar basal body rod protein FlgF; Reviewed 238 -183686 PRK12691 flgG flagellar basal body rod protein FlgG; Reviewed 262 -139158 PRK12692 flgG flagellar basal body rod protein FlgG; Reviewed 262 -183687 PRK12693 flgG flagellar basal body rod protein FlgG; Provisional 261 -183688 PRK12694 flgG flagellar basal body rod protein FlgG; Reviewed 260 -237174 PRK12696 flgH flagellar basal body L-ring protein; Reviewed 236 -237175 PRK12697 flgH flagellar basal body L-ring protein; Reviewed 226 -183690 PRK12698 flgH flagellar basal body L-ring protein; Reviewed 224 -105864 PRK12699 flgH flagellar basal body L-ring protein; Reviewed 246 -139164 PRK12700 flgH flagellar basal body L-ring protein; Reviewed 230 -183691 PRK12701 flgH flagellar basal body L-ring protein; Reviewed 230 -105866 PRK12702 PRK12702 mannosyl-3-phosphoglycerate phosphatase; Reviewed 302 -237176 PRK12703 PRK12703 tRNA 2'-O-methylase; Reviewed 339 -237177 PRK12704 PRK12704 phosphodiesterase; Provisional 520 -237178 PRK12705 PRK12705 hypothetical protein; Provisional 508 -183694 PRK12706 flgI flagellar basal body P-ring protein; Provisional 328 -139168 PRK12708 flgJ peptidoglycan hydrolase; Reviewed 134 -237179 PRK12709 flgJ flagellar rod assembly protein/muramidase FlgJ; Provisional 320 -139170 PRK12710 flgJ flagellar rod assembly protein/muramidase FlgJ; Provisional 291 -237180 PRK12711 flgJ flagellar rod assembly protein/muramidase FlgJ; Reviewed 392 -139172 PRK12712 flgJ flagellar rod assembly protein/muramidase FlgJ; Provisional 344 -139173 PRK12713 flgJ flagellar rod assembly protein/muramidase FlgJ; Provisional 339 -183697 PRK12714 flgK flagellar hook-associated protein FlgK; Provisional 624 -183698 PRK12715 flgK flagellar hook-associated protein FlgK; Provisional 649 -171679 PRK12717 flgL flagellar hook-associated protein FlgL; Provisional 523 -79176 PRK12718 flgL flagellar hook-associated protein FlgL; Provisional 510 -183699 PRK12720 PRK12720 secretion system apparatus protein SsaV; Provisional 675 -183700 PRK12721 PRK12721 secretion system apparatus protein SsaU; Reviewed 349 -237181 PRK12722 PRK12722 transcriptional activator FlhC; Provisional 187 -183702 PRK12723 PRK12723 flagellar biosynthesis regulator FlhF; Provisional 388 -183703 PRK12724 PRK12724 flagellar biosynthesis regulator FlhF; Provisional 432 -183704 PRK12726 PRK12726 flagellar biosynthesis regulator FlhF; Provisional 407 -237182 PRK12727 PRK12727 flagellar biosynthesis regulator FlhF; Provisional 559 -237183 PRK12728 fliE flagellar hook-basal body protein FliE; Provisional 102 -183707 PRK12729 fliE flagellar hook-basal body protein FliE; Provisional 127 -183708 PRK12735 PRK12735 elongation factor Tu; Reviewed 396 -237184 PRK12736 PRK12736 elongation factor Tu; Reviewed 394 -183710 PRK12737 gatY tagatose-bisphosphate aldolase; Reviewed 284 -183711 PRK12738 kbaY tagatose-bisphosphate aldolase; Reviewed 286 -237185 PRK12739 PRK12739 elongation factor G; Reviewed 691 -237186 PRK12740 PRK12740 elongation factor G; Reviewed 668 -183714 PRK12742 PRK12742 oxidoreductase; Provisional 237 -237187 PRK12743 PRK12743 oxidoreductase; Provisional 256 -183716 PRK12744 PRK12744 short chain dehydrogenase; Provisional 257 -237188 PRK12745 PRK12745 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 256 -183718 PRK12746 PRK12746 short chain dehydrogenase; Provisional 254 -183719 PRK12747 PRK12747 short chain dehydrogenase; Provisional 252 -237189 PRK12748 PRK12748 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 256 -183721 PRK12749 PRK12749 quinate/shikimate dehydrogenase; Reviewed 288 -183722 PRK12750 cpxP periplasmic repressor CpxP; Reviewed 170 -171704 PRK12751 cpxP periplasmic stress adaptor protein CpxP; Reviewed 162 -183723 PRK12753 PRK12753 transketolase; Reviewed 663 -183724 PRK12754 PRK12754 transketolase; Reviewed 663 -237190 PRK12755 PRK12755 phospho-2-dehydro-3-deoxyheptonate aldolase; Provisional 353 -183726 PRK12756 PRK12756 phospho-2-dehydro-3-deoxyheptonate aldolase; Provisional 348 -237191 PRK12757 PRK12757 cell division protein FtsN; Provisional 256 -237192 PRK12758 PRK12758 DNA topoisomerase IV subunit A; Provisional 869 -139206 PRK12759 PRK12759 bifunctional gluaredoxin/ribonucleoside-diphosphate reductase subunit beta; Provisional 410 -237193 PRK12764 PRK12764 hypothetical protein; Provisional 500 -237194 PRK12765 PRK12765 flagellar capping protein; Provisional 595 -183731 PRK12766 PRK12766 50S ribosomal protein L32e; Provisional 232 -237195 PRK12767 PRK12767 carbamoyl phosphate synthase-like protein; Provisional 326 -237196 PRK12768 PRK12768 CysZ-like protein; Reviewed 240 -183733 PRK12769 PRK12769 putative oxidoreductase Fe-S binding subunit; Reviewed 654 -237197 PRK12770 PRK12770 putative glutamate synthase subunit beta; Provisional 352 -237198 PRK12771 PRK12771 putative glutamate synthase (NADPH) small subunit; Provisional 564 -237199 PRK12772 PRK12772 bifunctional flagellar biosynthesis protein FliR/FlhB; Provisional 609 -183737 PRK12773 flhB flagellar biosynthesis protein FlhB; Reviewed 646 -183738 PRK12775 PRK12775 putative trifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta/ferritin domain-containing protein; Provisional 1006 -237200 PRK12778 PRK12778 putative bifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta; Provisional 752 -183740 PRK12779 PRK12779 putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Provisional 944 -183741 PRK12780 fliR flagellar biosynthesis protein FliR; Reviewed 251 -139219 PRK12781 fliQ flagellar biosynthesis protein FliQ; Reviewed 88 -139220 PRK12782 flgC flagellar basal body rod protein FlgC; Reviewed 138 -171720 PRK12783 fliP flagellar biosynthesis protein FliP; Reviewed 255 -183742 PRK12784 PRK12784 hypothetical protein; Provisional 84 -183743 PRK12785 fliL flagellar basal body-associated protein FliL; Reviewed 166 -237201 PRK12786 flgA flagellar basal body P-ring biosynthesis protein FlgA; Reviewed 338 -183745 PRK12787 fliX flagellar assembly regulator FliX; Reviewed 138 -237202 PRK12788 flgH flagellar basal body L-ring protein; Reviewed 234 -183746 PRK12789 flgI flagellar basal body P-ring protein; Reviewed 367 -237203 PRK12790 PRK12790 chemotactic signal-response protein CheL; Provisional 115 -237204 PRK12791 flbT flagellar biosynthesis repressor FlbT; Reviewed 131 -237205 PRK12792 flhA flagellar biosynthesis protein FlhA; Reviewed 694 -237206 PRK12793 flaF flagellar biosynthesis regulatory protein FlaF; Reviewed 115 -237207 PRK12794 flaF flagellar biosynthesis regulatory protein FlaF; Reviewed 122 -237208 PRK12795 fliM flagellar motor switch protein FliM; Reviewed 388 -237209 PRK12796 spaP type III secretion system protein SpaP; Provisional 221 -237210 PRK12797 PRK12797 type III secretion system protein YscR; Provisional 213 -237211 PRK12798 PRK12798 chemotaxis protein; Reviewed 421 -183756 PRK12799 motB flagellar motor protein MotB; Reviewed 421 -183757 PRK12800 fliF flagellar MS-ring protein; Reviewed 574 -139237 PRK12802 PRK12802 flagellin; Provisional 282 -183758 PRK12803 PRK12803 flagellin; Provisional 335 -183759 PRK12804 PRK12804 flagellin; Provisional 301 -183760 PRK12805 PRK12805 flagellin; Provisional 287 -183761 PRK12806 PRK12806 flagellin; Provisional 475 -171737 PRK12807 PRK12807 flagellin; Provisional 287 -237212 PRK12808 PRK12808 flagellin; Provisional 476 -183762 PRK12809 PRK12809 putative oxidoreductase Fe-S binding subunit; Reviewed 639 -237213 PRK12810 gltD glutamate synthase subunit beta; Reviewed 471 -139245 PRK12812 flgD flagellar basal body rod modification protein; Reviewed 259 -237214 PRK12813 flgD flagellar basal body rod modification protein; Reviewed 223 -139246 PRK12814 PRK12814 putative NADPH-dependent glutamate synthase small subunit; Provisional 652 -237215 PRK12815 carB carbamoyl phosphate synthase large subunit; Reviewed 1068 -183766 PRK12816 flgG flagellar basal body rod protein FlgG; Reviewed 264 -183767 PRK12817 flgG flagellar basal body rod protein FlgG; Reviewed 260 -183768 PRK12818 flgG flagellar basal body rod protein FlgG; Reviewed 256 -183769 PRK12819 flgG flagellar basal body rod protein FlgG; Reviewed 257 -105955 PRK12820 PRK12820 bifunctional aspartyl-tRNA synthetase/aspartyl/glutamyl-tRNA amidotransferase subunit C; Provisional 706 -237216 PRK12821 PRK12821 aspartyl/glutamyl-tRNA amidotransferase subunit C-like protein; Provisional 477 -237217 PRK12822 PRK12822 phospho-2-dehydro-3-deoxyheptonate aldolase; Provisional 356 -183772 PRK12823 benD 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase; Provisional 260 -183773 PRK12824 PRK12824 acetoacetyl-CoA reductase; Provisional 245 -237218 PRK12825 fabG 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 249 -183775 PRK12826 PRK12826 3-ketoacyl-(acyl-carrier-protein) reductase; Reviewed 251 -237219 PRK12827 PRK12827 short chain dehydrogenase; Provisional 249 -237220 PRK12828 PRK12828 short chain dehydrogenase; Provisional 239 -183778 PRK12829 PRK12829 short chain dehydrogenase; Provisional 264 -183779 PRK12830 PRK12830 UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Reviewed 417 -183780 PRK12831 PRK12831 putative oxidoreductase; Provisional 464 -183781 PRK12833 PRK12833 acetyl-CoA carboxylase biotin carboxylase subunit; Provisional 467 -183782 PRK12834 PRK12834 putative FAD-binding dehydrogenase; Reviewed 549 -237221 PRK12835 PRK12835 3-ketosteroid-delta-1-dehydrogenase; Reviewed 584 -237222 PRK12837 PRK12837 3-ketosteroid-delta-1-dehydrogenase; Provisional 513 -183784 PRK12838 PRK12838 carbamoyl phosphate synthase small subunit; Reviewed 354 -237223 PRK12839 PRK12839 hypothetical protein; Provisional 572 -237224 PRK12842 PRK12842 putative succinate dehydrogenase; Reviewed 574 -237225 PRK12843 PRK12843 putative FAD-binding dehydrogenase; Reviewed 578 -183787 PRK12844 PRK12844 3-ketosteroid-delta-1-dehydrogenase; Reviewed 557 -237226 PRK12845 PRK12845 3-ketosteroid-delta-1-dehydrogenase; Reviewed 564 -237227 PRK12846 PRK12846 peptide deformylase; Reviewed 165 -237228 PRK12847 ubiA 4-hydroxybenzoate polyprenyltransferase; Reviewed 285 -237229 PRK12848 ubiA 4-hydroxybenzoate octaprenyltransferase; Reviewed 282 -237230 PRK12849 groEL chaperonin GroEL; Reviewed 542 -237231 PRK12850 groEL chaperonin GroEL; Reviewed 544 -171770 PRK12851 groEL chaperonin GroEL; Reviewed 541 -237232 PRK12852 groEL chaperonin GroEL; Reviewed 545 -237233 PRK12853 PRK12853 glucose-6-phosphate 1-dehydrogenase; Provisional 482 -237234 PRK12854 PRK12854 glucose-6-phosphate 1-dehydrogenase; Provisional 484 -171774 PRK12855 PRK12855 hypothetical protein; Provisional 103 -105987 PRK12856 PRK12856 hypothetical protein; Provisional 103 -237235 PRK12857 PRK12857 fructose-1,6-bisphosphate aldolase; Reviewed 284 -237236 PRK12858 PRK12858 tagatose 1,6-diphosphate aldolase; Reviewed 340 -183797 PRK12859 PRK12859 3-ketoacyl-(acyl-carrier-protein) reductase; Provisional 256 -237237 PRK12860 PRK12860 transcriptional activator FlhC; Provisional 189 -183798 PRK12861 PRK12861 malic enzyme; Reviewed 764 -183799 PRK12862 PRK12862 malic enzyme; Reviewed 763 -183800 PRK12863 PRK12863 YciI-like protein; Reviewed 94 -183801 PRK12864 PRK12864 YciI-like protein; Reviewed 89 -171782 PRK12865 PRK12865 YciI-like protein; Reviewed 97 -237238 PRK12866 PRK12866 YciI-like protein; Reviewed 97 -237239 PRK12869 ubiA protoheme IX farnesyltransferase; Reviewed 279 -237240 PRK12870 ubiA 4-hydroxybenzoate polyprenyltransferase; Reviewed 290 -106000 PRK12871 ubiA prenyltransferase; Reviewed 297 -237241 PRK12872 ubiA prenyltransferase; Reviewed 285 -171787 PRK12873 ubiA prenyltransferase; Reviewed 294 -237242 PRK12874 ubiA prenyltransferase; Reviewed 291 -237243 PRK12875 ubiA prenyltransferase; Reviewed 282 -237244 PRK12876 ubiA prenyltransferase; Reviewed 300 -183808 PRK12878 ubiA 4-hydroxybenzoate polyprenyltransferase; Reviewed 314 -237245 PRK12879 PRK12879 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 325 -171793 PRK12880 PRK12880 3-oxoacyl-(acyl carrier protein) synthase III; Reviewed 353 -237246 PRK12881 acnA aconitate hydratase; Provisional 889 -183811 PRK12882 ubiA prenyltransferase; Reviewed 276 -171796 PRK12883 ubiA prenyltransferase UbiA-like protein; Reviewed 277 -183812 PRK12884 ubiA prenyltransferase; Reviewed 279 -237247 PRK12886 ubiA prenyltransferase; Reviewed 291 -183813 PRK12887 ubiA tocopherol phytyltransferase; Reviewed 308 -183814 PRK12888 ubiA prenyltransferase; Reviewed 284 -237248 PRK12890 PRK12890 allantoate amidohydrolase; Reviewed 414 -237249 PRK12891 PRK12891 allantoate amidohydrolase; Reviewed 414 -183817 PRK12892 PRK12892 allantoate amidohydrolase; Reviewed 412 -237250 PRK12893 PRK12893 allantoate amidohydrolase; Reviewed 412 -237251 PRK12895 ubiA prenyltransferase; Reviewed 286 -237252 PRK12896 PRK12896 methionine aminopeptidase; Reviewed 255 -171806 PRK12897 PRK12897 methionine aminopeptidase; Reviewed 248 -237253 PRK12898 secA preprotein translocase subunit SecA; Reviewed 656 -237254 PRK12899 secA preprotein translocase subunit SecA; Reviewed 970 -237255 PRK12900 secA preprotein translocase subunit SecA; Reviewed 1025 -237256 PRK12901 secA preprotein translocase subunit SecA; Reviewed 1112 -237257 PRK12902 secA preprotein translocase subunit SecA; Reviewed 939 -237258 PRK12903 secA preprotein translocase subunit SecA; Reviewed 925 -237259 PRK12904 PRK12904 preprotein translocase subunit SecA; Reviewed 830 -237260 PRK12906 secA preprotein translocase subunit SecA; Reviewed 796 -183828 PRK12907 secY preprotein translocase subunit SecY; Reviewed 434 -171815 PRK12911 PRK12911 bifunctional preprotein translocase subunit SecD/SecF; Reviewed 1403 -183829 PRK12921 PRK12921 2-dehydropantoate 2-reductase; Provisional 305 -237261 PRK12928 PRK12928 lipoyl synthase; Provisional 290 -183831 PRK12933 secD preprotein translocase subunit SecD; Reviewed 604 -183832 PRK12935 PRK12935 acetoacetyl-CoA reductase; Provisional 247 -171820 PRK12936 PRK12936 3-ketoacyl-(acyl-carrier-protein) reductase NodG; Reviewed 245 -171821 PRK12937 PRK12937 short chain dehydrogenase; Provisional 245 -171822 PRK12938 PRK12938 acetyacetyl-CoA reductase; Provisional 246 -183833 PRK12939 PRK12939 short chain dehydrogenase; Provisional 250 -171824 PRK12996 ulaA PTS system ascorbate-specific transporter subunit IIC; Reviewed 463 -237262 PRK12997 PRK12997 PTS system ascorbate-specific transporter subunit IIC; Reviewed 466 -237263 PRK12999 PRK12999 pyruvate carboxylase; Reviewed 1146 -183836 PRK13004 PRK13004 peptidase; Reviewed 399 -237264 PRK13007 PRK13007 succinyl-diaminopimelate desuccinylase; Reviewed 352 -237265 PRK13009 PRK13009 succinyl-diaminopimelate desuccinylase; Reviewed 375 -139334 PRK13010 purU formyltetrahydrofolate deformylase; Reviewed 289 -237266 PRK13011 PRK13011 formyltetrahydrofolate deformylase; Reviewed 286 -237267 PRK13012 PRK13012 2-oxoacid dehydrogenase subunit E1; Provisional 896 -237268 PRK13013 PRK13013 succinyl-diaminopimelate desuccinylase; Reviewed 427 -237269 PRK13014 PRK13014 methionine sulfoxide reductase A; Provisional 186 -237270 PRK13015 PRK13015 3-dehydroquinate dehydratase; Reviewed 146 -237271 PRK13016 PRK13016 dihydroxy-acid dehydratase; Provisional 577 -237272 PRK13017 PRK13017 dihydroxy-acid dehydratase; Provisional 596 -237273 PRK13018 PRK13018 cell division protein FtsZ; Provisional 378 -183845 PRK13019 clpS ATP-dependent Clp protease adaptor; Reviewed 94 -183846 PRK13020 PRK13020 riboflavin synthase subunit alpha; Provisional 206 -237274 PRK13021 secF preprotein translocase subunit SecF; Reviewed 297 -237275 PRK13022 secF preprotein translocase subunit SecF; Reviewed 289 -171842 PRK13023 PRK13023 bifunctional preprotein translocase subunit SecD/SecF; Reviewed 758 -237276 PRK13024 PRK13024 bifunctional preprotein translocase subunit SecD/SecF; Reviewed 755 -237277 PRK13026 PRK13026 acyl-CoA dehydrogenase; Reviewed 774 -183850 PRK13027 PRK13027 C4-dicarboxylate transporter DctA; Reviewed 421 -183851 PRK13028 PRK13028 tryptophan synthase subunit beta; Provisional 402 -237278 PRK13029 PRK13029 2-oxoacid ferredoxin oxidoreductase; Provisional 1186 -237279 PRK13030 PRK13030 2-oxoacid ferredoxin oxidoreductase; Provisional 1159 -106068 PRK13031 PRK13031 preprotein translocase subunit SecB; Provisional 149 -171848 PRK13032 PRK13032 chemotaxis-inhibiting protein CHIPS; Reviewed 149 -171849 PRK13033 PRK13033 formyl peptide receptor-like 1 inhibitory protein; Reviewed 133 -237280 PRK13034 PRK13034 serine hydroxymethyltransferase; Reviewed 416 -171851 PRK13035 PRK13035 superantigen-like protein SSL5; Reviewed. 234 -171852 PRK13036 PRK13036 superantigen-like protein SSL11; Reviewed. 227 -106074 PRK13037 PRK13037 superantigen-like protein SSL1; Reviewed. 226 -171853 PRK13038 PRK13038 superantigen-like protein SSL10; Reviewed. 227 -171854 PRK13039 PRK13039 superantigen-like protein SSL8; Reviewed. 232 -106077 PRK13040 PRK13040 superantigen-like protein SSL6; Reviewed. 231 -106078 PRK13041 PRK13041 superantigen-like protein SSL2; Reviewed. 231 -183854 PRK13042 PRK13042 superantigen-like protein SSL4; Reviewed. 291 -171855 PRK13043 PRK13043 superantigen-like protein SSL14; Reviewed. 241 -237281 PRK13054 PRK13054 lipid kinase; Reviewed 300 -237282 PRK13055 PRK13055 putative lipid kinase; Reviewed 334 -183857 PRK13057 PRK13057 putative lipid kinase; Reviewed 287 -183858 PRK13059 PRK13059 putative lipid kinase; Reviewed 295 -183859 PRK13103 secA preprotein translocase subunit SecA; Reviewed 913 -183860 PRK13104 secA preprotein translocase subunit SecA; Reviewed 896 -183861 PRK13105 ubiA prenyltransferase; Reviewed 282 -237283 PRK13106 ubiA prenyltransferase; Reviewed 300 -183863 PRK13107 PRK13107 preprotein translocase subunit SecA; Reviewed 908 -237284 PRK13108 PRK13108 prolipoprotein diacylglyceryl transferase; Reviewed 460 -183864 PRK13109 flhB flagellar biosynthesis protein FlhB; Reviewed 358 -237285 PRK13111 trpA tryptophan synthase subunit alpha; Provisional 258 -237286 PRK13125 trpA tryptophan synthase subunit alpha; Provisional 244 -171868 PRK13128 PRK13128 D-aminopeptidase; Reviewed 518 -237287 PRK13130 PRK13130 H/ACA RNA-protein complex component Nop10p; Reviewed 56 -237288 PRK13141 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 205 -171871 PRK13142 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 192 -237289 PRK13143 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 200 -183870 PRK13145 araD L-ribulose-5-phosphate 4-epimerase; Provisional 234 -237290 PRK13146 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 209 -183872 PRK13149 PRK13149 H/ACA RNA-protein complex component Gar1; Reviewed 73 -139376 PRK13150 PRK13150 cytochrome c-type biogenesis protein CcmE; Reviewed 159 -171876 PRK13152 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 201 -183873 PRK13159 PRK13159 cytochrome c-type biogenesis protein CcmE; Reviewed 155 -183874 PRK13165 PRK13165 cytochrome c-type biogenesis protein CcmE; Reviewed 160 -237291 PRK13168 rumA 23S rRNA m(5)U1939 methyltransferase; Reviewed 443 -183876 PRK13169 PRK13169 DNA replication intiation control protein YabA; Reviewed 110 -183877 PRK13170 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 196 -183878 PRK13181 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 199 -237292 PRK13182 racA polar chromosome segregation protein; Reviewed 175 -171884 PRK13183 psbN photosystem II reaction center protein N; Provisional 46 -183880 PRK13184 pknD serine/threonine-protein kinase; Reviewed 932 -237293 PRK13185 chlL protochlorophyllide reductase iron-sulfur ATP-binding protein; Provisional 270 -237294 PRK13186 lpxC UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Reviewed 295 -237295 PRK13187 PRK13187 UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Reviewed 304 -237296 PRK13188 PRK13188 bifunctional UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase/(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase; Reviewed 464 -237297 PRK13189 PRK13189 peroxiredoxin; Provisional 222 -106159 PRK13190 PRK13190 putative peroxiredoxin; Provisional 202 -183885 PRK13191 PRK13191 putative peroxiredoxin; Provisional 215 -183886 PRK13192 PRK13192 bifunctional urease subunit gamma/beta; Reviewed 208 -237298 PRK13193 PRK13193 pyrrolidone-carboxylate peptidase; Provisional 209 -183887 PRK13194 PRK13194 pyrrolidone-carboxylate peptidase; Provisional 208 -171894 PRK13195 PRK13195 pyrrolidone-carboxylate peptidase; Provisional 222 -171895 PRK13196 PRK13196 pyrrolidone-carboxylate peptidase; Provisional 211 -237299 PRK13197 PRK13197 pyrrolidone-carboxylate peptidase; Provisional 215 -171897 PRK13198 ureB urease subunit beta; Reviewed 158 -237300 PRK13199 psaB photosystem I P700 chlorophyll a apoprotein A2; Provisional 742 -237301 PRK13200 psaA photosystem I P700 chlorophyll a apoprotein A1; Provisional 766 -237302 PRK13201 ureB urease subunit beta; Reviewed 136 -106171 PRK13202 ureB urease subunit beta; Reviewed 104 -237303 PRK13203 ureB urease subunit beta; Reviewed 102 -171902 PRK13204 ureB urease subunit beta; Reviewed 159 -106174 PRK13205 ureB urease subunit beta; Reviewed 162 -237304 PRK13206 ureC urease subunit alpha; Reviewed 573 -237305 PRK13207 ureC urease subunit alpha; Reviewed 568 -237306 PRK13208 valS valyl-tRNA synthetase; Reviewed 800 -237307 PRK13209 PRK13209 L-xylulose 5-phosphate 3-epimerase; Reviewed 283 -237308 PRK13210 PRK13210 putative L-xylulose 5-phosphate 3-epimerase; Reviewed 284 -237309 PRK13211 PRK13211 N-acetylglucosamine-binding protein A; Reviewed 478 -106181 PRK13213 araD L-ribulose-5-phosphate 4-epimerase; Reviewed 231 -183899 PRK13214 PRK13214 photosystem I reaction center subunit X; Reviewed 86 -183900 PRK13216 PRK13216 photosystem I reaction center subunit X-like protein; Reviewed 91 -237310 PRK13222 PRK13222 phosphoglycolate phosphatase; Provisional 226 -171912 PRK13223 PRK13223 phosphoglycolate phosphatase; Provisional 272 -106187 PRK13225 PRK13225 phosphoglycolate phosphatase; Provisional 273 -237311 PRK13226 PRK13226 phosphoglycolate phosphatase; Provisional 229 -183903 PRK13230 PRK13230 nitrogenase reductase-like protein; Reviewed 279 -183904 PRK13231 PRK13231 nitrogenase reductase-like protein; Reviewed 264 -106194 PRK13232 nifH nitrogenase reductase; Reviewed 273 -183905 PRK13233 nifH nitrogenase reductase; Reviewed 275 -183906 PRK13234 nifH nitrogenase reductase; Reviewed 295 -183907 PRK13235 nifH nitrogenase reductase; Reviewed 274 -237312 PRK13236 PRK13236 nitrogenase reductase; Reviewed 296 -237313 PRK13237 PRK13237 tyrosine phenol-lyase; Provisional 460 -237314 PRK13238 tnaA tryptophanase/L-cysteine desulfhydrase, PLP-dependent; Provisional 460 -183911 PRK13239 PRK13239 alkylmercury lyase; Provisional 206 -183912 PRK13240 pbsY photosystem II protein Y; Reviewed 40 -183913 PRK13241 ureA urease subunit gamma; Provisional 100 -139420 PRK13242 ureA urease subunit gamma; Provisional 100 -183914 PRK13243 PRK13243 glyoxylate reductase; Reviewed 333 -183915 PRK13244 PRK13244 protease inhibitor protein; Provisional 145 -183916 PRK13245 hetR heterocyst differentiation control protein; Reviewed 299 -106208 PRK13246 PRK13246 dihydrobiliverdin:ferredoxin oxidoreductase; Provisional 236 -237315 PRK13247 PRK13247 dihydrobiliverdin:ferredoxin oxidoreductase; Provisional 238 -139425 PRK13248 PRK13248 phycoerythrobilin:ferredoxin oxidoreductase; Provisional 253 -139426 PRK13249 PRK13249 phycoerythrobilin:ferredoxin oxidoreductase; Provisional 257 -139427 PRK13250 PRK13250 phycoerythrobilin:ferredoxin oxidoreductase; Provisional 248 -183917 PRK13251 PRK13251 transcription attenuation protein MtrB; Provisional 75 -183918 PRK13252 PRK13252 betaine aldehyde dehydrogenase; Provisional 488 -237316 PRK13253 PRK13253 citrate lyase subunit gamma; Provisional 92 -237317 PRK13254 PRK13254 cytochrome c-type biogenesis protein CcmE; Reviewed 148 -183921 PRK13255 PRK13255 thiopurine S-methyltransferase; Reviewed 218 -237318 PRK13256 PRK13256 thiopurine S-methyltransferase; Reviewed 226 -237319 PRK13257 PRK13257 allantoicase; Provisional 336 -237320 PRK13258 PRK13258 7-cyano-7-deazaguanine reductase; Provisional 114 -237321 PRK13259 PRK13259 regulatory protein SpoVG; Reviewed 94 -183926 PRK13260 PRK13260 2,3-diketo-L-gulonate reductase; Provisional 332 -237322 PRK13261 ureE urease accessory protein UreE; Provisional 159 -183928 PRK13262 ureE urease accessory protein UreE; Provisional 231 -237323 PRK13263 ureE urease accessory protein UreE; Provisional 206 -183930 PRK13264 PRK13264 3-hydroxyanthranilate 3,4-dioxygenase; Provisional 177 -183931 PRK13265 PRK13265 glycine/sarcosine/betaine reductase complex protein A; Reviewed 154 -237324 PRK13266 PRK13266 Thf1-like protein; Reviewed 225 -237325 PRK13267 PRK13267 archaemetzincin-like protein; Reviewed 179 -183934 PRK13270 treF trehalase; Provisional 549 -237326 PRK13271 treA trehalase; Provisional 569 -183936 PRK13272 treA trehalase; Provisional 542 -237327 PRK13273 mdoD glucan biosynthesis protein D; Provisional 476 -237328 PRK13274 mdoG glucan biosynthesis protein G; Provisional 516 -183939 PRK13275 mtrF tetrahydromethanopterin S-methyltransferase subunit F; Provisional 67 -183940 PRK13276 PRK13276 cell wall biosynthesis protein ScdA; Provisional 224 -183941 PRK13277 PRK13277 5-formaminoimidazole-4-carboxamide-1-(beta)-D-ribofuranosyl 5'-monophosphate synthetase-like protein; Provisional 366 -237329 PRK13278 purP 5-formaminoimidazole-4-carboxamide-1-(beta)-D-ribofuranosyl 5'-monophosphate synthetase; Provisional 358 -237330 PRK13279 arnT 4-amino-4-deoxy-L-arabinose transferase; Provisional 552 -237331 PRK13280 PRK13280 N-glycosylase/DNA lyase; Provisional 269 -237332 PRK13281 PRK13281 succinylarginine dihydrolase; Provisional 442 -183946 PRK13282 PRK13282 flagellar assembly protein FliW; Provisional 128 -183947 PRK13283 PRK13283 flagellar assembly protein FliW; Provisional 134 -237333 PRK13284 PRK13284 flagellar assembly protein FliW; Provisional 145 -237334 PRK13285 PRK13285 flagellar assembly protein FliW; Provisional 148 -237335 PRK13286 amiE acylamide amidohydrolase; Provisional 345 -183950 PRK13287 amiF formamidase; Provisional 333 -237336 PRK13288 PRK13288 pyrophosphatase PpaX; Provisional 214 -237337 PRK13289 PRK13289 bifunctional nitric oxide dioxygenase/dihydropteridine reductase 2; Provisional 399 -183953 PRK13290 ectC L-ectoine synthase; Reviewed 125 -183954 PRK13291 PRK13291 metal-dependent hydrolase; Provisional 173 -183955 PRK13292 PRK13292 trifunctional NADH dehydrogenase I subunit B/C/D; Provisional 788 -183956 PRK13293 PRK13293 F420-0--gamma-glutamyl ligase; Reviewed 245 -183957 PRK13294 PRK13294 F420-0--gamma-glutamyl ligase; Provisional 448 -171961 PRK13295 PRK13295 cyclohexanecarboxylate-CoA ligase; Reviewed 547 -106256 PRK13296 PRK13296 tRNA CCA-pyrophosphorylase; Provisional 360 -139469 PRK13297 PRK13297 tRNA CCA-pyrophosphorylase; Provisional 364 -237338 PRK13298 PRK13298 tRNA CCA-pyrophosphorylase; Provisional 417 -237339 PRK13299 PRK13299 tRNA CCA-pyrophosphorylase; Provisional 394 -237340 PRK13300 PRK13300 tRNA CCA-pyrophosphorylase; Provisional 447 -106261 PRK13301 PRK13301 putative L-aspartate dehydrogenase; Provisional 267 -237341 PRK13302 PRK13302 putative L-aspartate dehydrogenase; Provisional 271 -237342 PRK13303 PRK13303 L-aspartate dehydrogenase; Provisional 265 -237343 PRK13304 PRK13304 L-aspartate dehydrogenase; Reviewed 265 -183962 PRK13305 sgbH 3-keto-L-gulonate-6-phosphate decarboxylase; Provisional 218 -237344 PRK13306 ulaD 3-keto-L-gulonate-6-phosphate decarboxylase; Provisional 216 -183964 PRK13307 PRK13307 bifunctional formaldehyde-activating enzyme/3-hexulose-6-phosphate synthase; Provisional 391 -183965 PRK13308 ureC urease subunit alpha; Reviewed 569 -183966 PRK13309 ureC urease subunit alpha; Reviewed 572 -183967 PRK13310 PRK13310 N-acetyl-D-glucosamine kinase; Provisional 303 -106271 PRK13311 PRK13311 N-acetyl-D-glucosamine kinase; Provisional 256 -139480 PRK13312 PRK13312 heme-degrading monooxygenase IsdG; Provisional 107 -183968 PRK13313 PRK13313 heme-degrading monooxygenase IsdI; Provisional 108 -183969 PRK13314 PRK13314 heme-degrading monooxygenase IsdG; Provisional 107 -237345 PRK13315 PRK13315 heme-degrading monooxygenase IsdG; Provisional 107 -183970 PRK13316 PRK13316 heme-degrading monooxygenase IsdG; Provisional 121 -237346 PRK13317 PRK13317 pantothenate kinase; Provisional 277 -237347 PRK13318 PRK13318 pantothenate kinase; Reviewed 258 -237348 PRK13320 PRK13320 pantothenate kinase; Reviewed 244 -237349 PRK13321 PRK13321 pantothenate kinase; Reviewed 256 -237350 PRK13322 PRK13322 pantothenate kinase; Reviewed 246 -106284 PRK13324 PRK13324 pantothenate kinase; Reviewed 258 -183976 PRK13325 PRK13325 bifunctional biotin--[acetyl-CoA-carboxylase] ligase/pantothenate kinase; Reviewed 592 -237351 PRK13326 PRK13326 pantothenate kinase; Reviewed 262 -183977 PRK13327 PRK13327 pantothenate kinase; Reviewed 242 -237352 PRK13328 PRK13328 pantothenate kinase; Reviewed 255 -183979 PRK13329 PRK13329 pantothenate kinase; Reviewed 249 -237353 PRK13331 PRK13331 pantothenate kinase; Reviewed 251 -183981 PRK13333 PRK13333 pantothenate kinase; Reviewed 206 -139494 PRK13335 PRK13335 superantigen-like protein SSL3; Reviewed. 356 -183982 PRK13337 PRK13337 putative lipid kinase; Reviewed 304 -183983 PRK13339 PRK13339 malate:quinone oxidoreductase; Reviewed 497 -183984 PRK13340 PRK13340 alanine racemase; Reviewed 406 -237354 PRK13341 PRK13341 recombination factor protein RarA/unknown domain fusion protein; Reviewed 725 -237355 PRK13342 PRK13342 recombination factor protein RarA; Reviewed 413 -183987 PRK13343 PRK13343 F0F1 ATP synthase subunit alpha; Provisional 502 -183988 PRK13344 spxA transcriptional regulator Spx; Reviewed 132 -106303 PRK13345 PRK13345 superantigen-like protein SSL9; Reviewed. 232 -106304 PRK13346 PRK13346 superantigen-like protein SSL7; Reviewed. 231 -237356 PRK13347 PRK13347 coproporphyrinogen III oxidase; Provisional 453 -237357 PRK13348 PRK13348 chromosome replication initiation inhibitor protein; Provisional 294 -106307 PRK13349 PRK13349 superantigen-like protein SSL13; Reviewed. 241 -171995 PRK13350 PRK13350 superantigen-like protein SSL12; Reviewed. 238 -237358 PRK13351 PRK13351 elongation factor G; Reviewed 687 -237359 PRK13352 PRK13352 thiamine biosynthesis protein ThiC; Provisional 431 -183992 PRK13353 PRK13353 aspartate ammonia-lyase; Provisional 473 -237360 PRK13354 PRK13354 tyrosyl-tRNA synthetase; Provisional 410 -237361 PRK13355 PRK13355 bifunctional HTH-domain containing protein/aminotransferase; Provisional 517 -237362 PRK13356 PRK13356 aminotransferase; Provisional 286 -237363 PRK13357 PRK13357 branched-chain amino acid aminotransferase; Provisional 356 -183997 PRK13358 PRK13358 protocatechuate 4,5-dioxygenase subunit beta; Provisional 269 -183998 PRK13359 PRK13359 beta-ketoadipyl CoA thiolase; Provisional 400 -183999 PRK13360 PRK13360 omega amino acid--pyruvate transaminase; Provisional 442 -237364 PRK13361 PRK13361 molybdenum cofactor biosynthesis protein A; Provisional 329 -184001 PRK13362 PRK13362 protoheme IX farnesyltransferase; Provisional 306 -184002 PRK13363 PRK13363 protocatechuate 4,5-dioxygenase subunit beta; Provisional 335 -184003 PRK13364 PRK13364 protocatechuate 4,5-dioxygenase subunit beta; Provisional 278 -184004 PRK13365 PRK13365 protocatechuate 4,5-dioxygenase subunit beta; Provisional 279 -184005 PRK13366 PRK13366 protocatechuate 4,5-dioxygenase subunit beta; Provisional 284 -184006 PRK13367 PRK13367 protocatechuate 4,5-dioxygenase; Provisional 420 -184007 PRK13368 PRK13368 3-deoxy-manno-octulosonate cytidylyltransferase; Provisional 238 -237365 PRK13369 PRK13369 glycerol-3-phosphate dehydrogenase; Provisional 502 -237366 PRK13370 mhpB 3-(2,3-dihydroxyphenyl)propionate dioxygenase; Provisional 313 -237367 PRK13371 PRK13371 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Provisional 387 -106330 PRK13372 pcmA protocatechuate 4,5-dioxygenase; Provisional 444 -106331 PRK13373 PRK13373 putative dioxygenase; Provisional 344 -237368 PRK13374 PRK13374 purine nucleoside phosphorylase; Provisional 233 -172015 PRK13375 pimE mannosyltransferase; Provisional 409 -237369 PRK13376 pyrB bifunctional aspartate carbamoyltransferase catalytic subunit/aspartate carbamoyltransferase regulatory subunit; Provisional 525 -184013 PRK13377 PRK13377 protocatechuate 4,5-dioxygenase subunit alpha; Provisional 129 -139527 PRK13378 PRK13378 protocatechuate 4,5-dioxygenase subunit alpha; Provisional 117 -184014 PRK13379 PRK13379 protocatechuate 4,5-dioxygenase subunit alpha; Provisional 119 -237370 PRK13380 PRK13380 glycine cleavage system protein H; Provisional 144 -237371 PRK13381 PRK13381 peptidase T; Provisional 404 -172019 PRK13382 PRK13382 acyl-CoA synthetase; Provisional 537 -139531 PRK13383 PRK13383 acyl-CoA synthetase; Provisional 516 -172020 PRK13384 PRK13384 delta-aminolevulinic acid dehydratase; Provisional 322 -184017 PRK13385 PRK13385 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Provisional 230 -237372 PRK13386 fliH flagellar assembly protein H; Provisional 236 -237373 PRK13387 PRK13387 1,4-dihydroxy-2-naphthoate octaprenyltransferase; Provisional 317 -237374 PRK13388 PRK13388 acyl-CoA synthetase; Provisional 540 -184021 PRK13389 PRK13389 UTP--glucose-1-phosphate uridylyltransferase subunit GalU; Provisional 302 -139538 PRK13390 PRK13390 acyl-CoA synthetase; Provisional 501 -184022 PRK13391 PRK13391 acyl-CoA synthetase; Provisional 511 -184023 PRK13392 PRK13392 5-aminolevulinate synthase; Provisional 410 -184024 PRK13393 PRK13393 5-aminolevulinate synthase; Provisional 406 -184025 PRK13394 PRK13394 3-hydroxybutyrate dehydrogenase; Provisional 262 -237375 PRK13395 PRK13395 ureidoglycolate hydrolase; Provisional 171 -237376 PRK13396 PRK13396 3-deoxy-7-phosphoheptulonate synthase; Provisional 352 -172030 PRK13397 PRK13397 3-deoxy-7-phosphoheptulonate synthase; Provisional 250 -184028 PRK13398 PRK13398 3-deoxy-7-phosphoheptulonate synthase; Provisional 266 -184029 PRK13399 PRK13399 fructose-1,6-bisphosphate aldolase; Provisional 347 -184030 PRK13400 PRK13400 30S ribosomal protein S18; Provisional 147 -184031 PRK13401 PRK13401 30S ribosomal protein S18; Provisional 82 -184032 PRK13402 PRK13402 gamma-glutamyl kinase; Provisional 368 -106361 PRK13403 PRK13403 ketol-acid reductoisomerase; Provisional 335 -184033 PRK13404 PRK13404 dihydropyrimidinase; Provisional 477 -237377 PRK13405 bchH magnesium chelatase subunit H; Provisional 1209 -237378 PRK13406 bchD magnesium chelatase subunit D; Provisional 584 -184036 PRK13407 bchI magnesium chelatase subunit I; Provisional 334 -184037 PRK13409 PRK13409 putative ATPase RIL; Provisional 590 -184038 PRK13410 PRK13410 molecular chaperone DnaK; Provisional 668 -184039 PRK13411 PRK13411 molecular chaperone DnaK; Provisional 653 -237379 PRK13412 fkp bifunctional fucokinase/L-fucose-1-P-guanylyltransferase; Provisional 974 -184041 PRK13413 mpi multiple promoter invertase; Provisional 200 -139556 PRK13414 PRK13414 flagellar biosynthesis protein FliZ; Provisional 209 -184042 PRK13415 PRK13415 flagella biosynthesis protein FliZ; Provisional 219 -237380 PRK13417 PRK13417 F0F1 ATP synthase subunit A; Provisional 352 -237381 PRK13419 PRK13419 F0F1 ATP synthase subunit A; Provisional 342 -237382 PRK13420 PRK13420 F0F1 ATP synthase subunit A; Provisional 226 -237383 PRK13421 PRK13421 F0F1 ATP synthase subunit A; Provisional 223 -184046 PRK13422 PRK13422 F0F1 ATP synthase subunit gamma; Provisional 298 -237384 PRK13423 PRK13423 F0F1 ATP synthase subunit gamma; Provisional 288 -172047 PRK13424 PRK13424 F0F1 ATP synthase subunit gamma; Provisional 291 -139564 PRK13425 PRK13425 F0F1 ATP synthase subunit gamma; Provisional 291 -237385 PRK13426 PRK13426 F0F1 ATP synthase subunit gamma; Provisional 291 -172049 PRK13427 PRK13427 F0F1 ATP synthase subunit gamma; Provisional 289 -184048 PRK13428 PRK13428 F0F1 ATP synthase subunit delta; Provisional 445 -237386 PRK13429 PRK13429 F0F1 ATP synthase subunit delta; Provisional 181 -237387 PRK13430 PRK13430 F0F1 ATP synthase subunit delta; Provisional 271 -184051 PRK13431 PRK13431 F0F1 ATP synthase subunit delta; Provisional 180 -139571 PRK13434 PRK13434 F0F1 ATP synthase subunit delta; Provisional 184 -184052 PRK13435 PRK13435 response regulator; Provisional 145 -184053 PRK13436 PRK13436 F0F1 ATP synthase subunit delta; Provisional 179 -184054 PRK13441 PRK13441 F0F1 ATP synthase subunit delta; Provisional 180 -184055 PRK13442 atpC F0F1 ATP synthase subunit epsilon; Provisional 89 -237388 PRK13443 atpC F0F1 ATP synthase subunit epsilon; Provisional 136 -139576 PRK13444 atpC F0F1 ATP synthase subunit epsilon; Provisional 127 -184056 PRK13446 atpC F0F1 ATP synthase subunit epsilon; Provisional 136 -184057 PRK13447 PRK13447 F0F1 ATP synthase subunit epsilon; Provisional 136 -139579 PRK13448 atpC F0F1 ATP synthase subunit epsilon; Provisional 135 -184058 PRK13449 atpC F0F1 ATP synthase subunit epsilon; Provisional 88 -184059 PRK13450 atpC F0F1 ATP synthase subunit epsilon; Provisional 132 -172059 PRK13451 atpC F0F1 ATP synthase subunit epsilon; Provisional 101 -106409 PRK13452 atpC F0F1 ATP synthase subunit epsilon; Provisional 145 -184060 PRK13453 PRK13453 F0F1 ATP synthase subunit B; Provisional 173 -184061 PRK13454 PRK13454 F0F1 ATP synthase subunit B'; Provisional 181 -184062 PRK13455 PRK13455 F0F1 ATP synthase subunit B; Provisional 184 -237389 PRK13456 PRK13456 DNA protection protein DPS; Provisional 186 -139585 PRK13460 PRK13460 F0F1 ATP synthase subunit B; Provisional 173 -184064 PRK13461 PRK13461 F0F1 ATP synthase subunit B; Provisional 159 -139587 PRK13462 PRK13462 acid phosphatase; Provisional 203 -172065 PRK13463 PRK13463 phosphatase PhoE; Provisional 203 -184065 PRK13464 PRK13464 F0F1 ATP synthase subunit C; Provisional 101 -172066 PRK13466 PRK13466 F0F1 ATP synthase subunit C; Provisional 66 -237390 PRK13467 PRK13467 F0F1 ATP synthase subunit C; Provisional 66 -184067 PRK13468 PRK13468 F0F1 ATP synthase subunit C; Provisional 82 -184068 PRK13469 PRK13469 F0F1 ATP synthase subunit C; Provisional 79 -184069 PRK13471 PRK13471 F0F1 ATP synthase subunit C; Provisional 85 -237391 PRK13473 PRK13473 gamma-aminobutyraldehyde dehydrogenase; Provisional 475 -237392 PRK13474 PRK13474 cytochrome b6-f complex iron-sulfur subunit; Provisional 178 -184072 PRK13475 PRK13475 ribulose bisphosphate carboxylase; Provisional 443 -184073 PRK13476 PRK13476 cytochrome b6-f complex subunit IV; Provisional 160 -237393 PRK13477 PRK13477 bifunctional pantoate ligase/cytidylate kinase; Provisional 512 -184075 PRK13478 PRK13478 phosphonoacetaldehyde hydrolase; Provisional 267 -184076 PRK13479 PRK13479 2-aminoethylphosphonate--pyruvate transaminase; Provisional 368 -237394 PRK13480 PRK13480 3'-5' exoribonuclease YhaM; Provisional 314 -184078 PRK13481 PRK13481 glycosyltransferase; Provisional 232 -237395 PRK13482 PRK13482 DNA integrity scanning protein DisA; Provisional 352 -184080 PRK13483 PRK13483 enterobactin receptor protein; Provisional 660 -139605 PRK13484 PRK13484 putative iron-regulated outer membrane virulence protein; Provisional 682 -139606 PRK13486 PRK13486 bifunctional enterobactin receptor/adhesin protein; Provisional 696 -237396 PRK13487 PRK13487 chemoreceptor glutamine deamidase CheD; Provisional 201 -237397 PRK13488 PRK13488 chemoreceptor glutamine deamidase CheD; Provisional 157 -237398 PRK13489 PRK13489 chemoreceptor glutamine deamidase CheD; Provisional 233 -184084 PRK13490 PRK13490 chemoreceptor glutamine deamidase CheD; Provisional 162 -184085 PRK13491 PRK13491 chemoreceptor glutamine deamidase CheD; Provisional 199 -184086 PRK13493 PRK13493 chemoreceptor glutamine deamidase CheD; Provisional 213 -184087 PRK13494 PRK13494 chemoreceptor glutamine deamidase CheD; Provisional 163 -184088 PRK13495 PRK13495 chemoreceptor glutamine deamidase CheD; Provisional 159 -237399 PRK13497 PRK13497 chemoreceptor glutamine deamidase CheD; Provisional 184 -237400 PRK13498 PRK13498 chemoreceptor glutamine deamidase CheD; Provisional 167 -237401 PRK13499 PRK13499 rhamnose-proton symporter; Provisional 345 -184091 PRK13500 PRK13500 transcriptional activator RhaR; Provisional 312 -184092 PRK13501 PRK13501 transcriptional activator RhaR; Provisional 290 -184093 PRK13502 PRK13502 transcriptional activator RhaR; Provisional 282 -184094 PRK13503 PRK13503 transcriptional activator RhaS; Provisional 278 -237402 PRK13504 PRK13504 sulfite reductase subunit beta; Provisional 569 -237403 PRK13505 PRK13505 formate--tetrahydrofolate ligase; Provisional 557 -237404 PRK13506 PRK13506 formate--tetrahydrofolate ligase; Provisional 578 -184098 PRK13507 PRK13507 formate--tetrahydrofolate ligase; Provisional 587 -237405 PRK13508 PRK13508 tagatose-6-phosphate kinase; Provisional 309 -184100 PRK13509 PRK13509 transcriptional repressor UlaR; Provisional 251 -184101 PRK13510 PRK13510 sulfur transfer complex subunit TusB; Provisional 95 -184102 PRK13511 PRK13511 6-phospho-beta-galactosidase; Provisional 469 -184103 PRK13512 PRK13512 coenzyme A disulfide reductase; Provisional 438 -184104 PRK13513 PRK13513 putative outer membrane receptor; Provisional 659 -237406 PRK13515 PRK13515 carboxylate-amine ligase; Provisional 371 -237407 PRK13516 PRK13516 gamma-glutamyl:cysteine ligase; Provisional 373 -237408 PRK13517 PRK13517 carboxylate-amine ligase; Provisional 373 -184108 PRK13518 PRK13518 carboxylate-amine ligase; Provisional 357 -237409 PRK13520 PRK13520 L-tyrosine decarboxylase; Provisional 371 -184110 PRK13523 PRK13523 NADPH dehydrogenase NamA; Provisional 337 -237410 PRK13524 PRK13524 outer membrane receptor FepA; Provisional 744 -237411 PRK13525 PRK13525 glutamine amidotransferase subunit PdxT; Provisional 189 -184113 PRK13526 PRK13526 glutamine amidotransferase subunit PdxT; Provisional 179 -237412 PRK13527 PRK13527 glutamine amidotransferase subunit PdxT; Provisional 200 -237413 PRK13528 PRK13528 outer membrane receptor FepA; Provisional 727 -237414 PRK13529 PRK13529 malate dehydrogenase; Provisional 563 -237415 PRK13530 PRK13530 arsenate reductase; Provisional 133 -184118 PRK13531 PRK13531 regulatory ATPase RavA; Provisional 498 -237416 PRK13532 PRK13532 nitrate reductase catalytic subunit; Provisional 830 -237417 PRK13533 PRK13533 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Provisional 487 -237418 PRK13534 PRK13534 7-cyano-7-deazaguanine tRNA-ribosyltransferase; Provisional 639 -184122 PRK13535 PRK13535 erythrose 4-phosphate dehydrogenase; Provisional 336 -237419 PRK13536 PRK13536 nodulation factor exporter subunit NodI; Provisional 340 -237420 PRK13537 PRK13537 nodulation ABC transporter NodI; Provisional 306 -184125 PRK13538 PRK13538 cytochrome c biogenesis protein CcmA; Provisional 204 -237421 PRK13539 PRK13539 cytochrome c biogenesis protein CcmA; Provisional 207 -184127 PRK13540 PRK13540 cytochrome c biogenesis protein CcmA; Provisional 200 -184128 PRK13541 PRK13541 cytochrome c biogenesis protein CcmA; Provisional 195 -184129 PRK13543 PRK13543 cytochrome c biogenesis protein CcmA; Provisional 214 -184130 PRK13545 tagH teichoic acids export protein ATP-binding subunit; Provisional 549 -184131 PRK13546 PRK13546 teichoic acids export protein ATP-binding subunit; Provisional 264 -184132 PRK13547 hmuV hemin importer ATP-binding subunit; Provisional 272 -237422 PRK13548 hmuV hemin importer ATP-binding subunit; Provisional 258 -184134 PRK13549 PRK13549 xylose transporter ATP-binding subunit; Provisional 506 -184135 PRK13551 PRK13551 agmatine deiminase; Provisional 362 -184136 PRK13552 frdB fumarate reductase iron-sulfur subunit; Provisional 239 -237423 PRK13553 PRK13553 fumarate reductase cytochrome b-556 subunit; Provisional 258 -237424 PRK13554 PRK13554 fumarate reductase cytochrome b-556 subunit; Provisional 241 -184139 PRK13555 PRK13555 azoreductase; Provisional 208 -184140 PRK13556 PRK13556 azoreductase; Provisional 208 -237425 PRK13557 PRK13557 histidine kinase; Provisional 540 -237426 PRK13558 PRK13558 bacterio-opsin activator; Provisional 665 -237427 PRK13559 PRK13559 hypothetical protein; Provisional 361 -106506 PRK13560 PRK13560 hypothetical protein; Provisional 807 -184143 PRK13561 PRK13561 putative diguanylate cyclase; Provisional 651 -184144 PRK13562 PRK13562 acetolactate synthase 1 regulatory subunit; Provisional 84 -237428 PRK13564 PRK13564 anthranilate synthase component I; Provisional 520 -184146 PRK13565 PRK13565 anthranilate synthase component I; Provisional 490 -237429 PRK13566 PRK13566 anthranilate synthase; Provisional 720 -184148 PRK13567 PRK13567 anthranilate synthase component I; Provisional 468 -237430 PRK13568 hofQ putative outer membrane porin HofQ; Provisional 381 -184150 PRK13569 PRK13569 anthranilate synthase component I; Provisional 506 -237431 PRK13570 PRK13570 anthranilate synthase component I; Provisional 455 -184152 PRK13571 PRK13571 anthranilate synthase component I; Provisional 506 -237432 PRK13572 PRK13572 anthranilate synthase component I; Provisional 435 -184154 PRK13573 PRK13573 anthranilate synthase component I; Provisional 503 -184155 PRK13574 PRK13574 anthranilate synthase component I; Provisional 420 -184156 PRK13575 PRK13575 3-dehydroquinate dehydratase; Provisional 238 -237433 PRK13576 PRK13576 3-dehydroquinate dehydratase; Provisional 216 -184158 PRK13577 PRK13577 diaminopimelate epimerase; Provisional 281 -237434 PRK13578 PRK13578 ornithine decarboxylase; Provisional 720 -237435 PRK13579 gcvT glycine cleavage system aminomethyltransferase T; Provisional 370 -184161 PRK13580 PRK13580 serine hydroxymethyltransferase; Provisional 493 -237436 PRK13581 PRK13581 D-3-phosphoglycerate dehydrogenase; Provisional 526 -237437 PRK13582 thrH phosphoserine phosphatase; Provisional 205 -237438 PRK13583 hisG ATP phosphoribosyltransferase catalytic subunit; Provisional 228 -172153 PRK13584 hisG ATP phosphoribosyltransferase catalytic subunit; Provisional 204 -184165 PRK13585 PRK13585 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Provisional 241 -237439 PRK13586 PRK13586 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Provisional 232 -172156 PRK13587 PRK13587 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Provisional 234 -237440 PRK13588 PRK13588 flagellin B; Provisional 514 -172158 PRK13589 PRK13589 flagellin; Provisional 576 -184168 PRK13590 PRK13590 putative bifunctional OHCU decarboxylase/allantoate amidohydrolase; Provisional 591 -184169 PRK13591 ubiA prenyltransferase; Provisional 307 -139690 PRK13592 ubiA prenyltransferase; Provisional 299 -172161 PRK13595 ubiA prenyltransferase; Provisional 292 -237441 PRK13596 PRK13596 NADH dehydrogenase I subunit F; Provisional 433 -184171 PRK13598 hisB imidazoleglycerol-phosphate dehydratase; Provisional 193 -106544 PRK13599 PRK13599 putative peroxiredoxin; Provisional 215 -184172 PRK13600 PRK13600 putative ribosomal protein L7Ae-like; Provisional 84 -184173 PRK13601 PRK13601 putative L7Ae-like ribosomal protein; Provisional 82 -184174 PRK13602 PRK13602 putative ribosomal protein L7Ae-like; Provisional 82 -172166 PRK13603 PRK13603 fumarate reductase subunit C; Provisional 126 -184175 PRK13604 luxD acyl transferase; Provisional 307 -237442 PRK13605 PRK13605 endoribonuclease SymE; Provisional 113 -237443 PRK13606 PRK13606 LPPG:FO 2-phospho-L-lactate transferase; Provisional 303 -237444 PRK13607 PRK13607 proline dipeptidase; Provisional 443 -184179 PRK13608 PRK13608 diacylglycerol glucosyltransferase; Provisional 391 -237445 PRK13609 PRK13609 diacylglycerol glucosyltransferase; Provisional 380 -139699 PRK13610 PRK13610 photosystem II reaction center protein Psb28; Provisional 113 -106556 PRK13611 PRK13611 photosystem II reaction center protein Psb28; Provisional 104 -237446 PRK13612 PRK13612 photosystem II reaction center protein Psb28; Provisional 113 -237447 PRK13613 PRK13613 lipoprotein LpqB; Provisional 599 -237448 PRK13614 PRK13614 lipoprotein LpqB; Provisional 573 -184183 PRK13615 PRK13615 lipoprotein LpqB; Provisional 557 -237449 PRK13616 PRK13616 lipoprotein LpqB; Provisional 591 -106562 PRK13617 psbV cytochrome c-550; Provisional 170 -184185 PRK13618 psbV cytochrome c-550; Provisional 163 -172177 PRK13619 psbV cytochrome c-550; Provisional 160 -139707 PRK13620 psbV cytochrome c-550; Provisional 215 -237450 PRK13621 psbV cytochrome c-550; Provisional 170 -106567 PRK13622 psbV cytochrome c-550; Provisional 180 -184186 PRK13623 PRK13623 iron-sulfur cluster insertion protein ErpA; Provisional 115 -184187 PRK13625 PRK13625 bis(5'-nucleosyl)-tetraphosphatase PrpE; Provisional 245 -184188 PRK13626 PRK13626 transcriptional regulator SgrR; Provisional 552 -184189 PRK13627 PRK13627 carnitine operon protein CaiE; Provisional 196 -184190 PRK13628 PRK13628 serine/threonine transporter SstT; Provisional 402 -184191 PRK13629 PRK13629 threonine/serine transporter TdcC; Provisional 443 -237451 PRK13631 cbiO cobalt transporter ATP-binding subunit; Provisional 320 -237452 PRK13632 cbiO cobalt transporter ATP-binding subunit; Provisional 271 -237453 PRK13633 PRK13633 cobalt transporter ATP-binding subunit; Provisional 280 -237454 PRK13634 cbiO cobalt transporter ATP-binding subunit; Provisional 290 -184195 PRK13635 cbiO cobalt transporter ATP-binding subunit; Provisional 279 -184196 PRK13636 cbiO cobalt transporter ATP-binding subunit; Provisional 283 -237455 PRK13637 cbiO cobalt transporter ATP-binding subunit; Provisional 287 -184198 PRK13638 cbiO cobalt transporter ATP-binding subunit; Provisional 271 -184199 PRK13639 cbiO cobalt transporter ATP-binding subunit; Provisional 275 -184200 PRK13640 cbiO cobalt transporter ATP-binding subunit; Provisional 282 -237456 PRK13641 cbiO cobalt transporter ATP-binding subunit; Provisional 287 -184202 PRK13642 cbiO cobalt transporter ATP-binding subunit; Provisional 277 -184203 PRK13643 cbiO cobalt transporter ATP-binding subunit; Provisional 288 -106587 PRK13644 cbiO cobalt transporter ATP-binding subunit; Provisional 274 -184204 PRK13645 cbiO cobalt transporter ATP-binding subunit; Provisional 289 -184205 PRK13646 cbiO cobalt transporter ATP-binding subunit; Provisional 286 -237457 PRK13647 cbiO cobalt transporter ATP-binding subunit; Provisional 274 -184207 PRK13648 cbiO cobalt transporter ATP-binding subunit; Provisional 269 -184208 PRK13649 cbiO cobalt transporter ATP-binding subunit; Provisional 280 -184209 PRK13650 cbiO cobalt transporter ATP-binding subunit; Provisional 279 -184210 PRK13651 PRK13651 cobalt transporter ATP-binding subunit; Provisional 305 -172200 PRK13652 cbiO cobalt transporter ATP-binding subunit; Provisional 277 -237458 PRK13654 PRK13654 magnesium-protoporphyrin IX monomethyl ester cyclase; Provisional 355 -237459 PRK13655 PRK13655 phosphoenolpyruvate carboxylase; Provisional 494 -237460 PRK13656 PRK13656 trans-2-enoyl-CoA reductase; Provisional 398 -184214 PRK13657 PRK13657 cyclic beta-1,2-glucan ABC transporter; Provisional 588 -184215 PRK13658 PRK13658 hypothetical protein; Provisional 59 -184216 PRK13659 PRK13659 hypothetical protein; Provisional 103 -237461 PRK13660 PRK13660 hypothetical protein; Provisional 182 -184218 PRK13661 PRK13661 hypothetical protein; Provisional 182 -184219 PRK13662 PRK13662 hypothetical protein; Provisional 177 -184220 PRK13663 PRK13663 hypothetical protein; Provisional 493 -184221 PRK13664 PRK13664 hypothetical protein; Provisional 62 -237462 PRK13665 PRK13665 hypothetical protein; Provisional 316 -184223 PRK13666 PRK13666 hypothetical protein; Provisional 92 -184224 PRK13667 PRK13667 hypothetical protein; Provisional 70 -237463 PRK13668 PRK13668 hypothetical protein; Provisional 267 -184226 PRK13669 PRK13669 hypothetical protein; Provisional 78 -237464 PRK13670 PRK13670 hypothetical protein; Provisional 388 -184228 PRK13671 PRK13671 hypothetical protein; Provisional 298 -184229 PRK13672 PRK13672 hypothetical protein; Provisional 71 -237465 PRK13673 PRK13673 hypothetical protein; Provisional 118 -237466 PRK13674 PRK13674 putative GTP cyclohydrolase; Provisional 271 -184232 PRK13675 PRK13675 GTP cyclohydrolase; Provisional 308 -237467 PRK13676 PRK13676 hypothetical protein; Provisional 114 -184234 PRK13677 PRK13677 hypothetical protein; Provisional 125 -184235 PRK13678 PRK13678 hypothetical protein; Provisional 95 -184236 PRK13679 PRK13679 hypothetical protein; Provisional 168 -184237 PRK13680 PRK13680 hypothetical protein; Provisional 117 -184238 PRK13681 PRK13681 hypothetical protein; Provisional 35 -184239 PRK13682 PRK13682 hypothetical protein; Provisional 51 -184240 PRK13683 PRK13683 hypothetical protein; Provisional 87 -237468 PRK13684 PRK13684 Ycf48-like protein; Provisional 334 -184242 PRK13685 PRK13685 hypothetical protein; Provisional 326 -237469 PRK13686 PRK13686 hypothetical protein; Provisional 43 -184244 PRK13687 PRK13687 hypothetical protein; Provisional 85 -237470 PRK13688 PRK13688 hypothetical protein; Provisional 156 -237471 PRK13689 PRK13689 hypothetical protein; Provisional 75 -237472 PRK13690 PRK13690 hypothetical protein; Provisional 184 -139768 PRK13691 PRK13691 (3R)-hydroxyacyl-ACP dehydratase subunit HadC; Provisional 166 -237473 PRK13692 PRK13692 (3R)-hydroxyacyl-ACP dehydratase subunit HadA; Provisional 159 -184249 PRK13693 PRK13693 (3R)-hydroxyacyl-ACP dehydratase subunit HadB; Provisional 142 -237474 PRK13694 PRK13694 hypothetical protein; Provisional 83 -237475 PRK13695 PRK13695 putative NTPase; Provisional 174 -237476 PRK13696 PRK13696 hypothetical protein; Provisional 62 -184253 PRK13697 PRK13697 cytochrome c6; Provisional 111 -184254 PRK13698 PRK13698 plasmid-partitioning protein; Provisional 323 -184255 PRK13699 PRK13699 putative methylase; Provisional 227 -184256 PRK13700 PRK13700 conjugal transfer protein TraD; Provisional 732 -237477 PRK13701 psiB plasmid SOS inhibition protein B; Provisional 144 -184258 PRK13702 PRK13702 replication protein; Provisional 85 -184259 PRK13703 PRK13703 conjugal pilus assembly protein TraF; Provisional 248 -184260 PRK13704 PRK13704 plasmid SOS inhibition protein A; Provisional 240 -184261 PRK13705 PRK13705 plasmid-partitioning protein SopA; Provisional 388 -184262 PRK13706 PRK13706 conjugal transfer pilus acetylation protein TraX; Provisional 248 -184263 PRK13707 PRK13707 conjugal transfer pilus assembly protein TraL; Provisional 101 -184264 PRK13708 PRK13708 plasmid maintenance protein CcdB; Provisional 101 -237478 PRK13709 PRK13709 conjugal transfer nickase/helicase TraI; Provisional 1747 -184266 PRK13710 PRK13710 plasmid maintenance protein CcdA; Provisional 72 -184267 PRK13711 PRK13711 conjugal transfer protein TrbJ; Provisional 113 -184268 PRK13712 PRK13712 conjugal transfer protein TrbA; Provisional 115 -184269 PRK13713 PRK13713 conjugal transfer protein TraM; Provisional 118 -184270 PRK13715 PRK13715 conjugal transfer protein TraR; Provisional 73 -106657 PRK13716 PRK13716 leader peptide RepL; Provisional 24 -184271 PRK13717 PRK13717 conjugal transfer protein TrbI; Provisional 128 -172260 PRK13718 PRK13718 conjugal transfer protein TrbE; Provisional 84 -237479 PRK13719 PRK13719 conjugal transfer transcriptional regulator TraJ; Provisional 217 -172262 PRK13720 PRK13720 modulator of post-segregation killing protein; Provisional 70 -237480 PRK13721 PRK13721 conjugal transfer ATP-binding protein TraC; Provisional 844 -184274 PRK13722 PRK13722 lytic transglycosylase; Provisional 169 -237481 PRK13723 PRK13723 conjugal transfer pilus assembly protein TraH; Provisional 451 -237482 PRK13724 PRK13724 conjugal transfer protein TrbD; Provisional 65 -184277 PRK13725 PRK13725 plasmid maintenance protein; Provisional 132 -184278 PRK13726 PRK13726 conjugal transfer pilus assembly protein TraE; Provisional 188 -237483 PRK13727 PRK13727 conjugal transfer pilin chaperone TraQ; Provisional 80 -237484 PRK13728 PRK13728 conjugal transfer protein TrbB; Provisional 181 -184281 PRK13729 PRK13729 conjugal transfer pilus assembly protein TraB; Provisional 475 -184282 PRK13730 PRK13730 conjugal transfer pilus assembly protein TrbC; Provisional 212 -184283 PRK13731 PRK13731 conjugal transfer surface exclusion protein TraT; Provisional 243 -184284 PRK13732 PRK13732 single-stranded DNA-binding protein; Provisional 175 -184285 PRK13733 PRK13733 conjugal transfer protein TraV; Provisional 171 -237485 PRK13734 PRK13734 conjugal transfer pilin subunit TraA; Provisional 120 -184287 PRK13735 PRK13735 conjugal transfer mating pair stabilization protein TraG; Provisional 942 -237486 PRK13736 PRK13736 conjugal transfer protein TraK; Provisional 245 -237487 PRK13737 PRK13737 conjugal transfer pilus assembly protein TraU; Provisional 330 -184290 PRK13738 PRK13738 conjugal transfer pilus assembly protein TraW; Provisional 209 -237488 PRK13739 PRK13739 conjugal transfer protein TraP; Provisional 198 -184292 PRK13740 PRK13740 conjugal transfer protein TraY; Provisional 70 -172283 PRK13741 PRK13741 conjugal transfer entry exclusion protein TraS; Provisional 171 -184293 PRK13742 PRK13742 replication protein; Provisional 245 -184294 PRK13743 PRK13743 conjugal transfer protein TrbF; Provisional 141 -139817 PRK13744 PRK13744 conjugal transfer protein TrbG; Provisional 83 -237489 PRK13745 PRK13745 anaerobic sulfatase-maturase; Provisional 412 -184296 PRK13746 PRK13746 aminoglycoside resistance protein; Provisional 262 -184297 PRK13747 PRK13747 putative mercury resistance protein; Provisional 78 -184298 PRK13748 PRK13748 putative mercuric reductase; Provisional 561 -184299 PRK13749 PRK13749 transcriptional regulator MerD; Provisional 121 -184300 PRK13750 PRK13750 replication protein; Provisional 285 -184301 PRK13751 PRK13751 putative mercuric transport protein; Provisional 116 -184302 PRK13752 PRK13752 putative transcriptional regulator MerR; Provisional 144 -184303 PRK13753 PRK13753 dihydropteroate synthase; Provisional 279 -184304 PRK13754 PRK13754 conjugal transfer fertility inhibition protein FinO; Provisional 186 -237490 PRK13755 PRK13755 putative mercury transport protein MerC; Provisional 139 -172294 PRK13756 PRK13756 tetracycline repressor protein TetR; Provisional 205 -172295 PRK13757 PRK13757 chloramphenicol acetyltransferase; Provisional 219 -172296 PRK13758 PRK13758 anaerobic sulfatase-maturase; Provisional 370 -237491 PRK13759 PRK13759 arylsulfatase; Provisional 485 -237492 PRK13760 PRK13760 putative RNA-associated protein; Provisional 231 -184308 PRK13761 PRK13761 hypothetical protein; Provisional 248 -237493 PRK13762 PRK13762 tRNA-modifying enzyme; Provisional 322 -237494 PRK13763 PRK13763 putative RNA-processing protein; Provisional 180 -184311 PRK13764 PRK13764 ATPase; Provisional 602 -237495 PRK13765 PRK13765 ATP-dependent protease Lon; Provisional 637 -237496 PRK13766 PRK13766 Hef nuclease; Provisional 773 -237497 PRK13767 PRK13767 ATP-dependent helicase; Provisional 876 -237498 PRK13768 PRK13768 GTPase; Provisional 253 -172307 PRK13769 PRK13769 histidinol dehydrogenase; Provisional 368 -172308 PRK13770 PRK13770 histidinol dehydrogenase; Provisional 416 -184316 PRK13771 PRK13771 putative alcohol dehydrogenase; Provisional 334 -172310 PRK13772 PRK13772 formimidoylglutamase; Provisional 314 -237499 PRK13773 PRK13773 formimidoylglutamase; Provisional 324 -184317 PRK13774 PRK13774 formimidoylglutamase; Provisional 311 -172313 PRK13775 PRK13775 formimidoylglutamase; Provisional 328 -237500 PRK13776 PRK13776 formimidoylglutamase; Provisional 318 -237501 PRK13777 PRK13777 transcriptional regulator Hpr; Provisional 185 -184320 PRK13778 paaA phenylacetate-CoA oxygenase subunit PaaA; Provisional 314 -237502 PRK13779 PRK13779 bifunctional PTS system fructose-specific transporter subunit IIA/HPr protein; Provisional 503 -237503 PRK13780 PRK13780 phosphocarrier protein HPr; Provisional 88 -237504 PRK13781 paaB phenylacetate-CoA oxygenase subunit PaaB; Provisional 95 -172320 PRK13782 PRK13782 phosphocarrier protein Chr; Provisional 82 -237505 PRK13783 PRK13783 adenylosuccinate synthetase; Provisional 404 -172322 PRK13784 PRK13784 adenylosuccinate synthetase; Provisional 428 -237506 PRK13785 PRK13785 adenylosuccinate synthetase; Provisional 454 -184325 PRK13786 PRK13786 adenylosuccinate synthetase; Provisional 424 -172324 PRK13787 PRK13787 adenylosuccinate synthetase; Provisional 423 -184326 PRK13788 PRK13788 adenylosuccinate synthetase; Provisional 404 -184327 PRK13789 PRK13789 phosphoribosylamine--glycine ligase; Provisional 426 -237507 PRK13790 PRK13790 phosphoribosylamine--glycine ligase; Provisional 379 -237508 PRK13791 PRK13791 lysozyme inhibitor; Provisional 113 -106733 PRK13792 PRK13792 lysozyme inhibitor; Provisional 127 -184329 PRK13793 PRK13793 nicotinamide-nucleotide adenylyltransferase; Provisional 196 -237509 PRK13794 PRK13794 hypothetical protein; Provisional 479 -237510 PRK13795 PRK13795 hypothetical protein; Provisional 636 -237511 PRK13796 PRK13796 GTPase YqeH; Provisional 365 -106738 PRK13797 PRK13797 putative bifunctional allantoicase/OHCU decarboxylase; Provisional 516 -184333 PRK13798 PRK13798 putative OHCU decarboxylase; Provisional 166 -106740 PRK13799 PRK13799 unknown domain/N-carbamoyl-L-amino acid hydrolase fusion protein; Provisional 591 -237512 PRK13800 PRK13800 putative oxidoreductase/HEAT repeat-containing protein; Provisional 897 -184335 PRK13802 PRK13802 bifunctional indole-3-glycerol phosphate synthase/tryptophan synthase subunit beta; Provisional 695 -237513 PRK13803 PRK13803 bifunctional phosphoribosylanthranilate isomerase/tryptophan synthase subunit beta; Provisional 610 -237514 PRK13804 ileS isoleucyl-tRNA synthetase; Provisional 961 -237515 PRK13805 PRK13805 bifunctional acetaldehyde-CoA/alcohol dehydrogenase; Provisional 862 -237516 PRK13806 rpsA 30S ribosomal protein S1; Provisional 491 -237517 PRK13807 PRK13807 maltose phosphorylase; Provisional 756 -172341 PRK13808 PRK13808 adenylate kinase; Provisional 333 -184340 PRK13809 PRK13809 orotate phosphoribosyltransferase; Provisional 206 -184341 PRK13810 PRK13810 orotate phosphoribosyltransferase; Provisional 187 -237518 PRK13811 PRK13811 orotate phosphoribosyltransferase; Provisional 170 -237519 PRK13812 PRK13812 orotate phosphoribosyltransferase; Provisional 176 -237520 PRK13813 PRK13813 orotidine 5'-phosphate decarboxylase; Provisional 215 -139876 PRK13814 pyrB aspartate carbamoyltransferase catalytic subunit; Provisional 310 -172345 PRK13815 PRK13815 ribosome-binding factor A; Provisional 122 -184344 PRK13816 PRK13816 ribosome-binding factor A; Provisional 131 -139879 PRK13817 PRK13817 ribosome-binding factor A; Provisional 119 -184345 PRK13818 PRK13818 ribosome-binding factor A; Provisional 121 -237521 PRK13820 PRK13820 argininosuccinate synthase; Provisional 394 -184347 PRK13821 thyA thymidylate synthase; Provisional 323 -237522 PRK13822 PRK13822 conjugal transfer coupling protein TraG; Provisional 641 -184348 PRK13823 PRK13823 conjugal transfer protein TrbD; Provisional 94 -184349 PRK13824 PRK13824 replication initiation protein RepC; Provisional 404 -237523 PRK13825 PRK13825 conjugal transfer protein TraB; Provisional 388 -237524 PRK13826 PRK13826 Dtr system oriT relaxase; Provisional 1102 -184351 PRK13828 rimM 16S rRNA-processing protein RimM; Provisional 161 -184352 PRK13829 rimM 16S rRNA-processing protein RimM; Provisional 162 -237525 PRK13830 PRK13830 conjugal transfer protein TrbE; Provisional 818 -172358 PRK13831 PRK13831 conjugal transfer protein TrbI; Provisional 432 -184353 PRK13832 PRK13832 plasmid partitioning protein; Provisional 520 -172360 PRK13833 PRK13833 conjugal transfer protein TrbB; Provisional 323 -172361 PRK13834 PRK13834 putative autoinducer synthesis protein; Provisional 207 -172362 PRK13835 PRK13835 conjugal transfer protein TrbH; Provisional 145 -172363 PRK13836 PRK13836 conjugal transfer protein TrbF; Provisional 220 -237526 PRK13837 PRK13837 two-component VirA-like sensor kinase; Provisional 828 -172365 PRK13838 PRK13838 conjugal transfer pilin processing protease TraF; Provisional 176 -237527 PRK13839 PRK13839 conjugal transfer protein TrbG; Provisional 277 -237528 PRK13840 PRK13840 sucrose phosphorylase; Provisional 495 -237529 PRK13841 PRK13841 conjugal transfer protein TrbL; Provisional 391 -172369 PRK13842 PRK13842 conjugal transfer protein TrbJ; Provisional 267 -237530 PRK13843 PRK13843 conjugal transfer protein TraH; Provisional 207 -139904 PRK13844 PRK13844 recombination protein RecR; Provisional 200 -172371 PRK13845 PRK13845 putative glycerol-3-phosphate acyltransferase PlsX; Provisional 437 -139906 PRK13846 PRK13846 putative glycerol-3-phosphate acyltransferase PlsX; Provisional 316 -172372 PRK13847 PRK13847 conjugal transfer protein TraD; Provisional 71 -172373 PRK13848 PRK13848 conjugal transfer protein TraC; Provisional 98 -139909 PRK13849 PRK13849 putative crown gall tumor protein VirC1; Provisional 231 -237531 PRK13850 PRK13850 type IV secretion system protein VirD4; Provisional 670 -172375 PRK13851 PRK13851 type IV secretion system protein VirB11; Provisional 344 -139912 PRK13852 PRK13852 type IV secretion system protein VirB6; Provisional 295 -139913 PRK13853 PRK13853 type IV secretion system protein VirB4; Provisional 789 -139914 PRK13854 PRK13854 type IV secretion system protein VirB3; Provisional 108 -172376 PRK13855 PRK13855 type IV secretion system protein VirB10; Provisional 376 -172377 PRK13856 PRK13856 two-component response regulator VirG; Provisional 241 -172378 PRK13857 PRK13857 type IV secretion system pilin subunit VirB2; Provisional 120 -237532 PRK13858 PRK13858 type IV secretion system T-DNA border endonuclease VirD1; Provisional 147 -172380 PRK13859 PRK13859 type IV secretion system lipoprotein VirB7; Provisional 55 -172381 PRK13860 PRK13860 type IV secretion system protein VirB5; Provisional 220 -172382 PRK13861 PRK13861 type IV secretion system protein VirB9; Provisional 292 -172383 PRK13862 PRK13862 putative crown gall tumor protein VirC2; Provisional 201 -237533 PRK13863 PRK13863 type IV secretion system T-DNA border endonuclease VirD2; Provisional 446 -237534 PRK13864 PRK13864 type IV secretion system lytic transglycosylase VirB1; Provisional 245 -172386 PRK13865 PRK13865 type IV secretion system protein VirB8; Provisional 229 -172387 PRK13866 PRK13866 plasmid partitioning protein RepB; Provisional 336 -172388 PRK13867 PRK13867 type IV secretion system chaperone VirE1; Provisional 65 -237535 PRK13868 PRK13868 type IV secretion system single-stranded DNA binding protein VirE2; Provisional 556 -139929 PRK13869 PRK13869 plasmid-partitioning protein RepA; Provisional 405 -172390 PRK13870 PRK13870 transcriptional regulator TraR; Provisional 234 -172391 PRK13871 PRK13871 conjugal transfer protein TrbC; Provisional 135 -184356 PRK13872 PRK13872 conjugal transfer protein TrbF; Provisional 228 -237536 PRK13873 PRK13873 conjugal transfer ATPase TrbE; Provisional 811 -184358 PRK13874 PRK13874 conjugal transfer protein TrbJ; Provisional 230 -237537 PRK13875 PRK13875 conjugal transfer protein TrbL; Provisional 440 -237538 PRK13876 PRK13876 conjugal transfer coupling protein TraG; Provisional 663 -184361 PRK13877 PRK13877 conjugal transfer relaxosome component TraJ; Provisional 114 -237539 PRK13878 PRK13878 conjugal transfer relaxase TraI; Provisional 746 -184363 PRK13879 PRK13879 conjugal transfer protein TrbJ; Provisional 253 -237540 PRK13880 PRK13880 conjugal transfer coupling protein TraG; Provisional 636 -237541 PRK13881 PRK13881 conjugal transfer protein TrbI; Provisional 472 -237542 PRK13882 PRK13882 conjugal transfer protein TrbP; Provisional 232 -184367 PRK13883 PRK13883 conjugal transfer protein TrbH; Provisional 151 -184368 PRK13884 PRK13884 conjugal transfer peptidase TraF; Provisional 178 -237543 PRK13885 PRK13885 conjugal transfer protein TrbG; Provisional 299 -184370 PRK13886 PRK13886 conjugal transfer protein TraL; Provisional 241 -237544 PRK13887 PRK13887 conjugal transfer protein TrbF; Provisional 250 -237545 PRK13888 PRK13888 conjugal transfer protein TrbN; Provisional 206 -237546 PRK13889 PRK13889 conjugal transfer relaxase TraA; Provisional 988 -237547 PRK13890 PRK13890 conjugal transfer protein TrbA; Provisional 120 -184375 PRK13891 PRK13891 conjugal transfer protein TrbE; Provisional 852 -184376 PRK13892 PRK13892 conjugal transfer protein TrbC; Provisional 134 -237548 PRK13893 PRK13893 conjugal transfer protein TrbM; Provisional 193 -184377 PRK13894 PRK13894 conjugal transfer ATPase TrbB; Provisional 319 -184378 PRK13895 PRK13895 conjugal transfer protein TraM; Provisional 144 -184379 PRK13896 PRK13896 cobyrinic acid a,c-diamide synthase; Provisional 433 -237549 PRK13897 PRK13897 type IV secretion system component VirD4; Provisional 606 -172418 PRK13898 PRK13898 type IV secretion system ATPase VirB4; Provisional 800 -237550 PRK13899 PRK13899 type IV secretion system protein VirB3; Provisional 97 -184381 PRK13900 PRK13900 type IV secretion system ATPase VirB11; Provisional 332 -139961 PRK13901 ruvA Holliday junction DNA helicase RuvA; Provisional 196 -237551 PRK13902 alaS alanyl-tRNA synthetase; Provisional 900 -237552 PRK13903 murB UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 363 -184384 PRK13904 murB UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 257 -237553 PRK13905 murB UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 298 -184386 PRK13906 murB UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 307 -139967 PRK13907 rnhA ribonuclease H; Provisional 128 -184387 PRK13908 PRK13908 putative recombination protein RecO; Provisional 204 -237554 PRK13909 PRK13909 putative recombination protein RecB; Provisional 910 -172427 PRK13910 PRK13910 DNA glycosylase MutY; Provisional 289 -139971 PRK13911 PRK13911 exodeoxyribonuclease III; Provisional 250 -184389 PRK13912 PRK13912 nuclease NucT; Provisional 177 -184390 PRK13913 PRK13913 3-methyladenine DNA glycosylase; Provisional 218 -237555 PRK13914 PRK13914 invasion associated secreted endopeptidase; Provisional 481 -237556 PRK13915 PRK13915 putative glucosyl-3-phosphoglycerate synthase; Provisional 306 -139976 PRK13916 PRK13916 plasmid segregation protein ParR; Provisional 97 -184393 PRK13917 PRK13917 plasmid segregation protein ParM; Provisional 344 -237557 PRK13918 PRK13918 CRP/FNR family transcriptional regulator; Provisional 202 -184395 PRK13919 PRK13919 putative RNA polymerase sigma E protein; Provisional 186 -237558 PRK13920 PRK13920 putative anti-sigmaE protein; Provisional 206 -237559 PRK13921 PRK13921 CRISPR-associated Cse2 family protein; Provisional 173 -237560 PRK13922 PRK13922 rod shape-determining protein MreC; Provisional 276 -237561 PRK13923 PRK13923 putative spore coat protein regulator protein YlbO; Provisional 170 -184399 PRK13925 rnhB ribonuclease HII; Provisional 198 -184400 PRK13926 PRK13926 ribonuclease HII; Provisional 207 -237562 PRK13927 PRK13927 rod shape-determining protein MreB; Provisional 334 -237563 PRK13928 PRK13928 rod shape-determining protein Mbl; Provisional 336 -184403 PRK13929 PRK13929 rod-share determining protein MreBH; Provisional 335 -237564 PRK13930 PRK13930 rod shape-determining protein MreB; Provisional 335 -184405 PRK13931 PRK13931 stationary phase survival protein SurE; Provisional 261 -172445 PRK13932 PRK13932 stationary phase survival protein SurE; Provisional 257 -184406 PRK13933 PRK13933 stationary phase survival protein SurE; Provisional 253 -237565 PRK13934 PRK13934 stationary phase survival protein SurE; Provisional 266 -237566 PRK13935 PRK13935 stationary phase survival protein SurE; Provisional 253 -237567 PRK13936 PRK13936 phosphoheptose isomerase; Provisional 197 -184408 PRK13937 PRK13937 phosphoheptose isomerase; Provisional 188 -139997 PRK13938 PRK13938 phosphoheptose isomerase; Provisional 196 -172450 PRK13940 PRK13940 glutamyl-tRNA reductase; Provisional 414 -184409 PRK13942 PRK13942 protein-L-isoaspartate O-methyltransferase; Provisional 212 -237568 PRK13943 PRK13943 protein-L-isoaspartate O-methyltransferase; Provisional 322 -140001 PRK13944 PRK13944 protein-L-isoaspartate O-methyltransferase; Provisional 205 -184410 PRK13945 PRK13945 formamidopyrimidine-DNA glycosylase; Provisional 282 -184411 PRK13946 PRK13946 shikimate kinase; Provisional 184 -184412 PRK13947 PRK13947 shikimate kinase; Provisional 171 -184413 PRK13948 PRK13948 shikimate kinase; Provisional 182 -140006 PRK13949 PRK13949 shikimate kinase; Provisional 169 -172457 PRK13951 PRK13951 bifunctional shikimate kinase/3-dehydroquinate synthase; Provisional 488 -237569 PRK13952 mscL large-conductance mechanosensitive channel; Provisional 142 -184415 PRK13953 mscL large-conductance mechanosensitive channel; Provisional 125 -172460 PRK13954 mscL large-conductance mechanosensitive channel; Provisional 119 -184416 PRK13955 mscL large-conductance mechanosensitive channel; Provisional 130 -184417 PRK13956 dut deoxyuridine 5'-triphosphate nucleotidohydrolase; Provisional 147 -140013 PRK13957 PRK13957 indole-3-glycerol-phosphate synthase; Provisional 247 -184418 PRK13958 PRK13958 N-(5'-phosphoribosyl)anthranilate isomerase; Provisional 207 -237570 PRK13959 PRK13959 phosphoribosylaminoimidazole-succinocarboxamide synthase; Provisional 341 -184420 PRK13960 PRK13960 phosphoribosylaminoimidazole-succinocarboxamide synthase; Provisional 367 -237571 PRK13961 PRK13961 phosphoribosylaminoimidazole-succinocarboxamide synthase; Provisional 296 -237572 PRK13962 PRK13962 bifunctional phosphoglycerate kinase/triosephosphate isomerase; Provisional 645 -237573 PRK13963 PRK13963 unkown domain/putative metalloprotease fusion protein; Provisional 258 -184424 PRK13964 coaD phosphopantetheine adenylyltransferase; Provisional 140 -184425 PRK13965 PRK13965 ribonucleotide-diphosphate reductase subunit beta; Provisional 335 -140022 PRK13966 nrdF2 ribonucleotide-diphosphate reductase subunit beta; Provisional 324 -140023 PRK13967 nrdF1 ribonucleotide-diphosphate reductase subunit beta; Provisional 322 -184426 PRK13968 PRK13968 putative succinate semialdehyde dehydrogenase; Provisional 462 -184427 PRK13969 PRK13969 proline racemase; Provisional 334 -172473 PRK13970 PRK13970 hydroxyproline-2-epimerase; Provisional 311 -184428 PRK13971 PRK13971 hydroxyproline-2-epimerase; Provisional 333 -172475 PRK13972 PRK13972 GSH-dependent disulfide bond oxidoreductase; Provisional 215 -184429 PRK13973 PRK13973 thymidylate kinase; Provisional 213 -172477 PRK13974 PRK13974 thymidylate kinase; Provisional 212 -184430 PRK13975 PRK13975 thymidylate kinase; Provisional 196 -237574 PRK13976 PRK13976 thymidylate kinase; Provisional 209 -237575 PRK13977 PRK13977 myosin-cross-reactive antigen; Provisional 576 -184433 PRK13978 PRK13978 ribose-5-phosphate isomerase A; Provisional 228 -237576 PRK13979 PRK13979 DNA topoisomerase IV subunit A; Provisional 957 -184435 PRK13980 PRK13980 NAD synthetase; Provisional 265 -237577 PRK13981 PRK13981 NAD synthetase; Provisional 540 -172484 PRK13982 PRK13982 bifunctional SbtC-like/phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Provisional 475 -237578 PRK13983 PRK13983 diaminopimelate aminotransferase; Provisional 400 -172486 PRK13984 PRK13984 putative oxidoreductase; Provisional 604 -184438 PRK13985 ureB urease subunit beta; Provisional 568 -184439 PRK13986 PRK13986 urease subunit alpha; Provisional 225 -237579 PRK13987 PRK13987 cell division topological specificity factor MinE; Provisional 91 -184441 PRK13988 PRK13988 cell division topological specificity factor MinE; Provisional 97 -184442 PRK13989 PRK13989 cell division topological specificity factor MinE; Provisional 84 -172492 PRK13990 PRK13990 cell division topological specificity factor MinE; Provisional 90 -172493 PRK13991 PRK13991 cell division topological specificity factor MinE; Provisional 87 -237580 PRK13992 minC septum formation inhibitor; Provisional 205 -237581 PRK13994 PRK13994 potassium-transporting ATPase subunit C; Provisional 222 -184445 PRK13995 PRK13995 potassium-transporting ATPase subunit C; Provisional 203 -172497 PRK13996 PRK13996 potassium-transporting ATPase subunit C; Provisional 197 -172498 PRK13997 PRK13997 potassium-transporting ATPase subunit C; Provisional 193 -172499 PRK13998 PRK13998 potassium-transporting ATPase subunit C; Provisional 186 -172500 PRK13999 PRK13999 potassium-transporting ATPase subunit C; Provisional 201 -184446 PRK14000 PRK14000 potassium-transporting ATPase subunit C; Provisional 185 -172502 PRK14001 PRK14001 potassium-transporting ATPase subunit C; Provisional 189 -172503 PRK14002 PRK14002 potassium-transporting ATPase subunit C; Provisional 186 -184447 PRK14003 PRK14003 potassium-transporting ATPase subunit C; Provisional 194 -172505 PRK14004 hisH imidazole glycerol phosphate synthase subunit HisH; Provisional 210 -184448 PRK14010 PRK14010 potassium-transporting ATPase subunit B; Provisional 673 -237582 PRK14011 PRK14011 prefoldin subunit alpha; Provisional 144 -184450 PRK14012 PRK14012 cysteine desulfurase; Provisional 404 -237583 PRK14013 PRK14013 hypothetical protein; Provisional 338 -237584 PRK14014 PRK14014 putative acyltransferase; Provisional 301 -237585 PRK14015 pepN aminopeptidase N; Provisional 875 -237586 PRK14016 PRK14016 cyanophycin synthetase; Provisional 727 -184455 PRK14017 PRK14017 galactonate dehydratase; Provisional 382 -184456 PRK14018 PRK14018 trifunctional thioredoxin/methionine sulfoxide reductase A/B protein; Provisional 521 -237587 PRK14019 PRK14019 bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II-like protein; Provisional 367 -184458 PRK14021 PRK14021 bifunctional shikimate kinase/3-dehydroquinate synthase; Provisional 542 -237588 PRK14022 PRK14022 UDP-N-acetylmuramoylalanyl-D-glutamate--L-lysine ligase; Provisional 481 -184460 PRK14023 PRK14023 homoaconitate hydratase small subunit; Provisional 166 -237589 PRK14024 PRK14024 phosphoribosyl isomerase A; Provisional 241 -184462 PRK14025 PRK14025 multifunctional 3-isopropylmalate dehydrogenase/D-malate dehydrogenase; Provisional 330 -172521 PRK14027 PRK14027 quinate/shikimate dehydrogenase; Provisional 283 -172522 PRK14028 PRK14028 pyruvate ferredoxin oxidoreductase subunit gamma/delta; Provisional 312 -172523 PRK14029 PRK14029 pyruvate/ketoisovalerate ferredoxin oxidoreductase subunit gamma; Provisional 185 -184463 PRK14030 PRK14030 glutamate dehydrogenase; Provisional 445 -184464 PRK14031 PRK14031 glutamate dehydrogenase; Provisional 444 -184465 PRK14032 PRK14032 citrate synthase; Provisional 447 -237590 PRK14033 PRK14033 citrate synthase; Provisional 375 -184467 PRK14034 PRK14034 citrate synthase; Provisional 372 -184468 PRK14035 PRK14035 citrate synthase; Provisional 371 -237591 PRK14036 PRK14036 citrate synthase; Provisional 377 -184470 PRK14037 PRK14037 citrate synthase; Provisional 377 -172532 PRK14038 PRK14038 ADP-dependent glucokinase; Provisional 453 -184471 PRK14039 PRK14039 ADP-dependent glucokinase; Provisional 453 -237592 PRK14040 PRK14040 oxaloacetate decarboxylase; Provisional 593 -237593 PRK14041 PRK14041 oxaloacetate decarboxylase; Provisional 467 -172536 PRK14042 PRK14042 pyruvate carboxylase subunit B; Provisional 596 -172537 PRK14045 PRK14045 1-aminocyclopropane-1-carboxylate deaminase; Provisional 329 -237594 PRK14046 PRK14046 malate--CoA ligase subunit beta; Provisional 392 -184475 PRK14047 PRK14047 putative methyltransferase; Provisional 310 -172540 PRK14048 PRK14048 ferrichrome/ferrioxamine B periplasmic transporter; Provisional 374 -172541 PRK14049 PRK14049 ferrioxamine B receptor precursor protein; Provisional 726 -237595 PRK14050 PRK14050 ferrichrome receptor precursor protein; Provisional 728 -184476 PRK14051 PRK14051 negative regulator GrlR; Provisional 123 -184477 PRK14052 PRK14052 effector protein; Provisional 387 -237596 PRK14053 PRK14053 methyltransferase; Provisional 194 -237597 PRK14054 PRK14054 methionine sulfoxide reductase A; Provisional 172 -172547 PRK14055 PRK14055 aromatic amino acid hydroxylase; Provisional 362 -237598 PRK14056 PRK14056 phenylalanine 4-monooxygenase; Provisional 578 -172549 PRK14057 PRK14057 epimerase; Provisional 254 -237599 PRK14058 PRK14058 acetylglutamate/acetylaminoadipate kinase; Provisional 268 -184482 PRK14059 PRK14059 hypothetical protein; Provisional 251 -172552 PRK14061 PRK14061 unknown domain/lipoate-protein ligase A fusion protein; Provisional 562 -184483 PRK14063 PRK14063 exodeoxyribonuclease VII small subunit; Provisional 76 -172554 PRK14064 PRK14064 exodeoxyribonuclease VII small subunit; Provisional 75 -184484 PRK14065 PRK14065 exodeoxyribonuclease VII small subunit; Provisional 86 -172556 PRK14066 PRK14066 exodeoxyribonuclease VII small subunit; Provisional 75 -172557 PRK14067 PRK14067 exodeoxyribonuclease VII small subunit; Provisional 80 -184485 PRK14068 PRK14068 exodeoxyribonuclease VII small subunit; Provisional 76 -172559 PRK14069 PRK14069 exodeoxyribonuclease VII small subunit; Provisional 95 -184486 PRK14070 PRK14070 exodeoxyribonuclease VII small subunit; Provisional 69 -184487 PRK14071 PRK14071 6-phosphofructokinase; Provisional 360 -237600 PRK14072 PRK14072 6-phosphofructokinase; Provisional 416 -172564 PRK14074 rpsF 30S ribosomal protein S6; Provisional 257 -184489 PRK14075 pnk inorganic polyphosphate/ATP-NAD kinase; Provisional 256 -237601 PRK14076 pnk inorganic polyphosphate/ATP-NAD kinase; Provisional 569 -172567 PRK14077 pnk inorganic polyphosphate/ATP-NAD kinase; Provisional 287 -184491 PRK14079 recF recombination protein F; Provisional 349 -237602 PRK14081 PRK14081 triple tyrosine motif-containing protein; Provisional 667 -184493 PRK14082 PRK14082 hypothetical protein; Provisional 65 -237603 PRK14083 PRK14083 HSP90 family protein; Provisional 601 -184495 PRK14084 PRK14084 two-component response regulator; Provisional 246 -237604 PRK14085 PRK14085 imidazolonepropionase; Provisional 382 -237605 PRK14086 dnaA chromosomal replication initiation protein; Provisional 617 -172577 PRK14087 dnaA chromosomal replication initiation protein; Provisional 450 -172578 PRK14088 dnaA chromosomal replication initiation protein; Provisional 440 -237606 PRK14089 PRK14089 ipid-A-disaccharide synthase; Provisional 347 -184499 PRK14090 PRK14090 phosphoribosylformylglycinamidine synthase II; Provisional 601 -237607 PRK14091 PRK14091 RNA-binding protein Hfq; Provisional 165 -172582 PRK14092 PRK14092 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase 163 -184501 PRK14093 PRK14093 UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate--D-alanyl-D-alanine ligase; Provisional 479 -172584 PRK14094 psbM photosystem II reaction center protein M; Provisional 50 -237608 PRK14095 pgi glucose-6-phosphate isomerase; Provisional 533 -237609 PRK14096 pgi glucose-6-phosphate isomerase; Provisional 528 -184504 PRK14097 pgi glucose-6-phosphate isomerase; Provisional 448 -172588 PRK14098 PRK14098 glycogen synthase; Provisional 489 -237610 PRK14099 PRK14099 glycogen synthase; Provisional 485 -184506 PRK14100 PRK14100 2-phosphosulfolactate phosphatase; Provisional 237 -184507 PRK14101 PRK14101 bifunctional glucokinase/RpiR family transcriptional regulator; Provisional 638 -184508 PRK14102 nifW nitrogenase stabilizing/protective protein; Provisional 105 -184509 PRK14103 PRK14103 trans-aconitate 2-methyltransferase; Provisional 255 -172594 PRK14104 PRK14104 chaperonin GroEL; Provisional 546 -237611 PRK14105 PRK14105 selenophosphate synthetase; Provisional 345 -184511 PRK14106 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional 450 -237612 PRK14108 PRK14108 bifunctional glutamine-synthetase adenylyltransferase/deadenyltransferase; Provisional 986 -237613 PRK14109 PRK14109 bifunctional glutamine-synthetase adenylyltransferase/deadenyltransferase; Provisional 1007 -184514 PRK14110 PRK14110 F0F1 ATP synthase subunit gamma; Provisional 291 -184515 PRK14111 PRK14111 F0F1 ATP synthase subunit gamma; Provisional 290 -172602 PRK14112 PRK14112 urease accessory protein UreE; Provisional 149 -237614 PRK14113 PRK14113 urease accessory protein UreE; Provisional 152 -172604 PRK14114 PRK14114 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Provisional 241 -184516 PRK14115 gpmA phosphoglyceromutase; Provisional 247 -172606 PRK14116 gpmA phosphoglyceromutase; Provisional 228 -184517 PRK14117 gpmA phosphoglyceromutase; Provisional 230 -172608 PRK14118 gpmA phosphoglyceromutase; Provisional 227 -184518 PRK14119 gpmA phosphoglyceromutase; Provisional 228 -184519 PRK14120 gpmA phosphoglyceromutase; Provisional 249 -237615 PRK14121 PRK14121 tRNA (guanine-N(7)-)-methyltransferase; Provisional 390 -184521 PRK14122 PRK14122 tRNA pseudouridine synthase B; Provisional 312 -184522 PRK14123 PRK14123 tRNA pseudouridine synthase B; Provisional 305 -172614 PRK14124 PRK14124 tRNA pseudouridine synthase B; Provisional 308 -184523 PRK14125 PRK14125 cell division suppressor protein YneA; Provisional 103 -172616 PRK14126 PRK14126 cell division protein ZapA; Provisional 85 -237616 PRK14127 PRK14127 cell division protein GpsB; Provisional 109 -184525 PRK14128 iraD DNA replication/recombination/repair protein; Provisional 69 -184526 PRK14129 PRK14129 heat shock protein HspQ; Provisional 105 -237617 PRK14131 PRK14131 N-acetylneuraminic acid mutarotase; Provisional 376 -237618 PRK14132 PRK14132 riboflavin kinase; Provisional 126 -184529 PRK14133 PRK14133 DNA polymerase IV; Provisional 347 -184530 PRK14134 recX recombination regulator RecX; Provisional 283 -237619 PRK14135 recX recombination regulator RecX; Provisional 263 -237620 PRK14136 recX recombination regulator RecX; Provisional 309 -172626 PRK14137 recX recombination regulator RecX; Provisional 195 -172627 PRK14138 PRK14138 NAD-dependent deacetylase; Provisional 244 -237621 PRK14139 PRK14139 heat shock protein GrpE; Provisional 185 -237622 PRK14140 PRK14140 heat shock protein GrpE; Provisional 191 -172630 PRK14141 PRK14141 heat shock protein GrpE; Provisional 209 -237623 PRK14142 PRK14142 heat shock protein GrpE; Provisional 223 -237624 PRK14143 PRK14143 heat shock protein GrpE; Provisional 238 -184535 PRK14144 PRK14144 heat shock protein GrpE; Provisional 199 -184536 PRK14145 PRK14145 heat shock protein GrpE; Provisional 196 -172635 PRK14146 PRK14146 heat shock protein GrpE; Provisional 215 -237625 PRK14147 PRK14147 heat shock protein GrpE; Provisional 172 -172637 PRK14148 PRK14148 heat shock protein GrpE; Provisional 195 -184538 PRK14149 PRK14149 heat shock protein GrpE; Provisional 191 -184539 PRK14150 PRK14150 heat shock protein GrpE; Provisional 193 -172640 PRK14151 PRK14151 heat shock protein GrpE; Provisional 176 -184540 PRK14153 PRK14153 heat shock protein GrpE; Provisional 194 -237626 PRK14154 PRK14154 heat shock protein GrpE; Provisional 208 -237627 PRK14155 PRK14155 heat shock protein GrpE; Provisional 208 -237628 PRK14156 PRK14156 heat shock protein GrpE; Provisional 177 -184543 PRK14157 PRK14157 heat shock protein GrpE; Provisional 227 -172646 PRK14158 PRK14158 heat shock protein GrpE; Provisional 194 -172647 PRK14159 PRK14159 heat shock protein GrpE; Provisional 176 -237629 PRK14160 PRK14160 heat shock protein GrpE; Provisional 211 -237630 PRK14161 PRK14161 heat shock protein GrpE; Provisional 178 -237631 PRK14162 PRK14162 heat shock protein GrpE; Provisional 194 -184546 PRK14163 PRK14163 heat shock protein GrpE; Provisional 214 -237632 PRK14164 PRK14164 heat shock protein GrpE; Provisional 218 -184548 PRK14165 PRK14165 winged helix-turn-helix domain-containing protein/riboflavin kinase; Provisional 217 -172654 PRK14166 PRK14166 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 282 -184549 PRK14167 PRK14167 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 297 -237633 PRK14168 PRK14168 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 297 -184550 PRK14169 PRK14169 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 282 -172658 PRK14170 PRK14170 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 284 -172659 PRK14171 PRK14171 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 288 -172660 PRK14172 PRK14172 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 278 -184551 PRK14173 PRK14173 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 287 -172662 PRK14174 PRK14174 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 295 -184552 PRK14175 PRK14175 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 286 -184553 PRK14176 PRK14176 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 287 -172665 PRK14177 PRK14177 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 284 -172666 PRK14178 PRK14178 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 279 -237634 PRK14179 PRK14179 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 284 -172668 PRK14180 PRK14180 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 282 -172669 PRK14181 PRK14181 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 287 -172670 PRK14182 PRK14182 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 282 -184555 PRK14183 PRK14183 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 281 -237635 PRK14184 PRK14184 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 286 -184556 PRK14185 PRK14185 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 293 -237636 PRK14186 PRK14186 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 297 -172675 PRK14187 PRK14187 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 294 -184558 PRK14188 PRK14188 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 296 -184559 PRK14189 PRK14189 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 285 -184560 PRK14190 PRK14190 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 284 -172679 PRK14191 PRK14191 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 285 -184561 PRK14192 PRK14192 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 283 -237637 PRK14193 PRK14193 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 284 -172682 PRK14194 PRK14194 bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase; Provisional 301 -184563 PRK14195 PRK14195 camphor resistance protein CrcB; Provisional 125 -184564 PRK14196 PRK14196 chromosome condensation membrane protein; Provisional 127 -172685 PRK14197 PRK14197 camphor resistance protein CrcB; Provisional 124 -172686 PRK14198 PRK14198 camphor resistance protein CrcB; Provisional 124 -172687 PRK14199 PRK14199 camphor resistance protein CrcB; Provisional 128 -237638 PRK14200 PRK14200 camphor resistance protein CrcB; Provisional 127 -184566 PRK14201 PRK14201 camphor resistance protein CrcB; Provisional 121 -172690 PRK14202 PRK14202 camphor resistance protein CrcB; Provisional 128 -237639 PRK14203 PRK14203 camphor resistance protein CrcB; Provisional 132 -172692 PRK14204 PRK14204 camphor resistance protein CrcB; Provisional 127 -172693 PRK14205 PRK14205 camphor resistance protein CrcB; Provisional 118 -172694 PRK14206 PRK14206 camphor resistance protein CrcB; Provisional 127 -172695 PRK14207 PRK14207 camphor resistance protein CrcB; Provisional 123 -172696 PRK14208 PRK14208 camphor resistance protein CrcB; Provisional 126 -237640 PRK14209 PRK14209 camphor resistance protein CrcB; Provisional 124 -172698 PRK14210 PRK14210 camphor resistance protein CrcB; Provisional 127 -172699 PRK14211 PRK14211 camphor resistance protein CrcB; Provisional 114 -184569 PRK14212 PRK14212 camphor resistance protein CrcB; Provisional 128 -184570 PRK14213 PRK14213 camphor resistance protein CrcB; Provisional 118 -184571 PRK14214 PRK14214 camphor resistance protein CrcB; Provisional 118 -172703 PRK14215 PRK14215 camphor resistance protein CrcB; Provisional 126 -184572 PRK14216 PRK14216 camphor resistance protein CrcB; Provisional 132 -172705 PRK14217 PRK14217 camphor resistance protein CrcB; Provisional 134 -184573 PRK14218 PRK14218 camphor resistance protein CrcB; Provisional 133 -172707 PRK14219 PRK14219 camphor resistance protein CrcB; Provisional 132 -237641 PRK14220 PRK14220 camphor resistance protein CrcB; Provisional 120 -184575 PRK14221 PRK14221 camphor resistance protein CrcB; Provisional 124 -172710 PRK14222 PRK14222 camphor resistance protein CrcB; Provisional 124 -184576 PRK14223 PRK14223 camphor resistance protein CrcB; Provisional 122 -237642 PRK14224 PRK14224 camphor resistance protein CrcB; Provisional 126 -172713 PRK14225 PRK14225 camphor resistance protein CrcB; Provisional 137 -172714 PRK14226 PRK14226 camphor resistance protein CrcB; Provisional 130 -172715 PRK14227 PRK14227 camphor resistance protein CrcB; Provisional 124 -237643 PRK14228 PRK14228 camphor resistance protein CrcB; Provisional 122 -172717 PRK14229 PRK14229 camphor resistance protein CrcB; Provisional 108 -172718 PRK14230 PRK14230 camphor resistance protein CrcB; Provisional 119 -184579 PRK14231 PRK14231 camphor resistance protein CrcB; Provisional 129 -237644 PRK14232 PRK14232 camphor resistance protein CrcB; Provisional 120 -172721 PRK14233 PRK14233 camphor resistance protein CrcB; Provisional 133 -172722 PRK14234 PRK14234 camphor resistance protein CrcB; Provisional 124 -237645 PRK14235 PRK14235 phosphate transporter ATP-binding protein; Provisional 267 -184582 PRK14236 PRK14236 phosphate transporter ATP-binding protein; Provisional 272 -237646 PRK14237 PRK14237 phosphate transporter ATP-binding protein; Provisional 267 -184584 PRK14238 PRK14238 phosphate transporter ATP-binding protein; Provisional 271 -184585 PRK14239 PRK14239 phosphate transporter ATP-binding protein; Provisional 252 -184586 PRK14240 PRK14240 phosphate transporter ATP-binding protein; Provisional 250 -184587 PRK14241 PRK14241 phosphate transporter ATP-binding protein; Provisional 258 -172730 PRK14242 PRK14242 phosphate transporter ATP-binding protein; Provisional 253 -184588 PRK14243 PRK14243 phosphate transporter ATP-binding protein; Provisional 264 -172732 PRK14244 PRK14244 phosphate ABC transporter ATP-binding protein; Provisional 251 -172733 PRK14245 PRK14245 phosphate ABC transporter ATP-binding protein; Provisional 250 -172734 PRK14246 PRK14246 phosphate ABC transporter ATP-binding protein; Provisional 257 -172735 PRK14247 PRK14247 phosphate ABC transporter ATP-binding protein; Provisional 250 -237647 PRK14248 PRK14248 phosphate ABC transporter ATP-binding protein; Provisional 268 -184590 PRK14249 PRK14249 phosphate ABC transporter ATP-binding protein; Provisional 251 -237648 PRK14250 PRK14250 phosphate ABC transporter ATP-binding protein; Provisional 241 -172739 PRK14251 PRK14251 phosphate ABC transporter ATP-binding protein; Provisional 251 -172740 PRK14252 PRK14252 phosphate ABC transporter ATP-binding protein; Provisional 265 -172741 PRK14253 PRK14253 phosphate ABC transporter ATP-binding protein; Provisional 249 -237649 PRK14254 PRK14254 phosphate ABC transporter ATP-binding protein; Provisional 285 -172743 PRK14255 PRK14255 phosphate ABC transporter ATP-binding protein; Provisional 252 -172744 PRK14256 PRK14256 phosphate ABC transporter ATP-binding protein; Provisional 252 -172745 PRK14257 PRK14257 phosphate ABC transporter ATP-binding protein; Provisional 329 -184593 PRK14258 PRK14258 phosphate ABC transporter ATP-binding protein; Provisional 261 -172747 PRK14259 PRK14259 phosphate ABC transporter ATP-binding protein; Provisional 269 -172748 PRK14260 PRK14260 phosphate ABC transporter ATP-binding protein; Provisional 259 -172749 PRK14261 PRK14261 phosphate ABC transporter ATP-binding protein; Provisional 253 -172750 PRK14262 PRK14262 phosphate ABC transporter ATP-binding protein; Provisional 250 -172751 PRK14263 PRK14263 phosphate ABC transporter ATP-binding protein; Provisional 261 -184594 PRK14264 PRK14264 phosphate ABC transporter ATP-binding protein; Provisional 305 -237650 PRK14265 PRK14265 phosphate ABC transporter ATP-binding protein; Provisional 274 -237651 PRK14266 PRK14266 phosphate ABC transporter ATP-binding protein; Provisional 250 -184596 PRK14267 PRK14267 phosphate ABC transporter ATP-binding protein; Provisional 253 -172756 PRK14268 PRK14268 phosphate ABC transporter ATP-binding protein; Provisional 258 -172757 PRK14269 PRK14269 phosphate ABC transporter ATP-binding protein; Provisional 246 -184597 PRK14270 PRK14270 phosphate ABC transporter ATP-binding protein; Provisional 251 -172759 PRK14271 PRK14271 phosphate ABC transporter ATP-binding protein; Provisional 276 -172760 PRK14272 PRK14272 phosphate ABC transporter ATP-binding protein; Provisional 252 -172761 PRK14273 PRK14273 phosphate ABC transporter ATP-binding protein; Provisional 254 -172762 PRK14274 PRK14274 phosphate ABC transporter ATP-binding protein; Provisional 259 -237652 PRK14275 PRK14275 phosphate ABC transporter ATP-binding protein; Provisional 286 -237653 PRK14276 PRK14276 chaperone protein DnaJ; Provisional 380 -184599 PRK14277 PRK14277 chaperone protein DnaJ; Provisional 386 -237654 PRK14278 PRK14278 chaperone protein DnaJ; Provisional 378 -237655 PRK14279 PRK14279 chaperone protein DnaJ; Provisional 392 -237656 PRK14280 PRK14280 chaperone protein DnaJ; Provisional 376 -237657 PRK14281 PRK14281 chaperone protein DnaJ; Provisional 397 -184603 PRK14282 PRK14282 chaperone protein DnaJ; Provisional 369 -184604 PRK14283 PRK14283 chaperone protein DnaJ; Provisional 378 -237658 PRK14284 PRK14284 chaperone protein DnaJ; Provisional 391 -172773 PRK14285 PRK14285 chaperone protein DnaJ; Provisional 365 -172774 PRK14286 PRK14286 chaperone protein DnaJ; Provisional 372 -237659 PRK14287 PRK14287 chaperone protein DnaJ; Provisional 371 -172776 PRK14288 PRK14288 chaperone protein DnaJ; Provisional 369 -237660 PRK14289 PRK14289 chaperone protein DnaJ; Provisional 386 -172778 PRK14290 PRK14290 chaperone protein DnaJ; Provisional 365 -237661 PRK14291 PRK14291 chaperone protein DnaJ; Provisional 382 -237662 PRK14292 PRK14292 chaperone protein DnaJ; Provisional 371 -237663 PRK14293 PRK14293 chaperone protein DnaJ; Provisional 374 -237664 PRK14294 PRK14294 chaperone protein DnaJ; Provisional 366 -237665 PRK14295 PRK14295 chaperone protein DnaJ; Provisional 389 -237666 PRK14296 PRK14296 chaperone protein DnaJ; Provisional 372 -184611 PRK14297 PRK14297 chaperone protein DnaJ; Provisional 380 -184612 PRK14298 PRK14298 chaperone protein DnaJ; Provisional 377 -237667 PRK14299 PRK14299 chaperone protein DnaJ; Provisional 291 -172788 PRK14300 PRK14300 chaperone protein DnaJ; Provisional 372 -237668 PRK14301 PRK14301 chaperone protein DnaJ; Provisional 373 -184614 PRK14314 glmM phosphoglucosamine mutase; Provisional 450 -237669 PRK14315 glmM phosphoglucosamine mutase; Provisional 448 -237670 PRK14316 glmM phosphoglucosamine mutase; Provisional 448 -237671 PRK14317 glmM phosphoglucosamine mutase; Provisional 465 -237672 PRK14318 glmM phosphoglucosamine mutase; Provisional 448 -172795 PRK14319 glmM phosphoglucosamine mutase; Provisional 430 -172796 PRK14320 glmM phosphoglucosamine mutase; Provisional 443 -172797 PRK14321 glmM phosphoglucosamine mutase; Provisional 449 -184619 PRK14322 glmM phosphoglucosamine mutase; Provisional 429 -184620 PRK14323 glmM phosphoglucosamine mutase; Provisional 440 -184621 PRK14324 glmM phosphoglucosamine mutase; Provisional 446 -237673 PRK14325 PRK14325 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 444 -237674 PRK14326 PRK14326 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 502 -184624 PRK14327 PRK14327 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 509 -237675 PRK14328 PRK14328 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 439 -237676 PRK14329 PRK14329 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 467 -184627 PRK14330 PRK14330 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 434 -184628 PRK14331 PRK14331 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 437 -172808 PRK14332 PRK14332 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 449 -237677 PRK14333 PRK14333 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 448 -184630 PRK14334 PRK14334 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 440 -237678 PRK14335 PRK14335 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 455 -184632 PRK14336 PRK14336 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 418 -172813 PRK14337 PRK14337 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 446 -184633 PRK14338 PRK14338 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 459 -184634 PRK14339 PRK14339 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 420 -237679 PRK14340 PRK14340 (dimethylallyl)adenosine tRNA methylthiotransferase; Provisional 445 -237680 PRK14341 PRK14341 lipoate-protein ligase B; Provisional 213 -237681 PRK14342 PRK14342 lipoate-protein ligase B; Provisional 213 -237682 PRK14343 PRK14343 lipoate-protein ligase B; Provisional 235 -237683 PRK14344 PRK14344 lipoate-protein ligase B; Provisional 223 -184638 PRK14345 PRK14345 lipoate-protein ligase B; Provisional 234 -237684 PRK14346 PRK14346 lipoate-protein ligase B; Provisional 230 -172823 PRK14347 PRK14347 lipoate-protein ligase B; Provisional 209 -172824 PRK14348 PRK14348 lipoate-protein ligase B; Provisional 221 -172825 PRK14349 PRK14349 lipoate-protein ligase B; Provisional 220 -172826 PRK14350 ligA NAD-dependent DNA ligase LigA; Provisional 669 -184640 PRK14351 ligA NAD-dependent DNA ligase LigA; Provisional 689 -184641 PRK14352 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 482 -184642 PRK14353 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 446 -184643 PRK14354 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 458 -237685 PRK14355 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 459 -237686 PRK14356 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 456 -237687 PRK14357 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 448 -237688 PRK14358 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 481 -237689 PRK14359 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 430 -184646 PRK14360 glmU bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Provisional 450 -172837 PRK14361 PRK14361 Maf-like protein; Provisional 187 -172838 PRK14362 PRK14362 Maf-like protein; Provisional 207 -184647 PRK14363 PRK14363 Maf-like protein; Provisional 204 -184648 PRK14364 PRK14364 Maf-like protein; Provisional 181 -237690 PRK14365 PRK14365 Maf-like protein; Provisional 197 -237691 PRK14366 PRK14366 Maf-like protein; Provisional 195 -237692 PRK14367 PRK14367 Maf-like protein; Provisional 202 -237693 PRK14368 PRK14368 Maf-like protein; Provisional 193 -184650 PRK14369 PRK14369 hypothetical protein; Provisional 119 -184651 PRK14370 PRK14370 hypothetical protein; Provisional 120 -172847 PRK14371 PRK14371 hypothetical protein; Provisional 81 -172848 PRK14372 PRK14372 hypothetical protein; Provisional 97 -172849 PRK14373 PRK14373 hypothetical protein; Provisional 73 -237694 PRK14374 PRK14374 hypothetical protein; Provisional 118 -172851 PRK14375 PRK14375 hypothetical protein; Provisional 70 -237695 PRK14376 PRK14376 hypothetical protein; Provisional 176 -172853 PRK14377 PRK14377 hypothetical protein; Provisional 104 -237696 PRK14378 PRK14378 hypothetical protein; Provisional 103 -237697 PRK14379 PRK14379 hypothetical protein; Provisional 95 -184654 PRK14380 PRK14380 hypothetical protein; Provisional 81 -172857 PRK14381 PRK14381 hypothetical protein; Provisional 103 -172858 PRK14382 PRK14382 hypothetical protein; Provisional 68 -237698 PRK14383 PRK14383 hypothetical protein; Provisional 84 -172860 PRK14384 PRK14384 hypothetical protein; Provisional 56 -172861 PRK14385 PRK14385 hypothetical protein; Provisional 96 -172862 PRK14386 PRK14386 hypothetical protein; Provisional 106 -184655 PRK14387 PRK14387 hypothetical protein; Provisional 84 -172864 PRK14388 PRK14388 hypothetical protein; Provisional 82 -184656 PRK14389 PRK14389 hypothetical protein; Provisional 98 -172866 PRK14390 PRK14390 hypothetical protein; Provisional 63 -172867 PRK14391 PRK14391 hypothetical protein; Provisional 84 -237699 PRK14392 PRK14392 membrane protein; Provisional 207 -172869 PRK14393 PRK14393 membrane protein; Provisional 194 -172870 PRK14394 PRK14394 membrane protein; Provisional 195 -172871 PRK14395 PRK14395 membrane protein; Provisional 195 -184657 PRK14396 PRK14396 membrane protein; Provisional 190 -237700 PRK14397 PRK14397 membrane protein; Provisional 222 -237701 PRK14398 PRK14398 membrane protein; Provisional 191 -237702 PRK14399 PRK14399 membrane protein; Provisional 258 -237703 PRK14400 PRK14400 membrane protein; Provisional 201 -184658 PRK14401 PRK14401 membrane protein; Provisional 187 -237704 PRK14402 PRK14402 membrane protein; Provisional 198 -172879 PRK14403 PRK14403 membrane protein; Provisional 196 -237705 PRK14404 PRK14404 membrane protein; Provisional 201 -237706 PRK14405 PRK14405 membrane protein; Provisional 202 -172882 PRK14406 PRK14406 membrane protein; Provisional 199 -172883 PRK14407 PRK14407 membrane protein; Provisional 219 -172884 PRK14408 PRK14408 membrane protein; Provisional 257 -172885 PRK14409 PRK14409 membrane protein; Provisional 205 -237707 PRK14410 PRK14410 membrane protein; Provisional 235 -184663 PRK14411 PRK14411 membrane protein; Provisional 204 -184664 PRK14412 PRK14412 membrane protein; Provisional 198 -172889 PRK14413 PRK14413 membrane protein; Provisional 197 -184665 PRK14414 PRK14414 membrane protein; Provisional 210 -184666 PRK14415 PRK14415 membrane protein; Provisional 216 -184667 PRK14416 PRK14416 membrane protein; Provisional 200 -184668 PRK14417 PRK14417 membrane protein; Provisional 232 -237708 PRK14418 PRK14418 membrane protein; Provisional 236 -237709 PRK14419 PRK14419 membrane protein; Provisional 199 -237710 PRK14420 PRK14420 acylphosphatase; Provisional 91 -237711 PRK14421 PRK14421 acylphosphatase; Provisional 99 -237712 PRK14422 PRK14422 acylphosphatase; Provisional 93 -237713 PRK14423 PRK14423 acylphosphatase; Provisional 92 -184674 PRK14424 PRK14424 acylphosphatase; Provisional 94 -172901 PRK14425 PRK14425 acylphosphatase; Provisional 94 -184675 PRK14426 PRK14426 acylphosphatase; Provisional 92 -172903 PRK14427 PRK14427 acylphosphatase; Provisional 94 -172904 PRK14428 PRK14428 acylphosphatase; Provisional 97 -184676 PRK14429 PRK14429 acylphosphatase; Provisional 90 -172906 PRK14430 PRK14430 acylphosphatase; Provisional 92 -184677 PRK14431 PRK14431 acylphosphatase; Provisional 89 -184678 PRK14432 PRK14432 acylphosphatase; Provisional 93 -184679 PRK14433 PRK14433 acylphosphatase; Provisional 87 -184680 PRK14434 PRK14434 acylphosphatase; Provisional 92 -184681 PRK14435 PRK14435 acylphosphatase; Provisional 90 -172912 PRK14436 PRK14436 acylphosphatase; Provisional 91 -172913 PRK14437 PRK14437 acylphosphatase; Provisional 109 -172914 PRK14438 PRK14438 acylphosphatase; Provisional 91 -237714 PRK14439 PRK14439 acylphosphatase; Provisional 163 -172916 PRK14440 PRK14440 acylphosphatase; Provisional 90 -172917 PRK14441 PRK14441 acylphosphatase; Provisional 93 -172918 PRK14442 PRK14442 acylphosphatase; Provisional 91 -172919 PRK14443 PRK14443 acylphosphatase; Provisional 93 -172920 PRK14444 PRK14444 acylphosphatase; Provisional 92 -172921 PRK14445 PRK14445 acylphosphatase; Provisional 91 -172922 PRK14446 PRK14446 acylphosphatase; Provisional 88 -172923 PRK14447 PRK14447 acylphosphatase; Provisional 95 -172924 PRK14448 PRK14448 acylphosphatase; Provisional 90 -184682 PRK14449 PRK14449 acylphosphatase; Provisional 90 -184683 PRK14450 PRK14450 acylphosphatase; Provisional 91 -237715 PRK14451 PRK14451 acylphosphatase; Provisional 89 -237716 PRK14452 PRK14452 acylphosphatase; Provisional 107 -184685 PRK14453 PRK14453 chloramphenicol/florfenicol resistance protein; Provisional 347 -184686 PRK14454 PRK14454 ribosomal RNA large subunit methyltransferase N; Provisional 342 -237717 PRK14455 PRK14455 ribosomal RNA large subunit methyltransferase N; Provisional 356 -172932 PRK14456 PRK14456 ribosomal RNA large subunit methyltransferase N; Provisional 368 -184688 PRK14457 PRK14457 ribosomal RNA large subunit methyltransferase N; Provisional 345 -184689 PRK14459 PRK14459 ribosomal RNA large subunit methyltransferase N; Provisional 373 -172935 PRK14460 PRK14460 ribosomal RNA large subunit methyltransferase N; Provisional 354 -237718 PRK14461 PRK14461 ribosomal RNA large subunit methyltransferase N; Provisional 371 -237719 PRK14462 PRK14462 ribosomal RNA large subunit methyltransferase N; Provisional 356 -237720 PRK14463 PRK14463 ribosomal RNA large subunit methyltransferase N; Provisional 349 -184691 PRK14464 PRK14464 ribosomal RNA large subunit methyltransferase N; Provisional 344 -172940 PRK14465 PRK14465 ribosomal RNA large subunit methyltransferase N; Provisional 342 -237721 PRK14466 PRK14466 ribosomal RNA large subunit methyltransferase N; Provisional 345 -184693 PRK14467 PRK14467 ribosomal RNA large subunit methyltransferase N; Provisional 348 -184694 PRK14468 PRK14468 ribosomal RNA large subunit methyltransferase N; Provisional 343 -172944 PRK14469 PRK14469 ribosomal RNA large subunit methyltransferase N; Provisional 343 -172945 PRK14470 PRK14470 ribosomal RNA large subunit methyltransferase N; Provisional 336 -184695 PRK14471 PRK14471 F0F1 ATP synthase subunit B; Provisional 164 -172947 PRK14472 PRK14472 F0F1 ATP synthase subunit B; Provisional 175 -172948 PRK14473 PRK14473 F0F1 ATP synthase subunit B; Provisional 164 -184696 PRK14474 PRK14474 F0F1 ATP synthase subunit B; Provisional 250 -184697 PRK14475 PRK14475 F0F1 ATP synthase subunit B; Provisional 167 -237722 PRK14476 PRK14476 nitrogenase molybdenum-cofactor biosynthesis protein NifN; Provisional 455 -172952 PRK14477 PRK14477 bifunctional nitrogenase molybdenum-cofactor biosynthesis protein NifE/NifN; Provisional 917 -184699 PRK14478 PRK14478 nitrogenase molybdenum-cofactor biosynthesis protein NifE; Provisional 475 -237723 PRK14479 PRK14479 dihydroxyacetone kinase; Provisional 568 -237724 PRK14481 PRK14481 dihydroxyacetone kinase subunit DhaK; Provisional 331 -172956 PRK14483 PRK14483 DhaKLM operon coactivator DhaQ; Provisional 329 -184702 PRK14484 PRK14484 phosphotransferase mannnose-specific family component IIA; Provisional 124 -184703 PRK14485 PRK14485 putative bifunctional cbb3-type cytochrome c oxidase subunit I/II; Provisional 712 -184704 PRK14486 PRK14486 putative bifunctional cbb3-type cytochrome c oxidase subunit II/cytochrome c; Provisional 294 -237725 PRK14487 PRK14487 cbb3-type cytochrome c oxidase subunit II; Provisional 217 -237726 PRK14488 PRK14488 cbb3-type cytochrome c oxidase subunit I; Provisional 473 -237727 PRK14489 PRK14489 putative bifunctional molybdopterin-guanine dinucleotide biosynthesis protein MobA/MobB; Provisional 366 -237728 PRK14490 PRK14490 putative bifunctional molybdopterin-guanine dinucleotide biosynthesis protein MobB/MobA; Provisional 369 -237729 PRK14491 PRK14491 putative bifunctional molybdopterin-guanine dinucleotide biosynthesis protein MobB/MoeA; Provisional 597 -237730 PRK14493 PRK14493 putative bifunctional molybdopterin-guanine dinucleotide biosynthesis protein MobB/MoaE; Provisional 274 -237731 PRK14494 PRK14494 putative molybdopterin-guanine dinucleotide biosynthesis protein MobB/FeS domain-containing protein protein; Provisional 229 -172967 PRK14495 PRK14495 putative molybdopterin-guanine dinucleotide biosynthesis protein MobB/unknown domain fusion protein; Provisional 452 -172968 PRK14497 PRK14497 putative molybdopterin biosynthesis protein MoeA/unknown domain fusion protein; Provisional 546 -237732 PRK14498 PRK14498 putative molybdopterin biosynthesis protein MoeA/LysR substrate binding-domain-containing protein; Provisional 633 -237733 PRK14499 PRK14499 molybdenum cofactor biosynthesis protein MoaC/MOSC-domain-containing protein; Provisional 308 -237734 PRK14500 PRK14500 putative bifunctional molybdopterin-guanine dinucleotide biosynthesis protein MoaC/MobA; Provisional 346 -184712 PRK14501 PRK14501 putative bifunctional trehalose-6-phosphate synthase/HAD hydrolase subfamily IIB; Provisional 726 -184713 PRK14502 PRK14502 bifunctional mannosyl-3-phosphoglycerate synthase/mannosyl-3 phosphoglycerate phosphatase; Provisional 694 -237735 PRK14503 PRK14503 mannosyl-3-phosphoglycerate synthase; Provisional 393 -237736 PRK14504 PRK14504 photosynthetic reaction center subunit M; Provisional 315 -172976 PRK14505 PRK14505 bifunctional photosynthetic reaction center subunit L/M; Provisional 643 -184716 PRK14506 PRK14506 photosynthetic reaction center subunit L; Provisional 276 -237737 PRK14507 PRK14507 putative bifunctional 4-alpha-glucanotransferase/malto-oligosyltrehalose synthase; Provisional 1693 -237738 PRK14508 PRK14508 4-alpha-glucanotransferase; Provisional 497 -237739 PRK14510 PRK14510 putative bifunctional 4-alpha-glucanotransferase/glycogen debranching enzyme; Provisional 1221 -237740 PRK14511 PRK14511 maltooligosyl trehalose synthase; Provisional 879 -237741 PRK14512 PRK14512 ATP-dependent Clp protease proteolytic subunit; Provisional 197 -237742 PRK14513 PRK14513 ATP-dependent Clp protease proteolytic subunit; Provisional 201 -184722 PRK14514 PRK14514 ATP-dependent Clp protease proteolytic subunit; Provisional 221 -237743 PRK14515 PRK14515 aspartate ammonia-lyase; Provisional 479 -184724 PRK14520 rpsP 30S ribosomal protein S16; Provisional 155 -237744 PRK14521 rpsP 30S ribosomal protein S16; Provisional 186 -172988 PRK14522 rpsP 30S ribosomal protein S16; Provisional 116 -172989 PRK14523 rpsP 30S ribosomal protein S16; Provisional 137 -172990 PRK14524 rpsP 30S ribosomal protein S16; Provisional 94 -172991 PRK14525 rpsP 30S ribosomal protein S16; Provisional 88 -172992 PRK14526 PRK14526 adenylate kinase; Provisional 211 -237745 PRK14527 PRK14527 adenylate kinase; Provisional 191 -172994 PRK14528 PRK14528 adenylate kinase; Provisional 186 -237746 PRK14529 PRK14529 adenylate kinase; Provisional 223 -237747 PRK14530 PRK14530 adenylate kinase; Provisional 215 -172997 PRK14531 PRK14531 adenylate kinase; Provisional 183 -184729 PRK14532 PRK14532 adenylate kinase; Provisional 188 -184730 PRK14533 groES co-chaperonin GroES; Provisional 91 -173000 PRK14534 cysS cysteinyl-tRNA synthetase; Provisional 481 -173001 PRK14535 cysS cysteinyl-tRNA synthetase; Provisional 699 -184731 PRK14536 cysS cysteinyl-tRNA synthetase; Provisional 490 -237748 PRK14537 PRK14537 50S ribosomal protein L20/unknown domain fusion protein; Provisional 230 -173004 PRK14538 PRK14538 putative bifunctional signaling protein/50S ribosomal protein L9; Provisional 838 -184732 PRK14539 PRK14539 50S ribosomal protein L11/unknown domain fusion protein; Provisional 196 -184733 PRK14540 PRK14540 nucleoside diphosphate kinase; Provisional 134 -173007 PRK14541 PRK14541 nucleoside diphosphate kinase; Provisional 140 -173008 PRK14542 PRK14542 nucleoside diphosphate kinase; Provisional 137 -237749 PRK14543 PRK14543 nucleoside diphosphate kinase; Provisional 169 -173010 PRK14544 PRK14544 nucleoside diphosphate kinase; Provisional 183 -184734 PRK14545 PRK14545 nucleoside diphosphate kinase; Provisional 139 -184735 PRK14547 rplD 50S ribosomal protein L4; Provisional 298 -237750 PRK14548 PRK14548 50S ribosomal protein L23P; Provisional 84 -237751 PRK14549 PRK14549 50S ribosomal protein L29P; Provisional 69 -173015 PRK14550 rnhB ribonuclease HII; Provisional 204 -237752 PRK14551 rnhB ribonuclease HII; Provisional 212 -237753 PRK14552 PRK14552 C/D box methylation guide ribonucleoprotein complex aNOP56 subunit; Provisional 414 -184740 PRK14553 PRK14553 hypothetical protein; Provisional 108 -237754 PRK14554 PRK14554 putative pseudouridylate synthase; Provisional 422 -237755 PRK14555 PRK14555 hypothetical protein; Provisional 145 -173021 PRK14556 pyrH uridylate kinase; Provisional 249 -173022 PRK14557 pyrH uridylate kinase; Provisional 247 -173023 PRK14558 pyrH uridylate kinase; Provisional 231 -237756 PRK14559 PRK14559 putative protein serine/threonine phosphatase; Provisional 645 -237757 PRK14560 PRK14560 putative RNA-binding protein; Provisional 160 -184745 PRK14561 PRK14561 hypothetical protein; Provisional 194 -184746 PRK14562 PRK14562 haloacid dehalogenase superfamily protein; Provisional 204 -184747 PRK14563 PRK14563 ribosome modulation factor; Provisional 55 -237758 PRK14565 PRK14565 triosephosphate isomerase; Provisional 237 -184749 PRK14566 PRK14566 triosephosphate isomerase; Provisional 260 -173031 PRK14567 PRK14567 triosephosphate isomerase; Provisional 253 -184750 PRK14568 vanB D-alanine--D-lactate ligase; Provisional 343 -173033 PRK14569 PRK14569 D-alanyl-alanine synthetase A; Provisional 296 -173034 PRK14570 PRK14570 D-alanyl-alanine synthetase A; Provisional 364 -184751 PRK14571 PRK14571 D-alanyl-alanine synthetase A; Provisional 299 -173036 PRK14572 PRK14572 D-alanyl-alanine synthetase A; Provisional 347 -184752 PRK14573 PRK14573 bifunctional D-alanyl-alanine synthetase A/UDP-N-acetylmuramate--L-alanine ligase; Provisional 809 -173038 PRK14574 hmsH outer membrane protein; Provisional 822 -173039 PRK14575 PRK14575 putative peptidase; Provisional 406 -173040 PRK14576 PRK14576 putative endopeptidase; Provisional 405 -173042 PRK14578 PRK14578 elongation factor P; Provisional 187 -184753 PRK14581 hmsF outer membrane N-deacetylase; Provisional 672 -184754 PRK14582 pgaB outer membrane N-deacetylase; Provisional 671 -184755 PRK14583 hmsR N-glycosyltransferase; Provisional 444 -184756 PRK14584 hmsS hemin storage system protein; Provisional 153 -173049 PRK14585 pgaD putative PGA biosynthesis protein; Provisional 137 -173050 PRK14586 PRK14586 tRNA pseudouridine synthase ACD; Provisional 245 -173051 PRK14587 PRK14587 tRNA pseudouridine synthase ACD; Provisional 256 -173052 PRK14588 PRK14588 tRNA pseudouridine synthase ACD; Provisional 272 -237759 PRK14589 PRK14589 tRNA pseudouridine synthase ACD; Provisional 265 -173054 PRK14590 rimM 16S rRNA-processing protein RimM; Provisional 171 -173055 PRK14591 rimM 16S rRNA-processing protein RimM; Provisional 169 -173056 PRK14592 rimM 16S rRNA-processing protein RimM; Provisional 165 -237760 PRK14593 rimM 16S rRNA-processing protein RimM; Provisional 184 -173058 PRK14594 rimM 16S rRNA-processing protein RimM; Provisional 166 -184757 PRK14595 PRK14595 peptide deformylase; Provisional 162 -184758 PRK14596 PRK14596 peptide deformylase; Provisional 199 -237761 PRK14597 PRK14597 peptide deformylase; Provisional 166 -237762 PRK14598 PRK14598 peptide deformylase; Provisional 187 -173063 PRK14599 trmD tRNA (guanine-N(1)-)-methyltransferase/unknown domain fusion protein; Provisional 222 -173064 PRK14600 ruvA Holliday junction DNA helicase RuvA; Provisional 186 -173065 PRK14601 ruvA Holliday junction DNA helicase RuvA; Provisional 183 -173066 PRK14602 ruvA Holliday junction DNA helicase RuvA; Provisional 203 -237763 PRK14603 ruvA Holliday junction DNA helicase RuvA; Provisional 197 -184760 PRK14604 ruvA Holliday junction DNA helicase RuvA; Provisional 195 -184761 PRK14605 ruvA Holliday junction DNA helicase RuvA; Provisional 194 -184762 PRK14606 ruvA Holliday junction DNA helicase RuvA; Provisional 188 -237764 PRK14607 PRK14607 bifunctional glutamine amidotransferase/anthranilate phosphoribosyltransferase; Provisional 534 -237765 PRK14608 PRK14608 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 290 -237766 PRK14609 PRK14609 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 269 -184766 PRK14610 PRK14610 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 283 -184767 PRK14611 PRK14611 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 275 -237767 PRK14612 PRK14612 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 276 -173077 PRK14613 PRK14613 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 297 -173078 PRK14614 PRK14614 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 280 -237768 PRK14615 PRK14615 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 296 -237769 PRK14616 PRK14616 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Provisional 287 -237770 PRK14618 PRK14618 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase; Provisional 328 -237771 PRK14619 PRK14619 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase; Provisional 308 -173083 PRK14620 PRK14620 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase; Provisional 326 -173084 PRK14621 PRK14621 hypothetical protein; Provisional 111 -173085 PRK14622 PRK14622 hypothetical protein; Provisional 103 -184771 PRK14623 PRK14623 hypothetical protein; Provisional 106 -173087 PRK14624 PRK14624 hypothetical protein; Provisional 115 -184772 PRK14625 PRK14625 hypothetical protein; Provisional 109 -173089 PRK14626 PRK14626 hypothetical protein; Provisional 110 -173090 PRK14627 PRK14627 hypothetical protein; Provisional 100 -173091 PRK14628 PRK14628 hypothetical protein; Provisional 118 -173092 PRK14629 PRK14629 hypothetical protein; Provisional 99 -173093 PRK14630 PRK14630 hypothetical protein; Provisional 143 -237772 PRK14631 PRK14631 hypothetical protein; Provisional 174 -173095 PRK14632 PRK14632 hypothetical protein; Provisional 172 -173096 PRK14633 PRK14633 hypothetical protein; Provisional 150 -173097 PRK14634 PRK14634 hypothetical protein; Provisional 155 -184774 PRK14635 PRK14635 hypothetical protein; Provisional 162 -237773 PRK14636 PRK14636 hypothetical protein; Provisional 176 -237774 PRK14637 PRK14637 hypothetical protein; Provisional 151 -184777 PRK14638 PRK14638 hypothetical protein; Provisional 150 -173102 PRK14639 PRK14639 hypothetical protein; Provisional 140 -173103 PRK14640 PRK14640 hypothetical protein; Provisional 152 -173104 PRK14641 PRK14641 hypothetical protein; Provisional 173 -237775 PRK14642 PRK14642 hypothetical protein; Provisional 197 -173106 PRK14643 PRK14643 hypothetical protein; Provisional 164 -184779 PRK14644 PRK14644 hypothetical protein; Provisional 136 -184780 PRK14645 PRK14645 hypothetical protein; Provisional 154 -173109 PRK14646 PRK14646 hypothetical protein; Provisional 155 -173110 PRK14647 PRK14647 hypothetical protein; Provisional 159 -173111 PRK14648 PRK14648 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 354 -173112 PRK14649 PRK14649 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 295 -173113 PRK14650 PRK14650 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 302 -237776 PRK14651 PRK14651 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 273 -237777 PRK14652 PRK14652 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 302 -237778 PRK14653 PRK14653 UDP-N-acetylenolpyruvoylglucosamine reductase; Provisional 297 -173117 PRK14654 mraY phospho-N-acetylmuramoyl-pentapeptide-transferase; Provisional 302 -173118 PRK14655 mraY phospho-N-acetylmuramoyl-pentapeptide-transferase; Provisional 304 -237779 PRK14656 acpS 4'-phosphopantetheinyl transferase; Provisional 126 -173120 PRK14657 acpS 4'-phosphopantetheinyl transferase; Provisional 123 -173121 PRK14658 acpS 4'-phosphopantetheinyl transferase; Provisional 115 -237780 PRK14659 acpS 4'-phosphopantetheinyl transferase; Provisional 122 -173123 PRK14660 acpS 4'-phosphopantetheinyl transferase; Provisional 125 -184782 PRK14661 acpS 4'-phosphopantetheinyl transferase; Provisional 169 -184783 PRK14662 acpS 4'-phosphopantetheinyl transferase; Provisional 120 -237781 PRK14663 acpS 4'-phosphopantetheinyl transferase; Provisional 116 -173127 PRK14664 PRK14664 tRNA-specific 2-thiouridylase MnmA; Provisional 362 -173128 PRK14665 mnmA tRNA-specific 2-thiouridylase MnmA; Provisional 360 -237782 PRK14666 uvrC excinuclease ABC subunit C; Provisional 694 -237783 PRK14667 uvrC excinuclease ABC subunit C; Provisional 567 -184785 PRK14668 uvrC excinuclease ABC subunit C; Provisional 577 -237784 PRK14669 uvrC excinuclease ABC subunit C; Provisional 624 -173133 PRK14670 uvrC excinuclease ABC subunit C; Provisional 574 -237785 PRK14671 uvrC excinuclease ABC subunit C; Provisional 621 -173135 PRK14672 uvrC excinuclease ABC subunit C; Provisional 691 -237786 PRK14673 PRK14673 hypothetical protein; Provisional 137 -184788 PRK14674 PRK14674 hypothetical protein; Provisional 133 -173138 PRK14675 PRK14675 hypothetical protein; Provisional 125 -173139 PRK14676 PRK14676 hypothetical protein; Provisional 117 -184789 PRK14677 PRK14677 hypothetical protein; Provisional 107 -173141 PRK14678 PRK14678 hypothetical protein; Provisional 120 -173142 PRK14679 PRK14679 hypothetical protein; Provisional 128 -173143 PRK14680 PRK14680 hypothetical protein; Provisional 134 -237787 PRK14681 PRK14681 hypothetical protein; Provisional 158 -173145 PRK14682 PRK14682 hypothetical protein; Provisional 117 -173146 PRK14683 PRK14683 hypothetical protein; Provisional 122 -173147 PRK14684 PRK14684 hypothetical protein; Provisional 120 -173148 PRK14685 PRK14685 hypothetical protein; Provisional 177 -184791 PRK14686 PRK14686 hypothetical protein; Provisional 119 -237788 PRK14687 PRK14687 hypothetical protein; Provisional 173 -184792 PRK14688 PRK14688 hypothetical protein; Provisional 121 -173152 PRK14689 PRK14689 hypothetical protein; Provisional 124 -237789 PRK14690 PRK14690 molybdopterin biosynthesis protein MoeA; Provisional 419 -173154 PRK14691 PRK14691 3-oxoacyl-(acyl carrier protein) synthase II; Provisional 342 -173155 PRK14692 PRK14692 lagellar hook-associated protein FlgL; Provisional 749 -173156 PRK14693 PRK14693 hypothetical protein; Provisional 552 -237790 PRK14694 PRK14694 putative mercuric reductase; Provisional 468 -173158 PRK14695 PRK14695 serine/threonine transporter SstT; Provisional 319 -184793 PRK14696 tynA tyramine oxidase; Provisional 721 -184794 PRK14697 PRK14697 bifunctional 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase/phosphatase; Provisional 233 -184795 PRK14698 PRK14698 V-type ATP synthase subunit A; Provisional 1017 -173162 PRK14699 PRK14699 replication factor A; Provisional 484 -173163 PRK14700 PRK14700 recombination factor protein RarA; Provisional 300 -237791 PRK14701 PRK14701 reverse gyrase; Provisional 1638 -237792 PRK14702 PRK14702 insertion element IS2 transposase InsD; Provisional 262 -237793 PRK14703 PRK14703 glutaminyl-tRNA synthetase/YqeY domain fusion protein; Provisional 771 -184798 PRK14704 PRK14704 anaerobic ribonucleoside triphosphate reductase; Provisional 618 -237794 PRK14705 PRK14705 glycogen branching enzyme; Provisional 1224 -237795 PRK14706 PRK14706 glycogen branching enzyme; Provisional 639 -173170 PRK14707 PRK14707 hypothetical protein; Provisional 2710 -173171 PRK14708 PRK14708 flagellin; Provisional 888 -173172 PRK14709 PRK14709 hypothetical protein; Provisional 469 -173173 PRK14710 PRK14710 hypothetical protein; Provisional 86 -173174 PRK14711 ureE urease accessory protein UreE; Provisional 191 -237796 PRK14712 PRK14712 conjugal transfer nickase/helicase TraI; Provisional 1623 -237797 PRK14713 PRK14713 multifunctional hydroxymethylpyrimidine phosphokinase/4-amino-5-aminomethyl-2-methylpyrimidine hydrolase; Provisional 530 -237798 PRK14714 PRK14714 DNA polymerase II large subunit; Provisional 1337 -237799 PRK14715 PRK14715 DNA polymerase II large subunit; Provisional 1627 -237800 PRK14716 PRK14716 bacteriophage N4 adsorption protein B; Provisional 504 -184803 PRK14717 PRK14717 putative glycine/sarcosine/betaine reductase complex protein A; Provisional 107 -173181 PRK14718 PRK14718 ribonuclease III; Provisional 467 -237801 PRK14719 PRK14719 bifunctional RNAse/5-amino-6-(5-phosphoribosylamino)uracil reductase; Provisional 360 -184804 PRK14720 PRK14720 transcript cleavage factor/unknown domain fusion protein; Provisional 906 -173184 PRK14721 flhF flagellar biosynthesis regulator FlhF; Provisional 420 -173185 PRK14722 flhF flagellar biosynthesis regulator FlhF; Provisional 374 -237802 PRK14723 flhF flagellar biosynthesis regulator FlhF; Provisional 767 -237803 PRK14724 PRK14724 DNA topoisomerase III; Provisional 987 -237804 PRK14725 PRK14725 pyruvate kinase; Provisional 608 -237805 PRK14726 PRK14726 bifunctional preprotein translocase subunit SecD/SecF; Provisional 855 -237806 PRK14727 PRK14727 putative mercuric reductase; Provisional 479 -173191 PRK14729 miaA tRNA delta(2)-isopentenylpyrophosphate transferase; Provisional 300 -184807 PRK14730 coaE dephospho-CoA kinase; Provisional 195 -173193 PRK14731 coaE dephospho-CoA kinase; Provisional 208 -237807 PRK14732 coaE dephospho-CoA kinase; Provisional 196 -173195 PRK14733 coaE dephospho-CoA kinase; Provisional 204 -237808 PRK14734 coaE dephospho-CoA kinase; Provisional 200 -173197 PRK14735 atpC F0F1 ATP synthase subunit epsilon; Provisional 139 -173198 PRK14736 atpC F0F1 ATP synthase subunit epsilon; Provisional 133 -173199 PRK14737 gmk guanylate kinase; Provisional 186 -237809 PRK14738 gmk guanylate kinase; Provisional 206 -173201 PRK14740 kdbF potassium-transporting ATPase subunit F; Provisional 29 -173202 PRK14741 spoVM stage V sporulation protein M; Provisional 26 -173203 PRK14742 thrL thr operon leader peptide; Provisional 28 -173204 PRK14743 thrL thr operon leader peptide; Provisional 22 -173205 PRK14744 PRK14744 leu operon leader peptide; Provisional 28 -173206 PRK14745 PRK14745 RepA leader peptide Tap; Provisional 25 -173207 PRK14746 PRK14746 RepA leader peptide Tap; Provisional 24 -184810 PRK14747 PRK14747 cytochrome b6-f complex subunit PetN; Provisional 29 -173209 PRK14748 kdpF potassium-transporting ATPase subunit F; Provisional 29 -173210 PRK14749 PRK14749 hypothetical protein; Provisional 30 -173211 PRK14750 kdpF potassium-transporting ATPase subunit F; Provisional 29 -173212 PRK14751 PRK14751 tetracycline resistance determinant leader peptide; Provisional 28 -173213 PRK14752 PRK14752 delta-hemolysin; Provisional 44 -184811 PRK14753 PRK14753 30S ribosomal protein Thx; Provisional 27 -173215 PRK14754 PRK14754 toxic peptide TisB; Provisional 29 -173216 PRK14755 PRK14755 transcriptional regulatory protein PufK; Provisional 20 -341227 PRK14756 small_mem_YnhF YnhF family membrane protein; Validated. 29 -173218 PRK14757 PRK14757 putative protamine-like protein; Provisional 29 -173219 PRK14758 PRK14758 hypothetical protein; Provisional 27 -173220 PRK14759 PRK14759 potassium-transporting ATPase subunit F; Provisional 29 -173221 PRK14760 PRK14760 hypothetical protein; Provisional 24 -173222 PRK14761 PRK14761 ryhB-regulated fur leader peptide; Provisional 28 -173223 PRK14762 PRK14762 membrane protein; Provisional 27 -184813 PRK14763 PRK14763 coenzyme PQQ biosynthesis protein A; Provisional 23 -237810 PRK14764 PRK14764 lipoprotein signal peptidase; Provisional 209 -173227 PRK14766 PRK14766 lipoprotein signal peptidase; Provisional 201 -237811 PRK14767 PRK14767 lipoprotein signal peptidase; Provisional 174 -173229 PRK14768 PRK14768 lipoprotein signal peptidase; Provisional 148 -173230 PRK14769 PRK14769 lipoprotein signal peptidase; Provisional 156 -173231 PRK14770 PRK14770 lipoprotein signal peptidase; Provisional 167 -184816 PRK14771 PRK14771 lipoprotein signal peptidase; Provisional 165 -237812 PRK14772 PRK14772 lipoprotein signal peptidase; Provisional 190 -173234 PRK14773 PRK14773 lipoprotein signal peptidase; Provisional 192 -173235 PRK14774 PRK14774 lipoprotein signal peptidase; Provisional 185 -237813 PRK14775 PRK14775 lipoprotein signal peptidase; Provisional 170 -173237 PRK14776 PRK14776 lipoprotein signal peptidase; Provisional 170 -237814 PRK14777 PRK14777 lipoprotein signal peptidase; Provisional 184 -173239 PRK14778 PRK14778 lipoprotein signal peptidase; Provisional 186 -184818 PRK14779 PRK14779 lipoprotein signal peptidase; Provisional 159 -173241 PRK14780 PRK14780 lipoprotein signal peptidase; Provisional 263 -237815 PRK14781 PRK14781 lipoprotein signal peptidase; Provisional 153 -173243 PRK14782 PRK14782 lipoprotein signal peptidase; Provisional 157 -173244 PRK14783 PRK14783 lipoprotein signal peptidase; Provisional 182 -184819 PRK14784 PRK14784 lipoprotein signal peptidase; Provisional 160 -184820 PRK14785 PRK14785 lipoprotein signal peptidase; Provisional 171 -173247 PRK14786 PRK14786 lipoprotein signal peptidase; Provisional 154 -173248 PRK14787 PRK14787 lipoprotein signal peptidase; Provisional 159 -237816 PRK14788 PRK14788 lipoprotein signal peptidase; Provisional 200 -173250 PRK14789 PRK14789 lipoprotein signal peptidase; Provisional 191 -173251 PRK14790 PRK14790 lipoprotein signal peptidase; Provisional 169 -237817 PRK14791 PRK14791 lipoprotein signal peptidase; Provisional 146 -237818 PRK14792 PRK14792 lipoprotein signal peptidase; Provisional 159 -184823 PRK14793 PRK14793 lipoprotein signal peptidase; Provisional 150 -173255 PRK14794 PRK14794 lipoprotein signal peptidase; Provisional 136 -173256 PRK14795 PRK14795 lipoprotein signal peptidase; Provisional 158 -184824 PRK14796 PRK14796 lipoprotein signal peptidase; Provisional 161 -184825 PRK14797 PRK14797 lipoprotein signal peptidase; Provisional 150 -184826 PRK14799 thrS threonyl-tRNA synthetase; Provisional 545 -173265 PRK14804 PRK14804 ornithine carbamoyltransferase; Provisional 311 -237819 PRK14805 PRK14805 ornithine carbamoyltransferase; Provisional 302 -237820 PRK14806 PRK14806 bifunctional cyclohexadienyl dehydrogenase/ 3-phosphoshikimate 1-carboxyvinyltransferase; Provisional 735 -184829 PRK14807 PRK14807 histidinol-phosphate aminotransferase; Provisional 351 -173269 PRK14808 PRK14808 histidinol-phosphate aminotransferase; Provisional 335 -184830 PRK14809 PRK14809 histidinol-phosphate aminotransferase; Provisional 357 -173271 PRK14810 PRK14810 formamidopyrimidine-DNA glycosylase; Provisional 272 -184831 PRK14811 PRK14811 formamidopyrimidine-DNA glycosylase; Provisional 269 -173273 PRK14812 PRK14812 hypothetical protein; Provisional 119 -173274 PRK14813 PRK14813 NADH dehydrogenase subunit B; Provisional 189 -173275 PRK14814 PRK14814 NADH dehydrogenase subunit B; Provisional 186 -237821 PRK14815 PRK14815 NADH dehydrogenase subunit B; Provisional 183 -173277 PRK14816 PRK14816 NADH dehydrogenase subunit B; Provisional 182 -173278 PRK14817 PRK14817 NADH dehydrogenase subunit B; Provisional 181 -173279 PRK14818 PRK14818 NADH dehydrogenase subunit B; Provisional 173 -237822 PRK14819 PRK14819 NADH dehydrogenase subunit B; Provisional 264 -184833 PRK14820 PRK14820 NADH dehydrogenase subunit B; Provisional 180 -184834 PRK14821 PRK14821 putative deoxyribonucleotide triphosphate pyrophosphatase; Provisional 184 -184835 PRK14822 PRK14822 nucleoside-triphosphatase; Provisional 200 -237823 PRK14823 PRK14823 putative deoxyribonucleoside-triphosphatase; Provisional 191 -237824 PRK14824 PRK14824 putative deoxyribonucleotide triphosphate pyrophosphatase; Provisional 201 -173286 PRK14825 PRK14825 putative deoxyribonucleotide triphosphate pyrophosphatase; Provisional 199 -173287 PRK14826 PRK14826 putative deoxyribonucleotide triphosphate pyrophosphatase; Provisional 222 -173288 PRK14827 PRK14827 undecaprenyl pyrophosphate synthase; Provisional 296 -237825 PRK14828 PRK14828 undecaprenyl pyrophosphate synthase; Provisional 256 -237826 PRK14829 PRK14829 undecaprenyl pyrophosphate synthase; Provisional 243 -184840 PRK14830 PRK14830 undecaprenyl pyrophosphate synthase; Provisional 251 -184841 PRK14831 PRK14831 undecaprenyl pyrophosphate synthase; Provisional 249 -237827 PRK14832 PRK14832 undecaprenyl pyrophosphate synthase; Provisional 253 -237828 PRK14833 PRK14833 undecaprenyl pyrophosphate synthase; Provisional 233 -237829 PRK14834 PRK14834 undecaprenyl pyrophosphate synthase; Provisional 249 -237830 PRK14835 PRK14835 undecaprenyl pyrophosphate synthase; Provisional 275 -237831 PRK14836 PRK14836 undecaprenyl pyrophosphate synthase; Provisional 253 -173298 PRK14837 PRK14837 undecaprenyl pyrophosphate synthase; Provisional 230 -184846 PRK14838 PRK14838 undecaprenyl pyrophosphate synthase; Provisional 242 -237832 PRK14839 PRK14839 undecaprenyl pyrophosphate synthase; Provisional 239 -173301 PRK14840 PRK14840 undecaprenyl pyrophosphate synthase; Provisional 250 -173302 PRK14841 PRK14841 undecaprenyl pyrophosphate synthase; Provisional 233 -173303 PRK14842 PRK14842 undecaprenyl pyrophosphate synthase; Provisional 241 -184847 PRK14843 PRK14843 dihydrolipoamide acetyltransferase; Provisional 347 -173305 PRK14844 PRK14844 bifunctional DNA-directed RNA polymerase subunit beta/beta'; Provisional 2836 -237833 PRK14845 PRK14845 translation initiation factor IF-2; Provisional 1049 -237834 PRK14846 truB tRNA pseudouridine synthase B; Provisional 345 -184849 PRK14847 PRK14847 hypothetical protein; Provisional 333 -184850 PRK14848 PRK14848 deubiquitinase SseL; Provisional 317 -184851 PRK14849 PRK14849 putative lipoprotein/autotransporter domain-containing protein; Provisional 1806 -237835 PRK14850 PRK14850 penicillin-binding protein 1b; Provisional 764 -184853 PRK14851 PRK14851 hypothetical protein; Provisional 679 -184854 PRK14852 PRK14852 hypothetical protein; Provisional 989 -184855 PRK14853 nhaA pH-dependent sodium/proton antiporter; Provisional 423 -184856 PRK14854 nhaA pH-dependent sodium/proton antiporter; Provisional 383 -237836 PRK14855 nhaA pH-dependent sodium/proton antiporter; Provisional 423 -184858 PRK14856 nhaA pH-dependent sodium/proton antiporter; Provisional 438 -184859 PRK14857 tatA twin arginine translocase protein A; Provisional 90 -184860 PRK14858 tatA twin arginine translocase protein A; Provisional 108 -184861 PRK14859 tatA twin arginine translocase protein A; Provisional 63 -184862 PRK14860 tatA twin arginine translocase protein A; Provisional 64 -237837 PRK14861 tatA twin arginine translocase protein A; Provisional 61 -237838 PRK14862 rimO ribosomal protein S12 methylthiotransferase; Provisional 440 -184865 PRK14863 PRK14863 bifunctional regulator KidO; Provisional 292 -184866 PRK14864 PRK14864 putative biofilm stress and motility protein A; Provisional 104 -237839 PRK14865 rnpA ribonuclease P; Provisional 116 -237840 PRK14866 PRK14866 hypothetical protein; Provisional 451 -237841 PRK14867 PRK14867 DNA topoisomerase VI subunit B; Provisional 659 -237842 PRK14868 PRK14868 DNA topoisomerase VI subunit B; Provisional 795 -237843 PRK14869 PRK14869 putative manganese-dependent inorganic pyrophosphatase; Provisional 546 -184872 PRK14872 PRK14872 rod shape-determining protein MreC; Provisional 337 -237844 PRK14873 PRK14873 primosome assembly protein PriA; Provisional 665 -237845 PRK14874 PRK14874 aspartate-semialdehyde dehydrogenase; Provisional 334 -184875 PRK14875 PRK14875 acetoin dehydrogenase E2 subunit dihydrolipoyllysine-residue acetyltransferase; Provisional 371 -237846 PRK14876 PRK14876 conjugal transfer mating pair stabilization protein TraN; Provisional 928 -184877 PRK14877 PRK14877 conjugal transfer mating pair stabilization protein TraN; Provisional 1062 -184878 PRK14878 PRK14878 UGMP family protein; Provisional 323 -237847 PRK14879 PRK14879 serine/threonine protein kinase; Provisional 211 -237848 PRK14886 PRK14886 KEOPS complex Cgi121-like subunit; Provisional 167 -237849 PRK14887 PRK14887 KEOPS complex Pcc1-like subunit; Provisional 84 -237850 PRK14888 PRK14888 KEOPS complex Pcc1-like subunit; Provisional 59 -184883 PRK14889 PRK14889 VKOR family protein; Provisional 143 -184884 PRK14890 PRK14890 putative Zn-ribbon RNA-binding protein; Provisional 59 -184885 PRK14891 PRK14891 50S ribosomal protein L24e/unknown domain fusion protein; Provisional 131 -184886 PRK14892 PRK14892 putative transcription elongation factor Elf1; Provisional 99 -184887 PRK14893 PRK14893 V-type ATP synthase subunit K; Provisional 161 -237851 PRK14894 PRK14894 glycyl-tRNA synthetase; Provisional 539 -184889 PRK14895 gltX glutamyl-tRNA synthetase; Provisional 513 -237852 PRK14896 ksgA 16S ribosomal RNA methyltransferase KsgA/Dim1 family protein; Provisional 258 -237853 PRK14897 PRK14897 unknown domain/DNA-directed RNA polymerase subunit A'' fusion protein; Provisional 509 -237854 PRK14898 PRK14898 DNA-directed RNA polymerase subunit A''; Provisional 858 -237855 PRK14900 valS valyl-tRNA synthetase; Provisional 1052 -237856 PRK14901 PRK14901 16S rRNA methyltransferase B; Provisional 434 -237857 PRK14902 PRK14902 16S rRNA methyltransferase B; Provisional 444 -184896 PRK14903 PRK14903 16S rRNA methyltransferase B; Provisional 431 -237858 PRK14904 PRK14904 16S rRNA methyltransferase B; Provisional 445 -184898 PRK14905 PRK14905 triosephosphate isomerase/PTS system glucose/sucrose-specific transporter subunit IIB; Provisional 355 -184899 PRK14906 PRK14906 DNA-directed RNA polymerase subunit beta'/alpha domain fusion protein; Provisional 1460 -184900 PRK14907 rplD 50S ribosomal protein L4; Provisional 295 -237859 PRK14908 PRK14908 glycyl-tRNA synthetase; Provisional 1000 -184902 PRK14938 PRK14938 Ser-tRNA(Thr) hydrolase; Provisional 387 -237860 PRK14939 gyrB DNA gyrase subunit B; Provisional 756 -184904 PRK14940 PRK14940 DNA polymerase III subunit beta; Provisional 367 -184905 PRK14941 PRK14941 DNA polymerase III subunit beta; Provisional 374 -184906 PRK14942 PRK14942 DNA polymerase III subunit beta; Provisional 373 -184907 PRK14943 PRK14943 DNA polymerase III subunit beta; Provisional 374 -184908 PRK14944 PRK14944 DNA polymerase III subunit beta; Provisional 375 -184909 PRK14945 PRK14945 DNA polymerase III subunit beta; Provisional 362 -184910 PRK14946 PRK14946 DNA polymerase III subunit beta; Provisional 366 -237861 PRK14947 PRK14947 DNA polymerase III subunit beta; Provisional 384 -237862 PRK14948 PRK14948 DNA polymerase III subunits gamma and tau; Provisional 620 -237863 PRK14949 PRK14949 DNA polymerase III subunits gamma and tau; Provisional 944 -237864 PRK14950 PRK14950 DNA polymerase III subunits gamma and tau; Provisional 585 -237865 PRK14951 PRK14951 DNA polymerase III subunits gamma and tau; Provisional 618 -237866 PRK14952 PRK14952 DNA polymerase III subunits gamma and tau; Provisional 584 -237867 PRK14953 PRK14953 DNA polymerase III subunits gamma and tau; Provisional 486 -184918 PRK14954 PRK14954 DNA polymerase III subunits gamma and tau; Provisional 620 -184919 PRK14955 PRK14955 DNA polymerase III subunits gamma and tau; Provisional 397 -184920 PRK14956 PRK14956 DNA polymerase III subunits gamma and tau; Provisional 484 -184921 PRK14957 PRK14957 DNA polymerase III subunits gamma and tau; Provisional 546 -184922 PRK14958 PRK14958 DNA polymerase III subunits gamma and tau; Provisional 509 -184923 PRK14959 PRK14959 DNA polymerase III subunits gamma and tau; Provisional 624 -237868 PRK14960 PRK14960 DNA polymerase III subunits gamma and tau; Provisional 702 -184925 PRK14961 PRK14961 DNA polymerase III subunits gamma and tau; Provisional 363 -237869 PRK14962 PRK14962 DNA polymerase III subunits gamma and tau; Provisional 472 -184927 PRK14963 PRK14963 DNA polymerase III subunits gamma and tau; Provisional 504 -237870 PRK14964 PRK14964 DNA polymerase III subunits gamma and tau; Provisional 491 -237871 PRK14965 PRK14965 DNA polymerase III subunits gamma and tau; Provisional 576 -184930 PRK14966 PRK14966 unknown domain/N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase fusion protein; Provisional 423 -184931 PRK14967 PRK14967 putative methyltransferase; Provisional 223 -237872 PRK14968 PRK14968 putative methyltransferase; Provisional 188 -237873 PRK14969 PRK14969 DNA polymerase III subunits gamma and tau; Provisional 527 -184934 PRK14970 PRK14970 DNA polymerase III subunits gamma and tau; Provisional 367 -237874 PRK14971 PRK14971 DNA polymerase III subunits gamma and tau; Provisional 614 -184936 PRK14973 PRK14973 DNA topoisomerase I; Provisional 936 -237875 PRK14974 PRK14974 cell division protein FtsY; Provisional 336 -237876 PRK14975 PRK14975 bifunctional 3'-5' exonuclease/DNA polymerase; Provisional 553 -237877 PRK14976 PRK14976 5'-3' exonuclease; Provisional 281 -184940 PRK14977 PRK14977 bifunctional DNA-directed RNA polymerase A'/A'' subunit; Provisional 1321 -237878 PRK14979 PRK14979 DNA-directed RNA polymerase subunit D; Provisional 195 -184942 PRK14980 PRK14980 DNA-directed RNA polymerase subunit G; Provisional 127 -184943 PRK14981 PRK14981 DNA-directed RNA polymerase subunit F; Provisional 112 -184944 PRK14982 PRK14982 acyl-ACP reductase; Provisional 340 -237879 PRK14983 PRK14983 aldehyde decarbonylase; Provisional 231 -237880 PRK14984 PRK14984 high-affinity gluconate transporter; Provisional 438 -237881 PRK14985 PRK14985 maltodextrin phosphorylase; Provisional 798 -184948 PRK14986 PRK14986 glycogen phosphorylase; Provisional 815 -184949 PRK14987 PRK14987 gluconate operon transcriptional regulator; Provisional 331 -237882 PRK14988 PRK14988 GMP/IMP nucleotidase; Provisional 224 -184951 PRK14989 PRK14989 nitrite reductase subunit NirD; Provisional 847 -184952 PRK14990 PRK14990 anaerobic dimethyl sulfoxide reductase subunit A; Provisional 814 -237883 PRK14991 PRK14991 tetrathionate reductase subunit A; Provisional 1031 -184954 PRK14992 PRK14992 tetrathionate reductase subunit C; Provisional 335 -184955 PRK14993 PRK14993 tetrathionate reductase subunit B; Provisional 244 -184956 PRK14994 PRK14994 SAM-dependent 16S ribosomal RNA C1402 ribose 2'-O-methyltransferase; Provisional 287 -184957 PRK14995 PRK14995 methyl viologen resistance protein SmvA; Provisional 495 -184958 PRK14996 PRK14996 TetR family transcriptional regulator; Provisional 192 -184959 PRK14997 PRK14997 LysR family transcriptional regulator; Provisional 301 -184960 PRK14998 PRK14998 cold shock-like protein CspD; Provisional 73 -184961 PRK14999 PRK14999 histidine utilization repressor; Provisional 241 -184962 PRK15000 PRK15000 peroxidase; Provisional 200 -184963 PRK15001 PRK15001 SAM-dependent 23S ribosomal RNA mG1835 methyltransferase; Provisional 378 -184964 PRK15002 PRK15002 redox-sensitivie transcriptional activator SoxR; Provisional 154 -184965 PRK15003 PRK15003 cytochrome d ubiquinol oxidase subunit 2; Provisional 379 -184966 PRK15004 PRK15004 alpha-ribazole phosphatase; Provisional 199 -184967 PRK15005 PRK15005 universal stress protein F; Provisional 144 -184968 PRK15006 PRK15006 thiosulfate reductase cytochrome B subunit; Provisional 261 -184969 PRK15007 PRK15007 putative ABC transporter arginine-biding protein; Provisional 243 -184970 PRK15008 PRK15008 HTH-type transcriptional regulator RutR; Provisional 212 -184971 PRK15009 PRK15009 GDP-mannose pyrophosphatase NudK; Provisional 191 -184972 PRK15010 PRK15010 ABC transporter lysine/arginine/ornithine binding periplasmic protein; Provisional 260 -184973 PRK15011 PRK15011 sugar efflux transporter B; Provisional 393 -184974 PRK15012 PRK15012 menaquinone-specific isochorismate synthase; Provisional 431 -184975 PRK15014 PRK15014 6-phospho-beta-glucosidase BglA; Provisional 477 -184976 PRK15015 PRK15015 carbon starvation protein A; Provisional 701 -184977 PRK15016 PRK15016 isochorismate synthase EntC; Provisional 391 -184978 PRK15017 PRK15017 cytochrome o ubiquinol oxidase subunit I; Provisional 663 -184979 PRK15018 PRK15018 1-acyl-sn-glycerol-3-phosphate acyltransferase; Provisional 245 -184980 PRK15019 PRK15019 CsdA-binding activator; Provisional 147 -237884 PRK15020 PRK15020 ethanolamine utilization cobalamin adenosyltransferase; Provisional 267 -184982 PRK15021 PRK15021 microcin C ABC transporter permease; Provisional 341 -184983 PRK15022 PRK15022 ferritin-like protein; Provisional 167 -184984 PRK15023 PRK15023 L-serine deaminase; Provisional 454 -184985 PRK15025 PRK15025 ureidoglycolate dehydrogenase; Provisional 349 -184986 PRK15026 PRK15026 aminoacyl-histidine dipeptidase; Provisional 485 -184987 PRK15027 PRK15027 xylulokinase; Provisional 484 -184988 PRK15028 PRK15028 cytochrome bd-II oxidase subunit 2; Provisional 378 -184989 PRK15029 PRK15029 arginine decarboxylase; Provisional 755 -184990 PRK15030 PRK15030 multidrug efflux system transporter AcrA; Provisional 397 -184991 PRK15031 PRK15031 5-carboxymethyl-2-hydroxymuconate delta-isomerase; Provisional 126 -184992 PRK15032 PRK15032 trimethylamine N-oxide reductase cytochrome c-type subunit; Provisional 390 -237885 PRK15033 PRK15033 tricarballylate utilization protein B; Provisional 389 -184994 PRK15034 PRK15034 nitrate/nitrite transport protein NarU; Provisional 462 -184995 PRK15035 PRK15035 cytochrome bd-II oxidase subunit 1; Provisional 514 -184996 PRK15036 PRK15036 hydroxyisourate hydrolase; Provisional 137 -184997 PRK15037 PRK15037 D-mannonate oxidoreductase; Provisional 486 -184998 PRK15038 PRK15038 autoinducer 2 import system permease LsrD; Provisional 330 -184999 PRK15039 PRK15039 transcriptional repressor RcnR to maintain nickel and cobalt homeostasis; Provisional 90 -185000 PRK15040 PRK15040 L-serine dehydratase TdcG; Provisional 454 -185001 PRK15041 PRK15041 methyl-accepting chemotaxis protein I; Provisional 554 -237886 PRK15042 pduD propanediol dehydratase medium subunit; Provisional 219 -185003 PRK15043 PRK15043 transcriptional regulator MirA; Provisional 243 -185004 PRK15044 PRK15044 transcriptional regulator SirC; Provisional 295 -185005 PRK15045 PRK15045 cellulose biosynthesis protein BcsE; Provisional 519 -237887 PRK15046 PRK15046 2-aminoethylphosphonate ABC transporter substrate-binding protein; Provisional 349 -185007 PRK15047 PRK15047 N-hydroxyarylamine O-acetyltransferase; Provisional 281 -185008 PRK15048 PRK15048 methyl-accepting chemotaxis protein II; Provisional 553 -185009 PRK15049 PRK15049 L-asparagine permease; Provisional 499 -237888 PRK15050 PRK15050 2-aminoethylphosphonate transport system permease PhnU; Provisional 296 -185011 PRK15051 PRK15051 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol flippase subunit ArnE; Provisional 111 -237889 PRK15052 PRK15052 D-tagatose-1,6-bisphosphate aldolase subunit GatZ; Provisional 421 -185013 PRK15053 dpiB sensor histidine kinase DpiB; Provisional 545 -185014 PRK15054 PRK15054 nitrate reductase 2 subunit delta; Provisional 231 -237890 PRK15055 PRK15055 anaerobic sulfite reductase subunit A; Provisional 344 -185016 PRK15056 PRK15056 manganese/iron transporter ATP-binding protein; Provisional 272 -185017 PRK15057 PRK15057 UDP-glucose 6-dehydrogenase; Provisional 388 -185018 PRK15058 PRK15058 cytochrome b562; Provisional 128 -185019 PRK15059 PRK15059 tartronate semialdehyde reductase; Provisional 292 -185020 PRK15060 PRK15060 L-dehydroascorbate transporter large permease subunit; Provisional 425 -237891 PRK15061 PRK15061 catalase/hydroperoxidase HPI(I); Provisional 726 -237892 PRK15062 PRK15062 hydrogenase isoenzymes formation protein HypD; Provisional 364 -237893 PRK15063 PRK15063 isocitrate lyase; Provisional 428 -237894 PRK15064 PRK15064 ABC transporter ATP-binding protein; Provisional 530 -237895 PRK15065 PRK15065 PTS system mannose-specific transporter subunit IIC; Provisional 262 -237896 PRK15066 PRK15066 inner membrane transport permease; Provisional 257 -237897 PRK15067 PRK15067 ethanolamine ammonia lyase large subunit; Provisional 461 -237898 PRK15068 PRK15068 tRNA mo(5)U34 methyltransferase; Provisional 322 -185029 PRK15069 PRK15069 histidine/lysine/arginine/ornithine ABC transporter permease HisM; Provisional 234 -237899 PRK15070 PRK15070 propanediol utilization phosphotransacylase; Provisional 211 -237900 PRK15071 PRK15071 lipopolysaccharide ABC transporter permease; Provisional 356 -237901 PRK15072 PRK15072 bifunctional D-altronate/D-mannonate dehydratase; Provisional 404 -185033 PRK15074 PRK15074 inosine/guanosine kinase; Provisional 434 -237902 PRK15075 PRK15075 citrate-proton symporter; Provisional 434 -185035 PRK15076 PRK15076 alpha-galactosidase; Provisional 431 -237903 PRK15078 PRK15078 polysaccharide export protein Wza; Provisional 379 -185037 PRK15079 PRK15079 oligopeptide ABC transporter ATP-binding protein OppF; Provisional 331 -237904 PRK15080 PRK15080 ethanolamine utilization protein EutJ; Provisional 267 -185039 PRK15081 PRK15081 glutathione ABC transporter permease GsiC; Provisional 306 -185040 PRK15082 PRK15082 glutathione ABC transporter permease GsiD; Provisional 301 -237905 PRK15083 PRK15083 PTS system mannitol-specific transporter subunit IICBA; Provisional 639 -185042 PRK15084 PRK15084 formate hydrogenlyase maturation protein HycH; Provisional 133 -237906 PRK15086 PRK15086 ethanolamine utilization protein EutH; Provisional 372 -185044 PRK15087 PRK15087 hemolysin; Provisional 219 -185045 PRK15088 PRK15088 PTS system mannose-specific transporter subunits IIAB; Provisional 322 -185046 PRK15090 PRK15090 DNA-binding transcriptional regulator KdgR; Provisional 257 -185047 PRK15091 PRK15091 ABC transporter outer membrane lipoprotein; Provisional 251 -237907 PRK15092 PRK15092 DNA-binding transcriptional repressor LrhA; Provisional 310 -185049 PRK15093 PRK15093 antimicrobial peptide ABC transporter ATP-binding protein; Provisional 330 -185050 PRK15094 PRK15094 magnesium/cobalt efflux protein CorC; Provisional 292 -237908 PRK15095 PRK15095 FKBP-type peptidyl-prolyl cis-trans isomerase; Provisional 156 -185052 PRK15097 PRK15097 cytochrome d terminal oxidase subunit 1; Provisional 522 -185053 PRK15098 PRK15098 beta-D-glucoside glucohydrolase; Provisional 765 -185054 PRK15099 PRK15099 O-antigen translocase; Provisional 416 -185055 PRK15100 PRK15100 amino acid ABC transporter permease; Provisional 220 -185056 PRK15101 PRK15101 protease3; Provisional 961 -237909 PRK15102 PRK15102 trimethylamine N-oxide reductase I catalytic subunit; Provisional 825 -237910 PRK15103 PRK15103 paraquat-inducible membrane protein A; Provisional 419 -185059 PRK15104 PRK15104 oligopeptide ABC transporter substrate-binding protein OppA; Provisional 543 -185060 PRK15105 PRK15105 peptidoglycan synthase FtsI; Provisional 578 -237911 PRK15106 PRK15106 nucleoside-specific channel-forming protein Tsx; Provisional 289 -185062 PRK15107 PRK15107 glutamate/aspartate transport system permease GltK; Provisional 224 -185063 PRK15108 PRK15108 biotin synthase; Provisional 345 -185064 PRK15109 PRK15109 antimicrobial peptide ABC transporter periplasmic binding protein SapA; Provisional 547 -185065 PRK15110 PRK15110 antimicrobial peptide ABC transporter permease SapB; Provisional 321 -185066 PRK15111 PRK15111 antimicrobial peptide ABC transporter permease SapC; Provisional 296 -185067 PRK15112 PRK15112 antimicrobial peptide ABC system ATP-binding protein SapF; Provisional 267 -185068 PRK15113 PRK15113 glutathione S-transferase; Provisional 214 -185069 PRK15114 PRK15114 tRNA (cytidine/uridine-2'-O-)-methyltransferase TrmJ; Provisional 245 -185070 PRK15115 PRK15115 response regulator GlrR; Provisional 444 -185071 PRK15116 PRK15116 sulfur acceptor protein CsdL; Provisional 268 -237912 PRK15117 PRK15117 ABC transporter periplasmic binding protein MlaC; Provisional 211 -185073 PRK15118 PRK15118 universal stress global response regulator UspA; Provisional 144 -237913 PRK15119 PRK15119 undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase; Provisional 365 -185075 PRK15120 PRK15120 lipopolysaccharide ABC transporter permease LptF; Provisional 366 -185076 PRK15121 PRK15121 right oriC-binding transcriptional activator; Provisional 289 -237914 PRK15122 PRK15122 magnesium-transporting ATPase; Provisional 903 -237915 PRK15123 PRK15123 lipopolysaccharide core heptose(I) kinase RfaP; Provisional 268 -185079 PRK15124 PRK15124 2'-5' RNA ligase; Provisional 176 -185080 PRK15126 PRK15126 thiamin pyrimidine pyrophosphate hydrolase; Provisional 272 -185081 PRK15127 PRK15127 multidrug efflux system protein AcrB; Provisional 1049 -185082 PRK15128 PRK15128 23S rRNA m(5)C1962 methyltransferase; Provisional 396 -185083 PRK15129 PRK15129 L-Ala-D/L-Glu epimerase; Provisional 321 -237916 PRK15130 PRK15130 spermidine N1-acetyltransferase; Provisional 186 -185085 PRK15131 PRK15131 mannose-6-phosphate isomerase; Provisional 389 -185086 PRK15132 PRK15132 tyrosine transporter TyrP; Provisional 403 -185087 PRK15133 PRK15133 microcin C ABC transporter permease YejB; Provisional 364 -237917 PRK15134 PRK15134 microcin C ABC transporter ATP-binding protein YejF; Provisional 529 -185089 PRK15135 PRK15135 histidine/lysine/arginine/ornithine ABC transporter permease HisQ; Provisional 228 -185090 PRK15136 PRK15136 multidrug efflux system protein EmrA; Provisional 390 -185091 PRK15137 PRK15137 DNA-specific endonuclease I; Provisional 235 -185092 PRK15138 PRK15138 aldehyde reductase; Provisional 387 -185093 PRK15171 PRK15171 lipopolysaccharide 1,3-galactosyltransferase; Provisional 334 -237918 PRK15172 PRK15172 putative aldose-1-epimerase; Provisional 300 -185095 PRK15173 PRK15173 peptidase; Provisional 323 -185096 PRK15174 PRK15174 Vi polysaccharide export protein VexE; Provisional 656 -185097 PRK15175 PRK15175 Vi polysaccharide export protein VexA; Provisional 355 -185098 PRK15176 PRK15176 Vi polysaccharide export inner membrane protein VexB; Provisional 264 -185099 PRK15177 PRK15177 Vi polysaccharide export ATP-binding protein VexC; Provisional 213 -185100 PRK15178 PRK15178 Vi polysaccharide export inner membrane protein VexD; Provisional 434 -185101 PRK15179 PRK15179 Vi polysaccharide biosynthesis protein TviE; Provisional 694 -185102 PRK15180 PRK15180 Vi polysaccharide biosynthesis protein TviD; Provisional 831 -185103 PRK15181 PRK15181 Vi polysaccharide biosynthesis protein TviC; Provisional 348 -185104 PRK15182 PRK15182 Vi polysaccharide biosynthesis protein TviB; Provisional 425 -185105 PRK15183 PRK15183 Vi polysaccharide biosynthesis protein TviA; Provisional 143 -185106 PRK15184 PRK15184 curli production assembly/transport protein CsgG; Provisional 277 -185107 PRK15185 PRK15185 transcriptional regulator HilD; Provisional 309 -185108 PRK15186 PRK15186 AraC family transcriptional regulator; Provisional 291 -185109 PRK15187 PRK15187 fimbrial protein BcfA; Provisional 180 -185110 PRK15188 PRK15188 fimbrial chaperone protein BcfB; Provisional 228 -185111 PRK15189 PRK15189 fimbrial protein BcfD; Provisional 335 -185112 PRK15190 PRK15190 fimbrial protein BcfE; Provisional 181 -185113 PRK15191 PRK15191 fimbrial protein BcfF; Provisional 172 -185114 PRK15192 PRK15192 fimbrial chaperone BcfG; Provisional 234 -237919 PRK15193 PRK15193 outer membrane usher protein; Provisional 876 -237920 PRK15194 PRK15194 type-1 fimbrial protein subunit A; Provisional 185 -185117 PRK15195 PRK15195 fimbrial chaperone protein FimC; Provisional 229 -185118 PRK15196 PRK15196 secreted effector protein PipB2; Provisional 350 -185119 PRK15197 PRK15197 secreted effector protein PipB; Provisional 291 -185120 PRK15198 PRK15198 outer membrane usher protein FimD; Provisional 860 -237921 PRK15199 fimH fimbrial-like adhesin; Provisional 335 -185122 PRK15200 PRK15200 fimbrial protein FimI; Provisional 177 -185123 PRK15201 PRK15201 fimbriae regulatory protein FimW; Provisional 198 -237922 PRK15202 PRK15202 type III secretion chaperone protein SigE; Provisional 117 -185125 PRK15203 PRK15203 4-hydroxyphenylacetate degradation bifunctional isomerase/decarboxylase; Provisional 429 -185126 PRK15204 PRK15204 undecaprenyl-phosphate galactose phosphotransferase; Provisional 476 -237923 PRK15205 PRK15205 long polar fimbrial protein LpfE; Provisional 176 -237924 PRK15206 PRK15206 long polar fimbrial protein LpfD; Provisional 359 -185129 PRK15207 PRK15207 long polar fimbrial outer membrane usher protein LpfC; Provisional 842 -237925 PRK15208 PRK15208 long polar fimbrial chaperone LpfB; Provisional 228 -185131 PRK15209 PRK15209 long polar fimbrial protein LpfA; Provisional 174 -185132 PRK15210 PRK15210 fimbrial protein StdA; Provisional 194 -185133 PRK15211 PRK15211 fimbrial chaperone protein PefD; Provisional 229 -185134 PRK15212 PRK15212 virulence protein SpvA; Provisional 255 -237926 PRK15213 PRK15213 fimbrial outer membrane usher protein PefC; Provisional 797 -185136 PRK15214 PRK15214 fimbrial protein PefA; Provisional 172 -185137 PRK15215 PRK15215 fimbriae biosynthesis regulatory protein; Provisional 100 -185138 PRK15216 PRK15216 putative fimbrial biosynthesis regulatory protein; Provisional 340 -185139 PRK15217 PRK15217 fimbrial outer membrane usher protein; Provisional 826 -185140 PRK15218 PRK15218 fimbrial chaperone protein PegB; Provisional 226 -237927 PRK15219 PRK15219 carbonic anhydrase; Provisional 245 -237928 PRK15220 PRK15220 fimbrial chaperone protein; Provisional 178 -185143 PRK15221 PRK15221 Saf-pilin pilus formation protein SafA; Provisional 165 -185144 PRK15222 PRK15222 putative pilin structural protein SafD; Provisional 156 -185145 PRK15223 PRK15223 pilin outer membrane usher protein SafC; Provisional 836 -185146 PRK15224 PRK15224 pili assembly chaperone protein SafB; Provisional 237 -185147 PRK15228 PRK15228 fimbrial protein SefA; Provisional 165 -185148 PRK15231 PRK15231 fimbrial adhesin protein SefD; Provisional 150 -185149 PRK15233 PRK15233 putative fimbrial chaperone protein SefB; Provisional 246 -185150 PRK15235 PRK15235 outer membrane fimbrial usher protein SefC; Provisional 814 -237929 PRK15238 PRK15238 inner membrane transporter YjeM; Provisional 496 -185152 PRK15239 PRK15239 putative fimbrial protein StaA; Provisional 197 -185153 PRK15240 PRK15240 resistance to complement killing; Provisional 185 -185154 PRK15241 PRK15241 putative fimbrial protein StaD; Provisional 188 -185155 PRK15243 PRK15243 transcriptional regulator SpvR; Provisional 297 -185156 PRK15244 PRK15244 virulence protein SpvB; Provisional 591 -185157 PRK15245 PRK15245 type III effector phosphothreonine lyase; Provisional 241 -185158 PRK15246 PRK15246 fimbrial assembly chaperone StbE; Provisional 233 -185159 PRK15247 PRK15247 putative fimbrial usher protein StbD; Provisional 441 -185160 PRK15248 PRK15248 fimbrial outer membrane usher protein StbC; Provisional 853 -237930 PRK15249 PRK15249 fimbrial chaperone protein StbB; Provisional 253 -185162 PRK15250 PRK15250 virulence protein SpvD; Provisional 216 -237931 PRK15251 PRK15251 cytolethal distending toxin subunit CdtB; Provisional 271 -237932 PRK15252 PRK15252 putative fimbrial-like adhesin protein StcD; Provisional 344 -185165 PRK15253 PRK15253 putative fimbrial assembly chaperone protein StcB; Provisional 242 -185166 PRK15254 PRK15254 fimbrial chaperone protein StdC; Provisional 239 -185167 PRK15255 PRK15255 fimbrial outer membrane usher protein StdB; Provisional 829 -185168 PRK15260 PRK15260 fimbrial protein SteF; Provisional 178 -185169 PRK15261 PRK15261 fimbrial protein SteA; Provisional 195 -237933 PRK15262 PRK15262 putative fimbrial protein StaF; Provisional 197 -185171 PRK15263 PRK15263 putative fimbrial protein StaE; Provisional 196 -185172 PRK15265 PRK15265 subtilase cytotoxin subunit B-like protein; Provisional 134 -185173 PRK15266 PRK15266 subtilase cytotoxin subunit B; Provisional 135 -185174 PRK15267 PRK15267 subtilase cytotoxin subunit B-like protein; Provisional 141 -185175 PRK15272 PRK15272 pertussis toxin-like subunit ArtA; Provisional 242 -185176 PRK15273 PRK15273 putative fimbrial outer membrane usher protein SteB; Provisional 881 -185177 PRK15274 PRK15274 putative periplasmic fimbrial chaperone protein SteC; Provisional 257 -185178 PRK15275 PRK15275 putative fimbrial protein SteD; Provisional 166 -185179 PRK15276 PRK15276 putative fimbrial subunit SteE; Provisional 153 -185180 PRK15278 PRK15278 type III secretion protein BopE; Provisional 261 -185181 PRK15279 PRK15279 type III secretion protein SopE; Provisional 240 -185182 PRK15280 PRK15280 type III secretion protein SopE2; Provisional 240 -185183 PRK15283 PRK15283 putative fimbrial subunit StfA; Provisional 186 -185184 PRK15284 PRK15284 putative fimbrial outer membrane usher protein StfC; Provisional 881 -185185 PRK15285 PRK15285 putative fimbrial chaperone protein StfD; Provisional 250 -185186 PRK15286 PRK15286 putative minor fimbrial subunit StfE; Provisional 170 -185187 PRK15287 PRK15287 putative minor fimbrial subunit StfF; Provisional 158 -185188 PRK15288 PRK15288 putative minor fimbrial subunit StfG; Provisional 176 -185189 PRK15289 lpfA fimbrial protein; Provisional 190 -237934 PRK15290 lfpB fimbrial chaperone protein; Provisional 243 -185191 PRK15291 PRK15291 fimbrial protein StgD; Provisional 355 -237935 PRK15292 PRK15292 putative major fimbrial protein SthE; Provisional 365 -185193 PRK15293 PRK15293 putative fimbrial protein SthD; Provisional 185 -185194 PRK15294 PRK15294 putative fimbrial outer membrane usher protein SthC; Provisional 845 -237936 PRK15295 PRK15295 fimbrial assembly chaperone SthB; Provisional 226 -185196 PRK15296 PRK15296 putative fimbrial protein SthA; Provisional 181 -185197 PRK15297 PRK15297 putative fimbrial protein StiH; Provisional 359 -185198 PRK15298 PRK15298 fimbrial outer membrane usher protein StiC; Provisional 848 -185199 PRK15299 PRK15299 fimbrial chaperone protein StiB; Provisional 227 -185200 PRK15300 PRK15300 fimbrial protein StiA; Provisional 179 -185201 PRK15301 PRK15301 hypothetical protein; Provisional 186 -185202 PRK15302 PRK15302 hypothetical protein; Provisional 229 -185203 PRK15303 PRK15303 hypothetical protein; Provisional 229 -237937 PRK15304 PRK15304 putative fimbrial outer membrane usher protein; Provisional 801 -185205 PRK15305 PRK15305 putative fimbrial protein StkG; Provisional 353 -237938 PRK15306 PRK15306 putative fimbrial protein StkD; Provisional 190 -185207 PRK15307 PRK15307 major fimbrial protein StkA; Provisional 201 -237939 PRK15308 PRK15308 putative fimbrial protein TcfA; Provisional 234 -185209 PRK15309 PRK15309 putative fimbrial subunit TcfB; Provisional 191 -185210 PRK15310 PRK15310 fimbrial outer membrane usher protein TcfC; Provisional 895 -185211 PRK15311 PRK15311 putative fimbrial protein TcfD; Provisional 359 -185212 PRK15312 PRK15312 antimicrobial resistance protein Mig-14; Provisional 298 -237940 PRK15313 PRK15313 autotransport protein MisL; Provisional 955 -185214 PRK15314 PRK15314 outer membrane protein RatB; Provisional 2435 -237941 PRK15315 PRK15315 outer membrane protein RatA; Provisional 1865 -185216 PRK15316 PRK15316 RatA-like protein; Provisional 2683 -237942 PRK15317 PRK15317 alkyl hydroperoxide reductase subunit F; Provisional 517 -237943 PRK15318 PRK15318 intimin-like protein SinH; Provisional 730 -185219 PRK15319 PRK15319 AIDA autotransporter-like protein ShdA; Provisional 2039 -185220 PRK15320 PRK15320 transcriptional activator SprB; Provisional 251 -185221 PRK15321 PRK15321 putative type III secretion system effector protein OrgC; Provisional 120 -185222 PRK15322 PRK15322 invasion protein OrgB; Provisional 210 -185223 PRK15323 PRK15323 invasion protein OrgA; Provisional 167 -185224 PRK15324 PRK15324 type III secretion system lipoprotein PrgK; Provisional 252 -185225 PRK15325 PRK15325 type III secretion system needle complex protein PrgJ; Provisional 80 -185226 PRK15326 PRK15326 type III secretion system needle complex protein PrgI; Provisional 80 -237944 PRK15327 PRK15327 type III secretion system needle complex protein PrgH; Provisional 393 -185228 PRK15328 PRK15328 invasion protein IagB; Provisional 160 -237945 PRK15329 PRK15329 chaperone protein SicP; Provisional 138 -185230 PRK15330 PRK15330 cell invasion protein SipD; Provisional 343 -185231 PRK15331 PRK15331 chaperone protein SicA; Provisional 165 -185232 PRK15332 PRK15332 type III secretion system protein SpaR; Provisional 263 -185233 PRK15333 PRK15333 type III secretion system protein SpaQ; Provisional 86 -185234 PRK15334 PRK15334 antigen presentation protein SpaN; Provisional 336 -185235 PRK15335 PRK15335 type III secretion system protein SpaM; Provisional 147 -185236 PRK15336 PRK15336 type III secretion system chaperone SpaK; Provisional 135 -237946 PRK15337 PRK15337 type III secretion system protein InvA; Provisional 686 -237947 PRK15338 PRK15338 type III secretion system regulator InvE; Provisional 372 -237948 PRK15339 PRK15339 type III secretion system outer membrane pore InvG; Provisional 559 -185240 PRK15340 PRK15340 transcriptional regulator InvF; Provisional 216 -185241 PRK15341 PRK15341 invasion lipoprotein InvH; Provisional 147 -185242 PRK15344 PRK15344 type III secretion system needle protein SsaG; Provisional 71 -237949 PRK15345 PRK15345 type III secretion system protein SsaL; Provisional 326 -237950 PRK15346 PRK15346 outer membrane secretin SsaC; Provisional 499 -237951 PRK15347 PRK15347 two component system sensor kinase SsrA; Provisional 921 -185246 PRK15348 PRK15348 type III secretion system lipoprotein SsaJ; Provisional 249 -185247 PRK15349 PRK15349 type III secretion system protein SsaT; Provisional 259 -185248 PRK15350 PRK15350 type III secretion system protein SsaS; Provisional 88 -185249 PRK15351 PRK15351 type III secretion system protein SsaP; Provisional 124 -185250 PRK15352 PRK15352 type III secretion system protein SsaO; Provisional 125 -185251 PRK15353 PRK15353 type III secretion system protein SsaM; Provisional 122 -185252 PRK15354 PRK15354 type III secretion system protein SsaK; Provisional 224 -185253 PRK15355 PRK15355 type III secretion system protein SsaI; Provisional 82 -185254 PRK15356 PRK15356 type III secretion system protein SsaH; Provisional 75 -185255 PRK15357 PRK15357 pathogenicity island 2 effector protein SseG; Provisional 229 -185256 PRK15358 PRK15358 pathogenicity island 2 effector protein SseF; Provisional 239 -185257 PRK15359 PRK15359 type III secretion system chaperone protein SscB; Provisional 144 -185258 PRK15360 PRK15360 pathogenicity island 2 effector protein SseE; Provisional 137 -185259 PRK15361 PRK15361 pathogenicity island 2 effector protein SseD; Provisional 195 -237952 PRK15362 PRK15362 pathogenicity island 2 effector protein SseC; Provisional 473 -185261 PRK15363 PRK15363 pathogenicity island 2 chaperone protein SscA; Provisional 157 -185262 PRK15364 PRK15364 pathogenicity island 2 effector protein SseB; Provisional 196 -185263 PRK15365 PRK15365 type III secretion system chaperone SseA; Provisional 107 -185264 PRK15366 PRK15366 type III secretion system chaperone SsaE; Provisional 80 -185265 PRK15367 PRK15367 type III secretion system protein SsaD; Provisional 395 -185266 PRK15368 PRK15368 pathogenicity island chaperone protein SpiC; Provisional 127 -185267 PRK15369 PRK15369 two component system sensor kinase SsrB; Provisional 211 -185268 PRK15370 PRK15370 E3 ubiquitin-protein ligase SlrP; Provisional 754 -185269 PRK15371 PRK15371 effector protein YopJ; Provisional 287 -185270 PRK15372 PRK15372 pathogenicity island 2 effector protein SseI; Provisional 292 -185271 PRK15373 PRK15373 pathogenicity island 1 effector protein SipC; Provisional 411 -185272 PRK15374 PRK15374 pathogenicity island 1 effector protein SipB; Provisional 593 -185273 PRK15375 PRK15375 pathogenicity island 1 effector protein StpP; Provisional 535 -185274 PRK15376 PRK15376 pathogenicity island 1 effector protein SipA; Provisional 670 -185275 PRK15377 PRK15377 E3 ubiquitin-protein ligase SopA; Provisional 782 -237953 PRK15378 PRK15378 inositol phosphate phosphatase SopB; Provisional 564 -185277 PRK15379 PRK15379 pathogenicity island 1 effector protein SopD; Provisional 317 -185278 PRK15380 PRK15380 pathogenicity island 1 protein SopD2; Provisional 319 -185279 PRK15381 PRK15381 pathogenicity island 2 effector protein SseJ; Provisional 408 -185280 PRK15382 PRK15382 non-LEE encoded effector protein NleB; Provisional 326 -185281 PRK15383 PRK15383 type III secretion system protein; Provisional 335 -185282 PRK15384 PRK15384 type III secretion system protein; Provisional 336 -185283 PRK15385 PRK15385 magnesium transport protein MgtC; Provisional 225 -237954 PRK15386 PRK15386 type III secretion protein GogB; Provisional 426 -185285 PRK15387 PRK15387 E3 ubiquitin-protein ligase SspH2; Provisional 788 -185286 PRK15388 PRK15388 Cu/Zn superoxide dismutase; Provisional 177 -237955 PRK15389 PRK15389 fumarate hydratase; Provisional 536 -185288 PRK15390 PRK15390 fumarate hydratase FumA; Provisional 548 -185289 PRK15391 PRK15391 fumarate hydratase FumB; Provisional 548 -185290 PRK15392 PRK15392 putative fumarate hydratase; Provisional 550 -185291 PRK15393 PRK15393 NUDIX hydrolase YfcD; Provisional 180 -185292 PRK15394 PRK15394 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol deformylase ArnD; Provisional 296 -185293 PRK15395 PRK15395 methyl-galactoside ABC transporter galactose-binding periplasmic protein MglB; Provisional 330 -185294 PRK15396 PRK15396 murein lipoprotein; Provisional 78 -185295 PRK15397 PRK15397 nicotinamide riboside transporter PnuC; Provisional 239 -237956 PRK15398 PRK15398 aldehyde dehydrogenase EutE; Provisional 465 -185297 PRK15399 PRK15399 lysine decarboxylase LdcC; Provisional 713 -185298 PRK15400 PRK15400 lysine decarboxylase CadA; Provisional 714 -237957 PRK15401 PRK15401 alpha-ketoglutarate-dependent dioxygenase AlkB; Provisional 213 -185300 PRK15402 PRK15402 multidrug efflux system translocase MdfA; Provisional 406 -237958 PRK15403 PRK15403 multidrug efflux system protein MdtM; Provisional 413 -237959 PRK15404 PRK15404 leucine ABC transporter subunit substrate-binding protein LivK; Provisional 369 -185303 PRK15405 PRK15405 ethanolamine utilization protein EutL; Provisional 217 -185304 PRK15406 PRK15406 oligopeptide ABC transporter permease OppC; Provisional 302 -237960 PRK15407 PRK15407 lipopolysaccharide biosynthesis protein RfbH; Provisional 438 -237961 PRK15408 PRK15408 autoinducer 2-binding protein lsrB; Provisional 336 -185307 PRK15409 PRK15409 bifunctional glyoxylate/hydroxypyruvate reductase B; Provisional 323 -185308 PRK15410 PRK15410 DgsA anti-repressor MtfA; Provisional 260 -185309 PRK15411 rcsA colanic acid capsular biosynthesis activation protein A; Provisional 207 -185310 PRK15412 PRK15412 thiol:disulfide interchange protein DsbE; Provisional 185 -185311 PRK15413 PRK15413 glutathione ABC transporter substrate-binding protein GsiB; Provisional 512 -185312 PRK15414 PRK15414 phosphomannomutase CpsG; Provisional 456 -185313 PRK15415 PRK15415 propanediol utilization protein PduB; Provisional 266 -185314 PRK15416 PRK15416 lipopolysaccharide core heptose(II)-phosphate phosphatase; Provisional 201 -185315 PRK15417 PRK15417 integrase/recombinase; Provisional 337 -237962 PRK15418 PRK15418 transcriptional regulator LsrR; Provisional 318 -185317 PRK15419 PRK15419 proline:sodium symporter PutP; Provisional 502 -185318 PRK15420 fucU L-fucose mutarotase; Provisional 140 -185319 PRK15421 PRK15421 DNA-binding transcriptional regulator MetR; Provisional 317 -185320 PRK15422 PRK15422 septal ring assembly protein ZapB; Provisional 79 -185321 PRK15423 PRK15423 hypoxanthine phosphoribosyltransferase; Provisional 178 -237963 PRK15424 PRK15424 propionate catabolism operon regulatory protein PrpR; Provisional 538 -185323 PRK15425 gapA glyceraldehyde-3-phosphate dehydrogenase A; Provisional 331 -237964 PRK15426 PRK15426 putative diguanylate cyclase YedQ; Provisional 570 -185325 PRK15427 PRK15427 colanic acid biosynthesis glycosyltransferase WcaL; Provisional 406 -185326 PRK15428 PRK15428 putative propanediol utilization protein PduM; Provisional 163 -237965 PRK15429 PRK15429 formate hydrogenlyase transcriptional activator FhlA; Provisional 686 -185328 PRK15430 PRK15430 putative chloramphenical resistance permease RarD; Provisional 296 -185329 PRK15431 PRK15431 ferrous iron transport protein FeoC; Provisional 78 -185330 PRK15432 PRK15432 autoinducer 2 ABC transporter permease LsrC; Provisional 344 -185331 PRK15433 PRK15433 branched-chain amino acid transport system 2 carrier protein BrnQ; Provisional 439 -237966 PRK15434 PRK15434 GDP-mannose mannosyl hydrolase NudD; Provisional 159 -185333 PRK15435 PRK15435 bifunctional DNA-binding transcriptional dual regulator/O6-methylguanine-DNA methyltransferase; Provisional 353 -185334 PRK15437 PRK15437 histidine ABC transporter substrate-binding protein HisJ; Provisional 259 -185335 PRK15438 PRK15438 erythronate-4-phosphate dehydrogenase PdxB; Provisional 378 -185336 PRK15439 PRK15439 autoinducer 2 ABC transporter ATP-binding protein LsrA; Provisional 510 -185337 PRK15440 PRK15440 L-rhamnonate dehydratase; Provisional 394 -185338 PRK15441 PRK15441 peptidyl-prolyl cis-trans isomerase C; Provisional 93 -185339 PRK15442 PRK15442 beta-lactamase TEM; Provisional 284 -185340 PRK15443 pduE propanediol dehydratase small subunit; Provisional 138 -185341 PRK15444 pduC propanediol dehydratase large subunit; Provisional 554 -185342 PRK15445 PRK15445 arsenical pump membrane protein; Provisional 427 -237967 PRK15446 PRK15446 phosphonate metabolism protein PhnM; Provisional 383 -237968 PRK15447 PRK15447 putative protease; Provisional 301 -185345 PRK15448 PRK15448 ethanolamine catabolic microcompartment shell protein EutN; Provisional 95 -185346 PRK15449 PRK15449 ferredoxin-like protein FixX; Provisional 95 -185347 PRK15450 PRK15450 signal transduction protein PmrD; Provisional 85 -185348 PRK15451 PRK15451 tRNA cmo(5)U34 methyltransferase; Provisional 247 -237969 PRK15452 PRK15452 putative protease; Provisional 443 -237970 PRK15453 PRK15453 phosphoribulokinase; Provisional 290 -185351 PRK15454 PRK15454 ethanol dehydrogenase EutG; Provisional 395 -185352 PRK15455 PRK15455 PrkA family serine protein kinase; Provisional 644 -185353 PRK15456 PRK15456 universal stress protein UspG; Provisional 142 -185354 PRK15457 PRK15457 ethanolamine utilization protein EutQ; Provisional 233 -185355 PRK15458 PRK15458 tagatose 6-phosphate aldolase subunit KbaZ; Provisional 426 -185356 PRK15459 PRK15459 flagella synthesis chaperone protein FlgN; Provisional 140 -185357 PRK15460 cpsB mannose-1-phosphate guanyltransferase; Provisional 478 -185358 PRK15461 PRK15461 NADH-dependent gamma-hydroxybutyrate dehydrogenase; Provisional 296 -237971 PRK15462 PRK15462 dipeptide/tripeptide permease D; Provisional 493 -185360 PRK15463 PRK15463 cold shock-like protein CspF; Provisional 70 -185361 PRK15464 PRK15464 cold shock-like protein CspH; Provisional 70 -185362 PRK15465 pabB aminodeoxychorismate synthase subunit I; Provisional 453 -185363 PRK15466 PRK15466 carboxysome structural protein EutK; Provisional 166 -185364 PRK15467 PRK15467 ethanolamine utilization protein EutP; Provisional 158 -185365 PRK15468 PRK15468 carboxysome structural protein EutS; Provisional 111 -185366 PRK15469 ghrA bifunctional glyoxylate/hydroxypyruvate reductase A; Provisional 312 -185367 PRK15470 emtA lytic murein endotransglycosylase E; Provisional 203 -185368 PRK15471 PRK15471 chain length determinant protein WzzB; Provisional 325 -185369 PRK15472 PRK15472 nucleoside triphosphatase NudI; Provisional 141 -185370 PRK15473 cbiF cobalt-precorrin-4 C(11)-methyltransferase; Provisional 257 -185371 PRK15474 PRK15474 carboxysome structural protein EutM; Provisional 97 -185372 PRK15475 PRK15475 oxaloacetate decarboxylase subunit beta; Provisional 433 -185373 PRK15476 PRK15476 oxaloacetate decarboxylase subunit beta; Provisional 433 -185374 PRK15477 PRK15477 oxaloacetate decarboxylase subunit beta; Provisional 433 -185375 PRK15478 cbiH cobalt-precorrin-3B C(17)-methyltransferase; Provisional 241 -185376 PRK15479 PRK15479 transcriptional regulatory protein TctD; Provisional 221 -185377 PRK15480 PRK15480 glucose-1-phosphate thymidylyltransferase RfbA; Provisional 292 -185378 PRK15481 PRK15481 transcriptional regulatory protein PtsJ; Provisional 431 -185379 PRK15482 PRK15482 transcriptional regulator MurR; Provisional 285 -237972 PRK15483 PRK15483 type III restriction-modification system StyLTI enzyme res; Provisional 986 -185381 PRK15484 PRK15484 lipopolysaccharide 1,2-N-acetylglucosaminetransferase; Provisional 380 -185382 PRK15485 PRK15485 cobalt transport protein CbiQ; Provisional 225 -185383 PRK15486 hpaC 4-hydroxyphenylacetate 3-monooxygenase reductase subunit; Provisional 170 -185384 PRK15487 PRK15487 O-antigen ligase RfaL; Provisional 400 -237973 PRK15488 PRK15488 thiosulfate reductase PhsA; Provisional 759 -237974 PRK15489 nfrB bacteriophage N4 adsorption protein B; Provisional 703 -185387 PRK15490 PRK15490 Vi polysaccharide biosynthesis protein TviE; Provisional 578 -185388 PRK15491 PRK15491 replication factor A; Provisional 374 -185389 PRK15492 PRK15492 triosephosphate isomerase; Provisional 260 -185390 PRK15493 PRK15493 5-methylthioadenosine/S-adenosylhomocysteine deaminase; Provisional 435 -185391 PRK15494 era GTPase Era; Provisional 339 -240225 PTZ00004 PTZ00004 actin-2; Provisional 378 -173310 PTZ00005 PTZ00005 phosphoglycerate kinase; Provisional 417 -240226 PTZ00007 PTZ00007 (NAP-L) nucleosome assembly protein -L; Provisional 337 -185394 PTZ00008 PTZ00008 (NAP-S) nucleosome assembly protein-S; Provisional 185 -240227 PTZ00009 PTZ00009 heat shock 70 kDa protein; Provisional 653 -240228 PTZ00010 PTZ00010 tubulin beta chain; Provisional 445 -140051 PTZ00013 PTZ00013 plasmepsin 4 (PM4); Provisional 450 -240229 PTZ00014 PTZ00014 myosin-A; Provisional 821 -185397 PTZ00015 PTZ00015 histone H4; Provisional 102 -240230 PTZ00016 PTZ00016 aquaglyceroporin; Provisional 294 -185399 PTZ00017 PTZ00017 histone H2A; Provisional 134 -185400 PTZ00018 PTZ00018 histone H3; Provisional 136 -240231 PTZ00019 PTZ00019 fructose-bisphosphate aldolase; Provisional 355 -240232 PTZ00021 PTZ00021 falcipain-2; Provisional 489 -173322 PTZ00023 PTZ00023 glyceraldehyde-3-phosphate dehydrogenase; Provisional 337 -240233 PTZ00024 PTZ00024 cyclin-dependent protein kinase; Provisional 335 -185402 PTZ00026 PTZ00026 60S ribosomal protein L15; Provisional 204 -240234 PTZ00027 PTZ00027 60S ribosomal protein L6; Provisional 190 -185404 PTZ00028 PTZ00028 40S ribosomal protein S6e; Provisional 218 -185405 PTZ00029 PTZ00029 60S ribosomal protein L10a; Provisional 216 -185406 PTZ00030 PTZ00030 60S ribosomal protein L20; Provisional 121 -173329 PTZ00031 PTZ00031 ribosomal protein L2; Provisional 317 -240235 PTZ00032 PTZ00032 60S ribosomal protein L18; Provisional 211 -140068 PTZ00033 PTZ00033 60S ribosomal protein L24; Provisional 125 -173331 PTZ00034 PTZ00034 40S ribosomal protein S10; Provisional 124 -185407 PTZ00035 PTZ00035 Rad51 protein; Provisional 337 -173333 PTZ00036 PTZ00036 glycogen synthase kinase; Provisional 440 -240236 PTZ00037 PTZ00037 DnaJ_C chaperone protein; Provisional 421 -240237 PTZ00038 PTZ00038 ferredoxin; Provisional 191 -173336 PTZ00039 PTZ00039 40S ribosomal protein S20; Provisional 115 -240238 PTZ00040 PTZ00040 translation initiation factor E4; Provisional 233 -240239 PTZ00041 PTZ00041 60S ribosomal protein L35a; Provisional 120 -240240 PTZ00043 PTZ00043 cytochrome c oxidase subunit; Provisional 268 -185411 PTZ00044 PTZ00044 ubiquitin; Provisional 76 -240241 PTZ00045 PTZ00045 apical membrane antigen 1; Provisional 595 -240242 PTZ00046 PTZ00046 rifin; Provisional 358 -240243 PTZ00047 PTZ00047 cytochrome c oxidase subunit II; Provisional 162 -185414 PTZ00048 PTZ00048 cytochrome c; Provisional 115 -240244 PTZ00049 PTZ00049 cathepsin C-like protein; Provisional 693 -240245 PTZ00050 PTZ00050 3-oxoacyl-acyl carrier protein synthase; Provisional 421 -173347 PTZ00051 PTZ00051 thioredoxin; Provisional 98 -185416 PTZ00052 PTZ00052 thioredoxin reductase; Provisional 499 -240246 PTZ00053 PTZ00053 methionine aminopeptidase 2; Provisional 470 -185418 PTZ00054 PTZ00054 60S ribosomal protein L23; Provisional 139 -240247 PTZ00055 PTZ00055 glutathione synthetase; Provisional 619 -240248 PTZ00056 PTZ00056 glutathione peroxidase; Provisional 199 -173353 PTZ00057 PTZ00057 glutathione s-transferase; Provisional 205 -185420 PTZ00058 PTZ00058 glutathione reductase; Provisional 561 -185421 PTZ00059 PTZ00059 dynein light chain; Provisional 90 -240249 PTZ00060 PTZ00060 cyclophilin; Provisional 183 -173356 PTZ00061 PTZ00061 DNA-directed RNA polymerase; Provisional 205 -240250 PTZ00062 PTZ00062 glutaredoxin; Provisional 204 -240251 PTZ00063 PTZ00063 histone deacetylase; Provisional 436 -173359 PTZ00064 PTZ00064 histone acetyltransferase; Provisional 552 -240252 PTZ00065 PTZ00065 60S ribosomal protein L14; Provisional 130 -173361 PTZ00066 PTZ00066 pyruvate kinase; Provisional 513 -185422 PTZ00067 PTZ00067 40S ribosomal S23; Provisional 143 -240253 PTZ00068 PTZ00068 60S ribosomal protein L13a; Provisional 202 -240254 PTZ00069 PTZ00069 60S ribosomal protein L5; Provisional 300 -240255 PTZ00070 PTZ00070 40S ribosomal protein S2; Provisional 257 -240256 PTZ00071 PTZ00071 40S ribosomal protein S24; Provisional 132 -185427 PTZ00072 PTZ00072 40S ribosomal protein S13; Provisional 148 -240257 PTZ00073 PTZ00073 60S ribosomal protein L37; Provisional 91 -185429 PTZ00074 PTZ00074 60S ribosomal protein L34; Provisional 135 -240258 PTZ00075 PTZ00075 Adenosylhomocysteinase; Provisional 476 -173371 PTZ00076 PTZ00076 60S ribosomal protein L17; Provisional 253 -185431 PTZ00077 PTZ00077 asparagine synthetase-like protein; Provisional 586 -185432 PTZ00078 PTZ00078 Superoxide dismutase [Fe]; Provisional 193 -185433 PTZ00079 PTZ00079 NADP-specific glutamate dehydrogenase; Provisional 454 -240259 PTZ00081 PTZ00081 enolase; Provisional 439 -173376 PTZ00082 PTZ00082 L-lactate dehydrogenase; Provisional 321 -185434 PTZ00083 PTZ00083 40S ribosomal protein S27; Provisional 85 -240260 PTZ00084 PTZ00084 40S ribosomal protein S3; Provisional 220 -240261 PTZ00085 PTZ00085 40S ribosomal protein S28; Provisional 73 -185437 PTZ00086 PTZ00086 40S ribosomal protein S16; Provisional 147 -185438 PTZ00087 PTZ00087 thrombosponding-related protein; Provisional 340 -240262 PTZ00088 PTZ00088 adenylate kinase 1; Provisional 229 -173383 PTZ00089 PTZ00089 transketolase; Provisional 661 -173384 PTZ00090 PTZ00090 40S ribosomal protein S11; Provisional 233 -185439 PTZ00091 PTZ00091 40S ribosomal protein S5; Provisional 193 -240263 PTZ00092 PTZ00092 aconitate hydratase-like protein; Provisional 898 -173387 PTZ00093 PTZ00093 nucleoside diphosphate kinase, cytosolic; Provisional 149 -240264 PTZ00094 PTZ00094 serine hydroxymethyltransferase; Provisional 452 -140127 PTZ00095 PTZ00095 40S ribosomal protein S19; Provisional 169 -185442 PTZ00096 PTZ00096 40S ribosomal protein S15; Provisional 143 -185443 PTZ00097 PTZ00097 60S ribosomal protein L19; Provisional 175 -173391 PTZ00098 PTZ00098 phosphoethanolamine N-methyltransferase; Provisional 263 -185444 PTZ00099 PTZ00099 rab6; Provisional 176 -240265 PTZ00100 PTZ00100 DnaJ chaperone protein; Provisional 116 -185445 PTZ00101 PTZ00101 rhomboid-1 protease; Provisional 278 -240266 PTZ00102 PTZ00102 disulphide isomerase; Provisional 477 -240267 PTZ00103 PTZ00103 60S ribosomal protein L3; Provisional 390 -240268 PTZ00104 PTZ00104 S-adenosylmethionine synthase; Provisional 398 -240269 PTZ00105 PTZ00105 60S ribosomal protein L12; Provisional 140 -185450 PTZ00106 PTZ00106 60S ribosomal protein L30; Provisional 108 -240270 PTZ00107 PTZ00107 hexokinase; Provisional 464 -240271 PTZ00108 PTZ00108 DNA topoisomerase 2-like protein; Provisional 1388 -240272 PTZ00109 PTZ00109 DNA gyrase subunit b; Provisional 903 -240273 PTZ00110 PTZ00110 helicase; Provisional 545 -173403 PTZ00111 PTZ00111 DNA replication licensing factor MCM4; Provisional 915 -240274 PTZ00112 PTZ00112 origin recognition complex 1 protein; Provisional 1164 -240275 PTZ00113 PTZ00113 proliferating cell nuclear antigen; Provisional 275 -185455 PTZ00114 PTZ00114 Heat shock protein 60; Provisional 555 -240276 PTZ00115 PTZ00115 40S ribosomal protein S12; Provisional 290 -173408 PTZ00116 PTZ00116 signal peptidase; Provisional 185 -173409 PTZ00117 PTZ00117 malate dehydrogenase; Provisional 319 -240277 PTZ00118 PTZ00118 40S ribosomal protein S4; Provisional 262 -240278 PTZ00119 PTZ00119 40S ribosomal protein S15; Provisional 302 -185458 PTZ00120 PTZ00120 D-tyrosyl-tRNA(Tyr) deacylase; Provisional 154 -173412 PTZ00121 PTZ00121 MAEBL; Provisional 2084 -240279 PTZ00122 PTZ00122 phosphoglycerate mutase; Provisional 299 -240280 PTZ00123 PTZ00123 phosphoglycerate mutase like-protein; Provisional 236 -173415 PTZ00124 PTZ00124 adenosine deaminase; Provisional 362 -240281 PTZ00125 PTZ00125 ornithine aminotransferase-like protein; Provisional 400 -240282 PTZ00126 PTZ00126 tyrosyl-tRNA synthetase; Provisional 383 -240283 PTZ00127 PTZ00127 cytochrome c oxidase assembly protein; Provisional 403 -185464 PTZ00128 PTZ00128 cytochrome c oxidase assembly protein-like; Provisional 232 -185465 PTZ00129 PTZ00129 40S ribosomal protein S14; Provisional 149 -185466 PTZ00130 PTZ00130 heat shock protein 90; Provisional 814 -185467 PTZ00131 PTZ00131 glycophorin-binding protein; Provisional 413 -240284 PTZ00132 PTZ00132 GTP-binding nuclear protein Ran; Provisional 215 -173423 PTZ00133 PTZ00133 ADP-ribosylation factor; Provisional 182 -185469 PTZ00134 PTZ00134 40S ribosomal protein S18; Provisional 154 -240285 PTZ00135 PTZ00135 60S acidic ribosomal protein P0; Provisional 310 -185471 PTZ00136 PTZ00136 eukaryotic translation initiation factor 6-like protein; Provisional 247 -173427 PTZ00137 PTZ00137 2-Cys peroxiredoxin; Provisional 261 -185472 PTZ00138 PTZ00138 small nuclear ribonucleoprotein; Provisional 89 -240286 PTZ00139 PTZ00139 Succinate dehydrogenase [ubiquinone] flavoprotein subunit; Provisional 617 -173430 PTZ00140 PTZ00140 sexual stage antigen s45/48; Provisional 447 -185474 PTZ00141 PTZ00141 elongation factor 1- alpha; Provisional 446 -240287 PTZ00142 PTZ00142 6-phosphogluconate dehydrogenase; Provisional 470 -240288 PTZ00143 PTZ00143 deoxyuridine 5'-triphosphate nucleotidohydrolase; Provisional 155 -240289 PTZ00144 PTZ00144 dihydrolipoamide succinyltransferase; Provisional 418 -240290 PTZ00145 PTZ00145 phosphoribosylpyrophosphate synthetase; Provisional 439 -240291 PTZ00146 PTZ00146 fibrillarin; Provisional 293 -140176 PTZ00147 PTZ00147 plasmepsin-1; Provisional 453 -240292 PTZ00148 PTZ00148 40S ribosomal protein S8; Provisional 205 -240293 PTZ00149 PTZ00149 hypoxanthine phosphoribosyltransferase; Provisional 241 -240294 PTZ00150 PTZ00150 phosphoglucomutase-2-like protein; Provisional 584 -173440 PTZ00151 PTZ00151 translationally controlled tumor-like protein; Provisional 172 -173441 PTZ00152 PTZ00152 cofilin/actin-depolymerizing factor 1-like protein; Provisional 122 -173442 PTZ00153 PTZ00153 lipoamide dehydrogenase; Provisional 659 -240295 PTZ00154 PTZ00154 40S ribosomal protein S17; Provisional 134 -185484 PTZ00155 PTZ00155 40S ribosomal protein S9; Provisional 181 -185485 PTZ00156 PTZ00156 60S ribosomal protein L11; Provisional 172 -240296 PTZ00157 PTZ00157 60S ribosomal protein L36a; Provisional 84 -185487 PTZ00158 PTZ00158 40S ribosomal protein S15A; Provisional 130 -240297 PTZ00159 PTZ00159 60S ribosomal protein L32; Provisional 133 -185489 PTZ00160 PTZ00160 60S ribosomal protein L27a; Provisional 147 -240298 PTZ00162 PTZ00162 DNA-directed RNA polymerase II subunit 7; Provisional 176 -185490 PTZ00163 PTZ00163 hypothetical protein; Provisional 230 -240299 PTZ00164 PTZ00164 bifunctional dihydrofolate reductase-thymidylate synthase; Provisional 514 -240300 PTZ00165 PTZ00165 aspartyl protease; Provisional 482 -240301 PTZ00166 PTZ00166 DNA polymerase delta catalytic subunit; Provisional 1054 -185493 PTZ00167 PTZ00167 RNA polymerase subunit 8c; Provisional 144 -185494 PTZ00168 PTZ00168 mitochondrial carrier protein; Provisional 259 -240302 PTZ00169 PTZ00169 ADP/ATP transporter on adenylate translocase; Provisional 300 -240303 PTZ00170 PTZ00170 D-ribulose-5-phosphate 3-epimerase; Provisional 228 -240304 PTZ00171 PTZ00171 acyl carrier protein; Provisional 148 -185497 PTZ00172 PTZ00172 40S ribosomal protein S26; Provisional 108 -185498 PTZ00173 PTZ00173 60S ribosomal protein L10; Provisional 213 -240305 PTZ00174 PTZ00174 phosphomannomutase; Provisional 247 -185500 PTZ00175 PTZ00175 diphthine synthase; Provisional 270 -140204 PTZ00176 PTZ00176 erythrocyte membrane protein 1 (PfEMP1); Provisional 1317 -240306 PTZ00178 PTZ00178 60S ribosomal protein L17; Provisional 181 -140206 PTZ00179 PTZ00179 60S ribosomal protein L9; Provisional 189 -173464 PTZ00180 PTZ00180 60S ribosomal protein L8; Provisional 260 -140208 PTZ00181 PTZ00181 60S ribosomal protein L38; Provisional 82 -185502 PTZ00182 PTZ00182 3-methyl-2-oxobutanate dehydrogenase; Provisional 355 -185503 PTZ00183 PTZ00183 centrin; Provisional 158 -185504 PTZ00184 PTZ00184 calmodulin; Provisional 149 -140212 PTZ00185 PTZ00185 ATPase alpha subunit; Provisional 574 -140213 PTZ00186 PTZ00186 heat shock 70 kDa precursor protein; Provisional 657 -240307 PTZ00187 PTZ00187 succinyl-CoA synthetase alpha subunit; Provisional 317 -240308 PTZ00188 PTZ00188 adrenodoxin reductase; Provisional 506 -240309 PTZ00189 PTZ00189 60S ribosomal protein L21; Provisional 160 -140217 PTZ00190 PTZ00190 60S ribosomal protein L29; Provisional 70 -185507 PTZ00191 PTZ00191 60S ribosomal protein L23a; Provisional 145 -173472 PTZ00192 PTZ00192 60S ribosomal protein L13; Provisional 218 -140220 PTZ00193 PTZ00193 60S ribosomal protein L31; Provisional 188 -185508 PTZ00194 PTZ00194 60S ribosomal protein L26; Provisional 143 -140222 PTZ00195 PTZ00195 60S ribosomal protein L18; Provisional 198 -185509 PTZ00196 PTZ00196 60S ribosomal protein L36; Provisional 98 -185510 PTZ00197 PTZ00197 60S ribosomal protein L28; Provisional 146 -173474 PTZ00198 PTZ00198 60S ribosomal protein L22; Provisional 122 -185511 PTZ00199 PTZ00199 high mobility group protein; Provisional 94 -240310 PTZ00200 PTZ00200 cysteine proteinase; Provisional 448 -240311 PTZ00201 PTZ00201 amastin surface glycoprotein; Provisional 192 -240312 PTZ00202 PTZ00202 tuzin; Provisional 550 -185513 PTZ00203 PTZ00203 cathepsin L protease; Provisional 348 -140231 PTZ00204 PTZ00204 hypothetical protein; Provisional 120 -140232 PTZ00205 PTZ00205 DNA polymerase kappa; Provisional 571 -240313 PTZ00206 PTZ00206 amino acid transporter; Provisional 467 -140234 PTZ00207 PTZ00207 hypothetical protein; Provisional 591 -240314 PTZ00208 PTZ00208 65 kDa invariant surface glycoprotein; Provisional 436 -140236 PTZ00209 PTZ00209 retrotransposon hot spot protein; Provisional 693 -140237 PTZ00210 PTZ00210 UDP-GlcNAc-dependent glycosyltransferase; Provisional 382 -240315 PTZ00211 PTZ00211 ribonucleoside-diphosphate reductase small subunit; Provisional 330 -185514 PTZ00212 PTZ00212 T-complex protein 1 subunit beta; Provisional 533 -185515 PTZ00213 PTZ00213 asparagine synthetase A; Provisional 348 -173479 PTZ00214 PTZ00214 high cysteine membrane protein Group 4; Provisional 800 -185516 PTZ00215 PTZ00215 ribose 5-phosphate isomerase; Provisional 151 -240316 PTZ00216 PTZ00216 acyl-CoA synthetase; Provisional 700 -240317 PTZ00217 PTZ00217 flap endonuclease-1; Provisional 393 -185518 PTZ00218 PTZ00218 40S ribosomal protein S29; Provisional 54 -185519 PTZ00219 PTZ00219 Sec61 alpha subunit; Provisional 474 -173484 PTZ00220 PTZ00220 Activator of HSP-90 ATPase; Provisional 132 -140248 PTZ00221 PTZ00221 cyclophilin; Provisional 249 -140249 PTZ00222 PTZ00222 60S ribosomal protein L7a; Provisional 263 -140250 PTZ00223 PTZ00223 40S ribosomal protein S4; Provisional 273 -240318 PTZ00224 PTZ00224 protein phosphatase 2C; Provisional 381 -140252 PTZ00225 PTZ00225 60S ribosomal protein L10a; Provisional 214 -240319 PTZ00226 PTZ00226 fumarate hydratase; Provisional 570 -140254 PTZ00227 PTZ00227 variable surface protein Vir14; Provisional 418 -240320 PTZ00228 PTZ00228 variable surface protein Vir21; Provisional 350 -140256 PTZ00229 PTZ00229 variable surface protein Vir30; Provisional 317 -240321 PTZ00230 PTZ00230 variable surface protein Vir7; Provisional 364 -140258 PTZ00231 PTZ00231 variable surface protein Vir17; Provisional 385 -240322 PTZ00232 PTZ00232 variable surface protein Vir27; Provisional 363 -240323 PTZ00233 PTZ00233 variable surface protein Vir18; Provisional 509 -240324 PTZ00234 PTZ00234 variable surface protein Vir12; Provisional 433 -185521 PTZ00235 PTZ00235 DNA polymerase epsilon subunit B; Provisional 291 -173487 PTZ00236 PTZ00236 mitochondrial import inner membrane translocase subunit tim17; Provisional 164 -240325 PTZ00237 PTZ00237 acetyl-CoA synthetase; Provisional 647 -140265 PTZ00238 PTZ00238 expression site-associated gene (ESAG); Provisional 326 -173488 PTZ00239 PTZ00239 serine/threonine protein phosphatase 2A; Provisional 303 -140267 PTZ00240 PTZ00240 60S ribosomal protein P0; Provisional 323 -240326 PTZ00241 PTZ00241 40S ribosomal protein S11; Provisional 158 -185524 PTZ00242 PTZ00242 protein tyrosine phosphatase; Provisional 166 -240327 PTZ00243 PTZ00243 ABC transporter; Provisional 1560 -140271 PTZ00244 PTZ00244 serine/threonine-protein phosphatase PP1; Provisional 294 -140272 PTZ00245 PTZ00245 ubiquitin activating enzyme; Provisional 287 -173491 PTZ00246 PTZ00246 proteasome subunit alpha; Provisional 253 -240328 PTZ00247 PTZ00247 adenosine kinase; Provisional 345 -240329 PTZ00248 PTZ00248 eukaryotic translation initiation factor 2 subunit 1; Provisional 319 -140276 PTZ00249 PTZ00249 variable surface protein Vir28; Provisional 516 -140277 PTZ00250 PTZ00250 variable surface protein Vir23; Provisional 350 -140278 PTZ00251 PTZ00251 fatty acid elongase; Provisional 272 -240330 PTZ00252 PTZ00252 histone H2A; Provisional 134 -140280 PTZ00253 PTZ00253 tryparedoxin peroxidase; Provisional 199 -240331 PTZ00254 PTZ00254 40S ribosomal protein SA; Provisional 249 -240332 PTZ00255 PTZ00255 60S ribosomal protein L37a; Provisional 90 -173495 PTZ00256 PTZ00256 glutathione peroxidase; Provisional 183 -240333 PTZ00257 PTZ00257 Glycoprotein GP63 (leishmanolysin); Provisional 622 -240334 PTZ00258 PTZ00258 GTP-binding protein; Provisional 390 -240335 PTZ00259 PTZ00259 endonuclease G; Provisional 434 -240336 PTZ00260 PTZ00260 dolichyl-phosphate beta-glucosyltransferase; Provisional 333 -240337 PTZ00261 PTZ00261 acyltransferase; Provisional 355 -240338 PTZ00262 PTZ00262 subtilisin-like protease; Provisional 639 -140289 PTZ00263 PTZ00263 protein kinase A catalytic subunit; Provisional 329 -173500 PTZ00264 PTZ00264 circumsporozoite-related antigen; Provisional 148 -240339 PTZ00265 PTZ00265 multidrug resistance protein (mdr1); Provisional 1466 -173502 PTZ00266 PTZ00266 NIMA-related protein kinase; Provisional 1021 -140293 PTZ00267 PTZ00267 NIMA-related protein kinase; Provisional 478 -140294 PTZ00268 PTZ00268 glycosylphosphatidylinositol-specific phospholipase C; Provisional 380 -140295 PTZ00269 PTZ00269 variant surface glycoprotein; Provisional 472 -240340 PTZ00270 PTZ00270 variable surface protein Vir32; Provisional 333 -140297 PTZ00271 PTZ00271 hypoxanthine-guanine phosphoribosyltransferase; Provisional 211 -240341 PTZ00272 PTZ00272 heat shock protein 83 kDa (Hsp83); Provisional 701 -140299 PTZ00273 PTZ00273 oxidase reductase; Provisional 320 -140300 PTZ00274 PTZ00274 cytochrome b5 reductase; Provisional 325 -185536 PTZ00275 PTZ00275 biotin-acetyl-CoA-carboxylase ligase; Provisional 285 -140302 PTZ00276 PTZ00276 biotin/lipoate protein ligase; Provisional 245 -240342 PTZ00278 PTZ00278 ARP2/3 complex subunit; Provisional 174 -240343 PTZ00280 PTZ00280 Actin-related protein 3; Provisional 414 -173506 PTZ00281 PTZ00281 actin; Provisional 376 -240344 PTZ00283 PTZ00283 serine/threonine protein kinase; Provisional 496 -140307 PTZ00284 PTZ00284 protein kinase; Provisional 467 -140308 PTZ00285 PTZ00285 glucosamine-6-phosphate isomerase; Provisional 253 -185539 PTZ00286 PTZ00286 6-phospho-1-fructokinase; Provisional 459 -240345 PTZ00287 PTZ00287 6-phosphofructokinase; Provisional 1419 -240346 PTZ00288 PTZ00288 glucokinase 1; Provisional 405 -240347 PTZ00290 PTZ00290 galactokinase; Provisional 468 -185541 PTZ00292 PTZ00292 ribokinase; Provisional 326 -185542 PTZ00293 PTZ00293 thymidine kinase; Provisional 211 -240348 PTZ00294 PTZ00294 glycerol kinase-like protein; Provisional 504 -240349 PTZ00295 PTZ00295 glucosamine-fructose-6-phosphate aminotransferase; Provisional 640 -240350 PTZ00296 PTZ00296 choline kinase; Provisional 442 -140318 PTZ00297 PTZ00297 pantothenate kinase; Provisional 1452 -240351 PTZ00298 PTZ00298 mevalonate kinase; Provisional 328 -140320 PTZ00299 PTZ00299 homoserine kinase; Provisional 336 -140321 PTZ00300 PTZ00300 pyruvate kinase; Provisional 454 -140322 PTZ00301 PTZ00301 uridine kinase; Provisional 210 -240352 PTZ00302 PTZ00302 N-acetylglucosamine-phosphate mutase; Provisional 585 -140324 PTZ00303 PTZ00303 phosphatidylinositol kinase; Provisional 1374 -185547 PTZ00304 PTZ00304 NADH dehydrogenase [ubiquinone] flavoprotein 1; Provisional 461 -140326 PTZ00305 PTZ00305 NADH:ubiquinone oxidoreductase; Provisional 297 -140327 PTZ00306 PTZ00306 NADH-dependent fumarate reductase; Provisional 1167 -140328 PTZ00307 PTZ00307 ethanolamine phosphotransferase; Provisional 417 -140329 PTZ00308 PTZ00308 ethanolamine-phosphate cytidylyltransferase; Provisional 353 -240353 PTZ00309 PTZ00309 glucose-6-phosphate 1-dehydrogenase; Provisional 542 -240354 PTZ00310 PTZ00310 AMP deaminase; Provisional 1453 -185549 PTZ00311 PTZ00311 phosphoenolpyruvate carboxykinase; Provisional 561 -140333 PTZ00312 PTZ00312 inositol-1,4,5-triphosphate 5-phosphatase; Provisional 356 -140334 PTZ00313 PTZ00313 inosine-adenosine-guanosine-nucleoside hydrolase; Provisional 326 -240355 PTZ00314 PTZ00314 inosine-5'-monophosphate dehydrogenase; Provisional 495 -240356 PTZ00315 PTZ00315 2'-phosphotransferase; Provisional 582 -140337 PTZ00316 PTZ00316 profilin; Provisional 150 -240357 PTZ00317 PTZ00317 NADP-dependent malic enzyme; Provisional 559 -185553 PTZ00318 PTZ00318 NADH dehydrogenase-like protein; Provisional 424 -173521 PTZ00319 PTZ00319 NADH-cytochrome B5 reductase; Provisional 300 -140341 PTZ00320 PTZ00320 ribosomal protein L14; Provisional 188 -240358 PTZ00321 PTZ00321 ribosomal protein L11; Provisional 342 -140343 PTZ00322 PTZ00322 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional 664 -185554 PTZ00323 PTZ00323 NAD+ synthase; Provisional 294 -240359 PTZ00324 PTZ00324 glutamate dehydrogenase 2; Provisional 1002 -240360 PTZ00325 PTZ00325 malate dehydrogenase; Provisional 321 -240361 PTZ00326 PTZ00326 phenylalanyl-tRNA synthetase alpha chain; Provisional 494 -240362 PTZ00327 PTZ00327 eukaryotic translation initiation factor 2 gamma subunit; Provisional 460 -140349 PTZ00328 PTZ00328 eukaryotic initiation factor 5a; Provisional 166 -185558 PTZ00329 PTZ00329 eukaryotic translation initiation factor 1A; Provisional 155 -140351 PTZ00330 PTZ00330 acetyltransferase; Provisional 147 -240363 PTZ00331 PTZ00331 alpha/beta hydrolase; Provisional 212 -240364 PTZ00332 PTZ00332 paraflagellar rod protein; Provisional 589 -240365 PTZ00333 PTZ00333 triosephosphate isomerase; Provisional 255 -240366 PTZ00334 PTZ00334 trans-sialidase; Provisional 780 -185562 PTZ00335 PTZ00335 tubulin alpha chain; Provisional 448 -185563 PTZ00337 PTZ00337 surface protease GP63; Provisional 567 -240367 PTZ00338 PTZ00338 dimethyladenosine transferase-like protein; Provisional 294 -240368 PTZ00339 PTZ00339 UDP-N-acetylglucosamine pyrophosphorylase; Provisional 482 -240369 PTZ00340 PTZ00340 O-sialoglycoprotein endopeptidase-like protein; Provisional 345 -173534 PTZ00341 PTZ00341 Ring-infected erythrocyte surface antigen; Provisional 1136 -240370 PTZ00342 PTZ00342 acyl-CoA synthetase; Provisional 746 -240371 PTZ00343 PTZ00343 triose or hexose phosphate/phosphate translocator; Provisional 350 -240372 PTZ00344 PTZ00344 pyridoxal kinase; Provisional 296 -240373 PTZ00345 PTZ00345 glycerol-3-phosphate dehydrogenase; Provisional 365 -240374 PTZ00346 PTZ00346 histone deacetylase; Provisional 429 -240375 PTZ00347 PTZ00347 phosphomethylpyrimidine kinase; Provisional 504 -173541 PTZ00348 PTZ00348 tyrosyl-tRNA synthetase; Provisional 682 -185571 PTZ00349 PTZ00349 dehydrodolichyl diphosphate synthetase; Provisional 322 -240376 PTZ00350 PTZ00350 adenylosuccinate synthetase; Provisional 436 -173544 PTZ00351 PTZ00351 adenylosuccinate synthetase; Provisional 710 -240377 PTZ00352 PTZ00352 60S ribosomal protein L13; Provisional 212 -173546 PTZ00353 PTZ00353 glycosomal glyceraldehyde-3-phosphate dehydrogenase; Provisional 342 -173547 PTZ00354 PTZ00354 alcohol dehydrogenase; Provisional 334 -173548 PTZ00355 PTZ00355 Rhoptry-associated protein 2; Provisional 400 -185573 PTZ00356 PTZ00356 peptidyl-prolyl cis-trans isomerase (PPIase); Provisional 115 -173550 PTZ00357 PTZ00357 methyltransferase; Provisional 1072 -240378 PTZ00358 PTZ00358 hypothetical protein; Provisional 367 -173552 PTZ00359 PTZ00359 hypothetical protein; Provisional 443 -240379 PTZ00360 PTZ00360 sexual stage antigen; Provisional 543 -185575 PTZ00361 PTZ00361 26 proteosome regulatory subunit 4-like protein; Provisional 438 -240380 PTZ00362 PTZ00362 hypothetical protein; Provisional 479 -185577 PTZ00363 PTZ00363 rab-GDP dissociation inhibitor; Provisional 443 -240381 PTZ00364 PTZ00364 dipeptidyl-peptidase I precursor; Provisional 548 -240382 PTZ00365 PTZ00365 60S ribosomal protein L7Ae-like; Provisional 266 -240383 PTZ00366 PTZ00366 Surface antigen (SAG) superfamily; Provisional 392 -240384 PTZ00367 PTZ00367 squalene epoxidase; Provisional 567 -173561 PTZ00368 PTZ00368 universal minicircle sequence binding protein (UMSBP); Provisional 148 -240385 PTZ00369 PTZ00369 Ras-like protein; Provisional 189 -240386 PTZ00370 PTZ00370 STEVOR; Provisional 296 -240387 PTZ00371 PTZ00371 aspartyl aminopeptidase; Provisional 465 -240388 PTZ00372 PTZ00372 endonuclease 4-like protein; Provisional 413 -185582 PTZ00373 PTZ00373 60S Acidic ribosomal protein P2; Provisional 112 -240389 PTZ00374 PTZ00374 dihydroxyacetone phosphate acyltransferase; Provisional 1108 -185583 PTZ00375 PTZ00375 dihydroxyacetone kinase-like protein; Provisional 584 -240390 PTZ00376 PTZ00376 aspartate aminotransferase; Provisional 404 -240391 PTZ00377 PTZ00377 alanine aminotransferase; Provisional 481 -173571 PTZ00378 PTZ00378 hypothetical protein; Provisional 518 -173572 PTZ00380 PTZ00380 microtubule-associated protein (MAP); Provisional 121 -240392 PTZ00381 PTZ00381 aldehyde dehydrogenase family protein; Provisional 493 -173574 PTZ00382 PTZ00382 Variant-specific surface protein (VSP); Provisional 96 -240393 PTZ00383 PTZ00383 malate:quinone oxidoreductase; Provisional 497 -173576 PTZ00384 PTZ00384 choline kinase; Provisional 383 -185588 PTZ00385 PTZ00385 lysyl-tRNA synthetase; Provisional 659 -240394 PTZ00386 PTZ00386 formyl tetrahydrofolate synthetase; Provisional 625 -240395 PTZ00387 PTZ00387 epsilon tubulin; Provisional 465 -240396 PTZ00388 PTZ00388 40S ribosomal protein S8-like; Provisional 223 -185592 PTZ00389 PTZ00389 40S ribosomal protein S7; Provisional 184 -240397 PTZ00390 PTZ00390 ubiquitin-conjugating enzyme; Provisional 152 -240398 PTZ00391 PTZ00391 transport protein particle component (TRAPP) superfamily; Provisional 168 -240399 PTZ00393 PTZ00393 protein tyrosine phosphatase; Provisional 241 -173585 PTZ00394 PTZ00394 glucosamine-fructose-6-phosphate aminotransferase; Provisional 670 -185594 PTZ00395 PTZ00395 Sec24-related protein; Provisional 1560 -240400 PTZ00396 PTZ00396 Casein kinase II subunit beta; Provisional 251 -240401 PTZ00397 PTZ00397 macrophage migration inhibition factor-like protein; Provisional 116 -173589 PTZ00398 PTZ00398 phosphoenolpyruvate carboxylase; Provisional 974 -240402 PTZ00399 PTZ00399 cysteinyl-tRNA-synthetase; Provisional 651 -240403 PTZ00400 PTZ00400 DnaK-type molecular chaperone; Provisional 663 -173592 PTZ00401 PTZ00401 aspartyl-tRNA synthetase; Provisional 550 -240404 PTZ00402 PTZ00402 glutamyl-tRNA synthetase; Provisional 601 -173594 PTZ00403 PTZ00403 phosphatidylserine decarboxylase; Provisional 353 -173595 PTZ00404 PTZ00404 cytochrome P450; Provisional 482 -173596 PTZ00405 PTZ00405 cytochrome c; Provisional 114 -173597 PTZ00407 PTZ00407 DNA topoisomerase IA; Provisional 805 -240405 PTZ00408 PTZ00408 NAD-dependent deacetylase; Provisional 242 -173599 PTZ00409 PTZ00409 Sir2 (Silent Information Regulator) protein; Provisional 271 -185600 PTZ00410 PTZ00410 NAD-dependent SIR2; Provisional 349 -240406 PTZ00411 PTZ00411 transaldolase-like protein; Provisional 333 -240407 PTZ00412 PTZ00412 leucyl aminopeptidase; Provisional 569 -240408 PTZ00413 PTZ00413 lipoate synthase; Provisional 398 -173604 PTZ00414 PTZ00414 10 kDa heat shock protein; Provisional 100 -185603 PTZ00415 PTZ00415 transmission-blocking target antigen s230; Provisional 2849 -240409 PTZ00416 PTZ00416 elongation factor 2; Provisional 836 -173607 PTZ00417 PTZ00417 lysine-tRNA ligase; Provisional 585 -240410 PTZ00418 PTZ00418 Poly(A) polymerase; Provisional 593 -240411 PTZ00419 PTZ00419 valyl-tRNA synthetase-like protein; Provisional 995 -240412 PTZ00420 PTZ00420 coronin; Provisional 568 -173611 PTZ00421 PTZ00421 coronin; Provisional 493 -185607 PTZ00422 PTZ00422 glideosome-associated protein 50; Provisional 394 -240413 PTZ00423 PTZ00423 glideosome-associated protein 45; Provisional 193 -185609 PTZ00424 PTZ00424 helicase 45; Provisional 401 -240414 PTZ00425 PTZ00425 asparagine-tRNA ligase; Provisional 586 -173616 PTZ00426 PTZ00426 cAMP-dependent protein kinase catalytic subunit; Provisional 340 -173617 PTZ00427 PTZ00427 isoleucine-tRNA ligase, putative; Provisional 1205 -185611 PTZ00428 PTZ00428 60S ribosomal protein L4; Provisional 381 -240415 PTZ00429 PTZ00429 beta-adaptin; Provisional 746 -185612 PTZ00430 PTZ00430 glucose-6-phosphate isomerase; Provisional 552 -173621 PTZ00431 PTZ00431 pyrroline carboxylate reductase; Provisional 260 -240416 PTZ00432 PTZ00432 falcilysin; Provisional 1119 -185613 PTZ00433 PTZ00433 tyrosine aminotransferase; Provisional 412 -185614 PTZ00434 PTZ00434 cytosolic glyceraldehyde 3-phosphate dehydrogenase; Provisional 361 -240417 PTZ00435 PTZ00435 isocitrate dehydrogenase; Provisional 413 -185616 PTZ00436 PTZ00436 60S ribosomal protein L19-like protein; Provisional 357 -240418 PTZ00437 PTZ00437 glutaminyl-tRNA synthetase; Provisional 574 -185618 PTZ00438 PTZ00438 gamete antigen 27/25-like protein; Provisional 374 -240419 PTZ00440 PTZ00440 reticulocyte binding protein 2-like protein; Provisional 2722 -240420 PTZ00441 PTZ00441 sporozoite surface protein 2 (SSP2); Provisional 576 -185621 PTZ00442 PTZ00442 sexual stage antigen s48/45-like protein; Provisional 347 -185622 PTZ00443 PTZ00443 Thioredoxin domain-containing protein; Provisional 224 -185623 PTZ00444 PTZ00444 hypothetical protein; Provisional 184 -240421 PTZ00445 PTZ00445 p36-lilke protein; Provisional 219 -240422 PTZ00446 PTZ00446 vacuolar sorting protein SNF7-like; Provisional 191 -185626 PTZ00447 PTZ00447 apical membrane antigen 1-like protein; Provisional 508 -185627 PTZ00448 PTZ00448 hypothetical protein; Provisional 373 -185628 PTZ00449 PTZ00449 104 kDa microneme/rhoptry antigen; Provisional 943 -185629 PTZ00450 PTZ00450 macrophage migration inhibitory factor-like protein; Provisional 113 -185630 PTZ00451 PTZ00451 dephospho-CoA kinase; Provisional 244 -185631 PTZ00452 PTZ00452 actin; Provisional 375 -185632 PTZ00453 PTZ00453 cyclin-dependent kinase; Provisional 96 -240423 PTZ00454 PTZ00454 26S protease regulatory subunit 6B-like protein; Provisional 398 -240424 PTZ00455 PTZ00455 3-ketoacyl-CoA thiolase; Provisional 438 -185635 PTZ00456 PTZ00456 acyl-CoA dehydrogenase; Provisional 622 -185636 PTZ00457 PTZ00457 acyl-CoA dehydrogenase; Provisional 520 -185637 PTZ00458 PTZ00458 acyl CoA binding protein; Provisional 90 -185638 PTZ00459 PTZ00459 mucin-associated surface protein (MASP); Provisional 291 -185639 PTZ00460 PTZ00460 acyl-CoA dehydrogenase; Provisional 646 -185640 PTZ00461 PTZ00461 isovaleryl-CoA dehydrogenase; Provisional 410 -185641 PTZ00462 PTZ00462 Serine-repeat antigen protein; Provisional 1004 -185642 PTZ00463 PTZ00463 histone H2B; Provisional 117 -240425 PTZ00464 PTZ00464 SNF-7-like protein; Provisional 211 -185644 PTZ00465 PTZ00465 rhoptry-associated protein 1 (RAP-1); Provisional 565 -240426 PTZ00466 PTZ00466 actin-like protein; Provisional 380 -185646 PTZ00467 PTZ00467 40S ribosomal protein S30; Provisional 66 -185647 PTZ00468 PTZ00468 phosphofructokinase family protein; Provisional 1328 -185648 PTZ00469 PTZ00469 60S ribosomal subunit protein L18; Provisional 187 -240427 PTZ00470 PTZ00470 glycoside hydrolase family 47 protein; Provisional 522 -240428 PTZ00471 PTZ00471 60S ribosomal protein L27; Provisional 134 -240429 PTZ00472 PTZ00472 serine carboxypeptidase (CBP1); Provisional 462 -240430 PTZ00473 PTZ00473 Plasmodium Vir superfamily; Provisional 420 -240431 PTZ00474 PTZ00474 tryptophan/threonine-rich antigen superfamily; Provisional 316 -185654 PTZ00475 PTZ00475 RESA-like protein; Provisional 282 -240432 PTZ00477 PTZ00477 rhoptry-associated protein; Provisional 524 -185656 PTZ00478 PTZ00478 Sec superfamily; Provisional 81 -185657 PTZ00479 PTZ00479 RAP Superfamily; Provisional 435 -185658 PTZ00480 PTZ00480 serine/threonine-protein phosphatase; Provisional 320 -185659 PTZ00481 PTZ00481 Membrane attack complex/ Perforin (MACPF) Superfamily; Provisional 524 -240433 PTZ00482 PTZ00482 membrane-attack complex/perforin (MACPF) Superfamily; Provisional 844 -185661 PTZ00483 PTZ00483 proliferating cell nuclear antigen; Provisional 264 -240434 PTZ00484 PTZ00484 GTP cyclohydrolase I; Provisional 259 -240435 PTZ00485 PTZ00485 aldolase 1-epimerase; Provisional 376 -240436 PTZ00486 PTZ00486 apyrase Superfamily; Provisional 352 -240437 PTZ00487 PTZ00487 ceramidase; Provisional 715 -185666 PTZ00488 PTZ00488 Proteasome subunit beta type-5; Provisional 247 -240438 PTZ00489 PTZ00489 glutamate 5-kinase; Provisional 264 -185668 PTZ00490 PTZ00490 Ferredoxin superfamily; Provisional 143 -240439 PTZ00491 PTZ00491 major vault protein; Provisional 850 -240440 PTZ00493 PTZ00493 phosphomethylpyrimidine kinase; Provisional 321 -185671 PTZ00494 PTZ00494 tuzin-like protein; Provisional 664 -272847 TIGR00001 rpmI_bact ribosomal protein L35. This ribosomal protein is found in bacteria and organelles only. It is not closely related to any eukaryotic or archaeal ribosomal protein. [Protein synthesis, Ribosomal proteins: synthesis and modification] 63 -272848 TIGR00002 S16 ribosomal protein S16. This model describes ribosomal S16 of bacteria and organelles. [Protein synthesis, Ribosomal proteins: synthesis and modification] 78 -188014 TIGR00003 TIGR00003 copper ion binding protein. This model describes an apparently copper-specific subfamily of the metal-binding domain HMA (pfam00403). Closely related sequences outside this model include mercury resistance proteins and repeated domains of eukaryotic eukaryotic copper transport proteins. Members of this family are strictly prokaryotic. The model identifies both small proteins consisting of just this domain and N-terminal regions of cation (probably copper) transporting ATPases. [Transport and binding proteins, Cations and iron carrying compounds] 66 -129116 TIGR00004 TIGR00004 reactive intermediate/imine deaminase. This protein was described initially as an inhibitor of protein synthesis intiation, then as an endoribonuclease active on single-stranded mRNA, endoribonuclease L-PSP. Members of this family, conserved in all domains of life and often with several members per bacterial genome, appear to catalyze a reaction that minimizes toxic by-products from reactions catalyzed by pyridoxal phosphate-dependent enzymes. [Cellular processes, Other] 124 -161659 TIGR00005 rluA_subfam pseudouridine synthase, RluA family. In E. coli, RluD (SfhB) modifies uridine to pseudouridine at 23S RNA U1911, 1915, and 1917, RluC modifies 955, 2504 and 2580, and RluA modifies U746 and tRNA U32. An additional homolog from E. coli outside this family, TruC (SP|Q46918), modifies uracil-65 in transfer RNAs to pseudouridine. [Protein synthesis, tRNA and rRNA base modification] 299 -272849 TIGR00006 TIGR00006 16S rRNA (cytosine(1402)-N(4))-methyltransferase. This model describes RsmH, a 16S rRNA methyltransferase. Previously, this gene was designated MraW, known to be essential in E. coli and widely conserved in bacteria. [Protein synthesis, tRNA and rRNA base modification] 307 -272850 TIGR00007 TIGR00007 phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase. This protein family consists of HisA, phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase, the enzyme catalyzing the fourth step in histidine biosynthesis. It is closely related to the enzyme HisF for the sixth step. Examples of this enzyme in Actinobacteria have been found to be bifunctional, also possessing phosphoribosylanthranilate isomerase activity; the trusted cutoff here has now been raised to 275.0 to exclude the bifunctional group, now represented by model TIGR01919. HisA from Lactococcus lactis was reported to be inactive (MEDLINE:93322317). [Amino acid biosynthesis, Histidine family] 230 -188015 TIGR00008 infA translation initiation factor IF-1. This family consists of translation initiation factor IF-1 as found in bacteria and chloroplasts. This protein, about 70 residues in length, consists largely of an S1 RNA binding domain (pfam00575). [Protein synthesis, Translation factors] 69 -272851 TIGR00009 L28 ribosomal protein L28. This model describes bacterial and chloroplast forms of the 50S ribosomal protein L28, a polypeptide about 60 amino acids in length. Mitochondrial homologs differ substantially in architecture (e.g. SP|P36525 from Saccharomyces cerevisiae, which is 258 amino acids long) and are not included. [Protein synthesis, Ribosomal proteins: synthesis and modification] 56 -272852 TIGR00010 TIGR00010 hydrolase, TatD family. PSI-BLAST, starting with a urease alpha subunit, finds a large superfamily of proteins, including a number of different enzymes that act as hydrolases at C-N bonds other than peptide bonds (EC 3.5.-.-), many uncharacterized proteins, and the members of this family. Several genomes have multiple paralogs related to this family. However, a set of 17 proteins can be found, one each from 17 of the first 20 genomes, such that each member forms a bidirectional best hit across genomes with all other members of the set. This core set (and one other near-perfect member), but not the other paralogs, form the seed for this model. Additionally, members of the seed alignment and all trusted hits, but not all paralogs, have a conserved motif DxHxH near the amino end. The member from E. coli was recently shown to have DNase activity. [Unknown function, Enzymes of unknown specificity] 252 -272853 TIGR00011 YbaK_EbsC Cys-tRNA(Pro) deacylase. This model represents the YbaK family, bacterial proteins whose full length sequence is homologous to an insertion domain in proline--tRNA ligases. The domain deacylates mischarged tRNAs. The YbaK protein of Haemophilus influenzae (HI1434) likewise deacylates Ala-tRNA(Pro), but not the correctly charged Pro-tRNA(Pro). A crystallographic study of HI1434 suggests a nucleotide binding function. Previously, a member of this family was described as EbsC and was thought to be involved in cell wall metabolism. [Protein synthesis, tRNA aminoacylation] 152 -272854 TIGR00012 L29 ribosomal protein L29. This model describes a ribosomal large subunit protein, called L29 in prokaryotic (50S) large subunits and L35 in eukaryotic (60S) large subunits. [Protein synthesis, Ribosomal proteins: synthesis and modification] 55 -129125 TIGR00013 taut 4-oxalocrotonate tautomerase family enzyme. 4-oxalocrotonate tautomerase is a homohexamer in which each monomer is very small, at about 62 amino acids. Pro-1 of the mature protein serves as a general base. The enzyme functions in meta-cleavage pathways of aromatic hydrocarbon catabolism. Because several Arg residues located near the active site in the crystal structure of Pseudomonas putida are not conserved among all members of this family, because the literature describes a general role in the isomerization of beta,gamma-unsaturated enones to their alpha,beta-isomers, and because of the presence of fairly distantly related paralogs in Campylobacter jejuni, the family is regarded as not necessarily uniform in function. [Energy metabolism, Other] 63 -272855 TIGR00014 arsC arsenate reductase (glutaredoxin). This model describes a distinct clade, including ArsC itself, of the broader ArsC family described by Pfam pfam03960. This clade is almost completely restricted to the Proteobacteria. An anion-translocating ATPase has been identified as the product of the arsenical resistance operon of resistance plasmid R773. When expressed in Escherichia coli this ATP-driven oxyanion pump catalyses extrusion of the oxyanions arsenite, antimonite and arsenate. The pump is composed of two polypeptides, the products of the arsA and arsB genes. The pump alone produces resistance to arsenite and antimonite. This protein, ArsC, catalyzes the reduction of arsenate to arsenite, and thus extends resistance to include arsenate. [Cellular processes, Detoxification] 114 -272856 TIGR00016 ackA acetate kinase. Acetate kinase is involved in the activation of acetate to acetyl CoA and in the secretion of acetate. It catalyzes the reaction ATP + acetate = ADP + acetyl phosphate. Some members of this family have been shown to act on propionate as well as acetate. An example of a propionate/acetate kinase is TdcD of E. coli (SP|P11868), an enzyme of an anaerobic pathway of threonine catabolism. It is not known how many members of this family act on additional substrates besides acetate. [Energy metabolism, Fermentation] 404 -129128 TIGR00017 cmk cytidylate kinase. This family consists of cytidylate kinase, which catalyzes the phosphorylation of cytidine 5-monophosphate (dCMP) to cytidine 5 -diphosphate (dCDP) in the presence of ATP or GTP. UMP and dCMP can also act as acceptors. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 217 -272857 TIGR00018 panC pantoate--beta-alanine ligase. This family is pantoate--beta-alanine ligase, the last enzyme of pantothenate biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 282 -129130 TIGR00019 prfA peptide chain release factor 1. This model describes peptide chain release factor 1 (PrfA, RF-1), and excludes the related peptide chain release factor 2 (PrfB, RF-2). RF-1 helps recognize and terminate translation at UAA and UAG stop codons. The mitochondrial release factors are prfA-like, although not included above the trusted cutoff for this model. RF-1 does not have a translational frameshift. [Protein synthesis, Translation factors] 360 -272858 TIGR00020 prfB peptide chain release factor 2. In many but not all taxa, there is a conserved real translational frameshift at a TGA codon. RF-2 helps terminate translation at TGA codons and can therefore regulate its own production by readthrough when RF-2 is insufficient. There is a Pfam model called "RF-1" for the superfamily of RF-1, RF-2, mitochondrial, RF-H, etc. [Protein synthesis, Translation factors] 364 -272859 TIGR00021 rpiA ribose 5-phosphate isomerase. This model describes ribose 5-phosphate isomerase, an enzyme of the non-oxidative branch of the pentose phosphate pathway. [Energy metabolism, Pentose phosphate pathway] 218 -129133 TIGR00022 TIGR00022 YhcH/YjgK/YiaL family protein. This family consists of conserved hypothetical proteins, about 150 amino acids in length. Members with limited information include YhcH, a possible sugar isomerase of sialic acid catabolism, and YjgK. [Unknown function, General] 142 -272860 TIGR00023 TIGR00023 acyl-phosphate glycerol 3-phosphate acyltransferase. This model represents the full length of acylphosphate:glycerol 3-phosphate acyltransferase, and integral membrane protein about 200 amino acids in length, called PlsY in Streptococcus pneumoniae, YneS in Bacillus subtilis, and YgiH in E. coli. It is found in a single copy in a large number of bacteria, including the Mycoplasmas but not Mycobacteria or spirochetes, for example. Its partner is PlsX (see TIGR00182), and the pair can replace PlsB for synthesizing 1-acylglycerol-3-phosphate. [Fatty acid and phospholipid metabolism, Biosynthesis] 196 -129135 TIGR00024 SbcD_rel_arch putative phosphoesterase, SbcD/Mre11-related. Members of this uncharacterized family share a motif approximating DXH(X25)GDXXD(X25)GNHD as found in several phosphoesterases, including the nucleases SbcD and Mre11. SbcD is a subunit of the SbcCD nuclease of E. coli that can cleave DNA hairpins to unblock stalled DNA replication. All members of this family are archaeal. [Unknown function, Enzymes of unknown specificity] 225 -272861 TIGR00025 Mtu_efflux ABC transporter efflux protein, DrrB family. The seed members for this model are a paralogous family of Mycobacterium tuberculosis. Nearly all proteins scoring above the noise cutoff are from high-GC Gram-positive organisms. The members of this paralogous family of efflux proteins are all found in operons with ATP-binding chain partners. They are related to a putative daunorubicin resistance efflux protein of Streptomyces peucetius. This model represents a branch of a larger superfamily that also includes NodJ, a part of the NodIJ pair of nodulation-triggering signal efflux proteins. The members of this branch may all act in antibiotic resistance. 232 -211538 TIGR00026 hi_GC_TIGR00026 deazaflavin-dependent oxidoreductase, nitroreductase family. This model represents a family of proteins found in paralogous families in the genera Mycobacterium and Streptomyces. Seven members are in Mycobacterium tuberculosis. Member protein Rv3547 has been characterized as a deazaflavin-dependent nitroreductase. [Unknown function, Enzymes of unknown specificity] 113 -272862 TIGR00027 mthyl_TIGR00027 methyltransferase, TIGR00027 family. This model represents a set of probable methyltransferases, about 300 amino acids long, with essentially full length homology. Members share an N-terminal region described by Pfam model pfam02409. Included are a paralogous family of 12 proteins in Mycobacterium tuberculosis, plus close homologs in related species, a family of 8 in the archaeon Methanosarcina acetivorans, and small numbers of members in other species, including plants. [Unknown function, Enzymes of unknown specificity] 260 -272863 TIGR00028 Mtu_PIN_fam toxin-antitoxin system PIN domain toxin. Members of this protein consist almost entirely of a PIN (PilT N terminus) domain (see pfam01850). This family was originally defined a set of twelve closely related paralogs found in Mycobacterium tuberculosis, but additional members are found now Synechococcus sp. WH8102, etc. Inspection of genomic regions suggests these represent toxin components of toxin-antitoxin regions, potentially important to creating dormant persister cells. 142 -211539 TIGR00029 S20 ribosomal protein S20. This family consists of bacterial (and chloroplast) examples of the bacteria ribosomal small subunit protein S20. [Protein synthesis, Ribosomal proteins: synthesis and modification] 87 -129141 TIGR00030 S21p ribosomal protein S21. This model describes bacterial ribosomal protein S21 and most mitochondrial and chloroplast equivalents. [Protein synthesis, Ribosomal proteins: synthesis and modification] 58 -272864 TIGR00031 UDP-GALP_mutase UDP-galactopyranose mutase. This enzyme is involved in the conversion of UDP-GALP into UDP-GALF through a 2-keto intermediate. It contains FAD as a cofactor. The gene is known as glf, ceoA, and rfbD. It is known experimentally in E. coli, Mycobacterium tuberculosis, and Klebsiella pneumoniae. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 377 -199987 TIGR00032 argG argininosuccinate synthase. argG in bacteria, ARG1 in Saccharomyces cerevisiae. There is a very unusual clustering in the alignment, with a deep split between one cohort of E. coli, H. influenzae, and Streptomyces, and the other cohort of eukaryotes, archaea, and the rest of the eubacteria. [Amino acid biosynthesis, Glutamate family] 394 -272865 TIGR00033 aroC chorismate synthase. Homotetramer (noted in E.coli) suggests reason for good conservation. [Amino acid biosynthesis, Aromatic amino acid family] 351 -129145 TIGR00034 aroFGH phospho-2-dehydro-3-deoxyheptonate aldolase. [Amino acid biosynthesis, Aromatic amino acid family] 344 -213495 TIGR00035 asp_race aspartate racemase. Asparate racemases and some close homologs of unknown function are related to the more common glutamate racemases, but form a distinct evolutionary branch. This model identifies members of the aspartate racemase-related subset of amino acid racemases. [Energy metabolism, Amino acids and amines] 229 -129147 TIGR00036 dapB 4-hydroxy-tetrahydrodipicolinate reductase. [Amino acid biosynthesis, Aspartate family] 266 -272866 TIGR00037 eIF_5A translation elongation factor IF5A. Recent work (2009) changed the view of eIF5A in eukaryotes and aIF5A in archaea, hypusine-containing proteins, from translation initiation factor to translation elongation factor. [Protein synthesis, Translation factors] 130 -272867 TIGR00038 efp translation elongation factor P. function: involved in peptide bond synthesis. stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase (by similarity). The trusted cutoff of this model is set high enough to exclude members of TIGR02178, an EFP-like protein of certain Gammaproteobacteria. [Protein synthesis, Translation factors] 184 -272868 TIGR00039 6PTHBS 6-pyruvoyl tetrahydropterin synthase/QueD family protein. This model has been downgraded from hypothetical_equivalog to subfamily. The animal enzymes are known to be 6-pyruvoyl tetrahydropterin synthase. The function of the bacterial branch of the sequence lineage had been thought to be the same, but many are now taken to be QueD, and enzyme of queuosine biosynthesis. Queuosine is a hypermodified base in the wobble position of some tRNAs in most species. A new model is built to be the QueD equivalog model. [Protein synthesis, tRNA and rRNA base modification] 124 -272869 TIGR00040 yfcE phosphoesterase, MJ0936 family. Members of this largely uncharacterized family share a motif approximating DXH(X25)GDXXD(X25)GNHD as found in several phosphoesterases, including the nucleases SbcD and Mre11, and a family of uncharacterized archaeal putative phosphoesterases described by TIGR00024. In this family, the His residue in GNHD portion of the motif is not conserved. The member MJ0936, one of two from Methanococcus jannaschii, was shown () to act on model phosphodiesterase substrates; a divalent cation was required. [Unknown function, Enzymes of unknown specificity] 158 -161676 TIGR00041 DTMP_kinase dTMP kinase. Function: phosphorylation of DTMP to form DTDP in both de novo and salvage pathways of DTTP synthesis. Catalytic activity: ATP + thymidine 5'-phosphate = ADP + thymidine 5'-diphosphate. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 195 -272870 TIGR00042 TIGR00042 non-canonical purine NTP pyrophosphatase, RdgB/HAM1 family. Saccharomyces cerevisiae HAM1 protects against the mutagenic effects of the base analog 6-N-hydroxylaminopurine, which can be a natural product of monooxygenase activity on adenine. Methanococcus jannaschii MJ0226 and E. coli RdgB are also characterized as pyrophosphatases active against non-standard purines NTPs. E. coli RdgB appears to act by intercepting non-canonical deoxyribonucleotide triphosphates from replication precursor pools. [DNA metabolism, DNA replication, recombination, and repair] 184 -272871 TIGR00043 TIGR00043 rRNA maturation RNase YbeY. This metalloprotein family is represented by a single member sequence only in nearly every bacterium. Crystallography demonstrated metal-binding activity, possibly to nickel. It is a predicted to be a metallohydrolase, and more recently it was shown that mutants have a ribosomal RNA processing defect. [Protein synthesis, Other] 110 -129155 TIGR00044 TIGR00044 pyridoxal phosphate enzyme, YggS family. Members of this protein family include YggS from Escherichia coli and YBL036C, an uncharacterized pyridoxal protein of Saccharomyces cerevisiae. [Unknown function, Enzymes of unknown specificity] 229 -272872 TIGR00045 TIGR00045 glycerate kinase. The only characterized member of this family so far is the glycerate kinase GlxK (EC 2.7.1.31) of E. coli. This enzyme acts after glyoxylate carboligase and 2-hydroxy-3-oxopropionate reductase (tartronate semialdehyde reductase) in the conversion of glyoxylate to 3-phosphoglycerate (the D-glycerate pathway) as a part of allantoin degradation. [Energy metabolism, Other] 375 -272873 TIGR00046 TIGR00046 RNA methyltransferase, RsmE family. Members of this protein family, previously called conserved hypothetical protein TIGR00046, include the YggJ protein of E. coli, which has now been shown to methylate U1498 in 16S rRNA. [Protein synthesis, tRNA and rRNA base modification] 240 -272874 TIGR00048 rRNA_mod_RlmN 23S rRNA (adenine(2503)-C(2))-methyltransferase. Members of this family are RlmN, a 23S rRNA m2A2503 methyltransferase in the radical SAM enzyme family. Closely related is Cfr, a Staphylococcus sciuri plasmid-borne homolog to this family, Cfr, has been identified as essential to transferrable resistance to chloramphenicol and florfenicol. Cfr methylates 23S RNA at a different site. [Protein synthesis, tRNA and rRNA base modification] 355 -272875 TIGR00049 TIGR00049 Iron-sulfur cluster assembly accessory protein. Proteins in this subfamily appear to be associated with the process of FeS-cluster assembly. The HesB proteins are associated with the nif gene cluster and the Rhizobium gene IscN has been shown to be required for nitrogen fixation. Nitrogenase includes multiple FeS clusters and many genes for their assembly. The E. coli SufA protein is associated with SufS, a NifS homolog and SufD which are involved in the FeS cluster assembly of the FhnF protein. The Azotobacter protein IscA (homologs of which are also found in E.coli) is associated which IscS, another NifS homolog and IscU, a nifU homolog as well as other factors consistent with a role in FeS cluster chemistry. A homolog from Geobacter contains a selenocysteine in place of an otherwise invariant cysteine, further suggesting a role in redox chemistry. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 105 -272876 TIGR00050 rRNA_methyl_1 RNA methyltransferase, TrmH family, group 1. This is part of the trmH (spoU) family of S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases, and is now characterized, in E. coli, as a tRNA:Cm32/Um32 methyltransferase. It may be named TrMet(Xm32), or TrmJ, according to the nomenclature style chosen [Protein synthesis, tRNA and rRNA base modification] 233 -129161 TIGR00051 TIGR00051 acyl-CoA thioester hydrolase, YbgC/YbaW family. This model describes a subset of related acyl-CoA thioesterases that include several at least partially characterized proteins. YbgC is an acyl-CoA thioesterase associated with the Tol-Pal system. YbaW is part of the FadM regulon. [Unknown function, General] 117 -129162 TIGR00052 TIGR00052 nudix-type nucleoside diphosphatase, YffH/AdpP family. Members of this family include proteins of about 200 amino acids, including the recently characterized nudix hydrolase YffH, shows to be highly active as a GDP-mannose pyrophosphatase. It also includes the C-terminal half of a 361-amino acid protein, TrgB from Rhodobacter sphaeroides, shown experimentally to help confer tellurite resistance. This model also hits a region near the C-terminus of a 1092-amino acid protein of C. elegans. [Unknown function, Enzymes of unknown specificity] 185 -272877 TIGR00053 TIGR00053 addiction module toxin component, YafQ family. This model represents a cluster of eubacterial proteins and a cluster of archaeal proteins, all of which are uncharacterized, from 85 to 102 residues in length, and similar in sequence. These include YafQ, a ribosome-associated endoribonuclease that serves as part of a toxin-antitoxin system, for which DinJ is the antidote component. [Cellular processes, Adaptations to atypical conditions] 90 -272878 TIGR00054 TIGR00054 RIP metalloprotease RseP. Members of this nearly universal bacterial protein family are regulated intramembrane proteolysis (RIP) proteases. Older and synonymous gene symbols include yaeL in E. coli, mmpA in Caulobacter crescentus, etc. This family includes a region that hits the PDZ domain, found in a number of proteins targeted to the membrane by binding to a peptide ligand. The N-terminal region of this family contains a perfectly conserved motif HEXGH as found in a number of metalloproteinases, where the Glu is the active site and the His residues coordinate the metal cation. Membership in this family is determined by a match to the full length of the seed alignment; the model also detects fragments as well matches a number of members of the PEPTIDASE FAMILY S2C. The region of match appears not to overlap the active site domain. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 419 -129165 TIGR00055 uppS undecaprenyl diphosphate synthase. This enzyme builds undecaprenyl diphosphate, a molecule that in bacteria is used a carrier in synthesizing cell wall components. Alternate name: undecaprenyl pyrophosphate synthetase. Activity has been demonstrated experimentally for members of this family from Micrococcus luteus, E. coli, Haemophilus influenzae, and Streptococcus pneumoniae. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 226 -129166 TIGR00056 TIGR00056 ABC transport permease subunit. This model describes a subfamily of ABC transporter permease subunits. One member of this family has been associated with the toluene tolerance phenotype of Pseudomonas putida, another with L-glutamate transport, another with maintenance of lipid asymmetry. Many bacterial species have one or two members. The Mycobacteria have large paralogous families included in the DUF140 family but excluded from this subfamily on based on extreme divergence at the amino end and on phylogenetic and UPGMA trees on the more conserved regions. [Hypothetical proteins, Conserved] 259 -272879 TIGR00057 TIGR00057 tRNA threonylcarbamoyl adenosine modification protein, Sua5/YciO/YrdC/YwlC family. Has paralogs, but YrdC called a tRNA modification protein. Ref 2 authors say probably heteromultimeric complex. Paralogs may mean its does the final binding to the tRNA. [Protein synthesis, tRNA and rRNA base modification] 201 -129168 TIGR00058 Hemerythrin hemerythrin family non-heme iron protein. This family includes oxygen carrier proteins of various oligomeric states from the vascular fluid (hemerythrin) and muscle (myohemerythrin) of some marine invertebrates. Each unit binds 2 non-heme Fe using 5 H, one E and one D. One member of this family,from the sandworm Nereis diversicolor, is an unusual (non-metallothionein) cadmium-binding protein. Homologous proteins, excluded from this narrowly defined family, are found in archaea and bacteria (see pfam01814). 115 -272880 TIGR00059 L17 ribosomal protein L17. Eubacterial and mitochondrial. The mitochondrial form, from yeast, contains an additional 110 amino acids C-terminal to the region found by this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 111 -272881 TIGR00060 L18_bact ribosomal protein L18, bacterial type. The archaeal and eukaryotic type rpL18 is not detectable under this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 114 -129171 TIGR00061 L21 ribosomal protein L21. Eubacterial and chloroplast. [Protein synthesis, Ribosomal proteins: synthesis and modification] 101 -272882 TIGR00062 L27 ribosomal protein L27. Eubacterial, chloroplast, and mitochondrial. Mitochondrial members have an additional C-terminal domain. [Protein synthesis, Ribosomal proteins: synthesis and modification] 84 -129173 TIGR00063 folE GTP cyclohydrolase I. alternate names: Punch (Drosophila),GTP cyclohydrolase I (EC 3.5.4.16) catalyzes the biosynthesis of formic acid and dihydroneopterin triphosphate from GTP. This reaction is the first step in the biosynthesis of tetrahydrofolate in prokaryotes, of tetrahydrobiopterin in vertebrates, and of pteridine-containing pigments in insects. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 180 -272883 TIGR00064 ftsY signal recognition particle-docking protein FtsY. There is a weak division between FtsY and SRP54; both are GTPases. In E.coli, ftsY is an essential gene located in an operon with cell division genes ftsE and ftsX, but its apparent function is as the signal recognition particle docking protein. [Protein fate, Protein and peptide secretion and trafficking] 277 -272884 TIGR00065 ftsZ cell division protein FtsZ. This family consists of cell division protein FtsZ, a GTPase found in bacteria, the chloroplast of plants, and in archaebacteria. Structurally similar to tubulin, FtsZ undergoes GTP-dependent polymerization into filaments that form a cytoskeleton involved in septum synthesis. [Cellular processes, Cell division] 349 -129176 TIGR00066 g_glut_trans gamma-glutamyltranspeptidase. Also called gamma-glutamyltranspeptidase (ggt). Some members of this family have antibiotic synthesis or resistance activities. In the case of a cephalosporin acylase from Pseudomonas sp., the enzyme was shown to retain some gamma-glutamyltranspeptidase activity. Other, more distantly related proteins have ggt-related activities and score below the trusted cutoff. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 516 -272885 TIGR00067 glut_race glutamate racemase. This family consists of glutamate racemase, a protein required for making the UDP-N-acetylmuramoyl-pentapeptide used as a precursor in bacterial peptidoglycan biosynthesis. The most closely related proteins differing in function are aspartate racemases. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 251 -272886 TIGR00068 glyox_I lactoylglutathione lyase. Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other] 150 -272887 TIGR00069 hisD histidinol dehydrogenase. This model describes a polypeptide sequence catalyzing the final step in histidine biosynthesis, found sometimes as an independent protein and sometimes as a part of a multifunctional protein. [Amino acid biosynthesis, Histidine family] 393 -272888 TIGR00070 hisG ATP phosphoribosyltransferase. Members of this family from B. subtilis, Aquifex aeolicus, and Synechocystis PCC6803 (and related taxa) lack the C-terminal third of the sequence. The sole homolog from Archaeoglobus fulgidus lacks the N-terminal 50 residues (as reported) and is otherwise atypical of the rest of the family. This model excludes the C-terminal extension. [Amino acid biosynthesis, Histidine family] 183 -272889 TIGR00071 hisT_truA tRNA pseudouridine(38-40) synthase. Members of this family are the tRNA modification enzyme TruA, tRNA pseudouridine(38-40) synthase. In a few species (e.g. Bacillus anthracis), TruA is represented by two paralogs. [Protein synthesis, tRNA and rRNA base modification] 227 -272890 TIGR00072 hydrog_prot hydrogenase maturation protease. HycI and HoxM are well-characterized as responsible for C-terminal protease activity on their respective hydrogenase large chains. A large number of homologous proteins appear responsible for the maturation of various forms of hydrogenase. 145 -272891 TIGR00073 hypB hydrogenase accessory protein HypB. A GTP hydrolase for assembly of nickel metallocenter of hydrogenase. A similar protein, ureG, is an accessory protein for urease, which also uses nickel. hits scoring 75 and above are safe as orthologs. [SS 1/05/04 I changed the role_ID and process GO from protein folding to to protein modification, since a protein folding role has not been established, but HypB is implicated in insertion of nickel into the large subunit of NiFe hydrogenases.] [Protein fate, Protein modification and repair] 208 -129184 TIGR00074 hypC_hupF hydrogenase assembly chaperone HypC/HupF. This protein is suggested by act as a chaperone for a hydrogenase large subunit, holding the precursor form before metallocenter nickel incorporation. [SS 12/31/03] More recently proposed additional function is to shuttle the iron atom that has been liganded at the HypC/HypD complex to the precursor of the large hydrogenase (HycE) subunit. . Added metallochaperone and protein mod GO terms. [Protein fate, Protein folding and stabilization, Protein fate, Protein modification and repair] 76 -272892 TIGR00075 hypD hydrogenase expression/formation protein HypD. HypD is involved in the hyp operon which is needed for the activity of the three hydrogenase isoenzymes in Escherichia coli. HypD is one of the genes needed for formation of these enzymes. This protein has been found in gram-negative and gram-positive bacteria and Archaea. [Protein fate, Protein modification and repair] 369 -272893 TIGR00077 lspA lipoprotein signal peptidase. Alternate name: lipoprotein signal peptidase [Protein fate, Protein and peptide secretion and trafficking] 166 -272894 TIGR00078 nadC nicotinate-nucleotide pyrophosphorylase. Synonym: quinolinate phosphoribosyltransferase (decarboxylating) [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 265 -272895 TIGR00079 pept_deformyl peptide deformylase. Peptide deformylase (EC 3.5.1.88), also called polypeptide deformylase, is a metalloenzyme that uses water to release formate from the N-terminal formyl-L-methionine of bacterial and chloroplast peptides. This enzyme should not be confused with formylmethionine deformylase (EC 3.5.1.31) which is active on free N-formyl methionine and has been reported from rat intestine. [Protein fate, Protein modification and repair] 161 -272896 TIGR00080 pimt protein-L-isoaspartate(D-aspartate) O-methyltransferase. This is an all-kingdom (but not all species) full-length ortholog enzyme for repairing aging proteins. Among the prokaryotes, the gene name is pcm. Among eukaryotes, pimt. [Protein fate, Protein modification and repair] 215 -272897 TIGR00081 purC phosphoribosylaminoimidazole-succinocarboxamide synthase. Alternate name: SAICAR synthetase purine de novo biosynthesis. E.coli example noted as homotrimer. Check length. Longer versions may be multifunctional enzymes. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 237 -129191 TIGR00082 rbfA ribosome-binding factor A. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Essential for efficient processing of 16S rRNA. May interact with the 5'terminal helix region of 16S rRNA. Mutants lacking rbfA have a cold-sensitive phenotype. [Transcription, RNA processing] 114 -272898 TIGR00083 ribF riboflavin kinase/FMN adenylyltransferase. multifunctional enzyme: riboflavin kinase (EC 2.7.1.26) (flavokinase) / FMN adenylyltransferase (EC 2.7.7.2) (FAD pyrophosphorylase) (FAD synthetase). [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 288 -129193 TIGR00084 ruvA Holliday junction DNA helicase, RuvA subunit. RuvA specifically binds Holliday junctions as a sandwich of two tetramers and maintains the configuration of the junction. It forms a complex with two hexameric rings of RuvB, the subunit that contains helicase activity. The complex drives ATP-dependent branch migration of the Holliday junction recombination intermediate. The endonuclease RuvC resolves junctions. [DNA metabolism, DNA replication, recombination, and repair] 191 -129194 TIGR00086 smpB SsrA-binding protein. This model describes the SsrA-binding protein, also called tmRNA binding protein, small protein B, and SmpB. The small, stable RNA SsrA (also called tmRNA or 10Sa RNA) recognizes stalled ribosomes such as occur during translation from message that lacks a stop codon. It becomes charged with Ala like a tRNA, then acts as mRNA to resume translation started with the defective mRNA. The short C-terminal peptide tag added by the SsrA system marks the abortively translated protein for degradation. SmpB binds SsrA after its aminoacylation but before the coupling of the Ala to the nascent polypeptide chain and is an essential part of the SsrA peptide tagging system. SmpB has been associated with the survival of bacterial pathogens in conditions of stress. It is universal in the first 100 sequenced bacterial genomes. [Protein synthesis, Other] 144 -272899 TIGR00087 surE 5'/3'-nucleotidase SurE. This protein family originally was named SurE because of its role in stationary phase survivalin Escherichia coli. In E. coli, surE is next to pcm, an L-isoaspartyl protein repair methyltransferase that is also required for stationary phase survival. Recent work () shows that viewing SurE as an acid phosphatase (3.1.3.2) is not accurate. Rather, SurE in E. coli, Thermotoga maritima, and Pyrobaculum aerophilum acts strictly on nucleoside 5'- and 3'-monophosphates. E. coli SurE is Recommended cutoffs are 15 for homology, 40 for probable orthology, and 200 for orthology with full-length homology. [Cellular processes, Adaptations to atypical conditions] 247 -129196 TIGR00088 trmD tRNA (guanine-N1)-methyltransferase. This model is specfic for the tRNA modification enzyme tRNA (guanine-N1)-methyltransferase (trmD). This enzyme methylates guanosime-37 in a number of tRNAs.The enzyme's catalytic activity is as follows: S-adenosyl-L-methionine + tRNA = S-adenosyl-L-homocysteine + tRNA containing N1-methylguanine. [Protein synthesis, tRNA and rRNA base modification] 233 -272900 TIGR00089 TIGR00089 radical SAM methylthiotransferase, MiaB/RimO family. This subfamily contains the tRNA-i(6)A37 modification enzyme, MiaB (TIGR01574). The phylogenetic tree indicates 4 distinct clades, one of which corresponds to MiaB. The other three clades are modelled by hypothetical equivalogs (TIGR01125, TIGR01579 and TIGR01578). Together, the four models hit every sequence hit by the subfamily model without any overlap between them. This subfamily is aparrently a part of a larger superfamily of enzymes utilizing both a 4Fe4S cluster and S-adenosyl methionine (SAM) to initiate radical reactions. MiaB acts on a particular isoprenylated Adenine base of certain tRNAs causing thiolation at an aromatic carbon, and probably also transferring a methyl grouyp from SAM to the thiol. The particular substrate of the three other clades is unknown but may be very closely related. 429 -272901 TIGR00090 rsfS_iojap_ybeB ribosome silencing factor RsfS/YbeB/iojap. This model describes a widely distributed family of bacterial proteins related to iojap from plants. It includes RsfS(YbeB) from E. coli. The gene iojap is a pattern-striping gene in maize, reflecting a chloroplast development defect in some cells. The conserved function of this protein is to silence ribosomes by binding the ribosomal large subunit and impairing joining with the small subunit in response to nutrient stress. Note that RsfS (starvation) is an author-endorsed change from the published symbol RsfA, which conflicted with previously published gene symbols. [Protein synthesis, Translation factors] 99 -161703 TIGR00091 TIGR00091 tRNA (guanine-N(7)-)-methyltransferase. This predicted S-adenosylmethionine-dependent methyltransferase is found in a single copy in most Bacteria. It is also found, with a short amino-terminal extension in eukaryotes. Its function is unknown. In E. coli, this protein flanks the DNA repair protein MutY, also called micA. [Protein synthesis, tRNA and rRNA base modification] 194 -129200 TIGR00092 TIGR00092 GTP-binding protein YchF. This predicted GTP-binding protein is found in a single copy in every complete bacterial genome, and is found in Eukaryotes. A more distantly related protein, separated from this model, is found in the archaea. It is known to bind GTP and double-stranded nucleic acid. It is suggested to belong to a nucleoprotein complex and act as a translation factor. [Unknown function, General] 368 -272902 TIGR00093 TIGR00093 pseudouridine synthase. This model identifies panels of pseudouridine synthase enzymes that RNA modifications involved in maturing the protein translation apparatus. Counts per genome vary: two in Staphylococcus aureus, three in Pseudomonas putida, four in E. coli, etc. [Protein synthesis, tRNA and rRNA base modification] 128 -272903 TIGR00094 tRNA_TruD_broad tRNA pseudouridine synthase, TruD family. an EGAD loading error caused one member to be called surE, but that's an adjacent gene. MJ11364 is a strong partial match from 50 to 230 aa. [Protein synthesis, tRNA and rRNA base modification] 387 -188022 TIGR00095 TIGR00095 16S rRNA (guanine(966)-N(2))-methyltransferase RsmD. This model represents a family of uncharacterized bacterial proteins. Members are present in nearly every complete bacterial genome, always in a single copy. PSI-BLAST analysis shows homology to several families of SAM-dependent methyltransferases, including ribosomal RNA adenine dimethylases. [Protein synthesis, tRNA and rRNA base modification] 190 -129204 TIGR00096 TIGR00096 16S rRNA (cytidine(1402)-2'-O)-methyltransferase. This protein, previously known as YraL, is RsmI, one of a pair of genes involved in a unique dimethyl modification of a cytidine in 16S rRNA. See pfam00590 (tetrapyrrole methylase), which demonstrates homology between this family and other members, including several methylases for the tetrapyrrole class of compound, as well as the enzyme diphthine synthase. [Protein synthesis, tRNA and rRNA base modification] 276 -272904 TIGR00097 HMP-P_kinase hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. This model represents a bifunctional enzyme, phosphomethylpyrimidine kinase (EC 2.7.4.7)/Hydroxymethylpyrimidine kinase (EC 2.7.1.49), the ThiD/J protein of thiamine biosynthesis. The protein is commonly observed within operons containing other thiamine biosynthesis genes. Numerous examples are fusion proteins with other thiamine-biosynthetic domains. Saccaromyces has three recent paralogs, two of which are isofunctional and score above the trusted cutoff. The third shows a longer branch length in a phylogenetic tree and scores below the trusted cutoff, as do putative second copies in a number of species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 254 -272905 TIGR00099 Cof-subfamily Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily. This subfamily of sequences falls within the Class-IIB subfamily (TIGR01484) of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. The use of the name "Cof" as an identifier here is arbitrary and refers to the E. coli Cof protein. This subfamily is notable for the large number of recent paralogs in many species. Listeria, for instance, has 12, Clostridium, Lactococcus and Streptococcus pneumoniae have 8 each, Enterococcus and Salmonella have 7 each, and Bacillus subtilus, Mycoplasma, Staphylococcus and E. coli have 6 each. This high degree of gene duplication is limited to the gamma proteobacteria and low-GC gram positive lineages. The profusion of genes in this subfamily is not coupled with a high degree of divergence, so it is impossible to determine an accurate phylogeny at the equivalog level. Considering the relationship of this subfamily to the other known members of the HAD-IIB subfamily (TIGR01484), sucrose and trehalose phosphatases and phosphomannomutase, it seems a reasonable hypothesis that these enzymes act on phosphorylated sugars. Possibly the diversification of genes in this subfamily represents the diverse sugars and polysaccharides that various bacteria find in their biological niches. The members of this subfamily are restricted almost exclusively to bacteria (one sequences from S. pombe scores above trusted, while another is between trusted and noise). It is notable that no archaea are found in this group, the closest relations to the archaea found here being two Deinococcus sequences. [Unknown function, Enzymes of unknown specificity] 256 -272906 TIGR00100 hypA hydrogenase nickel insertion protein HypA. CXXC-~12X-CXXC and genetically seems a regulatory protein. In Hpylori, hypA mutant abolished hydrogenase activity and decrease in urease activity. Nickel supplementation in media restored urease activity and partial hydrogenase activity. HypA probably involved in inserting Ni in enzymes. [Protein fate, Protein modification and repair] 115 -129208 TIGR00101 ureG urease accessory protein UreG. This model represents UreG, a GTP hydrolase that acts in the assembly of the nickel metallocenter of urease. It is found only in urease-positive species, although some urease-positive species (e.g. Bacillus subtilis) lack this protein. A similar protein, hypB, is an accessory protein for expression of hydrogenase, which also uses nickel. [Central intermediary metabolism, Nitrogen metabolism] 199 -211546 TIGR00103 DNA_YbaB_EbfC DNA-binding protein, YbaB/EbfC family. The function of this protein is unknown, but it has been expressed and crystallized. Its gene nearly always occurs next to recR and/or dnaX. It is restricted to Bacteria and the plant Arabidopsis. The plant form contains an additional N-terminal region that may serve as a transit peptide and shows a close relationship to the cyanobacterial member, suggesting that it is a chloroplast protein. Members of this family are found in a single copy per bacterial genome, but are broadly distributed. A member is present even in the minimal gene complement of Mycoplasm genitalium. [Unknown function, General] 101 -129210 TIGR00104 tRNA_TsaA tRNA-Thr(GGU) m(6)t(6)A37 methyltransferase TsaA. This protein has been characterized by crystallography in complex with S-Adenosylmethionine, making it a probable S-adenosylmethionine-dependent methyltransferase. Analysis in EcoGene links this protein to the enzyme characterization mapped to the tsaA gene in Escherichia coli. [Unknown function, Enzymes of unknown specificity] 142 -272907 TIGR00105 L31 ribosomal protein L31. This family consists exclusively of bacterial (and organellar) 50S ribosomal protein L31. In some species, such as Bacillus subtilis, this protein exists in two forms (RpmE and YtiA), one of which (RpmE) contains a pair of motifs, CXC and CXXC, for binding zinc. [Protein synthesis, Ribosomal proteins: synthesis and modification] 68 -272908 TIGR00106 TIGR00106 uncharacterized protein, MTH1187 family. This protein has been crystallized in both Methanobacterium thermoautotrophicum and yeast, but its function remains unknown. Both crystal structures showed sulfate ions bound at the interface of two dimers to form a tetramer. [Unknown function, General] 97 -188024 TIGR00107 deoD purine-nucleoside phosphorylase, family 1 (deoD). Purine nucleoside phosphorylase (also called inosine phosphorylase) is a purine salvage enzyme. Purine nucleosides, such as guanosine, inosine, or xanthosine, plus orthophosphate, can be converted to their respective purine bases (guanine, hypoxanthine, or xanthine) plus ribose-1-phosphate. This family of purine nucleoside phosphorylase is restricted to the bacteria. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 232 -272909 TIGR00109 hemH ferrochelatase. Human ferrochelatase, found at the mitochondrial inner membrane inner surface, was shown in an active recombinant form to be a homodimer. This contrasts to an earlier finding by gel filtration that overexpressed E. coli ferrochelatase runs as a monomer. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 322 -272910 TIGR00110 ilvD dihydroxy-acid dehydratase. This protein, dihydroxy-acid dehydratase, catalyzes the fourth step in valine and isoleucine biosynthesis. It contains a catalytically essential [4Fe-4S] cluster This model generates scores of up to 150 bits vs. 6-phosphogluconate dehydratase, a homologous enzyme. [Amino acid biosynthesis, Pyruvate family] 535 -129217 TIGR00111 pelota mRNA surveillance protein pelota. This model describes the Drosophila protein Pelota, the budding yeast protein DOM34 which it can replace, and a set of closely related archaeal proteins. Members contain a proposed RNA binding motif. The meiotic defect in pelota mutants may be a complex result of a protein translation defect, as suggested in yeast by ribosomal protein RPS30A being a multicopy suppressor and by an altered polyribosome profile in DOM34 mutants rescued by RPS30A. This family is homologous to a family of peptide chain release factors. Pelota is proposed to act in protein translation. [Protein synthesis, Translation factors] 351 -272911 TIGR00112 proC pyrroline-5-carboxylate reductase. This enzyme catalyzes the final step in proline biosynthesis. Among the four paralogs in Bacillus subtilis (proG, proH, proI, and comER), ComER is the most divergent and does not prevent proline auxotrophy from mutation of the other three. It is excluded from the seed and scores between the trusted and noise cutoffs. [Amino acid biosynthesis, Glutamate family] 245 -272912 TIGR00113 queA S-adenosylmethionine:tRNA ribosyltransferase-isomerase. This model describes the enzyme for S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA). QueA synthesizes Queuosine which is usually in the first position of the anticodon of tRNAs specific for asparagine, aspartate, histidine, and tyrosine. [Protein synthesis, tRNA and rRNA base modification] 344 -211550 TIGR00114 lumazine-synth 6,7-dimethyl-8-ribityllumazine synthase. This enzyme catalyzes the cyclo-ligation of 3,4-dihydroxy-2-butanone-4-P and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione to form 6,7-dimethyl-8-ribityllumazine, the immediate precursor of riboflavin. Sometimes referred to as riboflavin synthase, beta subunit, this should not be confused with the alpha subunit which carries out the subsequent reaction. Archaeal members of this family are considered putative, although included in the seed and scoring above the trusted cutoff. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 138 -272913 TIGR00115 tig trigger factor. Trigger factor is a ribosome-associated molecular chaperone and is the first chaperone to interact with nascent polypeptide. Trigger factor can bind at the same time as the signal recognition particle (SRP), but is excluded by the SRP receptor (FtsY). The central domain of trigger factor has peptidyl-prolyl cis/trans isomerase activity. This protein is found in a single copy in virtually every bacterial genome. [Protein fate, Protein folding and stabilization] 410 -272914 TIGR00116 tsf translation elongation factor Ts. Translational elongation factor Ts (EF-Ts) catalyzes the exchange of GTP for the GDP of the EF-Tu.GDP complex as part of the cycle of translation elongation. This protein is found in Bacteria, mitochondria, and chloroplasts. [Protein synthesis, Translation factors] 291 -129223 TIGR00117 acnB aconitate hydratase 2. Aconitate hydratase (aconitase) is an enzyme of the TCA cycle. This model describes aconitase 2, AcnB, which has weak similarity to aconitase 1. It is found almost exclusively in the Proteobacteria. [Energy metabolism, TCA cycle] 844 -272915 TIGR00118 acolac_lg acetolactate synthase, large subunit, biosynthetic type. Two groups of proteins form acetolactate from two molecules of pyruvate. The type of acetolactate synthase described in this model also catalyzes the formation of acetohydroxybutyrate from pyruvate and 2-oxobutyrate, an early step in the branched chain amino acid biosynthesis; it is therefore also termed acetohydroxyacid synthase. In bacteria, this catalytic chain is associated with a smaller regulatory chain in an alpha2/beta2 heterotetramer. Acetolactate synthase is a thiamine pyrophosphate enzyme. In this type, FAD and Mg++ are also found. Several isozymes of this enzyme are found in E. coli K12, one of which contains a frameshift in the large subunit gene and is not expressed. [Amino acid biosynthesis, Pyruvate family] 558 -272916 TIGR00119 acolac_sm acetolactate synthase, small subunit. Acetolactate synthase is a heterodimeric thiamine pyrophosphate enzyme with large and small subunits. One of the three isozymes in E. coli K12 contains a frameshift in the large subunit gene and is not expressed. acetohydroxyacid synthase is a synonym. [Amino acid biosynthesis, Pyruvate family] 157 -161718 TIGR00120 ArgJ glutamate N-acetyltransferase/amino-acid acetyltransferase. This enzyme can acetylate Glu to N-acetyl-Glu by deacetylating N-2-acetyl-ornithine into ornithine; the two halves of this reaction represent the first and fifth steps in the synthesis of Arg (or citrulline) from Glu by way of ornithine (EC 2.3.1.35). In Bacillus stearothermophilus, but not in Thermus thermophilus HB27, the enzyme is bifunctional and can also use acetyl-CoA to acetylate Glu (EC 2.3.1.1). [Amino acid biosynthesis, Glutamate family] 404 -272917 TIGR00121 birA_ligase birA, biotin-[acetyl-CoA-carboxylase] ligase region. This model represents the biotin--acetyl-CoA-carboxylase ligase region of biotin--acetyl-CoA-carboxylase ligase. In Escherichia coli and some other species, this enzyme is part of a bifunction protein BirA that includes a small, N-terminal biotin operon repressor domain. Proteins identified by this model should not be called bifunctional unless they are also identified by birA_repr_reg (TIGR00122). The protein name suggests that this enzyme transfers biotin only to acetyl-CoA-carboxylase but it also transfers the biotin moiety to other proteins. The apparent orthologs among the eukaryotes are larger proteins that contain a single copy of this domain. [Protein fate, Protein modification and repair] 237 -272918 TIGR00122 birA_repr_reg BirA biotin operon repressor domain. This model represents the amino-terminal helix-turn-helix repressor region of the biotin--acetyl-CoA-carboxylase ligase/biotin operon repressor bifunctional protein BirA. In many species, the biotin--acetyl-CoA-carboxylase ligase ortholog lacks this DNA-binding repressor region and therefore is not equivalent to the well-characterized BirA of E. coli. This model may recognize some other putative repressor proteins, such as DnrO of Streptomyces peucetius with scores below the noise cutoff but with significance shown by low E-value. [Regulatory functions, DNA interactions] 69 -272919 TIGR00123 cbiM cobalamin biosynthesis protein CbiM. A cutoff of 200 bits for trusted orthologs of cbiM is suggested. Scores lower than 200 but higher than 20 may be considered sufficient to call a protein cobalamin biosynthesis protein CbiM-related.The seed alignment for this model is a cluster of very closely related proteins from Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, Methanococcus jannaschii, and Salmonella typhimurium, each of which has greater than 50% identity to all the others. The ortholog from Salmonella is the source of the gene symbol cbiM for this set.In Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Methanococcus jannaschii, a second homolog of cbiM is also found. These cbiM-related proteins appear to represent a distinct but less well-conserved orthologous group. Still more distant homologs include sll0383 from Synechocystis sp. and HI1621 from Haemophilus influenzae; the latter protein, from a species that does not synthesize cobalamin, is the most divergent member of the group. The functions of and relationships among the set of proteins homologous to cbiM have not been determined. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 214 -129230 TIGR00124 cit_ly_ligase [citrate (pro-3S)-lyase] ligase. ATP is cleaved to AMP and pyrophosphate during the reaction. The carboxyl end is homologous to a number of cytidyltransferases that also release pyrophosphate. [Energy metabolism, Fermentation, Protein fate, Protein modification and repair] 332 -272920 TIGR00125 cyt_tran_rel cytidyltransferase-like domain. Protein families that contain at least one copy of this domain include citrate lyase ligase, pantoate-beta-alanine ligase, glycerol-3-phosphate cytidyltransferase, ADP-heptose synthase, phosphocholine cytidylyltransferase, lipopolysaccharide core biosynthesis protein KdtB, the bifunctional protein NadR, and a number whose function is unknown. Many of these proteins are known to use CTP or ATP and release pyrophosphate. 66 -272921 TIGR00126 deoC deoxyribose-phosphate aldolase. Deoxyribose-phosphate aldolase is involved in the catabolism of nucleotides and deoxyriibonucleotides. The catalytic process is as follows: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde. It is found in both gram-postive and gram-negative bacteria. [Purines, pyrimidines, nucleosides, and nucleotides, Other, Energy metabolism, Other] 211 -129233 TIGR00127 nadp_idh_euk isocitrate dehydrogenase, NADP-dependent, eukaryotic type. This model describes a eukaryotic, NADP-dependent form of isocitrate dehydrogenase. These eukaryotic enzymes differ considerably from a fairly tight cluster that includes all other related isocitrate dehydrogenases, 3-isopropylmalate dehydrogenases, and tartrate dehydrogenases. Several NAD- or NADP-dependent dehydrogenases, including 3-isopropylmalate dehydrogenase, tartrate dehydrogenase, and the multimeric forms of isocitrate dehydrogenase, share a nucleotide binding domain unrelated to that of lactate dehydrogenase and its homologs. These enzymes dehydrogenate their substates at a H-C-OH site adjacent to a H-C-COOH site; the latter carbon, now adjacent to a carbonyl group, readily decarboxylates. This model does not discriminate cytosolic, mitochondrial, and chloroplast proteins. However, the model starts very near the amino end of the cytosolic form; the finding of additional amino-terminal sequence may indicate a transit peptide. [Energy metabolism, TCA cycle] 409 -272922 TIGR00128 fabD malonyl CoA-acyl carrier protein transacylase. This enzyme of fatty acid biosynthesis transfers the malonyl moeity from coenzyme A to acyl-carrier protein. The seed alignment for this family of proteins contains a single member each from a number of bacterial species but also an additional pair of closely related, uncharacterized proteins from B. subtilis, one of which has a long C-terminal extension. [Fatty acid and phospholipid metabolism, Biosynthesis] 290 -272923 TIGR00129 fdhD_narQ formate dehydrogenase family accessory protein FdhD. FdhD in E. coli and NarQ in B. subtilis are required for the activity of formate dehydrogenase. The gene name in B. subtilis reflects the requirement of the neighboring gene narA for nitrate assimilation, for which NarQ is not required. In some species, the gene is associated not with a known formate dehydrogenase but with a related putative molybdopterin-binding oxidoreductase. A reasonable hypothesis is that this protein helps prepare a required cofactor for assembly into the holoenzyme. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 237 -161726 TIGR00130 frhD coenzyme F420-reducing hydrogenase delta subunit (putative coenzyme F420 hydrogenase processing subunit). FrhD is not part of the active FRH heterotrimer, but is probably a protease required for maturation. Alternative name: 8-hydroxy-5-deazaflavin (F420) reducing hydrogenase (FRH) subunit delta. [Protein fate, Protein modification and repair] 153 -272924 TIGR00131 gal_kin galactokinase. Galactokinase is a member of the GHMP kinases (Galactokinase, Homoserine kinase, Mevalonate kinase, Phosphomevalonate kinase) and shares with them an amino-terminal domain probably related to ATP binding.The galactokinases found by this model are divided into two sets. Prokaryotic forms are generally shorter. The eukaryotic forms are longer because of additional central regions and in some cases are known to be bifunctional, with regulatory activities that are independent of galactokinase activity. [Energy metabolism, Sugars] 386 -272925 TIGR00132 gatA aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase, A subunit. In many species, Gln--tRNA ligase is missing. tRNA(Gln) is misacylated with Glu after which a heterotrimeric amidotransferase converts Glu to Gln. This model represents the amidase chain of that heterotrimer, encoded by the gatA gene. In the Archaea, Asn--tRNA ligase is also missing. This amidase subunit may also function in the conversion of Asp-tRNA(Asn) to Asn-tRNA(Asn), presumably with a different recognition unit to replace gatB. Both Methanococcus jannaschii and Methanobacterium thermoautotrophicum have both authentic gatB and a gatB-related gene, but only one gene like gatA. It has been shown that gatA can be expressed only when gatC is also expressed. In most species expressing the amidotransferase, the gatC ortholog is about 90 residues in length, but in Mycoplasma genitalium and Mycoplasma pneumoniae the gatC equivalent is as the C-terminal domain of a much longer protein. Not surprisingly, the Mycoplasmas also represent the most atypical lineage of gatA orthology. This orthology group is more narrowly defined here than in Proc Natl Acad Aci USA 94, 11819-11826 (1997). In particular, a Rhodococcus homolog found in association with nitrile hydratase genes and described as an enantiomer-selective amidase active on several 2-aryl propionamides, is excluded here. It is likely, however, that the amidase subunit GatA is not exclusively a part of the Glu-tRNA(Gln) amidotransferase heterotrimer and restricted to that function in all species. [Protein synthesis, tRNA aminoacylation] 460 -272926 TIGR00133 gatB aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase, B subunit. The heterotrimer GatABC is responsible for transferring the NH2 group that converts Glu to Gln, or Asp to Asn after the Glu or Asp has been ligated to the tRNA for Gln or Asn, respectively. In Lactobacillus, GatABC is responsible only for tRNA(Gln). In the Archaea, GatABC is responsible only for tRNA(Asn), while GatDE is responsible for tRNA(Gln). In lineages that include Thermus, Chlamydia, or Acidithiobacillus, the GatABC complex catalyzes both. [Protein synthesis, tRNA aminoacylation] 478 -213509 TIGR00134 gatE_arch glutamyl-tRNA(Gln) amidotransferase, subunit E. This peptide is found only in the Archaea. It is paralogous to the gatB-encoded subunit of Glu-tRNA(Gln) amidotransferase. The GatABC system operates in many bacteria to convert Glu-tRNA(Gln) into Gln-tRNA(Gln). However, the homologous system in archaea instead converts Asp-tRNA(Asn) to Asn-tRNA(Asn). Glu-tRNA(Gln) is converted to Gln-tRNA(Gln) by a heterodimeric amidotransferase of GatE (this protein) and GatD. The Archaea have an Asp-tRNA(Asn) amidotransferase instead of an Asp--tRNA ligase, but the genes have not been identified. It is likely that this protein replaces gatB in Asp-tRNA(Asn) amidotransferase but that both enzymes share gatA. [Protein synthesis, tRNA aminoacylation] 620 -129241 TIGR00135 gatC aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase, C subunit. Archaea, organelles, and many bacteria charge Gln-tRNA by first misacylating it with Glu and then amidating Glu to Gln. This small protein is part of the amidotransferase heterotrimer and appears to be important to the stability of the amidase subunit encode by gatA, but its function may not be required in every organism that expresses gatA and gatB. The seed alignment for this model does not include any eukaryotic sequence and is not guaranteed to find eukaryotic examples, although it does find some. Saccharomyces cerevisiae, which expresses the amidotransferase for mitochondrial protein translation, seems to lack a gatC ortholog. This model has been revised to remove the candidate sequence from Methanococcus jannaschii, now part of a related model. [Protein synthesis, tRNA aminoacylation] 93 -272927 TIGR00136 gidA glucose-inhibited division protein A. GidA, the longer of two forms of GidA-related proteins, appears to be present in all complete eubacterial genomes so far, as well as Saccharomyces cerevisiae. A subset of these organisms have a closely related protein. GidA is absent in the Archaea. It appears to act with MnmE, in an alpha2/beta2 heterotetramer, in the 5-carboxymethylaminomethyl modification of uridine 34 in certain tRNAs. The shorter, related protein, previously called gid or gidA(S), is now called TrmFO (see model TIGR00137). [Protein synthesis, tRNA and rRNA base modification] 616 -129243 TIGR00137 gid_trmFO tRNA:m(5)U-54 methyltransferase. This model represents an orthologous set of proteins present in relatively few bacteria but very tightly conserved where it occurs. It is closely related to gidA (glucose-inhibited division protein A), which appears to be present in all complete eubacterial genomes so far and in Saccharomyces cerevisiae. It was designated gid but is now recognized as a tRNA:m(5)U-54 methyltransferase and is now designated trmFO. [Protein synthesis, tRNA and rRNA base modification] 433 -272928 TIGR00138 rsmG_gidB 16S rRNA (guanine(527)-N(7))-methyltransferase RsmG. RsmG was previously called GidB (glucose-inhibited division protein B). It is present and a single copy in nearly all complete eubacterial genomes. It is missing only from some obligate intracellular species of various lineages (Chlamydiae, Ehrlichia, Wolbachia, Anaplasma, Buchnera, etc.). RsmG shows a methytransferase fold in its the crystal structure, and acts as a 7-methylguanosine (m(7)G) methyltransferase, apparently specific to 16S rRNA. [Protein synthesis, tRNA and rRNA base modification] 181 -129245 TIGR00139 h_aconitase homoaconitase. Homoaconitase is known only as a fungal enzyme from two species, where it is part of an unusual lysine biosynthesis pathway. Because this model is based on just two sequences from a narrow taxonomic range, it may not recognize distant orthologs, should any exist. Homoaconitase, aconitase, and 3-isopropylmalate dehydratase have similar overall structures, but 3-isopropylmalate dehydratase is split into large (leuC) and small (leuD) chains in eubacteria. Several pairs of archaeal proteins resemble leuC and leuD over their lengths but are even closer to the respective domains of homoaconitase, and their identity is uncertain. [Amino acid biosynthesis, Aspartate family] 712 -129246 TIGR00140 hupD hydrogenase expression/formation protein. valid names: hupD, hynC, hoxM. C at 64 and 67 are believed to be metal binding. Postulated to be involved in processing or hydrogenase. Superfamily suggests that it is a peptidase/protease. [Protein fate, Protein modification and repair] 134 -129247 TIGR00142 hycI hydrogenase maturation protease HycI. Hydrogenase maturation protease is a protease that is involved in the C-terminal processing of HycE,the large subunit of hydrogenase 3 from E.Coli. This protein seems to be found in E.Coli and in Archaea. [Protein fate, Protein modification and repair] 146 -272929 TIGR00143 hypF [NiFe] hydrogenase maturation protein HypF. A previously described regulatory effect of HypF mutatation is attributable to loss of activity of a regulatory hydrogenase. A zinc finger-like region CXXCX(18)CXXCX(24)CXXCX(18)CXXC region further supported the regulatory hypothesis. However, more recent work (PUBMED:11375153) shows the direct effect is on the activity of expressed hydrogenases with nickel/iron centers, rather than on expression. [Protein fate, Protein modification and repair] 711 -129249 TIGR00144 beta_RFAP_syn beta-RFAP synthase. This protein family contains several archaeal examples of beta-ribofuranosylaminobenzene 5-prime-phosphate synthase (beta-RFAP synthase), an enzyme involved in methanopterin biosynthesis. In some species, two members of this family are found. It is unclear whether both act as beta-RFAP synthase. This family is related to the GHMP kinases (Galactokinase, Homoserine kinase, Mevalonate kinase, Phosphomevalonate kinase). Members are found so far only in the Archaea and in Methylobacterium extorquens. [Unknown function, Enzymes of unknown specificity] 324 -272930 TIGR00145 TIGR00145 FTR1 family protein. A characterized member from yeast acts as oxidase-coupled high affinity iron transporter. Note that the apparent member from E. coli K12-MG1655 has a frameshift by homology with member sequences from other species. [Unknown function, General] 283 -161732 TIGR00147 TIGR00147 lipid kinase, YegS/Rv2252/BmrU family. The E. coli member of this family, YegS has been purified and shown to have phosphatidylglycerol kinase activity. The member from M. tuberculosis, Rv2252, has diacylglycerol kinase activity. BmrU from B. subtilis is in an operon with multidrug efflux transporter Bmr, but is uncharacterized. [Unknown function, Enzymes of unknown specificity] 293 -129252 TIGR00148 TIGR00148 UbiD family decarboxylase. The member of this family in E. coli is UbiD, 3-octaprenyl-4-hydroxybenzoate carboxy-lyase. The family described by this model, however, is broad enough that it is likely to contain several different decarboxylases. Found in bacteria, archaea, and yeast, with two members in A. fulgidus. No homologs were detected besides those classified as orthologs. The member from H. pylori has a C-terminal extension of just over 100 residues that is shared in part by the Aquifex aeolicus homolog. [Unknown function, General] 438 -129253 TIGR00149 TIGR00149_YjbQ secondary thiamine-phosphate synthase enzyme. Members of this protein family have been studied extensively by crystallography. Members from several different species have been shown to have sufficient thiamin phosphate synthase activity (EC 2.5.1.3) to complement thiE mutants. However, it is presumed that this is a secondary activity, and the primary function of this enzyme remains unknown. [Unknown function, Enzymes of unknown specificity] 132 -129254 TIGR00150 T6A_YjeE tRNA threonylcarbamoyl adenosine modification protein YjeE. This protein family belongs to a four-gene system responsible for the threonylcarbamoyl adenosine (t6A) tRNA modification. Members of this family have a conserved nucleotide-binding motif GXXGXGKT and a nucleotide-binding fold. Member protein YjeE of Haemophilus influenzae (HI0065) was shown to have (weak) ATPase activity. [Protein synthesis, tRNA and rRNA base modification] 133 -129255 TIGR00151 ispF 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. Members of this protein family are 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, the IspF protein of the deoxyxylulose (non-mevalonate) pathway of IPP biosynthesis. This protein occurs as an IspDF bifunctional fusion protein in about 20 percent of bacterial genomes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 155 -272931 TIGR00152 TIGR00152 dephospho-CoA kinase. This model produces scores in the range of 0-25 bits against adenylate, guanylate, uridine, and thymidylate kinases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 190 -272932 TIGR00153 TIGR00153 TIGR00153 family protein. An apparent homolog with a suggested function is Pit accessory protein from Sinorhizobium meliloti, which may be involved in phosphate (Pi) transport. [Hypothetical proteins, Conserved] 216 -188029 TIGR00154 ispE 4-diphosphocytidyl-2C-methyl-D-erythritol kinase. Members of this family of GHMP kinases were previously designated as conserved hypothetical protein YchB or as isopentenyl monophosphate kinase. It is now known, in tomato and E. coli, to encode 4-diphosphocytidyl-2C-methyl-D-erythritol kinase, an enzyme of the deoxyxylulose phosphate pathway of terpenoid biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 294 -272933 TIGR00155 pqiA_fam integral membrane protein, PqiA family. This family consists of uncharacterized predicted integral membrane proteins found, so far, only in the Proteobacteria. Of two members in E. coli, one is induced by paraquat and is designated PqiA, paraquat-inducible protein A. [Unknown function, General] 403 -129260 TIGR00156 TIGR00156 TIGR00156 family protein. As of the last revision, this family consists only of two proteins from Escherichia coli and one from the related species Haemophilus influenzae. [Hypothetical proteins, Conserved] 126 -272934 TIGR00157 TIGR00157 ribosome small subunit-dependent GTPase A. Members of this protein were designated YjeQ and are now designated RsgA (ribosome small subunit-dependent GTPase A). The strongest motif in the alignment of these proteins is GXSGVGKS[ST], a classic P-loop for nucleotide binding. This protein has been shown to cleave GTP and remain bound to GDP. A role as a regulator of translation has been suggested. The Aquifex aeolicus ortholog is split into consecutive open reading frames. Consequently, this model was build in fragment mode (-f option). [Protein synthesis, Translation factors] 245 -129262 TIGR00158 L9 ribosomal protein L9. Ribosomal protein L9 appears to be universal in, but restricted to, eubacteria and chloroplast. [Protein synthesis, Ribosomal proteins: synthesis and modification] 148 -129263 TIGR00159 TIGR00159 TIGR00159 family protein. These proteins have no detectable global or local homology to any protein of known function. Members are restricted to the bacteria and found broadly in lineages other than the Proteobacteria. [Hypothetical proteins, Conserved] 211 -272935 TIGR00160 MGSA methylglyoxal synthase. Methylglyoxal synthase (MGS) generates methylglyoxal (MG), a toxic metabolite (that may also be a regulatory metabolite and) that is detoxified, prinicipally, through a pathway involving glutathione and glyoxylase I. Totemeyer et al. propose that, during a loss of control over carbon flux, with accumulation of phosphorylated sugars and depletion of phosphate, as might happen during a rapid shift to a richer medium, MGS aids the cell by converting some dihydroxyacetone phosphate (DHAP) to MG and phosphate. This is therefore an alternative to triosephosphate isomerase and the remainder of the glycolytic pathway for the disposal of DHAP during the stress of a sudden increase in available sugars. [Energy metabolism, Other] 143 -129265 TIGR00161 TIGR00161 TIGR00161 family protein. This model represents one out of two closely related ortholgous sets of proteins that, so far, are found only in the Archaea. This ortholog set includes MJ0106 from Methanococcus jannaschii and AF1251 from Archaeoglobus fulgidus, but not MJ1210 or AF0525. [Hypothetical proteins, Conserved] 238 -129266 TIGR00162 TIGR00162 TIGR00162 family protein. This model represents one out of two closely related ortholgous sets of proteins that, so far, are found only in but are universal among the Archaea. This ortholog set includes MJ1210 from Methanococcus jannaschii and AF0525 from Archaeoglobus fulgidus while excluding MJ0106 and AF1251. [Hypothetical proteins, Conserved] 188 -272936 TIGR00163 PS_decarb phosphatidylserine decarboxylase precursor. Phosphatidylserine decarboxylase is synthesized as a single chain precursor. Generation of the pyruvoyl active site from a Ser is coupled to cleavage of a Gly-Ser bond between the larger (beta) and smaller (alpha chains). It is an integral membrane protein. A closely related family, possibly also active as phosphatidylserine decarboxylase, falls under model TIGR00164. [Fatty acid and phospholipid metabolism, Biosynthesis] 238 -129268 TIGR00164 PS_decarb_rel phosphatidylserine decarboxylase precursor-related protein. Phosphatidylserine decarboxylase is synthesized as a single chain precursor. Generation of the pyruvoyl active site from a Ser is coupled to cleavage of a Gly-Ser bond between the larger (beta) and smaller (alpha chains). It is an integral membrane protein. This protein has many regions of homology to known phosphatidylserine decarboxylases, including the Gly-Ser motif for chain cleavage and active site generation, but has a shorter amino end and a number of deletions along the length of the alignment to the phosphatidylserine decarboxylases. It is unclear whether this protein is a form of phosphatidylserine decarboxylase or is a related enzyme. It is found in Neisseria gonorrhoeae, Mycobacterium tuberculosis, and several archaeal species, all of which lack known phosphatidylserine decarboxylase. [Unknown function, General] 189 -272937 TIGR00165 S18 ribosomal protein S18. This ribosomal small subunit protein is found in all eubacteria so far, as well as in chloroplasts. YER050C from Saccharomyces cerevisiae and a related protein from Caenorhabditis elegans appear to be homologous and may represent mitochondrial forms. The trusted cutoff is set high enough that these two candidate S18 proteins are not categorized automatically. [Protein synthesis, Ribosomal proteins: synthesis and modification] 70 -129270 TIGR00166 S6 ribosomal protein S6. The ribosomal protein S6 ortholog family, including yeast MRP17, shows more than two-fold length variation from 95 residues in Bacillus subtilis to 215 in Mycoplasma pneumoniae. This length variation comes primarily from poorly conserved C-terminal extensions that are particularly long in the Mycoplasmas. MRP17 protein is a component of the small ribosomal subunit in mitochondria, and is shown here to be an ortholog of S6. [Protein synthesis, Ribosomal proteins: synthesis and modification] 93 -272938 TIGR00167 cbbA ketose-bisphosphate aldolase. This model is under revision. Proteins found by this model include fructose-bisphosphate and tagatose-bisphosphate aldolase. [Energy metabolism, Glycolysis/gluconeogenesis] 288 -129272 TIGR00168 infC translation initiation factor IF-3. infC uses abnormal initiation codons such as AUA, AUC, and CUG which render its expression particularly sensitive to excess of its gene product IF-3 thereby regulating its own expression [Protein synthesis, Translation factors] 165 -272939 TIGR00169 leuB 3-isopropylmalate dehydrogenase. Several NAD- or NADP-dependent dehydrogenases, including 3-isopropylmalate dehydrogenase, tartrate dehydrogenase, and the dimeric forms of isocitrate dehydrogenase, share a nucleotide binding domain unrelated to that of lactate dehydrogenase and its homologs. These enzymes dehydrogenate their substates at a H-C-OH site adjacent to a H-C-COOH site; the latter carbon, now adjacent to a carbonyl group, readily decarboxylates.Among these decarboxylating dehydrogenases of hydroxyacids, overall sequence homology indicates evolutionary history rather than actual substrate or cofactor specifity, which may be toggled experimentally by replacement of just a few amino acids. 3-isopropylmalate dehydrogenase is an NAD-dependent enzyme and should have a sequence resembling HGSAPDI around residue 340. The subtrate binding loop should include a sequence resembling E[KQR]X(0,1)LLXXR around residue 115. Other contacts of importance are known from crystallography but not detailed here.This model will not find all isopropylmalate dehydrogenases; the enzyme from Sulfolobus sp. strain 7 is more similar to mitochondrial NAD-dependent isocitrate dehydrogenases than to other known isopropylmalate dehydrogenases and was omitted to improve the specificity of the model. It scores below the cutoff and below some enzymes known not to be isopropylmalate dehydrogenase. [Amino acid biosynthesis, Pyruvate family] 346 -272940 TIGR00170 leuC 3-isopropylmalate dehydratase, large subunit. Members of this family are 3-isopropylmalate dehydratase, large subunit, or the large subunit domain of single-chain forms. Homoaconitase, aconitase, and 3-isopropylmalate dehydratase have similar overall structures. All are dehydratases (EC 4.2.1.-) and bind a Fe-4S iron-sulfur cluster. 3-isopropylmalate dehydratase is split into large (leuC) and small (leuD) chains in eubacteria. Several pairs of archaeal proteins resemble the leuC and leuD pair in length and sequence but even more closely resemble the respective domains of homoaconitase, and their identity is uncertain. These homologs are now described by a separate model of subfamily (rather than equivalog) homology type, and the priors and cutoffs for this model have been changed to focus this equivalog family more narrowly. [Amino acid biosynthesis, Pyruvate family] 465 -129275 TIGR00171 leuD 3-isopropylmalate dehydratase, small subunit. Homoaconitase, aconitase, and 3-isopropylmalate dehydratase have similar overall structures. All are dehydratases (EC 4.2.1.-) and bind a Fe-4S iron-sulfur cluster. 3-isopropylmalate dehydratase is split into large (leuC) and small (leuD) chains in eubacteria. Several pairs of archaeal proteins resemble the leuC and leuD pair in length and sequence but even more closely resemble the respective domains of homoaconitase, and their identity is uncertain. The candidate archaeal leuD proteins are not included in the seed alignment for this model and score below the trusted cutoff. [Amino acid biosynthesis, Pyruvate family] 188 -129276 TIGR00172 maf MAF protein. This nonessential gene causes inhibition of septation when overexpressed. A member of the family is found in the Archaeon Pyrococcus horikoshii and another in the round worm Caenorhabditis elegans. [Cellular processes, Cell division] 183 -272941 TIGR00173 menD 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase. MenD was thought until recently to act as SHCHC synthase, but has recently been shown to act instead as SEPHCHC synthase. Conversion of SEPHCHC into SHCHC and pyruvate may occur spontaneously but is catalyzed efficiently, at least in some organisms, by MenH (see TIGR03695). 2-oxoglutarate decarboxylase/SHCHC synthase (menD) is a thiamine pyrophosphate enzyme involved in menaquinone biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 432 -213512 TIGR00174 miaA tRNA dimethylallyltransferase. Alternate names include delta(2)-isopentenylpyrophosphate transferase, IPP transferase, 2-methylthio-N6-isopentyladenosine tRNA modification enzyme. Catalyzes the first step in the modification of an adenosine near the anticodon to 2-methylthio-N6-isopentyladenosine. Understanding of substrate specificity has changed. [Protein synthesis, tRNA and rRNA base modification] 287 -272942 TIGR00175 mito_nad_idh isocitrate dehydrogenase, NAD-dependent, mitochondrial type. Several NAD- or NADP-dependent dehydrogenases, including 3-isopropylmalate dehydrogenase, tartrate dehydrogenase, and the multimeric forms of isocitrate dehydrogenase, share a nucleotide binding domain unrelated to that of lactate dehydrogenase and its homologs. These enzymes dehydrogenate their substates at a H-C-OH site adjacent to a H-C-COOH site; the latter carbon, now adjacent to a carbonyl group, readily decarboxylates. Mitochondrial NAD-dependent isocitrate dehydrogenases (IDH) resemble prokaryotic NADP-dependent IDH and 3-isopropylmalate dehydrogenase (an NAD-dependent enzyme) more closely than they resemble eukaryotic NADP-dependent IDH. The mitochondrial NAD-dependent isocitrate dehydrogenase is believed to be an alpha(2)-beta-gamma heterotetramer. All subunits are homologous and found by this model. The NADP-dependent IDH of Thermus aquaticus thermophilus strain HB8 resembles these NAD-dependent IDH, except for the residues involved in cofactor specificity, much more closely than it resembles other prokaryotic NADP-dependent IDH, including that of Thermus aquaticus strain YT1. [Energy metabolism, TCA cycle] 333 -272943 TIGR00176 mobB molybdopterin-guanine dinucleotide biosynthesis protein MobB. This molybdenum cofactor biosynthesis enzyme is similar to the urease accessory protein UreG and to the hydrogenase accessory protein HypB, both GTP hydrolases involved in loading nickel into the metallocenters of their respective target enzymes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 155 -272944 TIGR00177 molyb_syn molybdenum cofactor synthesis domain. The Drosophila protein cinnamon, the Arabidopsis protein cnx1, and rat protein gephyrin each have one domain like MoeA and one like MoaB and Mog. These domains are, however, distantly related to each other, as captured by this model. Gephyrin is unusual in that it seems to be a tubulin-binding neuroprotein involved in the clustering of both blycine receptors and GABA receptors, rather than a protein of molybdenum cofactor biosynthesis. 148 -129282 TIGR00178 monomer_idh isocitrate dehydrogenase, NADP-dependent, monomeric type. The monomeric type of isocitrate dehydrogenase has been found so far in a small number of species, including Azotobacter vinelandii, Corynebacterium glutamicum, Rhodomicrobium vannielii, and Neisseria meningitidis. It is NADP-specific. [Energy metabolism, TCA cycle] 741 -272945 TIGR00179 murB UDP-N-acetylenolpyruvoylglucosamine reductase. This model describes MurB, UDP-N-acetylenolpyruvoylglucosamine reductase, which is also called UDP-N-acetylmuramate dehydrogenase. It is part of the pathway for the biosynthesis of the UDP-N-acetylmuramoyl-pentapeptide that is a precursor of bacterial peptidoglycan. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 284 -272946 TIGR00180 parB_part ParB/RepB/Spo0J family partition protein. This model represents the most well-conserved core of a set of chromosomal and plasmid partition proteins related to ParB, including Spo0J, RepB, and SopB. Spo0J has been shown to bind a specific DNA sequence that, when introduced into a plasmid, can serve as partition site. Study of RepB, which has nicking-closing activity, suggests that it forms a transient protein-DNA covalent intermediate during the strand transfer reaction. 187 -272947 TIGR00181 pepF oligoendopeptidase F. This family represents the oligoendopeptidase F clade of the family of larger M3 or thimet (for thiol-dependent metallopeptidase) oligopeptidase family. Lactococcus lactis PepF hydrolyzed peptides of 7 and 17 amino acids with fairly broad specificity. The homolog of lactococcal PepF in group B Streptococcus was named PepB (, with the name difference reflecting a difference in species of origin rather activity; substrate profiles were quite similar. Differences in substrate specificity should be expected in other species. The gene is duplicated in Lactococcus lactis on the plasmid that bears it. A shortened second copy is found in Bacillus subtilis. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 591 -129286 TIGR00182 plsX fatty acid/phospholipid synthesis protein PlsX. This protein of fatty acid/phospholipid biosynthesis, called PlsX after the member in Streptococcus pneumoniae, is proposed to be a phosphate acyltransferase that partners with PlsY (TIGR00023) in a two-step 1-acylglycerol-3-phosphate biosynthesis pathway alternative to the one-step PlsB (EC 2.3.1.15) pathway. [Fatty acid and phospholipid metabolism, Biosynthesis] 322 -272948 TIGR00183 prok_nadp_idh isocitrate dehydrogenase, NADP-dependent, prokaryotic type. Several NAD- or NADP-dependent dehydrogenases, including 3-isopropylmalate dehydrogenase, tartrate dehydrogenase, and the multimeric forms of isocitrate dehydrogenase, share a nucleotide binding domain unrelated to that of lactate dehydrogenase and its homologs. These enzymes dehydrogenate their substates at a H-C-OH site adjacent to a H-C-COOH site; Prokaryotic NADP-dependent isocitrate dehydrogenases resemble their NAD-dependent counterparts and 3-isopropylmalate dehydrogenase (an NAD-dependent enzyme) more closely than they resemble eukaryotic NADP-dependent isocitrate dehydrogenases. [Energy metabolism, TCA cycle] 416 -272949 TIGR00184 purA adenylosuccinate synthase. Alternate name IMP--aspartate ligase. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 425 -211559 TIGR00185 tRNA_yibK_trmL tRNA (cytidine(34)-2'-O)-methyltransferase. TrmL (previously YibK) is responsible for 2'-O-methylation at tRNA(Leu) position 34. [Protein synthesis, tRNA and rRNA base modification] 153 -129290 TIGR00186 rRNA_methyl_3 rRNA methylase, putative, group 3. this is part of the trmH (spoU) family of rRNA methylases [Protein synthesis, tRNA and rRNA base modification] 237 -272950 TIGR00187 ribE riboflavin synthase, alpha subunit. This protein family consists almost entirely of two lumazine-binding domains, described in the family Lum_binding from Pfam. The model generates lower scores against other proteins that also have two lumazine-binding domains, including some involved in bioluminescence.The name ribE was selected, from among alternatives including ribB and ribC, to match the usage in EcoCyc. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 200 -211560 TIGR00188 rnpA ribonuclease P protein component, eubacterial. This peptide is the protein component of a ribonucleoprotein that cleaves the leader sequence from each tRNA precursor to leave the mature 5'-terminus. The catalytic site is in the RNA component, M1 RNA. The yeast mitochondrial RNase P protein component gene RPM2 has no obvious sequence similarity to rnpA, but resembles eukaryotic nuclear RNase P instead. [Transcription, RNA processing] 111 -272951 TIGR00189 tesB acyl-CoA thioesterase II. Function: hydrolyzes a broad range of acyl-CoA thioesters. Physiological function is not known. Subunit: homotetramer. [Fatty acid and phospholipid metabolism, Biosynthesis] 271 -129294 TIGR00190 thiC phosphomethylpyrimidine synthase. The thiC ortholog is designated thiA in Bacillus subtilis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 423 -129295 TIGR00191 thrB homoserine kinase. Homoserine kinase is part of the threonine biosynthetic pathway.Homoserine kinase is a member of the GHMP kinases (Galactokinase, Homoserine kinase, Mevalonate kinase, Phosphomevalonate kinase) and shares with them an amino-terminal domain probably related to ATP binding.P.aeruginosa homoserine kinase seems not to be homologous (see PROSITE:PDOC0054) [Amino acid biosynthesis, Aspartate family] 302 -129296 TIGR00192 urease_beta urease, beta subunit. In a number of species, including B.subtilis, Synechocystis, and Haemophilus influenzae, urease subunits beta and gamma are encoded as separate polypeptides. In Helicobacter pylori UreA and in the fission yeast Schizosaccharomyces pombe, beta subunit-like sequence follows gamma subunit-like sequence in a single chain; the fission yeast protein contains additional C-terminal regions. [Central intermediary metabolism, Nitrogen metabolism] 101 -272952 TIGR00193 urease_gam urease, gamma subunit. In a number of species, including B.subtilis, Synechocystis, and Haemophilus influenzae, urease subunits beta and gamma are encoded as separate polypeptides. In Helicobacter pylori UreA and in the fission yeast Schizosaccharomyces pombe, beta subunit-like sequence follows gamma subunit-like sequence in a single chain; the fission yeast protein contains additional C-terminal regions. Nomenclature for the various subunits of urease in Helicobacter differs from nomenclature in most other species. [Central intermediary metabolism, Nitrogen metabolism] 102 -272953 TIGR00194 uvrC excinuclease ABC, C subunit. This family consists of the DNA repair enzyme UvrC, an ABC excinuclease subunit which interacts with the UvrA/UvrB complex to excise UV-damaged nucleotide segments. [DNA metabolism, DNA replication, recombination, and repair] 574 -272954 TIGR00195 exoDNase_III exodeoxyribonuclease III. The model brings in reverse transcriptases at scores below 50, model also contains eukaryotic apurinic/apyrimidinic endonucleases which group in the same family [DNA metabolism, DNA replication, recombination, and repair] 254 -272955 TIGR00196 yjeF_cterm yjeF C-terminal region, hydroxyethylthiazole kinase-related. E. coli yjeF has full-length orthologs in a number of species, all of unknown function. However, yeast YNL200C is homologous and corresponds to the N-terminal region while yeast YKL151C and B. subtilis yxkO correspond to this C-terminal region only. The present model may hit hydroxyethylthiazole kinase, an enzyme associated with thiamine biosynthesis. [Unknown function, General] 270 -272956 TIGR00197 yjeF_nterm yjeF N-terminal region. The protein region corresponding to this model shows no clear homology to any protein of known function. This model is built on yeast protein YNL200C and the N-terminal regions of E. coli yjeF and its orthologs in various species. The C-terminal region of yjeF and its orthologs shows similarity to hydroxyethylthiazole kinase (thiM) and other enzymes involved in thiamine biosynthesis. Yeast YKL151C and B. subtilis yxkO match the yjeF C-terminal domain but lack this region. [Unknown function, General] 205 -272957 TIGR00198 cat_per_HPI catalase/peroxidase HPI. As catalase, this enzyme catalyzes the dismutation of two molecules of hydrogen peroxide to dioxygen and two molecules of water. As a peroxidase, it uses hydrogen peroxide to oxidize donor compounds and produce water. KatG from E. coli is a homotetramer with two non-covalently associated iron protoheme IX groups per tetramer, but the ortholog from Synechococcus sp. is a homodimer with one protoheme. Important sites (numbered according to E. coli KatG) include heme ligands His-106 and His-267 and active site Trp-318. Note that the translation PID:g296476 from accession X71420 from Rhodobacter capsulatus B10 contains extensive frameshift differences from the rest of the orthologous family. [Cellular processes, Detoxification] 716 -129303 TIGR00199 PncC_domain amidohydrolase, PncC family. CinA is a DNA damage- or competence-inducible protein that is polycistronic with recA in a number of species. Several bacterial species have a protein consisting largely of the C-terminal domain of CinA but lacking the N-terminal domain, including nicotinamide mononucleotide (NMN) deamidase (3.5.1.42) proteins PncC in Shewanella oneidensis and ygaD in E. coli. [DNA metabolism, DNA replication, recombination, and repair] 146 -161761 TIGR00200 cinA_nterm competence/damage-inducible protein CinA N-terminal domain. cinA is a DNA damage- or competence-inducible protein that is polycistronic with recA in a number of species [DNA metabolism, DNA replication, recombination, and repair] 413 -272958 TIGR00201 comF comF family protein. This protein is found in species that do (Bacillus subtilis, Haemophilus influenzae) or do not (E. coli, Borrelia burgdorferi) have described systems for natural transformation with exogenous DNA. It is involved in competence for transformation in Bacillus subtilis. [Cellular processes, DNA transformation] 190 -272959 TIGR00202 csrA carbon storage regulator (csrA). Modulates the expression of genes in the glycogen biosynthesis and gluconeogenesis pathways by accelerating the 5'-to-3' degradation of these transcripts through selective RNA binding. The N-terminal end of the sequence (AA 11-45) contains the KH motif which is characteristic of a set of RNA-binding proteins. [Energy metabolism, Glycolysis/gluconeogenesis, Regulatory functions, RNA interactions] 69 -129307 TIGR00203 cydB cytochrome d oxidase, subunit II (cydB). part of a two component cytochrome D terminal complex. Terminal reaction in the aerobic respiratory chain. [Energy metabolism, Electron transport] 378 -129308 TIGR00204 dxs 1-deoxy-D-xylulose-5-phosphate synthase. DXP synthase is a thiamine diphosphate-dependent enzyme related to transketolase and the pyruvate dehydrogenase E1-beta subunit. By an acyloin condensation of pyruvate with glyceraldehyde 3-phosphate, it produces 1-deoxy-D-xylulose 5-phosphate, a precursor of thiamine diphosphate (TPP), pyridoxal phosphate, and the isoprenoid building block isopentenyl diphosphate (IPP). [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine, Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 617 -272960 TIGR00205 fliE flagellar hook-basal body complex protein FliE. fliE is a component of the flagellar hook-basal body complex located possibly at (MS-ring)-rod junction. [Cellular processes, Chemotaxis and motility] 108 -129310 TIGR00206 fliF flagellar basal-body M-ring protein/flagellar hook-basal body protein (fliF). Component of the M (cytoplasmic associated) ring, one of four rings (L,P,S,M) which make up the flagellar hook-basal body which is a major portion of the flagellar organelle. Although the basic structure of the flagella appears to be similar for all bacteria, additional rings and structures surrounding the basal body have been observed for some bacteria (eg Vibrio cholerae and Treponema pallidum). [Cellular processes, Chemotaxis and motility] 555 -272961 TIGR00207 fliG flagellar motor switch protein FliG. The fliG protein along with fliM and fliN interact to form the switch complex of the bacterial flagellar motor located at the base of the basal body. This complex interacts with chemotaxis proteins (eg CHEY). In addition the complex interacts with other components of the motor that determine the direction of flagellar rotation. The model contains putative members of the fliG family at scores of less than 100 from Agrobacterium radiobacter and Sinorhizobium meliloti as well as fliG-like genes from treponema pallidum and Borrelia burgdorferi. That is why the suggested cutoff is set at 20 but was set at 100 to construct the family. [Cellular processes, Chemotaxis and motility] 338 -188033 TIGR00208 fliS flagellar biosynthetic protein FliS. The function of this protein in flagellar biosynthesis is unknown, but appears to be regulatory. The member of this family in Vibrio parahaemolyticus is designated FlaJ (creating a synonym for FliS) and was shown essential for flagellin biosynthesis. [Cellular processes, Chemotaxis and motility] 124 -129313 TIGR00209 galT_1 galactose-1-phosphate uridylyltransferase, family 1. This enzyme is involved in glucose and galactose interconversion. This model describes one of two extremely distantly related branches of the model pfam01087. [Energy metabolism, Sugars] 347 -129314 TIGR00210 gltS sodium--glutamate symport carrier (gltS). [Transport and binding proteins, Amino acids, peptides and amines] 398 -272962 TIGR00211 glyS glycyl-tRNA synthetase, tetrameric type, beta subunit. The glycyl-tRNA synthetases differ even among the eubacteria in oligomeric structure. In Escherichia coli and most others, it is a heterodimer of two alpha chains and two beta chains, encoded by tandem genes. The genes are similar, but fused, in Chlamydia trachomatis. By contrast, the glycyl-tRNA synthetases of Thermus thermophilus and of archaea and eukaryotes differ considerably; they are homodimeric, mutually similar, and not detected by this model. [Protein synthesis, tRNA aminoacylation] 691 -272963 TIGR00212 hemC hydroxymethylbilane synthase. Alternate name hydroxymethylbilane synthase Biosynthesis of cofactors, prosthetic groups, and carriers: Heme and porphyrin [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 292 -129317 TIGR00213 GmhB_yaeD D,D-heptose 1,7-bisphosphate phosphatase. This family of proteins formerly designated yaeD resembles the histidinol phosphatase domain of the bifunctional protein HisB. The member from E. coli has been characterized as D,D-heptose 1,7-bisphosphate phosphatase, GmhB, involved in inner core LPS assembly (). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 176 -272964 TIGR00214 lipB lipoate-protein ligase B. Involved in lipoate biosynthesis as the main determinant of the lipoyl-protein ligase activity required for lipoylation of enzymes such as alpha-ketoacid dehydrogenases. Involved in activation and re-activation (following denaturation) of lipoyl-protein ligases (calcium ion-dependant process). [Protein fate, Protein modification and repair] 184 -129319 TIGR00215 lpxB lipid-A-disaccharide synthase. Lipid-A precursor biosynthesis producing lipid A disaccharide in a condensation reaction. transcribed as part of an operon including lpxA [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 385 -272965 TIGR00216 ispH_lytB (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate reductase (IPP and DMAPP forming). The IspH protein (previously designated LytB) has now been recognized as the last enzyme in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Escherichia coli LytB protein had been found to regulate the activity of RelA (guanosine 3',5'-bispyrophosphate synthetase I), which in turn controls the level of a regulatory metabolite. It is involved in penicillin tolerance and the stringent response. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 282 -129321 TIGR00217 malQ 4-alpha-glucanotransferase. This enzyme is known as amylomaltase and disproportionating enzyme. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 513 -272966 TIGR00218 manA mannose-6-phosphate isomerase, class I. The names phosphomannose isomerase and mannose-6-phosphate isomerase are synonomous. This family contains two rather deeply branched groups. One group contains an experimentally determined phosphomannose isomerase of Streptococcus mutans as well as three uncharacterized paralogous proteins of Bacillus subtilis, all at more than 50 % identity to each other, plus a more distant homolog from Archaeoglobus fulgidus. The other group contains members from E. coli, budding yeast, Borrelia burgdorferi, etc. [Energy metabolism, Sugars] 302 -129323 TIGR00219 mreC rod shape-determining protein MreC. MreC (murein formation C) is involved in the rod shape determination in E. coli, and more generally in cell shape determination of bacteria whether or not they are rod-shaped. Cells defective in MreC are round. Species with MreC include many of the Proteobacteria, Gram-positives, and spirochetes. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 283 -272967 TIGR00220 mscL large conductance mechanosensitive channel protein. Protein encodes a channel which opens in response to a membrane stretch force. Probably serves as an osmotic gauge. Carboxy terminus tends to be more divergent across species with a high degree of sequence conservation found at the N-terminus. [Cellular processes, Adaptations to atypical conditions] 127 -272968 TIGR00221 nagA N-acetylglucosamine-6-phosphate deacetylase. [Central intermediary metabolism, Amino sugars] 380 -272969 TIGR00222 panB 3-methyl-2-oxobutanoate hydroxymethyltransferase. Members of this family are 3-methyl-2-oxobutanoate hydroxymethyltransferase, the first enzyme of the pantothenate biosynthesis pathway. An alternate name is ketopantoate hydroxymethyltransferase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 263 -129327 TIGR00223 panD L-aspartate-alpha-decarboxylase. Members of this family are aspartate 1-decarboxylase, the enzyme that makes beta-alanine and C02 from aspartate. Beta-alanine is then used to make the vitamin pantothenate, from which coenzyme A is made. Aspartate 1-decarboxylase is synthesized as a proenzyme, then cleaved to an alpha (C-terminal) and beta (N-terminal) subunit with a pyruvoyl group. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 126 -161774 TIGR00224 pckA phosphoenolpyruvate carboxykinase (ATP). Involved in the gluconeogenesis pathway. It converts oxaloacetic acid to phosphoenolpyruvate using ATP. Enzyme is a monomer. The reaction is also catalysed by phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) using GTP instead of ATP, described in PROSITE:PDOC00421 [Energy metabolism, Glycolysis/gluconeogenesis] 532 -272970 TIGR00225 prc C-terminal peptidase (prc). A C-terminal peptidase with different substrates in different species including processing of D1 protein of the photosystem II reaction center in higher plants and cleavage of a peptide of 11 residues from the precursor form of penicillin-binding protein in E.coli E.coli and H influenza have the most distal branch of the tree and their proteins have an N-terminal 200 amino acids that show no homology to other proteins in the database. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Protein fate, Protein modification and repair] 334 -129330 TIGR00227 ribD_Cterm riboflavin-specific deaminase C-terminal domain. Eubacterial riboflavin-specific deaminases have a zinc-binding domain recognized by the dCMP_cyt_deam model toward the N-terminus and this domain toward the C-terminus. Yeast HTP reductase, a riboflavin-biosynthetic enzyme, and several archaeal proteins believed related to riboflavin biosynthesis consist only of this domain and lack the dCMP_cyt_deam domain. 216 -129331 TIGR00228 ruvC crossover junction endodeoxyribonuclease RuvC. Endonuclease that resolves Holliday junction intermediates in genetic recombination. The active form of the protein is a dimer. Structure studies reveals that the catalytic center, comprised of four acidic residues, lies at the bottom of a cleft that fits a DNA duplex. The model hits a single Synechocystis PCC6803 protein at a score of 30, below the trusted cutoff, that appears orthologous and may act as authentic RuvC. [DNA metabolism, DNA replication, recombination, and repair] 156 -272971 TIGR00229 sensory_box PAS domain S-box. The PAS domain was previously described. This sensory box, or S-box domain occupies the central portion of the PAS domain but is more widely distributed. It is often tandemly repeated. Known prosthetic groups bound in the S-box domain include heme in the oxygen sensor FixL, FAD in the redox potential sensor NifL, and a 4-hydroxycinnamyl chromophore in photoactive yellow protein. Proteins containing the domain often contain other regulatory domains such as response regulator or sensor histidine kinase domains. Other S-box proteins include phytochromes and the aryl hydrocarbon receptor nuclear translocator. [Regulatory functions, Small molecule interactions] 124 -272972 TIGR00230 sfsA sugar fermentation stimulation protein. probable regulatory factor involved in maltose metabolism contains a putative DNA binding domain. Isolated as a gene which enabled E.coli strain MK2001 to use maltose. [Energy metabolism, Sugars, Regulatory functions, Other] 234 -272973 TIGR00231 small_GTP small GTP-binding protein domain. Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General] 162 -272974 TIGR00232 tktlase_bact transketolase, bacterial and yeast. This model is designed to capture orthologs of bacterial transketolases. The group includes two from the yeast Saccharomyces cerevisiae but excludes dihydroxyactetone synthases (formaldehyde transketolases) from various yeasts and the even more distant mammalian transketolases. Among the family of thiamine diphosphate-dependent enzymes that includes transketolases, dihydroxyacetone synthases, pyruvate dehydrogenase E1-beta subunits, and deoxyxylulose-5-phosphate synthases, mammalian and bacterial transketolases seem not to be orthologous. [Energy metabolism, Pentose phosphate pathway] 653 -272975 TIGR00233 trpS tryptophanyl-tRNA synthetase. This model represents tryptophanyl-tRNA synthetase. Some members of the family have a pfam00458 domain amino-terminal to the region described by this model. [Protein synthesis, tRNA aminoacylation] 327 -272976 TIGR00234 tyrS tyrosyl-tRNA synthetase. This tyrosyl-tRNA synthetase model starts picking up tryptophanyl-tRNA synthetases at scores of 0 and below. The proteins found by this model have a deep split between two groups. One group contains bacterial and organellar eukaryotic examples. The other contains archaeal and cytosolic eukaryotic examples. [Protein synthesis, tRNA aminoacylation] 378 -272977 TIGR00235 udk uridine kinase. Model contains a number of longer eukaryotic proteins and starts bringing in phosphoribulokinase hits at scores of 160 and below [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 207 -272978 TIGR00236 wecB UDP-N-acetylglucosamine 2-epimerase. This cytosolic enzyme converts UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-mannosamine. In E. coli, this is the first step in the pathway of enterobacterial common antigen biosynthesis.Members of this orthology group have many gene symbols, often reflecting the overall activity of the pathway and/or operon that includes it. Symbols include epsC (exopolysaccharide C) in Burkholderia solanacerum, cap8P (type 8 capsule P) in Staphylococcus aureus, and nfrC in an older designation based on the effects of deletion on phage N4 adsorption. Epimerase activity was also demonstrated in a bifunctional rat enzyme, for which the N-terminal domain appears to be orthologous. The set of proteins found above the suggested cutoff includes E. coli WecB in one of two deeply branched clusters and the rat UDP-N-acetylglucosamine 2-epimerase domain in the other. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 365 -272979 TIGR00237 xseA exodeoxyribonuclease VII, large subunit. This family consist of exodeoxyribonuclease VII, large subunit XseA which catalyses exonucleolytic cleavage in either the 5'->3' or 3'->5' direction to yield 5'-phosphomononucleotides. Exonuclease VII consists of one large subunit and four small subunits. [DNA metabolism, Degradation of DNA] 389 -272980 TIGR00238 TIGR00238 KamA family protein. This model represents essentially the whole of E. coli YjeK and of some of its apparent orthologs. YodO in Bacillus subtilis, a family member which is longer protein by an additional 100 residues, is characterized as a lysine 2,3-aminomutase with iron, sulphide and pyridoxal 5'-phosphate groups. The homolog MJ0634 from M. jannaschii is preceded by nearly 200 C-terminal residues. This family shows similarity to molybdenum cofactor biosynthesis protein MoaA and related proteins. Note that the E. coli homolog was expressed in E. coli and purified and found not to display display lysine 2,3-aminomutase activity. Active site residues are found in 100 residue extension in B. subtilis. Name changed to KamA family protein. [Cellular processes, Adaptations to atypical conditions] 331 -161785 TIGR00239 2oxo_dh_E1 2-oxoglutarate dehydrogenase, E1 component. The 2-oxoglutarate dehydrogenase complex consists of this thiamine pyrophosphate-binding subunit (E1), dihydrolipoamide succinyltransferase (E2), and lipoamide dehydrogenase (E3). The E1 ortholog from Corynebacterium glutamicum is unusual in having an N-terminal extension that resembles the dihydrolipoamide succinyltransferase (E2) component of 2-oxoglutarate dehydrogenase. [Energy metabolism, TCA cycle] 929 -272981 TIGR00240 ATCase_reg aspartate carbamoyltransferase, regulatory subunit. The presence of this regulatory subunit allows feedback inhibition by CTP on aspartate carbamoyltransferase, the first step in the synthesis of CTP from aspartate. In many species, this regulatory subunit is not present. In Thermotoga maritima, the catalytic and regulatory subunits are encoded by a fused gene and the regulatory region has enough sequence differences to score below the trusted cutoff. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 150 -129344 TIGR00241 CoA_E_activ CoA-substrate-specific enzyme activase, putative. This domain is found in a set of closely related proteins including the (R)-2-hydroxyglutaryl-CoA dehydratase activase of Acidaminococcus fermentans, in longer proteins from M. jannaschii and M. thermoautotrophicum that share an additional N-terminal domain, in a protein described as a subunit of the benzoyl-CoA reductase of Rhodopseudomonas palustris, and in two repeats of an uncharacterized protein of Aquifex aeolicus.This domain may be involved in generating or regenerating the active sites of enzymes related to (R)-2-hydroxyglutaryl-CoA dehydratase and benzoyl-CoA reductase. 248 -129345 TIGR00242 TIGR00242 division/cell wall cluster transcriptional repressor MraZ. Members of this family contain two tandem copies of a domain described by pfam02381. This protein often is found with other genes of the dcw (division cell wall) gene cluster, including mraW, ftsI, murE, murF, ftsW, murG, etc. Recent work shows MraW in E. coli binds an upstream region with three tandem GTGGG repeats separated by 5bp spacers. We find similar sites in other species. [Cellular processes, Cell division, Regulatory functions, DNA interactions] 142 -161787 TIGR00243 Dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase. 1-deoxy-D-xylulose 5-phosphate is converted to 2-C-methyl-D-erythritol 4-phosphate in the presence of NADPH. It is involved in the synthesis of isopentenyl diphosphate (IPP), a basic building block in isoprenoid, thiamin, and pyridoxal biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 389 -129347 TIGR00244 TIGR00244 transcriptional regulator NrdR. Members of this almost entirely bacterial family contain an ATP cone domain (pfam03477). There is never more than one member per genome. Common gene symbols given include nrdR, ybaD, ribX and ytcG. The member from Streptomyces coelicolor is found upstream in the operon of the class II oxygen-independent ribonucleotide reductase gene nrdJ and was shown to repress nrdJ expression. Many members of this family are found near genes for riboflavin biosynthesis in Gram-negative bacteria, suggesting a role in that pathway. However, a phylogenetic profiling study associates members of this family with the presence of a palindromic signal with consensus acaCwAtATaTwGtgt, termed the NrdR-box, an upstream element for most operons for ribonucleotide reductase of all three classes in bacterial genomes. [Regulatory functions, DNA interactions] 147 -272982 TIGR00245 TIGR00245 TIGR00245 family protein. [Hypothetical proteins, Conserved] 248 -129349 TIGR00246 tRNA_RlmH_YbeA rRNA large subunit m3Psi methyltransferase RlmH. This protein, in the SPOUT methyltransferase family, previously designated YbeA in E. coli, was shown to be responsible for a further modification, a methylation, to a pseudouridine base in ribosomal large subunit RNA. [Protein synthesis, tRNA and rRNA base modification] 153 -272983 TIGR00247 TIGR00247 conserved hypothetical protein, YceG family. This uncharacterized protein family, found in three of four microbial genomes, virtually always once per genome, includes YceG from Escherichia coli. This protein is encoded next to PabC, 4-amino-4-deoxychorismate lyase, in E. coli and numerous other proteobacteria, but that proximity is not conserved in other lineages. Numerous members of this family have been misannotated as aminodeoxychorismate lyase, apparently because of promiximty to PabC. [Hypothetical proteins, Conserved] 342 -129351 TIGR00249 sixA phosphohistidine phosphatase SixA. [Regulatory functions, Protein interactions] 152 -129352 TIGR00250 RNAse_H_YqgF putative transcription antitermination factor YqgF. This protein family, which exhibits an RNAse H fold in crystal structure, has been proposed as a putative Holliday junction resolvase, an alternate to RuvC. [Unknown function, General] 130 -129353 TIGR00251 TIGR00251 TIGR00251 family protein. [Hypothetical proteins, Conserved] 87 -129354 TIGR00252 TIGR00252 TIGR00252 family protein. the scores for Mycobacterium tuberculosis and Treponema pallidum are low considering the alignment [Hypothetical proteins, Conserved] 119 -129355 TIGR00253 RNA_bind_YhbY putative RNA-binding protein, YhbY family. A combination of crystal structure, molecular modeling, and bioinformatic data together suggest that members of this family, including YhbY of E. coli, are RNA binding proteins. [Unknown function, General] 95 -272984 TIGR00254 GGDEF diguanylate cyclase (GGDEF) domain. The GGDEF domain is named for the motif GG[DE]EF shared by many proteins carrying the domain. There is evidence that the domain has diguanylate cyclase activity. Several proteins carrying this domain also carry domains with functions relating to environmental sensing. These include PleD, a response regulator protein involved in the swarmer-to-stalked cell transition in Caulobacter crescentus, and FixL, a heme-containing oxygen sensor protein. [Regulatory functions, Small molecule interactions, Signal transduction, Other] 165 -129357 TIGR00255 TIGR00255 TIGR00255 family protein. The apparent ortholog from Aquifex aeolicus as reported is split into two consecutive reading frames. [Hypothetical proteins, Conserved] 291 -129358 TIGR00256 TIGR00256 D-tyrosyl-tRNA(Tyr) deacylase. This homodimeric enzyme appears able to cleave any D-amino acid (and glycine, which does not have distinct D/L forms) from charged tRNA. The name reflects characterization with respect to D-Tyr on tRNA(Tyr) as established in the literature, but substrate specificity seems much broader. [Protein synthesis, tRNA aminoacylation] 145 -129359 TIGR00257 IMPACT_YIGZ uncharacterized protein, YigZ family. This uncharacterized protein family includes YigZ, which has been crystallized, from E. coli. YigZ is homologous to the protein product of the mouse IMPACT gene. Crystallography shows a two-domain stucture, and the C-terminal domain is suggested to bind nucleic acids. The function is unknown. Note that the ortholog from E. coli was shown fused to the pepQ gene in GenBank entry X54687. This caused occasional misidentification of this protein as pepQ; this family is found in a number of species that lack pepQ. [Unknown function, General] 204 -272985 TIGR00258 TIGR00258 inosine/xanthosine triphosphatase. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 163 -129361 TIGR00259 thylakoid_BtpA membrane complex biogenesis protein, BtpA family. Members of this family are found in C. elegans, Synechocystis sp., E. coli, and several of the Archaea. Members in Cyanobacteria have been shown to play a role in protein complex biogenesis, and designated BtpA (biogenesis of thylakoid protein). Homologs in non-photosynthetic species, where thylakoid intracytoplasmic membranes are lacking, are likely to act elsewhere in membrane protein biogenesis. [Protein fate, Protein folding and stabilization] 257 -272986 TIGR00260 thrC threonine synthase. Involved in threonine biosynthesis it catalyses the reaction O-PHOSPHO-L-HOMOSERINE + H(2)O = L-THREONINE + ORTHOPHOSPHATE using pyridoxal phosphate as a cofactor. the enzyme is distantly related to the serine/threonine dehydratases which are also pyridoxal-phosphate dependent enzymes. the pyridoxal-phosphate binding site is a Lys (K) residues present at residue 70 of the model. [Amino acid biosynthesis, Aspartate family] 327 -129363 TIGR00261 traB pheromone shutdown-related protein TraB. traB is a plasmid encoded gene that functions in the shutdown of the peptide sex pheromone cPD1 which is produced by the plasmid free recipient cell prior to conjugative transfer in Enterococcus faecalis. Once the recipient acquires the plasmid, production of cPD1 is shut down. The gene product may play another role in the other species in the family. [Unknown function, General] 380 -161792 TIGR00262 trpA tryptophan synthase, alpha subunit. Tryptophan synthase catalyzes the last step in the biosynthesis of tryptophan. The alpha chain is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. In bacteria and plants each domain is found on a separate subunit (alpha and beta chains), while in fungi the two domains are fused together on a single multifunctional protein. The signature pattern for trpA contains three conserved acidic residues. [LIVM]-E-[LIVM]-G-x(2)-[FYC]-[ST]-[DE]-[PA]-[LIVMY]-[AGLI]-[DE]-G and this is located between residues 43-58 of the model. The Sulfolobus solfataricus trpA is known to be quite divergent from other known trpA sequences. [Amino acid biosynthesis, Aromatic amino acid family] 256 -272987 TIGR00263 trpB tryptophan synthase, beta subunit. Tryptophan synthase catalyzes the last step in the biosynthesis of tryptophan. the beta chain contains the functional domain for or the synthesis of tryptophan from indole and serine. The enzyme requires pyridoxal-phosphate as a cofactor. The pyridoxal-P attachment site is contained within the conserved region [LIVM]-x-H-x-G-[STA]-H-K-x-N] [K is the pyridoxal-P attachment site] which is present between residues 90-100 of the model. [Amino acid biosynthesis, Aromatic amino acid family] 385 -272988 TIGR00264 TIGR00264 alpha-NAC-related protein. This hypothetical protein is found so far only in the Archaea. Its C-terminal domain of about 40 amino acids is homologous to the C-termini of the nascent polypeptide-associated complex alpha chain (alpha-NAC) and its yeast ortholog Egd2p and to the huntingtin-interacting protein HYPK. It shows weaker similarity, possibly through shared structural constraints rather than through homology, with the amino-terminal domain of elongation factor Ts. Alpha-NAC plays a role in preventing nascent polypeptides from binding inappropriately to membrane-targeting apparatus during translation, but is also active as a transcription regulator. [Unknown function, General] 116 -272989 TIGR00266 TIGR00266 TIGR00266 family protein. [Hypothetical proteins, Conserved] 222 -129368 TIGR00267 TIGR00267 TIGR00267 family protein. This family of uncharacterized proteins shows a low level of similarity (possibly meaningful) to the predicted membrane protein YLR220W, which is involved in calcium homeostatis. It shows no similarity to any other characterized protein.This family is represented in three of the first four completed archaeal genomes, with two members in A. fulgidus. [Hypothetical proteins, Conserved] 169 -129369 TIGR00268 TIGR00268 TIGR00268 family protein. The N-terminal region of the model shows similarity to Argininosuccinate synthase proteins using PSI-blast and using the recognize protein identification server. [Hypothetical proteins, Conserved] 252 -129370 TIGR00269 TIGR00269 TIGR00269 family protein. [Hypothetical proteins, Conserved] 104 -129371 TIGR00270 TIGR00270 TIGR00270 family protein. [Hypothetical proteins, Conserved] 154 -129372 TIGR00271 TIGR00271 uncharacterized hydrophobic domain. This domain is in a family of archaeal proteins that includes AF0785 of Archaeoglobus fulgidus and in several eubacterial proteins, including the much longer protein sll1151 from Synechocystis PCC6803. 175 -272990 TIGR00272 DPH2 diphthamide biosynthesis protein 2. This protein has been shown in Saccharomyces cerevisiae to be one of several required for the modification of a particular histidine residue of translation elongation factor 2 to diphthamide. This modified site can then become the target for ADP-ribosylation by diphtheria toxin. [Protein fate, Protein modification and repair] 496 -129374 TIGR00273 TIGR00273 iron-sulfur cluster-binding protein. Members of this family have a perfect 4Fe-4S binding motif C-x(2)-C-x(2)-C-x(3)-CP followed by either a perfect or imperfect (the first Cys replaced by Ser) second copy. Members probably bind two 4fe-4S iron-sulfur clusters. [Energy metabolism, Electron transport] 432 -272991 TIGR00274 TIGR00274 N-acetylmuramic acid 6-phosphate etherase. This protein, MurQ, is involved in recycling components of the bacterial murein sacculus turned over during cell growth. The cell wall metabolite anhydro-N-acetylmuramic acid (anhMurNAc) is converted by a kinase, AnmK, to MurNAc-phosphate, then converted to N-acetylglucosamine-phosphate by this etherase, called MurQ. This family of proteins is similar to the C-terminal half of a number of vertebrate glucokinase regulator proteins and contains a Prosite pattern which is shared by this group of proteins in a region of local similarity. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 291 -272992 TIGR00275 TIGR00275 flavoprotein, HI0933 family. The model when searched with a partial length search brings in proteins with a dinucleotide-binding motif (Rossman fold) over the initial 40 residues of the model, including oxidoreductases and dehydrogenases. Partially characterized members include an FAD-binding protein from Bacillus cereus and flavoprotein HI0933 from Haemophilus influenzae. [Unknown function, Enzymes of unknown specificity] 400 -272993 TIGR00276 TIGR00276 epoxyqueuosine reductase. This model was rebuilt to exclude archaeal homologs, now that there is new information that bacterial members are epoxyqueuosine reductase, QueG, involved in queuosine biosynthesis for tRNA maturation. [Protein synthesis, tRNA and rRNA base modification] 337 -272994 TIGR00277 HDIG HDIG domain. This domain is found in a few known nucleotidyltransferes and in a large number of uncharacterized proteins. It contains four widely separated His residues, the second of which is part of an invariant dipeptide His-Asp in a region matched approximately by the motif HDIG. This model may annotate homologous domains in which one or more of the His residues is conserved but misaligned, and some probable false-positive hits. 80 -272995 TIGR00278 TIGR00278 putative membrane protein insertion efficiency factor. This model describes a family, YidD, of small, non-essential proteins now suggested to improve YidC-dependent inner membrane protein insertion. A related protein is found in the temperature phage HP1 of Haemophilus influenzae. Annotation of some members of this family as hemolysins appears to represent propagation from an unpublished GenBank submission, L36462, attributed to Aeromonas hydrophila but a close match to E. coli. [Hypothetical proteins, Conserved] 75 -129380 TIGR00279 uL16_euk_arch ribosomal protein uL16(L10.e), eukarotic/archaeal form. This model finds the archaeal and eukaryotic forms of ribosomal protein uL16, previously L10.e. The protein is encoded by multiple loci in some eukaryotes and has been assigned a number of extra-ribosomal functions, some of which will require re-evaluation in the context of identification as a ribosomal protein. L10.e is distantly related to eubacterial ribosomal protein L16. [Protein synthesis, Ribosomal proteins: synthesis and modification] 172 -272996 TIGR00280 eL43_euk_arch ribosomal protein eL43. This model finds eukaryotic ribosomal protein eL43 (previously L37a) and its archaeal orthologs. The nomeclature is tricky because eukaryotes have proteins called both L37 and L37a. [Protein synthesis, Ribosomal proteins: synthesis and modification] 92 -213521 TIGR00281 TIGR00281 segregation and condensation protein B. Shown to be required for chromosome segregation and condensation in B. subtilis. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] 186 -161802 TIGR00282 TIGR00282 metallophosphoesterase, MG_246/BB_0505 family. A member of this family from Mycoplasma Pneumoniae has been crystallized and described as a novel phosphatase. [Unknown function, Enzymes of unknown specificity] 266 -161803 TIGR00283 arch_pth2 peptidyl-tRNA hydrolase. This model describes an archaeal/eukaryotic form of peptidyl-tRNA hydrolase. Most bacterial forms are described by TIGR00447. [Protein synthesis, Other] 115 -272997 TIGR00284 TIGR00284 dihydropteroate synthase-related protein. This protein has been found so far only in the Archaea, and in particular in those archaea that lack a bacterial-type dihydropteroate synthase. The central region of this protein shows considerable homology to the amino-terminal half of dihydropteroate synthases, while the carboxyl-terminal region shows homology to the small, uncharacterized protein slr0651 of Synechocystis PCC6803. [Unknown function, General] 499 -129386 TIGR00285 TIGR00285 DNA-binding protein Alba. Alba has been shown to bind DNA and affect DNA supercoiling in a temperature dependent manner. It is regulated by acetylation (alba = acetylation lowers binding affinity) by the Sir2 protein. Alba is proposed to play a role in establishment or maintenace of chromatin architecture and thereby in transcription repression. This protein appears so far only in the Archaea, but may be universal there. There is a single member in three of the first four completed archaeal genomes, and a second copy in A. fulgidus. In Sulfolobus shibatae there is a tandem second copy that is poorly conserved and scores below the trusted cutoff; all other members of the family are conserved at greater than 50 % pairwise identity. [DNA metabolism, Chromosome-associated proteins] 87 -211565 TIGR00286 TIGR00286 arginine decarboxylase, pyruvoyl-dependent. The three copies present in Archeoglobus fulgidus, one of which is only half-length and excluded from the seed alignment, are very closely related and clearly arose by duplication after the separation from well-studied species. The other completed archaeal genomes each contain a single copy. The lone, weak (below trusted cutoff) hit to a non-archaeal sequence is to an uncharacterized protein of Chlamydia, with the greatest similarity in the amino-terminal half of the model. [Central intermediary metabolism, Polyamine biosynthesis, Energy metabolism, Amino acids and amines] 152 -272998 TIGR00287 cas1 CRISPR-associated endonuclease Cas1. This model identifies CRISPR-associated protein Cas1, the most universal CRISPR system protein. CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, a system for heritable host defense by prokaryotic cells against phage and other foreign DNA. Cas1 is a metal-dependent DNA-specific endonuclease. 323 -272999 TIGR00288 TIGR00288 TIGR00288 family protein. This family of orthologs is restricted to but universal among the completed archaeal genomes so far. Eubacterial proteins showing at least local homology include slr1870 from Synechocystis PCC6803 and two proteins from Aquifex aeolicusr, none of which is characterized. [Hypothetical proteins, Conserved] 160 -129390 TIGR00289 TIGR00289 TIGR00289 family protein. Homologous proteins related to MJ0570 of Methanococcus jannaschii include both the apparent orthologs found by this model above the trusted cutoff, the much longer protein YLR143W from Saccharomyces cerevisiae, and second homologous proteins from Archaeoglobus fulgidus and Pyrococcus horikoshii that appear to represent a second orthologous group. [Hypothetical proteins, Conserved] 222 -273000 TIGR00290 MJ0570_dom MJ0570-related uncharacterized domain. Proteins with this uncharacterized domain include two apparent ortholog families in the Archaea, one of which is universal among the first four completed archaeal genomes, and YLR143W, a much longer protein from Saccharomyces cerevisiae. The domain comprises the full length of the archaeal proteins and the first third of the yeast protein. 223 -129392 TIGR00291 RNA_SBDS rRNA metabolism protein, SBDS family. This protein family, possibly universal in both archaea and eukaryotes, appears to be involved in (ribosomal) RNA metabolism. Mutations in the human ortholog are associated with Shwachman-Bodian-Diamond syndrome. [Protein synthesis, Other] 231 -273001 TIGR00292 TIGR00292 thiazole biosynthesis enzyme. This enzyme is involved in the biosynthesis of the thiamine precursor thiazole, and is repressed by thiamine. This family includes c-thi1, a Citrus gene induced during natural and ethylene induced fruit maturation and is highly homologous to plant and yeast thi genes involved in thiamine biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 254 -129394 TIGR00293 TIGR00293 prefoldin, archaeal alpha subunit/eukaryotic subunit 5. Members of this protein family, rich in coiled coil regions, are molecular chaperones in the class of the prefoldin (GimC) alpha subunit. Prefoldin is a hexamer of two alpha and four beta subunits. This protein appears universal in the archaea but is restricted to Aquifex aeolicus among bacteria so far. Eukaryotes have several related proteins; only prefoldin subunit 5, which appeared the most similar to archaeal prefoldin alpha, is included in this model. This model finds a set of small proteins from the Archaea and from Aquifex aeolicus that may represent two orthologous groups. The proteins are predicted to be mostly coiled coil, and the model may have a significant number of hits to proteins that contain coiled coil regions. [Protein fate, Protein folding and stabilization] 126 -129395 TIGR00294 TIGR00294 GTP cyclohydrolase, MptA/FolE2 family. This family includes type I GTP cyclohydrolases involved in methanopterin in archaea (MptA) and de novo tetrahydrofolate biosynthesis in bacteria (FolE2). [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 308 -129396 TIGR00295 TIGR00295 TIGR00295 family protein. This set of orthologs is narrowly defined, comprising proteins found in three Archaea but not in Pyrococcus horikoshii. The closest homologs are other archaeal proteins that appear to be represent distinct orthologous clusters. [Hypothetical proteins, Conserved] 164 -273002 TIGR00296 TIGR00296 uncharacterized protein, PH0010 family. Members of this functionally uncharacterized protein family have been crystallized from Pyrococcus Horikoshii, Methanosarcina Mazei, and Sulfolobus Tokodaii. [Unknown function, General] 200 -213522 TIGR00297 TIGR00297 TIGR00297 family protein. [Hypothetical proteins, Conserved] 237 -273003 TIGR00298 TIGR00298 2-phosphosulfolactate phosphatase. 2-phosphosulfolactate phosphatase catalyzes the sulfonation of phosphoenolpyruvate to form 2-phospho-3-sulfolactate, the second step in coenzyme M biosynthesis. Coenzyme M is the terminal methyl carrier in methanogenesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 216 -129400 TIGR00299 TIGR00299 TIGR00299 family protein. Members of this family are found in the Archaea and in several different bacteria lineages. The function in unknown and the genomic context is not well conserved. [Hypothetical proteins, Conserved] 382 -129401 TIGR00300 TIGR00300 TIGR00300 family protein. All members of the family come from genome projects. A partial length search brings in two plant lysine-ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzymes hitting the N-terminal region of the family. [Hypothetical proteins, Conserved] 407 -129402 TIGR00302 TIGR00302 phosphoribosylformylglycinamidine synthase, purS protein. In species such as Bacillus subtilis in which FGAM synthetase is split into two ORFs purL and purQ, this small protein, previously called yexA, is required for FGAM synthetase activity. Although the article does not make it clear whether this is a subunit or an accessory protein, it is encoded as part of the operon, which suggests stochiometric amounts, = subunit. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 80 -273004 TIGR00303 TIGR00303 TIGR00303 family protein. All current members of the family are from genome projects. [Hypothetical proteins, Conserved] 331 -213523 TIGR00304 TIGR00304 TIGR00304 family protein. The member of this family from Pyrococcus horikoshii scores only 13.91 bits, largely because it is at least 15 residues shorter than other members of this family of small proteins and is penalized for not matching to the N-terminal section of the model. Cutoff scores are set so this hit is between noise and trusted cutoffs. [Hypothetical proteins, Conserved] 77 -129405 TIGR00305 TIGR00305 putative toxin-antitoxin system toxin component, PIN family. This uncharacterized protein family, part of the PIN domain superfamily, is restricted to bacteria and archaea. A comprehensive in silico study of toxin-antitoxin systems by Makarova, et al. (2009) finds evidence this family represents the toxin-like component of one class of type 2 toxin-antitoxin systems. [Cellular processes, Other, Transcription, Degradation of RNA] 114 -273005 TIGR00306 apgM phosphoglycerate mutase (2,3-diphosphoglycerate-independent), archaeal form. Experimentally characterized in archaea as 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. This model describes a set of proteins in the Archaea (two each in Methanococcus jannaschii, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus) and in Aquifex aeolicus (1 member). [Energy metabolism, Glycolysis/gluconeogenesis] 396 -129407 TIGR00307 eS8 ribosomal protein eS8. Archaeal and eukaryotic ribosomal protein S8. This model could easily have been split into two models, one for eukaryotic S8 and one for archaeal S8; eukaryotic forms invariably have in insert of about 80 residues that archaeal forms of S8 do not. [Protein synthesis, Ribosomal proteins: synthesis and modification] 127 -273006 TIGR00308 TRM1 tRNA(guanine-26,N2-N2) methyltransferase. This enzyme is responsible for two methylations of a characteristic guanine of most tRNA molecules. The activity has been demonstrated for eukaryotic and archaeal proteins, which are active when expressed in E. coli, a species that lacks this enzyme. At least one Eubacterium, Aquifex aeolicus, has an ortholog, as do all completed archaeal genomes. [Protein synthesis, tRNA and rRNA base modification] 374 -129409 TIGR00309 V_ATPase_subD H(+)-transporting ATP synthase, vacuolar type, subunit D. Although this ATPase can run backwards, using a proton gradient to synthesize ATP, the primary biological role is to acidify some compartment, such as yeast vacuole (a lysosomal homolog) or the interior of a prokaryote. [Transport and binding proteins, Cations and iron carrying compounds] 209 -273007 TIGR00310 ZPR1_znf ZPR1 zinc finger domain. An orthologous protein found once in each of the completed archaeal genomes corresponds to a zinc finger-containing domain repeated as the N-terminal and C-terminal halves of the mouse protein ZPR1. ZPR1 is an experimentally proven zinc-binding protein that binds the tyrosine kinase domain of the epidermal growth factor receptor (EGFR); binding is inhibited by EGF stimulation and tyrosine phosphorylation, and activation by EGF is followed by some redistribution of ZPR1 to the nucleus. By analogy, other proteins with the ZPR1 zinc finger domain may be regulatory proteins that sense protein phosphorylation state and/or participate in signal transduction. 192 -129411 TIGR00311 aIF-2beta translation initiation factor aIF-2, beta subunit, putative. The trusted cutoff is set high enough to select only archaeal members. The suggested cutoff is set to include most eukaryotic members but largely exclude the related eIF-5. [Protein synthesis, Translation factors] 133 -273008 TIGR00312 cbiD cobalamin biosynthesis protein CbiD. This protein has been shown by cloning into E. coli to be required for cobalamin biosynthesis. role_id [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 347 -129413 TIGR00313 cobQ cobyric acid synthase CobQ. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 475 -129414 TIGR00314 cdhA CO dehydrogenase/acetyl-CoA synthase complex, epsilon subunit. Acetyl-CoA decarbonylase/synthase (ACDS) is a multienzyme complex. Carbon monoxide dehydrogenase is a synonym. The ACDS complex carries out an unusual reaction involving the reversible cleavage and synthesis of acetyl-CoA in methanogens. The model contains the prosite signature for 4Fe-4S ferredoxins [C-x(2)-C-x(2)-C-x(3)-C-[PEG]] between residues 448-462 of the model. [Energy metabolism, Chemoautotrophy] 784 -273009 TIGR00315 cdhB CO dehydrogenase/acetyl-CoA synthase complex, epsilon subunit. Nomenclature follows the description for Methanosarcina thermophila. The complex is also found in Archaeoglobus fulgidus, not considered a methanogen, but is otherwise generally associated with methanogenesis. [Energy metabolism, Chemoautotrophy] 165 -129416 TIGR00316 cdhC CO dehydrogenase/CO-methylating acetyl-CoA synthase complex, beta subunit. Nomenclature follows the description for Methanosarcina thermophila. The CO-methylating acetyl-CoA synthase is considered the defining enzyme of the Wood-Ljungdahl pathway, used for acetate catabolism by sulfate reducing bacteria but for acetate biosynthesis by acetogenic bacteria such as oorella thermoacetica (f. Clostridium thermoaceticum). [Energy metabolism, Chemoautotrophy] 458 -213524 TIGR00317 cobS cobalamin 5'-phosphate synthase/cobalamin synthase. cobS is involved with cobalamin biosynthesis in part III of colbalmin biosynthesis. The enzyme catyalzes the reactions adenosylcobinamide-GDP + alpha-ribazole-5'-P = adenosylcobalamin-5'-phosphate + GMP and adenosylcobinamide-GDP + alpha-ribazole = adenosylcobalamin + GMP. The protein product is associated with a large complex of proteins and is induced by cobinamide. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 241 -273010 TIGR00318 cyaB adenylyl cyclase CyaB, putative. The protein CyaB from Aeromonas hydrophila is a second adenylyl cyclase from that species, as demonstrated by complementation in E. coli and by assay of the enzymatic properties of purified recombinant protein. It has no detectable homology to any other protein of known function, and has several unusual properties, including an optimal temperature of 65 degrees and an optimal pH of 9.5. A cluster of uncharaterized archaeal homologs may be orthologous and serve (under certain circumstances) to produce the regulatory metabolite cyclic AMP (cAMP). [Regulatory functions, Small molecule interactions] 174 -200008 TIGR00319 desulf_FeS4 desulfoferrodoxin FeS4 iron-binding domain. This domain is found as essentially the full length of desulforedoxin, a 37-residue homodimeric non-heme iron protein. It is also found as the N-terminal domain of desulfoferrodoxin (rbo), a homodimeric non-heme iron protein with 2 Fe atoms per monomer in different oxidation states.This domain binds the ferric rather than the ferrous Fe of desulfoferrodoxin.Neelaredoxin, a monomeric blue non-heme iron protein, lacks this domain. [Energy metabolism, Electron transport] 33 -273011 TIGR00320 dfx_rbo desulfoferrodoxin. The short N-terminal domain contains four conserved Cys for binding of a ferric iron atom, and is homologous to the small protein desulforedoxin; this domain may also be responsible for dimerization. The remainder of the molecule binds a ferrous iron atom and is similar to neelaredoxin, a monomeric blue non-heme iron protein. The homolog from Treponema pallidum scores between the trusted cutoff for orthology and the noise cutoff. Although essentially a full length homolog, it lacks three of the four Cys residues in the N-terminal domain; the domain may have lost ferric binding ability but may have some conserved structural role such as dimerization, or some new function. This protein is described in some articles as rubredoxin oxidoreductase (rbo), and its gene shares an operon with the rubredoxin gene in Desulfovibrio vulgaris Hildenborough. [Energy metabolism, Electron transport] 125 -273012 TIGR00321 dhys deoxyhypusine synthase. Deoxyhypusine synthase is responsible for the first step in creating hypusine. Hypusine is a modified amino acid found in eukaryotes and in archaea in their respective forms of initiation factor 5A. Its presence is confirmed in archaeal genera Pyrococcus (), Sulfolobus, Halobacterium, and Haloferax (), but in an older report was not detected in Methanococcus voltae (J Biol Chem 1987 Dec 5;262(34):16585-9). This family of apparent orthologs has an unusual UPGMA difference tree, in which the members from the archaea M. jannaschii and P. horikoshii cluster with the known eukaryotic deoxyhypusine synthases. Separated by a fairly deep branch, although still strongly related, is a small cluster of proteins from Methanobacterium thermoautotrophicum and Archeoglobus fulgidus, the latter of which has two. [Protein fate, Protein modification and repair] 301 -273013 TIGR00322 diphth2_R diphthamide biosynthesis enzyme Dph1/Dph2 domain. Archaea and Eukaryotes, but not Eubacteria, share the property of having a covalently modified residue, 2'-[3-carboxamido-3-(trimethylammonio)propyl]histidine, as a part of a cytosolic protein. The modified His, termed diphthamide, is part of translation elongation factor EF-2 and is the site for ADP-ribosylation by diphtheria toxin. This model includes both Dph1 and Dph2 from Saccharomyces cerevisiae, although only Dph2 is found in the Archaea (see TIGR03682). Dph2 has been shown to act analogously to the radical SAM (rSAM) family (pfam04055), with 4Fe-4S-assisted cleavage of S-adenosylmethionine to create a free radical, but a different organic radical than in rSAM. 318 -211569 TIGR00323 eIF-6 translation initiation factor eIF-6, putative. This model finds translation initiation factor eIF-6 of eukaryotes, which is a ribosome dissociation factor. It also finds a set of apparent archaeal orthologs, slightly shorter proteins not yet shown to act as initiation factors; these probably should be designated as translation initiation factor aIF-6, putative. [Protein synthesis, Translation factors] 216 -129424 TIGR00324 endA tRNA-intron lyase. The enzyme catalyses the endonucleolytic cleavage of pre tRNA at the 5' and 3' splice sites to release the intron and produces two half tRNA molecules bearing 5' hydroxyl and 2', 3'-cyclic phosphate termini. The genes are homologous in Eucarya and Archea. The two yeast genes have been functionally studied and are two subunits of a heterotetramer enzyme in yeast the other two subunits of which have no known homologs. [Transcription, RNA processing] 170 -273014 TIGR00325 lpxC UDP-3-0-acyl N-acetylglucosamine deacetylase. UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase from E. coli , LpxC, was previously designated EnvA. This enzyme is involved in lipid-A precursor biosynthesis. It is essential for cell viability. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 297 -273015 TIGR00326 eubact_ribD riboflavin biosynthesis protein RibD. This model describes the ribD protein as found in Escherichia coli. The N-terminal domain includes the conserved zinc-binding site region captured in the model dCMP_cyt_deam and shared by proteins such as cytosine deaminase, mammalian apolipoprotein B mRNA editing protein, blasticidin-S deaminase, and Bacillus subtilis competence protein comEB. The C-terminal domain is homologous to the full length of yeast HTP reductase, a protein required for riboflavin biosynthesis. A number of archaeal proteins believed related to riboflavin biosynthesis contain only this C-terminal domain and are not found as full-length matches to this model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 344 -273016 TIGR00327 secE_euk_arch protein translocase SEC61 complex gamma subunit, archaeal and eukaryotic. This model describes archaeal SEC61-like and eukaryotic SEC61 but not bacterial secE proteins, for which a Pfam pfam00584 (SecE) has been created. [Protein fate, Protein and peptide secretion and trafficking] 61 -129428 TIGR00328 flhB flagellar biosynthetic protein FlhB. FlhB and its functionally equivalent orthologs, from among a larger superfamily of proteins involved in type III protein export systems, are specifically involved in flagellar protein export. The seed members are restricted and the trusted cutoff is set high such that the proteins gathered by this model play roles specifically related to flagellar structures. Full-length homologs scoring below the trusted cutoff are involved in peptide export but not necessarily in the creation of flagella. [Cellular processes, Chemotaxis and motility] 347 -129429 TIGR00329 gcp_kae1 metallohydrolase, glycoprotease/Kae1 family. This subfamily includes the well-studied secreted O-sialoglycoprotein endopeptidase (glycoprotease, EC 3.4.24.57) of Pasteurella haemolytica, a pathogen. A member from Riemerella anatipestifer, associated with cohemolysin activity, likewise is exported without benefit of a classical signal peptide and shows glycoprotease activity on the test substrate glycophorin. However, archaeal members of this subfamily show unrelated activities as demonstrated in Pyrococcus abyssi: DNA binding, iron binding, apurinic endonuclease activity, genomic association with a kinase domain, and no glycoprotease activity. This family thus pulls together a set of proteins as a homology group that appears to be near-universal in life, yet heterogeneous in assayed function between bacteria and archaea. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 305 -129430 TIGR00330 glpX fructose-1,6-bisphosphatase, class II. This model represents GlpX, one of three classes of bacterial fructose-1,6-bisphosphatases. This form is homodimeric and Mn2+-dependent, and only very distantly related to the class I fructose-1,6-bisphosphatase, the product of the fbp gene, which is homotetrameric and Mg2+-dependent. A third class is found as one of two types in Bacillus subtilis. In E. coli, GlpX is found in the glpFKX operon together with a glycerol update protein and glycerol kinase. [Energy metabolism, Pentose phosphate pathway] 321 -273017 TIGR00331 hrcA heat shock gene repressor HrcA. HrcA represses the class I heat shock operons groE and dnaK; overproduction prevents induction of these operons by heat shock while deletion allows constitutive expression even at low temperatures. In Bacillus subtilis, hrcA is the first gene of the dnaK operon and so is itself a heat shock gene. [Regulatory functions, DNA interactions] 337 -273018 TIGR00332 neela_ferrous desulfoferrodoxin ferrous iron-binding domain. This domain comprises essentially the full length of neelaredoxin, a monomeric, blue, non-heme iron protein of Desulfovibrio gigas said to bind two iron atoms per monomer with identical spectral properties. Neelaredoxin was shown recently to have significant superoxide dismutase activity. This domain is also found (in a form in which the distance between the motifs H[HWYF]IXW and CN[IL]HGXW is somewhat shorter) as the C-terminal domain of desulfoferrodoxin, which is said to bind a single ferrous iron atom.The N-terminal domain of desulfoferrodoxin is described in a separate model, dfx_rbo (TIGR00320). [Energy metabolism, Electron transport] 106 -188042 TIGR00333 nrdI ribonucleoside-diphosphate reductase 2, operon protein nrdI. Ribonucleotide reductases (RNRs) are enzymes that provide the precursors of DNA synthesis. The three characterized classes of RNRs differ by their metal cofactor and their stable organic radical. The exact function of nrdI within the ribonucleotide reductases has not yet been fully characterised. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 127 -273019 TIGR00334 5S_RNA_mat_M5 ribonuclease M5. This family of orthologous proteins shows a weak but significant similarity to the central region of the DnaG-type DNA primase. The region of similarity is termed the Toprim (topoisomerase-primase) domain and is also shared by RecR, OLD family nucleases, and type IA and II topoisomerases. [Transcription, RNA processing] 174 -273020 TIGR00335 primase_sml DNA primase, eukaryotic-type, small subunit, putative. Archaeal members differ substantially from eukaryotic members and should be considered putative pending experimental evidence. The protein is universal and single copy among completed archaeal and eukarotic genomes to date. DNA primase creates RNA primers needed for DNA replication.This model is named putative because the assignment is putative for archaeal proteins. Eukaryotic proteins scoring above the trusted cutoff can be considered authentic. [DNA metabolism, DNA replication, recombination, and repair] 297 -129436 TIGR00336 pyrE orotate phosphoribosyltransferase. Orotate phosphoribosyltransferase (OPRTase) is involved in the biosynthesis of pyrimidine nucleotides. Alpha-D-ribosyldiphosphate 5-phosphate (PRPP) and orotate are utilized to form pyrophosphate and orotidine 5'-monophosphate (OMP) in the presence of divalent cations, preferably Mg2+. In a number of eukaryotes, this protein is fused to a domain that catalyses the reaction (EC 4.1.1.23). The combined activity of EC 2.4.2.10 and EC 4.1.1.23 is termed uridine 5'-monophosphate synthase. The conserved Lys (K) residue at position 101 of the seed alignment has been proposed as the active site for the enzyme. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 173 -273021 TIGR00337 PyrG CTP synthase. CTP synthase is involved in pyrimidine ribonucleotide/ribonucleoside metabolism. The enzyme catalyzes the reaction L-glutamine + H2O + UTP + ATP = CTP + phosphate + ADP + L-glutamate. The enzyme exists as a dimer of identical chains that aggregates as a tetramer. This gene has been found circa 500 bp 5' upstream of enolase in both beta (Nitrosomonas europaea) and gamma (E.coli) subdivisions of proteobacterium (FEMS Microbiol Lett 1998 Aug 1;165(1):153-7). [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 525 -273022 TIGR00338 serB phosphoserine phosphatase SerB. Phosphoserine phosphatase catalyzes the reaction 3-phospho-serine + H2O = L-serine + phosphate. It catalyzes the last of three steps in the biosynthesis of serine from D-3-phosphoglycerate. Note that this enzyme acts on free phosphoserine, not on phosphoserine residues of phosphoproteins. [Amino acid biosynthesis, Serine family] 219 -273023 TIGR00339 sopT ATP sulphurylase. This enzyme forms adenosine 5'-phosphosulfate (APS) from ATP and free sulfate, the first step in the formation of the activated sulfate donor 3'-phosphoadenylylsulfate (PAPS). In some cases, it is found in a bifunctional protein in which the other domain, APS kinase, catalyzes the second and final step, the phosphorylation of APS to PAPS; the combined ATP sulfurylase/APS kinase may be called PAPS synthase. Members of this family also include the dissimilatory sulfate adenylyltransferase (sat) of the sulfate reducer Archaeoglobus fulgidus. [Central intermediary metabolism, Sulfur metabolism] 383 -129440 TIGR00340 zpr1_rel ZPR1-related zinc finger protein. This model describes a strictly archaeal family homologous to the domain duplicated in the eukaryotic zinc-binding protein ZPR1. ZPR1 was shown experimentally to bind approximately two moles of zinc; each copy of the domain contains a putative zinc finger of the form CXXCX(25)CXXC. ZPR1 binds the tyrosine kinase domain of epidermal growth factor receptor, but is displaced by receptor activation and autophosphorylation after which it redistributes in part to the nucleus. The proteins described by this model by analogy may be suggested to play a role in signal transduction. A model ZPR1_znf (TIGR00310) has been created to describe the domain shared by this protein and ZPR1. [Unknown function, General] 163 -273024 TIGR00341 TIGR00341 TIGR00341 family protein. This conserved hypothetical protein is found so far only in three archaeal genomes and in Streptomyces coelicolor. It shares a hydrophobic uncharacterized domain (see TIGR00271) of about 180 residues with several eubacterial proteins, including the much longer protein sll1151 of Synechocystis PCC6803. [Hypothetical proteins, Conserved] 325 -273025 TIGR00342 TIGR00342 tRNA sulfurtransferase ThiI. Members of this protein family are "ThiI", a sulfurtransferase involved in 4-thiouridine modification of tRNA. This protein often is bifunctional, with genetically separable activities, where the C-terminal rhodanese-like domain (residues 385 to 482 in E. coli ThiI), a domain not included in this model, is sufficient to synthesize the thiazole moiety of thiamine (see TIGR04271). Note that ThiI, because of its role in tRNA modification, may occur in species (such as Mycoplasma genitalium) that lack de novo thiamine biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine, Protein synthesis, tRNA and rRNA base modification] 371 -129443 TIGR00343 TIGR00343 pyridoxal 5'-phosphate synthase, synthase subunit Pdx1. This protein had been believed to be a singlet oxygen resistance protein. Subsequent work showed that it is a protein of pyridoxine (vitamin B6) biosynthesis, and that pyridoxine quenches the highly toxic singlet form of oxygen produced by light in the presence of certain chemicals. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 287 -273026 TIGR00344 alaS alanine--tRNA ligase. The model describes alanine--tRNA ligase. This enzyme catalyzes the reaction (tRNAala + L-alanine + ATP = L-alanyl-tRNAala + pyrophosphate + AMP). [Protein synthesis, tRNA aminoacylation] 845 -273027 TIGR00345 GET3_arsA_TRC40 transport-energizing ATPase, TRC40/GET3/ArsA family. Members of this family are ATPases that energize transport, although with different partner proteins for different functions. Recent findings show that TRC40 (GET3 in yeast) in involved in the insertion of tail-anchored membrane proteins in eukaryotes. A similar function is expected for members of this family in archaea. However, the earliest discovery of a function for this protein family is ArsA, an arsenic resistance protein that partners with ArsB (see pfam02040) for As(III) efflux. [Hypothetical proteins, Conserved] 284 -129446 TIGR00346 azlC 4-azaleucine resistance probable transporter AzlC. Overexpression of this gene results in resistance to a leucine analog, 4-azaleucine. The protein has 5 potential transmembrane motifs. It has been inferred, but not experimentally demonstrated, to be part of a branched-chain amino acid transport system. Commonly found in association with azlD. [Transport and binding proteins, Amino acids, peptides and amines] 221 -129447 TIGR00347 bioD dethiobiotin synthase. Dethiobiotin synthase is involved in biotin biosynthesis and catalyses the reaction (CO2 + 7,8-diaminononanoate + ATP = dethiobiotin + phosphate + ADP). The enzyme binds ATP (see motif in first 12 residues of the SEED alignment) and requires magnesium as a co-factor. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 166 -273028 TIGR00348 hsdR type I site-specific deoxyribonuclease, HsdR family. This gene is part of the type I restriction and modification system which is composed of three polypeptides R (restriction endonuclease), M (modification) and S (specificity). This group of enzymes recognize specific short DNA sequences and have an absolute requirement for ATP (or dATP) and S-adenosyl-L-methionine. They also catalyse the reactions of EC 2.1.1.72 and EC 2.1.1.73, with similar site specificity.(J. Mol. Biol. 271 (3), 342-348 (1997)). Members of this family are assumed to differ from each other in DNA site specificity. [DNA metabolism, Restriction/modification] 667 -273029 TIGR00350 lytR_cpsA_psr cell envelope-related function transcriptional attenuator common domain. This model describes a domain of unknown function that is found in the predicted extracellular domain of a number of putative membrane-bound proteins. One of these is proteins psr, described as a penicillin binding protein 5 (PDP-5) synthesis repressor. Another is Bacillus subtilis LytR, described as a transcriptional attenuator of itself and the LytABC operon, where LytC is N-acetylmuramoyl-L-alanine amidase. A third is CpsA, a putative regulatory protein involved in exocellular polysaccharide biosynthesis. Besides the region of strong similarily represented by this model, these proteins share the property of having a short putative N-terminal cytoplasmic domain and transmembrane domain forming a signal-anchor. [Regulatory functions, Other] 152 -273030 TIGR00351 narI respiratory nitrate reductase, gamma subunit. Involved in anerobic respiration the gene product catalyzes the reaction (reduced acceptor + NO3- = Acceptor + nitrite). Another possible role_id for this gene product is in nitrogen fixation (Role_id:160). [Energy metabolism, Anaerobic] 224 -129451 TIGR00353 nrfE c-type cytochrome biogenesis protein CcmF. The product of this gene is required for the biogenesis of C-type cytochromes. This gene is thought to have eleven transmembrane helices. Disruption of this gene in Paracoccus denitrificans, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. [Energy metabolism, Electron transport] 576 -273031 TIGR00354 polC DNA polymerase, archaeal type II, large subunit. This model represents the large subunit, DP2, of a two subunit novel Archaeal replicative DNA polymerase first characterized for Pyrococcus furiosus. Structure of DP2 appears to be organized as a ~950 residue component separated from a ~300 residue component by a ~150 residue intein. The other subunit, DP1, has sequence similarity to the eukaryotic DNA polymerase delta small subunit. [DNA metabolism, DNA replication, recombination, and repair] 1095 -273032 TIGR00355 purH phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase. PurH is bifunctional: IMP cyclohydrolase (EC 3.5.4.10); phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) Involved in purine ribonucleotide biosynthesis. The IMP cyclohydrolase activity is in the N-terminal region. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 511 -129454 TIGR00357 TIGR00357 methionine-R-sulfoxide reductase. This model describes a domain found in PilB, a protein important for pilin expression, N-terminal to a domain coextensive to with the known peptide methionine sulfoxide reductase (MsrA), a protein repair enzyme, of E. coli. Among the early completed genomes, this module is found if and only if MsrA is also found, whether N-terminal to MsrA (as for Helicobacter pylori), C-terminal (as for Treponema pallidum), or in a separate polypeptide. Although the function of this region is not clear, an auxiliary function to MsrA is suggested. [Protein fate, Protein modification and repair, Cellular processes, Adaptations to atypical conditions] 134 -273033 TIGR00358 3_prime_RNase VacB and RNase II family 3'-5' exoribonucleases. This model is defined to identify a pair of paralogous 3-prime exoribonucleases in E. coli, plus the set of proteins apparently orthologous to one or the other in other eubacteria. VacB was characterized originally as required for the expression of virulence genes, but is now recognized as the exoribonuclease RNase R (Rnr). Its paralog in E. coli and H. influenzae is designated exoribonuclease II (Rnb). Both are involved in the degradation of mRNA, and consequently have strong pleiotropic effects that may be difficult to disentangle. Both these proteins share domain-level similarity (RNB, S1) with a considerable number of other proteins, and full-length similarity scoring below the trusted cutoff to proteins associated with various phenotypes but uncertain biochemistry; it may be that these latter proteins are also 3-prime exoribonucleases. [Transcription, Degradation of RNA] 654 -273034 TIGR00359 cello_pts_IIC phosphotransferase system, cellobiose specific, IIC component. The family consists of the cellobiose specific form of the phosphotransferase system (PTS), IIC component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 423 -273035 TIGR00360 ComEC_N-term ComEC/Rec2-related protein. The related model ComEC_Rec2 (TIGR00361) describes a set of proteins of ~ 700-800 residues, one each from a number of different species, of which most can become competent for natural transformation with exogenous DNA. The best-studied examples are ComEC from Bacillus subtilis and Rec-2 from Haemophilus influenzae, where the protein appears to form part of the DNA import structure. This model represents a region found in full-length ComEC/Rec2 and shorter homologs of unknown function from large number of additional bacterial species, most of which are not known to become competent for transformation (an exception is Helicobacter pylori). [Unknown function, General] 171 -273036 TIGR00361 ComEC_Rec2 DNA internalization-related competence protein ComEC/Rec2. Apparant orthologs are found in 5 species so far (Haemophilus influenzae, Escherichia coli, Bacillus subtilis, Neisseria gonorrhoeae, Streptococcus pneumoniae), of which all but E. coli are model systems for the study of competence for natural transformation. This protein is a predicted multiple membrane-spanning protein likely to be involved in DNA internalization. In a large number of bacterial species not known to exhibit competence, this protein is replaced by a half-length N-terminal homolog of unknown function, modelled by the related model ComEC_N-term. The role for this protein in species that are not naturally transformable is unknown. [Cellular processes, DNA transformation] 662 -273037 TIGR00362 DnaA chromosomal replication initiator protein DnaA. DnaA is involved in DNA biosynthesis; initiation of chromosome replication and can also be transcription regulator. The C-terminal of the family hits the pfam bacterial DnaA (bac_dnaA) domain family. For a review, see Kaguni (2006). [DNA metabolism, DNA replication, recombination, and repair] 437 -129460 TIGR00363 TIGR00363 lipoprotein, YaeC family. This family of putative lipoproteins contains a consensus site for lipoprotein signal sequence cleavage. Included in this family is the E. coli hypothetical protein yaeC. About half of the proteins between the noise and trusted cutoffs contain the consensus lipoprotein signature and may belong to this family. [Cell envelope, Other] 258 -129461 TIGR00364 TIGR00364 queuosine biosynthesis protein QueC. Members of this protein family are QueC, involved in synthesizing pre-Q0 from GTP en route to tRNA modification with queuosine. This protein family is represented by a single member in nearly every completed large (> 1000 genes) prokaryotic genome. In Rhizobium meliloti, the gene was designated exsB, possibly because of polar effects on exsA expression in a shared polycistronic mRNA. In Arthrobacter viscosus, the homologous gene was designated ALU1 and was associated with an aluminum tolerance phenotype. [Unknown function, General] 201 -188046 TIGR00365 TIGR00365 monothiol glutaredoxin, Grx4 family. The gene for the member of this glutaredoxin family in E. coli, originally designated ydhD, is now designated grxD. Its protein, Grx4, is a monothiol glutaredoxin similar to Grx5 of yeast, which is involved in iron-sulfur cluster formation. [Energy metabolism, Electron transport] 97 -273038 TIGR00366 TIGR00366 TIGR00366 family protein. [Hypothetical proteins, Conserved] 438 -273039 TIGR00367 TIGR00367 K+-dependent Na+/Ca+ exchanger related-protein. This model models a family of bacterial and archaeal proteins that is homologous, except for lacking a central region of ~ 250 amino acids and an N-terminal region of > 100 residues, to a functionally proven potassium-dependent sodium-calcium exchanger of the rat. [Unknown function, General] 307 -129465 TIGR00368 TIGR00368 Mg chelatase-related protein. The N-terminal end matches very strongly a pfam Mg_chelatase domain. [Unknown function, General] 499 -161843 TIGR00369 unchar_dom_1 uncharacterized domain 1. Most proteins containing this domain consist almost entirely of a single copy of this domain. A protein from C. elegans consists of two tandem copies of the domain. The domain is also found as the N-terminal region of an apparent initiation factor eIF-2B alpha subunit of Aquifex aeolicus. The function of the domain is unknown. 117 -129467 TIGR00370 TIGR00370 sensor histidine kinase inhibitor, KipI family. [Hypothetical proteins, Conserved] 202 -273040 TIGR00372 cas4 CRISPR-associated protein Cas4. This model represents a family of proteins associated with CRISPR repeats in a wide set of prokaryotic genomes. This scope of this model has been broadened since it was first built to describe an archaeal subset only. The function of the protein is undefined. Distantly related proteins, excluded from this model, include ORFs from Mycobacteriophage D29 and Sulfolobus islandicus filamentous virus and a region of the Schizosaccharomyces pombe DNA replication helicase Dna2p. 178 -129469 TIGR00373 TIGR00373 transcription factor E. This family of proteins is, so far, restricted to archaeal genomes. The family appears to be distantly related to the N-terminal region of the eukaryotic transcription initiation factor IIE alpha chain. [Transcription, Transcription factors] 158 -129470 TIGR00374 TIGR00374 conserved hypothetical protein. This model is built on a superfamily of proteins in the Archaea and in Aquifex aeolicus. The authenticity of homology can be seen in the presence of motifs in the alignment that include residues relatively rare among these sequences, even though the alignment includes long regions of low-complexity hydrophobic sequences. One apparent fusion protein contains a Glycos_transf_2 region in the N-terminal half of the protein and a region homologous to this superfamily in the C-terminal region. [Unknown function, General] 319 -161657 TIGR00375 TIGR00375 TIGR00375 family protein. The member of this family from Methanococcus jannaschii, MJ0043, is considerably longer and appears to contain an intein N-terminal to the region of homology. [Hypothetical proteins, Conserved] 374 -273041 TIGR00376 TIGR00376 DNA helicase, putative. The gene product may represent a DNA helicase. Eukaryotic members of this family have been characterized as binding certain single-stranded G-rich DNA sequences (GGGGT and GGGCT). A number of related proteins are characterized as helicases. [DNA metabolism, DNA replication, recombination, and repair] 636 -273042 TIGR00377 ant_ant_sig anti-anti-sigma factor. This superfamily includes small (105-125 residue) proteins related to SpoIIAA of Bacillus subtilis, an anti-anti-sigma factor. SpoIIAA can bind to and inhibit the anti-sigma F factor SpoIIAB. Also, it can be phosphorylated by SpoIIAB on a Ser residue at position 59 of the seed alignment. A similar arrangement is inferred for RsbV, an anti-anti-sigma factor for sigma B. This Ser is fairly well conserved within a motif resembling MXS[STA]G[VIL]X[VIL][VILF] among homologous known or predicted anti-anti-sigma factors. Regions similar to SpoIIAA and apparently homologous, but differing considerably near the phosphorlated Ser of SpoIIAA, appear in a single copy in several longer proteins. [Regulatory functions, Protein interactions] 108 -273043 TIGR00378 cax calcium/proton exchanger (cax). [Transport and binding proteins, Cations and iron carrying compounds] 349 -273044 TIGR00379 cobB cobyrinic acid a,c-diamide synthase. This model describes cobyrinic acid a,c-diamide synthase, the cobB (cbiA in Salmonella) protein of cobalamin biosynthesis. It is responsible for the amidation of carboxylic groups at positions A and C of either cobyrinic acid or hydrogenobrynic acid. NH(2) groups are provided by glutamine and one molecule of ATP hydrogenolyzed for each amidation. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 449 -273045 TIGR00380 cobD cobalamin biosynthesis protein CobD. This protein is involved in cobalamin (vitamin B12) biosynthesis and porphyrin biosynthesis. It converts cobyric acid to cobinamide by the addition of aminopropanol on the F carboxylic group. It is part of the cob operon. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 305 -273046 TIGR00381 cdhD CO dehydrogenase/acetyl-CoA synthase, delta subunit. This is the small subunit of a heterodimer which catalyzes the reaction CO + H2O + Acceptor = CO2 + Reduced acceptor and is involved in the synthesis of acetyl-CoA from CO2 and H2. [Energy metabolism, Chemoautotrophy] 389 -273047 TIGR00382 clpX endopeptidase Clp ATP-binding regulatory subunit (clpX). A member of the ATP-dependent proteases, ClpX has ATP-dependent chaperone activity and is required for specific ATP-dependent proteolytic activities expressed by ClpPX. The gene is also found to be involved in stress tolerance in Bacillus subtilis and is essential for the efficient acquisition of genes specifying type IA and IB restriction. [Protein fate, Protein folding and stabilization, Protein fate, Degradation of proteins, peptides, and glycopeptides] 413 -273048 TIGR00383 corA magnesium Mg(2+) and cobalt Co(2+) transport protein (corA). The article in Microb Comp Genomics 1998;3(3):151-69 discusses this family and suggests that some members may have functions other than Mg2+ transport. [Transport and binding proteins, Cations and iron carrying compounds] 318 -273049 TIGR00384 dhsB succinate dehydrogenase and fumarate reductase iron-sulfur protein. Succinate dehydrogenase and fumarate reductase are reverse directions of the same enzymatic interconversion, succinate + FAD+ = fumarate + FADH2 (EC 1.3.11.1). In E. coli, the forward and reverse reactions are catalyzed by distinct complexes: fumarate reductase operates under anaerobic conditions and succinate dehydrogenase operates under aerobic conditions. This model also describes a region of the B subunit of a cytosolic archaeal fumarate reductase. [Energy metabolism, Aerobic, Energy metabolism, Anaerobic, Energy metabolism, TCA cycle] 220 -129481 TIGR00385 dsbE periplasmic protein thiol:disulfide oxidoreductases, DsbE subfamily. Involved in the biogenesis of c-type cytochromes as well as in disulfide bond formation in some periplasmic proteins. [Protein fate, Protein folding and stabilization] 173 -273050 TIGR00387 glcD glycolate oxidase, subunit GlcD. This protein, the glycolate oxidase GlcD subunit, is similar in sequence to that of several D-lactate dehydrogenases, including that of E. coli. The glycolate oxidase has been found to have some D-lactate dehydrogenase activity. [Energy metabolism, Other] 413 -129483 TIGR00388 glyQ glycyl-tRNA synthetase, tetrameric type, alpha subunit. This tetrameric form of glycyl-tRNA synthetase (2 alpha, 2 beta) is found in the majority of completed eubacterial genomes, with the two genes fused in a few species. A substantially different homodimeric form (not recognized by this model) replaces this form in the Archaea, animals, yeasts, and some eubacteria. [Protein synthesis, tRNA aminoacylation] 293 -273051 TIGR00389 glyS_dimeric glycyl-tRNA synthetase, dimeric type. This model describes a glycyl-tRNA synthetase distinct from the two alpha and two beta chains of the tetrameric E. coli glycyl-tRNA synthetase. This enzyme is a homodimeric class II tRNA synthetase and is recognized by pfam model tRNA-synt_2b, which recognizes His, Ser, Pro, and this set of glycyl-tRNA synthetases. [Protein synthesis, tRNA aminoacylation] 551 -273052 TIGR00390 hslU ATP-dependent protease HslVU, ATPase subunit. This model represents the ATPase subunit of HslVU, while the proteasome-related peptidase subunit is HslV. Residues 54-61 of the model contain a P-loop ATP-binding motif. Cys-287 of E. coli (position 308 in the seed alignment) is Ser in other members of the seed alignment. [Protein fate, Protein folding and stabilization] 441 -273053 TIGR00391 hydA hydrogenase (NiFe) small subunit (hydA). Called (hupA/hydA/hupS/hoxK/vhtG) Involved in hydrogenase reactions performing different specific functions in different species eg (EC 1.12.2.1) in Desulfovibrio gigas,(EC 1.12.99.3) in Wolinella succinogenes and (EC 1.18.99.1) in E.coli and a number of other species and (EC 1.12.99.-) in the archea. [Energy metabolism, Electron transport] 365 -273054 TIGR00392 ileS isoleucyl-tRNA synthetase. The isoleucyl tRNA synthetase (IleS) is a class I amino acyl-tRNA ligase and is particularly closely related to the valyl tRNA synthetase. This model may recognize IleS from every species, including eukaryotic cytosolic and mitochondrial forms. [Protein synthesis, tRNA aminoacylation] 861 -129488 TIGR00393 kpsF KpsF/GutQ family protein. This model describes a number of closely related proteins with the phosphosugar-binding domain SIS (Sugar ISomerase) followed by two copies of the CBS (named after Cystathionine Beta Synthase) domain. One is GutQ, a protein of the glucitol operon. Another is KpsF, a virulence factor involved in capsular polysialic acid biosynthesis in some pathogenic strains of E. coli. [Energy metabolism, Sugars] 268 -273055 TIGR00394 lac_pts_IIC phosphotransferase system, lactose specific, IIC component. This family of proteins models the IIC domain of the phosphotransferase system (PTS) for lactose. The IIC domain catalyzes the transfer of a phosphoryl group from the IIB domain to lactose. When the IIC component and IIB components are in the same polypeptide chain they are designated IIBC. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 412 -273056 TIGR00395 leuS_arch leucyl-tRNA synthetase, archaeal and cytosolic family. The leucyl-tRNA synthetases belong to two families so broadly different that they are represented by separate models. This model includes both archaeal and cytosolic eukaryotic leucyl-tRNA synthetases; the eubacterial and mitochondrial forms differ so substantially that some other tRNA ligases score higher by this model than does any eubacterial LeuS. [Protein synthesis, tRNA aminoacylation] 938 -273057 TIGR00396 leuS_bact leucyl-tRNA synthetase, eubacterial and mitochondrial family. The leucyl-tRNA synthetases belong to two families so broadly different that they are represented by separate models. This model includes both eubacterial and mitochondrial leucyl-tRNA synthetases. It generates higher scores for some valyl-tRNA synthetases than for any archaeal or eukaryotic cytosolic leucyl-tRNA synthetase. Note that the enzyme from Aquifex aeolicus is split into alpha and beta chains; neither chain is long enough to score above the trusted cutoff, but the alpha chain scores well above the noise cutoff. The beta chain must be found by a model and search designed for partial length matches. [Protein synthesis, tRNA aminoacylation] 842 -129492 TIGR00397 mauM_napG MauM/NapG family ferredoxin-type protein. MauM is involved in methylamine utilization. NapG is associated with nitrate reductase activity. The two proteins are highly similar. [Energy metabolism, Electron transport] 213 -273058 TIGR00398 metG methionine--tRNA ligase. The methionyl-tRNA synthetase (metG) is a class I amino acyl-tRNA ligase. This model appears to recognize the methionyl-tRNA synthetase of every species, including eukaryotic cytosolic and mitochondrial forms. The UPGMA difference tree calculated after search and alignment according to this model shows an unusual deep split between two families of MetG. One family contains forms from the Archaea, yeast cytosol, spirochetes, and E. coli, among others. The other family includes forms from yeast mitochondrion, Synechocystis sp., Bacillus subtilis, the Mycoplasmas, Aquifex aeolicus, and Helicobacter pylori. The E. coli enzyme is homodimeric, although monomeric forms can be prepared that are fully active. Activity of this enzyme in bacteria includes aminoacylation of fMet-tRNA with Met; subsequent formylation of the Met to fMet is catalyzed by a separate enzyme. Note that the protein from Aquifex aeolicus is split into an alpha (large) and beta (small) subunit; this model does not include the C-terminal region corresponding to the beta chain. [Protein synthesis, tRNA aminoacylation] 530 -273059 TIGR00399 metG_C_term methionyl-tRNA synthetase C-terminal region/beta chain. The methionyl-tRNA synthetase (metG) is a class I amino acyl-tRNA ligase. This model describes a region of the methionyl-tRNA synthetase that is present at the C-terminus of MetG in some species (E. coli, B. subtilis, Thermotoga maritima, Methanobacterium thermoautotrophicum), and as a separate beta chain in Aquifex aeolicus. It is absent in a number of other species (e.g. Mycoplasma genitalium, Mycobacterium tuberculosis), while Pyrococcus horikoshii has both a full length MetG and a second protein homologous to the beta chain only. Proteins hit by this model should be called methionyl-tRNA synthetase beta chain if and only if the model metG hits a separate protein not also hit by this model. [Protein synthesis, tRNA aminoacylation] 137 -129495 TIGR00400 mgtE Mg2+ transporter (mgtE). This family of prokaryotic proteins models a class of Mg++ transporter first described in Bacillus firmus. May form a homodimer. [Transport and binding proteins, Cations and iron carrying compounds] 449 -129496 TIGR00401 msrA methionine-S-sulfoxide reductase. This model describes peptide methionine sulfoxide reductase (MsrA), a repair enzyme for proteins that have been inactivated by oxidation. The enzyme from E. coli is coextensive with this model and has enzymatic activity. However, in all completed genomes in which this module is present, a second protein module, described in TIGR00357, is also found, and in several cases as part of the same polypeptide chain: N-terminal to this module in Helicobacter pylori and Haemophilus influenzae (as in PilB of Neisseria gonorrhoeae) but C-terminal to it in Treponema pallidum. PilB, containing both domains, has been shown to be important for the expression of adhesins in certain pathogens. [Protein fate, Protein modification and repair, Cellular processes, Adaptations to atypical conditions] 149 -273060 TIGR00402 napF ferredoxin-type protein NapF. The gene codes for a ferredoxin-type cytosolic protein, NapF, of the periplasmic nitrate reductase system, as in Escherichia coli. NapF interacts with the catalytic subunit, NapA, and may be an accessory protein for NapA maturation. [Energy metabolism, Electron transport] 101 -129498 TIGR00403 ndhI NADH-plastoquinone oxidoreductase subunit I protein. [Energy metabolism, Electron transport] 183 -129499 TIGR00405 KOW_elon_Spt5 transcription elongation factor Spt5. This protein contains a KOW domain, shared by bacterial NusG and the uL24 (previously L24p/L26e) family of ribosomal proteins. The most recent papers and crystal structures make this a transcription elongation factor rather than a ribosomal protein. 145 -273061 TIGR00406 prmA ribosomal protein L11 methyltransferase. Ribosomal protein L11 methyltransferase is an S-adenosyl-L-methionine-dependent methyltransferase required for the modification of ribosomal protein L11. This protein is found in bacteria and (with a probable transit peptide) in Arabidopsis. [Protein synthesis, Ribosomal proteins: synthesis and modification] 288 -161862 TIGR00407 proA gamma-glutamyl phosphate reductase. The related model TIGR01092 describes a full-length fusion protein delta l-pyrroline-5-carboxylate synthetase that includes a gamma-glutamyl phosphate reductase region as described by this model. Alternate name: glutamate-5-semialdehyde dehydrogenase. The prosite motif begins at residue 332 of the seed alignment although not all of the members of the family exactly obey the motif. [Amino acid biosynthesis, Glutamate family] 398 -273062 TIGR00408 proS_fam_I prolyl-tRNA synthetase, family I. Prolyl-tRNA synthetase is a class II tRNA synthetase and is recognized by pfam model tRNA-synt_2b, which recognizes tRNA synthetases for Gly, His, Ser, and Pro. The prolyl-tRNA synthetases are divided into two widely divergent families. This family includes the archaeal enzyme, the Pro-specific domain of a human multifunctional tRNA ligase, and the enzyme from the spirochete Borrelia burgdorferi. The other family includes enzymes from Escherichia coli, Bacillus subtilis, Synechocystis PCC6803, and one of the two prolyL-tRNA synthetases of Saccharomyces cerevisiae. [Protein synthesis, tRNA aminoacylation] 472 -273063 TIGR00409 proS_fam_II prolyl-tRNA synthetase, family II. Prolyl-tRNA synthetase is a class II tRNA synthetase and is recognized by pfam model tRNA-synt_2b, which recognizes tRNA synthetases for Gly, His, Ser, and Pro. The prolyl-tRNA synthetases are divided into two widely divergent groups. This group includes enzymes from Escherichia coli, Bacillus subtilis, Aquifex aeolicus, the spirochete Treponema pallidum, Synechocystis PCC6803, and one of the two prolyL-tRNA synthetases of Saccharomyces cerevisiae. The other group includes the Pro-specific domain of a human multifunctional tRNA ligase and the prolyl-tRNA synthetases from the Archaea, the Mycoplasmas, and the spirochete Borrelia burgdorferi. [Protein synthesis, tRNA aminoacylation] 568 -273064 TIGR00410 lacE PTS system, lactose/cellobiose family IIC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. This family of proteins consists of both the cellobiose specific and the lactose specific forms of the phosphotransferase system (PTS) IIC component. The IIC domain catalyzes the transfer of a phosphoryl group from the IIB domain to the substrate. When the IIC component and IIB components are in the same polypeptide chain they are designated IIBC. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 423 -129505 TIGR00411 redox_disulf_1 small redox-active disulfide protein 1. This protein is homologous to a family of proteins that includes thioredoxins, glutaredoxins, protein-disulfide isomerases, and others, some of which have several such domains. The sequence of this protein at the redox-active disufide site, CPYC, matches glutaredoxins rather than thioredoxins, although its overall sequence seems closer to thioredoxins. It is suggested to be a ribonucleotide-reducing system component distinct from thioredoxin or glutaredoxin. [Unknown function, General] 82 -129506 TIGR00412 redox_disulf_2 small redox-active disulfide protein 2. This small protein is found in three archaeal species so far (Methanococcus jannaschii, Archeoglobus fulgidus, and Methanobacterium thermoautotrophicum) as well as in Anabaena PCC7120. It is homologous to thioredoxins, glutaredoxins, and protein disulfide isomerases, and shares with them a redox-active disulfide. The redox active disulfide region CXXC motif resembles neither thioredoxin nor glutaredoxin. A closely related protein found in the same three Archaea, described by redox_disulf_1, has a glutaredoxin-like CP[YH]C sequence; it has been characterized in functional assays as redox-active but unlikely to be a thioredoxin or glutaredoxin. [Unknown function, General] 76 -273065 TIGR00413 rlpA rare lipoprotein A. This is a family of prokaryotic proteins with unknown function. Lipoprotein annotation based on the presence of consensus lipoprotein signal sequence. Included in this family is the E. coli putative lipoprotein rlpA. [Cell envelope, Other] 208 -273066 TIGR00414 serS seryl-tRNA synthetase. This model represents the seryl-tRNA synthetase found in most organisms. This protein is a class II tRNA synthetase, and is recognized by the pfam model tRNA-synt_2b. The seryl-tRNA synthetases of two archaeal species, Methanococcus jannaschii and Methanobacterium thermoautotrophicum, differ considerably and are included in a different model. [Protein synthesis, tRNA aminoacylation] 418 -129509 TIGR00415 serS_MJ seryl-tRNA synthetase, Methanococcus jannaschii family. The seryl-tRNA synthetases from a few of the Archaea, represented by this model, are very different from the set of mutually more closely related seryl-tRNA synthetases from Eubacteria, Eukaryotes, and other Archaea. Although distantly homologous, the present set differs enough not to be recognized by the pfam model tRNA-synt_2b that recognizes the remainder of seryl-tRNA synthetases among oither class II amino-acyl tRNA synthetases. [Protein synthesis, tRNA aminoacylation] 520 -273067 TIGR00416 sms DNA repair protein RadA. The gene protuct codes for a probable ATP-dependent protease involved in both DNA repair and degradation of proteins, peptides, glycopeptides. Also known as sms. Residues 11-28 of the SEED alignment contain a putative Zn binding domain. Residues 110-117 of the seed contain a putative ATP binding site both documented in Haemophilus (SP:P45266) and in Listeria monocytogenes (SP:Q48761) . for E.coli see ( J. BACTERIOL. 178:5045-5048(1996)). [DNA metabolism, DNA replication, recombination, and repair] 454 -188048 TIGR00417 speE spermidine synthase. the SpeE subunit of spermidine synthase catalysesthe reaction (putrescine + S-adenosylmethioninamine = spermidine + 5'-methylthioadenosine) and is involved in polyamine biosynthesis and in the biosynthesis of spermidine from arganine. The region between residues 77 and 120 of the seed alignment is thought to be involved in binding to decarboxylated SAM. [Central intermediary metabolism, Polyamine biosynthesis] 271 -273068 TIGR00418 thrS threonyl-tRNA synthetase. This model represents the threonyl-tRNA synthetase found in most organisms. This protein is a class II tRNA synthetase, and is recognized by the pfam model tRNA-synt_2b. Note that B. subtilis has closely related isozymes thrS and thrZ. The N-terminal regions are quite dissimilar between archaeal and eubacterial forms, while some eukaryotic forms are missing sequence there altogether. . [Protein synthesis, tRNA aminoacylation] 563 -129513 TIGR00419 tim triosephosphate isomerase. Triosephosphate isomerase (tim/TPIA) is the glycolytic enzyme that catalyzes the reversible interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The active site of the enzyme is located between residues 240-258 of the model ([AV]-Y-E-P-[LIVM]-W-[SA]-I-G-T-[GK]) with E being the active site residue. There is a slight deviation from this sequence within the archeal members of this family. [Energy metabolism, Glycolysis/gluconeogenesis] 205 -273069 TIGR00420 trmU tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase. tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase (trmU, asuE, or mnmA) is involved in the biosynthesis of the modified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U34) present in the wobble position of some tRNAs. This enzyme appears not to occur in the Archaea. [Protein synthesis, tRNA and rRNA base modification] 352 -129515 TIGR00421 ubiX_pad UbiX family flavin prenyltransferase. UbiX partners with UbiD for decarboxylation of the 3-octaprenyl-4-hydroxybenzoate precursor during ubiquinone biosynthesis, but the role of UbiX is as a flavin prenyltransferase that provides a cofactor UbiD requires.In E.coli, the protein UbiX (3-octaprenyl-4-hydroxybenzoate carboxy-lyase) has been shown to be involved in the third step of ubiquinone biosynthesis, the reaction [3-octaprenyl-4-hydroxybenzoate = 2-octaprenylphenol + CO2]. The knockout of the homologous protein in yeast confers sensitivity to phenylacrylic acid. Members are not restricted to ubiquinone-synthesizing species. This family represents a distinct clade within the flavoprotein family of pfam02441. 181 -273070 TIGR00422 valS valyl-tRNA synthetase. The valyl-tRNA synthetase (ValS) is a class I amino acyl-tRNA ligase and is particularly closely related to the isoleucyl tRNA synthetase. [Protein synthesis, tRNA aminoacylation] 861 -273071 TIGR00423 TIGR00423 radical SAM domain protein, CofH subfamily. This protein family includes the CofH protein of coenzyme F(420) biosynthesis from Methanocaldococcus jannaschii, but appears to hit genomes more broadly than just the subset that make coenzyme F(420), so that narrower group is being built as a separate family. [Hypothetical proteins, Conserved] 309 -273072 TIGR00424 APS_reduc 5'-adenylylsulfate reductase, thioredoxin-independent. This enzyme, involved in the assimilation of inorganic sulfate, is closely related to the thioredoxin-dependent PAPS reductase of Bacteria (CysH) and Saccharomyces cerevisiae. However, it has its own C-terminal thioredoxin-like domain and is not thioredoxin-dependent. Also, it has a substrate preference for 5'-adenylylsulfate (APS) over 3'-phosphoadenylylsulfate (PAPS) so the pathway does not require an APS kinase (CysC) to convert APS to PAPS. Arabidopsis thaliana appears to have three isozymes, all able to complement E. coli CysH mutants (even in backgrounds lacking thioredoxin or APS kinase) but likely localized to different compartments in Arabidopsis. [Central intermediary metabolism, Sulfur metabolism] 463 -273073 TIGR00425 CBF5 rRNA pseudouridine synthase, putative. This family, found in archaea and eukaryotes, includes the only archaeal proteins markedly similar to bacterial TruB, the tRNA pseudouridine 55 synthase. However, among two related yeast proteins, the archaeal set matches yeast YLR175w far better than YNL292w. The first, termed centromere/microtubule binding protein 5 (CBF5), is an apparent rRNA pseudouridine synthase, while the second is the exclusive tRNA pseudouridine 55 synthase for both cytosolic and mitochondrial compartments. It is unclear whether archaeal proteins found by this model modify tRNA, rRNA, or both. [Protein synthesis, tRNA and rRNA base modification] 322 -129520 TIGR00426 TIGR00426 competence protein ComEA helix-hairpin-helix repeat region. Members of the subfamily recognized by this model include competence protein ComEA and closely related proteins from a number of species that exhibit competence for transformation by exongenous DNA, including Streptococcus pneumoniae, Bacillus subtilis, Neisseria meningitidis, and Haemophilus influenzae. This model represents a region of two tandem copies of a helix-hairpin-helix domain (pfam00633), each about 30 residues in length. Limited sequence similarity can be found among some members of this family N-terminal to the region covered by this model. [Cellular processes, DNA transformation] 69 -129521 TIGR00427 TIGR00427 membrane protein, MarC family. MarC is a protein that spans the plasma membrane multiple times and once was thought to be a multiple antibiotic resistance protein. The function for this family is unknown. [Unknown function, General] 201 -129522 TIGR00430 Q_tRNA_tgt tRNA-guanine transglycosylase. This tRNA-guanine transglycosylase (tgt) catalyzes an exchange for the guanine base at position 34 of many tRNAs; this nucleotide is subsequently modified to queuosine. The Archaea have a closely related enzyme that catalyzes a base exchange for guanine at position 15 in some tRNAs, a site that is subsequently converted to the archaeal-specific modified base archaeosine (7-formamidino-7-deazaguanosine), while Archaeoglobus fulgidus has both enzymes. [Protein synthesis, tRNA and rRNA base modification] 368 -129523 TIGR00431 TruB tRNA pseudouridine(55) synthase. TruB, the tRNA pseudouridine 55 synthase, converts uracil to pseudouridine in the T loop of most tRNAs in all three domains of life. This model is built on a seed alignment of bacterial proteins only. Saccharomyces cerevisiae protein YNL292w (Pus4) has been shown to be the pseudouridine 55 synthase of both cytosolic and mitochondrial compartments, active at no other position on tRNA and the only enzyme active at that position in the species. A distinct yeast protein YLR175w, (centromere/microtubule-binding protein CBF5) is an rRNA pseudouridine synthase, and the archaeal set is much more similar to CBF5 than to Pus4. It is unclear whether the archaeal proteins found by this model are tRNA pseudouridine 55 synthases like TruB, rRNA pseudouridine synthases like CBF5, or (as suggested by the absence of paralogs in the Archaea) both. CBF5 likely has additional, eukaryotic-specific functions. The trusted cutoff is set above the scores for the archaeal homologs of unknown function, so yeast Pus4p scores between trusted and noise. [Protein synthesis, tRNA and rRNA base modification] 209 -273074 TIGR00432 arcsn_tRNA_tgt tRNA-guanine(15) transglycosylase. This tRNA-guanine transglycosylase (tgt) differs from the tgt of E. coli and other Bacteria in the site of action and the modification that results. It exchanges 7-cyano-7-deazaguanine (preQ0) with guanine at position 15 of archaeal tRNA; this nucleotide is subsequently converted to archaeosine, found exclusively in the Archaea. This enzyme from Haloferax volcanii has been purified, characterized, and partially sequenced and is the basis for identifying this family. In contrast, bacterial tgt (TIGR00430) catalyzes the exchange of preQ0 or preQ1 for the guanine base at position 34; this nucleotide is subsequently modified to queuosine. Archeoglobus fulgidus has both enzymes, while some other Archaea have just this one. [Protein synthesis, tRNA and rRNA base modification] 540 -273075 TIGR00433 bioB biotin synthase. Catalyzes the last step of the biotin biosynthesis pathway. All members of the seed alignment are in the immediate gene neighborhood of a bioA gene. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 296 -129526 TIGR00434 cysH phosophoadenylyl-sulfate reductase (thioredoxin). This enzyme, involved in the assimilation of inorganic sulfate, is designated cysH in Bacteria and MET16 in Saccharomyces cerevisiae. Synonyms include phosphoadenosine phosphosulfate reductase, PAPS reductase, and PAPS reductase, thioredoxin-dependent. In a reaction requiring reduced thioredoxin and NADPH, it converts 3(prime)-phosphoadenylylsulfate (PAPS) to sulfite and adenosine 3(prime),5(prime) diphosphate (PAP). A related family of plant enzymes, scoring below the trusted cutoff, differs in having a thioredoxin-like C-terminal domain, not requiring thioredoxin, and in having a preference for 5(prime)-adenylylsulfate (APS) over PAPS. [Central intermediary metabolism, Sulfur metabolism] 212 -273076 TIGR00435 cysS cysteinyl-tRNA synthetase. This model finds the cysteinyl-tRNA synthetase from most but not from all species. The enzyme from one archaeal species, Archaeoglobus fulgidus, is found but the equivalent enzymes from some other Archaea, including Methanococcus jannaschii, are not found, although biochemical evidence suggests that tRNA(Cys) in these species are charged directly with Cys rather than through a misacylation and correction pathway as for tRNA(Gln). [Protein synthesis, tRNA aminoacylation] 464 -129528 TIGR00436 era GTP-binding protein Era. Era is an essential GTPase in Escherichia coli and many other bacteria. It plays a role in ribosome biogenesis. Few bacteria lack this protein. [Protein synthesis, Other] 270 -273077 TIGR00437 feoB ferrous iron transporter FeoB. FeoB (773 amino acids in E. coli), a cytoplasmic membrane protein required for iron(II) update, is encoded in an operon with FeoA (75 amino acids), which is also required, and is regulated by Fur. There appear to be two copies in Archaeoglobus fulgidus and Clostridium acetobutylicum. [Transport and binding proteins, Cations and iron carrying compounds] 591 -273078 TIGR00438 rrmJ cell division protein FtsJ. Methylates the 23S rRNA. Previously known as cell division protein ftsJ.// Trusted cutoff too high? [SS 10/1/04] [Protein synthesis, tRNA and rRNA base modification] 188 -129531 TIGR00439 ftsX putative protein insertion permease FtsX. FtsX is an integral membrane protein encoded in the same operon as signal recognition particle docking protein FtsY and FtsE. It belongs to a family of predicted permeases and may play a role in the insertion of proteins required for potassium transport, cell division, and other activities. FtsE is a hydrophilic nucleotide-binding protein that associates with the inner membrane by means of association with FtsX. [Cellular processes, Cell division, Protein fate, Protein and peptide secretion and trafficking] 309 -273079 TIGR00440 glnS glutaminyl-tRNA synthetase. This protein is a relatively rare aminoacyl-tRNA synthetase, found in the cytosolic compartment of eukaryotes, in E. coli and a number of other Gram-negative Bacteria, and in Deinococcus radiodurans. In contrast, the pathway to Gln-tRNA in mitochondria, Archaea, Gram-positive Bacteria, and a number of other lineages is by misacylation with Glu followed by transamidation to correct the aminoacylation to Gln. This enzyme is a class I tRNA synthetase (hit by the pfam model tRNA-synt_1c) and is quite closely related to glutamyl-tRNA synthetases. [Protein synthesis, tRNA aminoacylation] 522 -129533 TIGR00441 gmhA phosphoheptose isomerase. This model describes phosphoheptose isomerase. Because a closely related paralo in Escherichia coli differs in function (DnaA initiator-associating protein diaA), this model has been rebuilt with a high stringency, and is likely to miss many true examples for phosphoheptose isomerase. Involved in lipopolysaccharide biosynthesis it may have a role in virulence in Haemophilus ducreyi. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 154 -273080 TIGR00442 hisS histidyl-tRNA synthetase. This model finds a histidyl-tRNA synthetase in every completed genome. Apparent second copies from Bacillus subtilis, Synechocystis sp., and Aquifex aeolicus are slightly shorter, more closely related to each other than to other hisS proteins, and actually serve as regulatory subunits for an enzyme of histidine biosynthesis. They were excluded from the seed alignment and score much lower than do single copy histidyl-tRNA synthetases of other genomes not included in the seed alignment. These putative second copies of HisS score below the trusted cutoff. The regulatory protein kinase GCN2 of Saccharomyces cerevisiae (YDR283c), and related proteins from other species designated eIF-2 alpha kinase, have a domain closely related to histidyl-tRNA synthetase that may serve to detect and respond to uncharged tRNA(his), an indicator of amino acid starvation; these regulatory proteins are not orthologous and so score below the noise cutoff. [Protein synthesis, tRNA aminoacylation] 404 -273081 TIGR00443 hisZ_biosyn_reg ATP phosphoribosyltransferase, regulatory subunit. Apparant second copies of histidyl-tRNA synthetase, found in Bacillus subtilis, Synechocystis sp., Aquifex aeolicus, and others, are in fact a regulatory subunit of ATP phosphoribosyltransferase, and usually encoded by a gene adjacent to that encoding the catalytic subunit. [Amino acid biosynthesis, Histidine family] 313 -273082 TIGR00444 mazG MazG family protein. This family of prokaryotic proteins has no known function. It includes the uncharacterized protein MazG in E. coli. [Unknown function, General] 248 -161884 TIGR00445 mraY phospho-N-acetylmuramoyl-pentapeptide-transferase. Involved in peptidoglycan biosynthesis, the enzyme catalyzes the first of the lipid cycle reactions. Also known as Muramoyl-Pentapeptide Transferase (murX). [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 321 -188051 TIGR00446 nop2p NOL1/NOP2/sun family putative RNA methylase. [Protein synthesis, tRNA and rRNA base modification] 264 -213531 TIGR00447 pth aminoacyl-tRNA hydrolase. The natural substrate for this enzyme may be peptidyl-tRNAs that drop off the ribosome during protein synthesis. Peptidyl-tRNA hydrolase is a bacterial protein; YHR189W from Saccharomyces cerevisiae appears to be orthologous and likely has the same function. [Protein synthesis, Other] 188 -129540 TIGR00448 rpoE DNA-directed RNA polymerase (rpoE), archaeal and eukaryotic form. This family seems to be confined to the archea and eukaryotic taxa and are quite dissimilar to E.coli rpoE. [Transcription, DNA-dependent RNA polymerase] 179 -129541 TIGR00449 tgt_general tRNA-guanine family transglycosylase. Different tRNA-guanine transglycosylases catalyze different tRNA base modifications. Two guanine base substitutions by different enzymes described by the model are involved in generating queuosine at position 34 in bacterial tRNAs and archaeosine at position 15 in archaeal tRNAs. This model is designed for fragment searching, so the superfamily is used loosely. [Protein synthesis, tRNA and rRNA base modification] 367 -273083 TIGR00450 mnmE_trmE_thdF tRNA modification GTPase TrmE. TrmE, also called MnmE and previously designated ThdF (thiophene and furan oxidation protein), is a GTPase involved in tRNA modification to create 5-methylaminomethyl-2-thiouridine in the wobble position of some tRNAs. This protein and GidA form an alpha2/beta2 heterotetramer. [Protein synthesis, tRNA and rRNA base modification] 442 -129543 TIGR00451 unchar_dom_2 uncharacterized domain 2. This uncharacterized domain is found a number of enzymes and uncharacterized proteins, often at the C-terminus. It is found in some but not all members of a family of related tRNA-guanine transglycosylases (tgt), which exchange a guanine base for some modified base without breaking the phosphodiester backbone of the tRNA. It is also found in rRNA pseudouridine synthase, another enzyme of RNA base modification not otherwise homologous to tgt. It is found, again at the C-terminus, in two putative glutamate 5-kinases. It is also found in a family of small, uncharacterized archaeal proteins consisting mostly of this domain. 107 -273084 TIGR00452 TIGR00452 tRNA (mo5U34)-methyltransferase. This model describes CmoB, the enzyme tRNA (mo5U34)-methyltransferase involved in tRNA wobble base modification. [Unknown function, Enzymes of unknown specificity] 316 -213532 TIGR00453 ispD 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase. Members of this protein family are 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, the IspD protein of the deoxyxylulose pathway of IPP biosynthesis. In about twenty percent of bacterial genomes, this protein occurs as IspDF, a bifunctional fusion protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 217 -200016 TIGR00454 TIGR00454 TIGR00454 family protein. At this time this gene appears to be present only in Archea [Hypothetical proteins, Conserved] 175 -129547 TIGR00455 apsK adenylyl-sulfate kinase. This protein, adenylylsulfate kinase, is often found as a fusion protein with sulfate adenylyltransferase. Important residue (active site in E.coli) is residue 100 of the seed alignment. [Central intermediary metabolism, Sulfur metabolism] 184 -273085 TIGR00456 argS arginyl-tRNA synthetase. This model recognizes arginyl-tRNA synthetase in every completed genome to date. An interesting feature of the alignment of all arginyl-tRNA synthetases is a fairly deep split between two families. One family includes archaeal, eukaryotic and organellar, spirochete, E. coli, and Synechocystis sp. The second, sharing a deletion of about 25 residues in the central region relative to the first, includes Bacillus subtilis, Aquifex aeolicus, the Mycoplasmas and Mycobacteria, and the Gram-negative bacterium Helicobacter pylori. [Protein synthesis, tRNA aminoacylation] 563 -273086 TIGR00457 asnS asparaginyl-tRNA synthetase. In a multiple sequence alignment of representative asparaginyl-tRNA synthetases (asnS), archaeal/eukaryotic type aspartyl-tRNA synthetases (aspS_arch), and bacterial type aspartyl-tRNA synthetases (aspS_bact), there is a striking similarity between asnS and aspS_arch in gap pattern and in sequence, and a striking divergence of aspS_bact. Consequently, a separate model was built for each of the three groups. This model, asnS, represents asparaginyl-tRNA synthetases from the three domains of life. Some species lack this enzyme and charge tRNA(asn) by misacylation with Asp, followed by transamidation of Asp to Asn. [Protein synthesis, tRNA aminoacylation] 453 -273087 TIGR00458 aspS_nondisc nondiscriminating aspartyl-tRNA synthetase. In a multiple sequence alignment of representative asparaginyl-tRNA synthetases (asnS), archaeal/eukaryotic type aspartyl-tRNA synthetases (aspS_arch), and bacterial type aspartyl-tRNA synthetases (aspS_bact), there is a striking similarity between asnS and aspS_arch in gap pattern and in sequence, and a striking divergence of aspS_bact. Consequently, a separate model was built for each of the three groups. This model, aspS_arch, represents aspartyl-tRNA synthetases from the eukaryotic cytosol and from the Archaea. In some species, this enzyme aminoacylates tRNA for both Asp and Asn; Asp-tRNA(asn) is subsequently transamidated to Asn-tRNA(asn). [Protein synthesis, tRNA aminoacylation] 428 -211576 TIGR00459 aspS_bact aspartyl-tRNA synthetase, bacterial type. Asparate--tRNA ligases in this family may be discriminating (6.1.1.12) or nondiscriminating (6.1.1.23). In a multiple sequence alignment of representative asparaginyl-tRNA synthetases (asnS), archaeal/eukaryotic type aspartyl-tRNA synthetases (aspS_arch), and bacterial type aspartyl-tRNA synthetases (aspS_bact), there is a striking similarity between asnS and aspS_arch in gap pattern and in sequence, and a striking divergence of aspS_bact. Consequently, a separate model was built for each of the three groups. This model, aspS_bact, represents aspartyl-tRNA synthetases from the Bacteria and from mitochondria. In some species, this enzyme aminoacylates tRNA for both Asp and Asn; Asp-tRNA(asn) is subsequently transamidated to Asn-tRNA(asn). This model generates very low scores for the archaeal type of aspS and for asnS; scores between the trusted and noise cutoffs represent fragmentary sequences. [Protein synthesis, tRNA aminoacylation] 583 -273088 TIGR00460 fmt methionyl-tRNA formyltransferase. The top-scoring characterized proteins other than methionyl-tRNA formyltransferase (fmt) itself are formyltetrahydrofolate dehydrogenases. The mitochondrial methionyl-tRNA formyltransferases are so divergent that, in a multiple alignment of bacterial fmt, mitochondrial fmt, and formyltetrahydrofolate dehydrogenases, the mitochondrial fmt appears the most different. However, because both bacterial and mitochondrial fmt are included in the seed alignment, all credible fmt sequences score higher than any non-fmt sequence. This enzyme modifies Met on initiator tRNA to f-Met. [Protein synthesis, tRNA aminoacylation] 313 -273089 TIGR00461 gcvP glycine dehydrogenase (decarboxylating). This apparently ubiquitous enzyme is found in bacterial, mammalian and plant sources. The enzyme catalyzes the reaction: GLYCINE + LIPOYLPROTEIN = S-AMINOMETHYL-DIHYDROLIPOYLPROTEIN + CO2. It is part of the glycine decarboxylase multienzyme complex (GDC) consisting of four proteins P, H, L and T. Active site in E.coli is located as the (K) residues at position 713 of the SEED alignment. [Energy metabolism, Amino acids and amines] 939 -273090 TIGR00462 genX EF-P lysine aminoacylase GenX. Many Gram-negative bacteria have a protein closely homologous to the C-terminal region of lysyl-tRNA synthetase (LysS). Multiple sequence alignment of these proteins with the homologous regions of collected LysS proteins shows that these proteins form a distinct set rather than just similar truncations of LysS. The protein is termed GenX after its designation in E. coli. Interestingly, genX often is located near a homolog of lysine-2,3-aminomutase. Its function is unknown. [Unknown function, General] 290 -273091 TIGR00463 gltX_arch glutamyl-tRNA synthetase, archaeal and eukaryotic family. The glutamyl-tRNA synthetases of the eukaryotic cytosol and of the Archaea are more similar to glutaminyl-tRNA synthetases than to bacterial glutamyl-tRNA synthetases. This model models just the eukaryotic cytosolic and archaeal forms of the enzyme. In some eukaryotes, the glutamyl-tRNA synthetase is part of a longer, multifunctional aminoacyl-tRNA ligase. In many species, the charging of tRNA(gln) proceeds first through misacylation with Glu and then transamidation. For this reason, glutamyl-tRNA synthetases, including all known archaeal enzymes (as of 2010) may act on both tRNA(gln) and tRNA(glu). [Protein synthesis, tRNA aminoacylation] 556 -273092 TIGR00464 gltX_bact glutamyl-tRNA synthetase, bacterial family. The glutamyl-tRNA synthetases of the eukaryotic cytosol and of the Archaea are more similar to glutaminyl-tRNA synthetases than to bacterial glutamyl-tRNA synthetases. This model models just the bacterial and mitochondrial forms of the enzyme. In many species, the charging of tRNA(gln) proceeds first through misacylation with Glu and then transamidation. For this reason, glutamyl-tRNA synthetases may act on both tRNA(gln) and tRNA(glu). This model is highly specific. Proteins with positive scores below the trusted cutoff may be fragments rather than full-length sequences. [Protein synthesis, tRNA aminoacylation] 470 -273093 TIGR00465 ilvC ketol-acid reductoisomerase. This is the second enzyme in the parallel isoleucine-valine biosynthetic pathway [Amino acid biosynthesis, Pyruvate family] 314 -129558 TIGR00466 kdsB 3-deoxy-D-manno-octulosonate cytidylyltransferase. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 238 -273094 TIGR00467 lysS_arch lysyl-tRNA synthetase, archaeal and spirochete. This model represents the lysyl-tRNA synthetases that are class I amino-acyl tRNA synthetases. It includes archaeal and spirochete examples of the enzyme. All other known examples are class IIc amino-acyl tRNA synthetases and seem to form a separate orthologous set. [Protein synthesis, tRNA aminoacylation] 515 -273095 TIGR00468 pheS phenylalanyl-tRNA synthetase, alpha subunit. Most phenylalanyl-tRNA synthetases are heterodimeric, with 2 alpha (pheS) and 2 beta (pheT) subunits. This model describes the alpha subunit, which shows some similarity to class II aminoacyl-tRNA ligases. Mitochondrial phenylalanyl-tRNA synthetase is a single polypeptide chain, active as a monomer, and similar to this chain rather than to the beta chain, but excluded from this model. An interesting feature of the alignment of all sequences captured by this model is a deep split between non-spirochete bacterial examples and all other examples; supporting this split is a relative deletion of about 50 residues in the former set between two motifs well conserved throughout the alignment. [Protein synthesis, tRNA aminoacylation] 293 -129561 TIGR00469 pheS_mito phenylalanyl-tRNA synthetase, mitochondrial. Unlike all other known phenylalanyl-tRNA synthetases, the mitochondrial form demonstrated from yeast is monomeric. It is similar to but longer than the alpha subunit (PheS) of the alpha 2 beta 2 form found in Bacteria, Archaea, and eukaryotes, and shares the characteristic motifs of class II aminoacyl-tRNA ligases. This model models the experimental example from Saccharomyces cerevisiae (designated MSF1) and its orthologs from other eukaryotic species. [Protein synthesis, tRNA aminoacylation] 460 -129562 TIGR00470 sepS O-phosphoserine--tRNA ligase. This family of archaeal proteins resembles known phenylalanyl-tRNA synthetase alpha chains. Recently, it was shown to act in a proposed pathway of tRNA(Cys) indirect aminoacylation, resulting in Cys biosynthesis from O-phosphoserine, in certain archaea. It charges tRNA(Cys) with O-phosphoserine. The pscS gene product converts the phosphoserine to Cys. [Amino acid biosynthesis, Serine family, Protein synthesis, tRNA aminoacylation] 533 -273096 TIGR00471 pheT_arch phenylalanyl-tRNA synthetase, beta subunit. Every known example of the phenylalanyl-tRNA synthetase, except the monomeric form of mitochondrial, is an alpha 2 beta 2 heterotetramer. The beta subunits break into two subfamilies that are considerably different in sequence, length, and pattern of gaps. This model represents the subfamily that includes the beta subunit from eukaryotic cytosol, the Archaea, and spirochetes. [Protein synthesis, tRNA aminoacylation] 551 -273097 TIGR00472 pheT_bact phenylalanyl-tRNA synthetase, beta subunit, non-spirochete bacterial. Every known example of the phenylalanyl-tRNA synthetase, except the monomeric form of mitochondrial, is an alpha 2 beta 2 heterotetramer. The beta subunits break into two subfamilies that are considerably different in sequence, length, and pattern of gaps. This model represents the subfamily that includes the beta subunit from Bacteria other than spirochetes, as well as a chloroplast-encoded form from Porphyra purpurea. The chloroplast-derived sequence is considerably shorter at the amino end. [Protein synthesis, tRNA aminoacylation] 797 -273098 TIGR00473 pssA CDP-diacylglycerol--serine O-phosphatidyltransferase. This enzyme, CDP-diacylglycerol--serine O-phosphatidyltransferase, is involved in phospholipid biosynthesis catalyzing the reaction CDP-diacylglycerol + L-serine = CMP + L-1-phosphatidylserine. Members of this family do not bear any significant sequence similarity to the corresponding E.coli protein. [Fatty acid and phospholipid metabolism, Biosynthesis] 151 -273099 TIGR00474 selA L-seryl-tRNA(Sec) selenium transferase. In bacteria, the incorporation of selenocysteine as the 21st amino acid, encoded by TGA, requires several elements: SelC is the tRNA itself, SelD acts as a donor of reduced selenium, SelA modifies a serine residue on SelC into selenocysteine, and SelB is a selenocysteine-specific translation elongation factor. 3-prime or 5-prime non-coding elements of mRNA have been found as probable structures for directing selenocysteine incorporation. This model describes SelA. This model excludes homologs that appear to differ in function from Frankia alni, Helicobacter pylori, Methanococcus jannaschii and other archaea, and so on. [Protein synthesis, tRNA aminoacylation] 454 -129567 TIGR00475 selB selenocysteine-specific elongation factor SelB. In prokaryotes, the incorporation of selenocysteine as the 21st amino acid, encoded by TGA, requires several elements: SelC is the tRNA itself, SelD acts as a donor of reduced selenium, SelA modifies a serine residue on SelC into selenocysteine, and SelB is a selenocysteine-specific translation elongation factor. 3-prime or 5-prime non-coding elements of mRNA have been found as probable structures for directing selenocysteine incorporation. This model describes the elongation factor SelB, a close homolog rf EF-Tu. It may function by replacing EF-Tu. A C-terminal domain not found in EF-Tu is in all SelB sequences in the seed alignment except that from Methanococcus jannaschii. This model does not find an equivalent protein for eukaryotes. [Protein synthesis, Translation factors] 581 -273100 TIGR00476 selD selenium donor protein. In prokaryotes, the incorporation of selenocysteine as the 21st amino acid, encoded by TGA, requires several elements: SelC is the tRNA itself, SelD acts as a donor of reduced selenium, SelA modifies a serine residue on SelC into selenocysteine, and SelB is a selenocysteine-specific translation elongation factor. 3-prime or 5-prime non-coding elements of mRNA have been found as probable structures for directing selenocysteine incorporation. This model describes SelD, known as selenophosphate synthetase, selenium donor protein, and selenide,water dikinase. SelD provides reduced selenium for the selenium transferase SelA. This protein itself contains selenocysteine in many species; any sequence scoring well but not aligning to the beginning of the model is likely to have a selenocysteine residue incorrectly interpreted as a stop codon upstream of the given sequence. The SelD protein also provides selenophosphate for the enzyme tRNA 2-selenouridine synthase, which catalyzes a tRNA base modification. It also contributes to selenium incorporation by selenium-dependent molybdenum hydroxylases (SDMH), in genomes with the marker TIGR03309. All genomes with SelD should make selenocysteine, selenouridine, SDMH, or some combination. 301 -188054 TIGR00477 tehB tellurite resistance protein TehB. Part of a tellurite-reducing operon tehA and tehB [Cellular processes, Toxin production and resistance] 195 -129570 TIGR00478 tly TlyA family rRNA methyltransferase/putative hemolysin. Members of this family include TlyA from Mycobacterium tuberculosis, an rRNA methylase whose modifications are necessary to confer sensitivity to ribosome-targeting antibiotics capreomycin and viomycin. Homology supports identification as a methyltransferase. However, a parallel literature persists in calling some members hemolysins. Hemolysins are exotoxins that attack blood cell membranes and cause cell rupture, often by forming a pore in the membrane. A recent study (2013) on SCO1782 from Streptomyces coelicolor shows hemolysin activity as earlier described for a homolog from the spirochete Serpula (Treponema) hyodysenteriae and one from Mycobacterium tuberculosis. [Unknown function, General] 228 -129571 TIGR00479 rumA 23S rRNA (uracil-5-)-methyltransferase RumA. This protein family was first proposed to be RNA methyltransferases by homology to the TrmA family. The member from E. coli has now been shown to act as the 23S RNA methyltransferase for the conserved U1939. The gene is now designated rumA and was previously designated ygcA. [Protein synthesis, tRNA and rRNA base modification] 431 -129572 TIGR00481 TIGR00481 Raf kinase inhibitor-like protein, YbhB/YbcL family. [Unknown function, General] 141 -273101 TIGR00482 TIGR00482 nicotinate (nicotinamide) nucleotide adenylyltransferase. This model represents the predominant bacterial/eukaryotic adenylyltransferase for nicotinamide-nucleotide, its deamido form nicotinate nucleotide, or both. The first activity, nicotinamide-nucleotide adenylyltransferase (EC 2.7.7.1), synthesizes NAD by the salvage pathway, while the second, nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18) synthesizes the immediate precursor of NAD by the de novo pathway. In E. coli, NadD activity is biased toward the de novo pathway while salvage activity is channeled through the multifunctional NadR protein, but this division of labor may be exceptional. The given name of this model, nicotinate (nicotinamide) nucleotide adenylyltransferase, reflects the lack of absolute specificity with respect to substrate amidation state in most species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 193 -129574 TIGR00483 EF-1_alpha translation elongation factor EF-1 alpha. This model represents the counterpart of bacterial EF-Tu for the Archaea (aEF-1 alpha) and Eukaryotes (eEF-1 alpha). The trusted cutoff is set fairly high so that incomplete sequences will score between suggested and trusted cutoff levels. [Protein synthesis, Translation factors] 426 -129575 TIGR00484 EF-G translation elongation factor EF-G. After peptide bond formation, this elongation factor of bacteria and organelles catalyzes the translocation of the tRNA-mRNA complex, with its attached nascent polypeptide chain, from the A-site to the P-site of the ribosome. Every completed bacterial genome has at least one copy, but some species have additional EF-G-like proteins. The closest homolog to canonical (e.g. E. coli) EF-G in the spirochetes clusters as if it is derived from mitochondrial forms, while a more distant second copy is also present. Synechocystis PCC6803 has a few proteins more closely related to EF-G than to any other characterized protein. Two of these resemble E. coli EF-G more closely than does the best match from the spirochetes; it may be that both function as authentic EF-G. [Protein synthesis, Translation factors] 689 -129576 TIGR00485 EF-Tu translation elongation factor TU. This model models orthologs of translation elongation factor EF-Tu in bacteria, mitochondria, and chloroplasts, one of several GTP-binding translation factors found by the more general pfam model GTP_EFTU. The eukaryotic conterpart, eukaryotic translation elongation factor 1 (eEF-1 alpha), is excluded from this model. EF-Tu is one of the most abundant proteins in bacteria, as well as one of the most highly conserved, and in a number of species the gene is duplicated with identical function. When bound to GTP, EF-Tu can form a complex with any (correctly) aminoacylated tRNA except those for initiation and for selenocysteine, in which case EF-Tu is replaced by other factors. Transfer RNA is carried to the ribosome in these complexes for protein translation. [Protein synthesis, Translation factors] 394 -213534 TIGR00486 YbgI_SA1388 dinuclear metal center protein, YbgI/SA1388 family. The characterization of this family of uncharacterized proteins as orthologous is tentative. Members are found in all three domains of life. Several members (from Bacillus subtilis, Listeria monocytogenes, and Mycobacterium tuberculosis - all classified as Firmicutes within the Eubacteria) share a long insert relative to other members. [Unknown function, General] 249 -273102 TIGR00487 IF-2 translation initiation factor IF-2. This model discriminates eubacterial (and mitochondrial) translation initiation factor 2 (IF-2), encoded by the infB gene in bacteria, from similar proteins in the Archaea and Eukaryotes. In the bacteria and in organelles, the initiator tRNA is charged with N-formyl-Met instead of Met. This translation factor acts in delivering the initator tRNA to the ribosome. It is one of a number of GTP-binding translation factors recognized by the pfam model GTP_EFTU. [Protein synthesis, Translation factors] 587 -273103 TIGR00488 TIGR00488 putative HD superfamily hydrolase of NAD metabolism. The function of this protein family is unknown. Members of this family of uncharacterized proteins from the Mycoplasmas are longer at the amino end, fused to a region of nicotinamide nucleotide adenylyltransferase, an NAD salvage biosynthesis enzyme. Members are putative metal-dependent phosphohydrolases for NAD metabolism. [Unknown function, Enzymes of unknown specificity] 158 -129580 TIGR00489 aEF-1_beta translation elongation factor aEF-1 beta. This model describes the archaeal translation elongation factor aEF-1 beta. The member from Sulfolobus solfataricus was demonstrated experimentally. It is a dimer that catalyzes the exchange of GDP for GTP on aEF-1 alpha. [Protein synthesis, Translation factors] 88 -129581 TIGR00490 aEF-2 translation elongation factor aEF-2. This model represents archaeal elongation factor 2, a protein more similar to eukaryotic EF-2 than to bacterial EF-G, both in sequence similarity and in sharing with eukaryotes the property of having a diphthamide (modified His) residue at a conserved position. The diphthamide can be ADP-ribosylated by diphtheria toxin in the presence of NAD. [Protein synthesis, Translation factors] 720 -273104 TIGR00491 aIF-2 translation initiation factor aIF-2/yIF-2. This model describes archaeal and eukaryotic orthologs of bacterial IF-2. Like IF-2, it helps convey the initiator tRNA to the ribosome, although the initiator is N-formyl-Met in bacteria and Met here. This protein is not closely related to the subunits of eIF-2 of eukaryotes, which is also involved in the initiation of translation. The aIF-2 of Methanococcus jannaschii contains a large intein interrupting a region of very strongly conserved sequence very near the amino end; the alignment generated by this model does not correctly align the sequences from Methanococcus jannaschii and Pyrococcus horikoshii in this region. [Protein synthesis, Translation factors] 591 -129583 TIGR00492 alr alanine racemase. This enzyme interconverts L-alanine and D-alanine. Its primary function is to generate D-alanine for cell wall formation. With D-alanine-D-alanine ligase, it makes up the D-alanine branch of the peptidoglycan biosynthetic route. It is a monomer with one pyridoxal phosphate per subunit. In E. coli, the ortholog is duplicated so that a second isozyme, DadX, is present. DadX, a paralog of the biosynthetic Alr, is induced by D- or L-alanine and is involved in catabolism. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 367 -188055 TIGR00493 clpP ATP-dependent Clp endopeptidase, proteolytic subunit ClpP. This model for the proteolytic subunit ClpP has been rebuilt to a higher stringency. In every bacterial genome with the ClpXP machine, a ClpP protein will be found that scores well with this model. In general, this ClpP member will be encoded adjacent to the clpX gene, as were all examples used in the seed alignment. A large fraction of genomes have one or more additional ClpP paralogs, sometimes encoded nearby and sometimes elsewhere. The stringency of the trusted cutoff used here excludes the more divergent ClpP paralogs from being called authentic ClpP by this model. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 192 -129585 TIGR00494 crcB protein CrcB. The role of this protein is uncharacterized, but phenotypes associated with overproduction include resistance to camphor, suppression of a mukB chromosomal partition mutant, and chromosome condensation, together suggesting a function related to chromosome folding. [Unknown function, General] 117 -273105 TIGR00495 crvDNA_42K 42K curved DNA binding protein. Proteins identified by this model have been identified in a number of species as a nuclear (but not nucleolar) protein with a cell cycle dependence. Various names given to members of this family have included cell cycle protein p38-2G4, DNA-binding protein GBP16, and proliferation-associated protein 1. This protein is closely related to methionine aminopeptidase, a cobolt-binding protein. [Unknown function, General] 390 -129587 TIGR00496 frr ribosome recycling factor. This model finds only eubacterial proteins. Mitochondrial and/or chloroplast forms might be expected but are not currently known. This protein was previously called ribosome releasing factor. By releasing ribosomes from mRNA at the end of protein biosynthesis, it prevents inappropriate translation from 3-prime regions of the mRNA and frees the ribosome for new rounds of translation. EGAD|53116|YHR038W is part of the frr superfamily. [Protein synthesis, Translation factors] 176 -211578 TIGR00497 hsdM type I restriction system adenine methylase (hsdM). Function: methylation of specific adenine residues; required for both restriction and modification activities. The ECOR124/3 I enzyme recognizes 5'GAA(N7)RTCG. for E.coli see (J. Mol. Biol. 257: 960-969 (1996)). [DNA metabolism, Restriction/modification] 501 -273106 TIGR00498 lexA SOS regulatory protein LexA. LexA acts as a homodimer to repress a number of genes involved in the response to DNA damage (SOS response), including itself and RecA. RecA, in the presence of single-stranded DNA, acts as a co-protease to activate a latent autolytic protease activity (EC 3.4.21.88) of LexA, where the active site Ser is part of LexA. The autolytic cleavage site is an Ala-Gly bond in LexA (at position 84-85 in E. coli LexA; this sequence is replaced by Gly-Gly in Synechocystis). The cleavage leads to derepression of the SOS regulon and eventually to DNA repair. LexA in Bacillus subtilis is called DinR. LexA is much less broadly distributed than RecA. [DNA metabolism, DNA replication, recombination, and repair, Regulatory functions, DNA interactions] 199 -273107 TIGR00499 lysS_bact lysyl-tRNA synthetase, eukaryotic and non-spirochete bacterial. This model represents the lysyl-tRNA synthetases that are class II amino-acyl tRNA synthetases. It includes all eukaryotic and most bacterial examples of the enzyme, but not archaeal or spirochete forms. [Protein synthesis, tRNA aminoacylation] 493 -129591 TIGR00500 met_pdase_I methionine aminopeptidase, type I. Methionine aminopeptidase is a cobalt-binding enzyme. Bacterial and organellar examples (type I) differ from eukaroytic and archaeal (type II) examples in lacking a region of approximately 60 amino acids between the 4th and 5th cobalt-binding ligands. This model describes type I. The role of this protein in general is to produce the mature form of cytosolic proteins by removing the N-terminal methionine. [Protein fate, Protein modification and repair] 247 -129592 TIGR00501 met_pdase_II methionine aminopeptidase, type II. Methionine aminopeptidase (map) is a cobalt-binding enzyme. Bacterial and organellar examples (type I) differ from eukaroytic and archaeal (type II) examples in lacking a region of approximately 60 amino acids between the 4th and 5th cobalt-binding ligands. The role of this protein in general is to produce the mature amino end of cytosolic proteins by removing the N-terminal methionine. This model describes type II, among which the eukaryotic members typically have an N-terminal extension not present in archaeal members. It can act cotranslationally. The enzyme from rat has been shown to associate with translation initiation factor 2 (IF-2) and may have a role in translational regulation. [Protein fate, Protein modification and repair] 295 -129593 TIGR00502 nagB glucosamine-6-phosphate isomerase. The set of proteins recognized by this model includes a closely related pair from Bacillus subtilis, one of which is uncharacterized but included as a member of the orthologous set. [Central intermediary metabolism, Amino sugars] 259 -129594 TIGR00503 prfC peptide chain release factor 3. This translation releasing factor, RF-3 (prfC) was originally described as stop codon-independent, in contrast to peptide chain release factor 1 (RF-1, prfA) and RF-2 (prfB). RF-1 and RF-2 are closely related to each other, while RF-3 is similar to elongation factors EF-Tu and EF-G; RF-1 is active at UAA and UAG and RF-2 is active at UAA and UGA. More recently, RF-3 was shown to be active primarily at UGA stop codons in E. coli. All bacteria and organelles have RF-1. The Mycoplasmas and organelles, which translate UGA as Trp rather than as a stop codon, lack RF-2. RF-3, in contrast, seems to be rare among bacteria and is found so far only in Escherichia coli and some other gamma subdivision Proteobacteria, in Synechocystis PCC6803, and in Staphylococcus aureus. [Protein synthesis, Translation factors] 527 -129595 TIGR00504 pyro_pdase pyroglutamyl-peptidase I. Alternate names include pyroglutamate aminopeptidase, pyrrolidone-carboxylate peptidase, and 5-oxoprolyl-peptidase. It removes pyroglutamate (pyrrolidone-carboxylate, a modified glutamine) that can otherwise block hydrolysis of a polypeptide at the amino end, and so can be extremely useful in the biochemical studies of proteins. The biological role in the various species in which it is found is not fully understood. The enzyme appears to be a homodimer. It does not closely resemble any other peptidases. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 212 -129596 TIGR00505 ribA GTP cyclohydrolase II. Several members of the family are bifunctional, involving both ribA and ribB function. In these cases, ribA tends to be on the C-terminal end of the protein and ribB tends to be on the N-terminal. The function of archaeal members of the family has not been demonstrated and is assigned tentatively. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 191 -273108 TIGR00506 ribB 3,4-dihydroxy-2-butanone 4-phosphate synthase. Several members of the family are bifunctional, involving both ribA and ribB function. In these cases, ribA tends to be on the C-terminal end of the protein and ribB tends to be on the N-terminal. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 199 -161904 TIGR00507 aroE shikimate dehydrogenase. This model finds proteins from prokaryotes and functionally equivalent domains from larger, multifunctional proteins of fungi and plants. Below the trusted cutoff of 180, but above the noise cutoff of 20, are the putative shikimate dehydrogenases of Thermotoga maritima and Mycobacterium tuberculosis, and uncharacterized paralogs of shikimate dehydrogenase from E. coli and H. influenzae. The related enzyme quinate 5-dehydrogenase scores below the noise cutoff. A neighbor-joining tree, constructed with quinate 5-dehydrogenases as the outgroup, shows the Clamydial homolog as clustering among the shikimate dehydrogenases, although the sequence is unusual in the degree of sequence divergence and the presence of an additional N-terminal domain. [Amino acid biosynthesis, Aromatic amino acid family] 270 -273109 TIGR00508 bioA adenosylmethionine-8-amino-7-oxononanoate transaminase. All members of the seed alignment have been demonstrated experimentally to act as EC 2.6.1.62, an enzyme in the biotin biosynthetic pathway. Alternate names include 7,8-diaminopelargonic acid aminotransferase, DAPA aminotransferase, and adenosylmethionine-8-amino-7-oxononanoate aminotransferase. The gene symbol is bioA in E. coli and BIO3 in S. cerevisiae. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 421 -273110 TIGR00509 bisC_fam molybdopterin guanine dinucleotide-containing S/N-oxide reductases. This enzyme family shares sequence similarity and a requirement for a molydenum cofactor as the only prosthetic group. The form of the cofactor is a single molybdenum atom coordinated by two molybdopterin guanine dinucleotide molecules. Members of the family include biotin sulfoxide reductase, dimethylsulfoxide reductase, and trimethylamine-N-oxide reductase, although a single member may show all those activities and related activities; it may not be possible to resolve the primary function for members of this family by sequence comparison alone. A number of similar molybdoproteins in which the N-terminal region contains a CXXXC motif and may bind an iron-sulfur cluster are excluded from this set, including formate dehydrogenases and nitrate reductases. Also excluded is the A chain of a heteromeric, anaerobic DMSO reductase, which also contains the CXXXC motif. 770 -273111 TIGR00510 lipA lipoate synthase. This enzyme is an iron-sulfur protein. It is localized to mitochondria in yeast and Arabidopsis. It generates lipoic acid, a thiol antioxidant that is linked to a specific Lys as prosthetic group for the pyruvate and alpha-ketoglutarate dehydrogenase complexes and the glycine-cleavage system. The family shows strong sequence conservation. [Biosynthesis of cofactors, prosthetic groups, and carriers, Lipoate] 302 -188057 TIGR00511 ribulose_e2b2 ribose-1,5-bisphosphate isomerase, e2b2 family. The delineation of this family was based originally, in part, on a discussion and neighbor-joining phylogenetic study by Kyrpides and Woese of archaeal and other proteins homologous to the alpha, beta, and delta subunits of eukaryotic initiation factor 2B (eIF-2B), a five-subunit molecule that catalyzes GTP recycling for eIF-2. Recently, Sato, et al. assigned the function ribulose-1,5 bisphosphate isomerase. [Energy metabolism, Other] 301 -273112 TIGR00512 salvage_mtnA S-methyl-5-thioribose-1-phosphate isomerase. The delineation of this family was based in part on a discussion and neighbor-joining phylogenetic study, by Kyrpides and Woese, of archaeal and other proteins homologous to the alpha, beta, and delta subunits of eukaryotic initiation factor 2B (eIF-2B), a five-subunit molecule that catalyzes GTP recycling for eIF-2. This clade is now recognized to include the methionine salvage pathway enzyme MtnA. [Amino acid biosynthesis, Aspartate family] 335 -273113 TIGR00513 accA acetyl-CoA carboxylase, carboxyl transferase, alpha subunit. The enzyme acetyl-CoA carboxylase contains a biotin carboxyl carrier protein or domain, a biotin carboxylase, and a carboxyl transferase. This model represents the alpha chain of the carboxyl transferase for cases in which the architecture of the protein is as in E. coli, in which the carboxyltransferase portion consists of two non-identical subnits, alpha and beta. [Fatty acid and phospholipid metabolism, Biosynthesis] 316 -129605 TIGR00514 accC acetyl-CoA carboxylase, biotin carboxylase subunit. This model represents the biotin carboxylase subunit found usually as a component of acetyl-CoA carboxylase. Acetyl-CoA carboxylase is designated EC 6.4.1.2 and this component, biotin carboxylase, has its own designation, EC 6.3.4.14. Homologous domains are found in eukaryotic forms of acetyl-CoA carboxylase and in a number of other carboxylases (e.g. pyruvate carboxylase), but seed members and trusted cutoff are selected so as to exclude these. In some systems, the biotin carboxyl carrier protein and this protein (biotin carboxylase) may be shared by different carboxyltransferases. However, this model is not intended to identify the biotin carboxylase domain of propionyl-coA carboxylase. The model should hit the full length of proteins, except for chloroplast transit peptides in plants. If it hits a domain only of a longer protein, there may be a problem with the identification. [Fatty acid and phospholipid metabolism, Biosynthesis] 449 -129606 TIGR00515 accD acetyl-CoA carboxylase, carboxyl transferase, beta subunit. The enzyme acetyl-CoA carboxylase contains a biotin carboxyl carrier protein or domain, a biotin carboxylase, and a carboxyl transferase. This model represents the beta chain of the carboxyl transferase for cases in which the architecture of the protein is as in E. coli, in which the carboxyltransferase portion consists of two non-identical subnits, alpha and beta. [Fatty acid and phospholipid metabolism, Biosynthesis] 285 -273114 TIGR00516 acpS holo-[acyl-carrier-protein] synthase. Formerly dpj. This enzyme adds the prosthetic group, phosphopantethiene, to the acyl carrier protein (ACP) apo-enzyme to generate the holo-enzyme. Related phosphopantethiene--protein transferases also exist. There is an orthologous domain in eukaryotic proteins. [Fatty acid and phospholipid metabolism, Biosynthesis] 121 -213536 TIGR00517 acyl_carrier acyl carrier protein. This small protein has phosphopantetheine covalently bound to a Ser residue. It acts as a carrier of the growing fatty acid chain, which is bound to the prosthetic group, during fatty acid biosynthesis. Homologous phosphopantetheine-binding domains are found in longer proteins. Acyl carrier proteins scoring above the noise cutoff but below the trusted cutoff may be specialized versions. These include those involved in mycolic acid biosynthesis in the Mycobacteria, lipid A biosynthesis in Rhizobium, actinorhodin polyketide synthesis in Streptomyces coelicolor, etc. This protein is not found in the Archaea.Gene name acpP.S (Ser) at position 37 in the seed alignment, in the motif DSLD, is the phosphopantetheine attachment site. [Fatty acid and phospholipid metabolism, Biosynthesis] 77 -129609 TIGR00518 alaDH alanine dehydrogenase. The family of known L-alanine dehydrogenases (EC 1.4.1.1) includes representatives from the Proteobacteria, Firmicutes, Cyanobacteria, and Actinobacteria, all with about 50 % identity or better. An outlier to this group in both sequence and gap pattern is the homolog from Helicobacter pylori, an epsilon division Proteobacteria, which must be considered a putative alanine dehydrogenase. In Mycobacterium smegmatis and M. tuberculosis, the enzyme doubles as a glycine dehydrogenase (1.4.1.10), running in the reverse direction (glyoxylate amination to glycine, with conversion of NADH to NAD+). Related proteins include saccharopine dehydrogenase and the N-terminal half of the NAD(P) transhydrogenase alpha subunit. All of these related proteins bind NAD and/or NADP. [Energy metabolism, Amino acids and amines] 370 -129610 TIGR00519 asnASE_I L-asparaginase, type I. Two related families of asparaginase are designated type I and type II according to the terminology in E. coli, which has both: L-asparaginase I is a low-affinity enzyme found in the cytoplasm, while L-asparaginase II is a high-affinity secreted enzyme synthesized with a cleavable signal sequence. This model describes L-asparaginases related to type I of E. coli. Archaeal putative asparaginases are of this type but contain an extra ~ 80 residues in a conserved N-terminal region. These archaeal homologs are included in this model. 336 -273115 TIGR00520 asnASE_II L-asparaginase, type II. Two related families of asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) are designated type I and type II according to the terminology in E. coli, which has both: L-asparaginase I is a low-affinity enzyme found in the cytoplasm, while L-asparaginase II is a high-affinity periplasmic enzyme synthesized with a cleavable signal sequence. This model describes L-asparaginases related to type II of E. coli. Both the cytoplasmic and the cell wall asparaginases of Saccharomyces cerevisiae belong to this set. Members of this set from Acinetobacter glutaminasificans and Pseudomonas fluorescens are described as having both glutaminase and asparaginase activitities. All members are homotetrameric. [Energy metabolism, Amino acids and amines] 349 -273116 TIGR00521 coaBC_dfp phosphopantothenoylcysteine decarboxylase / phosphopantothenate--cysteine ligase. This model represents a bifunctional enzyme that catalyzes the second and third steps (cysteine ligation, EC 6.3.2.5, and decarboxylation, EC 4.1.1.36) in the biosynthesis of coenzyme A (CoA) from pantothenate in bacteria. In early descriptions of this flavoprotein, a ts mutation in one region of the protein appeared to cause a defect in DNA metaobolism rather than an increased need for the pantothenate precursor beta-alanine. This protein was then called dfp, for DNA/pantothenate metabolism flavoprotein. The authors responsible for detecting phosphopantothenate--cysteine ligase activity suggest renaming this bifunctional protein coaBC for its role in CoA biosynthesis. This enzyme contains the FMN cofactor, but no FAD or pyruvoyl group. The amino-terminal region contains the phosphopantothenoylcysteine decarboxylase activity. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 391 -273117 TIGR00522 dph5 diphthine synthase. Alternate name: diphthamide biosynthesis S-adenosylmethionine-dependent methyltransferase. This protein participates in the modification of a specific His of elongation factor 2 of eukarotes and Archaea to diphthamide. The protein was characterized in Saccharomyces cerevisiae and designated DPH5. [Protein fate, Protein modification and repair] 257 -273118 TIGR00523 eIF-1A eukaryotic/archaeal initiation factor 1A. Recommended nomenclature: eIF-1A for eukaryotes, aIF-1A for Archaea. Also called eIF-4C [Protein synthesis, Translation factors] 98 -273119 TIGR00524 eIF-2B_rel eIF-2B alpha/beta/delta-related uncharacterized proteins. This model, eIF-2B_rel, describes half of a superfamily, where the other half consists of eukaryotic translation initiation factor 2B (eIF-2B) subunits alpha, beta, and delta. It is unclear whether the eIF-2B_rel set is monophyletic, or whether they are all more closely related to each other than to any eIF-2B subunit because the eIF-2B clade is highly derived. Members of this branch of the family are all uncharacterized with respect to function and are found in the Archaea, Bacteria, and Eukarya, although a number are described as putative translation intiation factor components. Proteins found by eIF-2B_rel include at least three clades, including a set of uncharacterized eukaryotic proteins, a set found in some but not all Archaea, and a set universal so far among the Archaea and closely related to several uncharacterized bacterial proteins. [Unknown function, General] 303 -213537 TIGR00525 folB dihydroneopterin aldolase. This model describes a bacterial dihydroneopterin aldolase, shown to form homo-octamers in E. coli. The equivalent activity is catalyzed by domains of larger folate biosynthesis proteins in other systems. The closely related parologous enzyme in E. coli, dihydroneopterin triphosphate epimerase, which is also homo-octameric, and dihydroneopterin aldolase domains of larger proteins, score below the trusted cutoff but may score well above the noise cutoff. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 116 -273120 TIGR00526 folB_dom FolB domain. Two paralogous genes of E. coli, folB (dihydroneopterin aldolase) and folX (d-erythro-7,8-dihydroneopterin triphosphate epimerase) are homologous to each other and homo-octameric. In Pneumocystis carinii, a multifunctional enzyme of folate synthesis has an N-terminal region active as dihydroneopterin aldolase. This region consists of two tandem sequences each homologous to folB and forms tetramers. 118 -200024 TIGR00527 gcvH glycine cleavage system H protein. This model represents the glycine cleavage system H protein, which shuttles the methylamine group of glycine from the P protein to the T protein. The mature protein is about 130 residues long and contains a lipoyl group covalently bound to a conserved Lys residue. The genome of Aquifex aeolicus contains one protein scoring above the trusted cutoff and clustering with other bacterial H proteins, and four more proteins clustering together and scoring below the trusted cutoff; it seems doubtful that all of these homologs are authentic H protein. The Chlamydial homolog of H protein is nearly as divergent as the Aquifex outgroup, is not accompanied by P and T proteins, is not included in the seed alignment, and consequently also scores below the trusted cutoff. [Energy metabolism, Amino acids and amines] 128 -273121 TIGR00528 gcvT glycine cleavage system T protein. The glycine cleavage system T protein (GcvT) is also known as aminomethyltransferase (EC 2.1.2.10). It works with the H protein (GcvH), the P protein (GcvP), and lipoamide dehydrogenase. The reported sequence of the member from Aquifex aeolicus starts about 50 residues downstream of the start of other members of the family (perhaps in error); it scores below the trusted cutoff. Eukaryotic forms are mitochondrial and have an N-terminal transit peptide. [Energy metabolism, Amino acids and amines] 362 -273122 TIGR00529 AF0261 integral membrane protein, TIGR00529 family. This protein is predicted to have 10 transmembrane regions. Members of this family are found so far in the Archaea (Archaeoglobus fulgidus and Pyrococcus horikoshii) and in a bacterial thermophile, Thermotoga maritima. In Pyrococcus, the gene is located between nadA and nadB, two components of an enzyme involved in de novo synthesis of NAD. By PSI-BLAST, this family shows similarity (but not necessarily homology) to gluconate permease and other transport proteins. [Hypothetical proteins, Conserved] 387 -129621 TIGR00530 AGP_acyltrn 1-acyl-sn-glycerol-3-phosphate acyltransferases. This model describes the core homologous region of a collection of related proteins, several of which are known to act as 1-acyl-sn-glycerol-3-phosphate acyltransferases (EC 2.3.1.51). Proteins scoring above the trusted cutoff are likely to have the same general activity. However, there is variation among characterized members as to whether the acyl group can be donated by acyl carrier protein or coenzyme A, and in the length and saturation of the donated acyl group. 1-acyl-sn-glycerol-3-phosphate acyltransferase is also called 1-AGP acyltransferase, lysophosphatidic acid acyltransferase, and LPA acyltransferase. [Fatty acid and phospholipid metabolism, Biosynthesis] 130 -273123 TIGR00531 BCCP acetyl-CoA carboxylase, biotin carboxyl carrier protein. This model is designed to identify biotin carboxyl carrier protein as a peptide of acetyl-CoA carboxylase. Scoring below the trusted cutoff is a related protein encoded in a region associated with polyketide synthesis in the prokaryote Saccharopolyspora hirsuta, and a reported chloroplast-encoded biotin carboxyl carrier protein that may be highly derived from the last common ancestral sequence. Scoring below the noise cutoff are biotin carboxyl carrier domains of other enzymes such as pyruvate carboxylase.The gene name is accB or fabE. [Fatty acid and phospholipid metabolism, Biosynthesis] 155 -129623 TIGR00532 HMG_CoA_R_NAD hydroxymethylglutaryl-CoA reductase, degradative. Most known examples of hydroxymethylglutaryl-CoA reductase are NADP-dependent (EC 1.1.1.34) from eukaryotes and archaea, involved in the biosynthesis of mevalonate from 3-hydroxy-3-methylglutaryl-CoA. This model, in contrast, is built from the two examples in completed genomes of sequences closely related to the degradative, NAD-dependent hydroxymethylglutaryl-CoA reductase of Pseudomonas mevalonii, a bacterium that can use mevalonate as its sole carbon source. [Energy metabolism, Other] 393 -129624 TIGR00533 HMG_CoA_R_NADP 3-hydroxy-3-methylglutaryl Coenzyme A reductase, hydroxymethylglutaryl-CoA reductase (NADP). This model represents archaeal examples of the enzyme hydroxymethylglutaryl-CoA reductase (NADP) (EC 1.1.1.34) and the catalytic domain of eukaryotic examples, which also contain a hydrophobic N-terminal domain. This enzyme synthesizes mevalonate, a precursor of isopentenyl pyrophosphate (IPP), a building block for the synthesis of cholesterol, isoprenoids, and other molecules. A related hydroxymethylglutaryl-CoA reductase, typified by an example from Pseudomonas mevalonii, is NAD-dependent and catabolic. [Central intermediary metabolism, Other] 402 -213538 TIGR00534 OpcA glucose-6-phosphate dehydrogenase assembly protein OpcA. The opcA gene is found immediately downstream of zwf, the glucose-6-phosphate dehydrogenase (G6PDH) gene, in a number of species, including Mycobacterium tuberculosis, Streptomyces coelicolor, Nostoc punctiforme, and Synechococcus sp. PCC 7942. In the latter, disruption of opcA was shown to block assembly of G6PDH into active oligomeric forms. [Protein fate, Protein folding and stabilization] 311 -273124 TIGR00535 SAM_DCase S-adenosylmethionine decarboxylase proenzyme, eukaryotic form. This enzyme is a key regulatory enzyme of the polyamine synthetic pathway. This protein is a pyruvoyl-dependent enzyme. The proenzyme is cleaved at a Ser residue that becomes a pyruvoyl group active site. [Central intermediary metabolism, Polyamine biosynthesis] 334 -273125 TIGR00536 hemK_fam HemK family putative methylases. The gene hemK from E. coli was found to contribute to heme biosynthesis and originally suggested to be protoporphyrinogen oxidase. Functional analysis of the nearest homolog in Saccharomyces cerevisiae, YNL063w, finds it is not protoporphyrinogen oxidase and sequence analysis suggests that HemK homologs have S-adenosyl-methionine-dependent methyltransferase activity (Medline 99237242). Homologs are found, usually in a single copy, in nearly all completed genomes, but varying somewhat in apparent domain architecture. Both E. coli and H. influenzae have two members rather than one. The members from the Mycoplasmas have an additional C-terminal domain. [Protein fate, Protein modification and repair] 284 -129628 TIGR00537 hemK_rel_arch HemK-related putative methylase. The gene hemK from E. coli was found to contribute to heme biosynthesis and originally suggested to be protoporphyrinogen oxidase. Functional analysis of the nearest homolog in Saccharomyces cerevisiae, YNL063w, finds it is not protoporphyrinogen oxidase and sequence analysis suggests that HemK homologs have S-adenosyl-methionine-dependent methyltransferase activity (Medline 99237242). Homologs are found, usually in a single copy, in nearly all completed genomes, but varying somewhat in apparent domain architecture. This model represents an archaeal and eukaryotic protein family that lacks an N-terminal domain found in HemK and its eubacterial homologs. It is found in a single copy in the first six completed archaeal and eukaryotic genomes. [Unknown function, Enzymes of unknown specificity] 179 -129629 TIGR00538 hemN oxygen-independent coproporphyrinogen III oxidase. This model represents HemN, the oxygen-independent coproporphyrinogen III oxidase that replaces HemF function under anaerobic conditions. Several species, including E. coli, Helicobacter pylori, and Aquifex aeolicus, have both a member of this family and a member of another, closely related family for which there is no evidence of coproporphyrinogen III oxidase activity. Members of this family have a perfectly conserved motif PYRT[SC]YP in a region N-terminal to the region of homology with the related uncharacterized protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 455 -129630 TIGR00539 hemN_rel putative oxygen-independent coproporphyrinogen III oxidase. Experimentally determined examples of oxygen-independent coproporphyrinogen III oxidase, an enzyme that replaces HemF function under anaerobic conditions, belong to a family of proteins described by the model hemN. This model, hemN_rel, models a closely related protein, shorter at the amino end and lacking the region containing the motif PYRT[SC]YP found in members of the hemN family. Several species, including E. coli, Helicobacter pylori, Aquifex aeolicus, and Chlamydia trachomatis, have members of both this family and the E. coli hemN family. The member of this family from Bacillus subtilis was shown to complement an hemF/hemN double mutant of Salmonella typimurium and to prevent accumulation of coproporphyrinogen III under anaerobic conditions, but the exact role of this protein is still uncertain. It is found in a number of species that do not synthesize heme de novo. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 360 -273126 TIGR00540 TPR_hemY_coli heme biosynthesis-associated TPR protein. Members of this protein family are uncharacterized tetratricopeptide repeat (TPR) proteins invariably found in heme biosynthesis gene clusters. The absence of any invariant residues other than Ala argues against this protein serving as an enzyme per se. The gene symbol hemY assigned in E. coli is unfortunate in that an unrelated protein, protoporphyrinogen oxidase (HemG in E. coli) is designated HemY in Bacillus subtilis. [Unknown function, General] 367 -129632 TIGR00541 hisDCase_pyru histidine decarboxylase, pyruvoyl type. This enzyme converts histadine to histamine in a single step by catalyzing the release of CO2. This type is synthesized as an inactive single chain precursor, then cleaved into two chains. The Ser at the new N-terminus at the cleavage site is converted to a pyruvoyl group essential for activity. This type of histidine decarboxylase appears is known so far only in some Gram-positive bacteria, where it may play a role in amino acid catabolism. There is also a pyridoxal phosphate type histidine decarboxylase, as found in human, where histamine is a biologically active amine. [Energy metabolism, Amino acids and amines] 310 -129633 TIGR00542 hxl6Piso_put hexulose-6-phosphate isomerase, putative. This family shows similarity by PSI-BLAST to other isomerases. Putative identification as hexulose-6-phosphate isomerase is reported in Swiss-Prot, attributing a discussion in Genome Sci. Technol. 1:53-75(1996). This family is conserved at better than 40 % identity among the four known examples from three species: Escherichia coli (SgbU and SgaU), Haemophilus influenzae, and Mycoplasma pneumoniae. The rarity of the family, high level of conservation, and proposed catabolic role suggests lateral transfer may be a part of the evolutionary history of this protein. [Energy metabolism, Sugars] 279 -273127 TIGR00543 isochor_syn isochorismate synthases. This enzyme interconverts chorismate and isochorismate. In E. coli, different loci encode isochorismate synthases for the pathways of menaquinone biosynthesis and enterobactin biosynthesis (via salicilate) and fail to complement each other. Among isochorismate synthases, the N-terminal domain is poorly conserved. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 351 -273128 TIGR00544 lgt prolipoprotein diacylglyceryl transferase. The conversion of lipoprotein precursors into lipoproteins consists of three steps. First, the enzyme described by this model transfers a diacylglyceryl moiety from phosphatidylglycerol to the side chain of a Cys that will become the new N-terminus. Second, the signal peptide is removed by signal peptidase II. Finally, the free amino group of the new N-terminal Cys is acylated by apolipoprotein N-acyltransferase. [Protein fate, Protein modification and repair] 277 -161920 TIGR00545 lipoyltrans lipoyltransferase and lipoate-protein ligase. One member of this group of proteins is bovine lipoyltransferase, which transfers the lipoyl group from lipoyl-AMP to the specific Lys of lipoate-dependent enzymes. However, it does not first activate lipoic acid with ATP to create lipoyl-AMP and pyrophosphate. Another member of this group, lipoate-protein ligase A from E. coli, catalyzes both the activation and the transfer of lipoate. Homology between the two is full-length, except for the bovine mitochondrial targeting signal, but is strongest toward the N-terminus. [Protein fate, Protein modification and repair] 324 -273129 TIGR00546 lnt apolipoprotein N-acyltransferase. This enzyme transfers the acyl group to lipoproteins in the lgt/lsp/lnt system which is found broadly in bacteria but not in archaea. This model represents one component of the "lipoprotein lgt/lsp/lnt system" genome property. [Protein fate, Protein modification and repair] 391 -129638 TIGR00547 lolA periplasmic chaperone LolA. This protein, LolA, is known so far only in the gamma and beta subdivisions of the Proteobacteria. The E. coli major outer lipoprotein (Lpp) of E. coli is released from the inner membrane as a complex with this chaperone in an energy-requiring process, and is then delivered to LolB for insertion into the outer membrane. LolA is involved in the delivery of lipoproteins generally, rather than just Lpp, and is an essential protein in E. coli, unlike Lpp itself. [Protein fate, Protein and peptide secretion and trafficking] 204 -129639 TIGR00548 lolB outer membrane lipoprotein LolB. This protein, LolB, is known so far only in the gamma and beta subdivisions of the Proteobacteria. It is a processed, lipid-modified outer membrane protein. It is required in E. coli for insertion of the major outer lipoprotein (Lpp) into the outer membrane. Lpp is transferred to LolB from the carrier protein LolA in the periplasm. Previously, this protein was thought to play in role in 5-aminolevulinic acid synthesis and was designated HemM. [Protein fate, Protein and peptide secretion and trafficking] 202 -273130 TIGR00549 mevalon_kin mevalonate kinase. This model represents mevalonate kinase, the third step in the mevalonate pathway of isopentanyl pyrophosphate (IPP) biosynthesis. IPP is a common intermediate for a number of pathways including cholesterol biosynthesis. This model covers enzymes from eukaryotes, archaea and bacteria. The related enzyme from the same pathway, phosphmevalonate kinase, serves as an outgroup for this clade. Paracoccus exhibits two genes within the phosphomevalonate/mevalonate kinase family, one of which falls between trusted and noise cutoffs of this model. The degree of divergence is high, but if the trees created from this model are correct, the proper names of these genes have been swapped. [Central intermediary metabolism, Other] 273 -129641 TIGR00550 nadA quinolinate synthetase complex, A subunit. This protein, termed NadA, plays a role in the synthesis of pyridine, a precursor to NAD. The quinolinate synthetase complex consists of A protein (this protein) and B protein. B protein converts L-aspartate to iminoaspartate, an unstable reaction product which in the absence of A protein is spontaneously hydrolyzed to form oxaloacetate. The A protein, NadA, converts iminoaspartate to quinolate. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 310 -273131 TIGR00551 nadB L-aspartate oxidase. L-aspartate oxidase is the B protein, NadB, of the quinolinate synthetase complex. Quinolinate synthetase makes a precursor of the pyridine nucleotide portion of NAD. This model identifies proteins that cluster as L-aspartate oxidase (a flavoprotein difficult to separate from the set of closely related flavoprotein subunits of succinate dehydrogenase and fumarate reductase) by both UPGMA and neighbor-joining trees. The most distant protein accepted as an L-aspartate oxidase (NadB), that from Pyrococcus horikoshii, not only clusters with other NadB but is just one gene away from NadA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 489 -273132 TIGR00552 nadE NAD+ synthetase. NAD+ synthetase is a nearly ubiquitous enzyme for the final step in the biosynthesis of the essensial cofactor NAD. The member of this family from Bacillus subtilis is a strictly NH(3)-dependent NAD(+) synthetase of 272 amino acids. Proteins consisting only of the domain modeled here may be named as NH3-dependent NAD+ synthetase. Amidotransferase activity may reside in a separate protein, or not be present. Some other members of the family, such as from Mycobacterium tuberculosis, are considerably longer, contain an apparent amidotransferase domain, and show glutamine-dependent as well as NH(3)-dependent activity. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 250 -273133 TIGR00553 pabB aminodeoxychorismate synthase, component I, bacterial clade. Members of this family, aminodeoxychorismate synthase, component I (PabB), were designated para-aminobenzoate synthase component I until it was recognized that PabC, a lyase, completes the pathway of PABA synthesis. This family is closely related to anthranilate synthase component I (trpE), and both act on chorismate. The clade of PabB enzymes represented by this model includes sequences from Gram-positive and alpha and gamma Proteobacteria as well as Chlorobium, Nostoc, Fusobacterium and Arabidopsis. A closely related clade of fungal PabB enzymes is identified by TIGR01823, while another bacterial clade of potential PabB enzymes is more closely related to TrpE (TIGR01824). [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 328 -273134 TIGR00554 panK_bact pantothenate kinase, bacterial type. Shown to be a homodimer in E. coli. This enzyme catalyzes the rate-limiting step in the biosynthesis of coenzyme A. It is very well conserved from E. coli to B. subtilis, but differs considerably from known eukaryotic forms, described in a separate model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 290 -273135 TIGR00555 panK_eukar pantothenate kinase, eukaryotic/staphyloccocal type. This model describes a eukaryotic form of pantothenate kinase, characterized from the fungus Aspergillus nidulans and with similar forms known in several other eukaryotes. It also includes forms from several Gram-positive bacteria suggested to have originated from the eukaryotic form by lateral transfer. It differs in a number of biochemical properties (such as inhibition by acetyl-CoA) from most bacterial CoaA and lacks sequence similarity. This enzyme is the key regulatory step in the biosynthesis of coenzyme A (CoA). [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 296 -273136 TIGR00556 pantethn_trn phosphopantetheine--protein transferase domain. This model models a domain active in transferring the phophopantetheine prosthetic group to its attachment site on enzymes and carrier proteins. Many members of this family are small proteins that act on the acyl carrier protein involved in fatty acid biosynthesis. Some members are domains of larger proteins involved specialized pathways for the synthesis of unusual molecules including polyketides, atypical fatty acids, and antibiotics. [Protein fate, Protein modification and repair] 128 -273137 TIGR00557 pdxA 4-hydroxythreonine-4-phosphate dehydrogenase. This model represents PdxA, an NAD+-dependent 4-hydroxythreonine 4-phosphate dehydrogenase (EC 1.1.1.262) active in pyridoxal phosphate biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 320 -273138 TIGR00558 pdxH pyridoxamine-phosphate oxidase. This model is similar to Pyridox_oxidase from Pfam but is designed to find only true pyridoxamine-phosphate oxidase and to ignore the related protein PhzG involved in phenazine biosynthesis. This protein from E. coli was characterized as a homodimer with two FMN per dimer. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 190 -188064 TIGR00559 pdxJ pyridoxine 5'-phosphate synthase. PdxJ is required in the biosynthesis of pyridoxine (vitamin B6), a precursor to the enzyme cofactor pyridoxal phosphate. ECOCYC describes the predicted reaction equation as 1-amino-propan-2-one-3-phosphate + deoxyxylulose-5-phosphate = pyridoxine-5'-phosphate. The product of that reaction is oxidized by PdxH to pyridoxal 5'-phosphate. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 236 -273139 TIGR00560 pgsA CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase. Alternate names: phosphatidylglycerophosphate synthase; glycerophosphate phosphatidyltransferase; PGP synthase. A number of related enzymes are quite similar in both sequence and catalytic activity, including Saccharamyces cerevisiae YDL142c, now known to be a cardiolipin synthase. There may be problems with incorrect transitive annotation of near homologs as authentic CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase. [Fatty acid and phospholipid metabolism, Biosynthesis] 182 -273140 TIGR00561 pntA NAD(P) transhydrogenase, alpha subunit. This integral membrane protein is the alpha subunit of alpha 2 beta 2 tetramer that couples the proton transport across the membrane to the reversible transfer of hydride ion equivalents between NAD and NADP. An alternate name is pyridine nucleotide transhydrogenase alpha subunit. The N-terminal region is homologous to alanine dehydrogenase. In some species, such as Rhodospirillum rubrum, the alpha chain is replaced by two shorter chains, both with some homology to the full-length alpha chain modeled here. These score below the trusted cutoff. [Energy metabolism, Electron transport] 512 -213540 TIGR00562 proto_IX_ox protoporphyrinogen oxidase. This enzyme oxidizes protoporphyrinogen IX to protoporphyrin IX, a precursor of heme and chlorophyll. Bacillus subtilis HemY also has coproporphyrinogen III to coproporphyrin III oxidase activity in a heterologous expression system, although the role for this activity in vivo is unclear. This protein is a flavoprotein and has a beta-alpha-beta dinucleotide binding motif near the amino end. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 462 -273141 TIGR00563 rsmB 16S rRNA (cytosine(967)-C(5))-methyltransferase. This protein is also known as sun protein. The reading frame was originally interpreted as two reading frames, fmu and fmv. The recombinant protein from E. coli was shown to methylate only C967 of small subunit (16S) ribosomal RNA and to produce only m5C at that position. The seed alignment is built from bacterial sequences only. Eukaryotic homologs include Nop2, a protein required for processing pre-rRNA, that is likely also a rRNA methyltransferase, although the fine specificity may differ. Cutoff scores are set to avoid treating archaeal and eukaroytic homologs automatically as functionally equivalent, although they may have very similar roles. [Protein synthesis, tRNA and rRNA base modification] 426 -273142 TIGR00564 trpE_most anthranilate synthase component I, non-proteobacterial lineages. This enzyme resembles some other chorismate-binding enzymes, including para-aminobenzoate synthase (pabB) and isochorismate synthase. There is a fairly deep split between two sets, seen in the pattern of gaps as well as in amino acid sequence differences. Archaeal enzymes have been excluded from this model (and are now found in TIGR01820) as have a clade of enzymes which constitute a TrpE paralog which may have PabB activity (TIGR01824). This allows the B. subtilus paralog which has been shown to have PabB activity to score below trusted to this model. This model contains sequences from gram-positive bacteria, certain proteobacteria, cyanobacteria, plants, fungi and assorted other bacteria.A second family of TrpE enzymes is modelled by TIGR00565. The breaking of the TrpE family into these diverse models allows for the separation of the models for the related enzyme, PabB. [Amino acid biosynthesis, Aromatic amino acid family] 454 -273143 TIGR00565 trpE_proteo anthranilate synthase component I, proteobacterial subset. This enzyme resembles some other chorismate-binding enzymes, including para-aminobenzoate synthase (pabB) and isochorismate synthase. There is a fairly deep split between two sets, seen in the pattern of gaps as well as in amino acid sequence differences. This group includes proteobacteria such as E. coli and Helicobacter pylori but also the gram-positive organism Corynebacterium glutamicum. The second group includes eukaryotes, archaea, and most other bacterial lineages; sequences from the second group may resemble pabB more closely than other trpE from this group. [Amino acid biosynthesis, Aromatic amino acid family] 498 -273144 TIGR00566 trpG_papA glutamine amidotransferase of anthranilate synthase or aminodeoxychorismate synthase. This model describes the glutamine amidotransferase domain or peptide of the tryptophan-biosynthetic pathway enzyme anthranilate synthase or of the folate biosynthetic pathway enzyme para-aminobenzoate synthase. In at least one case, a single polypeptide from Bacillus subtilis was shown to have both functions. This model covers a subset of the sequences described by the Pfam model GATase. 188 -273145 TIGR00567 3mg DNA-3-methyladenine glycosylase. This families are based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). All proteins in this family for which the function is known are involved in the base excision repair of alkylation damage to DNA. The exact specificty of the type of alkylation damage repaired by each of these varies somewhat between species. Substrates include 3-methyl adenine, 7-methyl-guanaine, and 3-methyl-guanine. [DNA metabolism, DNA replication, recombination, and repair] 192 -129659 TIGR00568 alkb DNA alkylation damage repair protein AlkB. Proteins in this family have an as of yet undetermined function in the repair of alkylation damage to DNA. Alignment and family designation based on phylogenomic analysis of Jonathan A. Eisen (PhD Thesis, Stanford University, 1999). [DNA metabolism, DNA replication, recombination, and repair] 169 -129660 TIGR00569 ccl1 cyclin ccl1. All proteins in this family for which functions are known are cyclins that are components of TFIIH, a complex that is involved in nucleotide excision repair and transcription initiation. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, StanfordUniversity). [DNA metabolism, DNA replication, recombination, and repair] 305 -129661 TIGR00570 cdk7 CDK-activating kinase assembly factor MAT1. All proteins in this family for which functions are known are cyclin dependent protein kinases that are components of TFIIH, a complex that is involved in nucleotide excision repair and transcription initiation. Also known as MAT1 (menage a trois 1). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 309 -273146 TIGR00571 dam DNA adenine methylase (dam). All proteins in this family for which functions are known are DNA-adenine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). The DNA adenine methylase (dam) of E. coli and related species is instrumental in distinguishing the newly synthesized strand during DNA replication for methylation-directed mismatch repair. This family includes several phage methylases and a number of different restriction enzyme chromosomal site-specific modification systems. [DNA metabolism, DNA replication, recombination, and repair] 267 -129663 TIGR00573 dnaq exonuclease, DNA polymerase III, epsilon subunit family. All proteins in this family for which functions are known are components of the DNA polymerase III complex (epsilon subunit). There is, however, an outgroup that includes paralogs in some gamma-proteobacteria and the n-terminal region of DinG from some low GC gram positive bacteria. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, Degradation of DNA] 217 -273147 TIGR00574 dnl1 DNA ligase I, ATP-dependent (dnl1). All proteins in this family with known functions are ATP-dependent DNA ligases. Functions include DNA repair, DNA replication, and DNA recombination (or any process requiring ligation of two single-stranded DNA sections). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 514 -273148 TIGR00575 dnlj DNA ligase, NAD-dependent. All proteins in this family with known functions are NAD-dependent DNA ligases. Functions of these proteins include DNA repair, DNA replication, and DNA recombination. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). The member of this family from Treponema pallidum differs in having three rather than just one copy of the BRCT (BRCA1 C Terminus) domain (pfam00533) at the C-terminus. It is included in the seed. [DNA metabolism, DNA replication, recombination, and repair] 652 -273149 TIGR00576 dut deoxyuridine 5'-triphosphate nucleotidohydrolase (dut). The main function of these proteins is in maintaining the levels of dUTP in the cell to prevent dUTP incorporation into DNA during DNA replication. Pol proteins in viruses are very similar to this protein family. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Changed role from 132 to 123. RTD [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 142 -273150 TIGR00577 fpg DNA-formamidopyrimidine glycosylase. All proteins in the FPG family with known functions are FAPY-DNA glycosylases that function in base excision repair. Homologous to endonuclease VIII (nei). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 272 -273151 TIGR00578 ku70 ATP-dependent DNA helicase II, 70 kDa subunit (ku70). Proteins in this family are involved in non-homologous end joining, a process used for the repair of double stranded DNA breaks. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Cutoff does not detect the putative ku70 homologs in yeast. [DNA metabolism, DNA replication, recombination, and repair] 586 -273152 TIGR00580 mfd transcription-repair coupling factor (mfd). All proteins in this family for which functions are known are DNA-dependent ATPases that function in the process of transcription-coupled DNA repair in which the repair of the transcribed strand of actively transcribed genes is repaired at a higher rate than the repair of non-transcribed regions of the genome and than the non-transcribed strand of the same gene. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). This family is closely related to the RecG and UvrB families. [DNA metabolism, DNA replication, recombination, and repair] 926 -129670 TIGR00581 moaC molybdenum cofactor biosynthesis protein MoaC. MoaC catalyzes an early step in molybdenum cofactor biosynthesis in E. coli. The Arabidopsis homolog Cnx3 complements MoaC deficiency in E. coli. Eukarotic members of this family branch within the bacterial branch, with the archaeal members as an apparent outgroup. This protein is absent in a number of the pathogens with smaller genomes, including Mycoplasmas, Chlamydias, and spirochetes, but is found in most other complete genomes to date. The homolog form Synechocystis sp. is fused to a MobA-homologous region and is an outlier to all other bacterial forms by both neighbor-joining and UPGMA analyses. Members of this family are well-conserved. The seed for this model excludes both archaeal sequences and the most divergent bacterial sequences, but still finds all candidate MoaC sequences easily between trusted and noise cutoffs. We suggest that sequences branching outside the set that contains all seed members be regarded only as putative functional equivalents of MoaC unless and until a member of the archaeal outgroup is shown to have equivalent function. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 147 -273153 TIGR00583 mre11 DNA repair protein (mre11). All proteins in this family for which functions are known are subunits of a nuclease complex made up of multiple proteins including MRE11 and RAD50 homologs. The functions of this nuclease complex include recombinational repair and non-homolgous end joining. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). The proteins in this family are distantly related to proteins in the SbcCD complex of bacteria. [DNA metabolism, DNA replication, recombination, and repair] 405 -273154 TIGR00584 mug mismatch-specific thymine-DNA glycosylate (mug). All proteins in this family for whcih functions are known are G-T or G-U mismatch glycosylases that function in base excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Used 2pf model. [DNA metabolism, DNA replication, recombination, and repair] 328 -273155 TIGR00585 mutl DNA mismatch repair protein MutL. All proteins in this family for which the functions are known are involved in the process of generalized mismatch repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 312 -200031 TIGR00586 mutt mutator mutT protein. All proteins in this family for which functions are known are involved in repairing oxidative damage to dGTP (they are 8-oxo-dGTPases). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Lowering the threshold picks up members of MutT superfamily well. [DNA metabolism, DNA replication, recombination, and repair] 128 -273156 TIGR00587 nfo apurinic endonuclease (APN1). All proteins in this family for which functions are known are 5' AP endonculeases that are used in base excision repair and the repair of abasic sites in DNA.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 274 -211589 TIGR00588 ogg 8-oxoguanine DNA-glycosylase (ogg). All proteins in this family for which functions are known are 8-oxo-guanaine DNA glycosylases that function in base excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). This family is distantly realted to the Nth-MutY superfamily. [DNA metabolism, DNA replication, recombination, and repair] 310 -273157 TIGR00589 ogt O-6-methylguanine DNA methyltransferase. All proteins in this family for which functions are known are involved alkyl-DNA transferases which remove alkyl groups from DNA as part of alkylation DNA repair. Some of the proteins in this family are also transcription regulators and have a distinct transcription regulatory domain. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 80 -273158 TIGR00590 pcna proliferating cell nuclear antigen (pcna). All proteins in this family for which functions are known form sliding DNA clamps that are used in DNA replication processes. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 259 -129679 TIGR00591 phr2 photolyase PhrII. All proteins in this family for which functions are known are DNA-photolyases used for the direct repair of UV irradiation induced DNA damage. Some repair 6-4 photoproducts while others repair cyclobutane pyrimidine dimers. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 454 -273159 TIGR00592 pol2 DNA polymerase (pol2). All proteins in this superfamily for which functions are known are DNA polymerases.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 1172 -273160 TIGR00593 pola DNA polymerase I. All proteins in this family for which functions are known are DNA polymerases Many also have an exonuclease motif. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 887 -273161 TIGR00594 polc DNA-directed DNA polymerase III (polc). All proteins in this family for which functions are known are DNA polymerases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 1022 -273162 TIGR00595 priA primosomal protein N'. All proteins in this family for which functions are known are components of the primosome which is involved in replication, repair, and recombination.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 505 -273163 TIGR00596 rad1 DNA repair protein (rad1). All proteins in this family for which functions are known are components in a multiprotein endonuclease complex (usually made up of Rad1 and Rad10 homologs). This complex is used primarily for nucleotide excision repair but also for some aspects of recombinational repair in some species. Most Archaeal species also have homologs of these genes, but the function of these Archaeal genes is not known, so we have set our cutoff to only pick up the eukaryotic genes.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford Universit [DNA metabolism, DNA replication, recombination, and repair] 814 -129685 TIGR00597 rad10 DNA repair protein rad10. All proteins in this family for which functions are known are components in a multiprotein endonuclease complex (usually made up of Rad1 and Rad10 homologs). This complex is used primarily for nucleotide excision repair but also for some aspects of recombination repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 112 -273164 TIGR00598 rad14 DNA repair protein. All proteins in this family for which functions are known are used for the recognition of DNA damage as part of nucleotide excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 172 -273165 TIGR00599 rad18 DNA repair protein rad18. All proteins in this family for which functions are known are involved in nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 397 -273166 TIGR00600 rad2 DNA excision repair protein (rad2). All proteins in this family for which functions are known are flap endonucleases that generate the 3' incision next to DNA damage as part of nucleotide excision repair. This family is related to many other flap endonuclease families including the fen1 family. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 1034 -273167 TIGR00601 rad23 UV excision repair protein Rad23. All proteins in this family for which functions are known are components of a multiprotein complex used for targeting nucleotide excision repair to specific parts of the genome. In humans, Rad23 complexes with the XPC protein. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 378 -129690 TIGR00602 rad24 checkpoint protein rad24. All proteins in this family for which functions are known are involved in DNA damage tolerance (likely cell cycle checkpoints).This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 637 -273168 TIGR00603 rad25 DNA repair helicase rad25. All proteins in this family for which functions are known are DNA-DNA helicases used for the initiation of nucleotide excision repair and transacription as part of the TFIIH complex.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 732 -273169 TIGR00604 rad3 DNA repair helicase (rad3). All proteins in this family for which funcitons are known are DNA-DNA helicases that funciton in the initiation of transcription and nucleotide excision repair as part of the TFIIH complex. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 705 -273170 TIGR00605 rad4 DNA repair protein rad4. All proteins in this family for which functions are known are involved in targeting nucleotide excision repair to specific regions of the genome.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 713 -129694 TIGR00606 rad50 rad50. All proteins in this family for which functions are known are involvedin recombination, recombinational repair, and/or non-homologous end joining.They are components of an exonuclease complex with MRE11 homologs. This family is distantly related to the SbcC family of bacterial proteins.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). 1311 -129695 TIGR00607 rad52 recombination protein rad52. All proteins in this family for which functions are known are involved in recombination and recombination repair. Their exact biochemical activity is not yet known.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 161 -273171 TIGR00608 radc DNA repair protein radc. The genes in this family for which the functions are known have an as yet porrly defined role in determining sensitivity to DNA damaging agents such as UV irradiation. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 218 -273172 TIGR00609 recB exodeoxyribonuclease V, beta subunit. The RecBCD holoenzyme is a multifunctional nuclease with potent ATP-dependent exodeoxyribonuclease activity. Ejection of RecD, as occurs at chi recombinational hotspots, cripples exonuclease activity in favor of recombinagenic helicase activity. All proteins in this family for which functions are known are DNA-DNA helicases that are used as part of an exonuclease-helicase complex (made up of RecBCD homologs) that function to generate substrates for the initiation of recombination and recombinational repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 1087 -273173 TIGR00611 recf recF protein. All proteins in this family for which functions are known are DNA binding proteins that assist the filamentation of RecA onto DNA for the initiation of recombination or recombinational repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 365 -273174 TIGR00612 ispG_gcpE 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase. This protein of previously unknown biochemical function has now been identified as an enzyme of the non-mevalonate pathway of IPP biosynthesis. Chlamydial members of the family have a long insert. The family is largely restricted to Bacteria, where it is widely but not universally distributed. No homology can be detected between the GcpE family and other proteins. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 346 -273175 TIGR00613 reco DNA repair protein RecO. All proteins in this family for which functions are known are DNA binding proteins that are involved in the initiation of recombination or recombinational repair. [DNA metabolism, DNA replication, recombination, and repair] 241 -129701 TIGR00614 recQ_fam ATP-dependent DNA helicase, RecQ family. All proteins in this family for which functions are known are 3'-5' DNA-DNA helicases. These proteins are used for recombination, recombinational repair, and possibly maintenance of chromosome stability. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 470 -273176 TIGR00615 recR recombination protein RecR. All proteins in this family for which functions are known are involved in the initiation of recombination and recombinational repair. RecF is also required. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 195 -129703 TIGR00616 rect recombinase, phage RecT family. All proteins in this family for which functions are known bind ssDNA and are involved in the the pairing of homologous DNA This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). RecT and homologs are found in prophage regions of bacterial genomes. RecT works with a partner protein, RecE. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 241 -273177 TIGR00617 rpa1 replication factor-a protein 1 (rpa1). All proteins in this family for which functions are known are part of a multiprotein complex made up of homologs of RPA1, RPA2 and RPA3 that bind ssDNA and function in the recognition of DNA damage for nucleotide excision repairThis family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 608 -129705 TIGR00618 sbcc exonuclease SbcC. All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 1042 -273178 TIGR00619 sbcd exonuclease SbcD. All proteins in this family for which functions are known are double-stranded DNA exonuclease (as part of a complex with SbcC homologs). This complex functions in the initiation of recombination and recombinational repair and is particularly important in regulating the stability of DNA sections that can form secondary structures. This family is likely homologous to the MRE11 family. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 253 -273179 TIGR00621 ssb single stranded DNA-binding protein (ssb). All proteins in this family for which functions are known are single-stranded DNA binding proteins that function in many processes including transcription, repair, replication and recombination. Members encoded between genes for ribosomal proteins S6 and S18 should be annotated as primosomal protein N (PriB). Forms in gamma-protoeobacteria are much shorter and poorly recognized by this model. Additional members of this family include phage proteins. Eukaryotic members are organellar proteins. [DNA metabolism, DNA replication, recombination, and repair] 164 -129709 TIGR00622 ssl1 transcription factor ssl1. All proteins in this family for which functions are known are components of the TFIIH complex which is involved in the initiaiton of transcription and nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 112 -129710 TIGR00623 sula cell division inhibitor SulA. All proteins in this family for which the functions are known are cell division inhibitors. In E. coli, SulA is one of the SOS regulated genes. [DNA metabolism, DNA replication, recombination, and repair] 168 -129711 TIGR00624 tag DNA-3-methyladenine glycosylase I. All proteins in this family are alkylation DNA glycosylases that function in base excision repair This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 179 -273180 TIGR00625 tfb2 Transcription factor tfb2. All proteins in this family are part of the TFIIH complex which is involved in the initiation of transcription and nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 448 -273181 TIGR00627 tfb4 transcription factor tfb4. All proteins in this family are part of the TFIIH complex which is involved in the initiation of transcription and nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 279 -273182 TIGR00628 ung uracil-DNA glycosylase. All proteins in this family for which functions are known are uracil-DNA glycosylases that function in base excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 211 -273183 TIGR00629 uvde UV damage endonuclease UvdE. All proteins in this family for which functions are known are UV dimer endonucleases that function in an alternative nucleotide excision repair process. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 312 -273184 TIGR00630 uvra excinuclease ABC, A subunit. This family is a member of the ABC transporter superfamily of proteins of which all members for which functions are known except the UvrA proteins are involved in the transport of material through membranes. UvrA orthologs are involved in the recognition of DNA damage as a step in nucleotide excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 925 -273185 TIGR00631 uvrb excinuclease ABC, B subunit. All proteins in this family for wich functions are known are DNA helicases that function in the nucleotide excision repair and are endonucleases that make the 3' incision next to DNA damage. They are part of a pathway requiring UvrA, UvrB, UvrC, and UvrD homologs. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University) [DNA metabolism, DNA replication, recombination, and repair] 655 -211591 TIGR00632 vsr DNA mismatch endonuclease Vsr. All proteins in this family for which functions are known are G:T mismatch endonucleases that function in a specialized mismatch repair process used usually to repair G:T mismatches in specific sections of the genome. This family was based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). Members of this family typically are found near to a DNA cytosine methyltransferase. [DNA metabolism, DNA replication, recombination, and repair] 117 -273186 TIGR00633 xth exodeoxyribonuclease III (xth). All proteins in this family for which functions are known are 5' AP endonucleases that funciton in base excision repair and the repair of abasic sites in DNA.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 254 -273187 TIGR00634 recN DNA repair protein RecN. All proteins in this family for which functions are known are ATP binding proteins involved in the initiation of recombination and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair] 563 -129721 TIGR00635 ruvB Holliday junction DNA helicase, RuvB subunit. All proteins in this family for which functions are known are 5'-3' DNA helicases that, as part of a complex with RuvA homologs serve as a 5'-3' Holliday junction helicase. RuvA specifically binds Holliday junctions as a sandwich of two tetramers and maintains the configuration of the junction. It forms a complex with two hexameric rings of RuvB, the subunit that contains helicase activity. The complex drives ATP-dependent branch migration of the Holliday junction recombination intermediate. The endonuclease RuvC resolves junctions. [DNA metabolism, DNA replication, recombination, and repair] 305 -213544 TIGR00636 PduO_Nterm ATP:cob(I)alamin adenosyltransferase. This model represents as ATP:cob(I)alamin adenosyltransferase family corresponding to the N-terminal half of Salmonella PduO, a 1,2-propanediol utilization protein that probably is bifunctional. PduO represents one of at least three families of ATP:corrinoid adenosyltransferase: others are CobA (which partially complements PduO) and EutT. It was not clear originally whether ATP:cob(I)alamin adenosyltransferase activity resides in the N-terminal region of PduO, modeled here, but this has now become clear from the characterization of MeaD from Methylobacterium extorquens. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 171 -273188 TIGR00637 ModE_repress ModE molybdate transport repressor domain. ModE is a molybdate-activated repressor of the molybdate transport operon in E. coli. It consists of the domain represented by this model and two tandem copies of mop-like domain, where Mop proteins are a family of 68-residue molybdenum-pterin binding proteins of Clostridium pasteurianum. This model also represents the full length of a pair of archaeal proteins that lack Mop-like domains. PSI-BLAST analysis shows similarity to helix-turn-helix regulatory proteins. [Regulatory functions, Other] 99 -273189 TIGR00638 Mop molybdenum-pterin binding domain. This model describes a multigene family of molybdenum-pterin binding proteins of about 70 amino acids in Clostridium pasteurianum, as a tandemly-repeated domain C-terminal to an unrelated domain in ModE, a molybdate transport gene repressor of E. coli, and in single or tandemly paired domains in several related proteins. [Transport and binding proteins, Anions] 69 -161973 TIGR00639 PurN phosphoribosylglycinamide formyltransferase, formyltetrahydrofolate-dependent. This model describes phosphoribosylglycinamide formyltransferase (GAR transformylase), one of several proteins in formyl_transf (pfam00551). This enzyme uses formyl tetrahydrofolate as a formyl group donor to produce 5'-phosphoribosyl-N-formylglycinamide. PurT, a different GAR transformylase, uses ATP and formate rather than formyl tetrahydrofolate. Experimental proof includes complementation of E. coli purN mutants by orthologs from vertebrates (where it is a domain of a multifunctional protein), Bacillus subtilis, and Arabidopsis. No archaeal example was detected. In phylogenetic analyses, the member from Saccharomyces cerevisiae shows a long branch length but membership in the family, while the formyltetrahydrofolate deformylases form a closely related outgroup. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 190 -129726 TIGR00640 acid_CoA_mut_C methylmalonyl-CoA mutase C-terminal domain. Methylmalonyl-CoA mutase (EC 5.4.99.2) catalyzes a reversible isomerization between L-methylmalonyl-CoA and succinyl-CoA. The enzyme uses an adenosylcobalamin cofactor. It may be a homodimer, as in mitochondrion, or a heterodimer with partially homologous beta chain that does not bind the adenosylcobalamin cofactor, as in Propionibacterium freudenreichii. The most similar archaeal sequences are separate chains, such as AF2215 and AF2219 of Archaeoglobus fulgidus, that correspond roughly to the first 500 and last 130 residues, respectively of known methylmalonyl-CoA mutases. This model describes the C-terminal domain subfamily. In a neighbor-joining tree (methylaspartate mutase S chain as the outgroup), AF2219 branches with a coenzyme B12-dependent enzyme known not to be 5.4.99.2. 132 -273190 TIGR00641 acid_CoA_mut_N methylmalonyl-CoA mutase N-terminal domain. Methylmalonyl-CoA mutase (EC 5.4.99.2) catalyzes a reversible isomerization between L-methylmalonyl-CoA and succinyl-CoA. The enzyme uses an adenosylcobalamin cofactor. It may be a homodimer, as in mitochondrion, or a heterodimer with partially homologous beta chain that does not bind the adenosylcobalamin cofactor, as in Propionibacterium freudenreichii. The most similar archaeal sequences are separate chains, such as AF2215 abd AF2219 of Archaeoglobus fulgidus, that correspond roughly to the first 500 and last 130 residues, respectively of known methylmalonyl-CoA mutases. This model describes the N-terminal domain subfamily. In a neighbor-joining tree, AF2215 branches with a bacterial isobutyryl-CoA mutase, which is also the same length. Scoring between the noise and trusted cutoffs are the non-catalytic, partially homologous beta chains from certain heterodimeric examples of 5.4.99.2. 526 -273191 TIGR00642 mmCoA_mut_beta methylmalonyl-CoA mutase, heterodimeric type, beta chain. The adenosylcobalamin-binding, catalytic chain of methylmalonyl-CoA mutase may form homodimers, as in mitochondrion and E. coli, or heterodimers with a shorter, homologous chain that does not bind adenosylcobalamin. This model describes this non-catalytic beta chain, as found in the enzyme from Propionibacterium freudenreichii, for which the 3-dimensional structure has been solved. [Central intermediary metabolism, Other] 619 -273192 TIGR00643 recG ATP-dependent DNA helicase RecG. [DNA metabolism, DNA replication, recombination, and repair] 630 -273193 TIGR00644 recJ single-stranded-DNA-specific exonuclease RecJ. All proteins in this family are 5'-3' single-strand DNA exonucleases. These proteins are used in some aspects of mismatch repair, recombination, and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair] 539 -129731 TIGR00645 HI0507 TIGR00645 family protein. This conserved hypothetical protein with four predicted transmembrane regions is found in E. coli, Haemophilus influenzae, and Helicobacter pylori, among completed genomes. A similar protein from Aquifex aeolicus appears to share a central region of homology and a similar overall arrangement of hydrophobic stretches, and forms a bidirectional best hit with several members of the seed alignment. However, it is uncertain whether the observed similarity represents full-length homology and/or equivalent function, and so it is excluded from the seed and scores below the trusted cutoff. [Hypothetical proteins, Conserved] 167 -129732 TIGR00646 MG010 DNA primase-related protein. The DNA primase DnaG of E. coli and its apparent orthologs in other eubacterial species are approximately 600 residues in length. Within this set, a conspicuous outlier in percent identity, as seen in a UPGMA difference tree, is the branch containing the Mycoplasmas. This lineage is also unique in containing the small, DNA primase-related protein modelled here, which is homologous to the central third of DNA primase. Several small regions of sequence similarity specifically to Mycoplasma sequences rather than to all DnaG homologs suggests that the divergence of this protein from DnaG post-dated the separation of bacterial lineages. The function of this DNA primase-related protein is unknown. [Unknown function, General] 218 -273194 TIGR00647 DNA_bind_WhiA DNA-binding protein WhiA. This family describes a DNA-binding protein widely conserved in Gram-positive bacteria, and occasionally occurring elsewhere, such as in Thermotoga. It is associated with cell division, and in sporulating organisms with sporulation. [Cellular processes, Cell division] 304 -129734 TIGR00648 recU recombination protein U. The Bacillus protein has been shown to be required for DNA recombination and repair. RJD 11/20/00 [DNA metabolism, DNA replication, recombination, and repair] 169 -273195 TIGR00649 MG423 beta-CASP ribonuclease, RNase J family. This family of metalloenzymes includes RNase J1 and RNase J2, involved in mRNA degradation in a wide range of organism. [Transcription, Degradation of RNA] 422 -273196 TIGR00651 pta phosphate acetyltransferase. Alternate name: phosphotransacetylase Model contains a gene from E.coli coding for ethanolamine utilization protein (euti) and also contains similarity to malate oxidoreductases [Central intermediary metabolism, Other, Energy metabolism, Fermentation] 303 -273197 TIGR00652 DapF diaminopimelate epimerase. [Amino acid biosynthesis, Aspartate family] 267 -273198 TIGR00653 GlnA glutamine synthetase, type I. Alternate name: glutamate--ammonia ligase. This model represents the dodecameric form, which can be subdivided into 1-alpha and 1-beta forms. The phylogeny of the 1-alpha and 1-beta forms appears polyphyletic. E. coli, Synechocystis PCC6803, Aquifex aeolicus, and the crenarcheon Sulfolobus acidocaldarius have form 1-beta, while Bacillus subtilis, Thermotoga maritima, and various euryarchaea has form 1-alpha. The 1-beta dodecamer from the crenarcheon Sulfolobus acidocaldarius differs from that in E. coli in that it is not regulated by adenylylation. [Amino acid biosynthesis, Glutamate family] 459 -129739 TIGR00654 PhzF_family phenazine biosynthesis protein PhzF family. Members of this family show a distant global similarity to diaminopimelate epimerases, which can be taken as the outgroup. One member of this family has been shown to act as an enzyme in the biosynthesis of the antibiotic phenazine in Pseudomonas aureofaciens. The function in other species is unclear. [Cellular processes, Toxin production and resistance] 297 -273199 TIGR00655 PurU formyltetrahydrofolate deformylase. This model describes formyltetrahydrofolate deformylases. The enzyme is a homohexamer. Sequences from a related enzyme formyl tetrahydrofolate-specific enzyme, phosphoribosylglycinamide formyltransferase, serve as an outgroup for phylogenetic analysis. Putative members of this family, scoring below the trusted cutoff, include a sequence from Rhodobacter capsulatus that lacks an otherwise conserved C-terminal region. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 280 -273200 TIGR00656 asp_kin_monofn aspartate kinase, monofunctional class. This model describes a subclass of aspartate kinases. These are mostly Lys-sensitive and not fused to homoserine dehydrogenase, unlike some Thr-sensitive and Met-sensitive forms. Homoserine dehydrogenase is part of Thr and Met but not Lys biosynthetic pathways. Aspartate kinase catalyzes a first step in the biosynthesis from Asp of Lys (and its precursor diaminopimelate), Met, and Thr. In E. coli, a distinct isozyme is inhibited by each of the three amino acid products. The Met-sensitive (I) and Thr-sensitive (II) forms are bifunctional enzymes fused to homoserine dehydrogenases and form homotetramers, while the Lys-sensitive form (III) is a monofunctional homodimer. The Lys-sensitive enzyme of Bacillus subtilis resembles the E. coli form but is an alpha 2/beta 2 heterotetramer, where the beta subunit is translated from an in-phase alternative initiator at Met-246. The protein slr0657 from Synechocystis PCC6803 is extended by a duplication of the C-terminal region corresponding to the beta chain. Incorporation of a second copy of the C-terminal domain may be quite common in this subgroup of aspartokinases. [Amino acid biosynthesis, Aspartate family] 400 -273201 TIGR00657 asp_kinases aspartate kinase. Aspartate kinase catalyzes a first step in the biosynthesis from Asp of Lys (and its precursor diaminopimelate), Met, and Thr. In E. coli, a distinct isozyme is inhibited by each of the three amino acid products. The Met-sensitive (I) and Thr-sensitive (II) forms are bifunctional enzymes fused to homoserine dehydrogenases and form homotetramers, while the Lys-sensitive form (III) is a monofunctional homodimer.The Lys-sensitive enzyme of Bacillus subtilis resembles the E. coli form but is an alpha 2/beta 2 heterotetramer, where the beta subunit is translated from an in-phase alternative initiator at Met-246. This may be a feature of a number of closely related forms, including a paralog from B. subtilis. [Amino acid biosynthesis, Aspartate family] 441 -129743 TIGR00658 orni_carb_tr ornithine carbamoyltransferase. This family of ornithine carbamoyltransferases (OTCase) is in a superfamily with the related enzyme aspartate carbamoyltransferase. Most known examples are anabolic, playing a role in arginine biosynthesis, but some are catabolic. Most OTCases are homotrimers, but the homotrimers are organized into dodecamers built from four trimers in at least two species; the catabolic OTCase of Pseudomonas aeruginosa is allosterically regulated, while OTCase of the extreme thermophile Pyrococcus furiosus shows both allostery and thermophily. [Amino acid biosynthesis, Glutamate family] 304 -273202 TIGR00659 TIGR00659 TIGR00659 family protein. Members of this small but broadly distibuted (Gram-positive, Gram-negative, and Archaeal) family appear to have multiple transmembrane segments. The function is unknown. A homolog, LrgB of Staphylococcus aureus, in the same small superfamily but in an outgroup to this subfamily, is regulated by LytSR and is suggested to act as a murein hydrolase. Of the three paralogous proteins in B. subtilis, one is a full length member of this family, one lacks the C-terminal 60 residues and has an additional 128 N-terminal residues but branches within the family in a phylogenetic tree, and one is closely related to LrgB and part of the outgroup. [Hypothetical proteins, Conserved] 226 -273203 TIGR00661 MJ1255 conserved hypothetical protein. This model represents nearly the full length of MJ1255 from Methanococcus jannaschii and of an unpublished protein from Vibrio cholerae, as well as the C-terminal half of a protein from Methanobacterium thermoautotrophicum. A small region (~50 amino acids) within the domain appears related to a family of sugar transferases. [Hypothetical proteins, Conserved] 321 -273204 TIGR00663 dnan DNA polymerase III, beta subunit. All proteins in this family for which functions are known are components of the DNA polymerase III complex (beta subunit). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 367 -273205 TIGR00664 DNA_III_psi DNA polymerase III, psi subunit. This small subunit of the DNA polymerase III holoenzyme in E. coli and related species appearsto have a narrow taxonomic distribution. It is not found so far outside the gamma subdivision proteobacteria. [DNA metabolism, DNA replication, recombination, and repair] 124 -273206 TIGR00665 DnaB replicative DNA helicase. This model describes the helicase DnaB, a homohexameric protein required for DNA replication. The homohexamer can form a ring around a single strand of DNA near a replication fork. An intein of > 400 residues is found at a conserved location in DnaB of Synechocystis PCC6803, Rhodothermus marinus (both experimentally confirmed), and Mycobacterium tuberculosis. The intein removes itself by a self-splicing reaction. The seed alignment contains inteins so that the model built from the seed alignment will model a low cost at common intein insertion sites. [DNA metabolism, DNA replication, recombination, and repair] 432 -200042 TIGR00666 PBP4 D-alanyl-D-alanine carboxypeptidase, serine-type, PBP4 family. In E. coli, this protein is known as penicillin binding protein 4 (dacB). A signal sequence is cleaved from a precursor form. The protein is described as periplasmic in E. coli (Gram-negative) and extracellular in Actinomadura R39 (Gram-positive). Unlike some other proteins with similar activity, it does not form transpeptidation. It is not essential for viability. This family is related to class A beta-lactamases. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 333 -273207 TIGR00667 aat leucyl/phenylalanyl-tRNA--protein transferase. The N-terminal residue controls the biological half-life of many proteins via the N-end rule pathway. This enzyme transfers a Leu or Phe to the amino end of certain proteins to enable degradation. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 185 -273208 TIGR00668 apaH bis(5'-nucleosyl)-tetraphosphatase (symmetrical). Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is a regulatory metabolite of stress conditions. It is hydrolyzed to two ADP by this enzyme. Alternate names include diadenosine-tetraphosphatase and Ap4A hydrolase. [Cellular processes, Adaptations to atypical conditions] 279 -129752 TIGR00669 asnA aspartate--ammonia ligase, AsnA-type. This model represents one of two non-homologous forms of aspartate--ammonia ligase (asparagine synthetase) found in E. coli. This type is also found in Haemophilus influenzae, Treponema pallidum and Lactobacillus delbrueckii, but appears to have a very limited distribution. The fact that the protein from the H. influenzae is more than 70 % identical to that from the spirochete Treponema pallidum, but less than 65 % identical to that from the closely related E. coli, strongly suggests lateral transfer. [Amino acid biosynthesis, Aspartate family] 330 -273209 TIGR00670 asp_carb_tr aspartate carbamoyltransferase. Aspartate transcarbamylase (ATCase) is an alternate name.PyrB encodes the catalytic chain of aspartate carbamoyltransferase, an enzyme of pyrimidine biosynthesis, which organizes into trimers. In some species, including E. coli and the Archaea but excluding Bacillus subtilis, a regulatory subunit PyrI is also present in an allosterically regulated hexameric holoenzyme. Several molecular weight classes of ATCase are described in MEDLINE:96303527 and often vary within taxa. PyrB and PyrI are fused in Thermotoga maritima.Ornithine carbamoyltransferases are in the same superfamily and form an outgroup. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 301 -273210 TIGR00671 baf pantothenate kinase, type III. This model describes a family of proteins found in a single copy in at least ten different early completed bacterial genomes. The only characterized member of the family is Bvg accessory factor (Baf), a protein required, in addition to the regulatory operon bvgAS, for heterologous transcription of the Bordetella pertussis toxin operon (ptx) in E. coli. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 243 -129755 TIGR00672 cdh CDP-diacylglycerol diphosphatase, bacterial type. This model finds only bacterial examples of CDP-diacylglycerol pyrophosphatase. The member from Mycobacterium tuberculosis, the only non-proteobacterial example, is only tentatively identified and scores below the trusted cutoff. No homology is detected to functionally similar mammalian enzymes. Alternate names for this enzyme include CDP-diglyceride hydrolase and CDP-diacylglycerol hydrolase. [Fatty acid and phospholipid metabolism, Biosynthesis] 250 -213549 TIGR00673 cynS cyanase. Alternate names include cyanate C-N-lyase, cyanate hydratase, and cyanate hydrolase. [Cellular processes, Detoxification] 150 -129757 TIGR00674 dapA 4-hydroxy-tetrahydrodipicolinate synthase. Members of this family are 4-hydroxy-tetrahydrodipicolinate synthase, previously (incorrectly) called dihydrodipicolinate synthase. It is a homotetrameric enzyme of lysine biosynthesis. E. coli has several paralogs closely related to dihydrodipicoline synthase (DapA), as well as the more distant N-acetylneuraminate lyase. In Pyrococcus horikoshii, the bidirectional best hit with E. coli is to an uncharacterized paralog of DapA, not DapA itself, and it is omitted from the seed. The putative members from the Chlamydias (pathogens with a parasitic metabolism) are easily the most divergent members of the multiple alignment. [Amino acid biosynthesis, Aspartate family] 285 -273211 TIGR00675 dcm DNA-methyltransferase (dcm). All proteins in this family for which functions are known are DNA-cytosine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 315 -273212 TIGR00676 fadh2 5,10-methylenetetrahydrofolate reductase, prokaryotic form. The enzyme activities methylenetetrahydrofolate reductase (EC 1.5.1.20) and 5,10-methylenetetrahydrofolate reductase (FADH) (EC 1.7.99.5) differ in that 1.5.1.20 (assigned in many eukaryotes) is defined to use NADP+ as an acceptor, while 1.7.99.5 (assigned in many bacteria) is flexible with respect to the acceptor; both convert 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate. From a larger set of proteins assigned as 1.5.1.20 and 1.7.99.5, this model describes the subset of proteins found in bacteria, and currently designated 1.7.99.5. This protein is an FAD-containing flavoprotein. [Amino acid biosynthesis, Aspartate family] 272 -129760 TIGR00677 fadh2_euk methylenetetrahydrofolate reductase, eukaryotic type. The enzyme activities methylenetetrahydrofolate reductase (EC 1.5.1.20) and 5,10-methylenetetrahydrofolate reductase (FADH) (EC 1.7.99.5) differ in that 1.5.1.20 (assigned in many eukaryotes) is defined to use NADP+ as an acceptor, while 1.7.99.5 (assigned in many bacteria) is flexible with respect to the acceptor; both convert 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate. From a larger set of proteins assigned as 1.5.1.20 and 1.7.99.5, this model describes the subset of proteins found in eukaryotes and designated 1.5.1.20. This protein is an FAD-containing flavoprotein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 281 -273213 TIGR00678 holB DNA polymerase III, delta' subunit. This model describes the N-terminal half of the delta' subunit of DNA polymerase III. Delta' is homologous to the gamma and tau subunits, which form an outgroup for phylogenetic comparison. The gamma/tau branch of the tree is much more tighly conserved than the delta' branch, and some members of that branch score more highly against this model than some proteins classisified as delta'. The noise cutoff is set to detect weakly scoring delta' subunits rather than to exclude gamma/tau subunits. At position 126-127 of the seed alignment, this family lacks the HM motif of gamma/tau; at 132 it has a near-invariant A vs. an invariant F in gamma/tau. [DNA metabolism, DNA replication, recombination, and repair] 188 -273214 TIGR00679 hpr-ser Hpr(Ser) kinase/phosphatase. Members of this family are the bifunctional enzyme, HPr kinase/phosphatase. All members of the seed alignment (n=57) have a gene tightly clustered with a gene for the phospocarrier protein HPr, its target. [Regulatory functions, Protein interactions, Signal transduction, PTS] 300 -273215 TIGR00680 kdpA K+-transporting ATPase, KdpA. Kdp is a high affinity ATP-driven K+ transport system in Escherichia coli. It is composed of three membrane-bound subunits, KdpA, KdpB and KdpC and one small peptide, KdpF. KdpA is the K+-transporting subunit of this complex. During assembly of the complex, KdpA and KdpC bind to each other. This interaction is thought to stabilize the complex [medline:9858692]. Data indicates that KdpC might connect the KdpA, the K+-transporting subunit, to KdpB, the ATP-hydrolyzing (energy providing) subunit [medline:9858692]. [Transport and binding proteins, Cations and iron carrying compounds] 563 -129764 TIGR00681 kdpC K+-transporting ATPase, C subunit. This chain has a single predicted transmembrane region near the amino end. It is part of a K+-transport ATPase that contains two other membrane-bound subunits, KdpA and KdpB, and a small subunit KdpF. KdpA is the K+-translocating subunit, KdpB the ATP-hydrolyzing subunit. During assembly of the complex, KdpA and KdpC bind to each other. This interaction is thought to stabilize the complex [MEDLINE:9858692]. Data indicates that KdpC might connect the KdpA, the K+-transporting subunit, to KdpB, the ATP-hydrolyzing (energy providing) subunit [MEDLINE:9858692]. [Transport and binding proteins, Cations and iron carrying compounds] 187 -273216 TIGR00682 lpxK tetraacyldisaccharide 4'-kinase. Also called lipid-A 4'-kinase. This essential gene encodes an enzyme in the pathway of lipid A biosynthesis in Gram-negative organisms. A single copy of this protein is found in Gram-negative bacteria. PSI-BLAST converges on this set of apparent orthologs without identifying any other homologs. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 311 -273217 TIGR00683 nanA N-acetylneuraminate lyase. N-acetylneuraminate lyase is also known as N-acetylneuraminic acid aldolase, sialic acid aldolase, or sialate lyase. It is an intracellular enzyme. The structure of this homotetrameric enzyme related to dihydrodipicolinate synthase is known. In Clostridium tertium, the enzyme appears to be in an operon with a secreted sialidase that releases sialic acid from host sialoglycoconjugates. In several E. coli strains, however, this enzyme is responsible for N-acetyl-D-neuraminic acid synthesis for capsule production by condensing N-acetyl-D-mannosamine and pyruvate. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Central intermediary metabolism, Amino sugars] 293 -273218 TIGR00684 narJ nitrate reductase molybdenum cofactor assembly chaperone. This protein is termed NarJ in most species that have a single copy, and has been called the delta subunit of nitrate reductase. However, although it is required for correct assembly of active enzyme, it dissociates and is not part of the enzyme. Two hits to this model are found each in E. coli and in Mycobacterium tuberculosis, but in each case duplication to create paralogs appears to be recent. The NarX protein of Mycobacterium tuberculosis includes one of these paralogs as a domain, fused to structural domains of nitrate reductases before and after the NarJ-homologous region. [Protein fate, Protein folding and stabilization] 152 -273219 TIGR00685 T6PP trehalose-phosphatase. Trehalose, a neutral disaccharide of two glucose residues, is an important osmolyte for dessication and/or salt tolerance in a number of prokaryotic and eukaryotic species, including E. coli, Saccharomyces cerevisiae, and Arabidopsis thaliana. Many bacteria also utilize trehalose in the synthesis of trehalolipids, specialized cell wall constituents believed to be involved in the uptake of hydrophobic substances. Trehalose dimycolate (TDM, cord factor) and related substances are important constituents of the mycobacterial waxy coat and responsible for various clinically important immunological interactions with host organism. This enzyme, trehalose-phosphatase, removes a phosphate group in the final step of trehalose biosynthesis. The trehalose-phosphatase from Saccharomyces cerevisiae is fused to the synthase. At least 18 distinct sequences from Arabidopsis have been identified, roughly half of these are of the fungal type, with a fused synthase and half are like the bacterial members having only the phosphatase domain. It has been suggested that trehalose is being used in Arabidopsis as a regulatory molecule in development and possibly other processes. [Cellular processes, Adaptations to atypical conditions] 244 -273220 TIGR00686 phnA alkylphosphonate utilization operon protein PhnA. The protein family includes an uncharacterized member designated phnA in Escherichia coli, part of a large operon associated with alkylphosphonate uptake and carbon-phosphorus bond cleavage. This protein is not related to the characterized phosphonoacetate hydrolase designated PhnA by Kulakova, et al. (2001, 1997). [Unknown function, General] 109 -273221 TIGR00687 pyridox_kin pyridoxal kinase. E. coli has an enzyme PdxK that acts in vitro as a pyridoxine/pyridoxal/pyridoxamine kinase, but mutants lacking PdxK activity retain a specific pyridoxal kinase, PdxY. PdxY acts in the salvage pathway of pyridoxal 5'-phosphate biosynthesis. Mammalian forms of pyridoxal kinase are more similar to PdxY than to PdxK. The PdxK isozyme is omitted from the seed alignment but scores above the trusted cutoff.ThiD and related proteins form an outgroup. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 287 -129771 TIGR00688 rarD rarD protein. This uncharacterized protein is predicted to have many membrane-spanning domains. [Transport and binding proteins, Unknown substrate] 256 -129772 TIGR00689 rpiB_lacA_lacB sugar-phosphate isomerase, RpiB/LacA/LacB family. Proteins of known function in this family act as sugar (pentose and/or hexose)-phosphate isomerases, including the LacA and LacB subunits of galactose-6-phosphate isomerases from Gram-positive bacteria and RpiB. RpiB is the second ribose phosphate isomerase of E. coli. It lacks homology to RpiA, its inducer is unknown (but is not ribose), and it can be replaced by the homologous galactose-6-phosphate isomerase of Streptococcus mutans, all of which suggests that the ribose phosphate isomerase activity of RpiB is a secondary function. On the other hand, there appear to be a significant number of species which contain rpiB, lack rpiA and seem to require rpi activity in order to complete the pentose phosphate pathway. 144 -188073 TIGR00690 rpoZ DNA-directed RNA polymerase, omega subunit. This small component of highly purified E. coli RNA polymerase is not required for transcription, but acts in assembly and is present in stochiometric amounts. The trusted cutoff excludes archaeal homologs but captures some organellar sequences. [Transcription, DNA-dependent RNA polymerase] 60 -213552 TIGR00691 spoT_relA (p)ppGpp synthetase, RelA/SpoT family. The functions of E. coli RelA and SpoT differ somewhat. RelA (EC 2.7.6.5) produces pppGpp (or ppGpp) from ATP and GTP (or GDP). SpoT (EC 3.1.7.2) degrades ppGpp, but may also act as a secondary ppGpp synthetase. The two proteins are strongly similar. In many species, a single homolog to SpoT and RelA appears reponsible for both ppGpp synthesis and ppGpp degradation. (p)ppGpp is a regulatory metabolite of the stringent response, but appears also to be involved in antibiotic biosynthesis in some species. [Cellular processes, Adaptations to atypical conditions] 683 -129775 TIGR00692 tdh L-threonine 3-dehydrogenase. This protein is a tetrameric, zinc-binding, NAD-dependent enzyme of threonine catabolism. Closely related proteins include sorbitol dehydrogenase, xylitol dehydrogenase, and benzyl alcohol dehydrogenase. Eukaryotic examples of this enzyme have been demonstrated experimentally but do not appear in database search results.E. coli His-90 modulates substrate specificity and is believed part of the active site. [Energy metabolism, Amino acids and amines] 340 -273222 TIGR00693 thiE thiamine-phosphate diphosphorylase. This model represents the thiamine-phosphate pyrophosphorylase, ThiE, of a number of bacteria, and N-terminal domains of bifunctional thiamine proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe, in which the C-terminal domain corresponds to the bacterial hydroxyethylthiazole kinase (EC 2.7.1.50), ThiM. This model includes ThiE from Bacillus subtilis but excludes its paralog, the regulatory protein TenI (SP:P25053), and neighbors of TenI. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 196 -188074 TIGR00694 thiM hydroxyethylthiazole kinase. This model represents the hydoxyethylthiazole kinase, ThiM, of a number of bacteria, and C-terminal domains of bifunctional thiamine biosynthesis proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe, in which the N-terminal domain corresponds to the bacterial thiamine-phosphate pyrophosphorylase (EC 2.5.1.3), ThiE. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 249 -129778 TIGR00695 uxuA mannonate dehydratase. This Fe2+-requiring enzyme plays a role in D-glucuronate catabolism in Escherichia coli. Mannonate dehydratase converts D-mannonate to 2-dehydro-3-deoxy-D-gluconate. An apparent equivalog is found in a glucuronate utilization operon in Bacillus stearothermophilus T-6. [Energy metabolism, Sugars] 394 -129779 TIGR00696 wecG_tagA_cpsF bacterial polymer biosynthesis proteins, WecB/TagA/CpsF family. The WecG member of this superfamily, believed to be UDP-N-acetyl-D-mannosaminuronic acid transferase, plays a role in enterobacterial common antigen (eca) synthesis in Escherichia coli. Another family member, the Bacillus subtilis TagA protein, is involved in the biosynthesis of the cell wall polymer poly(glycerol phosphate). The third family member, CpsF, CMP-N-acetylneuraminic acid synthetase has a role in the capsular polysaccharide biosynthesis pathway. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 177 -129780 TIGR00697 TIGR00697 conserved hypothetical integral membrane protein. All known members of this family are proteins or 210-250 amino acids in length. Conserved regions of hydrophobicity suggest that all members of the family are integral membrane proteins. [Hypothetical proteins, Conserved] 202 -129781 TIGR00698 TIGR00698 conserved hypothetical integral membrane protein. Members of this family are found so far only in one archaeal species, Archaeoglobus fulgidus, and in two related bacterial species, Haemophilus influenzae and Escherichia coli. It has 9 GES predicted transmembrane regions at conserved locations in all members. These proteins have a molecular weight of approximately 35 to 38 kDa. [Hypothetical proteins, Conserved] 335 -129782 TIGR00699 GABAtrns_euk 4-aminobutyrate aminotransferase, eukaryotic type. This enzyme is a class III pyridoxal-phosphate-dependent aminotransferase. This model describes known eukaryotic examples of the enzyme. The degree of sequence difference between this set and known bacterial examples is greater than the distance between either set the most similar enzyme with distinct function, and so separate models are built for prokaryotic and eukaryotic sets. Alternate names include GABA transaminase, gamma-amino-N-butyrate transaminase, and beta-alanine--oxoglutarate aminotransferase. [Central intermediary metabolism, Other] 464 -129783 TIGR00700 GABAtrnsam 4-aminobutyrate aminotransferase, prokaryotic type. This enzyme is a class III pyridoxal-phosphate-dependent aminotransferase. This model describes known bacterial examples of the enzyme. The best archaeal matches are presumed but not trusted to have the equivalent function. The degree of sequence difference between this set and known eukaryotic (mitochondrial) examples is greater than the distance to some proteins known to have different functions, and so separate models are built for prokaryotic and eukaryotic sets. E. coli has two isozymes. Alternate names include GABA transaminase, gamma-amino-N-butyrate transaminase, and beta-alanine--oxoglutarate aminotransferase. [Central intermediary metabolism, Other] 420 -273223 TIGR00701 TIGR00701 TIGR00701 family protein. It appears this conserved hypothetical integral membrane protein is found only in gram negative bacteria. Completed genomes that include a member of this family include Rickettsia prowazekii, Synechocystis sp. PCC6803, and Helicobacter pylori. These proteins have 3 (Helicobacter pylori) to 5 (Synechocystis sp. PCC 6803) GES predicted transmembrane regions. Most members have 4 GES predicted transmembrane regions. [Hypothetical proteins, Conserved] 142 -273224 TIGR00702 TIGR00702 YcaO-type kinase domain. This protein family includes YcaO and homologs that can phosphorylate a peptide amide backbone (rather than side chains), as during heterocycle-forming modifications during maturation of the TOMM class (Thiazole/Oxazole-Modified Microcins) of bacteriocins. However, YcaO domain proteins also occur in contexts that do not suggest peptide modification. [Hypothetical proteins, Conserved] 377 -129786 TIGR00703 TIGR00703 TIGR00703 family protein. The function of this family is unknown. These proteins are from 222 to 233 residues in length, lack hydrophobic stretches, and are found so far only in thermophiles. [Hypothetical proteins, Conserved] 223 -273225 TIGR00704 NaPi_cotrn_rel Na/Pi-cotransporter. This model describes essentially the full length of an uncharacterized protein from Bacillus subtilis and correponding lengths of longer proteins from E. coli and Treponema pallidum. PSI-BLAST analysis converges to demonstrate homology to one other group of proteins, type II sodium/phosphate (Na/Pi) cotransporters. A well-conserved repeated domain in this family, approximately 60 residues in length, is also repeated in the Na/Pi cotransporters, although with greater spacing between the repeats. The two families share additional homology in the region after the first repeat, share the properly of having extensive hydrophobic regions, and may be similar in function. [Transport and binding proteins, Cations and iron carrying compounds] 308 -273226 TIGR00705 SppA_67K signal peptide peptidase SppA, 67K type. This model represents the signal peptide peptidase A (SppA, protease IV) as found in E. coli, Treponema pallidum, Mycobacterium leprae, and several other species, in which it has a molecular mass around 67 kDa and a duplication such that the N-terminal half shares extensive homology with the C-terminal half. This enzyme was shown in E. coli to form homotetramers. E. coli SohB, which is most closely homologous to the C-terminal duplication of SppA, is predicted to perform a similar function of small peptide degradation, but in the periplasm. Many prokaryotes have a single SppA/SohB homolog that may perform the function of either or both. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 584 -273227 TIGR00706 SppA_dom signal peptide peptidase SppA, 36K type. The related but duplicated, double-length protein SppA (protease IV) of E. coli was shown experimentally to degrade signal peptides as are released by protein processing and secretion. This protein shows stronger homology to the C-terminal region of SppA than to the N-terminal domain or to the related putative protease SuhB. The member of this family from Bacillus subtilis was shown to have properties consistent with a role in degrading signal peptides after cleavage from precursor proteins, although it was not demonstrated conclusively. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 208 -273228 TIGR00707 argD transaminase, acetylornithine/succinylornithine family. This family of proteins, for which ornithine aminotransferases form an outgroup, consists mostly of proteins designated acetylornithine aminotransferase. However, the two very closely related members from E. coli are assigned different enzymatic activities. One is acetylornithine aminotransferase (EC 2.6.1.11), ArgD, an enzyme of arginine biosynthesis, while another is succinylornithine aminotransferase, an enzyme of the arginine succinyltransferase pathway, an ammonia-generating pathway of arginine catabolism (See MEDLINE:98361920). Members of this family may also act on ornithine, like ornithine aminotransferase (EC 2.6.1.13) (see MEDLINE:90337349) and on succinyldiaminopimelate, like N-succinyldiaminopmelate-aminotransferase (EC 2.6.1.17, DapC, an enzyme of lysine biosynthesis) (see MEDLINE:99175097) 379 -129791 TIGR00708 cobA cob(I)alamin adenosyltransferase. Alternate name: corrinoid adenosyltransferase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 173 -129792 TIGR00709 dat 2,4-diaminobutyrate 4-transaminases. This family consists of L-diaminobutyric acid transaminases. This general designation covers both 2.6.1.76 (diaminobutyrate-2-oxoglutarate transaminase, which uses glutamate as the amino donor in DABA biosynthesis), and 2.6.1.46 (diaminobutyrate--pyruvate transaminase, which uses alanine as the amino donor). Most members with known function are 2.6.1.76, and at least some annotations as 2.6.1.46 in current databases at time of model revision are incorrect. A distinct branch of this family contains examples of 2.6.1.76 nearly all of which are involved in ectoine biosynthesis. A related enzyme is 4-aminobutyrate aminotransferase (EC 2.6.1.19), also called GABA transaminase. These enzymes all are pyridoxal phosphate-containing class III aminotransferase. [Central intermediary metabolism, Other] 442 -273229 TIGR00710 efflux_Bcr_CflA drug resistance transporter, Bcr/CflA subfamily. This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 12 membrane-spanning regions. Members with known activity include Bcr (bicyclomycin resistance protein) in E. coli, Flor (chloramphenicol and florfenicol resistance) in Salmonella typhimurium DT104, and CmlA (chloramphenicol resistance) in Pseudomonas sp. plasmid R1033. 385 -129794 TIGR00711 efflux_EmrB drug resistance transporter, EmrB/QacA subfamily. This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 14 potential membrane-spanning regions. Members with known activities include EmrB (multiple drug resistance efflux pump) in E. coli, FarB (antibacterial fatty acid resistance) in Neisseria gonorrhoeae, TcmA (tetracenomycin C resistance) in Streptomyces glaucescens, etc. In most cases, the efflux pump is described as having a second component encoded in the same operon, such as EmrA of E. coli. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Other] 485 -129795 TIGR00712 glpT glycerol-3-phosphate transporter. This model describes a very hydrophobic protein, predicted to span the membrane at least 8 times. The two members confirmed experimentally as glycerol-3-phosphate transporters, from E. coli and B. subtilis, share more than 50 % amino acid identity. Proteins of the hexose phosphate and phosphoglycerate transport systems are also quite similar. [Transport and binding proteins, Other] 438 -273230 TIGR00713 hemL glutamate-1-semialdehyde-2,1-aminomutase. This enzyme, glutamate-1-semialdehyde-2,1-aminomutase (glutamate-1-semialdehyde aminotransferase, GSA aminotransferase), contains a pyridoxal phosphate attached at a Lys residue at position 283 of the seed alignment. It is in the family of class III aminotransferases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 423 -211601 TIGR00714 hscB Fe-S protein assembly co-chaperone HscB. This model describes the small subunit, Hsc20 (20K heat shock cognate protein) of a pair of proteins Hsc66-Hsc20, related to the DnaK-DnaJ heat shock proteins, which also serve as molecular chaperones. Hsc20, unlike DnaJ, appears not to have chaperone activity on its own, but to act solely as a regulatory subunit for Hsc66 (i.e., to be a co-chaperone). The gene for Hsc20 in E. coli, hscB, is not induced by heat shock. [Protein fate, Protein folding and stabilization] 155 -273231 TIGR00715 precor6x_red precorrin-6x reductase. This enzyme catalyzes a step in cobalamin biosynthesis. It has been identified experimentally in Pseudomonas denitrificans and has been shown to be part of cobalamin biosynthetic operons in several other species. This enzyme was found to be a monomer by gel filtration. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 256 -129799 TIGR00716 rnhC ribonuclease HIII. This enzyme cleaves RNA from DNA-RNA hybrids. Two types of ribonuclease H in Bacillus subtilis, RNase HII (rnhB) and RNase HIII (rnhC), are both known experimentally and are quite similar to each other. The only RNase H homolog in the Mycoplasmas resembles rnhC. Archaeal forms resemble HII more closely than HIII. This model describes bacterial RNase III. [DNA metabolism, DNA replication, recombination, and repair] 284 -273232 TIGR00717 rpsA ribosomal protein S1. This model describes ribosomal protein S1, RpsA. This protein is found in most bacterial genomes in a single copy, but is not present in the Mycoplasmas. It is heterogeneous with respect to the number of repeats of the S1 RNA binding domain described by pfam00575: six repeats in E. coli and most other bacteria, four in Bacillus subtilis and some other species. rpsA is an essential gene in E. coli but not in B. subtilis. It is associated with the cytidylate kinase gene cmk in many species, and fused to it in Treponema pallidum. RpsA is proposed (Medline:97323001) to assist in mRNA degradation. This model provides trusted hits to most long form (6 repeat) examples of RpsA. Among homologs with only four repeats are some to which other (perhaps secondary) functions have been assigned. [Protein synthesis, Ribosomal proteins: synthesis and modification] 516 -129801 TIGR00718 sda_alpha L-serine dehydratase, iron-sulfur-dependent, alpha subunit. This enzyme is also called serine deaminase. L-serine dehydratase converts serine into pyruvate in the gluconeogenesis pathway from serine. This model describes the alpha chain of an iron-sulfur-dependent L-serine dehydratase, found in Bacillus subtilis. A fairly deep split in a UPGMA tree separates members of this family of alpha chains from the homologous region of single chain forms such as found in Escherichia coli. This family of enzymes is not homologous to the pyridoxal phosphate-dependent threonine deaminases and eukaryotic serine deaminases. [Energy metabolism, Amino acids and amines, Energy metabolism, Glycolysis/gluconeogenesis] 294 -129802 TIGR00719 sda_beta L-serine dehydratase, iron-sulfur-dependent, beta subunit. This enzyme is also called serine deaminase. This model describes the beta chain of an iron-sulfur-dependent L-serine dehydratase, as in Bacillus subtilis. A fairly deep split in a UPGMA tree separates members of this family of beta chains from the homologous region of single chain forms such as found in E. coli. This family of enzymes is not homologous to the pyridoxal phosphate-dependent threonine deaminases and eukaryotic serine deaminases. [Energy metabolism, Amino acids and amines, Energy metabolism, Glycolysis/gluconeogenesis] 208 -273233 TIGR00720 sda_mono L-serine dehydratase, iron-sulfur-dependent, single chain form. This enzyme is also called serine deaminase and L-serine dehydratase 1. L-serine ammonia-lyase converts serine into pyruvate in the gluconeogenesis pathway from serine. This enzyme is comprised of a single chain in Escherichia coli, Mycobacterium tuberculosis, and several other species, but has separate alpha and beta chains in Bacillus subtilis and related species. The beta and alpha chains are homologous to the N-terminal and C-terminal regions, respectively, but are rather deeply branched in a UPGMA tree. This enzyme requires iron and dithiothreitol for activation in vitro, and is a predicted 4Fe-4S protein. Escherichia coli Pseudomonas aeruginosa have two copies of this protein. [Energy metabolism, Amino acids and amines, Energy metabolism, Glycolysis/gluconeogenesis] 450 -129804 TIGR00721 tfx DNA-binding protein, Tfx family. PSI-BLAST starting with one member of this family converges with significant hits only to other members of the family, which is restricted to the Archaea. Homology is strongest in the helix-turn-helix-containing N-terminal region. Tfx from Methanobacterium thermoautotrophicum is associated with the operon for molybdenum formyl-methanofuran dehydrogenase and binds a DNA sequence near its promoter. [Regulatory functions, DNA interactions] 137 -273234 TIGR00722 ttdA_fumA_fumB hydro-lyases, Fe-S type, tartrate/fumarate subfamily, alpha region. A number of Fe-S cluster-containing hydro-lyases share a conserved motif, including argininosuccinate lyase, adenylosuccinate lyase, aspartase, class I fumarate hydratase (fumarase), and tartrate dehydratase (see PROSITE:PDOC00147). This model represents a subset of closely related proteins or modules, including the E. coli tartrate dehydratase alpha chain and the N-terminal region of the class I fumarase (where the C-terminal region is homologous to the tartrate dehydratase beta chain). The activity of archaeal proteins in this subfamily has not been established. 273 -129806 TIGR00723 ttdB_fumA_fumB hydro-lyases, Fe-S type, tartrate/fumarate subfamily, beta region. A number of Fe-S cluster-containing hydro-lyases share a conserved motif, including argininosuccinate lyase, adenylosuccinate lyase, aspartase, class I fumarate hydratase (fumarase), and tartrate dehydratase (see PROSITE:PDOC00147). This model represents a subset of closely related proteins or modules, including the E. coli tartrate dehydratase beta chain and the C-terminal region of the class I fumarase (where the N-terminal region is homologous to the tartrate dehydratase alpha chain). The activity of archaeal proteins in this subfamily has not been established. 168 -129807 TIGR00724 urea_amlyse_rel biotin-dependent carboxylase uncharacterized domain. Urea amidolyase of Saccharomyces cerevisiae is a 1835 amino acid protein with an amidase domain, a biotin/lipoyl cofactor attachment domain, a carbamoyl-phosphate synthase L chain-like domain, and uncharacterized regions. It has both urea carboxylase and allophanate hydrolase activities. This model models a domain that represents uncharacterized prokaryotic proteins of about 300 amino acids, regions of prokaryotic urea carboxylase and of the urea carboxylase region of yeast urea amidolyase, and regions of other biotin-containing proteins. [Unknown function, General] 314 -129808 TIGR00725 TIGR00725 TIGR00725 family protein. This model represents one branch of a subfamily of uncharacterized proteins. Both PSI-BLAST and weak hits by this model show a low level of similarity and suggest an evolutionary relationship of the subfamily to the DprA/Smf family of DNA-processing proteins involved in chromosomal transformation with foreign DNA. Both Aquifex aeolicus and Mycobacterium leprae have one member in each of two branches of this subfamily, suggesting the branches may have distinct functions. This family is one of several families within the scope of pfam03641, several members of which are annotated as lysine decarboxylases. That larger family, and the branch described by this model, have a well-conserved motif PGGXGTXXE. [Hypothetical proteins, Conserved] 159 -273235 TIGR00726 TIGR00726 YfiH family protein. PSI-BLAST converges on members of this family of uncharacterized bacterial proteins and shows no significant similarity to any characterized protein. No completed genome to date has two members. Members of the family have been crystallized but the function is unknown. [Unknown function, General] 221 -129810 TIGR00727 ISP4_OPT small oligopeptide transporter, OPT family. This model represents a family of transporters of small oligopeptides, demonstrated experimentally in three different species of yeast. A set of related proteins from the plant Arabidopsis thaliana forms an outgroup to the yeast set by neighbor joining analysis but is remarkably well conserved and is predicted here to have equivalent function. [Transport and binding proteins, Amino acids, peptides and amines] 681 -273236 TIGR00728 OPT_sfam oligopeptide transporter, OPT superfamily. This superfamily has two main branches. One branch contains a tetrapeptide transporter demonstrated experimentally in three different species of yeast. The other family contains EspB of Myxococcus xanthus, a protein required for normal rather than delayed sporulation after cellular aggregation; its role is unknown but is compatible with transport of a signalling molecule. Homology between the two branches of the superfamily is seen most easily at the ends of the protein. The central regions are poorly conserved within each branch and may not be homologous between branches. 657 -129812 TIGR00729 TIGR00729 ribonuclease H, mammalian HI/archaeal HII subfamily. This enzyme cleaves RNA from DNA-RNA hybrids. Archaeal members of this subfamily of RNase H are designated RNase HII and one has been shown to be active as a monomer. A member from Homo sapiens was characterized as RNase HI, large subunit. [DNA metabolism, DNA replication, recombination, and repair] 206 -129813 TIGR00730 TIGR00730 TIGR00730 family protein. This model represents one branch of a subfamily of proteins of unknown function. Both PSI-BLAST and weak hits by this model show a low level of similarity to and suggest an evolutionary relationship of the subfamily to the DprA/Smf family of DNA-processing proteins involved in chromosomal transformation with foreign DNA. Both Aquifex aeolicus and Mycobacterium leprae have one member in each of two branches of this subfamily, suggesting that the branches may have distinct functions. [Hypothetical proteins, Conserved] 178 -273237 TIGR00731 bL25_bact_ctc ribosomal protein bL25, Ctc-form. This model models a family of proteins with full-length homology to the general stress protein Ctc of Bacillus subtilis, a mesophile, and ribosomal protein TL5 of Thermus thermophilus, a thermophile. Ribosomal protein L25 of Escherichia coli and H. influenzae appear to be orthologous but consist only of the N-terminal half of Ctc and TL5. Both short (L25-like) and full-length (CTC-like) members of this family bind the E-loop of bacterial 5S rRNA. This protein appears to be restricted to bacteria and organelles, and consists of at most one copy per prokaryotic genome.Ctc of Bacillus subtilis has now been localized to ribosomes and can be viewed as the long form, or Ctc form, of L25. The C-terminal domain of sll1824, an apparent L25 of Synechocystis PCC6803, matches the N-terminal domain of this family. Examples of L25 and Ctc are not separated by a UPGMA tree built on the region of shared homology. [Protein synthesis, Ribosomal proteins: synthesis and modification] 176 -273238 TIGR00732 dprA DNA protecting protein DprA. Disruption of this gene in both Haemophilus influenzae and Helicobacter pylori drastically reduces the efficiency of transformation with exogenous DNA, but with different levels of effect on chromosomal (linear) and plasmid (circular) DNA. This difference suggests the DprA is not active in recombination, and it has been shown not to affect DNA binding, leaving the intermediate step in natural transformation, DNA processing. In Strep. pneumoniae, inactivation of dprA had no effect on the uptake of DNA. All of these data indicated that DprA is required at a later stage in transformation. Subsequently DprA and RecA were both shown in S. pneumoniae to be required to protect incoming ssDNA from immediate degradation. Role of DprA in non-transformable species is not known. The gene symbol smf was assigned in E. coli, but without assignment of function. [Cellular processes, DNA transformation] 220 -273239 TIGR00733 TIGR00733 putative oligopeptide transporter, OPT family. This protein represents a small family of integral membrane proteins from Gram-negative bacteria, a Gram-positive bacteria, and an archaeal species. Members of this family contain 15 to 18 GES predicted transmembrane regions, and this family has extensive homology to a family of yeast tetrapeptide transporters, including isp4 (Schizosaccharomyces pombe) and Opt1 (Candida albicans). EspB, an apparent equivalog from Myxococcus xanthus, shares an operon with a two component system regulatory protein, and is required for the normal timing of sporulation after the aggregation of cells. This is consistent with a role in transporting oligopeptides as signals across the membrane. [Transport and binding proteins, Amino acids, peptides and amines] 591 -273240 TIGR00734 hisAF_rel hisA/hisF family protein. This model models a family of proteins found so far in three archaeal species: Methanobacterium thermoautotrophicum, Methanococcus jannaschii, and Archaeoglobus fulgidus. This protein is homologous to phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase (HisA) and, with lower similarity, to the cyclase HisF, both of which are enzymes of histidine biosynthesis. Each species with this protein also encodes HisA. The function of this protein is unknown. [Unknown function, General] 221 -273241 TIGR00735 hisF imidazoleglycerol phosphate synthase, cyclase subunit. [Amino acid biosynthesis, Histidine family] 254 -129819 TIGR00736 nifR3_rel_arch TIM-barrel protein, putative. Members of this family show a distant relationship by PSI-BLAST to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. At least two closely related but well-separable families among the bacteria, the nifR3/yhdG family and the yjbN family, share a more distant relationship to this family of shorter, exclusively archaeal proteins. [Unknown function, General] 231 -129820 TIGR00737 nifR3_yhdG putative TIM-barrel protein, nifR3 family. This model represents one branch of COG0042 (Predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family). This branch includes NifR3 itself, from Rhodobacter capsulatus. It excludes a broadly distributed but more sparsely populated subfamily that contains sll0926 from Synechocystis PCC6803, HI0634 from Haemophilus influenzae, and BB0225 from Borrelia burgdorferi. It also excludes a shorter and more distant archaeal subfamily.The function of nifR3, a member of this family, is unknown, but it is found in an operon with nitrogen-sensing two component regulators in Rhodobacter capsulatus.Members of this family show a distant relationship to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. [Unknown function, General] 319 -273242 TIGR00738 rrf2_super Rrf2 family protein. This model represents a superfamily of probable transcriptional regulators. One member, RRF2 of Desulfovibrio vulgaris is an apparent regulatory protein experimentally (MEDLINE:97293189). The N-terminal region appears related to the DNA-binding biotin repressor region of the BirA bifunctional according to results after three rounds of PSI-BLAST with a fairly high stringency. [Unknown function, General] 132 -273243 TIGR00739 yajC preprotein translocase, YajC subunit. While this protein is part of the preprotein translocase in Escherichia coli, it is not essential for viability or protein secretion. The N-terminus region contains a predicted membrane-spanning region followed by a region consisting almost entirely of residues with charged (acidic, basic, or zwitterionic) side chains. This small protein is about 100 residues in length, and is restricted to bacteria; however, this protein is absent from some lineages, including spirochetes and Mycoplasmas. [Protein fate, Protein and peptide secretion and trafficking] 84 -273244 TIGR00740 TIGR00740 tRNA (cmo5U34)-methyltransferase. This tRNA methyltransferase is involved, together with cmoB, in preparing the uridine-5-oxyacetic acid (cmo5U) at position 34. [Unknown function, Enzymes of unknown specificity] 239 -129824 TIGR00741 yfiA ribosomal subunit interface protein. This model includes a small protein encoded by one of two genes, both downstream of the gene rpoN for sigma 54, whose deletion leads to increased expression from sigma 54-dependent promoters. It also includes the N-terminal half of a light-repressed protein LtrA of Synechococcus PCC 7002 and the N-terminal region (after removal of the transit peptide) of a larger plastid-specific ribosomal protein of spinach. The member of this family from E. coli is now recognized as a protein at the interace between ribosomal large and small subunits, with about 1/3 as many copies per cell as the number of ribosomes. [Protein synthesis, Translation factors] 95 -129825 TIGR00742 yjbN tRNA dihydrouridine synthase A. This model represents one branch of COG0042 (Predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family). It represents a distinct subset by a set of shared unique motifs, a conserved pattern of insertions/deletions relative to other nifR3 homologs, and by subclustering based on cross-genome bidirectional best hits. Members are found in species as diverse as the proteobacteria, a spirochete, a cyanobacterium, and Deinococcus radiodurans. NifR3 itself, a protein of unknown function associated with nitrogen regulation in Rhodobacter capsulatus, is not a member of this branch. Members of this family show a distant relationship to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. [Protein synthesis, tRNA and rRNA base modification] 318 -273245 TIGR00743 TIGR00743 conserved hypothetical protein. These small proteins are approximately 100 amino acids in length and appear to be found only in gamma proteobacteria. The function of this protein family is unknown. [Hypothetical proteins, Conserved] 95 -273246 TIGR00744 ROK_glcA_fam ROK family protein (putative glucokinase). This model models one branch of the ROK superfamily of proteins. The three members of the seed alignment for this model all have experimental evidence for activity as glucokinase, but the set of related proteins is crowded with paralogs of different or unknown function. Proteins scoring above the trusted_cutoff will show strong similarity to at least one known glucokinase and may be designated as putative glucokinases. However, definitive identification of glucokinases should be done only with extreme caution. [Unknown function, General] 318 -273247 TIGR00745 apbA_panE 2-dehydropantoate 2-reductase. This model describes enzymes that perform as 2-dehydropantoate 2-reductase, one of four enzymes required for the de novo biosynthesis of pantothenate (vitamin B5) from Asp and 2-oxoisovalerate. Although few members of the seed alignment are characterized experimentally, nearly all from complete genomes are found in a genome-wide (but not local) context of all three other pantothenate-biosynthetic enzymes (TIGR00222, TIGR00018, TIGR00223). The gene encoding this enzyme is designated apbA in Salmonella typhimurium and panE in Escherichia coli; this protein functions as a monomer and functions in the alternative pyrimidine biosynthetic, or APB, pathway, used to synthesize the pyrimidine moiety of thiamine. Note, synthesis of the pyrimidine moiety of thiamine occurs either via the first five steps in de novo purine biosynthesis, which uses the pur gene products, or through the APB pathway. Note that this family includes both NADH and NADPH-dependent enzymes, and enzymes with broad specificity, such as a D-mandelate dehydrogease that is also a 2-dehydropantoate 2-reductase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 293 -273248 TIGR00746 arcC carbamate kinase. In most species, carbamate kinase works in arginine catabolism and consumes carbamoyl phosphate to convert ADP into ATP. In the pathway in Pyrococcus furiosus, the enzyme acts instead to generate carbamoyl phosphate.The seed alignment for this model includes experimentally confirmed examples from a set of phylogenetically distinct species. In a neighbor-joining tree constructed from an alignment of candidate carbamate kinases and several acetylglutamate kinases, the latter group forms a clear outgroup which roots the tree of carbamate kinase-like proteins. This analysis suggests that in E. coli, the ArcC paralog YqeA may be a second isozyme, while the paralog YahI branches as an outlier and is less likely to be an authentic carbamate kinase. The homolog from Mycoplasma pneumoniae likewise branches outside the set containing known carbamate kinases and also scores below the trusted cutoff. [Energy metabolism, Amino acids and amines] 310 -273249 TIGR00747 fabH 3-oxoacyl-(acyl-carrier-protein) synthase III. FabH in general initiate elongation in type II fatty acid synthase systems found in bacteria and plants. The two members of this subfamily from Bacillus subtilis differ from each other, and from FabH from E. coli, in acyl group specificity. Active site residues include Cys112, His244 and Asn274 of E. coli FabH. Cys-112 is the site of acyl group attachment. [Fatty acid and phospholipid metabolism, Biosynthesis] 318 -273250 TIGR00748 HMG_CoA_syn_Arc hydroxymethylglutaryl-CoA synthase, putative. This family of archaeal proteins shows considerable homology and identical active site residues to the bacterial hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase, modeled by TIGR01835) which is the second step in the mevalonate pathway of IPP biosynthesis. An enzyme from Pseudomonas fluorescens involved in the biosynthesis of the polyketide diacetyl-phloroglucinol is more closely related, but lacks the active site residues. In each of the genomes containing a member of this family there is no other recognized HMG-CoA synthase, although other elements of the mevalonate pathway are in evidence. The only archaeon currently sequenced which lacks a homolog in this pathway is Halobacterium, which _does_ contain a separate HMG-CoA synthase. Thus, although there is no experimental evidence supporting this name, the bioinformatics-based conclusion appears to be sound. [Fatty acid and phospholipid metabolism, Biosynthesis] 347 -129832 TIGR00749 glk glucokinase, proteobacterial type. This model represents glucokinase of E. coli and close homologs, mostly from other proteobacteria, presumed to have equivalent function. This glucokinase is more closely related to a number of uncharacterized paralogs than to the glucokinase glcK (fromerly yqgR) of Bacillus subtilis and its closest homologs, so the two sets are represented by separate models. [Energy metabolism, Glycolysis/gluconeogenesis] 316 -129833 TIGR00750 lao LAO/AO transport system ATPase. In E. coli, mutation of this kinase blocks phosphorylation of two transporter system periplasmic binding proteins and consequently inhibits those transporters. This kinase is also found in Gram-positive bacteria, archaea, and the roundworm C. elegans. It may have a more general, but still unknown function. Mutations have also been found that do not phosphorylate the periplasmic binding proteins, yet still allow transport. The ATPase activity of this protein seems to be necessary, however. [Transport and binding proteins, Amino acids, peptides and amines, Regulatory functions, Protein interactions] 300 -129834 TIGR00751 menA 1,4-dihydroxy-2-naphthoate octaprenyltransferase. This membrane-associated enzyme converts 1,4-dihydroxy-2-naphthoic acid (DHNA) to demethylmenaquinone, a step in menaquinone biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 284 -273251 TIGR00752 slp outer membrane lipoprotein, Slp family. Slp superfamily members are present in the Gram-negative gamma proteobacteria Escherichia coli, which also contains a close paralog, Haemophilus influenzae and Pasteurella multocida and Vibrio cholera. The known members of the family to date share a motif LX[GA]C near the N-terminus, which is compatible with the possibility that the protein is modified into a lipoprotein with Cys as the new N-terminus. Slp from Escherichia coli is known to be a lipoprotein of the outer membrane and to be expressed in response to carbon starvation. [Cell envelope, Other] 182 -129836 TIGR00753 undec_PP_bacA undecaprenyl-diphosphatase UppP. This is a family of small, highly hydrophobic proteins. Overexpression of this protein in Escherichia coli is associated with bacitracin resistance, and the protein was originally proposed to be an undecaprenol kinase and called bacA. It is now known to be an undecaprenyl pyrophosphate phosphatase (EC 3.6.1.27) and is renamed UppP. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 255 -162022 TIGR00754 bfr bacterioferritin. Bacterioferritin, predominantly an iron-storage protein restricted to Bacteria, has also been designated cytochrome b1 and cytochrome b-557.Bacterioferritin is a homomultimer most species. In Neisseria gonorrhoeae, Synechocystis PCC6803, Magnetospirillum magnetotacticum, and Pseudomonas aeruginosa, two types of subunit are found in a heteromultimeric complex, with each species having one member of each type. At present, both types of subunit are including in this single model. [Transport and binding proteins, Cations and iron carrying compounds] 157 -273252 TIGR00755 ksgA ribosomal RNA small subunit methyltransferase A. In both E. coli and Saccharomyces cerevisiae, this protein is responsible for the dimethylation of two adjacent adenosine residues in a conserved hairpin of 16S rRNA in bacteria, 18S rRNA in eukaryotes. This adjacent dimethylation is the only rRNA modification shared by bacteria and eukaryotes. A single member of this family is present in each of the first 20 completed microbial genomes. This protein is essential in yeast, but not in E. coli, where its deletion leads to resistance to the antibiotic kasugamycin. Alternate name: S-adenosylmethionine--6-N',N'-adenosyl (rRNA) dimethyltransferase [Protein synthesis, tRNA and rRNA base modification] 254 -273253 TIGR00756 PPR pentatricopeptide repeat domain (PPR motif). This model describes a domain called the PPR motif, or pentatricopeptide repeat. Its consensus sequence is 35 positions long and typically is found in four or more tandem copies. This family is strongly represented in plant proteins, particularly those sorted to chloroplasts or mitochondria. The pfam01535, domain of unknown function DUF17, consists of 6 copies of this repeat. This family has a similar consensus to the TPR domain (tetratricopeptide), pfam00515, a 33-residue repeat. It is predicted to form a pair of antiparallel helices similar to that of TPR. 35 -273254 TIGR00757 RNaseEG ribonuclease, Rne/Rng family. This model describes ribonuclease G (formerly CafA, cytoplasmic axial filament protein A), the N-terminal domain of ribonuclease E in which ribonuclease activity resides, and related proteins. In E. coli, both RNase E and RNase G have been shown to play a role in the maturation of the 5' end of 16S RNA. The C-terminal half of RNase E (excluded from the seed alignment for this model) lacks ribonuclease activity but participates in mRNA degradation by organizing the degradosome. [Transcription, Degradation of RNA] 414 -129841 TIGR00758 UDG_fam4 uracil-DNA glycosylase, family 4. This well-conserved family of proteins is about 200 residues in length and homologous to the N-terminus of the DNA polymerase of phage SPO1 of Bacillus subtilis. The member from Thermus thermophilus HB8 is known to act as uracil-DNA glycosylase, an enzyme of DNA base excision repair. Its appearance as a domain of phage DNA polymerases could be consistent with uracil-DNA glycosylase activity. [DNA metabolism, DNA replication, recombination, and repair] 173 -273255 TIGR00759 aceE pyruvate dehydrogenase E1 component, homodimeric type. Most members of this family are pyruvate dehydrogenase complex, E1 component. Note: this family was classified as subfamily rather than equivalog because it includes a counterexample from Pseudomonas putida, MdeB, that is active as an E1 component of an alpha-ketoglutarate dehydrogenase complex rather than a pyruvate dehydrogase complex. The second pyruvate dehydrogenase complex E1 protein from Alcaligenes eutrophus, PdhE, complements an aceE mutant of E. coli but is not part of a pyruvate dehydrogenase complex operon, is more similar to the Pseudomonas putida MdeB than to E. coli AceE, and may have also have a different primary specificity. 885 -129843 TIGR00760 araD L-ribulose-5-phosphate 4-epimerase. E. coli has two genes, sgaE and sgbE (YiaS), that are very close homologs of araD, the established L-ribulose-5-phosphate 4-epimerase of E. coli. SgbE, part of an operon for L-xylulose metabolism, also has L-ribulose-5-phosphate 4-epimerase activity; L-xylulose-5-phosphate may be converted into L-ribulose-5-phosphate by another product of that operon. The homolog to this family from Mycobacterium smegmatis is flanked by putative araB and araA genes, consistent with it also being araD. [Energy metabolism, Sugars] 231 -273256 TIGR00761 argB acetylglutamate kinase. This model describes N-acetylglutamate kinases (ArgB) of many prokaryotes and the N-acetylglutamate kinase domains of multifunctional proteins from yeasts. This enzyme is the second step in the "acetylated" ornithine biosynthesis pathway. A related group of enzymes representing the first step of the pathway contain a homologous domain and are excluded from this model. [Amino acid biosynthesis, Glutamate family] 231 -273257 TIGR00762 DegV EDD domain protein, DegV family. This family of proteins is related to DegV of Bacillus subtilis and includes paralogous sets in several species (B. subtilis, Deinococcus radiodurans, Mycoplasma pneumoniae) that are closer in percent identity to each than to most homologs from other species. This suggests both recent paralogy and diversity of function. DegV itself is encoded immediately downstream of DegU, a transcriptional regulator of degradation, but is itself uncharacterized. Crystallography suggested a lipid-binding site, while comparison of the crystal structure to dihydroxyacetone kinase and to a mannose transporter EIIA domain suggests a conserved domain, EDD, with phosphotransferase activity. [Unknown function, General] 275 -273258 TIGR00763 lon endopeptidase La. This protein, the ATP-dependent serine endopeptidase La, is induced by heat shock and other stresses in E. coli, B. subtilis, and other species. The yeast member, designated PIM1, is located in the mitochondrial matrix, required for mitochondrial function, and also induced by heat shock. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 775 -273259 TIGR00764 lon_rel lon-related putative ATP-dependent protease. This model represents a set of proteins with extensive C-terminal homology to the ATP-dependent protease La, product of the lon gene of E. coli. The model is based on a seed alignment containing only archaeal members, but several bacterial proteins match the model well. Because several species, including Thermotoga maritima and Treponema pallidum, contain both a close homolog of the lon protease and nearly full-length homolog of the members of this family, we suggest there may also be a functional division between the two families. Members of this family from Pyrococcus horikoshii and Pyrococcus abyssi each contain a predicted intein. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 608 -273260 TIGR00765 yihY_not_rbn YihY family inner membrane protein. Initial identification of members of this protein family was based on characterization of the yihY gene product as ribonuclease BN in Escherichia coli. This identification has been withdrawn, as the group now finds the homolog in E. coli of RNase Z is the true ribonuclease BN rather than a strict functional equivalent of RNase Z. Members of this subfamily include the largely uncharacterized BrkB (Bordetella resist killing by serum B) from Bordetella pertussis. Some members have an additional C-terminal domain. Paralogs from E. coli (yhjD) and Mycobactrium tuberculosis (Rv3335c) are part of a smaller, related subfamily that form their own cluster. [Unknown function, General] 259 -188082 TIGR00766 TIGR00766 inner membrane protein YhjD. This family, including YhjD in E. coli, is a conserved inner membrane protein homologous YihY, which in turn was incorrectly assigned to be ribonuclease BN. This, any suggestion this family is similar to ribonucleases should be removed. [Transcription, Degradation of RNA] 263 -162030 TIGR00767 rho transcription termination factor Rho. This RNA helicase, the transcription termination factor Rho, occurs in nearly all bacteria but is missing from the Cyanobacteria, the Mollicutes (Mycoplasmas), and various Lactobacillales including Streptococcus. It is also missing, of course, from the Archaea, which also lack Nus factors. Members of this family from Micrococcus luteus, Mycobacterium tuberculosis, and related species have a related but highly variable long, highly charged insert near the amino end. Members of this family differ in the specificity of RNA binding. [Transcription, Transcription factors] 415 -273261 TIGR00768 rimK_fam alpha-L-glutamate ligase, RimK family. This family, related to bacterial glutathione synthetases, contains at least three different alpha-L-glutamate ligases. One is RimK, as in E. coli, which adds additional Glu residues to the native Glu-Glu C-terminus of ribosomal protein S6, but not to Lys-Glu mutants. Most species with a member of this subfamily lack an S6 homolog ending in Glu-Glu, however. Members in Methanococcus jannaschii act instead as a tetrahydromethanopterin:alpha-l-glutamate ligase (MJ0620) and a gamma-F420-2:alpha-l-glutamate ligase (MJ1001). 276 -273262 TIGR00769 AAA ADP/ATP carrier protein family. These proteins are members of the ATP:ADP Antiporter (AAA) Family (TC 2.A.12), which consists of nucleotide transporters that have 12 GES predicted transmembrane regions. One protein from Rickettsia prowazekii functions to take up ATP from the eukaryotic cell cytoplasm into the bacterium in exchange for ADP. Five AAA family paralogues are encoded within the genome of R. prowazekii. This organism transports UMP and GMP but not CMP, and it seems likely that one or more of the AAA family paralogues are responsible. The genome of Chlamydia trachomatis encodes two AAA family members, Npt1 and Npt2, which catalyse ATP/ADP exchange and GTP, CTP, ATP and UTP uptake probably employing a proton symport mechanism. Two homologous adenylate translocators of Arabidopsis thaliana are postulated to be localized to the intracellular plastid membrane where they function as ATP importers. [Transport and binding proteins, Nucleosides, purines and pyrimidines] 472 -273263 TIGR00770 Dcu anaerobic c4-dicarboxylate membrane transporter family protein. These proteins are members of th C4-Dicarboxylate Uptake (Dcu) Family (TC 2.A.13). Most proteins in this family have 12 GES predicted transmembrane regions; however one member has 10 experimentally determined transmembrane regions with both the N- and C-termini localized to the periplasm. The two Escherichia coli proteins, DcuA and DcuB, transport aspartate, malate, fumarate and succinate, and function as antiporters with any two of these substrates. Since DcuA is encoded in an operon with the gene for aspartase, and DcuB is encoded in an operon with the gene for fumarase, their physiological functions may be to catalyze aspartate:fumarate and fumarate:malate exchange during the anaerobic utilization of aspartate and fumarate, respectively. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 430 -129854 TIGR00771 DcuC c4-dicarboxylate anaerobic carrier family protein. These proteins are members of the C4-dicarboxylate Uptake C (DcuC) Family (TC 2.A.61). The only functionally characterized member of this family is the anaerobic C4-dicarboxylate transporter (DcuC) of Escherichia coli. DcuC has 12 GES predicted transmembrane regions, is induced only under anaerobic conditions, and is not repressed by glucose. It may therefore function as a succinate efflux system during anaerobic glucose fermentation. However, when overexpressed, it can replace either DcuA or DcuB in catalyzing fumarate-succinate exchange and fumarate uptake. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 388 -273264 TIGR00773 NhaA Na+/H+ antiporter NhaA. These proteins are members of the NhaA Na+:H+ Antiporter (NhaA) Family (TC. 2.A.33). The Escherichia coli NhaA protein probably functions in the regulation of the internal pH when the external pH is alkaline. It also uses the H+ gradient to expel Na+ from the cell. Its activity is highly pH dependent. Only the E. coli protein is functionally and structurally well characterized. [Transport and binding proteins, Cations and iron carrying compounds] 373 -129856 TIGR00774 NhaB Na+/H+ antiporter NhaB. These proteins are members of the NhaB Na+:H+ Antiporter (NhaB) Family (TC 2.A.34). The only characterised member of this family is the Escherichia coli NhaB protein, which has 12 GES predicted transmembrane regions, and catalyses sodium/proton exchange. Unlike NhaA this activity is not pH dependent. [Transport and binding proteins, Cations and iron carrying compounds] 515 -129857 TIGR00775 NhaD Na+/H+ antiporter, NhaD family. These proteins are members of the NhaD Na+:H+ Antiporter (NhaD) Family (TC 2.A.62). A single member of the NhaD family has been characterized. This protein is the NhaD protein of Vibrio parahaemolyticus which has 12 GES predicted transmembrane regions. It has been shown to catalyze Na+/H+ antiport, but Li+ can also be a substrate. [Transport and binding proteins, Cations and iron carrying compounds] 420 -273265 TIGR00776 RhaT RhaT L-rhamnose-proton symporter family protein. These proteins are members of the L-Rhamnose Symporter (RhaT) Family (TC 2.A.7). This family includes two characterized members, both of which function as L-rhamnose:H+ symporters and have 10 GES predicted transmembrane domains. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 290 -129859 TIGR00777 ahpD alkylhydroperoxidase, AhpD family. Members of this family are alkylhydroperoxidases, which catalyze the reduction of peroxides to their corresponding alcohols via oxidation of cysteine residues. In these alkylhydroperoxidases, the cysteines are located in a conserved -CXXC- motif located towards the COOH terminus. In Mycobacterium tuberculosis, two non-homologous alkylhydroperoxidases, AhpD and AhpC, are found in the same operon. [Cellular processes, Detoxification] 177 -273266 TIGR00778 ahpD_dom alkylhydroperoxidase AhpD family core domain. This model represents a 51-residue core region of homology among a family of mostly uncharacterized proteins of 110 to 227 amino acids. Most members of this family contain the motif EXXXXXX[SA]XXXXXC[VIL]XCXXXH. Members of the family include the alkylhydroperoxidase AhpD of Mycobacterium tuberculosis, a macrophage infectivity potentiator peptide of Legionella pneumophila, and an uncharacterized peptide in the tetrachloroethene reductive dehalogenase operon of Dehalospirillum multivorans. We suggest that many peptides containing this domain may have alkylhydroperoxidase or related antioxidant activity. [Unknown function, General] 50 -129861 TIGR00779 cad cadmium resistance transporter (or sequestration) family protein. These proteins are members of the Cadmium Resistance (CadD) Family (TC 2.A.77). To date, this family of proteins has only been found in Gram-positive bacteria. The CadD family includes several closely related Staphylococcal proteins reported to function in cadmium resistance. Members are predicted to span the membrane five times; the mechanism of resistance is believed to be export but has also been suggested to be binding and sequestration in the membrane. Closely related but outside the scope of this model is another staphylococcal protein that has been reported to possibly function in quaternary ammonium ion export. Still more distant are other members of the broader LysE family (see Vrljic. et al, ). [Transport and binding proteins, Amino acids, peptides and amines] 193 -129862 TIGR00780 ccoN cytochrome c oxidase, cbb3-type, subunit I. This model represents the largest subunit, I, of the ccb3-type cytochrome c oxidase, with two protohemes and copper. It shows strong homology to subunits of other types of cytochrome oxidases. Species with this type, all from the Proteobacteria so far, include Neisseria meningitidis, Helicobacter pylori, Campylobacter jejuni, Rhodobacter sphaeroides, Rhizobium leguminosarum, and others. Gene symbols ccoN and fixN are synonymous. [Energy metabolism, Electron transport] 474 -129863 TIGR00781 ccoO cytochrome c oxidase, cbb3-type, subunit II. This model describes the monoheme subunit of the cbb3-type cytochrome oxidase, found in a subset of Proteobacterial species. Species having this protein also have CcoN (subunit I, containing copper and two heme groups), CcoP (subunit III, containing two hemes), and CcoQ (essential for incorporation of the prosthetic groups). [Energy metabolism, Electron transport] 232 -129864 TIGR00782 ccoP cytochrome c oxidase, cbb3-type, subunit III. This model describes a di-heme subunit of approximately 26 kDa of the cbb3 type copper and heme-containing cytochrome oxidase. [Energy metabolism, Electron transport] 285 -129865 TIGR00783 ccs citrate carrier protein, CCS family. These proteins are members of the Citrate:Cation Symporter (CCS) Family (TC 2.A.24). These proteins have 12 GES predicted transmembrane regions. Most members of the CCS family catalyze citrate uptake with either Na+ or H+ as the cotransported cation. However, one member is specific for L-malate and probably functions by a proton symport mechanism. [Unclassified, Role category not yet assigned] 347 -162036 TIGR00784 citMHS citrate transporter, CitMHS family. This family includes two characterized citrate/proton symporters from Bacillus subtilis. CitM transports citrate complexed to Mg2+, while the CitH apparently transports citrate without Mg2+. The family also includes uncharacterized transporters, including a third paralog in Bacillus subtilis. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 431 -273267 TIGR00785 dass anion transporter. The Divalent Anion:Na+ Symporter (DASS) Family (TC 2.A.47) Functionally characterized proteins of the DASS family transport (1) organic di- and tricarboxylates of the Krebs Cycle as well as dicarboxylate amino acid, (2) inorganic sulfate and (3) phosphate. The animal NaDC-1 cotransport 3 Na+ with each dicarboxylate. Protonated tricarboxylates are also cotransported with 3Na+. [Transport and binding proteins, Anions, Transport and binding proteins, Cations and iron carrying compounds] 444 -129868 TIGR00786 dctM TRAP transporter, DctM subunit. The Tripartite ATP-independent Periplasmic Transporter (TRAP-T) Family (TC 2.A.56)- DctM subunit TRAP-T family permeases generally consist of three components, and these systems have so far been found in Gram-negative bacteria, Gram-postive bacteria and archaea. Only one member of the family has been both sequenced and functionally characterized. This system is the DctPQM system of Rhodobacter capsulatus (Forward et al., 1997). DctP is a periplasmic dicarboxylate (malate, fumarate, succinate) binding receptor that is biochemically well-characterized. DctQ is an integral cytoplasmic membrane protein with 4 putative transmembrane a-helical spanners (TMSs). DctM is a second integral cytoplasmic membrane protein with 12 putative TMSs. These proteins have been shown to be both necessary and sufficient for the proton motive force-dependent uptake of dicarboxylates into R. capsulatus. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 405 -129869 TIGR00787 dctP tripartite ATP-independent periplasmic transporter solute receptor, DctP family. TRAP-T (Tripartite ATP-independent Periplasmic Transporter) family proteins generally consist of three components, and these systems have so far been found in Gram-negative bacteria, Gram-postive bacteria and archaea. The best characterized example is the DctPQM system of Rhodobacter capsulatus, a C4 dicarboxylate (malate, fumarate, succinate) transporter. This model represents the DctP family, one of at least three major families of extracytoplasmic solute receptor for TRAP family transporters. Other are the SnoM family (see pfam03480) and TAXI (TRAP-associated extracytoplasmic immunogenic) family. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 257 -273268 TIGR00788 fbt folate/biopterin transporter. The Folate-Biopterin Transporter (FBT) Family (TC 2.A.71)The only functionally characterized members of the family are from protozoa and include FT1, the major folate transporter in Leishmania, and BT1, the Leishmania biopterin/folate transporter. A related protein in Trypanosoma brucei, ESAGIO, shows weak folate/biopterin transport activity. [Cell envelope, Other] 468 -129871 TIGR00789 flhB_rel flhB C-terminus-related protein. This model describes a short protein (80-93 residues) homologous to the C-terminus of the flagellar biosynthetic protein FlhB. It is found so far only in species that also have FlhB. In a phylogenetic tree based on alignment of both this family and the homologous region of FlhB and its homologs, the members of this family form a monophyletic set. [Unknown function, General] 82 -273269 TIGR00790 fnt formate/nitrite transporter. The Formate-Nitrite Transporter (FNT) Family (TC 2.A.44)The prokaryotic proteins of the FNT family probably function in the transport of the structurally related compounds, formate and nitrite. The homologous yeast protein may function as a short chain aliphatic carboxylate H+ symporter,transporting formate, acetate and propionate, and functioning primarily as an acetate uptake permease. The putative formate efflux transporters (FocA) of bacteria associated with pyruvate-formate lyase (pfl) comprise cluster I; the putative formate uptake permeases (FdhC) of bacteria and archaea associated with formate dehydrogenase comprise cluster II; the putative nitrite uptake permeases (NirC) of bacteria comprise cluster III, and the single yeast protein, the putative acetate:H+ symporter alone comprises cluster IV. The energy coupling mechanisms for proteins of the FNT family have not been extensively characterized. HCO2 -, CH3CO2 - and NO2 - uptakes are probably coupled to H+symport. HCO2 - efflux may be driven by the membrane potential by a uniport mechanism or by H+ antiport. [Transport and binding proteins, Anions] 239 -129873 TIGR00791 gntP gluconate transporter. This family includes known gluconate transporters of E. coli and Bacillus species as well as an idonate transporter from E. coli. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 440 -273270 TIGR00792 gph sugar (Glycoside-Pentoside-Hexuronide) transporter. The Glycoside-Pentoside-Hexuronide (GPH):Cation Symporter Family (TC 2.A.2) GPH:cation symporters catalyze uptake of sugars in symport with a monovalent cation (H+ or Na+). Members of this family includes transporters for melibiose, lactose, raffinose, glucuronides, pentosides and isoprimeverose. Mutants of two groups of these symporters (the melibiose permeases of enteric bacteria, and the lactose permease of Streptococcus thermophilus) have been isolated in which altered cation specificity is observed or in which sugar transport is uncoupled from cation symport (i.e., uniport is catalyzed). The various members of the family can use Na+, H+ or Li, Na+ or Li+, H+ or Li+, or only H+ as the symported cation. All of these proteins possess twelve putative transmembrane a-helical spanners. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 437 -273271 TIGR00793 kdgT 2-keto-3-deoxygluconate transporter. This family includes the characterized 2-Keto-3-Deoxygluconate transporters from Bacillus subtilis and Erwinia chrysanthemi. There are homologs of this protein found in both gram-positive and gram-negative bacteria. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 314 -129876 TIGR00794 kup potassium uptake protein. Proteins of the KUP family include the KUP (TrkD) protein of E. coli, a partially sequenced ORF from Lactococcus lactis, high affinity K+ uptake systems (Hak1) of the yeast Debaryomyces occidentalis as well as the fungus, Neurospora crassa, and several homologues in plants. While the E. coli KUP protein is assumed to be a secondary transporter, and uptake is blocked by protonophores such as CCCP (but not arsenate), the energy coupling mechanism has not been defined. However, the N. crassa protein has been shown to be a K+:H+ symporter, establishing that the KUP family consists of secondary carriers. The plant high affinity (20mM) K+ transporter can complement K+ uptake defects in E. coli. [Transport and binding proteins, Cations and iron carrying compounds] 688 -162041 TIGR00795 lctP L-lactate transport. The Lactate Permease (LctP) Family (TC 2.A.14) The only characterized member of this family, from E. coli, appears to catalyze lactate:H+ uptake. Members of this family have 12 probable TMS. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 530 -273272 TIGR00796 livcs branched-chain amino acid uptake carrier. The Branched Chain Amino Acid:Cation Symporter (LIVCS) Family (TC 2.A.26) Characterized members of this family transport all three of the branched chain aliphatic amino acids (leucine (L), isoleucine (I) and valine (V)). They function by a Na+ or H+ symport mechanism and display 12 putative transmembrane helical spanners. [Transport and binding proteins, Amino acids, peptides and amines] 378 -273273 TIGR00797 matE putative efflux protein, MATE family. The Multi Antimicrobial Extrusion (MATE) Family (TC 2.A.66) The MATE family consists of probable efflux proteins including a functionally characterized multi drug efflux system from Vibrio parahaemolyticus, a putative ethionine resistance protein of Saccharomyces cerevisiae, and the functionally uncharacterized DNA damage-inducible protein F (DinF) of E. coli. These proteins have 12 probable TMS. [Transport and binding proteins, Other] 342 -129880 TIGR00798 mtc tricarboxylate carrier. The MTC family consists of a limited number of homologues, all from eukaryotes. A single member of the family has been functionally characterized, the tricarboxylate carrier from rat liver mitochondria. The rat liver mitochondrial tricarboxylate carrier has been reported to transport citrate, cis-aconitate, threo-D-isocitrate, D- and L-tartrate, malate, succinate and phosphoenolpyruvate. It presumably functions by a proton symport mechanism. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 318 -273274 TIGR00799 mtp Golgi 4-transmembrane spanning transporter. The proteins of the MET family have 4 TMS regions and are located in late endosomal or lysosomal membranes. Substrates of the mouse MTP transporter include thymidine, both nucleoside and nucleobase analogues, antibiotics, anthracyclines, ionophores and steroid hormones. MET transporters may be involved in the subcellular compartmentation of steroid hormones and other compounds.Drug sensitivity by mouse MET was regulated by compounds that inhibit lysosomal function, interface with intracellular cholesterol transport, or modulate the multidrug resistance phenotype of mammalian cells. Thus, MET family members may compartmentalize diverse hydrophobic molecules, thereby affecting cellular drug sensitivity,nucleoside/nucleobase availability and steroid hormone responses. [Transport and binding proteins, Unknown substrate] 258 -273275 TIGR00800 ncs1 NCS1 nucleoside transporter family. The Nucleobase:Cation Symporter-1 (NCS1) Family (TC 2.A.39) The NCS1 family consists of bacterial and yeast transporters for nucleobases including purines and pyrimidines. Members of this family possess twelve putative transmembrane a-helical spanners (TMSs). At least some of them have been shown to function in uptake by substrate:H+ symport mechanism. [Transport and binding proteins, Nucleosides, purines and pyrimidines] 442 -273276 TIGR00801 ncs2 uracil-xanthine permease. The Nucleobase:Cation Symporter-2 (NCS2) Family (TC 2.A.40) Most of the functionally characterized members of the NCS2 family are transporters specific for nucleobases including both purines and pyrimidines. However, two closely related rat members of the family, SVCT1 and SVCT2, localized to different tissues of the body, cotransport L-ascorbate and Na+ with a high degree of specificity and high affinity for the vitamin. The NCS2 family appears to be distantly related to the NCS1 family (TC #2.A.39). [Transport and binding proteins, Nucleosides, purines and pyrimidines] 412 -273277 TIGR00802 nico high-affinity nickel-transporter, HoxN/HupN/NixA family. This family is found in both Gram-negative and Gram-positive bacteria. The functionally characterized members of the family catalyze uptake of either Ni2+ or Co2+ in a proton motive force-dependent process. Topological analyses with the HoxN Ni2+ transporter of Ralstonia eutropha (Alcaligenes eutrophus) suggest that it possesses 8 TMSs with its N- and C-termini in the cytoplasm. [Transport and binding proteins, Cations and iron carrying compounds] 280 -129885 TIGR00803 nst UDP-galactose transporter. The 10-12 TMS Nucleotide Sugar Transporters (TC 2.A.7.10)Nucleotide-sugar transporters (NSTs) are found in the Golgi apparatus and the endoplasmic reticulum of eukaryotic cells. Members of the family have been sequenced from yeast, protozoans and animals. Animals such as C. elegans possess many of these transporters. Humans have at least two closely related isoforms of the UDP-galactose:UMP exchange transporter.NSTs generally appear to function by antiport mechanisms, exchanging a nucleotide-sugar for a nucleotide. Thus, CMP-sialic acid is exchanged for CMP; GDP-mannose is preferentially exchanged for GMP, and UDP-galactose and UDP-N-acetylglucosamine are exchanged for UMP (or possibly UDP). Other nucleotide sugars (e.g., GDP-fucose, UDP-xylose, UDP-glucose, UDP-N-acetylgalactosamine, etc.) may also be transported in exchange for various nucleotides, but their transporters have not been molecularly characterized. Each compound appears to be translocated by its own transport protein. Transport allows the compound, synthesized in the cytoplasm, to be exported to the lumen of the Golgi apparatus or the endoplasmic reticulum where it is used for the synthesis of glycoproteins and glycolipids. 222 -273278 TIGR00804 nupC nucleoside transporter. The Concentrative Nucleoside Transporter (CNT) Family (TC 2.A.41) Members of the CNT family mediate nucleoside uptake. In bacteria they are energized by H+ symport, but in mammals they are energized by Na+ symport. The different transporters exhibit differing specificities for nucleosides. The E. coli NupC permease transports all nucleosides (both ribo- and deoxyribonucleosides) except hypoxanthine and guanine nucleosides. The B. subtilis NupC is specific for pyrimidine nucleosides (cytidine and uridine and the corresponding deoxyribonucleosides). The mammalian permease members of the CNT family also exhibit differing specificities. Thus, rats possess at least two NupC homologues, one specific for both purine and pyrimidine nucleosides and one specific for purine nucleosides. At least three paralogues have been characterized from humans. One human homologue(CNT1) transports pyrimidine nucleosides and adenosine, but deoxyadenosine and guanosine are poor substrates of this permease. Another (CNT2) is selective for purine nucleosides. Alteration of just a few amino acyl residues in TMSs 7 and 8 interconverts their specificities. [Transport and binding proteins, Nucleosides, purines and pyrimidines] 401 -273279 TIGR00805 oat sodium-independent organic anion transporter. The Organo Anion Transporter (OAT) Family (TC 2.A.60)Proteins of the OAT family catalyze the Na+-independent facilitated transport of organic anions such as bromosulfobromophthalein and prostaglandins as well as conjugated and unconjugated bile acids (taurocholate and cholate, respectively). These transporters have been characterized in mammals, but homologues are present in C. elegans and A. thaliana. Some of the mammalian proteins exhibit a high degree of tissue specificity. For example, the rat OAT is found at high levels in liver and kidney and at lower levels in other tissues. These proteins possess 10-12 putative a-helical transmembrane spanners. They may catalyze electrogenic anion uniport or anion exchange. 632 -129888 TIGR00806 rfc RFC reduced folate carrier. The Reduced Folate Carrier (RFC) Family (TC 2.A.48) Members of the RFC family mediate the uptake of folate, reduce folate, derivatives of reduced folate and the drug, methotrexate. Proteins of the RFC family are so-far restricted to animals. RFC proteins possess 12 putative transmembrane a-helical spanners (TMSs) and evidence for a 12 TMS topology has been published for the human RFC. The RFC transporters appear to transport reduced folate by an energy-dependent, pH-dependent, Na+-independent mechanism. Folate:H+ symport, folate:OH- antiport and folate:anion antiport mechanisms have been proposed, but the energetic mechanism is not well defined. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 511 -129889 TIGR00807 malonate_madL malonate transporter, MadL subunit. The MSS family includes the monobasic malonate:Na+ symporter of Malonomonas rubra. It consists of two integral membrane proteins, MadL and MadM. The transporter is believed to catalyze the electroneutral reversible uptake of H+-malonate with one Na+, and both subunits have been shown to be essential for activity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 125 -129890 TIGR00808 malonate_madM malonate transporter, MadM subunit. The MSS family includes the monobasic malonate:Na+ symporter of Malonomonas rubra. It consists of two integral membrane proteins, MadL and MadM.The transporter is believed to catalyze the electroneutral reversible uptake of H+-malonate with one Na+, and both subunits have been shown to be essential for activity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 254 -213561 TIGR00809 secB protein-export chaperone SecB. This protein acts as an export-specific cytosolic chaperone. It binds the mature region of pre-proteins destined for secretion, prevents aggregation, and delivers them to SecA. This protein is tetrameric in E. coli. The archaeal Methanococcus jannaschii homolog MJ0357 has been shown () to share many properties, including chaperone-like activity, and scores between trusted and noise. [Protein fate, Protein and peptide secretion and trafficking] 140 -273280 TIGR00810 secG protein translocase, SecG subunit. This family of proteins forms a complex with SecY and SecE. SecA then recruits the SecYEG complex to form an active protein translocation channel. [Protein fate, Protein and peptide secretion and trafficking] 73 -273281 TIGR00811 sit silicon transporter. Marine diatoms such as Cylindrotheca fusiformis encode at least six silicon transport protein homologues which exhibit similar size and topology. One characterized member of the family (Sit1) functions in the energy-dependent uptake of either Silicic acid [Si(OH)4] or Silicate [Si(OH)3O-] by a Na+ symport mechanism. The system is found in marine diatoms which make their "glass houses" out of silicon. [Transport and binding proteins, Other] 545 -273282 TIGR00813 sss transporter, SSS family. The Solute:Sodium Symporter (SSS) Family (TC 2.A.21) Members of the SSS family catalyze solute:Na+ symport. The solutes transported may be sugars, amino acids, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and animals, and all functionally well characterized members catalyze solute uptake via Na+ symport. Proteins of the SSS generally share a core of 13 TMSs, but different members of the family may have different numbers of TMSs. A 13 TMS topology with a periplasmic N-terminus and a cytoplasmic C-terminus has been experimentally determined for the proline:Na+ symporter, PutP, of E. coli. [Transport and binding proteins, Cations and iron carrying compounds] 407 -273283 TIGR00814 stp serine transporter. The Hydroxy/Aromatic Amino Acid Permease (HAAAP) Family- serine/threonine subfamily (TC 2.A.42.2) The HAAAP family includes well characterized aromatic amino acid:H+ symport permeases and hydroxy amino acid permeases. This subfamily is specific for hydroxy amino acid transporters and includes the serine permease, SdaC, of E. coli, and the threonine permease, TdcC, of E. coli.//added GO terms, none avaialbelf or ser/thr specifically [SS 2/6/05] [Transport and binding proteins, Amino acids, peptides and amines] 397 -273284 TIGR00815 sulP high affinity sulphate transporter 1. The SulP family is a large and ubiquitous family with over 30 sequenced members derived from bacteria, fungi, plants and animals. Many organisms including Bacillus subtilis, Synechocystis sp, Saccharomyces cerevisiae, Arabidopsis thaliana and Caenorhabditis elegans possess multiple SulP family paralogues. Many of these proteins are functionally characterized, and all are sulfate uptake transporters. Some transport their substrate with high affinities, while others transport it with relatively low affinities. Most function by SO42- :H+symport, but SO42- :HCO3- antiport has been reported for the rat protein (spP45380). The bacterial proteins vary in size from 434 residues to 566 residues with one exception, a Mycobacterium tuberculosis protein with 784 residues. The eukaryotic proteins vary in size from 611 residues to 893 residues with one exception, a protein designated "early nodulin 70 protein" from Glycine max which is reported to be of 485 residues. Thus, the eukaryotic proteins are almost without exception larger than the prokaryotic proteins. These proteins exhibit 10-13 putative transmembrane a-helical spanners (TMSs) depending on the protein. The phylogenetic tree for the SulP family reveals five principal branches. Three of these are bacterial specific as follows: one bears a single protein from M. tuberculosis; a second bears two proteins, one from M. tuberculosis, the other from Synechocystis sp, and the third bears all remaining prokaryotic proteins. The remaining two clusters bear only eukaryotic proteins with the animal proteins all localized to one branch and the plant and fungal proteins localized to the other. The generalized transport reactions catalyzed by SulP family proteins are: (1) SO42- (out) + nH+ (out) --> SO42- (in) + nH+ (in). (2) SO42- (out) + nHCO3- (in) SO42- (in) + nHCO3- (out). [Transport and binding proteins, Anions] 552 -273285 TIGR00816 tdt C4-dicarboxylate transporter/malic acid transport protein. The Tellurite-Resistance/Dicarboxylate Transporter (TDT) Family (TC 2.A.16)Two members of the TDT family have been functionally characterized. One is the TehA protein of E. coli which has been implicated in resistance to tellurite; the other is the Mae1 protein of S. pombe which functions in the uptake of malate and other dicarboxylates by a proton symportmechanism. These proteins exhibit 10 putative transmembrane a-helicalspanners (TMSs). [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 320 -129898 TIGR00817 tpt Tpt phosphate/phosphoenolpyruvate translocator. The 6-8 TMS Triose-phosphate Transporter (TPT) Family (TC 2.A.7.9)Functionally characterized members of the TPT family are derived from the inner envelope membranes of chloroplasts and nongreen plastids of plants. However,homologues are also present in yeast. Saccharomyces cerevisiae has three functionally uncharacterized TPT paralogues encoded within its genome. Under normal physiologicalconditions, chloroplast TPTs mediate a strict antiport of substrates, frequently exchanging an organic three carbon compound phosphate ester for inorganic phosphate (Pi).Normally, a triose-phosphate, 3-phosphoglycerate, or another phosphorylated C3 compound made in the chloroplast during photosynthesis, exits the organelle into thecytoplasm of the plant cell in exchange for Pi. However, experiments with reconstituted translocator in artificial membranes indicate that transport can also occur by achannel-like uniport mechanism with up to 10-fold higher transport rates. Channel opening may be induced by a membrane potential of large magnitude and/or by high substrateconcentrations. Nongreen plastid and chloroplast carriers, such as those from maize endosperm and root membranes, mediate transport of C3 compounds phosphorylated atcarbon atom 2, particularly phosphenolpyruvate, in exchange for Pi. These are the phosphoenolpyruvate:Pi antiporters (PPT). Glucose-6-P has also been shown to be asubstrate of some plastid translocators (GPT). The three types of proteins (TPT, PPT and GPT) are divergent in sequence as well as substrate specificity, but their substratespecificities overlap. [Hypothetical proteins, Conserved] 302 -273286 TIGR00819 ydaH p-Aminobenzoyl-glutamate transporter family. The p-Aminobenzoyl-glutamate transporter family includes two transporters, the AbgT (YdaH) protein of E. coli and MtrF of Neisseria gonorrhoea. AbgT is apparently cryptic in wild type cells, but when expressed on a high copy number plasmid, or when expressed at higher levels due to mutation, it allows utilization of p-aminobenzoyl-glutamate as a source of p-aminobenzoate for p-aminobenzoate auxotrophs. p-Aminobenzoate is a constituent of and a precursor for the biosynthesis of folic acid. [Hypothetical proteins, Conserved] 524 -273287 TIGR00820 zip ZIP zinc/iron transport family. The Zinc (Zn2+)-Iron (Fe2+) Permease (ZIP) Family (TC 2.A.5)Members of the ZIP family consist of proteins with eight putative transmembrane spanners. They are derived from animals, plants and yeast. Theycomprise a diverse family, with several paralogues in any one organism (e.g., at least five in Caenorabditis elegans, at least five in Arabidopsis thaliana and two inSaccharomyces cervisiae. The two S. cerevisiae proteins, Zrt1 and Zrt2, both probably transport Zn2+ with high specificity, but Zrt1 transports Zn2+ with ten-fold higher affinitythan Zrt2. Some members of the ZIP family have been shown to transport Zn2+ while others transport Fe2+, and at least one transports a range of metal ions. The energy source fortransport has not been characterized, but these systems probably function as secondary carriers. [Transport and binding proteins, Cations and iron carrying compounds] 324 -129901 TIGR00821 EII-GUT PTS system, glucitol/sorbitol-specific, IIC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Gut family consists only of glucitol-specific transporters, but these occur both in Gram-negative and Gram-positive bacteria.E. coli consists of IIA protein, a IIC protein and a IIBC protein. This family is specific for the IIC component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 181 -129902 TIGR00822 EII-Sor PTS system, mannose/fructose/sorbose family, IIC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Man (PTS splinter group) family is unique in several respects among PTS permease families. It is the only PTS family in which members possess a IID protein. It is the only PTS family in which the IIB constituent is phosphorylated on a histidyl rather than a cysteyl residue. Its permease members exhibit broad specificity for a range of sugars, rather than being specific for just one or a few sugars. The mannose permease of E. coli, for example, can transport and phosphorylate glucose, mannose, fructose, glucosamine,N-acetylglucosamine, and other sugars. Other members of this family can transport sorbose, fructose and N-acetylglucosamine. This family is specific for the sorbose-specific IIC subunits of this family of PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 265 -129903 TIGR00823 EIIA-LAC phosphotransferase system enzyme II, lactose-specific, factor III. The PTS Lactose-N,N?-Diacetylchitobiose-b-glucoside (Lac) Family (TC 4.A.3)Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains.The Lac family includes several sequenced lactose (b-galactoside) permeases of Gram-positive bacteria as well as the E. coli N,N?-diacetylchitobiose (Chb)permease which can transport aromatic b-glucosides and cellobiose as well as the chitin disaccharide, Chb, but only Chb induces expression of the chboperon. While the Lac permeases consist of two polypeptide chains (IIA and IICB), the Chb permease of E. coli consists of three (IIA, IIB and IIC). In B. subtilis, a PTS permease similar to the Chb permease of E. coli is believed to transport lichenan (a b-1,3;1,4 glucan) degradation products, oligosaccharides of 2-4 glucose units. This model is specific for the IIA subunit of the Lac PTS family. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 99 -129904 TIGR00824 EIIA-man PTS system, mannose/fructose/sorbose family, IIA component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains.The Man family is unique in several respects among PTS permease families It is the only PTS family in which members possess a IID protein. It is the only PTS family in which the IIB constituent is phosphorylated on a histidyl rather than a cysteyl residue. Its permease members exhibit broad specificity for a range of sugars, rather than being specific for just one or a few sugars. The mannose permease of E. coli, for example, can transport and phosphorylate glucose, mannose, fructose, glucosamine, N-acetylglucosamine, and other sugars. Other members of this can transport sorbose, fructose and N-acetylglucosamine. This family is specific for the IIA components. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 116 -129905 TIGR00825 EIIBC-GUT PTS system, glucitol/sorbitol-specific, IIBC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Gut family consists only of glucitol-specific permeases, but these occur both in Gram-negative and Gram-positive bacteria.E. coli consists of IIA protein, a IIC protein and a IIBC protein. This family is specific for the IIBC component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 331 -273288 TIGR00826 EIIB_glc PTS system, glucose-like IIB component. The PTS Glucose-Glucoside (Glc) Family (TC 4.A.1) Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Glc family includes permeases specific for glucose, N-acetylglucosamine and a large variety of a- and b-glucosides. However, not all b-glucoside PTS permeases are in this class, as the cellobiose (Cel) b-glucoside PTS permease is in the Lac family (TC #4.A.3). These permeases show limited sequence similarity with members of the Fru family (TC #4.A.2). Several of the E. coli PTS permeases in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these permeases have the B and C domains linked together in a single polypeptide chain, and a cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P). Those permeases which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) permeases of E. coli . Most, but not all Scr permeases of other bacteria also lack a IIA domain. This model is specific for the IIB domain of the Glc family PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 88 -129907 TIGR00827 EIIC-GAT PTS system, galactitol-specific IIC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The only characterized member of this family of PTS transporters is the E. coli galactitol transporter. Gat family PTS systems typically have 3 components: IIA, IIB and IIC. This family is specific for the IIC component of the PTS Gat family. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 407 -129908 TIGR00828 EIID-AGA PTS system, mannose/fructose/sorbose family, IID component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Man family is unique in several respects among PTS permease families.It is the only PTS family in which members possess a IID protein. It is the only PTS family in which the IIB constituent is phosphorylated on a histidyl rather than a cysteyl residue. Its permease members exhibit broad specificity for a range of sugars, rather than being specific for just one or a few sugars. The mannose permease of E. coli, for example, can transport and phosphorylate glucose, mannose, fructose, glucosamine,N-acetylglucosamine, and other sugars. Other members of this can transport sorbose, fructose and N-acetylglucosamine. This family is specific for the IID subunits of this family of PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 271 -129909 TIGR00829 FRU PTS system, fructose-specific, IIB component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Fru family is a large and complex family which includes several sequenced fructose and mannitol-specific permeases as well as several PTS components of unknown specificities. The fructose components of this family phosphorylate fructose on the 1-position. The Fru family PTS systems typically have 3 domains, IIA, IIB and IIC, which may be found as 1 or more proteins. The fructose and mannitol transporters form separate phylogenetic clusters in this family. This family is specific for the IIB domain of the fructose PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 85 -273289 TIGR00830 PTBA PTS system, glucose subfamily, IIA component. These are part of the The PTS Glucose-Glucoside (Glc) SuperFamily. The Glc family includes permeases specific for glucose, N-acetylglucosamine and a large variety of a- and b-glucosides. However, not all b-glucoside PTS permeases are in this class, as the cellobiose (Cel) b-glucoside PTS permease is in the Lac family (TC #4.A.3). The IIA, IIB and IIC domains of all of the permeases listed below are demonstrably homologous. These permeases show limited sequence similarity with members of the Fru family (TC #4.A.2). Several of the PTS permeases in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these permeases have the B and C domains linked together in a single polypeptide chain, and a cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P). Those permeases which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) permeases of E. coli . Most, but not all Scr permeases of other bacteria also lack a IIA domain. The three-dimensional structures of the IIA and IIB domains of the E. coli glucose permease have been elucidated. IIAglchas a complex b-sandwich structure while IIBglc is a split ab-sandwich with a topology unrelated to the split ab-sandwich structure of HPr. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 121 -129911 TIGR00831 a_cpa1 Na+/H+ antiporter, bacterial form. The Monovalent Cation:Proton Antiporter-1 (CPA1) Family (TC 2.A.36) The CPA1 family is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue green bacteria, yeast, plants and animals. Transporters from eukaryotes have been functionally characterized, and all of these catalyze Na+:H+ exchange. Their primary physiological functions may be in (1) cytoplasmic pH regulation, extruding the H+ generated during metabolism, and (2) salt tolerance (in plants), due to Na+ uptake into vacuoles. This model is specific for the bacterial members of this family. [Transport and binding proteins, Cations and iron carrying compounds] 525 -213563 TIGR00832 acr3 arsenical-resistance protein. The Arsenical Resistance-3 (ACR3) Family (TC 2.A.59) The first protein of the ACR3 family functionally characterized was the ACR3 protein of Saccharomyces cerevisiae. It is present in the yeast plasma membrane and pumps arsenite out of the cell in response to the pmf. Similar proteins are found in bacteria, often as part of a four gene operon with an regulatory protein ArsR, a protein of unknown function ArsH, and an arsenate reductase that converts arsenate to arsenite to facilitate transport. [Cellular processes, Detoxification, Transport and binding proteins, Anions] 328 -129913 TIGR00833 actII Transport protein. The Resistance-Nodulation-Cell Division (RND) Superfamily- MmpL sub family (TC 2.A.6.5)Characterized members of the RND superfamily all probably catalyze substrate efflux via an H+ antiport mechanism. These proteins are found ubiquitously in bacteria, archaea and eukaryotes. This sub-family includes the S. coelicolor ActII3 protein, which may play a role in drug resistance, and the M. tuberculosis MmpL7 protein, which catalyzes export of an outer membrane lipid, phthiocerol dimycocerosate. [Transport and binding proteins, Unknown substrate] 910 -273290 TIGR00834 ae anion exchange protein. The Anion Exchanger (AE) Family (TC 2.A.31)Characterized protein members of the AE family are found only in animals.They preferentially catalyze anion exchange (antiport) reactions, typically acting as HCO3-:Cl- antiporters, but also transporting a range of other inorganic and organic anions. Additionally, renal Na+:HCO3- cotransporters have been found to be members of the AE family. They catalyze the reabsorption of HCO3- in the renal proximal tubule. [Transport and binding proteins, Anions] 900 -273291 TIGR00835 agcS amino acid carrier protein. The Alanine or Glycine: Cation Symporter (AGCS) Family (TC 2.A.25) Members of the AGCS family transport alanine and/or glycine in symport with Na+ and or H+. 425 -273292 TIGR00836 amt ammonium transporter. The Ammonium Transporter (Amt) Family (TC 2.A.49) All functionally characterized members of the Amt family are ammonia or ammonium uptake transporters. Some, but not others, also transport methylammonium. The mechanism of energy coupling, if any, to methyl-NH2 or NH3 uptake by the AmtB protein of E. coli is not entirely clear. NH4+ uniport driven by the pmf, energy independent NH3 facilitation, and NH4+/K+ antiport have been proposed as possible transport mechanisms. In Corynebacterium glutamicum and Arabidopsis thaliana, uptake via the Amt1 homologues of AmtB has been reported to be driven by the pmf. [Transport and binding proteins, Cations and iron carrying compounds] 403 -273293 TIGR00837 araaP aromatic amino acid transport protein. The Hydroxy/Aromatic Amino Acid Permease (HAAAP) Family- tyrosine/tryptophan subfamily (TC 2.A.42.1) The HAAAP family includes well characterized aromatic amino acid:H+ symport permeases and hydroxy amino acid permeases. This subfamily is specific for aromatic amino acid transporters and includes the tyrosine permease, TyrP, of E. coli, and the tryptophan transporters TnaB and Mtr of E. coli. [Transport and binding proteins, Amino acids, peptides and amines] 381 -129918 TIGR00838 argH argininosuccinate lyase. This model describes argininosuccinate lyase, but may include examples of avian delta crystallins, in which argininosuccinate lyase activity may or may not be present and the biological role is to provide the optically clear cellular protein of the eye lens. [Amino acid biosynthesis, Glutamate family] 455 -213564 TIGR00839 aspA aspartate ammonia-lyase. This enzyme, aspartate ammonia-lyase, shows local homology to a number of other lyases, as modeled by pfam00206. Fumarate hydratase scores as high as 570 bits against this model. [Energy metabolism, Amino acids and amines] 468 -273294 TIGR00840 b_cpa1 sodium/hydrogen exchanger 3. The Monovalent Cation:Proton Antiporter-1 (CPA1) Family (TC 2.A.36)The CPA1 family is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue green bacteria, yeast, plants and animals.Transporters from eukaryotes have been functionally characterized, and all of these catalyze Na+:H+ exchange. Their primary physiological functions may be in(1) cytoplasmic pH regulation, extruding the H+ generated during metabolism, and (2) salt tolerance (in plants), due to Na+ uptake into vacuoles.This model is specific for the eukaryotic members members of this family. [Transport and binding proteins, Cations and iron carrying compounds] 559 -188087 TIGR00841 bass bile acid transporter. The Bile Acid:Na+ Symporter (BASS) Family (TC 2.A.28) Functionally characterized members of the BASS family catalyze Na+:bile acid symport. These systems have been identified in intestinal, liver and kidney tissues of animals. These symporters exhibit broad specificity, taking up a variety of non bile organic compounds as well as taurocholate and other bile salts. Functionally uncharacterised homologues are found in plants, yeast, archaea and bacteria. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 286 -213565 TIGR00842 bcct choline/carnitine/betaine transport. The Betaine/Carnitine/Choline Transporter (BCCT) Family (TC 2.A.15) Proteins of the BCCT family share the common functional feature of transporting molecules with a quaternary ammonium group [R-N+(CH3)3]. The BCCT family includes transporters for carnitine, choline and glycine betaine. BCCT transporters have 12 putative TMS, and are energized by pmf-driven proton symport. Some of these permeases exhibit osmosensory and osmoregulatory properties inherent to their polypeptide chains. [Transport and binding proteins, Other] 452 -129923 TIGR00843 benE benzoate transporter. The benzoate transporter family contains only a single characterised member, the benzoate transporter of Acinetobacter calcoaceticus, which functions as a benzoate/proton symporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 395 -273295 TIGR00844 c_cpa1 na(+)/h(+) antiporter. The Monovalent Cation:Proton Antiporter-1 (CPA1) Family (TC 2.A.36) The CPA1 family is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue green bacteria, yeast, plants and animals. Transporters from eukaryotes have been functionally characterized, and all of these catalyze Na+:H+ exchange. Their primary physiological functions may be in (1) cytoplasmic pH regulation, extruding the H+ generated during metabolism, and (2) salt tolerance (in plants), due to Na+ uptake into vacuoles. This model is specific for the fungal members of this family. [Transport and binding proteins, Cations and iron carrying compounds] 810 -273296 TIGR00845 caca sodium/calcium exchanger 1. The Ca2+:Cation Antiporter (CaCA) Family (TC 2.A.19)Proteins of the CaCA family are found ubiquitously, having been identified in animals, plants, yeast, archaea and widely divergent bacteria.All of the characterized animal proteins catalyze Ca2+:Na+ exchange although some also transport K+. The NCX1 plasma membrane protein exchanges 3 Na+ for 1 Ca2+. The E. coli ChaA protein catalyzes Ca2+:H+ antiport but may also catalyze Na+:H+ antiport. All remaining well-characterized members of the family catalyze Ca2+:H+ exchange.This model is specific for the eukaryotic sodium ion/calcium ion exchangers of the Caca family [Transport and binding proteins, Other] 928 -273297 TIGR00846 caca2 calcium/proton exchanger. The Ca2+:Cation Antiporter (CaCA) Family (TC 2.A.19)Proteins of the CaCA family are found ubiquitously, having been identified in animals, plants, yeast, archaea and widely divergent bacteria.All of the characterized animal proteins catalyze Ca2+:Na+ exchange although some also transport K+. The NCX1 plasma membrane protein exchanges 3 Na+ for 1 Ca2+. The E. coli ChaA protein catalyzes Ca2+:H+ antiport but may also catalyze Na+:H+ antiport. All remaining well-characterized members of the family catalyze Ca2+:H+ exchange.This model is generated from the calcium ion/proton exchangers of the CacA family. [Transport and binding proteins, Cations and iron carrying compounds] 363 -129927 TIGR00847 ccoS cytochrome oxidase maturation protein, cbb3-type. CcoS from Rhodobacter capsulatus has been shown essential for incorporation of redox-active prosthetic groups (heme, Cu) into cytochrome cbb(3) oxidase. FixS of Bradyrhizobium japonicum appears to have the same function. Members of this family are found so far in organisms with a cbb3-type cytochrome oxidase, including Neisseria meningitidis, Helicobacter pylori, Campylobacter jejuni, Caulobacter crescentus, Bradyrhizobium japonicum, and Rhodobacter capsulatus. [Energy metabolism, Electron transport, Protein fate, Protein modification and repair] 51 -273298 TIGR00848 fruA PTS system, fructose subfamily, IIA component. 4.A.2 The PTS Fructose-Mannitol (Fru) Family Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Fru family is a large and complex family which includes several sequenced fructose and mannitol-specific permeases as well as several putative PTS permeases of unknown specificities. The fructose permeases of this family phosphorylate fructose on the 1-position. Those of family 4.6 phosphorylate fructose on the 6-position. The Fru family PTS systems typically have 3 domains, IIA, IIB and IIC, which may be found as 1 or more proteins. The fructose and mannitol transporters form separate phylogenetic clusters in this family. This model is specific for the IIA domain of the fructose PTS transporters. Also similar to the Enzyme IIA Fru subunits of the PTS, but included in TIGR01419 rather than this model, is enzyme IIA Ntr (nitrogen), also called PtsN, found in E. coli and other organisms, which may play a solely regulatory role. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 129 -129929 TIGR00849 gutA PTS system, glucitol/sorbitol-specific IIA component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. This family consists only of glucitol-specific transporters, and occur both in Gram-negative and Gram-positive bacteria.The system in E.Coli consists of a IIA protein, and a IIBC protein. This family is specific for the IIA component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 121 -129930 TIGR00851 mtlA PTS system, mannitol-specific IIC component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Fru family is a large and complex family which includes several sequenced fructose and mannitol-specific permeases as well as several putative PTS permeases of unknown specificities.The Fru family PTS systems typically have 3 domains, IIA, IIB and IIC, which may be found as 1 or more proteins. The fructose and mannitol transporters form separate phylogenetic clusters in this family. This family is specific for the IIC domain of the mannitol PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 338 -273299 TIGR00852 pts-Glc PTS system, maltose and glucose-specific subfamily, IIC component. The PTS Glucose-Glucoside (Glc) Family (TC 4.A.1) Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Glc family includes permeases specific for glucose, N-acetylglucosamine and a large variety of a- and b-glucosides. However, not all b-glucoside PTS permeases are in this class, as the cellobiose (Cel) b-glucoside PTS permease is in the Lac family (TC #4.A.3). These permeases show limited sequence similarity with members of the Fru family (TC #4.A.2). Several of the E. coli PTS permeases in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these permeases have the B and C domains linked together in a single polypeptide chain, and a cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P). Those permeases which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) permeases of E. coli . Most, but not all Scr permeases of other bacteria also lack a IIA domain. This model is specific for the IIC domain of the Glc family PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 289 -273300 TIGR00853 pts-lac PTS system, lactose/cellobiose family IIB component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains.The Lac family includes several sequenced lactose (b-galactoside) permeases of Gram-positive bacteria as well as those in E. coli. While the Lac family usually consists of two polypeptide components IIA and IICB, the Chb permease of E. coli consists of three IIA, IIB and IIC. This family is specific for the IIB subunit of the Lac PTS family. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 95 -129933 TIGR00854 pts-sorbose PTS system, mannose/fructose/sorbose family, IIB component. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains.The Man family is unique in several respects among PTS permease families.It is the only PTS family in which members possess a IID protein. It is the only PTS family in which the IIB constituent is phosphorylated on a histidyl rather than a cysteyl residue. Its permease members exhibit broad specificity for a range of sugars, rather than being specific for just one or a few sugars. The mannose permease of E. coli, for example, can transport and phosphorylate glucose, mannose, fructose, glucosamine, N-acetylglucosamine, and other sugars. Other members of this can transport sorbose, fructose and N-acetylglucosamine. This family is specific for the IIB components of this family of PTS transporters. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 151 -273301 TIGR00855 L12 ribosomal protein L7/L12. Ribosomal proteins L7 and L12 are synonymous except for post-translational modification of the N-terminal amino acid. THis model resembles pfam00542 but matches the full length of prokaryotic and organellar proteins rather than just the C-terminus. [Protein synthesis, Ribosomal proteins: synthesis and modification] 123 -129935 TIGR00856 pyrC_dimer dihydroorotase, homodimeric type. This homodimeric form of dihydroorotase is less common in microbial genomes than a related dihydroorotase that appears in a complex with aspartyltranscarbamoylase or as a homologous domain in multifunctional proteins of pyrimidine biosynthesis in higher eukaryotes. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 341 -273302 TIGR00857 pyrC_multi dihydroorotase, multifunctional complex type. In contrast to the homodimeric type of dihydroorotase found in E. coli, this class tends to appear in a large, multifunctional complex with aspartate transcarbamoylase. Homologous domains appear in multifunctional proteins of higher eukaryotes. In some species, including Pseudomonas putida and P. aeruginosa, this protein is inactive but is required as a non-catalytic subunit of aspartate transcarbamoylase (ATCase). In these species, a second, active dihydroorotase is also present. The seed for this model does not include any example of the dihydroorotase domain of eukaryotic multidomain pyrimidine synthesis proteins. All proteins described by this model should represent active and inactive dihydroorotase per se and functionally equivalent domains of multifunctional proteins from higher eukaryotes, but exclude related proteins such as allantoinase. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 411 -273303 TIGR00858 bioF 8-amino-7-oxononanoate synthase. 7-keto-8-aminopelargonic acid synthetase is an alternate name. This model represents 8-amino-7-oxononanoate synthase, the BioF protein of biotin biosynthesis. This model is based on a careful phylogenetic analysis to separate members of this family from 2-amino-3-ketobutyrate and other related pyridoxal phosphate-dependent enzymes. In several species, including Staphylococcus and Coxiella, a candidate 8-amino-7-oxononanoate synthase is confirmed by location in the midst of a biotin biosynthesis operon but scores below the trusted cutoff of this model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 360 -273304 TIGR00859 ENaC sodium channel transporter. The Epithelial Na+ Channel (ENaC) Family (TC 1.A.06)The ENaC family consists of sodium channels from animals and has no recognizable homologues in other eukaryotes or bacteria. The vertebrate ENaC proteins from epithelial cells cluster tightly together on the phylogenetic tree: voltage-insensitive ENaC homologues are also found in the brain. Eleven sequenced C. elegans proteins, including the degenerins, are distantly related to the vertebrate proteins as well as to each other. At least some ofthese proteins form part of a mechano-transducing complex for touch sensitivity. Other members of the ENaC family, the acid-sensing ion channels, ASIC1-3,are homo- or hetero-oligomeric neuronal H+-gated channels that mediate pain sensation in response to tissue acidosis. The homologous Helix aspersa(FMRF-amide)-activated Na+ channel is the first peptide neurotransmitter-gated ionotropic receptor to be sequenced.Mammalian ENaC is important for the maintenance of Na+ balance and the regulation of blood pressure. Three homologous ENaC subunits, a, b and g, havebeen shown to assemble to form the highly Na+-selective channel.This model is designed from the vertebrate members of the ENaC family. [Transport and binding proteins, Cations and iron carrying compounds] 595 -273305 TIGR00860 LIC Cation transporter family protein. The Ligand-gated Ion Channel (LIC) Family of Neurotransmitter Receptors TC 1.A.9)Members of the LIC family of ionotropic neurotransmitter receptors are found only in vertebrate and invertebrate animals. They exhibit receptor specificity for (1)acetylcholine, (2) serotonin, (3) glycine, (4) glutamate and (5) g-aminobutyric acid (GABA). All of these receptor channels are probably hetero- orhomopentameric. The best characterized are the nicotinic acetyl-choline receptors which are pentameric channels of a2bgd subunit composition. All subunits arehomologous. The three dimensional structures of the protein complex in both the open and closed configurations have been solved at 0.9 nm resolution.The channel protein complexes of the LIC family preferentially transport cations or anions depending on the channel (e.g., the acetylcholine receptors are cationselective while glycine receptors are anion selective). [Transport and binding proteins, Cations and iron carrying compounds] 459 -273306 TIGR00861 MIP MIP family channel proteins. 1.A.8 The Major Intrinsic Protein (MIP) FamilyThe MIP family is large and diverse, possessing over 100 members that all form transmembrane channels. These channel proteins function in water, smallcarbohydrate (e.g., glycerol), urea, NH3, CO2 and possibly ion transport by an energy independent mechanism. They are found ubiquitously in bacteria, archaeaand eukaryotes. The MIP family contains two major groups of channels: aquaporins and glycerol facilitators.The known aquaporins cluster loosely together as do the known glycerol facilitators. MIP family proteins are believed to form aqueous pores that selectively allow passive transport of their solute(s) across the membrane with minimal apparent recognition. Aquaporins selectively transport water (but not glycerol) while glycerol facilitators selectively transport glycerol but not water. Some aquaporins can transport NH3 and CO2. Glycerol facilitators function as solute nonspecific channels, and may transport glycerol, dihydroxyacetone, propanediol, urea and other small neutral molecules in physiologically importantprocesses. Some members of the family, including the yeast FPS protein (TC #1.A.8.5.1) and tobacco NtTIPA may transport both water and small solutes. [Transport and binding proteins, Unknown substrate] 216 -129941 TIGR00862 O-ClC intracellular chloride channel protein. The Organellar Chloride Channel (O-ClC) Family (TC 1.A.12) Proteins of the O-ClC family are voltage-sensitive chloride channels found in intracellular membranes but not the plasma membranes of animal cells. They are found in human nuclear membranes, and the bovine protein targets to the microsomes, but not the plasma membrane, when expressed in Xenopus laevis oocytes. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney. [Transport and binding proteins, Anions] 236 -273307 TIGR00863 P2X cation transporter protein. ATP-gated Cation Channel (ACC) Family (TC 1.A.7)Members of the ACC family (also called P2X receptors) respond to ATP, a functional neurotransmitter released by exocytosis from many types of neurons.These channels, which function at neuron-neuron and neuron-smooth muscle junctions, may play roles in the control of blood pressure and pain sensation. They may also function in lymphocyte and plateletphysiology. They are found only in animals.ACC channels are probably hetero- or homomultimers and transport small monovalent cations (Me+). Some also transport Ca2+; a few also transport small metabolites. [Transport and binding proteins, Cations and iron carrying compounds] 372 -188093 TIGR00864 PCC polycystin cation channel protein. The Polycystin Cation Channel (PCC) Family (TC 1.A.5) Polycystin is a huge protein of 4303aas. Its repeated leucine-rich (LRR) segment is found in many proteins. It contains 16 polycystic kidney disease (PKD) domains, one LDL-receptor class A domain, one C-type lectin family domain, and 16-18 putative TMSs in positions between residues 2200 and 4100. Polycystin-L has been shown to be a cation (Na+, K+ and Ca2+) channel that is activated by Ca2+. Two members of the PCC family (polycystin 1 and 2) are mutated in autosomal dominant polycystic kidney disease, and polycystin-L is deleted in mice with renal and retinal defects. Note: this model is restricted to the amino half. 2740 -273308 TIGR00865 bcl-2 apoptosis regulator. The Bcl-2 (Bcl-2) Family (TC 1.A.21) The Bcl-2 family consists of the apoptosis regulator, Bcl-X, and its homologues. Bcl-X is a dominant regulator of programmed cell death in mammalian cells. The long form (Bcl-X(L)) displays cell death repressor activity, but the short isoform (Bcl-X(S)) and the b-isoform (Bcl-Xb) promote cell death. Bcl-X(L), Bcl-X(S) and Bcl-Xb are three isoforms derived by alternative RNA splicing. Bcl-X(S) forms heterodimers with Bcl-2. Homologues of Bcl-X include the Bax (rat; 192 aas; spQ63690) and Bak (mouse; 208 aas; spO08734) proteins which also influence apoptosis. Using isolated mitochondria, recombinant Bax and Bak have been shown to induce Dy loss, swelling and cytochrome c release. All of these changes are dependent on Ca2+ and are prevented by cyclosporin A and bongkrekic acid, both of which are known to close permeability transition pores (megachannels). Coimmimoprecipitation studies revealed that Bax and Bak interact with VDAC to form permeability transition pores. Thus, even though they can form channels in artificial membranes at acidic pH, proapoptotic Bcl-2 family proteins (including Bax and Bak) probably induce the mitochondrial permeability transition and cytochrome c release by interacting with permeability transition pores, the most important component for pore fomation of which is VDAC. [Regulatory functions, Other] 213 -273309 TIGR00867 deg-1 degenerin. The Epithelial Na+ Channel (ENaC) Family (TC 1.A.06)The ENaC family consists of sodium channels from animals and has no recognizable homologues in other eukaryotes or bacteria. The vertebrate ENaC proteins from epithelial cells cluster tightly together on the phylogenetic tree: voltage-insensitive ENaC homologues are also found in the brain. Eleven sequenced C. elegans proteins, including the degenerins, are distantly related to the vertebrate proteins as well as to each other. At least some ofthese proteins form part of a mechano-transducing complex for touch sensitivity. Other members of the ENaC family, the acid-sensing ion channels, ASIC1-3,are homo- or hetero-oligomeric neuronal H+-gated channels that mediate pain sensation in response to tissue acidosis. The homologous Helix aspersa(FMRF-amide)-activated Na+ channel is the first peptide neurotransmitter-gated ionotropic receptor to be sequenced.Mammalian ENaC is important for the maintenance of Na+ balance and the regulation of blood pressure. Three homologous ENaC subunits, a, b and g, havebeen shown to assemble to form the highly Na+-selective channel.This model is designed from the invertebrate members of the ENaC family. [Transport and binding proteins, Cations and iron carrying compounds] 600 -129946 TIGR00868 hCaCC calcium-activated chloride channel protein 1. found a row in 1A13.INFO that was not parsed out AC found a row in 1A13.INFO that was not parsed out EC found a row in 1A13.INFO that was not parsed out GA found a row in 1A13.INFO that was not parsed out SO found a row in 1A13.INFO that was not parsed out RH found a row in 1A13.INFO that was not parsed out EN found a row in 1A13.INFO that was not parsed out GS found a row in 1A13.INFO that was not parsed out AL found a row in 1A13.INFO that was not parsed out The Epithelial Chloride Channel (E-ClC) Family (TC 1.A.13) found a row in 1A13.INFO that was not parsed out found a row in 1A13.INFO that was not parsed out Mammals have multiple isoforms of epithelial chloride channel proteins. The first member of this family to be characterized was a respiratory epithelium, Ca found a row in 1A13.INFO that was not parsed out 2+-regulated, chloride channel protein isolated from bovine tracheal apical membranes. It was biochemically characterized as a 140 kDa complex. The purified found a row in 1A13.INFO that was not parsed out complex when reconstituted in a planar lipid bilayer behaved as an anion-selective channel. It was regulated by Ca 2+ via a calmodulin kinase II-dependent found a row in 1A13.INFO that was not parsed out mechanism. When the cRNA was injected into Xenopus oocytes, an outward rectifying, DIDS-sensitive, anion conductance was measured. A related gene, found a row in 1A13.INFO that was not parsed out Lu-ECAM, was cloned from the bovine aortic endothelial cell line, BAEC. It is expressed in the lung and spleen but not in the trachea. Homologues are found in found a row in 1A13.INFO that was not parsed out several mammals, and at least three paralogues(hCaCC-1-3) are present in humans, each with different tissue distributions. found a row in 1A13.INFO that was not parsed out [Transport and binding proteins, Anions] 863 -273310 TIGR00869 sec62 protein translocation protein, Sec62 family. Members of the NSCC2 family have been sequenced from various yeast, fungal and animals species including Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. These proteins are the Sec62 proteins, believed to be associated with the Sec61 and Sec63 constituents of the general protein secretary systems of yeast microsomes. They are also the non-selective cation (NS) channels of the mammalian cytoplasmic membrane. The yeast Sec62 protein has been shown to be essential for cell growth. The mammalian NS channel proteins has been implicated in platelet derived growth factor(PGDF) dependent single channel current in fibroblasts. These channels are essentially closed in serum deprived tissue-culture cells and are specifically opened by exposure to PDGF. These channels are reported to exhibit equal selectivity for Na+, K+ and Cs+ with low permeability to Ca2+, and no permeability to anions. [Transport and binding proteins, Amino acids, peptides and amines] 232 -273311 TIGR00870 trp transient-receptor-potential calcium channel protein. The Transient Receptor Potential Ca2+ Channel (TRP-CC) Family (TC. 1.A.4)The TRP-CC family has also been called the store-operated calcium channel (SOC) family. The prototypical members include the Drosophila retinal proteinsTRP and TRPL (Montell and Rubin, 1989; Hardie and Minke, 1993). SOC members of the family mediate the entry of extracellular Ca2+ into cells in responseto depletion of intracellular Ca2+ stores (Clapham, 1996) and agonist stimulated production of inositol-1,4,5 trisphosphate (IP3). One member of the TRP-CCfamily, mammalian Htrp3, has been shown to form a tight complex with the IP3 receptor (TC #1.A.3.2.1). This interaction is apparently required for IP3 tostimulate Ca2+ release via Htrp3. The vanilloid receptor subtype 1 (VR1), which is the receptor for capsaicin (the ?hot? ingredient in chili peppers) and servesas a heat-activated ion channel in the pain pathway (Caterina et al., 1997), is also a member of this family. The stretch-inhibitable non-selective cation channel(SIC) is identical to the vanilloid receptor throughout all of its first 700 residues, but it exhibits a different sequence in its last 100 residues. VR1 and SICtransport monovalent cations as well as Ca2+. VR1 is about 10x more permeable to Ca2+ than to monovalent ions. Ca2+ overload probably causes cell deathafter chronic exposure to capsaicin. (McCleskey and Gold, 1999). [Transport and binding proteins, Cations and iron carrying compounds] 743 -273312 TIGR00871 zwf glucose-6-phosphate 1-dehydrogenase. This enzyme (EC 1.1.1.49) acts on glucose 6-phospate and reduces NADP(+). An alternate name appearing in the literature for the human enzyme, based on a slower activity with beta-D-glucose, is glucose 1-dehydrogenase (EC 1.1.1.47), but that name more properly describes a subfamily of the short chain dehydrogenases/reductases family. This is a well-studied enzyme family, with sequences available from well over 50 species. The trusted cutoff is set above the score for the Drosophila melanogaster CG7140 gene product, a homolog of unknown function. G6PD homologs from the bacteria Aquifex aeolicus and Helicobacter pylori lack several motifs well conserved most other members, were omitted from the seed alignment, and score well below the trusted cutoff. [Energy metabolism, Pentose phosphate pathway] 487 -273313 TIGR00872 gnd_rel 6-phosphogluconate dehydrogenase (decarboxylating). This family resembles a larger family (gnd) of bacterial and eukaryotic 6-phosphogluconate dehydrogenases but differs from it by a deep split in a UPGMA similarity clustering tree and the lack of a central region of about 140 residues. Among complete genomes, it is found is found in Bacillus subtilis and Mycobacterium tuberculosis, both of which also contain gnd, and in Aquifex aeolicus. The protein from Methylobacillus flagellatus KT has been characterized as a decarboxylating 6-phosphogluconate dehydrogenase as part of an unusual formaldehyde oxidation cycle. In some sequenced organisms members of this family are the sole 6-phosphogluconate dehydrogenase present and are probably active in the pentose phosphate cycle. [Energy metabolism, Pentose phosphate pathway] 298 -273314 TIGR00873 gnd 6-phosphogluconate dehydrogenase (decarboxylating). This model does not specify whether the cofactor is NADP only (EC 1.1.1.44), NAD only, or both. The model does not assign an EC number for that reason. [Energy metabolism, Pentose phosphate pathway] 467 -162081 TIGR00874 talAB transaldolase. This family includes the majority of known and predicted transaldolase sequences, including E. coli TalA and TalB. It excluded two other families. The first includes E. coli transaldolase-like protein TalC. The second family includes the putative transaldolases of Helicobacter pylori and Mycobacterium tuberculosis. [Energy metabolism, Pentose phosphate pathway] 317 -129953 TIGR00875 fsa_talC_mipB fructose-6-phosphate aldolase, TalC/MipB family. This model represents a family that includes the E. coli transaldolase homologs TalC and MipB, both shown to be fructose-6-phosphate aldolases rather than transaldolases as previously thought. It is related to but distinct from the transaldolase family of E. coli TalA and TalB. The member from Bacillus subtilis becomes phosphorylated during early stationary phase but not during exponential growth. [Energy metabolism, Pentose phosphate pathway] 213 -129954 TIGR00876 tal_mycobact transaldolase, mycobacterial type. This model describes one of three related but easily separable famiiles of known and putative transaldolases. This family and the family typified by E. coli TalA and TalB both contain experimentally verified examples. [Energy metabolism, Pentose phosphate pathway] 350 -273315 TIGR00877 purD phosphoribosylamine--glycine ligase. Alternate name: glycinamide ribonucleotide synthetase (GARS). This enzyme appears as a monofunctional protein in prokaryotes but as part of a larger, multidomain protein in eukaryotes. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 422 -273316 TIGR00878 purM phosphoribosylaminoimidazole synthetase. Alternate name: phosphoribosylformylglycinamidine cyclo-ligase; AIRS; AIR synthase This enzyme is found as a homodimeric monofunctional protein in prokaryotes and as part of a larger, multifunctional protein, sometimes with two copies of this enzyme in tandem, in eukaryotes. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 332 -273317 TIGR00879 SP MFS transporter, sugar porter (SP) family. This model represent the sugar porter subfamily of the major facilitator superfamily (pfam00083) [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 481 -273318 TIGR00880 2_A_01_02 Multidrug resistance protein. 141 -273319 TIGR00881 2A0104 phosphoglycerate transporter family protein. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 379 -211613 TIGR00882 2A0105 oligosaccharide:H+ symporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 396 -273320 TIGR00883 2A0106 metabolite-proton symporter. This model represents the metabolite:H+ symport subfamily of the major facilitator superfamily (pfam00083), including citrate-H+ symporters, dicarboxylate:H+ symporters, the proline/glycine-betaine transporter ProP, etc. [Transport and binding proteins, Unknown substrate] 394 -273321 TIGR00884 guaA_Cterm GMP synthase (glutamine-hydrolyzing), C-terminal domain or B subunit. This protein of purine de novo biosynthesis is well-conserved. However, it appears to split into two separate polypeptide chains in most of the Archaea. This C-terminal region would be the larger subunit [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 311 -211614 TIGR00885 fucP L-fucose:H+ symporter permease. This family describes the L-fucose permease in bacteria. L-fucose(6-deoxy-L-galactose) is a monosaccharide found in glycoproteins and cell wall polysaccharides. L-fucose is used in bacteria through an inducible pathway mediated by atleast four enzymes: a permease, isomerase, kinase and an aldolase which are encoded by fucP, fucI, fucK, fucA respectively. The fuc genes belong to a regulon comprising of four linked operons: fucO, fucA, fucPIK and fucR. The positive regulator is encoded by fucR, whose protein responds to fuculose-1-phosphate, which acts as an effector. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 408 -273322 TIGR00886 2A0108 nitrite extrusion protein (nitrite facilitator). [Transport and binding proteins, Anions] 354 -129965 TIGR00887 2A0109 phosphate:H+ symporter. This model represents the phosphate uptake symporter subfamily of the major facilitator superfamily (pfam00083). [Transport and binding proteins, Anions] 502 -129966 TIGR00888 guaA_Nterm GMP synthase (glutamine-hydrolyzing), N-terminal domain or A subunit. This protein of purine de novo biosynthesis is well-conserved. However, it appears to split into two separate polypeptide chains in most of the Archaea. This N-terminal region would be the smaller subunit. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 188 -129967 TIGR00889 2A0110 nucleoside transporter. This family of proteins transports nucleosides at a high affinity. The transport mechanism is driven by proton motive force. This family includes nucleoside permease NupG and xanthosine permease from E.Coli. [Transport and binding proteins, Nucleosides, purines and pyrimidines] 418 -273323 TIGR00890 2A0111 oxalate/formate antiporter family transporter. This subfamily belongs to the major facilitator family. Members include the oxalate/formate antiporter of Oxalobacter formigenes, where one substrate is decarboxylated in the cytosol into the other to consume a proton and drive an ion gradient. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 377 -273324 TIGR00891 2A0112 putative sialic acid transporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 405 -273325 TIGR00892 2A0113 monocarboxylate transporter 1. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 455 -273326 TIGR00893 2A0114 D-galactonate transporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 399 -129972 TIGR00894 2A0114euk Na(+)-dependent inorganic phosphate cotransporter. [Transport and binding proteins, Anions] 465 -273327 TIGR00895 2A0115 benzoate transport. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 398 -129974 TIGR00896 CynX cyanate transporter. This family of proteins is involved in active transport of cyanate. The cyanate transporter in E.Coli is used to transport cyanate into the cell so it can be metabolized into ammonia and bicarbonate. This process is used to overcome the toxicity of environmental cyanate. [Transport and binding proteins, Other] 355 -162096 TIGR00897 2A0118 polyol permease family. This family of proteins includes the ribitol and D-arabinitol transporters from Klebsiella pneumoniae and the alpha-ketoglutarate permease from Bacillus subtilis. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 402 -273328 TIGR00898 2A0119 cation transport protein. [Transport and binding proteins, Cations and iron carrying compounds] 505 -129977 TIGR00899 2A0120 sugar efflux transporter. This family of proteins is an efflux system for lactose, glucose, aromatic glucosides and galactosides, cellobiose, maltose, a-methyl glucoside and other sugar compounds. They are found in both gram-negative and gram-postitive bacteria. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 375 -162098 TIGR00900 2A0121 H+ Antiporter protein. [Transport and binding proteins, Cations and iron carrying compounds] 365 -273329 TIGR00901 2A0125 AmpG-like permease. [Cellular processes, Adaptations to atypical conditions] 356 -129980 TIGR00902 2A0127 phenyl proprionate permease family protein. This family of proteins is involved in the uptake of 3-phenylpropionic acid. This uptake mechanism is for the metabolism of phenylpropanoid compounds and plays an important role in the natural degradative cycle of these aromatic molecules. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 382 -129981 TIGR00903 2A0129 major facilitator 4 family protein. This family of proteins are uncharacterized proteins from archaea. This family includes proteins from Archaeoglobus fulgidus and Aeropyrum pernix. [Transport and binding proteins, Other] 368 -129982 TIGR00904 mreB cell shape determining protein, MreB/Mrl family. MreB (mecillinam resistance) in E. coli (also called envB) and the paralogous pair MreB and Mrl of Bacillus subtilis have all been shown to help determine cell shape. This protein is present in a wide variety of bacteria, including spirochetes, but is missing from the Mycoplasmas and from Gram-positive cocci. Most completed bacterial genomes have a single member of this family. In some species it is an essential gene. A close homolog is found in the Archaeon Methanobacterium thermoautotrophicum, and a more distant homolog in Archaeoglobus fulgidus. The family is related to cell division protein FtsA and heat shock protein DnaK. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 333 -129983 TIGR00905 2A0302 transporter, basic amino acid/polyamine antiporter (APA) family. This family includes several families of antiporters that, rather commonly, are encoded next to decarboxylases that convert one of the antiporter substrates into the other. This arrangement allows a cycle that can remove proteins from the cytoplasm and thereby protect against acidic conditions. [Transport and binding proteins, Amino acids, peptides and amines] 473 -273330 TIGR00906 2A0303 cationic amino acid transport permease. [Transport and binding proteins, Amino acids, peptides and amines] 557 -273331 TIGR00907 2A0304 amino acid permease (GABA permease). [Transport and binding proteins, Amino acids, peptides and amines] 482 -129986 TIGR00908 2A0305 ethanolamine permease. The three genes used as the seed for this model (from Burkholderia pseudomallei, Pseudomonas aeruginosa and Clostridium acetobutylicum are all adjacent to genes for the catabolism of ethanolamine. Most if not all of the hits to this model have a similar arrangement of genes. This group is a member of the Amino Acid-Polyamine-Organocation (APC) Superfamily. [Transport and binding proteins, Amino acids, peptides and amines] 442 -129987 TIGR00909 2A0306 amino acid transporter. [Transport and binding proteins, Amino acids, peptides and amines] 429 -129988 TIGR00910 2A0307_GadC glutamate:gamma-aminobutyrate antiporter. Lowered cutoffs from 1000/500 to 800/300, promoted from subfamily to equivalog, and put into a Genome Property DHH 9/1/2009 [Transport and binding proteins, Amino acids, peptides and amines] 507 -273332 TIGR00911 2A0308 L-type amino acid transporter. [Transport and binding proteins, Amino acids, peptides and amines] 501 -273333 TIGR00912 2A0309 spore germination protein (amino acid permease). This model describes spore germination protein GerKB and paralogs from Bacillus subtilis, Clostridium tetani, and other known or predicted endospore-forming members of the Firmicutes (low-GC Gram positive bacteria). Members show some similarity to amino acid permeases. [Transport and binding proteins, Amino acids, peptides and amines] 359 -273334 TIGR00913 2A0310 amino acid permease (yeast). [Transport and binding proteins, Amino acids, peptides and amines] 478 -129992 TIGR00914 2A0601 heavy metal efflux pump, CzcA family. This model represents a family of H+/heavy metal cation antiporters. This family is one of several subfamilies within the scope of pfam00873. [Cellular processes, Detoxification, Transport and binding proteins, Cations and iron carrying compounds] 1051 -273335 TIGR00915 2A0602 The (Largely Gram-negative Bacterial) Hydrophobe/Amphiphile Efflux-1 (HAE1) Family. Proteins scoring above the trusted cutoff (1000) form a tight clade within the RND (Resistance-Nodulation-Cell Division) superfamily. Proteins scoring greater than the noise cutoff (100) appear to form a larger clade, cleanly separated from more distant homologs that include cadmium/zinc/cobalt resistance transporters. This family is one of several subfamilies within the scope of pfam00873. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Unknown substrate] 1044 -273336 TIGR00916 2A0604s01 protein-export membrane protein, SecD/SecF family. The SecA,SecB,SecD,SecE,SecF,SecG and SecY proteins form the protein translocation appartus in prokaryotes. This family is specific for the SecD and SecF proteins. [Protein fate, Protein and peptide secretion and trafficking] 192 -273337 TIGR00917 2A060601 Niemann-Pick C type protein family. The model describes Niemann-Pick C type protein in eukaryotes. The defective protein has been associated with Niemann-Pick disease which is described in humans as autosomal recessive lipidosis. It is characterized by the lysosomal accumulation of unestrified cholesterol. It is an integral membrane protein, which indicates that this protein is most likely involved in cholesterol transport or acts as some component of cholesterol homeostasis. [Transport and binding proteins, Other] 1205 -273338 TIGR00918 2A060602 The Eukaryotic (Putative) Sterol Transporter (EST) Family. 1145 -273339 TIGR00920 2A060605 3-hydroxy-3-methylglutaryl-coenzyme A reductase. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 886 -273340 TIGR00921 2A067 The (Largely Archaeal Putative) Hydrophobe/Amphiphile Efflux-3 (HAE3) Family. Characterized members of the RND superfamily all probably catalyze substrate efflux via an H+ antiport mechanism. These proteins are found ubiquitously in bacteria, archaea and eukaryotes. They fall into seven phylogenetic families, this family (2.A.6.7) consists of uncharacterised putative transporters, largely in the Archaea. [Transport and binding proteins, Unknown substrate] 719 -273341 TIGR00922 nusG transcription termination/antitermination factor NusG. NusG proteins are transcription factors which are aparrently universal in prokaryotes (archaea and eukaryotes have homologs that may have related functions). The essential components of these factors include an N-terminal RNP-like (ribonucleoprotein) domain and a C-terminal KOW motif (pfam00467) believed to be a nucleic acid binding domain. In E. coli, NusA has been shown to interact with RNA polymerase and termination factor Rho. This model covers a wide variety of bacterial species but excludes mycoplasmas which are covered by a separate model (TIGR01956).The function of all of these NusG proteins is likely to be the same at the level of interaction with RNA and other protein factors to affect termination; however different species may utilize NusG towards different processes and in combination with different suites of affector proteins.In E. coli, NusG promotes rho-dependent termination. It is an essential gene. In Streptomyces virginiae and related species, an additional N-terminal sequence is also present and is suggested to play a role in butyrolactone-mediated autoregulation. In Thermotoga maritima, NusG has a long insert, fails to substitute for E. coli NusG (with or without the long insert), is a large 0.7 % of total cellular protein, and has a general, sequence non-specific DNA and RNA binding activity that blocks ethidium staining, yet permits transcription.Archaeal proteins once termed NusG share the KOW domain but are actually a ribosomal protein corresponding to L24p in bacterial and L26e in eukaryotes (TIGR00405). [Transcription, Transcription factors] 172 -273342 TIGR00924 yjdL_sub1_fam amino acid/peptide transporter (Peptide:H+ symporter), bacterial. The model describes proton-dependent oligopeptide transporters in bacteria. This model is restricted in its range in recognizing bacterial proton-dependent oligopeptide transporters, although they are found in yeast, plants and animals. They function by proton symport in a 1:1 stoichiometry, which is variable in different species. All of them are predicted to contain 12 transmembrane domains, for which limited experimental evidence exists. [Transport and binding proteins, Amino acids, peptides and amines] 475 -273343 TIGR00926 2A1704 Peptide:H+ symporter (also transports b-lactam antibiotics, the antitumor agent, bestatin, and various protease inhibitors). [Transport and binding proteins, Amino acids, peptides and amines] 654 -273344 TIGR00927 2A1904 K+-dependent Na+/Ca+ exchanger. [Transport and binding proteins, Cations and iron carrying compounds] 1096 -273345 TIGR00928 purB adenylosuccinate lyase. This family consists of adenylosuccinate lyase, the enzyme that catalyzes step 8 in the purine biosynthesis pathway for de novo synthesis of IMP and also the final reaction in the two-step sequence from IMP to AMP. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 435 -273346 TIGR00929 VirB4_CagE type IV secretion/conjugal transfer ATPase, VirB4 family. Type IV secretion systems are found in Gram-negative pathogens. They export proteins, DNA, or complexes in different systems and are related to plasmid conjugation systems. This model represents related ATPases that include VirB4 in Agrobacterium tumefaciens (DNA export) CagE in Helicobacter pylori (protein export) and plasmid TraB (conjugation). 785 -273347 TIGR00930 2a30 K-Cl cotransporter. [Transport and binding proteins, Other] 953 -188097 TIGR00931 antiport_nhaC Na+/H+ antiporter NhaC. A single member of the NhaC family, a protein from Bacillus firmus, has been functionally characterized.It is involved in pH homeostasis and sodium extrusion. Members of the NhaC family are found in both Gram-negative bacteria and Gram-positive bacteria. Intriguingly, archaeal homolog ArcD (just outside boundaries of family) has been identified as an arginine/ornithine antiporter. [Transport and binding proteins, Cations and iron carrying compounds] 454 -273348 TIGR00932 2a37 transporter, monovalent cation:proton antiporter-2 (CPA2) family. [Transport and binding proteins, Cations and iron carrying compounds] 273 -273349 TIGR00933 2a38 potassium uptake protein, TrkH family. The proteins of the Trk family are derived from Gram-negative and Gram-positive bacteria, yeast and wheat. The proteins of E. coli K12 TrkH and TrkG as well as several yeast proteins have been functionally characterized.The E. coli TrkH and TrkG proteins are complexed to two peripheral membrane proteins, TrkA, an NAD-binding protein, and TrkE, an ATP-binding protein. This complex forms the potassium uptake system. [Transport and binding proteins, Cations and iron carrying compounds] 391 -130009 TIGR00934 2a38euk potassium uptake protein, Trk family. The proteins of the Trk family are derived from Gram-negative and Gram-positive bacteria, yeast and wheat. The proteins of E. coli K12 TrkH and TrkG as well as several yeast proteins have been functionally characterized.The E. coli TrkH and TrkG proteins are complexed to two peripheral membrane proteins, TrkA, an NAD-binding protein, and TrkE, an ATP-binding protein. This complex forms the potassium uptake system. This family is specific for the eukaryotic Trk system. [Transport and binding proteins, Cations and iron carrying compounds] 800 -213571 TIGR00935 2a45 arsenite/antimonite efflux pump membrane protein. Members of this protein family are ArsB, a highly hydrophobic integral membrane protein involved in transport processes used to protect cells from arsenite (or antimonite). Members of the seed alignment were selected by adjacency to the ATPase subunit ArsA that energizes the transport. [Cellular processes, Detoxification, Transport and binding proteins, Other] 426 -213572 TIGR00936 ahcY adenosylhomocysteinase. This enzyme hydrolyzes adenosylhomocysteine as part of a cycle for the regeneration of the methyl donor S-adenosylmethionine. Species that lack this enzyme are likely to have adenosylhomocysteine nucleosidase (EC 3.2.2.9), an enzyme which also acts as 5'-methyladenosine nucleosidase (see TIGR01704). [Energy metabolism, Amino acids and amines] 407 -273350 TIGR00937 2A51 chromate transporter, chromate ion transporter (CHR) family. Members of this family probably act as chromate transporters, and are found in Pseudomonas aeruginosa, Alcaligenes eutrophus, Vibrio cholerae, Bacillus subtilis, Ochrobactrum tritici, cyanobacteria and archaea. The protein reduces chromate accumulation and is essential for chromate resistance. [Transport and binding proteins, Anions] 368 -273351 TIGR00938 thrB_alt homoserine kinase, Neisseria type. Homoserine kinase is required in the biosynthesis of threonine from aspartate.The member of this family from Pseudomonas aeruginosa was shown by direct assay and complementation to act specifically as a homoserine kinase. [Amino acid biosynthesis, Aspartate family] 307 -273352 TIGR00939 2a57 Equilibrative Nucleoside Transporter (ENT). [Transport and binding proteins, Nucleosides, purines and pyrimidines] 437 -273353 TIGR00940 2a6301s01 Tmonovalent cation:proton antiporter. This family of proteins constists of bacterial multicomponent K+:H+ and Na+:H+ antiporters. The best characterized systems are the PhaABCDEFG system of Rhizobium meliloti which functions in pH adaptation and as a K+ efflux system and the MnhABCDEFG system of Staphylococcus aureus which functions as a Na+:H+ antiporter. [Transport and binding proteins, Cations and iron carrying compounds] 793 -273354 TIGR00941 2a6301s03 Multicomponent Na+:H+ antiporter, MnhC subunit. [Transport and binding proteins, Cations and iron carrying compounds] 104 -130017 TIGR00942 2a6301s05 Monovalent Cation (K+ or Na+):Proton Antiporter-3 (CPA3) subfamily. [Transport and binding proteins, Cations and iron carrying compounds] 144 -130018 TIGR00943 2a6301s02 monovalent cation:proton antiporter. This family of proteins constists of bacterial multicomponent K+:H+ and Na+:H+ antiporters. The best characterized systems are the PhaABCDEFG system of Rhizobium meliloti which functions in pH adaptation and as a K+ efflux system and the MnhABCDEFG system of Staphylococcus aureus which functions as a Na+:H+ antiporter.This family is specific for the phaB and mnhB proteins. [Transport and binding proteins, Cations and iron carrying compounds] 107 -130019 TIGR00944 2a6301s04 Multicomponent K+:H+antiporter. [Transport and binding proteins, Cations and iron carrying compounds] 463 -273355 TIGR00945 tatC Twin arginine targeting (Tat) protein translocase TatC. This model represents the TatC translocase component of the Sec-independent protein translocation system. This system is responsible for translocation of folded proteins, often with bound cofactors across the periplasmic membrane. A related model (TIGR01912) represents the archaeal clade of this family. TatC is often found in a gene cluster with the two other components of the system, TatA/E (TIGR01411) and TatB (TIGR01410). A model also exists for the Twin-arginine signal sequence (TIGR01409). [Protein fate, Protein and peptide secretion and trafficking] 215 -273356 TIGR00946 2a69 he Auxin Efflux Carrier (AEC) Family. [Transport and binding proteins, Other] 321 -273357 TIGR00947 2A73 putative bicarbonate transporter, IctB family. This family of proteins is suggested to transport inorganic carbon (HCO3-), based on the phenotype of a mutant of IctB in Synechococcus sp. strain PCC 7942. Bicarbonate uptake is used by many photosynthetic organisms including cyanobacteria. These organisms are able to concentrate CO2/HCO3- against a greater than ten-fold concentration gradient. Cyanobacteria may have several such carriers operating with different efficiencies. Note that homology to various O-antigen ligases, with possible implications for mutant cell envelope structure, might allow alternatives to the interpretation of IctB as a bicarbonate transport protein. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 425 -130023 TIGR00948 2a75 L-lysine exporter. [Transport and binding proteins, Amino acids, peptides and amines] 177 -273358 TIGR00949 2A76 The Resistance to Homoserine/Threonine (RhtB) Family protein. [Transport and binding proteins, Amino acids, peptides and amines] 185 -273359 TIGR00950 2A78 Carboxylate/Amino Acid/Amine Transporter. [Transport and binding proteins, Amino acids, peptides and amines] 260 -130026 TIGR00951 2A43 Lysosomal Cystine Transporter. [Transport and binding proteins, Amino acids, peptides and amines] 220 -130027 TIGR00952 S15_bact ribosomal protein S15, bacterial/organelle. This model is built to recognize specifically bacterial, chloroplast, and mitochondrial ribosomal protein S15. The homologous proteins of Archaea and Eukarya are designated S13. [Protein synthesis, Ribosomal proteins: synthesis and modification] 86 -273360 TIGR00954 3a01203 Peroxysomal Fatty Acyl CoA Transporter (FAT) Family protein. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 659 -273361 TIGR00955 3a01204 The Eye Pigment Precursor Transporter (EPP) Family protein. [Transport and binding proteins, Other] 617 -273362 TIGR00956 3a01205 Pleiotropic Drug Resistance (PDR) Family protein. [Transport and binding proteins, Other] 1394 -188098 TIGR00957 MRP_assoc_pro multi drug resistance-associated protein (MRP). This model describes multi drug resistance-associated protein (MRP) in eukaryotes. The multidrug resistance-associated protein is an integral membrane protein that causes multidrug resistance when overexpressed in mammalian cells. It belongs to ABC transporter superfamily. The protein topology and function was experimentally demonstrated by epitope tagging and immunofluorescence. Insertion of tags in the critical regions associated with drug efflux, abrogated its function. The C-terminal domain seem to highly conserved. [Transport and binding proteins, Other] 1522 -273363 TIGR00958 3a01208 Conjugate Transporter-2 (CT2) Family protein. [Transport and binding proteins, Other] 711 -273364 TIGR00959 ffh signal recognition particle protein. This model represents Ffh (Fifty-Four Homolog), the protein component that forms the bacterial (and organellar) signal recognition particle together with a 4.5S RNA. Ffh is a GTPase homologous to eukaryotic SRP54 and also to the GTPase FtsY (TIGR00064) that is the receptor for the signal recognition particle. [Protein fate, Protein and peptide secretion and trafficking] 428 -273365 TIGR00962 atpA proton translocating ATP synthase, F1 alpha subunit. The sequences of ATP synthase F1 alpha and beta subunits are related and both contain a nucleotide-binding site for ATP and ADP. They have a common amino terminal domain but vary at the C-terminus. The beta chain has catalytic activity, while the alpha chain is a regulatory subunit. The alpha-subunit contains a highly conserved adenine-specific noncatalytic nucleotide-binding domain. The conserved amino acid sequence is Gly-X-X-X-X-Gly-Lys. Proton translocating ATP synthase F1, alpha subunit is homologous to proton translocating ATP synthase archaeal/vacuolar(V1), B subunit. [Energy metabolism, ATP-proton motive force interconversion] 501 -273366 TIGR00963 secA preprotein translocase, SecA subunit. The proteins SecA-F and SecY, not all of which are necessary, comprise the standard prokaryotic protein translocation apparatus. Other, specialized translocation systems also exist but are not as broadly distributed. This model describes SecA, an essential member of the apparatus. This model excludes SecA2 of the accessory secretory system. [Protein fate, Protein and peptide secretion and trafficking] 742 -273367 TIGR00964 secE_bact preprotein translocase, SecE subunit, bacterial. This model represents exclusively the bacterial (and some organellar) SecE protein. SecE is part of the core heterotrimer, SecYEG, of the Sec preprotein translocase system. Other components are the ATPase SecA, a cytosolic chaperone SecB, and an accessory complex of SecDF and YajC. [Protein fate, Protein and peptide secretion and trafficking] 55 -130038 TIGR00965 dapD 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. This enzyme is part of the diaminopimelate pathway of lysine biosynthesis. Alternate name: tetrahydrodipicolinate N-succinyltransferase. The closely related TabB protein of Pseudomonas syringae (pv. tabaci), SP|P31852|TABB_PSESZ, appears to act in the biosynthesis of tabtoxin rather than lysine. The trusted cutoff is set high enough to exclude this gene. Sequences below trusted also include a version of this enzyme which apparently utilize acetate rather than succinate (EC: 2.3.1.89). [Amino acid biosynthesis, Aspartate family] 269 -273368 TIGR00966 3a0501s07 protein-export membrane protein SecF. This bacterial protein is always found with the homologous protein-export membrane protein SecD. In numerous lineages, this protein occurs as a SecDF fusion protein. [Protein fate, Protein and peptide secretion and trafficking] 246 -273369 TIGR00967 3a0501s007 preprotein translocase, SecY subunit. Members of this protein family are the SecY component of the SecYEG translocon, or protein translocation pore, which is driven by the ATPase SecA. This model does not discriminate bacterial from archaeal forms. [Protein fate, Protein and peptide secretion and trafficking] 410 -130041 TIGR00968 3a0106s01 sulfate ABC transporter, ATP-binding protein. [Transport and binding proteins, Anions] 237 -273370 TIGR00969 3a0106s02 sulfate ABC transporter, permease protein. This model describes a subfamily of both CysT and CysW, paralogous and generally tandemly encoded permease proteins of the sulfate ABC transporter. [Transport and binding proteins, Anions] 271 -273371 TIGR00970 leuA_yeast 2-isopropylmalate synthase, yeast type. A larger family of homologous proteins includes homocitrate synthase, distinct lineages of 2-isopropylmalate synthase, several distinct, uncharacterized, orthologous sets in the Archaea, and other related enzymes. This model describes a family of 2-isopropylmalate synthases as found in yeasts and in a minority of studied bacteria. [Amino acid biosynthesis, Pyruvate family] 564 -130044 TIGR00971 3a0106s03 sulfate/thiosulfate-binding protein. This model describes binding proteins functionally associated with the sulfate ABC transporter. In the model bacterium E. coli, two different members work with the same transporter; mutation analysis says each enables the uptake of both sulfate and thiosulfate. In many species, a single binding protein is found, and may be referred to in general terms as a sulfate ABC transporter sulfate-binding protein. [Transport and binding proteins, Anions] 315 -273372 TIGR00972 3a0107s01c2 phosphate ABC transporter, ATP-binding protein. This model represents the ATP-binding protein of a family of ABC transporters for inorganic phosphate. In the model species Escherichia coli, a constitutive transporter for inorganic phosphate, with low affinity, is also present. The high affinity transporter that includes this polypeptide is induced when extracellular phosphate concentrations are low. The proteins most similar to the members of this family but not included appear to be amino acid transporters. [Transport and binding proteins, Anions] 247 -130046 TIGR00973 leuA_bact 2-isopropylmalate synthase, bacterial type. This is the first enzyme of leucine biosynthesis. A larger family of homologous proteins includes homocitrate synthase, distinct lineages of 2-isopropylmalate synthase, several distinct, uncharacterized, orthologous sets in the Archaea, and other related enzymes. This model describes a family of 2-isopropylmalate synthases found primarily in Bacteria. The homologous families in the Archaea may represent isozymes and/or related enzymes. [Amino acid biosynthesis, Pyruvate family] 494 -273373 TIGR00974 3a0107s02c phosphate ABC transporter, permease protein PstA. This model describes PtsA, one of a pair of permease proteins in the ABC (high affinity) phosphate transporter. In a number of species, this permease is fused with the PtsC protein (TIGR02138). In the model bacterium Escherichia coli, this transport system is induced when the concentration of extrallular inorganic phosphate is low. A constitutive, lower affinity transporter operates otherwise. [Transport and binding proteins, Anions] 271 -273374 TIGR00975 3a0107s03 phosphate ABC transporter, phosphate-binding protein. This family represents one type of (periplasmic, in Gram-negative bacteria) phosphate-binding protein found in phosphate ABC (ATP-binding cassette) transporters. This protein is accompanied, generally in the same operon, by an ATP binding protein and (usually) two permease proteins. [Transport and binding proteins, Anions] 313 -273375 TIGR00976 /NonD putative hydrolase, CocE/NonD family. This model represents a protein subfamily that includes the cocaine esterase CocE, several glutaryl-7-ACA acylases, and the putative diester hydrolase NonD of Streptomyces griseus (all hydrolases). This family shows extensive, low-level similarity to a family of xaa-pro dipeptidyl-peptidases, and local similarity by PSI-BLAST to many other hydrolases. [Unknown function, Enzymes of unknown specificity] 550 -130050 TIGR00977 citramal_synth citramalate synthase. This model includes GSU1798 and is now known to represent citramalate synthase. Members are related to 2-isopropylmalate synthases and homocitrate synthases but phylogenetically distinct. The role is isoleucine biosynthesis, the first dedicated step. [Unknown function, General] 526 -273376 TIGR00978 asd_EA aspartate-semialdehyde dehydrogenase (non-peptidoglycan organisms). Two closely related families of aspartate-semialdehyde dehydrogenase are found. They differ by a deep split in phylogenetic and percent identity trees and in gap patterns. Separate models are built for the two types in order to exclude the USG-1 protein, found in several species, which is specifically related to the Bacillus subtilis type of aspartate-semialdehyde dehydrogenase. Members of this type are found primarily in organisms that lack peptidoglycan. [Amino acid biosynthesis, Aspartate family] 341 -130052 TIGR00979 fumC_II fumarate hydratase, class II. Putative fumarases from several species (Mycobacterium tuberculosis, Streptomyces coelicolor, Pseudomonas aeruginosa) branch deeply, although within the same branch of a phylogenetic tree rooted by aspartate ammonia-lyase sequences, and score between the trusted and noise cutoffs. [Energy metabolism, TCA cycle] 458 -130053 TIGR00980 3a0801so1tim17 mitochondrial import inner membrane translocase subunit tim17. [Transport and binding proteins, Amino acids, peptides and amines] 170 -130054 TIGR00981 rpsL_bact ribosomal protein S12, bacterial/organelle. This model recognizes ribosomal protein S12 of Bacteria, mitochondria, and chloroplasts. The homologous ribosomal proteins of Archaea and Eukarya, termed S23 in Eukarya and S12 or S23 in Archaea, score below the trusted cutoff. [Protein synthesis, Ribosomal proteins: synthesis and modification] 124 -273377 TIGR00982 uS12_E_A ribosomal protein uS12, eukaryotic/archaeal form. This model represents eukaryotic and archaeal forms of ribosomal protein uS12. This protein was known previously as S23 in eukaryotes and as either S12 or S23 in the Archaea. [Protein synthesis, Ribosomal proteins: synthesis and modification] 139 -130056 TIGR00983 3a0801s02tim23 mitochondrial import inner membrane translocase subunit tim23. [Transport and binding proteins, Amino acids, peptides and amines] 149 -130057 TIGR00984 3a0801s03tim44 mitochondrial import inner membrane, translocase subunit. The mitochondrial protein translocase (MPT) family, which brings nuclearly encoded preproteins into mitochondria, is very complex with 19 currently identified protein constituents.These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family is specific for the Tim proteins. [Transport and binding proteins, Amino acids, peptides and amines] 378 -273378 TIGR00985 3a0801s04tom mitochondrial import receptor subunit translocase of outer membrane 20 kDa subunit. [Transport and binding proteins, Amino acids, peptides and amines] 148 -273379 TIGR00986 3a0801s05tom22 mitochondrial import receptor subunit Tom22. The mitochondrial protein translocase (MPT) family, which brings nuclearly encoded preproteins into mitochondria, is very complex with 19 currently identified protein constituents.These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family is specific for the Tom22 proteins. [Transport and binding proteins, Amino acids, peptides and amines] 145 -130060 TIGR00987 himA integration host factor, alpha subunit. This protein forms a site-specific DNA-binding heterodimer with the integration host factor beta subunit. It is closely related to the DNA-binding protein HU. [DNA metabolism, DNA replication, recombination, and repair] 96 -130061 TIGR00988 hip integration host factor, beta subunit. This protein forms a site-specific DNA-binding heterodimer with the homologous integration host factor alpha subunit. It is closely related to the DNA-binding protein HU. [DNA metabolism, DNA replication, recombination, and repair] 94 -130062 TIGR00989 3a0801s07tom40 mitochondrial import receptor subunit Tom40. The mitochondrial protein translocase (MPT) family, which brings nuclearly encoded preproteins into mitochondria, is very complex with 19 currently identified protein constituents.These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family is specific for the Tom40 proteins. [Transport and binding proteins, Amino acids, peptides and amines] 161 -273380 TIGR00990 3a0801s09 mitochondrial precursor proteins import receptor (72 kDa mitochondrial outermembrane protein) (mitochondrial import receptor for the ADP/ATP carrier) (translocase of outermembrane tom70). [Transport and binding proteins, Amino acids, peptides and amines] 615 -130064 TIGR00991 3a0901s02IAP34 GTP-binding protein (Chloroplast Envelope Protein Translocase). [Transport and binding proteins, Nucleosides, purines and pyrimidines] 313 -130065 TIGR00992 3a0901s03IAP75 chloroplast envelope protein translocase, IAP75 family. Two families of proteins are involved in the chloroplast envelope import appartus.They are the three proteins of the outer membrane (TOC) and four proteins in the inner membrane (TIC). This family is specific for the TOC IAP75 protein. [Transport and binding proteins, Amino acids, peptides and amines] 718 -273381 TIGR00993 3a0901s04IAP86 chloroplast protein import component Toc86/159, G and M domains. The long precursor of the 86K protein originally described is proposed to have three domains. The N-terminal A-domain is acidic, repetitive, weakly conserved, readily removed by proteolysis during chloroplast isolation, and not required for protein translocation. The other domains are designated G (GTPase) and M (membrane anchor); this family includes most of the G domain and all of M. [Transport and binding proteins, Amino acids, peptides and amines] 763 -273382 TIGR00994 3a0901s05TIC20 chloroplast protein import component, Tic20 family. Two families of proteins are involved in the chloroplast envelope import appartus.They are the three proteins of the outer membrane (TOC) and four proteins in the inner membrane (TIC). This family is specific for the Tic20 protein. [Transport and binding proteins, Amino acids, peptides and amines] 267 -273383 TIGR00995 3a0901s06TIC22 chloroplast protein import component, Tic22 family. Two families of proteins are involved in the chloroplast envelope import appartus.They are the three proteins of the outer membrane (TOC) and four proteins in the inner membrane (TIC). This family is specific for the Tic22 protein. [Transport and binding proteins, Amino acids, peptides and amines] 270 -273384 TIGR00996 Mtu_fam_mce virulence factor Mce family protein. Members of this paralogous family are found as six tandem homologous proteins in the same orientation per cassette, in four separate cassettes in Mycobacterium tuberculosis. The six members of each cassette represent six subfamilies. One subfamily includes the protein mce (mycobacterial cell entry), a virulence protein required for invasion of non-phagocytic cells. [Cellular processes, Pathogenesis] 291 -130070 TIGR00997 ispZ intracellular septation protein A. This partially characterized protein, whose absence can cause a cell division defect in an intracellularly replicating bacterium, is found only so far only in the Proteobacteria. [Cellular processes, Cell division] 178 -273385 TIGR00998 8a0101 efflux pump membrane protein (multidrug resistance protein A). [Transport and binding proteins, Other] 334 -273386 TIGR00999 8a0102 Membrane Fusion Protein cluster 2 (function with RND porters). [Transport and binding proteins, Other] 265 -273387 TIGR01000 bacteriocin_acc bacteriocin secretion accessory protein. This family represents an accessory protein that works with the bacteriocin maturation and ABC transport secretion protein described by TIGR01193. [Transport and binding proteins, Other] 457 -130074 TIGR01001 metA homoserine O-succinyltransferase. The apparent equivalog from Bacillus subtilis is broken into two tandem reading frames. [Amino acid biosynthesis, Aspartate family] 300 -273388 TIGR01002 hlyII beta-channel forming cytolysin. This family of cytolytic pore-forming proteins includes alpha toxin and leukocidin F and S subunits from Staphylococcus aureus, hemolysin II of Bacillus cereus, and related toxins. [Cellular processes, Toxin production and resistance] 312 -273389 TIGR01003 PTS_HPr_family Phosphotransferase System HPr (HPr) Family. The HPr family are bacterial proteins (or domains of proteins) which function in phosphoryl transfer system (PTS) systems. They include energy-coupling components which catalyze sugar uptake via a group translocation mechanism. The functions of most of these proteins are not known, but they presumably function in PTS-related regulatory capacities. All seed members are stand-alone HPr proteins, although the model also recognizes HPr domains of PTS fusion proteins. This family includes the related NPr protein. [Signal transduction, PTS] 82 -273390 TIGR01004 PulS_OutS lipoprotein, PulS/OutS family. This family comprises lipoproteins from four gamma proteobacterial species: PulS protein of Klebsiella pneumoniae, the OutS protein of Erwinia chrysanthemi and Pectobacterium chrysanthemi, and the functionally uncharacterized E. coli protein EtpO. PulS and OutS have been shown to interact with and facilitate insertion of secretins into the outer membrane, suggesting a chaperone-like, or piloting function for members of this family. [Transport and binding proteins, Amino acids, peptides and amines] 128 -273391 TIGR01005 eps_transp_fam exopolysaccharide transport protein family. The model describes the exopolysaccharide transport protein family in bacteria. The transport protein is part of a large genetic locus which is associated with exopolysaccharide (EPS) biosynthesis. Detailed molecular characterization and gene fusion analysis revealed atleast seven gene products are involved in the overall regulation, which among other things, include exopolysaccharide biosynthesis, property of conferring virulence and exopolysaccharide export. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 764 -130079 TIGR01006 polys_exp_MPA1 polysaccharide export protein, MPA1 family, Gram-positive type. This family contains members from Low GC Gram-positive bacteria; they are proposed to have a function in the export of complex polysaccharides. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 226 -273392 TIGR01007 eps_fam capsular exopolysaccharide family. This model describes the capsular exopolysaccharide proteins in bacteria. The exopolysaccharide gene cluster consists of several genes which encode a number of proteins which regulate the exoploysaccharide biosynthesis(EPS). Atleast 13 genes espA to espM in streptococcus species seem to direct the EPS proteins and all of which share high homology. Functional roles were characterized by gene disruption experiments which resulted in exopolysaccharide-deficient phenotypes. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 204 -273393 TIGR01008 uS3_euk_arch ribosomal protein uS3, eukaryotic/archaeal type. This model describes ribosomal protein S3 of the eukaryotic cytosol and of the archaea. TIGRFAMs model TIGR01009 describes the bacterial/organellar type, although the organellar types have a different architecture with long insertions and may score poorly. [Protein synthesis, Ribosomal proteins: synthesis and modification] 195 -130082 TIGR01009 rpsC_bact ribosomal protein S3, bacterial type. This model describes the bacterial type of ribosomal protein S3. Chloroplast and mitochondrial forms have large, variable inserts between conserved N-terminal and C-terminal domains. This model recognizes all bacterial forms and many chloroplast forms above the trusted cutoff score. TIGRFAMs model TIGR01008 describes S3 of the eukaryotic cytosol and of the archaea. [Protein synthesis, Ribosomal proteins: synthesis and modification] 211 -130083 TIGR01010 BexC_CtrB_KpsE polysaccharide export inner-membrane protein, BexC/CtrB/KpsE family. This family contains gamma proteobacterial proteins involved in capsule polysaccharide export. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 362 -130084 TIGR01011 rpsB_bact ribosomal protein S2, bacterial type. This model describes the bacterial, ribosomal, and chloroplast forms of ribosomal protein S2. TIGR01012 describes the archaeal and cytosolic forms. [Protein synthesis, Ribosomal proteins: synthesis and modification] 225 -273394 TIGR01012 uS2_euk_arch ribosomal protein uS2, eukaryotic/archaeal form. This model describes the ribosomal protein of the cytosol and of Archaea, homologous to S2 of bacteria. It is designated typically as Sa in eukaryotes and Sa or S2 in the archaea. TIGR01011 describes the related protein of organelles and bacteria. [Protein synthesis, Ribosomal proteins: synthesis and modification] 196 -162157 TIGR01013 2a58 Phosphate:Na+ Symporter (PNaS) Family. [Transport and binding proteins, Cations and iron carrying compounds] 456 -273395 TIGR01015 hmgA homogentisate 1,2-dioxygenase. Missing in human disease alkaptonuria. [Energy metabolism, Amino acids and amines] 429 -273396 TIGR01016 sucCoAbeta succinyl-CoA synthetase, beta subunit. This model is designated subfamily because it does not discriminate the ADP-forming enzyme ((EC 6.2.1.5) from the GDP_forming (EC 6.2.1.4) enzyme. The N-terminal half is described by the CoA-ligases model (pfam00549). The C-terminal half is described by the ATP-grasp model (pfam02222). This family contains a split seen both in a maximum parsimony tree (which ignores gaps) and in the gap pattern near position 85 of the seed alignment. Eukaryotic and most bacterial sequences are longer and contain a region similar to TXQTXXXG. Sequences from Deinococcus radiodurans, Mycobacterium tuberculosis, Streptomyces coelicolor, and the Archaea are 6 amino acids shorter in that region and contain a motif resembling [KR]G [Energy metabolism, TCA cycle] 386 -200066 TIGR01017 rpsD_bact ribosomal protein S4, bacterial/organelle type. This model finds organelle (chloroplast and mitochondrial) ribosomal protein S4 as well as bacterial ribosomal protein S4. [Protein synthesis, Ribosomal proteins: synthesis and modification] 200 -273397 TIGR01018 uS4_arch ribosomal protein uS4, eukaryotic/archaeal type. This model finds eukaryotic ribosomal protein S9 as well as archaeal ribosomal protein S4. [Protein synthesis, Ribosomal proteins: synthesis and modification] 162 -130091 TIGR01019 sucCoAalpha succinyl-CoA synthetase, alpha subunit. This model describes succinyl-CoA synthetase alpha subunits but does not discriminate between GTP-specific and ATP-specific reactions. The model is designated as subfamily rather than equivalog for that reason. ATP citrate lyases appear to form an outgroup. [Energy metabolism, TCA cycle] 286 -273398 TIGR01020 uS5_euk_arch ribosomal protein uS5, eukaryotic/archaeal form. This model finds eukaryotic ribosomal protein uS5 (previously S2 in yeast and human) as well as archaeal ribosomal protein uS5. [Protein synthesis, Ribosomal proteins: synthesis and modification] 212 -130093 TIGR01021 rpsE_bact ribosomal protein S5, bacterial/organelle type. This model finds chloroplast ribosomal protein S5 as well as bacterial ribosomal protein S5. A candidate mitochondrial form (Saccharomyces cerevisiae YBR251W and its homolog) differs substantially and is not included in this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 154 -130094 TIGR01022 rpmJ_bact ribosomal protein L36, bacterial type. Proteins found by this model occur exclusively in bacteria and organelles. [Protein synthesis, Ribosomal proteins: synthesis and modification] 37 -273399 TIGR01023 rpmG_bact ribosomal protein L33, bacterial type. This model describes bacterial ribosomal protein L33 and its chloroplast and mitochondrial equivalents. [Protein synthesis, Ribosomal proteins: synthesis and modification] 54 -130096 TIGR01024 rplS_bact ribosomal protein L19, bacterial type. This model describes bacterial ribosomoal protein L19 and its chloroplast equivalent. Putative mitochondrial L19 are found in several species (but not Saccharomyces cerevisiae) and score between trusted and noise cutoffs. [Protein synthesis, Ribosomal proteins: synthesis and modification] 113 -273400 TIGR01025 uS19_arch ribosomal protein uS19, eukaryotic/archaeal form. This model represents eukaryotic ribosomal protein uS19 (previously S15) and its archaeal equivalent. It excludes bacterial and organellar ribosomal protein S19. The nomenclature for the archaeal members is unresolved and given variously as S19 (after the more distant bacterial homologs) or S15. [Protein synthesis, Ribosomal proteins: synthesis and modification] 135 -273401 TIGR01026 fliI_yscN ATPase, FliI/YscN family. This family of ATPases demonstrates extensive homology with ATP synthase F1, beta subunit. It is a mixture of members with two different protein functions. The first group is exemplified by Salmonella typhimurium FliI protein. It is needed for flagellar assembly, its ATPase activity is required for flagellation, and it may be involved in a specialized protein export pathway that proceeds without signal peptide cleavage. The second group of proteins function in the export of virulence proteins; exemplified by Yersinia sp. YscN protein an ATPase involved in the type III secretory pathway for the antihost Yops proteins. [Energy metabolism, ATP-proton motive force interconversion] 440 -162163 TIGR01027 proB glutamate 5-kinase. Bacterial ProB proteins hit the full length of this model, but the ProB-like domain of delta 1-pyrroline-5-carboxylate synthetase does not hit the C-terminal 100 residues of this model. The noise cutoff is set low enough to hit delta 1-pyrroline-5-carboxylate synthetase and other partial matches to this family. [Amino acid biosynthesis, Glutamate family] 363 -273402 TIGR01028 uS7_euk_arch ribosomal protein uS7, eukaryotic/archaeal. This model describes the members from the eukaryotic cytosol and the Archaea of the family that includes ribosomal protein uS7 (previously S5 in yeast and human). A separate model describes bacterial and organellar S7. [Protein synthesis, Ribosomal proteins: synthesis and modification] 186 -273403 TIGR01029 rpsG_bact ribosomal protein S7, bacterial/organelle. This model describes the bacterial and organellar branch of the ribosomal protein S7 family (includes prokaroytic S7 and eukaryotic S5). The eukaryotic and archaeal branch is described by model TIGR01028. [Protein synthesis, Ribosomal proteins: synthesis and modification] 154 -130102 TIGR01030 rpmH_bact ribosomal protein L34, bacterial type. This model describes the bacterial protein L34 and its equivalents in organelles. [Protein synthesis, Ribosomal proteins: synthesis and modification] 44 -273404 TIGR01031 rpmF_bact ribosomal protein L32. This protein describes bacterial ribosomal protein L32. The noise cutoff is set low enough to include the equivalent protein from mitochondria and chloroplasts. No related proteins from the Archaea nor from the eukaryotic cytosol are detected by this model. This model is a fragment model; the putative L32 of some species shows similarity only toward the N-terminus. [Protein synthesis, Ribosomal proteins: synthesis and modification] 55 -130104 TIGR01032 rplT_bact ribosomal protein L20. This model describes bacterial ribosomal protein L20 and its chloroplast equvalent. This protein binds directly to 23s ribosomal RNA and is necessary for the in vitro assembly process of the 50s ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. GO process changed accordingly (SS 5/09/03) [Protein synthesis, Ribosomal proteins: synthesis and modification] 113 -273405 TIGR01033 TIGR01033 DNA-binding regulatory protein, YebC/PmpR family. This model describes a minimally characterized protein family, restricted to bacteria excepting for some eukaryotic sequences that have possible transit peptides. YebC from E. coli is crystallized, and PA0964 from Pseudomonas aeruginosa has been shown to be a sequence-specific DNA-binding regulatory protein. In silico analysis suggests a role in Holliday junction resolution. [Regulatory functions, DNA interactions] 238 -273406 TIGR01034 metK S-adenosylmethionine synthetase. Tandem isozymes of this S-adenosylmethionine synthetase in E. coli are designated MetK and MetX. [Central intermediary metabolism, Other] 377 -273407 TIGR01035 hemA glutamyl-tRNA reductase. This enzyme, together with glutamate-1-semialdehyde-2,1-aminomutase (TIGR00713), leads to the production of delta-amino-levulinic acid from Glu-tRNA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 417 -273408 TIGR01036 pyrD_sub2 dihydroorotate dehydrogenase, subfamily 2. This model describes enzyme protein dihydroorotate dehydrogenase exclusively for subfamily 2. It includes members from bacteria, yeast, plants etc. The subfamilies 1 and 2 share extensive homology, particularly toward the C-terminus. This subfamily has a longer N-terminal region. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 335 -130109 TIGR01037 pyrD_sub1_fam dihydroorotate dehydrogenase (subfamily 1) family protein. This family includes subfamily 1 dihydroorotate dehydrogenases while excluding the closely related subfamily 2 (TIGR01036). This family also includes a number of uncharacterized proteins and a domain of dihydropyrimidine dehydrogenase. The uncharacterized proteins might all be dihydroorotate dehydrogenase. 300 -273409 TIGR01038 uL22_arch_euk ribosomal protein uL22, eukaryotic/archaeal form. This model describes the ribosomal protein uL22 of the eukaryotic cytosol and of the Archaea, previously designated as L17, L22, and L23. The corresponding bacterial form of uL22 is described by a separate model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 148 -211621 TIGR01039 atpD ATP synthase, F1 beta subunit. The sequences of ATP synthase F1 alpha and beta subunits are related and both contain a nucleotide-binding site for ATP and ADP. They have a common amino terminal domain but vary at the C-terminus. The beta chain has catalytic activity, while the alpha chain is a regulatory subunit. Proton translocating ATP synthase, F1 beta subunit is homologous to proton translocating ATP synthase archaeal/vacuolar(V1), A subunit. [Energy metabolism, ATP-proton motive force interconversion] 461 -273410 TIGR01040 V-ATPase_V1_B V-type (H+)-ATPase V1, B subunit. This models eukaryotic vacuolar (H+)-ATPase that is responsible for acidifying cellular compartments. This enzyme shares extensive sequence similarity with archaeal ATP synthase. [Transport and binding proteins, Cations and iron carrying compounds] 466 -200071 TIGR01041 ATP_syn_B_arch ATP synthase archaeal, B subunit. Archaeal ATP synthase shares extensive sequence similarity with eukaryotic and prokaryotic V-type (H+)-ATPases. [Energy metabolism, ATP-proton motive force interconversion] 458 -273411 TIGR01042 V-ATPase_V1_A V-type (H+)-ATPase V1, A subunit. This models eukaryotic vacuolar (H+)-ATPase that is responsible for acidifying cellular compartments. This enzyme shares extensive sequence similarity with archaeal ATP synthase. [Transport and binding proteins, Cations and iron carrying compounds] 591 -130115 TIGR01043 ATP_syn_A_arch ATP synthase archaeal, A subunit. Archaeal ATP synthase shares extensive sequence similarity with eukaryotic and prokaryotic V-type (H+)-ATPases. [Energy metabolism, ATP-proton motive force interconversion] 578 -130116 TIGR01044 rplV_bact ribosomal protein L22, bacterial type. This model decribes bacterial and chloroplast ribosomal protein L22. [Protein synthesis, Ribosomal proteins: synthesis and modification] 103 -273412 TIGR01045 RPE1 Rickettsial palindromic element RPE1 domain. This model describes protein translations of the first family described, RPE1, of Rickettsia palindromic elements (RPE). In Rickettsia conorii, 19 copies are found within protein coding regions, where they encode an insert relative to homologs from other species but do not disrupt the reading frame. Insertion is always in the same reading frame. This model finds RPE-encoded regions in several Rickettsial species and, so far, no where else. 46 -273413 TIGR01046 uS10_euk_arch ribosomal protein uS10, eukaryotic/archaeal. This model describes the archaeal ribosomal protein uS10 and its equivalents (previously called S20) in eukaryotes. [Protein synthesis, Ribosomal proteins: synthesis and modification] 99 -273414 TIGR01047 nspC carboxynorspermidine decarboxylase. This protein is related to diaminopimelate decarboxylase. It is the last enzyme in norspermidine biosynthesis by an unusual pathway shown in Vibrio alginolyticus. [Central intermediary metabolism, Polyamine biosynthesis] 379 -273415 TIGR01048 lysA diaminopimelate decarboxylase. This family consists of diaminopimelate decarboxylase, an enzyme which catalyzes the conversion of diaminopimelic acid into lysine during the last step of lysine biosynthesis. [Amino acid biosynthesis, Aspartate family] 414 -130121 TIGR01049 rpsJ_bact ribosomal protein S10, bacterial/organelle. This model describes bacterial 30S ribosomal protein S10. In species that have a transcription antitermination complex, or N utilization substance, with NusA, NusB, NusG, and NusE, this ribosomal protein is responsible for NusE activity. Included in the family are one member each from Saccharomyces cerevisiae and Schizosaccharomyces pombe. These proteins lack an N-terminal mitochondrial transit peptide but contain additional sequence C-terminal to the ribosomal S10 protein region. [Protein synthesis, Ribosomal proteins: synthesis and modification] 99 -130122 TIGR01050 rpsS_bact ribosomal protein S19, bacterial/organelle. The homologous protein of the eukaryotic cytosol and of the Archaea may be designated S15 or S19. [Protein synthesis, Ribosomal proteins: synthesis and modification] 92 -273416 TIGR01051 topA_bact DNA topoisomerase I, bacterial. This model describes DNA topoisomerase I among the members of bacteria. DNA topoisomerase I transiently cleaves one DNA strand and thus relaxes negatively supercoiled DNA during replication, transcription and recombination events. [DNA metabolism, DNA replication, recombination, and repair] 610 -273417 TIGR01052 top6b DNA topoisomerase VI, B subunit. This model describes DNA topoisomerase VI, an archaeal type II DNA topoisomerase (DNA gyrase). [DNA metabolism, DNA replication, recombination, and repair] 488 -130125 TIGR01053 LSD1 zinc finger domain, LSD1 subclass. This model describes a putative zinc finger domain found in three closely spaced copies in Arabidopsis protein LSD1 and in two copies in other proteins from the same species. The motif resembles CxxCRxxLMYxxGASxVxCxxC 31 -273418 TIGR01054 rgy reverse gyrase. This model describes reverse gyrase, found in both archaeal and bacterial thermophiles. This enzyme, a fusion of a type I topoisomerase domain and a helicase domain, introduces positive supercoiling to increase the melting temperature of DNA double strands. Generally, these gyrases are encoded as a single polypeptide. An exception was found in Methanopyrus kandleri, where enzyme is split within the topoisomerase domain, yielding a heterodimer of gene products designated RgyB and RgyA. [DNA metabolism, DNA replication, recombination, and repair] 1171 -130127 TIGR01055 parE_Gneg DNA topoisomerase IV, B subunit, proteobacterial. Operationally, topoisomerase IV is a type II topoisomerase required for the decatenation of chromosome segregation. Not every bacterium has both a topo II and a topo IV. The topo IV families of the Gram-positive bacteria and the Gram-negative bacteria appear not to represent a single clade among the type II topoisomerases, and are represented by separate models for this reason. This protein is active as an alpha(2)beta(2) heterotetramer. [DNA metabolism, DNA replication, recombination, and repair] 625 -273419 TIGR01056 topB DNA topoisomerase III, bacteria and conjugative plasmid. This model describes topoisomerase III from bacteria and its equivalents encoded on plasmids. The gene is designated topB if found in the bacterial chromosome, traE on conjugative plasmid RP4, etc. These enzymes are involved in the control of DNA topology. DNA topoisomerase III belongs to the type I topoisomerases, which are ATP-independent. [DNA metabolism, DNA replication, recombination, and repair] 660 -273420 TIGR01057 topA_arch DNA topoisomerase I, archaeal. This model describes topoisomerase I from archaea. These enzymes are involved in the control of DNA topology. DNA topoisomerase I belongs to the type I topoisomerases, which are ATP-independent. [DNA metabolism, DNA replication, recombination, and repair] 618 -130130 TIGR01058 parE_Gpos DNA topoisomerase IV, B subunit, Gram-positive. Operationally, topoisomerase IV is a type II topoisomerase required for the decatenation step of chromosome segregation. Not every bacterium has both a topo II and a topo IV. The topo IV families of the Gram-positive bacteria and the Gram-negative bacteria appear not to represent a single clade among the type II topoisomerases, and are represented by separate models for this reason. [DNA metabolism, DNA replication, recombination, and repair] 637 -273421 TIGR01059 gyrB DNA gyrase, B subunit. This model describes the common type II DNA topoisomerase (DNA gyrase). Two apparently independently arising families, one in the Proteobacteria and one in Gram-positive lineages, are both designated toposisomerase IV. Proteins scoring above the noise cutoff for this model and below the trusted cutoff for topoisomerase IV models probably should be designated GyrB. [DNA metabolism, DNA replication, recombination, and repair] 654 -213580 TIGR01060 eno phosphopyruvate hydratase. Alternate name: enolase [Energy metabolism, Glycolysis/gluconeogenesis] 425 -273422 TIGR01061 parC_Gpos DNA topoisomerase IV, A subunit, Gram-positive. Operationally, topoisomerase IV is a type II topoisomerase required for the decatenation of chromosome segregation. Not every bacterium has both a topo II and a topo IV. The topo IV families of the Gram-positive bacteria and the Gram-negative bacteria appear not to represent a single clade among the type II topoisomerases, and are represented by separate models for this reason. [DNA metabolism, DNA replication, recombination, and repair] 738 -130134 TIGR01062 parC_Gneg DNA topoisomerase IV, A subunit, proteobacterial. Operationally, topoisomerase IV is a type II topoisomerase required for the decatenation of chromosome segregation. Not every bacterium has both a topo II and a topo IV. The topo IV families of the Gram-positive bacteria and the Gram-negative bacteria appear not to represent a single clade among the type II topoisomerases, and are represented by separate models for this reason. [DNA metabolism, DNA replication, recombination, and repair] 735 -273423 TIGR01063 gyrA DNA gyrase, A subunit. This model describes the common type II DNA topoisomerase (DNA gyrase). Two apparently independently arising families, one in the Proteobacteria and one in Gram-positive lineages, are both designated toposisomerase IV. [DNA metabolism, DNA replication, recombination, and repair] 800 -273424 TIGR01064 pyruv_kin pyruvate kinase. This enzyme is a homotetramer. Some forms are active only in the presence of fructose-1,6-bisphosphate or similar phosphorylated sugars. [Energy metabolism, Glycolysis/gluconeogenesis] 472 -273425 TIGR01065 hlyIII channel protein, hemolysin III family. This family includes proteins from pathogenic and non-pathogenic bacteria, Homo sapiens and Drosophila. In Bacillus cereus, a pathogen, it has been show to function as a channel-forming cytolysin. The human protein is expressed preferentially in mature macrophages, consistent with a role cytolytic role. 204 -162186 TIGR01066 rplM_bact ribosomal protein L13, bacterial type. This model distinguishes ribosomal protein L13 of bacteria and organelles from its eukarytotic and archaeal counterparts. [Protein synthesis, Ribosomal proteins: synthesis and modification] 140 -273426 TIGR01067 rplN_bact ribosomal protein L14, bacterial/organelle. This model distinguishes bacterial and most organellar examples of ribosomal protein L14 from all archaeal and eukaryotic forms. [Protein synthesis, Ribosomal proteins: synthesis and modification] 122 -200072 TIGR01068 thioredoxin thioredoxin. Several proteins, such as protein disulfide isomerase, have two or more copies of a domain closely related to thioredoxin. This model is designed to recognize authentic thioredoxin, a small protein that should be hit exactly once by this model. Any protein that hits once with a score greater than the second (per domain) trusted cutoff may be taken as thioredoxin. [Energy metabolism, Electron transport] 101 -130141 TIGR01069 mutS2 MutS2 family protein. Function of MutS2 is unknown. It should not be considered a DNA mismatch repair protein. It is likely a DNA mismatch binding protein of unknown cellular function. [DNA metabolism, Other] 771 -273427 TIGR01070 mutS1 DNA mismatch repair protein MutS. [DNA metabolism, DNA replication, recombination, and repair] 840 -273428 TIGR01071 rplO_bact ribosomal protein L15, bacterial/organelle. [Protein synthesis, Ribosomal proteins: synthesis and modification] 145 -162190 TIGR01072 murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 416 -273429 TIGR01073 pcrA ATP-dependent DNA helicase PcrA. Designed to identify pcrA members of the uvrD/rep subfamily. [DNA metabolism, DNA replication, recombination, and repair] 726 -130146 TIGR01074 rep ATP-dependent DNA helicase Rep. Designed to identify rep members of the uvrD/rep subfamily. [DNA metabolism, DNA replication, recombination, and repair] 664 -130147 TIGR01075 uvrD DNA helicase II. Designed to identify uvrD members of the uvrD/rep subfamily. [DNA metabolism, DNA replication, recombination, and repair] 715 -130148 TIGR01076 sortase_fam LPXTG-site transpeptidase (sortase) family protein. This family includes Staphylococcus aureus sortase, a transpeptidase that attaches surface proteins by the Thr of an LPXTG motif to the cell wall. It also includes a protein required for correct assembly of an LPXTG-containing fimbrial protein, a set of homologous proteins from Streptococcus pneumoniae, in which LPXTG proteins are common. However, related proteins are found in Bacillus subtilis and Methanobacterium thermoautotrophicum, in which LPXTG-mediated cell wall attachment is not known. [Cell envelope, Other, Protein fate, Protein and peptide secretion and trafficking] 136 -162192 TIGR01077 L13_A_E ribosomal protein uL13, archaeal/eukaryotic form. This model represents ribosomal protein of L13 from the Archaea and from the eukaryotic cytosol. Bacterial and organellar forms are represented by model TIGR01066. [Protein synthesis, Ribosomal proteins: synthesis and modification] 142 -273430 TIGR01078 arcA arginine deiminase. Arginine deiminase is the first enzyme of the arginine deiminase pathway of arginine degradation. [Energy metabolism, Amino acids and amines] 405 -273431 TIGR01079 rplX_bact ribosomal protein L24, bacterial/organelle. This model recognizes bacterial and organellar forms of ribosomal protein L24. It excludes eukaryotic and archaeal forms, designated L26 in eukaryotes. [Protein synthesis, Ribosomal proteins: synthesis and modification] 102 -273432 TIGR01080 rplX_A_E ribosomal protein uL24, archaeal/eukaryotic form. This model represents the archaeal and eukaryotic branch of the ribosomal protein L24p/L26e family. Bacterial and organellar forms are represented by related model TIGR01079. [Protein synthesis, Ribosomal proteins: synthesis and modification] 114 -130153 TIGR01081 mpl UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase. Alternate name: murein tripeptide ligase [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 448 -273433 TIGR01082 murC UDP-N-acetylmuramate--L-alanine ligase. This model describes the MurC protein in bacterial peptidoglycan (murein) biosynthesis. In a few species (Mycobacterium leprae, the Chlamydia), the amino acid may be L-serine or glycine instead of L-alanine. A related protein, UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (murein tripeptide ligase) is described by model TIGR01081. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 448 -273434 TIGR01083 nth endonuclease III. This equivalog model identifes nth members of the pfam00730 superfamily (HhH-GPD: Helix-hairpin-helix and Gly/Pro rich loop followed by a conserved aspartate). The major members of the superfamily are nth and mutY. [DNA metabolism, DNA replication, recombination, and repair] 192 -130156 TIGR01084 mutY A/G-specific adenine glycosylase. This equivalog model identifies mutY members of the pfam00730 superfamily (HhH-GPD: Helix-hairpin-helix and Gly/Pro rich loop followed by a conserved aspartate). The major members of the superfamily are nth and mutY. [DNA metabolism, DNA replication, recombination, and repair] 275 -273435 TIGR01085 murE UDP-N-acetylmuramyl-tripeptide synthetase. Most members of this family are EC 6.3.2.13, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase. An exception is Staphylococcus aureus, in which diaminopimelate is replaced by lysine in the peptidoglycan and MurE is EC 6.3.2.7. The Mycobacteria, part of the closest neighboring branch outside of the low-GC Gram-positive bacteria, use diaminopimelate. A close homolog, scoring just below the trusted cutoff, is found (with introns) in Arabidopsis thaliana. Its role is unknown. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 464 -188107 TIGR01086 fucA L-fuculose phosphate aldolase. Members of this family are L-fuculose phosphate aldolase from various Proteobacteria, encoded in fucose utilization operons. Homologs in other bacteria given similar annotation but scoring below the trusted cutoff may share extensive sequence similarity but are not experimenally characterized and are not found in apparent fucose utilization operons; we consider their annotation as L-fuculose phosphate aldolase to be tenuous. This model has been narrowed in scope from the previous version. [Energy metabolism, Sugars] 214 -273436 TIGR01087 murD UDP-N-acetylmuramoylalanine--D-glutamate ligase. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 433 -130160 TIGR01088 aroQ 3-dehydroquinate dehydratase, type II. This model specifies the type II enzyme. The type I enzyme, often found as part of a multifunctional protein, is described by TIGR01093. [Amino acid biosynthesis, Aromatic amino acid family] 141 -130161 TIGR01089 fucI L-fucose isomerase. This enzyme catalyzes the first step in fucose metabolism, and has been characterized in Escherichia coli and Bacteroides thetaiotaomicron. [Energy metabolism, Sugars] 587 -273437 TIGR01090 apt adenine phosphoribosyltransferase. A phylogenetic analysis suggested omitting the bi-directional best hit homologs from the spirochetes from the seed for this model and making only tentative predictions of adenine phosphoribosyltransferase function for this lineage. The trusted cutoff score is made high for this reason. Most proteins scoring between the trusted and noise cutoffs are likely to act as adenine phosphotransferase. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 169 -273438 TIGR01091 upp uracil phosphoribosyltransferase. A fairly deep split in phylogenetic and UPGMA trees separates this mostly prokaryotic set of uracil phosphoribosyltransferases from a mostly eukaryotic set that includes uracil phosphoribosyltransferase, uridine kinases, and other, uncharacterized proteins. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 207 -130164 TIGR01092 P5CS delta l-pyrroline-5-carboxylate synthetase. This protein contains a glutamate 5-kinase (ProB, EC 2.7.2.11) region followed by a gamma-glutamyl phosphate reductase (ProA, EC 1.2.1.41) region. [Amino acid biosynthesis, Glutamate family] 715 -273439 TIGR01093 aroD 3-dehydroquinate dehydratase, type I. This model detects 3-dehydroquinate dehydratase, type I, either as a monofunctional protein or as a domain of a larger, multifunctional protein. It is often found fused to shikimate 5-dehydrogenase (EC 1.1.1.25), and sometimes additional domains. Type II 3-dehydroquinate dehydratase, designated AroQ, is described by the model TIGR01088. [Amino acid biosynthesis, Aromatic amino acid family] 229 -273440 TIGR01096 3A0103s03R lysine-arginine-ornithine-binding periplasmic protein. [Transport and binding proteins, Amino acids, peptides and amines] 250 -273441 TIGR01097 PhnE phosphonate ABC transporter, permease protein PhnE. Phosphonates are a class of compound analogous to organic phosphates, but in which the C-O-P linkage is replaced by a direct, stable C-P bond. Some bacteria can utilize phosphonates as a source of phosphorus. This family consists of permease proteins of known or predicted phosphonate ABC transporters. Often this protein is found as a duplicated pair, occasionally as a fused pair. Certain "second" copies score in between the trusted and noise cutoff and should be considered true hits (by context). [Transport and binding proteins, Anions] 250 -273442 TIGR01098 3A0109s03R phosphate/phosphite/phosphonate ABC transporter, periplasmic binding protein. Phosphonates are a varied class of phosphorus-containing organic compound in which a direct C-P bond is found, rather than a C-O-P linkage of the phosphorus through an oxygen atom. They may be toxic but also may be used as sources of phosphorus and energy by various bacteria. Phosphonate utilization systems typically are encoded in 14 or more genes, including a three gene ABC transporter. This family includes the periplasmic binding protein component of ABC transporters for phosphonates as well as other, related binding components for closely related substances such as phosphate and phosphite. A number of members of this family are found in genomic contexts with components of selenium metabolic processes suggestive of a role in selenate or other selenium-compound transport. A subset of this model in which nearly all members exhibit genomic context with elements of phosphonate metabolism, particularly the C-P lyase system (GenProp0232) has been built (TIGR03431) as an equivalog. Nevertheless, there are members of this subfamily (TIGR01098) which show up sporadically on a phylogenetic tree that also show phosphonate context and are most likely competent to transport phosphonates. [Transport and binding proteins, Anions] 254 -273443 TIGR01099 galU UTP--glucose-1-phosphate uridylyltransferase. Built to distinquish between the highly similar genes galU and galF [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 260 -130170 TIGR01100 V_ATP_synt_C vacuolar ATP synthase 16 kDa proteolipid subunit. This model describes the vacuolar ATP synthase 16 kDa proteolipid subunit in eukaryotes and includes members from diverse groups e.g., fungi, plants, parasites etc. The principal role V-ATPases are the acidification of intracellular compartments of eukaryotic cells. [Transport and binding proteins, Cations and iron carrying compounds] 108 -130171 TIGR01101 V_ATP_synt_F vacuolar ATP synthase F subunit. This model describes the vacuolar ATP synthase F subunit (14 kDa subunit) in eukaryotes. In some archaeal species this protein subunit is referred as G subunit [Transport and binding proteins, Cations and iron carrying compounds] 115 -130172 TIGR01102 yscR type III secretion apparatus protein, YscR/HrcR family. This model identifies the generic virulence translocation proteins in bacteria. It derives its name:'Yop' from Yersinia enterocolitica species, where this virulence protein was identified. In bacterial pathogenesis, Yop effector proteins are translocated into the eukaryotic cells. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 202 -211625 TIGR01103 fliP flagellar biosynthetic protein FliP. This model describes bacterial flagellar biogenesis protein fliP, which is one of the genes in motility locus on the bacterial chromosome that is involved in structure and function of bacterial flagellum. It was demonstrated that mutants in fliP locus were non-flagellated and non-motile, while revertants were flagellated and motile. [Cellular processes, Chemotaxis and motility] 197 -273444 TIGR01104 V_PPase vacuolar-type H(+)-translocating pyrophosphatase. This model describes proton pyrophosphatases from eukaryotes (predominantly plants), archaea and bacteria. It is an integral membrane protein and is suggested to have about 15 membrane spanning domains. Proton translocating inorganic pyrophosphatase, like H(+)-ATPase, acidifies the vacuoles and is pivotal to the vacuolar secondary active transport systems in plants. [Transport and binding proteins, Cations and iron carrying compounds] 695 -130175 TIGR01105 galF UTP-glucose-1-phosphate uridylyltransferase, non-catalytic GalF subunit. GalF is a non-catalytic subunit of the UTP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose [Regulatory functions, Protein interactions] 297 -273445 TIGR01106 ATPase-IIC_X-K sodium or proton efflux -- potassium uptake antiporter, P-type ATPase, alpha subunit. This model describes the P-type ATPases responsible for the exchange of either protons or sodium ions for potassium ions across the plasma membranes of eukaryotes. Unlike most other P-type ATPases, members of this subfamily require a beta subunit for activity. This model encompasses eukaryotes and consists of two functional types, a Na/K antiporter found widely distributed in eukaryotes and a H/K antiporter found only in vertebrates. The Na+ or H+/K+ antiporter P-type ATPases have been characterized as Type IIC based on a published phylogenetic analysis. Sequences from Blastocladiella emersonii (GP|6636502, GP|6636502 and PIR|T43025), C. elegans (GP|2315419, GP|6671808 and PIR|T31763) and Drosophila melanogaster (GP|7291424) score below trusted cutoff, apparently due to long branch length (excessive divergence from the last common ancestor) as evidenced by a phylogenetic tree. Experimental evidence is needed to determine whether these sequences represent ATPases with conserved function. Aside from fragments, other sequences between trusted and noise appear to be bacterial ATPases of unclear lineage, but most likely calcium pumps. [Energy metabolism, ATP-proton motive force interconversion] 997 -273446 TIGR01107 Na_K_ATPase_bet Sodium Potassium ATPase beta subunit. This model describes the Na+/K+ ATPase beta subunit in eukaryotes. Na+/K+ ATPase(also called Sodium-Potassium pump) is intimately associated with the plasma membrane. It couples the energy released by the hydrolysis of ATP to extrude 3 Na+ ions, with the concomitant uptake of 2K+ ions, against their ionic gradients. [Transport and binding proteins, Cations and iron carrying compounds] 290 -273447 TIGR01108 oadA oxaloacetate decarboxylase alpha subunit. This model describes the bacterial oxaloacetate decarboxylase alpha subunit and its equivalents in archaea. The oxaloacetate decarboxylase Na+ pump is the paradigm of the family of Na+ transport decarboxylases that present in bacteria and archaea. It a multi subunit enzyme consisting of a peripheral alpha-subunit and integral membrane subunits beta and gamma. The energy released by the decarboxylation reaction of oxaloacetate is coupled to Na+ ion pumping across the membrane. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Other] 582 -130179 TIGR01109 Na_pump_decarbB sodium ion-translocating decarboxylase, beta subunit. This model describes the beta subunits of sodium pump decarboxylases that include oxaloacetate decarboxylase, methylmalonyl-CoA decarboxylase, and glutaconyl-CoA decarboxylase. Beta and gammma-subunits are integral membrane proteins, while alpha is membrane bound. Catalytically, the energy released by the decarboxylation reaction is coupled to the extrusion of Na+ ions across the membrane. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Other] 354 -273448 TIGR01110 mdcA malonate decarboxylase, alpha subunit. This model describes malonate decarboxylase alpha subunit, from both the water-soluble form as found in Klebsiella pneumoniae and the form couple to sodium ion pumping in Malonomonas rubra. Malonate decarboxylase Na+ pump is the paradigm of the family of Na+ transport decarboxylases. Essentially, it couples the energy derived from decarboxylation of a carboxylic acid substrate to move Na+ ion across the bilayer. Functional malonate decarboylase is a multi subunit protein. The alpha subunit enzymatically performs the transfer of malonate (substrate) to an acyl carrier protein subunit for subsequent decarboxylation, hence the name: acetyl-S-acyl carrier protein:malonate carrier protein-SH transferase. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Other] 543 -130181 TIGR01111 mtrA N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit A. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit A in methanogenic archaea. This methyltranferase is a membrane-associated enzyme complex that uses methyl-transfer reaction to drive sodium-ion pump. Archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase (encoded by subunit A) is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of methyl-coenzyme M by another enzyme, methyl-coenzyme M reductase. [Transport and binding proteins, Cations and iron carrying compounds] 238 -273449 TIGR01112 mtrD N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit D. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit D in methanogenic archaea. This methyltranferase is membrane-associated enzyme complex that uses methy-transfer reaction to drive sodium-ion pump. Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Methanogenesis] 223 -130183 TIGR01113 mtrE N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit E. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit E in methanogenic archaea. This methyltranfersae is membrane-associated enzyme complex that uses methyl-transfer reaction to drive sodium-ion pump. Archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Methanogenesis] 283 -273450 TIGR01114 mtrH N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit H. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit H in methanogenic archaea. This methyltranfersae is membrane-associated enzyme complex that uses methyl-transfer reaction to drive sodium-ion pump. Archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Energy metabolism, Methanogenesis] 314 -273451 TIGR01115 pufM photosynthetic reaction center M subunit. This model decribes the photosynthetic reaction center M subunit in non-oxygenic photosynthetic bacteria. Reaction center is an integral membrane pigment-protein that carries out light-driven electron transfer reactions. At the core of reacion center is a collection light-harvesting cofactors and closely associated polypeptides. The core protein complex is made of L, M and H subunits. The common cofactors include bacterichlorophyll, bacteriopheophytins, ubiquinone and no-heme ferrous iron. The net result of electron tranfer reactions is the establishment of proton electrochemical gradient and production of reducing equivalents in form of NADH. Ultimately the process results in the reduction of C02 to carbohydrates(C6H12O6) In non-oxygenic organisms, the electron donor is some organic acid and not water. Much of our current functional understanding of photosynthesis comes from the structural determination, spectroscopic studies and mutational analysis on the reaction center of Rhodobacter sphaeroides. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 305 -273452 TIGR01116 ATPase-IIA1_Ca sarco/endoplasmic reticulum calcium-translocating P-type ATPase. This model describes the P-type ATPase responsible for translocating calcium ions across the endoplasmic reticulum membrane of eukaryotes, and is of particular importance in the sarcoplasmic reticulum of skeletal and cardiac muscle in vertebrates. These pumps transfer Ca2+ from the cytoplasm to the lumen of the endoplasmic reticulum. In humans and mice, at least, there are multiple isoforms of the SERCA pump with overlapping but not redundant functions. Defects in SERCA isoforms are associated with diseases in humans. The calcium P-type ATPases have been characterized as Type IIA based on a phylogenetic analysis which distinguishes this group from the Type IIB PMCA calcium pump modelled by TIGR01517. A separate analysis divides Type IIA into sub-types, SERCA and PMR1, the latter of which is modelled by TIGR01522. [Transport and binding proteins, Cations and iron carrying compounds] 917 -130187 TIGR01117 mmdA methylmalonyl-CoA decarboxylase alpha subunit. This model describes methymalonyl-CoA decarboxylase aplha subunit in archaea and bacteria. Metylmalonyl-CoA decarboxylase Na+ pump is a representative of a class of Na+ transport decarboxylases that couples the energy derived by decarboxylation of carboxylic acid substrates to drive the extrusion of Na+ ion across the membrane. [Energy metabolism, ATP-proton motive force interconversion, Energy metabolism, Fermentation, Transport and binding proteins, Cations and iron carrying compounds] 512 -130188 TIGR01118 lacA galactose-6-phosphate isomerase, LacA subunit. This family contains members from low GC gram-positive bacteria. Galactose-6-phosphate isomerase is involved in lactose catabolism by the tagatose-6-phosphate pathway. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 141 -130189 TIGR01119 lacB galactose-6-phosphate isomerase, LacB subunit. This family contains four members from low GC gram-positive bacteria. Galactose-6-phosphate isomerase is involved in lactose catabolism by the tagatose-6-phosphate pathway. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 171 -130190 TIGR01120 rpiB ribose 5-phosphate isomerase B. Involved in the non-oxidative branch of the pentose phospate pathway. [Energy metabolism, Pentose phosphate pathway] 143 -130191 TIGR01121 D_amino_aminoT D-amino acid aminotransferase. This enzyme is a homodimer. The pyridoxal phosphate attachment site is the Lys at position 146 of the seed alignment, in the motif Cys-Asp-Ile-Lys-Ser-Leu-Asn. Specificity is broad for various D-amino acids, and differs among members of the family; the family is designated equivalog, but with this caveat attached. [Energy metabolism, Amino acids and amines] 276 -130192 TIGR01122 ilvE_I branched-chain amino acid aminotransferase, group I. Among the class IV aminotransferases are two phylogenetically separable groups of branched-chain amino acid aminotransferase (IlvE). The last common ancestor of the two lineages appears also to have given rise to a family of D-amino acid aminotransferases (DAAT). This model represents the IlvE family more strongly similar to the DAAT family. [Amino acid biosynthesis, Pyruvate family] 298 -233278 TIGR01123 ilvE_II branched-chain amino acid aminotransferase, group II. Among the class IV aminotransferases are two phylogenetically separable groups of branched-chain amino acid aminotransferase (IlvE). The last common ancestor of the two lineages appears also to have given rise to a family of D-amino acid aminotransferases (DAAT). This model represents the IlvE family less similar to the DAAT family. [Amino acid biosynthesis, Pyruvate family] 313 -130194 TIGR01124 ilvA_2Cterm threonine ammonia-lyase, biosynthetic, long form. This model describes a form of threonine ammonia-lyase, a pyridoxal-phosphate dependent enzyme, with two copies of the threonine dehydratase C-terminal domain (pfam00585). Members with known function participate in isoleucine biosynthesis and are inhibited by isoleucine. Alternate name: threonine deaminase, threonine dehydratase. Forms scoring between the trusted and noise cutoff tend to branch with this subgroup of threonine ammonia-lyase phylogenetically but have only a single copy of the C-terminal domain. [Amino acid biosynthesis, Pyruvate family] 499 -273453 TIGR01125 TIGR01125 ribosomal protein S12 methylthiotransferase RimO. Members of this protein are the methylthiotransferase RimO, which modifies a conserved Asp residue in ribosomal protein S12. This clade of radical SAM family proteins is closely related to the tRNA modification bifunctional enzyme MiaB (see TIGR01574), and it catalyzes the same two types of reactions: a radical-mechanism sulfur insertion, and a methylation of the inserted sulfur. This clade spans alpha and gamma proteobacteria, cyano bacteria, Deinococcus, Porphyromonas, Aquifex, Helicobacter, Campylobacter, Thermotoga, Chlamydia, Streptococcus coelicolor and Clostridium, but does not include most other gram positive bacteria, archaea or eukaryotes. [Protein synthesis, Ribosomal proteins: synthesis and modification] 426 -273454 TIGR01126 pdi_dom protein disulfide-isomerase domain. This model describes a domain of eukaryotic protein disulfide isomerases, generally found in two copies. The high cutoff for total score reflects the expectation of finding both copies. The domain is similar to thioredoxin but the redox-active disulfide region motif is APWCGHCK. [Protein fate, Protein folding and stabilization] 102 -130197 TIGR01127 ilvA_1Cterm threonine ammonia-lyase, medium form. A form of threonine dehydratase with two copies of the C-terminal domain pfam00585 is described by TIGR01124. This model describes a phylogenetically distinct form with a single copy of pfam00585. This form branches with the catabolic threonine dehydratase of E. coli; many members are designated as catabolic for this reason. However, the catabolic form lacks any pfam00585 domain. Many members of this model are found in species with other Ile biosynthetic enzymes. [Amino acid biosynthesis, Pyruvate family] 380 -273455 TIGR01128 holA DNA polymerase III, delta subunit. DNA polymerase III delta (holA) and delta prime (holB) subunits are distinct proteins encoded by separate genes. The delta prime subunit (holB) exhibits sequence homology to the tau and gamma subunits (dnaX), but the delta subunit (holA) does not demonstrate this same homology with dnaX. The delta, delta prime, gamma, chi and psi subunits form the gamma complex subassembly of DNA polymerase III holoenzyme, which couples ATP to assemble the ring-shaped beta subunit around DNA forming a DNA sliding clamp. [DNA metabolism, DNA replication, recombination, and repair] 302 -273456 TIGR01129 secD protein-export membrane protein SecD. Members of this family are highly variable in length immediately after the well-conserved motif LGLGLXGG at the amino-terminal end of this model. Archaeal homologs are not included in the seed and score between the trusted and noise cutoffs. SecD from Mycobacterium tuberculosis has a long Pro-rich insert. [Protein fate, Protein and peptide secretion and trafficking] 397 -273457 TIGR01130 ER_PDI_fam protein disulfide isomerase, eukaryotic. This model represents eukaryotic protein disulfide isomerases retained in the endoplasmic reticulum (ER) and closely related forms. Some members have been assigned alternative or additional functions such as prolyl 4-hydroxylase and dolichyl-diphosphooligosaccharide-protein glycotransferase. Members of this family have at least two protein-disulfide domains, each similar to thioredoxin but with the redox-active disulfide in the motif PWCGHCK, and an ER retention signal at the extreme C-terminus (KDEL, HDEL, and similar motifs). 462 -273458 TIGR01131 ATP_synt_6_or_A ATP synthase subunit 6 (eukaryotes),also subunit A (prokaryotes). Bacterial forms should be designated ATP synthase, F0 subunit A; eukaryotic (chloroplast and mitochondrial) forms should be designated ATP synthase, F0 subunit 6. The F1/F0 ATP synthase is a multisubunit, membrane associated enzyme found in bacteria and mitochondria and chloroplast. This enzyme is principally involved in the synthesis of ATP from ADP and inorganic phosphate by coupling the energy derived from the proton electrochemical gradient across the biological membrane. A brief description of this multisubunit enzyme complex: F1 and F0 represent two major clusters of subunits. Individual subunits in each of these clusters are named differently in prokaryotes and in organelles e.g., mitochondria and chloroplast. The bacterial equivalent of subunit 6 is named subunit 'A'. It has been shown that proton is conducted though this subunit. Typically, deprotonation and reprotonation of the acidic amino acid side-chains are implicated in the process. [Energy metabolism, ATP-proton motive force interconversion] 226 -273459 TIGR01132 pgm phosphoglucomutase, alpha-D-glucose phosphate-specific. This enzyme interconverts alpha-D-glucose-1-P and alpha-D-glucose-6-P. [Energy metabolism, Sugars] 543 -273460 TIGR01133 murG undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase. RM 8449890 RT The final step of peptidoglycan subunit assembly in Escherichia coli occurs in the cytoplasm. RA Bupp K, van Heijenoort J. RL J Bacteriol 1993 Mar;175(6):1841-3 [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 348 -273461 TIGR01134 purF amidophosphoribosyltransferase. Alternate name: glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 442 -273462 TIGR01135 glmS glucosamine--fructose-6-phosphate aminotransferase (isomerizing). The member from Methanococcus jannaschii contains an intein. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Central intermediary metabolism, Amino sugars] 607 -273463 TIGR01136 cysKM cysteine synthase. This model discriminates cysteine synthases (EC 2.5.1.47) (both CysK and CysM) from cystathionine beta-synthase, a protein found primarily in eukaryotes and carrying a C-terminal CBS domain lacking from this protein. Bacterial proteins lacking the CBS domain but otherwise showing resemblamnce to cystathionine beta-synthases and considerable phylogenetic distance from known cysteine synthases were excluded from the seed and score below the trusted cutoff. [Amino acid biosynthesis, Serine family] 299 -273464 TIGR01137 cysta_beta cystathionine beta-synthase. Members of this family closely resemble cysteine synthase but contain an additional C-terminal CBS domain. The function of any bacterial member included in this family is proposed but not proven. [Amino acid biosynthesis, Serine family] 455 -130208 TIGR01138 cysM cysteine synthase B. CysM differs from CysK in that it can also use thiosulfate instead of sulfide, to produce cysteine thiosulfonate instead of cysteine. Alternate name: O-acetylserine (thiol)-lyase [Amino acid biosynthesis, Serine family] 290 -273465 TIGR01139 cysK cysteine synthase A. This model distinguishes cysteine synthase A (CysK) from cysteine synthase B (CysM). CysM differs in having a broader specificity that also allows the use of thiosulfate to produce cysteine thiosulfonate. [Amino acid biosynthesis, Serine family] 298 -273466 TIGR01140 L_thr_O3P_dcar L-threonine-O-3-phosphate decarboxylase. This family contains pyridoxal phosphate-binding class II aminotransferases (see pfamAM:pfam00222) closely related to, yet distinct from, histidinol-phosphate aminotransferase (HisC). It is found in cobalamin biosynthesis operons in Salmonella typhimurium and Bacillus halodurans (each of which also has HisC) and has been shown to have L-threonine-O-3-phosphate decarboxylase activity in Salmonella. Although the gene symbol cobD was assigned in Salmonella, cobD in other contexts refers to a different cobalamin biosynthesis enzyme, modeled by pfam03186 and called cbiB in Salmonella. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 330 -273467 TIGR01141 hisC histidinol-phosphate aminotransferase. Alternate names: histidinol-phosphate transaminase; imidazole acetol-phosphate transaminase Histidinol-phosphate aminotransferase is a pyridoxal-phosphate dependent enzyme. [Amino acid biosynthesis, Histidine family] 350 -130212 TIGR01142 purT phosphoribosylglycinamide formyltransferase 2. This enzyme is an alternative to PurN (TIGR00639) [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 380 -273468 TIGR01143 murF UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase. This family consists of the strictly bacterial MurF gene of peptidoglycan biosynthesis. This enzyme is almost always UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate--D-alanyl-D-alanyl ligase, but in a few species, MurE adds lysine rather than diaminopimelate. This enzyme acts on the product from MurE activity, and so is also subfamily rather than equivalog. Staphylococcus aureus is an example of species in this MurF protein would differ. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 417 -130214 TIGR01144 ATP_synt_b ATP synthase, F0 subunit b. This model describes the F1/F0 ATP synthase b subunit in bacteria only. Scoring just below the trusted cutoff are the N-terminal domains of Mycobacterial b/delta fusion proteins and a subunit from an archaeon, Methanosarcina barkeri, in which the ATP synthase homolog differs in architecture and is not experimentally confirmed. This model helps resolve b from the related b' subunit. Within the family is an example from a sodium-translocating rather than proton-translocating ATP synthase. [Energy metabolism, ATP-proton motive force interconversion] 147 -130215 TIGR01145 ATP_synt_delta ATP synthase, F1 delta subunit. This model describes the ATP synthase delta subunit in bacteria, mitochondria, and chloroplasts. It is sometimes called OSCP for Oligomycin Sensitivity Conferring Protein. F1/F0-ATP synthase is a multisubunit, membrane associated enzyme found in bacteria and organelles of higher eukaryotes, namely, mitochondria and chloroplast. This enzyme is principally involved in the synthesis of ATP from ADP and inorganic phosphate by coupling the energy derived from the proton electrochemical gradient across the biological membrane. A brief description of this multisubunit enzyme complex: F1 and F0 represent two major clusters of subunits. Delta subunit belongs to the F1 cluster or sector and functionally implicated in the overall stability of the complex. Expression of truncated forms of this subunit results in low ATPase activity. [Energy metabolism, ATP-proton motive force interconversion] 172 -273469 TIGR01146 ATPsyn_F1gamma ATP synthase, F1 gamma subunit. This model describes the ATP synthase gamma subunit in bacteria and its equivalents in organelles, namely, mitochondria and chloroplast. F1/F0-ATP synthase is a multisubunit, membrane associated enzyme found in bacteria and organelles of higher eukaryotes, namely, mitochondria and chloroplast. This enzyme is principally involed in the synthesis of ATP from ADP and inorganic phosphate by coupling the energy derived from the proton electrochemical gradient across the biological membrane. A brief description of this multisubunit enzyme complex: F1 and F0 represent two major clusters of subunits. The gamma subunit is the part of F1 cluster. Surrounding the gamma subunit in a cylinder-like structure are three alpha and three subunits in an alternating fashion. This is the central catalytic unit whose different conformations permit the binding of ADP and inorganic phosphate and release of ATP. [Energy metabolism, ATP-proton motive force interconversion] 286 -130217 TIGR01147 V_ATP_synt_G vacuolar ATP synthase, subunit G. This model describes the vacuolar ATP synthase G subunit in eukaryotes and includes members from diverse groups e.g., fungi, plants, parasites etc. V-ATPases are multi-subunit enzymes composed of two functional domains: A transmembrane Vo domain and a peripheral catalytic domain V1. The G subunit is one of the subunits of the catalytic domain. V-ATPases are responsible for the acidification of endosomes and lysosomes, which are part of the central vacuolar system. [Energy metabolism, ATP-proton motive force interconversion] 113 -130218 TIGR01148 mtrC N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit C. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit C in methanogenic archaea. This methyltranferase is membrane-associated enzyme complex that uses methyl-transfer reaction to drive sodium-ion pump. Archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Energy metabolism, Other] 265 -130219 TIGR01149 mtrG N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit G. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit G in methanogenic archaea. This methyltranfersae is membrane-associated enzyme complex that uses methyl-transfer reaction to drive sodium-ion pump. Archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Energy metabolism, Other] 70 -273470 TIGR01150 puhA photosynthetic reaction center, subunit H, bacterial. This model describes the photosynthetic reaction center H subunit in non-oxygenic photosynthetic bacteria. The reaction center is an integral membrane pigment-protein that carries out light-driven electron transfer reactions. At the core of reaction center is a collection light-harvesting cofactors and closely associated polypeptides. The core protein complex is made of L, M and H subunits. The common cofactors include bacterichlorophyll, bacteriopheophytins, ubiquinone and no-heme ferrous iron. The net result of electron tranfer reactions is the establishment of proton electrochemical gradient and production of reducing equivalents in the form of NADH. Ultimately, the process results in the reduction of C02 to carbohydrates(C6H12O6) In non-oxygenic organisms, the electron donor is an organic acid rather than water. Much of our current functional understanding of photosynthesis comes from the structural determination and spectroscopic studies on the reaction center of Rhodobacter sphaeroides. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 252 -130221 TIGR01151 psbA photosystem II, DI subunit (also called Q(B)). This model describes the Photosystem II, DI subunit (also called Q(B)) in bacterial and its equivalents in chloroplast of algae and higher plants. Photosystem II is many ways functionally equivalent to bacterial reaction center. At the core of Photosystem II are several light harvesting cofactors including plastoquinones, pheophytins, phyloquinones etc. These cofactors are intimately associated with the polypeptides, which principally including subunits DI, DII, Cyt.b, Cyt.f and iron-sulphur protein. Together they participate in the electron transfer reactions that lead to the net production of the reducting equivalents in the form of NADPH, which are used for reduction of CO2 to carbohydrates(C6H1206). Phosystem II operates during oxygenic photosynthesis and principal electron donor is H2O. Although no structural data is presently available, a huge body of literature exits that describes function using a variety of biochemical and biophysical techniques. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 360 -130222 TIGR01152 psbD Photosystem II, DII subunit (also called Q(A)). This model describes the Photosystem II, DII subunit (also called Q(A)) in bacterial and its equivalents in chloroplast of algae and higher plants. Photosystem II is in many ways functionally equivalent to bacterial reaction center. At the core of Photosystem II are several light harvesting cofactors including plastoquinones, pheophytins, phyloquinones etc. These cofactors are intimately associated with the polypeptides, which principally including subunits DI, DII, Cyt.b, Cyt.f and iron-sulphur protein. Together they participate in the electron transfer reactions that lead to the net production of the reducting equivalents in the form of NADPH, which are used for reduction of CO2 to carbohydrates(C6H1206). Phosystem II operates during oxygenic photosynthesis and principal electron donor is H2O. Although no high resolution X-ray structural data is presently available, recently a 3D structure of the supercomplex has been described by cryo-electron microscopy. Besides a huge body of literature exits that describes function using a variety of biochemical and biophysical techniques. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 352 -213589 TIGR01153 psbC photosystem II 44 kDa subunit reaction center protein (also called P6 protein, CP43), bacterial and chloroplast. This model describes the Photosystem II, 44kDa subunit (also called P6 protein, CP43) in bacterial and its equivalents in chloroplast of algae and higher plants. Photosystem II is in many ways functionally equivalent to bacterial reaction center. At the core of Photosystem II are several light harvesting cofactors including plastoquinones, pheophytins, phyloquinones etc. These cofactors are intimately associated with the polypeptides, which principally including subunits 44 kDa protein,DI, DII, Cyt.b, Cyt.f, iron-sulphur protein and others. Functinally 44 kDa subunit is imlicated in chlorophyll binding. Together they participate in the electron transfer reactions that lead to the net production of the reducting equivalents in the form of NADPH, which are used for reduction of CO2 to carbohydrates(C6H1206). Phosystem II operates during oxygenic photosynthesis and principal electron donor is H2O. Although no high resolution X-ray structural data is presently available, recently a 3D structure of the supercomplex has been described by cryo-electron microscopy. Besides a huge body of literature exits that describes function using a variety of biochemical and biophysical techniques. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 432 -130224 TIGR01156 cytb6/f_IV cytochrome b6/f complex subunit IV. This model describes the subunit IV of the cytochrome b6/f complex. The cyt b6/f complex is central to the functions of the oxygenic phosynthetic electron transport in cyanobacteria and its equivalents in algae and higher plants. Energetically, on the redox scale the cytb6/f complex is placed below the other components - Q(A); Q(B) of the photosystem II in the Z-scheme, along the pathway of the electron transport. The complex is made of the following subunits: cytochrome f; cytochrome b6; Rieske 2Fe-2S; and subunits IV; V; VI; VII. Subunit IV is one of the principal subunits for the binding of the redox prosthetic groups. Each monomer of the complex contains a molecule of chlorophyll a and beta-carotene. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 159 -130225 TIGR01157 pufL photosynthetic reaction center L subunit. This model describes the photosynthetic reaction center L subunit in non-oxygenic photosynthetic bacteria. Reaction center is an integral membrane pigment-protein that carries out light-driven electron transfer reactions. At the core of reaction center is a collection light-harvesting cofactors and closely associated polypeptides. The core protein complex is made of L, M and H subunits. The common cofactors include bacterichlorophyll, bacteriopheophytins, ubiquinone and no-heme ferrous iron. The net result of electron tranfer reactions is the establishment of proton electrochemical gradient and production of reducing equivalents in form of NADH. Ultimately the process results in the reduction of C02 to carbohydrates(C6H12O6) In non-oxygenic organisms, the electron donor is some organic acid and not water. Much of our current functional understanding of photosynthesis comes from the structural determination, spectroscopic studies and mutational analysis on the reaction center of Rhodobacter sphaeroides. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 239 -273471 TIGR01158 SUI1_rel translation initation factor SUI1, putative, prokaryotic. This family of archaeal and bacterial proteins is homologous to the eukaryotic translation intiation factor SUI1 involved in directing the ribosome to the proper start site of translation by functioning in concert with eIF-2 and the initiator tRNA-Met. [Protein synthesis, Translation factors] 101 -273472 TIGR01159 DRP1 density-regulated protein DRP1. This protein family shows weak but suggestive similarity to translation initiation factor SUI1 and its prokaryotic homologs. 173 -130228 TIGR01160 SUI1_MOF2 translation initiation factor SUI1, eukaryotic. Alternate name: MOF2. A similar protein family (see TIGRFAMs model TIGR01158) is found in prokaryotes. The human proteins complements a yeast SUI1 mutatation. [Protein synthesis, Translation factors] 110 -273473 TIGR01161 purK phosphoribosylaminoimidazole carboxylase, PurK protein. Phosphoribosylaminoimidazole carboxylase is a fusion protein in plants and fungi, but consists of two non-interacting proteins in bacteria, PurK and PurE. This model represents PurK, N5-carboxyaminoimidazole ribonucleotide synthetase, which hydrolyzes ATP and converts AIR to N5-CAIR. PurE converts N5-CAIR to CAIR. In the presence of high concentrations of bicarbonate, PurE is reported able to convert AIR to CAIR directly and without ATP. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 352 -273474 TIGR01162 purE phosphoribosylaminoimidazole carboxylase, PurE protein. Phosphoribosylaminoimidazole carboxylase is a fusion protein in plants and fungi, but consists of two non-interacting proteins in bacteria, PurK and PurE. This model represents PurK, an N5-CAIR mutase. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 156 -273475 TIGR01163 rpe ribulose-phosphate 3-epimerase. This family consists of Ribulose-phosphate 3-epimerase, also known as pentose-5-phosphate 3-epimerase (PPE). PPE converts D-ribulose 5-phosphate into D-xylulose 5-phosphate in Calvin's reductive pentose phosphate cycle. It has been found in a wide range of bacteria, archebacteria, fungi and plants. [Energy metabolism, Pentose phosphate pathway] 210 -273476 TIGR01164 rplP_bact ribosomal protein L16, bacterial/organelle. This model describes bacterial and organellar ribosomal protein L16. The homologous protein of the eukaryotic cytosol is designated L10 [Protein synthesis, Ribosomal proteins: synthesis and modification] 125 -273477 TIGR01165 cbiN cobalt transport protein. This model describes the cobalt transporter in bacteria and its equivalents in archaea. It principally functions in the ion uptake mechanism. It is a multisubunit transporter with two integral membrane proteins and two closely associated cytoplasmic subunits. This transporter belongs to the ABC transporter superfamily (ATP stands for ATP Binding Cassette). This superfamily includes two groups, one which catalyze the uptake of small molecules, including ions from the external milieu and the other group which is engaged in the efflux of small molecular weight compounds and ions from within the cell. Energy derived from the hydrolysis of ATP drive the both the process of uptake and efflux. [Transport and binding proteins, Cations and iron carrying compounds] 91 -130234 TIGR01166 cbiO cobalt transport protein ATP-binding subunit. This model describes the ATP binding subunit of the multisubunit cobalt transporter in bacteria and its equivalents in archaea. The model is restricted to ATP subunit that is a part of the cobalt transporter, which belongs to the ABC transporter superfamily (ATP Binding Cassette). The model excludes ATP binding subunit that are associated with other transporters belonging to ABC transporter superfamily. This superfamily includes two groups, one which catalyze the uptake of small molecules, including ions from the external milieu and the other group which is engaged in the efflux of small molecular weight compounds and ions from within the cell. Energy derived from the hydrolysis of ATP drive the both the process of uptake and efflux. [Transport and binding proteins, Cations and iron carrying compounds] 190 -273478 TIGR01167 LPXTG_anchor LPXTG-motif cell wall anchor domain. This model describes the LPXTG motif-containing region found at the C-terminus of many surface proteins of Streptococcus and Streptomyces species. Cleavage between the Thr and Gly by sortase or a related enzyme leads to covalent anchoring at the new C-terminal Thr to the cell wall. Hits that do not lie at the C-terminus or are not found in Gram-positive bacteria are probably false-positive. A common feature of this proteins containing this domain appears to be a high proportion of charged and zwitterionic residues immediatedly upstream of the LPXTG motif. This model differs from other descriptions of the LPXTG region by including a portion of that upstream charged region. [Cell envelope, Other] 34 -273479 TIGR01168 YSIRK_signal Gram-positive signal peptide, YSIRK family. Many surface proteins found in Streptococcus, Staphylococcus, and related lineages share apparently homologous signal sequences. A motif resembling [YF]SIRKxxxGxxS[VIA] appears at the start of the transmembrane domain. The GxxS motif appears perfectly conserved, suggesting a specific function and not just homology. There is a strong correlation between proteins carrying this region at the N-terminus and those carrying the Gram-positive anchor domain with the LPXTG sortase processing site at the C-terminus. 39 -211630 TIGR01169 rplA_bact ribosomal protein L1, bacterial/chloroplast. This model describes bacterial (and chloroplast) ribosomal protein L1. The apparent mitochondrial L1 is sufficiently diverged to be the subject of a separate model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 227 -273480 TIGR01170 rplA_mito ribosomal protein uL1, mitochondrial. This model represents the mitochondrial homolog of bacterial ribosomal protein L1. Unlike chloroplast L1, this form was not sufficiently similar to bacterial forms to include in a single bacterial/organellar L1 model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 141 -273481 TIGR01171 rplB_bact ribosomal protein L2, bacterial/organellar. This model distinguishes bacterial and organellar ribosomal protein L2 from its counterparts in the archaea nad in the eukaryotic cytosol. Plant mitochondrial examples tend to have long, variable inserts. [Protein synthesis, Ribosomal proteins: synthesis and modification] 273 -200082 TIGR01172 cysE serine O-acetyltransferase. Cysteine biosynthesis [Amino acid biosynthesis, Serine family] 162 -273482 TIGR01173 glmU UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase. This protein is a bifunctional enzyme, GlmU, which catalyzes last two reactions in the four-step pathway of UDP-N-acetylglucosamine biosynthesis from fructose-6-phosphate. Its reaction product is required from peptidoglycan biosynthesis, LPS biosynthesis in species with LPS, and certain other processes. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Central intermediary metabolism, Amino sugars] 451 -273483 TIGR01174 ftsA cell division protein FtsA. This bacterial cell division protein interacts with FtsZ, the bacterial homolog of tubulin. It is an ATP-binding protein and shows structural similarities to actin and heat shock cognate protein 70. [Cellular processes, Cell division] 371 -273484 TIGR01175 pilM type IV pilus assembly protein PilM. This protein is required for the assembly of the type IV fimbria in Pseudomonas aeruginosa responsible for twitching motility, and for a similar pilus-like structure in Synechocystis. It is also found in species such as Deinococcus described as having natural transformation (for which a type IV pilus-like structure is proposed) but not fimbria. 348 -273485 TIGR01176 fum_red_Fp fumarate reductase (quinol), flavoprotein subunit. The terms succinate dehydrogenase and fumarate reductase may be used interchangeably in certain systems. However, a number of species have distinct complexes, with the fumarate reductase active under anaerobic conditions. This model represents the fumarate reductase flavoprotein subunit from several such species in which a distinct succinate dehydrogenase is also found. Not all bona fide fumarate reductases will be found by this model. 580 -273486 TIGR01177 TIGR01177 putative methyltransferase, TIGR01177 family. This family of probable methyltransferases is found exclusively in the Archaea. [Hypothetical proteins, Conserved] 329 -130246 TIGR01178 ade adenine deaminase. The family described by this model includes an experimentally characterized adenine deaminase of Bacillus subtilis. It also include a member from Methanobacterium thermoautotrophicum, in which adenine deaminase activity has been detected. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 552 -273487 TIGR01179 galE UDP-glucose-4-epimerase GalE. Alternate name: UDPgalactose 4-epimerase This enzyme interconverts UDP-glucose and UDP-galactose. A set of related proteins, some of which are tentatively identified as UDP-glucose-4-epimerase in Thermotoga maritima, Bacillus halodurans, and several archaea, but deeply branched from this set and lacking experimental evidence, are excluded from this model and described by a separate model. [Energy metabolism, Sugars] 328 -273488 TIGR01180 aman2_put alpha-1,2-mannosidase, putative. The identification of members of this family as putative alpha-1,2-mannosidases is based on an unpublished characterization of the aman2 gene in Bacillus sp. M-90 by Maruyama,Y., Nakajima,M. and Nakajima,T. (Genbank accession BAA76709, pid g4587313). Most members of this family appear to have signal sequences. Members from the dental pathogen Porphyromonas gingivalis have been described as immunoreactive with periodontitis patient serum. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 750 -273489 TIGR01181 dTDP_gluc_dehyt dTDP-glucose 4,6-dehydratase. This protein is related to UDP-glucose 4-epimerase (GalE) and likewise has an NAD cofactor. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 317 -273490 TIGR01182 eda Entner-Doudoroff aldolase. 2-deydro-3-deoxyphosphogluconate aldolase (EC 4.1.2.14) is an enzyme of the Entner-Doudoroff pathway. This aldolase has another function, 4-hydroxy-2-oxoglutarate aldolase (EC 4.1.3.16) shown experimentally in Escherichia coli and Pseudomonas putida [Amino acid biosynthesis, Glutamate family, Energy metabolism, Entner-Doudoroff] 204 -130251 TIGR01183 ntrB nitrate ABC transporter, permease protein. This model describes the nitrate transport permease in bacteria. This is gene product of ntrB. The nitrate transport permease is the integral membrane component of the nitrate transport system and belongs to the ATP-binding cassette (ABC) superfamily. At least in photosynthetic bacteria nitrate assimilation is aided by other proteins derived from the operon which among others include products of ntrA, ntrB, ntrC, ntrD, narB. Functionally ntrC and ntrD resemble the ATP binding components of the binding protein-dependent transport systems. Mutational studies have shown that ntrB and ntrC are mandatory for nitrate accumulation. Nitrate reductase is encoded by narB. [Transport and binding proteins, Anions] 202 -130252 TIGR01184 ntrCD nitrate transport ATP-binding subunits C and D. This model describes the ATP binding subunits of nitrate transport in bacteria and archaea. This protein belongs to the ATP-binding cassette (ABC) superfamily. It is thought that the two subunits encoded by ntrC and ntrD form the binding surface for interaction with ATP. This model is restricted in identifying ATP binding subunit associated with the nitrate transport. Nitrate assimilation is aided by other proteins derived from the operon which among others include products of ntrA - a regulatory protein; ntrB - a hydropbobic transmembrane permease and narB - a reductase. [Transport and binding proteins, Anions, Transport and binding proteins, Other] 230 -130253 TIGR01185 devC DevC protein. This model describes a predicted membrane subunit, DevC, of an ABC transporter known so far from two species of cyanobacteria. Some experimental data from mutational analysis suggest that this protein along with DevA and DevB encoded in the same operon may be involved in the transport/export of glycolipids. [Transport and binding proteins, Other] 380 -130254 TIGR01186 proV glycine betaine/L-proline transport ATP binding subunit. This model describes the glycine betaine/L-proline ATP binding subunit in bacteria and its equivalents in archaea. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. Functionally, this transport system is involved in osmoregulation. Under conditions of stress, the organism recruits these transport system to accumulate glycine betaine and other solutes which offer osmo-protection. It has been demonstrated that glycine betaine uptake is accompanied by symport with sodium ions. The locus has been named variously as proU or opuA. A gene library from L.lactis functionally complements an E.coli proU mutant. The comlementing locus is similar to a opuA locus in B.sutlis. This clarifies the differences in nomenclature. [Transport and binding proteins, Amino acids, peptides and amines] 363 -162242 TIGR01187 potA spermidine/putrescine ABC transporter ATP-binding subunit. This model describes spermidine/putrescine ABC transporter, ATP binding subunit in bacteria and its equivalents in archaea. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. Polyamines like spermidine and putrescine play vital role in cell proliferation, differentiation, and ion homeostasis. The concentration of polyamines within the cell are regulated by biosynthesis, degradation and transport (uptake and efflux included). [Transport and binding proteins, Amino acids, peptides and amines] 325 -130256 TIGR01188 drrA daunorubicin resistance ABC transporter ATP-binding subunit. This model describes daunorubicin resistance ABC transporter, ATP binding subunit in bacteria and archaea. This model is restricted in its scope to preferentially recognize the ATP binding subunit associated with effux of the drug, daunorubicin. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. In eukaryotes proteins of similar function include p-gyco proteins, multidrug resistance protein etc. [Transport and binding proteins, Other] 302 -273491 TIGR01189 ccmA heme ABC exporter, ATP-binding protein CcmA. This model describes the cyt c biogenesis protein encoded by ccmA in bacteria. An exception is, an arabidopsis protein. Quite likely this is encoded by an organelle. Bacterial c-type cytocromes are located on the periplasmic side of the cytoplasmic membrane. Several gene products encoded in a locus designated as 'ccm' are implicated in the transport and assembly of the functional cytochrome C. This cluster includes genes: ccmA;B;C;D;E;F;G and H. The posttranslational pathway includes the transport of heme moiety, the secretion of the apoprotein and the covalent attachment of the heme with the apoprotein. The proteins ccmA and B represent an ABC transporter; ccmC and D participate in heme transfer to ccmE, which function as a periplasmic heme chaperone. The presence of ccmF, G and H is suggested to be obligatory for the final functional assembly of cytochrome c. [Protein fate, Protein and peptide secretion and trafficking, Transport and binding proteins, Other] 198 -200083 TIGR01190 ccmB heme exporter protein CcmB. This model describes the cyt c biogenesis protein encoded by ccmB in bacteria. Bacterial c-type cytochromes are located on the periplasmic side of the cytoplasmic membrane. Several gene products encoded in a locus designated as 'ccm' are implicated in the transport and assembly of the functional cytochrome C. This cluster includes genes: ccmA;B;C;D;E;F;G and H. The posttranslational pathway includes the transport of heme moiety, the secretion of the apoprotein and the covalent attachment of the heme with the apoprotein. The proteins ccmA and B represent an ABC transporter; ccmC and D participate in heme transfer to ccmE, which function as a periplasmic heme chaperone. The presence of ccmF, G and H is suggested to be obligatory for the final functional assembly of cytochrome C. [Protein fate, Protein and peptide secretion and trafficking, Transport and binding proteins, Other] 211 -273492 TIGR01191 ccmC heme exporter protein CcmC. This model describes the cyt c biogenesis protein encoded by ccmC in bacteria. It must be noted an arabidopsis, a tritcum and a piscum plant proteins were recognizable in the clade. Quite likely they are of organellar origin. Bacterial c-type cytocromes are located on the periplasmic side of the cytoplasmic membrane. Several gene products encoded in a locus designated as 'ccm' are implicated in the transport and assembly of the functional cytochrome C. This cluster includes genes, ccmA;B;C;D;E;F;G and H. The posttranslational pathway includes the transport of heme moiety, the secretion of the apoprotein and the covalent attachment of the heme with the apoprotein. The proteins ccmA and B represent an ABC transporter; ccmC and D participate in the heme transfer to ccmE, which function as a periplasmic heme chaperone. The presence of ccmF, G and H is suggested to be obligatory for the final functional assembly of cytochrome c. [Protein fate, Protein and peptide secretion and trafficking, Transport and binding proteins, Other] 184 -130260 TIGR01192 chvA glucan exporter ATP-binding protein. This model describes glucan exporter ATP binding protein in bacteria. It belongs to the larger ABC transporter superfamily with the characteristic ATP binding motif. The In general, this protein is in some ways implicated in osmoregulation and suggested to participate in the export of glucan from the cytoplasm to periplasm. The cyclic beta-1,2-glucan in the bactrerial periplasmic space is suggested to confer the property of high osmolority. It has also been demonstrated that mutants in this loci have lost functions of virulence and motility. It is unclear as to how virulence and osmoadaptaion are related. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 585 -130261 TIGR01193 bacteriocin_ABC ABC-type bacteriocin transporter. This model describes ABC-type bacteriocin transporter. The amino terminal domain (pfam03412) processes the N-terminal leader peptide from the bacteriocin while C-terminal domains resemble ABC transporter membrane protein and ATP-binding cassette domain. In general, bacteriocins are agents which are responsible for killing or inhibiting the closely related species or even different strains of the same species. Bacteriocins are usually encoded by bacterial plasmids. Bacteriocins are named after the species and hence in literature one encounters various names e.g., leucocin from Leuconostic geldium; pedicocin from Pedicoccus acidilactici; sakacin from Lactobacillus sake etc. [Protein fate, Protein and peptide secretion and trafficking, Protein fate, Protein modification and repair, Transport and binding proteins, Other] 708 -130262 TIGR01194 cyc_pep_trnsptr cyclic peptide transporter. This model describes cyclic peptide transporter in bacteria. Bacteria have elaborate pathways for the production of toxins and secondary metabolites. Many such compounds, including syringomycin and pyoverdine are synthesized on non-ribosomal templates consisting of a multienzyme complex. On several occasions the proteins of the complex and transporter protein are present on the same operon. Often times these compounds cross the biological membrane by specific transporters. Syringomycin is an amphipathic, cylclic lipodepsipeptide when inserted into host causes formation of channels, permeable to variety of cations. On the other hand, pyoverdine is a cyclic octa-peptidyl dihydroxyquinoline, which is efficient in sequestering iron for uptake. [Transport and binding proteins, Amino acids, peptides and amines, Transport and binding proteins, Other] 555 -273493 TIGR01195 oadG_fam sodium pump decarboxylases, gamma subunit. This model finds the subfamily of distantly related, low complexity, hydrophobic small subunits of several related sodium ion-pumping decarboxylases. These include oxaloacetate decarboxylase gamma subunit and methylmalonyl-CoA decarboxylase delta subunit. Most sequences scoring between the noise and trusted cutoffs are eukaryotic sodium channel proteins. 82 -130264 TIGR01196 edd 6-phosphogluconate dehydratase. A close homolog, designated MocB (mannityl opine catabolism), is found in a mannopine catabolism region of a plasmid of Agrobacterium tumefaciens. However, it is not essential for mannopine catabolism, branches within the cluster of 6-phosphogluconate dehydratases (with a short branch length) in a tree rooted by the presence of other dehydyatases. It may represent an authentic 6-phosphogluconate dehydratase, redundant with the chromosomal copy shown to exist in plasmid-cured strains. This model includes mocB above the trusted cutoff, although the designation is somewhat tenuous. [Energy metabolism, Entner-Doudoroff] 601 -162246 TIGR01197 nramp NRAMP (natural resistance-associated macrophage protein) metal ion transporters. This model describes the Nramp metal ion transporter family. Historically, in mammals these proteins have been functionally characterized as proteins involved in the host pathogen resistance, hence the name - NRAMP. At least two isoforms Nramp1 and Nramp2 have been identified. However the exact mechanism of pathogen resistance was unclear, until it was demonstrated by expression cloning and electrophysiological techniques that this protein was a metal ion transporter. It was also independently demonstrated that a microcytic anemia (mk) locus in mouse, encodes a metal ion transporter (DCT1 or Nramp2). The transporter has a broad range of substrate specificity that include Fe+2, Zn+2, Mn+2, Co+2, Cd+2, Cu+2, Ni+2 and Pb+2. The uptake of these metal ions is coupled to proton symport. Metal ions are essential cofactors in a number of biological process including, oxidative phosphorylation, gene regulation and metal ion homeostasis. Nramp1 could confer resistance to infection in one of the two ways. (1) The uptake of Fe+2 can produce toxic hydroxyl radicals via Fenton reaction killing the pathogens in phagosomes or (2) Deplete the metal ion pools in the phagosome and deprive the pathogens of metal ions, which is critical for its survival. [Transport and binding proteins, Cations and iron carrying compounds] 390 -273494 TIGR01198 pgl 6-phosphogluconolactonase. This enzyme of the pentose phosphate pathway is often found as a part of a multifunctional protein with [Energy metabolism, Pentose phosphate pathway] 233 -273495 TIGR01200 GLPGLI GLPGLI family protein. This protein family was first noted as a paralogous set in Porphyromonas gingivalis, but it is more widely distributed among the Bacteroidetes. The protein family is now renamed GLPGLI after its best-conserved motif. 226 -273496 TIGR01201 HU_rel DNA-binding protein, histone-like, putative. This model describes a set of proteins related to but longer than DNA-binding protein HU. Its distinctive domain architecture compared to HU and related histone-like DNA-binding proteins justifies the designation as superfamily. Members include, so far, one from Bacteroides fragilis, a gut bacterium, and ten from Porphyromonas gingivalis, an oral anaerobe. [DNA metabolism, Chromosome-associated proteins] 145 -130269 TIGR01202 bchC 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 308 -273497 TIGR01203 HGPRTase hypoxanthine phosphoribosyltransferase. Alternate name: hypoxanthine-guanine phosphoribosyltransferase. Sequence differences as small as a single residue can affect whether members of this family act on hypoxanthine and guanine or hypoxanthine only. The designation of this model as equivalog reflects hypoxanthine specificity and does not reflect whether or not guanine can replace hypoxanthine. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 166 -130271 TIGR01204 bioW 6-carboxyhexanoate--CoA ligase. Alternate name: pimeloyl-CoA synthase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 232 -273498 TIGR01205 D_ala_D_alaTIGR D-alanine--D-alanine ligase. This model describes D-Ala--D-Ala ligase, an enzyme that makes a required precursor of the bacterial cell wall. It also describes some closely related proteins responsible for resistance to glycopeptide antibiotics such as vancomycin. The mechanism of glyopeptide antibiotic resistance involves the production of D-alanine-D-lactate (VanA and VanB families) or D-alanine-D-serine (VanC). The seed alignment contains only chromosomally encoded D-ala--D-ala ligases, but a number of antibiotic resistance proteins score above the trusted cutoff of this model. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 315 -273499 TIGR01206 lysW lysine biosynthesis protein LysW. This very small, poorly characterized protein has been shown essential in Thermus thermophilus for an unusual pathway of Lys biosynthesis from aspartate by way of alpha-aminoadipate (AAA) rather than diaminopimelate. It is found also in Deinococcus radiodurans and Pyrococcus horikoshii, which appear to share the AAA pathway. [Amino acid biosynthesis, Aspartate family] 54 -130274 TIGR01207 rmlA glucose-1-phosphate thymidylyltransferase, short form. Alternate name: dTDP-D-glucose synthase homotetramer This model describes a tightly conserved but broadly distributed subfamily (here designated as short form) of known and putative bacterial glucose-1-phosphate thymidylyltransferases. It is well characterized in several species as the first of four enzymes involved in the biosynthesis of dTDP-L-rhamnose, a cell wall constituent and a feedback inhibitor of the enzyme. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 286 -273500 TIGR01208 rmlA_long glucose-1-phosphate thymidylylransferase, long form. The family of known and putative glucose-1-phosphate thymidyltransferase (also called dTDP-glucose synthase) shows a deep split into a short form (see TIGR01207) and a long form described by this model. The homotetrameric short form is found in numerous bacterial species that incorporate dTDP-L-rhamnose, which it helps synthesize, into the cell wall. It is subject to feedback inhibition. This form, in contrast, is found in many species for which it serves as a sugar-activating enzyme for antibiotic biosynthesis and or other, unknown pathways, and in which dTDP-L-rhamnose is not necessarily produced. Alternate name: dTDP-D-glucose synthase 353 -273501 TIGR01209 TIGR01209 RNA ligase, Pab1020 family. Members of this family are found, so far, in a single copy per genome and largely in thermophiles, of which only Aquifex aeolicus is bacterial rather than archaeal. PSI-BLAST converges after a single iteration to the whole of this family and reveals no convincing similarity to any other protein. The member protein Pab1020 has been characterized as an RNA ligase with circularization activity. [Transcription, RNA processing] 374 -273502 TIGR01210 TIGR01210 radical SAM enzyme, TIGR01210 family. This family of exclusively archaeal radical SAM enzymes has no characterized close homologs. [Hypothetical proteins, Conserved] 313 -273503 TIGR01211 ELP3 radical SAM enzyme/protein acetyltransferase, ELP3 family. This family includes elongator complex protein 3 (ELP3) from eukaryotes and related proteins from other lineages. ELP3 is a component of the RNA polymerase II holoenzyme. It has an N-terminal radical SAM domain and C-terminal GNAT acetyltransferase domain. Members of this family are found in eukaryotes, archaea, and a few bacteria (e.g. Atopobium sp). The activity discovered first was an acetyltransferase modification at the N-termini of all four core histones, shown in vitro in eukaryotes. More recently, the radical SAM domain was shown to play a role in zygotic paternal genome demethylation. Family TIGR01212, widespread in prokaryotes, lacks the GNAT acetyltransferase domain but shares extensive sequence similarity with this family (TIGR01211). [Transcription, DNA-dependent RNA polymerase] 522 -130279 TIGR01212 TIGR01212 radical SAM protein, TIGR01212 family. Members of this family are apparent radical-SAM enzymes, related to the N-terminal region of the bifunctional ELP3, whose C-terminal region is part of the elongator complex and appears to acetylate histones and other proteins. ELP3 binds S-adenosylmethionine (SAM) and was recently shown to be involved in a DNA demethylation process in eukaryotes. Close sequence similarity of this family (with lacks the GNAT family acetyltransferase domain) to the ELP3 N-terminal region and a strong match to the pfam04055 support identification of this family as radical SAM despite the atypical spacing between first and second Cys residues in the 4Fe4S-binding motif. [Unknown function, Enzymes of unknown specificity] 302 -273504 TIGR01213 pseudo_Pus10arc tRNA pseudouridine(54/55) synthase. Members of this family show twilight-zone similarity to several predicted RNA pseudouridine synthases. All trusted members of this family are archaeal. Several eukaryotic homologs lack N-terminal homology including two CXXC motifs. [Hypothetical proteins, Conserved] 388 -273505 TIGR01214 rmlD dTDP-4-dehydrorhamnose reductase. This enzyme catalyzes the last of 4 steps in making dTDP-rhamnose, a precursor of LPS core antigen, O-antigen, etc. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 287 -188120 TIGR01215 minE cell division topological specificity factor MinE. This protein is involved in the process of cell division. This protein prevents the proteins MinC and MinD to inhibit cell division at internal sites, but allows inhibiton at polar sites. This allows for correct cell division at the proper sites. [Cellular processes, Cell division] 81 -273506 TIGR01216 ATP_synt_epsi ATP synthase, F1 epsilon subunit (delta in mitochondria). This model describes one of the five types of subunits in the F1 part of F1/F0 ATP synthases. Members of this family are designated epsilon in bacterial and chloroplast systems but designated delta in mitochondria, where the counterpart of the bacterial delta subunit is designated OSCP. In a few cases (Propionigenium modestum, Acetobacterium woodii) scoring above the trusted cutoff and designated here as exceptions, Na+ replaces H+ for translocation. [Energy metabolism, ATP-proton motive force interconversion] 130 -273507 TIGR01217 ac_ac_CoA_syn acetoacetyl-CoA synthase. This enzyme catalyzes the first step of the mevalonate pathway of IPP biosynthesis. Most bacteria do not use this pathway, but rather the deoxyxylulose pathway. [Central intermediary metabolism, Other] 652 -273508 TIGR01218 Gpos_tandem_5TM tandem five-transmembrane protein. Members of this family of proteins, with average length of 210, have no invariant residues but five predicted transmembrane segments. Strangely, most members occur in groups of consecutive paralogous genes. A striking example is a set of eleven encoded consecutively, head-to-tail, in Staphylococcus aureus strain COL. 207 -273509 TIGR01219 Pmev_kin_ERG8 phosphomevalonate kinase, ERG8-type, eukaryotic branch. This enzyme is part of the mevalonate pathway, one of two alternative pathways for the biosynthesis of IPP. In an example of nonorthologous gene displacement, two different types of phosphomevalonate kinase are found - the animal type and this ERG8 type. This model represents plant and fungal forms of the ERG8 type of phosphomevalonate kinase. [Central intermediary metabolism, Other] 454 -130287 TIGR01220 Pmev_kin_Gr_pos phosphomevalonate kinase, ERG8-type, Gram-positive branch. This enzyme is part of the mevalonate pathway, one of two alternative pathways for the biosynthesis of IPP. In an example of nonorthologous gene displacement, two different types of phosphomevalonate kinase are found - the animal type and this ERG8 type. This model represents the low GC Gram-positive organism forms of the ERG8 type of phosphomevalonate kinase. [Central intermediary metabolism, Other] 358 -273510 TIGR01221 rmlC dTDP-4-dehydrorhamnose 3,5-epimerase. This enzyme participates in the biosynthesis of dTDP-L-rhamnose, often as a precursor to LPS O-antigen [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 176 -273511 TIGR01222 minC septum site-determining protein MinC. The minC protein assists in correct placement of the septum for cell division by inhibiting septum formation at other sites. Homologs from Deinocoocus, Synechocystis PCC 6803, and Helicobacter pylori do not hit the full length of the model and score between the trusted and noise cutoffs. [Cellular processes, Cell division] 217 -130290 TIGR01223 Pmev_kin_anim phosphomevalonate kinase, animal type. This enzyme is part of the mevalonate pathway, one of two alternative pathways for the biosynthesis of IPP. In an example of nonorthologous gene displacement, two different types of phosphomevalonate kinase are found. One is this type, found in animals. The other is the ERG8 type, found in plants and fungi (TIGR01219) and in Gram-positive bacteria (TIGR01220). [Central intermediary metabolism, Other] 182 -273512 TIGR01224 hutI imidazolonepropionase. This enzyme catalyzes the third step in histidine degradation. [Energy metabolism, Amino acids and amines] 377 -200086 TIGR01225 hutH histidine ammonia-lyase. This enzyme deaminates histidine to urocanic acid, the first step in histidine degradation. It is closely related to phenylalanine ammonia-lyase. [Energy metabolism, Amino acids and amines] 506 -130293 TIGR01226 phe_am_lyase phenylalanine ammonia-lyase. Members of this subfamily of MIO prosthetic group enzymes are phenylalanine ammonia-lyases. They are found, so far, in plants and fungi. From phenylalanine, this enzyme yields cinnaminic acid, a precursor of many important plant compounds. This protein shows extensive homology to histidine ammonia-lyase, the first enzyme of a histidine degradation pathway. Note that members of this family from plant species that synthesize taxol are actually phenylalanine aminomutase, and are covered by exception model TIGR04473. 680 -273513 TIGR01227 hutG formimidoylglutamase. Formiminoglutamase, the fourth enzyme of histidine degradation, is similar to arginases and agmatinases. It is often encoded near other enzymes of the histidine degredation pathway: histidine ammonia-lyase, urocanate hydratase, and imidazolonepropionase. [Energy metabolism, Amino acids and amines] 307 -130295 TIGR01228 hutU urocanate hydratase. This model represents the second of four enzymes involved in the degradation of histidine to glutamate. [Energy metabolism, Amino acids and amines] 545 -162262 TIGR01229 rocF_arginase arginase. This model helps resolve arginases from known and putative agmatinases, formiminoglutamases, and other related proteins of unknown specifity. The pathway from arginine to the polyamine putrescine may procede by hydrolysis to remove urea (arginase) followed by decarboxylation (ornithine decarboxylase), or by decarboxylation first (arginine decarboxylase) followed by removal of urea (agmatinase). 300 -273514 TIGR01230 agmatinase agmatinase. Members of this family include known and predicted examples of agmatinase (agmatine ureohydrolase). The seed includes members of archaea, for which no definitive agmatinase sequence has yet been made available. However, archaeal sequences are phylogenetically close to the experimentally verified B. subtilis sequence. One species of Halobacterium has been demonstrated in vitro to produce agmatine from arginine, but no putrescine from ornithine, suggesting that arginine decarboxylase and agmatinase, rather than arginase and ornithine decarboxylase, lead from Arg to polyamine biosynthesis. Note: a history of early misannotation of members of this family is detailed in PUBMED:10931887. 275 -273515 TIGR01231 lacC tagatose-6-phosphate kinase. This enzyme is part of the tagatose-6-phosphate pathway of lactose degradation. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 310 -130299 TIGR01232 lacD tagatose 1,6-diphosphate aldolase. This family consists of Gram-positive proteins. Tagatose 1,6-diphosphate aldolase is part of the tagatose-6-phosphate pathway of galactose-6-phosphate degradation. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 325 -273516 TIGR01233 lacG 6-phospho-beta-galactosidase. This enzyme is part of the tagatose-6-phosphate pathway of galactose-6-phosphate degradation. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 467 -130301 TIGR01234 L-ribulokinase ribulokinase. This enzyme catalyzes the second step in arabinose catabolism. The most closely related protein subfamily outside the scope of this model includes ribitol kinase from E. coli. [Energy metabolism, Sugars] 536 -130302 TIGR01235 pyruv_carbox pyruvate carboxylase. This enzyme plays a role in gluconeogensis but not glycolysis. [Energy metabolism, Glycolysis/gluconeogenesis] 1143 -273517 TIGR01236 D1pyr5carbox1 delta-1-pyrroline-5-carboxylate dehydrogenase, group 1. This model represents one of two related branches of delta-1-pyrroline-5-carboxylate dehydrogenase. The two branches are not as closely related to each other as some aldehyde dehydrogenases are to this branch, and separate models are built for this reason. The enzyme is the second of two in the degradation of proline to glutamate. [Energy metabolism, Amino acids and amines] 532 -200087 TIGR01237 D1pyr5carbox2 delta-1-pyrroline-5-carboxylate dehydrogenase, group 2, putative. This enzyme is the second of two in the degradation of proline to glutamate. This model represents one of several related branches of delta-1-pyrroline-5-carboxylate dehydrogenase. Members of this branch may be associated with proline dehydrogenase (the other enzyme of the pathway from proline to glutamate) but have not been demonstrated experimentally. The branches are not as closely related to each other as some distinct aldehyde dehydrogenases are to some; separate models were built to let each model describe a set of equivalogs. [Energy metabolism, Amino acids and amines] 511 -273518 TIGR01238 D1pyr5carbox3 delta-1-pyrroline-5-carboxylate dehydrogenase (PutA C-terminal domain). This model represents one of several related branches of delta-1-pyrroline-5-carboxylate dehydrogenase. Members of this branch are the C-terminal domain of the PutA bifunctional proline dehydrogenase / delta-1-pyrroline-5-carboxylate dehydrogenase. [Energy metabolism, Amino acids and amines] 500 -273519 TIGR01239 galT_2 galactose-1-phosphate uridylyltransferase, family 2. This enzyme is involved in glucose and galactose interconversion. This model describes one of two extremely distantly related branches of the model pfam01087 from Pfam. [Energy metabolism, Sugars] 489 -130307 TIGR01240 mevDPdecarb diphosphomevalonate decarboxylase. This enzyme catalyzes the last step in the synthesis of isopentenyl diphosphate (IPP) in the mevalonate pathway. Alternate names: mevalonate diphosphate decarboxylase; pyrophosphomevalonate decarboxylase [Central intermediary metabolism, Other] 305 -273520 TIGR01241 FtsH_fam ATP-dependent metalloprotease FtsH. HflB(FtsH) is a pleiotropic protein required for correct cell division in bacteria. It has ATP-dependent zinc metalloprotease activity. It was formerly designated cell division protein FtsH. [Cellular processes, Cell division, Protein fate, Degradation of proteins, peptides, and glycopeptides] 495 -130309 TIGR01242 26Sp45 26S proteasome subunit P45 family. Many proteins may score above the trusted cutoff because an internal 364 -273521 TIGR01243 CDC48 AAA family ATPase, CDC48 subfamily. This subfamily of the AAA family ATPases includes two members each from three archaeal species. It also includes yeast CDC48 (cell division control protein 48) and the human ortholog, transitional endoplasmic reticulum ATPase (valosin-containing protein). These proteins in eukaryotes are involved in the budding and transfer of membrane from the transitional endoplasmic reticulum to the Golgi apparatus. 733 -130311 TIGR01244 TIGR01244 TIGR01244 family protein. No member of this family is characterized. The member from Xylella fastidiosa is a longer protein with an N-terminal region described by this model, followed by a metallo-beta-lactamase family domain and an additional C-terminal region. Members scoring above the trusted cutoff are limited to the proteobacteria. [Hypothetical proteins, Conserved] 135 -273522 TIGR01245 trpD anthranilate phosphoribosyltransferase. In many widely different species, including E. coli, Thermotoga maritima, and Archaeoglobus fulgidus, this enzymatic domain (anthranilate phosphoribosyltransferase) is found C-terminal to glutamine amidotransferase; the fusion protein is designated anthranilate synthase component II (EC 4.1.3.27) [Amino acid biosynthesis, Aromatic amino acid family] 330 -162269 TIGR01246 dapE_proteo succinyl-diaminopimelate desuccinylase, proteobacterial clade. This model describes a proteobacterial subset of succinyl-diaminopimelate desuccinylases. An experimentally confirmed Gram-positive lineage succinyl-diaminopimelate desuccinylase has been described for Corynebacterium glutamicum (SP:Q59284), and a neighbor-joining tree shows the seed members, SP:Q59284, and putative archaeal members such as TrEMBL:O58003 in a single clade. However, the archaeal members differ substantially, share a number of motifs with acetylornithine deacetylases rather than succinyl-diaminopimelate desuccinylases, and are not taken as trusted examples of succinyl-diaminopimelate desuccinylases. This model is limited to proteobacterial members for this reason. [Amino acid biosynthesis, Aspartate family] 370 -130314 TIGR01247 drrB daunorubicin resistance ABC transporter membrane protein. This model describes daunorubicin resistance ABC transporter, membrane associated protein in bacteria and archaea. The protein associated with effux of the drug, daunorubicin. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. In eukaryotes proteins of similar function include p-gyco proteins, multidrug resistance protein etc. [Transport and binding proteins, Other] 236 -130315 TIGR01248 drrC daunorubicin resistance protein C. The model describes daunorubicin resistance protein C in bacteria. This protein confers the function of daunorubicin resistance. The protein seems to share strong sequence similarity to UvrA proteins, which are involved in excision repair of DNA. Disruption of drrC gene showed increased sensitivity upon exposure to duanorubicin. However it failed to complement uvrA mutants to exposure to UV irradiation. The mechanism on how it confers duanomycin resistance is unclear, but has been suggested to be different from DrrA and DrrB which are antiporters. [Unclassified, Role category not yet assigned] 152 -130316 TIGR01249 pro_imino_pep_1 proline iminopeptidase, Neisseria-type subfamily. This model represents one of two related families of proline iminopeptidase in the alpha/beta fold hydrolase family. The fine specificities of the various members, including both the range of short peptides from which proline can be removed and whether other amino acids such as alanine can be also removed, may vary among members. 306 -188121 TIGR01250 pro_imino_pep_2 proline-specific peptidase, Bacillus coagulans-type subfamily. This model describes a subfamily of the alpha/beta fold family of hydrolases. Characterized members include prolinases (Pro-Xaa dipeptidase, EC 3.4.13.8), prolyl aminopeptidases (EC 3.4.11.5), and a leucyl aminopeptidase 289 -273523 TIGR01251 ribP_PPkin ribose-phosphate pyrophosphokinase. Alternate name: phosphoribosylpyrophosphate synthetase In some systems, close homologs lacking enzymatic activity exist and perform regulatory functions. The model is designated subfamily rather than equivalog for this reason. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 308 -273524 TIGR01252 acetolac_decarb alpha-acetolactate decarboxylase. Puruvate can be fermented to 2,3-butanediol. It is first converted to alpha-acetolactate by alpha-acetolactate synthase, then decarboxylated to acetoin by this enzyme. Acetoin can be reduced in some species to 2,3-butanediol by acetoin reductase. [Energy metabolism, Fermentation] 232 -130320 TIGR01253 thiP thiamine ABC transporter, permease protein. The model describes thiamine ABC transporter, permease protein in bacteria. The protein belongs to the larger ABC transport system. It consists of atleast three components: the inner mebrane permease; thiamine binding protein; an ATP-binding subunit. It has been experimentally demonstrated that the mutants in the various steps in the de novo synthesis of the thiamine and the biologically active form, namely thiamine pyrophosphate can be exogenously supplemented with thiamine, thiamine monophosphate (TMP) or thiamine pyrophosphate (TPP). [Transport and binding proteins, Other] 519 -130321 TIGR01254 sfuA ABC transporter periplasmic binding protein, thiB subfamily. The model describes thiamine ABC transporter, periplasmic protein in bacteria and archae. The protein belongs to the larger ABC transport system. It consists of at least three components: the thiamine binding periplasmic protein; an inner membrane permease; an ATP-binding subunit. It has been experimentally demonstrated that the mutants in the various steps in the de novo synthesis of the thiamine and the biologically active form, namely thiamine pyrophosphate can be exogenously supplemented with thiamine, thiamine monophosphate (TMP) or thiamine pyrophosphate (TPP). [Transport and binding proteins, Other] 304 -273525 TIGR01255 pyr_form_ly_1 formate acetyltransferase 1. Alternate names: pyruvate formate-lyase; formate C-acetyltransferase This enzyme converts formate + acetyl-CoA into pyruvate + CoA. This model describes formate acetyltransferase 1. More distantly related putative formate acetyltransferases have also been identified, including formate acetyltransferase 2 from E. coli, which is excluded from this model. [Energy metabolism, Fermentation] 744 -273526 TIGR01256 modA molybdenum ABC transporter, periplasmic molybdate-binding protein. The model describes the molybdate ABC transporter periplasmic binding protein in bacteria and archae. Several of the periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. It has been shown experimentally by radioactive labeling that ModA represent hydrophylioc periplasmic-binding protein in gram-negative organisms and its counterpart in gram-positive organisms is a lipoprotein. The other components of the system include the ModB, an integral membrane protein and ModC the ATP-binding subunit. Invariably almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. [Transport and binding proteins, Anions] 216 -130324 TIGR01257 rim_protein retinal-specific rim ABC transporter. This model describes the photoreceptor protein (rim protein) in eukaryotes. It is the member of ABC transporter superfamily. Rim protein is a membrane glycoprotein which is localized in the photoreceptor outer segment discs. Mutation/s in its genetic loci is implicated in the recessive Stargardt's disease. [Transport and binding proteins, Other] 2272 -213596 TIGR01258 pgm_1 phosphoglycerate mutase, BPG-dependent, family 1. Most members of this family are phosphoglycerate mutase (EC 5.4.2.1). This enzyme interconverts 2-phosphoglycerate and 3-phosphoglycerate. The enzyme is transiently phosphorylated on an active site histidine by 2,3-diphosphoglyerate, which is both substrate and product. Some members of this family have are phosphoglycerate mutase as a minor activity and act primarily as a bisphoglycerate mutase, interconverting 2,3-diphosphoglycerate and 1,3-diphosphoglycerate (EC 5.4.2.4). This model is designated as a subfamily for this reason. The second and third paralogs in S. cerevisiae are somewhat divergent and apparently inactive (see PUBMED:9544241) but are also part of this subfamily phylogenetically. 245 -213597 TIGR01259 comE comEA protein. This model describes the ComEA protein in bacteria. The com E locus is obligatory for bacterial cell competence - the process of internalizing the exogenous added DNA. Lesions in the loci has been variously described for the appearance of competence-related pheonotypes and impairment of competence, suggesting their intimate functional role in bacterial transformation. [Cellular processes, DNA transformation] 120 -130327 TIGR01260 ATP_synt_c ATP synthase, F0 subunit c. This model describes the subunit c in F1/F0-ATP synthase, a membrane associated multisubunit complex found in bacteria and organelles of higher eukaryotes, namely, mitochondria and chloroplast. This enzyme is principally involved in the synthesis of ATP from ADP and inorganic phosphate by coupling the energy derived from the proton electrochemical gradient across the biological membrane. A brief description of this multisubunit enzyme complex: F1 and F0 represent two major clusters of subunits. The functional role of subunit c, which is the part of F0 cluster, has been delineated in-vitro reconstitution experiments. Overall experimental proof exists that demonstrate the electrochemical gradient is converted into a rotational torque that leads to ATP synthesis. [Energy metabolism, ATP-proton motive force interconversion] 58 -130328 TIGR01261 hisB_Nterm histidinol-phosphatase. This model describes histidinol phosphatase. All known examples in the scope of this model are bifunctional proteins with a histidinol phosphatase domain followed by an imidazoleglycerol-phosphate dehydratase domain. These enzymatic domains catalyze the ninth and seventh steps, respectively, of histidine biosynthesis. [Amino acid biosynthesis, Histidine family] 161 -273527 TIGR01262 maiA maleylacetoacetate isomerase. Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism. [Energy metabolism, Amino acids and amines] 210 -273528 TIGR01263 4HPPD 4-hydroxyphenylpyruvate dioxygenase. This protein oxidizes 4-hydroxyphenylpyruvate, a tyrosine and phenylalanine catabolite, to homogentisate. Homogentisate can undergo a further non-enzymatic oxidation and polymerization into brown pigments that protect some bacterial species from light. A similar process occurs spontaneously in blood and is hemolytic (see . In some bacterial species, this enzyme has been studied as a hemolysin. [Energy metabolism, Amino acids and amines] 352 -273529 TIGR01264 tyr_amTase_E tyrosine aminotransferase, eukaryotic. This model describes tyrosine aminotransferase as found in animals and Trypanosoma cruzi. It is the first enzyme of a pathway of tyrosine degradation via homogentisate. Several plant enzyme designated as probable tyrosine aminotransferases are very closely related to an experimentally demonstrated nicotianamine aminotransferase, an enzyme in a siderophore (iron uptake chelator) biosynthesis pathway. These plant sequences are excluded from the model seed and score between the trusted an noise cutoffs. [Energy metabolism, Amino acids and amines] 401 -188123 TIGR01265 tyr_nico_aTase tyrosine/nicotianamine family aminotransferase. This subfamily of pyridoxal phosphate-dependent enzymes includes known examples of both tyrosine aminotransferase from animals and nicotianamine aminotransferase from barley. 403 -162276 TIGR01266 fum_ac_acetase fumarylacetoacetase. This enzyme catalyzes the final step in the breakdown of tyrosine or phenylalanine to fumarate and acetoacetate. [Energy metabolism, Amino acids and amines] 415 -130334 TIGR01267 Phe4hydrox_mono phenylalanine-4-hydroxylase, monomeric form. This model describes the smaller, monomeric form of phenylalanine-4-hydroxylase, as found in a small number of Gram-negative bacteria. The enzyme irreversibly converts phenylalanine to tryosine and is known to be the rate-limiting step in phenylalanine catabolism in some systems. This family is of biopterin and metal-dependent hydroxylases is related to a family of longer, multimeric aromatic amino acid hydroxylases that have additional N-terminal regulatory sequences. These include tyrosine 3-monooxygenase, phenylalanine-4-hydroxylase, and tryptophan 5-monoxygenase. [Energy metabolism, Amino acids and amines] 248 -130335 TIGR01268 Phe4hydrox_tetr phenylalanine-4-hydroxylase, tetrameric form. This model describes the larger, tetrameric form of phenylalanine-4-hydroxylase, as found in metazoans. The enzyme irreversibly converts phenylalanine to tryosine and is known to be the rate-limiting step in phenylalanine catabolism in some systems. It is closely related to metazoan tyrosine 3-monooxygenase and tryptophan 5-monoxygenase, and more distantly to monomeric phenylalanine-4-hydroxylases of some Gram-negative bacteria. The member of this family from Drosophila has been described as having both phenylalanine-4-hydroxylase and tryptophan 5-monoxygenase activity (. However, a Drosophila member of the tryptophan 5-monoxygenase clade has subsequently been discovered. 436 -130336 TIGR01269 Tyr_3_monoox tyrosine 3-monooxygenase, tetrameric. This model describes tyrosine 3-monooxygenase, a member of the family of tetrameric, biopterin-dependent aromatic amino acid hydroxylases found in metazoans. It is closely related to tetrameric phenylalanine-4-hydroxylase and tryptophan 5-monooxygenase, and more distantly related to the monomeric phenylalanine-4-hydroxylase found in some Gram-negative bacteria. 457 -130337 TIGR01270 Trp_5_monoox tryptophan 5-monooxygenase, tetrameric. This model describes tryptophan 5-monooxygenase, a member of the family of tetrameric, biopterin-dependent aromatic amino acid hydroxylases found in metazoans. It is closely related to tetrameric phenylalanine-4-hydroxylase and tyrosine 3-monooxygenase, and more distantly related to the monomeric phenylalanine-4-hydroxylase found in some Gram-negative bacteria. [Energy metabolism, Amino acids and amines] 464 -273530 TIGR01271 CFTR_protein cystic fibrosis transmembrane conductor regulator (CFTR). The model describes the cystis fibrosis transmembrane conductor regulator (CFTR) in eukaryotes. The principal role of this protein is chloride ion conductance. The protein is predicted to consist of 12 transmembrane domains. Mutations or lesions in the genetic loci have been linked to the aetiology of asthma, bronchiectasis, chronic obstructive pulmonary disease etc. Disease-causing mutations have been studied by 36Cl efflux assays in vitro cell cultures and electrophysiology, all of which point to the impairment of chloride channel stability and not the biosynthetic processing per se. [Transport and binding proteins, Anions] 1490 -273531 TIGR01272 gluP glucose/galactose transporter. This model describes the glucose/galactose transporter in bacteria. This belongs to the larger facilitator superfamily. Disruption of the loci leads to the total loss of glucose or galactose uptake in E.coli. Putative transporters in other bacterial species were isolated by functional complementation, which restored it functional activity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 310 -273532 TIGR01273 speA arginine decarboxylase, biosynthetic. Two alternative pathways can convert arginine to putrescine. One is decarboxylation by this enzyme followed by removal of the urea moeity by agmatinase. In the other, the ureohydrolase (arginase) acts first, followed by ornithine decarboxylase. This pathway leads to spermidine biosynthesis, hence the gene symbol speA. A distinct biodegradative form is also pyridoxal phosphate-dependent but is not similar in sequence. [Central intermediary metabolism, Polyamine biosynthesis] 624 -130341 TIGR01274 ACC_deam 1-aminocyclopropane-1-carboxylate deaminase. This pyridoxal phosphate-dependent enzyme degrades 1-aminocyclopropane-1-carboxylate, which in plants is a precursor of the ripening hormone ethylene, to ammonia and alpha-ketoglutarate. This model includes all members of this family for which function has been demonstrated experimentally, but excludes a closely related family often annotated as putative members of this family. [Central intermediary metabolism, Other] 337 -273533 TIGR01275 ACC_deam_rel pyridoxal phosphate-dependent enzymes, D-cysteine desulfhydrase family. This model represents a family of pyridoxal phosphate-dependent enzymes closely related to (and often designated as putative examples of) 1-aminocyclopropane-1-carboxylate deaminase. It appears that members of this family include both D-cysteine desulfhydrase (EC 4.4.1.15) and 1-aminocyclopropane-1-carboxylate deaminase (EC 3.5.99.7). 318 -130343 TIGR01276 thiB thiamine ABC transporter, periplasmic binding protein. This model finds the thiamine (and thiamine pyrophosphate) ABC transporter periplasmic binding protein ThiB in proteobacteria. Completed genomes having this protein (E. coli, Vibrio cholera, Haemophilus influenzae) also have the permease ThiP, described by TIGRFAMs equivalog model TIGR01253. [Transport and binding proteins, Other] 309 -130344 TIGR01277 thiQ thiamine ABC transporter, ATP-binding protein. This model describes the energy-transducing ATPase subunit ThiQ of the ThiBPQ thiamine (and thiamine pyrophosphate) ABC transporter in several Proteobacteria. This protein is found so far only in Proteobacteria, and is found in complete genomes only if the ThiB and ThiP subunits are also found. [Transport and binding proteins, Other] 213 -273534 TIGR01278 DPOR_BchB light-independent protochlorophyllide reductase, B subunit. Alternate name: dark protochlorophyllide reductase This enzyme describes the B subunit of the dark form protochlorophyllide reductase, a nitrogenase-like enzyme. This subunit shows homology to the nitrogenase molybdenum-iron protein. It catalyzes a step in bacteriochlorophyll biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 511 -273535 TIGR01279 DPOR_bchN light-independent protochlorophyllide reductase, N subunit. This enzyme describes the N subunit of the dark form protochlorophyllide reductase, a nitrogenase-like enzyme involved in bacteriochlorophyll biosynthesis. This subunit shows homology to the nitrogenase molybdenum-iron protein NifN. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 407 -273536 TIGR01280 xseB exodeoxyribonuclease VII, small subunit. This protein is the small subunit for exodeoxyribonuclease VII. Exodeoxyribonuclease VII is made of a complex of four small subunits to one large subunit. The complex degrades single-stranded DNA into large acid-insoluble oligonucleotides. These nucleotides are then degraded further into acid-soluble oligonucleotides. [DNA metabolism, Degradation of DNA] 54 -130348 TIGR01281 DPOR_bchL light-independent protochlorophyllide reductase, iron-sulfur ATP-binding protein. The BchL peptide (ChlL in chloroplast and cyanobacteria) is an ATP-binding iron-sulfur protein of the dark form protochlorophyllide reductase, an enzyme similar to nitrogenase. This subunit resembles the nitrogenase NifH subunit. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 268 -162284 TIGR01282 nifD nitrogenase molybdenum-iron protein alpha chain. Nitrogenase consists of alpha (NifD) and beta (NifK) subunits of the molybdenum-iron protein and an ATP-binding iron-sulfur protein (NifH). This model describes a large clade of NifD proteins, but excludes a lineage that contains putative NifD and NifD homologs from species with vanadium-dependent nitrogenases. [Central intermediary metabolism, Nitrogen fixation] 466 -188126 TIGR01283 nifE nitrogenase molybdenum-iron cofactor biosynthesis protein NifE. This protein is part of the NifEN complex involved in biosynthesis of the molybdenum-iron cofactor used by the homologous NifDK complex of nitrogenase. In a few species, the protein is found as a NifEN fusion protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 453 -188127 TIGR01284 alt_nitrog_alph nitrogenase alpha chain. This model represents the alpha chains of various forms of the nitrogen-fixing enzyme nitrogenase: vanadium-iron, iron-iron, and molybdenum-iron. Most examples of NifD, the molybdenum-iron type nitrogenase alpha chain, are excluded from this model and described instead by equivalog model TIGR01282. It appears by phylogenetic and UPGMA trees that this model represents a distinct clade of NifD homologs, in which arose several molybdenum-independent forms. [Central intermediary metabolism, Nitrogen fixation] 457 -273537 TIGR01285 nifN nitrogenase molybdenum-iron cofactor biosynthesis protein NifN. This protein forms a complex with NifE, and appears as a NifEN in some species. NifEN is a required for producing the molybdenum-iron cofactor of molybdenum-requiring nitrogenases. NifN is closely related to the nitrogenase molybdenum-iron protein beta chain NifK. This model describes most examples of NifN but excludes some cases, such as the putative NifN of Chlorobium tepidum, for which a separate model may be created. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 432 -130353 TIGR01286 nifK nitrogenase molybdenum-iron protein beta chain. This model represents the majority of known sequences of the nitrogenase molybdenum-iron protein beta subunit. A distinct clade in a phylogenetic tree contains molybdenum-iron, vanadium-iron, and iron-iron forms of nitrogenase beta subunit and is excluded from this model. Nitrogenase, also called dinitrogenase, is responsible for nitrogen fixation. Note: the trusted cutoff score has recently been lowered to include an additional family in which the beta subunit is shorter by about 50 amino acids at the N-terminus. In species with the shorter form of the beta subunit, the alpha subunit has a novel insert of similar length. [Central intermediary metabolism, Nitrogen fixation] 515 -273538 TIGR01287 nifH nitrogenase iron protein. This model describes nitrogenase (EC 1.18.6.1) iron protein, also called nitrogenase reductase or nitrogenase component II. This model includes molybdenum-iron nitrogenase reductase (nifH), vanadium-iron nitrogenase reductase (vnfH), and iron-iron nitrogenase reductase (anfH). The model excludes the homologous protein from the light-independent protochlorophyllide reductase. [Central intermediary metabolism, Nitrogen fixation] 275 -130355 TIGR01288 nodI ATP-binding ABC transporter family nodulation protein NodI. This protein is required for normal nodulation by nitrogen-fixing root nodule bacteria such as Mesorhizobium loti. It is a member of the family of ABC transporter ATP binding proteins and works with NodJ to export a nodulation signal molecule. This model does not recognize the highly divergent NodI from Azorhizobium caulinodans. [Cellular processes, Other, Transport and binding proteins, Other] 303 -200089 TIGR01289 LPOR light-dependent protochlorophyllide reductase. This model represents the light-dependent, NADPH-dependent form of protochlorophyllide reductase. It belongs to the short chain alcohol dehydrogenase family, in contrast to the nitrogenase-related light-independent form. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 314 -273539 TIGR01290 nifB nitrogenase cofactor biosynthesis protein NifB. This model describes NifB, a protein required for the biosynthesis of the iron-molybdenum (or iron-vanadium) cofactor used by the nitrogen-fixing enzyme nitrogenase. NifB belongs to the radical SAM family, and the FeMo cluster biosynthesis process requires S-adenosylmethionine. Archaeal homologs lack the most C-terminal region and score between the trusted and noise cutoffs of this model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 442 -130358 TIGR01291 nodJ ABC-2 type transporter, NodJ family. Nearly all members of this subfamily are NodJ which, together with NodI (TIGR01288), acts to export a variety of modified carbohydrate molecules as signals to plant hosts to establish root nodules. The seed alignment includes a highly divergent member from Azorhizobium caulinodans that is, nonetheless, associated with nodulation. This model is designated as subfamily in part because not all sequences derived from the last common ancestral sequence of Rhizobium sp. and Azorhizobium caulinodans NodJ are necessarily nodulation proteins. [Cellular processes, Other, Transport and binding proteins, Other] 253 -273540 TIGR01292 TRX_reduct thioredoxin-disulfide reductase. This model describes thioredoxin-disulfide reductase, a member of the pyridine nucleotide-disulphide oxidoreductases (pfam00070). [Energy metabolism, Electron transport] 299 -213602 TIGR01293 Kv_beta voltage-dependent potassium channel beta subunit, animal. This model describes the conserved core region of the beta subunit of voltage-gated potassium (Kv) channels in animals. Amino-terminal regions differ substantially, in part by alternative splicing, and are not included in the model. Four beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions, and the structure of the complex is solved. The beta subunit belongs to a family of NAD(P)H-dependent aldo-keto reductases, binds NADPH, and couples voltage-gated channel activity to the redox potential of the cell. Plant beta subunits and their closely related bacterial homologs (in Deinococcus radiudurans, Xylella fastidiosa, etc.) appear more closely related to each other than to animal forms. However, the bacterial species lack convincing counterparts the Kv alpha subunit and the Kv beta homolog may serve as an enzyme. Cutoffs are set for this model such that yeast and plant forms and bacterial close homologs score between trusted and noise cutoffs. 317 -273541 TIGR01294 P_lamban phospholamban. This model represents the short (52 residue) transmembrane phosphoprotein phospholamban. Phospholamban, in its unphosphorylated form, inhibits SERCA2, the cardiac sarcoplasmic reticulum Ca-ATPase. 52 -273542 TIGR01295 PedC_BrcD bacteriocin transport accessory protein, putative. This model describes a small family of proteins believed to aid in the export of various class II bacteriocins, which are ribosomally-synthesized, non-lantibiotic bacterial peptide antibiotics. Members of this family are found in operons for pediocin PA-1 from Pediococcus acidilactici and brochocin-C from Brochothrix campestris. 122 -273543 TIGR01296 asd_B aspartate-semialdehyde dehydrogenase (peptidoglycan organisms). Two closely related families of aspartate-semialdehyde dehydrogenase are found. They differ by a deep split in phylogenetic and percent identity trees and in gap patterns. This model represents a branch more closely related to the USG-1 protein than to the other aspartate-semialdehyde dehydrogenases represented in model TIGR00978. [Amino acid biosynthesis, Aspartate family] 338 -273544 TIGR01297 CDF cation diffusion facilitator family transporter. This model describes a broadly distributed family of transporters, a number of which have been shown to transport divalent cations of cobalt, cadmium and/or zinc. The family has six predicted transmembrane domains. Members of the family are variable in length because of variably sized inserts, often containing low-complexity sequence. [Transport and binding proteins, Cations and iron carrying compounds] 268 -188129 TIGR01298 RNaseT ribonuclease T. This model describes ribonuclease T, an enzyme found so far only in gamma-subdivision Proteobacteria such as Escherichia coli and Xylella fastidiosa. Ribonuclease T is homologous to the DNA polymerase III alpha chain. It can liberate AMP from the common C-C-A terminus of uncharged tRNA. It appears also to be involved in RNA maturation. It also acts as a 3' to 5' single-strand DNA-specific exonuclease; it is distinctive for its ability to remove residues near a double-stranded stem. Ribonuclease T is a high copy suppressor in E. coli of a uv-repair defect caused by deletion of three other single-stranded DNA exonucleases. [Transcription, RNA processing] 200 -130366 TIGR01299 synapt_SV2 synaptic vesicle protein SV2. This model describes a tightly conserved subfamily of the larger family of sugar (and other) transporters described by pfam00083. Members of this subfamily include closely related forms SV2A and SV2B of synaptic vesicle protein from vertebrates and a more distantly related homolog (below trusted cutoff) from Drosophila melanogaster. Members are predicted to have two sets of six transmembrane helices. 742 -130367 TIGR01300 CPA3_mnhG_phaG monovalent cation/proton antiporter, MnhG/PhaG subunit. This model represents a subfamily of small, transmembrane proteins believed to be components of Na+/H+ and K+/H+ antiporters. Members, including proteins designated MnhG from Staphylococcus aureus and PhaG from Rhizobium meliloti, show some similarity to chain L of the NADH dehydrogenase I, which also translocates protons. [Transport and binding proteins, Cations and iron carrying compounds] 97 -273545 TIGR01301 GPH_sucrose GPH family sucrose/H+ symporter. This model represents sucrose/proton symporters, found in plants, from the Glycoside-Pentoside-Hexuronide (GPH)/cation symporter family. These proteins are predicted to have 12 transmembrane domains. Members may export sucrose (e.g. SUT1, SUT4) from green parts to the phloem for long-distance transport or import sucrose (e.g SUT2) to sucrose sinks such as the tap root of the carrot. 477 -273546 TIGR01302 IMP_dehydrog inosine-5'-monophosphate dehydrogenase. This model describes IMP dehydrogenase, an enzyme of GMP biosynthesis. This form contains two CBS domains. This model describes a rather tightly conserved cluster of IMP dehydrogenase sequences, many of which are characterized. The model excludes two related families of proteins proposed also to be IMP dehydrogenases, but without characterized members. These are related families are the subject of separate models. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 450 -130370 TIGR01303 IMP_DH_rel_1 IMP dehydrogenase family protein. This model represents a family of proteins, often annotated as a putative IMP dehydrogenase, related to IMP dehydrogenase and GMP reductase and restricted to the high GC Gram-positive bacteria. All species in which a member is found so far (Corynebacterium glutamicum, Mycobacterium tuberculosis, Streptomyces coelicolor, etc.) also have IMP dehydrogenase as described by TIGRFAMs entry TIGR01302. [Unknown function, General] 475 -273547 TIGR01304 IMP_DH_rel_2 IMP dehydrogenase family protein. This model represents a family of proteins, often annotated as a putative IMP dehydrogenase, related to IMP dehydrogenase and GMP reductase. Most species with a member of this family belong to the high GC Gram-positive bacteria, and these also have the IMP dehydrogenase described by TIGRFAMs equivalog model TIGR01302. [Unknown function, General] 369 -130372 TIGR01305 GMP_reduct_1 guanosine monophosphate reductase, eukaryotic. A deep split separates two families of GMP reductase. This family includes both eukaryotic and some proteobacterial sequences, while the other family contains other bacterial sequences. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 343 -130373 TIGR01306 GMP_reduct_2 guanosine monophosphate reductase, bacterial. A deep split separates two families of GMP reductase. The other (TIGR01305) is found in eukaryotic and some proteobacterial lineages, including E. coli, while this family is found in a variety of bacterial lineages. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 321 -130374 TIGR01307 pgm_bpd_ind phosphoglycerate mutase (2,3-diphosphoglycerate-independent). This protein is about double in length of, and devoid of homology to the form of phosphoglycerate mutase that uses 2,3-bisphosphoglycerate as a cofactor. [Energy metabolism, Glycolysis/gluconeogenesis] 501 -130375 TIGR01308 rpmD_bact ribosomal protein L30, bacterial/organelle. This model describes bacterial (and organellar) 50S ribosomal protein L30. Homologous ribosomal proteins of the eukaryotic cytosol and of the archaea differ substantially in architecture, from bacterial L30 and also from each other, and are described by separate models. [Protein synthesis, Ribosomal proteins: synthesis and modification] 55 -130376 TIGR01309 uL30_arch 50S ribosomal protein uL30, archaeal form. This model represents the archaeal ribosomal protein similar to longer (~ 250 residue) eukaryotic 60S ribosomal protein L7 and to the much shorter (~ 60 residue) bacterial 50S ribosomal protein L30. Protein naming follows the SwissProt designation as L30P, while the gene symbol rpmD follows TIGR usage. [Protein synthesis, Ribosomal proteins: synthesis and modification] 152 -273548 TIGR01310 uL30_euk 60S ribosomal protein uL30, eukaryotic form. This model describes the eukaryotic 60S (cytosolic) ribosomal protein uL30 (previously L7) and paralogs that may or may not also be uL30. Human, Drosophila, and Arabidopsis all have both a typical L7 and an L7-related paralog. This family is designated subfamily rather than equivalog to reflect these uncharacterized paralogs. Members of this family average ~ 250 residues in length, somewhat longer than the archaeal L30P/L7E homolog (~ 155 residues) and much longer than the related bacterial/organellar form (~ 60 residues). 235 -273549 TIGR01311 glycerol_kin glycerol kinase. This model describes glycerol kinase, a member of the FGGY family of carbohydrate kinases. [Energy metabolism, Other] 493 -273550 TIGR01312 XylB D-xylulose kinase. This model describes D-xylulose kinases, a subfamily of the FGGY family of carbohydrate kinases. The member from Klebsiella pneumoniae, designated DalK (see , was annotated erroneously in GenBank as D-arabinitol kinase but is authentic D-xylulose kinase. D-xylulose kinase (XylB) generally is found with xylose isomerase (XylA) and acts in xylose utilization. [Energy metabolism, Sugars] 481 -273551 TIGR01313 therm_gnt_kin carbohydrate kinase, thermoresistant glucokinase family. This model represents a subfamily of proteins that includes thermoresistant and thermosensitve isozymes of gluconate kinase (gluconokinase) in E. coli and other related proteins; members of this family are often named by similarity to the thermostable isozyme. These proteins show homology to shikimate kinases and adenylate kinases but not to gluconate kinases from the FGGY family of carbohydrate kinases. 163 -130381 TIGR01314 gntK_FGGY gluconate kinase, FGGY type. Gluconate is derived from glucose in two steps. This model describes one form of gluconate kinase, belonging to the FGGY family of carbohydrate kinases. Gluconate kinase phosphoryates gluconate for entry into the Entner-Douderoff pathway. [Energy metabolism, Sugars] 505 -273552 TIGR01315 5C_CHO_kinase FGGY-family pentulose kinase. This model represents a subfamily of the FGGY family of carbohydrate kinases. This subfamily is closely related to a set of ribulose kinases, and many members are designated ribitol kinase. However, the member from Klebsiella pneumoniae, from a ribitol catabolism operon, accepts D-ribulose and to a lesser extent D-arabinitol and ribitol (and JW Lengeler, personal communication); its annotation in GenBank as ribitol kinase is imprecise and may have affected public annotation of related proteins. 541 -130383 TIGR01316 gltA glutamate synthase (NADPH), homotetrameric. This protein is homologous to the small subunit of NADPH and NADH forms of glutamate synthase as found in eukaryotes and some bacteria. This protein is found in numerous species having no homolog of the glutamate synthase large subunit. The prototype of the family, from Pyrococcus sp. KOD1, was shown to be active as a homotetramer and to require NADPH. [Amino acid biosynthesis, Glutamate family] 449 -162300 TIGR01317 GOGAT_sm_gam glutamate synthases, NADH/NADPH, small subunit. This model represents one of three built for the NADPH-dependent or NADH-dependent glutamate synthase (EC 1.4.1.13 and 1.4.1.14, respectively) small subunit or homologous region. TIGR01316 describes a family in several archaeal and deeply branched bacterial lineages of a homotetrameric form for which there is no large subunit. Another model describes glutamate synthase small subunit from gamma and some alpha subdivision Proteobacteria plus paralogs of unknown function. This model describes the small subunit, or homologous region of longer forms proteins, of eukaryotes, Gram-positive bacteria, cyanobacteria, and some other lineages. All members with known function participate in NADH or NADPH-dependent reactions to interconvert between glutamine plus 2-oxoglutarate and two molecules of glutamate. 485 -273553 TIGR01318 gltD_gamma_fam glutamate synthase small subunit family protein, proteobacterial. This model represents one of three built for the NADPH-dependent or NADH-dependent glutamate synthase (EC 1.4.1.13 and 1.4.1.14, respectively) small subunit and homologs. TIGR01317 describes the small subunit (or equivalent region from longer forms) in eukaryotes, Gram-positive bacteria, and some other lineages, both NADH and NADPH-dependent. TIGR01316 describes a protein of similar length, from Archaea and a number of bacterial lineages, that forms glutamate synthase homotetramers without a large subunit. This model describes both glutatate synthase small subunit and closely related paralogs of unknown function from a number of gamma and alpha subdivision Proteobacteria, including E. coli. 467 -130386 TIGR01319 glmL_fam conserved hypothetical protein. This small family includes, so far, an uncharacterized protein from E. coli O157:H7 and GlmL from Clostridium tetanomorphum and Clostridium cochlearium. GlmL is located between the genes for the two subunits, epsilon (GlmE) and sigma (GlmS), of the coenzyme-B12-dependent glutamate mutase (methylaspartate mutase), the first enzyme in a pathway of glutamate fermentation. Members shows significant sequence similarity to the hydantoinase branch of the hydantoinase/oxoprolinase family (pfam01968). 463 -130387 TIGR01320 mal_quin_oxido malate:quinone-oxidoreductase. This membrane-associated enzyme is an alternative to the better-known NAD-dependent malate dehydrogenase as part of the TCA cycle. The reduction of a quinone rather than NAD+ makes the reaction essentially irreversible in the direction of malate oxidation to oxaloacetate. Both forms of malate dehydrogenase are active in E. coli; disruption of this form causes less phenotypic change. In some bacteria, this form is the only or the more important malate dehydrogenase. [Energy metabolism, TCA cycle] 483 -130388 TIGR01321 TrpR trp operon repressor, proteobacterial. This model represents TrpR, the repressor of the trp operon. It is found so far only in the gamma subdivision of the proteobacteria and in Chlamydia trachomatis. All members belong to species capable of tryptophan biosynthesis. [Amino acid biosynthesis, Aromatic amino acid family, Regulatory functions, DNA interactions] 94 -273554 TIGR01322 scrB_fam sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 445 -188130 TIGR01323 nitrile_alph nitrile hydratase, alpha subunit. This model describes both iron- and cobalt-containing nitrile hydratase alpha chains. It excludes the thiocyanate hydrolase gamma subunit of Thiobacillus thioparus, a sequence that appears to have evolved from within the family of nitrile hydratase alpha subunits but which differs by several indels and a more rapid accumulation of point mutations. [Energy metabolism, Amino acids and amines] 189 -130391 TIGR01324 cysta_beta_ly_B cystathionine beta-lyase, bacterial. This model represents cystathionine beta-lyase (alternate name: beta-cystathionase), one of several pyridoxal-dependent enzymes of cysteine, methionine, and homocysteine metabolism. This enzyme is involved in the biosynthesis of Met from Cys. [Amino acid biosynthesis, Aspartate family] 377 -188131 TIGR01325 O_suc_HS_sulf O-succinylhomoserine sulfhydrylase. This model describes O-succinylhomoserine sulfhydrylase, one of several related pyridoxal phosphate-dependent enzymes of cysteine and methionine metabolism. This enzyme is part of an alternative pathway of homocysteine biosynthesis, a step in methionine biosynthesis. [Amino acid biosynthesis, Aspartate family] 381 -273555 TIGR01326 OAH_OAS_sulfhy OAH/OAS sulfhydrylase. This model describes a distinct clade of the Cys/Met metabolism pyridoxal phosphate-dependent enzyme superfamily. Members include examples of OAH/OAS sulfhydrylase, an enzyme with activity both as O-acetylhomoserine (OAH) sulfhydrylase (EC 2.5.1.49) and O-acetylserine (OAS) sulphydrylase (EC 2.5.1.47). An alternate name for OAH sulfhydrylase is homocysteine synthase. This model is designated subfamily because it may or may not have both activities. [Amino acid biosynthesis, Aspartate family, Amino acid biosynthesis, Serine family] 418 -273556 TIGR01327 PGDH D-3-phosphoglycerate dehydrogenase. This model represents a long form of D-3-phosphoglycerate dehydrogenase, the serA gene of one pathway of serine biosynthesis. Shorter forms, scoring between trusted and noise cutoff, include SerA from E. coli. [Amino acid biosynthesis, Serine family] 525 -130395 TIGR01328 met_gam_lyase methionine gamma-lyase. This model describes a methionine gamma-lyase subset of a family of PLP-dependent trans-sulfuration enzymes. The member from the parasite Trichomonas vaginalis is described as catalyzing alpha gamma- and alpha-beta eliminations and gamma-replacement reactions on methionine, cysteine, and some derivatives. Likewise, the enzyme from Pseudomonas degrades cysteine as well as methionine. [Energy metabolism, Amino acids and amines] 391 -273557 TIGR01329 cysta_beta_ly_E cystathionine beta-lyase, eukaryotic. This model represents cystathionine beta-lyase (alternate name: beta-cystathionase), one of several pyridoxal-dependent enzymes of cysteine, methionine, and homocysteine metabolism. This enzyme is involved in the biosynthesis of Met from Cys. 378 -273558 TIGR01330 bisphos_HAL2 3'(2'),5'-bisphosphate nucleotidase, HAL2 family. Sulfate is incorporated into 3-phosphoadenylylsulfate, PAPS, for utilization in pathways such as methionine biosynthesis. Transfer of sulfate from PAPS to an acceptor leaves adenosine 3'-5'-bisphosphate, APS. This model describes a form found in plants of the enzyme 3'(2'),5'-bisphosphate nucleotidase, which removes the 3'-phosphate from APS to regenerate AMP and help drive the cycle. Sensitivity of this essential enzyme to sodium and other metal ions results is responsible for characterization of this enzyme as a salt tolerance protein. Some members of this family are active also as inositol 1-monophosphatase. 353 -130398 TIGR01331 bisphos_cysQ 3'(2'),5'-bisphosphate nucleotidase, bacterial. Sulfate is incorporated into 3-phosphoadenylylsulfate, PAPS, for utilization in pathways such as methionine biosynthesis. Transfer of sulfate from PAPS to an acceptor leaves adenosine 3'-5'-bisphosphate, APS. This model describes a form found in bacteria of the enzyme 3'(2'),5'-bisphosphate nucleotidase, which removes the 3'-phosphate from APS to regenerate AMP and help drive the cycle. [Central intermediary metabolism, Sulfur metabolism] 249 -130399 TIGR01332 cyt_b559_alpha cytochrome b559, alpha subunit. This model describes the alpha subunit of cytochrome b559, about 83 residues in length. The N-terminal half is homologous to the ~ 40-residue beta subunit. Cytochrome b559 is associated with photosystem II. Sequences scoring between trusted and noise cutoffs are fragments. [Energy metabolism, Photosynthesis] 80 -130400 TIGR01333 cyt_b559_beta cytochrome b559, beta subunit. This model describes the beta subunit of cytochrome b559, about 40 residues in length. It is homologous to the N-terminal half of the alpha subunit, a protein of about 83 residues. Cytochrome b559 is associated with photosystem II. [Energy metabolism, Photosynthesis] 43 -130401 TIGR01334 modD putative molybdenum utilization protein ModD. The gene modD for a member of this family is found with molybdenum transport genes modABC in Rhodobacter capsulatus. However, disruption of modD causes only a 4-fold (rather than 500-fold for modA, modB, modC) change in the external molybdenum concentration required to suppress an alternative nitrogenase. ModD proteins are highly similar to nicotinate-nucleotide pyrophosphorylase (also called quinolinate phosphoribosyltransferase). The function unknown. [Unknown function, General] 277 -130402 TIGR01335 psaA photosystem I core protein PsaA. The core proteins of photosystem I are PsaA and PsaB, homologous integral membrane proteins that form a heterodimer. The heterodimer binds the electron-donating chlorophyll dimer P700, as well as chlorophyll, phylloquinone, and 4FE-4S electron acceptors. This model describes PsaA only. [Energy metabolism, Photosynthesis] 752 -130403 TIGR01336 psaB photosystem I core protein PsaB. The core proteins of photosystem I are PsaA and PsaB, homologous integral membrane proteins that form a heterodimer. The heterodimer binds the electron-donating chlorophyll dimer P700, as well as chlorophyll, phylloquinone, and 4FE-4S electron acceptors. This model describes PsaB only. [Energy metabolism, Photosynthesis] 734 -273559 TIGR01337 apcB allophycocyanin, beta subunit. The alpha and beta subunits of allophycocyanin form heterodimers, six of which associate into larger aggregates as part of the phycobilisome, a light-harvesting complex of phycobiliproteins and linker proteins. This model describes allophycocyanin beta subunit. Other, homologous phyobiliproteins include allophycocyanin alpha chain and the phycocyanin and phycoerythrin alpha and beta chains. [Energy metabolism, Photosynthesis] 167 -130405 TIGR01338 phycocy_alpha phycocyanin, alpha subunit. This model describes the phycocyanin alpha subunit. Other, homologous phyobiliproteins of the phycobilisome include phycocyanin alpha chain and the allophycocyanin and phycoerythrin alpha and beta chains. This model excludes the closely related phycoerythrocyanin alpha subunit. [Energy metabolism, Photosynthesis] 161 -273560 TIGR01339 phycocy_beta phycocyanin, beta subunit. This model describes the phycocyanin beta subunit. Other, homologous phycobiliproteins of the phycobilisome include phycocyanin beta chain and the allophycocyanin and phycoerythrin alpha and beta chains. This model excludes the closely related phycoerythrocyanin beta subunit. [Energy metabolism, Photosynthesis] 171 -273561 TIGR01340 aconitase_mito aconitate hydratase, mitochondrial. This model represents mitochondrial forms of the TCA cycle enzyme aconitate hydratase, also known as aconitase and citrate hydro-lyase. [Energy metabolism, TCA cycle] 745 -273562 TIGR01341 aconitase_1 aconitate hydratase 1. This model represents one form of the TCA cycle enzyme aconitate hydratase, also known as aconitase and citrate hydro-lyase. It is found in bacteria, archaea, and eukaryotic cytosol. It has been shown to act also as an iron-responsive element binding protein in animals and may have the same role in other eukaryotes. [Energy metabolism, TCA cycle] 876 -130409 TIGR01342 acon_putative aconitate hydratase, putative, Aquifex type. This model represents a small family of proteins homologous (and likely functionally equivalent to) aconitase 1. Members are found, so far in the anaerobe Clostridium acetobutylicum, in the microaerophilic, early-branching bacterium Aquifex aeolicus, and in the halophilic archaeon Halobacterium sp. NRC-1. No member is experimentally characterized. [Energy metabolism, TCA cycle] 658 -273563 TIGR01343 hacA_fam homoaconitate hydratase family protein. This model represents a subfamily of proteins consisting of aconitase, homoaconitase, 3-isopropylmalate dehydratase, and uncharacterized proteins. The majority of the members of this family have been designated as 3-isopropylmalate dehydratase large subunit (LeuC) in microbial genome annotation, but the only characterized member is Thermus thermophilus homoaconitase, an enzyme of a non-aspartate pathway of Lys biosynthesis. 412 -188132 TIGR01344 malate_syn_A malate synthase A. This model represents plant malate synthase and one of two bacterial forms, designated malate synthase A. The distantly related malate synthase G is described by a separate model. This enzyme and isocitrate lyase are the two characteristic enzymes of the glyoxylate shunt. The shunt enables the cell to use acetyl-CoA to generate increased levels of TCA cycle intermediates for biosynthetic pathways such as gluconeogenesis. [Energy metabolism, TCA cycle] 511 -130412 TIGR01345 malate_syn_G malate synthase G. This model describes the G isozyme of malate synthase. Isocitrate synthase and malate synthase form the glyoxylate shunt, which generates additional TCA cycle intermediates. [Energy metabolism, TCA cycle] 721 -273564 TIGR01346 isocit_lyase isocitrate lyase. Isocitrate lyase and malate synthase are the enzymes of the glyoxylate shunt, a pathway associated with the TCA cycle. [Energy metabolism, TCA cycle] 527 -273565 TIGR01347 sucB 2-oxoglutarate dehydrogenase complex dihydrolipoamide succinyltransferase (E2 component). This model describes the TCA cycle 2-oxoglutarate system E2 component, dihydrolipoamide succinyltransferase. It is closely related to the pyruvate dehydrogenase E2 component, dihydrolipoamide acetyltransferase. The seed for this model includes mitochondrial and Gram-negative bacterial forms. Mycobacterial candidates are highly derived, differ in having and extra copy of the lipoyl-binding domain at the N-terminus. They score below the trusted cutoff, but above the noise cutoff and above all examples of dihydrolipoamide acetyltransferase. [Energy metabolism, TCA cycle] 403 -273566 TIGR01348 PDHac_trf_long pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase, long form. This model describes a subset of pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase specifically close by both phylogenetic and per cent identity (UPGMA) trees. Members of this set include two or three copies of the lipoyl-binding domain. E. coli AceF is a member of this model, while mitochondrial and some other bacterial forms belong to a separate model. [Energy metabolism, Pyruvate dehydrogenase] 546 -273567 TIGR01349 PDHac_trf_mito pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase, long form. This model represents one of several closely related clades of the dihydrolipoamide acetyltransferase subunit of the pyruvate dehydrogenase complex. It includes sequences from mitochondria and from alpha and beta branches of the proteobacteria, as well as from some other bacteria. Sequences from Gram-positive bacteria are not included. The non-enzymatic homolog protein X, which serves as an E3 component binding protein, falls within the clade phylogenetically but is rejected by its low score. [Energy metabolism, Pyruvate dehydrogenase] 436 -273568 TIGR01350 lipoamide_DH dihydrolipoamide dehydrogenase. This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide. 460 -273569 TIGR01351 adk adenylate kinase. Adenylate kinase (EC 2.7.4.3) converts ATP + AMP to ADP + ADP, that is, uses ATP as a phosphate donor for AMP. Most members of this family are known or believed to be adenylate kinase. However, some members accept other nucleotide triphosphates as donors, may be unable to use ATP, and may fail to complement adenylate kinase mutants. An example of a nucleoside-triphosphate--adenylate kinase (EC 2.7.4.10) is SP|Q9UIJ7, a GTP:AMP phosphotransferase. This family is designated subfamily rather than equivalog for this reason. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 210 -273570 TIGR01352 tonB_Cterm TonB family C-terminal domain. This model represents the C-terminal of TonB and is homologs. TonB is an energy-transducer for TonB-dependent receptors of Gram-negative bacteria. Most members are designated as TonB or TonB-related proteins, but a few represent the paralogous TolA protein. Several bacteria have up to four TonB paralogs. In nearly every case, a proline-rich repetive region is found N-terminal to this domain; these low-complexity regions are highly divergent and cannot readily be aligned. The region is suggested to help span the periplasm. [Transport and binding proteins, Cations and iron carrying compounds] 74 -273571 TIGR01353 dGTP_triPase deoxyguanosinetriphosphate triphosphohydrolase, putative. dGTP triphosphohydrolase (dgt) releases inorganic triphosphate, an unusual activity reaction product, from GTP. Its activity has been called limited to the Enterobacteriaceae, although homologous sequences are detected elsewhere. This finding casts doubt on whether the activity is shared in other species. In several of these other species, the homologous gene is found in an apparent operon with dnaG, the DNA primase gene. The enzyme from E. coli was shown to bind coopertatively to single stranded DNA. The biological role of dgt is unknown. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 381 -273572 TIGR01354 cyt_deam_tetra cytidine deaminase, homotetrameric. This small, homotetrameric zinc metalloprotein is found in humans and most bacteria. A related, homodimeric form with a much larger subunit is found in E. coli and in Arabidopsis. Both types may act on deoxycytidine as well as cytidine. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 127 -273573 TIGR01355 cyt_deam_dimer cytidine deaminase, homodimeric. This homodimeric zinc metalloprotein is found in Arabidopis and some Proteobacteria. A related, homotetrameric form with a much smaller subunit is found most bacteria and in animals. Both types may act on deoxycytidine as well as cytidine. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 283 -273574 TIGR01356 aroA 3-phosphoshikimate 1-carboxyvinyltransferase. This model represents 3-phosphoshikimate-1-carboxyvinyltransferase (aroA), which catalyzes the sixth of seven steps in the shikimate pathway of the biosynthesis of chorimate. Chorismate is last common precursor of all three aromatic amino acids. Sequences scoring between the trusted and noise cutoffs include fragmentary and aberrant sequences in which generally well-conserved motifs are missing or altererd, but no example of a protein known to have a different function. [Amino acid biosynthesis, Aromatic amino acid family] 409 -273575 TIGR01357 aroB 3-dehydroquinate synthase. This model represents 3-dehydroquinate synthase, the enzyme catalyzing the second of seven steps in the shikimate pathway of chorismate biosynthesis. Chorismate is the last common intermediate in the biosynthesis of all three aromatic amino acids. [Amino acid biosynthesis, Aromatic amino acid family] 344 -130425 TIGR01358 DAHP_synth_II 3-deoxy-7-phosphoheptulonate synthase, class II. This model represents the class II family of 3-deoxy-7-phosphoheptulonate synthase, aka phospho-2-dehydro-3-deoxyheptonate aldolase, as found in plants and some bacteria. It shows some similarity to the class I family found in many bacteria. The enzyme catalyzes the first of 7 steps in the biosynthesis of chorismate, that last common precursor of all three aromatic amino acids. Homologs scoring between trusted and noise cutoff include proteins involved in antibiotic biosynthesis; one example is active as this enzyme, while another acts on an amino analog. [Amino acid biosynthesis, Aromatic amino acid family] 443 -273576 TIGR01359 UMP_CMP_kin_fam UMP-CMP kinase family. This subfamily of the adenylate kinase superfamily contains examples of UMP-CMP kinase, as well as others proteins with unknown specificity, some currently designated adenylate kinase. All known members are eukaryotic. 185 -130427 TIGR01360 aden_kin_iso1 adenylate kinase, isozyme 1 subfamily. Members of this family are adenylate kinase, EC 2.7.4.3. This clade is found only in eukaryotes and includes human adenylate kinase isozyme 1 (myokinase). Within the adenylate kinase superfamily, this set appears specifically closely related to a subfamily of eukaryotic UMP-CMP kinases (TIGR01359), rather than to the large clade of bacterial, archaeal, and eukaryotic adenylate kinase family members in TIGR01351. 188 -273577 TIGR01361 DAHP_synth_Bsub 3-deoxy-7-phosphoheptulonate synthase. This model describes one of at least three types of phospho-2-dehydro-3-deoxyheptonate aldolase (DAHP synthase). This enzyme catalyzes the first of 7 steps in the biosynthesis of chorismate, that last common precursor of all three aromatic amino acids and of PABA, ubiquinone and menaquinone. Some members of this family, including an experimentally characterized member from Bacillus subtilis, are bifunctional, with a chorismate mutase domain N-terminal to this region. The member of this family from Synechocystis PCC 6803, CcmA, was shown to be essential for carboxysome formation. However, no other candidate for this enzyme is present in that species, chorismate biosynthesis does occur, other species having this protein lack carboxysomes but appear to make chorismate, and a requirement of CcmA for carboxysome formation does not prohibit a role in chorismate biosynthesis. [Amino acid biosynthesis, Aromatic amino acid family] 260 -130429 TIGR01362 KDO8P_synth 3-deoxy-8-phosphooctulonate synthase. This model describes 3-deoxy-8-phosphooctulonate synthase. Alternate names include 2-dehydro-3-deoxyphosphooctonate aldolase, 3-deoxy-d-manno-octulosonic acid 8-phosphate and KDO-8 phosphate synthetase. It catalyzes the aldol condensation of phosphoenolpyruvate with D-arabinose 5-phosphate: phosphoenolpyruvate + D-arabinose 5-phosphate + H2O = 2-dehydro-3-deoxy-D-octonate 8-phosphate + phosphate In Gram-negative bacteria, this is the first step in the biosynthesis of 3-deoxy-D-manno-octulosonate, part of the oligosaccharide core of lipopolysaccharide. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 258 -273578 TIGR01363 strep_his_triad streptococcal histidine triad protein. This model represents the N-terminal half of a family of Streptococcal proteins that contain a signal peptide and then up to five repeats of a region that includes a His-X-X-His-X-His (histidine triad) motif. Three repeats are found in the seed alignment. Additional copies in more poorly conserved regions may be detected. Members of this family from Streptococcus pneumoniae are suggested to cleave human C3, and the member PhpA has been shown in vaccine studies to be a protective antigen in mice. [Cellular processes, Pathogenesis] 348 -130431 TIGR01364 serC_1 phosphoserine aminotransferase. This model represents the common form of the phosphoserine aminotransferase SerC. The phosphoserine aminotransferase of the archaeon Methanosarcina barkeri and putative phosphoserine aminotransferase of Mycobacterium tuberculosis are represented by separate models. All are members of the class V aminotransferases (pfam00266). [Amino acid biosynthesis, Serine family] 349 -130432 TIGR01365 serC_2 phosphoserine aminotransferase, Methanosarcina type. This model represents a variant form of the serine biosynthesis enzyme phosphoserine aminotransferase, as found in a small number of distantly related species, including Caulobacter crescentus, Mesorhizobium loti, and the archaeon Methanosarcina barkeri. [Amino acid biosynthesis, Serine family] 374 -130433 TIGR01366 serC_3 phosphoserine aminotransferase, putative. This model represents a putative variant form of the serine biosynthesis enzyme phosphoserine aminotransferase, as found in Mycobacterium tuberculosis and related high-GC Gram-positive bacteria. [Amino acid biosynthesis, Serine family] 361 -273579 TIGR01367 pyrE_Therm orotate phosphoribosyltransferase, Thermus family. This model represents a distinct clade of orotate phosphoribosyltransferases. Members include the experimentally determined example from Thermus aquaticus and additional examples from Caulobacter crescentus, Helicobacter pylori, Mesorhizobium loti, and related species. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 187 -273580 TIGR01368 CPSaseIIsmall carbamoyl-phosphate synthase, small subunit. This model represents the whole of the small chain of the glutamine-dependent form (EC 6.3.5.5) of carbamoyl phosphate synthase, CPSase II. The C-terminal domain has glutamine amidotransferase activity. Note that the sequence from the mammalian urea cycle form has lost the active site Cys, resulting in an ammonia-dependent form, CPSase I (EC 6.3.4.16). CPSases of pyrimidine biosynthesis, arginine biosynthesis, and the urea cycle may be encoded by one or by several genes, depending on the species. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 357 -273581 TIGR01369 CPSaseII_lrg carbamoyl-phosphate synthase, large subunit. Carbamoyl-phosphate synthase (CPSase) catalyzes the first committed step in pyrimidine, arginine, and urea biosynthesis. In general, it is a glutamine-dependent enzyme, EC 6.3.5.5, termed CPSase II in eukaryotes. An exception is the mammalian mitochondrial urea-cycle form, CPSase I, in which the glutamine amidotransferase domain active site Cys on the small subunit has been lost, and the enzyme is ammonia-dependent. In both CPSase I and the closely related, glutamine-dependent CPSase III (allosterically activated by acetyl-glutamate) demonstrated in some other vertebrates, the small and large chain regions are fused in a single polypeptide chain. This model represents the large chain of glutamine-hydrolysing carbamoyl-phosphate synthases, or the corresponding regions of larger, multifunctional proteins, as found in all domains of life, and CPSase I forms are considered exceptions within the family. In several thermophilic species (Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Aquifex aeolicus), the large subunit appears split, at different points, into two separate genes. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 1050 -273582 TIGR01370 TIGR01370 extracellular protein. Original assignment of this protein family as cysteinyl-tRNA synthetase is controversial, supported by but challenged by and by subsequent discovery of the actual mechanism for synthesizing Cys-tRNA in species where a direct Cys--tRNA ligase was not found. Lingering legacy annotations of members of this family probably should be removed. Evidence against the role includes a signal peptide. This family as been renamed "extracellular protein" to facilitate correction. Members of this family occur in Deinococcus radiodurans (bacterial) and Methanococcus jannaschii (archaeal). A number of homologous but more distantly related proteins are annotated as alpha-1,4 polygalactosaminidases. The function remains unknown. [Unknown function, General] 315 -273583 TIGR01371 met_syn_B12ind 5-methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase. This model describes the cobalamin-independent methionine synthase. A family of uncharacterized archaeal proteins is homologous to the C-terminal region of this family. That family is excluded from this model but, along with this family, belongs to pfam01717. [Amino acid biosynthesis, Aspartate family] 750 -273584 TIGR01372 soxA sarcosine oxidase, alpha subunit family, heterotetrameric form. This model describes the alpha subunit of a family of known and putative heterotetrameric sarcosine oxidases. Five operons of such oxidases are found in Mesorhizobium loti and three in Agrobacterium tumefaciens, a high enough copy number to suggest that not all members are share the same function. The model is designated as subfamily rather than equivalog for this reason.Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) forms [Energy metabolism, Amino acids and amines] 985 -273585 TIGR01373 soxB sarcosine oxidase, beta subunit family, heterotetrameric form. This model describes the beta subunit of a family of known and putative heterotetrameric sarcosine oxidases. Five operons of such oxidases are found in Mesorhizobium loti and three in Agrobacterium tumefaciens, a high enough copy number to suggest that not all members are share the same function. The model is designated as subfamily rather than equivalog for this reason. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) forms. [Energy metabolism, Amino acids and amines] 407 -130441 TIGR01374 soxD sarcosine oxidase, delta subunit family, heterotetrameric form. This model describes the delta subunit of a family of known and putative heterotetrameric sarcosine oxidases. Five operons of such oxidases are found in Mesorhizobium loti and three in Agrobacterium tumefaciens, a high enough copy number to suggest that not all members are share the same function. The model is designated as subfamily rather than equivalog for this reason. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) form [Energy metabolism, Amino acids and amines] 84 -273586 TIGR01375 soxG sarcosine oxidase, gamma subunit family, heterotetrameric form. This model describes the gamma subunit of a family of known and putative heterotetrameric sarcosine oxidases. Five operons of such oxidases are found in Mesorhizobium loti and three in Agrobacterium tumefaciens, a high enough copy number to suggest that not all members are share the same function. The model is designated as subfamily rather than equivalog for this reason. The gamma subunit is the most divergent between operons of the four subunits. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) forms. [Energy metabolism, Amino acids and amines] 152 -273587 TIGR01376 POMP_repeat Chlamydial polymorphic outer membrane protein repeat. This model represents a repeat region of about 27 residues that appears from twice to over twenty times in Chlamydial polymorphic outer membrane proteins (POMP). Characteristic motifs in the repeat are FXXN and GGAI. Except for a few apparently truncated examples, Chlamydial proteins have this repeat region if and only if they also have the autotransporter beta-domain (pfam03797) at the C-terminus, with Phe as the C-terminal residue. This repeat is observed, but is very rare, outside the Chlamydias. 27 -130444 TIGR01377 soxA_mon sarcosine oxidase, monomeric form. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) forms [Energy metabolism, Amino acids and amines] 380 -273588 TIGR01378 thi_PPkinase thiamine pyrophosphokinase. This model has been revised. Originally, it described strictly eukaryotic thiamine pyrophosphokinase. However, it is now expanded to include also homologous enzymes, apparently functionally equivalent, from species that rely on thiamine pyrophosphokinase rather than thiamine-monophosphate kinase (TIGR01379) to produce the active TPP cofactor. This includes the thiamine pyrophosphokinase from Bacillus subtilis, previously designated YloS. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 205 -273589 TIGR01379 thiL thiamine-phosphate kinase. This model describes thiamine-monophosphate kinase, an enzyme that converts thiamine monophosphate into thiamine pyrophosphate (TPP, coenzyme B1), an enzyme cofactor. Thiamine monophosphate may be derived from de novo synthesis or from unphosphorylated thiamine, known as vitamin B1. Proteins scoring between the trusted and noise cutoff for this model include short forms from the Thermoplasmas (which lack the N-terminal region) and a highly derived form from Campylobacter jejuni. Eukaryotes lack this enzyme, and add pyrophosphate from ATP to unphosphorylated thiamine in a single step. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 317 -130447 TIGR01380 glut_syn glutathione synthetase, prokaryotic. This model was built using glutathione synthetases found in Gram-negative bacteria. This gene does not appear to be present in genomes of Gram-positive bacteria. Glutathione synthetase has an ATP-binding domain in the COOH terminus and catalyzes the second step in the glutathione biosynthesis pathway: ATP + gamma-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione. Glutathione is a tripeptide that functions as a reductant in many cellular reactions. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 312 -273590 TIGR01381 E1_like_apg7 E1-like protein-activating enzyme Gsa7p/Apg7p. This model represents a family of eukaryotic proteins found in animals, plants, and yeasts, including Apg7p (YHR171W) from Saccharomyces cerevisiae and GSA7 from Pichia pastoris. Members are about 650 to 700 residues in length and include a central domain of about 150 residues shared with the ThiF/MoeB/HesA family of proteins. A low level of similarity to ubiquitin-activating enzyme E1 is described in a paper on peroxisome autophagy mediated by GSA7, and is the basis of the name ubiquitin activating enzyme E1-like protein. Members of the family appear to be involved in protein lipidation events analogous to ubiquitination and required for membrane fusion events during autophagy. 664 -273591 TIGR01382 PfpI intracellular protease, PfpI family. The member of this family from Pyrococcus horikoshii has been solved to 2 Angstrom resolution. It is an ATP-independent intracellular protease that crystallizes as a hexameric ring. Cys-101 is proposed as the active site residue in a catalytic triad with the adjacent His-102 and a Glu residue from an adjacent monomer. A member of this family from Bacillus subtilis, GSP18, has been shown to be expressed in response to several forms of stress. A role in the degradation of small peptides has been suggested. A closely related family consists of the thiamine biosynthesis protein ThiJ and its homologs. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 166 -213612 TIGR01383 not_thiJ DJ-1 family protein. This model represents the DJ-1 clade of the so-called ThiJ/PfpI family of proteins. PfpI, represented by a distinct model, is a putative intracellular cysteine protease. DJ-1 is described as an oncogene that acts cooperatively with H-Ras. Many members of the DJ-1 clade are annotated (apparently incorrectly) as ThiJ, a protein of thiamine biosynthesis. However, published reports of ThiJ activity and identification of a ThiJ/ThiD bifunctional protein describe an unrelated locus mapping near ThiM, rather than the DJ-1 homolog of E. coli. The ThiJ designation for this family may be spurious; the cited paper refers to a locus near thiD and thiM in E. coli, unlike the gene represented here. Current public annotation reflects ThiJ/ThiD bifunctional activity, apparently a property of ThiD and not of this locus. [Unknown function, General] 179 -130451 TIGR01384 TFS_arch transcription factor S, archaeal. This model describes archaeal transcription factor S, a protein related in size and sequence to certain eukaryotic RNA polymerase small subunits, and in sequence and function to the much larger eukaryotic transcription factor IIS (TFIIS). Although originally suggested to be a subunit of the archaeal RNA polymerase, it elutes separately from active polymerase in gel filtration experiments and acts, like TFIIs, as an induction factor for RNA cleavage by RNA polymerase. There has been an apparent duplication event in the Halobacteriaceae lineage (Haloarcula, Haloferax, Haloquadratum, Halobacterium and Natromonas). There appears to be a separate duplication in Methanosphaera stadtmanae. [Transcription, Transcription factors] 104 -273592 TIGR01385 TFSII transcription elongation factor S-II. This model represents eukaryotic transcription elongation factor S-II. This protein allows stalled RNA transcription complexes to perform a cleavage of the nascent RNA and restart at the newly generated 3-prime end. 299 -273593 TIGR01386 cztS_silS_copS heavy metal sensor kinase. Members of this family contain a sensor histidine kinase domain (pfam00512) and a domain found in bacterial signal proteins (pfam00672). This group is separated phylogenetically from related proteins with similar architecture and contains a number of proteins associated with heavy metal resistance efflux systems for copper, silver, cadmium, and/or zinc. 457 -130454 TIGR01387 cztR_silR_copR heavy metal response regulator. Members of this family contain a response regulator receiver domain (pfam00072) and an associated transcriptional regulatory region (pfam00486). This group is separated phylogenetically from related proteins with similar architecture and contains a number of proteins associated with heavy metal resistance efflux systems for copper, silver, cadmium, and/or zinc. Most members encoded by genes adjacent to genes for encoding a member of the heavy metal sensor histidine kinase family (TIGRFAMs:TIGR01386), its partner in the two-component response regulator system. [Regulatory functions, DNA interactions] 218 -130455 TIGR01388 rnd ribonuclease D. This model describes ribonuclease D, a 3'-exonuclease shown to act on tRNA both in vitro and when overexpressed in vivo. Trusted members of this family are restricted to the Proteobacteria; Aquifex, Mycobacterial, and eukaryotic homologs are not full-length homologs. Ribonuclease D is not essential in E. coli and is deleterious when overexpressed. Its precise biological role is still unknown. [Transcription, RNA processing] 367 -273594 TIGR01389 recQ ATP-dependent DNA helicase RecQ. The ATP-dependent DNA helicase RecQ of E. coli is about 600 residues long. This model represents bacterial proteins with a high degree of similarity in domain architecture and in primary sequence to E. coli RecQ. The model excludes eukaryotic and archaeal proteins with RecQ-like regions, as well as more distantly related bacterial helicases related to RecQ. [DNA metabolism, DNA replication, recombination, and repair] 591 -130457 TIGR01390 CycNucDiestase 2',3'-cyclic-nucleotide 2'-phosphodiesterase. 2',3'-cyclic-nucleotide 2'-phosphodiesterase is a bifunctional enzyme localized to the periplasm of Gram-negative bacteria. 2',3'-cyclic-nucleotide 2'-phosphodiesters are intermediates formed during the hydrolysis of RNA by the ribonuclease I, which is also found to the periplasm, and other enzymes of the RNAse T2 family. Bacteria are unable to transport 2',3'-cyclic-nucleotides into the cytoplasm. 2',3'-cyclic-nucleotide 2'-phosphodiesterase contains 2 active sites which catalyze the reactions that convert the 2',3'-cyclic-nucleotide into a 3'-nucleotide, which is then converted into nucleic acid and phosphate. Both final products can be transported into the cytoplasm. Thus, it has been suggested that 2',3'-cyclic-nucleotide 2'-phosphodiesterase has a 'scavenging' function. Experimental evidence indicates that 2',3'-cyclic-nucleotide 2'-phosphodiesterase enables Yersinia enterocolitica O:8 to grow on 2'3'-cAMP as a sole source of carbon and energy (). [Purines, pyrimidines, nucleosides, and nucleotides, Other] 626 -273595 TIGR01391 dnaG DNA primase, catalytic core. Members of this family are DNA primase, a ubiquitous bacteria protein. Most members of this family contain nearly two hundred additional residues C-terminal to the region represented here, but conservation between species is poor and the C-terminal region was not included in the seed alignment. This protein contains a CHC2 zinc finger (pfam01807) and a Toprim domain (pfam01751). [DNA metabolism, DNA replication, recombination, and repair] 415 -273596 TIGR01392 homoserO_Ac_trn homoserine O-acetyltransferase. This family describes homoserine-O-acetyltransferase, an enzyme of methionine biosynthesis. This model has been rebuilt to identify sequences more broadly, including a number of sequences suggested to be homoserine O-acetyltransferase based on proximity to other Met biosynthesis genes. [Amino acid biosynthesis, Aspartate family] 351 -130460 TIGR01393 lepA elongation factor 4. LepA (GUF1 in Saccaromyces), now called elongation factor 4, is a GTP-binding membrane protein related to EF-G and EF-Tu. Two types of phylogenetic tree, rooted by other GTP-binding proteins, suggest that eukaryotic homologs (including GUF1 of yeast) originated within the bacterial LepA family. The function is unknown. [Unknown function, General] 595 -273597 TIGR01394 TypA_BipA GTP-binding protein TypA/BipA. This bacterial (and Arabidopsis) protein, termed TypA or BipA, a GTP-binding protein, is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways, but the precise function is unknown. [Regulatory functions, Other, Cellular processes, Adaptations to atypical conditions, Protein synthesis, Translation factors] 594 -130462 TIGR01395 FlgC flagellar basal-body rod protein FlgC. This model represents FlgC, one of several components of bacterial flagella that share a domain described by pfam00460. FlgC is part of the basal body. [Cellular processes, Chemotaxis and motility] 135 -273598 TIGR01396 FlgB flagellar basal-body rod protein FlgB. This model represents FlgB, one of several components of bacterial flagella that share a domain described by pfam00460. FlgB is part of the basal body. [Cellular processes, Chemotaxis and motility] 131 -130464 TIGR01397 fliM_switch flagellar motor switch protein FliM. Members of this family are the flagellar motor switch protein FliM. The family excludes FliM homologs that lack an N-terminal region critical to interaction with phosphorylated CheY. One set lacking this N-terminal region is found in Rhizobium meliloti, in which the direction of flagellar rotation is not reversible (i.e. the FliM homolog does not act to reverse the motor direction), and in related species. Another is found in Buchnera, an obligate intracellular endosymbiont with genes for many of the components of the flagellar apparatus, but not, apparently, for flagellin iself. [Cellular processes, Chemotaxis and motility] 320 -273599 TIGR01398 FlhA flagellar biosynthesis protein FlhA. This model describes flagellar biosynthesis protein FlhA, one of a large number of genes associated with the biosynthesis of functional bacterial flagella. Homologs of many such proteins, including FlhA, function in type III protein secretion systems. A separate model describes InvA (Salmonella enterica), LcrD (Yersinia enterocolitica), HrcV (Xanthomonas), etc., all of which score below the noise cutoff for this model. [Cellular processes, Chemotaxis and motility] 678 -273600 TIGR01399 hrcV type III secretion protein, HrcV family. Members of this family are closely homologous to the flagellar biosynthesis protein FlhA (TIGR01398) and should all participate in type III secretion systems. Examples include InvA (Salmonella enterica), LcrD (Yersinia enterocolitica), HrcV (Xanthomonas), etc. Type III secretion systems resemble flagellar biogenesis systems, and may share the property of translocating special classes of peptides through the membrane. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 677 -130467 TIGR01400 fliR flagellar biosynthetic protein FliR. This model recognizes the FliR protein of bacterial flagellar biosynthesis. It distinguishes FliR from the homologous proteins bacterial type III protein secretion systems, known by names such as YopT, EscT, and HrcT. [Cellular processes, Chemotaxis and motility] 245 -130468 TIGR01401 fliR_like_III type III secretion protein SpaR/YscT/HrcT. This model represents members of bacterial type III secretion systems homologous to the flagellar biosynthetic protein FliR (TIGRFAMs:TIGR01400). [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 253 -130469 TIGR01402 fliQ flagellar biosynthetic protein FliQ. This model describes FliQ, a protein involved in biosynthesis of bacterial flagella. A related family of proteins, excluded from this model, participates in bacterial type III protein secretion systems. [Cellular processes, Chemotaxis and motility] 88 -130470 TIGR01403 fliQ_rel_III type III secretion protein, HrpO family. This model represents one of several families of proteins related to bacterial flagellar biosynthesis proteins and involved in bacterial type III protein secretion systems. This family is homologous to, but distinguished from, flagellar biosynthetic protein FliQ. This model may not identify all type III secretion system FliQ homologs. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 81 -130471 TIGR01404 FlhB_rel_III type III secretion protein, YscU/HrpY family. This model represents one of several families of proteins related to bacterial flagellar biosynthesis proteins and involved in bacterial type III protein secretion systems. This family is homologous to, but distinguished from, flagellar biosynthetic protein FlhB (TIGRFAMs model TIGR00328). This model may not identify all type III secretion system FlhB homologs. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 342 -273601 TIGR01405 polC_Gram_pos DNA polymerase III, alpha chain, Gram-positive type. This model describes a polypeptide chain of DNA polymerase III. Full-length homologs of this protein are restricted to the Gram-positive lineages, including the Mycoplasmas. This protein is designated alpha chain and given the gene symbol polC, but is not a full-length homolog of other polC genes. The N-terminal region of about 200 amino acids is rich in low-complexity sequence, poorly alignable, and not included n this model. [DNA metabolism, DNA replication, recombination, and repair] 1213 -130473 TIGR01406 dnaQ_proteo DNA polymerase III, epsilon subunit, Proteobacterial. This model represents DnaQ, the DNA polymerase III epsilon subunit, as found in most Proteobacteria. It consists largely of an exonuclease domain as described in pfam00929. In Gram-positive bacteria, closely related regions are found both in the Gram-positive type DNA polymerase III alpha subunit and as an additional N-terminal domain of a DinG-family helicase. Both are excluded from this model, as are smaller proteins, also outside the Proteobacteria, that are similar in size to the epsilon subunit but as different in sequence as are the epsilon-like regions found in Gram-positive bacteria. [DNA metabolism, DNA replication, recombination, and repair] 225 -273602 TIGR01407 dinG_rel DnaQ family exonuclease/DinG family helicase, putative. This model represents a family of proteins in Gram-positive bacteria. The N-terminal region of about 200 amino acids resembles the epsilon subunit of E. coli DNA polymerase III and the homologous region of the Gram-positive type DNA polymerase III alpha subunit. The epsilon subunit contains an exonuclease domain. The remainder of this protein family resembles a predicted ATP-dependent helicase, the DNA damage-inducible protein DinG of E. coli. [DNA metabolism, DNA replication, recombination, and repair] 850 -273603 TIGR01408 Ube1 ubiquitin-activating enzyme E1. This model represents the full length, over a thousand amino acids, of a multicopy family of eukaryotic proteins, many of which are designated ubiquitin-activating enzyme E1. Members have two copies of the ThiF family domain (pfam00899), a repeat found in ubiquitin-activating proteins (pfam02134), and other regions. 1006 -273604 TIGR01409 TAT_signal_seq Tat (twin-arginine translocation) pathway signal sequence. Proteins assembled with various cofactors or by means of cytosolic molecular chaperones are poor candidates for translocation across the bacterial inner membrane by the standard general secretory (Sec) pathway. This model describes a family of predicted long, non-Sec signal sequences and signal-anchor sequences (uncleaved signal sequences). All contain an absolutely conserved pair of arginine residues, in a motif approximated by (S/T)-R-R-X-F-L-K, followed by a membrane-spanning hydrophobic region. Members with small amino acid side chains at the -1 and -3 positions from the C-terminus of the model should be predicted to be cleaved as are Sec pathway signal sequences. Members are almost exclusively bacterial, although archaeal sequences are also found. A large fraction of the members of this family may have bound redox-active cofactors. [Protein fate, Protein and peptide secretion and trafficking] 29 -130477 TIGR01410 tatB twin arginine-targeting protein translocase TatB. This model represents the TatB protein of a Sec-independent system for transporting folded proteins, often with a bound redox cofactor, across the bacterial inner membrane. TatC is the multiple membrane spanning component. TatB, like the related TatA/E proteins, appears to span the membrane one time. The tat system recognizes proteins with an elongated signal sequence containing a conserved R-R in a motif approximated by RRxFLK N-terminal to the transmembrane helix. TIGRFAMs model TIGR01409 describes this twin-Arg signal sequence. A similar system, termed Delta-pH-dependent transport, operates on chloroplast-encoded proteins. [Protein fate, Protein and peptide secretion and trafficking] 80 -273605 TIGR01411 tatAE twin arginine-targeting protein translocase, TatA/E family. This model distinguishes TatA/E from the related TatB, but does not distinguish TatA from TatE. The Tat (twin-arginine translocation) system is a Sec-independent exporter for folded proteins, often with a redox cofactor already bound, across the bacterial inner membrane. Functionally equivalent systems are found in the chloroplast and some in archaeal species. The signal peptide recognized by the Tat system is modeled by TIGR01409. [Protein fate, Protein and peptide secretion and trafficking] 47 -273606 TIGR01412 tat_substr_1 Tat-translocated enzyme. This model represents a small family of proteins with a typical Tat (twin-arginine translocation) signal sequence, suggesting that the family is exported in a folded state, perhaps with a bound redox cofactor. Members of this family show homology to Dyp, a dye-decolorizing peroxidase from Geotrichum candidum that lacks any typical heme-binding site. 414 -273607 TIGR01413 Dyp_perox_fam Dyp-type peroxidase family. A defined member of this superfamily is Dyp, a dye-decolorizing peroxidase that lacks a typical heme-binding region. A distinct, uncharacterized branch (TIGR01412) of this superfamily has a typical twin-arginine dependent signal sequence characteristic of exported proteins with bound redox cofactors. 308 -273608 TIGR01414 autotrans_barl outer membrane autotransporter barrel domain. A number of Gram-negative bacterial proteins, mostly found in pathogens and associated with virulence, contain a conserved C-terminal domain that integrates into the outer membrane and enables the N-terminal region to be delivered across the membrane. This C-terminal autotransporter domain is about 400 amino acids in length and includes the aromatic amino acid-rich OMP signal, typically ending with a Phe or Trp residue, at the extreme C-terminus. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 431 -273609 TIGR01415 trpB_rel pyridoxal-phosphate dependent TrpB-like enzyme. This model represents a family of pyridoxal-phosphate dependent enzyme (pfam00291) closely related to the beta subunit of tryptophan synthase (TIGR00263). However, the only case in which a member of this family replaces a member of TIGR00263 is in Sulfolobus species which contain two sequences which hit this model, one of which is proximal to the alpha subunit. In every other case so far, either the species appears not to make tryptophan (there is no trp synthase alpha subunit), or a trp synthase beta subunit matching TIGR00263 is also found. [Unknown function, Enzymes of unknown specificity] 419 -273610 TIGR01416 Rieske_proteo ubiquinol-cytochrome c reductase, iron-sulfur subunit. This model represents the Proteobacterial and mitochondrial type of the Rieske [2Fe-2S] iron-sulfur as found in ubiquinol-cytochrome c reductase. The model excludes the Rieske iron-sulfur protein as found in the cytochrome b6-f complex of the Cyanobacteria and chloroplasts. Most members of this family have a recognizable twin-arginine translocation (tat) signal sequence (DeltaPh-dependent translocation in chloroplast) for transport across the membrane with the 2Fe-2S group already bound. These signal sequences include a motif resembling RRxFLK before the transmembrane helix. [Energy metabolism, Electron transport] 174 -273611 TIGR01417 PTS_I_fam phosphoenolpyruvate-protein phosphotransferase. This model recognizes a distinct clade of phophoenolpyruvate (PEP)-dependent enzymes. Most members are known or deduced to function as the phosphoenolpyruvate-protein phosphotransferase (or enzyme I) of PTS sugar transport systems. However, some species with both a member of this family and a homolog of the phosphocarrier protein HPr lack a IIC component able to serve as a permease. An HPr homolog designated NPr has been implicated in the regulation of nitrogen assimilation, which demonstrates that not all phosphotransferase system components are associated directly with PTS transport. 565 -273612 TIGR01418 PEP_synth phosphoenolpyruvate synthase. Also called pyruvate,water dikinase and PEP synthase. The member from Methanococcus jannaschii contains a large intein. This enzyme generates phosphoenolpyruvate (PEP) from pyruvate, hydrolyzing ATP to AMP and releasing inorganic phosphate in the process. The enzyme shows extensive homology to other enzymes that use PEP as substrate or product. This enzyme may provide PEP for gluconeogenesis, for PTS-type carbohydrate transport systems, or for other processes. [Energy metabolism, Glycolysis/gluconeogenesis] 786 -162350 TIGR01419 nitro_reg_IIA PTS IIA-like nitrogen-regulatory protein PtsN. This model describes a full-length protein of about 160 residues closely related to the fructose-specific phosphotransferase (PTS) system IIA component. It is a regulatory protein found only in species with a phosphoenolpyruvate-protein phosphotransferase (enzyme I of PTS systems) and an HPr-like phosphocarrier protein, but not all species have a IIC-like permease. Members of this family are found in Proteobacteria, Chlamydia, and the spirochete Treponema pallidum. [Signal transduction, PTS] 145 -273613 TIGR01420 pilT_fam pilus retraction protein PilT. This model represents the PilT subfamily of proteins related to GspE, a protein involved in type II secretion (also called the General Secretion Pathway). PilT is an apparent cytosolic ATPase associated with type IV pilus systems. It is not required for pilin biogenesis, but is required for twitching motility and social gliding behaviors, shown in some species, powered by pilus retraction. Members of this family may be found in some species that type IV pili but have related structures for DNA uptake and natural transformation. [Cell envelope, Surface structures, Cellular processes, Chemotaxis and motility] 343 -273614 TIGR01421 gluta_reduc_1 glutathione-disulfide reductase, animal/bacterial. The tripeptide glutathione is an important reductant, e.g., for maintaining the cellular thiol/disulfide status and for protecting against reactive oxygen species such as hydrogen peroxide. Glutathione-disulfide reductase regenerates reduced glutathione from oxidized glutathione (glutathione disulfide) + NADPH. This model represents one of two closely related subfamilies of glutathione-disulfide reductase. Both are closely related to trypanothione reductase, and separate models are built so each of the three can describe proteins with conserved function. This model describes glutathione-disulfide reductases of animals, yeast, and a number of animal-resident bacteria. [Energy metabolism, Electron transport] 450 -188140 TIGR01422 phosphonatase phosphonoacetaldehyde hydrolase. This enzyme catalyzes the cleavage of the carbon phosphorous bond of a phosphonate. The mechanism depends on the substrate having a carbonyl one carbon away from the cleavage position. This enzyme is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases (pfam00702), and contains a modified version of the conserved catalytic motifs of that superfamily: the first motif is usually DxDx(T/V), here it is DxAxT, and in the third motif the normal conserved lysine is instead an arginine. Additionally, the enzyme contains a unique conserved catalytic lysine (B. cereus pos. 53) which is involved in the binding and activation of the substrate through the formation of a Schiff base. The substrate of this enzyme is the product of 2-aminoethylphosphonate (AEP) transaminase, phosphonoacetaldehyde. This degradation pathway for AEP may be related to its toxic properties which are utilized by microorganisms as a chemical warfare agent. [Central intermediary metabolism, Other] 253 -200098 TIGR01423 trypano_reduc trypanothione-disulfide reductase. Trypanothione, a glutathione-modified derivative of spermidine, is (in its reduced form) an important antioxidant found in trypanosomatids (Crithidia, Leishmania, Trypanosoma). This model describes trypanothione reductase, a possible antitrypanosomal drug target closely related to some forms of glutathione reductase. 486 -213618 TIGR01424 gluta_reduc_2 glutathione-disulfide reductase, plant. The tripeptide glutathione is an important reductant, e.g., for maintaining the cellular thiol/disulfide status and for protecting against reactive oxygen species such as hydrogen peroxide. Glutathione-disulfide reductase regenerates reduced glutathione from oxidized glutathione (glutathione disulfide) + NADPH. This model represents one of two closely related subfamilies of glutathione-disulfide reductase. Both are closely related to trypanothione reductase, and separate models are built so each of the three can describe proteins with conserved function. This model describes glutathione-disulfide reductases of plants and some bacteria, including cyanobacteria. [Energy metabolism, Electron transport] 446 -273615 TIGR01425 SRP54_euk signal recognition particle protein SRP54. This model represents examples from the eukaryotic cytosol of the signal recognition particle protein component, SRP54. This GTP-binding protein is a component of the eukaryotic signal recognition particle, along with several other protein subunits and a 7S RNA. Some species, including Arabidopsis, have several closely related forms. The extreme C-terminal region is glycine-rich and lower in complexity, poorly conserved between species, and excluded from this model. 428 -273616 TIGR01426 MGT glycosyltransferase, MGT family. This model describes the MGT (macroside glycosyltransferase) subfamily of the UDP-glucuronosyltransferase family. Members include a number of glucosyl transferases for macrolide antibiotic inactivation, but also include transferases of glucose-related sugars for macrolide antibiotic production. [Cellular processes, Toxin production and resistance] 392 -273617 TIGR01427 PTS_IIC_fructo PTS system, fructose subfamily, IIC component. This model represents the IIC component, or IIC region of a IIABC or IIBC polypeptide of a phosphotransferase system for carbohydrate transport. Members of this family belong to the fructose-specific subfamily of the broader family (pfam02378) of PTS IIC proteins. Members should be found as part of the same chain or in the same operon as fructose family IIA (TIGR00848) and IIB (TIGR00829) protein regions. A number of bacterial species have members in two different branches of this subfamily, suggesting some diversity in substrate specificity of its members. 346 -130495 TIGR01428 HAD_type_II 2-haloalkanoic acid dehalogenase, type II. Catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Belongs to the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases (pfam00702), class (subfamily) I. Note that the Type I HAD enzymes have not yet been fully characterized, but clearly utilize a substantially different catalytic mechanism and are thus unlikely to be related. 198 -273618 TIGR01429 AMP_deaminase AMP deaminase. This model describes AMP deaminase, a large, well-conserved eukaryotic protein involved in energy metabolism. Most members of the family have an additional, poorly alignable region of 150 amino acids or more N-terminal to the region included in the model. 611 -273619 TIGR01430 aden_deam adenosine deaminase. This family includes the experimentally verified adenosine deaminases of mammals and E. coli. Other members of this family are predicted also to be adenosine deaminase, an enzyme of nucleotide degradation. This family is distantly related to AMP deaminase. 324 -273620 TIGR01431 adm_rel adenosine deaminase-related growth factor. Members of this family have been described as secreted proteins with growth factor activity and regions of adenosine deaminase homology in insects, mollusks, and vertebrates. 479 -273621 TIGR01432 QOXA cytochrome aa3 quinol oxidase, subunit II. This enzyme catalyzes the oxidation of quinol with the concomitant reduction of molecular oxygen to water. This acts as the terminal electron acceptor in the respiratory chain. This subunit contains two transmembrane helices and a large external domain responsible for the binding and oxidation of quinol. QuoX is (presently) only found in gram positive bacteria of the Bacillus/Staphylococcus group. Like CyoA, the ubiquinol oxidase found in proteobacteria, the residues responsible for the ligation of Cu(a) and cytochrome c (found in the related cyt. c oxidases) are absent. Unlike CyoA, QoxA is in complex with a subunit I which contains cytochromes a similar to the cyt. c oxidases (as opposed to cytochromes b). [Energy metabolism, Electron transport] 226 -213620 TIGR01433 CyoA cytochrome o ubiquinol oxidase subunit II. This enzyme catalyzes the oxidation of ubiquinol with the concomitant reduction of molecular oxygen to water. This acts as the terminal electron acceptor in the respiratory chain. Subunit II is responsible for binding and oxidation of the ubiquinone substrate. This sequence is closely related to QoxA, which oxidizes quinol in gram positive bacteria but which is in complex with subunits which utilize cytochromes a in the reduction of molecular oxygen. Slightly more distantly related is subunit II of cytochrome c oxidase which uses cyt. c as the oxidant. [Energy metabolism, Electron transport] 226 -213621 TIGR01434 glu_cys_ligase glutamate--cysteine ligase. Alternate name: gamma-glutamylcysteine synthetase. This model represents glutamate--cysteine ligase, and enzyme in the biosynthesis of glutathione (GSH). GSH is one of several low molecular weight cysteine derivatives that can serve to protect against oxidative damage and participate in a biosynthetic or detoxification reactions. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 512 -273622 TIGR01435 glu_cys_lig_rel glutamate--cysteine ligase/glutathione synthase, Streptococcus agalactiae type. This model represents a bifunctional protein family for the biosynthesis of glutathione, and perhaps a range of related gamma-glutamyltripeptides of the form gamma-Glu-Cys-X(aa). The N-terminal region is similar to proteobacterial glutamate-cysteine ligase. The C-terminal region is homologous to cyanophycin synthetase of cyanobacteria and, more distantly, to D-alanine-D-alanine ligases. Members of this family are found in Listeria and Enterococcus, Gram-positive lineages in which glutathione is produced (see PUBMED:8606174), and in Pasteurella multocida, a Proteobacterium. In Clostridium acetobutylicum, adjacent genes include separate proteins rather than a fusion protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 737 -130503 TIGR01436 glu_cys_lig_pln glutamate--cysteine ligase, plant type. This model represents one of two highly dissimilar forms of glutamate--cysteine ligase (gamma-glutamylcysteine synthetase), an enzyme of glutathione biosynthesis. The other type is modeled by TIGR01434. This type is found in plants (with a probable transit peptide), root nodule and other bacteria, but not E. coli and closely related species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 446 -273623 TIGR01437 selA_rel uncharacterized pyridoxal phosphate-dependent enzyme. This model describes a protein related to a number of pyridoxal phosphate-dependent enzymes, and in particular to selenocysteine synthase (SelA), which converts Ser to selenocysteine on its tRNA. While resembling SelA, this protein is found only in species that have a better candidate SelA or else lack the other genes (selB, selC, and selD) required for selenocysteine incorporation. [Unknown function, Enzymes of unknown specificity] 363 -273624 TIGR01438 TGR thioredoxin and glutathione reductase selenoprotein. This homodimeric, FAD-containing member of the pyridine nucleotide disulfide oxidoreductase family contains a C-terminal motif Cys-SeCys-Gly, where SeCys is selenocysteine encoded by TGA (in some sequence reports interpreted as a stop codon). In some members of this subfamily, Cys-SeCys-Gly is replaced by Cys-Cys-Gly. The reach of the selenium atom at the C-term arm of the protein is proposed to allow broad substrate specificity. 484 -273625 TIGR01439 lp_hng_hel_AbrB looped-hinge helix DNA binding domain, AbrB family. This DNA-binding domain family includes AbrB, a transition state regulator in Bacillus subtilis, whose DNA-binding domain structure in solution was determined by NMR. The domain binds DNA as a dimer in what is termed a looped-hinge helix fold. Some members of the family have two copies of the domain in tandem. The domain is found usually at the N-terminus of a small protein. This model excludes members of family TIGR02609. [Regulatory functions, DNA interactions] 43 -130507 TIGR01440 TIGR01440 TIGR01440 family protein. Members of this family are uncharacterized proteins of about 180 amino acids from the Bacillus/Clostridium group of Gram-positive bacteria, found in no more than one copy per genome. [Hypothetical proteins, Conserved] 172 -273626 TIGR01441 GPR GPR endopeptidase. This model describes a tetrameric protease that makes the rate-limiting first cut in the small, acid-soluble spore proteins (SASP) of Bacillus subtilis and related species. The enzyme lacks clear homology to other known proteases. It processes its own amino end before becoming active to cleave SASPs. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Sporulation and germination] 358 -273627 TIGR01442 SASP_gamma small, acid-soluble spore protein, gamma-type. This model represents a family of small, glutamine and asparagine-rich peptides that store amino acids in the spores of Bacillus subtilis and related bacteria. Most members of the family have two copies of the spore protease (GPR) cleavage motif, typically EFASE in this family, separating three low-complexity repeats. [Cellular processes, Sporulation and germination] 85 -213622 TIGR01443 intein_Cterm intein C-terminal splicing region. This model represents the well-conserved C-terminal region of a large number of inteins. It is based on interated search results, starting with a curated collection of intein N-terminal splicing regions from InBase, the New England Biolabs Intein Database, as presented on its web site. Inteins are regions encoded within proteins from which they remove themselves after translation in a self-splicing reaction, leaving the remainder of the coding region to form a complete, functional protein as if the intein were never there. Proteins with inteins include RecA, GyrA, ribonucleotide reductase, and others. Most inteins have a central region with putative endonuclease activity. 21 -273628 TIGR01444 fkbM_fam methyltransferase, FkbM family. Members of this family are characterized by two well-conserved short regions separated by a variable in both sequence and length. The first of the two regions is found in a large number of proteins outside this subfamily, a number of which have been characterized as methyltransferases. One member of the present family, FkbM, was shown to be required for a specific methylation in the biosynthesis of the immunosuppressant FK506 in Streptomyces strain MA6548. 143 -273629 TIGR01445 intein_Nterm intein N-terminal splicing region. This model is based on interated search results, starting with a curated collection of intein N-terminal splicing regions from InBase, the New England Biolabs Intein Database, as presented on its web site. It is designed to recognize inteins but not the related region of the sonic hedgehog protein. 81 -273630 TIGR01446 DnaD_dom DnaD and phage-associated domain. This model represents the conserved domain of DnaD, part of Bacillus subtilis replication restart primosome, and of a number of phage-associated proteins. Members, both chromosomal or phage-associated, are found in the Bacillus/Clostridium group of Gram-positive bacteria. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 73 -273631 TIGR01447 recD exodeoxyribonuclease V, alpha subunit. This family describes the exodeoxyribonuclease V alpha subunit, RecD. RecD is part of a RecBCD complex. A related family in the Gram-positive bacteria separates in a phylogenetic tree, has an additional N-terminal extension of about 200 residues, and is not supported as a member of a RecBCD complex by neighboring genes. The related family is consequently described by a different model. [DNA metabolism, DNA replication, recombination, and repair] 582 -273632 TIGR01448 recD_rel helicase, putative, RecD/TraA family. This model describes a family similar to RecD, the exodeoxyribonuclease V alpha chain of TIGR01447. Members of this family, however, are not found in a context of RecB and RecC and are longer by about 200 amino acids at the amino end. Chlamydia muridarum has both a member of this family and a RecD. [Unknown function, Enzymes of unknown specificity] 720 -130516 TIGR01449 PGP_bact 2-phosphoglycolate phosphatase, prokaryotic. PGP is an essential enzyme in the glycolate salvage pathway in higher organisms (photorespiration in plants). Phosphoglycolate results from the oxidase activity of RubisCO in the Calvin cycle when concentrations of carbon dioxide are low relative to oxygen. In Ralstonia (Alcaligenes) eutropha and Rhodobacter sphaeroides, the PGP gene (CbbZ) is located on an operon along with other Calvin cycle enzymes including RubisCO. The only other pertinent experimental evidence concerns the gene from E. coli. The in vitro activity of the Ralstonia and Escherichia enzymes was determined with crude cell extracts of strains containing PGP on expression plasmids and compared to controls. In E. coli, however, there does not appear to be a functional Calvin cycle (RubisCO is absent), although the E. coli PGP gene (gph) is on the same operon (dam) with ribulose-5-phosphate-3-epimerase (rpe), a gene in the pentose-phosphate pathway (along with other, unrelated genes). The E. coli enzyme is not expressed under normal laboratory conditions; the pathway to which it belongs has not been determined. In fact, the possibility exists, although unlikely, that the E. coli enzyme and others within this equivalog have as their physiological substrate another, closely related molecule. The other seed chosen for this model, from Xylella fastidiosa has no experimental evidence, but is a plant pathogen and thus may obtain phosphoglycolate from its host. This model has been restricted to encompass only proteobacteria as no related PGP has been verified outside of this clade. Sequences from Aquifex aeolicus and Treponema pallidum fall between the trusted and noise cutoffs. Just below the noise cutoff is a gene which is part of the operon for the biosynthesis of the blue pigment, indigoidine, from Erwinia (Pectobacterium) chrysanthemi, a plant pathogen. It does not seem likely, considering the proposed biosynthetic mechanism, that the dephosphorylation of phosphoglycolate or a closely related compound is required. Possibly, this gene is fortuitously located in this operon, or has an indirect relationship to the necessity for the biosynthesis of this compound. Sequences from 11 species have been annotated as PGP or putative PGP but fall below the noise cutoff. None of these have experimental validation. This enzyme is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolase enzymes (pfam00702). [Energy metabolism, Sugars] 213 -273633 TIGR01450 recC exodeoxyribonuclease V, gamma subunit. This model describes the gamma subunit of exodeoxyribonuclease V. Species containing this protein should also have the alpha (TIGR01447) and beta (TIGR00609) subunits. Candidates from Borrelia and from the Chlamydias differ dramatically and score between trusted and noise cutoffs. [DNA metabolism, DNA replication, recombination, and repair] 1060 -273634 TIGR01451 B_ant_repeat conserved repeat domain. This model represents the conserved region of about 53 amino acids shared between regions, usually repeated, of proteins from a small number of phylogenetically distant prokaryotes. Examples include a 132-residue region found repeated in three of the five longest proteins of Bacillus anthracis, a 131-residue repeat in a cell wall-anchored protein of Enterococcus faecalis, and a 120-residue repeat in Methanobacterium thermoautotrophicum. A similar region is found in some Chlamydial outer membrane proteins. 53 -273635 TIGR01452 PGP_euk phosphoglycolate/pyridoxal phosphate phosphatase family. PGP is an essential enzyme in the glycolate salvage pathway in higher organisms (photorespiration in plants). Phosphoglycolate results from the oxidase activity of RubisCO in the Calvin cycle when concentrations of carbon dioxide are low relative to oxygen. In mammals, PGP is found in many tissues, notably in red blood cells where P-glycolate is and important activator of the hydrolysis of 2,3-bisphosphoglycerate, a major modifier of the oxygen affinity of hemoglobin. Pyridoxal phosphate (PLP, Vitamin B6) phosphatase is involved in the degradation of PLP in mammals and is widely distributed in human tissues including erythrocyes. The enzymes described here are members of the Haloacid dehalogenase superfamily of hydrolase enzymes (pfam00702). Unlike the bacterial PGP equivalog (TIGR01449), which is a member of class (subfamily) I, these enzymes are members of class (subfamily) II. These two families have almost certainly arisen from convergent evolution (although these two ancestors may themselves have diverged from a more distant HAD superfamily progenitor). The primary seed sequence for this model comes from Chlamydomonas reinhardtii, a photosynthetic alga. The enzyme has been purified and characterized and these data are fully consistent with the assignment of function as a PGPase involved in photorespiration. The second seed, from Homo sapiens chromosome 22 has been characterized as a pyridoxal phosphatase. Biochemical characterization of partially purified PGP's from various tissues including red blood cells have been performed while one gene for PGP has been localized to chromosome 16p13.3. The sequence used here maps to chromosome 22. There is indeed a related gene on chromosome 16 (and it is expressed, since EST's are found) which shows 46% identity. The chromosome 16 gene is not in evidence in nraa but translated from the genomic sequence. The third seed, from C. elegans, is only supported by sequence similarity. This model is limited to eukaryotic species including S. pombe and S. cerevisiae, although several archaea score between the trusted and noise cutoffs. This model is closely related to a family of bacterial sequences including the E. coli NagD and B. subtilus AraL genes which are characterized by the ability to hydrolyze para-nitrophenylphosphate (pNPPases or NPPases). The chlamydomonas PGPase d 279 -273636 TIGR01453 grpIintron_endo group I intron endonuclease. This model represents one subfamily of endonucleases containing the endo/excinuclease amino terminal domain, pfam01541 at its amino end. A distinct subfamily includes excinuclease abc subunit c (uvrC). Members of pfam01541 are often termed GIY-YIG endonucleases after conserved motifs near the amino end. This subfamily in this model is found in open reading frames of group I introns in both phage and mitochondria. The closely related endonucleases of phage T4: segA, segB, segC, segD and segE, score below the trusted cutoff for the family. 214 -130521 TIGR01454 AHBA_synth_RP 3-amino-5-hydroxybenoic acid synthesis related protein. The enzymes in this equivalog are all located in the operons for the biosynthesis of 3-amino-5-hydroxybenoic acid (AHBA), which is a precursor of several antibiotics including ansatrienin, naphthomycin, rifamycin and mitomycin. The role that this enzyme plays in this biosynthesis has not been elucidated. This enzyme is a member of the Haloacid dehalogenase superfamily (pfam00702) of aspartate-nucleophile hydrolases. This enzyme is closely related to phosphoglycolate phosphatase (TIGR01449), but it is unclear what purpose a PGPase or PGPase-like activity would serve in these biosyntheses. This model is limited to the Gram positive Actinobacteria. The most closely related enzyme below the noise cutoff is IndB which is involved in the biosynthesis of Indigoidine in Pectobacterium (Erwinia) chrysanthemi, a gamma proteobacter. This enzyme is similarly related to PGP. In this case, too it is unclear what role would be be played by a PGPase activity. 205 -130522 TIGR01455 glmM phosphoglucosamine mutase. This model describes GlmM, phosphoglucosamine mutase, also designated in MrsA and YhbF E. coli, UreC in Helicobacter pylori, and femR315 or FemD in Staphlococcus aureus. It converts glucosamine-6-phosphate to glucosamine-1-phosphate as part of the pathway toward UDP-N-acetylglucosamine for peptidoglycan and lipopolysaccharides. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Central intermediary metabolism, Amino sugars] 443 -200106 TIGR01456 CECR5 HAD-superfamily class IIA hydrolase, TIGR01456, CECR5. This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all eukaryotes. One sequence (GP|13344995) is called "Cat Eye Syndrome critical region protein 5" (CECR5). This gene has been cloned from a pericentromere region of human chromosome 22 believed to be the location of the gene or genes responsible for Cat Eye Syndrome. This is one of a number of candidate genes. The Schizosaccharomyces pombe sequence (EGAD|138276) is annotated as "phosphatidyl synthase," however this is due entirely to a C-terminal region of the protein (outside the region of similarity of this model) which is highly homologous to a family of CDP-alcohol phosphatidyltransferases. (Thus, the annotation of GP|4226073 from C. elegans as similar to phosphatidyl synthase, is a mistake as this gene does not contain the C-terminal portion). The physical connection of the phosphatidyl synthase and the HAD-superfamily hydrolase domain in S. pombe may, however, be an important clue to the substrate for the hydrolases in this equivalog. 321 -130524 TIGR01457 HAD-SF-IIA-hyp2 HAD-superfamily subfamily IIA hydrolase, TIGR01457. This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all gram positive (low-GC) bacteria. Sequences found in this model are annotated variously as related to NagD or 4-nitrophenyl phosphatase, and this hypothetical equivalog, of all of those within the Class IIA subfamily, is most closely related to the E. coli NagD enzyme and the PGP_euk equivalog (TIGR01452). However, there is presently no evidence that this hypothetical equivalog has the same function of either those. [Unknown function, Enzymes of unknown specificity] 249 -162372 TIGR01458 HAD-SF-IIA-hyp3 HAD-superfamily subfamily IIA hydrolase, TIGR01458. This hypothetical equivalog is a member of the IIA subfamily (TIGR01460) of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. One sequence (GP|10716807) has been annotated as a "phospholysine phosphohistidine inorganic pyrophosphatase," probably in reference to studies on similarly described (but unsequenced) enzymes from bovine and rat tissues. However, the supporting information for this annotation has never been published. [Unknown function, Enzymes of unknown specificity] 257 -130526 TIGR01459 HAD-SF-IIA-hyp4 HAD-superfamily class IIA hydrolase, TIGR01459. This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all gram negative and primarily alpha proteobacteria. Only one sequence hase been annotated as other than "hypothetical." That one, from Brucella, is annotated as related to NagD, but only by sequence similarity and should be treated with some skepticism. (See comments for Class IIA subfamily model) 242 -273637 TIGR01460 HAD-SF-IIA Haloacid Dehalogenase Superfamily Class (subfamily) IIA. This model represents one structural subclass of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The classes are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Class I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Class II consists of sequences in which the capping domain is found between the second and third motifs. Class III sequences have no capping domain in iether of these positions. The Class IIA capping domain is predicted by PSI-PRED to consist of a mixed alpha-beta fold with the basic pattern: Helix-Helix-Helix-Sheet-Helix-Loop-Sheet-Helix-Sheet-Helix. Presently, this subfamily encompasses a single equivalog model (TIGR01452) for the eukaryotic phosphoglycolate phosphatase, as well as four hypothetical equivalogs covering closely related sequences (TIGR01456 and TIGR01458 in eukaryotes, TIGR01457 in gram positive bacteria and TIGR01459 in gram negative bacteria). The Escherishia coli NagD gene and the Bacillus subtilus AraL gene are members of this subfamily but are not members of the any of the presently defined equivalogs within it. NagD is part of the NAG operon responsible for N-acetylglucosamine metabolism. The function of this gene is unknown. Genes from several organisms have been annotated as NagD, or NagD-like. However, without data on the presence of other members of this pathway, (such as in the case of Yersinia pestis) these assignments should not be given great weight. The AraL gene is similar: it is part of the L-arabinose operon, but the function is unknown. A gene from Halobacterium has been annotated as AraL, but no other Ara operon genes have been annotated. Many of the genes in this subfamily have been annotated as "pNPPase" "4-nitrophenyl phosphatase" or "NPPase". These all refer to the same activity versus a common lab test compound used to determine phosphatase activity. There is no evidence that this activity is physiologically relevant. [Unknown function, Enzymes of unknown specificity] 236 -130528 TIGR01461 greB transcription elongation factor GreB. The GreA and GreB transcription elongation factors enable to continuation of RNA transcription past template-encoded arresting sites. Among the Proteobacteria, distinct clades of GreA and GreB are found. GreB differs functionally in that it releases larger oligonucleotides. This model describes proteobacterial GreB. [Transcription, Transcription factors] 156 -273638 TIGR01462 greA transcription elongation factor GreA. The GreA and GreB transcription elongation factors enable to continuation of RNA transcription past template-encoded arresting sites. Among the Proteobacteria, distinct clades of GreA and GreB are found. GreA differs functionally in that it releases smaller oligonucleotides. Because members of the family outside the Proteobacteria resemble GreA more closely than GreB, the GreB clade (TIGR01461) forms a plausible outgroup and the remainder of the GreA/B family, included in this model, is designated GreA. In the Chlamydias and some spirochetes, the region described by this model is found as the C-terminal region of a much larger protein. [Transcription, Transcription factors] 151 -273639 TIGR01463 mtaA_cmuA methyltransferase, MtaA/CmuA family. This subfamily is closely related to, yet is distinct from, uroporphyrinogen decarboxylase (EC 4.1.1.37). It includes two isozymes from Methanosarcina barkeri of methylcobalamin--coenzyme M methyltransferase. It also includes a chloromethane utilization protein, CmuA, which transfers the methyl group of chloromethane to a corrinoid protein. 336 -273640 TIGR01464 hemE uroporphyrinogen decarboxylase. This model represents uroporphyrinogen decarboxylase (HemE), which converts uroporphyrinogen III to coproporphyrinogen III. This step takes the pathway toward protoporphyrin IX, a common precursor of both heme and chlorophyll, rather than toward precorrin 2 and its products. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 338 -200107 TIGR01465 cobM_cbiF precorrin-4 C11-methyltransferase. This model represents precorrin-4 C11-methyltransferase, one of two methyltransferases commonly referred to as precorrin-3 methylase (the other is precorrin-3B C17-methyltransferase, EC 2.1.1.131). This enzyme participates in the pathway toward the biosynthesis of cobalamin and related products. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 247 -273641 TIGR01466 cobJ_cbiH precorrin-3B C17-methyltransferase. This model represents precorrin-3B C17-methyltransferase, one of two methyltransferases commonly referred to as precorrin-3 methylase (the other is precorrin-4 C11-methyltransferase, EC 2.1.1.133). This enzyme participates in the pathway toward the biosynthesis of cobalamin and related products. Members of this family may appear as fusion proteins with other enzymes of cobalamin biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 239 -273642 TIGR01467 cobI_cbiL precorrin-2 C(20)-methyltransferase. This model represents precorrin-2 C(20)-methyltransferase, one of several closely related S-adenosylmethionine-dependent methyltransferases involved in cobalamin (vitamin B12) biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 230 -273643 TIGR01469 cobA_cysG_Cterm uroporphyrin-III C-methyltransferase. This model represents enzymes, or enzyme domains, with uroporphyrin-III C-methyltransferase activity. This enzyme catalyzes the first step committed to the biosynthesis of either siroheme or cobalamin (vitamin B12) rather than protoheme (heme). Cobalamin contains cobalt while siroheme contains iron. Siroheme is a cofactor for nitrite and sulfite reductases and therefore plays a role in cysteine biosynthesis; many members of this family are CysG, siroheme synthase, with an additional N-terminal domain and with additional oxidation and iron insertion activities. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 236 -130536 TIGR01470 cysG_Nterm siroheme synthase, N-terminal domain. This model represents a subfamily of CysG N-terminal region-related sequences. All sequences in the seed alignment for this model are N-terminal regions of known or predicted siroheme synthases. The C-terminal region of each is uroporphyrin-III C-methyltransferase (EC 2.1.1.107), which catalyzes the first step committed to the biosynthesis of either siroheme or cobalamin (vitamin B12) rather than protoheme (heme). The region represented by this model completes the process of oxidation and iron insertion to yield siroheme. Siroheme is a cofactor for nitrite and sulfite reductases, so siroheme synthase is CysG of cysteine biosynthesis in some organisms. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 205 -273644 TIGR01472 gmd GDP-mannose 4,6-dehydratase. Alternate name: GDP-D-mannose dehydratase. This enzyme converts GDP-mannose to GDP-4-dehydro-6-deoxy-D-mannose, the first of three steps for the conversion of GDP-mannose to GDP-fucose in animals, plants, and bacteria. In bacteria, GDP-L-fucose acts as a precursor of surface antigens such as the extracellular polysaccharide colanic acid of E. coli. Excluded from this model are members of the clade that score poorly because of highly dervied (phylogenetically long-branch) sequences, e.g. Aneurinibacillus thermoaerophilus Gmd, described as a bifunctional GDP-mannose 4,6-dehydratase/GDP-6-deoxy-D-lyxo-4-hexulose reductase (PUBMED:11096116). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 343 -273645 TIGR01473 cyoE_ctaB protoheme IX farnesyltransferase. This model describes protoheme IX farnesyltransferase, also called heme O synthase, an enzyme that creates an intermediate in the biosynthesis of heme A. Prior to the description of its enzymatic function, this protein was often called a cytochrome o ubiquinol oxidase assembly factor. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 280 -130539 TIGR01474 ubiA_proteo 4-hydroxybenzoate polyprenyl transferase, proteobacterial. This model represents a family of integral membrane proteins that condenses para-hydroxybenzoate with any of several polyprenyldiphosphates. Heterologous expression studies suggest that for, many but not all members, the activity seen (e.g. octaprenyltransferase in E. coli) reflects available host isoprenyl pools rather than enzyme specificity. A fairly deep split by both clustering (UPGMA) and phylogenetics (NJ tree) separates this group (mostly Proteobacterial and mitochondrial), with several characterized members, from another group (mostly archaeal and Gram-positive bacterial) lacking characterized members. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 281 -273646 TIGR01475 ubiA_other putative 4-hydroxybenzoate polyprenyltransferase. A fairly deep split separates this polyprenyltransferase subfamily from the set of mitochondrial and proteobacterial 4-hydroxybenzoate polyprenyltransferases, described in TIGR01474. Protoheme IX farnesyltransferase (heme O synthase) (TIGR01473) is more distantly related. Because no species appears to have both this protein and a member of TIGR01474, it is likely that this model represents 4-hydroxybenzoate polyprenyltransferase, a critical enzyme of ubiquinone biosynthesis, in the Archaea, Gram-positive bacteria, Aquifex aeolicus, the Chlamydias, etc. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 282 -130541 TIGR01476 chlor_syn_BchG bacteriochlorophyll/chlorophyll synthetase. This model describes a subfamily of a large family of polyprenyltransferases (pfam01040) that also includes 4-hydroxybenzoate octaprenyltransferase and protoheme IX farnesyltransferase (heme O synthase). Members of this family are found exclusively in photosynthetic organisms, including a single copy in Arabidopsis thaliana. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 283 -273647 TIGR01477 RIFIN variant surface antigen, rifin family. This model represents the rifin branch of the rifin/stevor family (pfam02009) of predicted variant surface antigens as found in Plasmodium falciparum. This model is based on a set of rifin sequences kindly provided by Matt Berriman from the Sanger Center. This is a global model and assesses a penalty for incomplete sequence. Additional fragmentary sequences may be found with the fragment model and a cutoff of 20 bits. 353 -130543 TIGR01478 STEVOR variant surface antigen, stevor family. This model represents the stevor branch of the rifin/stevor family (pfam02009) of predicted variant surface antigens as found in Plasmodium falciparum. This model is based on a set of stevor sequences kindly provided by Matt Berriman from the Sanger Center. This is a global model and assesses a penalty for incomplete sequence. Additional fragmentary sequences may be found with the fragment model and a cutoff of 8 bits. 295 -273648 TIGR01479 GMP_PMI mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase. This enzyme is known to be bifunctional, as both mannose-6-phosphate isomerase (EC 5.3.1.8) (PMI) and mannose-1-phosphate guanylyltransferase (EC 2.7.7.22) in Pseudomonas aeruginosa, Xanthomonas campestris, and Gluconacetobacter xylinus. The literature on the enzyme from E. coli attributes mannose-6-phosphate isomerase activity to an adjacent gene, but the present sequence has not been shown to lack the activity. The PMI domain is C-terminal. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 468 -273649 TIGR01480 copper_res_A copper-resistance protein, CopA family. This model represents the CopA copper resistance protein family. CopA is related to laccase (benzenediol:oxygen oxidoreductase) and L-ascorbate oxidase, both copper-containing enzymes. Most members have a typical TAT (twin-arginine translocation) signal sequence with an Arg-Arg pair. Twin-arginine translocation is observed for a large number of periplasmic proteins that cross the inner membrane with metal-containing cofactors already bound. The combination of copper-binding sites and TAT translocation motif suggests a mechansism of resistance by packaging and export. [Cellular processes, Detoxification, Transport and binding proteins, Cations and iron carrying compounds] 587 -130546 TIGR01481 ccpA catabolite control protein A. Catabolite control protein A is a LacI family global transcriptional regulator found in Gram-positive bacteria. CcpA is involved in repressing carbohydrate utilization genes [ex: alpha-amylase (amyE), acetyl-coenzyme A synthase (acsA)] and in activating genes involved in transporting excess carbon from the cell [ex: acetate kinase (ackA), alpha-acetolactate synthase (alsS)]. Additionally, disruption of CcpA in Bacillus megaterium, Staphylococcus xylosus, Lactobacillus casei and Lactocacillus pentosus also decreases growth rate, which suggests CcpA is involved in the regulation of other metabolic pathways. [Regulatory functions, DNA interactions] 329 -273650 TIGR01482 SPP-subfamily sucrose-phosphate phosphatase subfamily. This model includes both the members of the SPP equivalog model (TIGR01485), encompassing plants and cyanobacteria, as well as those archaeal sequences which are the closest relatives (TIGR01487). It remains to be shown whether these archaeal sequences catalyze the same reaction as SPP. 225 -273651 TIGR01484 HAD-SF-IIB HAD-superfamily hydrolase, subfamily IIB. This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class II subfamilies are characterized by a domain that is located between the second and third conserved catalytic motifs of the superfamily domain. The IIB subfamily is distinguished from the IIA subfamily (TIGR01460) by homology and the predicted secondary structure of this domain by PSI-PRED. The IIB subfamily's Class II domain has the following predicted structure: Helix-Sheet-Sheet-(Helix or Sheet)-Helix-Sheet-(variable)-Helix-Sheet-Sheet. The IIB subfamily consists of Trehalose-6-phosphatase (TIGR00685), plant and cyanobacterial Sucrose-phosphatase and a closely related group of bacterial and archaeal sequences, eukaryotic phosphomannomutase (pfam03332), a large subfamily ("Cof-like hydrolases", TIGR00099) containing many closely related bacterial sequences, a hypothetical equivalog containing the E. coli YedP protein, as well as two small clusters containing OMNI|TC0379 and OMNI|SA2196 whose relationship to the other groups is unclear. [Unknown function, Enzymes of unknown specificity] 207 -130549 TIGR01485 SPP_plant-cyano sucrose-6F-phosphate phosphohydrolase. This model describes the sucrose phosphate phosphohydrolase from plants and cyanobacteria (SPP). SPP is a member of the Class IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. SPP catalyzes the final step in the biosynthesis of sucrose, a critically important molecule for plants. Sucrose phosphate synthase (SPS), the prior step in the biosynthesis of sucrose, contains a domain which exhibits considerable similarity to SPP albeit without conservation of the catalytic residues. The catalytic machinery of the synthase resides in another domain. It seems likely that the phosphatase-like domain is involved in substrate binding, possibly binding both substrates in a "product-like" orientation prior to ligation by the synthase catalytic domain. 249 -130550 TIGR01486 HAD-SF-IIB-MPGP mannosyl-3-phosphoglycerate phosphatase family. This small group of proteins is a member of the IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. Several members of this family from thermophiles (and from Dehalococcoides ethenogenes) are now known to act as mannosyl-3-phosphoglycerate (MPG) phosphatase. In these cases, the enzyme acts after MPG synthase to make the compatible solute mannosylglycerate. We propose that other mesophilic members of this family do not act as mannosyl-3-phosphoglycerate phosphatase. A member of this family is found in Escherichia coli, which appears to lack MPG synthase. Mannosylglycerate is imported in E. coli by phosphoenolpyruvate-dependent transporter (), but it appears the phosphorylation is not on the glycerate moiety, that the phosphorylated import is degraded by an alpha-mannosidase from an adjacent gene, and that E. coli would have no pathway to obtain MPG. 256 -273652 TIGR01487 Pglycolate_arch phosphoglycolate phosphatase, TA0175-type. This group of Archaeal sequences, now known to be phosphoglycolate phosphatases, is most closely related to the sucrose-phosphate phosphatases from plants and cyanobacteria (TIGR01485). Together, these two models comprise a subfamily model (TIGR01482). TIGR01482, in turn, is a member of the IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. 215 -273653 TIGR01488 HAD-SF-IB Haloacid Dehalogenase superfamily, subfamily IB, phosphoserine phosphatase-like. This model represents a subfamily of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. Subfamily IA, B, C and D are distinguished from the rest of the superfamily by the presence of a variable domain between the first and second conserved catalytic motifs. In subfamilies IA and IB, this domain consists of an alpha-helical bundle. It was necessary to model these two subfamilies separately, breaking them at a an apparent phylogenetic bifurcation, so that the resulting model(s) are not so broadly defined that members of subfamily III (which lack the variable domain) are included. Subfamily IA includes the enzyme phosphoserine phosphatase (TIGR00338) as well as three hypothetical equivalogs. Many members of these hypothetical equivalogs have been annotated as PSPase-like or PSPase-family proteins. In particular, the hypothetical equivalog which appears to be most closely related to PSPase contains only Archaea (while TIGR00338 contains only eukaryotes and bacteria) of which some are annotated as PSPases. Although this is a reasonable conjecture, none of these sequences has sufficient evidence for this assignment. If such should be found, this model should be retired while the PSPase model should be broadened to include these sequences. [Unknown function, Enzymes of unknown specificity] 177 -213629 TIGR01489 DKMTPPase-SF 2,3-diketo-5-methylthio-1-phosphopentane phosphatase. This phosphatase is a member of the IB subfamily (TIGR01488) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. With the exception of OMNI|NTL01BS01361 from B. subtilis and GP|15024582 from Clostridium acetabutylicum, the members of this group are all eukaryotic, spanning metazoa, plants and fungi. The B. subtilus gene (YkrX, renamed MtnX) is part of an operon for the conversion of methylthioribose (MTR) to methionine. It works with the enolase MtnW, a RuBisCO homolog. The combination of MtnW and MtnX achieves the same overall reaction as the enolase-phosphatase MtnC. The function of MtnX was shown by Ashida, et al. (2003) to be 2,3-diketo-5-methylthio-1-phosphopentane phosphatase, rather than 2,3-diketo-5-methylthio-1-phosphopentane phosphatase as proposed earlier. See the Genome Property for methionine salvage for more details. In eukaryotes, methionine salvage from methylthioadenosine also occurs. It seems reasonable that members of this family in eukaryotes fulfill a similar role as in Bacillus. A more specific, equivalog-level model is TIGR03333. Note that SP|P53981 from S. cerevisiae, a member of this family, is annotated as a "probable membrane protein" due to a predicted transmembrane helix. The region in question contains the second of the three conserved HAD superfamily catalytic motifs and thus, considering the fold of the HAD catalytic domain, is unlikely to be a transmembrane region in fact. [Central intermediary metabolism, Other] 188 -273654 TIGR01490 HAD-SF-IB-hyp1 HAD-superfamily subfamily IB hydrolase, TIGR01490. This hypothetical equivalog is a member of the IB subfamily (TIGR01488) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The sequences modelled here are all bacterial. The IB subfamily includes the enzyme phosphoserine phosphatase (TIGR00338). Due to this relationship, several of these sequences have been annotated as "phosphoserine phosphatase related proteins," or "Phosphoserine phosphatase-family enzymes." There is presently no evidence that any of the enzymes in this model possess PSPase activity. OMNI|NTL01ML1250 is annotated as a "possible transferase," however this is due to the C-terminal domain found on this sequence which is homologous to a group of glycerol-phosphate acyltransferases (between trusted and noise to TIGR00530). A subset of these sequences including OMNI|CC1962, the Caulobacter crescentus CicA protein cluster together and may represent a separate equivalog. [Unknown function, Enzymes of unknown specificity] 202 -273655 TIGR01491 HAD-SF-IB-PSPlk HAD-superfamily, subfamily-IB PSPase-like hydrolase, archaeal. This hypothetical equivalog is a member of the IB subfamily (TIGR01488) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The sequences modelled here are all from archaeal species. The phylogenetically closest group of sequences to these are phosphoserine phosphatases (TIGR00338). There are no known archaeal phosphoserine phosphatases, and no archaea fall within TIGR00338. It is likely, then, that this model represents the archaeal branch of the PSPase equivalog. 201 -130556 TIGR01492 CPW_WPC Plasmodium falciparum CPW-WPC domain. This model represents a domain of about 61 residues in length with six well-conserved cysteine residues and six well-conserved aromatic sites. The domain can be found in tandem repeats, and is known so far only in Plasmodium falciparum. It is named for motifs of CPxxW and (less well conserved) WPC. 62 -130557 TIGR01493 HAD-SF-IA-v2 Haloacid dehalogenase superfamily, subfamily IA, variant 2 with 3rd motif like haloacid dehalogenase. This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called 'capping domain', or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 2 (this model) is distinctive of the type II haloacid dehalogenases, and nearly all of the sequences are also part of the HAD, type II equivalog model (TIGR01428). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. 175 -273656 TIGR01494 ATPase_P-type ATPase, P-type (transporting), HAD superfamily, subfamily IC. The P-type ATPases are a large family of trans-membrane transporters acting on charged substances. The distinguishing feature of the family is the formation of a phosphorylated intermediate (aspartyl-phosphate) during the course of the reaction. Another common name for these enzymes is the E1-E2 ATPases based on the two isolable conformations: E1 (unphosphorylated) and E2 (phosphorylated). Generally, P-type ATPases consist of only a single subunit encompassing the ATPase and ion translocation pathway, however, in the case of the potassium (TIGR01497) and sodium/potassium (TIGR01106) varieties, these functions are split between two subunits. Additional small regulatory or stabilizing subunits may also exist in some forms. P-type ATPases are nearly ubiquitous in life and are found in numerous copies in higher organisms (at least 45 in Arabidopsis thaliana, for instance). Phylogenetic analyses have revealed that the P-type ATPase subfamily is divided up into groups based on substrate specificities and this is represented in the various subfamily and equivalog models that have been made: IA (K+) TIGR01497, IB (heavy metals) TIGR01525, IIA1 (SERCA-type Ca++) TIGR01116, IIA2 (PMR1-type Ca++) TIGR01522, IIB (PMCA-type Ca++) TIGR01517, IIC (Na+/K+, H+/K+ antiporters) TIGR01106, IID (fungal-type Na+ and K+) TIGR01523, IIIA (H+) TIGR01647, IIIB (Mg++) TIGR01524, IV (phospholipid, flippase) TIGR01652 and V (unknown specificity) TIGR01657. The crystal structure of one calcium-pumping ATPase and an analysis of the fold of the catalytic domain of the P-type ATPases have been published. These reveal that the catalytic core of these enzymes is a haloacid dehalogenase(HAD)-type aspartate-nucleophile hydrolase. The location of the ATP-binding loop in between the first and second HAD conserved catalytic motifs defines these enzymes as members of subfamily I of the HAD superfamily (see also TIGR01493, TIGR01509, TIGR01549, TIGR01544 and TIGR01545). Based on these classifications, the P-type ATPase _superfamily_ corresponds to the IC subfamily of the HAD superfamily. 545 -130559 TIGR01495 ETRAMP Plasmodium ring stage membrane protein ETRAMP. This model describes a family of proteins from the malaria parasite Plasmodium falciparum, several of which have been shown to be expressed specifically in the ring stage as well as the rident parasite Plasmodium yoelii. A homolog from Plasmodium chabaudi was localized to the parasitophorous vacuole membrane. Members have an initial hydrophobic, Phe/Tyr-rich stretch long enough to span the membrane, a highly charged region rich in Lys, a second putative transmembrane region, and a second highly charged, low complexity sequence region. Some members have up to 100 residues of additional C-terminal sequence. These genes have been shown to be found in the sub-telomeric regions of both P. falciparum and P. yoelii chromosomes 85 -273657 TIGR01496 DHPS dihydropteroate synthase. This model represents dihydropteroate synthase, the enzyme that catalyzes the second to last step in folic acid biosynthesis. The gene is usually designated folP (folic acid biosynthsis) or sul (sulfanilamide resistance). This model represents one branch of the family of pterin-binding enzymes (pfam00809) and of a cluster of dihydropteroate synthase and related enzymes (COG0294). Other members of pfam00809 and COG0294 are represented by model TIGR00284. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 257 -130561 TIGR01497 kdpB K+-transporting ATPase, B subunit. This model describes the P-type ATPase subunit of the complex responsible for translocating potassium ions across biological membranes in microbes. In E. coli and other species, this complex consists of the proteins KdpA, KdpB, KdpC and KdpF. KdpB is the ATPase subunit, while KdpA is the potassium-ion translocating subunit. The function of KdpC is unclear, although cit has been suggested to couple the ATPase subunit to the ion-translocating subunit, while KdpF serves to stabilize the complex. The potassium P-type ATPases have been characterized as Type IA based on a phylogenetic analysis which places this clade closest to the heavy-metal translocating ATPases (Type IB). Others place this clade closer to the Na+/K+ antiporter type (Type IIC) based on physical characteristics. This model is very clear-cut, with a strong break between trusted hits and noise. All members of the seed alignment, from Clostridium, Anabaena and E. coli are in the characterized table. One sequence above trusted, OMNI|NTL01TA01282, is apparently mis-annotated in the primary literature, but properly annotated by TIGR. [Transport and binding proteins, Cations and iron carrying compounds] 675 -273658 TIGR01498 folK 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase. This model describes the folate biosynthesis enzyme 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase. Alternate names include 6-hydroxymethyl-7,8-dihydropterin diphosphokinase and 7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase (HPPK). The extreme C-terminal region, of typically eight to thirty residues, is not included in the model. This enzyme may be found as a fusion protein with other enzymes of folate biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 129 -273659 TIGR01499 folC folylpolyglutamate synthase/dihydrofolate synthase. This model represents the FolC family of folate pathway proteins. Most examples are bifunctional, active as both folylpolyglutamate synthetase (EC 6.3.2.17) and dihydrofolate synthetase (EC 6.3.2.12). The two activities are similar - ATP + glutamate + dihydropteroate or tetrahydrofolyl-[Glu](n) = ADP + orthophosphate + dihydrofolate or tetrahydrofolyl-[Glu](n+1). A mutation study of the FolC gene of E. coli suggests that both activities belong to the same active site. Because some examples are monofunctional (and these cannot be separated phylogenetically), the model is treated as subfamily, not equivalog. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 397 -273660 TIGR01500 sepiapter_red sepiapterin reductase. This model describes sepiapterin reductase, a member of the short chain dehydrogenase/reductase family. The enzyme catalyzes the last step in the biosynthesis of tetrahydrobiopterin. A similar enzyme in Bacillus cereus was isolated for its ability to convert benzil to (S)-benzoin, a property sepiapterin reductase also shares. Cutoff scores for this model are set such that benzil reductase scores between trusted and noise cutoffs. 256 -130565 TIGR01501 MthylAspMutase methylaspartate mutase, S subunit. This model represents the S (sigma) subunit of methylaspartate mutase (glutamate mutase), a cobalamin-dependent enzyme that catalyzes the first step in a pathway of glutamate fermentation. [Energy metabolism, Amino acids and amines, Energy metabolism, Fermentation] 134 -213632 TIGR01502 B_methylAsp_ase methylaspartate ammonia-lyase. This model describes methylaspartate ammonia-lyase, also called beta-methylaspartase (EC 4.3.1.2). It follows methylaspartate mutase (composed of S and E subunits) in one of several possible pathways of glutamate fermentation. [Energy metabolism, Amino acids and amines, Energy metabolism, Fermentation] 408 -130567 TIGR01503 MthylAspMut_E methylaspartate mutase, E subunit. This model represents the E (epsilon) subunit of methylaspartate mutase (glutamate mutase), a cobalamin-dependent enzyme that catalyzes the first step in a pathway of glutamate fermentation. [Energy metabolism, Amino acids and amines, Energy metabolism, Fermentation] 480 -213633 TIGR01504 glyox_carbo_lig glyoxylate carboligase. Glyoxylate carboligase, also called tartronate-semialdehyde synthase, releases CO2 while synthesizing a single molecule of tartronate semialdehyde from two molecules of glyoxylate. It is a thiamine pyrophosphate-dependent enzyme, closely related in sequence to the large subunit of acetolactate synthase. In the D-glycerate pathway, part of allantoin degradation in the Enterobacteriaceae, tartronate semialdehyde is converted to D-glycerate and then 3-phosphoglycerate, a product of glycolysis and entry point in the general metabolism. 588 -130569 TIGR01505 tartro_sem_red 2-hydroxy-3-oxopropionate reductase. This model represents 2-hydroxy-3-oxopropionate reductase (EC 1.1.1.60), also called tartronate semialdehyde reductase. It follows glyoxylate carboligase and precedes glycerate kinase in D-glycerate pathway of glyoxylate degradation. The eventual product, 3-phosphoglycerate, is an intermediate of glycolysis and is readily metabolized. Tartronic semialdehyde, the substrate of this enzyme, may also come from other pathways, such as D-glucarate catabolism. 291 -130570 TIGR01506 ribC_arch riboflavin synthase. This archaeal protein catalyzes the same reaction, the final step in riboflavin biosynthesis, as bacterial riboflavin biosynthesis alpha chain. However, it is more similar in sequence to 6,7-dimethyl-8-ribityllumazine synthase, which catalyzes the previous reaction and which (in bacteria) is called the riboflavin synthase beta chain. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 151 -273661 TIGR01507 hopene_cyclase squalene-hopene cyclase. SHC is an essential prokaryotic gene in hopanoid (triterpenoid) biosynthesis. Squalene hopene cyclase, an integral membrane protein, directly cyclizes squalene into hopanoid products. [Fatty acid and phospholipid metabolism, Other] 635 -130572 TIGR01508 rib_reduct_arch 2,5-diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine 1'-reductase, archaeal. This model represents a specific reductase of riboflavin biosynthesis in the Archaea, diaminohydroxyphosphoribosylaminopyrimidine reductase. It should not be confused with bacterial 5-amino-6-(5-phosphoribosylamino)uracil reductase. The intermediate 2,5-diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine in riboflavin biosynthesis is reduced first, and then deaminated, in both Archaea and Fungi, opposite the order in Bacteria. The subsequent deaminase is not presently known and is not closely homologous to the deaminase domain (3.5.4.26) fused to the reductase domain (1.1.1.193) similar to this protein but found in most bacteria. 210 -273662 TIGR01509 HAD-SF-IA-v3 haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED. This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] 178 -273663 TIGR01510 coaD_prev_kdtB pantetheine-phosphate adenylyltransferase, bacterial. This model describes pantetheine-phosphate adenylyltransferase, the penultimate enzyme of coenzyme A (CoA) biosynthesis in bacteria. It does not show any strong homology to eukaryotic enzymes of coenzyme A biosynthesis. This protein was previously designated KdtB and postulated (because of cytidyltransferase homology and proximity to kdtA) to be an enzyme of LPS biosynthesis, a cytidyltransferase for 3-deoxy-D-manno-2-octulosonic acid. However, no activity toward that compound was found with either CTP or ATP. The phylogenetic distribution of this enzyme is more consistent with coenzyme A biosynthesis than with LPS biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 155 -273664 TIGR01511 ATPase-IB1_Cu copper-(or silver)-translocating P-type ATPase. This model describes the P-type ATPase primarily responsible for translocating copper ions accross biological membranes. These transporters are found in prokaryotes and eukaryotes. This model encompasses those species which pump copper ions out of cells or organelles (efflux pumps such as CopA of Escherichia coli) as well as those which pump the ion into cells or organelles either for the purpose of supporting life in extremely low-copper environments (for example CopA of Enterococcus hirae) or for the specific delivery of copper to a biological complex for which it is a necessary component (for example FixI of Bradyrhizobium japonicum, or CtaA and PacS of Synechocystis). The substrate specificity of these transporters may, to a varying degree, include silver ions (for example, CopA from Archaeoglobus fulgidus). Copper transporters from this family are well known as the genes which are mutated in two human disorders of copper metabolism, Wilson's and Menkes' diseases. The sequences contributing to the seed of this model are all experimentally characterized. The copper P-type ATPases have been characterized as Type IB based on a phylogenetic analysis which combines the copper-translocating ATPases with the cadmium-translocating species. This model and that describing the cadmium-ATPases (TIGR01512) are well separated, and thus we further type the copper-ATPases as IB1 (and the cadmium-ATPases as IB2). Several sequences which have not been characterized experimentally fall just below the cutoffs for both of these models (SP|Q9CCL1 from Mycobacterium leprae, GP|13816263 from Sulfolobus solfataricus, OMNI|NTL01CJ01098 from Campylobacter jejuni, OMNI|NTL01HS01687 from Halobacterium sp., GP|6899169 from Ureaplasma urealyticum and OMNI|HP1503 from Helicobacter pylori). Accession PIR|A29576 from Enterococcus faecalis scores very high against this model, but yet is annotated as an "H+/K+ exchanging ATPase". BLAST of this sequence does not hit anything else annotated in this way. This error may come from the characterization paper published in 1987. Accession GP|7415611 from Saccharomyces cerevisiae appears to be mis-annotated as a cadmium resistance protein. Accession OMNI|NTL01HS00542 from Halobacterium which scores above trusted for this model is annotated as "molybdenum-binding protein" although no evidence can be found for this classification. [Cellular processes, Detoxification, Transport and binding proteins, Cations and iron carrying compounds] 562 -273665 TIGR01512 ATPase-IB2_Cd heavy metal-(Cd/Co/Hg/Pb/Zn)-translocating P-type ATPase. This model describes the P-type ATPase primarily responsible for translocating cadmium ions (and other closely-related divalent heavy metals such as cobalt, mercury, lead and zinc) across biological membranes. These transporters are found in prokaryotes and plants. Experimentally characterized members of the seed alignment include: SP|P37617 from E. coli, SP|Q10866 from Mycobacterium tuberculosis and SP|Q59998 from Synechocystis PCC6803. The cadmium P-type ATPases have been characterized as Type IB based on a phylogenetic analysis which combines the copper-translocating ATPases with the cadmium-translocating species. This model and that describing the copper-ATPases (TIGR01511) are well separated, and thus we further type the copper-ATPases as IB1 and the cadmium-ATPases as IB2. Several sequences which have not been characterized experimentally fall just below trusted cutoff for both of these models (SP|Q9CCL1 from Mycobacterium leprae, GP|13816263 from Sulfolobus solfataricus, OMNI|NTL01CJ01098 from Campylobacter jejuni, OMNI|NTL01HS01687 from Halobacterium sp., GP|6899169 from Ureaplasma urealyticum and OMNI|HP1503 from Helicobacter pylori). [Transport and binding proteins, Cations and iron carrying compounds] 550 -273666 TIGR01513 NAPRTase_put putative nicotinate phosphoribosyltransferase. A deep split separates two related families of proteins, one of which includes experimentally characterized examples of nicotinate phosphoribosyltransferase, an the first enzyme of NAD salvage biosynthesis. This model represents the other family. Members have a different (longer) spacing of several key motifs and have an additional C-terminal domain of up to 100 residues. One argument suggesting that this family represents the same enzyme is that no species has a member of both families. Another is that the gene encoding this protein is located near other NAD salvage biosynthesis genes in Nostoc and in at least four different Gram-positive bacteria. NAD and NADP are ubiquitous in life. Most members of this family are Gram-positive bacteria. An additional set of mutually closely related archaeal sequences score between the trusted and noise cutoffs. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 443 -130578 TIGR01514 NAPRTase nicotinate phosphoribosyltransferase. This model represents nicotinate phosphoribosyltransferase, the first enzyme in the salvage pathway of NAD biosynthesis from nicontinate (niacin). Members are primary proteobacterial but also include yeasts and Methanosarcina acetivorans. A related family, apparently non-overlapping in species distribution, is TIGR01513. Members of that family differ in substantially in sequence and have a long C-terminal extension missing from this family, but are proposed also to act as nicotinate phosphoribosyltransferase (see model TIGR01513). [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 394 -273667 TIGR01515 branching_enzym alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 618 -273668 TIGR01517 ATPase-IIB_Ca plasma-membrane calcium-translocating P-type ATPase. This model describes the P-type ATPase responsible for translocating calcium ions across the plasma membrane of eukaryotes, out of the cell. In some organisms, this type of pump may also be found in vacuolar membranes. In humans and mice, at least, there are multiple isoforms of the PMCA pump with overlapping but not redundant functions. Accordingly, there are no human diseases linked to PMCA defects, although alterations of PMCA function do elicit physiological effects. The calcium P-type ATPases have been characterized as Type IIB based on a phylogenetic analysis which distinguishes this group from the Type IIA SERCA calcium pump. A separate analysis divides Type IIA into sub-types (SERCA and PMR1) which are represented by two corresponding models (TIGR01116 and TIGR01522). This model is well separated from those. 956 -130581 TIGR01518 g3p_cytidyltrns glycerol-3-phosphate cytidylyltransferase. This model describes glycerol-3-phosphate cytidyltransferase, also called CDP-glycerol pyrophosphorylase. A closely related protein assigned a different function experimentally is a human ethanolamine-phosphate cytidylyltransferase (EC 2.7.7.14). Glycerol-3-phosphate cytidyltransferase acts in pathways of teichoic acid biosynthesis. Teichoic acids are substituted polymers, linked by phosphodiester bonds, of glycerol, ribitol, etc. An example is poly(glycerol phosphate), the major teichoic acid of the Bacillus subtilis cell wall. Most but not all species encoding proteins in this family are Gram-positive bacteria. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 125 -130582 TIGR01519 plasmod_dom_1 Plasmodium falciparum uncharacterized domain. This model represents an uncharacterized domain present in roughly eight hypothetical proteins of the malaria parasite Plasmodium falciparum. 70 -130583 TIGR01520 FruBisAldo_II_A fructose-bisphosphate aldolase, class II, yeast/E. coli subtype. Members of this family are class II examples of the glycolytic enzyme fructose-bisphosphate aldolase (FBA). This model represents one of two deeply split, architecturally distinct clades of the family that includes class II fructose-bisphosphate aldolases, tagatose-bisphosphate aldolases, and related uncharacterized proteins. This family is well-conserved and includes characterized FBA from Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum. Proteins outside the scope of this model may also be designated as class II fructose-bisphosphate aldolases, but are well separated in an alignment-based phylogenetic tree. [Energy metabolism, Glycolysis/gluconeogenesis] 357 -130584 TIGR01521 FruBisAldo_II_B fructose-bisphosphate aldolase, class II, Calvin cycle subtype. Members of this family are class II examples of the enzyme fructose-bisphosphate aldolase, an enzyme both of glycolysis and (in the opposite direction) of the Calvin cycle of CO2 fixation. A deep split separates the tightly conserved yeast/E. coli/Mycobacterium subtype (all species lacking the Calvin cycle) represented by model TIGR01520 from a broader group of aldolases that includes both tagatose- and fructose-bisphosphate aldolases. This model represents a distinct, elongated, very well conserved subtype within the latter group. Most species with this aldolase subtype have the Calvin cycle. 347 -130585 TIGR01522 ATPase-IIA2_Ca golgi membrane calcium-translocating P-type ATPase. This model describes the P-type ATPase responsible for translocating calcium ions across the golgi membrane of fungi and animals, and is of particular importance in the sarcoplasmic reticulum of skeletal and cardiac muscle in vertebrates. The calcium P-type ATPases have been characterized as Type IIA based on a phylogenetic analysis which distinguishes this group from the Type IIB PMCA calcium pump modelled by TIGR01517. A separate analysis divides Type IIA into sub-types, SERCA and PMR1, the former of which is modelled by TIGR01116. 884 -130586 TIGR01523 ATPase-IID_K-Na potassium and/or sodium efflux P-type ATPase, fungal-type. Initially described as a calcium efflux ATPase, more recent work has shown that the S. pombe CTA3 gene is in fact a potassium ion efflux pump. This model describes the clade of fungal P-type ATPases responsible for potassium and sodium efflux. The degree to which these pumps show preference for sodium or potassium varies. This group of ATPases has been classified by phylogentic analysis as type IID. The Leishmania sequence (GP|3192903), which falls between trusted and noise in this model, may very well turn out to be an active potassium pump. 1053 -130587 TIGR01524 ATPase-IIIB_Mg magnesium-translocating P-type ATPase. This model describes the magnesium translocating P-type ATPase found in a limited number of bacterial species and best described in Salmonella typhimurium, which contains two isoforms. These transporters are active in low external Mg2+ concentrations and pump the ion into the cytoplasm. The magnesium ATPases have been classified as type IIIB by a phylogenetic analysis. [Transport and binding proteins, Cations and iron carrying compounds] 867 -273669 TIGR01525 ATPase-IB_hvy heavy metal translocating P-type ATPase. This model encompasses two equivalog models for the copper and cadmium-type heavy metal transporting P-type ATPases (TIGR01511 and TIGR01512) as well as those species which score ambiguously between both models. For more comments and references, see the files on TIGR01511 and 01512. 558 -273670 TIGR01526 nadR_NMN_Atrans nicotinamide-nucleotide adenylyltransferase, NadR type. The NadR protein of E. coli and closely related bacteria is both enzyme and regulatory protein. The first 60 or so amino acids, N-terminal to the region covered by this model, is a DNA-binding helix-turn-helix domain (pfam01381) responsible for repressing the nadAB genes of NAD de novo biosynthesis. The NadR homologs in Mycobacterium tuberculosis, Haemophilus influenzae, and others appear to lack the repressor domain. NadR has recently been shown to act as an enzyme of the salvage pathway of NAD biosynthesis, nicotinamide-nucleotide adenylyltransferase; members of this family are presumed to share this activity. E. coli NadR has also been found to regulate the import of its substrate, nicotinamide ribonucleotide, but it is not known if the other members of this model share that activity. 325 -273671 TIGR01527 arch_NMN_Atrans nicotinamide-nucleotide adenylyltransferase. This model describes a family of archaeal proteins with the activity of the NAD salvage biosynthesis enzyme nicotinamide-nucleotide adenylyltransferase (EC 2.7.7.1). In some cases, the enzyme was tested and found also to have the activity of nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18), an enzyme of NAD de novo biosynthesis, although with a higher Km. In some archaeal species, a lower-scoring paralog, uncharacterized with respect to activity, is also present. These score between trusted and noise cutoffs. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 165 -273672 TIGR01528 NMN_trans_PnuC nicotinamide mononucleotide transporter PnuC. The PnuC protein of E. coli is membrane protein responsible for nicotinamide mononucleotide transport, subject to regulation by interaction with the NadR (also called NadI) protein (see TIGR01526). This model defines a region corresponding to most of the length of PnuC, found primarily in pathogens. The extreme N- and C-terminal regions are poorly conserved and not included in the alignment and model. [Transport and binding proteins, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 189 -130592 TIGR01529 argR_whole arginine repressor. This model includes most members of the arginine-responsive transcriptional regulator family ArgR. This hexameric protein binds DNA at its amino end to repress arginine biosyntheis or activate arginine catabolism. Some species have several ArgR paralogs. In a neighbor-joining tree, some of these paralogous sequences show long branches and differ significantly in an otherwise well-conserved C-terminal region motif GT[VIL][AC]GDDT. These paralogs are excluded from the seed and score in the gray zone of this model, between trusted and noise cutoffs. [Amino acid biosynthesis, Glutamate family, Regulatory functions, DNA interactions] 146 -211667 TIGR01530 nadN NAD pyrophosphatase/5'-nucleotidase NadN. This model describes NadN of Haemophilus influenzae and a small number of close homologs in pathogenic, Gram-negative bacteria. NadN is a periplasmic enzyme that cleaves NAD (nicotinamide adenine dinucleotide) to NMN (nicotinamide mononucleotide) and AMP. The NMN must be converted by a 5'-nucleotidase to nicotinamide riboside for import. NadN belongs a large family of 5'-nucleotidases and has NMN 5'-nucleotidase activity for NMN, AMP, etc. [Transport and binding proteins, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 545 -273673 TIGR01531 glyc_debranch glycogen debranching enzymye. glycogen debranching enzyme possesses two different catalytic activities; oligo-1,4-->1,4-glucantransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33). Site directed mutagenesis studies in S. cerevisiae indicate that the transferase and glucosidase activities are independent and located in different regions of the polypeptide chain. Proteins in this model belong to the larger alpha-amylase family. The model covers eukaryotic proteins with a seed composed of human, nematode and yeast sequences. Yeast seed sequence is well characterized. The model is quite rigorous; either query sequence yields large bit score or it fails to hit the model altogether. There doesn't appear to be any middle ground. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 1464 -130595 TIGR01532 E4PD_g-proteo erythrose-4-phosphate dehydrogenase. This model represents the small clade of dehydrogenases in gamma-proteobacteria which utilize NAD+ to oxidize erythrose-4-phosphate (E4P) to 4-phospho-erythronate, a precursor for the de novo synthesis of pyridoxine via 4-hydroxythreonine and D-1-deoxyxylulose. This enzyme activity appears to have evolved from glyceraldehyde-3-phosphate dehydrogenase, whose substrate differs only in the lack of one carbon relative to E4P. Accordingly, this model is very close to the corresponding models for GAPDH, and those sequences which hit above trusted here invariably hit between trusted and noise to the GAPDH model (TIGR01534). Similarly, it may be found that there are species outside of the gamma proteobacteria which synthesize pyridoxine and have more than one aparrent GAPDH gene of which one may have E4PD activity - this may necessitate a readjustment of these models. Alternatively, some of the GAPDH enzymes may prove to be bifunctional in certain species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 325 -273674 TIGR01533 lipo_e_P4 5'-nucleotidase, lipoprotein e(P4) family. This model represents a set of bacterial lipoproteins belonging to a larger acid phosphatase family (pfam03767), which in turn belongs to the haloacid dehalogenase (HAD) superfamily of aspartate-dependent hydrolases. Members are found on the outer membrane of Gram-negative bacteria and the cytoplasmic membrane of Gram-positive bacteria. Most members have classic lipoprotein signal sequences. A critical role of this 5'-nucleotidase in Haemophilus influenzae is the degradation of external riboside in order to allow transport into the cell. An earlier suggested role in hemin transport is no longer current. This enzyme may also have other physiologically significant roles. [Transport and binding proteins, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 266 -273675 TIGR01534 GAPDH-I glyceraldehyde-3-phosphate dehydrogenase, type I. This model represents glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the enzyme responsible for the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. Forms exist which utilize NAD (EC 1.2.1.12), NADP (EC 1.2.1.13) or either (1.2.1.59). In some species, NAD- and NADP- utilizing forms exist, generally being responsible for reactions in the anabolic and catabolic directions respectively. Two Pfam models cover the two functional domains of this protein; pfam00044 represents the N-terminal NAD(P)-binding domain and pfam02800 represents the C-terminal catalytic domain. An additional form of gap gene is found in gamma proteobacteria and is responsible for the conversion of erythrose-4-phosphate (E4P) to 4-phospho-erythronate in the biosynthesis of pyridoxine. This pathway of pyridoxine biosynthesis appears to be limited, however, to a relatively small number of bacterial species although it is prevalent among the gamma-proteobacteria. This enzyme is described by TIGR001532. These sequences generally score between trusted and noise to this GAPDH model due to the close evolutionary relationship. There exists the possiblity that some forms of GAPDH may be bifunctional and act on E4P in species which make pyridoxine and via hydroxythreonine and lack a separate E4PDH enzyme (for instance, the GAPDH from Bacillus stearothermophilus has been shown to posess a limited E4PD activity as well as a robust GAPDH activity). There are a great number of sequences in the databases which score between trusted and noise to this model, nearly all of them due to fragmentary sequences. It seems that study of this gene has been carried out in many species utilizing PCR probes which exclude the extreme ends of the consenses used to define this model. The noise level is set relative not to E4PD, but the next closest outliers, the class II GAPDH's (found in archaea, TIGR01546) and aspartate semialdehyde dehydrogenase (ASADH, TIGR01296) both of which have highest-scoring hits around -225 to the prior model. [Energy metabolism, Glycolysis/gluconeogenesis] 326 -130598 TIGR01535 glucan_glucosid glucan 1,4-alpha-glucosidase. Glucan 1,4-alpha-glucosidase catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues from non-reducing ends of polysaccharides, releasing a beta-D-glucose monomer. Some forms of this enzyme can hydrolyze terminal 1,6- and 1,3-alpha-D-glucosidic bonds in polysaccharides as well. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 648 -273676 TIGR01536 asn_synth_AEB asparagine synthase (glutamine-hydrolyzing). This model describes the glutamine-hydrolysing asparagine synthase. A poorly conserved C-terminal extension was removed from the model. Bacterial members of the family tend to have a long, poorly conserved insert lacking from archaeal and eukaryotic sequences. Multiple isozymes have been demonstrated, such as in Bacillus subtilis. Long-branch members of the phylogenetic tree (which typically were also second or third candidate members from their genomes) were removed from the seed alignment and score below trusted cutoff. [Amino acid biosynthesis, Aspartate family] 466 -273677 TIGR01537 portal_HK97 phage portal protein, HK97 family. This model represents one of several distantly related families of phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. It functions as a dodecamer of a single polypeptide of average mol. wt. of 40-90 KDa. [Mobile and extrachromosomal element functions, Prophage functions] 342 -273678 TIGR01538 portal_SPP1 phage portal protein, SPP1 family. This model represents one of several distantly related families of phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. It functions as a dodecamer of a single polypeptide of average mol. wt. of 40-90 KDa. [Mobile and extrachromosomal element functions, Prophage functions] 412 -273679 TIGR01539 portal_lambda phage portal protein, lambda family. This model represents one of several distantly related families of phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. It functions as a dodecamer of a single polypeptide of average mol. wt. of 40-90 KDa. [Mobile and extrachromosomal element functions, Prophage functions] 458 -273680 TIGR01540 portal_PBSX phage portal protein, PBSX family. This model represents one of several distantly related families of phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. It functions as a dodecamer of a single polypeptide of average mol. wt. of 40-90 KDa. This family shows clear homology to TIGR01537. The alignment for this group was trimmed of poorly alignable N-terminal sequence of about 50 residues and of C-terminal regions present in some but not all members of up 180 residues. [Mobile and extrachromosomal element functions, Prophage functions] 320 -273681 TIGR01541 tape_meas_lam_C phage tail tape measure protein, lambda family. This model represents a relatively well-conserved region near the C-terminus of the tape measure protein of a lambda and related phage. This protein, which controls phage tail length, is typically about 1000 residues in length. Both low-complexity sequence and insertion/deletion events appear common in this family. Mutational studies suggest a ruler or template role in the determination of phage tail length. Similar behavior is attributed to proteins from distantly related or unrelated families in other phage. [Mobile and extrachromosomal element functions, Prophage functions] 332 -130605 TIGR01542 A118_put_portal phage portal protein, putative, A118 family. This model represents a family of phage minor structural proteins. The protein is suggested to be the head-tail connector, or portal protein, on the basis of its position in the phage gene order, its presence in mature phage, its size, and its conservation across a number of complete genomes of tailed phage that lack other candidate portal proteins. Several other known portal protein families lack clear homology to this family and to each other. [Mobile and extrachromosomal element functions, Prophage functions] 476 -273682 TIGR01543 proheadase_HK97 phage prohead protease, HK97 family. This model describes the prohead protease of HK97 and related phage. It is generally encoded next to the gene for the capsid protein that it processes, and in some cases may be fused to it. This family does not show similarity to the prohead protease of phage T4 (see pfam03420). [Mobile and extrachromosomal element functions, Prophage functions, Protein fate, Other] 145 -273683 TIGR01544 HAD-SF-IE haloacid dehalogenase superfamily, subfamily IE hydrolase, TIGR01544. This model represents a small group of metazoan sequences. The sequences from mouse are annotated as Pyrimidine 5'-nucleotidases, aparrently in reference to HSPC233, the human homolog. However, no such annotation can currently be found for this gene. This group of sequences was found during searches for members of the haloacid dehalogenase (HAD) superfamily. All of the conserved catalytic motifs are found. The placement of the variable domain between motifs 1 and 2 indicates membership in subfamily I of the superfamily, but these sequences are sufficiently different from any of the branches (IA, TIGR01493, TIGR01509, TIGR01549; IB, TIGR01488; IC, TIGR01494; ID, TIGR01658; IF TIGR01545) of that subfamily as to constitute a separate branch to now be called IE. Considering that the closest identifiable hit outside of the noise range is to a phosphoserine phosphatase, this group may be considered to be most closely allied to subfamily IB. 283 -130608 TIGR01545 YfhB_g-proteo haloacid dehalogenase superfamily, subfamily IF hydrolase, YfhB. This model describes a clade of sequences limited to the gamma proteobacteria. This group is a member of the haloacid dehalogenase (HAD) superfamily of aspartate-dependent hydrolases and all of the conserved catalytic motifs are present. Although structurally similar to subfamily IA in that the variable domain is predicted to consist of five consecutive alpha helices (by PSI-PRED), it is sufficiently divergent to warrant being regarded as a separate sub-family (IF). The gene name comes from the E. coli gene. There is currently no information regarding the function of this gene. 210 -130609 TIGR01546 GAPDH-II_archae glyceraldehyde-3-phosphate dehydrogenase, type II. This model describes the type II glyceraldehyde-3-phosphate dehydrogenases which are limited to archaea. These enzymes catalyze the interconversion of 1,3-diphosphoglycerate and glyceraldehyde-3-phosphate, a central step in glycolysis and gluconeogenesis. In archaea, either NAD or NADP may be utilized as the cofactor. The class I GAPDH's from bacteria and eukaryotes are covered by TIGR01534. All of the members of the seed are characterized. See, for instance. This model is very solid, there are no species falling between trusted and noise at this time. The closest relatives scoring in the noise are the class I GAPDH's. 333 -273684 TIGR01547 phage_term_2 phage terminase, large subunit, PBSX family. This model detects members of a highly divergent family of the large subunit of phage terminase. All members are encoded by phage genomes or within prophage regions of bacterial genomes. This is a distinct family from pfam03354. [Mobile and extrachromosomal element functions, Prophage functions] 394 -273685 TIGR01548 HAD-SF-IA-hyp1 haloacid dehalogenase superfamily, subfamily IA hydrolase, TIGR01548. This model represents a small and phylogenetically curious clade of sequences. Sequences are found from Halobacterium (an archaeon), Nostoc and Synechococcus (cyanobacteria) and Phytophthora (a stramenophile eukaryote). These appear to be members of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases by general homology and the conservation of all of the recognized catalytic motifs. The variable domain is found in between motifs 1 and 2, indicating membership in subfamily I and phylogeny and prediction of the alpha helical nature of the variable domain (by PSI-PRED) indicate membership in subfamily IA. All but the Halobacterium sequence currently found are annotated as "Imidazoleglycerol-phosphate dehydratase", however, the source of the annotation could not be traced and significant homology could not be found between any of these sequences and known IGPD's. 197 -273686 TIGR01549 HAD-SF-IA-v1 haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or Dx(3-4)E. This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions.The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)(D/E), (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 1 (this model) is found in the enzymes phosphoglycolate phosphatase (TIGR01449) and enolase-phosphatase. These three variant models (see also TIGR01493 and TIGR01509) were created withthe knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly relatedHAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] 164 -273687 TIGR01550 DOC_P1 death-on-curing family protein. The characterized member of this family is the death-on-curing (DOC) protein of phage P1. It is part of a two protein operon with prevents-host-death (phd) that forms an addiction module. DOC lacks homology to analogous addiction module post-segregational killing proteins involved in plasmid maintenance. These modules work as a combination of a long lived poison (e.g. this protein) and a more abundant but shorter lived antidote. Members of this family have a well-conserved central motif HxFx[ND][AG]NKR. A similar region, with K replaced by G, is found in the huntingtin interacting protein (HYPE) family. [Unknown function, General] 121 -233464 TIGR01551 major_capsid_P2 phage major capsid protein, P2 family. This model family represents the major capsid protein component of the heads (capsids) of bacteriophage P2 and related phage. This model represents one of several analogous families lacking detectable sequence similarity. The gene encoding this component is typically located in an operon encoding the small and large terminase subunits, the portal protein and the prohead or maturation protease. [Mobile and extrachromosomal element functions, Prophage functions] 327 -273688 TIGR01552 phd_fam prevent-host-death family protein. This model recognizes a region of about 55 amino acids toward the N-terminal end of bacterial proteins of about 85 amino acids in length. The best-characterized member is prevent-host-death (phd) of bacteriophage P1, the antidote partner of death-on-curing (doc) (TIGR01550) in an addiction module. Addiction modules prevent plasmid curing by killing the host cell as the longer-lived killing protein persists while the gene for the shorter-lived antidote is lost. Note, however, that relatively few members of this family appear to be plasmid or phage-encoded. Also, there is little overlap, except for phage P1 itself, of species with this family and with the doc family. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 52 -273689 TIGR01553 formate-DH-alph formate dehydrogenase-N alpha subunit. This model describes a subset of formate dehydrogenase alpha chains found mainly in proteobacteria but also in Aquifex. The alpha chain contains domains for molybdopterin dinucleotide binding and molybdopterin oxidoreductase (pfam01568 and pfam00384, respectively). The holo-enzyme also contains beta and gamma subunits of 32 and 20 kDa. The enzyme catalyzes the oxidation of formate (produced from pyruvate during anaerobic growth) to carbon dioxide with the concomitant release of two electrons and two protons. The electrons are utilized mainly in the nitrate respiration by nitrate reductase. In E. coli and Salmonella, there are two forms of the formate dehydrogenase, one induced by nitrate which is strictly anaerobic (fdn), and one incuced during the transition from aerobic to anaerobic growth (fdo). This subunit is one of only three proteins in E. coli which contain selenocysteine. This model is well-defined, with a large, unpopulated trusted/noise gap. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 1009 -273690 TIGR01554 major_cap_HK97 phage major capsid protein, HK97 family. This model family represents the major capsid protein component of the heads (capsids) of bacteriophage HK97, phi-105, P27, and related phage. This model represents one of several analogous families lacking detectable sequence similarity. The gene encoding this component is typically located in an operon encoding the small and large terminase subunits, the portal protein and the prohead or maturation protease. [Mobile and extrachromosomal element functions, Prophage functions] 386 -130618 TIGR01555 phge_rel_HI1409 phage-related protein, HI1409 family. This model describes an uncharacterized family of proteins found in prophage regions of a number of bacterial genomes, including Haemophilus influenzae, Xylella fastidiosa, Salmonella typhi, and Enterococcus faecalis. Distantly related proteins can be found in the prophage-bearing plasmids of Borrelia burgdorferi. [Mobile and extrachromosomal element functions, Prophage functions] 404 -130619 TIGR01556 rhamnosyltran L-rhamnosyltransferase. This model subfamily is comprised of gamma proteobacteria whose proteins function as L-rhamnosyltransferases in the synthesis of their respective surface polysaccharides. Rhamnolipids are glycolipids containing mono- or di- L-rhamnose molecules. Rhamnolipid synthesis occurs by sequential glycosyltransferase reactions involving two distinct rhamnosyltransferase enzymes. In P.aeruginosa, the synthesis of mono-rhamnolipids is catalyzed by rhamnosyltransferase 1, and proceeds by a glycosyltransfer reaction catalyzed by rhamnosyltransferase 2 to yield di-rhamnolipids. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 281 -130620 TIGR01557 myb_SHAQKYF myb-like DNA-binding domain, SHAQKYF class. This model describes a DNA-binding domain restricted to (but common in) plant proteins, many of which also contain a response regulator domain. The domain appears related to the Myb-like DNA-binding domain described by pfam00249. It is distinguished in part by a well-conserved motif SH[AL]QKY[RF] at the C-terminal end of the motif. 57 -273691 TIGR01558 sm_term_P27 phage terminase, small subunit, putative, P27 family. This model describes a distinct family of phage (and integrated prophage) putative terminase small subunit. Members tend to be adjacent to the phage terminase large subunit gene. [Mobile and extrachromosomal element functions, Prophage functions] 116 -188157 TIGR01559 squal_synth farnesyl-diphosphate farnesyltransferase. This model describes farnesyl-diphosphate farnesyltransferase, also known as squalene synthase, as found in eukaryotes. This family is related to phytoene synthases. Tentatively identified archaeal homologs (excluded from this model) lack the C-terminal predicted transmembrane region universally conserved among members of this family. 337 -130623 TIGR01560 put_DNA_pack uncharacterized phage protein (possible DNA packaging). This model describes a small (~ 100 amino acids) protein found in phage and in putative prophage regions of a number of bacterial genomes. Members have been annotated in some cases as a possible DNA packaging protein, but the source of this annotation was not traced during construction of this model. [Mobile and extrachromosomal element functions, Prophage functions] 91 -130624 TIGR01561 gde_arch glycogen debranching enzyme, archaeal type, putative. The seed for this model is composed of two uncharacterized archaeal proteins from Methanosarcina acetivorans and Sulfolobus solfataricus. Trusted cutoff is set so that essentially only archaeal members hit the model. The notable exceptions to archaeal membership are the Gram positive Clostridium perfringens which scores much better than some other archaea and the Cyanobacterium Nostoc sp. which scores just above the trusted cutoff. Noise cutoff is set to exclude the characterized eukaryotic glycogen debranching enzyme in S. cerevisiae. These cutoffs leave the prokaryotes Porphyromonas gingivalis and Deinococcus radiodurans below trusted but above noise. Multiple alignments including these last two species exhibit sequence divergence which may suggest a subtly different function for these prokaryotic proteins. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 575 -130625 TIGR01562 FdhE formate dehydrogenase accessory protein FdhE. This model describes an accessory protein required for the assembly of formate dehydrogenase of certain proteobacteria although not present in the final complex. The exact nature of the function of FdhE in the assembly of the complex is unknown, but considering the presence of selenocysteine, molybdopterin, iron-sulfur clusters and cytochrome b556, it is likely to have something to do with the insertion of cofactors. The only sequence scoring between trusted and noise is that from Aquifex aeolicus, which shows certain structural differences from the proteobacterial forms in the alignment. However it is notable that A. aeolicus also has a sequence scoring above trusted to the alpha subunit of formate dehydrogenase (TIGR01553). 305 -273692 TIGR01563 gp16_SPP1 phage head-tail adaptor, putative, SPP1 family. This family describes a small protein of about 100 amino acids found in bacteriophage and in bacterial prophage regions. Examples include gp9 of phage HK022 and gp16 of phage SPP1. This minor structural protein is suggested to be a head-tail adaptor protein (although the source of this annotation was not traced during construction of this model). [Mobile and extrachromosomal element functions, Prophage functions] 101 -273693 TIGR01564 S_layer_MJ S-layer protein, MJ0822 family. This model represents one of several families of proteins associated with the formation of prokaryotic S-layers. Members of this family are found in archaeal species, including Pyrococcus horikoshii (split into two tandem reading frames), Methanococcus jannaschii, and related species. Some local similarity can be found to other S-layer protein families. [Cell envelope, Surface structures] 571 -130628 TIGR01565 homeo_ZF_HD homeobox domain, ZF-HD class. This model represents a class of homoebox domain that differs substantially from the typical homoebox domain described in pfam00046. It is found in both C4 and C3 plants. 58 -130629 TIGR01566 ZF_HD_prot_N ZF-HD homeobox protein Cys/His-rich dimerization domain. This model describes a 54-residue domain found in the N-terminal region of plant proteins, the vast majority of which contain a ZF-HD class homeobox domain toward the C-terminus. The region between the two domains typically is rich in low complexity sequence. The companion ZF-HD homeobox domain is described in model TIGR01565. 53 -273694 TIGR01567 S_layer_rel_Mac S-layer family duplication domain. This model represents a sequence region found tandemly duplicated in two proven archaeal S-layer glycoproteins, MA0829 from Methanosarcina acetivorans C2A and MM1976 from Methanosarcina mazei Go1, as well as in several paralogs of those L-layer proteins from both species. Members of the family show regions of local similarity to another known family of archaeal S-layer proteins described by model TIGR01564. Some members of this family, including the proven S-layer proteins, have the archaeosortase A target motif, PGF-CTERM (TIGR04126), at the protein C-terminus. [Cell envelope, Surface structures] 256 -130631 TIGR01568 A_thal_3678 uncharacterized plant-specific domain TIGR01568. This model describes an uncharacterized domain of about 70 residues found exclusively in plants, generally toward the C-terminus of proteins of 200 to 350 amino acids in length. At least 14 such proteins are found in Arabidopsis thaliana. Other regions of these proteins tend to consist largely of low-complexity sequence. 66 -273695 TIGR01569 A_tha_TIGR01569 plant integral membrane protein TIGR01569. This model describes a region of ~160 residues found exclusively in plant proteins, generally as the near complete length of the protein. At least 24 different members are found in Arabidopsis thaliana. Members have four predicted transmembrane regions, the last of which is preceded by an invariant CXXXXX[FY]C motif. The family is not functionally characterized. 154 -273696 TIGR01570 A_thal_3588 uncharacterized plant-specific domain TIGR01570. This model represents a region of about 170 amino acids found at the C-terminus of a family of plant proteins. These proteins typically have additional highly divergent N-terminal regions rich in low complexity sequence. PSI-BLAST reveals no clear similarity to any characterized protein. At least 12 distinct members are found in Arabidopsis thaliana. 161 -273697 TIGR01571 A_thal_Cys_rich uncharacterized Cys-rich domain. This model describes an uncharacterized domain of about 100 residues. It is common in plants but found also in Homo sapiens, Dictyostelium, and Leishmania; at least 12 distinct members are found in Arabidopsis. Most members of this family contain more than 10 per cent Cys, but no Cys residue is invariant across the family. 104 -273698 TIGR01572 A_thl_para_3677 Arabidopsis paralogous family TIGR01572. This model describes a paralogous family of hypothetical proteins in Arabidopsis thaliana. No homologs are detected from other species. Length heterogeneity within the family is attributable partly to a 21-residue repeat present in from zero to three tandem copies. The central region of the repeat resembles the pattern [VIF][FY][QK]GX[LM]P[DEK]XXXDDAL. 265 -273699 TIGR01573 cas2 CRISPR-associated endonuclease Cas2. This model describes most members of the family of Cas2, one of the first four protein families found to mark prokaryotic genomes that contain multiple CRISPR elements. CRISPR systems protect against invasive nucleic acid sequences, including phage. Cas2 proteins have been characterized as either endoribonuclease (for ssRNA) or endodeoxyribonuclease (for dsDNA), depending on the system to which the Cas2 belongs. CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeats. The cas genes usually are found near the repeats. A distinct branch of the Cas2 family shows a very low level of sequence identity and is modeled by TIGR01873 instead of by this model (TIGR01573). 95 -273700 TIGR01574 miaB-methiolase tRNA-N(6)-(isopentenyl)adenosine-37 thiotransferase enzyme MiaB. This model represents homologs of the MiaB enzyme responsible for the modification of the isopentenylated adenine-37 base of most bacterial and eukaryotic tRNAs that read codons beginning with uracil (all except tRNA(I,V) Ser). Adenine-37 is next to the anticodon on the 3' side in these tRNA's, and lack of modification at this site leads to an increased spontaneous mutation frequency. Isopentenylated A-37 is modified by methylthiolation at position 2, either by MiaB alone or in concert with a separate methylase yet to be discovered (MiaC?). MiaB contains a 4Fe-4S cluster which is labile under oxidizing conditions. Additionally, the sequence is homologous (via PSI-BLAST searches) to the biotin synthetase, BioB, which utilizes both an iron-sulfur cluster and S-adenosym methionine (SAM) to generate a radical which is responsible for initiating the insertion of sulfur into the substrate. It is reasonable to surmise that the methyl group of SAM becomes the methyl group of the product, but this has not been shown, and the possibility of a separate methylase exists. This equivalog is a member of a subfamily (TIGR00089) which contains several other hypothetical equivalogs which are all probably enzymes with similar function acting on different substrates. These enzymes contain a TRAM domain (pfam01938) which is believed to be responsible for binding to tRNAs. Hits to this model span all major groups of bacteria and eukaryotes, but not archaea, which are known to lack this particular tRNA modification. The enzyme from Thermotoga maritima has been cloned, expressed, spectroscopically characterized and shown to complement the E. coli MiaB enzyme. [Protein synthesis, tRNA and rRNA base modification] 438 -273701 TIGR01575 rimI ribosomal-protein-alanine acetyltransferase. Members of this model belong to the GCN5-related N-acetyltransferase (GNAT) superfamily. This model covers prokarotes and the archaea. The seed contains a characterized accession for Gram negative E. coli. An untraceable characterized accession (PIR|S66013) for Gram positive B. subtilis scores well (205.0) in the full alignment. Characterized members are lacking in the archaea. Noise cutoff (72.4) was set to exclude M. loti paralog of rimI. Trusted cutoff (80.0) was set at next highest scoring member in the mini-database. [Protein synthesis, Ribosomal proteins: synthesis and modification] 131 -273702 TIGR01577 oligosac_amyl oligosaccharide amylase. The name of this type of amylase is based on the characterization of an glucoamylase family enzyme from Thermoactinomyces vulgaris. The T. vulgaris enzyme was expressed in E. coli and, like other glucoamylases, it releases beta-D-glucose from starch. However, unlike previously characterized glucoamylases, this T. vulgaris amylase hydrolyzes maltooligosaccharides (maltotetraose, maltose) more efficiently than starch (1), indicating this enzyme belongs to a class of glucoamylase-type enzymes with oligosaccharide-metabolizing activity. 616 -273703 TIGR01578 MiaB-like-B MiaB-like tRNA modifying enzyme, archaeal-type. This clade of sequences is closely related to MiaB, a modifier of isopentenylated adenosine-37 of certain eukaryotic and bacterial tRNAs (see TIGR01574). Sequence alignments suggest that this equivalog performs the same chemical transformation as MiaB, perhaps on a different (or differently modified) tRNA base substrate. This clade is a member of a subfamily (TIGR00089) and spans the archaea and eukaryotes. The only archaeal miaB-like genes are in this clade, while eukaryotes have sequences described by this model as well as ones falling within the scope of the MiaB equivalog model. [Protein synthesis, tRNA and rRNA base modification] 420 -273704 TIGR01579 MiaB-like-C MiaB-like tRNA modifying enzyme. This clade of sequences is closely related to MiaB, a modifier of isopentenylated adenosine-37 of certain eukaryotic and bacterial tRNAs (see TIGR01574). Sequence alignments suggest that this equivalog performs the same chemical transformation as MiaB, perhaps on a different (or differently modified) tRNA base substrate. This clade is a member of a subfamily (TIGR00089) and spans low GC Gram positive bacteria, alpha and epsilon proteobacteria, Campylobacter, Porphyromonas, Aquifex, Thermotoga, Chlamydia, Treponema and Fusobacterium. [Protein synthesis, tRNA and rRNA base modification] 414 -162434 TIGR01580 narG respiratory nitrate reductase, alpha subunit. The Nitrate reductase enzyme complex allows bacteria to use nitrate as an electron acceptor during anaerobic growth. The enzyme complex consists of a tetramer that has an alpha, beta and 2 gamma subunits. The alpha and beta subunits have catalytic activity and the gamma subunits attach the enzyme to the membrane and is a b-type cytochrome that receives electrons from the quinone pool and transfers them to the beta subunit. This model is specific for the alpha subunit for nitrate reductase I (narG) and nitrate reductase II (narZ) for gram positive and gram negative bacteria.A few thermophiles and archaea also match the model The seed members used to make the model include Nitrate reductases from Pseudomonas fluorescens (GP:11344601), E.coli (SP:P09152) and B.subtilis (SP:P42175). All seed members are experimentally characterized. Some unpublished nitrate reductases, that are shorter sequences, and probably fragments fall in between the noise and trusted cutoffs. Pfam models pfam00384 (Molybdopterin oxidoreductase) and pfam01568(Molydopterin dinucleotide binding domain) will also match the nitrate reductase, alpha subunit. [Energy metabolism, Anaerobic] 1235 -130643 TIGR01581 Mo_ABC_porter NifC-like ABC-type porter. This model describes a clade of ABC porter genes with relatively weak homology compared to its neighbor clades, the molybdate (TIGR02141) and sulfate (TIGR00969) porters. Neighbor-Joining, PAM-distance phylogenetic trees support the separation of the clades in this way. Included in this group is a gene designated NifC in Clostridium pasturianum. It would be reasonable to presume that NifC acts as a molybdate porter since the most common form of nitrogenase is a molybdoenzyme. Several other sequences falling within the scope of this model are annotated as molybdate porters and one, from Halobacterium, is annotated as a sulfate porter. There is presently no experimental evidence to support annotations with this degree of specificity. 225 -273705 TIGR01582 FDH-beta formate dehydrogenase, beta subunit, Fe-S containing. This model represents the beta subunit of the gamma-proteobacterial formate dehydrogenase. This subunit contains four 4Fe-4S clusters and is involved in transmitting electrons from the alpha subunit (TIGR01553) at the periplasmic space to the gamma subunit which spans the cytoplasmic membrane. In addition to the gamma proteobacteria, a sequence from Aquifex aolicus falls within the scope of this model. This appears to be the case for the alpha, gamma and epsilon (accessory protein TIGR01562) chains as well. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 283 -130645 TIGR01583 formate-DH-gamm formate dehydrogenase, gamma subunit. This model represents the gamma chain of the gamma proteobacteria (and Aquifex aolicus) formate dehydrogenase. This subunit is integral to the cytoplasmic membrane, consisting of 4 transmembrane helices, and receives electrons from the beta subunit. The entire E. coli formate dehydrogenase N (nitrate-inducible form) has been crystallized. The gamma subunit contains two cytochromes, heme b(P) and heme b(C) near the periplasmic and cytoplasmic sides of the membrane respectively. The electron acceptor quinone binds at the cytoplasmic heme histidine ligand. NiFe-hydrogenase and thiosulfate reductase contain homologous gamma subunits, and these can be found scoring in the noise of this model. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 204 -130646 TIGR01584 citF citrate lyase, alpha subunit. This is a model of the alpha subunit of the holoenzyme citrate lyase (EC 4.1.3.6) composed of alpha (EC 2.8.3.10), beta (EC 4.1.3.34), and acyl carrier protein subunits in a stoichiometric relationship of 6:6:6. Citrate lyase is an enzyme which converts citrate to oxaloacetate. In bacteria, this reaction is involved in citrate fermentation. The alpha subunit catalyzes the reaction Acetyl-CoA + citrate = acetate + (3S)-citryl-CoA. The seed contains an experimentally characterized member from Lactococcus lactis subsp. lactis. The model covers both Gram positive and Gram negative bacteria. It is quite robust with queries scoring either quite well or quite poorly against the model. There are currently no hits in between the noise cutoff and trusted cutoff. [Energy metabolism, Fermentation] 492 -273706 TIGR01586 yopT_cys_prot cysteine protease domain, YopT-type. The model represents a cysteine protease domain found in proteins of bacteria that include plant pathogens (Pseudomonas syringae), root nodule bacteria, and intracellular pathogens (e.g. Yersinia pestis, Haemophilus ducreyi, Pasteurella multocida, Chlamydia trachomatis) of animal hosts. The domain features a catalytic triad of Cys, His, and Asp. Sequences can be extremely divergent outside of a few well-conserved motifs, and additional members may exist that are detected by this model. YopT, a virulence effector protein of Yersinia pestis, cleaves and releases host cell Rho GTPases from the membrane, thereby disrupting the actin cytoskeleton. Members of the family from pathogenic bacteria are likely to be pathogenesis factors. [Cellular processes, Pathogenesis] 196 -273707 TIGR01587 cas3_core CRISPR-associated helicase Cas3. This model represents the highly conserved core region of an alignment of Cas3, a protein found in association with CRISPR repeat elements in a broad range of bacteria and archaea. Cas3 appears to be a helicase, with regions found by pfam00270 (DEAD/DEAH box helicase) and pfam00271 (Helicase conserved C-terminal domain). Some but not all members have an N-terminal HD domain region (pfam01966) that is not included within this model. 359 -130649 TIGR01588 citE citrate lyase, beta subunit. This is a model of the beta subunit of the holoenzyme citrate lyase (EC 4.1.3.6) composed of alpha (EC 2.8.3.10), beta (EC 4.1.3.34), and acyl carrier protein subunits in a stoichiometric relationship of 6:6:6. Citrate lyase is an enzyme which converts citrate to oxaloacetate. In bacteria, this reaction is involved in citrate fermentation. The beta subunit catalyzes the reaction (3S)-citryl-CoA = acetyl-CoA + oxaloacetate. The seed contains an experimentally characterized member from Leuconostoc mesenteroides. The model covers a wide range of Gram positive bacteria. For Gram negative bacteria, it appears that only gamma proteobacteria hit this model. The model is quite robust with queries scoring either quite well or quite poorly against the model. There are currently no hits in-between the noise cutoff and trusted cutoff. [Energy metabolism, Fermentation] 288 -130650 TIGR01589 A_thal_3526 uncharacterized plant-specific domain TIGR01589. This model represents an uncharacterized plant-specific domain 57 residues in length. It is found toward the N-terminus of most proteins that contain it. Examples include at least 10 proteins from Arabidopsis thaliana and at least one from Oryza sativa. 57 -130651 TIGR01590 yir-bir-cir_Pla yir/bir/cir-family of variant antigens, Plasmodium-specific. This model represents a large paralogous family of variant antigens from several Plasmodium species (P. yoelii, P. berghei and P. chabaudi). The seed was generated from a list of ORF's in P. yoelii containing a paralagous domain as defined by an algorithm implemented at TIFR. The list was aligned and reduced to six sequences approximating the most divergent clades present in the data set. The model only hits genes previously characterized as yir, bir, or cir genes above the trusted cutoff. In between trusted and noise is one gene from P. vivax (vir25) which has been characterized as a distant relative of the yir/bir/cir family. The vir family appears to be present in 600-1000 copies per haploid genome and is preferentially located in the sub-telomeric regions of the chromosomes. The genomic data for yoelii is consistent with this observation. It is not believed that there are any orthologs of this family in P. falciparum. 199 -130652 TIGR01591 Fdh-alpha formate dehydrogenase, alpha subunit, archaeal-type. This model describes a subset of formate dehydrogenase alpha chains found mainly archaea but also in alpha and gamma proteobacteria and a small number of gram positive bacteria. The alpha chain contains domains for molybdopterin dinucleotide binding and molybdopterin oxidoreductase (pfam01568 and pfam00384, respectively). The holo-enzyme also contains beta and gamma subunits. The enzyme catalyzes the oxidation of formate (produced from pyruvate during anaerobic growth) to carbon dioxide with the concomitant release of two electrons and two protons. The enzyme's purpose is to allow growth on formate in some circumstances and, in the case of FdhH in gamma proteobacteria, to pass electrons to hydrogenase (by which process acid is neutralized). This model is well-defined, with only a single fragmentary sequence falling between trusted and noise. The alpha subunit of a version of nitrate reductase is closely related. 671 -130653 TIGR01592 holin_SPP1 holin, SPP1 family. This model represents one of more than 30 families of phage proteins, all lacking detectable homology with each other, known or believed to act as holins. Holins act in cell lysis by bacteriophage. Members of this family are found in phage PBSX and phage SPP1, among others. [Mobile and extrachromosomal element functions, Prophage functions] 75 -273708 TIGR01593 holin_tox_secr toxin secretion/phage lysis holin. This model describes one of the many mutally dissimilar families of holins, phage proteins that act together with lytic enzymes in bacterial lysis. This family includes, besides phage holins, the protein TcdE/UtxA involved in toxin secretion in Clostridium difficile and related species. [Protein fate, Protein and peptide secretion and trafficking, Mobile and extrachromosomal element functions, Prophage functions] 128 -273709 TIGR01594 holin_lambda phage holin, lambda family. This model represents one of a large number of mutally dissimilar families of phage holins. Holins act against the host cell membrane to allow lytic enzymes of the phage to reach the bacterial cell wall. This family includes the product of the S gene of phage lambda. [Mobile and extrachromosomal element functions, Prophage functions] 107 -273710 TIGR01595 cas_CT1132 CRISPR-associated protein, CT1132 family. This protein is found in at least five widely species that contain CRISPR loci. Four cas (CRISPR-associated) proteins that are widely distributed and found near the CRISPR repeats. This protein is found exclusively next to other cas proteins. Its function is unknown. 281 -273711 TIGR01596 cas3_HD CRISPR-associated endonuclease Cas3-HD. CRISPR/Cas systems are widespread, mobile systems for host defense against invasive elements such as phage. In these systems, Cas3 designates one of the core proteins shared widely by multiple types of CRISPR/Cas system. This model represents an HD-like endonuclease that occurs either separately or as the N-terminal region of Cas3, the helicase-containing CRISPR-associated protein. 176 -130658 TIGR01597 PYST-B Plasmodium yoelii subtelomeric family PYST-B. This model represents a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. 255 -130659 TIGR01598 holin_phiLC3 holin, phage phi LC3 family. Phage proteins for bacterial lysis typically include a membrane-disrupting protein, or holin, and one or more cell wall degrading enzymes that reach the cell wall because of holin action. Holins are found in a large number of mutually non-homologous families. [Mobile and extrachromosomal element functions, Prophage functions] 78 -273712 TIGR01599 PYST-A Plasmodium yoelii subtelomeric family PYST-A. This model represents a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. Members of this family are expressed in both the Sporozoite and Gametozoite life stages. A single high-scoring gene was identified in the complete genome of P. falciparum as well as a single gene from P. chaboudi from GenBank which were included in the seed. There are no obvious homologs to these genes in any non-Plasmodium organism. These observations suggest an expansion of this family in yoelii from a common Plasmodium ancestor gene (present in a single copy in falciparum). 208 -130661 TIGR01600 phage_tail_L lambda-like phage minor tail protein L. This model detects members of the family of phage lambda minor tail protein L. This model was built as a fragment model to allow detection of fragmentary sequences, as might be found in cryptic prophage regions. [Mobile and extrachromosomal element functions, Prophage functions] 225 -213640 TIGR01601 PYST-C1 Plasmodium yoelii subtelomeric domain PYST-C1. This model represents the N-terminal domain of a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. The C-terminal portions of the genes which contain this domain are divergent and some contain other yoelii-specific paralogous domains such as PYST-C2 (TIGR01604). 82 -130663 TIGR01602 PY-rept-46 Plasmodium yoelii repeat of length 46. This repeat is found in only 2 genes in Plasmodium yoelii, in each of these genes it is repeated 9 times. It is found in no other organism. 46 -273713 TIGR01603 maj_tail_phi13 phage major tail protein, phi13 family. This model describes a set of proteins that share low levels of sequence similarity but similar lengths and similar patterns of charged, hydrophobic, and Gly/Pro residues. All members (except one attributed to mouse embryo cDNA) belong to phage of Gram-positive bacteria. Several are identified as phage major tail proteins. Some members of this family have additional C-terminal regions of about 100 residues not included in this model. [Mobile and extrachromosomal element functions, Prophage functions] 190 -130665 TIGR01604 PYST-C2 Plasmodium yoelii subtelomeric domain PYST-C2. This model represents a domain of a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. The genes found by this model often are associated with an N-terminal domain yoelii-specific domain such as PYST-C1 (TIGR01601). 150 -130666 TIGR01605 PYST-D Plasmodium yoelii subtelomeric family PYST-D. This model represents a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. These genes are generally very short (ca. 50 residues). There are no obvious homologs to these genes in any other organism. 55 -200119 TIGR01606 holin_BlyA holin, BlyA family. This family represents a BlyA, a small holin found in Borrelia circular plasmids that prove to be temperate phage. This protein was previously proposed to be an hemolysin. BlyA is small (67 residues) and contains two largely hydrophobic helices and a highly charged C-terminus. [Mobile and extrachromosomal element functions, Prophage functions] 63 -162444 TIGR01607 PST-A Plasmodium subtelomeric family (PST-A). This model represents a paralogous family of genes in Plasmodium falciparum and Plasmodium yoelii, which are closely related to various phospholipases and lysophospholipases of plants as well as generally being related to the alpha/beta-fold superfamily of hydrolases. These genes are preferentially located in the subtelomeric regions of the chromosomes of both P. falciparum and P. yoelii. 332 -130669 TIGR01608 citD citrate lyase acyl carrier protein. This is a model of the acyl carrier protein (aka gamma subunit) of the holoenzyme citrate lyase (EC 4.1.3.6) composed of alpha (EC 2.8.3.10), beta (EC 4.1.3.34), and acyl carrier protein subunits in a stoichiometric relationship of 6:6:6. Citrate lyase is an enzyme which converts citrate to oxaloacetate. In bacteria, this reaction is involved in citrate fermentation. The acyl carrier protein covalently binds the coenzyme of citrate lyase. The seed contains an experimentally characterized member from Leuconostoc mesenteroides. The model covers a wide range of Gram positive bacteria. For Gram negative bacteria, it appears that only gamma proteobacteria hit this model. The model is quite robust with queries scoring either quite well or quite poorly against the model. There are currently no hits in-between the noise cutoff and trusted cutoff. [Energy metabolism, Fermentation] 92 -273714 TIGR01609 PF_unchar_267 Plasmodium falciparum uncharacterized protein TIGR01609. This model represents a family of at least four proteins in Plasmodium falciparum. An interesting feature is five perfectly conserved Trp residues. 146 -273715 TIGR01610 phage_O_Nterm phage replication protein O, N-terminal domain. This model represents the N-terminal region of the phage lambda replication protein O and homologous regions of other phage proteins. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 95 -130672 TIGR01611 tail_tube phage contractile tail tube protein, P2 family. The tails of some phage are contractile. This model represents the tail tube, or tail core, protein of the contractile tail of phage P2, and homologous proteins from additional phage. [Mobile and extrachromosomal element functions, Prophage functions] 168 -130673 TIGR01612 235kDa-fam reticulocyte binding/rhoptry protein. This model represents a group of paralogous families in plasmodium species alternately annotated as reticulocyte binding protein, 235-kDa family protein and rhoptry protein. Rhoptry protein is localized on the cell surface and is extremely large (although apparently lacking in repeat structure) and is important for the process of invasion of the RBCs by the parasite. These proteins are found in P. falciparum, P. vivax and P. yoelii. 2757 -273716 TIGR01613 primase_Cterm phage/plasmid primase, P4 family, C-terminal domain. This model represents a clade within a larger family of proteins from viruses of bacteria and animals. Members of this family are found in phage and plasmids of bacteria and archaea only. The model describes a domain of about 300 residues, found generally toward the protein C-terminus. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 304 -273717 TIGR01614 PME_inhib pectinesterase inhibitor domain. This model describes a plant domain of about 200 amino acids, characterized by four conserved Cys residues, shown in a pectinesterase inhibitor from Kiwi to form two disulfide bonds: first to second and third to fourth. Roughly half the members of this family have the region described by this model followed immediately by a pectinesterase domain, pfam01095. This suggests that the pairing of the enzymatic domain and its inhibitor reflects a conserved regulatory mechanism for this enzyme family. 178 -273718 TIGR01615 A_thal_3542 uncharacterized plant-specific domain TIGR01615. This model represents a domain found toward the C-terminus of a number of uncharacterized plant proteins. The domain is strongly conserved (greater than 30 % sequence identity between most pairs of members) but flanked by highly divergent regions including stretches of low-complexity sequence. 131 -273719 TIGR01616 nitro_assoc nitrogenase-associated protein. This model describes a small family of uncharacterized proteins found so far in alpha and gamma proteobacteria and in Nostoc sp. PCC 7120, a cyanobacterium. The gene for this protein is associated with nitrogenase genes. This family shows sequence similarity to TIGR00014, a glutaredoxin-dependent arsenate reductase that converts arsentate to arsenite for disposal. This family is one of several included in pfam03960. [Unknown function, General] 126 -273720 TIGR01617 arsC_related transcriptional regulator, Spx/MgsR family. This model represents a portion of the proteins within the larger set covered by pfam03960. That larger family includes a glutaredoxin-dependent arsenate reductase (TIGR00014). Characterized members of this family include Spx and MgsR from Bacillus subtili. Spx is a global regulator for response to thiol-specific oxidative stress. It interacts with RNA polymerase. MgsR (modulator of the general stress response, also called YqgZ) provides a second level of regulation for more than a third of the proteins in the B. subtilis general stress regulon controlled by Sigma-B. [Regulatory functions, DNA interactions] 117 -130679 TIGR01618 phage_P_loop phage nucleotide-binding protein. This model represents an uncharacterized family of proteins from a number of phage of Gram-positive bacteria. This protein contains a P-loop motif, G/A-X-X-G-X-G-K-T near its amino end. The function of this protein is unknown. [Mobile and extrachromosomal element functions, Prophage functions] 220 -130680 TIGR01619 hyp_HI0040 TIGR01619 family protein. This model represents a hypothetical equivalog of gamma proteobacteria, includes HI0040. These sequences do not have any similarity to known proteins by PSI-BLAST. 249 -130681 TIGR01620 hyp_HI0043 TIGR01620 family protein. This model includes putative membrane proteins from alpha and gamma proteobacteria, each making up their own clade. The two clades have less than 25% identity between them. We could not find support for the assignment to the sequence from Brucella (OMNI|NTL01BM0951) of being a GTP-binding protein. 289 -130682 TIGR01621 RluA-like pseudouridine synthase Rlu family protein, TIGR01621. This model represents a clade of sequences within the pseudouridine synthase superfamily (pfam00849). The superfamily includes E. coli proteins: RluA, RluB, RluC, RluD, and RsuA. The sequences modeled here are most closely related to RluA. Neisseria, among those species hitting this model, does not appear to have an RluA homolog. It is presumed that these sequences function as pseudouridine synthases, although perhaps with different specificity. [Protein synthesis, tRNA and rRNA base modification] 217 -273721 TIGR01622 SF-CC1 splicing factor, CC1-like family. This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed. 494 -130684 TIGR01623 put_zinc_LRP1 putative zinc finger domain, LRP1 type. This model represents a putative zinc finger domain found in plants. Arabidopsis thaliana has at least 10 distinct members. Proteins containing this domain, including LRP1, generally share the same size, about 300 amino acids, and architecture. This 43-residue domain, and a more C-terminal companion domain of similar size, appear as tightly conserved islands of sequence similarity. The remainder consists largely of low-complexity sequence. Several animal proteins have regions with matching patterns of Cys, Gly, and His residues. These are not included in the model but score between trusted and noise cutoffs. 43 -273722 TIGR01624 LRP1_Cterm LRP1 C-terminal domain. This model represents a tightly conserved small domain found in LRP1 and related plant proteins. This family also contains a well-conserved putative zinc finger domain (TIGR01623). The rest of the sequence of most members consists of highly divergent, low-complexity sequence. 50 -130686 TIGR01625 YidE_YbjL_dupl AspT/YidE/YbjL antiporter duplication domain. This model represents a domain that is duplicated the aspartate-alanine antiporter AspT, as well as HI0035 of Haemophilus influenzae, YidE and YbjL of E. coli, and a number of other known or putative transporters. Member proteins may have 0, 1, or 2 copies of TrkA potassium uptake domain pfam02080 between the duplications. The domain contains several apparent transmembrane regions and is proposed here to act in transport. [Transport and binding proteins, Unknown substrate] 154 -130687 TIGR01626 ytfJ_HI0045 conserved hypothetical protein YtfJ-family, TIGR01626. This model represents sequences from gamma proteobacteria that are related to the E. coli protein, YtfJ. 184 -130688 TIGR01627 A_thal_3515 uncharacterized plant-specific domain TIGR01627. This model represents an uncharacterized domain found in both Arabidopsis thaliana (at least 10 copies) and Oryza sativa. Most member proteins have only a short stretch of sequence N-terminal to this domain, but one has a long N-terminal extension that includes a protein kinase domain (pfam00069). 225 -130689 TIGR01628 PABP-1234 polyadenylate binding protein, human types 1, 2, 3, 4 family. These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range. 562 -273723 TIGR01629 rep_II_X phage/plasmid replication protein, gene II/X family. This model represents a family of phage and plasmid replication proteins. In bacteriophage IKe and related phage, the full-length protein is designated gene II protein. A much shorter protein of unknown function, translated from a conserved in-frame alternative initiator, is designated gene X protein. Members of this family also include plasmid replication proteins. This model is built as a fragment model to better detect translations from alternate intiators and other fragments relative to full length gene II protein. [Mobile and extrachromosomal element functions, Prophage functions, Mobile and extrachromosomal element functions, Plasmid functions] 345 -130691 TIGR01630 psiM2_ORF9 phage uncharacterized protein (putative large terminase), C-terminal domain. This model represents the C-terminal region of a set of phage proteins typically about 400-500 amino acids in length, although some members are considerably shorter. An article on Methanobacterium phage Psi-M2 ( calls the member from that phage, ORF9, a putative large terminase subunit, and ORF8 a candidate terminase small subunit. Most proteins in this family have an apparent P-loop nucleotide-binding sequence toward the N-terminus. [Mobile and extrachromosomal element functions, Prophage functions] 142 -273724 TIGR01631 Trypano_RHS trypanosome RHS (retrotransposon hot spot) family. This model describes full-length and part-length members of the RHS (retrotransposon hot spot) family in Trypanosoma brucei and Trypanosoma cruzi. Members of this family are frequently interrupted by non-LTR retrotransposons inserted at exactly the same relative position. 760 -233500 TIGR01632 L11_bact 50S ribosomal protein uL11, bacterial form. This model represents bacterial, chloroplast, and most mitochondrial forms of 50S ribosomal protein L11. [Protein synthesis, Ribosomal proteins: synthesis and modification] 140 -188159 TIGR01633 phi3626_gp14_N putative phage tail component, N-terminal domain. This model represents the best-conserved region of about 125 amino acids, toward the N-terminus, of a family of proteins from temperate phage of a number of Gram-positive bacteria. These phage proteins range in length from 230 to 525 amino acids. [Mobile and extrachromosomal element functions, Prophage functions] 124 -130695 TIGR01634 tail_P2_I phage tail protein, P2 protein I family. This model represents the family of phage P2 protein I and related tail proteins from a number of temperate phage of Gram-negative bacteria. This model is built as a fragment model and identifies some phage tail proteins with strong but local similarity to members of the seed alignment. [Mobile and extrachromosomal element functions, Prophage functions] 139 -130696 TIGR01635 tail_comp_S phage virion morphogenesis (putative tail completion) protein. This model describes protein S of phage P2, suggested experimentally to act in tail completion and stable head joining, and related proteins from a number of phage. [Mobile and extrachromosomal element functions, Prophage functions] 144 -130697 TIGR01636 phage_rinA phage transcriptional activator, RinA family. This model represents a family of phage proteins, including RinA, a transcriptional activator in staphylococcal phage phi 11. This family shows similarity to ArpU, a phage-related putative autolysin regulator, and to some sporulation-specific sigma factors. [Mobile and extrachromosomal element functions, Prophage functions, Regulatory functions, DNA interactions] 134 -273725 TIGR01637 phage_arpU phage transcriptional regulator, ArpU family. This model represents a family of phage proteins, including ArpU, called a putative autolysin regulatory protein. ArpU was described as a regulator of cellular muramidase-2 of Enterococcus hirae but appears to have been cloned from a prophage. This family appears related to the RinA family of bacteriophage transcriptional activators and to some sporulation-specific sigma factors. We propose that this is a phage transcriptional activator family. [Mobile and extrachromosomal element functions, Prophage functions, Regulatory functions, DNA interactions] 132 -130699 TIGR01638 Atha_cystat_rel Arabidopsis thaliana cystatin-related protein. This model represents a family similar in sequence and probably homologous to a large family of cysteine proteinase inhibitors, or cystatins, as described by pfam00031. Cystatins may help plants resist attack by insects. 92 -130700 TIGR01639 P_fal_TIGR01639 Plasmodium falciparum uncharacterized domain TIGR01639. This model represents a conserved sequence region of about 60 amino acids found in over 40 predicted proteins of Plasmodium falciparum. It is not found elsewhere, including closely related species such as Plasmodium yoelii. No member of this family is characterized. 61 -273726 TIGR01640 F_box_assoc_1 F-box protein interaction domain. This model describes a large family of plant domains, with several hundred members in Arabidopsis thaliana. Most examples are found C-terminal to an F-box (pfam00646), a 60 amino acid motif involved in ubiquitination of target proteins to mark them for degradation. Two-hybid experiments support the idea that most members are interchangeable F-box subunits of SCF E3 complexes. Some members have two copies of this domain. 230 -213641 TIGR01641 phageSPP1_gp7 phage putative head morphogenesis protein, SPP1 gp7 family. This model describes a region of about 110 amino acids found exclusively in phage-related proteins, internally or toward the C-terminus. One member, gp7 of phage SPP1, appears involved in head morphogenesis. [Mobile and extrachromosomal element functions, Prophage functions] 108 -273727 TIGR01642 U2AF_lg U2 snRNP auxilliary factor, large subunit, splicing factor. These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi. 509 -273728 TIGR01643 YD_repeat_2x YD repeat (two copies). This model describes two tandem copies of a 21-residue extracellular repeat found in Gram-negative, Gram-positive, and animal proteins. The repeat is named for a YD dipeptide, the most strongly conserved motif of the repeat. These repeats appear in general to be involved in binding carbohydrate; the chicken teneurin-1 YD-repeat region has been shown to bind heparin. 42 -273729 TIGR01644 phage_P2_V phage baseplate assembly protein V. This model describes a family of phage (and bacteriocin) proteins related to the phage P2 V gene product, which forms the small spike at the tip of the tail. Homologs in general are annotated as baseplate assembly protein V. At least one member is encoded within a region of Pectobacterium carotovorum (Erwinia carotovora) described as a bacteriocin, a phage tail-derived module able to kill bacteria closely related to the host strain. [Mobile and extrachromosomal element functions, Prophage functions] 190 -130706 TIGR01645 half-pint poly-U binding splicing factor, half-pint family. The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA. 612 -273730 TIGR01646 vgr_GE Rhs element Vgr protein. This model represents the Vgr family of proteins, associated with some classes of Rhs elements. This model does not include a large octapeptide repeat region, VGXXXXXX, found in the Vgr of Rhs classes G and E. 483 -273731 TIGR01647 ATPase-IIIA_H plasma-membrane proton-efflux P-type ATPase. This model describes the plasma membrane proton efflux P-type ATPase found in plants, fungi, protozoa, slime molds and archaea. The best studied representative is from yeast. 754 -273732 TIGR01648 hnRNP-R-Q heterogeneous nuclear ribonucleoprotein R, Q family. Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain. 578 -273733 TIGR01649 hnRNP-L_PTB hnRNP-L/PTB/hephaestus splicing factor family. Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067). 481 -130711 TIGR01650 PD_CobS cobaltochelatase, CobS subunit. This model describes Pseudomonas denitrificans CobS gene product, which is a cobalt chelatase subunit that functions in cobalamin biosynthesis. Cobalamin (vitamin B12) can be synthesized via several pathways, including an aerobic pathway (found in Pseudomonas denitrificans) and an anaerobic pathway (found in P. shermanii and Salmonella typhimurium). These pathways differ in the point of cobalt insertion during corrin ring formation. There are apparently a number of variations on these two pathways, where the major differences seem to be concerned with the process of ring contraction. Confusion regarding the functions of enzymes found in the aerobic vs. anaerobic pathways has arisen because nonhomologous genes in these different pathways were given the same gene symbols. Thus, cobS in the aerobic pathway (P. denitrificans) is not a homolog of cobS in the anaerobic pathway (S. typhimurium). It should be noted that E. coli synthesizes cobalamin only when it is supplied with the precursor cobinamide, which is a complex intermediate. Additionally, all E. coli cobalamin synthesis genes (cobU, cobS and cobT) were named after their Salmonella typhimurium homologs which function in the anaerobic cobalamin synthesis pathway. This model describes the aerobic cobalamin pathway Pseudomonas denitrificans CobS gene product, which is a cobalt chelatase subunit, with a MW ~37 kDa. The aerobic pathway cobalt chelatase is a heterotrimeric, ATP-dependent enzyme that catalyzes cobalt insertion during cobalamin biosynthesis. The other two subunits are the P. denitrificans CobT (TIGR01651) and CobN (pfam02514 CobN/Magnesium Chelatase) proteins. To avoid potential confusion with the nonhomologous Salmonella typhimurium/E.coli cobS gene product, the P. denitrificans gene symbol is not used in the name of this model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 327 -130712 TIGR01651 CobT cobaltochelatase, CobT subunit. This model describes Pseudomonas denitrificans CobT gene product, which is a cobalt chelatase subunit that functions in cobalamin biosynthesis. Cobalamin (vitamin B12) can be synthesized via several pathways, including an aerobic pathway (found in Pseudomonas denitrificans) and an anaerobic pathway (found in P. shermanii and Salmonella typhimurium). These pathways differ in the point of cobalt insertion during corrin ring formation. There are apparently a number of variations on these two pathways, where the major differences seem to be concerned with the process of ring contraction. Confusion regarding the functions of enzymes found in the aerobic vs. anaerobic pathways has arisen because nonhomologous genes in these different pathways were given the same gene symbols. Thus, cobT in the aerobic pathway (P. denitrificans) is not a homolog of cobT in the anaerobic pathway (S. typhimurium). It should be noted that E. coli synthesizes cobalamin only when it is supplied with the precursor cobinamide, which is a complex intermediate. Additionally, all E. coli cobalamin synthesis genes (cobU, cobS and cobT) were named after their Salmonella typhimurium homologs which function in the anaerobic cobalamin synthesis pathway. This model describes the aerobic cobalamin pathway Pseudomonas denitrificans CobT gene product, which is a cobalt chelatase subunit, with a MW ~70 kDa. The aerobic pathway cobalt chelatase is a heterotrimeric, ATP-dependent enzyme that catalyzes cobalt insertion during cobalamin biosynthesis. The other two subunits are the P. denitrificans CobS (TIGR01650) and CobN (pfam02514 CobN/Magnesium Chelatase) proteins. To avoid potential confusion with the nonhomologous Salmonella typhimurium/E.coli cobT gene product, the P. denitrificans gene symbol is not used in the name of this model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 600 -273734 TIGR01652 ATPase-Plipid phospholipid-translocating P-type ATPase, flippase. This model describes the P-type ATPase responsible for transporting phospholipids from one leaflet of bilayer membranes to the other. These ATPases are found only in eukaryotes. 1057 -273735 TIGR01653 lactococcin_972 bacteriocin, lactococcin 972 family. This model represents bacteriocins related to lactococcin 972. Members tend to be found in association with a seven transmembrane putative immunity protein. [Cellular processes, Toxin production and resistance] 92 -273736 TIGR01654 bact_immun_7tm bacteriocin-associated integral membrane (putative immunity) protein. This model represents a family of integral membrane proteins, most of which are about 650 residues in size and predicted to span the membrane seven times. Nearly half of the members of this family are found in association with a member of the lactococcin 972 family of bacteriocins (TIGR01653). Others may be associated with uncharacterized proteins that may also act as bacteriocins. Although this protein is suggested to be an immunity protein, and the bacteriocin is suggested to be exported by a Sec-dependent process, the role of this protein is unclear. [Cellular processes, Toxin production and resistance] 679 -130716 TIGR01655 yxeA_fam conserved hypothetical protein TIGR01655. This model represents a family of small (about 115 amino acids) uncharacterized proteins with N-terminal signal sequences, found exclusively in Gram-positive organisms. Most genomes that have any members of this family have at least two members. [Hypothetical proteins, Conserved] 114 -273737 TIGR01656 Histidinol-ppas histidinol-phosphate phosphatase family domain. This domain is found in authentic histidinol-phosphate phosphatases which are sometimes found as stand-alone entities and sometimes as fusions with imidazoleglycerol-phosphate dehydratase (TIGR01261). Additionally, a family of proteins including YaeD from E. coli (TIGR00213) and various other proteins are closely related but may not have the same substrate specificity. This domain is a member of the haloacid-dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. This superfamily is distinguished by the presence of three motifs: an N-terminal motif containing the nucleophilic aspartate, a central motif containing an conserved serine or threonine, and a C-terminal motif containing a conserved lysine (or arginine) and conserved aspartates. More specifically, the domian modelled here is a member of subfamily III of the HAD-superfamily by virtue of lacking a "capping" domain in either of the two common positions, between motifs 1 and 2, or between motifs 2 and 3. 147 -273738 TIGR01657 P-ATPase-V P-type ATPase of unknown pump specificity (type V). These P-type ATPases form a distinct clade but the substrate of their pumping activity has yet to be determined. This clade has been designated type V in. 1054 -273739 TIGR01658 EYA-cons_domain eyes absent protein conserved domain. This domain is common to all eyes absent (EYA) homologs. Metazoan EYA's also contain a variable N-terminal domain consisting largely of low-complexity sequences. 274 -273740 TIGR01659 sex-lethal sex-lethal family splicing factor. This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661). 346 -211677 TIGR01660 narH nitrate reductase, beta subunit. The Nitrate reductase enzyme complex allows bacteria to use nitrate as an electron acceptor during anaerobic growth. The enzyme complex consists of a tetramer that has an alpha, beta and 2 gamma subunits. The alpha and beta subunits have catalytic activity and the gamma subunits attach the enzyme to the membrane and is a b-type cytochrome that receives electrons from the quinone pool and transfers them to the beta subunit. This model is specific for the beta subunit for nitrate reductase I (narH) and nitrate reductase II (narY) for gram positive and gram negative bacteria.A few thermophiles and archaea also match the model.The seed members used in this model are all experimentally characterized and include the following:SP:P11349, and SP:P19318, both E.Coli (NarH and NarY respectively), SP:P42176 from B. Subtilis, GP:11344602 from Psuedomonas fluorescens,GP:541762 from Paracoccus denitrificans, and GP:18413622 from Halomonas halodenitrificans. This model also matches Pfam pfam00037 for 4Fe-4S binding domain. [Energy metabolism, Anaerobic] 492 -273741 TIGR01661 ELAV_HUD_SF ELAV/HuD family splicing factor. This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076). 352 -273742 TIGR01662 HAD-SF-IIIA HAD-superfamily hydrolase, subfamily IIIA. This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class III subfamilies are characterized by the lack of any domains located between either between the first and second conserved catalytic motifs (as in the Class I subfamilies, TIGR01493, TIGR01509, TIGR01488 and TIGR01494) or between the second and third conserved catalytic motifs (as in the Class II subfamilies, TIGR01460 and TIGR01484) of the superfamily domain. The IIIA subfamily contains five major clades: histidinol-phosphatase (TIGR01261) and histidinol-phosphatase-related protein (TIGR00213) which together form a subfamily (TIGR01656), DNA 3'-phosphatase (TIGR01663, TIGR01664), YqeG (TIGR01668) and YrbI (TIGR01670). In the case of histidinol phosphatase and PNK-3'-phosphatase, this model represents a domain of a bifunctional system. In the histidinol phosphatase HisB, a C-terminal domain is an imidazoleglycerol-phosphate dehydratase which catalyzes a related step in histidine biosynthesis. In PNK-3'-phosphatase, N- and C-terminal domains constitute the polynucleotide kinase and DNA-binding components of the enzyme. [Unknown function, Enzymes of unknown specificity] 135 -130724 TIGR01663 PNK-3'Pase polynucleotide 5'-kinase 3'-phosphatase. This model represents the metazoan 5'-polynucleotide-kinase-3'-phosphatase, PNKP, which is believed to be involved in repair of oxidative DNA damage. Removal of 3' phosphates is essential for the further processing of the break by DNA polymerases. The central phosphatase domain is a member of the IIIA subfamily (TIGR01662) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. As is common in this superfamily, the enzyme is magnesium dependent. A difference between this enzyme and other HAD-superfamily phosphatases is in the third conserved catalytic motif which usually contains two conserved aspartate residues believed to be involved in binding the magnesium ion. Here, the second aspartate is replaced by a conserved arginine residue which may indicate an interaction with the phosphate backbone of the substrate. Very close relatives of this domain are also found separate from the N- and C-terminal domains seen here, as in the 3'-phosphatase found in plants. The larger family of these domains is described by TIGR01664. Outside of the phosphatase domain is a P-loop ATP-binding motif associated with the kinase activity. The entry for the mouse homolog appears to be missing a large piece of sequence corresponding to the first conserved catalytic motif of the phosphatase domain as well as the conserved threonine of the second motif. Either this is a sequencing artifact or this may represent a pseudo- or non-functional gene. Note that the EC number for the kinase function is: 2.7.1.78 526 -211680 TIGR01664 DNA-3'-Pase DNA 3'-phosphatase. This model represents a family of proteins and protein domains which catalyze the dephosphorylation of DNA 3'-phosphates. It is believed that this activity is important for the repair of single-strand breaks in DNA caused by radiation or oxidative damage. This domain is often (TIGR01663), but not always linked to a DNA 5'-kinase domain. The central phosphatase domain is a member of the IIIA subfamily (TIGR01662) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. As is common in this superfamily, the enzyme is magnesium dependent. A difference between this enzyme and other HAD-superfamily phosphatases is in the third conserved catalytic motif which usually contains two conserved aspartate residues believed to be involved in binding the magnesium ion. Here, the second aspartate is usually replaced by an arginine residue which may indicate an interaction with the phosphate backbone of the substrate. Alternatively, there is an additional conserved aspartate downstream of the ususal site which may indicate slightly different fold in this region. 166 -273743 TIGR01665 put_anti_recept phage minor structural protein, N-terminal region. This model represents the conserved N-terminal region, typically from about residue 25 to about residue 350, of a family of uncharacterized phage proteins 500 to 1700 residues in length. [Mobile and extrachromosomal element functions, Prophage functions] 317 -130727 TIGR01666 YCCS TIGR01666 family membrane protein. This model represents a clade of sequences from gamma and beta proteobacteria. These proteins are >700 amino acids long and many have been annotated as putative membrane proteins. The gene from Salmonella has been annotated as a putative efflux transporter. The gene from E. coli has the name yccS. [Cell envelope, Other] 704 -130728 TIGR01667 YCCS_YHJK integral membrane protein, YccS/YhfK family. This model represents two clades of putative transmembrane proteins including the E. coli YccS and YhfK proteins. The YccS hypothetical equivalog (TIGR01666) is found in beta and gamma proteobacteria, while the smaller YhfK group is only found in E. coli, Salmonella and Yersinia. TMHMM on the 19 hits to this model shows a consensus of 11 transmembrane helices separated into two clusters, an N-terminal cluster of 6 and a central cluster of 5. This would indicate two non-membrane domains one on each side of the membrane 701 -273744 TIGR01668 YqeG_hyp_ppase HAD superfamily (subfamily IIIA) phosphatase, TIGR01668. This family of hypothetical proteins is a member of the IIIA subfamily of the haloacid dehalogenase (HAD) superfamily of hydrolases. All characterized members of this subfamily (TIGR01662) and most characterized members of the HAD superfamily are phosphatases. HAD superfamily phosphatases contain active site residues in several conserved catalytic motifs, all of which are found conserved here. This family consists of sequences from fungi, plants, cyanobacteria, gram-positive bacteria and Deinococcus. There is presently no characterization of any sequence in this family. 170 -273745 TIGR01669 phage_XkdX phage uncharacterized protein, XkdX family. This model represents a family of small (about 50 amino acid) phage proteins, found in at least 12 different phage and prophage regions of Gram-positive bacteria. In a number of these phage, the gene for this protein is found near the holin and endolysin genes. [Mobile and extrachromosomal element functions, Prophage functions] 45 -130731 TIGR01670 KdsC-phosphatas 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase, YrbI family. This family of proteins is a member of the IIIA subfamily of the haloacid dehalogenase (HAD) superfamily of hydrolases. All characterized members of this subfamily (TIGR01662) and most characterized members of the HAD superfamily are phosphatases. HAD superfamily phosphatases contain active site residues in several conserved catalytic motifs, all of which are found conserved here. One member of this family, the YrbI protein from H. influenzae has been cloned, expressed, purified and found to be an active 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase. Furthermore, its crystal structure has been determined. This family consists of sequences from beta, gamma and epsilon proteobacteria, Aquifex, Fusobacterium, Porphyromonas and Methanosarcina. The Methanosarcina sequence is distinctive in that it is linked to an N-terminal cytidylyltransferase domain (pfam02348) and is annotated as acylneuraminate cytidylyltransferase. This may give some clue as the function of these phosphatases. Several eukaryotic sequences scoring between trusted and noise are also closely related to this function such as the CMP-N-acetylneuraminic acid synthetase from mouse, but in these cases the phosphatase domain is clearly inactive as many of the active site residues are not conserved. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 154 -273746 TIGR01671 phage_TIGR01671 phage uncharacterized protein TIGR01671. This model represents an uncharacterized, well-conserved family of proteins found in bacteriophage and prophage regions of Gram-positive bacteria. [Mobile and extrachromosomal element functions, Prophage functions, Hypothetical proteins, Conserved] 151 -273747 TIGR01672 AphA HAD superfamily (subfamily IIIB) phosphatase, TIGR01672. This family of proteins is a member of the IIIB subfamily (pfam02767) of the haloacid dehalogenase (HAD) superfamily of hydrolases. All characterized members of subfamily III and most characterized members of the HAD superfamily are phosphatases. HAD superfamily phosphatases contain active site residues in several conserved catalytic motifs, all of which are found conserved here. The AphA gene from E. coli has been characterized and shown to be an active phosphatase enzyme. This family has been previously described as the "class B non-specific bacterial acid phosphatase" (B-NSAP) family, where it is noted that the enzyme is secreted and has a broad substrate range. The possibility exists, however, that the enzyme is specific for an as yet undefined substrate. Supporting evidence for the inclusion in the HAD superfamily, whose phosphatase members are magnesium dependent, is the inhibition by EDTA and calcium ions, and stimulation by magnesium ion. 237 -130734 TIGR01673 holin_LLH phage holin, LL-H family. This model represents a putative phage holin from a number of phage and prophage regions of Gram-positive bacteria. Like other holins, it is small (about 100 amino acids) with stretches of hydrophobic sequence and is encoded adjacent to lytic enzymes. [Mobile and extrachromosomal element functions, Prophage functions] 108 -273748 TIGR01674 phage_lambda_G phage minor tail protein G. This model describes a family of bacteriophage proteins including G of phage lambda. This protein has been described as undergoing a translational frameshift at a Gly-Lys dipeptide near the C-terminus of protein G from phage lambda, with about 4 % efficiency, to produce tail assembly protein G-T. The Lys of the Gly-Lys pair is the conserved second-to-last residue of seed alignment for this family. [Mobile and extrachromosomal element functions, Prophage functions] 138 -273749 TIGR01675 plant-AP plant acid phosphatase. This model represents a family of acid phosphatase from plants which are most closely related to the (so called) class B non-specific acid phosphatase OlpA (TIGR01533, which is believed to be a 5'-nucleotide phosphatase) and somewhat more distantly to another class B phosphatase, AphA (TIGR01672). Together these three clades define a subfamily (pfam03767) which corresponds to the IIIB subfamily of the haloacid dehalogenase (HAD) superfamily of aspartate nucleophile hydrolases. It has been reported that the best substrate for this enzyme that could be found was purine 5'-nucleoside phosphates. This is in concordance with the assignment of the H. influenzae hel protein (from TIGR01533) as a 5'-nucleotidase, however there is presently no other evidence to support this specific function for these plant phosphatases. Many genes from this family have been annotated as vegetative storage proteins due to their close homology with these earlier-characterized gene products, which are highly expressed in leaves. There are significant differences however, including expression levels and distribution. The most important difference is the lack in authentic VSPs of the nucleophilic aspartate residue, which is instead replaced by serine, glycine or asparagine. Thus these proteins can not be expected to be active phosphatases. This issue was confused by the publication in 1992 of an article claiming activity for the Glycine max VSP. In 1994 this assertion was refuted by the separation of the activity from the VSP. This model explicitly excludes the VSPs which lack the nucleophilc aspartate. The possibility exists, however, that some members of this family may, while containing all of the conserved HAD-superfamily catalytic residues, lack activity and have a function related to the function of the VSPs rather than the acid phosphatases. 228 -130737 TIGR01676 GLDHase galactonolactone dehydrogenase. This model represents L-Galactono-gamma-lactone dehydrogenase (EC 1.3.2.3). This enzyme catalyzes the final step in ascorbic acid biosynthesis in higher plants. This protein is homologous to ascorbic acid biosynthesis enzymes of other species: L-gulono-gamma-lactone oxidase in rat and L-galactono-gamma-lactone oxidase in yeast. All three covalently bind the cofactor FAD. 541 -273750 TIGR01677 pln_FAD_oxido plant-specific FAD-dependent oxidoreductase. This model represents an uncharacterized plant-specific family of FAD-dependent oxidoreductases. At least seven distinct members are found in Arabidopsis thaliana. The family shows considerable sequence similarity to three different enzymes of ascorbic acid biosynthesis: L-galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) from higher plants, D-arabinono-1,4-lactone oxidase (EC 1.1.3.37 from Saccharomyces cerevisiae, and L-gulonolactone oxidase (EC 1.1.3.8) from mouse, as well as to a bacterial sorbitol oxidase. The class of compound acted on by members of this family is unknown. 557 -273751 TIGR01678 FAD_lactone_ox sugar 1,4-lactone oxidases. This model represents a family of at least two different sugar 1,4 lactone oxidases, both involved in synthesizing ascorbic acid or a derivative. These include L-gulonolactone oxidase (EC 1.1.3.8) from rat and D-arabinono-1,4-lactone oxidase (EC 1.1.3.37) from Saccharomyces cerevisiae. Members are proposed to have the cofactor FAD covalently bound at a site specified by Prosite motif PS00862; OX2_COVAL_FAD; 1. 438 -130740 TIGR01679 bact_FAD_ox FAD-linked oxidoreductase. This model represents a family of bacterial oxidoreductases with covalently linked FAD, closely related to two different eukaryotic oxidases, L-gulonolactone oxidase (EC 1.1.3.8) from rat and D-arabinono-1,4-lactone oxidase (EC 1.1.3.37) from Saccharomyces cerevisiae. 419 -130741 TIGR01680 Veg_Stor_Prot vegetative storage protein. The proteins represented by this model are close relatives of the plant acid phosphatases (TIGR01675), are limited to members of the Phaseoleae including Glycine max (soybean) and Phaseolus vulgaris (kidney bean). These proteins are highly expressed in the leaves of repeatedly depodded plants. VSP differs most strinkingly from the acid phosphatases in the lack of the conserved nucleophilic aspartate residue in the N-terminus, thus, they should be inactive as phosphatases. This issue was confused by the publication in 1992 of an article claiming activity for the Glycine max VSP. In 1994 this assertion was refuted by the separation of the activity from the VSP. 275 -273752 TIGR01681 HAD-SF-IIIC HAD-superfamily phosphatase, subfamily IIIC. This model represents the IIIC subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate nucleophile hydrolases. Subfamily III (also including IIIA - TIGR01662 and IIIB - pfam03767) contains sequences which do not contain either of the insert domains (between the 1st and 2nd conserved catalytic motifs, subfamily I - TIGR01493, TIGR01509, TIGR01549, TIGR01488, TIGR01494, TIGR01658, TIGR01544 and TIGR01545, or between the 2nd and 3rd, subfamily II - TIGR01460 and TIGR01484). Subfamily IIIC contains five relatively distantly related clades: a family of viral proteins (TIGR01684), a family of eukaryotic proteins called MDP-1 and a family of archaeal proteins most closely related to MDP-1 (TIGR01685), a family of bacteria including the Streptomyces FkbH protein (TIGR01686), and a small clade including the Pasteurella BcbF and EcbF proteins. The overall lack of species overlap among these clades may indicate a conserved function, but the degree of divergence between the clades and the differences in archetecture outside of the domain in some clades warns against such a conclusion. No member of this subfamily is characterized with respect to function, however the MDP-1 protein is a characterized phosphatase. All of the characterized enzymes within subfamily III are phosphatases, and all of the active site residues characteristic of HAD-superfamily phosphatases are present in subfamily IIIC. 128 -273753 TIGR01682 moaD molybdopterin converting factor, subunit 1, non-archaeal. This model describes MoaD. It excludes archaeal homologs, since many Archaea have two MoaD-like proteins, suggesting two different functions. pfam02597 describes both the thiamine biosynthesis protein ThiS and this protein, MoaD, a subunit (together with MoaE, pfam02391) of the molybdopterin converting factor. Both ThiS and MoaD are involved in sulfur transfer reactions. Distribution of this family appears limited to species that also have a member of pfam02391, but a number of Archaea have two different members, suggesting functionally distinct subtypes. The C-terminal Gly-Gly of this model is critical to function. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 80 -273754 TIGR01683 thiS thiamine biosynthesis protein ThiS. This model represents ThiS, a small, ubiquitin-like thiamine biosynthesis protein related to MoaD, a molybdenum cofactor biosynthesis protein. Both proteins are involved in sulfur transfer. ThiS has a conserved Gly-Gly C-terminus that is modified, in reactions requiring ThiI, ThiF, IscS, and a sulfur atom from Cys, into the thiocarboxylate that provides the sulfur for thiazole biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 64 -273755 TIGR01684 viral_ppase viral phosphatase. This model represents a family of viral proteins of unknown function. These proteins are members, however, of the IIIC (TIGR01681) subfamily of the haloacid dehalogenase (HAD) superfamily of aspartate nucleophile hydrolases. All characterized members of the III subfamilies (IIIA, TIGR01662; IIIB, pfam03767) are phosphatases, including MDP-1, a member of subfamily IIIC (TIGR01681). No member of this subfamily is characterized with respect to particular function. All of the active site residues characteristic of HAD-superfamily phosphatases are present in subfamily IIIC. These proteins also include an N-terminal domain (ca. 125 aas) that is unique to this clade. 301 -273756 TIGR01685 MDP-1 magnesium-dependent phosphatase-1. This model represents two closely related clades of sequences from eukaryotes and archaea. The mouse enzyme has been characterized as a phosphatase and has been positively identified as a member of the haloacid dehalogenase (HAD) superfamily by site-directed mutagenesis of the active site residues. 174 -273757 TIGR01686 FkbH FkbH-like domain. This model describes a domain of a family of proteins of unknown overall function. One of these, however, is a modular polyketide synthase 4800 amino acids in length from Streptomyces avermilitis in which this domain is the C-terminal segment. By contrast, the FkbH protein from Streptomyces hygroscopicus aparently contains only this domain. The remaining members of the family all contain an additional N-terminal domain of between 200 and 275 amino acids which show less than 20% identity to one another. It seems likely then that these proteins are involved in disparate functions, probably the biosynthesis of different natural products. For instance, the FkbH gene is found in a gene cluster believed to be responsible for the biosynthesis of unususal "PKS extender units" in the ascomycin pathway. This domain is composed of two parts, the first of which is a member of subfamily IIIC (TIGR01681) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. All of the characterized enzymes within subfamily III are phosphatases, and all of the active site residues characteristic of HAD-superfamily phosphatases are present in this domain. The C-terminal portion of this domain is unique to this family (by BLAST). 320 -273758 TIGR01687 moaD_arch MoaD family protein, archaeal. Members of this family appear to be archaeal versions of MoaD, subunit 1 of molybdopterin converting factor. This model has been split from the bacterial/eukaryotic equivalog model TIGR01682 because the presence of two members of this family in a substantial number of archaeal species suggests that roles might not be interchangeable. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 88 -130749 TIGR01688 dltC D-alanine--poly(phosphoribitol) ligase, subunit 2. This protein is part of the teichoic acid operon in gram-positive organisms. Gram positive organisms incorporate teichoic acid in their cell walls, and in the fatty acid residues of the glycolipid component of the outer layer of the cytoplasmic membrane. This gene, dltC, encodes the alanyl carrier protein. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 73 -273759 TIGR01689 EcbF-BcbF capsule biosynthesis phosphatase. This model describes a small family of highly conserved proteins (>60% ID). Two of these, BcbF and EcbF of Pasteurella multocida are believed to be part of the capsule polysaccharide biosynthesis machinery because they are cotranscribed from a locus devoted to that purpose. In pasteurella there are six different variant capsules (A-F), and these proteins are found only in B and E. The other two species in which this gene is (currently) found are both also pathogenic. These proteins are also members of the IIIC (TIGR01681) subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. All of the characterized enzymes within subfamily III are phosphatases, and all of the active site residues characteristic of HAD-superfamily phosphatases are present in this subfamily. Due to the likelihood that the substrates of these enzymes are different depending on the nature of the particular polysaccharides associated with each species, this model has been classified as a subfamily despite the close homology. 126 -162489 TIGR01690 ICE_RAQPRD integrative conjugative element protein, RAQPRD family. This model represents a small family of proteins about 100 amino acids in length, including a predicted signal sequence and a perfectly conserved motif RAQPRD towards the C-terminus. Members are found in the Pseudomonas putida TOL plasmid pWW0 and in cryptic plasmid regions of Salmonella enterica subsp. enterica serovar Typhi and Pseudomonas syringae DC3000. The function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 94 -273760 TIGR01691 enolase-ppase 2,3-diketo-5-methylthio-1-phosphopentane phosphatase. This enzyme is the enolase-phosphatase of methionine salvage, a pathway that regenerates methionine from methylthioadenosine (MTA). Adenosylmethionine (AdoMet) is a donor of different moieties for various processes, including methylation reactions. Use of AdoMet for spermidine biosynthesis, which leads to polyamine biosynthesis, leaves MTA as a by-product that must be cleared. In Bacillus subtilis and related species, this single protein is replaced by separate enzymes with enolase and phosphatase activities. [Central intermediary metabolism, Sulfur metabolism] 220 -130753 TIGR01692 HIBADH 3-hydroxyisobutyrate dehydrogenase. 3-hydroxyisobutyrate dehydrogenase is an enzyme that catalyzes the NAD+-dependent oxidation of 3-hydroxyisobutyrate to methylmalonate semialdehyde of the valine catabolism pathway. In Pseudomonas aeruginosa, 3-hydroxyisobutyrate dehydrogenase (mmsB) is co-induced with methylmalonate-semialdehyde dehydrogenase (mmsA) when grown on medium containing valine as the sole carbon source. The positive transcriptional regulator of this operon (mmsR) is located upstream of these genes and has been identified as a member of the XylS/AraC family of transcriptional regulators. 3-hydroxyisobutyrate dehydrogenase shares high sequence homology to the characterized 3-hydroxyisobutyrate dehydrogenase from rat liver with conservation of proposed NAD+ binding residues at the N-terminus (G-8,10,13,24 and D-31). This enzyme belongs to the 3-hydroxyacid dehydrogenase family, sharing a common evolutionary origin and enzymatic mechanism with 6-phosphogluconate. HIBADH exhibits sequence similarity to the NAD binding domain of 6-phosphogluconate dehydrogenase above trusted (pfam03446). [Energy metabolism, Amino acids and amines] 288 -273761 TIGR01693 UTase_glnD [Protein-PII] uridylyltransferase. This model describes GlnD, the uridylyltransferase/uridylyl-removing enzyme for the nitrogen regulatory protein PII. Not all homologs of PII share the property of uridylyltransferase modification on the characteristic Tyr residue (see Prosite pattern PS00496 and document PDOC00439), but the modification site is preserved in the PII homolog of all species with a member of this family. [Central intermediary metabolism, Nitrogen metabolism, Regulatory functions, Protein interactions] 850 -273762 TIGR01694 MTAP 5'-deoxy-5'-methylthioadenosine phosphorylase. This model represents the methylthioadenosine phosphorylase found in metazoa, cyanobacteria and a limited number of archaea such as Sulfolobus, Aeropyrum, Pyrobaculum, Pyrococcus, and Thermoplasma. This enzyme is responsible for the first step in the methionine salvage pathway after the transfer of the amino acid moiety from S-adenosylmethionine. The enzyme from human is well-characterized including a crystal structure. A misleading characterization is found for a Sulfolobus solfataricus enzyme, which is called a MTAP. In fact, as uncovered by the genome sequence of S. solfataricus, there are at least two nucleotide phosphorylases and the one found in the MTAP clade is not the one annotated as such. The sequence in this clade has not been isolated but is likely to be the authentic SsMTAP as it displays all of the conserved active site residues found in the human enzyme. This explains the finding that the characterized enzyme has greater efficiency towards the purines inosine, guanosine and adenosine over MTA. In fact, this mis-naming of this enzyme has been carried forward to several publications including a crystal stucture. In between the trusted and noise cutoffs are: 1) several archaeal sequences which appear to contain several residues characteristic of phosphorylases which act on guanosine or inosine (according to the crystal structure of MTAP and alignments). In any case, these residues are not conserved. 2) sequences from Mycobacterium tuberculosis and Streptomyces coelicolor which have better, although not perfect retention of the active site residues, but considering the general observation that bacteria utilize the MTA/SAH nucleotidase enzyme and a kinase to do this reaction, these have been excluded pending stronger evidence of their function, and 3) a sequence from Drosophila which appears to be a recent divergence (long branch in neighbor-joining trees) and lacks some of the conserved active site residues. [Central intermediary metabolism, Other, Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 241 -273763 TIGR01695 murJ_mviN murein biosynthesis integral membrane protein MurJ. This model represents MurJ (previously MviN), a family of integral membrane proteins predicted to have ten or more transmembrane regions. Members have been suggested to act as a lipid II flippase, translocated a precursor of murein. However, it appears FtsW has that activity. Flippase activity for MurJ has not been shown. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 502 -162494 TIGR01696 deoB phosphopentomutase. This protein is involved in the purine and pyrimidine salvage pathway. It catalyzes the conversion of D-ribose 1-phosphate to D-ribose 5-phosphate and the conversion of 2-deoxy-D-ribose 1-phosphate to 2-deoxy-D-ribose 5-phosphate. The seed members of this protein are characterized deoB proteins from E.Coli(SP:P07651) and Bacillus (SP:P46353). This model matches pfam01676 for Metalloenzyme superfamily. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 381 -130758 TIGR01697 PNPH-PUNA-XAPA inosine/guanosine/xanthosine phosphorylase family. This model is a subset of the subfamily represented by pfam00896 (phosphorylase family 2). This model excludes the methylthioadenosine phosphorylases (MTAP, TIGR01684) which are believed toplay a specific role in the recycling of methionine from methylthioadenosine. In this subfamily is found three clades of purine phosphorylases based on a neighbor-joining tree using the MTAP family as an outgroup. The highest-branching clade (TIGR01698) consists of a group of sequences from both gram positive and gram negative bacteria which have been annotated as purine nucleotide phosphorylases but have not been further characterized as to substrate specificity. Of the two remaining clades, one is xanthosine phosphorylase (XAPA, TIGR01699), is limited to certain gamma proteobacteria and constitutes a special purine phosphorylase found in a specialized operon for xanthosine catabolism. The enzyme also acts on the same purines (inosine and guanosine) as the other characterized members of this subfamily, but is only induced when xanthosine must be degraded. The remaining and largest clade consists of purine nucleotide phosphorylases (PNPH, TIGR01700) from metazoa and bacteria which act primarily on guanosine and inosine (and do not act on adenosine). Sequences from Clostridium (GP:15025051) and Thermotoga (OMNI:TM1596) fall between these last two clades and are uncharacterized with respect to substrate range and operon. 248 -130759 TIGR01698 PUNP purine nucleotide phosphorylase. This clade of purine nucleotide phosphorylases has not been experimentally characterized but is assigned based on strong sequence homology. Closely related clades act on inosine and guanosine (PNPH, TIGR01700), and xanthosine, inosine and guanosine (XAPA, TIGR01699) neither of these will act on adenosine. A more distantly related clade (MTAP, TIGR01694) acts on methylthioadenosine. 237 -130760 TIGR01699 XAPA xanthosine phosphorylase. This model represents a small clade of purine nucleotide phosphorylases found in certain gamma proteobacteria. The gene is part of an operon for the degradation of xanthosine and is induced by xanthosine. The enzyme is also capable of acting on inosine and guanosine (but not adenosine) in a manner similar to those other phosphorylases to which it is closely related (TIGR01698, TIGR01700). 248 -273764 TIGR01700 PNPH purine nucleoside phosphorylase I, inosine and guanosine-specific. This model represents a family of bacterial and metazoan purine phosphorylases acting primarily on inosine and guanosine and not acting on adenosine. PNP-I refers to the nomenclature from Bacillus stearothermophilus where PHP-II refers to the nucleotidase acting on adenosine as the primary substrate.The bacterial enzymes (PUNA) are typified by the Bacilus PupG protein, which is involved in the metabolism of nucleosides as a carbon source.Several metazoan enzymes (PNPH) are well characterized including the human and bovine enzymes which have been crystallized. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 249 -273765 TIGR01701 Fdhalpha-like oxidoreductase alpha (molybdopterin) subunit. This model represents a well-defined clade of oxidoreductase alpha subunits most closely related to a group of formate dehydrogenases including the E. coli FdhH protein (TIGR01591). These alpha subunits contain a molybdopterin cofactor and generally associate with two other subunits which contain iron-sulfur clusters and cytochromes. The particular subunits with which this enzyme interacts and the substrate which is reduced is unknown at this time. In Ralstonia, the gene is associated with the cbb operon, but is not essential for CO2 fixation. 743 -130763 TIGR01702 CO_DH_cata carbon-monoxide dehydrogenase, catalytic subunit. This model represents the carbon-monoxide dehydrogenase catalytic subunit. This protein is related to prismane (also called hybrid cluster protein), a complex whose activity is not yet fully described; the two share similar sets of ligands to unusual metal-containing clusters. 621 -130764 TIGR01703 hybrid_clust hydroxylamine reductase. This model represents a family of proteins containing an unusual 4Fe-2S-2O hydrid cluster. Earlier reports had proposed a 6Fe-6S prismane cluster. This subfamily is heterogeneous with respect to the presence or absence of a region of about 100 amino acids not far from the N-terminus of the protein. Members have been described as monomeric. The general function is unknown, although members from E. coli and several other species have hydroxylamine reductase activity. Members are found in various bacteria, in Archaea, and in several parasitic eukaryotes: Giardia intestinalis, Trichomonas vaginalis, and Entamoeba histolytica. [Cellular processes, Detoxification, Energy metabolism, Amino acids and amines] 522 -130765 TIGR01704 MTA/SAH-Nsdase 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. This model represents the enzyme 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase which acts on its two substrates at the same active site. This enzyme is involved in the recycling of the components of S-adenosylmethionine after it has donated one of its two non-ribose sulfur ligands to an acceptor. In the case of 5-methylthioadenosine this represents the first step of the methionine salvage pathway in bacteria. This enzyme is widely distributed in bacteria, especially those that lack adenosylhomocysteinase (EC 3.3.1.1). One clade of bacteria including Agrobacterium, Mesorhizobium, Sinorhizobium and Brucella includes sequences annotated as MTA/SAH nucleotidase, but differs significantly in homology and has no independent experimental evidence. There are homologs of this enzyme in plants, some of which score between trusted and noise cutoffs here, but there is no experimental evidence to validate this function at this time. [Central intermediary metabolism, Other, Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 228 -130766 TIGR01705 MTA/SAH-nuc-hyp 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase, putative. This model represents the enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase which acts on its two substrates at the same active site. This clade of sequences is sufficiently distinct from the characterized proteins, which form the seed of TIGR01704 as to cast some doubt on the accuracy of annotations based on sequence similarity alone. This enzyme is involved in the recycling of the components of S-adenosylmethionine after it has donated one of its two non-ribose sulfur ligands to an acceptor. In the case of 5'-methylthioadenosine this represents the first step of the methionine salvage pathway in bacteria. This enzyme is widely distributed in bacteria. 212 -273766 TIGR01706 NAPA periplasmic nitrate reductase, large subunit. This model represents the large subunit of a family of nitrate reductases found in proteobacteria which are localized to the periplasm. This subunit binds molybdopterin and contains a twin-arginine motif at the N-terminus. The protein associates with NapB, a soluble heme-containing protein and NapC, a membrane-bound cytochrome c. The periplasmic nitrate reductases are not involved in the assimilation of nitrogen, and are not directly involved in the formation of electrochemical gradients (i.e. respiration) either. Rather, the purpose of this enzyme is either dissimilatory (i.e. to dispose of excess reductive equivalents) or indirectly respiratory by virtue of the consumption of electrons derived from NADH via the proton translocating NADH dehydrogenase. The enzymes from Alicagenes eutrophus and Paracoccus pantotrophus have been characterized. In E. coli (as well as other organisms) this gene is part of a large nitrate reduction operon (napFDAGHBC). [Energy metabolism, Aerobic, Energy metabolism, Electron transport, Central intermediary metabolism, Nitrogen metabolism] 830 -273767 TIGR01707 gspI type II secretion system protein I. This model represents GspI, one of two proteins highly conserved at their N-termini and described by pfam02501 but easily separable phylogenetically. The other is GspJ. Both GspI and GspJ are proteins of the type II secretion pathway, or main terminal branch of the general secretion pathway. This pathway carries proteins across the outer membrane. Note that proteins of type II secretion are cryptic in E. coli K-12 - present but not yet demonstrated to act on any target. 101 -130769 TIGR01708 typeII_sec_gspH type II secretion system protein H. This model represents GspH, protein H of the main terminal branch of the general secretion pathway, also called type II secretion. It transports folded proteins across the bacterial outer membrane and is widely distributed in Gram-negative pathogens. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 143 -273768 TIGR01709 typeII_sec_gspL type II secretion system protein L. This model represents GspL, protein L of the main terminal branch of the general secretion pathway, also called type II secretion. It transports folded proteins across the bacterial outer membrane and is widely distributed in Gram-negative pathogens. [Protein fate, Protein and peptide secretion and trafficking] 384 -130771 TIGR01710 typeII_sec_gspG type II secretion system protein G. This model represents GspG, protein G of the main terminal branch of the general secretion pathway, also called type II secretion. It transports folded proteins across the bacterial outer membrane and is widely distributed in Gram-negative pathogens. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 134 -130772 TIGR01711 gspJ type II secretion system protein J. This model represents GspJ, one of two proteins highly conserved at their N-termini and described by pfam02501 but easily separable phylogenetically. The other is GspI. Both GspI and GspJ are proteins of the type II secretion pathway, or main terminal branch of the general secretion pathway. This pathway carries proteins across the outer membrane. Note that proteins of type II secretion are cryptic in E. coli K-12 - present but not yet demonstrated to act on any target. 192 -273769 TIGR01712 phage_N6A_met phage N-6-adenine-methyltransferase. This model is a fragment-mode model for a phage-borne DNA N-6-adenine-methyltransferase. [Mobile and extrachromosomal element functions, Prophage functions, DNA metabolism, Restriction/modification] 166 -273770 TIGR01713 typeII_sec_gspC type II secretion system protein C. This model represents GspC, protein C of the main terminal branch of the general secretion pathway, also called type II secretion. This system transports folded proteins across the bacterial outer membrane and is widely distributed in Gram-negative pathogens. [Protein fate, Protein and peptide secretion and trafficking] 259 -130775 TIGR01714 phage_rep_org_N phage replisome organizer, putative, N-terminal region. This model represents the N-terminal domain of a small family of phage proteins. The protein contains a region of low-complexity sequence that reflects DNA direct repeats able to function as an origin of phage replication. The region covered by this model is N-terminal to the low-complexity region. [Mobile and extrachromosomal element functions, Prophage functions] 119 -273771 TIGR01715 phage_lam_T phage tail assembly protein T. This model represents a translation of the T gene in phage lambda and related phage. A translational frameshift from the upstream gene G into the frame of T produces a minor protein gpG-T, essential in tail assembly but not found in the mature virion. [Mobile and extrachromosomal element functions, Prophage functions] 95 -273772 TIGR01716 RGG_Cterm transcriptional activator, Rgg/GadR/MutR family, C-terminal domain. This model describes the whole, except for a 60 residue N-terminal helix-turn-helix DNA-binding domain (pfam01381) of the family of proteins related to the transcriptional regulator Rgg, also called RopB. Rgg is required for secretion of several proteins, including a cysteine proteinase associated with virulence. GadR is a positive regulator of a glutamate-dependent acid resistance mechanism. MutR is a transcriptional activator for mutacin biosynthesis genes in Streptococcus mutans. This family appears restricted to the low-GC Gram-positive bacteria, including at least eight members in Lactococcus lactis. [Regulatory functions, DNA interactions] 220 -273773 TIGR01717 AMP-nucleosdse AMP nucleosidase. This model represents the AMP nucleosidase from proteobacteria but also including a sequence from Corynebacterium, a gram-positive organism. The species from E. coli has been most well studied. 477 -130779 TIGR01718 Uridine-psphlse uridine phosphorylase. This model represents a family of bacterial and archaeal uridine phosphorylases unrelated to the mammalian enzymes of the same name. The E. coli, Salmonella and Klebsiella genes have been characterized. Sequences from Clostridium, Streptomyces, Treponema, Halobacterium and Pyrobaculum were included above trusted on the basis of sequence homology and a PAM-based neighbor-joining tree. A clade including second sequences from Halobacterium and Vibrio was somewhat more distantly related and may represent a slightly different substrate specificity - these were placed below the noise cutoff. More distantly related is a clade of archaeal sequences which as related to the DeoD family of inosine phosphorylases (TIGR00107) as they are to these uridine phosphorylases. This clade includes a characterized protein from Sulfolobus solfataricus which has been mis-named as a methylthioadenosine phosphorylase, but which acts on inosine and guanosine - it is unclear whether uridine has been evaluated as a substrate. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 245 -130780 TIGR01719 euk_UDPppase uridine phosphorylase. This model represents a clade of mainly eucaryotic uridine phosphorylases. Genes from human and mouse have been characterized. This enzyme is a member of the PHP/UDP subfamily (pfam01048) and is closely related to the bacterial uridine (TIGR01718) and inosine (TIGR00107) phosphorylase equivalogs. In addition to the eukaryotes, a gene from Mycobacterium leprae is included in this equivalog and may have resulted from lateral gene transfer. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 287 -273774 TIGR01720 NRPS-para261 non-ribosomal peptide synthase domain TIGR01720. This domain appears to be located immediately downstream from a condensation domain (pfam00668), and is followed primarily by the end of the molecule or another condensation domain (in a few cases it is followed by pfam00501, an AMP-binding module). The converse is not true, pfam00668 domains are not always followed by this domain. This implicates this domain in possible post-condensation modification events. This model is 171 amino acids long and contains three very highly conserved regions. At the N-terminus is a nearly invariant lysine (position 11) followed by xxxRxxPxxGxGYG in which the proline and the first glycine are invariant. This is followed approximately 22 residues later by the motif FNYLG. Near the C-terminus of the domain is the sequence TxSD where the serine and aspartate are nearly invariant. 153 -130782 TIGR01721 AMN-like AMP nucleosidase, putative. The sequences in the clade represented by this model are most closely related to the AMP nucleosidase found in TIGR01717. These sequences are found only in Chlamydia and Porphyromonas and differ sufficiently from the characterized AMP nucleosidase to put some doubt on assignment of this name. 266 -130783 TIGR01722 MMSDH methylmalonic acid semialdehyde dehydrogenase. Involved in valine catabolism, methylmalonate-semialdehyde dehydrogenase catalyzes the irreversible NAD+- and CoA-dependent oxidative decarboxylation of methylmalonate semialdehyde to propionyl-CoA. Methylmalonate-semialdehyde dehydrogenase has been characterized in both prokaryotes and eukaryotes, functioning as a mammalian tetramer and a bacterial homodimer. Although similar in monomeric molecular mass and enzymatic activity, the N-terminal sequence in P.aeruginosa does not correspond with the N-terminal sequence predicted for rat liver. Sequence homology to a variety of prokaryotic and eukaryotic aldehyde dehydrogenases places MMSDH in the aldehyde dehydrogenase (NAD+) superfamily (pfam00171), making MMSDH's CoA requirement unique among known ALDHs. Methylmalonate semialdehyde dehydrogenase is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenase. In Bacillus, a highly homologous protein to methylmalonic acid semialdehyde dehydrogenase, groups out from the main MMSDH clade with Listeria and Sulfolobus. This Bacillus protein has been suggested to be located in an iol operon and/or involved in myo-inositol catabolism, converting malonic semialdehyde to acetyl CoA ad CO2. The preceeding enzymes responsible for valine catabolism are present in Bacillus, Listeria, and Sulfolobus. [Energy metabolism, Amino acids and amines] 477 -130784 TIGR01723 hmd_TIGR 5,10-methenyltetrahydromethanopterin hydrogenase. This model represents a clade of authenticated coenzyme N(5),N(10)-methenyltetrahydromethanopterin reductases. This enzyme does not use F420. This enzyme acts in methanogenesis and as such is restricted to methanogenic archaeal species. This clade is one of two clades in pfam03201. [Energy metabolism, Methanogenesis] 340 -130785 TIGR01724 hmd_rel H2-forming N(5),N(10)-methenyltetrahydromethanopterin dehydrogenase-related protein. This model represents a sister clade to the authenticated coenzyme F420-dependent N(5),N(10)-methenyltetrahydromethanopterin reductase (HMD) of TIGR01723. Two members, designated HmdII and HmdIII, are found. Members are restricted to methanogens, but the function is unknown. [Unknown function, Enzymes of unknown specificity] 341 -273775 TIGR01725 phge_HK97_gp10 phage protein, HK97 gp10 family. This model represents an uncharacterized, highly divergent bacteriophage family. The family includes gp10 from HK022 and HK97. It appears related to TIGR01635, a phage morphogenesis family believed to be involved in tail completion. [Mobile and extrachromosomal element functions, Prophage functions] 119 -130787 TIGR01726 HEQRo_perm_3TM amine acid ABC transporter, permease protein, 3-TM region, His/Glu/Gln/Arg/opine family. This model represents one of several classes of multiple membrane spanning regions found immediately N-terminal to the domain described by pfam00528, binding-protein-dependent transport systems inner membrane component. The region covered by this model generally is predicted to contain three transmembrane helices. Substrate specificities attributed to members of this family include histidine, arginine, glutamine, glutamate, and (in Agrobacterium) the opines octopine and nopaline. [Transport and binding proteins, Amino acids, peptides and amines] 99 -213647 TIGR01727 oligo_HPY oligopeptide/dipeptide ABC transporter, ATP-binding protein, C-terminal domain. This model represents a domain found in the C-terminal regions of oligopeptide ABC transporter ATP binding proteins, immediately following the ATP-binding domain (pfam00005). All characterized members appear able to be involved in the transport of oligopeptides or dipeptides. Some are important for sporulation or antibiotic resistance. Some dipeptide transporters also act on the heme precursor delta-aminolevulinic acid. [Transport and binding proteins, Amino acids, peptides and amines] 87 -130789 TIGR01728 SsuA_fam ABC transporter, substrate-binding protein, aliphatic sulfonates family. Members of this family are substrate-binding periplasmic proteins of ABC transporters. This subfamily includes SsuA, a member of a transporter operon needed to obtain sulfur from aliphatic sulfonates. Related proteins outside the scope of this model include taurine (NH2-CH2-CH2-S03H) binding proteins, the probable sulfate ester binding protein AtsR, and the probable aromatic sulfonate binding protein AsfC. All these families make sulfur available when Cys and sulfate levels are low. Please note that phylogenetic analysis by neighbor-joining suggests that a number of sequences belonging to this family have been excluded because of scoring lower than taurine-binding proteins. [Transport and binding proteins, Other] 288 -130790 TIGR01729 taurine_ABC_bnd taurine ABC transporter, periplasmic binding protein. This model identifies a cluster of ABC transporter periplasmic substrate binding proteins, apparently specific for taurine. Transport systems for taurine (NH2-CH2-CH2-SO3H), sulfonates, and sulfate esters import sulfur when sulfate levels are low. The most closely related proteins outside this family are putative aliphatic sulfonate binding proteins (TIGR01728). 300 -273776 TIGR01730 RND_mfp RND family efflux transporter, MFP subunit. This model represents the MFP (membrane fusion protein) component of the RND family of transporters. RND refers to Resistance, Nodulation, and cell Division. It is, in part, a subfamily of pfam00529 (Pfam release 7.5) but hits substantial numbers of proteins missed by that model. The related HlyD secretion protein, for which pfam00529 is named, is outside the scope of this model. Attributed functions imply outward transport. These functions include nodulation, acriflavin resistance, heavy metal efflux, and multidrug resistance proteins. Most members of this family are found in Gram-negative bacteria. The proposed function of MFP proteins is to bring the inner and outer membranes together and enable transport to the outside of the outer membrane. Note, however, that a few members of this family are found in Gram-positive bacteria, where there is no outer membrane. [Transport and binding proteins, Unknown substrate] 322 -273777 TIGR01731 fil_hemag_20aa adhesin HecA family 20-residue repeat (two copies). This model represents two copies of a 20-residue repeat found in Bordetella pertussis filamentous hemagglutinin family of adhesins. This family includes extremely long proteins from a number of plant and animal pathogens. 40 -273778 TIGR01732 tiny_TM_bacill conserved hypothetical tiny transmembrane protein. This model represents a family of hypothetical proteins, half of which are 40 residues or less in length. Members are found only in spore-forming species. A Gly-rich variable region is followed by a strongly conserved, highly hydrophobic region, predicted to form a transmembrane helix, ending with an invariant Gly. The consensus for this stretch is FALLVVFILLIIV. [Hypothetical proteins, Conserved] 26 -273779 TIGR01733 AA-adenyl-dom amino acid adenylation domain. This model represents a domain responsible for the specific recognition of amino acids and activation as adenylyl amino acids. The reaction catalyzed is aa + ATP -> aa-AMP + PPi. These domains are usually found as components of multi-domain non-ribosomal peptide synthetases and are usually called "A-domains" in that context. A-domains are almost invariably followed by "T-domains" (thiolation domains, pfam00550) to which the amino acid adenylate is transferred as a thiol-ester to a bound pantetheine cofactor with the release of AMP (these are also called peptide carrier proteins, or PCPs. When the A-domain does not represent the first module (corresponding to the first amino acid in the product molecule) it is usually preceded by a "C-domain" (condensation domain, pfam00668) which catalyzes the ligation of two amino acid thiol-esters from neighboring modules. This domain is a subset of the AMP-binding domain found in Pfam (pfam00501) which also hits substrate--CoA ligases and luciferases. Sequences scoring in between trusted and noise for this model may be ambiguous as to whether they activate amino acids or other molecules lacking an alpha amino group. 409 -273780 TIGR01734 D-ala-DACP-lig D-alanine--poly(phosphoribitol) ligase, subunit 1. This model represents the enzyme (also called D-alanine-D-alanyl carrier protein ligase) which activates D-alanine as an adenylate via the reaction D-ala + ATP -> D-ala-AMP + PPi, and further catalyzes the condensation of the amino acid adenylate with the D-alanyl carrier protein (D-ala-ACP). The D-alanine is then further transferred to teichoic acid in the biosynthesis of lipoteichoic acid (LTA) and wall teichoic acid (WTA) in gram positive bacteria, both polysacchatides. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 502 -188163 TIGR01735 FGAM_synt phosphoribosylformylglycinamidine synthase, single chain form. This model represents a single-molecule form of phosphoribosylformylglycinamidine synthase, also called FGAM synthase, an enzyme of purine de novo biosynthesis. This form is found mostly in eukaryotes and Proteobacteria. In Bacillus subtilis PurL (FGAM synthase II) and PurQ (FGAM synthase I), homologous to different parts of this model, perform the equivalent function; the unrelated small protein PurS is also required and may be a third subunit. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 1310 -273781 TIGR01736 FGAM_synth_II phosphoribosylformylglycinamidine synthase II. Phosphoribosylformylglycinamidine synthase is a single, long polypeptide in most Proteobacteria and eukarotes. Three proteins are required in Bacillus subtilis and many other species. This is the longest of the three and is designated PurL, phosphoribosylformylglycinamidine synthase II, or FGAM synthase II. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 715 -273782 TIGR01737 FGAM_synth_I phosphoribosylformylglycinamidine synthase I. In some species, phosphoribosylformylglycinamidine synthase is composed of a single polypeptide chain. This model describes the PurQ protein of Bacillus subtilis (where PurL, PurQ, and PurS are required for phosphoribosylformylglycinamidine synthase activity) and functionally equivalent proteins from other bacteria and archaea. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 227 -273783 TIGR01738 bioH pimelyl-[acyl-carrier protein] methyl ester esterase. This CoA-binding enzyme is required for the production of pimeloyl-coenzyme A, the substrate of the BioF protein early in the biosynthesis of biotin. Its exact function is unknown, but is proposed in ref 2. This enzyme belongs to the alpha/beta hydrolase fold family (pfam00561). Members of this family are restricted to the Proteobacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 245 -273784 TIGR01739 tegu_FGAM_synt herpesvirus tegument protein/v-FGAM-synthase. This model describes a family of large proteins of herpesvirues. The protein is described variably as tegument protein or phosphoribosylformylglycinamidine synthase (FGAM-synthase). Most of the length of the protein shows homology to eukaryotic FGAM-synthase. Functional characterizations were not verified during construction of this model. 1202 -273785 TIGR01740 pyrF orotidine 5'-phosphate decarboxylase, subfamily 1. This model represents orotidine 5'-monophosphate decarboxylase, the PyrF protein of pyrimidine nucleotide biosynthesis. In many eukaryotes, the region hit by this model is part of a multifunctional protein. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 214 -130802 TIGR01741 staph_tand_hypo conserved hypothetical protein. This model represents a tandem array of 10 proteins in Staphylococcus aureus and the C-terminal region of one protein each in Bacillus subtilis and Bacillus halodurans. 157 -273786 TIGR01742 SA_tandem_lipo Staphylococcus tandem lipoproteins. Members of this family are predicted lipoproteins (mostly), found in Staphylococcus aureus in several different tandem clusters in pathogenicity islands. Members are also found, clustered, in Staphylococcus epidermidis. 255 -130804 TIGR01743 purR_Bsub pur operon repressor, Bacillus subtilis type. This model represents the puring operon repressor PurR of low-GC Gram-positive bacteria. This homodimeric repressor contains a large region homologous to phosphoribosyltransferases and is inhibited by 5-phosphoribosyl 1-pyrophosphate. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis, Regulatory functions, DNA interactions] 268 -130805 TIGR01744 XPRTase xanthine phosphoribosyltransferase. This model represent a xanthine-specific phosphoribosyltransferase of Bacillus subtilis and closely related proteins from other species, mostly from other Gram-positive bacteria. The adjacent gene is a xanthine transporter; B. subtilis can import xanthine for the purine salvage pathway or for catabolism to obtain nitrogen. [Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides] 191 -130806 TIGR01745 asd_gamma aspartate-semialdehyde dehydrogenase, gamma-proteobacterial. [Amino acid biosynthesis, Aspartate family] 366 -273787 TIGR01746 Thioester-redct thioester reductase domain. This model includes the terminal domain from the fungal alpha aminoadipate reductase enzyme (also known as aminoadipate semialdehyde dehydrogenase) which is involved in the biosynthesis of lysine, as well as the reductase-containing component of the myxochelin biosynthetic gene cluster, MxcG. The mechanism of reduction involves activation of the substrate by adenylation and transfer to a covalently-linked pantetheine cofactor as a thioester. This thioester is then reduced to give an aldehyde (thus releasing the product) and a regenerated pantetheine thiol. (In myxochelin biosynthesis this aldehyde is further reduced to an alcohol or converted to an amine by an aminotransferase.) This is a fundamentally different reaction than beta-ketoreductase domains of polyketide synthases which act at a carbonyl two carbons removed from the thioester and forms an alcohol as a product. This domain is invariably found at the C-terminus of the proteins which contain it (presumably because it results in the release of the product). The majority of hits to this model are non-ribosomal peptide synthetases in which this domain is similarly located proximal to a thiolation domain (pfam00550). In some cases this domain is found at the end of a polyketide synthetase enzyme, but is unlike ketoreductase domains which are found before the thiolase domains. Exceptions to this observed relationship with the thiolase domain include three proteins which consist of stand-alone reductase domains (GP|466833 from M. leprae, GP|435954 from Anabaena and OMNI|NTL02SC1199 from Strep. coelicolor) and one protein (OMNI|NTL01NS2636 from Nostoc) which contains N-terminal homology with a small group of hypothetical proteins but no evidence of a thiolation domain next to the putative reductase domain. Below the noise cutoff to this model are proteins containing more distantly related ketoreductase and dehydratase/epimerase domains. It has been suggested that a NADP-binding motif can be found in the N-terminal portion of this domain that may form a Rossman-type fold. 367 -130808 TIGR01747 diampropi_NH3ly diaminopropionate ammonia-lyase family. This small subfamily includes diaminopropionate ammonia-lyase from Salmonella typhimurium and a small number of close homologs, about 50 % identical in sequence. The enzyme is a pyridoxal phosphate-binding homodimer homologous to threonine dehydratase (threonine deaminase). [Energy metabolism, Other] 376 -130809 TIGR01748 rhaA L-rhamnose isomerase. This enzyme interconverts L-rhamnose and L-rhamnulose. In some species, including E. coli, this is the first step in rhamnose catabolism. Sequential steps are catalyzed by rhamnulose kinase (rhaB), then rhamnulose-1-phosphate aldolase (rhaD) to yield glycerone phosphate and (S)-lactaldehyde. Characterization of this family is based on members in E. coli and Salmonella. [Energy metabolism, Sugars] 414 -130810 TIGR01749 fabA beta-hydroxyacyl-[acyl carrier protein] dehydratase FabA. This enzyme, FabA, shows overlapping substrate specificity with FabZ with regard to chain length in fatty acid biosynthesis. It is commonly designated 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60) as if it were specific for that chain length, but its specificity is broader; it is active even in the initiation of fatty acid biosynthesis. This enzyme can also isomerize trans-2-decenoyl-ACP to cis-3-decenoyl-ACP to bypass reduction by FabI and instead allow biosynthesis of unsaturated fatty acids. FabA cannot elongate unsaturated fatty acids. [Fatty acid and phospholipid metabolism, Biosynthesis] 169 -130811 TIGR01750 fabZ beta-hydroxyacyl-[acyl carrier protein] dehydratase FabZ. This enzyme, FabZ, shows overlapping substrate specificity with FabA with regard to chain length in fatty acid biosynthesis. FabZ works preferentially on shorter chains and is often designated (3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase, although its actual specificity is broader. Unlike FabA, FabZ does not function as an isomerase and cannot initiate unsaturated fatty acid biosynthesis. However, only FabZ can act during the elongation of unsaturated fatty acid chains. [Fatty acid and phospholipid metabolism, Biosynthesis] 140 -188164 TIGR01751 crot-CoA-red crotonyl-CoA carboxylase/reductase. The enzyme represented by this model can convert crotonyl-CoA to butyryl-CoA (crotonyl-CoA reductase activity), but more importantly, in the presence of CO2, generates (2S)-ethylmalonyl-CoA. In serine cycle methylotrophic bacteria this enzyme is involved in the process of acetyl-CoA to glyoxylate. In other bacteria the enzyme is used to produce extender units for incorporation into polyketides such as tylosin from Streptomyces fradiae and coronatine from Pseudomonas syringae. 398 -273788 TIGR01752 flav_long flavodoxin, long chain. Flavodoxins are small redox-active proteins with a flavin mononucleotide (FMN) prosthetic group. They can act in nitrogen fixation by nitrogenase, in sulfite reduction, and light-dependent NADP+ reduction in during photosynthesis, among other roles. This model describes the long chain type, typical for nitrogen fixation but associated with pyruvate formate-lyase activation and cobalamin-dependent methionine synthase activity in E. coli. [Energy metabolism, Electron transport] 167 -273789 TIGR01753 flav_short flavodoxin, short chain. Flavodoxins are small redox-active proteins with a flavin mononucleotide (FMN) prosthetic group. They can act in nitrogen fixation by nitrogenase, in sulfite reduction, and light-dependent NADP+ reduction in during photosynthesis, among other roles. This model describes the short chain type. Many of these are involved in sulfite reduction. [Energy metabolism, Electron transport] 140 -130815 TIGR01754 flav_RNR ribonucleotide reductase-associated flavodoxin, putative. This model represents a family of proteins found immediately downstream of ribonucleotide reductase genes in Xyella fastidiosa and some Gram-positive bacteria. It appears to be a highly divergent flavodoxin of the short chain type, more like the flavodoxins of the sulfate-reducing genus Desulfovibrio than like the NifF flavodoxins associated with nitrogen fixation. 140 -130816 TIGR01755 flav_wrbA NAD(P)H:quinone oxidoreductase, type IV. This model represents a protein, WrbA, related to and slightly larger than flavodoxin. It was just shown, in E. coli and Archaeoglobus fulgidus (and previously for some eukaryotic homologs) to act as fourth type of NAD(P)H:quinone oxidoreductase. In E. coli, this protein was earlier reported to be produced during stationary phase, bind to the trp repressor, and make trp operon repression more efficient. WrbA does not interact with the trp operator by itself. Members are found in species in which homologs of the E. coli trp operon repressor TrpR (SP:P03032) are not detected. [Energy metabolism, Electron transport] 197 -130817 TIGR01756 LDH_protist lactate dehydrogenase. This model represents a family of protist lactate dehydrogenases which have aparrently evolved from a recent protist malate dehydrogenase ancestor. Lactate dehydrogenase converts the hydroxyl at C-2 of lactate to a carbonyl in the product, pyruvate. The preference of this enzyme for NAD or NADP has not been determined. A critical residue in malate dehydrogenase, arginine-91 (T. vaginalis numbering) has been mutated to a leucine, eliminating the positive charge which complemeted the carboxylate in malate which is absent in lactate. Several other more subtle changes are proposed to make the active site smaller to accomadate the less bulky lactate molecule. 313 -130818 TIGR01757 Malate-DH_plant malate dehydrogenase, NADP-dependent. This model represents the NADP-dependent malate dehydrogenase found in plants, mosses and green algae and localized to the chloroplast. Malate dehydrogenase converts oxaloacetate into malate, a critical step in the C4 cycle which allows circumvention of the effects of photorespiration. Malate is subsequenctly transported from the chloroplast to the cytoplasm (and then to the bundle sheath cells in C4 plants). The plant and moss enzymes are light regulated via cysteine disulfide bonds. The enzyme from Sorghum has been crystallized. 387 -130819 TIGR01758 MDH_euk_cyt malate dehydrogenase, NAD-dependent. This model represents the NAD-dependent cytosolic malate dehydrogenase from eukaryotes. The enzyme from pig has been studied by X-ray crystallography 324 -130820 TIGR01759 MalateDH-SF1 malate dehydrogenase. This model represents a family of malate dehydrogenases in bacteria and eukaryotes which utilize either NAD or NADP depending on the species and context. MDH interconverts malate and oxaloacetate and is a part of the citric acid cycle as well as the C4 cycle in certain photosynthetic organisms. 323 -273790 TIGR01760 tape_meas_TP901 phage tail tape measure protein, TP901 family, core region. This model represents a reasonably well conserved core region of a family of phage tail proteins. The member from phage TP901-1 was characterized as a tail length tape measure protein in that a shortened form of the protein leads to phage with proportionately shorter tails. [Mobile and extrachromosomal element functions, Prophage functions] 350 -273791 TIGR01761 thiaz-red thiazolinyl imide reductase. This reductase is found associated with gene clusters for the biosynthesis of various non-ribosomal peptide derived natural products in which cysteine is cyclized to a thiazoline ring containing an imide double bond. Examples include yersiniabactin (irp3/YbtU, GP|21959262) and pyochelin (PchG, GP|4325022). 344 -130823 TIGR01762 chlorin-enz chlorinating enzyme. This model represents a a group of highly homologous enzymes related to dioxygenases which chlorinate amino acid methyl groups. BarB1 and BarB2 are proposed to trichlorinate one of the methyl groups of a leucine residue in the biosynthesis of barbamide in the cyanobacterium Lyngbya majuscula. SyrB2 is proposed to chlorinate the methyl group of threonine in the biosynthesis of syringomycin in Pseudomonas syringae. CmaB is proposed to chlorinate the beta-methyl group of alloisoleucine in the process of ring closure in the biosynthesis of coronamic acid, a component of coronatine also in Pseudomonas syringae. 288 -273792 TIGR01763 MalateDH_bact malate dehydrogenase, NAD-dependent. This enzyme converts malate into oxaloacetate in the citric acid cycle. The critical residues which discriminate malate dehydrogenase from lactate dehydrogenase have been characterized, and have been used to set the cutoffs for this model. Sequences showing [aflimv][ap]R[rk]pgM[st] and [ltv][ilm]gGhgd were kept above trusted, while those in which the capitalized residues in the patterns were found to be Q, E and E were kept below the noise cutoff. Some sequences in the grey zone have been annotated as malate dehydrogenases, but none have been characterized. Phylogenetically, a clade of sequences from eukaryotes such as Toxoplasma and Plasmodium which include a characterized lactate dehydrogenase and show abiguous critical residue patterns appears to be more closely related to these bacterial sequences than other eukaryotic sequences. These are relatively long branch and have been excluded from the model. All other sequences falling below trusted appear to be phylogenetically outside of the clade including the trusted hits. The annotation of Botryococcus braunii as lactate dehydrogenase appears top be in error. This was initially annotated as MDH by Swiss-Prot and then changed. The rationale for either of these annotations is not traceable. [Energy metabolism, TCA cycle] 305 -200128 TIGR01764 excise DNA binding domain, excisionase family. An excisionase, or Xis protein, is a small protein that binds and promotes excisive recombination; it is not enzymatically active. This model represents a number of putative excisionases and related proteins from temperate phage, plasmids, and transposons, as well as DNA binding domains of other proteins, such as a DNA modification methylase. This model identifies mostly small proteins and N-terminal regions of large proteins, but some proteins appear to have two copies. This domain appears similar, in both sequence and predicted secondary structure (PSIPRED) to the MerR family of transcriptional regulators (pfam00376). [Unknown function, General] 49 -130826 TIGR01765 tspaseT_teng_N transposase, putative, N-terminal domain. This model represents the N-terminal region of a family of putative transposases found in the largest copy number in Thermoanaerobacter tengcongensis. The three homologs in Bacillus anthracis are each split into two ORFs and this model represents the upstream ORF. [Mobile and extrachromosomal element functions, Transposon functions] 73 -273793 TIGR01766 tspaseT_teng_C transposase, IS605 OrfB family, central region. This model represents a region of a sequence similarity between a family of putative transposases of Thermoanaerobacter tengcongensis, smaller related proteins from Bacillus anthracis, putative transposes described by pfam01385, and other proteins. [Mobile and extrachromosomal element functions, Transposon functions] 82 -130828 TIGR01767 MTRK S-methyl-5-thioribose kinase. This enzyme, S-methyl-5-thioribose kinase (MtnK) is involved in the methionine salvage pathway in certain bacteria. 370 -273794 TIGR01768 GGGP-family geranylgeranylglyceryl phosphate synthase family protein. This model represents a family of sequences including geranylgeranylglyceryl phosphate synthase which catalyzes the first committed step in the synthesis of ether-linked membrane lipids in archaea. The clade of bacterial sequences may have the same function or a closely related function. This model supercedes TIGR00265, which has been retired. 223 -130830 TIGR01769 GGGP phosphoglycerol geranylgeranyltransferase. This model represents geranylgeranylglyceryl phosphate synthase which catalyzes the first committed step in the synthesis of ether-linked membrane lipids in archaea. The active enzyme is reported to be a homopentamer in Methanobacterium thermoautotrophicum but is reported to be a homodimer in Thermoplasma acidophilum. 205 -273795 TIGR01770 NDH_I_N proton-translocating NADH-quinone oxidoreductase, chain N. This model describes the 14th (based on E. coli) structural gene, N, of bacterial and chloroplast energy-transducing NADH (or NADPH) dehydrogenases. This model does not describe any subunit of the mitochondrial complex I (for which the subunit composition is very different), nor NADH dehydrogenases that are not coupled to ion transport. The Enzyme Commission designation 1.6.5.3, for NADH dehydrogenase (ubiquinone), is applied broadly, perhaps unfortunately, even if the quinone is menaquinone (Thermus, Mycobacterium) or plastoquinone (chloroplast). For chloroplast members, the name NADH-plastoquinone oxidoreductase is used for the complex and this protein is designated as subunit 2 or B. This model also includes a subunit of a related complex in the archaeal methanogen, Methanosarcina mazei, in which F420H2 replaces NADH and 2-hydroxyphenazine replaces the quinone. [Energy metabolism, Electron transport] 468 -273796 TIGR01771 L-LDH-NAD L-lactate dehydrogenase. This model represents the NAD-dependent L-lactate dehydrogenases from bacteria and eukaryotes. This enzyme function as as the final step in anaerobic glycolysis. Although lactate dehydrogenases have in some cases been mistaken for malate dehydrogenases due to the similarity of these two substrates and the apparent ease with which evolution can toggle these activities, critical residues have been identified which can discriminate between the two activities. At the time of the creation of this model no hits above the trusted cutoff contained critical residues typical of malate dehydrogenases. [Energy metabolism, Anaerobic, Energy metabolism, Glycolysis/gluconeogenesis] 299 -130833 TIGR01772 MDH_euk_gproteo malate dehydrogenase, NAD-dependent. This model represents the NAD-dependent malate dehydrogenase found in eukaryotes and certain gamma proteobacteria. The enzyme is involved in the citric acid cycle as well as the glyoxalate cycle. Several isoforms exidt in eukaryotes. In S. cereviseae, for example, there are cytoplasmic, mitochondrial and peroxisomal forms. Although malate dehydrogenases have in some cases been mistaken for lactate dehydrogenases due to the similarity of these two substrates and the apparent ease with which evolution can toggle these activities, critical residues have been identified which can discriminate between the two activities. At the time of the creation of this model no hits above the trusted cutoff contained critical residues typical of lactate dehydrogenases. [Energy metabolism, TCA cycle] 312 -273797 TIGR01773 GABAperm gamma-aminobutyrate permease. GABA permease (gabP) catalyzes the translocation of 4-aminobutyrate (GABA) across the plasma membrane, with homologues expressed in Gram-negative and Gram-positive organisms. This permease is a highly hydrophobic transmembrane protein consisting of 12 transmembrane domains with hydrophilic N- and C-terminal ends. Induced by nitrogen-limited culture conditions in both Escherichia coli and Bacillus subtilis, gabP is an energy dependent transport system stimulated by membrane potential and has been observed adjacent and distant from other GABA degradation proteins. GabP is highly homologous to amino acid permeases from B. subtilis, E. coli, as well as to other members of the amino acid permease family (pfam00324). A member of the APC (amine-polyamine-choline) transporter superfamily, GABA permease possesses a "consensus amphiphatic region" (CAR) found to be evolutionarily conserved within this transport family. This amphiphatic region is located between helix 8 and cytoplasmic loop 8-9, forming a potential channel domain and suggested to play a significant role in ligand recognition and translocation. Unique to GABA permeases, a conserved cysteine residue (CYS-300, E.coli) located at the beginning of the amphiphatic domain, has been determined to be critical for catalytic specificity. [Transport and binding proteins, Amino acids, peptides and amines] 452 -273798 TIGR01774 PFL2-3 glycyl radical enzyme, PFL2/glycerol dehydratase family. This family previously was designated pyruvate formate-lyase, but it now appears that members include the B12-independent glycerol dehydratase. Therefore, the functional definition of the family is being broadened. This family includes the PflF and PflD proteins of E. coli, described as isoforms of pyruvate-formate lyase found in a limited number additional species. PFL catalyzes the reaction pyruvate + CoA -> acetyl-CoA + formate, which is a step in the fermentation of glucose. 786 -273799 TIGR01776 TonB-tbp-lbp TonB-dependent lactoferrin and transferrin receptors. This family of TonB-dependent receptors are responsible for import of iron from the mammalian iron carriers lactoferrin and transferrin across the outer membrane. These receptors are found only in bacteria which can infect mammals such as Moraxella, Mannheimia, Neisseria, Actinobacillus, Pasteurella, Haemophilus and Histophilus species. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 932 -273800 TIGR01777 yfcH TIGR01777 family protein. This model represents a clade of proteins of unknown function including the E. coli yfcH protein. [Hypothetical proteins, Conserved] 291 -273801 TIGR01778 TonB-copper TonB-dependent copper receptor. This model represents a family of proteobacterial TonB-dependent outer membrane receptor/transporters which bind and translocate copper ions. Two characterized members of this family exist, outer membrane protein C (OprC) from Pseudomonas aeruginosa and NosA from Pseudomonas stutzeri which is responsible for providing copper for the copper-containing N2O reducatse. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 636 -273802 TIGR01779 TonB-B12 TonB-dependent vitamin B12 receptor. This model represents the TonB-dependent outer membrane receptor found in gamma proteobacteria responsible for translocating the cobalt-containing vitamin B12 (cobalamin). [Transport and binding proteins, Other, Transport and binding proteins, Porins] 614 -188167 TIGR01780 SSADH succinate-semialdehyde dehydrogenase. Succinic semialdehyde dehydrogenase is one of three enzymes constituting 4-aminobutyrate (GABA) degradation in both prokaryotes and eukaryotes, catalyzing the (NAD(P)+)-dependent catabolism reaction of succinic semialdehyde to succinate for metabolism by the citric acid cycle. The EC number depends on the cofactor: 1.2.1.24 for NAD only, 1.2.1.79 for NADP only, and 1.2.1.16 if both can be used. In Escherichia coli, succinic semialdehyde dehydrogenase is located in an unidirectionally transcribed gene cluster encoding enzymes for GABA degradation and is suggested to be cotranscribed with succinic semialdehyde transaminase from a common promoter upstream of SSADH. Similar gene arrangements can be found in characterized Ralstonia eutropha and the genome analysis of Bacillus subtilis. Prokaryotic succinic semialdehyde dehydrogenases (1.2.1.16) share high sequence homology to characterized succinic semialdehyde dehydrogenases from rat and human (1.2.1.24), exhibiting conservation of proposed cofactor binding residues, and putative active sites (G-237 & G-242, C-293 & G-259 respectively of rat SSADH). Eukaryotic SSADH enzymes exclusively utilize NAD+ as a cofactor, exhibiting little to no NADP+ activity. While a NADP+ preference has been detected in prokaryotes in addition to both NADP+- and NAD+-dependencies as in E.coli, Pseudomonas, and Klebsiella pneumoniae. The function of this alternative SSADH currently is unknown, but has been suggested to play a possible role in 4-hydroxyphenylacetic degradation. Just outside the scope of this model, are several sequences belonging to clades scoring between trusted and noise. These sequences may be actual SSADH enzymes, but lack sufficiently close characterized homologs to make a definitive assignment at this time. SSADH enzyme belongs to the aldehyde dehydrogenase family (pfam00171), sharing a common evolutionary origin and enzymatic mechanism with lactaldehyde dehydrogenase. Like in lactaldehyde dehydrogenase and succinate semialdehyde dehydrogenase, the mammalian catalytic glutamic acid and cysteine residues are conserved in all the enzymes of this family (PS00687, PS00070). [Central intermediary metabolism, Other] 448 -273803 TIGR01781 Trep_dent_lipo Treponema denticola clustered lipoprotein. This model represents a family of six predicted lipoproteins from a region of about 20 tandemly arranged genes in the Treponema denticola genome. Two other neighboring genes share the lipoprotein signal peptide region but do not show more extensive homology. The function of this locus is unknown. 412 -273804 TIGR01782 TonB-Xanth-Caul TonB-dependent receptor. This model represents a family of TonB-dependent outer-membrane receptors which are found mainly in Xanthomonas and Caulobacter. These appear to represent the expansion of a paralogous family in that the 22 X. axonopodis (21 in X. campestris) and 18 C. crescentus sequences are more closely related to each other than any of the many TonB-dependent receptors found in other species. In fact, the Crescentus and Xanthomonas sequences are inseparable on a phylogenetic tree using a PAM-weighted neighbor-joining method, indicating that one of the two genuses may have acquired this set of receptors from the other. The mechanism by which this family is shared between Xanthomonas, a gamma proteobacterial plant pathogen and Caulobacter, an alpha proteobacterial aquatic organism is unclear. [Transport and binding proteins, Porins] 845 -273805 TIGR01783 TonB-siderophor TonB-dependent siderophore receptor. This subfamily model encompasses a wide variety of TonB-dependent outer membrane siderophore receptors. It has no overlap with TonB receptors known to transport other substances, but is likely incomplete due to lack of characterizations. It is likely that genuine siderophore receptors will be identified which score below the noise cutoff to this model at which point the model should be updated. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 651 -273806 TIGR01784 T_den_put_tspse conserved hypothetical protein (putative transposase or invertase). Several lines of evidence suggest that members of this family (loaded as a fragment mode model to find part-length matches) are associated with transposition, inversion, or recombination. Members are found in small numbers of genomes, but in large copy numbers in many of those species, including over 30 full length and fragmentary members in Treponema denticola. The strongest similarities are usually within rather than between species. PSI-BLAST shows similarity to proteins designated as possible transposases, DNA invertases (resolvases), and recombinases. In the oral pathogenic spirochete Treponema denticola, full-length members are often found near transporters or other membrane proteins. This family includes members of the putative transposase family pfam04754. 270 -273807 TIGR01785 TonB-hemin TonB-dependent heme/hemoglobin receptor family protein. This model represents the TonB-dependent outer membrane heme/hemoglobin receptor/transporter found in bacteria which live in contact with animals (which contain hemoglobin or other heme-bearing globins) or legumes (which contain leghemoglobin). Some species having hits to this model such as Nostoc, Caulobacter and Chlorobium do not have an obvious source of hemoglobin-like proteins in their biological niche and so the possibility exists that they act on some other substance. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 665 -273808 TIGR01786 TonB-hemlactrns TonB-dependent hemoglobin/transferrin/lactoferrin receptor family protein. This model represents a family of TonB-dependent outer membrane receptor/transporters acting on iron-containing proteins such as hemoglobin, transferrin and lactoferrin. Two subfamily models with a narrower scope are contained within this model, the heme/hemoglobin receptor family protein model (TIGR01785) and the transferrin/lactoferrin receptor family model (TIGR01776). Accessions which score above trusted to this model while not scoring above trusted to the more specific models are most likely to be hemoglobin transporters. Nearly all of the species containing trusted hits to this model have access to hemoglobin, transferrin or lactoferrin or related proteins in their biological niche. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 715 -273809 TIGR01787 squalene_cyclas squalene/oxidosqualene cyclases. This family of enzymes catalyzes the cyclization of the triterpenes squalene or 2-3-oxidosqualene to a variety of products including hopene, lanosterol, cycloartenol, amyrin, lupeol, and isomultiflorenol. 621 -130848 TIGR01788 Glu-decarb-GAD glutamate decarboxylase. This model represents the pyridoxal phosphate-dependent glutamate (alpha) decarboxylase found in bacteria (low and hi-GC gram positive, proteobacteria and cyanobacteria), plants, fungi and at least one archaon (Methanosarcina). The product of the enzyme is gamma-aminobutyrate (GABA). 431 -130849 TIGR01789 lycopene_cycl lycopene cyclase. This model represents a family of bacterial lycopene cyclases catalyzing the transformation of lycopene to carotene. These enzymes are found in a limited spectrum of alpha and gamma proteobacteria as well as Flavobacterium. 370 -130850 TIGR01790 carotene-cycl lycopene cyclase family protein. This family includes lycopene beta and epsilion cyclases (which form beta and delta carotene, respectively) from bacteria and plants as well as the plant capsanthin/capsorubin and neoxanthin cyclases which appear to have evolved from the plant lycopene cyclases. The plant lycopene epsilon cyclases also transform neurosporene to alpha zeacarotene. 388 -130851 TIGR01791 CM_archaeal chorismate mutase, archaeal type. This model represents a clade of archaeal chorismate mutases. Chorismate mutase catalyzes the conversion of chorismate into prephenate which is subsequently converted into either phenylalanine or tyrosine. In Sulfolobus this gene is found as a fusion with prephenate dehydrogenase (although the non-TIGR annotation contains a typographical error indicating it as a dehydratase OMNI|NTL02SS0274) which is the next enzyme in the tyrosine biosynthesis pathway. The Archaeoglobus gene contains an N-terminal prephenate dehydrogenase domain and a C-terminal prephenate dehydratase domain followed by a regulatory amino acid-binding ACT domain. The Thermoplasma volcanium gene is adjacent to prephenate dehydratase. [Amino acid biosynthesis, Aromatic amino acid family] 83 -273810 TIGR01792 urease_alph urease, alpha subunit. This model describes the urease alpha subunit UreC (designated beta or B chain, UreB in Helicobacter species). Accessory proteins for incorporation of the nickel cofactor are usually found in addition to the urease alpha, beta, and gamma subunits. The trusted cutoff is set above the scores of many reported fragments and of a putative second urease alpha chain in Streptomyces coelicolor. [Central intermediary metabolism, Nitrogen metabolism] 567 -130853 TIGR01793 cit_synth_euk citrate (Si)-synthase, eukaryotic. This model includes both mitochondrial and peroxisomal forms of citrate synthase. Citrate synthase is the entry point to the TCA cycle from acetyl-CoA. Peroxisomal forms, such as SP:P08679 from yeast (recognized by the C-terminal targeting motif SKL) act in the glyoxylate cycle. Eukaryotic homologs excluded by the high trusted cutoff of this model include a Tetrahymena thermophila citrate synthase that doubles as a filament protein, a putative citrate synthase from Plasmodium falciparum (no TCA cycle), and a methylcitrate synthase from Aspergillus nidulans. 427 -130854 TIGR01795 CM_mono_cladeE monofunctional chorismate mutase, alpha proteobacterial type. This model represents a small clade of monofunctional (non-fused) chorismate mutases spanning alpha proteobacteria and two actinobacter gram positive species. The alpha proteobacterial members are trusted because the pathways of CM are evident and there is only one plausible CM in the genome. In S. coelicolor, however, there is another aparrent monofunctional CM. [Amino acid biosynthesis, Aromatic amino acid family] 94 -130855 TIGR01796 CM_mono_aroH monofunctional chorismate mutase, gram positive type, clade 1. This model represents a family of monofunctional (non-fused) chorismate mutases from gram positive bacteria (Firmicutes) and cyanobacteria. Trusted members of the family are found in operons with other enzymes of the chorismate pathways, both up- and downstream of CM (Listeria, Bacillus, Oceanobacillus) or are the sole CM in the genome where the other members of the chorismate pathways are found elsewhere in the genome (Nostoc, Thermosynechococcus). [Amino acid biosynthesis, Aromatic amino acid family] 117 -130856 TIGR01797 CM_P_1 chorismate mutase domain of proteobacterial P-protein, clade 1. This model represents the chorismate mutase domain of the gamma and beta proteobacterial "P-protein" which contains an N-terminal chorismate mutase domain and a C-terminal prephenate dehydratase domain. [Amino acid biosynthesis, Aromatic amino acid family] 83 -273811 TIGR01798 cit_synth_I citrate synthase I (hexameric type). This model describes one of several distinct but closely homologous classes of citrate synthase, the protein that brings carbon (from acetyl-CoA) into the TCA cycle. This form, class I, is known to be hexameric and allosterically inhibited by NADH in Escherichia coli, Acinetobacter anitratum, Azotobacter vinelandii, Pseudomonas aeruginosa, etc. In most species with a class I citrate synthase, a dimeric class II isozyme is found. The class II enzyme may act primarily on propionyl-CoA to make 2-methylcitrate or be bifunctional, may be found among propionate utilization enzymes, and may be constitutive or induced by propionate. Some members of this model group as class I enzymes, and may be hexameric, but have shown regulatory properties more like class II enzymes. [Energy metabolism, TCA cycle] 412 -130858 TIGR01799 CM_T chorismate mutase domain of T-protein. This model represents the chorismate mutase domain of the gamma proteobacterial "T-protein" which consists of an N-terminal chorismate mutase domain and a C-terminal prephenate dehydrogenase domain. [Amino acid biosynthesis, Aromatic amino acid family] 83 -130859 TIGR01800 cit_synth_II 2-methylcitrate synthase/citrate synthase II. Members of this family are dimeric enzymes with activity as 2-methylcitrate synthase, citrate synthase, or both. Many Gram-negative species have a hexameric citrate synthase, termed citrate synthase I (TIGR01798). Members of this family (TIGR01800) appear as a second citrate synthase isozyme but typically are associated with propionate metabolism and synthesize 2-methylcitrate from propionyl-CoA; citrate synthase activity may be incidental. A number of species, including Thermoplasma acidophilum, Pyrococcus furiosus, and the Antarctic bacterium DS2-3R have a bifunctional member of this family as the only citrate synthase isozyme. 368 -130860 TIGR01801 CM_A chorismate mutase domain of gram positive AroA protein. This model represents a small clade of chorismate mutase domains N-terminally fused to the first enzyme in the chorismate pathway, 2-dehydro-3-deoxyphosphoheptanoate aldolase (DAHP synthetase, AroA) which are found in some gram positive species and Deinococcus. Only in Deinococcus, where this domain is the sole CM domain in the genome can a trusted assignment of function be made. In the other species there is at least one other trusted CM domain present. The similarity between the Deinococcus gene and the others in this clade is sufficiently strong (~44% identity), that the whole clade can be trusted to be functional. The possibility exists, however, that in the gram positive species the fusion to the first enzyme in the pathway has evolved a separate, regulatory role. [Amino acid biosynthesis, Aromatic amino acid family] 102 -273812 TIGR01802 CM_pl-yst monofunctional chorismate mutase, eukaryotic type. This model represents the plant and yeast (plastidic) chorismate mutase. These CM's are distinct from other forms by the presence of an extended regulatory domain. [Amino acid biosynthesis, Aromatic amino acid family] 246 -130862 TIGR01803 CM-like chorismate mutase related enzymes. This subfamily includes two enzymes which are variants on the mechanism of chorismate mutase and are likely to have evolved from an ancestral chorismate mutase enzyme. 4-amino-4-deoxy-chorismate mutase produces amino-deoxy-prephenate which is subsequently converted to para-dimethylamino-phenylalanine, a component of the natural product pristinamycin. Isochorismate-pyruvate lyase presumably catalyzes the same type of 2+2+2 cyclo-rearrangement as chorismate mutase, but acting on isochorismate, this results in two broken bonds instead of one broken and one made. The product of this reaction is salicylate (2-hydroxy-benzoate) which is also incorporated into various natural products. 82 -200131 TIGR01804 BADH betaine-aldehyde dehydrogenase. Under osmotic stress, betaine aldehyde dehydrogenase oxidizes glycine betaine aldehyde into the osmoprotectant glycine betaine, via the second of two oxidation steps from exogenously supplied choline or betaine aldehyde. This choline-glycine betaine synthesis pathway can be found in gram-positive and gram-negative bacteria. In Escherichia coli, betaine aldehyde dehydrogenase (betB) is osmotically co-induced with choline dehydrogenase (betA) in the presence of choline. These dehydrogenases are located in a betaine gene cluster with the upstream choline transporter (betT) and transcriptional regulator (betI). Similar to E.coli, betaine synthesis in Staphylococcus xylosus is also influenced by osmotic stress and the presence of choline with genes localized in a functionally equivalent gene cluster. Organization of the betaine gene cluster in Sinorhizobium meliloti and Bacillus subtilis differs from that of E.coli by the absence of upstream choline transporter and transcriptional regulator homologues. Additionally, B.subtilis co-expresses a type II alcohol dehydrogenase with betaine aldehyde dehydrogenase instead of choline dehydrogenase as in E.coli, St.xylosus, and Si.meliloti. Betaine aldehyde dehydrogenase is a member of the aldehyde dehydrogenase family (pfam00171). [Cellular processes, Adaptations to atypical conditions] 467 -130864 TIGR01805 CM_mono_grmpos monofunctional chorismate mutase, gram positive-type, clade 2. This model represents a clade of chorismate mutase proteins/domains from gram positive species. The sequence from Enterococcus is fused to the C-terminus of an aparrent acetyltransferase, and the seuence from Clostridium acetobutylicum (but not perfringens) is fused to the N-terminus of shikimate-5-dehydrogenase, another enzyme of the chorismate pathway. All the other members of this clade are mono-functional. Members of this clade from Streptococcus and Lactococcus have been found which represent the sole chorismate mutase domain in their respective genomes which also exhibit evidence of the enzymes of both the upstream and downstream branches of the chorismate pathways. [Amino acid biosynthesis, Aromatic amino acid family] 81 -130865 TIGR01806 CM_mono2 chorismate mutase, putative. This model represents a clade of probable chorismate mutases from alpha, beta and gamma proteobacteria as well as Mycobacterium tuberculosis and a clade of nematodes. Although the most likely function for the enzymes represented by this model is as a chorismate mutase, in no species are these enzymes the sole chorismate mutase in the genome. Also, in no case are these enzymes located in a region of the genome proximal to any other enzymes involved in chorismate pathways. Although the Pantoea enzyme has been shown to complement a CM-free mutant of E. coli, this was also shown to be the case with isochorismate-pyruvate lyase which only has a secondary (non-physiologically relevant) chorismate mutase activity. This enzyme is believed to be a homodimer and be localized to the periplasm. [Amino acid biosynthesis, Aromatic amino acid family] 114 -130866 TIGR01807 CM_P2 chorismate mutase domain of proteobacterial P-protein, clade 2. This model represents one of two separate clades of the chorismate mutase domain of the gamma and beta and epsilon proteobacterial "P-protein" which contains an N-terminal chorismate mutase domain and a C-terminal prephenate dehydratase domain. It is also found in Aquifex aolicus. [Amino acid biosynthesis, Aromatic amino acid family] 76 -130867 TIGR01808 CM_M_hiGC-arch monofunctional chorismate mutase, high GC gram positive type. This model represents the monofunctional chorismate mutase from high GC gram-positive bacteria and archaea. Trusted annotations from Corynebacterium and Pyrococcus are aparrently the sole chorismate mutase enzymes in their respective genomes. This is coupled with the presence in those genomes of the enzymes of the chorismate pathways both up- and downstream of chorismate mutase. [Amino acid biosynthesis, Aromatic amino acid family] 74 -273813 TIGR01809 Shik-DH-AROM shikimate-5-dehydrogenase, fungal AROM-type. This model represents a clade of shikimate-5-dehydrogenases found in Corynebacterium, Mycobacteria and fungi. The fungal sequences are pentafunctional proteins known as AroM which contain the central five seven steps in the chorismate biosynthesis pathway. The Corynebacterium and Mycobacterial sequences represent the sole shikimate-5-dehydrogenases in species which otherwise have every enzyme of the chorismate biosynthesis pathway. [Amino acid biosynthesis, Aromatic amino acid family] 282 -273814 TIGR01810 betA choline dehydrogenase. Choline dehydrogenase catalyzes the conversion of exogenously supplied choline into the intermediate glycine betaine aldehyde, as part of a two-step oxidative reaction leading to the formation of osmoprotectant betaine. This enzymatic system can be found in both gram-positive and gram-negative bacteria. As in Escherichia coli, Staphylococcus xylosus, and Sinorhizobium meliloti, this enzyme is found associated in a transciptionally co-induced gene cluster with betaine aldehyde dehydrogenase, the second catalytic enzyme in this reaction. Other gram-positive organisms have been shown to employ a different enzymatic system, utlizing a soluable choline oxidase or type III alcohol dehydrogenase instead of choline dehydrogenase. This enzyme is a member of the GMC oxidoreductase family (pfam00732 and pfam05199), sharing a common evoluntionary origin and enzymatic reaction with alcohol dehydrogenase. Outgrouping from this model, Caulobacter crescentus shares sequence homology with choline dehydrogenase, yet other genes participating in this enzymatic reaction have not currently been identified. [Cellular processes, Adaptations to atypical conditions] 532 -130870 TIGR01811 sdhA_Bsu succinate dehydrogenase or fumarate reductase, flavoprotein subunit, Bacillus subtilis subgroup. This model represents the succinate dehydrogenase flavoprotein subunit as found in the low-GC Gram-positive bacteria and a few other lineages. This enzyme may act in a complete or partial TCA cycle, or act in the opposite direction as fumarate reductase. In some but not all species, succinate dehydrogenase and fumarate reductase may be encoded as separate isozymes. [Energy metabolism, TCA cycle] 603 -273815 TIGR01812 sdhA_frdA_Gneg succinate dehydrogenase or fumarate reductase, flavoprotein subunitGram-negative/mitochondrial subgroup. This model represents the succinate dehydrogenase flavoprotein subunit as found in Gram-negative bacteria, mitochondria, and some Archaea. Mitochondrial forms interact with ubiquinone and are designated EC 1.3.5.1, but can be degraded to 1.3.99.1. Some isozymes in E. coli and other species run primarily in the opposite direction and are designated fumarate reductase. [Energy metabolism, Aerobic, Energy metabolism, Anaerobic, Energy metabolism, TCA cycle] 566 -273816 TIGR01813 flavo_cyto_c flavocytochrome c. This model describes a family of redox proteins related to the succinate dehydrogenases and fumarate reductases of E. coli, mitochondria, and other well-characterized systems. A member of this family from Shewanella frigidimarina NCIMB400 is characterized as a water-soluble periplasmic protein with four heme groups, a non-covalently bound FAD, and essentially unidirectional fumarate reductase activity. At least seven distinct members of this family are found in Shewanella oneidensis, a species able to use a wide variety of pathways for respiraton. [Energy metabolism, Electron transport] 439 -130873 TIGR01814 kynureninase kynureninase. This model describes kynureninase, a pyridoxal-phosphate enzyme. Kynurinine is a Trp breakdown product and a precursor for NAD. In Chlamydia psittaci, an obligate intracellular pathogen, kynureninase makes anthranilate, a Trp precursor, from kynurenine. This counters the tryptophan hydrolysis that occurs in the host cell in response to the pathogen. [Energy metabolism, Amino acids and amines] 406 -130874 TIGR01815 TrpE-clade3 anthranilate synthase, alpha proteobacterial clade. This model represents a small clade of anthranilate synthases from alpha proteobacteria and Nostoc (a cyanobacterium). This enzyme is the first step in the pathway for the biosynthesis of tryprophan from chorismate. [Amino acid biosynthesis, Aromatic amino acid family] 717 -130875 TIGR01816 sdhA_forward succinate dehydrogenase, flavoprotein subunit, E. coli/mitochondrial subgroup. Succinate dehydrogenase and fumarate reductase are homologous enzymes reversible in principle but favored under different circumstances. This model represents a narrowly defined clade of the succinate dehydrogenase flavoprotein subunit as found in mitochondria, in Rickettsia, in E. coli and other Proteobacteria, and in a few other lineages. However, this model excludes all known fumarate reductases. It also excludes putative succinate dehydrogenases that appear to diverged before the split between E. coli succinate dehydrogenase and fumarate reductase. [Energy metabolism, TCA cycle] 565 -273817 TIGR01817 nifA Nif-specific regulatory protein. This model represents NifA, a DNA-binding regulatory protein for nitrogen fixation. The model produces scores between the trusted and noise cutoffs for a well-described NifA homolog in Aquifex aeolicus (which lacks nitrogenase), for transcriptional activators of alternative nitrogenases (VFe or FeFe instead of MoFe), and truncated forms. [Central intermediary metabolism, Nitrogen fixation, Regulatory functions, DNA interactions] 534 -273818 TIGR01818 ntrC nitrogen regulation protein NR(I). This model represents NtrC, a DNA-binding response regulator that is phosphorylated by NtrB and interacts with sigma-54. NtrC usually controls the expression of glutamine synthase, GlnA, and may be called GlnL, GlnG, etc. [Central intermediary metabolism, Nitrogen metabolism, Regulatory functions, DNA interactions, Signal transduction, Two-component systems] 463 -130878 TIGR01819 F420_cofD 2-phospho-L-lactate transferase. This model represents LPPG:Fo 2-phospho-L-lactate transferase, which catalyses the fourth step in the biosynthesis of coenzyme F420, a flavin derivative found in methanogens, the Mycobacteria, and several other lineages. This enzyme is characterized so far in Methanococcus jannaschii but appears restricted to F420-containing species and is predicted to carry out the same function in these other species. The clade represented by this model is one of two major divisions of proteins in pfam01933. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 297 -273819 TIGR01820 TrpE-arch anthranilate synthase component I, archaeal clade. This model represents an archaeal clade of anthranilate synthase component I enzymes. This enzyme is responsible for the first step of tryptophan biosynthesis from chorismate. The Sulfolobus enzyme has been reported to be part of a gene cluster for Trp biosynthesis [Amino acid biosynthesis, Aromatic amino acid family] 435 -273820 TIGR01821 5aminolev_synth 5-aminolevulinic acid synthase. This model represents 5-aminolevulinic acid synthase, an enzyme for one of two routes to the heme precursor 5-aminolevulinate. The protein is a pyridoxal phosphate-dependent enzyme related to 2-amino-3-ketobutyrate CoA tranferase and 8-amino-7-oxononanoate synthase. This enzyme appears restricted to the alpha Proteobacteria and mitochondrial derivatives. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 402 -130881 TIGR01822 2am3keto_CoA glycine C-acetyltransferase. This model represents a narrowly defined clade of animal and bacterial (almost exclusively Proteobacterial) 2-amino-3-ketobutyrate--CoA ligase, now called glycine C-acetyltransferase. This enzyme can act in threonine catabolism. The closest homolog from Bacillus subtilis, and sequences like it, may be functionally equivalent but were not included in the model because of difficulty in finding reports of function. [Energy metabolism, Amino acids and amines] 393 -273821 TIGR01823 PabB-fungal aminodeoxychorismate synthase, fungal clade. This model represents the fungal clade of a para-aminobenzoate synthesis enzyme, aminodeoxychorismate synthase, which acts on chorismate in a pathway that yields PABA, a precursor of folate. 742 -130883 TIGR01824 PabB-clade2 aminodeoxychorismate synthase, component I, clade 2. This clade of sequences is more closely related to TrpE (anthranilate synthase, TIGR00564/TIGR01820/TIGR00565) than to the better characterized group of PabB enzymes (TIGR00553/TIGR01823). This clade includes one characterized enzyme from Lactococcus and the conserved function across the clade is supported by these pieces of evidence: 1) all genomes with a member in this clade also have a separate TrpE gene, 2) none of these genomes contain an aparrent PabB from any of the other PabB clades, 3) none of these sequences are found in a region of the genome in association with other Trp biosynthesis genes, 4) all of these genomes aparrently contain most if not all of the steps of the folate biosynthetic pathway (for which PABA is a precursor). Many of the sequences hit by this model are annotated as TrpE enzymes, however, we believe that all members of this clade are, in fact, PabB. The sequences from Bacillus halodurans and subtilus which score below the trusted cutoff for this model are also likely to be PabB enzymes, but are too closely related to TrpE to be separated at this time. 355 -130884 TIGR01825 gly_Cac_T_rel pyridoxal phosphate-dependent acyltransferase, putative. This model represents an enzyme subfamily related to three known enzymes; it appears closest to glycine C-acteyltransferase, shows no overlap with it in species distribution, and may share that function. The three closely related enzymes are glycine C-acetyltransferase (2-amino-3-ketobutyrate coenzyme A ligase), 5-aminolevulinic acid synthase, and 8-amino-7-oxononanoate synthase. All transfer the R-group (acetyl, succinyl, or 6-carboxyhexanoyl) from coenzyme A to an amino acid (Gly, Gly, Ala, respectively), with release of CO2 for the latter two reactions. 385 -211689 TIGR01826 CofD_related conserved hypothetical protein, cofD-related. This model represents a subfamily of conserved hypothetical proteins that forms a sister group to the family of CofD, (TIGR01819), LPPG:Fo 2-phospho-L-lactate transferase, an enzyme of cytochrome F420 biosynthesis. Both this family and TIGR01819 are within the scope of the pfam01933. [Hypothetical proteins, Conserved] 310 -130886 TIGR01827 gatC_rel Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase, subunit C, putative. This model represents a family small family related to GatC, the third subunit of an enzyme for completing the charging of tRNA(Gln) by amidating the Glu-tRNA(Gln). The few known archaea that contain a member of this family appear to produce Asn-tRNA(Asn) by an analogous amidotransferase reaction. This protein is proposed to substitute for GatC in the charging of both tRNAs. 73 -273822 TIGR01828 pyru_phos_dikin pyruvate, phosphate dikinase. This model represents pyruvate,phosphate dikinase, also called pyruvate,orthophosphate dikinase. It is similar in sequence to other PEP-utilizing enzymes. [Energy metabolism, Other] 856 -273823 TIGR01829 AcAcCoA_reduct acetoacetyl-CoA reductase. This model represent acetoacetyl-CoA reductase, a member of the family short-chain-alcohol dehydrogenases. Note that, despite the precision implied by the enzyme name, the reaction of EC 1.1.1.36 is defined more generally as (R)-3-hydroxyacyl-CoA + NADP+ = 3-oxoacyl-CoA + NADPH. Members of this family may act in the biosynthesis of poly-beta-hydroxybutyrate (e.g. Rhizobium meliloti) and related poly-beta-hydroxyalkanoates. Note that the member of this family from Azospirillum brasilense, designated NodG, appears to lack acetoacetyl-CoA reductase activity and to act instead in the production of nodulation factor. This family is downgraded to subfamily for this NodG. Other proteins designated NodG, as from Rhizobium, belong to related but distinct protein families. 242 -273824 TIGR01830 3oxo_ACP_reduc 3-oxoacyl-(acyl-carrier-protein) reductase. This model represents 3-oxoacyl-[ACP] reductase, also called 3-ketoacyl-acyl carrier protein reductase, an enzyme of fatty acid biosynthesis. [Fatty acid and phospholipid metabolism, Biosynthesis] 239 -273825 TIGR01831 fabG_rel 3-oxoacyl-(acyl-carrier-protein) reductase, putative. This model represents a small, very well conserved family of proteins closely related to the FabG family, TIGR01830, and possibly equal in function. In all completed genomes with a member of this family, a FabG in TIGR01830 is also found. [Fatty acid and phospholipid metabolism, Biosynthesis] 239 -188170 TIGR01832 kduD 2-deoxy-D-gluconate 3-dehydrogenase. This model describes 2-deoxy-D-gluconate 3-dehydrogenase (also called 2-keto-3-deoxygluconate oxidoreductase), a member of the family of short-chain-alcohol dehydrogenases (pfam00106). This protein has been characterized in Erwinia chrysanthemi as an enzyme of pectin degradation. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 248 -273826 TIGR01833 HMG-CoA-S_euk 3-hydroxy-3-methylglutaryl-CoA-synthase, eukaryotic clade. Hydroxymethylglutaryl(HMG)-CoA synthase is the first step of isopentenyl pyrophosphate (IPP) biosynthesis via the mevalonate pathway. This pathway is found mainly in eukaryotes, but also in archaea and some bacteria. This model is specific for eukaryotes. 457 -273827 TIGR01834 PHA_synth_III_E poly(R)-hydroxyalkanoic acid synthase, class III, PhaE subunit. This model represents the PhaE subunit of the heterodimeric class (class III) of polymerase for poly(R)-hydroxyalkanoic acids (PHAs), carbon and energy storage polymers of many bacteria. The most common PHA is polyhydroxybutyrate but about 150 different constituent hydroxyalkanoic acids (HAs) have been identified in various species. This model must be designated subfamily to indicate the heterogeneity of PHAs. [Cellular processes, Adaptations to atypical conditions, Fatty acid and phospholipid metabolism, Biosynthesis] 320 -213655 TIGR01835 HMG-CoA-S_prok 3-hydroxy-3-methylglutaryl CoA synthase, prokaryotic clade. This clade of hydroxymethylglutaryl-CoA (HMG-CoA) synthases is found in a limited spectrum of mostly gram-positive bacteria which make isopentenyl pyrophosphate (IPP) via the mevalonate pathway. This pathway is found primarily in eukaryotes and archaea, but the bacterial homologs are distinct, having aparrently diverged after being laterally transferred from an early eukaryote. HMG-CoA synthase is the first step in the pathway and joins acetyl-CoA with acetoacetyl-CoA with the release of one molecule of CoA. The Borellia sequence may have resulted from a separate lateral transfer event. 379 -130895 TIGR01836 PHA_synth_III_C poly(R)-hydroxyalkanoic acid synthase, class III, PhaC subunit. This model represents the PhaC subunit of a heterodimeric form of polyhydroxyalkanoic acid (PHA) synthase. Excepting the PhaC of Bacillus megaterium (which needs PhaR), all members require PhaE (TIGR01834) for activity and are designated class III. This enzyme builds ester polymers for carbon and energy storage that accumulate in inclusions, and both this enzyme and the depolymerase associate with the inclusions. Class III enzymes polymerize short-chain-length hydroxyalkanoates. [Fatty acid and phospholipid metabolism, Biosynthesis] 350 -130896 TIGR01837 PHA_granule_1 poly(hydroxyalkanoate) granule-associated protein. This model describes a domain found in some proteins associated with polyhydroxyalkanoate (PHA) granules in a subset of species that have PHA inclusion granules. Included are two tandem proteins of Pseudomonas oleovorans, PhaI and PhaF, and their homologs in related species. PhaF proteins have a low-complexity C-terminal region with repeats similar to AAAKP. [Fatty acid and phospholipid metabolism, Biosynthesis] 118 -213656 TIGR01838 PHA_synth_I poly(R)-hydroxyalkanoic acid synthase, class I. This model represents the class I subfamily of poly(R)-hydroxyalkanoate synthases, which polymerizes hydroxyacyl-CoAs with three to five carbons in the hydroxyacyl backbone into aliphatic esters termed poly(R)-hydroxyalkanoic acids. These polymers accumulate as carbon and energy storage inclusions in many species and can amount to 90 percent of the dry weight of cell. [Fatty acid and phospholipid metabolism, Biosynthesis] 532 -130898 TIGR01839 PHA_synth_II poly(R)-hydroxyalkanoic acid synthase, class II. This model represents the class II subfamily of poly(R)-hydroxyalkanoate synthases, which polymerizes hydroxyacyl-CoAs, typically with six to fourteen carbons in the hydroxyacyl backbone into aliphatic esters termed poly(R)-hydroxyalkanoic acids. These polymers accumulate as carbon and energy storage inclusions in many species and can amount to 90 percent of the dry weight of cell. [Fatty acid and phospholipid metabolism, Biosynthesis] 560 -273828 TIGR01840 esterase_phb esterase, PHB depolymerase family. This model describes a subfamily among lipases of the ab-hydrolase family. This subfamily includes bacterial depolymerases for poly(3-hydroxybutyrate) (PHB) and related polyhydroxyalkanoates (PHA), as well as acetyl xylan esterases, feruloyl esterases, and others from fungi. [Fatty acid and phospholipid metabolism, Degradation] 212 -130900 TIGR01841 phasin phasin family protein. This model describes a family of small proteins found associated with inclusions in bacterial cells. Most associate with polyhydroxyalkanoate (PHA) inclusions, the most common of which consist of polyhydroxybutyrate (PHB). These are designated granule-associate proteins or phasins; the member from Rhodospirillum rubrum is an activator of polyhydroxybutyrate (PHB) degradation. However, the member from Magnetospirillum sp. AMB-1 is called a magnetic particle membrane-specific GTPase. 88 -200134 TIGR01842 type_I_sec_PrtD type I secretion system ABC transporter, PrtD family. Type I protein secretion is a system in some Gram-negative bacteria to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. Targeted proteins are not cleaved at the N-terminus, but rather carry signals located toward the extreme C-terminus to direct type I secretion. [Protein fate, Protein and peptide secretion and trafficking] 544 -130902 TIGR01843 type_I_hlyD type I secretion membrane fusion protein, HlyD family. Type I secretion is an ABC transport process that exports proteins, without cleavage of any signal sequence, from the cytosol to extracellular medium across both inner and outer membranes. The secretion signal is found in the C-terminus of the transported protein. This model represents the adaptor protein between the ATP-binding cassette (ABC) protein of the inner membrane and the outer membrane protein, and is called the membrane fusion protein. This model selects a subfamily closely related to HlyD; it is defined narrowly and excludes, for example, colicin V secretion protein CvaA and multidrug efflux proteins. [Protein fate, Protein and peptide secretion and trafficking] 423 -273829 TIGR01844 type_I_sec_TolC type I secretion outer membrane protein, TolC family. Members of this model are outer membrane proteins from the TolC subfamily within the RND (Resistance-Nodulation-cell Division) efflux systems. These proteins, unlike the NodT subfamily, appear not to be lipoproteins. All are believed to participate in type I protein secretion, an ABC transporter system for protein secretion without cleavage of a signal sequence, although they may, like TolC, participate also in the efflux of smaller molecules as well. This family includes the well-documented examples TolC (E. coli), PrtF (Erwinia), and AprF (Pseudomonas aeruginosa). [Protein fate, Protein and peptide secretion and trafficking, Transport and binding proteins, Porins] 415 -273830 TIGR01845 outer_NodT efflux transporter, outer membrane factor (OMF) lipoprotein, NodT family. Members of this model comprise a subfamily of the Outer Membrane Factor (TCDB 1.B.17) porins. OMF proteins operate in conjunction with a primary transporter of the RND, MFS, ABC, or PET systems, and a MFP (membrane fusion protein) to tranport substrates across membranes. The complex thus formed allows transport (export) of various solutes (heavy metal cations; drugs, oligosaccharides, proteins, etc.) across the two envelopes of the Gram-negative bacterial cell envelope in a single energy-coupled step. Current data suggest that the OMF (and not the MFP) is largely responsible for the formation of both the trans-outer membrane and trans-periplasmic channels. The roles played by the MFP have yet to be determined. [Cellular processes, Detoxification, Transport and binding proteins, Porins] 460 -273831 TIGR01846 type_I_sec_HlyB type I secretion system ABC transporter, HlyB family. Type I protein secretion is a system in some Gram-negative bacteria to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. Targeted proteins are not cleaved at the N-terminus, but rather carry signals located toward the extreme C-terminus to direct type I secretion. [Protein fate, Protein and peptide secretion and trafficking] 694 -130906 TIGR01847 bacteriocin_sig bacteriocin-type signal sequence. Bacteriocins are bacterial peptide products toxic to closely related bacteria. This model represents the N-terminal region up to the GG cleavage motif. Processing to remove this bacteriocin leader peptide occurs together with export by an ABC transporter. Note: because this model is so small (15 amino acids), it may have many spurious high-scoring matches to unrelated proteins, even with fairly stringent cutoff scores. The most likely true positives are small proteins of Gram-positive bacteria, matching regions that start within the first 15 amino acids, and encoded near bacteriocin transport family proteins (TIGR01000, TIGR01193). 15 -130907 TIGR01848 PHA_reg_PhaR polyhydroxyalkanoate synthesis repressor PhaR. Poly-B-hydroxyalkanoates are lipidlike carbon/energy storage polymers found in granular inclusions. PhaR is a regulatory protein found in general near other proteins associated with polyhydroxyalkanoate (PHA) granule biosynthesis and utilization. It is found to be a DNA-binding homotetramer that is also capable of binding short chain hydroxyalkanoic acids and PHA granules. PhaR may regulate the expression of itself, of the phasins that coat granules, and of enzymes that direct carbon flux into polymers stored in granules. The C-terminal region is poorly conserved in this family and is not part of this model.//GO terms added 12/6/04 [SS] [Fatty acid and phospholipid metabolism, Biosynthesis, Regulatory functions, DNA interactions] 107 -130908 TIGR01849 PHB_depoly_PhaZ polyhydroxyalkanoate depolymerase, intracellular. This model represents an intracellular depolymerase for polyhydroxyalkanoate (PHA), a carbon and energy storing polyester that accumulates in granules in many bacterial species when carbon sources are abundant but other nutrients are limiting. This family is named for PHAs generally, rather than polyhydroxybutyrate (PHB) specificially as in Ralstonia eutropha H16, to avoid overcalling chemical specificity in other species. Note that this family lacks the classic GXSXG lipase motif and instead shows weak similarity to some [Fatty acid and phospholipid metabolism, Degradation] 406 -273832 TIGR01850 argC N-acetyl-gamma-glutamyl-phosphate reductase, common form. This model represents the more common of two related families of N-acetyl-gamma-glutamyl-phosphate reductase, an enzyme catalyzing the third step or Arg biosynthesis from Glu. The two families differ by phylogeny, similarity clustering, and the gap architecture in a multiple sequence alignment. Bacterial members of this family tend to be found within Arg biosynthesis operons. [Amino acid biosynthesis, Glutamate family] 346 -273833 TIGR01851 argC_other N-acetyl-gamma-glutamyl-phosphate reductase, uncommon form. This model represents the less common of two related families of N-acetyl-gamma-glutamyl-phosphate reductase, an enzyme catalyzing the third step or Arg biosynthesis from Glu. The two families differ by phylogeny, similarity clustering, and gap architecture in a multiple sequence alignment. [Amino acid biosynthesis, Glutamate family] 310 -188173 TIGR01852 lipid_A_lpxA acyl-[acyl-carrier-protein]--UDP-N-acetylglucosamine O-acyltransferase. This model describes LpxA, an enzyme for the biosynthesis of lipid A, a component oflipopolysaccharide (LPS) in the outer membrane outer leaflet of most Gram-negative bacteria. Some differences are found between lipid A of different species, but this protein represents the first step (from UDP-N-acetyl-D-glucosamine) and appears to be conserved in function. Proteins from this family contain many copies of the bacterial transferase hexapeptide repeat (pfam00132). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 254 -273834 TIGR01853 lipid_A_lpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase LpxD. This model describes LpxD, an enzyme for the biosynthesis of lipid A, a component oflipopolysaccharide (LPS) in the outer membrane outer leaflet of most Gram-negative bacteria. Some differences are found between lipid A of different species. This protein represents the third step from UDP-N-acetyl-D-glucosamine. The group added at this step generally is 14:0(3-OH) (myristate) but may vary; in Aquifex it appears to be 16:0(3-OH) (palmitate). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 324 -273835 TIGR01854 lipid_A_lpxH UDP-2,3-diacylglucosamine diphosphatase. This model represents LpxH, UDP-2,3-diacylglucosamine hydrolase, and essential enzyme in E. coli that catalyzes the fourth step in lipid A biosynthesis. Note that Pseudomonas aeruginosa has both a member of this family that shares this function and a more distant homolog, designated LpxH2, that does not. Many species that produce lipid A lack an lpxH gene in this family; some of those species have an lpxH2 gene instead, although for which the function is unknown. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 231 -273836 TIGR01855 IMP_synth_hisH imidazole glycerol phosphate synthase, glutamine amidotransferase subunit. This model represents the glutamine amidotransferase subunit (or domain, in eukaryotic systems) of imidazole glycerol phosphate synthase. This subunit catalyzes step 5 of histidine biosynthesis from PRPP. The other subunit, the cyclase, catalyzes step 6. [Amino acid biosynthesis, Histidine family] 196 -273837 TIGR01856 hisJ_fam histidinol phosphate phosphatase, HisJ family. This model represents the histidinol phosphate phosphatase HisJ of Bacillus subtilis, and related proteins from a number of species within a larger family of phosphatases in the PHP hydrolase family. HisJ catalyzes the penultimate step of histidine biosynthesis but shows no homology to the functionally equivalent sequence in E. coli, a domain of the bifunctional HisB protein. Note, however, that many species have two members and that Clostridium perfringens, predicted not to make histidine, has five members of this family; this family is designated subfamily rather than equivalog to indicate that members may not all act as HisJ. 253 -130916 TIGR01857 FGAM-synthase phosphoribosylformylglycinamidine synthase, clade II. This model represents a single-molecule form of phosphoribosylformylglycinamidine synthase, also called FGAM synthase, an enzyme of purine de novo biosynthesis. This model represents a second clade of these enzymes found in Clostridia, Bifidobacteria and Streptococcus species. This enzyme performs the fourth step in IMP biosynthesis (the precursor of all purines) from PRPP. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 1239 -130917 TIGR01858 tag_bisphos_ald class II aldolase, tagatose bisphosphate family. This model describes tagatose-1,6-bisphosphate aldolases, and perhaps other closely related class II aldolases. This tetrameric, Zn2+-dependent enzyme is related to the class II fructose bisphosphate aldolase; fructose 1,6-bisphosphate and tagatose 1,6 bisphosphate differ only in chirality at C4. 282 -130918 TIGR01859 fruc_bis_ald_ fructose-1,6-bisphosphate aldolase, class II, various bacterial and amitochondriate protist. This model represents of one of several subtypes of the class II fructose-1,6-bisphosphate aldolase, an enzyme of glycolysis. The subtypes are split into several models to allow separation of a family of tagatose bisphosphate aldolases. This form is found in Gram-positive bacteria, a variety of Gram-negative, and in amitochondriate protists. The class II enzymes share homology with tagatose bisphosphate aldolase but not with class I aldolase. [Energy metabolism, Glycolysis/gluconeogenesis] 282 -130919 TIGR01860 VNFD nitrogenase vanadium-iron protein, alpha chain. This model represents the alpha chain of the vanadium-containing component of the vanadium-iron nitrogenase compound I. The complex also includes a second alpha chain, two beta chains and two delta chains. Compount I interacts with compound II also known as the iron-protein which transfers electrons to compound I where the catalysis occurs. [Central intermediary metabolism, Nitrogen fixation] 461 -130920 TIGR01861 ANFD nitrogenase iron-iron protein, alpha chain. This model represents the all-iron variant of the nitrogenase component I alpha chain. Molybdenum-iron and vanadium iron forms are also found. The complete complex contains two alpha chains, two beta chains and two delta chains. The component I associates with component II also known as the iron protein which serves to provide electrons for component I. [Central intermediary metabolism, Nitrogen fixation] 513 -273838 TIGR01862 N2-ase-Ialpha nitrogenase component I, alpha chain. This model represents the alpha chain of all three varieties (Mo-Fe, V-Fe, and Fe-Fe) of component I of nitrogenase. [Central intermediary metabolism, Nitrogen fixation] 443 -273839 TIGR01863 cas_Csd1 CRISPR-associated protein Cas8c/Csd1, subtype I-C/DVULG. CRISPR loci appear to be mobile elements with a wide host range. This model represents a protein that tends to be found near CRISPR repeats of the DVULG subtype of CRISPR/Cas locus. We designate this family Csd1 (CRISPR/Cas Subtype DVULG protein 1). The species range for this subtype, so far, is exclusively bacterial and mesophilic, although CRISPR loci in general are particularly common among archaea and thermophilic bacteria. In a few species (Xanthomonas axonopodis pv. citri str. 306 and Streptococcus mutans UA159), homology to this protein family is split across two tandem genes; the trusted cutoff to this family is set low enough to capture at least the longer of the two. 584 -273840 TIGR01865 cas_Csn1 CRISPR subtype II/NMENI RNA-guided endonuclease Cas9/Csn1. CRISPR loci appear to be mobile elements with a wide host range. This model represents a protein found only in CRISPR-containing species, near other CRISPR-associated proteins (cas), as part of the NMENI subtype of CRISPR/Cas locus. The species range so far for this protein is animal pathogens and commensals only. 805 -273841 TIGR01866 cas_Csn2 CRISPR type II-A/NMEMI-associated protein Csn2. CRISPR loci appear to be mobile elements with a wide host range. This model represents a protein found only in CRISPR-containing species, near other CRISPR-associated proteins (cas), as part of the NMENI subtype of CRISPR/Cas loci. The species range so far for this subtype is animal pathogens and commensals only. This protein is present in some but not all NMENI CRISPR/Cas loci. 222 -273842 TIGR01868 casD_Cas5e CRISPR-associated protein Cas5/CasD, subtype I-E/ECOLI. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family is part of the ECOLI subtype CRISPR/Cas locus, and now characterized as part of the CASCADE complex of that system. It shares a small N-terminal homology region with members of several other CRISPR/Cas subtypes, and we view the families that share this region as being Cas5. 216 -273843 TIGR01869 casC_Cse4 CRISPR-associated protein Cas7/Cse4/CasC, subtype I-E/ECOLI. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family is represented by CT1975 of Chlorobium tepidum and is part of the Ecoli subtype of CRISPR/Cas locis. It is designated Cse4, for CRISPR/Cas Subtype Ecoli protein 4. 325 -273844 TIGR01870 cas_TM1810_Csm2 CRISPR type III-A/MTUBE-associated protein Csm2. These proteins are found adjacent to a characteristic short, palidromic repeat cluster termed CRISPR, a probable mobile DNA element. This model represents the C-terminal domain of a minor family of CRISPR-associated protein from the Mtube subtype of CRISPR/Cas locus. The family is designated Csm2, for CRISPR/Cas Subtype Mtube Protein 2. 97 -233610 TIGR01873 cas_CT1978 CRISPR-associated endoribonuclease Cas2, subtype I-E/ECOLI. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model represents a minor branch of the Cas2 family of CRISPR-associated endonuclease, whereas most Cas2 proteins are modeled instead by TIGR01573. This form of Cas2 is characteristic for the Ecoli subtype of CRISPR/Cas locus. 87 -273845 TIGR01874 cas_cas5a CRISPR-associated protein Cas5, subtype I-A/APERN. This model represents a minor family of CRISPR-associated (Cas) protein. These proteins are found adjacent to a characteristic short, palidromic repeat cluster termed CRISPR, a probable mobile DNA element. This family belongs to a set of several Cas proteins, one each for a number of different CRISPR/Cas subtypes, that share a region of N-terminal sequence similarity modeled by TIGR02593. The family is designated Cas5a, for CRISPR-associated protein Cas5, Apern subtype. 172 -273846 TIGR01875 cas_MJ0381 CRISPR-associated autoregulator DevR family. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This model represents one such family, represented by MJ0381 of Methanococcus jannaschii. This family includes the DevR protein of Myxococcus xanthus, a protein whose expression appears to regulated through a number of means, including both location and autorepression; DevR mutants are incapable of fruiting body development. [Regulatory functions, DNA interactions, , ] 237 -273847 TIGR01876 cas_Cas5d CRISPR-associated protein Cas5, subtype I-C/DVULG. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This small Cas family is represented by CT1134 of Chlorobium tepidum. This family belongs to a set of several Cas protein families, one each for a number of different CRISPR/Cas subtypes, that share a region of N-terminal sequence similarity modeled by TIGR02593. This family represents the Dvulg subtype of CRISPR/Cas locus. 203 -273848 TIGR01877 cas_cas6 CRISPR-associated endoribonuclease Cas6. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This broadly distributed, highly divergent Cas family is now characterized as an endoribonuclease that generates guide RNAs for host defense against phage and other invaders. The family contains a C-terminal motif GXGXXXXXGXG, where the each X between two Gly is hydrophobic and the spacer XXXXX contains (usually) one Arg or Lys. The seed alignment for the current version of this model has gappy columns removed. Members of this protein family are found associated with several different CRISPR/cas system subtypes, and consequently we designate this family Cas6. 199 -273849 TIGR01878 cas_Csa5 CRISPR type I-A/APERN-associated protein Csa5. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model represents a minor family of Cas protein found in the (all archaeal) APERN subtype of CRISPR/Cas locus, so the family is designated Csa5, for CRISPR/Cas Subtype Protein 5. 97 -200138 TIGR01879 hydantase amidase, hydantoinase/carbamoylase family. Enzymes in this subfamily hydrolize the amide bonds of compounds containing carbamoyl groups or hydantoin rings. These enzymes are members of the broader family of amidases represented by pfam01546. 400 -273850 TIGR01880 Ac-peptdase-euk N-acyl-L-amino-acid amidohydrolase. This model represents a family of eukaryotic N-acyl-L-amino-acid amidohydrolases active on fatty acid and acetyl amides of L-amino acids. 400 -273851 TIGR01881 cas_Cmr5 CRISPR type III-B/RAMP module-associated protein Cmr5. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model family, represented by TM1791.1 of Thermotoga maritima, is found in both archaeal and bacterial species as part of the 6-gene CRISPR RAMP module. 127 -130937 TIGR01882 peptidase-T peptidase T. This model represents a tripeptide aminopeptidase known as Peptidase T, which has a substrate preference for hydrophobic peptides. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 410 -162579 TIGR01883 PepT-like peptidase T-like protein. This model represents a clade of enzymes closely related to Peptidase T, an aminotripeptidase found in bacteria. This clade consists of gram positive bacteria of which several additionally contain a Peptidase T gene. 361 -273852 TIGR01884 cas_HTH CRISPR locus-related DNA-binding protein. Most but not all examples of this family are associated with CRISPR loci, a combination of DNA repeats and characteristic proteins encoded near the repeat cluster. The C-terminal region of this protein is homologous to DNA-binding helix-turn-helix domains with predicted transcriptional regulatory activity. [Regulatory functions, DNA interactions, , ] 203 -273853 TIGR01885 Orn_aminotrans ornithine aminotransferase. This model describes the final step in the biosynthesis of ornithine from glutamate via the non-acetylated pathway. Ornithine amino transferase takes L-glutamate 5-semialdehyde and makes it into ornithine, which is used in the urea cycle, as well as in the biosynthesis of arginine. This model includes low-GC bacteria and eukaryotic species. The genes from two species are annotated as putative acetylornithine aminotransferases - one from Porphyromonas gingivalis (OMNI|PG1271), and the other from Staphylococcus aureus (OMNI|SA0170). After homology searching using BLAST it was determined that these two sequences were most closely related to ornithine aminotransferases. This model's seed includes one characterized hit, from Bacillus subtilis (SP|P38021). 401 -130941 TIGR01886 dipeptidase dipeptidase PepV. This model represents a small clade of dipeptidase enzymes which are members of the larger M25 subfamily of metalloproteases. Two characterized enzymes are included in the seed. One, from Lactococcus lactis has been shown to act on a wide range of dipeptides, but not larger peptides. The enzyme from Lactobacillus delbrueckii was originally characterized as a Xaa-His dipeptidase, specifically a carnosinase (beta-Ala-His) by complementation of an E. coli mutant. Further study, including the crystallization of the enzyme, has shown it to also be a non-specific dipeptidase. This group also includes enzymes from Streptococcus and Enterococcus. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 466 -273854 TIGR01887 dipeptidaselike dipeptidase, putative. This model represents a clade of probable zinc dipeptidases, closely related to the characterized non-specific dipeptidase, PepV. Many enzymes in this clade have been given names including the terms "Xaa-His" and "carnosinase" due to the early mis-characterization of the Lactobacillus delbrueckii PepV enzyme. These names are likely too specific. 447 -273855 TIGR01888 cas_cmr3 CRISPR type III-B/RAMP module-associated protein Cmr3. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This highly divergent family is found in at least ten different archaeal and bacterial species as part of the CRISPR RAMP modulue but is not a member of the RAMP superfamily itself. A typical example is TM1793 from Thermotoga maritima. 333 -130944 TIGR01889 Staph_reg_Sar staphylococcal accessory regulator family. This model represents a family of transcriptional regulatory proteins in Staphylococcus aureus and Staphylococcus epidermidis. Some members contain two tandem copies of this region. This family is related to the MarR transcriptional regulator family described by pfam01047. [Regulatory functions, DNA interactions] 109 -273856 TIGR01890 N-Ac-Glu-synth amino-acid N-acetyltransferase. This model represents a clade of amino-acid N-acetyltransferases acting mainly on glutamate in the first step of the "acetylated" ornithine biosynthesis pathway. For this reason it is also called N-acetylglutamate synthase. The enzyme may also act on aspartate. [Amino acid biosynthesis, Glutamate family] 429 -273857 TIGR01891 amidohydrolases amidohydrolase. This model represents a subfamily of amidohydrolases which are a subset of those sequences detected by pfam01546. Included within this group are hydrolases of hippurate (N-benzylglycine), indoleacetic acid (IAA) N-conjugates of amino acids, N-acetyl-L-amino acids and aminobenzoylglutamate. These hydrolases are of the carboxypeptidase-type, most likely utilizing a zinc ion in the active site. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 363 -130947 TIGR01892 AcOrn-deacetyl acetylornithine deacetylase (ArgE). This model represents a clade of acetylornithine deacetylases from proteobacteria. This enzyme is the final step of the "acetylated" ornithine biosynthesis pathway. The enzyme is closely related to dapE, succinyl-diaminopimelate desuccinylase, and outside of this clade annotation is very inaccurate as to which function should be ascribed to genes. [Amino acid biosynthesis, Glutamate family] 364 -273858 TIGR01893 aa-his-dipept Xaa-His dipeptidase. This model represents a clade of dipeptidase enzymes, many of which are specific for carnosine (beta-alanyl-histidine). This enzymes is found broadly in bacteria and at least one archaeon (Methanosarcina). In most species there is only one sequence hitting this model, while Bacteroides thetaiotaomicron, Chlorobium tepidum and Clostridium perfringens have two each and Fusobacterium nucleatum has three. These may indicate that there is a broader substrate range than just carnosine in these (and other) species. 8/19/03 GO terms added [SS] 477 -273859 TIGR01894 cas_TM1795_cmr1 CRISPR type III-B/RAMP module RAMP protein Cmr1. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model represents the region of stongest conservation, the N-terminal half, of one such family, represented by TM1795 from Thermotoga maritima. This protein is the first of a set of six genes, mostly from the RAMP superfamily, that we designated the CRISPR-associated RAMP module. 154 -273860 TIGR01895 cas_Cas5t CRISPR-associated protein Cas5, subtype I-B/TNEAP. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This family is represented by TM1800 from Thermotoga maritima. It is related to TIGR01868 (CRISPR-associated protein, CT1976 family). 215 -273861 TIGR01896 cas_AF1879 CRISPR-associated protein Cas4/Csa1, subtype I-A/APERN. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model describes a particularly strongly conserved family found so only in the APERN subtype of CRISPR/Cas loci and represented by AF1879 from Archaeoglobus fulgidus. This family has four perfectly preserved Cys residues. This subfamily is found in a CRISPR/Cas locus we designate APERN, so the family is designated Csa1, for CRISPR/Cas Subtype Protein 1. 271 -273862 TIGR01897 cas_MJ1666 CRISPR-associated protein, MJ1666 family. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model describes a Cas protein about 400 residues in length, found mostly in the Archaea but also in Aquifex. 410 -213662 TIGR01898 cas_TM1791_cmr6 CRISPR type III-B/RAMP module RAMP protein Cmr6. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This family, represented by TM1791 of Thermotoga maritima, is designated Cmr6 [sic], for CRISPR/Cas Ramp Module protein 6. This family is both closely related to and frequently encoded next to the TM1792 family of Cas proteins described by TIGR01867. The two proteins are fused in an example from Methanopyrus kandleri. 176 -273863 TIGR01899 cas_TM1807_csm5 CRISPR type III-A/MTUBE-associated RAMP protein Csm5. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. Members of this cas gene family are found in the mtube subtype of CRISPR/cas locus and designated Csm5, for CRISPR/cas Subtype Mtube, protein 5. 365 -273864 TIGR01900 dapE-gram_pos succinyl-diaminopimelate desuccinylase. This model represents a clade of succinyl-diaminopimelate desuccinylases from actinobacteria (high-GC gram positives), delta-proteobacteria and aquificales and is based on the characterization of the enzyme from Corynebacterium glutamicum. This enzyme is involved in the biosynthesis of lysine, and is related to the enzyme acetylornithine deacetylase and other amidases and peptidases found within pfam01546. Other sequences included in the seed of this model were assessed to confirm that 1) the related genes DapC (succinyl-diaminopimelate transaminase) and DapD (2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase) are also found in the genome, 2) each is found only once in those genomes, 3) the lysine biosynthesis pathway is complete and 4) the direct (TIGR03540 or TIGR03542) or acetylated (GenProp0787) aminotransferase pathways are absent in thes genomes. Additionally, a number of the seed members are observed adjacent to either DapC or DapD (often as a divergon with a putative promoter site between them. [Amino acid biosynthesis, Aspartate family] 351 -273865 TIGR01901 adhes_NPXG filamentous hemagglutinin family N-terminal domain. This model represents a conserved domain found near the N-terminus of a number of large, repetitive bacterial proteins, including many proteins of over 2500 amino acids. Members generally have a signal sequence, then an intervening region, then the region described by this model. Following this region, proteins typically have regions rich in repeats but may show no homology between the repeats of one member and the repeats of another. A number of the members of this family have been designated adhesins, filamentous haemagglutinins, heme/hemopexin-binding protein, etc. 79 -130957 TIGR01902 dapE-lys-deAc N-acetyl-ornithine/N-acetyl-lysine deacetylase. This clade of mainly archaeal and related bacterial species contains two characterized enzymes, an deacetylase with specificity for both N-acetyl-ornithine and N-acetyl-lysine from Thermus, which is found within a lysine biosynthesis operon, and a fusion protein with acetyl-glutamate kinase (an enzyme of ornithine biosynthesis) from Lactobacillus. It is possible that all of the sequences within this clade have dual specificity, or that a mix of specificities have evolved within this clade. 336 -273866 TIGR01903 cas5_csm4 CRISPR type III-A/MTUBE-associated RAMP protein Csm4. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. Members of this cas gene family are found in the mtube subtype of CRISPR/cas locus and designated Csm4, for CRISPR/cas Subtype Mtube, protein 4. 297 -273867 TIGR01904 GSu_C4xC__C2xCH Geobacter sulfurreducens CxxxxCH...CXXCH domain. This domain occurs from three to eight times in eight different proteins of Geobacter sulfurreducens. The final CXXCH motif matches ProSite motif PS00190, the cytochrome c family heme-binding site signature, suggesting 42 -213663 TIGR01905 paired_CXXCH_1 doubled CXXCH domain. This model represents a domain of about 41 amino acids that contains, among other motifs, two copies of the motif CXXCH associated with heme binding. Almost every member of this family has at least three copies of this domain (at least six copies of CXXCH) is predicted to be a high molecular weight c-type cytochrome. Members are found mostly in species of Shewanella, Geobacter, and Vibrio. 41 -273868 TIGR01906 integ_TIGR01906 integral membrane protein TIGR01906. This model represents a family of highly hydrophobic, uncharacterized predicted integral membrane proteins found almost entirely in low-GC Gram-positive bacteria, although a member is also found in the early-branching bacterium Aquifex aeolicus. 207 -273869 TIGR01907 casE_Cse3 CRISPR-associated protein Cas6/Cse3/CasE, subtype I-E/ECOLI. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model family, represented by CT1974 from Chlorobium tepidum, is found in the Ecoli subtype of CRISPR/Cas regions and is designated Cse3 (CRISPR/Cas Subtype Ecoli protein 3). The representative of this family from Thermus thermophilus HB8 (TTHB192) has been crystallized and found to have a structure consisting of two domains with opposing parallel beta-sheets known as a beta-sheet platform. This structure is similar to those found in the Sex-lethal protein and poly(A)-binding protein. This structure is consistent with an RNA-binding function. 206 -162595 TIGR01908 cas_CXXC_CXXC CRISPR-associated protein Cas8b1/Cst1, subtype I-B/TNEAP. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This (revised) model describes a conserved region from an otherwise highly divergent protein found in the Tneap subtype of CRISPR/Cas regions. This Cys-rich region features two motifs of CXXC. 309 -213664 TIGR01909 C_GCAxxG_C_C C_GCAxxG_C_C family probable redox protein. This model represents a putative redox-active protein of about 140 residues, with four perfectly conserved Cys residues. It includes a CGAXXG motif. Most members are found within one or two loci of transporter or oxidoreductase genes. A member from Geobacter sulfurreducens, located in a molybdenum transporter operon, has a TAT (twin-arginine translocation) signal sequence for Sec-independent transport across the plasma membrane, a hallmark of bound prosthetic groups such as FeS clusters. 120 -273870 TIGR01910 DapE-ArgE acetylornithine deacetylase or succinyl-diaminopimelate desuccinylase. This group of sequences contains annotations for both acetylornithine deacetylase and succinyl-diaminopimelate desuccinylase, but does not contain any members with experimental characterization. Bacillus, Staphylococcus and Sulfolobus species contain multiple hits to this subfamily and each may have a separate activity. Determining which is which must await further laboratory research. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 375 -188182 TIGR01911 HesB_rel_seleno HesB-like selenoprotein. This model represents a family of small proteins related to HesB and its close homologs, which are likely to be invovlved in iron-sulfur cluster assembly (See TIGR00049 and pfam01521). Several members are selenoproteins, with a TGA codon and Sec residue that aligns to the conserved Cys of the HesB domain. A variable Cys/Ser/Gly-rich C-terminal region is not included in the seed alignment and model. [Unknown function, General] 92 -162597 TIGR01912 TatC-Arch Twin arginine targeting (Tat) protein translocase TatC, Archaeal clade. This model represents the TatC translocase component of the Sec-independent protein translocation system. This system is responsible for translocation of folded proteins, often with bound cofactors across the periplasmic membrane. A related model (TIGR00945) represents the bacterial clade of this family. TatC is often found (in bacteria) in a gene cluster with the two other components of the system, TatA/E (TIGR01411) and TatB (TIGR01410). A model also exists for the Twin-arginine signal sequence (TIGR01409). 237 -273871 TIGR01913 bet_lambda phage recombination protein Bet. This model represents the phage recombination protein Bet from a number of phage, including phage lambda. All members of this family are found in phage genomes or in putative prophage regions of bacterial genomes. [Mobile and extrachromosomal element functions, Prophage functions] 180 -273872 TIGR01914 cas_Csa4 CRISPR-associated protein Cas8a2/Csa4, subtype I-A/APERN. CRISPR loci appear to be mobile elements with a wide host range. This model represents a protein that tends to be found near CRISPR repeats. The species range for this species, so far, is exclusively archaeal. It is found so far in only four different species, and includes two tandem genes in Pyrococcus furiosus DSM 3638. This subfamily is found in a CRISPR/Cas locus we designate APERN, so the family is designated Csa4, for CRISPR/Cas Subtype Protein 4. 354 -273873 TIGR01915 npdG NADPH-dependent F420 reductase. This model represents a subset of a parent family described by pfam03807. Unlike the parent family, members of this family are found only in species with evidence of coenzyme F420. All members of this family are believed to act as NADPH-dependent F420 reductase. [Energy metabolism, Electron transport] 219 -273874 TIGR01916 F420_cofE coenzyme F420-0:L-glutamate ligase. This model represents an enzyme of coenzyme F(420) biosynthesis, as catalyzed by MJ0768 of Methanococcus jannaschii and by the N-terminal half of FbiB of Mycobacterium bovis strain BCG. Note that only two glutamates are ligated in M. jannaschii, but five to six in the Mycobacterium lineage. In M. jannaschii, CofE catalyzes the GTP-dependent addition of two L-glutamates. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 243 -130972 TIGR01917 gly_red_sel_B glycine reductase, selenoprotein B. Glycine reductase is a complex with two selenoprotein subunits, A and B. This model represents the glycine reductase selenoprotein B. Closely related to it, but excluded from this model, are selenoprotein B subunits of betaine reductase and sarcosine reductase. All contain selenocysteine incorporated during translation at a specific UGA codon. 431 -130973 TIGR01918 various_sel_PB selenoprotein B, glycine/betaine/sarcosine/D-proline reductase family. This model represents selenoprotein B of glycine reductase, sarcosine reductase, betaine reductase, D-proline reductase, and perhaps others. This model is built in fragment mode to assist in recognizing fragmentary translations. All members are expected to contain an internal TGA codon, encoding selenocysteine, which may be misinterpreted as a stop codon. 431 -273875 TIGR01919 hisA-trpF 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase/N-(5'phosphoribosyl)anthranilate isomerase. This model represents a bifunctional protein posessing both hisA (1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase) and trpF (N-(5'phosphoribosyl)anthranilate isomerase) activities. Thus, it is involved in both the histidine and tryptophan biosynthetic pathways. Enzymes with this property have been described only in the Actinobacteria (High-GC gram-positive). The enzyme is closely related to the monofunctional HisA proteins (TIGR00007) and in Actinobacteria, the classical monofunctional TrpF is generally absent. 243 -273876 TIGR01920 Shik_kin_archae shikimate kinase. This model represents the shikimate kinase (SK) gene found in archaea which is only distantly related to homoserine kinase (thrB) and not atr all to the bacterial SK enzyme. The SK from M. janaschii has been overexpressed in E. coli and characterized. SK catalyzes the fifth step of the biosynthesis of chorismate from D-erythrose-4-phosphate and phosphoenolpyruvate. [Amino acid biosynthesis, Aromatic amino acid family] 261 -273877 TIGR01921 DAP-DH diaminopimelate dehydrogenase. This model represents the diaminopimelate dehydrogenase enzyme which provides an alternate (shortcut) route of lysine buiosynthesis in Corynebacterium, Bacterioides, Porphyromonas and scattered other species. The enzyme from Corynebacterium glutamicum has been crystallized and characterized. 324 -273878 TIGR01922 purO_arch IMP cyclohydrolase. This model represents IMP cyclohydrolase, the final step in the biosynthesis of inosine monophosphate (IMP) in archaea. In bacteria this step is catalyzed by a bifunctional enzyme (purH). 199 -162605 TIGR01923 menE O-succinylbenzoate-CoA ligase. This model represents an enzyme, O-succinylbenzoate-CoA ligase, which is involved in the fourth step of the menaquinone biosynthesis pathway. O-succinylbenzoate-CoA ligase, together with menB - naphtoate synthase, take 2-succinylbenzoate and convert it into 1,4-di-hydroxy-2- naphtoate. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 436 -273879 TIGR01924 rsbW_low_gc serine-protein kinase RsbW. This model describes the anti-sigma B factor also known as serine-protein kinase RsbW. Sigma B controls the general stress regulon in B subtilis and is activated by cell stresses such as stationary phase and heat shock. RsbW binds to sigma B and prevents formation of the transcription complex at the promoter. RsbV (anti-anti-sigma factor) binds to RsbW to inhibit association with sigma B, however RsbW can phosphorylate RsbV, causing disassociation of the RsbV/RsbW complex. Low ATP level or environmental stress causes the dephosphorylation of RsbV. 159 -130980 TIGR01925 spIIAB anti-sigma F factor. This model describes the SpoIIAB anti-sigma F factor. Sigma F regulates spore development in B subtilis. SpoIIAB binds to sigma F, preventing formation of the transcription complex at the promoter. SpoIIAA (anti-anti-sigma F factor) binds to SpoIIAB to inhibit association with sigma F, however SpoIIAB can phosphorylate SpoIIAA, causing disassociation of the SpoIIAA/B complex. The SpoIIE phosphatase dephosphorylates SpoIIAA. [Regulatory functions, Protein interactions, Cellular processes, Sporulation and germination] 137 -130981 TIGR01926 peroxid_rel uncharacterized peroxidase-related enzyme. This protein family with length of about 200 amino acids. One member, from Myxococcus xanthus, is a selenoprotein, with an otherwise conserved Cys replaced by Sec. This family is drawn narrowly enough to suggest that These proteins contain a domain described by TIGR00778, with a CxxCxxxHxxxxxxxG motif. Some members of that family are known to act as peroxidases or correlate with resistance to oxidative stress. 177 -273880 TIGR01927 menC_gamma/gm+ o-succinylbenzoate synthase. This model describes the enzyme o-succinylbenzoic acid synthetase (menC) that is involved in one of the steps of the menaquinone biosynthesis pathway. It takes SHCHC and makes it into 2-succinylbenzoate. Included in this model are gamma proteobacteria and archaea. Many of the com-names of the proteins identified by the model are identified as O-succinylbenzoyl-CoA synthase in error. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 307 -213667 TIGR01928 menC_lowGC/arch o-succinylbenzoate synthase. This model describes the enzyme o-succinylbenzoic acid synthetase (menC) that is involved in one of the steps of the menaquinone biosynthesis pathway. It takes SHCHC and makes it into 2-succinylbenzoate. Included in this model are low GC gram positive bacteria and archaea. Also included in the seed and in the model are enzymes with the com-name of N-acylamino acid racemase (or the more general term, racemase / racemase family), which refers to the enzyme's industrial application as racemases, and not to its biological function as o-succinylbenzoic acid synthetase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 324 -200143 TIGR01929 menB naphthoate synthase (dihydroxynaphthoic acid synthetase). This model represents an enzyme, naphthoate synthase (dihydroxynaphthoic acid synthetase), which is involved in the fifth step of the menaquinone biosynthesis pathway. Together with o-succinylbenzoate-CoA ligase (menE: TIGR01923), this enzyme takes 2-succinylbenzoate and converts it into 1,4-di-hydroxy-2-naphthoate. Included above the trusted cutoff are two enzymes from Arabadopsis thaliana and one from Staphylococcus aureus which are identified as putative enoyl-CoA hydratase/isomerases. These enzymes group with the naphthoate synthases when building a tree and when doing BLAST searches. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 259 -273881 TIGR01930 AcCoA-C-Actrans acetyl-CoA acetyltransferases. This model represents a large family of enzymes which catalyze the thiolysis of a linear fatty acid CoA (or acetoacetyl-CoA) using a second CoA molecule to produce acetyl-CoA and a CoA-ester product two carbons shorter (or, alternatively, the condensation of two molecules of acetyl-CoA to produce acetoacetyl-CoA and CoA). This enzyme is also known as "thiolase", "3-ketoacyl-CoA thiolase", "beta-ketothiolase" and "Fatty oxidation complex beta subunit". When catalyzing the degradative reaction on fatty acids the corresponding EC number is 2.3.1.16. The condensation reaction corresponds to 2.3.1.9. Note that the enzymes which catalyze the condensation are generally not involved in fatty acid biosynthesis, which is carried out by a decarboxylating condensation of acetyl and malonyl esters of acyl carrier proteins. Rather, this activity may produce acetoacetyl-CoA for pathways such as IPP biosynthesis in the absence of sufficient fatty acid oxidation. [Fatty acid and phospholipid metabolism, Other] 385 -273882 TIGR01931 cysJ sulfite reductase [NADPH] flavoprotein, alpha-component. This model describes an NADPH-dependent sulfite reductase flavoprotein subunit. Most members of this family are found in Cys biosynthesis gene clusters. The closest homologs below the trusted cutoff are designated as subunits nitrate reductase. 597 -273883 TIGR01932 hflC HflC protein. HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Regulatory functions, Protein interactions] 317 -130988 TIGR01933 hflK HflK protein. HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described.//Regulation of FtsH by HflKC appears to be negative (SS 8/27/03] 261 -273884 TIGR01934 MenG_MenH_UbiE ubiquinone/menaquinone biosynthesis methyltransferases. This model represents a family of methyltransferases involved in the biosynthesis of menaquinone and ubiqinone. Some members such as the UbiE enzyme from E. coli are believed to act in both pathways, while others may act in only the menaquinone pathway. These methyltransferases are members of the UbiE/CoQ family of methyltransferases (pfam01209) which also contains ubiquinone methyltransferases and other methyltransferases. Members of this clade include a wide distribution of bacteria and eukaryotes, but no archaea. An outgroup for this clade is provided by the phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. Note that a number of non-orthologous genes which are members of pfam03737 have been erroneously annotated as MenG methyltransferases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 223 -130990 TIGR01935 NOT-MenG RraA famliy. The E. coli member of this family has been characterized as a regulator of RNase E and its crystal structure has been analyzed. This model was initially classified as a "hypothetical equivalog" expressing the tentative hypothesis that all members might have the same function as the E. coli enzyme. Considering the second clade of enterobacterial sequences within this family, that appears to be less tenable. The function of these sequences outside of the narrow RraA equivalog model (TIGR02998) remains obscure. All of these were initially annotated as MenG, AKA S-adenosylmethionine: 2-demethylmenaquinone methyltransferase (EC 2.1.-.-). See the references characterizing this as a case of transitive annotation error in the case of the E. coli protein. [Unknown function, General] 150 -273885 TIGR01936 nqrA NADH:ubiquinone oxidoreductase, Na(+)-translocating, A subunit. This model represents the NqrA subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 447 -130992 TIGR01937 nqrB NADH:ubiquinone oxidoreductase, Na(+)-translocating, B subunit. This model represents the NqrB subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 413 -273886 TIGR01938 nqrC NADH:ubiquinone oxidoreductase, Na(+)-translocating, C subunit. This model represents the NqrC subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 251 -130994 TIGR01939 nqrD NADH:ubiquinone oxidoreductase, Na(+)-translocating, D subunit. This model represents the NqrD subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 207 -130995 TIGR01940 nqrE NADH:ubiquinone oxidoreductase, Na(+)-translocating, E subunit. This model represents the NqrE subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 200 -130996 TIGR01941 nqrF NADH:ubiquinone oxidoreductase, Na(+)-translocating, F subunit. This model represents the NqrF subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 405 -130997 TIGR01942 pcnB poly(A) polymerase. This model describes the pcnB family of poly(A) polymerases (also known as plasmid copy number protein). These enzymes sequentially add adenosine nucleotides to the 3' end of RNAs, targeting them for degradation by the cell. This was originally described for anti-sense RNAs, but was later demonstrated for mRNAs as well. Members of this family are as yet limited to the gamma- and beta-proteobacteria, with putative members in the Chlamydiacae and spirochetes. This family has homology to tRNA nucleotidyltransferase (cca). 410 -130998 TIGR01943 rnfA electron transport complex, RnfABCDGE type, A subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the A subunit. [Energy metabolism, Electron transport] 190 -273887 TIGR01944 rnfB electron transport complex, RnfABCDGE type, B subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the B subunit. [Energy metabolism, Electron transport] 165 -273888 TIGR01945 rnfC electron transport complex, RnfABCDGE type, C subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the C subunit. [Energy metabolism, Electron transport] 435 -131001 TIGR01946 rnfD electron transport complex, RnfABCDGE type, D subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the A subunit. [Energy metabolism, Electron transport] 327 -273889 TIGR01947 rnfG electron transport complex, RnfABCDGE type, G subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the A subunit. [Energy metabolism, Electron transport] 186 -162619 TIGR01948 rnfE electron transport complex, RnfABCDGE type, E subunit. The six subunit complex RnfABCDGE in Rhodobacter capsulatus encodes an apparent NADH oxidoreductase responsible for electron transport to nitrogenase, necessary for nitrogen fixation. A closely related complex in E. coli, RsxABCDGE (Reducer of SoxR), reduces the 2Fe-2S-containing superoxide sensor SoxR, active as a transcription factor when oxidized. This family of putative NADH oxidoreductase complexes exists in many of the same species as the related NQR, a Na(+)-translocating NADH-quinone reductase, but is distinct. This model describes the E subunit. [Energy metabolism, Electron transport] 196 -273890 TIGR01949 AroFGH_arch predicted phospho-2-dehydro-3-deoxyheptonate aldolase. This model represents a clade of sequences related to fructose-bisphosphate aldolase (class I, included within pfam01791). The members of this clade appear to be phospho-2-dehydro-3-deoxyheptonate aldolases. This enzyme is the first step of the chorismate biosynthesis pathway. Evidence for this assignment is based on gene clustering and phylogenetic profiling. A group of species lack members of the three other types of phospho-2-dehydro-3-deoxyheptonate aldolase (represented by TIGR00034, TIGR01358 and TIGR01361), and also aparrently lack the well-known forms of step 2 (3-dehydroquinate synthase), but contain all other steps of the pathway: Desulfovibrio, Aquifex, Archaeoglobus, Halobacterium, Methanopyrus, Methanococcus and Methanobacterium. The clade of sequences represented here is limited strictly to this group of organisms. In Desulfovibrio, Aquifex, Archaeoglobus, Halobacterium and Methanosarcina the genes found by this model are clustered with other genes from the chorismate, phenylalanine, tyrosine and tryptophan biosynthesis pathways. In addition, these genes in Desulfovibrio, Archaeoglobus, Halobacterium, Methanosarcina and Methanopyrus are adjacent to a gene which hits pfam01959 which also has the property of having members only in those species which lack steps 1 and 2. Together these two genes appear to perform the synthesis of 3-dehydroquinate. It is presumed that the substrates and the chemical transformations involved are identical, but this has not yet been proven experimentally. 258 -131005 TIGR01950 SoxR redox-sensitive transcriptional activator SoxR. SoxR is a MerR-family homodimeric transcription factor with a 2Fe-2S cluster in each monomer. The motif CIGCGCxxxxxC is conserved. Oxidation of the iron-sulfur cluster activates SoxR. The physiological role in E. coli is response to oxidative stress. It is activated by superoxide, singlet oxygen, nitric oxide (NO), and hydrogen peroxide. In E. coli, SoxR increases expression of transcription factor SoxS; different downstream targets may exist in other species. [Cellular processes, Detoxification, Regulatory functions, DNA interactions] 142 -273891 TIGR01951 nusB transcription antitermination factor NusB. A transcription antitermination complex active in many bacteria was designated N-utilization substance (Nus) in E. coli because of its interaction with phage lambda protein N. This model represents NusB. Other components are NusA and NusG. NusE is, in fact, ribosomal protein S10. [Transcription, Transcription factors] 129 -273892 TIGR01952 nusA_arch NusA family KH domain protein, archaeal. This model represents a family of archaeal proteins found in a single copy per genome. It contains two KH domains (pfam00013) and is most closely related to the central region bacterial NusA, a transcription termination factor named for its iteraction with phage lambda protein N in E. coli. The proteins required for antitermination by N include NusA, NusB, nusE (ribosomal protein S10), and nusG. This system, on the whole, appears not to be present in the Archaea. 141 -273893 TIGR01953 NusA transcription termination factor NusA. This model describes NusA, or N utilization substance protein A, a bacterial transcription termination factor. It binds to RNA polymerase alpha subunit and promotes termination at certain RNA hairpin structures. It is named for the interaction in E. coli of phage lambda antitermination protein N with the N-utilization substance, consisting of NusA, NusB, NusE (ribosomal protein S10), and nusG. This model represents a region of NusA shared in all bacterial forms, and including an S1 (pfam00575) and a KH (pfam00013) RNA binding domains. Proteobacterial forms have an additional C-terminal region, not included in this model, with two repeats of 50-residue domain rich in acidic amino acids. [Transcription, Transcription factors] 341 -273894 TIGR01954 nusA_Cterm_rpt transcription termination factor NusA, C-terminal duplication. NusA is a bacterial transcription termination factor. It is named for its interaction with phage lambda protein N, as part of the N utilization substance. Some members of the NusA family have a long C-terminal extension. This model represents an acidic 50-residue region found in two copies toward the C-terminus of most Proteobacterial NusA proteins, spaced about 26 residues apart. Analogous C-terminal extensions in some other bacterial lineages lack apparent homology but appear similarly acidic. [Transcription, Transcription factors] 50 -131010 TIGR01955 RfaH transcription elongation factor/antiterminator RfaH. This model represents the transcription elongation factor/antiterminator, RfaH. This protein is most closely related to the transcriptional termination/antitermination protein NusG (TIGR00922) and contains the KOW motif (pfam00467). This protein appears to be limited to the gamma proteobacteria. In E. coli, this gene appears to control the expression of haemolysin, sex factor and lipopolysaccharide genes. [Transcription, Transcription factors] 159 -273895 TIGR01956 NusG_myco NusG family protein. This model represents a family of Mycoplasma proteins orthologous to the bacterial transcription termination/antitermination factor NusG. These sequences from Mycoplasma are notably diverged (long branches in a Neighbor-joining phylogenetic tree) from the bacterial species. And although NusA and ribosomal protein S10 (NusE) appear to be present, NusB may be absent in Mycoplasmas calling into question whether these species have a functional Nus system including this family as a member. 258 -273896 TIGR01957 nuoB_fam NADH-quinone oxidoreductase, B subunit. This model describes the B chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoB. The quinone is plastoquinone in Synechocystis (where the chain is designated K) and in chloroplast, where NADH may be replaced by NADPH. In the methanogenic archaeal genus Methanosarcina, NADH is replaced by F420H2. [Energy metabolism, Electron transport] 145 -131013 TIGR01958 nuoE_fam NADH-quinone oxidoreductase, E subunit. This model describes the E chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoB. This model does not identify proteins from chloroplast and cyanobacteria. [Energy metabolism, Electron transport] 148 -131014 TIGR01959 nuoF_fam NADH-quinone oxidoreductase, F subunit. This model describes the F chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoF. This family does not have any members in chloroplast or cyanobacteria, where the quinone may be plastoquinone and NADH may be replaced by NADPH, nor in Methanosarcina, where NADH is replaced by F420H2. [Energy metabolism, Electron transport] 411 -131015 TIGR01960 ndhF3_CO2 NAD(P)H dehydrogenase, subunit NdhF3 family. This family represents a subfamily of NAD(P)H dehydrogenase subunit 5, or ndhF. It is restricted to two paralogs in each completed cyanobacterial genome, in which several subtypes of ndhF are found. Included in this family is NdhF3, shown to play a role in high-affinity CO2 uptake in Synechococcus sp. PCC7002. In all cases, neighboring genes include a paralog of ndhD but do include other NAD(P)H dehydrogenase subunits. Instead, genes related to C02 uptake tend to be found nearby. 606 -273897 TIGR01961 NuoC_fam NADH (or F420H2) dehydrogenase, subunit C. This model describes the C subunit of the NADH dehydrogenase complex I in bacteria, as well as many instances of the corresponding mitochondrial subunit (NADH dehydrogenase subunit 9) and of the F420H2 dehydrogenase in Methanosarcina. Complex I contains subunits designated A-N. This C subunit often occurs as a fusion protein with the D subunit. This model excludes the NAD(P)H and plastoquinone-dependent form of chloroplasts and [Energy metabolism, Electron transport] 121 -273898 TIGR01962 NuoD NADH dehydrogenase I, D subunit. This model recognizes specificially the D subunit of NADH dehydrogenase I complex. It excludes the related chain of NAD(P)H-quinone oxidoreductases from chloroplast and Synechocystis, where the quinone may be plastoquinone rather than ubiquinone. This subunit often appears as a C/D fusion. [Energy metabolism, Electron transport] 386 -211705 TIGR01963 PHB_DH 3-hydroxybutyrate dehydrogenase. This model represents a subfamily of the short chain dehydrogenases. Characterized members so far as 3-hydroxybutyrate dehydrogenases and are found in species that accumulate ester polmers called polyhydroxyalkanoic acids (PHAs) under certain conditions. Several members of the family are from species not known to accumulate PHAs, including Oceanobacillus iheyensis and Bacillus subtilis. However, polymer formation is not required for there be a role for 3-hydroxybutyrate dehydrogenase; it may be members of this family have the same function in those species. 255 -213671 TIGR01964 chpXY CO2 hydration protein. This small family of proteins includes paralogs ChpX and ChpY in Synechococcus sp. PCC7942 and other cyanobacteria, associated with distinct NAD(P)H dehydrogenase complexes. These proteins collectively enable light-dependent CO2 hydration and CO2 uptake; loss of both blocks growth at low CO2 concentrations. [Energy metabolism, Photosynthesis] 367 -273899 TIGR01965 VCBS_repeat VCBS repeat. This domain of about 100 residues is found multiple (up to 35) copies in long proteins from several species of Vibrio, Colwellia, Bradyrhizobium, and Shewanella (hence the name VCBS) and in smaller copy numbers in proteins from several other bacteria. The large protein size and repeat copy numbers, species distribution, and suggested activities of several member proteins suggests a role for this domain in adhesion. 99 -131021 TIGR01966 RNasePH ribonuclease PH. This bacterial enzyme, ribonuclease PH, performs the final 3'-trimming and modification of tRNA precursors. This model is restricted absolutely to bacteria. Related families outside the model include proteins described as probable exosome complex exonucleases (rRNA processing) and polyribonucleotide nucleotidyltransferases (mRNA degradation). The most divergent member within the family is RNase PH from Deinococcus radiodurans. [Transcription, RNA processing] 236 -273900 TIGR01967 DEAH_box_HrpA RNA helicase HrpA. This model represents HrpA, one of two related but uncharacterized DEAH-box ATP-dependent helicases in many Proteobacteria and a few high-GC Gram-positive bacteria. HrpA is about 1300 amino acids long, while its paralog HrpB, also uncharacterized, is about 800 amino acids long. Related characterized eukarotic proteins are RNA helicases associated with pre-mRNA processing. The HrpA/B homolog from Borrelia is 500 amino acids shorter but appears to be derived from HrpA rather than HrpB. [Unknown function, Enzymes of unknown specificity] 1283 -131023 TIGR01968 minD_bact septum site-determining protein MinD. This model describes the bacterial and chloroplast form of MinD, a multifunctional cell division protein that guides correct placement of the septum. The homologous archaeal MinD proteins, with many archaeal genomes having two or more forms, are described by a separate model. [Cellular processes, Cell division] 261 -131024 TIGR01969 minD_arch cell division ATPase MinD, archaeal. This model represents the archaeal branch of the MinD family. MinD, a weak ATPase, works in bacteria with MinC as a generalized cell division inhibitor and, through interaction with MinE, prevents septum placement inappropriate sites. Often several members of this family are found in archaeal genomes, and the function is uncharacterized. More distantly related proteins ParA chromosome partitioning proteins. The exact roles of the various archaeal MinD homologs are unknown. 251 -273901 TIGR01970 DEAH_box_HrpB ATP-dependent helicase HrpB. This model represents HrpB, one of two related but uncharacterized DEAH-box ATP-dependent helicases in many Proteobacteria, but also in a few species of other lineages. The member from Rhizobium meliloti has been designated HelO. HrpB is typically about 800 residues in length, while its paralog HrpA (TIGR01967), also uncharacterized, is about 1300 amino acids long. Related characterized eukarotic proteins are RNA helicases associated with pre-mRNA processing. [Unknown function, Enzymes of unknown specificity] 819 -273902 TIGR01971 NuoI NADH-quinone oxidoreductase, chain I. This model represents the I subunit (one of 14: A->N) of the NADH-quinone oxidoreductase complex I which generally couples NADH and ubiquinone oxidation/reduction in bacteria and mammalian mitochondria, but may act on NADPH and/or plastoquinone in cyanobacteria and plant chloroplasts. This model excludes "I" subunits from the closely related F420H2 dehydrogenase and formate hydrogenlyase complexes. [Energy metabolism, Electron transport] 122 -273903 TIGR01972 NDH_I_M proton-translocating NADH-quinone oxidoreductase, chain M. This model describes the 13th (based on E. coli) structural gene, M, of bacterial NADH dehydrogenase I, as well as chain 4 of the corresponding mitochondrial complex I and of the chloroplast NAD(P)H dehydrogenase complex. [Energy metabolism, Electron transport] 481 -273904 TIGR01973 NuoG NADH-quinone oxidoreductase, chain G. This model represents the G subunit (one of 14: A->N) of the NADH-quinone oxidoreductase complex I which generally couples NADH and ubiquinone oxidation/reduction in bacteria and mammalian mitochondria while translocating protons, but may act on NADPH and/or plastoquinone in cyanobacteria and plant chloroplasts. This model excludes related subunits from formate dehydrogenase complexes. [Energy metabolism, Electron transport] 602 -273905 TIGR01974 NDH_I_L proton-translocating NADH-quinone oxidoreductase, chain L. This model describes the 12th (based on E. coli) structural gene, L, of bacterial NADH dehydrogenase I, as well as chain 5 of the corresponding mitochondrial complex I and subunit 5 (or F) of the chloroplast NAD(P)H-plastoquinone dehydrogenase complex. [Energy metabolism, Electron transport] 609 -131030 TIGR01975 isoAsp_dipep isoaspartyl dipeptidase IadA. The L-isoaspartyl derivative of Asp arises non-enzymatically over time as a form of protein damage. In this isomerization, the connectivity of the polypeptide changes to pass through the beta-carboxyl of the side chain. Much but not all of this damage can be repaired by protein-L-isoaspartate (D-aspartate) O-methyltransferase. This model describes the isoaspartyl dipeptidase IadA, apparently one of two such enzymes in E. coli, an enzyme that degrades isoaspartyl dipeptides and may unblock degradation of proteins that cannot be repaired. This model also describes closely related proteins from other species (e.g. Clostridium perfringens, Thermoanaerobacter tengcongensis) that we assume to be equivalent in function. This family shows homology to dihydroorotases. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 389 -273906 TIGR01976 am_tr_V_VC1184 cysteine desulfurase family protein, VC1184 subfamily. This model describes a subfamily of probable pyridoxal phosphate-dependent enzymes in the aminotransferase class V family (pfam00266). The most closely related characterized proteins are active as cysteine desulfurases, selenocysteine lyases, or both; some are involved in FeS cofactor biosynthesis and are designated NifS. An active site Cys residue present in those sequences, in motifs resembling GHHC or GSAC, is not found in this family. The function of members of this family is unknown, but seems unlike to be as an aminotransferase. [Unknown function, Enzymes of unknown specificity] 397 -131032 TIGR01977 am_tr_V_EF2568 cysteine desulfurase family protein. This model describes a subfamily of probable pyridoxal phosphate-dependent enzymes in the aminotransferase class V family. Related families contain members active as cysteine desulfurases, selenocysteine lyases, or both. The members of this family form a distinct clade and all are shorter at the N-terminus. The function of this subfamily is unknown. [Unknown function, Enzymes of unknown specificity] 376 -273907 TIGR01978 sufC FeS assembly ATPase SufC. SufC is part of the SUF system, shown in E. coli to consist of six proteins and believed to act in Fe-S cluster formation during oxidative stress. SufC forms a complex with SufB and SufD. SufC belongs to the ATP-binding cassette transporter family (pfam00005) but is no longer thought to be part of a transporter. The complex is reported as cytosolic () or associated with the membrane (). The SUF system also includes a cysteine desulfurase (SufS, enhanced by SufE) and a probable iron-sulfur cluster assembly scaffold protein, SufA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 243 -131034 TIGR01979 sufS cysteine desulfurases, SufSfamily. This model represents a subfamily of NifS-related cysteine desulfurases involved in FeS cluster formation needed for nitrogen fixation among other vital functions. Many cysteine desulfurases are also active as selenocysteine lyase and/or cysteine sulfinate desulfinase. This subfamily is associated with the six-gene SUF system described in E. coli and Erwinia as an FeS cluster formation system during oxidative stress. The active site Cys is this subfamily resembles GHHC with one or both His conserved. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 403 -131035 TIGR01980 sufB FeS assembly protein SufB. This protein, SufB, forms a cytosolic complex SufBCD. This complex enhances the cysteine desulfurase of SufSE. The system, together with SufA, is believed to act in iron-sulfur cluster formation during oxidative stress. Note that SufC belongs to the family of ABC transporter ATP binding proteins, so this protein, encoded by an adjacent gene, has often been annotated as a transporter component. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 448 -273908 TIGR01981 sufD FeS assembly protein SufD. This protein, SufD, forms a cytosolic complex SufBCD. This complex enhances the cysteine desulfurase of SufSE. The system, together with SufA, is believed to act in iron-sulfur cluster formation during oxidative stress. SufB and SufD are homologous. Note that SufC belongs to the family of ABC transporter ATP binding proteins, so this protein, encoded by an adjacent gene, has often been annotated as a transporter component. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 275 -273909 TIGR01982 UbiB 2-polyprenylphenol 6-hydroxylase. This model represents the enzyme (UbiB) which catalyzes the first hydroxylation step in the ubiquinone biosynthetic pathway in bacteria. It is believed that the reaction is 2-polyprenylphenol -> 6-hydroxy-2-polyprenylphenol. This model finds hits primarily in the proteobacteria. The gene is also known as AarF in certain species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 437 -273910 TIGR01983 UbiG ubiquinone biosynthesis O-methyltransferase. This model represents an O-methyltransferase believed to act at two points in the ubiquinone biosynthetic pathway in bacteria (UbiG) and fungi (COQ3). A separate methylase (MenG/UbiE) catalyzes the single C-methylation step. The most commonly used names for genes in this family do not indicate whether this gene is an O-methyl, or C-methyl transferase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 224 -273911 TIGR01984 UbiH 2-polyprenyl-6-methoxyphenol 4-hydroxylase. This model represents the FAD-dependent monoxygenase responsible for the second hydroxylation step in the aerobic ubiquinone bioynthetic pathway. The scope of this model is limited to the proteobacteria. This family is closely related to the UbiF hydroxylase which catalyzes the final hydroxylation step. The enzyme has also been named VisB due to a mutant VISible light sensitive phenotype. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 382 -131040 TIGR01985 phasin_2 phasin. This model represents a family of granule-associate proteins (phasins) which are part of the polyhydroxyalkanoate synthesis machinery. This family is based on a pair of characterized genes from Methylobacterium extorquens. Members of the seed for this model all contain the rest of the components believed to be essential for this system (see the "polyhydroxyalkanoic acid synthesis" property in the GenPropDB). Members of this family score below trusted to another phasin model, TIGR01841 and together may represent a subfamily or broader equivalog. 112 -273912 TIGR01986 glut_syn_euk glutathione synthetase, eukaryotic. This model represents the eukaryotic glutathione synthetase, which shows little resemblance to the analogous enzyme of Gram-negative bacteria (TIGR01380). In the Kinetoplastida, trypanothione replaces glutathione, but can be made from glutathione; a sequence from Leishmania is not included in the seed, is highly divergent, and therefore scores between the trusted and noise cutoffs. 472 -131042 TIGR01987 HI0074 nucleotidyltransferase substrate binding protein, HI0074 family. The member of this family from Haemophilus influenzae, HI0074, has been shown by crystal structure to resemble nucleotidyltransferase substrate binding proteins. It forms a complex with HI0073, encoded by the adjacent gene and containing a nucleotidyltransferase nucleotide binding domain (pfam01909). 123 -273913 TIGR01988 Ubi-OHases Ubiquinone biosynthesis hydroxylase, UbiH/UbiF/VisC/COQ6 family. This model represents a family of FAD-dependent hydroxylases (monooxygenases) which are all believed to act in the aerobic ubiquinone biosynthesis pathway. A separate set of hydroxylases, as yet undiscovered, are believed to be active under anaerobic conditions. In E. coli three enzyme activities have been described, UbiB (which acts first at position 6, see TIGR01982), UbiH (which acts at position 4) and UbiF (which acts at position 5). UbiH and UbiF are similar to one another and form the basis of this subfamily. Interestingly, E. coli contains another hydroxylase gene, called visC, that is highly similar to UbiF, adjacent to UbiH and, when mutated, results in a phenotype similar to that of UbiH (which has also been named visB). Several other species appear to have three homologs in this family, although they assort themselves differently on phylogenetic trees (e.g. Xylella and Mesorhizobium) making it difficult to ascribe a specific activity to each one. Eukaryotes appear to have only a single homolog in this subfamily (COQ6) which complements UbiH, but also possess a non-orthologous gene, COQ7 which complements UbiF. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 385 -273914 TIGR01989 COQ6 ubiquinone biosynthesis monooxygenase COQ6. This model represents the monooxygenase responsible for the 4-hydroxylateion of the phenol ring in the aerobic biosynthesis of ubiquinone 437 -213672 TIGR01990 bPGM beta-phosphoglucomutase. This model represents the beta-phosphoglucomutase enzyme which catalyzes the interconverison of beta-D-glucose-1-phosphate and beta-D-glucose-6-phosphate. The 6-phosphate is capable of non-enzymatic anomerization (alpha <-> beta) while the 1-phosphate is not. A separate enzyme is responsible for the isomerization of the alpha anomers. Beta-D-glucose-1-phosphate results from the phosphorylysis of maltose (2.4.1.8), trehalose (2.4.1.64) or trehalose-6-phosphate (2.4.1.216). Alternatively, these reactions can be run in the synthetic direction to create the disaccharides. All sequenced genomes which contain a member of this family also appear to contain at least one putative maltose or trehalose phosphorylase. Three species, Lactococcus, Enterococcus and Neisseria appear to contain a pair of paralogous beta-PGM's. Beta-phosphoglucomutase is a member of the haloacid dehalogenase superfamily of hydrolase enzymes. These enzymes are characterized by a series of three catalytic motifs positioned within an alpha-beta (Rossman) fold. beta-PGM contains an inserted alpha helical domain in between the first and second conserved motifs and thus is a member of subfamily IA of the superfamily. The third catalytic motif comes in three variants, the third of which, containing a conserved DD or ED, is the only one found here as well as in several other related enzymes (TIGR01509). The enzyme from L. lactis has been extensively characterized including a remarkable crystal structure which traps the pentacoordinate transition state. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 185 -273915 TIGR01991 HscA Fe-S protein assembly chaperone HscA. The Heat Shock Cognate proteins HscA and HscB act together as chaperones. HscA resembles DnaK but belongs in a separate clade. The apparent function is to aid assembly of iron-sulfur cluster proteins. Homologs from Buchnera and Wolbachia are clearly in the same clade but are highly derived and score lower than some examples of DnaK. [Protein fate, Protein folding and stabilization] 599 -273916 TIGR01992 PTS-IIBC-Tre PTS system, trehalose-specific IIBC component. This model represents the fused enzyme II B and C components of the trehalose-specific PTS sugar transporter system. Trehalose is converted to trehalose-6-phosphate in the process of translocation into the cell. These transporters lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). The exceptions to this rule are Staphylococci and Streptococci which contain their own A domain as a C-terminal fusion. This family is closely related to the sucrose transporting PTS IIBC enzymes and the B and C domains of each are described by subfamily-domain level TIGRFAMs models (TIGR00826 and TIGR00852, respectively). In E. coli, B. subtilis and P. fluorescens the presence of this gene is associated with the presence of trehalase which degrades T6P to glucose and glucose-6-P. Trehalose may also be transported (in Salmonella) via the mannose PTS or galactose permease systems, or (in Sinorhizobium, Thermococcus and Sulfolobus, for instance) by ABC transporters. 462 -273917 TIGR01993 Pyr-5-nucltdase pyrimidine 5'-nucleotidase. This family of proteins includes the SDT1/SSM1 gene from yeast which has been shown to code for a pyrimidine (UMP/CMP) 5'nucleotidase. The family spans plants, fungi and a small number of bacteria. These enzymes are members of the haloacid dehalogenase (HAD) superfamily of hydrolases, specifically the IA subfamily (variant 3, TIGR01509). 183 -273918 TIGR01994 SUF_scaf_2 SUF system FeS assembly protein, NifU family. Three iron-sulfur cluster assembly systems are known so far. ISC is broadly distributed while NIF tends to be associated with nitrogenase in nitrogen-fixing bacteria. The most recently described is SUF, believed to be important to maintain the function during aerobic stress of enzymes with labile Fe-S clusters. It is fairly widely distributed. This family represents one of two different proteins proposed to act as a scaffold on which the Fe-S cluster is built and from which it is transferred. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 137 -273919 TIGR01995 PTS-II-ABC-beta PTS system, beta-glucoside-specific IIABC component. This model represents a family of PTS enzyme II proteins in which all three domains are found in the same polypeptide chain and which appear to have a broad specificity for beta-glucosides including salicin (beta-D-glucose-1-salicylate) and arbutin (Hydroquinone-O-beta-D-glucopyranoside). These are distinct from the closely related sucrose-specific and trehalose-specific PTS transporters. 610 -131051 TIGR01996 PTS-II-BC-sucr PTS system, sucrose-specific IIBC component. This model represents the fused enzyme II B and C components of the sucrose-specific PTS sugar transporter system. Sucrose is converted to sucrose-6-phosphate in the process of translocation into the cell. Some of these transporters lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). The exceptions to this rule are Staphylococci, Streptococci, Lactococci, Lactobacilli, etc. which contain their own A domain as a C-terminal fusion. This family is closely related to the trehalose transporting PTS IIBC enzymes and the B and C domains of each are described by subfamily-domain level TIGRFAMs models (TIGR00826 and TIGR00852, respectively). 461 -131052 TIGR01997 sufA_proteo FeS assembly scaffold SufA. This model represents the SufA protein of the SUF system of iron-sulfur cluster biosynthesis. This system performs FeS biosynthesis even during oxidative stress and tends to be absent in obligate anaerobic and microaerophilic bacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 107 -273920 TIGR01998 PTS-II-BC-nag PTS system, N-acetylglucosamine-specific IIBC component. This model represents the combined B and C domains of the PTS transport system enzyme II specific for N-acetylglucosamine transport. Many of the genes in this family also include an A domain as part of the same polypeptide and thus should be given the name "PTS system, N-acetylglucosamine-specific IIABC component". This family is most closely related to the glucose-specific PTS enzymes. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 475 -188192 TIGR01999 iscU FeS cluster assembly scaffold IscU. This model represents IscU, a homolog of the N-terminal region of NifU, an Fe-S cluster assembly protein found mostly in nitrogen-fixing bacteria. IscU is considered part of the IscSUA-hscAB-fdx system of Fe-S assembly, whereas NifU is found in nitrogenase-containing (nitrogen-fixing) species. A NifU-type protein is also found in Helicobacter and Campylobacter. IscU and NifU are considered scaffold proteins on which Fe-S clusters are assembled before transfer to apoproteins. This model excludes true NifU proteins as in Klebsiella pneumoniae and Anabaena sp. as well as archaeal homologs. It includes largely proteobacterial and eukaryotic forms. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 124 -273921 TIGR02000 NifU_proper Fe-S cluster assembly protein NifU. Three different but partially homologous Fe-S cluster assembly systems have been described: Isc, Suf, and Nif. The latter is associated with donation of an Fe-S cluster to nitrogenase in a number of nitrogen-fixing species. NifU, described here, consists of an N-terminal domain (pfam01592) and a C-terminal domain (pfam01106). Homologs with an equivalent domain archictecture from Helicobacter and Campylobacter, however, are excluded from this model by a high trusted cutoff. The model, therefore, is specific for NifU involved in nitrogenase maturation. The related model TIGR01999 homologous to the N-terminus of this model describes IscU from the Isc system as in E. coli, Saccharomyces cerevisiae, and Homo sapiens. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 290 -273922 TIGR02001 gcw_chp conserved hypothetical protein, proteobacterial. This model represents a conserved hypothetical protein about 240 residues in length found so far in Proteobacteria including Shewanella oneidensis, Ralstonia solanacearum, and Colwellia psychrerythraea, usually as part of a paralogous family. The function is unknown. 243 -273923 TIGR02002 PTS-II-BC-glcB PTS system, glucose-specific IIBC component. This model represents the combined B and C domains of the PTS transport system enzyme II specific for glucose transport. Many of the genes in this family also include an A domain as part of the same polypeptide and thus should be given the name "PTS system, glucose-specific IIABC component" while the B. subtilus enzyme also contains an enzyme III domain which appears to act independently of the enzyme II domains. This family is most closely related to the N-acetylglucosamine-specific PTS enzymes (TIGR01998). [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 502 -131058 TIGR02003 PTS-II-BC-unk1 PTS system, IIBC component. This model represents a family of fused B and C components of PTS enzyme II. This clade is a member of a larger family which contains enzyme II's specific for a variety of sugars including glucose (TIGR02002) and N-acetylglucosamine (TIGR01998). None of the members of this clade have been experimentally characterized. This clade includes sequences from Streptococcus and Enterococcus which also include a C-terminal A domain as well as Bacillus and Clostridium which do not. In nearly all cases, these species also contain an authentic glucose-specific PTS transporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 548 -273924 TIGR02004 PTS-IIBC-malX PTS system, maltose and glucose-specific IIBC component. This model represents a family of PTS enzyme II fused B and C components including and most closely related to the MalX maltose and glucose-specific transporter of E. coli. A pair of paralogous genes from E. coli strain CFT073 score between trusted and noise and may have diverged sufficiently to have an altered substrate specificity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 517 -273925 TIGR02005 PTS-IIBC-alpha PTS system, alpha-glucoside-specific IIBC component. This model represents a family of fused PTS enzyme II B and C domains. A gene from Clostridium has been partially characterized as a maltose transporter, while genes from Fusobacterium and Klebsiella have been proposed to transport the five non-standard isomers of sucrose. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 524 -131061 TIGR02006 IscS cysteine desulfurase IscS. This model represents IscS, one of several cysteine desulfurases from a larger protein family designated (misleadingly, in this case) class V aminotransferases. IscS is one of at least 6 enzymes characteristic of the IscSUA-hscAB-fsx system of iron-sulfur cluster assembly. Scoring almost as well as proteobacterial sequences included in the model are mitochondrial cysteine desulfurases, apparently from an analogous system in eukaryotes. The sulfur, taken from cysteine, may be used in other systems as well, such as tRNA base modification and biosynthesis of other cofactors. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Protein synthesis, tRNA and rRNA base modification] 402 -131062 TIGR02007 fdx_isc ferredoxin, 2Fe-2S type, ISC system. This family consists of proteobacterial ferredoxins associated with and essential to the ISC system of 2Fe-2S cluster assembly. This family is closely related to (but excludes) eukaryotic (mitochondrial) adrenodoxins, which are ferredoxins involved in electron transfer to P450 cytochromes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 110 -273926 TIGR02008 fdx_plant ferredoxin [2Fe-2S]. This model represents single domain 2Fe-2S (also called plant type) ferredoxins. In general, these occur as a single domain proteins or with a chloroplast transit peptide. Species tend to be photosynthetic, but several forms may occur in one species and individually may not be associated with photocynthesis. Halobacterial forms differ somewhat in architecture; they score between trusted and noise cutoffs. Sequences scoring below the noise cutoff tend to be ferredoxin-related domains of larger proteins. 97 -213673 TIGR02009 PGMB-YQAB-SF beta-phosphoglucomutase family hydrolase. This subfamily model groups together three clades: the characterized beta-phosphoglucomutases (including those from E.coli, B.subtilus and L.lactis, TIGR01990), a clade of putative bPGM's from mycobacteria and a clade including the uncharacterized E.coli and H.influenzae yqaB genes which may prove to be beta-mutases of a related 1-phosphosugar. All of these are members of the larger Haloacid dehalogenase (HAD) subfamily IA and include the "variant 3" glu-asp version of the third conserved HAD domain (TIGR01509). 185 -273927 TIGR02010 IscR iron-sulfur cluster assembly transcription factor IscR. This model describes IscR, an iron-sulfur binding transcription factor of the ISC iron-sulfur cluster assembly system. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Regulatory functions, DNA interactions] 135 -213674 TIGR02011 IscA iron-sulfur cluster assembly protein IscA. This model represents the IscA component of the ISC system for iron-sulfur cluster assembly. The ISC system consists of IscRASU, HscAB and an Isc-specific ferredoxin. IscA previously was believed to act as a scaffold and now is seen as an iron donor protein. This clade is limited to the proteobacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 105 -162659 TIGR02012 tigrfam_recA protein RecA. This model describes orthologs of the recA protein. RecA promotes hybridization of homolgous regions of DNA. A segment of ssDNA can be hybridized to another ssDNA region, or to a dsDNA region. ATP is hydrolyzed in the process. Part of the SOS respones, it is regulated by LexA via autocatalytic cleavage. [DNA metabolism, DNA replication, recombination, and repair] 321 -273928 TIGR02013 rpoB DNA-directed RNA polymerase, beta subunit. This model describes orthologs of the beta subunit of Bacterial RNA polymerase. The core enzyme consists of two alpha chains, one beta chain, and one beta' subunit. [Transcription, DNA-dependent RNA polymerase] 1065 -131069 TIGR02014 BchZ chlorophyllide reductase subunit Z. This model represents the Z subunit of the three-subunit enzyme, (bacterio)chlorophyllide reductase. This enzyme is responsible for the reduction of the chlorin B-ring and is closely related to the protochlorophyllide reductase complex which reduces the D-ring. Both of these complexes in turn are homologous to nitrogenase. [Energy metabolism, Photosynthesis] 468 -131070 TIGR02015 BchY chlorophyllide reductase subunit Y. This model represents the Y subunit of the three-subunit enzyme, (bacterio)chlorophyllide reductase. This enzyme is responsible for the reduction of the chlorin B-ring and is closely related to the protochlorophyllide reductase complex which reduces the D-ring. Both of these complexes in turn are homologous to nitrogenase. [Energy metabolism, Photosynthesis] 422 -273929 TIGR02016 BchX chlorophyllide reductase iron protein subunit X. This model represents the X subunit of the three-subunit enzyme, (bacterio)chlorophyllide reductase. This enzyme is responsible for the reduction of the chlorin B-ring and is closely related to the protochlorophyllide reductase complex which reduces the D-ring. Both of these complexes in turn are homologous to nitrogenase. This subunit is homologous to the nitrogenase component II, or "iron" protein. [Energy metabolism, Photosynthesis] 296 -131072 TIGR02017 hutG_amidohyd N-formylglutamate amidohydrolase. In some species, histidine is converted to via urocanate and then formimino-L-glutamate to glutamate in four steps, where the fourth step is conversion of N-formimino-L-glutamate to L-glutamate and formamide. In others, that pathway from formimino-L-glutamate may differ, with the next enzyme being formiminoglutamate hydrolase (HutF) yielding N-formyl-L-glutamate. This model represents the enzyme N-formylglutamate deformylase, also called N-formylglutamate amidohydrolase, which then produces glutamate. [Energy metabolism, Amino acids and amines] 263 -188194 TIGR02018 his_ut_repres histidine utilization repressor, proteobacterial. This model represents a proteobacterial histidine utilization repressor. It is usually found clustered with the enzymes HutUHIG so that it can regulate its own expression as well. A number of species have several paralogs and may fine-tune the regulation according to levels of degradation intermediates such as urocanate. This family belongs to the larger GntR family of transcriptional regulators. [Energy metabolism, Amino acids and amines, Regulatory functions, DNA interactions] 230 -131074 TIGR02019 BchJ bacteriochlorophyll 4-vinyl reductase. This model represents the component of bacteriochlorophyll synthetase responsible for reduction of the B-ring pendant ethylene (4-vinyl) group. It appears that this step must precede the reduction of ring D, at least by the "dark" protochlorophyllide reductase enzymes BchN, BchB and BchL. This family appears to be present in photosynthetic bacteria except for the cyanobacterial clade. Cyanobacteria must use a non-orthologous gene to carry out this required step for the biosynthesis of both bacteriochlorophyll and chlorophyll. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 188 -131075 TIGR02020 BchF 2-vinyl bacteriochlorophyllide hydratase. This model represents the enzyme responsible for the first step in the modification of the ring A vinyl group of chlorophyllide a which (in part) distinguishes chlorophyll from bacteriochlorophyll. This enzyme is aparrently absent from cyanobacteria (which do not use bacteriochlorophyll). [Energy metabolism, Photosynthesis] 145 -273930 TIGR02021 BchM-ChlM magnesium protoporphyrin O-methyltransferase. This model represents the S-adenosylmethionine-dependent O-methyltransferase responsible for methylation of magnesium protoporphyrin IX. This step is essentiasl for the biosynthesis of both chlorophyll and bacteriochlorophyll. This model encompasses two closely related clades, from cyanobacteria (and plants) where it is called ChlM and other photosynthetic bacteria where it is known as BchM. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 219 -273931 TIGR02022 hutF formiminoglutamate deiminase. In some species, histidine utilization goes via urocanate to glutamate in four step, the last being removal of formamide. This model describes an alternate fourth step, formiminoglutamate hydrolase, which leads to N-formyl-L-glutamate. This product may be acted on by formylglutamate amidohydrolase (TIGR02017) and bypass glutamate as a product during its degradation. Alternatively, removal of formate (by EC 3.5.1.68) would yield glutamate. [Energy metabolism, Amino acids and amines] 454 -273932 TIGR02023 BchP-ChlP geranylgeranyl reductase. This model represents a group of geranylgeranyl reductases specific for the biosyntheses of bacteriochlorophyll and chlorophyll. It is unclear whether the processes of isoprenoid ligation to the chlorin ring and reduction of the geranylgeranyl chain to a phytyl chain are necessarily ordered the same way in all species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 388 -131079 TIGR02024 FtcD glutamate formiminotransferase. This model represents the tetrahydrofolate (THF) dependent glutamate formiminotransferase involved in the histidine utilization pathway. This enzyme interconverts L-glutamate and N-formimino-L-glutamate. The enzyme is bifunctional as it also catalyzes the cyclodeaminase reaction on N-formimino-THF, converting it to 5,10-methenyl-THF and releasing ammonia - part of the process of regenerating THF. This model covers enzymes from metazoa as well as gram-positive bacteria and archaea. In humans, deficiency of this enzyme results in a disease phenotype. The crystal structure of the enzyme has been studied in the context of the catalytic mechanism. [Energy metabolism, Amino acids and amines] 298 -273933 TIGR02025 BchH magnesium chelatase, H subunit. This model represents the H subunit of the magnesium chelatase complex responsible for magnesium insertion into the protoporphyrin IX ring in the biosynthesis of both chlorophyll and bacteriochlorophyll. In chlorophyll-utilizing species, this gene is known as ChlH, while in bacteriochlorophyll-utilizing spoecies it is called BchH. Subunit H is the largest (~140kDa) of the three subunits (the others being BchD/ChlD and BchI/ChlI), and is known to bind protoporphyrin IX. Subunit H is homologous to the CobN subunit of cobaltochelatase and by anology with that enzyme, subunit H is believed to also bind the magnesium ion which is inserted into the ring. In conjunction with the hydrolysis of ATP by subunits I and D, a conformation change is believed to happen in subunit H causing the magnesium ion insertion into the distorted protoporphyrin ring. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 1224 -131081 TIGR02026 BchE magnesium-protoporphyrin IX monomethyl ester anaerobic oxidative cyclase. This model represents the cobalamin-dependent oxidative cyclase, a radical SAM enzyme responsible for forming the distinctive E-ring of the chlorin ring system under anaerobic conditions. This step is essential in the biosynthesis of both bacteriochlorophyll and chlorophyll under anaerobic conditions (a separate enzyme, AcsF, acts under aerobic conditions). This model identifies two clades of sequences, one from photosynthetic, non-cyanobacterial bacteria and another including Synechocystis and several non-photosynthetic bacteria. The function of the Synechocystis gene is supported by gene clustering with other photosynthetic genes, so the purpose of the gene in the non-photosynthetic bacteria is uncertain. Note that homologs of this gene are not found in plants which rely solely on the aerobic cyclase. 497 -273934 TIGR02027 rpoA DNA-directed RNA polymerase, alpha subunit, bacterial and chloroplast-type. This family consists of the bacterial (and chloroplast) DNA-directed RNA polymerase alpha subunit, encoded by the rpoA gene. The RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. The amino terminal domain is involved in dimerizing and assembling the other RNA polymerase subunits into a transcriptionally active enzyme. The carboxy-terminal domain contains determinants for interaction with DNA and with transcriptional activator proteins. [Transcription, DNA-dependent RNA polymerase] 297 -131083 TIGR02028 ChlP geranylgeranyl reductase. This model represents the reductase which acts reduces the geranylgeranyl group to the phytyl group in the side chain of chlorophyll. It is unclear whether the enzyme has a preference for acting before or after the attachment of the side chain to chlorophyllide a by chlorophyll synthase. This clade is restricted to plants and cyanobacteria to separate it from the homologues which act in the biosynthesis of bacteriochlorophyll. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 398 -131084 TIGR02029 AcsF magnesium-protoporphyrin IX monomethyl ester aerobic oxidative cyclase. This model respresents the oxidative cyclase responsible for forming the distinctive E-ring of the chlorin ring system under aerobic conditions. This enzyme is believed to utilize a binuclear iron center and molecular oxygen. There are two isoforms of this enzyme in some plants and cyanobacterai which are differentially regulated based on the levels of copper and oxygen. This step is essential in the biosynthesis of both bacteriochlorophyll and chlorophyll under aerobic conditions (a separate enzyme, BchE, acts under anaerobic conditions). This enzyme is found in plants, cyanobacteria and other photosynthetic bacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 337 -131085 TIGR02030 BchI-ChlI magnesium chelatase ATPase subunit I. This model represents one of two ATPase subunits of the trimeric magnesium chelatase responsible for insertion of magnesium ion into protoporphyrin IX. This is an essential step in the biosynthesis of both chlorophyll and bacteriochlorophyll. This subunit is found in green plants, photosynthetic algae, cyanobacteria and other photosynthetic bacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 337 -273935 TIGR02031 BchD-ChlD magnesium chelatase ATPase subunit D. This model represents one of two ATPase subunits of the trimeric magnesium chelatase responsible for insertion of magnesium ion into protoporphyrin IX. This is an essential step in the biosynthesis of both chlorophyll and bacteriochlorophyll. This subunit is found in green plants, photosynthetic algae, cyanobacteria and other photosynthetic bacteria. Unlike subunit I (TIGR02030), this subunit is not found in archaea. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 589 -273936 TIGR02032 GG-red-SF geranylgeranyl reductase family. This model represents a subfamily which includes geranylgeranyl reductases involved in chlorophyll and bacteriochlorophyll biosynthesis as well as other related enzymes which may also act on geranylgeranyl groups or related substrates. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 295 -273937 TIGR02033 D-hydantoinase D-hydantoinase. This model represents the D-hydantoinase (dihydropyrimidinase) which primarily converts 5,6-dihydrouracil to 3-ureidopropanoate but also acts on dihydrothymine and hydantoin. The enzyme is a metalloenzyme. 454 -213679 TIGR02034 CysN sulfate adenylyltransferase, large subunit. Metabolic assimilation of sulfur from inorganic sulfate, requires sulfate activation by coupling to a nucleoside, for the production of high-energy nucleoside phosphosulfates. This pathway appears to be similar in all prokaryotic organisms. Activation is first achieved through sulfation of sulfate with ATP by sulfate adenylyltransferase (ATP sulfurylase) to produce 5'-phosphosulfate (APS), coupled by GTP hydrolysis. Subsequently, APS is phosphorylated by an APS kinase to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In Escherichia coli, ATP sulfurylase is a heterodimer composed of two subunits encoded by cysD and cysN, with APS kinase encoded by cysC. These genes are located in a unidirectionally transcribed gene cluster, and have been shown to be required for the synthesis of sulfur-containing amino acids. Homologous to this E.coli activation pathway are nodPQH gene products found among members of the Rhizobiaceae family. These gene products have been shown to exhibit ATP sulfurase and APS kinase activity, yet are involved in Nod factor sulfation, and sulfation of other macromolecules. With members of the Rhizobiaceae family, nodQ often appears as a fusion of cysN (large subunit of ATP sulfurase) and cysC (APS kinase). [Central intermediary metabolism, Sulfur metabolism] 406 -211710 TIGR02035 D_Ser_am_lyase D-serine ammonia-lyase. This family consists of D-serine ammonia-lyase (EC 4.3.1.18), a pyridoxal-phosphate enzyme that converts D-serine to pyruvate and NH3. This enzyme is also called D-serine dehydratase and D-serine deaminase and was previously designated EC 4.2.1.14. It is homologous to an enzyme that acts on threonine and may itself act weakly on threonine. [Energy metabolism, Amino acids and amines] 431 -131091 TIGR02036 dsdC D-serine deaminase transcriptional activator. This family, part of the LysR family of transcriptional regulators, activates transcription of the gene for D-serine deaminase, dsdA. Trusted members of this family so far are found adjacent to dsdA and only in Gammaproteobacteria, including E. coli, Vibrio cholerae, and Colwellia psychrerythraea. [Regulatory functions, DNA interactions] 302 -273938 TIGR02037 degP_htrA_DO periplasmic serine protease, Do/DeqQ family. This family consists of a set proteins various designated DegP, heat shock protein HtrA, and protease DO. The ortholog in Pseudomonas aeruginosa is designated MucD and is found in an operon that controls mucoid phenotype. This family also includes the DegQ (HhoA) paralog in E. coli which can rescue a DegP mutant, but not the smaller DegS paralog, which cannot. Members of this family are located in the periplasm and have separable functions as both protease and chaperone. Members have a trypsin domain and two copies of a PDZ domain. This protein protects bacteria from thermal and other stresses and may be important for the survival of bacterial pathogens.// The chaperone function is dominant at low temperatures, whereas the proteolytic activity is turned on at elevated temperatures. [Protein fate, Protein folding and stabilization, Protein fate, Degradation of proteins, peptides, and glycopeptides] 428 -273939 TIGR02038 protease_degS periplasmic serine pepetdase DegS. This family consists of the periplasmic serine protease DegS (HhoB), a shorter paralog of protease DO (HtrA, DegP) and DegQ (HhoA). It is found in E. coli and several other Proteobacteria of the gamma subdivision. It contains a trypsin domain and a single copy of PDZ domain (in contrast to DegP with two copies). A critical role of this DegS is to sense stress in the periplasm and partially degrade an inhibitor of sigma(E). [Protein fate, Degradation of proteins, peptides, and glycopeptides, Regulatory functions, Protein interactions] 351 -131094 TIGR02039 CysD sulfate adenylyltransferase, small subunit. Metabolic assimilation of sulfur from inorganic sulfate, requires sulfate activation by coupling to a nucleoside, for the production of high-energy nucleoside phosphosulfates. This pathway appears to be similar in all prokaryotic organisms. Activation is first achieved through sulfation of sulfate with ATP by sulfate adenylyltransferase (ATP sulfurylase) to produce 5'-phosphosulfate (APS), coupled by GTP hydrolysis. Subsequently, APS is phosphorylated by an APS kinase to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In Escherichia coli, ATP sulfurylase is a heterodimer composed of two subunits encoded by cysD and cysN, with APS kinase encoded by cysC. These genes are located in a unidirectionally transcribed gene cluster, and have been shown to be required for the synthesis of sulfur-containing amino acids. Homologous to this E.coli activation pathway are nodPQH gene products found among members of the Rhizobiaceae family. These gene products have been shown to exhibit ATP sulfurase and APS kinase activity, yet are involved in Nod factor sulfation, and sulfation of other macromolecules. [Central intermediary metabolism, Sulfur metabolism] 294 -273940 TIGR02040 PpsR-CrtJ transcriptional regulator PpsR. This model represents the transcriptional regulator PpsR which is strictly associated with photosynthetic proteobacteria and found in photosynthetic operons. PpsR has been reported to be a repressor. These proteins contain a Helix-Turn_Helix motif of the "fis" type (pfam02954). [Energy metabolism, Photosynthesis, Regulatory functions, DNA interactions] 442 -273941 TIGR02041 CysI sulfite reductase (NADPH) hemoprotein, beta-component. Sulfite reductase (NADPH) catalyzes a six electron reduction of sulfite to sulfide in prokaryotic organisms. It is a complex oligomeric enzyme composed of two different peptides with a subunit composition of alpha(8)-beta(4). The alpha component, encoded by cysJ, is a flavoprotein containing both FMN and FAD, while the beta component, encoded by cysI, is a siroheme, iron-sulfur protein. In Salmonella typhimurium and Escherichia coli, both the alpha and beta subunits of sulfite reductase are located in a unidirectional gene cluster along with phosphoadenosine phosphosulfate reductase, which catalyzes a two step reduction of PAPS to give free sulfite. In cyanobacteria and plant species, sulfite reductase ferredoxin (EC 1.8.7.1) catalyzes the reduction of sulfite to sulfide. [Central intermediary metabolism, Sulfur metabolism] 541 -131097 TIGR02042 sir ferredoxin-sulfite reductase. Distantly related to the iron-sulfur hemoprotein of sulfite reductase (NADPH) found in Proteobacteria and Eubacteria, sulfite reductase (ferredoxin) is a cyanobacterial and plant monomeric enzyme that also catalyzes the reduction of sulfite to sulfide. [Central intermediary metabolism, Sulfur metabolism] 577 -131098 TIGR02043 ZntR Zn(II)-responsive transcriptional regulator. This model represents the zinc and cadmium (II) responsive transcriptional activator of the gamma proteobacterial zinc efflux system. This protein is a member of the MerR family of transcriptional activators (pfam00376) and contains a distinctive pattern of cysteine residues in its metal binding loop, Cys-Cys-X(8-9)-Cys, as well as a conserved and critical cysteine at the N-terminal end of the dimerization helix. [Regulatory functions, DNA interactions] 131 -131099 TIGR02044 CueR Cu(I)-responsive transcriptional regulator. This model represents the copper-, silver- and gold- (I) responsive transcriptional activator of the gamma proteobacterial copper efflux system. This protein is a member of the MerR family of transcriptional activators (pfam00376) and contains a distinctive pattern of cysteine residues in its metal binding loop, Cys-X7-Cys. This family also lacks a conserved cysteine at the N-terminal end of the dimerization helix which is required for the binding of divalent metals such as zinc; here it is replaced by a serine residue. [Regulatory functions, DNA interactions] 127 -131100 TIGR02045 P_fruct_ADP ADP-specific phosphofructokinase. Phosphofructokinase is a key enzyme of glycolysis. The phosphate group donor for different subtypes of phosphofructokinase can be ATP, ADP, or pyrophosphate. This family consists of ADP-dependent phosphofructokinases. Members are more similar to ADP-dependent glucokinases (excluded from this family) than to other phosphofructokinases. [Energy metabolism, Glycolysis/gluconeogenesis] 446 -131101 TIGR02046 sdhC_b558_fam succinate dehydrogenase (or fumarate reductase) cytochrome b subunit, b558 family. This family consists of the succinate dehydrogenase subunit C of Bacillus subtilis, designated cytochrome b-558, and related sequences that include a fumarate reductase subunit C. This subfamily is only weakly similar to the main group of succinate dehydrogenase cytochrome b subunits described by pfam01127, so that some members score above the gathering threshold and some do not. [Energy metabolism, TCA cycle] 214 -131102 TIGR02047 CadR-PbrR Cd(II)/Pb(II)-responsive transcriptional regulator. This model represents the cadmium(II) and/or lead(II) responsive transcriptional activator of the proteobacterial metal efflux system. This protein is a member of the MerR family of transcriptional activators (pfam00376) and contains a distinctive pattern of cysteine residues in its metal binding loop, Cys-X(6-9)-Cys, as well as a conserved and critical cysteine at the N-terminal end of the dimerization helix. [Regulatory functions, DNA interactions] 127 -131103 TIGR02048 gshA_cyano glutamate--cysteine ligase, cyanobacterial, putative. This family consists of proteins believed (see Copley SD, Dhillon JK, 2002) to be the glutamate--cysteine ligases of several cyanobacteria, which are known to make glutathione. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 376 -273942 TIGR02049 gshA_ferroox glutamate--cysteine ligase, T. ferrooxidans family. This family consists of a rare family of glutamate--cysteine ligases, demonstrated first in Thiobacillus ferrooxidans and present in a few other Proteobacteria. It is the first of two enzymes for glutathione biosynthesis. It is also called gamma-glutamylcysteine synthetase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 403 -273943 TIGR02050 gshA_cyan_rel carboxylate-amine ligase, YbdK family. This family represents a division of a larger family, the other branch of which is predicted to act as glutamate--cysteine ligase (the first of two enzymes in glutathione biosynthesis) in the cyanobacteria. Species containing this protein, however, are generally not believe to make glutathione, and the function is unknown. 287 -131106 TIGR02051 MerR Hg(II)-responsive transcriptional regulator. This model represents the mercury (II) responsive transcriptional activator of the mer organomercurial resistance operon. This protein is a member of the MerR family of transcriptional activators (pfam00376) and contains a distinctive pattern of cysteine residues in its metal binding loop, Cys-X(8)-Cys-Pro, as well as a conserved and critical cysteine at the N-terminal end of the dimerization helix. [Cellular processes, Detoxification, Regulatory functions, DNA interactions] 124 -131107 TIGR02052 MerP mercuric transport protein periplasmic component. This model represents the periplasmic mercury (II) binding protein of the bacterial mercury detoxification system which passes mercuric ion to the MerT transporter for subsequent reduction to Hg(0) by the mercuric reductase MerA. MerP contains a distinctive GMTCXXC motif associated with metal binding. MerP is related to a larger family of metal binding proteins (pfam00403). [Cellular processes, Detoxification] 92 -273944 TIGR02053 MerA mercury(II) reductase. This model represents the mercuric reductase found in the mer operon for the detoxification of mercury compounds. MerA is a FAD-containing flavoprotein which reduces Hg(II) to Hg(0) utilizing NADPH. [Cellular processes, Detoxification] 463 -131109 TIGR02054 MerD mercuric resistence transcriptional repressor protein MerD. This model represents a transcriptional repressor protein of the MerR family (pfam00376) whose expression is regulated by the mercury-sensitive transcriptional activator, MerR. MerD has been shown to repress the transcription of the mer operon. [Cellular processes, Detoxification] 120 -273945 TIGR02055 APS_reductase thioredoxin-dependent adenylylsulfate APS reductase. This model describes recently identified adenosine 5'-phosphosulfate (APS) reductase activity found in sulfate-assimilatory prokaryotes, thus separating it from the traditionally described phosphoadenosine 5'-phosphosulfate (PAPS) reductases found in bacteria and fungi. Homologous to PAPS reductase in enterobacteria, cyanobacteria, and yeast, APS reductase here clusters with, and demonstrates greater homology to plant APS reductase. Additionally, the presence of two conserved C-terminal motifs (CCXXRKXXPL & SXGCXXCT) distinguishes APS substrate specificity and serves as a FeS cluster. [Central intermediary metabolism, Sulfur metabolism] 191 -131111 TIGR02056 ChlG chlorophyll synthase, ChlG. This model represents the strictly cyanobacterial and plant-specific chlorophyll synthase ChlG. ChlG is the enzyme (esterase) which attaches the side chain moiety onto chlorophyllide a. Both geranylgeranyl and phytyl pyrophosphates are substrates to varying degrees in enzymes from different sources. Thus, ChlG may act as the final or penultimate step in chlorophyll biosynthesis (along with the geranylgeranyl reductase, ChlP). [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 306 -131112 TIGR02057 PAPS_reductase phosphoadenosine phosphosulfate reductase, thioredoxin dependent. Requiring thioredoxin as an electron donor, phosphoadenosine phosphosulfate reductase catalyzes the reduction of 3'-phosphoadenylylsulfate (PAPS) to sulfite and phospho-adenosine-phosphate (PAP). Found in enterobacteria, cyanobacteria, and yeast, PAPS reductase is related to a group of plant (TIGR00424) and bacterial (TIGR02055) enzymes preferring 5'-adenylylsulfate (APS) over PAPS as a substrate for reduction to sulfite. [Central intermediary metabolism, Sulfur metabolism] 226 -131113 TIGR02058 lin0512_fam conserved hypothetical protein. This family consists of few members, broadly distributed. It occurs so far in several Firmicutes (twice in Oceanobacillus), one Cyanobacterium, one alpha Proteobacterium, and (with a long prefix) in plants. The function is unknown. The alignment includes a perfectly conserved motif GxGxDxHG near the N-terminus. [Hypothetical proteins, Conserved] 116 -131114 TIGR02059 swm_rep_I cyanobacterial long protein repeat. This domain appears in 29 copies in a large (>10000 amino protein in Synechococcus sp. WH8102 associated with a novel flagellar system, as one of three different repeats. Similar domains are found in two different large (<3500) proteins of Synechocystis PCC6803. 101 -131115 TIGR02060 aprB adenosine phosphosulphate reductase, beta subunit. During dissimilatory sulfate reduction and sulfur oxidation, adenylylsulfate (APS) reductase catalyzes reversibly the two-electron reduction of APS to sulfite and AMP. Found in several bacterial lineages and in Archaeoglobales, APS reductase is a heterodimer composed of an alpha subunit containing a noncovalently bound FAD, and a beta subunit containing two [4Fe-4S] clusters. Described by this model is the beta subunit of APS reductase, sharing common evolutionary origin with other iron-sulfur cluster-binding proteins. [Central intermediary metabolism, Sulfur metabolism] 132 -273946 TIGR02061 aprA adenosine phosphosulphate reductase, alpha subunit. During dissimilatory sulfate reduction or sulfur oxidation, adenylylsulfate (APS) reductase catalyzes reversibly the two-electron reduction of APS to sulfite and AMP. Found in several bacterial lineages and in Archaeoglobales, APS reductase is a heterodimer composed of an alpha subunit containing a noncovalently bound FAD, and a beta subunit containing two [4Fe-4S] clusters. Described by this model is the alpha subunit of APS reductase, sharing common evolutionary origin with fumarate reductase/succinate dehydrogenase flavoproteins. [Central intermediary metabolism, Sulfur metabolism] 614 -131117 TIGR02062 RNase_B exoribonuclease II. This family consists of exoribonuclease II, the product of the rnb gene, as found in a number of gamma proteobacteria. In Escherichia coli, it is one of eight different exoribonucleases. It is involved in mRNA degradation and tRNA precursor end processing. [Transcription, Degradation of RNA] 639 -273947 TIGR02063 RNase_R ribonuclease R. This family consists of an exoribonuclease, ribonuclease R, also called VacB. It is one of the eight exoribonucleases reported in E. coli and is broadly distributed throughout the bacteria. In E. coli, double mutants of this protein and polynucleotide phosphorylase are not viable. Scoring between trusted and noise cutoffs to the model are shorter, divergent forms from the Chlamydiae, and divergent forms from the Campylobacterales (including Helicobacter pylori) and Leptospira interrogans. [Transcription, Degradation of RNA] 709 -273948 TIGR02064 dsrA sulfite reductase, dissimilatory-type alpha subunit. Dissimilatory sulfite reductase catalyzes the six-electron reduction of sulfite to sulfide, as the terminal reaction in dissimilatory sulfate reduction. It remains unclear however, whether trithionate and thiosulfate serve as intermediate compounds to sulfide, or as end products of sulfite reduction. Sulfite reductase is a multisubunit enzyme composed of dimers of either alpha/beta or alpha/beta/gamma subunits, each containing a siroheme and iron sulfur cluster prosthetic center. Found in sulfate-reducing bacteria, these genes are commonly located in an unidirectional gene cluster. This model describes the alpha subunit of sulfite reductase. [Central intermediary metabolism, Sulfur metabolism] 402 -131120 TIGR02065 ECX1 archaeal exosome-like complex exonuclease 1. This family contains the archaeal protein orthologous to the eukaryotic exosome protein Rrp41. It is somewhat more distantly related to the bacterial protein ribonuclease PH. An exosome-like complex has been demonstrated experimentally for the Archaea in Sulfolobus solfataricus, so members of this family are designated exosome complex exonuclease 1, after usage in SwissProt. [Transcription, Degradation of RNA] 230 -131121 TIGR02066 dsrB sulfite reductase, dissimilatory-type beta subunit. Dissimilatory sulfite reductase catalyzes the six-electron reduction of sulfite to sulfide, as the terminal reaction in dissimilatory sulfate reduction. It remains unclear however, whether trithionate and thiosulfate serve as intermediate compounds to sulfide, or as end products of sulfite reduction. Sulfite reductase is a multisubunit enzyme composed of dimers of either alpha/beta or alpha/beta/gamma subunits, each containing a siroheme and iron sulfur cluster prosthetic center. Found in sulfate-reducing bacteria, these genes are commonly located in an unidirectional gene cluster. This model describes the beta subunit of sulfite reductase. [Central intermediary metabolism, Sulfur metabolism] 341 -273949 TIGR02067 his_9_HisN histidinol-phosphatase, inositol monophosphatase family. This subfamily belongs to the inositol monophosphatase family (pfam00459). The members of this family consist of no more than one per species and are found only in species in which histidine is synthesized de novo but no histidinol phosphatase can be found in either of the two described families (TIGR01261, TIGR01856). In at least one species, the member of this family is found near known histidine biosynthesis genes. The role as histidinol-phosphatase wsa first proven in Corynebacterium glutamicum. [Amino acid biosynthesis, Histidine family] 251 -273950 TIGR02068 cya_phycin_syn cyanophycin synthetase. Cyanophycin is an insoluble storage polymer for carbon, nitrogen, and energy, found in most Cyanobacteria. The polymer has a backbone of L-aspartic acid, with most Asp side chain carboxyl groups attached to L-arginine. The polymer is made by this enzyme, cyanophycin synthetase, and degraded by cyanophycinase. Heterologously expressed cyanophycin synthetase in E. coli produces a closely related, water-soluble polymer with some Arg replaced by Lys. It is unclear whether enzymes that produce soluble cyanophycin-like polymers in vivo in non-Cyanobacterial species should be designated as cyanophycin synthetase itself or as a related enzyme. This model makes the designation as cyanophycin synthetase. Cyanophycin synthesis is analogous to polyhydroxyalkanoic acid (PHA) biosynthesis, except that PHA polymers lack nitrogen and may be made under nitrogen-limiting conditions. [Cellular processes, Biosynthesis of natural products] 864 -131124 TIGR02069 cyanophycinase cyanophycinase. This model describes both cytosolic and extracellular cyanophycinases. The former are part of a system in many Cyanobacteria and a few other species of generating and later utilizing a storage polymer for nitrogen, carbon, and energy, called cyanophycin. The latter are found in species such as Pseudomonas anguilliseptica that can use external cyanophycin. The polymer has a backbone of L-aspartic acid, with most Asp side chain carboxyl groups attached to L-arginine. [Energy metabolism, Other] 250 -273951 TIGR02070 mono_pep_trsgly monofunctional biosynthetic peptidoglycan transglycosylase. This family is one of the transglycosylases involved in the late stages of peptidoglycan biosynthesis. Members tend to be small, about 240 amino acids in length, and consist almost entirely of a domain described by pfam00912 for transglycosylases. Species with this protein will have several other transglycosylases as well. All species with this protein are Proteobacteria that produce murein (peptidoglycan). [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 224 -273952 TIGR02071 PBP_1b penicillin-binding protein 1B. Bacterial that synthesize a cell wall of peptidoglycan (murein) generally have several transglycosylases and transpeptidases for the task. This family consists of a particular bifunctional transglycosylase/transpeptidase in E. coli and other Proteobacteria, designated penicillin-binding protein 1B. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 730 -273953 TIGR02072 BioC malonyl-acyl carrier protein O-methyltransferase BioC. This enzyme, which is found in biotin biosynthetic gene clusters in proteobacteria, firmicutes, green-sulfur bacteria, fusobacterium and bacteroides, carries out an enzymatic step prior to the formation of pimeloyl-CoA, namely O-methylation of the malonyl group preferentially while on acyl carrier protein. The enzyme is recognizable as a methyltransferase by homology. [Biosynthesis of cofactors, prosthetic groups, and carriers, Biotin] 240 -273954 TIGR02073 PBP_1c penicillin-binding protein 1C. This subfamily of the penicillin binding proteins includes the member from E. coli designated penicillin-binding protein 1C. Members have both transglycosylase and transpeptidase domains and are involved in forming cross-links in the late stages of peptidoglycan biosynthesis. All members of this subfamily are presumed to have the same basic function. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 727 -273955 TIGR02074 PBP_1a_fam penicillin-binding protein, 1A family. Bacterial that synthesize a cell wall of peptidoglycan (murein) generally have several transglycosylases and transpeptidases for the task. This family consists of bifunctional transglycosylase/transpeptidase penicillin-binding proteins (PBP). In the Proteobacteria, this family includes PBP 1A but not the paralogous PBP 1B (TIGR02071). This family also includes related proteins, often designated PBP 1A, from other bacterial lineages. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 531 -213681 TIGR02075 pyrH_bact uridylate kinase. This protein, also called UMP kinase, converts UMP to UDP by adding a phosphate from ATP. It is the first step in pyrimidine biosynthesis. GTP is an allosteric activator. In a large fraction of all bacterial genomes, the gene tends to be located immediately downstream of elongation factor Ts and upstream of ribosome recycling factor. A related protein family, believed to be equivalent in function and found in the archaea and in spirochetes, is described by a separate model, TIGR02076. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 232 -273956 TIGR02076 pyrH_arch uridylate kinase, putative. This family consists of the archaeal and spirochete proteins most closely related to bacterial uridylate kinases (TIGR02075), an enzyme involved in pyrimidine biosynthesis. Members are likely, but not known, to be functionally equivalent to their bacterial counterparts. However, substantial sequence differences suggest that regulatory mechanisms may be different; the bacterial form is allosterically regulated by GTP. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 221 -200156 TIGR02077 thr_lead_pep thr operon leader peptide. This family consists of examples of the threonine biosynthesis (thr) operon leader peptide, also called the thr operon attenuator. The small gene for this peptide is often missed in genome annotation. It should be looked for in genomes of the proteobacteria, immediately upstream of genes for threonine biosynthesis, typically aspartokinase I/homoserine dehydrogenase, homoserine kinase, and threonine synthase. Transcription of the rest of the Thr operon is attenuated (mostly turned off) unless the ribosome pauses during a stretch of the leader sequence rich in both Ile (made from Thr) and in Thr itself because of the scarcity of those amino acids at the time. The leader peptide itself, once made, may have no role other than to be degraded. Similar systems exist for some other amino acid biosynthetic operons, such as Trp. [Amino acid biosynthesis, Aspartate family] 24 -131133 TIGR02078 AspKin_pair Pyrococcus aspartate kinase subunit, putative. This family consists of proteins restricted to and found as paralogous pairs (typically close together) in species of Pyrococcus, a hyperthermophilic archaeal genus. Members are always found close to other genes of threonine biosynthesis and appear to represent the Pyrococcal form of aspartate kinase. Alignment to aspartokinase III from E. coli shows that 300 N-terminal and 20 C-terminal amino acids are homologous, but the form in Pyrococcus lacks ~ 100 amino acids in between. [Amino acid biosynthesis, Aspartate family] 327 -273957 TIGR02079 THD1 threonine dehydratase. This model represents threonine dehydratase, the first step in the pathway converting threonine into isoleucine. At least two other clades of biosynthetic threonine dehydratases have been characterized by models (TIGR01124 and TIGR01127). Those sequences described by this model are exclusively found in species containg the rest of the isoleucine pathway and which are generally lacking in members of the those other two clades of threonine dehydratases. Members of this clade are also often gene clustered with other elements of the isoleucine pathway. [Amino acid biosynthesis, Pyruvate family] 409 -131135 TIGR02080 O_succ_thio_ly O-succinylhomoserine (thiol)-lyase. This family consists of O-succinylhomoserine (thiol)-lyase, one of three different enzymes designated cystathionine gamma-synthase and involved in methionine biosynthesis. In all three cases, sulfur is added by transsulfuration from Cys to yield cystathionine rather than by a sulfhydrylation step that uses H2S directly and bypasses cystathionine. [Amino acid biosynthesis, Aspartate family] 382 -273958 TIGR02081 metW methionine biosynthesis protein MetW. This protein is found alongside MetX, of the enzyme that acylates homoserine as a first step toward methionine biosynthesis, in many species. It appears to act in methionine biosynthesis but is not fully characterized. [Amino acid biosynthesis, Aspartate family] 194 -273959 TIGR02082 metH 5-methyltetrahydrofolate--homocysteine methyltransferase. This family represents 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 2.1.1.13), one of at least three different enzymes able to convert homocysteine to methionine by transferring a methyl group on to the sulfur atom. It is also called the vitamin B12(or cobalamine)-dependent methionine synthase. Other methionine synthases include 5-methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase (MetE, EC 2.1.1.14, the cobalamin-independent methionine synthase) and betaine-homocysteine methyltransferase. [Amino acid biosynthesis, Aspartate family] 1181 -131138 TIGR02083 LEU2 3-isopropylmalate dehydratase, large subunit. Homoaconitase, aconitase, and 3-isopropylmalate dehydratase have similar overall structures. All are dehydratases (EC 4.2.1.-) and bind a Fe-4S iron-sulfur cluster. 3-isopropylmalate dehydratase is split into large (leuC) and small (leuD) chains in eubacteria. Several pairs of archaeal proteins resemble the leuC and leuD pair in length and sequence but even more closely resemble the respective domains of homoaconitase, and their identity is uncertain. These homologs are described by a separate model of subfamily (rather than equivalog) homology type (TIGR01343). This model along with TIGR00170 describe clades which consist only of LeuC sequences. Here, the genes from Pyrococcus furiosus, Clostridium acetobutylicum, Thermotoga maritima and others are gene clustered with related genes from the leucine biosynthesis pathway. [Amino acid biosynthesis, Pyruvate family] 419 -131139 TIGR02084 leud 3-isopropylmalate dehydratase, small subunit. Homoaconitase, aconitase, and 3-isopropylmalate dehydratase have similar overall structures. All are dehydratases (EC 4.2.1.-) and bind a Fe-4S iron-sulfur cluster. 3-isopropylmalate dehydratase is split into large (leuC) and small (leuD) chains in eubacteria. Several pairs of archaeal proteins resemble the leuC and leuD pair in length and sequence but even more closely resemble the respective domains of homoaconitase, and their identity is uncertain. The members of the seed for this model are those sequences which are gene clustered with other genes involved in leucine biosynthesis and include some archaea. [Amino acid biosynthesis, Pyruvate family] 156 -131140 TIGR02085 meth_trns_rumB 23S rRNA (uracil-5-)-methyltransferase RumB. This family consists of RNA methyltransferases designated RumB, formerly YbjF. Members act on 23S rRNA U747 and the equivalent position in other proteobacterial species. This family is homologous to the other 23S rRNA methyltransferase RumA and to the tRNA methyltransferase TrmA. [Protein synthesis, tRNA and rRNA base modification] 374 -273960 TIGR02086 IPMI_arch 3-isopropylmalate dehydratase, large subunit. This subfamily is a subset of the larger HacA family (Homoaconitate hydratase family, TIGR01343) and is most closely related to the 3-isopropylmalate dehydratase, large subunits which form TIGR00170. This subfamily includes the members of TIGR01343 which are gene clustered with other genes of leucine biosynthesis. The rest of the subfamily includes mainly archaeal species which exhibit two hits to this model. In these cases it is possible that one or the other of the hits does not have a 3-isopropylmalate dehydratase activity but rather one of the other related aconitase-like activities. 413 -273961 TIGR02087 LEUD_arch 3-isopropylmalate dehydratase, small subunit. This subfamily is most closely related to the 3-isopropylmalate dehydratase, small subunits which form TIGR00171. This subfamily includes the members of TIGR02084 which are gene clustered with other genes of leucine biosynthesis. The rest of the subfamily includes mainly archaeal species which exhibit two hits to this model. In these cases it is possible that one or the other of the hits does not have a 3-isopropylmalate dehydratase activity but rather one of the other related aconitase-like activities. 154 -273962 TIGR02088 LEU3_arch isopropylmalate/isohomocitrate dehydrogenases. This model represents a group of archaeal decarboxylating dehydrogenases which include the leucine biosynthesis enzyme 3-isopropylmalate dehydrogenase (LeuB, LEU3) and the methanogenic cofactor CoB biosynthesis enzyme isohomocitrate dehydrogenase (AksF). Both of these have been characterized in Methanococcus janaschii. Non-methanogenic archaea have only one hit to this model and presumably this is LeuB, although phylogenetic trees cannot establish which gene is which in the methanogens. The AksF gene is capable of acting on isohomocitrate, iso(homo)2-citrate and iso(homo)3-citrate in the successive elongation cycles of coenzyme B (7-mercaptoheptanoyl-threonine phosphate). This family is closely related to both the LeuB genes found in TIGR00169 and the mitochondrial eukaryotic isocitrate dehydratases found in TIGR00175. All of these are included within the broader subfamily model, pfam00180. 322 -273963 TIGR02089 TTC tartrate dehydrogenase. Tartrate dehydrogenase catalyzes the oxidation of both meso- and (+)-tartrate as well as a D-malate. These enzymes are closely related to the 3-isopropylmalate and isohomocitrate dehydrogenases found in TIGR00169 and TIGR02088, respectively. [Energy metabolism, Other] 352 -273964 TIGR02090 LEU1_arch isopropylmalate/citramalate/homocitrate synthases. Methanogenic archaea contain three closely related homologs of the 2-isopropylmalate synthases (LeuA) represented by TIGR00973. Two of these in Methanococcus janaschii (MJ1392 - CimA; MJ0503 - AksA) have been characterized as catalyzing alternative reactions leaving the third (MJ1195) as the presumptive LeuA enzyme. CimA is citramalate (2-methylmalate) synthase which condenses acetyl-CoA with pyruvate. This enzyme is believed to be involved in the biosynthesis of isoleucine in methanogens and possibly other species lacking threonine dehydratase. AksA is a homocitrate synthase which also produces (homo)2-citrate and (homo)3-citrate in the biosynthesis of Coenzyme B which is restricted solely to methanogenic archaea. Methanogens, then should and aparrently do contain all three of these enzymes. Unfortunately, phylogenetic trees do not resolve into three unambiguous clades, making assignment of function to particular genes problematic. Other archaea which lack a threonine dehydratase (mainly Euryarchaeota) should contain both a CimA and a LeuA gene. This is true of, for example, archaeoglobus fulgidis, but not for the Pyrococci which have none in this clade, but one in TIGR00973 and one in TIGRT00977 which may fulfill these roles. Other species which have only one hit to this model and lack threonine dehydratase are very likely LeuA enzymes. 363 -273965 TIGR02091 glgC glucose-1-phosphate adenylyltransferase. This enzyme, glucose-1-phosphate adenylyltransferase, is also called ADP-glucose pyrophosphorylase. The plant form is an alpha2,beta2 heterodimer, allosterically regulated in plants. Both subunits are homologous and included in this model. In bacteria, both homomeric forms of GlgC and more active heterodimers of GlgC and GlgD have been described. This model describes the GlgC subunit only. This enzyme appears in variants of glycogen synthesis pathways that use ADP-glucose, rather than UDP-glucose as in animals. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 361 -273966 TIGR02092 glgD glucose-1-phosphate adenylyltransferase, GlgD subunit. This family is GlgD, an apparent regulatory protein that appears in an alpha2/beta2 heterotetramer with GlgC (glucose-1-phosphate adenylyltransferase, TIGR02091) in a subset of bacteria that use GlgC for glycogen biosynthesis. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 369 -273967 TIGR02093 P_ylase glycogen/starch/alpha-glucan phosphorylases. This family consists of phosphorylases. Members use phosphate to break alpha 1,4 linkages between pairs of glucose residues at the end of long glucose polymers, releasing alpha-D-glucose 1-phosphate. The nomenclature convention is to preface the name according to the natural substrate, as in glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, etc. Name differences among these substrates reflect differences in patterns of branching with alpha 1,6 linkages. Members include allosterically regulated and unregulated forms. A related family, TIGR02094, contains examples known to act well on particularly small alpha 1,4 glucans, as may be found after import from exogenous sources. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 794 -273968 TIGR02094 more_P_ylases alpha-glucan phosphorylases. This family consists of known phosphorylases, and homologs believed to share the function of using inorganic phosphate to cleave an alpha 1,4 linkage between the terminal glucose residue and the rest of the polymer (maltodextrin, glycogen, etc.). The name of the glucose storage polymer substrate, and therefore the name of this enzyme, depends on the chain lengths and branching patterns. A number of the members of this family have been shown to operate on small maltodextrins, as may be obtained by utilization of exogenous sources. This family represents a distinct clade from the related family modeled by TIGR02093/pfam00343. 601 -273969 TIGR02095 glgA glycogen/starch synthase, ADP-glucose type. This family consists of glycogen (or starch) synthases that use ADP-glucose (EC 2.4.1.21), rather than UDP-glucose (EC 2.4.1.11) as in animals, as the glucose donor. This enzyme is found in bacteria and plants. Whether the name given is glycogen synthase or starch synthase depends on context, and therefore on substrate. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 473 -273970 TIGR02096 TIGR02096 conserved hypothetical protein, steroid delta-isomerase-related. This family of proteins about 135 amino acids in length largely restricted to the Proteobacteria. This family and a delta5-3-ketosteroid isomerase from Pseudomonas testosteroni appear homologous, especially toward their respective N-termini. Members, therefore, probably are enzymes. 129 -131152 TIGR02097 yccV hemimethylated DNA binding domain. This model describes the small protein from E. coli YccV and its homologs in other Proteobacteria. YccV is now described as a hemimethylated DNA binding protein. The model also describes a domain in longer eukaryotic proteins. 101 -131153 TIGR02098 MJ0042_CXXC MJ0042 family finger-like domain. This domain contains a CXXCX(19)CXXC motif suggestive of both zinc fingers and thioredoxin, usually found at the N-terminus of prokaryotic proteins. One partially characterized gene, agmX, is among a large set in Myxococcus whose interruption affects adventurous gliding motility. 38 -273971 TIGR02099 TIGR02099 TIGR02099 family protein. This model describes a family of long proteins, over 1250 amino acids in length and present in the Proteobacteria. The degree of sequence similarity is low between sequences from different genera. Apparent membrane-spanning regions at the N-terminus and C-terminus suggest the protein is inserted into (or exported through) the membrane. [Hypothetical proteins, Conserved] 1260 -131155 TIGR02100 glgX_debranch glycogen debranching enzyme GlgX. This family consists of the GlgX protein from the E. coli glycogen operon and probable equivalogs from other prokaryotic species. GlgX is not required for glycogen biosynthesis, but instead acts as a debranching enzyme for glycogen catabolism. This model distinguishes GlgX from pullanases and other related proteins that also operate on alpha-1,6-glycosidic linkages. In the wide band between the trusted and noise cutoffs are functionally similar enzymes, mostly from plants, that act similarly but usually are termed isoamylase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 688 -273972 TIGR02101 IpaC_SipC type III secretion target, IpaC/SipC family. This model represents a family of proteins associated with bacterial type III secretion systems, which are injection machines for virulence factors into host cell cytoplasm. Characterized members of this protein family are known to be secreted and are described as invasins, including IpaC from Shigella flexneri (SP:P18012) and SipC from Salmonella typhimurium (GB:AAA75170.1). Members may be referred to as invasins, pathogenicity island effectors, and cell invasion proteins. [Cellular processes, Pathogenesis] 317 -273973 TIGR02102 pullulan_Gpos pullulanase, extracellular, Gram-positive. Pullulan is an unusual, industrially important polysaccharide in which short alpha-1,4 chains (maltotriose) are connected in alpha-1,6 linkages. Enzymes that cleave alpha-1,6 linkages in pullulan and release maltotriose are called pullulanases although pullulan itself may not be the natural substrate. In contrast, a glycogen debranching enzyme such GlgX, homologous to this family, can release glucose at alpha,1-6 linkages from glycogen first subjected to limit degradation by phosphorylase. Characterized members of this family include a surface-located pullulanase from Streptococcus pneumoniae () and an extracellular bifunctional amylase/pullulanase with C-terminal pullulanase activity (. 1111 -273974 TIGR02103 pullul_strch alpha-1,6-glucosidases, pullulanase-type. Members of this protein family include secreted (or membrane-anchored) pullulanases of Gram-negative bacteria and pullulanase-type starch debranching enzymes of plants. Both enzymes hydrolyze alpha-1,6 glycosidic linkages. Pullulan is an unusual, industrially important polysaccharide in which short alpha-1,4 chains (maltotriose) are connected in alpha-1,6 linkages. Enzymes that cleave alpha-1,6 linkages in pullulan and release maltotriose are called pullulanases although pullulan itself may not be the natural substrate. This family is closely homologous to, but architecturally different from, the Gram-positive pullulanases of Gram-positive bacteria (TIGR02102). [Energy metabolism, Biosynthesis and degradation of polysaccharides] 898 -273975 TIGR02104 pulA_typeI pullulanase, type I. Pullulan is an unusual, industrially important polysaccharide in which short alpha-1,4 chains (maltotriose) are connected in alpha-1,6 linkages. Enzymes that cleave alpha-1,6 linkages in pullulan and release maltotriose are called pullulanases although pullulan itself may not be the natural substrate. This family consists of pullulanases related to the subfamilies described in TIGR02102 and TIGR02103 but having a different domain architecture with shorter sequences. Members are called type I pullulanases. 605 -131160 TIGR02105 III_needle type III secretion apparatus needle protein. Type III secretion systems translocate proteins, usually virulence factors, out across both inner and outer membranes of certain Gram-negative bacteria and further across the plasma membrane and into the cytoplasm of the host cell. This protein, termed YscF in Yersinia, and EscF, PscF, EprI, etc. in other systems, forms the needle of the injection apparatus. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 72 -211715 TIGR02106 cyd_oper_ybgT cyd operon protein YbgT. This model describes a very small (as short as 33 amino acids) protein of unknown function, essentially always found in an operon with CydAB, subunits of the cytochrome d terminal oxidase. It begins with an aromatic motif MWYFXW and appears to contain a membrane-spanning helix. This protein appears to be restricted to the Proteobacteria and exist in a single copy only. We suggest it may be a membrane subunit of the terminal oxidase. The family is named after the E. coli member YbgT (SP|P56100). This model excludes the apparently related protein YccB (SP|P24244). [Energy metabolism, Electron transport] 30 -273976 TIGR02107 PQQ_syn_pqqA coenzyme PQQ precursor peptide PqqA. This model describes a very small protein, coenzyme PQQ biosynthesis protein A, which is smaller than 25 amino acids in many species. It is proposed to serve as a peptide precursor of coenzyme pyrrolo-quinoline-quinone (PQQ), with Glu and Tyr of a conserved motif Glu-Xxx-Xxx-Xxx-Tyr becoming part of the product. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 21 -273977 TIGR02108 PQQ_syn_pqqB coenzyme PQQ biosynthesis protein B. This model describes coenzyme PQQ biosynthesis protein B, a gene required for the biosynthesis of pyrrolo-quinoline-quinone (coenzyme PQQ). PQQ is required for some glucose dehydrogenases and alcohol dehydrogenases. Note that this gene appears to be required for PQQ in biosynthesis in Methylobacterium extorquens (under the name pqqG) and in Klebiella pneumoniae but that the equivalent pqqV in Acinetobacter calcoaceticus is not necessary for heterologous expression of PQQ biosynthesis in E. coli. Based on this latter finding, it is suggested (Goosen, et al. 1989) that PqqB might be a transporter or a PQQ-dependent enzyme rather than a PQQ biosynthesis enzyme. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 302 -162708 TIGR02109 PQQ_syn_pqqE coenzyme PQQ biosynthesis enzyme PqqE. This model describes coenzyme PQQ biosynthesis protein E, a prototypical peptide-cyclizing radical SAM enzyme. It links a Tyr to a Glu as the first step in the biosynthesis of pyrrolo-quinoline-quinone (coenzyme PQQ) from the precursor peptide PqqA. PQQ is required for some glucose dehydrogenases and alcohol dehydrogenases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 358 -273978 TIGR02110 PQQ_syn_pqqF coenzyme PQQ biosynthesis probable peptidase PqqF. In a subset of species that make coenzyme PQQ (pyrrolo-quinoline-quinone), this probable peptidase is found in the PQQ biosynthesis region and is thought to act as a protease on PqqA (TIGR02107), a probable peptide precursor of the coenzyme. PQQ is required for some glucose dehydrogenases and alcohol dehydrogenases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 697 -131166 TIGR02111 PQQ_syn_pqqC coenzyme PQQ biosynthesis protein C. This model describes the coenzyme PQQ (pyrrolo-quinoline-quinone) biosynthesis protein PqqC.In contrast to the broader model pfam05312, this model does not include related proteins likely to be functionally distinct from PqqC, such as homologs found in the Chlamydias. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 239 -131167 TIGR02112 cyd_oper_ybgE cyd operon protein YbgE. This model describes a small protein of unknown function, about 100 amino acids in length, essentially always found in an operon with CydAB, subunits of the cytochrome d terminal oxidase. It appears to be an integral membrane protein. It is found so far only in the Proteobacteria. [Energy metabolism, Electron transport] 93 -131168 TIGR02113 coaC_strep phosphopantothenoylcysteine decarboxylase, streptococcal. In most bacteria, a single bifunctional protein catalyses phosphopantothenoylcysteine decarboxylase and phosphopantothenate--cysteine ligase activities, sequential steps in coenzyme A biosynthesis (see TIGR00521). These activities reside in separate proteins encoded by tandem genes in some bacterial lineages. This model describes proteins from the genera Streptococcus and Enterococcus homologous to the N-terminal region of TIGR00521, corresponding to phosphopantothenoylcysteine decarboxylase activity. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 177 -131169 TIGR02114 coaB_strep phosphopantothenate--cysteine ligase, streptococcal. In most bacteria, a single bifunctional protein catalyses phosphopantothenoylcysteine decarboxylase and phosphopantothenate--cysteine ligase activities, sequential steps in coenzyme A biosynthesis (see TIGR00521). These activities reside in separate proteins encoded by tandem genes in some bacterial lineages. This model describes proteins from the genera Streptococcus and Enterococcus homologous to the C-terminal region of TIGR00521, corresponding to phosphopantothenate--cysteine ligase activity. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 227 -131170 TIGR02115 potass_kdpF K+-transporting ATPase, KdpF subunit. This model describes a very small integral membrane peptide KdpF, a subunit of the K(+)-translocating Kdp complex. It is found upstream of the KdpA subunit (TIGR00680). Because of its very small size and highly hydrophobic character, it is sometimes missed in genome annotation. [Transport and binding proteins, Cations and iron carrying compounds] 24 -131171 TIGR02116 toxin_Txe_YoeB toxin-antitoxin system, toxin component, Txe/YoeB family. The Axe-Txe pair in Enterococcus faecium and the homologous YefM-YoeB pair in Escherichia coli have been shown to act as an antitoxin-toxin pair. This model describes the toxin component. Nearly every example found is next to an identifiable antitoxin, as indicated by match to models TIGR01552 and/or pfam02604. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 80 -273979 TIGR02117 chp_urease_rgn conserved hypothetical protein. This conserved hypothetical protein of unknown function is found in several Proteobacteria. Its function is unknown and its genome context is not well-conserved. It is found amid urease genes in at least one species. [Hypothetical proteins, Conserved] 208 -131173 TIGR02118 TIGR02118 conserved hypothetical protein. This model represents a small family of proteins of unknown function, each about 105 amino acids in length. Conserved sites in the multiple alignment include a pair of aromatic residues, a histidine, and an aspartate. [Hypothetical proteins, Conserved] 100 -131174 TIGR02119 panF sodium/pantothenate symporter. Pantothenate (vitamin B5) is a precursor of coenzyme A and is made from aspartate and 2-oxoisovalerate in most bacteria with completed genome sequences. However, some pathogens must import pantothenate. This model describes PanF, a sodium/pantothenate symporter, from a larger family of Sodium/substrate symporters (pfam00474). Several species that have this transporter appear to lack all enzymes of pantothenate biosynthesis, namely Haemophilus influenzae, Pasteurella multocida, Fusobacterium nucleatum, and Borrelia burgdorferi. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A, Transport and binding proteins, Other] 471 -273980 TIGR02120 GspF type II secretion system protein F. This membrane protein is a component of the terminal branch complex of the general secretion pathway (GSP), also known as the"Type II" secretion pathway. The GSP transports proteins (generally virulence-associated cell wall hydrolases) across the outer membrase of the bacterial cell. Transport across the inner membrane is often, but not exclusively handled by the Sec system. This model was constructed from the broader subfamily model, pfam00482 which includes components of pilin complexes (PilC) as well as other related genes. GspF is nearly always gene clustered with other GSP subunits. Some genes from Xylella and Xanthomonas strains score below the trusted cutoff due to excessive divergence from the family such that a sequence from Deinococcus which does not appear to be GspF scores higher. [Protein fate, Protein and peptide secretion and trafficking] 399 -273981 TIGR02121 Na_Pro_sym sodium/proline symporter. This family consists of the sodium/proline symporter (proline permease) from a number of Gram-negative and Gram-positive bacteria and from the archaeal genus Methanosarcina. Using the related pantothenate permease as an outgroup, candidate sequences from Bifidobacterium longum and several from archaea are found to be outside the clade defined by known proline permeases. These sequences, scoring between 570 and -40, define the range between trusted and noise cutoff scores. [Transport and binding proteins, Amino acids, peptides and amines] 487 -273982 TIGR02122 TRAP_TAXI TRAP transporter solute receptor, TAXI family. This family is one of at least three major families of extracytoplasmic solute receptor (ESR) for TRAP (Tripartite ATP-independent Periplasmic Transporter) transporters. The others are the DctP (TIGR00787) and SmoM (pfam03480) families. These transporters are secondary (driven by an ion gradient) but composed of three polypeptides, although in some species the 4-TM and 12-TM integral membrane proteins are fused. Substrates for this transporter family are not fully characterized but, besides C4 dicarboxylates, may include mannitol and other compounds. [Transport and binding proteins, Unknown substrate] 320 -273983 TIGR02123 TRAP_fused TRAP transporter, 4TM/12TM fusion protein. In some species, the 12-transmembrane spanning and 4-transmembrane spanning components of tripartite ATP-independent periplasmic (TRAP)-type transporters are fused. This model describes such transporters, found in the Archaea and in Bacteria. [Transport and binding proteins, Unknown substrate] 614 -273984 TIGR02124 hypE hydrogenase expression/formation protein HypE. This family contains HypE (or HupE), a protein required for expression of catalytically active hydrogenase in many systems. It appears to be an accessory protein involved in maturation rather than a regulatory protein involved in expression. HypE shows considerable homology to the thiamine-monophosphate kinase ThiL (TIGR01379) and other enzymes. 320 -273985 TIGR02125 CytB-hydogenase Ni/Fe-hydrogenase, b-type cytochrome subunit. This model describes a family of cytochrome b proteins which appear to be specific for nickel-iron hydrogenase complexes. Every genome which contains a member of this family posesses a Ni/Fe hydrogenase according to Genome Properties (GenProp0177), and most are gene clustered with other hydrogenase components. Some Ni/Fe hydrogenase-containing species lack a member of this family but contain other CytB homologs (pfam01292) which may substitute for it. 211 -273986 TIGR02126 phgtail_TP901_1 phage major tail protein, TP901-1 family. This family includes the members of pfam06199 but is broader. Characterized members are major tail proteins from various phage, including lactococcal temperate bacteriophage TP901-1. [Mobile and extrachromosomal element functions, Prophage functions] 136 -273987 TIGR02127 pyrF_sub2 orotidine 5'-phosphate decarboxylase, subfamily 2. This model represents orotidine 5'-monophosphate decarboxylase, the PyrF protein of pyrimidine nucleotide biosynthesis. See TIGR01740 for a related but distinct subfamily of the same enzyme. [Purines, pyrimidines, nucleosides, and nucleotides, Pyrimidine ribonucleotide biosynthesis] 261 -273988 TIGR02128 G6PI_arch bifunctional phosphoglucose/phosphomannose isomerase. This bifunctional isomerase is a member of the larger PGI superfamily and only distantly related to other glucose-6-phosphate isomerases. The family is limited to the archaea. 308 -162719 TIGR02129 hisA_euk phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase, eukaryotic type. This enzyme acts in the biosynthesis of histidine and has been characterized in S. cerevisiae and Arabidopsis where it complements the E. coli HisA gene. In eukaryotes the gene is known as HIS6. In bacteria, this gene is found in Fibrobacter succinogenes, presumably due to lateral gene transfer from plants in the rumen gut. [Amino acid biosynthesis, Histidine family] 253 -131185 TIGR02130 dapB_plant dihydrodipicolinate reductase. This narrow family includes genes from Arabidopsis and Fibrobacter succinogenes (which probably recieved the gene from a plant via lateral gene transfer). The sequences are distantly related to the dihydrodipicolinate reductases from archaea. In Fibrobacter this gene is the only candidate DHPR in the genome. [Amino acid biosynthesis, Aspartate family] 275 -131186 TIGR02131 phaP_Bmeg polyhydroxyalkanoic acid inclusion protein PhaP. This model describes a protein found in polyhydroxyalkanoic acid (PHA) gene regions and incorporated into PHA inclusions in Bacillus cereus and Bacillus megaterium. The role of the protein may include amino acid storage (see McCool,G.J. and Cannon,M.C, 1999). 165 -131187 TIGR02132 phaR_Bmeg polyhydroxyalkanoic acid synthase, PhaR subunit. This model describes a protein, PhaR, localized to polyhydroxyalkanoic acid (PHA) inclusion granules in Bacillus cereus and related species. PhaR is required for PHA biosynthesis along with PhaC and may be a regulatory subunit. 189 -273989 TIGR02133 RPI_actino ribose 5-phosphate isomerase. This family is a member of the RpiB/LacA/LacB subfamily (TIGR00689) but lies outside the RpiB equivalog (TIGR01120) which is also a member of that subfamily. Ribose 5-phosphate isomerase is an essential enzyme of the pentose phosphate pathway; a pathway that appears to be present in the actinobacteria. The only candidates for ribose 5-phosphate isomerase in the Actinobacteria are members of this family. 148 -131189 TIGR02134 transald_staph transaldolase. This small family of proteins is a member of the transaldolase sybfamily represented by pfam00923. Coxiella and Staphylococcus lack members of the known transaldolase equivalog families and appear to require a transaldolase activity for completion of the pentose phosphate pathway. [Energy metabolism, Pentose phosphate pathway] 236 -273990 TIGR02135 phoU_full phosphate transport system regulatory protein PhoU. This model describes PhoU, a regulatory protein of unknown mechanism for high-affinity phosphate ABC transporter systems. The protein consists of two copies of the domain described by pfam01895. Deletion of PhoU activates constitutive expression of the phosphate ABC transporter and allows phosphate transport, but causes a growth defect and so likely has some second function. [Regulatory functions, Other, Transport and binding proteins, Anions] 212 -273991 TIGR02136 ptsS_2 phosphate binding protein. Members of this family are phosphate-binding proteins. Most are found in phosphate ABC-transporter operons, but some are found in phosphate regulatory operons. This model separates members of the current family from the phosphate ABC transporter phosphate binding protein described by TIGRFAMs model TIGR00975. [Transport and binding proteins, Anions] 287 -162723 TIGR02137 HSK-PSP phosphoserine phosphatase/homoserine phosphotransferase bifunctional protein. This protein is has been characterized as both a phosphoserine phosphatase and a phosphoserine:homoserine phosphotransferase. In Pseudomonas aeruginosa, where the characterization was done, a second phosphoserine phosphatase (SerB) and a second homoserine kinase (thrB) are found, but in Fibrobacter succinogenes neither are present. This enzyme is a member of the haloacid dehalogenase (HAD) superfamily, specifically part of subfamily IB by virtue of the presence of an alpha helical domain in between motifs I and II of the HAD domain. The closest homologs to this family are monofunctional phosphoserine phosphatases (TIGR00338). 203 -273992 TIGR02138 phosphate_pstC phosphate ABC transporter, permease protein PstC. The typical operon for the high affinity inorganic phosphate ABC transporter encodes an ATP-binding protein, a phosphate-binding protein, and two permease proteins. This family consists of one of the two permease proteins, PstC, which is homologous to PstA (TIGR00974). In the model bacterium Escherichia coli, this transport system is induced when the concentration of extrallular inorganic phosphate is low. A constitutive, lower affinity transporter operates otherwise. [Transport and binding proteins, Anions] 295 -131194 TIGR02139 permease_CysT sulfate ABC transporter, permease protein CysT. This model represents CysT, one of two homologous, tandem permeases in the sulfate ABC transporter system; the other is CysW (TIGR02140). The sulfate transporter has been described in E. coli as transporting sulfate, thiosulfate, selenate, and selenite. Sulfate transporters may also transport molybdate ion if a specific molybdate transporter is not present. [Transport and binding proteins, Anions] 265 -162725 TIGR02140 permease_CysW sulfate ABC transporter, permease protein CysW. This model represents CysW, one of two homologous, tandem permeases in the sulfate ABC transporter system; the other is CysT (TIGR02139). The sulfate transporter has been described in E. coli as transporting sulfate, thiosulfate, selenate, and selenite. Sulfate transporters may also transport molybdate ion if a specific molybdate transporter is not present. [Transport and binding proteins, Anions] 261 -273993 TIGR02141 modB_ABC molybdate ABC transporter, permease protein. This model describes the permease protein, ModB, of the molybdate ABC transporter. This system has been characterized in E. coli, Staphylococcus carnosus, Rhodobacter capsulatus and Azotobacter vinlandii. Molybdate is chemically similar to sulfate, thiosulfate, and selenate. These related substrates, and sometimes molybdate itself, can be transported by the homologous sulfate receptor. Some apparent molybdenum transport operons include a permease related to this ModB, although less similar than some sulfate permease proteins and not included in this model. [Transport and binding proteins, Anions] 208 -131197 TIGR02142 modC_ABC molybdenum ABC transporter, ATP-binding protein. This model represents the ATP-binding cassette (ABC) protein of the three subunit molybdate ABC transporter. The three proteins of this complex are homologous to proteins of the sulfate ABC transporter. Molybdenum may be used in nitrogenases of nitrogen-fixing bacteria and in molybdopterin cofactors. In some cases, molybdate may be transported by a sulfate transporter rather than by a specific molybdate transporter. [Transport and binding proteins, Anions] 354 -131198 TIGR02143 trmA_only tRNA (uracil(54)-C(5))-methyltransferase. This family consists exclusively of proteins believed to act as tRNA (uracil-5-)-methyltransferase. All members of far are proteobacterial. The seed alignment was taken directly from pfam05958 in Pfam 12.0, but higher cutoffs are used to select only functionally equivalent proteins. Homologous proteins excluded by the higher cutoff scores of this model include other uracil methyltransferases, such as RumA, active on rRNA. [Protein synthesis, tRNA and rRNA base modification] 353 -273994 TIGR02144 LysX_arch Lysine biosynthesis enzyme LysX. The family of proteins found in this equivalog include the characterized LysX from Thermus thermophilus, which is part of a well-organized lysine biosynthesis gene cluster. LysX is believed to carry out an ATP-dependent acylation of the amino group of alpha-aminoadipate in the prokaryotic version of the fungal AAA lysine biosynthesis pathway. No species having a sequence in this equivalog contains the elements of the more common diaminopimelate lysine biosythesis pathway, and none has been shown to be a lysine auxotroph. These sequences have mainly recieved the name of the related enzyme, "ribosomal protein S6 modification protein RimK". RimK has been characterized in E. coli, and acts by ATP-dependent condensation of S6 with glutamate residues. 280 -273995 TIGR02145 Fib_succ_major Fibrobacter succinogenes major paralogous domain. This domain of about 175 to 200 amino acids is found, in from one to five copies, in over 50 proteins in Fibrobacter succinogenes S85, an obligate anaerobe of the rumen. Many members of this family have an apparent lipoprotein signal sequence. Conserved cysteine residues, suggestive of disulfide bond formation, are also consistent with an extracytoplasmic location for this domain. This domain can also be found in small numbers of proteins in Chlorobium tepidum and Bacteroides thetaiotaomicron. [Cell envelope, Other] 171 -162728 TIGR02146 LysS_fung_arch homocitrate synthase. This model includes the yeast LYS21 gene which carries out the first step of the alpha-aminoadipate (AAA) lysine biosynthesis pathway. A related pathway is found in Thermus thermophilus. This enzyme is closely related to 2-isopropylmalate synthase (LeuA) and citramalate synthase (CimA), both of which are present in the euryarchaeota. Some archaea have a separate homocitrate synthase (AksA) which also synthesizes longer homocitrate analogs. 344 -273996 TIGR02147 Fsuc_second TIGR02147 family protein. This family consists of the 40 members of a paralogous protein family in the rumen anaerobe Fibrobacter succinogenes S85 and a smaller number in Bdellovibrio bacteriovorus HD100. Member proteins are about 270 residues long and appear to lack signal sequences and transmembrane helices. The only perfectly conserved residue is a glycine in an otherwise poorly conserved region, suggesting members are not enzymes. The family is not characterized. [Hypothetical proteins, Conserved] 271 -162730 TIGR02148 Fibro_Slime fibro-slime domain. This model represents a conserved region of about 90 amino acids, shared in at least 4 distinct large putative proteins from the slime mold Dictyostelium discoideum and 10 proteins from the rumen bacterium Fibrobacter succinogenes, and in no other species so far. We propose here the name fibro-slime domain 90 -273997 TIGR02149 glgA_Coryne glycogen synthase, Corynebacterium family. This model describes Corynebacterium glutamicum GlgA and closely related proteins in several other species. This enzyme is required for glycogen biosynthesis and appears to replace the distantly related TIGR02095 family of ADP-glucose type glycogen synthase in Corynebacterium glutamicum, Mycobacterium tuberculosis, Bifidobacterium longum, and Streptomyces coelicolor. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 388 -273998 TIGR02150 IPP_isom_1 isopentenyl-diphosphate delta-isomerase, type 1. This model represents type 1 of two non-homologous families of the enzyme isopentenyl-diphosphate delta-isomerase (IPP isomerase). IPP is an essential building block for many compounds, including enzyme cofactors, sterols, and prenyl groups. This inzyme interconverts isopentenyl diphosphate and dimethylallyl diphosphate. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 158 -273999 TIGR02151 IPP_isom_2 isopentenyl-diphosphate delta-isomerase, type 2. Isopentenyl-diphosphate delta-isomerase (IPP isomerase) interconverts isopentenyl diphosphate and dimethylallyl diphosphate. This model represents the type 2 enzyme. FMN, NADPH, and Mg2+ are required by this form, which lacks homology to the type 1 enzyme (TIGR02150). IPP is precursor to many compounds, including enzyme cofactors, sterols, and isoprenoids. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 333 -274000 TIGR02152 D_ribokin_bact ribokinase. This model describes ribokinase, an enzyme catalyzing the first step in ribose catabolism. The rbsK gene encoding ribokinase typically is found with ribose transport genes. Ribokinase belongs to the carbohydrate kinase pfkB family (pfam00294). In the wide gulf between the current trusted (360 bit) and noise (100 bit) cutoffs are a number of sequences, few of which are clustered with predicted ribose transport genes but many of which are currently annotated as if having ribokinase activity. Most likely some have this function and others do not. [Energy metabolism, Sugars] 293 -274001 TIGR02153 gatD_arch glutamyl-tRNA(Gln) amidotransferase, subunit D. This peptide is found only in the Archaea. It is part of a heterodimer, with GatE (TIGR00134), that acts as an amidotransferase on misacylated Glu-tRNA(Gln) to produce Gln-tRNA(Gln). The analogous amidotransferase found in bacteria is the GatABC system, although GatABC homologs in the Archaea appear to act instead on Asp-tRNA(Asn). [Protein synthesis, tRNA aminoacylation] 404 -131209 TIGR02154 PhoB phosphate regulon transcriptional regulatory protein PhoB. PhoB is a DNA-binding response regulator protein acting with PhoR in a 2-component system responding to phosphate ion. PhoB acts as a positive regulator of gene expression for phosphate-related genes such as phoA, phoS, phoE and ugpAB as well as itself. It is often found proximal to genes for the high-affinity phosphate ABC transporter (pstSCAB; GenProp0190) and presumably regulates these as well. [Regulatory functions, DNA interactions, Signal transduction, Two-component systems] 226 -131210 TIGR02155 PA_CoA_ligase phenylacetate-CoA ligase. Phenylacetate-CoA ligase (PA-CoA ligase) catalyzes the first step in aromatic catabolism of phenylacetic acid (PA) into phenylacetyl-CoA (PA-CoA). Often located in a conserved gene cluster with enzymes involved in phenylacetic acid activation (paaG/H/I/J), phenylacetate-CoA ligase has been found among the proteobacteria as well as in gram positive prokaryotes. In the B-subclass proteobacterium Azoarcus evansii, phenylacetate-CoA ligase has been shown to be induced under aerobic and anaerobic growth conditions. It remains unclear however, whether this induction is due to the same enzyme or to another isoenzyme restricted to specific anaerobic growth conditions. [Energy metabolism, Other] 422 -131211 TIGR02156 PA_CoA_Oxy1 phenylacetate-CoA oxygenase, PaaG subunit. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 289 -274002 TIGR02157 PA_CoA_Oxy2 phenylacetate-CoA oxygenase, PaaH subunit. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 90 -131213 TIGR02158 PA_CoA_Oxy3 phenylacetate-CoA oxygenase, PaaI subunit. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 237 -131214 TIGR02159 PA_CoA_Oxy4 phenylacetate-CoA oxygenase, PaaJ subunit. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 146 -131215 TIGR02160 PA_CoA_Oxy5 phenylacetate-CoA oxygenase/reductase, PaaK subunit. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 352 -131216 TIGR02161 napC_nirT periplasmic nitrate (or nitrite) reductase c-type cytochrome, NapC/NirT family. Nearly every member of this subfamily is NapC, a predicted membrane-anchored four-heme c-type cytochrome that forms one component of the periplasmic nitrate reductase along with NapA, NapB, NapD, NapE, and NapF subunits. A single known exception at this time is NirT, which is instead a component of a nitrite reductase. This family excludes TorC subunits of trimethylamine N-oxide (TMAO) reductases. 185 -274003 TIGR02162 torC trimethylamine-N-oxide reductase c-type cytochrome TorC. This family includes consists of TorC, a pentahemic c-type cytochrome subunit of periplasmic reductases for trimethylamine-N-oxide (TMAO). The N-terminal half is closely related to tetrahemic NapC (or NirT) subunits of periplasmic nitrate (or nitrite) reductases; some species have both TMAO and nitrate reductase complexes. 386 -274004 TIGR02163 napH_ ferredoxin-type protein, NapH/MauN family. Most members of this family are the NapH protein, found next to NapG,in operons that encode the periplasmic nitrate reductase. Some species with this reductase lack NapC but accomplish electron transfer to NapAB in some other manner, likely to involve NapH, NapG, and/or some other protein. A few members of this protein are designated MauN and are found in methylamine utilization operons in species that appear to lack a periplasmic nitrate reductase. 255 -131219 TIGR02164 torA trimethylamine-N-oxide reductase TorA. This very narrowly defined family represents TorA, part of a family of related molybdoenzymes that include biotin sulfoxide reductases, dimethyl sulfoxide reductases, and at least two different subfamilies of trimethylamine-N-oxide reductases. A single enzyme from the larger family may have more than one activity. TorA typically is located in the periplasm, has a Tat (twin-arginine translocation)-dependent signal sequence, and is encoded in a torCAD operon. 822 -274005 TIGR02165 cas5_6_GSU0054 CRISPR-associated protein GSU0054/csb2, Dpsyc system. This model represents a CRISPR-associated protein from the Dpsyc subtype (a type I-C variant), named for Desulfotalea psychrophila LSv54. CRISPR systems confer resistance in prokaryotes to invasive DNA or RNA, including phage and plasmids. CRISPR-associated proteins typically are found near CRISPR repeats and other CRISPR-associated proteins, have low levels of sequence identify, have sequence relationships that suggest lateral transfer, and show some sequence similarity to DNA-active proteins such as helicases and repair proteins. 484 -274006 TIGR02166 dmsA_ynfE anaerobic dimethyl sulfoxide reductase, A subunit, DmsA/YnfE family. Members of this family include known and probable dimethyl sulfoxide reductase (DMSO reductase) A chains. In E. coli, dmsA encodes the canonical anaerobic DMSO reductase A chain. The paralog ynfE, as part of ynfFGH expressed from a multicopy plasmid, could complement a dmsABC deletion, suggesting a similar function and some overlap in specificity, although YnfE could not substitute for DmsA in a mixed complex. 797 -274007 TIGR02167 Liste_lipo_26 bacterial surface protein 26-residue repeat. This model describes a tandem peptide repeat sequence of 25 or 26 residues, found in predicted surface proteins (often lipoproteins) from Listeria monocytogenes, L. innocua, Enterococcus faecalis, Lactobacillus plantarum, Mycoplasma mycoides, Helicobacter hepaticus, and other species. 26 -274008 TIGR02168 SMC_prok_B chromosome segregation protein SMC, common bacterial type. SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] 1179 -274009 TIGR02169 SMC_prok_A chromosome segregation protein SMC, primarily archaeal type. SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] 1164 -274010 TIGR02170 thyX thymidylate synthase, flavin-dependent. Two forms of microbial thymidylate synthase are known: ThyA (2.1.1.45) and ThyX (2.1.1.148). This model describes ThyX, a homotetrameric flavoprotein. Both enzymes convert dUMP to dTMP. Under oxygen-limiting conditions, thyX can complement a thyA mutation. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 209 -274011 TIGR02171 Fb_sc_TIGR02171 Fibrobacter succinogenes paralogous family TIGR02171. This model describes a paralogous family of the rumen bacterium Fibrobacter succinogenes. Eleven members are found in Fibrobacter succinogenes S85, averaging over 900 amino acids in length. More than half are predicted lipoproteins. The function is unknown. 912 -162743 TIGR02172 Fb_sc_TIGR02172 Fibrobacter succinogenes paralogous family TIGR02172. This model describes a paralogous family of five proteins, likely to be enzymes, in the rumen bacterium Fibrobacter succinogenes S85. Members show homology to proteins described by pfam01636, a phosphotransferase enzyme family associated with resistance to aminoglycoside antibiotics. 226 -274012 TIGR02173 cyt_kin_arch cytidylate kinase, putative. Proteins in this family are believed to be cytidylate kinase. Members of this family are found in the archaea and in spirochaetes, and differ considerably from the common bacterial form of cytidylate kinase described by TIGR00017. 171 -274013 TIGR02174 CXXU_selWTH selT/selW/selH selenoprotein domain. This model represents a domain found in both bacteria and animals, including animal proteins SelT, SelW, and SelH, all of which are selenoproteins. In a CXXC motif near the N-terminus of the domain, selenocysteine may replace the second Cys. Proteins with this domain may include an insert of about 70 amino acids. This model is broader than the current SelW model pfam05169 in Pfam. 73 -274014 TIGR02175 PorC_KorC 2-oxoacid:acceptor oxidoreductase, gamma subunit, pyruvate/2-ketoisovalerate family. A number of anaerobic and microaerophilic species lack pyruvate dehydrogenase and have instead a four subunit, oxygen-sensitive pyruvate oxidoreductase, with either ferredoxins or flavodoxins (H. pylori) used as the acceptor. Several related four-subunit enzymes may exist in the same species. This model describes the gamma subunit. In Pyrococcus furious, enzymes active on pyruvate and 2-ketoisovalerate share a common gamma subunit. 177 -131231 TIGR02176 pyruv_ox_red pyruvate:ferredoxin (flavodoxin) oxidoreductase, homodimeric. This model represents a single chain form of pyruvate:ferredoxin (or flavodoxin) oxidoreductase. This enzyme may transfer electrons to nitrogenase in nitrogen-fixing species. Portions of this protein are homologous to gamma subunit of the four subunit pyruvate:ferredoxin (flavodoxin) oxidoreductase. 1165 -274015 TIGR02177 PorB_KorB 2-oxoacid:acceptor oxidoreductase, beta subunit, pyruvate/2-ketoisovalerate family. A number of anaerobic and microaerophilic species lack pyruvate dehydrogenase and have instead a four subunit, oxygen-sensitive pyruvate oxidoreductase, with either ferredoxins or flavodoxins used as the acceptor. Several related four-subunit enzymes may exist in the same species. This model describes a subfamily of beta subunits, representing mostly pyruvate and 2-ketoisovalerate specific enzymes. 287 -131233 TIGR02178 yeiP elongation factor P-like protein YeiP. This model represents the family of Escherichia coli protein YeiP, a close homolog of elongation factor P (TIGR00038) and probably itself a translation factor. Member of this family are found only in some Gammaproteobacteria, including E. coli and Vibrio cholerae. [Protein synthesis, Translation factors] 186 -131234 TIGR02179 PorD_KorD 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate family. A number of anaerobic and microaerophilic species lack pyruvate dehydrogenase and have instead a four subunit, oxygen-sensitive pyruvate oxidoreductase, with either ferredoxins or flavodoxins used as the acceptor. Several related four-subunit enzymes may exist in the same species. This model describes a subfamily of delta subunits, representing mostly pyruvate, 2-ketoisovalerate, and 2-oxoglutarate specific enzymes. The delta subunit is the smallest and resembles ferredoxins. 78 -274016 TIGR02180 GRX_euk Glutaredoxin. Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model represents eukaryotic glutaredoxins and includes sequences from fungi, plants and metazoans as well as viruses. 83 -274017 TIGR02181 GRX_bact Glutaredoxin, GrxC family. Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This family of glutaredoxins includes the E. coli protein GrxC (Grx3) which appears to have a secondary role in reducing ribonucleotide reductase (in the absence of GrxA) possibly indicating a role in the reduction of other protein disulfides. [Energy metabolism, Electron transport] 79 -274018 TIGR02182 GRXB Glutaredoxin, GrxB family. Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model includes the highly abundant E. coli GrxB (Grx2) glutaredoxin which is notably longer than either GrxA or GrxC. Unlike the other two E. coli glutaredoxins, GrxB appears to be unable to reduce ribonucleotide reductase, and may have more to do with resistance to redox stress. [Energy metabolism, Electron transport] 209 -131238 TIGR02183 GRXA Glutaredoxin, GrxA family. Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model includes the E. coli glyutaredoxin GrxA which appears to have primary responsibility for the reduction of ribonucleotide reductase. 86 -213689 TIGR02184 Myco_arth_vir_N Mycoplasma virulence family signal region. This model represents the N-terminal region, including a probable signal sequence or signal anchor which in most instances has four consecutive Lys residues before the hydrophobic stretch, of a family of large, virulence-associated proteins in Mycoplasma arthritidis and smaller proteins in Mycoplasma capricolum. 33 -274019 TIGR02185 Trep_Strep putative ECF transporter S component, Trep_Strep family. This family consists of strongly hydrophobic proteins about 190 amino acids in length with a strongly basic motif near the C-terminus. If is found in rather few species, but in paralogous families of 12 members in the oral pathogenic spirochaete Treponema denticola and 2 in Streptococcus pneumoniae R6. [Transport and binding proteins, Unknown substrate] 189 -274020 TIGR02186 alph_Pro_TM conserved hypothetical protein. This family consists of predicted transmembrane proteins of about 270 amino acids. Members are found, so far, only among the Alphaproteobacteria and only once in each genome. 261 -274021 TIGR02187 GlrX_arch Glutaredoxin-like domain protein. This family of archaeal proteins contains a C-terminal domain with homology to bacterial and eukaryotic glutaredoxins, including a CPYC motif. There is an N-terminal domain which has even more distant homology to glutaredoxins. The name "glutaredoxin" may be inappropriate in the sense of working in tandem with glutathione and glutathione reductase which may not be present in the archaea. The overall domain structure appears to be related to bacterial alkylhydroperoxide reductases, but the homology may be distant enough that the function of this family is wholly different. 215 -274022 TIGR02188 Ac_CoA_lig_AcsA acetate--CoA ligase. This model describes acetate-CoA ligase (EC 6.2.1.1), also called acetyl-CoA synthetase and acetyl-activating enzyme. It catalyzes the reaction ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA and belongs to the family of AMP-binding enzymes described by pfam00501. 626 -274023 TIGR02189 GlrX-like_plant Glutaredoxin-like family. This family of glutaredoxin-like proteins is aparrently limited to plants. Multiple isoforms are found in A. thaliana and O.sativa. 99 -131245 TIGR02190 GlrX-dom Glutaredoxin-family domain. This C-terminal domain with homology to glutaredoxin is fused to an N-terminal peroxiredoxin-like domain. 79 -274024 TIGR02191 RNaseIII ribonuclease III, bacterial. This family consists of bacterial examples of ribonuclease III. This enzyme cleaves double-stranded rRNA. It is involved in processing ribosomal RNA precursors. It is found even in minimal genones such as Mycoplasma genitalium and Buchnera aphidicola, and in some cases has been shown to be an essential gene. These bacterial proteins contain a double-stranded RNA binding motif (pfam00035) and a ribonuclease III domain (pfam00636). Eukaryotic homologs tend to be much longer proteins with additional domains, localized to the nucleus, and not included in this family. [Transcription, RNA processing] 220 -131247 TIGR02192 HtrL_YibB protein YibB. The protein from this rare, uncharacterized protein family is designated HtrL or YibB in E. coli, where its gene is found in a region of LPS core biosynthesis genes. Homologs are found in Shigella flexneri, Campylobacter jejuni, and Caenorhabditis elegans only. The htrL gene may represent an insertion to the LPS core biosynthesis region, rather than an LPS biosynthetic protein. [Hypothetical proteins, Conserved] 270 -274025 TIGR02193 heptsyl_trn_I lipopolysaccharide heptosyltransferase I. This family consists of examples of ADP-heptose:LPS heptosyltransferase I, an enzyme of LPS inner core region biosynthesis. LPS, composed of lipid A, a core region, and O antigen, is found in the outer membrane of Gram-negative bacteria. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 319 -131249 TIGR02194 GlrX_NrdH Glutaredoxin-like protein NrdH. NrdH-redoxin is a representative of a class of small redox proteins that contain a conserved CXXC motif and are characterized by a glutaredoxin-like amino acid sequence and thioredoxin-like activity profile. Unlike other the glutaredoxins to which it is most closely related, NrdH aparrently does not interact with glutathione/glutathione reductase, but rather with thioredoxin reductase to catalyze the reduction of ribonucleotide reductase. 72 -274026 TIGR02195 heptsyl_trn_II lipopolysaccharide heptosyltransferase II. This family consists of examples of ADP-heptose:LPS heptosyltransferase II, an enzyme of LPS inner core region biosynthesis. LPS, composed of lipid A, a core region, and O antigen, is found in the outer membrane of Gram-negative bacteria. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 334 -274027 TIGR02196 GlrX_YruB Glutaredoxin-like protein, YruB-family. This glutaredoxin-like protein family contains the conserved CxxC motif and includes the Clostridium pasteurianum protein YruB which has been cloned from a rubredoxin operon. Somewhat related to NrdH, it is unknown whether this protein actually interacts with glutathione/glutathione reducatase, or, like NrdH, some other reductant system. 74 -274028 TIGR02197 heptose_epim ADP-L-glycero-D-manno-heptose-6-epimerase. This family consists of examples of ADP-L-glycero-D-mannoheptose-6-epimerase, an enzyme involved in biosynthesis of the inner core of lipopolysaccharide (LPS) for Gram-negative bacteria. This enzyme is homologous to UDP-glucose 4-epimerase (TIGR01179) and belongs to the NAD dependent epimerase/dehydratase family (pfam01370). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 314 -274029 TIGR02198 rfaE_dom_I rfaE bifunctional protein, domain I. RfaE is a protein involved in the biosynthesis of ADP-L-glycero-D-manno-heptose, a precursor for LPS inner core biosynthesis. RfaE is a bifunctional protein in E. coli, and separate proteins in some other genome. The longer, N-terminal domain I (this family) is suggested to act in D-glycero-D-manno-heptose 1-phosphate biosynthesis, while domain II (TIGR02199) adds ADP to yield ADP-D-glycero-D-manno-heptose. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 315 -131254 TIGR02199 rfaE_dom_II rfaE bifunctional protein, domain II. RfaE is a protein involved in the biosynthesis of ADP-L-glycero-D-manno-heptose, a precursor for LPS inner core biosynthesis. RfaE is a bifunctional protein in E. coli, and separate proteins in some other genome. Domain I (TIGR02198) is suggested to act in D-glycero-D-manno-heptose 1-phosphate biosynthesis, while domain II (this family) adds ADP to yield ADP-D-glycero-D-manno-heptose. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 144 -131255 TIGR02200 GlrX_actino Glutaredoxin-like protein. This family of glutaredoxin-like proteins is limited to the Actinobacteria and contains the conserved CxxC motif. 77 -131256 TIGR02201 heptsyl_trn_III lipopolysaccharide heptosyltransferase III, putative. This family consists of examples of the putative ADP-heptose:LPS heptosyltransferase III, an enzyme of LPS inner core region biosynthesis. LPS, composed of lipid A, a core region, and O antigen, is found in the outer membrane of Gram-negative bacteria. This enzyme may be less widely distributed than heptosyltransferases I and II. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 344 -131257 TIGR02202 Ehrlichia_rpt Ehrlichia chaffeensis immunodominant surface protein repeat. This model represents 77 residues of an 80 amino acid (240 nucleotide) tandem repeat, found in a variable number of copies in an immunodominant outer membrane protein of Ehrlichia chaffeensis, a tick-borne obligate intracellular pathogen. 77 -131258 TIGR02203 MsbA_lipidA lipid A export permease/ATP-binding protein MsbA. This family consists of a single polypeptide chain transporter in the ATP-binding cassette (ABC) transporter family, MsbA, which exports lipid A. It may also act in multidrug resistance. Lipid A, a part of lipopolysaccharide, is found in the outer leaflet of the outer membrane of most Gram-negative bacteria. Members of this family are restricted to the Proteobacteria (although lipid A is more broadly distributed) and often are clustered with lipid A biosynthesis genes. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 571 -131259 TIGR02204 MsbA_rel ABC transporter, permease/ATP-binding protein. This protein is related to a Proteobacterial ATP transporter that exports lipid A and to eukaryotic P-glycoproteins. 576 -274030 TIGR02205 septum_zipA cell division protein ZipA. This model represents the full length of bacterial cell division protein ZipA. The N-terminal hydrophobic stretch is an uncleaved signal-anchor sequence. This is followed by an unconserved, variable length, low complexity region, and then a conserved C-terminal region of about 140 amino acids (see pfam04354) that interacts with the tubulin-like cell division protein FtsZ. [Cellular processes, Cell division] 284 -131261 TIGR02206 intg_mem_TP0381 conserved hypothetical integral membrane protein TIGR02206. This model represents a family of hydrophobic proteins with seven predicted transmembrane alpha helices. Members are found in Bacillus subtilis (ywaF), TP0381 from Treponema pallidum (TP0381), Streptococcus pyogenes, Rhodococcus erythropolis, etc. 222 -274031 TIGR02207 lipid_A_htrB lipid A biosynthesis lauroyl (or palmitoleoyl) acyltransferase. This model represents a narrow clade of acyltransferases, nearly all of which transfer a lauroyl group to KDO2-lipid IV-A, a lipid A precursor; these proteins are termed lipid A biosynthesis lauroyl acyltransferase, HtrB. An exception is a closely related paralog of E. coli HtrB, LpxP, which acts in cold shock conditions by transferring a palmitoleoyl rather than lauroyl group to the lipid A precursor. Members of this family are homologous to the family of acyltransferases responsible for the next step in lipid A biosynthesis. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 303 -274032 TIGR02208 lipid_A_msbB lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase. This family consists of MsbB in E. coli and closely related proteins in other species. MsbB is homologous to HtrB (TIGR02207) and acts immediately after it in the biosynthesis of KDO-2 lipid A (also called Re LPS and Re endotoxin). These two enzymes act after creation of KDO-2 lipid IV-A by addition of the KDO sugars. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 305 -131264 TIGR02209 ftsL_broad cell division protein FtsL. This model represents FtsL, both forms similar to that in E. coli and similar to that in B. subtilis. FtsL is one of the later proteins active in cell division septum formation. FtsL is small, low in complexity, and highly divergent. The scope of this model is broader than that of the pfam04999.3 for FtsL, as this one includes FtsL from Bacillus subtilis and related species. [Cellular processes, Cell division] 85 -274033 TIGR02210 rodA_shape rod shape-determining protein RodA. This protein is a member of the FtsW/RodA/SpoVE family (pfam01098). It is found only in species with rod (or spiral) shapes. In many species, mutation of rodA has been shown to correlate with loss of the normal rod shape. Note that RodA homologs are found, scoring below the cutoffs for this model, in a number of both rod-shaped and coccoid bacteria, including four proteins in Bacillus anthracis, for example. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Cell division] 352 -131266 TIGR02211 LolD_lipo_ex lipoprotein releasing system, ATP-binding protein. This model represents LolD, a member of the ABC transporter family (pfam00005). LolD is involved in localization of lipoproteins in some bacteria. It works with a transmembrane protein LolC, which in some species is a paralogous pair LolC and LolE. Depending on whether the residue immediately following the new, modified N-terminal Cys residue, the nascent lipoprotein may be carried further by LolA and LolB to the outer membrane, or remain at the inner membrane. The top scoring proteins excluded by this model include homologs from the archaeal genus Methanosarcina. [Protein fate, Protein and peptide secretion and trafficking] 221 -274034 TIGR02212 lolCE lipoprotein releasing system, transmembrane protein, LolC/E family. This model describes the LolC protein, and its paralog LolE found in some species. These proteins are homologous to permease proteins of ABC transporters. In some species, two paralogs occur, designated LolC and LolE. In others, a single form is found and tends to be designated LolC. [Protein fate, Protein and peptide secretion and trafficking] 411 -131268 TIGR02213 lolE_release lipoprotein releasing system, transmembrane protein LolE. This protein is part of an unusual ABC transporter complex that releases lipoproteins from the periplasmic side of the bacterial inner membrane, rather than transport any substrate across the inner membrane. In some species, the permease-like transmembrane protein is represented by two paralogs, LolC and LolE, both in the LolCDE complex. This family consists of LolE, as found in E. coli and related species. [Protein fate, Protein and peptide secretion and trafficking] 411 -131269 TIGR02214 spoVD_pbp stage V sporulation protein D. This model describes the spoVD subfamily of homologs of the cell division protein FtsI, a penicillin binding protein. This subfamily is restricted to Bacillus subtilis and related Gram-positive species with known or suspected endospore formation capability. In these species, the functional equivalent of FtsI is desginated PBP-2B, a paralog of spoVD. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Sporulation and germination] 636 -274035 TIGR02215 phage_chp_gp8 phage conserved hypothetical protein, phiE125 gp8 family. This model describes a family of proteins found exclusively in phage or in prophage regions of bacterial genomes, including the phage-like Rhodobacter capsulatus gene transfer agent, which packages DNA. Members of this family show some similarity to members of pfam05135, a putative DNA packaging protein family. [Mobile and extrachromosomal element functions, Prophage functions] 188 -274036 TIGR02216 phage_TIGR02216 phage conserved hypothetical protein. This model describes a family of proteins found exclusively in phage or in prophage regions of bacterial genomes, including the phage-like Rhodobacter capsulatus gene transfer agent, which packages DNA. [Mobile and extrachromosomal element functions, Prophage functions] 58 -274037 TIGR02217 chp_TIGR02217 TIGR02217 family protein. This model represents a family of conserved hypothetical proteins. It is usually (but not always) found in apparent phage-derived regions of bacterial chromosomes. [Mobile and extrachromosomal element functions, Prophage functions] 210 -274038 TIGR02218 phg_TIGR02218 phage conserved hypothetical protein BR0599. This model describes a family of proteins found almost exclusively in phage or in prophage regions of bacterial genomes, including the phage-like Rhodobacter capsulatus gene transfer agent, which packages DNA. An apparent exception is Wolbachia pipientis wMel, a bacterial endosymbiont of the fruit fly, which has several candidate phage-related genes physically separate from obvious prophage regions. [Mobile and extrachromosomal element functions, Prophage functions] 229 -131274 TIGR02219 phage_NlpC_fam putative phage cell wall peptidase, NlpC/P60 family. Members of this family show sequence similarity to members of the NlpC/P60 family described by pfam00877 and by Anantharaman and Aravind (). The NlpC/P60 family includes a number of characterized bacterial cell wall hydrolases. Members of this related family are all found in prophage regions of bacterial genomes. [Mobile and extrachromosomal element functions, Prophage functions] 134 -274039 TIGR02220 phg_TIGR02220 phage conserved hypothetical protein, C-terminal domain. This model represents the conserved C-terminal domain of a family of proteins found exclusively in bacteriophage and in bacterial prophage regions. The functions of this domain and the proteins containing it are unknown. [Mobile and extrachromosomal element functions, Prophage functions] 77 -274040 TIGR02221 cas_TM1812 CRISPR-associated protein, TM1812 family. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This family, represented by TM1812 of Thermotoga maritima, is found also in Vibrio vulnificus YJ016, Nitrosomonas europaea ATCC 19718, a large plasmid of Synechocystis sp. PCC 6803, and Fibrobacter succinogenes S85. 218 -131277 TIGR02222 chap_CsaA export-related chaperone protein CsaA. This model describes Bacillus subtilis CsaA, an export-related chaperone that interacts with the Sec system, and related proteins from a number of other bacteria and archaea. The crystal structure is known for the homodimer from Thermus thermophilus. [Protein fate, Protein folding and stabilization, Protein fate, Protein and peptide secretion and trafficking] 107 -274041 TIGR02223 ftsN cell division protein FtsN. FtsN is a poorly conserved protein active in cell division in a number of Proteobacteria. The N-terminal 30 residue region tends to by Lys/Arg-rich, and is followed by a membrane-spanning region. This is followed by an acidic low-complexity region of variable length and a well-conserved C-terminal domain of two tandem regions matched by pfam05036 (Sporulation related repeat), found in several cell division and sporulation proteins. The role of FtsN as a suppressor for other cell division mutations is poorly understood; it may involve cell wall hydrolysis. [Cellular processes, Cell division] 298 -274042 TIGR02224 recomb_XerC tyrosine recombinase XerC. The phage integrase family describes a number of recombinases with tyrosine active sites that transiently bind covalently to DNA. Many are associated with mobile DNA elements, including phage, transposons, and phase variation loci. This model represents XerC, one of two closely related chromosomal proteins along with XerD (TIGR02225). XerC and XerD are site-specific recombinases which help resolve chromosome dimers to monomers for cell division after DNA replication. In species with a large chromosome and homologs of XerC on other replicons, the chomosomal copy was preferred for building this model. This model does not detect all XerC, as some apparent XerC examples score in the gray zone between trusted (450) and noise (410) cutoffs, along with some XerD examples. XerC and XerD interact with cell division protein FtsK. [DNA metabolism, DNA replication, recombination, and repair] 295 -274043 TIGR02225 recomb_XerD tyrosine recombinase XerD. The phage integrase family describes a number of recombinases with tyrosine active sites that transiently bind covalently to DNA. Many are associated with mobile DNA elements, including phage, transposons, and phase variation loci. This model represents XerD, one of two closely related chromosomal proteins along with XerC (TIGR02224). XerC and XerD are site-specific recombinases which help resolve chromosome dimers to monomers for cell division after DNA replication. In species with a large chromosome and with homologs of XerD on other replicons, the chomosomal copy was preferred for building this model. This model does not detect all XerD, as some apparent XerD examples score below the trusted and noise cutoff scores. XerC and XerD interact with cell division protein FtsK. [DNA metabolism, DNA replication, recombination, and repair] 291 -131281 TIGR02226 two_anch N-terminal double-transmembrane domain. This model represents a prokaryotic N-terminal region of about 80 amino acids. The predicted membrane topology by TMHMM puts the N-terminus outside and spans the membrane twice, with a cytosolic region of about 25 amino acids between the two transmembrane regions. Member proteins tend to be between 600 and 1000 amino acids in length. [Hypothetical proteins, Domain] 82 -274044 TIGR02227 sigpep_I_bact signal peptidase I, bacterial type. This model represents signal peptidase I from most bacteria. Eukaryotic sequences are likely organellar. Several bacteria have multiple paralogs, but these represent isozymes of signal peptidase I. Virtually all known bacteria may be presumed to A related model finds a simlar protein in many archaea and a few bacteria, as well as a microsomal (endoplasmic reticulum) protein in eukaryotes. [Protein fate, Protein and peptide secretion and trafficking] 142 -131283 TIGR02228 sigpep_I_arch signal peptidase I, archaeal type. This model represents signal peptidase I from most archaea, a subunit of the eukaryotic endoplasmic reticulum signal peptidase I complex, and an apparent signal peptidase I from a small number of bacteria. It is related to but does not overlap in hits with TIGR02227, the bacterial and mitochondrial signal peptidase I. 158 -131284 TIGR02229 caa3_sub_IV caa(3)-type oxidase, subunit IV. This model represents a small set of proteins with weak similarity to the sequences in pfam03626, which describes the cytochrome C oxidase subunit IV. [Energy metabolism, Electron transport] 92 -131285 TIGR02230 ATPase_gene1 F0F1-ATPase subunit, putative. This model represents a protein found encoded in F1F0-ATPase operons in several genomes, including Methanosarcina barkeri (archaeal) and Chlorobium tepidum (bacterial). It is a small protein (about 100 amino acids) with long hydrophic stretches and is presumed to be a subunit of the enzyme. [Energy metabolism, ATP-proton motive force interconversion] 100 -274045 TIGR02231 TIGR02231 conserved hypothetical protein. This family consists of proteins over 500 amino acids long in Caenorhabditis elegans and several bacteria (Pseudomonas aeruginosa, Nostoc sp. PCC 7120, Leptospira interrogans, etc.). The function is unknown. 525 -200169 TIGR02232 myxo_disulf_rpt Myxococcus cysteine-rich repeat. This model represents a sequence region shared between several proteins of Myxococcus xanthus DK 1622 and some eukaryotic proteins that include human pappalysin-1 (SP|Q13219). The region of about 40 amino acids contains several conserved Cys residues presumed to form disulfide bonds. The region appears in up to 13 repeats in Myxococcus. 38 -274046 TIGR02234 trp_oprn_chp trp region conserved hypothetical membrane protein. Members of this family are predicted transmembrane proteins with four membrane-spanning helices. Members are found in the Actinobacteria (Mycobacterium, Corynebacterium, Streptomyces), always associated with genes for tryptophan biosynthesis. 202 -131289 TIGR02235 menA_cyano-plnt 1,4-dihydroxy-2-naphthoate phytyltransferase. This family of phytyltransferases, found in plants and cyanobacteria, are involved in the biosythesis of phylloquinone (Vitamin K1). Phylloquinone is a critical component of photosystem I. The closely related MenA enzyme from bacteria transfers a prenyl group (which only differs in the saturation of the isoprenyl groups) in the biosynthesis of menaquinone. Activity towards both substrates in certain organisms should be considered a possibility. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 285 -131290 TIGR02236 recomb_radA DNA repair and recombination protein RadA. This family consists exclusively of archaeal RadA protein, a homolog of bacterial RecA (TIGR02012), eukaryotic RAD51 (TIGR02239), and archaeal RadB (TIGR02237). This protein is involved in DNA repair and recombination. The member from Pyrococcus horikoshii contains an intein. [DNA metabolism, DNA replication, recombination, and repair] 310 -274047 TIGR02237 recomb_radB DNA repair and recombination protein RadB. This family consists exclusively of archaeal RadB protein, a homolog of bacterial RecA (TIGR02012), eukaryotic RAD51 (TIGR02239) and DMC1 (TIGR02238), and archaeal RadA (TIGR02236). 209 -131292 TIGR02238 recomb_DMC1 meiotic recombinase Dmc1. This model describes DMC1, a subfamily of a larger family of DNA repair and recombination proteins. It is eukaryotic only and most closely related to eukaryotic RAD51. It also resembles archaeal RadA (TIGR02236) and RadB (TIGR02237) and bacterial RecA (TIGR02012). It has been characterized for human as a recombinase active only in meiosis. 313 -274048 TIGR02239 recomb_RAD51 DNA repair protein RAD51. This eukaryotic sequence family consists of RAD51, a protein involved in DNA homologous recombination and repair. It is similar in sequence the exclusively meiotic recombinase DMC1 (TIGR02238), to archaeal families RadA (TIGR02236) and RadB (TIGR02237), and to bacterial RecA (TIGR02012). 316 -131294 TIGR02240 PHA_depoly_arom poly(3-hydroxyalkanoate) depolymerase. This family consists of the polyhydroxyalkanoic acid (PHA) depolymerase of Pseudomonas oleovorans, Pseudomonas putida BM01, and related species. This enzyme is part of polyester storage and mobilization system as in many bacteria. However, species containing this enzyme are unusual in their capacity to produce aromatic polyesters when grown on carbon sources such as benzoic acid or phenylacetic acid. [Energy metabolism, Other] 276 -274049 TIGR02241 TIGR02241 conserved hypothetical phage tail region protein. This family consists of uncharacterized proteins. All members so far represent bacterial genes found in apparent phage or otherwisely laterally transferred regions of the chromosome. Tentatively identified neighboring proteins tend to be phage tail region proteins. In some species, including Photorhabdus luminescens TTO1, several members of this family may be encoded near each other. 140 -274050 TIGR02242 tail_TIGR02242 phage tail protein domain. This model describes a region of sequence similarity shared by a number of uncharacterized proteins in bacterial genomes, including Geobacter sulfurreducens PCA, Mesorhizobium loti, Streptomyces coelicolor A3(2), Gloeobacter violaceus PCC 7421, and Myxococcus xanthus. In all cases, the genomic region resembles a phage tail region, based on tentative identifications of neighboring genes. A region of this domain resembles a region of TIGR01634, another phage tail protein model. [Mobile and extrachromosomal element functions, Prophage functions] 130 -274051 TIGR02243 TIGR02243 putative baseplate assembly protein. This family consists of a large, conserved hypothetical protein in phage tail-like regions of at least six bacterial genomes: Gloeobacter violaceus PCC 7421, Geobacter sulfurreducens PCA, Streptomyces coelicolor A3(2), Streptomyces avermitilis MA-4680, Mesorhizobium loti, and Myxococcus xanthus. The C-terminal region is identified by the broader model pfam04865 as related to baseplate protein J from phage P2, but that relationship is not observed directly. [Mobile and extrachromosomal element functions, Prophage functions] 656 -274052 TIGR02244 HAD-IG-Ncltidse HAD superfamily (subfamily IG) hydrolase, 5'-nucleotidase. This model includes a 5'-nucleotidase specific for purines (IMP and GMP). These enzymes are members of the Haloacid Dehalogenase (HAD) superfamily. HAD members are recognized by three short motifs {hhhhDxDx(T/V)}, {hhhh(T/S)}, and either {hhhh(D/E)(D/E)x(3-4)(G/N)} or {hhhh(G/N)(D/E)x(3-4)(D/E)} (where "h" stands for a hydrophobic residue). Crystal structures of many HAD enzymes has verified PSI-PRED predictions of secondary structural elements which show each of the "hhhh" sequences of the motifs as part of beta sheets. This subfamily of enzymes is part of "Subfamily I" of the HAD superfamily by virtue of a "cap" domain in between motifs 1 and 2. This subfamily's cap domain has a different predicted secondary structure than all other known HAD enzymes and thus has been designated "subfamily IG". This domain appears to consist of a mixed alpha/beta fold. A Pfam model (pfam05761) detects an identical range of sequences above the trusted cutoff, but does not model the N-terminal motif 1 region. A TIGRFAMs model (TIGR01993) represents a (putative) family of _pyrimidine_ 5'-nucleotidases which are also subfamily I HAD's, which should not be confused with the current model. 343 -131299 TIGR02245 HAD_IIID1 HAD-superfamily subfamily IIID hydrolase, TIGR02245. This family of sequences appears to belong to the Haloacid Dehalogenase (HAD) superfamily of enzymes by virtue of the presence of three catalytic domains, in this case: LLVLD(ILV)D(YH)T, I(VMG)IWS, and (DN)(VC)K(PA)Lx{15-17}T(IL)(MH)(FV)DD(IL)(GRS)(RK)N. Since this family has no large "cap" domain between motifs 1 and 2 or between 2 and 3, it is formally a "class III" HAD. 195 -274053 TIGR02246 TIGR02246 conserved hypothetical protein. This family consists of uncharacterized proteins found in a number of genera and species, including Streptomyces, Xanthomonas, Oceanobacillus iheyensis, Caulobacter crescentus CB15, and Xylella fastidiosa. The function is unknown. 128 -274054 TIGR02247 HAD-1A3-hyp epoxide hydrolase N-terminal domain-like phosphatase. This model represents a small clade of sequences including C. elegans and mammalian sequences as well as a small number of bacteria. In eukaryotes, this domain exists as an N-terminal fusion to the soluble epoxide hydrolase enzyme and has recently been shown to be an active phosphatase, although the nature of the biological substrate is unclear. These appear to be members of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases by general homology and the conservation of all of the recognized catalytic motifs (although the first motif is unusual in the replacement of the more common aspartate with glycine...). The variable domain is found in between motifs 1 and 2, indicating membership in subfamily I and phylogeny and prediction of the alpha helical nature of the variable domain (by PSI-PRED) indicate membership in subfamily IA. 211 -131302 TIGR02248 mutH_TIGR DNA mismatch repair endonuclease MutH. This family consists exclusively of MutH, an endonuclease in some Proteobacteria that is activated by MutS1 and MutL for methylation-directed mismatch repair. [DNA metabolism, DNA replication, recombination, and repair] 217 -131303 TIGR02249 integrase_gron integron integrase. Members of this family are integrases associated with integrons (and super-integrons), which are systems for incorporating and expressing cassettes of laterally transferred DNA. Incorporation occurs at an attI site. A super-integron, as in Vibrio sp., may include over 100 cassettes. This family belongs to the phage integrase family (pfam00589) that also includes recombinases XerC (TIGR02224) and XerD (TIGR02225), which are bacterial housekeeping proteins. Within this family of integron integrases, some are designated by class, e.g. IntI4, a class 4 integron integrase from Vibrio cholerae N16961. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Other] 315 -131304 TIGR02250 FCP1_euk FCP1-like phosphatase, phosphatase domain. This model represents the phosphatase domain of the humanRNA polymerase II subunit A C-terminal domain phosphatase (FCP1) and closely related phosphatases from eukaryotes including plants, fungi, and slime mold. This domain is a member of the haloacid dehalogenase (HAD) superfamily by virtue of a conserved set of three catalytic motifs and a conserved fold as predicted by PSIPRED. The third motif in this family is distinctive (hhhhDDppphW). This domain is classified as a "Class III" HAD, since there is no large "cap" domain found between motifs 1 and 2 or motifs 2 and 3. This domain is related to domains found in the human NLI interacting factor-like phosphatases, and together both are detected by the pfam03031. 156 -274055 TIGR02251 HIF-SF_euk Dullard-like phosphatase domain. This model represents the putative phosphatase domain of a family of eukaryotic proteins including "Dullard", and the NLI interacting factor (NIF)-like phosphatases. This domain is a member of the haloacid dehalogenase (HAD) superfamily by virtue of a conserved set of three catalytic motifs and a conserved fold as predicted by PSIPRED. The third motif in this family is distinctive (hhhhDNxPxxa) and aparrently lacking the last aspartate. This domain is classified as a "Class III" HAD, since there is no large "cap" domain found between motifs 1 and 2 or motifs 2 and 3. This domain is related to domains found in FCP1-like phosphatases (TIGR02250), and together both are detected by the pfam03031. 162 -274056 TIGR02252 DREG-2 REG-2-like, HAD superfamily (subfamily IA) hydrolase. This family of proteins includes uncharacterized sequences from eukaryotes, cyanobacteria and Leptospira as well as the DREG-2 protein from Drosophila melanogaster which has been identified as a rhythmically (diurnally) regulated gene. This family is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called 'capping domain', or the absence of such a domain. This family is a member of subfamily 1A in which the cap domain consists of a predicted alpha helical bundle found in between the first and second catalytic motifs. A distinctive feature of this family is a conserved tandem pair of tryptophan residues in the cap domain. The most divergent sequences included within the scope of this model are from plants and have "FW" at this position instead. Most likely, these sequences, like the vast majority of HAD sequences, represent phosphatase enzymes. 203 -274057 TIGR02253 CTE7 HAD superfamily (subfamily IA) hydrolase, TIGR02253. This family of sequences from archaea and metazoans includes the human uncharacterized protein CTE7. Pyrococcus species appear to have three different forms of this enzyme, so it is unclear whether all members of this family have the same function. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). 221 -162788 TIGR02254 YjjG/YfnB noncanonical pyrimidine nucleotidase, YjjG family. This HAD superfamily includes including YjjG from E. coli and YfnB from B. subtilis. YjjG has been shown to act as a house-cleaning enzyme, cleaving nucleotides with non-canonical nucleotide bases. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). 224 -131309 TIGR02256 ICE_VC0181 integrative and conjugative element protein, VC0181 family. This uncharacterized protein is found in several Proteobacteria, among them Rhizobium sp. NGR234, Vibrio cholerae, Myxococcus xanthus, and E. coli strain ECOR31. In the latter, it is part of an integrative and conjugative element that is readily induced to excise and circularize. 131 -131310 TIGR02257 cobalto_cobN cobaltochelatase, CobN subunit. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 1122 -274058 TIGR02258 2_5_ligase 2'-5' RNA ligase. This protein family consists of bacterial and archaeal proteins with two tandem copies of Pfam domain pfam02834. Members for which activity has been measured perform a reversible, ATP-independent 2'-5'-ligation of what is presumably a non-phyiological substrate: half-tRNA splice intermediates from an intron-containing yeast tRNA. The physiological substrate(s) in prokaryotes may include small 2'-5'-link-containing oligonucleotides, perhaps with regulatory or biosynthetic roles. [Transcription, RNA processing] 179 -131312 TIGR02259 benz_CoA_red_A benzoyl-CoA reductase, bcr type, subunit A. This model describes A, or gamma, subunit of the bcr type of benzoyl-CoA reductase, a 4-subunit enzyme. Many aromatic compounds are metabolized by way of benzoyl-CoA. This family shows strong sequence similarity to the 2-hydroxyglutaryl-CoA dehydratase alpha chain and to subunits of different types of benzoyl-CoA reductase (such as the bzd type). 432 -131313 TIGR02260 benz_CoA_red_B benzoyl-CoA reductase, bcr type, subunit B. This model describes B, or beta, subunit of the bcr type of benzoyl-CoA reductase, a 4-subunit enzyme. Many aromatic compounds are metabolized by way of benzoyl-CoA. 413 -131314 TIGR02261 benz_CoA_red_D benzoyl-CoA reductase, bcr type, subunit D. This model describes the D subunit of benzoyl-CoA reductase, a 4-subunit enzyme. Many aromatic compounds are metabolized by way of benzoyl-CoA. This family shows sequence similarity to the A subunit (TIGR02259) and to the 2-hydroxyglutaryl-CoA dehydratase alpha chain. 262 -274059 TIGR02262 benz_CoA_lig benzoate-CoA ligase family. Characterized members of this protein family include benzoate-CoA ligase, 4-hydroxybenzoate-CoA ligase, 2-aminobenzoate-CoA ligase, etc. Members are related to fatty acid and acetate CoA ligases. 505 -131316 TIGR02263 benz_CoA_red_C benzoyl-CoA reductase, subunit C. This model describes C subunit of benzoyl-CoA reductase, a 4-subunit enzyme. Many aromatic compounds are metabolized by way of benzoyl-CoA. This enzyme acts under anaerobic conditions. 380 -131317 TIGR02264 gmx_para_CXXCG Myxococcus xanthus double-CXXCG motif paralogous family. This family consists of at least 10 paralogous proteins from Myxococcus xanthus that lack detectable sequence similarity to any other protein family. An imperfectly conserved CXXCG motif, a probable binding site, appears twice in the multiple sequence alignment. 237 -131318 TIGR02265 Mxa_TIGR02265 Myxococcales-restricted protein, TIGR02265 family. This family consists of a set of at least 17 paralogous proteins in Myxococcus xanthus DK 1622. Members are about 200 amino acids in length. No other homologs are known; the function is unknown. 179 -274060 TIGR02266 gmx_TIGR02266 Myxococcus xanthus paralogous domain TIGR02266. This domain is related to Type IV pilus assembly protein PilZ (pfam07238). It is found in at least 12 copies in Myxococcus xanthus DK 1622. 96 -131320 TIGR02267 TIGR02267 DUSAM domain. This family consists of at least eight paralogs in Myxococcus xanthus and six in Stigmatella aurantiaca DW4/3-1, both members of Myxococcales order within the Deltaproteobacteria. The function is unknown. Some member proteins consist of two copies of the domain. This domain is hereby named DUSAM, DUplication in Stigmatella And Myxococcus. 123 -131321 TIGR02268 TIGR02268 Myxococcus xanthus paralogous family TIGR02268. This family consists of at least 8 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. The function is unknown. 295 -131322 TIGR02269 TIGR02269 Myxococcus xanthus paralogous lipoprotein family TIGR02269. This family consists of at least 9 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. One appears truncated toward the N-terminus; the others are predicted lipoproteins. The function is unknown. 211 -131323 TIGR02270 TIGR02270 conserved hypothetical protein. Members are found in Myxococcus xanthus (six members), Geobacter sulfurreducens, and Pseudomonas aeruginosa; a short protein homologous to the N-terminal region is found in Mesorhizobium loti. All sequence are from Proteobacteria. The function is unknown. [Hypothetical proteins, Conserved] 410 -131324 TIGR02271 TIGR02271 conserved domain. This model describes an uncharacterized domain, sometimes found in association with a PRC-barrel domain (pfam05239, which is also found in rRNA processing protein RimM and in a photosynthetic reaction center complex protein). This domain is found in proteins from Bacillus subtilis, Deinococcus radiodurans, Nostoc sp. PCC 7120, Myxococcus xanthus, and several other species. The function is not known. 115 -131325 TIGR02272 gentisate_1_2 gentisate 1,2-dioxygenase. This family consists of gentisate 1,2-dioxygenases. This ring-opening enzyme acts in salicylate degradation that goes via gentisate rather than via catechol. It converts gentisate to maleylpyruvate. Some putative gentisate 1,2-dioxygenases are excluded by a relatively high trusted cutoff score because they are too closely related to known examples of 1-hydroxy-2-naphthoate dioxygenase. Therefore some homologs may be bona fide gentisate 1,2-dioxygenases even if they score below the given cutoffs. 335 -274061 TIGR02273 16S_RimM 16S rRNA processing protein RimM. This family consists of the bacterial protein RimM (YfjA, 21K), a 30S ribosomal subunit-binding protein implicated in 16S ribsomal RNA processing. It has been partially characterized in Escherichia coli, is found with other translation-associated genes such as trmD. It is broadly distributed among bacteria, including some minimal genomes such the aphid endosymbiont Buchnera aphidicola. The protein contains a PRC-barrel domain that it shares with other protein families (pfam05239) and a unique domain (pfam01782). This model describes the full-length protein. A member from Arabidopsis (plant) has additional N-terminal sequence likely to represent a chloroplast transit peptide. [Transcription, RNA processing] 165 -274062 TIGR02274 dCTP_deam deoxycytidine triphosphate deaminase. Members of this family include the Escherichia coli monofunctional deoxycytidine triphosphate deaminase (dCTP deaminase) and a Methanocaldococcus jannaschii bifunctional dCTP deaminase (3.5.4.13)/dUTP diphosphatase (EC 3.6.1.23), which has the EC number 3.5.4.30 for the overall operation. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 179 -274063 TIGR02275 DHB_AMP_lig 2,3-dihydroxybenzoate-AMP ligase. Proteins in this family belong to the AMP-binding enzyme family (pfam00501). Members activate 2,3-dihydroxybenzoate (DHB) by ligation of AMP from ATP with the release of pyrophosphate; many are involved in synthesis of siderophores such as enterobactin, vibriobactin, vulnibactin, etc. The most closely related proteine believed to differ in function activates salicylate rather than DHB. [Transport and binding proteins, Cations and iron carrying compounds] 526 -213697 TIGR02276 beta_rpt_yvtn 40-residue YVTN family beta-propeller repeat. This repeat of about 40 amino acids is found in up to 14 copies per protein. Archaea Methanosarcina mazei and Methanosarcina acetivorans each have over 10 genes that encode tandem copies of this repeat, which is also found in other species. PSIPRED predicts with high confidence that each 40-residue repeats contains four beta strands. This model overlaps somewhat with the NHL repeat (pfam01436) and also shows sequence similarity to the WD domain, G-beta repeat (pfam00400). 42 -274064 TIGR02277 PaaX_trns_reg phenylacetic acid degradation operon negative regulatory protein PaaX. This transcriptional regulator is always found in association with operons believed to be involved in the degradation of phenylacetic acid. The gene product has been shown to bind to the promoter sites and repress their transcription. [Regulatory functions, DNA interactions] 280 -131331 TIGR02278 PaaN-DH phenylacetic acid degradation protein paaN. This enzyme is proposed to act in the ring-opening step of phenylacetic acid degradation which follows ligation of the acid with coenzyme A (by PaaF) and hydroxylation by a multicomponent non-heme iron hydroxylase complex (PaaGHIJK). Gene symbols have been standardized in. This enzyme is related to aldehyde dehydrogenases and has domains which are members of the pfam00171 and pfam01575 families. This family includes paaN genes from Pseudomonas, Sinorhizobium, Rhodopseudomonas, Escherichia, Deinococcus and Corynebacterium. Another homology family (TIGR02288) includes several other species. 663 -188207 TIGR02279 PaaC-3OHAcCoADH 3-hydroxyacyl-CoA dehydrogenase PaaC. This 3-hydroxyacyl-CoA dehydrogenase is involved in the degradation of phenylacetic acid, presumably in steps following the opening of the phenyl ring. The sequences included in this model are all found in aparrent operons with other related genes such as paaA, paaB, paaD, paaE, paaF and paaN. Some genomes contain these other genes without an apparent paaC in the same operon - possibly in these cases a different dehydrogenase involved in fatty acid degradation may fill in the needed activity. This enzyme has domains which are members of the pfam02737 and pfam00725 families. 503 -274065 TIGR02280 PaaB1 phenylacetate degradation probable enoyl-CoA hydratase paaB. This family of proteins are found within apparent operons for the degradation of phenylacetic acid. These proteins contain the enoyl-CoA hydratase domain as detected by pfam00378. This activity is consistent with current hypotheses for the degradation pathway, which involve the ligation of phenylacetate with coenzyme A (paaF), hydroxylation (paaGHIJK), ring-opening (paaN) and degradation of the resulting fatty acid-like compound to a Krebs cycle intermediate (paaABCDE). 257 -131334 TIGR02281 clan_AA_DTGA clan AA aspartic protease, TIGR02281 family. This family consists of predicted aspartic proteases, typically from 180 to 230 amino acids in length, in MEROPS clan AA. This model describes the well-conserved 121-residue C-terminal region. The poorly conserved, variable length N-terminal region usually contains a predicted transmembrane helix. Sequences in the seed alignment and those scoring above the trusted cutoff are Proteobacterial; homologs scroing between trusted and noise are found in Pyrobaculum aerophilum str. IM2 (archaeal), Pirellula sp. (Planctomycetes), and Nostoc sp. PCC 7120 (Cyanobacteria). [Protein fate, Degradation of proteins, peptides, and glycopeptides] 121 -274066 TIGR02282 MltB lytic murein transglycosylase B. This family consists of lytic murein transglycosylases (murein hydrolases) in the family of MltB, which is a membrane-bound lipoprotein in Escherichia coli. The N-terminal lipoprotein modification motif is conserved in about half the members of this family. The term Slt35 describes a naturally occurring soluble fragment of MltB. Members of this family never contain the putative peptidoglycan binding domain described by pfam01471, which is associated with several classes of bacterial cell wall lytic enzymes. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 290 -274067 TIGR02283 MltB_2 lytic murein transglycosylase. Members of this family are closely related to the MltB family lytic murein transglycosylases described by TIGR02282 and are likewise all proteobacterial, although that family and this one form clearly distinct clades. Several species have one member of each family. Many members of this family (unlike the MltB family) contain an additional C-terminal domain, a putative peptidoglycan binding domain (pfam01471), not included in region described by this model. Many sequences appear to contain N-terminal lipoprotein attachment sites, as does E. coli MltB in TIGR02282. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 300 -131337 TIGR02284 TIGR02284 conserved hypothetical protein. Members of this protein family are found mostly in the Proteobacteria, although one member is found in the the marine planctomycete Pirellula sp. strain 1. The function is unknown. 139 -131338 TIGR02285 TIGR02285 conserved hypothetical protein. Members of this family are found in several Proteobacteria, including Pseudomonas putida KT2440, Bdellovibrio bacteriovorus HD100 (three members), Aeromonas hydrophila, and Chromobacterium violaceum ATCC 12472. The function is unknown. [Hypothetical proteins, Conserved] 268 -131339 TIGR02286 PaaD phenylacetic acid degradation protein PaaD. This member of the domain family TIGR00369 (which is, in turn, a member of the pfam03061 thioesterase superfamily) is nearly always found adjacent to other genes of the phenylacetic acid degradation pathway. Its function is currently unknown, but a role as a thioesterase is not inconsistent with the proposed overall pathway. Sequences scoring between trusted and noise include those from archaea and other species not known to catabolize phenylacetic acid and which are not adjacent to other genes potentially involved with such a pathway. 114 -131340 TIGR02287 PaaY phenylacetic acid degradation protein PaaY. Members of this family are located next to other genes organized into apparent operons for phenylacetic acid degradation. PaaY is located near the end of these gene clusters and often next to PaaX, a transcriptional regulator. [Energy metabolism, Other] 192 -131341 TIGR02288 PaaN_2 phenylacetic acid degradation protein paaN. This enzyme is proposed to act in the ring-opening step of phenylacetic acid degradation which follows ligation of the acid with coenzyme A (by PaaF) and hydroxylation by a multicomponent non-heme iron hydroxylase complex (PaaGHIJK). Gene symbols have been standardized in. This enzyme is related to aldehyde dehydrogenases and has a domain which is a member of the pfam00171 family. This family includes sequences from Burkholderia, Bordetella, Streptomyces. Other PaaN enzymes are represented by a separate model, TIGR02278. 551 -274068 TIGR02289 M3_not_pepF oligoendopeptidase, M3 family. This family consists of probable oligoendopeptidases in the M3 family, related to lactococcal PepF and group B streptococcal PepB (TIGR00181) but in a distinct clade with considerable sequence differences. The likely substrate is small peptides and not whole proteins, as with PepF, but members are not characterized and the activity profile may differ. Several bacteria have both a member of this family and a member of the PepF family. 549 -274069 TIGR02290 M3_fam_3 oligoendopeptidase, pepF/M3 family. The M3 family of metallopeptidases contains several distinct clades. Oligoendopeptidase F as characterized in Lactococcus, the functionally equivalent oligoendopeptidase B of group B Streptococcus, and closely related sequences are described by TIGR00181. The present family is quite similar but forms a distinct clade, and a number of species have one member of each. A greater sequence difference separates members of TIGR02289, probable oligoendopeptidases of the M3 family that probably should not be designated PepF. 587 -274070 TIGR02291 rimK_rel_E_lig alpha-L-glutamate ligase-related protein. Members of this protein family contain a region of homology to the RimK family of alpha-L-glutamate ligases (TIGR00768), various members of which modify the Glu-Glu C-terminus of ribosomal protein S6, or tetrahydromethanopterin, or a form of coenzyme F420 derivative. Members of this family are found so far in various Vibrio and Pseudomonas species and some other gamma and beta Proteobacteria. The function is unknown. 317 -274071 TIGR02292 ygfB_yecA yecA family protein. This family resembles pfam03695 (version pfam03695.3), uncharacterised protein family UPF0149, but is broader in scope and includes additional proteins. It includes E. coli proteins YgfB and YecA. The function of this family of proteins is unknown. The crystal structure is known for the member from Haemophilus influenzae (Ygfb, HI0817). [Unknown function, General] 150 -131346 TIGR02293 TAS_TIGR02293 putative toxin-antitoxin system antitoxin component, TIGR02293 family. Proteins in this family are found almost exclusively in the Proteobacteria, but also in Gloeobacter violaceus PCC 7421, a cyanobacterium. This family was proposed by Makarova, et al. (2009) to be the antitoxin component of a new class of type 2 toxin-antitoxin system, or addiction module. [Cellular processes, Other] 133 -274072 TIGR02294 nickel_nikA nickel ABC transporter, nickel/metallophore periplasmic binding protein. Members of this family are periplasmic nickel-binding proteins of nickel ABC transporters. Most appear to be lipoproteins. This protein was previously (circa 2003) thought to mediate binding to nickel through water molecules, but is now thought to involve a chelating organic molecule, perhaps butane-1,2,4-tricarboxylate, acting as a metallophore. [Transport and binding proteins, Cations and iron carrying compounds] 500 -213698 TIGR02295 HpaD 3,4-dihydroxyphenylacetate 2,3-dioxygenase. This enzyme catalyzes the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. 4-hydroxyphenylacetate arises from the degradation of tyrosine. The substrate, 3,4-dihydroxyphenylacetate (homoprotocatechuate) arises from the action of a hydroxylase on 4-hydroxyphenylacetate. The aromatic ring is opened by this dioxygenase exo to the 3,4-diol resulting in 2-hydroxy-5-carboxymethylmuconate semialdehyde. The enzyme from Bacillus brevis contains manganese. 294 -131349 TIGR02296 HpaC 4-hydroxyphenylacetate 3-monooxygenase, reductase component. This model identifies the reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase. This enzyme catalyzes the first step (hydroxylation at the 3-position) in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. 4-hydroxyphenylacetate arises from the degradation of tyrosine. These reductases catalyze the reduction of free flavins by NADPH. The flavin is then utilized by the large subunit of the monooxygenase. 154 -131350 TIGR02297 HpaA 4-hydroxyphenylacetate catabolism regulatory protein HpaA. This putative transcriptional regulator, which contains both the substrate-binding, dimerization domain (pfam02311) and the helix-turn-helix DNA-binding domain (pfam00165) of the AraC famil, is located proximal to genes of the 4-hydroxyphenylacetate catabolism pathway. 287 -131351 TIGR02298 HpaD_Fe 3,4-dihydroxyphenylacetate 2,3-dioxygenase. This enzyme catalyzes the ring-opening step in the degradation of 4-hydroxyphenylacetate. 282 -131352 TIGR02299 HpaE 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase. This model represents the dehydrogenase responsible for the conversion of 5-carboxymethyl-2-hydroxymuconate semialdehyde to 5-carboxymethyl-2-hydroxymuconate (a tricarboxylic acid). This is the step in the degradation of 4-hydroxyphenylacetic acid via homoprotocatechuate following the oxidative opening of the aromatic ring. 488 -131353 TIGR02300 FYDLN_acid TIGR02300 family protein. Members of this family are bacterial proteins with a conserved motif [KR]FYDLN, sometimes flanked by a pair of CXXC motifs, followed by a long region of low complexity sequence in which roughly half the residues are Asp and Glu, including multiple runs of five or more acidic residues. The function of members of this family is unknown. 129 -131354 TIGR02301 TIGR02301 TIGR02301 family protein. Members of this uncharacterized protein family are found in a number of alphaProteobacteria, including root nodule bacteria, Brucella suis, Caulobacter crescentus, and Rhodopseudomonas palustris. Conserved residues include two well-separated cysteines, suggesting a disulfide bond. The function is unknown. 121 -274073 TIGR02302 aProt_lowcomp TIGR02302 family protein. Members of this family are long (~850 residue) bacterial proteins from the alpha Proteobacteria. Each has 2-3 predicted transmembrane helices near the N-terminus and a long C-terminal region that includes stretches of Gln/Gly-rich low complexity sequence, predicted by TMHMM to be outside the membrane. In Bradyrhizobium japonicum, two tandem reading frames are together homologous the single members found in other species; the cutoffs scores are set low enough that the longer scores above the trusted cutoff and the shorter above the noise cutoff for this model. 851 -131356 TIGR02303 HpaG-C-term 4-hydroxyphenylacetate degradation bifunctional isomerase/decarboxylase, C-terminal subunit. This model represents one of two subunits/domains of the bifunctional isomerase/decarboxylase involved in 4-hydroxyphenylacetate degradation. In E. coli and some other species this enzyme is encoded by a single polypeptide containing both this domain and the closely related N-terminal domain (TIGR02305). In other species such as Pasteurella multocida these domains are found as two separate proteins (usually as tandem genes). Together, these domains carry out the decarboxylation of 5-oxopent-3-ene-1,2,5-tricarboxylic acid (OPET) to 2-hydroxy-2,4-diene-1,7-dioate (HHDD) and the subsequent isomerization to 2-oxohept-3-ene-1,7-dioate (OHED). 245 -274074 TIGR02304 aden_form_hyp putative adenylate-forming enzyme. Members of this family form a distinct clade within a larger family of proteins that also includes coenzyme F390 synthetase, an enzyme known in Methanobacterium thermoautotrophicum and a few other methanogenic archaea. That enzyme adenylates coenzyme F420 to F390, a reversible process, during oxygen stress. Other informative homologies include domains of the non-ribosomal peptide synthetases involved in activation by adenylation. The family defined by this model is likely to be of an adenylate-forming enzyme related to but distinct from coenzyme F390 synthetase. 430 -131358 TIGR02305 HpaG-N-term 4-hydroxyphenylacetate degradation bifunctional isomerase/decarboxylase, N-terminal subunit. This model represents one of two subunits/domains of the bifunctional isomerase/decarboxylase involved in 4-hydroxyphenylacetate degradation. In E. coli and some other species this enzyme is encoded by a single polypeptide containing both this domain and the closely related C-terminal domain (TIGR02303). In other species such as Pasteurella multocida these domains are found as two separate proteins (usually as tandem genes). Together, these domains carry out the decarboxylation of 5-oxopent-3-ene-1,2,5-tricarboxylic acid (OPET) to 2-hydroxy-2,4-diene-1,7-dioate (HHDD) and the subsequent isomerization to 2-oxohept-3-ene-1,7-dioate (OHED). 205 -274075 TIGR02306 RNA_lig_DRB0094 RNA ligase, DRB0094 family. The member of this family from Deinococcus radiodurans, a species that withstands and recovers from extensive radiation or dessication damage, is an apparent RNA ligase. It repairs RNA stand breaks in nicked DNA:RNA and RNA:RNA but not DNA:DNA duplexes. It has adenylyltransferase activity associated with the C-terminal domain. Related proteins also in this family are found in Streptomyces avermitilis MA-4680 and in bacteriophage 44RR2.8t. The phage example is unsurprising since one mechanism of host cell defense against phage is cleavage and inactivation of certain tRNA molecules. A fungal sequence from Neurospora crassa scores between trusted and noise cutofffs and may be similar in function. 341 -274076 TIGR02307 RNA_lig_RNL2 RNA ligase, Rnl2 family. Members of this family ligate (seal breaks in) RNA. Members so far include phage proteins that can counteract a host defense of cleavage of specific tRNA molecules, trypanosome ligases involved in RNA editing, but no prokaryotic host proteins . [Mobile and extrachromosomal element functions, Prophage functions, Transcription, RNA processing] 325 -213699 TIGR02308 RNA_lig_T4_1 RNA ligase, T4 RnlA family. Members of this family are phage proteins with ATP-dependent RNA ligase activity. Host defense to phage may include cleavage and inactivation of specific tRNA molecules; members of this family act to reverse this RNA damage. The enzyme is adenylated, transiently, on a Lys residue in a motif KXDGSL. [Mobile and extrachromosomal element functions, Prophage functions, Transcription, RNA processing] 374 -131362 TIGR02309 HpaB-1 4-hydroxyphenylacetate 3-monooxygenase, oxygenase component. This gene for this monooxygenase is found within apparent operons for the degradation of 4-hydroxyphenylacetic acid in Deinococcus, Thermus and Oceanobacillus. Phylogenetic trees support inclusion of the Bacillus halodurans sequence above trusted although the complete 4-hydroxyphenylacetic acid degradation pathway may not exist in that organism. Generally, this enzyme acts with the assistance of a small flavin reductase domain protein (HpaC) to provide the cycle the flavin reductant for the reaction. This family of sequences is a member of a larger subfamily of monooxygenases (pfam03241). 477 -213700 TIGR02310 HpaB-2 4-hydroxyphenylacetate 3-monooxygenase, oxygenase component. This gene for this monooxygenase is found within apparent operons for the degradation of 4-hydroxyphenylacetic acid in Shigella, Photorhabdus and Pasteurella. The family represented by this model is narrowly limited to gammaproteobacteria to exclude other aromatic hydroxylases involved in various secondary metabolic pathways. Generally, this enzyme acts with the assistance of a small flavin reductase domain protein (HpaC) to provide the cycle the flavin reductant for the reaction. This family of sequences is a member of a larger subfamily of monooxygenases (pfam03241). 519 -131364 TIGR02311 HpaI 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase. This model represents the aldolase which performs the final step unique to the 4-hydroxyphenylacetic acid catabolism pathway in which 2,4-dihydroxyhept-2-ene-1,7-dioic acid is split into pyruvate and succinate-semialdehyde. The gene for enzyme is generally found adjacent to other genes for this pathway organized into an operon. 249 -131365 TIGR02312 HpaH 2-oxo-hepta-3-ene-1,7-dioic acid hydratase. This model represents the enzyme which hydrates the double bond of 2-oxo-hepta-3-ene-1,7-dioic acid to form 4-hydroxy-2-oxo-heptane-1,7-dioic acid in the catabolism of 4-hydroxyphenylacetic acid. The gene for this enzyme is generally found adjacent to other genes of this pathway in an apparent operon. 267 -131366 TIGR02313 HpaI-NOT-DapA 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase. This model represents a subset of the DapA (dihydrodipicolinate synthase) family which has apparently evolved a separate function. The product of DapA, dihydrodipicolinate, results from the non-enzymatic cyclization and dehydration of 6-amino-2,4-dihydroxyhept-2-ene-1,7-dioic acid, which is different from the substrate of this reaction only in the presence of the amino group. In the absence of this amino group, and running the reaction in the opposite direction, the reaction corresponds to the HpaI aldolase component of the 4-hydroxyphenylacetic acid catabolism pathway (see TIGR02311). At present, this variant of DapA is found only in Oceanobacillus iheyensis HTE831 and Thermus thermophilus HB27. In both of these cases, one or more other DapA genes can be found and the one identified by this model is part of an operon for 4-hydroxyphenylacetic acid catabolism. 294 -131367 TIGR02314 ABC_MetN D-methionine ABC transporter, ATP-binding protein. Members of this family are the ATP-binding protein of the D-methionine ABC transporter complex. Known members belong to the Proteobacteria. 343 -131368 TIGR02315 ABC_phnC phosphonate ABC transporter, ATP-binding protein. Phosphonates are a class of phosphorus-containing organic compound with a stable direct C-P bond rather than a C-O-P linkage. A number of bacterial species have operons, typically about 14 genes in size, with genes for ATP-dependent transport of phosphonates, degradation, and regulation of the expression of the system. Members of this protein family are the ATP-binding cassette component of tripartite ABC transporters of phosphonates. [Transport and binding proteins, Anions] 243 -131369 TIGR02316 propion_prpE propionate--CoA ligase. This family contains one of three readily separable clades of proteins in the group of acetate and propionate--CoA ligases. Characterized members of this family act on propionate. From propionyl-CoA, there is a cyclic degradation pathway: it is ligated by PrpC to the TCA cycle intermediate oxaloacetate, acted upon further by PrpD and an aconitase, then cleaved by PrpB to pyruvate and the TCA cycle intermediate succinate. 628 -131370 TIGR02317 prpB methylisocitrate lyase. Members of this family are methylisocitrate lyase, also called (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate pyruvate-lyase. This enzyme acts in propionate metabolism. It cleaves a carbon-carbon bond to convert 2-methylisocitrate to pyruvate plus succinate. Some members of this family have been annotated, incorrectly it seems, as the related protein carboxyphosphoenolpyruvate phosphomutase, which is involved in synthesizing the antibiotic bialaphos in Streptomyces hygroscopicus. 285 -131371 TIGR02318 phosphono_phnM phosphonate metabolism protein PhnM. This family consists of proteins from in the PhnM family. PhnM is a a protein associated with phosphonate utilization in a number of bacterial species. In Pseudomonas stutzeri WM88, a protein that is part of a system for the oxidation of phosphites (another form of reduced phosphorous compound) scores between trusted and noise cutoffs. [Energy metabolism, Other] 376 -131372 TIGR02319 CPEP_Pphonmut carboxyvinyl-carboxyphosphonate phosphorylmutase. This family consists of carboxyvinyl-carboxyphosphonate phosphorylmutase (CPEP phosphonomutase), an unusual enzyme involved in the biosynthesis of the antibiotic bialaphos. So far, it is known only in that pathway and only in Streptomyces hygroscopicus. Some related proteins annotated as being functionally equivalent are likely misannotated examples of methylisocitrate lyase, an enzyme of priopionate utilization. 294 -274077 TIGR02320 PEP_mutase phosphoenolpyruvate mutase. This family consists of examples of phosphoenolpyruvate phosphomutase, an enzyme that creates a C-P bond as the first step in the biosynthesis of natural products including antibiotics like bialaphos and phosphonothricin in Streptomyces species, phosphonate-modified molecules such as the polysaccharide B of Bacteroides fragilis, the phosphonolipids of Tetrahymena pyroformis, the glycosylinositolphospholipids of Trypanosoma cruzi. This gene generally occurs in prokaryotic organisms adjacent to the gene for phosphonopyruvate decarboxylase (aepY). Since the PEP phosphomutase reaction favors the substrate PEP energetically, the decarboxylase is required to drive the reaction in the direction of phosphonate production. Most often an aminotansferase (aepZ) is also present which leads to the production of the most common phosphonate compound, 2-aminoethylphosphonate (AEP). A closely related enzyme, phosphonopyruvate hydrolase from Variovorax sp. Pal2, is excluded from this model. 284 -131374 TIGR02321 Pphn_pyruv_hyd phosphonopyruvate hydrolase. This family consists of phosphonopyruvate hydrolase, an enzyme closely related to phosphoenolpyruvate phosphomutase. It cleaves the direct C-P bond of phosphonopyruvate. The characterized example is from Variovorax sp. Pal2. 290 -274078 TIGR02322 phosphon_PhnN phosphonate metabolism protein/1,5-bisphosphokinase (PRPP-forming) PhnN. Members of this family resemble PhnN of phosphonate utilization operons, where different such operons confer the ability to use somewhat different profiles of C-P bond-containing compounds (see ), including phosphites as well as phosphonates. PhnN in E. coli shows considerable homology to guanylate kinases (EC 2.7.4.8), and has actually been shown to act as a ribose 1,5-bisphosphokinase (PRPP forming). This suggests an analogous kinase reaction for phosphonate metabolism, converting 5-phosphoalpha-1-(methylphosphono)ribose to methylphosphono-PRPP. [Central intermediary metabolism, Phosphorus compounds] 179 -188208 TIGR02323 CP_lyasePhnK phosphonate C-P lyase system protein PhnK. Members of this family are the PhnK protein of C-P lyase systems for utilization of phosphonates. These systems resemble phosphonatase-based systems in having a three component ABC transporter, where TIGR01097 is the permease, TIGR01098 is the phosphonates binding protein, and TIGR02315 is the ATP-binding cassette (ABC) protein. They differ, however, in having, typically, ten or more additional genes, many of which are believed to form a membrane-associated complex. This protein (PhnK) and the adjacent-encoded PhnL resemble transporter ATP-binding proteins but are suggested, based on mutatgenesis studies, to be part of this complex rather than part of a transporter per se. [Central intermediary metabolism, Phosphorus compounds] 253 -131377 TIGR02324 CP_lyasePhnL phosphonate C-P lyase system protein PhnL. Members of this family are the PhnL protein of C-P lyase systems for utilization of phosphonates. These systems resemble phosphonatase-based systems in having a three component ABC transporter, where TIGR01097 is the permease, TIGR01098 is the phosphonates binding protein, and TIGR02315 is the ATP-binding cassette (ABC) protein. They differ, however, in having, typically, ten or more additional genes, many of which are believed to form a membrane-associated C-P lysase complex. This protein (PhnL) and the adjacent-encoded PhnK (TIGR02323) resemble transporter ATP-binding proteins but are suggested, based on mutatgenesis studies, to be part of this C-P lyase complex rather than part of a transporter per se. 224 -131378 TIGR02325 C_P_lyase_phnF phosphonates metabolism transcriptional regulator PhnF. All members of the seed alignment for this family are predicted helix-turn-helix transcriptional regulatory proteins of the broader gntR and are found associated with genes for the import and degradation of phosphonates and/or related compounds (e.g. phosphonites) with a direct C-P bond. [Transport and binding proteins, Anions, Regulatory functions, DNA interactions] 238 -131379 TIGR02326 transamin_PhnW 2-aminoethylphosphonate--pyruvate transaminase. Members of this family are 2-aminoethylphosphonate--pyruvate transaminase. This enzyme acts on the most common type of naturally occurring phosphonate. It interconverts 2-aminoethylphosphonate plus pyruvate with 2-phosphonoacetaldehyde plus alanine. The enzyme phosphonoacetaldehyde hydrolase (EC 3.11.1.1), usually encoded by an adjacent gene, then cleaves the C-P bond of phosphonoacetaldehyde, adding water to yield acetaldehyde plus inorganic phosphate. Species with this pathway generally have an identified phosphonate ABC transporter but do not also have the multisubunit C-P lysase complex as found in Escherichia coli. [Central intermediary metabolism, Phosphorus compounds] 363 -131380 TIGR02327 int_mem_ywzB conserved hypothetical integral membrane protein. Members of this protein family are small, typically about 80 residues in length, and are highly hydrophobic. The gene is found so far only in a subset of the Firmicutes in association with genes of the ATP synthase F1 complex or NADH-quinone oxidoreductase. This family includes ywzB from Bacillus subtilis; pfam06612 describes the same family as Protein of unknown function DUF1146. 68 -131381 TIGR02328 TIGR02328 conserved hypothetical protein. Members of this protein are found in a small number of taxonomically well separated species, yet are strongly conserved, suggesting lateral gene transfer. Members are found in Treponema denticola, Clostridium acetobutylicum, and several of the Firmicutes. The function of this protein is unknown. [Hypothetical proteins, Conserved] 120 -274079 TIGR02329 propionate_PrpR propionate catabolism operon regulatory protein PrpR. At least five distinct pathways exists for the catabolism of propionate by way of propionyl-CoA. Members of this family represent the transcriptional regulatory protein PrpR, whose gene is found in most cases divergently transcribed from an operon for the methylcitric acid cycle of propionate catabolism. 2-methylcitric acid, a catabolite by this pathway, is a coactivator of PrpR. [Regulatory functions, DNA interactions] 526 -131383 TIGR02330 prpD 2-methylcitrate dehydratase. Members of this family are bacterial proteins known or predicted to act as 2-methylcitrate dehydratase, an enzyme involved in the methylcitrate cycle of propionate catabolism. A related clade of archaeal proteins that may or may not be functionally equivalent is reserved for a future model and is excluded from this family. The PrpD enzyme of E. coli is responsible for the minor aconitase activity (AcnC) not accounted for by AcnA and AcnB. 468 -131384 TIGR02331 rib_alpha Rib/alpha/Esp surface antigen repeat. Sequences in this family are tandem repeats of about 79 amino acids, present in up to 14 copies in a protein and highly identical, even at the DNA level, within each protein. Sequences with these repeats are found in the Rib and alpha surface antigens of group B Streptococcus, Esp of Enterococcus faecalis, and related proteins of Lactobacillus. The repeat lacks Cys residues. Most members of this protein family also have the cell wall anchor motif LPXTG shared by many staphyloccal and streptococcal surface antigens. 80 -131385 TIGR02332 HpaX 4-hydroxyphenylacetate permease. This protein is a part of the Major Facilitator Superfamily (pfam07690). Member of this family are found in a number of proteobacterial genomes, but only in the context of having genes for 4-hydroxyphenylacetate (4-HPA) degradation. The protein is characterized by Prieto, et al. ( as 4-hydroxyphenylacetate permease in E. coli, where 3-HPA and 3,4-dihydroxyphenylacetate are shown to competitively inhibit 4-HPA transport and therefore also interact specificially. 412 -131386 TIGR02333 2met_isocit_dHY 2-methylisocitrate dehydratase, Fe/S-dependent. Members of this family appear in an operon for the degradation of propionyl-CoA via 2-methylcitrate. This family is homologous to aconitases A and B and appears to act the part as 2-methylisocitrate dehydratase, the enzyme after PrpD and before PrpB. In Escherichia coli, which lacks a member of this family, 2-methylisocitrate dehydratase activity was traced to aconitase B (TIGR00117) (). 858 -131387 TIGR02334 prpF probable AcnD-accessory protein PrpF. The 2-methylcitrate cycle is one of at least five degradation pathways for propionate via propionyl-CoA. Degradation of propionate toward pyruvate consumes oxaloacetate and releases succinate. Oxidation of succinate back into oxaloacetate by the TCA cycle makes the 2-methylcitrate pathway a cycle. This family consists of PrpF, an incompletely characterized protein that appears to be an essential accessory protein for the Fe/S-dependent 2-methylisocitrate dehydratase AcnD (TIGR02333). This protein is related to but distinct from FldA (part of pfam04303), a putative fluorene degradation protein of Sphingomonas sp. LB126. [Energy metabolism, Fermentation] 390 -131388 TIGR02335 hydr_PhnA phosphonoacetate hydrolase. This family consists of examples of phosphonoacetate hydrolase, an enzyme specific for the cleavage of the C-P bond in phosphonoacetate. Phosphonates are organic compounds with a direct C-P bond that is far less labile that the C-O-P bonds of phosphate attachment sites. Phosphonates may be degraded for phosphorus and energy by broad spectrum C-P lyase encoded by large operon or by specific enzymes for some of the more common phosphonates in nature. This family represents an enzyme from the latter category. It may be found encoded near genes for phosphonate transport and for pther specific phosphonatases. 408 -213701 TIGR02336 TIGR02336 1,3-beta-galactosyl-N-acetylhexosamine phosphorylase. Members of this family are found in phylogenetically diverse bacteria, including Clostridium perfringens (in the Firmicutes), Bifidobacterium longum and Propionibacterium acnes (in the Actinobacteria), and Vibrio vulnificus (in the Proteobacteria), most of which occur as mammalian pathogens or commensals. The nominal activity, 1,3-beta-galactosyl-N-acetylhexosamine phosphorylase (EC 2.4.1.211), varies somewhat from instance to instance in relative rates for closely related substrates. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 719 -188209 TIGR02337 HpaR homoprotocatechuate degradation operon regulator, HpaR. This Helix-Turn-Helix transcriptional regulator is a member of the MarR family (pfam01047) and is found in association with operons for the degradation of 4-hydroxyphenylacetic acid via homoprotocatechuate. 118 -131391 TIGR02338 gimC_beta prefoldin, beta subunit, archaeal. Chaperonins are cytosolic, ATP-dependent molecular chaperones, with a conserved toroidal architecture, that assist in the folding of nascent and/or denatured polypeptide chains. The group I chaperonin system consists of GroEL and GroES, and is found (usually) in bacteria and organelles of bacterial origin. The group II chaperonin system, called the thermosome in Archaea and TRiC or CCT in the Eukaryota, is structurally similar but only distantly related. Prefoldin, also called GimC, is a complex in Archaea and Eukaryota, that works with group II chaperonins. Members of this protein family are the archaeal clade of the beta class of prefoldin subunit. Closely related, but outside the scope of this family are the eukaryotic beta-class prefoldin subunits, Gim-1,3,4 and 6. The alpha class prefoldin subunits are more distantly related. 110 -274080 TIGR02339 thermosome_arch thermosome, various subunits, archaeal. Thermosome is the name given to the archaeal rather than eukaryotic form of the group II chaperonin (counterpart to the group I chaperonin, GroEL/GroES, in bacterial), a torroidal, ATP-dependent molecular chaperone that assists in the folding or refolding of nascent or denatured proteins. Various homologous subunits, one to five per archaeal genome, may be designated alpha, beta, etc., but phylogenetic analysis does not show distinct alpha subunit and beta subunit lineages traceable to ancient paralogs. [Protein fate, Protein folding and stabilization] 519 -274081 TIGR02340 chap_CCT_alpha T-complex protein 1, alpha subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT alpha chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 536 -274082 TIGR02341 chap_CCT_beta T-complex protein 1, beta subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT beta chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 519 -274083 TIGR02342 chap_CCT_delta T-complex protein 1, delta subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT delta chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 517 -274084 TIGR02343 chap_CCT_epsi T-complex protein 1, epsilon subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT epsilon chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 532 -274085 TIGR02344 chap_CCT_gamma T-complex protein 1, gamma subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT gamma chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 524 -274086 TIGR02345 chap_CCT_eta T-complex protein 1, eta subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT eta chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 523 -274087 TIGR02346 chap_CCT_theta T-complex protein 1, theta subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT alpha chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 531 -274088 TIGR02347 chap_CCT_zeta T-complex protein 1, zeta subunit. Members of this family, all eukaryotic, are part of the group II chaperonin complex called CCT (chaperonin containing TCP-1) or TRiC. The archaeal equivalent group II chaperonin is often called the thermosome. Both are somewhat related to the group I chaperonin of bacterial, GroEL/GroES. This family consists exclusively of the CCT zeta chain (part of a paralogous family) from animals, plants, fungi, and other eukaryotes. 531 -274089 TIGR02348 GroEL chaperonin GroL. This family consists of GroEL, the larger subunit of the GroEL/GroES cytosolic chaperonin. It is found in bacteria, organelles derived from bacteria, and occasionally in the Archaea. The bacterial GroEL/GroES group I chaperonin is replaced a group II chaperonin, usually called the thermosome in the Archaeota and CCT (chaperone-containing TCP) in the Eukaryota. GroEL, thermosome subunits, and CCT subunits all fall under the scope of pfam00118. [Protein fate, Protein folding and stabilization] 524 -274090 TIGR02349 DnaJ_bact chaperone protein DnaJ. This model represents bacterial forms of DnaJ, part of the DnaK-DnaJ-GrpE chaperone system. The three components typically are encoded by consecutive genes. DnaJ homologs occur in many genomes, typically not near DnaK and GrpE-like genes; most such genes are not included by this family. Eukaryotic (mitochondrial and chloroplast) forms are not included in the scope of this family. 354 -274091 TIGR02350 prok_dnaK chaperone protein DnaK. Members of this family are the chaperone DnaK, of the DnaK-DnaJ-GrpE chaperone system. All members of the seed alignment were taken from completely sequenced bacterial or archaeal genomes and (except for Mycoplasma sequence) found clustered with other genes of this systems. This model excludes DnaK homologs that are not DnaK itself, such as the heat shock cognate protein HscA (TIGR01991). However, it is not designed to distinguish among DnaK paralogs in eukaryotes. Note that a number of dnaK genes have shadow ORFs in the same reverse (relative to dnaK) reading frame, a few of which have been assigned glutamate dehydrogenase activity. The significance of this observation is unclear; lengths of such shadow ORFs are highly variable as if the presumptive protein product is not conserved. [Protein fate, Protein folding and stabilization] 595 -131404 TIGR02351 thiH thiazole biosynthesis protein ThiH. Members this protein family are the ThiH protein of thiamine biosynthesis, a homolog of the BioB protein of biotin biosynthesis. Genes for the this protein generally are found in operons with other thiamin biosynthesis genes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 366 -274092 TIGR02352 thiamin_ThiO glycine oxidase ThiO. This family consists of the homotetrameric, FAD-dependent glycine oxidase ThiO, from species such as Bacillus subtilis that use glycine in thiamine biosynthesis. In general, members of this family will not be found in species such as E. coli that instead use tyrosine and the ThiH protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 337 -274093 TIGR02353 NRPS_term_dom non-ribosomal peptide synthetase terminal domain of unknown function. This domain is found exclusively in non-ribosomal peptide synthetases and always as the final domain in the polypeptide. This domain is roughly 700 amino acids in size and is found in polypeptides roughly twice that size. 695 -162819 TIGR02354 thiF_fam2 thiamine biosynthesis protein ThiF, family 2. Members of the HesA/MoeB/ThiF family of proteins (pfam00899) include a number of members encoded in the midst of thiamine biosynthetic operons. This mix of known and putative ThiF proteins shows a deep split in phylogenetic trees, with one the E. coli ThiF and the E. coli MoeB proteins seemingly more closely related than E. coli ThiF and Campylobacter (for example) ThiF. This model represents the divergent clade of putative ThiF proteins such found in Campylobacter. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 200 -131408 TIGR02355 moeB molybdopterin synthase sulfurylase MoeB. This model describes the molybdopterin biosynthesis protein MoeB in E. coli and related species. The enzyme covalently modifies the molybdopterin synthase MoaD by sulfurylation. This enzyme is closely related to ThiF, a thiamine biosynthesis enzyme that modifies ThiS by an analogous adenylation. Both MoeB and ThiF belong to the HesA/MoeB/ThiF family (pfam00899). [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 240 -274094 TIGR02356 adenyl_thiF thiazole biosynthesis adenylyltransferase ThiF, E. coli subfamily. Members of the HesA/MoeB/ThiF family of proteins (pfam00899) include a number of members encoded in the midst of thiamine biosynthetic operons. This mix of known and putative ThiF proteins shows a deep split in phylogenetic trees, with the Escherichia. coli ThiF and the E. coli MoeB proteins seemingly more closely related than E. coli ThiF and Campylobacter (for example) ThiF. This model represents the more widely distributed clade of ThiF proteins such found in E. coli. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 202 -274095 TIGR02357 ECF_ThiT_YuaJ energy-coupled thiamine transporter ThiT. Members of this protein family have been assigned as thiamine transporters by a phylogenomic analysis of families of genes regulated by the THI element, a broadly conserved RNA secondary structure element through which thiamine pyrophosphate (TPP) levels can regulate transcription of many genes related to thiamine transport, salvage, and de novo biosynthesis. Species with this protein always lack the ThiBPQ ABC transporter. In some species (e.g. Steptococcus mutans and Streptoccus pyogenes), yuaJ is the only THI-regulated gene. Evidence from Bacillus cereus indicated thiamine uptake is coupled to proton translocation. However, a more recent comprehensive study of energy-coupled factor (ECF) transport suggests this protein is the S (subtrate capture) component of an ECF system, meaning it is energized by ATP. Previously YuaJ, but renamed ThiT. [Transport and binding proteins, Other] 173 -274096 TIGR02358 thia_cytX putative hydroxymethylpyrimidine transporter CytX. On the basis of a phylogenomic study of thiamine biosythetic, salvage, and transporter genes and a highly conserved RNA element THI, this protein family has been identified as a probable transporter of hydroxymethylpyrimidine (HMP), the phosphorylated (by ThiD) form of which gets joined (by ThiE) to hydroxyethylthiazole phosphate to make thiamine phosphate. [Transport and binding proteins, Nucleosides, purines and pyrimidines, Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 386 -131412 TIGR02359 thiW energy coupling factor transporter S component ThiW. Levels of thiamine pyrophosphate (TPP) or thiamine regulate transcription or translation of a number of thiamine biosynthesis, salvage, or transport genes in a wide range of prokaryotes. The mechanism involves direct binding, with no protein involved,to a structural element called THI found in the untranslated upstream region of thiamine metabolism gene operons. This element is called a riboswitch and is seen also for other metabolites such as FMN and glycine. This protein family consists of proteins identified in operons controlled by the THI riboswitch and designated ThiW. The hydrophobic nature of this protein and reconstructed metabolic background suggests that this protein acts in transport of a thiazole precursor of thiamine. [Transport and binding proteins, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 160 -131413 TIGR02360 pbenz_hydroxyl 4-hydroxybenzoate 3-monooxygenase. Members of this family are the enzyme 4-hydroxybenzoate 3-monooxygenase, also called p-hydroxybenzoate hydroxylase. It converts 4-hydroxybenzoate + NADPH + molecular oxygen to protocatechuate + NADPH + water. It contains monooxygenase (pfam01360) and FAD binding (pfam01494) domains. Pathways that contain this enzyme include the protocatechuate 4,5-degradation pathway. [Energy metabolism, Other] 390 -274097 TIGR02361 dak_ATP dihydroxyacetone kinase, ATP-dependent. This family consists of examples of the form of dihydroxyacetone kinase (also called glycerone kinase) that uses ATP (2.7.1.29) as the phosphate donor, rather than a phosphoprotein as in E. coli. This form is composed of a single chain with separable domains homologous to the K and L subunits of the E. coli enzyme, and is found in yeasts and other eukaryotes and in some bacteria, including Citrobacter freundii. The member from tomato has been shown to phosphorylate dihydroxyacetone, 3,4-dihydroxy-2-butanone, and some other aldoses and ketoses (). 574 -213706 TIGR02362 dhaK1b probable dihydroxyacetone kinase DhaK1b subunit. Two types of dihydroxyacetone kinase (glycerone kinase) are described. In yeast and a few bacteria, e.g. Citrobacter freundii, the enzyme is a single chain that uses ATP as phosphoryl donor and is designated EC 2.7.1.29. By contract, E. coli and many other bacterial species have a multisubunit form with a phosphoprotein donor related to PTS transport proteins. This family represents a protein, unique to the Firmicutes (low GC Gram-positives), that appears to be a divergent second copy of the K subunit of that complex; its gene is always found in operons with the other three proteins of the complex. 326 -274098 TIGR02363 dhaK1 dihydroxyacetone kinase, DhaK subunit. Two types of dihydroxyacetone kinase (glycerone kinase) are described. In yeast and a few bacteria, e.g. Citrobacter freundii, the enzyme is a single chain that uses ATP as phosphoryl donor and is designated EC 2.7.1.29. By contract, E. coli and many other bacterial species have a multisubunit form (EC 2.7.1.-) with a phosphoprotein donor related to PTS transport proteins. This family represents the DhaK subunit of the latter type of dihydroxyacetone kinase, but it specifically excludes the DhaK paralog DhaK2 (TIGR02362) found in the same operon as DhaK and DhaK in the Firmicutes. 329 -131417 TIGR02364 dha_pts dihydroxyacetone kinase, phosphotransfer subunit. In E. coli and many other bacteria, unlike the yeasts and a few bacteria such as Citrobacter freundii, the dihydroxyacetone kinase (also called glycerone kinase) transfers a phosphate from a phosphoprotein rather than from ATP and contains multiple subunits. This protein, which resembles proteins of PTS transport systems, is found with its gene adjacent to 125 -274099 TIGR02365 dha_L_ycgS dihydroxyacetone kinase, phosphoprotein-dependent, L subunit. Two types of dihydroxyacetone kinase (glycerone kinase) are described. In yeast and a few bacteria, e.g. Citrobacter freundii, the enzyme is a single chain that uses ATP as phosphoryl donor and is designated EC 2.7.1.29. By contract, E. coli and many other bacterial species have a multisubunit form (EC 2.7.1.-) with a phosphoprotein donor related to PTS transport proteins. This family represents the subunit homologous to the E. coli YcgS subunit. 194 -274100 TIGR02366 DHAK_reg probable dihydroxyacetone kinase regulator. The seed alignment for this family was built from a set of closely related uncharacterized proteins associated with operons for the type of bacterial dihydroxyacetone kinase that transfers PEP-derived phosphate from a phosphoprotein, as in phosphotransferase system transport, rather than from ATP. Members have a TetR transcriptional regulator domain (pfam00440) at the N-terminus and sequence homology throughout. 176 -188213 TIGR02367 PylS_Cterm pyrrolysyl-tRNA synthetase, C-terminal region. PylS is the enzyme responsible for charging the pyrrolysine tRNA, PylT, by ligating a free molecule of pyrrolysine. Pyrrolysine is encoded at an in-frame UAG (amber) at least in several corrinoid-dependent methyltransferases of the archaeal genera Methanosarcina and Methanococcoides, such as trimethylamine methyltransferase. This protein occurs as a fusion protein in Methanosarcina but as split genes in Desulfitobacterium hafniense and other bacteria. [Protein synthesis, tRNA aminoacylation] 242 -131421 TIGR02368 dimeth_PyL dimethylamine:corrinoid methyltransferase. This family consists of dimethylamine methyltransferases from the genus Methanosarcina. It is found in three nearly identical copies in each of M. acetivorans, M. barkeri, and M. Mazei. It is one of a suite of three non-homologous enzymes with a critical UAG-encoded pyrrolysine residue in these species (along with trimethylamine methyltransferase and monomethylamine methyltransferase). It demethylates dimethylamine, leaving monomethylamine, and methylates the prosthetic group of the small corrinoid protein MtbC. The methyl group is then transferred by methylcorrinoid:coenzyme M methyltransferase to coenzyme M. Note that the pyrrolysine residue is variously translated as K or X, or as a stop codon that truncates the sequence. 466 -131422 TIGR02369 trimeth_pyl trimethylamine:corrinoid methyltransferase. This model represents a distinct subfamily of pfam06253. All members here are trimethylamine:corrinoid methyltransferases that contain a critical pyrrolysine residue incorporated during translation via a special tRNA for a TAG (amber) codon. Known members so far are from the genus Methanosarcina. It is one of a suite of three non-homologous enzymes with a critical UAG-encoded pyrrolysine residue in these species (along with dimethylamine methyltransferase and monomethylamine methyltransferase). It demethylates trimethylamine, leaving dimethylamine, and methylates the prosthetic group of its small cognate corrinoid protein, MttC. The methyl group is then transferred by methylcorrinoid:coenzyme M methyltransferase to coenzyme M. Note that the pyrrolysine residue is variously translated as K or X, or as a stop codon that truncates the sequence. 489 -131423 TIGR02370 pyl_corrinoid methyltransferase cognate corrinoid proteins, Methanosarcina family. This model describes a subfamily of the B12 binding domain (pfam02607, pfam02310) proteins. Members of the seed alignment include corrinoid proteins specific to four different, mutally non-homologous enzymes of the genus Methanosarcina. Three of the four cognate enzymes (trimethylamine, dimethylamine, and monomethylamine methyltransferases) all have the unusual, ribosomally incorporated amino acid pyrrolysine at the active site. All act in systems in which a methyl group is transferred to the corrinoid protein to create methylcobalamin, from which the methyl group is later transferred elsewhere. 197 -131424 TIGR02371 ala_DH_arch alanine dehydrogenase, Archaeoglobus fulgidus type. This enzyme, a homolog of bacterial ornithine cyclodeaminases and marsupial mu-crystallins, is a homodimeric, NAD-dependent alanine dehydrogenase found in Archaeoglobus fulgidus and several other Archaea. For a number of close homologs, scoring between trusted and noise cutoffs, it is not clear at present what is the enzymatic activity. 325 -131425 TIGR02372 4_coum_CoA_lig 4-coumarate--CoA ligase, photoactive yellow protein activation family. This model represents the 4-coumarate--CoA ligase associated with biosynthesis of the 4-hydroxy cinnamyl (also called 4-coumaroyl) chromophore covalently linked to a Cys residue in photoactive yellow protein of Rhodobacter spp. and 386 -131426 TIGR02373 photo_yellow photoactive yellow protein. Members of this family are photoactive yellow protein, a cytosolic, 14-kDa light-sensing protein which has a 4-hydroxycinnamyl (p-coumaric acid) chromophore covalently linked to a Cys residue. The enzyme 4-coumarate--CoA ligase as described by TIGR02372 is required for its biosynthesis. The modified Cys is in a PAS (pfam00989) domain, frequently found in signal transducing proteins. Members are known in alpha and gamma Proteobacteria that include Rhodobacter capsulatus, Halorhodospira halophila, Rhodospirillum centenum, etc. 124 -162827 TIGR02374 nitri_red_nirB nitrite reductase [NAD(P)H], large subunit. [Central intermediary metabolism, Nitrogen metabolism] 785 -131428 TIGR02375 pseudoazurin pseudoazurin. Pseudoazurin, also called cupredoxin, is a small, blue periplasmic protein with a single bound copper atom. Pseudoazurin is related plastocyanins. Several examples of pseudoazurin are encoded by a neighboring gene for, or have been shown to transfer electrons to, copper-containing nitrite reductases (TIGR02376) of the same species. [Energy metabolism, Electron transport] 116 -131429 TIGR02376 Cu_nitrite_red nitrite reductase, copper-containing. This family consists of copper-type nitrite reductase. It reduces nitrite to nitric oxide, the first step in denitrification. [Central intermediary metabolism, Nitrogen metabolism] 311 -131430 TIGR02377 MocE_fam_FeS Rieske [2Fe-2S] domain protein, MocE subfamily. This model describes a subfamily of the Rieske-like [2Fe-2S] family of ferredoxins that includes MocE, part of the rhizopine (3-O-methyl-scyllo-inosamine) catabolic cluster in Rhizobium. Members of this family are related to, yet distinct from, the small subunit of nitrite reductase [NAD(P)H]. 101 -131431 TIGR02378 nirD_assim_sml nitrite reductase [NAD(P)H], small subunit. This model describes NirD, the small subunit of nitrite reductase [NAD(P)H] (the assimilatory nitrite reductase), which associates with NirB, the large subunit (TIGR02374). In a few bacteria such as Klebsiella pneumoniae and in Fungi, the two regions are fused. [Central intermediary metabolism, Nitrogen metabolism] 105 -131432 TIGR02379 ECA_wecE TDP-4-keto-6-deoxy-D-glucose transaminase. This family consists of TDP-4-keto-6-deoxy-D-glucose transaminases, the WecE (formerly RffA) protein of enterobacterial common antigen (ECA) biosynthesis, from enterobacteria. It also includes closely matching sequence from species not expected to make ECA, but which contain other genes for the biosynthesis of TDP-4-keto-6-deoxy-D-Glc, an intermediate in the biosynthesis of other compounds as well and the substrate of WecA. This family belongs to the DegT/DnrJ/EryC1/StrS aminotransferase family (pfam01041). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 376 -131433 TIGR02380 ECA_wecA undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphatetransferase. Members of this family are the WecA enzyme of enterobacterial common antigen biosynthesis, undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphatetransferase. This family represents one narrow clade, and closely related sequences outside this clade may represent enzymes that catalyze the same specific reaction, but in the context of different pathways. A His-rich motif in a cytosolic loop of this integral membrane protein, shown critical to enzymatic activity for WecA is variously present or absent in the clade that includes Bacillus subtilis TagO teichoic acid biosynthesis enzyme, which may catalyze the same reaction as WecA. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 346 -131434 TIGR02381 cspD cold shock domain protein CspD. This model represents what appears to be a phylogenetically distinct clade, containing E. coli CspD (SP|P24245) and related proteobacterial proteins within the larger family of cold shock domain proteins described by pfam00313. The gene symbol cspD may have been used idependently for other subfamilies of cold shock domain proteins, such as for B. subtilis CspD. These proteins typically are shorter than 70 amino acids. In E. coli, CspD is a stress response protein induced in stationary phase. This homodimer binds single-stranded DNA and appears to inhibit DNA replication. [DNA metabolism, DNA replication, recombination, and repair, Cellular processes, Adaptations to atypical conditions] 68 -131435 TIGR02382 wecD_rffC TDP-D-fucosamine acetyltransferase. This model represents the WecD protein (Formerly RffC) for the biosynthesis of enterobacterial common antigen (ECA), an outer leaflet, outer membrane glycolipid with a trisaccharide repeat unit. WecD is a member of the GNAT family of acetytransferases (pfam00583). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 191 -274101 TIGR02383 Hfq RNA chaperone Hfq. This model represents the RNA-binding pleiotropic regulator Hfq, a small, Sm-like protein of bacteria. It helps pair regulatory noncoding RNAs with complementary mRNA target regions. It enhances the elongation of poly(A) tails on mRNA. It appears also to protect RNase E recognition sites (A/U-rich sequences with adjacent stem-loop structures) from cleavage. Being pleiotropic, it differs in some of its activities in different species. Hfq binds the non-coding regulatory RNA DsrA (see Rfam RF00014) in the few species known to have it: Escherichia coli, Shigella flexneri, Salmonella spp. In Azorhizobium caulinodans, an hfq mutant is unable to express nifA, and Hfq is called NrfA, for nif regulatory factor (see . The name hfq reflects phenomenology as a host factor for phage Q-beta RNA replication. [Regulatory functions, Other] 61 -274102 TIGR02384 RelB_DinJ addiction module antitoxin, RelB/DinJ family. Plasmids may be maintained stably in bacterial populations through the action of addiction modules, in which a toxin and antidote are encoded in a cassette on the plasmid. In any daughter cell that lacks the plasmid, the toxin persists and is lethal after the antidote protein is depleted. Toxin/antitoxin pairs are also found on main chromosomes, and likely represent selfish DNA. Sequences in the seed for this alignment all were found adjacent to toxin genes. The resulting model appears to describe a narrower set of proteins than pfam04221, although many in the scope of this model are not obviously paired with toxin proteins. Several toxin/antitoxin pairs may occur in a single species. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 84 -211740 TIGR02385 RelE_StbE addiction module toxin, RelE/StbE family. Plasmids may be maintained stably in bacterial populations through the action of addiction modules, in which a toxin and antidote are encoded in a cassette on the plasmid. In any daughter cell that lacks the plasmid, the toxin persists and is lethal after the antidote protein is depleted. Toxin/antitoxin pairs are also found on main chromosomes, and likely represent selfish DNA. Sequences in the seed for this alignment all are found adjacent to RelB/DinJ family antitoxin genes (TIGR02384), as are most genes found by the resulting model. StbE from Morganella morganii plasmid R485 shows typical behaviour for an addiction module toxin. It cannot be cloned without its partner (the antitoxin), whereas its partner cannot confer plasmid stability without StbE. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 88 -274103 TIGR02386 rpoC_TIGR DNA-directed RNA polymerase, beta' subunit, predominant form. Bacteria have a single DNA-directed RNA polymerase, with required subunits that include alpha, beta, and beta-prime. This model describes the predominant architecture of the beta-prime subunit in most bacteria. This model excludes from among the bacterial mostly sequences from the cyanobacteria, where RpoC is replaced by two tandem genes homologous to it but also encoding an additional domain. [Transcription, DNA-dependent RNA polymerase] 1140 -131440 TIGR02387 rpoC1_cyan DNA-directed RNA polymerase, gamma subunit. The RNA polymerase gamma subunit, encoded by the rpoC1 gene, is found in cyanobacteria and corresponds to the N-terminal region the beta' subunit, encoded by rpoC, in other bacteria. The equivalent subunit in plastids and chloroplasts is designated beta', while the product of the rpoC2 gene is designated beta''. 619 -274104 TIGR02388 rpoC2_cyan DNA-directed RNA polymerase, beta'' subunit. The family consists of the product of the rpoC2 gene, a subunit of DNA-directed RNA polymerase of cyanobacteria and chloroplasts. RpoC2 corresponds largely to the C-terminal region of the RpoC (the beta' subunit) of other bacteria. Members of this family are designated beta'' in chloroplasts/plastids, and beta' (confusingly) in Cyanobacteria, where RpoC1 is called beta' in chloroplasts/plastids and gamma in Cyanobacteria. We prefer to name this family beta'', after its organellar members, to emphasize that this RpoC1 and RpoC2 together replace RpoC in other bacteria. [Transcription, DNA-dependent RNA polymerase] 1227 -274105 TIGR02389 RNA_pol_rpoA2 DNA-directed RNA polymerase, subunit A''. This family consists of the archaeal A'' subunit of the DNA-directed RNA polymerase. The example from Methanocaldococcus jannaschii contains an intein. [Transcription, DNA-dependent RNA polymerase] 367 -274106 TIGR02390 RNA_pol_rpoA1 DNA-directed RNA polymerase subunit A'. This family consists of the archaeal A' subunit of the DNA-directed RNA polymerase. The example from Methanocaldococcus jannaschii contains an intein. 868 -162834 TIGR02391 hypoth_ymh TIGR02391 family protein. This family consists of a relatively rare (~ 8 occurrences per 200 genomes) prokaryotic protein family. Genes for members are appear to be associated variously with phage and plasmid regions, restriction system loci, transposons, and housekeeping genes. The function is unknown. [Hypothetical proteins, Domain] 125 -274107 TIGR02392 rpoH_proteo alternative sigma factor RpoH. A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called RpoH and further restricted to the Proteobacteria. This protein may be called sigma-32, sigma factor H, heat shock sigma factor, and alternative sigma factor RpoH. Note that in some species the single locus rpoH may be replaced by two or more differentially regulated stress response sigma factors. [Cellular processes, Adaptations to atypical conditions, Transcription, Transcription factors] 270 -274108 TIGR02393 RpoD_Cterm RNA polymerase sigma factor RpoD, C-terminal domain. This model represents the well-conserved C-terminal region of the major, essential sigma factor of most bacteria. Members of this clade show considerable variability in domain architecture and molecular weight, as well as in nomenclature: RpoD in E. coli and other Proteobacteria, SigA in Bacillus subtilis and many other Gram-positive bacteria, HrdB in Streptomyces, MysA in Mycobacterium smegmatis, etc. [Transcription, Transcription factors] 238 -131447 TIGR02394 rpoS_proteo RNA polymerase sigma factor RpoS. A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called RpoS (also called sigma-38, KatF, etc.), found only in Proteobacteria. This sigma factor is induced in stationary phase (in response to the stress of nutrient limitation) and becomes the second prinicipal sigma factor at that time. RpoS is a member of the larger Sigma-70 subfamily (TIGR02937) and most closely related to RpoD (TIGR02393). [Cellular processes, Adaptations to atypical conditions, Transcription, Transcription factors] 285 -274109 TIGR02395 rpoN_sigma RNA polymerase sigma-54 factor. A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called sigma-54, or RpoN (unrelated to sigma 70-type factors such as RpoD/SigA). RpoN is responsible for enhancer-dependent transcription, and its presence characteristically is associated with varied panels of activators, most of which are enhancer-binding proteins (but see Brahmachary, et al., ). RpoN may be responsible for transcription of nitrogen fixation genes, flagellins, pilins, etc., and synonyms for the gene symbol rpoN, such as ntrA, reflect these observations [Transcription, Transcription factors] 429 -274110 TIGR02396 diverge_rpsU rpsU-divergently transcribed protein. This uncharacterized protein is found in a number of Alphaproteobacteria and, with N-terminal regions long enough to be transit peptides, in eukaryotes. This phylogeny suggests mitochondrial derivation. In several Alphaproteobacteria, the gene for this protein is encoded divergently from rpsU, the gene for ribosomal protein S21. S21 is unusual in being encoded outside the usual long ribosomal protein operons, but rather in contexts that suggest regulation of the initiation of protein translation. [Unknown function, General] 185 -274111 TIGR02397 dnaX_nterm DNA polymerase III, subunit gamma and tau. This model represents the well-conserved first ~ 365 amino acids of the translation of the dnaX gene. The full-length product of the dnaX gene in the model bacterium E. coli is the DNA polymerase III tau subunit. A translational frameshift leads to early termination and a truncated protein subunit gamma, about 1/3 shorter than tau and present in roughly equal amounts. This frameshift mechanism is not necessarily universal for species with DNA polymerase III but appears conserved in the exterme thermophile Thermus thermophilis. [DNA metabolism, DNA replication, recombination, and repair] 355 -131451 TIGR02398 gluc_glyc_Psyn glucosylglycerol-phosphate synthase. Glucosylglycerol-phosphate synthase catalyzes the key step in the biosynthesis of the osmolyte glucosylglycerol. It is known in several cyanobacteria and in Pseudomonas anguilliseptica. The enzyme is closely related to the alpha,alpha-trehalose-phosphate synthase, likewise involved in osmolyte biosynthesis, of E. coli and many other bacteria. A close homolog from Xanthomonas campestris is excluded from this model and scores between trusted and noise. 487 -131452 TIGR02399 salt_tol_Pase glucosylglycerol 3-phosphatase. Proteins in this family are glucosylglycerol-phosphate phosphatase, with the gene symbol stpA (Salt Tolerance Protein A). A motif characteristic of acid phosphatases is found, but otherwise this family shows little sequence similarity to other phosphatases. This enzyme acts on the glucosylglycerol phosphate, product of glucosylglycerol phosphate synthase and immediate precursor of the osmoprotectant glucosylglycerol. 389 -274112 TIGR02400 trehalose_OtsA alpha,alpha-trehalose-phosphate synthase [UDP-forming]. This enzyme catalyzes the key, penultimate step in biosynthesis of trehalose, a compatible solute made as an osmoprotectant in some species in all three domains of life. The gene symbol OtsA stands for osmotically regulated trehalose synthesis A. Trehalose helps protect against both osmotic and thermal stresses, and is made from two glucose subunits. This model excludes glucosylglycerol-phosphate synthase, an enzyme of an analogous osmoprotectant system in many cyanobacterial strains. This model does not identify archaeal examples, as they are more divergent than glucosylglycerol-phosphate synthase. Sequences that score in the gray zone between the trusted and noise cutoffs include a number of yeast multidomain proteins in which the N-terminal domain may be functionally equivalent to this family. The gray zone also includes the OtsA of Cornyebacterium glutamicum (and related species), shown to be responsible for synthesis of only trace amounts of trehalose while the majority is synthesized by the TreYZ pathway; the significance of OtsA in this species is unclear (see Wolf, et al., ). [Cellular processes, Adaptations to atypical conditions] 456 -274113 TIGR02401 trehalose_TreY malto-oligosyltrehalose synthase. This enzyme, formally named (1->4)-alpha-D-glucan 1-alpha-D-glucosylmutase, is the TreY enzyme of the TreYZ pathway of trehalose biosynthesis, an alternative to the OtsAB pathway. Trehalose may be incorporated into more complex compounds but is best known as compatible solute. It is one of the most effective osmoprotectants, and unlike the various betaines does not require nitrogen for its synthesis. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 825 -274114 TIGR02402 trehalose_TreZ malto-oligosyltrehalose trehalohydrolase. Members of this family are the trehalose biosynthetic enzyme malto-oligosyltrehalose trehalohydrolase, formally known as 4-alpha-D-{(1->4)-alpha-D-glucano}trehalose trehalohydrolase (EC 3.2.1.141). It is the TreZ protein of the TreYZ pathway for trehalose biosynthesis, and alternative to the OtsAB system. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 544 -274115 TIGR02403 trehalose_treC alpha,alpha-phosphotrehalase. Trehalose is a glucose disaccharide that serves in many biological systems as a compatible solute for protection against hyperosmotic and thermal stress. This family describes trehalose-6-phosphate hydrolase, product of the treC (or treA) gene, which is often found together with a trehalose uptake transporter and a trehalose operon repressor. 543 -274116 TIGR02404 trehalos_R_Bsub trehalose operon repressor, B. subtilis-type. This family consists of repressors of the GntR family typically associated with trehalose utilization operons. Trehalose is imported as trehalose-6-phosphate and then hydrolyzed by alpha,alpha-phosphotrehalase to glucose and glucose-6-P. This family includes repressors mostly from Gram-positive lineages and does not include the TreR from E. coli. [Regulatory functions, DNA interactions] 233 -131458 TIGR02405 trehalos_R_Ecol trehalose operon repressor, proteobacterial. This family consists of repressors of the LacI family typically associated with trehalose utilization operons. Trehalose is imported as trehalose-6-phosphate and then hydrolyzed by alpha,alpha-phosphotrehalase to glucose and glucose-6-P. This family includes repressors mostly from Gammaproteobacteria and does not include the GntR family TreR of Bacillus subtilis [Regulatory functions, DNA interactions] 311 -131459 TIGR02406 ectoine_EctA diaminobutyrate acetyltransferase. This enzyme family is the EctA of ectoine biosynthesis. Ectoine is a compatible solute, analagous to trehalose, betaines, etc., found often in halotolerant organisms. EctA is L-2,4-diaminobutyric acid acetyltransferase, also called DABA acetyltransferase. [Cellular processes, Adaptations to atypical conditions] 157 -274117 TIGR02407 ectoine_ectB diaminobutyrate--2-oxoglutarate aminotransferase. Members of this family of class III pyridoxal-phosphate-dependent aminotransferases are diaminobutyrate--2-oxoglutarate aminotransferase (EC 2.6.1.76) that catalyze the first step in ectoine biosynthesis from L-aspartate beta-semialdehyde. This family is readily separated phylogenetically from enzymes with the same substrate and product but involved in other process such as siderophore (SP|Q9Z3R2) or 1,3-diaminopropane (SP|P44951) biosynthesis. The family TIGR00709 previously included both groups but has now been revised to exclude the ectoine biosynthesis proteins of this family. Ectoine is a compatible solute particularly effective in conferring salt tolerance. [Cellular processes, Adaptations to atypical conditions] 412 -131461 TIGR02408 ectoine_ThpD ectoine hydroxylase. Both ectoine and hydroxyectoine are compatible solvents that serve as protectants against osmotic and thermal stresses. A number of genomes synthesize ectoine. This enzyme allows conversion of ectoine to hydroxyectoine, which may be more effective for some purposes, and is found in a subset of ectoine-producing organisms. 277 -274118 TIGR02409 carnitine_bodg gamma-butyrobetaine hydroxylase. Members of this protein family are gamma-butyrobetaine hydroxylase, both bacterial and eukarytotic. This enzyme catalyzes the last step in the conversion of lysine to carnitine. Carnitine can serve as a compatible solvent in bacteria and also participates in fatty acid metabolism. 366 -274119 TIGR02410 carnitine_TMLD trimethyllysine dioxygenase. Members of this family with known function act as trimethyllysine dioxygenase, an enzyme in the pathway for carnitine biosynthesis from lysine. This enzyme is homologous to gamma-butyrobetaine,2-oxoglutarate dioxygenase, which catalyzes the last step in carnitine biosynthesis. Members of this family appear to be eukaryotic only. 362 -274120 TIGR02411 leuko_A4_hydro leukotriene A-4 hydrolase/aminopeptidase. Members of this family represent a distinctive subset within the zinc metallopeptidase family M1 (pfam01433). The majority of the members of pfam01433 are aminopeptidases, but the sequences in this family for which the function is known are leukotriene A-4 hydrolase. A dual epoxide hydrolase and aminopeptidase activity at the same active site is indicated. The physiological substrate for aminopeptidase activity is not known. 602 -274121 TIGR02412 pepN_strep_liv aminopeptidase N, Streptomyces lividans type. This family is a subset of the members of the zinc metallopeptidase family M1 (pfam01433), with a single member characterized in Streptomyces lividans 66 and designated aminopeptidase N. The spectrum of activity may differ somewhat from the aminopeptidase N clade of E. coli and most other Proteobacteria, well separated phylogenetically within the M1 family. The M1 family also includes leukotriene A-4 hydrolase/aminopeptidase (with a bifunctional active site). 831 -131466 TIGR02413 Bac_small_yrzI Bacillus tandem small hypothetical protein. Members of this family are very small proteins, about 47 residues each, in the genus Bacillus. Single members are found in Bacillus subtilis and Bacillus halodurans, but arrays of six in tandem in Bacillus cereus and Bacillus anthracis. An EIxxE motif present in most members of this family resembles cleavage sites by the germination protease GPR in a number small, acid-soluble spore proteins (SASP). A role in sporulation is possible. 46 -274122 TIGR02414 pepN_proteo aminopeptidase N, Escherichia coli type. The M1 family of zinc metallopeptidases contains a number of distinct, well-separated clades of proteins with aminopeptidase activity. Several are designated aminopeptidase N, EC 3.4.11.2, after the Escherichia coli enzyme, suggesting a similar activity profile (see SP|P04825 for a description of catalytic activity). This family consists of all aminopeptidases closely related to E. coli PepN and presumed to have similar (not identical) function. Nearly all are found in Proteobacteria, but members are found also in Cyanobacteria, plants, and apicomplexan parasites. This family differs greatly in sequence from the family of aminopeptidases typified by Streptomyces lividans PepN (TIGR02412), from the membrane bound aminopeptidase N family in animals, etc. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 863 -131468 TIGR02415 23BDH acetoin reductases. One member of this family, as characterized in Klebsiella terrigena, is described as able to interconvert acetoin + NADH with meso-2,3-butanediol + NAD(+). It is also called capable of irreversible reduction of diacetyl with NADH to acetoin. Blomqvist, et al. decline to specify either EC 1.1.1.4 which is (R,R)-butanediol dehydrogenase, or EC 1.1.1.5, which is acetoin dehydrogenase without a specified stereochemistry, for this enzyme. This enzyme is a homotetramer in the family of short chain dehydrogenases (pfam00106). Another member of this family, from Corynebacterium glutamicum, is called L-2,3-butanediol dehydrogenase (). [Energy metabolism, Fermentation] 254 -131469 TIGR02416 CO_dehy_Mo_lg carbon-monoxide dehydrogenase, large subunit. This model represents the large subunits of group of carbon-monoxide dehydrogenases that include molybdenum as part of the enzymatic cofactor. There are various forms of carbon-monoxide dehydrogenase; Salicibacter pomeroyi DSS-3, for example, has two forms. Note that, at least in some species, the active site Cys is modified with a selenium attached to (rather than replacing) the sulfur atom. This is termed selanylcysteine, and created post-translationally, in contrast to selenocysteine incorporation during translation as for many other selenoproteins. [Energy metabolism, Other] 770 -131470 TIGR02417 fruct_sucro_rep D-fructose-responsive transcription factor. Members of this family belong the lacI helix-turn-helix family (pfam00356) of DNA-binding transcriptional regulators. All members are from the proteobacteria. Characterized members act as positive and negative transcriptional regulators of fructose and sucrose transport and metabolism. Sucrose is a disaccharide composed of fructose and glucose; D-fructose-1-phosphate rather than an intact sucrose moiety has been shown to act as the inducer. [Regulatory functions, DNA interactions] 327 -131471 TIGR02418 acolac_catab acetolactate synthase, catabolic. Acetolactate synthase (EC 2.2.1.6) combines two molecules of pyruvate to yield 2-acetolactate with the release of CO2. This reaction may be involved in either valine biosynthesis (biosynthetic) or conversion of pyruvate to acetoin and possibly to 2,3-butanediol (catabolic). The biosynthetic type, described by TIGR00118, is also capable of forming acetohydroxybutyrate from pyruvate and 2-oxobutyrate for isoleucine biosynthesis. The family described here, part of the same larger family of thiamine pyrophosphate-dependent enzymes (pfam00205, pfam02776) is the catabolic form, generally found associated with in species with acetolactate decarboxylase and usually found in the same operon. The model may not encompass all catabolic acetolactate synthases, but rather one particular clade in the larger TPP-dependent enzyme family. [Energy metabolism, Fermentation] 539 -274123 TIGR02419 C4_traR_proteo phage/conjugal plasmid C-4 type zinc finger protein, TraR family. Members of this family are putative C4-type zinc finger proteins found almost exclusively in prophage regions, actual phage, or conjugal transfer regions of the Proteobactia. This small protein (about 70 amino acids) appears homologous to but is smaller than DksA (DnaK suppressor protein), found to be critical for regulating transcription of ribosomal RNA. [Mobile and extrachromosomal element functions, Prophage functions] 63 -274124 TIGR02420 dksA RNA polymerase-binding protein DksA. The model that is the basis for this family describes a small, pleiotropic protein, DksA (DnaK suppressor A), originally named as a multicopy suppressor of temperature sensitivity of dnaKJ mutants. DksA mutants are defective in quorum sensing, virulence, etc. DksA is now understood to bind RNA polymerase directly and modulate its response to small molecules to control the level of transcription of rRNA. Nearly all members of this family are in the Proteobacteria. Whether the closest homologs outside the Proteobacteria function equivalently is unknown. The low value set for the noise cutoff allows identification of possible DksA proteins from outside the proteobacteria. TIGR02419 describes a closely related family of short sequences usually found in prophage regions of proteobacterial genomes or in known phage. [Transcription, Transcription factors, Regulatory functions, Small molecule interactions] 110 -274125 TIGR02421 QEGLA conserved hypothetical protein. Members of this family include a possible metal-binding motif HEXXXH and, nearby, a perfectly conserved motif QEGLA. All members belong to the Proteobacteria, including Agrobacterium tumefaciens and several species of Vibrio and Pseudomonas, and are found in only one copy per chromosome (Vibrio vulnificus, with two chromosomes, has two). The function is unknown. 366 -131475 TIGR02422 protocat_beta protocatechuate 3,4-dioxygenase, beta subunit. This model represents the beta chain of protocatechuate 3,4-dioxygenase. The most closely related family outside this family is that of the alpha chain (TIGR02423), typically encoded in an adjacent locus. This enzyme acts in the degradation of aromatic compounds by way of p-hydroxybenzoate to succinate and acetyl-CoA. [Energy metabolism, Other] 220 -274126 TIGR02423 protocat_alph protocatechuate 3,4-dioxygenase, alpha subunit. This model represents the alpha chain of protocatechuate 3,4-dioxygenase. The most closely related family outside this family is that of the beta chain (TIGR02422), typically encoded in an adjacent locus. This enzyme acts in the degradation of aromatic compounds by way of p-hydroxybenzoate to succinate and acetyl-CoA. [Energy metabolism, Other] 193 -274127 TIGR02424 TF_pcaQ pca operon transcription factor PcaQ. Members of this family are LysR-family transcription factors associated with operons for catabolism of protocatechuate. Members occur only in Proteobacteria. [Energy metabolism, Other, Regulatory functions, DNA interactions] 300 -131478 TIGR02425 decarb_PcaC 4-carboxymuconolactone decarboxylase. Members of this family are 4-carboxymuconolactone decarboxylase, which catalyzes the third step in the catabolism of protocatechuate (and therefore the fourth step in the catabolism of para-hydroxybenzoate, of 3-hydroxybenzoate, of vanillate, etc.). Most members of this family are encoded within protocatechuate catabolism operons. This protein is sometimes found as a fusion protein with other enzymes of the pathway, as in Rhodococcus opacus, Streptomyces avermitilis, and Caulobacter crescentus. [Energy metabolism, Other] 123 -274128 TIGR02426 protocat_pcaB 3-carboxy-cis,cis-muconate cycloisomerase. Members of this family are 3-carboxy-cis,cis-muconate cycloisomerase, the enzyme the catalyzes the second step in the protocatechuate degradation to beta-ketoadipate and then to succinyl-CoA and acetyl-CoA. 4-hydroxybenzoate, 3-hydroxybenzoate, and vanillate all can be converted in one step to protocatechuate. All members of the seed alignment for this model were chosen from within protocatechuate degradation operons of at least three genes of the pathway, from genomes with the complete pathway through beta-ketoadipate. [Energy metabolism, Other] 338 -131480 TIGR02427 protocat_pcaD 3-oxoadipate enol-lactonase. Members of this family are 3-oxoadipate enol-lactonase. Note that the substrate is known as 3-oxoadipate enol-lactone, 2-oxo-2,3-dihydrofuran-5-acetate, 4,5-Dihydro-5-oxofuran-2-acetate, and 5-oxo-4,5-dihydrofuran-2-acetate. The enzyme the catalyzes the fourth step in the protocatechuate degradation to beta-ketoadipate and then to succinyl-CoA and acetyl-CoA. 4-hydroxybenzoate, 3-hydroxybenzoate, and vanillate all can be converted in one step to protocatechuate. This enzyme also acts in catechol degradation. In genomes that catabolize both catechol and protocatechuate, two forms of this enzyme may be found. All members of the seed alignment for this model were chosen from within protocatechuate degradation operons of at least three genes of the pathway, from genomes with the complete pathway through beta-ketoadipate. [Energy metabolism, Other] 251 -188219 TIGR02428 pcaJ_scoB_fam 3-oxoacid CoA-transferase, B subunit. Various members of this family are characterized as the B subunits of succinyl-CoA:3-ketoacid-CoA transferase (EC 2.8.3.5), beta-ketoadipate:succinyl-CoA transferase (EC 2.8.3.6), acetyl-CoA:acetoacetate CoA transferase (EC 2.8.3.8), and butyrate-acetoacetate CoA-transferase (EC 2.8.3.9). This represents a very distinct clade with strong sequence conservation within the larger family defined by pfam01144. The A subunit represents a different clade in pfam01144. 207 -131482 TIGR02429 pcaI_scoA_fam 3-oxoacid CoA-transferase, A subunit. Various members of this family are characterized as the A subunits of succinyl-CoA:3-ketoacid-CoA transferase (EC 2.8.3.5), beta-ketoadipate:succinyl-CoA transferase (EC 2.8.3.6), acetyl-CoA:acetoacetate CoA transferase (EC 2.8.3.8), and butyrate-acetoacetate CoA-transferase (EC 2.8.3.9). This represents a very distinct clade with strong sequence conservation within the larger family defined by pfam01144. The B subunit represents a different clade in pfam01144, described by TIGR02428. The two are found in general as tandem genes and occasionally as a fusion. 222 -131483 TIGR02430 pcaF 3-oxoadipyl-CoA thiolase. Members of this family are designated beta-ketoadipyl CoA thiolase, an enzyme that acts at the end of pathways for the degradation of protocatechuate (from benzoate and related compounds) and of phenylacetic acid. 400 -131484 TIGR02431 pcaR_pcaU beta-ketoadipate pathway transcriptional regulators, PcaR/PcaU/PobR family. Member of this family are IclR-type transcriptional regulators with similar DNA binding sites, able to bind at least three different metabolites related to protocatechuate metabolism. Beta-ketoadipate is the inducer for PcaR, p-hydroxybenzoate for PobR, and protocatechuate for PcaU. [Regulatory functions, DNA interactions] 248 -274129 TIGR02432 lysidine_TilS_N tRNA(Ile)-lysidine synthetase, N-terminal domain. The only examples in which the wobble position of a tRNA must discriminate between G and A of mRNA are AUA (Ile) vs. AUG (Met) and UGA (stop) vs. UGG (Trp). In all bacteria, the wobble position of the tRNA(Ile) recognizing AUA is lysidine, a lysine derivative of cytidine. This family describes a protein domain found, apparently, in all bacteria in a single copy. Eukaryotic sequences appear to be organellar. The domain archictecture of this protein family is variable; some, including characterized proteins of E. coli and B. subtilis known to be tRNA(Ile)-lysidine synthetase, include a conserved 50-residue domain that many other members lack. This protein belongs to the ATP-binding PP-loop family ( pfam01171). It appears in the literature and protein databases as TilS, YacA, and putative cell cycle protein MesJ (a misnomer). [Protein synthesis, tRNA and rRNA base modification] 189 -274130 TIGR02433 lysidine_TilS_C tRNA(Ile)-lysidine synthetase, C-terminal domain. TIGRFAMs model TIGR02432 describes the family of the N-terminal domain of tRNA(Ile)-lysidine synthetase. This family (TIGR02433) describes a small C-terminal domain of about 50 residues present in about half the members of family TIGR02432,and in no other protein. Characterized examples of tRNA(Ile)-lysidine synthetase from E. coli and Bacillus subtilis both contain this domain. [Protein synthesis, tRNA and rRNA base modification] 47 -131487 TIGR02434 CobF precorrin-6A synthase (deacetylating). In the aerobic cobalamin biosythesis pathway, four enzymes are involved in the conversion of precorrin-3A to precorrin-6A. The first of the four steps is carried out by EC 1.14.13.83, precorrin-3B synthase (CobG), yielding precorrin-3B as the product. This is followed by three methylation reactions, which introduce a methyl group at C-17 (CobJ; EC 2.1.1.131), C-11 (CobM; EC 2.1.1.133) and C-1 (CobF; EC 2.1.1.152) of the macrocycle, giving rise to precorrin-4, precorrin-5 and precorrin-6A, respectively. This model identifies CobF in High GC gram positive, alphaproteobacteria and pseudomonas-related species. 249 -274131 TIGR02435 CobG precorrin-3B synthase. An iron-sulfur protein. An oxygen atom from dioxygen is incorporated into the macrocycle at C-20. In the aerobic cobalamin biosythesis pathway, four enzymes are involved in the conversion of precorrin-3A to precorrin-6A. The first of the four steps is carried out by EC 1.14.13.83, precorrin-3B synthase (CobG), yielding precorrin-3B as the product. This is followed by three methylation reactions, which introduce a methyl group at C-17 (CobJ; EC 2.1.1.131), C-11 (CobM; EC 2.1.1.133) and C-1 (CobF; EC 2.1.1.152) of the macrocycle, giving rise to precorrin-4, precorrin-5 and precorrin-6A, respectively. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 390 -274132 TIGR02436 TIGR02436 four helix bundle protein. This family describes a protein of unknown function whose structure is a bundle of four long alpha helices. Some of the first members of this family were found encoded in the (atypically large) intervening sequence (IVS) of Leptospira 23S RNA, a region often present in the rRNA gene and removed during rRNA processing without re-ligation. However, this location is not conserved, and naming this protein as a 23S RNA protein is both confusing and inaccurate. 108 -131490 TIGR02437 FadB fatty oxidation complex, alpha subunit FadB. Members represent alpha subunit of multifunctional enzyme complex of the fatty acid degradation cycle. Activities include: enoyl-CoA hydratase (EC 4.2.1.17), dodecenoyl-CoA delta-isomerase activity (EC 5.3.3.8), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), 3-hydroxybutyryl-CoA epimerase (EC 5.1.2.3). A representative is E. coli FadB (SP:P21177). This model excludes the FadJ family represented by SP:P77399. [Fatty acid and phospholipid metabolism, Degradation] 714 -274133 TIGR02438 catachol_actin catechol 1,2-dioxygenase, Actinobacterial. Members of this family are catechol 1,2-dioxygenases of the Actinobacteria. They are more closely related to actinobacterial chlorocatechol 1,2-dioxygenases than to proteobacterial catechol 1,2-dioxygenases, and so are built in this separate model. The member from Rhodococcus rhodochrous NCIMB 13259 (GB|AAC33003.1) is described as a homodimer with bound Fe, similarly active on catechol, 3-methylcatechol and 4-methylcatechol. 281 -274134 TIGR02439 catechol_proteo catechol 1,2-dioxygenase, proteobacterial. Members of this family known so far are catechol 1,2-dioxygenases of the Proteobacteria. They are distinct from catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases of the Actinobacteria, which are quite similar to each other and resolved by separate models. This enzyme catalyzes intradiol cleavage in which catechol + O2 becomes cis,cis-muconate. Catechol is an intermediate in the catabolism of many different aromatic compounds, as is the alternative intermediate protocatechuate. In Acinetobacter lwoffii, two isozymes are present with abilities, differing somewhat, to act on catechol analogs 3-methylcatechol, 4-methylcatechol, 4-methoxycatechol, and 4-chlorocatechol. [Energy metabolism, Other] 285 -131493 TIGR02440 FadJ fatty oxidation complex, alpha subunit FadJ. Members represent alpha subunit of multifunctional enzyme complex of the fatty acid degradation cycle. Plays a minor role in aerobic beta-oxidation of fatty acids. FadJI complex is necessary for anaerobic growth on short-chain acids with nitrate as an electron acceptor. Activities include: enoyl-CoA hydratase (EC 4.2.1.17),3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), 3-hydroxybutyryl-CoA epimerase (EC 5.1.2.3). A representative is E. coli FadJ (aka YfcX) (SP:P77399). This model excludes the FadB of TIGR02437 equivalog model. [Fatty acid and phospholipid metabolism, Degradation] 699 -131494 TIGR02441 fa_ox_alpha_mit fatty acid oxidation complex, alpha subunit, mitochondrial. Members represent alpha subunit of mitochondrial multifunctional fatty acid degradation enzyme complex. Subunit activities include: enoyl-CoA hydratase (EC 4.2.1.17) & 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). Some characterization in human (SP:P40939), pig (SP:Q29554), and rat (SP:Q64428). The beta subunit has activity: acetyl-CoA C-acyltransferase (EC 2.3.1.16). 737 -274135 TIGR02442 Cob-chelat-sub cobaltochelatase subunit. Cobaltochelatase is responsible for the insertion of cobalt into the corrin ring of coenzyme B12 during its biosynthesis. Two versions have been well described. CbiK/CbiX is a monomeric, anaerobic version which acts early in the biosynthesis (pfam06180). CobNST is a trimeric, ATP-dependent, aerobic version which acts late in the biosynthesis (TIGR02257/TIGR01650/TIGR01651). A number of genomes (actinobacteria, cyanobacteria, betaproteobacteria and pseudomonads) which apparently biosynthesize B12, encode a cobN gene but are demonstrably lacking cobS and cobT. These genomes do, however contain a homolog (modelled here) of the magnesium chelatase subunits BchI/BchD family. Aside from the cyanobacteria (which have a separate magnesium chelatase trimer), these species do not make chlorins, so do not have any use for a magnesium chelatase. Furthermore, in nearly all cases the members of this family are proximal to either CobN itself or other genes involved in cobalt transport or B12 biosynthesis. 633 -131496 TIGR02443 TIGR02443 conserved hypothetical metal-binding protein. Members of this family are small proteins, about 70 residues in length, with a basic triplet near the N-terminus and a probable metal-binding motif CPXCX(18)CXXC. Members are found in various Proteobacteria. 59 -274136 TIGR02444 TIGR02444 TIGR02444 family protein. Members of this family are bacterial hypothetical proteins, about 160 amino acids in length, found in various Proteobacteria, including members of the genera Pseudomonas and Vibrio. The C-terminal region is poorly conserved and is not included in the model. [Hypothetical proteins, Conserved] 116 -131498 TIGR02445 fadA fatty oxidation complex, beta subunit FadA. This subunit of the FadBA complex has acetyl-CoA C-acyltransferase (EC 2.3.1.16) activity, and is also known as beta-ketothiolase and fatty oxidation complex, beta subunit. This protein is almost always located adjacent to FadB (TIGR02437). The FadBA complex is the major complex active for beta-oxidation of fatty acids in E. coli. [Fatty acid and phospholipid metabolism, Degradation] 385 -131499 TIGR02446 FadI fatty oxidation complex, beta subunit FadI. This subunit of the FadJI complex has acetyl-CoA C-acyltransferase (EC 2.3.1.16) activity, and is also known as beta-ketothiolase and fatty oxidation complex, beta subunit, and YfcY. This protein is almost always located adjacent to FadJ (TIGR02440). The FadJI complex is needed for anaerobic beta-oxidation of short-chain fatty acids in E. coli. [Fatty acid and phospholipid metabolism, Degradation] 430 -131500 TIGR02447 yiiD_Cterm thioesterase domain, putative. This family consists of a broadly distributed uncharacterized domain found often as a standalone protein. The member from Shewanella oneidensis, PDB|1T82_A (Forouhar, et al., unpublished) is described from crystallography work as a putative thioesterase. About half of the members of this family are fused to an Acetyltransf_1 domain (pfam00583). The function of this protein is unknown. 138 -274137 TIGR02448 TIGR02448 conserverd hypothetical protein. This family consists of small hypothetical proteins, about 100 amino acids in length. The family includes five members (three in tandem) in Pseudomonas aeruginosa PAO1, and also in Pseudomonas putida KT2440, four in Pseudomonas syringae DC3000, and single members in several other Proteobacteria. The function is unknown. 101 -131502 TIGR02449 TIGR02449 TIGR02449 family protein. Members of this family are small proteins, typically 73 amino acids in length, with single copies in each of several Proteobacteria, including Xylella fastidiosa, Pseudomonas aeruginosa, and Xanthomonas campestris. The function is unknown. 65 -131503 TIGR02450 TIGR02450 tryptophan-rich conserved hypothetical protein. Members of this family are small hypothetical proteins of 60 to 100 residues from Cyanobacteria and some Proteobacteria. Prochlorococcus marinus strains have two members, other species one only. Interestingly, of the eight most conserved residues, four are aromatic and three are invariant tryptophans. It appears all species that encode this protein can synthesize tryptophan de novo. 61 -131504 TIGR02451 anti_sig_ChrR anti-sigma factor, putative, ChrR family. The member of this family from Rhodobacter sphaeroides has been shown both to form a complex with sigma(E) and to negatively regulate tetrapyrrole biosynthesis. This protein likely contains (at least) two distinct functional domains; several smaller homologs (excluded by the model) show homology only to the C-terminal, including a motif PxHxHxGxE. [Regulatory functions, Other] 215 -131505 TIGR02452 TIGR02452 TIGR02452 family protein. Members of this uncharacterized protein family are found in Streptomyces, Nostoc sp. PCC 7120, Clostridium acetobutylicum, Lactobacillus johnsonii NCC 533, Deinococcus radiodurans, and Pirellula sp. for a broad but sparse phylogenetic distibution that at least suggests lateral gene transfer. 266 -274138 TIGR02453 TIGR02453 TIGR02453 family protein. Members of this family are widely (though sparsely) distributed bacterial proteins about 230 residues in length. All members have a motif RxxRDxRFxxx[DN]KxxY. The function of this protein family is unknown. In several fungi, this model identifies a conserved region of a longer protein. Therefore, it may be incorrect to speculate that all members share a common function. 217 -274139 TIGR02454 ECF_T_CbiQ cobalt ECF transporter T component CbiQ. This model represents the CbiQ component of the cobalt-specific ECF-type. CbiQ is now recognized as the T component of energy-coupling factor (ECF)-type transporters. The S component confers specificity (CbiM-N for cobalt systems), which CbiO is the ABC-family ATPase. In general, proteins found by this model reside next to the other putative subunits of the complex, identified as CbiN, CbiO, or CbiM. Note that the designation of cobalt transporter has been spread excessively among ECF system transporters with many other specificities. [Transport and binding proteins, Cations and iron carrying compounds] 198 -131508 TIGR02455 TreS_stutzeri trehalose synthase, Pseudomonas stutzeri type. Trehalose synthase catalyzes a one-step conversion of maltose to trehalose. This is an alternative to the OtsAB and TreYZ pathways. This family includes a characterized example from Pseudomonas stutzeri plus very closely related sequences from other Pseudomonads. Cutoff scores are set to find a more distantly related sequence from Desulfovibrio vulgaris, likely to be functionally equivalent, between trusted and noise limits. [Energy metabolism, Biosynthesis and degradation of polysaccharides, Cellular processes, Adaptations to atypical conditions] 688 -274140 TIGR02456 treS_nterm trehalose synthase. Trehalose synthase interconverts maltose and alpha, alpha-trehalose by transglucosylation. This is one of at least three mechanisms for biosynthesis of trehalose, an important and widespread compatible solute. However, it is not driven by phosphate activation of sugars and its physiological role may tend toward trehalose degradation. This view is accentuated by numerous examples of fusion to a probable maltokinase domain. The sequence region described by this model is found both as the whole of a trehalose synthase and as the N-terminal region of a larger fusion protein that includes trehalose synthase activity. Several of these fused trehalose synthases have a domain homologous to proteins with maltokinase activity from Actinoplanes missouriensis and Streptomyces coelicolor (). [Energy metabolism, Biosynthesis and degradation of polysaccharides] 539 -274141 TIGR02457 TreS_Cterm trehalose synthase-fused probable maltokinase. Three pathways for the biosynthesis of trehalose, an osmoprotectant that in some species is also a precursor of certain cell wall glycolipids. Trehalose synthase, TreS, can interconvert maltose and trehalose, but while the equilibrium may favor trehalose, physiological concentrations of trehalose may be much greater than that of maltose and TreS may act largely in its degradation. This model describes a domain found only as a C-terminal fusion to TreS proteins. The most closely related proteins outside this family, Pep2 of Streptomyces coelicolor and Mak1 of Actinoplanes missouriensis, have known maltokinase activity. We suggest this domain acts as a maltokinase and helps drive conversion of trehalose to maltose. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 528 -274142 TIGR02458 CbtA cobalt transporter subunit CbtA (proposed). This model represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of five trans-membrane segments, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a small protein (CbtB) having a single additional trans-membrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site. 225 -131512 TIGR02459 CbtB cobalt transporter subunit CbtB (proposed). This model represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of a single trans-membrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a protein (CbtA) predicted to have five additional trans-membrane segments. 60 -162866 TIGR02460 osmo_MPGsynth mannosyl-3-phosphoglycerate synthase. This family consists of examples of mannosyl-3-phosphoglycerate synthase (MPGS), which together mannosyl-3-phosphoglycerate phosphatase (MPGP) comprises a two-step pathway for mannosylglycerate biosynthesis. Mannosylglycerate is a compatible solute that tends to be restricted to extreme thermophiles of archaea and bacteria. Note that in Rhodothermus marinus, this pathway is one of two; the other is condensation of GDP-mannose with D-glycerate by mannosylglycerate synthase. 381 -131514 TIGR02461 osmo_MPG_phos mannosyl-3-phosphoglycerate phosphatase. Members of this family are mannosyl-3-phosphoglycerate phosphatase (EC 3.1.3.70). It acts sequentially after mannosyl-3-phosphoglycerate synthase (EC 2.4.1.217) in a two-step pathway of biosynthesis of the compatible solute mannosylglycerate, a typical osmolyte of thermophiles. 225 -274143 TIGR02462 pyranose_ox pyranose oxidase. Pyranose oxidase (also called glucose 2-oxidase) converts D-glucose and molecular oxygen to 2-dehydro-D-glucose and hydrogen peroxide. Peroxide production is believed to be important to the wood rot fungi in which this enzyme is found for lignin degradation. 547 -131516 TIGR02463 MPGP_rel mannosyl-3-phosphoglycerate phosphatase-related protein. This family consists of members of the HAD superfamily, subfamily IIB. All members are closely related to mannosyl-3-phosphoglycerate phosphatase, the second enzyme in a two-step pathway for biosynthesis of mannosylglycerate, a compatible solute present in some thermophiles and in Dehalococcoides ethenogenes. However, members of this family are separable in a neighbor-joining tree constructed from a multiple sequence alignment and are found only in mesophiles that lack the companion mannosyl-3-phosphoglycerate synthase (TIGR02460). Members of this family are like to act on a compound related to yet distinct from mannosyl-3-phosphoglycerate. [Unknown function, General] 221 -274144 TIGR02464 ribofla_fusion conserved hypothetical protein, ribA/ribD-fused. This model describes a sequence region that occurs in at least three different polypeptide contexts. It is found fused to GTP cyclohydrolase II, the RibA of riboflavin biosynthesis (TIGR00505), as in Vibrio vulnificus. It is found fused to riboflavin biosynthesis protein RibD (TIGR00326) in rice and Arabidopsis. It occurs as a standalone protein in a number of bacterial species in varied contexts, including single gene operons and bacteriophage genomes. The member from E. coli currently is named YbiA. The function(s) of members of this family is unknown. 153 -131518 TIGR02465 chlorocat_1_2 chlorocatechol 1,2-dioxygenase. Members of this protein family are chlorocatechol 1,2-dioxygenase. This protein is closely related to catechol 1,2-dioxygenase, TIGR02439, EC 1.13.11.1. Note that annotated database entries have appeared for the present protein family with the EC number that refers to that of family TIGR02439. This protein acts in pathways of the biodegradation of chlorinated aromatic compounds. 246 -274145 TIGR02466 TIGR02466 conserved hypothetical protein. This family consists of uncharacterized proteins in Caulobacter crescentus CB15, Bdellovibrio bacteriovorus HD100, Synechococcus sp. WH 8102, Silicibacter pomeroyi DSS-3, and Hyphomonas neptunium ATCC 15444. The context of nearby genes differs substantially between members and does point to any specific biological role. [Hypothetical proteins, Conserved] 201 -274146 TIGR02467 CbiE precorrin-6y C5,15-methyltransferase (decarboxylating), CbiE subunit. This model recognizes the CbiE methylase which is responsible, in part (along with CbiT), for methylating precorrin-6y (or cobalt-precorrin-6y) at both the 5 and 15 positions as well as the concomitant decarbozylation at C-12. In many organisms, this protein is fused to the CbiT subunit. The fused protein, when found in organisms catalyzing the oxidative version of the cobalamin biosynthesis pathway, is called CobL. 204 -274147 TIGR02468 sucrsPsyn_pln sucrose phosphate synthase/possible sucrose phosphate phosphatase, plant. Members of this family are sucrose-phosphate synthases of plants. This enzyme is known to exist in multigene families in several species of both monocots and dicots. The N-terminal domain is the glucosyltransferase domain. Members of this family also have a variable linker region and a C-terminal domain that resembles sucrose phosphate phosphatase (SPP) (EC 3.1.3.24) (see TIGR01485), the next and final enzyme of sucrose biosynthesis. The SPP-like domain likely serves a binding and not a catalytic function, as the reported SPP is always encoded by a distinct protein. 1050 -274148 TIGR02469 CbiT precorrin-6Y C5,15-methyltransferase (decarboxylating), CbiT subunit. This model recognizes the CbiT methylase which is responsible, in part (along with CbiE), for methylating precorrin-6y (or cobalt-precorrin-6y) at both the 5 and 15 positions as well as the concomitant decarbozylation at C-12. In many organisms, this protein is fused to the CbiE subunit. The fused protein, when found in organisms catalyzing the oxidative version of the cobalamin biosynthesis pathway, is called CobL. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 124 -274149 TIGR02470 sucr_synth sucrose synthase. This model represents sucrose synthase, an enzyme that, despite its name, generally uses rather produces sucrose. Sucrose plus UDP (or ADP) becomes D-fructose plus UDP-glucose (or ADP-glucose), which is then available for cell wall (or starch) biosynthesis. The enzyme is homologous to sucrose phosphate synthase, which catalyzes the penultimate step in sucrose synthesis. Sucrose synthase is found, so far, exclusively in plants and cyanobacteria. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 784 -131524 TIGR02471 sucr_syn_bact_C sucrose-phosphate synthase, sucrose phosphatase-like domain, bacterial. Sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP) are the last two enzymes of sucrose biosynthesis. In cyanobacteria and plants, the C-terminal region of most or all versions of SPS has a domain homologous to the known SPP. This domain may serve a binding or regulatory rather than catalytic function. Sequences in this family are bacterial C-terminal regions found in all but two of the putative bacterial sucrose phosphate synthases described by TIGR02472. 236 -131525 TIGR02472 sucr_P_syn_N sucrose-phosphate synthase, putative, glycosyltransferase domain. This family consists of the N-terminal regions, or in some cases the entirety, of bacterial proteins closely related to plant sucrose-phosphate synthases (SPS). The C-terminal domain (TIGR02471), found with most members of this family, resembles both bona fide plant sucrose-phosphate phosphatases (SPP) and the SPP-like domain of plant SPS. At least two members of this family lack the SPP-like domain, which may have binding or regulatory rather than enzymatic activity by analogy to plant SPS. This enzyme produces sucrose 6-phosphate and UDP from UDP-glucose and D-fructose 6-phosphate, and may be encoded near the gene for fructokinase. 439 -131526 TIGR02473 flagell_FliJ flagellar export protein FliJ. Members of this family are the FliJ protein found, in nearly every case, in the midst of other flagellar biosynthesis genes in bacgterial genomes. Typically the fliJ gene is found adjacent to the gene for the flagellum-specific ATPase FliI. Sequence scoring in the gray zone between trusted and noise cutoffs include both probable FliJ proteins and components of bacterial type III secretion systems. 141 -274150 TIGR02474 pec_lyase pectate lyase, PelA/Pel-15E family. Members of this family are isozymes of pectate lyase (EC 4.2.2.2), also called polygalacturonic transeliminase and alpha-1,4-D-endopolygalacturonic acid lyase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 290 -274151 TIGR02475 CobW cobalamin biosynthesis protein CobW. The family of proteins identified by this model is generally found proximal to the trimeric cobaltochelatase subunit CobN which is essential for vitamin B12 (cobalamin) biosynthesis. The protein contains an P-loop nucleotide-binding loop in the N-terminal domain and a histidine-rich region in the C-terminal portion suggesting a role in metal binding, possibly as an intermediary between the cobalt transport and chelation systems. A broader CobW family is delineated by two Pfam models which identify the N- and C-terminal domains (pfam02492 and pfam07683). [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 341 -162875 TIGR02476 BluB 5,6-dimethylbenzimidazole synthase. A previously published hypothesis that BluB, involved in cobalamin biosynthesis, is EC 1.16.8.1 (cob(II)yrinic acid a,c-diamide reductase) is now contradicted by newer work ascribing a role in 5,6-dimethylbenzimidazole (DMB) biosynthesis. The BluB protein is related to the nitroreductase family (pfam0881). [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 205 -131530 TIGR02477 PFKA_PPi diphosphate--fructose-6-phosphate 1-phosphotransferase. Diphosphate--fructose-6-phosphate 1-phosphotransferase catalyzes the addition of phosphate from diphosphate (PPi) to fructose 6-phosphate to give fructose 1,6-bisphosphate (EC 2.7.1.90). The enzyme is also known as pyrophosphate-dependent phosphofructokinase. The usage of PPi-dependent enzymes in glycolysis presumably frees up ATP for other processes. TIGR02482 represents the ATP-dependent 6-phosphofructokinase enzyme contained within pfam00365: Phosphofructokinase. This model hits primarily bacterial, plant alpha, and plant beta sequences. [Energy metabolism, Glycolysis/gluconeogenesis] 539 -274152 TIGR02478 6PF1K_euk 6-phosphofructokinase, eukaryotic type. Members of this family are eukaryotic (with one exception) ATP-dependent 6-phosphofructokinases (EC 2.7.1.11) in which two tandem copies of the phosphofructokinase are found. Members are found, often including several isozymes, in animals and fungi and in the bacterium Propionibacterium acnes KPA171202 (a human skin commensal). 746 -274153 TIGR02479 FliA_WhiG RNA polymerase sigma factor, FliA/WhiG family. Most members of this family are the flagellar operon sigma factor FliA, controlling transcription of bacterial flagellar genes by RNA polymerase. An exception is the sigma factor WhiG in the genus Streptomyces, involved in the production of sporulating aerial mycelium. 224 -131533 TIGR02480 fliN flagellar motor switch protein FliN. Proteins that consist largely of the domain described by this model for this protein family can be designated flagellar motor switch protein FliN. Longer proteins in which this region is a C-terminal domain typically are designated FliY. More distantly related sequences, outside the scope of this family, are associated with type III secretion and include the surface presentation of antigens protein SpaO required or invasion of host cells by Salmonella enterica. [Cellular processes, Chemotaxis and motility] 77 -274154 TIGR02481 hemeryth_dom hemerythrin-like metal-binding domain. This model describes both members of the hemerythrin (TIGR00058) family of marine invertebrates and a broader collection of bacterial and archaeal homologs. Many of the latter group are multidomain proteins with signal-transducing domains such as the GGDEF diguanylate cyclase domain (TIGR00254, pfam00990) and methyl-accepting chemotaxis protein signaling domain (pfam00015). Most hemerythrins are oxygen-carriers with a bound non-heme iron, but at least one example is a cadmium-binding protein, apparently with a role in sequestering toxic metals rather than in binding oxygen. Patterns of conserved residues suggest that all prokaryotic instances of this domain bind iron or another heavy metal, but the exact function is unknown. Not surprisingly, the prokaryote with the most instances of this domain is Magnetococcus sp. MC-1, a magnetotactic bacterium. 126 -213713 TIGR02482 PFKA_ATP 6-phosphofructokinase. 6-phosphofructokinase (EC 2.7.1.11) catalyzes the addition of phosphate from ATP to fructose 6-phosphate to give fructose 1,6-bisphosphate. This represents a key control step in glycolysis. This model hits bacterial ATP-dependent 6-phosphofructokinases which lack a beta-hairpin loop present in TIGR02483 family members. TIGR02483 contains members that are ATP-dependent as well as members that are pyrophosphate-dependent. TIGR02477 represents the pyrophosphate-dependent phosphofructokinase, diphosphate--fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90). [Energy metabolism, Glycolysis/gluconeogenesis] 301 -274155 TIGR02483 PFK_mixed phosphofructokinase. Members of this family that are characterized, save one, are phosphofructokinases dependent on pyrophosphate (EC 2.7.1.90) rather than ATP (EC 2.7.1.11). The exception is one of three phosphofructokinases from Streptomyces coelicolor. Family members are both bacterial and archaeal. [Energy metabolism, Glycolysis/gluconeogenesis] 324 -274156 TIGR02484 CitB CitB domain protein. This model identifies proteins of two distinct names which may or may not have two distinct functions. CitB has been identified in salmonella and E. coli as the signal transduction component of a two-component system for citrate in which CitA acts as a citrate transporter. CobZ is essential for cobalamin biosynthesis (by knockout of the R. capsulatus gene) and is complemented by the characterized precorrin 3B synthase CobG. The enzyme has been shown to contain flavin, heme and Fe-S cluster cofactors and is believed to require dioxygen as a substrate. This model identifies the C-terminal domain of the R. capsulatus CobZ, which, in most other species exists as a separate gene adjacent to CobZ. 372 -274157 TIGR02485 CobZ_N-term precorrin 3B synthase CobZ. CobZ is essential for cobalamin biosynthesis (by knockout of the R. capsulatus gene) and is complemented by the characterized precorrin 3B synthase CobG. The enzyme has been shown to contain flavin, heme and Fe-S cluster cofactors and is believed to require dioxygen as a substrate. This model identifies the N-terminal portion of the R. capsulatus gene which, in other species exists as a separate protein. The C-terminal portion is homologous to the 2-component signal transduction system protein CitB (TIGR02484). [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 432 -274158 TIGR02486 RDH reductive dehalogenase. This model represents a family of corrin and 8-iron Fe-S cluster-containing reductive dehalogenases found primarily in halorespiring microorganisms such as dehalococcoides ethenogenes which contains as many as 17 enzymes of this type with varying substrate ranges. One example of a characterized species is the tetrachloroethene reductive dehalogenase (1.97.1.8) which also acts on trichloroethene converting it to dichloroethene. 314 -274159 TIGR02487 NrdD anaerobic ribonucleoside-triphosphate reductase. This model represents the oxygen-sensitive (anaerobic, class III) ribonucleotide reductase. The mechanism of the enzyme involves a glycine-centered radical, a C-terminal zinc binding site, and a set of conserved active site cysteines and asparagines. This enzyme requires an activating component, NrdG, a radical-SAM domain containing enzyme (TIGR02491). Together the two form an alpha-2/beta-2 heterodimer. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 579 -131541 TIGR02488 flgG_G_neg flagellar basal-body rod protein FlgG, Gram-negative bacteria. This family consists of the FlgG protein of the flagellar apparatus in the Proteobacteria and spirochetes. [Cellular processes, Chemotaxis and motility] 259 -131542 TIGR02489 flgE_epsilon flagellar hook protein FlgE, epsilon proteobacterial. Members of this family are flagellar hook proteins, designated FlgE, as found in the epsilon subdivision of the Proteobacteria (Helicobacter, Wolinella, and Campylobacter). These proteins differ significantly in architecture from proteins designated FlgE in other lineages; the N-terminal and C-terminal domains are homologous, but members of this family only contain a large central domain that is surface-exposed and variable between strains. 719 -274160 TIGR02490 flgF flagellar basal-body rod protein FlgF. Members of this protein are FlgF, one of several homologous flagellar basal-body rod proteins in bacteria. [Cellular processes, Chemotaxis and motility] 89 -274161 TIGR02491 NrdG anaerobic ribonucleoside-triphosphate reductase activating protein. This enzyme is a member of the radical-SAM family (pfam04055) and utilizes S-adenosyl methionine, an iron-sulfur cluster and a reductant (dihydroflavodoxin) to produce a glycine-centered radical in the class III (anaerobic) ribonucleotide triphosphate reductase (NrdD, TIGR02487). The two components form an alpha-2/beta-2 heterodimer. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism, Protein fate, Protein modification and repair] 154 -274162 TIGR02492 flgK_ends flagellar hook-associated protein FlgK. The flagellar hook-associated protein FlgK of bacterial flagella has conserved N- and C-terminal domains. The central region is highly variable in length and sequence, and often contains substantial runs of low-complexity sequence. This model is built from an alignment of FlgK sequences with the central region excised. Note that several other proteins of the flagellar apparatus also are homologous in the N- and C-terminal regions to FlgK, but are excluded from this model. [Cellular processes, Chemotaxis and motility] 323 -131546 TIGR02493 PFLA pyruvate formate-lyase 1-activating enzyme. An iron-sulfur protein with a radical-SAM domain (pfam04055). A single glycine residue in EC 2.3.1.54, formate C-acetyltransferase (formate-pyruvate lyase), is oxidized to the corresponding radical by transfer of H from its CH2 to AdoMet with concomitant cleavage of the latter. The reaction requires Fe2+. The first stage is reduction of the AdoMet to give methionine and the 5'-deoxyadenosin-5-yl radical, which then abstracts a hydrogen radical from the glycine residue. [Energy metabolism, Anaerobic, Protein fate, Protein modification and repair] 235 -274163 TIGR02494 PFLE_PFLC glycyl-radical enzyme activating protein. This subset of the radical-SAM family (pfam04055) includes a number of probable activating proteins acting on different enzymes all requiring an amino-acid-centered radical. The closest relatives to this family are the pyruvate-formate lyase activating enzyme (PflA, 1.97.1.4, TIGR02493) and the anaerobic ribonucleotide reductase activating enzyme (TIGR02491). Included within this subfamily are activators of hydroxyphenyl acetate decarboxylase (HdpA), benzylsuccinate synthase (BssD), gycerol dehydratase (DhaB2) as well as enzymes annotated in E. coli as activators of different isozymes of pyruvate-formate lyase (PFLC and PFLE) however, these appear to lack characterization and may activate enzymes with distinctive functions. Most of the sequence-level variability between these forms is concentrated within an N-terminal domain which follows a conserved group of three cysteines and contains a variable pattern of 0 to 8 additional cysteines. 295 -274164 TIGR02495 NrdG2 anaerobic ribonucleoside-triphosphate reductase activating protein. This enzyme is a member of the radical-SAM family (pfam04055). It is often gene clustered with the class III (anaerobic) ribonucleotide triphosphate reductase (NrdD, TIGR02487) and presumably fulfills the identical function as NrdG, which utilizes S-adenosyl methionine, an iron-sulfur cluster and a reductant (dihydroflavodoxin) to produce a glycine-centered radical in NrdD. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism, Protein fate, Protein modification and repair] 192 -131549 TIGR02497 yscI_hrpB_dom type III secretion apparatus protein, YscI/HrpB, C-terminal domain. This model represents the conserved C-terminal domain of a protein conserved in across species in the bacterial type III secretion apparatus. This protein is designated YscI (Yop proteins translocation protein I) in Yersinia and HrpB (hypersensitivity response and pathogenicity protein B) in plant pathogens such as Pseudomonas syringae. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 39 -131550 TIGR02498 type_III_ssaH type III secretion system protein, SsaH family. This family describes a small protein, always smaller than 100 amino acids, encoded in pathogenicity islands for bacterial type III secretion systems in various strains of Yersinia, Salmonella, and enteropathogenic E. coli, as well as Chromobacterium violaceum and Citrobacter rodentium. Although strictly associated with type III secretion systems, this protein seems not yet to have been characterized as part of the apparatus or as an effector protein. [Cellular processes, Pathogenesis] 79 -274165 TIGR02499 HrpE_YscL_not type III secretion apparatus protein, HrpE/YscL family. This model is related to pfam06188, but is broader. pfam06188 describes HrpE-like proteins, components of bacterial type III secretion systems primarily in bacteria that infect plants. This model includes also the homologous proteins of animal pathogens, such as YscL of Yersinia pestis. This model excludes the related protein FliH of the bacterial flagellar apparatus (see pfam02108) [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 166 -274166 TIGR02500 type_III_yscD type III secretion apparatus protein, YscD/HrpQ family. This family represents a conserved protein of bacterial type III secretion systems. Gene symbols are variable from species to species. Members are designated YscD in Yersinia, HrpQ in Pseudomonas syringae, and EscD in enteropathogenic Escherichia coli. In the Chlamydiae, this model describes the C-terminal 400 residues of a longer protein. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 410 -274167 TIGR02501 type_III_yscE type III secretion system protein, YseE family. Members of this family are found exclusively in type III secretion appparatus gene clusters in bacteria. Those bacteria with a protein from this family tend to target animal cells, as does Yersinia pestis. This protein is small (about 70 amino acids) and not well characterized. [Cellular processes, Pathogenesis] 67 -131554 TIGR02502 type_III_YscX type III secretion protein, YscX family. Members of this family are encoded within bacterial type III secretion gene clusters. Among all species with type III secretion, those with this protein are found among those that target animal rather than plant cells. The member of this family in Yersinia was shown by mutation to be required for type III secretion of Yops effector proteins and therefore is believe to be part of the secretion machinery. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 121 -131555 TIGR02503 type_III_SycN type III secretion chaperone SycN. Members of this protein family are part of the machinery of bacterial type III secretion in a number of bacteria that target animal cells. In the well-studied system from Yersinia, a complex of this protein (SycN) and YscB (pfam07329) acts as a chaperone for the export of YopN (). YopN then acts to control effector protein secretion, in response to calcium levels, so that secretion occurs only after contact with the targeted eukaryotic cell. [Protein fate, Protein folding and stabilization, Cellular processes, Pathogenesis] 119 -274168 TIGR02504 NrdJ_Z ribonucleoside-diphosphate reductase, adenosylcobalamin-dependent. This model represents a group of adenosylcobalamin(B12)-dependent ribonucleotide reductases (Class II RNRs) related to the characterized species from Pyrococcus, Thermoplasma, Corynebacterium, and Deinococcus. RNR's are responsible for the conversion of the ribose sugar of RNA into the deoxyribose sugar of DNA. This is the rate-limiting step of DNA biosynthesis. This model identifies genes in a wide range of deeply branching bacteria. All are structurally related to the class I (non-heme iron dependent) RNRs. In most species this gene is known as NrdJ, while in mycobacteria it is called NrdZ. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 575 -274169 TIGR02505 RTPR ribonucleoside-triphosphate reductase, adenosylcobalamin-dependent. This model represents a group of adenosylcobalamin(B12)-dependent ribonucleotide reductases (RNR) related to the characterized species from Lactococcus leichmannii. RNR's are responsible for the conversion of the ribose sugar of RNA into the deoxyribose sugar of DNA. This is the rate-limiting step of DNA biosynthesis. Thus model identifies NrdJ enzymes only in cyanobacteria, lactococcus and certain bacteriophage. A separate model (TIGR02504) identifies a larger group of divergent B12-dependent RNR's. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 713 -274170 TIGR02506 NrdE_NrdA ribonucleoside-diphosphate reductase, alpha subunit. This model represents the alpha (large) chain of the class I ribonucleotide reductase (RNR). RNR's are responsible for the conversion of the ribose sugar of RNA into the deoxyribose sugar of DNA. This is the rate-limiting step of DNA biosynthesis. Class I RNR's generate the required radical (on tyrosine) via a "non-heme" iron cofactor which resides in the beta (small) subunit. The alpha subunit contains the catalytic and allosteric regulatory sites. The mechanism of this enzyme requires molecular oxygen. E. Coli contains two versions of this enzyme which are regulated independently (NrdAB and NrdEF, where NrdA and NrdE are the large chains). Most organisms contain only one, but the application of the gene symbols NrdA and NrdE are somewhat arbitrary. This model identifies RNR's in diverse clades of bacteria, eukaryotes as well as numerous DNA viruses and phage. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 617 -131559 TIGR02507 MtrF tetrahydromethanopterin S-methyltransferase, F subunit. This small protein (MtrF) is one of eight subunits of the N5-methyltetrahydromethanopterin: coenzyme M methyltransferase in methanogenic archaea. This methyltranferase is membrane-associated enzyme complex that uses methy-transfer reaction to drive sodium-ion pump. Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. 65 -131560 TIGR02508 type_III_yscG type III secretion protein, YscG family. YscG is a molecular chaperone for YscE, where both are part of the type III secretion system that in Yersinia is designated Ysc (Yersinia secretion). The secretion system delivers effector proteins, designate Yops (Yersinia outer proteins) in Yersinia. This family consists of YscG of Yersinia, and functionally equivalent type III secretion machinery protein in other species: AscG in Aeromonas, LscG in Photorhabdus luminescens, etc. [Protein fate, Protein folding and stabilization, Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 115 -131561 TIGR02509 type_III_yopR type III secretion effector, YopR family. Members of this family are type III secretion system effectors, named differently in different species and designated YopR (Yersinia outer protein R), encoded by the YscH (Yersinia secretion H) gene. This Yops protein is unusual in that it is released to extracellularly rather than injected directly into the target cell as are most Yops. [Cellular processes, Pathogenesis] 131 -188230 TIGR02510 NrdE-prime ribonucleoside-diphosphate reductase, alpha chain. This model represents a small clade of ribonucleoside-diphosphate reductase, alpha chains which are sufficiently divergent from the usual Class I RNR alpha chains (NrdE or NrdA, TIGR02506) as to warrant their own model. The genes from Thermus thermophilus, Dichelobacter and Salinibacter are adjacent to the usual RNR beta chain. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 548 -131563 TIGR02511 type_III_tyeA type III secretion effector delivery regulator, TyeA family. Members of this family include both small proteins, about 90 amino acids, in which this model covers the whole, and longer proteins of about 360 residues which match in the C-terminal region. The longer proteins (HrpJ) have N-terminal regions that match pfam07201. Members of this family belong to bacterial type III secretion systems, and include TyeA from the well-studied Yersinia systems. TyeA appears involved in calcium-responsive regulation of the delivery of type III effectors. 79 -274171 TIGR02512 FeFe_hydrog_A [FeFe] hydrogenase, group A. This model describes iron-only hydrogenases of anaerobic and microaerophilic bacteria and protozoa. This model is narrower, and covers a longer stretch of sequence, than pfam02906. This family represents a division among families that belong to pfam02906, which also includes proteins such as nuclear prelamin A recognition factor in animals. Note that this family shows some heterogeneity in terms of periplasmic, cytosolic, or hydrogenosome location, NAD or NADP dependence, and overal protein protein length. 374 -131565 TIGR02513 type_III_yscB type III secretion system chaperone, YscB family. Members of this family include YscB of Yersinia and functionally equivalent (but differently named) proteins from type III secretion systems of other pathogens that affect animal cells. YscB acts, along with SycN (TIGR02503), as a chaperone for YopN, a key part of a complex that regulates type III secretion so it responds to contact with the eukaryotic target cell. 139 -274172 TIGR02514 type_III_yscP type III secretion system needle length determinant. Members of this family include YscP of the Yersinia type III secretion system and equivalent proteins in other animal pathogen bacterial type III secretion systems. The model describes the conserved C-terminal region. N-terminal regions are poorly conserved and variable in length with some low-complexity sequence. 129 -274173 TIGR02515 IV_pilus_PilQ type IV pilus secretin (or competence protein) PilQ. A number of proteins homologous to PilQ are involved in type IV pilus formation, competence for transformation, type III secretion, and type II secretion (also called the main terminal branch of the general secretion pathway). Members of this family include PilQ itself, which is a component of the type IV pilus structure, from a number of species. In Haemophilus influenzae, the member of this family is associated with competence for transformation with exogenous DNA rather than with formation of a type IV pilus; the surface structure required for competence may be considered an unusual, incomplete type IV pilus structure. [Cell envelope, Surface structures] 418 -274174 TIGR02516 type_III_yscC type III secretion outer membrane pore, YscC/HrcC family. A number of proteins homologous to the type IV pilus secretin PilQ (TIGR02515) are involved in type IV pilus formation, competence for transformation, type III secretion, and type II secretion (also called the main terminal branch of the general secretion pathway). The clade described by this model contains the outer membrane pore proteins of bacterial type III secretion systems, typified by YscC for animal pathogens and HrcC for plant pathogens. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 462 -274175 TIGR02517 type_II_gspD type II secretion system protein D. In Gram-negative bacteria, proteins that have first crossed the inner member by Sec-dependent protein transport can be exported across the outer membrane by type II secretion, also called the main terminal branch of the general secretion pathway. Members of this family are general secretion pathway protein D. In Yersinia enterocolitica, a second member of this family is part of a novel second type II secretion system specifically associated with virulence (See ). This family is closely homologous to the type IV pilus outer membrane secretin PilQ (TIGR02515) and to the type III secretion system pore YscC/HrcC (TIGR02516). [Protein fate, Protein and peptide secretion and trafficking] 594 -131570 TIGR02518 EutH_ACDH acetaldehyde dehydrogenase (acetylating). 488 -274176 TIGR02519 pilus_MshL pilus (MSHA type) biogenesis protein MshL. Members of this family are predicted secretins, that is, outer membrane pore proteins associated with delivery of proteins from periplasm to the outside of the cell. Related families include GspD of type II secretion (TIGR02517), the YscC/HrcC family from type III secretion (TIGR02516), and the PilQ secretin of type IV pilus formation (TIGR02515). Members of this family are found in gene clusters associated with MSHA (mannose-sensitive hemagglutinin) and related pili, and appear to be the secretin of this pilus system. [Cell envelope, Surface structures] 290 -274177 TIGR02520 pilus_B_mal_scr type IVB pilus formation outer membrane protein, R64 PilN family. Several related protein families encode outer membrane pore proteins for type II secretion, type III secretion, and type IV pilus formation. This protein family appears to encode a secretin for pilus formation, although it is quite different from PilQ. Members include the PilN lipoprotein of the plasmid R64 thin pilus, a type IV pilus. Scoring between the trusted and noise cutoffs are examples of bundle-forming pilus B (bfpB). [Cell envelope, Surface structures, Protein fate, Protein and peptide secretion and trafficking] 497 -131573 TIGR02521 type_IV_pilW type IV pilus biogenesis/stability protein PilW. Members of this family are designated PilF and PilW. This outer membrane protein is required both for pilus stability and for pilus function such as adherence to human cells. Members of this family contain copies of the TPR (tetratricopeptide repeat) domain. 234 -274178 TIGR02522 pilus_cpaD pilus (Caulobacter type) biogenesis lipoprotein CpaD. This family consists of a pilus biogenesis protein, CpaD, from Caulobacter, and homologs in other bacteria, including three in the root nodule bacterium Bradyrhizobium japonicum. The molecular function is not known. [Cell envelope, Surface structures] 198 -131575 TIGR02523 type_IV_pilV type IV pilus modification protein PilV. Pilus systems categorized as type IV pilins differ greatly from one another, with some showing greater similarty to type II or type III secretion systems than to each other. Members of this protein family represent the PilV protein of type IV pilus systems as found in Pseudomonas aeruginosa PAO1, Pseudomonas syringae DC3000, Neisseria meningitidis MC58, Xylella fastidiosa 9a5c, etc. [Cell envelope, Surface structures, Protein fate, Protein modification and repair] 139 -131576 TIGR02524 dot_icm_DotB Dot/Icm secretion system ATPase DotB. Members of this protein family are the DotB component of Dot/Icm secretion systems, as found in obligate intracellular pathogens Legionella pneumophila and Coxiella burnetii. While this system resembles type IV secretion systems and has been called a form of type IV, the liturature now seems to favor calling this the Dot/Icm system. This family is most closely related to TraJ proteins of plasmid transfer, rather than to proteins of other type IV secretion systems. 358 -131577 TIGR02525 plasmid_TraJ plasmid transfer ATPase TraJ. Members of this protein family are predicted ATPases associated with plasmid transfer loci in bacteria. This family is most similar to the DotB ATPase of a type-IV secretion-like system of obligate intracellular pathogens Legionella pneumophila and Coxiella burnetii (TIGR02524). [Mobile and extrachromosomal element functions, Plasmid functions] 372 -131578 TIGR02526 eut_PduT PduT-like ethanolamine utilization protein. This gene shows up in ethanolamine utilization operons in which a proteinaceous coat organelle is also encoded. It is closely related to the PduT protein in propane-diol operons with the same structure. 182 -274179 TIGR02527 dot_icm_IcmQ Dot/Icm secretion system protein IcmQ. Members of this protein family are the IcmQ component of Dot/Icm secretion systems, as found in obligate intracellular pathogens Legionella pneumophila and Coxiella burnetii. While this system resembles type IV secretion systems and has been called a form of type IV, the literature now seems to favor calling this the Dot/Icm system. This protein was shown to be essential for translocation (). 179 -131580 TIGR02528 EutP ethanolamine utilization protein, EutP. This protein is found within operons which code for polyhedral organelles containing the enzyme ethanolamine ammonia lyase. The function of this gene is unknown, although the presence of an N-terminal GxxGxGK motif implies a GTP-binding site. [Energy metabolism, Amino acids and amines] 142 -274180 TIGR02529 EutJ ethanolamine utilization protein EutJ family protein. 239 -274181 TIGR02530 flg_new flagellar operon protein. Members of this family are found in a subset of bacterial flagellar operons, generally between genes designated flgD and flgE, in species as diverse as Bacillus halodurans and various other Firmicutes, Geobacter sulfurreducens, and Bdellovibrio bacteriovorus. The specific molecular function is unknown. [Cellular processes, Chemotaxis and motility] 96 -188231 TIGR02531 yecD_yerC TrpR-related protein YerC/YecD. This model represents a protein subfamily found mostly in the Firmicutes (Bacillus and allies). This family is similar in sequence to the trp operon repressor TrpR described by TIGR01321, and represents a distinct clade within the broader family described by pfam01371. At least one species, Xylella fastidiosa, in the Proteobacteria, has a member of both this family and TIGR01321. Several genomes with a member of this family do not synthesize tryptophan, and members of this family should not be considered trp operon repressors without new evidence. [Unknown function, General] 87 -274182 TIGR02532 IV_pilin_GFxxxE prepilin-type N-terminal cleavage/methylation domain. This model describes many but not all examples of the N-terminal region of bacterial proteins that resemble type IV pilins at their N-terminus, with a cleavage site G^FxxxE followed by a hydrophobic stretch. The new N-terminal residue, usually Phe, is methylated. Separate domains of the prepilin peptidase appear responsible for cleavage and methylation. Proteins with this N-terminal region include type IV pilins and other components of pilus biogenesis, competence proteins, and type II secretion proteins. Typically several proteins in a single operon have this N-terminal domain. The N-terminal cleavage and methylation site is described by PROSITE motif PS00409 as [KRHEQSTAG]-G-[FYLIVM]-[ST]-[LT]-[LIVP]-E-[LIVMFWSTAG](14). [Cell envelope, Surface structures, Protein fate, Protein and peptide secretion and trafficking] 24 -131585 TIGR02533 type_II_gspE type II secretion system protein E. This family describes GspE, the E protein of the type II secretion system, also called the main terminal branch of the general secretion pathway. This model separates GspE from the PilB protein of type IV pilin biosynthesis. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 486 -162905 TIGR02534 mucon_cyclo muconate and chloromuconate cycloisomerases. This model encompasses muconate cycloisomerase (EC 5.5.1.1) and chloromuconate cycloisomerase (EC 5.5.1.7), enzymes that often overlap in specificity. It excludes more distantly related proteins such as mandelate racemase (5.1.2.2). 368 -274183 TIGR02535 hyp_Hser_kinase proposed homoserine kinase. The genes in this family are largely adjacent to genes involved in the biosynthesis of threonine (aspartate kinase, homoserine dehydrogenase and threonine synthase) in genomes which are lacking any other known homoserine kinase, and in which the presence of a homoserine kinase would indicate a complete pathway for the biosynthesis of threonine. These genes are a member of the (now subfamily, formerly equivalog) TIGR00306 model describing the archaeal form of 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. All of these are members of a superfamily (pfam01676) of metalloenzyme also including phosphopentomutase alkaline phosphatases and sulfatases. The proposal that this family encodes a kinase is based on analogy to phosphomutases which are intramolecular phosphotransferases. A mutase active site could evolve to bring together homoserine and a phosphate donor such as phosphoenolpyruvate resulting in a kinase activity. 396 -274184 TIGR02536 eut_hyp ethanolamine utilization protein. This family of proteins is found in operons for the polyhedral organelle-based degradation of ethanolamine. This family is not found in proteobacterial species which otherwise have the same suite of genes in the eut operon. Proteobacteria have two genes that are not found in non-proteobacteria which may complement this genes function, a phosphotransacetylase (pfam01515) and the EutJ protein (TIGR02529) of unknown function. 207 -274185 TIGR02537 arch_flag_Nterm archaeal flagellin N-terminal-like domain. This model describes a hydrophobic N-terminal sequence of archaeal flagellins and other archaeal proteins. The sequence is directly analogous to bacterial sequences recognized by TIGR02532, which has cleavage motif resembling G^FxxxE followed by strongly hydrophobic sequence. Such sequences are the recognized for cleavage and methylation, and include pilins and other pilus components and competence and type II secretion secretion proteins. In the present family, the E is not conversed and sequence differs enough that there is no overlap between this family and TIGR02532. 24 -274186 TIGR02538 type_IV_pilB type IV-A pilus assembly ATPase PilB. This model describes a protein of type IV pilus biogenesis designated PilB in Pseudomonas aeruginosa but PilF in Neisseria gonorrhoeae; the more common usage, reflected here, is PilB. This protein is an ATPase involved in protein export for pilin assembly and is closely related to GspE (TIGR02533) of type II secretion, also called the main terminal branch of the general secretion pathway. Note that type IV pilus systems are often divided into type IV-A and IV-B, with the latter group including bundle-forming pilus, mannose-sensitive hemagglutinin, etc. Members of this family are found in type IV-A systems. [Cell envelope, Surface structures, Protein fate, Protein and peptide secretion and trafficking] 564 -274187 TIGR02539 SepCysS O-phospho-L-seryl-tRNA:Cys-tRNA synthase. Aminoacylation of tRNA(Cys) with Cys, and cysteine biosynthesis in the process, happens in Methanocaldococcus jannaschii and several other archaea by misacylation of tRNA(Cys) with O-phosphoserine (Sep), followed by modification of the phosphoserine to cysteine. In some species, direct tRNA-cys aminoacylation also occurs but this pathway is required for Cys biosynthesis. Members of this protein catalyze the second step in this two step pathway, using pyridoxal phosphate and a sulfur donor to synthesize Cys from Sep while attached to the tRNA. 369 -131592 TIGR02540 gpx7 putative glutathione peroxidase Gpx7. This model represents one of several families of known and probable glutathione peroxidases. This family is restricted to animals and designated GPX7. 153 -274188 TIGR02541 flagell_FlgJ flagellar rod assembly protein/muramidase FlgJ. The N-terminal region of this protein acts directly in flagellar rod assembly. The C-terminal region is a flagellum-specific muramidase (peptidoglycan hydrolase) required for formation of the outer membrane L ring. 294 -211749 TIGR02542 T_forsyth_147 TANFOR domain. The longest predicted protein in Tannerella forsythia (Bacteroides forsythus) ATCC 43037 is over 3000 residues long and lacks homology to other known proteins. Immediately after the signal sequence are four tandem repeats, approximately 147 residues long. This model describes that repeat, plus homologous single copy N-terminal domains in other large bacterial proteins. We designate this region the TANFOR domain. Many proteins with this domain also have fibronectin type III domains. 145 -274189 TIGR02543 List_Bact_rpt Listeria/Bacterioides repeat. This model describes a conserved core region, about 43 residues in length, of at least two families of tandem repeats. These include 78-residue repeats from 2 to 15 in number, in some proteins of Bacteroides forsythus ATCC 43037, and 70-residue repeats in families of internalins of Listeria species. Single copies are found in proteins of Fibrobacter succinogenes, Geobacter sulfurreducens, and a few bacteria. [Unknown function, General] 43 -274190 TIGR02544 III_secr_YscJ type III secretion apparatus lipoprotein, YscJ/HrcJ family. All members of this protein family are predicted lipoproteins with a conserved Cys near the N-terminus for cleavage and modification, and are part of known or predicted type III secretion systems. Members are found in both plant and animal pathogens, including the obligately intracellular chlamydial species and (non-pathogenic) root nodule bacteria. The most closely related proteins outside this family are examples of the flagellar M-ring protein FliF. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 193 -274191 TIGR02546 III_secr_ATP type III secretion apparatus H+-transporting two-sector ATPase. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 422 -274192 TIGR02547 casA_cse1 CRISPR type I-E/ECOLI-associated protein CasA/Cse1. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model family, represented by CT1972 from Chlorobium tepidum, is found in Ecoli subtype CRISPR/Cas regions of many bacteria, most of which are mesophiles, and not in Archaea. It is designated Cse1. 502 -274193 TIGR02548 casB_cse2 CRISPR type I-E/ECOLI-associated protein CasB/Cse2. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model family is found in Ecoli subtype CRISPR/Cas regions of many bacteria, most of which are mesophiles, and not in Archaea. It was designated Cse2 originally, and renamed CasB based on its characterization in the CASCADE complex. 160 -274194 TIGR02549 CRISPR_DxTHG CRISPR-associated DxTHG motif protein. This model describes a short region highly conserved between two otherwise substantially different CRISPR-associated (cas) proteins, TIGR02221 and TIGR01987. This region includes the motif [VIL]-D-x-[ST]-H-[GS]. 21 -274195 TIGR02550 flagell_flgL flagellar hook-associated protein 3. This protein family consists of flagellar hook-associated proteins designated FlgL (or HAP3) encoded in bacterial flagellar operons. A N-terminal region of about 150 residues and a C-terminal region of about 85 residues are conserved. Members show considerable length heterogeneity between these two well-conserved terminal regions; the seed alignment 486 columns, 393 of which are represented in the model, while members of this family are from 287 to over 500 residues in length. This model distinguishes FlgL from the flagellin gene product FliC. [Cellular processes, Chemotaxis and motility] 306 -274196 TIGR02551 SpaO_YscQ type III secretion system apparatus protein YscQ/HrcQ. Genes in this family are found in type III secretion operons. The gene (YscQ) in Yersinia is essential for YOPs secretion, while SpaO in Shigella is involved in the Surface Presentation of Antigens apparatus found on the virulence plasmid, and HrcQ is involved in the Harpin secretory system in organisms like Pseudomonas syringae. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 298 -274197 TIGR02552 LcrH_SycD type III secretion low calcium response chaperone LcrH/SycD. Genes in this family are found in type III secretion operons. LcrH, from Yersinia is believed to have a regulatory function in the low-calcium response of the secretion system. The same protein is also known as SycD (SYC = Specific Yop Chaperone) for its chaperone role. In Pseudomonas, where the homolog is known as PcrH, the chaperone role has been demonstrated and the regulatory role appears to be absent. ScyD/LcrH contains three central tetratricopeptide-like repeats that are predicted to fold into an all-alpha-helical array. 135 -274198 TIGR02553 SipD_IpaD_SspD type III effector protein IpaD/SipD/SspD. These proteins are found within type III secretion operons and have been shown to be secreted by that system. 313 -131605 TIGR02554 PrgH type III secretion system protein PrgH/EprH. In Samonella, this gene is part of a four-gene operon PrgHIJK and in general is found in type III secretion operons. PrgH has been shown to be required for secretion, as well as being a structural component of the needle complex. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 389 -131606 TIGR02555 OrgA_MxiK type III secretion apparatus protein OrgA/MxiK. This gene is found in type III secretion operons and has been shown to be essential for the invasion phenotype in Salmonella and a component of the secretion apparatus. The protein is known as OrgA in Salmonella due to its oxygen-dependent expression pattern in which low-oxygen levels up-regulate the gene. In Shigella the ghene is called MxiK and has been shown to be sessential for the proper assembly of the secretion needle complex. 185 -274199 TIGR02556 cas_TM1802 CRISPR-associated protein, TM1802 family. This minor cas protein is found in CRISPR/cas regions of at least five prokaryotic genomes: Methanosarcina mazei, Sulfurihydrogenibium azorense, Thermotoga maritima, Carboxydothermus hydrogenoformans, and Dictyoglomus thermophilum, the first of which is archaeal while the rest are bacterial. 555 -274200 TIGR02557 HpaP type III secretion protein HpaP. This family of genes is always found in type III secretion operons, althought its function in the processes of secretion and virulence is unclear. Hpa stands for Hrp-associated gene, where Hrp stands for hypersensitivity response and virulence. 201 -131609 TIGR02558 HrpB2 type III secretion protein HrpB2. This family of genes is found in type III secretion operons in a narrow group of species including Xanthomonas, Burkholderia and Ralstonia. 124 -131610 TIGR02559 HrpB7 type III secretion protein HrpB7. This family of genes is found in type III secretion operons in a narrow range of species including Xanthomonas, Burkholderia and Ralstonia. 158 -131611 TIGR02560 HrpB4 type III secretion protein HrpB4. This family of genes are always found in type III secretion operons in a limited number of species including Burkholderia, Xanthomonas and Ralstonia. 210 -131612 TIGR02561 HrpB1_HrpK type III secretion protein HrpB1/HrpK. This gene is found within type III secretion operons in a limited range of species including Xanthomonas, Ralstonia and Burkholderia. 153 -274201 TIGR02562 cas3_yersinia CRISPR-associated helicase Cas3, subtype I-F/YPEST. The helicase in many CRISPR-associated (cas) gene clusters is designated Cas3, and most Cas3 proteins are described by model TIGR01587. Members of this family are considerably larger, show a number of motifs in common with TIGR01587 sequences, and replace Cas3 in some CRISPR/cas loci in a number of Proteobacteria, including Yersinia pestis, Chromobacterium violaceum, Erwinia carotovora subsp. atroseptica SCRI1043, Photorhabdus luminescens subsp. laumondii TTO1, Legionella pneumophila, etc. 1110 -274202 TIGR02563 cas_Csy4 CRISPR-associated endoribonuclease Cas6/Csy4, subtype I-F/YPEST. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2462 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. This family is designated Csy4, for CRISPR/Cas Subtype Ypest protein 4. 185 -274203 TIGR02564 cas_Csy1 CRISPR type I-F/YPEST-associated protein Csy1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2465 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. This family is designated Csy1, for CRISPR/Cas Subtype Ypest protein 1. 384 -274204 TIGR02565 cas_Csy2 CRISPR type I-F/YPEST-associated protein Csy2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2464 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. This family is designated Csy2, for CRISPR/Cas Subtype Ypest protein 2. 296 -274205 TIGR02566 cas_Csy3 CRISPR type I-F/YPEST-associated protein Csy3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2463 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. This family is designated Csy3, for CRISPR/Cas Subtype Ypest protein 3. 341 -131618 TIGR02567 YscW type III secretion system chaperone YscW. This family of proteins is found within type III secretion operons. The protein has been characterized as a chaperone for the outer membrane pore component YscC (TIGR02516). YscW is a lipoprotein which is itself localized to the outer membrane and, it is believed, facilitates the oligomerization and localization of YscC. 124 -274206 TIGR02568 LcrE type III secretion regulator YopN/LcrE/InvE/MxiC. This protein is found in type III secretion operons and, in Yersinia is localized to the cell surface and is involved in the Low-Calicium Response (LCR), possibly by sensing the calcium concentration. In Salmonella, the gene is known as InvE and is believed to perform an essential role in the secretion process and interacts with the proteins SipBCD and SicA.//Altered name to reflect regulatory role. Added GO and role IDs . Negative regulation of type III secretion in Y pestis is mediated in part by a multiprotein complex that has been proposed to act as a physical impediment to type III secretion by blocking the entrance to the secretion apparatus prior to contact with mammalian cells. This complex is composed of YopN, its heterodimeric secretion chaperone SycN-YscB, and TyeA. 3[SS 6/3/05] [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 240 -131620 TIGR02569 TIGR02569_actnb TIGR02569 family protein. This protein family is found, so far, only in Actinobacteria, including as least five species of Mycobacterium, three of Corynebacterium, and Nocardia farcinica, always in a single copy per genome. The function is unknown. [Hypothetical proteins, Conserved] 272 -274207 TIGR02570 cas7_GSU0053 CRISPR-associated protein GSU0053/csb1, Dpsyc system. Members of this family are found in association with CRISPR repeats and other CRISPR-associated (cas) genes in the genomes of Geobacter sulfurreducens PCA and Desulfotalea psychrophila LSv54 (both Desulfobacterales from the Deltaproteobacteria), Gemmata obscuriglobus (Planctomycete), and Actinomyces naeslundii MG1 (Actinobacteria). This CRISPR/Cas type is designated Dpsych. 172 -131622 TIGR02571 ComEB ComE operon protein 2. This protein is found in the ComE operon for "late competence" as characterized in B. subtilis. Proteins in this family contain homology to a cytidine/deoxycytidine deaminase domain family (pfam00383), and may carry out this activity. 151 -131623 TIGR02572 LcrR type III secretion system regulator LcrR. This protein is found in type III secretion operons and has been characterized in Yersinia as a regulator of the Low-Calcium Respone (LCR). [Protein fate, Protein and peptide secretion and trafficking] 139 -131624 TIGR02573 LcrG_PcrG type III secretion protein LcrG. This protein is found in type III secretion operons, along with LcrR, H and V. Also known as PcrG in Pseudomonas, the protein is believed to make a 1:1 complex with PcrV (LcrV). Mutants of LcrG cause premature secretion of effector proteins into the medium . 90 -131625 TIGR02574 stabl_TIGR02574 putative addiction module component, TIGR02574 family. Members of this family are bacterial proteins, typically are about 75 amino acids long, always found as part of a pair (at least) of two small genes. The other in the pair always belongs to a subfamily of the larger family pfam05016 (although not necessarily scoring above the designated cutoff), which contains plasmid stabilization proteins. It is likely that this protein and its pfam05016 member partner comprise some form of addiction module, although these gene pairs usually are found on the bacterial main chromosome. [Mobile and extrachromosomal element functions, Other] 63 -274208 TIGR02577 cas_TM1794_Cmr2 CRISPR-associated protein Cas10/Cmr2, subtype III-B. This model represent a Crm2 family of the CRISPR-associated RAMP module, a set of six genes recurring found together in prokaryotic genomes. This gene cluster is found only in species with CRISPR repeats, usually near the repeats themselves. Because most of the six (but not this family) contain RAMP domains, and because its appearance in a genome appears to depend on other CRISPR-associated Cas genes, the set is designated the CRISPR RAMP module. This protein, typified by TM1794 from Thermotoga maritima, is designated Crm2, for CRISPR RAMP Module protein 2. 483 -274209 TIGR02578 cas_TM1811_Csm1 CRISPR-associated protein Cas10/Csm1, subtype III-A/MTUBE. The family is designated Csm2, for CRISPR/Cas Subtype Mtube Protein 2. A typical example is TM1811 from Thermotoga maritima. CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats. This protein family belongs to a conserved gene cluster regularly found near CRISPR repeats. 648 -131628 TIGR02579 cas_csx3 CRISPR-associated protein, Csx3 family. Members of this family are found encoded in CRISPR-associated (cas) gene clusters, near CRISPR repeats, in the genomes of several different thermophiles: Archaeoglobus fulgidus (archaeal), Aquifex aeolicus (Aquificae), Dictyoglomus thermophilum (Dictyoglomi), and a thermophilic Synechococcus (Cyanobacteria). It is not yet assigned to a specific CRISPR/cas subtype (hence the x designation csx3). 83 -274210 TIGR02580 cas_RAMP_Cmr4 CRISPR type III-B/RAMP module RAMP protein Cmr4. This model represents a CRISPR-associated protein from the family that includes TM1792 of Thermotoga maritima. This family is part of the broad RAMP superfamily (pfam03787) collection of CRISPR-associated proteins. It is the fourth of a recurring set of six proteins, four of are in the RAMP superfamily, that we designate the CRISPR RAMP module. 280 -274211 TIGR02581 cas_cyan_RAMP CRISPR-associated RAMP protein, SSO1426 family. Members of this CRISPR-associated (cas) gene family are found in the RAMP-2 subtype of CRISPR/cas locus and designated TM1809 family. 217 -274212 TIGR02582 cas7_TM1809 CRISPR type III-A/MTUBE-associated RAMP protein Csm3. Members of this CRISPR-associated (cas) gene family are found in the mtube subtype of CRISPR/cas locus and designated Csm3, for CRISPR/cas Subtype Mtube, protein 3. 204 -274213 TIGR02583 DevR_archaea CRISPR-associated protein Cas7/Csa2, subtype I-A/APERN. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This model represents one such family, typified by MJ0381 of Methanococcus jannaschii. This archaeal clade is a member of the DevR family (TIGR01875) which includes the DevR protein of Myxococcus xanthus, a protein whose expression appears to regulated through a number of means, including both location and autorepression; DevR mutants are incapable of fruiting body development. This subfamily is found in a CRISPR/Cas locus we designate APERN, so the family is designated Csa2, for CRISPR/Cas Subtype Protein 2. 285 -274214 TIGR02584 cas_NE0113 CRISPR-associated protein, NE0113 family. Members of this minor CRISPR-associated (Cas) protein family are found in cas gene clusters in Vibrio vulnificus YJ016, Nitrosomonas europaea ATCC 19718, Mannheimia succiniciproducens MBEL55E, and Verrucomicrobium spinosum. 209 -274215 TIGR02585 cas_Cst2_DevR CRISPR-associated protein Cas7/Cst2/DevR, subtype I-B/TNEAP. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This clade is a member of the DevR family (TIGR01875) and includes the DevR protein of Myxococcus xanthus, a protein whose expression appears to be regulated through a number of means, including both location and autorepression; DevR mutants are incapable of fruiting body development. 310 -131635 TIGR02586 cas5_cmx5_devS CRISPR-associated protein Cas5/DevS, subtype MYXAN. This model represents DevS of Myxococcus xanthus and related proteins of Leptospira interrogans and Gemmata obscuriglobus. This protein is encoded in a cluster of CRISPR-associated (cas) genes, and in the special case of Myxococcus xanthus has taken on a role in the control of fruiting body development. CRISPRs are clustered, regularly interspaced short palidromic repeats. This protein family is related to models TIGR01868, TIGR01895, and TIGR01876. 188 -131636 TIGR02587 TIGR02587 putative integral membrane protein TIGR02587. Members of this family are found in Nostoc sp. PCC 7120, Agrobacterium tumefaciens, Sinorhizobium meliloti, and Gloeobacter violaceus in a conserved two-gene neighborhood. This family, as defined, includes some members of COG4711 but is narrower and strictly bacterial. Members appear to span the membrane seven times. [Cell envelope, Other] 271 -131637 TIGR02588 TIGR02588 TIGR02588 family protein. The function of this protein is unknown. It is always found as part of a two-gene operon with TIGR02587, a protein that appears to span the membrane seven times. It is found in Nostoc sp. PCC 7120, Agrobacterium tumefaciens, Sinorhizobium meliloti, and Gloeobacter violaceus, so far, all of which are bacterial. [Hypothetical proteins, Conserved] 122 -274216 TIGR02589 cas_Csd2 CRISPR-associated protein Cas7/Csd2, subtype I-C/DVULG. This model represents one of two closely related CRISPR-associated proteins that belong to the larger family of TIGR01595. Members are the Csd2 protein of the Dvulg subtype of CRISPR/cas system. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. The related model is TIGR02590, the Csh2 protein of the Hmari CRISPR subtype. 284 -274217 TIGR02590 cas_Csh2 CRISPR-associated protein Cas7/Csh2, subtype I-B/HMARI. This model represents one of two closely related CRISPR-associated proteins that belong to the larger family of TIGR01595. Members are the Csh2 protein of the Hmari subtype of CRISPR/cas system. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. The related model is TIGR02589, the Csd3 protein of the Dvulg CRISPR subtype. 286 -188234 TIGR02591 cas_Csh1 CRISPR-associated protein Cas8b/Csh1, subtype I-B/HMARI. This domain is found in the C-terminal 2/3 of a family of CRISPR associated proteins of the Hmari subtype. Except for the two sequences from halophilic archaea this domain contains a pair of CXXC motifs. 393 -131641 TIGR02592 cas_Cas5h CRISPR-associated protein Cas5, subtype I-B/HMARI. This is a CRISPR-associated protein unique to the hmari subtype of cas genes and CRISPR repeat, which is the only subtype present in Haloarcula marismortui ATCC 43049. The hmari type, though uncommon, is also found in the Aquificae, Thermotogae, Firmicutes, and Dictyoglomi. 241 -274218 TIGR02593 CRISPR_cas5 CRISPR-associated protein Cas5, N-terminal domain. This model represents a shared N-terminal domain, about 43 amino acids in length, common to a number of related protein families each of which is associated with a distinct subtype of CRISPR/cas system, where CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeat and Cas is an abbreviation for CRISPR-associated. Members of this family are widely distributed enough that we designated the family Cas5. Homology appears remote, or absent, between the more C-terminal regions different subfamilies of these proteins, which typically are 210 to 265 amino acids in total length. Cas5 proteins of six different CRISPR/cas subtypes so far defined are described by respective full-length models TIGR01868, TIGR01876, TIGR01895, TIGR01874, TIGR02586, and TIGR02592. The best characterized protein in this family is DevS or Myxococcus xanthus, a Cas protein that appears to participate in a species-specific developmental pathway. 42 -131643 TIGR02594 TIGR02594 TIGR02594 family protein. Members of this protein family known so far are restricted to the bacteria, and for the most to the proteobacteria. The function is unknown. 129 -131644 TIGR02595 PEP_exosort PEP-CTERM protein-sorting domain. This model describes a 25-residue domain that includes a near-invariant Pro-Glu-Pro (PEP) motif, a thirteen residue strongly hydrophobic sequence likely to span the membrane, and a five-residue strongly basic motif that often contains four Arg residues. In nearly every case, this motif is found within nine residues, and usually within five residues, of the extreme C-terminus of the protein. Proteins with this motif typically have signal sequences at the N-terminus. This region appears many times per genome or not at all, and co-occurs in genomes with a proposed protein-sorting integral membrane protein we designate exosortase (see TIGR02602). PEP-CTERM proteins frequently are poorly conserved, Ser/Thr-rich proteins and may become extensively modified proteinaceous constituents of extracellular material in bacterial biofilms. [Cell envelope, Surface structures] 24 -274219 TIGR02596 TIGR02596 Verru_Chthon cassette protein D. This model describes a nearly twenty member protein family in Verrucomicrobium spinosum and a somewhat smaller paralogous family in Chthoniobacter flavus. All members share a type IV pilin-like N-terminal leader sequence (TIGR02532). These proteins occur in the four-gene Verru_Chthon cassette, in which two other genes likewise encode a cleavage/methylation domain. Most of these cassettes occur next to an unusually large PEP-CTERM protein with an autotransporter domain. [Cell envelope, Surface structures] 195 -274220 TIGR02597 TIGR02597 TIGR02597 family protein. This model describes a paralogous family with at least ten members in Verrucomicrobium spinosum. Two additional predicted proteins match more weakly and score between the trusted and noise cutoffs, while a third contains a point mutation. Eleven of the thirteen genes are found in a single tandem array. 361 -131647 TIGR02598 TIGR02598 Verru_Chthon cassette protein B. This family consists sets of paralogous family of proteins in the Verrucomicrobium spinosum and Chthoniobacter flavus. All members contain the prepilin-type N-terminal cleavage/methylation domain (TIGR02532) at the N-terminus. The mature protein would be about 150 amino acids long. These proteins occur in the four-gene Verru_Chthon cassette, in which two other genes likewise encode a cleavage/methylation domain. Most of these cassettes occur next to an unusually large PEP-CTERM protein with an autotransporter domain. [Cell envelope, Surface structures] 151 -274221 TIGR02599 TIGR02599 Verru_Chthon cassette protein C. This family consists sets of paralogous family of proteins in the Verrucomicrobium spinosum and Chthoniobacter flavus. All members contain the prepilin-type N-terminal cleavage/methylation domain (TIGR02532) at the N-terminus. The mature protein would be about 350 amino acids long. These proteins occur in the four-gene Verru_Chthon cassette, in which two other genes likewise encode a cleavage/methylation domain. Most of these cassettes occur next to an unusually large PEP-CTERM protein with an autotransporter domain. [Cell envelope, Surface structures] 339 -274222 TIGR02600 Verru_Chthon_A Verru_Chthon cassette protein A. In Verrucomicrobium spinosum and Chthoniobacter flavus, a four-gene operon that includes proteins with an N-terminal signal sequence for cleavage and methylation recurs many times. Each operon is likely to encode a membrane complex, the function of which is unknown. This model represents a long protein from this putative membrame complex, with members averaging about 1300 amino acids. The N-terminal region includes an apparent signal sequence. The function is unknown. Most cassettes are adjacent to an unusually large protein with both an outer membrane autotransporter region and PEP-CTERM putative protein-sorting motif. [Cell envelope, Surface structures] 1265 -274223 TIGR02601 autotrns_rpt autotransporter-associated beta strand repeat. This model represent a core 32-residue region of a class of bacterial protein repeat found in one to 30 copies per protein. Most proteins with a copy of this repeat have domains associated with membrane autotransporters (pfam03797, TIGR01414). The repeats occur with a periodicity of 60 to 100 residues. A pattern of sequence conservation is that every second residue is well-conserved across most of the domain. pfam05594 is based on a longer, much more poorly conserved multiple sequence alignment and hits some of the same proteins as this model with some overlap between the hit regions of the two models. It describes these repeats as likely to have a beta-helical structure. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 32 -131651 TIGR02602 8TM_EpsH exosortase. This family is designated exosortase, and it is the predicted protein-sorting transpeptidase for the PEP-CTERM protein-sorting signal of many biofilm-producing Gram-negative bacteria. This system is analogous to the sortase/LPXTG system found mostly in Gram-positive bacteria. Members of this family are integral membrane proteins with eight predicted transmembrane helices in common, and with a triad of invariant residues that matches the catalytic triad of sortases. Some members of this family have long trailing sequences past the region described by this model, which in other species is a separate protein EpsI. This model does not include the region of the first predicted transmembrane region. The only partially characterized member is EpsH of Methylobacillus sp. 12S, part of a locus associated with biosynthesis of the exopolysaccharide methanolan but itself not involved in polysaccharide biosynthesis. [Protein fate, Protein and peptide secretion and trafficking] 241 -274224 TIGR02603 CxxCH_TIGR02603 putative heme-binding domain, Pirellula/Verrucomicrobium type. This model represents a domain limited to very few species but expanded into large paralogous families in some species that conain it. We find it in over 20 copies each in Pirellula sp. strain 1 (phylum Planctomycetes) and Verrucomicrobium spinosum DSM 4136 (phylum Verrucomicrobia), and no matches above trusted cutoff an any other species so far. This domain, about 140 amino acids long, contains an absolutely conserved motif CxxCH, the cytochrome c family heme-binding site signature (PS00190). 133 -274225 TIGR02604 Piru_Ver_Nterm putative membrane-bound dehydrogenase domain. All proteins that score above the trusted cutoff score of 45 to this model are large proteins of either Pirellula sp. 1 or Verrucomicrobium spinosum. These proteins all contain, in addition to this domain, several hundred residues of highly variable sequence, and then a well-conserved C-terminal domain (TIGR02603) that features a putative cytochrome c-type heme binding motif CXXCH. The membrane-bound L-sorbosone dehydrogenase from Acetobacter liquefaciens (Gluconacetobacter liquefaciens) (SP|Q44091) is homologous to this domain but lacks additional sequence regions shared by members of this family and belongs to a different clade of the larger family of homologs. It and its closely related homologs are excluded from the this model by scoring between the trusted (45) and noise (18) cutoffs. 367 -274226 TIGR02605 CxxC_CxxC_SSSS putative regulatory protein, FmdB family. This model represents a region of about 50 amino acids found in a number of small proteins in a wide range of bacteria. The region begins usually with the initiator Met and contains two CxxC motifs separated by 17 amino acids. One member of this family is has been noted as a putative regulatory protein, designated FmdB (SP:Q50229, ). Most members of this family have a C-terminal region containing highly degenerate sequence, such as SSTSESTKSSGSSGSSGSSESKASGSTEKSTSSTTAAAAV in Mycobacterium tuberculosis and VAVGGSAPAPSPAPRAGGGGGGCCGGGCCG in Streptomyces avermitilis. These low complexity regions, which are not included in the model, resemble low-complexity C-terminal regions of some heterocycle-containing bacteriocin precursors. [Regulatory functions, DNA interactions] 52 -274227 TIGR02606 antidote_CC2985 putative addiction module antidote protein, CC2985 family. This bacterial protein family has a very similar seed alignment to that of pfam03693 but is a more stringent model with higher cutoff scores. Proteins that score above the trusted cutoff to this model almost invariably are found adjacent to a ParE family protein (pfam05016), where ParE is the killing partner of an addiction module for plasmid stabilization. Members of this family, therefore, are putative addiction module antidote proteins. Some are encoded on plasmids or in prophage regions, but others appear chromosomal. A genome may contain several identical copies, such as the four in Magnetococcus sp. MC-1. This family is named for one member, CC2985 of Caulobacter crescentus CB15. [Cellular processes, Other, Mobile and extrachromosomal element functions, Plasmid functions] 69 -274228 TIGR02607 antidote_HigA addiction module antidote protein, HigA family. Members of this family form a distinct clade within the larger family HTH_3 of helix-turn-helix proteins, described by pfam01381. Members of this clade are strictly bacterial and nearly always shorter than 110 amino acids. This family includes the characterized member HigA, without which the killer protein HigB cannot be cloned. The hig (host inhibition of growth) system is noted to be unusual in that killer protein is uncoded by the upstream member of the gene pair. [Regulatory functions, DNA interactions, Regulatory functions, Protein interactions, Mobile and extrachromosomal element functions, Other] 78 -274229 TIGR02608 delta_60_rpt delta-60 repeat domain. This domain occurs in tandem repeats, as many as 13, in proteins from Bdellovibrio bacteriovorus, Azotobacter vinelandii, Geobacter sulfurreducens, Pirellula sp. 1, Myxococcus xanthus, and others, many of which are Deltaproteobacteria. The periodicity of the repeat ranges from about 57 to 61 amino acids, and a core region of about 54 is represented by this model and seed alignment. 54 -274230 TIGR02609 doc_partner putative addiction module antidote. Members of this protein family are putative addiction module antidote proteins that appear recurringly in two-gene operons with members of the Doc (death-on-curing) family TIGR01550. Members of this family contain a SpoVT/AbrB-like domain (pfam04014). Note that the gene pairs with a member of this family tend to be found on bacterial chromosomes, not on plasmids. [Mobile and extrachromosomal element functions, Other] 74 -131659 TIGR02610 PHA_gran_rgn putative polyhydroxyalkanoic acid system protein. All members of this family are encoded by genes polyhydroxyalkanoic acid (PHA) biosynthesis and utilization genes, including proteins at found at the surface of PHA granules. Examples so far are found in the Pseudomonales, Xanthomonadales, and Vibrionales, all of which belong to the Gammaproteobacteria. 91 -131660 TIGR02611 TIGR02611 TIGR02611 family protein. Members of this family are Actinobacterial putative proteins of about 150 amino acids in length with three apparent transmembrane helix and an unusual motif with consensus sequence PGPGW. [Hypothetical proteins, Conserved] 121 -274231 TIGR02612 mob_myst_A mobile mystery protein A. Members of this protein family are found in mobization-related contexts more often than not, including within a CRISPR-associated gene region in Geobacter sulfurreducens PCA, and on plasmids in Agrobacterium tumefaciens and Coxiella burnetii, always together with mobile mystery protein B, a member of the Fic protein family (pfam02661). This protein is encoded by the upstream member of the gene pair and belongs to a family of helix-turn-helix DNA binding proteins (pfam01381). [Unknown function, General] 150 -131662 TIGR02613 mob_myst_B mobile mystery protein B. Members of this protein family, which we designate mobile mystery protein B, are found in mobization-related contexts more often than not, including within a CRISPR-associated gene region in Geobacter sulfurreducens PCA, and on plasmids in Agrobacterium tumefaciens and Coxiella burnetii, always together with mobile mystery protein A (TIGR02612), a member of the family of helix-turn-helix DNA binding proteins (pfam01381). This protein is encoded by the downstream member of the gene pair and belongs to the Fic protein family (pfam02661), where Fic (filamentation induced by cAMP) is a regulator of cell division. The characteristics of having a two-gene operon in a varied context and often on plasmids, with one member affecting cell division and the other able to bind DNA, suggests similarity to addiction modules. 186 -274232 TIGR02614 ftsW cell division protein FtsW. This family consists of FtsW, an integral membrane protein with ten transmembrane segments. In general, it is one of two paralogs involved in peptidoglycan biosynthesis, the other being RodA, and is essential for cell division. All members of the seed alignment for this model are encoded in operons for the biosynthesis of UDP-N-acetylmuramoyl-pentapeptide, a precursor of murein (peptidoglycan). The FtsW designation is not used in endospore-forming bacterial (e.g. Bacillus subtilis), where the member of this family is designated SpoVE and three or more RodA/FtsW/SpoVE family paralogs are present. SpoVE acts in spore cortex formation and is dispensible for growth. Biological rolls for FtsW in cell division include recruitment of penicillin-binding protein 3 to the division site. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Cell division] 356 -131664 TIGR02615 spoVE stage V sporulation protein E. This model represents an exception within the members of the FtsW model TIGR02614. This exception occurs only in endospore-forming genera such as Bacillus, Geobacillus, and Oceanobacillus. Like FtsW, members are found in a peptidoglycan operon context, but in these genera they part of a larger set of paralogs (not just the pair FtsW and RodA) and are required specifically for sporulation, not for viability. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Sporulation and germination] 354 -274233 TIGR02616 tnaC_leader tryptophanase leader peptide. Members of this family are the apparent leader peptides of tryptophanase operons in Esherichia coli, Vibrio cholerae, Photobacterium profundum, Haemophilus influenzae type b, and related species. All members of the seed alignment are examples ORFs upstream of tryptophanase, with a start codon, a conserved single Trp residue, and several other conserved residues. It is suggested (Konan KV and Yanofsky C) that the nascent peptide interacts with the ribosome once (if) the ribosome reaches the stop codon. Note that this model describes a much broader set (and shorter protein region) than pfam08053. [Energy metabolism, Amino acids and amines, Transcription, Other] 22 -131666 TIGR02617 tnaA_trp_ase tryptophanase, leader peptide-associated. Members of this family belong to the beta-eliminating lyase family (pfam01212) and act as tryptophanase (L-tryptophan indole-lyase). The tryptophanases of this family, as a rule, are found with a tryptophanase leader peptide (TnaC) encoded upstream. Both tryptophanases (4.1.99.1) and tyrosine phenol-lyases (EC 4.1.99.2) are found between trusted and noise cutoffs, but this model captures nearly all tryptophanases for which the leader peptide gene tnaC can be found upstream. [Energy metabolism, Amino acids and amines] 467 -131667 TIGR02618 tyr_phenol_ly tyrosine phenol-lyase. This model describes a group of tyrosine phenol-lyase (4.1.99.2) (beta-tyrosinase), a pyridoxal-phosphate enzyme closely related to tryptophanase (4.1.99.1) (see model TIGR02617). Both belong to the beta-eliminating lyase family (pfam01212) [Energy metabolism, Amino acids and amines] 450 -274234 TIGR02619 TIGR02619 putative CRISPR-associated protein, APE2256 family. This model represents a conserved domain of about 150 amino acids found in at least five archaeal species and three bacterial species, exclusively in species with CRISPR (Clustered Regularly Interspaced Short Palidromic Repeats). In six of eight species, the member of this family is in the vicinity of a CRISPR/Cas locus. 149 -200203 TIGR02620 cas_VVA1548 putative CRISPR-associated protein, VVA1548 family. This model represents a conserved domain of about 95 amino acids exclusively in species with CRISPR (Clustered Regularly Interspaced Short Palidromic Repeats). In all bacterial species with members so far (Vibrio vulnificus YJ016, Mannheimia succiniciproducens MBEL55E, and Nitrosomonas europaea ATCC 19718) and but not in the archaeon Methanothermobacter thermautotrophicus str. Delta H, the gene for this protein is in the midst of a cluster of Cas protein gene near CRISPR repeats. 93 -274235 TIGR02621 cas3_GSU0051 CRISPR-associated helicase Cas3, subtype Dpsyc. This model describes a CRISPR-associated putative DEAH-box helicase, or Cas3, of a subtype found in Actinomyces naeslundii MG1, Geobacter sulfurreducens PCA, Gemmata obscuriglobus UQM 2246, and Desulfotalea psychrophila. This protein includes both DEAH and HD motifs. 862 -274236 TIGR02622 CDP_4_6_dhtase CDP-glucose 4,6-dehydratase. Members of this protein family are CDP-glucose 4,6-dehydratase from a variety of Gram-negative and Gram-positive bacteria. Members typically are encoded next to a gene that encodes a glucose-1-phosphate cytidylyltransferase, which produces the substrate, CDP-D-glucose, used by this enzyme to produce CDP-4-keto-6-deoxyglucose. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 349 -131672 TIGR02623 G1P_cyt_trans glucose-1-phosphate cytidylyltransferase. Members of this family are the enzyme glucose-1-phosphate cytidylyltransferase, also called CDP-glucose pyrophosphorylase, the product of the rfbF gene. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 254 -131673 TIGR02624 rhamnu_1P_ald rhamnulose-1-phosphate aldolase. Members of this family are the enzyme RhaD, rhamnulose-1-phosphate aldolase. 270 -131674 TIGR02625 YiiL_rotase L-rhamnose mutarotase. Members of this protein family are rhamnose mutarotase from Escherichia coli, previously designated YiiL as an uncharacterized protein, and close homologs also associated with rhamnose dissimilation operons in other bacterial genomes. Mutarotase is a term for an epimerase that changes optical activity. This enzyme was shown experimentally to interconvert alpha and beta stereoisomers of the pyranose form of L-rhamnose. The crystal structure of this small (104 amino acid) protein shows a locally asymmetric dimer with active site residues of His, Tyr, and Trp. [Energy metabolism, Sugars] 102 -274237 TIGR02627 rhamnulo_kin rhamnulokinase. This model describes rhamnulokinase, an enzyme that catalyzes the second step in rhamnose catabolism. 454 -131676 TIGR02628 fuculo_kin_coli L-fuculokinase. Members of this family are L-fuculokinase, from the clade that includes the L-fuculokinase of Escherichia coli. This enzyme catalyzes the second step in fucose catabolism. This family belongs to FGGY family of carbohydrate kinases (pfam02782, pfam00370). It is encoded by the kinase (K) gene of the fucose (fuc) operon. [Energy metabolism, Sugars] 465 -131677 TIGR02629 L_rham_iso_rhiz L-rhamnose catabolism isomerase, Pseudomonas stutzeri subtype. Members of this family are isomerases in the pathway of L-rhamnose catabolism as found in Pseudomonas stutzeri and in a number of the Rhizobiales. This family differs from the L-rhamnose isomerases of Escherichia coli (see TIGR01748). This enzyme catalyzes the isomerization step in rhamnose catabolism. Genetic evidence in Rhizobium leguminosarum bv. trifolii suggests phosphorylation occurs first, then isomerization of the the phosphorylated sugar, but characterization of the recombinant enzyme from Pseudomonas 412 -274238 TIGR02630 xylose_isom_A xylose isomerase. Members of this family are the enzyme xylose isomerase (5.3.1.5), which interconverts D-xylose and D-xylulose. [Energy metabolism, Sugars] 434 -131679 TIGR02631 xylA_Arthro xylose isomerase, Arthrobacter type. This model describes a D-xylose isomerase that is also active as a D-glucose isomerase. It is tetrameric and dependent on a divalent cation Mg2+, Co2+ or Mn2+ as characterized in Arthrobacter. Members of this family differ substantially from the D-xylose isomerases of family TIGR02630. 382 -131680 TIGR02632 RhaD_aldol-ADH rhamnulose-1-phosphate aldolase/alcohol dehydrogenase. 676 -131681 TIGR02633 xylG D-xylose ABC transporter, ATP-binding protein. Several bacterial species have enzymes xylose isomerase and xylulokinase enzymes for xylose utilization. Members of this protein family are the ATP-binding cassette (ABC) subunit of the known or predicted high-affinity xylose ABC transporter for xylose import. These genes, which closely resemble other sugar transport ABC transporter genes, typically are encoded near xylose utilization enzymes and regulatory proteins. Note that this form of the transporter contains two copies of the ABC transporter domain (pfam00005). [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 500 -188237 TIGR02634 xylF D-xylose ABC transporter, substrate-binding protein. Members of this family are periplasmic (when in Gram-negative bacteria) binding proteins for D-xylose import by a high-affinity ATP-binding cassette (ABC) transporter. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 302 -274239 TIGR02635 RhaI_grampos L-rhamnose isomerase, Streptomyces subtype. This clade of sequences is closely related to the L-rhamnose isomerases found in Pseudomonas stutzeri and in a number of the Rhizobiales (TIGR02629). The genes of the family represented here are found in similar genomic contexts which contain genes apparently involved in rhamnose catabolism such as rhamnulose-1-phosphate aldolase (TIGR02632), sugar kinases, and sugar transporters. [Energy metabolism, Sugars] 378 -274240 TIGR02636 galM_Leloir galactose mutarotase. Members of this protein family act as galactose mutarotase (D-galactose 1-epimerase) and participate in the Leloir pathway for galactose/glucose interconversion. All members of the seed alignment for this model are found in gene clusters with other enzymes of the Leloir pathway. This enzyme family belongs to the aldose 1-epimerase family, described by pfam01263. However, the enzyme described as aldose 1-epimerase itself (EC 5.1.3.3) is called broadly specific for D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose. The restricted genome context for genes in this family suggests members should act primarily on D-galactose. 336 -131685 TIGR02637 RhaS rhamnose ABC transporter, rhamnose-binding protein. This sugar-binding component of ABC transporter complexes is found in rhamnose catabolism operon contexts. Mutation of this gene in Rhizobium leguminosarum abolishes rhamnose transport and prevents growth on rhamnose as a carbon source. 302 -131686 TIGR02638 lactal_redase lactaldehyde reductase. This clade of genes encoding iron-containing alcohol dehydrogenase (pfam00465) proteins is generally found in apparent operons for the catabolism of rhamnose or fucose. Catabolism of both of these monosaccharides results in lactaldehyde which is reduced by this enzyme to 1,2 propanediol. This protein is alternatively known by the name 1,2 propanediol oxidoreductase. This enzyme is active under anaerobic conditions in E. coli while being inactivated by reactive oxygen species under aerobic conditions. Under aerobic conditions the lactaldehyde product of rhamnose and fucose catabolism is believed to be oxidized to lactate by a separate enzyme, lactaldehyde dehydrogenase. [Energy metabolism, Sugars] 379 -274241 TIGR02639 ClpA ATP-dependent Clp protease ATP-binding subunit clpA. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 730 -131688 TIGR02640 gas_vesic_GvpN gas vesicle protein GvpN. Members of this family are the GvpN protein associated with the production of gas vesicles produced in some prokaryotes to give cells buoyancy. This family belongs to a larger family of ATPases (pfam07728). [Cellular processes, Other] 262 -274242 TIGR02641 gvpC_cyan_rpt gas vesicle protein GvpC repeat. This model describes a 33-amino acid repeated domain in bacterial versions of the gas vesicle protein GvpC, a structural protein less abundant than GvpA. [Cellular processes, Other] 33 -274243 TIGR02642 phage_xxxx uncharacterized phage protein. This uncharacterized protein is found in prophage regions of Shewanella oneidensis MR-1, Vibrio vulnificus YJ016, Yersinia pseudotuberculosis IP 32953, and Aeromonas hydrophila ATCC7966. It appears to have regions of sequence similarity to phage lambda antitermination protein Q. [Mobile and extrachromosomal element functions, Prophage functions] 186 -131691 TIGR02643 T_phosphoryl thymidine phosphorylase. Thymidine phosphorylase (alternate name: pyrimidine phosphorylase), EC 2.4.2.4, is the designation for the enzyme of E. coli and other Proteobacteria involved in (deoxy)nucleotide degradation. It often occurs in an operon with a deoxyribose-phosphate aldolase, phosphopentomutase and a purine nucleoside phosphorylase. In many other lineages, the corresponding enzyme is designated pyrimidine-nucleoside phosphorylase (EC 2.4.2.2); the naming convention imposed by this model represents standard literature practice. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 437 -274244 TIGR02644 Y_phosphoryl pyrimidine-nucleoside phosphorylase. In general, members of this protein family are designated pyrimidine-nucleoside phosphorylase, enzyme family EC 2.4.2.2, as in Bacillus subtilis, and more narrowly as the enzyme family EC 2.4.2.4, thymidine phosphorylase (alternate name: pyrimidine phosphorylase), as in Escherichia coli. The set of proteins encompassed by this model is designated subfamily rather than equivalog for this reason; the protein name from this model should be used when TIGR02643 does not score above trusted cutoff. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 405 -274245 TIGR02645 ARCH_P_rylase putative thymidine phosphorylase. Members of this family are closely related to characterized examples of thymidine phosphorylase (EC 2.4.2.4) and pyrimidine nucleoside phosphorylase (RC 2.4.2.2). Most examples are found in the archaea, but other examples in Legionella pneumophila str. Paris and Rhodopseudomonas palustris CGA009. 493 -131694 TIGR02646 TIGR02646 TIGR02646 family protein. Members of this uncharacterized protein family are found exclusively in bacteria. Neighboring genes in various genomes are also uncharacterized or may annotated as similar to restriction system proteins. [Hypothetical proteins, Conserved] 144 -131695 TIGR02647 DNA TIGR02647 family protein. Members of this family are found, so far, only in the Gammaproteobacteria. The function is unknown. The location on the chromosome usually is not far from housekeeping genes rather than in what is clearly, say, a prophage region. Some members have been annotated in public databases as DNA-binding protein inhibitor Id-2-related protein, putative transcriptional regulator, or hypothetical DNA binding protein. [Hypothetical proteins, Conserved] 77 -131696 TIGR02648 rep_term_tus DNA replication terminus site-binding protein. Members of this protein family are found on the main chromosomes of a number of the Gammaproteobacteria; this model excludes related plasmid proteins, which score between trusted and noise cutoffs. This protein, DNA replication terminus site-binding protein, binds specific DNA sites near the replication terminus to arrest the DNA replication fork. [DNA metabolism, DNA replication, recombination, and repair] 300 -131697 TIGR02649 true_RNase_BN ribonuclease BN. Members of this protein family are ribonuclease BN of Escherichia coli K-12 and closely related proteins believed to be equivalent in function. Note that E. coli appears to lack RNase Z per se, and this protein of E. coli appears orthologous to (but not functionally equivalent to) RNase Z of Bacillus subtilis and various other species. Meanwhile, the yihY gene product of E. coli previously was incorrectly identified as RNase BN. [Transcription, RNA processing] 303 -188239 TIGR02650 RNase_Z_T_toga ribonuclease Z, Thermotoga type. Members of this protein family are ribonuclease Z as found in the genus Thermotoga, where the enzyme cleaves after the CCA, in contrast to the activities characterized for other enzymes also designated ribonuclease Z. In other systems, cleavage occurs 5-prime to the location of the CCA sequence, and CCA is added subsequently. A species may lack ribonuclease Z if all tRNA genes encode the CCA sequence, or if the CCA is exposed by exonuclease activity rather than endonuclease activity. Note that members of this sequence family differ considerably from the majority of RNase Z sequences. [Transcription, RNA processing] 277 -274246 TIGR02651 RNase_Z ribonuclease Z. Processing of the 3-prime end of tRNA precursors may be the result of endonuclease or exonuclease activity, and differs in different species. Member of this family are ribonuclease Z, a tRNA 3-prime endonuclease that processes tRNAs to prepare for addition of CCA. In species where all tRNA sequences already have the CCA tail, such as E. coli, the need for such an enzyme is unclear. Protein similar to the E. coli enzyme, matched by TIGRFAMs model TIGR02649, are designated ribonuclease BN. [Transcription, RNA processing] 299 -131700 TIGR02652 TIGR02652 TIGR02652 family protein. Members of this family of conserved hypothetical proteins are found, so far, only in the Cyanobacteria. Members are about 170 amino acids long and share a motif CxxCx(14)CxxH near the amino end. [Hypothetical proteins, Conserved] 163 -131701 TIGR02653 Lon_rel_chp conserved hypothetical protein. This model describes a protein family of unknown function, about 690 residues in length, in which some members show C-terminal sequence similarity to pfam05362, which is the Lon protease C-terminal proteolytic domain, from MEROPS family S16. However, the annotated catalytic sites of E. coli Lon protease are not conserved in members of this family. Members have a motif GP[RK][GS]TGKS, similar to the ATP-binding P-loop motif GxxGxGK[ST]. [Hypothetical proteins, Conserved] 675 -211759 TIGR02654 circ_KaiB circadian clock protein KaiB. Members of this protein family are the circadian clock protein KaiB of Cyanobacteria, encoded in the circadian clock gene cluster kaiABC. KaiB has homologs of unknown function in some Archaea and Proteobacteria, and has paralogs of unknown function in some Cyanobacteria. KaiB forms homodimers, homotetramers, and multimeric complexes with KaiA and/or KaiC. [Cellular processes, Other] 87 -131703 TIGR02655 circ_KaiC circadian clock protein KaiC. Members of this family are the circadian clock protein KaiC, part of the kaiABC operon that controls circadian rhythm. It may be universal in Cyanobacteria. Each member has two copies of the KaiC domain (pfam06745), which is also found in other proteins. KaiC performs autophosphorylation and acts as its own transcriptional repressor. [Cellular processes, Other] 484 -274247 TIGR02656 cyanin_plasto plastocyanin. Members of this family are plastocyanin, a blue copper protein related to pseudoazurin, halocyanin, amicyanin, etc. This protein, located in the thylakoid luman, performs electron transport to photosystem I in Cyanobacteria and chloroplasts. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 99 -131705 TIGR02657 amicyanin amicyanin. Members of this family are amicyanin, a type I blue copper protein that accepts electrons from the tryptophan tryptophylquinone (TTQ) cofactor of the methylamine dehydrogenase light chain and then transfers them to the heme group of cytochrome c-551i. Amicyanin, methylamine dehydrogenase, and cytochrome c-551i are periplasmic and form a complex. This system has been studied primarily in Paracoccus denitrificans and Methylobacterium extorquens. Related type I blue copper proteins include plastocyanin, pseudoazurin, halocyanin, etc. [Energy metabolism, Electron transport] 83 -131706 TIGR02658 TTQ_MADH_Hv methylamine dehydrogenase (amicyanin) heavy chain. This family consists of the heavy chain of methylamine dehydrogenase light chain, a periplasmic enzyme. The enzyme contains a tryptophan tryptophylquinone (TTQ) prothetic group derived from two Trp residues in the light subunity. The enzyme forms a complex with the type I blue copper protein amicyanin and a cytochrome. Electron transfer procedes from TQQ to the copper and then to the heme group of the cytochrome. [Energy metabolism, Amino acids and amines] 352 -131707 TIGR02659 TTQ_MADH_Lt methylamine dehydrogenase (amicyanin) light chain. This family consists of the light chain of methylamine dehydrogenase light chain, a periplasmic enzyme. This subunit contains a tryptophan tryptophylquinone (TTQ) prothetic group derived from Trp-114 and Trp-165 of the precursor, numbered according to the sequence from Paracoccus denitrificans. The enzyme forms a complex with the type I blue copper protein amicyanin and cytochrome. Electron transfer procedes from TQQ to the copper and then to the heme group of the cytochrome. [Energy metabolism, Amino acids and amines] 186 -274248 TIGR02660 nifV_homocitr homocitrate synthase NifV. This family consists of the NifV clade of homocitrate synthases, most of which are found in operons for nitrogen fixation. Members are closely homologous to enzymes that include 2-isopropylmalate synthase, (R)-citramalate synthase, and homocitrate synthases associated with other processes. The homocitrate made by this enzyme becomes a part of the iron-molybdenum cofactor of nitrogenase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 365 -131709 TIGR02661 MauD methylamine dehydrogenase accessory protein MauD. This protein, MauD, appears critical to proper formation of the small subunit of methylamine dehydrogenase, which has both an unusual tryptophan tryptophylquinone cofactor and multiple disulfide bonds. MauD shares sequence similarity, including a CPxC motif, with a number of thiol:disulfide interchange proteins. In MauD mutants, the small subunit apparently does not form properly and is rapidly degraded. [Protein fate, Protein folding and stabilization, Energy metabolism, Amino acids and amines] 189 -131710 TIGR02662 dinitro_DRAG ADP-ribosyl-[dinitrogen reductase] hydrolase. Members of this family are the enzyme ADP-ribosyl-[dinitrogen reductase] hydrolase (EC 3.2.2.24), better known as Dinitrogenase Reductase Activating Glycohydrolase, DRAG. This enzyme reverses a regulatory inactivation of dinitrogen reductase caused by the action of NAD(+)--dinitrogen-reductase ADP-D-ribosyltransferase (EC 2.4.2.37) (DRAT). This enzyme is restricted to nitrogen-fixing bacteria and belongs to the larger family of ADP-ribosylglycohydrolases described by pfam03747. [Central intermediary metabolism, Nitrogen fixation] 287 -131711 TIGR02663 nifX nitrogen fixation protein NifX. Members of this family are NifX proteins encoded within operons for nitrogen fixation in a number of bacteria. NifX, NafY, and the C-terminal region of NifB all belong to the pfam02579 and are involved in MoFe cofactor biosynthesis. NifX is a nitrogenase accessory protein with a role in expression of the MoFe cofactor. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Central intermediary metabolism, Nitrogen fixation] 119 -131712 TIGR02664 nitr_red_assoc conserved hypothetical protein. Most members of this protein family are found in the Cyanobacteria, and these mostly near nitrate reductase genes and molybdopterin biosynthesis genes. We note that molybdopterin guanine dinucleotide is a cofactor for nitrate reductase. This protein is sometimes annotated as nitrate reductase-associated protein. Its function is unknown. 145 -274249 TIGR02665 molyb_mobA molybdenum cofactor guanylyltransferase, proteobacterial. In many molybdopterin-containing enzymes, including nitrate reductase and dimethylsulfoxide reductase, the cofactor is molybdopterin-guanine dinucleotide. The family described here contains MobA, molybdenum cofactor guanylyltransferase, from the Proteobacteria only. MobA can reconstitute molybdopterin-guanine dinucleotide biosynthesis without the product of the neighboring gene MobB. The probable MobA proteins of other lineages differ sufficiently that they are not included in scope of this family. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 186 -274250 TIGR02666 moaA molybdenum cofactor biosynthesis protein A, bacterial. The model for this family describes molybdenum cofactor biosynthesis protein A, or MoaA, as found in bacteria. It does not include the family of probable functional equivalent proteins from the archaea. MoaA works together with MoaC to synthesize precursor Z from guanine. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 334 -131715 TIGR02667 moaB_proteo molybdenum cofactor biosynthesis protein B, proteobacterial. This model represents the MoaB protein molybdopterin biosynthesis regions in Proteobacteria. This crystallized but incompletely characterized protein is thought to be involved in, though not required for, early steps in molybdopterin biosynthesis. It may bind a molybdopterin precursor. A distinctive conserved motif PCN near the C-terminus helps distinguish this clade from other homologs, including sets of proteins designated MogA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 163 -274251 TIGR02668 moaA_archaeal probable molybdenum cofactor biosynthesis protein A, archaeal. This model describes an archaeal family related, and predicted to be functionally equivalent, to molybdenum cofactor biosynthesis protein A (MoaA) of bacteria (see TIGR02666). [Biosynthesis of cofactors, prosthetic groups, and carriers, Molybdopterin] 302 -274252 TIGR02669 SpoIID_LytB SpoIID/LytB domain. This model describes a domain found typically in two or three proteins per genome in Cyanobacteria and Firmicutes, and sporadically in other genomes. One member is SpoIID of Bacillus subtilis. Another in B. subtilis is the C-terminal half of LytB, encoded immediately upstream of an amidase, the autolysin LytC, to which its N-terminus is homologous. Gene neighborhoods are not well conserved for members of this family, as many, such as SpoIID, are monocistronic. One early modelling-based study suggests a DNA-binding role for SpoIID, but the function of this domain is unknown. [Unknown function, General] 267 -274253 TIGR02670 cas_csx8 CRISPR-associated protein Cas8a1/Csx8, subtype I. In three genomes so far, a member of this protein appears in the midst of a CRISPR-associated (cas) gene operon, immediately upstream of a member of family TIGR01875 (CRISPR-associated autoregulator, DevR family). The genomes so far are Nocardia farcinica IFM10152, Clostridium perfringens SM101, and Clostridium tetani E88. 441 -131719 TIGR02671 cas_csx9 CRISPR-associated protein Cas8a2/Csx9, subtype I-A/APERN. Members of this family, so far, are archaeal proteins found in CRISPR-associated (cas) gene regions. So far, this rare cas protein is found in only three genomes: Pyrococcus horikoshii shinkaj OT3, Pyrococcus abyssi GE5, and Thermococcus kodakarensis KOD1. In each case it is found immediately upstream of cas3 in loci that resemble the Apern type but lack Csa1 and Csa4 genes. 377 -131720 TIGR02672 cas_csm6 CRISPR type III-A/MTUBE-associated protein Csm6. Members of this family as found in CRISPR-associated (cas) gene regions in Streptococcus thermophilus CNRZ1066, Staphylococcus epidermidis RP62A, and Mycobacterium tuberculosis (strains CDC1551 and H37Rv), as part of Mtube-type CRISPR/Cas systems. CRISPR is a widespread form of direct repeat found in archaea and bacteria, with distinctive subtypes each of which has a characteristic sporadic distribution. 362 -131721 TIGR02673 FtsE cell division ATP-binding protein FtsE. This model describes FtsE, a member of the ABC transporter ATP-binding protein family. This protein, and its permease partner FtsX, localize to the division site. In a number of species, the ftsEX gene pair is located next to FtsY, the signal recognition particle-docking protein. [Cellular processes, Cell division] 214 -131722 TIGR02674 cas_cyan_RAMP_2 CRISPR-associated RAMP protein, Csx10 family. CRISPR is a widespread repeat family in prokaryotes. At least 45 different protein families occur in prokaryotes only when these repeats are present. This family, a minor CRISPR-associated protein family, seems largely restricted to the Cyanobacteria. It belongs to the RAMP superfamily (pfam03787). 393 -131723 TIGR02675 tape_meas_nterm tape measure domain. Proteins containing this domain are strictly bacterial, including bacteriophage and prophage regions of bacterial genomes. Most members are 800 to 1800 amino acids long, making them among the longest predicted proteins of their respective phage genomes, where they are encoded in tail protein regions. This roughly 80-residue domain described here usually begins between residue 100 and 250. Many members are known or predicted to act as phage tail tape measure proteins, a minor tail component that regulates tail length. 75 -131724 TIGR02677 TIGR02677 TIGR02677 family protein. Members of this protein belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). [Hypothetical proteins, Conserved] 494 -274254 TIGR02678 TIGR02678 TIGR02678 family protein. Members of this protein belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). [Hypothetical proteins, Conserved] 375 -274255 TIGR02679 TIGR02679 TIGR02679 family protein. Members of this protein belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). [Hypothetical proteins, Conserved] 385 -274256 TIGR02680 TIGR02680 TIGR02680 family protein. Members of this protein family belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). Proteins in this family average over 1400 amino acids in length. [Hypothetical proteins, Conserved] 1353 -131728 TIGR02681 phage_pRha phage regulatory protein, rha family. Members of this protein family are found in temperate phage and bacterial prophage regions. Members include the product of the rha gene of the lambdoid phage phi-80, a late operon gene. The presence of this gene interferes with infection of bacterial strains that lack integration host factor (IHF), which regulates the rha gene. It is suggested that pRha is a phage regulatory protein. [Mobile and extrachromosomal element functions, Prophage functions] 108 -274257 TIGR02682 cas_csx11 CRISPR-associated protein, Csx11 family. Members of this uncommon, sporadically distributed protein family are large (>900 amino acids) and strictly associated, so far, with CRISPR-associated (Cas) gene clusters. Nearby Cas genes always include members of the RAMP superfamily and the six-gene CRISPR-associated RAMP module. Species in which it is found, so far, include three archaea (Methanosarcina mazei, M. barkeri and Methanobacterium thermoautotrophicum) and two bacteria (Thermodesulfovibrio yellowstonii DSM 11347 and Sulfurihydrogenibium azorense). 918 -162974 TIGR02683 upstrm_HI1419 putative addiction module killer protein. Members of this strictly bacterial protein family are small, at roughly 100 amino acids. The gene is almost invariably the upstream member of a gene pair, where the downstream member is a predicted DNA-binding protein from a clade within Pfam helix-turn-helix family pfam01381. These gene pairs, when found on the bacterial chromosome, often are located with prophage regions, but also in both integrated plasmid regions and near housekeeping genes. Analysis suggests that the gene pair may serve as an addiction module. 95 -188241 TIGR02684 dnstrm_HI1420 probable addiction module antidote protein. Members of this strictly bacterial protein family are small, at roughly 100 amino acids. The gene is almost invariably the downstream member of a gene pair. It is a predicted DNA-binding protein from a clade within Pfam helix-turn-helix family pfam01381. These gene pairs, when found on the bacterial chromosome, are located often with prophage regions, but also both in integrated plasmid regions and in housekeeping gene regions. Analysis suggests that the gene pair may serve as an addiction module. [Mobile and extrachromosomal element functions, Other] 89 -131732 TIGR02685 pter_reduc_Leis pteridine reductase. Pteridine reductase is an enzyme used by trypanosomatids (including Trypanosoma cruzi and Leishmania major) to obtain reduced pteridines by salvage rather than biosynthetic pathways. Enzymes in T. cruzi described as pteridine reductase 1 (PTR1) and pteridine reductase 2 (PTR2) have different activity profiles. PTR1 is more active with with fully oxidized biopterin and folate than with reduced forms, while PTR2 reduces dihydrobiopterin and dihydrofolate but not oxidized pteridines. T. cruzi PTR1 and PTR2 are more similar to each other in sequence than either is to the pteridine reductase of Leishmania major, and all are included in this family. 267 -274258 TIGR02686 relax_trwC conjugative relaxase domain, TrwC/TraI family. This domain is in the N-terminal (relaxase) region of TrwC, a relaxase-helicase that acts in plasmid R388 conjugation. The relaxase domain has DNA cleavage and strand transfer activities. Plasmid transfer protein TraI is also a member of this domain family. Members of this family on bacterial chromosomes typically are found near other genes typical of conjugative plasmids and appear to mark integrated plasmids. [Mobile and extrachromosomal element functions, Plasmid functions] 283 -274259 TIGR02687 TIGR02687 TIGR02687 family protein. Members of this family are uncharacterized proteins sporadically distributed in bacteria and archaea, about 880 amino acids in length. This protein is repeatedly found upstream of another uncharacterized protein of about 470 amino acids in length, modeled by TIGR02688. 844 -131735 TIGR02688 TIGR02688 TIGR02688 family protein. Members of this family are uncharacterized proteins sporadically distributed in bacteria and archaea, about 470 amino acids in length. Several members of this family appear in public databases with annotation as ATP-dependent protease La, despite the lack of similarity to families TIGR00763 (ATP-dependent protease La) or pfam02190 (ATP-dependent protease La (LON) domain). This protein is repeatedly found downstream of another uncharacterized protein of about 880 amino acids in length, described by model TIGR02687. [Hypothetical proteins, Conserved] 449 -131736 TIGR02689 ars_reduc_gluta arsenate reductase, glutathione/glutaredoxin type. Members of this protein family represent a novel form of arsenate reductase, using glutathione and glutaredoxin rather than thioredoxin for reducing equivalents as do some homologous arsenate reductases. An example of this type is Synechocystis sp. strain PCC 6803 slr0946, and of latter type (excluded from this model) is Staphylococcus aureus plasmid pI258 ArsC. Both are among the subset of arsenate reductases that belong the the low-molecular-weight protein-tyrosine phosphatase superfamily. [Cellular processes, Detoxification] 126 -274260 TIGR02690 resist_ArsH arsenical resistance protein ArsH. Members of this protein family occur in arsenate resistance operons that include at least two different types of arsenate reductase. ArsH is not required for arsenate resistance in some systems. This family belongs to the larger family of NADPH-dependent FMN reductases (pfam03358). The function of ArsH is not known. [Cellular processes, Detoxification] 219 -131738 TIGR02691 arsC_pI258_fam arsenate reductase (thioredoxin). This family describes the well-studied thioredoxin-dependent arsenate reductase of Staphylococcus aureaus plasmid pI258 and other mechanistically similar arsenate reductases. The mechanism involves an intramolecular disulfide bond cascade, and aligned members of this family have four absolutely conserved Cys residues. This group of arsenate reductases belongs to the low-molecular weight protein-tyrosine phosphatase family (pfam01451), as does a group of glutathione/glutaredoxin type arsenate reductases (TIGR02689). At least two other, non-homologous groups of arsenate reductases involved in arsenical resistance are also known. This enzyme reduces arsenate to arsenite, which may be more toxic but which is more easily exported. [Cellular processes, Detoxification] 129 -131739 TIGR02692 tRNA_CCA_actino tRNA adenylyltransferase. The enzyme tRNA adenylyltransferase, also called tRNA-nucleotidyltransferase and CCA-adding enzyme, can add or repair the required CCA triplet at the 3'-end of tRNA molecules. Genes encoding tRNA include the CCA tail in some but not all bacteria, and this enzyme may be required for viability. Members of this family represent a distinct clade within the larger family pfam01743 (tRNA nucleotidyltransferase/poly(A) polymerase family protein). The example from Streptomyces coelicolor was shown to act as a CCA-adding enzyme and not as a poly(A) polymerase. [Protein synthesis, tRNA and rRNA base modification] 466 -274261 TIGR02693 arsenite_ox_L arsenite oxidase, large subunit. This model represents the large subunit of an arsenite oxidase complex. The small subunit is a Rieske protein. Homologs to both large and small subunits that score in the gray zone between the set trusted and noise bit score cutoffs for the respective models are found in Aeropyrum pernix K1 and in Sulfolobus tokodaii str. 7. This enzyme acts in energy metabolim by arsenite oxidation, rather than detoxification by reduction of arsenate to arsenite prior to export. [Energy metabolism, Electron transport] 806 -131741 TIGR02694 arsenite_ox_S arsenite oxidase, small subunit. This model represents the small subunit of an arsenite oxidase complex. It is a Rieske protein and appears to rely on the Tat (twin-arginine translocation) system to cross the membrane. Although this enzyme could run in the direction of arsenate reduction to arsenite in principle, the relevant biological function is arsenite oxidation for energy metabolism, not arsenic resistance. Homologs to both large (TIGR02693) and small subunits that score in the gray zone between the set trusted and noise bit score cutoffs for the respective models are found in Aeropyrum pernix K1 and in Sulfolobus tokodaii str. 7. [Energy metabolism, Electron transport] 129 -131742 TIGR02695 azurin azurin. Azurin is a blue copper-binding protein in the plastocyanin/azurin family (see pfam00127). It serves as a redox partner to enzymes such as nitrite reductase or arsenite oxidase. The most closely related copper-binding proteins to this family are auracyanins, as in Chloroflexus aurantiacus, which have similar redox activities. [Energy metabolism, Electron transport] 125 -131743 TIGR02696 pppGpp_PNP guanosine pentaphosphate synthetase I/polynucleotide phosphorylase. Sohlberg, et al. present characterization of two proteins from Streptomyces coelicolor. The protein in this family was shown to have poly(A) polymerase activity and may be responsible for polyadenylating RNA in this species. Reference 2 showed that a nearly identical plasmid-encoded protein from Streptomyces antibioticus is a bifunctional enzyme that acts also as a guanosine pentaphosphate synthetase. 719 -131744 TIGR02697 WPE_wolbac Wolbachia palindromic element (WPE) domain. This domain conceptually resembles TIGR01045, the Rickettsial palindromic element (RPE) domain. In both cases, a protein-coding palindromic element spreads through a genome, inserting usually in protein-coding regions. The additional protein coding sequence is thought to allow function of the host protein because of location in surface-exposed regions of the protein structure. Note that this model appears to work better in fragment mode. [Mobile and extrachromosomal element functions, Other] 36 -131745 TIGR02698 CopY_TcrY copper transport repressor, CopY/TcrY family. This family includes metal-fist type transcriptional repressors of copper transport systems such as copYZAB of Enterococcus hirae and tcrYAZB (transferble copper resistance) of an Enterocuccus faecium plasmid. High levels of copper can displace zinc and prevent binding by the repressor, activating efflux by copper resistance transporters. The most closely related proteins excluded by this model are antibiotic resistance regulators including the methicillin resistance regulatory protein MecI. [Transport and binding proteins, Cations and iron carrying compounds, Regulatory functions, DNA interactions] 130 -131746 TIGR02699 archaeo_AfpA archaeoflavoprotein AfpA. The prototypical member of this archaeal protein family is AF1518 from Archaeoglobus fulgidus. This homodimer with two non-covalently bound FMN cofactors can receive electrons from ferredoxin, but not from a number of other electron donors such as NADH or rubredoxin. It can then donate electrons to various reductases. [Energy metabolism, Electron transport] 174 -131747 TIGR02700 flavo_MJ0208 archaeoflavoprotein, MJ0208 family. This model describes one of two paralogous families of archaealflavoprotein. The other, described by TIGR02699 and typified by the partially characterized AF1518 of Archaeoglobus fulgidus, is a homodimeric FMN-containing flavoprotein that accepts electrons from ferredoxin and can transfer them to various oxidoreductases. The function of this protein family is unknown. [Unknown function, General] 234 -274262 TIGR02701 shell_carb_anhy carboxysome shell carbonic anhydrase. This model describes a carboxysome shell protein that proves to be a novel class, designated epsilon, of carbonic anhydrase. It tends to be encoded near genes for RuBisCo and for other carboxysome shell proteins. [Central intermediary metabolism, One-carbon metabolism] 450 -131749 TIGR02702 SufR_cyano iron-sulfur cluster biosynthesis transcriptional regulator SufR. All members of this cyanobacterial protein family are the transcriptional regulator SufR and regulate the SUF system, which makes possible iron-sulfur cluster biosynthesis despite exposure to oxygen. In all cases, the sufR gene is encoded near SUF system genes but in the opposite direction. This DNA-binding protein belongs to the the DeoR family of helix-loop-helix proteins. All members also have a probable metal-binding motif C-X(12)-C-X(13)-C-X(14)-C near the C-terminus. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Regulatory functions, DNA interactions] 203 -131750 TIGR02703 carboxysome_A carboxysome peptide A. This model distinguishes one of two closely related paralogs encoded by nearby genes in the carboxysome operons of a number of cyanobacteria and chemoautotrophic bacteria. More distantly related proteins, also belonging to pfam03319, participate in other types of shell such as the ethanolamine degradation organelle. [Central intermediary metabolism, One-carbon metabolism] 81 -131751 TIGR02704 carboxysome_B carboxysome peptide B. This model distinguishes one of two closely related paralogs encoded by nearby genes in the carboxysome operons of a number of cyanobacteria and chemoautotrophic bacteria. More distantly related proteins, also belonging to pfam03319, participate in other types of shell such as the ethanolamine degradation organelle. [Central intermediary metabolism, One-carbon metabolism] 80 -131752 TIGR02705 nudix_YtkD nucleoside triphosphatase YtkD. The functional assignment to the proteins of this family is contentious, with papers disagreeing in both interpretation and enzyme assay results. This protein belongs to the nudix family and shares some sequence identity with E. coli MutT but appears not to be functionally interchangeable with it. [DNA metabolism, DNA replication, recombination, and repair] 156 -162980 TIGR02706 P_butyryltrans phosphate butyryltransferase. Members of this family are phosphate butyryltransferase, also called phosphotransbutyrylase. In general, this enzyme is found in butyrate-producing anaerobic bacteria, encoded next to the gene for butyrate kinase. Together, these two enzymes represent what may be the less common of two pathways for butyrate production from butyryl-CoA. The alternative is transfer of the CoA group to acetate by butyryl-CoA:acetate CoA transferase. Cutoffs for this model are set such that the homolog from Thermotoga maritima, whose activity on butyryl-CoA is only 30 % of its activity with acetyl-CoA, scores in the zone between trusted and noice cutoffs. [Energy metabolism, Fermentation] 294 -162981 TIGR02707 butyr_kinase butyrate kinase. This model represents an enzyme family in which members are designated either butryate kinase or branched-chain carboxylic acid kinase. The EC designation 2.7.2.7 describes an enzyme with relatively broad specificity; gene products whose context suggests a role in metabolism of aliphatic amino acids are likely to act as branched-chain carboxylic acid kinase. The gene typically found adjacent, ptb (phosphate butyryltransferase), likewise encodes an enzyme that may have a broad specificity that includes a role in aliphatic amino acid cabolism. [Energy metabolism, Fermentation] 351 -131755 TIGR02708 L_lactate_ox L-lactate oxidase. Members of this protein oxidize L-lactate to pyruvate, reducing molecular oxygen to hydrogen peroxide. The enzyme is known in Aerococcus viridans, Streptococcus iniae, and some strains of Streptococcus pyogenes where it appears to contribute to virulence. [Energy metabolism, Other] 367 -131756 TIGR02709 branched_ptb branched-chain phosphotransacylase. This model distinguishes branched-chain phosphotransacylases like that of Enterococcus faecalis from closely related subfamilies of phosphate butyryltransferase (EC 2.3.1.19) (TIGR02706) and phosphate acetyltransferase (EC 2.3.1.8) (TIGR00651). Members of this family and of TIGR02706 show considerable crossreactivity, and the occurrence of a member of either family near an apparent leucine dehydrogenase will suggest activity on branched chain-acyl-CoA compounds. [Energy metabolism, Amino acids and amines] 271 -274263 TIGR02710 TIGR02710 CRISPR-associated protein, TIGR02710 family. Members of this family are found, exclusively in the vicinity of CRISPR repeats and other CRISPR-associated (cas) genes, in Methanothermobacter thermautotrophicus (Archaea), Thermus thermophilus (Deinococcus-Thermus), Chloroflexus aurantiacus (Chloroflexi), and Thermomicrobium roseum (Thermomicrobia). 380 -131758 TIGR02711 symport_actP cation/acetate symporter ActP. Members of this family belong to the Sodium:solute symporter family. Both members of this family and other close homologs tend to be encoded next to a member of pfam04341, a set of uncharacterized membrane proteins. The characterized member from E. coli is encoded near and cotranscribed with the acetyl coenzyme A synthetase (acs) gene. Proximity to an acs gene was used as one criterion for determining the trusted cutoff for this model. Closely related proteins may differ in function and are excluded by the high cutoffs of this model; members of the family of phenylacetic acid transporter PhaJ can score as high as 1011 bits. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 549 -274264 TIGR02712 urea_carbox urea carboxylase. Members of this family are ATP-dependent urea carboxylase, including characterized members from Oleomonas sagaranensis (alpha class Proteobacterium) and yeasts such as Saccharomyces cerevisiae. The allophanate hydrolase domain of the yeast enzyme is not included in this model and is represented by an adjacent gene in Oleomonas sagaranensis. The fusion of urea carboxylase and allophanate hydrolase is designated urea amidolyase. The enzyme from Oleomonas sagaranensis was shown to be highly active on acetamide and formamide as well as urea. [Central intermediary metabolism, Nitrogen metabolism] 1201 -274265 TIGR02713 allophanate_hyd allophanate hydrolase. Allophanate hydrolase catalyzes the second reaction in an ATP-dependent two-step degradation of urea to ammonia and C02, following the action of the biotin-containing urea carboxylase. The yeast enzyme, a fusion of allophanate hydrolase to urea carboxylase, is designated urea amidolyase. [Central intermediary metabolism, Nitrogen metabolism] 561 -274266 TIGR02714 amido_AtzD_TrzD ring-opening amidohydrolases. Members of this family are are ring-opening amidohydrolases, including cyanuric acid amidohydrolase (EC 3.5.2.15) (AtzD and TrzD) and barbiturase. Note that barbiturase does not act as defined for EC 3.5.2.1 (barbiturate + water = malonate + urea) but rather catalyzes the ring-opening of barbituric acid to ureidomalonic acid (see Soong, et al., ). 366 -274267 TIGR02715 amido_AtzE amidohydrolase, AtzE family. Members of this protein family are aminohydrolases related to, but distinct from, glutamyl-tRNA(Gln) amidotransferase subunit A. The best characterized member is the biuret hydrolase of Pseudomonas sp. ADP, which hydrolyzes ammonia from the three-nitrogen compound biuret to yield allophanate. Allophanate is also an intermediate in urea degradation by the urea carboxylase/allophanate hydrolase pathway, an alternative to urease. [Unknown function, Enzymes of unknown specificity] 452 -131763 TIGR02716 C20_methyl_CrtF C-20 methyltransferase BchU. Members of this protein family are the S-adenosylmethionine-depenedent C-20 methyltransferase BchU, part of the pathway of bacteriochlorophyll c production in photosynthetic green sulfur bacteria. The position modified by this enzyme represents the difference between bacteriochlorophylls c and d; strains lacking this protein can only produced bacteriochlorophyll d. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 306 -131764 TIGR02717 AcCoA-syn-alpha acetyl coenzyme A synthetase (ADP forming), alpha domain. Although technically reversible, it is believed that this group of ADP-dependent acetyl-CoA synthetases (ACS) act in the direction of acetate and ATP production in the organisms in which it has been characterized. In most species this protein exists as a fused alpha-beta domain polypeptide. In Pyrococcus and related species, however the domains exist as separate polypeptides. This model represents the alpha (N-terminal) domain. In Pyrococcus and related species there appears to have been the development of a paralogous family such that four other proteins are close relatives. In reference, one of these (along with its beta-domain partner) was characterized as ACS-II showing specificity for phenylacetyl-CoA. This model has been constructed to exclude these non-ACS-I paralogs. This may result in new, authentic ACS-I sequences falling below the trusted cutoff. 447 -131765 TIGR02718 sider_RhtX_FptX siderophore transporter, RhtX/FptX family. RhtX from Sinorhizobium meliloti 2011 and FptX from Pseudomonas aeruginosa appear to be single polypeptide transporters, from the major facilitator family (see pfam07690) for import of siderophores as a means to import iron. This function was suggested by proximity to siderophore biosynthesis genes and then confirmed by study of knockout and heterologous expression phenotypes. [Transport and binding proteins, Cations and iron carrying compounds] 390 -131766 TIGR02719 repress_PhaQ poly-beta-hydroxybutyrate-responsive repressor. Members of this family are transcriptional regulatory proteins found in the vicinity of poly-beta-hydroxybutyrate (PHB) operons in several species of Bacillus. This protein appears to have repressor activity modulated by PHB itself. This protein belongs to the larger PadR family (see pfam03551). [Regulatory functions, DNA interactions] 138 -213733 TIGR02720 pyruv_oxi_spxB pyruvate oxidase. Members of this family are examples of pyruvate oxidase (EC 1.2.3.3), an enzyme with FAD and TPP as cofactors that catalyzes the reaction pyruvate + phosphate + O2 + H2O = acetyl phosphate + CO2 + H2O2. It should not be confused with pyruvate dehydrogenase [cytochrome] (EC 1.2.2.2) as in E. coli PoxB, although the E. coli enzyme is closely homologous and has pyruvate oxidase as an alternate name. [Energy metabolism, Aerobic] 575 -274268 TIGR02721 ycfN_thiK thiamine kinase. Members of this family are the ycfN gene product of Escherichia coli, now identified as the salvage enzyme thiamine kinase (thiK), and additional proteobacterial homologs taken to be orthologs with equivalent function. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 256 -274269 TIGR02722 lp_ uncharacterized proteobacterial lipoprotein. Members of this protein family are restricted to the Proteobacteria, and all are predicted lipoproteins. In genomes that contain the thiK gene for the salvage enzyme thiamin kinase, the member of this family is encoded nearby. [Cell envelope, Other] 189 -131770 TIGR02723 phenyl_P_alpha phenylphosphate carboxylase, alpha subunit. Members of this protein family are the alpha subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. This alpha subunit is homologous to the beta subunit and, more broadly, to UbiD family decarboxylases. [Energy metabolism, Anaerobic] 485 -131771 TIGR02724 phenyl_P_beta phenylphosphate carboxylase, beta subunit. Members of this protein family are the beta subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. This beta subunit is homologous to the alpha subunit and, more broadly, to UbiD family decarboxylases. 472 -131772 TIGR02725 phenyl_P_gamma phenylphosphate carboxylase, gamma subunit. Members of this protein family are the gamma subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. The gamma subunit has no known homologs. 84 -131773 TIGR02726 phenyl_P_delta phenylphosphate carboxylase, delta subunit. Members of this protein family are the alpha subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. This delta subunit belongs to HAD family hydrolases. [Energy metabolism, Anaerobic] 169 -274270 TIGR02727 MTHFS_bact 5,10-methenyltetrahydrofolate synthetase. This enzyme, 5,10-methenyltetrahydrofolate synthetase, is also called 5-formyltetrahydrofolate cycloligase. Function of bacterial proteins in this family was inferred originally from the known activity of eukaryotic homologs. Recently, activity was shown explicitly for the member from Mycoplasma pneumonia. Members of this family from alpha- and gamma-proteobacteria, designated ygfA, are often found in an operon with 6S structural RNA, and show a similar pattern of high expression during stationary phase. The function may be to deplete folate to slow 1-carbon biosynthetic metabolism. [Central intermediary metabolism, One-carbon metabolism] 179 -131775 TIGR02728 spore_gerQ spore coat protein GerQ. Members of this protein family are the spore coat protein GerQ of endospore-forming Firmicutes (low GC Gram-positive bacteria). This protein is cross-linked by a spore coat-associated transglutaminase. [Cellular processes, Sporulation and germination] 82 -274271 TIGR02729 Obg_CgtA Obg family GTPase CgtA. This model describes a univeral, mostly one-gene-per-genome GTP-binding protein that associates with ribosomal subunits and appears to play a role in ribosomal RNA maturation. This GTPase, related to the nucleolar protein Obg, is designated CgtA in bacteria. Mutations in this gene are pleiotropic, but it appears that effects on cellular functions such as chromosome partition may be secondary to the effect on ribosome structure. Recent work done in Vibrio cholerae shows an essential role in the stringent response, in which RelA-dependent ability to synthesize the alarmone ppGpp is required for deletion of this GTPase to be lethal. [Protein synthesis, Other] 328 -131777 TIGR02730 carot_isom carotene isomerase. Members of this family, including sll0033 (crtH) of Synechocystis sp. PCC 6803, catalyze a cis-trans isomerization of carotenes to the all-trans lycopene, a reaction that can also occur non-enzymatically in light through photoisomerization. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 493 -131778 TIGR02731 phytoene_desat phytoene desaturase. Plants and cyanobacteria (and, supposedly, Chlorobium tepidum) have a conserved pathway from two molecules geranylgeranyl-PP to one of all-trans-lycopene. Members of this family are the enzyme pytoene desaturase (also called phytoene dehydrogenase). This model does not include the region of the chloroplast transit peptide in plants. A closely related family, excluded by this model, is zeta-carotene desaturase, another enzyme in the same pathway. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 453 -131779 TIGR02732 zeta_caro_desat 9,9'-di-cis-zeta-carotene desaturase. Carotene 7,8-desaturase, also called zeta-carotene desaturase, catalyzes multiple steps in the pathway from geranylgeranyl-PP to all-trans-lycopene in plants and cyanobacteria. A similar enzyme and pathway is found in the green sulfur bacterium Chlorobium tepidum. 474 -274272 TIGR02733 desat_CrtD C-3',4' desaturase CrtD. Members of this family are slr1293, a carotenoid biosynthesis protein which was shown to be the C-3',4' desaturase (CrtD) of myxoxanthophyll biosynthesis in Synechocystis sp. strain PCC 6803, and close homologs (presumed to be functionally equivalent) from other cyanobacteria, where myxoxanthophyll biosynthesis is either known or expected. This enzyme can act on neurosporene and so presumably catalyzes the first step that is committed to myxoxanthophyll. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 492 -274273 TIGR02734 crtI_fam phytoene desaturase. Phytoene is converted to lycopene by desaturation at four (two symmetrical pairs of) sites. This is achieved by two enzymes (crtP and crtQ) in cyanobacteria (Gloeobacter being an exception) and plants, but by a single enzyme in most other bacteria and in fungi. This single enzyme is called the bacterial-type phytoene desaturase, or CrtI. Most members of this family, part of the larger pfam01593, which also contains amino oxidases, are CrtI itself; it is likely that all members act on either phytoene or on related compounds such as dehydrosqualene, for carotenoid biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 495 -131782 TIGR02735 purC_vibrio phosphoribosylaminoimidazole-succinocarboxamide synthase, Vibrio type. Members of this protein family appear to represent a novel form of phosphoribosylaminoimidazole-succinocarboxamide synthase (SAICAR synthetase), significantly different in sequence and gap pattern from a form (see TIGR00081) shared by a broad range of bacteria and eukaryotes. Members of this family are found within the gammaproteobacteria in the genera Vibrio, Shewanella, and Colwellia, and also (reported as a fragment) in the primitive eukarote Guillardia theta. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 365 -131783 TIGR02736 cbb3_Q_epsi cytochrome c oxidase, cbb3-type, CcoQ subunit, epsilon-Proteobacterial. Members of this protein family are restricted to the epsilon branch of the Proteobacteria. All members are found in operons containing the other three structural subunits of the cbb3 type of cytochrome c oxidase. These small proteins show remote sequence similarity to the CcoQ subunit in other cytochrome c oxidase systems, so this family is assumed to represent the epsilonproteobacterial variant of CcoQ. [Energy metabolism, Electron transport] 56 -131784 TIGR02737 caa3_CtaG cytochrome c oxidase assembly factor CtaG. Members of this family are the CtaG protein required for assembly of active cytochrome c oxidase of the caa3 type, as in Bacillus subtilis. 281 -131785 TIGR02738 TrbB type-F conjugative transfer system pilin assembly thiol-disulfide isomerase TrbB. This protein is part of a large group of proteins involved in conjugative transfer of plasmid DNA, specifically the F-type system. This protein has been predicted to contain a thioredoxin fold, contains a conserved pair of cysteines and has been shown to function as a thiol disulfide isomerase by complementation of an Ecoli DsbA defect. The protein is believed to be involved in pilin assembly. The protein is closely related to TraF (TIGR02739) which is somewhat longer, lacks the cysteine motif and is apparently not functional as a disulfide bond isomerase. 153 -274274 TIGR02739 TraF type-F conjugative transfer system pilin assembly protein TraF. This protein is part of a large group of proteins involved in conjugative transfer of plasmid DNA, specifically the F-type system. This protein has been predicted to contain a thioredoxin fold and has been shown to be localized to the periplasm. Unlike the related protein TrbB (TIGR02738), TraF does not contain a conserved pair of cysteines and has been shown not to function as a thiol disulfide isomerase by complementation of an Ecoli DsbA defect. The protein is believed to be involved in pilin assembly. Even more closely related than TrbB is a clade of genes (TIGR02740) which do contain the CXXC motif, but it is unclear whether these genes are involved in type-F conjugation systems per se. 256 -274275 TIGR02740 TraF-like TraF-like protein. This protein is related to the F-type conjugation system pilus assembly proteins TraF (TIGR02739)and TrbB (TIGR02738) both of which exhibit a thioredoxin fold. The protein represented by this model has the same length and architecture as TraF, but lacks the CXXC-motif found in TrbB and believed to be responsible for the disulfide isomerase activity of that protein. 271 -131788 TIGR02741 TraQ type-F conjugative transfer system pilin chaperone TraQ. This protein makes a specific interaction with the pilin (TraA) protein to aid its transfer through the inner membrane during the process of F-type conjugative pilus assembly. 80 -131789 TIGR02742 TrbC_Ftype type-F conjugative transfer system pilin assembly protein TrbC. This protein is an essential component of the F-type conjugative pilus assembly system for the transfer of plasmid DNA. The N-terminal portion of these proteins are heterogeneous and are not covered by this model. 130 -274276 TIGR02743 TraW type-F conjugative transfer system protein TraW. This protein is an essential component of the F-type conjugative transfer sytem for plasmid DNA transfer and has been shown to be localized to the periplasm. 202 -274277 TIGR02744 TrbI_Ftype type-F conjugative transfer system protein TrbI. This protein is an essential component of the F-type conjugative transfer sytem for plasmid DNA transfer and has been shown to be localized to the periplasm. 112 -274278 TIGR02745 ccoG_rdxA_fixG cytochrome c oxidase accessory protein FixG. Member of this ferredoxin-like protein family are found exclusively in species with an operon encoding the cbb3 type of cytochrome c oxidase (cco-cbb3), and near the cco-cbb3 operon in about half the cases. The cco-cbb3 is found in a variety of proteobacteria and almost nowhere else, and is associated with oxygen use under microaerobic conditions. Some (but not all) of these proteobacteria are also nitrogen-fixing, hence the gene symbol fixG. FixG was shown essential for functional cco-cbb3 expression in Bradyrhizobium japonicum. 434 -274279 TIGR02746 TraC-F-type type-IV secretion system protein TraC. The protein family described here is common among the F, P and I-like type IV secretion systems. Gene symbols include TraC (F-type), TrbE/VirB4 (P-type) and TraU (I-type). The protein conyains the Walker A and B motifs and so is a putative nucleotide triphosphatase. 797 -274280 TIGR02747 TraV type IV conjugative transfer system lipoprotein TraV. The TraV protein is a component of conjugative type IV secretion systems. TraV is an outer membrane lipoprotein and is believed to interact with the secretin TraK. The alignment contains three conserved cysteines in the N-terminal half. 144 -131795 TIGR02748 GerC3_HepT heptaprenyl diphosphate synthase component II. Members of this family are component II of the heterodimeric heptaprenyl diphosphate synthase. The trusted cutoff was set such that all members identified are encoded near to a recognizable gene for component I (in pfam07307). This enzyme acts in menaquinone-7 isoprenoid side chain biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 319 -131796 TIGR02749 prenyl_cyano solanesyl diphosphate synthase. Members of this family all are from cyanobacteria or plastid-containing eukaryotes. A member from Arabidopsis (where both plastoquinone and ubiquinone contain the C(45) prenyl moiety) was characterized by heterologous expression as a solanesyl diphosphate synthase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 322 -274281 TIGR02750 TraN_Ftype type-F conjugative transfer system mating-pair stabilization protein TraN. TraN is a large cysteine-rich outer membrane protein involved in the mating-pair stabilization (adhesin) component of the F-type conjugative plamid transfer system. TraN is believed to interact with the core type IV secretion system apparatus through the TraV protein. 572 -131798 TIGR02751 PEPCase_arch phosphoenolpyruvate carboxylase, archaeal type. This family is the archaeal-type phosphoenolpyruvate carboxylase, although not every host species is archaeal. These sequences bear little resemblance to the bacterial/eukaryotic type. The members from Sulfolobus solfataricus and Methanothermobacter thermautotrophicus were verified experimentally, while the activity is known to be present in a number of other archaea. [Energy metabolism, Other] 506 -131799 TIGR02752 MenG_heptapren demethylmenaquinone methyltransferase. MenG is a generic term for a methyltransferase that catalyzes the last step in menaquinone biosynthesis; the exact enzymatic activity differs for different MenG because the menaquinone differ in their prenoid side chains in different species. Members of this MenG protein family are 2-heptaprenyl-1,4-naphthoquinone methyltransferase, and are found together in operons with the two subunits of the heptaprenyl diphosphate synthase in Bacillus subtilis and related species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 231 -131800 TIGR02753 sodN superoxide dismutase, Ni. This superoxide dismutase uses nickel, rather than iron, manganese, copper, or zinc. Its gene is always accompanied by a gene for a required protease. 145 -274282 TIGR02754 sod_Ni_protease nickel-type superoxide dismutase maturation protease. Members of this protein family are apparent proteases encoded adjacent to the genes for a nickel-type superoxide dismutase. This family belongs to the same larger family (see pfam00717) as signal peptidase I, an unusual serine protease suggested to have a Ser/Lys catalytic dyad. [Cellular processes, Detoxification, Protein fate, Protein modification and repair] 90 -131802 TIGR02755 TraX_Ftype type-F conjugative transfer system pilin acetylase TraX. TraX is responsible for the acetylation of the F-pilin TraA during conjugative plasmid transfer. The purpose of this acetylation is unclear, but the reported transcriptional regulation of TraX may indicate that it is involved in the process of pilu extension/retraction. 224 -274283 TIGR02756 TraK_Ftype type-F conjugative transfer system secretin TraK. The TraK protein is predicted to interact with the TraV and TraB proteins as part of the scaffold which extends from the inner membrane, through the periplasm to the cell envelope and through which the F-type conjugative pilus passes. TraK is homologous to the P-type IV secretion system protein TrbG, the Ti-type protein VirB9 and the I-type TraN protein. The protein is related to the secretin family especially the HrcC subgroup of the type III secretion system. The protein is hypothesized to oligomerize to form a ring structure akin to other secretins. 232 -274284 TIGR02757 TIGR02757 TIGR02757 family protein. Members of this uncharacterized protein family are found sporadically, so far only among spirochetes, epsilon and delta proteobacteria, and Bacteroides. The function is unknown and its gene neighborhoods show little conservation. [Hypothetical proteins, Conserved] 229 -131805 TIGR02758 TraA_TIGR type IV conjugative transfer system pilin TraA. TraA is the single structural subunit of the pilus found in type IV conjugative transfer systems. This family is generally found in gammaproteobacteria. The pilins show considerable heterogeneity among the different conjugative plasmit types. All of them however contain an N-terminal part which is cleaved off by a leader peptidase (LepB, or similar) to result in a 68-78 amino acid product. Pilins may be further processed by acetylation (in F-like systems by the TraX protein) or by cyclization (in P-like systems by the TraF protein). 93 -131806 TIGR02759 TraD_Ftype type IV conjugative transfer system coupling protein TraD. The TraD protein performs an essential coupling function in conjugative type IV secretion systems. This protein sits at the inner membrane in contact with the assembled pilus and its scaffold as well as the relaxosome-plasmid DNA complex (through TraM). 566 -274285 TIGR02760 TraI_TIGR conjugative transfer relaxase protein TraI. This protein is a component of the relaxosome complex. In the process of conjugative plasmid transfer the realaxosome binds to the plasmid at the oriT (origin of transfer) site. The relaxase protein TraI mediates the single-strand nicking and ATP-dependent unwinding (relaxation, helicase activity) of the plasmid molecule. These two activities reside in separate domains of the protein. 1960 -163004 TIGR02761 TraE_TIGR type IV conjugative transfer system protein TraE. TraE is a component of type IV secretion systems involved in conjugative transfer of plasmid DNA. The function of the TraE protein is unknown. 181 -274286 TIGR02762 TraL_TIGR type IV conjugative transfer system protein TraL. This protein is part of the type IV secretion system for conjugative plasmid transfer. The function of the TraL protein is unknown. [Cellular processes, Conjugation] 94 -131810 TIGR02763 chlamy_scaf chlamydiaphage internal scaffolding protein. Members of this protein family are encoded by genes in chlamydiaphage such as Chp2, viruses with around eight genes that infect obligately intracellular bacterial pathogens of the genus Chlamydia. This protein, initially designated VP3 (as if a structural protein of mature viral particles), is displaced from procapsids as DNA is packaged, and therefore is described as a scafolding protein. [Mobile and extrachromosomal element functions, Prophage functions] 114 -274287 TIGR02764 spore_ybaN_pdaB polysaccharide deacetylase family sporulation protein PdaB. This model describes the YbaN protein family, also called PdaB and SpoVIE, of Gram-positive bacteria. Although ybaN null mutants have only a mild sporulation defect, ybaN/ytrI double mutants show drastically reducted sporulation efficiencies. This synthetic defect suggests the role of this sigmaE-controlled gene in sporulation had been masked by functional redundancy. Members of this family are homologous to a characterized polysaccharide deacetylase; the exact function this protein family is unknown. [Cellular processes, Sporulation and germination] 191 -274288 TIGR02765 crypto_DASH cryptochrome, DASH family. Photolyases and cryptochromes are related flavoproteins. Photolyases harness the energy of blue light to repair DNA damage by removing pyrimidine dimers. Cryptochromes do not repair DNA and are presumed to act instead in some other (possibly unknown) process such as entraining circadian rhythms. This model describes the cryptochrome DASH subfamily, one of at least five major subfamilies, which is found in plants, animals, marine bacteria, etc. Members of this family bind both folate and FAD. They may show weak photolyase activity in vitro but have not been shown to affect DNA repair in vivo. Rather, DASH family cryptochromes have been shown to bind RNA (Vibrio cholerae VC1814), or DNA, and seem likely to act in light-responsive regulatory processes. [Cellular processes, Adaptations to atypical conditions] 429 -131813 TIGR02766 crypt_chrom_pln cryptochrome, plant family. At least five major families of cryptochomes and photolyases share FAD cofactor binding, sequence homology, and the ability to react to short wavelengths of visible light. Photolysases are responsible for light-dependent DNA repair by removal of two types of uv-induced DNA dimerizations. Cryptochromes have other functions, often regulatory and often largely unknown, which may include circadian clock entrainment and control of development. Members of this subfamily are known so far only in plants; they may show some photolyase activity in vitro but appear mostly to be regulatory proteins that respond to blue light. 475 -131814 TIGR02767 TraG-Ti Ti-type conjugative transfer system protein TraG. This protein is found in the Agrobacterium tumefaciens Ti plasmid tra region responsible for conjugative transfer of the entire plasmid among Agrobacterium strains. The protein is distantly related to the F-type conjugation system TraG protein. Both of these systems are examples of type IV secretion systems. 623 -274289 TIGR02768 TraA_Ti Ti-type conjugative transfer relaxase TraA. This protein contains domains distinctive of a single strand exonuclease (N-terminus, MobA/MobL, pfam03389) as well as a helicase domain (central region, homologous to the corresponding region of the F-type relaxase TraI, TIGR02760). This protein likely fills the same role as TraI(F), nicking (at the oriT site) and unwinding the coiled plasmid prior to conjugative transfer. 744 -131816 TIGR02769 nickel_nikE nickel import ATP-binding protein NikE. This family represents the NikE subunit of a multisubunit nickel import ABC transporter complex. Nickel, once imported, may be used in urease and in certain classes of hydrogenase and superoxide dismutase. [Transport and binding proteins, Cations and iron carrying compounds] 265 -131817 TIGR02770 nickel_nikD nickel import ATP-binding protein NikD. This family represents the NikD subunit of a multisubunit nickel import ABC transporter complex. Nickel, once imported, may be used in urease and in certain classes of hydrogenase and superoxide dismutase. NikD and NikE are homologous. [Transport and binding proteins, Cations and iron carrying compounds] 230 -131818 TIGR02771 TraF_Ti conjugative transfer signal peptidase TraF. This protein is found in apparent operons encoding elements of conjugative transfer systems. This family is homologous to a broader family of signal (leader) peptidases such as lepB. This family is present in both Ti-type and I-type conjugative systems. 171 -274290 TIGR02772 Ku_bact Ku protein, prokaryotic. Members of this protein family are Ku proteins of non-homologous end joining (NHEJ) DNA repair in bacteria and in at least one member of the archaea (Archaeoglobus fulgidus). Most members are encoded by a gene adjacent to the gene for the DNA ligase that completes the repair. The NHEJ system is broadly but rather sparsely distributed, being present in about one fifth of the first 250 completed prokarytotic genomes. A few species (e.g. Archaeoglobus fulgidus and Bradyrhizobium japonicum) have multiple copies that appear to represent recent paralogous family expansion. [DNA metabolism, DNA replication, recombination, and repair] 258 -213736 TIGR02773 addB_Gpos helicase-exonuclease AddAB, AddB subunit. DNA repair is accomplished by several different systems in prokaryotes. Recombinational repair of double-stranded DNA breaks involves the RecBCD pathway in some lineages, and AddAB (also called RexAB) in other. The AddA protein is conserved between the firmicutes and the alphaproteobacteria, while the partner protein is not. Nevertheless, the partner is designated AddB in both systems. This model describes the AddB protein as found Bacillus subtilis and related species. Although the RexB protein of Streptococcus and Lactococcus is considered to be orthologous, functionally equivalent, and merely named differently, all members of this protein family have a P-loop nucleotide binding motif GxxGxGK[ST] at the N-terminus, unlike RexB proteins, and a CxxCxxxxxC motif at the C-terminus, both of which may be relevant to function. [DNA metabolism, DNA replication, recombination, and repair] 1160 -274291 TIGR02774 rexB_recomb ATP-dependent nuclease subunit B. DNA repair is accomplished by several different systems in prokaryotes. Recombinational repair of double-stranded DNA breaks involves the RecBCD pathway in some lineages, and AddAB (also called RecAB) in other. The AddA protein is conserved between the firmicutes and the alphaproteobacteria, while the partner protein is not. The partner may be designated AddB, as in Bacillus and in alphaproteobacteria, or RexB as in Streptococcus and Lactococcus. Note, however, that RexB proteins lack an N-terminal GxxGxGK[ST] ATP-binding motif found in Bacillus subtilis and related species, and this difference may be important; this model represents specifically RexB proteins as found in Streptococcus and Lactococcus. [DNA metabolism, DNA replication, recombination, and repair] 1076 -274292 TIGR02775 TrbG_Ti P-type conjugative transfer protein TrbG. The TrbG protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbG is a homolog of the F-type TraK protein (which is believed to be an outer membrane pore-forming secretin, TIGR02756) as well as the vir system VirB9 protein. [Cellular processes, Conjugation] 206 -274293 TIGR02776 NHEJ_ligase_prk DNA ligase D. Members of this protein family are DNA ligases involved in the repair of DNA double-stranded breaks by non-homologous end joining (NHEJ). The system of the bacterial Ku protein (TIGR02772) plus this DNA ligase is seen in about 20 % of bacterial genomes to date and at least one archaeon (Archeoglobus fulgidus). This model describes a central and a C-terminal domain. These two domains may be permuted, as in genus Mycobacterium, or divided into tandem ORFs, and therefore not be identified by this model. An additional N-terminal 3'-phosphoesterase (PE) domain present in some but not all examples of this ligase is not included in the seed alignment for this model; it only represents the central ATP-dependent ligase domain and the C-terminal polymerase domain. Most examples of genes for this ligase are adjacent to the gene for Ku. [DNA metabolism, DNA replication, recombination, and repair] 552 -131824 TIGR02777 LigD_PE_dom DNA ligase D, 3'-phosphoesterase domain. Most sequences in this family are the 3'-phosphoesterase domain of a multidomain, multifunctional DNA ligase, LigD, involved, along with bacterial Ku protein, in non-homologous end joining, the less common of two general mechanisms of repairing double-stranded breaks in DNA sequences. LigD is variable in architecture, as it lacks this domain in Bacillus subtilis, is permuted in Mycobacterium tuberculosis, and occasionally is encoded by tandem ORFs rather than as a multifuntional protein. In a few species (Dehalococcoides ethenogenes and the archaeal genus Methanosarcina), sequences corresponding to the ligase and polymerase domains of LigD are not found, and the role of this protein is unclear. [DNA metabolism, DNA replication, recombination, and repair] 156 -274294 TIGR02778 ligD_pol DNA ligase D, polymerase domain. DNA repair of double-stranded breaks by non-homologous end joining (NHEJ) is accomplished by a two-protein system that is present in a minority of prokaryotes. One component is the Ku protein (see TIGR02772), which binds DNA ends. The other is a DNA ligase, a protein that is a multidomain polypeptide in most of those bacteria that have NHEJ, a permuted polypeptide in Mycobacterium tuberculosis and a few other species, and the product of tandem genes in some other bacteria. This model represents the polymerase domain. 245 -274295 TIGR02779 NHEJ_ligase_lig DNA ligase D, ligase domain. DNA repair of double-stranded breaks by non-homologous end joining (NHEJ) is accomplished by a two-protein system that is present in a minority of prokaryotes. One component is the Ku protein (see TIGR02772), which binds DNA ends. The other is a DNA ligase, a protein that is a multidomain polypeptide in most of those bacteria that have NHEJ, a permuted polypeptide in Mycobacterium tuberculosis and a few other species, and the product of tandem genes in some other bacteria. This model represents the ligase domain. 298 -131827 TIGR02780 TrbJ_Ti P-type conjugative transfer protein TrbJ. The TrbJ protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbJ is a homolog of the F-type TraE protein (which is believed to be an inner membrane pore-forming protein, TIGR02761) as well as the vir system VirB5 protein. 246 -274296 TIGR02781 VirB9 P-type conjugative transfer protein VirB9. The VirB9 protein is found in the vir locus of Agrobacterium Ti plasmids where it is involved in a type IV secretion system . VirB9 is a homolog of the F-type conjugative transfer system TraK protein (which is believed to be an outer membrane pore-forming secretin, TIGR02756) as well as the Ti system TrbG protein. [Cellular processes, Conjugation] 243 -274297 TIGR02782 TrbB_P P-type conjugative transfer ATPase TrbB. The TrbB protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbB is a homolog of the vir system VirB11 ATPase, and the Flp pilus sytem ATPase TadA. [Cellular processes, Conjugation] 299 -131830 TIGR02783 TrbL_P P-type conjugative transfer protein TrbL. The TrbL protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbL is a homolog of the F-type TraG protein (which is believed to be a mating pair stabilization pore-forming protein, pfam07916) as well as the vir system VirB6 protein. [Cellular processes, Conjugation] 298 -274298 TIGR02784 addA_alphas double-strand break repair helicase AddA, alphaproteobacterial type. AddAB, also called RexAB, substitutes for RecBCD in several bacterial lineages. These DNA recombination proteins act before synapse and are particularly important for DNA repair of double-stranded breaks by homologous recombination. The term AddAB is used broadly, with AddA homologous between the alphaproteobacteria (as modeled here) and the Firmicutes, while the partner AddB proteins show no strong homology across the two groups of species. [DNA metabolism, DNA replication, recombination, and repair] 1135 -274299 TIGR02785 addA_Gpos helicase-exonuclease AddAB, AddA subunit, Firmicutes type. AddAB, also called RexAB, substitutes for RecBCD in several bacterial lineages. These DNA recombination proteins act before synapse and are particularly important for DNA repair of double-stranded breaks by homologous recombination. The term AddAB is used broadly, with AddA homologous between the Firmicutes (as modeled here) and the alphaproteobacteria, while the partner AddB proteins show no strong homology across the two groups of species. [DNA metabolism, DNA replication, recombination, and repair] 1230 -274300 TIGR02786 addB_alphas double-strand break repair protein AddB, alphaproteobacterial type. AddAB is a system well described in the Firmicutes as a replacement for RecBCD in many prokaryotes for the repair of double stranded break DNA damage. More recently, a distantly related gene pair conserved in many alphaproteobacteria was shown also to function in double-stranded break repair in Rhizobium etli. This family consists of AddB proteins of the alphaproteobacteial type. [DNA metabolism, DNA replication, recombination, and repair] 1021 -131834 TIGR02787 codY_Gpos GTP-sensing transcriptional pleiotropic repressor CodY. This model represents the full length of CodY, a pleiotropic repressor in Bacillus subtilis and other Firmicutes (low-GC Gram-positive bacteria) that responds to intracellular levels of GTP and branched chain amino acids. The C-terminal helix-turn-helix DNA-binding region is modeled by pfam08222 in Pfam. [Regulatory functions, DNA interactions] 251 -274301 TIGR02788 VirB11 P-type DNA transfer ATPase VirB11. The VirB11 protein is found in the vir locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for DNA transfer. VirB11 is believed to be an ATPase. VirB11 is a homolog of the P-like conjugation system TrbB protein and the Flp pilus sytem protein TadA. 308 -131836 TIGR02789 nickel_nikB nickel ABC transporter, permease subunit NikB. This family consists of the NikB family of nickel ABC transporter permeases. Operons that contain this protein also contain a homologous permease subunit NikC. Nickel is used in cells as part of urease or certain hydrogenases or superoxide dismutases. [Transport and binding proteins, Cations and iron carrying compounds] 314 -131837 TIGR02790 nickel_nikC nickel ABC transporter, permease subunit NikC. This family consists of the NikC family of nickel ABC transporter permeases. Operons that contain this protein also contain a homologous permease subunit NikB. Nickel is used in cells as part of urease or certain hydrogenases or superoxide dismutases. [Transport and binding proteins, Cations and iron carrying compounds] 258 -274302 TIGR02791 VirB5 P-type DNA transfer protein VirB5. The VirB5 protein is involved in the type IV DNA secretion systems typified by the Agrobacterium Ti plasmid vir system where it interacts with several other proteins essential for proper pilus formation. VirB5 is homologous to the IncN (N-type) conjugation system protein TraC as well as the P-type protein TrbJ and the F-type protein TraE. 220 -131839 TIGR02792 PCA_ligA protocatechuate 4,5-dioxygenase, alpha subunit. Protocatechuate (PCA) 4,5-dioxygenase is the first enzyme in the PCA 4,5-cleavage pathway that is an alternative to PCA 3,4-cleavage and PCA 2,3 cleavage pathways. PCA is an intermediate in the breakdown of lignin (hence the gene symbol ligA) and other compounds. Members of this family are the alpha chain of PCA 4,5-dioxygenase, or the equivalent domain of a fusion protein. [Energy metabolism, Aerobic] 117 -131840 TIGR02793 nikR nickel-responsive transcriptional regulator NikR. Three members of the seed for this model, from Escherichia coli, Pseudomonas putida, and Brucella melitensis, are found associated with a nickel ABC transporter operon that acts to import nickel for use as a cofactor in urease or hydrogenase. These proteins, with characterized nickel-binding and DNA-binding domains, act as nickel-responsive transcriptional regulators. In the larger family of full-length homologs, most others both lack proximity to the nickel ABC transporter operon and form a separate clade. Several of the homologs not within the scope of this model, but rather scoring between the trusted and noise cutoffs, have been shown to bind nickel, copper, or both, and to regulate genes in response to nickel. [Regulatory functions, DNA interactions] 129 -274303 TIGR02794 tolA_full TolA protein. TolA couples the inner membrane complex of itself with TolQ and TolR to the outer membrane complex of TolB and OprL (also called Pal). Most of the length of the protein consists of low-complexity sequence that may differ in both length and composition from one species to another, complicating efforts to discriminate TolA (the most divergent gene in the tol-pal system) from paralogs such as TonB. Selection of members of the seed alignment and criteria for setting scoring cutoffs are based largely conserved operon struction. //The Tol-Pal complex is required for maintaining outer membrane integrity. Also involved in transport (uptake) of colicins and filamentous DNA, and implicated in pathogenesis. Transport is energized by the proton motive force. TolA is an inner membrane protein that interacts with periplasmic TolB and with outer membrane porins ompC, phoE and lamB. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] 346 -188247 TIGR02795 tol_pal_ybgF tol-pal system protein YbgF. Members of this protein family are the product of one of seven genes regularly clustered in operons to encode the proteins of the tol-pal system, which is critical for maintaining the integrity of the bacterial outer membrane. The gene for this periplasmic protein has been designated orf2 and ybgF. All members of the seed alignment were from unique tol-pal gene regions from completed bacterial genomes. The architecture of this protein is a signal sequence, a low-complexity region usually rich in Asn and Gln, a well-conserved region with tandem repeats that resemble the tetratricopeptide (TPR) repeat, involved in protein-protein interaction. 117 -131843 TIGR02796 tolQ TolQ protein. TolQ is one of the essential components of the Tol-Pal system. Together with TolR, it harnesses protonmotive force to energize TolA, which spans the periplasm to reach the complex of TolB and Pal at the outer member. The tol-pal system proves to be important for maintaining outer membrane integrity. Gene pairs similar to the TolQ and TolR gene pair often number several per genome, but this model describes specificially TolQ per se, as found in tol-pal operons. A close homolog, excluded from this model, is ExbB of the ExbB/ExbD/TonB protein complex, which powers transport of siderophores and vitamin B12 across the bacterial outer membrane. The Tol-Pal system is exploited by colicin and filamentous phage DNA to enter the cell. It is also implicated in pathogenesis in several bacterial species [Transport and binding proteins, Other, Cellular processes, Pathogenesis] 215 -131844 TIGR02797 exbB tonB-system energizer ExbB. This model describes ExbB proteins, part of the MotA/TolQ/ExbB protein family. The paired proteins MotA and MotB, TolQ and TolR, and ExbB and ExbD harness the proton-motive force to drive the flagellar motor, energize the Tol-Pal system, or energize TonB, respectively. Tol-Pal and TonB are both active at the outer membrane. Genomes may have many different TonB-dependent receptors, of which many of those characterized are involved in siderophore transport across the outer membrane. [Transport and binding proteins, Cations and iron carrying compounds] 211 -131845 TIGR02798 ligK_PcmE 4-carboxy-4-hydroxy-2-oxoadipate aldolase/oxaloacetate decarboxylase. Members of this protein family 4-carboxy-4-hydroxy-2-oxoadipate aldolase, also called 4-oxalocitramalate aldolase. This enzyme of the protocatechuate 4,5-cleavage pathway converts its substrate to pyruvate plus oxaloacetate. Protocatechuate is an intermediate in many pathways for degrading aromatic compounds, including lignin, fluorene, etc. Hara, et al. showed the LigK gene was not only a 4-carboxy-4-hydroxy-2-oxoadipate aldolase but also the enzyme of the following step, oxaloacetate decarboxylase. 222 -274304 TIGR02799 thio_ybgC tol-pal system-associated acyl-CoA thioesterase. The tol-pal system consists of five critical genes. Inner membrane proteins TolQ and TolR convert protomotive force to energy that is transduced through TolA to an outer membrane complex of TolB and Pal. The system is known to be required to maintain outer membrane integrity. In a system with several homologous parts, ExbB and ExbD transduces energy through TonB to a variety of outer membrane proteins, many of which are siderophore receptors. The tol-pal system therefore may also be involved in transport. This family consists of a protein nearly always found in operons with the genes of the tol-pal system. The significance of this thioesterase to the tol-pal system is unclear, but either of two observations may be relevant. First, Pal, or peptidoglycan-associated lipoprotein, has a conserved N-terminal cleavage and acylation that makes it a lipoprotein. Second, the tol-pal system is implicated not only in the import of certain organics but also in the maintenance of outer membrane integrity (by an unknown mechanism). 126 -274305 TIGR02800 propeller_TolB tol-pal system beta propeller repeat protein TolB. Members of this protein family are the TolB periplasmic protein of Gram-negative bacteria. TolB is part of the Tol-Pal (peptidoglycan-associated lipoprotein) multiprotein complex, comprising five envelope proteins, TolQ, TolR, TolA, TolB and Pal, which form two complexes. The TolQ, TolR and TolA inner-membrane proteins interact via their transmembrane domains. The {beta}-propeller domain of the periplasmic protein TolB is responsible for its interaction with Pal. TolB also interacts with the outer-membrane peptidoglycan-associated proteins Lpp and OmpA. TolA undergoes a conformational change in response to changes in the proton-motive force, and interacts with Pal in an energy-dependent manner. The C-terminal periplasmic domain of TolA also interacts with the N-terminal domain of TolB. The Tol-PAL system is required for bacterial outer membrane integrity. E. coli TolB is involved in the tonB-independent uptake of group A colicins (colicins A, E1, E2, E3 and K), and is necessary for the colicins to reach their respective targets after initial binding to the bacteria. It is also involved in uptake of filamentous DNA. Study of its structure suggest that the TolB protein might be involved in the recycling of peptidoglycan or in its covalent linking with lipoproteins. The Tol-Pal system is also implicated in pathogenesis of E. coli, Haemophilus ducreyi , Salmonella enterica and Vibrio cholerae, but the mechanism(s) is unclear. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] 417 -274306 TIGR02801 tolR TolR protein. The model describes the inner membrane protein TolR, part of the TolR/TolQ complex that transduces energy from the proton-motive force, through TolA, to an outer membrane complex made up of TolB and Pal (peptidoglycan-associated lipoprotein). The complex is required to maintain outer membrane integrity, and defects may cause a defect in the import of some organic compounds in addition to the resulting morphologic. While several gene pairs homologous to talR and tolQ may be found in a single genome, but the scope of this model is set to favor finding only bone fide TolR, supported by operon structure as well as by score. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] 129 -274307 TIGR02802 Pal_lipo peptidoglycan-associated lipoprotein. Members of this protein are Pal (also called OprL), the Peptidoglycan-Associated Lipoprotein of the Tol-Pal system. The system appears to be involved both in the maintenance of outer membrane integrity and in the import of certain organic molecules as nutrients. Members of this family contain a hydrodrophobic lipoprotein signal sequence, a conserved N-terminal cleavage and modification site, a poorly conserved low-complexity region, together comprising about 65 amino acids, and a well-conserved C-terminal domain. The seed alignment for this model includes only the conserved C-terminal domain. 104 -131850 TIGR02803 ExbD_1 TonB system transport protein ExbD, group 1. Members of this family are Gram-negative bacterial inner membrane proteins, generally designated ExbD, related to the TolR family modeled by TIGRFAMs TIGR02801. Members always are encoded next to a protein designated ExbB (TIGR02797), related to the TolQ family modeled by TIGRFAMs TIGR02796. ExbD and ExbB together form a proton channel through which they can harness the proton-motive force to energize TonB, which in turn energizes TonB-dependent receptors in the outer membrane. TonB-dependent receptors with known specificity tend to import siderophores or vitamin B12. A TonB system and Tol-Pal system often will co-exist in a single bacterial genome. 122 -131851 TIGR02804 ExbD_2 TonB system transport protein ExbD, group 2. Members of this family are Gram-negative bacterial inner membrane proteins, generally designated ExbD, related to the TolR family modeled by TIGRFAMs TIGR02801. Members always are encoded next to a protein designated ExbB (TIGR02797), related to the TolQ family modeled by TIGRFAMs TIGR02796. ExbD and ExbB together form a proton channel through which they can harness the proton-motive force to energize TonB, which in turn energizes TonB-dependent receptors in the outer membrane. TonB-dependent receptors with known specificity tend to import siderophores or vitamin B12. A TonB system and Tol-Pal system often will co-exist in a single bacterial genome. 121 -131852 TIGR02805 exbB2 tonB-system energizer ExbB, group 2. Members of this protein family appear to be the ExbB protein of an ExbBD proton-transporting membrane complex that, by means of TonB, energizes transport by TonB-dependent receptors. Note that this family represents one of at least two distinct groups TolQ homologs designated ExbB - see also TIGR02797. Each group associates with a distinct group of ExbD proteins, and a single species may have two ExbB/ExbD/TonB systems. [Transport and binding proteins, Cations and iron carrying compounds] 138 -131853 TIGR02806 clostrip clostripain. Clostripain is a cysteine protease characterized from Clostridium histolyticum, and also known from Clostridium perfringens. It is a heterodimer processed from a single precursor polypeptide, specific for Arg-|-Xaa peptide bonds. The older term alpha-clostripain refers to the most active, most reduced form, rather than to the product of one of several different genes. Clostripain belongs to the peptidase family C11, or clostripain family (see pfam03415). [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Pathogenesis] 476 -274308 TIGR02807 cas6_cmx6 CRISPR-associated protein Cas6, subtype MYXAN. Members of this protein family resemble the Cas6 proteins described by TIGR01877 in having a C-terminal motif GXGXXXXXGXG, where the single X of each GXG is hydrophobic and the spacer XXXXX has at least one Lys or Arg. Examples are found in cas gene operons of CRISPR regions in Anabaena variabilis ATCC 29413, Leptospira interrogans, Gemmata obscuriglobus UQM 2246, and twice in Myxococcus xanthus DK 1622. Oddly, an orphan member is found in Thiobacillus denitrificans ATCC 25259, whose genome does not seem to contain other evidence of CRISPR repeats or cas genes. 190 -131855 TIGR02808 short_TIGR02808 TIGR02808 family protein. This very small protein (about 46 amino acids) consists largely of a single predicted membrane-spanning region. It is found in Photobacterium profundum SS9 and in three species of Vibrio, always near periplasmic nitrate reductase genes, but far from the periplasmic nitrate reductase genes in Aeromonas hydrophila ATCC7966. [Hypothetical proteins, Conserved] 42 -131856 TIGR02809 phasin_3 phasin family protein. Members of this protein family are encoded in polyhydroxyalkanoic acid storage system regions in Vibrio, Photobacterium profundum SS9, Acinetobacter sp., Aeromonas hydrophila, and several species of Vibrio. Members appear distantly related to the phasin family proteins modeled by TIGR01841 and TIGR01985. 110 -274309 TIGR02810 agaZ_gatZ D-tagatose-bisphosphate aldolase, class II, non-catalytic subunit. Aldolases specific for D-tagatose-bisphosphate occur in distinct pathways in Escherichia coli and other bacteria, one for the degradation of galactitol (formerly dulcitol) and one for degradation of N-acetyl-galactosamine and D-galactosamine. This family represents a protein of both systems that behaves as a non-catalytic subunit of D-tagatose-bisphosphate aldolase, required both for full activity and for good stability of the aldolase. Note that members of this protein family appear in public databases annotated as putative tagatose 6-phosphate kinases, possibly in error. [Energy metabolism, Sugars] 420 -274310 TIGR02811 formate_TAT formate dehydrogenase region TAT target. Members of this uncharacterized protein family are all small, extending 70 or fewer residues from their respective likely start codons. All have the twin-arginine-dependent tranport (TAT) signal sequence at the N-terminus and a conserved 20-residue C-terminal region that includes the motif Y-[HRK]-X-[TS]-X-H-[IV]-X-X-[YF]-Y. The TAT signal sequence suggests a bound cofactor. All members are encoded near genes for subunits of formate dehydrogenase, and may themselves be a subunit or accessory protein. [Unknown function, General] 66 -163028 TIGR02812 fadR_gamma fatty acid metabolism transcriptional regulator FadR. Members of this family are FadR, a transcriptional regulator of fatty acid metabolism, including both biosynthesis and beta-oxidation. It is found exclusively in a subset of Gammaproteobacteria, with strictly one copy per genome. It has an N-terminal DNA-binding domain and a less well conserved C-terminal long chain acyl-CoA-binding domain. FadR from this family heterologously expressed in Escherichia coli show differences in regulatory response and fatty acid binding profiles. The family is nevertheless designated equivalog, as all member proteins have at least nominally the same function. [Fatty acid and phospholipid metabolism, Biosynthesis, Fatty acid and phospholipid metabolism, Degradation, Regulatory functions, DNA interactions] 235 -274311 TIGR02813 omega_3_PfaA polyketide-type polyunsaturated fatty acid synthase PfaA. Members of the seed for this alignment are involved in omega-3 polyunsaturated fatty acid biosynthesis, such as the protein PfaA from the eicosapentaenoic acid biosynthesis operon in Photobacterium profundum strain SS9. PfaA is encoded together with PfaB, PfaC, and PfaD, and the functions of the individual polypeptides have not yet been described. More distant homologs of PfaA, also included with the reach of this model, appear to be involved in polyketide-like biosynthetic mechanisms of polyunsaturated fatty acid biosynthesis, an alternative to the more familiar iterated mechanism of chain extension and desaturation, and in most cases are encoded near genes for homologs of PfaB, PfaC, and/or PfaD. 2582 -274312 TIGR02814 pfaD_fam PfaD family protein. The protein PfaD is part of four gene locus, similar to polyketide biosynthesis systems, responsible for omega-3 polyunsaturated fatty acid biosynthesis in several high pressure and/or cold-adapted bacteria. Several other members of the seed alignment for this model are found in loci presumed to act in polyketide biosyntheses per se. 444 -131862 TIGR02815 agaS_fam putative sugar isomerase, AgaS family. Some members of this protein family are found in regions associated with N-acetyl-galactosamine and galactosamine untilization and are suggested to be isomerases. 372 -131863 TIGR02816 pfaB_fam PfaB family protein. The protein PfaB is part of four gene locus, similar to polyketide biosynthesis systems, responsible for omega-3 polyunsaturated fatty acid biosynthesis in several high pressure and/or cold-adapted bacteria. The fairly permissive trusted cutoff set for this model allows detection of homologs encoded near homologs to other proteins of the locus: PfaA, PfaC, and/or PfaD. The likely role in every case is either polyunsaturated fatty acid or polyketide biosynthesis. 538 -274313 TIGR02817 adh_fam_1 zinc-binding alcohol dehydrogenase family protein. Members of this model form a distinct subset of the larger family of oxidoreductases that includes zinc-binding alcohol dehydrogenases and NADPH:quinone reductases (pfam00107). While some current members of this family carry designations as putative alginate lyase, it seems no sequence with a direct characterization as such is detected by this model. [Energy metabolism, Fermentation] 336 -131865 TIGR02818 adh_III_F_hyde S-(hydroxymethyl)glutathione dehydrogenase/class III alcohol dehydrogenase. The members of this protein family show dual function. First, they remove formaldehyde, a toxic metabolite, by acting as S-(hydroxymethyl)glutathione dehydrogenase (1.1.1.284). S-(hydroxymethyl)glutathione can form spontaneously from formaldehyde and glutathione, and so this enzyme previously was designated glutathione-dependent formaldehyde dehydrogenase. These same proteins are also designated alcohol dehydrogenase (EC 1.1.1.1) of class III, for activities that do not require glutathione; they tend to show poor activity for ethanol among their various substrate alcohols. [Cellular processes, Detoxification, Energy metabolism, Fermentation] 368 -274314 TIGR02819 fdhA_non_GSH formaldehyde dehydrogenase, glutathione-independent. Members of this family represent a distinct clade within the larger family of zinc-dependent dehydrogenases of medium chain alcohols, a family that also includes the so-called glutathione-dependent formaldehyde dehydrogenase. Members of this protein family have a tightly bound NAD that can act as a true cofactor, rather than a cosubstrate in dehydrogenase reactions, in dismutase reactions for some aldehydes. The name given to this family, however, is formaldehyde dehydrogenase, glutathione-independent. [Central intermediary metabolism, One-carbon metabolism] 393 -131867 TIGR02820 formald_GSH S-(hydroxymethyl)glutathione synthase. The formation of S-(hydroxymethyl)glutathione synthase from glutathione and formaldehyde occurs naturally, but this enzyme speeds its formation in some species as part of a pathway of formaldehyde detoxification. [Cellular processes, Detoxification, Central intermediary metabolism, One-carbon metabolism] 182 -131868 TIGR02821 fghA_ester_D S-formylglutathione hydrolase. This model describes a protein family from bacteria, yeast, and human, with a conserved critical role in formaldehyde detoxification as S-formylglutathione hydrolase (EC 3.1.2.12). Members in eukaryotes such as the human protein are better known as esterase D (EC 3.1.1.1), an enzyme with broad specificity, although S-formylglutathione hydrolase has now been demonstrated as well. [Cellular processes, Detoxification] 275 -131869 TIGR02822 adh_fam_2 zinc-binding alcohol dehydrogenase family protein. Members of this model form a distinct subset of the larger family of oxidoreductases that includes zinc-binding alcohol dehydrogenases and NADPH:quinone reductases (pfam00107). The gene neighborhood of members of this family is not conserved and it appears that no members are characterized. The sequence of the family includes 6 invariant cysteine residues and one invariant histidine. It appears that no member is characterized. [Energy metabolism, Fermentation] 329 -274315 TIGR02823 oxido_YhdH putative quinone oxidoreductase, YhdH/YhfP family. This model represents a subfamily of pfam00107 as defined by Pfam, a superfamily in which some members are zinc-binding medium-chain alcohol dehydrogenases while others are quinone oxidoreductases with no bound zinc. This subfamily includes proteins studied crystallographically for insight into function: YhdH from Escherichia coli and YhfP from Bacillus subtilis. Members bind NADPH or NAD, but not zinc. [Unknown function, Enzymes of unknown specificity] 323 -274316 TIGR02824 quinone_pig3 putative NAD(P)H quinone oxidoreductase, PIG3 family. Members of this family are putative quinone oxidoreductases that belong to the broader superfamily (modeled by Pfam pfam00107) of zinc-dependent alcohol (of medium chain length) dehydrogenases and quinone oxiooreductases. The alignment shows no motif of conserved Cys residues as are found in zinc-binding members of the superfamily, and members are likely to be quinone oxidoreductases instead. A member of this family in Homo sapiens, PIG3, is induced by p53 but is otherwise uncharacterized. [Unknown function, Enzymes of unknown specificity] 325 -131872 TIGR02825 B4_12hDH leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase. Leukotriene B4 12-hydroxydehydrogenase is an NADP-dependent enzyme of arachidonic acid metabolism, responsible for converting leukotriene B4 to the much less active metabolite 12-oxo-leukotriene B4. The BRENDA database lists leukotriene B4 12-hydroxydehydrogenase as one of the synonyms of 2-alkenal reductase (EC 1.3.1.74), while 1.3.1.48 is 15-oxoprostaglandin 13-reductase. 325 -274317 TIGR02826 RNR_activ_nrdG3 anaerobic ribonucleoside-triphosphate reductase activating protein. Members of this family represent a set of radical SAM enzymes related to, yet architecturally different from, the activating protein for the glycine radical-containing, oxygen-sensitive ribonucleoside-triphosphate reductase (RNR) as described in model TIGR02491. Members of this family are found paired with members of a similarly divergent set of anaerobic ribonucleoside-triphosphate reductases. Identification of this protein as an RNR activitating protein is partly from pairing with a candidate RNR. It is further supported by our finding that upstream of these operons are examples of a conserved regulatory element (described Rodionov and Gelfand) that is found in nearly all bacteria and that occurs specifically upstream of operons for all three classes of RNR genes. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 147 -274318 TIGR02827 RNR_anaer_Bdell anaerobic ribonucleoside-triphosphate reductase. Members of this family belong to the class III anaerobic ribonucleoside-triphosphate reductases (RNR). These glycine-radical-containing enzymes are oxygen-sensitive and operate under anaerobic conditions. The genes for this family are pair with genes for an acitivating protein that creates a glycine radical. Members of this family, though related, fall outside the scope of TIGR02487, a functionally equivalent protein set; no genome has members in both familes. Identification as RNR is supported by gene pairing with the activating protein, lack of other anaerobic RNR, and presence of an upstream regulatory element strongly conserved upstream of most RNR operons. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 595 -131875 TIGR02828 TIGR02828 putative membrane fusion protein. Members of this family show similarity to the members of TIGR00999, the membrane fusion protein (MFP) cluster 2 family, which is linked to RND transport systems. [Transport and binding proteins, Unknown substrate] 188 -213743 TIGR02829 spore_III_AE stage III sporulation protein AE. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is found in a spore formation operon and is designated stage III sporulation protein AE. [Cellular processes, Sporulation and germination] 381 -274319 TIGR02830 spore_III_AG stage III sporulation protein AG. CC A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is found in a spore formation operon and is designated stage III sporulation protein AG. [Cellular processes, Sporulation and germination] 186 -131878 TIGR02831 spo_II_M stage II sporulation protein M. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This predicted integral membrane protein is designated stage II sporulation protein M. [Cellular processes, Sporulation and germination] 200 -131879 TIGR02832 spo_yunB sporulation protein YunB. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. Mutation of this sigma E-regulated gene, designated yunB, has been shown to cause a sporulation defect. [Cellular processes, Sporulation and germination] 204 -131880 TIGR02833 spore_III_AB stage III sporulation protein AB. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is designated stage III sporulation protein AB. [Cellular processes, Sporulation and germination] 170 -274320 TIGR02834 spo_ytxC putative sporulation protein YtxC. This uncharacterized protein is part of a panel of proteins conserved in all known endospore-forming Firmicutes (low-GC Gram-positive bacteria), including Carboxydothermus hydrogenoformans, and nowhere else. [Cellular processes, Sporulation and germination] 276 -131882 TIGR02835 spore_sigmaE RNA polymerase sigma-E factor. Members of this family comprise the Firmicutes lineage endospore formation-specific sigma factor SigE, also called SpoIIGB and sigma-29. As characterized in Bacillus subtilis, this protein is synthesized as a precursor, specifically in the mother cell compartment, and must cleaved by the SpoIIGA protein to be made active. [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 234 -131883 TIGR02836 spore_IV_A stage IV sporulation protein A. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is designated stage IV sporulation protein A. It acts in the mother cell compartment and plays a role in spore coat morphogenesis. [Cellular processes, Sporulation and germination] 492 -131884 TIGR02837 spore_II_R stage II sporulation protein R. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is designated stage II sporulation protein R. [Cellular processes, Sporulation and germination] 168 -131885 TIGR02838 spore_V_AC stage V sporulation protein AC. This model describes stage V sporulation protein AC, a paralog of stage V sporulation protein AE. Both are proteins found to present in a species if and only if that species is one of the Firmicutes capable of endospore formation, as of the time of the publication of the genome of Carboxydothermus hydrogenoformans. Mutants in spoVAC have a stage V sproulation defect. [Cellular processes, Sporulation and germination] 141 -131886 TIGR02839 spore_V_AE stage V sporulation protein AE. This model describes stage V sporulation protein AE, a paralog of stage V sporulation protein AC. Both are proteins found to present in a species if and only if that species is one of the Firmicutes capable of endospore formation, as of the time of the publication of the genome of Carboxydothermus hydrogenoformans. Mutants in spoVAE have a stage V sproulation defect. [Cellular processes, Sporulation and germination] 114 -274321 TIGR02840 spore_YtaF putative sporulation protein YtaF. This protein family was identified, at the time of the publication of the Carboxydothermus hydrogenoformans genome, as having a phylogenetic profile that exactly matches the subset of the Firmicutes capable of forming endospores. The species include Bacillus anthracis, Clostridium tetani, Thermoanaerobacter tengcongensis, Geobacillus kaustophilus, etc. This protein, previously named YtaF, is therefore a putative sporulation protein. [Cellular processes, Sporulation and germination] 206 -131888 TIGR02841 spore_YyaC putative sporulation protein YyaC. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, also called YyaC, is a member of that panel and is otherwise uncharacterized. The second round of PSI-BLAST shows many similarities to the germination protease GPR, which is found in exactly the same set of organisms and has a known role in the sporulation/germination process. [Cellular processes, Sporulation and germination] 140 -131889 TIGR02842 CyoC cytochrome o ubiquinol oxidase, subunit III. Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain which reacts with oxygen, reducing it to water with the concomitant transport of 4 protons across the membrane. Also known as the cytochrome bo complex, cytochrome o ubiquinol oxidase contains four subunits, two heme b cofactors and a copper atom which is believed to be the oxygen active site. This complex is structurally related to the cytochrome caa3 oxidases which utilize cytochrome c as the reductant and contain heme a cofactors, as well as the intermediate form aa3 oxidases which also react directly with quinones as the reductant. [Energy metabolism, Electron transport] 180 -131890 TIGR02843 CyoB cytochrome o ubiquinol oxidase, subunit I. Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain which reacts with oxygen, reducing it to water with the concomitant transport of 4 protons across the membrane. Also known as the cytochrome bo complex, cytochrome o ubiquinol oxidase contains four subunits, two heme b cofactors and a copper atom which is believed to be the oxygen active site. This complex is structurally related to the cytochrome caa3 oxidases which utilize cytochrome c as the reductant and contain heme a cofactors, as well as the intermediate form aa3 oxidases which also react directly with quinones as the reductant. [Energy metabolism, Electron transport] 646 -131891 TIGR02844 spore_III_D sporulation transcriptional regulator SpoIIID. Members of this protein are the transcriptional regulator SpoIIID, or stage III sporulation protein D. It is present in genomes if and only if the species is capable of endospore formation as occurs in the model species Bacillus subtilis. SpoIIID is a DNA binding protein that, in B. subtilis, downregulates many genes but also turns on ten genes. [Regulatory functions, DNA interactions, Cellular processes, Sporulation and germination] 80 -188254 TIGR02845 spore_V_AD stage V sporulation protein AD. Bacillus and Clostridium species contain about 10 % dipicolinic acid (pyridine-2,6-dicarboxylic acid) by weight. This protein family, SpoVAD, belongs to the spoVA operon that is suggested to act in the transport of dipicolinic acid (DPA) from the mother cell, where DPA is synthesized, to the forespore, a process essential to sporulation. Members of this protein family are found, so far, in exactly those species believed capable of endospore formation. [Cellular processes, Sporulation and germination] 327 -131893 TIGR02846 spore_sigmaK RNA polymerase sigma-K factor. The sporulation-specific transcription factor sigma-K (also called sigma-27) is expressed in the mother cell compartment of endospore-forming bacteria such as Bacillus subtilis. Like its close homolog sigma-E (sigma-29) (see TIGR02835), also specific to the mother cell compartment, it must be activated by a proteolytic cleavage. Note that in Bacillus subtilis (and apparently also Clostridium tetani), but not in other endospore forming species such as Bacillus anthracis, the sigK gene is generated by a non-germline (mother cell only) chromosomal rearrangement that recombines coding regions for the N-terminal and C-terminal regions of sigma-K. [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 227 -131894 TIGR02847 CyoD cytochrome o ubiquinol oxidase subunit IV. Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain which reacts with oxygen, reducing it to water with the concomitant transport of 4 protons across the membrane. Also known as the cytochrome bo complex, cytochrome o ubiquinol oxidase contains four subunits, two heme b cofactors and a copper atom which is believed to be the oxygen active site. This complex is structurally related to the cytochrome caa3 oxidases which utilize cytochrome c as the reductant and contain heme a cofactors, as well as the intermediate form aa3 oxidases which also react directly with quinones as the reductant. [Energy metabolism, Electron transport] 96 -131895 TIGR02848 spore_III_AC stage III sporulation protein AC. Members of this protein family are designated SpoIIIAC, part of the spoIIIA operon of sporulation genes whose mutant phenotype is linked to sporulation stage III. Members of this family are encoded by the genome of a species if and only if that species is capable of endospore formation, as in Bacillus subtilis. The molecular function of this small, probable integral membrane protein is unknown. [Cellular processes, Sporulation and germination] 64 -131896 TIGR02849 spore_III_AD stage III sporulation protein AD. Members of this family are the uncharacterized protein SpoIIIAD, part of the spoIIIA operon that acts at sporulation stage III as part of a cascade of events leading to endospore formation. Note that the start sites of members of this family as annotated tend to be variable; quite a few members have apparent homologous protein-coding regions continuing upstream of the first available start codon. The length of the alignment and the scoring cutoff thresholds for the model have been set to try to detect all valid members of the family, even if annotation of the start site begins too far downstream. [Cellular processes, Sporulation and germination] 101 -131897 TIGR02850 spore_sigG RNA polymerase sigma-G factor. Members of this family comprise the Firmicutes lineage endospore formation-specific sigma factor SigG. It is also desginated stage III sporulation protein G (SpoIIIG). This protein is rather closely related to sigma-F (SpoIIAC), another sporulation sigma factor. [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 254 -131898 TIGR02851 spore_V_T stage V sporulation protein T. Members of this protein family are the stage V sporulation protein T (SpoVT), a protein of the sporulation/germination program in Bacillus subtilis and related species. The amino-terminal 50 amino acids are nearly perfectly conserved across all endospore-forming bacteria. SpoVT is a DNA-binding transcriptional regulator related to AbrB (See pfam04014). [Regulatory functions, DNA interactions, Cellular processes, Sporulation and germination] 180 -188255 TIGR02852 spore_dpaB dipicolinic acid synthetase, B subunit. Members of this family represent the B subunit of dipicolinic acid synthetase, an enzyme that synthesizes a small molecule that appears to confer heat stability to bacterial endospores such as those of Bacillus subtilis. The A and B subunits are together in what was originally designated the spoVF locus for stage V of endospore formation. [Cellular processes, Sporulation and germination] 187 -131900 TIGR02853 spore_dpaA dipicolinic acid synthetase, A subunit. This predicted Rossman fold-containing protein is the A subunit of dipicolinic acid synthetase as found in most, though not all, endospore-forming low-GC Gram-positive bacteria; it is absent in Clostridium. The B subunit is represented by TIGR02852. This protein is also known as SpoVFA. [Cellular processes, Sporulation and germination] 287 -131901 TIGR02854 spore_II_GA sigma-E processing peptidase SpoIIGA. Members of this protein family are the stage II sporulation protein SpoIIGA. This protein acts as an activating protease for Sigma-E, one of several specialized sigma factors of the sporulation process in Bacillus subtilis and related endospore-forming bacteria. [Cellular processes, Sporulation and germination] 288 -274322 TIGR02855 spore_yabG sporulation peptidase YabG. Members of this family are the protein YabG, demonstrated for Bacillus subtilis to be an endopeptidase able to release N-terminal peptides from a number of sporulation proteins, including CotT, CotF, and SpoIVA. It appears to be expressed under control of sigma-K. [Cellular processes, Sporulation and germination] 283 -131903 TIGR02856 spore_yqfC sporulation protein YqfC. This small protein, designated YqfC in Bacillus subtilis, is both restricted to and universal in sporulating species of the Firmcutes, such as Bacillus subtilis and Clostridium perfringens. It is part of the sigma(E)-controlled regulon, and its mutation leads to a sporulation defect. [Cellular processes, Sporulation and germination] 85 -274323 TIGR02857 CydD thiol reductant ABC exporter, CydD subunit. The gene pair cydCD encodes an ABC-family transporter in which each gene contains an N-terminal membrane-spanning domain (pfam00664) and a C-terminal ATP-binding domain (pfam00005). In E. coli these genes were discovered as mutants which caused the terminal heme-copper oxidase complex cytochrome bd to fail to assemble. Recent work has shown that the transporter is involved in export of redox-active thiol compounds such as cysteine and glutathione. The linkage to assembly of the cytochrome bd complex is further supported by the conserved operon structure found outside the gammaproteobacteria (cydABCD) containing both the transporter and oxidase genes components. The genes used as the seed members for this model are all either found in the gammproteobacterial context or the CydABCD context. All members of this family scoring above trusted at the time of its creation were from genomes which encode a cytochrome bd complex. Unfortunately, the gene symbol nomenclature adopted based on this operon in B. subtilis assigns cydC to the third gene in the operon where this gene is actually homologous to the E. coli cydD gene. We have chosen to name all homologs in this family in accordance with the precedence of publication of the E. coli name, CydD 529 -274324 TIGR02858 spore_III_AA stage III sporulation protein AA. Members of this protein are the stage III sporulation protein AA, encoded by one of several genes in the spoIIIA locus. It seems that this protein is found in a species if and only if that species is capable of endospore formation. [Cellular processes, Sporulation and germination] 270 -131906 TIGR02859 spore_sigH RNA polymerase sigma-H factor. Members of this protein family are RNA polymerase sigma-H factor for sporulation in endospore-forming bacteria. This protein is also called Sigma-30 and SigH. Although rather close homologs in Listeria score well against this model, Listeria does not form spores and the role of the related sigma factor in that genus is in doubt. [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 198 -274325 TIGR02860 spore_IV_B stage IV sporulation protein B. SpoIVB, the stage IV sporulation protein B of endospore-forming bacteria such as Bacillus subtilis, is a serine proteinase, expressed in the spore (rather than mother cell) compartment, that participates in a proteolytic activation cascade for Sigma-K. It appears to be universal among endospore-forming bacteria and occurs nowhere else. [Cellular processes, Sporulation and germination] 402 -274326 TIGR02861 SASP_H small acid-soluble spore protein, H-type. This model is derived from pfam08141 but has been expanded to include in the seed corresponding proteins from three species of Clostridium. Members of this family should occur only in endospore-forming bacteria, typically with two members per genome, but may be absent from the genomes of some endospore-forming bacteria. SspH (previously designated YfjU) was shown to be expressed specifically in spores of Bacillus subtilis. [Cellular processes, Sporulation and germination] 58 -163046 TIGR02862 spore_BofA pro-sigmaK processing inhibitor BofA. Members of this protein family are found only in endospore-forming bacteria, such as Bacillus subtilis and Clostridium tetani. Among such bacteria, it appears only Symbiobacterium thermophilum lacks a member of this family. The protein, designated BofA, is an integral membrane protein that regulates the proteolytic activation of the RNA polymerase sigma factor K. [Cellular processes, Sporulation and germination] 83 -131910 TIGR02863 spore_sspJ small, acid-soluble spore protein, SspJ. New small, acid-soluble proteins unique to spores of Bacillus subtilis [Cellular processes, Sporulation and germination] 47 -274327 TIGR02864 spore_sspO small, acid-soluble spore protein O. This model represents a minor (low-abundance) spore protein, designated SspO. It is found in a very limited subset of the already small group of endospore-forming bacteria, but these species include Oceanobacillus iheyensis, Geobacillus kaustophilus, Bacillus subtilis, B. halodurans, and B. cereus. This protein was previously called CotK. [Cellular processes, Sporulation and germination] 50 -274328 TIGR02865 spore_II_E stage II sporulation protein E. Stage II sporulation protein E (SpoIIE) is a multiple membrane spanning protein with two separable functions. It plays a role in the switch to polar cell division during sporulation. By means of it protein phosphatase activity, located in the C-terminal region, it activates sigma-F. All proteins that score above the trusted cutoff to this model are found in endospore-forming Gram-positive bacteria. Surprisingly, a sequence from the Cyanobacterium-like (and presumably non-spore-forming) photosynthesizer Heliobacillus mobilis is homologous, and scores between the trusted and noise cutoffs. [Cellular processes, Sporulation and germination] 764 -274329 TIGR02866 CoxB cytochrome c oxidase, subunit II. Cytochrome c oxidase is the terminal electron acceptor of mitochondria (and one of several possible acceptors in prokaryotes) in the electron transport chain of aerobic respiration. The enzyme couples the oxidation of reduced cytochrome c with the reduction of molecular oxygen to water. This process results in the pumping of four protons across the membrane which are used in the proton gradient powered synthesis of ATP. The oxidase contains two heme a cofactors and three copper atoms as well as other bound ions. [Energy metabolism, Electron transport] 199 -274330 TIGR02867 spore_II_P stage II sporulation protein P. Stage II sporulation protein P is a protein of the endospore formation program in a number of lineages in the Firmicutes (low-GC Gram-positive bacteria). It is expressed in the mother cell compartment, under control of Sigma-E. SpoIIP, along with SpoIIM and SpoIID, is one of three major proteins involved in engulfment of the forespore by the mother cell. This protein family is named for the single member in Bacillus subtilis, although most sporulating bacteria have two members. [Cellular processes, Sporulation and germination] 196 -274331 TIGR02868 CydC thiol reductant ABC exporter, CydC subunit. The gene pair cydCD encodes an ABC-family transporter in which each gene contains an N-terminal membrane-spanning domain (pfam00664) and a C-terminal ATP-binding domain (pfam00005). In E. coli these genes were discovered as mutants which caused the terminal heme-copper oxidase complex cytochrome bd to fail to assemble. Recent work has shown that the transporter is involved in export of redox-active thiol compounds such as cysteine and glutathione. The linkage to assembly of the cytochrome bd complex is further supported by the conserved operon structure found outside the gammaproteobacteria (cydABCD) containing both the transporter and oxidase genes components. The genes used as the seed members for this model are all either found in the gammproteobacterial context or the CydABCD context. All members of this family scoring above trusted at the time of its creation were from genomes which encode a cytochrome bd complex. 530 -213747 TIGR02869 spore_SleB spore cortex-lytic enzyme. Members of this protein family are the spore cortex-lytic enzyme SleB from Bacillus subtilis and other Gram-positive, endospore-forming bacterial species. This protein is stored in an inactive form in the spore and activated during germination. [Cellular processes, Sporulation and germination] 200 -274332 TIGR02870 spore_II_D stage II sporulation protein D. Stage II sporulation protein D (SpoIID) is a protein of the endospore formation program in a number of lineages in the Firmicutes (low-GC Gram-positive bacteria). It is expressed in the mother cell compartment, under control of Sigma-E. SpoIID, along with SpoIIM and SpoIIP, is one of three major proteins involved in engulfment of the forespore by the mother cell. [Cellular processes, Sporulation and germination] 338 -274333 TIGR02871 spore_ylbJ sporulation integral membrane protein YlbJ. Members of this protein family are found exclusively in Firmicutes (low-GC Gram-positive bacterial) and are known from studies in Bacillus subtilis to be part of the sigma-E regulon. Mutation leads to a sporulation defect, confirming that members of this protein family, YlbJ, are sporulation proteins. This protein appears to be universal among endospore-forming bacteria, but is encoded by a pair ORFs distant from eash other in Symbiobacterium thermophilum IAM14863. [Cellular processes, Sporulation and germination] 362 -274334 TIGR02872 spore_ytvI sporulation integral membrane protein YtvI. Three lines of evidence show this protein to be involved in sporulation. First, it is under control of a sporulation-specific sigma factor, sigma-E. Second, mutation leads to a sporulation defect. Third, it if found in exactly those genomes whose bacteria are capable of sporulation, except for being absent in Clostridium acetobutylicum ATCC824. This protein has extensive hydrophobic regions and is likely an integral membrane protein. [Cellular processes, Sporulation and germination] 341 -131920 TIGR02873 spore_ylxY probable sporulation protein, polysaccharide deacetylase family. Members of this protein family are most closely related to TIGR02764, a subset of polysaccharide deacetylase family proteins found in a species if and only if the species forms endospores like those of Bacillus subtilis or Clostridium tetani. This family is likewise restricted to spore-formers, but is not universal among them in having sequences with full-length matches to the model. [Energy metabolism, Biosynthesis and degradation of polysaccharides, Cellular processes, Sporulation and germination] 268 -131921 TIGR02874 spore_ytfJ sporulation protein YtfJ. Members of this protein family, exemplified by YtfJ of Bacillus subtilis, are encoded by bacterial genomes if and only if the species is capable of endospore formation. YtfJ was confirmed in spores of Bacillus subtilis; it appears to be expressed in the forespore under control of SigF (see ). [Cellular processes, Sporulation and germination] 125 -131922 TIGR02875 spore_0_A sporulation transcription factor Spo0A. Spo0A, the stage 0 sporulation protein A, is a transcription factor critical for the initiation of sporulation. It contains a response regulator receiver domain (pfam00072). In Bacillus subtilis, it works together with response regulator Spo0F and the phosphotransferase Spo0B, both of which are missing from at least some sporulating species and thus not part of the endospore forming bacteria minimal gene set. Spo0A, however, is universal among endospore-forming species. [Cellular processes, Sporulation and germination] 262 -274335 TIGR02876 spore_yqfD sporulation protein YqfD. YqfD is part of the sigma-E regulon in the sporulation program of endospore-forming Gram-positive bacteria. Mutation results in a sporulation defect in Bacillus subtilis. Members are found in all currently known endospore-forming bacteria, including the genera Bacillus, Symbiobacterium, Carboxydothermus, Clostridium, and Thermoanaerobacter. [Cellular processes, Sporulation and germination] 382 -274336 TIGR02877 spore_yhbH sporulation protein YhbH. This protein family, typified by YhbH in Bacillus subtilis, is found in nearly every endospore-forming bacterium and in no other genome (but note that the trusted cutoff score is set high to exclude a single high-scoring sequence from Nitrosococcus oceani ATCC 19707, which is classified in the Gammaproteobacteria). The gene in Bacillus subtilis was shown to be in the regulon of the sporulation sigma factor, sigma-E, and its mutation was shown to create a sporulation defect. [Cellular processes, Sporulation and germination] 371 -131925 TIGR02878 spore_ypjB sporulation protein YpjB. Members of this protein, YpjB, family are restricted to a subset of endospore-forming bacteria, including Bacillus species but not CLostridium or some others. In Bacillus subtilis, ypjB was found to be part of the sigma-E regulon, where sigma-E is a sporulation sigma factor that regulates expression in the mother cell compartment. Null mutants of ypjB show a sporulation defect. This protein family is not, however, a part of the endospore formation minimal gene set. [Cellular processes, Sporulation and germination] 233 -200217 TIGR02880 cbbX_cfxQ probable Rubsico expression protein CbbX. Proteins in this family are now designated CbbX. Some previously were CfxQ (carbon fixation Q). Its gene is often found immmediately downstream of the Rubisco large and small chain genes, and it is suggested to be necessary for Rubisco expression. CbbX has been shown to be necessary for photoautotrophic growth. This protein belongs to the larger family of pfam00004, ATPase family Associated with various cellular Activities. Within that larger family, members of this family are most closely related to the stage V sporulation protein K, or SpoVK, in endospore-forming bacteria such as Bacillus subtilis. 284 -163057 TIGR02881 spore_V_K stage V sporulation protein K. Members of this protein family are the stage V sporulation protein K (SpoVK), a close homolog of the Rubisco expression protein CbbX (TIGR02880) and a members of the ATPase family associated with various cellular activities (pfam00004). Members are strictly limited to bacterial endospore-forming species, but are not universal in this group and are missing from the Clostridium group. [Cellular processes, Sporulation and germination] 261 -131928 TIGR02882 QoxB cytochrome aa3 quinol oxidase, subunit I. This family (QoxB) encodes subunit I of the aa3-type quinone oxidase, one of several bacterial terminal oxidases. This complex couples oxidation of reduced quinones with the reduction of molecular oxygen to water and the pumping of protons to form a proton gradient utilized for ATP production. aa3-type oxidases contain two heme a cofactors as well as copper atoms in the active site. [Energy metabolism, Electron transport] 643 -274337 TIGR02883 spore_cwlD N-acetylmuramoyl-L-alanine amidase CwlD. Members of this protein family are the CwlD family of N-acetylmuramoyl-L-alanine amidase. This family has been called the germination-specific N-acetylmuramoyl-L-alanine amidase. CwlD is required, along with the putative deactylase PdaA, to make muramic delta-lactam, a novel peptidoglycan constituent found only in spores. CwlD mutants show a germination defect. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Sporulation and germination] 189 -131930 TIGR02884 spore_pdaA delta-lactam-biosynthetic de-N-acetylase. Muramic delta-lactam is an unusual constituent of peptidoglycan, found only in bacterial spores in the peptidoglycan wall, or spore cortex. The proteins in this family are PdaA (yfjS), a member of a larger family of polysaccharide deacetylases, and are specificially involved in delta-lactam biosynthesis. PdaA acts immediately after CwlD, an N-acetylmuramoyl-L-alanine amidase and performs a de-N-acetylation. PdaA may also perform the following transpeptidation for lactam ring formation, as heterologous expression in E. coli of CwlD and PdaA together is sufficient for delta-lactam production. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Sporulation and germination] 224 -131931 TIGR02885 spore_sigF RNA polymerase sigma-F factor. Members of this protein family are the RNA polymerase sigma factor F. Sigma-F is specifically and universally a component of the Firmicutes lineage endospore formation program, and is expressed in the forespore to turn on expression of dozens of genes. It is closely homologous to sigma-G, which is also expressed in the forespore. [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 231 -131932 TIGR02886 spore_II_AA anti-sigma F factor antagonist. The anti-sigma F factor antagonist, also called stage II sporulation protein AA, is a protein universal among endospore-forming bacteria, all of which belong to the Firmcutes [Regulatory functions, Protein interactions, Cellular processes, Sporulation and germination] 106 -274338 TIGR02887 spore_ger_x_C germination protein, Ger(x)C family. Members of this protein family are restricted to endospore-forming members of the Firmicutes lineage of bacteria, including the genera Bacillus, Clostridium, Thermoanaerobacter, Carboxydothermus, etc. Members are nearly all predicted lipoproteins and belong to probable transport operons, some of which have been characterized as crucial to germination in response to alanine. Members typically have been gene symbols gerKC, gerAC, gerYC, etc. [Transport and binding proteins, Amino acids, peptides and amines, Cellular processes, Sporulation and germination] 371 -274339 TIGR02888 spore_YlmC_YmxH sporulation protein, YlmC/YmxH family. Members of this family belong to the broader family of PRC-barrel domain proteins (see pfam05239), but are found only in endospore-forming bacteria of the Firmicutes lineage. Most such species have exactly two members of this family and all have at least one; the function is unknown. One of two members from Bacillus subtilis, YmxH, is strongly induced by the mother cell-specific sigma-E factor. [Cellular processes, Sporulation and germination] 76 -131935 TIGR02889 spore_YpeB germination protein YpeB. Members of this family are YpeB, a protein usually encoded with the putative spore-cortex-lytic enzyme SleB and required, together with SleB, for normal germination. This family is retricted to endospore-forming species in the Firmicutes lineage of bacteria, and found in all such species to date except Clostridium perfringens. The matching phenotypes of mutants in SleB (called a lytic transglycosylase) and YpeB suggests that YpeB is necessary to allow SleB to function. [Cellular processes, Sporulation and germination] 435 -274340 TIGR02890 bacill_yteA regulatory protein, yteA family. Members of this predicted regulatory protein are found only in endospore-forming members of the Firmicutes group of bacteria, and in nearly every such species; Clostridium perfringens seems to be an exception. The member from Bacillus subtilis, the model system for the study of the sporulation program, has been designated both yteA and yzwB. Some (but not all) members of this family show a strong sequence match to Pfam family pfam01258 the C4-type zinc finger protein, DksA/TraR family, but only one of the four key Cys residues is conserved. All members of this protein family share an additional C-terminal domain. Smaller proteins from the proteobacteria with just the N-terminal domain, including DksA and DksA2 are RNA polymerase-binding regulatory proteins even if the Zn-binding site is not conserved. [Unknown function, General] 159 -213748 TIGR02891 CtaD_CoxA cytochrome c oxidase, subunit I. This large family represents subunit I's (CtaD, CoxA, CaaA) of cytochrome c oxidases of bacterial origin. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits I-III form the functional core of the enzyme complex. Subunit I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit II and heme a of subunit I to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. In the bacilli an apparent split (paralogism) has created a sister clade (TIGR02882) encoding subunits (QoxA) of the aa3-type quinone oxidase complex which reacts directly with quinones, bypassing the interaction with soluble cytochrome c. This model attempts to exclude these sequences, placing them between the trusted and noise cutoffs. These families, as well as archaeal and eukaryotic cytochrome c subunit I's are included within the superfamily model, pfam00115. [Energy metabolism, Electron transport] 499 -274341 TIGR02892 spore_yabP sporulation protein YabP. Members of this protein family are the YabP protein of the bacterial sporulation program, as found in Bacillus subtilis, Clostridium tetani, and other spore-forming members of the Firmicutes. In Bacillus subtilis, a yabP single mutant appears to sporulate and germinate normally (), but is in an operon with yabQ (essential for formation of the spore cortex), it near-universal among endospore-forming bacteria, and is found nowhere else. It is likely, therefore, that YabP does have a function in sporulation or germination, one that is either unappreciated or partially redundant with that of another protein. [Cellular processes, Sporulation and germination] 85 -131939 TIGR02893 spore_yabQ spore cortex biosynthesis protein YabQ. YabQ, a protein predicted to span the membrane several times, is found in exactly those genomes whose species perform sporulation in the style of Bacillus subtilis, Clostridium tetani, and others of the Firmicutes. Mutation of this sigma(E)-dependent gene blocks development of the spore cortex. The length of the C-terminal region, including some hydrophobic regions, is rather variable between members. [Cellular processes, Sporulation and germination] 130 -274342 TIGR02894 DNA_bind_RsfA transcription factor, RsfA family. In a subset of endospore-forming members of the Firmcutes, members of this protein family are found, several to a genome. Two very strongly conserved sequences regions are separated by a highly variable linker region. Much of the linker region was excised from the seed alignment for this model. A characterized member is the prespore-specific transcription RsfA from Bacillus subtilis, previously called YwfN, which is controlled by sigma factor F and seems to fine-tune expression of some genes in the sigma-F regulon. A paralog in Bacillus subtilis is designated YlbO. [Regulatory functions, DNA interactions, Cellular processes, Sporulation and germination] 161 -131941 TIGR02895 spore_sigI RNA polymerase sigma-I factor. Members of this sigma factor protein family are strictly limited to endospore-forming species in the Firmicutes lineage of bacteria, but are not universally present among such species. Sigma-I was shown to be induced by heat shock () in Bacillus subtilis and is suggested by its phylogenetic profile to be connected to the program of sporulation (). [Transcription, Transcription factors, Cellular processes, Sporulation and germination] 218 -131942 TIGR02896 spore_III_AF stage III sporulation protein AF. This family represents the stage III sporulation protein AF of the bacterial endospore formation program, which exists in some but not all members of the Firmicutes (formerly called low-GC Gram-positives). The C-terminal region of this protein is poorly conserved, so only the N-terminal region, which includes two predicted transmembrane domains, is included in the seed alignment. [Cellular processes, Sporulation and germination] 106 -131943 TIGR02897 QoxC cytochrome aa3 quinol oxidase, subunit III. This family (QoxC) encodes subunit III of the aa3-type quinone oxidase, one of several bacterial terminal oxidases. This complex couples oxidation of reduced quinones with the reduction of molecular oxygen to water and the pumping of protons to form a proton gradient utilized for ATP production. aa3-type oxidases contain two heme a cofactors as well as copper atoms in the active site. [Energy metabolism, Electron transport] 190 -131944 TIGR02898 spore_YhcN_YlaJ sporulation lipoprotein, YhcN/YlaJ family. YhcN and YlaJ are predicted lipoproteins that have been detected as spore proteins but not vegetative proteins in Bacillus subtilis. Both appear to be expressed under control of the RNA polymerase sigma-G factor. The YlaJ-like members of this family have a low-complexity, strongly acidic 40-residue C-terminal domain that is not included in the seed alignment for this model. A portion of the low-complexity region between the lipoprotein signal sequence and the main conserved region of the protein family was also excised from the seed alignment. [Cellular processes, Sporulation and germination] 158 -131945 TIGR02899 spore_safA spore coat assembly protein SafA. SafA (YrbB) (SafA) of Bacillus subtilis is a protein found at the interface of the spore cortex and spore coat, and is dependent on SpoVID for its localization. This model is based on the N-terminal LysM (lysin motif) domain (see pfamAM model pfam01476) of SafA and, from several other spore-forming species, the protein with the most similar N-terminal region. However, this set of proteins differs greatly in C-terminal of the LysM domaim; blocks of 12-residue and 13-residue repeats are found in the Bacillus cereus group, tandem LysM domains in Thermoanaerobacter tengcongensis MB4, etc. in which one of which is found in most examples of endospore-forming bacteria. [Cellular processes, Sporulation and germination] 44 -274343 TIGR02900 spore_V_B stage V sporulation protein B. SpoVB is the stage V sporulation protein B of the bacterial endopore formation program in Bacillus subtilis and various other Firmcutes. It is nearly universal among endospore-formers. Paralogs with rather high sequence similarity to SpoVB exist, including YkvU in B. subtilis and a number of proteins in the genus Clostridium. [Cellular processes, Sporulation and germination] 488 -200218 TIGR02901 QoxD cytochrome aa3 quinol oxidase, subunit IV. This family (QoxD) encodes subunit IV of the aa3-type quinone oxidase, one of several bacterial terminal oxidases. This complex couples oxidation of reduced quinones with the reduction of molecular oxygen to water and the pumping of protons to form a proton gradient utilized for ATP production. aa3-type oxidases contain two heme a cofactors as well as copper atoms in the active site. [Energy metabolism, Electron transport] 94 -131948 TIGR02902 spore_lonB ATP-dependent protease LonB. Members of this protein are LonB, a paralog of the ATP-dependent protease La (LonA, TIGR00763). LonB proteins are found strictly, and almost universally, in endospore-forming bacteria. This protease was shown, in Bacillus subtilis, to be expressed specifically in the forespore, during sporulation, under control of sigma(F). The lonB gene, despite location immediately upstream of lonA, was shown to be monocistronic. LonB appears able to act on sigma(H) for post-translation control, but lonB mutation did not produce an obvious sporulation defect under the conditions tested. Note that additional paralogs of LonA and LonB occur in the Clostridium lineage and this model selects only one per species as the protein that corresponds to LonB in B. subtilis. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Sporulation and germination] 531 -274344 TIGR02903 spore_lon_C ATP-dependent protease, Lon family. Members of this protein family resemble the widely distributed ATP-dependent protease La, also called Lon and LonA. It resembles even more closely LonB, which is a LonA paralog found in genomes if and only if the species is capable of endospore formation (as in Bacillus subtilis, Clostridium tetani, and select other members of the Firmicutes) and expressed specifically in the forespore compartment. Members of this family are restricted to a subset of spore-forming species, and are very likely to participate in the program of endospore formation. We propose the designation LonC. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Sporulation and germination] 615 -274345 TIGR02904 spore_ysxE spore coat protein YsxE. Members of this family are homologs of the Bacillus subtilis spore coat protein CotS. Members of this family, designated YsxE, are found only in the family Bacillaceae, from among the endospore-forming members of the Firmicutes branch of the Bacteria. As a rule, the ysxE gene is found immediately downstream of spoVID, a gene necessary for spore coat assembly. The protein has been shown to be part of the spore coat. [Cellular processes, Sporulation and germination] 309 -131951 TIGR02905 spore_yutH spore coat protein YutH. Members of this family are homologs of the Bacillus subtilis spore coat protein CotS. Members of this family, designated YutH, are found only in the family Bacillaceae from among the endospore-forming members of the Firmicutes branch of the Bacteria. [Cellular processes, Sporulation and germination] 313 -131952 TIGR02906 spore_CotS spore coat protein, CotS family. Members of this family include the spore coat proteins CotS and YtaA from Bacillus subtilis and, from other endospore-forming bacteria, homologs that are more closely related to these two than to the spore coat proteins YutH and YsxE. The CotS family is more broadly distributed than YutH or YsxE, but still is not universal among spore-formers. [Cellular processes, Sporulation and germination] 313 -274346 TIGR02907 spore_VI_D stage VI sporulation protein D. SpoVID, the stage VI sporulation protein D, is restricted to endospore-forming members of the bacteria, all of which are found among the Firmicutes. It is widely distributed but not quite universal in this group. Between well-conserved N-terminal and C-terminal domains is a poorly conserved, low-complexity region of variable length, rich enough in glutamic acid to cause spurious BLAST search results unless a filter is used. The seed alignment for this model was trimmed, in effect, by choosing member sequences in which these regions are relatively short. SpoVID is involved in spore coat assembly by the mother cell compartment late in the process of sporulation. [Cellular processes, Sporulation and germination] 338 -131954 TIGR02908 CoxD_Bacillus cytochrome c oxidase, subunit IVB. This model represents a small clade of cytochrome oxidase subunit IV's found in the Bacilli. [Energy metabolism, Electron transport] 110 -131955 TIGR02909 spore_YkwD uncharacterized protein, YkwD family. Members of this protein family represent a subset of those belonging to pfam00188 (SCP-like extracellular protein). Based on currently cuttoffs for this model, all member proteins are found in Bacteria capable of endospore formation. Members include a named but uncharacterized protein, YkwD of Bacillus subtilis. Only the C-terminal region is well-conserved and is included in the seed alignment for this model. Three members of this family have an N-terminal domain homologous to the spore coat assembly protein SafA. 127 -131956 TIGR02910 sulfite_red_A sulfite reductase, subunit A. Members of this protein family include the A subunit, one of three subunits, of the anaerobic sulfite reductase of Salmonella, and close homologs from various Clostridum species, where the three-gene neighborhood is preserved. Two such gene clusters are found in Clostridium perfringens, but it may be that these sets of genes correspond to the distinct assimilatory and dissimilatory forms as seen in Clostridium pasteurianum. Note that any one of these enzymes may have secondary substates such as NH2OH, SeO3(2-), and SO3(2-). Heterologous expression of the anaerobic sulfite reductase of Salmonella confers on Escherichia coli the ability to produce hydrogen sulfide gas from sulfite. [Central intermediary metabolism, Sulfur metabolism] 334 -131957 TIGR02911 sulfite_red_B sulfite reductase, subunit B. Members of this protein family include the B subunit, one of three subunits, of the anaerobic sulfite reductase of Salmonella, and close homologs from various Clostridum species, where the three-gene neighborhood is preserved. Two such gene clusters are found in Clostridium perfringens, but it may be that these sets of genes correspond to the distinct assimilatory and dissimilatory forms as seen in Clostridium pasteurianum. [Central intermediary metabolism, Sulfur metabolism] 261 -131958 TIGR02912 sulfite_red_C sulfite reductase, subunit C. Members of this protein family include the C subunit, one of three subunits, of the anaerobic sulfite reductase of Salmonella, and close homologs from various Clostridum species, where the three-gene neighborhood is preserved. Two such gene clusters are found in Clostridium perfringens, but it may be that these sets of genes correspond to the distinct assimilatory and dissimilatory forms as seen in Clostridium pasteurianum. Note that any one of these enzymes may have secondary substates such as NH2OH, SeO3(2-), and SO3(2-). Heterologous expression of the anaerobic sulfite reductase of Salmonella confers on Escherichia coli the ability to produce hydrogen sulfide gas from sulfite. [Central intermediary metabolism, Sulfur metabolism] 314 -131959 TIGR02913 HAF_rpt probable extracellular repeat, HAF family. The model for this family detects a homology domain of about 40 amino acids. Member proteins always have a least two tandem copies and as many as seven. The spacing between repeats as defined here usually is four residues exactly. This repeat is named for a tripeptide motif HAF found in most members. Some members proteins are found in species with no outer membrane (archaea and Gram-positive bacteria) while others have C-terminal autotransporter domains that suggest that the repeat region is transported across the outer membrane. This domain seems likely to be an extracellular protein repeat. 39 -274347 TIGR02914 EpsI_fam EpsI family protein. In Methylobacillus sp strain 12S, EpsI is encoded immediately downstream of the multiple-membrane-spanning putative transporter EpsH, and is predicted to be a periplasmic protein involved in, but not required for, expression of the exopolysaccharide methanolan. In a number of other species, protein homologous to EpsI is encoded either next to EpsH or, more often, combined in a fused gene. We have proposed renaming EpsH, or the EpsHI fusion protein, to exosortase, based on its phylogenetic association with the PEP-CTERM proposed protein targeting signal. [Transport and binding proteins, Unknown substrate] 174 -274348 TIGR02915 PEP_resp_reg PEP-CTERM-box response regulator transcription factor. Members of this protein family share full-length homology with (but do not include) the acetoacetate metabolism regulatory protein AtoC (see SP|Q06065). These proteins have a Fis family DNA binding sequence (pfam02954), a response regulator receiver domain (pfam00072), and sigma-54 interaction domain (pfam00158). [Regulatory functions, DNA interactions] 445 -274349 TIGR02916 PEP_his_kin putative PEP-CTERM system histidine kinase. Members of this protein family have a novel N-terminal domain, a single predicted membrane-spanning helix, and a predicted cystosolic histidine kinase domain. We designate this protein PrsK, and its companion DNA-binding response regulator protein (TIGR02915) PrsR. These predicted signal-transducing proteins appear to enable enhancer-dependent transcriptional activation. The prsK gene is often associated with exopolysaccharide biosynthesis genes. [Protein fate, Protein and peptide secretion and trafficking, Signal transduction, Two-component systems] 679 -274350 TIGR02917 PEP_TPR_lipo putative PEP-CTERM system TPR-repeat lipoprotein. This protein family occurs in strictly within a subset of Gram-negative bacterial species with the proposed PEP-CTERM/exosortase system, analogous to the LPXTG/sortase system common in Gram-positive bacteria. This protein occurs in a species if and only if a transmembrane histidine kinase (TIGR02916) and a DNA-binding response regulator (TIGR02915) also occur. The present of tetratricopeptide repeats (TPR) suggests protein-protein interaction, possibly for the regulation of PEP-CTERM protein expression, since many PEP-CTERM proteins in these genomes are preceded by a proposed DNA binding site for the response regulator. 899 -131964 TIGR02918 TIGR02918 accessory Sec system glycosylation protein GtfA. Members of this protein family are found only in Gram-positive bacteria of the Firmicutes lineage, including several species of Staphylococcus, Streptococcus, and Lactobacillus. Members are associated with glycosylation of serine-rich glycoproteins exported by the accessory Sec system. [Protein fate, Protein modification and repair] 500 -274351 TIGR02919 TIGR02919 accessory Sec system glycosyltransferase GtfB. Members of this protein family are found only in Gram-positive bacteria of the Firmicutes lineage, including several species of Staphylococcus, Streptococcus, and Lactobacillus. [Protein fate, Protein modification and repair] 438 -131966 TIGR02920 acc_sec_Y2 accessory Sec system translocase SecY2. Members of this family are restricted to the Firmicutes lineage (low-GC Gram-positive bacteria) and appear to be paralogous to, and much more divergent than, the preprotein translocase SecY. Members include the SecY2 protein of the accessory Sec system in Streptococcus gordonii, involved in export of the highly glycosylated platelet-binding protein GspB. [Protein fate, Protein and peptide secretion and trafficking] 395 -131967 TIGR02921 PEP_integral PEP-CTERM family integral membrane protein. Members of this protein family, found in eighteen genera so far, have a PEP-CTERM sequence at the carboxyl-terminus (see model TIGR02595), but are unusual among PEP-CTERM proteins in having multiple predicted transmembrane segments. The function is unknown. It is proposed that an exosortase (see TIGR02602), recognizes and cleaves PEP-CTERM proteins in a manner analogous to the cleavage of LPXTG proteins by sortase (see Haft, et al., 2006). In at least six species, a gene encoding what appears to be a dedicated (single target) exosortase is adjacent. In that subset, the PEP-CTERM motif takes the form VPEPxxWxL. 952 -131968 TIGR02922 TIGR02922 TIGR02922 family protein. Two members of this family are found in Colwellia psychrerythraea 34H and one each in various other species of Colwellia and Shewanella. One member from C. psychrerythraea is of special interest because it is preceded by the same cis-regulatory site as a number of genes that have the PEP-CTERM domain described by TIGR02595. [Hypothetical proteins, Conserved] 67 -274352 TIGR02923 AhaC ATP synthase A1, C subunit. The A1/A0 ATP synthase is homologous to the V-type (V1/V0, vacuolar) ATPase, but functions in the ATP synthetic direction as does the F1/F0 ATPase of bacteria. The C subunit is part of the hydrophilic A1 "stalk" complex (AhaABCDEFG), which is the site of ATP generation and is coupled to the membrane-embedded proton translocating A0 complex. 343 -274353 TIGR02924 ICDH_alpha isocitrate dehydrogenase. This family of mainly alphaproteobacterial enzymes is a member of the isocitrate/isopropylmalate dehydrogenase superfamily described by pfam00180. Every member of the seed of this model appears to have a TCA cycle lacking only a determined isocitrate dehydrogenase. The precise identity of the cofactor (NADH -- 1.1.1.41 vs. NADPH -- 1.1.1.42) is unclear. [Energy metabolism, TCA cycle] 473 -131971 TIGR02925 cis_trans_EpsD peptidyl-prolyl cis-trans isomerase, EpsD family. Members of this family belong to the peptidyl-prolyl cis-trans isomerase family and are found in loci associated with exopolysaccharide biosynthesis. All members are encoded near a homolog of EpsH, as detected by TIGR02602. 232 -131972 TIGR02926 AhaH ATP synthase archaeal, H subunit. he A1/A0 ATP synthase is homologous to the V-type (V1/V0, vacuolar) ATPase, but functions in the ATP synthetic direction as does the F1/F0 ATPase of bacteria. The hydrophilic A1 "stalk" complex (AhaABCDEFG) is the site of ATP generation and is coupled to the membrane-embedded proton translocating A0 complex. It is unclear precisely where AhaH fits into these complexes. 85 -200219 TIGR02927 SucB_Actino 2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase. This model represents an Actinobacterial clade of E2 enzyme, a component of the 2-oxoglutarate dehydrogenase complex involved in the TCA cycle. These proteins have multiple domains including the catalytic domain (pfam00198), one or two biotin domains (pfam00364) and an E3-component binding domain (pfam02817). 579 -274354 TIGR02928 TIGR02928 orc1/cdc6 family replication initiation protein. Members of this protein family are found exclusively in the archaea. This set of DNA binding proteins shows homology to the origin recognition complex subunit 1/cell division control protein 6 family in eukaryotes. Several members may be found in genome and interact with each other. [DNA metabolism, DNA replication, recombination, and repair] 365 -131975 TIGR02929 anfG_nitrog Fe-only nitrogenase, delta subunit. Nitrogenase, also called dinitrogenase, is the enzyme of biological nitrogen fixation. The most wide-spread and most efficient nitrogenase contains a molybdenum cofactor. This protein family, AnfG, represents the delta subunit of the Fe-only alternative nitrogenase. It is homologous to VnfG, the delta subunit of the V-containing (vanadium) nitrogenase. [Central intermediary metabolism, Nitrogen fixation] 109 -131976 TIGR02930 vnfG_nitrog V-containing nitrogenase, delta subunit. Nitrogenase is the enzyme of biological nitrogen fixation. The most wide-spread and most efficient nitrogenase contains a molybdenum cofactor. This protein family, VnfG, represents the delta subunit of the V-containing (vanadium) alternative nitrogenase. It is homologous to AnfG, the delta subunit of the Fe-only nitrogenase. [Central intermediary metabolism, Nitrogen fixation] 109 -131977 TIGR02931 anfK_nitrog Fe-only nitrogenase, beta subunit. Nitrogenase is the enzyme of biological nitrogen fixation. The most wide-spread and most efficient nitrogenase contains a molybdenum cofactor. This protein family, AnfK, represents the beta subunit of the iron-only alternative nitrogenase. It is homologous to NifK and VnfK, of the molybdenum-containing and the vanadium (V)-containing types, respectively. [Central intermediary metabolism, Nitrogen fixation] 461 -131978 TIGR02932 vnfK_nitrog V-containing nitrogenase, beta subunit. Nitrogenase is the enzyme of biological nitrogen fixation. The most wide-spread and most efficient nitrogenase contains a molybdenum cofactor. This protein family, VnfK, represents the beta subunit of the vanadium (V)-containing alternative nitrogenase. It is homologous to NifK and AnfK, of the molybdenum-containing and the iron (Fe)-only types, respectively. [Central intermediary metabolism, Nitrogen fixation] 457 -131979 TIGR02933 nifM_nitrog nitrogen fixation protein NifM. Members of this protein family, found in a subset of nitrogen-fixing bacteria, are the nitrogen fixation protein NifM. NifM, homologous to peptidyl-prolyl cis-trans isomerases, appears to be an accessory protein for NifH, the Fe protein, also called component II or dinitrogenase reductase, of nitrogenase. [Central intermediary metabolism, Nitrogen fixation] 256 -274355 TIGR02934 nifT_nitrog probable nitrogen fixation protein FixT. This largely uncharacterized protein family is assigned a role in nitrogen fixation by two criteria. First, its gene occurs, generally, among genes essential for expression of active nitrogenase. Second, its phylogenetic profile closely matches that of nitrogen-fixing bacteria. However, mutational studies in Klebsiella pneumoniae failed to demonstrate any phenotype for deletion or overexpression of the protein. 68 -131981 TIGR02935 TIGR02935 probable nitrogen fixation protein. Members of this protein family, called DUF269 by pfam03270, are strictly limited to nitrogen-fixing species, although not universal among them. The gene typically is found next to the nifX gene (see TIGRFAMs model TIGR02663). [Central intermediary metabolism, Nitrogen fixation] 140 -274356 TIGR02936 fdxN_nitrog ferredoxin III, nif-specific. Members of this family are homodimeric ferredoxins from nitrogen fixation regions of many nitrogen-fixing bacteria. As characterized in Rhodobacter capsulatus, these proteins are homodimeric, with two 4Fe-4S clusters bound per monomer. Although nif-specific, this protein family is not usiveral, as other nitrogenase systems may substitute flavodoxins, or different types of ferredoxin. [Central intermediary metabolism, Nitrogen fixation] 91 -274357 TIGR02937 sigma70-ECF RNA polymerase sigma factor, sigma-70 family. This model encompasses all varieties of the sigma-70 type sigma factors including the ECF subfamily. A number of sigma factors have names with a different number than 70 (i.e. sigma-38), but in fact, all except for the Sigma-54 family (TIGR02395) are included within this family. Several Pfam models hit segments of these sequences including Sigma-70 region 2 (pfam04542) and Sigma-70, region 4 (pfam04545), but not always above their respective trusted cutoffs. 158 -131984 TIGR02938 nifL_nitrog nitrogen fixation negative regulator NifL. NifL is a modulator of the nitrogen fixation positive regulator protein NifA, and is therefore a negative regulator. It binds NifA. NifA and NifL are encoded by adjacent genes. [Central intermediary metabolism, Nitrogen fixation, Regulatory functions, Protein interactions] 494 -131985 TIGR02939 RpoE_Sigma70 RNA polymerase sigma factor RpoE. A sigma factor is a DNA-binding protein protein that binds to the DNA-directed RNA polymerase core to produce the holoenzyme capable of initiating transcription at specific sites. Different sigma factors act in vegetative growth, heat shock, extracytoplasmic functions (ECF), etc. This model represents the clade of sigma factors called RpoE. This protein may be called sigma-24, sigma-E factor, sigma-H factor, fecI-like sigma factor or alternative sigma factor AlgU. 190 -274358 TIGR02940 anfO_nitrog Fe-only nitrogenase accessory protein AnfO. Members of this protein family, called Anf1 in Rhodobacter capsulatus and AnfO in Azotobacter vinelandii, are found only in species with the Fe-only nitrogenase and are encoded immediately downstream of the structural genes in the above named species. 214 -131987 TIGR02941 Sigma_B RNA polymerase sigma-B factor. This sigma factor is restricted to certain lineages of the order Bacillales including Staphylococcus, Listeria, and Bacillus. 255 -274359 TIGR02943 Sig70_famx1 RNA polymerase sigma-70 factor, TIGR02943 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building, bidirectional best hits and one-to-a-genome distribution, to represent a conserved family. 188 -131989 TIGR02944 suf_reg_Xantho FeS assembly SUF system regulator, gammaproteobacterial. The SUF system is an oxygen-resistant iron-sulfur cluster assembly system found in both aerobes and facultative anaerobes. Its presence appears to be a marker of oxygen tolerance; strict anaerobes and microaerophiles tend to have different FeS cluster biosynthesis systems. Members of this protein family belong to the rrf2 family of transcriptional regulators and are found, typically, as the first gene of a SUF operon. It is found only in a subset of genomes that encode the SUF system, including the genus Xanthomonas. The conserved location suggests an autoregulatory role. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Regulatory functions, DNA interactions] 130 -131990 TIGR02945 SUF_assoc FeS assembly SUF system protein. Members of this family belong to the broader pfam01883, or Domain of Unknown Function DUF59. Many members of DUF59 are candidate ring hydroxylating complex subunits. However, members of the narrower family defined here all are found in genomes that carry the FeS assembly SUF system. For 70 % of these species, the member of this protein family is found as part of the SUF locus, usually immediately downstream of the sufS gene. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 99 -274360 TIGR02946 acyl_WS_DGAT acyltransferase, WS/DGAT/MGAT. This bacteria-specific protein family includes a characterized, homodimeric, broad specificity acyltransferase from Acinetobacter sp. strain ADP1, active as wax ester synthase, as acyl coenzyme A:diacylglycerol acyltransferase, and as acyl-CoA:monoacylglycerol acyltransferase. [Unknown function, Enzymes of unknown specificity] 446 -131992 TIGR02947 SigH_actino RNA polymerase sigma-70 factor, TIGR02947 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building, bidirectional best hits and (with the exception of a paralog in Thermobifida fusca YX) one-to-a-genome distribution, to represent a conserved family. This family is restricted to the Actinobacteria and each gene examined is followed by an anti-sigma factor in an apparent operon. 193 -131993 TIGR02948 SigW_bacill RNA polymerase sigma-W factor. This sigma factor is restricted to certain lineages of the order Bacillales. 187 -188261 TIGR02949 anti_SigH_actin anti-sigma factor, TIGR02949 family. This group of anti-sigma factors are associated in an apparent operon with a family of sigma-70 family sigma factors (TIGR02947). They and appear by homology, tree building, bidirectional best hits and one-to-a-genome distribution, to represent a conserved family. This family is restricted to the Actinobacteria. [Transcription, Transcription factors] 84 -274361 TIGR02950 SigM_subfam RNA polymerase sigma factor, SigM family. This family of RNA polymerase sigma factors is a member of the Sigma-70 subfamily (TIGR02937) and is restricted to certain lineages of the order Bacillales. This family encompasses at least two distinct sigma factors as two proteins are found in each of B. anthracis, B. subtilis subsp. subtilis str. 168, and B. lichiniformis (although these are not apparently the same two in each). One of these is designated as SigM in B. subtilis (Swiss_Prot: 154 -131996 TIGR02951 DMSO_dmsB DMSO reductase, iron-sulfur subunit. This family consists of the iron-sulfur subunit, or chain B, of an enzyme called the anaerobic dimethyl sulfoxide reductase. Chains A and B are catalytic, while chain C is a membrane anchor. 161 -131997 TIGR02952 Sig70_famx2 RNA polymerase sigma-70 factor, TIGR02952 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building, bidirectional best hits and one-to-a-genome distribution, to represent a conserved family. This family is found in a limited number of Gram-positive bacterial lineages. 170 -131998 TIGR02953 penta_MxKDx pentapeptide MXKDX repeat protein. Members of this protein family are small bacterial proteins, each with an N-terminal signal sequence followed by up to 11 imperfect repeats of a pentapeptide. The pentapeptide repeat usually follows the form Met-Xaa-Lys-Asp-Xaa. 75 -213752 TIGR02954 Sig70_famx3 RNA polymerase sigma-70 factor, TIGR02954 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building, bidirectional best hits and one-to-a-genome distribution, to represent a conserved family. This family is found in certain Bacillus and Clostridium species. 169 -132000 TIGR02955 TMAO_TorT TMAO reductase system periplasmic protein TorT. Members of this family are the periplasmic protein TorT which, together with the the TorS/TorR histidine kinase/response regulator system, regulates expression of the torCAD operon for trimethylamine N-oxide reductase (TMAO reductase). It appears to bind an inducer for TMAO reductase, and shows homology to a periplasmic D-ribose binding protein. 295 -274362 TIGR02956 TMAO_torS TMAO reductase sytem sensor TorS. This protein, TorS, is part of a regulatory system for the torCAD operon that encodes the pterin molybdenum cofactor-containing enzyme trimethylamine-N-oxide (TMAO) reductase (TorA), a cognate chaperone (TorD), and a penta-haem cytochrome (TorC). TorS works together with the inducer-binding protein TorT and the response regulator TorR. TorS contains histidine kinase ATPase (pfam02518), HAMP (pfam00672), phosphoacceptor (pfam00512), and phosphotransfer (pfam01627) domains and a response regulator receiver domain (pfam00072). [Signal transduction, Two-component systems] 968 -132002 TIGR02957 SigX4 RNA polymerase sigma-70 factor, TIGR02957 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building and bidirectional best hits, to represent a conserved family. This family is found in a limited number of bacterial lineages. This family includes apparent paralogous expansion in Streptomyces coelicolor A3(2), and multiple copies in Mycobacterium smegmatis MC2, Streptomyces avermitilis MA-4680 and Nocardia farcinica IFM10152. 281 -132004 TIGR02959 SigZ RNA polymerase sigma factor, SigZ family. This family of RNA polymerase sigma factors is a member of the Sigma-70 subfamily (TIGR02937). One of these is designated as SigZ in B. subtilis (Swiss_Prot: SIGZ_BACSU). Interestingly, this group has a very sporatic distribution, B. subtilis, for instance, being the only sequenced strain of Bacilli with a member. Dechloromonas aromatica RCB appears to have two of these sigma factors. A member appears on a plasmid found in Photobacterium profundum SS9 and Vibrio fischeri ES114 (where a second one is chromosomally encoded). 170 -132005 TIGR02960 SigX5 RNA polymerase sigma-70 factor, TIGR02960 family. This group of sigma factors are members of the sigma-70 family (TIGR02937). They and appear by homology, tree building, bidirectional best hits and one-to-a-genome distribution, to represent a conserved family. 324 -274363 TIGR02961 allantoicase allantoicase. Members of this family are the enzyme allantoicase (EC 3.5.3.4), also called allantoate amidinohydrolase. This enzyme hydrolyzes allantoate to (S)-ureidoglycolate and urea; it can also degrade (R)-ureidoglycolate to glyoxylate and urea. Allantoinase (EC 3.5.2.5) hydrolyzes (S)-allantoin (a xanthine metabolite, via urate) to allantoate. Allantoate can then be degraded either by this enzyme, allantoicase, or by allantoate deiminase (EC 3.5.3.9). Members of the seed alignment for this model were taken from BRENDA. Proteins in this family contain two copies of the allantoicase repeat (pfam03561). A different but similarly named enzyme, allantoate amidohydrolase (EC 3.5.3.9), simultaneously breaks down the urea to ammonia and carbon dioxide. [Purines, pyrimidines, nucleosides, and nucleotides, Other, Energy metabolism, Other] 322 -274364 TIGR02962 hdxy_isourate hydroxyisourate hydrolase. Members of this family, hydroxyisourate hydrolase, represent a distinct clade of transthyretin-related proteins. Bacterial members typically are encoded next to ureidoglycolate hydrolase and often near either xanthine dehydrogenase or xanthine/uracil permease genes and have been demonstrated to have hydroxyisourate hydrolase activity. In eukaryotes, a clade separate from the transthyretins (a family of thyroid-hormone binding proteins) has also been shown to have HIU hydrolase activity in urate catabolizing organisms. Transthyretin, then, would appear to be the recently diverged paralog of the more ancient HIUH family. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 112 -274365 TIGR02963 xanthine_xdhA xanthine dehydrogenase, small subunit. Members of this protein family are the small subunit (or, in eukaryotes, the N-terminal domain) of xanthine dehydrogenase, an enzyme of purine catabolism via urate. The small subunit contains both an FAD and a 2Fe-2S cofactor. Aldehyde oxidase (retinal oxidase) appears to have arisen as a neofunctionalization among xanthine dehydrogenases in eukaryotes and [Purines, pyrimidines, nucleosides, and nucleotides, Other] 467 -274366 TIGR02964 xanthine_xdhC xanthine dehydrogenase accessory protein XdhC. Members of this protein family are the accessory protein XdhC for insertion of the molybdenum cofactor into the xanthine dehydrogenase large chain, XdhB, in bacteria. This protein is not part of the mature xanthine dehydrogenase. Xanthine dehydrogenase is an enzyme for purine catabolism, from other purines to xanthine to urate to further breakdown products. [Protein fate, Protein folding and stabilization, Purines, pyrimidines, nucleosides, and nucleotides, Other] 246 -274367 TIGR02965 xanthine_xdhB xanthine dehydrogenase, molybdopterin binding subunit. Members of the protein family are the molybdopterin-containing large subunit (or, in, eukaryotes, the molybdopterin-binding domain) of xanthine dehydrogenase, and enzyme that reduces the purine pool by catabolizing xanthine to urate. This model is based primarily on bacterial sequences; it does not manage to include all eukaryotic xanthine dehydrogenases and thereby discriminate them from the closely related enzyme aldehyde dehydrogenase. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 758 -274368 TIGR02966 phoR_proteo phosphate regulon sensor kinase PhoR. Members of this protein family are the regulatory histidine kinase PhoR associated with the phosphate ABC transporter in most Proteobacteria. Related proteins from Gram-positive organisms are not included in this model. The phoR gene usually is adjacent to the response regulator phoB gene (TIGR02154). [Signal transduction, Two-component systems] 333 -132012 TIGR02967 guan_deamin guanine deaminase. This model describes guanine deaminase, which hydrolyzes guanine to xanthine and ammonia. Xanthine can then be converted to urate by xanthine dehydrogenase, and urate subsequently degraded. In some bacteria, the guanine deaminase gene is found near the xdhABC genes for xanthine dehydrogenase. Non-homologous forms of guanine deaminase also exist, as well as distantly related forms outside the scope of this model. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 401 -274369 TIGR02968 succ_dehyd_anc succinate dehydrogenase, hydrophobic membrane anchor protein. In E. coli and many other bacteria, two small, hydrophobic, mutually homologous subunits of succinate dehydrogenase, a TCA cycle enzyme, are SdhC and SdhD. This family is the SdhD, the hydrophobic membrane anchor protein. SdhC is apocytochrome b558, which also plays a role in anchoring the complex. [Energy metabolism, TCA cycle] 105 -132014 TIGR02969 mam_aldehyde_ox aldehyde oxidase. Members of this family are mammalian aldehyde oxidase (EC 1.2.3.1) isozymes, closely related to xanthine dehydrogenase/oxidase. 1330 -274370 TIGR02970 succ_dehyd_cytB succinate dehydrogenase, cytochrome b556 subunit. In E. coli and many other bacteria, two small, hydrophobic, mutually homologous subunits of succinate dehydrogenase, a TCA cycle enzyme, are SdhC and SdhD. This family is the SdhC, the cytochrome b subunit, called b556 in bacteria and b560 in mitochondria. SdhD (see TIGR02968) is called the hydrophobic membrane anchor subunit, although both SdhC and SdhD participate in anchoring the complex. In some bacteria, this cytochrome b subunit is replaced my a member of the cytochrome b558 family (see TIGR02046). [Energy metabolism, TCA cycle] 120 -213754 TIGR02971 heterocyst_DevB ABC exporter membrane fusion protein, DevB family. Members of this protein family are found mostly in the Cyanobacteria, but also in the Planctomycetes. DevB from Anabaena sp. strain PCC 7120 is partially characterized as a membrane fusion protein of the DevBCA ABC exporter, probably a glycolipid exporter, required for heterocyst formation. Most Cyanobacteria have one member only, but Nostoc sp. PCC 7120 has seven members. 327 -132017 TIGR02972 TMAO_torE trimethylamine N-oxide reductase system, TorE protein. Members of this small, apparent transmembrane protein are designated TorE and occur in operons for the trimethylamine N-oxide (TMAO) reductase system. Members are closely related to the NapE protein of the related periplasmic nitrate reductase system. It may be that TorE is an integral membrane subunit of a complex with the reductase TorA. [Energy metabolism, Anaerobic] 47 -132018 TIGR02973 nitrate_rd_NapE periplasmic nitrate reductase, NapE protein. NapE, homologous to TorE (TIGR02972), is a membrane protein of unknown function that is part of the periplasmic nitrate reductase system; it may be part of the enzyme complex. The periplasmic nitrate reductase allows for nitrate respiration in anaerobic conditions. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 42 -274371 TIGR02974 phageshock_pspF psp operon transcriptional activator PspF. Members of this protein family are PspF, the sigma-54-dependent transcriptional activator of the phage shock protein (psp) operon, in Escherichia coli and numerous other species. The psp operon is induced by a number of stress conditions, including heat shock, ethanol, and filamentous phage infection. Changed com_name to adhere to TIGR role notes conventions. 09/15/06 - DMH [Regulatory functions, DNA interactions] 329 -132020 TIGR02975 phageshock_pspG phage shock protein G. This protein previously was designated yjbO in E. coli. It is found only in genomes that have the phage shock operon (psp), but only rarely is encoded near other psp genes. The psp regulon is upregulated in response to a number of stress conditions, including ethanol, expression of the filamentous phage secretin protein IV and other secretins, and heat shock. [Cellular processes, Adaptations to atypical conditions] 64 -132021 TIGR02976 phageshock_pspB phage shock protein B. This model describes the PspB protein of the psp (phage shock protein) operon, as found in Escherichia coli and many related species. Expression of a phage protein called secretin protein IV, and a number of other stresses including ethanol, heat shock, and defects in protein secretion trigger sigma-54-dependent expression of the phage shock regulon. PspB is both a regulator and an effector protein of the phage shock response. [Cellular processes, Adaptations to atypical conditions] 75 -274372 TIGR02977 phageshock_pspA phage shock protein A. Members of this family are the phage shock protein PspA, from the phage shock operon. This is a narrower family than the set of PspA and its homologs, sometimes several in a genome, as described by pfam04012. PspA appears to maintain the protonmotive force under stress conditions that include overexpression of certain phage secretins, heat shock, ethanol, and protein export defects. [Cellular processes, Adaptations to atypical conditions] 219 -132023 TIGR02978 phageshock_pspC phage shock protein C. All members of this protein family are the phage shock protein PspC. These proteins contain a PspC domain, as do other members of the larger family of proteins described by pfam04024. The phage shock regulon is restricted to the Proteobacteria and somewhat sparsely distributed there. It is expressed, under positive control of a sigma-54-dependent transcription factor, PspF, which binds and is modulated by PspA. Stresses that induce the psp regulon include phage secretin overexpression, ethanol, heat shock, and protein export defects. [Cellular processes, Adaptations to atypical conditions] 121 -132024 TIGR02979 phageshock_pspD phage shock protein PspD. Members of this family are phage shock protein PspD, found in a minority of bacteria that carry the defining genes of the phage shock regulon (pspA, pspB, pspC, and pspF). It is found in Escherichia coli, Yersinia pestis, and closely related species, where it is part of the phage shock operon. It is known to be expressed but its function is unknown. [Cellular processes, Adaptations to atypical conditions] 59 -274373 TIGR02980 SigBFG RNA polymerase sigma-70 factor, sigma-B/F/G subfamily. This group of similar sigma-70 factors includes clades found in Bacilli (including the sporulation factors SigF:TIGR02885 and SigG:TIGR02850 as well as SigB:TIGR02941), and the high GC gram positive bacteria (Actinobacteria) where a variable number of them are found depending on the lineage. 227 -132026 TIGR02981 phageshock_pspE phage shock operon rhodanese PspE. Members of this very narrowly defined protein family are proteins active as rhodanese (EC 2.8.1.1) and found in the extended variants of the phage shock protein (psp operon) in Escherichia coli and a few closely related species. Note that the designation phage shock protein PspE has been applied, incorrectly, in many instances where the genome lacks the phage shock regulon entirely. 101 -274374 TIGR02982 heterocyst_DevA ABC exporter ATP-binding subunit, DevA family. Members of this protein family are found mostly in the Cyanobacteria, but also in the Planctomycetes. Cyanobacterial examples are involved in heterocyst formation, by which some fraction of members of the colony undergo a developmental change and become capable of nitrogen fixation. The DevBCA proteins are thought export of either heterocyst-specific glycolipids or an enzyme essential for formation of the laminated layer found in heterocysts. 220 -132028 TIGR02983 SigE-fam_strep RNA polymerase sigma-70 factor, sigma-E family. This group of similar sigma-70 factors includes the sigE factor from Streptomyces coelicolor. The family appears to include a paralagous expansion in the Streptomycetes lineage, while related Actinomycetales have at most two representatives. 162 -274375 TIGR02984 Sig-70_plancto1 RNA polymerase sigma-70 factor, Planctomycetaceae-specific subfamily 1. This group of sigma factors are members of the sigma-70 family (TIGR02937) and are apparently found only in the Planctomycetaceae family including the genuses Gemmata and Pirellula (in which seven sequences are found). 189 -274376 TIGR02985 Sig70_bacteroi1 RNA polymerase sigma-70 factor, Bacteroides expansion family 1. This group of sigma factors are members of the sigma-70 family (TIGR02937) and are found primarily in the genus Bacteroides. This family appears to have resulted from a lineage-specific expansion as B. thetaiotaomicron VPI-5482, Bacteroides forsythus ATCC 43037, Bacteroides fragilis YCH46 and Bacteroides fragilis NCTC 9343 contain 25, 12, 24 and 23 members, respectively. There are currentlyonly two known members of this family outside of the Bacteroides, in Rhodopseudomonas and Bradyrhizobium. 161 -132031 TIGR02986 restrict_Alw26I type II restriction endonuclease, Alw26I/Eco31I/Esp3I family. Members of this family are type II restriction endonucleases of the Alw26I/Eco31I/Esp3I family. Characterized specificities of three members are GGTCTC, CGTCTC, and the shared subsequence GTCTC. [DNA metabolism, Restriction/modification] 424 -274377 TIGR02987 met_A_Alw26 type II restriction m6 adenine DNA methyltransferase, Alw26I/Eco31I/Esp3I family. Members of this family are the m6-adenine DNA methyltransferase protein, or domain of a fusion protein that also carries m5 cytosine methyltransferase activity, of type II restriction systems of the Alw26I/Eco31I/Esp3I family. A methyltransferase of this family is alway accompanied by a type II restriction endonuclease from the Alw26I/Eco31I/Esp3I family (TIGR02986) and by an adenine-specific modification methyltransferase. Members of this family are unusual in that regions of similarity to homologs outside this family are circularly permuted. [DNA metabolism, Restriction/modification] 524 -274378 TIGR02988 YaaA_near_RecF S4 domain protein YaaA. This small protein has a single S4 domain (pfam01479), as do bacterial ribosomal protein S4, some pseudouridine synthases, tyrosyl-tRNA synthetases. The S4 domain may bind RNA. Members of this protein family are found almost exclusively in the Firmicutes, and almost invariably just a few nucleotides upstream of the gene for the DNA replication and repair protein RecF. The few members of this family that are not near recF are found instead near dnaA and/or dnaN, the usual neighbors of recF, near the origin of replication. The conserved location suggests a possible role in replication in the Firmicutes lineage. [DNA metabolism, DNA replication, recombination, and repair] 59 -274379 TIGR02989 Sig-70_gvs1 RNA polymerase sigma-70 factor, Rhodopirellula/Verrucomicrobium family. This group of sigma factors are members of the sigma-70 family (TIGR02937) and are abundantly found in the species Rhodopirellula baltica (11), and Verrucomicrobium spinosum (16) and to a lesser extent in Gemmata obscuriglobus (2). 159 -132035 TIGR02990 ectoine_eutA ectoine utilization protein EutA. Members of this protein family are EutA, a predicted arylmalonate decarboxylase found in a conserved ectoine utilization operon of species that include Sinorhizobium meliloti 1021 (where it is known to be induced by ectoine), Mesorhizobium loti and Silicibacter pomeroyi. It is missing from two other species with the other ectoine transport and utilization genes: Pseudomonas putida and Agrobacterium tumefaciens. 239 -132036 TIGR02991 ectoine_eutB ectoine utilization protein EutB. Members of this protein family are EutB, a predicted arylmalonate decarboxylase found in a conserved ectoine utilization operon of species that include Sinorhizobium meliloti 1021 (where it is known to be induced by ectoine), Mesorhizobium loti, Silicibacter pomeroyi, Agrobacterium tumefaciens, and Pseudomonas putida. Members of this family resemble threonine dehydratases. 317 -132037 TIGR02992 ectoine_eutC ectoine utilization protein EutC. Members of this protein family are EutA, a predicted arylmalonate decarboxylase found in a conserved ectoine utilization operon of species that include Sinorhizobium meliloti 1021 (where it is known to be induced by ectoine), Mesorhizobium loti, Silicibacter pomeroyi, Agrobacterium tumefaciens, and Pseudomonas putida. This family belongs to the ornithine cyclodeaminase/mu-crystallin family (pfam02423). 326 -274380 TIGR02993 ectoine_eutD ectoine utilization protein EutD. Members of this family are putative peptidases or hydrolases similar to Xaa-Pro aminopeptidase (pfam00557). They belong to ectoine utilization operons, as found in Sinorhizobium meliloti 1021 (where it is known to be induced by ectoine), Mesorhizobium loti, Silicibacter pomeroyi, Agrobacterium tumefaciens, and Pseudomonas putida. The exact function is unknown. 391 -132039 TIGR02994 ectoine_eutE ectoine utilization protein EutE. Members of this family, part of the succinylglutamate desuccinylase / aspartoacylase family (pfam04952), belong to ectoine utilization operons, as found in Sinorhizobium meliloti 1021 (where it the operon is known to be induced by ectoine), Mesorhizobium loti, Silicibacter pomeroyi, Agrobacterium tumefaciens, and Pseudomonas putida. 325 -132040 TIGR02995 ectoine_ehuB ectoine/hydroxyectoine ABC transporter solute-binding protein. Members of this family are the extracellular solute-binding proteins of ABC transporters that closely resemble amino acid transporters. The member from Sinorhizobium meliloti is involved in ectoine uptake, both for osmoprotection and for catabolism. All other members of the seed alignment are found associated with ectoine catabolic genes. [Transport and binding proteins, Amino acids, peptides and amines] 275 -274381 TIGR02996 rpt_mate_G_obs repeat-companion domain TIGR02996. This model describes an abundant paralogous domain of Gemmata obscuriglobus UQM 2246, a member of the Planctomycetes. The domain also occurs, although rarely, in Myxococcus xanthus DK 1622 and related species. Most member proteins have extensive repeats similar to the leucine-rich repeat, or another repeat class or region of low-complexity sequence. This domain is not repeated, and in Gemmata is usually found at the protein N-terminus. 42 -274382 TIGR02997 Sig70-cyanoRpoD RNA polymerase sigma factor, cyanobacterial RpoD-like family. This family includes a number of closely related sigma-70 (TIGR02937) factors in the cyanobacteria. All appear most closely related to the essential sigma-70 factor RpoD, and some score above trusted to the RpoD C-terminal domain model (TIGR02393). 298 -132043 TIGR02998 RraA_entero regulator of ribonuclease activity A. This family includes a number of closely related sequences from certain enterobacteria. The E. coli member of this family has been characterized as a regulator of RNase E and its crystal structure has been analyzed. The broader subfamily which includes this equivalog, TIGR01935, was initially classified as a "hypothetical equivalog" with the name "regulator of ribonuclease activity A" based on the same evidence for this model. It now appears that, considering the second group of enterobacterial sequences within TIGR01935, the functional assignment is unsupported. THIS PROTEIN IS _NOT_ MenG, AKA S-adenosylmethionine: 2-demethylmenaquinone methyltransferase (EC 2.1.-.-). See the references characterizing this as a case of transitive annotation error. [Transcription, Degradation of RNA, Regulatory functions, Protein interactions] 161 -132044 TIGR02999 Sig-70_X6 RNA polymerase sigma factor, TIGR02999 family. This group of sigma factors are members of the sigma-70 family (TIGR02937) and are found in a variety of species including Rhodopirellula baltica which encodes a paralogous group of five. 183 -274383 TIGR03000 plancto_dom_1 Planctomycetes uncharacterized domain TIGR03000. Domains described by this model are found, so far, only in the Planctomycetes (Pirellula sp. strain 1 and Gemmata obscuriglobus), in up to six proteins per genome, and may be duplicated within a protein. The function is unknown. 75 -188267 TIGR03001 Sig-70_gmx1 RNA polymerase sigma-70 factor, Myxococcales family 1. This group of sigma factors are members of the sigma-70 family (TIGR02937) and are found in multiple copies in the order Myxococcales. This model supercedes TIGR02233, which has now been retired. 244 -274384 TIGR03002 outer_YhbN_LptA lipopolysaccharide transport periplasmic protein LptA. Members of this protein family include LptA (previously called YhbN). It was shown to be an essential protein in E. coli, implicated in cell envelope integrity, and to play a role in the delivery of LPS to the outer leaflet of the outer membrane. It works with LptB (formerly yhbG), a homolog of ABC transporter ATP-binding proteins, encoded by an adjacent gene. Numerous homologs in other Proteobacteria are found in a conserved location near lipopolysaccharide inner core biosynthesis genes. This family is related to organic solvent tolerance protein (OstA), though distantly. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 142 -132048 TIGR03003 ectoine_ehuD ectoine/hydroxyectoine ABC transporter, permease protein EhuD. Members of this family are presumed to act as permease subunits of ectoine ABC transporters. Operons containing this gene also contain the other genes of the ABC transporter and typically are found next to either ectoine utilization or ectoine biosynthesis operons. 212 -132049 TIGR03004 ectoine_ehuC ectoine/hydroxyectoine ABC transporter, permease protein EhuC. Members of this family are presumed to act as permease subunits of ectoine ABC transporters. Operons containing this gene also contain the other genes of the ABC transporter and typically are found next to either ectoine utilization or ectoine biosynthesis operons. Permease subunits EhuC and EhuD are homologous. 214 -132050 TIGR03005 ectoine_ehuA ectoine/hydroxyectoine ABC transporter, ATP-binding protein. Members of this family are the ATP-binding protein of a conserved four gene ABC transporter operon found next to ectoine unilization operons and ectoine biosynthesis operons. Ectoine is a compatible solute that protects enzymes from high osmolarity. It is released by some species in response to hypoosmotic shock, and it is taken up by a number of bacteria as a compatible solute or for consumption. This family shows strong sequence similiarity to a number of amino acid ABC transporter ATP-binding proteins. 252 -274385 TIGR03006 pepcterm_polyde polysaccharide deacetylase family protein, PEP-CTERM locus subfamily. Members of this protein family belong to the family of polysaccharide deacetylases (pfam01522). All are found in species that encode the PEP-CTERM/exosortase system predicted to act in protein sorting in a number of Gram-negative bacteria, and are found near the epsH homolog that is the putative exosortase gene. The highest scoring homologs below the trusted cutoff for this model are found in several species of Methanosarcina, an archaeal genus. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 271 -274386 TIGR03007 pepcterm_ChnLen polysaccharide chain length determinant protein, PEP-CTERM locus subfamily. Members of this protein family belong to the family of polysaccharide chain length determinant proteins (pfam02706). All are found in species that encode the PEP-CTERM/exosortase system predicted to act in protein sorting in a number of Gram-negative bacteria, and are found near the epsH homolog that is the putative exosortase gene. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 498 -163100 TIGR03008 pepcterm_CAAX CAAX prenyl protease-related protein. The CAAX prenyl protease, in eukaryotes, catalyzes three covalent modifications, including cleavage and acylation, at the C-terminus of certain proteins in a process connected to protein sorting. This family describes a bacterial protein family homologous to one domain of the CAAX-processing enzyme. Members of this protein family are found in genomes that carry a predicted protein sorting system, PEP-CTERM/exosortase, usually in the vicinity of the EpsH homolog that is the hallmark of the system. The function of this protein is unknown, but it may relate to protein motification. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 222 -274387 TIGR03009 plancto_dom_2 Planctomycetes uncharacterized domain TIGR03009. Domains described by this model are found, so far, only in the Planctomycetes (Pirellula sp. strain 1 and Gemmata obscuriglobus), in up to four proteins per genome. The function is unknown. [Hypothetical proteins, Conserved] 210 -200229 TIGR03010 sulf_tusC_dsrF sulfur relay protein TusC/DsrF. The three proteins TusB, TusC, and TusD form a heterohexamer responsible for a sulfur relay reaction. In large numbers of proteobacterial species, this complex acts on a Cys-derived persulfide moiety, delivered by the cysteine desulfurase IscS to TusA, then to TusBCD. The activated sulfur group is then transferred to TusE (DsrC), then by MnmA (TrmU) for modification of an anticodon nucleotide in tRNAs for Glu, Lys, and Gln. The sulfur relay complex TusBCD is also found, under the designation DsrEFH, in phototrophic and chemotrophic sulfur bacteria, such as Chromatium vinosum. In these organisms, it seems the primary purpose is related to sulfur flux, such as oxidation from sulfide to molecular sulfur to sulfate. [Protein synthesis, tRNA and rRNA base modification] 116 -274388 TIGR03011 sulf_tusB_dsrH sulfur relay protein TusB/DsrH. The three proteins TusB, TusC, and TusD form a heterohexamer responsible for a sulfur relay reaction. In large numbers of proteobacterial species, this complex acts on a Cys-derived persulfide moiety, delivered by the cysteine desulfurase IscS to TusA, then to TusBCD. The activated sulfur group is then transferred to TusE (DsrC), then by MnmA (TrmU) for modification of an anticodon nucleotide in tRNAs for Glu, Lys, and Gln. The sulfur relay complex TusBCD is also found, under the designation DsrEFH, in phototrophic and chemotrophic sulfur bacteria, such as Chromatium vinosum. In these organisms, it seems the primary purpose is related to sulfur flux, such as oxidation from sulfide to molecular sulfur to sulfate. [Protein synthesis, tRNA and rRNA base modification] 94 -274389 TIGR03012 sulf_tusD_dsrE sulfur relay protein TusD/DsrE. The three proteins TusB, TusC, and TusD form a heterohexamer responsible for a sulfur relay reaction. In large numbers of proteobacterial species, this complex acts on a Cys-derived persulfide moiety, delivered by the cysteine desulfurase IscS to TusA, then to TusBCD. The activated sulfur group is then transferred to TusE (DsrC), then by MnmA (TrmU) for modification of an anticodon nucleotide in tRNAs for Glu, Lys, and Gln. The sulfur relay complex TusBCD is also found, under the designation DsrEFH, in phototrophic and chemotrophic sulfur bacteria, such as Chromatium vinosum. In these organisms, it seems the primary purpose is related to sulfur flux, such as oxidation from sulfide to molecular sulfur to sulfate. [Protein synthesis, tRNA and rRNA base modification] 127 -274390 TIGR03013 EpsB_2 sugar transferase, PEP-CTERM system associated. Members of this protein family belong to the family of bacterial sugar transferases (pfam02397). Nearly all are found in species that encode the PEP-CTERM/exosortase system predicted to act in protein sorting in a number of Gram-negative bacteria (notable exceptions appear to include Magnetococcus sp. MC-1 and Myxococcus xanthus DK 1622 ). These genes are generally found near one or more of the PrsK, PrsR or PrsT genes that have been related to the PEP-CTERM system by phylogenetic profiling methods. The nature of the sugar transferase reaction catalyzed by members of this clade is unknown and may conceivably be variable with respect to substrate by species. These proteins are homologs of the EpsB protein found in Methylobacillus sp. strain 12S, which is also associated with a PEP-CTERM system, but of a distinct type. A name which appears attached to a number of genes (by transitive annotation) in this family is "undecaprenyl-phosphate galactose phosphotransferase", which comes from relatively distant characterized enterobacterial homologs, and is considerably more specific than warranted from the currently available evidence. 442 -132059 TIGR03014 EpsL exopolysaccharide biosynthesis operon protein EpsL. The epsL gene is described as a component of the methanolan exopolysaccharide biosynthesis operon in Methylobacillus sp strain 12S, although no other information regarding its possible function is suggested. Homologs of this gene are found in several other exopolysaccharide operons in a small number of species. These operons contain a subset of the methanolan operon genes by homology and synteny, including the epsH gene which is proposed to act as an "exosortase" directing proteins with a C-terminal tag (PEP-CTERM) to the exopolysaccharide layer. Each of the genomes in which these genes and epsL are found also encode genes with these C-terminal tags. 381 -132060 TIGR03015 pepcterm_ATPase putative secretion ATPase, PEP-CTERM locus subfamily. Members of this protein are marked as probable ATPases by the nucleotide binding P-loop motif GXXGXGKTT, a motif DEAQ similar to the DEAD/H box of helicases, and extensive homology to ATPases of MSHA-type pilus systems and to GspA proteins associated with type II protein secretion systems. [Protein fate, Protein and peptide secretion and trafficking] 269 -274391 TIGR03016 pepcterm_hypo_1 uncharacterized protein, PEP-CTERM system associated. Members of this protein family are found predominantly in exopolysaccharide biosynthesis operons marked by the presence of the EpsH-family putative exosortase and presence in the genome of the PEP-CTERM protein sorting signal. Members of this family may be distantly related to the EpsL family modeled in TIGR03014. 431 -132062 TIGR03017 EpsF chain length determinant protein EpsF. Sequences in this family of proteins are members of the chain length determinant family (pfam02706) which includes the wzc protein from E.coli. This family of proteins are homologous to the EpsF protein of the methanolan biosynthesis operon of Methylobacillus species strain 12S. The distribution of this protein appears to be restricted to a subset of exopolysaccharide operons containing a syntenic grouping of genes including a variant of the EpsH exosortase protein. Exosortase has been proposed to be involved in the targetting and processing of proteins containing the PEP-CTERM domain to the exopolysaccharide layer. 444 -274392 TIGR03018 pepcterm_TyrKin exopolysaccharide/PEP-CTERM locus tyrosine autokinase. Members of this protein family are related to a known protein-tyrosine autokinase and to numerous homologs from exopolysaccharide biosynthesis region proteins, many of which are designated as chain length determinants. Most members of this family contain a short region, immediately C-terminal to the region modeled here, with an abundance of Tyr residues. These C-terminal tyrosine residues are likely to be autophosphorylation sites. Some members of this family are fusion proteins. 207 -132064 TIGR03019 pepcterm_femAB FemAB-related protein, PEP-CTERM system-associated. Members of this protein family are found always as part of extended exopolysaccharide biosynthesis loci in bacteria. In nearly every case, these loci contain determinants for the processing of the PEP-CTERM proposed C-terminal protein sorting signal. This family shows remote, local sequence similarity to the FemAB protein family (see pfam02388), whose members [Unknown function, General] 330 -274393 TIGR03020 EpsA transcriptional regulator EpsA. Proteins in this family include a C-terminal LuxR transcriptional regulator domain (pfam00196). These proteins are positioned proximal to either EpsH-containing exopolysaccharide biosynthesis operons of the Methylobacillus type, or the associated PEP-CTERM-containing genes. 247 -274394 TIGR03021 pilP_fam type IV pilus biogenesis protein PilP. Members of this protein family are found in type IV pilus biogenesis loci and include proteins designated PilP. [Cell envelope, Surface structures] 118 -274395 TIGR03022 WbaP_sugtrans Undecaprenyl-phosphate galactose phosphotransferase, WbaP. The WbaP (formerly RfbP) protein has been characterized as the first enzyme in O-antigen biosynthesis in Salmonella typhimurium. The enzyme transfers galactose from UDP-galactose to a polyprenyl carrier (utilizing the highly conserved C-terminal sugar transferase domain, pfam02397) a reaction which takes place at the cytoplasmic face of the inner membrane. The N-terminal hydrophobic domain is then believed to facilitate the "flippase" function of transferring the liposaccharide unit from the cytoplasmic face to the periplasmic face of the inner membrane. This model includes the enterobacterial enzymes, where the function is presumed to be identical to the S. typhimurium enzyme as well as a somewhat broader group which are likely to catalyze the same or highly similar reactions based on a phylogenetic tree-building analysis of the broader sugar transferase family. Most of these genes are found within large operons dedicated to the production of complex exopolysaccharides such as the enterobacterial O-antigen. The most likely heterogeneity would be in the precise nature of the sugar molecule transferred. 456 -274396 TIGR03023 WcaJ_sugtrans Undecaprenyl-phosphate glucose phosphotransferase. This family of proteins encompasses the E. coli WcaJ protein involved in colanic acid biosynthesis, the Methylobacillus EpsB protein involved in methanolan biosynthesis, as well as the GumD protein involved in the biosynthesis of xanthan. All of these are closely related to the well-characterized WbaP (formerly RfbP) protein, which is the first enzyme in O-antigen biosynthesis in Salmonella typhimurium. The enzyme transfers galactose from UDP-galactose (NOTE: not glucose) to a polyprenyl carrier (utilizing the highly conserved C-terminal sugar transferase domain, pfam02397) a reaction which takes place at the cytoplasmic face of the inner membrane. The N-terminal hydrophobic domain is then believed to facilitate the "flippase" function of transferring the liposaccharide unit from the cytoplasmic face to the periplasmic face of the inner membrane. Most of these genes are found within large operons dedicated to the production of complex exopolysaccharides such as the enterobacterial O-antigen. Colanic acid biosynthesis utilizes a glucose-undecaprenyl carrier, knockout of EpsB abolishes incorporation of UDP-glucose into the lipid phase, and the C-terminal portion of GumD has been shown to be responsible for the glucosyl-1-transferase activity. 450 -274397 TIGR03024 arch_PEF_CTERM PEF-CTERM protein sorting domain. This domain, distantly related to the PEP-Cterm domain described in model TIGR02595, is found in Methanosarcina mazei in four different proteins, as well as in other archaea such as Methanococcoides burtonii. Several proteins with this domain have their genes only a short distance from archaeosortase C, a proposed integral membrane transpeptidase. This family should exclude members of the PEFG-CTERM domain family (TIGR04296), specific to the Thaumarchaeota. 25 -274398 TIGR03025 EPS_sugtrans exopolysaccharide biosynthesis polyprenyl glycosylphosphotransferase. Members of this family are generally found near other genes involved in the biosynthesis of a variety of exopolysaccharides. These proteins consist of two fused domains, an N-terminal hydrophobic domain of generally low conservation and a highly conserved C-terminal sugar transferase domain (pfam02397). Characterized and partially characterized members of this subfamily include Salmonella WbaP (originally RfbP), E. coli WcaJ, Methylobacillus EpsB, Xanthomonas GumD, Vibrio CpsA, Erwinia AmsG, Group B Streptococcus CpsE (originally CpsD), and Streptococcus suis Cps2E. Each of these is believed to act in transferring the sugar from, for instance, UDP-glucose or UDP-galactose, to a lipid carrier such as undecaprenyl phosphate as the first (priming) step in the synthesis of an oligosaccharide "block". This function is encoded in the C-terminal domain. The liposaccharide is believed to be subsequently transferred through a "flippase" function from the cytoplasmic to the periplasmic face of the inner membrane by the N-terminal domain. Certain closely related transferase enzymes, such as Sinorhizobium ExoY and Lactococcus EpsD, lack the N-terminal domain and are not found by this model. 445 -274399 TIGR03026 NDP-sugDHase nucleotide sugar dehydrogenase. Enzymes in this family catalyze the NAD-dependent alcohol-to-acid oxidation of nucleotide-linked sugars. Examples include UDP-glucose 6-dehydrogenase (1.1.1.22), GDP-mannose 6-dehydrogenase (1.1.1.132), UDP-N-acetylglucosamine 6-dehydrogenase (1.1.1.136), UDP-N-acetyl-D-galactosaminuronic acid dehydrogenase, and UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase. These enzymes are most often involved in the biosynthesis of polysaccharides and are often found in operons devoted to that purpose. All of these enzymes contain three Pfam domains, pfam03721, pfam00984, and pfam03720 for the N-terminal, central, and C-terminal regions respectively. 409 -132072 TIGR03027 pepcterm_export putative polysaccharide export protein, PEP-CTERM sytem-associated. This protein family belongs to the larger set of polysaccharide biosynthesis/export proteins described by pfam02563. Members of this family are variable in either containing of lacking a 78-residue insert, but appear to fall within a single clade, nevertheless, where the regions in which the gene is found encode components of the PEP-CTERM/EpsH proposed exosortase protein sorting system. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 165 -132073 TIGR03028 EpsE polysaccharide export protein EpsE. Sequences in this family of proteins are members of a polysaccharide export protein family (pfam02563) which includes the wza protein from E.coli. This family of proteins are homologous to the EpsE protein of the methanolan biosynthesis operon of Methylobacillus species strain 12S. The distribution of this protein appears to be restricted to a subset of exopolysaccharide operons containing a syntenic grouping of genes including a variant of the EpsH exosortase protein. Exosortase has been proposed to be involved in the targetting and processing of proteins containing the PEP-CTERM domain to the exopolysaccharide layer. 239 -132074 TIGR03029 EpsG chain length determinant protein tyrosine kinase EpsG. The proteins in this family are homologs of the EpsG protein found in Methylobacillus strain 12S and are generally found in operons with other Eps homologs. The protein is believed to function as the protein tyrosine kinase component of the chain length regulator (along with the transmembrane component EpsF). 274 -274400 TIGR03030 CelA cellulose synthase catalytic subunit (UDP-forming). Cellulose synthase catalyzes the beta-1,4 polymerization of glucose residues in the formation of cellulose. In bacteria, the substrate is UDP-glucose. The synthase consists of two subunits (or domains in the frequent cases where it is encoded as a single polypeptide), the catalytic domain modelled here and the regulatory domain (pfam03170). The regulatory domain binds the allosteric activator cyclic di-GMP. The protein is membrane-associated and probably assembles into multimers such that the individual cellulose strands can self-assemble into multi-strand fibrils. 713 -274401 TIGR03031 cas_csx12 CRISPR system subtype II-B RNA-guided endonuclease Cas9/Csx12. Members of this family of CRISPR-associated (cas) protein are found, so far, in CRISPR/cas loci in Wolinella succinogenes DSM 1740, Legionella pneumophila str. Paris, and Francisella tularensis, where the last probably is an example of a degenerate CRISPR locus, having neither repeats nor a functional Cas1. The characteristic repeat length is 37 base pairs and period is about 72. One region of this large protein shows sequence similarity to pfam01844, HNH endonuclease. 802 -274402 TIGR03032 TIGR03032 TIGR03032 family protein. This protein family is uncharacterized. A number of motifs are conserved perfectly among all member sequences. The function of this protein is unknown. [Hypothetical proteins, Conserved] 335 -200235 TIGR03033 phage_rel_nuc putative phage-type endonuclease. Members of this protein family are found often in phage genomes and in prokaryotic genomes in uncharacterized regions that resemble integrated prophage regions. 153 -132079 TIGR03034 TIGR03034 conserved hypothetical protein. Members of this protein family have been found in several species of gammaproteobacteria, including Yersinia pestis and Y. pseudotuberculosis, Xylella fastidiosa, and Escherichia coli UTI89. As many as five members can be found in a single genome. The function is unknown. [Hypothetical proteins, Conserved] 274 -132080 TIGR03035 trp_arylform arylformamidase. One of several pathways of tryptophan degradation is as follows: tryptophan 2,3-dioxygenase (1.13.11.11) uses 02 to convert Trp to L-formylkynurenine. Arylformamidase (3.5.1.9) hydrolyzes the product to L-kynurenine and formate. Kynureninase (3.7.1.3) hydrolyzes L-kynurenine to anthranilate plus alanine. Members of the seed alignment for this model are bacterial predicted metal-dependent hydrolases. All are supported as arylformamidase (3.5.1.9) by an operon structure in which kynureninase and/or tryptophan 2,3-dioxygenase genes are adjacent. The members from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans were characterized. An example from Pseudomonas fluorescens is given the gene symbol qbsH instead of kynB because of its role in quinolobactin biosynthesis, which begins with tryptophan. All members of this family should be arylformamidase (3.5.1.9). [Energy metabolism, Amino acids and amines] 206 -188272 TIGR03036 trp_2_3_diox tryptophan 2,3-dioxygenase. Members of this family are tryptophan 2,3-dioxygenase, as confirmed by several experimental characterizations, and by conserved operon structure for many of the other members. This enzyme represents the first of a two-step degradation to L-kynurenine, and a three-step pathway (via kynurenine) to anthranilate plus alanine. [Energy metabolism, Amino acids and amines] 264 -132082 TIGR03037 anthran_nbaC 3-hydroxyanthranilate 3,4-dioxygenase. Members of this protein family, from both bacteria and eukaryotes, are the enzyme 3-hydroxyanthranilate 3,4-dioxygenase. This enzyme acts on the tryptophan metabolite 3-hydroxyanthranilate and produces 2-amino-3-carboxymuconate semialdehyde, which can rearrange spontaneously to quinolinic acid and feed into nicotinamide biosynthesis, or undergo further enzymatic degradation. 159 -274403 TIGR03038 PS_II_psbM photosystem II reaction center protein PsbM. Members of this protein family are the photosystem II reaction center M protein, product of the psbM gene, in Cyanobacteria and their derived organelles in plants. This model resembles pfam05151 but has cutoffs set to avoid false-positive matches to similar (not necessarily homologous) sequences in species that are not photosynthetic. [Energy metabolism, Photosynthesis] 33 -163117 TIGR03039 PS_II_CP47 photosystem II chlorophyll-binding protein CP47. [Energy metabolism, Photosynthesis] 504 -213761 TIGR03041 PS_antenn_a_b chlorophyll a/b binding light-harvesting protein. This model represents a family of proteins from the Cyanobacteria, closely homologous to and yet distinct from PbsC, a chlorophyll a antenna protein of photosystem II. Members are not univerally present in Cyanobacteria, while the family has several members per genome in Prochlorococcus marinus, with seven members in a strain adapted to low light conditions. These antenna proteins may deliver light energy to photosystem I and/or photosystem II. [Energy metabolism, Photosynthesis] 321 -274404 TIGR03042 PS_II_psbQ_bact photosystem II protein PsbQ. This protein through the member sll1638 from Synechocystis sp. PCC 6803, was shown to be part of the cyanobacteria photosystem II. It is homologous to (but quite diverged from) the chloroplast PsbQ protein, called oxygen-evolving enhancer protein 3 (OEE3). We designate this cyanobacteria protein PsbQ by homology. [Energy metabolism, Photosynthesis] 142 -274405 TIGR03043 PS_II_psbZ photosystem II core protein PsbZ. PsbZ is a core protein of photosystem II in thylakoid-containing Cyanobacteria and plant chloroplasts. The original Chlamydomonas gene symbol, ycf9, is a synonym. PsbZ controls the interaction of the reaction center core with the light-harvesting antenna. [Energy metabolism, Photosynthesis] 58 -274406 TIGR03044 PS_II_psb27 photosystem II protein Psb27. Members of this family are the Psb27 protein of the cyanobacterial photosynthetic supracomplex, photosystem II. Although most protein components of both cyanobacterial and chloroplast versions of photosystem II are closely related and described together by single models, this family is strictly bacterial. Some uncharacterized proteins with highly divergent sequences, from Arabidopsis, score between trusted and noise cutoffs for this model but are not at this time assigned as functionally equivalent photosystem II proteins. [Energy metabolism, Photosynthesis] 135 -274407 TIGR03045 PS_II_C550 cytochrome c-550. Members of this protein family are cytochrome c-550, the PsbV extrinsic protein of photosystem II, from both Cyanobacteria and chloroplasts. A paralog to this protein, PsbV2, is found in some species in addition to PsbV itself. [Energy metabolism, Photosynthesis] 159 -274408 TIGR03046 PS_II_psbV2 photosystem II cytochrome PsbV2. Members of this protein family are PsbV2, a protein closely related cytochrome c-550 (PsbV), a protein important to the water-splitting and oxygen-evolving activity of photosystem II. Mutant studies in Thermosynechococcus elongatus showed PsbV2 can partially replace PsbV, from which it appears to have arisen first by duplication, then by intergenic recombination with a different gene. [Energy metabolism, Photosynthesis] 155 -274409 TIGR03047 PS_II_psb28 photosystem II reaction center protein Psb28. Members of this protein family are the Psb28 protein of photosystem II. Two different protein families, apparently without homology between them, have been designated PsbW. Cyanobacterial proteins previously designated PsbW are members of the family described here. However, while members of the plant PsbW family are not found (so far) in Cyanobacteria, members of the present family do occur in plants. We therefore support the alternative designation that has emerged for this protein family, Psp28, rather than PsbW. [Energy metabolism, Photosynthesis] 108 -132092 TIGR03048 PS_I_psaC photosystem I iron-sulfur protein PsaC. Members of this family are PsaC, an essential component of photosystem I (PS-I) reaction center in Cyanobacteria and chloroplasts. This small protein, about 80 amino acids in length, contains two copies of the ferredoxin-like 4Fe-4S binding site (pfam00037) and therefore eight conserved Cys residues. This protein is also called photosystem I subunit VII. [Energy metabolism, Photosynthesis] 80 -274410 TIGR03049 PS_I_psaK photosystem I reaction center subunit PsaK. Members of this protein family are the PsaK of the photosystem I reaction center. Photosystems I and II occur together in the same sets of organisms. Photosystem I uses light energy to transfer electrons from plastocyanin to ferredoxin, while photosystem II uses light energy to split water and releases molecular oxygen. [Energy metabolism, Photosynthesis] 81 -188274 TIGR03050 PS_I_psaK_plant photosystem I reaction center PsaK, plant form. This protein family is based on a model that separates the photosystem I PsaK subunit of chloroplasts from chloroplast PsaG protein and from Cyanobacterial PsaK, both of which show sequence similarity. 83 -132095 TIGR03051 PS_I_psaG_plant photosystem I reaction center subunit V, chloroplast. 88 -132096 TIGR03052 PS_I_psaI photosystem I reaction center subunit VIII. Members of this protein family are PsaI, subunit VIII of the photosystem I reaction center. This protein is found in both the Cyanobacteria and the chloroplasts of plants, but is absent from non-oxygenic photosynthetic bacteria such as Rhodobacter sphaeroides. Species that contain photosystem I also contain photosystem II, which splits water and releases molecular oxygen. [Energy metabolism, Photosynthesis] 31 -274411 TIGR03053 PS_I_psaM photosystem I reaction center subunit XII. Members of this protein family are PsaM, which is subunit XII of the photosystem I reaction center. This protein is found in both the Cyanobacteria and the chloroplasts of plants, but is absent from non-oxygenic photosynthetic bacteria such as Rhodobacter sphaeroides. Species that contain photosystem I also contain photosystem II, which splits water and releases molecular oxygen. The seed alignment for this model includes sequences from pfam07465 and additional sequences, as from Prochlorococcus. [Energy metabolism, Photosynthesis] 29 -213764 TIGR03054 photo_alph_chp1 putative photosynthetic complex assembly protein. In twenty or so anoxygenic photosynthetic alpha-Proteobacteria known so far, a gene for a member of this protein family is present and is found in the vicinity of puhA, which encodes a component of the photosynthetic reaction center, and other genes associated with photosynthesis. This protein family is suggested, consequently, as a probable assembly factor for the photosynthetic reaction center, but its seems its actual function has not yet been demonstrated. [Energy metabolism, Photosynthesis] 135 -188275 TIGR03055 photo_alph_chp2 putative photosynthetic complex assembly protein 2. This uncharacterized protein family was identified, by the method of partial phylogenetic profiling, as having a matching phylogenetic distribution to that of the photosynthetic reaction center of the alpha-proteobacterial type. It is nearly always encoded near other photosynthesis-related genes, including puhA. [Energy metabolism, Photosynthesis] 245 -132100 TIGR03056 bchO_mg_che_rel putative magnesium chelatase accessory protein. Members of this family belong to the alpha/beta fold family hydrolases (pfam00561). Members are found in bacterial genomes if and only if they encoded for anoxygenic photosynthetic systems similar to that of Rhodobacter capsulatus and other alpha-Proteobacteria. Members often are encoded in the same operon as subunits of the protoporphyrin IX magnesium chelatase, and were once designated BchO. No literature supports a role as an actual subunit of magnesium chelatase, but an accessory role is possible, as suggested by placement by its probable hydrolase activity. [Energy metabolism, Photosynthesis] 278 -274412 TIGR03057 xxxLxxG_by_4 X-X-X-Leu-X-X-Gly heptad repeats. This model represents a 28-column alignment, comprising four tandem sets of seven residues each, in which the fourth residue tends to be Leu and the seventh tends to be Gly in each set. This heptad periodicity, corresponding to two turns of an alpha helix, suggests alpha-helical structure; in many proteins this 28-region model hits many times in tandem. Arrangement of these sequences on a helical wheel would show a strict alternation of Leu and Gly residues on one side of the helix, that is, an extremely bulky side chain alternating with the virtual absence of one. This suggests an extended zippering of one alpha helix to another, analogous to the shorter leucine zippers found in many dimerizing transcription factors. Proteins in which these heptad repeats occur often have higher order repeats of a unit comprised of several heptads. 28 -132102 TIGR03058 rpt_csmH chlorosome envelope protein H repeat. CsmH, as studied in Chlorobium tepidum, is one of at least ten surface-exposed proteins of the chloroplast, a bacteriochlorophyll-rich structure with a lipid-protein envelope. CsmH contain typically three copies of a repeated sequence, represented by this model. [Energy metabolism, Photosynthesis] 27 -132103 TIGR03059 psaOeuk photosystem I protein PsaO. Members of this family are the PsaO protein of photosystem I. This protein is found in chloroplasts but not in Cyanobacteria. 82 -213765 TIGR03060 PS_II_psb29 photosystem II biogenesis protein Psp29. Psp29, originally designated sll1414 in Synechocystis 6803, is found universally in Cyanobacteria and in Arabidopsis. It was isolated and partially sequenced from purified photosystem II (PS II) in Synechocystis. While its function is unknown, mutant studies show an impairment in photosystem II biogenesis and/or stability, rather than in PS II core function. [Energy metabolism, Photosynthesis] 214 -274413 TIGR03061 pip_yhgE_Nterm YhgE/Pip N-terminal domain. This family contains the N-terminal domain of a family of multiple membrane-spanning proteins of Gram-positive bacteria. One member was shown to be a host protein essential for phage infection, so many members of this family are called "phage infection protein". A separate model, TIGR03062, represents the conserved C-terminal domain. The domains are separated by regions highly variable in both length and sequence, often containing extended heptad repeats as described in model TIGR03057. 164 -274414 TIGR03062 pip_yhgE_Cterm YhgE/Pip C-terminal domain. This family contains the C-terminal domain of a family of multiple membrane-spanning proteins of Gram-positive bacteria. One member was shown to be a host protein essential for phage infection, so many members of this family are called "phage infection protein". A separate model, TIGR03061, represents the conserved N-terminal domain. The domains are separated by regions highly variable in both length and sequence, often containing extended heptad repeats as described in model TIGR03057. 208 -213766 TIGR03063 srtB_target sortase B cell surface sorting signal. Two different classes of sorting signal, both analogous to the sortase A signal LPXTG, may be recognized by the sortase SrtB. These are given as NXZTN and NPKXZ. Proteins sorted by this class of sortase are less common than the sortase A and LPXTG system. This model describes a number of cell surface protein C-terminal regions from Gram-positive bacteria that appear to be sortase B (SrtB) sorting signals. 29 -211782 TIGR03064 sortase_srtB sortase, SrtB family. Members of this transpeptidase family are, in most cases, designated sortase B, product of the srtB gene. This protein shows only distant similarity to the sortase A family, for which there may be several members in a single bacterial genome. Typical SrtB substrate motifs include NAKTN, NPKSS, etc, and otherwise resemble the LPXTG sorting signals recognized by sortase A proteins. [Cell envelope, Other, Protein fate, Protein and peptide secretion and trafficking] 232 -132109 TIGR03065 srtB_sig_QVPTGV sortase B signal domain, QVPTGV class. This model represents a boutique (unusual) sorting signal, recognized by a member of the sortase SrtB family rather than by the housekeeping sortase, SrtA. 32 -132110 TIGR03066 Gem_osc_para_1 Gemmata obscuriglobus paralogous family TIGR03066. This model represents an uncharacterized paralogous family in Gemmata obscuriglobus UQM 2246, a member of the Planctomycetes. This family shows sequence similarity to TIGR03067, which is also found in Gemmata obscuriglobus as well as in a few other species. [Hypothetical proteins, Conserved] 111 -274415 TIGR03067 Planc_TIGR03067 Planctomycetes uncharacterized domain TIGR03067. This domain occurs in several species, mostly from the Planctomycetes division of the bacteria. It is expanded into a paralogous family of at least twenty-five members in Gemmata obscuriglobus UQM 2246. This family appears related to TIGR03066, which also is expanded into a large paralogous family in Gemmata obscuriglobus. [Unknown function, General] 107 -132112 TIGR03068 srtB_sig_NPQTN sortase B signal domain, NPQTN class. This model represents one of the boutique (rare) sortase signals, recognized by sortase B (SrtB) rather than by the housekeeping-type SrtA class sortase. This sequence, beginning NPQTN, shows little similarity to several other SrtB substrates. 33 -132113 TIGR03069 PS_II_S4 photosystem II S4 domain protein. Members of this protein family are about 265 residues long and each contains an S4 RNA-binding domain of about 48 residues. The member from the Cyanobacterium, Synechocystis sp. PCC 6803, was detected as a novel polypeptide in a highly purified preparation of active photosystem II (Kashino, et al., 2002). The phylogenetic distribution, including Cyanobacteria and Arabidopsis, supports a role in photosystem II, although the high bit score cutoffs for this model reflect similar sequences in non-photosynthetic organisms such as Carboxydothermus hydrogenoformans, a Gram-positive bacterium. [Energy metabolism, Photosynthesis] 257 -213767 TIGR03070 couple_hipB transcriptional regulator, y4mF family. Members of this family belong to a clade of helix-turn-helix DNA-binding proteins, among the larger family pfam01381 (HTH_3; Helix-turn-helix). Members are similar in sequence to the HipB protein of E. coli. Genes for members of the seed alignment for this protein family were found to be closely linked to genes encoding proteins related to HipA. The HibBA operon appears to have some features in common with toxin-antitoxin post-segregational killing systems. [Regulatory functions, DNA interactions] 58 -274416 TIGR03071 couple_hipA HipA N-terminal domain. Although Pfam models pfam07805 and pfam07804 currently are called HipA-like N-terminal domain and HipA-like C-terminal domain, respectively, those models hit the central and C-terminal regions of E. coli HipA but not the N-terminal region. This model hits the N-terminal region of HipA and its homologs, and also identifies proteins that lack match regions for pfam07804 and pfam07805. 101 -213768 TIGR03072 release_prfH putative peptide chain release factor H. Members of this protein family are bacterial proteins homologous to peptide chain release factors 1 (RF-1, product of the prfA gene), and 2 (RF-2, product of the prfB gene). The member from Escherichia coli K-12, designated prfH, appears to be a pseudogene. This class I release factor is always found as the downstream gene of a two-gene operon. [Protein synthesis, Translation factors] 200 -274417 TIGR03073 release_rtcB release factor H-coupled RctB family protein. Members of this family are related to RctB. RctB a protein of known structure but unknown function that often is encoded near RNA cyclase and therefore is suggested to be a tRNA or mRNA processing enzyme. This family of RctB-like proteins in encoded upstream of, and apparently is translationally coupled to, the putative peptide chain release factor RF-H (TIGR03072), product of the prfH gene. Note that a large deletion at the junction between this gene and the prfH gene in Escherichia coli K-12 marks both as probable pseudogenes. [Protein synthesis, Other] 356 -274418 TIGR03074 PQQ_membr_DH membrane-bound PQQ-dependent dehydrogenase, glucose/quinate/shikimate family. This protein family has a phylogenetic distribution very similar to that coenzyme PQQ biosynthesis enzymes, as shown by partial phylogenetic profiling. Members of this family have several predicted transmembrane helices in the N-terminal region, and include the quinoprotein glucose dehydrogenase (EC 1.1.5.2) of Escherichia coli and the quinate/shikimate dehydrogenase of Acinetobacter sp. ADP1 (EC 1.1.99.25). Sequences closely related except for the absense of the N-terminal hydrophobic region, scoring in the gray zone between the trusted and noise cutoffs, include PQQ-dependent glycerol (EC 1.1.99.22) and and other polyol (sugar alcohol) dehydrogenases. 764 -274419 TIGR03075 PQQ_enz_alc_DH PQQ-dependent dehydrogenase, methanol/ethanol family. This protein family has a phylogenetic distribution very similar to that coenzyme PQQ biosynthesis enzymes, as shown by partial phylogenetic profiling. Genes in this family often are found adjacent to the PQQ biosynthesis genes themselves. An unusual, strained disulfide bond between adjacent Cys residues contributes to PQQ-binding, as does a Trp residue that is part of a PQQ enzyme repeat (see pfam01011). Characterized members include the dehydrogenase subunit of a membrane-anchored, three subunit alcohol (ethanol) dehydrogenase of Gluconobacter suboxydans, a homodimeric ethanol dehydrogenase in Pseudomonas aeruginosa, and the large subunit of an alpha2/beta2 heterotetrameric methanol dehydrogenase in Methylobacterium extorquens. 527 -213771 TIGR03076 near_not_gcvH Chlamydial GcvH-like protein upstream region protein. The H protein (GcvH) of the glycine cleavage system shuttles the methylamine group of glycine from the P protein to the T protein. Most Chlamydia but lack the P and T proteins, and have a single homolog of GcvH that appears deeply split from canonical GcvH in molecular phylogenetic trees. The protein family modeled here is observed so far only in the Chlamydiae, always as part of a two-gene operon, upstream of the homolog of GcvH. Its function is unknown. [Unknown function, General] 686 -132121 TIGR03077 not_gcvH glycine cleavage protein H-like protein, Chlamydial. The H protein (GcvH) of the glycine cleavage system shuttles the methylamine group of glycine from the P protein to the T protein. Most Chlamydia but lack the P and T proteins, and have a single homolog of GcvH that appears deeply split from canonical GcvH in molecular phylogenetic trees. The protein family modeled here is observed the Chlamydial GcvH homolog, so far always seen as part of a two-gene operon, downstream of a member of the uncharacterized protein family TIGR03076. The function of this protein is unknown. 110 -274420 TIGR03078 CH4_NH3mon_ox_C methane monooxygenase/ammonia monooxygenase, subunit C. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit C of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 231 -132123 TIGR03079 CH4_NH3mon_ox_B methane monooxygenase/ammonia monooxygenase, subunit B. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit B of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 399 -132124 TIGR03080 CH4_NH3mon_ox_A methane monooxygenase/ammonia monooxygenase, subunit A. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit A of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 243 -213772 TIGR03081 metmalonyl_epim methylmalonyl-CoA epimerase. Members of this protein family are the enzyme methylmalonyl-CoA epimerase (EC 5.1.99.1), also called methylmalonyl-CoA racemase. This enzyme converts (2R)-methylmalonyl-CoA to (2S)-methylmalonyl-CoA, which is then a substrate for methylmalonyl-CoA mutase (TIGR00642). It is known in bacteria, archaea, and as a mitochondrial protein in animals. It is closely related to lactoylglutathione lyase (TIGR00068), which is also called glyoxylase I, and is also a homodimer. 128 -274421 TIGR03082 Gneg_AbrB_dup membrane protein AbrB duplication. The model describes a hydrophobic sequence region that is duplicated to form the AbrB protein of Escherichia coli (not to be confused with a Bacillus subtilis protein with the same gene symbol). In some species, notably the Cyanobacteria and Thermus thermophilus, proteins consist of a single copy rather than two copies. The member from Pseudomonas putida, PP_1415, was suggested to be an ammonia monooxygenase characteristic of heterotrophic nitrifiers, based on an experimental indication of such activity in the organism and a glimmer of local sequence similarity between parts of P. putida protein and an instance of the AmoA protein from Nitrosomonas europaea (; we do not believe the sequence similarity to be meaningful. The member from E. coli (b0715, ybgN) appears to be the largely uncharacterized AbrB (aidB regulator) protein of E. coli cited in Volkert, et al. (PMID 8002588), although we did not manage to trace the origin of association of the article to the sequence. 156 -274422 TIGR03083 TIGR03083 uncharacterized Actinobacterial protein TIGR03083. This protein family pulls together several groups of proteins, each very different from the others. They share in common three conserved regions. The first is a region of about 38 amino acids, nearly always at the N-terminus of a protein. This region has a bulky hydrophobic residue, usually Trp, at position 29, and a His residue at position 37 that is invariant, so far, in over 150 instances. The second conserved region has a motif [DE]xxxHxxD. The third conserved region contains a hydrophobic patch and a well-conserved Arg residue. Most examples are found in the Actinobacteria, including the genera Mycobacterium, Corynebacterium, Streptomyces, Nocardia, Frankia, etc. The pattern of near-invariant residues against a backdrop of extreme sequence divergence suggests enzymatic activity and conservation of active site residues. 202 -274423 TIGR03084 TIGR03084 TIGR03084 family protein. This family, like pfam07398, belongs to the larger set of probable enzymes modeled by TIGRFAMs family TIGR03083. Members are found primarily in the Actinobacteria (Mycobacterium, Streptomyces, etc.). The family is uncharacterized. [Hypothetical proteins, Conserved] 253 -132129 TIGR03085 TIGR03085 TIGR03085 family protein. This family, like pfam07398 and TIGRFAMs family TIGR03084, belongs to the larger set of probable enzymes defined in family TIGR03083. Members are found primarily in the Actinobacteria (Mycobacterium, Streptomyces, etc.). The family is uncharacterized. [Hypothetical proteins, Conserved] 199 -274424 TIGR03086 TIGR03086 TIGR03086 family protein. This family, like pfam07398 and TIGRFAMs family TIGR030834, belongs to the larger set of probable enzymes defined in family TIGR03083. Members are found primarily in the Actinobacteria (Mycobacterium, Streptomyces, etc.). The family is uncharacterized. 180 -274425 TIGR03087 stp1 sugar transferase, PEP-CTERM/EpsH1 system associated. Members of this family include a match to the pfam00534 Glycosyl transferases group 1 domain. Nearly all are found in species that encode the PEP-CTERM/exosortase system predicted to act in protein sorting in a number of Gram-negative bacteria. In particular, these transferases are found proximal to a particular variant of exosortase, EpsH1, which appears to travel with a conserved group of genes summarized by Genome Property GenProp0652. The nature of the sugar transferase reaction catalyzed by members of this clade is unknown and may conceivably be variable with respect to substrate by species, but we hypothesize a conserved substrate. 397 -132132 TIGR03088 stp2 sugar transferase, PEP-CTERM/EpsH1 system associated. Members of this family include a match to the pfam00534 Glycosyl transferases group 1 domain. Nearly all are found in species that encode the PEP-CTERM/exosortase system predicted to act in protein sorting in a number of Gram-negative bacteria. In particular, these transferases are found proximal to a particular variant of exosortase, EpsH1, which appears to travel with a conserved group of genes summarized by Genome Property GenProp0652. The nature of the sugar transferase reaction catalyzed by members of this clade is unknown and may conceivably be variable with respect to substrate by species, but we hypothesize a conserved substrate. 374 -274426 TIGR03089 TIGR03089 TIGR03089 family protein. This protein family is found, so far, only in the Actinobacteria (Streptomyces, Mycobacterium, Corynebacterium, Nocardia, Propionibacterium, etc.) and never more than one to a genome. Members show twilight-level sequence similarity to family of AMP-binding enzymes described by pfam00501. 228 -163133 TIGR03090 SASP_tlp small, acid-soluble spore protein tlp. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. Although previously designated tlp (thioredoxin-like protein), the B. subtilis protein was shown to be a minor small acid-soluble spore protein SASP, unique to spores. The motif E[VIL]XDE near the C-terminus probably represents at a germination protease cleavage site. [Cellular processes, Sporulation and germination] 70 -274427 TIGR03091 SASP_sspK small, acid-soluble spore protein K. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. It is a minor SASP (small, acid-soluble spore protein) designated SspK. [Cellular processes, Sporulation and germination] 32 -132136 TIGR03092 SASP_sspI small, acid-soluble spore protein I. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. It is a minor SASP (small, acid-soluble spore protein) designated SspI. The gene in Bacillus subtilis previously was designated ysfA. [Cellular processes, Sporulation and germination] 65 -132137 TIGR03093 SASP_sspL small, acid-soluble spore protein L. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. It is a minor SASP (small, acid-soluble spore protein) designated SspL. [Cellular processes, Sporulation and germination] 36 -132138 TIGR03094 sulfo_cyanin sulfocyanin. Members of this family are blue-copper redox proteins designated sulfocyanin, from the archaeal genera Sulfolobus, Ferroplasma, and Picrophilus. The most closely related proteins characterized as functionally different are the rustacyanins. [Energy metabolism, Electron transport] 195 -132139 TIGR03095 rusti_cyanin rusticyanin. Rusticyanin is a blue copper protein, described in an obligate acidophilic chemolithoautroph, Acidithiobacillus ferrooxidans, as an electron transfer protein. It can constitute up to 5 percent of protein in cells grown on Fe(II) and is thought to be part of an electron chain for Fe(II) oxidation, with two c-type cytochromes, an aa3-type cytochrome oxidase, and 02 as terminal electron acceptor. It is rather closely related to sulfocyanin (TIGR03094). [Energy metabolism, Electron transport] 148 -132140 TIGR03096 nitroso_cyanin nitrosocyanin. Nitrosocyanin, as described from the obligate chemolithoautotroph Nitrosomonas europaea, is a red copper protein of unknown function with sequence similarity to a number of blue copper redox proteins. [Energy metabolism, Electron transport] 135 -132141 TIGR03097 PEP_O_lig_1 probable O-glycosylation ligase, exosortase A-associated. These proteins are members of the O-antigen polymerase (wzy) family described by pfam04932. This group is associated with genomes and ususally genomic contexts containing elements of the exosortase/PEP-CTERM protein export system, specificially the type 1 variety of this system described by the Genome Property, GenProp0652. 402 -211788 TIGR03098 ligase_PEP_1 acyl-CoA ligase (AMP-forming), exosortase A-associated. This group of proteins contains an AMP-binding domain (pfam00501) associated with acyl CoA-ligases. These proteins are generally found in genomes containing the exosortase/PEP-CTERM protein expoert system, specifically the type 1 variant of this system described by the Genome Property GenProp0652. When found in this context they are invariably present next to a decarboxylase enzyme. A number of sequences from Burkholderia species also hit this model, but the genomic context is obviously different. The hypothesis of a constant substrate for this family is only strong where the exosortase context is present. 517 -132143 TIGR03099 dCO2ase_PEP1 pyridoxal-dependent decarboxylase, exosortase A system-associated. The sequences in this family contain the pyridoxal binding domain (pfam02784) and C-terminal sheet domain (pfam00278) of a family of Pyridoxal-dependent decarboxylases. Characterized enzymes in this family decarboxylate substrates such as ornithine, diaminopimelate and arginine. The genes of the family modeled here, with the exception of those observed in certain Burkholderia species, are all found in the context of exopolysaccharide biosynthesis loci containing the exosortase/PEP-CTERM protein sorting system. More specifically, these are characteristic of the type 1 exosortase system represented by the Genome Property GenProp0652. The substrate of these enzymes may be a precursor of the carrier or linker which is hypothesized to release the PEP-CTERM protein from the exosortase enzyme. These enzymes are apparently most closely related to the diaminopimelate decarboxylase modeled by TIGR01048 which may suggest a similarity (or identity) of substrate. 398 -132144 TIGR03100 hydr1_PEP exosortase A system-associated hydrolase 1. This group of proteins are members of the alpha/beta hydrolase superfamily. These proteins are generally found in genomes containing the exosortase/PEP-CTERM protein expoert system, specifically the type 1 variant of this system described by the Genome Property GenProp0652. When found in this context they are invariably present in the vicinity of a second, relatively unrelated enzyme (ortholog 2, TIGR03101) of the same superfamily. 274 -274428 TIGR03101 hydr2_PEP exosortase A system-associated hydrolase 2. This group of proteins are members of the alpha/beta hydrolase superfamily. These proteins are generally found in genomes containing the exosortase/PEP-CTERM protein expoert system, specifically the type 1 variant of this system described by the Genome Property GenProp0652. When found in this context they are invariably present in the vicinity of a second, relatively unrelated enzyme (ortholog 1, TIGR03100) of the same superfamily. 266 -274429 TIGR03102 halo_cynanin halocyanin domain. Halocyanins are blue (type I) copper redox proteins found in halophilic archaea such as Natronobacterium pharaonis. This model represents a domain duplicated in some halocyanins, while appearing once in others. This domain includes the characteristic copper ligand residues. This family does not include plastocyanins, and does not include certain divergent paralogs of halocyanin. 115 -132147 TIGR03103 trio_acet_GNAT GNAT-family acetyltransferase TIGR03103. Members of this protein family belong to the GNAT family of acetyltransferases. Each is part of a conserved three-gene cassette sparsely distributed across at least twenty different species known so far, including alpha, beta, and gamma Proteobacteria, Mycobacterium, and Prosthecochloris, which is a member of the Chlorobi. The other two members of the cassette are a probable protease and an asparagine synthetase family protein. 547 -274430 TIGR03104 trio_amidotrans asparagine synthase family amidotransferase. Members of this protein family are closely related to several isoforms of asparagine synthetase (glutamine amidotransferase) and typically have been given this name in genome annotation to date. Each is part of a conserved three-gene cassette sparsely distributed across at least twenty different species known so far, including alpha, beta, and gamma Proteobacteria, Mycobacterium, and Prosthecochloris, which is a member of the Chlorobi. The other two members of the cassette are a probable protease and a member of the GNAT family of acetyltransferases. 589 -274431 TIGR03105 gln_synth_III glutamine synthetase, type III. This family consists of the type III isozyme of glutamine synthetase, originally described in Rhizobium meliloti, where types I and II also occur. 435 -132150 TIGR03106 trio_M42_hydro hydrolase, peptidase M42 family. This model describes a subfamily of MEROPS peptidase family M42, a glutamyl aminopeptidase family that also includes the cellulase CelM from Clostridium thermocellum and deblocking aminopeptidases that can remove acylated amino acids. Members of this family occur in a three gene cassette with an amidotransferase (TIGR03104)in the asparagine synthase (glutamine-hydrolyzing) family, and a probable acetyltransferase (TIGR03103) in the GNAT family. 343 -132151 TIGR03107 glu_aminopep glutamyl aminopeptidase. This model represents the M42.001 clade within MEROPS family M42. M42 includes glutamyl aminopeptidase as in the present model, deblocking aminopeptidases as from Pyrococcus horikoshii and related species, and endo-1,4-beta-glucanase (cellulase M) as from Clostridium thermocellum. The current family includes [Protein fate, Degradation of proteins, peptides, and glycopeptides] 350 -132152 TIGR03108 eps_aminotran_1 exosortase A system-associated amidotransferase 1. The predicted protein-sorting transpeptidase that we call exosortase (see TIGR02602) has distinct subclasses that associated with different types of exopolysaccharide production loci. This model represents a distinct clade among a set of amidotransferases largely annotated (not necessarily accurately) as glutatime-hydrolyzing asparagine synthases. Members of this clade are essentially restricted to the characteristic exopolysaccharide (EPS) regions that contain the exosortase 1 genome (xrtA), in genomes that also have numbers of PEP-CTERM domain (TIGR02595) proteins. 628 -274432 TIGR03109 exosortase_1 exosortase A. The predicted protein-sorting transpeptidase that we call exosortase (see TIGR02602) has distinct subclasses that associated with different types of exopolysaccharide production loci. We designate this, the most common type so far, exosortase 1. We propose the gene symbol xrtA, analogous to srtA for the most common type of sortase in Gram-positive bacteria. 267 -188282 TIGR03110 exosort_Gpos exosortase family protein XrtG. Members of this protein family are found in a modest number of non-pathogenic Gram-positive bacteria, including three species of Lactococcus and three paralogs in Clostridium acetobutylicum. This protein appears related to the conserved core region of a family of proposed transpeptidases, exosortase (previously EpsH), thought to act on PEP-CTERM proteins. Members of the seed alignment include all exosortase proposed active site residues. However, in contrast to canonical exosortase (TIGR02602) and archaeal (TIGR03762), and cyanobacterial (TIGR03763) variants, this family has not yet been matched to a cognate PEP-CTERM-like sorting signal. This protein is assigned the gene symbol XrtG (eXosoRTase family protein of Gram-positives). 187 -132155 TIGR03111 glyc2_xrt_Gpos1 putative glycosyltransferase, exosortase G-associated. Members of this protein family are probable glycosyltransferases of family 2, whose genes are near those for the exosortase homolog XrtG (TIGR03110), which is restricted to Gram-positive bacteria. Other genes in the conserved gene neighborhood include a 6-pyruvoyl tetrahydropterin synthase homolog (TIGR03112) and an uncharacterized intergral membrane protein (TIGR03766). 439 -132156 TIGR03112 6_pyr_pter_rel 6-pyruvoyl tetrahydropterin synthase-related domain. Members of this family are small proteins, or small domains of larger proteins, that occur in certain Firmicutes in the same regions as members of families TIGR03110 and TIGR03111. Members of TIGR03110 resemble exosortase, a proposed protein sorting transpeptidase (see TIGR02602). TIGR03111 represents a small clade among the group 2 glycosyltransferases. Members of the current protein family resemble eukaryotic known and prokaryotic predicted 6-pyruvoyl tetrahydropterin synthases. 113 -274433 TIGR03113 exosortase_2 exosortase B. The predicted protein-sorting transpeptidase that we call exosortase (see TIGR02602) has distinct subclasses that associated with different types of exopolysaccharide production loci. We designate this relatively uncommon proteobacterial type to be type 2. We propose the gene symbol xrtB. Most species encountered so far with xrtB also contain xrtA (TIGR03109). 268 -274434 TIGR03114 cas8u_csf1 CRISPR type AFERR-associated protein Csf1. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf1 (CRISPR/cas Subtype as in A. ferrooxidans protein 1), as it lies closest to the repeats. 202 -274435 TIGR03115 cas7_csf2 CRISPR type IV/AFERR-associated protein Csf2. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf2 (CRISPR/cas Subtype as in A. ferrooxidans protein 2), as it lies second closest to the repeats. 344 -132160 TIGR03116 cas5_csf3 CRISPR type IV/AFERR-associated protein Csf3. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf3 (CRISPR/cas Subtype as in A. ferrooxidans protein 3), as it lies third closest to the repeats. 214 -274436 TIGR03117 cas_csf4 CRISPR type AFERR-associated DEAD/DEAH-box helicase Csf4. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf4 (CRISPR/cas Subtype as in A. ferrooxidans protein 1), as it lies farthest (fourth closest) from the repeats in the A. ferrooxidans genome. 636 -132162 TIGR03118 PEPCTERM_chp_1 TIGR03118 family protein. This model describes and uncharacterized conserved hypothetical protein. Members are found with the C-terminal putative exosortase interaction domain, PEP-CTERM, in Nitrosospira multiformis, Rhodoferax ferrireducens, Solibacter usitatus Ellin6076, and Acidobacteria bacterium Ellin345. It is found without the PEP-CTERM domain in several other species, including Burkholderia ambifaria, Gloeobacter violaceus PCC 7421, and three copies in the Acanthamoeba polyphaga mimivirus. [Hypothetical proteins, Conserved] 336 -132163 TIGR03119 one_C_fhcD formylmethanofuran--tetrahydromethanopterin N-formyltransferase. Members of this protein family are the FhcD protein of tetrahydromethanopterin (H4MPT)-dependent C-1 carrier metabolism. In the archaea, FhcD is designated formylmethanofuran--tetrahydromethanopterin N-formyltransferase, while in bacteria it is commonly designated as formyltransferase/hydrolase complex subunit D. FhcD is essential for one-carbon metabolism in at least three groups of prokaryotes: methanogenic archaea, sulfate-reducing archaea, and methylotrophic bacteria. [Central intermediary metabolism, One-carbon metabolism] 287 -274437 TIGR03120 one_C_mch methenyltetrahydromethanopterin cyclohydrolase. Members of this protein family are the enzyme methenyltetrahydromethanopterin cyclohydrolase, a key enzyme for tetrahydromethanopterin (H4MPT)-linked C1 transfer metabolism. [Central intermediary metabolism, One-carbon metabolism] 313 -274438 TIGR03121 one_C_dehyd_A formylmethanofuran dehydrogenase subunit A. Members of this largely archaeal protein family are subunit A of the formylmethanofuran dehydrogenase. Nomenclature in some bacteria may reflect inclusion of the formyltransferase described by TIGR03119 as part of the complex, and therefore call this protein formyltransferase/hydrolase complex Fhc subunit A. Note that this model does not distinguish tungsten (FwdA) from molybdenum-containing (FmdA) forms of this enzyme; a single gene from this family is expressed constitutively in Methanobacterium thermoautotrophicum, which has both tungsten and molybdenum forms and may work interchangeably. 556 -274439 TIGR03122 one_C_dehyd_C formylmethanofuran dehydrogenase subunit C. Members of this largely archaeal protein family are subunit C of the formylmethanofuran dehydrogenase. Nomenclature in some bacteria may reflect inclusion of the formyltransferase described by TIGR03119 as part of the complex, and therefore call this protein formyltransferase/hydrolase complex Fhc subunit C. Note that this model does not distinguish tungsten (FwdC) from molybdenum-containing (FmdC) forms of this enzyme. 257 -163144 TIGR03123 one_C_unchar_1 probable H4MPT-linked C1 transfer pathway protein. This protein family was identified, by the method of partial phylogenetic profiling, as related to the use of tetrahydromethanopterin (H4MPT) as a C-1 carrier. Characteristic markers of the H4MPT-linked C1 transfer pathway include formylmethanofuran dehydrogenase subunits, methenyltetrahydromethanopterin cyclohydrolase, etc. Tetrahydromethanopterin, a tetrahydrofolate analog, occurs in methanogenic archaea, bacterial methanotrophs, planctomycetes, and a few other lineages. [Central intermediary metabolism, One-carbon metabolism] 318 -163145 TIGR03124 citrate_citX holo-ACP synthase CitX. Members of this protein family are the CitX protein, or CitX domain of the CitXG bifunctional protein, of the citrate lyase system. CitX transfers the prosthetic group 2'-(5''-triphosphoribosyl)-3'-dephospho-CoA to the citrate lyase gamma chain, an acyl carrier protein. This enzyme may be designated holo-ACP synthase, holo-citrate lyase synthase, or apo-citrate lyase phosphoribosyl-dephospho-CoA transferase. In a few genera, including Haemophilus, this protein occurs as a fusion protein with CitG (2.7.8.25), an enzyme involved in prosthetic group biosynthesis. This CitX family is easily separated from the holo-ACP synthases of other enzyme systems. [Energy metabolism, Fermentation, Protein fate, Protein modification and repair] 165 -132169 TIGR03125 citrate_citG triphosphoribosyl-dephospho-CoA synthase CitG. Triphosphoribosyl-dephospho-CoA is transferred to, and becomes the prosthetic group of, the respective acyl carrier protein subunits of both citrate lyase and malonate decarboxylase. Members of this protein family are triphosphoribosyl-dephospho-CoA synthases specifically from citrate lyase systems. This protein sometimes occurs as a fusion protein with CitX, the phosphoribosyl-dephospho-CoA transferase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Fermentation] 275 -132170 TIGR03126 one_C_fae formaldehyde-activating enzyme. This family consists of formaldehyde-activating enzyme, or the corresponding domain of longer, bifunctional proteins. It links formaldehyde to the C1 carrier tetrahydromethanopterin (H4MPT), an analog of tetrahydrofolate, and is common among species with H4MPT. The ribulose monophosphate (RuMP) pathway, which removes the toxic metabolite formaldehyde by assimilation, runs in the opposite direction in some species to produce ribulose 5-phosphate for nucleotide biosynthesis, leaving formaldehyde as an additional metabolite. In these species, formaldehyde activating enzyme may occur as a fusion protein with D-arabino 3-hexulose 6-phosphate formaldehyde lyase from the RuMP pathway. 160 -132171 TIGR03127 RuMP_HxlB 6-phospho 3-hexuloisomerase. Members of this protein family are 6-phospho 3-hexuloisomerase (PHI), or the PHI domain of a fusion protein. This enzyme is part of the ribulose monophosphate (RuMP) pathway, which in one direction removes the toxic metabolite formaldehyde by assimilation into fructose-6-phosphate. In the other direction, in species lacking a complete pentose phosphate pathway, the RuMP pathway yields ribulose-5-phosphate, necessary for nucleotide biosynthesis, at the cost of also yielding formaldehyde. These latter species tend usually have a formaldehyde-activating enzyme to attach formaldehyde to the C1 carrier tetrahydromethanopterin. 179 -132172 TIGR03128 RuMP_HxlA 3-hexulose-6-phosphate synthase. Members of this protein family are 3-hexulose-6-phosphate synthase (HPS), or the HPS domain of a fusion protein. This enzyme is part of the ribulose monophosphate (RuMP) pathway, which in one direction removes the toxic metabolite formaldehyde by assimilation into fructose-6-phosphate. In the other direction, in species lacking a complete pentose phosphate pathway, the RuMP pathway yields ribulose-5-phosphate, necessary for nucleotide biosynthesis, at the cost of also yielding formaldehyde. These latter species tend usually have a formaldehyde-activating enzyme to attach formaldehyde to the C1 carrier tetrahydromethanopterin. In these species, the enzyme is viewed as a lyase rather than a synthase and is called D-arabino 3-hexulose 6-phosphate formaldehyde lyase. Note that there is some overlap in specificity with the Escherichia coli enzyme 3-keto-L-gulonate 6-phosphate decarboxylase. 206 -132173 TIGR03129 one_C_dehyd_B formylmethanofuran dehydrogenase subunit B. Members of this largely archaeal protein family are subunit B of the formylmethanofuran dehydrogenase. Nomenclature in some bacteria may reflect inclusion of the formyltransferase described by TIGR03119 as part of the complex, and therefore call this protein formyltransferase/hydrolase complex Fhc subunit C. Note that this model does not distinguish tungsten (FwdB) from molybdenum-containing (FmdB) forms of this enzyme. 421 -188283 TIGR03130 malonate_delta malonate decarboxylase acyl carrier protein. Members of this protein family are the acyl carrier protein, also called the delta subunit, of malonate decarboxylase. This subunit has the same covalently bound prosthetic group, derived from and similar to coenzyme A, as does citrate lyase, although this protein and the acyl carrier protein of citrate lyase do not show significant sequence similarity. Both malonyl and acetyl groups are transferred to the prosthetic group for catalysis. 98 -132175 TIGR03131 malonate_mdcH malonate decarboxylase, epsilon subunit. Members of this protein family are the epsilon subunit of malonate decarboxylase. This subunit has malonyl-CoA/dephospho-CoA acyltransferase activity. Malonate decarboxylase may be a soluble enzyme, or linked to membrane subunits and active as a sodium pump. The epsilon subunit is closely related to the malonyl CoA-acyl carrier protein (ACP) transacylase family described by TIGR00128, but acts on an ACP subunit of malonate decarboxylase that has an unusual coenzyme A derivative as its prothetic group. 295 -274440 TIGR03132 malonate_mdcB triphosphoribosyl-dephospho-CoA synthase MdcB. This protein acts in cofactor biosynthesis, preparing the coenzyme A derivative that becomes attached to the malonate decarboxylase acyl carrier protein (or delta subunit). The closely related protein CitG of citrate lyase produces the same molecule, but the two families are nonetheless readily separated. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 272 -188285 TIGR03133 malonate_beta biotin-independent malonate decarboxylase, beta subunit. Members of this protein family are the beta subunit of malonate decarboxylase. Malonate decarboxylase may be a soluble enzyme, or linked to membrane subunits and active as a sodium pump. In the malonate decarboxylase complex, the beta subunit appears to act as a malonyl-CoA decarboxylase. 274 -274441 TIGR03134 malonate_gamma biotin-independent malonate decarboxylase, gamma subunit. Members of this protein family are the gamma subunit of malonate decarboxylase. Malonate decarboxylase may be a soluble enzyme, or linked to membrane subunits and active as a sodium pump. In the malonate decarboxylase complex, the beta subunit appears to act as a malonyl-CoA decarboxylase, while the gamma subunit appears either to mediate subunit interaction or to act as a co-decarboxylase with the beta subunit. The beta and gamma subunits exhibit some local sequence similarity. 238 -274442 TIGR03135 malonate_mdcG malonate decarboxylase holo-[acyl-carrier-protein] synthase. Malonate decarboxylase, like citrate lyase, has a unique acyl carrier protein subunit with a prosthetic group derived from, and distinct from, coenzyme A. Members of this protein family are the phosphoribosyl-dephospho-CoA transferase specific to the malonate decarboxylase system. This enzyme can also be designated holo-ACP synthase (2.7.7.61). The corresponding component of the citrate lyase system, CitX, shows little or no sequence similarity to this family. [Energy metabolism, Other] 202 -188287 TIGR03136 malonate_biotin Na+-transporting malonate decarboxylase, carboxybiotin decarboxylase subunit. Malonate decarboxylase can be a soluble enzyme, or a sodium ion-translocating with additional membrane-bound components. Members of this protein family are integral membrane proteins required to couple decarboxylation to sodium ion export. This family belongs to a broader family, TIGR01109 of sodium ion-translocating decarboxylase beta subunits. [Transport and binding proteins, Cations and iron carrying compounds] 399 -211789 TIGR03137 AhpC peroxiredoxin. This peroxiredoxin (AhpC, alkylhydroperoxide reductase subunit C) is one subunit of a two-subunit complex with subunit F(TIGR03140). Usually these are found as an apparent operon. The gene has been characterized in Bacteroides fragilis, where it is important in oxidative stress defense. This gene contains two invariant cysteine residues, one near the N-terminus and one near the C-terminus, each followed immediately by a proline residue. [Cellular processes, Detoxification, Cellular processes, Adaptations to atypical conditions] 187 -274443 TIGR03138 QueF 7-cyano-7-deazaguanine reductase. This enzyme catalyzes the 4-electron reduction of the cyano group of 7-cyano-7-deazaguanine (preQ0) to an amine. Although related to a large family of GTP cyclohydrolases (pfam01227), the relationship is structural and not germane to the catalytic mechanism. This mode represents the longer, gram-negative version of the enzyme as found in E. coli. The enzymatic step represents the first point at which the biosynthesis of queuosine in bacteria and eukaryotes is distinguished from the biosynthesis of archaeosine in archaea. [Transcription, RNA processing] 275 -213775 TIGR03139 QueF-II 7-cyano-7-deazaguanine reductase. This enzyme catalyzes the 4-electron reduction of the cyano group of 7-cyano-7-deazaguanine (proQ1) to an amine. Although related to a large family of GTP cyclohydrolases (pfam01227), the relationship is structural and not germane to the catalytic mechanism. This mode represents the shorter, gram-positive version of the enzyme as found in B. subtilis. The enzymatic step represents the first point at which the biosynthesis of queuosine in bacteria and eukaryotes is distinguished from the biosynthesis of archaeosine in archaea. 115 -274444 TIGR03140 AhpF alkyl hydroperoxide reductase subunit F. This enzyme is the partner of the peroxiredoxin (alkyl hydroperoxide reductase) AhpC which contains the peroxide-reactive cysteine. AhpF contains the reductant (NAD(P)H) binding domain (pfam00070) and presumably acts to resolve the disulfide which forms after oxidation of the active site cysteine in AphC. This proteins contains two paired conserved cysteine motifs, CxxCP and CxHCDGP. [Cellular processes, Detoxification, Cellular processes, Adaptations to atypical conditions] 515 -274445 TIGR03141 cytochro_ccmD heme exporter protein CcmD. The model for this protein family describes a small, hydrophobic, and only moderately well-conserved protein, tricky to identify accurately for all of these reasons. However, members are found as part of large operons involved in heme export across the inner membrane for assembly of c-type cytochromes in a large number of bacteria. The gray zone between the trusted cutoff (13.0) and noise cutoff (4.75) includes both low-scoring examples and false-positive matches to hydrophobic domains of longer proteins. 45 -274446 TIGR03142 cytochro_ccmI cytochrome c-type biogenesis protein CcmI. This TPR repeat-containing protein is the CcmI protein (also called CycH) of c-type cytochrome biogenesis. CcmI is thought to act as an apo-cytochrome c chaperone. This model describes the N-terminal region of the protein, Members of this protein family [Protein fate, Protein folding and stabilization, Energy metabolism, Electron transport] 117 -132187 TIGR03143 AhpF_homolog putative alkyl hydroperoxide reductase F subunit. This family of thioredoxin reductase homologs is found adjacent to alkylhydroperoxide reductase C subunit predominantly in cases where there is only one C subunit in the genome and that genome is lacking the F subunit partner (also a thioredcxin reductase homolog) that is usually found (TIGR03140). 555 -274447 TIGR03144 cytochr_II_ccsB cytochrome c-type biogenesis protein CcsB. Members of this protein family represent one of two essential proteins of system II for c-type cytochrome biogenesis. Additional proteins tend to be part of the system but can be replaced by chemical reductants such as dithiothreitol. This protein is designated CcsB in Bordetella pertussis and some other bacteria, resC in Bacillus (where there is additional N-terminal sequence), and CcsA in chloroplast. We use the CcsB designation here. Member sequences show regions of strong sequence conservation and variable-length, poorly conserved regions in between; sparsely filled columns were removed from the seed alignment prior to model construction. [Energy metabolism, Electron transport, Protein fate, Protein modification and repair] 245 -274448 TIGR03145 cyt_nit_nrfE cytochrome c nitrate reductase biogenesis protein NrfE. Members of this protein family closely resemble the CcmF protein of the CcmABCDEFGH system, or system I, for c-type cytochrome biogenesis (GenProp0678). Members are found, as a rule, next to closely related paralogs of CcmG and CcmH and always located near other genes associated with the cytochrome c nitrite reductase enzyme complex. As a rule, members are found in species that also encode bona fide members of the CcmF, CcmG, and CcmH families. 614 -132190 TIGR03146 cyt_nit_nrfB cytochrome c nitrite reductase, pentaheme subunit. Members of this protein family contain five copies of the CXXCH heme-binding motif, and are the NrfB component of the multisubunit enzyme, cytochrome c nitrite reductase. [Energy metabolism, Electron transport] 145 -274449 TIGR03147 cyt_nit_nrfF cytochrome c nitrite reductase, accessory protein NrfF. [Energy metabolism, Electron transport] 126 -274450 TIGR03148 cyt_nit_nrfD cytochrome c nitrite reductase, NrfD subunit. Members of this protein family are NrfD, a highly hydrophobic protein encoded in the nrf operon, which encodes cytochrome c nitrite reductase. This multiple heme-containing enzyme can reduce nitrite to ammonia. Members belong to a broader Pfam protein family, pfam03916, which also contains an NrfD-related subunit of polysulphide reductase. [Energy metabolism, Electron transport] 316 -274451 TIGR03149 cyt_nit_nrfC cytochrome c nitrite reductase, Fe-S protein. Members of this protein family are the Fe-S protein, NrfC, of a cytochrome c nitrite reductase system for which the pentaheme cytochrome c protein, NrfB (family TIGR03146) is an unambiguous marker. Members of this protein family show similarity to other ferredoxin-like proteins, including a subunit of a polysulfide reductase. [Energy metabolism, Electron transport] 225 -274452 TIGR03150 fabF beta-ketoacyl-acyl-carrier-protein synthase II. 3-oxoacyl-[acyl-carrier-protein] synthase 2 (KAS-II, FabF) is involved in the condensation step of fatty acid biosynthesis in which the malonyl donor group is decarboxylated and the resulting carbanion used to attack and extend the acyl group attached to the acyl carrier protein. Most genomes encoding fatty acid biosynthesis contain a number of condensing enzymes, often of all three types: 1, 2 and 3. Synthase 2 is mechanistically related to synthase 1 (KAS-I, FabB) containing a number of absolutely conserved catalytic residues in common. This model is based primarily on genes which are found in apparent operons with other essential genes of fatty acid biosynthesis (GenProp0681). The large gap between the trusted cutoff and the noise cutoff contains many genes which are not found adjacent to genes of the fatty acid pathway in genomes that often also contain a better hit to this model. These genes may be involved in other processes such as polyketide biosyntheses. Some genomes contain more than one above-trusted hit to this model which may result from recent paralogous expansions. Second hits to this model which are not next to other fatty acid biosynthesis genes may be involved in other processes. FabB sequences should fall well below the noise cutoff of this model. [Fatty acid and phospholipid metabolism, Biosynthesis] 407 -132195 TIGR03151 enACPred_II putative enoyl-[acyl-carrier-protein] reductase II. This oxidoreductase of the 2-nitropropane dioxygenase family (pfam03060) is commonly found in apparent operons with genes involved in fatty acid biosynthesis. Furthermore, this genomic context generally includes the fabG 3-oxoacyl-[ACP] reductase and lacks the fabI enoyl-[ACP] reductase. 307 -200248 TIGR03152 cyto_c552_HCOOH formate-dependent cytochrome c nitrite reductase, c552 subunit. Members of this protein family are cytochrome c552, a component of cytochrome c nitrite reductase, which is known more formally as nitrite reductase (cytochrome; ammonia-forming) (EC 1.7.2.2). Nitrate can be reduced by several enzymes. EC 1.7.2.2 reduces nitrite all the way to ammonia, rather than to ammonium hydroxide (nitrite reductase (NAD(P)H), EC 1.7.1.4) or nitric oxide (nitrite reductase (NO-forming), EC 1.7.2.1). Some examples of EC 1.7.2.2 occur in a seven gene system that enables formate-dependent nitrite reduction, but is also found in simpler contexts. Members of this protein family, however, belong to the formate-dependent system. [Energy metabolism, Electron transport] 439 -274453 TIGR03153 cytochr_NrfH cytochrome c nitrite reductase, small subunit. Members of this protein family are NrfH, a tetraheme cytochrome c. NrfH is the cytochrome c nitrite reductase small subunit, and forms a heterodimer with NrfA, the catalytic subunit. While NrfA can act as a monomer, NrfH can bind to and anchor NrfA in the membrane and enables electron transfer to NrfA from quinones. [Energy metabolism, Electron transport] 135 -132198 TIGR03154 sulfolob_CbsA cytochrome b558/566, subunit A. Members of this protein family are CbsA, one subunit of a highly glycosylated, heterodimeric, mono-heme cytochrome b558/566, found in Sulfolobus acidocaldarius and several other members of the Sulfolobales, a branch of the Crenarchaeota. 465 -274454 TIGR03155 sulfolob_CbsB cytochrome b558/566, subunit B. Members of this protein family are CbsB, one subunit of a highly glycosylated, heterodimeric, mono-heme cytochrome b558/566, found in Sulfolobus acidocaldarius and several other members of the Sulfolobales, a branch of the Crenarchaeota. 302 -274455 TIGR03156 GTP_HflX GTP-binding protein HflX. This protein family is one of a number of homologous small, well-conserved GTP-binding proteins with pleiotropic effects. Bacterial members are designated HflX, following the naming convention in Escherichia coli where HflX is encoded immediately downstream of the RNA chaperone Hfq, and immediately upstream of HflKC, a membrane-associated protease pair with an important housekeeping function. Over large numbers of other bacterial genomes, the pairing with hfq is more significant than with hflK and hlfC. The gene from Homo sapiens in this family has been named PGPL (pseudoautosomal GTP-binding protein-like). [Unknown function, General] 351 -274456 TIGR03157 cas_Csc2 CRISPR type I-D/CYANO-associated protein Csc2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc2 for CRISPR/Cas Subtype Cyano protein 2, as it is often the second gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 282 -274457 TIGR03158 cas3_cyano CRISPR-associated helicase Cas3, subtype CYANO. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. It contains helicase motifs and appears to represent the Cas3 protein of the Cyano subtype of CRISPR/Cas system. 357 -274458 TIGR03159 cas_Csc1 CRISPR type I-D/CYANO-associated protein Csc1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc1 for CRISPR/Cas Subtype Cyano protein 1, as it is often the first gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 225 -274459 TIGR03160 cobT_DBIPRT nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase. Members of this family are nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase, an enzyme of cobalamin biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 333 -274460 TIGR03161 ribazole_CobZ alpha-ribazole phosphatase CobZ. Sequences in the seed alignment were the experimentally characterized CobZ of the methanogenic archaeon Methanosarcina mazei, and other archaeal proteins found similarly next to or very near to other cobalamin biosynthesis genes. CobZ replaces the alpha-ribazole-phosphate phosphatase (EC 3.1.3.73) called CobC in analogous bacterial pathways for cobalamin biosynthesis under anaerobic conditions. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 139 -274461 TIGR03162 ribazole_cobC alpha-ribazole phosphatase. Members of this protein family include the known CobC protein of Salmonella and Eschichia coli species, and homologous proteins found in cobalamin biosynthesis regions in other bacteria. This protein is alpha-ribazole phosphatase (EC 3.1.3.73) and, like many phosphatases, can be closely related in sequence to other phosphatases with different functions. Close homologs excluded from this model include proteins with duplications, so this model is built in -g mode to suppress hits to those proteins. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 177 -132208 TIGR03164 UHCUDC OHCU decarboxylase. Previously thought to only proceed spontaneously, the decarboxylation of 2-oxo-4-hydroxy-4-carboxy--5-ureidoimidazoline (OHCU) has been recently been shown to be catalyzed by this enzyme in Mus musculus. Homologs of this enzyme are found adjacent to and fused with uricase in a number of prokaryotes and are represented by this model. 157 -274462 TIGR03165 F1F0_chp_2 F1/F0 ATPase, Methanosarcina type, subunit 2. Members of this protein family are uncharacterized, highly hydrophobic proteins encoded in the middle of apparent F1/F0 ATPase operons. We note, however, that this protein is both broadly and sparsely distributed. It is found in about only about two percent of microbial genomes sequenced, with the first ten examples found coming from the Euryarchaeota, Chlorobia, Betaproteobacteria, Deltaproteobacteria, and Planctomycetes. In most of these species, surrounding operon appears to represent a second F1/F0 ATPase system, and the member proteins belong to subfamilies with the same phylogenetic distribution as the current protein family. 83 -132210 TIGR03166 alt_F1F0_F1_eps alternate F1F0 ATPase, F1 subunit epsilon. A small number of taxonomically diverse prokaryotic species have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F1 epsilon subunit of this apparent second ATP synthase. 122 -274463 TIGR03167 tRNA_sel_U_synt tRNA 2-selenouridine synthase. The Escherichia coli YbbB protein was shown to encode a selenophosphate-dependent tRNA 2-selenouridine synthase, essential for modification of some tRNAs to replace a sulfur atom with selenium. This enzyme works with SelD, the selenium donor protein, which also acts in selenocysteine incorporation. Although the members of this protein family show a fairly deep split, sequences from both sides of the split are supported by co-occurence with, and often proximity to, the selD gene. [Protein synthesis, tRNA and rRNA base modification] 311 -274464 TIGR03168 1-PFK hexose kinase, 1-phosphofructokinase family. This family consists largely of 1-phosphofructokinases, but also includes tagatose-6-kinases and 6-phosphofructokinases. 303 -274465 TIGR03169 Nterm_to_SelD pyridine nucleotide-disulfide oxidoreductase family protein. Members of this protein family include N-terminal sequence regions of (probable) bifunctional proteins whose C-terminal sequences are SelD, or selenide,water dikinase, the selenium donor protein necessary for selenium incorporation into protein (as selenocysteine), tRNA (as 2-selenouridine), or both. However, some members of this family occur in species that do not show selenium incorporation, and the function of this protein family is unknown. 364 -274466 TIGR03170 flgA_cterm flagella basal body P-ring formation protein FlgA. This model describes a conserved C-terminal region of the flagellar basal body P-ring formation protein FlgA. This sequence region contains a SAF domain, now described by pfam08666. [Cellular processes, Chemotaxis and motility] 122 -132215 TIGR03171 soxL2 Rieske iron-sulfur protein SoxL2. This iron-sulfur protein is found in a contiguous genomic region with subunits of cytochrome b558/566 in several archaeal species, and appears to be part of a cytochrome bc1-analogous system. 321 -274467 TIGR03172 TIGR03172 probable selenium-dependent hydroxylase accessory protein YqeC. This uncharacterized protein family includes YqeC from Escherichia coli. A phylogenetic profiling analysis shows correlation with SelD, the selenium donor protein, even in species where SelD contributes to neither selenocysteine nor selenouridine biosynthesis. Instead, this family, and families TIGR03309 and TIGR03310 appear to mark selenium-dependent molybdenum hydroxylase maturation systems. [Unknown function, General] 210 -274468 TIGR03173 pbuX xanthine permease. All the seed members of this model are observed adjacent to genes for either xanthine phosphoribosyltransferase (for the conversion of xanthine to guanine, GenProp0696) or genes for the conversion of xanthine to urate and its concomitant catabolism (GenProp0640, GenProp0688, GenProp0686 and GenProp0687). A number of sequences scoring higher than trusted to this model are found in different genomic contexts, and the possibility exist that these transport related compounds in addition to or instead of xanthine itself. The outgroup to this family are sequences which are characterized as uracil permeases or are adjacent to established uracil phosphoribosyltransferases. 406 -274469 TIGR03174 cas_Csc3 CRISPR type I-D/CYANO-associated protein Csc3/Cas10d. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc3 for CRISPR/Cas Subtype Cyano protein 3, as it is often the third gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 953 -274470 TIGR03175 AllD ureidoglycolate dehydrogenase. This enzyme converts ureidoglycolate to oxalureate in the non-urea-forming catabolism of allantoin (GenProp0687). The pathway has been characterized in E. coli and is observed in the genomes of Entercoccus faecalis and Bacillus licheniformis. 349 -274471 TIGR03176 AllC allantoate amidohydrolase. This enzyme catalyzes the breakdown of allantoate, first to ureidoglycine by hydrolysis and then decarboxylation of one of the two equivalent ureido groups. Ureidoglycine then spontaneously exchanges ammonia for water resulting in ureidoglycolate. This enzyme is an alternative to allantoicase (3.5.3.4) which releases urea. [Central intermediary metabolism, Nitrogen metabolism] 406 -274472 TIGR03177 pilus_cpaB Flp pilus assembly protein CpaB. Members of this protein family are the CpaB protein of Flp-type pilus assembly. Similar proteins include the FlgA protein of bacterial flagellum biosynthesis. 261 -163175 TIGR03178 allantoinase allantoinase. This enzyme carries out the first step in the degradation of allantoin, a ring-opening hydrolysis. The seed members of this model are all in the vicinity of other genes involved in the processes of xanthine/urate/allantoin catabolism. Although not included in the seed, many eukaryotic homologs of this family are included above the trusted cutoff. Below the noise cutoff are related hydantoinases. 443 -188295 TIGR03180 UraD_2 OHCU decarboxylase. Previously thought to only proceed spontaneously, the decarboxylation of 2-oxo-4-hydroxy-4-carboxy--5-ureidoimidazoline (OHCU) has been recently been shown to be catalyzed by this enzyme in Mus musculus. Homologs of this enzyme are found adjacent to and fused with uricase in a number of prokaryotes and are represented by this model. This model is a separate (but related) clade from that represented by TIGR3164. This model places a second homolog in streptomyces species which (are not in the vicinity of other urate catabolism associated genes) below the trusted cutoff. 158 -213783 TIGR03181 PDH_E1_alph_x pyruvate dehydrogenase E1 component, alpha subunit. Members of this protein family are the alpha subunit of the E1 component of pyruvate dehydrogenase (PDH). This model represents one branch of a larger family that E1-alpha proteins from 2-oxoisovalerate dehydrogenase, acetoin dehydrogenase, another PDH clade, etc. [Energy metabolism, Pyruvate dehydrogenase] 341 -274473 TIGR03182 PDH_E1_alph_y pyruvate dehydrogenase E1 component, alpha subunit. Members of this protein family are the alpha subunit of the E1 component of pyruvate dehydrogenase (PDH). This model represents one branch of a larger family that E1-alpha proteins from 2-oxoisovalerate dehydrogenase, acetoin dehydrogenase, another PDH clade, etc. [Energy metabolism, Pyruvate dehydrogenase] 315 -163177 TIGR03183 DNA_S_dndC putative sulfurtransferase DndC. Members of this protein family are the DndC protein from the dnd (degradation during electrophoresis) operon. The dnd phenotype reflects a sulfur-containing modification to DNA. This operon is sparsely and sporadically distributed among bactera; among the first eight examples are members from the Actinobacteria, Firmicutes, Gammaproteobacteria, Cyanobacteria. DndC is suggested to be a sulfurtransferase. [DNA metabolism, Restriction/modification] 447 -274474 TIGR03184 DNA_S_dndE DNA sulfur modification protein DndE. This model describes the DndE protein encoded by an operon associated with a sulfur-containing modification to DNA. The operon is sporadically distributed in bacteria, much like some restriction enzyme operons. DndE is a putative carboxylase homologous to NCAIR synthetases. [DNA metabolism, Restriction/modification] 105 -274475 TIGR03185 DNA_S_dndD DNA sulfur modification protein DndD. This model describes the DndB protein encoded by an operon associated with a sulfur-containing modification to DNA. The operon is sporadically distributed in bacteria, much like some restriction enzyme operons. DndD is described as a putative ATPase. The small number of examples known so far include species from among the Firmicutes, Actinomycetes, Proteobacteria, and Cyanobacteria. [DNA metabolism, Restriction/modification] 650 -132230 TIGR03186 AKGDH_not_PDH alpha-ketoglutarate dehydrogenase. Several bacterial species have a paralog to homodimeric form of the pyruvate dehydrogenase E1 component (see model TIGR00759), often encoded next to L-methionine gamma-lyase gene (mdeA). The member from a strain of Pseudomonas putida was shown to act on alpha-ketobutyrate, which is produced by MdeA.This model serves as an exception model to TIGR00759, as other proteins hitting TIGR00759 should be identified as the pyruvate dehydrogenase E1 component. 889 -274476 TIGR03187 DGQHR DGQHR domain. This highly divergent, uncharacterized domain has several absolutely conserved residues, including a QR pair and FxxxN motif. Its most striking feature, however, is a near invariant pentapeptide motif DGQHR. Several different subfamilies occur specifically as a part of DNA phosphorothioation systems, previously called DND (DNA instability during electrophoresis), while others (e.g. CPS_2936) occur in other contexts suggestive of lateral gene transfer (sporadic distribution of helicase-containing cassettes). The region described by this model is about 280 amino acids in length; additional sequences show local sequence similarity. 272 -274477 TIGR03188 histidine_hisI phosphoribosyl-ATP pyrophosphohydrolase. This enzyme, phosphoribosyl-ATP pyrophosphohydrolase, catalyses the second step in the histidine biosynthesis pathway. It often occurs as a fusion protein. This model a somewhat narrower scope than pfam01503, as some paralogs that appear to be functionally distinct are excluded from this model. [Amino acid biosynthesis, Histidine family] 84 -132233 TIGR03189 dienoyl_CoA_hyt cyclohexa-1,5-dienecarbonyl-CoA hydratase. This enzyme, cyclohexa-1,5-dienecarbonyl-CoA hydratase, also called dienoyl-CoA hydratase, acts on the product of benzoyl-CoA reductase (EC 1.3.99.15). Benzoyl-CoA is a common intermediate in the degradation of many aromatic compounds, and this enzyme is part of an anaerobic pathway for dearomatization and degradation. 251 -132234 TIGR03190 benz_CoA_bzdN benzoyl-CoA reductase, bzd-type, N subunit. Members of this family are the N subunit of one of two related types of four-subunit ATP-dependent benzoyl-CoA reductase. This enzyme system catalyzes the dearomatization of benzoyl-CoA, a common intermediate in pathways for the degradation for a number of different aromatic compounds, such as phenol and toluene. 377 -132235 TIGR03191 benz_CoA_bzdO benzoyl-CoA reductase, bzd-type, O subunit. Members of this family are the O subunit of one of two related types of four-subunit ATP-dependent benzoyl-CoA reductase. This enzyme system catalyzes the dearomatization of benzoyl-CoA, a common intermediate in pathways for the degradation for a number of different aromatic compounds, such as phenol and toluene. 430 -132236 TIGR03192 benz_CoA_bzdQ benzoyl-CoA reductase, bzd-type, Q subunit. Members of this family are the Q subunit of one of two related types of four-subunit ATP-dependent benzoyl-CoA reductase. This enzyme system catalyzes the dearomatization of benzoyl-CoA, a common intermediate in pathways for the degradation for a number of different aromatic compounds, such as phenol and toluene. 293 -132237 TIGR03193 4hydroxCoAred 4-hydroxybenzoyl-CoA reductase, gamma subunit. 4-hydroxybenzoyl-CoA reductase converts 4-hydroxybenzoyl-CoA to benzoyl-CoA, a common intermediate in the degradation of aromatic compounds. This protein family represents the gamma chain of this three-subunit enzyme. 148 -132238 TIGR03194 4hydrxCoA_A 4-hydroxybenzoyl-CoA reductase, alpha subunit. This model represents the largest chain, alpha, of the enzyme 4-hydroxybenzoyl-CoA reductase. In species capable of degrading various aromatic compounds by way of benzoyl-CoA, this enzyme can convert 4-hydroxybenzoyl-CoA to benzoyl-CoA. 746 -132239 TIGR03195 4hydrxCoA_B 4-hydroxybenzoyl-CoA reductase, beta subunit. This model represents the second largest chain, beta, of the enzyme 4-hydroxybenzoyl-CoA reductase. In species capable of degrading various aromatic compounds by way of benzoyl-CoA, this enzyme can convert 4-hydroxybenzoyl-CoA to benzoyl-CoA. 321 -132240 TIGR03196 pucD xanthine dehydrogenase D subunit. This gene has been characterized in B. subtilis as the molybdopterin binding-subunit of xanthine dehydrogenase (pucD), acting in conjunction with pucC, the FAD-binding subunit and pucE, the FeS-binding subunit. The more common XDH complex (GenProp0640) includes the xdhB gene which is related to pucD. It appears that most of the relatives of pucD outside of this narrow clade are involved in other processes as they are found in unrelated genomic contexts, contain the more common XDH complex and/or do not appear to process purines to allantoin. 768 -274478 TIGR03197 MnmC_Cterm tRNA U-34 5-methylaminomethyl-2-thiouridine biosynthesis protein MnmC, C-terminal domain. In Escherichia coli, the protein previously designated YfcK is now identified as the bifunctional enzyme MnmC. It acts, following the action of the heterotetramer of GidA and MnmE, in the modification of U-34 of certain tRNA to 5-methylaminomethyl-2-thiouridine (mnm5s2U). In other bacterial, the corresponding proteins are usually but always found as a single polypeptide chain, but occasionally as the product of tandem genes. This model represents the C-terminal region of the multifunctional protein. [Protein synthesis, tRNA and rRNA base modification] 381 -132242 TIGR03198 pucE xanthine dehydrogenase E subunit. This gene has been characterized in B. subtilis as the Iron-sulfur cluster binding-subunit of xanthine dehydrogenase (pucE), acting in conjunction with pucC, the FAD-binding subunit and pucD, the molybdopterin binding subunit. The more common XDH complex (GenProp0640) includes the xdhA gene as the Fe-S cluster binding component. 151 -274479 TIGR03199 pucC xanthine dehydrogenase C subunit. This gene has been characterized in B. subtilis as the FAD binding-subunit of xanthine dehydrogenase (pucC), acting in conjunction with pucD, the molybdopterin-binding subunit and pucE, the FeS-binding subunit. 264 -132244 TIGR03200 dearomat_oah 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Members of this protein family are 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, a ring-hydrolyzing enzyme in the anaerobic metabolism of aromatic enzymes by way of benzoyl-CoA, as seen in Thauera aromatica, Geobacter metallireducens, and Azoarcus sp. Note that Rhodopseudomonas palustris uses a different pathway to perform a similar degradation of benzoyl-CoA to 3-hydroxpimelyl-CoA. 360 -132245 TIGR03201 dearomat_had 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase. Members of this protein family are 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase, an enzyme in the anaerobic metabolism of aromatic enzymes by way of benzoyl-CoA, as seen in Thauera aromatica, Geobacter metallireducens, and Azoarcus sp. The experimentally characterized form from T. aromatica uses only NAD+, not NADP+. Note that Rhodopseudomonas palustris uses a different pathway to perform a similar degradation of benzoyl-CoA to 3-hydroxpimelyl-CoA. 349 -132246 TIGR03202 pucB xanthine dehydrogenase accessory protein pucB. In Bacillus subtilis the expression of this protein, located in an operon with the structural subunits of xanthine dehydrogenase, has been found to be essential for XDH activity. Some members of this family appear to have a distant relationship to the MobA protein involved in molybdopterin biosynthesis, although this may be coincidental. 190 -132247 TIGR03203 pimD_small pimeloyl-CoA dehydrogenase, small subunit. Members of this protein family are the PimD proteins of species such as Rhodopseudomonas palustris, Bradyrhizobium japonicum. The pimFABCDE operon encodes proteins for the metabolism of straight chain dicarboxylates of seven to fourteen carbons. Especially relevant is pimeloyl-CoA, basis of the gene symbol, as it is a catabolite of benzoyl-CoA degradation, which occurs in Rhodopseudomonas palustris. 378 -132248 TIGR03204 pimC_large pimeloyl-CoA dehydrogenase, large subunit. Members of this protein family are the PimC proteins of species such as Rhodopseudomonas palustris and Bradyrhizobium japonicum. The pimFABCDE operon encodes proteins for the metabolism of straight chain dicarboxylates of seven to fourteen carbons. Especially relevant is pimeloyl-CoA, basis of the gene symbol, as it is a catabolite of benzoyl-CoA degradation, which occurs in Rhodopseudomonas palustris. 395 -132249 TIGR03205 pimA dicarboxylate--CoA ligase PimA. PimA, a member of a large family of acyl-CoA ligases, is found in a characteristic operon pimFABCDE for the metabolism of pimelate and related compounds. It is found, so far, in Bradyrhizobium japonicum and several strains of Rhodopseudomonas palustris. PimA from R. palustris was shown to be active as a CoA ligase for C(7) to C(14) dicarboxylates and fatty acids. 541 -132250 TIGR03206 benzo_BadH 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase. Members of this protein family are the enzyme 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase. The enzymatic properties were confirmed experimentally in Rhodopseudomonas palustris; the enzyme is homotetrameric, and not sensitive to oxygen. This enzyme is part of proposed pathway for degradation of benzoyl-CoA to 3-hydroxypimeloyl-CoA that differs from the analogous in Thauera aromatica. It also may occur in degradation of the non-aromatic compound cyclohexane-1-carboxylate. 250 -132251 TIGR03207 cyc_hxne_CoA_dh cyclohexanecarboxyl-CoA dehydrogenase. Cyclohex-1-ene-1carboxyl-CoA is an intermediate in the anaerobic degradation of benzoyl-CoA derived from varioius aromatic compounds, in Rhodopseudomonas palustris but not Thauera aromatica. The aliphatic compound cyclohexanecarboxylate, can be converted to the same intermediate in two steps. The first step is its ligation to coenzyme A. The second is the action of this enzyme, cyclohexanecarboxyl-CoA dehydrogenase. 372 -132252 TIGR03208 cyc_hxne_CoA_lg cyclohexanecarboxylate-CoA ligase. Members of this protein family are cyclohexanecarboxylate-CoA ligase. This enzyme prepares the aliphatic ring compound, cyclohexanecarboxylate, for dehydrogenation and then degradation by a pathway also used in benzoyl-CoA degradation in Rhodopseudomonas palustris. 538 -132253 TIGR03209 P21_Cbot clostridium toxin-associated regulator BotR. Clostridium botulinum neurotoxin production is regulated by a regulatory sigma-70 protein, BotR transcription regulator. Similarly, tetanus toxin production of Clostridium tetani is regulated by TetR which is a very close relative of BotR. Both BotR and TetR are members of the TIGR02937 subfamily of sigma-70 RNA polymerase sigma factors. Functional complementation experiments have been done for botR and tetR in highly transformable strain of Clostridium perfringens host cells to assess functional interchangeability of sigma factors and it has been confirmed that they are interchangeable in vivo. 142 -132254 TIGR03210 badI 2-ketocyclohexanecarboxyl-CoA hydrolase. Members of this protein family are 2-ketocyclohexanecarboxyl-CoA hydrolase, a ring-opening enzyme that acts in catabolism of molecules such as benzoyl-CoA and cyclohexane carboxylate. It converts -ketocyclohexanecarboxyl-CoA to pimelyl-CoA. It is not sensitive to oxygen. 256 -274480 TIGR03211 catechol_2_3 catechol 2,3 dioxygenase. Members of this family all are enzymes active as catechol 2,3 dioxygenase (1.13.11.2), although some members have highly significant activity on catechol derivatives such as 3-methylcatechol, 3-chlorocatechol, and 4-chlorocatechol (see Mars, et al.). This enzyme is also called metapyrocatechase, as it performs a meta-cleavage (an extradiol ring cleavage), in contrast to the ortho-cleavage (intradiol ring cleavage)performed by catechol 1,2-dioxygenase (EC 1.13.11.1), also called pyrocatechase. [Energy metabolism, Other] 303 -211797 TIGR03212 uraD_N-term-dom putative urate catabolism protein. This model represents a protein that is predominantly found just upstream of the UraD protein (OHCU decarboxylase) and in a number of instances as a N-terminal fusion with it. UraD itself catalyzes the last step in the catabolism of urate to allantoate. The function of this protein is presently unknown. It shows homology with the pfam01522 polysaccharide deacetylase domain family. 297 -132257 TIGR03213 23dbph12diox 2,3-dihydroxybiphenyl 1,2-dioxygenase. Members of this protein family all have activity as 2,3-dihydroxybiphenyl 1,2-dioxygenase, the third enzyme of a pathway for biphenyl degradation. Many of the extradiol ring-cleaving dioxygenases, to which these proteins belong, act on a range of related substrates. Note that some members of this family may be found operons for toluene or naphthalene degradation, where other activities of the same enzyme may be more significant; the trusted cutoff for this model is set relatively high to exclude most such instances. [Energy metabolism, Other] 286 -200251 TIGR03214 ura-cupin putative allantoin catabolism protein. This model represents a protein containing a tandem arrangement of cupin domains (N-terminal part of pfam07883 and C-terminal more distantly related to pfam00190). This protein is found in the vicinity of genes involved in the catabolism of allantoin, a breakdown product of urate and sometimes of urate iteslf. The distribution of pathway components in the genomes in which this family is observed suggests that the function is linked to the allantoate catabolism to glyoxylate pathway (GenProp0686) since it is sometimes found in genomes lacking any elements of the xanthine-to-allantoin pathways (e.g. in Enterococcus faecalis). 252 -132259 TIGR03215 ac_ald_DH_ac acetaldehyde dehydrogenase (acetylating). Members of this protein family are acetaldehyde dehydrogenase (acetylating), EC 1.2.1.10. This enzyme oxidizes acetaldehyde, using NAD(+), and attaches coenzyme A (CoA), yielding acetyl-CoA. It occurs as a late step in the meta-cleavage pathways of a variety of compounds, including catechol, biphenyl, toluene, salicylate, etc. 285 -132260 TIGR03216 OH_muco_semi_DH 2-hydroxymuconic semialdehyde dehydrogenase. Members of this protein family are 2-hydroxymuconic semialdehyde dehydrogenase. Many aromatic compounds are catabolized by way of the catechol, via the meta-cleavage pathway, to pyruvate and acetyl-CoA. This enzyme performs the second of seven steps in that pathway for catechol degradation. [Energy metabolism, Other] 481 -274481 TIGR03217 4OH_2_O_val_ald 4-hydroxy-2-oxovalerate aldolase. Members of this protein family are 4-hydroxy-2-oxovalerate aldolase, also called 4-hydroxy-2-ketovalerate aldolase and 2-oxo-4-hydroxypentanoate aldolase. This enzyme, part of the pathway for the meta-cleavage of catechol, produces pyruvate and acetaldehyde. Acetaldehyde is then converted by acetaldehyde dehydrogenase (acylating) (DmpF; EC 1.2.1.10) to acetyl-CoA. The two enzymes are tightly associated. [Energy metabolism, Other] 333 -132262 TIGR03218 catechol_dmpH 4-oxalocrotonate decarboxylase. Members of this protein family are 4-oxalocrotonate decarboxylase. Note that this protein, as characterized (indirectly) in Pseudomonas sp. strain CF600, was inactive except when coexpressed with DmpE, 2-oxopent-4-enoate hydratase, a homologous protein from the same operon. Both of these enzymes are active in the degradation of catechol, a common intermediate in the degradation of aromatic compounds such as benzoate, toluene, phenol, dimethylphenol (dmp), salicylate, etc. [Energy metabolism, Other] 263 -274482 TIGR03219 salicylate_mono salicylate 1-monooxygenase. Members of this protein family are salicylate 1-monooxygenase, also called salicylate hydroxylase. This enzyme converts salicylate to catechol, which is a common intermediate in the degradation of a number of aromatic compounds (phenol, toluene, benzoate, etc.). The gene for this protein may occur in catechol degradation genes, such as those of the meta-cleavage pathway. 414 -132264 TIGR03220 catechol_dmpE 2-oxopent-4-enoate hydratase. Members of this protein family are 2-oxopent-4-enoate hydratase, which is also called 2-hydroxypent-2,4-dienoate hydratase. It is closely related to another gene found in the same operon, 4-oxalocrotonate decarboxylase, with which it interacts closely. 255 -213786 TIGR03221 muco_delta muconolactone delta-isomerase. Members of this protein family are muconolactone delta-isomerase (EC 5.3.3.4), the CatC protein of the ortho cleavage pathway for metabolizing aromatic compounds by way of catechol. [Energy metabolism, Other] 90 -213787 TIGR03222 benzo_boxC benzoyl-CoA-dihydrodiol lyase. In the presence of O2, the benzoyl-CoA oxygenase/reductase BoxBA BoxAB converts benzoyl-CoA to 2,3-dihydro-2,3-dihydroxybenzoyl-CoA. Members of this family, BoxC, homologous to enoyl-CoA hydratases/isomerases, hydrolyze this compound to 3,4-dehydroadipyl-CoA semialdehyde + HCOOH. 546 -274483 TIGR03223 Phn_opern_protn putative phosphonate metabolism protein. This family of proteins is observed in the vicinity of other caharacterized genes involved in the catabolism of phosphonates via the3 C-P lyase system (GenProp0232), its function is unknown. These proteins are members of the somewhat broader pfam06299 model "Protein of unknown function (DUF1045)" which contains proteins found in a different genomic context as well. 228 -132268 TIGR03224 benzo_boxA benzoyl-CoA oxygenase/reductase, BoxA protein. Members of this protein family are BoxA, the A component of the BoxAB benzoyl-CoA oxygenase/reductase. This oxygen-requiring enzyme acts in an aerobic pathway of benzoate catabolism via coenzyme A ligation. BoxA is a homodimeric iron-sulphur-flavoprotein and acts as an NADPH-dependent reductase for BoxB. [Energy metabolism, Other] 411 -200253 TIGR03225 benzo_boxB benzoyl-CoA oxygenase, B subunit. Members of this protein family are BoxB, the B subunit of benzoyl-CoA oxygenase. This oxygen-requiring enzyme acts in an aerobic pathway of benzoate catabolism via coenzyme A ligation. [Energy metabolism, Other] 471 -274484 TIGR03226 PhnU 2-aminoethylphosphonate ABC transporter, permease protein. This ABC transporter permease (membrane-spanning) component is found in a region of the salmonella typhimurium LT2 genome responsible for the catabolism of 2-aminoethylphosphonate via the phnWX pathway (GenProp0238). 288 -132271 TIGR03227 PhnS 2-aminoethylphosphonate ABC transporter, periplasmic 2-aminoethylphosphonate binding protein. This ABC transporter periplasmic substrate binding protein component is found in a region of the salmonella typhimurium LT2 genome responsible for the catabolism of 2-aminoethylphosphonate via the phnWX pathway (GenProp0238). The protein contains a match to pfam01547 for the "Bacterial extracellular solute-binding protein" domain. 367 -132272 TIGR03228 anthran_1_2_A anthranilate 1,2-dioxygenase, large subunit. Anthranilate (2-aminobenzoate) is an intermediate of tryptophan (Trp) biosynthesis and degradation. Members of this family are the large subunit of anthranilate 1,2-dioxygenase, which acts in Trp degradation by converting anthranilate to catechol. Closely related paralogs typically are the benzoate 1,2-dioxygenase large subunit, among the larger set of ring-hydroxylating dioxygenases. [Energy metabolism, Amino acids and amines] 438 -132273 TIGR03229 benzo_1_2_benA benzoate 1,2-dioxygenase, large subunit. Benzoate 1,2-dioxygenase (EC 1.14.12.10) belongs to the larger family of aromatic ring-hydroxylating dioxygenases. Members of this family all act on benzoate, but may have additional activities on various benozate analogs. This model describes the large subunit. Between the trusted and noise cutoffs are similar enzymes, likely to act on benzoate but perhaps best identified according to some other activity, such as 2-chlorobenzoate 1,2-dioxygenase (1.14.12.13). [Energy metabolism, Other] 433 -132274 TIGR03230 lipo_lipase lipoprotein lipase. Members of this protein family are lipoprotein lipase (EC 3.1.1.34), a eukaryotic triacylglycerol lipase active in plasma and similar to pancreatic and hepatic triacylglycerol lipases (EC 3.1.1.3). It is also called clearing factor. It cleaves chylomicron and VLDL triacylglycerols; it also has phospholipase A-1 activity. 442 -132275 TIGR03231 anthran_1_2_B anthranilate 1,2-dioxygenase, small subunit. Anthranilate (2-aminobenzoate) is an intermediate of tryptophan (Trp) biosynthesis and degradation. Members of this family are the small subunit of anthranilate 1,2-dioxygenase, which acts in Trp degradation by converting anthranilate to catechol. Closely related paralogs typically are the benzoate 1,2-dioxygenase small subunit, among the larger set of ring-hydroxylating dioxygenases. [Energy metabolism, Amino acids and amines] 155 -132276 TIGR03232 benzo_1_2_benB benzoate 1,2-dioxygenase, small subunit. Benzoate 1,2-dioxygenase (EC 1.14.12.10) belongs to the larger family of aromatic ring-hydroxylating dioxygenases. Members of this family should all act on benzoate, but several have additional known activities on various benozate analogs. Some members actually may be named more suitably according to such alternate an activity, such as 2-chlorobenzoate 1,2-dioxygenase (1.14.12.13). 155 -163189 TIGR03233 DNA_S_dndB DNA sulfur modification protein DndB. This model describes the DndB protein encoded by an operon associated with a sulfur-containing modification to DNA. The operon is sporadically distributed in bacteria, much like some restriction enzyme operons. DndB is described as a putative ATPase. [DNA metabolism, Restriction/modification] 355 -163190 TIGR03234 OH-pyruv-isom hydroxypyruvate isomerase. This enzyme interconverts tartronate semi-aldehyde (TSA, aka 2-hydroxy 3-oxopropionate) and hydroxypyruvate. The E. coli enzyme has been characterized and found to be specific for TSA, contain no cofactors, and have a rather high Km for hydroxypyruvate of 12.5 mM. The gene is ofter found in association with glyoxalate carboligase (which produces TSA), but has been shown to have no effect on growth on glyoxalate when knocked out. This is consistent with the fact that the gene for tartronate semialdehyde reductase (glxR) is also associated and may have primary responsibility for the catabolism of TSA. 254 -163191 TIGR03235 DNA_S_dndA cysteine desulfurase DndA. This model describes DndA, a protein related to IscS and part of a larger family of cysteine desulfurases. It is encoded, typically, divergently from a conserved, sparsely distributed operon for sulfur modification of DNA. This modification system is designated dnd, after the phenotype of DNA degradation during electrophoresis. The system is sporadically distributed in bacteria, much like some restriction enzyme operons. DndB is described as a putative ATPase. [DNA metabolism, Restriction/modification] 353 -274485 TIGR03236 dnd_assoc_1 DNA phosphorothioation-dependent restriction protein DptG. A DNA sulfur modification (phosphorothioation) system, dnd (degradation during electrophoresis), is sparsely and sporadically distributed among the bacteria. This protein is one member of a three-gene restriction enzyme cassette that depends on DNA phosphorothioation. [DNA metabolism, Restriction/modification] 363 -132281 TIGR03237 dnd_assoc_2 DNA phosphorothioation-dependent restriction protein DptH. A DNA sulfur modification (phosphorothioation) system, dnd (degradation during electrophoresis), is sparsely and sporadically distributed among the bacteria. This protein is one member of a three-gene restriction enzyme cassette that depends on DNA phosphorothioation. [DNA metabolism, Restriction/modification] 1256 -132282 TIGR03238 dnd_assoc_3 DNA phosphorothioation-dependent restriction protein DptF. A DNA sulfur modification (phosphorothioation) system, dnd (degradation during electrophoresis), is sparsely and sporadically distributed among the bacteria. This protein is one member of a three-gene restriction enzyme cassette that depends on DNA phosphorothioation. [DNA metabolism, Restriction/modification] 504 -132283 TIGR03239 GarL 2-dehydro-3-deoxyglucarate aldolase. In E. coli this enzyme (GarL) 2-dehydro-3-deoxyglucarate aldolase acts in the catabolism of several sugars including D-galactarate, D-glucarate and L-idarate. In fact, 5-dehydro-4-deoxy-D-glucarate aldolase is a synonym for this enzyme as it is unclear in the literature whether the enzyme acts on only one of these or, as seems likely, has no preference. (Despite the apparent large difference in substrate stucture indicated by their names, 2-DH-3DO- and 5-DH-4DO-glucarate differ only by the chirality of most central hydroxyl-bearing carbon and is alternately named 2-DH-3DO-galactarate.) The reported product of D-galactarate dehydratase (4.2.1.42) is the 5DH-4DO-glucarate isomer and this enzyme is found proximal to the aldolase in many genomes (GenProp0714) where no epimerase is known. Similarly, the product of D-glucarate dehydratase (4.2.1.40) is again the 5-DH-4DO isomer, so the provenance of the 2-DH-3DO-glucarate isomer for which this enzyme is named is unclear. 249 -274486 TIGR03240 arg_catab_astD succinylglutamate-semialdehyde dehydrogenase. Members of this protein family are succinylglutamic semialdehyde dehydrogenase (EC 1.2.1.71), the fourth enzyme in the arginine succinyltransferase (AST) pathway for arginine catabolism. [Energy metabolism, Amino acids and amines] 484 -132285 TIGR03241 arg_catab_astB succinylarginine dihydrolase. Members of this family are succinylarginine dihydrolase (EC 3.5.3.23), the second of five enzymes in the arginine succinyltransferase (AST) pathway. [Energy metabolism, Amino acids and amines] 443 -132286 TIGR03242 arg_catab_astE succinylglutamate desuccinylase. Members of this protein family are succinylglutamate desuccinylase, the fifth and final enzyme of the arginine succinyltransferase (AST) pathway for arginine catabolism. This model excludes the related protein aspartoacylase. [Energy metabolism, Amino acids and amines] 319 -274487 TIGR03243 arg_catab_AOST arginine and ornithine succinyltransferase subunits. In many bacteria, the sole member of this protein family is arginine N-succinyltransferase (EC 2.3.1.109), the AstA protein of the arginine succinyltransferase (ast) pathway. However, in Pseudomonas aeruginosa and several other species, a tandem gene pair encodes alpha and beta subunits of a heterodimer that is designated arginine and ornithine succinyltransferase (AOST). 335 -274488 TIGR03244 arg_catab_AstA arginine N-succinyltransferase. In many bacteria, the arginine succinyltransferase (ast) pathway operon consists of five genes, including this protein, arginine N-succinyltransferase (EC 2.3.1.109). In a few species, such as Pseudomonas aeruginosa, the member of this family is encoded adjacent to a paralog, and the two polypeptides form a heterodimeric enzyme, active on both arginine and ornithine. In such species, this polypeptide may be treated as the beta subunit of an enzyme that may be named either arginine N-succinyltransferase (AST) or arginine and orthithine N-succinyltransferase (AOST). [Energy metabolism, Amino acids and amines] 336 -274489 TIGR03245 arg_AOST_alph arginine/ornithine succinyltransferase, alpha subunit. In some bacteria, including Pseudomonas aeruginosa, the astB gene (arginine N-succinyltransferase) is replaced by tandem paralogs that form a heterodimer. This heterodimer from P. aeruginosa is characterized as arginine and ornithine N-2 succinyltransferase (AOST). Members of this protein family represent the less widespread paralog, designated AruI, or arginine/ornithine succinyltransferase, alpha subunit. 336 -274490 TIGR03246 arg_catab_astC succinylornithine transaminase family. Members of the seed alignment for this protein family are the enzyme succinylornithine transaminase (EC 2.6.1.81), which catalyzes the third of five steps in arginine succinyltransferase (AST) pathway, an ammonia-releasing pathway of arginine degradation. All seed alignment sequences are found within arginine succinyltransferase operons, and all proteins that score above 820.0 bits should function as succinylornithine transaminase. However, a number of sequences extremely closely related in sequence, found in different genomic contexts, are likely to act in different biological processes and may act on different substrates. This model is desigated subfamily rather than equivalog, pending further consideration, for this reason. [Energy metabolism, Amino acids and amines] 397 -211799 TIGR03247 glucar-dehydr glucarate dehydratase. Glucarate dehydratase converts D-glucarate (and L-idarate, a stereoisomer) to 5-dehydro-4-deoxyglucarate which is subsequently acted on by GarL, tartronate semialdehyde reductase and glycerate kinase (GenProp0716). The E. coli enzyme has been well-characterized. 441 -274491 TIGR03248 galactar-dH20 galactarate dehydratase. Galactarate dehydratase converts D-galactarate to 5-dehydro-4-deoxyglucarate which is subsequently acted on by GarL, tartronate semialdehyde reductase and glycerate kinase (GenProp0714). 506 -132293 TIGR03249 KdgD 5-dehydro-4-deoxyglucarate dehydratase. 5-dehydro-4-deoxyglucarate dehydratase not only catalyzes the dehydration of the substrate (diol to ketone + water), but causes the decarboxylation of the intermediate product to yield 2-oxoglutarate semialdehyde (2,5-dioxopentanoate). The gene for the enzyme is usually observed in the vicinity of transporters and dehydratases handling D-galactarate and D-gluconate as well as aldehyde dehydrogenases which convert the product to alpha-ketoglutarate. 296 -132294 TIGR03250 PhnAcAld_DH putative phosphonoacetaldehyde dehydrogenase. This family of genes are members of the pfam00171 NAD-dependent aldehyde dehydrogenase family. These genes are observed in Ralstonia eutropha JMP134, Sinorhizobium meliloti 1021, Burkholderia mallei ATCC 23344, Burkholderia thailandensis E264, Burkholderia cenocepacia AU 1054, Burkholderia pseudomallei K96243 and 1710b, Burkholderia xenovorans LB400, Burkholderia sp. 383 and Polaromonas sp. JS666 in close proximity to the PhnW gene (TIGR02326) encoding 2-aminoethyl phosphonate aminotransferase (which generates phosphonoacetaldehyde) and PhnA (TIGR02335) encoding phosphonoacetate hydrolase (not to be confused with the alkylphosphonate utilization operon protein PhnA modeled by TIGR00686). Additionally, transporters believed to be specific for 2-aminoethyl phosphonate are often present. PhnW is, in other organisms, coupled with PhnX (TIGR01422) for the degradation of phosphonoacetaldehyde (GenProp0238), but PhnX is apparently absent in each of the organisms containing this aldehyde reductase. PhnA, characterized in a strain of Pseudomonas fluorescens that has not het been genome sequenced, is only rarely found outside of the PhnW and aldehyde dehydrogenase context. For instance in Rhodopseudomonas and Bordetella bronchiseptica, where it is adjacent to transporters presumably specific for the import of phosphonoacetate. It seems reasonably certain then, that this enzyme catalyzes the NAD-dependent oxidation of phosphonoacetaldehyde to phosphonoacetate, bridging the metabolic gap between PhnW and PhnA. We propose the name phosphonoacetaldehyde dehydrogenase and the gene symbol PhnY for this enzyme. 472 -274492 TIGR03251 LAT_fam L-lysine 6-transaminase. Characterized members of this protein family are L-lysine 6-transaminase, also called lysine epsilon-aminotransferase (LAT). The immediate product of the reaction of this enzyme on lysine, 2-aminoadipate 6-semialdehyde, becomes 1-piperideine 6-carboxylate, or P6C. This product may be converted subsequently to pipecolate or alpha-aminoadipate, lysine catabolites that may be precursors of certain seconary metabolites. 431 -132296 TIGR03252 TIGR03252 uncharacterized HhH-GPD family protein. This model describes a small, well-conserved bacterial protein family. Its sequence largely consists of a domain, HhH-GPD, found in a variety of related base excision DNA repair enzymes (see pfam00730). [DNA metabolism, DNA replication, recombination, and repair] 177 -211800 TIGR03253 oxalate_frc formyl-CoA transferase. This enzyme, formyl-CoA transferase, transfers coenzyme A from formyl-CoA to oxalate. It forms a pathway, together with oxalyl-CoA decarboxylase, for oxalate degradation; decarboxylation by the latter gene regenerates formyl-CoA. The two enzymes typically are encoded by a two-gene operon. [Cellular processes, Detoxification] 415 -132298 TIGR03254 oxalate_oxc oxalyl-CoA decarboxylase. In a number of bacteria, including Oxalobacter formigenes from the human gut, a two-gene operon of oxc (oxalyl-CoA decarboxylase) and frc (formyl-CoA transferase) encodes a system for degrading and therefore detoxifying oxalate. Members of this family are the thiamine pyrophosphate (TPP)-containing enzyme oxalyl-CoA decarboxylase. [Cellular processes, Detoxification] 554 -132299 TIGR03255 PhnV 2-aminoethylphosphonate ABC transport system, membrane component PhnV. This membrane component of an ABC transport system is found in Salmonella and Burkholderia lineages in the vicinity of enzymes for the breakdown of 2-aminoethylphosphonate. 272 -132300 TIGR03256 met_CoM_red_alp methyl-coenzyme M reductase, alpha subunit. Members of this protein family are the alpha subunit of methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). This enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. [Energy metabolism, Methanogenesis] 548 -132301 TIGR03257 met_CoM_red_bet methyl-coenzyme M reductase, beta subunit. Members of this protein family are the beta subunit of methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). This enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. [Energy metabolism, Methanogenesis] 433 -132302 TIGR03258 PhnT 2-aminoethylphosphonate ABC transport system, ATP-binding component PhnT. This ATP-binding component of an ABC transport system is found in Salmonella and Burkholderia lineages in the vicinity of enzymes for the breakdown of 2-aminoethylphosphonate. 362 -132303 TIGR03259 met_CoM_red_gam methyl-coenzyme M reductase, gamma subunit. Members of this protein family are the gamma subunit of methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). This enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. [Energy metabolism, Methanogenesis] 244 -274493 TIGR03260 met_CoM_red_D methyl-coenzyme M reductase operon protein D. Members of this protein family are protein D, a non-structural protein, of the operon for methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). That enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis; it has several modified sites, so accessory proteins are expected. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. Proteins in this family are expressed at much lower levels than the methyl-coenzyme M reductase itself and associate and have been shown to form at least transient associations. The precise function is unknown. [Energy metabolism, Methanogenesis] 150 -274494 TIGR03261 phnS2 putative 2-aminoethylphosphonate ABC transporter, periplasmic 2-aminoethylphosphonate-binding protein. This ABC transporter extracellular solute-binding protein is found in a number of genomes in operon-like contexts strongly suggesting a substrate specificity for 2-aminoethylphosphonate (2-AEP). The characterized PhnSTUV system is absent in the genomes in which this system is found. These genomes encode systems for the catabolism of 2-AEP, making the need for a 2-AEP-specific transporter likely. [Transport and binding proteins, Amino acids, peptides and amines] 334 -274495 TIGR03262 PhnU2 putative 2-aminoethylphosphonate ABC transporter, permease protein. [Transport and binding proteins, Amino acids, peptides and amines] 546 -213788 TIGR03263 guanyl_kin guanylate kinase. Members of this family are the enzyme guanylate kinase, also called GMP kinase. This enzyme transfers a phosphate from ATP to GMP, yielding ADP and GDP. [Purines, pyrimidines, nucleosides, and nucleotides, Nucleotide and nucleoside interconversions] 179 -132308 TIGR03264 met_CoM_red_C methyl-coenzyme M reductase I operon protein C. Members of this protein family are protein C, a non-structural protein, of the operon for methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). That enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis; it has several modified sites, so accessory proteins are expected. Several methanogens have encode two such enzymes, designated I and II; this protein occurs only operons of type I. The precise function is unknown. [Energy metabolism, Methanogenesis] 194 -274496 TIGR03265 PhnT2 putative 2-aminoethylphosphonate ABC transporter, ATP-binding protein. This ABC transporter ATP-binding protein is found in a number of genomes in operon-like contexts strongly suggesting a substrate specificity for 2-aminoethylphosphonate (2-AEP). The characterized PhnSTUV system is absent in the genomes in which this system is found. These genomes encode systems for the catabolism of 2-AEP, making the need for a 2-AEP-specific transporter likely. [Transport and binding proteins, Amino acids, peptides and amines] 353 -132310 TIGR03266 methan_mark_1 putative methanogenesis marker protein 1. Members of this protein family represent a distinct clade among the larger set of proteins that belong to families TIGR00702 and pfam02624. Proteins from this clade are found in genome sequence if and only if the species sequenced is one of the methanogens. All methanogens belong to the archaea; some but not all of those sequenced are hyperthermophiles. This protein family was detected by the method of partial phylogenetic profiling (see Haft, et al., 2006). 376 -132311 TIGR03267 methan_mark_2 putative methanogenesis marker protein 2. A single member of this protein family is found in each of the first ten complete genome sequences of archaeal methanogens, and nowhere else. Sequence similarity to various bacterial proteins is reflected in Pfam models pfam00586 and pfam02769, AIR synthase related protein N-terminal and C-terminal domains, respectively. The functions of proteins in this family are unknown, but their role is likely one essential to methanogenesis. [Energy metabolism, Methanogenesis] 323 -132312 TIGR03268 methan_mark_3 putative methanogenesis marker protein 3. A single member of this protein family is found in each of the first ten complete genome sequences of archaeal methanogens, and nowhere else. This protein family was detected by the method of partial phylogenetic profiling (see Haft, et al., 2006). The functions of proteins in this family are unknown, but their role is likely one essential to methanogenesis. [Energy metabolism, Methanogenesis] 503 -132313 TIGR03269 met_CoM_red_A2 methyl coenzyme M reductase system, component A2. The enzyme that catalyzes the final step in methanogenesis, methyl coenzyme M reductase, contains alpha, beta, and gamma chains. In older literature, the complex of alpha, beta, and gamma chains was termed component C, while this single chain protein was termed methyl coenzyme M reductase system component A2. [Energy metabolism, Methanogenesis] 520 -274497 TIGR03270 methan_mark_4 putative methanogen marker protein 4. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely linked to it. Some members have been suggested to be a methyltransferase, based on the proximity of its gene to genes of the multi-subunit complex, N5-methyl-tetrahydromethanopterin--coenzyme M methyltransferase. That context is not conserved, however. The family shows similarity to various phosphate acyltranferases. [Energy metabolism, Methanogenesis] 202 -132315 TIGR03271 methan_mark_5 putative methanogenesis marker protein 5. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 142 -274498 TIGR03272 methan_mark_6 putative methanogenesis marker protein 6. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 132 -132317 TIGR03274 methan_mark_7 putative methanogenesis marker protein 7. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. 302 -132318 TIGR03275 methan_mark_8 putative methanogenesis marker protein 8. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. 259 -132319 TIGR03276 Phn-HD phosphonate degradation operons associated HDIG domain protein. This small clade of proteins are found adjacent to other genes implicated in the catabolism of phosphonates. They are members of the TIGR00277 domain family and contain a series of five invariant histidines (the domain in general has only four). 179 -132320 TIGR03277 methan_mark_9 putative methanogenesis marker domain 9. A gene for a protein that contains a copy of this domain, to date, is found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. A 69-amino acid core region of this 110-amino acid domain contains eight invariant Cys residues, including two copies of a motif [WFY]CCxxKPC. These motifs could be consistent with predicted metal-binding transcription factor as was suggested for the COG4008 family. Some members of this family have an additional N-terminal domain of about 250 amino acids from the nifR3 family of predicted TIM-barrel proteins. 109 -132321 TIGR03278 methan_mark_10 methanogenesis marker radical SAM protein. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. It is a radical SAM enzyme by homology. The exact function is unknown, but likely is linked to methanogenesis. In most genomes, the member of this family is encoded by a gene next to, and divergently transcribed from, the methyl coenzyme M reductase operon. 404 -132322 TIGR03279 cyano_FeS_chp putative radical SAM enzyme, TIGR03279 family. Members of this protein family are predicted radical SAM enzymes of unknown function, apparently restricted to and universal across the Cyanobacteria. The high trusted cutoff score for this model, 700 bits, excludes homologs from other lineages. This exclusion seems justified because a significant number of sequence positions are simultaneously unique to and invariant across the Cyanobacteria, suggesting a specialized, conserved function, perhaps related to photosynthesis. A distantly related protein family, TIGR03278, in universal in and restricted to archaeal methanogens, and may be linked to methanogenesis. 433 -213789 TIGR03280 methan_mark_11 methanogenesis imperfect marker protein 11. The first twenty-nine completed genomes with a member of this protein family include twenty-eight archaeal methanogens and one other related archaeon, Ferroglobus placidus DSM 10642. The exact function is unknown, but the protein likely belongs to a system usually tightly linked to methanogenesis. 292 -132324 TIGR03281 methan_mark_12 putative methanogenesis marker protein 12. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 326 -274499 TIGR03282 methan_mark_13 putative methanogenesis marker 13 metalloprotein. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. This metal cluster-binding family is related to nitrogenase structural protein NifD and accessory protein NifE, among others. [Energy metabolism, Methanogenesis] 352 -132326 TIGR03283 thy_syn_methano thymidylate synthase, methanogen type. Thymidylate synthase makes dTMP for DNA synthesis, and is among the most widely distributed of all enzymes. Members of this protein family are encoded within a completed genome sequence if and only if that species is one of the methanogenenic archaea. In these species, tetrahydromethanopterin replaces tetrahydrofolate, The member from Methanobacterium thermoautotrophicum was shown to behave as a thymidylate synthase based on similar side reactions (the exchange of a characteristic proton with water), although the full reaction was not reconstituted. Partial sequence data showed no similarity to known thymidylate synthases simply because the region sequenced was from a distinctive N-terminal region not found in other thymidylate synthases. Members of this protein family appear, therefore, to a novel, tetrahydromethanopterin-dependent thymidylate synthase. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 199 -213790 TIGR03284 thym_sym thymidylate synthase. Members of this protein family are thymidylate synthase, an enzyme that produces dTMP from dUMP. In prokaryotes, its gene usually is found close to that for dihydrofolate reductase, and in some systems the two enzymes are found as a fusion protein. This model excludes a set of related proteins (TIGR03283) that appears to replace this family in archaeal methanogens, where tetrahydrofolate is replaced by tetrahydromethanopterin. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 295 -274500 TIGR03285 methan_mark_14 putative methanogenesis marker protein 14. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 445 -132329 TIGR03286 methan_mark_15 putative methanogenesis marker protein 15. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. Related proteins include the BadF/BadG/BcrA/BcrD ATPase family (pfam01869), which includes an activator for (R)-2-hydroxyglutaryl-CoA dehydratase. [Energy metabolism, Methanogenesis] 404 -274501 TIGR03287 methan_mark_16 putative methanogenesis marker 16 metalloprotein. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. This protein is a predicted to bind FeS clusters, based on the presence of two copies of the Fer4 domain (pfam00037), with each copy having four Cys residues invariant across all members. [Energy metabolism, Methanogenesis] 391 -132331 TIGR03288 CoB_CoM_SS_B CoB--CoM heterodisulfide reductase, subunit B. Members of this protein family are subunit B of the CoB--CoM heterodisulfide reductase, or simply heterodisulfide reductase, found in methanogenic archaea. Some archaea species have two copies, HdrB1 and HdrB2. 290 -274502 TIGR03289 frhB coenzyme F420 hydrogenase, subunit beta. This model represents that clade of F420-dependent hydrogenases (FRH) beta subunits found exclusively and universally in methanogenic archaea. The N- and C-terminal domains of this protein are modelled by pfam04422 and pfam04423 respectively. 275 -132333 TIGR03290 CoB_CoM_SS_C CoB--CoM heterodisulfide reductase, subunit C. The last step in methanogenesis leaves two coenzymes of methanogenesis, CoM and CoB, linked by a disulfide bond. Members of this protein family are the C subunit of the enzyme that reduces the heterodisulfide to CoB-SH and CoM-SH. Similar enzyme complex subunits are found in various other species, but likely act on a different substrate. 144 -274503 TIGR03291 methan_mark_17 putative methanogenesis marker protein 17. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 185 -274504 TIGR03292 PhnH_redo phosphonate C-P lyase system protein PhnH. PhnH is a component of the C-P lyase system (GenProp0232) for the catabolism of phosphonate compounds. The specific function of this component is unknown. This model is based on pfam05845.2, and has been broadened to include sequences missed by that model which are clearly true positive hits based on genome context. 174 -274505 TIGR03293 PhnG_redo phosphonate C-P lyase system protein PhnG. PhnH is a component of the C-P lyase system (GenProp0232) for the catabolism of phosphonate compounds. The specific function of this component is unknown. This model is based on pfam06754.2, and has been broadened to include sequences missed by that model which are clearly true positive hits based on genome context. 144 -132337 TIGR03294 FrhG coenzyme F420 hydrogenase, subunit gamma. This model represents that clade of F420-dependent hydrogenases (FRH) beta subunits found exclusively and universally in methanogenic archaea. This protein contains two 4Fe-4S cluster binding domains (pfam00037) and scores above the trusted cutoff to model pfam01058 for the "NADH ubiquinone oxidoreductase, 20 Kd subunit" family. 228 -274506 TIGR03295 frhA coenzyme F420 hydrogenase, subunit alpha. This model represents that clade of F420-dependent hydrogenases (FRH) beta subunits found exclusively and universally in methanogenic archaea. This protein is a member of the Nickel-dependent hydrogenase superfamily represented by Pfam model, pfam00374. 408 -274507 TIGR03296 M6dom_TIGR03296 M6 family metalloprotease domain. This model describes a metalloproteinase domain, with a characteristic HExxH motif. Examples of this domain are found in proteins in the family of immune inhibitor A, which cleaves antibacterial peptides, and in other, only distantly related proteases. This model is built to be broader and more inclusive than pfam05547. 285 -274508 TIGR03297 Ppyr-DeCO2ase phosphonopyruvate decarboxylase. This family consists of examples of phosphonopyruvate an decarboxylase enzyme that produces phosphonoacetaldehyde (Pald), the second step in the biosynthesis phosphonate-containing compounds. Since the preceding enzymate step, PEP phosphomutase (AepX, TIGR02320) favors the substrate PEP energetically, the decarboxylase is required to drive the reaction in the direction of phosphonate production. Pald is a precursor of natural products including antibiotics like bialaphos and phosphonothricin in Streptomyces species, phosphonate-modified molecules such as the polysaccharide B of Bacteroides fragilis, the phosphonolipids of Tetrahymena pyroformis, the glycosylinositolphospholipids of Trypanosoma cruzi. This gene generally occurs in prokaryotic organisms adjacent to the gene for AepX. Most often an aminotansferase (aepZ) is also present which leads to the production of the most common phosphonate compound, 2-aminoethylphosphonate (AEP). 361 -274509 TIGR03298 argP transcriptional regulator, ArgP family. ArgP used to be known as IciA. ArgP is a positive regulator of argK. It is a negative autoregulator in presence of arginine. It competes with DnaA for oriC iteron (13-mer) binding. It activates dnaA and nrd transcription. It has been demonstrated to be part of the pho regulon (). ArgP mutants convey canavanine (an L-arginine structural homolog) sensitivity. [Cellular processes, Toxin production and resistance, DNA metabolism, DNA replication, recombination, and repair, Regulatory functions, DNA interactions] 292 -274510 TIGR03299 LGT_TIGR03299 phage/plasmid-like protein TIGR03299. Members of this uncharacterized protein family are found in various Mycobacterium phage genomes, in Streptomyces coelicolor plasmid SCP1, and in bacterial genomes near various markers that suggest lateral gene transfer. The function is unknown. [Mobile and extrachromosomal element functions, Other] 309 -274511 TIGR03300 assembly_YfgL outer membrane assembly lipoprotein YfgL. Members of this protein family are YfgL, a lipoprotein component of a complex that acts protein insertion into the bacterial outer membrane. Other members of this complex are NlpB, YfiO, and YaeT. This protein contains multiple copies of a repeat that, in other contexts, are associated with binding of the coenzyme PQQ. [Protein fate, Protein and peptide secretion and trafficking] 377 -274512 TIGR03301 PhnW-AepZ 2-aminoethylphosphonate aminotransferase. This family includes a number of 2-aminoethylphosphonate aminotransferases, some of which are indicated to operate in the catabolism of 2-aminoethylphosphonate (AEP) and others which are involved in the biosynthesis of the same compound. The catabolic enzyme (PhnW) is known to use pyruvate:alanine as the transfer partner and is modeled by the equivalog-level model (TIGR02326). The PhnW family is apparently a branch of a larger tree including genes (AepZ) adjacent to others responsible for the biosynthesis of phosphonoacetaldehyde. The identity of the transfer partner is unknown for these enzymes and considering the reversed flux compared to PhnW, it may very well be different. 355 -274513 TIGR03302 OM_YfiO outer membrane assembly lipoprotein YfiO. Members of this protein family include YfiO, a near-essential protein of the outer membrane, part of a complex involved in protein insertion into the bacterial outer membrane. Many proteins in this family are annotated as ComL, based on the involvement of this protein in natural transformation with exogenous DNA in Neisseria gonorrhoeae. This protein family shows sequence similarity to, but is distinct from, the tol-pal system protein YbgF (TIGR02795). [Protein fate, Protein and peptide secretion and trafficking] 235 -274514 TIGR03303 OM_YaeT outer membrane protein assembly complex, YaeT protein. Members of this protein family are the YaeT protein of the YaeT/YfiO complex for assembling proteins into the outer membrane of Gram-negative bacteria. This protein is similar in sequence and function to a non-essential paralog, YtfM, that is also in the Omp85 family. Members of this family typically have five tandem copies of the surface antigen variable number repeat (pfam07244), followed by an outer membrane beta-barrel domain (pfam01103), while the YtfM family typically has a single pfam07244 repeat. [Protein fate, Protein and peptide secretion and trafficking] 741 -274515 TIGR03304 OMP85_target outer membrane insertion C-terminal signal. This hidden Markov model detects a 10-residue targeting sequence common to beta-barrel outer membrane proteins (OMP) that rely on Omp85-like proteins for insertion into the outer membrane. Hits should be trusted if they include the last amino acid of a protein sequence that occurs in Gram-negative bacteria. It has been noted that Omp85 target sequences differ somewhat by species, while this model works generally for most Proteobacteria. 10 -132348 TIGR03305 alt_F1F0_F1_bet alternate F1F0 ATPase, F1 subunit beta. A small number of taxonomically diverse prokaryotic species have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F1 beta subunit of this apparent second ATP synthase. 449 -132349 TIGR03306 altF1_A alternate F1F0 ATPase, F0 subunit A. A small number of taxonomically diverse prokaryotic species have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F0 subunit A of this apparent second ATP synthase. 217 -163212 TIGR03307 PhnP phosphonate metabolism protein PhnP. This family of proteins found in operons encoding phosphonate C-P lyase systems as is observed in E. coli and is a member of the metallo-beta-lactamase superfamily (pfam00753). As defined by this model, all instances of this protein are associated with the C-P lyase, but not all genomes containing the C-P lyase system contain phnP. 238 -132351 TIGR03308 phn_thr-fam phosphonate metabolim protein, transferase hexapeptide repeat family. This family of proteins contains copies of the Bacterial transferase hexapeptide repeat family (pfam00132) and is only found in operons encoding the phosphonate C-P lyase system (GenProp0232). Many C-P lyase operons, however, lack a homolog of this protein. 204 -132352 TIGR03309 matur_yqeB selenium-dependent molybdenum hydroxylase system protein, YqeB family. Members of this protein family are probable accessory proteins for the biosynthesis of enzymes with labile selenium-containing centers, different from selenocysteine-containing proteins. 256 -274516 TIGR03310 matur_MocA_YgfJ molybdenum cofactor cytidylyltransferase. Members of this protein include MocA, which transfers cytosine from CTP to molybdopterin during molybdopterin cytosine dinucleotide (MCD) cofactor biosynthesis. It is distantly related to MobA, the GTP:molybdopterin guanylyltransferase. The MocA family is particularly closely related in phylogenetic distribution to other markers of selenium-dependent molybdenum hydroxylases (SDMH), suggesting most SDMH must use MCD rather than molybdopterin guanine dinucleotide. 188 -132354 TIGR03311 Se_dep_XDH selenium-dependent xanthine dehydrogenase. Members of this protein resemble conventional xanthine dehydrogenase enzymes, which depend on molybdenum cofactor - molybdopterin bound to molybdate with two sulfur atoms as ligands. But all members of this family occur in species that contain markers for the biosynthesis of enzymes with a selenium-containing form of molybdenum cofactor. The member of this family from Enterococcus faecalis has been shown to act as a xanthine dehydrogenenase, and its activity if dependent on SelD (selenophosphate synthase), selenium, and molybdenum. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 848 -132355 TIGR03312 Se_sel_red_FAD probable selenate reductase, FAD-binding subunit. This protein is suggested by Bebien, et al., to be the FAD-binding subunit of a molydbopterin-containing selenate reductase. Our comparative genomics suggests it to be a subunit of a selenium-dependent molybdenum hydroxylase for an unknown substrate. 257 -132356 TIGR03313 Se_sel_red_Mo probable selenate reductase, molybdenum-binding subunit. Our comparative genomics suggests this protein family to be a subunit of a selenium-dependent molybdenum hydroxylase, although the substrate is not specified. This protein is suggested by Bebien, et al., to be the molybdenum-binding subunit of a molydbopterin-containing selenate reductase. Xi, et al, however, show that mutation of this gene in E. coli conferred sensitivity to adenine, suggesting a defect in purine interconversion. This finding, plus homology of nearby genes in a 23-gene purine catabolism region in E. coli to xanthine dehydrogase subunits suggests xanthine dehydrogenase activity. 951 -132357 TIGR03314 Se_ssnA putative selenium metabolism protein SsnA. Members of this protein family are found exclusively in genomes that contain putative set of labile selenium-dependent enzyme accessory proteins as well as homologs of a labile selenium-dependent purine hydroxylase. A mutant in this gene in Escherichia coli had improved stationary phase viability. The function is unknown. 441 -132358 TIGR03315 Se_ygfK putative selenate reductase, YgfK subunit. Members of this protein family are YgfK, predicted to be one subunit of a three-subunit, molybdopterin-containing selenate reductase. This enzyme is found, typically, in genomic regions associated with xanthine dehydrogenase homologs predicted to belong to the selenium-dependent molybdenum hydroxylases (SDMH). Therefore, the selenate reductase is suggested to play a role in furnishing selenide for SelD, the selenophosphate synthase. 1012 -274517 TIGR03316 ygeW knotted carbamoyltransferase YgeW. Members of this protein family include the ygeW gene product of Escherichia coli. The function is unknown. Members show homology to ornithine carbamoyltransferase (TIGR00658) and aspartate carbamoyltransferase (carbamoyltransferase), and therefore may belong to the carbamoyltransferases in function. Members often are found in a large, conserved genomic region associated with selenium-dependent molybdenum hydroxylases. 391 -274518 TIGR03317 ygfZ_signature folate-binding protein YgfZ. YgfZ is a protein from Escherichia coli, homologous to the glycine cleavage system T protein, or aminomethyltransferase, GcvT (TIGR00528). Homologs of YgfZ other than members of the GcvT family share a well-conserved signature region that includes the motif, KGCYxGQE. Elsewhere, sequence diverge and length variation are substantial. Members of this family are mostly bacterial, largely absent from the Firmicutes and otherwise usually present. A few eukaryotic examples are found among the Apicomplexa, and a few archaeal sequences are found. Two functions implicated for this folate-binding protein are RNA modification (a function likely to be conserved) and replication initiation (a function likely to be highly variable). Many members of this family are, at the time of construction of this model, misnamed as the glycine cleavage system T protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 67 -132361 TIGR03318 YdfZ_fam putative selenium-binding protein YdfZ. This small protein has a very limited distribution, being found so far only among some gamma-Proteobacteria. The member from Escherichia coli was shown to bind selenium in the absence of a working SelD-dependent selenium incorporation system. Note that while the E. coli member contains a single Cys residue, a likely selenium binding site, some other members of this protein family contain two Cys residues or none. [Unknown function, General] 65 -188306 TIGR03319 RNase_Y ribonuclease Y. Members of this family are RNase Y, an endoribonuclease. The member from Bacillus subtilis, YmdA, has been shown to be involved in turnover of yitJ riboswitch. [Transcription, Degradation of RNA] 514 -132364 TIGR03321 alt_F1F0_F0_B alternate F1F0 ATPase, F0 subunit B. A small number of taxonomically diverse prokaryotic species, including Methanosarcina barkeri, have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, CC and in principle may run in either direction. This model represents the F0 subunit B of this apparent second ATP synthase. 246 -132365 TIGR03322 alt_F1F0_F0_C alternate F1F0 ATPase, F0 subunit C. A small number of taxonomically diverse prokaryotic species, including Methanosarcina barkeri, have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F0 subunit C of this apparent second ATP synthase. 86 -274519 TIGR03323 alt_F1F0_F1_gam alternate F1F0 ATPase, F1 subunit gamma. A small number of taxonomically diverse prokaryotic species, including Methanosarcina barkeri, have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F1 gamma subunit of this apparent second ATP synthase. 285 -132367 TIGR03324 alt_F1F0_F1_al alternate F1F0 ATPase, F1 subunit alpha. A small number of taxonomically diverse prokaryotic species, including Methanosarcina barkeri, have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F1 alpha subunit of this apparent second ATP synthase. 497 -132368 TIGR03325 BphB_TodD cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase. Members of this family occur as the BphD protein of biphenyl catabolism and as the TodD protein of toluene catabolism. Members catalyze the second step in each pathway and proved interchangeable when tested; the first and fourth enzymes in each pathway confer metabolic specificity. In the context of biphenyl degradation, the enzyme acts as cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase (EC 1.3.1.56), while in toluene degradation it acts as cis-toluene dihydrodiol dehydrogenase. 262 -188307 TIGR03326 rubisco_III ribulose bisphosphate carboxylase, type III. Members of this protein family are the archaeal, single chain, type III form of ribulose bisphosphate carboxylase, or RuBisCO. Members act is a three-step pathway for conversion of the sugar moiety of AMP to two molecules of 3-phosphoglycerate. Many of these species use ADP-dependent sugar kinases, which form AMP, for glycolysis. [Energy metabolism, Sugars] 411 -274520 TIGR03327 AMP_phos AMP phosphorylase. This enzyme family is found, so far, strictly in the Archaea, and only in those with a type III Rubisco enzyme. Most of the members previously were annotated as thymidine phosphorylase, or DeoA. The AMP metabolized by this enzyme may be produced by ADP-dependent sugar kinases. 494 -274521 TIGR03328 salvage_mtnB methylthioribulose-1-phosphate dehydratase. Members of this family are the methylthioribulose-1-phosphate dehydratase of the methionine salvage pathway. This pathway allows methylthioadenosine, left over from polyamine biosynthesis, to be recycled to methionine. [Amino acid biosynthesis, Aspartate family] 192 -274522 TIGR03329 Phn_aa_oxid putative aminophosphonate oxidoreductase. This clade of sequences are members of the pfam01266 family of FAD-dependent oxidoreductases. Characterized proteins within this family include glycerol-3-phosphate dehydrogenase (1.1.99.5), sarcosine oxidase beta subunit (1.5.3.1) and a number of deaminating amino acid oxidases (1.4.-.-). These genes have been consistently observed in a genomic context including genes for the import and catabolism of 2-aminoethylphosphonate (AEP). If the substrate of this oxidoreductase is AEP itself, then it is probably acting in the manner of a deaminating oxidase, resulting in the same product (phosphonoacetaldehyde) as the transaminase PhnW (TIGR02326), but releasing ammonia instead of coupling to pyruvate:alanine. Alternatively, it is reasonable to suppose that the various ABC cassette transporters which are also associated with these loci allow the import of phosphonates closely related to AEP which may not be substrates for PhnW. 460 -274523 TIGR03330 SAM_DCase_Bsu S-adenosylmethionine decarboxylase proenzyme, Bacillus form. Members of this protein family are the single chain precursor of the two chains of the mature S-adenosylmethionine decarboxylase as found in Methanocaldococcus jannaschii, Bacillus subtilis, and a wide range of other species. It differs substantially in architecture from the form as found in Escherichia coli, and lacks any extended homology to the eukaryotic form (TIGR00535). [Central intermediary metabolism, Polyamine biosynthesis] 112 -274524 TIGR03331 SAM_DCase_Eco S-adenosylmethionine decarboxylase proenzyme, Escherichia coli form. Members of this protein family are the single chain precursor of the S-adenosylmethionine decarboxylase as found in Escherichia coli. This form shows a substantially different architecture from the form shared by the Archaea, Bacillus, and many other species (TIGR03330). It shows little or no similarity to the form found in eukaryotes (TIGR00535). [Central intermediary metabolism, Polyamine biosynthesis] 259 -132375 TIGR03332 salvage_mtnW 2,3-diketo-5-methylthiopentyl-1-phosphate enolase. Members of this family are the methionine salvage pathway enzyme 2,3-diketo-5-methylthiopentyl-1-phosphate enolase, a homolog of RuBisCO. This protein family seems restricted to Bacillus subtilis and close relatives, where two separate proteins carry the enolase and phosphatase activities that in other species occur in a single protein, MtnC (TIGR01691). [Amino acid biosynthesis, Aspartate family, Central intermediary metabolism, Sulfur metabolism] 407 -213797 TIGR03333 salvage_mtnX 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase. Members of this family are the methionine salvage enzyme MnxX, a member of the HAD-superfamily hydrolases, subfamily IB (see TIGR01488). Members are found in Bacillus subtilis and related species, paired with MtnW (TIGR03332). In most species that recycle methionine from methylthioadenosine, the single protein MtnC replaces the MtnW/MtnX pair. In B. subtilis, mtnX was first known as ykrX. [Amino acid biosynthesis, Aspartate family, Central intermediary metabolism, Sulfur metabolism] 214 -274525 TIGR03334 IOR_beta indolepyruvate ferredoxin oxidoreductase, beta subunit. This model represents the beta subunit of indolepyruvate ferredoxin oxidoreductase, an alpha(2)/beta(2) tetramer, as found in Pyrococcus furiosus and Methanobacterium thermoautotrophicum. Cofactors for the tetramer include TPP, 4Fe4S, and 3Fe-4S. It shows considerable sequence similarity to subunits of several other ketoacid oxidoreductases. 189 -132378 TIGR03335 F390_ftsA coenzyme F390 synthetase. This enzyme, characterized in Methanobacterium thermoautotrophicum and found in several other methanogens, modifies coenzyme F420 by ligation of AMP (or GMP) from ATP (or GTP). On F420, it activates an aromatic hydroxyl group, which is unusual chemistry for an adenylyltransferase. This enzyme name has been attached to numbers of uncharacterized genes likely to instead act as phenylacetate CoA ligase, based on proximity to predicted indolepyruvate ferredoxin oxidoreductase (1.2.7.8) genes. The enzyme acts during transient exposure of the organism to oxygen. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 445 -274526 TIGR03336 IOR_alpha indolepyruvate ferredoxin oxidoreductase, alpha subunit. Indolepyruvate ferredoxin oxidoreductase (IOR) is an alpha 2/beta 2 tetramer related to ketoacid oxidoreductases for pyruvate (1.2.7.1, POR), 2-ketoglutarate (1.2.7.3, KOR), and 2-oxoisovalerate (1.2.7.7, VOR). These multi-subunit enzymes typically are found in anaerobes and are inactiviated by oxygen. IOR in Pyrococcus acts in fermentation of all three aromatic amino acids, following removal of the amino group by transamination. In Methanococcus maripaludis, by contrast, IOR acts in the opposite direction, in pathways of amino acid biosynthesis from phenylacetate, indoleacetate, and p-hydroxyphenylacetate. In M. maripaludis and many other species, iorA and iorB are found next to an apparent phenylacetate-CoA ligase. 595 -132380 TIGR03337 phnR phosphonate utilization transcriptional regulator PhnR. This family of proteins are members of the GntR family (pfam00392) containing an N-terminal helix-turn-helix (HTH) motif. This clade is found adjacent to or inside of operons for the degradation of 2-aminoethylphosphonate (AEP) in Salmonella, Vibrio Aeromonas hydrophila, Hahella chejuensis and Psychromonas ingrahamii. [Regulatory functions, DNA interactions] 231 -132381 TIGR03338 phnR_burk phosphonate utilization associated transcriptional regulator. This family of proteins are members of the GntR family (pfam00392) containing an N-terminal helix-turn-helix (HTH) motif. This clade is found adjacent to or inside of operons for the degradation of 2-aminoethylphosphonate (AEP) in Polaromonas, Burkholderia, Ralstonia and Verminephrobacter. 212 -132382 TIGR03339 phn_lysR aminoethylphosphonate catabolism associated LysR family transcriptional regulator. This group of sequences represents a number of related clades with numerous examples of members adjacent to operons for the degradation of 2-aminoethylphosphonate (AEP) in Pseudomonas, Ralstonia, Bordetella and Burkholderia species. These are transcriptional regulators of the LysR family which contain a helix-turn-helix (HTH) domain (pfam00126) and a periplasmic substrate-binding protein-like domain (pfam03466). [Regulatory functions, DNA interactions] 279 -274527 TIGR03340 phn_DUF6 phosphonate utilization associated putative membrane protein. This family of hydrophobic proteins has some homology to families of integral membrane proteins such as (pfam00892) and may be a permease. It occurs in the vicinity of various types of operons for the catabolism of phosphonates in Vibrio, Pseudomonas, Polaromonas and Thiomicrospira. 281 -132384 TIGR03341 YhgI_GntY IscR-regulated protein YhgI. IscR (TIGR02010) is an iron-sulfur cluster-binding transcriptional regulator (see Genome Property GenProp0138). Members of this protein family include YhgI, whose expression is under control of IscR, and show sequence similarity to IscA, a known protein of iron-sulfur cluster biosynthesis. These two lines of evidence strongly suggest a role as an iron-sulfur cluster biosynthesis protein. An older study designated this protein GntY and suggested a role for it and for the product of an adjacent gene, based on complementation studies, in gluconate utilization. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 190 -213798 TIGR03342 dsrC_tusE_dsvC sulfur relay protein, TusE/DsrC/DsvC family. Members of this protein family may be described as TusE, a partner to TusBCD in a sulfur relay system for 2-thiouridine biosynthesis, a tRNA base modification process. Other members are DsrC, a functionally similar protein in species where the sulfur relay system exists primarily for sulfur metabolism rather than tRNA base modification. Some members of this family are known explicitly as the gamma subunit of sulfite reductases. 108 -132386 TIGR03343 biphenyl_bphD 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. Members of this family are 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase, or HOPD hydrolase, the BphD protein of biphenyl degradation. BphD acts on the product of ring meta-cleavage by BphC. Many species carrying bphC and bphD are capable of degrading polychlorinated biphenyls as well as biphenyl itself. 282 -213799 TIGR03344 VI_effect_Hcp1 type VI secretion system effector, Hcp1 family. This family includes Hcp1 (hemolysin coregulated protein 1), an exported, homohexameric ring-forming virulence protein from Pseudomonas aeruginosa. Hcp1 lacks a conventional signal sequence and is instead exported by means of the type VI secretion system, encoded by a pathogenicity cluster of a class previously designated IAHP (IcmF-associated homologous protein). Homologs of Hcp1, in this protein family, are found in various bacteria of which most but not all are known pathogens. Pathogens may have many multiple members of this family, with three to ten in Erwinia carotovora, Yersinia pestis, uropathogenic Escherichia coli, and the insect pathogen Photorhabdus luminescens. [Cellular processes, Pathogenesis] 166 -274528 TIGR03345 VI_ClpV1 type VI secretion ATPase, ClpV1 family. Members of this protein family are homologs of ClpB, an ATPase associated with chaperone-related functions. These ClpB homologs, designated ClpV1, are a key component of the bacterial pathogenicity-associated type VI secretion system. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 852 -274529 TIGR03346 chaperone_ClpB ATP-dependent chaperone ClpB. Members of this protein family are the bacterial ATP-dependent chaperone ClpB. This protein belongs to the AAA family, ATPases associated with various cellular activities (pfam00004). This molecular chaperone does not act as a protease, but rather serves to disaggregate misfolded and aggregated proteins. [Protein fate, Protein folding and stabilization] 850 -274530 TIGR03347 VI_chp_1 type VI secretion protein, VC_A0111 family. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 300 -274531 TIGR03348 VI_IcmF type VI secretion protein IcmF. Members of this protein family are IcmF homologs and tend to be associated with type VI secretion systems. [Cellular processes, Pathogenesis] 1169 -274532 TIGR03349 IV_VI_DotU type IV / VI secretion system protein, DotU family. At least two families of proteins, often encoded by adjacent genes, show sequence similarity due to homology between type IV secretion systems and type VI secretion systems. One is the IcmF family (TIGR03348). The other is the family described by this model. Members include DotU from the Legionella pneumophila type IV secretion system. Many of the members of this protein family from type VI secretion systems have an additional C-terminal domain with OmpA/MotB homology. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 183 -274533 TIGR03350 type_VI_ompA type VI secretion system peptidoglycan-associated domain. The flagellar motor protein MotB, the Gram-negative bacterial outer membrane protein OmpA (with an N-terminal outer membrane beta barrel domain) share a C-terminal peptidoglycan-associating homology region. This model describes a domain found fused to type VI secretion system homologs of the type IV system protein DotU (see model TIGR03349), with OmpA/MotB homology. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 137 -274534 TIGR03351 PhnX-like phosphonatase-like hydrolase. This clade of sequences are the closest homologs to the PhnX enzyme, phosphonoacetaldehyde (Pald) hydrolase (phosphonatase, TIGR01422). This phosphonatase-like enzyme and PhnX itself are members of the haloacid dehalogenase (HAD) superfamily (pfam00702) having a a number of distinctive features that set them apart from typical HAD enzymes. The typical HAD N-terminal motif DxDx(T/V) here is DxAGT and the usual conserved lysine prior to the C-terminal motif is instead an arginine. Also distinctive of phosphonatase, and particular to its bi-catalytic mechanism is a conserved lysine in the variable "cap" domain. This lysine forms a Schiff base with the aldehyde of phosphonoacetaldehyde, providing, through the resulting positive charge, a polarization of the C-P bond necesary for cleavage as well as a route to the initial product of cleavage, an ene-amine. The conservation of these elements in this phosphonatase-like enzyme suggests that the substrate is also, like Pald, a 2-oxo-ethylphosphonate. Despite this, the genomic context of members of this family are quite distinct from PhnX, which is almost invariably associated with the 2-aminoethylphosphonate transaminase PhnW (TIGR02326), the source of the substrate Pald. Members of this clade are never associated with PhnW, but rather associate with families of FAD-dependent oxidoreductases related to deaminating amino acid oxidases (pfam01266) as well as zinc-dependent dehydrogenases (pfam00107). Notably, family members from Arthrobacter aurescens TC1 and Nocardia farcinica IFM 10152 are adjacent to the PhnCDE ABC cassette phosphonates transporter (GenProp0236) typically found in association with the phosphonates C-P lyase system (GenProp0232). These observations suggest two possibilities. First, the substrate for this enzyme family is also Pald, the non-association with PhnW not withstanding. Alternatively, the substrate is something very closely related such as hydroxyphosphonoacetaldehyde (Hpald). Hpald could come from oxidative deamination of 1-hydroxy-2-aminoethylphosphonate (HAEP) by the associated oxidase. HAEP would not be a substrate for PhnW due to its high specificity for AEP. HAEP has been shown to be a constituent of the sphingophosphonolipid of Bacteriovorax stolpii, and presumably has other natural sources. If Hpald is the substrate, the product would be glycoaldehyde (hydroxyacetaldehyde), and the associated alcohol dehydrogenase may serve to convert this to glycol. 220 -274535 TIGR03352 VI_chp_3 type VI secretion lipoprotein, VC_A0113 family. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 130 -274536 TIGR03353 VI_chp_4 type VI secretion protein, VC_A0114 family. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 439 -274537 TIGR03354 VI_FHA type VI secretion system FHA domain protein. Members of this protein family are FHA (forkhead-associated) domain-containing proteins that are part of type VI secretion loci in a considerable number of bacteria, most of which are known pathogens. Species include Pseudomonas aeruginosa PAO1, Aeromonas hydrophila, Yersinia pestis, Burkholderia mallei, etc. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 396 -274538 TIGR03355 VI_chp_2 type VI secretion protein, EvpB/VC_A0108 family. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 473 -274539 TIGR03356 BGL beta-galactosidase. 426 -274540 TIGR03357 VI_zyme type VI secretion system lysozyme-like protein. The description for Pfam family pfam04965 cites acidic lysozyme activity for some phage-encoded members. This family represents a different subgroup of the proteins from pfam04965, where all members are associated with bacterial type VI secretion system genomic contexts. 133 -132401 TIGR03358 VI_chp_5 type VI secretion protein, VC_A0107 family. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 159 -274541 TIGR03359 VI_chp_6 type VI secretion protein, VC_A0110 family. This protein family is associated with type VI secretion in a number of pathogenic bacteria. Mutation is associated with impaired virulence, such as impaired infection of plants by Rhizobium leguminosarum. 598 -132403 TIGR03360 VI_minor_1 type VI secretion-associated protein, VC_A0118 family. Members of this protein family, including VC_A0118 from Vibrio cholerae El Tor N16961, are restricted to a subset of bacteria with the type VI secretion system, and are encoded among the type VI-associated pathogenicity islands. However, many species with type VI secretion lack a member of this family. This lack suggests that members of this family may be targets rather than components of the type VI secretion system. 185 -274542 TIGR03361 VI_Rhs_Vgr type VI secretion system Vgr family protein. Members of this protein family belong to the Rhs element Vgr protein family (see TIGR01646), but furthermore all are found in genomes with type VI secretion loci. However, members of this protein family, although recognizably correlated to type VI secretion according the partial phylogenetic profiling algorithm, are often found far the type VI secretion locus. 513 -274543 TIGR03362 VI_chp_7 type VI secretion-associated protein, VC_A0119 family. This protein family is one of two related families in type VI secretion systems that contain an ImpA-related N-terminal domain (pfam06812). [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 301 -274544 TIGR03363 VI_chp_8 type VI secretion-associated protein, ImpA family. This protein family is one of two related families in type VI secretion systems that contain an ImpA-related N-terminal domain (pfam06812). 353 -132407 TIGR03364 HpnW_proposed FAD dependent oxidoreductase TIGR03364. This clade of FAD dependent oxidoreductases (members of the pfam01266 family) is syntenically associated with a family of proposed phosphonatase-like enzymes (TIGR03351) and is also found (less frequently) in association with phosphonate transporter components. A likely role for this enzyme involves the oxidative deamination of an aminophosphonate differring slightly from 2-aminoethylphosphonate, possibly 1-hydroxy-2-aminoethylphosphonate (see the comments for TIGR03351). Many members of the larger FAD dependent oxidoreductase family act as amino acid oxidative deaminases. 365 -274545 TIGR03365 Bsubt_queE 7-cyano-7-deazaguanosine (preQ0) biosynthesis protein QueE. This uncharacterized enzyme, designated QueE, participates in the biosynthesis, from GTP, of 7-cyano-7-deazaguanosine, also called preQ0 because in many species it is a precursor of queuosine. In most Archaea, it is instead the precursor of a different tRNA modified base, archaeosine. [Protein synthesis, tRNA and rRNA base modification] 238 -274546 TIGR03366 HpnZ_proposed putative phosphonate catabolism associated alcohol dehydrogenase. This clade of zinc-binding alcohol dehydrogenases (members of pfam00107) are repeatedly associated with genes proposed to be involved with the catabolism of phosphonate compounds. 280 -274547 TIGR03367 queuosine_QueD queuosine biosynthesis protein QueD. Members of this protein family, closely related to eukaryotic 6-pyruvoyl tetrahydrobiopterin synthase enzymes, are the QueD protein of queuosine biosynthesis. Queuosine is a hypermodified base in the wobble position of tRNAs for Tyr, His, Asp, and Asn in many species. This modification, although widespread, appears not to be important for viability. The queuosine precursor made by this enzyme may be converted instead to archeaosine as in some Archaea. [Protein synthesis, tRNA and rRNA base modification] 89 -132411 TIGR03368 cellulose_yhjU cellulose synthase operon protein YhjU. This protein was identified by the partial phylogenetic profiling algorithm () as part of the system for cellulose biosynthesis in bacteria, and in fact is found in cellulose biosynthesis gene regions. The protein was designated YhjU in Salmonella enteritidis, where disruption of its gene disrupts cellulose biosynthesis and biofilm formation (). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 518 -274548 TIGR03369 cellulose_bcsE cellulose biosynthesis protein BcsE. This protein, called BcsE (bacterial cellulose synthase E) or YhjS, is required for cellulose biosynthesis in Salmonella enteritidis. Its role is this process across multiple bacterial species is implied by the partial phylogenetic profiling algorithm. Members are found in the vicinity of other cellulose biosynthesis genes. The model does not include a much less well-conserved N-terminal region about 150 amino acids in length for most members. Solano, et al. suggest this protein acts as a protease. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 322 -132413 TIGR03370 VPLPA-CTERM VPLPA-CTERM protein sorting domain. A probable protein export sorting signal, PEP-CTERM, was described by Haft, et al. (). It is predicted to interact with a putative transpeptidase we designate exosortase. This model describes a variant with conserved motif VPLPA, rather than VPEP. It appears to be the recognition sequences for exosortase D (TIGR04152). This variant is found prominently in two members of the Rhodobacterales, namely Jannaschia sp. CCS1 and Roseobacter denitrificans OCh 114. One interesting member protein has a full-length duplication and therefore two copies of this putative sorting domain. 25 -274549 TIGR03371 cellulose_yhjQ cellulose synthase operon protein YhjQ. Members of this family are the YhjQ protein, found immediately upsteam of bacterial cellulose synthase (bcs) genes in a broad range of bacteria, including both copies of the bcs locus in Klebsiella pneumoniae. In several species it is seen clearly as part of the bcs operon. It is identified as a probable component of the bacterial cellulose metabolic process not only by gene location, but also by partial phylogenetic profiling, or Haft-Selengut algorithm (), based on a bacterial cellulose biosynthesis genome property profile. Cellulose plays an important role in biofilm formation and structural integrity in some bacteria. Mutants in yhjQ in Escherichia coli, show altered morphology an growth, but the function of YhjQ has not yet been determined. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 246 -132415 TIGR03372 putres_am_tran putrescine aminotransferase. Members of this family are putrescine aminotransferase, as found in Escherichia coli, Erwinia carotovora subsp. atroseptica, and closely related species. This pyridoxal phosphate enzyme, as characterized in E. coli, can act also on cadaverine and, more weakly, spermidine. [Central intermediary metabolism, Polyamine biosynthesis] 442 -132416 TIGR03373 VI_minor_4 type VI secretion-associated protein, BMA_A0400 family. Members of this protein family are found exclusively, although not universally, in bacterial species that possess a type VI secretion system. Genes are found in type VI secretion-associated gene clusters. The specific function is unknown. This model represents the rather well-conserved amino-terminal domain of a protein family in which carboxy-terminal regions, when present, show little conservation. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 136 -132417 TIGR03374 ABALDH 1-pyrroline dehydrogenase. Members of this protein family are 1-pyrroline dehydrogenase (1.5.1.35), also called gamma-aminobutyraldehyde dehydrogenase. This enzyme can follow putrescine transaminase (EC 2.6.1.82) for a two-step conversion of putrescine to gamma-aminobutyric acid (GABA). The member from Escherichia coli is characterized as a homotetramer that binds one NADH per momomer. This enzyme belongs to the medium-chain aldehyde dehydrogenases, and is quite similar in sequence to the betaine aldehyde dehydrogenase (EC 1.2.1.8) family. 472 -274550 TIGR03375 type_I_sec_LssB type I secretion system ATPase, LssB family. Type I protein secretion is a system in some Gram-negative bacteria to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. Targeted proteins are not cleaved at the N-terminus, but rather carry signals located toward the extreme C-terminus to direct type I secretion. This model is related to models TIGR01842 and TIGR01846, and to bacteriocin ABC transporters that cleave their substrates during export. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 694 -274551 TIGR03376 glycerol3P_DH glycerol-3-phosphate dehydrogenase (NAD(+)). Members of this protein family are the eukaryotic enzyme, glycerol-3-phosphate dehydrogenase (NAD(+)) (EC 1.1.1.8). Enzymatic activity for 1.1.1.8 is defined as sn-glycerol 3-phosphate + NAD(+) = glycerone phosphate + NADH. Note the very similar reactions of enzymes defined as EC 1.1.1.94 and 1.1.99.5, assigned to families of proteins in the bacteria. 342 -274552 TIGR03377 glycerol3P_GlpA glycerol-3-phosphate dehydrogenase, anaerobic, A subunit. Members of this protein family are the A subunit, product of the glpA gene, of a three-subunit, membrane-anchored, FAD-dependent anaerobic glycerol-3-phosphate dehydrogenase. [Energy metabolism, Anaerobic] 516 -213807 TIGR03378 glycerol3P_GlpB glycerol-3-phosphate dehydrogenase, anaerobic, B subunit. Members of this protein family are the B subunit, product of the glpB gene, of a three-subunit, membrane-anchored, FAD-dependent anaerobic glycerol-3-phosphate dehydrogenase. [Energy metabolism, Anaerobic] 419 -132422 TIGR03379 glycerol3P_GlpC glycerol-3-phosphate dehydrogenase, anaerobic, C subunit. Members of this protein family are the membrane-anchoring, non-catalytic C subunit, product of the glpC gene, of a three-subunit, FAD-dependent, anaerobic glycerol-3-phosphate dehydrogenase. GlpC lasks classical hydrophobic transmembrane helices; Cole, et al suggest interaction with the membrane may involve amphipathic helices. GlcC has conserved Cys-containing motifs suggestive of iron-sulfur binding. This complex is found mostly in Escherichia coli and closely related species. [Energy metabolism, Anaerobic] 397 -132423 TIGR03380 agmatine_aguA agmatine deiminase. Members of this family are agmatine deiminase (3.5.3.12), as characterized in Pseudomonas aeruginosa and plants. Related deiminases include the peptidyl-arginine deiminase (3.5.3.15) as found in Porphyromonas gingivalis. [Central intermediary metabolism, Polyamine biosynthesis] 357 -274553 TIGR03381 agmatine_aguB N-carbamoylputrescine amidase. Members of this family are N-carbamoylputrescine amidase (3.5.1.53). Bacterial genes are designated AguB. The AguAB pathway replaces SpeB for conversion of agmatine to putrescine in two steps rather than one. [Central intermediary metabolism, Polyamine biosynthesis] 279 -213808 TIGR03382 GC_trans_RRR Myxococcales GC_trans_RRR domain. The domain described here is small (about 30 amino acids), hydrophobic, only moderately conserved, and similar to numerous other transmembrane helix-containing sequence regions from convergent evolution. This domain is found, once per protein but in many proteins per genome in several bacteria of the order Myxococcales. It begins with a signature Gly-Cys motif. Its other features, including a hydrophobic transmembrane helix, Arg-rich cluster, and location at the protein C-terminus, resemble the PEP-CTERM proposed protein targeting domain. 27 -274554 TIGR03383 urate_oxi urate oxidase. Members of this protein family are urate oxidase, also called uricase. This protein contains two copies of the domain described by the uricase model pfam01014. In animals, this enzyme has been lost from primates and birds. [Central intermediary metabolism, Other] 282 -132427 TIGR03384 betaine_BetI transcriptional repressor BetI. BetI is a DNA-binding transcriptional repressor of the bet (betaine) regulon. In sequence, it is related to TetR (pfam00440). Choline, through BetI, induces the expression of the betaine biosynthesis genes betA and betB by derepression. The choline porter gene betT is also part of this regulon in Escherichia coli. Note that a different transcriptional regulator, ArcA, controls the expression of bet regulon genes in response to oxygen, as BetA is an oxygen-dependent enzyme. [Regulatory functions, DNA interactions] 189 -163244 TIGR03385 CoA_CoA_reduc CoA-disulfide reductase. Members of this protein family are CoA-disulfide reductase (EC 1.8.1.14), as characterized in Staphylococcus aureus, Pyrococcus horikoshii, and Borrelia burgdorferi, and inferred in several other species on the basis of high levels of CoA and an absence of glutathione as a protective thiol. [Cellular processes, Detoxification] 427 -274555 TIGR03388 ascorbase L-ascorbate oxidase, plant type. Members of this protein family are the copper-containing enzyme L-ascorbate oxidase (EC 1.10.3.3), also called ascorbase. This family is found in flowering plants, and shows greater sequence similarity to a family of laccases (EC 1.10.3.2) from plants than to other known ascorbate oxidases. 541 -274556 TIGR03389 laccase laccase, plant. Members of this protein family include the copper-containing enzyme laccase (EC 1.10.3.2), often several from a single plant species, and additional, uncharacterized, closely related plant proteins termed laccase-like multicopper oxidases. This protein family shows considerable sequence similarity to the L-ascorbate oxidase (EC 1.10.3.3) family. Laccases are enzymes of rather broad specificity, and classification of all proteins scoring about the trusted cutoff of this model as laccases may be appropriate. 539 -132431 TIGR03390 ascorbOXfungal L-ascorbate oxidase, fungal type. This model describes a family of fungal ascorbate oxidases, within a larger family of multicopper oxidases that also includes plant ascorbate oxidases (TIGR03388), plant laccases and laccase-like proteins (TIGR03389), and related proteins. The member from Acremonium sp. HI-25 is characterized. 538 -274557 TIGR03391 FeS_syn_CsdE cysteine desulfurase, sulfur acceptor subunit CsdE. Members of this protein family are CsdE, formerly called YgdK. This protein, found as a paralog to SufE in Escherichia coli, Yersinia pestis, Photorhabdus luminescens, and related species, works together and physically interacts with CsdA (a paralog of SufS). CsdA has cysteine desulfurase activity that is enhanced by this protein (CsdE), in which Cys-61 (numbered as in E. coli) is a sulfur acceptor site. This gene pair, although involved in FeS cluster biosynthesis, is not found next to other such genes as are its paralogs from the Suf or Isc systems. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 139 -274558 TIGR03392 FeS_syn_CsdA cysteine desulfurase, catalytic subunit CsdA. Members of this protein family are CsdS. This protein, found Escherichia coli, Yersinia pestis, Photorhabdus luminescens, and related species, and related to SufS, works together with and physically interacts with CsdE (a paralog of SufE). CsdA has cysteine desulfurase activity that is enhanced by CsdE, a sulfur acceptor protein. This gene pair, although involved in FeS cluster biosynthesis, is not found next to other such genes as are its paralogs from the Suf or Isc systems. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 398 -274559 TIGR03393 indolpyr_decarb indolepyruvate decarboxylase, Erwinia family. A family of closely related, thiamine pyrophosphate-dependent enzymes includes indolepyruvate decarboxylase (EC 4.1.1.74), phenylpyruvate decarboxylase (EC 4.1.1.43), pyruvate decarboxylase (EC 4.1.1.1), branched-chain alpha-ketoacid decarboxylase, etc.. Members of this group of homologs may overlap in specificity. Within the larger family, this model represents a clade of bacterial indolepyruvate decarboxylases, part of a pathway for biosynthesis of the plant hormone indole-3-acetic acid. Typically, these species interact with plants, as pathogens or as beneficial, root-associated bacteria. [Central intermediary metabolism, Other] 539 -274560 TIGR03394 indol_phenyl_DC indolepyruvate/phenylpyruvate decarboxylase, Azospirillum family. A family of closely related, thiamine pyrophosphate-dependent enzymes includes indolepyruvate decarboxylase (EC 4.1.1.74), phenylpyruvate decarboxylase (EC 4.1.1.43), pyruvate decarboxylase (EC 4.1.1.1), branched-chain alpha-ketoacid decarboxylase, etc.. Members of this group of homologs may overlap in specificity. This model represents a clade that includes a Azospirillum brasilense member active as both phenylpyruvate decarboxylase and indolepyruvate decarboxylase. 535 -132436 TIGR03395 sphingomy sphingomyelin phosphodiesterase. Members of this family are bacterial proteins that act as sphingomyelin phosphodiesterase (EC 3.1.4.12), also called sphingomyelinase. Some members of this family have been shown to act as hemolysins. [Cellular processes, Pathogenesis] 283 -274561 TIGR03396 PC_PLC phospholipase C, phosphocholine-specific, Pseudomonas-type. Members of this protein family are bacterial, phosphatidylcholine-hydrolyzing phospholipase C enzymes, with a characteristic domain architecture as found in hemolytyic (PlcH) and nonhemolytic (PlcN) secreted enzymes of Pseudomonas aeruginosa. PlcH hydrolyzes phosphatidylcholine to diacylglycerol and phosphocholine, but unlike PlcN can also hydrolyze sphingomyelin to ceramide ((N-acylsphingosine)) and phosphocholine. Members of this family share the twin-arginine signal sequence for Sec-independent transport across the plasma membrane. PlcH is secreted as a heterodimer with a small chaperone, PlcR, encoded immediately downstream. [Cellular processes, Pathogenesis] 689 -274562 TIGR03397 acid_phos_Burk acid phosphatase, Burkholderia-type. A member of this family, AcpA from Burkholderia mallei, has been charactized as a surface-bound glycoprotein with acid phosphatase activity, as can be shown with the colorigenic substrate 5-bromo-4-chloro-3-indolyl phosphate. This family shares regions of sequence similarity with phosphocholine-preferring phospholipase C enzymes (TIGR03396) from many of the same species. 483 -132439 TIGR03398 plc_access_R phospholipase C accessory protein PlcR. The class of microbial phosphocholine-preferring phospholipase C enzymes described by model TIGR03396 has two members in Pseudomonas aeruginosa, one of which (PlcH) is hemolytic and can hydrolyzes sphingomyelin as well as phosphatidylcholine. This model describes PlcR, an accessory protein for PlcH with which it forms a heterodimer. The member of the family from P. aeruginosa, although not the members from various Burkholderia species, is encoded immediately downstream of phospholipase C. 141 -274563 TIGR03399 RNA_3prim_cycl RNA 3'-phosphate cyclase. Members of this protein family are RNA 3'-phosphate cyclase (6.5.1.4), an enzyme whose function is conserved from E. coli to human. The modification this enzyme performs enables certain RNA ligations to occur, although the full biological roll for this enzyme is not fully described. This model separates this enzyme from a related protein, present only in eukaryotes, localized to the nucleolus, and involved in ribosomal modification. [Transcription, RNA processing] 326 -274564 TIGR03400 18S_RNA_Rcl1p 18S rRNA biogenesis protein RCL1. Members of this strictly eukaryotic protein family are not RNA 3'-phosphate cyclase (6.5.1.4), but rather a homolog with a distinct function, found in the nucleolus and required for ribosomal RNA processing. Homo sapiens has both a member of this RCL (RNA terminal phosphate cyclase like) family and EC 6.5.1.4, while Saccharomyces has a member of this family only. 360 -188314 TIGR03401 cyanamide_fam HD domain protein, cyanamide hydratase family. Members of this protein family are known, so far, in the Ascomycota, a branch of the Fungi, and contain an HD domain (pfam01966), found typically in various metal-dependent phosphohydrolases. The only characterized member of this family, from the soil fungus Myrothecium verrucaria, is cyanamide hydratase (EC 4.2.1.69), a zinc-containing homohexamer that adds water to the fertilizer cyanamide (NCNH2), a nitrile compound, to produce urea (NH2-CO-NH2). Homologs are likely to be nitrile hydratases. 228 -132443 TIGR03402 FeS_nifS cysteine desulfurase NifS. Members of this protein family are NifS, one of several related families of cysteine desulfurase involved in iron-sulfur (FeS) cluster biosynthesis. NifS is part of the NIF system, usually associated with other nif genes involved in nitrogenase expression and nitrogen fixation. The protein family is given a fairly broad interpretation here. It includes a clade nearly always found in extended nitrogen fixation genomic regions, plus a second clade more closely related to the first than to IscS and also part of NifS-like/NifU-like systems. This model does not extend to a more distantly clade found in the epsilon proteobacteria such as Helicobacter pylori, also named NifS in the literature, built instead in TIGR03403. 379 -132444 TIGR03403 nifS_epsilon cysteine desulfurase, NifS family, epsilon proteobacteria type. Members of this family are the NifS-like cysteine desulfurase of the epsilon division of the Proteobacteria, similar to the NifS protein of nitrogen-fixing bacteria. Like NifS, and unlike IscS, this protein is found as part of a system of just two proteins, a cysteine desulfurase and a scaffold, for iron-sulfur cluster biosynthesis. This protein is called NifS by Olsen, et al. (), so we use this designation. 382 -274565 TIGR03404 bicupin_oxalic bicupin, oxalate decarboxylase family. Members of this protein family are defined as bicupins as they have two copies of the cupin domain (pfam00190). Two different known activities for members of this family are oxalate decarboxylase (EC 4.1.1.2) and oxalate oxidase (EC 1.2.3.4), although the latter activity has more often been found in distantly related monocupin (germin) proteins. 367 -274566 TIGR03405 Phn_Fe-ADH phosphonate metabolism-associated iron-containing alcohol dehydrogenase. This small clade of iron-containing alcohol dehydrogenases of the pfam00465 family is found in genomic contexts indicating a role in the metabolism of phosphonates. In Delftia acidovorans SPH-1, the gene ZP_01580650.1 is adjacent to and running in the same direction as ZP_01580649.1 encoding the enzyme phosphonatase (PhnX, TIGR01422). Upstream are also found genes encoding components of a phosphonate ABC transport complex. In Ralstonia eutropha H16 and Verminephrobacter eiseniae EF01-2 the dehydrogenase is followed by a homolog of the PhnB gene, a putative phosphonate-specific MFS-type transporter. In Azoarcus BH72 the gene is preceded by Phosphoenolpyruvate phosphomutase (aepX) and a putative phosphonopyruvate decarboxylase (aepY), two genes involved in the biosynthesis of phosphonoacetaldehyde (Pald). Ususally these two are accompanied by a specific transaminase, AepZ, which converts Pald to 2-aminoethylphosphonate (2-AEP). 2-hydroxyethylphosphonate (2-HEP), the presumed product of the reaction of Pald with an alcohol dehydrogenase, is a biologically novel but reasonable analog of 2-AEP and may be a constituent of as-yet undescribed natural products. In the case of Azoarcus, downstream of the dehydrogenase is a CDP-glycerol:glycerophosphate transferase homolog that may indicate the existence of a pathway for 2-HEP-derived phosphonolipid biosynthesis. 355 -213809 TIGR03406 FeS_long_SufT probable FeS assembly SUF system protein SufT. The function is unknown for this protein family, but members are found almost always in operons for the the SUF system of iron-sulfur cluster biosynthesis. The SUF system is present elsewhere on the chromosome for those few species where SUF genes are not adjacent. This family shares this property of association with the SUF system with a related family, TIGR02945. TIGR02945 consists largely of a DUF59 domain (see pfam01883), while this protein is about double the length, with a unique N-terminal domain and DUF59 C-terminal domain. A location immediately downstream of the cysteine desulfurase gene sufS in many contexts suggests the gene symbol sufT. Note that some other homologs of this family and of TIGR02945, but no actual members of this family, are found in operons associated with phenylacetic acid (or other ring-hydroxylating) degradation pathways. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 174 -132448 TIGR03407 urea_ABC_UrtA urea ABC transporter, urea binding protein. Members of this protein family are ABC transporter substrate-binding proteins associated with urea transport and metabolism. This protein is found in a conserved five-gene transport operon typically found adjacent to urease genes. It was shown in Cyanobacteria that disruption leads to the loss of high-affinity urea transport activity. Members of this protein family tend to have the twin-arginine signal for Sec-independent transport across the plasma membrane. [Transport and binding proteins, Amino acids, peptides and amines] 359 -132449 TIGR03408 urea_trans_UrtC urea ABC transporter, permease protein UrtC. Members of this protein family are ABC transporter permease proteins associated with urea transport and metabolism. This protein is found in a conserved five-gene transport operon typically found adjacent to urease genes. It was shown in Cyanobacteria that disruption leads to the loss of high-affinity urea transport activity. [Transport and binding proteins, Amino acids, peptides and amines] 313 -200272 TIGR03409 urea_trans_UrtB urea ABC transporter, permease protein UrtB. Members of this protein family are ABC transporter permease proteins associated with urea transport and metabolism. This protein is found in a conserved five-gene transport operon typically found adjacent to urease genes. It was shown in Cyanobacteria that disruption leads to the loss of high-affinity urea transport activity. [Transport and binding proteins, Amino acids, peptides and amines] 291 -274567 TIGR03410 urea_trans_UrtE urea ABC transporter, ATP-binding protein UrtE. Members of this protein family are ABC transporter ATP-binding subunits associated with urea transport and metabolism. This protein is found in a conserved five-gene transport operon typically found adjacent to urease genes. It was shown in Cyanobacteria that disruption leads to the loss of high-affinity urea transport activity. [Transport and binding proteins, Amino acids, peptides and amines] 230 -274568 TIGR03411 urea_trans_UrtD urea ABC transporter, ATP-binding protein UrtD. Members of this protein family are ABC transporter ATP-binding subunits associated with urea transport and metabolism. This protein is found in a conserved five-gene transport operon typically found adjacent to urease genes. It was shown in Cyanobacteria that disruption leads to the loss of high-affinity urea transport activity. [Transport and binding proteins, Amino acids, peptides and amines] 242 -132453 TIGR03412 iscX_yfhJ FeS assembly protein IscX. Members of this protein family are YfhJ, a protein of the ISC system for iron-sulfur cluster assembly. Other genes in the system include iscSUA, hscBA, and fdx. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 63 -274569 TIGR03413 GSH_gloB hydroxyacylglutathione hydrolase. Members of this protein family are hydroxyacylglutathione hydrolase, a detoxification enzyme known as glyoxalase II. It follows lactoylglutathione lyase, or glyoxalase I, and acts to remove the toxic metabolite methylglyoxal and related compounds. This protein belongs to the broader metallo-beta-lactamase family (pfam00753). [Cellular processes, Detoxification] 248 -188316 TIGR03414 ABC_choline_bnd choline ABC transporter, periplasmic binding protein. Partial phylogenetic profiling () vs. the genome property of glycine betaine biosynthesis from choline consistently reveals a member of this ABC transporter periplasmic binding protein as the best match, save for the betaine biosynthesis enzymes themselves. Genomes often carry several paralogs, one encoded together with the permease and ATP-binding components and another encoded next to a choline-sulfatase gene, suggesting that different members of this protein family interact with shared components and give some flexibility in substrate. Of two members from Sinorhizobium meliloti 1021, one designated ChoX has been shown experimentally to bind choline (though not various related compounds such as betaine) and to be required for about 60 % of choline uptake. Members of this protein have an invariant Cys residue near the N-terminus and likely are lipoproteins. [Transport and binding proteins, Amino acids, peptides and amines] 290 -188317 TIGR03415 ABC_choXWV_ATP choline ABC transporter, ATP-binding protein. Members of this protein family are the ATP-binding subunit of a three-protein transporter. This family belongs, more broadly, to the family of proline and glycine-betaine transporters, but members have been identified by direct characterization and by bioinformatic means as choline transporters. Many species have several closely-related members of this family, probably with variable abilities to act additionally on related quaternary amines. [Transport and binding proteins, Amino acids, peptides and amines] 382 -188318 TIGR03416 ABC_choXWV_perm choline ABC transporter, permease protein. 267 -274570 TIGR03417 chol_sulfatase choline-sulfatase. 500 -188320 TIGR03418 chol_sulf_TF putative choline sulfate-utilization transcription factor. Members of this protein family are transcription factors of the LysR family. Their genes typically are divergently transcribed from choline-sulfatase genes. That enzyme makes choline, a precursor to the osmoprotectant glycine-betaine, available by hydrolysis of choline sulfate. 291 -132460 TIGR03419 NifU_clost FeS cluster assembly scaffold protein NifU, Clostridium type. NifU and NifS form a pair of iron-sulfur (FeS) cluster biosynthesis proteins much simpler than the ISC and SUF systems. Members of this protein family are a distinct group of NifU-like proteins, found always to a NifS-like protein and restricted to species that lack a SUF system. Typically, NIF systems service a smaller number of FeS-containing proteins than do ISC or SUF. Members of this particular branch typically are found, almost half the time, near the mnmA gene, involved in the carboxymethylaminomethyl modification of U34 in some tRNAs (see GenProp0704). While other NifU proteins are associated with nitrogen fixation, this family is not. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 121 -274571 TIGR03420 DnaA_homol_Hda DnaA regulatory inactivator Hda. Members of this protein family are Hda (Homologous to DnaA). These proteins are about half the length of DnaA and homologous over length of Hda. In the model species Escherichia coli, the initiation of DNA replication requires DnaA bound to ATP rather than ADP; Hda helps facilitate the conversion of DnaA-ATP to DnaA-ADP. [DNA metabolism, DNA replication, recombination, and repair] 226 -274572 TIGR03421 FeS_CyaY iron donor protein CyaY. Members of this protein family are the iron-sulfur cluster (FeS) metabolism protein CyaY, a homolog of eukaryotic frataxin. ISC is one of several bacterial systems for FeS assembly; we find by Partial Phylogenetic Profiling vs. the ISC system that CyaY most like work with the ISC system for FeS cluster biosynthesis. A study of of cyaY mutants in Salmonella enterica bears this out. Although the trusted cutoff is set low enough to include eukaryotic frataxin sequences, a narrower, exception-type model (TIGR03421) identifies identifies members of that specific set. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 102 -132463 TIGR03422 mito_frataxin frataxin. Frataxin is a mitochondrial protein, mutation of which leads to the disease Friedreich's ataxia. Its orthologs are widely distributed in the bacteria, associated with the ISC system for iron-sulfur cluster assembly, and designated CyaY. This exception-type model allows those examples of frataxin per se that score above the trusted cutoff to the CyaY equivalog-type model (TIGR03421) to be named appropriately. 97 -274573 TIGR03423 pbp2_mrdA penicillin-binding protein 2. Members of this protein family are penicillin-binding protein 2 (PBP-2), a protein whose gene (designated pbpA or mrdA) generally is found next to the gene for RodA, a protein required for rod (bacillus) shape in many bacteria. PBP-2 acts as a transpeptidase for cell elongation (hence, rod-shape). [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 592 -132465 TIGR03424 urea_degr_1 urea carboxylase-associated protein 1. A number of bacteria degrade urea as a nitrogen source by the urea carboxylase/allophanate hydrolase pathway, which uses biotin and consumes ATP, rather than my means of the nickel-dependent enzyme urease. This model represents one of a pair of homologous, tandem uncharacterized genes found together with the urea carboxylase and allophanate hydrolase genes. 198 -163257 TIGR03425 urea_degr_2 urea carboxylase-associated protein 2. A number of bacteria degrade urea as a nitrogen source by the urea carboxylase/allophanate hydrolase pathway, which uses biotin and consumes ATP, rather than my means of the nickel-dependent enzyme urease. This model represents one of a pair of homologous, tandem uncharacterized genes found together with the urea carboxylase and allophanate hydrolase genes. 233 -274574 TIGR03426 shape_MreD rod shape-determining protein MreD. Members of this protein family are the MreD protein of bacterial cell shape determination. Most rod-shaped bacteria depend on MreB and RodA to achieve either a rod shape or some other non-spherical morphology such as coil or stalk formation. MreD is encoded in an operon with MreB, and often with RodA and PBP-2 as well. It is highly hydrophobic (therefore somewhat low-complexity) and highly divergent, and therefore sometimes tricky to discover by homology, but this model finds most examples. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 152 -213811 TIGR03427 ABC_peri_uca ABC transporter periplasmic binding protein, urea carboxylase region. Members of this family are ABC transporter periplasmic binding proteins associated with the urea carboxylase/allophanate hydrolase pathway, an alternative to urease for urea degradation. The protein is restricted to bacteria with the pathway, with its gene close to the urea carboxylase and allophanate hydrolase genes. The substrate for this transporter therefore is likely to be urea or a compound from which urea is easily derived. [Transport and binding proteins, Unknown substrate] 328 -132469 TIGR03428 ureacarb_perm permease, urea carboxylase system. A number of bacteria obtain nitrogen by biotin- and ATP-dependent urea degradation system distinct from urease. The two characterized proteins of this system are the enzymes urea carboxylase and allophanate hydrolase, but other, uncharacterized proteins co-occur as genes encoded nearby in multiple organisms. This family includes predicted permeases of the amino acid permease family, likely to transport either urea or a compound from which urea is derived. It is found so far only Actinobacteria, whereas a number of other species with the urea carboxylase have an adjacent ABC transporter operon. 475 -274575 TIGR03429 arom_pren_DMATS aromatic prenyltransferase, DMATS type. Members of this protein family are mostly fungal enzymes of secondary metabolite production. Characterized or partially characterized members include several examples of dimethylallyltryptophan synthase, a brevianamide F prenyltransferase, LtxC from lyngbyatoxin biosynthesis, and a probable dimethylallyl tyrosine synthase. 405 -132471 TIGR03430 trp_dimet_allyl tryptophan dimethylallyltransferase. Members of this family are the enzyme tryptophan dimethylallyltransferase (EC 2.5.1.34), a distinct clade within a larger group of aromatic prenyltransferases that may act on on trp-containing cyclic dipeptides, or on tyrosine or other related substrates. Tryptophan dimethylallyltransferase and related enzymes typically are of fungal origin are involved in the biosynthesis of secondary metabolites such as ergot alkaloids. 419 -132472 TIGR03431 PhnD phosphonate ABC transporter, periplasmic phosphonate binding protein. This model is a subset of the broader subfamily of phosphate/phosphonate binding protein ABC transporter components, TIGR01098. In this model all members of the seed have support from genomic context for association with pathways for the metabolims of phosphonates, particularly the C-P lyase system, GenProp0232. This model includes the characterized phnD gene from E. coli. Note that this model does not identify all phnD-subfamily genes with evident phosphonate context, but all sequences above the trusted context may be inferred to bind phosphonate compounds even in the absence of such context. Furthermore, there is ample evidence to suggest that many other members of the TIGR01098 subfamily have a different primary function. 288 -163260 TIGR03432 yjhG_yagF putative dehydratase, YjhG/YagF family. This homolog of dihydroxy-acid dehydratases has an odd, sparse distribution. Members are found in two Acidobacteria, two Planctomycetes, Bacillus clausii KSM-K16, and (in two copies each) in strains K12-MG1655 and W3110 of Escherichia coli. The local context is not well conserved, but a few members are adjacent to homologs of the gluconate:H+ symporter (see TIGR00791). [Unknown function, Enzymes of unknown specificity] 640 -163261 TIGR03433 padR_acidobact transcriptional regulator, Acidobacterial, PadR-family. Members of this protein family are putative transcriptional regulators of the PadR family, as found in species of the Acidobacteria. This family of proteins has expanded greatly in this lineage, and where it regularly is found in the vicinity of a putative transporter protein [Regulatory functions, DNA interactions] 100 -274576 TIGR03434 ADOP Acidobacterial duplicated orphan permease. Members of this protein family are found, so far, only in three species of Acidobacteria, namely Acidobacteria bacterium Ellin345, Acidobacterium capsulatum ATCC 51196, and Solibacter usitatus Ellin6076, where they form large paralogous families. Each protein contains two copies of a domain called the efflux ABC transporter permease protein (pfam02687). However, unlike other members of that family (including LolC, FtsX, and MacB), genes for these proteins are essentially never found fused or adjacent to ABC transporter ATP-binding protein (pfam00005) genes. We name this family ADOP, for Acidobacterial Duplicated Orphan Permease, to reflect the restricted lineage, internal duplication, lack of associated ATP-binding cassette proteins, and permease homology. The function is unknown. 803 -132476 TIGR03435 Soli_TIGR03435 soil-associated protein, TIGR03435 family. Bacterial reference strains encoding members of this protein family are all isolated from soil. These include 39 members from Solibacter usitatus Ellin6076, 27 from Acidobacterium sp. MP5ACTX8 (both Acidobacteria), and four from Pedosphaera parvula Ellin514 (Verrucomicrobia). The family is well-diversified, with few pairs showing greater than 50 % pairwise identity. A few members are fused to Peptidase_M56 domains (see pfam05569), to Sigma70_r2 domains (see pfam04542), or have a duplication of this domain. 237 -274577 TIGR03436 acidobact_VWFA VWFA-related Acidobacterial domain. Members of this family are bacterial domains that include a region related to the von Willebrand factor type A (VWFA) domain (pfam00092). These domains are restricted to, and have undergone a large paralogous family expansion in, the Acidobacteria, including Solibacter usitatus and Acidobacterium capsulatum ATCC 51196. 296 -274578 TIGR03437 Soli_cterm Solibacter uncharacterized C-terminal domain. This model describes a protein domain found in 90 proteins of Solibacter usitatus Ellin6076, nearly always as the C-terminal domain of a much larger protein. No homologs to this domain are detected outside of S. usitatus, a member of the Acidobacteria. 215 -274579 TIGR03438 egtD_ergothio dimethylhistidine N-methyltransferase. This model represents a distinct set of uncharacterized proteins found in the bacteria. Analysis by PSI-BLAST shows remote sequence homology to methyltransferases [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 301 -274580 TIGR03439 methyl_EasF probable methyltransferase domain, EasF family. This model represents an uncharacterized domain of about 300 amino acids with homology to S-adenosylmethionine-dependent methyltransferases. Proteins with this domain are exclusively fungal. A few, such as EasF from Neotyphodium lolii, are associated with the biosynthesis of ergot alkaloids, a class of fungal secondary metabolites. EasF may, in fact, be the AdoMet:dimethylallyltryptophan N-methyltransferase, the enzyme that follows tryptophan dimethylallyltransferase (DMATS) in ergot alkaloid biosynthesis. Several other members of this family, including mug158 (meiotically up-regulated gene 158 protein) from Schizosaccharomyces pombe, contain an additional uncharacterized domain DUF323 (pfam03781). 319 -274581 TIGR03440 egtB_TIGR03440 ergothioneine biosynthesis protein EgtB. Members of this family include EgtB, and enzyme of the ergothioneine biosynthesis, as found in numerous Actinobacteria. Characterized homologs to this family include a formylglycine-generating enzyme that serves as a maturase for an aerobic sulfatase (cf. the radical SAM enzymes that serve as anaerobic sulfatase maturases). [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 406 -163267 TIGR03441 urea_trans_yut urea transporter, Yersinia type. Members of this protein family are bacterial urea transporters, found not only is species that contain urease, but adjacent to the urease operon. It was characterized in Yersinia pseudotuberculosis. Members are homologous to eukaryotic members of solute carrier family 14, a family that includes urea transporters, and to bacterial proteins in species with no detectable urea degradation system. [Transport and binding proteins, Other] 292 -132483 TIGR03442 TIGR03442 ergothioneine biosynthesis protein EgtC. Members of this strictly bacterial protein family show similarity to class II glutamine amidotransferases (see pfam00310). They are distinguished by appearing in a genome context with, and usually adjacent to or between, members of families TIGR03438 (an uncharacterized methyltransferase) and TIGR03440 (an uncharacterized protein). [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 251 -274582 TIGR03443 alpha_am_amid L-aminoadipate-semialdehyde dehydrogenase. Members of this protein family are L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31), product of the LYS2 gene. It is also called alpha-aminoadipate reductase. In fungi, lysine is synthesized via aminoadipate. Currently, all members of this family are fungal. 1389 -274583 TIGR03444 EgtA_Cys_ligase ergothioneine biosynthesis glutamate--cysteine ligase EgtA. Members of this bacterial protein family, EgtA, resemble the glutamate--cysteine ligase of the two-step pathway for glutathione (GSH) biosynthesis, but instead are involved in the biosynthesis of the histidine-derived thiol, ergothioneine (EGT). Successful in vitro reconstitution of EGT biosynthesis using EgtBCDE and gamma-L-glutamyl-L-cysteine suggests that this enzyme is a bone fide glutamate--cysteine ligase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 390 -274584 TIGR03445 mycothiol_MshB N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase. Members of this protein family are N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase, also called 1D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase, the MshB protein of mycothiol biosynthesis in Mycobacterium tuberculosis and related species. [Cellular processes, Detoxification] 284 -132487 TIGR03446 mycothiol_Mca mycothiol conjugate amidase Mca. Mycobacterium tuberculosis, Corynebacterium glutamicum, and related species use the thiol mycothiol in place of glutathione. This enzyme, homologous to the (dispensible) MshB enzyme of mycothiol biosynthesis, is described as an amidase that acts on conjugates to mycothiol. It is a detoxification enzyme. [Cellular processes, Detoxification] 283 -132488 TIGR03447 mycothiol_MshC cysteine--1-D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase. Members of this protein family are MshC, l-cysteine:1-D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase, an enzyme that uses ATP to ligate a Cys residue to a mycothiol precursor molecule, in the second to last step in mycothiol biosynthesis. This enzyme shows considerable homology to Cys--tRNA ligases, and many instances are misannotated as such. Mycothiol is found in Mycobacterium tuberculosis, Corynebacterium glutamicum, Streptomyces coelicolor, and various other members of the Actinobacteria. Mycothiol is an analog to glutathione. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 411 -132489 TIGR03448 mycothiol_MshD mycothiol synthase. Members of this family are MshD, the acetyltransferase that catalyzes the final step of mycothiol biosynthesis in various members of the Actinomyctes, Mycothiol replaces glutathione in these species. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 292 -132490 TIGR03449 mycothiol_MshA D-inositol-3-phosphate glycosyltransferase. Members of this protein family, found exclusively in the Actinobacteria, are MshA, the glycosyltransferase of mycothiol biosynthesis. Mycothiol replaces glutathione in these species. 405 -132491 TIGR03450 mycothiol_INO1 inositol 1-phosphate synthase, Actinobacterial type. This enzyme, inositol 1-phosphate synthase as found in Actinobacteria, produces an essential precursor for several different products, including mycothiol, which is a glutathione analog, and phosphatidylinositol, which is a phospholipid. 351 -132492 TIGR03451 mycoS_dep_FDH S-(hydroxymethyl)mycothiol dehydrogenase. Members of this protein family are mycothiol-dependent formaldehyde dehydrogenase (EC 1.2.1.66). This protein is found, so far, only in the Actinobacteria (Mycobacterium sp., Streptomyces sp., Corynebacterium sp., and related species), where mycothione replaces glutathione. [Cellular processes, Detoxification] 358 -132493 TIGR03452 mycothione_red mycothione reductase. Mycothiol, a glutathione analog in Mycobacterium tuberculosis and related species, can form a disulfide-linked dimer called mycothione. This enzyme can reduce mycothione to regenerate two mycothiol molecules. The enzyme shows some sequence similarity to glutathione-disulfide reductase, trypanothione-disulfide reductase, and dihydrolipoamide dehydrogenase. The characterized protein from M. tuberculosis, a homodimer, has FAD as a cofactor, one per monomer, and uses NADPH as a substrate. 452 -274585 TIGR03453 partition_RepA plasmid partitioning protein RepA. Members of this family are the RepA (or ParA) protein involved in replicon partitioning. All known examples occur in bacterial species with two or more replicons, on a plasmid or the smaller chromosome. Note that an apparent exception may be seen as a pseudomolecule from assembly of an incompletely sequenced genome. Members of this family belong to a larger family that also includes the enzyme cobyrinic acid a,c-diamide synthase, but assignment of that name to members of this family would be in error. [Mobile and extrachromosomal element functions, Plasmid functions] 387 -274586 TIGR03454 partition_RepB plasmid partitioning protein RepB. Members of this family are the RepB protein involved in replicon partitioning. RepB is found, in general, as part of a repABC operon in plasmids and small chromosomes, separate from the main chromosome, in various bacteria. This model describes a rather narrow clade of proteins; it should be noted that additional homologs scoring below the trusted cutoff have very similar functions, although they may be named differently. [Mobile and extrachromosomal element functions, Plasmid functions] 325 -274587 TIGR03455 HisG_C-term ATP phosphoribosyltransferase, C-terminal domain. This domain corresponds to the C-terminal third of the HisG protein. It is absent in many lineages. 92 -132497 TIGR03457 sulphoacet_xsc sulfoacetaldehyde acetyltransferase. Members of this protein family are sulfoacetaldehyde acetyltransferase, an enzyme of taurine utilization. Taurine, or 2-aminoethanesulfonate, can be used by bacteria as a source of carbon, nitrogen, and sulfur. [Central intermediary metabolism, Other] 579 -274588 TIGR03458 YgfH_subfam succinate CoA transferase. This family of CoA transferases includes enzymes catalyzing at least two related but distinct activities. The E. coli YgfH protein has been characterized as a propionyl-CoA:succinate CoA transferase where it appears to be involved in a pathway for the decarboxylation of succinate to propionate. The Clostridium kluyveri CAT1 protein has been characterized as a acetyl-CoA:succinate CoA transferase and is believed to be involved in anaerobic succinate degradation. The propionate:succinate transferase activity has been reported in the propionic acid fermentation of propionibacterium species, where it is distinct from the coupled activities of distinct nucleotide-triphosphate dependent succinate and propionate/acetate CoA transferases (as inferred from activity in the absence of NTPs). The family represented by this model includes a member from Propionibacterium acnes KPA171202 which is likely to be responsible for this activity. A closely related clade not included in this family are the Ach1p proteins of fungi which are acetyl-CoA hydrolases. This name has been applied to many of the proteins represented by this model, possibly erroneously. 485 -274589 TIGR03459 crt_membr carotene biosynthesis associated membrane protein. This model represents a family of hydrophobic and presumed membrane proteins found in the Actinobacteria. The genes encoding these proteins are syntenically associated with (found proximal to) genes of carotene biosynthesis ususally including phytoene synthase (crtB), phytoene dehydrogenase (crtI) and geranylgeranyl pyrophosphate synthase (ispA). 456 -132500 TIGR03460 crt_membr_arch carotene biosynthesis associated membrane protein. 232 -132501 TIGR03461 pabC_Proteo aminodeoxychorismate lyase. Members of this protein family are aminodeoxychorismate lyase (ADC lyase), EC 4.1.3.38, the PabC protein of PABA biosynthesis. PABA (para-aminobenzoate) is a precursor of folate, needed for de novo purine biosynthesis. This enzyme is a pyridoxal-phosphate-binding protein in the class IV aminotransferase family (pfam01063). [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 261 -274590 TIGR03462 CarR_dom_SF lycopene cyclase domain. This domain is often repeated twice within the same polypeptide, as is observed in Archaea, Thermus, Sphingobacteria and Fungi. In the fungal sequences, this tandem domain pair is observed as the N-terminal half of a bifunctional protein, where it has been characterized as a lycopene beta-cyclase and the C-terminal half is a phytoene synthetase. In Myxococcus and Actinobacterial genomes this domain appears as a single polypeptide, tandemly repeated and usually in a genomic context consistent with a role in carotenoid biosynthesis. It is unclear whether any of the sequences in this family truly encode lycopene epsilon cyclases. However a number are annotated as such. The domain is generally hydrophobic with a number of predicted membrane spanning segments and contains a distinctive motif (hPhEEhhhhhh). In certain sequences one of either the proline or glutamates may vary, but always one of the tandem pair appear to match this canonical sequence exactly. 89 -274591 TIGR03463 osq_cycl 2,3-oxidosqualene cyclase. This model identifies 2,3-oxidosqualene cyclases from Stigmatella aurantiaca which produces cycloartenol, and Gemmata obscuriglobus and Methylococcus capsulatus, which each produce the closely related sterol, lanosterol. 634 -274592 TIGR03464 HpnC squalene synthase HpnC. This family of genes are members of a superfamily (pfam00494) of phytoene and squalene synthases which catalyze the head-t0-head condensation of polyisoprene pyrophosphates. The genes of this family are often found in the same genetic locus with squalene-hopene cyclase genes, and are never associated with genes for the metabolism of phytoene. In the organisms Zymomonas mobilis and Bradyrhizobium japonicum these genes have been characterized as squalene synthases (farnesyl-pyrophosphate ligases). Often, these genes appear in tandem with the HpnD gene which appears to have resulted from an ancient gene duplication event. Presumably these proteins form a heteromeric complex, but this has not yet been experimentally demonstrated. 266 -163278 TIGR03465 HpnD squalene synthase HpnD. The genes of this family are often found in the same genetic locus with squalene-hopene cyclase genes, and are never associated with genes for the metabolism of phytoene. In the organisms Zymomonas mobilis and Bradyrhizobium japonicum these genes have been characterized as squalene synthases (farnesyl-pyrophosphate ligases). Often, these genes appear in tandem with the HpnC gene which appears to have resulted from an ancient gene duplication event. Presumably these proteins form a heteromeric complex, but this has not yet been experimentally demonstrated. 266 -163279 TIGR03466 HpnA hopanoid-associated sugar epimerase. The sequences in this family are members of the pfam01370 superfamily of NAD-dependent epimerases and dehydratases typically acting on nucleotide-sugar substrates. The genes of the family modeled here are generally in the same locus with genes involved in the biosynthesis and elaboration of hopene, the cyclization product of the polyisoprenoid squalene. This gene and its association with hopene biosynthesis in Zymomonas mobilis has been noted in the literature where the gene symbol hpnA was assigned. Hopanoids are known to be components of the plasma membrane and to have polar sugar head groups in Z. mobilis and other species. 328 -274593 TIGR03467 HpnE squalene-associated FAD-dependent desaturase. The sequences in this family are members of the pfam01593 superfamily of flavin-containing amine oxidases which include the phytoene desaturases. These sequences also include a FAD-dependent oxidoreductase domain, pfam01266. The genes of the family modeled here are generally in the same locus with genes involved in the biosynthesis and elaboration of squalene, the condensation product of the polyisoprenoid farnesyl pyrophosphate. This gene and its association with hopene biosynthesis in Zymomonas mobilis has been noted in the literature where the gene symbol hpnE was assigned. This gene is also found in contexts where the downstream conversion of squalene to hopenes is not evidence. The precise nature of the reaction catalyzed by this enzyme is unknown at this time. 419 -274594 TIGR03468 HpnG hopanoid-associated phosphorylase. The sequences in this family are members of the pfam01048 family of phosphorylases typically acting on nucleotide-sugar substrates. The genes of the family modeled here are generally in the same locus with genes involved in the biosynthesis and elaboration of hopene, the cyclization product of the polyisoprenoid squalene. This gene is adjacent to the genes PhnA-E and squalene-hopene cyclase (which would be HpnF) in Zymomonas mobilis and their association with hopene biosynthesis has been noted in the literature. Extending the gene symbol sequence, we suggest the symbol HpnG for the product of this gene. Hopanoids are known to be components of the plasma membrane and to have polar sugar head groups in Z. mobilis and other species. 212 -213815 TIGR03469 HpnB hopene-associated glycosyltransferase HpnB. This family of genes include a glycosyl transferase, group 2 domain (pfam00535) which are responsible, generally for the transfer of nucleotide-diphosphate sugars to substrates such as polysaccharides and lipids. The genes of this family are often found in the same genetic locus with squalene-hopene cyclase genes, and are never associated with genes for the metabolism of phytoene. Indeed, the members of this family appear to never be found in a genome lacking squalene-hopene cyclase (SHC), although not all genomes encoding SHC have this glycosyl transferase. In the organism Zymomonas mobilis the linkage of this gene to hopanoid biosynthesis has been noted and the gene named HpnB. Hopanoids are known to feature polar glycosyl head groups in many organisms. 384 -274595 TIGR03470 HpnH hopanoid biosynthesis associated radical SAM protein HpnH. The sequences represented by this model are members of the radical SAM superfamily of enzymes (pfam04055). These enzymes utilize an iron-sulfur redox cluster and S-adenosylmethionine to carry out diverse radical mediated reactions. The members of this clade are frequently found in the same locus as squalene-hopene cyclase (SHC, TIGR01507) and other genes associated with the biosynthesis of hopanoid natural products. The linkage between SHC and this radical SAM enzyme is strong; one is nearly always observed in the same genome where the other is found. A hopanoid biosynthesis locus was described in Zymomonas mobilis consisting of the genes HpnA-E and SHC (HpnF). Continuing past SHC are found a phosphorylase enzyme (ZMO0873, i.e. HpnG, TIGR03468) and this radical SAM enzyme (ZMO0874) which we name here HpnH. Granted, in Z. mobilis, HpnH is in a convergent orientation with respect to HpnA-G, but one gene beyond HpnH and running in the same convergent direction is IspH (ZM0875, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase), an essential enzyme of IPP biosynthesis and therefore essential for the biosynthesis of hopanoids. One of the well-described hopanoid intermediates is bacteriohopanetetrol. In the conversion from hopene several reactions must occur in the side chain for which a radical mechanism might be reasonable. These include the four (presumably anaerobic) hydroxylations and a methyl shift. 318 -132511 TIGR03471 HpnJ hopanoid biosynthesis associated radical SAM protein HpnJ. The sequences represented by this model are members of the radical SAM superfamily of enzymes (pfam04055). These enzymes utilize an iron-sulfur redox cluster and S-adenosylmethionine to carry out diverse radical mediated reactions. The member of this clade from Acidithiobacillus ferrooxidans ATCC 23270 (AFE_0975) is found in the same locus as squalene-hopene cyclase (SHC, TIGR01507) and other genes associated with the biosynthesis of hopanoid natural products. Similarly, in Ralstonia eutropha JMP134 (Reut_B4901) this gene is adjacent to HpnAB, IspH and HpnH (TIGR03470), although SHC itself is elsewhere in the genome. Notably, this gene (here named HpnJ) and three others form a conserved set (HpnIJKL) which occur in a subset of all genomes containing the SHC enzyme. This relationship was discerned using the method of partial phylogenetic profiling. This group includes Zymomonas mobilis, the organism where the initial hopanoid biosynthesis locus was described consisting of the genes HpnA-E and SHC (HpnF). Continuing past SHC are found a phosphorylase enzyme (ZMO0873, i.e. HpnG, TIGR03468) and another radical SAM enzyme (ZMO0874), HpnH. Although discontinuous in Z. mobilis, we continue the gene symbol sequence with HpnIJKL. One of the well-described hopanoid intermediates is bacteriohopanetetrol. In the conversion from hopene several reactions must occur in the side chain for which a radical mechanism might be reasonable. These include the four (presumably anaerobic) hydroxylations and a methyl shift. 472 -132512 TIGR03472 HpnI hopanoid biosynthesis associated glycosyl transferase protein HpnI. This family of genes include a glycosyl transferase, group 2 domain (pfam00535) which are responsible, generally for the transfer of nucleotide-diphosphate sugars to substrates such as polysaccharides and lipids. The member of this clade from Acidithiobacillus ferrooxidans ATCC 23270 (AFE_0974) is found in the same locus as squalene-hopene cyclase (SHC, TIGR01507) and other genes associated with the biosynthesis of hopanoid natural products. Similarly, in Ralstonia eutropha JMP134 (Reut_B4902) this gene is adjacent to HpnAB, IspH and HpnH (TIGR03470), although SHC itself is elsewhere in the genome. Notably, this gene (here named HpnI) and three others form a conserved set (HpnIJKL) which occur in a subset of all genomes containing the SHC enzyme. This relationship was discerned using the method of partial phylogenetic profiling. This group includes Zymomonas mobilis, the organism where the initial hopanoid biosynthesis locus was described consisting of the genes HpnA-E and SHC (HpnF). Continuing past SHC are found a phosphorylase enzyme (ZMO0873, i.e. HpnG, TIGR03468) and another radical SAM enzyme (ZMO0874), HpnH. Although discontinuous in Z. mobilis, we continue the gene symbol sequence with HpnIJKL. Hopanoids are known to feature polar glycosyl head groups in many organisms. 373 -132513 TIGR03473 HpnK hopanoid biosynthesis associated protein HpnK. The sequences represented by this model are members of the pfam04794 "YdjC-like" family of uncharacterized proteins. The member of this clade from Acidithiobacillus ferrooxidans ATCC 23270 (AFE_0976) is found in the same locus as squalene-hopene cyclase (SHC, TIGR01507) and other genes associated with the biosynthesis of hopanoid natural products. Similarly, in Ralstonia eutropha JMP134 (Reut_B4902) this gene is adjacent to HpnAB, IspH and HpnH (TIGR03470), although SHC itself is elsewhere in the genome. Notably, this gene (here named HpnK) and three others form a conserved set (HpnIJKL) which occur in a subset of all genomes containing the SHC enzyme. This relationship was discerned using the method of partial phylogenetic profiling. This group includes Zymomonas mobilis, the organism where the initial hopanoid biosynthesis locus was described consisting of the genes HpnA-E and SHC (HpnF). Continuing past SHC are found a phosphorylase enzyme (ZMO0873, i.e. HpnG, TIGR03468) and a radical SAM enzyme (ZMO0874), HpnH. Although discontinuous in Z. mobilis, we continue the gene symbol sequence with HpnIJKL. 283 -132514 TIGR03474 incFII_RepA incFII family plasmid replication initiator RepA. Members of this protein are the plasmid replication initiator RepA of incFII (plasmid incompatibility group F-II) plasmids. R1 and R100 are plasmids in this group. Immediately upstream of repA is found tap, a leader peptide of about 24 amino acids, often not assigned as a gene in annotated plasmid sequences. Note that other, non-homologous plasmid replication proteins share the gene symbol (repA) and similar names (plasmid replication protein RepA). 275 -132515 TIGR03475 tap_IncFII_lead RepA leader peptide Tap. This protein is a translated leader peptide that actis in the regulation of the expression of the plasmid replication protein RepA in incF2 group plasmids. [Mobile and extrachromosomal element functions, Plasmid functions] 25 -274596 TIGR03476 HpnL putative membrane protein. This family of hydrophobic proteins is observed in two distinct contexts. It is primarily found in the presence of genes for the biosynthesis and elaboration of hopene where we assign the gene symbol HpnL. In a subset of the genomes containing HpnL a second, often plasmid-encoded, homolog is observed in a context implying the biosynthesis of 2-aminoethylphosphonate head-group containing lipids. 318 -274597 TIGR03477 DMSO_red_II_gam DMSO reductase family type II enzyme, heme b subunit. This model represents a heme b-binding subunit, typically called the gamma subunit, of various proteins that also contain a molybdopterin subunit and an iron-sulfur protein. The group includes two distinct but very closely related periplasmic proteins of anaerobic respiration, selenate reductase and chlorate reductase. Other members of this family include dimethyl sulphide dehydrogenase and ethylbenzene dehydrogenase. [Energy metabolism, Electron transport] 206 -132518 TIGR03478 DMSO_red_II_bet DMSO reductase family type II enzyme, iron-sulfur subunit. This model represents the iron-sulfur subunit, typically called the beta subunit, of various proteins that also contain a molybdopterin subunit and a heme b subunit. The group includes two distinct but very closely related periplasmic proteins of anaerobic respiration, selenate reductase and chlorate reductase. Other members of this family include dimethyl sulphide dehydrogenase and ethylbenzene dehydrogenase. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 321 -132519 TIGR03479 DMSO_red_II_alp DMSO reductase family type II enzyme, molybdopterin subunit. This model represents the molybdopterin subunit, typically called the alpha subunit, of various proteins that also contain an iron-sulfur subunit and a heme b subunit. The group includes two distinct but very closely related periplasmic proteins of anaerobic respiration, selenate reductase and chlorate reductase. Other members of this family include dimethyl sulphide dehydrogenase, ethylbenzene dehydrogenase, and an archaeal respiratory nitrate reductase. This alpha subunit has a twin-arginine translocation (TAT) signal for Sec-independent translocation across the plasma membrane. 912 -274598 TIGR03480 HpnN hopanoid biosynthesis associated RND transporter like protein HpnN. The genomes containing members of this family share the machinery for the biosynthesis of hopanoid lipids. Furthermore, the genes of this family are usually located proximal to other components of this biological process. The proteins appear to be related to the RND family of export proteins, particularly the hydrophobe/amphiphile efflux-3 (HAE3) family represented by TIGR00921. 862 -274599 TIGR03481 HpnM hopanoid biosynthesis associated membrane protein HpnM. The genomes containing members of this family share the machinery for the biosynthesis of hopanoid lipids. Furthermore, the genes of this family are usually located proximal to other components of this biological process. The proteins are members of the pfam05494 family of putative transporters known as "toluene tolerance protein Ttg2D", although it is unlikely that the members included here have anything to do with toluene per-se. 198 -274600 TIGR03482 DMSO_red_II_cha DMSO reductase family type II enzyme chaperone. Type II members of the DMSO reductase family are heterotrimeric proteins with bis(molybdopterin guanine dinucleotide)Mo, iron-sulfur, and heme b prosthetic groups bound by the alpha, beta, and gamma subunits respectively. Members of this protein family are not part of the mature protein, although they are the product of a fourth clustered gene. Proteins in this family are interpreted as a chaperone, analogous to NarJ of nitrate reductases. 197 -274601 TIGR03483 FtsZ_alphas_C cell division protein FtsZ, alphaProteobacterial C-terminal extension. This model describes a domain found as a C-terminal extension to the cell division protein FtsZ in many but not all members of the alphaProteobacteria. [Cellular processes, Cell division] 121 -132524 TIGR03485 cas_csx13_N CRISPR-associated protein Cas8a1/Csx13, MYXAN subtype. Members of this family are found among cas (CRISPR-Associated) genes close to CRISPR repeats in Leptospira interrogans (a spirochete), Myxococcus xanthus (a delta-proteobacterium), and Lyngbya sp. PCC 8106 (a cyanobacterium). It is found with other cas genes in Anabaena variabilis ATCC 29413. In Lyngbya sp., the protein is split into two tandem genes. This model corresponds to the N-terminal region or upstream gene; the C-terminal region is described by TIGR03486. CRISPR/cas systems are associated with prokaryotic acquired resistance to phage and other exogenous DNA. 316 -132525 TIGR03486 cas_csx13_C CRISPR-associated protein Cas8a1/Csx13, MYXAN subtype, C-terminal region. Members of this family are found among cas (CRISPR-Associated) genes close to CRISPR repeats in Leptospira interrogans (a spirochete), Myxococcus xanthus (a delta-proteobacterium), and Lyngbya sp. PCC 8106 (a cyanobacterium). It is found with other cas genes in Anabaena variabilis ATCC 29413. In Lyngbya sp., the protein is split into two tandem genes. This model corresponds to the C-terminal region or downstream gene; the N-terminal region is modeled by TIGR03485. CRISPR/cas systems are associated with prokaryotic acquired resistance to phage and other exogenous DNA. 152 -132526 TIGR03487 cas_csp2 CRISPR-associated protein Cas8c/Csp2, subtype PGING. Members of this protein family are cas, or CRISPR-associated, proteins. The two sequences in the alignment seed are found within cas gene clusters that are adjacent to CRISPR DNA repeats in two members of the order Bacteroidales, Porphyromonas gingivalis W83 and Bacteroides forsythus ATCC 43037. This cas protein family is unique to the Pging (Porphyromonas gingivalis) subtype. 489 -132527 TIGR03488 cas_Cas5p CRISPR-associated protein Cas5, subtype PGING. CC Members of this protein family are cas, or CRISPR-associated, proteins. The two sequences in the alignment seed are found within cas gene clusters that are adjacent to CRISPR DNA repeats in two members of the order Bacteroidales, Porphyromonas gingivalis W83 and Bacteroides forsythus ATCC 43037. This cas protein family is unique to the Pgingi (Porphyromonas gingivalis) subtype, but shows some sequence similarity to genes of the Cas5 type (see TIGR02593). 237 -132528 TIGR03489 cas_csp1 CRISPR-associated protein Cas7/Csp1, subtype PGING. Members of this protein family are Csp1, a CRISPR-associated (cas) gene marker for the Pging subtype of CRISPR/cas system, as found in Porphyromonas gingivalis W83 and Bacteroides forsythus ATCC 43037. This protein belongs to the family of DevR (TIGR01875), a regulator of development in Myxococcus xanthus located in a cas gene region. A different branch of the DevR family, Cst2 (TIGR02585), is a marker for the Tneap subtype of CRISPR/cas system. 292 -274602 TIGR03490 Mycoplas_LppA mycoides cluster lipoprotein, LppA/P72 family. Members of this protein family occur in Mycoplasma mycoides, Mycoplasma hyopneumoniae, and related Mycoplasmas in small paralogous families that may also include truncated forms and/or pseudogenes. Members are predicted lipoproteins with a conserved signal peptidase II processing and lipid attachment site. Note that the name for certain characterized members, p72, reflects an anomalous apparent molecular weight, given a theoretical MW of about 61 kDa. 541 -274603 TIGR03491 TIGR03491 RecB family nuclease, putative, TM0106 family. Members of this uncharacterized protein family are found broadly but sporadically among bacteria. The N-terminal region is homologous to the Cas4 protein of CRISPR systems, although this protein family shows no signs of association with CRISPR repeats. 457 -274604 TIGR03492 TIGR03492 conserved hypothetical protein. This protein family is restricted to the Cyanobacteria, in one or two copies, save for instances in the genus Deinococcus. This protein shows some sequence similarity, especially toward the C-terminus, to lipid-A-disaccharide synthase (TIGR00215 or pfam02684). The function is unknown. 396 -274605 TIGR03493 cellullose_BcsF celllulose biosynthesis operon protein BcsF/YhjT. Members of this protein family are found invariably together with genes of bacterial cellulose biosynthesis, and are presumed to be involved in the process. Members average about 63 amino acids in length and are not uncharacterized. The gene has been designated both YhjT and BcsF (bacterial cellulose synthesis F). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 62 -132533 TIGR03494 salicyl_syn salicylate synthase. Members of this protein family are salicylate synthases, bifunctional enzymes that make salicylate, in two steps, from chorismate. Members are homologous to anthranilate synthase component I from Trp biosynthesis. Members typically are found in gene regions associated with siderophore or other secondary metabolite biosynthesis. 425 -274606 TIGR03495 phage_LysB phage lysis regulatory protein, LysB family. Members of this protein family are phage lysis regulatory protein, including the well-studied protein LysB (lysis protein B) of Enterobacteria phage P2. For members of this family, genes are found in phage or in prophage regions of bacterial genomes, typically near a phage lysozyme or phage holin. 135 -274607 TIGR03496 FliI_clade1 flagellar protein export ATPase FliI. Members of this protein family are the FliI protein of bacterial flagellum systems. This protein acts to drive protein export for flagellar biosynthesis. The most closely related family is the YscN family of bacterial type III secretion systems. This model represents one (of three) segment of the FliI family tree. These have been modeled separately in order to exclude the type III secretion ATPases more effectively. [Cellular processes, Chemotaxis and motility] 411 -274608 TIGR03497 FliI_clade2 flagellar protein export ATPase FliI. Members of this protein family are the FliI protein of bacterial flagellum systems. This protein acts to drive protein export for flagellar biosynthesis. The most closely related family is the YscN family of bacterial type III secretion systems. This model represents one (of three) segment of the FliI family tree. These have been modeled separately in order to exclude the type III secretion ATPases more effectively. [Cellular processes, Chemotaxis and motility] 413 -163293 TIGR03498 FliI_clade3 flagellar protein export ATPase FliI. Members of this protein family are the FliI protein of bacterial flagellum systems. This protein acts to drive protein export for flagellar biosynthesis. The most closely related family is the YscN family of bacterial type III secretion systems. This model represents one (of three) segment of the FliI family tree. These have been modeled separately in order to exclude the type III secretion ATPases more effectively. 418 -274609 TIGR03499 FlhF flagellar biosynthetic protein FlhF. [Cellular processes, Chemotaxis and motility] 282 -274610 TIGR03500 FliO_TIGR flagellar biosynthetic protein FliO. This short protein found in flagellar biosynthesis operons contains a highly hydrophobic N-terminal sequence followed generally by two basic amino acids. This region is reminiscent of but distinct from the twin-arginine translocation signal sequence. Some instances of this gene have been names "FliZ" but phylogenetic tree building supports a single FliO family. 69 -274611 TIGR03501 GlyGly_CTERM GlyGly-CTERM domain. This homology domain, GlyGly-CTERM, shares a species distribution with rhombosortase (TIGR03902), a subfamily of rhomboid-like intramembrane serine proteases. It is probably a recognition sequence for protein sorting and then cleavage by rhombosortase. Shewanella species have the largest number of target proteins per genome, up to thirteen. The domain occurs at the extreme carboxyl-terminus of a diverse set of proteins, most of which are enzymes with conventional signal sequences and with hydrolytic activities: nucleases, proteases, agarases, etc. The agarase AgaA from Vibro sp. strain JT0107 is secreted into the medium, while the same protein heterologously expressed in E. coli is retained in the cell fraction. This suggests cleavage and release in species with this domain. Both this suggestion, and the chemical structure of the domain (motif, hydrophobic predicted transmembrane helix, cluster of basic residues) closely parallels that of the LPXTG/sortase system and the PEP-CTERM/exosortase(EpsH) system. For this reason, the putative processing enzyme is designated rhombosortase. 22 -274612 TIGR03502 lipase_Pla1_cef extracellular lipase, Pla-1/cef family. Members of this protein family are bacterial lipoproteins largely from the Gammaproteobacteria. Characterized members are expressed extracellularly and have esterase activity. Members include the lipase Pla-1 from Aeromonas hydrophila (AF092033) and CHO cell elongation factor (cef) from Vibrio hollisae 792 -274613 TIGR03503 TIGR03503 TIGR03503 family protein. This set of conserved hypothetical protein has a phylogenetic range that closely matches that of TIGR03501, a putative C-terminal protein targeting signal. 374 -274614 TIGR03504 FimV_Cterm FimV C-terminal domain. This protein is found at the extreme C-terminus of FimV from Pseudomonas aeruginosa, and of TspA of Neisseria meningitidis. Disruption of the former blocks twitching motility from type IV pili; Semmler, et al. suggest a role in peptidoglycan layer remodelling required by type IV fimbrial systems. 44 -274615 TIGR03505 FimV_core FimV N-terminal domain. This region is found at, or about 200 amino acids from, the N-terminus of FimV from Pseudomonas aeruginosa, TspA of Neisseria meningitidis, and related proteins. Disruption of FimV blocks twitching motility from type IV pili; Semmler, et al. suggest a role for this family in peptidoglycan layer remodelling required by type IV fimbrial systems. Most but not all members of this protein family have a C-terminal region recognized by TIGR03504. In between is a highly variable, often repeat-filled region rich in the negatively charged amino acids Asp and Glu. 74 -274616 TIGR03506 FlgEFG_subfam flagellar hook-basal body protein. This model encompasses three closely related flagellar proteins usually denoted FlgE, FlgF and FlgG. The names have often been mis-assigned, however. Three equivalog models, TIGR02489, TIGR02490 and TIGR02488, respectively, separate the individual forms into three genome-context consistent groups. The major differences between these genes are architectural, with variable central sections between relatively conserved N- and C-terminal domains. More distantly related are two other flagellar apparatus familis, FlgC (TIGR01395) which consists of little else but the N-and C-terminal domains and FlgK (TIGR02492) with a substantial but different central domain. 231 -274617 TIGR03507 decahem_SO1788 decaheme c-type cytochrome, OmcA/MtrC family. The protein SO_1778 (MtrC) of Shewanella oneidensis MR-1, and its paralog SO_1779 (OmcA), with which it intteracts, are large decaheme proteins, about 900 amino acids in length, involved in the use of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors. This model represents these and similar decaheme proteins, found also in Rhodoferax ferrireducens DSM 15236, Aeromonas hydrophila ATCC7966, and a few other bacterial species. [Energy metabolism, Electron transport] 659 -274618 TIGR03508 decahem_SO decaheme c-type cytochrome, DmsE family. Members of this family are small, decaheme c-type cytochromes, related DmsE of Shewanella oneidensis MR-1, which has been shown to be part of an anaerobic dimethyl sulfoxide reductase. 258 -274619 TIGR03509 OMP_MtrB_PioB decaheme-associated outer membrane protein, MtrB/PioB family. Members of this protein family are integral proteins of the bacterial outer membrane, associated with multiheme c-type cytochromes involved in electron transfer. The MtrB protein of Shewanella oneidensis MR-1 (SO1776) has been shown to form a complex with 1:1:1 stochiometry with the small, periplasmic decaheme cytochrome MtrA and large, surface-exposed decaheme cytochrome MtrC. [Energy metabolism, Electron transport] 649 -274620 TIGR03510 XapX XapX domain. This model describes an uncharacterized small, hydrophobic protein of about 50 amino acids, found between the xapB and xapR genes of the E. coli xanthosine utilization system, and homologous regions in other small proteins, such as the N-terminal region of DUF1427 (pfam07235). We name this domain XapX, as it comprises the full length of the protein encoded between the genes for the well-studied XapB and XapR proteins. [Unknown function, General] 49 -274621 TIGR03511 GldH_lipo gliding motility-associated lipoprotein GldH. Members of this protein family are predicted lipoproteins, exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). Members include GldH, a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Not all Bacteroidetes with members of this protein family may have gliding motility. [Cellular processes, Chemotaxis and motility] 156 -132551 TIGR03512 GldD_lipo gliding motility-associated lipoprotein GldD. Members of this protein family are found a number of Bacteriodetes lineage bacteria, including both species such as Flavobacterium johnsoniae, which possess a poorly understood form of rapid gliding motility, and other species which apparently do not. Mutation of GldD blocks both this motility and chitin utilization in the model species, Flavobacterium johnsoniae. [Cellular processes, Chemotaxis and motility] 186 -274622 TIGR03513 GldL_gliding gliding motility-associated protein GldL. This protein family, GldL, is named for the member from Flavobacterium johnsoniae, which is required for a type of rapid gliding motility found in certain members of the Bacteriodetes. However, members are found also in several members of the Bacteriodetes that appear not to be motile [Cellular processes, Chemotaxis and motility] 202 -274623 TIGR03514 GldB_lipo gliding motility-associated lipoprotein GldB. 319 -132554 TIGR03515 GldC gliding motility-associated protein GldC. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldC is a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldC do not abolish the gliding phenotype but do impair it. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 108 -132555 TIGR03516 ppisom_GldI peptidyl-prolyl isomerase, gliding motility-associated. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldI is a FKBP-type peptidyl-prolyl cis-trans isomerase (pfam00254) linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockout of this gene abolishes the gliding phenotype. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. This family is only found in Bacteroidetes containing the suite of genes proposed to confer the gliding motility phenotype. 177 -274624 TIGR03517 GldM_gliding gliding motility-associated protein GldM. This protein family, GldM, is named for the member from Flavobacterium johnsoniae, which is required for a type of rapid gliding motility found in certain members of the Bacteriodetes. However, members are found also in several members of the Bacteriodetes that appear not to be motile. The best conserved region, toward the N-terminus, is centered on a highly hydrobobic probable transmembrane helix. Two paralogs are found in Cytophaga hutchinsonii. 523 -132557 TIGR03518 ABC_perm_GldF gliding motility-associated ABC transporter permease protein GldF. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldF is believed to be a ABC transporter permease protein (along with ATP-binding subunit, GldA and a sunstrate-binding subunit, GldG) and is linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldF abolish the gliding phenotype. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 240 -274625 TIGR03519 T9SS_PorP_fam type IX secretion system membrane protein, PorP/SprF family. This model describes a protein family unique to, and greatly expanded in, the Bacteriodetes. Species in this lineage include several, such as Cytophaga hutchinsonii and Flavobacterium johnsoniae, that have type IX secretion systems (T9SS) and exhibit a poorly understood rapid gliding phenotype. Several members of this protein family are found in operons with other genes whose loss leads to a loss a this motility. 291 -274626 TIGR03520 GldE gliding motility-associated protein GldE. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldC is a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. GldE was discovered because of its adjacency to GldD in F. johnsonii. Overexpression of GldE partially supresses the effects of a GldB point mutant suggesting that GldB and GldE interact. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Not all Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility and in fact some do not appear to express the gliding phenotype. 407 -274627 TIGR03521 GldG gliding-associated putative ABC transporter substrate-binding component GldG. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldG is a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldG abolish the gliding phenotype. GldG, along with GldA and GldF are believed to compose an ABC transporter and are observed as an operon. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 552 -132561 TIGR03522 GldA_ABC_ATP gliding motility-associated ABC transporter ATP-binding subunit GldA. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldA is an ABC transporter ATP-binding protein (pfam00005) linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldA abolish the gliding phenotype. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 301 -274628 TIGR03523 GldN gliding motility associated protien GldN. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldN is a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldN abolish the gliding phenotype. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein also include those which are not believed to express the gliding phenotype, such as Prevotella intermedia and Porphyromonas gingivales. 280 -132563 TIGR03524 GldJ gliding motility-associated lipoprotein GldJ. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldJ is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldJ abolish the gliding phenotype. GldJ is homologous to GldK. There is a GldJ homolog in Cytophaga hutchinsonii and several other species that has a different, shorter architecture and is represented by a separate model. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 559 -274629 TIGR03525 GldK gliding motility-associated lipoprotein GldK. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldK is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldK abolish the gliding phenotype. GldK is homologous to GldJ. There is a GldK homolog in Cytophaga hutchinsonii and several other species that has a different, shorter architecture and is represented by a separate model. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 450 -132565 TIGR03526 selenium_YgeY putative selenium metabolism hydrolase. SelD, selenophosphate synthase, is the selenium donor protein for both selenocysteine and selenouridine biosynthesis systems, but it occurs also in a few prokaryotes that have neither of those pathways. The method of partial phylogenetic profiling, starting from such orphan-selD genomes, identifies this protein as one of those most strongly correlated to SelD occurrence. Its distribution is also well correlated with that of family TIGR03309, a putative accessory protein of labile selenium (non-selenocysteine) enzyme maturation. This family includes the uncharacterized YgeY of Escherichia coli, and belongs to a larger family of metalloenzymes in which some are known peptidases, others enzymes of different types. 395 -274630 TIGR03527 selenium_YedF selenium metabolism protein YedF. Members of this protein family are about 200 amino acids in size, and include the uncharacterized YedF protein of Escherichia coli. This family shares an N-terminal domain, modeled by pfam01206, with the sulfurtransferase TusA (also called SirA). The C-terminal domain includes a typical redox-active disulfide motif, CGXC. This protein family found only among those genomes that also carry the selenium donor protein SelD, and its connection to selenium metabolism is indicated by the method of partial phylogenetic profiling vs. SelD. Its gene typically is found next to selD. Members of this family are found even when selenocysteine and selenouridine biosynthesis pathways are, except for SelD, completely absent, as in Enterococcus faecalis. Its role in selenium metabolism is unclear, but may include either detoxification or a role in labile selenoprotein biosynthesis. 194 -274631 TIGR03528 2_3_DAP_am_ly diaminopropionate ammonia-lyase. Members of this protein family are the homodimeric, pyridoxal phosphate enzyme diaminopropionate ammonia-lyase, which adds water to remove two amino groups, leaving pyruvate. 396 -274632 TIGR03529 GldK_short gliding motility-associated lipoprotein GldK. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldK is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldK abolish the gliding phenotype. GldK is homologous to GldJ. This model represents a GldK homolog in Cytophaga hutchinsonii and several other species that has a different, shorter architecture than that found in Flavobacterium johnsoniae and related species (represented by (TIGR03525). Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 344 -132569 TIGR03530 GldJ_short gliding motility-associated lipoprotein GldJ. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldJ is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldJ abolish the gliding phenotype. GldJ is homologous to GldK. This model represents the GldJ homolog in Cytophaga hutchinsonii and several other species which is of shorter architecture than that found in Flavobacterium johnsoniae and is represented by a separate model (TIGR03524). Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 402 -211833 TIGR03531 selenium_SpcS O-phosphoseryl-tRNA(Sec) selenium transferase. In the archaea and eukaryotes, the conversion of the mischarged serine to selenocysteine (Sec) on its tRNA is accomplished in two steps. This enzyme, O-phosphoseryl-tRNA(Sec) selenium transferase, acts second, after a phosphophorylation step catalyzed by a homolog of the bacterial SelA protein. [Protein synthesis, tRNA aminoacylation] 444 -132571 TIGR03532 DapD_Ac 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase. This enzyme is part of the diaminopimelate pathway of lysine biosynthesis. Alternate name: tetrahydrodipicolinate N-acetyltransferase. Note that IUBMB lists this alternate name as the accepted name. Unfortunately, the related succinyl transferase acting on the same substrate (EC:2.3.1.117, TIGR00695) uses the opposite standard. We have decided to give these two enzymes names which more clearly indicated that they act on the same substrate. 231 -274633 TIGR03533 L3_gln_methyl protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific. Members of this protein family methylate ribosomal protein L3 on a glutamine side chain. This family is related to HemK, a protein-glutamine methyltranferase for peptide chain release factors. [Protein synthesis, Ribosomal proteins: synthesis and modification] 284 -274634 TIGR03534 RF_mod_PrmC protein-(glutamine-N5) methyltransferase, release factor-specific. Members of this protein family are HemK (PrmC), a protein once thought to be involved in heme biosynthesis but now recognized to be a protein-glutamine methyltransferase that modifies the peptide chain release factors. All members of the seed alignment are encoded next to the release factor 1 gene (prfA) and confirmed by phylogenetic analysis. SIMBAL analysis (manuscript in prep.) shows the motif [LIV]PRx[DE]TE (in Escherichia coli, IPRPDTE) confers specificity for the release factors rather than for ribosomal protein L3. [Protein fate, Protein modification and repair] 250 -274635 TIGR03535 DapD_actino 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. This enzyme is part of the diaminopimelate pathway of lysine biosynthesis. This model represents a clade of the enzyme specific to Actinobacteria. Alternate name: tetrahydrodipicolinate N-succinyltransferase. 319 -211834 TIGR03536 DapD_gpp 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase (DapD) is involved in the succinylated branch of the "lysine biosynthesis via diaminopimelate (DAP)" pathway (GenProp0125). This model represents a clade of DapD sequences most closely related to the actinobacterial DapD family represented by the TIGR03535 model. All of the genes evaluated for the seed of this model are found in genomes where the downstream desuccinylase is present, but known DapD genes are absent. Additionally, many of the genes identified by this model are found proximal to genes involved in this lysine biosynthesis pathway. 341 -274636 TIGR03537 DapC succinyldiaminopimelate transaminase. The four sequences which make up the seed for this model are not closely related, although they are all members of the pfam00155 family of aminotransferases and are more closely related to each other than to anything else. Additionally, all of them are found in the vicinity of genes involved in the biosynthesis of lysine via the diaminopimelate pathway (GenProp0125), although this amount to a separation of 12 genes in the case of Sulfurihydrogenibium azorense Az-Fu1. None of these genomes contain another strong candidate for this role in the pathway. Note: the detailed information included in the EC:2.6.1.17 record includes the assertions that the enzyme uses the pyridoxal pyrophosphate cofactor, which is consistent with the pfam00155 family, and the assertion that the amino group donor is L-glutamate, which is undetermined for the sequences in this clade. 350 -274637 TIGR03538 DapC_gpp succinyldiaminopimelate transaminase. This family of succinyldiaminopimelate transaminases (DapC) includes the experimentally characterized enzyme from Bordatella pertussis. The majority of genes in this family are proximal to genes encoding components of the lysine biosynthesis via diaminopimelate pathway (GenProp0125). 393 -132578 TIGR03539 DapC_actino succinyldiaminopimelate transaminase. This family of actinobacterial succinyldiaminopimelate transaminase enzymes (DapC) are members of the pfam00155 superfamily. Many of these genes appear adjacent to other genes encoding enzymes of the lysine biosynthesis via diaminopimelate pathway (GenProp0125). 357 -274638 TIGR03540 DapC_direct LL-diaminopimelate aminotransferase. This clade of the pfam00155 superfamily of aminotransferases includes several which are adjacent to elements of the lysine biosynthesis via diaminopimelate pathway (GenProp0125). Every member of this clade is from a genome which possesses most of the lysine biosynthesis pathway but lacks any of the known aminotransferases, succinylases, desuccinylases, acetylases or deacetylases typical of the acylated versions of this pathway nor do they have the direct, NADPH-dependent enzyme (ddh). Although there is no experimental characterization of any of the sequences in this clade, a direct pathway is known in plants and Chlamydia and the clade containing the Chlamydia gene is a neighboring one in the same pfam00155 superfamily so it seems quite reasonable that these enzymes catalyze the same transformation. 383 -132580 TIGR03541 reg_near_HchA LuxR family transcriptional regulatory, chaperone HchA-associated. Members of this protein family belong to the LuxR transcriptional regulator family, and contain both autoinducer binding (pfam03472) and transcriptional regulator (pfam00196) domains. Members, however, occur only in a few members of the Gammaproteobacteria that have the chaperone/aminopeptidase HchA, and are always encoded by the adjacent gene. 232 -163316 TIGR03542 DAPAT_plant LL-diaminopimelate aminotransferase. This clade of the pfam00155 superfamily of aminotransferases includes several which are adjacent to elements of the lysine biosynthesis via diaminopimelate pathway (GenProp0125). This clade includes characterized species in plants and Chlamydia. Every member of this clade is from a genome which possesses most of the lysine biosynthesis pathway but lacks any of the known succinylases, desuccinylases, acetylases or deacetylases typical of the acylated versions of this pathway nor do they have the direct, NADPH-dependent enzyme (ddh). 402 -188337 TIGR03543 divI1A_rptt_fam DivIVA domain repeat protein. Members of this protein family contain two full and two partial repeats of a domain found at the N-terminus of Bacillus subtilis cell-division initiation protein DivIVA. The portion repeated four times in these proteins includes the motif GYxxxxVD. 178 -274639 TIGR03544 DivI1A_domain DivIVA domain. This model describes a domain found in Bacillus subtilis cell division initiation protein DivIVA, and homologs, toward the N-terminus. It is also found as a repeated domain in certain other proteins, including family TIGR03543. 34 -274640 TIGR03545 TIGR03545 TIGR03545 family protein. This model represents a relatively rare but broadly distributed uncharacterized protein family, distributed in 1-2 percent of bacterial genomes, all of which have outer membranes. In many of these genomes, it is part of a two-gene pair. 555 -200289 TIGR03546 TIGR03546 TIGR03546 family protein. Members of this family are uncharacterized proteins, usually encoded by a gene adjacent to a member of family TIGR03545, which is also uncharacterized. 154 -274641 TIGR03547 muta_rot_YjhT mutatrotase, YjhT family. Members of this protein family contain multiple copies of the beta-propeller-forming Kelch repeat. All are full-length homologs to YjhT of Escherichia coli, which has been identified as a mutarotase for sialic acid. This protein improves bacterial ability to obtain host sialic acid, and thus serves as a virulence factor. Some bacteria carry what appears to be a cyclically permuted homolog of this protein. 346 -274642 TIGR03548 mutarot_permut cyclically-permuted mutarotase family protein. Members of this protein family show essentially full-length homology, cyclically permuted, to YjhT from Escherichia coli. YjhT was shown to act as a mutarotase for sialic acid, and by this ability to be able to act as a virulence factor. Members of the YjhT family (TIGR03547) and this cyclically-permuted family have multiple repeats of the beta-propeller-forming Kelch repeat. 331 -132588 TIGR03549 TIGR03549 YcaO domain protein. This family consists of remarkably well-conserved proteins from gamma and beta Proteobacteria, heavily skewed towards organisms of marine environments. Its gene neighborhood is not conserved. This family has an OsmC-like N-terminal domain. It shares a YcaO domain, frequently associated with ATP-dependent cyclodehydration for peptide modification. The function is unknown. Fifteen of the first sixteen members of this family are from selenouridine-positive genomes, but this correlation may not be meaningful. 718 -132589 TIGR03550 F420_cofG 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase, CofG subunit. This model represents either a subunit or a domain, depending on whether or not the genes are fused, of a bifunctional protein that completes the synthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, or FO. FO is the chromophore of coenzyme F(420), involved in methanogenesis in methanogenic archaea but found in certain other lineages as well. The chromophore also occurs as a cofactor in DNA photolyases in Cyanobacteria. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 322 -132590 TIGR03551 F420_cofH 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase, CofH subunit. This enzyme, together with CofG, complete the biosynthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase, the chromophore of coenzyme F420. The chromophore is also used in cyanobacteria DNA photolyases. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 343 -274643 TIGR03552 F420_cofC 2-phospho-L-lactate guanylyltransferase. Members of this protein family are the CofC enzyme of coenzyme F420 biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 195 -132592 TIGR03553 F420_FbiB_CTERM F420 biosynthesis protein FbiB, C-terminal domain. Coenzyme F420 differs between the Archaea and the Actinobacteria, where the numbers of glutamate residues attached are 2 (Archaea) or 5-6 (Mycobacterium). The enzyme in the Archaea is homologous to the N-terminal domain of FbiB from Mycobacterium bovis, and is responsible for glutamate ligation. Therefore it seems likely that the C-terminal domain of FbiB modeled here, is involved in additional glutamate ligation. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 194 -213827 TIGR03554 F420_G6P_DH glucose-6-phosphate dehydrogenase (coenzyme-F420). This family consists of the F420-dependent glucose-6-phosphate dehydrogenase of Mycobacterium and Nocardia. It shows homology to several other F420-dependent enzymes rather than to the NAD or NADP-dependent glucose-6-phosphate dehydrogenases. [Energy metabolism, Pentose phosphate pathway] 331 -132594 TIGR03555 F420_mer 5,10-methylenetetrahydromethanopterin reductase. Members of this protein family are 5,10-methylenetetrahydromethanopterin reductase, an F420-dependent enzyme of methanogenesis. It is restricted to the Archaea. [Energy metabolism, Methanogenesis] 325 -274644 TIGR03556 photolyase_8HDF deoxyribodipyrimidine photo-lyase, 8-HDF type. This model describes a narrow clade of cyanobacterial deoxyribodipyrimidine photo-lyase. This group, in contrast to several closely related proteins, uses a chromophore that, in other lineages is modified further to become coenzyme F420. This chromophore is called 8-HDF in most articles on the DNA photolyase and FO in most literature on coenzyme F420. [DNA metabolism, DNA replication, recombination, and repair] 471 -274645 TIGR03557 F420_G6P_family F420-dependent oxidoreductase, G6PDH family. Members of this protein family include F420-dependent glucose-6-phosphate dehydrogenases (TIGR03554) and related proteins. All members of this family come from species that synthesize coenzyme F420, with the exception of those that belong to TIGR03885, a clade within this family in which cofactor binding may instead be directed to FMN. [Unknown function, Enzymes of unknown specificity] 316 -274646 TIGR03558 oxido_grp_1 luciferase family oxidoreductase, group 1. The Pfam domain family pfam00296 is named for luciferase-like monooxygenases, but the family also contains several coenzyme F420-dependent enzymes. This protein family represents a well-resolved clade within family pfam00296 and shows no restriction to coenzyme F420-positive species, unlike some other clades within pfam00296. [Unknown function, Enzymes of unknown specificity] 323 -274647 TIGR03559 F420_Rv3520c probable F420-dependent oxidoreductase, Rv3520c family. Members of this protein family are predicted to be oxidoreductases dependent on coenzyme F420. The family includes a single member in Mycobacterium tuberculosis (Rv3520c/MT3621) but four in Mycobacterium smegmatis. Prediction that this family is F420-dependent is based primarily on Partial Phylogenetic Profiling vs. F420 biosynthesis. [Unknown function, Enzymes of unknown specificity] 325 -274648 TIGR03560 F420_Rv1855c probable F420-dependent oxidoreductase, Rv1855c family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes one such subfamily, exemplified by Rv1855c from Mycobacterium tuberculosis. [Unknown function, Enzymes of unknown specificity] 227 -274649 TIGR03561 organ_hyd_perox peroxiredoxin, Ohr subfamily. pfam02566, OsmC-like protein, contains several deeply split clades of homologous proteins. The clade modeled here includes the protein Ohr, or organic hydroperoxide resistance protein. [Cellular processes, Detoxification] 134 -274650 TIGR03562 osmo_induc_OsmC peroxiredoxin, OsmC subfamily. pfam02566, OsmC-like protein, contains several deeply split clades of homologous proteins. The clade modeled here includes the protein OsmC, or osmotically induced protein C. The member from Thermus thermophilus was shown to have hydroperoxide peroxidase activity. In many species, this protein is induced by stress and helps resist oxidative stress. [Cellular processes, Detoxification] 135 -132602 TIGR03563 perox_SACOL1771 peroxiredoxin, SACOL1771 subfamily. This protein family belongs to the OsmC/Ohr family (pfam02566, OsmC-like protein) of peroxiredoxins. 138 -274651 TIGR03564 F420_MSMEG_4879 F420-dependent oxidoreductase, MSMEG_4879 family. Coenzyme F420 is produced by methanogenic archaea, a number of the Actinomycetes (including Mycobacterium tuberculosis), and rare members of other lineages. The resulting information-rich phylogenetic profile identifies candidate F420-dependent oxidoreductases within the family of luciferase-like enzymes (pfam00296), where the species range for the subfamily encompasses many F420-positive genomes without straying beyond. This family is uncharacterized, and named for member MSMEG_4879 from Mycobacterium smegmatis. [Unknown function, Enzymes of unknown specificity] 265 -274652 TIGR03565 alk_sulf_monoox alkanesulfonate monooxygenase, FMNH(2)-dependent. Members of this protein family are monooxygenases that catalyze desulfonation of aliphatic sulfonates such as methane sulfonate. This enzyme uses reduced FMN, although various others members of the same luciferase-like monooxygenase family (pfam00296) are F420-dependent enzymes. [Central intermediary metabolism, Sulfur metabolism] 346 -211840 TIGR03566 FMN_reduc_MsuE FMN reductase, MsuE subfamily. Members of this protein family use NAD(P)H to reduce FMN and regenerate FMNH2. Members include the NADH-dependent enzyme MsuE from Pseudomonas aeruginosa, which serves as a partner to an FMNH2-dependent alkanesulfonate monooxygenase. The NADP-dependent enzyme from E. coli is outside the scope of this model. 174 -274653 TIGR03567 FMN_reduc_SsuE FMN reductase, SsuE family. Members of this protein family use NAD(P)H to reduce FMN and regenerate FMNH2. Members include the homodimeric, NAD(P)H-dependent enzyme SsuE from Escherichia coli, which serves as a partner to an FMNH2-dependent alkanesulfonate monooxygenase. It is induced by sulfate starvation. The NADH-dependent enzyme MsuE from Pseudomonas aeruginosa is outside the scope of this model (see model TIGR03566). [Central intermediary metabolism, Sulfur metabolism] 171 -274654 TIGR03568 NeuC_NnaA UDP-N-acetyl-D-glucosamine 2-epimerase, UDP-hydrolysing. This family of enzymes catalyzes the combined epimerization and UDP-hydrolysis of UDP-N-acetylglucosamine to N-acetylmannosamine. This is in contrast to the related enzyme WecB (TIGR00236) which retains the UDP moiety. NeuC acts in concert with NeuA and NeuB to synthesize CMP-N5-acetyl-neuraminate. 364 -274655 TIGR03569 NeuB_NnaB N-acetylneuraminate synthase. This family is a subset of the pfam03102 and is believed to include only authentic NeuB N-acetylneuraminate (sialic acid) synthase enzymes. The majority of the genes identified by this model are observed adjacent to both the NeuA and NeuC genes which together effect the biosynthesis of CMP-N-acetylneuraminate from UDP-N-acetylglucosamine. 329 -274656 TIGR03570 NeuD_NnaD sugar O-acyltransferase, sialic acid O-acetyltransferase NeuD family. This family of proteins includes the characterized NeuD sialic acid O-acetyltransferase enzymes from E. coli and Streptococcus agalactiae (group B strep). These two are quite closely related to one another, so extension of this annotation to other members of the family in unsupported without additional independent evidence. The neuD gene is often observed in close proximity to the neuABC genes for the biosynthesis of CMP-N-acetylneuraminic acid (CMP-sialic acid), and NeuD sequences from these organisms were used to construct the seed for this model. Nevertheless, there are numerous instances of sequences identified by this model which are observed in a different genomic context (although almost universally in exopolysaccharide biosynthesis-related loci), as well as in genomes for which the biosynthesis of sialic acid (SA) is undemonstrated. Even in the cases where the association with SA biosynthesis is strong, it is unclear in the literature whether the biological substrate is SA iteself, CMP-SA, or a polymer containing SA. Similarly, it is unclear to what extent the enzyme has a preference for acetylation at the 7, 8 or 9 positions. In the absence of evidence of association with SA, members of this family may be involved with the acetylation of differring sugar substrates, or possibly the delivery of alternative acyl groups. The closest related sequences to this family (and those used to root the phylogenetic tree constructed to create this model) are believed to be succinyltransferases involved in lysine biosynthesis. These proteins contain repeats of the bacterial transferase hexapeptide (pfam00132), although often these do not register above the trusted cutoff. 201 -274657 TIGR03571 lucif_BA3436 luciferase-type oxidoreductase, BA3436 family. This family is a distinct subgroup among members of the luciferase monooxygenase domain family. The larger family contains both FMN-binding enzymes (luciferase, alkane monooxygenase) and F420-binding enzymes (methylenetetrahydromethanopterin reductase, secondary alcohol dehydrogenase, glucose-6-phosphate dehydrogenase). Although some members of the domain family bind coenzyme F420 rather than FMN, members of this family are from species that lack the genes for F420 biosynthesis. A crystal structure, but not function, is known (but unpublished) for the member from Bacillus cereus, PDB|2B81. [Unknown function, Enzymes of unknown specificity] 298 -132611 TIGR03572 WbuZ glycosyl amidation-associated protein WbuZ. This clade of sequences is highly similar to the HisF protein, but generally represents the second HisF homolog in the genome where the other is an authentic HisF observed in the context of a complete histidine biosynthesis operon. The similarity between these WbuZ sequences and true HisFs is such that often the closest match by BLAST of a WbuZ is a HisF. Only by making a multiple sequence alignment is the homology relationship among the WbuZ sequences made apparent. WbuZ genes are invariably observed in the presence of a homolog of the HisH protein (designated WbuY) and a proposed N-acetyl sugar amidotransferase designated in WbuX in E. coli, IfnA in P. aeriginosa and PseA in C. jejuni. Similarly, this trio of genes is invariably found in the context of saccharide biosynthesis loci. It has been shown that the WbuYZ homologs are not essential components of the activity expressed by WbuX, leading to the proposal that these to proteins provide ammonium ions to the amidotransferase when these are in low concentration. WbuY (like HisH) is proposed to act as a glutaminase to release ammonium. In histidine biosynthesis this is also dispensible in the presence of exogenous ammonium ion. HisH and HisF form a complex such that the ammonium ion is passed directly to HisF where it is used in an amidation reaction causing a subsequent cleavage and cyclization. In the case of WbuYZ, the ammonium ion would be passed from WbuY to WbuZ. WbuZ, being non-essential and so similar to HisF that a sugar substrate is unlikely, would function instead as a amoonium channel to the WbuX protein which does the enzymatic work. 232 -274658 TIGR03573 WbuX N-acetyl sugar amidotransferase. This enzyme has been implicated in the formation of the acetamido moiety (sugar-NC(=NH)CH3) which is found on some exopolysaccharides and is positively charged at neutral pH. The reaction involves ligation of ammonia with a sugar N-acetyl group, displacing water. In E. coli (O145 strain) and Pseudomonas aeruginosa (O12 strain) this gene is known as wbuX and ifnA respectively and likely acts on sialic acid. In Campylobacter jejuni, the gene is known as pseA and acts on pseudaminic acid in the process of flagellin glycosylation. In other Pseudomonas strains and various organisms it is unclear what the identity of the sugar substrate is, and in fact, the phylogenetic tree of this family sports a considerably deep branching suggestive of possible major differences in substrate structure. Nevertheless, the family is characterized by a conserved tetracysteine motif (CxxC.....[GN]xCxxC) possibly indicative of a metal binding site, as well as an invariable contextual association with homologs of the HisH and HisF proteins known as WbuY and WbuZ, respectively. These two proteins are believed to supply the enzyme with ammonium by hydrolysis of glutamine and delivery through an ammonium conduit. 343 -132613 TIGR03574 selen_PSTK L-seryl-tRNA(Sec) kinase, archaeal. Members of this protein are L-seryl-tRNA(Sec) kinase. This enzyme is part of a two-step pathway in Eukaryota and Archaea for performing selenocysteine biosynthesis by changing serine misacylated on selenocysteine-tRNA to selenocysteine. This enzyme performs the first step, phosphorylation of the OH group of the serine side chain. This family represents archaeal proteins with this activity. [Protein synthesis, tRNA aminoacylation] 249 -188340 TIGR03575 selen_PSTK_euk L-seryl-tRNA(Sec) kinase, eukaryotic. Members of this protein are L-seryl-tRNA(Sec) kinase. This enzyme is part of a two-step pathway in Eukaryota and Archaea for performing selenocysteine biosynthesis by changing serine misacylated on selenocysteine-tRNA to selenocysteine. This enzyme performs the first step, phosphorylation of the OH group of the serine side chain. This family represents eukaryotic proteins with this activity. 340 -213830 TIGR03576 pyridox_MJ0158 pyridoxal phosphate enzyme, MJ0158 family. Members of this archaeal protein family are pyridoxal phosphate enzymes of unknown function. Sequence similarity to SelA, a bacterial enzyme of selenocysteine biosynthesis, has led to some members being misannotated as functionally equivalent, but selenocysteine is made on tRNA in Archaea by a two-step process that does not involve a SelA homolog. [Unknown function, Enzymes of unknown specificity] 346 -132616 TIGR03577 EF_0830 conserved hypothetical protein EF_0830/AHA_3911. Members of this family of small (about 120 amino acid), relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 115 -213831 TIGR03578 EF_0831 conserved hypothetical protein EF_0831/AHA_3912. Members of this family of small (about 100 amino acid), relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 96 -132618 TIGR03579 EF_0833 conserved hypothetical protein EF_0833/AHA_3914. Members of this family of relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. 209 -274659 TIGR03580 EF_0832 conserved hypothetical protein EF_0832/AHA_3913. Members of this family of relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Unknown function, General] 246 -188342 TIGR03581 EF_0839 conserved hypothetical protein EF_0839/AHA_3917. Members of this family of relatively uncommon proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 227 -132621 TIGR03582 EF_0829 PRD domain protein EF_0829/AHA_3910. Members of this family of relatively uncommon proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. This protein contains a PRD domain (see pfam00874). The function is unknown. [Unknown function, General] 107 -132622 TIGR03583 EF_0837 probable amidohydrolase EF_0837/AHA_3915. Members of this family of relatively uncommon proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. These proteins resemble aminohydrolases (see pfam01979), including dihydroorotases. The function is unknown. [Hypothetical proteins, Conserved] 365 -274660 TIGR03584 PseF pseudaminic acid cytidylyltransferase. The sequences in this family include the pfam02348 (cytidyltransferase) domain and are homologous to the NeuA protein responsible for the transfer of CMP to neuraminic acid. According to, this gene is responsible for the transfer of CMP to the structurally related sugar, pseudaminic acid which is observed as a component of sugar modifications of flagellin in Campylobacter species. This gene is commonly observed in apparent operons with other genes responsible for the biosynthesis of pseudaminic acid and as a component of flagellar and exopolysaccharide biosynthesis loci. 222 -274661 TIGR03585 PseH UDP-4-amino-4,6-dideoxy-N-acetyl-beta-L-altrosamine N-acetyltransferase. Sequences in this family are members of the pfam00583 (GNAT) superfamily of acetyltransferases and are proposed to perform a N-acetylation step in the process of pseudaminic acid biosynthesis in Campylobacter species. This gene is commonly observed in apparent operons with other genes responsible for the biosynthesis of pseudaminic acid and as a component of flagellar and exopolysaccharide biosynthesis loci. Significantly, many genomes containing other components of this pathway lack this gene, indicating that some other N-acetyl transferases may be incolved and/or the step is optional, resulting in a non-acetylated pseudaminic acid variant sugar. 152 -163337 TIGR03586 PseI pseudaminic acid synthase. Members of this family are included within the larger pfam03102 (NeuB) family. NeuB itself (TIGR03569) is involved in the biosynthesis of neuraminic acid by the condensation of phosphoenolpyruvate (PEP) with N-Acetyl-D-Mannosamine. In an analagous reaction, this enzyme, PseI, condenses PEP with 6-deoxy-beta-L-AltNAc4NAc to generate pseudaminic acid. 327 -132626 TIGR03587 Pse_Me-ase pseudaminic acid biosynthesis-associated methylase. Members of this small clade are methyltransferases of the pfam08241 family and are observed within operons for the biosynthesis of pseudaminic acid, a component of exopolysaccharide and flagellin glycosyl modifications. Notable among these genomes is Pseudomonas fluorescens PfO-1. Possibly one of the two hydroxyl groups of pseudaminic acid, at positions 4 and 8 is converted to a methoxy group by this enzyme 204 -274662 TIGR03588 PseC UDP-4-amino-4,6-dideoxy-N-acetyl-beta-L-altrosamine transaminase. This family of enzymes are aminotransferases of the pfam01041 family involved in the biosynthesis of pseudaminic acid. They convert UDP-4-keto-6-deoxy-N-acetylglucosamine into UDP-4-amino-4,6-dideoxy-N-acetylgalactose. Pseudaminic acid has a role in surface polysaccharide in Pseudomonas as well as in the modification of flagellin in Campylobacter and Helicobacter species. 380 -132628 TIGR03589 PseB UDP-N-acetylglucosamine 4,6-dehydratase (inverting). This enzyme catalyzes the first step in the biosynthesis of pseudaminic acid, the conversion of UDP-N-acetylglucosamine to UDP-4-keto-6-deoxy-N-acetylglucosamine. These sequences are members of the broader pfam01073 (3-beta hydroxysteroid dehydrogenase/isomerase family) family. 324 -274663 TIGR03590 PseG UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase. This protein is found in association with enzymes involved in the biosynthesis of pseudaminic acid, a component of polysaccharide in certain Pseudomonas strains as well as a modification of flagellin in Campylobacter and Hellicobacter. The role of this protein is unclear, although it may participate in N-acetylation in conjunction with, or in the absence of PseH (TIGR03585) as it often scores above the trusted cutoff to pfam00583 representing a family of acetyltransferases. 279 -274664 TIGR03591 polynuc_phos polyribonucleotide nucleotidyltransferase. Members of this protein family are polyribonucleotide nucleotidyltransferase, also called polynucleotide phosphorylase. Some members have been shown also to have additional functions as guanosine pentaphosphate synthetase and as poly(A) polymerase (see model TIGR02696 for an exception clade, within this family). [Transcription, Degradation of RNA] 688 -274665 TIGR03592 yidC_oxa1_cterm membrane protein insertase, YidC/Oxa1 family, C-terminal domain. This model describes full-length from some species, and the C-terminal region only from other species, of the YidC/Oxa1 family of proteins. This domain appears to be univeral among bacteria (although absent from Archaea). The well-characterized YidC protein from Escherichia coli and its close homologs contain a large N-terminal periplasmic domain in addition to the region modeled here. [Protein fate, Protein and peptide secretion and trafficking] 179 -274666 TIGR03593 yidC_nterm membrane protein insertase, YidC/Oxa1 family, N-terminal domain. Essentially all bacteria have a member of the YidC family, whose C-terminal domain is modeled by TIGR03592. The two copies are found in endospore-forming bacteria such as Bacillus subtilis appear redundant during vegetative growth, although the member designated spoIIIJ (stage III sporulation protein J) has a distinct role in spore formation. YidC, its mitochondrial homolog Oxa1, and its chloroplast homolog direct insertion into the bacterial/organellar inner (or only) membrane. This model describes an N-terminal sequence region, including a large periplasmic domain lacking in YidC members from Gram-positive species. The multifunctional YidC protein acts both with and independently of the Sec system. [Protein fate, Protein and peptide secretion and trafficking] 366 -274667 TIGR03594 GTPase_EngA ribosome-associated GTPase EngA. EngA (YfgK, Der) is a ribosome-associated essential GTPase with a duplication of its GTP-binding domain. It is broadly to universally distributed among bacteria. It appears to function in ribosome biogenesis or stability. [Protein synthesis, Other] 428 -274668 TIGR03595 Obg_CgtA_exten Obg family GTPase CgtA, C-terminal extension. CgtA (see model TIGR02729) is a broadly conserved member of the obg family of GTPases associated with ribosome maturation. This model represents a unique C-terminal domain found in some but not all sequences of CgtA. This region is preceded, and may be followed, by a region of low-complexity sequence. 69 -274669 TIGR03596 GTPase_YlqF ribosome biogenesis GTP-binding protein YlqF. Members of this protein family are GTP-binding proteins involved in ribosome biogenesis, including the essential YlqF protein of Bacillus subtilis, which is an essential protein. They are related to Era, EngA, and other GTPases of ribosome biogenesis, but are circularly permuted. This family is not universal, and is not present in Escherichia coli, and so is not as well studied as some other GTPases. This model is built for bacterial members. [Protein synthesis, Other] 276 -213834 TIGR03597 GTPase_YqeH ribosome biogenesis GTPase YqeH. This family describes YqeH, a member of a larger family of GTPases involved in ribosome biogenesis. Like YqlF, it shows a cyclical permutation relative to GTPases EngA (in which the GTPase domain is duplicated), Era, and others. Members of this protein family are found in a relatively small number of bacterial species, including Bacillus subtilis but not Escherichia coli. [Protein synthesis, Other] 360 -274670 TIGR03598 GTPase_YsxC ribosome biogenesis GTP-binding protein YsxC/EngB. Members of this protein family are a GTPase associated with ribosome biogenesis, typified by YsxC from Bacillus subutilis. The family is widely but not universally distributed among bacteria. Members commonly are called EngB based on homology to EngA, one of several other GTPases of ribosome biogenesis. Cutoffs as set find essentially all bacterial members, but also identify large numbers of eukaryotic (probably organellar) sequences. This protein is found in about 80 percent of bacterial genomes. [Protein synthesis, Other] 179 -274671 TIGR03599 YloV DAK2 domain fusion protein YloV. This model describes a protein family that contains an N-terminal DAK2 domain (pfam02734), so named because of similarity to the dihydroxyacetone kinase family family. The GTP-binding protein CgtA (a member of the obg family) is a bacterial GTPase associated with ribosome biogenesis, and it has a characteristic extension (TIGR03595) in certain lineages. This protein family described here was found, by the method of partial phylognetic profiling, to have a phylogenetic distribution strongly correlated to that of TIGR03595. This correlation implies some form of functional coupling. 530 -274672 TIGR03600 phage_DnaB phage replicative helicase, DnaB family, HK022 subfamily. Members of this family are phage (or prophage-region) homologs of the bacterial homohexameric replicative helicase DnaB. Some phage may rely on host DnaB, while others encode their own verions. This model describes the largest phage-specific clade among the close homologs of DnaB, but there are, or course, other DnaB homologs from phage that fall outside the scope of this model. [Mobile and extrachromosomal element functions, Prophage functions] 420 -274673 TIGR03601 B_an_ocin bacteriocin, heterocycloanthracin/sonorensin family. Numerous bacteria encode systems for producing bacteriocins by extensive modification of ribosomally produced precursors. Members of the TOMM class (thiazole/oxazole-modified microcins) are recognizable by association with cyclodehydratase (and often dehydrogenase) maturation proteins. This family consists of a special subclass, the heterocycloanthracin family, that share a homologous leader peptide region and then a repeat region with Cys as every third residue. In Bacillus anthracis and Bacillus cereus, the RiPP (ribosomally translated and post-translationally modified natural product) precursor is encoded far from its maturase genes, and every strain has the system. In other species (e.g. B. licheniformis, B. sorenensis), precursor and maturase genes are close together. Sonorensin, from B. sonorensis MT93, was shown to have broad spectrum antimicrobial activity, affecting Gram-positive and Gram-negative bacteria. [Cellular processes, Toxin production and resistance] 88 -132641 TIGR03602 streptolysinS bacteriocin protoxin, streptolysin S family. Members of this family are bacteriocin precursors. These small, ribosomally produced polypeptide precursors are extensively processed post-translationally. This family belongs to a class of heterocycle-containing bacteriocins, including streptolysin S from Streptococcus pyogenes, and related bacteriocins from Streptococcus iniae and Clostridium botulinum. Streptolysin S is hemolytic. Bacteriocin genes in general are small and highly diverse, with odd sequence composition, and are easily missed by many gene-finding programs. [Cellular processes, Toxin production and resistance] 56 -200298 TIGR03603 cyclo_dehy_ocin thiazole/oxazole-forming peptide maturase, SagC family component. Members of this protein family include enzymes related to SagC, a protein involved in thiazole/oxazole cyclodehydration modifications during biosynthesis of streptolysin S in Streptococcus pyogenes from the protoxin polypeptide (product of the sagA gene). Recent evidence suggests that the YcaO/SagD-like component, not this component, performs an ATP-dependent cyclodehydration. This protein family serves as a marker for widely distributed prokaryotic systems for making a general class of heterocycle-containing bacteriocins. Note that this model does not find all possible examples of bacteriocin biosynthesis cyclodehydratases, an in particular misses the E. coli plasmid protein McbB of microcin B17 biosynthesis. [Cellular processes, Pathogenesis] 319 -274674 TIGR03604 TOMM_cyclo_SagD thiazole/oxazole-forming peptide maturase, SagD family component. Members of this protein family include enzymes related to SagD, previously referred to as a scaffold or docking protein involved in the biosynthesis of streptolysin S in Streptococcus pyogenes from the protoxin polypeptide (product of the sagA gene). Newer evidence describes an enzymatic activity, an ATP-dependent cyclodehydration reaction, previously ascribed to the SagC component. This protein family serves as a marker for widely distributed prokaryotic systems for making a general class of heterocycle-containing bacteriocins. 377 -188352 TIGR03605 antibiot_sagB SagB-type dehydrogenase domain. SagB of Sterptococcus pyogenes participates in the maturation of streptolysin S from a ribosomally produced precursor polypeptide. Chemically similar systems operate on highly diverse sets of bacteriocin precursors in numerous other bacteria. This model describes a domain within SgaB and homologous regions from other proteins, many of which appear to be involved in biosynthesis of secondary metabolites. While some substrates may be intermediates in non-ribosomal peptide syntheses, others are involved in heterocycle-containing bacteriocin biosynthesis, and can be found near SgaC-like (see TIGR03603, cyclodehydratase) and SgaD-like (see TIGR03604, "docking") proteins. Members of this domain family are heterogeneous in length, as many have a partial second copy of the domain represented here. The incomplete second domain scores below the cutoffs to this model in most cases. 173 -274675 TIGR03606 non_repeat_PQQ dehydrogenase, PQQ-dependent, s-GDH family. PQQ, or pyrroloquinoline-quinone, serves as a cofactor for a number of sugar and alcohol dehydrogenases in a limited number of bacterial species. Most characterized PQQ-dependent enzymes have multiple repeats of a sequence region described by pfam01011 (PQQ enzyme repeat), but this protein family in unusual in lacking that repeat. Below the noise cutoff are related proteins mostly from species that lack PQQ biosynthesis. 454 -274676 TIGR03607 TIGR03607 patatin-related protein. This bacterial protein family contains an N-terminal patatin domain, where patatins are plant storage proteins capable of phospholipase activity (see pfam01734). Regions of strong sequence conservation are separated by regions of significant sequence and length variability. Members of the family are distributed sporadically among bacteria. The function is unknown. [Unknown function, General] 738 -188353 TIGR03608 L_ocin_972_ABC putative bacteriocin export ABC transporter, lactococcin 972 group. A gene pair with a fairly wide distribution consists of a polypeptide related to the lactococcin 972 (see TIGR01653) and multiple-membrane-spanning putative immunity protein (see TIGR01654). This model represents a small clade within the ABC transporters that regularly are found adjacent to these bacteriocin system gene pairs and are likely serve as export proteins. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Unknown substrate] 206 -132648 TIGR03609 S_layer_CsaB polysaccharide pyruvyl transferase CsaB. The CsaB protein (cell surface anchoring B) of Bacillus anthracis adds a pyruvoyl group to peptidoglycan-associated polysaccharide. This addition is required for proteins with an S-layer homology domain (pfam00395) to bind. Within the larger group of proteins described by pfam04230, this model represents a distinct clade that nearly exactly follows the phylogenetic distribution of the S-layer homology domain (pfam00395). [Cell envelope, Surface structures, Protein fate, Protein and peptide secretion and trafficking] 298 -274677 TIGR03610 RutC pyrimidine utilization protein C. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the endoribonuclease L-PSP family defined by pfam01042. 127 -211851 TIGR03611 RutD pyrimidine utilization protein D. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the hydrolase, alpha/beta fold family defined by pfam00067. 248 -163355 TIGR03612 RutA pyrimidine utilization protein A. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the luciferase family defined by pfam00296 and is likely a FMN-dependent monoxygenase. [Unknown function, Enzymes of unknown specificity] 355 -274678 TIGR03613 RutR pyrimidine utilization regulatory protein R. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the TetR family of transcriptional regulators defined by the N-teminal model pfam00440 and the C-terminal model pfam08362 (YcdC-like protein, C-terminal region). 202 -163356 TIGR03614 RutB pyrimidine utilization protein B. 226 -132654 TIGR03615 RutF pyrimidine utilization flavin reductase protein F. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the flavin reductase family defined by pfam01613. Presumably, this protein recycles the flavin of the RutA luciferase-like oxidoreductase. 156 -132655 TIGR03616 RutG pyrimidine utilization transport protein G. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the uracil-xanthine permease family defined by TIGR00801. As well as the The Nucleobase:Cation Symporter-2 (NCS2) Family (TC 2.A.40). 429 -132656 TIGR03617 F420_MSMEG_2256 probable F420-dependent oxidoreductase, MSMEG_2256 family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes one such subfamily, exemplified by MSMEG_2256 from Mycobacterium smegmatis. [Unknown function, Enzymes of unknown specificity] 318 -274679 TIGR03618 Rv1155_F420 PPOX class probable F420-dependent enzyme. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomyces, make F420. The Partial Phylogenetic Profiling algorithm identifies this members of this protein family as high-scoring proteins to the F420 biosynthesis profile. A member of this family, Rv1155, was crytallized after expression in Escherichia coli, which does not synthesize F420; the crystal structure shown to resemble FMN-binding proteins, but with a recognizable empty cleft corresponding to, yet differing profounding from, the FMN site of pyridoxine 5'-phosphate oxidase. We propose that this protein family consists of F420-binding enzymes. [Unknown function, Enzymes of unknown specificity] 126 -274680 TIGR03619 F420_Rv2161c probable F420-dependent oxidoreductase, Rv2161c family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes a domain found in a distinctive subset of bacterial luciferase homologs, found only in F420-biosynthesizing members of the Actinobacteria. [Unknown function, Enzymes of unknown specificity] 246 -274681 TIGR03620 F420_MSMEG_4141 probable F420-dependent oxidoreductase, MSMEG_4141 family. Members of this protein family, related to F420-dependent oxidoreductases within the larger family of a bacterial luciferase (an FMN-dependent enzyme), occurs only within the small subset of species that synthesize F420. Most such proteins are from members of the Actinobacteria, but at least one species, Sphingomonas wittichii, belongs to the Alphaproteobacteria. [Unknown function, Enzymes of unknown specificity] 278 -200301 TIGR03621 F420_MSMEG_2516 probable F420-dependent oxidoreductase, MSMEG_2516 family. Coenzyme F420 is produced by methanogenic archaea, a number of the Actinomycetes (including Mycobacterium tuberculosis), and rare members of other lineages. The resulting information-rich phylogenetic profile identifies candidate F420-dependent oxidoreductases within the family of luciferase-like enzymes (pfam00296), where the species range for the subfamily encompasses many F420-positive genomes without straying beyond. This family is uncharacterized, and named for member MSMEG_2516 from Mycobacterium smegmatis. [Unknown function, Enzymes of unknown specificity] 295 -132661 TIGR03622 urea_t_UrtB_arc urea ABC transporter, permease protein UrtB. Members of this protein family are ABC transporter permease subunits restricted to the Archaea. Several lines of evidence suggest this protein is functionally analogous, as well as homologous, to the UrtB subunit of the Corynebacterium glutamicum urea transporter. All members of the operon show sequence similarity to urea transport subunits, the gene is located near the urease structural subunits in two of three species, and partial phylogenetic profiling identifies this permease subunit as closely matching the profile of urea utilization. 283 -274682 TIGR03623 TIGR03623 probable DNA repair protein. Members of this protein family are bacterial proteins of about 900 amino acids in length. Members show extended homology to proteins in TIGR02786, the AddB protein of double-strand break repair via homologous recombination. Members of this family, therefore, may be DNA repair proteins. 874 -274683 TIGR03624 TIGR03624 putative hydrolase. Members of this protein family have a phylogenetic distribution skewed toward the Actinobacteria (high GC Gram-positive bacteria), but with a few members occuring in the Archaea and Chloroflexi. The function is unknown. [Unknown function, General] 346 -274684 TIGR03625 L3_bact 50S ribosomal protein uL3, bacterial form. This model describes bacterial (and mitochondrial and chloroplast) class of ribosomal protein L3. A separate model describes the archaeal form, where both belong to pfam00297. The name is phrased to meet the needs of bacterial genome annotation. Organellar forms typically will have transit peptides, N-terminal to the region modeled here. 202 -274685 TIGR03626 L3_arch ribosomal protein uL3, archaeal form. This model describes exclusively the archaeal class of ribosomal protein L3. A separate model (TIGR03625) describes the bacterial/organelle form, and both belong to pfam00297. Eukaryotic proteins are excluded from this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 330 -132666 TIGR03627 uS9_arch ribosomal protein uS9, archaeal form. This model describes exclusively the archaeal ribosomal protein S9P. Homologous eukaryotic and bacterial ribosomal proteins are excluded from this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 130 -274686 TIGR03628 arch_S11P ribosomal protein uS11P, archaeal form. This model describes exclusively the archaeal ribosomal protein S11P. It excludes homologous ribosomal proteins S14 from eukaryotes and S11 from bacteria. [Protein synthesis, Ribosomal proteins: synthesis and modification] 117 -213839 TIGR03629 uS13_arch ribosomal protein uS13, archaeal form. This model describes exclusively the archaeal ribosomal protein S13P. It excludes the homologous eukaryotic 40S ribosomal protein S18 and bacterial 30S ribosomal protein S13. [Protein synthesis, Ribosomal proteins: synthesis and modification] 144 -274687 TIGR03630 uS17_arch ribosomal protein uS17, archaeal form. This model describes exclusively the archaeal ribosomal protein S17P. It excludes the homologous ribosomal protein S17 from bacteria, and is not intended for use on eukaryotic sequences, where some instances of ribosomal proteins S11 score above the trusted cutoff. [Protein synthesis, Ribosomal proteins: synthesis and modification] 102 -274688 TIGR03631 uS13_bact ribosomal protein uS13, bacterial form. This model describes bacterial ribosomal protein S13, to the exclusion of the homologous archaeal S13P and eukaryotic ribosomal protein S18. This model identifies some (but not all) instances of chloroplast and mitochondrial S13, which is of bacterial type. [Protein synthesis, Ribosomal proteins: synthesis and modification] 113 -274689 TIGR03632 uS11_bact ribosomal protein uS11, bacterial form. This model describes the bacterial 30S ribosomal protein S11. Cutoffs are set such that the model excludes archaeal and eukaryotic ribosomal proteins, but many chloroplast and mitochondrial equivalents of S11 are detected. [Protein synthesis, Ribosomal proteins: synthesis and modification] 108 -163366 TIGR03633 arc_protsome_A proteasome endopeptidase complex, archaeal, alpha subunit. This protein family describes the archaeal proteasome alpha subunit, homologous to both the beta subunit and to the alpha and beta subunits of eukaryotic proteasome subunits. This family is universal in the first 29 complete archaeal genomes but occasionally is duplicated. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 224 -274690 TIGR03634 arc_protsome_B proteasome endopeptidase complex, archaeal, beta subunit. This protein family describes the archaeal proteasome beta subunit, homologous to both the alpha subunit and to the alpha and beta subunits of eukaryotic proteasome subunits. This family is universal in the first 29 complete archaeal genomes but occasionally is duplicated. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 185 -274691 TIGR03635 uS17_bact ribosomal protein uS17, bacterial form. This model describes the bacterial ribosomal small subunit protein S17, while excluding cytosolic eukaryotic homologs and archaeal homologs. The model finds many, but not, chloroplast and mitochondrial counterparts to bacterial S17. [Protein synthesis, Ribosomal proteins: synthesis and modification] 72 -274692 TIGR03636 uL23_arch ribosomal protein uL23, archaeal form. This model describes the archaeal ribosomal protein L23P and rigorously excludes the bacterial counterpart L23. In order to capture every known instance of archaeal L23P, the trusted cutoff is set lower than a few of the highest scoring eukaryotic cytosolic ribosomal counterparts. [Protein synthesis, Ribosomal proteins: synthesis and modification] 77 -132676 TIGR03637 cas1_YPEST CRISPR-associated endonuclease Cas1, subtype I-F/YPEST. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes the Cas1 protein particular to the YPEST subtype of CRISPR/Cas system. 307 -274693 TIGR03638 cas1_ECOLI CRISPR-associated endonuclease Cas1, subtype I-E/ECOLI. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes the Cas1 protein particular to the ECOLI subtype of CRISPR/Cas system. 268 -274694 TIGR03639 cas1_NMENI CRISPR-associated endonuclease Cas1, subtype II/NMENI. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is a prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes the Cas1 variant of the NMENI subtype of CRISPR/Cas system. 278 -188360 TIGR03640 cas1_DVULG CRISPR-associated endonuclease Cas1, subtype I-C/DVULG. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes the Cas1 protein particular to the DVULG subtype of CRISPR/Cas system. 340 -274695 TIGR03641 cas1_HMARI CRISPR-associated endonuclease Cas1, subtype I-B/HMARI/TNEAP. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes Cas1 subgroup that includes Cas1 proteins of the related HMARI and TNEAP subtypes of CRISPR/Cas system. 320 -274696 TIGR03642 cas_csx14 CRISPR-associated protein, Csx14 family. This model describes a protein N-terminal protein sequence domain strictly associated with CRISPR and CRISPR-associated protein systems. This model and TIGR02584 identify two separate clades from a larger homology domain family, both CRISPR-associated, while other homologs are found that may not be. Members are found in bacteria that include Pelotomaculum thermopropionicum SI, Thermoanaerobacter tengcongensis MB4, and Roseiflexus sp. RS-1, and in archaea that include Thermoplasma volcanium, Picrophilus torridus, and Methanospirillum hungatei. The molecular function is unknown. 124 -132682 TIGR03643 TIGR03643 TIGR03643 family protein. This model describes an uncharacterized bacterial protein family. Members average about 90 amino acids in length with several well-conserved uncommon amino acids (Trp, Met). The majority of species are marine bacteria. Few species have more than one copy, but Vibrio cholerae El Tor N16961 has three identical copies. [Hypothetical proteins, Conserved] 72 -274697 TIGR03644 marine_trans_1 probable ammonium transporter, marine subtype. Members of this protein family are well conserved subclass of putative ammonimum transporters, belonging to the much broader set of ammonium/methylammonium transporter described by TIGR00836. Species with this transporter tend to be marine bacteria. Partial phylogenetic profiling (PPP) picks a member of this protein family as the single best-scoring protein vs. a reference profile for the marine environment Genome Property for a large number of different query genomes. This finding by PPP suggests that this transporter family represents an important adaptation to the marine environment. 404 -132684 TIGR03645 glyox_marine lactoylglutathione lyase family protein. Members of this protein family share homology with lactoylglutathione lyase (glyoxalase I) and are found mainly in marine members of the gammaproteobacteria, including CPS_0532 from Colwellia psychrerythraea 34H. This family excludes a well-separated, more narrowly distributed paralogous family, exemplified by CPS_3492 from C. psychrerythraea. The function is of this protein family is unknown. 162 -132685 TIGR03646 YtoQ_fam YtoQ family protein. Members of this family are uncharacterized proteins, including YtoQ from Bacillus subtilis. This family shows some sequence similarity to a family of nucleoside 2-deoxyribosyltransferases (COG3613 as iterated through CDD), but sufficiently remote that PSI-BLAST starting from YtoQ and exploring outwards does not discover the relationship. 144 -132686 TIGR03647 Na_symport_sm putative solute:sodium symporter small subunit. Members of this family are highly hydrophobic bacterial proteins of about 90 amino acids in length. Members usually are found immediately upstream (sometimes fused to) a member of the solute:sodium symporter family, and therefore are a putative sodium:solute symporter small subunit. Members tend to be found in aquatic species, especially those from marine or other high salt environments. [Transport and binding proteins, Unknown substrate] 77 -274698 TIGR03648 Na_symport_lg probable sodium:solute symporter, VC_2705 subfamily. This family belongs to a larger family of transporters of the sodium:solute symporter superfamily, TC 2.A.21. Members of this strictly bacterial protein subfamily are found almost invariably immediately downstream from a member of family TIGR03647. Occasionally, the two genes are fused. 552 -274699 TIGR03649 ergot_EASG ergot alkaloid biosynthesis protein, AFUA_2G17970 family. This family consists of fungal proteins of unknown function associated with secondary metabolite biosynthesis, such as of the ergot alkaloids such as ergovaline. Nomenclature differs because gene order differs - this is EasG in Neotyphodium lolii but is designated ergot alkaloid biosynthetic protein A in several other fungi. 285 -132689 TIGR03650 violacein_E violacein biosynthesis enzyme VioE. This enzyme catalyzes the third step in violacein biosynthesis from a pair of Trp residues, as in Chromobacterium violaceum, but the first step that distinguishes that pathway from staurosporine (an indolocarbazole antibiotic) biosynthesis. [Cellular processes, Toxin production and resistance] 184 -274700 TIGR03651 circ_ocin_uber circular bacteriocin, circularin A/uberolysin family. Circular bacteriocins are antibiotic proteins made by ribosomal translation of a precursor molecular, followed by cleavage and circularization. Members of this subclass of the circular bacteriocins include circularin A from Clostridium beijerinckii, bacteriocin AS-48 from Enterococcus faecalis, uberolysin from Streptococcus uberis, and carnocyclin A from Carnobacterium maltaromaticum. The mature circularized peptides average about 70 amino acids in size. [Cellular processes, Toxin production and resistance] 73 -274701 TIGR03652 FeS_repair_RIC iron-sulfur cluster repair di-iron protein. Members of this protein family, designated variously as YftE, NorA, DrnN, and NipC, are di-iron proteins involved in the repair of iron-sulfur clusters. Previously assigned names reflect pleiotropic effects of damage from NO or other oxidative stress when this protein is mutated. The suggested name now is RIC, for Repair of Iron Centers. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 216 -274702 TIGR03653 uL6_arch ribosomal protein uL6, archaeal form. Members of this protein family are the archaeal form ofribosomal protein uL6 (previously L9 in yeast and human). The top-scoring proteins not selected by this model are eukaryotic cytosolic uL6. Bacterial ribosomal protein L6 scores lower and is described by a distinct model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 170 -274703 TIGR03654 L6_bact ribosomal protein L6, bacterial type. [Protein synthesis, Ribosomal proteins: synthesis and modification] 175 -274704 TIGR03655 anti_R_Lar restriction alleviation protein, Lar family. Restriction alleviation proteins provide a countermeasure to host cell restriction enzyme defense against foreign DNA such as phage or plasmids. This family consists of homologs to the phage antirestriction protein Lar, and most members belong to phage genomes or prophage regions of bacterial genomes. [Mobile and extrachromosomal element functions, Prophage functions, DNA metabolism, Restriction/modification] 53 -274705 TIGR03656 IsdC heme uptake protein IsdC. Isd proteins are iron-regulated surface proteins found in Bacillus, Staphylococcus and Listeria species and are responsible for heme scavenging from hemoproteins. The IsdC protein consists of an N-terminal hydrophobic signal sequence, a central NEAT (NEAr Transporter, pfam05031) domain, which confers the ability to bind heme, and a C-terminal SrtB processing signal which targets the protein to the cell wall. IsdC is believed to make a direct contact with, and transfer heme to, the heme-binding component (IsdE) of an ABC transporter in the cytoplasmic membrane, and to receive heme from other NEAT-containing heme-binding proteins also localized in the cell wall. 217 -213844 TIGR03657 IsdB heme uptake protein IsdB. Isd proteins are iron-regulated surface proteins found in Bacillus, Staphylococcus and Listeria species and are responsible for heme scavenging from hemoproteins. The IsdB protein is only observed in Staphylococcus and consists of an N-terminal hydrophobic signal sequence, a pair of tandem NEAT (NEAr Transporter, pfam05031) domains, which confers the ability to bind heme, and a C-terminal sortase processing signal which targets the protein to the cell wall. IsdB is believed to make a direct contact with methemoglobin facilitating transfer of heme to IsdB. The heme is then transferred to other cell wall-bound NEAT domain proteins such as IsdA and IsdC. 644 -132697 TIGR03658 IsdH_HarA haptoglobin-binding heme uptake protein HarA. HarA is a heme-binding NEAT-domain (NEAr Transporter, pfam05031) protein which has been shown to bind to the haptoglobin-hemoglobin complex in order to extract heme from it. HarA has also been reported to bind hemoglobin directly. HarA (also known as IsdH) contains three NEAT domains as well as a sortase A C-terminal signal for localization to the cell wall. The heme bound at the third of these NEAT domains has been shown to be transferred to the IsdA protein also localized at the cell wall, presumably through an additional specific protein-protein interaction. Haptoglobin is a hemoglobin carrier protein involved in scavenging hemoglobin in the blood following red blood cell lysis and targetting it to the liver. 895 -274706 TIGR03659 IsdE heme ABC transporter, heme-binding protein isdE. This family of ABC substrate-binding proteins is observed primarily in close proximity with proteins localized to the cell wall and bearing the NEAT (NEAr Transporter, pfam05031) heme-binding domain. IsdE has been shown to bind heme and is involved in the process of scavenging heme for the purpose of obtaining iron. 289 -132699 TIGR03660 T1SS_rpt_143 T1SS-143 repeat domain. This model represents a domain of about 143 amino acids that may occur singly or in up to 23 tandem repeats in very large proteins in the genus Vibrio, and in related species such as Legionella pneumophila, Photobacterium profundum, Rhodopseudomonas palustris, Shewanella pealeana, and Aeromonas hydrophila. Proteins with these domains represent a subset of a broader set of proteins with a particular signal for type 1 secretion, consisting of several glycine-rich repeats modeled by pfam00353, followed by a C-terminal domain modeled by TIGR03661. Proteins with this domain tend to share several properties with the RtxA (Repeats in Toxin) protein of Vibrio cholerae, including a large size often containing tandemly repeated domains and a C-terminal signal for type 1 secretion. [Cellular processes, Pathogenesis] 137 -274707 TIGR03661 T1SS_VCA0849 type I secretion C-terminal target domain (VC_A0849 subclass). This model represents a C-terminal domain associated with secretion by type 1 secretion systems (T1SS). Members of this subclass do not include the RtxA toxin of Vibrio cholerae and its homologs, although the two classes of proteins share large size, occurrence in genomes with T1SS, regions with long tandem repeats, and regions with the glycine-rich repeat modeled by pfam00353. [Cellular processes, Pathogenesis] 88 -274708 TIGR03662 Chlor_Arch_YYY Chlor_Arch_YYY domain. Members of this highly hydrophobic probable integral membrane family belong to two classes. In one, a single copy of the region covered by this model represents essentially the full length of a strongly hydrophobic protein of about 700 to 900 residues (variable because of long inserts in some). The domain architecture of the other class consists of an additional N-terminal region, two copies of the region represented by this model, and three to four repeats of TPR, or tetratricopeptide repeat. The unusual species range includes several Archaea, several Chloroflexi, and Clostridium phytofermentans. An unusual motif YYYxG is present, and we suggest the name Chlor_Arch_YYY protein. The function is unknown. 723 -274709 TIGR03663 TIGR03663 TIGR03663 family protein. Members of this protein family, uncommon and rather sporadically distributed, are found almost always in the same genomes as members of family TIGR03662, and frequently as a nearby gene. Members show some N-terminal sequence similarity with pfam02366, dolichyl-phosphate-mannose-protein mannosyltransferase. The few invariant residues in this family, found toward the N-terminus, include a dipeptide DE, a tripeptide HGP, and two different Arg residues. Up to three members may be found in a genome. The function is unknown. 439 -274710 TIGR03664 fut_nucase futalosine hydrolase. This enzyme catalyzes the conversion of futalosine to de-hypoxanthine futalosine in a pathway for the biosynthesis of menaquinone distinct from the pathway observed in E. coli. 222 -274711 TIGR03665 arCOG04150 arCOG04150 universal archaeal KH domain protein. This family of proteins is universal among the 41 archaeal genomes analyzed, and is not observed outside of the archaea. The proteins contain a single KH domain (pfam00013) which is likely to confer the ability to bind RNA. 172 -274712 TIGR03666 Rv2061_F420 PPOX class probable F420-dependent enzyme, Rv2061 family. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomycetales, make F420. A variant of the Partial Phylogenetic Profiling algorithm, SIMBAL, shows that this protein likely binds F420 in a cleft similar to that in which the homologous enzyme pyridoxamine phosphate oxidase (PPOX) binds FMN. [Unknown function, Enzymes of unknown specificity] 132 -132706 TIGR03667 Rv3369 PPOX class probable F420-dependent enzyme, Rv3369 family. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomycetales, make F420. A variant of the Partial Phylogenetic Profiling algorithm, SIMBAL, shows that this protein likely binds F420 in a cleft similar to that in which the homologous enzyme pyridoxamine phosphate oxidase (PPOX) binds FMN. [Unknown function, Enzymes of unknown specificity] 130 -132707 TIGR03668 Rv0121_F420 PPOX class probable F420-dependent enzyme, Rv0121 family. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomycetales, make F420. A variant of the Partial Phylogenetic Profiling algorithm, SIMBAL, shows that this protein likely binds F420 in a cleft similar to that in which the homologous enzyme pyridoxamine phosphate oxidase (PPOX) binds FMN. [Unknown function, Enzymes of unknown specificity] 141 -132708 TIGR03669 urea_ABC_arch urea ABC transporter, substrate-binding protein, archaeal type. Members of this protein family are identified as the substrate-binding protein of a urea ABC transport system by similarity to a known urea transporter from Corynebacterium glutamicum, operon structure, proximity of its operons to urease (urea-utilization protein) operons, and by Partial Phylogenetic Profiling vs. urea utilization. [Transport and binding proteins, Amino acids, peptides and amines] 374 -274713 TIGR03670 rpoB_arch DNA-directed RNA polymerase subunit B. This model represents the archaeal version of DNA-directed RNA polymerase subunit B (rpoB) and is observed in all archaeal genomes. 599 -274714 TIGR03671 cca_archaeal CCA-adding enzyme. 408 -274715 TIGR03672 rpl4p_arch 50S ribosomal protein uL4, archaeal form. One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. 251 -274716 TIGR03673 uL14_arch 50S ribosomal protein uL14, archaeal form. Part of the 50S ribosomal subunit. Forms a cluster with proteins L3 and L24e, part of which may contact the 16S rRNA in 2 intersubunit bridges. 131 -274717 TIGR03674 fen_arch flap structure-specific endonuclease. Endonuclease that cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Has 5'-endo-/exonuclease and 5'-pseudo-Y-endonuclease activities. Cleaves the junction between single and double-stranded regions of flap DNA 338 -274718 TIGR03675 arCOG00543 arCOG00543 universal archaeal KH-domain/beta-lactamase-domain protein. This family of proteins is universal in the archaea and consistsof an N-terminal type-1 KH-domain (pfam00013) a central beta-lactamase-domain (pfam00753) with a C-terminal motif associated with RNA metabolism (pfam07521). KH-domains are associated with RNA-binding, so taken together, this protein is a likely metal-dependent RNAase. This family was defined as arCOG01782. 630 -274719 TIGR03676 aRF1/eRF1 peptide chain release factor 1, archaeal and eukaryotic forms. Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. This model identifies both archaeal (aRF1) and eukaryotic (eRF1) of the protein. Also known as translation termination factor 1. [Protein synthesis, Translation factors] 403 -188367 TIGR03677 eL8_ribo ribosomal protein eL8, archaeal form. This model specifically identifies the archaeal version of the large ribosomal complex protein eL8, previously designated L8 in yeast and L7Ae in the archaea. The family is a narrower version of the pfam01248 model which also recognizes the L30 protein. 117 -163391 TIGR03678 het_cyc_patell bacteriocin leader peptide, microcyclamide/patellamide family. This model represents a conserved N-terminal region shared by microcyclamide and patellamide bacteriocins precursors. These bacteriocin precursors are associated with heterocyclization. Related precursors are found in family TIGR04446. 34 -188368 TIGR03679 arCOG00187 arCOG00187 universal archaeal metal-binding-domain/4Fe-4S-binding-domain containing ABC transporter, ATP-binding protein. This protein consists of an N-terminal possible metal-binding domain (pfam04068) followed by a 4Fe-4S cluster binding domain (pfam00037) followed by a C-terminal ABC transporter, ATP-binding domain (pfam00005). This combination of N-terminal domains is observed in the RNase L inhibitor, RLI. This model has the same scope as an archaeal COG (arCOG00187) and is found in all completely sequenced archaea and does not recognize any known non-archaeal genes. 218 -274720 TIGR03680 eif2g_arch translation initiation factor 2 subunit gamma. This model represents the archaeal translation initiation factor 2 subunit gamma and is found in all known archaea. eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. 406 -274721 TIGR03682 arCOG04112 diphthamide biosynthesis enzyme Dph2. Members of this family are the archaeal protein Dph2, members of the universal archaeal protein family designated arCOG04112. The chemical function of this protein is analogous to the radical SAM family (pfam04055), although the sequence is not homologous. The chemistry involves [4Fe-4S]-aided formation of a 3-amino-3-carboxypropyl radical rather than the canonical 5'-deoxyadenosyl radical of the radical SAM family. 308 -274722 TIGR03683 A-tRNA_syn_arch alanyl-tRNA synthetase. This family of alanyl-tRNA synthetases is limited to the archaea, and is a subset of those sequences identified by the model pfam07973 covering the second additional domain (SAD) of alanyl and threonyl tRNA synthetases . 902 -274723 TIGR03684 arCOG00985 arCOG04150 universal archaeal PUA-domain protein. This universal archaeal protein contains a domain possibly associated with RNA binding (pfam01472, TIGR00451). 150 -274724 TIGR03685 ribo_P1_arch 50S ribosomal protein P1. This model represents P1 the L12P protein of the large (50S) subunit of the archaeal ribosome. 105 -274725 TIGR03686 pupylate_PafA Pup--protein ligase. Members of this family are the Pup--protein ligase PafA (proteasome accessory factor A), a protein shown to regulate steady-state levels of certain proteasome targets in Mycobacterium tuberculosis. Iyer, et al (2008) first suggested that PafA is the ligase for Pup, a ubiquitin analog attached to an epsilon-amino group of a Lys side-chain to direct the target to the proteasome. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 453 -200311 TIGR03687 pupylate_cterm ubiquitin-like protein Pup. Members of this protein family are Pup, a small protein whose ligation to target proteins steers them toward degradation. This protein family occurs in a number of bacteria, especially Actinobacteria such as Mycobacterium tuberculosis, that possess an archeal-type proteasome. All members of this protein family known during model construction end with the C-terminal motif [FY][VI]QKGG[QE]. Ligation is thought to occur between the C-terminal COOH of Pup and an epsilon-amino group of a Lys on the target protein. The N-terminal half of this protein is poorly conserved and not represented in the seed alignment. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 33 -274726 TIGR03688 pupylate_PafA2 proteasome accessory factor PafA2. This protein family is paralogous to (and distinct from) the PafA (proteasome accessory factor) first described in Mycobacterium tuberculosis (see TIGR03686). Members of both this family and TIGR03686 itself tend to cluster with each other, with the ubiquitin analog Pup (TIGR03687) associated with targeting to the proteasome, and with proteasome subunits themselves. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 485 -200312 TIGR03689 pup_AAA proteasome ATPase. In the Actinobacteria, as shown for Mycobacterium tuberculosis, some proteins are modified by ligation between an epsilon-amino group of a lysine side chain and the C-terminal carboxylate of the ubiquitin-like protein Pup. This modification leads to protein degradation by the archaeal-like proteasome found in the Actinobacteria. Members of this protein family belong to the AAA family of ATPases and tend to be clustered with the genes for Pup, the Pup ligase PafA, and structural components of the proteasome. This protein forms hexameric rings with ATPase activity. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 512 -163402 TIGR03690 20S_bact_beta proteasome, beta subunit, bacterial type. Members of this family are the beta subunit of the 20S proteasome as found in Actinobacteria such as Mycobacterium, Rhodococcus, and Streptomyces. In Streptomyces, maturation during proteasome assembly was shown to remove a 53-amino acid propeptide. Most of the length of the propeptide is not included in this model. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 219 -163403 TIGR03691 20S_bact_alpha proteasome, alpha subunit, bacterial type. Members of this family are the alpha subunit of the 20S proteasome as found in Actinobacteria such as Mycobacterium, Rhodococcus, and Streptomyces. In most Actinobacteria (an exception is Propionibacterium acnes), the proteasome is accompanied by a system of tagging proteins for degradation with Pup. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 228 -274727 TIGR03692 ATP_dep_HslV ATP-dependent protease HslVU, peptidase subunit. The ATP-dependent protease HslVU, a complex of hexameric HslU active as a protein-unfolding ATPase and dodecameric HslV, the catalytic threonine protease. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 171 -163405 TIGR03693 ocin_ThiF_like putative thiazole-containing bacteriocin maturation protein. Members of this protein family are found in a three-gene operon in Bacillus anthracis and related Bacillus species, where the other two genes are clearly identified with maturation of a putative thiazole-containing bacteriocin precursor. While there is no detectable pairwise sequence similarity between members of this family and the proposed cyclodehydratases such as SagC of Streptococcus pyogenes (see family TIGR03603), both families show similarity through PSI-BLAST to ThiF, a protein involved in biosynthesis of the thiazole moiety for thiamine biosynthesis. This family, therefore, may contribute to cyclodehydratase function in heterocycle-containing bacteriocin biosyntheses. In Bacillus licheniformis ATCC 14580, the bacteriocin precursor gene is adjacent to the gene for this protein. [Cellular processes, Toxin production and resistance] 637 -274728 TIGR03694 exosort_acyl N-acyl amino acid synthase, PEP-CTERM/exosortase system-associated. Members of this protein family are restricted to bacterial species with the PEP-CTERM/exosortase system predicted to act in exopolysaccharide-associated protein targeting. PSI-BLAST and CDD reveal relationships to the acyltransferase family that includes N-acyl-L-homoserine lactone synthetase, and recent work shows long-chain N-acyl amino acid biosynthesis activity. Several members of this family may be found in a single genome. These acyltransferases may produce a quorum signalling molecule or may contribute to chemical modifications in exopolysaccharide and biofilm structural material production. 241 -274729 TIGR03695 menH_SHCHC 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase. This protein catalyzes the formation of SHCHC, or (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate, by elmination of pyruvate from 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC). Note that SHCHC synthase activity previously was attributed to MenD, which in fact is SEPHCHC synthase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 252 -274730 TIGR03696 Rhs_assc_core RHS repeat-associated core domain. This model represents a conserved unique core sequence shared by large numbers of proteins. It is occasional in the Archaea Methanosarcina barkeri) but common in bacteria and eukaryotes. Most fall into two large classes. One class consists of long proteins in which two classes of repeats are abundant: an FG-GAP repeat (pfam01839) class, and an RHS repeat (pfam05593) or YD repeat (TIGR01643). This class includes secreted bacterial insecticidal toxins and intercellular signalling proteins such as the teneurins in animals. The other class consists of uncharacterized proteins shorter than 400 amino acids, where this core domain of about 75 amino acids tends to occur in the N-terminal half. Over twenty such proteins are found in Pseudomonas putida alone; little sequence similarity or repeat structure is found among these proteins outside the region modeled by this domain. 77 -163409 TIGR03697 NtcA_cyano global nitrogen regulator NtcA, cyanobacterial. Members of this protein family, found in the cyanobacteria, are the global nitrogen regulator NtcA. This DNA-binding transcriptional regulator is required for expressing many different ammonia-repressible genes. The consensus NtcA-binding site is G T A N(8)T A C. [Regulatory functions, DNA interactions] 193 -163410 TIGR03698 clan_AA_DTGF clan AA aspartic protease, AF_0612 family. Members of this protein family are clan AA aspartic proteases, related to family TIGR02281. These proteins resemble retropepsins, pepsin-like proteases of retroviruses such as HIV. Members of this family are found in archaea and bacteria. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 107 -274731 TIGR03699 menaquin_MqnC dehypoxanthine futalosine cyclase. members of this protein family are involved in menaquinone biosynthesis by an alternate pathway via futalosine. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 340 -213851 TIGR03700 mena_SCO4494 putative menaquinone biosynthesis radical SAM enzyme, SCO4494 family. Members of this protein family appear to be involved in menaquinone biosynthesis by an alternate pathway via futalosine, based on close phylogenetic correlation with known markers of the futalosine pathway, gene clustering in many organisms, and paralogy with the SCO4550 protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 351 -163413 TIGR03701 mena_SCO4490 menaquinone biosynthesis decarboxylase, SCO4490 family. Members of this protein family are putative decarboxylases involved in a late stage of the alternative pathway for menaquinone, via futalosine, as in Streptomyces coelicolor and Helicobacter pylori. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 433 -163414 TIGR03702 lip_kinase_YegS lipid kinase YegS. Members of this protein family are designated YegS, an apparent lipid kinase family in the Proteobacteria. Bakali, et al. report phosphatidylglycerol kinase activity for the member from Escherichia coli, but refrain from calling that activity synonymous with its biological role. Note that a broader, subfamily-type model (TIGR00147), includes this family but also multiple paralogs in some species and varied functions. [Unknown function, Enzymes of unknown specificity] 293 -274732 TIGR03703 plsB glycerol-3-phosphate O-acyltransferase. Members of this protein family are PlsB, glycerol-3-phosphate O-acyltransferase, present in E. coli and numerous related species. In many bacteria, PlsB is not found, and appears to be replaced by a two enzyme system for 1-acyl-glycerol-3-phosphate biosynthesis, the PlsX/Y system. [Fatty acid and phospholipid metabolism, Biosynthesis] 799 -274733 TIGR03704 PrmC_rel_meth putative protein-(glutamine-N5) methyltransferase, unknown substrate-specific. This protein family is closely related to two different families of protein-(glutamine-N5) methyltransferase. The first is PrmB, which modifies ribosomal protein L3 in some bacteria. The second is PrmC (HemK), which modifies peptide chain release factors 1 and 2 in most bacteria and also in eukaryotes. The glutamine side chain-binding motif NPPY shared by PrmB and PrmC is N[VAT]PY in this family. The protein substrate is unknown. [Protein synthesis, Ribosomal proteins: synthesis and modification] 251 -274734 TIGR03705 poly_P_kin polyphosphate kinase 1. Members of this protein family are the enzyme polyphosphate kinase 1 (PPK1). This family is found in many prokaryotes and also in Dictyostelium. Sequences in the seed alignment were taken from prokaryotic consecutive two-gene pairs in which the other gene encodes an exopolyphosphatase. It synthesizes polyphosphate from the terminal phosphate of ATP but not GTP, in contrast to PPK2. [Central intermediary metabolism, Phosphorus compounds] 672 -274735 TIGR03706 exo_poly_only exopolyphosphatase. It appears that a single enzyme may act as both exopolyphosphatase (Ppx) and guanosine pentaphosphate phosphohydrolase (GppA) in a number of species. Members of the seed alignment use to define this exception-level model are encoded adjacent to a polyphosphate kinase 1 gene, and the trusted cutoff is set high enough (425) that no genome has a second hit. Therefore all members may be presumed to at least share exopolyphospatase activity, and may lack GppA activity. GppA acts in the stringent response. [Central intermediary metabolism, Phosphorus compounds] 300 -213852 TIGR03707 PPK2_P_aer polyphosphate kinase 2, PA0141 family. Members of this protein family are designated polyphosphate kinase 2 (PPK2) after the characterized protein in Pseudomonas aeruginosa. This family comprises one of three well-separated clades in the larger family described by pfam03976. PA0141 from this family has been shown capable of operating in reverse, with GDP preferred (over ADP) as a substrate, producing GTP (or ATP) by transfer of a phosphate residue from polyphosphate. Most species with a member of this family also encode a polyphosphate kinase 1 (PPK1). [Central intermediary metabolism, Phosphorus compounds] 230 -274736 TIGR03708 poly_P_AMP_trns polyphosphate:AMP phosphotransferase. Members of this protein family contain a domain duplication. The characterized member from Acinetobacter johnsonii is polyphosphate:AMP phosphotransferase (PAP), which can transfer the terminal phosphate from poly(P) to AMP, yielding ADP. In the opposite direction, this enzyme can synthesize poly(P). Each domain of this protein family is homologous to polyphosphate kinase, an enzyme that can run in the forward direction to extend a polyphosphate chain with a new terminal phosphate from ATP, or in reverse to make ATP (or GTP) from ADP (or GDP). [Central intermediary metabolism, Phosphorus compounds] 493 -274737 TIGR03709 PPK2_rel_1 polyphosphate:nucleotide phosphotransferase, PPK2 family. Members of this protein family belong to the polyphosphate kinase 2 (PPK2) family, which is not related in sequence to PPK1. While PPK1 tends to act in the biosynthesis of polyphosphate, or poly(P), members of the PPK2 family tend to use the terminal phosphate of poly(P) to regenerate ATP or GTP from the corresponding nucleoside diphosphate, or ADP from AMP as is the case with polyphosphate:AMP phosphotransferase (PAP). Members of this protein family most likely transfer the terminal phosphate between poly(P) and some nucleotide, but it is not clear which. [Central intermediary metabolism, Phosphorus compounds] 264 -274738 TIGR03710 OAFO_sf 2-oxoacid:acceptor oxidoreductase, alpha subunit. This family of proteins contains a C-terminal thiamine diphosphate (TPP) binding domain typical of flavodoxin/ferredoxin oxidoreductases (pfam01855) as well as an N-terminal domain similar to the gamma subunit of the same group of oxidoreductases (pfam01558). The genes represented by this model are always found in association with a neighboring gene for a beta subunit (TIGR02177) which also occurs in a 4-subunit (alpha/beta/gamma/ferredoxin) version of the system. This alpha/gamma plus beta structure was used to define the set of sequences to include in this model. This pair of genes is not consistantly observed in proximity to any electron acceptor genes, but is found next to putative ferredoxins or ferredoxin-domain proteins in Azoarcus sp. EbN1, Bradyrhizobium japonicum USDA 110, Frankia sp. CcI3, Rhodoferax ferrireducens DSM 15236, Rhodopseudomonas palustris BisB5, Os, Sphingomonas wittichii RW1 and Streptomyces clavuligerus. Other potential acceptors are also sporadically observed in close proximity including ferritin-like proteins, reberythrin, peroxiredoxin and a variety of other flavin and iron-sulfur cluster-containing proteins. The phylogenetic distribution of this family encompasses archaea, a number of deeply-branching bacterial clades and only a small number of firmicutes and proteobacteria. The enzyme from Sulfolobus has been characterized with respect to its substrate specificity, which is described as wide, encompassing various 2-oxoacids such as 2-oxoglutarate, 2-oxobutyrate and pyruvate. The enzyme from Hydrogenobacter thermophilus has been shown to have a high specificity towards 2-oxoglutarate and is one of the key enzymes in the reverse TCA cycle in this organism. Furthermore, considering its binding of coenzyme A, it can be reasonably inferred that the product of the reaction is succinyl-CoA. The genes for this enzyme in Prevotella intermedia 17, Persephonella marina EX-H1 and Picrophilus torridus DSM 9790 are in close proximity to a variety of TCA cycle genes. Persephonella marina and P. torridus are believed to encode complete TCA cycles, and none of these contains the lipoate-based 2-oxoglutarate dehydrogenase (E1/E2/E3) system. That system is presumed to be replaced by this one. In fact, the lipoate system is absent in most organisms possessing a member of this family, providing additional circumstantial evidence that many of these enzymes are capable of acting as 2-oxoglutarate dehydrogenases and 562 -163423 TIGR03711 acc_sec_asp3 accessory Sec system protein Asp3. This protein is designated Asp3 because, along with SecY2, SecA2, and other proteins it is part of the accessory Sec system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 135 -274739 TIGR03712 acc_sec_asp2 accessory Sec system protein Asp2. This protein is designated Asp2 because, along with SecY2, SecA2, and other proteins it is part of the accessory secretory protein system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 511 -274740 TIGR03713 acc_sec_asp1 accessory Sec system protein Asp1. This protein is designated Asp1 because, along with SecY2, SecA2, and other proteins it is part of the accessory secretory protein system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 519 -163426 TIGR03714 secA2 accessory Sec system translocase SecA2. Members of this protein family are homologous to SecA and part of the accessory Sec system. This system, including both five core proteins for export and a variable number of proteins for glycosylation, operates in certain Gram-positive pathogens for the maturation and delivery of serine-rich glycoproteins such as the cell surface glycoprotein GspB in Streptococcus gordonii. [Protein fate, Protein and peptide secretion and trafficking] 762 -274741 TIGR03715 KxYKxGKxW KxYKxGKxW signal peptide. This model describes a novel form of signal peptide that occurs as an N-terminal domain with a recognizable motif, reminiscent of the YSIRK and PEP-CTERM forms of signal peptide. This domain tends to occur on long, low-complexity (usually Serine-rich and heavily glycosylated) proteins of the Firmicutes, and (as with YSIRK) the majority of these proteins have the LPXTG cell wall-anchoring motif at the C-terminus. 23 -274742 TIGR03716 R_switched_YkoY integral membrane protein, YkoY family. Rfam model RF00080 describes a structured RNA element called the yybP-ykoY leader, or SraF, which may precede one or several genes in a genome. Members of this highly hydrophobic protein family often are preceded by a yybP-ykoY leader, which may serve as a riboswitch. From the larger group of TerC homologs (pfam03741), this subfamily contains proteins YceF and YkoY from Bacillus subtilis. A transport function is proposed. 215 -163429 TIGR03717 R_switched_YjbE integral membrane protein, YjbE family. Rfam model RF00080 describes a structured RNA element called the yybP-ykoY leader, or SraF, which may precede one or several genes in a genome. Members of this highly hydrophobic protein family commonly are preceded by a yybP-ykoY leader, which may serve as a riboswitch. From the larger group of TerC homologs (pfam03741), this subfamily contains protein YjbE from Bacillus subtilis. A transport function is proposed. 176 -274743 TIGR03718 R_switched_Alx integral membrane protein, TerC family. Rfam model RF00080 describes a structured RNA element called the yybP-ykoY leader, or SraF, which may precede one or several genes in a genome. Members of this highly hydrophobic protein family often are preceded by a yybP-ykoY leader, which may serve as a riboswitch. From the larger group of TerC homologs (pfam03741), this subfamily contains TerC itself from Alcaligenes sp. plasmid IncHI2 pMER610 and from Proteus mirabilis. It also contains the alkaline-inducible E. coli protein Alx, which unlike the two TerC examples is preceded by a yybP-ykoY leader. 302 -274744 TIGR03719 ABC_ABC_ChvD ATP-binding cassette protein, ChvD family. Members of this protein family have two copies of the ABC transporter ATP-binding cassette, but are found outside the common ABC transporter operon structure that features integral membrane permease proteins and substrate-binding proteins encoded next to the ATP-binding cassette (ABC domain) protein. The member protein ChvD from Agrobacterium tumefaciens was identified as both a candidate to interact with VirB8, based on yeast two-hybrid analysis, and as an apparent regulator of VirG. The general function of this protein family is unknown. 552 -274745 TIGR03720 exospor_lead exosporium leader peptide. This domain is found as a leader peptide in at least two proteins targeted to the exosporium, a structure that occurs as the outermost layer of Bacillus anthracis, B. cereus, and B. thuringiensis spores. The exosporium consists of a basal layer and a nap of hair-like filaments. BclA, the major protein of the nap filaments, is targeted there by this leader peptide. [Cellular processes, Sporulation and germination] 19 -274746 TIGR03721 exospore_TM BclB C-terminal domain. This domain occurs as the C-terminal region in a number of proteins that have extensive collagen-like triple helix repeat regions. Member domains are predicted by TmHMM to have four or five transmembrane helices. Members are found mostly in the Firmicutes, but also in Acanthamoeba polyphaga mimivirus. Members include spore surface glycoprotein BclB from Bacillus anthracis, a protein of the exosporium. The exosporium is an additional outermost spore layer, lacking in B. subtilis and most other spore formers, consisting of a basal layer and, above it, a nap of fine filaments. 165 -274747 TIGR03722 arch_KAE1 universal archaeal protein Kae1. This family represents the archaeal protein Kae1. Its partner Bud32 is fused with it in about half of the known archaeal genomes. The pair, which appears universal in the archaea, corresponds to EKC/KEOPS complex in eukaryotes. A recent characterization of the member from Pyrococcus abyssi, as an iron-binding, atypical DNA-binding protein with an apurinic lyase activity, challenges the common annotation of close homologs as O-sialoglycoprotein endopeptidase. The latter annotation is based on a characterized protein from the bacterium Pasteurella haemolytica. [DNA metabolism, DNA replication, recombination, and repair] 322 -274748 TIGR03723 T6A_TsaD_YgjD tRNA threonylcarbamoyl adenosine modification protein TsaD. This model represents bacterial members of a protein family that is widely distributed. In a few pathogenic species, the protein is exported in a way that may represent an exceptional secondary function. This model plus companion (archaeal) model TIGR03722 together span the prokaryotic member sequences of TIGR00329, a protein family that appears universal in life, and whose broad function is unknown. A member of TIGR03722 has been characterized as a DNA-binding protein with apurinic endopeptidase activity. In contrast, the rare characterized members of the present family show O-sialoglycoprotein endopeptidase (EC. 3.4.24.57) activity after export. These include glycoprotease (gcp) from Pasteurella haemolytica A1 and a cohemolysin from Riemerella anatipestifer (GB|AAG39646.1). The member from Staphylococcus aureus is essential and is related to cell wall dynamics and the modulation of autolysis, but members are also found in the Mycoplasmas (which lack a cell wall). A reasonable hypothesis is that virulence-related activities after export are secondary to a bacterial domain-wide unknown function. [Protein synthesis, tRNA and rRNA base modification] 313 -274749 TIGR03724 arch_bud32 Kae1-associated kinase Bud32. Members of this protein family are the Bud32 protein associated with Kae1 (kinase-associated endopeptidase 1) in the Archaea. In many Archaeal genomes, Kae1 and Bud32 are fused. The complex is homologous to the Kae1 and Bud32 subunits of the eukaryotic KEOPS complex, an apparently ancient protein kinase-containing molecular machine. [Unknown function, General] 199 -274750 TIGR03725 T6A_YeaZ tRNA threonylcarbamoyl adenosine modification protein YeaZ. This family describes a protein family, YeaZ, now associated with the threonylcarbamoyl adenosine (t6A) tRNA modification. Members of this family may occur as fusions with ygjD (previously gcp) or the ribosomal protein N-acetyltransferase rimI, and is frequently encoded next to rimI. [Protein synthesis, tRNA and rRNA base modification] 204 -274751 TIGR03726 strep_RK_lipo putative cross-wall-targeting lipoprotein signal. The YSIRK signal domain targets proteins to the cross-wall, or septum, of dividing Gram-positive bacterial. Lipoprotein signal motifs direct a characteristic N-terminal cleavage and lipid modification for membrane anchoring. This Streptococcal-only signal peptide variant appears to be a hybrid between the two, likely directing protein targeting of nascent surface lipoproteins to the cross-wall. Nearly all members of this family have the characteristic LPXTG cell wall anchor signal at the C-terminus. 34 -274752 TIGR03727 urea_t_UrtC_arc urea ABC transporter, permease protein UrtC, archaeal type. Members of this protein family are ABC transporter permease subunits restricted to the Archaea. Several lines of evidence suggest this protein is functionally analogous, as well as homologous, to the UrtC subunit of the Corynebacterium glutamicum urea transporter. All members of the operon show sequence similarity to urea transport subunits, the gene is located near the urease structural subunits in two of three species, and partial phylogenetic profiling identifies this permease subunit as closely matching the profile of urea utilization. 369 -163440 TIGR03728 glyco_access_1 glycosyltransferase, SP_1767 family. Members of this protein family are putative glycosyltransferases. Some members are found close to genes for the accessory secretory (SecA2) system, and are suggested by Partial Phylogenetic Profiling to correlate with SecA2 systems. Glycosylation, therefore, may occur in the cytosol prior to secretion. 265 -163441 TIGR03729 acc_ester putative phosphoesterase. Members of this protein family belong to the larger family pfam00149 (calcineurin-like phosphoesterase), a family largely defined by small motifs of metal-chelating residues. The subfamily in this model shows a good but imperfect co-occurrence in species with domain TIGR03715 that defines a novel class of signal peptide typical of the accessory secretory system. 239 -163442 TIGR03730 tungstate_WtpA tungstate ABC transporter binding protein WtpA. Members of this protein family are tungstate (and, more weakly, molybdate) binding proteins of tungstate(/molybdate) ABC transporters, as first characterized in Pyrococcus furiosus. Model seed members and cutoffs, pending experimental evidence for more distant homologs, were chosen such that this model identifies select archaeal proteins, excluding weaker archaeal and all bacterial homologs. Note that this family is homologous to molybdate transporters, and that at least one other family of tungstate transporter binding protein, TupA, also exists. 273 -274753 TIGR03731 lantibio_gallid lantibiotic, gallidermin/nisin family. Members of this family are lantibiotic precursors in the family that includes gallidermin, nisin, mutacin, epidermin, and streptin. [Cellular processes, Toxin production and resistance] 48 -274754 TIGR03732 lanti_perm_MutE lantibiotic protection ABC transporter permease subunit, MutE/EpiE family. Model TIGR03731 represents the family of all lantibiotics related to gallidermin, including epidermin, mutatin, and nisin. This protein family is largely restricted to gallidermin-family lantibiotic cassettes, but also include orphan transporter cassettes in species that lack candidate lantibiotic precursor and synthetase genes. In most species, this subunit is paralogous to an adjacent gene, modeled separately. 241 -163445 TIGR03733 lanti_perm_MutG lantibiotic protection ABC transporter permease subunit, MutG family. Model TIGR03731 represents the family of all lantibiotics related to gallidermin, including epidermin, mutatin, and nisin. This protein family is largely restricted to gallidermin-family lantibiotic cassettes, but also include orphan transporter cassettes in species that lack candidate lantibiotic precursor and synthetase genes. In most species, this subunit is paralogous to an adjacent gene modeled separate by TIGR03732, while in some species only one subunit is found. 248 -274755 TIGR03734 PRTRC_parB PRTRC system ParB family protein. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family the member related to ParB, and is designated PRTRC system ParB family protein. 554 -163447 TIGR03735 PRTRC_A PRTRC system protein A. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family is designated protein A. 192 -163448 TIGR03736 PRTRC_ThiF PRTRC system ThiF family protein. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. This family is the PRTRC system ThiF family protein. 244 -274756 TIGR03737 PRTRC_B PRTRC system protein B. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. This protein family is designated protein B. 228 -163450 TIGR03738 PRTRC_C PRTRC system protein C. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family is designated PRTRC system protein C. 66 -274757 TIGR03739 PRTRC_D PRTRC system protein D. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family is designated PRTRC system protein D. The gray zone, between trusted and noise, includes proteins found in the same genomes as other proteins of the PRTRC systems, but not in the same contiguous gene region. 320 -163452 TIGR03740 galliderm_ABC gallidermin-class lantibiotic protection ABC transporter, ATP-binding subunit. Model TIGR03731 represents the family of all lantibiotics related to gallidermin, including epidermin, mutatin, and nisin. This protein family describes the ATP-binding subunit of a gallidermin/epidermin class lantibiotic protection transporter. It is largely restricted to gallidermin-family lantibiotic biosynthesis and export cassettes, but also occurs in orphan transporter cassettes in species that lack candidate lantibiotic precursor and synthetase genes. 223 -274758 TIGR03741 PRTRC_E PRTRC system protein E. A novel genetic system characterized by six or seven major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family averages about 150 amino acids in length, but the last third contains low-complexity sequence that complicates sequence comparisons. This model does not include the low-complexity region. 104 -274759 TIGR03742 PRTRC_F PRTRC system protein F. A novel genetic system characterized by seven (usually) major proteins, including a ParB homolog and a ThiF homolog, is commonly found on plasmids or in bacterial chromosomal regions near phage, plasmid, or transposon markers. It is most common among the beta Proteobacteria. We designate the system PRTRC, or ParB-Related,ThiF-Related Cassette. This protein family is designated protein F. It is the most divergent of the families. 342 -274760 TIGR03743 SXT_TraD conjugative coupling factor TraD, SXT/TOL subfamily. Members of this protein family are the putative conjugative coupling factor, TraD (or TraG), rather distantly related to the well-characterized TraD of the F plasmid. Members are associated with conjugative-transposon-like mobile genetic elements of the class that includes SXT, an antibiotic resistance transfer element in some Vibrio cholerae strains. [Mobile and extrachromosomal element functions, Other] 634 -274761 TIGR03744 traC_PFL_4706 conjugative transfer ATPase, PFL_4706 family. Members of this protein family are predicted ATP-binding proteins apparently associated with DNA conjugal transfer. Members are found both in plasmids and in bacterial chromosomal regions that appear to derive from integrative elements such as conjugative transposons. More distant homologs, outside the scope of this family, include type IV secretion/conjugal transfer proteins such as TraC, VirB4 and TrsE. The granularity of this protein family definition is chosen so as to represent one distinctive clade and act as a marker through which to define and recognize the class of mobile element it serves. [Mobile and extrachromosomal element functions, Plasmid functions] 893 -274762 TIGR03745 conj_TIGR03745 integrating conjugative element membrane protein, PFL_4702 family. Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in a region flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 105 -163458 TIGR03746 conj_TIGR03746 integrating conjugative element protein, PFL_4703 family. Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. The function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 202 -163459 TIGR03747 conj_TIGR03747 integrating conjugative element membrane protein, PFL_4697 family. Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 233 -163460 TIGR03748 conj_PilL conjugative transfer region protein, TIGR03748 family. This model describes the conserved N-terminal region of a variable length protein family associated with laterally transfered regions flanked by markers of conjugative plasmid integration and/or transposition. Most members of the family have the lipoprotein signal peptide motif. A member of the family from a pathogenicity island in Salmonella enterica serovar Dublin strain was designated PilL for nomenclature consistency with a neighboring gene for the pilin structural protein PilS. However, the species distribution of this protein family tracks much better with markers of conjugal transfer than with markers of PilS-like pilin structure. [Mobile and extrachromosomal element functions, Plasmid functions] 105 -163461 TIGR03749 conj_TIGR03749 integrating conjugative element protein, PFL_4704 family. Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in a region flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 257 -274763 TIGR03750 conj_TIGR03750 conjugative transfer region protein, TIGR03750 family. Members of this protein family are found occasionally on plasmids. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 111 -274764 TIGR03751 conj_TIGR03751 conjugative transfer region lipoprotein, TIGR03751 family. Members of this protein family are found occasionally on plasmids. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 124 -274765 TIGR03752 conj_TIGR03752 integrating conjugative element protein, PFL_4705 family. Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida toluene catabolic TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 472 -274766 TIGR03753 blh_monoox beta-carotene 15,15'-monooxygenase, Brp/Blh family. This integral membrane protein family includes Brp (bacterio-opsin related protein) and Blh (Brp-like protein). Bacteriorhodopsin is a light-driven proton pump with a covalently bound retinal cofactor that appears to be derived beta-carotene. Blh has been shown to cleave beta-carotene to product two all-trans retinal molecules. Mammalian enzymes with similar enzymatic function are not multiple membrane spanning proteins and are not homologous. 259 -274767 TIGR03754 conj_TOL_TraD conjugative coupling factor TraD, TOL family. Members of this protein are assigned by homology to the TraD family of conjugative coupling factor. This particular clade serves as a marker for an extended gene region that occurs occasionally on plasmids, including the toluene catabolism TOL plasmid. More commonly, the gene region is chromosomal, flanked by various markers of conjugative transfer and insertion. 643 -274768 TIGR03755 conj_TIGR03755 integrating conjugative element protein, PFL_4711 family. Members of this protein family are found in genomic regions associated with conjugative transfer and integrated TOL-like plasmids. The specific function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 418 -274769 TIGR03756 conj_TIGR03756 integrating conjugative element protein, PFL_4710 family. Members of this protein family are found in genomic regions associated with conjugative transfer and integrated TOL-like plasmids. The specific function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 297 -163469 TIGR03757 conj_TIGR03757 integrating conjugative element protein, PFL_4709 family. Members of this protein belong to extended genomic regions that appear to be spread by conjugative transfer. [Mobile and extrachromosomal element functions, Plasmid functions] 113 -163470 TIGR03758 conj_TIGR03758 integrating conjugative element protein, PFL_4701 family. Members of this family of small, hydrophobic proteins are found occasionally on plasmids such as the Pseudomonas putida TOL (toluene catabolic) plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 65 -274770 TIGR03759 conj_TIGR03759 integrating conjugative element protein, PFL_4693 family. Members of this protein family, such as model protein PFL_4693 from Pseudomonas fluorescens Pf-5, belong to extended genomic regions that appear to be spread by conjugative transfer. Most members have a predicted N-terminal signal sequence. The function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 200 -163472 TIGR03760 ICE_TraI_Pfluor integrating conjugative element relaxase, PFL_4751 family. Members of this protein family are the TraI putative relaxases required for transfer by a subclass of integrating conjugative elements (ICE) as found in Pseudomonas fluorescens Pf-5, and understood from study of two related ICE, SXT and R391. This model represents the N-terminal domain. Note that no homology is detected to the similarly named TraI relaxase of the F plasmid. 218 -274771 TIGR03761 ICE_PFL4669 integrating conjugative element protein, PFL_4669 family. Members of this protein family, such as PFL4669, are found in integrating conjugative elements (ICE) of the PFGI-1 class as in Pseudomonas fluorescens. 216 -274772 TIGR03762 archaeo_artC archaeosortase C, PEF-CTERM variant. Members of this family are archaeal homologs to bacterial PEP-CTERM-sorting protein exosortase (TIGR02602). Members of this family are found in species with an archaeal variant sorting motif, PEF-CTERM (TIGR03024). Members are found in the thermoacidophilic Aciduliprofundum boonei, the mesophilic psychromethanogens Methanosarcina mazei and Methanococcoides burtonii, and in Ferroglobus placidus DSM 10642. [Protein fate, Protein and peptide secretion and trafficking] 274 -163475 TIGR03763 cyanoexo_CrtA cyanoexosortase A. The predicted protein-sorting transpeptidase that we call exosortase (see TIGR02602) has distinct subclasses that associated with different types of exopolysaccharide production loci and/or different taxonomic lineages. We designate this relatively divergent cyanobacterial type to be type 3. We propose the gene symbol xrtC. This type coexists with a TIGR02602-recognized form in Nostoc sp. PCC 7120. [Protein fate, Protein and peptide secretion and trafficking] 260 -213858 TIGR03764 ICE_PFGI_1_parB integrating conjugative element, PFGI_1 class, ParB family protein. Members of this protein family carry the ParB-type nuclease domain and are found in integrating conjugative elements (ICE) in the same class as PFGI-1 of Pseudomonas fluorescens Pf-5. 258 -274773 TIGR03765 ICE_PFL_4695 integrating conjugative element protein, PFL_4695 family. This model describes a protein family exemplified by PFL_4695 of Pseudomonas fluorescens Pf-5. Full-length proteins in this family show some architectural variety, but this model represents a conserved domain. Most or all member proteins belong to laterally transferred chromosomal islands called integrative conjugative elements, or ICE. 105 -274774 TIGR03766 TIGR03766 conserved hypothetical integral membrane protein. Models TIGR03110, TIGR03111, and TIGR03112 describe a three-gene system found in several Gram-positive bacteria, where TIGR03110 (XrtG) is distantly related to a putative transpeptidase, exosortase (TIGR02602). This model describes a small clade that correlates by both gene clustering and phyletic pattern, although imperfectly, to the three gene system. Both this narrow clade, and the larger set of full-length homologous integral membrane proteins, have an especially well-conserved region near the C-terminus with an invariant tyrosine. The function is unknown. 483 -213859 TIGR03767 P_acnes_RR metallophosphoesterase, PPA1498 family. This model describes a small collection of probable metallophosphoresterases, related to pfam00149 but with long inserts separating some of the shared motifs such that the homology is apparent only through multiple sequence alignment. Members of this protein family, in general, have a Sec-independent TAT (twin-arginine translocation) signal sequence, N-terminal to the region represented by this model. Members include YP_056203.1 from Propionibacterium acnes KPA171202. 496 -163480 TIGR03768 RPA4764 metallophosphoesterase, RPA4764 family. This model describes a small collection of probable metallophosphoresterases, related to pfam00149. Members of this protein family usually have a Sec-independent TAT (twin-arginine translocation) signal sequence, N-terminal to the region represented by this model. This model and TIGR03767 divide a narrow clade of pfam00149-related enzymes. 492 -274775 TIGR03769 P_ac_wall_RPT actinobacterial surface-anchored protein domain. This model describes a repeat domain that one to three times in Actinobacterial proteins, some of which have LPXTG-type sortase recognition motifs for covalent attachment to the Gram-positive cell wall. Where it occurs with duplication in an LPXTG-anchored protein, it tends to be adjacent to the substrate-binding protein of the gene trio of an ABC transporter system, where that substrate-binding protein has a single copy of this same domain. This arrangement suggests a substrate-binding relay system, with the LPXTG protein acting as a substrate receptor. 41 -163482 TIGR03770 anch_rpt_perm anchored repeat-type ABC transporter, permease subunit. This protein family is the permease subunit of binding protein-dependent ABC transporter complex that strictly co-occurs with TIGR03769. TIGRFAMs model TIGR03769 describes a protein domain that occurs singly or as one of up to three repeats in proteins of a number of Actinobacteria, including Propionibacterium acnes KPA171202. The TIGR03769 domain occurs both in the adjacent gene for the substrate-binding protein and in additional (often nearby) proteins, often with LPXTG-like sortase recognition signals. Homologous permease subunits outside the scope of this family include manganese transporter MntB in Synechocystis sp. PCC 6803 and chelated iron transporter subunits. The function of this transporter complex is unknown. [Transport and binding proteins, Unknown substrate] 270 -163483 TIGR03771 anch_rpt_ABC anchored repeat-type ABC transporter, ATP-binding subunit. This protein family is the ATP-binding cassette subunit of binding protein-dependent ABC transporter complex that strictly co-occurs with TIGR03769. TIGRFAMs model TIGR03769 describes a protein domain that occurs singly or as one of up to three repeats in proteins of a number of Actinobacteria, including Propionibacterium acnes KPA171202. The TIGR03769 domain occurs both in an adjacent gene for the substrate-binding protein and in additional (often nearby) proteins, often with LPXTG-like sortase recognition signals. Homologous ATP-binding subunits outside the scope of this family include manganese transporter MntA in Synechocystis sp. PCC 6803 and chelated iron transporter subunits. The function of this transporter complex is unknown. [Transport and binding proteins, Unknown substrate] 223 -163484 TIGR03772 anch_rpt_subst anchored repeat ABC transporter, substrate-binding protein. Members of this protein family are ABC transporter permease subunits as identified by pfam00950, but additionally contain the Actinobacterial insert domain described by TIGR03769. Some homologs (lacking the insert) have been described as transporters of manganese or of chelated iron. Members of this family typically are found along with an ATP-binding cassette protein, a permease, and an LPXTG-anchored protein with two or three copies of the TIGR03769 insert that occurs just once in this protein family. [Transport and binding proteins, Unknown substrate] 479 -274776 TIGR03773 anch_rpt_wall putative ABC transporter-associated repeat protein. Members of this protein family occur in genomes that contain a three-gene ABC transporter operon associated with the presence of domain TIGR03769. That domain occurs as a single-copy insert in the substrate-binding protein, and occurs in two or more copies in members of this protein family. Members of this family typically are encoded adjacent to the said transporter operon and may serve as a substrate receptor. 513 -163486 TIGR03774 RPE2 Rickettsial palindromic element RPE2 domain. This model describes protein translations of a second family, RPE2, of Rickettsia palindromic elements (RPE). The elements spread within a genome as selfish genetic elements, inserting into genes additional coding regions that does not disrupt the reading frame. This model finds RPE-encoded regions in several Rickettsial species and, so far, no where else. 35 -163487 TIGR03775 RPE3 Rickettsial palindromic element RPE3 domain. This model describes protein translations of a second family, RPE3, of Rickettsia palindromic elements (RPE). The elements spread within a genome as selfish genetic elements, inserting into genes additional coding regions that does not disrupt the reading frame. This model finds RPE-encoded regions in several Rickettsial species and, so far, no where else. 43 -163488 TIGR03776 RPE5 Rickettsial palindromic element RPE5 domain. This model describes protein translations of a family, RPE5, of Rickettsia palindromic elements (RPE). The elements spread within a genome as selfish genetic elements, inserting into genes additional coding region that does not disrupt the reading frame. This model finds RPE-encoded regions in several Rickettsial species and, so far, no where else. 43 -274777 TIGR03777 RPE4 Rickettsial palindromic element RPE4 domain. This model describes protein translations of a family, RPE4, of Rickettsia palindromic elements (RPE). The elements spread within a genome as selfish genetic elements, inserting into genes additional coding region that does not disrupt the reading frame. This model finds RPE-encoded regions in several Rickettsial species and, so far, no where else. 32 -274778 TIGR03778 VPDSG_CTERM VPDSG-CTERM protein sorting domain. Through in silico analysis, we previously described the PEP-CTERM/exosortase system (). This model describes a PEP-CTERM-like variant C-terminal protein sorting signal, as found at the C-terminus of twenty otherwise unrelated proteins in Verrucomicrobiae bacterium DG1235. The variant motif, VPDSG, seems an intermediate between the VPEP motif (TIGR02595) of typical exosortase systems and the classical LPXTG of sortase in Gram-positive bacteria. 24 -274779 TIGR03779 Bac_Flav_CT_M Bacteroides conjugative transposon TraM protein. Members of this protein family are designated TraM and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. [Cellular processes, DNA transformation] 410 -163492 TIGR03780 Bac_Flav_CT_N Bacteroides conjugative transposon TraN protein. Members of this family are the TraN protein encoded by transfer region genes of conjugative transposons of Bacteroides. The family is related to conjugative transfer proteins VirB9 and TrbG of Agrobacterium Ti plasmids. [Cellular processes, DNA transformation] 285 -200324 TIGR03781 Bac_Flav_CT_K Bacteroides conjugative transposon TraK protein. Members of this protein family are designated TraK and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. PSI-BLAST reveals a distant relationship to proteins TrbF and VirB8 in Proteobacterial conjugal transfer systems. [Cellular processes, DNA transformation] 202 -274780 TIGR03782 Bac_Flav_CT_J Bacteroides conjugative transposon TraJ protein. Members of this protein family are designated TraM and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. This family is related conjugation system proteins in the Proteobacteria, including TrbL of Agrobacterium Ti plasmids and VirB6. [Cellular processes, DNA transformation] 323 -163495 TIGR03783 Bac_Flav_CT_G Bacteroides conjugation system ATPase, TraG family. Members of this family include the predicted ATPase, TraG, encoded by transfer region genes of conjugative transposons of Bacteroides, such as CTnDOT, found on the main chromosome. Members also include TraG homologs borne on plasmids in Bacteroides. The protein family is related to the conjugative transfer system ATPase VirB4. [Cellular processes, DNA transformation] 829 -163496 TIGR03784 marine_sortase sortase, marine proteobacterial type. Members of this protein family are sortase enzymes, cysteine transpeptidases involved in protein sorting activities. Members of this family tend to be found in proteobacteria, rather than in Gram-positive bacteria where sortases attach proteins to the Gram-positive cell wall or participate in pilin cross-linking. Many species with this sortase appear to contain a signal target sequence, a protein with a Vault protein inter-alpha-trypsin domain (pfam08487) and a von Willebrand factor type A domain (pfam00092), encoded by an adjacent gene. These sortases are designated subfamily 6 according to Comfort and Clubb (2004). 174 -163497 TIGR03785 marine_sort_HK proteobacterial dedicated sortase system histidine kinase. This histidine kinase protein is paired with an adjacent response regulator (TIGR03787) gene. It co-occurs with a variant sortase enzyme (TIGR03784), usually in the same gene neighborhood, in proteobacterial species most of which are marine, and with an LPXTG motif-containing sortase target conserved protein (TIGR03788). Sortases and LPXTG proteins are far more common in Gram-positive bacteria, where sortase systems mediate attachment to the cell wall or cross-linking of pilin structures. We give this predicted sensor histidine kinase the gene symbol psdS, for Proteobacterial Dedicated Sortase system Sensor histidine kinase. 703 -274781 TIGR03786 strep_pil_rpt streptococcal pilin isopeptide linkage domain. This model describes a domain that occurs once in the major pilin of Streptococcus pyogenes, Spy0128, but in higher copy numbers in other streptococcal proteins. The domain occurs nine times in a surface-anchored protein of Bifidobacterium longum. All members of this family have LPXTG-type sortase target sequences. The S. pyogenes major pilin has been shown to undergo isopeptide bond cross-linking, mediated by sortases, that are critical to maintaining pilus structural integrity. One such Lys-to-Asn isopeptide bond is to a near-invariant Asn near the C-terminal end of this domain (column 81 of the seed alignment). A Glu in the S. pyogenes major pilin (column 25 of the seed alignment), invariant as Glu or Gln, is described as catalytic for isopeptide bond formation. 63 -163499 TIGR03787 marine_sort_RR proteobacterial dedicated sortase system response regulator. This model describes a family of DNA-binding response regulator proteins, associated with an adjacent histidine kinase (TIGR03785) to form a two-component system. This system co-occurs with, and often is adjacent to, a proteobacterial variant form of the protein sorting transpeptidase called sortase (TIGR03784), and a single target protein for the sortase. We give this protein the gene symbol pdsR, for Proteobacterial Dedicated Sortase system Response regulator. 227 -274782 TIGR03788 marine_srt_targ marine proteobacterial sortase target protein. Members of this protein family are restricted to the Proteobacteria. Each contains a C-terminal sortase-recognition motif, transmembrane domain, and basic residues cluster at the the C-terminus, and is encoded adjacent to a sortase gene. This protein is frequently the only sortase target in its genome, which is as unusual its occurrence in Gram-negative rather than Gram-positive genomes. Many bacteria with this system are marine. In addition to the LPXTG signal, members carry a vault protein inter-alpha-trypsin inhibitor domain (pfam08487) and a von Willebrand factor type A domain (pfam00092). 596 -274783 TIGR03789 pdsO proteobacterial sortase system peptidoglycan-associated protein. A newly defined histidine kinase (TIGR03785) and response regulator (TIGR03787) gene pair occurs exclusively in Proteobacteria, mostly of marine origin, nearly all of which contain a subfamily 6 sortase (TIGR03784) and its single dedicated target protein (TIGR03788) adjacent to to the sortase. This protein family shows up in only in those species with the histidine kinase/response regulator gene pair, and often adjacent to that pair. It belongs to the pfam00691 domain family, which is the peptidoglycan-associated region of flagellar motor protein MotB, OmpA (whose N-terminal region forms an outer membrane beta barrel), and peptidoglycan-associated lipoprotein Pal. Its function is unknown. We assign the gene symbol pdsO, for Proteobacterial Dedicated Sortase system OmpA family protein. [Protein fate, Protein and peptide secretion and trafficking] 243 -274784 TIGR03790 TIGR03790 TIGR03790 family protein. Despite a broad and sporadic distribution (Cyanobacteria, Verrucomicrobia, Acidobacteria, beta and delta Proteobacteria, and Planctomycetes), this uncharacterized protein family occurs only among the roughly 8 percent of prokarotyic species that carry homologs of the integral membrane protein exosortase (see TIGR02602), a proposed protein-sorting system transpeptidase. 322 -163503 TIGR03791 TTQ_mauG tryptophan tryptophylquinone biosynthesis enzyme MauG. Members of this protein family are the tryptophan tryptophylquinone biosynthesis (TTQ) enzyme MauG, as found in Methylobacterium extorquens and related species. This protein is required to complete the maturation of the TTQ cofactor in the methylamine dehydrogenase light (beta) chain. 291 -274785 TIGR03792 TIGR03792 uncharacterized cyanobacterial protein, TIGR03792 family. Members of this family are found, no more than one to a genome, exclusively in (but not universal to) the Cyanobacteria. These proteins are small, 100-150 amino acids. The function is unknown. [Unknown function, General] 90 -274786 TIGR03793 TOMM_pelo NHLP leader peptide domain. This model represents a domain that is conserved among a large number of putative ribosomal natural products (RNP) precursor, including the thiazole/oxazole-modified microcins (TOMMs). As a leader peptide domain, likely to be removed from the mature product, this domain is unusual in several ways. First, it is longer than most previously described RNP leader peptides. Second, most of the domain is homologous to nitrile hydratase alpha subunits. Finally, it appears that this domain correlates with a specific family of cleavage/export proteins while members undergo modifications by different classes of peptide maturase, including cyclodehydratases, lantibiotic synthases, radical SAM peptide maturases. This family is expanded especially in Pelotomaculum thermopropionicum SI. [Cellular processes, Biosynthesis of natural products] 77 -274787 TIGR03794 NHLM_micro_HlyD NHLM bacteriocin system secretion protein. Members of this protein family are homologs of the HlyD membrane fusion protein of type I secretion systems. Their occurrence in prokaryotic genomes is associated with the occurrence of a novel class of microcin (small bacteriocins) with a leader peptide region related to nitrile hydratase. We designate the class of bacteriocin as Nitrile Hydratase Leader Microcin, or NHLM. This family, therefore, is designated as NHLM bacteriocin system secretion protein. Some but not all NHLM-class putative microcins belong to the TOMM (thiazole/oxazole modified microcin) class as assessed by the presence of the scaffolding protein and/or cyclodehydratase in the same gene clusters. [Transport and binding proteins, Amino acids, peptides and amines, Cellular processes, Biosynthesis of natural products] 421 -163507 TIGR03795 RNP_Burkhold ribosomal natural product, two-chain TOMM family. Members of this protein family are found sparsely, mostly in members of the genus Burkholderia. Members often occur as tandem homologous genes, such as BMA_0021 and BMA_0022 in Burkholderia mallei ATCC 23344, or else have a duplication. The genes regularly are encoded near a cyclodehydrogenase/docking protein fusion protein of TOMM (thiazole/oxazole-modified microcins) biosynthetic clusters, suggesting a role in bacteriocin biosynthesis. The role of the putative natural product is unknown, but function as a two-chain bacteriocin is suggested. [Cellular processes, Biosynthesis of natural products] 114 -274788 TIGR03796 NHLM_micro_ABC1 NHLM bacteriocin system ABC transporter, peptidase/ATP-binding protein. This protein describes a multidomain ABC transporter subunit that is one of three protein families associated with some regularity with a distinctive family of putative bacteriocins. It includes a bacteriocin-processing peptidase domain at the N-terminus. Model TIGR03793 describes a conserved propeptide region for this bacteriocin family, unusual because it shows obvious homology a region of the enzyme nitrile hydratase up to the classic Gly-Gly cleavage motif. This family is therefore predicted to be a subunit of a bacteriocin processing and export system characteristic to this system that we designate NHLM, Nitrile Hydratase Leader Microcin. [Transport and binding proteins, Amino acids, peptides and amines, Cellular processes, Biosynthesis of natural products] 710 -274789 TIGR03797 NHLM_micro_ABC2 NHLM bacteriocin system ABC transporter, ATP-binding protein. Members of this protein family are ABC transporter ATP-binding subunits, part of a three-gene putative bacteriocin transport operon. The other subunits include another ATP-binding subunit (TIGR03796), which has an N-terminal leader sequence cleavage domain, and an HlyD homolog (TIGR03794). In a number of genomes, members of protein families related to nitrile hydratase alpha subunit or to nif11 have undergone paralogous family expansions, with members possessing a putative bacteriocin cleavage region ending with a classic Gly-Gly motif. Those sets of putative bacteriocins, members of this protein family and its partners TIGR03794 and TIGR03796, and cyclodehydratase/docking scaffold fusion proteins of thiazole/oxazole biosynthesis frequently show correlated species distribution and co-clustering within many of those genomes. [Transport and binding proteins, Amino acids, peptides and amines, Cellular processes, Biosynthesis of natural products] 686 -274790 TIGR03798 ocin_TIGR03798 nif11-like leader peptide domain. This model describes a conserved, fairly long (about 65 residue) leader peptide region for a family of putative ribosomal natural products (RNP) of small size. Members of the seed alignment tend to have the Gly-Gly motif as the last two residues of the matched region. This is a cleavage site for a combination processing/export ABC transporter with a peptidase domain. Members include the prochlorosins, lantipeptides from Prochlorococcus. [Cellular processes, Biosynthesis of natural products] 64 -274791 TIGR03799 NOD_PanD_pyr putative pyridoxal-dependent aspartate 1-decarboxylase. This enzyme is proposed here to be a form of aspartate 1-decarboxylase, pyridoxal-dependent, that represents a non-orthologous displacement to the more widely distributed pyruvoyl-dependent form (TIGR00223). Aspartate 1-decarboxylase makes beta-alanine, used usually in pathothenate biosynthesis, by decarboxylation from asparatate. A number of species with the PanB and PanC enzymes, however, lack PanD. This protein family occurs in a number of Proteobacteria that lack PanD. This enzyme family appears to be a pyridoxal-dependent enzyme (see pfam00282). The family was identified by Partial Phylogenetic Profiling; members in Geobacter sulfurreducens, G. metallireducens, and Pseudoalteromonas atlantica are clustered with the genes for PanB and PanC. We suggest the gene symbol panP (panthothenate biosynthesis enzyme, Pyridoxal-dependent). [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A] 522 -274792 TIGR03800 PLP_synth_Pdx2 pyridoxal 5'-phosphate synthase, glutaminase subunit Pdx2. Pyridoxal 5'-phosphate (PLP) is synthesized by the PdxA/PdxJ pathway in some species (mostly within the gamma subdivision of the proteobacteria) and by the Pdx1/Pdx2 pathway in most other organisms. This family describes Pdx2, the glutaminase subunit of the PLP synthase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 184 -163513 TIGR03801 asp_4_decarbox aspartate 4-decarboxylase. This enzyme, aspartate 4-decarboxylase (EC 4.1.1.12), removes the side-chain carboxylate from L-aspartate, converting it to L-alanine plus carbon dioxide. It is a PLP-dependent enzyme, homologous to aspartate aminotransferase (EC 2.6.1.1). [Energy metabolism, Amino acids and amines] 521 -274793 TIGR03802 Asp_Ala_antiprt aspartate-alanine antiporter. All members of the seed alignment for this model are asparate-alanine anti-transporters (AspT) encoded next to the gene for aspartate 4-decarboxylase (AspD), which converts asparate to alanine, releasing CO2. The exchange of Asp for Ala is electrogenic, so the AspD/AspT system confers a proton-motive force. This transporter contains two copies of the AspT/YidE/YbjL antiporter duplication domain (TIGR01625). 562 -274794 TIGR03803 Gloeo_Verruco Gloeo_Verruco repeat. This model describes a rare protein repeat, found so far in two species of Verrucomicrobia (Chthoniobacter flavus and Verrucomicrobium spinosum) and in four different proteins of Gloeobacter violaceus PCC7421. In the Verrucomicrobial species, the repeat region is followed by a PEP-CTERM protein-sorting signal, suggesting an extracellular location. 34 -274795 TIGR03804 para_beta_helix parallel beta-helix repeat (two copies). This model represents a tandem pair of an approximately 22-amino acid (each) repeat homologous to the beta-strand repeats that stack in a right-handed parallel beta-helix in the periplasmic C-5 mannuronan epimerase, AlgA, of Pseudomonas aeruginosa. A homology domain consisting of a longer tandem array of these repeats is described in the SMART database as CASH (SM00722), and is found in many carbohydrate-binding proteins and sugar hydrolases. A single repeat is represented by SM00710. This TIGRFAMs model represents a flavor of the parallel beta-helix-forming repeat based on prokaryotic sequences only in its seed alignment, although it also finds many eukaryotic sequences. 44 -163517 TIGR03805 beta_helix_1 parallel beta-helix repeat-containing protein. Members of this protein family contain a tandem pair of beta-helix repeats (see TIGR03804). Each repeat is expected to consist of three beta strands that form a single turn as they form a right-handed helix of stacked beta-structure. Member proteinsa occur regularly in two-gene pairs along with another uncharacterized protein family; both protein families exhibit either lipoprotein or regular signal peptides, suggesting transit through the plasma membrane, and the two may be fused. The function of the pair is unknown. [Unknown function, General] 314 -163518 TIGR03806 chp_HNE_0200 conserved hypothetical protein, HNE_0200 family. The model TIGR03805 describes an uncharacterized protein family that contains repeats associated with the formation of a right-handed helical stack of parallel beta strands, homologous to those found in a number of carbohydrate-binding proteins and sugar hydrolases. This model describes another uncharacterized protein family, found in the same species as TIGR03805 member proteins, usually as the adjacent gene or in a fusion protein. An example is HNE_0200 from Hyphomonas neptunium ATCC 15444. Sometimes two members of this family are with a single member of TIGR03805. The function is unknown. [Hypothetical proteins, Conserved] 317 -213864 TIGR03807 RR_fam_repeat putative cofactor-binding repeat. This model describes a small repeat found in a family of proteins that crosses the plasma membrane by twin-arginine translation, which usually signifies the presence of a bound cofactor. This repeat shows similarity to the beta-helical repeat, in which three beta-strands per repeat wind once per repeat around in a right-handed helical stack of parallel beta structure. 27 -163520 TIGR03808 RR_plus_rpt_1 twin-arg-translocated uncharacterized repeat protein. Members of this protein family have a Sec-independent twin-arginine tranlocation (TAT) signal sequence, which enables tranfer of proteins folded around prosthetic groups to cross the plasma membrane. These proteins have four copies of a repeat of about 23 amino acids that resembles the beta-helix repeat. Beta-helix refers to a structural motif in which successive beta strands wind around to stack parallel in a right-handed helix, as in AlgG and related enzymes of carbohydrate metabolism. The twin-arginine motif suggests that members of this protein family bind some unknown cofactor. 455 -163521 TIGR03809 TIGR03809 TIGR03809 family protein. This protein family contains proteins with a median length of about 175, including a strongly conserved N-terminal region of about 55 amino acids, a conserved extreme C-terminal region of about 15 amino acids, and highly variable sequence in between the two. Members are found invariably with a member of family TIGR03808. 168 -163522 TIGR03810 arg_ornith_anti arginine-ornithine antiporter. Members of this protein family are the arginine/ornithine antiporter, ArcD. This exchanger of ornithine for arginine occurs in a system with arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase, with together turn arginine to ornithine with the generation of ATP and release of CO2. [Transport and binding proteins, Amino acids, peptides and amines] 468 -163523 TIGR03811 tyr_de_CO2_Ent tyrosine decarboxylase, Enterococcus type. This model represents tyrosine decarboxylases in the family of the Enterococcus faecalis enzyme Tdc. These enzymes often are encoded next to tyrosine/tyramine antiporter, together comprising a system in which tyrosine decarboxylation can protect against exposure to acid conditions. This clade differs from the archaeal tyrosine decarboxylases associated with methanofuran biosynthesis. [Cellular processes, Adaptations to atypical conditions] 608 -274796 TIGR03812 tyr_de_CO2_Arch tyrosine decarboxylase MnfA. Members of this protein family are the archaeal form, MnfA, of tyrosine decarboxylase, and are involved in methanofuran biosynthesis. Members show clear homology to the Enterococcus form, Tdc, that is involved in tyrosine decarboxylation for resistance to acidic conditions. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 373 -163525 TIGR03813 put_Glu_GABA_T putative glutamate/gamma-aminobutyrate antiporter. Members of this protein family are putative putative glutamate/gamma-aminobutyrate antiporters. Each member of the seed alignment is found adjacent to a glutamate decarboxylase, which converts glutamate (Glu) to gamma-aminobutyrate (GABA). However, the majority belong to genome contexts with a glutaminase (converts Gln to Glu) as well as the decarboxylase that converts Glu to GABA. The specificity of the transporter remains uncertain. 474 -274797 TIGR03814 Gln_ase glutaminase A. This family describes the enzyme glutaminase, from a larger family that includes serine-dependent beta-lactamases and penicillin-binding proteins. Many bacteria have two isozymes. This model is based on selected known glutaminases and their homologs within prokaryotes, with the exclusion of highly-derived (long branch) and architecturally varied homologs, so as to achieve conservative assignments. A sharp drop in scores occurs below 250, and cutoffs are set accordingly. The enzyme converts glutamine to glutamate, with the release of ammonia. Members tend to be described as glutaminase A (glsA), where B (glsB) is unknown and may not be homologous (as in Rhizobium etli). Some species have two isozymes that may both be designated A (GlsA1 and GlsA2). [Energy metabolism, Amino acids and amines] 300 -274798 TIGR03815 CpaE_hom_Actino helicase/secretion neighborhood CpaE-like protein. Members of this protein family belong to the MinD/ParA family of P-loop NTPases, and in particular show homology to the CpaE family of pilus assembly proteins (see ). Nearly all members are found, not only in a gene context consistent with pilus biogenesis or a pilus-like secretion apparatus, but also near a DEAD/DEAH-box helicase, suggesting an involvement in DNA transfer activity. The model describes a clade restricted to the Actinobacteria. 322 -274799 TIGR03816 tadE_like_DECH helicase/secretion neighborhood TadE-like protein. Members of this small, highly hydrophobic protein family occur in a pilus/secretion-like region that usually is next to an uncharacterized DEAH-box helicase, in Actinobacteria. Members show sequence similarity to the TadE-like family described by pfam07811. The function is unknown. [Unknown function, General] 109 -274800 TIGR03817 DECH_helic helicase/secretion neighborhood putative DEAH-box helicase. A conserved gene neighborhood widely spread in the Actinobacteria contains this uncharacterized DEAH-box family helicase encoded convergently towards an operon of genes for protein homologous to type II secretion and pilus formation proteins. The context suggests that this helicase may play a role in conjugal transfer of DNA. 742 -274801 TIGR03818 MotA1 flagellar motor stator protein MotA. The MotA protein, along with its partner MotB, comprise the stator complex of the bacterial flagellar motor. MotAB span the cytoplasmic membrane and undergo conformational changes powered by the translocation of protons. These conformational changes in turn are communicated to the rotor assembly, producing torque. This model represents one family of MotA proteins which are often not identified by the "transporter, MotA/TolQ/ExbB proton channel family" model, pfam01618. 282 -200328 TIGR03819 heli_sec_ATPase helicase/secretion neighborhood ATPase. Members of this protein family comprise a distinct clade of putative ATPase associated with an integral membrane complex likely to act in pilus formation, secretion, or conjugal transfer. The association of most members with a nearby gene for a DEAH-box helicase suggests a role in conjugal transfer. 340 -163532 TIGR03820 lys_2_3_AblA lysine-2,3-aminomutase. This model describes lysine-2,3-aminomutase as found along with beta-lysine acetyltransferase in a two-enzyme pathway for making the compatible solute N-epsilon-acetyl-beta-lysine. This compatible solute, or osmolyte, is known to protect a number of methanogenic archaea against salt stress. The trusted cutoff distinguishes a tight clade with essentially full-length homology from additional homologs that are shorter or highly diverged in the C-terminal region. All members of this family have the radical SAM motif CXXXCXXC, while some but not all have a second copy of the motif in the C-terminal region. 417 -163533 TIGR03821 EFP_modif_epmB EF-P beta-lysylation protein EpmB. Members of this radical SAM protein subfamily, including yjeK in E. coli, form a distinctive clade, homologous to lysine-2,3-aminomutase of Bacillus, Clostridium, and methanogenic archaea. Members of this family are found in E. coli, Buchnera, Yersinia, etc. The gene symbol is now reassigned as EpmB (Elongation factor P Modification B). [Protein fate, Protein modification and repair] 321 -163534 TIGR03822 AblA_like_2 lysine-2,3-aminomutase-related protein. Members of this protein form a distinctive clade, homologous to lysine-2,3-aminomutase (of Bacillus, Clostridium, and methanogenic archaea) and likely similar in function. Members of this family are found in Rhodopseudomonas, Caulobacter crescentus, Bradyrhizobium, etc. 321 -163535 TIGR03823 FliZ flagellar regulatory protein FliZ. FliZ is involved in the regulation of flagellar assembly and possibly also the down-regulation of the motile phenotype. FliZ interacts with the flagellar translational activator FlhCD complex. 168 -274802 TIGR03824 FlgM_jcvi flagellar biosynthesis anti-sigma factor FlgM. FlgM interacts with and inhibits the alternative sigma factor sigma(28) FliA. The C-terminus of FlgM contains the sigma(28)-binding domain. 95 -274803 TIGR03825 FliH_bacil flagellar assembly protein FliH. This bacillus clade of FliH proteins is not found by the Pfam FliH model pfam02108, but is closely related to the sequences identified by that model. Sequences identified by this model are observed in flagellar operons in an analogous position relative to other flagellar operon genes. 255 -163538 TIGR03826 YvyF flagellar operon protein TIGR03826. This gene is found in flagellar operons of Bacillus-related organisms. Its function has not been determined and an official gene symbol has not been assigned, although the gene is designated yvyF in B. subtilus. A tentative assignment as a regulator is suggested in the NCBI record GI:16080597. 137 -163539 TIGR03827 GNAT_ablB putative beta-lysine N-acetyltransferase. Members of this protein family are GNAT family acetyltransferases, based on a seed alignment in which every member is associated with a lysine 2,3-aminomutase family protein, usually as the adjacent gene. This family includes AblB, the enzyme beta-lysine acetyltransferase that completes the two-step synthesis of the osmolyte (compatible solute) N-epsilon-acetyl-beta-lysine; all members of the family may have this function. Note that N-epsilon-acetyl-beta-lysine has been observed only in methanogenic archaea (e.g. Methanosarcina) but that this model, paired with TIGR03820, suggests a much broader distribution. 266 -274804 TIGR03828 pfkB 1-phosphofructokinase. This enzyme acts in concert with the fructose-specific phosphotransferase system (PTS) which imports fructose as fructose-1-phosphate. The action of 1-phosphofructokinase results in beta-D-fructose-1,6-bisphosphate and is an entry point into glycolysis (GenProp0688). 304 -163541 TIGR03829 YokU_near_AblA uncharacterized protein, YokU family. Members of this protein family occur in various species of the genus Bacillus, always next to the gene (kamA or ablA) for lysine 2,3-aminomutase. Members have a pair of CXXC motifs, and share homology to the amino-terminal region of a family of putative transcription factors for which the C-terminal is modeled by pfam01381, a helix-turn-helix domain model. This family, however, is shorter and lacks the helix-turn-helix region. The function of this protein family is unknown, but a regulatory role in compatible solute biosynthesis is suggested by local genome context. [Unknown function, General] 89 -274805 TIGR03830 CxxCG_CxxCG_HTH putative zinc finger/helix-turn-helix protein, YgiT family. This model describes a family of predicted regulatory proteins with a conserved zinc finger/HTH architecture. The amino-terminal region contains a novel domain, featuring two CXXC motifs and occuring in a number of small bacterial proteins as well as in the present family. The carboxyl-terminal region consists of a helix-turn-helix domain, modeled by pfam01381. The predicted function is DNA binding and transcriptional regulation. 127 -274806 TIGR03831 YgiT_finger YgiT-type zinc finger domain. This domain model describes a small domain with two copies of a putative zinc-binding motif CXXC (usually CXXCG). Most member proteins consist largely of this domain or else carry an additional C-terminal helix-turn-helix domain, resembling that of the phage protein Cro and modeled by pfam01381. 46 -163544 TIGR03832 Tyr_2_3_mutase tyrosine 2,3-aminomutase. Members of this protein family are tyrosine 2,3-aminomutase. It is variable from member to member as to whether the (R)-beta-Tyr or (S)-beta-Tyr is the preferred product from L-Tyr. This enzyme tends to occur in secondary metabolite biosynthesis systems, as in the production of chondramides in Chondromyces crocatus. This class of enzyme has a prosthetic group, MIO (4-methylideneimidazol-5-one), that forms posttranslationally from an Ala-Ser-Gly motif. 507 -274807 TIGR03833 TIGR03833 conserved hypothetical protein. A pair of adjacent genes, ablAB (acetyl-beta-lysine biosynthesis) encodes lysine 2,3-aminomutase and beta-lysine acetyltransferase in methanogenic archaea. Homologous pairs, possibly with identical function, occur in a wide range of species, including Bacillus subtilis. This model describes a conserved hypothetical protein, small in size, with a phylogenetic distribution moderately well correlated to that of the acetyltransferase family. This protein family is also described as DUF2196 and COG4895. The function is unknown. [Hypothetical proteins, Conserved] 62 -213869 TIGR03834 EAGR_box EAGR box. The EAGR box (Enriched in Aromatic and Glycine Residues) is found in three different proteins of the Mycoplasma genitalium terminal organelle, which acts in both cytadherence and gliding motility. The presence of this domain in a genome predicts the Mycoplasma-type terminal organelle structure, gliding motility, and cytadherence. The EAGR box may occur from one to nine times in a protein. 28 -274808 TIGR03835 termin_org_DnaJ terminal organelle assembly protein TopJ. This model describes TopJ (MG_200, CbpA), a DnaJ homolog and probable assembly protein of the Mycoplasma terminal organelle. The terminal organelle is involved in both cytadherence and gliding motility. [Cellular processes, Chemotaxis and motility] 871 -163548 TIGR03836 termin_org_HMW1 cytadherence high molecular weight protein 1 N-terminal region. This model describes the N-terminal region of the Mycoplasma cytadherence protein HMW1, up to but not including the first EAGR box domain. The apparent orthologs in different Mycoplasma species differ profoundly in archictecture C-terminally to the region described here. 82 -274809 TIGR03837 efp_adjacent_2 conserved hypothetical protein, PP_1857 family. This model describes a conserved hypothetical protein that typically is encoded next to the gene efp for translation elongation factor P. The function is unknown. 371 -274810 TIGR03838 queuosine_YadB glutamyl-queuosine tRNA(Asp) synthetase. This protein resembles a shortened glutamyl-tRNA ligase, but its purpose is to modify tRNA(Asp) at a queuosine position in the anticodon rather than to charge a tRNA with its cognate amino acid. [Protein synthesis, tRNA and rRNA base modification] 271 -274811 TIGR03839 termin_org_P1 adhesin P1. Members of this protein family are the major adhesin of the Mycoplasma terminal organelle. The protein is called adhesin P1, cytadhesin P1, P140, attachment protein, and MgPa, with locus names MG191 in Mycoplasma genitalium and MPN141 in M. pneumoniae. A conserved C-terminal region is shared by additional paralogs in M. pneumoniae and M. gallisepticum, as well as by the member of this family. [Cell envelope, Surface structures, Cellular processes, Pathogenesis] 1425 -213871 TIGR03840 TMPT_Se_Te thiopurine S-methyltransferase, Se/Te detoxification family. Members of this family are thiopurine S-methyltransferase from a branch in which at least some member proteins can perform selenium methylation as a means to detoxify selenium, or perform a related detoxification of tellurium. Note that the EC number definition does not specify a particular thiopurine, but rather represents a class of activity. 213 -274812 TIGR03841 F420_Rv3093c probable F420-dependent oxidoreductase, Rv3093c family. This model describes a small family of enzymes in the bacterial luciferase-like monooxygenase family, which includes F420-dependent enzymes such as N5,N10-methylenetetrahydromethanopterin reductase as well as FMN-dependent enzymes. All members of this family are from species that produce coenzyme F420; SIMBAL analysis suggests that members of this family bind F420 rather than FMN. [Unknown function, Enzymes of unknown specificity] 301 -163554 TIGR03842 F420_CPS_4043 F420-dependent oxidoreductase, CPS_4043 family. This model represents a family of putative F420-dependent oxidoreductases, fairly closely related to 5,10-methylenetetrahydromethanopterin reductase (mer, TIGR03555), both within the bacterial luciferase-like monoxygenase (LLM) family. A fairly deep split (to about 40 % sequence identity) in the present family separates a strictly Actinobacterial clade from an alpha/beta/gamma-proteobacterial clade, in which the member is often the only apparent F420-dependent LLM family member. The specific function, and whether Actinobacterial and Proteobacterial clades differ in function, are unknown. [Unknown function, Enzymes of unknown specificity] 330 -274813 TIGR03843 TIGR03843 conserved hypothetical protein. This model represents a protein family largely restricted to the Actinobacteria (high-GC Gram-positives), although it is also found in the Chloroflexi. Distant similarity to the phosphatidylinositol 3- and 4-kinase is suggested by the matching of some members to pfam00454. 226 -163556 TIGR03844 cysteate_syn cysteate synthase. Members of this family are cysteate synthase, an enzyme of alternate pathway to sulfopyruvate, a precursor of coenzyme M. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 398 -163557 TIGR03845 sulfopyru_alph sulfopyruvate decarboxylase, alpha subunit. This model represents the alpha subunit, or the N-terminal region, of sulfopyruvate decarboxylase, an enzyme of coenzyme M biosynthesis. Coenzyme M is found almost exclusively in the methanogenic archaea. However, the enzyme also occurs in Roseovarius nubinhibens ISM in a degradative pathway, where the resulting sulfoacetaldehyde is desulfonated to acetyl phosphate, then converted to acetyl-CoA (see ). [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 157 -274814 TIGR03846 sulfopy_beta sulfopyruvate decarboxylase, beta subunit. Nearly every member of this protein family is the beta subunit, or else the C-terminal region, of sulfopyruvate decarboxylase, in an archaeal species capable of coenzyme M biosynthesis. However, the enzyme also occurs in Roseovarius nubinhibens ISM in a degradative pathway, where the resulting sulfoacetaldehyde is desulfonated to acetyl phosphate, then converted to acetyl-CoA (see ). 181 -213872 TIGR03847 TIGR03847 conserved hypothetical protein. The conserved hypothetical protein described here occurs as part of the trio of uncharacterized proteins common in the Actinobacteria. 177 -163560 TIGR03848 MSMEG_4193 probable phosphomutase, MSMEG_4193 family. A three-gene system broadly conserved among the Actinobacteria includes MSMEG_4193 and homologs, a subgroup among the larger phosphoglycerate mutase family protein (pfam00300). Another member of the trio is a probable kinase, related to phosphatidylinositol kinases; that context supports the hypothesis that this protein acts as a phosphomutase. 204 -163561 TIGR03849 arch_ComA phosphosulfolactate synthase. This model finds the ComA (Coenzyme M biosynthesis A) protein, phosphosulfolactate synthase, in methanogenic archaea. The ComABC pathway is one of at least two pathways to the intermediate sulfopyruvate. Coenzyme M occurs rarely and sporadically outside of the archaea, as for expoxide metabolism in Xanthobacter autotrophicus Py2, but candidate phosphosulfolactate synthases from that and other species occur fall below the cutoff and outside the scope of this model. This model deliberately is narrower in scope than pfam02679. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 237 -274815 TIGR03850 bind_CPR_0540 carbohydrate ABC transporter substrate-binding protein, CPR_0540 family. Members of this protein are the substrate-binding protein of a predicted carbohydrate transporter operon, together with permease subunits of ABC transporter homology families. This substrate-binding protein frequently co-occurs in genomes with a family of disaccharide phosphorylases, TIGR02336, suggesting that the molecule transported will include beta-D-galactopyranosyl-(1->3)-N-acetyl-D-glucosamine and related carbohydrates. Members of this family are sporadically strain by strain, often in species with a human host association, including Propionibacterium acnes and Clostridium perfringens, and Bacillus cereus. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 437 -274816 TIGR03851 chitin_NgcE carbohydrate ABC transporter, N-acetylglucosamine/diacetylchitobiose-binding protein. Members of this protein family are the substrate-binding protein, a lipid-anchored protein of Gram-positive bacteria in all examples found so far, that include NgcE of the chitin-degrader, Streptomyces olivaceoviridis, and close homologs from other species likely to share the same function. NgcE binds both N-acetylglucosamine and the chitin dimer, N,N'-diacetylchitobiose. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 450 -163564 TIGR03852 sucrose_gtfA sucrose phosphorylase. In the forward direction, this enzyme uses phosphate to cleave sucrose into D-fructose + alpha-D-glucose 1-phosphate. Characterized representatives from Streptococcus mutans and Bifidobacterium adolescentis represent well-separated branches of a molecular phylogenetic tree. In S. mutans, the region including this gene has been associated with neighboring transporter genes and multiple sugar metabolism. 470 -163565 TIGR03853 matur_matur probable metal-binding protein. This model describes a family of small cytosolic proteins, about 80 amino acids in length, in which the eight invariant residues include three His residues and two Cys residues. Two pairs of these invariant residues occur in motifs HxH (where x is A or G) and CxH, both of which suggest metal-binding activity. This protein family was identified by searching with a phylogenetic profile based on an anaerobic sulfatase-maturase enzyme, which contains multiple 4Fe-4S clusters. The linkages by phylogenetic profiling and by iron-sulfur cluster-related motifs together suggest this protein may be an accessory protein to certain maturases in sulfatase/maturase systems. 77 -163566 TIGR03854 F420_MSMEG_3544 probable F420-dependent oxidoreductase, MSMEG_3544 family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes a small family, closely related to other such families in the putative F420-binding region, exemplified by MSMEG_3544 in Mycobacterium smegmatis. [Unknown function, Enzymes of unknown specificity] 290 -163567 TIGR03855 NAD_NadX aspartate dehydrogenase. Members of this protein family are L-aspartate dehydrogenase, as shown for the NADP-dependent enzyme TM_1643 of Thermotoga maritima. Members lack homology to NadB, the aspartate oxidase (EC 1.4.3.16) of most mesophilic bacteria (described by TIGR00551), which this enzyme replaces in the generation of oxaloacetate from aspartate for the NAD biosynthetic pathway. All members of the seed alignment are found adjacent to other genes of NAD biosynthesis, although other uses of L-aspartate dehydrogenase may occur. 229 -213873 TIGR03856 F420_MSMEG_2906 probable F420-dependent oxidoreductase, MSMEG_2906 family. This model describes a small family of enzymes in the bacterial luciferase-like monooxygenase family, which includes F420-dependent enzymes such as N5,N10-methylenetetrahydromethanopterin reductase as well as FMN-dependent enzymes. All members of this family are from species that produce coenzyme F420; SIMBAL analysis suggests that members of this family bind F420 rather than FMN. [Unknown function, Enzymes of unknown specificity] 249 -213874 TIGR03857 F420_MSMEG_2249 probable F420-dependent oxidoreductase, MSMEG_2249 family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes a distinctive subfamily, found only in F420-biosynthesizing members of the Actinobacteria of the bacterial luciferase-like monooxygenase (LLM) superfamily. [Unknown function, Enzymes of unknown specificity] 329 -274817 TIGR03858 LLM_2I7G probable oxidoreductase, LLM family. This model describes a highly conserved, somewhat broadly distributed family withing the luciferase-like monooxygenase (LLM) superfamily. Most members are from species incapable of synthesizing coenzyme F420, bound by some members of the LLM superfamily. Members, therefore, are more likely to use FMN as a cofactor. 337 -274818 TIGR03859 PQQ_PqqD coenzyme PQQ biosynthesis protein PqqD. This model identifies PqqD, a protein involved in the final steps of the biosynthesis of pyrroloquinoline quinone, coenzyme PQQ. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 81 -274819 TIGR03860 FMN_nitrolo FMN-dependent oxidoreductase, nitrilotriacetate monooxygenase family. This model represents a distinctive clade, in which all characterized members are FMN-binding, within the larger family of luciferase-like monooxygenases (LLM), among which there are both FMN- and F420-binding enzymes. A well-characterized member is nitrilotriacetate monooxygenase from Aminobacter aminovorans (Chelatobacter heintzii), where nitrilotriacetate is a chelating agent used in detergents. [Unknown function, Enzymes of unknown specificity] 422 -163573 TIGR03861 phenyl_ABC_PedC alcohol ABC transporter, permease protein. Members of this protein family, part of a larger class of efflux-type ABC transport permease proteins, are found exclusively in genomic contexts with pyrroloquinoline-quinone (PQQ) biosynthesis enzymes and/or PQQ-dependent alcohol dehydrogenases, such as the phenylethanol dehydrogenase PedE of Pseudomonas putida U. Members include PedC, an apparent phenylethanol transport protein whose suggested role is efflux to limit intracellular concentrations of toxic metabolites during phenylethanol catalysis. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 253 -274820 TIGR03862 flavo_PP4765 uncharacterized flavoprotein, PP_4765 family. This model describes a sharply distinctive clade of proteins within the larger family of flavoproteins described by pfam03486 and TIGRFAMs model TIGR00275. The function is unknown. 376 -274821 TIGR03863 PQQ_ABC_bind ABC transporter, substrate binding protein, PQQ-dependent alcohol dehydrogenase system. Members of this protein family are putative substrate-binding proteins of an ABC transporter family that associates, in gene neighborhood and phylogenomic profile, with pyrroloquinoline-quinone (PQQ)-dependent degradation of certain alcohols, such as 2-phenylethanol in Pseudomonas putida U. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 347 -274822 TIGR03864 PQQ_ABC_ATP ABC transporter, ATP-binding subunit, PQQ-dependent alcohol dehydrogenase system. Members of this protein family are the ATP-binding subunit of an ABC transporter system that is associated with PQQ biosynthesis and PQQ-dependent alcohol dehydrogenases. While this family shows homology to several efflux ABC transporter subunits, the presence of a periplasmic substrate-binding protein and association with systems for catabolism of alcohols suggests a role in import rather than detoxification. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 236 -274823 TIGR03865 PQQ_CXXCW PQQ-dependent catabolism-associated CXXCW motif protein. Members of this protein family have a CXXXCW motif, consistent with a possible role in redox cofactor binding. This protein family shows strong relationships by phylogenetic profiling and conserved gene neighborhoods with a transport system for alcohols metabolized by PQQ-dependent enzymes. 162 -274824 TIGR03866 PQQ_ABC_repeats PQQ-dependent catabolism-associated beta-propeller protein. Members of this protein family consist of seven repeats each of the YVTN family beta-propeller repeat (see TIGR02276). Members occur invariably as part of a transport operon that is associated with PQQ-dependent catabolism of alcohols such as phenylethanol. 310 -274825 TIGR03867 MprA_tail MprA protease C-terminal rhombosortase-interaction domain. This model describes the Ralstonia lineage variant of the GlyGly-CTERM domain (TIGR03501), a predicted target for protein sorting and cleavage by rhombosortase, a member of the family of rhomboid proteases. Note that some MprA family proteases are full-length homologs except for the lack of this domain. All members of the present family are predicted serine proteases. 27 -274826 TIGR03868 F420-O_ABCperi proposed F420-0 ABC transporter, periplasmic F420-0 binding protein. This small clade of ABC-type transporter periplasmic binding protein components is found as a three gene cassette along with a permease (TIGR03869) and an ATPase (TIGR03873). The organisms containing this cassette are all Actinobacteria and all contain numerous genes requiring the coenzyme F420. This model was defined based on five such organisms, four of which are lacking all F420 biosynthetic capability save the final side-chain polyglutamate attachment step (via the gene cofE: TIGR01916). In Jonesia denitrificans DSM 20603 and marine actinobacterium PHSC20C1 this cassette is in an apparent operon with the cofE gene and, in PHSC20C1, also with a F420-dependent glucose-6-phosphate dehydrogenase (TIGR03554). Based on these observations we propose that this periplasmic binding protein is a component of an F420-0 (that is, F420 lacking only the polyglutamate tail) transporter. 287 -163581 TIGR03869 F420-0_ABCperm proposed F420-0 ABC transporter, permease protein. his small clade of ABC-type transporter permease protein components is found as a three gene cassette along with a periplasmic substrate-binding protein (TIGR03868) and an ATPase (TIGR03873). The organisms containing this cassette are all Actinobacteria and all contain numerous genes requiring the coenzyme F420. This model was defined based on five such organisms, four of which are lacking all F420 biosynthetic capability save the final side-chain polyglutamate attachment step (via the gene cofE: TIGR01916). In Jonesia denitrificans DSM 20603 and marine actinobacterium PHSC20C1 this cassette is in an apparent operon with the cofE gene and, in PHSC20C1, also with an F420-dependent glucose-6-phosphate dehydrogenase (TIGR03554). Based on these observations we propose that this permease protein is a component of a F420-0 (that is, F420 lacking only the polyglutamate tail) transporter. 325 -274827 TIGR03870 ABC_MoxJ methanol oxidation system protein MoxJ. This predicted periplasmic protein, called MoxJ or MxaJ, is required for methanol oxidation in Methylobacterium extorquens. Two differing lines of evidence suggest two different roles. Forming one view, homology suggests it is the substrate-binding protein of an ABC transporter associated with methanol oxidation. The gene, furthermore, is found regular in genomes with, and only two or three genes away from, a corresponding permease and ATP-binding cassette gene pair. The other view is that this protein is an accessory factor or additional subunit of methanol dehydrogenase itself. Mutational studies show a dependence on this protein for expression of the PQQ-dependent, two-subunit methanol dehydrogenase (MxaF and MxaI) in Methylobacterium extorquens, as if it is a chaperone for enzyme assembly or a third subunit. A homologous N-terminal sequence was found in Paracoccus denitrificans as a 32Kd third subunit. This protein may, in fact, be both, a component of a periplasmic enzyme that converts methanol to formaldehyde and a component of an ABC transporter that delivers the resulting formaldehyde to the cell's interior. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Energy metabolism, Other] 246 -274828 TIGR03871 ABC_peri_MoxJ_2 quinoprotein dehydrogenase-associated probable ABC transporter substrate-binding protein. This protein family, a sister family to TIGR03870, is found more broadly. It occurs a range of PQQ-biosynthesizing species, not just in known methanotrophs. Interpretation of evidence by homology and by direct experimental work suggest two different roles. By homology, this family appears to be the periplasmic substrate-binding protein of an ABC transport family. However, mutational studies and direct characterization for some sequences related to this family suggests this family may act as a maturation chaperone or additional subunit of a methanol dehydrogenase-like enzyme. 232 -274829 TIGR03872 cytochrome_MoxG cytochrome c(L), periplasmic. This model describes a periplasmic c-type cytochrome that serves as the primary electron acceptor for the quinoprotein methanol dehydrogenase, a PQQ enzyme. The member from Paracoccus denitrificans is also characterized as an electron acceptor for methylamine dehydrogenase, a tryptophan tryptophylquinone enzyme. This protein is called cytochrome c(L) in methylotrophic bacteria such Methylobacterium extorquens, but c551i in Paracoccus denitrificans. [Energy metabolism, Electron transport] 133 -163585 TIGR03873 F420-0_ABC_ATP proposed F420-0 ABC transporter, ATP-binding protein. This small clade of ABC-type transporter ATP-binding protein components is found as a three gene cassette along with a periplasmic substrate-binding protein (TIGR03868) and a permease (TIGR03869). The organisms containing this cassette are all Actinobacteria and all contain numerous genes requiring the coenzyme F420. This model was defined based on five such organisms, four of which are lacking all F420 biosynthetic capability save the final side-chain polyglutamate attachment step (via the gene cofE: TIGR01916). In Jonesia denitrificans DSM 20603 and marine actinobacterium PHSC20C1 this cassette is in an apparent operon with the cofE gene and, in PHSC20C1, also with a F420-dependent glucose-6-phosphate dehydrogenase (TIGR03554). Based on these observations we propose that this ATP-binding protein is a component of an F420-0 (that is, F420 lacking only the polyglutamate tail) transporter. 256 -163586 TIGR03874 4cys_cytochr c-type cytochrome, methanol metabolism-related. This family represents a c-type cytochrome related to (but excluding) cytochrome c-555 of Methylococcus capsulatus. Members contain four invariant Cys residues, including two from a heme-binding motif shared with c-555, and two others. 143 -163587 TIGR03875 RNA_lig_partner RNA ligase partner, MJ_0950 family. This uncharacterized protein family is found almost perfectly in the same set of genomes as the Pab1020 family described by model TIGR01209. These pairs are found mostly in Archaea, but also in a few bacteria (e.g. Alkalilimnicola ehrlichei MLHE-1, Aquifex aeolicus). While the partner protein has been described as homodimeric ligase that has RNA circularization activity, the function of this protein (also called UPF0278) is unknown. 206 -274830 TIGR03876 cas_csaX CRISPR type I-A/APERN-associated protein CsaX. This family comprises a minor CRISPR-associated protein family. It occurs only in the context of the (strictly archaeal) Apern subtype of CRISPR/Cas system, and is further restricted to the Sulfolobales, including Metallosphaera sedula DSM 5348 and multiple species of the genus Sulfolobus. 281 -163589 TIGR03877 thermo_KaiC_1 KaiC domain protein, Ph0284 family. Members of this family contain a single copy of the KaiC domain (pfam06745) that occurs in two copies of the circadian clock protein kinase KaiC itself. Members occur primarily in thermophilic archaea and in Thermotoga. 237 -274831 TIGR03878 thermo_KaiC_2 KaiC domain protein, AF_0795 family. This KaiC domain-containing protein family occurs sporadically across a broad taxonomic range (Euryarchaeota, Aquificae, Dictyoglomi, Epsilonproteobacteria, and Firmicutes), but exclusively in thermophiles. 259 -163591 TIGR03879 near_KaiC_dom probable regulatory domain. This model describes a common domain shared by two different families of proteins, each of which occurs regularly next to its corresponding partner family, a probable regulatory with homology to KaiC. By implication, this protein family likely is also involved in sensory transduction and/or regulation. 73 -163592 TIGR03880 KaiC_arch_3 KaiC domain protein, AF_0351 family. This model represents a rather narrowly distributed archaeal protein family in which members have a single copy of the KaiC domain. This stands in contrast to the circadian clock protein KaiC itself, with two copies of the domain. Members are expected to have weak ATPase activity, by homology to the autokinase/autophosphorylase KaiC itself. 224 -163593 TIGR03881 KaiC_arch_4 KaiC domain protein, PAE1156 family. Members of this protein family are archaeal single-domain KaiC_related proteins, homologous to the Cyanobacterial circadian clock cycle protein KaiC, an autokinase/autophosphorylase that has two copies of the domain. 229 -274832 TIGR03882 cyclo_dehyd_2 bacteriocin biosynthesis cyclodehydratase domain. This model describes a ThiF-like domain of a fusion protein found in clusters associated with the production of TOMMs (thiazole/oxazole-modified microcins), small bacteriocins with characteristic heterocycle modifications. This domain is presumed to act as a cyclodehydratase, as do members of the SagC family modeled by TIGR03603. 164 -274833 TIGR03883 DUF2342_F420 uncharacterized protein, coenzyme F420 biosynthesis associated. A phylogenetic tree of the DUF2342 family (TIGR03624) consists of two major branches. One of these branches, modeled here, is observed almost entirely to be found in coenzyme F420 biosynthesizing species of the Actinobacterial, Chloroflexi and Archaeal lineages. The few organisms having genes within this family and lacking F420 biosynthesis may either have an undiscovered F420 transporter, or may represent F420-to-FMN revertants. This family includes a Chloroflexus Aurantiacus protein whose crystal structure has been determined (PDB:3CMN_A). This has been annotated as a putative hydrolase, but the support for that assertion is untraceable. There is no cofactor present in the structure. 346 -163596 TIGR03884 sel_bind_Methan selenium-binding protein. This model describes a homopentameric selenium-binding protein with a suggested role in selenium transport and delivery to selenophosphate synthase, the SelD protein. This protein family is closely related to pfam01906, but is shorter because of several deleted regions. It is restricted to the archaeal genus Methanococcus. 74 -274834 TIGR03885 flavin_revert probable non-F420 flavinoid oxidoreductase. This model represents a clade of proteins within the larger subfamily TIGR03557. The parent model includes the F420-dependent glucose-6-phosphate dehydrogenase (TIGR03554) and many other proteins. Excepting the members of this family, all members of TIGR03557 occur in species capable of synthesizing coenzyme F420. All members of the seed alignment for this model are from species that lack F420 biosynthesis. It is suggested that members of this family bind FMN, or FO, or a novel flavinoid cofactor, but not F420 per se. [Unknown function, Enzymes of unknown specificity] 315 -188401 TIGR03886 lyase_spl_fam spore photoproduct lyase family protein. This uncharacterized radical SAM domain protein occurs rarely and sporadically in species that include select Alphaproteobacteria and Actinobacteria, and in Deinococcus deserti VCD115. It is a distant but full-length homolog to the Bacillus subtilis spore photoproduct lyase (spl), which monomerizes thymine dimers created as DNA damage by uv radiation. 346 -188402 TIGR03887 thiocyan_alph thiocyanate hydrolase, gamma subunit. Members of this family are the gamma subunit of thiocyanate hydrolase. This family is closely related to the nitrile hydratase, alpha subunit (TIGR01323). 200 -274835 TIGR03888 nitrile_beta nitrile hydratase, beta subunit. Members of this protein family are the beta subunit of nitrile hydratase. The alpha subunit is represented by model TIGR01323. While nitrile hydratase is given the specific EC number 4.2.1.84, nitriles are a class of compounds, and one genome may carry more than one nitrile hydratase. The enzyme occurs in both non-heme iron and non-corrin cobalt forms. [Energy metabolism, Amino acids and amines] 223 -188404 TIGR03889 nitrile_acc nitrile hydratase accessory protein. Members of this protein family are found in operons with the alpha and beta subunits of nitrile hydratase, an enzyme with Fe(III) or Co(III) at the active site, and appear to be accessory proteins for maturation or activation of the enzyme. This protein is homologous to the beta subunit (see TIGR03888). 74 -188405 TIGR03890 nif11_cupin nif11 domain/cupin domain protein. Members of this protein family occur exclusively in the Cyanobacteria and contain both a nif11 and a cupin domain. The function is unknown. 171 -274836 TIGR03891 thiopep_ocin thiopeptide-type bacteriocin biosynthesis domain. This domain occurs within longer proteins that contain lantibiotic dehydratase domains (see pfam04737 and pfam04738), and as single-domain proteins in bacteriocin biosynthesis genomic contexts. Three named genes in this family, SioK in Streptomyces sioyaensis, TsrD in Streptomyces laurentii, and NosD in Streptomyces actuosus, all occur in regions associated with thiopeptide biosynthesis. [Cellular processes, Toxin production and resistance] 263 -200334 TIGR03892 thiopep_precurs thiazolylpeptide-type bacteriocin precursor. Members of this protein family are the precursors of a family of small bacteriocins (i.e. microcins) with thiopeptide type modifications, a highly modified subclass of heterocycle-containing peptide antibiotics. Members tend to be found clustered in genomes with proteins recognized by TIGR03891 and proteins/domains annotated as lantibiotic dehydratase (pfam04737, pfam04738), and with a cyclodehydratase/docking protein fusion protein characteristic of heterocycle formation. The seed alignment includes both an N-terminal leader peptide region and a C-terminal low-complexity region consisting mostly of Cys and Ser residues. Members with known function block translation by inhibiting translation factor activity. [Cellular processes, Toxin production and resistance] 43 -274837 TIGR03893 lant_SP_1948 type 2 lantibiotic, SP_1948 family. This model recognizes a number of type 2 lantibiotic-type bacteriocins, related to but distinct from the family that includes lichenicidin and mersacidin. Sequence similarity among members consists largely of a 20-residue block of conserved sequence that covers most of the leader peptide region, absent from the mature lantibiotic. This is followed by a region with characteristic composition for lantibiotic precursor regions, rich in Ser and Thr and including a near-invariant Cys near or at the C-terminus, involved in cyclization. Members of this family typically are shorter than 70 amino acids. [Cellular processes, Toxin production and resistance] 61 -188409 TIGR03894 chp_P_marinus_1 conserved hypothetical protein, TIGR03894 family. This protein family is restricted to the Prochlorococcus and Synechococcus lineages of the Cyanobacteria, and is sporadic in those lineages. Members average 100 amino acids in length, including a 30-residue, highly polar, low complexity region sandwiched between an N-terminal region of about 60 residues and a C-terminal [KR]VVR[KR]RS motif, both well-conserved. The function is unknown. [Hypothetical proteins, Conserved] 95 -274838 TIGR03895 protease_PatA cyanobactin maturation protease, PatA/PatG family. This model describes a protease domain associated with the maturation of various members of the cyanobactin family of ribosomally produced, heavily modified bioactive metabolites. Members include the PatA protein and C-terminal domain of the PatG protein of Prochloron didemni, TenA and a region of TenG from Nostoc spongiaeforme var. tenue, etc. 602 -274839 TIGR03896 cyc_nuc_ocin bacteriocin-type transport-associated protein. Members of this protein family are uncharacterized and contain two copies of the cyclic nucleotide-binding domain pfam00027. Members are restricted to select cyanobacteria but are found regularly in association with a transport operon that, in turn, is associated with the production of putative bacteriocins. The models describing the transport operon are TIGR03794, TIGR03796, and TIGR03797. 317 -274840 TIGR03897 lanti_2_LanM type 2 lantibiotic biosynthesis protein LanM. Members of this family are known generally as LanM, a multifunctional enzyme of lantibiotic biosynthesis. This catalysis by LanM distinguishes the type 2 lantibiotics, such as mersacidin, cinnamycin, and lichenicidin, from LanBC-produced type 1 lantibiotics such as nisin and subtilin. The N-terminal domain contains regions associated with Ser and Thr dehydration. The C-terminal region contains a pfam05147 domain, which catalyzes the formation of the lanthionine bridge. [Cellular processes, Toxin production and resistance] 931 -274841 TIGR03898 lanti_MRSA_kill type 2 lantibiotic, mersacidin/lichenicidin family. This model recognizes a number of type 2 lantibiotic-type bacteriocins, including mersacidin and lichenicidin. Members often are found as gene pairs encoding two-chain bacteriocins. Maturation is accomplished, at least in part, by a LanM-type enzyme (TIGR03897). This model describes only the leader peptide region. [Cellular processes, Toxin production and resistance] 44 -274842 TIGR03899 TIGR03899 TIGR03899 family protein. Members of this protein family are conserved hypothetical proteins with a limited species distribution within the Gammaproteobacteria. It is common in the genera Vibrio and Shewanella, and in this resembles the C-terminal domain and putative protein sorting motif TIGR03501. This model, but design, does not extend to all homologs,but rather represents a particular clade. 250 -274843 TIGR03900 prc_long_Delta putative carboxyl-terminal-processing protease, deltaproteobacterial. This model describes a multidomain protein of about 1070 residues, restricted to the order Myxococcales in the Deltaproteobacteria. Members contain a PDZ domain (pfam00595), an S41 family peptidase domain (pfam03572), and an SH3 domain (pfam06347). A core region of this family, including PDZ and S41 regions, is described by TIGR00225, C-terminal processing peptidase, which recognizes the Prc protease. The species distribution of this family approximates that of largely Deltaproteobacterial C-terminal putative protein-sorting domain, TIGR03901, analogous to LPXTG and PEP-CTERM, but the co-occurrence may reflect shared restriction to the Myxococcales rather than a substrate/target relationship. 973 -274844 TIGR03901 MYXO-CTERM MYXO-CTERM domain. This model describes MYXO-CTERM, a C-terminal putative protein sorting domain, analogous to LPXTG (TIGR01167) and PEP-CTERM (TIGR02595). It is restricted to the Myxococcales, a division of the Deltaproteobacteria, with over 60 members occurring in Plesiocystis pacifica SIR-1. An example protein is TraA, involved in outer membrane exchange (lipids and proteins) through which one strain of Myxococcus can repair a mobility defect in another. The trusted cutoff for this model is set artificially high to avoid false positives, and consequently only about half of all members are recognized. 31 -274845 TIGR03902 rhom_GG_sort rhomboid family GlyGly-CTERM serine protease. This model describes a rhomboid-like intramembrane serine protease. Its species distribution closely matches model TIGR03501, GlyGly-CTERM, which describes a protein targeting domain analogous to LPXTG and PEP-CTERM. In a number of species (Ralstonia eutropha ,R. metallidurans, R. solanacearum, Marinobacter aquaeolei, etc) with just one GlyGly-CTERM protein (i.e., a dedicated system), the rhombosortase and GlyGly-CTERM genes are adjacent. 154 -274846 TIGR03903 TOMM_kin_cyc TOMM system kinase/cyclase fusion protein. This model represents proteins of 1350 in length, in multiple species of Burkholderia, in Acidovorax avenae subsp. citrulli AAC00-1 and Delftia acidovorans SPH-1, and in multiple copies in Sorangium cellulosum, in genomic neighborhoods that include a cyclodehydratase/docking scaffold fusion protein (TIGR03882) and a member of the thiazole/oxazole modified metabolite (TOMM) precursor family TIGR03795. It has a kinase domain in the N-terminal 300 amino acids, followed by a cyclase homology domain, followed by regions without named domain definitions. It is a probable bacteriocin-like metabolite biosynthesis protein. [Cellular processes, Toxin production and resistance] 1266 -274847 TIGR03904 SAM_YgiQ uncharacterized radical SAM protein YgiQ. Members of this family are fairly widespread uncharacterized radical SAM family proteins, many of which are designated YgiQ. [Unknown function, Enzymes of unknown specificity] 559 -188420 TIGR03905 TIGR03905_4_Cys uncharacterized protein TIGR03905. This model describes a family of conserved hypothetical proteins of small size, typically ~85 residues, with four invariant Cys residues. This small protein is distantly homologous to a C-terminal domain found in proteins identified by N-terminal homology as ribonucleotide reductases. The rare and sporadic distribution of this protein family falls mostly within the subset of bacterial genomes containing the uncharacterized radical SAM protein modeled by TIGR03904. [Unknown function, General] 78 -274848 TIGR03906 quino_hemo_SAM quinohemoprotein amine dehydrogenase maturation protein. Members of this protein family are radical SAM enzymes responsible for post-translational modifications to the gamma subunit of quinohemoprotein amine dehydrogenases. Ono, et al. () suggest that this protein is responsible for intrapeptidyl thioether cross-linking rather than cysteine tryptophylquinone biogenesis in the gamma subunit. [Protein fate, Protein modification and repair] 467 -211887 TIGR03907 QH_beta quinohemoprotein amine dehydrogenase, beta subunit. Quinohemoprotein amine dehydrogenase is a three subunit enzyme with both a heme group and a cysteine tryptophylquinone group derived by post-translational modification of the gamma subunit. This model describes the beta subunit. This enzyme catalyzes oxidative deamination of primary aliphatic and aromatic amines (). [Energy metabolism, Amino acids and amines] 338 -274849 TIGR03908 QH_alpha quinohemoprotein amine dehydrogenase, alpha subunit. Quinohemoprotein amine dehydrogenase is a three subunit enzyme with both a heme group and a cysteine tryptophylquinone group derived by post-translational modification of the gamma subunit. This model describes the beta subunit. This enzyme catalyzes oxidative deamination of primary aliphatic and aromatic amines (). [Energy metabolism, Amino acids and amines] 510 -188424 TIGR03909 pyrrolys_PylC pyrrolysine biosynthesis protein PylC. This protein is PylC, part of a three-gene cassette that is sufficient to direct the biosynthesis of pyrrolysine, the twenty-second amino acid, incorporated in some species at a UAG canonical stop codon. [Amino acid biosynthesis, Other] 374 -188425 TIGR03910 pyrrolys_PylB pyrrolysine biosynthesis radical SAM protein. This model describes a radical SAM protein, PylB, that is part of the three-gene cassette sufficient for the biosynthesis of pyrrolysine (the twenty-second amino acid) when expressed heterologously in E. coli. The pyrrolysine next is ligated to its own tRNA and incorporated at special UAG codons. [Amino acid biosynthesis, Other] 347 -188426 TIGR03911 pyrrolys_PylD pyrrolysine biosynthesis protein PylD. This protein is PylD, part of a three-gene cassette that is sufficient to direct the biosynthesis of pyrrolysine, the twenty-second amino acid, incorporated in some species at a UAG canonical stop codon. [Amino acid biosynthesis, Other] 266 -188427 TIGR03912 PylS_Nterm pyrrolysyl-tRNA synthetase, N-terminal region. PylS is the enzyme responsible for charging the pyrrolysine tRNA, PylT, by ligating a free molecule of pyrrolysine. Pyrrolysine is encoded at an in-frame UAG (amber) at least in several corrinoid-dependent methyltransferases of the archaeal genera Methanosarcina and Methanococcoides, such as trimethylamine methyltransferase. This protein occurs as a fusion protein in Methanosarcina but as split genes in Desulfitobacterium hafniense and other bacteria. This model describes the small, N-terminal region. [Protein synthesis, tRNA aminoacylation] 89 -188428 TIGR03913 rad_SAM_trio Y_X(10)_GDL-associated radical SAM protein. This narrowly distributed protein family contains an N-terminal radical SAM domain. It occurs in Pseudomonas fluorescens Pf0-1, Ralstonia solanacearum, and numerous species and strains of Burkholderia. Members always occur next to a trio of three mutually homologous genes, all of which contain the domain pfam08898 as the whole of the protein (about 60 amino acids) or as the C-terminal domain. The function is unknown, but the fact that all phylogenetically correlated proteins are mutually homologous with prominent invariant motifs (an invariant tyrosine and a GDL motif) and as small as 60 amino acids suggests that post-translational modification of pfam08898 domain-containing proteins may be its function. This view is supported by closer homology to the PqqE radical SAM protein involved in PQQ biosynthesis from the PqqA precursor peptide than to other characterized radical SAM proteins. [Unknown function, Enzymes of unknown specificity] 477 -274850 TIGR03914 UDG_fam_dom uracil-DNA glycosylase family domain. This model represents a clade within the uracil-DNA glycosylase superfamily. Among characterized proteins, it most closely resembles the Thermus thermophilus uracil-DNA glycosylase TTUDGA, which acts uracil (deamidated cytosine) in both single-stranded DNA and U/G pairs of double-stranded DNA. This domain may occur either as a stand-alone protein or as the C-terminal domain of a fusion with another domain that always pairs with a particular radical-SAM family protein. 230 -274851 TIGR03915 SAM_7_link_chp probable DNA metabolism protein. This model represents a conserved hypothetical protein that almost invariably pairs with an uncharacterized radical SAM protein. The pair occurs in about twenty percent of completed prokaryotic genomes. About forty percent of the members of this family occur as fusion proteins, where the C-terminal domain belongs to the uracil-DNA glycosylase family, a DNA repair family (because uracil in DNA is deamidated cytosine). The linkage by gene clustering and correlated species distribution to a radical SAM protein, and by gene fusion to a DNA repair protein family, suggests a role in DNA modification and/or repair. 241 -188431 TIGR03916 rSAM_link_UDG putative DNA modification/repair radical SAM protein. This uncharacterized protein of about 400 amino acids in length contains a radical SAM protein in the N-terminal half. Members are present in about twenty percent of prokaryotic genomes, always paired with a member of the conserved hypothetical protein TIGR03915. Roughly forty percent of the members of that family exist as fusions with a uracil-DNA glycosylase-like region, TIGR03914. In DNA, uracil results from deamidation of cytosine, forming U/G mismatches that lead to mutation, and so uracil-DNA glycosylase is a DNA repair enzyme. This indirect connection, and the recurring role or radical SAM protein in modification chemistries, suggest that this protein may act in DNA modification, repair, or both. [Unknown function, Enzymes of unknown specificity] 415 -274852 TIGR03917 Frankia_40_dom Frankia-40 domain. This model describes a paralogous domain of length 40, restricted to smaller proteins of the genus Frankia, a member of the Actinobacteria. The function is unknown. 40 -274853 TIGR03918 GTP_HydF [FeFe] hydrogenase H-cluster maturation GTPase HydF. This model describes the family of the [Fe] hydrogenase maturation protein HypF as characterized in Chlamydomonas reinhardtii and found, in an operon with radical SAM proteins HydE and HydG, in numerous bacteria. It has GTPase activity, can bind an 4Fe-4S cluster, and is essential for hydrogenase activity. [Protein fate, Protein modification and repair] 391 -274854 TIGR03919 T7SS_EccB type VII secretion protein EccB, Actinobacterial. This model represents the transmembrane protein EccB of the actinobacterial flavor of type VII secretion systems. Species such as Mycobacterium tuberculosis have several instances of this system per genome, designated EccB1, EccB2, etc. This model does not identify functionally related proteins in the Firmicutes such as Staphylococcus aureus and Bacillus anthracis. [Protein fate, Protein and peptide secretion and trafficking] 456 -274855 TIGR03920 T7SS_EccD type VII secretion integral membrane protein EccD. Members of this family are EccD, a component of actinobacterial type VII secretion systems (T7SS) with ten to eleven predicted transmembrane helix regions. [Protein fate, Protein and peptide secretion and trafficking] 453 -274856 TIGR03921 T7SS_mycosin type VII secretion-associated serine protease mycosin. Members of this family are subtilisin-related serine proteases, found strictly in the Actinobacteria and associated with type VII secretion operons. The designation mycosin is used for members from Mycobacterium. [Protein fate, Protein and peptide secretion and trafficking, Protein fate, Protein modification and repair] 350 -188437 TIGR03922 T7SS_EccA type VII secretion AAA-ATPase EccA. This model represents the AAA family ATPase, EccA, of the actinobacterial flavor of type VII secretion systems. Species such as Mycobacterium tuberculosis have several instances of this system per genome, designated EccA1, EccA2, etc. [Protein fate, Protein and peptide secretion and trafficking] 557 -274857 TIGR03923 T7SS_EccE type VII secretion protein EccE. This model represents the transmembrane protein EccB of the actinobacterial flavor of type VII secretion systems. Species such as Mycobacterium tuberculosis have several instances of this system per genome, designated EccE1, EccE2, etc. This model represents a conserved core region, and many members have 200 or more additional C-terminal residues. [Protein fate, Protein and peptide secretion and trafficking] 341 -274858 TIGR03924 T7SS_EccC_a type VII secretion protein EccCa. This model represents the N-terminal domain or EccCa subunit of the type VII secretion protein EccC as found in the Actinobacteria. Type VII secretion is defined more broadly as including secretion systems for ESAT-6-like proteins in the Firmicutes as well as in the Actinobacteria, but this family does not show close homologs in the Firmicutes. [Protein fate, Protein and peptide secretion and trafficking] 658 -274859 TIGR03925 T7SS_EccC_b type VII secretion protein EccCb. This model represents the C-terminal domain or EccCb subunit of the type VII secretion protein EccC as found in the Actinobacteria. Type VII secretion is defined more broadly as including secretion systems for ESAT-6-like proteins in the Firmicutes as well as in the Actinobacteria, but this family does not show close homologs in the Firmicutes. [Protein fate, Protein and peptide secretion and trafficking] 566 -188441 TIGR03926 T7_EssB type VII secretion protein EssB. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This protein is designated YukC in Bacillus subtilis and EssB is Staphylococcus aureus. [Protein fate, Protein and peptide secretion and trafficking] 377 -200340 TIGR03927 T7SS_EssA_Firm type VII secretion protein EssA. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This highly divergent protein family consists largely of a central region of highly polar low-complexity sequence containing occasional LF motifs in weak repeats about 17 residues in length, flanked by hydrophobic N- and C-terminal regions. [Protein fate, Protein and peptide secretion and trafficking] 150 -274860 TIGR03928 T7_EssCb_Firm type VII secretion protein EssC, C-terminal domain. This model describes the C-terminal domain, or longer subunit, of the Firmicutes type VII secretion protein EssC. This protein (homologous to EccC in Actinobacteria) and the WXG100 target proteins are the only homologous parts of type VII secretion between Firmicutes and Actinobacteria. [Protein fate, Protein and peptide secretion and trafficking] 1296 -274861 TIGR03929 T7_esaA_Nterm type VII secretion protein EsaA, N-terminal domain. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This model represents the conserved N-terminal domain. 193 -274862 TIGR03930 WXG100_ESAT6 WXG100 family type VII secretion target. Members of this protein family include secretion targets for the two main variants of type VII secretion systems (T7SS), one found in the Actinobacteria, one found in the Firmicutes. This model was derived through iteration from pfam06013. The best characterized member of this family is ESAT-6 from Mycobacterium tuberculosis. Members of this family usually are ~100 amino acids in length but occasionally have a long C-terminal extension. 90 -274863 TIGR03931 T7SS_Rv3446c type VII secretion-associated protein, Rv3446c family, C-terminal domain. Members of this protein family occur as part of the ESX-4 cluster of type VII secretion system (T7SS) proteins in Mycobacterium tuberculosis and in similar T7SS clusters in other Actinobacteria genera, including Corynebacterium, Nocardia, Rhodococcus, and Saccharopolyspora. This model describes the better-conserved C-terminal region. [Protein fate, Protein and peptide secretion and trafficking] 172 -188447 TIGR03932 PIA_icaD intracellular adhesion protein D. Members of this protein family are IcaD (intracellular adhesion protein D), which with catalytic subunit IcaA forms an N-acetylglucosaminyltransferase. In the absence of IcaC, this enzyme forms N-acetylglucosamine oligomers up to 20 in length. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 88 -188448 TIGR03933 PIA_icaB intercellular adhesin biosynthesis polysaccharide N-deacetylase. A common motif in bacterial biosynthesis of polysaccharide for export is modification that follows polymerization. This model describes a subfamily of polysaccharide N-deacetylases that acts on poly-beta-1,6-N-acetyl-D-glyscosamine as produced by Staphylococcus epidermidis and S. aureus. The end product in these species is designated polysaccharide intercellular adhesin (PIA), and this gene designated icaB (intercellular adhesion protein B). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Cellular processes, Pathogenesis] 245 -274864 TIGR03934 TQXA_dom TQXA domain. This model describes a domain of about 40 residues with an invariant TQ dipeptide in an almost invariant TQxA[VI]W motif. This domain occurs in surface-expressed proteins of Gram-positive bacteria, many of which are anchored by LPXTG-containing sortase target domains. Numerous members of this family have domains pfam05738 (Cna protein B-type domain) and pfam08341 (fibronectin-binding protein signal sequence). 42 -188450 TIGR03935 fragilysin fragilysin. Members of this family are fragilysin, the Bacteroides fragilis enterotoxin. This enzyme is a Zn metalloprotease. Three distinct subtypes included in this family all are produced by enterotoxigenic (by definition) strains of Bacteroides fragilis. [Cellular processes, Pathogenesis] 386 -274865 TIGR03936 sam_1_link_chp radical SAM-linked protein. This model describes an uncharacterized protein encoded adjacent to, or as a fusion protein with, an uncharacterized radical SAM protein. 208 -274866 TIGR03937 PgaC_IcaA poly-beta-1,6 N-acetyl-D-glucosamine synthase. Members of this protein family are biofilm-forming enzymes that polymerize N-acetyl-D-glucosamine residues in beta(1,6) linkage. One named members is IcaA (intercellular adhesin protein A), an enzyme that acts (with aid of subunit IcaD) in Polysaccharide Intercellular Adhesin (PIA) biosynthesis in Staphylococcus epidermis). The homologous member in E. coli is designated PgaC. Members are often encoded next to a polysaccharide deacetylase and involved in biofilm formation. Note that chitin, although also made from N-acetylglucosamine, is formed with beta-1,4 linkages. 407 -274867 TIGR03938 deacetyl_PgaB poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase PgaB. Two well-characterized systems produce polysaccharide based on N-acetyl-D-glucosamine in straight chains with beta-1,6 linkages. These are encoded by the icaADBC operon in Staphylococcus species, where the system is designated polysaccharide intercellular adhesin (PIA), and the pgaABCD operon in Gram-negative bacteria such as E. coli. Both systems include a putative polysaccharide deacetylase. The PgaB protein, described here, contains an additional domain lacking from its Gram-positive counterpart IcaB (TIGR03933). Deacetylation by this protein appears necessary to allow export through the porin PgaA [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 619 -274868 TIGR03939 PGA_TPR_OMP poly-beta-1,6 N-acetyl-D-glucosamine export porin PgaA. Members of this protein family are the poly-beta-1,6 N-acetyl-D-glucosamine (PGA) export porin PgaA of Gram-negative bacteria. There is no counterpart in the poly-beta-1,6 N-acetyl-D-glucosamine biosynthesis systems of Gram-positive bacteria such as Staphylococcus epidermidis. The PGA polysaccharide adhesin is a critical determinant of biofilm formation. The conserved C-terminal domain of this outer membrane protein is preceded by a variable number of TPR repeats. 800 -188455 TIGR03940 PGA_PgaD poly-beta-1,6-N-acetyl-D-glucosamine biosynthesis protein PgaD. Members of this protein family are PgaD, essential to the production of poly-beta-1,6-N-acetyl-D-glucosamine (PGA). This cytoplasmic membrane protein appears to be an auxiliary subunit to the PGA synthase, PgaC (TIGR03937). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 141 -274869 TIGR03941 tRNA_deam_assoc putative tRNA adenosine deaminase-associated protein. This model describes a protein family about 200 amino acids in length with only five invariant residues, including an Arg, a Ser-Asp pair, and two Gly residues. Members always are found exclusively in Actinobacteria, and always adjacent to homologs of TadA, a tRNA-specific adenosine deaminase from Escherichia coli. Homology, phyletic pattern, and gene neighborhood together suggest a housekeeping function in tRNA metabolism. [Unknown function, General] 154 -188457 TIGR03942 sulfatase_rSAM anaerobic sulfatase-maturating enzyme. Members of this protein family are radical SAM family enzymes, maturases that prepare the oxygen-sensitive radical required in the active site of anaerobic sulfatases. This maturase role has led to many misleading legacy annotations suggesting that this enzyme maturase is instead a sulfatase regulatory protein. All members of the seed alignment are radical SAM enzymes encoded next to or near an anaerobic sulfatase. Note that a single genome may encode more than one sulfatase/maturase pair. [Protein fate, Protein modification and repair] 363 -274870 TIGR03943 TIGR03943 TIGR03943 family protein. Members of this occur in gene pairs with members of pfam03773. The N-terminal region contains several predicted transmembrane helix regions while the few invariant residues (G, CxxD, and W) occur in the C-terminal region. 219 -274871 TIGR03944 dehyd_SbnB_fam 2,3-diaminopropionate biosynthesis protein SbnB. Members of this protein family are probable NAD-dependent dehydrogenases related to the alanine dehydrogenase of Archaeoglobus fulgidus (see TIGR02371, PDB structure 1OMO and ) and more distantly to ornithine cyclodeaminase. Members include the staphylobactin biosynthesis protein SbnB and tend to occur in contexts suggesting non-ribosomal peptide synthesis, always adjacent to (occasionally fused with) a pyridoxal phosphate-dependent enzyme, SbnA. The pair appears to provide 2,3-diaminopropionate for biosynthesis of siderophores or other secondary metabolites. [Cellular processes, Biosynthesis of natural products] 327 -274872 TIGR03945 PLP_SbnA_fam 2,3-diaminopropionate biosynthesis protein SbnA. Members of this family include SbnA, a protein of the staphyloferrin B biosynthesis operon of Staphylococcus aureus. SbnA and SbnB together appear to synthesize 2,3-diaminopropionate, a precursor of certain siderophores and other secondary metabolites. SbnA is a pyridoxal phosphate-dependent enzyme. [Cellular processes, Biosynthesis of natural products] 304 -188461 TIGR03946 viomycin_VioC arginine beta-hydroxylase, Fe(II)/alpha-ketoglutarate-dependent. Members of this protein family are L-arginine beta-hydroxylase, members of a broader family of enzymes dependent on Fe(II), alpha-ketoglutarate, and molecular oxygen. Enzymes in the broader family but excluded by this model include clavaminate synthase, taurine dioxygenase, and prolyl-4-hydroxylase. [Cellular processes, Biosynthesis of natural products] 333 -188462 TIGR03947 viomycin_VioD capreomycidine synthase. Members of this family are the enzyme capreomycidine synthase, which performs the second of two steps in the biosynthesis of 2S,3R-capreomycidine from arginine. Capreomycidine is an unusual amino acid used by non-ribosomal peptide synthases (NRPS) to make the tuberactinomycin class of peptide antibiotic. The best characterized member is VioD from the biosynthetic pathway for viomycin. [Cellular processes, Biosynthesis of natural products] 359 -188463 TIGR03948 butyr_acet_CoA butyryl-CoA:acetate CoA-transferase. This enzyme represents one of at least two mechanisms for reclaiming CoA from butyryl-CoA at the end of butyrate biosynthesis (an important process performed by some colonic bacteria), namely transfer of CoA to acetate. An alternate mechanism transfers the butyrate onto inorganic phosphate, after which butyrate kinase transfers the phosphate onto ADP, creating ATP. [Energy metabolism, Fermentation] 445 -274873 TIGR03949 bact_IIb_cerein class IIb bacteriocin, lactobin A/cerein 7B family. Members of this protein family are described variably as bacteriocins per se, one chain of a two-chain bacteriocin, or bacteriocin enhancer proteins. All members of the seed alignment occur in paired gene contexts with another member of the same protein family. This family includes bacteriocins that appear not to undergo post-translational modification, other than cleavage at a Gly-Gly motif coupled to sec-independent export. For many members, the N-terminal bacteriocin cleavage motif region is recognized by TIGR01847. C-terminal to the cleavage motif, these proteins are hydrophobic and low in complexity, consistent with pore-forming activity as a mechanism of bacteriocin action. 45 -274874 TIGR03950 sidero_Fe_reduc siderophore ferric iron reductase, AHA_1954 family. Members of this protein family are 2Fe-2S cluster binding proteins, found regularly in the context of siderophore transporters. Members are distantly related to FhuF from E. coli, a ferric iron reductase linked to removal of iron from hydroxamate-type siderophores (). [Energy metabolism, Electron transport, Transport and binding proteins, Cations and iron carrying compounds] 223 -274875 TIGR03951 Fe_III_red_FhuF siderophore-iron reductase FhuF. Members of this protein family, including FhuF of E. coli, are siderophore ferric iron reductases that appear to play a role in iron removal from certain hydroxamate-type siderophores, including coprogen, ferrichrome, ferrioxamine B, and aerobactin. Genes occur in regularly in siderophore transport and/or biosynthesis clusters. The C-terminus includes four Cys residues in a C-C-10(X)-C-X-X-C motif that binds a 2Fe-2S cluster. Family TIGR03950 is similar, but especially in the C-terminal region, but likely acts on a different panel of siderophores. [Energy metabolism, Electron transport, Transport and binding proteins, Cations and iron carrying compounds] 182 -274876 TIGR03952 metzin_BF0631 zinc-dependent metalloproteinase lipoprotein, BF0631 family. Members of this protein family are zinc-dependent metalloproteinases, related to ulilysin and other members of the pappalysin family. Members occur as predicted lipoproteins and occur mostly in the genera Bacteriodes and Prevotella. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 351 -274877 TIGR03953 rplD_bact 50S ribosomal protein L4, bacterial/organelle. Members of this protein family are ribosomal protein L4. This model recognizes bacterial and most organellar forms, but excludes homologs from the eukaryotic cytoplasm and from archaea. [Protein synthesis, Ribosomal proteins: synthesis and modification] 188 -274878 TIGR03954 integ_memb_HG integral membrane protein. This model describes a strictly bacterial integral membrane domain of about 85 residues in length. It occurs in proteins that on rare occasions are fused to transporter domains such as the major facilitator superfamily domain. Of three invariant residues, two occur as a His-Gly dipeptide in the middle of three predicted transmembrane helices. [Unknown function, General] 85 -274879 TIGR03955 rSAM_HydG [FeFe] hydrogenase H-cluster radical SAM maturase HydG. This model describes the radical SAM protein HydG. It is part of an enzyme metallocenter maturation system, working together with GTP-binding protein HydF and another radical SAM enzyme, HydE, in H-cluster maturation in [FeFe] hydrogenases. [Protein fate, Protein modification and repair] 471 -274880 TIGR03956 rSAM_HydE [FeFe] hydrogenase H-cluster radical SAM maturase HydE. This model describes the radical SAM protein HydE, one of a pair of radical SAM proteins, along with GTP-binding protein HydF, for maturation of [Fe] hydrogenase in Chlamydomonas reinhardtii and numerous bacteria. [Protein fate, Protein modification and repair] 340 -188472 TIGR03957 rSAM_HmdB 5,10-methenyltetrahydromethanopterin hydrogenase cofactor biosynthesis protein HmdB. Members of this archaeal protein family are HmdB, a partially characterized radical SAM protein with an unusual CX5CX2C motif. Its gene flanks the H2-forming methylene-H4-methanopterin dehydrogenase gene hmdA, found in hydrogenotrophic methanogens. HmdB appears to act in in biosynthesis of the novel cofactor of HmdA. [Protein fate, Protein modification and repair, Energy metabolism, Methanogenesis] 317 -274881 TIGR03958 monoFe_hyd_HmdC 5,10-methenyltetrahydromethanopterin hydrogenase cofactor biosynthesis protein HmdC. Members of this protein family are HmdC, whose gene regularly occurs in the context of genes for HmdA (5,10-methenyltetrahydromethanopterin hydrogenase) and the radical SAM protein HmdB involved in biosynthesis of the HmdA cofactor. Bioinformatics suggests this protein, a homolog of eukaryotic fibrillarin, may be involved in biosynthesis of the guanylyl pyridinol cofactor in HmdA. [Protein fate, Protein modification and repair, Energy metabolism, Methanogenesis] 505 -274882 TIGR03959 hyd_TM1266 putative iron-only hydrogenase system regulator. Members of this protein family occur as part of a system for producing iron-only hydrogenases, dependent on radical SAM proteins HydE and HydG and GTPase HydF. One member of this family, TM_1266 from Thermotoga maritima, has a known crystal structure. The small size, about 80 residues, and a distant relationship to the nickel regulator NikR of the CopG transcriptional regulator family suggest a role as a transcription factor. [Regulatory functions, DNA interactions] 76 -188475 TIGR03960 rSAM_fuse_unch radical SAM family uncharacterized protein. This model describes a radical SAM protein, or protein region, regularly found paired with or fused to a region described by TIGR03936. PSI-BLAST analysis of TIGR03936 suggests a relationship to the tRNA pseudouridine synthase TruA, suggesting that this system may act in RNA modification. [Unknown function, Enzymes of unknown specificity] 605 -188476 TIGR03961 rSAM_PTO1314 archaeal radical SAM protein, PTO1314 family. Members of this protein family average about 340 residues in length, with a radical SAM domain in the N-terminal 200 residues. The taxonomic distribution is restricted to non-methanogenic archaea, including Picrophilus torridus (locus PTO1314), Sulfolobus sp., Thermoplasma sp., Picrophilus torridus, and Metallosphaera sedula. The gene neighborhood is not conserved, and the function of this family is unknown. [Unknown function, Enzymes of unknown specificity] 332 -188477 TIGR03962 mycofact_rSAM mycofactocin radical SAM maturase. Members of this family are uncharacterized radical SAM proteins from the Mycobacterium tuberculosis and many other Actinobacteria, as well as some deltaproteobacteria (e.g. Geobacter uraniireducens), firmicutes (Pelotomaculum thermopropionicum and Desulfotomaculum acetoxidans), and Chloroflexi (Thermomicrobium roseum DSM 5159 and Sphaerobacter thermophilus DSM 20745). They resemble several characterized radical SAM enzymes of peptide modification (PqqE, AlbA), and are always found next to the proposed target, TIGR03969, the putative mycofactocin precursor. [Unknown function, Enzymes of unknown specificity] 339 -188478 TIGR03963 rSAM_QueE_Clost putative 7-cyano-7-deazaguanosine (preQ0) biosynthesis protein QueE, clostridial. Members of this radical SAM domain protein family appear to be the Clostridial form of the queuosine biosynthesis protein QueE. QueE is involved in making preQ0 (7-cyano-7-deazaquanine), a precursor of both the bacterial/eukaryotic modified tRNA base queuosine and the archaeal modified base archaeosine. Members occur in preQ0 operons species that lack members of related protein family TIGR03365. [Protein synthesis, tRNA and rRNA base modification] 219 -274883 TIGR03964 mycofact_creat mycofactocin system creatininase family protein. Members of this protein family are uncharacterized Actinobacterial proteins, with homology to creatinine amidohydrolase from Pseudomonas. Members occur only in the context of the mycofactocin system. [Unknown function, Enzymes of unknown specificity] 228 -274884 TIGR03965 mycofact_glyco mycofactocin system glycosyltransferase. Members of this protein family are putative glycosyltransferases, members of pfam00535 (glycosyl transferase family 2). Members appear mostly in the Actinobacteria, where they appear to be part of a system for converting a precursor peptide (TIGR03969) into a novel redox carrier designated mycofactocin. A radical SAM enzyme, TIGR03962, is a proposed to be a key maturase for mycofactocin. 466 -274885 TIGR03966 actino_HemFlav heme/flavin dehydrogenase, mycofactocin system. Members of this protein family possess an N-terminal heme-binding domain and C-terminal flavodehydrogenase domain, and share homology to yeast flavocytochrome b2, to E. coli L-lactate dehydrogenase [cytochrome], to (S)-mandelate dehydrogenase, etc. This enzyme appears only in the context of the mycofactocin system. Interestingly, it is absent from the four species detected so far with mycofactocin but without an F420 biosynthesis system. 385 -274886 TIGR03967 mycofact_MftB putative mycofactocin binding protein MftB. Families TIGR03969 and TIGR03962 describe, respectively, the putative mycofactocin precursor and its cognate radical SAM peptide maturase. This small protein family appears in the same sporadically distributed cassette and may serve as a scaffolding protein during mycofactocin maturation or as a carrier protein for the mature product, a putative novel redox carrier. A feature of mycofactocin-encoding genomes is co-clustering with sets of NAD-binding oxidoreductases in which the NAD is not exchangeable. Therefore it is proposed that mature mycofactocin, bound by a member of this family as a carrier protein, docks with the nicotinoprotein to allow electron transfer. Mediation of electron transfer through this system would define a segregated redox pool. [Unknown function, General] 81 -188483 TIGR03968 mycofact_TetR mycofactocin system transcriptional regulator. Members of this family are TetR family putative transcriptional regulators that occur in genome contexts near proteins of the mycofactocin system. These include the precursor peptide (TIGR03969), a radical SAM peptide maturase (TIGR03962), and a putative carrier protein (TIGR03967). [Regulatory functions, DNA interactions] 190 -274887 TIGR03969 mycofactocin mycofactocin precursor. Members of this protein family occur in Mycobacterium tuberculosis and many other Actinobacteria, as well as some delta-Proteobacteria (e.g. Geobacter uraniireducens), Firmicutes (Pelotomaculum thermopropionicum and Desulfotomaculum acetoxidans), and Chloroflexi (Thermomicrobium roseum DSM 5159 and Sphaerobacter thermophilus DSM 20745). Members sometimes are missed during gene model identification but always occur in the vicinity of radical SAM (rSAM) enzyme TIGR03962, which resembles several rSAM enzymes of peptide maturation (PqqE, AlbA). Species with this protein always carry members of unusual clades of nicotinoproteins that are restricted to mycofactocin-containing species and in which the NAD, when studied, has appeared non-exchangeable. It is proposed that the mature form of mycofactocin is a novel redox carrier for a segregated redox pool. 23 -274888 TIGR03970 Rv0697 dehydrogenase, Rv0697 family. This model describes a set of dehydrogenases belonging to the glucose-methanol-choline oxidoreductase (GMC oxidoreductase) family. Members of the present family are restricted to Actinobacterial genome contexts containing also members of families TIGR03962 and TIGR03969 (the mycofactocin system), and are proposed to be uniform in function. 487 -274889 TIGR03971 SDR_subfam_1 SDR family mycofactocin-dependent oxidoreductase. Members of this protein subfamily are putative oxidoreductases belonging to the larger SDR family. All members occur in genomes that encode a cassette for the biosynthesis of mycofactocin, a proposed electron carrier of a novel redox pool. Characterized members of this family are described as NDMA-dependent, meaning that a blue aniline dye serving as an artificial electron acceptor is required for members of this family to cycle in vitro, since the bound NAD residue is not exchangeable. See EC 1.1.99.36. [Unknown function, Enzymes of unknown specificity] 270 -274890 TIGR03972 rSAM_TYW1 wyosine biosynthesis protein TYW1. Members of this protein family are the archaeal protein TWY1, a radical SAM protein that catalyzes the second step in creating the wye-bases, wyosine and derivatives such as wybutosine, for tRNA base modification. [Protein synthesis, tRNA and rRNA base modification] 297 -274891 TIGR03973 six_Cys_in_45 six-cysteine peptide SCIFF. Members of this protein family are essentially universal in the class Clostidia and therefore highly abundant in the human gut microbiome. This short peptide is designated SCIFF, for Six Cysteines in Forty-Five residues. It is a presumed ribosomal natural product precursor, always found associated with a yet-uncharacterized radical SAM protein, family TIGR03974, that resembles other peptide modification radical SAM enzymes and is designated SCIFF radical SAM maturase. 43 -274892 TIGR03974 rSAM_six_Cys SCIFF radical SAM maturase. Members of this protein family are predicted radical SAM enzymes universally associated with Six Cysteines in Forty-Five protein, or SCIFF (family TIGR03973), a predicted ribosomal natural product precursor that is nearly universal in the class Clostridia. Similarity of this family to radical SAM maturases (PqqE and subtilosin A maturase) found in the vicinity of other peptide precursors suggests this protein is the SCIFF radical SAM maturase. [Cellular processes, Biosynthesis of natural products] 451 -274893 TIGR03975 rSAM_ocin_1 ribosomal peptide maturation radical SAM protein 1. Models TIGR03793 and TIGR03798 describe bacteriocin precursor families to occur often in large paralogous families and are subject to various modifications, including by LanM family lantibiotic synthases and by cyclodehydratases. This model represents a radical SAM protein family that regularly occurs in the context of these bacteriocins, and may occur where other familiar peptide modification enzymes are absent. [Cellular processes, Toxin production and resistance] 606 -274894 TIGR03976 chp_LLNDYxLRE His-Xaa-Ser system protein HxsD. This rare conserved hypothetical protein of small size occurs exclusively, and perhaps universally, in the context of a pair of (uncharacterized) radical SAM proteins, TIGR03977 and TIGR03978. Many members of this family have invariant motifs LYW and LLNDYxLRE, but PSI-BLAST starting from family members well below 20 % pairwise sequence identity to this group eventually brings in the entire family as modeled here. The family TIGR03979 represents the fourth regularly conserved member of this system. 90 -274895 TIGR03977 rSAM_pair_HxsC His-Xaa-Ser system radical SAM maturase HxsC. This model describes the downstream member, HxsC, of a pair of uncharacterized radical SAM proteins, regularly found in the context of a small protein with four or more repeats of the tripeptide His-Xaa-Ser (HXS). This enzyme appears to be part of a peptide modification system. 292 -274896 TIGR03978 rSAM_paired_1 His-Xaa-Ser system radical SAM maturase HxsB. This model describes the upstream member, HxsB, of a pair of uncharacterized radical SAM proteins, regularly found in the context of a small protein with four or more repeats of the tripeptide His-Xaa-Ser (HXS). This enzyme appears to be part of a peptide modification system. 466 -274897 TIGR03979 His_Ser_Rich His-Xaa-Ser repeat protein HxsA. Members of this protein share two defining regions. One is a histidine/serine-rich cluster, typically H-R-S-H-S-S-H-R-S-H-S-S-H. Members are found always in the context of a pair of radical SAM proteins, HxsB and HxsC, and a fourth protein HxsD. The system is predicted to perform peptide modifications, likely in the His-Xaa-Ser region, to produce some uncharacterized natural product. 186 -274898 TIGR03980 prismane_assoc hybrid cluster protein-associated redox disulfide domain. Members of this protein family resemble the domain of unknown function DUF1858 described by pfam08984, but all members contain an apparent redox-active disulfide. In at least one member protein, a cysteine in the CXXC motif is substituted by a selenocysteine. Most member proteins consist of this domain only, but a few members are fused to or adjacent to members of the hybrid-cluster (prismane) family or the nitrite/sulfite reductase family. [Energy metabolism, Electron transport] 58 -188496 TIGR03981 SAM_quin_mod His-Xaa-Ser system putative quinone modification maturase. One clue for the interpretation of this protein family is homology to the MauG protein (see TIGR03791) involved in the tryptophan tryptophylquinone post-translational modification of methylamine dehydrogenase light (beta) chain. The other is occurrence only in a five gene context in which two members are radical SAM proteins (TIGR03977 and TIGR03978) also likely involved in post-translational modification. 411 -188497 TIGR03982 TIGR03982 His-Xaa-Ser system protein, TIGR03982 family. Members of this rare protein family occur in the presence of TIGR03981 and TIGR03979, which in turn occur only in the context of radical SAM protein families TIGR03977 and TIGR03978. The function is unknown. 117 -274899 TIGR03983 cas1_MYXAN CRISPR-associated endonuclease Cas1, subtype MYXAN. Members of this protein are the Cas1 endonuclease, or Cas1 domain in Cas4/Cas1 fusion proteins, of the MYXAN subtype of CRISPR/Cas systems. These systems typically feature repeats and spacers each about 36 base pairs in length. Species with this type of CRISPR system include Myxococcus xanthus, Cyanothece sp., Leptospira interrogans, Sorangium cellulosum, Anabaena variabilis ATCC 29413, etc. 347 -274900 TIGR03984 TIGR03984 CRISPR-associated protein, TIGR03984 family. Members of this protein family are found exclusively in CRISPR-containing organisms, in operon contexts with RAMP (repeat-associated mystery protein) proteins also linked to CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats). 147 -274901 TIGR03985 TIGR03985 CRISPR-associated protein, TIGR03985 family. Members of this protein family belong to CRISPR-associated (Cas) gene clusters. The majority of members are Cyanobacterial. 248 -274902 TIGR03986 TIGR03986 CRISPR-associated protein. Members of this protein family, part of the larger RAMP family, are found exclusively in species with CRISPR systems, in local contexts containing other RAMP (Repeat-Associated Mystery Proteins). 562 -274903 TIGR03987 TIGR03987 TIGR03987 family protein. Conserved hypothetical protein 120 -274904 TIGR03988 antisig_RsrA mycothiol system anti-sigma-R factor. Members of this family are the anti-sigma-R factor RsrA, which contains a CXXC motif as a thiol-disulphide redox switch. It interacts with sigma-R. It regulates and is regulated by the mycothiol system, which occurs in many actinomycetes. [Transcription, Transcription factors] 77 -274905 TIGR03989 Rxyl_3153 NDMA-dependent alcohol dehydrogenase, Rxyl_3153 family. This model describes a clade within the family pfam00107 of zinc-binding dehydrogenases. The family pfam00107 contains class III alcohol dehydrogenases, including enzymes designated S-(hydroxymethyl)glutathione dehydrogenase and NAD/mycothiol-dependent formaldehyde dehydrogenase. Members of the current family occur only in species that contain the very small protein mycofactocin (TIGR03969), a possible cofactor precursor, and radical SAM protein TIGR03962. We name this family for Rxyl_3153, where the lone member of the family co-clusters with these markers in Rubrobacter xylanophilus. [Unknown function, Enzymes of unknown specificity] 369 -274906 TIGR03990 Arch_GlmM phosphoglucosamine mutase. The MMP1680 protein from Methanococcus maripaludis has been characterized as the archaeal protein responsible for the second step of UDP-GlcNAc biosynthesis. This GlmM protein catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate. The first-characterized bacterial GlmM protein is modeled by TIGR01455. These two families are members of the larger phosphoglucomutase/phosphomannomutase family (characterized by three domains: pfam02878, pfam02879 and pfam02880), but are not nearest neighbors to each other. This model also includes a number of sequences from non-archaea in the Bacteroides, Chlorobi, Chloroflexi, Planctomycetes and Spirochaetes lineages. Evidence supporting their inclusion in this equivalog as having the same activity comes from genomic context and phylogenetic profiling. A large number of these organisms are known to produce exo-polysaccharide and yet only appeared to contain the GlmS enzyme of the GlmSMU pathway for UDP-GlcNAc biosynthesis (GenProp0750). In some organisms including Leptospira, this archaeal GlmM is found adjacent to the GlmS as well as a putative GlmU non-orthologous homolog. Phylogenetic profiling of the GlmS-only pattern using PPP identifies members of this archaeal GlmM family as the highest-scoring result. [Central intermediary metabolism, Amino sugars] 443 -274907 TIGR03991 alt_bact_glmU UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase. The MJ_1101 protein from Methanococcus jannaschii has been characterized as the GlmU enzyme catalyzing the final two steps of UDP-GlcNAc biosynthesis. Homologs of this enzyme are identified in a number of bacterial organisms and modeled here. A number of these are observed in proximity to the GlmS and GlmM genes, and phylogenetic profiling by PPP identifies the LEPBI_I0518 gene in Leptospira biflexa as a likely Glm-system candidate. Multiple sequence alignments of these bacterial homologs with their archaeal counterparts reveals significant structural differences, necessitating the construction of separate models. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Central intermediary metabolism, Amino sugars] 337 -274908 TIGR03992 Arch_glmU UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase. The MJ_1101 protein from Methanococcus jannaschii has been characterized as the GlmU enzyme catalyzing the final two steps of UDP-GlcNAc biosynthesis. Many of the genes identified by this model are in proximity to the GlmS and GlmM genes and are also presumed to be GlmU. However, some archaeal genomes contain multiple closely-related homologs from this family and it is not clear what the substrate specificity is for each of them. 393 -274909 TIGR03993 hydrog_HybE [NiFe] hydrogenase assembly chaperone, HybE family. Members of this family are chaperones for the assembly of [NiFe] hydrogenases, in the family of HybE, which is specific for hydrogenase-2 of Escherichia coli. Members often have an additional N-terminal rubredoxin domain. 143 -274910 TIGR03994 rSAM_HemZ coproporphyrinogen dehydrogenase HemZ. Members of this radical SAM protein family are HemZ, a protein involved in coproporphyrinogen III decarboxylation. Alternative names for this enzyme (EC 1.3.99.22) include coproporphyrinogen dehydrogenase and oxygen-independent coproporphyrinogen III oxidase. The family is related to, but distinct from HemN, and in Bacillus subtilis was shown to be connected to peroxide stress and catalase formation. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 401 -274911 TIGR03995 target_X_rSAM putative rSAM target protein, CGCGG family. Members of this family of small proteins, approx. 100 amino acids in length, co-occur with a subfamily of radical SAM protein in several species in the Halobacteria and in Bacillus. The radical SAM protein belongs to a branch in which most characterized members act on peptide substrates. The lack of homology of this family to any known enzyme and the distinctive C-terminal region motif, with the common modification target residue Cys flanked by sterically permissive Gly residues. 84 -188511 TIGR03996 mycofact_OYE_1 mycofactocin system FadH/OYE family oxidoreductase 1. The yeast protein called old yellow enzyme and FadH from Escherichia coli (2,4-dienoyl CoA reductase) are enzymes with 4Fe-4S, FMN, and FAD prosthetic groups, and interact with NADPH as well as substrate. Members of this related protein family occur in the vicinity of the putative mycofactocin biosynthesis operon in a number of Actinobacteria such as Frankia sp. and Rhodococcus sp. The function of this oxidoreductase is unknown. 633 -274912 TIGR03997 mycofact_OYE_2 mycofactocin system FadH/OYE family oxidoreductase 2. The yeast protein called old yellow enzyme and FadH from Escherichia coli (2,4-dienoyl CoA reductase) are enzymes with 4Fe-4S, FMN, and FAD prosthetic groups, and interact with NADPH as well as substrate. Members of this related protein family occur in the vicinity of the putative mycofactocin biosynthesis operon in a number of Actinobacteria such as Frankia sp. and Rhodococcus sp., in Pelotomaculum thermopropionicum SI (Firmicutes), and in Geobacter uraniireducens Rf4 (Deltaproteobacteria). The function of this oxidoreductase is unknown. 644 -274913 TIGR03998 thiol_BshC bacillithiol biosynthesis cysteine-adding enzyme BshC. Members of this protein family are BshC, an enzyme required for bacillithiol biosynthesis and described as a cysteine-adding enzyme. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 528 -274914 TIGR03999 thiol_BshA N-acetyl-alpha-D-glucosaminyl L-malate synthase BshA. Members of this protein family are BshA, a glycosyltransferase required for bacillithiol biosynthesis. This enzyme combines UDP-GlcNAc and L-malate to form N-acetyl-alpha-D-glucosaminyl L-malate synthase. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 374 -188515 TIGR04000 thiol_BshB2 bacillithiol biosynthesis deacetylase BshB2. Members of this protein family are BshB2 (YojG), an enzyme of bacillithiol biosynthesis; either BshB1 (YpjG) or BshB2 must be present, and often both are present. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 217 -274915 TIGR04001 thiol_BshB1 bacillithiol biosynthesis deacetylase BshB1. Members of this protein family are BshB1 (YpjG), an enzyme of bacillithiol biosynthesis; either BshB1 or BshB2 (YojG) must be present, and often both are present. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 226 -188517 TIGR04002 TIGR04002 TIGR04002 family protein. TIGR04002 family proteins, a division within DUF1393 ( pfam07155), occur strictly as part of a tandem gene pair with an uncharacterized radical SAM protein. [Unknown function, General] 151 -188518 TIGR04003 rSAM_BssD [benzylsuccinate synthase]-activating enzyme. Members of this radical SAM protein family are [benzylsuccinate synthase]-activating enzyme, a glycyl radical active site-creating enzyme related to [pyruvate formate-lyase]-activating enzyme and additional uncharacterized homologs activating additional glycyl radical-containing enzymes. [Protein fate, Protein modification and repair] 314 -188519 TIGR04004 WcaM colanic acid biosynthesis protein WcaM. This protein of uncharacterized function is the final gene in the conserved colanic acid biosynthesis cluster observed in Enterobacteraceae. 464 -188520 TIGR04005 wcaL colanic acid biosynthesis glycosyltransferase WcaL. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 406 -188521 TIGR04006 wcaK colanic acid biosynthesis pyruvyl transferase WcaK. This gene is the pyruvyl transferase involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 426 -188522 TIGR04007 wcaI colanic acid biosynthesis glycosyl transferase WcaI. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 407 -188523 TIGR04008 WcaF colanic acid biosynthesis acetyltransferase WcaF. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. This acetyltransferase is believed to catalyze the addition of the acetyl group that is attached through an O linkage to the first fucosyl residue of the colanic acid repetitive unit (E unit) 180 -188524 TIGR04009 wcaE colanic acid biosynthesis glycosyl transferase WcaE. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 248 -188525 TIGR04010 WcaD putative colanic acid polymerase WcaD. This membrane protein is believed to function as the colanic acid repeating unit polymerase (in an analagous fashion to wzy proteins in O-antigen polymerization). 404 -274916 TIGR04011 poly_gGlu_PgsC poly-gamma-glutamate biosynthesis protein PgsC/CapC. Of four genes commonly found to be involved in biosynthesis and export of poly-gamma-glutamate, pgsB(capB) and pgsC(capC) are found to be involved in the synthesis per se. Members of this family are designated PgsC, covering both cases in which the poly-gamma-glutamate is secreted and those in which it is retained to form capsular material. PgsC binds tightly to PgsB, which has been shown to have poly-gamma-glutamate activity. [Cell envelope, Other] 132 -188527 TIGR04012 poly_gGlu_PgsB poly-gamma-glutamate synthase PgsB/CapB. Of four genes commonly found to be involved in biosynthesis and export of poly-gamma-glutamate, pgsB(capB) and pgsC(capC) are found to be involved in the synthesis per se. Members of this family are designated PgsB, a nomeclature that covers both cases in which the poly-gamma-glutamate is secreted and those in which it is retained to form capsular material.PgsB has been shown to have poly-gamma-glutamate activity by itself but is bound tightly by PgsC (TIGR04011). [Cell envelope, Other] 366 -274917 TIGR04013 B12_SAM_MJ_1487 B12-binding domain/radical SAM domain protein, MJ_1487 family. Members of this family have both a B12 binding homology domain (pfam02310) and a radical SAM domain (pfam04055), and occur only once per genome. Some species with members of this family have a related protein with similar domain architecture. This protein is occurs largely in archaeal methanogens but also in a few bacteria, including Thermotoga maritima and Myxococcus xanthus. [Unknown function, Enzymes of unknown specificity] 383 -274918 TIGR04014 B12_SAM_MJ_0865 B12-binding domain/radical SAM domain protein, MJ_0865 family. Members of this family have both a B12 binding homology domain (pfam02310) and a radical SAM domain (pfam04055), and occur only once per genome. This protein occurs so far only in methanogenic archaea. Some species with members of this family have a related protein with similar domain architecture (see TIGR04013). [Unknown function, Enzymes of unknown specificity] 434 -274919 TIGR04015 WcaC colanic acid biosynthesis glycosyl transferase WcaC. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 405 -188531 TIGR04016 WcaB colanic acid biosynthesis acetyltransferase WcaB. This gene is one of the acetyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 146 -274920 TIGR04017 WcaA colanic acid biosynthesis glycosyl transferase WcaA. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. 279 -188533 TIGR04018 Bthiol_YpdA putative bacillithiol system oxidoreductase, YpdA family. Members of this protein family, including YpdA from Bacillus subtilis, are apparent oxidoreductases present only in species with an active bacillithiol system. They have been suggested actually to be thiol disulfide oxidoreductases (TDOR), although the evidence is incomplete. [Unknown function, Enzymes of unknown specificity] 316 -274921 TIGR04019 B_thiol_YtxJ bacillithiol system protein YtxJ. Members of this protein family, including YtxJ from Bacillus subtilis, occur in species that encode proteins for synthesizing bacillithiol. The protein is described as thioredoxin-like, while another bacillithiol-associated protein, YpdA (TIGR04018), is described as thioredoxin reductase-like. [Unknown function, Enzymes of unknown specificity] 105 -274922 TIGR04020 seco_metab_LLM natural product biosynthesis luciferase-like monooxygenase domain. This model describes a subfamily within the bacterial luciferase-like monooxygenase (LLM) family that regularly occurs within large non-ribosomal protein synthases/polyketide synthases, but also as small proteins. The LLM family includes members that bind either FMN or F420, and FMN is more likely in this case because many members are from species that lack F420 biosynthesis capability. An example member is the MupA protein of mupirocin biosynthesis in Pseudomonas fluorescens NCIMB 10586. 341 -274923 TIGR04021 LLM_DMSO2_sfnG dimethyl sulfone monooxygenase SfnG. This family of FMNH2-dependent members of the luciferase-like monooxygenase (LLM) family includes SfnG, a monooxygenase that converts dimethylsulphone (DMSO2) to methanesulphonate. This step can be followed immediately by methanesulfonate sulfonatase (an alkanesulfonate monooxygenase - see TIGR03565) for the FMNH2-dependent conversion an inorganic form. [Central intermediary metabolism, Sulfur metabolism] 350 -274924 TIGR04022 sulfur_SfnB sulfur acquisition oxidoreductase, SfnB family. Members of this protein family belong to the greater family of acyl-CoA dehydrogenases. This family includes the sulfate starvation induced protein SfnB of Pseudomonas putida strain DS1, which is both encoded nearby to and phylogenetically closely correlated with the dimethyl sulphone monooxygenase SfnG. This family shows considerable sequence similarity to the Rhodococcus dibenzothiophene desulfurization enzyme DszC, although that enzyme falls outside of the scope of this family. [Central intermediary metabolism, Sulfur metabolism] 391 -274925 TIGR04023 PPOX_MSMEG_5819 PPOX class F420-dependent enzyme, MSMEG_5819/OxyR family. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomycetales, make F420. This subfamily within the PPOX family occurs in at least 19 distinct species of F420 producers and is likely to bind F420 rather than FMN. The member OxyR was shown to use F420 to catalyze a C5a-C11a reduction in oxytetracycline biosynthesis. [Unknown function, Enzymes of unknown specificity] 115 -188539 TIGR04024 F420_NP1902A coenzyme F420-dependent oxidoreductase, NP1902A family. This subfamily of the luciferase-like monooxygenases is restricted to the order Halobacteriales. SIMBAL analysis strongly suggests this oxidoreductase binds coenzyme F420 rather than FMN. Occasional annotations of members of this family as N5,N10-methylenetetrahydromethanopterin reductase appear to represent overly aggressive transfer of annotation. [Unknown function, Enzymes of unknown specificity] 330 -274926 TIGR04025 PPOX_FMN_DR2398 PPOX class probable FMN-dependent enzyme, DR_2398 family. Members of the PPOX family (see pfam01243) may contain either FMN or F420 as cofactor. This subfamily consists of proteins mostly from species that lack the capability to synthesize F420, and therefore most likely all bind FMN. 197 -274927 TIGR04026 PPOX_FMN_cyano PPOX class probable FMN-dependent enzyme, alr4036 family. Members of the PPOX family (see pfam01243) may contain either FMN or F420 as cofactor. This subfamily described here is widespread in Cyanobacteria and plants, and is named for alr4036 from Nostoc sp. PCC 7120. The family consists mostly of proteins from species that lack the capability to synthesize F420, so it is probable that all members bind FMN rather than F420. [Unknown function, Enzymes of unknown specificity] 185 -274928 TIGR04027 LLM_KPN_01858 putative FMN-dependent luciferase-like monooxygenase, KPN_01858 family. This protein family consists of luciferase-like monooxygenases (LLM), and include KPN_01858 from Klebsiella pneumoniae as a representative member. Most are from species that lack F420 biosynthesis, so the family is likely to bind FMN as its cofactor. This family is closely associated with a binding protein-dependent ABC transporter, suggesting a role in catabolism. [Unknown function, Enzymes of unknown specificity] 326 -274929 TIGR04028 SBP_KPN_01854 ABC transporter substrate binding protein, KPN_01854 family. Members of this protein family are ABC transporter substrate-binding proteins related to KPN_01854 from Klebsiella pneumoniae, and occur in both Gram-positive and Gram-negative species. This transport protein family is closely associated with a putative FMN-dependent luciferase-like monooxygenase of unknown function (TIGR04027), as well as with the other proteins of its transporter complex. [Transport and binding proteins, Unknown substrate] 509 -213885 TIGR04029 CMD_Avi_7170 CMD domain protein, Avi_7170 family. Sequences in this family occur as the N-terminal domain of a fusion protein with a C-terminal peroxidase-like protein, or as discrete protein encoded next to a peroxidase-like protein. The two partners regularly are encoded near to, and in the same genomes as, a putative FMN-dependent luciferase-like monooxygenase (LLM) (TIGR04027), and an ABC transporter in which TIGR04028 models the substrate-binding protein. CDD identifies this family as falling within the CMD superfamily that includes carboxymuconolactone decarboxylase. 174 -188545 TIGR04030 perox_Avi_7169 alkylhydroperoxidase domain protein, Avi_7169 family. Members of this family represent a narrow clade that falls within a family of alkylhydroperoxidase-related proteins, fused to or adjacent to a sequence described by TIGR04029. These two partners occur almost always in the context of a putative FMN-dependent luciferase-like monooxygenase (LLM) (TIGR04027), and an ABC transporter in which TIGR04028 models the substrate-binding protein. 185 -188546 TIGR04031 Htur_1727_fam rSAM-partnered protein, Htur_1727 family. Members of this protein family show homology to the putative PaaH (or PaaB) subunit of the phenylacetate-CoA oxygenase complex. However, all members are found in the Halobacteriales in the vicinity of a radical SAM protein homologous to the PqqE protein of pyroquinoline quinone (PQQ) biosynthesis. Members are well-conserved to about residue 75, but then become low-complexity and hypervariable. 71 -274930 TIGR04032 toxin_SdpC antimicrobial peptide, SdpC family. This protein family contains the antimicrobial peptide SdpC, used in cannibalistic killing by Bacillus subtilis, and related sequences in species as distant as Myxococcus xanthus from the Deltaproteobacteria. A conserved gene neighborhood includes proteins associated with immunity. 172 -274931 TIGR04033 export_SdpB antimicrobial peptide system protein, SdpB family. Members of this protein family resemble SdpB (Sporulation Delaying Protein B), an integral membrane protein associated with production of the cannibalism peptide SdpC in Bacillus subtilis. Similar proteins are found in Myxococcus xanthus. 276 -274932 TIGR04034 export_SdpA antimicrobial peptide system protein, SdpA family. Members of this protein family resemble SdpA (Sporulation Delaying Protein A), a protein associated with production and export of the cannibalism peptide SdpC in Bacillus subtilis. Similar proteins are found in Myxococcus xanthus, Stigmatella aurantiaca DW4/3-1, Streptomyces sp. ACTE, etc. 156 -274933 TIGR04035 glucan_65_rpt glucan-binding repeat. This model describes a region of about 63 amino acids that is composed of three repeats of a more broadly distributed family of shorter repeats modeled by pfam01473. While the shorter repeats are often associated with choline binding (and therefore with cell wall binding), the longer repeat described here represents a subgroup of repeat sequences associated with glucan binding, as found in a number glycosylhydrolases. Shah, et al. describe a repeat consensus, WYYFDANGKAVTGAQTINGQTLYFDQDGKQVKG, that corresponds to half of the repeat as modeled here and one and a half copies of the repeat as modeled by pfam01473. 62 -274934 TIGR04036 LLM_CE1758_fam putative luciferase-like monooxygenase, FMN-dependent, CE1758 family. This tightly conserved subfamily of the bacterial luciferase-like monooxygenase (LLM) family, with members showing > 60 % pairwise sequence identity, includes proteins from both species with and species without the ability to make coenzyme F420. Therefore, the like cofactor is FMN rather than F420. The presence of three members in Kineococcus radiotolerans SRS30216 and two in Saccharopolyspora erythraea NRRL 2338 suggest closely related (subfamily) rather than exactly conserved (equivalog) function. Gene neighborhoods around members are not conserved. [Unknown function, Enzymes of unknown specificity] 355 -274935 TIGR04037 LLM_duo_CE1759 LLM-partnered FMN reductase, CE1759 family. This family represents a distinct clade within pfam03358. That family includes enzymes such as the NADH-dependent FMN reductase MsuE. Members of the present family regularly co-occur in genomes, typically as gene pairs, with members of TIGR04036, a probable FMN-dependent member of the bacterial luciferase-like monooxygenase (LLM) family. At least one member, RF|YP_001509627.1 from Frankia sp. EAN1pec, is fused to the LLM protein. The function of these gene pairs is unknown. 198 -274936 TIGR04038 tatD_link_rSAM radical SAM protein, TatD family-associated. Members of this family are radical SAM proteins found in about 5 percent of microbial genomes. A portion occur as gene fusions with, or adjacent to, members of the TatD family of hydrolases (pfam01026). The TatD family may have several paralogs per genome, including TatD itself from E. coli (a soluble protein not actually part of the twin-arginine translocation complex), which appears to act in quality control for TAT, directing turnover of misfolded TAT substrates. The functions of TatD family hydrolases in general (other than TatD itself, which may be exceptional within its larger family), and of this radical SAM domain protein modeled here, are unknown. 191 -188554 TIGR04039 MXAN_0977_Heme2 di-heme enzyme, MXAN_0977 family. This model describes a subfamily of di-heme proteins related to the di-heme cytochrome c peroxidase and to MauG (methylamine utilization G), an enzyme that performs a tryptophan tryptophylquinone modification to the methylamine dehydrogenase light chain. 336 -274937 TIGR04040 glycyl_YjjI glycine radical enzyme, YjjI family. Members of this family are homologs to enzymes known to undergo activation by a radical SAM protein to create an active site glycyl radical. This family appears to be activated by the YjjW radical SAM protein, usually encoded by an adjacent gene. [Unknown function, Enzymes of unknown specificity] 497 -274938 TIGR04041 activase_YjjW glycine radical enzyme activase, YjjW family. Members of this family are radical SAM enzymes, designated YjjW in E. coli, that are paired with and appear to activate a glycyl radical enzyme of unknown function, designated YjjI. This activase and its target are found in Clostridial species as well as E. coli and cousins. Members of this family may be misannotated as pyruvate formate lyase activating enzyme. [Protein fate, Protein modification and repair] 276 -274939 TIGR04042 MSMEG_0570_fam MSMEG_0570 family protein. This small protein, about 90 residues long, has no detectable homologs outside the set used to characterize this model. Member proteins serve as markers for an eight-gene region whose overall function is unknown. One member of the cluster is a radical SAM protein with some similarity to enzymes of cofactor biosynthesis, another a glycosyltransferase, several hydrolases or oxidoreductases, and several unknown. 90 -274940 TIGR04043 rSAM_MSMEG_0568 radical SAM protein, MSMEG_0568 family. Members of this protein family are radical SAM proteins related to MSMEG_0568 from Mycobacterium smegmatis. Members occur within 8-gene operons in species as diverse as M. smegmatis, Rhizobium leguminosarum, Synechococcus elongatus, and Sorangium cellulosum. The function of the operon is unknown, but similarity of MSMEG_0568 to some cofactor biosynthesis radical SAM proteins suggests a similar biosynthetic function. [Unknown function, Enzymes of unknown specificity] 354 -188559 TIGR04044 MSMEG_0572_fam MSMEG_0572 family protein. This model describes a family of proteins with remote similarity to the DsrE/DsrF-like family (see pfam02635). All members are found in a context of at least seven genes that includes a radical SAM protein, suggesting biosynthesis. The system is sparsely but broadly distributed in bacteria, including Actinobacteria, Proteobacteria, and Cyanobacteria. 159 -274941 TIGR04045 MSMEG_0567_GNAT putative N-acetyltransferase, MSMEG_0567 N-terminal domain family. Members of this family belong to the GNAT family (pfam00583), in which numerous characterized examples, though not all, are are shown to be N-acetyltransferases or to interact with acetyl-CoA. This family occurs in a sparsely distributed biosynthetic cluster that occurs in Actinobacteria, Cyanobacteria, and Proteobacteria. 153 -274942 TIGR04046 MSMEG_0569_nitr flavin-dependent oxidoreductase, MSMEG_0569 family. Members of this protein family belong to a conserved seven-gene biosynthetic cluster found sparsely in Cyanobacteria, Proteobacteria, and Actinobacteria. Distant homologies to characterized proteins suggest that members are enzymes dependent on a flavinoid cofactor. 400 -274943 TIGR04047 MSMEG_0565_glyc glycosyltransferase, MSMEG_0565 family. A conserved gene cluster found sporadically from Actinobacteria to Proteobacteria to Cyanobacteria features a radical SAM protein, an N-acetyltransferase, an oxidoreductase, and two additional proteins whose functional classes are unclear. The metabolic role of the cluster is probably biosynthetic. This glycosyltransferase, named from member MSMEG_0565 from Mycobacterium smegmatis, occurs in most but not all instances of the cluster. [Unknown function, Enzymes of unknown specificity] 373 -188563 TIGR04048 nitrile_sll0784 putative nitrilase, sll0784 family. This family represents a subfamily of a C-N bond-cleaving hydrolases (see pfam00795). Members occur as part of a cluster of genes in a probable biosynthetic cluster that contains a radical SAM protein, an N-acetyltransferase, a flavoprotein, several proteins of unknown function, and usually a glycosyltransferase. Members are closely related to a characterized aliphatic nitrilase from Rhodopseudomonas rhodochrous J1, for which an active site Cys was found at position 165. [Unknown function, Enzymes of unknown specificity] 301 -188564 TIGR04049 AIR_rel_sll0787 AIR synthase-related protein, sll0787 family. Members of this family include sll0787 from Synechocystis sp. PCC 6803 and resemble the C-terminal region of MSMEG_0567 from Mycobacterium smegmatis, where the N-terminal is a GNAT family N-acetyltransferase. The conserved cluster is found broadly (Cyanobacteria, Proteobacteria, Actinobacteria) in about 8 percent of genomes and appears to be biosynthetic. The product is unkown. [Unknown function, Enzymes of unknown specificity] 316 -274944 TIGR04050 MSMEG_0567_Cter AIR synthase-related protein, MSMEG_0567 C-terminal family. Members of this family include the C-terminal region of MSMEG_0567 from Mycobacterium smegmatis, where the N-terminal is a GNAT family N-acetyltransferase, and resemble the full length of sll0787 from Synechocystis sp. PCC 6803. The conserved cluster that contains these is found broadly (Cyanobacteria, Proteobacteria, Actinobacteria) in about 8 percent of genomes and appears to be biosynthetic. The product is unkown. [Unknown function, Enzymes of unknown specificity] 296 -188566 TIGR04051 rSAM_NirJ heme d1 biosynthesis radical SAM protein NirJ. Heme d1 occurs in the cytochrome cd1 subunit of nitrite reductase in species such as Pseudomonas stutzeri. NirJ is a radical SAM protein involved in its bioynthesis. In a number of species, distinct genes NirJ1 and NirJ2 are found in similar genomic regions; this model describe authentic NirJ from genomes with NirJ only. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 354 -188567 TIGR04052 AZL_007920_fam AZL_007920/MXAN_0976 family protein. Members of this rare protein family regularly occur next to a member of the MXAN_0977 subfamily (TIGR04039) of the di-heme cytochrome c peroxidase/MauG family (pfam03150). MauG itself (TIGR03791) is a protein modification enzyme responsible for the tryptophan tryptophylquinone (TTQ) modification involved in methylamine dehydrogenase activation. All members of this family have a motif of four spaced invariant Cys residues, while additional homologs outside the scope of this family lack the four Cys residues. 206 -274945 TIGR04053 sam_11 radical SAM protein, BA_1875 family. Members of this subfamily of the radical SAM domain superfamily show closer sequence relationships to peptide-modifying proteins of bacteriocin and PQQ biosynthesis than to other characterized radical SAM proteins. Within this subfamily, targets are likely to be diverse. [Unknown function, Enzymes of unknown specificity] 365 -274946 TIGR04054 rSAM_NirJ1 putative heme d1 biosynthesis radical SAM protein NirJ1. Members of this radical SAM protein subfamily, designated NirJ1, occur in genomic contexts with a paralog NirJ2 and with other nitrite reductase operon genes associated with heme d1 biosynthesis, as in Heliobacillus mobilis and Heliophilum fasciatum. NirJ1 is presumed by bioinformatics analysis (Xiong, et al.) to be a heme d1 biosynthesis protein by context, perhaps involved in conversions of acetate groups to methyl groups in conversion from uroporphyrinogen III. A very closely related protein, involved in alternative heme b biosynthesis, occurs in Desulfovibrio and in methanogens. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 387 -274947 TIGR04055 rSAM_NirJ2 putative heme d1 biosynthesis radical SAM protein NirJ2. Members of this radical SAM protein subfamily, designated NirJ2, occur in genomic contexts with a paralog NirJ1 and with other nitrite reductase operon genes associated with heme d1 biosynthesis, as in Heliobacillus mobilis and Heliophilum fasciatum. NirJ2 is presumed by bioinformatics analysis (Xiong, et al.) to be a heme d1 biosynthesis protein by context. This model has been redone (2014) to remove the branch (TIGR04545) that included DVU_0855, from a similar pathway for heme b biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 326 -274948 TIGR04056 OMP_RagA_SusC TonB-linked outer membrane protein, SusC/RagA family. This model describes a distinctive clade among the TonB-linked outer membrane proteins (OMP). Members of this family are restricted to the Bacteriodetes lineage (except for Gemmatimonas aurantiaca T-27 from the novel phylum Gemmatimonadetes) and occur in high copy numbers, with over 100 members from Bacteroides thetaiotaomicron VPI-5482 alone. Published descriptions of members of this family are available for RagA from Porphyromonas gingivalis, SusC from Bacteroides thetaiotaomicron, and OmpW from Bacteroides caccae. Members form pairs with members of the SusD/RagB family (pfam07980). Transporter complexes including these outer membrane proteins are likely to import large degradation products of proteins (e.g. RagA) or carbohydrates (e.g. SusC) as nutrients, rather than siderophores. [Transport and binding proteins, Unknown substrate] 981 -274949 TIGR04057 SusC_RagA_signa TonB-dependent outer membrane receptor, SusC/RagA subfamily, signature region. This model describes a 31-residue signature region of the SusC/RagA family of outer membrane proteins from the Bacteriodetes. While many TonB-dependent outer membrane receptors are associated with siderophore import, this family seems to include generalized nutrient receptors that may convey fairly large oligomers of protein or carbohydrate. This family occurs in high copy numbers in the most abundant species of the human gut microbiome. 31 -188573 TIGR04058 AcACP_reductase long-chain fatty acyl-ACP reductase (aldehyde-forming). This enzyme, found in cyanobacteria, reduces a long-chain (mainly C16 or C18) fatty acyl ACP ester to its corresponding fatty aldehyde, releasing the acyl carrier protein (ACP). NADPH or NADH is the reductant for this reaction. This enzyme may be distantly related to the short-chain dehydrogenase or reductase (SDR) family (pfam00106). The purpose of this reaction is in the first step of alkane biosynthesis (GenProp0942). [Central intermediary metabolism, Other] 339 -274950 TIGR04059 Ald_deCOase long-chain fatty aldehyde decarbonylase. This cyanobacterial family of fatty aldehyde decarbonylases acts on mainly C16 and C18 substrates to form hydrocarbons and carbon monoxide. Note that the corresponding EC number (4.1.99.5) dating from 1989 refers to a nonorthologous Pisum sativum enzyme that acts on C18 and longer chains and attaches the overly narrow narrow name octadecanal decarbonylase. [Central intermediary metabolism, Other] 220 -274951 TIGR04060 formate_focA formate transporter FocA. FocA (formate channel A) forms a pentameric formate-selective channel through the plasma membrane. The focA gene is largely restricted to Proteobacteria and occurs adjacent to genes for pyruvate formate lyase (PFL) and the PFL activase, a radical SAM protein. FocA is homologous to a nitrite transport protein, NirC. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 267 -274952 TIGR04061 AZL_007950_fam AZL_007950 family protein. This set of proteins includes PP_3335 from Pseudomonas putida, a protein of unknown function, and AZL_007950, a member of a putative biosynthetic cluster from Azospirillum sp. B510. 164 -274953 TIGR04062 dnd_assoc_4 dnd system-associated protein 4. A DNA sulfur modification system, dnd (degradation during electrophoresis), is sparsely and sporadically distributed among the bacteria. Members of this protein fam ily are strictly limited to species with the dnd operon, and are found close to the dnd operon on the chromosomes of species such as Nostoc sp. PCC 7120, Geobacter uraniireducens Rf4, and Roseobacter denitrificans OCh 114. [DNA metabolism, Restriction/modification] 151 -274954 TIGR04063 stp3 PEP-CTERM/exosortase A-associated glycosyltransferase, Daro_2409 family. PEP-CTERM/exosortase is a protein-sorting system associated with exopolysaccharide production. Members of this protein family are group 1 glycosyltransferases (see pfam00534) in which the overwhelming majority occur in species with the EpsH1 form of exosortase (see TIGR03109), and usually co-clustered with the exosortase. A typical member is Daro_2409 from Dechloromonas aromatica RCB. 397 -274955 TIGR04064 rSAM_nif11 nif11-like peptide radical SAM maturase. Members of this family are radical SAM enzymes that occur co-clustered with nif11-related ribosomal natural product (RNP) precursors described by TIGRFAMs model TIGR03798. Homology within the bacteriocin family reflects largely constraints on the leader peptide, tied to processes such as cleavage and export, and members associate with various families of maturation enzyme. The gene symbol assigned is nlpM, for Nif11-class Leader Peptide family Radical SAM Maturase. [Cellular processes, Toxin production and resistance] 458 -274956 TIGR04065 ocin_CLI_3235 putative bacteriocin precursor, CLI_3235 family. Members of this protein family are Cys-rich putative bacteriocin precursor peptides restricted to the Clostridia but found in multiple species with up to three per genome. They are found next to a CLI_3234 family radical SAM protein that may perform post-translational modification. This model describes approximately 35 residues starting from the N-terminus. Precursor peptides average about 50 amino acids in length. [Cellular processes, Toxin production and resistance] 34 -274957 TIGR04066 nat_prod_clost peptide maturation system protein, TIGR04066 family. Members of this protein family occur in various Clostridial genomes, always in the context of a short peptide and a radical SAM protein predicted to modify the short peptide. PSI-BLAST analysis suggests a sequence relationship to archaeal proteins designated as subunits of an H+-transporting two-sector ATPase. The modified peptide is likely to be a bacteriocin, and this protein is a candidate to act in either maturation or immunity. 361 -188582 TIGR04067 oc_CLOSPO_01332 putative bacteriocin precursor, CLOSPO_01332 family. Members of this protein family are Cys-rich putative bacteriocin precursor peptides found in a few strains of Clostridium and Anaerococcus. This family is related to the family of CLI_3235 (TIGR04065). Members of both families are found next to a CLI_3234 family radical SAM protein that appears to perform post-translational modification. 59 -274958 TIGR04068 rSAM_ocin_clost Cys-rich peptide radical SAM maturase CcpM. Members of this family are radical SAM enzymes that occur next to clostridial Cys-rich predicted bacteriocin (or other class of ribosomal natural product) precursors (see families TIGR04065 and TIGR04067). They include a TIGR04085 C-terminal additional 4Fe4S cluster-binding domain that is associated with peptide modification by radical SAM enzymes, and they are proposed to be ribosomal natural product maturases. The gene symbol ccpM is assigned, for Clostridial Cys-rich Peptide Maturase. [Cellular processes, Toxin production and resistance] 459 -274959 TIGR04069 ocin_ACP_rel peptide maturation system acyl carrier-related protein. Both PSI-BLAST and large numbers of noise-level HMM hits show a relationship between this family and the phosphopantetheine attachment site domain modeled by pfam00550. That domain includes acyl carrier proteins (ACP) and features an essentially invariant serine residue that is the attachment site for the phosphopantetheine prosthetic group. In this family, the corresponding residue is not Ser and is not conserved. Members are found in genomic contexts associated with a small Cys-rich peptide and a radical SAM protein we predict modifies the peptide. [Cellular processes, Toxin production and resistance] 77 -213890 TIGR04070 photo_TT_lyase spore photoproduct lyase. DNA damage to bacterial spores from ultraviolet light accumulates in the form of 5-thyminyl-5,6-dihydrothymine, spore photoproduct. The damage is repaired by spore photoproduct lyase, a member of the radical SAM family of enzymes. The score of this model is set to restrict itself to spore-forming members of the Firmicutes, but additional homologs scoring below the trusted cutoff tend to occur in radioresistant organisms (e.g. Kineococcus radiotolerans) and may be functionally equivalent. A related family in the Mycobacterium lineage is described by family TIGR03886, and may or may not be equivalent in function. [DNA metabolism, DNA replication, recombination, and repair, Cellular processes, Sporulation and germination] 338 -274960 TIGR04071 methanobac_OB3b methanobactin precursor, Mb-OB3b family. Methanobactins are siderophore-like copper-chelating natural products with considerable variety from species to species. The 11-residue methanobactin of Methylosinus trichosporium OB3b is derived from a 30-residue precursor. A very similar 31-residue precursor is found in the rice endophyte Azospirillum sp. B510, which has not yet been shown to produce a methanobactin. This model models the shared region of the first 25 amino acids, including a Cys-Gly-Ser motif. 30 -188587 TIGR04072 rSAM_ladder_B12 lipid biosynthesis B12-binding/radical SAM protein. Members of this protein family occur in conserved genomic contexts highly suggestive of lipid biosynthesis, including an island shared between Kuenenia stuttgartiensis, which produces ladderanes, and Desulfotalea psychrophila, which produces a different kind of unusual polyunsaturated hydrocarbon. 151 -274961 TIGR04073 exo_TIGR04073 putative exosortase-associated protein, TIGR04073 family. Members of this protein family are found in beta, gamma, and delta proteobacteria, and in the verrucomicrobia. Twenty-two of twenty-four species encountered contain the PEP-CTERM/exosortase system for modulating extracellular polysaccharide biosynthesis production, suggesting a role in protein sorting. The N-terminal signal sequence is divergent and not included in the model. PSI-BLAST and HMM searches suggest a distant sequence relationship between a region of this protein of about 100 amino acids and a corresponding region of the very large eukaryotic protein vps13, associated with vacuolar protein sorting in yeast. 75 -274962 TIGR04074 bacter_Hen1 3' terminal RNA ribose 2'-O-methyltransferase Hen1. Members of this protein family are bacterial Hen1, a 3' terminal RNA ribose 2'-O-methyltransferase that acts in bacterial RNA repair. All members of the seed alignment belong to a cassette with the RNA repair enzyme polynucleotide kinase-phosphatase (Pnkp). Chemically similar Hen1 in eukaryotes acts instead on small regulatory RNAs. [Transcription, RNA processing, Protein synthesis, tRNA and rRNA base modification] 462 -274963 TIGR04075 bacter_Pnkp polynucleotide kinase-phosphatase. Members of this protein family are the bacterial polynucleotide kinase-phosphatase (Pnkp) whose genes occur paired with genes for the 3' terminal RNA ribose 2'-O-methyltransferase Hen1. All members of the seed alignment belong to a cassette with the Hen1. The pair acts in bacterial RNA repair. This enzyme performs end-healing reactions on broken RNA, preparing from the RNA ligase to close the break. The working hypothesis is that the combination of Pnkp (RNA repair) and Hen1 (RNA modification) serves to first repair RNA damage from ribotoxins and then perform a modification that prevents the damage from recurring. [Transcription, RNA processing] 851 -274964 TIGR04076 TIGR04076 TIGR04076 family protein. Members of this protein family are uncharacterized. The only invariant residue, and one of three other residues better than 90 percent conserved are both Cys. Phylogenetic profiling results and occasional fusion genes suggest a role for members of this family in redox reactions or iron cluster metabolism. Species occasionally have two or three copies. 89 -188592 TIGR04077 expor_sig_YdyF exported signaling peptide, YydF/SAG_2028 family. This family describes a rare family of small proteins, about 50 residues in length, that includes YydF from Bacillus subtilis and SAG_2028 from Streptococcus agalactiae 2603V/R. Mutational analysis and genomic context show that members of this family likely are modified by a (variably present) radical SAM enzyme, are exported by an ABC transporter, and serve as signaling peptide. The member from Bacillus subtilis induces the LiaRS two-component system. [Regulatory functions, Protein interactions] 49 -188593 TIGR04078 rSAM_yydG peptide modification radical SAM enzyme, YydG family. Members of this radical SAM protein family for peptide modification occur only in the context of members of family TIGR04077, which average about 50 amino acids in length. In Bacillus subtilis, this protein (YydG) appears to act on its cognate target peptide (YydF) prior to its export, and result in the creation of a signaling molecule that induces the LiaRS two-component system. [Regulatory functions, Protein interactions] 309 -188594 TIGR04079 phero_cyc_pep KxxxW-cyclized secreted peptide. Members of this family are short precursor peptides in which the mature form undergoes a cyclization between a Lys and a Trp four residues away. The modification enzyme appears to be an adjacent encoded radical SAM protein. Genomes encoding this system include Streptococcus thermophilus LMD-9 and Lactococcus lactis subsp. cremoris MG1363, among others. [Cellular processes, Biosynthesis of natural products] 23 -188595 TIGR04080 rSAM_pep_cyc KxxxW cyclic peptide radical SAM maturase. Members of this family are radical SAM enzymes that appear to perform a cyclization on an adjacent cognate peptide from family TIGR04079. Genomes with the complete system include Streptococcus thermophilus LMD-9 and Lactococcus lactis subsp. cremoris MG1363, among others. The gene symbol assigned is kwcM, for KxxxW Cyclic peptide Maturase. [Protein fate, Protein modification and repair] 440 -188596 TIGR04081 selen_ocin radical SAM modification target peptide, selenobiotic family. Members of this protein family are small peptides found in the vicinity of a peptide modification-type radical SAM protein family. Multiple members of this protein family occur in species with a selenocysteine incorporation systems and have a TGA stop codon at position that aligns with cysteine residues from other homologs. This finding strongly suggests that GSU_1558 and similar members of the family are selenopeptides. The selenocysteine insertion sequence (SECIS) finder bSECISearch finds two homologous SECIS elements for two TGA codons in the extension of GSU_1558. Meanwhile, the pairing with the radical SAM enzyme suggests additional modification. 37 -274965 TIGR04082 rSAM_for_selen selenobiotic family peptide radical SAM maturase. Members of this protein family are radical SAM (rSAM) enzymes similar in sequence to others with known or postulated roles in peptide modification, and regularly found adjacent to members of the GSU_1558 peptide family described by model TIGR04081. GSU_1558 and several other members of that family appear to be selenoproteins, hence the term selenobiotic. 516 -274966 TIGR04083 rSAM_pep_methan putative peptide-modifying radical SAM enzyme, Mhun_1560 family. Members of this family are radical SAM enzymes, homologous to a variety of other peptide-modifying radical SAM, and found primarily in methanogenic archaea. 376 -274967 TIGR04084 rSAM_AF0577 putative peptide-modifying radical SAM enzyme, AF0577 family. This radical SAM family contains a C-terminal region motif CXXCX5CX3C that is found in PqqE and other radical SAM enzymes that act on peptide substrates. Members of this family are found primarily in the Archaea, but also several eukaryotes (Trichomonas vaginalis G3, Entamoeba dispar SAW760, Giardia intestinalis ATCC 50581, etc.). The function is unknown. 347 -274968 TIGR04085 rSAM_more_4Fe4S radical SAM additional 4Fe4S-binding SPASM domain. This domain contains regions binding additional 4Fe4S clusters found in various radical SAM proteins C-terminal to the domain described by model pfam04055. Radical SAM enzymes with this domain tend to be involved in protein modification, including anaerobic sulfatase maturation proteins, a quinohemoprotein amine dehydrogenase biogenesis protein, the Pep1357-cyclizing radical SAM enzyme, and various bacteriocin biosynthesis proteins. The motif CxxCxxxxxCxxxC is nearly invariant for members of this family, although PqqE has a variant form. We name this domain SPASM for Subtilosin, PQQ, Anaerobic Sulfatase, and Mycofactocin. 93 -274969 TIGR04086 TIGR04086_membr putative membrane protein, TIGR04086 family. Members of this family of strongly hydrophobic putative transmembrane protein average about 125 amino acids in length and occur mostly, but not exclusively, in the Firmicutes. Members are quite diverse in sequence. The function is unknown. 115 -274970 TIGR04087 YqxM_for_SipW YqxM protein. Members of this protein, including the partially characterized YqxM of Bacillus subtilis, are always found adjacent to a variant form, SipW, of signal peptidase, and are targets for this signal peptide, as is the biofilm protein constituent TasA. The function may always be associated with biofilm formation. In one instance, this protein is fused with the SipW signal peptidase. 186 -274971 TIGR04088 cognate_SipW SipW-cognate class signal peptide. This model describes a protein N-terminal domain found regularly in proteins encoded near a variant form of signal peptidase I such as the SipW protein of Bacillus subtilis. Many though not all members are homologs of camelysin (a casein-cleaving metalloprotease) and TasA (CotN), a metalloprotease that is secreted, along with extracellular polysaccharide (EPS), to be the major protein constituent of the Bacillus subtilis biofilm matrix. Sequencing from several known TasA/CotN proteins shows the cleavage location to be near the center of the alignment and typical of type I signal peptidases, with small residues at -3 and -1. This domain, therefore, appears to be a special subclass of signal peptide. 34 -274972 TIGR04089 exp_by_SipW_III alternate signal-mediated exported protein, RER_14450 family. Members of this Actinobacterial protein family contain the cognate signal peptide domain, modeled by TIGR04088, for the variant SipW form of the signal peptidase I family. The remainder of this protein, however, differs from families such as Peptidase_M73 (pfam12389) and YqxM (TIGR04087) that share the same signal peptide domain. Some additional homologs to this family lack full-length homology and are excluded by the trusted cutoff as set. The two known targets for export by the SipW signal peptidase in Bacillus subtilis act in producing biofilm matrix material. 179 -274973 TIGR04090 exp_by_SipW_IV alternate signal-mediated exported protein, CPF_0494 family. Members of this largely Clostridial protein family contain the cognate signal peptide domain, modeled by TIGR04088, for the variant SipW form of the signal peptidase I family. The remainder of this protein, however, differs from families such as Peptidase_M73 (pfam12389) and YqxM (TIGR04087) that share the same signal peptide domain. Some additional homologs to this family lack full-length homology and are excluded by the trusted cutoff as set. The two known targets for export by the SipW signal peptidase in Bacillus subtilis act in producing biofilm matrix material. Members include CPF_0494, adjacent to SipW homolog CPF_0493. 244 -274974 TIGR04091 LTA_dltB D-alanyl-lipoteichoic acid biosynthesis protein DltB. Members of this protein family are DltB, part of a four-gene operon for D-alanyl-lipoteichoic acid biosynthesis that is present in the vast majority of low-GC Gram-positive organisms. This protein may be involved in transport of D-alanine across the plasma membrane. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 380 -274975 TIGR04092 LTA_DltD D-alanyl-lipoteichoic acid biosynthesis protein DltD. Members of this protein family are DltD, part of the DltABCD system widely distributed in the Firmicutes for D-alanylation of lipoteichoic acids. The most common form of LTA, as in Staphylococcus aureus, has a backbone of polyglycerolphosphate. 384 -274976 TIGR04093 cas1_CYANO CRISPR-associated endonuclease Cas1, subtype CYANO. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes a clade of Cas1 limited to the CYANO subtype of CRISPR/Cas system and most often the type found there. 323 -274977 TIGR04094 adjacent_YSIRK YSIRK-targeted surface antigen transcriptional regulator. Bacteria whose genomes encode only one protein with the YSIRK variant form of signal peptide (TIGR01168) were examined for conserved genes near that one tagged protein. This protein is found adjacent to at various classes of repetitive or low-complexity YSIRK proteins (whether unique in genome or not), in a range of species (Enterococcus faecalis X98, Ruminococcus torques, Coprobacillus sp. D7, Lysinibacillus fusiformis ZC1, Streptococcus equi subsp. equi 4047, etc). The affliated YSIRK proteins include Streptococcal protective antigen (see ) and proteins with the Rib/alpha/Esp surface antigen repeat (see TIGR02331). The last quarter of this protein has an AraC family helix-turn-helix (HTH)transcriptional regulator domain. 383 -274978 TIGR04095 dnd_restrict_1 DNA phosphorothioation system restriction enzyme. The DNA phosphorothioate modification system dnd (DNA instability during electrophoresis) recently has been shown to provide a modification essential to a restriction system. This protein family was detected by Partial Phylogenetic Profiling as linked to dnd, and its members usually are clustered with the dndABCDE genes. 451 -274979 TIGR04096 dnd_rel_methyl DNA phosphorothioation-associated putative methyltransferase. Members of this protein family show distant local sequence similarity to a number of S-adenosyl-methionine-dependent methyltransferases. The family is identified by Partial Phylogenetic Profiling as closely tied to the DNA phosphorothioation system (dnd), and members are found adjacent to dnd genes in at least 13 species (Streptomyces lividans TK24, Shewanella frigidimarina NCIMB 400, Mycobacterium abscessus ATCC 19977, Nostoc punctiforme PCC 73102, Vibrio fischeri MJ11, etc.). The DNA phosphorothioation enables a novel form of restriction enzyme activity. Most members of this family appear in species with the DNA phosphorothioation system. [DNA metabolism, Restriction/modification] 478 -274980 TIGR04098 biosyn_clust_1 biosynthesis cluster domain. Radical SAM family TIGR04043 is a marker for a widespread eight-gene probable biosynthetic cluster of unknown function. This protein family describes a domain that occurs as an additional protein for some of those clusters, but also as the N-terminal domain of large, multidomain polyketide synthases and in other contexts. 270 -274981 TIGR04099 biosn_Pnap_2097 probable biosynthetic protein, Pnap_2097 family. Radical SAM family TIGR04043 is a marker for a widespread eight-gene probable biosynthetic cluster of unknown function. This protein family occurs only in the context of TIGR04043 member-containing biosynthetic clusters, although in a minority of such clusters. This protein family belongs to the TIGR04098 domain family, which also includes N-terminal domains of several probable polyketide synthases. A role in biosynthetic processes is suspected. 258 -188615 TIGR04100 rSAM_pair_X radical SAM enzyme, TIGR04100 family. Members of this protein family are radical SAM enzymes that appear paired with members of TIGR04002, a family of small (~170 residue), mostly hydrophobic protein. This family of radical SAM enzymes belongs to a larger family TIGR04038, in which some members show regularly in contexts with TatD. 197 -200352 TIGR04101 CCGSCS CCGSCS motif protein. This protein family, with average protein length about 58 residues, occurs in several marine bacteria, such as Shewanella benthica KT99, Marinobacter sp. ELB17, and Photobacterium profundum 3TCK. The striking feature is a C-terminal motif CCGSCS, which (perhaps coincidentally) resembles conserved core motif [LC]CGSC shared by two methanobactin precursors (see TIGR04071). There is no detectable conserved gene region for these proteins. 59 -200353 TIGR04102 SWIM_PBPRA1643 SWIM/SEC-C metal-binding motif protein, PBPRA1643 family. Members of this protein family have a SWIM, or SEC-C, domain (see pfam02810), a 21-amino acid putative Zn-binding domain that is shared with SecA, plant MuDR transposases, etc. This small protein family of unknown function occurs primarily in marine bacteria. 108 -200354 TIGR04103 rSAM_nif11_3 nif11-class peptide radical SAM maturase 3. Members of this protein family are peptide-modifying radical SAM enzymes, with a C-terminal additional 4Fe-4S cluster binding domain like many other peptide-modifying radical SAM enzymes. This form occurs primarily in the genera Cyanothece and Nostoc. 412 -274982 TIGR04104 cxxc_20_cxxc cxxc_20_cxxc protein. This small, uncommon, poorly conserved protein is found primarily in the Firmicutes. It features are pair of CxxC motifs separated by about 20 amino acids, followed by a highly hydrophobic region of about 45 amino acids. It has no conserved gene neighborhood, and its function is unknown. 94 -274983 TIGR04105 FeFe_hydrog_B1 [FeFe] hydrogenase, group B1/B3. See for descriptions of different groups. 462 -274984 TIGR04106 cas8c_GSU0052 CRISPR-associated protein GSU0052/csb3, Dpsyc system. This model describes a CRISPR-associated (cas) protein unique to the Dpsyc subtype (named for Desulfotalea psychrophila), a variant type I-C subtype, although not universal to the that subtype. Members of this family occur in CRISPR loci of Geobacter sulfurreducens PCA, Gemmata obscuriglobus UQM 2246, Rhodospirillum centenum SW, Planctomyces limnophilus DSM 3776, and Methylosinus trichosporium OB3b. 282 -274985 TIGR04107 rSAM_HutW putative heme utilization radical SAM enzyme HutW. HutW is a radical SAM enzyme closely related to HemN, the heme biosynthetic oxygen-independent coproporphyrinogen oxidase. It belongs to operons associated with heme uptake and utilization in Vibrio cholerae and related species, but neither it not HutX has been shown to be needed, as is HutZ, for heme utilization. HutW failed to complement a Salmonella enterica hemN mutant (), suggesting a related but distinct activity. Some members of this family are fused to hutX. 420 -274986 TIGR04108 HutX putative heme utilization carrier protein HutX. Members of this protein family are HutX, found paired with HutW in some heme utilization loci although not shown directly to be necessary for heme utilization. This protein is homologous to the heme carrier protein HemS, while its partner HutW is homologous to (but does not complement) HemN, the radical SAM enzyme oxygen-independent coproporphyrinogen III oxidase involved in heme biosynthesis. 154 -200360 TIGR04109 heme_ox_HugZ heme oxygenase, HugZ family. Members of this protein family are HugZ, a class of heme oxygenase that belongs to the PPOX family (pfam01243) and lacks homology to the HmuO family (pfam01126). Characterized members of this family include HP0318 from Helicobacter pylori and CJ1613c from Campylobacter jejuni. This enzyme releases iron during the conversion of heme to biliverdin. 243 -200361 TIGR04110 heme_HutZ heme utilization protein HutZ. Members of this family are heme utilization proteins, typically designated HutZ. They are members of the PPOX family (pfam01243) and, except for the lack of an N-terminal extension, are closely related to one form of heme oxidase (1.14.99.3), HugZ (TIGR04109). Members typically are found in a three-gene operon with radical SAM enzyme HutW and a protein of unknown function, HutX. 168 -274987 TIGR04111 BcepMu_gp16 phage-associated protein, BcepMu gp16 family. Members of this protein family occur in Burkholderia phage BcepMu, Pseudomonas phage B3, and Burkholderia phage KS10, and many bacterial putative prophage regions. The member from Burkholderia phage BcepMu is named gp16. Homology suggests DNA-binding activity. [Mobile and extrachromosomal element functions, Prophage functions] 55 -274988 TIGR04112 seleno_YedE putative selenium metabolism protein, YedE family. For 79 of the first 80 reference genomes in which a member of this protein family, YedE, is found, a selenium utilization system is found, spread over a broad taxonomic range (Firmicutes, spirochetes, delta-proteobacteria, Fusobacteria, Bacteriodes, etc. This family is less widespread than YedF, also involved in selenium metabolism. 337 -274989 TIGR04113 cas_csx17 CRISPR-associated protein Csx17, subtype Dpsyc. Members of this protein family are found exclusively in CRISPR-associated (cas) type I system gene clusters of the Dpsyc subtype. Markers for that type include a variant form of cas3 (model TIGR02621) and the GSU0054-like protein family (model TIGR02165). This family occurs in less than half of known Dpsyc clusters. 703 -274990 TIGR04114 tSAM_targ_Cxxx modification target Cys-rich repeat. This model describes a cysteine-rich repeat found in a number of bacterial putative radical-SAM modified natural product precursors. A substantial fraction of members of this family have been missed during gene-finding. A true hit to the model must exceed both TC on the whole and trusted cutoff 2 for at least one domain, to avoid false-positives from African swine fever virus proteins. 18 -200366 TIGR04115 rSAM_Cxxx_rpt radical SAM peptide maturase, CXXX-repeat target family. Members of this radical SAM domain protein are predicted peptide maturases, similar to PqqE, AlbA, the mycofactocin radical SAM maturase, and many others that share the peptide modification radical SAM protein C-terminal additional 4Fe4S-binding domain (TIGR04085). Members co-occur with a protein of unknown function that may be a chaperone or immunity protein and with a peptide that may have twelve or more cysteines occurring regularly spaced every fourth residue. These Cys residues tend to be flanked by residues with small side chains that provide minimal steric hindrance to crosslink formation by the radical SAM enzyme as in the subtilosin A system. 359 -274991 TIGR04116 CXXX_rpt_assoc CXXX repeat peptide modification system protein. Members of this protein family occur strictly in the presence of a peptide modification radical SAM enzyme described by model TIGR04115 and some small peptide in which, for a stretch, every fourth amino acid is Cys. Cysteine residues usually are flanked by residues with sterically small side chains, as with many radical SAM-modified peptides. Many of the latter are recognized by model TIGR04114. 90 -274992 TIGR04117 Syntroph_Cxxx Syntrophus aciditrophicus Cys-Xaa-Xaa-Xaa repeat radical SAM target protein. This model represents a paralogous family, in Syntrophus aciditrophicus SB, of peptides a conserved N-terminal region followed by ten to seventeen direct repeats of the sequence CXXX (see repeats model TIGR04114). The N-terminal region includes a hydrophobic patch that is not shared by most members of family TIGR04114. 95 -200369 TIGR04118 Cxxx_AC3_0185 modification target Cys-rich peptide, AC3_0185 family. Radical SAM enzyme family TIGR04115 is paired with a number of short peptides with multiple tandem repeats of Cys-Xaa-Xaa-Xaa (see TIGR04114). This family represent a peptide family with a TIGR04114-like region, although the repeat region is relatively short in this group. 46 -200370 TIGR04119 CXXX_matur CXXX repeat peptide maturase. This model describes a peptide maturase that works with, usually fused to, a radical SAM enzyme in a system that modifies peptides with multiple tandem repeats of CXXX sequences. This protein includes an iron-sulfur cluster binding region associated with peptide modification as described in domain model TIGR04085. 210 -274993 TIGR04120 DNA_lig_bact DNA ligase, ATP-dependent, PP_1105 family. This model describes a family of ATP-dependent DNA ligases present in about 12 % of prokaryotic genomes. It occurs as part of a four-gene system with an exonuclease, a helicase and a phosphoesterase, with all four genes clustered or at least the first two and last two paired. This family resembles DNA ligase I (see TIGR00574 and pfam01068), and its presumed function may be in DNA repair, replication, or recombination. 526 -274994 TIGR04121 DEXH_lig_assoc DEXH box helicase, DNA ligase-associated. Members of this protein family are DEAD/DEAH box helicases found associated with a bacterial ATP-dependent DNA ligase, part of a four-gene system that occurs in about 12 % of prokaryotic reference genomes. The actual motif in this family is DE[VILW]H. 804 -274995 TIGR04122 Xnuc_lig_assoc putative exonuclease, DNA ligase-associated. Members of this protein family frequently are found annotated as a putative exonuclease involved in mRNA processing. This protein is found, exclusively in bacteria, associated with three other proteins: an ATP-dependent DNA ligase, a helicase, and putative phosphoesterase. 326 -274996 TIGR04123 P_estr_lig_assc metallophosphoesterase, DNA ligase-associated. Members of this protein family are an uncharacterized putative metallophosphoesterase associated with a DNA ligase, a helicase, and a putative exonuclease. It may play a role in DNA repair. Its system is present in about 12 % of prokaryotic reference genomes. 208 -274997 TIGR04124 archaeo_artE archaeosortase family protein ArtE. This protein family is related to the predicted protein-sorting transpeptidase Exosortase (EpsH), with the Cys, Arg, and His putative active site residues preserved, but it is strictly archaeal and is not associated with any known PEP-CTERM-like target sequence. The immediate gene neighborhood in most genomes suggests RNA (methylase, cyclase) and cofactor (thiamine pyrophosphate) metabolism. The function is unknown. It is designated archaeosortase family protein ArtE. 153 -274998 TIGR04125 exosort_PGF_TRM archaeosortase A, PGF-CTERM-specific. This family is an archaeal variant of the (normally bacterial) putative protein-sorting integral membrane protein exosortase, hence archaeosortase. In species a member of this family, its PGF-CTERM cognate sequence (TIGR04126) occurs at the C-termini of from two to over fifty proteins per genome. Those target proteins may not share homology to each other in regions N-terminal to the PGF-CTERM region. 262 -274999 TIGR04126 PGF_CTERM PGF-CTERM archaeal protein-sorting signal. This model describes a strictly archaeal putative protein-sorting motif, PGF-CTERM. It is the (predicted) recognition sequence for an exosortase homolog, archaeosortase (TIGR04125). In some archaea, up to fifty proteins have this domain as their C-terminal region, usually preceded by a Thr-rich region likely to be heavily glycosylated. The removal of this sorting signal may be associated with a C-terminal prenyl group modification in the halobacterial major cell surface glycoprotein, an S-layer protein. 28 -275000 TIGR04127 flavo_near_exo exosortase F-associated protein. Members of this protein family are always found next to an exosortase/archaeosortase-like protein, and occur so far only in the flavobacteria, within the Bacteroidetes. Members do not have an obvious PEP-CTERM-like C-terminal protein sorting domain. 136 -275001 TIGR04128 exoso_Fjoh_1448 exosortase family protein XrtF. Members of this protein family are exosortase-related proteins found always in association with a member of family TIGR04127, a small, hydrophobic, uncharacterized protein limited to the Bacteriodetes. Exosortases are proposed transpeptidases with a cysteine active site (3.4.22.-), but usually are associated with specific C-terminal target motifs (PEP-CTERM, PEF-CTERM, PGF-CTERM, etc). 174 -275002 TIGR04129 CxxH_BA5709 CxxH/CxxC protein, BA_5709 family. Members of this protein family occur exclusively in the Firmicutes, in at least 50 different species. Members average about 55 residues in length, and four of the five invariant or nearly invariant residues occur in motifs CxxH and CxxC. The function is unknown. 49 -275003 TIGR04130 FnlA UDP-N-acetylglucosamine 4,6-dehydratase/5-epimerase. The FnlA enzyme is the first step in the biosynthesis of UDP-FucNAc from UDP-GlcNAc in E. coli (along with FnlB and FnlC). The proteins identified by this model include FnlA homologs in the O-antigen clusters of O4, O25, O26, O29 (Shigella D11), O118, O145 and O172 serotype strains, all of which produce O-antigens containing FucNAc (or the further modified FucNAm). A homolog from Pseudomonas aerugiosa serotype O11, WbjB, also involved in the biosynthesis of UDP-FucNAc has been characterized and is now believed to carry out both the initial 4,6-dehydratase reaction and the subsequent epimerization of the resulting methyl group at C-5. A phylogenetic tree of related sequences shows a distinct clade of enzymes involved in the biosynthesis of UDP-QuiNAc (Qui=qinovosamine). This clade appears to be descendant from the common ancestor of the Pseudomonas and E. coli fucose-biosynthesis enzymes. It has been hypothesized that the first step in the biosynthesis of these two compounds may be the same, and thus that these enzymes all have the same function. At present, lacking sufficient confirmation of this, the current model trusted cutoff only covers the tree segment surrounding the E. coli genes. The clades containing the Pseudomonas and QuiNAc biosynthesis enzymes score above the noise cutoff. Immediately below the noise cutoff are enzymes involved in the biosynthesis of UDP-RhaNAc (Rha=rhamnose), which again may or may not produce the same product. 337 -275004 TIGR04131 Bac_Flav_CTERM gliding motility-associated C-terminal domain. This model describes a protein homology domain unique to, and greatly expanded in, the Bacteriodetes. Species in this lineage include several, such as Cytophaga hutchinsonii and Flavobacterium johnsoniae, that exhibit a poorly understood rapid gliding phenotype. Several members of this protein family are found in operons with other genes whose loss leads to a loss a this motility. Proteins with this domain frequently pair with members of family TIGR03519, whether one such pair or many occur in a genome. More than 30 members may occur in one genome. 85 -275005 TIGR04132 intra_fol_E_lig putative folate metabolism gamma-glutamate ligase. This protein family is related to CofE, a gamma-glutamyl ligase of coenzyme F420 biosynthesis. However, it occurs in a different gamma-glutamyl ligase context, polyglutamylated tetrahydrofolate biosynthesis-like regions in two widely separated lineages that both occur as intracellular bacteria - Chlamydia and Wolbachia. 241 -200384 TIGR04133 rSAM_w_lipo radical SAM enzyme, rSAM/lipoprotein system. Members of this protein family are radical SAM enzymes with an additional 4Fe4S cluster-binding C-terminal domain (TIGR04085) shared with PqqE and many other peptide and protein-modifying radical SAM enzymes. All members occur in the context of a predicted lipoprotein that usually is encoded by an adjacent gene. 350 -200385 TIGR04134 lipo_with_rSAM putative lipoprotein, rSAM/lipoprotein system. Members of this family are Bacteroidetes lineage putative lipoproteins that always occur in pairs with a radical SAM enzyme, TIGR04133, from a branch of the radical SAM superfamily in which many members perform peptide or protein modifications. In some members, the region distal to the Cys of the putative lipoprotein cleavage motif is duplicated. 150 -200386 TIGR04135 FibroRuminTarg Cys-rich radical SAM target, FibroRumin family. Members of this protein family are cysteine-rich small peptides, about 52 amino acids long, that are proposed targets for modification by a radical SAM enzyme. Known occurrences are as tandem gene pairs Fibrobacter succinogenes subsp. succinogenes S85 (missed gene calls) and in Ruminococcus albus 8. 52 -200387 TIGR04136 rSAM_FibroRumin radical SAM peptide maturase, FibroRumin system. Members of this protein family are radical SAM enzymes proposed to act on small, Cys-rich peptides encoded by tandem gene pairs. Members occur in enzymes Fibrobacter succinogenes subsp. succinogenes S85 (genes for their target peptides missed) and in Ruminococcus albus 8. This enzyme family is similar in sequence to the SCIFF (Six Cysteines in Forty-Five) system maturase (TIGR03974). 458 -275006 TIGR04137 Chlam_Ver_rRNA Chlam_Verruc_Plancto small basic protein. Members of this protein family are commonly found next to markers of rRNA processing such as YbeY. They are extremely lineage-restricted, in the Planctomycetes and Chlamydiae/Verrucomicrobia group. Since classification is based on rRNA molecular phylogeny, this provides additional support for a role in rRNA metabolism. This small protein, about 50 amino acids in length, is rich in basic residues, a third line of support for rRNA interaction. 50 -275007 TIGR04138 Plancto_Ver_chp Verruc_Plancto-restricted protein. Members of this protein family are extremely lineage-restricted, occurring exclusively in the Planctomycetes and Chlamydiae/Verrucomicrobia group, although not in Chlamydia itself. The function is unknown; the lack of invariant residues other than a single Phe suggests an ancient, conserved, non-enzymatic role. 122 -200390 TIGR04139 CxxCx5CxxC_targ putative peptide modification target, TIGR04139 family. This model describes a rare family of small putative polypeptides, including three encoded in tandem in Sphingobacterium spiritivorum ATCC 33300, in the vicinity of a TIGR04085 protein. This pairing is conserved in Chryseobacterium gleum ATCC 35910, Kordia algicida OT-1, and other species. TIGR04085 describes a C-terminal additional 4Fe4S-binding domain in PqqE and other radical SAM enzymes that seems to be a marker for peptide modification, and the family modeled here is a candidate modified peptide precursor. 66 -275008 TIGR04140 chp_AF_0576 TIGR04140 family protein. This model represents an uncharacterized small archaeal protein. 66 -275009 TIGR04141 TIGR04141 sporadically distributed protein, TIGR04141 family. This model describes a sporadically distributed conserved hypothetical protein in which complete members average over 500 amino acids in length, although matching sequences frequently are truncated or broken into tandem ORFs. Regular co-clustering with known markers of mobility (integrases, transposases, phage proteins, restriction enzymes, etc.) suggests this family also is part of the mobilome. The function is unknown. 516 -200393 TIGR04142 PCisTranLspir putative peptidyl-prolyl cis-trans isomerase, LIC12922 family. Members of this protein family have a known crystal structure (3NRK) showing similarity to the peptidyl-prolyl cis-trans isomerase SurA. Members are found in Leptospira species next to an uncharacterized radical SAM enzyme and a cytidylyltransferase family protein. 315 -200394 TIGR04143 VPxxxP_CTERM VPXXXP-CTERM protein sorting domain. This C-terminal protein sorting domain is detected, so far, in Methanohalophilus mahii DSM 5219 (five members) and Methanohalobium evestigatum Z-7303 (nine members). This domain resembles the PEP-CTERM, PEF-CTERM, and PGF-CTERM domains of other exosortase/archaeosortase systems. Member proteins co-cluster with a variant member of the exosortase/archaeosortase protein family, and represent a boutique second sorting system in these species. 25 -200395 TIGR04144 archaeo_VPXXXP archaeosortase B, VPXXXP-CTERM-specific. Members of this protein family are found so far in Methanohalophilus mahii DSM 5219 and Methanohalobium evestigatum Z-7303, along with five and nine proteins, respectively, with the VPXXXP-CTERM protein sorting signal (TIGR04143). In these species, this boutique system represents a second exosortase/archaeosortase-type system. 156 -200396 TIGR04145 Firmicu_CTERM Firmicu-CTERM domain. This C-terminal domain is found only in the Firmicutes, where its presence is sporadically distributed. Proteins with this domain are most conserved in the C-terminal region, where the pattern of ending with a transmembrane domain resembles both the LPXTG (sortase target) and PEP-CTERM (exosortase target) domain structures. However, members occur exclusively in the presence of an exosortase-like protein XrtG (TIGR03110), a putative glycosyltransferase (TIGR03111), and a 6-pyruvoyl tetrahydropterin synthase-related protein (TIGR03112). 45 -275010 TIGR04146 GGGPS_Afulg phosphoglycerol geranylgeranyltransferase. This enzyme, known also as GGGP synthase and GGGPS, catalyzes the stereospecific first step in the biosynthesis of the characteristic membrane diether lipids of archaea. Interestingly, the closest homologs outside this family are not the functionally equivalent enzymes of other archaea, but rather functionally distinct bacterial enzymes. 221 -275011 TIGR04147 GGGPS_Halobact phosphoglycerol geranylgeranyltransferase, putative. In most archaea, phosphoglycerol geranylgeranyltransferase (EC 2.5.1.41), also known as GGGP synthase and GGGPS, catalyzes the stereospecific first step in the biosynthesis of their characteristic membrane diether lipids. However, some groups of archaeal GGGPS homologs are more closely related to certain bacterial proteins than to each other. This family represents the putative GGGPS family as found in the Halobacteria. 229 -200399 TIGR04148 GG_samocin_CFB radical SAM peptide maturase, GG-Bacteroidales family. Members of this protein family are radical SAM enzymes (pfam04055) with the additional C-terminal region (TIGR04085) that is frequently a marker of peptide modification. Many members of this family are found in the vicinity of one or several ORFs encoding short polypeptides with a Gly-Gly motif (common for bacteriocin leader peptide cleavage), followed by a Cys-rich patch and then poorly conserved sequences. 411 -275012 TIGR04149 GG_sam_targ_CFB natural product precursor, GG-Bacteroidales family. Sequences in this protein domain family include a leader peptide region, up to and including a Gly-Gly cleavage motif, and about 15 additional residues, usually Cys-rich, from a family of predicted ribosomal natural product precursors. Many of these are associated with peptide-modifying radical SAM enzymes. The core region, up through the diglycine motif, resembles and contains some overlapping hits with the bacteriocin precuror leader peptide region modeled by TIGR01847, but is longer with an extreme N-terminal region with consensus sequence MKKLKKLKL. [Cellular processes, Biosynthesis of natural products] 43 -275013 TIGR04150 pseudo_rSAM_GG pseudo-rSAM protein, GG-Bacteroidales system. Many peptide-modifying radical SAM enzymes have two 4Fe4S-binding regions, an N-terminal one recognized by Pfam radical SAM domain-defining model pfam04055 and a C-terminal one recognized by TIGR04085. Members of this protein family occur in cassettes with such a radical SAM family (TIGR04148) and with a peptide modification target (TIGR04149). Surprisingly, members of this family show full-length homology to each other, with several scoring at least borderline hits to both pfam04055 and TIGR04085, and yet differ in the presence/absence of a signature CX(3)CX(2)CX(9)C motif. Instead, members are best-conserved in the TIGR04085-like C-terminal region. Therefore, this protein family is designated a pseudo-radical-SAM protein, which likely works in partnership with a TIGR04148 family protein. 407 -200402 TIGR04151 exosort_VPDSG exosortase C, VPDSG-CTERM-specific. Through in silico analysis, we previously described the PEP-CTERM/exosortase system (). This model describes the exosortase subtype specific for the VPDSG-CTERM variant (TIGR03778) of PEP-CTERM. Systems are found, so far, in Verrucomicrobiae bacterium DG1235 (twenty) and bacterium Ellin514 (two). This system may coexist with other system variants. [Protein fate, Protein and peptide secretion and trafficking] 309 -275014 TIGR04152 exosort_VPLPA exosortase D, VPLPA-CTERM-specific. This model describes a variant sub class, exosortase D, of protein sorting enzyme (see parent exosortase model TIGR02602), specific for the VPLPA-CTERM variant (TIGR03370) of the PEP-CTERM protein sorting signal. [Protein fate, Protein and peptide secretion and trafficking] 486 -275015 TIGR04153 cyanosortA_assc cyanosortase A-associated protein. Members of this protein family are found exclusively in the Cyanobacteria, usually usually encoded next to and in at least one case fused to a gene encoding cyanoexosortase A. Note that family TIGR04533 shows a similar relationship to cyanoexosortase B (TIGR04156), and no EpsI is found. 186 -275016 TIGR04154 archaeo_STT3 oligosaccharyl transferase, archaeosortase A system-associated. Members of this protein family occur, one to three members per genome, in the same species of Euryarchaeota as contain the predicted protein-sorting enzyme archaeosortase (TIGR04125) and its cognate protein-sorting signal PGF-CTERM (TIGR04126). 817 -275017 TIGR04155 cyano_PEP PEP-CTERM protein sorting domain, cyanobacterial subclass. This domain model describes a subclass with family TIGR02595 of PEP-CTERM protein sorting signals associated with bacterial exosortases. This subclass is restricted to Cyanobacteria, including the genera Cyanothece, Nostoc, Trichodesmium, Lyngbya, Arthospira, etc. This PEP-CTERM subclass features strongly conserved residues within the transmembrane region, including a Gx4GxG motif. Model TIGR03763 describes a corresponding cyanobacterial form of exosortase found in most species with this domain. 25 -275018 TIGR04156 cyanoexo_CrtB cyanoexosortase B. This model describes a cyanobacterial-restricted form of exosortase, associated with a PEP-CTERM domain subclass described in model TIGR04155. This is one of two such cyanoexosortases, either of which is sufficient to accompany TIGR04155 family members. The cyanoexosortase is TIGR03763. [Protein fate, Protein and peptide secretion and trafficking] 280 -275019 TIGR04157 glyco_rSAM_CFB glycosyltransferase, GG-Bacteroidales peptide system. Members of this protein family are predicted glycosyltransferases that occur in conserved gene neighborhoods in various members of the Bacteroidales. These neighborhoods feature a radical SAM enzyme predicted to act in peptide modification (family TIGR04148), peptides from family TIGR04149 with a characteristic GG cleavage motif, and several other proteins. 405 -275020 TIGR04158 rSAM_MIA_synth 3-methyl-2-indolic acid synthase. Members are a radical SAM enzyme that converts L-Trp to 3-methyl-2-indolic acid synthase through a complex rearrangement. This enzyme is closest to ThiH, which also does a complex rearrangement, among other characterized radical SAM enzymes. 368 -200410 TIGR04159 methbact_MbnB methanobactin biosynthesis cassette protein MbnB. The first characterized methanobactin is made from a ribosomal precursor in Methylosinus trichosporium OB3b. Two additional species with homologous precursor peptides (family TIGR04071) are Azospirillum sp. B510 and Gluconacetobacter sp. SXCC-1. This model describes a clique of related sequences, domain or full-length, that occurs always and only next to a methanobactin precursor. The model excludes some close homologs from species where no similar precursor can be found. 91 -275021 TIGR04160 methbact_MbnC methanobactin biosynthesis cassette protein MbnC. The first characterized methanobactin is made from a ribosomal precursor in Methylosinus trichosporium OB3b. Two additional species with homologous precursor peptides (family TIGR04071) are Azospirillum sp. B510 and Gluconacetobacter sp. SXCC-1. This model describes a clique of related sequences, domain or full-length, that occurs always and only next to a methanobactin precursor of the Mb-OB3b type. The model excludes several Pseudomonas proteins whose function is unknown, which likewise are in model TIGR04061, but which diverge toward the C-terminus. 89 -275022 TIGR04161 VPEID-CTERM VPEID-CTERM protein sorting domain. Proteins belonging to this family are small, 80 to 120 residues, including a signal peptide, a central low-complexity region, and this roughly 31-amino acid extreme C-terminal region. Members occur paired with a variant form of exosortase. Species include Ruegeria sp., Phaeobacter gallaeciensis, Roseovarius nubinhibens ISM, and two in Methylobacter tundripaludum. 31 -200413 TIGR04162 exo_VPEID exosortase E/protease, VPEID-CTERM system. Members of this protein family are fusion proteins of exosortase (N-terminal) and a CAAX prenyl protease domain (C-terminal). Members are restricted to the alpha Proteobacteria. The variant C-terminal protein sequence VPEID-CTERM occurs only in these species, often adjacent. 519 -200414 TIGR04163 rSAM_cobopep peptide-modifying radical SAM enzyme CbpB. Members of this family are radical SAM enzymes that modify a short peptide encoded by an upstream gene. A role in metal chelation is suggested. 428 -200415 TIGR04164 cobo_pep modified peptide precursor CbpA. Members of this family are short peptides predicted to reach mature form after modification by a radical SAM enzyme (TIGR04163). 25 -275023 TIGR04165 methano_modCys Cys-rich peptide, TIGR04165 family. Members of this small peptide family occur strictly in a subset of archaeal methanogens. Members have four invariant Cys residues in two Cys-Xaa-Xaa-Cys-Gly motifs and may have other Cys residues as well. At least two members occur next to family TIGR04083 radical SAM enzymes predicted to act in peptide or protein modification. 50 -275024 TIGR04166 methano_MtrB tetrahydromethanopterin S-methyltransferase, subunit B. Members of this protein family are the MtrB protein of the tetrahydromethanopterin S-methyltransferase complex. This system is universal in archaeal methanogens. [Energy metabolism, Methanogenesis] 95 -275025 TIGR04167 rSAM_SeCys radical SAM/Cys-rich domain protein. Members of this protein family have an N-terminal radical SAM domain (pfam04055) and a C-terminal pfam12345 domain. The C-terminal region has several conserved Cys residues, one of which is replaced by selenocysteine in at least five bacterial reference genomes. 303 -275026 TIGR04168 TIGR04168 TIGR04168 family protein. Members of this uncharacterized protein family are restricted, in 49 of 50 genomes, to organisms with a family TIGR04167 radical SAM protein, which occasionally is a selenoprotein. 269 -200420 TIGR04169 perox_w_seleSAM alkylhydroperoxidase/carboxymuconolactone decarboxylase family protein. Members of this family are usually annotated as putative carboxymuconolactone decarboxylases, are related also to alkylhydroperoxidase AhpD, and contain a peroxidase-like Cys-X-X-Cys putative redox-active disulfide. All members occur in genomes with a radical SAM protein of family TIGR04167, which occasionally are selenoproteins. 109 -211905 TIGR04170 RNR_1b_NrdE ribonucleoside-diphosphate reductase, class 1b, alpha subunit. Members of this family are NrdE, the alpha subunit of class 1b ribonucleotide reductase. This form uses a dimanganese moiety associated with a tyrosine radical to reduce the cellular requirement for iron. 698 -275027 TIGR04171 RNR_1b_NrdF ribonucleoside-diphosphate reductase, class 1b, beta subunit. Members of this family are NrdF, the beta subunit of class 1b ribonucleotide reductase. This form uses a dimanganese moiety associated with a tyrosine radical to reduce the cellular requirement for iron. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 313 -275028 TIGR04172 DGQHR_dnd_1 DNA phosphorothioation-associated DGQHR protein 1. The DND system produces an phosphorothioation modification to DNA, replacing a non-bridging oxygen of a phosphate group with sulfur. The modification causes DNA degradation during electrophoresis in Tris buffer. This protein, like DndB (TIGR03233), contains a DGQHR domain (TIGR03187), which also occurs in several contexts that suggest lateral transfer rather than DNA phosphorothioation-dependent restriction. 378 -200424 TIGR04173 PIP_CTERM PIP-CTERM protein sorting domain. Proteins closely related to MJ_1469.1 from Methanocaldococcus jannaschii DSM 2661 are designated archaeosortase D (ArtD). ArtD appears to be a dedicated protein-sorting enzyme with a single target, a PKD domain (pfam00801) repeat protein encoded by adjacent gene. This model describes the C-terminal putative protein-sorting region structurally similar to PEP-CTERM (TIGR02602) and found only on these methanogen PKD domain proteins. 27 -275029 TIGR04174 IPTL_CTERM IPTL-CTERM protein sorting domain. This model describes a variant form of the PEP-CTERM C-terminal protein-sorting domain, with a consensus motif IPTL replacing the more typical VPEP. A majority of these sequences have a WG (Trp-Gly) motif at positions 7-8 of the domain. Species with multiple (up to 15) copies of this domain include Acidovorax citrulli, Acidovorax delafieldii 2AN, Delftia acidovorans SPH-1, and gamma proteobacterium NOR5-3. 27 -200426 TIGR04175 archaeo_artD archaeosortase D. This model describes archaeosortase D, one of several strictly archaeal subfamilies related to exosortase, the bacterial protein-sorting putative transpeptidase (see TIGR02602). ArtD is found in the genus Methanocaldococcus. Its predicted target, encoded by an adjacent gene, has a C-terminal VPIP motif-containing region (TIGR04173) likely to be its recognition site. 150 -275030 TIGR04176 MarR_EPS EPS-associated transcriptional regulator, MarR family. Members of this family of MarR-family transcriptional regulators are associated with long genomic loci consisting of genes encoding enzymes for the biosynthesis of exopolysaccharides. These genes include glycosyl transferases, sugar modifying enzymes (epimerases, isomerases, methyltransferases, aminotransferases, etc.), and exopolysaccharide polymerases (wzx, wzy). In Leptospira interrogans, borgpeterenii and biflexa, this gene is observed first in unidirectional EPS biosynthesis loci as long as 90 genes. MarR genes (pfam01407) are known to bind to DNA regions with palindromic or pseudopalindromic sequences as homodimers, and to bind small molecules as triggers for conformational changes controlling on/off states. 105 -200428 TIGR04177 exosort_XrtH exosortase H, IPTLxxWG-CTERM-specific. This model describes exosortase subfamily H, for which most cognate recognition sequences are found by the IPTLxxWG-CTERM model TIGR04174. Species with this exosortase and multiple (up to 15) copies of the target domain include Acidovorax citrulli, Acidovorax delafieldii 2AN, Delftia acidovorans SPH-1, and gamma proteobacterium NOR5-3. [Protein fate, Protein and peptide secretion and trafficking] 158 -275031 TIGR04178 exo_archaeo exosortase/archaeosortase family protein. This model represents the most conserved region of the multitransmembrane protein family of exosortases and archaeosortases. The region includes nearly invariant motifs at the ends of three predicted transmembrane helices on the extracytoplasmic face: a Cys (often Cys-Xaa-Gly), Asn-Xaa-Xaa-Arg, and His. This model is much broader than the bacterial exosortase model (TIGR02602), and has in intended scope similar to (or broader than) pfam09721. 97 -275032 TIGR04179 rhombo_lipo rhombotail lipoprotein. Members of this protein family are probable lipoproteins. Nearly every member ends with a C-terminal region consisting of a glycine-rich probable cleavage site, a hydrophobic probable transmembrane helix, and a cluster of basic residues, as described in putative protein sorting region model TIGR03501. Furthermore, members tend to be encoded next to a rhomboid family protease, called rhombosortase (TIGR03902) predicted to perform a C-terminal cleavage. 258 -275033 TIGR04180 EDH_00030 NAD dependent epimerase/dehydratase, LLPSF_EDH_00030 family. This clade within the NAD dependent epimerase/dehydratase superfamily (pfam01370) is characterized by inclusion of its members within a cassette of seven distinctive enzymes. These include four genes homologous to the elements of the neuraminic (sialic) acid biosynthesis cluster (NeuABCD), an aminotransferase and a nucleotidyltransferase in addition to the epimerase/dehydratase. Together it is very likely that these enzymes direct the biosynthesis of a nine-carbon sugar analagous to CMP-neuraminic acid. These seven genes form the core of the cassette, although they are often accompanied by additional genes that may further modify the product sugar. Although this cassette is widely distributed in bacteria, the family nomenclature arises from the instance in Leptospira interrogans serovar Lai, str. 56601, where it appears as the 30th gene in the 91-gene lipopolysaccharide biosynthesis cluster. 297 -275034 TIGR04181 NHT_00031 aminotransferase, LLPSF_NHT_00031 family. This clade of aminotransferases is a member of the pfam01041 (DegT/DnrJ/EryC1/StrS) superfamily. The family is named after the instance in Leptospira interrogans serovar Lai, str. 56601, where it is the 31st gene in the 91-gene lipopolysaccharide biosynthesis locus. Members of this family are generally found within a subcluster of seven or more genes including an epimerase/dehydratase, four genes homologous to the elements of the neuraminic (sialic) acid biosynthesis cluster (NeuABCD) and a nucleotidyl transferase. Together it is very likely that these enzymes direct the biosynthesis of a nine-carbon sugar analogous to CMP-neuraminic acid. These seven genes form the core of the cassette, although they are often accompanied by additional genes that may further modify the product sugar. 359 -275035 TIGR04182 glyco_TIGR04182 glycosyltransferase, TIGR04182 family. Members of this family are glycosyltransferases restricted to the archaea. All but two members are from species with the PGF-CTERM/archaeosortase A system, a proposed maturation system for exported, glycosylated proteins as are found often in S-layers. 293 -275036 TIGR04183 Por_Secre_tail Por secretion system C-terminal sorting domain. Species that include Porphyromonas gingivalis, Fibrobacter succinogenes, Flavobacterium johnsoniae, Cytophaga hutchinsonii, Gramella forsetii, Prevotella intermedia, and Salinibacter ruber average twenty or more copies of a C-terminal domain, represented by this model, associated with sorting to the outer membrane and covalent modification. 72 -275037 TIGR04184 ATPgraspMvdD ATP-grasp ribosomal peptide maturase, MvdD family. The pair of ATP-grasp proteins MvdD and MvdC (microviridin D and C), as well as an acetyltransferase, produce microviridin K, an example of a RiPP (ribosomally synthesized and posttranslationally modified peptide). Microviridins are peptidase inhibitors. 321 -275038 TIGR04185 ATPgraspMvdC ATP-grasp ribosomal peptide maturase, MvdC family. The pair of ATP-grasp proteins MvdD and MvdC (microviridin D and C), as well as an acetyltransferase, produce microviridin K, an example of a RiPP (ribosomally synthesized and posttranslationally modified peptide). Microviridins are peptidase inhibitors. This family includes MvdC and corresponding members of similar cassettes. 318 -275039 TIGR04186 GRASP_targ putative ATP-grasp target RiPP. A RiPP is a ribosomally produced, post-translationally modified peptide. This family regularly occurs next to ATP-grasp enzymes related to those of microviridin maturation and next to a methyltransferase. 72 -275040 TIGR04187 GRASP_SAV_5884 ATP-grasp ribosomal peptide maturase, SAV_5884 family. Members of this protein family are ATP-grasp ligase family enzymes that regularly occur in a contexts with a methyltransferase and a putative ribosomally translated post-translationally modified peptide precursor. Because of this conserved gene neighborhood and close sequence similarity to ATP-grasp enzymes from microviridin/marinostatin biosynthesis cassettes, this enzyme is suggested also to serve as a peptide maturase. 312 -275041 TIGR04188 methyltr_grsp methyltransferase, ATP-grasp peptide maturase system. Members of this protein family are predicted SAM-dependent methyltransferases that regularly occur in the context of a putative peptide modification ATP-grasp enzyme (TIGR04187, related to enzymes of microviridin maturation) and a putative ribosomal peptide modification target (TIGR04186). 363 -275042 TIGR04189 surface_SprA cell surface protein SprA. SprA is a cell surface protein widely distributed in the Bacteroidetes lineage. In Flavobacterium johnsoniae, a species that shows gliding motility, mutation disrupts gliding. 2315 -211913 TIGR04190 B12_SAM_Ta0216 B12-binding domain/radical SAM domain protein, Ta0216 family. Members of this family are enzymes with an N-terminal B12-binding domain and central radical SAM domain. Families TIGR03975, TIGR04013 and TIGR04014 exhibit a similar architecture, which may be associated with lipid metabolism. 553 -275043 TIGR04191 YphP_YqiW putative bacilliredoxin, YphP/YqiW family. This protein family is one of several observed in species that express bacillithiol, an analog of glutathione and mycothiol. Rather than being involved in bacillithiol biosynthesis, members are likely to act in bacillithiol-dependent processes. A suggested term is bacilliredoxin (a glutaredoxin-like thiol-dependent oxidoreductase), and a suggested role of YphP is de-bacillithiolation - removing bacillithiol that became linked to protein thiols under oxidative stress. An older description of YphP as a disulphide isomerase therefore may be wrong. 136 -275044 TIGR04192 GRASP_w_spasm ATP-GRASP peptide maturase, grasp-with-spasm system. Members of this protein family are ATP-GRASP proteins that occur in a peptide maturation cassette with a SPASM domain protein. SPASM (TIGR04085) usually occurs as a C-terminal extension to radical SAM enzymes that act as peptide maturases, although it can occur independently. 318 -211916 TIGR04193 SPASM_w_grasp SPASM domain peptide maturase, grasp-with-spasm system. A 4Fe-4S-binding C-terminal domain is shared by radical SAM maturases for Subtilosin A (S), PQQ (P), Anaerobic sulfatases (AS), and mycofactocin (M), hence SPASM. Radical SAM proteins with SPASM tend to be peptide maturases. All members of this family, like some members of the quasi-rSAM family TIGR04105, lack the 4Fe-4S cluster of the radical SAM domain (pfam04055) in the N-terminal region. Members of this family occur with an ATP-GRASP family protein, known as a possible maturase from microviridin biosynthetic clusters. Systems occur in Microscilla marina ATCC 23134, Kordia algicida OT-1, Sphingobacterium spiritivorum ATCC 33300, etc. 342 -211917 TIGR04194 grasp_w_spasm_A grasp-with-spasm leader A domain. This model describes the leader peptide domain, ending in a Gly-Gly cleavage motif, for a post-ribosomal natural product (PRNP) precursor. The corresponding modification enzymes include an ATP-GRASP enzyme and a SPASM-domain protein, related to the C-terminal region of numerous peptide-modification radical SAM enzymes. 28 -211918 TIGR04195 S_glycosyl_SunS peptide S-glycosyltransferase, SunS family. Members of this family include SunS, the S-glycosyltransferase that transfers a sugar (substrate is variable in reconstitution assays) onto the precursor of the glycopeptide sublancin, which once was thought to be a lantibiotic. 422 -211919 TIGR04196 glycopep_SunS glycopeptide, sublancin family. Members of this family, including sublancin, are post-ribosomal natural products (PRNP) with an S-linked glycosylation. Sublancin itself also has two disulfide bonds. A related gene cluster in Bacillus cereus E33L includes the four Cys involved in the disulfide cluster but lacks the region with the glycosylated Cys, and have been excluded. 80 -275045 TIGR04197 T7SS_SACOL2603 type VII secretion effector, SACOL2603 family. Members of this protein family are similar in length and sequence (although remotely) to the WXG100 family of type VII secretion system (T7SS) targets, described by family TIGR03930. Phylogenetic profiling shows that members of this family are similarly restricted to species with T7SS, marking this family as a related set of T7SS effectors. Members include SACOL2603 from Staphylococcus aureus subsp. aureus COL. Oddly, members of family pfam10824 (DUF2580), which appears also to be related, seem not to be tied to T7SS. 85 -275046 TIGR04198 paramyx_RNAcap mRNA capping enzyme, paramyxovirus family. This model represents a common C-terminal region shared by paramyxovirus-like RNA-dependent RNA polymerases (see pfam00946). Polymerase proteins described by these two models are often called L protein (large polymerase protein). Capping of mRNA requires RNA triphosphatase and guanylyl transferase activities, demonstrated for the rinderpest virus L protein and at least partially localized to the region of this model. 893 -275047 TIGR04199 exosort_xrtJ exosortase J. Exosortase J occurs as a three-member paralogous family in Acidobacterium sp. MP5ACTX8. It contains an N-terminal exosortase/archaeosortase domain and a novel C-terminal domain comprising about half of total protein length. The presumptive target, found as an adjacent gene for two of the three paralogs, consists of a possible lipoprotein signal peptide followed almost immediately by a C-terminal region with some PEP-CTERM-like characteristics. 522 -211923 TIGR04200 targ_of_XrtJ XrtJ-associated TM-motif-TM protein. This model represents essentially the full length, ~60 residues, of a two-gene paralogous family from Acidobacterium sp. MP5ACTX8. Sequences consist of an N-terminal signal sequence ending in a GC motif, suggestive of the lipoprotein signal sequence, followed immediately by a C-terminal domain sequence with characteristics PEP-CTERM-like sequences, including a PExP motif and a transmembrane helix. Both members occur next to the novel exosortase variant, XrtJ, which contains a novel C-terminal domain. 62 -275048 TIGR04201 Myxo_Cys_RPT Cys-rich repeat, Myxococcales-type. This repeat is restricted to the Myxococcales, a division of the deltaproteobacteria. It occurs in several surface proteins, and may form a stalk region. The repeat averages about 21 amino acids in length with four or five Cys, three of which are nearly invariant. 22 -275049 TIGR04202 capSnatchArena RNA endonuclease, cap-snatching, arenavirus family. This model describes a shared signature region from an RNA endonuclease region associated with cap-snatching for mRNA production by RNA viruses. This domain usually is part of a multifunctional protein, the L protein responsible for RNA-dependent RNA polymerase activity. Cap-snatching is a viral alternative to synthesizing a eukaryotic-like mRNA cap itself. 61 -275050 TIGR04203 RPT_S_cricet Streptococcal surface-anchored protein repeat, S. criceti family. This model describes a repeat sequence that occurs primarily LPXTG-anchored Streptococcus surface proteins, although it does occur elsewhere. It can comprise a major fraction of the length of repeat proteins taht exceed 2000 in length. 38 -275051 TIGR04204 MAST_ArtA_sort MAST domain. This model describes a domain (or in most cases the full length) of archaeal surface proteins that are putative targets for C-terminal processing by archaeosortase A (TIGR04125). Most members of this family belong to proteins encoded by tandem genes in the genus Methanosarcina. The putative processing signal, PGF-CTERM (TIGR04126), included within the domain definition, takes a variant form, with consensus motif PAF instead of PGF. We suggest the name MAST domain: Methanosarcina Archaeosortase-Sorted Tandem gene family domain. 182 -275052 TIGR04205 classIII_w_PIP class III signal peptide protein, archaeosortase D/PIP-CTERM system. Members of this protein family are short proteins that consist largely of the archaeal class III signal peptide (see pfam04021). Members are encoded in a gene cassette between archaeosortase D (TIGR04175) and its PIP-CTERM target protein (TIGR04173). 67 -275053 TIGR04206 near_ArtA TIGR04206 family protein. Members of this integral membrane protein family are found exclusively in halophilic archaea. In at least three species (Haloarcula marismortui, Haloquadratum walsbyi, and Haloferax volcanii), members are found in the gene neighborhood of archaeosortase A, suggesting a role in protein sorting. 139 -275054 TIGR04207 halo_sig_pep surface glycoprotein signal peptide. This N-terminal homology domain appears to be a specialized class of signal peptide. It occurs mostly in the halophilic archaea, primarily on proteins with the C-terminal PGF-CTERM domain, including the S-layer-forming major surface glycoprotein of several species. The PGF-CTERM domain is the putative archaeosortase A recognition sequence. However, this N-terminal domain occurs also in several archaeal proteins that lack PGF-CTERM, and occurs in bacteria on a protein from Clostridium leptum DSM 753. 30 -275055 TIGR04209 sarcinarray sarcinarray family protein. Members of this protein family are exclusive to archaea, probably all of which have S-layer surface protein arrays. All member proteins have an N-terminal signal sequence. The majority of known members belong to codirectional tandem arrays in the genus Methanosarcina (nine in M. barkeri str. Fusaro). Nearly all members have an additional 50 residues, (trimmed from the seed alignment for this model), consisting of low-complexity sequence rich in E,N,Q,T,S, and P, followed by a variant (PAF) form of the PGF-CTERM putative archaeal surface glycoprotein sorting signal. The coined name, sarcinarray family protein, evokes the predicted archaeal surface layer localization, the taxonomic bias of known members, and the tandem organization of most members. 144 -211933 TIGR04210 bunya_NSm bunyavirus nonstructural protein NSm. This model describes a protein region that is cleaved from a bunyavirus polyprotein to become the nonstructural protein NSm (encoded by the M segment). It is flanked by glycoprotein GP2 and glycoprotein GP1. 173 -275056 TIGR04211 SH3_and_anchor SH3 domain protein. Members of this protein family have a signal peptide, a strongly conserved SH3 domain, a variable region, and then a C-terminal hydrophobic transmembrane alpha helix region. 198 -275057 TIGR04212 GlyGly_RbtA Acinetobacter rhombotarget A. Members of this protein family are found, so far, exclusively in the genus Acinetobacter. Members average just over 600 amino acids in length, including a 22-amino acid C-terminal putative protein sorting recognition sequence, GlyGly-CTERM (TIGR03501). The GlyGly-CTERM signal always co-occurs with a subfamily of the rhomboid family intramembrane serine proteases called rhombosortase (TIGR03902). Members occur paired with a second rhombosortase target, with which it also shares an N-terminal motif CSLREA. This protein is designated Acinetobacter rhombotarget A (rbtA). 605 -275058 TIGR04213 PGF_pre_PGF PGF-pre-PGF domain. This domain occurs in archaeal species. Most domains in this family end with a motif PGF, after which the member sequences change in character to low-complexity sequence (usually Thr-rich) for about 40 residues. The low complexity region usually is followed by a PGF-CTERM domain (TIGR04126), which we suggest is the recognition sequence for archaeosortase A (TIGR04125), a putative protein-sorting transpeptidase. The similarity between the PGF motif in this domain and in the PGF-CTERM domain is highly suggestive. 153 -211937 TIGR04214 CSLREA_Nterm CSLREA domain. This model describes an N-terminal region, with a motif CSLREA, shared by tandem genes in Acinetobacter that both have the GlyGly-CTERM putative protein-sorting domain. Many proteins with this domain are putative outer membrane proteins (OMPs) with predicted beta strand-forming repeats. 27 -275059 TIGR04215 choice_anch_A choice-of-anchor A domain. This domain may occur as essentially the full length of a protein, except for an N-terminal sequence and a C-terminal protein-sorting signal such as PEP-CTERM or LPXTG. Most often, the putative surface protein is longer and contains repetitive sequence regions. This is one of very few domains for which both anchoring domains occur, and designated choice-of-anchor A domain. The best characterized member is Bacillus anthracis protein BA0871, a collagen-binding protein with five CNA-family protein B-type repeats toward the C-terminus and an LPXTG cell wall attachment motif. 249 -275060 TIGR04216 halo_surf_glyco major cell surface glycoprotein. Members of this family are the S-layer-forming halobacterial major cell surface glycoprotein. The highest scores below model cutoffs are fragmentary paralogs to actual members of the family. Modifications include at N-linked and O-linked glycosylation, a C-terminal diphytanylglyceryl modification, and probable cleavage of the PGF-CTERM tail. 763 -211940 TIGR04217 archae_ser_T archaetidylserine synthase. The activity CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) was demonstrated experimentally in Methanothermobacter thermautotrophicus. Members represent an exception within the broader family (TIGR00473) of CDP-diacylglycerol-serine O-phosphatidyltransferases. 221 -211941 TIGR04218 TOMM_plantaz ribosomal natural product, plantazolicin-class. Members of this protein family are precursors of TOMMs, that is, thizazole/oxazole-modified microcins. Members are about 42 residues in length, have a C-terminal region of extremely low complexity rich in Ser, and are often missed by ab initio gene callers. The plantazolicin from Bacillus amyloliquefaciens FZB42 is a peptide antibiotic effective against Bacillus anthracis. 41 -275061 TIGR04219 OMP_w_GlyGly outer membrane protein. Members of this protein family are outer membrane proteins (OMP), as can be seen by their homology to YfaZ protein (see ) and by the OMP targeting region at the C-terminus, including a C-terminal Phe residue. Members of this protein family are found in the great majority of genomes with the GlyGly-CTERM protein sorting signal and the rhombosortase putative sorting enzyme, although the relationship may be fortuitous. 233 -211943 TIGR04220 patB_acyB_mcaB cyanobactin biosynthesis protein, PatB/AcyB/McaB family. Members of this protein family are small (~ 80 amino acids) and occur in biosynthesis clusters for cyanobactins, a type of ribosomal natural product, thiazole/oxazole-modified microcin (TOMM). The function of this protein family is unknown, and the recognized cyanobactin precursors (e.g. microcyclamides and patellamides) are encoded by a different protein (see TIGR03678). In this protein family, however, a core region of about 62 amino acids (modeled) is followed by a hypervariable region of 5 to 23 amino acids, with hallmarks of possible cyclodehydratase modification sites. The hallmarks include Cys residues flanked by Gly, and variable length Ser-rich tripeptide repeats. Further, members of this family were shown dispensible for patellamide biosynthesis, and two may occur in a cluster. Therefore, this family may represent a precursor of another type of ribosomal natural product. 61 -275062 TIGR04221 SecA2_Mycobac accessory Sec system translocase SecA2, Actinobacterial type. Members of this family are the SecA2 subunit of the Mycobacterial type of accessory secretory system. This family is quite different SecA2 of the Staph/Strep type (TIGR03714). 762 -275063 TIGR04222 near_uncomplex TIGR04222 domain. The majority of the proteins with a domain as described by this model have an extreme C-terminal sequence that is consists of extremely low-complexity sequence, rich in Ser or in Gly interspersed with Cys. That C-terminal region resembles ribosomal natural product precursors, although there is no evidence that C-terminal regions of these proteins undergo any modification or have any such function. 227 -275064 TIGR04223 quorum_AgrD cyclic lactone autoinducer peptide. Members of this family of short peptides are precursors to thiolactone (unless Cys is replaced by Ser) cyclic autoinducer peptides, used in quorum-sensing systems in Gram-positive bacteria. The best characterized is the AgrD precursor, processed by the AgrB protein. Nearby proteins regularly encountered include a histidine kinase and a response regulator. This model is related to pfam05931 but is newer and currently broader in scope. 37 -275065 TIGR04224 ser_adhes_Nterm serine-rich repeat adhesion glycoprotein AST domain. This model describes a definitive conserved N-terminal domain shared by Streptococcal serine-rich adhesion glycoproteins. These highly repetitive proteins may exceed 4000 amino acids in length, consisting largely of long regions in which every second amino acid is Ser. Members of this family, if sequenced completely and assigned the correct start site, begin with a KxYKxGKxW motif region (see TIGR03715) and end with an LPXTG motif region (see TIGR01167). Members are exported by the accessory secretory system (SecA2 and SecY2). They are highly variable among the Streptococci and may help determine host ranges for pathogenesis. 50 -275066 TIGR04225 CshA_fibril_rpt CshA-type fibril repeat. Many proteins with this repeat are LPXTG-anchored surface proteins of Firmicutes species, but the repeat occurs more broadly. Members include CshA from Streptococcus gordonii. 103 -275067 TIGR04226 RrgB_K2N_iso_D2 fimbrial isopeptide formation D2 domain. The Streptococcus Pneumoniae pilus backbone protein, RrgB, has three tandem domains with Lys-to-Asn isopeptide bonds, but these three regions are extremely divergent in sequence. This model represents the homology domain family of the D2 domain. It occurs just once in many surface proteins but up to twenty times in some pilin subunit proteins. Three of every four members have the typical Gram-positive C-terminal motif, LPXTG, although in many cases this motif may be involved in pilin subunit cross-linking rather than cell wall attachment. Proteins with this domain include fimbrial proteins with lectin-like adhesion functions, and the majority of characterized members are involved in surface adhesion to host structures. 124 -211950 TIGR04227 zmp_18_rpt zinc metalloproteinase 18-residue repeat. This model describes a short (18-amino acid) tandem repeat that occurs variable numbers of times in zinc metalloproteinase C (zmpC) homologs in various species of Streptococcus. This repeat occurs, oddly, as an interruption in a region of tandem repeats of another type. 18 -275068 TIGR04228 isopep_sspB_C2 adhesin isopeptide-forming domain, sspB-C2 type. This domain has a conserved Lys (position 3 in seed alignment) and Asn at 177 that form an intramolecular isopeptide bond. The Asp (or Glu) at position 59 173 -275069 TIGR04229 geopeptide putative radical SAM-modified peptide. This family of short peptides occurs near radical SAM/SPASM domain proteins and is proposed to be modified by that enzyme. 23 -275070 TIGR04230 seadorna_VP11 seadornavirus VP11 protein. This protein family occurs in the seadornavirus virus group, with designations VP11 in Banna virus, and VP12 in Kadipiro virus and Liao ning virus. The function has not been assigned. 175 -275071 TIGR04231 seadorna_VP5 seadornavirus VP5 protein. This protein family occurs in the seadornavirus virus group, with designations VP5 in Banna virus, and VP6 in Kadipiro virus and Liao ning virus. The function is unassigned. 505 -211955 TIGR04232 seadorna_VP3 seadornavirus VP3 protein. Members of this protein family are VP3 proteins in the seadornavirus group. Sequences show sequence similarity to methyltransferases. 731 -211956 TIGR04233 seadorna_VP8 seadornavirus VP8 protein. This protein family occurs in the seadornavirus virus group, with designations VP8 in Banna virus, and VP9 in Kadipiro virus and Liao ning virus. The function has not been assigned. 291 -275072 TIGR04234 seadorna_RNAP seadornavirus RNA-directed RNA polymerase. Members of this protein family are the seadornavirus VP1 protein, the RNA-directed RNA polymerase. 1144 -211958 TIGR04235 seadorna_VP4 seadornavirus VP4 protein. This protein family occurs in the seadornavirus virus group, with designation VP4 in Banna virus, Kadipiro virus, and Liao ning virus. Although this family has been suggested to resemble methyltransferases, members show apparent N-terminal sequence similarity to the outer capsid protein VP5 of the orbivirus group, such as bluetongue virus, which also belong to the Reoviridae. 618 -275073 TIGR04236 seadorna_VP2 seadornavirus VP2 protein. This protein family occurs in the seadornavirus virus group, with the designation VP2 in Banna virus, Kadipiro virus, and Liao ning virus. 953 -211960 TIGR04237 seadorna_VP9 seadornavirus/coltivirus VP9 protein. This model, broader than related pfam08978, describes proteins VP9 in Coltivirus, and proteins with various designations in the seadornavirus group: VP9 in Banna virus, VP10 in Liao ning virus, and VP11 in Kadipiro virus. 280 -275074 TIGR04238 seadorna_dsRNA seadornavirus double-stranded RNA-binding protein. This protein family occurs in the seadornavirus virus group, with an N-terminal domain for binding double-stranded RNA, is designated VP12 in Banna virus, VP8 in Kadipiro virus, and VP11 in Liao ning virus. 201 -275075 TIGR04239 rhombo_GlpG rhomboid family protease GlpG. GlpG in E. coli is a rhomboid family intramembrane serine protease that has been extensively characterized as a proxy for rhomboid family proteases in animals. It efficiently cleaves eukaryote-derived model substrates. This multiple membrane-spanning protein excludes inappropriate substrates from access to its cleavage site, and shows activity against truncated versions, but not full-length versions, of the E. coli multidrug transporter MdfA. This finding suggests a housekeeping function in removing faulty proteins. In contrast, several eukaryotic rhomboid family proteases release peptide hormones for signaling functions, and the Shewanella and Vibrio protein rhombosortase appears to be part of a protein-sorting system, cleaving a C-terminal anchoring helix domain. 270 -213897 TIGR04240 flavi_E_stem flavivirus envelope glycoprotein E, stem/anchor domain. This model describes the C-terminal domain, containing a stem region followed by two transmembrane anchor domains, of the envelope protein E. This protein is cleaved from the large flavivirus polyprotein, which yields three structural and seven nonstructural proteins. 97 -211964 TIGR04241 adenoE3CR1rpt mastadenovirus E3 CR1-alpha-1. This domain occurs only in the adenovirus E3 region CR1-alpha-1 protein. It may occur once, twice, or three times. 81 -275076 TIGR04242 nodulat_NodC chitooligosaccharide synthase NodC. Members of this family are NodC, an N-acetylglucosaminyltransferase involved in the production of nodulation factors through which rhizobia establish symbioses with leguminous plants. 395 -211966 TIGR04243 nodulat_NodB chitooligosaccharide deacetylase NodB. Nodulation factors are lipooligosaccharide signalling molecules produced by rhizobia, the symbiotic nitrogen-fixing bacteria that form nodules in plants. These Nod factor sustems have the NodABC genes in common but differ subtly in what they produce, which affects host range. NodB is a chitooligosaccharide deacetylase. 197 -275077 TIGR04244 nitrous_NosZ_RR nitrous-oxide reductase, TAT-dependent. Members of this family are the nitrous-oxide reductase structural protein, NosZ, with an N-terminal twin-arginine translocation (TAT) signal sequence (see TIGR01409). The TAT system replaces the Sec system for export of proteins with bound cofactor. 627 -211968 TIGR04245 nodulat_NodA N-acyltransferase NodA. Nodulation factors are lipo-chitooligosaccharides made by bacterial nitrogen-fixing bacteria as a signal to plant hosts. Nod factors differ slightly from system to system are serve as host range determinants. Because the N-acyl group varies from one NodA to another, the family treated as a subfamily, but all members of this family belong to NodABC systems. 193 -275078 TIGR04246 nitrous_NosZ_Gp nitrous-oxide reductase, Sec-dependent. This model represents the nitrous-oxide reductase protein NosZ as characterized in Geobacillus thermodenitrificans. In contrast to the related form in Pseudomonas stutzeri, this version lacks a recognizable twin-arginine translocation (TAT) signal at the N-terminus. Consequently, its accessory protein may differ. Some members of this family have an additional cytochrome c-like domain at the C-terminus. 578 -275079 TIGR04247 NosD_copper_fam nitrous oxide reductase family maturation protein NosD. Members of this family include NosD, a repetitive periplasmic protein required for the maturation of the copper-containing enzyme nitrous-oxide reductase. NosD appears to be part of a complex with NosF (an ABC transporter family ATP-binding protein) and NosY (a six-helix transmembrane protein in the ABC-2 permease family). However, NosDFY-like complexes appear to occur also in species whose copper requiring enzymes are something other than nitrous-oxide reductase. 377 -211971 TIGR04248 SCM_PqqD_rel SynChlorMet cassette protein ScmD. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. These components suggest modification of a ribosomally produced peptide precursor, but the precursor has not been identified. Members of this family are the PqqD-like protein. 84 -275080 TIGR04249 SCM_chp_ScmC SynChlorMet cassette protein ScmC. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. These components suggest modification of a ribosomally produced peptide precursor, but the precursor has not been identified. Members of this family are designated ScmC. 292 -211973 TIGR04250 SCM_rSAM_ScmE SynChlorMet cassette radical SAM/SPASM protein ScmE. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. These components suggest modification of a ribosomally produced peptide precursor, but the precursor has not been identified. Of the two PqqE homologs of the cassette, this family is the closer in sequence. 358 -211974 TIGR04251 SCM_rSAM_ScmF SynChlorMet cassette radical SAM/SPASM protein ScmF. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. These components suggest modification of a ribosomally produced peptide precursor, but the precursor has not been identified. Of the two PqqE homologs of the cassette, this family is the more distant in sequence. 353 -211975 TIGR04252 SCM_precur_ScmA SynChlorMet cassette protein ScmA. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. This model identifies a conserved open reading frame that was identified as a predicted gene in only one of those species (Chlorobium), but that may represent the ribosomally produced peptide precursor of the system. As with most other radical SAM enzyme-modified ribosomal natural products, these polypeptides are Cys-rich in the C-terminal half. 49 -211976 TIGR04253 mesacon_CoA_iso mesaconyl-CoA isomerase. Members of this protein family belong by homology to the family of CoA transferases. However, the characterized member from Chloroflexus aurantiacus appears to perform an intramolecular transfer, making it an isomerase. The enzyme converts mesaconyl-C1-CoA to mesaconyl-C4-CoA as part of the bicyclic 3-hydroxyproprionate pathway for carbon fixation. 403 -275081 TIGR04254 OpituPEPCTERM_1 putative globular PEP-CTERM protein. Representatives of this family include a 13-member paralogous family of proteins about 215 amino acids in length from the termite gut bacterium Opitutaceae bacterium TAV2, a member of the Verrucomicrobia. The signal peptide (N-terminal) and PEP-CTERM putative protein sorting signal (C-terminal) are not included in the seed alignment. Conserved residues such as an invariant Arg and a lack of conspicuous low-complexity sequence suggest a globular structure and possible enzymatic activity. Members average about thirty percent sequence identify overall, but over seventy percent in the PEP-CTERM region. The function of this family is unknown. 136 -275082 TIGR04255 sporadTIGR04255 TIGR04255 family protein. Members of this uncharacterized protein family are found broadly but sporadically among bacteria and archaea, including members of the genera Mycobacterium, Nostoc, Acinetobacter, Planctomyces, Geobacter, Streptomyces, Methanospirillum, etc. The function is unknown. 249 -275083 TIGR04256 GxxExxY GxxExxY protein. Members of this protein family average about 130 residues in length and include an almost perfectly conserved motif GxxExxY. Members occur in a wide range of prokaryotes, including Proteobacteria, Perrucomicrobia, Cyanobacteria, Bacteriodetes, Archaea, etc. 116 -275084 TIGR04257 nanowire_3heme c(7)-type cytochrome triheme domain. This domain binds three hemes, and itself occurs as a repeating unit. It occurs, for instance, four times in the dodecaheme c-type cytochrome protein GSU_1996, whose crystal structure shows elongation and a nanowire-like arrangement of twelve hemes that could function in extracellular electron transport processes. 75 -275085 TIGR04258 4helix_suffix four helix bundle suffix domain. This domain occurs as a suffix domain to some members of the much broader protein family TIGR02436, a few of whose other members are encoded within intervening sequences of bacterial 23S ribosomal RNA. Some proteins with this domain, in turn, are followed by a predicted DNA topoisomerase type C4 zinc finger. 49 -275086 TIGR04259 oxa_formateAnti oxalate/formate antiporter. This model represents a subgroup of the more broadly defined model TIGR00890, which in turn belongs to the Major Facilitator transporter family. Seed members for this family include the known oxalate/formate antiporter of Oxalobacter formigenes, as well as transporter subunits co-clustered with the two genes of a system that decarboxylates oxalate into formate. In many of these cassettes, two subunits are found rather than one, suggesting the antiporter is sometimes homodimeric, sometimes heterodimeric. 405 -275087 TIGR04260 Cyano_gly_rpt rSAM-associated Gly-rich repeat protein. Members of this protein family average 125 in length, roughly half of which is the repetitive and extremely Gly-rich C-terminal region. Virtually all members occur in the Cyanobacteria, in a neighborhood that includes a radical SAM/SPASM domain, often a marker of peptide modification systems. 119 -211984 TIGR04261 rSAM_GlyRichRpt radical SAM/SPASM domain protein, GRRM system. Members of this protein family are radical SAM/SPASM domain proteins (see pfam04055 and TIGR04085) related to anaeroboic sulfatase maturating enzymes and the peptide modification enzyme PqqE. Members are found primarily in Cyanobacteria adjacent to a short protein, ~150 residues, in which the last ~60 residues tends to be repetitive and highly glycine-rich (see TIGR04260). The arrangement suggests modifications to the repetitive C-terminal region by this radical SAM domain enzyme, but the purpose of this system on the whole is unknown. 363 -275088 TIGR04262 orph_peri_GRRM extracellular substrate-binding orphan protein, GRRM family. This subfamily belongs to bacterial extracellular solute-binding protein family 3 (pfam00497). In that family, most members are ABC transporter periplasmic substrate-binding proteins. However, members of the present subfamily are orphans in the sense of being adjacent to neither ABC transporter ATP-binding proteins or permease subunits. Instead, most members are encoded next to the two signature proteins of the proposed Glycine-Rich Repeat Modification (GRRM) system, a radical SAM/SPASM protein GrrM (TIGR04261) and the Gly-rich repeat protein itself GrrA (TIGR04260). 257 -275089 TIGR04263 SasC_Mrp_aggreg SasC/Mrp/FmtB intercellular aggregation domain. This domain, about 375 amino acids long on average, occurs only in Staphylococcus and Streptococcus. It occurs as a non-repetitive N-terminal domain of LPXTG-anchored surface proteins, including SasC, Mrp, and FmtB. This region in SasC was shown to be involved in cell aggregation and biofilm formation, which may explain the methicillin resistance seen for Mrp and FmtB. 366 -275090 TIGR04264 hyperosmo_Ebh hyperosmolarity resistance protein Ebh, N-terminal domain. Staphylococcal protein Ebh (extracellular matrix-binding protein homolog) is a giant protein, sometimes over 10,000 amino acids long as reported. This model describes a non-repetitive amino-terminal domain of about 2400 amino acids. 2354 -211988 TIGR04265 bac_cardiolipin cardiolipin synthase. This model is based on experimentally characterized bacterial cardiolipin synthases (cls) from E. coli, Staphylococcus aureus (two), and Bacillus pseudofirmus OF4. This model describes just one of several homologous but non-orthologous forms of cls. The cutoff score is set arbitrarily high to avoid false-positives. Note that there are two enzymatic activites called cardiolipin synthase. This model represents type 1, which does not rely on a CDP-linked donor, but instead does a reversible transfer of a phosphatidyl group from one phosphatidylglycerol molecule to another. 483 -211989 TIGR04266 NDMA_methanol NDMA-dependent methanol dehydrogenase. Members of this family belong to the iron-dependent alcohol dehydrogenase family (see pfam00465). The NADP(H) cofactor is bound too tightly for exchange (although non-convalently), so enzymatic activity depends on a second substrate or electron carrier. The radical SAM-modified natural product mycofactocin is proposed to fill this role. In Rhodococcus erythropolis N9T-4, a role was shown for this protein in CO2 fixation during extreme oligotrophic (or possibly chemoautotrophic) growth. 420 -275091 TIGR04267 mod_HExxH HEXXH motif domain. Some proteins with this domain toward the C-terminus have an N-terminal region with a radical SAM domain (pfam04055) and a SPASM domain (TIGR04085), a combination frequently associated with peptide modification. All seed alignment members, and all family members that are not fused to a radical SAM domain, have a motif HEXXH that suggests metalloprotease activity. A role in peptide or protein maturation is suggested. 399 -275092 TIGR04268 FxSxx-COOH FXSXX-COOH protein. Members of this family are very short (~60 residue) polypeptides, among which the fifth and third to last residues are nearly always Phe and Ser, respectively. Because members occur in a conserved context with a putative peptide-modifying radical SAM/SPASM domain protein, we suggest that members of this family may be the modification target. The gene symbol fxsA reflects both the FXA motif and the proposed role as a ribosomal natural product. 44 -275093 TIGR04269 SAM_SPASM_FxsB radical SAM/SPASM domain protein, FxsB family. This model describes a radical SAM (pfam04055)/SPASM domain (TIGR04085) fusion subfamily distinct from PqqE, MftC, anaerobic sulfatase maturases, and other peptide maturases. The combined region described in this model can itself be fused to another domain, such as TIGR04267, or stand alone. Members occurring in the same cassette as a member of family TIGR04268 should be designated FxsB. 363 -211993 TIGR04270 Rama_corrin_act methylamine methyltransferase corrinoid protein reductive activase. Members of this family occur as paralogs in species capable of generating methane from mono-, di-, and tri-methylamine. Members include RamA (Reductive Activation of Methyltransfer, Amines) from Methanosarcina barkeri MS (DSM 800). Member proteins have two C-terminal motifs with four Cys each, likely to bind one 4Fe-4S cluster per motif. 535 -275094 TIGR04271 ThiI_C_thiazole thiazole biosynthesis domain. The ThiI protein of Escherichia coli is a bifunctional protein in which most of the length of the protein is responsible for sulfurtransferase activity in 4-thiouridine modification to tRNA (EC 2.8.1.4 - see model TIGR00342). This rhodanese-like C-terminal domain, by itself, is able to synthesize the thiazole moiety during thiamin biosynthesis. Note that the invariant Cys residue in this domain is unusual in being required for both activities of the bifunctional ThiI protein. 101 -275095 TIGR04272 cxxc_cxxc_Mbark CxxC-x17-CxxC domain. This domain, with a pair of CXXC motifs separated by 17 amino acids, is a candidate zinc finger domain based on these motifs. Some proteins have two copies of the domain, while others are fused to another probable zinc-binding domain, described by pfam13451. 37 -275096 TIGR04273 Y_sulf_Ax21 sulfation-dependent quorum factor, Ax21 family. This family consists of proteins closely related to Ax21 (Activator of XA21-mediated immunity), a protein that is secreted by a type I secretion system (RaxABC), and that appears to be sulfated on an N-terminal region tryosine in a motif LSYN. Ax21 acts in a quorum-sensing system. Homologous peptide-mediated quorum-sensing systems appear to exist in other species, such as the emerging opportunistic pathogen Stenotrophomonas maltophilia. Intriguingly, the rice genome encodes a receptor (XA21) for this protein that triggers innate immunity. [Cellular processes, Pathogenesis] 186 -211997 TIGR04274 hypoxanDNAglyco hypoxanthine-DNA glycosylase. Members of this protein family represent family 6 of the uracil-DNA glycosylase superfamily, where the five previously described families all act as uracil-DNA glycosylase (EC 3.2.2.27) per se. This family, instead, acts as a hypoxanthine-DNA glycosylase, where hypoxanthine results from deamination of adenine. Activity was shown directly for members from Methanosarcina barkeri and Methanosarcina acetivorans. 150 -275097 TIGR04275 beta_prop_Msarc beta propeller repeat, Methanosarcina surface protein type. This model describes a repeat region found mostly in cell surface proteins of various methanogens. Methanosarcina barkeri, for example, has twenty such proteins, often with either seven or fourteen repeats. These repeats resemble the beta propeller repeats of the TolB periplasmic protein of Gram-negative bacteria, part of a complex associated with various functions including biopolymer transport (see TIGR02800). 40 -275098 TIGR04276 FxsC_Cterm FxsC C-terminal domain. This model describes a sequence region found regularly as the C-terminal domain of a protein (where the N-terminal domain resembles a TIR domain - see pfam13676) in the vicinity of a proposed peptide-modifying radical SAM/SPASM domain protein, FxsB (TIGR04269). 196 -212000 TIGR04277 squa_tetra_cyc squalene--tetrahymanol cyclase. This enzyme, also called squalene--tetrahymanol cyclase, occurs a small number of eukaryotes, some of them anaerobic. The pathway can occur under anaerobic conditions, and the product is thought to replace sterols, letting organisms with this compound build membrane suitable for performing phagocytosis. 624 -212001 TIGR04278 viperin antiviral radical SAM protein viperin. Viperin (Virus Inhibitory Protein, ER-associated, Iterferon-inducible) is a radical SAM enzyme found in human and other vertebrates. It is both induced by interferon and demonstrably active in blocking replication by several types of virus, apparently by modifying lipid chemistries in lipid droplets and membrane rafts. 347 -275099 TIGR04279 TIGR04279 TIGR04279 methanogen extracellular domain. This domain, with length just over 300 amino acids, occurs in predicted extracellular proteins in a number of methanogens, in one to three proteins per genome. The aromatic residue tyrosine, comprising about five percent of the amino acid composition, is overrepresented among the most highly conserved columns of the multiple sequence alignment. The three members of this family in Methanosarcina barkeri occur all within a six-gene region. 316 -275100 TIGR04280 geopep_mat_rSAM putative geopeptide radical SAM maturase. This family is the radical SAM/SPASM domain putative peptide maturase for geopeptide, described by model TIGR04229. The SPASM domain (see model TIGR04085) frequently marks peptide-modifying radical SAM enzymes. 428 -275101 TIGR04281 peripla_PGF_1 putative ABC transporter PGF-CTERM-modified substrate-binding protein. Members of this archaeal protein family resemble periplasmic substrate-binding proteins of ABC transporters and appear in gene neighborhoods with permease and ATP-binding cassette proteins. Notably, essentially all members also have the PGF-CTERM putative protein-sorting domain at the C-terminus, while more distant homologs (excluded by the trusted cutoff) instead have what appear to be lipoprotein signal peptides at the N-terminus. 330 -275102 TIGR04282 glyco_like_cofC transferase 1, rSAM/selenodomain-associated. Members of this protein family show strongly correlated phylogenetic distribution, and in most cases co-clustering, with an unusual radical SAM enzyme (TIGR04167) whose C-terminal pfam12345 domain often contains a selenocysteine residue. Other members of the conserved gene neighborhood include another putative glycosyltransferase, an alkylhydroperoxidase family protein (TIGR04169), and a phosphoesterase family protein (TIGR04168). The cassette is likely to be biosynthetic but its exact function is unknown. [Unknown function, Enzymes of unknown specificity] 189 -275103 TIGR04283 glyco_like_mftF transferase 2, rSAM/selenodomain-associated. This enzyme may transfer a nucleotide, or it sugar moiety, as part of a biosynthetic pathway. Other proposed members of the pathway include another transferase (TIGR04282), a phosphoesterase, and a radical SAM enzyme (TIGR04167) whose C-terminal domain (pfam12345) frequently contains a selenocysteine. [Unknown function, Enzymes of unknown specificity] 220 -275104 TIGR04284 aldehy_Rv0768 aldehyde dehydrogenase, Rv0768 family. This family describes a branch of the aldehyde dehydrogenase (NAD) family (see pfam00171) that includes Rv0768 from Mycobacterium tuberculosis. All members of this family belong to species predicted to synthesize mycofactocin, suggesting that this enzyme or another upstream or downstream in the same pathway might be mycofactocin-dependent. However, the taxonomic range of this family is not nearly broad enough to make that relationship conclusive. [Unknown function, Enzymes of unknown specificity] 480 -275105 TIGR04285 nucleoid_noc nucleoid occlusion protein. This model describes nucleoid occlusion protein, a close homolog to ParB chromosome partitioning proteins including Spo0J in Bacillus subtilis. Its gene often is located near the gene for the Spo0J ortholog. This protein bind a specific DNA sequence and blocks cytokinesis from happening until chromosome segregation is complete. 255 -275106 TIGR04286 MSEP-CTERM MSEP-CTERM protein. Members of this protein family average over 900 residues in length and appear to have multiple membrane-spanning helices in the N-terminal half. The extreme C-terminal region consists of a motif with consensus sequence MSEP, then a transmembrane alpha helix, then a short region with several basic residues. This region, hereby dubbed MSEP-CTERM, resembles other putative sorting signals associated with the archaeosortase/exosortase protein family (see TIGR04178). Genes for all members of this family are found next to a gene for exosortase K. 920 -213900 TIGR04287 exosort_XrtK exosortase K. Members of this protein family are exosortase K, a bacterial branch of the archaeosortase/exosortase family of protein-processing enzymes (see TIGR04178). All members of the seed alignment are encoded next to a member of family TIGR04286, which has the putative processing signal MSEP-CTERM (see family TIGR04286) at the extreme C-terminus. 163 -213901 TIGR04288 CGP_CTERM CGP-CTERM domain. This domain has an essentially invariant motif, Cys-Gly-Pro, followed by a highly hydrophobic transmembrane domain, always at the protein C-terminus. It occurs, so far, strictly in the family Thermococcaceae (includes Thermococcus and Pyrococcus) within the Euryarchaeota. It occurs in ten proteins per genome on average, and proteins with the domain may lack similarity elsewhere. The presumed sorting/processing protein, for which this domain contains the recognition sequence, is unknown, but it is unlikely to be a member of the exosortase/archaeosortase family. The Cys residue suggests a lipid modification. Upstream, from this domain, most member proteins have an extremely Thr-rich sequence, suggesting archaeal surface protein O-linked glycosylation. 20 -275107 TIGR04289 heavy_Cys eight-cysteine-cluster domain. In this domain of about 50 residues, eight of twelve invariant residues are Cys. Proteins with this domain tend to have N-terminal signal sequences, suggesting an extracytoplasmic location for this domain. 52 -275108 TIGR04290 meth_Rta_06860 methyltransferase, Rta_06860 family. Members of this family are methyltransferases that mark a widely distributed large conserved gene neighborhood of unknown function. It appears most common in soil and rhizosphere bacteria. 226 -275109 TIGR04291 arsen_driv_ArsA arsenical pump-driving ATPase. The broader family (TIGR00345) to which the current family belongs consists of transport-energizing ATPases, including to TRC40/GET3 family involved in post-translational insertion of protein C-terminal transmembrane anchors into membranes from the cyotosolic face. This family, however, is restricted to ATPases that energize pumps that export arsenite (or antimonite). 566 -275110 TIGR04292 heavy_Cys_CGP heavy-Cys/CGP-CTERM domain protein. Members of this protein family are restricted to the Pyrococcus and Thermococcus genera of the archaea. Member proteins have a C-terminal, Cys-containing predicted surface anchor domain, where the Cys may be the site of cleavage and lipid attachment (see domain TIGR04288). Members also contain a region crowded with 10 invariant Cys in 60 residues (see domain TIGR04289), possible ligands to some redox cofactor. Note that a sorting motif is CGP. Previously, the motif was named incorrectly as GCP-CTERM in this model due to a typographical error. 373 -213906 TIGR04293 archaeo_artF archaeosortase family protein ArtF. Members of this protein family, ArtF, belong to the archaeosortase/exosortase family, in which many members associate with specific protein C-terminal putative protein sorting domains (exosortase A with PEP-CTERM, archaeosortase A with PGF-CTERM, etc.). This subgroup is observed in Thermococcus gammatolerans EJ3 and Thermococcus sp. AM4, but the gene neighborhood is not conserved. The cognate sequence to ArtF is unknown, but should not be ICGP-CTERM (model TIGR04288), found also in many Pyrococcus species that lack any archaeosortase family member. 166 -213907 TIGR04294 pre_pil_HX9DG prepilin-type processing-associated H-X9-DG domain. This model describes a region of ~16 residues found typically about 30 residues away from the C-terminus of large numbers of proteins in the Planctomycetes, Lentisphaerae, and Verrucomicrobia, on proteins with a prepilin-type N-terminal cleavage/methylation domain (see TIGR02532). The motif H-X(9)-D-G is nearly invariant. Single genomes may encode over 200 such proteins. 16 -275111 TIGR04295 B12_rSAM_oligo B12-binding domain/radical SAM domain protein, rhizo-twelve system. A variety of bacteria, including multiple species of Bradyrhizobium, Mesorhizobium, and Methylobacterium, have a typically twelve-gene cassette (hence the designation rhizo-twelve) for the biosynthesis of some unknown oligosaccaride. This family is a B12-binding domain/radical SAM domain protein found in roughly have of these cassettes, but nowhere else. 422 -275112 TIGR04296 PEFG-CTERM PEFG-CTERM domain. This putative protein sorting/processing domain occurs about ten times per genome in members of the Thaumarchaeota. Its putative handling protein, a member of the archaeosortase/exosortase protein family, is exceptional in having a Ser rather than Cys at the putative active site. The highly conserved motif resembles the PEF-CTERM protein sorting domain of family TIGR03024, but membership does not overlap. 30 -213910 TIGR04297 thauma_sortase thaumarchaeosortase. This member of the archaeosortase/exosortase family occurs exclusively in the Thaumarchaeota, where the corresponding proposed sorting signal is PEFG-CTERM (see model TIGR04296). This family is unusual in that the suspected active site residue, Cys in every other defined subfamily of archaeosortases and exosortases is replaced by Ser. 307 -213911 TIGR04298 his_histam_anti histidine-histamine antiporter. Members of this protein family are antiporters that exchange histidine with histamine, product of histidine decarboxylation. A system consisting of this protein, and a histidine decarboxylase encoded by an adjacent gene, creates decarboxylation/antiport proton-motive cycle that provides a transient resistance to acidic conditions. 429 -213912 TIGR04299 antiport_PotE putrescine-ornithine antiporter. Members of this protein family are putrescine-ornithine antiporter. They work together with an enzyme that decarboxylates ornithine to putrescine. This two-gene system has the net effect of removing a protein from the cytosol, providing transient resistance to acid conditions. 430 -213913 TIGR04300 exosort_XrtM exosortase family protein XrtM. Members of this family, part of the larger exosortase/archaeosortase family, are known from five related cassettes of genes in Methylomonas methanica MC09, a gammaproteobacterial methanotroph. Each xrtM gene occurs near a large YD repeat (see TIGR01643) protein of 1500-2500 residues and a small, uncharacterized protein of about 200 residues. No PEP-CTERM-like recognition sequence has been identified, so this protein is designated as exosortase family, but not necessarily a functional exosortase. 150 -275113 TIGR04301 ODC_inducible ornithine decarboxylase SpeF. Members of this family are known or trusted examples of ornithine decarboxylase, all encoded in the immediate vicinity of an ornithine-putrescine antiporter. Decarboxylation of ornithine to putrescine, followed by exchange of a putrescine for a new ornithine, is a proton-motive cycle that can be induced by low pH and protect a bacterium against transient exposure to acidic conditions. 719 -213915 TIGR04302 geo_PqqD_fam GeoRSP system PqqD family protein. Members of this PqqD-related family so far occur only in the genus Geobacter, always together with a PqqE-like radical SAM domain/SPASM domain protein and a second SPASM domain protein with traces of a degenerate radical SAM domain. The extended gene region includes a high-molecular-weight cytochrome c family protein. Besides authentic PqqD (TIGR03859), another example of a PqqD family protein occurs in the SynChlorMet cassette, again with two PqqE-like proteins. The system is named GeoRSP for its prevalence in Geobacter, its Radical SAM protein, is SPASM domain protein, and its PqqD family protein. 102 -213916 TIGR04303 GeoRSP_rSAM GeoRSP system radical SAM/SPASM protein. Members of this family are radical SAM/SPASM domain proteins from a cassette restricted to the genus Geobacter. Genes always found adjacent include a non-radical SAM protein with a closely related SPASM domain and a short stretch of N-terminal homology as well to this family, and also a PqqD-like protein. The three-gene cassette is designated GeoRSP for the genus Geobacter, this radical SAM protein, the SPASM domain protein, and the PqqD family protein. 325 -213917 TIGR04304 GeoRSP_SPASM GeoRSP system SPASM domain protein. Members of this protein family are encoded by one of two consecutive genes for SPASM domain proteins. The two are closely homologous in the SPASM domain regions, and also in a small N-terminal region, but the other family (TIGR04303) has an intact radical SAM domain (pfam04055) that this "quasi-rSAM" protein lacks. A PqqD-family protein, TIGR04302, is always adjacent. 293 -275114 TIGR04305 fol_rel_CADD putative folate metabolism protein, CADD family. This protein family, related to but outside the family of PqqC proteins involved in PQQ biosynthesis, includes the well-studied Chlamydia protein CADD (Chlamydia protein Associating with Death Domains), which can induce apoptosis in a host cell. Other members of this family occur in Rickettsia and Wolbachia, unrelated in terms of phylogeny (both are alphaproteobacteria) but similar in living intracellularly. Local gene context in these species, although not in Trichodesmium or Nitrosomonas eutropha, suggests a role in folate metabolism, and some species with this protein lack FolE but have other folate synthesis proteins. 212 -213919 TIGR04306 salvage_TenA thiaminase II. The TenA protein of Bacillus subtilis and Staphylococcus aurues, and the C-terminal region of trifunctional protein Thi20p from Saccharomyces cerevisiae, perform cleavages on thiamine and related compounds to produce 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), a substrate a salvage pathway for thiamine biosynthesis. The gene symbol tenA, for Transcription ENhancement A, reflects a misleading early characterization as a regulatory protein. This family is related to PqqC from the PQQ biosynthesis system (see TIGR02111), heme oxygenase (pfam01126), and CADD (Chlamydia protein Associating with Death Domains), a putative folate metabolism enzyme (see TIGR04305). 208 -213920 TIGR04307 ProTailRpt proline-rich tail region repeat. This model describes a proline-rich tandem repeat of about 24 residues found in C-terminal regions of Gram-positive surface proteins with LPXTG sequences for processing and cell surface attachment by sortase. 23 -275115 TIGR04308 repeat_SSSPR51 surface protein repeat SSSPR-51. This repeat domain is designated SSRS51, Streptococcal and Staphylococcal Surface Protein Repeat of size 51. These repeats are homologous to the listerial repeats of pfam13461, but shorter on average by about 8 amino acids. Up to twelve tandem repeats can occur, on some of the longest proteins of their respective species. Nearly all member proteins carry the C-terminal sortase target sequence, LPXTG, recognizable by model TIGR01167. The repeat structure and probable surface location suggest a possible adhesion function. A protein with this class of repeats may have other classes as well. 48 -213922 TIGR04309 amanitin amanitin/phalloidin family toxin. Members of this family are ribosomally produced precursors of toxins produced by several mushrooms. These precursors undergo extensive post-translational modification to become amatoxins (e.g. alpha-amanitin) and phallotoxins (e.g. phalloidin). 33 -213923 TIGR04310 pantocin_A_pre pantocin A family RiPP. Members of this family are ribosomally-synthesized and posttranslationally-modified peptide (RiPP) precursors about 30 amino acids in length encoded in the vicinity of PaaA and PaaB homologs. Members include PaaP from Pantoea agglomerans, whose central tripeptide EEN appears to be the source of the mature product, pantocin A. Note, however, that the corresponding residues in Photobacterium sp. SKA34 and Photobacterium asymbiotica are EEK rather than EEN. This family, therefore, resembles the PQQ precursor PqqA as a peptide precursor of an extremely small mature product. 29 -275116 TIGR04311 rSAM_Geo_metal putative metalloenzyme radical SAM/SPASM domain maturase. This model describes a family of radical SAM/SPASM enzymes largely from the deltaproteobacteria. The family is most closely related to radical SAM enzyme family regularly in archaea in the vicinity of tungsten-containing oxidoreductases. A single member of the family in archaea may correspond to multiple tungsten enzymes, e.g. five in Pyrococcus furiosus. Therefore, the lack of a conserved gene neighborhood for members of this family in deltaprotebacteria suggests members may be involved in the maturation of multiple metalloenzymes. 423 -275117 TIGR04312 choice_anch_B choice-of-anchor B domain. This domain, about 385 amino acids long, can have either of at least two types of C-terminal sorting signal. Members from Shewanella and allies have the rhombosortase target domain GlyGly-CTERM (TIGR03501), while members of the Bacteroidetes have the Por secretion system C-terminal domain (TIGR04183). Most other members lack any C-terminal extension, but in most of those, the normal signal sequence is replaced by a lipoprotein signal sequence. Member sequences show a region of local similarity to the LVIVD repeat sequence (pfam08309). 364 -275118 TIGR04313 aro_clust_Mycop aromatic cluster surface protein. Members of this family are absolutely restricted to the Mollicutes (Mycoplasma and Ureaplasma). All have a signal peptide, usually of the lipoprotein type, suggesting surface expression. Most members have lengths of about 280 residues but some members have a nearly full-length duplication. The mostly nearly invariant residue, a Trp,is part of a strongly conserved 9-residue motif, [ND]-W-[LY]-[WF]-X-[LF]-X-N-[LI], where X usually is hydrophobic. Because the hydrophobic six-residue core of this motif almost always contains three to four aromatic residues, we name this family aromatic cluster surface protein. Multiple paralogs may occur in a given Mycoplasma, usually clustered on the genome. 293 -213927 TIGR04314 methano7heme methanogenesis multiheme c-type cytochrome. Members of this protein family are multiheme cytochrome c proteins of Methanosarcina acetivorans C2A and several other archaeal methanogens. All members have N-terminal signal peptides and are presumed to act in electron transfer reactions associated with methanogenesis. Putative heme-binding motifs include five (or six) CXXCH motifs, a CXXXCH motif, and a CXXXXCH motif. These proteins show multiple regions of local homology, in the same order, with multiheme cytochrome c proteins such as octaheme tetrathionate reductase from Shewanella. 494 -275119 TIGR04315 octaheme_Shew octaheme c-type cytochrome, tetrathionate reductase family. Members of this protein family bind heme covalently and contain eight (at least) CXXCH heme-binding motifs. A characterized member is the respiratory enzyme octaheme tetrathionate reductase from Shewanella. 430 -275120 TIGR04316 dhbA_paeA 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. Members of this family are 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EC 1.3.1.28), the third enzyme in the biosynthesis of 2,3-dihydroxybenzoic acid (DHB) from chorismate. The first two enzymes are isochorismate synthase (EC 5.4.4.2) and isochorismatase (EC 3.3.2.1). Synthesis is often followed by adenylation by the enzyme DHBA-AMP ligase (EC 2.7.7.58) to activate (DHB) for a non-ribosomal peptide synthetase. 250 -275121 TIGR04317 W_rSAM_matur tungsten cofactor oxidoreducase radical SAM maturase. Members of this family are radical SAM enzymes involved in the maturation of tungsten (W)-containing cofactors in the enzymes aldehyde ferredoxin oxidoreductase, formaldehyde ferredoxin oxidoreductase, and others, and tend to be encoded by an adjacent gene. 349 -275122 TIGR04318 lacto_ODC_hypo putative ornithine decarboxylase. In at least ten species of Lactobacillus, this close homolog to known ornithine decarboxylase occurs in a three-gene neighborhood, along with an amino acid permease family transporter and pyridoxal phosphate-dependent enyzme from the cystathionine gamma-lyase family. Species include L. acidophilus, L. amylovorus, L. crispatus, L. delbrueckii, L. farciminis, L. helveticus, L. johnsonii, etc. The combination of a decarboxylase with an antiporter in a two-gene system suggests a decarboxylation/antiport proton-motive cycle for transient resistance to acidic conditions. The substrate for this decarboxylase might be ornithine but is unknown. 695 -275123 TIGR04319 SerAla_Lrha_rpt surface protein repeat Ser-Ala-175. This serine and alanine-rich surface protein repeat, about 175 amino acids long, occurs up to nine times in surface proteins of some Lactobacillus strains, particularly in Lactobacillus rhamnosus. Members proteins have the N-terminal variant signal sequence described by TIGR03715 and C-terminal LPXTG signals for surface attachment by sortase. 175 -275124 TIGR04320 Surf_Exclu_PgrA SEC10/PgrA surface exclusion domain. This model describes a conserved domain found in surface proteins of a number of Firmutes. Many members have LPXTG C-terminal anchoring motifs and a substantial number have the KxYKxGKxW putative sorting signal at the N-terminus. The tetracycline resistance plasmid pCF10 in Enterococcus faecalis promotes conjugal plasmid transfer in response to sex pheromones, but PgrA/Sec10 encoded by that plasmid, a member of this family, specifically inhibits the ability of cells to receive homologous plasmids. The phenomenon is called surface exclusion. 356 -275125 TIGR04321 spiroSPASM spiro-SPASM protein. This three-domain protein is restricted to the spirochetes and widely distributed (excepting Borrelia). It has a conserved C-terminal SPASM domain, a 4Fe-4S binding domain shared by a number of peptide-modifying and heme-modifying radical SAM proteins. It has a central radical SAM domain, although half the members have lost the signature 4Fe-4S-binding Cys residues, fail to register with the radical SAM domain definition of pfam04055, and must be considered pseudo-SAM proteins. PSI-BLAST shows a relationship between the N-terminal domain and various predicted glycosyltransferases (e.g. Bacillus subtilis SpsF) and cytidyltransferases. In some Treponema species, this protein appears to split into two tandem genes. 508 -275126 TIGR04322 rSAM_QueE_Ecoli putative 7-cyano-7-deazaguanosine (preQ0) biosynthesis protein QueE. Members of this radical SAM domain protein family appear to be the E. coli form of the queuosine biosynthesis protein QueE. QueE is involved in making preQ0 (7-cyano-7-deazaquanine), a precursor of both the bacterial/eukaryotic modified tRNA base queuosine and the archaeal modified base archaeosine. Members occur in species that lack known forms of QueE but usually are not found in queuosine biosynthesis operons. Members of this family tend to form bi-directional best hit matches to members of known (TIGR03365) and putative (TIGR03963) QueE families from other lineages. 215 -213936 TIGR04323 SpoChoClust_1 sporadic carbohydrate cluster protein, LIC12192 family. Members of this uncharacterized protein family mark a rare but widely distributed carbohydrate biosynthesis cluster found sporadically in genera Bradyrhizobium, Leptospira, Magnetospirillum, Oscillatoria, Prochlorococcus, etc. 122 -275127 TIGR04324 SpoChoClust_2 sporadic carbohydrate cluster 2OG-Fe(II) oxygenase. This family, related to streptomycin biosynthesis protein StrG and to phytanoyl-CoA dioxygenase, belongs to the 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily, which includes not just dioxygenases, but also some chlorinating enzymes involved in natural product biosynthesis. Most members of this family are adjacent to a member of TIGR04323, and occur in a larger carbohydrate biosynthesis cluster found sporadically in genera Bradyrhizobium, Leptospira, Magnetospirillum, Oscillatoria, Prochlorococcus, etc. 248 -275128 TIGR04325 MTase_LIC12133 putative methyltransferase, LIC12133 family. Members of this family tend to occur next to glycosyltransferases and other characteristic enzymes of O-antigen biosynthetic regions. The founding member is LIC12133 from Leptospira interrogans serovar Copenhageni. PSI-BLAST reveals distant homology to known SAM-dependent methyltransferases, as in pfam13489. 235 -275129 TIGR04326 O_ant_LIC13510 surface carbohydrate biosynthesis protein, LIC13510 family. This uncharacterized, rare protein occurs in the highly variable O-antigen region of some strains of Leptospira, as well as strains of and serves as a phylogenetic marker for the likely presence of six additional proteins, including an activated sugar-nucleotidyltransferase, an activated sugar epimerase and a dehydratase, an aldolase, and a DegT family aminotransferase. The patterns suggests a role in preparing a novel sugar for O-antigen incorporation. 602 -275130 TIGR04327 OMP_LA_2444 outer membrane protein, LA_2444/LA_4059 family. Members of this family are predicted outer membrane proteins, apparently restricted to the Leptospiraceae (Leptospira and Leptonema). 291 -213941 TIGR04328 cas4_PREFRAN CRISPR-associated protein Cas4, subtype PREFRAN. Members of this family are the Cas4 protein of a novel CRISPR subtype, PREFRAN, found in Prevotella bryantii B14, Prevotella disiens FB035-09AN, Francisella tularensis subsp. novicida, Francisella philomiragia, Butyrivibrio proteoclasticus B316, Helcococcus kunzii ATCC 51366, etc. 178 -213942 TIGR04329 cas1_PREFRAN CRISPR-associated endonuclease Cas1, subtype PREFRAN. Members of this family are the Cas1 endonuclease of a novel CRISPR subtype, PREFRAN, found in Prevotella bryantii B14, Prevotella disiens FB035-09AN, Francisella tularensis subsp. novicida, Francisella philomiragia, Butyrivibrio proteoclasticus B316, Helcococcus kunzii ATCC 51366, etc. 317 -275131 TIGR04330 cas_Cpf1 CRISPR-associated protein Cpf1, subtype PREFRAN. This family is the long protein of a novel CRISPR subtype, PREFRAN, which is most common in Prevotella and Francisella, although widely distributed. The PREFRAN type has Cas1, Cas2, and Cas4, but lacks the helicase Cas3 and endonuclease Cas3-HD. 1286 -275132 TIGR04331 o_ant_LIC12162 putative transferase, LIC12162 family. This protein family shows C-terminal sequence similarity to various surface carbohydrate biosynthesis enzymes: spore coat polysaccharide biosynthesis protein SpsB, UDP-N-acetyl-D-glucosamine 2-epimerase, lipid A disaccharide synthetase LpxB, etc. It may occur in O-antigen biosythesis regions. 585 -275133 TIGR04332 gamma_Glu_sys poly-gamma-glutamate system protein. Poly(gamma-glutamic acid), or PGA, is an extracellular structural polymer found in Bacillus subtilis and a number of other species. PGA is sometimes capsule-forming, sometimes secretory, and may be produced by Gram-positive (single plasma membrane) and Gram-negative (inner and outer membranes), so export and/or attachment machinery may differ from system to system. Members of this family occur in a subset of PGA operons, in lineages that include Francisella, Leptospira, Treponema, Thermotoga, Fusobacterium, and Clostridium, among others. Because gene symbols pgsWXYZ are not yet in use, we suggest pgsW, as one of a series of poly-gamma-glutamate synthesis auxiliary proteins. 307 -213946 TIGR04333 Clo7Bot_mod_Cys Cys-rich peptide, Clo7bot family. Members of this protein family range in size from 34 to 53 residues, including from four to seven Cys residues. Multiple strains of Clostridium botulinum show seven tandem members upstream of a radical SAM/SPASM domain protein likely to act as a ribosomal natural product maturase. By analogy to subtilosin A, the Cys residues are likely targets for modifications that may introduce new crosslinks. Across multiple strains of Clostridium botulinum and C. sporogenes, the adjacent radical SAM enzyme is nearly invariant. 34 -213947 TIGR04334 rSAM_Clo7bot radical SAM/SPASM domain Clo7bot peptide maturase. In multiple strains of Clostridium botulinum, this single radical SAM domain protein occurs next to a tandem array of seven homologous Cys-rich small peptides (see TIGR04333). Because this radical SAM enzyme contains the SPASM domain, associated with peptide modification, it is proposed to modify all seven C. botulinum targets, hence the name Clo7bot for this system. Suggested gene symbol is ctpM (Clostridial Tandem Peptide Maturase). [Protein fate, Protein modification and repair] 440 -275134 TIGR04335 AmmeMemoSam_A AmmeMemoRadiSam system protein A. Members of this protein family belong to the same domain family as AMMECR1, a mammalian protein named for AMME - Alport syndrome, Mental Retardation, Midface hypoplasia, and Elliptocytosis. Members of the present family occur as part of a three gene system with a homolog of the mammalian protein Memo (Mediator of ErbB2-driven cell MOtility), and an uncharacterized radical SAM enzyme. 174 -275135 TIGR04336 AmmeMemoSam_B AmmeMemoRadiSam system protein B. Members of this protein family belong to the same domain family as the mammalian protein Memo (Mediator of ErbB2-driven cell MOtility). Members of the present family occur as part of a three gene system with an uncharacterized radical SAM enzyme and a homolog of the mammalian protein AMMECR1, a mammalian protein named for AMME - Alport syndrome, Mental Retardation, Midface hypoplasia, and Elliptocytosis. Memo in humans has protein-protein interaction activity with binding of phosphorylated Try, but members of this family may be active as enzymes, as suggested by homology to a class of nonheme iron dioxygenases. 269 -275136 TIGR04337 AmmeMemoSam_rS AmmeMemoRadiSam system radical SAM enzyme. Members of this protein family are uncharacterized radical SAM enzymes that occur in a prokaryotic three-gene system along with homologs of mammalian proteins Memo (Mediator of ErbB2-driven cell MOtility) and AMMERCR1 (Alport syndrome, Mental Retardation, Midface hypoplasia, and Elliptocytosis). Among radical SAM enzymes that have been experimentally characterized, the most closely related in sequence include activases of pyruvate formate-lyase and of benzylsuccinate synthase. 349 -275137 TIGR04338 HEXXH_Rv0185 putative metallohydrolase, TIGR04338 family. This protein family is restricted to the Actinomycetales, including Mycobacterium, Rhodococcus, Nocardia, Gordonii, and others. The invariant motif HEXXH, at the core of the best conserved region in the protein, suggests metallohydrolase activity, as does local sequence similarity in this region to other metallohydrolases. 159 -213952 TIGR04339 PQQ_MSMEG_3727 Actinobacterial PQQ system protein. Members of this protein family are restricted to members of the Actinobacteria (Mycobacterium smegmatis, Streptomyces hygroscopicus, Geodermatophilus obscurus, Pseudonocardia dioxanivorans, Saccharomonospora marina, etc) that synthesize PQQ. This small protein, 155 amino acids long on average, is found regularly next to a much larger protein, a PQQ-dependent oxidoreductase, and might be a companion subunit or an accessory protein such as chaperone involved in cofactor insertion. 151 -213953 TIGR04340 rSAM_ACGX radical SAM/SPASM domain protein, ACGX system. Members of this protein family are radical SAM/SPASM domain proteins likely to be involved in the modification of small, Cys-rich peptides. Members of the family of proposed target sequences, TIGR04341, average 75 amino acids in length and average six instances of the motif ACGX, where X is A, S, or T. 341 -213954 TIGR04341 target_ACGX ACGX-repeat peptide. Members of this family average 75 amino acids in length and average six instances of the motif ACGX, where X is A, S, or T. Members are proposed target sequences for modification by adjacent radical SAM/SPASM domain proteins (family TIGR04340). Cys residues adjacent to Gly residues are common as proposed sites for modification by radical SAM enzymes. 57 -275138 TIGR04342 EXLDI EXLDI protein. The most conserved region in this protein family is the C-terminal pentapeptide, with motif ExLDI. Members from the Firmicutes average about 120 amino acids in length, while members from the Actinobacteria have an additional 45-residue amino-terminal segment not included in the model. In it is suggested that the member from Streptococcus mutans UA159, and its homologs, participate in bacteriocin production, export, or immunity. 124 -275139 TIGR04343 egtE_PLP_lyase ergothioneine biosynthesis PLP-dependent enzyme EgtE. Members of this protein family are the pyridoxal phosphate-dependent enzyme EgtE, which catalyzes the final step in the biosynthesis of ergothioneine. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 370 -275140 TIGR04344 ovoA_Nterm 5-histidylcysteine sulfoxide synthase. Ovothiol A is N1-methyl-4-mercaptohistidine. In the absence of S-adenosylmethione, a methyl donor, the intermediate produced is 4-mercaptohistidine. In both Erwinia tasmaniensis and Trypanosoma cruzi, a protein occurs with 5-histidylcysteine sulfoxide synthase activity, but these two enzymes and most homologs share an additional C-terminal methyltransferase domain. Thus OvoA may be a bifunctional enzyme with 5-histidylcysteine sulfoxide synthase and 4-mercaptohistidine N1-methyltranferase activity. This model describes the 5-histidylcysteine sulfoxide synthase domain, a homolog of the ergothioneine biosynthesis protein EgtB. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 442 -275141 TIGR04345 ovoA_Cterm putative 4-mercaptohistidine N1-methyltranferase. Ovothiol A is N1-methyl-4-mercaptohistidine. In the absence of S-adenosylmethione, a methyl donor, the intermediate produced is 4-mercaptohistidine. In both Erwinia tasmaniensis and Trypanosoma cruzi, a protein occurs with 5-histidylcysteine sulfoxide synthase activity, but these two enzymes and most homologs share an additional C-terminal methyltransferase domain. Thus OvoA may be a bifunctional enzyme with 5-histidylcysteine sulfoxide synthase and 4-mercaptohistidine N1-methyltranferase activity. This model describes C-terminal putative 4-mercaptohistidine N1-methyltranferase domain. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 242 -275142 TIGR04346 DotA_TraY conjugal transfer/type IV secretion protein DotA/TraY. Members of this protein family include transfer protein TraY of IncI1 plasmid R64 and DotA (defect in organelle trafficking A) of Legionella pneumophila. 652 -275143 TIGR04347 pseudo_SAM_Halo pseudo-rSAM protein/SPASM domain protein. Members of this family all have a C-terminal SPASM domain (see model TIGR04085), a region usually found as a C-terminal second 4Fe-4S domain of radical SAM domain (see pfam04055) proteins. A majority of rSAM/SPASM proteins modify ribosomally produced peptides. In a few members of this family, the key Cys residues of the radical SAM domain have been lost, making this a pseudo-rSAM family. Members of this family are restricted so far to Haloarchaea, always occur next a member of family TIGR04031, and are often accompanied by another rSAM/SPASM domain protein. The function of this two or three gene cassette is unknown. 390 -275144 TIGR04348 TIGR04348 putative glycosyltransferase, TIGR04348 family. This putative glycosyltransferase is found in marine bacteria such as Marinobacter and soil bacteria such as Anaeromyxobacter, but does not seem to occur in known pathogenic bacteria. 310 -275145 TIGR04349 rSAM_QueE_gams putative 7-cyano-7-deazaguanosine (preQ0) biosynthesis protein QueE, gammaproteobacterial type. Members of this radical SAM domain protein family appear to be a form of the queuosine biosynthesis protein QueE. QueE is involved in making preQ0 (7-cyano-7-deazaquanine), a precursor of both the bacterial/eukaryotic modified tRNA base queuosine and the archaeal modified base archaeosine. Members occur in preQ0 operons species that lack members of related protein family TIGR03365. 210 -275146 TIGR04350 C_S_lyase_PatB putative C-S lyase. Members of this subfamily are probable C-S lyases from a family of pyridoxal phosphate-dependent enzymes that tend to be (mis)annotated as probable aminotransferases. One member is PatB of Bacillus subtilis, a proven C-S-lyase. Another is the virulence factor cystalysin from Treponema denticola, whose hemolysin activity may stem from H2S production. Members of the seed alignment occur next to examples of the enzyme 5-histidylcysteine sulfoxide synthase, from ovothiol A biosynthesis, and would be expected to perform a C-S cleavage of 5-histidylcysteine sulfoxide to leave 1-methyl-4-mercaptohistidine (ovothiol A). 384 -213964 TIGR04351 TOMM_nitrile_2 putative TOMM peptide. Members of this family of short peptides average about 110 amino acids in length, with greatest variability in the last thirty. The conserved region resembles the alpha subunit of nitrile hydratase, as with the NHLP leader peptide domain (TIGR03793), and members usually are found near a cyclodehydratase (maturase) enzyme, marking these as like thiazole/oxazole-modified microcins (TOMM), but these precursor forms lack the GlyGly cleavage motif that marks the clear end of a leader peptide region. Genomes with this system include Streptomyces clavuligerus ATCC 27064, Verrucosispora maris AB-18-032, and Kitasatospora setae KM-6054. 48 -275147 TIGR04352 HprK_rel_A HprK-related kinase A. A number of protein families resemble HPr kinase (see TIGR00679) but do not belong to that system. They include this family, which appears instead to be the marker for a different type of gene neighborhood, in which one of the conserved neighboring proteins resembles (but is distinct from) PqqD. 280 -275148 TIGR04353 PqqD_rel_X PqqD family protein, HPr-rel-A system. Members of this protein show distant homology to PqqD, and belong to a three-gene cassette that included the HPr kinase related protein family of TIGR04352. The role of the cassette, and of this protein, are unknown. 73 -275149 TIGR04354 amphi-Trp amphi-Trp domain. This domain usually comprises most of the span of bacterial or archaeal proteins with a length of about 90 amino acids. Some members, however, are extended by one or two copies of domain pfam07411 in the C-terminal region. No residue in this domain is invariant. A striking feature of this domain is a C-terminal region that alternates strongly charged with strongly hydrophobic residues and usually ends with a Trp residue, e.g. LEIEIEW or FEIKVRW, suggesting an amphipathic beta strand structure. We suggest the name amphi-Trp for this domain. Some members of this function occur regularly in genomic contexts that include putative kinases of unknown specificity related to (but distinct from) HPr kinase, a Ser-specific protein kinase. The function is unknown. 67 -275150 TIGR04355 HprK_rel_B HprK-related kinase B. Members of this protein family resemble (and often are misannotated as) HprK, the serine kinase/phosphatase of the phosphocarrier protein HPr. However, members do not occur with an HPr homolog, but instead as part of a distinctive gene cassette of unknown function. 351 -213969 TIGR04356 grasp_GAK ATP-grasp enzyme, GAK system. Members of this family are ATP-grasp family enzymes related to a number of characterized glutamate ligases, including the ribosomal protein S6 modification enzyme RimK. This group belongs to a conserved gene neighborhood that also features an HPr kinase-related protein (see TIGR04355). We assign this system the initial designation GAK, for Grasp (this ATP-grasp family enzyme), Amphipathic (for the member of family TIGR04354, designated Amphi-Trp), and Kinase, for the HPr-kinase homolog TIGR04355. 287 -275151 TIGR04357 CofD_rel_GAK CofD-related protein, GAK system. Members of this family are distantly related to CofD, the enzyme LPPG:FO 2-phospho-L-lactate transferase, involved in coenzyme F420 biosynthesis. This family appears to belong to a biosynthesis cassette of unknown function. 368 -275152 TIGR04358 XXXCH_domain XXXCH domain. Members of this family show C-terminal sequence similarity, perhaps indicating distant homology, to cytochrome c-prime (see pfam01322). However, the motif CxxCH is replaced by xxxCH. Genes for this protein occur in a sporadically distributed genome context, largely in deltaProteobacteria, in which an ATP-grasp family glutamate ligase homolog and a CofD (LPPG:FO 2-phospho-L-lactate transferase) homolog suggest a novel biosynthesis. 90 -275153 TIGR04359 TrbK_RP4 entry exclusion lipoprotein TrbK. The characterized model example of TrbK, from incompatibility group P (IncP) plasmid RP4, is an N-terminally processed lipoprotein, localized to the periplasmic face of the plasma membrane. TrbK prevents entry through conjugation by other IncP plasmids. Unrelated, uncharacterized proteins encoded in equivalent positions in other plasmid P-type conjugative transfer regions (e.g. TIGR04360) may have analogous functions. [Mobile and extrachromosomal element functions, Plasmid functions] 66 -275154 TIGR04360 other_trbK conjugative transfer region protein TrbK. Members of this family regularly are encoded between the TrbJ and TrbL proteins essential for P-type conjugal transfer, and therefore are designated TrbK. Positional analogy to family TIGR04359 (the entry exclusion lipoprotein TrbK of IncP plasmid RP4), which is a lipoprotein and not homologous, suggests this protein may also be involved in entry exclusion. Members of this family are small, with a non-lipoprotein signal peptide and a conserved disulfide bond. [Mobile and extrachromosomal element functions, Plasmid functions] 74 -275155 TIGR04361 TrbK_Ti entry exclusion protein TrbK, Ti-type. Members of this family are encoded between the genes for TrbJ and TrbL of P-type plasmid conjugal transfer systems, and therefore are TrbK, a member of a guild of unrelated TrbK protein families. The similarly located TrbK of plasmid RP4 (family TIGR04359) functions in entry exclusion, and the current family may as well, despite lacking any detectable homology. Members of this family include TrbK of the Ti plasmid from Agrobacterium, shown not to be required for transfer, which would be consistent with a role in entry exclusion rather than transfer itself. Li et al. cite unpublished results that showed an entry exclusion function for TrbK of the Ti plasmid. This small protein shares close C-terminal sequence homology to the much longer protein encoded by the neighboring gene TrbJ. [Mobile and extrachromosomal element functions, Plasmid functions] 62 -275156 TIGR04362 choice_anch_C choice-of-anchor C domain. This family describes an extracellular bacterial domain that occurs on a number of proteins with PEP-CTERM (exosortase recognition site) sequences at the C-terminus, as well some with an apparent alternate anchor sequence. Note that related pfam04862 (DUF642), as of release 26, is double the length of this model because it has two tandem regions homologous to this domain. pfam04862, in turn, belongs to a Pfam clan called the galactose-binding domain-like superfamily. 157 -275157 TIGR04363 LD_lanti_pre FxLD family lantipeptide. Members of this protein family occur with a cassette of lanthionine-type peptide modification enzymes. Members are small (about 60 amino acids long), rich in Cys, and variable in copy number per genome (from one to three). These features suggest that members of this family are modified to become lantipeptides, although not necessarily a lantibiotic. There is no GlyGly cleavage motif to separate a leader peptide from core region.The considerable abundance in Streptomyces and relatively strong consideration hints at a non-antibiotic function. The motif FxLD in the N-terminal region is nearly invariant. 37 -275158 TIGR04364 methyltran_FxLD methyltransferase, FxLD system. Members of this family resemble occur regularly in the vicinity of lantibiotic biosynthesis enzymes and their probable target, the FxLD family of putative ribosomal natural product precursor (TIGR04363). Members resemble protein-L-isoaspartate O-methyltransferase (TIGR00080) and a predicted methyltranserase, TIGR04188, of another putative peptide modification system. 394 -213978 TIGR04365 spare_glycyl autonomous glycyl radical cofactor GrcA. This small protein, previously designated YfiD in E. coli, is closely homologous to pyruvate formate_lyase (PFL) in a region surrounding the stable glycyl radical that is prepared by the action of pyruvate formate-lyase activase, a radical SAM enzyme. When damage at the site of this radical breaks the main chain of PFL, this protein acts as a spare part that reintroduces the needed stable glycyl radical. Cutoffs for this model are set to exclude a set of closely related phage proteins that appear to have a corresponding function. 124 -275159 TIGR04366 cupin_WbuC cupin fold metalloprotein, WbuC family. Members of this family show sequence similarity to cupin fold proteins (see pfam07883), including conserved His residues likely to serve as metal-binding ligands. Many members occur in bacterial O-antigen biosynthesis regions. Some members have acquired the gene symbol wbuC (e.g. Jarvis, et al, 2011), but publications using this term do not ascribe a function. 132 -275160 TIGR04367 HpnR_B12_rSAM hopanoid C-3 methylase HpnR. Members of this are family are a B12-binding domain/radical SAM domain protein required for 3-methylhopanoid production. Activity was confirmed by mutant phenotype by disrupting this gene in Methylococcus capsulatus strain Bath. This protein family should only occur in genomes that encode a squalene-hopene cyclase (see TIGR01507). [Fatty acid and phospholipid metabolism, Biosynthesis] 490 -275161 TIGR04368 Glu_2_3_NH3_mut glutamate 2,3-aminomutase. Members of this family are glutamate 2,3-aminomutase, a radical SAM enzyme with a pyridoxal phosphate group. It is closely related to lysine 2,3-aminomutase, but distinguished by architecture (longer N-terminal region, shorter C-terminal region) and replacement of key lysine-binding residues Asp293 and Asp330 (inferred from the crystal structure) by glutamate-binding residues Lys and Asn. Activity was demonstrated for sequences from Clostridium difficile, Thermoanaerobacter tengcongensis MB4, and Syntrophomonas wolfei str. Goettingen. The action of this enzyme creates beta-glutamate, an osmolyte. [Cellular processes, Adaptations to atypical conditions] 404 -275162 TIGR04369 fusion_not_SelD oxidoreductase/SelD-related fusion protein. Some selenium donor proteins (selenide,water dikase, product of the selD gene, model TIGR00476) are fusion proteins with an N-terminal extension described by model TIGR03169. Members of this family have a C-terminal region similar to yet outside the scope of the SelD model, fused to an N-terminal region similar to but outside the scope of TIGR03169. 702 -275163 TIGR04370 glyco_rpt_poly oligosaccharide repeat unit polymerase. Members of this subfamily of highly hydrophobic proteins, with few highly conserved residues, all may act to polymerize the oligosaccharide repeat units of surface polysaccharides, including O-antigen in Gram-negative bacteria such as Leptospira (assign gene symbol wzy) and capsular polysaccharide in Gram-positive bacteria such as Streptococcus. O-antigen biosynthesis enzymes produce a repeat unit, usually an oligosaccharide, which itself is polymerized. O-antigen polymerase, usually designated Wzy. This family bears homology to the O-antigen ligase WaaL, but known examples of WaaL fall outside the bounds defined here. This model is much broader than pfam14296. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 392 -275164 TIGR04371 methyltran_NanM putative sugar O-methyltransferase. Members of this family appear to be SAM-dependent O-methyltransferases acting on sugars, based on iterated sequence searches and gene context. Members occur in Leptospira O-antigen regions, as well NanM from the biosynthesis cluster for nanchangmycin, which produces 4-O-methyl-L-rhodinose as an intermediate. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 273 -275165 TIGR04372 glycosyl_04372 putative glycosyltransferase, TIGR04372 family. This domain occurs in proteins of various lengths, in contexts that include O-antigen biosynthesis regions of various Leptospira species. Hits to this model and PSI-BLAST analysis suggest distant sequence similarity to family 9 glycosyltransferases (pfam01075), including ADP-heptose:LPS heptosyltransferase (RfaF), an enzyme involved in LPS inner core region biosynthesis. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 205 -275166 TIGR04373 egtB_X_signatur EgtB-related enzyme signature domain. This model represents a signature C-terminal region of a distinct clade in the EgtB subfamily, other members of which participate in ergothioneine biosynthesis 50 -275167 TIGR04374 small_w_EgtBD hercynine metabolism small protein. Hercynine is the betaine (trimethylated amino group) form of histidine. This small protein occurs in a conserved four-gene cyanobacterial cassette along with a EgtD, the methyltransferase that converts histidine to hercynine, and an EgtB homolog as in ergothioneine biosynthesis, likely to attach some thiol through its sulfur to the imidazole ring. 73 -275168 TIGR04375 cyano_w_EgtBD hercynine metabolism protein. Hercynine is the betaine (trimethylated amino group) form of histidine. This protein occurs in a conserved four-gene cyanobacterial cassette along with a EgtD, the methyltransferase that converts histidine to hercynine as in ergothioneine biosynthesis, an EgtB homolog that is likely to attach some thiol (e.g. gamma-glutamyl-cysteine) through its sulfur to the hercynine imidazole ring, and a small protein of unknown function (TIGR04374). Members are distantly related to phage shock protein A (PspA). 154 -275169 TIGR04376 TIGR04376 TIGR04376 family protein. Members of this protein family resemble TIGR04375 and, more distantly, to phage shock protein A (PspA). Members are restricted to the Cyanobacteria. 189 -275170 TIGR04377 myo_inos_iolD 3,5/4-trihydroxycyclohexa-1,2-dione hydrolase. Members of this protein family, 3,5/4-trihydroxycyclohexa-1,2-dione hydrolase (iolD), represent one of eight enzymes in a pathway converting myo-inositol to acetyl-CoA. IolD hydrolyzes the cyclic molecule 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione to yield 5-deoxy-D-glucuronic acid. TPP is a cofactor. [Energy metabolism, Sugars] 615 -275171 TIGR04378 myo_inos_iolB 5-deoxy-glucuronate isomerase. Members of this protein family, 5-deoxy-glucuronate isomerase (iolB), represent one of eight enzymes in a pathway converting myo-inositol to acetyl-CoA. [Energy metabolism, Sugars] 247 -275172 TIGR04379 myo_inos_iolE myo-inosose-2 dehydratase. Members of this family include the enzyme myo-inosose-2 dehydratase, product of the gene iolE, as found in inositol utilization cassettes in many species. [Energy metabolism, Sugars] 290 -275173 TIGR04380 myo_inos_iolG inositol 2-dehydrogenase. All members of the seed alignment for this model are known or predicted inositol 2-dehydrogenase sequences co-clustered with other enzymes for catabolism of myo-inositol or closely related compounds. Inositol 2-dehydrogenase catalyzes the first step in inositol catabolism. Members of this family may vary somewhat in their ranges of acceptable substrates and some may act on analogs to myo-inositol rather than myo-inositol per se. [Energy metabolism, Sugars] 330 -275174 TIGR04381 HTH_TypR TyrR family helix-turn-helix domain. This model describes the C-terminal DNA-binding helix-turn-helix domain of several regulators of aromatic amino acid metabolism. Examples include TyrR in Escherichia coli and PhhR in Pseudomonas putida. Most members of this family have a sigma-54 interaction domain. [Regulatory functions, DNA interactions] 49 -275175 TIGR04382 myo_inos_iolC_N 5-dehydro-2-deoxygluconokinase. All members of the seed alignment for this model are translated from the iolC gene of known or putative inositol catabolism operons. Members with characterized function are 5-dehydro-2-deoxygluconokinase, the enzyme catalyzing the fifth step in degradation from myo-inositol or closely related compounds. Note that many members of this family are fusion proteins with an additional C-terminal domain, of unknown function, described by pfam09863. [Energy metabolism, Sugars] 309 -275176 TIGR04383 acidic_w_LPXTA processed acidic surface protein. Members of this family are acidic surface proteins with an N-terminal signal peptide and a variant C-terminal sortase recognition sequence, LPXTA rather than LPXTG. The N-terminal region past the signal peptide is repeated a second or third time in many members of this family. Members occur in Firmicutes, encoded next to a dedicated sortase related to SrtC that assembles pilins, suggesting that this protein serves a structural rather than enzymatic role. Processing by the neighboring sortase may result in polymerization as well as surface attachment. [Cell envelope, Surface structures] 316 -275177 TIGR04384 putr_carbamoyl putrescine carbamoyltransferase. Members of this family are putrescine carbamoyltransferase (EC 2.1.3.6). There is some overlapping specificity with ornithine carbamoyltransferase (EC 2.1.3.3). The gene regularly is found next to agmatine deiminase and a carbamate kinase, suggesting a conserved catabolic agmatine deiminase pathway. [Energy metabolism, Amino acids and amines] 330 -275178 TIGR04385 B12_rSAM_cofa1 putative variant cofactor biosynthesis B12-binding domain/radical SAM domain protein 1. Members of this protein family are one of two tandem B12-binding domain/radical SAM domain proteins that occur in a genome context with a pair of homologs to ThiC (phosphomethylpyrimidine synthase, EC 4.1.99.17), an enzyme that performs a complex rearrangement involved in thiamin biosynthesis, and a putative CobT (nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase), an enzyme of cobalamin biosynthesis. 438 -275179 TIGR04386 ThiC_like_1 ThiC-like protein 1. Members of this protein family closely resemble ThiC, an enzyme that performs a complex rearrangement during thiamin biosynthesis, but instead occur as one of two adjacent additional paralogs to bona fide ThiC, in a conserved gene neighborhood with a pair of B12 binding domain/radical SAM domain proteins. Members of the ThiC family are non-canonical radical SAM enzymes, using a C-terminal Cys-rich motif to ligand a 4Fe-4S cluster that cleaves S-adenosylmethionine (SAM), but that sequence region does not belong to pfam04055. 426 -275180 TIGR04387 capsid_maj_N4 major capsid protein, N4-gp56 family. Members of this family are phage major capsid proteins as found in phage N4 (a double-stranded DNA virus) plus many additional lytic phage and integrated prophage regions. [Mobile and extrachromosomal element functions, Prophage functions] 315 -275181 TIGR04388 Lepto_longest putative large structural protein. Members of this family are restricted so far to the lineage Leptospira, where they may be the longest protein encoded by the genome. Two or three paralogs are often found. The seed alignment for this model includes sequences with significant length variability, and stops adjacent to an intein feature most full-length members of this family share. Oddly, members closely related in sequence up to the start of the intein (see TIGR01445) usually show very little sequence similarity C-terminal to the end of the intein (see TIGR01443). [Unknown function, General] 1134 -275182 TIGR04389 Lepto_lipo_1 lipoprotein, Leptospiral tandem type. Members of this family are lipoproteins restricted (so far) to the genus Leptospira, sometimes with several paralogs clustered with each other, such as four in a row (out of six) in Leptospira interrogans str. UI 13372. The tandem set may be co-clustered with a putative structural protein that is usually the longest encoded by the leptospiral genome (and that often is an intein-containing protein). [Cell envelope, Other] 201 -275183 TIGR04390 OMP_YaiO_dom outer membrane protein, YaiO family. Members of this family share a domain of bacterial outer membrane beta barrel, up to the protein C-terminal residue (usually Phe or Trp). The member YaiO was shown experimentally to be localized to the outer membrane. [Unknown function, General] 230 -275184 TIGR04391 CcmD_alt_fam CcmD family protein. Members of this protein family are small (typically less than 50 amino acids in length), with the first half highly hydrophobic like transmembrane alpha helices and containing a nearly invariant tyrosine residue. Members from the Desulfovibrionales appear in the position of ccmD of system I c-type cytochrome biogenesis operons (see pfam04995). This family and pfam04995 appear very similar in sequence properties, but the very low level of actual sequence identify makes it unclear that the similarity reflects homology per se. 36 -275185 TIGR04392 haoB_nitrify hydroxylamine oxidation protein HaoB. Members of this family occur as the HaoB (hydroxylamine oxidation B) protein encoded next to the homotrimeric HaoA, hydroxylamine oxidoreductase, a protein with eight heme groups. It appears all species with this enzyme are nitrifying bacteria. 312 -275186 TIGR04393 rpt_T5SS_PEPC T5SS/PEP-CTERM-associated repeat. This model describes a repeat about 50 amino acids in length, appearing sometimes more than ten times in tandem in a single protein. Most proteins with this repeat have a C-terminal autotransporter domain (TIGR01414, pfam03797) and/or an N-terminal type V secretion system signal peptide (pfam13018), while others instead have a C-terminal PEP-CTERM domain (TIGR02595). 49 -275187 TIGR04394 choline_CutC choline trimethylamine-lyase. Members of this family, homologs to pyruvate formate-lyases and benzylsuccinate synthases, are glycine radical enzymes that appear to act as choline TMA-lyase, that is, to perform a C-N bond cleavage turning choline into trimethylamine (TMA) plus acetaldehyde. The gene symbol is cutC, for choline utilization. The activase, CutD, is a radical SAM enzyme. [Energy metabolism, Amino acids and amines] 789 -275188 TIGR04395 cutC_activ_rSAM choline TMA-lyase-activating enzyme. Members of this family are CutD, a radical enzyme that serves as an activase for choline TMA-lyase, CutC. CutC is a glycyl radical enzyme related to pyruvate formate-lyase, and this enzyme, CutD, is related to pyruvate formate-lyase activase. [Energy metabolism, Amino acids and amines] 309 -275189 TIGR04396 surf_polysacc surface carbohydrate biosynthesis protein. This model describes an uncharacterized homology region found broadly in proteins of surface carbohydrate biosynthesis regions. This family shows distant homology to regions of family TIGR04326, of spore coat polysaccharide biosynthesis protein SpsB from Bacillus subtilis, etc. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 321 -275190 TIGR04397 SecA2_Bac_anthr accessory Sec system translocase SecA2, Bacillus type. Members of this family always occur in genomes with the preprotein translocase SecA (TIGR00963) and closely resemble it, hence the designation SecA2. However, this appears to mark a different type of accessory Sec system SecA2 (TIGR03714) from the serine-rich glycoprotein type found in Staphylococcus and Streptococcus, and the actinobacterial SecA2 (TIGR04221). This type occurs in species including Bacillus anthracis, Geobacillus thermoglucosidasius, Solibacillus silvestris, etc. [Protein fate, Protein and peptide secretion and trafficking] 774 -275191 TIGR04398 SLAP_DUP SLAP domain. This domain is duplicated in SlaP (S-layer assembly protein), a partner of SecA2 in the Bacillus anthracis type of accessory Sec system (see TIGR04397). The domain is found, either once or twice, in additional Firmicutes species. 125 -275192 TIGR04399 acc_Sec_SLAP accessory Sec system S-layer assembly protein. Members of this family, designated S-layer assembly protein (SlaP), occur next to a Bacillus anthracis-type accessory Sec system SecA2. . Members have two tandem copies of a duplicated domain (TIGR04398) that may also occur in other contexts. SlaP is found both free in the cytoplasm and membrane-associated. SecA2 and SlaP appear to work together to modify Sec for efficient S-layer secretion. [Protein fate, Protein and peptide secretion and trafficking] 288 -275193 TIGR04400 RK_trnsloc_Pase Arg-Lys translocation region protein phosphatase. The Sec-independent protein export system TAT, or twin-arginine translocation, is unusual in Leptospira, with Lys replacing Arg in the second position of the twin-Arg motif. This protein, restricted to Leptospira and showing distant homology to the phosphoserine phosphatases RsbU and SpoIIE, is always encoded immediately downstream of the tatC gene and appears to be part of the variant TAT system. It lacks a TAT signal itself, and so is more likely to be part of the Sec-independent translocation machinery than to be a substrate. The suggested symbol is rktP, for RK-Translocation Phosphatase. [Protein fate, Protein and peptide secretion and trafficking] 358 -275194 TIGR04401 TAT_Cys_rich twin-arginine translocation signal/Cys-rich four helix bundle protein. Members of this family average about 150 amino acids in length, beginning with a twin-arginine translocation signal sequence, then a His-rich spacer region, followed by a ~105-residue region in which thirteen positions are nearly invariant Cys residues. CDD (Conserved Domain Database) assigns members of this family to clan cl13994, the DUF326 superfamily, based on homology to PA2107 from Pseudomonas aeruginosa. PA2107 is a cysteine-rich four helical bundle protein, with solved structure PDB:3KAW. 150 -275195 TIGR04402 mob_CxxC_CxxC mobilome CxxCx(11)CxxC protein. Members of this family share twin CxxC motifs near the C-terminus, suggesting a DNA- or RNA-binding activity. The spacing between CxxC motifs is variable, from 11 to 16 amino acids. Members in general occur on plasmids or near other markers of lateral gene transfer (transposases, integrases, endonucleases, etc). 186 -275196 TIGR04403 rSAM_skfB sporulation killing factor system radical SAM maturase. Members of this family are a radical SAM enzyme of post-translational modification of ribosomally translated peptides. In Bacillus subtilis, the enzyme SkfB creates a sactipeptide (sulfur-to-alpha-carbon) crosslink of Cys-4 to Met-12 of the mature form of sporulation killing factor (SkfA). In Paenibacillus larvae subsp. larvae B-3650, the Met is replaced by Leu, so the modification must be different. SkfB has 2 4Fe-4S clusters, one in its radical SAM domain (pfam04055) and one in a region that somewhat resembles the SPASM domain (TIGR04085). 402 -275197 TIGR04404 RiPP_SkfA sporulation killing factor. Members of this family are ribosomally synthesized and post-translationally modified peptide natural products, modified by sulfur-to-alpha-carbon cross-link introduced by a radical SAM enzyme, SkfB (TIGR04403). 53 -275198 TIGR04405 SkfF sporulation killing factor system integral membrane protein. Members of this family, SkfF, occur only in cassettes of the sporulation killing factor system. This protein has multiple membrane-spanning domains and is encoded next to a protein with ATP-binding cassette (ABC) homology (SkfE), suggesting ABC transporter permease activity for this protein. 472 -275199 TIGR04406 LPS_export_lptB LPS export ABC transporter ATP-binding protein. Members of this fmaily are LptB, the ATP-binding cassette protein of an ABC transporter involved in lipopolysaccharide export. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 239 -275200 TIGR04407 LptF_YjgP LPS export ABC transporter permease LptF. Members of this family are LptF, one of homologous, two tandem-encoded permease genes of an export ATP transporter for lipopolysaccharide (LPS) assembly in most Gram-negative bacteria. The other permease subunit is LptG (TIGR04408). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 346 -275201 TIGR04408 LptG_lptG LPS export ABC transporter permease LptG. Members of this family are LptG, one of homologous, two tandem-encoded permease genes of an export ATP transporter for lipopolysaccharide (LPS) assembly in most Gram-negative bacteria. The other permease subunit is LptF (TIGR04407). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 351 -275202 TIGR04409 LptC_YrbK LPS export ABC transporter periplasmic protein LptC. Members of this family are LptC, a periplasmic protein tethered to the inner membrane in the lipopolysaccharide (LPS)exporter transenvelope complex (Lpt), which is responsible for conducting LPS to the outer leaflet of the outer membrane in most Gram-negative bacteria. LptC is homologous to LptA, another member of the transenvelope complex. Genes lptC and lptA are often adjacent. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 180 -275203 TIGR04410 Spiro_T2SS_lipo type II secretion system-associated lipoprotein. Members of this family occur only in spirochetes (Leptospira, Leptonema, Turneriella), as part of a type II secretion system (T2SS) cassette. Properly extended gene models always include an N-terminal signal sequence ending with a Cys residue, suggesting this small protein (about 100 amino acids) is a lipoprotein. 117 -275204 TIGR04411 T2SS_GspN_Lepto type II secretion system protein N, Leptospira/Geobacter-type. Members of this family are the N (or GspN) protein of type II secretion systems (T2SS) as found in Leptospira, Geobacter, Myxococcus, and several other genera. Sequence similarity to GspN as found in, say, Gammaproteobacteria (see pfam01203) is extremely remote. [Protein fate, Protein and peptide secretion and trafficking] 279 -275205 TIGR04412 T2SS_GspM_XcpZ type II secretion system protein M, XcpZ-type. Members of this family are a variant form of the type II secretion system (T2SS) protein M, GspM, as found in several species of Pseudomonas. Members, including XcpZ, are short relatives to most members of pfam04612 (as of release 26.0). 126 -275206 TIGR04413 MYXAN_cmx8 CRISPR type MYXAN-associated protein Cmx8. Members of this family occur only in CRISPR/cas loci of the MYXAN type, but are present in a minority of such systems. This protein appears to replace the MYXAN system Cas8a1/Csx13 protein (TIGR03485/TIGR03486), compared to which it shows similar length and composition but only about 12 percent sequence identity. 528 -275207 TIGR04414 hepto_Aah_TibC autotransporter strand-loop-strand O-heptosyltransferase. Both Aah (autotransporter adhesin heptosyltransferase) and TibC (tib is enterotoxigenic invasion locus B) are protein O-heptosyltransferases that act on multiple sites from repeat regions of proteins exported by autotransporters. Aah glycosylates AIDA, or autotransporter adhesin involved in diffuse adherence, TibC acts on TibA, but TibC can replace Aah. [Protein fate, Protein modification and repair] 374 -275208 TIGR04415 O_hepto_targRPT autotransporter passenger strand-loop-strand repeat. This model describes two tandem copies of a strand-loop-strand repeat that occurs often in type V secretion system (T5SS). These repeats usually occur in the passenger domain of the classical monomeric autotransporter. Proteins with this repeat often are encoded next to a member of family TIGR04414, the Aah/TibC family O-heptosyltransferase, and may be glycosylated in regions with this repeat. 38 -275209 TIGR04416 group_II_RT_mat group II intron reverse transcriptase/maturase. Members of this protein family are multifunctional proteins encoded in most examples of bacterial group II introns. These group II introns are mobile selfish genetic elements, often with multiple highly identical copies per genome. Member proteins have an N-terminal reverse transcriptase (RNA-directed DNA polymerase) domain (pfam00078) followed by an RNA-binding maturase domain (pfam08388). Some members of this family may have an additional C-terminal DNA endonuclease domain that this model does not cover. A region of the group II intron ribozyme structure should be detectable nearby on the genome by Rfam model RF00029. [Mobile and extrachromosomal element functions, Other] 354 -275210 TIGR04417 PFTS_polysacc polysaccharide biosynthesis PFTS motif protein. Members of this protein family are found in O-antigen biosynthesis loci in Leptospira, two tandem homologs in a polysaccharide biosynthesis region in the archaeon Methanoregula formicicum, in Rhizobium leguminosarum bv. trifolii WSM2297, etc. Members are more strongly conserved in the C-terminal region, where an invariant sequence PFTS is found. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 519 -275211 TIGR04418 PriB_gamma primosomal replication protein PriB. Members of this protein family are primosomal replication protein N (PriB), virtually always encoded between rpsF (ribosomal protein S6) and rpsR (ribosomal protein S18). Note that only this short form, as found primarily in the gamma-Proteobacteria, of the single-stranded DNA binding protein family (see model TIGR00621) may partner with PriA and be involved in priming for re-initiation of replication. [DNA metabolism, DNA replication, recombination, and repair] 96 -275212 TIGR04419 no_iron_rSAM HemN-related non-iron pseudo-SAM protein PsgB. Members of this protein family are related to radical SAM enzymes HemN (oxygen-independent coproporphyrinogen III oxidase) and HutW (a putative heme utilization enzyme) but lack the signature CxxxCxxC motif for 4Fe-4S binding. Members occur exclusively in Borrelia, which appears to live without iron, as the only radical SAM enzyme homolog in any Borrelia genome. We designate this enzyme PsgB (Pseudo-SAM, Genus Borrelia). 378 -275213 TIGR04420 Sec_Non_Glob Sec region non-globular protein. Members of this family occur only in the genus Leptospira, always encoded between genes for the YajC and SecD components of the Sec preprotein translocase. Sequences have an N-terminal signal peptide and a C-terminal transmembrane segment. Between these are regions of non-globular, low-complexity sequence including Lys-rich and Ser/Thr/Asn/Glu-rich regions. 241 -275214 TIGR04421 FemAB_IMCC1989 FemAB family protein. Members of this family are FemA/FemB family proteins from a cassette that some Leptospira have in their O-antigen biosynthesis regions and share with a cassette from gamma proteobacterium IMCC1989. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 345 -275215 TIGR04422 PLP_IMCC1989 putative PLP-dependent aminotransferase. Members of this family are PLP-dependent enzymes, probable aminotransferases of the DegT/DnrJ/EryC1/StrS. Members occur in some Leptospira have in their O-antigen biosynthesis regions and in a related cassette in gamma proteobacterium IMCC1989. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 315 -275216 TIGR04423 casT3_TIGR04423 CRISPR type III-associated protein, TIGR04423 family. Members of this protein family occur only in species with CRISPR systems, in the context of type III systems that resemble type III-A (MTUBE) and III-B (the RAMP module). It occurs in several species of Prevotella, Helicobacter, Campylobacter, and Bacteroides. 124 -275217 TIGR04424 metallo_McbB McbB family protein. This family includes the partially characterized zinc metalloprotein McbB, part of the maturase system for microcin B17, a thiazole/oxazole-modified microcin (TOMM). Other members of this family belong to very different gene neighborhoods. The Cys residues that act as zinc ligands are conserved in most members, but for rare members are jointly absent. 286 -275218 TIGR04425 P_lya_rel_AroB putative sugar phosphate phospholyase (cyclizing). Members of this family tend to be found in O-antigen biosynthesis regions. Members frequently are misidentified as the closely related 3-dehydroquinate synthase, AroB (see family TIGR01357), the phospholyase that converts 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate to 3-dehydroquinate during chorismate biosynthesis. Most bacteria with this enzyme have a true AroB in a chorismate biosynthesis gene cluster. [Biosynthesis of cofactors, prosthetic groups, and carriers, Lipoate] 348 -275219 TIGR04426 rSAM_desII TDP-4-amino-4,6-dideoxy-D-glucose deaminase. Members of this protein family, including DesII, are radical SAM enzymes that deaminate TDP-4-amino-4,6-dideoxy-D-glucose to TDP-3-keto-4,6-dideoxy-D-glucose. This is the fourth step of the six step pathway in Streptomyces venezuelae for synthesizing D-desosamine, or 3-(dimethylamino)-3,4,6-trideoxyglucose, a precursor for many macrolide antibiotics. 468 -275220 TIGR04427 PLP_DesI dTDP-4-dehydro-6-deoxyglucose aminotransferase. Members of this family are pyridoxal phosphate-dependent aminotransferases that convert TDP-4-keto-6-deoxy-D-glucose to the 4-amino sugar form, TDP-4-amino-4,6-dideoxy-D-glucose. In Streptomyces venezuelae, this enzyme is designated DesI, catalyzing the third of six steps in the biosynthesis of TDP-D-desosamine, a component of a number of different macrolide antibiotics made by that organism. Related proteins, scoring below the trusted cutoff, include sugar aminotranferases in O-antigen biosynthesis regions. 390 -275221 TIGR04428 B12_rSAM_trp_MT tryptophan 2-C-methyltransferase. Members of this family are the B12-binding domain/radical SAM domain enzyme tryptophan methyltransferase, named TsrT in the cassette for thiostrepton biosynthesis. Thiostrepton and related thiopeptides are synthesized by extensive modification of a ribosomally translated product, but this enzyme is involved in a pathway that converts a free Trp residue to a quinaldic acid moiety before it is appended. [Cellular processes, Toxin production and resistance] 545 -275222 TIGR04429 Phr_nterm Phr family secreted Rap phosphatase inhibitor. Phr peptides are short peptides, best conserved in their amino-terminal regions, that are almost always encoded immediately downstream of a Rap phosphatase. A portion of the Phr peptide is secreted, enters another cell, and forms a quorum-sensing system by inhibiting its Rap phosphatase partner. The set of Phr peptides recognized by this N-terminal region model is disjoint from the PhrC/PhrF set recognized by pfam11131. [Regulatory functions, Protein interactions] 28 -275223 TIGR04430 OM_asym_MlaD outer membrane lipid asymmetry maintenance protein MlaD. Members of this protein family are the MlaD (maintenance of Lipid Asymmetry D) protein of an ABC transport system that seems to remove phospholipid from the outer leaflet of the Gram-negative bacterial outer membrane (OM), leaving only lipopolysaccharide in the outer leaflet. The Mla locus has long been associated with toluene tolerance, consistent with the proposed role in retrograde transport of phospholipid and therefore with maintaining the integrity of the OM as a protective barrier. 146 -275224 TIGR04431 N6_acetyl_AAC6 aminoglycoside N(6')-acetyltransferase, AacA4 family. Members of this family are the aacA4 type of aminoglycoside N(6')-acetyltransferase (EC 2.3.1.82), an enzyme that modifies and inactivates aminoglycoside antibiotics such as kanamycin, neomycin, tobramycin, and amikacin. Members are regularly spread among pathogens into integron, transposon, and plasmid loci, with recombination often happening within the protein-coding region. Most of the region amino-terminal to the recombination site or sites was removed from this model. [Cellular processes, Toxin production and resistance] 184 -275225 TIGR04432 rSAM_Cfr 23S rRNA (adenine(2503)-C(8))-methyltransferase Cfr. This model identifies Cfr, a 23S rRNA methyltransferase, EC 2.1.1.224, responsible for a transmissible form of chloramphenicol/florfenicol resistance. It is closely related to RlmN (see TIGR00048), an adenine C2-methyltransferase that acts at the same site where Cfr acts as a C8-methyltransferase [Protein synthesis, tRNA and rRNA base modification] 341 -275226 TIGR04433 UrcA_uranyl UrcA family protein. Members of this family feature an N-terminal signal sequence, small size, and two invariant Cys residues, 10-20 residues apart. One member of this family, UrcA from the aerobic bacterium Caulobacter crescentus, is expressed so highly in response to uranium, but not other heavy metals, that a genetically engineered strain expressing green fluorescent protein in place of UrcA serves as a biodetector for micromolar uranyl ion. Caulobacter crescentus tolerates high levels of U(VI) exposure by mineralizing the uranium. UrcA and its homologs may participate in such a process. 91 -275227 TIGR04434 rSAM_Pput_1520 B12-binding domain/radical SAM domain protein, Pput_1520 family. Members of this family are radical SAM domain (pfam04055) enzymes with an N-terminal B12-binding domain (pfam02310), as is fairly common for radical SAM enzymes with lipid substrates. However, both domains as found in this family seem to be long-branch. The function is unknown, but all cases a PLP-dependent enzyme (a cysteine desulfurase homolog) is found nearby. 515 -275228 TIGR04435 restrict_AAA_1 restriction system-associated AAA family ATPase. Members of this family are AAA family ATPases by homology. They occur regularly in a conserved gene neighborhood with the restriction (R), modification (M), and specificity (S) proteins of an apparent type I restriction enzyme system, plus one additional uncharacterized protein. It is not clear whether members of this family contribute to restriction per se, or to another process such as transfer of mobile elements. 555 -275229 TIGR04436 SpoChoClust_3 putative 2OG-Fe(II) oxygenase. This family, related to streptomycin biosynthesis protein StrG and to phytanoyl-CoA dioxygenase, belongs to the 2-oxoglutarate and Fe(II)-dependent oxygenase clan, which includes not just dioxygenases such as phytanoyl-CoA dioxygenase PhyH, but also some chlorinating enzymes involved in natural product biosynthesis. Members of this family occur so far only in O-antigen biosynthesis regions of select Leptospira, and include an ~80 residue additional C-terminal region shared by no other proteins. 300 -275230 TIGR04437 WaaZ_KDO_III Kdo-III transferase WaaZ. Members of this family are WaaZ, or Kdo-III transferase. This enzyme, present in some strains of E. coli and its allies but not others, performs a non-stoichiometric addition of a third 3-deoxy-D-manno-oct-2-ulosonic acid (KDO-III) onto some fraction of KDO-II in the lipopolysaccharide (LPS) inner core. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 252 -275231 TIGR04438 small_Trp_rich small Trp-rich protein. Members of this bacterial protein family average 80 residues in length, and average nearly 6 Trp residues (two of which are invariant) in the first 45, which are strongly hydrophobic. Past this region, the protein is highly charged, with large numbers of Lys, Arg, Asp, and Glu residues. Members usually are divergently transcribed from a gene encoding a c-type cytochrome. 76 -275232 TIGR04439 histamin_N_OH putative histamine N-monooxygenase. Members of this family are involved in synthesizing N-hydroxyhistamine as a precursor to acinetobactin, a siderophore found in Acinetobacter baumannii. Assuming histidine is first decarboxylated to histamine, then hydroxylated, members of this family are histamine N-monooxygenase. The putative histidine decarboxylase is found in the same biosynthetic cluster. 431 -275233 TIGR04440 glyco_TIGR04440 glycosyltransferase domain. This model describes a putative glycotransferase domain, related to the group 2 family glycosyltransferases of pfam00535. 215 -275234 TIGR04441 lept_O_ant_chp1 surface carbohydrate biosynthesis protein. Members of this protein family occur only in a subset of Leptospira species, and in those species occur only in O-antigen biosynthesis regions. Members average about 375 amino acids in length. The function is unknown. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 373 -275235 TIGR04442 TIGR04442 TIGR04442 family protein. Members of this family occur exclusively in certain Deltaproteobacteria, including Geobacter and Pelobacter. The function is unknown. 608 -275236 TIGR04443 F420_CofF coenzyme gamma-F420-2:alpha-L-glutamate ligase. Members of this family are the CofF, a RimK-related glutamate ligase that caps the gamma-glutamyl tail of the archaeal form of coenzyme F420, a hydride carrier. This enzyme does not appear in bacterial species, such as Mycobacterium tuberculosis, that make F420 with a different type of tail. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 283 -275237 TIGR04444 chori_FkbO_Hyg5 chorismatase, FkbO/Hyg5 family. Members of this include two chemically distinct enzymes that cleave pyruvate from chorismate. FkbO and RapK convert chorismate to pyruvate plus (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid (DCDC). HygB and Bra8 convert chorismate to pyruvate, water, and 3-hydroxybenzoate. These two enzymes are closely related, and lack homology to chorismate lyase, EC 4.1.3.40, which converts chorismate to pyruvate plus 4-hydroxybenzoate. 311 -275238 TIGR04445 preny_LynF_TruF peptide O-prenyltransferase, LynF/TruF/PatF family. Members of this family are prenytransferases that modify mostly, perhaps exclusively, ribosomally derived cyclic peptides. Note that in some cases, the natural product becomes C-prenylated through a non-enzymatic rearrangement after initial O-prenylation. Prenylated products carry names such as prenylagaramide, anacyclamide, and piricyclamide. 282 -275239 TIGR04446 pren_cyc_PirE prenylated cyclic peptide, anacyclamide/piricyclamide family. Members of this protein family occur primarily in Cyanobacteria. They average about 50 residues in length and are the ribosomally translated precursors of peptide natural products whose modifications include cleavage, cyclization, and prenylation. Sequences are well-conserved in the N-terminal region. They are nearly invariant over the last eight residues, but hypervariable just before that stretch. A related family, often in a similar genome context, is TIGR03678. 48 -275240 TIGR04447 PatC_TenC_TruC cyanobactin cluster PatC/TenC/TruC protein. Members of this family usually are small proteins (PatC, TenC, TruC) of unknown function in cyanobactin (prenylated cyclic peptide) biosynthesis clusters, where a different small protein is a known cyanobactin precursor (patellamide, anacyclamide, piricyclamide, etc). They may instead be the C-terminal domain of a longer protein that otherwise consists mostly of lectin-like or VWF type A domains, in similar context. Similar to the cyanobactin precursors, members of this family have two very strongly conserved regions separated by a hypervariable region, suggesting these proteins may undergo a similar maturation. 34 -275241 TIGR04448 creatininase creatininase. Members of this family are creatininase (EC 3.5.2.10), an amidohydrolase that interconverts creatinine + H(2)O with creatine. It should not be confused with creatinase (EC 3.5.3.3), which hydrolyzes creatine to sarcosine plus urea. [Central intermediary metabolism, Nitrogen metabolism] 246 -275242 TIGR04449 halocin_C8_dom halocin C8-like bacteriocin domain. This model describes the 76-amino C-terminal domain of the halocin C8 precursor that actually becomes the mature bacteriocin halocin C8 after export and cleavage, as well as homologous C-terminal regions from many other archaea. Surprisingly, this Cys-rich region occurs also in many strains of Staphylococcus epidermidis. Gene regions do not provide evidence for post-translational modification other than cleavage. Halocin C8 is active against a broad range of archaea; the region N-terminal to the bacteriocin domain modeled here serves as the immunity protein for the cell secreting the bacteriocin. [Cellular processes, Toxin production and resistance] 69 -275243 TIGR04450 Gpos_C8_like putative immunity protein/bacteriocin. This model describes full-length proteins of Gram-positive bacteria that consist of an N-terminal signal peptide, a central region of unknown function, and a Cys-rich C-terminal region. In both the overall architecture and the apparent weak homology of the C-terminal region itself, these proteins resemble archaeal proteins such as the halocin C8 precursor. In that precursor, the C-terminal region is a bacteriocin but the N-terminal region functions as the immunity protein. The related family of halocin C8-like bacteriocins and their bacterial homologs are recognized by model TIGR04449. 234 -275244 TIGR04451 lanti_SCO0268 lantipeptide, SCO0268 family. Members of this family are putative lantipeptide (most likely lantibiotic) precursors, about 53 amino acids long, found in a lantibiotic-type biosynthetic cluster in several species of Streptomyces (S. coelicolor, S. griseoflavus, S. ambofaciens, etc.). This family is described in AntiSMASH as Streptomyces PEQAXS motif lantipeptide precursor. 53 -275245 TIGR04452 Lepto_Lipo_YY_C small lipoprotein, LA_3946 family. Members of this family of small lipoproteins that occur in at least nineteen species of Leptospira, but not so far anywhere outside that genus. Notable features include the putative lipoprotein modification Cys and an additional Cys near the C-terminus, both invariant, plus a well-conserved (although not invariant) Tyr-Tyr pair. From one to four paralogs occur in most Leptospira species. Members include LA_3946. 115 -275246 TIGR04453 Lepto_8Cys Cys-rich protein, LA_1312 family. Members of this protein family occur, so far, exclusively in the genus Leptospira. Members, although small (about 90 amino acids), have a predicted signal peptide followed by a region with eight invariant Cys residues. Some members have an additional Cys in the signal peptide region that suggests handling as a lipoprotein, but this Cys is not well conserved. 85 -275247 TIGR04454 Lepto_4Cys small lipoprotein, LB_250 family. Members of this family average about 92 amino acids in length, including an apparent lipoprotein signal peptide and a mature portion with four additional invariant Cys residues. This family is universal, so far, across at least twenty species of Leptospira but unknown outside the genus. 92 -275248 TIGR04455 lipo_MXAN_6521 probable lipoprotein, LA_1396/MXAN_6521 family. Members of this family are predicted lipoproteins, near 200 residues in length, found in multiple species of Leptospira (a spirochete) but also in the Myxococcales branch of the Deltaproteobacteria (Myxococcus xanthus, Chondromyces apiculatus, Cystobacter fuscus, Corallococcus coralloides), an uncommon mix of species. In both lineages, the N-terminal region appears to be a lipoprotein signal peptide. 191 -275249 TIGR04456 LruC_dom LruC domain. This domain is abundant in the Leptospira, in Bacteroides, and in Vibrio (three widely separated lineages). Most members have plausible lipoprotein signal peptides, including lipoprotein LruC from Leptospira interrogans and BACOVA_00967, from Bacteroides ovatus, with a solved crystal structure. Note that the C-terminal region of pfam13448 (length 83) matches the N-terminal region of some members of this domain (length 243). 242 -275250 TIGR04457 lipo_LenA_lepto lipoprotein LenA. Members of this family are LenA (Leptospira Endostatin-like protein A), found in pathogenic and intermediate species of Leptospira but not in saprophytes. LenA binds plasminogen, laminin, and complement regulator factor H. Behavior during outer membrane solubilization by low concentrations of Triton X-114 and conservation in all family members of an apparent lipoprotein signal sequence, with invariant Cys residue, strongly suggest that LenA is a lipoprotein. Just outside this family is a full-length homolog found in another spirochete, Turneriella parva DSM 21527. 224 -275251 TIGR04458 CYP450_TxtE 4-nitrotryptophan synthase. Members of this family are cytochrome P450 enzymes that convert L-tryptophan into L-4-nitrotryptophan. In thaxtomin gene clusters, this enzyme (TxtE) uses nitric acid (NO) derived from arginine by the nitric oxide synthase TxtD, and O2, to perform the tryptophan nitration. L-4-nitrotryptophan is then used as a non-proteinogenic amino acid by non-ribosomal peptide synthases (NRPS). 403 -275252 TIGR04459 TisB_tox type I toxin-antitoxin system toxin TisB. Members of this family are the TisB toxin protein of a type I toxin-antitoxin system, meaning that the antitoxin is a non-coding RNA. TisB is induced by some types of stress (SOS, ciprofloxacin) and appears to induce a persister state by dissipating transmembrane potential, thus depleting ATP. Persister cells, unable to grow until the persister state changes, survive a number of challenges, including exposure to most antibiotics. [Cellular processes, Adaptations to atypical conditions] 29 -275253 TIGR04460 endura_MppR enduracididine biosynthesis enzyme MppR. Members of this family are MppR, one of three enzymes involved in synthesizing enduracididine, a non-proteinogenic amino acid used in non-ribosomal peptide synthases to make natural products such as enduracidin from Streptomyces fungicidicus ATCC 21013. MppR is belongs to the acetoacetate decarboxylase-like superfamily. MppR catalyzes an aldol condensation and a dehydration, not a decarboxylation. 257 -275254 TIGR04461 endura_MppQ enduracididine biosynthesis enzyme MppQ. Members of this family are MppQ, one of three enzymes involved in synthesizing enduracididine, a non-proteinogenic amino acid used in non-ribosomal peptide synthases to make natural products such as enduracidin from Streptomyces fungicidicus ATCC 21013. MppQ is a PLP-dependent enzyme, predicted by homology to be an aminotransferase. 392 -275255 TIGR04462 endura_MppP enduracididine biosynthesis enzyme MppP. Members of this family are MppP, one of three enzymes involved in synthesizing enduracididine, a non-proteinogenic amino acid used in non-ribosomal peptide synthases to make natural products such as enduracidin from Streptomyces fungicidicus ATCC 21013. MppP is a PLP-dependent enzyme, predicted by homology to be an aminotransferase. 289 -275256 TIGR04463 rSAM_vs_C_rich radical SAM/SPASM domain protein maturase. Members of this family are probable protein/peptide-modifying radical SAM/SPASM domain proteins. The majority of members of this family seem to target Cys-rich repetitive regions of large proteins rather than of bacteriocin-sized small precursors. This arrangement suggests the modification target may be multifunctional, with the C-terminal domain behaving like a bacteriocin but other parts of the same precursor serving an immunity function, as occurs for the halocin C8 precursor. 439 -275257 TIGR04464 chaper_lep LipL41-expression chaperone Lep. Members of this protein family are Lep, an outer membrane lipoprotein LipL41-binding protein that appears to function as a chaperone important to its expression. LipL41 is the third most abundant lipoprotein in the pathogen Leptospira interrogans, but is found in saprophytic Leptospira species as well and is not essential for virulence. 114 -275258 TIGR04465 ArgArg_F420 TAT-translocated F420-dependent dehydrogenase, FGD2 family. Members of this family are F420-binding enzymes with a proven functional N-terminal twin-arginine translocation (TAT) signal. Members are homologous to the cytosolic F420-dependent glucose-6-phosphate dehydrogenase but do not share the same function. 364 -275259 TIGR04466 rSAM_BlsE cytosylglucuronate decarboxylase. BlsE, part of the blasticidin S biosynthetic pathway, is a radical SAM enzyme that performs a decarboxylation at C5 of the glucoside residue. MilG in mildiomycin biosynthesis is equivalent. This enzyme follows CGA synthase and makes the pyranoside core moiety of a class of peptidyl nucleoside antibiotics. [Cellular processes, Toxin production and resistance] 327 -275260 TIGR04467 CGA_synthase hydroxymethylcytosylglucuronate/cytosylglucuronate synthase. Members of this family synthesize cytosylglucuronate (or hydroxymethylcytosylglucuronate) from UDP-glucuronate and free cytosine (or hydroxymethylcytosine). This reaction is followed by a decarboxylation at C5 of the glucoside residue. The net reaction makes the pyranoside core moiety of a class of peptidyl nucleoside antibiotics. 386 -275261 TIGR04468 arg_2_3_am_muta arginine 2,3-aminomutase. Members of this family are arginine 2,3-aminomutase, a radical SAM enzyme more closely related to lysine 2,3-aminomutase than to glutamate 2,3-aminomutase. The enzyme makes L-beta-arginine, sometimes in the context of antibiotic biosynthesis (blasticidin S, mildiomycin, etc). Activity is proven in Streptomyces griseochromogenes, which makes blasticidin S. 351 -275262 TIGR04469 CGA_synth_rel CGA synthase-related protein. Members of this family are related to cytosylglucuronate (CGA) synthase (TIGR04466), and found in the same clusters as CGA synthase and CGA decarboxylase. These clusters produce peptidyl nucleoside antibiotics with a pyranoside core moiety, found in a number of Streptomyces species. Removal of the S. griseochromogenes member of this family, BlsF, from a heterologous expression system caused an increase, not blockage, of blasticidin S. [Cellular processes, Toxin production and resistance] 297 -275263 TIGR04470 rSAM_mob_pairB radical SAM mobile pair protein B. Members of this family are the downstream member (B) of a pair of tandem-encoded radical SAM enzymes. Most of these radical SAM gene pairs have an additional upstream regulatory gene in the MarR family. Examples of high sequence identity (over 96 percent) from cassettes in several Treponema species of the oral cavity to those in multiple Firmicutes in the gut microbiome suggest recent lateral gene transfer, as might be expected for antibiotic resistance genes. The function is unknown. 285 -275264 TIGR04471 rSAM_mob_pairA radical SAM mobile pair protein A. Members of this family are the upstream member (A) of a pair of tandem-encoded radical SAM enzymes. Most of these radical SAM gene pairs have an additional upstream regulatory gene in the MarR family. Examples of high sequence identity (over 96 percent) from cassettes in several Treponema species of the oral cavity to those in multiple Firmicutes in the gut microbiome suggest recent lateral gene transfer, as might be expected for antibiotic resistance genes. The function is unknown. 220 -275265 TIGR04472 reg_rSAM_mob mobile rSAM pair MarR family regulator. A number of human microbiome species from both the Firmicutes and the spirochete genus Treponema share a gene cassette encoding a pair of radical SAM enzymes and, in most cases, this MarR family transcriptional regulator as well. Sequence identity can exceed 96 percent, suggesting recent lateral transfer. These observations suggest the cassette confers resistance to a toxic compound such as an antibiotic. 141 -275266 TIGR04473 taxol_Phe_23mut phenylalanine aminomutase (L-beta-phenylalanine forming). Members of this family are the phenylalanine aminomutase known from taxol biosynthesis. This enzyme has the MIO prosthetic group (4-methylideneimidazole-5-one), derived from an Ala-Ser-Gly motif. Other MIO enzymes include Phe, Tyr, and His ammonia-lyases. This model serves as an exception to overrule assignments by equivalog model TIGR01226 for phenylalanine ammonia-lyase. 687 -275267 TIGR04474 tcm_partner three-Cys-motif partner protein. Members of this family occur regularly as a partner to as a member of family pfam07505, which has been called a phage protein but which seems to occur also in other contexts. Members average about 400 residues in length, but the conserved region covered by the model averages 260 residues and excludes the C-terminus. Conserved motifs suggest enzymatic activity. Note that its frequent partner protein (see pfam07505) has a three-cysteine motif that resembles the Cx3CxxC motif of radical SAM proteins, and that in one branch (see TIGR04471) actually becomes Cx3CxxC. We suggest the name three-Cys-motif partner protein (tcmP), and renaming pfam07505 to three-Cys-motif family protein 262 -275268 TIGR04475 Phe_D_beta_mut phenylalanine aminomutase (D-beta-phenylalanine forming). Members of this family have the MIO prosthetic group (4-methylideneimidazole-5-one), derived from an Ala-Ser-Gly motif. Other MIO enzymes include Phe, Tyr, and His ammonia-lyases. The member from Pantoea agglomerans, and probably all members, convert Phe to D-beta-phenylalanine (EC 5.4.3.11). By contrast, members of family TIGR04473 convert Phe to L-beta-phenylalanine (5.4.3.10), as in taxol biosynthesis. 510 -275269 TIGR04476 exosort_XrtN exosortase N. Members of this family are exosortase N (xrtN), a bacterial exosortase variant whose single target, encoded always by an adjacent gene, belongs to the vault protein inter-alpha-trypsin family. This system occurs in a number of spirochete (Leptospira) and Bacteriodetes species. 403 -275270 TIGR04477 sorted_by_XrtN XrtN system VIT domain protein. Members of this subfamily average about 850 amino acids in length, ending with a variant form of PEP-CTERM sorting signal. Members have a VIT (vault protein inter-alpha-trypsin inhibitor heavy chain) domain (pfam08487). Other bacterial subfamilies of VIT domain proteins have members with either GlyGly-CTERM or LPXTG C-terminal sorting signals. Members of this subfamily occur only in context next to a protein sorting/processing enzyme, exosortase N (XrtN). These subsystems occur both among the Bacteriodetes and in the spirochete genus Leptospira. 822 -275271 TIGR04478 rSAM_YfkAB radical SAM/CxCxxxxC motif protein YfkAB. Members of this highly conserved family in some Firmicutes have an N-terminal radical SAM domain (pfam04055) and a C-terminal pfam08756 domain with a CxCxxxxC motif that suggests binding to an additional metallocluster. It appears all correct sequences in this family are about 370 amino acids in length, containing the YfkA and YfkB regions originally reported as separate ORFs in Bacillus subtilis. Partial Phylogenetic Profiling shows occurrences almost exclusively in the Bacilli, with very few examples of either lateral transfer or gene loss. The essentially monophyletic distribution suggests a housekeeping function. Members have no well-conserved gene neighborhood. The function is unknown. [Unknown function, Enzymes of unknown specificity] 363 -275272 TIGR04479 bcpD_PhpK_rSAM radical SAM P-methyltransferase, PhpK family. Characterized members of this family are B12-binding domain/radical SAM domain enzymes that use methylcobalamin as a methyl donor to methylate a phosphorous atom during the biosynthesis of natural products such as bialaphos and phosalacine. These syntheses create an extremely rare C-P-C bond. All members of the seed alignment derive from genomic regions that include a non-ribosomal peptide synthase. Note that a single organism, Pelosinus fermentans JBW45 from Cr(VI)-contaminated groundwater, has eight additional homologs of unknown function that score between trusted and noise cutoffs of this model. [Cellular processes, Toxin production and resistance] 504 -275273 TIGR04480 D_pro_red_PrdA D-proline reductase (dithiol), PrdA proprotein. Members of this family are the PrdA proprotein. The polypeptide undergoes an autocatalytic cleavage that creates two subunits, one with a Cys-derived pyruvoyl motiety critical for activity. The D-proline reductase complex also contains a subunit derived from the prdB gene. The complex acts on D-proline, which may be supplied from L-proline by an active proline racemase encoded nearby. 587 -275274 TIGR04481 PR_assoc_PrdC proline reductase-associated electron transfer protein PrdC. Members of this family are encoded near the prdA and prdB genes for proteins of the proline reductase complex, are induced by proline, and are designated PrdC by Bouillaut, et al. Some members are selenoproteins (at two different positions), as is PrdB. Members are homologous to, but distinct from, electron transport protein RnfC. 425 -275275 TIGR04482 D_pro_red_PrdD proline reductase cluster protein PrdD. Members of this family are PrdD, encoded in the proline reductase gene cluster. Members are closely homologous to PrdA, which cleaves during maturation to create two subunits of the subunits of the proline reductase complex, one of which has a Cys-derived pyruvoyl active site. 246 -275276 TIGR04483 D_pro_red_PrdB D-proline reductase (dithiol), PrdB protein. Members of this family form the PrdB subunit, usually a selenoprotein, in the D-proline reductase complex. The usual pathway is conversion of L-protein to D-proline by a racemase, then use of D-proline as an electron acceptor coupled to ATP generation under anaerobic conditions. 238 -275277 TIGR04484 thiosulf_SoxA sulfur oxidation c-type cytochrome SoxA. Members of this family are SoxA, a c-type cytochrome with a CxxCH motif, part of a heterodimer with SoxX. SoxXA, SoxYZ, and SoxB contribute to thiosulfate oxidation to sulfate. 211 -275278 TIGR04485 thiosulf_SoxX sulfur oxidation c-type cytochrome SoxX. Members of this family are SoxX, a c-type cytochrome with a CxxCH motif, part of a heterodimer with SoxA. SoxXA, SoxYZ, and SoxB contribute to thiosulfate oxidation to sulfate. 78 -275279 TIGR04486 thiosulf_SoxB thiosulfohydrolase SoxB. SoxB, a di-manganese(II) enzyme, works with SoxYZ and the c-type cytochrome SoxXA in oxidation of thiosulfate to sulfate. 556 -275280 TIGR04487 SoxY_para_1 SoxY-related AACIE arm protein. Members of this family are paralogs to the authentic thiosulfate oxidation system protein SoxY. True SoxY end with the sequence GGCG(G), the swinging arm in which the Cys residue covalently binds the inorganic sulfur moiety. In this family, members end with a different swinging arm sequence, [AS]AC[IVT]E. The few species with a member of this family always have authentic SoxY. 145 -275281 TIGR04488 SoxY_true_GGCGG thiosulfate oxidation carrier protein SoxY. Members of this family are bona fide SoxY, the sulfate carrier protein with the GGCGG ir GGCG swinging arm C-terminal sequence. The Cys in the swinging arm is the residue to which the inorganic sulfate moiety becomes covalently attached. In some species, a closely related paralog occurs as well (TIGR04487), with a swinging arm sequence AACIE. More distantly related forms have an additional C-terminal SoxZ-related domain. All members are periplasmic and have an N-terminal twin-arginine translocation (TAT) signal sequence. 148 -275282 TIGR04489 exosort_XrtO exosortase O. Members of this protein are a variant form of exosortase, XrtO, with a dedicated target typically encoded by the adjacent gene. Members have a unique C-terminal extension very different from EpsI (TIGR02914), the extension that many exosortases have. The targets of XrtO all are members of family TIGR02921, which describes a PEP-CTERM protein about 950 residues long, found in more than 15 genera so far. These PEP-CTERM proteins are unusually hydrophobic in stretches, suggesting an integral membrane location, which is unusual. About one third of the members of TIGR02921 are in genomes with this protein, exosortase O, always encoded by an adjacent gene. Genomes include Synechocystis sp. PCC 7509, Xenococcus sp. PCC 7305,Pleurocapsa sp. PCC 7327, Microcoleus vaginatus, Hahella chejuensis, Vibrio azureus NBRC 104587, etc. 450 -275283 TIGR04490 SoxZ_true thiosulfate oxidation carrier complex protein SoxZ. SoxZ forms a heterodimer with SoxY, the subunit that forms a covalent bond with a sulfur moiety during thiosulfate oxidation to sulfate. Note that virtually all proteins that have a SoxY domain fused to a SoxZ domain are functionally distinct and not involved in thiosulfate oxidation. 95 -275284 TIGR04491 reactive_PduG diol dehydratase reactivase alpha subunit. Members of this family are the alpha (large) subunit of the alpha-2/beta-2 tetrameric enzyme that reactivates B12-dependent trimeric diol dehydratases (1,2-propanediol dehydratase, glycerol dehydratase). Note that the beta subunit of the reactivase is homologous to the beta (medium) subunit of the diol dehydratase. The reactivase catalyzes the exchange of chemically inactivated B-12 for active B12. This model excludes homologs from Mycobacterium (e.g. M. smegmatis), where the several paralogous forms of the dehydratase occur and are exceptional also by not being found in a carboxysome-like microcompartment. 598 -275285 TIGR04492 VioB iminophenyl-pyruvate dimer synthase VioB. Following the action of a flavin-dependent L-amino acid oxidase that converts L-tryptophan to indole-3-pyruvate imine, the enzymes VioB (this family), RebD, and StaD can ligate two molecules, forming a coupled iminophenyl-pyruvate dimer. In the violacein biosynthesis pathway, this compound is acted on by VioE before it cyclizes spontaneously to chromopyrrolic acid. In the pathways of homolog StaD (staurosporine), chromopyrrolate is formed, and the enzyme is referred to as chromopyrrolate synthase. RebD is very similar to StaD, but acts on chlorinated Trp-derived molecules. [Cellular processes, Biosynthesis of natural products] 1003 -275286 TIGR04493 microcomp_PduM microcompartment protein PduM. Members of this family are PduM, a protein essential for forming functional microcompartments in which a trimeric B12-dependent enzyme acts as a dehydratase for 1,2-propanediol (Salmonella enterica) or glycerol (Lactobacillus reuteri). 153 -275287 TIGR04494 c550_PedF cytochrome c-550 PedF. Members of this family are c-type cytochromes with some remote similarity to the sulfur oxidation cytochrome SoxX. 133 -275288 TIGR04495 RiPP_XyeA putative rSAM-modified RiPP, XyeA family. Members of this family are short polypeptides with a conserved GG motif as found in bacteriocins that are cleaved upon export. Each gene occurs immediately upstream of a gene for a peptide-modifying radical SAM/SPASM domain protein. The system is designated Xye for genera Xenorhabdus, Yersinia, and Erwinia, hence XyeA for the precursor peptide. The vicinity will also contain a transport protein with a C39 family peptidase domain (see pfam03412), characteristic of GG motif cleave-on-export systems. The function of this RiPP family is unknown. 52 -275289 TIGR04496 rSAM_XyeB radical SAM/SPASM domain peptide maturase, XyeB family. Members of this family are radical SAM/SPASM domain enzymes associated with maturation of the XyeA family of GG-motif containing RiPP (Ribosomally synthesized, Post-translationally modified Peptide) natural products. 385 -275290 TIGR04497 GRASP_targ_2 putative ATP-grasp target RiPP. Members of this small family are putative RiPP (Ribosomally translated, Post-translationally modified Peptides) precursors, modified by RimK-like ATP-grasp proteins. Members are encoded near both an ATP-grasp protein and C39 peptidase domain-containing transporter. Members are short polypeptides that contain the GG motif expected for cleavage on export. 46 -275291 TIGR04498 AbiV_defense abortive infection protein, AbiV family. This family includes AbiV (abortive infection system V) from Lactococcus lactis, a phage resistance protein that causes certain phage infections to fail to lead to successful phage replication. Abortive infection mechanisms differ greatly. AbiV interacts directly with the protein SaV in phage p2 and blocks translation of phage proteins. 141 -275292 TIGR04499 abortive_AbiA abortive infection protein, AbiA family. Members of this protein family average about 650 amino acids in length, with an N-terminal region related to reverse transcriptases. The only characterized member is AbiA, with reported activity as an abortive infection protein for phage defense in Lactococcus lactis and (heterologously) in Streptococcus thermophilus. 615 -275293 TIGR04500 PpiC_rel_mature putative peptide maturation system protein. Members of this protein family have a novel N-terminal sequence region. Close homologs to the C-terminal region of this protein score well to PpiC-type peptidyl-prolyl cis-trans isomerase models (see pfam00639), yet no sequence within the family scores well to such models, suggesting origin within a branch of the PpiC family but subsequent neofunctionalization with a rapid change of sequence. The genome context for members always includes an ATP-grasp enzyme associated with peptide modification and a short polypeptide likely to be the modification target. 337 -275294 TIGR04501 microcomp_PduB microcompartment protein PduB. Members of this family are PduB, a protein of bacterial microcompartments for coenzyme B(12)-dependent utilization of 1,2-propanediol (hence pdu) or glycerol. The most closely related protein in ethanolamine utilization microcompartments is EutL (TIGR04502). 225 -275295 TIGR04502 microcomp_EutL microcompartment protein EutL. Members of this family are EutL, a protein of bacterial microcompartments for ethanolamine utilization (eut). The most closely related protein in microcompartments for utilization of 1,2-propanediol (hence pdu) or glycerol is PduB (TIGR04501). 214 -275296 TIGR04503 mft_etfB electron transfer flavoprotein, mycofactocin-associated. Members of this small protein family are putative electron transfer flavoproteins, related to FixA from E. coli and EtfB from Methylophilus methylotrophus but clearly forming a distinctive clade. All members occur in species with a mycofactocin system. We have proposed that mycofactocin is a redox carrier synthesized from a ribosomally translated peptide with aid from a radical SAM enzyme, analogous to PQQ. 290 -275297 TIGR04504 SDR_subfam_2 SDR family mycofactocin-dependent oxidoreductase. Members of this protein subfamily are putative oxidoreductases belonging to the larger SDR family. All members occur in genomes that encode a cassette for the biosynthesis of mycofactocin, a proposed electron carrier of a novel redox pool. Characterized members of this family are described as NDMA-dependent, meaning that a blue aniline dye serving as an artificial electron acceptor is required for members of this family to cycle in vitro, since the bound NAD residue is not exchangeable. This family resembles TIGR03971 most closely in the N-terminal region, consistent with the published hypothesis of NAD interaction with mycofactocin. See EC 1.1.99.36. [Unknown function, Enzymes of unknown specificity] 259 -275298 TIGR04505 PtsS_plasma phosphate ABC transporter substrate-binding protein. Members of this family are the substrate-binding protein of the phosphate ABC transporter as found in Mollicutes genera such as Mycoplasma, Mesoplasma, and Spiroplasma. The most similar sequences outside this family are PtsS in family TIGR02136, but sequence architecture differs considerably. Members of this family are never lipoproteins. 328 -275299 TIGR04506 F_threo_transal fluorothreonine transaldolase. Members of this family are fluorothreonine transaldolase, and enzyme involved in biosynthesis of 4-fluorothreonine, one of the few known known naturally occurring organofluorine compounds. [Cellular processes, Biosynthesis of natural products] 609 -275300 TIGR04507 fluorinase adenosyl-fluoride synthase. Members of this family are fluorinase (adenosyl-fluoride synthase, EC 2.5.1.63), an enzyme involved in the first committed step in the biosynthesis of at least two different organofluorine compounds. Few organofluorine natural products are known. Related enzymes include chlorinases (EC 2.5.1.94) that lack fluorinase activity, although a fluorinase may show chlorinase activity. [Cellular processes, Biosynthesis of natural products] 285 -275301 TIGR04508 queE_Cx14CxxC 7-carboxy-7-deazaguanine synthase, Cx14CxxC type. In the pathway of 7-cyano-7-deazaquanine (preQ0) biosynthesis, the radical SAM enzyme QueE is quite variable. This model describes a variant form in which the three-Cys motif that binds the signature 4Fe-4S cluster takes the form Cx14CxxC, as in Burkholderia multivorans ATCC 17616. The crystal structure is known. 208 -275302 TIGR04509 mod_pep_NH_fam putative modified peptide. Members of this family average 110 residues in length, with strong N-terminal homology to both the nitrile hydratase (NH) alpha subunit and family TIGR03793 of NH-related ribosomally translated natural product precursors. A neighboring gene resembles SagB, the dehydrogenase of many thiazole and oxazole modified peptide systems, supporting the hypothesis that members of this family are post-translationally modified. 85 -275303 TIGR04510 mod_pep_cyc putative peptide modification system cyclase. Members of this family show homology to mononucleotidyl cyclases and to tetratricopeptide repeat (TPR) proteins. Members occur in next to two other markers of ribosomal peptide modification systems. One is a dehydrogenase related to SagB proteins from thiazole/oxazole modification systems. The other is the putative precursor, related to the nitrile hydratase-related leader peptide (NHLP) and nitrile hydratase alpha subunit families. These systems occur in many species of Xanthomonas and Stenotrophomonas, among others. 814 -275304 TIGR04511 SagB_rel_DH_2 putative peptide maturation dehydrogenase. Members resemble the peptide maturation dehydrogenase SagB of thiazole and oxazole modification systems, and occur in a what appears to be a new type of peptide modification system. One adjacent marker is a new type of nitrile hydratase alpha subunit-related putative precursor, TIGR04509, distantly related the NHLP leader peptide family TIGR03793. Another is a large protein, TIGR04510, with regions similar to adenylate cyclases and TPR proteins. 380 -275305 TIGR04512 Mycopla_NOT_gsn STREFT protein. Members of this family occur strictly in the genus Mycoplasma, average 1050 in length with little length variability, have an N-terminal signal sequence, and exhibit no detectable sequence similarity to any characterized protein. Up to four tandem copies occur in some Mycoplasma (e.g. M. putrefaciens KS1). Incorrect inclusion of a 57-amino acid stretch of one family member in pfam08178, for a helix-turn-helix transcriptional regulator in several E. coli phage, has caused many members of this family to be annotated, in error, as GnsA/GnsB family proteins. We suggest the name STREFT (Secreted Thousand Residue Frequently Tandem) protein as a distinctive name to spread and replace the incorrect GnsA/GnsB designation. [Unknown function, General] 1041 -275306 TIGR04513 VPAMP_CTERM VPAMP-CTERM protein sorting domain. This domain is found as the extreme C-terminal region of four extracellular protein (mostly protease) precursor sequences in Chthoniobacter flavus Ellin428, first representative sequenced from the Spartobacteria class of phylum Verrucomicrobia. This domain contains the cognate signal for one four exosortase family enzymes in the C. flavus genome, and coexists with the more common PEP-CTERM domain, found on more than 50 proteins. 28 -275307 TIGR04514 GWxTD_dom GWxTD domain. This domain, about 100 amino acids long, occurs in Actinobacteria and other little-studied Gram-negative bacteria, Sec-dependent proteins 300-800 in length. The domain is rich in aromatic residues, with Trp, Tyr, or Phe as the majority amino acid in ten of the twenty-four most-conserved residue positions. 105 -275308 TIGR04515 P450_rel_GT_act P450-derived glycosyltranferase activator. Members of this family resemble cytochrome P450 by homolog, but lack a critical heme-binding Cys residue. Members in general are encoded next to a glycosyltransferase gene in a natural products biosynthesis cluster, physically interact with it, and help the glycosyltransferase achieve high specificity while retaining high activity. Many members of this family assist in the attachment of a sugar moiety to a natural product such as a polyketide. 384 -275309 TIGR04516 glycosyl_450act glycosyltransferase, activator-dependent family. Many biosynthesis clusters for secondary metabolites feature a glycosyltransferase gene next to a P450 homolog, often with the P450 lacking a critical heme-binding Cys. These P540-derived sequences seem to be allosteric activators of glycosyltransferases such as the member of this family. This model describes a set of related glycosyltransferases, many of which can be recognized as activator-dependent from genomic context. 418 -275310 TIGR04517 rSAM_PoyD radical SAM family RiPP maturation amino acid epimerase. This model describes PoyD and its homologs. These are divergent putative radical SAM enzymes, with the classical CxxxCxxC motif but with few members approaching the cutoff score of pfam04055. PoyD appears responsible for catalyzing a unidirectional L-to-D epimerization of 18 the 48 residues in the core peptide of the first characterized polytheonamide. The RiPP (ribosomally translated natural product) precursor, and peptides encoded near many other members of this family, belong to the nitrile hydratase leader peptide (NHLP) family. 445 -275311 TIGR04518 ECF_S_folT_fam ECF transporter S component, folate family. Members of this model are the multiple membrane-spanning S (specificity) component of ECF (energy coupling factor) type uptake transporters. All seed members were found in the vicinity of the bifunctional enzyme folC, involved in making active cofactor from imported folate. However, some species have multiple members of this family, suggesting some diversity of function. [Transport and binding proteins, Unknown substrate] 162 -275312 TIGR04519 MoCo_extend_TAT MoCo/4Fe-4S cofactor protein extended Tat translocation domain. This model describes a forty-five residue domain in which the last six residues represent the start of a TAT (Twin-Arginine Translocation) sorting signal. TAT allows proteins already folded, with cofactor already bound, to transit the membrane and reach the periplasm with the ability to perform redox or other cofactor-dependent activities. TAT signals are not normally seen so far from a well-supported start site. Member proteins may all be mutually homologous, with both a molybdenum cofactor-binding domain and a 4Fe-4S dicluster-binding domain. 43 -275313 TIGR04520 ECF_ATPase_1 energy-coupling factor transporter ATPase. Members of this family are ATP-binding cassette (ABC) proteins by homology, but belong to energy coupling factor (ECF) transport systems. The architecture in general is two ATPase subunits (or a double-length fusion protein), a T component, and a substrate capture (S) component that is highly variable, and may be interchangeable in genomes with only one T component. This model identifies many but not examples of the upstream member of the pair of ECF ATPases in Firmicutes and Mollicutes. [Transport and binding proteins, Unknown substrate] 268 -275314 TIGR04521 ECF_ATPase_2 energy-coupling factor transporter ATPase. Members of this family are ATP-binding cassette (ABC) proteins by homology, but belong to energy coupling factor (ECF) transport systems. The architecture in general is two ATPase subunits (or a double-length fusion protein), a T component, and a substrate capture (S) component that is highly variable, and may be interchangeable in genomes with only one T component. This model identifies many but not examples of the downstream member of the pair of ECF ATPases in Firmicutes and Mollicutes. [Transport and binding proteins, Unknown substrate] 277 -275315 TIGR04522 EcfS_MSC_0063 putative energy coupling factor transporter S component, MSC_0063 family. This family of proteins is restricted to the Mollicutes (including Mycoplasma, Spiroplasma, and Ureaplasma). Members belong to a superfamily of multiple membrane-spanning proteins, among which those with assigned activities function as the S component (the specificity component) of ECF transporters. However, members fail to score better than the trusted cutoffs to previously built models for S component proteins (see pfam07155). [Transport and binding proteins, Unknown substrate] 151 -275316 TIGR04523 Mplasa_alph_rch helix-rich Mycoplasma protein. Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown. 745 -275317 TIGR04524 mycoplas_M_dom IgG-blocking virulence domain. This model defines a domain restricted to Mycoplasma and Ureaplasma proteins. Members include protein M of Mycoplasma genitalium, MG_281, a virulence protein that binds the IgG light chain to block the binding of antibody to antigen. The crystal structure of the protein M antibody-binding region is solved (PDB|4NZR), and includes this homology domain. Full-length homologs to MG_281 are known in a few other Mycoplasma species, but this model's seed alignment demonstrates distant homology to many additional proteins with a much wider distribution across the Mollicutes. Member proteins include paralogous families in some species, such as MCAP_0345, MCAP_0347, MCAP_0349, and MCAP_0351 in Mycoplasma capricolum. [Cellular processes, Pathogenesis] 251 -275318 TIGR04525 prot_M_MG281 IgG-blocking protein M. Members of this family, including MG_281 of Mycoplasma genitalium, bind conserved regions of the IgG light chain sequences, blocking IgG's normal function of antigen-specific binding. It is therefore an important virulence protein. Members of this family are found also in Mycoplasma pneumoniae, M. penetrans, M. gallisepticum, and M. iowae. Model TIGR04524 describes a region within this protein that is shared by many additional Mycoplasma and Ureaplasma proteins. [Cellular processes, Pathogenesis] 526 -275319 TIGR04526 predic_Ig_block putative immunoglobulin-blocking virulence protein. Members of this family are putative virulence proteins of Mycoplasma and Ureaplasma species. Members share a region of sequence similarity (see TIGR04524) with protein M, a Mycoplasma genitalium protein that binds a conserved light chain region of IgG and blocks its protective function of antigen-specific binding. The seed alignment for this model includes an N-terminal signal-anchor domain and a proline-rich linker domain, and a C-terminal extension, in addition to the protein M-like domain recognized by TIGR04524. [Cellular processes, Pathogenesis] 692 -275320 TIGR04527 mycoplas_twoTM two transmembrane protein. Members of this family are uncharacterized proteins from the genus Mycoplasma, typically about 260 amino acids long, with a hydrophobic predicted transmembrane alpha helix toward each end. Often two family members are encoded in tandem, e.g. MG_279 and MG_280 from Mycoplasma genitalium. 245 -275321 TIGR04528 acido_non_PQQ acido-empty-quinoprotein group A. Members of this family closely resemble quinoproteins and quinohemoproteins such as PQQ-dependent methanol, glucose, and shikimate dehydrogenases, but restricted to species of Acidobacteria unable to synthesize PQQ. Seven members occur in candidatus Solibacter usitatus Ellin6076, eleven in Acidobacteriaceae bacterium KBS 96, etc. Members have N-terminal signal sequences. They lack the pair of adjacent Cys residues, involved in electron transfer, typical for family TIGR03075, and they lack CxxCH motifs for cytochrome c-like heme-binding. What cofactor these paralogous families of enzymes might use is unclear. 491 -275322 TIGR04529 MTB_hemophore hemophore-related protein, Rv0203/Rv1174c family. Members of this family occur as paralogs in most Mycobacterium strains, including 2 in M. tuberculosis, 6 in M. avium, and 9 in M. smegmatis. Members have a cleaved N-terminal signal peptide and exactly two Cys residues in the mature protein, both at invariant positions. The best characterized member, Rv0203, is a hemophore, that is, a secreted polypeptide that binds heme and delivers it to a transport system for import. Hemophores are protein analogs of siderophores, natural products that chelate non-heme iron and deliver it to receptors for transport. The unrelated HasA family of hemophores has been described in Gram-negative bacteria such as Yersinia pestis and Pseudomonas aeruginosa. [Transport and binding proteins, Other] 77 -275323 TIGR04530 hemophoreRv0203 hemophore, mycobacterial-type. Members of this family, including Rv0203 from Mycobacterium tuberculosis, are secreted heme-binding proteins used in heme acquisition. Such proteins are called hemophores. Members have a cleavable N-terminal signal peptide, and a mature region just over 100 amino acids long with a pair of invariant Cys residues. An unrelated hemophore, HasA, occurs in Gram-negative pathogens such as Yersinia pestis. [Transport and binding proteins, Other] 113 -275324 TIGR04531 nonproteo_OH putative nonproteinogenic amino acid hydroxylase. This extremely rare protein family, a branch of the 2-oxoglutarate dependent oxygenase family related to proline 3-hydroxylase, appears only in natural product biosynthetic clusters that include nonribosomal peptide synthases. One members is PlyP from the polyoxypeptin A cluster, suggested to hydroxylate 3-methylproline. Another, GetF from the GE81112 biosynthetic gene cluster, is a proposed to hydroxylate pipecolic acid. 277 -275325 TIGR04532 PT_fungal_PKS iterative type I PKS product template domain. Sequences found by this model are the so-called product template (PT) domain of various fungal iterative type I polyketide synthases. This domain resembles pfam14765, designated polyketide synthase dehydratase by Pfam, but members of that family are primarily bacterial, where type I PKS are predominantly modular, not iterative. The dehydratase active site residues well-conserved in pfam14765 (His in the first hot dog domain, Asp in the second hot dog domain) seem well conserved in this family also. 324 -275326 TIGR04533 cyanosortB_assc cyanoexosortase B-associated protein. Members of this protein family are found exclusively in the Cyanobacteria, usually encoded next to a gene encoding cyanoexosortase B (TIGR04156). This relationship resembles the association of the unrelated protein family TIGR04153 with cyanoexosortase A (TIGR03763), and of most exosortases with EpsI. 221 -275327 TIGR04534 ELWxxDGT_rpt ELWxxDGT repeat. This model describes protein repeat with a well-conserved motif ELWxxDGT, and a periodicity of about 48. A single protein may have as many as 18 repeats. It may consist nearly entirely of this repeat, or may have other repeats as well (e.g. hyalin repeat). It is most common in the Deltaproteobacteria. 47 -275328 TIGR04535 ferrit_encaps ferritin-like protein. Two families of proteins are known to be encoded, with some regularity, next to the gene for encapsulin (pfam04454), with surrounds the target protein to form a prokaryotic proteinaceous organelle. One is the family of enzymes that includes Dyp-type peroxidases. The other is this family, with a resemblance to bacterioferritins. Encapsulin-associated forms of the proteins in these two families have a necessary C-terminal motif that resembles DGSL[SGN]IGSL[KR]. Members of this family that include the last columns of the model in the hit region (and are encoded next to the encapsulin gene) should be designated encapsulin-associated ferritin-like protein. 113 -275329 TIGR04536 geobac_encap encapsulated protein. Members of this family are lineage-restricted uncharacterized proteins found mostly in Brevibacillus and Geobacillus. Members are encoded next to the gene for encapsulin (which once was called a bacteriocin), and have the C-terminal motif for associating with encapsulin. [Unknown function, Enzymes of unknown specificity] 194 -275330 TIGR04537 encap_target encapsulation C-terminal sorting signal. This model describes a diverse region of extremely small size (11 residues), so unavoidably there are both false-positives and false-negatives. All true hits should occur in proteins encoded next to an encapsulating protein (see pfam04454), and should occur near the extreme C-terminus. Families previously known to have this domain on some members to mediate encapsulation include dye-decolorizing peroxidases and a ferritin-like protein, but (as this model helps show) there are others, including some hemerythrin family proteins and novel family TIGR04536. 11 -275331 TIGR04538 P450_cycloAA_1 cytochrome P450, cyclodipeptide synthase-associated. Members of this subfamily are cytochrome P450 enzymes that occur next to tRNA-dependent cyclodipeptide synthases. This group does NOT include CYP121 (Rv2275) from Mycobacterium tuberculosis, adjacent to the cyclodityrosine synthetase Rv2276. 395 -275332 TIGR04539 tRNA_cyclodipep tRNA-dependent cyclodipeptide synthase. Members of this family take two aminoacylated tRNA molecules and produce a cyclic dipeptide with two peptide bonds. This enzyme therefore produces a type of nonribosomal peptide, but by a mechanism entirely different from the typical non-ribosomal peptide synthase (NRPS) that relies on adenylation to activate amino acids. Three characterized members of this family are the cyclodityrosine synthase of Mycobacterium tuberculosis (an essential gene), a cyclo(L-Phe-L-Leu) synthase from Streptomyces noursei involved in natural product biosynthesis, and cyclodileucine synthase YvmC from Bacillus licheniformis. Many cyclodipeptide synthases are found next to a cytochrome P450 that further modifies the product. 220 -275333 TIGR04540 CLB_0814_fam conserved hypothetical protein. Members of this family are conserved hypothetical proteins in a narrow range of species. In Clostridium botulinum A ATCC 19397, the gene occurs immediately after a five gene operon for biosynthesis of the natural product bacimethrin, a thiamin antivitamin antibiotic. 73 -275334 TIGR04541 thiaminase_BcmE thiamine pyridinylase. Members of this family are thiamine pyridinylase (EC 2.5.1.2), also called thiaminase I. Most examples of this secreted, thiamine-degrading enzyme are encoded with a cluster for biosynthesis of the thiamine antivitamin bacimethrin. [Cellular processes, Biosynthesis of natural products] 381 -275335 TIGR04542 GMC_mycofac_2 GMC family mycofactocin-associated oxidreductase. This model describes a set of dehydrogenases belonging to the glucose-methanol-choline oxidoreductase (GMC oxidoreductase) family. Members of the present family are restricted to the bacterial genus Gordonia, and seem to replace the related family TIGR03970, which occurs in Actinobacteria generally but not in the genus Gordonia. Members of both this family and TIGR03970 are associated with the mycofactocin biosynthesis operon in Actinobacteria. [Unknown function, Enzymes of unknown specificity] 425 -275336 TIGR04543 ketoArg_3Met 2-ketoarginine methyltransferase. This SAM-dependent C-methyltransferase performs the middle step of a three step conversion from arginine to beta-methylarginine. It performs a C-methylation at position 3 of 5-guanidino-2-oxopentanoic acid (keto-arginine). An aminotransferase converts arginine to 5-guanidino-2-oxopentanoic acid, and later converts 5-guanidino-3-methyl-2-oxopentanoic acid to beta-methylarginine. 331 -275337 TIGR04544 3metArgNH2trans beta-methylarginine biosynthesis bifunctional aminotransferase. Members of this family are the bifunctional aminotransferase that catalyzes the first and third steps in the three-step conversion of arginine to beta-methylarginine. It first converts arginine to 2-ketoarginine, then converts 3-methyl-2-ketoarginine to 3-methylarginine. All members of the seed alignment are encoded next to a 2-ketoarginine methyltransferase (EC 2.1.1.243). 366 -275338 TIGR04545 rSAM_ahbD_hemeb heme b synthase. Members of this family are AhbD (alternative heme biosynthetic protein D), a radical SAM enzyme in sulfate-reducing bacteria and methanogens that performs the last decarboxylations to synthesize heme b from Fe-coproporphyrin III. Members include DVU_0855, previously included in error in TIGR04055, the NirJ2 family thought to be involved in heme d1 biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 339 -275339 TIGR04546 rSAM_ahbC_deAc 12,18-didecarboxysiroheme deacetylase. This model describes one of a pair of radical SAM enzymes involved in the alternative heme biosynthesis (ahb) pathway for heme b biosynthesis from siroheme. This anaerobic pathway occurs in sulfate-reducing bacteria and methanogens. A very similar pair of radical SAM enzymes (TIGR04054, TIGR04055) is involved in heme d1 biosynthesis in species such as Heliobacillus mobilis and Heliophilum fasciatum. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 390 -275340 TIGR04547 Mollicu_LP MOLPALP family lipoprotein. Members of this family are surface lipoproteins, about 900 amino acids long on average, found only in the Mollicutes (Mycoplasma, Entomoplasma, Acholeplasma, Mesoplasma, Spiroplasma). Paralogs occur, such as MCAP_0360, MCAP_0361, and MCAP_0362 in Mycoplasma capricolum. This family shares significant N-terminal sequence similarity with STREFT (Secreted Thousand Residue Frequently Tandem), described by model TIGR04512; several members of the STREFT family have been misannotated as GnsA/GnsB family proteins. For proteins in this family, we suggest the name MOLPALP (Mollicutes Paralogous Lipoprotein) family lipoprotein [Cell envelope, Surface structures] 805 -275341 TIGR04548 DnaD_Mollicutes DnaD family protein, Mollicutes type. This model describes the full length of a family of proteins in the Mollicutes (Mycoplasma, Spiroplasma, Mesoplasma, etc.) homologous to the N-terminal region of DnaD from Bacillus subtilis. [DNA metabolism, DNA replication, recombination, and repair] 178 -275342 TIGR04549 LP_HExxH_w_tonB substrate import-associated zinc metallohydrolase lipoprotein. Members of this family are lipoproteins with the typical zinc metallohydrolase HExxH motif and additional similarities to a better-documented zinc peptidase family, pfam06167. The seed alignment begins immediately after the lipoprotein motif Cys residue. Up to five members of this protein family occur per genome, in the context of certain gene pairs related to RagA and RagB, or to SusC and SusD. Those gene pairs, like the present family, are restricted to the Bacteriodetes, may number up to 100 pairs per genome, and are linked to TonB-dependent uptake of biopolymer-derived nutrients such as glycans. A possible function for this lipoprotein is to hydrolyse larger molecules to prepare substrates for import and utilization. [Unknown function, Enzymes of unknown specificity] 261 -275343 TIGR04550 sMetMonox_MmoD soluble methane monooxygenase-binding protein MmoD. Members of this family are MmoD, a protein that binds the soluble (as opposed to the membrane-bound, copper-rich, particulate) methane monooxygenase and may regulate its activity. Recent work suggests that MmoD, together with methanobactin, acts a copper switch to regulate which enzyme form is produced. 64 -275344 TIGR04551 TIGR04551 TIGR04551 family protein. Members of this family are proteins of unknown function, about 620 amino acids in length, and universal in but restricted to the Myxococcales, an order within the Deltaproteobacteria with at least 15 sequenced genomes as of 8/2014. The most closely related homologs outside the Myxococcales show localized homology only and display sharply lower scores. Relatively few protein families (roughly 20) could be built to have a comparable restriction to the Myxococcales. The putative protein sorting signal MYXO-CTERM (TIGR03901) appears so far universal in but restricted to the Myxococcales, making the present family a candidate to be involved in recognizing and processing proteins with that signal. 523 -275345 TIGR04552 TIGR04552 TIGR04552 family protein. Members of this family are bacterial proteins, roughly 400 amino acids in length. Most members belong to the Deltaproteobacteria. All members of the Myxococcales, and order withing the Deltaproteobacteria, have a member. The arrangement of conserved residues into invariant motifs suggests enzymatic activity. The function is unknown. 353 -275346 TIGR04553 ABC_peri_selen putative selenate ABC transporter periplasmic binding protein. Members of this family ABC transporter periplasmic binding proteins and represent one clade within a larger family that includes phosphate, phosphite, and phosphonate transporters. All members of the seed alignment occur near a gene for SelD, the selenium-activating protein needed to make selenocysteine or selenouridine. Context therefore suggests members should be able to transport selenate, although transporting other substrates as well (e.g. phosphonates) is possible. This model has no overlap with TIGR03431, whose members are found regularly with phosphonate catabolism operons. 266 -275347 TIGR04554 3TM_mycoplas three transmembrane helix protein. Members of this rare family are small, highly hydrophobic, and restricted so far to the genus Mycoplasma, where it appears not be be essential. All members have three hydrophobic transmembrane helical segments. 105 -275348 TIGR04555 sulfite_DH_soxC sulfite dehydrogenase. Members of this family are the sulfite dehydrogenase SoxC. All members have a twin-arginine translocation (TAT) signal for secretion of proteins with bound cofactor across the plasma membrane. 408 -275349 TIGR04556 PKS_assoc polyketide synthase-associated domain. This model describes a rare domain found as the N-terminal region of a number of dinoflagellate-specific proteins that resemble type I polyketide synthases. 228 -275350 TIGR04557 fuse_rel_SoxYZ quinoprotein dehydrogenase-associated SoxYZ-like carrier. Members of this family are fusion proteins, with the N-terminal region similar to the sulfur oxidation protein SoxY (TIGR04488) and the C-terminal region similar to sulfur oxidation protein SoxZ (TIGR04490). Members occur exclusively in species with PQQ-dependent enzymes that have a Cys-Cys motif (TIGR03075) for electron transfer to c550 family cytochrome. By homology to the sulfur moiety-binding subunit SoxY, we predict the conserved Cys in the Gly-Gly-Cys motif binds some unknown adduct. 225 -275351 TIGR04558 SoxH_rel_PQQ_1 quinoprotein relay system zinc metallohydrolase 1. By homology, members are Zn metallohydrolases in the same family as the SoxH protein associated with sulfate metabolism, Bacillus cereus beta-lactamase II (see PDB:1bc2), and, more distantly, hydroxyacylglutathione hydrolase (glyoxalase II). All members occur in genomes with both PQQ biosynthesis and a PQQ-dependent (quinoprotein) dehydrogenase that has a motif of two consecutive Cys residues (see TIGR03075). The Cys-Cys motif is associated with electron transfer by specialized cytochromes such as c551. All these genomes also include a fusion protein (TIGR04557) whose domains resemble SoxY and SoxZ from thiosulfate oxidation. A conserved Cys in this fusion protein aligns to the Cys residue in SoxY that carries sulfur cycle intermediates. In many genomes, the genes for PQQ biosynthesis enzymes, PQQ-dependent enzymes, their associated cytochromes, and members of this family are clustered. Note that one to three closely related Zn metallohydrolases may occur; this family represents a specific clade among them. [Unknown function, Enzymes of unknown specificity] 285 -275352 TIGR04559 SoxH_rel_PQQ_2 quinoprotein relay system zinc metallohydrolase 2. By homology, members are Zn metallohydrolases in the same family as the SoxH protein associated with sulfate metabolism, Bacillus cereus beta-lactamase II (see PDB:1bc2), and, more distantly, hydroxyacylglutathione hydrolase (glyoxalase II). All members occur in genomes with both PQQ biosynthesis and a PQQ-dependent (quinoprotein) dehydrogenase that has a motif of two consecutive Cys residues (see TIGR03075). The Cys-Cys motif is associated with electron transfer by specialized cytochromes such as c551. All these genomes also include a fusion protein (TIGR04557) whose domains resemble SoxY and SoxZ from thiosulfate oxidation. A conserved Cys in this fusion protein aligns to the Cys residue in SoxY that carries sulfur cycle intermediates. In many genomes, the genes for PQQ biosynthesis enzymes, PQQ-dependent enzymes, their associated cytochromes, and members of this family are clustered. Note that one to three closely related Zn metallohydrolases may occur; this family represents a specific clade among them. Some members of this family have a short additional N-terminal domain with four conserved Cys residues. [Unknown function, Enzymes of unknown specificity] 283 -275353 TIGR04560 ribo_THX ribosomal small subunit protein bTHX. Members of this protein are the lineage-specific bacterial ribosomal small subunit proteint bTHX (previously THX), originally shown to exist in the genus Thermus. The protein is conserved for the first 26 amino acids, past which some members continue with additional sequence, often repetitive or low-complexity. This model also finds eukaryotic organelle forms, which have additional N-terminal transit peptides. [Protein synthesis, Ribosomal proteins: synthesis and modification] 26 -275354 TIGR04561 membra_charge integral membrane protein. Members of this protein are short (about 85-residue), low-complexity sequences of unknown function, with a highly hydrophobic N-terminal region of about 40 amino acids followed by a charged (Asp, Glu, Lys, and Arg-rich), sometimes repetitive C-terminal region. Members occur exclusively among the Mollicutes (Mycoplasma, Mesoplasma, Acholeplasma, Spiroplasma, Entomoplasma). The gene neighborhood of this protein is not conserved. 82 -275355 TIGR04562 TIGR04562 TIGR04562 family protein. Members of this family are proteins of unknown function, about 400 amino acids in length. Members are universal among the Myxococcales (a branch of the Deltaproteobacteria) and occur sporadically elsewhere. [Unknown function, General] 355 -275356 TIGR04563 TIGR04563 MXAN_4361/MXAN_4362 family small protein. Members of this family are small proteins that appears to be restricted to and yet universal in the Myxococcales. The function is unknown. Members include two tandem loci in Myxococcus xanthus DK 1622, MXAN_4361 and MXAN_4362, although members are not tandem in other Myxococcales. 53 -275357 TIGR04564 Synergist_CTERM Synergist-CTERM protein sorting domain. This model identifies a C-terminal domain of about 27 residues whose features are 1) a short Gly/Ser-rich region that ends in an invariant Gly-Cys motif, 2) a highly hydrophobic probable transmembrane alpha helix with a nearly invariant Pro near the end, and 3) a cluster of basic residues (Arg, Lys), and then the end of the protein. This domain occurs, so far, only in species of Synergistetes (Dethiosulfovibrio peptidovorans, Aminiphilus circumscriptus, Aminomonas paucivorans, Fretibacterium fastidiosum, Cloacibacillus evryensis, Synergistes jonesii, etc). This region closely resembles the MXYO-CTERM region of the Myxococcales, a division of the Deltaproteobacteria (see TIGR03901), but that domain lacks the the conserved Pro, frequently has two Cys residues instead of one, and most importantly, has a spacer region separating the Gly-Cys motif from the transmembrane segment. As with MYXO-CTERM, the enzyme presumed to recognize and cleave the sorting signal is not known. The lack of a spacer region between motif and TM segment suggests the presumed protease is located largely within the membrane, like rhombosortase and archaeosortase, rather than merely tethered to it like sortase. 26 -275358 TIGR04565 OMP_myx_plus outer membrane beta-barrel protein. Members of this family are outer membrane beta-barrel proteins, as inferred by distant homologies to other families (e.g. pfam13505) and by the concentration of aromatic residues, especially Phe, in the OMP signal region, which is flush with the C-terminus in some members, but followed by a few residues in others. Members have variable insertions and deletions, affecting scores, so this model does not cleanly separate all members from all non-members. Members are common in the Myxococcales, with five occurring in Myxococcus xanthus DK 1622. 157 -275359 TIGR04566 myxo_TraA_Nterm outer membrane exchange protein TraA, N-terminal region. In Myxococcus xanthus, the protein pair TraA (MXAN_6895) and TraB (MXAN_6898) are required for contact-dependent exchange of outer membrane proteins. The C-terminal half of TrA consists largely of Cys-rich tandem repeats. This model describes the N-terminal region of TraA, and related protein MXAN_4924. This region is suggested to be similar to the lectin PA14. Members of this family are restricted to a subset of the Myxococcales, and so have a narrower species distribution than the MYXO-CTERM putative protein sorting signal (TIGR03901), which is universal in the Myxococcales. Note that TIGR04201 matches at least seven repeats in the C-terminal region of TraA. T [Protein fate, Protein and peptide secretion and trafficking] 240 -275360 TIGR04567 RNAP_delt_lowGC DNA-directed RNA polymerase delta subunit. Members of this family are the RNA polymerase delta subunit, as found in the Firmicutes and the Mollicutes. All members of the seed alignment have an extended C-terminal low-complexity region, consisting largely of Asp and Glu, that is not included in the model. Proteins giving borderline scores should be checked to confirm a similar acidic C-terminal domain. [Transcription, DNA-dependent RNA polymerase] 83 -275361 TIGR04568 arch_SelU_Nterm selenouridine synthase, SelU N-terminal-like subunit. This protein is involved in biosynthesis of a selenonucleotide, probably 2-selenouridine, in tRNA of some archaea, such as Methanococcus maripaludis. This protein resembles the N-terminal region of bacterial SelU, and its partner protein resembles the C-terminal region. [Protein synthesis, tRNA and rRNA base modification] 215 -275362 TIGR04569 arch_SelU_Cterm selenouridine synthase, SelU C-terminal-like subunit. This protein is involved in biosynthesis of a selenonucleotide, probably 2-selenouridine, in tRNA of some archaea, such as Methanococcus maripaludis. This protein resembles the C-terminal region of bacterial SelU, and its partner protein resembles the N-terminal region. [Protein synthesis, tRNA and rRNA base modification] 217 -275363 TIGR04570 mollicut_2TM small integral membrane protein. Members of this extremely rare protein family occur in Mycoplasma mycoides and two species of Spiroplasma. The protein is small and hydrophobic with two predicted transmembrane (TM) regions. [Unknown function, General] 87 -275364 TIGR04571 LmtA_Leptospira lipid A Kdo2 1-phosphate O-methyltransferase. This family describes LmtA, which methylates a phosphate on the Kdo2 sugar of lipid A. The model is classified as exception (more specific than equivalog) to reflect that its scope is limited to the genus Leptospira, whereas homologs with matching activity might exist more broadly. Members of this family belong to the broader family of pfam04191, phospholipid methyltransferase, which includes a characterized yeast enzyme that acts on a range of unsaturated phospholipids. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 252 -237975 cd00001 PTS_IIB_man PTS_IIB, PTS system, Mannose/sorbose specific IIB subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIB PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. The active site histidine receives a phosphate group from the IIA subunit and transfers it to the substrate. 151 -237976 cd00002 YbaK_deacylase This CD includes cysteinyl-tRNA(Pro) deacylases from Haemophilus influenzae and Escherichia coli and other related bacterial proteins. These trans-acting, single-domain proteins are homologs of ProX and also the cis-acting prolyl-tRNA synthetase (ProRS) inserted (INS) editing domain. The bacterial amino acid trans-editing enzyme YbaK is a deacylase that hydrolyzes cysteinyl-tRNA(Pro)'s mischarged by prolyl-tRNA synthetase. YbaK also hydrolyzes glycyl-tRNA's, alanyl-tRNA's, seryl-tRNA's, and prolyl-tRNA's. YbaK is homologous to the INS domain of prolyl-tRNA synthetase (ProRS) as well as the trans-editing enzyme ProX of Aeropyrum pernix which hydrolyzes alanyl-tRNA's and glycyl-tRNA's. 152 -237977 cd00003 PNPsynthase Pyridoxine 5'-phosphate (PNP) synthase domain; pyridoxal 5'-phosphate is the active form of vitamin B6 that acts as an essential, ubiquitous coenzyme in amino acid metabolism. In bacteria, formation of pyridoxine 5'-phosphate is a step in the biosynthesis of vitamin B6. PNP synthase, a homooctameric enzyme, catalyzes the final step in PNP biosynthesis, the condensation of 1-amino-acetone 3-phosphate and 1-deoxy-D-xylulose 5-phosphate. PNP synthase adopts a TIM barrel topology, intersubunit contacts are mediated by three ''extra'' helices, generating a tetramer of symmetric dimers with shared active sites; the open state has been proposed to accept substrates and to release products, while most of the catalytic events are likely to occur in the closed state; a hydrophilic channel running through the center of the barrel was identified as the essential structural feature that enables PNP synthase to release water molecules produced during the reaction from the closed, solvent-shielded active site. 234 -320674 cd00004 Sortase Sortase domain. Sortases are cysteine transpeptidases, mainly found in Gram-positive bacteria, which either anchor surface proteins to peptidoglycans of the bacterial cell wall envelope or link proteins together to form pili by working alone, or in concert with other enzymes. They do so by catalyzing a transpeptidation reaction in which the surface protein substrate is cleaved at a conserved cell wall sorting signal and covalently linked to peptidoglycan for display on the bacterial surface. Sortases are grouped into different classes based on sequence, membrane topology, genomic positioning, and cleavage site preference. The different classes are called class A to F sortases. Most Gram-positive bacteria contain more than one sortase and it is thought that the different sortases attach different surface protein classes. The typical eight-stranded beta-barrel fold is observed in all known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Some sortases contain an N-terminal signal peptide only and the C-terminus serves as a membrane anchor, which represents a type I membrane topology, with the N-terminal enzymatic portion projecting towards the bacterial surface and the C-terminal end residing in the cytoplasm. Other sortases adopt a type II membrane topology, with the N-terminal hydrophobic segment inside the cytoplasm and the C-terminal enzymatic portion located across the plasma membrane. The N-terminus either functions as both a signal peptide for secretion and a stop-transfer signal for membrane anchoring. Sortases are also present in some Gram-negative and Archaebacterial species, but the functions of these enzymes are unknown. 125 -187674 cd00005 CBM9_like_1 DOMON-like type 9 carbohydrate binding module of xylanases. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. The CBM9 domain frequently occurs in tandem repeats; members found in this subfamily typically co-occur with glycosyl hydrolase family 10 domains and are annotated as endo-1,4-beta-xylanases. CBM9 from Thermotoga maritima xylanase 10A is reported to have specificity for polysaccharide reducing ends. 185 -237978 cd00006 PTS_IIA_man PTS_IIA, PTS system, mannose/sorbose specific IIA subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIA PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. IIA subunits receive phosphoryl groups from HPr and transfer them to IIB subunits, which in turn phosphorylate the substrate. 122 -350199 cd00008 PIN_53EXO-like FEN-like PIN domains of the 5'-3' exonucleases of DNA polymerase I, bacteriophage T4 RNase H and T5-5' nucleases, and homologs. PIN (PilT N terminus) domains of the 5'-3' exonucleases (53EXO) of multi-domain DNA polymerase I and single domain protein homologs, as well as, the PIN domains of bacteriophage T5-5'nuclease (T5FEN or 5'-3'exonuclease), bacteriophage T4 RNase H (T4FEN), bacteriophage T3 (T3 phage exodeoxyribonuclease) and other similar nucleases are included in this family. The 53EXO of DNA polymerase I recognizes and endonucleolytically cleaves a structure-specific DNA substrate that has a bifurcated downstream duplex and an upstream template-primer duplex that overlaps the downstream duplex by 1 bp. The T5-5'nuclease is a 5'-3'exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'end). T4 RNase H, which removes the RNA primers that initiate lagging strand fragments, has 5'- 3'exonuclease activity on DNA/DNA and RNA/DNA duplexes and has endonuclease activity on flap or forked DNA structures. These nucleases are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 158 -99707 cd00009 AAA The AAA+ (ATPases Associated with a wide variety of cellular Activities) superfamily represents an ancient group of ATPases belonging to the ASCE (for additional strand, catalytic E) division of the P-loop NTPase fold. The ASCE division also includes ABC, RecA-like, VirD4-like, PilT-like, and SF1/2 helicases. Members of the AAA+ ATPases function as molecular chaperons, ATPase subunits of proteases, helicases, or nucleic-acid stimulated ATPases. The AAA+ proteins contain several distinct features in addition to the conserved alpha-beta-alpha core domain structure and the Walker A and B motifs of the P-loop NTPases. 151 -237980 cd00010 AAI_LTSS AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid Transfer (LT) and Seed Storage (SS) Protein family; a protein family unique to higher plants that includes cereal-type alpha-amylase inhibitors, lipid transfer proteins, seed storage proteins, and similar proteins. Proteins in this family are known to play important roles, in defending plants from insects and pathogens, lipid transport between intracellular membranes, and nutrient storage. Many proteins of this family have been identified as allergens in humans. These proteins contain a common pattern of eight cysteines that form four disulfide bridges. 63 -153270 cd00011 BAR_Arfaptin_like The Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-like proteins, a dimerization module that binds and bends membranes. The BAR domain of Arfaptin-like proteins, also called the Arfaptin domain, is a dimerization, lipid binding and curvature sensing module present in Arfaptins, PICK1, ICA69, and similar proteins. Arfaptins are ubiquitously expressed proteins implicated in mediating cross-talk between Rac, a member of the Rho family GTPases, and Arf (ADP-ribosylation factor) small GTPases. Arfaptins bind to GTP-bound Arf1, Arf5, and Arf6, with strongest binding to GTP-Arf1. Arfaptins also binds to Rac-GTP and Rac-GDP with similar affinities. The Arfs are thought to bind to the same surface as Rac, and their binding is mutually exclusive. Protein Interacting with C Kinase 1 (PICK1) plays a key role in the trafficking of AMPA receptors, which are critical for regulating synaptic strength and may be important in cellular processes involved in learning and memory. Islet cell autoantigen 69-kDa (ICA69) is a diabetes-associated autoantigen that is involved in membrane trafficking at the Golgi complex in neurosecretory cells. ICA69 associates with PICK1 through their BAR domains to form a heterodimer which is involved in regulating the synaptic targeting and surface expression of AMPA receptors. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 203 -212657 cd00012 NBD_sugar-kinase_HSP70_actin Nucleotide-Binding Domain of the sugar kinase/HSP70/actin superfamily. This superfamily includes the actin family, the HSP70 family of molecular chaperones and nucleotide exchange factors, the ROK (repressor, ORF, kinase) family, the hexokinase family, the FGGY family (which includes glycerol kinase and similar carbohydrate kinases such as rhamnulokinase and xylulokinase), the exopolyphosphatase/guanosine pentaphosphate phosphohydrolase/nucleoside triphosphate diphosphohydrolase family, propionate kinase/acetate kinase family, glycerol dehydratase reactivase, 2-hydroxyglutaryl-CoA dehydratase component A, N-acetylglucosamine kinase, butyrate kinase 2, Escherichia coli YeaZ and similar glycoproteases, the cell shape-determining protein MreB, the plasmid DNA segregation factor ParM, cell cycle proteins FtsA, Pili assembly protein PilM, ethanolamine utilization protein EutJ, and similar proteins. The nucleotide-binding site residues are conserved; the nucleotide sits in a deep cleft formed between the two lobes of the nucleotide-binding domain (NBD). Substrate binding to superfamily members is associated with closure of this catalytic site cleft. The functional activities of several members of the superfamily, including hexokinases, actin, and HSP70s, are modulated by allosteric effectors, which may act on the cleft closure. 185 -200435 cd00013 ADF_gelsolin Actin depolymerization factor/cofilin- and gelsolin-like domains. Actin depolymerization factor/cofilin-like domains are present in a family of essential eukaryotic actin regulatory proteins; these proteins enhance the turnover rate of actin and interact with actin monomers as well as actin filaments. 97 -237981 cd00014 CH Calponin homology domain; actin-binding domain which may be present as a single copy or in tandem repeats (which increases binding affinity). The CH domain is found in cytoskeletal and signal transduction proteins, including actin-binding proteins like spectrin, alpha-actinin, dystrophin, utrophin, and fimbrin, proteins essential for regulation of cell shape (cortexillins), and signaling proteins (Vav). 107 -237982 cd00015 ALBUMIN Albumin domain, contains five or six internal disulphide bonds; albuminoid superfamily includes alpha-fetoprotein which binds various cations, fatty acids and bilirubin; vitamin D-binding protein which binds to vitamin D, its metabolites, and fatty acids; alpha-albumin which binds water, cations (such as Ca2+, Na+ and K+), fatty acids, hormones, bilirubin and drugs; and afamin of which little is known; these belong to a multigene family with highly conserved intron/exon organization and encoded protein structures; evolutionary comparisons strongly support vitamin D-binding protein as the original gene in this group with subsequent local duplications generating the remaining genes in the cluster 185 -293732 cd00016 ALP_like alkaline phosphatases and sulfatases. This family includes alkaline phosphatases and sulfatases. Alkaline phosphatases are non-specific phosphomonoesterases that catalyze the hydrolysis reaction via a phosphoseryl intermediate to produce inorganic phosphate and the corresponding alcohol, optimally at high pH. Alkaline phosphatase exists as a dimer, each monomer binding 2 zinc atoms and one magnesium atom, which are essential for enzymatic activity. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. Both alkaline phosphatase and sulfatase are essential for human metabolism. Deficiency of individual enzyme cause genetic diseases. 237 -237984 cd00017 ANATO Anaphylatoxin homologous domain; C3a, C4a and C5a anaphylatoxins are protein fragments generated enzymatically in serum during activation of complement molecules C3, C4, and C5. They induce smooth muscle contraction. These fragments are homologous to repeats in fibulins. 70 -237985 cd00018 AP2 DNA-binding domain found in transcription regulators in plants such as APETALA2 and EREBP (ethylene responsive element binding protein). In EREBPs the domain specifically binds to the 11bp GCC box of the ethylene response element (ERE), a promotor element essential for ethylene responsiveness. EREBPs and the C-repeat binding factor CBF1, which is involved in stress response, contain a single copy of the AP2 domain. APETALA2-like proteins, which play a role in plant development contain two copies. 61 -237986 cd00019 AP2Ec AP endonuclease family 2; These endonucleases play a role in DNA repair. Cleave phosphodiester bonds at apurinic or apyrimidinic sites; the alignment also contains hexulose-6-phosphate isomerases, enzymes that catalyze the epimerization of D-arabino-6-hexulose 3-phosphate to D-fructose 6-phosphate, via cleaving the phosphoesterbond with the sugar. 279 -237988 cd00021 BBOX B-Box-type zinc finger; zinc binding domain (CHC3H2); often present in combination with other motifs, like RING zinc finger, NHL motif, coiled-coil or RFP domain in functionally unrelated proteins, most likely mediating protein-protein interaction. 39 -237989 cd00022 BIR Baculoviral inhibition of apoptosis protein repeat domain; Found in inhibitors of apoptosis proteins (IAPs) and other proteins. In higher eukaryotes, BIR domains inhibit apoptosis by acting as direct inhibitors of the caspase family of protease enzymes. In yeast, BIR domains are involved in regulating cytokinesis. This novel fold is stabilized by zinc tetrahedrally coordinated by one histidine and three cysteine residues and resembles a classical zinc finger. 69 -237990 cd00023 BBI Bowman-Birk type proteinase inhibitor (BBI); family of plant serine protease inhibitors that block trypsin or chymotrypsin.They are either single-headed (one reactive site, one inactive site, present mainly in monocotyledonous seeds) or double-headed (two reactive sites, present mainly in dicotyledonous seeds). 55 -349274 cd00024 CD_CSD CHROMO (CHRromatin Organization Modifier) domains and chromo shadow domains. Members of this group are chromodomains or chromo shadow domains; these are SH3-fold-beta-barrel domains of the chromo-like superfamily. Chromodomains lack the first strand of the SH3-fold-beta-barrel, this first strand is altered by insertion in the chromo shadow domains. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. Chromodomain-containing proteins include: i) those having an N-terminal chromodomain followed by a related chromo shadow domain, such as Drosophila and human heterochromatin protein Su(var)205 (HP1), and mammalian modifier 1 and 2; ii) those having a single chromodomain, such as Drosophila protein Polycomb (Pc), mammalian modifier 3, human Mi-2 autoantigen, and several yeast and Caenorhabditis elegans proteins of unknown function; iii) those having paired tandem chromodomains, such as mammalian DNA-binding/helicase proteins CHD-1 to CHD-4 and yeast protein CHD1; (iv) and elongation factor eEF3, a member of the ATP-binding cassette (ABC) family of proteins, that serves an essential function in the translation cycle of fungi. eEF3 is a soluble factor lacking a transmembrane domain and having two ABC domains arranged in tandem, with a unique chromodomain inserted within the ABC2 domain. 50 -237992 cd00025 BPI1 BPI/LBP/CETP N-terminal domain; Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide-binding protein (LBP) / Cholesteryl ester transfer protein (CETP) N-terminal domain; binds to and neutralizes lipopolysaccharides from the outer membrane of Gram-negative bacteria.; Apolar pockets on the concave surface bind a molecule of phosphatidylcholine, primarily by interacting with their acyl chains; this suggests that the pockets may also bind the acyl chains of lipopolysaccharide. 223 -237993 cd00026 BPI2 BPI/LBP/CETP C-terminal domain; Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide-binding protein (LBP) / Cholesteryl ester transfer protein (CETP) C-terminal domain; binds to and neutralizes lipopolysaccharides from the outer membrane of Gram-negative bacteria.; Apolar pockets on the concave surface bind a molecule of phosphatidylcholine, primarily by interacting with their acyl chains; this suggests that the pockets may also bind the acyl chains of lipopolysaccharide. 200 -349339 cd00027 BRCT C-terminal domain of the breast cancer suppressor protein (BRCA1) and related domains. The BRCT (BRCA1 C-terminus) domain is found within many DNA damage repair and cell cycle checkpoint proteins. BRCT domains interact with each other forming homo/hetero BRCT multimers, but are also involved in BRCT-non-BRCT interactions and interactions within DNA strand breaks. BRCT tandem repeats bind to phosphopeptides; it has been shown that the repeats in human BRCA1 bind specifically to pS-X-X-F motifs, mediating the interaction between BRCA1 and the DNA helicase BACH1, or BRCA1 and CtIP, a transcriptional corepressor. It is assumed that BRCT repeats play similar roles in many signaling pathways associated with the response to DNA damage. 68 -237995 cd00028 B_lectin Bulb-type mannose-specific lectin. The domain contains a three-fold internal repeat (beta-prism architecture). The consensus sequence motif QXDXNXVXY is involved in alpha-D-mannose recognition. Lectins are carbohydrate-binding proteins which specifically recognize diverse carbohydrates and mediate a wide variety of biological processes, such as cell-cell and host-pathogen interactions, serum glycoprotein turnover, and innate immune responses. 116 -237996 cd00029 C1 Protein kinase C conserved region 1 (C1) . Cysteine-rich zinc binding domain. Some members of this domain family bind phorbol esters and diacylglycerol, some are reported to bind RasGTP. May occur in tandem arrangement. Diacylglycerol (DAG) is a second messenger, released by activation of Phospholipase D. Phorbol Esters (PE) can act as analogues of DAG and mimic its downstream effects in, for example, tumor promotion. Protein Kinases C are activated by DAG/PE, this activation is mediated by their N-terminal conserved region (C1). DAG/PE binding may be phospholipid dependent. C1 domains may also mediate DAG/PE signals in chimaerins (a family of Rac GTPase activating proteins), RasGRPs (exchange factors for Ras/Rap1), and Munc13 isoforms (scaffolding proteins involved in exocytosis). 50 -175973 cd00030 C2 C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 102 -206635 cd00031 CA_like Cadherin repeat-like domain. Cadherins are glycoproteins involved in Ca2+-mediated cell-cell adhesion. The cadherin repeat domains occur as tandem repeats in the extracellular regions, which are thought to mediate cell-cell contact when bound to calcium. They play numerous roles in cell fate, signalling, proliferation, differentiation, and migration; members include E-, N-, P-, T-, VE-, CNR-, proto-, and FAT-family cadherin, desmocollin, and desmoglein, a large variety of domain architectures with varying repeat copy numbers. Cadherin-repeat containing proteins exist as monomers, homodimers, or heterodimers. This family also includes the cadherin-like repeats of extracellular alpha-dystroglycan. 98 -237997 cd00032 CASc Caspase, interleukin-1 beta converting enzyme (ICE) homologues; Cysteine-dependent aspartate-directed proteases that mediate programmed cell death (apoptosis). Caspases are synthesized as inactive zymogens and activated by proteolysis of the peptide backbone adjacent to an aspartate. The resulting two subunits associate to form an (alpha)2(beta)2-tetramer which is the active enzyme. Activation of caspases can be mediated by other caspase homologs. 243 -153056 cd00033 CCP Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) have been identified in several proteins of the complement system. SUSHI repeats (short complement-like repeat, SCR) are abundant in complement control proteins. The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. Typically, 2 to 4 modules contribute to a binding site, implying that the orientation of the modules to each other is critical for function. 57 -349275 cd00034 CSD chromo shadow domain. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. CSDs are found for example in Drosophila and human heterochromatin protein (HP1) and mammalian modifier 1 and modifier 2. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 52 -211311 cd00035 ChtBD1 Hevein or type 1 chitin binding domain. Hevein or type 1 chitin binding domain (ChtBD1), a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins such as hevein, a major IgE-binding allergen in natural rubber latex, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 39 -213175 cd00036 ChtBD3 Chitin/cellulose binding domains of chitinase and related enzymes. This group contains proteins related to the cellulose-binding domain of Erwinia chrysanthemi endoglucanase Z (EGZ) and Serratia marcescens chitinase B (ChiB). Gram negative plant parasite Erwinia chrysanthemi produces a variety of depolymerizing enzymes to metabolize pectin and cellulose on the host plant. Cellulase EGZ has a modular structure, with an N-terminal catalytic domain linked to a C-terminal cellulose-binding domain (CBD). CBD mediates the secretion activity of EGZ. Chitinases allow certain bacteria to utilize chitin as a energy source. Typically, non-plant chitinases are of the glycosidase family 18. Bacillus circulans Glycosidase ChiA1 hydrolyzes chitin and is comprised of several domains: the C-terminal chitin binding domain, an N-terminal catalytic domain, and 2 fibronectin type III-like domains. Bacillus circulans WL-12 ChiA1 facilitates invasion of fungal cell walls. The ChiA1 chitin binding domain is required for the specific recognition of insoluble chitin. although topologically and structurally related, ChiA1 lacks the characteristic aromatic residues of Erwinia chrysanthemi endoglucanase Z (CBD(EGZ)). Streptomyces griseus Chitinase C is a family 19 chitinase, and consists of a N-terminal chitin binding domain and a C-terminal chitin-catalytic domain that effects degradation. ChiC contains the characteristic chitin-binding aromatic residues. Chitinases function in invertebrates in the degradation of old exoskeletons, in fungi to utilize chitin in cell walls, and in bacteria which use chitin as an energy source. 40 -153057 cd00037 CLECT C-type lectin (CTL)/C-type lectin-like (CTLD) domain. CLECT: C-type lectin (CTL)/C-type lectin-like (CTLD) domain; protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. This group is chiefly comprised of eukaryotic CTLDs, but contains some, as yet functionally uncharacterized, bacterial CTLDs. Many CTLDs are calcium-dependent carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic surfaces, including CaCO3 and ice. Animal C-type lectins are involved in such functions as extracellular matrix organization, endocytosis, complement activation, pathogen recognition, and cell-cell interactions. For example: mannose-binding lectin and lung surfactant proteins A and D bind carbohydrates on surfaces (e.g. pathogens, allergens, necrotic, and apoptotic cells) and mediate functions associated with killing and phagocytosis; P (platlet)-, E (endothelial)-, and L (leukocyte)- selectins (sels) mediate the initial attachment, tethering, and rolling of lymphocytes on inflamed vascular walls enabling subsequent lymphocyte adhesion and transmigration. CTLDs may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose. Several CTLDs bind to protein ligands, and only some of these binding interactions are Ca2+-dependent; including the CTLDs of Coagulation Factors IX/X (IX/X) and Von Willebrand Factor (VWF) binding proteins, and natural killer cell receptors. C-type lectins, such as lithostathine, and some type II antifreeze glycoproteins function in a Ca2+-independent manner to bind inorganic surfaces. Many proteins in this group contain a single CTLD; these CTLDs associate with each other through several different surfaces to form dimers, trimers, or tetramers, from which ligand-binding sites project in different orientations. Various vertebrate type 1 transmembrane proteins including macrophage mannose receptor, endo180, phospholipase A2 receptor, and dendritic and epithelial cell receptor (DEC205) have extracellular domains containing 8 or more CTLDs; these CTLDs remain in the parent model. In some members (IX/X and VWF binding proteins), a loop extends to the adjoining domain to form a loop-swapped dimer. A similar conformation is seen in the macrophage mannose receptor CRD4's putative non-sugar bound form of the domain in the acid environment of the endosome. Lineage specific expansions of CTLDs have occurred in several animal lineages including Drosophila melanogaster and Caenorhabditis elegans; these CTLDs also remain in the parent model. 116 -237999 cd00038 CAP_ED effector domain of the CAP family of transcription factors; members include CAP (or cAMP receptor protein (CRP)), which binds cAMP, FNR (fumarate and nitrate reduction), which uses an iron-sulfur cluster to sense oxygen) and CooA, a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. Cyclic nucleotide-binding domain similar to CAP are also present in cAMP- and cGMP-dependent protein kinases (cAPK and cGPK) and vertebrate cyclic nucleotide-gated ion-channels. Cyclic nucleotide-monophosphate binding domain; proteins that bind cyclic nucleotides (cAMP or cGMP) share a structural domain of about 120 residues; the best studied is the prokaryotic catabolite gene activator, CAP, where such a domain is known to be composed of three alpha-helices and a distinctive eight-stranded, antiparallel beta-barrel structure; three conserved glycine residues are thought to be essential for maintenance of the structural integrity of the beta-barrel; CooA is a homodimeric transcription factor that belongs to CAP family; cAMP- and cGMP-dependent protein kinases (cAPK and cGPK) contain two tandem copies of the cyclic nucleotide-binding domain; cAPK's are composed of two different subunits, a catalytic chain and a regulatory chain, which contains both copies of the domain; cGPK's are single chain enzymes that include the two copies of the domain in their N-terminal section; also found in vertebrate cyclic nucleotide-gated ion-channels 115 -119409 cd00039 COLIPASE Colipase; a stoichiometric cofactor for pancreatic lipase, allowing the enzyme to anchor itself to the water-lipid interface and stabilizing the active enzyme conformation 90 -238000 cd00040 CSF2 Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) is a member of the large family of polypeptide growth factors called cytokines. It stimulates a wide variety of hematopoietic and nonhematopoietic cell types via binding to members of the cytokine receptor family, mainly the GM-CSF receptor. 121 -238001 cd00041 CUB CUB domain; extracellular domain; present in proteins mostly known to be involved in development; not found in prokaryotes, plants and yeast. 113 -238002 cd00042 CY Substituted updates: Jan 30, 2002 105 -238003 cd00043 CYCLIN Cyclin box fold. Protein binding domain functioning in cell-cycle and transcription control. Present in cyclins, TFIIB and Retinoblastoma (RB).The cyclins consist of 8 classes of cell cycle regulators that regulate cyclin dependent kinases (CDKs). TFIIB is a transcription factor that binds the TATA box. Cyclins, TFIIB and RB contain 2 copies of the domain. 88 -238004 cd00044 CysPc Calpains, domains IIa, IIb; calcium-dependent cytoplasmic cysteine proteinases, papain-like. Functions in cytoskeletal remodeling processes, cell differentiation, apoptosis and signal transduction. 315 -260016 cd00045 DED Death Effector Domain: a protein-protein interaction domain. Death Effector Domains comprise a subfamily of the Death Domain (DD) superfamily. DED-containing proteins include Fas-Associated via Death Domain (FADD), Astrocyte phosphoprotein PEA-15, the initiator caspases (caspase-8 and -10), and FLICE-inhibitory protein (FLIP), among others. These proteins are prominent components of the programmed cell death (apoptosis) pathway. Some members also have non-apoptotic functions such as regulation of insulin signaling (DEDD and PEA15) and cell cycle progression (DEDD). DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. 77 -350668 cd00046 SF2-N N-terminal DEAD/H-box helicase domain of superfamily 2 helicases. The DEAD/H-like superfamily 2 helicases comprise a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This N-terminal domain contains the ATP-binding region. 146 -350343 cd00047 PTPc catalytic domain of protein tyrosine phosphatases. Protein tyrosine phosphatases (PTP, EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides; they regulate phosphotyrosine levels in signal transduction pathways. The depth of the active site cleft renders the enzyme specific for phosphorylated Tyr (pTyr) residues, instead of pSer or pThr. This family has a distinctive active site signature motif, HCSAGxGRxG, and are characterized as either transmembrane, receptor-like or non-transmembrane (soluble) PTPs. Receptor-like PTP domains tend to occur in two copies in the cytoplasmic region of the transmembrane proteins, only one copy may be active. 200 -238007 cd00048 DSRM Double-stranded RNA binding motif. Binding is not sequence specific but is highly specific for double stranded RNA. Found in a variety of proteins including dsRNA dependent protein kinase PKR, RNA helicases, Drosophila staufen protein, E. coli RNase III, RNases H1, and dsRNA dependent adenosine deaminases. 68 -199811 cd00049 MH1 N-terminal Mad Homology 1 (MH1) domain. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. Receptor-regulated SMAD proteins (R-SMADs, including SMAD1, SMAD2, SMAD3, SMAD5, and SMAD9) are activated by phosphorylation by transforming growth factor (TGF)-beta type I receptors. The active R-SMAD associates with a common mediator SMAD (Co-SMAD or SMAD4) and other cofactors, which together translocate to the nucleus to regulate gene expression. The inhibitory or antagonistic SMADs (I-SMADs, including SMAD6 and SMAD7) negatively regulate TGF-beta signaling by competing with R-SMADs for type I receptor or Co-SMADs. MH1 domains of R-SMAD and SMAD4 contain a nuclear localization signal as well as DNA-binding activity. The activated R-SMAD/SMAD4 complex then binds with very low affinity to a DNA sequence CAGAC called SMAD-binding element (SBE) via the MH1 domain. 121 -199819 cd00050 MH2 C-terminal Mad Homology 2 (MH2) domain. The MH2 domain is found in the SMAD (small mothers against decapentaplegic) family of proteins and is responsible for type I receptor interactions, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain which prevents it from forming a complex with SMAD4. The MH2 domain is multifunctional and provides SMADs with their specificity and selectivity, as well as transcriptional activity. Several transcriptional co-activators and repressors have also been reported to regulate SMAD signaling by interacting with the MH2 domain. Mutations in the MH2 domains of SMAD2 and especially SMAD4 have been detected in colorectal and other human cancers. 170 -238008 cd00051 EFh EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers. 63 -238009 cd00052 EH Eps15 homology domain; found in proteins implicated in endocytosis, vesicle transport, and signal transduction. The alignment contains a pair of EF-hand motifs, typically one of them is canonical and binds to Ca2+, while the other may not bind to Ca2+. A hydrophobic binding pocket is formed by residues from both EF-hand motifs. The EH domain binds to proteins containing NPF (class I), [WF]W or SWG (class II), or H[TS]F (class III) sequence motifs. 67 -238010 cd00053 EGF Epidermal growth factor domain, found in epidermal growth factor (EGF) presents in a large number of proteins, mostly animal; the list of proteins currently known to contain one or more copies of an EGF-like pattern is large and varied; the functional significance of EGF-like domains in what appear to be unrelated proteins is not yet clear; a common feature is that these repeats are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted (exception: prostaglandin G/H synthase); the domain includes six cysteine residues which have been shown to be involved in disulfide bonds; the main structure is a two-stranded beta-sheet followed by a loop to a C-terminal short two-stranded sheet; Subdomains between the conserved cysteines vary in length; the region between the 5th and 6th cysteine contains two conserved glycines of which at least one is present in most EGF-like domains; a subset of these bind calcium. 36 -238011 cd00054 EGF_CA Calcium-binding EGF-like domain, present in a large number of membrane-bound and extracellular (mostly animal) proteins. Many of these proteins require calcium for their biological function and calcium-binding sites have been found to be located at the N-terminus of particular EGF-like domains; calcium-binding may be crucial for numerous protein-protein interactions. Six conserved core cysteines form three disulfide bridges as in non calcium-binding EGF domains, whose structures are very similar. EGF_CA can be found in tandem repeat arrangements. 38 -238012 cd00055 EGF_Lam Laminin-type epidermal growth factor-like domain; laminins are the major noncollagenous components of basement membranes that mediate cell adhesion, growth migration, and differentiation; the laminin-type epidermal growth factor-like module occurs in tandem arrays; the domain contains 4 disulfide bonds (loops a-d) the first three resemble epidermal growth factor (EGF); the number of copies of this domain in the different forms of laminins is highly variable ranging from 3 up to 22 copies 50 -238013 cd00056 ENDO3c endonuclease III; includes endonuclease III (DNA-(apurinic or apyrimidinic site) lyase), alkylbase DNA glycosidases (Alka-family) and other DNA glycosidases 158 -238014 cd00057 FA58C Substituted updates: Jan 31, 2002 143 -238015 cd00058 FGF Acidic and basic fibroblast growth factor family; FGFs are mitogens, which stimulate growth or differentiation of cells of mesodermal or neuroectodermal origin. The family plays essential roles in patterning and differentiation during vertebrate embryogenesis, and has neurotrophic activities. FGFs have a high affinity for heparan sulfate proteoglycans and require heparan sulfate to activate one of four cell surface FGF receptors. Upon binding to FGF, the receptors dimerize and their intracellular tyrosine kinase domains become active. FGFs have internal pseudo-threefold symmetry (beta-trefoil topology). 123 -238016 cd00059 FH Forkhead (FH), also known as a "winged helix". FH is named for the Drosophila fork head protein, a transcription factor which promotes terminal rather than segmental development. This family of transcription factor domains, which bind to B-DNA as monomers, are also found in the Hepatocyte nuclear factor (HNF) proteins, which provide tissue-specific gene regulation. The structure contains 2 flexible loops or "wings" in the C-terminal region, hence the term winged helix. 78 -238017 cd00060 FHA Forkhead associated domain (FHA); found in eukaryotic and prokaryotic proteins. Putative nuclear signalling domain. FHA domains may bind phosphothreonine, phosphoserine and sometimes phosphotyrosine. In eukaryotes, many FHA domain-containing proteins localize to the nucleus, where they participate in establishing or maintaining cell cycle checkpoints, DNA repair, or transcriptional regulation. Members of the FHA family include: Dun1, Rad53, Cds1, Mek1, KAPP(kinase-associated protein phosphatase),and Ki-67 (a human nuclear protein related to cell proliferation). 102 -238018 cd00061 FN1 Fibronectin type 1 domain, approximately 40 residue long with two conserved disulfide bridges. FN1 is one of three types of internal repeats which combine to form larger domains within fibronectin. Fibronectin, a plasma protein that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin, usually exists as a dimer in plasma and as an insoluble multimer in extracellular matrices. Dimers of nearly identical subunits are linked by a disulfide bond close to their C-terminus. FN1 domains also found in coagulation factor XII, HGF activator, and tissue-type plasminogen activator. In tissue plasminogen activator, FN1 domains may form functional fibrin-binding units with EGF-like domains C-terminal to FN1. 43 -238019 cd00062 FN2 Fibronectin Type II domain: FN2 is one of three types of internal repeats which combine to form larger domains within fibronectin. Fibronectin, a plasma protein that binds cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin, usually exists as a dimer in plasma and as an insoluble multimer in extracellular matrices. Dimers of nearly identical subunits are linked by a disulfide bond close to their C-terminus. Fibronectin is composed of 3 types of modules, FN1,FN2 and FN3. The collagen binding domain contains four FN1 and two FN2 repeats. 48 -238020 cd00063 FN3 Fibronectin type 3 domain; One of three types of internal repeats found in the plasma protein fibronectin. Its tenth fibronectin type III repeat contains an RGD cell recognition sequence in a flexible loop between 2 strands. Approximately 2% of all animal proteins contain the FN3 repeat; including extracellular and intracellular proteins, membrane spanning cytokine receptors, growth hormone receptors, tyrosine phosphatase receptors, and adhesion molecules. FN3-like domains are also found in bacterial glycosyl hydrolases. 93 -238021 cd00064 FU Furin-like repeats. Cysteine rich region. Exact function of the domain is not known. Furin is a serine-kinase dependent proprotein processor. Other members of this family include endoproteases and cell surface receptors. 49 -277249 cd00065 FYVE_like_SF FYVE domain like superfamily. FYVE domain is a 60-80 residue double zinc finger motif-containing module named after the four proteins, Fab1, YOTB, Vac1, and EEA1. The canonical FYVE domains are distinguished from other zinc fingers by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P, also termed PI3P)-binding site. They are found in many membrane trafficking regulators, including EEA1, Hrs, Vac1p, Vps27p, and FENS-1, which locate to early endosomes, specifically bind PtdIns3P, and play important roles in vesicular traffic and in signal transduction. Some proteins, such as rabphilin-3A and alpha-Rab3-interacting molecules (RIMs), are also involved in membrane trafficking and bind to members of the Rab subfamily of GTP hydrolases. However, they contain FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences. At this point, they may not bind to phosphoinositides. In addition, this superfamily also contains the third group of proteins, caspase-associated ring proteins CARP1 and CARP2. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. The FYVE domain is structurally similar to the RING domain and the PHD finger. This superfamily also includes ADDz zinc finger domain, which is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. 52 -206639 cd00066 G-alpha Alpha subunit of G proteins (guanine nucleotide binding). The alpha subunit of G proteins contains the guanine nucleotide binding site. The heterotrimeric GNP-binding proteins are signal transducers that communicate signals from many hormones, neurotransmitters, chemokines, and autocrine and paracrine factors. Extracellular signals are received by receptors, which activate the G proteins, which in turn route the signals to several distinct intracellular signaling pathways. The alpha subunit of G proteins is a weak GTPase. In the resting state, heterotrimeric G proteins are associated at the cytosolic face of the plasma membrane and the alpha subunit binds to GDP. Upon activation by a receptor GDP is replaced with GTP, and the G-alpha/GTP complex dissociates from the beta and gamma subunits. This results in activation of downstream signaling pathways, such as cAMP synthesis by adenylyl cyclase, which is terminated when GTP is hydrolized and the heterotrimers reconstitute. 315 -238023 cd00067 GAL4 GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain; found in transcription regulators like GAL4. Domain consists of two helices organized around a Zn(2)Cys(6 )motif; Binds to sequences containing 2 DNA half sites comprised of 3-5 C/G combinations 36 -238024 cd00068 GGL G protein gamma subunit-like motifs, the alpha-helical G-gamma chain dimerizes with the G-beta propeller subunit as part of the heterotrimeric G-protein complex; involved in signal transduction via G-protein-coupled receptors 57 -200450 cd00069 GHB_like Glycoprotein hormone beta chain homologues. This family of cystine-knot hormones includes the beta chains of gonadotropins, thyrotropins, follitropins, choriogonadotropins and more. The members are reproductive hormones that consist of two glycosylated chains (alpha and beta), which form a tightly bound dimer. 96 -238025 cd00070 GLECT Galectin/galactose-binding lectin. This domain exclusively binds beta-galactosides, such as lactose, and does not require metal ions for activity. GLECT domains occur as homodimers or tandemly repeated domains. They are developmentally regulated and may be involved in differentiation, cell-cell interaction and cellular regulation. 127 -238026 cd00071 GMPK Guanosine monophosphate kinase (GMPK, EC 2.7.4.8), also known as guanylate kinase (GKase), catalyzes the reversible phosphoryl transfer from adenosine triphosphate (ATP) to guanosine monophosphate (GMP) to yield adenosine diphosphate (ADP) and guanosine diphosphate (GDP). It plays an essential role in the biosynthesis of guanosine triphosphate (GTP). This enzyme is also important for the activation of some antiviral and anticancer agents, such as acyclovir, ganciclovir, carbovir, and thiopurines. 137 -238027 cd00072 GYF GYF domain: contains conserved Gly-Tyr-Phe residues; Proline-binding domain in CD2-binding and other proteins. Involved in signaling lymphocyte activity. Also present in other unrelated proteins (mainly unknown) derived from diverse eukaryotic species. 57 -238028 cd00073 H15 linker histone 1 and histone 5 domains; the basic subunit of chromatin is the nucleosome, consisting of an octamer of core histones, two full turns of DNA, a linker histone (H1 or H5) and a variable length of linker DNA; H1/H5 are chromatin-associated proteins that bind to the exterior of nucleosomes and dramatically stabilize the highly condensed states of chromatin fibers; stabilization of higher order folding occurs through electrostatic neutralization of the linker DNA segments, through a highly positively charged carboxy- terminal domain known as the AKP helix (Ala, Lys, Pro); thought to be involved in specific protein-protein and protein-DNA interactions and play a role in suppressing core histone tail domain acetylation in the chromatin fiber 88 -238029 cd00074 H2A Histone 2A; H2A is a subunit of the nucleosome. The nucleosome is an octamer containing two H2A, H2B, H3, and H4 subunits. The H2A subunit performs essential roles in maintaining structural integrity of the nucleosome, chromatin condensation, and binding of specific chromatin-associated proteins. 115 -340391 cd00075 HATPase Histidine kinase-like ATPase domain. This superfamily includes the histidine kinase-like ATPase (HATPase) domains of several ATP-binding proteins such as histidine kinase, DNA gyrase B, topoisomerases, heat shock protein 90 (HSP90), phytochrome-like ATPases and DNA mismatch repair proteins. Domains belonging to this superfamily are also referred to as GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPase domains. 102 -238031 cd00076 H4 Histone H4, one of the four histones, along with H2A, H2B and H3, which forms the eukaryotic nucleosome core; along with H3, it plays a central role in nucleosome formation; histones bind to DNA and wrap the genetic material into "beads on a string" in which DNA (the string) is wrapped around small blobs of histones (the beads) at regular intervals; play a role in the inheritance of specialized chromosome structures and the control of gene activity; defects in the establishment of proper chromosome structure by histones may activate or silence genes aberrantly and thus lead to disease; the sequence of histone H4 has remained almost invariant in more than 2 billion years of evolution 85 -238032 cd00077 HDc Metal dependent phosphohydrolases with conserved 'HD' motif 145 -238033 cd00078 HECTc HECT domain; C-terminal catalytic domain of a subclass of Ubiquitin-protein ligase (E3). It binds specific ubiquitin-conjugating enzymes (E2), accepts ubiquitin from E2, transfers ubiquitin to substrate lysine side chains, and transfers additional ubiquitin molecules to the end of growing ubiquitin chains. 352 -188616 cd00080 H3TH_StructSpec-5'-nucleases H3TH domains of structure-specific 5' nucleases (or flap endonuclease-1-like) involved in DNA replication, repair, and recombination. The 5' nucleases of this superfamily are capable of both 5'-3' exonucleolytic activity and cleaving bifurcated or branched DNA, in an endonucleolytic, structure-specific manner, and are involved in DNA replication, repair, and recombination. The superfamily includes the H3TH (helix-3-turn-helix) domains of Flap Endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap Endonuclease 1 (GEN1) and Xeroderma pigmentosum complementation group G (XPG) nuclease. Also included are the H3TH domains of the 5'-3' exonucleases of DNA polymerase I and single domain protein homologs, as well as, the bacteriophage T4 RNase H, T5-5'nuclease, and other homologs. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the C-terminal region of the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. Typically, the nucleases within this superfamily have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (i. e., Mg2+, Mn2+, Zn2+, or Co2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one or two Asp residues from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 71 -238035 cd00081 Hint Hedgehog/Intein domain, found in Hedgehog proteins as well as proteins which contain inteins and undergo protein splicing (e.g. DnaB, RIR1-2, GyrA and Pol). In protein splicing an intervening polypeptide sequence - the intein - is excised from a protein, and the flanking polypeptide sequences - the exteins - are joined by a peptide bond. In addition to the autocatalytic splicing domain, many inteins contain an inserted endonuclease domain, which plays a role in spreading inteins. Hedgehog proteins are a major class of intercellular signaling molecules, which control inductive interactions during animal development. The mature signaling forms of hedgehog proteins are the N-terminal fragments, which are covalently linked to cholesterol at their C-termini. This modification is the result of an autoprocessing step catalyzed by the C-terminal fragments, which are aligned here. 136 -119399 cd00082 HisKA Histidine Kinase A (dimerization/phosphoacceptor) domain; Histidine Kinase A dimers are formed through parallel association of 2 domains creating 4-helix bundles; usually these domains contain a conserved His residue and are activated via trans-autophosphorylation by the catalytic domain of the histidine kinase. They subsequently transfer the phosphoryl group to the Asp acceptor residue of a response regulator protein. Two-component signalling systems, consisting of a histidine protein kinase that senses a signal input and a response regulator that mediates the output, are ancient and evolutionarily conserved signaling mechanisms in prokaryotes and eukaryotes. 65 -238036 cd00083 HLH Helix-loop-helix domain, found in specific DNA- binding proteins that act as transcription factors; 60-100 amino acids long. A DNA-binding basic region is followed by two alpha-helices separated by a variable loop region; HLH forms homo- and heterodimers, dimerization creates a parallel, left-handed, four helix bundle; the basic region N-terminal to the first amphipathic helix mediates high-affinity DNA-binding; there are several groups of HLH proteins: those (E12/E47) which bind specific hexanucleotide sequences such as E-box (5-CANNTG-3) or StRE 5-ATCACCCCAC-3), those lacking the basic domain (Emc, Id) function as negative regulators since they fail to bind DNA, those (hairy, E(spl), deadpan) which repress transcription although they can bind specific hexanucleotide sequences such as N-box (5-CACGc/aG-3), those which have a COE domain (Collier/Olf-1/EBF) which is involved in both in dimerization and in DNA binding, and those which bind pentanucleotides ACGTG or GCGTG and have a PAS domain which allows the dimerization between PAS proteins, the binding of small molecules (e.g., dioxin), and interactions with non-PAS proteins. 60 -238037 cd00084 HMG-box High Mobility Group (HMG)-box is found in a variety of eukaryotic chromosomal proteins and transcription factors. HMGs bind to the minor groove of DNA and have been classified by DNA binding preferences. Two phylogenically distinct groups of Class I proteins bind DNA in a sequence specific fashion and contain a single HMG box. One group (SOX-TCF) includes transcription factors, TCF-1, -3, -4; and also SRY and LEF-1, which bind four-way DNA junctions and duplex DNA targets. The second group (MATA) includes fungal mating type gene products MC, MATA1 and Ste11. Class II and III proteins (HMGB-UBF) bind DNA in a non-sequence specific fashion and contain two or more tandem HMG boxes. Class II members include non-histone chromosomal proteins, HMG1 and HMG2, which bind to bent or distorted DNA such as four-way DNA junctions, synthetic DNA cruciforms, kinked cisplatin-modified DNA, DNA bulges, cross-overs in supercoiled DNA, and can cause looping of linear DNA. Class III members include nucleolar and mitochondrial transcription factors, UBF and mtTF1, which bind four-way DNA junctions. 66 -238038 cd00085 HNHc HNH nucleases; HNH endonuclease signature which is found in viral, prokaryotic, and eukaryotic proteins. The alignment includes members of the large group of homing endonucleases, yeast intron 1 protein, MutS, as well as bacterial colicins, pyocins, and anaredoxins. 57 -238039 cd00086 homeodomain Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic developmental processes; may bind to DNA as monomers or as homo- and/or heterodimers, in a sequence-specific manner. 59 -238040 cd00087 FReD Fibrinogen-related domains (FReDs); C terminal globular domain of fibrinogen. Fibrinogen is involved in blood clotting, being activated by thrombin to assemble into fibrin clots. The N-termini of 2 times 3 chains come together to form a globular arrangement called the disulfide knot. The C termini of fibrinogen chains end in globular domains, which are not completely equivalent. C terminal globular domains of the gamma chains (C-gamma) dimerize and bind to the GPR motif of the N-terminal domain of the alpha chain, while the GHR motif of N-terminal domain of the beta chain binds to the C terminal globular domains of another beta chain (C-beta), which leads to lattice formation. 215 -238041 cd00088 HPT Histidine Phosphotransfer domain, involved in signalling through a two part component systems in which an autophosphorylating histidine protein kinase serves as a phosphoryl donor to a response regulator protein; the response regulator protein is modulated by phosphorylation and dephosphorylation of a conserved aspartic acid residue; two-component proteins are abundant in most eubacteria; In E. coli there are 62 two-component proteins involved in a variety of processes such as chemotaxis, osmoregulation, metabolism and transport 1; also present in both Gram positive and Gram negative pathogenic bacteria where they regulate basic housekeeping functions and control expression of toxins and other proteins important for pathogenesis; in archaea and eukaryotes, two-component pathways constitute a very small number of all signaling systems; in fungi they mediate environmental stress responses and, in pathogenic yeast, hyphal development. In Dictyostelium and in plants, they are involved in important processes such as osmoregulation, cell growth, and differentiation; to date two-component proteins have not been identified in animals; in most prokaryotic systems, the output response is effected directly by the RR, which functions as a transcription factor while in eukaryotic systems, two-component proteins are found at the beginning of signaling pathways where they interface with more conventional eukaryotic signaling strategies such as MAP kinase and cyclic nucleotide cascades 94 -212008 cd00089 HR1 Protein kinase C-related kinase homology region 1 (HR1) domain that binds Rho family small GTPases. The HR1 domain, also called the ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. It is found in Rho effector proteins including PKC-related kinases such as vertebrate PRK1 (or PKN) and yeast PKC1 protein kinases C, as well as in rhophilins and Rho-associated kinase (ROCK). Rho family members function as molecular switches, cycling between inactive and active forms, controlling a variety of cellular processes. HR1 domains may occur in repeat arrangements (PKN contains three HR1 domains), separated by a short linker region. 68 -238042 cd00090 HTH_ARSR Arsenical Resistance Operon Repressor and similar prokaryotic, metal regulated homodimeric repressors. ARSR subfamily of helix-turn-helix bacterial transcription regulatory proteins (winged helix topology). Includes several proteins that appear to dissociate from DNA in the presence of metal ions. 78 -238043 cd00091 NUC DNA/RNA non-specific endonuclease; prokaryotic and eukaryotic double- and single-stranded DNA and RNA endonucleases also present in phosphodiesterases. They exists as monomers and homodimers. 241 -238044 cd00092 HTH_CRP helix_turn_helix, cAMP Regulatory protein C-terminus; DNA binding domain of prokaryotic regulatory proteins belonging to the catabolite activator protein family. 67 -238045 cd00093 HTH_XRE Helix-turn-helix XRE-family like proteins. Prokaryotic DNA binding proteins belonging to the xenobiotic response element family of transcriptional regulators. 58 -238046 cd00094 HX Hemopexin-like repeats.; Hemopexin is a heme-binding protein that transports heme to the liver. Hemopexin-like repeats occur in vitronectin and some matrix metalloproteinases family (matrixins). The HX repeats of some matrixins bind tissue inhibitor of metalloproteinases (TIMPs). This CD contains 4 instances of the repeat. 194 -238047 cd00095 IFab Interferon alpha, beta. Includes also interferon omega and tau. Different from interferon gamma family. Type I interferons(alpha, beta) belong to the larger helical cytokine superfamily, which includes growth hormones, interleukins, several colony-stimulating factors and several other regulatory molecules. All function as regulators of cellular activty by interacting with cell-surface receptors and activating various signalling pathways. Interferons produce antiviral and antiproliferative responses in cells. Receptor specificity determines function of the various members of the family. 152 -319273 cd00096 Ig Immunoglobulin domain. Immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as, T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as, butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 70 -319274 cd00098 IgC Immunoglobulin Constant (IgC) domain. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and Major Histocompatibility Complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. 95 -319275 cd00099 IgV Immunoglobulin variable domain (IgV). IgV: Immunoglobulin variable domain (IgV). Members of the IgV family are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. 103 -238048 cd00100 IL1 Interleukin-1 homologes; Cytokines with various biological functions. Interleukin 1 alpha and beta are also known as hematopoietin and catabolin. This family also contains interleukin-1 receptor antagonists (inhibitors). 144 -238049 cd00101 IlGF_like Insulin/insulin-like growth factor/relaxin family; insulin family of proteins. Members include a number of active peptides which are evolutionary related including insulin, relaxin, prorelaxin, insulin-like growth factors I and II, mammalian Leydig cell-specific insulin-like peptide (gene INSL3), early placenta insulin-like peptide (ELIP; gene INSL4), insect prothoracicotropic hormone (bombyxin), locust insulin-related peptide (LIRP), molluscan insulin-related peptides 1 to 5 (MIP), and C. elegans insulin-like peptides. Typically, the active forms of these peptide hormones are composed of two chains (A and B) linked by two disulfide bonds; the arrangement of four cysteines is conserved in the "A" chain: Cys1 is linked by a disulfide bond to Cys3, Cys2 and Cys4 are linked by interchain disulfide bonds to cysteines in the "B" chain. This alignment contains both chains, plus the intervening linker region, arranged as found in the propeptide form. Propeptides are cleaved to yield two separate chains linked covalently by the two disulfide bonds. 41 -238050 cd00102 IPT Immunoglobulin-like fold, Plexins, Transcription factors (IPT). IPTs are also known as Transcription factor ImmunoGlobin (TIG) domains. They are present in intracellular transcription factors, cell surface receptors (such as plexins and scatter factor receptors), as well as, cyclodextrin glycosyltransferase and similar enzymes. Although they are involved in DNA binding in transcription factors, their function in other proteins is unknown. In these transcription factors, IPTs form homo- or heterodimers with the exception of the nuclear factor of activated Tcells (NFAT) transcription factors which are mainly monomers. 89 -238051 cd00103 IRF Interferon Regulatory Factor (IRF); also known as tryptophan pentad repeat. The family of IRF transcription factors is important in the regulation of interferons in response to infection by virus and in the regulation of interferon-inducible genes. The IRF family is characterized by a unique 'tryptophan cluster' DNA-binding region. Viral IRFs bind to cellular IRFs; block type I and II interferons and host IRF-mediated transcriptional activation. 107 -238052 cd00104 KAZAL_FS Kazal type serine protease inhibitors and follistatin-like domains. Kazal inhibitors inhibit serine proteases, such as, trypsin, chyomotrypsin, avian ovomucoids, and elastases. The inhibitory domain has one reactive site peptide bond, which serves the cognate enzyme as substrate. The reactive site peptide bond is a combining loop which has an identical conformation in all Kazal inhibitors and in all enzyme/inhibitor complexes. These Kazal domains (small hydrophobic core of alpha/beta structure with 3 to 4 disulfide bonds) often occur in tandem arrays. Similar domains are also present in follistatin (FS) and follistatin-like family members, which play an important role in tissue specific regulation. The FS domain consists of an N-terminal beta hairpin (FOLN/EGF-like domain) and a Kazal-like domain and has five disulfide bonds. Although the Kazal-like FS substructure is similar to Kazal proteinase inhibitors, no FS domain has yet been shown to be a proteinase inhibitor. Follistatin-like family members include SPARC, also known as, BM-40 or osteonectin, the Gallus gallus Flik protein, as well as, agrin which has a long array of FS domains. The kazal-type inhibitor domain has also been detected in an extracellular loop region of solute carrier 21 (SLC21) family members (organic anion transporters) , which may regulate the specificity of anion uptake. The distant homolog, Ascidian trypsin inhibitor, is included in this CD. 41 -238053 cd00105 KH-I K homology RNA-binding domain, type I. KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is folded into a beta alpha alpha beta unit. In addition to the core, type II KH domains (e.g. ribosomal protein S3) include N-terminal extension and type I KH domains (e.g. hnRNP K) contain C-terminal extension. 64 -276812 cd00106 KISc Kinesin motor domain. Kinesin motor domain. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 326 -238055 cd00107 Knot1 The "knottin" fold is stable cysteine-rich scaffold, in which one disulfide bridge crosses the macrocycle made by two other disulfide bridges and the connecting backbone segments. Members include plant lectins/antimicrobial peptides, plant proteinase/amylase inhibitors, plant gamma-thionins, and arthropod defensins. 33 -238056 cd00108 KR Kringle domain; Kringle domains are believed to play a role in binding mediators, such as peptides, other proteins, membranes, or phospholipids. They are autonomous structural domains, found in a varying number of copies, in blood clotting and fibrinolytic proteins, some serine proteases and plasma proteins. Plasminogen-like kringles possess affinity for free lysine and lysine-containing peptides. 83 -238057 cd00109 KU BPTI/Kunitz family of serine protease inhibitors; Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. 54 -238058 cd00110 LamG Laminin G domain; Laminin G-like domains are usually Ca++ mediated receptors that can have binding sites for steroids, beta1 integrins, heparin, sulfatides, fibulin-1, and alpha-dystroglycans. Proteins that contain LamG domains serve a variety of purposes including signal transduction via cell-surface steroid receptors, adhesion, migration and differentiation through mediation of cell adhesion molecules. 151 -238059 cd00111 Trefoil P or trefoil or TFF domain; Trefoil factor family domain peptides are mucin-associated molecules, largely found in epithelia of gastrointestinal tissues. Function is not known but it was originally identified from mucosal tissues, where it may have a regulatory or structural role and has also been implicated as a growth fractor in other tissues.The domain is found in 1 to 6 copies where it occurs. 44 -238060 cd00112 LDLa Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism; the receptor protein binds LDL and transports it into cells by endocytosis; 7 successive cysteine-rich repeats of about 40 amino acids are present in the N-terminal of this multidomain membrane protein; other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement; the binding of calcium is required for in vitro formation of the native disulfide isomer and is necessary in establishing and maintaining the modular structure 35 -238061 cd00113 PLAT PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain or LH2 (Lipoxygenase homology 2) domain. It consists of an eight stranded beta-barrel. The domain can be found in various domain architectures, in case of lipoxygenases, alpha toxin, lipases and polycystin, but also as a single domain or as repeats.The putative function of this domain is to facilitate access to sequestered membrane or micelle bound substrates. 116 -238062 cd00114 LIGANc NAD+ dependent DNA ligase adenylation domain. DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilizing either ATP or NAD(+) as a cofactor, but using the same basic reaction mechanism. The enzyme reacts with the cofactor to form a phosphoamide-linked AMP with the amino group of a conserved Lysine in the KXDG motif, and subsequently transfers it to the DNA substrate to yield adenylated DNA. This alignment contains members of the NAD+ dependent subfamily only. 307 -319970 cd00115 LMWP Low molecular weight phosphatase family. Substituted updates: Aug 22, 2001 137 -238064 cd00116 LRR_RI Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1). 319 -238065 cd00117 LU Ly-6 antigen / uPA receptor -like domain; occurs singly in GPI-linked cell-surface glycoproteins (Ly-6 family,CD59, thymocyte B cell antigen, Sgp-2) or as three-fold repeated domain in urokinase-type plasminogen activator receptor. Topology of these domains is similar to that of snake venom neurotoxins. 79 -212030 cd00118 LysM Lysin Motif is a small domain involved in binding peptidoglycan. LysM, a small globular domain with approximately 40 amino acids, is a widespread protein module involved in binding peptidoglycan in bacteria and chitin in eukaryotes. The domain was originally identified in enzymes that degrade bacterial cell walls, but proteins involved in many other biological functions also contain this domain. It has been reported that the LysM domain functions as a signal for specific plant-bacteria recognition in bacterial pathogenesis. Many of these enzymes are modular and are composed of catalytic units linked to one or several repeats of LysM domains. LysM domains are found in bacteria and eukaryotes. 45 -340357 cd00119 LYZ C-type lysozyme and alpha-lactalbumin. C-type lysozyme (chicken or conventional type, 1,4-beta-N-acetylmuramidase) and alpha-lactalbumin (lactose synthase B protein, LA). They have a close evolutionary relationship and similar tertiary structure, however, functionally they are quite different. Lysozymes have primarily bacteriolytic function; hydrolysis of peptidoglycans of prokaryotic cell walls and transglycosylation. LA is a calcium-binding metalloprotein that is expressed exclusively in the mammary gland during lactation. LA is the regulatory subunit of the enzyme lactose synthase. The association of LA with the catalytic component of lactose synthase, galactosyltransferase, alters the acceptor substrate specificity of this glycosyltransferase, facilitating biosynthesis of lactose. Some lysozymes have evolved into digestive enzymes, both in mammals and invertebrates. 122 -238067 cd00120 MADS MADS: MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptonal regulators. Binds DNA and exists as hetero and homo-dimers. Composed of 2 main subgroups: SRF-like/Type I and MEF2-like (myocyte enhancer factor 2)/ Type II. These subgroups differ mainly in position of the alpha 2 helix responsible for the dimerization interface; Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. 59 -238068 cd00121 MATH MATH (meprin and TRAF-C homology) domain; an independent folding unit with an eight-stranded beta-sandwich structure found in meprins, TRAFs and other proteins. Meprins comprise a class of extracellular metalloproteases which are anchored to the membrane and are capable of cleaving growth factors, extracellular matrix proteins, and biologically active peptides. TRAF molecules serve as adapter proteins that link cell surface receptors of the Tumor Necrosis Factor and 1nterleukin-1/Toll-like families to downstream kinase cascades, which results in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses in the immune and inflammatory systems. Other members include the ubiquitin ligases, TRIM37 and SPOP, and the ubiquitin-specific proteases, HAUSP and Ubp21p. A large number of uncharacterized members mostly from lineage-specific expansions in C. elegans and rice contain MATH and BTB domains, similar to SPOP. The MATH domain has been shown to bind peptide/protein substrates in TRAFs and HAUSP. It is possible that the MATH domain in other members of this superfamily also interacts with various protein substrates. The TRAF domain may also be involved in the trimerization of TRAFs. Based on homology, it is postulated that the MATH domain in meprins may be involved in its tetramer assembly and that the MATH domain, in general, may take part in diverse modular arrangements defined by adjacent multimerization domains. 126 -238069 cd00122 MBD MeCP2, MBD1, MBD2, MBD3, MBD4, CLLD8-like, and BAZ2A-like proteins constitute a family of proteins that share the methyl-CpG-binding domain (MBD). The MBD consists of about 70 residues and is defined as the minimal region required for binding to methylated DNA by a methyl-CpG-binding protein which binds specifically to methylated DNA. The MBD can recognize a single symmetrically methylated CpG either as naked DNA or within chromatin. MeCP2, MBD1 and MBD2 (and likely MBD3) form complexes with histone deacetylase and are involved in histone deacetylase-dependent repression of transcription. MBD4 is an endonuclease that forms a complex with the DNA mismatch-repair protein MLH1. The MBDs present in putative chromatin remodelling subunit, BAZ2A, and putative histone methyltransferase, CLLD8, represent two phylogenetically distinct groups within the MBD protein family. 62 -238070 cd00123 DmpA_OAT DmpA/OAT superfamily; composed of L-aminopeptidase D-amidase/D-esterase (DmpA), ornithine acetyltransferase (OAT) and similar proteins. DmpA is an aminopeptidase that releases N-terminal D and L amino acids from peptide substrates. This group represents one of the rare aminopeptidases that are not metalloenzymes. DmpA shows similarity in catalytic mechanism to N-terminal nucleophile (Ntn) hydrolases, which are enzymes that catalyze the cleavage of amide bonds through the nucleophilic attack of the side chain of an N-terminal serine, threonine, or cysteine. OAT catalyzes the first and fifth steps in arginine biosynthesis, coupling acetylation of glutamate with deacetylation of N-acetylornithine, which allows recycling of the acetyl group in the arginine biosynthetic pathway. The superfamily also contains an enzyme, endo-type 6-aminohexanoate-oligomer hydrolase, that have been shown to be involved in nylon degradation. Proteins in this superfamily undergo autocatalytic cleavage of an inactive precursor at the site immediately upstream to the catalytic nucleophile. 286 -276950 cd00124 MYSc Myosin motor domain superfamily. Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 633 -153091 cd00125 PLA2c PLA2c: Phospholipase A2, a family of secretory and cytosolic enzymes; the latter are either Ca dependent or Ca independent. PLA2 cleaves the sn-2 position of the glycerol backbone of phospholipids (PC or phosphatidylethanolamine), usually in a metal-dependent reaction, to generate lysophospholipid (LysoPL) and a free fatty acid (FA). The resulting products are either dietary or used in synthetic pathways for leukotrienes and prostaglandins. Often, arachidonic acid is released as a free fatty acid and acts as second messenger in signaling networks. Secreted PLA2s have also been found to specifically bind to a variety of soluble and membrane proteins in mammals, including receptors. As a toxin, PLA2 is a potent presynaptic neurotoxin which blocks nerve terminals by binding to the nerve membrane and hydrolyzing stable membrane lipids. The products of the hydrolysis (LysoPL and FA) cannot form bilayers leading to a change in membrane conformation and ultimately to a block in the release of neurotransmitters. PLA2 may form dimers or oligomers. 115 -238072 cd00126 PAH Pancreatic Hormone domain, a regulator of pancreatic and gastrointestinal functions; neuropeptide Y (NPY)b, peptide YY (PYY), and pancreatic polypetide (PP) are closely related; propeptide is enzymatically cleaved to yield the mature active peptide with amidated C-terminal ends; receptor binding and activation functions may reside in the N- and C-termini respectively; occurs in neurons, intestinal endocrine cells, and pancreas; exist as monomers and dimers 36 -350200 cd00128 PIN_FEN1_EXO1-like FEN-like PIN domains of Flap endonuclease-1 (FEN1)-like and exonuclease-1 (EXO1)-like nucleases, structure-specific, divalent-metal-ion dependent, 5' nucleases. PIN (PilT N terminus) domain of Flap endonuclease-1 (FEN1) and exonuclease-1 (EXO1)-like nucleases: FEN1, EXO1, Mkt1, Gap endonuclease 1 (GEN1) and Xeroderma pigmentosum complementation group G (XPG) nuclease. These nucleases are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 162 -238074 cd00129 PAN_APPLE PAN/APPLE-like domain; present in N-terminal (N) domains of plasminogen/ hepatocyte growth factor proteins, plasma prekallikrein/coagulation factor XI and microneme antigen proteins, plant receptor-like protein kinases, and various nematode and leech anti-platelet proteins. Common structural features include two disulfide bonds that link the alpha-helix to the central region of the protein. PAN domains have significant functional versatility, fulfilling diverse biological functions by mediating protein-protein or protein-carbohydrate interactions. 80 -238075 cd00130 PAS PAS domain; PAS motifs appear in archaea, eubacteria and eukarya. Probably the most surprising identification of a PAS domain was that in EAG-like K+-channels. PAS domains have been found to bind ligands, and to act as sensors for light and oxygen in signal transduction. 103 -238076 cd00131 PAX Paired Box domain 128 -238077 cd00132 CRIB PAK (p21 activated kinase) Binding Domain (PBD), binds Cdc42p- and/or Rho-like small GTPases; also known as the Cdc42/Rac interactive binding (CRIB) motif; has been shown to inhibit transcriptional activation and cell transformation mediated by the Ras-Rac pathway. CRIB-containing effector proteins are functionally diverse and include serine/threonine kinases, tyrosine kinases, actin-binding proteins, and adapter molecules. 42 -99904 cd00133 PTS_IIB PTS_IIB: subunit IIB of enzyme II (EII) is the central energy-coupling domain of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In the multienzyme PTS complex, EII is a carbohydrate-specific permease consisting of two cytoplasmic domains (IIA and IIB) and a transmembrane channel IIC domain. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include chitobiose/lichenan, ascorbate, lactose, galactitol, mannitol, fructose, and a sensory system with similarity to the bacterial bgl system. The PTS is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, polyols, amino sugars, and other sugar derivatives. The four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB), can phosphorylate or interact with numerous non-PTS proteins thereby regulating their activity. 84 -238079 cd00135 PDGF Platelet-derived and vascular endothelial growth factors (PDGF, VEGF) family domain; PDGF is a potent activator for cells of mesenchymal origin; PDGF-A and PDGF-B form AA and BB homodimers and an AB heterodimer; VEGF is a potent mitogen in embryonic and somatic angiogenesis with a unique specificity for vascular endothelial cells; VEGF forms homodimers and exists in 4 different isoforms; overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended; the cysteine knot motif is a common feature of this domain 86 -238080 cd00136 PDZ PDZ domain, also called DHR (Dlg homologous region) or GLGF (after a conserved sequence motif). Many PDZ domains bind C-terminal polypeptides, though binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. Heterodimerization through PDZ-PDZ domain interactions adds to the domain's versatility, and PDZ domain-mediated interactions may be modulated dynamically through target phosphorylation. Some PDZ domains play a role in scaffolding supramolecular complexes. PDZ domains are found in diverse signaling proteins in bacteria, archebacteria, and eurkayotes. This CD contains two distinct structural subgroups with either a N- or C-terminal beta-strand forming the peptide-binding groove base. The circular permutation placing the strand on the N-terminus appears to be found in Eumetazoa only, while the C-terminal variant is found in all three kingdoms of life, and seems to co-occur with protease domains. PDZ domains have been named after PSD95(post synaptic density protein), DlgA (Drosophila disc large tumor suppressor), and ZO1, a mammalian tight junction protein. 70 -176497 cd00137 PI-PLCc Catalytic domain of prokaryotic and eukaryotic phosphoinositide-specific phospholipase C. This subfamily corresponds to the catalytic domain present in prokaryotic and eukaryotic phosphoinositide-specific phospholipase C (PI-PLC), which is a ubiquitous enzyme catalyzing the cleavage of the sn3-phosphodiester bond in the membrane phosphoinositides (phosphatidylinositol, PI; Phosphatidylinositol-4-phosphate, PIP; phosphatidylinositol 4,5-bisphosphate, PIP2) to yield inositol phosphates (inositol monosphosphate, InsP; inositol diphosphate, InsP2; inositol trisphosphate, InsP3) and diacylglycerol (DAG). The higher eukaryotic PI-PLCs (EC 3.1.4.11) have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. They play a critical role in most signal transduction pathways, controlling numerous cellular events, such as cell growth, proliferation, excitation and secretion. These PI-PLCs strictly require Ca2+ for their catalytic activity. They display a clear preference towards the hydrolysis of the more highly phosphorylated PI-analogues, PIP2 and PIP, to generate two important second messengers, InsP3 and DAG. InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. In contrast, bacterial PI-PLCs contain a single catalytic domain. Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. They participate in Ca2+-independent PI metabolism. They are characterized as phosphatidylinositol-specific phospholipase C (EC 4.6.1.13) that selectively hydrolyze PI, not PIP or PIP2. The TIM-barrel type catalytic domain in bacterial PI-PLCs is very similar to the one in eukaryotic PI-PLCs, in which the catalytic domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. The catalytic mechanism of both prokaryotic and eukaryotic PI-PLCs is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This superfamily also includes a distinctly different type of eukaryotic PLC, glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), an integral membrane protein characterized in the protozoan parasite Trypanosoma brucei. T. brucei GPI-PLC hydrolyzes the GPI-anchor on the variant specific glycoprotein (VSG), releasing dimyristyl glycerol (DMG), which may facilitate the evasion of the protozoan to the host#s immune system. It does not require Ca2+ for its activity and is more closely related to bacterial PI-PLCs, but not mammalian PI-PLCs. 274 -197200 cd00138 PLDc_SF Catalytic domain of phospholipase D superfamily proteins. Catalytic domain of phospholipase D (PLD) superfamily proteins. The PLD superfamily is composed of a large and diverse group of proteins including plant, mammalian and bacterial PLDs, bacterial cardiolipin (CL) synthases, bacterial phosphatidylserine synthases (PSS), eukaryotic phosphatidylglycerophosphate (PGP) synthase, eukaryotic tyrosyl-DNA phosphodiesterase 1 (Tdp1), and some bacterial endonucleases (Nuc and BfiI), among others. PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze the transphosphatidylation of phospholipids to acceptor alcohols. The majority of members in this superfamily contain a short conserved sequence motif (H-x-K-x(4)-D, where x represents any amino acid residue), called the HKD signature motif. There are varying expanded forms of this motif in different family members. Some members contain variant HKD motifs. Most PLD enzymes are monomeric proteins with two HKD motif-containing domains. Two HKD motifs from two domains form a single active site. Some PLD enzymes have only one copy of the HKD motif per subunit but form a functionally active dimer, which has a single active site at the dimer interface containing the two HKD motifs from both subunits. Different PLD enzymes may have evolved through domain fusion of a common catalytic core with separate substrate recognition domains. Despite their various catalytic functions and a very broad range of substrate specificities, the diverse group of PLD enzymes can bind to a phosphodiester moiety. Most of them are active as bi-lobed monomers or dimers, and may possess similar core structures for catalytic activity. They are generally thought to utilize a common two-step ping-pong catalytic mechanism, involving an enzyme-substrate intermediate, to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 119 -340436 cd00139 PIPKc Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family. The Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family includes phosphatidylinositol 5-phosphate 4-kinases (PIP5Ks) and similar proteins. PIP5Ks catalyze the phosphorylation of phosphatidylinositol phosphate on the fourth or fifth hydroxyl of the inositol ring, to form phosphatidylinositol bisphosphate. The family includes type I and II PIP5Ks (-alpha, -beta, and -gamma) kinases. Signalling by phosphorylated species of phosphatidylinositol regulates secretion, vesicular trafficking, membrane translocation, cell adhesion, chemotaxis, DNA synthesis, and cell cycling. 253 -238082 cd00140 beta_clamp Beta clamp domain. The beta subunit (processivity factor) of DNA polymerase III holoenzyme, refered to as the beta clamp, forms a ring shaped dimer that encircles dsDNA (sliding clamp) in bacteria. The beta-clamp is structurally similar to the trimeric ring formed by PCNA (found in eukaryotes and archaea) and the processivity factor (found in bacteriophages T4 and RB69). This structural correspondence further substantiates the mechanistic connection between eukaryotic and prokaryotic DNA replication that has been suggested on biochemical grounds. 365 -143386 cd00141 NT_POLXc Nucleotidyltransferase (NT) domain of family X DNA Polymerases. X family polymerases fill in short gaps during DNA repair. They are relatively inaccurate enzymes and play roles in base excision repair, in non-homologous end joining (NHEJ) which acts mainly to repair damage due to ionizing radiation, and in V(D)J recombination. This family includes eukaryotic Pol beta, Pol lambda, Pol mu, and terminal deoxyribonucleotidyl transferase (TdT). Pol beta and Pol lambda are primarily DNA template-dependent polymerases. TdT is a DNA template-independent polymerase. Pol mu has both template dependent and template independent activities. This subgroup belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. These three carboxylate residues are fairly well conserved in this family. 307 -270621 cd00142 PI3Kc_like Catalytic domain of Phosphoinositide 3-kinase and similar proteins. Members of the family include PI3K, phosphoinositide 4-kinase (PI4K), PI3K-related protein kinases (PIKKs), and TRansformation/tRanscription domain-Associated Protein (TRAPP). PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives, while PI4K catalyze the phosphorylation of the 4-hydroxyl of PtdIns. PIKKs are protein kinases that catalyze the phosphorylation of serine/threonine residues, especially those that are followed by a glutamine. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI4Ks produce PtdIns(4)P, the major precursor to important signaling phosphoinositides. PIKKs have diverse functions including cell-cycle checkpoints, genome surveillance, mRNA surveillance, and translation control. The PI3K-like catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 216 -238083 cd00143 PP2Cc Serine/threonine phosphatases, family 2C, catalytic domain; The protein architecture and deduced catalytic mechanism of PP2C phosphatases are similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity. 254 -277316 cd00144 MPP_PPP_family phosphoprotein phosphatases of the metallophosphatase superfamily, metallophosphatase domain. The PPP (phosphoprotein phosphatase) family is one of two known protein phosphatase families specific for serine and threonine. This family includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 229 -99912 cd00145 POLBc DNA polymerase type-B family catalytic domain. DNA-directed DNA polymerases elongate DNA by adding nucleotide triphosphate (dNTP) residues to the 5'-end of the growing chain of DNA. DNA-directed DNA polymerases are multifunctional with both synthetic (polymerase) and degradative modes (exonucleases) and play roles in the processes of DNA replication, repair, and recombination. DNA-dependent DNA polymerases can be classified in six main groups based upon their phylogenetic relationships with E. coli polymerase I (class A), E. coli polymerase II (class B), E. coli polymerase III (class C), euryarchaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB, and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family B DNA polymerases include E. coli DNA polymerase II, some eubacterial phage DNA polymerases, nuclear replicative DNA polymerases (alpha, delta, epsilon, and zeta), and eukaryotic viral and plasmid-borne enzymes. DNA polymerase is made up of distinct domains and sub-domains. The polymerase domain of DNA polymerase type B (Pol domain) is responsible for the template-directed polymerization of dNTPs onto the growing primer strand of duplex DNA that is usually magnesium dependent. In general, the architecture of the Pol domain has been likened to a right hand with fingers, thumb, and palm sub-domains with a deep groove to accommodate the nucleic acid substrate. There are a few conserved motifs in the Pol domain of family B DNA polymerases. The conserved aspartic acid residues in the DTDS motifs of the palm sub-domain is crucial for binding to divalent metal ion and is suggested to be important for polymerase catalysis. 323 -238084 cd00146 PKD polycystic kidney disease I (PKD) domain; similar to other cell-surface modules, with an IG-like fold; domain probably functions as a ligand binding site in protein-protein or protein-carbohydrate interactions; a single instance of the repeat is presented here. The domain is also found in microbial collagenases and chitinases. 81 -132835 cd00147 cPLA2_like Cytosolic phospholipase A2, catalytic domain; hydrolyses arachidonyl phospholipids. Catalytic domain of cytosolic phospholipase A2 (PLA2; EC 3.1.1.4) hydrolyzes the sn-2-acyl ester bond of phospholipids to release arachidonic acid. At the active site, cPLA2 contains a serine nucleophile through which the catalytic mechanism is initiated. The active site is partially covered by a solvent-accessible flexible lid. cPLA2 displays interfacial activation as it exists in both "closed lid" and "open lid" forms. Movement of the cPLA2 lid possibly exposes a greater hydrophobic surface and the active site. cPLA2 belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Calcium is required for cPLA2 to bind with membranes or phospholipids. Group IV cPLA2 includes six intercellular enzymes: cPLA2alpha, cPLA2beta, cPLA2gamma, cPLA2delta, cPLA2epsilon, and cPLA2zeta. 438 -238085 cd00148 PROF Profilin binds actin monomers, membrane polyphosphoinositides such as PI(4,5)P2, and poly-L-proline. Profilin can inhibit actin polymerization into F-actin by binding to monomeric actin (G-actin) and terminal F-actin subunits, but - as a regulator of the cytoskeleton - it may also promote actin polymerization. It plays a role in the assembly of branched actin filament networks, by activating WASP via binding to WASP's proline rich domain. Profilin may link the cytoskeleton with major signalling pathways by interacting with components of the phosphatidylinositol cycle and Ras pathway. 127 -119410 cd00150 PlantTI Plant trypsin inhibitors such as squash trypsin inhibitor. Plant proteinase inhibitors play important roles in natural plant defense. Proteinase inhibitors from squash seeds form an uniform family of small proteins cross-linked with three disulfide bridges. 27 -238086 cd00152 PTX Pentraxins are plasma proteins characterized by their pentameric discoid assembly and their Ca2+ dependent ligand binding, such as Serum amyloid P component (SAP) and C-reactive Protein (CRP), which are cytokine-inducible acute-phase proteins implicated in innate immunity. CRP binds to ligands containing phosphocholine, SAP binds to amyloid fibrils, DNA, chromatin, fibronectin, C4-binding proteins and glycosaminoglycans. "Long" pentraxins have N-terminal extensions to the common pentraxin domain; one group, the neuronal pentraxins, may be involved in synapse formation and remodeling, and they may also be able to form heteromultimers. 201 -340449 cd00153 RA_RalGDS_like Ras-associating (RA) domain of RalGDS family. The RalGDS family RA domains can interact with activated Ras and may function as effectors for other Ras family. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes and is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. The RalGDS family includes RalGDS, RGL, RGL2/Rlf and RGL3. All family members have similar domain structure: a central CDC25 homology domain with an upstream Ras Exchange motif (REM), and a C-terminal RA domain. The RA domain mediates the GTP-dependent interaction with Ras and Ras-related proteins. 88 -206640 cd00154 Rab Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases). Rab GTPases form the largest family within the Ras superfamily. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. Rab GTPases are small, monomeric proteins that function as molecular switches to regulate vesicle trafficking pathways. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they regulate distinct steps in membrane traffic pathways. In the GTP-bound form, Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which mask C-terminal lipid binding and promote cytosolic localization. While most unicellular organisms possess 5-20 Rab members, several have been found to possess 60 or more Rabs; for many of these Rab isoforms, homologous proteins are not found in other organisms. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Since crystal structures often lack C-terminal residues, the lipid modification site is not available for annotation in many of the CDs in the hierarchy, but is included where possible. 159 -238087 cd00155 RasGEF Guanine nucleotide exchange factor for Ras-like small GTPases. Small GTP-binding proteins of the Ras superfamily function as molecular switches in fundamental events such as signal transduction, cytoskeleton dynamics and intracellular trafficking. Guanine-nucleotide-exchange factors (GEFs) positively regulate these GTP-binding proteins in response to a variety of signals. GEFs catalyze the dissociation of GDP from the inactive GTP-binding proteins. GTP can then bind and induce structural changes that allow interaction with effectors. 237 -238088 cd00156 REC Signal receiver domain; originally thought to be unique to bacteria (CheY, OmpR, NtrC, and PhoB), now recently identified in eukaroytes ETR1 Arabidopsis thaliana; this domain receives the signal from the sensor partner in a two-component systems; contains a phosphoacceptor site that is phosphorylated by histidine kinase homologs; usually found N-terminal to a DNA binding effector domain; forms homodimers 113 -206641 cd00157 Rho Ras homology family (Rho) of small guanosine triphosphatases (GTPases). Members of the Rho (Ras homology) family include RhoA, Cdc42, Rac, Rnd, Wrch1, RhoBTB, and Rop. There are 22 human Rho family members identified currently. These proteins are all involved in the reorganization of the actin cytoskeleton in response to external stimuli. They also have roles in cell transformation by Ras in cytokinesis, in focal adhesion formation and in the stimulation of stress-activated kinase. These various functions are controlled through distinct effector proteins and mediated through a GTP-binding/GTPase cycle involving three classes of regulating proteins: GAPs (GTPase-activating proteins), GEFs (guanine nucleotide exchange factors), and GDIs (guanine nucleotide dissociation inhibitors). Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Since crystal structures often lack C-terminal residues, this feature is not available for annotation in many of the CDs in the hierarchy. 171 -238089 cd00158 RHOD Rhodanese Homology Domain (RHOD); an alpha beta fold domain found duplicated in the rhodanese protein. The cysteine containing enzymatically active version of the domain is also found in the Cdc25 class of protein phosphatases and a variety of proteins such as sulfide dehydrogenases and certain stress proteins such as senesence specific protein 1 in plants, PspE and GlpE in bacteria and cyanide and arsenate resistance proteins. Inactive versions (no active site cysteine) are also seen in dual specificity phosphatases, ubiquitin hydrolases from yeast and in sulfuryltransferases, where they are believed to play a regulatory role in multidomain proteins. 89 -238090 cd00159 RhoGAP RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins. 169 -238091 cd00160 RhoGEF Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. 181 -238092 cd00161 RICIN Ricin-type beta-trefoil; Carbohydrate-binding domain formed from presumed gene triplication. The domain is found in a variety of molecules serving diverse functions such as enzymatic activity, inhibitory toxicity and signal transduction. Highly specific ligand binding occurs on exposed surfaces of the compact domain sturcture. 124 -319361 cd00162 RING_Ubox The superfamily of RING finger (Really Interesting New Gene) domain and U-box domain. RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized as two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have different Cys/His pattern. Some lack a single Cys or His residues at typical Zn ligand positions. Especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can indeed chelate Zn in a RING finger as well. C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type RING fingers are closely related to RING-HC finger. In contrast, C4HC3- (RING-CH alias RINGv), C3H3C2-, C3H2C2D-, C3DHC3-, and C4HC2H-type RING fingers are close to RING-H2 finger. However, not all RING finger-containing proteins display regular RING finger features, and the RING finger family has turned out to be multifarious. The degenerated RING fingers from Siz/PIAS RING (SP-RING) family proteins and sporulation protein RMD5, are characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues. They bind only one Zn2+ ion. On the other hand, the RING fingers of the human APC11 and RBX1 proteins can bind a third Zn atom since they harbor four additional Zn ligands. U-box is a modified form of the RING finger domain that lacks metal chelating Cys and His. It resembles the cross-brace RING structure consisting of three beta-sheets and a single alpha-helix, which would be stabilized by salt bridges instead of chelated metal ions. U-box proteins are widely distributed among eukaryotic organisms and show a higher prevalence in plants than in other organisms. RING finger/U-box-containing proteins are a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serves as a scaffold for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates. 40 -119386 cd00163 RNase_A RNase A family, or Pancreatic RNases family; includes vertebrate RNase homologs to the bovine pancreatic ribonuclease A (RNase A). Many of these enzymes have special biological activities; for example, some stimulate the development of vascular endothelial cells, dendritic cells, and neurons, are cytotoxic/anti-tumoral and/or anti-pathogenic. RNase A is involved in endonucleolytic cleavage of 3'-phosphomononucleotides and 3'-phosphooligonucleotides ending in C-P or U-P with 2',3'-cyclic phosphate intermediates. The catalytic mechanism is a transphosphorylation of P-O 5' bonds on the 3' side of pyrimidines and subsequent hydrolysis to generate 3' phosphate groups. The RNase A family proteins have a conserved catalytic triad (two histidines and one lysine); recently some family members lacking the catalytic residues have been identified. They also share three or four disulfide bonds. The most conserved disulfide bonds are close to the N and C termini and contribute most significantly to the conformational stability. 8 RNase A homologs had initially been identified in the human genome, pancreatic RNase (RNase 1), Eosinophil Derived Neurotoxin (EDN/RNASE 2), Eosinophil Cationic Protein (ECP/RNase 3), RNase 4, Angiogenin (RNase 5), RNase 6 or k6, the skin derived RNase (RNase 7) and RNase 8. These eight human genes are all located in a cluster on chromosome 14. Recent genomic analysis has extended the family to 13 sequences. However only the first eight identified human RNases, which are refered to as "canonical" RNases, contain the catalytic residues required for RNase A activity. The new genes corresponding to RNases 9-13 are also located in the same chromosome cluster and seem to be related to male-reproductive functions. RNases 9-13 have the characteristic disulfide bridge pattern but are unlikely to share RNase activity. The RNase A family most likely started off in vertebrates as a host-defense protein, and comparative analysis in mammals and birds indicates that the family may have originated from a RNase 5-like gene. This hypothesis is supported by the fact that only RNase 5-like RNases have been reported outside the mammalian class. The RNase 5 group would therefore be the most ancient form of this family, and all other members would have arisen during mammalian evolution. 119 -238094 cd00164 S1_like S1_like: Ribosomal protein S1-like RNA-binding domain. Found in a wide variety of RNA-associated proteins. Originally identified in S1 ribosomal protein. This superfamily also contains the Cold Shock Domain (CSD), which is a homolog of the S1 domain. Both domains are members of the Oligonucleotide/oligosaccharide Binding (OB) fold. 65 -238095 cd00165 S4 S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, charged residues that define a likely RNA-binding site; Found in stress proteins, ribosomal proteins and tRNA synthetases; This may imply a hitherto unrecognized functional similarity between these three protein classes. 70 -238096 cd00167 SANT 'SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domains. Tandem copies of the domain bind telomeric DNA tandem repeatsas part of the capping complex. Binding is sequence dependent for repeats which contain the G/C rich motif [C2-3 A (CA)1-6]. The domain is also found in regulatory transcriptional repressor complexes where it also binds DNA. 45 -349397 cd00168 CAP CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain family. The CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain, also called SCP (sperm-coating glycoprotein), is found in eukaryotes and prokaryotes. This family includes plant pathogenesis-related protein 1 (PR-1), which accumulates after infections with pathogens, and may act as an anti-fungal agent or be involved in cell wall loosening. This family also includes CRISPs (cysteine-rich secretory proteins), which combine the CAP/SCP domain with a C-terminal cysteine rich domain, and allergen 5 from vespid venom. Roles for CRISP, in response to pathogens, fertilization, and sperm maturation have been proposed. One member, Tex31 from the venom duct of Conus textile, has been shown to possess proteolytic activity sensitive to serine protease inhibitors. The human GAPR-1 protein has been reported to dimerize, and such a dimer may form an active site containing a catalytic triad. CAP/SCP has also been proposed to be a Ca++ chelating serine protease. The Ca++-chelating function would fit with various signaling processes that members of this family, such as the CRISPs, are involved in, and is supported by sequence and structural evidence of a conserved pocket containing two histidines and a glutamate. It also may explain how helothermine, a toxic peptide secreted by the beaded lizard, blocks Ca++ transporting ryanodine receptors. Little is known about the biological roles of the bacterial and archaeal CAP/SCP domains. 128 -238098 cd00169 Chemokine Chemokine: small cytokines, including a number of secreted growth factors and interferons involved in mitogenic, chemotactic, and inflammatory activity; distinguished from other cytokines by their receptors, which are G-protein coupled receptors; divided into 4 subfamilies based on the arrangement of the two N-terminal cysteines; some members can bind multiple receptors and many chemokine receptors can bind more than one chemokine; this redundancy allows precise control in stimulating the immune system and in contributing to the homeostasis of a cell; when expressed inappropriately, chemokines play a role in autoimmune diseases, vascular irregularities, graft rejection, neoplasia, and allergies; exist as monomers, dimers and multimers, but are believed to function as monomers; found only in vertebrates and a few viruses. See CDs: Chemokine_CXC (cd00273), Chemokine_CC (cd00272), Chemokine_C (cd00271), and Chemokine_CX3C (cd00274) for chemokine subgroups. 59 -238099 cd00170 SEC14 Sec14p-like lipid-binding domain. Found in secretory proteins, such as S. cerevisiae phosphatidylinositol transfer protein (Sec14p), and in lipid regulated proteins such as RhoGAPs, RhoGEFs and neurofibromin (NF1). SEC14 domain of Dbl is known to associate with G protein beta/gamma subunits. 157 -238100 cd00171 Sec7 Sec7 domain; Domain named after the S. cerevisiae SEC7 gene product. The Sec7 domain is the central domain of the guanine-nucleotide-exchange factors (GEFs) of the ADP-ribosylation factor family of small GTPases (ARFs) . It carries the exchange factor activity. 185 -238101 cd00172 SERPIN SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. Serpins are of medical interest because mutants have been associated with blood clotting disorders, emphysema, cirrhosis, and dementia. 364 -198173 cd00173 SH2 Src homology 2 (SH2) domain. In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others. 79 -212690 cd00174 SH3 Src Homology 3 domain superfamily. Src Homology 3 (SH3) domains are protein interaction domains that bind proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. Thus, they are referred to as proline-recognition domains (PRDs). SH3 domains are less selective and show more diverse specificity compared to other PRDs. They have been shown to bind peptide sequences that lack the PxxP motif; examples include the PxxDY motif of Eps8 and the RKxxYxxY sequence in SKAP55. SH3 domain containing proteins play versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others. Many members of this superfamily are adaptor proteins that associate with a number of protein partners, facilitating complex formation and signal transduction. 51 -238102 cd00175 SNc Staphylococcal nuclease homologues. SNase homologues are found in bacteria, archaea, and eukaryotes. They contain no disufide bonds. 129 -238103 cd00176 SPEC Spectrin repeats, found in several proteins involved in cytoskeletal structure; family members include spectrin, alpha-actinin and dystrophin; the spectrin repeat forms a three helix bundle with the second helix interrupted by proline in some sequences; the repeats are independent folding units; tandem repeats are found in differing numbers and arrange in an antiparallel manner to form dimers; the repeats are defined by a characteristic tryptophan (W) residue in helix A and a leucine (L) at the carboxyl end of helix C and separated by a linker of 5 residues; two copies of the repeat are present here 213 -176851 cd00177 START Lipid-binding START domain of mammalian STARD1-STARD15 and related proteins. This family includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, and related domains, such as the START domain of the Arabidopsis homeobox protein GLABRA 2. The mammalian STARDs are grouped into 8 subfamilies. This family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. For some members of this family, specific lipids that bind in this pocket are known; these include cholesterol (STARD1/STARD3/ STARD4/STARD5), 25-hydroxycholesterol (STARD5), phosphatidylcholine (STARD2/ STARD7/STARD10), phosphatidylethanolamine (STARD10) and ceramides (STARD11). The START domain is found either alone or in association with other domains. Mammalian STARDs participate in the control of various cellular processes including lipid trafficking between intracellular compartments, lipid metabolism, and modulation of signaling events. Mutation or altered expression of STARDs is linked to diseases such as cancer, genetic disorders, and autoimmune disease. The Arabidopsis homeobox protein GLABRA 2 suppresses root hair formation in hairless epidermal root cells. 193 -238104 cd00178 STI Soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Inhibit proteases by binding with high affinity to their active sites. Trefoil fold, common to interleukins and fibroblast growth factors. 172 -238105 cd00179 SynN Syntaxin N-terminus domain; syntaxins are nervous system-specific proteins implicated in the docking of synaptic vesicles with the presynaptic plasma membrane; they are a family of receptors for intracellular transport vesicles; each target membrane may be identified by a specific member of the syntaxin family; syntaxins contain a moderately well conserved amino-terminal domain, called Habc, whose structure is an antiparallel three-helix bundle; a linker of about 30 amino acids connects this to the carboxy-terminal region, designated H3 (t_SNARE), of the syntaxin cytoplasmic domain; the highly conserved H3 region forms a single, long alpha-helix when it is part of the core SNARE complex and anchors the protein on the cytoplasmic surface of cellular membranes; H3 is not included in defining this domain 151 -270622 cd00180 PKc Catalytic domain of Protein Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. 215 -206638 cd00181 Tar_Tsr_LBD ligand binding domain of Tar- and Tsr-related chemoreceptors. E.coli Tar (taxis to aspartate and repellents) and Tsr (taxis to serine and repellents) are homologous chemoreceptors that have a high specificity for aspartate and serine, respectively. Both are homodimeric receptors and contain an N-terminal periplasmic ligand binding domain, a transmembrane region, a HAMP domain and a C-terminal cytosolic signaling domain. 129 -238106 cd00182 TBOX T-box DNA binding domain of the T-box family of transcriptional regulators. The T-box family is an ancient group that appears to play a critical role in development in all animal species. These genes were uncovered on the basis of similarity to the DNA binding domain of murine Brachyury (T) gene product, the defining feature of the family. Common features shared by T-box family members are DNA-binding and transcriptional regulatory activity, a role in development and conserved expression patterns, most of the known genes in all species being expressed in mesoderm or mesoderm precursors. 188 -238107 cd00183 TFIIS_I N-terminal domain (domain I) of transcription elongation factor S-II (TFIIS); similar to a domain found in elongin A and CRSP70; likely to be involved in transcription; domain I from TFIIS interacts with RNA polymerase II holoenzyme 76 -238108 cd00184 TNF Tumor Necrosis Factor; TNF superfamily members include the cytokines: TNF (TNF-alpha), LT (lymphotoxin-alpha, TNF-beta), CD40 ligand, Apo2L (TRAIL), Fas ligand, and osteoprotegerin (OPG) ligand. These proteins generally have an intracellular N-terminal domain, a short transmembrane segment, an extracellular stalk, and a globular TNF-like extracellular domain of about 150 residues. They initiate apoptosis by binding to related receptors, some of which have intracellular death domains. They generally form homo- or hetero- trimeric complexes.TNF cytokines bind one elongated receptor molecule along each of three clefts formed by neighboring monomers of the trimer with ligand trimerization a requiste for receptor binding. 137 -276900 cd00185 TNFRSF Tumor necrosis factor receptor superfamily (TNFRSF). Members of TNFR superfamily (TNFRSF) interactions with TNF superfamily (TNFSF) ligands (TNFL) control key cellular processes such as differentiation, proliferation, apoptosis, and cell growth. Dysregulation of these pathways has been shown to result in a wide range of pathological conditions, including autoimmune diseases, inflammation, cancer, and viral infection. There are 29 very diverse family members of TNFRSF reported in humans: 22 are type I transmembrane receptors (single pass with the N terminus on extracellular side of the cell membrane) and have a clear signal peptide; the remaining 7 members are either type III transmembrane receptors (single pass with the N terminus on extracellular side of the membrane but no signal sequence; TNFR13B, TNFR13C, TNFR17, and XEDAR), or attached to the membrane via a glycosylphosphatidylinositol (GPI) linker (TNFR10C), or secreted as soluble receptors (TNFR11B and TNFR6B). All TNFRs contain relatively short cysteine-rich domains (CRDs) in the ectodomain, and are involved in interaction with the TNF homology domain (THD) of their ligands. TNFRs often have multiple CRDs (between one and six), with the most frequent configurations of three or four copies; most CRDs possess three disulfide bridges, but could have between one and four. Localized or genome-wide duplication and evolution of the TNFRSF members appear to have paralleled the emergence of the adaptive immune system; teleosts (i.e. ray-finned, bony fish), which possess an immune system with B and T cells, possess primary and secondary lymphoid organs, and are capable of adaptive responses to pathogens also display several characteristics that are different from the mammalian immune system, making teleost TNFSF orthologs and paralogs of interest to better understand immune system evolution and the immunological pathways elicited to pathogens. 87 -238110 cd00186 TOP1Ac DNA Topoisomerase, subtype IA; DNA-binding, ATP-binding and catalytic domain of bacterial DNA topoisomerases I and III, and eukaryotic DNA topoisomerase III and eubacterial and archael reverse gyrases. Topoisomerases clevage single or double stranded DNA and then rejoin the broken phosphodiester backbone. Proposed catalytic mechanism of single stranded DNA cleavage is by phosphoryl transfer through a tyrosine nucleophile using acid/base catalysis. Tyr is activated by a nearby group (not yet identified) acting as a general base for nucleophilic attack on the 5' phosphate of the scissile bond. Arg and Lys stabilize the pentavalent transition state. Glu then acts as a proton donor for the leaving 3'-oxygen, upon cleavage of the scissile strand. 381 -238111 cd00187 TOP4c DNA Topoisomerase, subtype IIA; domain A'; bacterial DNA topoisomerase IV (C subunit, ParC), bacterial DNA gyrases (A subunit, GyrA),mammalian DNA toposiomerases II. DNA topoisomerases are essential enzymes that regulate the conformational changes in DNA topology by catalysing the concerted breakage and rejoining of DNA strands during normal cellular growth. 445 -173773 cd00188 TOPRIM Topoisomerase-primase domain. This is a nucleotidyl transferase/hydrolase domain found in type IA, type IIA and type IIB topoisomerases, bacterial DnaG-type primases, small primase-like proteins from bacteria and archaea, OLD family nucleases from bacterial and archaea, and bacterial DNA repair proteins of the RecR/M family. This domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). This glutamate and two aspartates, cluster together to form a highly acid surface patch. The conserved glutamate may act as a general base in nucleotide polymerization by primases and in strand joining in topoisomerases and, as a general acid in strand cleavage by topisomerases and nucleases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 83 -238113 cd00190 Tryp_SPc Trypsin-like serine protease; Many of these are synthesized as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. Alignment contains also inactive enzymes that have substitutions of the catalytic triad residues. 232 -238114 cd00191 TY Thyroglobulin type I repeats.; The N-terminal region of human thyroglobulin contains 11 type-1 repeats TY repeats are proposed to be inhibitors of cysteine proteases 66 -270623 cd00192 PTKc Catalytic domain of Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. They can be classified into receptor and non-receptor tyr kinases. PTKs play important roles in many cellular processes including, lymphocyte activation, epithelium growth and maintenance, metabolism control, organogenesis regulation, survival, proliferation, differentiation, migration, adhesion, motility, and morphogenesis. Receptor tyr kinases (RTKs) are integral membrane proteins which contain an extracellular ligand-binding region, a transmembrane segment, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain, leading to intracellular signaling. Some RTKs are orphan receptors with no known ligands. Non-receptor (or cytoplasmic) tyr kinases are distributed in different intracellular compartments and are usually multi-domain proteins containing a catalytic tyr kinase domain as well as various regulatory domains such as SH3 and SH2. PTKs are usually autoinhibited and require a mechanism for activation. In many PTKs, the phosphorylation of tyr residues in the activation loop is essential for optimal activity. Aberrant expression of PTKs is associated with many development abnormalities and cancers.The PTK family is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -277192 cd00193 SNARE SNARE motif. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, Qb- and Qc-SNAREs are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 54 -270455 cd00194 UBA_like_SF UBA domain-like superfamily. The ubiquitin-associated (UBA) domain-like superfamily contains alpha-helical structural homology ubiquitin-binding domains, including UBA domains and coupling of ubiquitin conjugation to endoplasmic reticulum degradation (CUE) domains which share a common three-helical bundle architecture. UBA domains are commonly occurring sequence motifs found in proteins involved in ubiquitin-mediated proteolysis. They contribute to ubiquitin (Ub) binding or ubiquitin-like (UbL) domain binding. However, some kinds of UBA domains can only bind the UbL domain, but not the Ub domain. UBA domains are normally comprised of compact three-helix bundles which contain a conserved GF/Y-loop. They can bind polyubiquitin with high affinity. They also bind monoubiquitin and other proteins. Most UBA domain-containing proteins have one UBA domain, but some harbor two or three UBA domains. CUE domain containing proteins are characterized by an FP and a di-leucine-like sequence and bind to monoubiquitin with varying affinities. Some higher eukaryotic CUE domain proteins do not bind monoubiquitin efficiently, since they carry LP, rather than FP among CUE domains. This superfamily also includes many UBA-like domains found in AMP-activated protein kinase (AMPK) related kinases, the NXF family of mRNA nuclear export factors, elongation factor Ts (EF-Ts), nascent polypeptide-associated complex subunit alpha (NACA) and similar proteins. Although many UBA-like domains may have a conserved TG but not GF/Y-loop, they still show a high level of structural and sequence similarity with three-helical ubiquitin binding domains. 28 -238117 cd00195 UBCc Ubiquitin-conjugating enzyme E2, catalytic (UBCc) domain. This is part of the ubiquitin-mediated protein degradation pathway in which a thiol-ester linkage forms between a conserved cysteine and the C-terminus of ubiquitin and complexes with ubiquitin protein ligase enzymes, E3. This pathway regulates many fundamental cellular processes. There are also other E2s which form thiol-ester linkages without the use of E3s as well as several UBC homologs (TSG101, Mms2, Croc-1 and similar proteins) which lack the active site cysteine essential for ubiquitination and appear to function in DNA repair pathways which were omitted from the scope of this CD. 141 -340450 cd00196 Ubiquitin_like_fold Beta-grasp ubiquitin-like fold. Ubiquitin is a protein modifier that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. The ubiquitination process comprises a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of ubiquitin and the epsilon-amino group of a substrate lysine. Ubiquitin-like proteins have similar ubiquitin beta-grasp fold and attach to other proteins in a ubiquitin-like manner but with biochemically distinct roles. Ubiquitin and ubiquitin-like proteins conjugate and deconjugate via ligases and peptidases to covalently modify target polypeptides. Some other ubiquitin-like domains have adaptor roles in ubiquitin-signaling by mediating protein-protein interaction. In addition to Ubiquitin-like (Ubl) domain, Ras-associating (RA) domain, F0/F1 sub-domain of FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, TGS (ThrRS, GTPase and SpoT) domain, Ras-binding domain (RBD), Ubiquitin regulatory domain X (UBX), Dublecortin-like domain, and RING finger- and WD40-associated ubiquitin-like (RAWUL) domain have beta-grasp ubiquitin-like folds, and are included in this superfamily. 68 -340764 cd00197 VHS_ENTH_ANTH VHS, ENTH and ANTH domain superfamily. This superfamily is composed of proteins containing a VHS, CID, ENTH, or ANTH domain. The VHS domain is present in Vps27 (Vacuolar Protein Sorting), Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (Signal Transducing Adaptor Molecule). It is located at the N-termini of proteins involved in intracellular membrane trafficking. The CTD-Interacting Domain (CID) is present in several RNA-processing factors and binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase II (RNAP II or Pol II). The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. A set of proteins previously designated as harboring an ENTH domain in fact contains a highly similar, yet unique module referred to as an AP180 N-Terminal Homology (ANTH) domain. VHS, ENTH, and ANTH domains are structurally similar and are composed of a superhelix of eight alpha helices. ENTH and ANTH (E/ANTH) domains bind both inositol phospholipids and proteins and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. E/ANTH domain-bearing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 115 -238119 cd00198 vWFA Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. 161 238120 cd00199 WAP whey acidic protein-type four-disulfide core domains. Members of the family include whey acidic protein, elafin (elastase-specific inhibitor), caltrin-like protein (a calcium transport inhibitor) and other extracellular proteinase inhibitors. A group of proteins containing 8 characteristically-spaced cysteine residuesforming disulphide bonds, have been termed '4-disulphide core' proteins. Protease inhibition occurs by insertion of the inhibitory loop into the active site pocket and interference with the catalytic residues of the protease. 60 -238121 cd00200 WD40 WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. 289 -238122 cd00201 WW Two conserved tryptophans domain; also known as the WWP or rsp5 domain; around 40 amino acids; functions as an interaction module in a diverse set of signalling proteins; binds specific proline-rich sequences but at low affinities compared to other peptide recognition proteins such as antibodies and receptors; WW domains have a single groove formed by a conserved Trp and Tyr which recognizes a pair of residues of the sequence X-Pro; variable loops and neighboring domains confer specificity in this domain; there are five distinct groups based on binding: 1) PPXY motifs 2) the PPLP motif; 3) PGM motifs; 4) PSP or PTP motifs; 5) PR motifs. 31 -238123 cd00202 ZnF_GATA Zinc finger DNA binding domain; binds specifically to DNA consensus sequence [AT]GATA[AG] promoter elements; a subset of family members may also bind protein; zinc-finger consensus topology is C-X(2)-C-X(17)-C-X(2)-C 54 -238124 cd00203 ZnMc Zinc-dependent metalloprotease. This super-family of metalloproteases contains two major branches, the astacin-like proteases and the adamalysin/reprolysin-like proteases. Both branches have wide phylogenetic distribution, and contain sub-families, which are involved in vertebrate development and disease. 167 -119412 cd00205 rhv_like Picornavirus capsid protein domain_like. Picornaviruses are non-enveloped plus-strand ssRNA animal viruses with icosahedral capsids composed of 60 copies each of 4 virus encoded proteins; alignment includes picornaviridae, like poliovirus, hepatitis A virus, rhinovirus, foot-and-mouth disease virus and encephalomyocarditis virus; common structure is an 8-stranded beta sandwich 178 -119411 cd00206 snake_toxin Snake toxin domain, present in short and long neurotoxins, cytotoxins and short toxins, and in other miscellaneous venom peptides. The toxin acts by binding to the nicotinic acetylcholine receptors in the postsynaptic membrane of skeletal muscles and preventing the binding of acetylcholine, thereby blocking the excitation of muscles. This domain contains 60-75 amino acids that are fixed by 4-5 disulfide bridges and is nearly all beta sheet; it exists as either monomers or dimers. 64 -238126 cd00207 fer2 2Fe-2S iron-sulfur cluster binding domain. Iron-sulfur proteins play an important role in electron transfer processes and in various enzymatic reactions. The family includes plant and algal ferredoxins, which act as electron carriers in photosynthesis and ferredoxins, which participate in redox chains (from bacteria to mammals). Fold is ismilar to thioredoxin. 84 -100038 cd00208 LbetaH Left-handed parallel beta-Helix (LbetaH or LbH) domain: The alignment contains 5 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity, however, some subfamilies in this hierarchy also show activities related to ion transport or translation initiation. Many are trimeric in their active forms. 78 -238127 cd00209 DHFR Dihydrofolate reductase (DHFR). Reduces 7,8-dihydrofolate to 5,6,7,8-tetrahydrofolate with NADPH as a cofactor. This is an essential step in the biosynthesis of deoxythymidine phosphate since 5,6,7,8-tetrahydrofolate is required to regenerate 5,10-methylenetetrahydrofolate which is then utilized by thymidylate synthase. Inhibition of DHFR interrupts thymidilate synthesis and DNA replication, inhibitors of DHFR (such as Methotrexate) are used in cancer chemotherapy. 5,6,7,8-tetrahydrofolate also is involved in glycine, serine, and threonine metabolism and aminoacyl-tRNA biosynthesis. 158 -238128 cd00210 PTS_IIA_glc PTS_IIA, PTS system, glucose/sucrose specific IIA subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIA PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. 124 -238129 cd00211 PTS_IIA_fru PTS_IIA, PTS system, fructose/mannitol specific IIA subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIA PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. 136 -238130 cd00212 PTS_IIB_glc PTS_IIB, PTS system, glucose/sucrose specific IIB subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIB PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation 78 -238131 cd00213 S-100 S-100: S-100 domain, which represents the largest family within the superfamily of proteins carrying the Ca-binding EF-hand motif. Note that this S-100 hierarchy contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins are expressed exclusively in vertebrates, and are implicated in intracellular and extracellular regulatory activities. Intracellularly, S100 proteins act as Ca-signaling or Ca-buffering proteins. The most unusual characteristic of certain S100 proteins is their occurrence in extracellular space, where they act in a cytokine-like manner through RAGE, the receptor for advanced glycation products. Structural data suggest that many S100 members exist within cells as homo- or heterodimers and even oligomers; oligomerization contributes to their functional diversification. Upon binding calcium, most S100 proteins change conformation to a more open structure exposing a hydrophobic cleft. This hydrophobic surface represents the interaction site of S100 proteins with their target proteins. There is experimental evidence showing that many S100 proteins have multiple binding partners with diverse mode of interaction with different targets. In addition to S100 proteins (such as S100A1,-3,-4,-6,-7,-10,-11,and -13), this group includes the ''fused'' gene family, a group of calcium binding S100-related proteins. The ''fused'' gene family includes multifunctional epidermal differentiation proteins - profilaggrin, trichohyalin, repetin, hornerin, and cornulin; functionally these proteins are associated with keratin intermediate filaments and partially crosslinked to the cell envelope. These ''fused'' gene proteins contain N-terminal sequence with two Ca-binding EF-hands motif, which may be associated with calcium signaling in epidermal cells and autoprocessing in a calcium-dependent manner. In contrast to S100 proteins, "fused" gene family proteins contain an extraordinary high number of almost perfect peptide repeats with regular array of polar and charged residues similar to many known cell envelope proteins. 88 -238132 cd00214 Calpain_III Calpain, subdomain III. Calpains are calcium-activated cytoplasmic cysteine proteinases, participate in cytoskeletal remodeling processes, cell differentiation, apoptosis and signal transduction. Catalytic domain and the two calmodulin-like domains are separated by C2-like domain III. Domain III plays an important role in calcium-induced activation of calpain involving electrostatic interactions with subdomain II. Proposed to mediate calpain's interaction with phospholipids and translocation to cytoplasmic/nuclear membranes. CD includes subdomain III of typical and atypical calpains. 150 -238133 cd00215 PTS_IIA_lac PTS_IIA, PTS system, lactose/cellobiose specific IIA subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIA PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation. This family of proteins normally function as a homotrimer, stabilized by a centrally located metal ion. Separation into subunits is thought to occur after phosphorylation. 97 -199833 cd00216 PQQ_DH_like PQQ-dependent dehydrogenases and related proteins. This family is composed of dehydrogenases with pyrroloquinoline quinone (PQQ) as a cofactor, such as ethanol, methanol, and membrane-bound glucose dehydrogenases. The alignment model contains an 8-bladed beta-propeller, and the family also includes distantly related proteins which are not enzymatically active and do not bind PQQ. 434 -271174 cd00217 INT_Flp_C Flp Tyrosine-based site-specific recombinases (also called integrases), C-terminal catalytic domain. Yeast Flp-like recombinases mediate the amplification of the 2 micron circular plasmid copy number by catalyzing the intra-molecular recombination between two inverted repeats during replication. They belong to the DNA breaking-rejoining enzyme superfamily, which also includes prokaryotic tyrosine recombinases and type IB topoisomerases. These enzymes share the same fold in their catalytic domain containing six conserved active site residues and the overall reaction mechanism. Flp-like recombinases are almost exclusively found in yeast and are highly diverged in sequence from the prokaryotic tyrosine recombinases. They cleave their target DNA in trans with a composite active site in which the catalytic tyrosine is provided by a promoter bound to a site other than the one being cleaved. Thus each active site within Flp complexes is assembled by domain swapping and contains catalytic residues from two different monomers. Two DNA segments are synapsed by the tetrameric enzyme, carrying the nucleophilic tyrosine in each active site with only two of the four monomers active at a given time. The catalytic domain is linked through a flexible loop to the N-terminal domain, which is largely responsible for non-specific DNA binding and isomerization. Its overall fold is similar to the SAM domain fold also found in the N-terminal domains of lambda integrase and XerD recombinase. 410 -132995 cd00218 GlcAT-I Beta1,3-glucuronyltransferase I (GlcAT-I) is involved in the initial steps of proteoglycan synthesis. Beta1,3-glucuronyltransferase I (GlcAT-I) domain; GlcAT-I is a Key enzyme involved in the initial steps of proteoglycan synthesis. GlcAT-I catalyzes the transfer of a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region of trisaccharide Gal-beta-(1-3)-Gal-beta-(1-4)-Xyl of proteoglycans. The enzyme has two subdomains that bind the donor and acceptor substrate separately. The active site is located at the cleft between both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. This family has been classified as Glycosyltransferase family 43 (GT-43). 223 -119405 cd00219 ToxGAP GTPase-activating protein (GAP) domain found in bacterial cytotoxins, ExoS, SptP, and YopE. Part of protein secretion system; stimulates Rac1- dependent cytoskeletal changes that promote bacterial internalization. 120 -238135 cd00220 VMO-I Vitelline membrane outer layer protein I (VMO-I) domain, VMO-I is one of the proteins found in the outer layer of the vitelline membrane of poultry eggs; VMO-I, lysozyme, and VMO-II are tightly bound to ovomucin; this complex forms the backbone of the outer layer; VMO-I has three distinct internal repeats; all three repeats are used to define the domain here; VMO-I has recently been shown to synthesize N-acetylchito-oligosaccharides from N-acetylglucosamine; may be a carbohydrate-binding protein; member of the beta-prism-fold family 177 -238136 cd00221 Vsr Very Short Patch Repair (Vsr) Endonuclease. Endonucleases in DNA repair that recognize damaged DNA and cleave the phosphodiester backbone. Vsr endonucleases have a common endonuclease topology that has been tailored for recognition of TG mismatches. 115 -212461 cd00222 CollagenBindB Repeat unit of collagen-binding protein domain B. The collagen-binding protein mediates bacterial adherence to collagen; the primary sequence has a non-repetitive, collagen-binding A region, followed by instances of this B region repetitive unit. The B region has one to four 23 kDa repeat units (B1-B4), which have been suggested to serve as 'stalks' that project the A region from the bacterial surface and thus facilitate bacterial adherence to collagen. Each B repeat unit has two highly similar domains (D1 and D2) placed side-by-side; both D1 and D2 are included in this model. They exhibit a unique inverse IgG-like domain fold. 92 -173774 cd00223 TOPRIM_TopoIIB_SPO TOPRIM_TopoIIB_SPO: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in the type IIB family of DNA topoisomerases and Spo11. This subgroup contains proteins similar to Sulfolobus shibatae topoisomerase VI (TopoVI) and Saccharomyces cerevisiae meiotic recombination factor: Spo11. Type II DNA topoisomerases catalyze the ATP-dependent transport of one DNA duplex through another, in the process generating transient double strand breaks via covalent attachments to both DNA strands at the 5' positions. TopoVI enzymes are heterotetramers found in archaea and plants. Spo11 plays a role in generating the double strand breaks that initiate homologous recombination during meiosis. S. shibatae TopoVI relaxes both positive and negative supercoils, and in addition has a strong decatenase activity. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD. For topoisomerases the conserved glutamate is believed to act as a general base in strand joining and, as a general acid in strand cleavage. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 160 -238137 cd00224 Mog1 homolog to Ran-Binding Protein Mog1p; binds to the small GTPase Ran, which plays an important role in nuclear import. Binding is independent of Ran's nucleotide state (RanGTP/RanGDP) 173 -119406 cd00225 API3 Ascaris pepsin inhibitor-3 (API3); protein inhibitor that reversibly inhibits aspartic proteinase cathepsin E, and gastric enzymes pepsin and gastricsin. 159 -238138 cd00226 PRCH Photosynthetic reaction center (RC) complex, subunit H; RC is an integral membrane protein-pigment complex which catalyzes light-induced reduction of ubiquinone to ubiquinol, generating a transmembrane electrochemical gradient of protons used to produce ATP by ATP synthase. Subunit H is positioned mainly in the cytoplasm with one transmembrane alpha helix. Provides proton transfer pathway (water channels) connecting the terminal quinone electron acceptor of RC, to the aqueous phase. Found in photosynthetic bacteria: alpha, beta, and gamma proteobacteria. 246 -238139 cd00227 CPT Chloramphenicol (Cm) phosphotransferase (CPT). Cm-inactivating enzyme; modifies the primary (C-3) hydroxyl of the antibiotic. Related structurally to shikimate kinase II. 175 -238140 cd00228 eu-GS Eukaryotic Glutathione Synthetase (eu-GS); catalyses the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner. Belongs to the ATP-grasp superfamily. 471 -238141 cd00229 SGNH_hydrolase SGNH_hydrolase, or GDSL_hydrolase, is a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the typical Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxlic acid. 187 -238142 cd00231 ZipA ZipA C-terminal domain. ZipA, a membrane-anchored protein, is one of at least nine essential gene products necessary for assembly of the septal ring which mediates cell division in E.coli. ZipA and FtsA directly bind FtsZ, a homolog of eukaryotic tubulins, at the prospective division site, followed by the sequential addition of FtsK, FtsQ, FtsL, FtsW, FtsI, and FtsN. ZipA contains three domains: a short N-terminal membrane-anchored domain, a central P/Q domain that is rich in proline and glutamine and a C-terminal domain, which comprises almost half the protein. 130 -350855 cd00232 HemeO-like heme oxygenase. Heme oxygenase (HO, EC 1.14.14.18) catalyzes the rate limiting step in the degradation of heme to biliverdin in a multi-step reaction. HO is essential for recycling iron from heme which is used as a substrate and cofactor for its own degradation to biliverdin, iron, and carbon monoxide. This family serves a variety of specific needs in different branches of life: in vertebrates, HO plays a role in heme homeostasis and oxidative stress response, and cellular signaling in mammals that include isoforms HO-1 and HO-2; in photosynthetic organisms including cyanobacteria, algae, and higher plants, biliverdin is used for photosynthetic pigment formation or light-sensing; and, in pathogenic bacteria, HO is part of a pathway for iron acquisition from host heme and heme products. HO shares tertiary structure similarity to methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1) and thiaminase II (EC 3.5.99.2), but shares little sequence homology. 201 -238144 cd00233 VIP2 VIP2; A family of actin-ADP-ribosylating toxin. A member of the Bacillus-prodiced vegetative insecticidal proteins (VIPs) possesses high specificity against the major insect pest, corn rootworms, and belongs to a classs of binary toxins and regulators of biological pathways distinct from classical A-B toxins. A novel family of insecticidal ADP-ribosyltransferses were isolated from Bacillus cereus during vegetative growth, where VIP1 likely targets insect cells and VIP2 ribosylates actin. VIP2 shares significant sequence similarity with enzymatic components of other binary toxins, Clostridium botulinum C2 toxin, C. perfringens iota toxin, C. piroforme toxin, C. piroforme toxin and C. difficile toxin. 201 -119413 cd00235 TLP-20 Telokin-like protein-20 (TLP-20) domain; a baculovirus protein that shares some antigenic similarities to the smooth muscle protein telokin, a kinase-related protein 108 -238145 cd00236 FinO_conjug_rep FinO bacterial conjugation repressor domain; the basic protein FinO is part of the the two component FinOP system which is responsible for repressing bacterial conjugation; the FinOP system represses the transfer (tra) operon of the F-plasmid which encodes the proteins responsible for conjugative transfer of this plasmid from host to recipient Escherichia coli cells; antisense RNA, FinP is thought to interact with traJ mRNA to occlude its ribosome binding site, blocking traJ translation and thereby inhibiting transcription of the tra operon; FinO protects FinP against degradation by binding to FinP and sterically blocking the cellular endonuclease RNase E; FinO also also binds to the complementary stem-loop structures in traJ mRNA and promotes duplex formation between FinP and traJ RNA in vitro; this domain contains two independent RNA binding regions 146 -107218 cd00237 p23 p23 binds heat shock protein (Hsp)90 and participates in the folding of a number of Hsp90 clients, including the progesterone receptor. p23 also has a passive chaperoning activity and in addition may participate in prostaglandin synthesis. 106 -238146 cd00238 ERp29c ERp29 and ERp38, C-terminal domain; composed of the protein disulfide isomerase (PDI)-like proteins ERp29 and ERp38. ERp29 (also called ERp28) is a ubiquitous endoplasmic reticulum (ER)-resident protein expressed in high levels in secretory cells. It contains a redox inactive TRX-like domain at the N-terminus. The expression profile of ERp29 suggests a role in secretory protein production, distinct from that of PDI. It has also been identified as a member of the thyroglobulin folding complex and is essential in regulating the secretion of thyroglobulin. The Drosophila homolog, Wind, is the product of windbeutel, an essential gene in the development of dorsal-ventral patterning. Wind is required for correct targeting of Pipe, a Golgi-resident type II transmembrane protein with homology to 2-O-sulfotransferase. ERp38 is a P5-like protein, first isolated from alfalfa (the cDNA clone was named G1), which contains two redox active TRX domains at the N-terminus, like human P5. However, unlike human P5, ERp38 also contains a C-terminal domain with homology to the C-terminal domain of ERp29. It may be a glucose-regulated protein. The function of the all-helical C-terminal domain of ERp29 and ERp38 remains unclear. The C-terminal domain of Wind is thought to provide a distinct site required for interaction with its substrate, Pipe. 93 -119414 cd00239 PapG_CBD PapG carbohydrate / receptor binding domain (CBD); PapG, the adhesin of the P-pili, is situated at the tip, mediating the attachment of uropathogenic Escherichia coli to the uroepithelium of the human kidney; PapG has a two-domain architecture: a carbohydrate binding N-terminus (this domain) and chaperone binding C-terminus (C-terminal pilin region). The carbohydrate-binding domain interacts with the receptor glycan. There are 3 PapG alleles, class I-III, which bind to different receptor isotypes, GbO3, GbO4, and GbO5, respectively. 194 -238147 cd00240 TFIIFa Transcription initiation factor IIF, alpha subunit, N-terminal region of RAP74. Subunit of transcription initiation complex involved in initiation, elongation and promoter escape.Tetramer of 2 alpha and 2 beta TFIIF subunits interacts directly with RNA polymerase II. TFIIF inhibits non-specific transcription initiation by PolII and recruits the polymerase to the preinitiation complex on promoter DNA for site-specific transcription initiation. The PolII/TFIIF-complex attaches through direct interactions of TFIIF with promoter DNA, TFIIB and the TAF250 subunit of TFIID, and provides scaffolding for addition of TFIIE and TFIIH. Together with TFIIE, TFIIF participates in DNA strand separation (open complex formation). N-terminal domains of RAP30 and RAP74 co-fold to form a single core structure, a triple barrel heterodimer, and has pseudo-2-fold symmetry. 162 -187675 cd00241 DOMON_like Domon-like ligand-binding domains. DOMON-like domains can be found in all three kindgoms of life and are a diverse group of ligand binding domains that have been shown to interact with sugars and hemes. DOMON domains were initially thought to confer protein-protein interactions. They were subsequently found as a heme-binding motif in cellobiose dehydrogenase, an extracellular fungal oxidoreductase that degrades both lignin and cellulose, and in ethylbenzene dehydrogenase, an enzyme that aids in the anaerobic degradation of hydrocarbons. The domain interacts with sugars in the type 9 carbohydrate binding modules (CBM9), which are present in a variety of glycosyl hydrolases, and it can also be found at the N-terminus of sensor histidine kinases. 158 -153074 cd00242 Ecotin Protease Inhibitor Ecotin; homodimeric protease inhibitor. Protease Inhibitor Ecotin; homodimeric protease inhibitor which binds two chymotrypsin-like serine proteases to form a heterotetramer. Found in bacterial periplasm. Inhibits a broad range of serine proteases including collagenase, trypsin, chymotrypsin, elastase, and factor Xa but not thrombin. Inhibition mechanism involves binding at two different protease contact sites: the primary and secondary binding sites. Primary site loops of ecotin bind to the active site of target proteases in a substrate-like manner with the P1 residue in ecotin mimicking the interactions of a canonical P1 substrate residue. 136 -119415 cd00243 Lysin-Sp18 Sp18 and Lysin from Archaegastropoda (marine mollusks of the families Halotidae and Trochidae) sperm. Both proteins play an important role in fertilization: sp18 mediates fusion between sperm and egg cell membrane, lysin dissolves the vitelline envelope surrounding the egg; they are believed to be a product of gene duplication and subsequent divergence. 122 -238148 cd00244 AlgLyase Alginate Lyase A1-III; enzymatically depolymerizes alginate, a complex copolymer of beta-D-mannuronate and alpha-L-guluronate, by cleaving the beta-(1,4) glycosidic bond. 339 -238149 cd00245 Glm_e Coenzyme B12-dependent glutamate mutase epsilon subunit-like family; contains proteins similar to Clostridium cochlearium glutamate mutase (Glm) and Streptomyces tendae Tu901 NikV. Glm catalyzes a carbon-skeleton rearrangement of L-glutamate to L-threo-3-methylaspartate. The first step in the catalysis is a homolytic cleavage of the Co-C bond of the coenzyme B12 cofactor to generate a 5'-deoxyadenosyl radical. This radical then initiates the rearrangement reaction. C. cochlearium Glm is a sigma2epsilon2 heterotetramer. Glm plays a role in glutamate fermentation in Clostridium sp. and in members of the family Enterobacteriaceae, and in the synthesis of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. S. tendae Tu901 glutamate mutase-like proteins NikU and NIkV participate in the synthesis of the peptidyl nucleoside antibiotic nikkomycin. NikU and NikV proteins have sequence similarity to Clostridium Glm sigma and epsilon components respectively, and may catalyze the rearrangement of 2-oxoglutaric acid to 2-keto-3-methylsuccinic acid during nikkomycin synthesis. 428 -238150 cd00246 RabGEF Nucleotide exchange factor for Rab-like small GTPases (RabGEF), Mss4 type; RabGEF positely regulates the function of Rab GTPase by promoting exchange of GDP for GTP; members of the Rab subfamily of Ras GTPases are important in vesicular transport; 103 -238151 cd00247 Endostatin-like Endostatin-like domain; the angiogenesis inhibitor endostatin is a C-terminal fragment of collagen XV/XVIII, a proteoglycan/collagen found in vessel walls and basement membranes; this domain has a compact globular fold similar to that of C-type lectins; endostatin XVIII is monomeric and contains a heparin-binding epitope and zinc binding sites while endostatin XV is trimeric and contains neither of these sites; the generation of endostatin or endostatin-like collagen XV/XVIII fragments is catalyzed by proteolytic enzymes within the protease-sensitive hinge region of the C-terminal domain; endostatin inhibits endothelial cell migration in vitro and appears to be highly effective in murine in vivo studies 171 -238152 cd00248 Mth938-like Mth938-like domain. The members of this family include: Mth938, 2P1, Xcr35, Rpa2829, and several uncharacterized sequences. Mth938 is a hypothetical protein encoded by the Methanobacterium thermoautotrophicum (Mth) genome. This protein crystallizes as a dimer, although it is monomeric in solution, with one disulfide bond in each monomer. 2P1 is a partially characterized nuclear protein which is homologous to E3-3 from rat and known to be alternately spliced. Xcr35 and Rpa2829 are hypothetical proteins of unknown function from the Xanthomonas campestris and Rhodopseudomonas palustris genomes, respectively, for which the crystal structures have been determined. 109 -238153 cd00249 AGE AGE domain; N-acyl-D-glucosamine 2-epimerase domain; Responsible for intermediate epimerization during biosynthesis of N-acetylneuraminic acid. Catalytic mechanism is believed to be via nucleotide elimination and readdition and is ATP modulated. AGE is structurally and mechanistically distinct from the other four types of epimerases. The AGE domain monomer is composed of an alpha(6)/alpha(6)-barrel, the structure of which is also found in glucoamylase and cellulase. The active form is a homodimer. The alignment also contains subtype III mannose 6-phosphate isomerases. 384 -238154 cd00250 CAS_like Clavaminic acid synthetase (CAS) -like; CAS is a trifunctional Fe(II)/ 2-oxoglutarate (2OG) oxygenase carrying out three reactions in the biosynthesis of clavulanic acid, an inhibitor of class A serine beta-lactamases. In general, Fe(II)-2OG oxygenases catalyze a hydroxylation reaction, which leads to the incorporation of an oxygen atom from dioxygen into a hydroxyl group and conversion of 2OG to succinate and CO2 262 -119403 cd00251 Mth_Ecto The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. 176 -320009 cd00252 EFh_SPARC_EC EF-hand, extracellular calcium-binding (EC) motif, found in secreted protein acidic and rich in cysteine (SPARC)-like proteins. The SPARC protein family represents a diverse group of proteins that share a follistatin-like (FS) domain and an extracellular calcium-binding (EC) domain with two EF-hand motifs. It includes SPARC (for secreted protein acidic and rich in cysteine, also termed osteonectin/ON, or basement-membrane protein 40/BM-40), SPARC-like protein 1 (for secreted protein, acidic and rich in cysteines-like 1/ SPARCL1, also termed high endothelial venule protein/Hevi, or MAST 9, or SC-1, or RAGS-1, or QR1, or ECM 2), testicans 1, 2, and 3 (also termed SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycans, or SPOCK), secreted modular calcium-binding protein SMOC-1 (also termed SPARC-related modular calcium-binding protein 1) and SMOC-2 (also termed SPARC-related modular calcium-binding protein 2, or smooth muscle-associated protein 2/SMAP-2), follistatin-related protein 1 (FRP-1, also termed follistatin-like protein 1/fstl-1, TSC-36/Flik, TGF-beta inducible protein). The SPARC proteins have been implicated in modulating cell interaction with the extracellular milieu, including regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways, as well as in development and disease. 107 -238156 cd00253 PL_Passenger_AT Pertactin-like passenger domains (virulence factors) of autotransporter proteins of the type V secretion system. Autotransporters are proteins used by Gram-negative bacteria to transport proteins across their outer membranes. The C-terminal (beta) domain of autotransporters forms a pore in the outer membrane through which the N-terminal passenger domain is transported. Following transport, the passenger domain is generally cleaved by an outer membrane protease with the passenger domain either remaining in contact with the surface via a noncovalent interaction with the beta domain or cleaved to release a soluble protein. These proteins are highly diverse and perform a variety of functions that promote virulence, including catalyzing proteolysis, serving as an adhesin, mediating actin-promoted motility, or serving as a cytotoxin. Proteins in this family share similarity in the C-terminal region of the passenger domain as seen in the pertactin structure P.69, a Bordetella pertussis agglutinogen responsible for human pertussis. The P.69 protein consists of a 16-stranded parallel beta-helix with a V-shaped cross-section, and is one of the largest beta-helix known to date. 186 -340358 cd00254 LT_GEWL_like Lytic transglycosylase (LT) and goose egg-white lysozyme (GEWL)-like domain. Members include the soluble and insoluble membrane-bound LTs in bacteria, LTs in bacteriophage lambda, as well as eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). LTs catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. 109 -238158 cd00255 nidG2 Nidogen, G2 domain; Nidogen is an important component of the basement membrane, an extracellular sheet-like matrix. Nidogen is a multifunctional protein that interacts with many other basement membrane proteins, like collagen, perlecan, lamin, and has a potential role in the assembly and connection of networks. Nidogen consists of 3 globular domains (G1-G3), G3 is the lamin-binding domain, while G2 binds collagen IV and perlecan. Also found in hemicentin, a protein which functions at various cell-cell and cell-matrix junctions and might assist in refining broad regions of cell contact into oriented, line-shaped junctions. Nidogen G2 consists of an N-terminal EGF-like domain (excluded from this alignment model) and an 11-stranded beta-barrel with a central helix, a topology that exhibits high structural similarity to the green flourescent proteins of Cnidaria. 224 -238159 cd00256 VATPase_H VATPase_H, regulatory vacuolar ATP synthase subunit H (Vma13p); activation component of the peripheral V1 complex of V-ATPase, a heteromultimeric enzyme which uses ATP to actively transport protons into organelles and extracellular compartments. The topology is that of a superhelical spiral, in part the geometry is similar to superhelices composed of armadillo repeat motifs, as found in importins for example. 429 -238160 cd00257 Fascin Fascin-like domain; members include actin-bundling/crosslinking proteins facsin, histoactophilin and singed; identified in sea urchin, Drosophila, Xenopus, rodents, and humans; The fascin-like domain adopts a beta-trefoil topology and contains an internal threefold repeat; the fascin subgroup contains four copies of the domain; Structurally similar to fibroblast growth factor (FGF) 119 -238161 cd00258 GM2-AP GM2 activator protein (GM2-AP) is a non-enzymatic lysosomal protein that acts as cofactor in the sequential degradation of gangliosides. GM2A is an essential cofactor for beta-hexosaminidase A (Hex A) in the enzymatic hydrolysis of GM2 ganglioside to GM3. Mutation of the gene results in the AB variant of Tay-Sachs disease. GM2-AP and similar proteins belong to the ML domain family. 162 -119404 cd00259 STNV STNV domain; satellite tobacco necrosis virus (STNV) are small plant viruses which are completely dependent on the presence of a specific helper virus, TNV, for their replication; 60 identical subunits, this domain is one of them; form an icosahedral shell around a single RNA molecule. Half of the RNA codes for the coat protein with the other half being non-coding. The STNV domain has a "Swiss roll" Greek key topology with its two 4-stranded antiparallel beta sheets 195 -271229 cd00260 Sialidase sialidases/neuraminidases. Sialidases or neuraminidases function to bind and hydrolyze terminal sialic acid residues from various glycoconjugates as well as playing roles in pathogenesis, bacterial nutrition and cellular interactions. They have a six-bladed beta-propeller fold. This hierarchy includes eubacterial, eukaryotic, and viral sialidases. 361 -238163 cd00261 AAI_SS AAI_SS: Alpha-Amylase Inhibitors (AAIs) and Seed Storage (SS) Protein subfamily; composed of cereal-type AAIs and SS proteins. They are mainly present in the seeds of a variety of plants. AAIs play an important role in the natural defenses of plants against insects and pathogens such as fungi, bacteria and viruses. AAIs impede the digestion of plant starch and proteins by inhibiting digestive alpha-amylases and proteinases. Also included in this subfamily are SS proteins such as 2S albumin, gamma-gliadin, napin, and prolamin. These AAIs and SS proteins are also known allergens in humans. 110 -238164 cd00264 BPI BPI/LBP/CETP domain; Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide-binding protein (LBP) / Cholesteryl ester transfer protein (CETP) domain; binds to and neutralizes lipopolysaccharides from the outer membrane of Gram-negative bacteria.; Apolar pockets on the concave surface bind a molecule of phosphatidylcholine, primarily by interacting with their acyl chains; this suggests that the pockets may also bind the acyl chains of lipopolysaccharide. 208 -238165 cd00265 MADS_MEF2_like MEF2 (myocyte enhancer factor 2)-like/Type II subfamily of MADS ( MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators. Binds DNA and exists as hetero and homo-dimers. Differs from SRF-like/Type I subgroup mainly in position of the alpha helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. 77 -238166 cd00266 MADS_SRF_like SRF-like/Type I subfamily of MADS (MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators. Binds DNA and exists as hetero- and homo-dimers. Differs from the MEF-like/Type II subgroup mainly in position of the alpha 2 helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. 83 -213179 cd00267 ABC_ATPase ATP-binding cassette transporter nucleotide-binding domain. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide-binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 157 -350669 cd00268 DEADc DEAD-box helicase domain of DEAD box helicases. DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 196 -238168 cd00270 MATH_TRAF_C Tumor Necrosis Factor Receptor (TNFR)-Associated Factor (TRAF) family, TRAF domain, C-terminal MATH subdomain; TRAF molecules serve as adapter proteins that link cell surface TNFRs and receptors of the interleukin-1/Toll-like family to downstream kinase signaling cascades which results in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses in the immune and inflammatory systems. There are at least six mammalian and three Drosophila proteins containing TRAF domains. The mammalian TRAFs display varying expression profiles, indicating independent and cell type-specific regulation. They display distinct, as well as overlapping functions and interactions with receptors. Most TRAFs, except TRAF1, share N-terminal homology and contain a RING domain, multiple zinc finger domains, and a TRAF domain. TRAFs form homo- and heterotrimers through its TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 149 -238169 cd00271 Chemokine_C Chemokine_C, C or lymphotactin subgroup, 1 of 4 subgroup designations of chemokines based on the arrangement of two N-terminal, conserved cysteine residues. Most of the known chemokines (cd00169) belong to either the CC (cd00272) or CXC (cd00273) subclass. The two other subclasses each have a single known member: fractalkine for the CX3C (cd00274) class and lymphotactin for the C (cd00271) class. Chemokine_Cs differ structurally since they contain only one of the two disulfide bridges that are conserved in all other chemokines and they possess a unique C-terminal extension, which is required for biological activity and thought to play a role in receptor binding. Lymphotactin, a mediator of mucosal immunity, has been found to chemoattract neutrophils and B cells through the XCR1 receptor and thought to be a factor in acute allograft rejection and inflammatory bowel disease. 72 -238170 cd00272 Chemokine_CC Chemokine_CC: 1 of 4 subgroup designations based on the arrangement of the two N-terminal cysteine residues; includes a number of secreted growth factors and interferons involved in mitogenic, chemotactic, and inflammatory activity; some members (e.g. 2HCC) contain an additional disulfide bond which is thought to compensate for the highly conserved Trp missing in these; chemotatic for monocytes, macrophages, eosinophils, basophils, and T cells, but not neutrophils; exist as monomers and dimers, but are believed to be functional as monomers; found only in vertebrates and a few viruses; a subgroup of CC, identified by an N-terminal DCCL motif (Exodus-1, Exodus-2, and Exodus-3), has been shown to inhibit specific types of human cancer cell growth in a mouse model. See CDs: Chemokine (cd00169) for the general alignment of chemokines, or Chemokine_CXC (cd00273), Chemokine_C (cd00271), and Chemokine_CX3C (cd00274) for the additional chemokine subgroups, and Chemokine_CC_DCCL for the DCCL subgroup of this CD. 57 -238171 cd00273 Chemokine_CXC Chemokine_CXC: 1 of 4 subgroup designations based on the arrangement of the two N-terminal cysteine residues; includes a number of secreted growth factors and interferons involved in mitogenic, chemotactic, and inflammatory activity; many members contain an RCxC motif which may be a general requirement for binding to CXC chemokine receptors; those with the ELR motif are chemotatic for neutrophils and have been shown to be angiogenic, while those without the motif act on T and B cells, and are typically angiostatic; exist as monomers and dimers, but are believed to be functional as monomers; found only in vertebrates and a few viruses. See CDs: Chemokine (cd00169) for the general alignment of chemokines, or Chemokine_CC (cd00272), Chemokine_C (cd00271), and Chemokine_CX3C (cd00274) for the additional chemokine subgroups. 64 -238172 cd00274 Chemokine_CX3C Chemokine_CX3C: 1 of 4 subgroup designations based on the arrangement of the two N-terminal cysteines; differ structurally from the other subgroups in that they are attached to a membrane-spanning domain via a mucin-like stalk and can be proteolytically cleaved to a freely diffusible form; chemotatic for T cells, monocytes, and natural killer cells; function as monomers and are found only in vertebrates and a few viruses; currently only fractalkine (sometimes called neurotactin) has been identified as a member of this subfamily; the primary source of fractalkine is neurons, and they exhibit cell adhesion and chemoattractive properties in the central nervous system. See CDs: Chemokine (cd00169) for the general alignment of chemokines, or Chemokine_CXC (cd00273), Chemokine_CC (cd00272), and Chemokine_C (cd00271) for the additional chemokine subgroups. 76 -175974 cd00275 C2_PLC_like C2 domain present in Phosphoinositide-specific phospholipases C (PLC). PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. 128 -175975 cd00276 C2B_Synaptotagmin C2 domain second repeat present in Synaptotagmin. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 134 -238173 cd00279 YlxR Ylxr homologs; group of conserved hypothetical bacterial proteins of unknown function; structure revealed putative RNA binding cleft; proteins are encoded by an operon that includes other proteins involved in transcription and/or translation 79 -238174 cd00280 TRFH Telomeric Repeat binding Factor or TTAGGG Repeat binding Factor, central (dimerization) domain Homology; TRFH. Telomeres are protein/DNA complexes that make up the physical ends of eukaryotic linear chromosomes and are essential for chromosome stability, protecting the chromosome ends from degradation and end-to-end fusion. Proteins TRF1, TRF2 and Taz1 bind telomeric DNA and are also involved in recruiting interacting proteins, TIN2, and Rap1, to the telomeres. It has also been demonstrated that PARP1 associates with TRF2 and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. TRF1, TRF2 and Taz1 proteins contain three functional domains: an N-terminal acidic domain, a central TRF-specific/dimerization domain, and a C-terminal DNA binding domain with a single Myb-like repeat. Homodimerization, a prerequisite to DNA binding, results in the juxtaposition of two Myb DNA binding domains. 200 -176449 cd00281 DAP_dppA Peptidase M55, D-aminopeptidase dipeptide-binding protein family. M55 Peptidase, D-Aminopeptidase dipeptide-binding protein (dppA; DAP dppA; EC 3.4.11.-) domain: Peptide transport systems are found in many bacterial species and generally function to accumulate intact peptides in the cell, where they are hydrolyzed. The dipeptide-binding protein (dppA) of Bacillus subtilis belongs to the dipeptide ABC transport (dpp) operon expressed early during sporulation. It is a binuclear zinc-dependent, D-specific aminopeptidase. The biologically active enzyme is a homodecamer with active sites buried in its channel. These self-compartmentalizing proteases are characterized by a SXDXEG motif. D-Ala-D-Ala and D-Ala-Gly-Gly are the preferred substrates. Bacillus subtilis dppA is thought to function as an adaptation to nutrient deficiency; hydrolysis of its substrate releases D-Ala which can be used subsequently as metabolic fuel. This family also contains a number of uncharacterized putative peptidases. 265 -238175 cd00283 GIY-YIG_Cterm GIYX(10-11)YIG family of class I homing endonucleases C-terminus (GIY-YIG_Cterm). Homing endonucleases promote the mobility of intron or intein by recognizing and cleaving a homologous allele that lacks the sequence. They catalyze a double-strand break in the DNA near the insertion site of that element to facilitate homing at that site. Class I homing endonucleases are sorted into four families based on the presence of these motifs in their respective N-termini: LAGLIDADG, His-Cys box, HNH, and GIY-YIG. This CD contains several but not all members of the GIY-YIG family. The C-terminus of GIY-YIG is a DNA-binding domain which is separated from the N-terminus by a long, flexible linker. The DNA-binding domain consists of a minor-groove binding alpha-helix, and a helix-turn-helix. Some also contain a zinc finger (i.e. I-TevI) which is not required for DNA binding or catalysis, but is a component of the linker and directs the catalytic domain to cleave the homing site at a fixed distance from the intron insertion site. 113 -238176 cd00284 Cytochrome_b_N Cytochrome b (N-terminus)/b6/petB: Cytochrome b is a subunit of cytochrome bc1, an 11-subunit mitochondrial respiratory enzyme. Cytochrome b spans the mitochondrial membrane with 8 transmembrane helices (A-H) in eukaryotes. In plants and cyanobacteria, cytochrome b6 is analogous to eukaryote cytochrome b, containing two chains: helices A-D are encoded by the petB gene and helices E-H are encoded by the petD gene in these organisms. Cytochrome b/b6 contains two bound hemes and two ubiquinol/ubiquinone binding sites. The C-terminal portion of cytochrome b is described in a separate CD. 200 -276954 cd00286 Tubulin_FtsZ_Cetz-like Tubulin protein family of FtsZ and CetZ-like. This family includes tubulin alpha-, beta-, gamma-, delta-, epsilon, and zeta-tubulins as well as FtsZ and CetZ, all of which are involved in polymer formation. Tubulin is the major component of microtubules, but also exists as a heterodimer and as a curved oligomer. Microtubules exist in all eukaryotic cells and are responsible for many functions, including cellular transport, cell motility, and mitosis. FtsZ forms a ring-shaped septum at the site of bacterial cell division, which is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ can polymerize into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria, archaea, and chloroplasts. A recent study found that CetZ proteins, formerly annotated FtsZ type 2, are not required for cell division, whereas FtsZ proteins play an important role. Instead, CetZ proteins are shown to be involved in controlling archaeal cell shape dynamics. The results from inactivation studies of CetZ proteins in Haloferax volcanii suggest that CetZ1 is essential for normal swimming motility and rod-cell development. 332 -238177 cd00287 ribokinase_pfkB_like ribokinase/pfkB superfamily: Kinases that accept a wide variety of substrates, including carbohydrates and aromatic small molecules, all are phosphorylated at a hydroxyl group. The superfamily includes ribokinase, fructokinase, ketohexokinase, 2-dehydro-3-deoxygluconokinase, 1-phosphofructokinase, the minor 6-phosphofructokinase (PfkB), inosine-guanosine kinase, and adenosine kinase. Even though there is a high degree of structural conservation within this superfamily, their multimerization level varies widely, monomeric (e.g. adenosine kinase), dimeric (e.g. ribokinase), and trimeric (e.g THZ kinase). 196 -238178 cd00288 Pyruvate_Kinase Pyruvate kinase (PK): Large allosteric enzyme that regulates glycolysis through binding of the substrate, phosphoenolpyruvate, and one or more allosteric effectors. Like other allosteric enzymes, PK has a high substrate affinity R state and a low affinity T state. PK exists as several different isozymes, depending on organism and tissue type. In mammals, there are four PK isozymes: R, found in red blood cells, L, found in liver, M1, found in skeletal muscle, and M2, found in kidney, adipose tissue, and lung. PK forms a homotetramer, with each subunit containing three domains. The T state to R state transition of PK is more complex than in most allosteric enzymes, involving a concerted rotation of all 3 domains of each monomer in the homotetramer. 480 -238179 cd00290 cytochrome_b_C Cytochrome b(C-terminus)/b6/petD: Cytochrome b is a subunit of cytochrome bc1, an 11-subunit mitochondrial respiratory enzyme. Cytochrome b spans the mitochondrial membrane with 8 transmembrane helices (A-H) in eukaryotes. In plants and cyanobacteria, cytochrome b6 is analogous to eukaryote cytochrome b, containing two chains: helices A-D are encoded by the petB gene and helices E-H are encoded by the petD gene in these organisms. Cytochrome b/b6 contains two bound hemes and two ubiquinol/ubiquinone binding sites. The C-terminal domain is involved in forming the ubiquinol/ubiquinone binding sites, but not the heme binding sites. The N-terminal portion of cytochrome b, which contains both heme binding sites, is described in a separate CD. 147 -238180 cd00291 SirA_YedF_YeeD SirA, YedF, and YeeD. Two-layered alpha/beta sandwich domain. SirA (also known as UvrY, and YhhP) belongs to a family of bacterial two-component response regulators that controls secondary metabolism and virulence. The other member of this two-component system is a sensor kinase called BarA which phosphorylates SirA. A variety of microorganisms have similar proteins, all of which contain a common CPxP sequence motif in the N-terminal region. YhhP is suggested to be important for normal cell division and growth in rich nutrient medium. Moreover, despite a low primary sequence similarity, the YccP structure closely resembles the non-homologous C-terminal RNA-binding domain of E. coli translation initiation factor IF3. The signature CPxP motif serves to stabilize the N-terminal helix as part of the N-capping box and might be important in mRNA-binding. 69 -238181 cd00292 EF1B Elongation factor 1 beta (EF1B) guanine nucleotide exchange domain. EF1B catalyzes the exchange of GDP bound to the G-protein, EF1A, for GTP, an important step in the elongation cycle of the protein biosynthesis. EF1A binds to and delivers the aminoacyl tRNA to the ribosome. The guanine nucleotide exchange domain of EF1B, which is the alpha subunit in yeast, is responsible for the catalysis of this exchange reaction. 88 -238182 cd00293 USP_Like Usp: Universal stress protein family. The universal stress protein Usp is a small cytoplasmic bacterial protein whose expression is enhanced when the cell is exposed to stress agents. Usp enhances the rate of cell survival during prolonged exposure to such conditions, and may provide a general "stress endurance" activity. The crystal structure of Haemophilus influenzae Usp reveals an alpha/beta fold similar to that of the Methanococcus jannaschii MJ0577 protein, which binds ATP, athough Usp lacks ATP-binding activity. 130 -238183 cd00295 RNA_Cyclase RNA 3' phosphate cyclase domain - RNA phosphate cyclases are enzymes that catalyze the ATP-dependent conversion of 3'-phosphate at the end of RNA into 2', 3'-cyclic phosphodiester bond. The enzymes are conserved in eucaryotes, bacteria and archaea. The exact biological role of this enzyme is unknown, but it has been proposed that it is likely to function in cellular RNA metabolism and processing. RNA phosphate cyclase has been characterized in human (with at least three isozymes), and E. coli, and it seems to be taxonomically widespread. The crystal structure of RNA phospate cyclase shows that it consists of two domains. The larger domain contains three repeats of a fold originally identified in the bacterial translation initiation factor IF3. 338 -238184 cd00296 SIR2 SIR2 superfamily of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins, also known as sirtuins, are found in all eukaryotes and many archaea and prokaryotes and have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The oligomerization state of Sir2 appears to be organism-dependent, sometimes occurring as a monomer and sometimes as a multimer. Also included in this superfamily is a group of uncharacterized Sir2-like proteins which lack certain key catalytic residues and conserved zinc binding cysteines. 222 -107219 cd00298 ACD_sHsps_p23-like This domain family includes the alpha-crystallin domain (ACD) of alpha-crystallin-type small heat shock proteins (sHsps) and a similar domain found in p23-like proteins. sHsps are small stress induced proteins with monomeric masses between 12 -43 kDa, whose common feature is this ACD. sHsps are generally active as large oligomers consisting of multiple subunits, and are believed to be ATP-independent chaperones that prevent aggregation and are important in refolding in combination with other Hsps. p23 is a cochaperone of the Hsp90 chaperoning pathway. It binds Hsp90 and participates in the folding of a number of Hsp90 clients including the progesterone receptor. p23 also has a passive chaperoning activity. p23 in addition may act as the cytosolic prostaglandin E2 synthase. Included in this family is the p23-like C-terminal CHORD-SGT1 (CS) domain of suppressor of G2 allele of Skp1 (Sgt1) and the p23-like domains of human butyrate-induced transcript 1 (hB-ind1), NUD (nuclear distribution) C, Melusin, and NAD(P)H cytochrome b5 (NCB5) oxidoreductase (OR). 80 -198286 cd00299 GST_C_family C-terminal, alpha helical domain of the Glutathione S-transferase family. Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. 100 -133418 cd00300 LDH_like L-lactate dehydrogenase-like enzymes. Members of this subfamily are tetrameric NAD-dependent 2-hydroxycarboxylate dehydrogenases including LDHs, L-2-hydroxyisocaproate dehydrogenases (L-HicDH), and LDH-like malate dehydrogenases (MDH). Dehydrogenases catalyze the conversion of carbonyl compounds to alcohols or amino acids. LDHs catalyze the last step of glycolysis in which pyruvate is converted to L-lactate. Vertebrate LDHs are non-allosteric, but some bacterial LDHs are activated by an allosteric effector such as fructose-1,6-bisphosphate. L-HicDH catalyzes the conversion of a variety of 2-oxo carboxylic acids with medium-sized aliphatic or aromatic side chains. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. The LDH-like subfamily is part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 300 -133136 cd00303 retropepsin_like Retropepsins; pepsin-like aspartate proteases. The family includes pepsin-like aspartate proteases from retroviruses, retrotransposons and retroelements, as well as eukaryotic dna-damage-inducible proteins (DDIs), and bacterial aspartate peptidases. While fungal and mammalian pepsins are bilobal proteins with structurally related N and C-terminals, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 92 -238185 cd00304 RT_like RT_like: Reverse transcriptase (RT, RNA-dependent DNA polymerase)_like family. An RT gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. RTs occur in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and caulimoviruses. These elements can be divided into two major groups. One group contains retroviruses and DNA viruses whose propagation involves an RNA intermediate. They are grouped together with transposable elements containing long terminal repeats (LTRs). The other group, also called poly(A)-type retrotransposons, contain fungal mitochondrial introns and transposable elements that lack LTRs. 98 -238186 cd00305 Cu-Zn_Superoxide_Dismutase Copper/zinc superoxide dismutase (SOD). superoxide dismutases catalyse the conversion of superoxide radicals to molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the copper/zinc-binding family is one. Defects in the human SOD1 gene causes familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Cytoplasmic and periplasmic SODs exist as dimers, whereas chloroplastic and extracellular enzymes exist as tetramers. Structure supports independent functional evolution in prokaryotes (P-class) and eukaryotes (E-class) [PMID:.8176730]. 144 -173787 cd00306 Peptidases_S8_S53 Peptidase domain in the S8 and S53 families. Members of the peptidases S8 (subtilisin and kexin) and S53 (sedolisin) family include endopeptidases and exopeptidases. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. Serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of subtilisin. The serine residue here is the nucleophilic equivalent of the serine residue in the S8 family, while glutamic acid has the same role here as the histidine base. However, the aspartic acid residue that acts as an electrophile is quite different. In S53, it follows glutamic acid, while in S8 it precedes histidine. The stability of these enzymes may be enhanced by calcium; some members have been shown to bind up to 4 ions via binding sites with different affinity. There is a great diversity in the characteristics of their members: some contain disulfide bonds, some are intracellular while others are extracellular, some function at extreme temperatures, and others at high or low pH values. 241 -238187 cd00307 RuBisCO_small_like Ribulose bisphosphate carboxylase/oxygenase (Rubisco), small subunit and related proteins. Rubisco is a bifunctional enzyme catalyzes the initial steps of two opposing metabolic pathways: photosynthetic carbon fixation and the competing process of photorespiration. Rubisco Form I, present in plants and green algae, is composed of eight large and eight small subunits. The nearly identical small subunits are encoded by a family of nuclear genes. After translation, the small subunits are translocated across the chloroplast membrane, where an N-terminal signal peptide is cleaved off. While the large subunits contain the catalytic activities, it has been shown that the small subunits are important for catalysis by enhancing the catalytic rate through inducing conformational changes in the large subunits. This superfamily also contains specific proteins from cyanobacteria. CcmM plays a role in a CO2 concentrating mechanism, which cyanobacteria need to to overcome the low specificity of their Rubisco and fusions to Rubisco activase, a type of chaperone, which promotes and maintains the catalytic activity of Rubisco. CcmM contains an N-terminal carbonic anhydrase fused to four copies of the Rubisco-small subunit domain 84 -238188 cd00308 enolase_like Enolase-superfamily, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. Enolase superfamily contains different enzymes, like enolases, glutarate-, fucanate- and galactonate dehydratases, o-succinylbenzoate synthase, N-acylamino acid racemase, L-alanine-DL-glutamate epimerase, mandelate racemase, muconate lactonizing enzyme and 3-methylaspartase. 229 -238189 cd00309 chaperonin_type_I_II chaperonin families, type I and type II. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. There are 2 main chaperonin groups. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). The symmetry of type II is eight- or nine-fold and they are found in archea (thermosome), thermophilic bacteria (TF55) and in the eukaryotic cytosol (CTT). Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. 464 -349411 cd00310 ATP-synt_Fo_a_6 ATP synthase Fo complex, subunit 6 (eukaryotes) and subunit a (prokaryotes). Bacterial forms are designated as ATP synthase, Fo complex, subunit a; eukaryotic (chloroplast and mitochondrial) forms are designated as ATP synthase, Fo complex, subunit 6. The F-ATP synthases (also called FoF1-ATPases) consist of two structural domains: F1 (factor one) complex containing the soluble catalytic core, and Fo (oligomycin sensitive factor) complex containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. F-ATP synthases are primarily found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts or in the plasma membranes of bacteria. F-ATP synthase has also been found in the archaea Methanosarcina acetivorans. F-ATP synthases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. 156 -238190 cd00311 TIM Triosephosphate isomerase (TIM) is a glycolytic enzyme that catalyzes the interconversion of dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate. The reaction is very efficient and requires neither cofactors nor metal ions. TIM, usually homodimeric, but in some organisms tetrameric, is ubiqitous and conserved in function across eukaryotes, bacteria and archaea. 242 -238191 cd00312 Esterase_lipase Esterases and lipases (includes fungal lipases, cholinesterases, etc.) These enzymes act on carboxylic esters (EC: 3.1.1.-). The catalytic apparatus involves three residues (catalytic triad): a serine, a glutamate or aspartate and a histidine.These catalytic residues are responsible for the nucleophilic attack on the carbonyl carbon atom of the ester bond. In contrast with other alpha/beta hydrolase fold family members, p-nitrobenzyl esterase and acetylcholine esterase have a Glu instead of Asp at the active site carboxylate. 493 -349412 cd00313 ATP-synt_Fo_Vo_Ao_c ATP synthase, membrane-bound Fo/Vo/Ao complexes, subunit c. Subunit c of the Fo/Vo/Ao complex is the main transmembrane subunit of F-, V- or A-type family of ATP synthases with rotary motors. These ion-transporting rotary ATP synthases are composed of two linked multi-subunit complexes: the F1, V1, and A1 complexes contains three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Fo, Vo, or Ao (oligomycin sensitive) complex that forms the membrane-embedded proton pore. The F-ATP synthases (also called FoF1-ATPases) are found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts, or in the plasma membranes of bacteria. F-ATPases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. The A-ATP synthase (AoA1-ATPases) is exclusively found in archaea and function like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, F-, V-, and A-type synthases can function in both ATP synthesis and hydrolysis modes. 65 -173823 cd00314 plant_peroxidase_like Heme-dependent peroxidases similar to plant peroxidases. Along with animal peroxidases, these enzymes belong to a group of peroxidases containing a heme prosthetic group (ferriprotoporphyrin IX), which catalyzes a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. The plant peroxidase-like superfamily is found in all three kingdoms of life and carries out a variety of biosynthetic and degradative functions. Several sub-families can be identified. Class I includes intracellular peroxidases present in fungi, plants, archaea and bacteria, called catalase-peroxidases, that can exhibit both catalase and broad-spectrum peroxidase activities depending on the steady-state concentration of hydrogen peroxide. Catalase-peroxidases are typically comprised of two homologous domains that probably arose via a single gene duplication event. Class II includes ligninase and other extracellular fungal peroxidases, while class III is comprised of classic extracellular plant peroxidases, like horseradish peroxidase. 255 -238192 cd00315 Cyt_C5_DNA_methylase Cytosine-C5 specific DNA methylases; Methyl transfer reactions play an important role in many aspects of biology. Cytosine-specific DNA methylases are found both in prokaryotes and eukaryotes. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the mammalian genome. These effects include transcriptional repression via inhibition of transcription factor binding or the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. 275 -238193 cd00316 Oxidoreductase_nitrogenase The nitrogenase enzyme system catalyzes the ATP-dependent reduction of dinitrogen to ammonia. This group contains both alpha and beta subunits of component 1 of the three known genetically distinct types of nitrogenase systems: a molybdenum-dependent nitrogenase (Mo-nitrogenase), a vanadium-dependent nitrogenase (V-nitrogenase), and an iron-only nitrogenase (Fe-nitrogenase) and, both subunits of Protochlorophyllide (Pchlide) reductase and chlorophyllide (chlide) reductase. The nitrogenase systems consist of component 1 (MoFe protein, VFe protein or, FeFe protein respectively) and, component 2 (Fe protein). The most widespread and best characterized nitrogenase is the Mo-nitrogenase. MoFe is an alpha2beta2 tetramer, the alternative nitrogenases are alpha2beta2delta2 hexamers whose alpha and beta subunits are similar to the alpha and beta subunits of MoFe. For MoFe, each alphabeta pair contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein contains a single [4Fe-4S] cluster from which, electrons are transferred to the P-cluster of the MoFe and in turn, to FeMoCo at the site of substrate reduction. The V-nitrogenase requires an iron-vanadium cofactor (FeVco), the iron only-nitrogenase an iron only cofactor (FeFeco). These cofactors are analogous to the FeMoco. The V-nitrogenase has P clusters identical to those of MoFe. Pchlide reductase and chlide reductase participate in the Mg-branch of the tetrapyrrole biosynthetic pathway. Pchlide reductase catalyzes the reduction of the D-ring of Pchlide during the synthesis of chlorophylls (Chl) and bacteriochlorophylls (BChl). Chlide-a reductase catalyzes the reduction of the B-ring of Chlide-a during the synthesis of BChl-a. The Pchlide reductase NB complex is a an N2B2 heterotetramer resembling nitrogenase FeMo, N and B proteins are homologous to the FeMo alpha and beta subunits respectively. The NB complex may serve as a catalytic site for Pchlide reduction and, the ZY complex as a site of chlide reduction, similar to MoFe for nitrogen reduction. 399 -238194 cd00317 cyclophilin cyclophilin: cyclophilin-type peptidylprolyl cis- trans isomerases. This family contains eukaryotic, bacterial and archeal proteins which exhibit a peptidylprolyl cis- trans isomerases activity (PPIase, Rotamase) and in addition bind the immunosuppressive drug cyclosporin (CsA). Immunosuppression in vertebrates is believed to be the result of the cyclophilin A-cyclosporin protein drug complex binding to and inhibiting the protein-phosphatase calcineurin. PPIase is an enzyme which accelerates protein folding by catalyzing the cis-trans isomerization of the peptide bonds preceding proline residues. Cyclophilins are a diverse family in terms of function and have been implicated in protein folding processes which depend on catalytic /chaperone-like activities. This group contains human cyclophilin 40, a co-chaperone of the hsp90 chaperone system; human cyclophilin A, a chaperone in the HIV-1 infectious process and; human cyclophilin H, a component of the U4/U6 snRNP, whose isomerization or chaperoning activities may play a role in RNA splicing. 146 -238195 cd00318 Phosphoglycerate_kinase Phosphoglycerate kinase (PGK) is a monomeric enzyme which catalyzes the transfer of the high-energy phosphate group of 1,3-bisphosphoglycerate to ADP, forming ATP and 3-phosphoglycerate. This reaction represents the first of the two substrate-level phosphorylation events in the glycolytic pathway. Substrate-level phosphorylation is defined as production of ATP by a process, which is catalyzed by water-soluble enzymes in the cytosol; not involving membranes and ion gradients. 397 -238196 cd00319 Ribosomal_S12_like Ribosomal protein S12-like family; composed of prokaryotic 30S ribosomal protein S12, eukaryotic 40S ribosomal protein S23 and similar proteins. S12 and S23 are located at the interface of the large and small ribosomal subunits, adjacent to the decoding center. They play an important role in translocation during the peptide elongation step of protein synthesis. They are also involved in important RNA and protein interactions. Ribosomal protein S12 is essential for maintenance of a pretranslocation state and, together with S13, functions as a control element for the rRNA- and tRNA-driven movements of translocation. S23 interacts with domain III of the eukaryotic elongation factor 2 (eEF2), which catalyzes translocation. Mutations in S12 and S23 have been found to affect translational accuracy. Antibiotics such as streptomycin may also bind S12/S23 and cause the ribosome to misread the genetic code. 95 -238197 cd00320 cpn10 Chaperonin 10 Kd subunit (cpn10 or GroES); Cpn10 cooperates with chaperonin 60 (cpn60 or GroEL), an ATPase, to assist the folding and assembly of proteins and is found in eubacterial cytosol, as well as in the matrix of mitochondria and chloroplasts. It forms heptameric rings with a dome-like structure, forming a lid to the large cavity of the tetradecameric cpn60 cylinder and thereby tightly regulating release and binding of proteins to the cpn60 surface. 93 -238198 cd00321 SO_family_Moco Sulfite oxidase (SO) family, molybdopterin binding domain. This molybdopterin cofactor (Moco) binding domain is found in a variety of oxidoreductases, main members of this family are nitrate reductase (NR) and sulfite oxidase (SO). SO catalyzes the terminal reaction in the oxidative degradation of the sulfur-containing amino acids cysteine and methionine. Assimilatory NRs catalyze the reduction of nitrate to nitrite which is subsequently converted to NH4+ by nitrite reductase. Common features of all known members of this family are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 156 -99778 cd00322 FNR_like Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation in many organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one- electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and 2 electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). 223 -271245 cd00323 uS7 Ribosomal protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 130 -340359 cd00325 chitinase_GH19 Glycoside hydrolase family 19, chitinase domain. Chitinases are enzymes that catalyze the hydrolysis of the beta-1,4-N-acetyl-D-glucosamine linkages in chitin polymers. Glycoside hydrolase family 19 chitinases are found primarily in plants (classes I, III, and IV), but some are found in bacteria. Class I and II chitinases are similar in their catalytic domains. Class I chitinases have an N-terminal cysteine-rich, chitin-binding domain which is separated from the catalytic domain by a proline and glycine-rich hinge region. Class II chitinases lack both the chitin-binding domain and the hinge region. Class IV chitinases are similar to class I chitinases, but they are smaller in size due to certain deletions. Despite lacking any significant sequence homology with lysozymes, structural analysis reveals that family 19 chitinases, together with family 46 chitosanases, are similar to several lysozymes including those from T4-phage and from goose. The structures reveal that the different enzyme groups arose from a common ancestor glycohydrolase antecedent to the prokaryotic/eukaryotic divergence. 229 -238200 cd00326 alpha_CA Carbonic anhydrase alpha (vertebrate-like) group. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidine residues and a fourth conserved histidine plays a potential role in proton transfer. 227 -238201 cd00327 cond_enzymes Condensing enzymes; Family of enzymes that catalyze a (decarboxylating or non-decarboxylating) Claisen-like condensation reaction. Members are share strong structural similarity, and are involved in the synthesis and degradation of fatty acids, and the production of polyketides, a diverse group of natural products. 254 -163705 cd00328 catalase Catalase heme-binding enzyme. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. Most catalases exist as tetramers of 65KD subunits containing a protoheme IX group buried deep inside the structure. In eukaryotic cells, catalases are located in peroxisomes. 433 -238202 cd00329 TopoII_MutL_Trans MutL_Trans: transducer domain, having a ribosomal S5 domain 2-like fold, conserved in the C-terminal domain of type II DNA topoisomerases (Topo II) and DNA mismatch repair (MutL/MLH1/PMS2) proteins. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. The GyrB dimerizes in response to ATP binding, and is homologous to the N-terminal half of eukaryotic Topo II and the ATPase fragment of MutL. Type II DNA topoisomerases catalyze the ATP-dependent transport of one DNA duplex through another, in the process generating transient double strand breaks via covalent attachments to both DNA strands at the 5' positions. Included in this group are proteins similar to human MLH1 and PMS2. MLH1 forms a heterodimer with PMS2 which functions in meiosis and in DNA mismatch repair (MMR). Cells lacking either hMLH1 or hPMS2 have a strong mutator phenotype and display microsatellite instability (MSI). Mutation in hMLH1 accounts for a large fraction of Lynch syndrome (HNPCC) families. 107 -153075 cd00330 phosphagen_kinases Phosphagen (guanidino) kinases. Phosphagen (guanidino) kinases are enzymes that transphosphorylate a high energy phosphoguanidino compound, like phosphocreatine (PCr) in the case of creatine kinase (CK) or phosphoarginine in the case of arginine kinase, which is used as an energy-storage and -transport metabolite, to ADP, thereby creating ATP. The substrate binding site is located in the cleft between the N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. In higher eukaryotes, CK exists in tissue-specific (muscle, brain), as well as compartment-specific (mitochondrial and cytosolic) isoforms. They are either coupled to glycolysis (cytosolic form) or oxidative phosphorylation (mitochondrial form). Besides CK and AK, the most studied members of this family are also other phosphagen kinases with different substrate specificities, like glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and hypotaurocyamine kinase (HTK). The majority of bacterial phosphagen kinases appear to lack the N-terminal domain and have not been functionally characterized. 236 -238203 cd00331 IGPS Indole-3-glycerol phosphate synthase (IGPS); an enzyme in the tryptophan biosynthetic pathway, catalyzing the ring closure reaction of 1-(o-carboxyphenylamino)-1-deoxyribulose-5-phosphate (CdRP) to indole-3-glycerol phosphate (IGP), accompanied by the release of carbon dioxide and water. IGPS is active as a separate monomer in most organisms, but is also found fused to other enzymes as part of a bifunctional or multifunctional enzyme involved in tryptophan biosynthesis. 217 -176460 cd00332 PAL-HAL Phenylalanine ammonia-lyase (PAL) and histidine ammonia-lyase (HAL). PAL and HAL are members of the Lyase class I_like superfamily of enzymes that, catalyze similar beta-elimination reactions and are active as homotetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. PAL, present in plants and fungi, catalyzes the conversion of L-phenylalanine to E-cinnamic acid. HAL, found in several bacteria and animals, catalyzes the conversion of L-histidine to E-urocanic acid. Both PAL and HAL contain the cofactor 3, 5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) which is formed by autocatalytic excision/cyclization of the internal tripeptide, Ala-Ser-Gly. PAL is being explored as enzyme substitution therapy for Phenylketonuria (PKU), a disorder which involves an inability to metabolize phenylalanine. HAL failure in humans results in the disease histidinemia. 444 -238204 cd00333 MIP Major intrinsic protein (MIP) superfamily. Members of the MIP superfamily function as membrane channels that selectively transport water, small neutral molecules, and ions out of and between cells. The channel proteins share a common fold: the N-terminal cytosolic portion followed by six transmembrane helices, which might have arisen through gene duplication. On the basis of sequence similarity and functional characteristics, the superfamily can be subdivided into two major groups: water-selective channels called aquaporins (AQPs) and glycerol uptake facilitators (GlpFs). AQPs are found in all three kingdoms of life, while GlpFs have been characterized only within microorganisms. 228 -238205 cd00336 Ribosomal_L22 Ribosomal protein L22/L17e. L22 (L17 in eukaryotes) is a core protein of the large ribosomal subunit. It is the only ribosomal protein that interacts with all six domains of 23S rRNA, and is one of the proteins important for directing the proper folding and stabilizing the conformation of 23S rRNA. L22 is the largest protein contributor to the surface of the polypeptide exit channel, the tunnel through which the polypeptide product passes. L22 is also one of six proteins located at the putative translocon binding site on the exterior surface of the ribosome. 105 -238206 cd00338 Ser_Recombinase Serine Recombinase family, catalytic domain; a DNA binding domain may be present either N- or C-terminal to the catalytic domain. These enzymes perform site-specific recombination of DNA molecules by a concerted, four-strand cleavage and rejoining mechanism which involves a transient phosphoserine linkage between DNA and serine recombinase. Serine recombinases demonstrate functional versatility and include resolvases, invertases, integrases, and transposases. Resolvases and invertases (i.e. Tn3, gamma-delta, Tn5044 resolvases, Gin and Hin invertases) in this family contain a C-terminal DNA binding domain and comprise a major phylogenic group. Also included are phage- and bacterial-encoded recombinases such as phiC31 integrase, SpoIVCA excisionase, and Tn4451 TnpX transposase. These integrases and transposases have larger C-terminal domains compared to resolvases/invertases and are referred to as large serine recombinases. Also belonging to this family are proteins with N-terminal DNA binding domains similar to IS607- and IS1535-transposases from Helicobacter and Mycobacterium. 137 -238207 cd00340 GSH_Peroxidase Glutathione (GSH) peroxidase family; tetrameric selenoenzymes that catalyze the reduction of a variety of hydroperoxides including lipid peroxidases, using GSH as a specific electron donor substrate. GSH peroxidase contains one selenocysteine residue per subunit, which is involved in catalysis. Different isoenzymes are known in mammals,which are involved in protection against reactive oxygen species, redox regulation of many metabolic processes, peroxinitrite scavenging, and modulation of inflammatory processes. 152 -238208 cd00342 gram_neg_porins Porins form aqueous channels for the diffusion of small hydrophillic molecules across the outer membrane. Individual 16-strand anti-parallel beta-barrels form a central pore, and trimerizes thru mainly hydrophobic interactions at the interface. Trimers are stabilized by hytrophillic clamping of Loop L2. Loop 3 bends into the pore, creating an elliptical constriction of about 7 x 11A, large enough to allow passage of a glucose molecule without steric hindrance. Removal of the C-terminal residue (usuallly F) destabilizes the trimer and removal of the 16th beta-sheet abolishes trimerization. Unlike typical membrane proteins, porins lack long hydrophobic stretches. Short turns are found at the smooth, periplasmic end, longer irregular loops are found at the rough, extracellular end. C-terminal residue forms salt bridge with N-terminus. 329 -188629 cd00344 FBP_aldolase_I Fructose-bisphosphate aldolase class I. Fructose-bisphosphate aldolase class I. Fructose-1,6-bisphosphate aldolase is an enzyme of the glycolytic and gluconeogenic pathways found in vertebrates, plants, and bacteria. The enzyme catalyzes the cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The enzyme is a member of the class I aldolase family, which utilizes covalent catalysis through a Schiff base formed between a lysine residue of the enzyme and ketose substrates. Although structurally similar, the class II aldolases use a different mechanism and are believed to have an independent evolutionary origin. 328 -238209 cd00347 Flavin_utilizing_monoxygenases Flavin-utilizing monoxygenases 90 -100101 cd00349 Ribosomal_L11 Ribosomal protein L11. Ribosomal protein L11, together with proteins L10 and L7/L12, and 23S rRNA, form the L7/L12 stalk on the surface of the large subunit of the ribosome. The homologous eukaryotic cytoplasmic protein is also called 60S ribosomal protein L12, which is distinct from the L12 involved in the formation of the L7/L12 stalk. The C-terminal domain (CTD) of L11 is essential for binding 23S rRNA, while the N-terminal domain (NTD) contains the binding site for the antibiotics thiostrepton and micrococcin. L11 and 23S rRNA form an essential part of the GTPase-associated region (GAR). Based on differences in the relative positions of the L11 NTD and CTD during the translational cycle, L11 is proposed to play a significant role in the binding of initiation factors, elongation factors, and release factors to the ribosome. Several factors, including the class I release factors RF1 and RF2, are known to interact directly with L11. In eukaryotes, L11 has been implicated in regulating the levels of ubiquinated p53 and MDM2 in the MDM2-p53 feedback loop, which is responsible for apoptosis in response to DNA damage. In bacteria, the "stringent response" to harsh conditions allows bacteria to survive, and ribosomes that lack L11 are deficient in stringent factor stimulation. 131 -238210 cd00350 rubredoxin_like Rubredoxin_like; nonheme iron binding domain containing a [Fe(SCys)4] center. The family includes rubredoxins, a small electron transfer protein, and a slightly smaller modular rubredoxin domain present in rubrerythrin and nigerythrin and detected either N- or C-terminal to such proteins as flavin reductase, NAD(P)H-nitrite reductase, and ferredoxin-thioredoxin reductase. In rubredoxin, the iron atom is coordinated by four cysteine residues (Fe(S-Cys)4), but iron can also be replaced by cobalt, nickel or zinc and believed to be involved in electron transfer. Rubrerythrins and nigerythrins are small homodimeric proteins, generally consisting of 2 domains: a rubredoxin domain C-terminal to a non-sulfur, oxo-bridged diiron site in the N-terminal rubrerythrin domain. Rubrerythrins and nigerythrins have putative peroxide activity. 33 -238211 cd00351 TS_Pyrimidine_HMase Thymidylate synthase and pyrimidine hydroxymethylase: Thymidylate synthase (TS) and deoxycytidylate hydroxymethylase (dCMP-HMase) are homologs that catalyze analogous alkylation of C5 of pyrimidine nucleotides. Both enzymes are involved in the biosynthesis of DNA precursors and are active as homodimers. However, they exhibit distinct pyrimidine base specificities and differ in the details of their catalyzed reactions. TS is biologically ubiquitous and catalyzes the conversion of dUMP and methylene-tetrahydrofolate (CH2THF) to dTMP and dihydrofolate (DHF). It also acts as a regulator of its own expression by binding and inactivating its own RNA. Due to its key role in the de novo pathway for thymidylate synthesis and, hence, DNA synthesis, it is one of the most conserved enzymes across species and phyla. TS is a well-recognized target for anticancer chemotherapy, as well as a valuable new target against infectious diseases. Interestingly, in several protozoa, a single polypeptide chain codes for both, dihydrofolate reductase (DHFR) and thymidylate synthase (TS), forming a bifunctional enzyme (DHFR-TS), possibly through gene fusion at a single evolutionary point. DHFR-TS is also active as a dimer. Virus encoded dCMP-HMase catalyzes the reversible conversion of dCMP and CH2THF to hydroxymethyl-dCMP and THF. This family also includes dUMP hydroxymethylase, which is encoded by several bacteriophages that infect Bacillus subtilis, for their own protection against the host restriction system, and contain hydroxymethyl-dUMP instead of dTMP in their DNA. 215 -238212 cd00352 Gn_AT_II Glutamine amidotransferases class-II (GATase). The glutaminase domain catalyzes an amide nitrogen transfer from glutamine to the appropriate substrate. In this process, glutamine is hydrolyzed to glutamic acid and ammonia. This domain is related to members of the Ntn (N-terminal nucleophile) hydrolase superfamily and is found at the N-terminus of enzymes such as glucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), beta lactam synthetase (beta-LS) and glutamate synthase (GltS). GLMS catalyzes the formation of glucosamine 6-phosphate from fructose 6-phosphate and glutamine in amino sugar synthesis. GPATase catalyzes the first step in purine biosynthesis, an amide transfer from glutamine to PRPP, resulting in phosphoribosylamine, pyrophosphate and glutamate. Asparagine synthetase B synthesizes asparagine from aspartate and glutamine. Beta-LS catalyzes the formation of the beta-lactam ring in the beta-lactamase inhibitor clavulanic acid. GltS synthesizes L-glutamate from 2-oxoglutarate and L-glutamine. These enzymes are generally dimers, but GPATase also exists as a homotetramer. 220 -238213 cd00353 Ribosomal_S15p_S13e Ribosomal protein S15 (prokaryotic)_S13 (eukaryotic) binds the central domain of 16S rRNA and is required for assembly of the small ribosomal subunit and for intersubunit association, thus representing a key element in the assembly of the whole ribosome. S15 also plays an important autoregulatory role by binding and preventing its own mRNA from being translated. S15 has a predominantly alpha-helical fold that is highly structured except for the N-terminal alpha helix. 80 -238214 cd00354 FBPase Fructose-1,6-bisphosphatase, an enzyme that catalyzes the hydrolysis of fructose-1,6-biphosphate into fructose-6-phosphate and is critical in gluconeogenesis pathway. The alignment model also includes chloroplastic FBPases and sedoheptulose-1,7-biphosphatases that play a role in pentose phosphate pathway (Calvin cycle). 315 -100098 cd00355 Ribosomal_L30_like Ribosomal protein L30, which is found in eukaryotes and prokaryotes but not in archaea, is one of the smallest ribosomal proteins with a molecular mass of about 7kDa. L30 binds the 23SrRNA as well as the 5S rRNA and is one of five ribosomal proteins that mediate the interactions 5S rRNA makes with the ribosome. The eukaryotic L30 members have N- and/or C-terminal extensions not found in their prokaryotic orthologs. L30 is closely related to the ribosomal L7 protein found in eukaryotes and archaea. 53 -238215 cd00361 arom_aa_hydroxylase Biopterin-dependent aromatic amino acid hydroxylase; a family of non-heme, iron(II)-dependent enzymes that includes prokaryotic and eukaryotic phenylalanine-4-hydroxylase (PheOH), eukaryotic tyrosine hydroxylase (TyrOH) and eukaryotic tryptophan hydroxylase (TrpOH). PheOH converts L-phenylalanine to L-tyrosine, an important step in phenylalanine catabolism and neurotransmitter biosynthesis, and is linked to a severe variant of phenylketonuria in humans. TyrOH and TrpOH are involved in the biosynthesis of catecholamine and serotonin, respectively. The eukaryotic enzymes are all homotetramers. 221 -238216 cd00363 PFK Phosphofructokinase, a key regulatory enzyme in glycolysis, catalyzes the phosphorylation of fructose-6-phosphate to fructose-1,6-biphosphate. The members belong to PFK family that includes ATP- and pyrophosphate (PPi)- dependent phosphofructokinases. Some members evolved by gene duplication and thus have a large C-terminal/N-terminal extension comprising a second PFK domain. Generally, ATP-PFKs are allosteric homotetramers, and PPi-PFKs are dimeric and nonallosteric except for plant PPi-PFKs which are allosteric heterotetramers. 338 -153080 cd00365 HMG-CoA_reductase Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR). Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR) is a tightly regulated enzyme, which catalyzes the synthesis of coenzyme A and mevalonate in isoprenoid synthesis. In mammals, this is the rate limiting committed step in cholesterol biosynthesis. Bacteria, such as Pseudomonas mevalonii, which rely solely on mevalonate for their carbon source, catalyze the reverse reaction, using an NAD-dependent HMGR to deacetylate mevalonate into 3-hydroxy-3-methylglutaryl-CoA. There are two classes of HMGR: class I enzymes which are found predominantly in eukaryotes and contain N-terminal membrane regions and class II enzymes which are found primarily in prokaryotes and are soluble as they lack the membrane region. With the exception of Archaeoglobus fulgidus, most archeae are assigned to class I, based on sequence similarity of the active site, even though they lack membrane regions. Yeast and human HMGR are divergent in their N-terminal regions, but are conserved in their active site. In contrast, human and bacterial HMGR differ in their active site architecture. While the prokaryotic enzyme is a homodimer, the eukaryotic enzyme is a homotetramer. 376 -212658 cd00366 FGGY FGGY family of carbohydrate kinases. This family is predominantly composed of glycerol kinase (GK) and similar carbohydrate kinases including rhamnulokinase (RhuK), xylulokinase (XK), gluconokinase (GntK), ribulokinase (RBK), and fuculokinase (FK). These enzymes catalyze the transfer of a phosphate group, usually from ATP, to their carbohydrate substrates. The monomer of FGGY proteins contains two large domains, which are separated by a deep cleft that forms the active site. One domain is primarily involved in sugar substrate binding, and the other is mainly responsible for ATP binding. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Substrate-induced conformational changes and a divalent cation may be required for the catalytic activity. 435 -238217 cd00367 PTS-HPr_like Histidine-containing phosphocarrier protein (HPr)-like proteins. HPr is a central component of the bacterial phosphoenolpyruvate sugar phosphotransferase system (PTS). The PTS catalyses the phosphorylation of sugar substrates during their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate is transferred to HPr by enzyme I (EI). Phospho-HPr then transfers the phosphoryl group to one of several sugar-specific phosphoprotein intermediates. The conserved histidine in the N-terminus of HPr serves as an acceptor for the phosphoryl group of EI. In addition to the phosphotransferase proteins HPr and E1, this family also includes the closely related Carbon Catabolite Repressor (CCR) proteins which use the same phosphorylation mechanism and interact with transcriptional regulators to control expression of genes coding for utilization of less favored carbon sources. 77 -238218 cd00368 Molybdopterin-Binding Molybdopterin-Binding (MopB) domain of the MopB superfamily of proteins, a large, diverse, heterogeneous superfamily of enzymes that, in general, bind molybdopterin as a cofactor. The MopB domain is found in a wide variety of molybdenum- and tungsten-containing enzymes, including formate dehydrogenase-H (Fdh-H) and -N (Fdh-N), several forms of nitrate reductase (Nap, Nas, NarG), dimethylsulfoxide reductase (DMSOR), thiosulfate reductase, formylmethanofuran dehydrogenase, and arsenite oxidase. Molybdenum is present in most of these enzymes in the form of molybdopterin, a modified pterin ring with a dithiolene side chain, which is responsible for ligating the Mo. In many bacterial and archaeal species, molybdopterin is in the form of a dinucleotide, with two molybdopterin dinucleotide units per molybdenum. These proteins can function as monomers, heterodimers, or heterotrimers, depending on the protein and organism. Also included in the MopB superfamily is the eukaryotic/eubacterial protein domain family of the 75-kDa subunit/Nad11/NuoG (second domain) of respiratory complex 1/NADH-quinone oxidoreductase which is postulated to have lost an ancestral formate dehydrogenase activity and only vestigial sequence evidence remains of a molybdopterin binding site. 374 -238219 cd00371 HMA Heavy-metal-associated domain (HMA) is a conserved domain of approximately 30 amino acid residues found in a number of proteins that transport or detoxify heavy metals, for example, the CPx-type heavy metal ATPases and copper chaperones. HMA domain contains two cysteine residues that are important in binding and transfer of metal ions, such as copper, cadmium, cobalt and zinc. In the case of copper, stoichiometry of binding is one Cu+ ion per binding domain. Repeats of the HMA domain in copper chaperone has been associated with Menkes/Wilson disease due to binding of multiple copper ions. 63 -238220 cd00374 RNase_T2 Ribonuclease T2 (RNase T2) is a widespread family of secreted RNases found in every organism examined thus far. This family includes RNase Rh, RNase MC1, RNase LE, and self-incompatibility RNases (S-RNases). Plant T2 RNases are expressed during leaf senescence in order to scavenge phosphate from ribonucleotides. They are also expressed in response to wounding or pathogen invasion. S-RNases are thought to prevent self-fertilization by acting as selective cytotoxins of "self" pollen. 195 -238221 cd00375 Urease_alpha Urease alpha-subunit; Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Nickel-dependent ureases are found in bacteria, fungi and plants. Their primary role is to allow the use of external and internally generated urea as a nitrogen source. The enzyme consists of 3 subunits, alpha, beta and gamma, which can be fused and present on a single protein chain and which in turn forms multimers, mainly trimers. The large alpha subunit is the catalytic domain containing an active site with a bi-nickel center complexed by a carbamylated lysine. The beta and gamma subunits play a role in subunit association to form the higher order trimers. 567 -119340 cd00377 ICL_PEPM Members of the ICL/PEPM enzyme family catalyze either P-C or C-C bond formation/cleavage. Known members are phosphoenolpyruvate mutase (PEPM), phosphonopyruvate hydrolase (PPH), carboxyPEP mutase (CPEP mutase), oxaloacetate hydrolase (OAH), isocitrate lyase (ICL), and 2-methylisocitrate lyase (MICL). Isocitrate lyase (ICL) catalyzes the conversion of isocitrate to succinate and glyoxylate, the first committed step in the glyoxylate pathway. This carbon-conserving pathway is present in most prokaryotes, lower eukaryotes and plants, but has not been observed in vertebrates. PEP mutase (PEPM) turns phosphoenolpyruvate (PEP) into phosphonopyruvate (P-pyr), an important intermediate in the formation of organophosphonates, which function as antibiotics or play a role in pathogenesis or signaling. P-pyr can be hydrolyzed by phosphonopyruvate hydrolase (PPH) to from pyruvate and phosphate. Oxaloacetate acetylhydrolase (OAH) catalyzes the hydrolytic cleavage of oxaloacetate to form acetate and oxalate, an important pathway to produce oxalate in filamentous fungi. 2-methylisocitrate lyase (MICL) cleaves 2-methylisocitrate to pyruvate and succinate, part of the methylcitrate cycle for the alpha-oxidation of propionate. 243 -99733 cd00378 SHMT Serine-glycine hydroxymethyltransferase (SHMT). This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). SHMT carries out interconversion of serine and glycine; it catalyzes the transfer of hydroxymethyl group of N5, N10-methylene tetrahydrofolate to glycine resulting in the formation of serine and tetrahydrofolate. Both eukaryotic and prokaryotic SHMT enzymes form tight obligate homodimers; the mammalian enzyme forms a homotetramer comprising four pyridoxal phosphate-bound active sites. 402 -238222 cd00379 Ribosomal_L10_P0 Ribosomal protein L10 family; composed of the large subunit ribosomal protein called L10 in bacteria, P0 in eukaryotes, and L10e in archaea, as well as uncharacterized P0-like eukaryotic proteins. In all three kingdoms, L10 forms a tight complex with multiple copies of the small acidic protein L12(e). This complex forms a stalk structure on the large subunit of the ribosome. The N-terminal domain (NTD) of L10 interacts with L11 protein and forms the base of the L7/L12 stalk, while the extended C-terminal helix binds to two or three dimers of the NTD of L7/L12 (L7 and L12 are identical except for an acetylated N-terminus). The L7/L12 stalk is known to contain the binding site for elongation factors G and Tu (EF-G and EF-Tu, respectively); however, there is disagreement as to whether or not L10 is involved in forming the binding site. The stalk is believed to be associated with GTPase activities in protein synthesis. In a neuroblastoma cell line, L10 has been shown to interact with the SH3 domain of Src and to activate the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and the WASP-interacting protein (WIP). Some eukaryotic P0 sequences have an additional C-terminal domain homologous with acidic proteins P1 and P2. 155 -240504 cd00380 KOW KOW: an acronym for the authors' surnames (Kyrpides, Ouzounis and Woese). KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. The KOW motif contains an invariants glycine residue and comprises alternating blocks of hydrophilic and hydrophobic residues. 49 -238223 cd00381 IMPDH IMPDH: The catalytic domain of the inosine monophosphate dehydrogenase. IMPDH catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5' monophosphate (XMP). It is a rate-limiting step in the de novo synthesis of the guanine nucleotides. There is often a CBS domain inserted in the middle of this domain, which is proposed to play a regulatory role. IMPDH is a key enzyme in the regulation of cell proliferation and differentiation. It has been identified as an attractive target for developing chemotherapeutic agents. 325 -238224 cd00382 beta_CA Carbonic anhydrases (CA) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism in which the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide is followed by the regeneration of an active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. CAs are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionarily distinct families of CAs (the alpha-, beta-, and gamma-CAs) which show no significant sequence identity or structural similarity. Within the beta-CA family there are four evolutionarily distinct clades (A through D). The beta-CAs are multimeric enzymes (forming dimers,tetramers,hexamers and octamers) which are present in higher plants, algae, fungi, archaea and prokaryotes. 119 -294013 cd00383 trans_reg_C DNA-binding effector domain of two-component system response regulators. Bacteria and some eukaryotes use two-component signal transduction systems to detect and respond to changes in the environment. The systems consists of a sensor histidine kinase and a response regulator. The former autophosphorylates a histidine residue on detecting an external stimulus. The phosphate is then transferred to an invariant aspartate residue in a highly conserved receiver domain of the response regulator. Phosphorylation activates a variable effector domain of the response regulator, which triggers the cellular response. This C-terminal effector domain belongs to the winged helix-turn-helix family of transcriptional regulators and contains DNA and RNA polymerase binding sites. Several dimers or monomers bind head to tail to small tandem repeats upstream of the genes. The RNA polymerase binding sites interact with the alpha or sigma subunit of RNA polymerase. 89 -238226 cd00384 ALAD_PBGS Porphobilinogen synthase (PBGS), which is also called delta-aminolevulinic acid dehydratase (ALAD), catalyzes the condensation of two 5-aminolevulinic acid (ALA) molecules to form the pyrrole porphobilinogen (PBG), which is the second step in the biosynthesis of tetrapyrroles, such as heme, vitamin B12 and chlorophyll. This reaction involves the formation of a Schiff base link between the substrate and the enzyme. PBGSs are metalloenzymes, some of which have a second, allosteric metal binding site, beside the metal ion binding site in their active site. Although PBGS is a family of homologous enzymes, its metal ion utilization at catalytic site varies between zinc and magnesium and/or potassium. PBGS can be classified into two groups based on differences in their active site metal binding site. They either contain a cysteine-rich zinc binding site (consensus DXCXCX(Y/F)X3G(H/Q)CG) or an aspartate-rich magnesium binding site (consensus DXALDX(Y/F)X3G(H/Q)DG). The cysteine-rich zinc binding site appears more common. Most members represented by this model also have a second allosteric magnesium binding site (consensus RX~164DX~65EXXXD, missing in a eukaryotic subfamily with cysteine-rich zinc binding site). 314 -173830 cd00385 Isoprenoid_Biosyn_C1 Isoprenoid Biosynthesis enzymes, Class 1. Superfamily of trans-isoprenyl diphosphate synthases (IPPS) and class I terpene cyclases which either synthesis geranyl/farnesyl diphosphates (GPP/FPP) or longer chained products from isoprene precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), or use geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl (C20)-diphosphate as substrate. These enzymes produce a myriad of precursors for such end products as steroids, cholesterol, sesquiterpenes, heme, carotenoids, retinoids, and diterpenes; and are widely distributed among archaea, bacteria, and eukaryota.The enzymes in this superfamily share the same 'isoprenoid synthase fold' and include several subgroups. The head-to-tail (HT) IPPS catalyze the successive 1'-4 condensation of the 5-carbon IPP to the growing isoprene chain to form linear, all-trans, C10-, C15-, C20- C25-, C30-, C35-, C40-, C45-, or C50-isoprenoid diphosphates. Cyclic monoterpenes, diterpenes, and sesquiterpenes, are formed from their respective linear isoprenoid diphosphates by class I terpene cyclases. The head-to-head (HH) IPPS catalyze the successive 1'-1 condensation of 2 farnesyl or 2 geranylgeranyl isoprenoid diphosphates. Cyclization of these 30- and 40-carbon linear forms are catalyzed by class II cyclases. Both the isoprenoid chain elongation reactions and the class I terpene cyclization reactions proceed via electrophilic alkylations in which a new carbon-carbon single bond is generated through interaction between a highly reactive electron-deficient allylic carbocation and an electron-rich carbon-carbon double bond. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions located on opposite walls. These residues mediate binding of prenyl phosphates via bridging Mg2+ ions, inducing proposed conformational changes that close the active site to solvent, stabilizing reactive carbocation intermediates. Generally, the enzymes in this family exhibit an all-trans reaction pathway, an exception, is the cis-trans terpene cyclase, trichodiene synthase. Mechanistically and structurally distinct, class II terpene cyclases and cis-IPPS are not included in this CD. 243 -238227 cd00386 Heme_Cu_Oxidase_III_like Heme-copper oxidase subunit III. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which couple the reduction of molecular oxygen to water to, proton pumping across the membrane. The heme-copper oxidase superfamily is diverse in terms of electron donors, subunit composition, and heme types. This superfamily includes cytochrome c and ubiquinol oxidases. Bacterial oxidases typically contain 3 or 4 subunits in contrast to the 13 subunit bovine cytochrome c oxidase (CcO). Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunits I, II and III of ubiquinol oxidase are homologous to the corresponding subunits in CcO. This group additionally contains proteins which are fusions between subunits I and III, such as Sulfolobus acidocaldarius SoxM, a subunit of the SoxM terminal oxidase complex. It also includes NorE which has been speculated to be a subunit of nitric oxide reductase. Some archaebacterial cytochrome oxidases lack subunit III. Although not required for catalytic activity, subunit III is believed to play a role in assembly of the multimer complex. Rhodobacter CcO subunit III stabilizes the integrity of the binuclear center in subunit I. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. 183 -100102 cd00387 Ribosomal_L7_L12 Ribosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of the ribosome. The stalk base consists of a portion of the 23S rRNA and ribosomal proteins L11 and L10. An extended C-terminal helix of L10 provides the binding site for L7/L12. L7/L12 consists of two domains joined by a flexible hinge, with the helical N-terminal domain (NTD) forming pairs of homodimers that bind to the extended helix of L10. It is the only multimeric ribosomal component, with either four or six copies per ribosome that occur as two or three dimers bound to the L10 helix. L7/L12 is the only ribosomal protein that does not interact directly with rRNA, but instead has indirect interactions through L10. The globular C-terminal domains of L7/L12 are highly mobile. They are exposed to the cytoplasm and contain binding sites for other molecules. Initiation factors, elongation factors, and release factors are known to interact with the L7/L12 stalk during their GTP-dependent cycles. The binding site for the factors EF-Tu and EF-G comprises L7/L12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. Removal of L7/L12 has minimal effect on factor binding and it has been proposed that L7/L12 induces the catalytically active conformation of EF-Tu and EF-G, thereby stimulating the GTPase activity of both factors. In eukaryotes, the proteins that perform the equivalent function to L7/L12 are called P1 and P2, which do not share sequence similarity with L7/L12. However, a bacterial L7/L12 homolog is found in some eukaryotes, in mitochondria and chloroplasts. In archaea, the protein equivalent to L7/L12 is called aL12 or L12p, but it is closer in sequence to P1 and P2 than to L7/L12. 127 -238228 cd00389 microbial_RNases microbial_RNases. Ribonucleases (RNAses) cleave phosphodiester bonds in RNA and are essential for both non-specific RNA degradation and for numerous forms of RNA processing. The alignment contains fungal RNases (U2, T1, F1, Th, Pb, N1, and Ms) and bacterial RNases (barnase, binase, RNase Sa) , the majority of which are guanyl specific and fungal ribotoxins. 71 -238229 cd00390 Urease_gamma Urease gamma-subunit; Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Nickel-dependent ureases are found in bacteria, archaea, fungi and plants. Their primary role is to allow the use of external and internally-generated urea as a nitrogen source. The enzyme consists of three subunits, alpha, beta and gamma, which can exist as separate proteins or can be fused on a single protein chain. The alpha-beta-gamma heterotrimer forms multimers, mainly trimers. The large alpha subunit is the catalytic domain containing an active site with a bi-nickel center complexed by a carbamylated lysine. The beta and gamma subunits play a role in subunit association to form the higher order trimers. 96 -238230 cd00392 Ribosomal_L13 Ribosomal protein L13. Protein L13, a large ribosomal subunit protein, is one of five proteins required for an early folding intermediate of 23S rRNA in the assembly of the large subunit. L13 is situated on the bottom of the large subunit, near the polypeptide exit site. It interacts with proteins L3 and L6, and forms an extensive network of interactions with 23S rRNA. L13 has been identified as a homolog of the human breast basic conserved protein 1 (BBC1), a protein identified through its increased expression in breast cancer. L13 expression is also upregulated in a variety of human gastrointestinal cancers, suggesting it may play a role in the etiology of a variety of human malignancies. 114 -132923 cd00394 Clp_protease_like Caseinolytic protease (ClpP) is an ATP-dependent protease. Clp protease (caseinolytic protease; ClpP; endopeptidase Clp; Peptidase S14; ATP-dependent protease, ClpAP)-like enzymes are highly conserved serine proteases and belong to the ClpP/Crotonase superfamily. Included in this family are Clp proteases that are involved in a number of cellular processes such as degradation of misfolded proteins, regulation of short-lived proteins and housekeeping removal of dysfunctional proteins. They are also implicated in the control of cell growth, targeting DNA-binding protein from starved cells. The functional Clp protease is comprised of two components: a proteolytic component and one of several regulatory ATPase components, both of which are required for effective levels of protease activity in the presence of ATP. Active site consists of the triad Ser, His and Asp, preferring hydrophobic or non-polar residues at P1 or P1' positions. The protease exists as a tetradecamer made up of two heptameric rings stacked back-to-back such that the catalytic triad of each subunit is located at the interface between three monomers, thus making oligomerization essential for function. Another family included in this class of enzymes is the signal peptide peptidase A (SppA; S49) which is involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. Mutagenesis studies suggest that the catalytic center of SppA comprises a Ser-Lys dyad and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. In addition to the carboxyl-terminal protease domain that is conserved in all the S49 family members, the E. coli SppA contains an amino-terminal domain. Others, including sohB peptidase, protein C, protein 1510-N and archaeal signal peptide peptidase, do not contain the amino-terminal domain. The third family included in this hierarchy is nodulation formation efficiency D (NfeD) which is a membrane-bound Clp-class protease and only found in bacteria and archaea. Majority of the NfeD genomes have been shown to possess operons containing a homologous NfeD/stomatin gene pair, causing NfeD to be previously named stomatin operon partner protein (STOPP). NfeD homologs can be divided into two groups: long and short forms. Long-form homologs have a putative ClpP-class serine protease domain while the short form homologs do not. Downstream from the ClpP-class domain is the so-called NfeD or DUF107 domain. N-terminal region of the NfeD homolog PH1510 from Pyrococcus horikoshii has been shown to possess serine protease activity having a Ser-Lys catalytic dyad. 161 -173893 cd00395 Tyr_Trp_RS_core catalytic core domain of tyrosinyl-tRNA and tryptophanyl-tRNA synthetase. Tyrosinyl-tRNA synthetase (TyrRS)/Tryptophanyl-tRNA synthetase (TrpRS) catalytic core domain. These enzymes attach Tyr or Trp, respectively, to the appropriate tRNA. These class I enzymes are homodimers, which aminoacylate the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the class I characteristic HIGH and KMSKS motifs, which are involved in ATP binding. 273 -100027 cd00396 PurM-like AIR (aminoimidazole ribonucleotide) synthase related protein. This family includes Hydrogen expression/formation protein HypE, AIR synthases, FGAM (formylglycinamidine ribonucleotide) synthase and Selenophosphate synthetase (SelD). The N-terminal domain of AIR synthase forms the dimer interface of the protein, and is suggested as a putative ATP binding domain. 222 -271175 cd00397 DNA_BRE_C DNA breaking-rejoining enzymes, C-terminal catalytic domain. The DNA breaking-rejoining enzyme superfamily includes type IB topoisomerases and tyrosine based site-specific recombinases (integrases) that share the same fold in their catalytic domain containing conserved active site residues. The best-studied members of this diverse superfamily include Human topoisomerase I, the bacteriophage lambda integrase, the bacteriophage P1 Cre recombinase, the yeast Flp recombinase, and the bacterial XerD/C recombinases. Their overall reaction mechanism is essentially identical and involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. The enzymes differ in that topoisomerases cleave and then rejoin the same 5' and 3' termini, whereas a site-specific recombinase transfers a 5' hydroxyl generated by recombinase cleavage to a new 3' phosphate partner located in a different duplex region. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 167 -238232 cd00398 Aldolase_II Class II Aldolase and Adducin head (N-terminal) domain. Aldolases are ubiquitous enzymes catalyzing central steps of carbohydrate metabolism. Based on enzymatic mechanisms, this superfamily has been divided into two distinct classes (Class I and II). Class II enzymes are further divided into two sub-classes A and B. This family includes class II A aldolases and adducins which has not been ascribed any enzymatic function. Members of this class are primarily bacterial and eukaryotic in origin and include L-fuculose-1-phosphate, L-rhamnulose-1-phosphate aldolases and L-ribulose-5-phosphate 4-epimerases. They all share the ability to promote carbon-carbon bond cleavage and stabilize enolate intermediates using divalent cations. 209 -259843 cd00399 RNAP_largest_subunit_N Largest subunit of RNA polymerase (RNAP), N-terminal domain. This region represents the N-terminal domain of the largest subunit of RNA polymerase (RNAP). RNAP is a large multi-protein complex responsible for the synthesis of RNA. It is the principle enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei; RNAP I transcribes the ribosomal RNA precursor, RNAP II the mRNA precursor, and RNAP III the 5S and tRNA genes. A single distinct RNAP complex is found in prokaryotes and archaea, respectively, which may be responsible for the synthesis of all RNAs. Structure studies reveal that prokaryotic and eukaryotic RNAPs share a conserved crab-claw-shaped structure. The largest and the second largest subunits each make up one clamp, one jaw, and part of the cleft. All RNAPs are metalloenzymes. At least one Mg2+ ion is bound in the catalytic center. In addition, all cellular RNAPs contain several tightly bound zinc ions to different subunits that vary between RNAPs from prokaryotic to eukaryotic lineages. This domain represents the N-terminal region of the largest subunit of RNAP, and includes part of the active site. In archaea and some of the photosynthetic organisms or cellular organelle, however, this domain exists as a separate subunit. 528 -238233 cd00400 Voltage_gated_ClC CLC voltage-gated chloride channel. The ClC chloride channels catalyse the selective flow of Cl- ions across cell membranes, thereby regulating electrical excitation in skeletal muscle and the flow of salt and water across epithelial barriers. This domain is found in the halogen ions (Cl-, Br- and I-) transport proteins of the ClC family. The ClC channels are found in all three kingdoms of life and perform a variety of functions including cellular excitability regulation, cell volume regulation, membrane potential stabilization, acidification of intracellular organelles, signal transduction, transepithelial transport in animals, and the extreme acid resistance response in eubacteria. They lack any structural or sequence similarity to other known ion channels and exhibit unique properties of ion permeation and gating. Unlike cation-selective ion channels, which form oligomers containing a single pore along the axis of symmetry, the ClC channels form two-pore homodimers with one pore per subunit without axial symmetry. Although lacking the typical voltage-sensor found in cation channels, all studied ClC channels are gated (opened and closed) by transmembrane voltage. The gating is conferred by the permeating ion itself, acting as the gating charge. In addition, eukaryotic and some prokaryotic ClC channels have two additional C-terminal CBS (cystathionine beta synthase) domains of putative regulatory function. 383 -240619 cd00401 SAHH S-Adenosylhomocysteine Hydrolase, NAD-binding and catalytic domains. S-adenosyl-L-homocysteine hydrolase (SAHH, AdoHycase) catalyzes the hydrolysis of S-adenosyl-L-homocysteine (AdoHyc) to form adenosine (Ado) and homocysteine (Hcy). The equilibrium lies far on the side of AdoHyc synthesis, but in nature the removal of Ado and Hyc is sufficiently fast, so that the net reaction is in the direction of hydrolysis. Since AdoHyc is a potent inhibitor of S-adenosyl-L-methionine dependent methyltransferases, AdoHycase plays a critical role in the modulation of the activity of various methyltransferases. The enzyme forms homotetramers, with each monomer binding one molecule of NAD+. 402 -293928 cd00402 Riboflavin_synthase_like Riboflavin synthase and similar proteins. Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine (DMRL) to yield riboflavin (vitamin B12) and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine (RAADP). Riboflavin synthase is a homotrimer and the catalysis does not require any cofactors. Active sites are located between pairs of monomers, but only one active site catalyzes a reaction, the other two sites are inactive. Humans do not produce riboflavin synthase, and thus it is a good target for antimicrobial agents. This family also include lumazine protein (LumP) from bioluminescent bacteria. LumP serves as an optical transponder in bioluminescence emission. 185 -238235 cd00403 Ribosomal_L1 Ribosomal protein L1. The L1 protein, located near the E-site of the ribosome, forms part of the L1 stalk along with 23S rRNA. In bacteria and archaea, L1 functions both as a ribosomal protein that binds rRNA, and as a translation repressor that binds its own mRNA. Like several other large ribosomal subunit proteins, L1 displays RNA chaperone activity. L1 is one of the largest ribosomal proteins. It is composed of two domains that cycle between open and closed conformations via a hinge motion. The RNA-binding site of L1 is highly conserved, with both mRNA and rRNA binding the same binding site. 208 -238236 cd00404 Aconitase_swivel Aconitase swivel domain. Aconitase (aconitate hydratase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. This is the aconitase swivel domain, which undergoes swivelling conformational change in the enzyme mechanism. The aconitase family contains the following proteins: - Iron-responsive element binding protein (IRE-BP). IRE-BP is a cytosolic protein that binds to iron-responsive elements (IREs). IREs are stem-loop structures found in the 5'UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'UTR of transferrin receptor mRNA. IRE-BP also express aconitase activity. - 3-isopropylmalate dehydratase (isopropylmalate isomerase), the enzyme that catalyzes the second step in the biosynthesis of leucine. - Homoaconitase (homoaconitate hydratase), an enzyme that participates in the alpha-aminoadipate pathway of lysine biosynthesis and that converts cis-homoaconitate into homoisocitric acid. 88 -238237 cd00405 PRAI Phosphoribosylanthranilate isomerase (PRAI) catalyzes the fourth step of the tryptophan biosynthesis, the conversion of N-(5'- phosphoribosyl)-anthranilate (PRA) to 1-(o-carboxyphenylamino)- 1-deoxyribulose 5-phosphate (CdRP). Most PRAIs are monomeric, monofunctional and thermolabile, but in some thermophile organisms PRAI is dimeric for reasons of stability and in others it is fused to other components of the tryptophan biosynthesis pathway to form multifunctional enzymes. 203 -238238 cd00407 Urease_beta Urease beta-subunit; Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Nickel-dependent ureases are found in bacteria, archaea, fungi and plants. Their primary role is to allow the use of external and internally-generated urea as a nitrogen source. The enzyme consists of three subunits, alpha, beta and gamma, which can exist as separate proteins or can be fused on a single protein chain. The alpha-beta-gamma heterotrimer forms multimers, mainly trimers. The large alpha subunit is the catalytic domain containing an active site with a bi-nickel center complexed by a carbamylated lysine. The beta and gamma subunits play a role in subunit association to form the higher order trimers. 101 -188630 cd00408 DHDPS-like Dihydrodipicolinate synthase family. Dihydrodipicolinate synthase family. A member of the class I aldolases, which use an active-site lysine which stabilizes a reaction intermediate via Schiff base formation, and have TIM beta/alpha barrel fold. The dihydrodipicolinate synthase family comprises several pyruvate-dependent class I aldolases that use the same catalytic step to catalyze different reactions in different pathways and includes such proteins as N-acetylneuraminate lyase, MosA protein, 5-keto-4-deoxy-glucarate dehydratase, trans-o-hydroxybenzylidenepyruvate hydratase-aldolase, trans-2'-carboxybenzalpyruvate hydratase-aldolase, and 2-keto-3-deoxy- gluconate aldolase. The family is also referred to as the N-acetylneuraminate lyase (NAL) family. 281 -199205 cd00411 L-asparaginase_like Bacterial L-asparaginases and related enzymes. Asparaginases (amidohydrolases, E.C. 3.5.1.1) are dimeric or tetrameric enzymes that catalyze the hydrolysis of asparagine to aspartic acid and ammonia. In bacteria, there are two classes of amidohydrolases, one highly specific for asparagine and localized to the periplasm (type II L-asparaginase), and a second (asparaginase- glutaminase) present in the cytosol (type I L-asparaginase) that hydrolyzes both asparagine and glutamine with similar specificities and has a lower affinity for its substrate. Bacterial L-asparaginases (type II) are potent antileukemic agents and have been used in the treatment of acute lymphoblastic leukemia (ALL). A conserved threonine residue is thought to supply the nucleophile hydroxy-group that attacks the amide bond. Many bacterial L-asparaginases have both L-asparagine and L-glutamine hydrolysis activities, to a different degree, and some of them are annotated as asparaginase/glutaminase. This wider family also includes a subunit of an archaeal Glu-tRNA amidotransferase. 320 -238239 cd00412 pyrophosphatase Inorganic pyrophosphatase. These enzymes hydrolyze inorganic pyrophosphate (PPi) to two molecules of orthophosphates (Pi). The reaction requires bivalent cations. The enzymes in general exist as homooligomers. 155 -185683 cd00413 Glyco_hydrolase_16 glycosyl hydrolase family 16. The O-Glycosyl hydrolases are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A glycosyl hydrolase classification system based on sequence similarity has led to the definition of more than 95 different families inlcuding glycosyl hydrolase family 16. Family 16 includes lichenase, xyloglucan endotransglycosylase (XET), beta-agarase, kappa-carrageenase, endo-beta-1,3-glucanase, endo-beta-1,3-1,4-glucanase, and endo-beta-galactosidase, all of which have a conserved jelly roll fold with a deep active site channel harboring the catalytic residues. 210 -185672 cd00418 GlxRS_core catalytic core domain of glutamyl-tRNA and glutaminyl-tRNA synthetase. Glutamyl-tRNA synthetase(GluRS)/Glutaminyl-tRNA synthetase (GlnRS) cataytic core domain. These enzymes attach Glu or Gln, respectively, to the appropriate tRNA. Like other class I tRNA synthetases, they aminoacylate the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. These enzymes function as monomers. Archaea, cellular organelles, and some bacteria lack GlnRS. In these cases, the "non-discriminating" form of GluRS aminoacylates both tRNA(Glu) and tRNA(Gln) with Glu, which is converted to Gln when appropriate by a transamidation enzyme. The discriminating form of GluRS differs from GlnRS and the non-discriminating form of GluRS in their C-terminal anti-codon binding domains. 230 -238240 cd00419 Ferrochelatase_C Ferrochelatase, C-terminal domain: Ferrochelatase (protoheme ferrolyase or HemH) is the terminal enzyme of the heme biosynthetic pathway. It catalyzes the insertion of ferrous iron into the protoporphyrin IX ring yielding protoheme. This enzyme is ubiquitous in nature and widely distributed in bacteria and eukaryotes. Recently, some archaeal members have been identified. The oligomeric state of these enzymes varies depending on the presence of a dimerization motif at the C-terminus. 135 -238241 cd00421 intradiol_dioxygenase Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. This family contains catechol 1,2-dioxygenases and protocatechuate 3,4-dioxygenases which are mononuclear non-heme iron enzymes that catalyze the oxygenation of catecholates to aliphatic acids via the cleavage of aromatic rings. The members are intradiol-cleaving enzymes which break the catechol C1-C2 bond and utilize Fe3+, as opposed to the extradiol-cleaving enzymes which break the C2-C3 or C1-C6 bond and utilize Fe2+ and Mn+. Catechol 1,2-dioxygenases are mostly homodimers with one catalytic ferric ion per monomer. Protocatechuate 3,4-dioxygenases form more diverse oligomers. 146 -238242 cd00423 Pterin_binding Pterin binding enzymes. This family includes dihydropteroate synthase (DHPS) and cobalamin-dependent methyltransferases such as methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr) and methionine synthase (MetH). DHPS, a functional homodimer, catalyzes the condensation of p-aminobenzoic acid (pABA) in the de novo biosynthesis of folate, which is an essential cofactor in both nucleic acid and protein biosynthesis. Prokaryotes (and some lower eukaryotes) must synthesize folate de novo, while higher eukaryotes are able to utilize dietary folate and therefore lack DHPS. Sulfonamide drugs, which are substrate analogs of pABA, target DHPS. Cobalamin-dependent methyltransferases catalyze the transfer of a methyl group via a methyl- cob(III)amide intermediate. These include MeTr, a functional heterodimer, and the folate binding domain of MetH. 258 -176453 cd00424 PolY Y-family of DNA polymerases. Y-family DNA polymerases are a specialized subset of polymerases that facilitate translesion synthesis (TLS), a process that allows the bypass of a variety of DNA lesions. Unlike replicative polymerases, TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. The active sites of TLS polymerases are large and flexible to allow the accomodation of distorted bases. Most TLS polymerases are members of the Y-family, including Pol eta, Pol kappa/IV, Pol iota, Rev1, and Pol V, which is found exclusively in bacteria. In eukaryotes, the B-family polymerase Pol zeta also functions as a TLS polymerase. Expression of Y-family polymerases is often induced by DNA damage and is believed to be highly regulated. TLS is likely induced by the monoubiquitination of the replication clamp PCNA, which provides a scaffold for TLS polymerases to bind in order to access the lesion. Because of their high error rates, TLS polymerases are potential targets for cancer treatment and prevention. 343 -238243 cd00427 Ribosomal_L29_HIP Ribosomal L29 protein/HIP. L29 is a protein of the large ribosomal Subunit. A homolog, called heparin/heparan sulfate interacting protein (HIP), has also been identified in mammals. L29 is located on the surface of the large ribosomal subunit, where it participates in forming a protein ring that surrounds the polypeptide exit channel, providing structural support for the ribosome. L29 is involved in forming the translocon binding site, along with L19, L22, L23, L24, and L31e. In addition, L29 and L23 form the interaction site for trigger factor (TF) on the ribosomal surface, adjacent to the exit tunnel. L29 forms numerous interactions with L23 and with the 23S rRNA. In some eukaryotes, L29 is referred to as L35, which is distinct from L35 found in bacteria and some eukaryotes (primarily plastids and mitochondria). The mammalian homolog, HIP, is found on the surface of many tissues and cell lines. It is believed to play a role in cell adhesion and modulation of blood coagulation. It has also been shown to inhibit apoptosis in cancer cells. 57 -238244 cd00429 RPE Ribulose-5-phosphate 3-epimerase (RPE). This enzyme catalyses the interconversion of D-ribulose 5-phosphate (Ru5P) into D-xylulose 5-phosphate, as part of the Calvin cycle (reductive pentose phosphate pathway) in chloroplasts and in the oxidative pentose phosphate pathway. In the Calvin cycle Ru5P is phosphorylated by phosphoribulose kinase to ribulose-1,5-bisphosphate, which in turn is used by RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) to incorporate CO2 as the central step in carbohydrate synthesis. 211 -143481 cd00430 PLPDE_III_AR Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Alanine Racemase. This family includes predominantly bacterial alanine racemases (AR), some serine racemases (SerRac), and putative bifunctional enzymes containing N-terminal UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase (murF) and C-terminal AR domains. These proteins are fold type III PLP-dependent enzymes that play essential roles in peptidoglycan biosynthesis. AR catalyzes the interconversion between L- and D-alanine, which is an essential component of the peptidoglycan layer of bacterial cell walls. SerRac converts L-serine into its D-enantiomer (D-serine) for peptidoglycan synthesis. murF catalyzes the addition of D-Ala-D-Ala to UDPMurNAc-tripeptide, the final step in the synthesis of the cytoplasmic precursor of bacterial cell wall peptidoglycan. Members of this family contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. AR and other members of this family require dimer formation and the presence of the PLP cofactor for catalytic activity. Fungal ARs and eukaryotic serine racemases, which are fold types I and II PLP-dependent enzymes respectively, are excluded from this family. 367 -238245 cd00431 cysteine_hydrolases Cysteine hydrolases; This family contains amidohydrolases, like CSHase (N-carbamoylsarcosine amidohydrolase), involved in creatine metabolism and nicotinamidase, converting nicotinamide to nicotinic acid and ammonia in the pyridine nucleotide cycle. It also contains isochorismatase, an enzyme that catalyzes the conversion of isochorismate to 2,3-dihydroxybenzoate and pyruvate, via the hydrolysis of the vinyl ether bond, and other related enzymes with unknown function. 161 -238246 cd00432 Ribosomal_L18_L5e Ribosomal L18/L5e: L18 (L5e) is a ribosomal protein found in the central protuberance (CP) of the large subunit. L18 binds 5S rRNA and induces a conformational change that stimulates the binding of L5 to 5S rRNA. Association of 5S rRNA with 23S rRNA depends on the binding of L18 and L5 to 5S rRNA. L18/L5e is generally described as L18 in prokaryotes and archaea, and as L5e (or L5) in eukaryotes. In bacteria, the CP proteins L5, L18, and L25 are required for the ribosome to incorporate 5S rRNA into the large subunit, one of the last steps in ribosome assembly. In archaea, both L18 and L5 bind 5S rRNA; in eukaryotes, only the L18 homolog (L5e) binds 5S rRNA but a homolog to L5 is also identified. 103 -238247 cd00433 Peptidase_M17 Cytosol aminopeptidase family, N-terminal and catalytic domains. Family M17 contains zinc- and manganese-dependent exopeptidases ( EC 3.4.11.1), including leucine aminopeptidase. They catalyze removal of amino acids from the N-terminus of a protein and play a key role in protein degradation and in the metabolism of biologically active peptides. They do not contain HEXXH motif (which is used as one of the signature patterns to group the peptidase families) in the metal-binding site. The two associated zinc ions and the active site are entirely enclosed within the C-terminal catalytic domain in leucine aminopeptidase. The enzyme is a hexamer, with the catalytic domains clustered around the three-fold axis, and the two trimers related to one another by a two-fold rotation. The N-terminal domain is structurally similar to the ADP-ribose binding Macro domain. This family includes proteins from bacteria, archaea, animals and plants. 468 -238248 cd00435 ACBP Acyl CoA binding protein (ACBP) binds thiol esters of long fatty acids and coenzyme A in a one-to-one binding mode with high specificity and affinity. Acyl-CoAs are important intermediates in fatty lipid synthesis and fatty acid degradation and play a role in regulation of intermediary metabolism and gene regulation. The suggested role of ACBP is to act as a intracellular acyl-CoA transporter and pool former. ACBPs are present in a large group of eukaryotic species and several tissue-specific isoforms have been detected. 85 -350155 cd00436 UP_TbUP-like uridine phosphorylases similar to Trypanosoma brucei UP. Uridine phosphorylase (UP) catalyzes the reversible phosphorolysis of uracil ribosides and analogous compounds to their respective nucleobases and ribose 1-phosphate. Trypanosoma brucei UP has a high specificity for uracil-containing (deoxy)nucleosides, and may function as a dimer. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 282 -188631 cd00439 Transaldolase Transaldolase. Transaldolase. Enzymes found in the non-oxidative branch of the pentose phosphate pathway, that catalyze the reversible transfer of a dihydroxyacetone group from fructose-6-phosphate to erythrose-4-phosphate yielding sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate. They are members of the class I aldolases, who are characterized by using a Schiff-base mechanism for stabilization of the reaction intermediates. 252 -340360 cd00442 Lyz_like Lysozyme-like domains. This family contains several members, including soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, chitosanases, and pesticin. Typical members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 61 -238250 cd00443 ADA_AMPD Adenosine/AMP deaminase. Adenosine deaminases (ADAs) are present in pro- and eukaryotic organisms and catalyze the zinc dependent irreversible deamination of adenosine nucleosides to inosine nucleosides and ammonia. The eukaryotic AMP deaminase catalyzes a similar reaction leading to the hydrolytic removal of an amino group at the 6 position of the adenine nucleotide ring, a branch point in the adenylate catabolic pathway. 305 -238251 cd00445 Uricase Urate oxidase (UO, uricase) is a peroxisomal enzyme that catalyzes the oxidation of uric acid to allantoin in most fish, amphibian, and mammalian species. The enzymatic process involves catalyzing the oxidative opening of the purine ring during the purine degradation pathway. In humans and certain other primates, however, the enzyme has been lost by some unknown mechanism. Each monomer contains two instances of this domain. Its functional form is a homotetramer for most species, though there are reports that some may form heterotetramers based on a few biochemical studies. 286 -271355 cd00446 GrpE nucleotide exchange factor GrpE. GrpE is the adenine nucleotide exchange factor of DnaK (Hsp70)-type ATPases. In bacteria, the DnaK-DnaJ-GrpE (KJE) chaperone system functions at the fulcrum of protein homeostasis. GrpE participates actively in response to heat shock by preventing aggregation of stress-denatured proteins; unfolded proteins initially bind to DnaJ, the J-domain ATPase-activating protein (Hsp40 family), whereupon DnaK hydrolyzes its bound ATP, resulting in a stable complex. The GrpE dimer binds to the ATPase domain of Hsp70 catalyzing the dissociation of ADP, which enables rebinding of ATP, one step in the Hsp70 reaction cycle in protein folding. In eukaryotes, only the mitochondrial Hsp70, not the cytosolic form, is GrpE dependent. Over-expression of Hsp70 molecular chaperones is important in suppressing toxicity of aberrantly folded proteins that occur in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, as well as several polyQ-diseases such as Huntington's disease and ataxias. 136 -238253 cd00447 NusB_Sun RNA binding domain of NusB (N protein-Utilization Substance B) and Sun (also known as RrmB or Fmu) proteins. This family includes two orthologous groups exemplified by the transcription termination factor NusB and the N-terminal domain of the rRNA-specific 5-methylcytidine transferase (m5C-methyltransferase) Sun. The NusB protein plays a key role in the regulation of ribosomal RNA biosynthesis in eubacteria by modulating the efficiency of transcriptional antitermination. NusB along with other Nus factors (NusA, NusE/S10 and NusG) forms the core complex with the boxA element of the nut site of the rRNA operons. These interactions help RNA polymerase to counteract polarity during transcription of rRNA operons and allow stable antitermination. The transcription antitermination system can be appropriated by some bacteriophages such as lambda, which use the system to switch between the lysogenic and lytic modes of phage propagation. The m5C-methyltransferase Sun shares the N-terminal non-catalytic RNA-binding domain with NusB. 129 -100004 cd00448 YjgF_YER057c_UK114_family YjgF, YER057c, and UK114 belong to a large family of proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 107 -238254 cd00449 PLPDE_IV PyridoxaL 5'-Phosphate Dependent Enzymes class IV (PLPDE_IV). This D-amino acid superfamily, one of five classes of PLPDE, consists of branched-chain amino acid aminotransferases (BCAT), D-amino acid transferases (DAAT), and 4-amino-4-deoxychorismate lyases (ADCL). BCAT catalyzes the reversible transamination reaction between the L-branched-chain amino and alpha-keto acids. DAAT catalyzes the synthesis of D-glutamic acid and D-alanine, and ADCL converts 4-amino-4-deoxychorismate to p-aminobenzoate and pyruvate. Except for a few enzymes, i. e., Escherichia coli and Salmonella BCATs, which are homohexamers arranged as a double trimer, the class IV PLPDEs are homodimers. Homodimer formation is required for catalytic activity. 256 -212095 cd00451 GH38N_AMII_euk N-terminal catalytic domain of eukaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). The family corresponds to a group of eukaryotic class II alpha-mannosidases (AlphaMII), which contain Golgi alpha-mannosidases II (GMII), the major broad specificity lysosomal alpha-mannosidases (LAM, MAN2B1), the noval core-specific lysosomal alpha 1,6-mannosidases (Epman, MAN2B2), and similar proteins. GMII catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2 (GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. LAM is a broad specificity exoglycosidase hydrolyzing all known alpha 1,2-, alpha 1,3-, and alpha 1,6-mannosidic linkages from numerous high mannose type oligosaccharides. Different from LAM, Epman can efficiently cleave only the alpha 1,6-linked mannose residue from (Man)3GlcNAc, but not (Man)3(GlcNAc)2 or other larger high mannose oligosaccharides, in the core of N-linked glycans. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. 258 -188632 cd00452 KDPG_aldolase KDPG and KHG aldolase. KDPG and KHG aldolase. This family belongs to the class I adolases whose reaction mechanism involves Schiff base formation between a substrate carbonyl and lysine residue in the active site. 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, is best known for its role in the Entner-Doudoroff pathway of bacteria, where it catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. 2-keto-4-hydroxyglutarate (KHG) aldolase, which has enzymatic specificity toward glyoxylate, forming KHG in the presence of pyruvate, and is capable of regulating glyoxylate levels in the glyoxylate bypass, an alternate pathway when bacteria are grown on acetate carbon sources. 190 -238255 cd00453 FTBP_aldolase_II Fructose/tagarose-bisphosphate aldolase class II. This family includes fructose-1,6-bisphosphate (FBP) and tagarose 1,6-bisphosphate (TBP) aldolases. FBP-aldolase is homodimeric and used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. TBP-aldolase is tetrameric and produces tagarose-1,6-bisphosphate. There is an absolute requirement for a divalent metal ion, usually zinc, and in addition the enzymes are activated by monovalent cations such as Na+. Although structurally similar, the class I aldolases use a different mechanism and are believed to have an independent evolutionary origin. 340 -271265 cd00454 TrHb1_N truncated hemoglobins (TrHbs, 2/2Hb, 2/2 globins); group 1 (N). The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. They are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). Typical of the TrHb1s (N) group is a protein matrix tunnel. It includes a Mycobacterium tuberculosis TrHb1, Mt-trHbN, which is encoded by the glbN gene. Mt-trHbN is expressed during the Mycobacterium stationary phase, and plays a specific defense role against nitrosative stress. The cyanobacterium Synechococcus sp. PCC 7002 TrHb1 GlbN, is constitutively expressed, and likely also protects cells from reactive nitrogen species. 111 -238257 cd00455 nuc_hydro nuc_hydro: Nucleoside hydrolases. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. This group contains eukaryotic, bacterial and archeal proteins similar to the inosine-uridine preferring nucleoside hydrolase from Crithidia fasciculata, the xanthosine-inosine-uridine-adenosine-preferring nucleoside hydrolase RihC from Salmonella enterica serovar Typhimurium, the purine-specific inosine-adenosine-guanosine-preferring nucleoside hydrolase from Trypanosoma vivax and, pyrimidine-specific uridine-cytidine preferring nucleoside hydrolases such as URH1 from Saccharomyces cerevisiae, RihA and RihB from Escherichia coli. Nucleoside hydrolases are of interest as a target for antiprotozoan drugs as, no nucleoside hydrolase activity or genes encoding these enzymes have been detected in humans and, parasitic protozoans lack de novo purine synthesis relying on nucleoside hydrolase to scavenge purine and/or pyrimidines from the environment. 295 -176642 cd00457 PEBP PhosphatidylEthanolamine-Binding Protein (PEBP) domain. PhosphatidylEthanolamine-Binding Proteins (PEBPs) are represented in all three major phylogenetic divisions (eukaryotes, bacteria, archaea). A number of biological roles for members of the PEBP family include serine protease inhibition, membrane biogenesis, regulation of flowering plant stem architecture, and Raf-1 kinase inhibition. Although their overall structures are similar, the members of the PEBP family bind very different substrates including phospholipids, opioids, and hydrophobic odorant molecules as well as having different oligomerization states (monomer/dimer/tetramer). 159 -238258 cd00458 SugarP_isomerase SugarP_isomerase: Sugar Phosphate Isomerase family; includes type A ribose 5-phosphate isomerase (RPI_A), glucosamine-6-phosphate (GlcN6P) deaminase, and 6-phosphogluconolactonase (6PGL). RPI catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate, the first step of the non-oxidative branch of the pentose phosphate pathway. GlcN6P deaminase catalyzes the reversible conversion of GlcN6P to D-fructose-6-phosphate (Fru6P) and ammonium, the last step of the metabolic pathway of N-acetyl-D-glucosamine-6-phosphate. 6PGL converts 6-phosphoglucono-1,5-lactone to 6-phosphogluconate, the second step of the oxidative phase of the pentose phosphate pathway. 169 -132901 cd00460 RNAP_RPB11_RPB3 RPB11 and RPB3 subunits of RNA polymerase. The eukaryotic RPB11 and RPB3 subunits of RNA polymerase (RNAP), as well as their archaeal (L and D subunits) and bacterial (alpha subunit) counterparts, are involved in the assembly of RNAP, a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III, for the synthesis of ribosomal RNA precursor, mRNA precursor, and 5S and tRNA, respectively. A single distinct RNAP complex is found in prokaryotes and archaea, which may be responsible for the synthesis of all RNAs. The assembly of the two largest eukaryotic RNAP subunits that provide most of the enzyme's catalytic functions depends on the presence of RPB3/RPB11 heterodimer subunits. This is also true for the archaeal (D/L subunits) and bacterial (alpha subunit) counterparts. 86 -238259 cd00462 PTH Peptidyl-tRNA hydrolase (PTH) is a monomeric protein that cleaves the ester bond linking the nascent peptide and tRNA when peptidyl-tRNA is released prematurely from the ribosome. This ensures the recycling of peptidyl-tRNAs into tRNAs produced through abortion of translation and is essential for cell viability.This group also contains chloroplast RNA splicing 2 (CRS2), which is closely related nuclear-encoded protein required for the splicing of nine group II introns in chloroplasts. 171 -199209 cd00463 Ribosomal_L31e Eukaryotic/archaeal ribosomal protein L31. Ribosomal protein L31e, which is present in archaea and eukaryotes, binds the 23S rRNA and is one of six protein components encircling the polypeptide exit tunnel. It is a component of the eukaryotic 60S (large) ribosomal subunit, and the archaeal 50S (large) ribosomal subunit. 83 -238260 cd00464 SK Shikimate kinase (SK) is the fifth enzyme in the shikimate pathway, a seven-step biosynthetic pathway which converts erythrose-4-phosphate to chorismic acid, found in bacteria, fungi and plants. Chorismic acid is a important intermediate in the synthesis of aromatic compounds, such as aromatic amino acids, p-aminobenzoic acid, folate and ubiquinone. Shikimate kinase catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid using ATP. 154 -238261 cd00465 URO-D_CIMS_like The URO-D_CIMS_like protein superfamily includes bacterial and eukaryotic uroporphyrinogen decarboxylases (URO-D), coenzyme M methyltransferases and other putative bacterial methyltransferases, as well as cobalamine (B12) independent methionine synthases. Despite their sequence similarities, members of this family have clearly different functions. Uroporphyrinogen decarboxylase (URO-D) decarboxylates the four acetate side chains of uroporphyrinogen III (uro-III) to create coproporphyrinogen III, an important branching point of the tetrapyrrole biosynthetic pathway. The methyltransferases represented here are important for ability of methanogenic organisms to use other compounds than carbon dioxide for reduction to methane, and methionine synthases transfer a methyl group from a folate cofactor to L-homocysteine in a reaction requiring zinc. 306 -238262 cd00466 DHQase_II Dehydroquinase (DHQase), type II. Dehydroquinase (or 3-dehydroquinate dehydratase) catalyzes the reversible dehydration of 3-dehydroquinate to form 3-dehydroshikimate. This reaction is part of two metabolic pathways: the biosynthetic shikimate pathway and the catabolic quinate pathway. There are two types of DHQases, which are distinct from each other in amino acid sequence and three-dimensional structure. Type I enzymes usually catalyze the biosynthetic reaction using a syn elimination mechanism. In contrast, type II enzymes, found in the quinate pathway of fungi and in the shikimate pathway of many bacteria, are dodecameric enzymes that employ an anti elimination reaction mechanism. 140 -238263 cd00468 HIT_like HIT family: HIT (Histidine triad) proteins, named for a motif related to the sequence HxHxH/Qxx (x, a hydrophobic amino acid), are a superfamily of nucleotide hydrolases and transferases, which act on the alpha-phosphate of ribonucleotides. On the basis of sequence, substrate specificity, structure, evolution and mechanism, HIT proteins are classified in the literacture into three major branches: the Hint branch, which consists of adenosine 5' -monophosphoramide hydrolases, the Fhit branch, that consists of diadenosine polyphosphate hydrolases, and the GalT branch consisting of specific nucloside monophosphate transferases. Further sequence analysis reveals several new closely related, yet uncharacterized subgroups. 86 -238264 cd00470 PTPS 6-pyruvoyl tetrahydropterin synthase (PTPS). Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines, and amino acids, as well as formyl-tRNA. Mammalian cells are able to utilize pre-formed folates after uptake by a carrier-mediated active transport system. Most microbes and plants lack this system and must synthesize folates de novo from guanosine triphosphate. One enzyme from this pathway is PTPS which catalyzes the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin. The functional enzyme is a hexamer of identical subunits. 135 -100103 cd00472 Ribosomal_L24e_L24 Ribosomal protein L24e/L24 is a ribosomal protein found in eukaryotes (L24) and in archaea (L24e, distinct from archaeal L24). L24e/L24 is located on the surface of the large subunit, adjacent to proteins L14 and L3, and near the translation factor binding site. L24e/L24 appears to play a role in the kinetics of peptide synthesis, and may be involved in interactions between the large and small subunits, either directly or through other factors. In mouse, a deletion mutation in L24 has been identified as the cause for the belly spot and tail (Bst) mutation that results in disrupted pigmentation, somitogenesis and retinal cell fate determination. L24 may be an important protein in eukaryotic reproduction: in shrimp, L24 expression is elevated in the ovary, suggesting a role in oogenesis, and in Arabidopsis, L24 has been proposed to have a specific function in gynoecium development. No protein with sequence or structural homology to L24e/L24 has been identified in bacteria, but a functionally equivalent protein may exist. Bacterial L19 forms an interprotein beta sheet with L14 that is similar to the L24e/L14 interprotein beta sheet observed in the archaeal L24e structures. Some eukaryotic L24 proteins were initially identified as L30, and this alignment model contains several sequences called L30. 54 -275385 cd00473 bS6 Bacterial ribosomal protein S6. bS6 is one of the components of the small subunit of the prokaryotic ribosome, a ribonucleoprotein organelle that decodes the genetic information in messenger RNA and forms peptide bonds to synthesize the corresponding polypeptides. Ribosomes consist of a large and a small subunit, which assemble during the initiation stage of protein synthesis. Prokaryotic ribosomes consist of three molecules of RNA and more than 50 proteins. The small subunits of bacterial and eukaryotic ribosomes have the same overall shapes (with structural elements described as head, body, platform, beak and shoulder). The bacterial ribosomal protein S6 is important for the assembly of the central domain of the small subunit via heterodimerization with ribosomal protein S18. 91 -211317 cd00474 eIF1_SUI1_like Eukaryotic initiation factor 1 and related proteins. Members of the eIF1/SUI1 (eukaryotic initiation factor 1) family are found in eukaryotes, archaea, and some bacteria; eukaryotic members are understood to play an important role in accurate initiator codon recognition during translation initiation. eIF1 interacts with 18S rRNA in the 40S ribosomal subunit during eukaryotic translation initiation. Point mutations in the yeast eIF1 implicate the protein in maintaining accurate start-site selection but its mechanism of action is unknown. The function of non-eukaryotic family members is also unclear. 78 -259850 cd00475 Cis_IPPS Cis (Z)-Isoprenyl Diphosphate Synthases. Cis (Z)-Isoprenyl Diphosphate Synthases (cis-IPPS) catalyze the successive 1'-4 condensation of the isopentenyl diphosphate (IPP) molecule to trans,trans-farnesyl diphosphate (FPP) or to cis,trans-FPP to form long-chain polyprenyl diphosphates. A few can also catalyze the condensation of IPP to trans-geranyl diphosphate to form the short-chain cis,trans- FPP. In prokaryotes, the cis-IPPS, undecaprenyl diphosphate synthase (UPP synthase), catalyzes the formation of the carrier lipid UPP in bacterial cell wall peptidoglycan biosynthesis. Similarly, in eukaryotes, the cis-IPPS, dehydrodolichyl diphosphate (dedol-PP) synthase catalyzes the formation of the polyisoprenoid glycosyl carrier lipid dolichyl monophosphate. cis-IPPS form homodimers and are mechanistically and structurally distinct from trans-IPPS, which lack the DDXXD motifs, yet require Mg2+ for activity. 219 -133468 cd00476 SAICAR_synt 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) synthase. SAICAR synthetase (the PurC gene product) catalyzes the seventh step of the de novo biosynthesis of purine nucleotides (also reported as eighth step). It converts 5-aminoimidazole-4-carboxyribonucleotide (CAIR), ATP, and L-aspartate into 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR), ADP, and phosphate. 230 -349750 cd00477 FTHFS formyltetrahydrofolate synthetase. Formyltetrahydrofolate synthetase (FTHFS) catalyzes the ATP-dependent activation of formate ion via its addition to the N10 position of tetrahydrofolate. FTHFS is a highly expressed key enzyme in both the Wood-Ljungdahl pathway of autotrophic CO2 fixation (acetogenesis) and the glycine synthase/reductase pathways of purinolysis. The key physiological role of this enzyme in acetogens is to catalyze the formylation of tetrahydrofolate, an initial step in the reduction of carbon dioxide and other one-carbon precursors to acetate. In purinolytic organisms, the enzymatic reaction is reversed, liberating formate from 10-formyltetrahydrofolate with concurrent production of ATP. 540 -238267 cd00480 malate_synt Malate synthase catalyzes the Claisen condensation of glyoxylate and acetyl-CoA to malyl-CoA , which hydrolyzes to malate and CoA. This reaction is part of the glyoxylate cycle, which allows certain organisms, like plants and fungi, to derive their carbon requirements from two-carbon compounds, by bypassing the two carboxylation steps of the citric acid cycle. 511 -238268 cd00481 Ribosomal_L19e Ribosomal protein L19e. L19e is found in the large ribosomal subunit of eukaryotes and archaea. L19e is distinct from the ribosomal subunit L19, which is found in prokaryotes. It consists of two small globular domains connected by an extended segment. It is located toward the surface of the large subunit, with one exposed end involved in forming the intersubunit bridge with the small subunit. The other exposed end is involved in forming the translocon binding site, along with L22, L23, L24, L29, and L31e subunits. 145 -238269 cd00483 HPPK 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK). Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines, and amino acids as well as formyl-tRNA. Mammalian cells are able to utilize pre-formed folates after uptake by a carrier-mediated active transport system. Most microbes and plants lack this system and must synthesize folates de novo from guanosine triphosphate. One enzyme from this pathway is HPPK which catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). The functional enzyme is a monomer. Mammals lack many of the enzymes in the folate pathway including, HPPK. 128 -238270 cd00484 PEPCK_ATP Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. It catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to yield phosphoenolpyruvate and carbon dioxide, using a nucleotide molecule (ATP) for the phosphoryl transfer, and has a strict requirement for divalent metal ions for activity. PEPCK's separate into two phylogenetic groups based on their nucleotide substrate specificity, this model describes the ATP-dependent groups. 508 -238271 cd00487 Pep_deformylase Polypeptide or peptide deformylase; a family of metalloenzymes that catalyzes the removal of the N-terminal formyl group in a growing polypeptide chain following translation initiation during protein synthesis in prokaryotes. These enzymes utilize Fe(II) as the catalytic metal ion, which can be replaced with a nickel or cobalt ion with no loss of activity. There are two types of peptide deformylases, types I and II, which differ in structure only in the outer surface of the domain. Because these enzymes are essential only in prokaryotes (although eukaryotic gene sequences have been found), they are a target for a new class of antibacterial agents. 141 -238272 cd00488 PCD_DCoH PCD_DCoH: The bifunctional protein pterin-4alpha-carbinolamine dehydratase (PCD), also known as DCoH (dimerization cofactor of hepatocyte nuclear factor-1), is both a transcription activator and a metabolic enzyme. DCoH stimulates gene expression by associating with specific DNA binding proteins such as HNF-1alpha (hepatocyte nuclear factor-1) and Xenopus enhancer of rudimentary homologue (XERH). DCoH also catalyzes the dehydration of 4alpha- hydroxy- tetrahydrobiopterin (4alpha-OH-BH4) to quinoiddihydrobiopterin, a percursor of the phenylalanine hydroxylase cofactor BH4 (tetrahydrobiopterin). The DCoH homodimer has a saddle-shaped structure similar to that of TBP (TATA binding protein). Two DCoH proteins have been identifed in humans: DCoH1 and DCoH2. Mutations in human DCoH1 cause hyperphenylalaninemia. Loss of enzymic activity of DCoH in humans is associated with the depigmentation disorder vitiligo. DCoH1 has been reported to be overexpessed in colon cancer carcinomas and in malignant melanomas. 75 -238273 cd00489 Barstar_like Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it, thus inhibiting its potentially lethal RNase activity inside the cell. Barstar also binds and inhibits a ribonuclease called RNase Sa (produced by Streptomyces aureofaciens) which belongs to the same enzyme family as does barnase. 85 -119402 cd00490 Met_repressor_MetJ Met Repressor, MetJ. MetJ is a bacterial regulatory protein that uses S-adenosylmethionine (SAM) as a corepressor to regulate the production of Methionine. MetJ binds arrays of two to five adjacent copies of an eight base-pair 'metbox' sequence. MetJ forms sufficiently strong interactions with the sugar-phosphate backbone to accomodate sequence variation in natural operators. However, it is very sensitive to particular base changes in the operator. MetJ exists as a homodimer. 103 -238274 cd00491 4Oxalocrotonate_Tautomerase 4-Oxalocrotonate Tautomerase: Catalyzes the isomerization of unsaturated ketones. The structure is a homohexamer that is arranged as a trimer of dimers. The hexamer contains six active sites, each formed by residues from three monomers, two from one dimer and the third from a neighboring monomer. Each monomer is a beta-alpha-beta fold with two small beta strands at the C-terminus that fold back on themselves. A pair of monomers form a dimer with two-fold symmetry, consisting of a 4-stranded beta sheet with two helices on one side and two additional small beta strands at each end. The dimers are assembled around a 3-fold axis of rotation to form a hexamer, with the short beta strands from each dimer contacting the neighboring dimers. 58 -238275 cd00493 FabA_FabZ FabA/Z, beta-hydroxyacyl-acyl carrier protein (ACP)-dehydratases: One of several distinct enzyme types of the dissociative, type II, fatty acid synthase system (found in bacteria and plants) required to complete successive cycles of fatty acid elongation. The third step of the elongation cycle, the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP, is catalyzed by FabA or FabZ. FabA is bifunctional and catalyzes an additional isomerization reaction of trans-2-acyl-ACP to cis-3-acyl-ACP, an essential reaction to unsaturated fatty acid synthesis. FabZ is the primary dehydratase that participates in the elongation cycles of saturated as well as unsaturated fatty acid biosynthesis, whereas FabA is more active in the dehydration of beta-hydroxydecanoyl-ACP. The FabA structure is homodimeric with two independent active sites located at the dimer interface. 131 -270213 cd00494 PBP2_HMBS Hydroxymethylbilane synthase possesses the type 2 periplasmic binding protein fold. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, vitamin B12 and related macrocycles. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This family includes the three domains of HMBS. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 274 -198379 cd00495 Ribosomal_L25_TL5_CTC Ribosomal L25/TL5/CTC N-terminal 5S rRNA binding domain. L25 is a single-domain protein, homologous to the N-terminal domain of TL5 and CTC. CTC is a known stress protein, and proteins of this family are believed to have two functions, acting as both ribosomal and stress proteins. In Escherichia coli, cells deleted for L25 were found to be viable; however, these cells grew slowly and had impaired protein synthesis capability. In Bacillus subtilis, CTC is induced under stress conditions and located in the ribosome; it has been proposed that CTC may be necessary for accurate translation under stress conditions. Ribosomal_L25_TL5_CTC is mostly found in bacteria, with a few exceptions such as plants or stramenopiles. Due to its limited taxonomic diversity and the viability of cells deleted for L25, this protein is not believed to be necessary for ribosomal assembly. Eukaryotes contain a protein called L25, which is not homologous to bacterial L25, but rather to bacterial L23. 90 -238277 cd00496 PheRS_alpha_core Phenylalanyl-tRNA synthetase (PheRS) alpha chain catalytic core domain. PheRS belongs to class II aminoacyl-tRNA synthetases (aaRS) based upon its structure and the presence of three characteristic sequence motifs. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. While class II aaRSs generally aminoacylate the 3'-OH ribose of the appropriate tRNA, PheRS is an exception in that it attaches the amino acid at the 2'-OH group, like class I aaRSs. PheRS is an alpha-2/ beta-2 tetramer. 218 -211322 cd00497 PseudoU_synth_TruA_like Pseudouridine synthase, TruA family. This group consists of eukaryotic, bacterial and archeal pseudouridine synthases similar to Escherichia coli TruA, Saccharomyces cerevisiae Pus1p, S. cerevisiae Pus3p Caenorhabditis elegans Pus1p and human PUS1. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. S. cerevisiae PUS1 catalyzes the formation of psi34 and psi36 in the intron containing tRNAIle, psi35 in the intron containing tRNATyr, psi27 and/or psi28 in several yeast cytoplasmic tRNAs and, psi44 in U2 small nuclear RNA (U2 snRNA). The presence of the intron is required for the formation of psi 34, 35 and 36. In addition S. cerevisiae PUS1 makes psi 26, 65 and 67. C. elegans Pus1p does not modify psi44 in U2 snRNA. S. cerevisiae Pus3p makes psi38 and psi39 in tRNAs. Psi44 in U2 snRNA and, psi38 and psi39 in tRNAs are highly phylogenetically conserved. Psi 26,27,28,34,35,36,65 and 67 in tRNAs are less highly conserved. Mouse Pus1p regulates nuclear receptor activity through pseudouridylation of Steroid Receptor RNA Activator. Missense mutation in human PUS1 causes mitochondrial myopathy and sideroblastic anemia (MLASA). 215 -238278 cd00498 Hsp33 Heat shock protein 33 (Hsp33): Cytosolic protein that acts as a molecular chaperone under oxidative conditions. In normal (reducing) cytosolic conditions, four conserved Cys residues are coordinated by a Zn ion. Under oxidative stress (such as heat shock), the Cys are reversibly oxidized to disulfide bonds, which causes the chaperone activity to be turned on. Hsp33 is homodimeric in its functional form. 275 -238279 cd00501 Peptidase_C15 Pyroglutamyl peptidase (PGP) type I, also known as pyrrolidone carboxyl peptidase (pcp) type I: Enzymes responsible for cleaving pyroglutamate (pGlu) from the N-terminal end of specialized proteins. The N-terminal pGlu protects these proteins from proteolysis by other proteases until the pGlu is removed by a PGP. PGPs are cysteine proteases with a Cys-His-Glu/Asp catalytic triad. Type I PGPs are found in a wide variety of prokaryotes and eukaryotes. It is not clear whether the functional form is a monomer, a homodimer, or a homotetramer. 194 -188633 cd00502 DHQase_I Type I 3-dehydroquinase, (3-dehydroquinate dehydratase or DHQase). Type I 3-dehydroquinase, (3-dehydroquinate dehydratase or DHQase). Catalyzes the cis-dehydration of 3-dehydroquinate via a covalent imine intermediate to produce dehydroshikimate. Dehydroquinase is the third enzyme in the shikimate pathway, which is involved in the biosynthesis of aromatic amino acids. Type I DHQase exists as a homodimer. Type II 3-dehydroquinase also catalyzes the same overall reaction, but is unrelated in terms of sequence and structure, and utilizes a completely different reaction mechanism. 225 -238280 cd00503 Frataxin Frataxin is a nuclear-encoded mitochondrial protein implicated in Friedreich's ataxia (FRDA), an human autosomal recessive neurodegenerative disease; Frataxin is found in eukaryotes and in purple bacteria; lack of frataxin causes iron to accumulate in the mitochondrial matrix suggesting that frataxin is involved in mitochondrial iron homeostasis and possibly in iron transport; the domain has an alpha-beta fold consisting of two helices flanking an antiparallel beta sheet. 105 -238281 cd00504 GXGXG GXGXG domain. This domain of unknown function is found at the C-terminus of the large subunit (gltB) of glutamate synthase (GltS), in subunit C of tungsten formylmethanofuran dehydrogenase (FwdC) and in subunit C of molybdenum formylmethanofuran dehydrogenase (FmdC). It is also found in a primarily archeal group of proteins predicted to encode part of the large subunit of GltS. It is characterized by a repeated GXXGXXXG motif. GltS is a complex iron-sulfur flavoprotein that catalyzes the synthesis of L-glutamate from L-glutamine and 2-oxoglutarate. It requires the transfer of ammonia and electrons among three distinct active centers that carry out L-Gln hydrolysis, conversion of 2-oxoglutarate into L-Glu, and electron uptake from a donor. These catalytic sites occur in other domains within the protein or or encoded by separate genes, and are not present in the domain in this CD. FwdC and FmdC are reversible ion pumps that catalyze the formylation and deformylation of methanofuran in hyperthermophiles and bacteria. They require the presence of either tungstun (FwdC) or molybdenum (FmdC). The specific function of this domain also remains unidentified in the formylmethanofuran dehydrogenases. 149 -132996 cd00505 Glyco_transf_8 Members of glycosyltransferase family 8 (GT-8) are involved in lipopolysaccharide biosynthesis and glycogen synthesis. Members of this family are involved in lipopolysaccharide biosynthesis and glycogen synthesis. GT-8 comprises enzymes with a number of known activities: lipopolysaccharide galactosyltransferase, lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase, and N-acetylglucosaminyltransferase. GT-8 enzymes contains a conserved DXD motif which is essential in the coordination of a catalytic divalent cation, most commonly Mn2+. 246 -211323 cd00506 PseudoU_synth_TruB_like Pseudouridine synthase, TruB family. This group consists of eukaryotic, bacterial and archeal pseudouridine synthases similar to Escherichia coli TruB, Saccharomyces cerevisiae Pus4, M. tuberculosis TruB, S. cerevisiae Cbf5 and human dyskerin. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E. coli TruB, M. tuberculosis TruB and S. cerevisiae Pus4, make psi55 in the T loop of tRNAs. Pus4 catalyses the formation of psi55 in both cytoplasmic and mitochondrial tRNAs. Psi55 is almost universally conserved. S. cerevisiae Cbf5 and human dyskerin are nucleolar proteins that, with the help of guide RNAs, make the hundreds of psueudouridnes present in rRNA and small nuclear RNAs (snRNAs). Cbf5/Dyskerin is the catalytic subunit of eukaryotic box H/ACA small nucleolar ribonucleoprotein (snoRNP) particles. Mutations in human dyskerin cause X-linked dyskeratosis congenitas. 210 -238282 cd00508 MopB_CT_Fdh-Nap-like This CD includes formate dehydrogenases (Fdh) H and N; nitrate reductases, Nap and Nas; and other related proteins. Formate dehydrogenase H is a component of the anaerobic formate hydrogen lyase complex and catalyzes the reversible oxidation of formate to CO2 with the release of a proton and two electrons. Formate dehydrogenase N (alpha subunit) is the major electron donor to the bacterial nitrate respiratory chain and nitrate reductases, Nap and Nas, catalyze the reduction of nitrate to nitrite. This CD (MopB_CT_Fdh-Nap-like) is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 120 -238283 cd00512 MM_CoA_mutase Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM)-like family; contains proteins similar to MCM, and the large subunit of Streptomyces coenzyme B12-dependent isobutyryl-CoA mutase (ICM). MCM catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA. The reaction proceeds via radical intermediates beginning with a substrate-induced homolytic cleavage of the Co-C bond of coenzyme B12 to produce cob(II)alamin and the deoxyadenosyl radical. MCM plays an important role in the conversion of propionyl-CoA to succinyl-CoA during the degradation of propionate for the Krebs cycle. In higher animals, MCM is involved in the breakdown of odd-chain fatty acids, several amino acids, and cholesterol. Methylobacterium extorquens MCM participates in the glyoxylate regeneration pathway. In M. extorquens, MCM forms a complex with MeaB; MeaB may protect MCM from irreversible inactivation. In some bacteria, MCM is involved in the reverse metabolic reaction, the rearrangement of succinyl-CoA to methylmalonyl-CoA. Examples include Propionbacterium shermanni MCM during propionic acid fermentation, E.coli MCM in a pathway for the conversion of succinate to propionate and Streptomyces MCM in polyketide biosynthesis. P. shermanni and Streptomyces cinnamonensis MCMs are alpha/beta heterodimers, with both subunits being homologous members of this family. It has been shown for P. shermanni MCM that only the alpha subunit binds coenzyme B12 and substrates. Human MCM is a homodimer with two active sites. Mouse and E.coli MCMs are also homodimers. ICM from S. cinnamonensis is comprised of a large and a small subunit. The holoenzyme appears to be an alpha2beta2 heterotetramer with up to 2 molecules of coenzyme B12 bound. The small subunit binds coenzyme B12. ICM catalyzes the reversible rearrangement of n-butyryl-CoA to isobutyryl-CoA (intermediates in fatty acid and valine catabolism, which in S. cinnamonensis can be converted to methylmalonyl-CoA and used in polyketide synthesis). In humans, impaired activity of MCM results in methylmalonic aciduria, a disorder of propionic acid metabolism. 399 -238284 cd00513 Ribosomal_L32_L32e Ribosomal_L32_L32e: L32 is a protein from the large subunit that contains a surface-exposed globular domain and a finger-like projection that extends into the RNA core to stabilize the tertiary structure. L32 does not appear to play a role in forming the A (aminacyl), P (peptidyl) or E (exit) sites of the ribosome, but does interact with 23S rRNA, which has a "kink-turn" secondary structure motif. L32 is overexpressed in human prostate cancer and has been identified as a stably expressed housekeeping gene in macrophages of human chronic obstructive pulmonary disease (COPD) patients. In Schizosaccharomyces pombe, L32 has also been suggested to play a role as a transcriptional regulator in the nucleus. Found in archaea and eukaryotes, this protein is known as L32 in eukaryotes and L32e in archaea. 107 -238285 cd00515 HAM1 NTPase/HAM1. This family consists of the HAM1 protein and pyrophosphate-releasing xanthosine/ inosine triphosphatase. HAM1 protects the cell against mutagenesis by the base analog 6-N-hydroxylaminopurine (HAP) in E. Coli and S. cerevisiae. A Ham1-related protein from Methanococcus jannaschii is a novel NTPase that has been shown to hydrolyze nonstandard nucleotides such as XTP to XMP and ITP to IMP, but not the standard nucleotides, in the presence of Mg or Mn ions. The enzyme exists as a homodimer. The HAM1 protein may be acting as an NTPase by hydrolyzing the HAP triphosphate. 183 -238286 cd00516 PRTase_typeII Phosphoribosyltransferase (PRTase) type II; This family contains two enzymes that play an important role in NAD production by either allowing quinolinic acid (QA) , quinolinate phosphoribosyl transferase (QAPRTase), or nicotinic acid (NA), nicotinate phosphoribosyltransferase (NAPRTase), to be used in the synthesis of NAD. QAPRTase catalyses the reaction of quinolinic acid (QA) with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to produce nicotinic acid mononucleotide (NAMN), pyrophosphate and carbon dioxide, an important step in the de novo synthesis of NAD. NAPRTase catalyses a similar reaction leading to NAMN and pyrophosphate, using nicotinic acid an PPRP as substrates, used in the NAD salvage pathway. 281 -173895 cd00517 ATPS ATP-sulfurylase. ATP-sulfurylase (ATPS), also known as sulfate adenylate transferase, catalyzes the transfer of an adenylyl group from ATP to sulfate, forming adenosine 5'-phosphosulfate (APS). This reaction is generally accompanied by a further reaction, catalyzed by APS kinase, in which APS is phosphorylated to yield 3'-phospho-APS (PAPS). In some organisms the APS kinase is a separate protein, while in others it is incorporated with ATP sulfurylase in a bifunctional enzyme that catalyzes both reactions. In bifunctional proteins, the domain that performs the kinase activity can be attached at the N-terminal end of the sulfurylase unit or at the C-terminal end, depending on the organism. While the reaction is ubiquitous among organisms, the physiological role of the reaction varies. In some organisms it is used to generate APS from sulfate and ATP, while in others it proceeds in the opposite direction to generate ATP from APS and pyrophosphate. ATP sulfurylase can be a monomer, a homodimer, or a homo-oligomer, depending on the organism. ATPS belongs to a large superfamily of nucleotidyltransferases that includes pantothenate synthetase (PanC), phosphopantetheine adenylyltransferase (PPAT), and the amino-acyl tRNA synthetases. The enzymes of this family are structurally similar and share a dinucleotide-binding domain. 353 -99872 cd00518 H2MP Hydrogenase specific C-terminal endopeptidases, also called Hydrogen Maturation Proteases (H2MP). These enzymes belong to the peptidase family M52. Maturation of [FeNi] hydrogenases includes formation of the nickel metallocenter, proteolytic processing and assembly with other subunits. Hydrogenase maturation endopeptidases are responsible for the proteolytic processing, liberating a short C-terminal peptide by cleaving after a His or an Arg residue, e.g., HycI (E. coli) is involved in processing of HypE, the large subunit of hydrogenase 3. This cleavage is nickel dependent. This CD also includes such hydrogenase-processing proteins as HydD, HupW, and HoxW, as well as, proteins of the F420-reducing hydrogenase of methanogens (e.g., FrcD). Also included, is the Pyrococcus furiosus FrxA protein, a bifunctional endopeptidase/ sulfhydrogenase found in NADP-reducing hyperthermophiles.The Pyrococcus FrxA is not related to those found in Helicobacter pylori. 139 -238287 cd00519 Lipase_3 Lipase (class 3). Lipases are esterases that can hydrolyze long-chain acyl-triglycerides into di- and monoglycerides, glycerol, and free fatty acids at a water/lipid interface. A typical feature of lipases is "interfacial activation," the process of becoming active at the lipid/water interface, although several examples of lipases have been identified that do not undergo interfacial activation . The active site of a lipase contains a catalytic triad consisting of Ser - His - Asp/Glu, but unlike most serine proteases, the active site is buried inside the structure. A "lid" or "flap" covers the active site, making it inaccessible to solvent and substrates. The lid opens during the process of interfacial activation, allowing the lipid substrate access to the active site. 229 -238288 cd00520 RRF Ribosome recycling factor (RRF). Ribosome recycling factor dissociates the posttermination complex, composed of the ribosome, deacylated tRNA, and mRNA, after termination of translation. Thus ribosomes are "recycled" and ready for another round of protein synthesis. RRF is believed to bind the ribosome at the A-site in a manner that mimics tRNA, but the specific mechanisms remain unclear. RRF is essential for bacterial growth. It is not necessary for cell growth in archaea or eukaryotes, but is found in mitochondria or chloroplasts of some eukaryotic species. 179 -213981 cd00522 Hemerythrin-like Hemerythrin family. Hemerythrin (Hr) and related proteins are found in bacteria, archaea and eukaryotes. They are non-heme diiron oxygen transport proteins. In addition to oxygen transport, members are involved in cadmium fixation and host anti-bacterial defense. They have the same "four alpha helix bundle" motif and similar active site structures. Some members, like Hr, form oligomers, the octameric form being most prevalent, while others are monomeric. 103 -238289 cd00523 archeal_HJR Holliday junction resolvases (HJRs) are endonucleases that specifically resolve Holliday junction DNA intermediates during homologous recombination. HJR's occur in archaea, bacteria, and in the mitochondria of certain eukaryotes, however this CD includes only the archeal HJR's. The bacterial and archeal HJRs perform a similar function but differ in both sequence and structure. Structural similarity does however, exist between the archeal HJRs and type II restriction endonucleases, such as EcoRV, BglII, and Fok, and this similarity includes their active site configurations. 123 -238290 cd00524 SORL Superoxide reductase-like (SORL) domain; present in a family of mononuclear non-heme iron proteins that includes superoxide reductase and desulfoferrodoxin. Superoxide reductase-like proteins scavenge superoxide anion radicals as a defense mechanism against reactive oxygen species and are found in anaerobic bacteria and archeae, and microaerophilic Treponema pallidum. The SORL domain contains an active iron site, Fe[His4Cys(Glu)], which in the reduced state loses the glutamate ligand. Superoxide reductase (class II) forms a homotetramer with four Fe[His4Cys(Glu)] centers. Desulfoferrodoxin (class I) is a homodimeric protein, with each protomer comprised of two domains, the N-terminal desulforedoxin (DSRD) domain and C-terminal SORL domain. Each domain has a distinct iron center: the DSRD iron center I, Fe(S-Cys)4; and the SORL iron center II, Fe[His4Cys(Glu)]. 86 -238291 cd00525 AE_Prim_S_like AE_Prim_S_like: primase domain similar to that found in the small subunit of archaeal and eukaryotic (A/E) DNA primases. The replication machineries of A/Es are distinct from that of bacteria. Primases are DNA-dependent RNA polymerases which synthesis the short RNA primers required for DNA replication. In eukaryotes, this small catalytically active primase subunit (p50) and a larger primase subunit (p60), referred to jointly as the core primase, associate with the B subunit and the DNA polymerase alpha subunit in a complex, called Pol alpha-pri. In addition to its catalytic role in replication, eukaryotic DNA primase may play a role in coupling replication to DNA damage repair and in checkpoint control during S phase. Pfu41 and Pfu46 comprise the primase complex of the archaea Pyrococcus furiosus; these proteins have sequence identity to the eukaryotic p50 and p60 primase proteins respectively. Pfu41 preferentially uses dNTPs as substrate. Pfu46 regulates the primase activity of Pfu41. Also found in this group is the primase-polymerase (primpol) domain of replicases from archaeal plasmids including the ORF904 protein of pRN1 from Sulfolobus islandicus (pRN1 primpol). The pRN1 primpol domain exhibits DNA polymerase and primase activities; a cluster of active site residues (three acidic residues, and a histidine) is required for both these activities. The pRN1 primpol primase activity prefers dNTPs to rNTPs; however incorporation of dNTPs requires rNTP as cofactor. This group also includes the Pol domain of bacterial LigD proteins such Mycobacterium tuberculosis (Mt)LigD. MtLigD contains an N-terminal Pol domain, a central phosphoesterase module, and a C-terminal ligase domain. LigD Pol plays a role in non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB) in vivo, perhaps by filling in short 5'-overhangs with ribonucleotides; the filled in termini would be sealed by the associated LigD ligase domain. The MtLigD Pol domain is stimulated by manganese, is error-prone, and prefers adding rNTPs to dNTPs in vitro. 136 -238292 cd00527 IF6 Ribosome anti-association factor IF6 binds the large ribosomal subunit and prevents the two subunits from associating during translation initiation. IF6 comprises a family of translation factors that includes both eukaryotic (eIF6) and archeal (aIF6) members. All members of this family have a conserved pentameric fold referred to as a beta/alpha propeller. The eukaryotic IF6 members have a moderately conserved C-terminal extension which is not required for ribosomal binding, and may have an alternative function. 220 -238293 cd00528 MoaC MoaC family. Members of this family are involved in molybdenum cofactor (Moco) biosynthesis, an essential cofactor of a diverse group of redox enzymes. MoaC, a small hexameric protein, converts, together with MoaA, a guanosine derivative to the precursor Z by inserting the carbon-8 of the purine between the 2' and 3' ribose carbon atoms, which is the first of three phases of Moco biosynthesis. 136 -340812 cd00529 RuvC_like Crossover junction endodeoxyribonuclease RuvC and similar proteins. The RuvC-like family consists of bacterial RuvC, fungal Cruciform cutting endonuclease 1 (CCE1), and bacterial YqgF. RuvC and CCE1 are Holliday junction resolvases (HJRs), endonucleases that specifically resolve Holliday junction DNA intermediates during homologous recombination. RuvC is part of the RuvABC pathway in Escherichia coli and other Gram-negative bacteria that is involved in processing Holliday junctions, which are formed by the reciprocal exchange of strands between two DNA duplexes. CCE1 is a HJR specific for 4-way junctions; it is involved in the maintenance of mitochondrial DNA. Escherichia coli YqgF has been shown to act as a pre-16S rRNA nuclease, presumably as a monomer. It is involved in the processing of pre-16S rRNA during ribosome maturation. HJRs occur in archaea, bacteria, and in the mitochondria of certain fungi. RuvC and its orthologs are homodimers and display structural similarity to RNase H and Hsp70. 117 -238295 cd00530 PTE Phosphotriesterase (PTE) catalyzes the hydrolysis of organophosphate nerve agents, including the chemical warfare agents VX, soman, and sarin as well as the insecticide paraoxon. PTE exists as a homodimer with one active site per monomer. The active site is located next to a binuclear metal center, at the C-terminal end of a TIM alpha- beta barrel motif. The native enzyme contains two zinc ions at the active site however these can be replaced with other metals such as cobalt, cadmium, nickel or manganese and the enzyme remains active. 293 -238296 cd00531 NTF2_like Nuclear transport factor 2 (NTF2-like) superfamily. This family includes members of the NTF2 family, Delta-5-3-ketosteroid isomerases, Scytalone Dehydratases, and the beta subunit of Ring hydroxylating dioxygenases. This family is a classic example of divergent evolution wherein the proteins have many common structural details but diverge greatly in their function. For example, nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP and binds to both RanGDP and FxFG repeat-containing nucleoporins while Ketosteroid isomerases catalyze the isomerization of delta-5-3-ketosteroid to delta-4-3-ketosteroid, by intramolecular transfer of the C4-beta proton to the C6-beta position. While the function of the beta sub-unit of the Ring hydroxylating dioxygenases is not known, Scytalone Dehydratases catalyzes two reactions in the biosynthetic pathway that produces fungal melanin. Members of the NTF2-like superfamily are widely distributed among bacteria, archaea and eukaryotes. 124 -238297 cd00532 MGS-like MGS-like domain. This domain composes the whole protein of methylglyoxal synthetase, which catalyzes the enolization of dihydroxyacetone phosphate (DHAP) to produce methylglyoxal. The family also includes the C-terminal domain in carbamoyl phosphate synthetase (CPS) where it catalyzes the last phosphorylation of a coaboxyphosphate intermediate to form the product carbamoyl phosphate and may also play a regulatory role. This family also includes inosine monophosphate cyclohydrolase. The known structures in this family show a common phosphate binding site. 112 -238298 cd00534 DHNA_DHNTPE Dihydroneopterin aldolase (DHNA) and 7,8-dihydroneopterin triphosphate epimerase domain (DHNTPE); these enzymes have been designated folB and folX, respectively. Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines, and amino acids, as well as formyl-tRNA. Mammalian cells are able to utilize pre-formed folates after uptake by a carrier-mediated active transport system. Most microbes and plants lack this system and must synthesize folates de novo from guanosine triphosphate. One enzyme from this pathway is DHNA which catalyses the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the biosynthetic pathway of tetrahydrofolate. Though it is known that DHNTPE catalyzes the epimerization of dihydroneopterin triphosphate to dihydromonapterin triphosphate, the biological role of this enzyme is still unclear. It is hypothesized that it is not an essential protein since a folX knockout in E. coli has a normal phenotype and the fact that folX is not present in H. influenza. In addition both enzymes have been shown to be able to compensate for the other's activity albeit at slower reaction rates. The functional enzyme for both is an octamer of identical subunits. Mammals lack many of the enzymes in the folate pathway including, DHNA and DHNTPE. 118 -238299 cd00537 MTHFR Methylenetetrahydrofolate reductase (MTHFR). 5,10-Methylenetetrahydrofolate is reduced to 5-methyltetrahydrofolate by methylenetetrahydrofolate reductase, a cytoplasmic, NAD(P)-dependent enzyme. 5-methyltetrahydrofolate is utilized by methionine synthase to convert homocysteine to methionine. The enzymatic mechanism is a ping-pong bi-bi mechanism, in which NAD(P)+ release precedes the binding of methylenetetrahydrofolate and the acceptor is free FAD. The family includes the 5,10-methylenetetrahydrofolate reductase EC:1.7.99.5 from prokaryotes and methylenetetrahydrofolate reductase EC: 1.5.1.20 from eukaryotes. The bacterial enzyme is a homotetramer and NADH is the preferred reductant while the eukaryotic enzyme is a homodimer and NADPH is the preferred reductant. In humans, there are several clinically significant mutations in MTHFR that result in hyperhomocysteinemia, which is a risk factor for the development of cardiovascular disease. 274 -238300 cd00538 PA PA: Protease-associated (PA) domain. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following: i) various signal peptide peptidases including, hSPPL2a and 2b which catalyze the intramembrane proteolysis of tumor necrosis factor alpha, ii) various proteins containing a C3H2C3 RING finger including, Arabidopsis ReMembR-H2 protein and various E3 ubiquitin ligases such as human GRAIL (gene related to anergy in lymphocytes), iii) EDEM3 (ER-degradation-enhancing mannosidase-like 3 protein), iv) various plant vacuolar sorting receptors such as Pisum sativum BP-80, v) glutamate carboxypeptidase II (GCPII), vi) yeast aminopeptidase Y, vii) Vibrio metschnikovii VapT, a sodium dodecyl sulfate (SDS) resistant extracellular alkaline serine protease, viii) lactocepin (a cell envelope-associated protease from Lactobacillus paracasei subsp. paracasei NCDO 151), ix) various subtilisin-like proteases such as melon Cucumisin, and x) human TfR (transferrin receptor) 1 and 2. 126 -238301 cd00539 MCR_gamma Methyl-coenzyme M reductase (MCR) gamma subunit. MCR catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea, in which methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). MCR is a dimer of trimers, each of which consists of one alpha, one beta, and one gamma subunit, with two identical active sites containing nickel porphinoid factor 430 (F430). 246 -187726 cd00540 AAG Alkyladenine DNA glycosylase catalyzes the first step in base excision repair. Alkyladenine DNA glycosylase (AAG), also known as 3-methyladenine DNA glycosylase, catalyzes the first step in base excision repair (BER) by cleaving damaged DNA bases within double-stranded DNA to produce an abasic site. AAG bends DNA by intercalating between the base pairs, causing the damaged base to flip out of the double helix and into the enzyme active site for cleavage. Although AAG represents one of six DNA glycosylase classes, it lacks the helix-hairpin-helix active site motif associated with other BER glycosylases and is structurally distinct from them. 187 -238302 cd00541 OMPLA The outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that catalyses the hydrolysis of acylester bonds in phospholipids using calcium as a cofactor. The enzyme has a fold of transmembrane beta-barrels and is widespread among Gram-negative bacteria, both in pathogens and nonpathogens. In pathogenic bacteria such as Campylobacter coli and Helicobacter pylori OMPLA is involved in pathogenesis and virulence. In nonpathogenic bacteria the physiological function of OMPLA is less clear. The Escherichia coli enzyme is involved in the secretion of bacteriocins, antibacterial peptides that are produced in order to survive under starvation conditions. The enzyme activity of OMPLA is strictly regulated to prevent uncontrolled breakdown of the surrounding phospholipids. The activity of OMPLA can be induced by membrane perturbation and concurs with dimerization of the enzyme. 231 -238303 cd00542 Ntn_PVA Penicillin V acylase (PVA), also known as conjugated bile salt acid hydrolase (CBAH), catalyzes the hydrolysis of penicillin V to yield 6-amino penicillanic acid (6-APA), an important key intermediate of semisynthetic penicillins. PVA has an N-terminal nucleophilic cysteine, as do other members of the Ntn hydrolase family to which PVA belongs. This nucleophilic cysteine is exposed by post-translational prossessing of the PVA precursor. PVA forms a homotetramer. 303 -238304 cd00544 CobU Adenosylcobinamide kinase / adenosylcobinamide phosphate guanyltransferase (CobU). CobU is bifunctional cobalbumin biosynthesis enzymes which display adenosylcobinamide kinase and adenosylcobinamide phosphate guanyltransferase activity. This enzyme is a homotrimer with a propeller-like shape. 169 -238305 cd00545 MCH Methenyltetrahydromethanopterin (methenyl-H4MPT) cyclohydrolase (MCH). MCH is a cytoplasmic enzyme that has been identified in methanogenic archaea, sulfate- reducing archaea, and methylotrophic bacteria. It catalyzes the reversible formation of N(5), N(10)-methenyltetrahydromethanopterin (methenyl-H4MPT+) from N(5)-formyltetrahydromethanopterin (formyl- H4MPT), in the third step of the reaction to reduce CO2 to CH4. The protein functions as a homodimer or homotrimer, depending on the organism. 312 -238306 cd00546 QFR_TypeD_subunitC Quinol:fumarate reductase (QFR) Type D subfamily, 15kD hydrophobic subunit C; QFR couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, the opposite reaction to that catalyzed by the related protein, succinate:quinine oxidoreductase (SQR). QFRs oxidize low potential quinols such as menaquinol and are involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type D as they contain two transmembrane subunits (C and D) and no heme groups. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron donor (quinol). The quinone binding site resides in the transmembrane subunits. 124 -238307 cd00547 QFR_TypeD_subunitD Quinol:fumarate reductase (QFR) Type D subfamily, 13kD hydrophobic subunit D; QFR couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, the opposite reaction to that catalyzed by the related protein, succinate:quinine oxidoreductase (SQR). QFRs oxidize low potential quinols such as menaquinol and are involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type D as they contain two transmembrane subunits (C and D) and no heme groups. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron donor (quinol). The quinone binding site resides in the transmembrane subunits. 115 -349426 cd00548 NrfA-like cytochrome c nitrite reductase and similar proteins. This family contains cytochrome c nitrite reductase (also known as cytochrome c552, or NrfA) and similar proteins. The pentaheme enzyme NrfA catalyzes the electron reduction of nitrite to ammonia in the nitrogen cycle. This enzyme can also transform nitrogen monoxide and hydroxylamine, two potential bound reaction intermediates, into ammonia. It is a homodimer, with each monomer containing four classical CXXCH type heme-binding sites along with an alternative CXXCK heme-binding motif, which is important for catalysis. This family also includes octaheme nitrite reductase (TvNiR) from the haloalkaliphilic bacterium Thioalkalivibrio paradoxus which catalyzes the reduction of nitrite and hydroxylamine to ammonia as well as the reduction of sulfite to sulfide. 370 -200451 cd00551 AmyAc_family Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 260 -238308 cd00552 RaiA RaiA ("ribosome-associated inhibitor A", also known as Protein Y (PY), YfiA, and SpotY, is a stress-response protein that binds the ribosomal subunit interface and arrests translation by interfering with aminoacyl-tRNA binding to the ribosomal A site. RaiA is also thought to counteract miscoding at the A site thus reducing translation errors. The RaiA fold structurally resembles the double-stranded RNA-binding domain (dsRBD). 93 -238309 cd00553 NAD_synthase NAD+ synthase is a homodimer, which catalyzes the final step in de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis, an amide transfer from either ammonia or glutamine to nicotinic acid adenine dinucleotide (NaAD). The conversion of NaAD to NAD+ occurs via an NAD-adenylate intermediate and requires ATP and Mg2+. The intemediate is subsequently cleaved into NAD+ and AMP. In many prokaryotes, such as E. coli , NAD synthetase consists of a single domain and is strictly ammonia dependent. In contrast, eukaryotes and other prokaryotes have an additional N-terminal amidohydrolase domain that prefer glutamine, Interestingly, NAD+ synthases in these prokaryotes, can also utilize ammonia as an amide source . 248 -100025 cd00554 MECDP_synthase MECDP_synthase (2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase), encoded by the ispF gene, catalyzes the formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) in the non-mevalonate deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. This pathway is present in bacteria, plants and some protozoa but is distinct from that used by mammals and Archaea. MECDP_synthase forms a homotrimer, carrying three active sites, each of which is formed in a cleft between pairs of subunits. 153 -238310 cd00555 Maf Nucleotide binding protein Maf. Maf has been implicated in inhibition of septum formation in eukaryotes, bacteria and archaea, but homologs in B.subtilis and S.cerevisiae are nonessential for cell division. Maf has been predicted to be a nucleotide- or nucleic acid-binding protein with structural similarity to the hypoxanthine/xanthine NTP pyrophosphatase Ham1 from Methanococcus jannaschii, RNase H from Escherichia coli, and some other nucleotide or RNA-binding proteins. 180 -238311 cd00556 Thioesterase_II Thioesterase II (TEII) is thought to regenerate misprimed nonribosomal peptide synthetases (NRPSs) as well as modular polyketide synthases (PKSs) by hydrolyzing acetyl groups bound to the peptidyl carrier protein (PCP) and acyl carrier protein (ACP) domains, respectively. TEII has two tandem asymmetric hot dog folds that are structurally similar to one found in PaaI thioesterase, 4-hydroxybenzoyl-CoA thioesterase (4HBT) and beta-hydroxydecanoyl-ACP dehydratase and thus, the TEII monomer is equivalent to the homodimeric form of the latter three enzymes. Human TEII is expressed in T cells and has been shown to bind the product of the HIV-1 Nef gene. 99 -238312 cd00557 Translocase_SecB Preprotein translocase subunit SecB. SecB is a cytoplasmic component of the multisubunit membrane-bound enzyme termed Sec protein translocase, which is the main constituent of the General Secretory (type II) Pathway involved in translocation of nascent polypeptides across the cytoplasmic membrane. SecB has been shown to function as export-specific molecular chaperone that selectively binds preproteins, maintains them in a translocation competent state and delivers them to SecA, the membrane-bound ATPase, that drives the translocation reaction. In solution, SecB exists as homotetramer, which is organized as a dimer of dimers. 131 -238313 cd00559 Cyanase_C Cyanase C-terminal domain. Cyanase (Cyanate lyase) is responsible for the hydrolysis of cyanate. It catalyzes the reaction of cyanate with bicarbonate to produce ammonia and carbon dioxide. This allows organisms that possess the enzyme to overcome the toxicity of environmental cyanate and to use cyanate as a source of nitrogen for growth. This enzyme is a homodecamer, formed by five dimers. Each monomer is composed of two domains, an N-terminal helix-turn-helix and this structurally unique C-terminal domain. 69 -185673 cd00560 PanC Pantoate-beta-alanine ligase. PanC Pantoate-beta-alanine ligase, also known as pantothenate synthase, catalyzes the formation of pantothenate from pantoate and alanine. PanC belongs to a large superfamily of nucleotidyltransferases that includes , ATP sulfurylase (ATPS), phosphopantetheine adenylyltransferase (PPAT), and the amino-acyl tRNA synthetases. The enzymes of this family are structurally similar and share a dinucleotide-binding domain. 277 -238314 cd00561 CobA_CobO_BtuR ATP:corrinoid adenosyltransferase BtuR/CobO/CobP. This family consists of the BtuR, CobO, CobP proteins all of which are Cob(I)alamin (vitamin B12) adenosyltransferase, which is involved in cobalamin (vitamin B12) biosynthesis. This enzyme is a homodimer, which catalyzes the adenosylation reaction: ATP + cob(I)alamin + H2O <=> phosphate + diphosphate + adenosylcobalamin. 159 -238315 cd00562 NifX_NifB This CD represents a family of iron-molybdenum cluster-binding proteins that includes NifB, NifX, and NifY, all of which are involved in the synthesis of an iron-molybdenum cofactor (FeMo-co) that binds the active site of the dinitrogenase enzyme. This domain is a predicted small-molecule-binding domain (SMBD) with an alpha/beta fold that is present either as a stand-alone domain (e.g. NifX and NifY) or fused to another conserved domain (e.g. NifB) however, its function is still undetermined.The SCOP database suggests that this domain is most similar to structures within the ribonuclease H superfamily. This conserved domain is represented in two of the three major divisions of life (bacteria and archaea). 102 -238316 cd00563 Dtyr_deacylase D-Tyrosyl-tRNAtyr deacylases; a class of tRNA-dependent hydrolases which are capable of hydrolyzing the ester bond of D-Tyrosyl-tRNA reducing the level of cellular D-Tyrosine while recycling the peptidyl-tRNA; found in bacteria and in eukaryotes but not in archea; beta barrel-like fold structure; forms homodimers in which two surface cavities serve as the active site for tRNA binding 145 -238317 cd00564 TMP_TenI Thiamine monophosphate synthase (TMP synthase)/TenI. TMP synthase catalyzes an important step in the thiamine biosynthesis pathway, the substitution of the pyrophosphate of 2-methyl-4-amino-5- hydroxymethylpyrimidine pyrophosphate by 4-methyl-5- (beta-hydroxyethyl) thiazole phosphate to yield thiamine phosphate. TenI is a enzymatically inactive regulatory protein involved in the regulation of several extracellular enzymes. This superfamily also contains other enzymatically inactive proteins with unknown functions. 196 -340451 cd00565 Ubl_ThiS ubiquitin-like (Ubl) domain found in sulfur carrier protein ThiS. ThiS, also termed Thiamine biosynthesis protein (ThiaminS), is a sulfur carrier protein involved in thiamin biosynthesis in prokaryotes. It has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub), and is activated in an ATP-dependent manner by sulfurtransferases, similar to the activation mechanism of Ub-activating enzyme E1. ThiS has common evolutionary origin with Ub-related protein modifiers in eukaryotes, a beta-grasp fold as Ub, and is closely related to proteins MoaD and Urm1. 64 -173838 cd00567 ACAD Acyl-CoA dehydrogenase. Both mitochondrial acyl-CoA dehydrogenases (ACAD) and peroxisomal acyl-CoA oxidases (AXO) catalyze the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of ACAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. In contrast, AXO catalyzes a different oxidative half-reaction, in which the reduced FAD is reoxidized by molecular oxygen. The ACAD family includes the eukaryotic beta-oxidation enzymes, short (SCAD), medium (MCAD), long (LCAD) and very-long (VLCAD) chain acyl-CoA dehydrogenases. These enzymes all share high sequence similarity, but differ in their substrate specificities. The ACAD family also includes amino acid catabolism enzymes such as Isovaleryl-CoA dehydrogenase (IVD), short/branched chain acyl-CoA dehydrogenases(SBCAD), Isobutyryl-CoA dehydrogenase (IBDH), glutaryl-CoA deydrogenase (GCD) and Crotonobetainyl-CoA dehydrogenase. The mitochondrial ACAD's are generally homotetramers, except for VLCAD, which is a homodimer. Related enzymes include the SOS adaptive reponse proten aidB, Naphthocyclinone hydroxylase (NcnH), and and Dibenzothiophene (DBT) desulfurization enzyme C (DszC) 327 -238318 cd00568 TPP_enzymes Thiamine pyrophosphate (TPP) enzyme family, TPP-binding module; found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. These enzymes include, among others, the E1 components of the pyruvate, the acetoin and the branched chain alpha-keto acid dehydrogenase complexes. 168 -259851 cd00569 HTH_Hin_like Helix-turn-helix domain of Hin and related proteins. This domain model summarizes a family of DNA-binding domains unique to bacteria and represented by the Hin protein of Salmonella. The basic HTH domain is a simple fold comprised of three core helices that form a right-handed helical bundle. The principal DNA-protein interface is formed by the third helix, the recognition helix, inserting itself into the major groove of the DNA. A diverse array of HTH domains participate in a variety of functions that depend on their DNA-binding properties. HTH_Hin represents one of the simplest versions of the HTH domains; the characterization of homologous relationships between various sequence-diverse HTH domain families remains difficult. The Hin recombinase induces the site-specific inversion of a chromosomal DNA segment containing a promoter, which controls the alternate expression of two genes by reversibly switching orientation. The Hin recombinase consists of a single polypeptide chain containing a C-terminal DNA-binding domain (HTH_Hin) and a catalytic domain. 42 -238319 cd00570 GST_N_family Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A. 71 -238320 cd00571 UreE UreE urease accessory protein. UreE is a metallochaperone assisting the insertion of a Ni2+ ion in the active site of urease, an important step in the in vivo assembly of urease, an enzyme that hydrolyses urea into ammonia and carbamic acid. The C-terminal region of UreE contains a histidine rich nickel binding site. 136 -238321 cd00575 NOS_oxygenase Nitric oxide synthase (NOS) produces nitric oxide (NO) by catalyzing a five-electron heme-based oxidation of a guanidine nitrogen of L-arginine to L-citrulline via two successive monooxygenation reactions producing N(omega)-hydroxy-L-arginine (NHA) as an intermediate. In mammals, there are three distinct NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-2) and endothelial (eNOS or NOS-3) . Nitric oxide synthases are homodimers. In eukaryotes, each monomer has an N-terminal oxygenase domain which binds to the substrate L-Arg, zinc, and to the cofactors heme and 5.6.7.8-(6R)-tetrahydrobiopterin (BH4) . Eukaryotic NOSs also have a C-terminal electron supplying reductase region, which is homologous to cytochrome P450 reductase and binds NADH, FAD and FMN. While prokaryotes can produce NO as a byproduct of denitrification, using a completely different set of enzymes than NOS, a few prokaryotes also have a NOS which consists solely of the NOS oxygenase domain. Prokaryotic NOS binds to the substrate L-Arg, zinc, and to the cofactors heme and tetrahydrofolate. 356 -153083 cd00576 RNR_PFL Ribonucleotide reductase and Pyruvate formate lyase. Ribonucleotide reductase (RNR) and pyruvate formate lyase (PFL) are believed to have diverged from a common ancestor. They have a structurally similar ten-stranded alpha-beta barrel domain that hosts the active site, and are radical enzymes. RNRs are found in all organisms and provide the only mechanism by which nucleotides are converted to deoxynucleotides. RNRs are separated into three classes based on their metallocofactor usage. Class I RNRs use a diiron-tyrosyl radical while Class II RNRs use coenzyme B12 (adenosylcobalamin, AdoCbl). Class III RNRs use an FeS cluster and S-adenosylmethionine to generate a glycyl radical. PFL, an essential enzyme in anaerobic bacteria, catalyzes the conversion of pyruvate and CoA to acteylCoA and formate in a mechanism that uses a glycyl radical. 401 -238322 cd00577 PCNA Proliferating Cell Nuclear Antigen (PCNA) domain found in eukaryotes and archaea. These polymerase processivity factors play a role in DNA replication and repair. PCNA encircles duplex DNA in its central cavity, providing a DNA-bound platform for the attachment of the polymerase. The trimeric PCNA ring is structurally similar to the dimeric ring formed by the DNA polymerase processivity factors in bacteria (beta subunit DNA polymerase III holoenzyme) and in bacteriophages (catalytic subunits in T4 and RB69). This structural correspondence further substantiates the mechanistic connection between eukaryotic and prokaryotic DNA replication that has been suggested on biochemical grounds. PCNA is also involved with proteins involved in cell cycle processes such as DNA repair and apoptosis. Many of these proteins contain a highly conserved motif known as the PIP-box (PCNA interacting protein box) which contains the sequence Qxx[LIM]xxF[FY]. 248 -238323 cd00578 L-fuc_L-ara-isomerases L-fucose isomerase (FucIase) and L-arabinose isomerase (AI) family; composed of FucIase, AI and similar proteins. FucIase converts L-fucose, an aldohexose, to its ketose form, which prepares it for aldol cleavage (similar to the isomerization of glucose in glycolysis). L-fucose (or 6-deoxy-L-galactose) is found in various oligo- and polysaccharides in mammals, bacteria and plants. AI catalyzes the isomerization of L-arabinose to L-ribulose, the first reaction in its conversion to D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway, which allows L-arabinose to be used as a carbon source. AI can also convert D-galactose to D-tagatose at elevated temperatures in the presence of divalent metal ions. D-tagatose, rarely found in nature, is of commercial interest as a low-calorie sugar substitute. 452 -238324 cd00580 CHMI 5-carboxymethyl-2-hydroxymuconate isomerase (CHMI) is a trimeric enzyme catalyzing the isomerization of the unsaturated ketone 5-(carboxymethyl)-2-hydroxymuconate to 5-(carboxymethyl)-2-oxo-3-hexene-1,6-dionate. This is one step in the homoprotocatechuate pathway, one of the microbial meta-fission pathways that degrade aromatic carbon sources to citric acid cycle intermediates. Despite the structural similarity of CHMI with 4-oxalocrotonate tautomerase (4-OT) and macrophage migration inhibitory factor (MIF), there is no significant sequence similarity among these protein families, and therefore, they are not combined in one hierarchy. 113 -238325 cd00581 QFR_TypeB_TM Quinol:fumarate reductase (QFR) Type B subfamily, transmembrane subunit; QFR couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, the opposite reaction to that catalyzed by the related protein, succinate:quinone oxidoreductase (SQR). QFRs oxidize low potential quinols such as menaquinol and rhodoquinol and are involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type B as they contain one transmembrane subunit and two heme groups. The heme and quinone binding sites reside in the transmembrane subunit. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron donor (quinol). The Type B enzyme from Desulfovibrio gigas is capable of fumarate reduction and succinate oxidation. 206 -238326 cd00583 MutH_Sau3AI MutH is a 28kD endonuclease involved in methyl-directed DNA mismatch repair in gram negative bacteria. MutH is both sequence-specific and methylation-specific, introducing a nick in the unmethylated strand of a hemi-methylated d(GATC) DNA duplex. MutH is homologous to the type II restriction endonuclease Sau3AI which also recognizes the d(GATC) sequence however, Sau3AI cleaves both strands regardless of their methylation state. The active form of MutH is monomeric while that of Sau3AI is homodimeric. In addition to MutH, MutS, involved in mismatch recognition, and MutL, involved in mediating the interactions between MutH and MutS, are essential in initiating mismatch repair in Escherichia coli. 210 -238327 cd00584 Prefoldin_alpha Prefoldin alpha subunit; Prefoldin is a hexameric molecular chaperone complex, found in both eukaryotes and archaea, that binds and stabilizes newly synthesized polypeptides allowing them to fold correctly. The complex contains two alpha and four beta subunits, the two subunits being evolutionarily related. In archaea, there is usually only one gene for each subunit while in eukaryotes there two or more paralogous genes encoding each subunit adding heterogeneity to the structure of the hexamer. The structure of the complex consists of a double beta barrel assembly with six protruding coiled-coils. 129 -238328 cd00585 Peptidase_C1B Peptidase C1B subfamily (MEROPS database nomenclature); composed of eukaryotic bleomycin hydrolases (BH) and bacterial aminopeptidases C (pepC). The proteins of this subfamily contain a large insert relative to the C1A peptidase (papain) subfamily. BH is a cysteine peptidase that detoxifies bleomycin by hydrolysis of an amide group. It acts as a carboxypeptidase on its C-terminus to convert itself into an aminopeptidase and peptide ligase. BH is found in all tissues in mammals as well as in many other eukaryotes. Bleomycin, a glycopeptide derived from the fungus Streptomyces verticullus, is an effective anticancer drug due to its ability to induce DNA strand breaks. Human BH is the major cause of tumor cell resistance to bleomycin chemotherapy, and is also genetically linked to Alzheimer's disease. In addition to its peptidase activity, the yeast BH (Gal6) binds DNA and acts as a repressor in the Gal4 regulatory system. BH forms a hexameric ring barrel structure with the active sites imbedded in the central channel. The bacterial homolog of BH, called pepC, is a cysteine aminopeptidase possessing broad specificity. Although its crystal structure has not been solved, biochemical analysis shows that pepC also forms a hexamer. 437 -238329 cd00586 4HBT 4-hydroxybenzoyl-CoA thioesterase (4HBT). Catalyzes the final step in the 4-chlorobenzoate degradation pathway in which 4-chlorobenzoate is converted to 4-hydroxybenzoate in certain soil-dwelling bacteria. 4HBT forms a homotetramer with four active sites. There is no evidence to suggest that 4HBT is related to the type I thioesterases functioning in primary or secondary metabolic pathways. Each subunit of the 4HBT tetramer adopts a so-called hot-dog fold similar to those of beta-hydroxydecanoyl-ACP dehydratase, (R)-specific enoyl-CoA hydratase, and type II, thioesterase (TEII). 110 -238330 cd00587 HCP_like The HCP family of iron-sulfur proteins includes hybrid cluster protein (HCP), acetyl-CoA synthase (ACS), and carbon monoxide dehydrogenase (CODH), all of which contain [Fe4-S4] metal clusters at their active sites. These proteins have a conserved alpha-beta rossman fold domain. HCP, formerly known as prismane, is thought to play a role in nitrogen metabolism but its specific function is unknown. Acetyl-CoA synthase (ACS), is found in acetogenic and methanogenic organisms and is responsible for the synthesis and breakdown of acetyl-CoA. ACS forms a heterotetramer with carbon monoxide dehydrogenase (CODH) consisting of two ACS and two CODH subunits. CODH reduces carbon dioxide to carbon monoxide and ACS then synthesizes acetyl-CoA from carbon monoxide and CoA. 258 -238331 cd00588 CheW_like CheW-like domain. CheW proteins are part of the chemotaxis signalling mechanism in bacteria. CheW interacts with the methyl accepting chemotaxis proteins (MCPs) and relays signals to CheY, which affects flageller rotation. This family includes CheW and other related proteins that are involved in chemotaxis. The CheW-like regulatory domain in the chemotaxis associated histidine kinase CheA binds to CheW, suggesting that these domains can interact with each other. 136 -240668 cd00590 RRM_SF RNA recognition motif (RRM) superfamily. RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). 72 -259852 cd00591 HU_IHF DNA sequence specific (IHF) and non-specific (HU) domains. This family includes integration host factor (IHF) and HU, also called type II DNA-binding proteins (DNABII), which are small dimeric proteins that specifically bind the DNA minor groove, inducing large bends in the DNA and serving as architectural factors in a variety of cellular processes such as recombination, initiation of replication/transcription and gene regulation. IHF binds DNA in a sequence specific manner while HU displays little or no sequence preference. IHF homologs are usually heterodimers, while HU homologs are typically homodimers (except HU heterodimers from E. coli and other enterobacteria). HU is highly basic and contributes to chromosomal compaction and maintenance of negative supercoiling, thus often referred to as histone-like protein. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). Bacillus phage SPO1-encoded transcription factor 1 (TF1) is another related type II DNA-binding protein. Like IHF, TF1 binds DNA specifically and bends DNA sharply. 85 -133378 cd00592 HTH_MerR-like Helix-Turn-Helix DNA binding domain of MerR-like transcription regulators. Helix-turn-helix (HTH) MerR-like transcription regulator, N-terminal domain. The MerR family transcription regulators have been shown to mediate responses to stress including exposure to heavy metals, drugs, or oxygen radicals in eubacterial and some archaeal species. They regulate transcription of multidrug/metal ion transporter genes and oxidative stress regulons by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 100 -238333 cd00593 RIBOc RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. 133 -238334 cd00594 KU Ku-core domain; includes the central DNA-binding beta-barrels, polypeptide rings, and the C-terminal arm of Ku proteins. The Ku protein consists of two tightly associated homologous subunits, Ku70 and Ku80, and was originally identified as an autoantigen recognized by the sera of patients with an autoimmunity disease. In eukaryotes, the Ku heterodimer contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by non-homologous end-joining. The bacterial Ku homologs does not contain the conserved N-terminal extension that is present in the eukaryotic Ku protein. 272 -238335 cd00595 NDPk Nucleoside diphosphate kinases (NDP kinases, NDPks): NDP kinases, responsible for the synthesis of nucleoside triphosphates (NTPs), are involved in numerous regulatory processes associated with proliferation, development, and differentiation. They are vital for DNA/RNA synthesis, cell division, macromolecular metabolism and growth. The enzymes generate NTPs or their deoxy derivatives by terminal (gamma) phosphotransfer from an NTP such as ATP or GTP to any nucleoside diphosphate (NDP) or its deoxy derivative. The sequence of NDPk has been highly conserved through evolution. There is a single histidine residue conserved in all known NDK isozymes, which is involved in the catalytic mechanism. The first confirmed metastasis suppressor gene was the NDP kinase protein encoded by the nm23 gene. Unicellular organisms generally possess only one gene encoding NDP kinase, while most multicellular organisms possess not only an ortholog that provides most of the NDP kinase enzymatic activity but also multiple divergent paralogous genes. The human genome codes for at least nine NDP kinases and can be classified into two groups, Groups I and II, according to their genomic architecture and distinct enzymatic activity. Group I isoforms (A-D) are well-conserved, catalytically active, and share 58-88% identity between each other, while Group II are more divergent, with only NDPk6 shown to be active. NDP kinases exist in two different quaternary structures; all known eukaryotic enzymes are hexamers, while some bacterial enzymes are tetramers, as in Myxococcus. The hexamer can be viewed as trimer of dimers, while tetramers are dimers of dimers, with the dimerization interface conserved. 133 -349427 cd00596 Peptidase_M14_like M14 family of metallocarboxypeptidases and related proteins. The M14 family of metallocarboxypeptidases (MCPs), also known as funnelins, are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 216 -119349 cd00598 GH18_chitinase-like The GH18 (glycosyl hydrolase, family 18) type II chitinases hydrolyze chitin, an abundant polymer of beta-1,4-linked N-acetylglucosamine (GlcNAc) which is a major component of the cell wall of fungi and the exoskeleton of arthropods. Chitinases have been identified in viruses, bacteria, fungi, protozoan parasites, insects, and plants. The structure of the GH18 domain is an eight-stranded beta/alpha barrel with a pronounced active-site cleft at the C-terminal end of the beta-barrel. The GH18 family includes chitotriosidase, chitobiase, hevamine, zymocin-alpha, narbonin, SI-CLP (stabilin-1 interacting chitinase-like protein), IDGF (imaginal disc growth factor), CFLE (cortical fragment-lytic enzyme) spore hydrolase, the type III and type V plant chitinases, the endo-beta-N-acetylglucosaminidases, and the chitolectins. The GH85 (glycosyl hydrolase, family 85) ENGases (endo-beta-N-acetylglucosaminidases) are closely related to the GH18 chitinases and are included in this alignment model. 210 -119373 cd00599 GH25_muramidase Endo-N-acetylmuramidases (muramidases) are lysozymes (also referred to as peptidoglycan hydrolases) that degrade bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. This family of muramidases contains a glycosyl hydrolase family 25 (GH25) catalytic domain and is found in bacteria, fungi, slime molds, round worms, protozoans and bacteriophages. The bacteriophage members are referred to as endolysins which are involved in lysing the host cell at the end of the replication cycle to allow release of mature phage particles. Endolysins are typically modular enzymes consisting of a catalytically active domain that hydrolyzes the peptidoglycan cell wall and a cell wall-binding domain that anchors the protein to the cell wall. Endolysins generally have narrow substrate specificities with either intra-species or intra-genus bacteriolytic activity. 186 -212462 cd00600 Sm_like Sm and related proteins. The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm-like proteins exist in archaea as well as prokaryotes that form heptameric and hexameric ring structures similar to those found in eukaryotes. 63 -238336 cd00602 IPT_TF IPT domain of eukaryotic transcription factors NF-kappaB/Rel, nuclear factor of activated Tcells (NFAT), and recombination signal J-kappa binding protein (RBP-Jkappa). The IPT domains in these proteins are involved in DNA binding. Most NF-kappaB/Rel proteins form homo- and heterodimers, while NFAT proteins are largely monomeric (with TonEBP being an exception). While the majority of sequence-specific DNA binding elements are found in the N-terminal domain, several are found in the IPT domain in loops adjacent to, and including, the linker region. 101 -238337 cd00603 IPT_PCSR IPT domain of Plexins and Cell Surface Receptors (PCSR) and related proteins . This subgroup contains IPT domains of plexins, receptors, like the plasminogen-related growth factor receptors, the hepatocyte growth factor-scatter factors, and the macrophage-stimulating receptors and of fibrocystin. Plexins are involved in the regulation of cell proliferation and of cellular adhesion and repulsion receptors. In general, there are three copies of the IPT_PCSR domain present preceeded by SEMA (semaphorin) and PSI (plexin, semaphorin, integrin) domains. 90 -238338 cd00604 IPT_CGTD IPT domain (domain D) of cyclodextrin glycosyltransferase (CGTase) and similar enzymes. These enzymes are involved in the enzymatic hydrolysis of alpha-1,4 linkages of starch polymers and belong to the glycosyl hydrolase family 13. Most consist of three domains (A,B,C) but CGTase is more complex and has two additional domains (D,E). The function of the IPT/D domain is unknown. 81 -238339 cd00606 fungal_RNase fungal type ribonuclease. Ribonucleases (RNAses) cleave phosphodiester bonds in RNA and are essential for both non-specific RNA degradation and for numerous forms of RNA processing. The members of this CD belong to the superfamily of microbial ribonucleases which are predominantly guanyl specific nucleases. Guanyl specific RNAses are endonucleases which split RNA phosphodiester bonds at the 3' oxygen end of guanosine residues to yield oligonucleotides with the guanosine-2',3'-cyclophosphate at the 3' end and the hydroxyl group at the 5' end. The terminal guanosine-2,3'-cyclophosphate is hydrolysed by guanyl RNAses to give guanosine-3'-phosphate. The alignment also contains ribotoxins, a fungal group of cytotoxins, specifically cleaving the sarcin/ricin loop (SRL) structure of the 23-28S rRNA and therefore being very potent inhibitors of protein synthesis. 100 -238340 cd00607 RNase_Sa RNase_Sa. Ribonucleases first isolated from Streptomyces aureofaciens. In general, ribonucleases cleave phosphodiester bonds in RNA and are essential for both non-specific RNA degradation and for numerous forms of RNA processing. RNAse Sa is a guanylate specific endoribonuclease which belongs to the superfamily of microbial ribonucleases. Typical of this sub-family, the enzyme hydrolyses the phosphodiester bonds of RNA at the 3' oxygen end of guanosine residues to yield oligonucleotides with the guanosine-2',3'-cyclophosphate at the 3' end and the hydroxyl group at the 5' end. The terminal guanosine-2,3'-cyclophosphate is hydrolysed by guanyl RNAses to give guanosine-3'-phosphate. 95 -238341 cd00608 GalT Galactose-1-phosphate uridyl transferase (GalT): This enzyme plays a key role in galactose metabolism by catalysing the transfer of a uridine 5'-phosphoryl group from UDP-galactose 1-phosphate. The structure of E.coli GalT reveals that the enzyme contains two identical subunits. It also demonstrates that the active site is formed by amino acid residues from both subunits of the dimer. 329 -99734 cd00609 AAT_like Aspartate aminotransferase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). Pyridoxal phosphate combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. The major groups in this CD corresponds to Aspartate aminotransferase a, b and c, Tyrosine, Alanine, Aromatic-amino-acid, Glutamine phenylpyruvate, 1-Aminocyclopropane-1-carboxylate synthase, Histidinol-phosphate, gene products of malY and cobC, Valine-pyruvate aminotransferase and Rhizopine catabolism regulatory protein. 350 -99735 cd00610 OAT_like Acetyl ornithine aminotransferase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to ornithine aminotransferase, acetylornithine aminotransferase, alanine-glyoxylate aminotransferase, dialkylglycine decarboxylase, 4-aminobutyrate aminotransferase, beta-alanine-pyruvate aminotransferase, adenosylmethionine-8-amino-7-oxononanoate aminotransferase, and glutamate-1-semialdehyde 2,1-aminomutase. All the enzymes belonging to this family act on basic amino acids and their derivatives are involved in transamination or decarboxylation. 413 -99736 cd00611 PSAT_like Phosphoserine aminotransferase (PSAT) family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major group in this CD corresponds to phosphoserine aminotransferase (PSAT). PSAT is active as a dimer and catalyzes the conversion of phosphohydroxypyruvate to phosphoserine. 355 -99737 cd00613 GDC-P Glycine cleavage system P-protein, alpha- and beta-subunits. This family consists of Glycine cleavage system P-proteins EC:1.4.4.2 from bacterial, mammalian and plant sources. The P protein is part of the glycine decarboxylase multienzyme complex EC:2.1.2.10 (GDC) also annotated as glycine cleavage system or glycine synthase. GDC consists of four proteins P, H, L and T. The reaction catalysed by this protein is: Glycine + lipoylprotein <=> S-aminomethyldihydrolipoylprotein + CO2. Alpha-beta-type dimers associate to form an alpha(2)beta(2) tetramer, where the alpha- and beta-subunits are structurally similar and appear to have arisen by gene duplication and subsequent divergence with a loss of one active site. The members of this CD are widely dispersed among all three forms of cellular life. 398 -99738 cd00614 CGS_like CGS_like: Cystathionine gamma-synthase is a PLP dependent enzyme and catalyzes the committed step of methionine biosynthesis. This pathway is unique to microorganisms and plants, rendering the enzyme an attractive target for the development of antimicrobials and herbicides. This subgroup also includes cystathionine gamma-lyases (CGL), O-acetylhomoserine sulfhydrylases and O-acetylhomoserine thiol lyases. CGL's are very similar to CGS's. Members of this group are widely distributed among all three forms of life. 369 -99739 cd00615 Orn_deC_like Ornithine decarboxylase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD corresponds to ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and lysine decarboxylase (LDC). ODC is a dodecamer composed of six homodimers and catalyzes the decarboxylation of tryptophan. ADC catalyzes the decarboxylation of arginine and LDC catalyzes the decarboxylation of lysine. Members of this family are widely found in all three forms of life. 294 -99740 cd00616 AHBA_syn 3-amino-5-hydroxybenzoic acid synthase family (AHBA_syn). AHBA_syn family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The members of this CD are involved in various biosynthetic pathways for secondary metabolites. Some well studied proteins in this CD are AHBA_synthase, protein product of pleiotropic regulatory gene degT, Arnb aminotransferase and pilin glycosylation protein. The prototype of this family, the AHBA_synthase, is a dimeric PLP dependent enzyme. AHBA_syn is the terminal enzyme of 3-amino-5-hydroxybenzoic acid (AHBA) formation which is involved in the biosynthesis of ansamycin antibiotics, including rifamycin B. Some members of this CD are involved in 4-amino-6-deoxy-monosaccharide D-perosamine synthesis. Perosamine is an important element in the glycosylation of several cell products, such as antibiotics and lipopolysaccharides of gram-positive and gram-negative bacteria. The pilin glycosylation protein encoded by gene pglA, is a galactosyltransferase involved in pilin glycosylation. Additionally, this CD consists of ArnB (PmrH) aminotransferase, a 4-amino-4-deoxy-L-arabinose lipopolysaccharide-modifying enzyme. This CD also consists of several predicted pyridoxal phosphate-dependent enzymes apparently involved in regulation of cell wall biogenesis. The catalytic lysine which is present in all characterized PLP dependent enzymes is replaced by histidine in some members of this CD. 352 -99741 cd00617 Tnase_like Tryptophanase family (Tnase). This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to tryptophanase (Tnase) and tyrosine phenol-lyase (TPL). Tnase and TPL are active as tetramers and catalyze beta-elimination reactions. Tnase catalyzes degradation of L-tryptophan to yield indole, pyruvate and ammonia and TPL catalyzes degradation of L-tyrosine to yield phenol, pyruvate and ammonia. 431 -153092 cd00618 PLA2_like PLA2_like: Phospholipase A2, a super-family of secretory and cytosolic enzymes; the latter are either Ca dependent or Ca independent. PLA2 cleaves the sn-2 position of the glycerol backbone of phospholipids (PC or phosphatidylethanolamine), usually in a metal-dependent reaction, to generate lysophospholipid (LysoPL) and a free fatty acid (FA). The resulting products are either dietary or used in synthetic pathways for leukotrienes and prostaglandins. Often, arachidonic acid is released as a free fatty acid and acts as second messenger in signaling networks. Secreted PLA2s have also been found to specifically bind to a variety of soluble and membrane proteins in mammals, including receptors. As a toxin, PLA2 is a potent presynaptic neurotoxin which blocks nerve terminals by binding to the nerve membrane and hydrolyzing stable membrane lipids. The products of the hydrolysis (LysoPL and FA) cannot form bilayers leading to a change in membrane conformation and ultimately to a block in the release of neurotransmitters. PLA2 may form dimers or oligomers. 83 -238342 cd00619 Terminator_NusB Transcription termination factor NusB (N protein-Utilization Substance B). NusB plays a key role in the regulation of ribosomal RNA biosynthesis in eubacteria by modulating the efficiency of transcriptional antitermination. NusB along with other Nus factors (NusA, NusE/S10 and NusG) forms the core complex with the boxA element of the nut site of the rRNA operons. These interactions help RNA polymerase to counteract polarity during transcription of rRNA operons and allow stable antitermination. The transcription antitermination system can be appropriated by some bacteriophages such as lambda, which use the system to switch between the lysogenic and lytic modes of phage propagation. 130 -238343 cd00620 Methyltransferase_Sun N-terminal RNA binding domain of the methyltransferase Sun. The rRNA-specific 5-methylcytidine transferase Sun, also known as RrmB or Fmu shares the RNA-binding non-catalytic domain with the transcription termination factor NusB. The precise biological role of this domain in Sun is unknown, although it is likely to be involved in sequence-specific RNA binding. The C-terminal methyltransferase domain of Sun has been shown to catalyze formation of m5C at position 967 of 16S rRNA in Escherichia coli. 126 -143482 cd00622 PLPDE_III_ODC Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Ornithine Decarboxylase. This subfamily is composed mainly of eukaryotic ornithine decarboxylases (ODC, EC 4.1.1.17) and ODC-like enzymes from prokaryotes represented by Vibrio vulnificus LysineOrnithine decarboxylase. These are fold type III PLP-dependent enzymes that differ from most bacterial ODCs which are fold type I PLP-dependent enzymes. ODC participates in the formation of putrescine by catalyzing the decarboxylation of ornithine, the first step in polyamine biosynthesis. Members of this subfamily contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Homodimer formation and the presence of the PLP cofactor are required for catalytic activity. Also members of this subfamily are proteins with homology to ODC but do not possess any catalytic activity, the Antizyme inhibitor (AZI) and ODC-paralogue (ODC-p). AZI binds to the regulatory protein Antizyme with a higher affinity than ODC and prevents ODC degradation. ODC-p is a novel ODC-like protein, present only in mammals, that is specifically exressed in the brain and testes. ODC-p may function as a tissue-specific antizyme inhibitory protein. 362 -238344 cd00625 ArsB_NhaD_permease Anion permease ArsB/NhaD. These permeases have been shown to translocate sodium, arsenate, antimonite, sulfate and organic anions across biological membranes in all three kingdoms of life. A typical anion permease contains 8-13 transmembrane helices and can function either independently as a chemiosmotic transporter or as a channel-forming subunit of an ATP-driven anion pump. 396 -132719 cd00630 RNAP_largest_subunit_C Largest subunit of RNA polymerase (RNAP), C-terminal domain. RNA polymerase (RNAP) is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is the final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei, RNAP I, RNAP II, and RNAP III, for the synthesis of ribosomal RNA precursor, mRNA precursor, and 5S and tRNA, respectively. A single distinct RNAP complex is found in prokaryotes and archaea, which may be responsible for the synthesis of all RNAs. Structure studies revealed that prokaryotic and eukaryotic RNAPs share a conserved crab-claw-shape structure. The largest and the second largest subunits each make up one clamp, one jaw, and part of the cleft. The largest RNAP subunit (Rpb1) interacts with the second-largest RNAP subunit (Rpb2) to form the DNA entry and RNA exit channels in addition to the catalytic center of RNA synthesis. The region covered by this domain makes up part of the foot and jaw structures. In archaea, some photosynthetic organisms, and some organelles, this domain exists as a separate subunit, while it forms the C-terminal region of the RNAP largest subunit in eukaryotes and bacteria. 158 -238345 cd00632 Prefoldin_beta Prefoldin beta; Prefoldin is a hexameric molecular chaperone complex, composed of two evolutionarily related subunits (alpha and beta), which are found in both eukaryotes and archaea. Prefoldin binds and stabilizes newly synthesized polypeptides allowing them to fold correctly. The hexameric structure consists of a double beta barrel assembly with six protruding coiled-coils. The alpha prefoldin subunits have two beta hairpin structures while the beta prefoldin subunits (this CD) have only one hairpin that is most similar to the second hairpin of the alpha subunit. The prefoldin hexamer consists of two alpha and four beta subunits and is assembled from the beta hairpins of all six subunits. The alpha subunits initially dimerize providing a structural nucleus for the assembly of the beta subunits. In archaea, there is usually only one gene for each subunit while in eukaryotes there two or more paralogous genes encoding each subunit adding heterogeneity to the structure of the hexamer. 105 -238346 cd00633 Secretoglobin Secretoglobins are relatively small, secreted, disulphide-bridged dimeric proteins with encoding genes sharing substantial sequence similarity. Their family subunits may be grouped into five subfamilies, A-E. Uteroglobin (subfamily A), which is identical to Clara cell protein (CC10), forms a globular shaped homodimer with a large hydrophobic pocket located between the two dimers. The uteroglobin monomer structure is composed of four alpha helices that do not form a canonical four helix-bundle motif but rather a boomerang-shaped structure in which helices H1, H3, and H4 are able to bind a homodimeric partner. The hydrophobic pocket binds steroids, particularly progesterone, with high specificity. However, the true biological function of uteroglobin is poorly understood. In mammals, uteroglobin has immunosuppressive and anti-inflammatory properties through the inhibition of phospholipase A2. The other four main subfamilies of secretoglobins are found in heterodimeric combinations, with B and C subfamilies disulphide-bridged to the E and D subfamilies, respectively. [See review by Laukaitis C.M. & Karn R.C. (2005). Biological Journal of the Linnean Society 84, 493]. These include rat prostatic steroid-binding protein (PBP or prostatein), human mammaglobin (or heteroglobin), lipophilins, major cat allergen Fel dI, the hamster Harderian gland proteins and mouse salivary androgen-binding protein (ABP). Example of such a heterodimer: ABPalpha-like sequences are closely related to cat Fel dI chain 1, whereas ABPbeta-gamma-like sequences are closely related to Fel dI chain 2. Thus, the heterodimeric structure of ABPalpha-beta and ABPalpha-gamma is recapitulated by the sequence-similar Fel dI chains 1 and 2. This conservation of primary and quaternary structure indicates that the genome of the eutherian common ancestor of cats, rodents, and primates contained a similar gene pair. 67 -143483 cd00635 PLPDE_III_YBL036c_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, YBL036c-like proteins. This family contains mostly uncharacterized proteins, widely distributed among eukaryotes, bacteria and archaea, that bear similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity. 222 -238347 cd00636 TroA-like Helical backbone metal receptor (TroA-like domain). These proteins have been shown to function in the ABC transport of ferric siderophores and metal ions such as Mn2+, Fe3+, Cu2+ and/or Zn2+. Their ligand binding site is formed in the interface between two globular domains linked by a single helix. Many of these proteins also possess a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). The TroA-like proteins differ in their fold and ligand-binding mechanism from the PBPI and PBPII proteins, but are structurally similar, however, to the beta-subunit of the nitrogenase molybdenum-iron protein MoFe. Most TroA-like proteins are encoded by ABC-type operons and appear to function as periplasmic components of ABC transporters in metal ion uptake. 148 -341313 cd00637 7tm_classA_rhodopsin-like rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily. Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. 275 -107202 cd00640 Trp-synth-beta_II Tryptophan synthase beta superfamily (fold type II); this family of pyridoxal phosphate (PLP)-dependent enzymes catalyzes beta-replacement and beta-elimination reactions. This CD corresponds to aminocyclopropane-1-carboxylate deaminase (ACCD), tryptophan synthase beta chain (Trp-synth_B), cystathionine beta-synthase (CBS), O-acetylserine sulfhydrylase (CS), serine dehydratase (Ser-dehyd), threonine dehydratase (Thr-dehyd), diaminopropionate ammonia lyase (DAL), and threonine synthase (Thr-synth). ACCD catalyzes the conversion of 1-aminocyclopropane-1-carboxylate to alpha-ketobutyrate and ammonia. Tryptophan synthase folds into a tetramer, where the beta chain is the catalytic PLP-binding subunit and catalyzes the formation of L-tryptophan from indole and L-serine. CBS is a tetrameric hemeprotein that catalyzes condensation of serine and homocysteine to cystathionine. CS is a homodimer that catalyzes the formation of L-cysteine from O-acetyl-L-serine. Ser-dehyd catalyzes the conversion of L- or D-serine to pyruvate and ammonia. Thr-dehyd is active as a homodimer and catalyzes the conversion of L-threonine to 2-oxobutanoate and ammonia. DAL is also a homodimer and catalyzes the alpha, beta-elimination reaction of both L- and D-alpha, beta-diaminopropionate to form pyruvate and ammonia. Thr-synth catalyzes the formation of threonine and inorganic phosphate from O-phosphohomoserine. 244 -238348 cd00641 GTP_cyclohydro2 GTP cyclohydrolase II (RibA). GTP cyclohydrolase II catalyzes the conversion of GTP to 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5' phosphate, formate, pyrophosphate (APy), and GMP in the biosynthetic pathway of riboflavin. Riboflavin is the precursor molecule for the synthesis of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which are essential to cell metabolism. The enzyme is present in plants and numerous pathogenic bacteria, especially gram negative organisms, who are dependent on endogenous synthesis of the vitamin because they lack an appropriate uptake system. For animals and humans, which lack this biosynthetic pathway, riboflavin is the essential vitamin B2. GTP cyclohydrolase II requires magnesium ions for activity and has a bound catalytic zinc. The functionally active form is thought to be a homodimer. A paralogous protein is encoded in the genome of Streptomyces coelicolor, which converts GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), an activity that has otherwise been reported for unrelated GTP cyclohydrolases III. 193 -238349 cd00642 GTP_cyclohydro1 GTP cyclohydrolase I (GTP-CH-I) catalyzes the conversion of GTP into dihydroneopterin triphosphate. The enzyme product is the precursor of tetrahydrofolate in eubacteria, fungi, and plants and of the folate analogs in methanogenic bacteria. In vertebrates and insects it is the biosynthtic precursor of tetrahydrobiopterin (BH4) which is involved in the formation of catacholamines, nitric oxide, and the stimulation of T lymphocytes. The biosynthetic reaction of BH4 is controlled by a regulatory protein GFRP which mediates feedback inhibition of GTP-CH-I by BH4. This inhibition is reversed by phenylalanine. The decameric GTP-CH-I forms a complex with two pentameric GFRP in the presence of phenylalanine or a combination of GTP and BH4, respectively. 185 -153081 cd00643 HMG-CoA_reductase_classI Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR). Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR), class I enzyme, homotetramer. Catalyzes the synthesis of coenzyme A and mevalonate in isoprenoid synthesis. In mammals this is the rate limiting committed step in cholesterol biosynthesis. Class I enzymes are found predominantly in eukaryotes and contain N-terminal membrane regions. With the exception of Archaeoglobus fulgidus, most archeae are assigned to class I, based on sequence similarity of the active site, even though they lack membrane regions. Yeast and human HMGR are divergent in their N-terminal regions, but are conserved in their active site. In contrast, human and bacterial HMGR differ in their active site architecture. 403 -153082 cd00644 HMG-CoA_reductase_classII Class II hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR). Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR), class II, prokaryotic enzyme is a homodimer. Class II enzymes are found primarily in prokaryotes and Archaeoglobus fulgidus and are soluble as they lack the membrane region. Enzymes catalyze the synthesis of coenzyme A and mevalonate in isoprenoid synthesis. Bacteria, such as Pseudomonas mevalonii, which rely solely on mevalonate for their carbon source, catalyze the reverse reaction, using an NAD-dependent HMGR to deacetylate mevalonate into 3-hydroxy-3-methylglutaryl-CoA. Human and bacterial HMGR differ in their active site architecture. 417 -238350 cd00645 AsnA Asparagine synthetase (aspartate-ammonia ligase) (AsnA) catalyses the conversion of L-aspartate to L-asparagine in the presence of ATP and ammonia. AsnA is a homodimeric enzyme which is structurally similiar to the catalytic core domain of class II aminoacyl-tRNA synthetases. Ammonia-dependent AsnA is not homologous to the glutamine-dependent asparagine synthetase AsnB. 309 -270214 cd00648 Periplasmic_Binding_Protein_Type_2 Type 2 periplasmic binding fold superfamily. This evolutionary model and hierarchy represent the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1 (PBP1), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The origin of PBP module can be traced across the distant phyla, including eukaryotes, archebacteria, and prokaryotes. The majority of PBP2 proteins are involved in the uptake of a variety of soluble substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. The substrate binding domain of the LysR transcriptional regulators and the oligopeptide-like transport systems also contain the type 2 periplasmic binding fold and thus they are significantly homologous to that of the PBP2; however, these two families are grouped into a separate hierarchy of the PBP2 superfamily due to the large number of protein sequences. 196 -173824 cd00649 catalase_peroxidase_1 N-terminal catalytic domain of catalase-peroxidases. This is a subgroup of heme-dependent peroxidases of the plant superfamily that share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Catalase-peroxidases can exhibit both catalase and broad-spectrum peroxidase activities depending on the steady-state concentration of hydrogen peroxide. These enzymes are found in many archaeal and bacterial organisms, where they neutralize potentially lethal hydrogen peroxide molecules generated during photosynthesis or stationary phase. Along with related intracellular fungal and plant peroxidases, catalase-peroxidases belong to class I of the plant peroxidase superfamily. Unlike the eukaryotic enzymes, they are typically comprised of two homologous domains that probably arose via a single gene duplication event. The heme binding motif is present only in the N-terminal domain; the function of the C-terminal domain is not clear. 409 -133419 cd00650 LDH_MDH_like NAD-dependent, lactate dehydrogenase-like, 2-hydroxycarboxylate dehydrogenase family. Members of this family include ubiquitous enzymes like L-lactate dehydrogenases (LDH), L-2-hydroxyisocaproate dehydrogenases, and some malate dehydrogenases (MDH). LDH catalyzes the last step of glycolysis in which pyruvate is converted to L-lactate. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. The LDH/MDH-like proteins are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 263 -238351 cd00651 TFold Tunnelling fold (T-fold). The five known T-folds are found in five different enzymes with different functions: dihydroneopterin-triphosphate epimerase (DHNTPE), dihydroneopterin aldolase (DHNA) , GTP cyclohydrolase I (GTPCH-1), 6-pyrovoyl tetrahydropterin synthetase (PTPS), and uricase (UO,uroate/urate oxidase). They bind to substrates belonging to the purine or pterin families, and share a fold-related binding site with a glutamate or glutamine residue anchoring the substrate and a lot of conserved interactions. They also share a similar oligomerization mode: several T-folds join together to form a beta(2n)alpha(n) barrel, then two barrels join together in a head-to-head fashion to made up the native enzymes. The functional enzyme is a tetramer for UO, a hexamer for PTPS, an octamer for DHNA/DHNTPE and a decamer for GTPCH-1. The substrate is located in a deep and narrow pocket at the interface between monomers. In PTPS, the active site is located at the interface of three monomers, two from one trimer and one from the other trimer. In GTPCH-1, it is also located at the interface of three subunits, two from one pentamer and one from the other pentamer. There are four equivalent active sites in UO, six in PTPS, eight in DHNA/DHNTPE and ten in GTPCH-1. Each globular multimeric enzyme encloses a tunnel which is lined with charged residues for DHNA and UO, and with basic residues in PTPS. The N and C-terminal ends are located on one side of the T-fold while the residues involved in the catalytic activity are located at the opposite side. In PTPS, UO and DHNA/DHNTPE, the N and C-terminal extremities of the enzyme are located on the exterior side of the functional multimeric enzyme. In GTPCH-1, the extra C-terminal helix places the extremity inside the tunnel. 122 -238352 cd00652 TBP_TLF TATA box binding protein (TBP): Present in archaea and eukaryotes, TBPs are transcription factors that recognize promoters and initiate transcription. TBP has been shown to be an essential component of three different transcription initiation complexes: SL1, TFIID and TFIIIB, directing transcription by RNA polymerases I, II and III, respectively. TBP binds directly to the TATA box promoter element, where it nucleates polymerase assembly, thus defining the transcription start site. TBP's binding in the minor groove induces a dramatic DNA bending while its own structure barely changes. The conserved core domain of TBP, which binds to the TATA box, has a bipartite structure, with intramolecular symmetry generating a saddle-shaped structure that sits astride the DNA. New members of the TBP family, called TBP-like proteins (TBLP, TLF, TLP) or TBP-related factors (TRF1, TRF2,TRP), are similar to the core domain of TBPs, with identical or chemically similar amino acids at many equivalent positions, suggesting similar structure. However, TLFs contain distinct, conserved amino acids at several positions that distinguish them from TBP. 174 -238353 cd00653 RNA_pol_B_RPB2 RNA polymerase beta subunit. RNA polymerases catalyse the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Each RNA polymerase complex contains two related members of this family, in each case they are the two largest subunits.The clamp is a mobile structure that grips DNA during elongation. 866 -238354 cd00655 RNAP_Rpb7_N_like RNAP_Rpb7_N_like: This conserved domain represents the N-terminal ribonucleoprotein (RNP) domain of the Rpb7 subunit of eukaryotic RNA polymerase (RNAP) II and its homologs, Rpa43 of eukaryotic RNAP I, Rpc25 of eukaryotic RNAP III, and RpoE (subunit E) of archaeal RNAP. These proteins have, in addition to their N-terminal RNP domain, a C-terminal oligonucleotide-binding (OB) domain. Each of these subunits heterodimerizes with another RNAP subunit (Rpb7 to Rpb4, Rpc25 to Rpc17, RpoE to RpoF, and Rpa43 to Rpa14). The heterodimer is thought to tether the RNAP to a given promoter via its interactions with a promoter-bound transcription factor.The heterodimer is also thought to bind and position nascent RNA as it exits the polymerase complex. 80 -259791 cd00656 Zn-ribbon C-terminal zinc ribbon domain of RNA polymerase intrinsic transcript cleavage subunit. The homologous C-terminal zinc ribbon domains of subunits A12.2, Rpb9, and C11 in RNA Polymerases (Pol) I, II, and III, respectively are required for intrinsic transcript cleavage. TFS is a related archaeal protein that is involved in RNA cleavage by archaeal polymerase. These proteins have two zinc-binding beta-ribbon domains, N-terminal zinc ribbon (N-ribbon) and C-terminal zinc ribbon (C-ribbon). Transcription Factor IIS (TFIIS) domain III is homologous to the C-ribbon domain that stimulates the weak cleavage activity of Rpb9 for Pol II. 45 -153097 cd00657 Ferritin_like Ferritin-like superfamily of diiron-containing four-helix-bundle proteins. Ferritin-like, diiron-carboxylate proteins participate in a range of functions including iron regulation, mono-oxygenation, and reactive radical production. These proteins are characterized by the fact that they catalyze dioxygen-dependent oxidation-hydroxylation reactions within diiron centers; one exception is manganese catalase, which catalyzes peroxide-dependent oxidation-reduction within a dimanganese center. Diiron-carboxylate proteins are further characterized by the presence of duplicate metal ligands, glutamates and histidines (ExxH) and two additional glutamates within a four-helix bundle. Outside of these conserved residues there is little obvious homology. Members include bacterioferritin, ferritin, rubrerythrin, aromatic and alkene monooxygenase hydroxylases (AAMH), ribonucleotide reductase R2 (RNRR2), acyl-ACP-desaturases (Acyl_ACP_Desat), manganese (Mn) catalases, demethoxyubiquinone hydroxylases (DMQH), DNA protecting proteins (DPS), and ubiquinol oxidases (AOX), and the aerobic cyclase system, Fe-containing subunit (ACSF). 130 -271176 cd00659 Topo_IB_C DNA topoisomerase IB, C-terminal catalytic domain. Topoisomerase I promotes the relaxation of both positive and negative DNA superhelical tension by introducing a transient single-stranded break in duplex DNA. This function is vital for the processes of replication, transcription, and recombination. Unlike Topo IA enzymes, Topo IB enzymes do not require a single-stranded region of DNA or metal ions for their function. The type IB family of DNA topoisomerases includes eukaryotic nuclear topoisomerase I, topoisomerases of poxviruses, and bacterial versions of Topo IB. They belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their C-terminal catalytic domain and the overall reaction mechanism with tyrosine recombinases. The C-terminal catalytic domain in topoisomerases is linked to a divergent N-terminal domain that shows no sequence or structure similarity to the N-terminal domains of tyrosine recombinases. 210 -238356 cd00660 Topoisomer_IB_N Topoisomer_IB_N: N-terminal DNA binding fragment found in eukaryotic DNA topoisomerase (topo) IB proteins similar to the monomeric yeast and human topo I and heterodimeric topo I from Leishmania donvanni. Topo I enzymes are divided into: topo type IA (bacterial) and type IB (eukaryotic). Topo I relaxes superhelical tension in duplex DNA by creating a single-strand nick, the broken strand can then rotate around the unbroken strand to remove DNA supercoils and, the nick is religated, liberating topo I. These enzymes regulate the topological changes that accompany DNA replication, transcription and other nuclear processes. Human topo I is the target of a diverse set of anticancer drugs including camptothecins (CPTs). CPTs bind to the topo I-DNA complex and inhibit re-ligation of the single-strand nick, resulting in the accumulation of topo I-DNA adducts. In addition to differences in structure and some biochemical properties, Trypanosomatid parasite topo I differ from human topo I in their sensitivity to CPTs and other classical topo I inhibitors. Trypanosomatid topos I play putative roles in organizing the kinetoplast DNA network unique to these parasites. This family may represent more than one structural domain. 215 -238357 cd00667 ring_hydroxylating_dioxygenases_beta Ring hydroxylating dioxygenase beta subunit. This subunit has a similar structure to NTF-2, Ketosteroid isomerase and scytalone dehydratase.The degradation of aromatic compounds by aerobic bacteria frequently begins with the dihydroxylation of the substrate by nonheme iron-containing dioxygenases. These enzymes consist of two or three soluble proteins that interact to form an electron-transport chain that transfers electrons from reduced nucleotides (NADH) via flavin and [2Fe-2S] redox centers to a terminal dioxygenase. Aromatic-ring-hydroxylating dioxygenases oxidize aromatic hydrocarbons and related compounds to cis-arene diols. These enzymes utilize a mononuclear non-heme iron center to catalyze the addition of dioxygen to their respective substrates. The active site of these enzymes however is in the alpha sub-unit. No functional role has been attributed to the beta sub-unit except for a structural role. 160 -185674 cd00668 Ile_Leu_Val_MetRS_core catalytic core domain of isoleucyl, leucyl, valyl and methioninyl tRNA synthetases. Catalytic core domain of isoleucyl, leucyl, valyl and methioninyl tRNA synthetases. These class I enzymes are all monomers. However, in some species, MetRS functions as a homodimer, as a result of an additional C-terminal domain. These enzymes aminoacylate the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. Enzymes in this subfamily share an insertion in the core domain, which is subject to both deletions and rearrangements. This editing region hydrolyzes mischarged cognate tRNAs and thus prevents the incorporation of chemically similar amino acids. MetRS has a significantly shorter insertion, which lacks the editing function. 312 -238358 cd00669 Asp_Lys_Asn_RS_core Asp_Lys_Asn_tRNA synthetase class II core domain. This domain is the core catalytic domain of class II aminoacyl-tRNA synthetases of the subgroup containing aspartyl, lysyl, and asparaginyl tRNA synthetases. It is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs. Nearly all class II tRNA synthetases are dimers and enzymes in this subgroup are homodimers. These enzymes attach a specific amino acid to the 3' OH group of ribose of the appropriate tRNA. 269 -238359 cd00670 Gly_His_Pro_Ser_Thr_tRS_core Gly_His_Pro_Ser_Thr_tRNA synthetase class II core domain. This domain is the core catalytic domain of tRNA synthetases of the subgroup containing glycyl, histidyl, prolyl, seryl and threonyl tRNA synthetases. It is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. These enzymes belong to class II aminoacyl-tRNA synthetases (aaRS) based upon their structure and the presence of three characteristic sequence motifs in the core domain. This domain is also found at the C-terminus of eukaryotic GCN2 protein kinase and at the N-terminus of the ATP phosphoribosyltransferase accessory subunit, HisZ and the accessory subunit of mitochondrial polymerase gamma (Pol gamma b) . Most class II tRNA synthetases are dimers, with this subgroup consisting of mostly homodimers. These enzymes attach a specific amino acid to the 3' OH group of ribose of the appropriate tRNA. 235 -185675 cd00671 ArgRS_core catalytic core domain of arginyl-tRNA synthetases. Arginyl tRNA synthetase (ArgRS) catalytic core domain. This class I enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. There are at least three subgroups of ArgRS. One type contains both characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. The second subtype lacks the KMSKS motif; however, it has a lysine N-terminal to the HIGH motif, which serves as the functional counterpart to the second lysine of the KMSKS motif. A third group, which is found primarily in archaea and a few bacteria, lacks both the KMSKS motif and the HIGH loop lysine. 212 -173899 cd00672 CysRS_core catalytic core domain of cysteinyl tRNA synthetase. Cysteinyl tRNA synthetase (CysRS) catalytic core domain. This class I enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. 213 -238360 cd00673 AlaRS_core Alanyl-tRNA synthetase (AlaRS) class II core catalytic domain. AlaRS is a homodimer. It is responsible for the attachment of alanine to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its predicted structure and the presence of three characteristic sequence motifs. 232 -173900 cd00674 LysRS_core_class_I catalytic core domain of class I lysyl tRNA synthetase. Class I lysyl tRNA synthetase (LysRS) catalytic core domain. This class I enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. The class I LysRS is found only in archaea and some bacteria and has evolved separately from class II LysRS, as the two do not share structural or sequence similarity. 353 -238361 cd00677 S15_NS1_EPRS_RNA-bind S15/NS1/EPRS_RNA-binding domain. This short domain consists of a helix-turn-helix structure, which can bind to several types of RNA. It is found in the ribosomal protein S15, the influenza A viral nonstructural protein (NSA) and in several eukaryotic aminoacyl tRNA synthetases (aaRSs), where it occurs as a single or a repeated unit. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions in the formation of tRNA-synthetases into multienzyme complexes. While this domain lacks significant sequence similarity between the subgroups in which it is found, they share similar electrostatic surface potentials and thus are likely to bind to RNA via the same mechanism. 46 -176852 cd00680 RHO_alpha_C C-terminal catalytic domain of the oxygenase alpha subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC), and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this family include the alpha subunits of Pseudomonas resinovorans strain CA10 anthranilate 1,2-dioxygenase, Stenotrophomonas maltophilia dicamba O-demethylase, Ralstonia sp. U2 salicylate-5-hydroxylase, Cycloclasticus sp. strain A5 polycyclic aromatic hydrocarbon dioxygenase, toluene 2,3-dioxygenase from Pseudomonas putida F1, dioxin dioxygenase of Sphingomonas sp. Strain RW1, plant choline monooxygenase, and the polycyclic aromatic hydrocarbon (PAH)-degrading ring-hydroxylating dioxygenase from Sphingomonas CHY-1. This group also includes the C-terminal catalytic domains of MupW, part of the mupirocin biosynthetic gene cluster in Pseudomonas fluorescens, and Pseudomonas aeruginosa GbcA (glycine betaine catabolism A). This family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 188 -173831 cd00683 Trans_IPPS_HH Trans-Isoprenyl Diphosphate Synthases, head-to-head. These trans-Isoprenyl Diphosphate Synthases (Trans_IPPS) catalyze a head-to-head (HH) (1'-1) condensation reaction. This CD includes squalene and phytoene synthases which catalyze the 1'-1 condensation of two 15-carbon (farnesyl) and 20-carbon (geranylgeranyl) isoprenyl diphosphates, respectively. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions (DXXXD) located on opposite walls. These residues mediate binding of prenyl phosphates. A two-step reaction has been proposed for squalene synthase (farnesyl-diphosphate farnesyltransferase) in which, two molecules of FPP react to form a stable cyclopropylcarbinyl diphosphate intermediate, and then the intermediate undergoes heterolysis, isomerization, and reduction with NADPH to form squalene, a precursor of cholestrol. The carotenoid biosynthesis enzyme, phytoene synthase (CrtB), catalyzes the condensation reaction of two molecules of geranylgeranyl diphosphate to produce phytoene, a precursor of beta-carotene. These enzymes produce the triterpene and tetraterpene precursors for many diverse sterol and carotenoid end products and are widely distributed among eukareya, bacteria, and archaea. 265 -173832 cd00684 Terpene_cyclase_plant_C1 Plant Terpene Cyclases, Class 1. This CD includes a diverse group of monomeric plant terpene cyclases (Tspa-Tspf) that convert the acyclic isoprenoid diphosphates, geranyl diphosphate (GPP), farnesyl diphosphate (FPP), or geranylgeranyl diphosphate (GGPP) into cyclic monoterpenes, diterpenes, or sesquiterpenes, respectively; a few form acyclic species. Terpnoid cyclases are soluble enzymes localized to the cytosol (sesquiterpene synthases) or plastids (mono- and diterpene synthases). All monoterpene and diterpene synthases have restrict substrate specificity, however, some sesquiterpene synthases can accept both FPP and GPP. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions located on opposite walls. These residues mediate binding of prenyl diphosphates, via bridging Mg2+ ions (K+ preferred by gymnosperm cyclases), inducing conformational changes such that an N-terminal region forms a cap over the catalytic core. Loss of diphosphate from the enzyme-bound substrate (GPP, FPP, or GGPP) results in an allylic carbocation that electrophilically attacks a double bond further down the terpene chain to effect the first ring closure. Unlike monoterpene, sesquiterene, and macrocyclic diterpenes synthases, which undergo substrate ionization by diphosphate ester scission, Tpsc-like diterpene synthases catalyze cyclization reactions by an initial protonation step producing a copalyl diphosphate intermediate. These enzymes lack the aspartate-rich sequences mentioned above. Most diterpene synthases have an N-terminal, internal element (approx 210 aa) whose function is unknown. 542 -173833 cd00685 Trans_IPPS_HT Trans-Isoprenyl Diphosphate Synthases, head-to-tail. These trans-Isoprenyl Diphosphate Synthases (Trans_IPPS) catalyze head-to-tail (HT) (1'-4) condensation reactions. This CD includes all-trans (E)-isoprenyl diphosphate synthases which synthesize various chain length (C10, C15, C20, C25, C30, C35, C40, C45, and C50) linear isoprenyl diphosphates from precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). They catalyze the successive 1'-4 condensation of the 5-carbon IPP to allylic substrates geranyl-, farnesyl-, or geranylgeranyl-diphosphate. Isoprenoid chain elongation reactions proceed via electrophilic alkylations in which a new carbon-carbon single bond is generated through interaction between a highly reactive electron-deficient allylic carbocation and an electron-rich carbon-carbon double bond. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions (DDXX(XX)D) located on opposite walls. These residues mediate binding of prenyl phosphates via bridging Mg2+ ions, inducing proposed conformational changes that close the active site to solvent, protecting and stabilizing reactive carbocation intermediates. Farnesyl diphosphate synthases produce the precursors of steroids, cholesterol, sesquiterpenes, farnsylated proteins, heme, and vitamin K12; and geranylgeranyl diphosphate and longer chain synthases produce the precursors of carotenoids, retinoids, diterpenes, geranylgeranylated chlorophylls, ubiquinone, and archaeal ether linked lipids. Isoprenyl diphosphate synthases are widely distributed among archaea, bacteria, and eukareya. 259 -173834 cd00686 Terpene_cyclase_cis_trans_C1 Cis, Trans, Terpene Cyclases, Class 1. This CD includes the terpenoid cyclase, trichodiene synthase, which catalyzes the cyclization of farnesyl diphosphate (FPP) to trichodiene using a cis-trans pathway, and is the first committed step in the biosynthesis of trichothecene toxins and antibiotics. As with other enzymes with the 'terpenoid synthase fold', this enzyme has two conserved metal binding motifs that coordinate Mg2+ ion-bridged binding of the diphosphate moiety of FPP. Metal-triggered substrate ionization initiates catalysis, and the alpha-barrel active site serves as a template to channel and stabilize the conformations of reactive carbocation intermediates through a complex cyclization cascade. These enzymes function as homodimers and are found in several genera of fungi. 357 -173835 cd00687 Terpene_cyclase_nonplant_C1 Non-plant Terpene Cyclases, Class 1. This CD includes terpenoid cyclases such as pentalenene synthase and aristolochene synthase which, using an all-trans pathway, catalyze the ionization of farnesyl diphosphate, followed by the formation of a macrocyclic intermediate by bond formation between C1 with either C10 (aristolochene synthase) or C11 (pentalenene synthase), resulting in production of tricyclic hydrocarbon pentalenene or bicyclic hydrocarbon aristolochene. As with other enzymes with the 'terpenoid synthase fold', they have two conserved metal binding motifs, proposed to coordinate Mg2+ ion-bridged binding of the diphosphate moiety of FPP to the enzymes. Metal-triggered substrate ionization initiates catalysis, and the alpha-barrel active site serves as a template to channel and stabilize the conformations of reactive carbocation intermediates through a complex cyclization cascade. These enzymes function in the monomeric form and are found in fungi, bacteria and Dictyostelium. 303 -238362 cd00688 ISOPREN_C2_like This group contains class II terpene cyclases, protein prenyltransferases beta subunit, two broadly specific proteinase inhibitors alpha2-macroglobulin (alpha (2)-M) and pregnancy zone protein (PZP) and, the C3 C4 and C5 components of vertebrate complement. Class II terpene cyclases include squalene cyclase (SQCY) and 2,3-oxidosqualene cyclase (OSQCY), these integral membrane proteins catalyze a cationic cyclization cascade converting linear triterpenes to fused ring compounds. The protein prenyltransferases include protein farnesyltransferase (FTase) and geranylgeranyltransferase types I and II (GGTase-I and GGTase-II) which catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Alpha (2)-M is a major carrier protein in serum and involved in the immobilization and entrapment of proteases. PZP is a pregnancy associated protein. Alpha (2)-M and PZP are known to bind to and, may modulate, the activity of placental protein-14 in T-cell growth and cytokine production thereby protecting the allogeneic fetus from attack by the maternal immune system. 300 -173825 cd00691 ascorbate_peroxidase Ascorbate peroxidases and cytochrome C peroxidases. Ascorbate peroxidases are a subgroup of heme-dependent peroxidases of the plant superfamily that share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Along with related catalase-peroxidases, ascorbate peroxidases belong to class I of the plant superfamily. Ascorbate peroxidases are found in the chloroplasts and/or cytosol of algae and plants, where they have been shown to control the concentration of lethal hydrogen peroxide molecules. The yeast cytochrome c peroxidase is a divergent member of the family; it forms a complex with cytochrome c to catalyze the reduction of hydrogen peroxide to water. 253 -173826 cd00692 ligninase Ligninase and other manganese-dependent fungal peroxidases. Ligninases and related extracellular fungal peroxidases belong to class II of the plant heme-dependent peroxidase superfamily. All members of the superfamily share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Class II peroxidases are fungal glycoproteins that have been implicated in the oxidative breakdown of lignin, the main cell wall component of woody plants. They contain four conserved disulphide bridges and two conserved calcium binding sites. 328 -173827 cd00693 secretory_peroxidase Horseradish peroxidase and related secretory plant peroxidases. Secretory peroxidases belong to class III of the plant heme-dependent peroxidase superfamily. All members of the superfamily share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Class III peroxidases are found in the extracellular space or in the vacuole in plants where they have been implicated in hydrogen peroxide detoxification, auxin catabolism and lignin biosynthesis, and stress response. Class III peroxidases contain four conserved disulphide bridges and two conserved calcium binding sites. 298 -133420 cd00704 MDH Malate dehydrogenase. Malate dehydrogenase (MDH) is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. MDHs belong to the NAD-dependent, lactate dehydrogenase (LDH)-like, 2-hydroxycarboxylate dehydrogenase family, which also includes the GH4 family of glycoside hydrolases. They are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 323 -238363 cd00707 Pancreat_lipase_like Pancreatic lipase-like enzymes. Lipases are esterases that can hydrolyze long-chain acyl-triglycerides into di- and monoglycerides, glycerol, and free fatty acids at a water/lipid interface. A typical feature of lipases is "interfacial activation," the process of becoming active at the lipid/water interface, although several examples of lipases have been identified that do not undergo interfacial activation . The active site of a lipase contains a catalytic triad consisting of Ser - His - Asp/Glu, but unlike most serine proteases, the active site is buried inside the structure. A "lid" or "flap" covers the active site, making it inaccessible to solvent and substrates. The lid opens during the process of interfacial activation, allowing the lipid substrate access to the active site. 275 -100039 cd00710 LbH_gamma_CA Gamma carbonic anhydrases (CA): Carbonic anhydrases are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism, involving the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three distinct groups of carbonic anhydrases - alpha, beta and gamma - which show no significant sequence identity or structural similarity. Gamma CAs are homotrimeric enzymes, with each subunit containing a left-handed parallel beta helix (LbH) structural domain. 167 -238364 cd00712 AsnB Glutamine amidotransferases class-II (GATase) asparagine synthase_B type. Asparagine synthetase B catalyses the ATP-dependent conversion of aspartate to asparagine. This enzyme is a homodimer, with each monomer composed of a glutaminase domain and a synthetase domain. The N-terminal glutaminase domain hydrolyzes glutamine to glutamic acid and ammonia. 220 -238365 cd00713 GltS Glutamine amidotransferases class-II (Gn-AT), glutamate synthase (GltS)-type. GltS is a homodimer that synthesizes L-glutamate from 2-oxoglutarate and L-glutamine, an important step in ammonia assimilation in bacteria, cyanobacteria and plants. The N-terminal glutaminase domain catalyzes the hydrolysis of glutamine to glutamic acid and ammonia, and has a fold similar to that of other glutamine amidotransferases such as glucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), and beta lactam synthetase (beta-LS), as well as the Ntn hydrolase folds of the proteasomal alpha and beta subunits. 413 -238366 cd00714 GFAT Glutamine amidotransferases class-II (Gn-AT)_GFAT-type. This domain is found at the N-terminus of glucosamine-6P synthase (GlmS, or GFAT in humans). The glutaminase domain catalyzes amide nitrogen transfer from glutamine to the appropriate substrate. In this process, glutamine is hydrolyzed to glutamic acid and ammonia. In humans, GFAT catalyzes the first and rate-limiting step of hexosamine metabolism, the conversion of D-fructose-6P (Fru6P) into D-glucosamine-6P using L-glutamine as a nitrogen source. The end product of this pathway, UDP-N-acetyl glucosamine, is a major building block of the bacterial peptidoglycan and fungal chitin. 215 -238367 cd00715 GPATase_N Glutamine amidotransferases class-II (GN-AT)_GPAT- type. This domain is found at the N-terminus of glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase) . The glutaminase domain catalyzes amide nitrogen transfer from glutamine to the appropriate substrate. In this process, glutamine is hydrolyzed to glutamic acid and ammonia. GPATase catalyzes the first step in purine biosynthesis, an amide transfer from glutamine to PRPP, resulting in phosphoribosylamine, pyrophosphate and glutamate. GPATase crystalizes as a homotetramer, but can also exist as a homdimer. 252 -153076 cd00716 creatine_kinase_like Phosphagen (guanidino) kinases such as creatine kinase and similar enzymes. Eukaryotic creatine kinase-like phosphagen (guanidino) kinases are enzymes that transphosphorylate a high energy phosphoguanidino compound, like phosphocreatine (PCr) in the case of creatine kinase (CK), which is used as an energy-storage and -transport metabolite, to ADP, thereby creating ATP. The substrate binding site is located in the cleft between the N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. In higher eukaryotes, CKs are found as tissue-specific (muscle, brain), as well as compartment-specific (mitochondrial, cytosolic, and flagellar) isoforms. Mitochondrial and cytoplasmic CKs are dimeric or octameric, while the flagellar isoforms are trimers with three CD domains fused as a single protein chain. CKs are either coupled to glycolysis (cytosolic form) or oxidative phosphorylation (mitochondrial form). Besides CK, one of the most studied members of this family, this model also represents other phosphagen kinases with different substrate specificities, like glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK), and echinoderm arginine kinase (AK). 357 -238368 cd00717 URO-D Uroporphyrinogen decarboxylase (URO-D) is a dimeric cytosolic enzyme that decarboxylates the four acetate side chains of uroporphyrinogen III (uro-III) to create coproporphyrinogen III, without requiring any prosthetic groups or cofactors. This reaction is located at the branching point of the tetrapyrrole biosynthetic pathway, leading to the biosynthesis of heme, chlorophyll or bacteriochlorophyll. URO-D deficiency is responsible for the human genetic diseases familial porphyria cutanea tarda (fPCT) and hepatoerythropoietic porphyria (HEP). 335 -198380 cd00719 GIY-YIG_SF GIY-YIG nuclease domain superfamily. The GIY-YIG nuclease domain superfamily includes a large and diverse group of proteins involved in many cellular processes, such as class I homing GIY-YIG family endonucleases, prokaryotic nucleotide excision repair proteins UvrC and Cho, type II restriction enzymes, the endonuclease/reverse transcriptase of eukaryotic retrotransposable elements, and a family of eukaryotic enzymes that repair stalled replication forks. All of these members contain a conserved GIY-YIG nuclease domain that may serve as a scaffold for the coordination of a divalent metal ion required for catalysis of the phosphodiester bond cleavage. By combining with different specificity, targeting, or other domains, the GIY-YIG nucleases may perform different functions. 69 -238369 cd00727 malate_synt_A Malate synthase A (MSA), present in some bacteria, plants and fungi. Prokaryotic MSAs tend to be monomeric, whereas eukaryotic enzymes are homomultimers. In general, malate synthase catalyzes the Claisen condensation of glyoxylate and acetyl-CoA to malyl-CoA, which hydrolyzes to malate and CoA. This reaction is part of the glyoxylate cycle, which allows certain organisms, like plants and fungi, to derive their carbon requirements from two-carbon compounds, by bypassing the two carboxylation steps of the citric acid cycle. 511 -238370 cd00728 malate_synt_G Malate synthase G (MSG), monomeric enzyme present in some bacteria. In general, malate synthase catalyzes the Claisen condensation of glyoxylate and acetyl-CoA to malyl-CoA , which hydrolyzes to malate and CoA. This reaction is part of the glyoxylate cycle, which allows certain organisms to derive their carbon requirements from two-carbon compounds, by bypassing the two carboxylation steps of the citric acid cycle. 712 -238371 cd00729 rubredoxin_SM Rubredoxin, Small Modular nonheme iron binding domain containing a [Fe(SCys)4] center, present in rubrerythrin and nigerythrin and detected either N- or C-terminal to such proteins as flavin reductase, NAD(P)H-nitrite reductase, and ferredoxin-thioredoxin reductase. In rubredoxin, the iron atom is coordinated by four cysteine residues (Fe(S-Cys)4), and believed to be involved in electron transfer. Rubrerythrins and nigerythrins are small homodimeric proteins, generally consisting of 2 domains: a rubredoxin domain C-terminal to a non-sulfur, oxo-bridged diiron site in the N-terminal rubrerythrin domain. Rubrerythrins and nigerythrins have putative peroxide activity. 34 -238372 cd00730 rubredoxin Rubredoxin; nonheme iron binding domains containing a [Fe(SCys)4] center. Rubredoxins are small nonheme iron proteins. The iron atom is coordinated by four cysteine residues (Fe(S-Cys)4), but iron can also be replaced by cobalt, nickel or zinc. They are believed to be involved in electron transfer. 50 -238373 cd00731 CheA_reg CheA regulatory domain; CheA is a histidine protein kinase present in bacteria and archea. Activated by the chemotaxis receptor a histidine phosphoryl group from CheA is passed directly to an aspartate in the response regulator CheY. This signalling mechanism is modulated by the methyl accepting chemotaxis proteins (MCPs). MCPs form a highly interconnected, tightly packed array within the membrane that is organized, at least in part, through interactions with CheW and CheA. The CheA regulatory domain belongs to the family of CheW_like proteins and has been proposed to mediate interaction with the kinase regulator CheW. 132 -238374 cd00732 CheW CheW, a small regulator protein, unique to the chemotaxis signalling in prokaryotes and archea. CheW interacts with the histidine kinase CheA, most likely with the related regulatory domain of CheA. CheW is proposed to form signalling arrays together with CheA and the methyl-accepting chemotaxis proteins (MCPs), which are involved in response modulation. 140 -238375 cd00733 GlyRS_alpha_core Class II Glycyl-tRNA synthetase (GlyRS) alpha subunit core catalytic domain. GlyRS functions as a homodimer in eukaryotes, archaea and some bacteria and as a heterotetramer in the remainder of prokaryotes and in arabidopsis. It is responsible for the attachment of glycine to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. This alignment contains only sequences from the GlyRS form which heterotetramerizes. The homodimer form of GlyRS is in a different family of class II aaRS. Class II assignment is based upon structure and the presence of three characteristic sequence motifs. 279 -340361 cd00735 T4_like_lys Bacteriophage T4-like lysozymes. Bacteriophage T4-like lysozymes hydrolyze the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan heteropolymers of prokaryotic cell walls. Members include a variety of bacteriophages (T4, RB49, RB69, Aeh1), as well as Dictyostelium. 156 -340362 cd00736 lambda_lys_like Bacteriophage lambda lysozyme and similar proteins. Lysozyme from bacteriophage lambda hydrolyzes the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc), as do other lysozymes. However, unlike other lysozymes, bacteriophage lambda does not produce a reducing end upon cleavage of the peptidoglycan, but rather uses the 6-OH of the same MurNAc residue to produce a 1,6-anhydromuramic acid terminal residue and is therefore a lytic transglycosylase. An identical 1,6-anhydro bond is formed in bacterial peptidoglycans by the action of the lytic transglycosylases of E. coli, though they differ structurally. 142 -340363 cd00737 lyz_endolysin_autolysin endolysin and autolysin. The dsDNA phages of eubacteria use endolysins or muralytic enzymes in conjunction with hollin, a small membrane protein, to degrade the peptidoglycan found in bacterial cell walls. Similarly, bacteria produce autolysins to facilitate the biosynthesis of its cell wall heteropolymer peptidoglycan and cell division. Endolysins and autolysins are found in viruses and bacteria, respectively. Both endolysin and autolysin enzymes cleave the glycosidic beta 1,4-bonds between the N-acetylmuramic acid and the N-acetylglucosamine of the peptidoglycan. 136 -238379 cd00738 HGTP_anticodon HGTP anticodon binding domain, as found at the C-terminus of histidyl, glycyl, threonyl and prolyl tRNA synthetases, which are classified as a group of class II aminoacyl-tRNA synthetases (aaRS). In aaRSs, the anticodon binding domain is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only. This domain is also found in the accessory subunit of mitochondrial polymerase gamma (Pol gamma b). 94 -238380 cd00739 DHPS DHPS subgroup of Pterin binding enzymes. DHPS (dihydropteroate synthase), a functional homodimer, catalyzes the condensation of p-aminobenzoic acid (pABA) in the de novo biosynthesis of folate, which is an essential cofactor in both nucleic acid and protein biosynthesis. Prokaryotes (and some lower eukaryotes) must synthesize folate de novo, while higher eukaryotes are able to utilize dietary folate and therefore lack DHPS. Sulfonamide drugs, which are substrate analogs of pABA, target DHPS. 257 -238381 cd00740 MeTr MeTr subgroup of pterin binding enzymes. This family includes cobalamin-dependent methyltransferases such as methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr) and methionine synthase (MetH). Cobalamin-dependent methyltransferases catalyze the transfer of a methyl group via a methyl- cob(III)amide intermediate. These include MeTr, a functional heterodimer, and the folate binding domain of MetH. 252 -238382 cd00741 Lipase Lipase. Lipases are esterases that can hydrolyze long-chain acyl-triglycerides into di- and monoglycerides, glycerol, and free fatty acids at a water/lipid interface. A typical feature of lipases is "interfacial activation", the process of becoming active at the lipid/water interface, although several examples of lipases have been identified that do not undergo interfacial activation . The active site of a lipase contains a catalytic triad consisting of Ser - His - Asp/Glu, but unlike most serine proteases, the active site is buried inside the structure. A "lid" or "flap" covers the active site, making it inaccessible to solvent and substrates. The lid opens during the process of interfacial activation, allowing the lipid substrate access to the active site. 153 -238383 cd00751 thiolase Thiolase are ubiquitous enzymes that catalyze the reversible thiolytic cleavage of 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA, a 2-step reaction involving a covalent intermediate formed with a catalytic cysteine. They are found in prokaryotes and eukaryotes (cytosol, microbodies and mitochondria). There are 2 functional different classes: thiolase-I (3-ketoacyl-CoA thiolase) and thiolase-II (acetoacetyl-CoA thiolase). Thiolase-I can cleave longer fatty acid molecules and plays an important role in the beta-oxidative degradation of fatty acids. Thiolase-II has a high substrate specificity. Although it can cleave acetoacyl-CoA, its main function is the synthesis of acetoacyl-CoA from two molecules of acetyl-CoA, which gives it importance in several biosynthetic pathways. 386 -340452 cd00754 Ubl_MoaD ubiquitin-like (Ubl) domain found in molybdenum cofactor biosynthesis protein D (MoaD) and similar proteins. MoaD, also termed molybdopterin synthase sulfur carrier subunit, or MPT synthase subunit 1, or MPT synthase small subunit, or molybdopterin-converting factor small subunit, or molybdopterin-converting factor subunit 1, is a conserved small sulfur carrier protein that has beta-grasp ubiquitin-like (Ubl) fold involved in biosynthesis of the molybdenum cofactor (Moco), an essential cofactor of a diverse group of redox enzymes. MoaD is activated in an ATP-dependent manner by sulfurtransferases similar to the activation mechanism of ubiquitin-activating enzyme E1. 79 -238384 cd00755 YgdL_like Family of activating enzymes (E1) of ubiquitin-like proteins related to the E.coli hypothetical protein ygdL. The common reaction mechanism catalyzed by E1-like enzymes begins with a nucleophilic attack of the C-terminal carboxylate of the ubiquitin-like substrate, on the alpha-phosphate of an ATP molecule bound at the active site of the activating enzymes, leading to the formation of a high-energy acyladenylate intermediate and subsequently to the formation of a thiocarboxylate at the C termini of the substrate. The exact function of this family is unknown. 231 -238385 cd00756 MoaE MoaE family. Members of this family are involved in biosynthesis of the molybdenum cofactor (Moco), an essential cofactor for a diverse group of redox enzymes. Moco biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), which carries the cis-dithiolene group responsible for molybdenum ligation. This dithiolene group is generated by MPT synthase in the second major step in Moco biosynthesis. MPT synthase is a heterotetramer consisting of two large (MoaE) and two small (MoaD) subunits. 124 -238386 cd00757 ThiF_MoeB_HesA_family ThiF_MoeB_HesA. Family of E1-like enzymes involved in molybdopterin and thiamine biosynthesis family. The common reaction mechanism catalyzed by MoeB and ThiF, like other E1 enzymes, begins with a nucleophilic attack of the C-terminal carboxylate of MoaD and ThiS, respectively, on the alpha-phosphate of an ATP molecule bound at the active site of the activating enzymes, leading to the formation of a high-energy acyladenylate intermediate and subsequently to the formation of a thiocarboxylate at the C termini of MoaD and ThiS. MoeB, as the MPT synthase (MoaE/MoaD complex) sulfurase, is involved in the biosynthesis of the molybdenum cofactor, a derivative of the tricyclic pterin, molybdopterin (MPT). ThiF catalyzes the adenylation of ThiS, as part of the biosynthesis pathway of thiamin pyrophosphate (vitamin B1). 228 -238387 cd00758 MoCF_BD MoCF_BD: molybdenum cofactor (MoCF) binding domain (BD). This domain is found a variety of proteins involved in biosynthesis of molybdopterin cofactor, like MoaB, MogA, and MoeA. The domain is presumed to bind molybdopterin. 133 -132997 cd00761 Glyco_tranf_GTA_type Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. 156 -133442 cd00762 NAD_bind_malic_enz NAD(P) binding domain of malic enzyme. Malic enzyme (ME), a member of the amino acid dehydrogenase (DH)-like domain family, catalyzes the oxidative decarboxylation of L-malate to pyruvate in the presence of cations (typically Mg++ or Mn++) with the concomitant reduction of cofactor NAD+ or NADP+. ME has been found in all organisms and plays important roles in diverse metabolic pathways such as photosynthesis and lipogenesis. This enzyme generally forms homotetramers. The conversion of malate to pyruvate by ME typically involves oxidation of malate to produce oxaloacetate, followed by decarboxylation of oxaloacetate to produce pyruvate and CO2. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 254 -238388 cd00763 Bacterial_PFK Phosphofructokinase, a key regulatory enzyme in glycolysis, catalyzes the phosphorylation of fructose-6-phosphate to fructose-1,6-biphosphate. The members belong to a subfamily of the PFKA family (cd00363) and include bacterial ATP-dependent phosphofructokinases. These are allosrterically regulated homotetramers; the subunits are of about 320 amino acids. 317 -238389 cd00764 Eukaryotic_PFK Phosphofructokinase, a key regulatory enzyme in glycolysis, catalyzes the phosphorylation of fructose-6-phosphate to fructose-1,6-biphosphate. The members belong to a subfamily of the PFKA family (cd00363) and include eukaryotic ATP-dependent phosphofructokinases. These have evolved from the bacterial PFKs by gene duplication and fusion events and exhibit complex allosteric behavior. 762 -238390 cd00765 Pyrophosphate_PFK Phosphofructokinase, a key regulatory enzyme in glycolysis, catalyzes the phosphorylation of fructose-6-phosphate to fructose-1,6-biphosphate. The members belong to a subfamily of the PFKA family (cd00363) and include pyrophosphate-dependent phosphofructokinases. These are found in bacteria as well as plants. These may be dimeric nonallosteric enzymes as in bacteria or allosteric heterotetramers as in plants. 550 -238391 cd00768 class_II_aaRS-like_core Class II tRNA amino-acyl synthetase-like catalytic core domain. Class II amino acyl-tRNA synthetases (aaRS) share a common fold and generally attach an amino acid to the 3' OH of ribose of the appropriate tRNA. PheRS is an exception in that it attaches the amino acid at the 2'-OH group, like class I aaRSs. These enzymes are usually homodimers. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. The substrate specificity of this reaction is further determined by additional domains. Intererestingly, this domain is also found is asparagine synthase A (AsnA), in the accessory subunit of mitochondrial polymerase gamma and in the bacterial ATP phosphoribosyltransferase regulatory subunit HisZ. 211 -238392 cd00769 PheRS_beta_core Phenylalanyl-tRNA synthetase (PheRS) beta chain core domain. PheRS belongs to class II aminoacyl-tRNA synthetases (aaRS) based upon its structure. While class II aaRSs generally aminoacylate the 3'-OH ribose of the appropriate tRNA, PheRS is an exception in that it attaches the amino acid at the 2'-OH group, like class I aaRSs. PheRS is an alpha-2/ beta-2 tetramer. While the alpha chain contains a catalytic core domain, the beta chain has a non-catalytic core domain. 198 -238393 cd00770 SerRS_core Seryl-tRNA synthetase (SerRS) class II core catalytic domain. SerRS is responsible for the attachment of serine to the 3' OH group of ribose of the appropriate tRNA. This domain It is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs in the core domain. SerRS synthetase is a homodimer. 297 -238394 cd00771 ThrRS_core Threonyl-tRNA synthetase (ThrRS) class II core catalytic domain. ThrRS is a homodimer. It is responsible for the attachment of threonine to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs in the core domain. 298 -238395 cd00772 ProRS_core Prolyl-tRNA synthetase (ProRS) class II core catalytic domain. ProRS is a homodimer. It is responsible for the attachment of proline to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs in the core domain. 264 -238396 cd00773 HisRS-like_core Class II Histidinyl-tRNA synthetase (HisRS)-like catalytic core domain. HisRS is a homodimer. It is responsible for the attachment of histidine to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs. This domain is also found at the C-terminus of eukaryotic GCN2 protein kinase and at the N-terminus of the ATP phosphoribosyltransferase accessory subunit, HisZ. HisZ along with HisG catalyze the first reaction in histidine biosynthesis. HisZ is found only in a subset of bacteria and differs from HisRS in lacking a C-terminal anti-codon binding domain. 261 -238397 cd00774 GlyRS-like_core Glycyl-tRNA synthetase (GlyRS)-like class II core catalytic domain. GlyRS functions as a homodimer in eukaryotes, archaea and some bacteria and as a heterotetramer in the remainder of prokaryotes. It is responsible for the attachment of glycine to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP binding and hydrolysis. This alignment contains only sequences from the GlyRS form which homodimerizes. The heterotetramer glyQ is in a different family of class II aaRS. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs. This domain is also found at the N-terminus of the accessory subunit of mitochondrial polymerase gamma (Pol gamma b). Pol gamma b stimulates processive DNA synthesis and is functional as a homodimer, which can associate with the catalytic subunit Pol gamma alpha to form a heterotrimer. Despite significant both structural and sequence similarity with GlyRS, Pol gamma b lacks conservation of several class II functional residues. 254 -238398 cd00775 LysRS_core Lys_tRNA synthetase (LysRS) class II core domain. Class II LysRS is a dimer which attaches a lysine to the 3' OH group of ribose of the appropriate tRNA. Its assignment to class II aaRS is based upon its structure and the presence of three characteristic sequence motifs in the core domain. It is found in eukaryotes as well as some prokaryotes and archaea. However, LysRS belongs to class I aaRS's in some prokaryotes and archaea. The catalytic core domain is primarily responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. 329 -238399 cd00776 AsxRS_core Asx tRNA synthetase (AspRS/AsnRS) class II core domain. Assignment to class II aminoacyl-tRNA synthetases (aaRS) based upon its structure and the presence of three characteristic sequence motifs in the core domain. This family includes AsnRS as well as a subgroup of AspRS. AsnRS and AspRS are homodimers, which attach either asparagine or aspartate to the 3'OH group of ribose of the appropriate tRNA. While archaea lack asnRS, they possess a non-discriminating aspRS, which can mischarge Asp-tRNA with Asn. Subsequently, a tRNA-dependent aspartate amidotransferase converts the bound aspartate to asparagine. The catalytic core domain is primarily responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. 322 -238400 cd00777 AspRS_core Asp tRNA synthetase (aspRS) class II core domain. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs. AspRS is a homodimer, which attaches a specific amino acid to the 3' OH group of ribose of the appropriate tRNA. The catalytic core domain is primarily responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. AspRS in this family differ from those found in the AsxRS family by a GAD insert in the core domain. 280 -238401 cd00778 ProRS_core_arch_euk Prolyl-tRNA synthetase (ProRS) class II core catalytic domain. ProRS is a homodimer. It is responsible for the attachment of proline to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs in the core domain. This subfamily contains the core domain of ProRS from archaea, the cytoplasm of eukaryotes and some bacteria. 261 -238402 cd00779 ProRS_core_prok Prolyl-tRNA synthetase (ProRS) class II core catalytic domain. ProRS is a homodimer. It is responsible for the attachment of proline to the 3' OH group of ribose of the appropriate tRNA. This domain is primarily responsible for ATP-dependent formation of the enzyme bound aminoacyl-adenylate. Class II assignment is based upon its structure and the presence of three characteristic sequence motifs in the core domain. This subfamily contains the core domain of ProRS from prokaryotes and from the mitochondria of eukaryotes. 255 -238403 cd00780 NTF2 Nuclear transport factor 2 (NTF2) domain plays an important role in the trafficking of macromolecules, ions and small molecules between the cytoplasm and nucleus. This bi-directional transport of macromolecules across the nuclear envelope requires many soluble factors that includes GDP-binding protein Ran (RanGDP). RanGDP is required for both import and export of proteins and poly(A) RNA. RanGDP also has been implicated in cell cycle control, specifically in mitotic spindle assembly. In interphase cells, RanGDP is predominately nuclear and thought to be GTP bound, but it is also present in the cytoplasm, probably in the GDP-bound state. NTF2 mediates the nuclear import of RanGDP. NTF2 binds to both RanGDP and FxFG repeat-containing nucleoporins. 119 -238404 cd00781 ketosteroid_isomerase ketosteroid isomerase: Many biological reactions proceed by enzymatic cleavage of a C-H bond adjacent to carbonyl or a carboxyl group, leading to an enol or a enolate intermediate that is subsequently re-protonated at the same or an adjacent carbon. Ketosteroid isomerases are important members of this class of enzymes which are the most proficient of all enzymes known and have served as a paradigm for enzymatic enolizations since its discovery in 1954. This CD includes members of this class that calalyze the isomerization of various beta,gamma-unsaturated isomers at nearly a diffusion-controlled rate. These enzymes are widely distributed in bacteria. 122 -238405 cd00782 MutL_Trans MutL_Trans: transducer domain, having a ribosomal S5 domain 2-like fold, conserved in the C-terminal domain of DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. Included in this group are proteins similar to human MLH1, hPMS2, hPMS1, hMLH3 and E. coli MutL, MLH1 forms heterodimers with PMS2, PMS1 and MLH3. These three complexes have distinct functions in meiosis. hMLH1-hPMS2 also participates in the repair of all DNA mismatch repair (MMR) substrates. Roles for hMLH1-hPMS1 or hMLH1-hMLH3 in MMR have not been established. Cells lacking either hMLH1 or hPMS2 have a strong mutator phenotype and display microsatellite instability (MSI). Mutation in hMLH1 causes predisposition to HNPCC, Muir-Torre syndrome and Turcot syndrome (HNPCC variant). Mutation in hPMS2 causes predisposition to HPNCC and Turcot syndrome. Mutation in hMLH1 accounts for a large fraction of HNPCC families. There is no convincing evidence to support hPMS1 having a role in HNPCC predisposition. It has been suggested that hMLH3 may be a low risk gene for colorectal cancer; however there is little evidence to support it having a role in classical HNPCC. It has been suggested that during initiation of DNA mismatch repair in E. coli, the mismatch recognition protein MutS recruits MutL in the presence of ATP. The MutS(ATP)-MutL ternary complex formed, then recruits the latent endonuclease MutH. 122 -238406 cd00786 cytidine_deaminase-like Cytidine and deoxycytidylate deaminase zinc-binding region. The family contains cytidine deaminases, nucleoside deaminases, deoxycytidylate deaminases and riboflavin deaminases. Also included are the apoBec family of mRNA editing enzymes. All members are Zn dependent. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate. 96 -238407 cd00788 KU70 Ku-core domain, Ku70 subfamily; Ku70 is a subunit of the Ku protein, which plays a key role in multiple nuclear processes such as DNA repair, chromosome maintenance, transcription regulation, and V(D)J recombination. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, although it seems that Ku is a multifunctional protein that works in the nuclei. In mammalian cells, the Ku heterodimer recruits the catalytic subunit of DNA-dependent protein kinase (DNA-PK), which is dependent on its association with the Ku70/80 heterodimer bound to DNA for its protein kinase activity. 287 -238408 cd00789 KU_like Ku-core domain, Ku-like subfamily; composed of prokaryotic homologs of the eukaryotic DNA binding protein Ku. The alignment includes the core domain shared by the prokaryotic YkoV-like proteins and the eukaryotic Ku70 and Ku80. The prokaryotic Ku homologs are predicted to form homodimers. It is proposed that the Ku homologs are functionally associated with ATP-dependent DNA ligase and the eukaryotic-type primase, probably as components of a double-strand break repair system. 256 -238409 cd00794 NOS_oxygenase_prok Nitric oxide synthase (NOS) prokaryotic oxygenase domain. NOS produces nitric oxide (NO) by catalyzing a five-electron heme-based oxidation of a guanidine nitrogen of L-arginine to L-citrulline via two successive monooxygenation reactions producing N(omega)-hydroxy-L-arginine (NHA) as an intermediate. Nitric oxide synthases are homodimers. Most prokaryotes produce NO as a byproduct of denitrification, using a completely different set of enzymes than NOS. However, a few prokaryotes also have a NOS, consisting solely of the NOS oxygenase domain. Prokaryotic NOS binds to the substrate L-Arg, zinc, and to the cofactors heme and tetrahydrofolate. 353 -238410 cd00795 NOS_oxygenase_euk Nitric oxide synthase (NOS) eukaryotic oxygenase domain. NOS produces nitric oxide (NO) by catalyzing a five-electron heme-based oxidation of a guanidine nitrogen of L-arginine to L-citrulline via two successive monooxygenation reactions producing N(omega)-hydroxy-L-arginine (NHA) as an intermediate. In mammals, there are three distinct NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-2) and endothelial (eNOS or NOS-3) . Nitric oxide synthases are homodimers. In eukaryotes, each monomer has an N-terminal oxygenase domain, which binds to the substrate L-Arg, zinc, and to the cofactors heme and 5.6.7.8-(6R)-tetrahydrobiopterin (BH4) . Eukaryotic NOS's also have a C-terminal electron supplying reductase region, which is homologous to cytochrome P450 reductase and binds NADH, FAD and FMN. 412 -271177 cd00796 INT_Rci_Hp1_C Shufflon-specific DNA recombinase Rci and Bacteriophage Hp1_like integrase, C-terminal catalytic domain. Rci protein is a tyrosine recombinase specifically involved in Shufflon type of DNA rearrangement in bacteria. The shufflon of plasmid R64 consists of four invertible DNA segments which are separated and flanked by seven 19-bp repeat sequences. RCI recombinase facilitates the site-specific recombination between any inverted repeats results in an inversion of the DNA segment(s) either independently or in groups. HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenza. Bacteriophage Hp1_like integrases are tyrosine based site specific recombinases. They belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism is essentially identical and involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 162 -271178 cd00797 INT_RitB_C_like C-terminal catalytic domain of recombinase RitB, a component of the recombinase trio. Recombinases belonging to the RitA (also known as pAE1 due to its presence in the deletion prone region of plasmid pAE1 of Alcaligenes eutrophus H1), RitB, and RitC families are associated in a complex referred to as a Recombinase in Trio (RIT) element. These RIT elements consist of three adjacent and unidirectional overlapping genes, one from each family (ritABC in order of transcription). All three integrases contain a catalytic motif, suggesting that they are all active enzymes. However, their specific roles are not yet fully understood. All three families belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. 198 -271179 cd00798 INT_XerDC_C XerD and XerC integrases, C-terminal catalytic domains. XerDC-like integrases are involved in the site-specific integration and excision of lysogenic bacteriophage genomes, transposition of conjugative transposons, termination of chromosomal replication, and stable plasmid inheritance. They share the same fold in their catalytic domain containing six conserved active site residues and the overall reaction mechanism with the DNA breaking-rejoining enzyme superfamily. In Escherichia coli, the Xer site-specific recombination system acts to convert dimeric chromosomes, which are formed by homologous recombination to monomers. Two related recombinases, XerC and XerD, bind cooperatively to a recombination site present in the E. coli chromosome. Each recombinase catalyzes the exchange of one pair of DNA strand in a reaction that proceeds through a Holliday junction intermediate. These enzymes can bridge two different and well-separated DNA sequences called arm- and core-sites. The C-terminal domain binds, cleaves, and re-ligates DNA strands at the core-sites, while the N-terminal domain is largely responsible for high-affinity binding to the arm-type sites. 172 -271180 cd00799 INT_Cre_C C-terminal catalytic domain of Cre recombinase (also called integrase). Cre-like recombinases are tyrosine based site specific recombinases. They belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The bacteriophage P1 Cre recombinase maintains the circular phage replicon in a monomeric state by catalyzing a site-specific recombination between two loxP sites. The catalytic core domain of Cre recombinase is linked to a more divergent helical N-terminal domain, which interacts primarily with the DNA major groove proximal to the crossover region. 188 -271181 cd00800 INT_Lambda_C C-terminal catalytic domain of Lambda integrase, a tyrosine-based site-specific recombinase. Lambda-type integrases catalyze site-specific integration and excision of temperate bacteriophages and other mobile genetic elements to and from the bacterial host chromosome. They are tyrosine-based site-specific recombinase and belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The phage lambda integrase can bridge two different and well-separated DNA sequences called arm- and core-sites. The C-terminal domain binds, cleaves and re-ligates DNA strands at the core-sites, while the N-terminal domain is largely responsible for high-affinity binding to the arm-type sites. 161 -271182 cd00801 INT_P4_C Bacteriophage P4 integrase, C-terminal catalytic domain. P4-like integrases are found in temperate bacteriophages, integrative plasmids, pathogenicity and symbiosis islands, and other mobile genetic elements. The P4 integrase mediates integrative and excisive site-specific recombination between two sites, called attachment sites, located on the phage genome and the bacterial chromosome. The phage attachment site is often found adjacent to the integrase gene, while the host attachment sites are typically situated near tRNA genes. This family belongs to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 180 -173901 cd00802 class_I_aaRS_core catalytic core domain of class I amino acyl-tRNA synthetase. Class I amino acyl-tRNA synthetase (aaRS) catalytic core domain. These enzymes are mostly monomers which aminoacylate the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. 143 -173902 cd00805 TyrRS_core catalytic core domain of tyrosinyl-tRNA synthetase. Tyrosinyl-tRNA synthetase (TyrRS) catalytic core domain. TyrRS is a homodimer which attaches Tyr to the appropriate tRNA. TyrRS is a class I tRNA synthetases, so it aminoacylates the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formationof the enzyme bound aminoacyl-adenylate. It contains the class I characteristic HIGH and KMSKS motifs, which are involved in ATP binding. 269 -173903 cd00806 TrpRS_core catalytic core domain of tryptophanyl-tRNA synthetase. Tryptophanyl-tRNA synthetase (TrpRS) catalytic core domain. TrpRS is a homodimer which attaches Tyr to the appropriate tRNA. TrpRS is a class I tRNA synthetases, so it aminoacylates the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains class I characteristic HIGH and KMSKS motifs, which are involved in ATP binding 280 -185676 cd00807 GlnRS_core catalytic core domain of glutaminyl-tRNA synthetase. Glutaminyl-tRNA synthetase (GlnRS) cataytic core domain. These enzymes attach Gln to the appropriate tRNA. Like other class I tRNA synthetases, they aminoacylate the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. GlnRS contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. These enzymes function as monomers. Archaea and most bacteria lack GlnRS. In these organisms, the "non-discriminating" form of GluRS aminoacylates both tRNA(Glu) and tRNA(Gln) with Glu, which is converted to Gln when appropriate by a transamidation enzyme. 238 -173905 cd00808 GluRS_core catalytic core domain of discriminating glutamyl-tRNA synthetase. Discriminating Glutamyl-tRNA synthetase (GluRS) catalytic core domain . The discriminating form of GluRS is only found in bacteria and cellular organelles. GluRS is a monomer that attaches Glu to the appropriate tRNA. Like other class I tRNA synthetases, GluRS aminoacylates the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. 239 -173906 cd00812 LeuRS_core catalytic core domain of leucyl-tRNA synthetases. Leucyl tRNA synthetase (LeuRS) catalytic core domain. This class I enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. In Aquifex aeolicus, the gene encoding LeuRS is split in two, just before the KMSKS motif. Consequently, LeuRS is a heterodimer, which likely superimposes with the LeuRS monomer found in most other organisms. LeuRS has an insertion in the core domain, which is subject to both deletions and rearrangements and thus differs between prokaryotic LeuRS and archaeal/eukaryotic LeuRS. This editing region hydrolyzes mischarged cognate tRNAs and thus prevents the incorporation of chemically similar amino acids. 314 -173907 cd00814 MetRS_core catalytic core domain of methioninyl-tRNA synthetases. Methionine tRNA synthetase (MetRS) catalytic core domain. This class I enzyme aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. MetRS, which consists of the core domain and an anti-codon binding domain, functions as a monomer. However, in some species the anti-codon binding domain is followed by an EMAP domain. In this case, MetRS functions as a homodimer. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. As a result of a deletion event, MetRS has a significantly shorter core domain insertion than IleRS, ValRS, and LeuR. Consequently, the MetRS insertion lacks the editing function. 319 -185677 cd00817 ValRS_core catalytic core domain of valyl-tRNA synthetases. Valine amino-acyl tRNA synthetase (ValRS) catalytic core domain. This enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. ValRS has an insertion in the core domain, which is subject to both deletions and rearrangements. This editing region hydrolyzes mischarged cognate tRNAs and thus prevents the incorporation of chemically similar amino acids. 382 -173909 cd00818 IleRS_core catalytic core domain of isoleucyl-tRNA synthetases. Isoleucine amino-acyl tRNA synthetases (IleRS) catalytic core domain . This class I enzyme is a monomer which aminoacylates the 2'-OH of the nucleotide at the 3' of the appropriate tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. IleRS has an insertion in the core domain, which is subject to both deletions and rearrangements. This editing region hydrolyzes mischarged cognate tRNAs and thus prevents the incorporation of chemically similar amino acids. 338 -238417 cd00819 PEPCK_GTP Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. It catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to yield phosphoenolpyruvate and carbon dioxide, using a nucleotide molecule (GTP) for the phosphoryl transfer, and has a strict requirement for divalent metal ions for activity. PEPCK's separate into two phylogenetic groups based on their nucleotide substrate specificity, this model describes the GTP-dependent group. 579 -238418 cd00820 PEPCK_HprK Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. It catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to yield phosphoenolpyruvate and carbon dioxide, using a nucleotide molecule (ATP or GTP) for the phosphoryl transfer, and has a strict requirement for divalent metal ions for activity. PEPCK's separate into two phylogenetic groups based on their nucleotide substrate specificity (the ATP-, and GTP-dependent groups).HprK/P, the bifunctional histidine-containing protein kinase/phosphatase, controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of HPr and its dephosphorylation by phosphorolysis. PEPCK and the C-terminal catalytic domain of HprK/P are structurally similar with conserved active site residues suggesting that these two phosphotransferases have related functions. 107 -275388 cd00821 PH Pleckstrin homology (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 92 -238419 cd00822 TopoII_Trans_DNA_gyrase TopoIIA_Trans_DNA_gyrase: Transducer domain, having a ribosomal S5 domain 2-like fold, of the type found in proteins of the type IIA family of DNA topoisomerases similar to the B subunits of E. coli DNA gyrase and E. coli Topoisomerase IV which are heterodimers composed of two subunits. The type IIA enzymes are the predominant form of topoisomerase and are found in some bacteriophages, viruses and archaea, and in all bacteria and eukaryotes. All type IIA topoisomerases are related to each other at amino acid sequence level, though their oligomeric organization sometimes differs. TopoIIA enzymes cut both strands of the duplex DNA to remove (relax) both positive and negative supercoils in DNA. These enzymes covalently attach to the 5' ends of the cut DNA, separate the free ends of the cleaved strands, pass another region of the duplex through this gap, then rejoin the ends. TopoIIA enzymes also catenate/ decatenate duplex rings. E.coli DNA gyrase is a heterodimer composed of two subunits. E. coli DNA gyrase B subunit is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. 172 -238420 cd00823 TopoIIB_Trans TopoIIB_Trans: Transducer domain, having a ribosomal S5 domain 2-like fold, of the type found in proteins of the type IIB family of DNA topoisomerases similar to Sulfolobus shibatae topoisomerase VI (topoVI). The sole representative of the Type IIB family is topo VI. Topo VI enzymes are heterotetramers found in archaea and plants. S. shibatae topoVI relaxes both positive and negative supercoils, and in addition has a strong decatenase activity. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. 151 -238421 cd00825 decarbox_cond_enzymes decarboxylating condensing enzymes; Family of enzymes that catalyze the formation of a new carbon-carbon bond by a decarboxylating Claisen-like condensation reaction. Members are involved in the synthesis of fatty acids and polyketides, a diverse group of natural products. Both pathways are an iterative series of additions of small carbon units, usually acetate, to a nascent acyl group. There are 2 classes of decarboxylating condensing enzymes, which can be distinguished by sequence similarity, type of active site residues and type of primer units (acetyl CoA or acyl carrier protein (ACP) linked units). 332 -238422 cd00826 nondecarbox_cond_enzymes nondecarboxylating condensing enzymes; In general, thiolases catalyze the reversible thiolytic cleavage of 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA, a 2-step reaction involving a covalent intermediate formed with a catalytic cysteine. There are 2 functional different classes: thiolase-I (3-ketoacyl-CoA thiolase) and thiolase-II (acetoacetyl-CoA thiolase). Thiolase-I can cleave longer fatty acid molecules and plays an important role in the beta-oxidative degradation of fatty acids. Thiolase-II has a high substrate specificity. Although it can cleave acetoacyl-CoA, its main function is the synthesis of acetoacyl-CoA from two molecules of acetyl-CoA, which gives it importance in several biosynthetic pathways. 393 -238423 cd00827 init_cond_enzymes "initiating" condensing enzymes are a subclass of decarboxylating condensing enzymes, including beta-ketoacyl [ACP] synthase, type III and polyketide synthases, type III, which include chalcone synthase and related enzymes. They are characterized by the utlization of CoA substrate primers, as well as the nature of their active site residues. 324 -238424 cd00828 elong_cond_enzymes "elongating" condensing enzymes are a subclass of decarboxylating condensing enzymes, including beta-ketoacyl [ACP] synthase, type I and II and polyketide synthases.They are characterized by the utlization of acyl carrier protein (ACP) thioesters as primer substrates, as well as the nature of their active site residues. 407 -238425 cd00829 SCP-x_thiolase Thiolase domain associated with sterol carrier protein (SCP)-x isoform and related proteins; SCP-2 has multiple roles in intracellular lipid circulation and metabolism. The N-terminal presequence in the SCP-x isoform represents a peroxisomal 3-ketacyl-Coa thiolase specific for branched-chain acyl CoAs, which is proteolytically cleaved from the sterol carrier protein. 375 -238426 cd00830 KAS_III Ketoacyl-acyl carrier protein synthase III (KASIII) initiates the elongation in type II fatty acid synthase systems. It is found in bacteria and plants. Elongation of fatty acids in the type II systems occurs by Claisen condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP. KASIII initiates this process by specifically using acetyl-CoA over acyl-CoA. 320 -238427 cd00831 CHS_like Chalcone and stilbene synthases; plant-specific polyketide synthases (PKS) and related enzymes, also called type III PKSs. PKS generate an array of different products, dependent on the nature of the starter molecule. They share a common chemical strategy, after the starter molecule is loaded onto the active site cysteine, a carboxylative condensation reation extends the polyketide chain. Plant-specific PKS are dimeric iterative PKSs, using coenzyme A esters to deliver substrate to the active site, but they differ in the choice of starter molecule and the number of condensation reactions. 361 -238428 cd00832 CLF Chain-length factor (CLF) is a factor required for polyketide chain initiation of aromatic antibiotic-producing polyketide synthases (PKSs) of filamentous bacteria. CLFs have been shown to have decarboxylase activity towards malonyl-acyl carrier protein (ACP). CLFs are similar to other elongation ketosynthase domains, but their active site cysteine is replaced by a conserved glutamine. 399 -238429 cd00833 PKS polyketide synthases (PKSs) polymerize simple fatty acids into a large variety of different products, called polyketides, by successive decarboxylating Claisen condensations. PKSs can be divided into 2 groups, modular type I PKSs consisting of one or more large multifunctional proteins and iterative type II PKSs, complexes of several monofunctional subunits. 421 -238430 cd00834 KAS_I_II Beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS), type I and II. KASs are responsible for the elongation steps in fatty acid biosynthesis. KASIII catalyses the initial condensation and KAS I and II catalyze further elongation steps by Claisen condensation of malonyl-acyl carrier protein (ACP) with acyl-ACP. 406 -269907 cd00835 RanBD_family Ran-binding domain. The RanBD is present in RanBP1, RanBP2, RanBP3, Nuc2, and Nuc50. Most of these proteins have a single RanBD, with the exception of RanBP2 which has 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. The Ran-binding domain is found in multiple copies in Nuclear pore complex proteins. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The RanBD proteins of the nuclear pore complex (NPC): nucleoporin 1 (NUP1), NUP2, NUP61, and Nuclear Pore complex Protein 9 (npp-9) are present in the parent, but specific models were not made due to lineage. To date there been no reports of inositol phosphate or phosphoinositide binding by Ran-binding proteins. 118 -275389 cd00836 FERM_C-lobe FERM domain C-lobe. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 93 -269909 cd00837 EVH1_family EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domain. The EVH1 domains are part of the PH domain superfamily. EVH1 subfamilies include Enables/VASP, Homer/Vesl, WASP, and Spred. Ligands are known for three of the EVH1 subfamilies, all of which bind proline-rich sequences: the Enabled/VASP family binds to FPPPP peptides, the Homer/Vesl family binds PPxxF peptides, and the WASP family binds LPPPEP peptides. EVH1 has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. 103 -277317 cd00838 MPP_superfamily metallophosphatase superfamily, metallophosphatase domain. Metallophosphatases (MPPs), also known as metallophosphoesterases, phosphodiesterases (PDEs), binuclear metallophosphoesterases, and dimetal-containing phosphoesterases (DMPs), represent a diverse superfamily of enzymes with a conserved domain containing an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. This superfamily includes: the phosphoprotein phosphatases (PPPs), Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 130 -277318 cd00839 MPP_PAPs purple acid phosphatases of the metallophosphatase superfamily, metallophosphatase domain. Purple acid phosphatases (PAPs) belong to a diverse family of binuclear metallohydrolases that have been identified and characterized in plants, animals, and fungi. PAPs contain a binuclear metal center and their characteristic pink or purple color derives from a charge-transfer transition between a tyrosine residue and a chromophoric ferric ion within the binuclear center. PAPs catalyze the hydrolysis of a wide range of activated phosphoric acid mono- and di-esters and anhydrides. PAPs are distinguished from the other phosphatases by their insensitivity to L-(+) tartrate inhibition and are therefore also known as tartrate resistant acid phosphatases (TRAPs). While only a few copies of PAP-like genes are present in mammalian and fungal genomes, multiple copies are present in plant genomes. PAPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 296 -277319 cd00840 MPP_Mre11_N Mre11 nuclease, N-terminal metallophosphatase domain. Mre11 (also known as SbcD in Escherichia coli) is a subunit of the MRX protein complex. This complex includes: Mre11, Rad50, and Xrs2/Nbs1, and plays a vital role in several nuclear processes including DNA double-strand break repair, telomere length maintenance, cell cycle checkpoint control, and meiotic recombination, in eukaryotes. During double-strand break repair, the MRX complex is required to hold the two ends of a broken chromosome together. In vitro studies show that Mre11 has 3'-5' exonuclease activity on dsDNA templates and endonuclease activity on dsDNA and ssDNA templates. In addition to the N-terminal phosphatase domain, the eukaryotic MRE11 members of this family have a C-terminal DNA binding domain (not included in this alignment model). MRE11-like proteins are found in prokaryotes and archaea was well as in eukaryotes. Mre11 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 186 -277320 cd00841 MPP_YfcE Escherichia coli YfcE and related proteins, metallophosphatase domain. YfcE is a manganase-dependent metallophosphatase, found in bacteria and archaea, that cleaves bis-p-nitrophenyl phosphate, thymidine 5'-monophosphate-p-nitrophenyl ester, and p-nitrophenyl phosphorylcholine, but is unable to hydrolyze 2',3 ' or 3',5' cyclic nucleic phosphodiesters, and various phosphomonoesters, including p-nitrophenyl phosphate. This family also includes the Bacilus subtilis YsnB and Methanococcus jannaschii MJ0936 proteins. This domain family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 156 -277321 cd00842 MPP_ASMase acid sphingomyelinase and related proteins, metallophosphatase domain. Acid sphingomyelinase (ASMase) is a ubiquitously expressed phosphodiesterase which hydrolyzes sphingomyelin in acid pH conditions to form ceramide, a bioactive second messenger, as part of the sphingomyelin signaling pathway. ASMase is localized at the noncytosolic leaflet of biomembranes (for example the luminal leaflet of endosomes, lysosomes and phagosomes, and the extracellular leaflet of plasma membranes). ASMase-deficient humans develop Niemann-Pick disease. This disease is characterized by lysosomal storage of sphingomyelin in all tissues. Although ASMase-deficient mice are resistant to stress-induced apoptosis, they have greater susceptibility to bacterial infection. The latter correlates with defective phagolysosomal fusion and antibacterial killing activity in ASMase-deficient macrophages. ASMase belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: the phosphoprotein phosphatases (PPPs), Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 294 -277322 cd00844 MPP_Dbr1_N Dbr1 RNA lariat debranching enzyme, N-terminal metallophosphatase domain. Dbr1 is an RNA lariat debranching enzyme that hydrolyzes 2'-5' phosphodiester bonds at the branch points of excised intron lariats. This alignment model represents the N-terminal metallophosphatase domain of Dbr1. This domain belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 271 -277323 cd00845 MPP_UshA_N_like Escherichia coli UshA-like family, N-terminal metallophosphatase domain. This family includes the bacterial enzyme UshA, and related enzymes including SoxB, CpdB, YhcR, and CD73. All members have a similar domain architecture which includes an N-terminal metallophosphatase domain and a C-terminal nucleotidase domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 255 -238431 cd00851 MTH1175 This uncharacterized conserved protein belongs to a family of iron-molybdenum cluster-binding proteins that includes NifX, NifB, and NifY, all of which are involved in the synthesis of an iron-molybdenum cofactor (FeMo-co) that binds the active site of the dinitrogenase enzyme. This domain is a predicted small-molecule-binding domain (SMBD) with an alpha/beta fold that is present either as a stand-alone domain (e.g. NifX and NifY) or fused to another conserved domain (e.g. NifB) however, its function is still undetermined.The SCOP database suggests that this domain is most similar to structures within the ribonuclease H superfamily. This conserved domain is represented in two of the three major divisions of life (bacteria and archaea). 103 -238432 cd00852 NifB NifB belongs to a family of iron-molybdenum cluster-binding proteins that includes NifX, and NifY, all of which are involved in the synthesis of an iron-molybdenum cofactor (FeMo-co) that binds the active site of the dinitrogenase enzyme as part of nitrogen fixation in bacteria. This domain is sometimes found fused to a N-terminal domain (the Radical SAM domain) in nifB-like proteins. 106 -238433 cd00853 NifX NifX belongs to a family of iron-molybdenum cluster-binding proteins that includes NifB, and NifY, all of which are involved in the synthesis of an iron-molybdenum cofactor (FeMo-co) that binds the active site of the dinitrogenase enzyme. The protein is part of the nitrogen fixation gene cluster in nitrogen-fixing bacteria and has sequence similarity to other members of the cluster. 102 -238434 cd00854 NagA N-acetylglucosamine-6-phosphate deacetylase, NagA, catalyzes the hydrolysis of the N-acetyl group of N-acetyl-glucosamine-6-phosphate (GlcNAc-6-P) to glucosamine 6-phosphate and acetate. This is the first committed step in the biosynthetic pathway to amino-sugar-nucleotides, which is needed for cell wall peptidoglycan and teichoic acid biosynthesis. Deacetylation of N-acetylglucosamine is also important in lipopolysaccharide synthesis and cell wall recycling. 374 -349487 cd00855 SWIB-MDM2 SWIB/MDM2 domain family. The SWIB/MDM2 protein domain, short for SWI/SNF complex B/MDM2, has been found in both SWI/SNF complex B (SWIB) and the negative regulator of the p53 tumor suppressor MDM2, which are homologous and share a common fold. The SWIB domain is a conserved region found within proteins in the SWI/SNF (SWItch/Sucrose Non-Fermentable) family of complexes. SWI/SNF complex proteins display helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The mammalian complexes are made up of 9-12 proteins called BAFs (BRG1-associated factors). MDM2 is an inhibitor of p53 tumor repressor. It binds to the transactivation domain and down-regulates the ability of p53 to activate transcription. This family corresponds to the SWIB domain and the p53 binding domain of MDM2. 69 -238435 cd00858 GlyRS_anticodon GlyRS Glycyl-anticodon binding domain. GlyRS belongs to class II aminoacyl-tRNA synthetases (aaRS). This alignment contains the anticodon binding domain, which is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only. 121 -238436 cd00859 HisRS_anticodon HisRS Histidyl-anticodon binding domain. HisRS belongs to class II aminoacyl-tRNA synthetases (aaRS). This alignment contains the anticodon binding domain, which is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only. 91 -238437 cd00860 ThrRS_anticodon ThrRS Threonyl-anticodon binding domain. ThrRS belongs to class II aminoacyl-tRNA synthetases (aaRS). This alignment contains the anticodon binding domain, which is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only. 91 -238438 cd00861 ProRS_anticodon_short ProRS Prolyl-anticodon binding domain, short version found predominantly in bacteria. ProRS belongs to class II aminoacyl-tRNA synthetases (aaRS). This alignment contains the anticodon binding domain, which is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only. 94 -238439 cd00862 ProRS_anticodon_zinc ProRS Prolyl-anticodon binding domain, long version found predominantly in eukaryotes and archaea. ProRS belongs to class II aminoacyl-tRNA synthetases (aaRS). This alignment contains the anticodon binding domain, which is responsible for specificity in tRNA-binding, so that the activated amino acid is transferred to a ribose 3' OH group of the appropriate tRNA only, and an additional C-terminal zinc-binding domain specific to this subfamily of aaRSs. 202 -238440 cd00864 PI3Ka Phosphoinositide 3-kinase family, accessory domain (PIK domain); PIK domain is conserved in PI3 and PI4-kinases. Its role is unclear, but it has been suggested to be involved in substrate presentation. Phosphoinositide 3-kinases play an important role in a variety of fundamental cellular processes and can be divided into three main classes, defined by their substrate specificity and domain architecture. 152 -176643 cd00865 PEBP_bact_arch PhosphatidylEthanolamine-Binding Protein (PEBP) domain present in bacteria and archaea. PhosphatidylEthanolamine-Binding Proteins (PEBPs) are represented in all three major phylogenetic divisions (eukaryotes, bacteria, archaea). The members in this subgroup are present in bacterial and archaea. Members here include Escherichia coli YBHB and YBCL which are thought to regulate protein phosphorylation as well as Sulfolobus solfataricus SsCEI which inhibits serine proteases alpha-chymotrypsin and elastase. Although their overall structures are similar, the members of the PEBP family have very different substrates and oligomerization states (monomer/dimer/tetramer). In a few of the bacterial members present here the dimerization interface is proposed to form the ligand binding site, unlike in other PEBP members. 150 -176644 cd00866 PEBP_euk PhosphatidylEthanolamine-Binding Protein (PEBP) domain present in eukaryotes. PhosphatidylEthanolamine-Binding Proteins (PEBPs) are represented in all three major phylogenetic divisions (eukaryotes, bacteria, archaea). The members in this subgroup are present in eukaryotes. Members here include those in plants such as Arabidopsis thaliana FLOWERING LOCUS (FT) and TERMINAL FLOWER1 (FT1) which function as a promoter and a repressor of the floral transitions, respectively as well as the mammalian Raf kinase inhibitory protein (RKIP) which inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Although their overall structures are similar, the members of the PEBP family have very different substrates and oligomerization states (monomer/dimer/tetramer). 154 -173836 cd00867 Trans_IPPS Trans-Isoprenyl Diphosphate Synthases. Trans-Isoprenyl Diphosphate Synthases (Trans_IPPS) of class 1 isoprenoid biosynthesis enzymes which either synthesis geranyl/farnesyl diphosphates (GPP/FPP) or longer chained products from isoprene precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), or use geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl (C20)-diphosphate as substrate. These enzymes produce a myriad of precursors for such end products as steroids, cholesterol, sesquiterpenes, heme, carotenoids, retinoids, diterpenes, ubiquinone, and archaeal ether linked lipids; and are widely distributed among archaea, bacteria, and eukareya. The enzymes in this family share the same 'isoprenoid synthase fold' and include the head-to-tail (HT) IPPS which catalyze the successive 1'-4 condensation of the 5-carbon IPP to the growing isoprene chain to form linear, all-trans, C10-, C15-, C20- C25-, C30-, C35-, C40-, C45-, or C50-isoprenoid diphosphates. The head-to-head (HH) IPPS catalyze the successive 1'-1 condensation of 2 farnesyl or 2 geranylgeranyl isoprenoid diphosphates. Isoprenoid chain elongation reactions proceed via electrophilic alkylations in which a new carbon-carbon single bond is generated through interaction between a highly reactive electron-deficient allylic carbocation and an electron-rich carbon-carbon double bond. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions located on opposite walls. These residues mediate binding of prenyl phosphates via bridging Mg2+ ions, inducing proposed conformational changes that close the active site to solvent, stabilizing reactive carbocation intermediates. Mechanistically and structurally distinct, cis-IPPS are not included in this CD. 236 -173837 cd00868 Terpene_cyclase_C1 Terpene cyclases, Class 1. Terpene cyclases, Class 1 (C1) of the class 1 family of isoprenoid biosynthesis enzymes, which share the 'isoprenoid synthase fold' and convert linear, all-trans, isoprenoids, geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl (C20)-diphosphate into numerous cyclic forms of monoterpenes, diterpenes, and sesquiterpenes. Also included in this CD are the cis-trans terpene cyclases such as trichodiene synthase. The class I terpene cyclization reactions proceed via electrophilic alkylations in which a new carbon-carbon single bond is generated through interaction between a highly reactive electron-deficient allylic carbocation and an electron-rich carbon-carbon double bond. The catalytic site consists of a large central cavity formed by mostly antiparallel alpha helices with two aspartate-rich regions located on opposite walls. These residues mediate binding of prenyl phosphates via bridging Mg2+ ions, inducing proposed conformational changes that close the active site to solvent, stabilizing reactive carbocation intermediates. Mechanistically and structurally distinct, class II terpene cyclases and cis-IPPS are not included in this CD. Taxonomic distribution includes bacteria, fungi and plants. 284 -238441 cd00869 PI3Ka_II Phosphoinositide 3-kinase (PI3K) class II, accessory domain (PIK domain); PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. In general, class II PI3-kinases phosphorylate phosphoinositol (PtdIns), PtdIns(4)-phosphate, but not PtdIns(4,5)-bisphosphate. They are larger, having a C2 domain at the C-terminus. 169 -238442 cd00870 PI3Ka_III Phosphoinositide 3-kinase (PI3K) class III, accessory domain (PIK domain); PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. In general, PI3Ks class III phosphorylate phosphoinositol (PtdIns) only. The prototypical PI3K class III, yeast Vps34, is involved in trafficking proteins from Golgi to the vacuole. 166 -238443 cd00871 PI4Ka Phosphoinositide 4-kinase(PI4K), accessory domain (PIK domain); PIK domain is conserved in PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. PI4K phosphorylates hydroxylgroup at position 4 on the inositol ring of phosphoinositide, the first commited step in the phosphatidylinositol cycle. 175 -238444 cd00872 PI3Ka_I Phosphoinositide 3-kinase (PI3K) class I, accessory domain ; PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. In general, PI3K class I prefer phosphoinositol (4,5)-bisphosphate as a substrate. Mammalian members interact with active Ras. They form heterodimers with adapter molecules linking them to different signaling pathways. 171 -238445 cd00873 KU80 Ku-core domain, Ku80 subfamily; Ku80 is a subunit of the Ku protein, which plays a key role in multiple nuclear processes such as DNA repair, chromosome maintenance, transcription regulation, and V(D)J recombination. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, although it seems that Ku is a multifunctional protein that works in nuclei. In mammalian cells, the Ku heterodimer recruits the catalytic subunit of DNA-dependent protein kinase (DNA-PK), which is dependent on its association with the Ku70/80 heterodimer bound to DNA for its protein kinase activity. 300 -238446 cd00874 RNA_Cyclase_Class_II RNA 3' phosphate cyclase domain (class II). These proteins function as RNA cyclase to catalyze the ATP-dependent conversion of 3'-phosphate to a 2'.3'-cyclic phosphodiester at the end of RNA molecule. A conserved catalytic histidine residue is found in all members of this subfamily. 326 -238447 cd00875 RNA_Cyclase_Class_I RNA 3' phosphate cyclase domain (class I) This subfamily of cyclase-like proteins are encoded in eukaryotic genomes. They lack a conserved catalytic histidine residue required for cyclase activity, so probably do not function as cyclases. They are believed to play a role in ribosomal RNA processing and assembly. 341 -206642 cd00876 Ras Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases). The Ras family of the Ras superfamily includes classical N-Ras, H-Ras, and K-Ras, as well as R-Ras, Rap, Ral, Rheb, Rhes, ARHI, RERG, Rin/Rit, RSR1, RRP22, Ras2, Ras-dva, and RGK proteins. Ras proteins regulate cell growth, proliferation and differentiation. Ras is activated by guanine nucleotide exchange factors (GEFs) that release GDP and allow GTP binding. Many RasGEFs have been identified. These are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active GTP-bound Ras interacts with several effector proteins: among the best characterized are the Raf kinases, phosphatidylinositol 3-kinase (PI3K), RalGEFs and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 160 -206643 cd00877 Ran Ras-related nuclear proteins (Ran)/TC4 family of small GTPases. Ran GTPase is involved in diverse biological functions, such as nuclear transport, spindle formation during mitosis, DNA replication, and cell division. Among the Ras superfamily, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras superfamily. Ran may therefore interact with a wide range of proteins in various intracellular locations. Like other GTPases, Ran exists in GTP- and GDP-bound conformations that interact differently with effectors. Conversion between these forms and the assembly or disassembly of effector complexes requires the interaction of regulator proteins. The intrinsic GTPase activity of Ran is very low, but it is greatly stimulated by a GTPase-activating protein (RanGAP1) located in the cytoplasm. By contrast, RCC1, a guanine nucleotide exchange factor that generates RanGTP, is bound to chromatin and confined to the nucleus. Ran itself is mobile and is actively imported into the nucleus by a mechanism involving NTF-2. Together with the compartmentalization of its regulators, this is thought to produce a relatively high concentration of RanGTP in the nucleus. 166 -206644 cd00878 Arf_Arl ADP-ribosylation factor(Arf)/Arf-like (Arl) small GTPases. Arf (ADP-ribosylation factor)/Arl (Arf-like) small GTPases. Arf proteins are activators of phospholipase D isoforms. Unlike Ras proteins they lack cysteine residues at their C-termini and therefore are unlikely to be prenylated. Arfs are N-terminally myristoylated. Members of the Arf family are regulators of vesicle formation in intracellular traffic that interact reversibly with membranes of the secretory and endocytic compartments in a GTP-dependent manner. They depart from other small GTP-binding proteins by a unique structural device, interswitch toggle, that implements front-back communication from N-terminus to the nucleotide binding site. Arf-like (Arl) proteins are close relatives of the Arf, but only Arl1 has been shown to function in membrane traffic like the Arf proteins. Arl2 has an unrelated function in the folding of native tubulin, and Arl4 may function in the nucleus. Most other Arf family proteins are so far relatively poorly characterized. Thus, despite their significant sequence homologies, Arf family proteins may regulate unrelated functions. 158 -206645 cd00879 Sar1 Sar1 is an essential component of COPII vesicle coats. Sar1 is an essential component of COPII vesicle coats involved in export of cargo from the ER. The GTPase activity of Sar1 functions as a molecular switch to control protein-protein and protein-lipid interactions that direct vesicle budding from the ER. Activation of the GDP to the GTP-bound form of Sar1 involves the membrane-associated guanine nucleotide exchange factor (GEF) Sec12. Sar1 is unlike all Ras superfamily GTPases that use either myristoyl or prenyl groups to direct membrane association and function, in that Sar1 lacks such modification. Instead, Sar1 contains a unique nine-amino-acid N-terminal extension. This extension contains an evolutionarily conserved cluster of bulky hydrophobic amino acids, referred to as the Sar1-N-terminal activation recruitment (STAR) motif. The STAR motif mediates the recruitment of Sar1 to ER membranes and facilitates its interaction with mammalian Sec12 GEF leading to activation. 191 -206646 cd00880 Era_like E. coli Ras-like protein (Era)-like GTPase. The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. 161 -206647 cd00881 GTP_translation_factor GTP translation factor family primarily contains translation initiation, elongation and release factors. The GTP translation factor family consists primarily of translation initiation, elongation, and release factors, which play specific roles in protein translation. In addition, the family includes Snu114p, a component of the U5 small nuclear riboprotein particle which is a component of the spliceosome and is involved in excision of introns, TetM, a tetracycline resistance gene that protects the ribosome from tetracycline binding, and the unusual subfamily CysN/ATPS, which has an unrelated function (ATP sulfurylase) acquired through lateral transfer of the EF1-alpha gene and development of a new function. 183 -206648 cd00882 Ras_like_GTPase Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases). Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. 161 -238448 cd00883 beta_CA_cladeA Carbonic anhydrases (CA) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism in which the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide is followed by the regeneration of an active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. CAs are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionarily distinct families of CAs (the alpha-, beta-, and gamma-CAs) which show no significant sequence identity or structural similarity. Within the beta-CA family there are four evolutionarily distinct clades (A through D). The beta-CAs are multimeric enzymes (forming dimers,tetramers,hexamers and octamers) which are present in higher plants, algae, fungi, archaea and prokaryotes. 182 -238449 cd00884 beta_CA_cladeB Carbonic anhydrases (CA) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism in which the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide is followed by the regeneration of an active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. CAs are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionarily distinct families of CAs (the alpha-, beta-, and gamma-CAs) which show no significant sequence identity or structural similarity. Within the beta-CA family there are four evolutionarily distinct clades (A through D). The beta-CAs are multimeric enzymes (forming dimers,tetramers,hexamers and octamers) which are present in higher plants, algae, fungi, archaea and prokaryotes. 190 -238450 cd00885 cinA Competence-damaged protein. CinA is the first gene in the competence- inducible (cin) operon and is thought to be specifically required at some stage in the process of transformation. This domain is closely related to a domain, found in a variety of proteins involved in biosynthesis of molybdopterin cofactor, where the domain is presumed to bind molybdopterin. 170 -238451 cd00886 MogA_MoaB MogA_MoaB family. Members of this family are involved in biosynthesis of the molybdenum cofactor (MoCF) an essential cofactor of a diverse group of redox enzymes. MoCF biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes. MoCF contains a tricyclic pyranopterin, termed molybdopterin (MPT). MogA, together with MoeA, is responsible for the metal incorporation into MPT, the third step in MoCF biosynthesis. The plant homolog Cnx1 is a MoeA-MogA fusion protein. The mammalian homolog gephyrin is a MogA-MoeA fusion protein, that plays a critical role in postsynaptic anchoring of inhibitory glycine receptors and major GABAa receptor subtypes. In contrast, MoaB shows high similarity to MogA, but little is known about its physiological role. All well studied members of this family form highly stable trimers. 152 -238452 cd00887 MoeA MoeA family. Members of this family are involved in biosynthesis of the molybdenum cofactor (MoCF), an essential cofactor of a diverse group of redox enzymes. MoCF biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes. MoCF contains a tricyclic pyranopterin, termed molybdopterin (MPT). MoeA, together with MoaB, is responsible for the metal incorporation into MPT, the third step in MoCF biosynthesis. The plant homolog Cnx1 is a MoeA-MogA fusion protein. The mammalian homolog gephyrin is a MogA-MoeA fusion protein, that plays a critical role in postsynaptic anchoring of inhibitory glycine receptors and major GABAa receptor subtypes. 394 -238453 cd00890 Prefoldin Prefoldin is a hexameric molecular chaperone complex, found in both eukaryotes and archaea, that binds and stabilizes newly synthesized polypeptides allowing them to fold correctly. The complex contains two alpha and four beta subunits, the two subunits being evolutionarily related. In archaea, there is usually only one gene for each subunit while in eukaryotes there two or more paralogous genes encoding each subunit adding heterogeneity to the structure of the hexamer. The structure of the complex consists of a double beta barrel assembly with six protruding coiled-coils. 129 -270624 cd00891 PI3Kc Catalytic domain of Phosphoinositide 3-kinase. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class II PI3Ks comprise three catalytic isoforms that do not associate with any regulatory subunits. They selectively use PtdIns as a susbtrate to produce PtsIns(3)P. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 334 -270625 cd00892 PIKKc_ATR Catalytic domain of Ataxia telangiectasia and Rad3-related proteins. ATR is also referred to as Mei-41 (Drosophila), Esr1/Mec1p (Saccharomyces cerevisiae), Rad3 (Schizosaccharomyces pombe), and FRAP-related protein (human). ATR contains a UME domain of unknown function, a FAT (FRAP, ATM and TRRAP) domain, a catalytic domain, and a FATC domain at the C-terminus. Together with its downstream effector kinase, Chk1, ATR plays a central role in regulating the replication checkpoint. ATR stabilizes replication forks by promoting the association of DNA polymerases with the fork. Preventing fork collapse is essential in preserving genomic integrity. ATR also plays a role in normal cell growth and in response to DNA damage. ATR is a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). The ATR catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 237 -270626 cd00893 PI4Kc_III Catalytic domain of Type III Phosphoinositide 4-kinase. PI4Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 4-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) to generate PtdIns(4)P, the major precursor in the synthesis of other phosphoinositides including PtdIns(4,5)P2, PtdIns(3,4)P2, and PtdIns(3,4,5)P3. There are two types of PI4Ks, types II and III. Type II PI4Ks lack the characteristic catalytic kinase domain present in PI3Ks and type III PI4Ks, and are excluded from this family. Two isoforms of type III PI4K, alpha and beta, exist in most eukaryotes. The PI4K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 286 -270627 cd00894 PI3Kc_IB_gamma Catalytic domain of Class IB Phosphoinositide 3-kinase gamma. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Kgamma signaling controls diverse immune and vascular functions including cell recruitment, mast cell activation, platelet aggregation, and smooth muscle contractility. It associates with one of two regulatory subunits, p101 and p84, and is activated by G-protein-coupled receptors (GPCRs) by direct binding to their betagamma subunits. It contains an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, and a C-terminal ATP-binding cataytic domain. PI3Ks can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. They are further classified into class IA (alpha, beta and delta) and IB (gamma). The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 367 -119421 cd00895 PI3Kc_C2_beta Catalytic domain of Class II Phosphoinositide 3-kinase beta. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. The class II beta isoform, PI3K-C2beta, contributes to the migration and survival of cancer cells. It regulates Rac activity and impacts membrane ruffling, cell motility, and cadherin-mediated cell-cell adhesion. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PtdIns as a substrate to produce PtdIns(3)P, but can also phosphorylate PtdIns(4)P. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a Phox homology (PX) domain, and a second C2 domain at the C-terminus. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 354 -270628 cd00896 PI3Kc_III Catalytic domain of Class III Phosphoinositide 3-kinase. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. Class III PI3Ks, also called Vps34 (vacuolar protein sorting 34), contain an N-terminal lipid binding C2 domain, a PI3K homology domain of unknown function, and a C-terminal ATP-binding cataytic domain. They phosphorylate only the substrate PtdIns. They interact with a regulatory subunit, Vps15, to form a membrane-associated complex. Class III PI3Ks are involved in protein and vesicular trafficking and sorting, autophagy, trimeric G-protein signaling, and phagocytosis. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 346 -132998 cd00897 UGPase_euk Eukaryotic UGPase catalyses the synthesis of UDP-Glucose. UGPase (UDP-Glucose Pyrophosphorylase) catalyzes the reversible production of UDP-Glucose and pyrophosphate (PPi) from Glucose-1-phosphate and UTP. UDP-glucose plays pivotal roles in galactose utilization, in glycogen synthesis, and in the synthesis of the carbohydrate moieties of glycolipids, glycoproteins, and proteoglycans. UGPase is found in both prokaryotes and eukaryotes. Interestingly, while the prokaryotic and eukaryotic forms of UGPase catalyze the same reaction, they share low sequence similarity. This family consists of mainly eukaryotic UTP-glucose-1-phosphate uridylyltransferases. 300 -132999 cd00899 b4GalT Beta-4-Galactosyltransferase is involved in the formation of the poly-N-acetyllactosamine core structures present in glycoproteins and glycosphingolipids. Beta-4-Galactosyltransferase transfers galactose from uridine diphosphogalactose to the terminal beta-N-acetylglucosamine residues, hereby forming the poly-N-acetyllactosamine core structures present in glycoproteins and glycosphingolipids. At least seven homologous beta-4-galactosyltransferase isoforms have been identified that use different types of glycoproteins and glycolipids as substrates. Of the seven identified members of the beta-1,4-galactosyltransferase subfamily (beta1,4-Gal-T1 to -T7), b1,4-Gal-T1 is most characterized (biochemically). It is a Golgi-resident type II membrane enzyme with a cytoplasmic domain, membrane spanning region, and a stem region and catalytic domain facing the lumen. 219 -275390 cd00900 PH-like Pleckstrin homology-like domain. The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins. 89 -153098 cd00904 Ferritin Ferritin iron storage proteins. Ferritins are the primary iron storage proteins of most living organisms and members of a broad superfamily of ferritin-like diiron-carboxylate proteins. The iron-free (apoferritin) ferritin molecule is a protein shell composed of 24 protein chains arranged in 432 symmetry. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the dinuclear ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite; the protein shell can hold up to 4500 iron atoms. In vertebrates, two types of chains (subunits) have been characterized, H or M (fast) and L (slow), which differ in rates of iron uptake and mineralization. Bacterial non-heme ferritins are composed only of H chains. Fe(II) oxidation in the H/M subunits take place initially at the ferroxidase center, a carboxylate-bridged diiron center, located within the subunit four-helix bundle. In a complementary role, negatively charged residues on the protein shell inner surface of the L subunits promote ferrihydrite nucleation. Most plant ferritins combine both oxidase and nucleation functions in one chain: they have four interior glutamate residues as well as seven ferroxidase center residues. 160 -153099 cd00907 Bacterioferritin Bacterioferritin, ferritin-like diiron-binding domain. Bacterioferritins, also known as cytochrome b1, are members of a broad superfamily of ferritin-like diiron-carboxylate proteins. Similar to ferritin in architecture, Bfr forms an oligomer of 24 subunits that assembles to form a hollow sphere with 432 symmetry. Up to 12 heme cofactor groups (iron protoporphyrin IX or coproporphyrin III) are bound between dimer pairs. The role of the heme is unknown, although it may be involved in mediating iron-core reduction and iron release. Each subunit is composed of a four-helix bundle which carries a diiron ferroxidase center; it is here that initial oxidation of ferrous iron by molecular oxygen occurs, facilitating the detoxification of iron, protection against dioxygen and radical products, and storage of ferric-hydroxyphosphate at the core. Some bacterioferritins are composed of two subunit types, one conferring heme-binding ability (alpha) and the other (beta) bestowing ferroxidase activity. 153 -238454 cd00912 ML The ML (MD-2-related lipid-recognition) domain is present in MD-1, MD-2, GM2 activator protein, Niemann-Pick type C2 (Npc2) protein, phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP), mite allergen Der p 2 and several proteins of unknown function in plants, animals and fungi. These single-domain proteins form two anti-parallel beta-pleated sheets stabilized by three disulfide bonds and with an accessible central hydrophobic cavity, and are predicted to mediate diverse biological functions through interaction with specific lipids. 127 -238455 cd00913 PCD_DCoH_subfamily_a PCD_DCoH: The bifunctional protein pterin-4alpha-carbinolamine dehydratase (PCD), also known as DCoH (dimerization cofactor of hepatocyte nuclear factor-1), is both a transcription activator and a metabolic enzyme. DCoH stimulates gene expression by associating with specific DNA binding proteins such as HNF-1alpha (hepatocyte nuclear factor-1) and Xenopus enhancer of rudimentary homologue (XERH). DCoH also catalyzes the dehydration of 4alpha- hydroxy- tetrahydrobiopterin (4alpha-OH-BH4) to quinoiddihydrobiopterin, a percursor of the phenylalanine hydroxylase cofactor BH4 (tetrahydrobiopterin). The DCoH homodimer has a saddle-shaped structure similar to that of TBP (TATA binding protein). 76 -238456 cd00914 PCD_DCoH_subfamily_b PCD_DCoH: The bifunctional protein pterin-4alpha-carbinolamine dehydratase (PCD), also known as DCoH (dimerization cofactor of hepatocyte nuclear factor-1), is both a transcription activator and a metabolic enzyme. DCoH stimulates gene expression by associating with specific DNA binding proteins such as HNF-1alpha (hepatocyte nuclear factor-1) and Xenopus enhancer of rudimentary homologue (XERH). DCoH also catalyzes the dehydration of 4alpha- hydroxy- tetrahydrobiopterin (4alpha-OH-BH4) to quinoiddihydrobiopterin, a percursor of the phenylalanine hydroxylase cofactor BH4 (tetrahydrobiopterin). The DCoH homodimer has a saddle-shaped structure similar to that of TBP (TATA binding protein). Two DCoH proteins have been identifed in humans: DCoH1 and DCoH2. Mutations in human DCoH1 cause hyperphenylalaninemia. Loss of enzymic activity of DCoH in humans is associated with the depigmentation disorder vitiligo. DCoH1 has been reported to be overexpessed in colon cancer carcinomas and in malignant melanomas. 76 -238457 cd00915 MD-1_MD-2 MD-1 and MD-2 are cofactors required for LPS signaling through cell surface receptors. MD-2 and its binding partner, Toll-like receptor 4 (TLR4), are essential for the innate immune responses of mammalian cells to bacterial lipopolysaccharide (LPS); MD-2 directly binds the lipid A moiety of LPS. The TLR4-like receptor, RP105, which mediates LPS-induced lymphocyte proliferation, interacts with MD-1; MD-1 enhances RP105-mediated LPS-induced growth of B cells. These proteins belong to the ML domain family. 130 -238458 cd00916 Npc2_like Niemann-Pick type C2 (Npc2) is a lysosomal protein in which a mutation in the gene causes a rare form of Niemann-Pick type C disease, an autosomal recessive lipid storage disorder characterized by accumulation of low-density lipoprotein-derived cholesterol in lysosomes. Although Npc2 is known to bind cholesterol, the function of this protein is unknown. These proteins belong to the ML domain family. 123 -238459 cd00917 PG-PI_TP The phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP) has been shown to bind phosphatidylglycerol and phosphatidylinositol, but the biological significance of this is still obscure. These proteins belong to the ML domain family. 122 -238460 cd00918 Der-p2_like Several group 2 allergen proteins belong to the ML domain family. They include Dermatophagoides pteronyssinus, group 2 (Der p 2) and D. farinae, group 2 (Der f 2) allergens. These house dust mites cause heavy atopic diseases such as asthma and dermatitis. Although the allergenic properties of these proteins have been well characterized, their biological function in mites is unknown. 120 -238461 cd00919 Heme_Cu_Oxidase_I Heme-copper oxidase subunit I. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. It has been proposed that Archaea acquired heme-copper oxidases through gene transfer from Gram-positive bacteria. Membership in the superfamily is defined by subunit I, which contains a heme-copper binuclear center (the active site where O2 is reduced to water) formed by a high-spin heme and a copper ion. It also contains a low-spin heme, believed to participate in the transfer of electrons to the binuclear center. Only subunit I is common to the entire superfamily. For every reduction of an O2 molecule, eight protons are taken from the inside aqueous compartment and four electrons are taken from the electron donor on the opposite side of the membrane. The four electrons and four of the protons are used in the reduction of O2; the four remaining protons are pumped across the membrane. This charge separation of four charges contributes to the electrochemical gradient used for ATP synthesis. Two proton channels, the D-pathway and K-pathway, leading to the binuclear center have been identified in subunit I of cytochrome c oxidase (CcO) and ubiquinol oxidase. A well-defined pathway for the transfer of pumped protons beyond the binuclear center has not been identified. Electron transfer occurs in two segments: from the electron donor to the low-spin heme, and from the low-spin heme to the binuclear center. The first segment can be a multi-step process and varies among the different families, while the second segment, a direct transfer, is consistent throughout the superfamily. 463 -259860 cd00920 Cupredoxin Cupredoxin superfamily. Cupredoxins contain type I copper centers and are involved in inter-molecular electron transfer reactions. Cupredoxins are blue copper proteins, having an intense blue color due to the presence of a mononuclear type 1 (T1) copper site. Structurally, the cupredoxin-like fold consists of a beta-sandwich with 7 strands in 2 beta-sheets, which is arranged in a Greek-key beta-barrel. Some of these proteins have lost the ability to bind copper. The majority of family members contain multiple cupredoxin domain repeats: ceruloplasmin and the coagulation factors V/VIII have six repeats; laccase, ascorbate oxidase, spore coat protein A, and multicopper oxidase CueO contain three repeats; and nitrite reductase has two repeats. Others are mono-domain cupredoxins, such as plastocyanin, pseudoazurin, plantacyanin, azurin, rusticyanin, stellacyanin, quinol oxidase, and the periplasmic domain of cytochrome c oxidase subunit II. 110 -238462 cd00922 Cyt_c_Oxidase_IV Cytochrome c oxidase subunit IV. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit IV is the largest of the nuclear-encoded subunits. It binds ATP at the matrix side, leading to an allosteric inhibition of enzyme activity at high intramitochondrial ATP/ADP ratios. In mammals, subunit IV has a lung-specific isoform and a ubiquitously expressed isoform. 136 -238463 cd00923 Cyt_c_Oxidase_Va Cytochrome c oxidase subunit Va. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit Va is one of three mammalian subunits that lacks a transmembrane region. Subunit Va is located on the matrix side of the membrane and binds thyroid hormone T2, releasing allosteric inhibition caused by the binding of ATP to subunit IV and allowing high turnover at elevated intramitochondrial ATP/ADP ratios. 103 -238464 cd00924 Cyt_c_Oxidase_Vb Cytochrome c oxidase subunit Vb. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit Vb is one of three mammalian subunits that lacks a transmembrane region. Subunit Vb is located on the matrix side of the membrane and binds the regulatory subunit of protein kinase A. The abnormally extended conformation is stable only in the CcO assembly. 97 -238465 cd00925 Cyt_c_Oxidase_VIa Cytochrome c oxidase subunit VIa. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit VIa is expressed in two tissue-specific isoforms in mammals but not fish. VIa-H is the heart and skeletal muscle isoform; VIa-L is the liver or non-muscle isoform. Mammalian VIa-H induces a slip in CcO (decrease in proton/electron stoichiometry) at high intramitochondrial ATP/ADP ratios, while VIa-L induces a permanent slip in CcO, depending on the presence of cardiolipin and palmitate. 86 -238466 cd00926 Cyt_c_Oxidase_VIb Cytochrome c oxidase subunit VIb. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit VIb is one of three mammalian subunits that lacks a transmembrane region. It is located on the cytosolic side of the membrane and helps form the dimer interface with the corresponding subunit on the other monomer complex. 75 -238467 cd00927 Cyt_c_Oxidase_VIc Cytochrome c oxidase subunit VIc. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. The VIc subunit is found only in eukaryotes and its specific function remains unclear. It has been reported that the relative concentrations of some nuclear encoded CcO subunits, including subunit VIc, compared to those of the mitochondrial encoded subunits, are altered significantly during the progression of prostate cancer. 70 -238468 cd00928 Cyt_c_Oxidase_VIIa Cytochrome c oxidase subunit VIIa. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit VIIa has two tissue-specific isoforms that are expressed in a developmental manner. VIIa-H is expressed in heart and skeletal muscle but not smooth muscle. VIIa-L is expressed in liver and non-muscle tissues. 55 -238469 cd00929 Cyt_c_Oxidase_VIIc Cytochrome c oxidase subunit VIIc. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. The VIIc subunit is found only in eukaryotes and its specific function remains unclear. Peroxide inactivation of bovine CcO coincides with the direct oxidation of tryptophan (W19) within subunit VIIc, along with other structural changes in other subunits. 46 -238470 cd00930 Cyt_c_Oxidase_VIII Cytochrome oxidase c subunit VIII. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Found only in eukaryotes, subunit VIII is the smallest of the nuclear-encoded subunits. It exists in muscle-specific and non-muscle-specific isoforms that are differently expressed in different species, suggesting species-specific regulation of energy metabolism. 43 -238471 cd00933 barnase Barnase, a member of the family of homologous microbial ribonucleases, catalyses the cleavage of single-stranded RNA via a two-step mechanism thought to be similar to that of pancreatic ribonuclease. The mechanism involves a transesterification to give a 2', 3'-cyclic phosphate intermediate, followed by hydrolysis to yield a 3' nucleotide. The active site residues His and Glu act as general acid-base groups during catalysis, while the Arg and Lys residues are important in binding the reactive phosphate, the latter probably binding the phosphate in the transition state. Barstar, a small 89 residue intracellular protein is a natural inhibitor of Barnase. 107 -269911 cd00934 PTB Phosphotyrosine-binding (PTB) PH-like fold. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to bind peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. 120 -238472 cd00935 GlyRS_RNA GlyRS_RNA binding domain. This short RNA-binding domain is found at the N-terminus of GlyRS in several higher eukaryote aminoacyl-tRNA synthetases (aaRSs). This domain consists of a helix-turn-helix structure , which is similar to other RNA-binding proteins. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions, which are important for the formation of aaRSs into multienzyme complexes. 51 -238473 cd00936 WEPRS_RNA WEPRS_RNA binding domain. This short RNA-binding domain is found in several higher eukaryote aminoacyl-tRNA synthetases (aaRSs). It is found in multiple copies in eukaryotic bifunctional glutamyl-prolyl-tRNA synthetases (EPRS) in a region that separates the N-terminal glutamyl-tRNA synthetase (GluRS) from the C-terminal prolyl-tRNA synthetase (ProRS). It is also found at the N-terminus of vertebrate tryptophanyl-tRNA synthetases (TrpRS). This domain consists of a helix-turn-helix structure, which is similar to other RNA-binding proteins. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions, which are important for the formation of aaRSs into multienzyme complexes. 50 -238474 cd00938 HisRS_RNA HisRS_RNA binding domain. This short RNA-binding domain is found at the N-terminus of HisRS in several higher eukaryote aminoacyl-tRNA synthetases (aaRSs). This domain consists of a helix- turn- helix structure, which is similar to other RNA-binding proteins. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions, which are important for the formation of aaRSs into multienzyme complexes. 45 -238475 cd00939 MetRS_RNA MetRS_RNA binding domain. This short RNA-binding domain is found at the C-terminus of MetRS in several higher eukaryote aminoacyl-tRNA synthetases (aaRSs). It is repeated in Drosophila MetRS. This domain consists of a helix-turn-helix structure, which is similar to other RNA-binding proteins. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions, which are important for the formation of aaRSs into multienzyme complexes. 45 -188634 cd00945 Aldolase_Class_I Class I aldolases. Class I aldolases. The class I aldolases use an active-site lysine which stabilizes a reaction intermediates via Schiff base formation, and have TIM beta/alpha barrel fold. The members of this family include 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-4-hydroxyglutarate (KHG) aldolases, transaldolase, dihydrodipicolinate synthase sub-family, Type I 3-dehydroquinate dehydratase, DeoC and DhnA proteins, and metal-independent fructose-1,6-bisphosphate aldolase. Although structurally similar, the class II aldolases use a different mechanism and are believed to have an independent evolutionary origin. 201 -238476 cd00946 FBP_aldolase_IIA Class II Type A, Fructose-1,6-bisphosphate (FBP) aldolases. The enzyme catalyses the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to form fructose-1,6-bisphosphate. FBP aldolase is homodimeric and used in gluconeogenesis and glycolysis. The type A and type B Class II FBPA's differ in the presence and absence of distinct indels in the sequence that result in differing loop lengths in the structures. 345 -238477 cd00947 TBP_aldolase_IIB Tagatose-1,6-bisphosphate (TBP) aldolase and related Type B Class II aldolases. TBP aldolase is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phsophate to produce tagatose 1,6-bisphosphate. There is an absolute requirement for a divalent metal ion, usually zinc, and in addition the enzymes are activated by monovalent cations such as Na+. The type A and type B Class II FBPA's differ in the presence and absence of distinct indels in the sequence that result in differing loop lengths in the structures. 276 -188635 cd00948 FBP_aldolase_I_a Fructose-1,6-bisphosphate aldolase. Fructose-1,6-bisphosphate aldolase. The enzyme catalyzes the cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). This family includes proteins found in vertebrates, plants, and bacterial plant pathogens. Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The enzyme is a member of the class I aldolase family, which utilizes covalent catalysis through a Schiff base formed between a lysine residue of the enzyme and ketose substrates. 330 -188636 cd00949 FBP_aldolase_I_bact Fructose-1.6-bisphosphate aldolase found in gram +/- bacteria. Fructose-1.6-bisphosphate aldolase found in gram +/- bacteria. The enzyme catalyzes the cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). The enzyme is member of the class I aldolase family, which utilizes covalent catalysis through a Schiff base formed between a lysine residue of the enzyme and ketose substrates. 292 -188637 cd00950 DHDPS Dihydrodipicolinate synthase (DHDPS). Dihydrodipicolinate synthase (DHDPS) is a key enzyme in lysine biosynthesis. It catalyzes the aldol condensation of L-aspartate-beta- semialdehyde and pyruvate to dihydropicolinic acid via a Schiff base formation between pyruvate and a lysine residue. The functional enzyme is a homotetramer consisting of a dimer of dimers. DHDPS is member of dihydrodipicolinate synthase family that comprises several pyruvate-dependent class I aldolases that use the same catalytic step to catalyze different reactions in different pathways. 284 -188638 cd00951 KDGDH 5-dehydro-4-deoxyglucarate dehydratase, also called 5-keto-4-deoxy-glucarate dehydratase (KDGDH). 5-dehydro-4-deoxyglucarate dehydratase, also called 5-keto-4-deoxy-glucarate dehydratase (KDGDH), which is member of dihydrodipicolinate synthase (DHDPS) family that comprises several pyruvate-dependent class I aldolases. The enzyme is involved in glucarate metabolism, and its mechanism presumbly involves a Schiff-base intermediate similar to members of DHDPS family. While in the case of Pseudomonas sp. 5-dehydro-4-deoxy-D-glucarate is degraded by KDGDH to 2,5-dioxopentanoate, in certain species of Enterobacteriaceae it is degraded instead to pyruvate and glycerate. 289 -188639 cd00952 CHBPH_aldolase Trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (HBPHA) and trans-2'-carboxybenzalpyruvate hydratase-aldolase (CBPHA). Trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (HBPHA) and trans-2'-carboxybenzalpyruvate hydratase-aldolase (CBPHA). HBPHA catalyzes HBP to salicyaldehyde and pyruvate. This reaction is part of the degradative pathways for naphthalene and naphthalenesulfonates by bacteria. CBPHA is homologous to HBPHA and catalyzes the cleavage of CBP to 2-carboxylbenzaldehyde and pyruvate during the degradation of phenanthrene. They are member of the DHDPS family of Schiff-base-dependent class I aldolases. 309 -188640 cd00953 KDG_aldolase KDG (2-keto-3-deoxygluconate) aldolases found in archaea. KDG (2-keto-3-deoxygluconate) aldolases found in archaea. This subfamily of enzymes is adapted for high thermostability and shows specificity for non-phosphorylated substrates. The enzyme catalyses the reversible aldol cleavage of 2-keto-3-dexoygluconate to pyruvate and glyceraldehyde, the third step of a modified non-phosphorylated Entner-Doudoroff pathway of glucose oxidation. KDG aldolase shows no significant sequence similarity to microbial 2-keto-3-deoxyphosphogluconate (KDPG) aldolases, and the enzyme shows no activity with glyceraldehyde 3-phosphate as substrate. The enzyme is a tetramer and a member of the DHDPS family of Schiff-base-dependent class I aldolases. 279 -188641 cd00954 NAL N-Acetylneuraminic acid aldolase, also called N-acetylneuraminate lyase (NAL). N-Acetylneuraminic acid aldolase, also called N-acetylneuraminate lyase (NAL), which catalyses the reversible aldol reaction of N-acetyl-D-mannosamine and pyruvate to give N-acetyl-D-neuraminic acid (D-sialic acid). It has a widespread application as biocatalyst for the synthesis of sialic acid and its derivatives. This enzyme has been shown to be quite specific for pyruvate as the donor, but flexible to a variety of D- and, to some extent, L-hexoses and pentoses as acceptor substrates. NAL is member of dihydrodipicolinate synthase family that comprises several pyruvate-dependent class I aldolases. 288 -188642 cd00955 Transaldolase_like Transaldolase-like proteins from plants and bacteria. Transaldolase-like proteins from plants and bacteria. Transaldolase is found in the non-oxidative branch of the pentose phosphate pathway, that catalyze the reversible transfer of a dihydroxyacetone group from fructose-6-phosphate to erythrose-4-phosphate yielding sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate. They are members of the class I aldolases, who are characterized by using a Schiff-base mechanism for stabilization of the reaction intermediates. 338 -188643 cd00956 Transaldolase_FSA Transaldolase-like fructose-6-phosphate aldolases (FSA) found in bacteria and archaea. Transaldolase-like fructose-6-phosphate aldolases (FSA) found in bacteria and archaea, which are member of the MipB/TalC subfamily of class I aldolases. FSA catalyze an aldol cleavage of fructose 6-phosphate and do not utilize fructose, fructose 1-phosphate, fructose 1,6-phosphate, or dihydroxyacetone phosphate. The enzymes belong to the transaldolase family that serves in transfer reactions in the pentose phosphate cycle, and are more distantly related to fructose 1,6-bisphosphate aldolase. 211 -188644 cd00957 Transaldolase_TalAB Transaldolases including both TalA and TalB. Transaldolases including both TalA and TalB. The enzyme catalyses the reversible transfer of a dyhydroxyacetone moiety, derived from fructose-6-phosphate to erythrose-4-phosphate yielding sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate. The catalytic mechanism is similar to other class I aldolases. The enzyme is found in the non-oxidative branch of the pentose phosphate pathway and forms a dimer in solution. 313 188645 cd00958 DhnA Class I fructose-1,6-bisphosphate (FBP) aldolases of the archaeal type (DhnA homologs). Class I fructose-1,6-bisphosphate (FBP) aldolases of the archaeal type (DhnA homologs) found in bacteria and archaea. Catalysis of the enzymes proceeds via a Schiff-base mechanism like other class I aldolases, although this subfamily is clearly divergent based on sequence similarity to other class I and class II (metal dependent) aldolase subfamilies. 235 -188646 cd00959 DeoC 2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family. 2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family. DERA belongs to the class I aldolases and catalyzes a reversible aldol reaction between acetaldehyde and glyceraldehyde 3-phosphate to generate 2-deoxyribose 5-phosphate. DERA is unique in catalyzing the aldol reaction between two aldehydes, and its broad substrate specificity confers considerable utility as a biocatalyst, offering an environmentally benign alternative to chiral transition metal catalysis of the asymmetric aldol reaction. 203 -238478 cd00974 DSRD Desulforedoxin (DSRD) domain; a small non-heme iron domain present in the desulforedoxin (rubredoxin oxidoreductase) and desulfoferrodoxin proteins of some archeael and bacterial methanogens and sulfate/sulfur reducers. Desulforedoxin is a small, single-domain homodimeric protein; each subunit contains an iron atom bound to four cysteinyl sulfur atoms, Fe(S-Cys)4, in a distorted tetrahedral coordination. Its metal center is similar to that found in rubredoxin type proteins. Desulforedoxin is regarded as a potential redox partner for rubredoxin. Desulfoferrodoxin forms a homodimeric protein, with each protomer comprised of two domains, the N-terminal DSRD domain and C-terminal superoxide reductase-like (SORL) domain. Each domain has a distinct iron center: the DSRD iron center I, Fe(S-Cys)4; and the SORL iron center II, Fe[His4Cys(Glu)]. 34 -340364 cd00978 chitosanase_GH46 chitosanase belonging to the glycosyl hydrolase 46 family. This family is composed of the chitosanase enzymes which hydrolyzes chitosan, a biopolymer of beta (1,4)-linked-D-glucosamine (GlcN) residues produced by partial or full deacetylation of chitin. Chitosanases play a role in defense against pathogens such as fungi and are found in microorganisms, fungi, viruses, and plants. Microbial chitosanases can be divided into 3 subclasses based on the specificity of the cleavage positions for partial acetylated chitosan. Subclass I chitosanases such as N174 can split GlcN-GlcN and GlcNAc-GlcN linkages, whereas subclass II chitosanases such as Bacillus sp. no. 7-M can cleave only GlcN-GlcN linkages. Subclass III chitosanases such as MH-K1 chitosanase are the most versatile and can split both GlcN-GlcN and GlcN-GlcNAc linkages. 222 -238480 cd00980 FwdC/FmdC FwdC/FmdC. This domain of unknown function is found in the subunit C of formylmethanofuran dehydrogenase, an enzyme that catalyzes the first step in methane formation from CO2 in methanogenic archaea, hyperthermophiles and bacteria. There are two isoenzymes, a tungsten-containing isoenzyme (Fwd) and a molybdenum-containing isoenzyme (Fmd). The subunits C of both isoenzymes (FwdC/FmdC) are characterized by a repeated GXXGXXXG motif. 203 -238481 cd00981 arch_gltB Archaeal-type gltB domain. This domain shares sequence similarity with a region of unknown function found in the large subunit of glutamate synthase, which is encoded by gltB and found in most bacteria and eukaryotes. It is predicted to be homologous to the C-terminal domain of glutamate synthase based upon sequence similarity coupled with genome organization data, showing that this domain is found in a gene cluster with other domains of Glts, which are annotated. This domain is found primarily in archaea, but is also present in a few bacteria, likely as a result of lateral gene transfer. 232 -238482 cd00982 gltB_C gltb_C. This domain is found at the C-terminus of the large subunit (gltB) of glutamate synthase (GltS). GltS encodes a complex iron-sulfur flavoprotein that catalyzes the synthesis of L-glutamate from L-glutamine and 2-oxoglutarate. It requires the transfer of ammonia and electrons among three distinct active centers that carry out L-Gln hydrolysis, conversion of 2-oxoglutarate into L-Glu, and electron uptake from a donor. These catalytic sites appear to occur in other domains within the protein, and not the domain in this CD. This particular domain has no known function, but it likely has a structural role as it interacts with the amidotransferase and FMN-binding domains of gltS. 251 -238483 cd00983 recA RecA is a bacterial enzyme which has roles in homologous recombination, DNA repair, and the induction of the SOS response. RecA couples ATP hydrolysis to DNA strand exchange. 325 -238484 cd00984 DnaB_C DnaB helicase C terminal domain. The hexameric helicase DnaB unwinds the DNA duplex at the chromosome replication fork. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerization of the N-terminal domain has been observed and may occur during the enzymatic cycle. This C-terminal domain contains an ATP-binding site and is therefore probably the site of ATP hydrolysis. 242 -238485 cd00985 Maf_Ham1 Maf_Ham1. Maf, a nucleotide binding protein, has been implicated in inhibition of septum formation in eukaryotes, bacteria and archaea. A Ham1-related protein from Methanococcus jannaschii is a novel NTPase that has been shown to hydrolyze nonstandard nucleotides, such as hypoxanthine/xanthine NTP, but not standard nucleotides. 131 -238486 cd00986 PDZ_LON_protease PDZ domain of ATP-dependent LON serine proteases. Most PDZ domains bind C-terminal polypeptides, though binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this bacterial subfamily of protease-associated PDZ domains a C-terminal beta-strand is thought to form the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 79 -238487 cd00987 PDZ_serine_protease PDZ domain of trypsin-like serine proteases, such as DegP/HtrA, which are oligomeric proteins involved in heat-shock response, chaperone function, and apoptosis. May be responsible for substrate recognition and/or binding, as most PDZ domains bind C-terminal polypeptides, though binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of protease-associated PDZ domains a C-terminal beta-strand forms the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 90 -238488 cd00988 PDZ_CTP_protease PDZ domain of C-terminal processing-, tail-specific-, and tricorn proteases, which function in posttranslational protein processing, maturation, and disassembly or degradation, in Bacteria, Archaea, and plant chloroplasts. May be responsible for substrate recognition and/or binding, as most PDZ domains bind C-terminal polypeptides, and binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of protease-associated PDZ domains a C-terminal beta-strand forms the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 85 -238489 cd00989 PDZ_metalloprotease PDZ domain of bacterial and plant zinc metalloprotases, presumably membrane-associated or integral membrane proteases, which may be involved in signalling and regulatory mechanisms. May be responsible for substrate recognition and/or binding, as most PDZ domains bind C-terminal polypeptides, and binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of protease-associated PDZ domains a C-terminal beta-strand forms the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 79 -238490 cd00990 PDZ_glycyl_aminopeptidase PDZ domain associated with archaeal and bacterial M61 glycyl-aminopeptidases. May be responsible for substrate recognition and/or binding, as most PDZ domains bind C-terminal polypeptides, and binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of protease-associated PDZ domains a C-terminal beta-strand is presumed to form the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 80 -238491 cd00991 PDZ_archaeal_metalloprotease PDZ domain of archaeal zinc metalloprotases, presumably membrane-associated or integral membrane proteases, which may be involved in signalling and regulatory mechanisms. May be responsible for substrate recognition and/or binding, as most PDZ domains bind C-terminal polypeptides, and binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of protease-associated PDZ domains a C-terminal beta-strand forms the peptide-binding groove base, a circular permutation with respect to PDZ domains found in Eumetazoan signaling proteins. 79 -238492 cd00992 PDZ_signaling PDZ domain found in a variety of Eumetazoan signaling molecules, often in tandem arrangements. May be responsible for specific protein-protein interactions, as most PDZ domains bind C-terminal polypeptides, and binding to internal (non-C-terminal) polypeptides and even to lipids has been demonstrated. In this subfamily of PDZ domains an N-terminal beta-strand forms the peptide-binding groove base, a circular permutation with respect to PDZ domains found in proteases. 82 -270215 cd00993 PBP2_ModA_like Substrate binding domain of molybdate-binding proteins, the type 2 periplasmic binding protein fold. Molybdate binding domain ModA. Molybdate transport system is comprised of a periplasmic binding protein, an integral membrane protein, and an energizer protein. These three proteins are coded by modA, modB, and modC genes, respectively. ModA proteins serve as initial receptors in the ABC transport of molybdate mostly in eubacteria and archaea. Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. In contrast to the structure of the two ModA homologs from Escherichia coli and Azotobacter vinelandii, where the oxygen atoms are tetrahedrally arranged around the metal center, the structure of Pyrococcus furiosus ModA/WtpA (PfModA) has revealed a binding site for molybdate and tungstate where the central metal atom is in a hexacoordinate configuration. This octahedral geometry was rather unexpected. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 225 -270216 cd00994 PBP2_GlnH Glutamine binding domain of ABC-type transporter; the type 2 periplasmic binding protein fold. This periplasmic substrate-binding component serves as an initial receptor in the ABC transport of glutamine in bacteria and eukaryota. GlnH belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 218 -173853 cd00995 PBP2_NikA_DppA_OppA_like The substrate-binding domain of an ABC-type nickel/oligopeptide-like import system contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding domain of nickel/dipeptide/oligopeptide transport systems, which function in the import of nickel and peptides, and other closely related proteins. The oligopeptide-binding protein OppA is a periplasmic component of an ATP-binding cassette (ABC) transport system OppABCDEF consisting of five subunits: two homologous integral membrane proteins OppB and OppF that form the translocation pore; two homologous nucleotide-binding domains OppD and OppF that drive the transport process through binding and hydrolysis of ATP; and the substrate-binding protein or receptor OppA that determines the substrate specificity of the transport system. The dipeptide (DppA) and oligopeptide (OppA) binding proteins differ in several ways. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Similar to the ABC-type dipeptide and oligopeptide import systems, nickel transporter is comprised of five subunits NikABCDE: the two pore-forming integral inner membrane proteins NikB and NikC; the two inner membrane-associated proteins with ATPase activity NikD and NikE; and the periplasmic nickel binding NikA, which is the initial nickel receptor that controls the chemotactic response away from nickel. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand binding domains of ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 466 -270217 cd00996 PBP2_AatB_like Polar amino acids-binding domain of ATP-binding cassette transporter-like systems that belong to the type 2 periplasmic binding fold protein superfamily. This subfamily includes periplasmic binding domain of ATP-binding cassette transporter-like systems that serve as initial receptors in the ABC transport of amino acids and their derivatives in eubacteria. After binding their ligand with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The Abp proteins belong to the PBPI superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 227 -270218 cd00997 PBP2_GluR0 Bacterial GluR0 ligand-binding domain; the type 2 periplasmic binding protein fold. Glutamate receptor domain GluR0. These domains are found in the GluR0 proteins that have been shown to function as prokaryotic L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. The GluR0 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 218 -270219 cd00998 PBP2_iGluR_ligand_binding The ligand-binding domain of ionotropic glutamate receptor family, a member of the periplasmic binding protein type II superfamily. This subfamily represents the ligand binding of ionotropic glutamate receptors. iGluRs are heterotetrameric ion channels that comprises of three functionally distinct subtypes based on their pharmacology and structural similarities: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid), NMDA (N-methyl-D-aspartate), and kainate receptors. All three types of channels are also activated by the physiological neurotransmitter, glutamate. iGluRs are concentrated at postsynaptic sites, where they exert a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. 243 -270220 cd00999 PBP2_ArtJ The solute binding domain of ArtJ protein, a member of the type 2 periplasmic binding fold protein superfamily. An arginine-binding protein found in Chlamydiae trachomatis (CT-ArtJ) and pneumoniae (CPn-ArtJ) and its closely related proteins. CT- and CPn-ArtJ are shown to have different immunogenic properties despite a high sequence similarity. The ArtJ proteins display the type 2 periplasmic binding fold organized in two alpha-beta domains with arginine-binding region at their interface. 223 -270221 cd01000 PBP2_Cys_DEBP_like Substrate-binding domain of cysteine- and aspartate/glutamate-binding proteins; the type 2 periplasmic-binding protein fold. This family comprises of the periplasmic-binding protein component of ABC transporters specific for cysteine and carboxylic amino acids, as well as their closely related proteins. The cysteine and aspartate-glutamate binding domains belong to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 228 -270222 cd01001 PBP2_HisJ_LAO_like Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporters and related proteins; the type 2 periplasmic-binding protein fold. This family comprises the periplasmic substrate-binding proteins, including the lysine-, arginine-, ornithine-binding protein (LAO) and the histidine-binding protein (HisJ), which serve as initial receptors for active transport. HisJ and LAO proteins belong to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 228 -270223 cd01002 PBP2_Ehub_like Substrate binding domain of ectoine/hydroxyectoine specific ABC transport system; the type 2 periplasmic binding protein fold. This family represents the periplasmic substrate-binding component of ABC transport systems that involved in uptake of osmoprotectants (also termed compatible solutes) such as ectoine and hydroxyectoine. To counteract the efflux of water, bacteria and archaea accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 242 -270224 cd01003 PBP2_YckB Substrate binding domain of an ABC cystine transporter; the type 2 periplasmic binding protein fold. Periplasmic cystine-binding domain (YckB) of an ATP-binding cassette (ABC) transporter from Bacillus subtilis and its related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 229 -270225 cd01004 PBP2_MidA_like Mimosine binding domain of ABC-type transporter MidA and similar proteins; the type 2 periplasmic binding protein fold. This subgroup includes the periplasmic binding component of ABC transporter involved in uptake of mimosine MidA and its similar proteins. This periplasmic binding domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 230 -270226 cd01005 PBP2_CysP Substrate binding domain of an active sulfate transporter, a member of the type 2 periplasmic binding fold superfamily. This family contains sulfate binding domain of CysP proteins that serve as initial receptors in the ABC transport of sulfate and thiosulfate in eubacteria. After binding the ligand, CysP interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The CysP proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 307 -270227 cd01006 PBP2_phosphate_binding Substrate binding domain of ABC-type phosphate transporter, a member of the type 2 periplasmic-binding fold superfamily. This phosphate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 253 -270228 cd01007 PBP2_BvgS_HisK_like The type 2 periplasmic ligand-binding protein domain of the sensor-kinase BvgS and histidine kinase receptors, and related proteins. This family comprises the periplasmic sensor domain of the two-component sensor-kinase systems, such as the sensor protein BvgS of Bordetella pertussis and histidine kinase receptors (HisK), and uncharacterized related proteins. Typically, the two-component system consists of a membrane spanning sensor-kinase and a cytoplasmic response regulator. It serves as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. The N-terminal sensing domain of the sensor kinase detects extracellular signals, such as small molecule ligands and ions, which then modulate the catalytic activity of the cytoplasmic kinase domain through a phosphorylation cascade. The periplasmic sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 220 -270229 cd01008 PBP2_NrtA_SsuA_CpmA_like Substrate binding domain of ABC-type nitrate/sulfonate/bicarbonate transporters, a member of the type 2 periplasmic binding fold superfamily. This family represents the periplasmic binding proteins involved in nitrate, alkanesulfonate, and bicarbonate transport. These domains are found in eubacterial perisplamic-binding proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates. Other closest homologs involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB) are also included in this family. After binding their ligand with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. These binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 212 -270230 cd01009 PBP2_YfhD_N The solute binding domain of YfhD proteins, a member of the type 2 periplasmic binding fold protein superfamily. This subfamily includes the solute binding domain YfhD_N. These domains are found in the YfhD proteins that are predicted to function as lytic transglycosylases that cleave the glycosidic bond between N-acetylmuramic acid and N-acetylglucosamin in peptidoglycan, while the YfhD_N domain might act as an auxiliary or regulatory subunit. In addition to periplasmic solute binding domain, they have an SLT domain, typically found in soluble lytic transglycosylases, and a C-terminal low complexity domain. The YfhD proteins might have been recruited to create localized cell wall openings required for transport of large substrates such as DNA. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 223 -238493 cd01011 nicotinamidase Nicotinamidase/pyrazinamidase (PZase). Nicotinamidase, a ubiquitous enzyme in prokaryotes, converts nicotinamide to nicotinic acid (niacin) and ammonia, which in turn can be recycled to make nicotinamide adenine dinucleotide (NAD). The same enzyme is also called pyrazinamidase, because in converts the tuberculosis drug pyrazinamide (PZA) into its active form pyrazinoic acid (POA). 196 -238494 cd01012 YcaC_related YcaC related amidohydrolases; E.coli YcaC is an homooctameric hydrolase with unknown specificity. Despite its weak sequence similarity, it is structurally related to other amidohydrolases and shares conserved active site residues with them. Multimerisation interface seems not to be conserved in all members. 157 -238495 cd01013 isochorismatase Isochorismatase, also known as 2,3 dihydro-2,3 dihydroxybenzoate synthase, catalyses the conversion of isochorismate, in the presence of water, to 2,3-dihydroxybenzoate and pyruvate, via the hydrolysis of a vinyl ether, an uncommon reaction in biological systems. Isochorismatase is part of the phenazine biosynthesis pathway. Phenazines are antimicrobial compounds that provide the competitive advantage for certain bacteria. 203 -238496 cd01014 nicotinamidase_related Nicotinamidase_ related amidohydrolases. Cysteine hydrolases of unknown function that share the catalytic triad with other amidohydrolases, like nicotinamidase, which converts nicotinamide to nicotinic acid and ammonia. 155 -238497 cd01015 CSHase N-carbamoylsarcosine amidohydrolase (CSHase) hydrolyzes N-carbamoylsarcosine to sarcosine, carbon dioxide and ammonia. CSHase is involved in one of the two alternative pathways for creatinine degradation to glycine in microorganisms.This CSHase-containing pathway degrades creatinine via N-methylhydantoin N-carbamoylsarcosine and sarcosine to glycine. Enzymes of this pathway are used in the diagnosis for renal disfunction, for determining creatinine levels in urine and serum. 179 -238498 cd01016 TroA Metal binding protein TroA. These proteins have been shown to function as initial receptors in ABC transport of Zn2+ and possibly Fe3+ in many eubacterial species. The TroA proteins belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 276 -238499 cd01017 AdcA Metal binding protein AcdA. These proteins have been shown to function in the ABC uptake of Zn2+ and Mn2+ and in competence for genetic transformation and adhesion. The AcdA proteins belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. They are comprised of two globular subdomains connected by a long alpha helix and they bind their ligand in the cleft between these domains. In addition, many of these proteins have a low complexity region containing metal binding histidine-rich motif (repetitive HDH sequence). 282 -238500 cd01018 ZntC Metal binding protein ZntC. These proteins are predicted to function as initial receptors in ABC transport of metal ions. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. They are comprised of two globular subdomains connected by a long alpha helix and bind their specific ligands in the cleft between these domains. In addition, many of these proteins possess a metal-binding histidine-rich motif (repetitive HDH sequence). 266 -238501 cd01019 ZnuA Zinc binding protein ZnuA. These proteins have been shown to function as initial receptors in the ABC uptake of Zn2+. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. They are comprised of two globular subdomains connected by a single helix and bind their specific ligands in the cleft between these domains. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 286 -238502 cd01020 TroA_b Metal binding protein TroA_b. These proteins are predicted to function as initial receptors in ABC transport of metal ions. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 264 -340365 cd01021 GEWL Goose egg-white lysozyme. Eukaryotic goose-type or G-type lysozyme (goose egg-white lysozyme; GEWL) catalyzes the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). Mammals have two lysozymes. This family corresponds to human and mouse lysozyme G-like protein 2. 174 -212096 cd01022 GH57N_like N-terminal catalytic domain of heat stable retaining glycoside hydrolase family 57. Glycoside hydrolase family 57(GH57) is a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). This family also includes many hypothetical proteins with uncharacterized activity and specificity. GH57s cleave alpha-glycosidic bonds by employing a retaining mechanism, which involves a glycosyl-enzyme intermediate, allowing transglycosylation. 313 -173775 cd01025 TOPRIM_recR TOPRIM_recR: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in Escherichia coli RecR. RecR participates in the RecFOR pathway of homologous recombinational repair in prokaryotes. This pathway provides a single-stranded DNA molecule coated with RecA to allow invasion of a homologous molecule. The RecFOR system directs the loading of RecA onto gapped DNA coated with SSB protein. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). In RecR sequences this glutamate in the first turn of the TOPRIM domain is semiconserved, the DXD motif is not conserved. 112 -173776 cd01026 TOPRIM_OLD TOPRIM_OLD: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in bacterial and archaeal nucleases of the OLD (overcome lysogenization defect) family. The bacteriophage P2 OLD protein, which has DNase as well as RNase activity, consists of an N-terminal ABC-type ATPase domain and a C-terminal Toprim domain; the nuclease activity of OLD is stimulated by ATP, though the ATPase activity is not DNA-dependent. Functional details on OLD are scant and further experimentation is required to define the relationship between the ATPase and Toprim nuclease domains. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). The conserved glutamate may act as a general acid in strand cleavage by nucleases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 97 -173777 cd01027 TOPRIM_RNase_M5_like TOPRIM_ RNase M5_like: The topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain found in Ribonuclease M5: (RNase M5) and other small primase-like proteins from bacteria and archaea. RNase M5 catalyzes the maturation of 5S rRNA in low G+C Gram-positive bacteria. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). The conserved glutamate may act as a general base in nucleotide polymerization by primases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 81 -173778 cd01028 TOPRIM_TopoIA TOPRIM_TopoIA: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in the type IA family of DNA topoisomerases (TopoIA). This subgroup contains proteins similar to the Type I DNA topoisomerases: E. coli topisomerases I and III, eukaryotic topoisomerase III and, ATP-dependent reverse gyrase found in archaea and thermophilic bacteria. Type IA DNA topoisomerases remove (relax) negative supercoils in the DNA. These enzymes cleave one strand of the DNA duplex, covalently link to the 5' phosphoryl end of the DNA break and allow the other strand of the duplex to pass through the gap. Reverse gyrase is also able to insert positive supercoils in the presence of ATP and negative supercoils in the presence of AMPPNP. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). For topoisomerases the conserved glutamate is believed to act as a general base in strand joining and, as a general acid in strand cleavage. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 142 -173779 cd01029 TOPRIM_primases TOPRIM_primases: The topoisomerase-primase (TORPIM) nucleotidyl transferase/hydrolase domain found in the active site regions of bacterial DnaG-type primases and their homologs. Primases synthesize RNA primers for the initiation of DNA replication. DnaG type primases are often closely associated with DNA helicases in primosome assemblies. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). This glutamate and two aspartates, cluster together to form a highly acid surface patch. The conserved glutamate may act as a general base in nucleotide polymerization by primases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. The prototypical bacterial primase. Escherichia coli DnaG is a single subunit enzyme. 79 -173780 cd01030 TOPRIM_TopoIIA_like TOPRIM_TopoIIA_like: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in proteins of the type IIA family of DNA topoisomerases similar to Saccharomyces cerevisiae Topoisomerase II. TopoIIA enzymes cut both strands of the duplex DNA to remove (relax) both positive and negative supercoils in DNA. These enzymes covalently attach to the 5' ends of the cut DNA, separate the free ends of the cleaved strands, pass another region of the duplex through this gap, then rejoin the ends. These proteins also catenate/ decatenate duplex rings. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). The conserved glutamate may act as a general base in strand joining and as a general acid in strand cleavage by topisomerases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 115 -238504 cd01031 EriC ClC chloride channel EriC. This domain is found in the EriC chloride transporters that mediate the extreme acid resistance response in eubacteria and archaea. This response allows bacteria to survive in the acidic environments by decarboxylation-linked proton utilization. As shown for Escherichia coli EriC, these channels can counterbalance the electric current produced by the outwardly directed virtual proton pump linked to amino acid decarboxylation. The EriC proteins belong to the ClC superfamily of chloride ion channels, which share a unique double-barreled architecture and voltage-dependent gating mechanism. The voltage-dependent gating is conferred by the permeating anion itself, acting as the gating charge. In Escherichia coli EriC, a glutamate residue that protrudes into the pore is thought to participate in gating by binding to a Cl- ion site within the selectivity filter. 402 -238505 cd01033 ClC_like Putative ClC chloride channel. Clc proteins are putative halogen ion (Cl-, Br- and I-) transporters found in eubacteria. They belong to the ClC superfamily of halogen ion channels, which share a unique double-barreled architecture and voltage-dependent gating mechanism. This superfamily lacks any structural or sequence similarity to other known ion channels and exhibit unique properties of ion permeation and gating. The voltage-dependent gating is conferred by the permeating anion itself, acting as the gating charge. 388 -238506 cd01034 EriC_like ClC chloride channel family. These protein sequences, closely related to the ClC Eric family, are putative halogen ion (Cl-, Br- and I-) transport proteins found in eubacteria. They belong to the ClC superfamily of chloride ion channels, which share a unique double-barreled architecture and voltage-dependent gating mechanism. This superfamily lacks any structural or sequence similarity to other known ion channels and exhibit unique properties of ion permeation and gating. The voltage-dependent gating is conferred by the permeating anion itself, acting as the gating charge. 390 -238507 cd01036 ClC_euk Chloride channel, ClC. These domains are found in the eukaryotic halogen ion (Cl-, Br- and I-) channel proteins that perform a variety of functions including cell volume regulation, membrane potential stabilization, charge compensation necessary for the acidification of intracellular organelles, signal transduction and transepithelial transport. They are also involved in many pathophysiological processes and are responsible for a number of human diseases. These proteins belong to the ClC superfamily of chloride ion channels, which share the unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. Some proteins possess long C-terminal cytoplasmic regions containing two CBS (cystathionine beta synthase) domains of putative regulatory function. 416 -238508 cd01037 Restriction_endonuclease_like Superfamily of nucleases including Short Patch Repair (Vsr) Endonucleases, archaeal Holliday junction resolvases, MutH methy-directed DNA mismatch-repair endonucleases, and catalytic domains of many restriction endonucleases, such as EcoRI, BamHI, and FokI 80 -238509 cd01038 Endonuclease_DUF559 Domain of unknown function, appears to be related to a diverse group of endonucleases. 108 -271266 cd01040 Mb_like myoglobin_like; M family globin domain. This family includes chimeric (FHbs/flavohemoglobins) and single-domain globins: FHbs, Ngbs/neuroglobins, Cygb/cytoglobins, GbE/avian eye specific globin E, GbX/globin X, amphibian GbY/globin Y, Mb/myoglobin, HbA/hemoglobin-alpha, HbB/hemoglobin-beta, SDgbs/single-domain globins related to FHbs, and Adgb/androglobin. The M family exhibits the canonical secondary structure of hemoglobins , a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments (named A through H). In Adgbs, the globin domain is split into two: helices C-H are followed by helices A-B and the two parts are separated by the IQ motif. Although rearranged, the globin domain of most Adgbs contains a number of conserved residues which play critical roles in heme-coordination and gas ligand binding. Adgbs have been omitted from this A-H helix cd. 132 -153100 cd01041 Rubrerythrin Rubrerythrin, ferritin-like diiron-binding domain. Rubrerythrin domain is a nonheme iron binding domain found in many air-sensitive bacteria and archaea and member of a broad superfamily of ferritin-like diiron-carboxylate proteins. The homodimeric rubrerythrin protein contains a binuclear metal center located within a four helix bundle. Many, but not all, rubrerythrin proteins have a second domain with a rubredoxin-like hexacoordinated iron center. Rubrerythrin is thought to reduce hydrogen peroxide as part of an oxidative stress protection system but its function is still poorly understood. 134 -153101 cd01042 DMQH Demethoxyubiquinone hydroxylase, ferritin-like diiron-binding domain. Demethoxyubiquinone hydroxylases (DMQH) are members of the ferritin-like, diiron-carboxylate family which are present in eukaryotes (the CLK-1/CAT5 family) and prokaryotes (the Coq7 family). DMQH participates in one of the last steps of ubiquinone biosysnthesis and is responsible for DMQ hydroxylation, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. CLK-1 is a mitochondrial inner membrane protein and Coq7 is a proposed interfacial integral membrane protein. Mutations in the Caenorhabditis elegans gene clk-1 affect biological timing and extend longevity. The conserved residues of a diiron center are present in this domain. 165 -153102 cd01043 DPS DPS protein, ferritin-like diiron-binding domain. DPS (DNA Protecting protein under Starved conditions) domain is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. Some DPS proteins nonspecifically bind DNA, protecting it from cleavage caused by reactive oxygen species such as the hydroxyl radicals produced during oxidation of Fe(II) by hydrogen peroxide. These proteins assemble into dodecameric structures, some form DPS-DNA co-crystalline complexes, and possess iron and H2O2 detoxification capabilities. Expression of DPS is induced by oxidative or nutritional stress, including metal ion starvation. Members of the DPS family are homopolymers formed by 12 four-helix bundle subunits that assemble with 23 symmetry into a hollow shell. The DPS ferroxidase site is unusual in that it is not located in a four-helix bundle as in ferritin, but is shared by 2-fold symmetry-related subunits providing the iron ligands. Many DPS sequences (e.g., E. coli) display an N-terminal extension of variable length that contains two or three positively charged lysine residues that extends into the solvent and is thought to play an important role in the stabilization of the complex with DNA. DPS Listeria Flp, Bacillus anthracis Dlp-1 and Dlp-2, and Helicobacter pylori HP-NAP which lack the N-terminal extension, do not bind DNA. DPS proteins from Helicobacter pylori, Treponema pallidum, and Borrelia burgdorferi are highly immunogenic. 139 -153103 cd01044 Ferritin_CCC1_N Ferritin-CCC1, N-terminal ferritin-like diiron-binding domain. Ferritin-like N-terminal domain present in an uncharacterized family of proteins found in bacteria and archaea. These proteins also have a C-terminal CCC1-like transmembrane domain and are thought to be involved in iron and/or manganese transport. This domain has the conserved residues of a diiron center found in other ferritin-like proteins. 125 -153104 cd01045 Ferritin_like_AB Uncharacterized family of ferritin-like proteins found in archaea and bacteria. Ferritin-like domain found in archaea and bacteria (Ferritin_like_AB). This uncharacterized domain is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins whose function is unknown. This family includes unknown or hypothetical proteins which were sequenced from mostly anaerobic or microaerophilic metal-metabolizing and/or nitrogen-fixing microbes. The family includes sequences from ferric-, sulfate-, and arsenic-reducing bacteria, Geobacter, Magnetospirillum, Desulfovibrio, and Desulfitobacterium. Also included are several nitrogen-fixing endosymbiotic bacteria, Rhizobium, Mesorhizobium, and Bradyrhizobium; also phototrophic purple nonsulfur bacteria, Rhodobacter and Rhodopseudomonas, as well as, obligate thermophiles, Thermotoga, Thermoanaerobacter, and Pyrococcus. The conserved residues of a diiron center are present in this uncharacterized domain. 139 -153105 cd01046 Rubrerythrin_like rubrerythrin-like, diiron-binding domain. Rubrerythrin-like domain, similar to rubrerythrin, a nonheme iron binding domain found in many air-sensitive bacteria and archaea, and member of a broad superfamily of ferritin-like diiron-carboxylate proteins. Rubrerythrin is thought to reduce hydrogen peroxide as part of an oxidative stress protection system. The rubrerythrin protein has two domains, a binuclear metal center located within a four-helix bundle of the rubrerythrin domain, and a rubredoxin domain. The Rubrerythrin-like domains in this CD are singular domains (no C-terminus rubredoxin domain) and are phylogenetically distinct from rubrerythrin domains of rubrerythrin-rubredoxin proteins. 123 -153106 cd01047 ACSF Aerobic Cyclase System Fe-containing subunit (ACSF), ferritin-like diiron-binding domain. Aerobic Cyclase System, Fe-containing subunit (ACSF) is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. Rubrivivax gelatinosus acsF codes for a conserved, putative binuclear iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethyl ester. AcsF and homologs have a leucine zipper and two copies of the conserved glutamate and histidine residues predicted to act as ligands for iron in the Ex(29-35)DExRH motifs. Several homologs of AcsF are found in a wide range of photosynthetic organisms, including Chlamydomonas reinhardtii Crd1 and Pharbitis nil PNZIP, suggesting that this aerobic oxidative cyclization mechanism is conserved from bacteria to plants. 323 -153107 cd01048 Ferritin_like_AB2 Uncharacterized family of ferritin-like proteins found in archaea and bacteria. Ferritin-like domain found in archaea and bacteria, subgroup 2 (Ferritin_like_AB2). This uncharacterized domain is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins whose function is unknown. The conserved residues of a diiron center are present within the putative active site. 135 -153108 cd01049 RNRR2 Ribonucleotide Reductase, R2/beta subunit, ferritin-like diiron-binding domain. Ribonucleotide Reductase, R2/beta subunit (RNRR2) is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. The RNR protein catalyzes the conversion of ribonucleotides to deoxyribonucleotides and is found in all eukaryotes, many prokaryotes, several viruses, and few archaea. The catalytically active form of RNR is a proposed alpha2-beta2 tetramer. The homodimeric alpha subunit (R1) contains the active site and redox active cysteines as well as the allosteric binding sites. The beta subunit (R2) contains a diiron cluster that, in its reduced state, reacts with dioxygen to form a stable tyrosyl radical and a diiron(III) cluster. This essential tyrosyl radical is proposed to generate a thiyl radical, located on a cysteine residue in the R1 active site that initiates ribonucleotide reduction. The beta subunit is composed of 10-13 helices, the 8 longest helices form an alpha-helical bundle; some have 2 addition beta strands. Yeast is unique in that it assembles both homodimers and heterodimers of RNRR2. The yeast heterodimer, Y2Y4, contains R2 (Y2) and a R2 homolog (Y4) that lacks the diiron center and is proposed to only assist in cofactor assembly, and perhaps stabilize R1 (Y1) in its active conformation. 288 -153109 cd01050 Acyl_ACP_Desat Acyl ACP desaturase, ferritin-like diiron-binding domain. Acyl-Acyl Carrier Protein Desaturase (Acyl_ACP_Desat) is a mu-oxo-bridged diiron-carboxylate enzyme, which belongs to a broad superfamily of ferritin-like proteins and catalyzes the NADPH and O2-dependent formation of a cis-double bond in acyl-ACPs. Acyl-ACP desaturases are found in higher plants and a few bacterial species (Mycobacterium tuberculosis, M. leprae, M. avium and Streptomyces avermitilis, S. coelicolor). In plants, Acyl-ACP desaturase is a plastid-localized, covalently ACP linked, soluble desaturase that introduces the first double bound into saturated fatty acids, resulting in the corresponding monounsaturated fatty acid. Members of this class of soluble desaturases are specific for a particular substrate chain length and introduce the double bond between specific carbon atoms. For example, delta 9 stearoyl-ACP is specific for stearic acid and introduces a double bond between carbon 9 and 10 to yield oleic acid in the ACP-bound form. The enzymatic reaction requires molecular oxygen, NAD(P)H, NAD(P)H ferredoxin oxido-reductase and ferredoxin. The enzyme is active in the homodimeric form; the monomer consists mainly of alpha-helices with the catalytic diiron center buried within a four-helix bundle. Integral membrane fatty acid desaturases that introduce double bonds into fatty acid chains, acyl-CoA desaturases of animals, yeasts, and fungi, and acyl-lipid desaturases of cyanobacteria and higher plants, are distinct from soluble acyl-ACP desaturases, lack diiron centers, and are not included in this CD. 297 -153110 cd01051 Mn_catalase Manganese catalase, ferritin-like diiron-binding domain. Manganese (Mn) catalase is a member of a broad superfamily of ferritin-like diiron enzymes. While many diiron enzymes catalyze dioxygen-dependent reactions, manganese catalase performs peroxide-dependent oxidation-reduction. Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Manganese catalase, a nonheme type II catalase, contains a binuclear manganese cluster that catalyzes the redox dismutation of hydrogen peroxide, interconverting between dimanganese(II) [(2,2)] and dimanganese(III) [(3,3)] oxidation states during turnover. Mn catalases are found in a broad range of microorganisms in microaerophilic environments, including the mesophilic lactic acid bacteria (e.g., Lactobacillus plantarum) and bacterial and archaeal thermophiles (e.g., Thermus thermophilus and Pyrobaculum caldifontis). L. plantarum and T. thermophilus holoenzymes are homohexameric structures; each subunit contains a dimanganese active site. The manganese ions are linked by a mu 1,3-bridging glutamate carboxylate and two mu-bridging solvent oxygens that electronically couple the metal centers. Several members of this CD lack the C-terminal strands that pack against the neighboring catalytic domains as seen in L. plantarum. One such sequence, Bacillus subtilis CotJC, is known to be a component of the inner spore coat that interacts with spore coat protein, CotJA. It has been suggested that CotJC could modulate the degree of Mn SodA-dependent cross-linking of an outer coat component, or the two enzymes could serve to protect specific cellular structures during the developmental process. 156 -153111 cd01052 DPSL DPS-like protein, ferritin-like diiron-binding domain. DPSL (DPS-like). DPSL is a phylogenetically distinct class within the ferritin-like superfamily, and similar in many ways to the DPS (DNA Protecting protein under Starved conditions) proteins. Like DPS, these proteins are expressed in response to oxidative stress, form dodecameric cage-like particles, preferentially utilize hydrogen peroxide in the controlled oxidation of iron, and possess a short N-terminal extension implicated in stabilizing cellular DNA. This domain is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. These proteins are distantly related to bacterial ferritins which assemble 24 monomers, each of which have a four-helix bundle with a fifth shorter helix at the C terminus and a diiron (ferroxidase) center. Ferritins contain a center where oxidation of ferrous iron by molecular oxygen occurs, facilitating the detoxification of iron, protection against dioxygen and radical products, and storage of iron in the ferric form. Many of the conserved residues of a diiron center are present in this domain. 148 -153112 cd01053 AOX Alternative oxidase, ferritin-like diiron-binding domain. Alternative oxidase (AOX) is a mitochondrial ubiquinol oxidase found in plants and some fungi and protists. AOX is a member of the ferritin-like diiron-carboxylate superfamily. The plant mitochondrial protein alternative oxidase catalyses dioxygen dependent ubiquinol oxidation to yield ubiquinone and water. AOX is a cyanide-resistant, salicylhydroxamic acid-sensitive oxidase that transfers electrons from ubiquinol to oxygen, bypassing the cytochrome chain. AOX has been proposed to contain a hydroxo-bridged diiron center within a four-helix bundle and a proximal redox-active tyrosine residue. AOX is proposed to be peripherally associated with the matrix side of the inner mitochondrial membrane. Fungal and protozoan AOXs generally exist as monomers. In plants, AOX is dimeric. Pyruvate is an allosteric activator of plant AOX involved in the reversible inactivation of the enzyme though the formation of an intermolecular disulfide bridge between monomeric subunits. The enzyme is non-proton-motive and does not contribute to the conservation of energy. The heat that dissipates from AOX activity is used in thermogenic plants to volatilize primary amines to attract pollinating insects. Other functions have been proposed: i) that the alternative oxidase allows Krebs-cycle turnover when the energy charge of the cell is high, and ii) that the enzyme protects against oxidative stress. The expression of AOX is induced when plants are exposed to a variety of stresses including chilling, pathogen attack, senescence and fruit ripening. 168 -153113 cd01055 Nonheme_Ferritin nonheme-containing ferritins. Nonheme Ferritin domain, found in archaea and bacteria, is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. The ferritin protein shell is composed of 24 protein subunits arranged in 432 symmetry. Each protein subunit, a four-helix bundle with a fifth short terminal helix, contains a dinuclear ferroxidase center (H type). Unique to this group of proteins is a third metal site in the ferroxidase center. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite. 156 -153114 cd01056 Euk_Ferritin eukaryotic ferritins. Eukaryotic Ferritin (Euk_Ferritin) domain. Ferritins are the primary iron storage proteins of most living organisms and members of a broad superfamily of ferritin-like diiron-carboxylate proteins. The iron-free (apoferritin) ferritin molecule is a protein shell composed of 24 protein chains arranged in 432 symmetry. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the dinuclear ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite; the protein shell can hold up to 4500 iron atoms. In vertebrates, two types of chains (subunits) have been characterized, H or M (fast) and L (slow), which differ in rates of iron uptake and mineralization. Fe(II) oxidation in the H/M subunits take place initially at the ferroxidase center, a carboxylate-bridged diiron center, located within the subunit four-helix bundle. In a complementary role, negatively charged residues on the protein shell inner surface of the L subunits promote ferrihydrite nucleation. Most plant ferritins combine both oxidase and nucleation functions in one chain: they have four interior glutamate residues as well as seven ferroxidase center residues. 161 -153115 cd01057 AAMH_A Aromatic and Alkene Monooxygenase Hydroxylase, subunit A, ferritin-like diiron-binding domain. Aromatic and Alkene Monooxygenase Hydroxylases, subunit A (AAMH_A). Subunit A of the soluble hydroxylase of multicomponent, aromatic and alkene monooxygenases are members of a superfamily of ferritin-like iron-storage proteins. AAMH exists as a hexamer (an alpha2-beta2-gamma2 homodimer) with each alpha-subunit housing one nonheme diiron center embedded in a four-helix bundle. The N-terminal domain of the alpha- and noncatalytic beta-subunits possess nearly identical folds, however, the beta-subunit lacks critical diiron ligands and a C-terminal domain found in the alpha-subunit. Methane monooxygenase is a multicomponent enzyme found in methanotrophic bacteria that catalyzes the hydroxylation of methane and higher alkenes (as large as octane). Phenol monooxygenase, found in a diverse group of bacteria, catalyses the hydroxylation of phenol, chloro- and methyl-phenol and naphthol. Both enzyme systems consist of three components: the hydroxylase, a coupling protein and a reductase. In the MMO hydroxylase, dioxygen and substrate interact with the diiron center in a hydrophobic cavity at the active site. The reductase component and protein coupling factor provide electrons from NADH for reducing the oxidized binuclear iron-oxo cluster to its reduced form. Reaction with dioxygen produces a peroxy-bridged complex and dehydration leads to the formation of complex Q, which is thought to be the oxygenating species that carries out the insertion of an oxygen atom into a C-H bond of the substrate. The toluene monooxygenase systems, toluene 2-, 3-, and 4-monooxygenase, are similar to MMO but with an additional component, a Rieske-type ferredoxin. The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Alkane omega-hydroxylase (AlkB) and xylene monooxygenase are members of a distinct class of integral membrane diiron proteins and are not included in this CD. 465 -153116 cd01058 AAMH_B Aromatic and Alkene Monooxygenase Hydroxylase, subunit B, ferritin-like diiron-binding domain. Aromatic and Alkene Monooxygenase Hydroxylases, subunit B (AAMH_B). Subunit B (beta) of the soluble hydroxylase of multicomponent, aromatic and alkene monooxygenases are members of a superfamily of ferritin-like iron-storage proteins. AAMH exists as a hexamer (an alpha2-beta2-gamma2 homodimer) with each alpha-subunit housing one nonheme diiron center embedded in a four-helix bundle. The N-terminal domain of the alpha- and noncatalytic beta-subunits possess nearly identical folds; the beta-subunit lacks the C-terminal domain found in the alpha-subunit. Methane monooxygenase is a multicomponent enzyme found in methanotrophic bacteria that catalyzes the hydroxylation of methane and higher alkenes (as large as octane). Phenol monooxygenase, found in a diverse group of bacteria, catalyses the hydroxylation of phenol, chloro- and methyl-phenol and naphthol. Both enzyme systems consist of three components: the hydroxylase, a coupling protein and a reductase. In the MMO hydroxylase, dioxygen and substrate interact with the diiron center in a hydrophobic cavity at the active site. The reductase component and protein coupling factor provide electrons from NADH for reducing the oxidized binuclear iron-oxo cluster to its reduced form. Reaction with dioxygen produces a peroxy-bridged complex and dehydration leads to the formation of complex Q, which is thought to be the oxygenating species that carries out the insertion of an oxygen atom into a C-H bond of the substrate. The toluene monooxygenase systems, toluene 2-, 3-, and 4-monooxygenase, are similar to MMO but with an additional component, a Rieske-type ferredoxin. The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Alkane omega-hydroxylase (AlkB) and xylene monooxygenase are members of a distinct class of integral membrane diiron proteins and are not included in this CD. 304 -153121 cd01059 CCC1_like CCC1-related family of proteins. CCC1_like: This protein family includes the proteins related to CCC1, a yeast vacuole transmembrane protein responsible for the iron and manganese transport from the cytosol into vacuole. It also includes the proteins similar to nodulin-21, a plant nodule-specific protein that may be involved in symbiotic nitrogen fixation. 143 -238511 cd01060 Membrane-FADS-like The membrane fatty acid desaturase (Membrane_FADS)-like CD includes membrane FADSs, alkane hydroxylases, beta carotene ketolases (CrtW-like), hydroxylases (CrtR-like), and other related proteins. They are present in all groups of organisms with the exception of archaea. Membrane FADSs are non-heme, iron-containing, oxygen-dependent enzymes involved in regioselective introduction of double bonds in fatty acyl aliphatic chains. They play an important role in the maintenance of the proper structure and functioning of biological membranes. Alkane hydroxylases are bacterial, integral-membrane di-iron enzymes that share a requirement for iron and oxygen for activity similar to that of membrane FADSs, and are involved in the initial oxidation of inactivated alkanes. Beta-carotene ketolase and beta-carotene hydroxylase are carotenoid biosynthetic enzymes for astaxanthin and zeaxanthin, respectively. This superfamily domain has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXX(X)H, HXX(X)HH, and HXXHH (an additional conserved histidine residue is seen between clusters 2 and 3). Spectroscopic and genetic evidence point to a nitrogen-rich coordination environment located in the cytoplasm with as many as eight histidines coordinating the two iron ions and a carboxylate residue bridging the two metals in the Pseudomonas oleovorans alkane hydroxylase (AlkB). In addition, the eight histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the rat stearoyl CoA delta-9 desaturase. 122 -238512 cd01061 RNase_T2_euk Ribonuclease T2 (RNase T2) is a widespread family of secreted RNases found in every organism examined thus far. This family includes RNase Rh, RNase MC1, RNase LE, and self-incompatibility RNases (S-RNases). Plant T2 RNases are expressed during leaf senescence in order to scavenge phosphate from ribonucleotides. They are also expressed in response to wounding or pathogen invasion. S-RNases are thought to prevent self-fertilization by acting as selective cytotoxins of "self" pollen. Generally, RNases have two distinct binding sites: the primary site (B1 site) and the subsite (B2 site), for nucleotides located at the 5'- and 3'- terminal ends of the sessil bond, respectively. This CD includes the eukaryotic RNase T2 family members. 195 -238513 cd01062 RNase_T2_prok Ribonuclease T2 (RNase T2) is a widespread family of secreted RNases found in every organism examined thus far. This family includes RNase Rh, RNase MC1, RNase LE, and self-incompatibility RNases (S-RNases). Plant T2 RNases are expressed during leaf senescence in order to scavenge phosphate from ribonucleotides. They are also expressed in response to wounding or pathogen invasion. S-RNases are thought to prevent self-fertilization by acting as selective cytotoxins of "self" pollen. Generally, RNases have two distinct binding sites: the primary site (B1 site) and the subsite (B2 site), for nucleotides located at the 5'- and 3'- terminal ends of the sessil bond, respectively. This CD includes the prokaryotic RNase T2 family members. 184 -133443 cd01065 NAD_bind_Shikimate_DH NAD(P) binding domain of Shikimate dehydrogenase. Shikimate dehydrogenase (DH) is an amino acid DH family member. Shikimate pathway links metabolism of carbohydrates to de novo biosynthesis of aromatic amino acids, quinones and folate. It is essential in plants, bacteria, and fungi but absent in mammals, thus making enzymes involved in this pathway ideal targets for broad spectrum antibiotics and herbicides. Shikimate DH catalyzes the reduction of 3-hydroshikimate to shikimate using the cofactor NADH. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DHs, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 155 -238514 cd01066 APP_MetAP A family including aminopeptidase P, aminopeptidase M, and prolidase. Also known as metallopeptidase family M24. This family of enzymes is able to cleave amido-, imido- and amidino-containing bonds. Members exibit relatively narrow substrate specificity compared to other metallo-aminopeptidases, suggesting they play roles in regulation of biological processes rather than general protein degradation. 207 -271267 cd01067 Globin_like Globin-like proteins. This globin-like domain superfamily contains a wide variety of all-helical proteins that bind porphyrins, phycobilins, and other non-heme cofactors, and play various roles in all three kingdoms of life, including sensors or transporters of oxygen. It includes the M/myoglobin-like, S/sensor globin, and T/truncated globin (TrHb) families, and the phycobiliproteins (PBPs). The M family includes chimeric (FHbs/flavohemoglobins) and single-domain globins: FHbs, Ngbs/neuroglobins, Cygb/cytoglobins, GbE/avian eye specific globin E, GbX/globin X, amphibian GbY/globin Y, Mb/myoglobin, HbA/hemoglobin-alpha, HbB/hemoglobin-beta, SDgbs/single-domain globins related to FHbs, and Adgb/androglobin. The S family includes GCS/globin-coupled sensors, Pgbs/protoglobins, and SSDgbs/sensor single domain globins. The T family is classified into three main groups: TrHb1s (N), TrHb2s (O) and TrHb3s (P). The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments (named A through H). For M family Adgbs, this globin domain is permuted, such that C-H are followed by A-B. The T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. PBPs bind the linear tetrapyrrole chromophore, phycobilin, a prosthetic group chemically and metabolically related to iron protoporphyrin IX/protoheme. Examples of other globin-like domains which bind non-heme cofactors include those of the Bacillus anthracis sporulation inhibitors pXO1-118 and pXO2-61 which bind fatty acid and halide in vitro, and the globin-like domain of Bacillus subtillus RsbRA which is presumed to channel sensory input to the C-terminal sulfate transporter/ anti-sigma factor antagonist (STAT) domain. RsbRA is a component of the sigma B-activating stressosome, and a regulator of the RNA polymerase sigma factor subunit sigma (B). 125 -271268 cd01068 globin_sensor Globin sensor domain of globin-coupled-sensors (GCSs), protoglobins (Pgbs), and sensor single-domain globins (SSDgbs); S family. This family includes sensor domains which binds porphyrins, and other non-heme cofactors. GCSs have an N-terminal sensor domain coupled to a functional domain. For heme-bound oxygen sensing/binding globin domains, O2 binds to/dissociates from the heme iron complex inducing a structural change in the sensor domain, which is then transduced to the functional domain, switching on (or off) the function of the latter. Functional domains include DGC/GGDEF, EAL, histidine kinase, MCP, PAS, and GAF domains. Characterized members include Bacillus subtilis heme-based aerotaxis transducer (HemAT-Bs) which has a sensor domain coupled to an MCP domain. HemAT-Bs mediates an aerophilic response, and may control the movement direction of bacteria and archaea. Its MCP domain interacts with the CheA histidine kinase, a component of the CheA/CheY signal transduction system that regulates the rotational direction of flagellar motors. Another GCS having the sensor domain coupled to an MCP domain is Caulobacter crescentus McpB. McpB is encoded by a gene which lies adjacent to the major chemotaxis operon. Like McpA (encoded on this operon), McpB has three potential methylation sites, a C-terminal CheBR docking motif, and a motif needed for proteolysis via a ClpX-dependent pathway during the swarmer-to-stalked cell transition. Also included is Geobacter sulfurreducens GCS, a GCS of unknown function, in which the sensor domain is coupled to a transmembrane signal-transduction domain. Pgbs are single-domain globins of unknown function. Methanosarcina acetivorans Pgbs is dimeric and has an N-terminal extension, which together with other Pgb-specific loops, buries the heme within the protein; small ligand molecules gain access to the heme via two orthogonal apolar tunnels. Pgbs and other single-domain globins can function as sensors, when coupled to an appropriate regulator domain. 148 -270231 cd01069 PBP2_PheC Cyclohexadienyl dehydratase, a member of the type 2 periplasmic binding fold protein superfamily. This subfamily includes cyclohexadienyl dehydratase PheC. These proteins catalyze the decarboxylation of prephenate to phenylpyruvate in the alternative phenylalanine biosynthesis pathway in some proteobacteria and archaea. The PheC proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Since they the PheC proteins are so similar to periplasmic binding proteins, (PBP), it is evolutionarily plausible that several pre-existing PBP proteins might have been recruited to perform the enzymatic function. 232 -270232 cd01071 PBP2_PhnD_like Substrate binding domain of phosphonate uptake system-like, a member of the type 2 periplasmic-binding fold superfamily. This family includes alkylphosphonate binding domain PhnD. These domains are found in PhnD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. PhnD is the periplasmic binding component of an ABC-type phosphonate uptake system (PhnCDE) that recognizes and binds phosphonate. PhnD belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. The PBP2 have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 253 -270233 cd01072 PBP2_SMa0082_like The substrate-binding domain of putatuve amino acid transporter; the type 2 periplasmic binding protein fold. This group includes the periplamic-binding protein component of a putative amino acid ABC transporter from Sinorhizobium meliloti and its related proteins. The putative SMa0082-like domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 238 -133444 cd01075 NAD_bind_Leu_Phe_Val_DH NAD(P) binding domain of leucine dehydrogenase, phenylalanine dehydrogenase, and valine dehydrogenase. Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NADP+. For example, leucine DH catalyzes the reversible oxidative deamination of L-leucine and several other straight or branched chain amino acids to the corresponding 2-oxoacid derivative. Amino acid DH -like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 200 -133445 cd01076 NAD_bind_1_Glu_DH NAD(P) binding domain of glutamate dehydrogenase, subgroup 1. Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NADP+. Glutamate DH is a multidomain enzyme that catalyzes the reaction from glutamate to 2-oxyoglutarate and ammonia in the presence of NAD or NADP. It is present in all organisms. Enzymes involved in ammonia assimilation are typically NADP+-dependent, while those involved in glutamate catabolism are generally NAD+-dependent. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha -beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 227 -133446 cd01078 NAD_bind_H4MPT_DH NADP binding domain of methylene tetrahydromethanopterin dehydrogenase. Methylene Tetrahydromethanopterin Dehydrogenase (H4MPT DH) NADP binding domain. NADP-dependent H4MPT DH catalyzes the dehydrogenation of methylene- H4MPT and methylene-tetrahydrofolate (H4F) with NADP+ as cofactor. H4F and H4MPT are both cofactors that carry the one-carbon units between the formyl and methyl oxidation level. H4F and H4MPT are structurally analogous to each other with respect to the pterin moiety, but each has distinct side chain. H4MPT is present only in anaerobic methanogenic archaea and aerobic methylotrophic proteobacteria. H4MPT seems to have evolved independently from H4F and functions as a distinct carrier in C1 metabolism. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 194 -133447 cd01079 NAD_bind_m-THF_DH NAD binding domain of methylene-tetrahydrofolate dehydrogenase. The NAD-binding domain of methylene-tetrahydrofolate dehydrogenase (m-THF DH). M-THF is a versatile carrier of activated one-carbon units. The major one-carbon folate donors are N-5 methyltetrahydrofolate, N5,N10-m-THF, and N10-formayltetrahydrofolate. The oxidation of metabolic intermediate m-THF to m-THF requires the enzyme m-THF DH. M-THF DH is a component of an unusual monofunctional enzyme; in eukaryotes, m-THF DH is typically found as part of a multifunctional protein. NADP-dependent m-THF DHs in mammals, birds and yeast are components of a trifunctional enzyme with DH, cyclohydrolase, and synthetase activities. Certain eukaryotic cells also contain homodimeric bifunctional DH/cyclodrolase form. In bacteria, monofunctional DH, as well as bifunctional DH/cyclodrolase are found. In addition, yeast (S. cerevisiae) also express an monofunctional DH. This family contains only the monofunctional DHs from S. cerevisiae and certain bacteria. M-THF DH, like other amino acid DH-like NAD(P)-binding domains, is a member of the Rossmann fold superfamily which includes glutamate, leucine, and phenylalanine DHs, m-THF DH, methylene-tetrahydromethanopterin DH, m-THF DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 197 -133448 cd01080 NAD_bind_m-THF_DH_Cyclohyd NADP binding domain of methylene-tetrahydrofolate dehydrogenase/cyclohydrolase. NADP binding domain of the Methylene-Tetrahydrofolate Dehydrogenase/cyclohydrolase (m-THF DH/cyclohydrolase) bifunctional enzyme. Tetrahydrofolate is a versatile carrier of activated one-carbon units. The major one-carbon folate donors are N-5 methyltetrahydrofolate, N5,N10-m-THF, and N10-formayltetrahydrofolate. The oxidation of metabolic intermediate m-THF to m-THF requires the enzyme m-THF DH. In addition, most DHs also have an associated cyclohydrolase activity which catalyzes its hydrolysis to N10-formyltetrahydrofolate. m-THF DH is typically found as part of a multifunctional protein in eukaryotes. NADP-dependent m-THF DH in mammals, birds and yeast are components of a trifunctional enzyme with DH, cyclohydrolase, and synthetase activities. Certain eukaryotic cells also contain homodimeric bifunctional DH/cyclodrolase form. In bacteria, monofucntional DH, as well as bifunctional m-THF m-THF DHm-THF DHDH/cyclodrolase are found. In addition, yeast (S. cerevisiae) also express an monofunctional DH. This family contains the bifunctional DH/cyclohydrolase. M-THF DH, like other amino acid DH-like NAD(P)-binding domains, is a member of the Rossmann fold superfamily which includes glutamate, leucine, and phenylalanine DHs, m-THF DH, methylene-tetrahydromethanopterin DH, m-THF DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. 168 -185695 cd01081 Aldose_epim aldose 1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism; they catalyze the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate and the histidine as the active site acid to protonate the C-5 ring oxygen. 284 -238517 cd01083 GAG_Lyase Glycosaminoglycan (GAG) polysaccharide lyase family. This family consists of a group of secreted bacterial lyase enzymes capable of acting on glycosaminoglycans, such as hyaluronan and chondroitin, in the extracellular matrix of host tissues, contributing to the invasive capacity of the pathogen. These are broad-specificity glycosaminoglycan lyases which recognize uronyl residues in polysaccharides and cleave their glycosidic bonds via a beta-elimination reaction to form a double bond between C-4 and C-5 of the non-reducing terminal uronyl residues of released products. Substrates include chondroitin, chondroitin 4-sulfate, chondroitin 6-sulfate, and hyaluronic acid. Family members include chondroitin AC lyase, chondroitin abc lyase, xanthan lyase, and hyalurate lyase. 693 -238518 cd01085 APP X-Prolyl Aminopeptidase 2. E.C. 3.4.11.9. Also known as X-Pro aminopeptidase, proline aminopeptidase, aminopeptidase P, and aminoacylproline aminopeptidase. Catalyses release of any N-terminal amino acid, including proline, that is linked with proline, even from a dipeptide or tripeptide. 224 -238519 cd01086 MetAP1 Methionine Aminopeptidase 1. E.C. 3.4.11.18. Also known as methionyl aminopeptidase and Peptidase M. Catalyzes release of N-terminal amino acids, preferentially methionine, from peptides and arylamides. 238 -238520 cd01087 Prolidase Prolidase. E.C. 3.4.13.9. Also known as Xaa-Pro dipeptidase, X-Pro dipeptidase, proline dipeptidase., imidodipeptidase, peptidase D, gamma-peptidase. Catalyses hydrolysis of Xaa-Pro dipeptides; also acts on aminoacyl-hydroxyproline analogs. No action on Pro-Pro. 243 -238521 cd01088 MetAP2 Methionine Aminopeptidase 2. E.C. 3.4.11.18. Also known as methionyl aminopeptidase and peptidase M. Catalyzes release of N-terminal amino acids, preferentially methionine, from peptides and arylamides. 291 -238522 cd01089 PA2G4-like Related to aminopepdidase M, this family contains proliferation-associated protein 2G4. Family members have been implicated in cell cycle control. 228 -238523 cd01090 Creatinase Creatine amidinohydrolase. E.C.3.5.3.3. Hydrolyzes creatine to sarcosine and urea. 228 -238524 cd01091 CDC68-like Related to aminopeptidase P and aminopeptidase M, a member of this domain family is present in cell division control protein 68, a transcription factor. 243 -238525 cd01092 APP-like Similar to Prolidase and Aminopeptidase P. The members of this subfamily presumably catalyse hydrolysis of Xaa-Pro dipeptides and/or release of any N-terminal amino acid, including proline, that is linked with proline. 208 -238526 cd01093 CRIB_PAK_like PAK (p21 activated kinase) Binding Domain (PBD), binds Cdc42p- and/or Rho-like small GTPases; also known as the Cdc42/Rac interactive binding (CRIB) motif; has been shown to inhibit transcriptional activation and cell transformation mediated by the Ras-Rac pathway. This subgroup of CRIB/PBD-domains is found N-terminal of Serine/Threonine kinase domains in PAK and PAK-like proteins. 46 -238527 cd01094 Alkanesulfonate_monoxygenase Alkanesulfonate monoxygenase is the monoxygenase of a two-component system that catalyzes the conversion of alkanesulfonates to the corresponding aldehyde and sulfite. Alkanesulfonate monoxygenase (SsuD) has an absolute requirement for reduced flavin mononucleotide (FMNH2), which is provided by the NADPH-dependent FMN oxidoreductase (SsuE). 244 -238528 cd01095 Nitrilotriacetate_monoxgenase nitrilotriacetate monoxygenase oxidizes nitrilotriacetate utilizing reduced flavin mononucleotide (FMNH2) and oxygen. The FMNH2 is provided by an NADH:flavin mononucleotide (FMN) oxidorductase that uses NADH to reduce FMN to FMNH2. 358 -238529 cd01096 Alkanal_monooxygenase Alkanal monooxygenase are flavin monoxygenases. Molecular oxygen is activated by reaction with reduced flavin mononucleotide (FMNH2) and reacts with an aldehyde to yield the carboxylic acid, oxidized flavin (FMN) and a blue-green light. Bacterial luciferases are heterodimers made of alpha and beta subunits which are homologous. The single activer center is on the alpha subunit. The alpha subunit has a stretch of 30 amino acid residues that is not present in the beta subunit. The beta subunit does not contain the active site and is required for the formation of the fully active heterodimer. The beta subunit does not contribute anything directly to the active site. Its role is probably to stabilize the high quantum yield conformation of the alpha subunit through interactionbs across the subunit interface. 315 -238530 cd01097 Tetrahydromethanopterin_reductase N5,N10-methylenetetrahydromethanopterin reductase (Mer) catalyzes the reduction of N5,N10-methylenetetrahydromethanopterin with reduced coenzyme F420 to N5-methyltetrahydromethanopterin and oxidized coenzyme F420. 202 -238531 cd01098 PAN_AP_plant Plant PAN/APPLE-like domain; present in plant S-receptor protein kinases and secreted glycoproteins. PAN/APPLE domains fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions. S-receptor protein kinases and S-locus glycoproteins are involved in sporophytic self-incompatibility response in Brassica, one of probably many molecular mechanisms, by which hermaphrodite flowering plants avoid self-fertilization. 84 -238532 cd01099 PAN_AP_HGF Subfamily of PAN/APPLE-like domains; present in N-terminal (N) domains of plasminogen/hepatocyte growth factor proteins, and various proteins found in Bilateria, such as leech anti-platelet proteins. PAN/APPLE domains fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions. 80 -238533 cd01100 APPLE_Factor_XI_like Subfamily of PAN/APPLE-like domains; present in plasma prekallikrein/coagulation factor XI, microneme antigen proteins, and a few prokaryotic proteins. PAN/APPLE domains fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions. 73 -238534 cd01102 Link_Domain The link domain is a hyaluronan (HA)-binding domain. It functions to mediate adhesive interactions during inflammatory leukocyte homing and tumor metastasis. It is found in the CD44 receptor and in human TSG-6. TSG-6 is the protein product of the tumor necrosis factor-stimulated gene-6. TSG-6 has a strong anti-inflammatory effect in models of acute inflammation and autoimmune arthritis and plays an essential role in female fertility. This group also contains the link domains of the chondroitin sulfate proteoglycan core proteins (CSPG) including aggrecan, versican, neurocan, and brevican and the link domains of the vertebrate HAPLN (HA and proteoglycan binding link) protein family. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggregates in which other CSPGs substitute for aggregan might contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN gene family are physically linked adjacent to CSPG genes. TSG-6 contains a single link module which supports high affinity binding with HA. The functional HA-binding domain of CD44 is an extended domain comprised of a link module flanked with N-and C- extensions. These extensions are essential for folding and functional activity. CSPGs are characterized by an N-terminal globular domain (G1 domain) containing two contiguous link modules (modules 1 and 2). Both link modules of the G1 domain of the CSPG aggrecan are involved in interaction with HA. Aggrecan in addition contains a second globular domain (G2) which contains link modules 3 and 4 which lack HA-binding activity. HAPLNs contain two contiguous link modules. 92 -133379 cd01104 HTH_MlrA-CarA Helix-Turn-Helix DNA binding domain of the transcription regulators MlrA and CarA. Helix-turn-helix (HTH) transcription regulator MlrA (merR-like regulator A), N-terminal domain. The MlrA protein, also known as YehV, has been shown to control cell-cell aggregation by co-regulating the expression of curli and extracellular matrix production in Escherichia coli and Salmonella typhimurium. Its close homolog, CarA from Myxococcus xanthus, is involved in activation of the carotenoid biosynthesis genes by light. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. Many MlrA- and CarA-like proteins in this group appear to lack the long dimerization helix seen in the N-terminal domains of typical MerR-like proteins. 68 -133380 cd01105 HTH_GlnR-like Helix-Turn-Helix DNA binding domain of GlnR-like transcription regulators. Helix-turn-helix (HTH) transcription regulator GlnR and related proteins, N-terminal domain. The GlnR and TnrA (also known as ScgR) proteins have been shown to regulate expression of glutamine synthetase as well as several genes involved in nitrogen metabolism. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 88 -133381 cd01106 HTH_TipAL-Mta Helix-Turn-Helix DNA binding domain of the transcription regulators TipAL, Mta, and SkgA. Helix-turn-helix (HTH) TipAL, Mta, and SkgA transcription regulators, and related proteins, N-terminal domain. TipAL regulates resistance to and activation by numerous cyclic thiopeptide antibiotics, such as thiostrepton. Mta is a global transcriptional regulator; the N-terminal DNA-binding domain of Mta interacts directly with the promoters of mta, bmr, blt, and ydfK, and induces transcription of these multidrug-efflux transport genes. SkgA has been shown to control stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. These proteins are comprised of distinct domains that harbor an N-terminal active (DNA-binding) site and a regulatory (effector-binding) site. The conserved N-terminal domain of these transcription regulators contains winged HTH motifs that mediate DNA binding. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. Unique to this family, is a TipAL-like, lineage specific Bacilli subgroup, which has five conserved cysteines in the C-terminus of the protein. 103 -133382 cd01107 HTH_BmrR Helix-Turn-Helix DNA binding domain of the BmrR transcription regulator. Helix-turn-helix (HTH) multidrug-efflux transporter transcription regulator, BmrR and YdfL of Bacillus subtilis, and related proteins; N-terminal domain. Bmr is a membrane protein which causes the efflux of a variety of toxic substances and antibiotics. BmrR is comprised of two distinct domains that harbor a regulatory (effector-binding) site and an active (DNA-binding) site. The conserved N-terminal domain contains a winged HTH motif that mediates DNA binding, while the C-terminal domain binds coactivating, toxic compounds. BmrR shares the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 108 -133383 cd01108 HTH_CueR Helix-Turn-Helix DNA binding domain of CueR-like transcription regulators. Helix-turn-helix (HTH) transcription regulators CueR and ActP, copper efflux regulators. In Bacillus subtilis, copper induced CueR regulates the copZA operon, preventing copper toxicity. In Rhizobium leguminosarum, ActP controls copper homeostasis; it detects cytoplasmic copper stress and activates transcription in response to increasing copper concentrations. These proteins are comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain winged HTH motifs that mediate DNA binding, while the C-terminal domains have two conserved cysteines that define a monovalent copper ion binding site. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 127 -133384 cd01109 HTH_YyaN Helix-Turn-Helix DNA binding domain of the MerR-like transcription regulators YyaN and YraB. Putative helix-turn-helix (HTH) MerR-like transcription regulators of Bacillus subtilis, YyaN and YraB, and related proteins; N-terminal domain. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 113 -133385 cd01110 HTH_SoxR Helix-Turn-Helix DNA binding domain of the SoxR transcription regulator. Helix-turn-helix (HTH) transcriptional regulator SoxR. The global regulator, SoxR, up-regulates gene expression of another transcription activator, SoxS, which directly stimulates the oxidative stress regulon genes in E. coli. The soxRS response renders the bacterial cell resistant to superoxide-generating agents, macrophage-generated nitric oxide, organic solvents, and antibiotics. The SoxR proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the unusually long spacer between the -35 and -10 promoter elements. They also harbor a regulatory C-terminal domain containing an iron-sulfur center. 139 -133386 cd01111 HTH_MerD Helix-Turn-Helix DNA binding domain of the MerD transcription regulator. Helix-turn-helix (HTH) transcription regulator MerD. The putative secondary regulator of mercury resistance (mer) operons, MerD, has been shown to down-regulate the expression of this operon in gram-negative bacteria. It binds to the same operator DNA as MerR that activates transcription of the operon in the presence of mercury ions. The MerD protein shares the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily, which promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are conserved and contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 107 -238535 cd01115 SLC13_permease Permease SLC13 (solute carrier 13). The sodium/dicarboxylate cotransporter NaDC-1 has been shown to translocate Krebs cycle intermediates such as succinate, citrate, and alpha-ketoglutarate across plasma membranes rabbit, human, and rat kidney. It is related to renal and intestinal Na+/sulfate cotransporters and a few putative bacterial permeases. The SLC13-type proteins belong to the ArsB/NhaD superfamily of permeases that translocate sodium and various anions across biological membranes in all three kingdoms of life. A typical ArsB/NhaD permease is composed of 8-13 transmembrane helices. 382 -238536 cd01116 P_permease Permease P (pink-eyed dilution). Mutations in the human melanosomal P gene were responsible for classic phenotype of oculocutaneous albinism type 2 (OCA2). Although the precise function of the P protein is unknown, it was predicted to regulate the intraorganelle pH, together with the ATP-driven proton pump. It shows significant sequence similarity to the Na+/H+ antiporter NhaD from Vibrio parahaemolyticus. Both proteins belong to ArsB/NhaD superfamily of permeases that translocate sodium, arsenate, sulfate, and organic anions across biological membranes in all three kingdoms of life. A typical ArsB/NhaD permease contains 8-13 transmembrane domains. 413 -238537 cd01117 YbiR_permease Putative anion permease YbiR. Based on sequence similarity, YbiR proteins are predicted to function as anion translocating permeases in eubacteria, archaea and plants. They belong to ArsB/NhaD superfamily of permeases that have been shown to translocate sodium, sulfate, arsenite and organic anions. A typical ArsB/NhaD permease is composed of 8-13 transmembrane domains. 384 -238538 cd01118 ArsB_permease Anion permease ArsB. These permeases have been shown to export arsenate and antimonite in eubacteria and archaea. A typical ArsB permease contains 8-13 transmembrane helices and can function either independently as a chemiosmotic transporter or as a channel-forming subunit of an ATP-driven anion pump (ArsAB). The ArsAB complex is similar in many ways to ATP-binding cassette transporters, which have two groups of six transmembrane-spanning helical segments and two nucleotide-binding domains. The ArsB proteins belong to the ArsB/NhaD superfamily of permeases that translocate sodium, arsenate, sulfate, and organic anions across biological membranes in all three kingdoms of life. 416 -238539 cd01119 Chemokine_CC_DCCL Chemokine_CC_DCCL: subgroup of the Chemokine_CC subgroup based on the presence of a DCCL motif involving the two N-terminal cysteine residues; includes a number of small inducible cytokines capable of reversibly inhibiting normal hematopoietic progenitor proliferation by blocking progression through the cell cycle; DCCL subgroup contains Exodus-1 (also known as CCL20, MIP-3alpha, LARC, ST38 (mouse)), Exodus-2 (also known as CCL21, SLC, 6-Ckine, TCA4, CKbeta9), and Exodus-3 (also known as CCL-19, ELC, MIP-3beta, CKbeta11). Exodus-3 was shown to inhibit the growth of human breast cancer cells in vivo in a mouse model; Exodus-1, -2, and -3 were all shown to significantly inhibit chronic myelogenous leukemia progenitor cell proliferation; Exodus-2 and -3 show potent immunotherapeutic activity toward solid tumors; chemotatic for T cells, B cells, dendritic cells, macrophage progenitor cells, and NK cells; exist as monomers and dimers, but are believed to be functional as monomers; found only in vertebrates. See CDs: Chemokine_CC (cd00272) for the entire CC subgroup, Chemokine (cd00169) for the general alignment of chemokines, or Chemokine_CXC (cd00273), Chemokine_C (cd00271), and Chemokine_CX3C (cd00274) for the additional chemokine subgroups. 61 -238540 cd01120 RecA-like_NTPases RecA-like NTPases. This family includes the NTP binding domain of F1 and V1 H+ATPases, DnaB and related helicases as well as bacterial RecA and related eukaryotic and archaeal recombinases. This group also includes bacterial conjugation proteins and related DNA transfer proteins involved in type II and type IV secretion. 165 -238541 cd01121 Sms Sms (bacterial radA) DNA repair protein. This protein is not related to archael radA any more than is to other RecA-like NTPases. Sms has a role in recombination and recombinational repair and is responsible for the stabilization or processing of branched DNA molecules. 372 -238542 cd01122 GP4d_helicase GP4d_helicase is a homohexameric 5'-3' helicases. Helicases couple NTP hydrolysis to the unwinding of nucleic acid duplexes into their component strands. 271 -238543 cd01123 Rad51_DMC1_radA Rad51_DMC1_radA,B. This group of recombinases includes the eukaryotic proteins RAD51, RAD55/57 and the meiosis-specific protein DMC1, and the archaeal proteins radA and radB. They are closely related to the bacterial RecA group. Rad51 proteins catalyze a similiar recombination reaction as RecA, using ATP-dependent DNA binding activity and a DNA-dependent ATPase. However, this reaction is less efficient and requires accessory proteins such as RAD55/57 . 235 -238544 cd01124 KaiC KaiC is a circadian clock protein primarily found in cyanobacteria KaiC is a RecA-like ATPase, having both Walker A and Walker B motifs. A related protein is found in archaea. 187 -238545 cd01125 repA Hexameric Replicative Helicase RepA. RepA is encoded by a plasmid, which is found in most Gram negative bacteria. RepA is a 5'-3' DNA helicase which can utilize ATP, GTP and CTP to a lesser extent. 239 -238546 cd01126 TraG_VirD4 The TraG/TraD/VirD4 family are bacterial conjugation proteins involved in type IV secretion. These proteins aid the transfer of DNA from the plasmid into the host bacterial chromosome. They contain an ATP binding domain. VirD4 is involved in DNA transfer to plant cells and is required for virulence. 384 -238547 cd01127 TrwB Bacterial conjugation protein TrwB, ATP binding domain. TrwB is a homohexamer encoded by conjugative plasmids in Gram-negative bacteria. TrwB also has an all alpha domain which has been hypothesized to be responsible for DNA binding. TrwB is a component of Type IV secretion and is responsible for the horizontal transfer of DNA between bacteria. 410 -238548 cd01128 rho_factor Transcription termination factor rho is a bacterial ATP-dependent RNA/DNA helicase. It is a homohexamer. Each monomer consists of an N-terminal domain of the OB fold, which is responsible for binding to cysteine rich nucleotides. This alignment is of the C-terminal ATP binding domain. 249 -238549 cd01129 PulE-GspE PulE/GspE The type II secretory pathway is the main terminal branch of the general secretory pathway (GSP). It is responsible for the export the majority of Gram-negative bacterial exoenzymes and toxins. PulE is a cytoplasmic protein of the GSP, which contains an ATP binding site and a tetracysteine motif. This subgroup also includes PillB and HofB. 264 -238550 cd01130 VirB11-like_ATPase Type IV secretory pathway component VirB11, and related ATPases. The homohexamer, VirB11 is one of eleven Vir proteins, which are required for T-pilus biogenesis and virulence in the transfer of T-DNA from the Ti (tumor-inducing) plasmid of bacterial to plant cells. The pilus is a fibrous cell surface organelle, which mediates adhesion between bacteria during conjugative transfer or between bacteria and host eukaryotic cells during infection. VirB11- related ATPases include the archaeal flagella biosynthesis protein and the pilus assembly proteins CpaF/TadA and TrbB. This alignment contains the C-terminal domain, which is the ATPase. 186 -238551 cd01131 PilT Pilus retraction ATPase PilT. PilT is a nucleotide binding protein responsible for the retraction of type IV pili, likely by pili disassembly. This retraction provides the force required for travel of bacteria in low water environments by a mechanism known as twitching motility. 198 -238552 cd01132 F1_ATPase_alpha F1 ATP synthase alpha, central domain. The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta and epsilon subunits with a stoichiometry of 3:3:1:1:1. The alpha subunit of the F1 ATP synthase can bind nucleotides, but is non-catalytic. 274 -238553 cd01133 F1-ATPase_beta F1 ATP synthase beta subunit, nucleotide-binding domain. The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta and epsilon subunits with a stoichiometry of 3:3:1:1:1. The beta subunit of ATP synthase is catalytic. 274 -238554 cd01134 V_A-ATPase_A V/A-type ATP synthase catalytic subunit A. These ATPases couple ATP hydrolysis to the build up of a H+ gradient, but V-type ATPases do not catalyze the reverse reaction. The Vacuolar (V-type) ATPase is found in the membranes of vacuoles, the golgi apparatus and in other coated vesicles in eukaryotes. Archaea have a protein which is similar in sequence to V-ATPases, but functions like an F-ATPase (called A-ATPase). A similar protein is also found in a few bacteria. 369 -238555 cd01135 V_A-ATPase_B V/A-type ATP synthase (non-catalytic) subunit B. These ATPases couple ATP hydrolysis to the build up of a H+ gradient, but V-type ATPases do not catalyze the reverse reaction. The Vacuolar (V-type) ATPase is found in the membranes of vacuoles, the golgi apparatus and in other coated vesicles in eukaryotes. Archaea have a protein which is similar in sequence to V-ATPases, but functions like an F-ATPase (called A-ATPase). A similar protein is also found in a few bacteria. This subfamily consists of the non-catalytic beta subunit. 276 -238556 cd01136 ATPase_flagellum-secretory_path_III Flagellum-specific ATPase/type III secretory pathway virulence-related protein. This group of ATPases are responsible for the export of flagellum and virulence-related proteins. The bacterial flagellar motor is similar to the F0F1-ATPase, in that they both are proton driven rotary molecular devices. However, the main function of the bacterial flagellar motor is to rotate the flagellar filament for cell motility. Intracellular pathogens such as Salmonella and Chlamydia also have proteins which are similar to the flagellar-specific ATPase, but function in the secretion of virulence-related proteins via the type III secretory pathway. 326 -238557 cd01137 PsaA Metal binding protein PsaA. These proteins have been shown to function as initial receptors in ABC transport of Mn2+ and as surface adhesins in some eubacterial species. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 287 -238558 cd01138 FeuA Periplasmic binding protein FeuA. These proteins have predicted to function as initial receptors in ABC transport of metal ions in some eubacterial species. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 248 -238559 cd01139 TroA_f Periplasmic binding protein TroA_f. These proteins are predicted to function as initial receptors in the ABC metal ion uptake in eubacteria and archaea. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 342 -238560 cd01140 FatB Siderophore binding protein FatB. These proteins have been shown to function as ABC-type initial receptors in the siderophore-mediated iron uptake in some eubacterial species. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 270 -238561 cd01141 TroA_d Periplasmic binding protein TroA_d. These proteins are predicted to function as initial receptors in the ABC metal ion uptake in eubacteria and archaea. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 186 -238562 cd01142 TroA_e Periplasmic binding protein TroA_e. These proteins are predicted to function as initial receptors in the ABC metal ion uptake in eubacteria and archaea. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 289 -238563 cd01143 YvrC Periplasmic binding protein YvrC. These proteins are predicted to function as initial receptors in ABC transport of metal ions in eubacteria and archaea. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. 195 -238564 cd01144 BtuF Cobalamin binding protein BtuF. These proteins have been shown to function as initial receptors in ABC transport of vitamin B12 (cobalamin) in eubacterial and some archaeal species. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 245 -238565 cd01145 TroA_c Periplasmic binding protein TroA_c. These proteins are predicted to function as initial receptors in the ABC metal ion uptake in eubacteria and archaea. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind their ligands in the cleft between these domains. 203 -238566 cd01146 FhuD Fe3+-siderophore binding domain FhuD. These proteins have been shown to function as initial receptors in ABC transport of Fe3+-siderophores in many eubacterial species. They belong to the TroA-like superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA-like protein is comprised of two globular subdomains connected by a long alpha helix and binds its specific ligands in the cleft between these domains. 256 -238567 cd01147 HemV-2 Metal binding protein HemV-2. These proteins are predicted to function as initial receptors in ABC transport of metal ions. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. In addition, these proteins sometimes have a low complexity region containing a metal-binding histidine-rich motif (repetitive HDH sequence). 262 -238568 cd01148 TroA_a Metal binding protein TroA_a. These proteins are predicted to function as initial receptors in ABC transport of metal ions in eubacteria. They belong to the TroA superfamily of helical backbone metal receptor proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. 284 -238569 cd01149 HutB Hemin binding protein HutB. These proteins have been shown to function as initial receptors in ABC transport of hemin and hemoproteins in many eubacterial species. They belong to the TroA superfamily of periplasmic metal binding proteins that share a distinct fold and ligand binding mechanism. A typical TroA protein is comprised of two globular subdomains connected by a single helix and can bind the metal ion in the cleft between these domains. 235 -173839 cd01150 AXO Peroxisomal acyl-CoA oxidase. Peroxisomal acyl-CoA oxidases (AXO) catalyze the first set in the peroxisomal fatty acid beta-oxidation, the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. In a second oxidative half-reaction, the reduced FAD is reoxidized by molecular oxygen. AXO is generally a homodimer, but it has been reported to form a different type of oligomer in yeast. There are several subtypes of AXO's, based on substrate specificity. Palmitoyl-CoA oxidase acts on straight-chain fatty acids and prostanoids; whereas, the closely related Trihydroxycoprostanoly-CoA oxidase has the greatest activity for 2-methyl branched side chains of bile precursors. Pristanoyl-CoA oxidase, acts on 2-methyl branched fatty acids. AXO has an additional domain, C-terminal to the region with similarity to acyl-CoA dehydrogenases, which is included in this alignment. 610 -173840 cd01151 GCD Glutaryl-CoA dehydrogenase. Glutaryl-CoA dehydrogenase (GCD). GCD is an acyl-CoA dehydrogenase, which catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and carbon dioxide in the catabolism of lysine, hydroxylysine, and tryptophan. It uses electron transfer flavoprotein (ETF) as an electron acceptor. GCD is a homotetramer. GCD deficiency leads to a severe neurological disorder in humans. 386 -173841 cd01152 ACAD_fadE6_17_26 Putative acyl-CoA dehydrogenases similar to fadE6, fadE17, and fadE26. Putative acyl-CoA dehydrogenases (ACAD). Mitochondrial acyl-CoA dehydrogenases (ACAD) catalyze the alpha, beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of ACAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. The ACD family includes the eukaryotic beta-oxidation, as well as amino acid catabolism enzymes. These enzymes share high sequence similarity, but differ in their substrate specificities. The mitochondrial ACD's are generally homotetramers and have an active site glutamate at a conserved position. 380 -173842 cd01153 ACAD_fadE5 Putative acyl-CoA dehydrogenases similar to fadE5. Putative acyl-CoA dehydrogenase (ACAD). Mitochondrial acyl-CoA dehydrogenases (ACAD) catalyze the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of ACAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. The ACD family includes the eukaryotic beta-oxidation, as well as amino acid catabolism enzymes. These enzymes share high sequence similarity, but differ in their substrate specificities. The mitochondrial ACD's are generally homotetramers and have an active site glutamate at a conserved position. 407 -173843 cd01154 AidB Proteins involved in DNA damage response, similar to the AidB gene product. AidB is one of several genes involved in the SOS adaptive response to DNA alkylation damage, whose expression is activated by the Ada protein. Its function has not been entirely elucidated; however, it is similar in sequence and function to acyl-CoA dehydrogenases. It has been proposed that aidB directly destroys DNA alkylating agents such as nitrosoguanidines (nitrosated amides) or their reaction intermediates. 418 -173844 cd01155 ACAD_FadE2 Acyl-CoA dehydrogenases similar to fadE2. FadE2-like Acyl-CoA dehydrogenase (ACAD). Acyl-CoA dehydrogenases (ACAD) catalyze the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of ACAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. The ACAD family includes the eukaryotic beta-oxidation, as well as amino acid catabolism enzymes. These enzymes share high sequence similarity, but differ in their substrate specificities. ACAD's are generally homotetramers and have an active site glutamate at a conserved position. 394 -173845 cd01156 IVD Isovaleryl-CoA dehydrogenase. Isovaleryl-CoA dehydrogenase (IVD) is an is an acyl-CoA dehydrogenase, which catalyzes the third step in leucine catabolism, the conversion of isovaleryl-CoA (3-methylbutyryl-CoA) into 3-methylcrotonyl-CoA. IVD is a homotetramer and has the greatest affinity for small branched chain substrates. 376 -173846 cd01157 MCAD Medium chain acyl-CoA dehydrogenase. MCADs are mitochondrial beta-oxidation enzymes, which catalyze the alpha,beta dehydrogenation of the corresponding medium chain acyl-CoA by FAD, which becomes reduced. The reduced form of MCAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. MCAD is a homotetramer. 378 -173847 cd01158 SCAD_SBCAD Short chain acyl-CoA dehydrogenases and eukaryotic short/branched chain acyl-CoA dehydrogenases. Short chain acyl-CoA dehydrogenase (SCAD). SCAD is a mitochondrial beta-oxidation enzyme. It catalyzes the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of SCAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. This subgroup also contains the eukaryotic short/branched chain acyl-CoA dehydrogenase(SBCAD), the bacterial butyryl-CoA dehydorgenase(BCAD) and 2-methylbutyryl-CoA dehydrogenase, which is involved in isoleucine catabolism. These enzymes are homotetramers. 373 -173848 cd01159 NcnH Naphthocyclinone hydroxylase. Naphthocyclinone is an aromatic polyketide and an antibiotic, which is active against Gram-positive bacteria. Polyketides are secondary metabolites, which have important biological functions such as antitumor, immunosupressive or antibiotic activities. NcnH is a hydroxylase involved in the biosynthesis of naphthocyclinone and possibly other polyketides. 370 -173849 cd01160 LCAD Long chain acyl-CoA dehydrogenase. LCAD is an acyl-CoA dehydrogenases (ACAD), which is found in the mitochondria of eukaryotes and in some prokaryotes. It catalyzes the alpha, beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of LCAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. LCAD acts as a homodimer. 372 -173850 cd01161 VLCAD Very long chain acyl-CoA dehydrogenase. VLCAD is an acyl-CoA dehydrogenase (ACAD), which is found in the mitochondria of eukaryotes and in some bacteria. It catalyzes the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of ACAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. VLCAD acts as a homodimer. 409 -173851 cd01162 IBD Isobutyryl-CoA dehydrogenase. Isobutyryl-CoA dehydrogenase (IBD) catalyzes the alpha, beta- dehydrogenation of short branched chain acyl-CoA intermediates in valine catabolism. It is predicted to be a homotetramer. 375 -173852 cd01163 DszC Dibenzothiophene (DBT) desulfurization enzyme C. DszC is a flavin reductase dependent enzyme, which catalyzes the first two steps of DBT desulfurization in mesophilic bacteria. DszC converts DBT to DBT-sulfoxide, which is then converted to DBT-sulfone. Bacteria with this enzyme are candidates for the removal of organic sulfur compounds from fossil fuels, which pollute the environment. An equivalent enzyme tdsC, is found in thermophilic bacteria. This alignment also contains a closely related uncharacterized subgroup. 377 -238570 cd01164 FruK_PfkB_like 1-phosphofructokinase (FruK), minor 6-phosphofructokinase (pfkB) and related sugar kinases. FruK plays an important role in the predominant pathway for fructose utilisation.This group also contains tagatose-6-phophate kinase, an enzyme of the tagatose 6-phosphate pathway, which responsible for breakdown of the galactose moiety during lactose metabolism by bacteria such as L. lactis. 289 -349496 cd01165 BTB_POZ BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain superfamily. Proteins in this superfamily are characterized by the presence of a common protein-protein interaction motif of about 100 amino acids, known as the BTB/POZ domain. Members include transcription factors, oncogenic proteins, ion channel proteins, and potassium channel tetramerization domain (KCTD) proteins. They have been identified in poxviruses and many eukaryotes, and have diverse functions, such as transcriptional regulation, chromatin remodeling, protein degradation and cytoskeletal regulation. Many BTB/POZ proteins contain one or two additional domains, such as kelch repeats, zinc-finger domains, FYVE (Fab1, YOTB, Vac1, and EEA1) fingers, or ankyrin repeats, among others. These special additional domains or interaction partners provide unique characteristics and functions to BTB/POZ proteins. In ion channel proteins and KCTD proteins, the BTB/POZ domain is also called the tetramerization (T1) domain. 79 -238571 cd01166 KdgK 2-keto-3-deoxygluconate kinase (KdgK) phosphorylates 2-keto-3-deoxygluconate (KDG) to form 2-keto-3-deoxy-6-phosphogluconate (KDGP). KDG is the common intermediate product, that allows organisms to channel D-glucuronate and/or D-galacturinate into the glycolysis and therefore use polymers, like pectin and xylan as carbon sources. 294 -238572 cd01167 bac_FRK Fructokinases (FRKs) mainly from bacteria and plants are enzymes with high specificity for fructose, as are all FRKs, but they catalyzes the conversion of fructose to fructose-6-phosphate, which is an entry point into glycolysis via conversion into glucose-6-phosphate. This is in contrast to FRKs [or ketohexokinases (KHKs)] from mammalia and halophilic archaebacteria, which phosphorylate fructose to fructose-1-phosphate. 295 -238573 cd01168 adenosine_kinase Adenosine kinase (AK) catalyzes the phosphorylation of ribofuranosyl-containing nucleoside analogues at the 5'-hydroxyl using ATP or GTP as the phosphate donor.The physiological function of AK is associated with the regulation of extracellular adenosine levels and the preservation of intracellular adenylate pools. Adenosine kinase is involved in the purine salvage pathway. 312 -238574 cd01169 HMPP_kinase 4-amino-5-hydroxymethyl-2-methyl-pyrimidine phosphate kinase (HMPP-kinase) catalyzes two consecutive phosphorylation steps in the thiamine phosphate biosynthesis pathway, leading to the synthesis of vitamin B1. The first step is the phosphorylation of the hydroxyl group of HMP to form 4-amino-5-hydroxymethyl-2-methyl-pyrimidine phosphate (HMP-P) and then the phophorylation of HMP-P to form 4-amino-5-hydroxymethyl-2-methyl-pyrimidine pyrophosphate (HMP-PP), which is the substrate for the thiamine synthase coupling reaction. 242 -238575 cd01170 THZ_kinase 4-methyl-5-beta-hydroxyethylthiazole (Thz) kinase catalyzes the phosphorylation of the hydroxylgroup of Thz. A reaction that allows cells to recycle Thz into the thiamine biosynthesis pathway, as an alternative to its synthesis from cysteine, tyrosine and 1-deoxy-D-xylulose-5-phosphate. 242 -238576 cd01171 YXKO-related B.subtilis YXKO protein of unknown function and related proteins. Based on the conservation of the ATP binding site, the substrate binding site and the Mg2+binding site and structural homology this group is a member of the ribokinase-like superfamily. 254 -238577 cd01172 RfaE_like RfaE encodes a bifunctional ADP-heptose synthase involved in the biosynthesis of the lipopolysaccharide (LPS) core precursor ADP-L-glycero-D-manno-heptose. LPS plays an important role in maintaining the structural integrity of the bacterial outer membrane of gram-negative bacteria. RfaE consists of two domains, a sugar kinase domain, represented here, and a domain belonging to the cytidylyltransferase superfamily. 304 -238578 cd01173 pyridoxal_pyridoxamine_kinase Pyridoxal kinase plays a key role in the synthesis of the active coenzyme pyridoxal-5'-phosphate (PLP), by catalyzing the phosphorylation of the precursor vitamin B6 in the presence of Zn2+ and ATP. Mammals are unable to synthesize PLP de novo and require its precursors in the form of vitamin B6 (pyridoxal, pyridoxine, and pyridoxamine) from their diet. Pyridoxal kinase encoding genes are also found in many other species including yeast and bacteria. 254 -238579 cd01174 ribokinase Ribokinase catalyses the phosphorylation of ribose to ribose-5-phosphate using ATP. This reaction is the first step in the ribose metabolism. It traps ribose within the cell after uptake and also prepares the sugar for use in the synthesis of nucleotides and histidine, and for entry into the pentose phosphate pathway. Ribokinase is dimeric in solution. 292 -238580 cd01175 IPT_COE IPT domain of the COE family (Col/Olf-1/EBF) of non-basic, helix-loop-helix (HLH)-containing transcription factors. COE family proteins are all transcription factors and play an important role in variety of developmental processes. Mouse EBF is involved in the regulation of the early stages of B-cell differentiation, Drosophila collier is a regulator of the head patterning, and a related protein in Xenopus is involved in primary neurogenesis. All COE family members have a well conserved DNA binding domain that contains an atypical Zn finger motif. The function of the IPT domain is unknown. 85 -238581 cd01176 IPT_RBP-Jkappa IPT domain of the recombination signal Jkappa binding protein (RBP-Jkappa). RBP-J kappa, was initially considered to be involved in V(D)J recombination because of its DNA binding specificity and structural similarity to site-specific recombinases known as the integrase family. Further studies indicated that RBP-J kappa functions as a repressor of transcription, via destabilization of the general transcription factor IID and recruitment of histone deacetylase complexes. 97 -238582 cd01177 IPT_NFkappaB IPT domain of the transcription factor NFkappaB and related transcription factors. NFkappaB is considered a central regulator of stress responses, activated by different stressful conditions, including physical stress, oxidative stress, and exposure to certain chemicals. NFkappaB blocking cell apoptosis in several cell types, gives it an important role in cell proliferation and differentiation. 102 -238583 cd01178 IPT_NFAT IPT domain of the NFAT family of transcription factors. NFAT transcription complexes are a target of calcineurin, a calcium dependent phosphatase, and activate genes mainly involved in cell-cell-interaction. 101 -238584 cd01179 IPT_plexin_repeat2 Second repeat of the IPT domain of Plexins and Cell Surface Receptors (PCSR) . Plexins are involved in the regulation of cell proliferation and of cellular adhesion and repulsion receptors. In general, there are three copies of the IPT domain present preceeded by SEMA (semaphorin) and PSI (plexin, semaphorin, integrin) domains. 85 -238585 cd01180 IPT_plexin_repeat1 First repeat of the IPT domain of Plexins and Cell Surface Receptors (PCSR) . Plexins are involved in the regulation of cell proliferation and of cellular adhesion and repulsion receptors. In general, there are three copies of the IPT domain present preceeded by SEMA (semaphorin) and PSI (plexin, semaphorin, integrin) domains. 94 -238586 cd01181 IPT_plexin_repeat3 Third repeat of the IPT domain of Plexins and Cell Surface Receptors (PCSR) . Plexins are involved in the regulation of cell proliferation and of cellular adhesion and repulsion receptors. In general, there are three copies of the IPT domain present preceeded by SEMA (semaphorin) and PSI (plexin, semaphorin, integrin) domains. 99 -271183 cd01182 INT_RitC_C_like C-terminal catalytic domain of recombinase RitC, a component of the recombinase trio. Recombinases belonging to the RitA (also known as pAE1 due to its presence in the deletion prone region of plasmid pAE1 of Alcaligenes eutrophus H1), RitB, and RitC families are associated in a complex referred to as a Recombinase in Trio (RIT) element. These RIT elements consist of three adjacent and unidirectional overlapping genes, one from each family (ritABC in order of transcription). All three integrases contain a catalytic motif, suggesting that they are all active enzymes. However, their specific roles are not yet fully understood. All three families belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. 186 -271184 cd01184 INT_C_like_1 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain containing six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 180 -271185 cd01185 INTN1_C_like Integrase IntN1 of Bacteroides mobilizable transposon NBU1 and similar proteins, C-terminal catalytic domain. IntN1 is a tyrosine recombinase for the integration and excision of Bacteroides mobilizable transposon NBU1 from the host chromosome. IntN1 does not require strict homology between the recombining sites seen with other tyrosine recombinases. This family belongs to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 161 -271186 cd01186 INT_tnpA_C_Tn554 Putative Transposase A from transposon Tn554, C-terminal catalytic domain. This family includes putative Transposase A from transposon Tn554. It belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 184 -271187 cd01187 INT_tnpB_C_Tn554 Putative Transposase B from transposon Tn554, C-terminal catalytic domain. This family includes putative Transposase B from transposon Tn554. It belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain containing six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 142 -271188 cd01188 INT_RitA_C_like C-terminal catalytic domain of recombinase RitA, a component of the recombinase trio. Recombinases RitA (also known as pAE1), RitB, and RitC are encoded by three adjacent and overlapping genes. Collectively they are known as the Recombinase in Trio (RIT). This RitA family includes various bacterial integrases and integrases from the deletion-prone region of plasmid pAE1 of Alcaligenes eutrophus H1. All three integrases contain a catalytic motif, suggesting that they are all active enzymes. However, their specific roles are not fully understood. All three families belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism is essentially identical and involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 179 -271189 cd01189 INT_ICEBs1_C_like C-terminal catalytic domain of integrases from bacterial phages and conjugate transposons. This family of tyrosine based site-specific integrases is has origins in bacterial phages and conjugate transposons. One member is the integrase from Bacillus subtilis conjugative transposon ICEBs1. ICEBs1 can be excised and transfered to various recipients in response to DNA damage or high concentrations of potential mating partners. The family belongs to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 147 -271190 cd01190 INT_StrepXerD_C_like Putative XerD in Streptococcus pneumonia and similar proteins, C-terminal catalytic domain. This family includes a putative XerD recombinase in Streptococcus pneumonia and similar tyrosine recombinases. However, the members of this family contain unusual active site motifs from the XerD from Escherichia coli. E. coli XerD and homologous enzymes show four conserved amino acids R-H-R-H that are spaced along the C-terminal domain. The putative S. pneumoniae XerD contains three unique replacements at the conserved positions resulting in L-Q-R-L. Severe growth defects in a loss-of-function xerD mutant demonstrate an important in vivo function of the S. pneumoniae XerD protein. This family belongs to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The catalytic domain contains six conserved active site residues. Their overall reaction mechanism involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. 150 -271191 cd01191 INT_C_like_2 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 176 -271192 cd01192 INT_C_like_3 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 178 -271193 cd01193 INT_IntI_C Integron integrase and similar protiens, C-terminal catalytic domain. Integron integrases mediate site-specific DNA recombination between a proximal primary site (attI) and a secondary target site (attC) found within mobile gene cassettes encoding resistance or virulence factors. Unlike other site specific recombinases, the attC sites lack sequence conservation. Integron integrase exhibits broader DNA specificity by recognizing the non-conserved attC sites. The structure shows that DNA target site recognition are not dependent on canonical DNA but on the position of two flipped-out bases that interact in cis and in trans with the integrase. Integron-integrases are present in many natural occurring mobile elements, including transposons and conjugative plasmids. Vibrio, Shewanella, Xanthomonas, and Pseudomonas species harbor chromosomal super-integrons. All integron-integrases carry large inserts unlike the TnpF ermF-like proteins also seen in this group. 176 -271194 cd01194 INT_C_like_4 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 174 -271195 cd01195 INT_C_like_5 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 170 -271196 cd01196 INT_C_like_6 Uncharacterized site-specific tyrosine recombinase, C-terminal catalytic domain. Tyrosine recombinase (integrase) belongs to a DNA breaking-rejoining enzyme superfamily. The catalytic domain contains six conserved active site residues. The recombination reaction involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity. 183 -271197 cd01197 INT_FimBE_like FimB and FimE and related proteins, integrase/recombinases. This CD includes proteins similar to E.coli FimE and FimB and Proteus mirabilis MrpI. FimB and FimE are the regulatory proteins during expression of type 1 fimbriae in Escherichia coli. The fimB and fimE proteins direct the phase switch into the 'on' and 'off' position. MrpI is the regulatory protein of proteus mirabilis fimbriae expression. This family belongs to the integrase/recombinase superfamily. 181 -238605 cd01200 WHEPGMRS_RNA EPRS-like_RNA binding domain. This short RNA-binding domain is found in several higher eukaryote aminoacyl-tRNA synthetases (aaRSs). It is found in three copies in the mammalian bifunctional EPRS in a region that separates the N-terminal GluRS from the C-terminal ProRS. In the Drosophila EPRS, this domain is repeated six times. It is found at the N-terminus of TrpRS, HisRS and GlyR and at the C-terminus of MetRS. This domain consists of a helix- turn- helix structure, which is similar to other RNA-binding proteins. It is involved in both protein-RNA interactions by binding tRNA and protein-protein interactions, which are important for the formation of aaRSs into multienzyme complexes. 42 -275391 cd01201 PH_BEACH Pleckstrin homology domain in BEACH domain containing proteins. The BEACH domain is present in several eukaroyotic proteins CHS, neurobeachin (Nbea), LRBA (also called BGL, beige-like, or CDC4L), FAN, KIAA1607, and LvsA-LvsF. CHS is a rare, autosomal recessive disorder that can cause severe immunodeficiency and albinism in mammals and beige is the name for the CHS disease in mice. The CHS disease is associated with the presence of giant, perinuclear vesicles (lysosomes, melanosomes, and others) and CHS protein is thought to play an important role in the fusion, fission, or trafficking of these vesicles. All BEACH proteins contain the following domains: PH, BEACH, and WD40. The WD40 domain is involved in mediating protein-protein interactions involved in targeting proteins to subcellular compartments. The combined PH-BEACH motifs may present a single continuous structural unit involved in protein binding. Some members have an additional N-terminal Laminin G-like (LamG) domains Ca++ mediated receptors or an additional C-terminal FYVE zinc-binding domain which targets proteins to membrane lipids via interaction with phosphatidylinositol-3-phosphate, PI3P. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 112 -269913 cd01202 PTB_FRS2 Fibroblast growth factor receptor substrate 2 phosphotyrosine-binding domain. FRS2 (also called Suc1-associated neurotrophic factor (SNT)-induced tyrosine-phosphorylated target) proteins are membrane-anchored adaptor proteins. They are composed of an N-terminal myristoylation site followed by a phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a C-terminal effector domain containing multiple tyrosine and serine/threonine phosphorylation site. The FRS2/SNT proteins show increased tyrosine phosphorylation by activated receptors, such as fibroblast growth factor receptor (FGFR) and TrkA, recruit SH2 domain containing proteins such as Grb2, and mediate signals from activated receptors to a variety of downstream pathways. The PTB domains of the SNT proteins directly interact with the canonical NPXpY motif of TrkA in a phosphorylationdependent manner, they directly bind to the juxtamembrane region of FGFR in a phosphorylation-independent manner. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. 92 -269914 cd01203 PTB_DOK1_DOK2_DOK3 Downstream of tyrosine kinase 1, 2, and 3 proteins phosphotyrosine-binding domain (PTBi). The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. 99 -269915 cd01204 PTB_IRS Insulin receptor substrate phosphotyrosine-binding domain (PTBi). Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. 106 -269916 cd01205 EVH1_WASP-like WASP family proteins EVH1 domain. The Wiskott-Aldrich Syndrome Protein (WASP; also called Bee1p) and its homolog N (neuronal)-WASP are signal transduction proteins that promote actin polymerization in response to upstream intracellular signals. WAS is an X-linked recessive disease, characterized by eczema, immunodeficiency, and thrombocytopenia. The majority of patients with WAS, or a milder version of the disorder, X-linked thrombocytopenia (XLT), have point mutations in the EVH1 domain of WASP. WASP is an actin regulatory protein consisting of an N-terminal EVH1 domain called WH1 which binds LPPPEP peptides, a basic region (B), a GTP binding domain (GBP), a proline rich region, a WH2 domain, and a verprolin-cofilin-acidic motif (VCA) which activates the actin-related protein (Arp)2/3 actin nucleating complex. The B, GBD, and the proline-rich region are involved in autoinhibitory interactions that repress or block the activity of the VCA. Yeast members lack the GTP binding domain. The EVH1 domains are part of the PH domain superamily. There are 5 EVH1 subfamilies: Enables/VASP, Homer/Vesl, WASP, Dcp1, and Spred. Ligands are known for three of the EVH1 subfamilies, all of which bind proline-rich sequences: the Enabled/VASP family binds to FPPPP peptides, the Homer/Vesl family binds PPxxF peptides, and the WASP family binds LPPPEP peptides. EVH1 has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. 101 -269917 cd01206 EVH1_Homer_Vesl Homer/Vesl family proteins EVH1 domain. Homer/Vesl proteins are synaptic scaffolding proteins, required for long-term potentiation, a form of synaptic plasticity thought to underlie memory formation. They contains an N-terminal EVH1 domain and bind to both neurotransmitter receptors, such as the metabotropic group 1 glutamate receptor (mGluR) and to other scaffolding proteins via PPXXF motifs, in order to target them to the synaptic junction. These mGluRs possess a long C-terminal intracellular tail that may be important for subcellular localization of the receptor. The C-terminus is also the site of binding by the immediate early gene (IEG), Homer 1a. In contrast to Homer 1a, other Homer members additionally encode a C-terminal coiled-coil (CC) domain and form multivalent complexes that bind group 1 mGluRs. Homer 1a competes with constitutively expressed CC-Homers to modify the association of group 1 mGluRs with CC-Homer complexes. Since Homer proteins are strikingly enriched at the postsynaptic density (PSD), these observations suggest a role for the Homer family in regulating synaptic metabotropic receptor function. PSD-Zip45 (also named Homer 1c/Vesl-1L) has an EVH1 domain with a longer alpha-helix and its linking part included in the conserved region of Homer 1 (CRH1) interacts with the EVH1 domain of the neighbour CRH1 molecule in the crystal, suggesting that the EVH1 domain recognizes the PPXXF motif found in the binding partners, and the SPLTP sequence (P-motif) in the linking region of the CRH1. The two types of binding are partly overlapped in the EVH1 domain, implying a mechanism to regulate multimerization of Homer 1 family proteins. Homer 2 and Homer 3 are negative regulators of T cell activation. They bind the nuclear factor of activated T cells (NFAT) and compete with calcineurin binding. NFAT plays a critical role in calcium-dependent signaling in other cell types, including muscle and neurons. Homer-NFAT binding is also antagonized by active serine-threonine kinase AKT, enhancing TCR signaling via calcineurin-dependent dephosphorylation of NFAT resulting in changes in cytokine expression and an increase in effector-memory T cell populations in Homer-deficient mice. The EVH1 domains are part of the PH domain superamily. There are 5 EVH1 subfamilies: Enables/VASP, Homer/Vesl, WASP, Dcp1, and Spred. Ligands are known for three of the EVH1 subfamilies, all of which bind proline-rich sequences: the Enabled/VASP family binds to FPPPP peptides, the Homer/Vesl family binds PPxxF peptides, and the WASP family binds LPPPEP peptides. EVH1 has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. 109 -269918 cd01207 EVH1_Ena_VASP-like Enabled/VASP family EVH1 domain. Ena/VASP family includes proteins such as: Vasodilator-stimulated phosphoprotein (VASP), enabled gene product from Drosophila (Ena), mammalian enabled (Mena) and Ena/VASP-Like protein (EVL) localize to focal adhesions and to sites of actin filament dynamics. These proteins share a common modular organization with a highly conserved N- and C-terminal domains, termed Ena/VASP homology domains 1 and 2 (EVH1 and EVH2), that are separated by a central proline-rich domain. The EVH1 domain binds to other proteins at proline rich sequences. The majority of Ena-VASP type EVH1 domains recognize FPPPP motifs such as in the focal adhesion proteins zyxin and vinculin, and the ActA surface protein of Listeria monocytogenes, however the LIM3 domain of Tes lacks the FPPPP motif but still binds the EVH1 domain of Mena. It has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. EVH2 mediates oligomerization within the family. The proline-rich region binds SH3 and WW domains as well as profilin, a protein that regulates actin filament dynamics. The EVH1 domains are part of the PH domain superamily. There are 5 EVH1 subfamilies: Enables/VASP, Homer/Vesl, WASP, Dcp1, and Spred. Ligands are known for three of the EVH1 subfamilies, all of which bind proline-rich sequences: the Enabled/VASP family binds to FPPPP peptides, the Homer/Vesl family binds PPxxF peptides, and the WASP family binds LPPPEP peptides. EVH1 has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. 108 -269919 cd01208 PTB_X11 X11-like Phosphotyrosine-binding (PTB) domain. The function of the neuronal protein X11 is unknown to date. X11 has a PTB domain followed by two PDZ domains. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 161 -269920 cd01209 PTB_Shc Shc-like phosphotyrosine-binding (PTB) domain. Shc is a substrate for receptor tyrosine kinases, which can interact with phosphoproteins at NPXY motifs. Shc contains an PTB domain followed by an SH2 domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Shc-like subgroup. 170 -269921 cd01210 PTB_EPS8 Epidermal growth factor receptor kinase substrate (EPS8)-like Phosphotyrosine-binding (PTB) domain. EPS8 is a regulator of Rac signaling. It consists of a PTB and an SH3 domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 131 -269922 cd01211 PTB_Rab6GAP GTPase activating protein for Rab 6 Phosphotyrosine-binding (PTB) domain. GAPCenA is a centrosome-associated GTPase activating protein (GAP) for Rab 6. It consists of an N-terminal PTB domain and a C-terminal TBC domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 129 -269923 cd01212 PTB_JIP JNK-interacting protein-like (JIP) Phosphotyrosine-binding (PTB) domain. JIP is a mitogen-activated protein kinase scaffold protein. JIP consists of a C-terminal SH3 domain, followed by a PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 149 -269924 cd01213 PTB_tensin Tensin Phosphotyrosine-binding (PTB) domain. Tensin is a a focal adhesion protein, which contains a C-terminal SH2 domain followed by a PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 136 -269925 cd01214 PTB_FAM43A Family with sequence similarity 43, member A (FAM43A) Phosphotyrosine-binding (PTB) domain. The function of FAM43A is currently unknown. Human FAM43A is located on chromosome 3 at location 3q29. It encodes a 3182 base pair mRNA which possesses one Pleckstrin homology-like domain. The mRNA translates into LOC131583, a hydrophilic protein that is predicted to localize in the nucleus. The FAM43A gene is conserved through a broad range of vertebrates. It is highly conserved from chimpanzees to zebrafish. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. 125 -269926 cd01215 PTB_Dab Disabled (Dab) Phosphotyrosine-binding domain. Dab is a cystosolic adaptor protein, which binds to the cytoplasmic tails of lipoprotein receptors, such as ApoER2 and VLDLR, via its PTB domain. The dab PTB domain has a preference for unphosphorylated tyrosine within an NPxY motif. Additionally, the Dab PTB domain, which is structurally similar to PH domains, binds to phosphatidlyinositol phosphate 4,5 bisphosphate in a manner characteristic of phosphoinositide binding PH domains. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 147 -241252 cd01217 PTB_CG12581 CG12581 Phosphotyrosine-binding (PTB) domain. The function of CG12581 and its related proteins are unknown to date. Members here contain a single N-terminal PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 166 -269927 cd01218 PH_Phafin2-like Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain. Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -275392 cd01219 PH1_FGD1 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -269928 cd01220 PH1_FARP1-like FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1. Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 109 -269929 cd01221 PH_ephexin Ephexin Pleckstrin homology (PH) domain. Ephexin-1 (also called NGEF/ neuronal guanine nucleotide exchange factor) plays a role in the homeostatic modulation of presynaptic neurotransmitter release. Specific functions are still unknown for Ephexin-2 (also called RhoGEF19) and Ephexin-3 (also called Rho guanine nucleotide exchange factor 5/RhoGEF5, Transforming immortalized mammary oncogene/p60 TIM, and NGEF/neuronalGEF). Ephexin-4 (also called RhoGEF16) acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. This in turn results in the activation of RhoG which recruits ELMO2 and Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. Ephexin-5 is the specific GEF for RhoA activation and the regulation of vascular smooth muscle contractility. It interacts with EPHA4 PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. The members of the Ephexin family contains a RhoGEF (DH) followed by a PH domain and an SH3 domain. The ephexin PH domain is believed to act with the DH domain in mediating protein-protein interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 131 -269930 cd01223 PH_Vav Vav pleckstrin homology (PH) domain. Vav acts as a guanosine nucleotide exchange factor (GEF) for Rho/Rac proteins. They control processes including T cell activation, phagocytosis, and migration of cells. The Vav subgroup of Dbl GEFs consists of three family members (Vav1, Vav2, and Vav3) in mammals. Vav1 is preferentially expressed in the hematopoietic system, while Vav2 and Vav3 are described by broader expression patterns. Mammalian Vav proteins consist of a calponin homology (CH) domain, an acidic region, a catalytic Dbl homology (DH) domain, a PH domain, a zinc finger cysteine rich domain (C1/CRD), and an SH2 domain, flanked by two SH3 domains. In invertebrates such as Drosophila and C. elegans, Vav is missing the N-terminal SH3 domain. The DH domain is involved in RhoGTPase recognition and selectivity and stimulates the reorganization of the switch regions for GDP/GTP exchange. The PH domain is implicated in directing membrane localization, allosteric regulation of guanine nucleotide exchange activity, and as a phospholipid- dependent regulator of GEF activity. Vavs bind RhoGTPases including Rac1, RhoA, RhoG, and Cdc42, while other members of the GEF family are specific for a single RhoGTPase. This promiscuity is thought to be a result of its CRD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. 127 -269931 cd01224 PH_Collybistin_ASEF Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain. Collybistin (also called PEM2) is homologous to the Dbl proteins ASEF (also called ARHGEF4/RhoGEF4) and SPATA13 (Spermatogenesis-associated protein 13; also called ASEF2). It activates CDC42 specifically and not any other Rho-family GTPases. Collybistin consists of an SH3 domain, followed by a RhoGEF/DH and PH domain. In Dbl proteins, the DH and PH domains catalyze the exchange of GDP for GTP in Rho GTPases, allowing them to signal to downstream effectors. It induces submembrane clustering of the receptor-associated peripheral membrane protein gephyrin, which is thought to form a scaffold underneath the postsynaptic membrane linking receptors to the cytoskeleton. It also acts as a tumor suppressor that links adenomatous polyposis coli (APC) protein, a negative regulator of the Wnt signaling pathway and promotes the phosphorylation and degradation of beta-catenin, to Cdc42. Autoinhibition of collybistin is accomplished by the binding of its SH3 domain with both the RhoGEF and PH domains to block access of Cdc42 to the GTPase-binding site. Inactivation promotes cancer progression. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 138 -269932 cd01225 PH_Cool_Pix Cloned out of library/PAK-interactive exchange factor pleckstrin homology (PH) domain. There are two forms of Pix proteins: alpha Pix (also called Rho guanine nucleotide exchange factor (GEF) 6/90Cool-2) and beta Pix (GEF7/p85Cool-1). betaPix contains an N-terminal SH3 domain, a RhoGEF/DH domain, a PH domain, a GIT1 binding domain (GBD), and a C-terminal coiled-coil (CC) domain. alphaPix differs in that it contains a calponin homology (CH) domain, which interacts with beta-parvin, N-terminal to the SH3 domain. alphaPix is an exchange factor for Rac1 and Cdc42 and mediates Pak activation on cell adhesion to fibronectin. Mutations in alphaPix can cause X-linked mental retardation. alphaPix also interacts with Huntington's disease protein (htt), and enhances the aggregation of mutant htt (muthtt) by facilitating SDS-soluble muthtt-muthtt interactions. The DH-PH domain of a Pix was required for its binding to htt. In the majority of Rho GEF proteins, the DH-PH domain is responsible for the exchange activity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -269933 cd01226 PH_RalBD_exo84 Exocyst complex 84-kDa subunit Ral-binding domain/Pleckstrin Homology (PH) domain. The Sec6/8 complex, also called the exocyst complex, forms an octameric protein (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) involved in the tethering of secretory vesicles to specific regions on the plasma membrane. The regulation of Sec6/8 complex differs between mammals and yeast. Mamalian Exo84 and Sec5 are effector targets for active Ral GTPases which are not present in yeast. Ral GTPases are members of the Ras superfamily, and as such cycle between an active GTP-bound state and an inactive GDP-bound state. The Exo84 Ral-binding domain adopts a PH domain fold. Mammalian Exo84 and Sec5 competitively bind to active RalA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 115 -269934 cd01227 PH_Dbs DBL's big sister protein pleckstrin homology (PH) domain. Dbs (also called MCF2-transforming sequence-like protein 2) is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a rhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 126 -269935 cd01228 PH_BCR-related Breakpoint Cluster Region-related pleckstrin homology (PH) domain. The BCR gene is one of the two genes in the BCR-ABL complex, which is associated with the Philadelphia chromosome, a product of a reciprocal translocation between chromosomes 22 and 9. BCR is a GTPase-activating protein (GAP) for RAC1 (primarily) and CDC42. The Dbl region of BCR has the most RhoGEF activity for Cdc42, and less activity towards Rac and Rho. Since BCR possesses both GAP and GEF activities, it may function to temporally regulate the activity of these GTPases. It also displays serine/threonine kinase activity. The BCR protein contains multiple domains including an N-terminal kinase domain, a RhoGEF domain, a PH domain, a C1 domain, a C2 domain, and a C-terminal RhoGAP domain. ABR, a related smaller protein, is structurally similar to BCR, but lacks the N-terminal kinase domain and has GAP activity for both Rac and Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 166 -269936 cd01229 PH_Ect2 Epithelial cell transforming 2 (Ect2) pleckstrin homology (PH) domain. Ect2, a mammalian ortholog of Drosophila pebble, plays a role in neuronal differentiation and brain development. Pebble and Ect2 have been identified as Rho-family guanine nucleotide exchange factors (GEF) that mediate activation of Rho during cytokinesis, but are proposed to play slightly different roles. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 180 -269937 cd01230 PH1_Tiam1_2 T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, N-terminal domain. Tiam1 activates Rac GTPases to induce membrane ruffling and cell motility while Tiam2 (also called STEF (SIF (still life) and Tiam1 like-exchange factor) contributes to neurite growth. Tiam1/2 are Dbl-family of GEFs that possess a Dbl(DH) domain with a PH domain in tandem. DH-PH domain catalyzes the GDP/GTP exchange reaction in the GTPase cycle and facillitating the switch between inactive GDP-bound and active GTP-bound states. Tiam1/2 possess two PH domains, which are often referred to as PHn and PHc domains. The DH-PH tandem domain is made up of the PHc domain while the PHn is part of a novel N-terminal PHCCEx domain which is made up of the PHn domain, a coiled coil region(CC), and an extra region (Ex). PHCCEx mediates binding to plasma membranes and signalling proteins in the activation of Rac GTPases. The PH domain resembles the beta-spectrin PH domain, suggesting non-canonical phosphatidylinositol binding. CC and Ex form a positively charged surface for protein binding. There are 2 motifs in Tiam1/2-interacting proteins that bind to the PHCCEx domain: Motif-I in CD44, ephrinBs, and the NMDA receptor and Motif-II in Par3 and JIP2.Neither of these fall in the PHn domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 127 -269938 cd01231 PH_SH2B_family SH2B adapter protein 1, 2, and 3 Pleckstrin homology (PH) domain. SH2B family/APS proteins are a family of intracellular adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases (RTKs) including receptors for insulin, insulin-like growth factor-1, Janus kinase 2 (Jak2), platelet derived growth factor, fibroblast growth factor and nerve growth factor. They function in glucose homeostasis, energy metabolism, hematopoesis and reproduction. Mutations in human SH2B orthologs are associated with metabolic disregulation and obesity. There are several SH2B members in mammals: SH2B1 (splice variants: SH2B1alpha, SH2B1beta, SH2B1gamma, and SH2B1delta), SH2B2 (APS) and SH2B3 (Lnk). They contain a PH domain, a SH2 domain, a proline rich region, multiple consensus sites for tyrosine and serine/threonine phosphorylation and a highly conserved c-Cbl recognition motif. These domains function as protein-protein interaction motifs which allows SH2B proteins to integrate and transduce intracellular signals from multiple signaling networks in the absence of intrinsic catalytic activity. SH2B proteins bind via their SH2 domains to phosphotyrosine residues within the intracellular tails of several activated RTKs thereby contributing to receptor activation. SH2B proteins have been shown to interact with insulin receptor substrates IRS1 and IRS2, Grb2, Shc and c-Cbl which may or may not require RTK-stimulated tyrosine phosphorylation of SH2B. positively and negatively regulating RTK signaling. Understanding the physiological functions of SH2B proteins in mammals has been complicated by the presence of multiple SH2B isoforms and conflicting data. Both SH2-Bbeta and APS associate with JAKs, but the former facilitates JAK/STAT signaling while the latter inhibits it. Lnk plays a role in cell growth and proliferation with mutations resulting in growth reduction, developmental delay and female sterility. Recently Lnk Drosophila has been shown to be an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 115 -269939 cd01233 PH_KIFIA_KIFIB KIFIA and KIFIB protein pleckstrin homology (PH) domain. The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -269940 cd01234 PH_CADPS Ca2+-dependent activator protein (also called CAPS) Pleckstrin homology (PH) domain. CADPS/CAPS consists of two members, CAPS1 which regulates catecholamine release from neuroendocrine cells and CAPS2 which is involved in the release of two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from cerebellar granule cells. CADPS plays an important role in vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Priming involves the assembly of trans SNARE complexes. The initial interaction of vesicles with target membranes is mediated by diverse stage-specific tethering factors or multi-subunit tethering complexes. CADPS and Munc13 proteins are proposed to be the functional homologs of the stage-specific tethering factors that prime membrane fusion. Interestingly, regions in the C-terminal half of CADPS are similar to the C-terminal region of Munc13-1 that was reported to bind syntaxin-1. CADPS has independent interactions with each of the SNARE proteins (Q-SNARE and R-SNARE) required for vesicle fusion. CADPS interacts with Q-SNARE proteins syntaxin-1 (H3 SNARE) and SNAP-25 (SN1) and might promote Q-SNARE heterodimer formation. Through its N-terminal R-SNARE VAMP-2 interactions, CADPS bound to heterodimeric Q-SNARE complexes could be involved in catalyzing the zippering of VAMP-2 into recipient complexes. It also contains a central PH domain that binds to phosphoinositide 4,5 bisphosphate containing liposomes. Membrane association may also be mediated by binding to phosphatidlyserine via general electrostatic interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 122 -269941 cd01235 PH_Sbf1_hMTMR5 Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain. Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -269942 cd01236 PH_RIP Rho-Interacting Protein Pleckstrin homology (PH) domain. RIP1-RhoGDI2 was obtained in a screen for proteins that bind to wild-type RhoA. RIP2, RIP3, and RIP4 were isolated from cDNA libraries with constitutively active V14RhoA (containing the C190R mutation). RIP2 represents a novel GDP/GTP exchange factor (RhoGEF), while RIP3 (p116Rip) and RIP4 are thought to be structural proteins. RhoGEF contains a Dbl(DH)/PH region, a a zinc finger motif, a leucine-rich domain, and a coiled-coil region. The last 2 domains are thought to be involved in mediating protein-protein interactions. RIP3 is a negative regulator of RhoA signaling that inhibits, either directly or indirectly, RhoA-stimulated actomyosin contractility. In plants RIP3 is localized at microtubules and interacts with the kinesin-13 family member AtKinesin-13A, suggesting a role for RIP3 in microtubule reorganization and a possible function in Rho proteins of plants (ROP)-regulated polar growth. It has a PH domain, two proline-rich regions which are putative binding sites for SH3 domains, and a COOH-terminal coiled-coil region which overlaps with the RhoA-binding region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 136 -269943 cd01237 PH_fermitin Fermitin family pleckstrin homology (PH) domain. Fermitin functions as a mediator of integrin inside-out signalling. The recruitment of Fermitin proteins and Talin to the membrane mediates the terminal event of integrin signalling, via interaction with integrin beta subunits. Fermatin has FERM domain interrupted with a pleckstrin homology (PH) domain. Fermitin family homologs (Fermt1, 2, and 3, also known as Kindlins) are each encoded by a different gene. In mammalian studies, Fermt1 is generally expressed in epithelial cells, Fermt2 is expressed inmuscle tissues, and Fermt3 is expressed in hematopoietic lineages. Specifically Fermt2 is expressed in smooth and striated muscle tissues in mice and in the somites (a trunk muscle precursor) and neural crest in Xenopus embryos. As such it has been proposed that Fermt2 plays a role in cardiomyocyte and neural crest differentiation. Expression of mammalian Fermt3 is associated with hematopoietic lineages: the anterior ventral blood islands, vitelline veins, and early myeloid cells. In Xenopus embryos this expression, also include the notochord and cement gland. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -269944 cd01238 PH_Btk Bruton's tyrosine kinase pleckstrin homology (PH) domain. Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 140 -269945 cd01239 PH_PKD Protein kinase D (PKD/PKCmu) pleckstrin homology (PH) domain. Protein Kinase C family is composed of three members, PKD1 (PKCmu), PKD2 and PKD3 (PKCnu). Like the C-type protein kinases (PKCs), PKDs are activated by diacylglycerol (DAG). They are involved in vesicular transport, cell proliferation, survival, migration and immune responses. PKD consists of tandem C1 domains, followed by a PH domain and a kinase domain. While the PKD PH domain has not been shown to bind phosphorylated inositol lipids and is not required for membrane translocation, it is required for nuclear export. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 127 -269946 cd01240 PH_GRK2_subgroup G Protein-Coupled Receptor Kinase 2 subgroup pleckstrin homology (PH) domain. GRKs are a family of serine-threonine kinases which phosphorylates activated G-protein coupled receptors leading to the release of the previously bound heterotrimeric G protein agonist and thus signal termination. There are seven mammalian GRKs (GRK1-7) grouped into three subfamilies: GRK1 (GRK1 and 7), GRK2 (GRK2 and 3), and GRK4 (GRK4-6). GRKs have three functional components: an N-terminal Regulators of G-protein signaling (RGS) which interacts with the seven-trans-membrane helical receptor protein and/or other membrane targets, a central catalytic protein kinase C (PKc) domain, and a C-terminal section containing a autophosphorylation region and a variable region that mediates membrane association. In both GRK2 (also known as beta-adrenergic receptor kinase-1) and GRK3 (beta-adrenergic receptor kinase-2), the C-terminal variable region contains a PH domain which gives binding specificity to Gbetagamma proteins. The GRK2 PH domain has an extended C-terminal helix, which mediates interactions with G beta gamma subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 118 -269947 cd01241 PH_PKB Protein Kinase B-like pleckstrin homology (PH) domain. PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -269948 cd01242 PH_ROCK Rho-associated coiled-coil containing protein kinase pleckstrin homology (PH) domain. ROCK is a serine/threonine kinase that binds GTP-Rho. It consists of a kinase domain, a coiled coil region and a PH domain. The ROCK PH domain is interrupted by a C1 domain. ROCK plays a role in cellular functions, such as contraction, adhesion, migration, and proliferation and in the regulation of apoptosis. There are two ROCK isoforms, ROCK1 and ROCK2. In ROCK2 the Rho Binding Domain (RBD) and the PH domain work together in membrane localization with RBD receiving the RhoA signal and the PH domain receiving the phospholipid signal. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -269949 cd01243 PH_MRCK MRCK (myotonic dystrophy-related Cdc42-binding kinase) pleckstrin homology (PH) domain. MRCK is thought to be coincidence detector of signaling by Cdc42 and phosphoinositides. It has been shown to promote cytoskeletal reorganization, which affects many biological processes. There are 2 members of this family: MRCKalpha and MRCKbeta. MRCK consists of a serine/threonine kinase domain, a cysteine rich (C1) region, a PH domain and a p21 binding motif. The MRCK PH domain is responsible for its targeting to cell to cell junctions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 135 -269950 cd01244 PH_GAP1-like RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain. RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -269951 cd01247 PH_FAPP1_FAPP2 Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain. Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -269952 cd01248 PH_PLC_ELMO1 Phospholipase C and Engulfment and cell motility protein 1 pleckstrin homology domain. The C-terminal region of ELMO1, the PH domain and Pro-rich sequences, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle allowing for DOCK mediated Rac1 activation. ELMO1, a mammalian homolog of C. elegans CED-12, contains an N-terminal RhoG-binding region, a ELMO domain, a PH domain, and a C-terminal sequence with three PxxP motifs. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). All PLCs, except for PLCzeta, have a PH domain which is for most part N-terminally located, though lipid binding specificity is not conserved between them. In addition PLC gamma contains a split PH domain within its catalytic domain that is separated by 2 SH2 domains and a single SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -269953 cd01249 BAR-PH_GRAF_family GTPase Regulator Associated with Focal adhesion and related proteins Pleckstrin homology (PH) domain. This hierarchy contains GRAF family members: OPHN1/oligophrenin1, GRAF1 (also called ARHGAP26/Rho GTPase activating protein 26), GRAF2 (also called ARHGAP10/ARHGAP42), AK057372, and LOC129897, all of which are members of the APPL family. OPHN1 is a RhoGAP involved in X-linked mental retardation, epilepsy, rostral ventricular enlargement, and cerebellar hypoplasia. Affected individuals have morphological abnormalities of their brain with enlargement of the cerebral ventricles and cerebellar hypoplasia. OPHN1 negatively regulates RhoA, Cdc42, and Rac1 in neuronal and non-neuronal cells. GRAF1 sculpts the endocytic membranes of the CLIC/GEEC (clathrin-independent carriers/GPI-enriched early endosomal compartments) endocytic pathway. It strongly interacts with dynamin and inhibition of dynamin abolishes CLIC/GEEC endocytosis. GRAF2, GRAF3 and oligophrenin are likely to play similar roles during clathrin-independent endocytic events. GRAF1 mutations are linked to leukaemia. All members are composed of a N-terminal BAR-PH domain, followed by a RhoGAP domain, a proline rich region, and a C-terminal SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -241281 cd01250 PH_AGAP Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) domain. AGAP (also called centaurin gamma; PIKE/Phosphatidylinositol-3-kinase enhancer) reside mainly in the nucleus and are known to activate phosphoinositide 3-kinase, a key regulator of cell proliferation, motility and vesicular trafficking. There are 3 isoforms of AGAP (PIKE-A, PIKE-L, and PIKE-S) the longest of which PIKE-L consists of N-terminal proline rich domains (PRDs), followed by a GTPase domain, a split PH domain (PHN and PHC), an ArfGAP domain and two ankyrin repeats. PIKE-S terminates after the PHN domain and PIKE-A is missing the PRD region. Centaurin binds phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -241282 cd01251 PH2_ADAP ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2. ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -269954 cd01252 PH_GRP1-like General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain. GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 119 -269955 cd01253 PH_ARHGAP21-like ARHGAP21 and related proteins pleckstrin homology (PH) domain. ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with a RhoGAP domain. These proteins functions as a GTPase-activating protein (GAP) for RHOA and CDC42. ARHGAP21 controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. It is recruited to the Golgi by to GTPase, ARF1, through its PH domain and its helical motif. It is also required for CTNNA1 recruitment to adherens junctions. ARHGAP21 and it related proteins all contains a PH domain and a RhoGAP domain. Some of the members have additional N-terminal domains including PDZ, SH3, and SPEC. The ARHGAP21 PH domain interacts with the GTPbound forms of both ARF1 and ARF6 ARF-binding domain/ArfBD. The members here include: ARHGAP15, ARHGAP21, and ARHGAP23. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 113 -269956 cd01254 PH_PLD Phospholipase D pleckstrin homology (PH) domain. PLD hydrolyzes phosphatidylcholine to phosphatidic acid (PtdOH), which can bind target proteins. PLD contains a PH domain, a PX domain and four conserved PLD signature domains. The PLD PH domain is specific for bisphosphorylated inositides. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 136 -269957 cd01255 PH2_Tiam1_2 T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, C-terminal domain. Tiam1 activates Rac GTPases to induce membrane ruffling and cell motility while Tiam2 (also called STEF (SIF (still life) and Tiam1 like-exchange factor) contributes to neurite growth. Tiam1/2 are Dbl-family of GEFs that possess a Dbl(DH) domain with a PH domain in tandem. DH-PH domain catalyzes the GDP/GTP exchange reaction in the GTPase cycle and facillitating the switch between inactive GDP-bound and active GTP-bound states. The DH domain of Tiam1 interacts with Switch regions 1 and 2 of Rac1 which blocks magnesium binding and GDP is released. Tiam1/2 possess two PH domains, which are often referred to as PHn and PHc domains. The DH-PH tandem domain is made up of the PHc domain while the PHn is part of a novel N-terminal PHCCEx domain which is made up of the PHn domain, a coiled coil region(CC), and an extra region (Ex). PHCCEx mediates binding to plasma membranes and signalling proteins in the activation of Rac GTPases. The PH domain resembles the beta-spectrin PH domain, suggesting non-canonical phosphatidylinositol binding. CC and Ex form a positively charged surface for protein binding. There are 2 motifs in Tiam1/2-interacting proteins that bind to the PHCCEx domain: Motif-I in CD44, ephrinBs, and the NMDA receptor and Motif-II in Par3 and JIP2. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 172 -269958 cd01256 PH_dynamin Dynamin pleckstrin homology (PH) domain. Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 112 -269959 cd01257 PH_IRS Insulin receptor substrate (IRS) pleckstrin homology (PH) domain. Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. 106 -269960 cd01258 PHsplit_syntrophin Syntrophin Split Pleckstrin homology (PH) domain. Syntrophins are scaffold proteins that associate with associate with the Duchenne muscular dystrophy protein dystrophin and the dystrophin-related proteins, utrophin and dystrobrevin to form the dystrophin glycoprotein complex (DGC). There are 5 members: alpha, beta1, beta2, gamma1, and gamma2) all of which contains a split (also called joined) PH domain and a PDZ domain (PHN-PDZ-PHC). The split PH domain of alpha-syntrophin adopts a canonical PH domain fold and together with PDZ forms a supramodule functioning synergistically in binding to inositol phospholipids. The alpha-syntrophin PH-PDZ supramodule showed strong binding to phosphoinositides PI(3,5)P2 and PI(5)P, modest binding to PI(3,4)P2 and PI(4,5)P2, and weak binding to PI(3)P, PI(4)P, and PI(3,4,5)P. There are a large number of signaling proteins that bind to the PDZ domain of syntrophins: nitric oxide synthase (nNOS), aquaporin-4, voltage-gated sodium channels, potassium channels, serine/threonine protein kinases, and the ATP-binding cassette transporter A1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 89 -269961 cd01259 PH_APBB1IP Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin homology (PH) domain. APBB1IP consists of a Ras-associated (RA) domain, a PH domain, a family-specific BPS region, and a C-terminal SH2 domain. Grb7, Grb10 and Grb14 are paralogs that are also present in this hierarchy. These adapter proteins bind a variety of receptor tyrosine kinases, including the insulin and insulin-like growth factor-1 (IGF1) receptors. Grb10 and Grb14 are important tissue-specific negative regulators of insulin and IGF1 signaling based and may contribute to type 2 (non-insulin-dependent) diabetes in humans. RA-PH function as a single structural unit and is dimerized via a helical extension of the PH domain. The PH domain here are proposed to bind phosphoinositides non-cannonically ahd are unlikely to bind an activated GTPase. The tandem RA-PH domains are present in a second adapter-protein family, MRL proteins, Caenorhabditis elegans protein MIG-1012, the mammalian proteins RIAM and lamellipodin and the Drosophila melanogaster protein Pico12, all of which are Ena/VASP-binding proteins involved in actin-cytoskeleton rearrangement. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 124 -269962 cd01260 PH_CNK_mammalian-like Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain. CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -269963 cd01261 PH_SOS Son of Sevenless (SOS) Pleckstrin homology (PH) domain. SOS is a Ras guanine nucleotide exchange factor. SOS is thought to transmit signals from activated receptor tyrosine kinases to the Ras signaling pathway. SOS contains a histone domain, Dbl-homology (DH), a PH domain, Rem domain, Cdc25 domain, and a Grb2 binding domain. The SOS PH domain binds to phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidic acid (PA). SOS is dependent on Ras binding to the allosteric site via its histone domain for both a lower level of activity (Ras GDP) and maximal activity (Ras GTP). The DH domain blocks the allosteric Ras binding site in SOS. The PH domain is closely associated with the DH domain and the action of the DH-PH unit gates a reciprocal interaction between Ras and SOS. The C-terminal proline-rich domain of SOS binds to the adapter protein Grb2 which localizes the Sos protein to the plasma membrane and diminishes the negative effect of the C-terminal domain on the guanine nucleotide exchange activity of the CDC25-homology domain of SOS. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 109 -241293 cd01262 PH_PDK1 3-Phosphoinositide dependent protein kinase 1 (PDK1) pleckstrin homology (PH) domain. PDK1 plays an important role in insulin and growth factor signalling cascades. It phosphorylates and activates many AGC (cAMP-dependent, cGMP-dependent, protein kinase C (PKC)) family of protein kinases members, including protein kinase B (PKB, also known as Akt), p70 ribosomal S6-kinase (S6K), serum and glucocorticoid responsive kinase (SGK), p90 ribosomal S6 kinase (RSK), and PKC. PDK1 contains an N-terminal serine/threonine kinase domain followed by a PH domain. Following binding of the PH domain to PtdIns(3,4,5)P3 and PtdIns(3,4)P2, PDK1 activates these enzymes by phosphorylating a Ser/Thr residue in their activation loop. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -269964 cd01263 PH_anillin Anillin Pleckstrin homology (PH) domain. Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 121 -269965 cd01264 PH_MELT_VEPH1 Melted pleckstrin homology (PH) domain. The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -269966 cd01265 PH_TBC1D2A TBC1 domain family member 2A pleckstrin homology (PH) domain. TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -241297 cd01266 PH_Gab1_Gab2 Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain. The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -241298 cd01268 PTB_Numb Numb Phosphotyrosine-binding (PTB) domain. Numb is a membrane associated adaptor protein which plays critical roles in cell fate determination. Numb proteins are involved in control of asymmetric cell division and cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific substrates and a number of signaling pathways (Notch, Hedgehog, p53). Mutations in Numb plays a critical role in disease (cancer). Numb has an N-terminal PTB domain and a C-terminal NumbF domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 135 -269967 cd01269 PTB_TBC1D1_like TBC1 domain family member 1 and related proteins Phosphotyrosine-binding (PTB) domain. The TBC1D1-like members here include TBC1D1, TBC1D4 (also called Akt substrate of 160 kDa or AS160), and pollux (PLX), a calmodulin-binding protein, and are thought to have a role in regulating cell growth and differentiation. These proteins are thought to function as GTPase-activating protein for Rab family protein(s). They may play a role in the cell cycle and differentiation of various tissues. They all contain an N-terminal PTB domain, a calmodulin CBD domain, and a C-terminal TBC domain which is thought to be a GTPase activator protein of Rab-like small GTPases. Recently, TBC1D1 and TBC1D4 were recognized to potentially link the proximal signalling of insulin and/or exercise with GLUT4. TBC1D4 is thought to be involved in contraction-stimulated glucose uptake, but TBC1D4-independent mechanisms (potentially involving TBC1D1) are likely to be essential for most of the contraction's effect. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 143 -269968 cd01270 PTB_CAPON-like Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (CAPON) Phosphotyrosine-binding (PTB) domain. CAPON (also known as Nitric oxide synthase 1 adaptor protein, NOS1AP, encodes a cytosolic protein that binds to the signaling molecule, neuronal NOS (nNOS). It contains a N-terminal PTB domain that binds to the small monomeric G protein, Dexras1 and a C-terminal PDZ-binding domain that mediates interactions with nNOS. Included in this cd are C. elegan proteins dystrobrevin, DYB-1, which controls neurotransmitter release and muscle Ca(2+) transients by localizing BK channels and DYstrophin-like phenotype and CAPON related,DYC-1, which is functionally related to dystrophin homolog, DYS-1. Mutations in the dystrophin gene causes Duchenne muscular dystrophy. DYS-1 shares sequence similarity, including key motifs, with their mammalian counterparts. These CAPON-like proteins all have a single PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 179 -269969 cd01271 PTB2_Fe65 Fe65 C-terminal Phosphotyrosine-binding (PTB) domain. The neuronal adaptor protein Fe65 is involved in brain development, Alzheimer disease amyloid precursor protein (APP) signaling, and proteolytic processing of APP. It contains three protein-protein interaction domains, one WW domain, and a unique tandem array of phosphotyrosine-binding (PTB) domains. The C-terminal PTB domain is responsible for APP binding. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 127 -269970 cd01272 PTB1_Fe65 Fe65 N-terminal Phosphotyrosine-binding (PTB) domain. The neuronal adaptor protein Fe65 is involved in brain development, Alzheimer disease amyloid precursor protein (APP) signaling, and proteolytic processing of APP. It contains three protein-protein interaction domains, one WW domain, and a unique tandem array of phosphotyrosine-binding (PTB) domains. The N-terminal PTB domain was shown to interact with a variety of proteins, including the low density lipoprotein receptor-related protein (LRP-1), the ApoEr2 receptor, and the histone acetyltransferase Tip60. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 138 -269971 cd01273 PTB_CED-6 Cell death protein 6 homolog (CED-6/GULP1) Phosphotyrosine-binding (PTB) domain. CED6 (also known as GULP1: engulfment adaptor PTB domain containing 1) is an adaptor protein involved in the specific recognition and engulfment of apoptotic cells. CED6 has been shown to interact with the cytoplasmic tail of another protein involved in the engulfment of apoptotic cells, CED1. CED6 has a C-terminal PTB domain, which can bind to NPXY motifs. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 144 -269972 cd01274 PTB_Anks Ankyrin repeat and sterile alpha motif (SAM) domain-containing (Anks) protein family Phosphotyrosine-binding (PTB) domain. Both AIDA-1b (AbetaPP intracellular domain-associated protein 1b) and Odin (also known as ankyrin repeat and sterile alpha motif domain-containing 1A; ANKS1A) belong to the Anks protein family. Both of these family members interacts with the EphA8 receptor. Ank members consists of ankyrin repeats, a SAM domain and a C-terminal PTB domain which is crucial for interaction with the juxtamembrane (JM) region of EphA8. PTB domains are classified into three groups, namely, phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains of which the Anks PTB is a member. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 146 -238606 cd01275 FHIT FHIT (fragile histidine family): FHIT proteins, related to the HIT family carry a motif HxHxH/Qxx (x, is a hydrophobic amino acid), On the basis of sequence, substrate specificity, structure, evolution and mechanism, HIT proteins are classified into three branches: the Hint branch, which consists of adenosine 5' -monophosphoramide hydrolases, the Fhit branch, that consists of diadenosine polyphosphate hydrolases, and the GalT branch consisting of specific nucloside monophosphate transferases. Fhit plays a very important role in the development of tumours. Infact, Fhit deletions are among the earliest and most frequent genetic alterations in the development of tumours. 126 -238607 cd01276 PKCI_related Protein Kinase C Interacting protein related (PKCI): PKCI and related proteins belong to the ubiquitous HIT family of hydrolases that act on alpha-phosphates of ribonucleotides. The members of this subgroup have a conserved HxHxHxx motif (x is a hydrophobic residue) that is a signature for this family. No enzymatic activity has been reported however, for PKCI and its related members. 104 -238608 cd01277 HINT_subgroup HINT (histidine triad nucleotide-binding protein) subgroup: Members of this CD belong to the superfamily of histidine triad hydrolases that act on alpha-phosphate of ribonucleotides. This subgroup includes members from all three forms of cellular life. Although the biochemical function has not been characterised for many of the members of this subgroup, the proteins from Yeast have been shown to be involved in secretion, peroxisome formation and gene expression. 103 -238609 cd01278 aprataxin_related aprataxin related: Aprataxin, a HINT family hydrolase is mutated in ataxia oculomotor apraxia syndrome. All the members of this subgroup have the conserved HxHxHxx (where x is a hydrophobic residue) signature motif. Members of this subgroup are predominantly eukaryotic in origin. 104 -133387 cd01279 HTH_HspR-like Helix-Turn-Helix DNA binding domain of HspR-like transcription regulators. Helix-turn-helix (HTH) transcription regulator HspR and related proteins, N-terminal domain. Heat shock protein regulators (HspR) have been shown to regulate expression of specific regulons in response to high temperature or high osmolarity in Streptomyces and Helicobacter, respectively. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 98 -133388 cd01282 HTH_MerR-like_sg3 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 3). Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 112 -238610 cd01283 cytidine_deaminase Cytidine deaminase zinc-binding domain. These enzymes are Zn dependent. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate. Cytidine deaminases catalyze the deamination of cytidine to uridine and are important in the pyrimadine salvage pathway in many cell types, from bacteria to humans. This family also includes the apoBec proteins, which are a mammal specific expansion of RNA editing enzymes, and the closely related phorbolins, and the AID (activation-induced) enzymes. 112 -238611 cd01284 Riboflavin_deaminase-reductase Riboflavin-specific deaminase. Riboflavin biosynthesis protein RibD (Diaminohydroxyphosphoribosylaminopyrimidine deaminase) catalyzes the deamination of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate, which is an intermediate step in the biosynthesis of riboflavin.The ribG gene of Bacillus subtilis and the ribD gene of E. coli are bifunctional and contain this deaminase domain and a reductase domain which catalyzes the subsequent reduction of the ribosyl side chain. 115 -238612 cd01285 nucleoside_deaminase Nucleoside deaminases include adenosine, guanine and cytosine deaminases. These enzymes are Zn dependent and catalyze the deamination of nucleosides. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate. The functional enzyme is a homodimer. Cytosine deaminase catalyzes the deamination of cytosine to uracil and ammonia and is a member of the pyrimidine salvage pathway. Cytosine deaminase is found in bacteria and fungi but is not present in mammals; for this reason, the enzyme is currently of interest for antimicrobial drug design and gene therapy applications against tumors. Some members of this family are tRNA-specific adenosine deaminases that generate inosine at the first position of their anticodon (position 34) of specific tRNAs; this modification is thought to enlarge the codon recognition capacity during protein synthesis. Other members of the family are guanine deaminases which deaminate guanine to xanthine as part of the utilization of guanine as a nitrogen source. 109 -238613 cd01286 deoxycytidylate_deaminase Deoxycytidylate deaminase domain. Deoxycytidylate deaminase catalyzes the deamination of dCMP to dUMP, providing the nucleotide substrate for thymidylate synthase. The enzyme binds Zn++, which is required for catalytic activity. The activity of the enzyme is allosterically regulated by the ratio of dCTP to dTTP not only in eukaryotic cells but also in T-even phage-infected Escherichia coli, with dCTP acting as an activator and dTTP as an inhibitor. 131 -238614 cd01287 FabA FabA, beta-hydroxydecanoyl-acyl carrier protein (ACP)-dehydratase: Bacterial protein of the type II, fatty acid synthase system that binds ACP and catalyzes both dehydration and isomerization reactions, apparently in the same active site. The FabA structure is a homodimer with two independent active sites located at the dimer interface. Each active site is tunnel-shaped and completely inaccessible to solvent. No metal ions or cofactors are required for ligand binding or catalysis. 150 -238615 cd01288 FabZ FabZ is a 17kD beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase that primarily catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP, the third step in the elongation phase of the bacterial/ plastid, type II, fatty-acid biosynthesis pathway. 131 -238616 cd01289 FabA_like Domain of unknown function, appears to be related to a diverse group of beta-hydroxydecanoyl ACP dehydratases (FabA) and beta-hydroxyacyl ACP dehydratases (FabZ). This group appears to lack the conserved active site histidine of FabA and FabZ. 138 -211324 cd01291 PseudoU_synth Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). Pseudouridine synthases contains the RsuA/RluD, TruA, TruB and TruD families. This group consists of eukaryotic, bacterial and archeal pseudouridine synthases. Some psi sites such as psi55,13,38 and 39 in tRNA are highly conserved, being in the same position in eubacteria, archeabacteria and eukaryotes. Other psi sites occur in a more restricted fashion, for example psi2604in 23S RNA made by E.coli RluF has only been detected in E.coli. Human dyskerin with the help of guide RNAs makes the hundreds of psueudouridnes present in rRNA and small nuclear RNAs (snRNAs). Mutations in human dyskerin cause X-linked dyskeratosis congenitas. Missense mutation in human PUS1 causes mitochondrial myopathy and sideroblastic anemia (MLASA). 87 -238617 cd01292 metallo-dependent_hydrolases Superfamily of metallo-dependent hydrolases (also called amidohydrolase superfamily) is a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The family includes urease alpha, adenosine deaminase, phosphotriesterase dihydroorotases, allantoinases, hydantoinases, AMP-, adenine and cytosine deaminases, imidazolonepropionase, aryldialkylphosphatase, chlorohydrolases, formylmethanofuran dehydrogenases and others. 275 -238618 cd01293 Bact_CD Bacterial cytosine deaminase and related metal-dependent hydrolases. Cytosine deaminases (CDs) catalyze the deamination of cytosine, producing uracil and ammonia. They play an important role in pyrimidine salvage. CDs are present in prokaryotes and fungi, but not mammalian cells. The bacterial enzymes, but not the fungal enzymes, are related to the adenosine deaminases (ADA). The bacterial enzymes are iron dependent and hexameric. 398 -238619 cd01294 DHOase Dihydroorotase (DHOase) catalyzes the reversible interconversion of carbamoyl aspartate to dihydroorotate, a key reaction in the pyrimidine biosynthesis. In contrast to the large polyfunctional CAD proteins of higher organisms, this group of DHOases is monofunctional and mainly dimeric. 335 -238620 cd01295 AdeC Adenine deaminase (AdeC) directly deaminates adenine to form hypoxanthine. This reaction is part of one of the adenine salvage pathways, as well as the degradation pathway. It is important for adenine utilization as a purine, as well as a nitrogen source in bacteria and archea. 422 -238621 cd01296 Imidazolone-5PH Imidazolonepropionase/imidazolone-5-propionate hydrolase (Imidazolone-5PH) catalyzes the third step in the histidine degradation pathway, the hydrolysis of (S)-3-(5-oxo-4,5-dihydro-3H-imidazol-4-yl)propanoate to N-formimidoyl-L-glutamate. In bacteria, the enzyme is part of histidine utilization (hut) operon. 371 -238622 cd01297 D-aminoacylase D-aminoacylases (N-acyl-D-Amino acid amidohydrolases) catalyze the hydrolysis of N-acyl-D-amino acids to produce the corresponding D-amino acids, which are used as intermediates in the synthesis of pesticides, bioactive peptides, and antibiotics. 415 -238623 cd01298 ATZ_TRZ_like TRZ/ATZ family contains enzymes from the atrazine degradation pathway and related hydrolases. Atrazine, a chlorinated herbizide, can be catabolized by a variety of different bacteria. The first three steps of the atrazine dehalogenation pathway are catalyzed by atrazine chlorohydrolase (AtzA), hydroxyatrazine ethylaminohydrolase (AtzB), and N-isopropylammelide N-isopropylaminohydrolase (AtzC). All three enzymes belong to the superfamily of metal dependent hydrolases. AtzA and AtzB, beside other related enzymes are represented in this CD. 411 -238624 cd01299 Met_dep_hydrolase_A Metallo-dependent hydrolases, subgroup A is part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The function of this subgroup is unknown. 342 -238625 cd01300 YtcJ_like YtcJ_like metal dependent amidohydrolases. YtcJ is a Bacillus subtilis ORF of unknown function. The Arabidopsis homolog LAF3 has been identified as a factor required for photochrome A signalling. 479 -238626 cd01301 rDP_like renal dipeptidase (rDP), best studied in mammals and also called membrane or microsomal dipeptidase, is a membrane-bound glycoprotein hydrolyzing dipeptides and is involved in hydrolytic metabolism of penem and carbapenem beta-lactam antibiotics. Although the biological function of the enzyme is still unknown, it has been suggested to play a role in the renal glutathione metabolism. 309 -238627 cd01302 Cyclic_amidohydrolases Cyclic amidohydrolases, including hydantoinase, dihydropyrimidinase, allantoinase, and dihydroorotase, are involved in the metabolism of pyrimidines and purines, sharing the property of hydrolyzing the cyclic amide bond of each substrate to the corresponding N-carbamyl amino acids. Allantoinases catalyze the degradation of purines, while dihydropyrimidinases and hydantoinases, a microbial counterpart of dihydropyrimidinase, are involved in pyrimidine degradation. Dihydroorotase participates in the de novo synthesis of pyrimidines. 337 -238628 cd01303 GDEase Guanine deaminase (GDEase). Guanine deaminase is an aminohydrolase responsible for the conversion of guanine to xanthine and ammonia, the first step to utilize guanine as a nitrogen source. This reaction also removes the guanine base from the pool and therefore can play a role in the regulation of cellular GTP and the guanylate nucleotide pool. 429 -238629 cd01304 FMDH_A Formylmethanofuran dehydrogenase (FMDH) subunit A; Methanogenic bacteria and archea derive the energy for autotrophic growth from methanogenesis, the reduction of CO2 with molecular hydrogen as the electron donor. FMDH catalyzes the first step in methanogenesis, the formyl-methanofuran synthesis. In this step, CO2 is bound to methanofuran and subsequently reduced to the formyl state with electrons derived from hydrogen. 541 -238630 cd01305 archeal_chlorohydrolases Predicted chlorohydrolases. These metallo-dependent hydrolases from archea are part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. They have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. Some members of this subgroup are predicted to be chlorohyrolases. 263 -238631 cd01306 PhnM PhnM is believed to be a subunit of the membrane associated C-P lyase complex. C-P lyase is thought to catalyze the direct cleavage of inactivated C-P bonds to yield inorganic phosphate and the corresponding hydrocarbons. It is responsible for cleavage of alkylphosphonates, which are utilized as sole phosphorus sources by many bacteria. 325 -238632 cd01307 Met_dep_hydrolase_B Metallo-dependent hydrolases, subgroup B is part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The function of this subgroup is unknown. 338 -238633 cd01308 Isoaspartyl-dipeptidase Isoaspartyl dipeptidase hydrolyzes the beta-L-isoaspartyl linkages in dipeptides, as part of the degradative pathway to eliminate proteins with beta-L-isoaspartyl peptide bonds, bonds whereby the beta-group of an aspartate forms the peptide link with the amino group of the following amino acid. Formation of this bond is a spontaneous nonenzymatic reaction in nature and can profoundly effect the function of the protein. Isoaspartyl dipeptidase is an octameric enzyme that contains a binuclear zinc center in the active site of each subunit and shows a strong preference of hydrolyzing Asp-Leu dipeptides. 387 -238634 cd01309 Met_dep_hydrolase_C Metallo-dependent hydrolases, subgroup C is part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The function of this subgroup is unknown. 359 -238635 cd01310 TatD_DNAse TatD like proteins; E.coli TatD is a cytoplasmic protein, shown to have magnesium dependent DNase activity. 251 -238636 cd01311 PDC_hydrolase 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase hydrolyzes PDC to yield 4-oxalomesaconic acid (OMA) or its tautomer, 4-carboxy-2-hydroxymuconic acid (CHM). This reaction is part of the protocatechuate (PCA) 4,5-cleavage pathway. PCA is one of the most important intermediate metabolites in the bacterial pathways for various phenolic compounds, including lignin, which is the most abundant aromatic material in nature. 263 -238637 cd01312 Met_dep_hydrolase_D Metallo-dependent hydrolases, subgroup D is part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The function of this subgroup is unknown. 381 -238638 cd01313 Met_dep_hydrolase_E Metallo-dependent hydrolases, subgroup D is part of the superfamily of metallo-dependent hydrolases, a large group of proteins that show conservation in their 3-dimensional fold (TIM barrel) and in details of their active site. The vast majority of the members have a conserved metal binding site, involving four histidines and one aspartic acid residue. In the common reaction mechanism, the metal ion (or ions) deprotonate a water molecule for a nucleophilic attack on the substrate. The function of this subgroup is unknown. 418 -238639 cd01314 D-HYD D-hydantoinases (D-HYD) also called dihydropyrimidases (DHPase) and related proteins; DHPases are a family of enzymes that catalyze the reversible hydrolytic ring opening of the amide bond in five- or six-membered cyclic diamides, like dihydropyrimidine or hydantoin. The hydrolysis of dihydropyrimidines is the second step of reductive catabolism of pyrimidines in human. The hydrolysis of 5-substituted hydantoins in microorganisms leads to enantiomerically pure N-carbamyl amino acids, which are used for the production of antibiotics, peptide hormones, pyrethroids, and pesticides. HYDs are classified depending on their stereoselectivity. This family also includes collapsin response regulators (CRMPs), cytosolic proteins involved in neuronal differentiation and axonal guidance which have strong homology to DHPases, but lack most of the active site residues. 447 -238640 cd01315 L-HYD_ALN L-Hydantoinases (L-HYDs) and Allantoinase (ALN); L-Hydantoinases are a member of the dihydropyrimidinase family, which catalyzes the reversible hydrolytic ring opening of dihydropyrimidines and hydantoins (five-membered cyclic diamides used in biotechnology). But L-HYDs differ by having an L-enantio specificity and by lacking activity on possible natural substrates such as dihydropyrimidines. Allantoinase catalyzes the hydrolytic cleavage of the five-member ring of allantoin (5-ureidohydantoin) to form allantoic acid. 447 -238641 cd01316 CAD_DHOase The eukaryotic CAD protein is a trifunctional enzyme of carbamoylphosphate synthetase-aspartate transcarbamoylase-dihydroorotase, which catalyzes the first three steps of de novo pyrimidine nucleotide biosynthesis. Dihydroorotase (DHOase) catalyzes the third step, the reversible interconversion of carbamoyl aspartate to dihydroorotate. 344 -238642 cd01317 DHOase_IIa Dihydroorotase (DHOase), subgroup IIa; DHOases catalyze the reversible interconversion of carbamoyl aspartate to dihydroorotate, a key reaction in pyrimidine biosynthesis. This subgroup also contains proteins that lack the active site, like unc-33, a C.elegans protein involved in axon growth. 374 -238643 cd01318 DHOase_IIb Dihydroorotase (DHOase), subgroup IIb; DHOases catalyze the reversible interconversion of carbamoyl aspartate to dihydroorotate, a key reaction in pyrimidine biosynthesis. This group contains the archeal members of the DHOase family. 361 -238644 cd01319 AMPD AMP deaminase (AMPD) catalyzes the hydrolytic deamination of adensosine monophosphate (AMP) at position 6 of the adenine nucleotide ring. AMPD is a diverse and highly regulated eukaryotic key enzyme of the adenylate catabolic pathway. 496 -238645 cd01320 ADA Adenosine deaminase (ADA) is a monomeric zinc dependent enzyme which catalyzes the irreversible hydrolytic deamination of both adenosine, as well as desoxyadenosine, to ammonia and inosine or desoxyinosine, respectively. ADA plays an important role in the purine pathway. Low, as well as high levels of ADA activity have been linked to several diseases. 325 -238646 cd01321 ADGF Adenosine deaminase-related growth factors (ADGF), a novel family of secreted growth-factors with sequence similarty to adenosine deaminase. 345 -238647 cd01324 cbb3_Oxidase_CcoQ Cytochrome cbb oxidase CcoQ. Cytochrome cbb3 oxidase, the terminal oxidase in the respiratory chains of proteobacteria, is a multi-chain transmembrane protein located in the cell membrane. Like other cytochrome oxidases, it catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. Found exclusively in proteobacteria, cbb3 is believed to be a modern enzyme that has evolved independently to perform a specialized function in microaerobic energy metabolism. The cbb3 operon contains four genes (ccoNOQP or fixNOQP), with ccoN coding for subunit I. Instead of a CuA-containing subunit II analogous to other cytochrome oxidases, cbb3 utilizes subunits ccoO and ccoP, which contain one and two hemes, respectively, to transfer electrons to the binuclear center. ccoQ, the fourth subunit, is a single transmembrane helix protein. It has been shown to protect the core complex from proteolytic degradation by serine proteases. See cd00919, cd01322, or cd01323 for more information on cbb3 oxidase. 48 -238648 cd01327 KAZAL_PSTI Kazal-type pancreatic secretory trypsin inhibitors (PSTI) and related proteins, including the second domain of the ovomucoid turkey inhibitor and the C-terminal domain of the esophagus cancer-related gene-2 protein (ECRG-2), are members of the superfamily of kazal-type proteinase inhibitors and follistatin-like proteins. 45 -238649 cd01328 FSL_SPARC Follistatin-like SPARC (secreted protein, acidic, and rich in cysteines) domain; SPARC/BM-40/osteonectin is a multifunctional glycoprotein which modulates cellular interaction with the extracellular matrix by its binding to structural matrix proteins such as collagen and vitronectin. The protein it composed of an N-terminal acidic region, a follistatin (FS) domain and an EF-hand calcium binding domain. The FS domain consists of an N-terminal beta hairpin (FOLN/EGF-like domain) and a small hydrophobic core of alpha/beta structure (Kazal domain) and has five disulfide bonds and a conserved N-glycosylation site. The FSL_SPARC domain is a member of the superfamily of kazal-like proteinase inhibitors and follistatin-like proteins. 86 -238650 cd01330 KAZAL_SLC21 The kazal-type serine protease inhibitor domain has been detected in an extracellular loop region of solute carrier 21 (SLC21) family members (organic anion transporters) , which may regulate the specificity of anion uptake. The KAZAL_SLC21 domain is a member of the superfamily of kazal-like proteinase inhibitors and follistatin-like proteins. 54 -176461 cd01334 Lyase_I Lyase class I family; a group of proteins which catalyze similar beta-elimination reactions. The Lyase class I family contains class II fumarase, aspartase, adenylosuccinate lyase (ASL), argininosuccinate lyase (ASAL), prokaryotic-type 3-carboxy-cis,cis-muconate cycloisomerase (pCMLE), and related proteins. It belongs to the Lyase_I superfamily. Proteins of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. 325 -100105 cd01335 Radical_SAM Radical SAM superfamily. Enzymes of this family generate radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. They are characterized by a conserved CxxxCxxC motif, which coordinates the conserved iron-sulfur cluster. Mechanistically, they share the transfer of a single electron from the iron-sulfur cluster to SAM, which leads to its reductive cleavage to methionine and a 5'-deoxyadenosyl radical, which, in turn, abstracts a hydrogen from the appropriately positioned carbon atom. Depending on the enzyme, SAM is consumed during this process or it is restored and reused. Radical SAM enzymes catalyze steps in metabolism, DNA repair, the biosynthesis of vitamins and coenzymes, and the biosynthesis of many antibiotics. Examples are biotin synthase (BioB), lipoyl synthase (LipA), pyruvate formate-lyase (PFL), coproporphyrinogen oxidase (HemN), lysine 2,3-aminomutase (LAM), anaerobic ribonucleotide reductase (ARR), and MoaA, an enzyme of the biosynthesis of molybdopterin. 204 -133421 cd01336 MDH_cytoplasmic_cytosolic Cytoplasmic and cytosolic Malate dehydrogenases. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. Members of this subfamily are eukaryotic MDHs localized to the cytoplasm and cytosol. MDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 325 -133422 cd01337 MDH_glyoxysomal_mitochondrial Glyoxysomal and mitochondrial malate dehydrogenases. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. Members of this subfamily are localized to the glycosome and mitochondria. MDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 310 -133423 cd01338 MDH_choloroplast_like Chloroplast-like malate dehydrogenases. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. Members of this subfamily are bacterial MDHs, and plant MDHs localized to the choloroplasts. MDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 322 -133424 cd01339 LDH-like_MDH L-lactate dehydrogenase-like malate dehydrogenase proteins. Members of this subfamily have an LDH-like structure and an MDH enzymatic activity. Some members, like MJ0490 from Methanococcus jannaschii, exhibit both MDH and LDH activities. Tetrameric MDHs, including those from phototrophic bacteria, are more similar to LDHs than to other MDHs. LDH catalyzes the last step of glycolysis in which pyruvate is converted to L-lactate. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. The LDH-like MDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 300 -238651 cd01341 ADP_ribosyl ADP_ribosylating enzymes catalyze the transfer of ADP_ribose from NAD+ to substrates. Bacterial toxins are cytoplasmic and catalyze the transfer of a single ADP_ribose unit to eukaryotic elongation factor 2, halting protein synthesis and killing the cell. Poly(ADP-ribose) polymerases (PARPS 1-3, VPARP, tankyrase) catalyze the addition of up to 100 ADP_ribose units from NAD+. PARPs 1 and 2 are localized in the nucleaus, bind DNA, and are activated by DNA damage. VPARP is part of the vault ribonucleoprotein complex. Tankyrases regulates telomere length in part through poy(ADP_ribosylation) of telomere repeat binding factor 1 (TRF1). Poly(ADP-ribose) polymerase catalyses the covalent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other DNA binding proteins, which decreases their affinity for DNA. Poly(ADP-ribose) polymerase is a regulatory component induced by DNA damage. The carboxyl-terminal region is the most highly conserved region of the protein. Experiments have shown that a carboxyl 40 kDa fragment is still catalytically active. 137 -293888 cd01342 Translation_Factor_II_like Domain II of Elongation factor Tu (EF-Tu)-like proteins. Elongation factor Tu consists of three structural domains. Domain II adopts a beta barrel structure and is involved in binding to charged tRNA. Domain II is found in other proteins such as elongation factor G and translation initiation factor IF-2. This group also includes the C2 subdomain of domain IV of IF-2 that has the same fold as domain II of (EF-Tu). Like IF-2 from certain prokaryotes such as Thermus thermophilus, mitochondrial IF-2 lacks domain II, which is thought to be involved in binding of E. coli IF-2 to 30S subunits. 80 -238653 cd01343 PL1_Passenger_AT Pertactin-like passenger domains (virulence factors), C-terminal, subgroup 1, of autotransporter proteins of the type V secretion system of Gram-negative bacteria. This subgroup includes the passenger domains of Neisseria and Haemophilus IgA1 proteases, SPATEs (serine protease autotransporters secreted by Enterobacteriaceae), Bordetella pertacins, and nonprotease autotransporters, TibA and similar AIDA-like proteins. 233 -238654 cd01344 PL2_Passenger_AT Pertactin-like passenger domains (virulence factors), C-terminal, subgroup 2, of autotransporter proteins of the type V secretion system of Gram-negative bacteria. This subgroup includes the passenger domains of the nonprotease autotransporters, Ag43, AIDA-1 and IcsA, as well as, the less characterized ShdA, MisL, and BapA autotransporters. 188 -238655 cd01345 OM_channels Porin superfamily. These outer membrane channels share a beta-barrel structure that differ in strand and shear number. Classical (gram-negative ) porins are non-specific channels for small hydrophillic molecules and form 16 beta-stranded barrels (16,20), which associate as trimers. Maltoporin-like channels have specificities for various sugars and form 18 beta-stranded barrels (18,22), which associate as trimers. Ligand-gated protein channels cooperate with a TonB associated inner membrane complex to actively transport ligands via the proton motive force and they form monomeric, (22,24) barrels. The 150-200 N-terminal residues form a plug that blocks the channel from the periplasmic end. 253 -238656 cd01346 Maltoporin-like The Maltoporin-like channels (LamB porin) form a trimeric structure which facilitate the diffusion of maltodextrins and other sugars across the outer membrane of Gram-negative bacteria. The membrane channel is formed by an 18-strand antiparallel beta-barrel (18,22). Loop 3 folds into the core to constrict pore size. Long irregular loops are found on the extracelllular side, while short turns are in the periplasm.Tightly-bound water molecules are found in the eyelet of the passage, and only substrates that can displace and replace the broken hydrogen bonds are likely to enter the pore. In the MPR structure, loops 4,6, and 9 have the greatest mobility and are highly variable; these are postulated to attract maltodextrins. 392 -238657 cd01347 ligand_gated_channel TonB dependent/Ligand-Gated channels are created by a monomeric 22 strand (22,24) anti-parallel beta-barrel. Ligands apparently bind to the large extracellular loops. The N-terminal 150-200 residues form a plug from the periplasmic end of barrel. Energy (proton-motive force) and TonB-dependent conformational alteration of channel (parts of plug, and loops 7 and 8) allow passage of ligand. FepA residues 12-18 form the TonB box, which mediates the interaction with the TonB-containing inner membrane complex. TonB preferentially interacts with ligand-bound receptors. Transport thru the channel may resemble passage thru an air lock. In this model, ligand binding leads to closure of the extracellular end of pore, then a TonB-mediated signal facillitates opening of the interior side of pore, deforming the N-terminal plug and allowing passage of the ligand to the periplasm. Such a mechanism would prevent the free diffusion of small molecules thru the pore. 635 -153129 cd01351 Aconitase Aconitase catalytic domain; Aconitase catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Aconitase catalytic domain. Aconitase (aconitate hydratase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Cis-aconitate is formed as an intermediate product during the course of the reaction. In eukaryotes two isozymes of aconitase are known to exist: one found in the mitochondrial matrix and the other found in the cytoplasm. Aconitase, in its active form, contains a 4Fe-4S iron-sulfur cluster; three cysteine residues have been shown to be ligands of the 4Fe-4S cluster. This is the Aconitase core domain, including structural domains 1, 2 and 3, which binds the Fe-S cluster. The aconitase family also contains the following proteins: - Iron-responsive element binding protein (IRE-BP), a cytosolic protein that binds to iron-responsive elements (IREs). IREs are stem-loop structures found in the 5'UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'UTR of transferrin receptor mRNA. IRE-BP also express aconitase activity. - 3-isopropylmalate dehydratase (isopropylmalate isomerase), the enzyme that catalyzes the second step in the biosynthesis of leucine. - Homoaconitase (homoaconitate hydratase), an enzyme that participates in the alpha-aminoadipate pathway of lysine biosynthesis and that converts cis-homoaconitate into homoisocitric acid. 389 -153130 cd01355 AcnX Putative Aconitase X catalytic domain. Putative Aconitase X catalytic domain. It is predicted by comparative genomic analysis. The proteins are mainly found in archaea and proteobacteria. They are distantly related to Aconitase family of proteins by sequence similarity and seconary structure prediction. The functions have not yet been experimentally characterized. Thus, the prediction should be treated with caution. 389 -238658 cd01356 AcnX_swivel Putative Aconitase X swivel domain. It is predicted by comparative genomic analysis. The proteins are mainly found in archaea and proteobacteria. They are distantly related to Aconitase family of proteins by sequence similarity and seconary structure prediction. The functions have not yet been experimentally characterized. Thus, the prediction should be treated with caution. 123 -176462 cd01357 Aspartase Aspartase. This subgroup contains Escherichia coli aspartase (L-aspartate ammonia-lyase), Bacillus aspartase and related proteins. It is a member of the Lyase class I family, which includes both aspartase (L-aspartate ammonia-lyase) and fumarase class II enzymes. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. Aspartase catalyzes the reversible deamination of aspartic acid. 450 -176463 cd01359 Argininosuccinate_lyase Argininosuccinate lyase (argininosuccinase, ASAL). This group contains ASAL and related proteins. It is a member of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. ASAL is a cytosolic enzyme which catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate during arginine biosynthesis. In ureotelic species ASAL also catalyzes a reaction involved in the production of urea. Included in this group are the major soluble avian eye lens proteins from duck, delta 1 and delta 2 crystallin. Of these two isoforms only delta 2 has retained ASAL activity. These crystallins may have evolved by, gene recruitment of ASAL followed by gene duplication. In humans, mutations in ASAL result in the autosomal recessive disorder argininosuccinic aciduria. 435 -176464 cd01360 Adenylsuccinate_lyase_1 Adenylsuccinate lyase (ASL)_subgroup 1. This subgroup contains bacterial and archeal proteins similar to ASL, a member of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. ASL catalyzes two steps in the de novo purine biosynthesis: the conversion of 5-aminoimidazole-(N-succinylocarboxamide) ribotide (SAICAR) into 5-aminoimidazole-4-carboxamide ribotide (AICAR) and, the conversion of adenylsuccinate (SAMP) into adenosine monophosphate (AMP). 387 -176465 cd01362 Fumarase_classII Class II fumarases. This subgroup contains Escherichia coli fumarase C, human mitochondrial fumarase, and related proteins. It is a member of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. Fumarase catalyzes the reversible hydration/dehydration of fumarate to L-malate during the Krebs cycle. 455 -276814 cd01363 Motor_domain Myosin and Kinesin motor domain. Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. 170 -276815 cd01364 KISc_BimC_Eg5 Kinesin motor domain, BimC/Eg5 spindle pole proteins. Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 353 -276816 cd01365 KISc_KIF1A_KIF1B Kinesin motor domain, KIF1_like proteins. Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. 361 -276817 cd01366 KISc_C_terminal Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins. Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins. Ncd is a spindle motor protein necessary for chromosome segregation in meiosis. KIFC2/KIFC3-like kinesins have been implicated in motility of the Golgi apparatus as well as dentritic and axonal transport in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found at the C-terminus (C-type). C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 329 -276818 cd01367 KISc_KIF2_like Kinesin motor domain, KIF2-like group. Kinesin motor domain, KIF2-like group. KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 328 -276819 cd01368 KISc_KIF23_like Kinesin motor domain, KIF23-like subgroup. Kinesin motor domain, KIF23-like subgroup. Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 345 -276820 cd01369 KISc_KHC_KIF5 Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 325 -276821 cd01370 KISc_KIP3_like Kinesin motor domain, KIP3-like subgroup. Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 345 -276822 cd01371 KISc_KIF3 Kinesin motor domain, kinesins II or KIF3_like proteins. Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 334 -276823 cd01372 KISc_KIF4 Kinesin motor domain, KIF4-like subfamily. Kinesin motor domain, KIF4-like subfamily. Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 341 -276824 cd01373 KISc_KLP2_like Kinesin motor domain, KIF15-like subgroup. Kinesin motor domain, KIF15-like subgroup. Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 347 -276825 cd01374 KISc_CENP_E Kinesin motor domain, CENP-E/KIP2-like subgroup. Kinesin motor domain, CENP-E/KIP2-like subgroup, involved in chromosome movement and/or spindle elongation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 321 -276826 cd01375 KISc_KIF9_like Kinesin motor domain, KIF9-like subgroup. Kinesin motor domain, KIF9-like subgroup; might play a role in cell shape remodeling. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 334 -276827 cd01376 KISc_KID_like Kinesin motor domain, KIF22/Kid-like subgroup. Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. 319 -276951 cd01377 MYSc_class_II class II myosins, motor domain. Myosin motor domain in class II myosins. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 662 -276829 cd01378 MYSc_Myo1 class I myosin, motor domain. Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 652 -276830 cd01379 MYSc_Myo3 class III myosin, motor domain. Myosin III has been shown to play a role in the vision process in insects and in hearing in mammals. Myosin III, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They are characterized by an N-terminal protein kinase domain and several IQ domains. Some members also contain WW, SH2, PH, and Y-phosphatase domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 633 -276831 cd01380 MYSc_Myo5 class V myosin, motor domain. Myo5, also called heavy chain 12, myoxin, are dimeric myosins that transport a variety of intracellular cargo processively along actin filaments, such as melanosomes, synaptic vesicles, vacuoles, and mRNA. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains a IQ domain and a globular DIL domain. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. The protein encoded by this gene is abundant in melanocytes and nerve cells. Mutations in this gene cause Griscelli syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and neuroectodermal melanolysosomal disease, or Elejalde disease. Multiple alternatively spliced transcript variants encoding different isoforms have been reported, but the full-length nature of some variants has not been determined. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Note that the Dictyostelium myoVs are not contained in this child group. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 629 -276832 cd01381 MYSc_Myo7 class VII myosin, motor domain. These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 648 -276833 cd01382 MYSc_Myo6 class VI myosin, motor domain. Myosin VI is a monomeric myosin, which moves towards the minus-end of actin filaments, in contrast to most other myosins which moves towards the plus-end of actin filaments. It is thought that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model. It has been implicated in a myriad of functions including: the transport of cytoplasmic organelles, maintenance of normal Golgi morphology, endocytosis, secretion, cell migration, border cell migration during development, and in cancer metastasis playing roles in deafness and retinal development among others. While how this is accomplished is largely unknown there are several interacting proteins that have been identified such as disabled homolog 2 (DAB2), GIPC1, synapse-associated protein 97 (SAP97; also known as DLG1) and optineurin, which have been found to target myosin VI to different cellular compartments. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the minus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 649 -276834 cd01383 MYSc_Myo8 class VIII myosin, motor domain. These plant-specific type VIII myosins has been associated with endocytosis, cytokinesis, cell-to-cell coupling and gating at plasmodesmata. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains IQ domains Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 647 -276835 cd01384 MYSc_Myo11 class XI myosin, motor domain. These plant-specific type XI myosin are involved in organelle transport. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. 647 -276836 cd01385 MYSc_Myo9 class IX myosin, motor domain. Myosin IX is a processive single-headed motor, which might play a role in signalling. It has a N-terminal RA domain, an IQ domain, a C1_1 domain, and a RhoGAP domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 690 -276837 cd01386 MYSc_Myo18 class XVIII myosin, motor domain. Many members of this class contain a N-terminal PDZ domain which is commonly found in proteins establishing molecular complexes. The motor domain itself does not exhibit ATPase activity, suggesting that it functions as an actin tether protein. It also has two IQ domains that probably bind light chains or related calmodulins and a C-terminal tail with two sections of coiled-coil domains, which are thought to mediate homodimerization. The function of these myosins are largely unknown. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 689 -276838 cd01387 MYSc_Myo15 class XV mammal-like myosin, motor domain. The class XV myosins are monomeric. In vertebrates, myosin XV appears to be expressed in sensory tissue and play a role in hearing. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are 2 MyTH4 domain, a FERM domain, and a SH3 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 657 -238684 cd01388 SOX-TCF_HMG-box SOX-TCF_HMG-box, class I member of the HMG-box superfamily of DNA-binding proteins. These proteins contain a single HMG box, and bind the minor groove of DNA in a highly sequence-specific manner. Members include SRY and its homologs in insects and vertebrates, and transcription factor-like proteins, TCF-1, -3, -4, and LEF-1. They appear to bind the minor groove of the A/T C A A A G/C-motif. 72 -238685 cd01389 MATA_HMG-box MATA_HMG-box, class I member of the HMG-box superfamily of DNA-binding proteins. These proteins contain a single HMG box, and bind the minor groove of DNA in a highly sequence-specific manner. Members include the fungal mating type gene products MC, MATA1 and Ste11. 77 -238686 cd01390 HMGB-UBF_HMG-box HMGB-UBF_HMG-box, class II and III members of the HMG-box superfamily of DNA-binding proteins. These proteins bind the minor groove of DNA in a non-sequence specific fashion and contain two or more tandem HMG boxes. Class II members include non-histone chromosomal proteins, HMG1 and HMG2, which bind to bent or distorted DNA such as four-way DNA junctions, synthetic DNA cruciforms, kinked cisplatin-modified DNA, DNA bulges, cross-overs in supercoiled DNA, and can cause looping of linear DNA. Class III members include nucleolar and mitochondrial transcription factors, UBF and mtTF1, which bind four-way DNA junctions. 66 -107248 cd01391 Periplasmic_Binding_Protein_Type_1 Type 1 periplasmic binding fold superfamily. Type 1 periplasmic binding fold superfamily. This model and hierarchy represent the ligand binding domains of the LacI family of transcriptional regulators, periplasmic binding proteins of the ABC-type transport systems, the family C G-protein couples receptors (GPCRs), membrane bound guanylyl cyclases including the family of natriuretic peptide receptors (NPRs), and the N-terminal leucine/isoleucine/valine- binding protein (LIVBP)-like domains of the ionotropic glutamate receptors (iGluRs). In LacI-like transcriptional regulator and the bacterial periplasmic binding proteins the ligands are monosaccharides including lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars, with a few exceptions. Periplasmic sugar binding proteins are one of the components of ABC transporters and are involved in the active transport of water-soluble ligands. The LacI family of proteins consists of transcriptional regulators related to the lac repressor. In this case, the sugar binding domain binds a sugar which changes the DNA binding activity of the repressor domain. The periplasmic binding proteins are the primary receptors for chemotaxis and transport of many sugar based solutes. The core structures of periplasmic binding proteins are classified into two types, and they differ in number and order of beta strands: type 1 has six beta strands, while type 2 has five beta strands per sub-domain. These two structural folds are thought to be distantly related via a common ancestor. Notably, while the N-terminal LIVBP-like domain of iGluRs belongs to the type 1 periplasmic-binding fold protein superfamily, the glutamate-binding domain of the iGluR is structurally similar to the type 2 periplasmic-binding fold. 269 -143331 cd01392 HTH_LacI Helix-turn-helix (HTH) DNA binding domain of the LacI family of transcriptional regulators. HTH-DNA binding domain of the LacI (lactose operon repressor) family of bacterial transcriptional regulators and their putative homologs found in plants. The LacI family has more than 500 members distributed among almost all bacterial species. The monomeric proteins of the LacI family contain common structural features that include a small DNA-binding domain with a helix-turn-helix motif in the N-terminus, a regulatory ligand-binding domain which exhibits the type I periplasmic binding protein fold in the C-terminus for oligomerization and for effector binding, and an approximately 18-amino acid linker connecting these two functional domains. In LacI-like transcriptional regulators, the ligands are monosaccharides including lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars, with a few exceptions. When the C-terminal domain of the LacI family repressor binds its ligand, it undergoes a conformational change which affects the DNA-binding affinity of the repressor. In Escherichia coli, LacI represses transcription by binding with high affinity to the lac operon at a specific operator DNA sequence until it interacts with the physiological inducer allolactose or a non-degradable analog IPTG (isopropyl-beta-D-thiogalactopyranoside). Induction of the repressor lowers its affinity for the operator sequence, thereby allowing transcription of the lac operon structural genes (lacZ, lacY, and LacA). The lac repressor occurs as a tetramer made up of two functional dimers. Thus, two DNA binding domains of a dimer are required to bind the inverted repeat sequences of the operator DNA binding sites. 52 -238687 cd01393 recA_like RecA is a bacterial enzyme which has roles in homologous recombination, DNA repair, and the induction of the SOS response. RecA couples ATP hydrolysis to DNA strand exchange. While prokaryotes have a single RecA protein, eukaryotes have multiple RecA homologs such as Rad51, DMC1 and Rad55/57. Archaea have the RecA-like homologs radA and radB. 226 -238688 cd01394 radB RadB. The archaeal protein radB shares similarity radA, the archaeal functional homologue to the bacterial RecA. The precise function of radB is unclear. 218 -238689 cd01395 HMT_MBD Methyl-CpG binding domains (MBD) present in putative histone methyltransferases (HMT) such as CLLD8 and SETDB1 proteins; CLLD8 contains a MBD, a PreSET and a bifurcated SET domain, suggesting that CLLD8 might be associated with methylation-mediated transcriptional repression. SETDB1 and other proteins in this group have a similar domain architecture. SETDB1 is a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. 60 -238690 cd01396 MeCP2_MBD MeCP2, MBD1, MBD2, MBD3, and MBD4 are members of a protein family that share the methyl-CpG-binding domain (MBD). The MBD, consists of about 70 residues and is defined as the minimal region required for binding to methylated DNA by a methyl-CpG-binding protein which binds specifically to methylated DNA. The MBD can recognize a single symmetrically methylated CpG either as naked DNA or within chromatin. MeCP2, MBD1 and MBD2 (and likely MBD3) form complexes with histone deacetylase and are involved in histone deacetylase-dependent repression of transcription. MBD4 is an endonuclease that forms a complex with the DNA mismatch-repair protein MLH1. 77 -238691 cd01397 HAT_MBD Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as BAZ2A; BAZ2A contains a MBD, DDT, PHD-type zinc finger and Bromo domain suggesting that BAZ2A might be associated with histone acetyltransferase (HAT) activity. The Drosophila melanogaster toutatis protein, a putative subunit of the chromatin-remodeling complex, and other such proteins in this group share a similar domain architecture with BAZ2A, as does the Caenorhabditis elegans flectin homolog. 73 -238692 cd01398 RPI_A RPI_A: Ribose 5-phosphate isomerase type A (RPI_A) subfamily; RPI catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate, the first step of the non-oxidative branch of the pentose phosphate pathway. This reaction leads to the conversion of phosphosugars into glycolysis intermediates, which are precursors for the synthesis of amino acids, vitamins, nucleotides, and cell wall components. In plants, RPI is part of the Calvin cycle as ribulose 5-phosphate is the carbon dioxide receptor in the first dark reaction of photosynthesis. There are two unrelated types of RPIs (A and B), which catalyze the same reaction, at least one type of RPI is present in an organism. RPI_A is more widely distributed than RPI_B in bacteria, eukaryotes, and archaea. 213 -238693 cd01399 GlcN6P_deaminase GlcN6P_deaminase: Glucosamine-6-phosphate (GlcN6P) deaminase subfamily; GlcN6P deaminase catalyzes the reversible conversion of GlcN6P to D-fructose-6-phosphate (Fru6P) and ammonium. The reaction is an aldo-keto isomerization coupled with an amination or deamination. It is the last step of the metabolic pathway of N-acetyl-D-glucosamine-6-phosphate (GlcNAc6P). GlcN6P deaminase is a hexameric enzyme that is allosterically activated by GlcNAc6P. 232 -238694 cd01400 6PGL 6PGL: 6-Phosphogluconolactonase (6PGL) subfamily; 6PGL catalyzes the second step of the oxidative phase of the pentose phosphate pathway, the hydrolyzation of 6-phosphoglucono-1,5-lactone (delta form) to 6-phosphogluconate. 6PGL is thought to guard against the accumulation of the delta form of the lactone, which may be toxic through its reaction with endogenous cellular nucleophiles. 219 -238695 cd01401 PncB_like Nicotinate phosphoribosyltransferase (NAPRTase), related to PncB. Nicotinate phosphoribosyltransferase catalyses the formation of NAMN and PPi from 5-phosphoribosy -1-pyrophosphate (PRPP) and nicotinic acid, this is the first, and also rate limiting, reaction in the NAD salvage synthesis. This salvage pathway serves to recycle NAD degradation products. This subgroup is present in bacteria, archea and funghi. 377 -238696 cd01403 Cyt_c_Oxidase_VIIb Cytochrome C oxidase chain VIIb. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. The VIIb subunit is found only in eukaryotes and its specific function remains unclear. A rare polymorphism of the CcO VIIb gene may be associated with the high risk of nasopharyngeal carcinoma in a Cantonese family. 51 -238697 cd01406 SIR2-like Sir2-like: Prokaryotic group of uncharacterized Sir2-like proteins which lack certain key catalytic residues and conserved zinc binding cysteines; and are members of the SIR2 superfamily of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. 242 -238698 cd01407 SIR2-fam SIR2 family of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins, also known as sirtuins, are found in all eukaryotes and many archaea and prokaryotes and have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The oligomerization state of Sir2 appears to be organism-dependent, sometimes occurring as a monomer and sometimes as a multimer. 218 -238699 cd01408 SIRT1 SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The nuclear SIRT1 has been shown to target the p53 tumor suppressor protein for deacetylation to suppress DNA damage, and the cytoplasmic SIRT2 homolog has been shown to target alpha-tubulin for deacetylation for the maintenance of cell integrity. 235 -238700 cd01409 SIRT4 SIRT4: Eukaryotic and prokaryotic group (class2) which includes human sirtuin SIRT4 and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. 260 -238701 cd01410 SIRT7 SIRT7: Eukaryotic and prokaryotic group (class4) which includes human sirtuin SIRT6, SIRT7, and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. 206 -238702 cd01411 SIR2H SIR2H: Uncharacterized prokaryotic Sir2 homologs from several gram positive bacterial species and Fusobacteria; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. 225 -238703 cd01412 SIRT5_Af1_CobB SIRT5_Af1_CobB: Eukaryotic, archaeal and prokaryotic group (class3) which includes human sirtuin SIRT5, Archaeoglobus fulgidus Sir2-Af1, and E. coli CobB; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. CobB is a bacterial sirtuin that deacetylates acetyl-CoA synthetase at an active site lysine to stimulate its enzymatic activity. 224 -238704 cd01413 SIR2_Af2 SIR2_Af2: Archaeal and prokaryotic group which includes Archaeoglobus fulgidus Sir2-Af2, Sulfolobus solfataricus ssSir2, and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The Sir2 homolog from the archaea Sulfolobus solftaricus deacetylates the non-specific DNA protein Alba to mediate transcription repression. 222 -133469 cd01414 SAICAR_synt_Sc non-metazoan 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) synthase. Eukaryotic, bacterial, and archaeal group of SAICAR synthetases represented by the Saccharomyces cerevisiae (Sc) enzyme, mostly absent in metazoans. SAICAR synthetase catalyzes the seventh step of the de novo biosynthesis of purine nucleotides (also reported as eighth step). It converts 5-aminoimidazole-4-carboxyribonucleotide (CAIR), ATP, and L-aspartate into 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR), ADP, and phosphate. 279 -133470 cd01415 SAICAR_synt_PurC bacterial and archaeal 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) synthase. A subfamily of SAICAR synthetases represented by the Thermotoga maritima (Tm) enzyme and E. coli PurC. SAICAR synthetase catalyzes the seventh step of the de novo biosynthesis of purine nucleotides (also reported as eighth step). It converts 5-aminoimidazole-4-carboxyribonucleotide (CAIR), ATP, and L-aspartate into 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR), ADP, and phosphate. 230 -133471 cd01416 SAICAR_synt_Ade5 Ade5_like 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) synthase. Eukaryotic group of SAICAR synthetases represented by the Drosophila melanogaster, N-terminal, SAICAR synthetase domain of bifunctional Ade5. The Ade5 gene product (CAIR-SAICARs) catalyzes the sixth and seventh steps of the de novo biosynthesis of purine nucleotides (also reported as seventh and eighth steps). SAICAR synthetase converts 5-aminoimidazole-4-carboxyribonucleotide (CAIR), ATP, and L-aspartate into 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR), ADP, and phosphate. 252 -238705 cd01417 Ribosomal_L19e_E Ribosomal protein L19e, eukaryotic. L19e is found in the large ribosomal subunit of eukaryotes and archaea. L19e is distinct from the ribosomal subunit L19, which is found in prokaryotes. It consists of two small globular domains connected by an extended segment. It is located toward the surface of the large subunit, with one exposed end involved in forming the intersubunit bridge with the small subunit. The other exposed end is involved in forming the translocon binding site, along with L22, L23, L24, L29, and L31e subunits. 164 -238706 cd01418 Ribosomal_L19e_A Ribosomal protein L19e, archaeal. L19e is found in the large ribosomal subunit of eukaryotes and archaea. L19e is distinct from the ribosomal subunit L19, which is found in prokaryotes. It consists of two small globular domains connected by an extended segment. It is located toward the surface of the large subunit, with one exposed end involved in forming the intersubunit bridge with the small subunit. The other exposed end is involved in forming the translocon binding site, along with L22, L23, L24, L29, and L31e subunits. 145 -238707 cd01419 MoaC_A MoaC family, archaeal. Members of this family are involved in molybdenum cofactor (Moco) biosynthesis, an essential cofactor of a diverse group of redox enzymes. MoaC, a small hexameric protein, converts, together with MoaA, a guanosine derivative to the precursor Z by inserting the carbon-8 of the purine between the 2' and 3' ribose carbon atoms, which is the first of three phases of Moco biosynthesis. 141 -238708 cd01420 MoaC_PE MoaC family, prokaryotic and eukaryotic. Members of this family are involved in molybdenum cofactor (Moco) biosynthesis, an essential cofactor of a diverse group of redox enzymes. MoaC, a small hexameric protein, converts, together with MoaA, a guanosine derivative to the precursor Z by inserting the carbon-8 of the purine between the 2' and 3' ribose carbon atoms, which is the first of three phases of Moco biosynthesis. 140 -238709 cd01421 IMPCH Inosine monophosphate cyclohydrolase domain. This is the N-terminal domain in the purine biosynthesis pathway protein ATIC (purH). The bifunctional ATIC protein contains a C-terminal ATIC formylase domain that formylates 5-aminoimidazole-4-carboxamide-ribonucleotide. The IMPCH domain then converts the formyl-5-aminoimidazole-4-carboxamide-ribonucleotide to inosine monophosphate. This is the final step in de novo purine production. 187 -238710 cd01422 MGS Methylglyoxal synthase catalyzes the enolization of dihydroxyacetone phosphate (DHAP) to produce methylglyoxal. The first part of the catalytic mechanism is believed to be similar to TIM (triosephosphate isomerase) in that both enzymes utilize DHAP to form an ene-diolate phosphate intermediate. In MGS, the second catalytic step is characterized by the elimination of phosphate and collapse of the enediolate to form methylglyoxal instead of reprotonation to form the isomer glyceraldehyde 3-phosphate, as in TIM. This is the first reaction in the methylglyoxal bypass of the Embden-Myerhoff glycolytic pathway and is believed to provide physiological benefits under non-ideal growth conditions in bacteria. 115 -238711 cd01423 MGS_CPS_I_III Methylglyoxal synthase-like domain found in pyr1 and URA1-like carbamoyl phosphate synthetases (CPS), including ammonia-dependent CPS Type I, and glutamine-dependent CPS Type III. These are multidomain proteins, in which MGS is the C-terminal domain. 116 -238712 cd01424 MGS_CPS_II Methylglyoxal synthase-like domain from type II glutamine-dependent carbamoyl phosphate synthetase (CSP). CSP, a CarA and CarB heterodimer, catalyzes the production of carbamoyl phosphate which is subsequently employed in the metabolic pathways responsible for the synthesis of pyrimidine nucleotides or arginine. The MGS-like domain is the C-terminal domain of CarB and appears to play a regulatory role in CPS function by binding allosteric effector molecules, including UMP and ornithine. 110 -100106 cd01425 RPS2 Ribosomal protein S2 (RPS2), involved in formation of the translation initiation complex, where it might contact the messenger RNA and several components of the ribosome. It has been shown that in Escherichia coli RPS2 is essential for the binding of ribosomal protein S1 to the 30s ribosomal subunit. In humans, most likely in all vertebrates, and perhaps in all metazoans, the protein also functions as the 67 kDa laminin receptor (LAMR1 or 67LR), which is formed from a 37 kDa precursor, and is overexpressed in many tumors. 67LR is a cell surface receptor which interacts with a variety of ligands, laminin-1 and others. It is assumed that the ligand interactions are mediated via the conserved C-terminus, which becomes extracellular as the protein undergoes conformational changes which are not well understood. Specifically, a conserved palindromic motif, LMWWML, may participate in the interactions. 67LR plays essential roles in the adhesion of cells to the basement membrane and subsequent signalling events, and has been linked to several diseases. Some evidence also suggests that the precursor of 67LR, 37LRP is also present in the nucleus in animals, where it appears associated with histones. 193 -349738 cd01426 ATP-synt_F1_V1_A1_AB_FliI_N ATP synthase, alpha/beta subunits of F1/V1/A1 complex, flagellum-specific ATPase FliI, N-terminal domain. The alpha and beta (or A and B) subunits are primarily found in the F1, V1, and A1 complexes of the F-, V- and A-type family of ATPases with rotary motors. These ion-transporting rotary ATPases are composed of two linked multi-subunit complexes: the F1, V1, or A1 complex which contains three copies each of the alpha and beta subunits that form the soluble catalytic core involved in ATP synthesis/hydrolysis, and the Fo, Vo, or Ao complex which forms the membrane-embedded proton pore. The F-ATP synthases (also called FoF1-ATPases) are found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts, or in the plasma membranes of bacteria. F-ATPases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. The A-ATP synthases (AoA1-ATPases), a different class of proton-translocating ATP synthases, are found in archaea and function like F-ATP synthases. Structurally, however, the A-ATP synthases are more closely related to the V-ATP synthases (vacuolar VoV1-ATPases), which are a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, F-, V-, and A-type synthases can function in both ATP synthesis and hydrolysis modes. This family also includes the flagellum-specific ATPase/type III secretory pathway virulence-related protein, which shows extensive similarity to the alpha and beta subunits of F1-ATP synthase. 73 -319763 cd01427 HAD_like Haloacid dehalogenase-like hydrolases. The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 106 -238713 cd01428 ADK Adenylate kinase (ADK) catalyzes the reversible phosphoryl transfer from adenosine triphosphates (ATP) to adenosine monophosphates (AMP) and to yield adenosine diphosphates (ADP). This enzyme is required for the biosynthesis of ADP and is essential for homeostasis of adenosine phosphates. 194 -349744 cd01429 ATP-synt_F1_V1_A1_AB_FliI_C ATP synthase, alpha/beta subunits of F1/V1/A1 complex, flagellum-specific ATPase FliI, C-terminal domain. The alpha and beta (also called A and B) subunits are primarily found in the F1, V1, and A1 complexes of F-, V- and A-type family of ATPases with rotary motors. These ion-transporting rotary ATPases are composed of two linked multi-subunit complexes: the F1, V1, and A1 complexes contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Fo, Vo, or Ao complex that forms the membrane-embedded proton pore. The F-ATP synthases (also called FoF1-ATPases) are found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts, or in the plasma membranes of bacteria. F-ATPases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. The A-ATP synthases (AoA1-ATPases), a different class of proton-translocating ATP synthases, are found in archaea and function like F-ATP synthases. Structurally, however, the A-ATP synthases are more closely related to the V-ATP synthases (vacuolar VoV1-ATPases), which are a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, F-, V-, and A-type synthases can function in both ATP synthesis and hydrolysis modes. This family also includes the flagellum-specific ATPase/type III secretory pathway virulence-related protein, which shows extensive similarity to the alpha and beta subunits of F1-ATP synthase. 70 -319764 cd01431 P-type_ATPases ATP-dependent membrane-bound cation and aminophospholipid transporters. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids. They are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. A general characteristic of P-type ATPases is a bundle of transmembrane helices which make up the transport path, and three domains on the cytoplasmic side of the membrane. Members include pumps that transport various light metal ions, such as H(+), Na(+), K(+), Ca(2+), and Mg(2+), pumps that transport indispensable trace elements, such as Zn(2+) and Cu(2+), pumps that remove toxic heavy metal ions, such as Cd(2+), and pumps such as aminophospholipid translocases which transport phosphatidylserine and phosphatidylethanolamine. 319 -238714 cd01433 Ribosomal_L16_L10e Ribosomal_L16_L10e: L16 is an essential protein in the large ribosomal subunit of bacteria, mitochondria, and chloroplasts. Large subunits that lack L16 are defective in peptidyl transferase activity, peptidyl-tRNA hydrolysis activity, association with the 30S subunit, binding of aminoacyl-tRNA and interaction with antibiotics. L16 is required for the function of elongation factor P (EF-P), a protein involved in peptide bond synthesis through the stimulation of peptidyl transferase activity by the ribosome. Mutations in L16 and the adjoining bases of 23S rRNA confer antibiotic resistance in bacteria, suggesting a role for L16 in the formation of the antibiotic binding site. The GTPase RbgA (YlqF) is essential for the assembly of the large subunit, and it is believed to regulate the incorporation of L16. L10e is the archaeal and eukaryotic cytosolic homolog of bacterial L16. L16 and L10e exhibit structural differences at the N-terminus. 112 -238715 cd01434 EFG_mtEFG1_IV EFG_mtEFG1_IV: domains similar to domain IV of the bacterial translational elongation factor (EF) EF-G. Included in this group is a domain of mitochondrial Elongation factor G1 (mtEFG1) proteins homologous to domain IV of EF-G. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. In bacteria this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. There are two forms of mtEFG present in mammals (designated mtEFG1s and mtEFG2s) mtEFG2s are not present in this group. 116 -259844 cd01435 RNAP_I_RPA1_N Largest subunit (RPA1) of eukaryotic RNA polymerase I (RNAP I), N-terminal domain. RPA1 is the largest subunit of the eukaryotic RNA polymerase I (RNAP I). RNAP I is a multi-subunit protein complex responsible for the synthesis of rRNA precursors. RNAP I consists of at least 14 different subunits, the largest being homologous to subunit Rpb1 of yeast RNAP II and subunit beta' of bacterial RNAP. The yeast member of this family is known as Rpb190. Structure studies suggest that different RNA polymerase complexes share a similar crab-claw-shaped structure. The N-terminal domain of Rpb1, the largest subunit of RNAP II in yeast, forms part of the active site. It makes up the head and core of one clamp, as well as the pore and funnel structures of RNAP II. The strong homology between RPA1 and Rpb1 suggests a similar functional and structural role. 779 -238716 cd01436 Dipth_tox_like Mono-ADP-ribosylating toxins catalyze the transfer of ADP_ribose from NAD+ to eukaryotic Elongation Factor 2, halting protein synthesis. A single molecule of delivered toxin is sufficient to kill a cell. These toxins share mono-ADP-ribosylating activity with a variety of bacterial toxins, such as cholera toxin and pertussis toxin. The structural core is homologous to the poly-ADP ribosylating enzymes such as the PARP enzymes and Tankyrase. Diphtheria toxin is encoded by a lysogenic bacteriophage. Both diphtheria toxin and Pseudomonas aeruginosa exotoxin A are multi-domain proteins. These domains provide a EF2 ADP_ribosylating, receptor-binding, and intracellular trafficking/transmembrane functions . 147 -238717 cd01437 parp_like Poly(ADP-ribose) polymerase (parp) catalytic domain catalyses the covalent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other DNA binding proteins, which decreases their affinity for DNA. Poly(ADP-ribose) polymerase is a regulatory component induced by DNA damage. The carboxyl-terminal region is the most highly conserved region of the protein. Experiments have shown that a carboxyl 40 kDa fragment is still catalytically active. Poly(ADP-ribose)-like polymerases (PARPS 1-3, VPARP, tankyrase) catalyze the addition of up to 100 ADP_ribose units from NAD+. PARPs 1 and 2 are localized in the nucleaus, bind DNA, and are activated by DNA damage. VPARP is part of the vault ribonucleoprotein complex. Tankyrases regulates telomere length through interactions with telomere repeat binding factor 1. 347 -238718 cd01438 tankyrase_like Tankyrases interact with the telomere reverse transcriptase complex (TERT). Tankyrase 1 poly-ADP-ribosylates Telomere Repeat Binding Factor 1 (TRF1) while Tankyrase 2 can poly-ADP-ribosylate itself or TRF1. The tankyrases also contain multiple ankyrin repeats that mediate protein-protein interaction (binding TRF1 and insulin-responsive aminopeptidase) and may function as a complex. Overexpression of Tank1 promotes increased telomere length when overexpressed, while overexpressed Tank2 has been shown to promote PARP cleavage- independent cell death (necrosis). 223 -238719 cd01439 TCCD_inducible_PARP_like Poly(ADP-ribose) polymerases catalyse the covalent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other DNA binding proteins, which decreases their affinity for DNA. Poly(ADP-ribose) polymerase is a regulatory component induced by DNA damage. The carboxyl-terminal region is the most highly conserved region of the protein. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes pleotropic effects in mammalian species through modulating gene expression. TCCD indicible PARP (TiPARP) is a target of TCDD that may contribute to multiple responses to TCDD by modulating protein function through poly ADP-ribosylation 121 -238720 cd01443 Cdc25_Acr2p Cdc25 enzymes are members of the Rhodanese Homology Domain (RHOD) superfamily. Also included in this CD are eukaryotic arsenate resistance proteins such as Saccharomyces cerevisiae Acr2p and similar proteins. Cdc25 phosphatases activate the cell division kinases throughout the cell cycle progression. Cdc25 phosphatases dephosphorylate phosphotyrosine and phosphothreonine residues, in order to activate their Cdk/cyclin substrates. The Cdc25 and Acr2p RHOD domains have the signature motif (H/YCxxxxxR). 113 -238721 cd01444 GlpE_ST GlpE sulfurtransferase (ST) and homologs are members of the Rhodanese Homology Domain superfamily. Unlike other rhodanese sulfurtransferases, GlpE is a single domain protein but indications are that it functions as a dimer. The active site contains a catalytically active cysteine. 96 -238722 cd01445 TST_Repeats Thiosulfate sulfurtransferases (TST) contain 2 copies of the Rhodanese Homology Domain. Only the second repeat contains the catalytically active Cys residue. The role of the 1st repeat is uncertain, but believed to be involved in protein interaction. This CD aligns the 1st and 2nd repeats. 138 -238723 cd01446 DSP_MapKP N-terminal regulatory rhodanese domain of dual specificity phosphatases (DSP), such as Mapk Phosphatase. This domain is believed to determine substrate specificity by binding the substrate, such as ERK2, and activating the C-terminal catalytic domain by inducing a conformational change. This domain has homology to the Rhodanese Homology Domain. 132 -238724 cd01447 Polysulfide_ST Polysulfide-sulfurtransferase - Rhodanese Homology Domain. This domain is believed to serve as a polysulfide binding and transferase domain in anaerobic gram-negative bacteria, functioning in oxidative phosphorylation with polysulfide-sulfur as a terminal electron acceptor. The active site contains the same conserved cysteine that is the catalytic residue in other Rhodanese Homology Domain proteins. 103 -238725 cd01448 TST_Repeat_1 Thiosulfate sulfurtransferase (TST), N-terminal, inactive domain. TST contains 2 copies of the Rhodanese Homology Domain; this is the 1st repeat, which does not contain the catalytically active Cys residue. The role of the 1st repeat is uncertain, but it is believed to be involved in protein interaction. 122 -238726 cd01449 TST_Repeat_2 Thiosulfate sulfurtransferase (TST), C-terminal, catalytic domain. TST contains 2 copies of the Rhodanese Homology Domain; this is the second repeat. Only the second repeat contains the catalytically active Cys residue. 118 -238727 cd01450 vWFA_subfamily_ECM Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains 161 -238728 cd01451 vWA_Magnesium_chelatase Magnesium chelatase: Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). In chlorophyll biosynthesis, insertion of Mg2+ into protoporphyrin IX is catalysed by magnesium chelatase in an ATP-dependent reaction. Magnesium chelatase is a three sub-unit (BchI, BchD and BchH) enzyme with a novel arrangement of domains: the C-terminal helical domain is located behind the nucleotide binding site. The BchD domain contains a AAA domain at its N-terminus and a VWA domain at its C-terminus. The VWA domain has been speculated to be involved in mediating protein-protein interactions. 178 -238729 cd01452 VWA_26S_proteasome_subunit 26S proteasome plays a major role in eukaryotic protein breakdown, especially for ubiquitin-tagged proteins. It is an ATP-dependent protease responsible for the bulk of non-lysosomal proteolysis in eukaryotes, often using covalent modification of proteins by ubiquitylation. It consists of a 20S proteolytic core particle (CP) and a 19S regulatory particle (RP). The CP is an ATP independent peptidase consisting of hydrolyzing activities. One or both ends of CP carry the RP that confers both ubiquitin and ATP dependence to the 26S proteosome. The RP's proposed functions include recognition of substrates and translocation of these to CP for proteolysis. The RP can dissociate into a stable lid and base subcomplexes. The base is composed of three non-ATPase subunits (Rpn 1, 2 and 10). A single residue in the vWA domain of Rpn10 has been implicated to be responsible for stabilizing the lid-base association. 187 -238730 cd01453 vWA_transcription_factor_IIH_type Transcription factors IIH type: TFIIH is a multiprotein complex that is one of the five general transcription factors that binds RNA polymerase II holoenzyme. Orthologues of these genes are found in all completed eukaryotic genomes and all these proteins contain a VWA domain. The p44 subunit of TFIIH functions as a DNA helicase in RNA polymerase II transcription initiation and DNA repair, and its transcriptional activity is dependent on its C-terminal Zn-binding domains. The function of the vWA domain is unclear, but may be involved in complex assembly. The MIDAS motif is not conserved in this sub-group. 183 -238731 cd01454 vWA_norD_type norD type: Denitrifying bacteria contain both membrane bound and periplasmic nitrate reductases. Denitrification plays a major role in completing the nitrogen cycle by converting nitrate or nitrite to nitrogen gas. The pathway for microbial denitrification has been established as NO3- ------> NO2- ------> NO -------> N2O ---------> N2. This reaction generally occurs under oxygen limiting conditions. Genetic and biochemical studies have shown that the first srep of the biochemical pathway is catalyzed by periplasmic nitrate reductases. This family is widely present in proteobacteria and firmicutes. This version of the domain is also present in some archaeal members. The function of the vWA domain in this sub-group is not known. Members of this subgroup have a conserved MIDAS motif. 174 -238732 cd01455 vWA_F11C1-5a_type Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the functions of the members of this subgroup. The members of this subgroup are fused to the ancient AAA domain. 191 -238733 cd01456 vWA_ywmD_type VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the members of this subgroup. All members of this subgroup however have a conserved MIDAS motif. 206 -238734 cd01457 vWA_ORF176_type VWA ORF176 type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses. In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The members of this subgroup are Eubacterial in origin and have a conserved MIDAS motif. Not much is known about the biochemistry of these. 199 -238735 cd01458 vWA_ku Ku70/Ku80 N-terminal domain. The Ku78 heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks (DSB) in a preferred orientation. DSB's are repaired by either homologues recombination or non-homologues end joining and facilitate repair by the non-homologous end-joining pathway (NHEJ). The Ku heterodimer is required for accurate process that tends to preserve the sequence at the junction. Ku78 is found in all three kingdoms of life. However, only the eukaryotic proteins have a vWA domain fused to them at their N-termini. The vWA domain is not involved in DNA binding but may very likey mediate Ku78's interactions with other proteins. Members of this subgroup lack the conserved MIDAS motif. 218 -238736 cd01459 vWA_copine_like VWA Copine: Copines are phospholipid-binding proteins originally identified in paramecium. They are found in human and orthologues have been found in C. elegans and Arabidopsis Thaliana. None have been found in D. Melanogaster or S. Cereviciae. Phylogenetic distribution suggests that copines have been lost in some eukaryotes. No functional properties have been assigned to the VWA domains present in copines. The members of this subgroup contain a functional MIDAS motif based on their preferential binding to magnesium and manganese. However, the MIDAS motif is not totally conserved, in most cases the MIDAS consists of the sequence DxTxS instead of the motif DxSxS that is found in most cases. The C2 domains present in copines mediate phospholipid binding. 254 -238737 cd01460 vWA_midasin VWA_Midasin: Midasin is a member of the AAA ATPase family. The proteins of this family are unified by their common archetectural organization that is based upon a conserved ATPase domain. The AAA domain of midasin contains six tandem AAA protomers. The AAA domains in midasin is followed by a D/E rich domain that is following by a VWA domain. The members of this subgroup have a conserved MIDAS motif. The function of this domain is not exactly known although it has been speculated to play a crucial role in midasin function. 266 -238738 cd01461 vWA_interalpha_trypsin_inhibitor vWA_interalpha trypsin inhibitor (ITI): ITI is a glycoprotein composed of three polypeptides- two heavy chains and one light chain (bikunin). Bikunin confers the protease-inhibitor function while the heavy chains are involved in rendering stability to the extracellular matrix by binding to hyaluronic acid. The heavy chains carry the VWA domain with a conserved MIDAS motif. Although the exact role of the VWA domains remains unknown, it has been speculated to be involved in mediating protein-protein interactions with the components of the extracellular matrix. 171 -238739 cd01462 VWA_YIEM_type VWA YIEM type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup have a conserved MIDAS motif, however, their biochemical function is not well characterised. 152 -238740 cd01463 vWA_VGCC_like VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five proteins: alpha 1, beta 1, gamma, alpha 2 and delta. The alpha 2 and delta subunits result from proteolytic processing of a single gene product and carries at its N-terminus the VWA and cache domains, The alpha 2 delta gene family has orthologues in D. melanogaster and C. elegans but none have been detected in aither A. thaliana or yeast. The exact biochemical function of the VWA domain is not known but the alpha 2 delta complex has been shown to regulate various functional properties of the channel complex. 190 -238741 cd01464 vWA_subfamily VWA subfamily: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup have no assigned function. This subfamily is typified by the presence of a conserved MIDAS motif. 176 -238742 cd01465 vWA_subgroup VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known. 170 -238743 cd01466 vWA_C3HC4_type VWA C3HC4-type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Membes of this subgroup belong to Zinc-finger family as they are found fused to RING finger domains. The MIDAS motif is not conserved in all the members of this family. The function of vWA domains however is not known. 155 -238744 cd01467 vWA_BatA_type VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses. In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup are bacterial in origin. They are typified by the presence of a MIDAS motif. 180 -238745 cd01468 trunk_domain trunk domain. COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. This domain is known as the trunk domain and has an alpha/beta vWA fold and forms the dimer interface. Some members of this family possess a partial MIDAS motif that is a characteristic feature of most vWA domain proteins. 239 -238746 cd01469 vWA_integrins_alpha_subunit Integrins are a class of adhesion receptors that link the extracellular matrix to the cytoskeleton and cooperate with growth factor receptors to promote celll survival, cell cycle progression and cell migration. Integrins consist of an alpha and a beta sub-unit. Each sub-unit has a large extracellular portion, a single transmembrane segment and a short cytoplasmic domain. The N-terminal domains of the alpha and beta subunits associate to form the integrin headpiece, which contains the ligand binding site, whereas the C-terminal segments traverse the plasma membrane and mediate interaction with the cytoskeleton and with signalling proteins.The VWA domains present in the alpha subunits of integrins seem to be a chordate specific radiation of the gene family being found only in vertebrates. They mediate protein-protein interactions. 177 -238747 cd01470 vWA_complement_factors Complement factors B and C2 are two critical proteases for complement activation. They both contain three CCP or Sushi domains, a trypsin-type serine protease domain and a single VWA domain with a conserved metal ion dependent adhesion site referred commonly as the MIDAS motif. Orthologues of these molecules are found from echinoderms to chordates. During complement activation, the CCP domains are cleaved off, resulting in the formation of an active protease that cleaves and activates complement C3. Complement C2 is in the classical pathway and complement B is in the alternative pathway. The interaction of C2 with C4 and of factor B with C3b are both dependent on Mg2+ binding sites within the VWA domains and the VWA domain of factor B has been shown to mediate the binding of C3. This is consistent with the common inferred function of VWA domains as magnesium-dependent protein interaction domains. 198 -238748 cd01471 vWA_micronemal_protein Micronemal proteins: The Toxoplasma lytic cycle begins when the parasite actively invades a target cell. In association with invasion, T. gondii sequentially discharges three sets of secretory organelles beginning with the micronemes, which contain adhesive proteins involved in parasite attachment to a host cell. Deployed as protein complexes, several micronemal proteins possess vertebrate-derived adhesive sequences that function in binding receptors. The VWA domain likely mediates the protein-protein interactions of these with their interacting partners. 186 -238749 cd01472 vWA_collagen von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This domain has a variety of functions including: intermolecular adhesion, cell migration, signalling, transcription, and DNA repair. In integrins these domains form heterodimers while in vWF it forms homodimers and multimers. There are different interaction surfaces of this domain as seen by its complexes with collagen with either integrin or human vWFA. In integrins collagen binding occurs via the metal ion-dependent adhesion site (MIDAS) and involves three surface loops located on the upper surface of the molecule. In human vWFA, collagen binding is thought to occur on the bottom of the molecule and does not involve the vestigial MIDAS motif. 164 -238750 cd01473 vWA_CTRP CTRP for CS protein-TRAP-related protein: Adhesion of Plasmodium to host cells is an important phenomenon in parasite invasion and in malaria associated pathology.CTRP encodes a protein containing a putative signal sequence followed by a long extracellular region of 1990 amino acids, a transmembrane domain, and a short cytoplasmic segment. The extracellular region of CTRP contains two separated adhesive domains. The first domain contains six 210-amino acid-long homologous VWA domain repeats. The second domain contains seven repeats of 87-60 amino acids in length, which share similarities with the thrombospondin type 1 domain found in a variety of adhesive molecules. Finally, CTRP also contains consensus motifs found in the superfamily of haematopoietin receptors. The VWA domains in these proteins likely mediate protein-protein interactions. 192 -238751 cd01474 vWA_ATR ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, the causative agent of anthrax. ATR is the cellular receptor for the anthrax protective antigen and facilitates entry of the toxin into cells. The VWA domain in ATR contains the toxin binding site and mediates interaction with protective antigen. The binding is mediated by divalent cations that binds to the MIDAS motif. These proteins are a family of vertebrate ECM receptors expressed by endothelial cells. 185 -238752 cd01475 vWA_Matrilin VWA_Matrilin: In cartilaginous plate, extracellular matrix molecules mediate cell-matrix and matrix-matrix interactions thereby providing tissue integrity. Some members of the matrilin family are expressed specifically in developing cartilage rudiments. The matrilin family consists of at least four members. All the members of the matrilin family contain VWA domains, EGF-like domains and a heptad repeat coiled-coiled domain at the carboxy terminus which is responsible for the oligomerization of the matrilins. The VWA domains have been shown to be essential for matrilin network formation by interacting with matrix ligands. 224 -238753 cd01476 VWA_integrin_invertebrates VWA_integrin (invertebrates): Integrins are a family of cell surface receptors that have diverse functions in cell-cell and cell-extracellular matrix interactions. Because of their involvement in many biologically important adhesion processes, integrins are conserved across a wide range of multicellular animals. Integrins from invertebrates have been identified from six phyla. There are no data to date to suggest any immunological functions for the invertebrate integrins. The members of this sub-group have the conserved MIDAS motif that is charateristic of this domain suggesting the involvement of the integrins in the recognition and binding of multi-ligands. 163 -238754 cd01477 vWA_F09G8-8_type VWA F09G8.8 type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The members of this subgroup lack the MIDAS motif. This subgroup is found only in C. elegans and the members identified thus far are always found fused to a C-Lectin type domain. Biochemical function thus far has not be attributed to any of the members of this subgroup. 193 -238755 cd01478 Sec23-like Sec23-like: Protein and membrane traffic in eukaryotes is mediated by at least in part by the budding and fusion of intracellular transport vesicles that selectively carry cargo proteins and lipids from donor to acceptor organelles. The two main classes of vesicular carriers within the endocytic and the biosynthetic pathways are COP- and clathrin-coated vesicles. Formation of COPII vesicles requires the ordered assembly of the coat built from several cytosolic components GTPase Sar1, complexes of Sec23-Sec24 and Sec13-Sec31. The process is initiated by the conversion of GDP to GTP by the GTPase Sar1 which then recruits the heterodimeric complex of Sec23 and Sec24. This heterodimeric complex generates the pre-budding complex. The final step leading to membrane deformation and budding of COPII-coated vesicles is carried by the heterodimeric complex Sec13-Sec31. The members of this CD belong to the Sec23-like family. Sec 23 is very similar to Sec24. The Sec23 and Sec24 polypeptides fold into five distinct domains: a beta-barrel, a zinc finger, a vWA or trunk, an all helical region and a carboxy Gelsolin domain. The members of this subgroup lack the consensus MIDAS motif but have the overall Para-Rossmann type fold that is characteristic of this superfamily. 267 -238756 cd01479 Sec24-like Sec24-like: Protein and membrane traffic in eukaryotes is mediated by at least in part by the budding and fusion of intracellular transport vesicles that selectively carry cargo proteins and lipids from donor to acceptor organelles. The two main classes of vesicular carriers within the endocytic and the biosynthetic pathways are COP- and clathrin-coated vesicles. Formation of COPII vesicles requires the ordered assembly of the coat built from several cytosolic components GTPase Sar1, complexes of Sec23-Sec24 and Sec13-Sec31. The process is initiated by the conversion of GDP to GTP by the GTPase Sar1 which then recruits the heterodimeric complex of Sec23 and Sec24. This heterodimeric complex generates the pre-budding complex. The final step leading to membrane deformation and budding of COPII-coated vesicles is carried by the heterodimeric complex Sec13-Sec31. The members of this CD belong to the Sec23-like family. Sec 24 is very similar to Sec23. The Sec23 and Sec24 polypeptides fold into five distinct domains: a beta-barrel, a zinc finger, a vWA or trunk, an all helical region and a carboxy Gelsolin domain. The members of this subgroup carry a partial MIDAS motif and have the overall Para-Rossmann type fold that is characteristic of this superfamily. 244 -238757 cd01480 vWA_collagen_alpha_1-VI-type VWA_collagen alpha(VI) type: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. 186 -238758 cd01481 vWA_collagen_alpha3-VI-like VWA_collagen alpha 3(VI) like: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. 165 -238759 cd01482 vWA_collagen_alphaI-XII-like Collagen: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. 164 -238760 cd01483 E1_enzyme_family Superfamily of activating enzymes (E1) of the ubiquitin-like proteins. This family includes classical ubiquitin-activating enzymes E1, ubiquitin-like (ubl) activating enzymes and other mechanistic homologes, like MoeB, Thif1 and others. The common reaction mechanism catalyzed by MoeB, ThiF and the E1 enzymes begins with a nucleophilic attack of the C-terminal carboxylate of MoaD, ThiS and ubiquitin, respectively, on the alpha-phosphate of an ATP molecule bound at the active site of the activating enzymes, leading to the formation of a high-energy acyladenylate intermediate and subsequently to the formation of a thiocarboxylate at the C termini of MoaD and ThiS. 143 -238761 cd01484 E1-2_like Ubiquitin activating enzyme (E1), repeat 2-like. E1, a highly conserved small protein present universally in eukaryotic cells, is part of cascade to attach ubiquitin (Ub) covalently to substrate proteins. This cascade consists of activating (E1), conjugating (E2), and/or ligating (E3) enzymes and then targets them for degradation by the 26S proteasome. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and ubiquitin's C-terminus. E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. A set of novel molecules with a structural similarity to Ub, called Ub-like proteins (Ubls), have similar conjugation cascades. In contrast to ubiquitin-E1, which is a single-chain protein with a weakly conserved two-fold repeat, many of the Ubls-E1are a heterodimer where each subunit corresponds to one half of a single-chain E1. This CD represents the family homologous to the second repeat of Ub-E1. 234 -238762 cd01485 E1-1_like Ubiquitin activating enzyme (E1), repeat 1-like. E1, a highly conserved small protein present universally in eukaryotic cells, is part of cascade to attach ubiquitin (Ub) covalently to substrate proteins. This cascade consists of activating (E1), conjugating (E2), and/or ligating (E3) enzymes and then targets them for degradation by the 26S proteasome. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and ubiquitin's C-terminus. The E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. A set of novel molecules with a structural similarity to Ub, called Ub-like proteins (Ubls), have similar conjugation cascades. In contrast to ubiquitin-E1, which is a single-chain protein with a weakly conserved two-fold repeat, many of the Ubls-E1are a heterodimer where each subunit corresponds to one half of a single-chain E1. This CD represents the family homologous to the first repeat of Ub-E1. 198 -238763 cd01486 Apg7 Apg7 is an E1-like protein, that activates two different ubiquitin-like proteins, Apg12 and Apg8, and assigns them to specific E2 enzymes, Apg10 and Apg3, respectively. This leads to the covalent conjugation of Apg8 with phosphatidylethanolamine, an important step in autophagy. Autophagy is a dynamic membrane phenomenon for bulk protein degradation in the lysosome/vacuole. 307 -238764 cd01487 E1_ThiF_like E1_ThiF_like. Member of superfamily of activating enzymes (E1) of the ubiquitin-like proteins. The common reaction mechanism catalyzed by E1-like enzymes begins with a nucleophilic attack of the C-terminal carboxylate of the ubiquitin-like substrate, on the alpha-phosphate of an ATP molecule bound at the active site of the activating enzymes, leading to the formation of a high-energy acyladenylate intermediate and subsequently to the formation of a thiocarboxylate at the C termini of the substrate. The exact function of this family is unknown. 174 -238765 cd01488 Uba3_RUB Ubiquitin activating enzyme (E1) subunit UBA3. UBA3 is part of the heterodimeric activating enzyme (E1), specific for the Rub family of ubiquitin-like proteins (Ubls). E1 enzymes are part of a conjugation cascade to attach Ub or Ubls, covalently to substrate proteins. consisting of activating (E1), conjugating (E2), and/or ligating (E3) enzymes. E1 activates ubiquitin(-like) by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and Ubls C-terminus. E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Post-translational modification by Rub family of ubiquitin-like proteins (Ublps) activates SCF ubiquitin ligases and is involved in cell cycle control, signaling and embryogenesis. UBA3 contains both the nucleotide-binding motif involved in adenylation and the catalytic cysteine involved in the thioester intermediate and Ublp transfer to E2. 291 -238766 cd01489 Uba2_SUMO Ubiquitin activating enzyme (E1) subunit UBA2. UBA2 is part of the heterodimeric activating enzyme (E1), specific for the SUMO family of ubiquitin-like proteins (Ubls). E1 enzymes are part of a conjugation cascade to attach Ub or Ubls, covalently to substrate proteins consisting of activating (E1), conjugating (E2), and/or ligating (E3) enzymes. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and Ubls C-terminus. The E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Post-translational modification by SUMO family of ubiquitin-like proteins (Ublps) is involved in cell division, nuclear transport, the stress response and signal transduction. UBA2 contains both the nucleotide-binding motif involved in adenylation and the catalytic cysteine involved in the thioester intermediate and Ublp transfer to E2. 312 -238767 cd01490 Ube1_repeat2 Ubiquitin activating enzyme (E1), repeat 2. E1, a highly conserved small protein present universally in eukaryotic cells, is part of cascade to attach ubiquitin (Ub) covalently to substrate proteins. This cascade consists of activating (E1), conjugating (E2), and/or ligating (E3) enzymes and then targets them for degradation by the 26S proteasome. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and ubiquitin's C-terminus. E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Ubiquitin-E1 is a single-chain protein with a weakly conserved two-fold repeat. This CD represents the second repeat of Ub-E1. 435 -238768 cd01491 Ube1_repeat1 Ubiquitin activating enzyme (E1), repeat 1. E1, a highly conserved small protein present universally in eukaryotic cells, is part of cascade to attach ubiquitin (Ub) covalently to substrate proteins. This cascade consists of activating (E1), conjugating (E2), and/or ligating (E3) enzymes and then targets them for degradation by the 26S proteasome. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and ubiquitin's C-terminus. E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Ubiquitin-E1 is a single-chain protein with a weakly conserved two-fold repeat. This CD represents the first repeat of Ub-E1. 286 -238769 cd01492 Aos1_SUMO Ubiquitin activating enzyme (E1) subunit Aos1. Aos1 is part of the heterodimeric activating enzyme (E1), specific for the SUMO family of ubiquitin-like proteins (Ubls). E1 enzymes are part of a conjugation cascade to attach Ub or Ubls, covalently to substrate proteins consisting of activating (E1), conjugating (E2), and/or ligating (E3) enzymes. E1 activates ubiquitin by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and Ubls C-terminus. The E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Post-translational modification by SUMO family of ubiquitin-like proteins (Ublps) is involved in cell division, nuclear transport, the stress response and signal transduction. Aos1 contains part of the adenylation domain. 197 -238770 cd01493 APPBP1_RUB Ubiquitin activating enzyme (E1) subunit APPBP1. APPBP1 is part of the heterodimeric activating enzyme (E1), specific for the Rub family of ubiquitin-like proteins (Ubls). E1 enzymes are part of a conjugation cascade to attach Ub or Ubls, covalently to substrate proteins consisting of activating (E1), conjugating (E2), and/or ligating (E3) enzymes. E1 activates ubiquitin(-like) by C-terminal adenylation, and subsequently forms a highly reactive thioester bond between its catalytic cysteine and Ubls C-terminus. E1 also associates with E2 and promotes ubiquitin transfer to the E2's catalytic cysteine. Post-translational modification by Rub family of ubiquitin-like proteins (Ublps) activates SCF ubiquitin ligases and is involved in cell cycle control, signaling and embryogenesis. ABPP1 contains part of the adenylation domain. 425 -99742 cd01494 AAT_I Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP)-dependent enzymes. PLP combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. Structure and sequence analysis has revealed that the PLP dependent enzymes can be classified into four major groups of different evolutionary origin: aspartate aminotransferase superfamily (fold type I), tryptophan synthase beta superfamily (fold type II), alanine racemase superfamily (fold type III), and D-amino acid superfamily (fold type IV) and Glycogen phophorylase family (fold type V). 170 -275447 cd01513 Translation_factor_III Domain III of Elongation factor (EF) Tu (EF-TU) and related proteins. Elongation factor (EF) EF-Tu participates in the elongation phase during protein biosynthesis on the ribosome. Its functional cycles depend on GTP binding and its hydrolysis. The EF-Tu complexed with GTP and aminoacyl-tRNA delivers tRNA to the ribosome, whereas EF-G stimulates translocation, a process in which tRNA and mRNA movements occur in the ribosome. Experimental findings indicate an essential contribution of domain III to activation of GTP hydrolysis. This domain III, which is distinct from the domain III in EFG and related elongation factors, is found in several eukaryotic translation factors, like peptide chain release factors RF3, elongation factor 1, selenocysteine (Sec)-specific elongation factor, and in GT-1 family of GTPase (GTPBP1). 102 -238772 cd01514 Elongation_Factor_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of elongation factors (EFs) bacterial EF-G, eukaryotic and archeal EF-2 and eukaryotic mitochondrial mtEFG1s and mtEFG2s. This group also includes proteins similar to the ribosomal protection proteins Tet(M) and Tet(O), BipA, LepA and, spliceosomal proteins: human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and yeast counterpart Snu114p. This domain adopts a ferredoxin-like fold consisting of an alpha-beta sandwich with anti-parallel beta-sheets, resembling the topology of domain III found in the elongation factors EF-G and eukaryotic EF-2, with which it forms the C-terminal block. The two domains however are not superimposable and domain III lacks some of the characteristics of this domain. EF-2/EF-G in complex with GTP, promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the uncharged tRNA from the P site to the E-site and, the mRNA is shifted one codon relative to the ribosome. Tet(M) and Tet(O) mediate Tc resistance. Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the occupation of site A by aminoacyl-tRNA. Tet(M) and Tet(O) catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner. BipA is a highly conserved protein with global regulatory properties in Escherichia coli. Yeast Snu114p is essential for cell viability and for splicing in vivo. Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of the U5-116 kD/Snu114p. The function of LepA proteins is unknown. 79 -238773 cd01515 Arch_FBPase_1 Archaeal fructose-1,6-bisphosphatase and related enzymes of inositol monophosphatase family (FBPase class IV). These are Mg++ dependent phosphatases. Members in this family may have both fructose-1,6-bisphosphatase and inositol-monophosphatase activity. In hyperthermophilic archaea, inositol monophosphatase is thought to play a role in the biosynthesis of di-myo-inositol-1,1'-phosphate, an osmolyte unique to hyperthermophiles. 257 -238774 cd01516 FBPase_glpX Bacterial fructose-1,6-bisphosphatase, glpX-encoded. A dimeric enzyme dependent on Mg(2+). glpX-encoded FPBase (FBPase class II) differs from other members of the inositol-phosphatase superfamily by permutation of secondary structure elements. The core structure around the active site is well preserved. In E. coli, FBPase II is part of the glp regulon, which mediates growth on glycerol or sn-glycerol 3-phosphate as the sole carbon source. 309 -238775 cd01517 PAP_phosphatase PAP-phosphatase_like domains. PAP-phosphatase is a member of the inositol monophosphatase family, and catalyses the hydrolysis of 3'-phosphoadenosine-5'-phosphate (PAP) to AMP. In Saccharomyces cerevisiae, HAL2 (MET22) is involved in methionine biosynthesis and provides increased salt tolerance when over-expressed. Bacterial members of this domain family may differ in their substrate specificity and dephosphorylate different targets, as the substrate binding site does not appear to be conserved in that sub-set. 274 -238776 cd01518 RHOD_YceA Member of the Rhodanese Homology Domain superfamily. This CD includes Escherichia coli YceA, Bacillus subtilis YbfQ, and similar uncharacterized proteins. 101 -238777 cd01519 RHOD_HSP67B2 Member of the Rhodanese Homology Domain superfamily. This CD includes the heat shock protein 67B2 of Drosophila melanogaster and other similar proteins, many of which are uncharacterized. 106 -238778 cd01520 RHOD_YbbB Member of the Rhodanese Homology Domain superfamily. This CD includes several putative ATP /GTP binding proteins including E. coli YbbB. 128 -238779 cd01521 RHOD_PspE2 Member of the Rhodanese Homology Domain superfamily. This CD includes the putative rhodanese-like protein, Psp2, of Yersinia pestis biovar Medievalis and other similar uncharacterized proteins. 110 -238780 cd01522 RHOD_1 Member of the Rhodanese Homology Domain superfamily, subgroup 1. This CD includes the putative rhodanese-related sulfurtransferases of several uncharacterized proteins. 117 -238781 cd01523 RHOD_Lact_B Member of the Rhodanese Homology Domain superfamily. This CD includes predicted proteins with rhodanese-like domains found N-terminal of the metallo-beta-lactamase domain. 100 -238782 cd01524 RHOD_Pyr_redox Member of the Rhodanese Homology Domain superfamily. Included in this CD are the Lactococcus lactis NADH oxidase, Bacillus cereus NADH dehydrogenase, and Bacteroides thetaiotaomicron pyridine nucleotide-disulphide oxidoreductase, and similar rhodanese-like domains found C-terminal of the pyridine nucleotide-disulphide oxidoreductase (Pyr-redox) domain and the Pyr-redox dimerization domain. 90 -238783 cd01525 RHOD_Kc Member of the Rhodanese Homology Domain superfamily. Included in this CD are the rhodanese-like domains found C-terminal of the serine/threonine protein kinases catalytic (S_TKc) domain and the Tre-2, BUB2p, Cdc16p (TBC) domain. The putative active site Cys residue is not present in this CD. 105 -238784 cd01526 RHOD_ThiF Member of the Rhodanese Homology Domain superfamily. This CD includes several putative molybdopterin synthase sulfurylases including the molybdenum cofactor biosynthetic protein (CnxF) of Aspergillus nidulans and the molybdenum cofactor synthesis protein 3 (MOCS3) of Homo sapiens. These rhodanese-like domains are found C-terminal of the ThiF and MoeZ_MoeB domains. 122 -238785 cd01527 RHOD_YgaP Member of the Rhodanese Homology Domain superfamily. This CD includes Escherichia coli YgaP, and similar uncharacterized putative rhodanese-related sulfurtransferases. 99 -238786 cd01528 RHOD_2 Member of the Rhodanese Homology Domain superfamily, subgroup 2. Subgroup 2 includes uncharacterized putative rhodanese-related domains. 101 -238787 cd01529 4RHOD_Repeats Member of the Rhodanese Homology Domain superfamily. This CD includes putative rhodanese-related sulfurtransferases which contain 4 copies of the Rhodanese Homology Domain. Only the second and most of the fourth repeats contain the putative catalytic Cys residue. This CD aligns the 1st , 2nd, 3rd, and 4th repeats. 96 -238788 cd01530 Cdc25 Cdc25 phosphatases are members of the Rhodanese Homology Domain superfamily. They activate the cell division kinases throughout the cell cycle progression. Cdc25 phosphatases dephosphorylate phosphotyrosine and phosphothreonine residues, in order to activate their Cdk/cyclin substrates. Cdc25A phosphatase functions to regulate S phase entry and Cdc25B is required for G2/M phase transition of the cell cycle. The Cdc25 domain binds oxyanions at the catalytic site and has the signature motif (H/YCxxxxxR). 121 -238789 cd01531 Acr2p Eukaryotic arsenate resistance proteins are members of the Rhodanese Homology Domain superfamily. Included in this CD is the Saccharomyces cerevisiae arsenate reductase protein, Acr2p, and other yeast and plant homologs. 113 -238790 cd01532 4RHOD_Repeat_1 Member of the Rhodanese Homology Domain superfamily, repeat 1. This CD includes putative rhodanese-related sulfurtransferases which contain 4 copies of the Rhodanese Homology Domain. This CD aligns the 1st repeat which does not contain the putative catalytic Cys residue. 92 -238791 cd01533 4RHOD_Repeat_2 Member of the Rhodanese Homology Domain superfamily, repeat 2. This CD includes putative rhodanese-related sulfurtransferases which contain 4 copies of the Rhodanese Homology Domain. This CD aligns the 2nd repeat which does contain the putative catalytic Cys residue. 109 -238792 cd01534 4RHOD_Repeat_3 Member of the Rhodanese Homology Domain superfamily, repeat 3. This CD includes putative rhodanese-related sulfurtransferases which contain 4 copies of the Rhodanese Homology Domain. This CD aligns the 3rd repeat which does not contain the putative catalytic Cys residue. 95 -238793 cd01535 4RHOD_Repeat_4 Member of the Rhodanese Homology Domain superfamily, repeat 4. This CD includes putative rhodanese-related sulfurtransferases which contain 4 copies of the Rhodanese Homology Domain. This CD aligns the 4th repeat which, in general, contains the putative catalytic Cys residue. 145 -107249 cd01536 PBP1_ABC_sugar_binding_like Periplasmic sugar-binding domain of active transport systems that are members of the type I periplasmic binding protein (PBP1) superfamily. Periplasmic sugar-binding domain of active transport systems that are members of the type I periplasmic binding protein (PBP1) superfamily. The members of this family function as the primary receptors for chemotaxis and transport of many sugar based solutes in bacteria and archaea. The sugar binding domain is also homologous to the ligand-binding domain of eukaryotic receptors such as glutamate receptor (GluR) and DNA-binding transcriptional repressors such as LacI and GalR. Moreover, this periplasmic binding domain, also known as Venus flytrap domain, undergoes transition from an open to a closed conformational state upon the binding of ligands such as lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars. This family also includes the periplasmic binding domain of autoinducer-2 (AI-2) receptors such as LsrB and LuxP which are highly homologous to periplasmic pentose/hexose sugar-binding proteins. 267 -107250 cd01537 PBP1_Repressors_Sugar_Binding_like Ligand-binding domain of the LacI-GalR family of transcription regulators and the sugar-binding domain of ABC-type transport systems. Ligand-binding domain of the LacI-GalR family of transcription regulators and the sugar-binding domain of ABC-type transport systems, all of which contain the type I periplasmic binding protein-like fold. Their specific ligands include lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars. The LacI family of proteins consists of transcriptional regulators related to the lac repressor; in general the sugar binding domain in this family binds a sugar, which in turn changes the DNA binding activity of the repressor domain. The core structure of the periplasmic binding proteins is classified into two types and they differ in number and order of beta strands in each domain: type I, which has six beta strands, and type II, which has five beta strands. These two distinct structural arrangements may have originated from a common ancestor. 264 -107251 cd01538 PBP1_ABC_xylose_binding Periplasmic xylose-binding component of the ABC-type transport systems that belong to a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein (PBP1) superfamily. Periplasmic xylose-binding component of the ABC-type transport systems that belong to a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein (PBP1) superfamily, which consists of two alpha/beta globular domains connected by a three-stranded hinge. This Venus flytrap-like domain undergoes a transition from an open to a closed conformational state upon ligand binding. Moreover, the periplasmic xylose-binding protein is homologous to the ligand-binding domain of eukaryotic receptors such as glutamate receptor (GluR) and DNA-binding transcriptional repressors such as LacI and GalR. 288 -107252 cd01539 PBP1_GGBP Periplasmic glucose/galactose-binding protein (GGBP) involved in chemotaxis towards, and active transport of, glucose and galactose in various bacterial species. Periplasmic glucose/galactose-binding protein (GGBP) involved in chemotaxis towards, and active transport of, glucose and galactose in various bacterial species. GGBP is a member of the pentose/hexose sugar-binding protein family of the type I periplasmic binding protein superfamily which consists of two alpha/beta globular domains connected by a three-stranded hinge. This Venus flytrap-like domain undergoes transition from an open to a closed conformational state upon ligand binding. Moreover, the periplasmic GGBP is homologous to the ligand-binding domain of eukaryotic receptors such as glutamate receptor (GluR) and DNA-binding transcriptional repressors such as LacI and GalR. 303 -107253 cd01540 PBP1_arabinose_binding Periplasmic L-arabinose-binding protein (ABP), a member of a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily. Periplasmic L-arabinose-binding protein (ABP), a member of a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily. ABP is only involved in transport contrary to other related sugar-binding proteins such as the glucose/galactose-binding protein (GGBP) and the ribose-binding protein (RBP), both of which are involved in chemotaxis as well as transport. The periplasmic ABP consists of two alpha/beta globular domains connected by a three-stranded hinge, a Venus flytrap-like domain, which undergoes a transition from an open to a closed conformational state upon ligand binding. Moreover, ABP is homologous to the ligand-binding domain of eukaryotic receptors such as metabotropic glutamate receptor (mGluR) and DNA-binding transcriptional repressors such as LacI and GalR. 289 -107254 cd01541 PBP1_AraR Ligand-binding domain of DNA transcription repressor specific for arabinose (AraR) which is a member of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressor specific for arabinose (AraR) which is a member of the LacI-GalR family of bacterial transcription regulators. The ligand-binding domain of AraR is structurally homologous to the periplasmic sugar-binding domain of ABC-type transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 273 -107255 cd01542 PBP1_TreR_like Ligand-binding domain of DNA transcription repressor specific for trehalose (TreR) which is a member of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressor specific for trehalose (TreR) which is a member of the LacI-GalR family of bacterial transcription regulators. The ligand-binding domain of TreR is structurally homologous to the periplasmic sugar-binding domain of ABC-type transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 259 -107256 cd01543 PBP1_XylR Ligand-binding domain of DNA transcription repressor specific for xylose (XylR). Ligand-binding domain of DNA transcription repressor specific for xylose (XylR), a member of the LacI-GalR family of bacterial transcription regulators. The ligand-binding domain of XylR is structurally homologous to the periplasmic sugar-binding domain of ABC-type transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 265 -107257 cd01544 PBP1_GalR Ligand-binding domain of DNA transcription repressor GalR which is one of two regulatory proteins involved in galactose transport and metabolism. Ligand-binding domain of DNA transcription repressor GalR which is one of two regulatory proteins involved in galactose transport and metabolism. Transcription of the galactose regulon genes is regulated by Gal iso-repressor (GalS) and Gal repressor (GalR) in different ways, but both repressors recognize the same DNA binding site in the absence of D-galactose. GalR is a dimeric protein like GalS and is exclusively involved in the regulation of galactose permease, the low-affinity galactose transporter. GalS is involved in regulating expression of the high-affinity galactose transporter encoded by the mgl operon. GalS and GalR are members of the LacI-GalR family of transcription regulators and both contain the type I periplasmic binding protein-like fold. Hence, they are structurally homologous to the periplasmic sugar binding of ABC-type transport systems. 270 -107258 cd01545 PBP1_SalR Ligand-binding domain of DNA transcription repressor SalR, a member of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressor SalR, a member of the LacI-GalR family of bacterial transcription regulators. The SalR binds to glucose based compound Salicin which is chemically related to aspirin. The ligand-binding of SalR is structurally homologous to the periplasmic sugar-binding domain of ABC-transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 270 -238794 cd01553 EPT_RTPC-like This domain family includes the Enolpyruvate transferase (EPT) family and the RNA 3' phosphate cyclase family (RTPC). These 2 families differ in that EPT is formed by 3 repeats of an alpha-beta structural domain while RTPC has 3 similar repeats with a 4th slightly different domain inserted between the 2nd and 3rd repeat. They evidently share the same active site location, although the catalytic residues differ. 211 -238795 cd01554 EPT-like Enol pyruvate transferases family includes EPSP synthases and UDP-N-acetylglucosamine enolpyruvyl transferase. Both enzymes catalyze the reaction of enolpyruvyl transfer. 408 -238796 cd01555 UdpNAET UDP-N-acetylglucosamine enolpyruvyl transferase catalyzes enolpyruvyl transfer as part of the first step in the biosynthesis of peptidoglycan, a component of the bacterial cell wall. The reaction is phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine = phosphate + UDP-N-acetyl-3-(1-carboxyvinyl)-D-glucosamine. This enzyme is of interest as a potential target for anti-bacterial agents. The only other known enolpyruvyl transferase is the related 5-enolpyruvylshikimate-3-phosphate synthase. 400 -238797 cd01556 EPSP_synthase EPSP synthase domain. 3-phosphoshikimate 1-carboxyvinyltransferase (5-enolpyruvylshikimate-3-phosphate synthase) (EC 2.5.1.19) catalyses the reaction between shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form 5-enolpyruvylshkimate-3-phosphate (EPSP), an intermediate in the shikimate pathway leading to aromatic amino acid biosynthesis. The reaction is phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate. It is found in bacteria and plants but not animals. The enzyme is the target of the widely used herbicide glyphosate, which has been shown to occupy the active site. In bacteria and plants, it is a single domain protein, while in fungi, the domain is found as part of a multidomain protein with functions that are all part of the shikimate pathway. 409 -238798 cd01557 BCAT_beta_family BCAT_beta_family: Branched-chain aminotransferase catalyses the transamination of the branched-chain amino acids leusine, isoleucine and valine to their respective alpha-keto acids, alpha-ketoisocaproate, alpha-keto-beta-methylvalerate and alpha-ketoisovalerate. The enzyme requires pyridoxal 5'-phosphate (PLP) as a cofactor to catalyze the reaction. It has been found that mammals have two foms of the enzyme - mitochondrial and cytosolic forms while bacteria contain only one form of the enzyme. The mitochondrial form plays a significant role in skeletal muscle glutamine and alanine synthesis and in interorgan nitrogen metabolism.Members of this subgroup are widely distributed in all three forms of life. 279 -238799 cd01558 D-AAT_like D-Alanine aminotransferase (D-AAT_like): D-amino acid aminotransferase catalyzes transamination between D-amino acids and their respective alpha-keto acids. It plays a major role in the synthesis of bacterial cell wall components like D-alanine and D-glutamate in addition to other D-amino acids. The enzyme like other members of this superfamily requires PLP as a cofactor. Members of this subgroup are found in all three forms of life. 270 -238800 cd01559 ADCL_like ADCL_like: 4-Amino-4-deoxychorismate lyase: is a member of the fold-type IV of PLP dependent enzymes that converts 4-amino-4-deoxychorismate (ADC) to p-aminobenzoate and pyruvate. Based on the information available from the crystal structure, most members of this subgroup are likely to function as dimers. The enzyme from E.Coli, the structure of which is available, is a homodimer that is folded into a small and a larger domain. The coenzyme pyridoxal 5; -phosphate resides at the interface of the two domains that is linked by a flexible loop. Members of this subgroup are found in Eukaryotes and bacteria. 249 -107203 cd01560 Thr-synth_2 Threonine synthase catalyzes the final step of threonine biosynthesis. The conversion of O-phosphohomoserine into threonine and inorganic phosphate is pyridoxal 5'-phosphate dependent. The Thr-synth_1 CD includes members from higher plants, cyanobacteria, archaebacteria and eubacterial groups. This CD, Thr-synth_2, includes enzymes from fungi and eubacterial groups, as well as, metazoan threonine synthase-like proteins. 460 -107204 cd01561 CBS_like CBS_like: This subgroup includes Cystathionine beta-synthase (CBS) and Cysteine synthase. CBS is a unique heme-containing enzyme that catalyzes a pyridoxal 5'-phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine. Deficiency of CBS leads to homocystinuria, an inherited disease of sulfur metabolism characterized by increased levels of the toxic metabolite homocysteine. Cysteine synthase on the other hand catalyzes the last step of cysteine biosynthesis. This subgroup also includes an O-Phosphoserine sulfhydrylase found in hyperthermophilic archaea which produces L-cysteine from sulfide and the more thermostable O-phospho-L-serine. 291 -107205 cd01562 Thr-dehyd Threonine dehydratase: The first step in amino acid degradation is the removal of nitrogen. Although the nitrogen atoms of most amino acids are transferred to alpha-ketoglutarate before removal, the alpha-amino group of threonine can be directly converted into NH4+. The direct deamination is catalyzed by threonine dehydratase, in which pyridoxal phosphate (PLP) is the prosthetic group. Threonine dehydratase is widely distributed in all three major phylogenetic divisions. 304 -107206 cd01563 Thr-synth_1 Threonine synthase is a pyridoxal phosphate (PLP) dependent enzyme that catalyses the last reaction in the synthesis of threonine from aspartate. It proceeds by converting O-phospho-L-homoserine (OPH) into threonine and inorganic phosphate. In plants, OPH is an intermediate between the methionine and threonine/isoleucine pathways. Thus threonine synthase competes for OPH with cystathionine-gamma-synthase, the first enzyme in the methionine pathway. These enzymes are in general dimers. Members of this CD, Thr-synth_1, are widely distributed in bacteria, archaea and higher plants. 324 -238801 cd01567 NAPRTase_PncB Nicotinate phosphoribosyltransferase (NAPRTase) family. Nicotinate phosphoribosyltransferase catalyses the formation of NAMN and PPi from 5-phosphoribosy -1-pyrophosphate (PRPP) and nicotinic acid, this is the first, and also rate limiting, reaction in the NAD salvage synthesis. This salvage pathway serves to recycle NAD degradation products. 343 -238802 cd01568 QPRTase_NadC Quinolinate phosphoribosyl transferase (QAPRTase or QPRTase), also called nicotinate-nucleotide pyrophosphorylase, is involved in the de novo synthesis of NAD in both prokaryotes and eukaryotes. It catalyses the reaction of quinolinic acid (QA) with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to produce nicotinic acid mononucleotide (NAMN), pyrophosphate and carbon dioxide. QPRTase functions as a homodimer with two active sites, each formed by the C-terminal region of one subunit and the N-terminal region of the other. 269 -238803 cd01569 PBEF_like pre-B-cell colony-enhancing factor (PBEF)-like. The mammalian members of this group of nicotinate phosphoribosyltransferases (NAPRTases) were originally identified as genes whose expression is upregulated upon activation in lymphoid cells. In general, nicotinate phosphoribosyltransferase catalyses the formation of NAMN and PPi from 5-phosphoribosy -1-pyrophosphate (PRPP) and nicotinic acid, this is the first, and also rate limiting, reaction in the NAD salvage synthesis. 407 -238804 cd01570 NAPRTase_A Nicotinate phosphoribosyltransferase (NAPRTase), subgroup A. Nicotinate phosphoribosyltransferase catalyses the formation of NAMN and PPi from 5-phosphoribosy -1-pyrophosphate (PRPP) and nicotinic acid, this is the first, and also rate limiting, reaction in the NAD salvage synthesis. This salvage pathway serves to recycle NAD degradation products. This subgroup is present in bacteria and eukaryota (except funghi). 327 -238805 cd01571 NAPRTase_B Nicotinate phosphoribosyltransferase (NAPRTase), subgroup B. Nicotinate phosphoribosyltransferase catalyses the formation of NAMN and PPi from 5-phosphoribosy -1-pyrophosphate (PRPP) and nicotinic acid, this is the first, and also rate limiting, reaction in the NAD salvage synthesis. This salvage pathway serves to recycle NAD degradation products. 302 -238806 cd01572 QPRTase Quinolinate phosphoribosyl transferase (QAPRTase or QPRTase), also called nicotinate-nucleotide pyrophosphorylase, is involved in the de novo synthesis of NAD in both prokaryotes and eukaryotes. It catalyses the reaction of quinolinic acid (QA) with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to produce nicotinic acid mononucleotide (NAMN), pyrophosphate and carbon dioxide. QPRTase functions as a homodimer with two active sites, each formed by the C-terminal region of one subunit and the N-terminal region of the other. 268 -238807 cd01573 modD_like ModD; Quinolinate phosphoribosyl transferase (QAPRTase or QPRTase) present in some modABC operons in bacteria, which are involved in molybdate transport. In general, QPRTases are part of the de novo synthesis pathway of NAD in both prokaryotes and eukaryotes. They catalyse the reaction of quinolinic acid (QA) with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to produce nicotinic acid mononucleotide (NAMN), pyrophosphate and carbon dioxide. 272 -107259 cd01574 PBP1_LacI Ligand-binding domain of DNA transcription repressor LacI specific for lactose, a member of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressor LacI specific for lactose, a member of the LacI-GalR family of bacterial transcription regulators. The ligand-binding domain of LacI is structurally homologous to the periplasmic sugar-binding domain of ABC-type transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 264 -107260 cd01575 PBP1_GntR Ligand-binding domain of DNA transcription repressor GntR specific for gluconate, a member of the LacI-GalR family of bacterial transcription regulators. This group represents the ligand-binding domain of DNA transcription repressor GntR specific for gluconate, a member of the LacI-GalR family of bacterial transcription regulators. The ligand-binding domain of GntR is structurally homologous to the periplasmic sugar-binding domain of ABC-type transporters and both domains contain the type I periplasmic binding protein-like fold. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the type I periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding, which in turn changes the DNA binding affinity of the repressor. 268 -238808 cd01576 AcnB_Swivel Aconitase B swivel domain. Aconitate hydratase B is involved in energy metabolism as part of the TCA cycle. It catalyses the formation of cis-aconitate from citrate. This is the aconitase swivel domain, which undergoes swivelling conformational change in the enzyme mechanism. The domain structure of Aconitase B is different from other Aconitases in that he swivel domain that is found at N-terminus of B family is normally found at C-terminus for other Aconitases. In most members of the family, there is also a HEAT domain before domain 4, which is believed to play a role in protein-protein interaction. 131 -238809 cd01577 IPMI_Swivel Aconatase-like swivel domain of 3-isopropylmalate dehydratase and related uncharacterized proteins. 3-isopropylmalate dehydratase catalyzes the isomerization between 2-isopropylmalate and 3-isopropylmalate, via the formation of 2-isopropylmaleate 3-isopropylmalate. IPMI is involved in fungal and bacterial leucine biosynthesis and is also found in eukaryotes. This is the aconitase-like swivel domain, which is believed to undergo swivelling conformational change in the enzyme mechanism. 91 -238810 cd01578 AcnA_Mitochon_Swivel Mitochondrial aconitase A swivel domain. Aconitase (also known as aconitate hydratase and citrate hydro-lyase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. This is the aconitase swivel domain, which undergoes swivelling conformational change in the enzyme mechanism. In eukaryotes two isozymes of aconitase are known to exist: one found in the mitochondrial matrix and the other found in the cytoplasm. This is the mitochondrial form. The mitochondrial product is coded by a nuclear gene. Most members of this subfamily are mitochondrial but there are some bacterial members. 149 -238811 cd01579 AcnA_Bact_Swivel Bacterial Aconitase-like swivel domain. Aconitase (aconitate hydratase or citrate hydrolyase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Cis-aconitate is formed as an intermediate product during the course of the reaction. This is the aconitase-like swivel domain, which is believed to undergo swivelling conformational change in the enzyme mechanism. This distinct subfamily is found only in bacteria and archea. Its exact characteristics are not known. 121 -238812 cd01580 AcnA_IRP_Swivel Aconitase A swivel domain. This is the major form of the TCA cycle enzyme aconitate hydratase, also known as aconitase and citrate hydro-lyase. It includes bacterial and archaeal aconitase A, and the eukaryotic cytosolic form of aconitase. This group also includes sequences that have been shown to act as an iron-responsive element (IRE) binding protein in animals and may have the same role in other eukaryotes. This is the aconitase-like swivel domain, which is believed to undergo swivelling conformational change in the enzyme mechanism. 171 -153131 cd01581 AcnB Aconitate hydratase B catalyses the formation of cis-aconitate from citrate as part of the TCA cycle. Aconitase B catalytic domain. Aconitate hydratase B catalyses the formation of cis-aconitate from citrate as part of the TCA cycle. Aconitase has an active (4FE-4S) and an inactive (3FE-4S) form. The active cluster is part of the catalytic site that interconverts citrate, cis-aconitase and isocitrate. The domain architecture of aconitase B is different from other aconitases in that the catalytic domain is normally found at C-terminus for other aconitases, but it is at N-terminus for B family. It also has a HEAT domain before domain 4 which plays a role in protein-protein interaction. This alignment is the core domain including domains 1,2 and 3. 436 -153132 cd01582 Homoaconitase Homoaconitase and other uncharacterized proteins of the Aconitase family. Homoaconitase catalytic domain. Homoaconitase and other uncharacterized proteins of the Aconitase family. Homoaconitase is part of an unusual lysine biosynthesis pathway found only in filamentous fungi, in which lysine is synthesized via the alpha-aminoadipate pathway. In this pathway, homoaconitase catalyzes the conversion of cis-homoaconitic acid into homoisocitric acid. The reaction mechanism is believed to be similar to that of other aconitases. 363 -153133 cd01583 IPMI 3-isopropylmalate dehydratase catalyzes the isomerization between 2-isopropylmalate and 3-isopropylmalate. Aconatase-like catalytic domain of 3-isopropylmalate dehydratase and related uncharacterized proteins. 3-isopropylmalate dehydratase catalyzes the isomerization between 2-isopropylmalate and 3-isopropylmalate, via the formation of 2-isopropylmaleate 3-isopropylmalate. IPMI is involved in fungal and bacterial leucine biosynthesis and is also found in eukaryotes. 382 -153134 cd01584 AcnA_Mitochondrial Aconitase catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Mitochondrial aconitase A catalytic domain. Aconitase (also known as aconitate hydratase and citrate hydro-lyase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Cis-aconitate is formed as an intermediary product during the course of the reaction. In eukaryotes two isozymes of aconitase are known to exist: one found in the mitochondrial matrix and the other found in the cytoplasm. This is the mitochondrial form. The mitochondrial product is coded by a nuclear gene. Most members of this subfamily are mitochondrial but there are some bacterial members. 412 -153135 cd01585 AcnA_Bact Aconitase catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Bacterial Aconitase-like catalytic domain. Aconitase (aconitate hydratase or citrate hydrolyase) catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Cis-aconitate is formed as an intermediate product during the course of the reaction. This distinct subfamily is found only in bacteria and Archaea. Its exact characteristics are not known. 380 -153136 cd01586 AcnA_IRP Aconitase A catalytic domain. Aconitase A catalytic domain. This is the major form of the TCA cycle enzyme aconitate hydratase, also known as aconitase and citrate hydrolyase. It includes bacterial and archaeal aconitase A, and the eukaryotic cytosolic form of aconitase. This group also includes sequences that have been shown to act as an iron-responsive element (IRE) binding protein in animals and may have the same role in other eukaryotes. 404 -176466 cd01594 Lyase_I_like Lyase class I_like superfamily: contains the lyase class I family, histidine ammonia-lyase and phenylalanine ammonia-lyase, which catalyze similar beta-elimination reactions. Lyase class I_like superfamily of enzymes that catalyze beta-elimination reactions and are active as homotetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. This superfamily contains the lyase class I family, histidine ammonia-lyase and phenylalanine ammonia-lyase. The lyase class I family comprises proteins similar to class II fumarase, aspartase, adenylosuccinate lyase, argininosuccinate lyase, and 3-carboxy-cis, cis-muconate lactonizing enzyme which, for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. Histidine or phenylalanine ammonia-lyase catalyze a beta-elimination of ammonia from histidine and phenylalanine, respectively. 231 -176467 cd01595 Adenylsuccinate_lyase_like Adenylsuccinate lyase (ASL)_like. This group contains ASL, prokaryotic-type 3-carboxy-cis,cis-muconate cycloisomerase (pCMLE), and related proteins. These proteins are members of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. ASL catalyzes two steps in the de novo purine biosynthesis: the conversion of 5-aminoimidazole-(N-succinylocarboxamide) ribotide (SAICAR) into 5-aminoimidazole-4-carboxamide ribotide (AICAR) and; the conversion of adenylsuccinate (SAMP) into adenosine monophosphate (AMP). pCMLE catalyzes the cyclization of 3-carboxy-cis,cis-muconate (3CM) to 4-carboxy-muconolactone, in the beta-ketoadipate pathway. ASL deficiency has been linked to several pathologies including psychomotor retardation with autistic features, epilepsy and muscle wasting. 381 -176468 cd01596 Aspartase_like aspartase (L-aspartate ammonia-lyase) and fumarase class II enzymes. This group contains aspartase (L-aspartate ammonia-lyase), fumarase class II enzymes, and related proteins. It is a member of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. Aspartase catalyzes the reversible deamination of aspartic acid. Fumarase catalyzes the reversible hydration/dehydration of fumarate to L-malate during the Krebs cycle. 450 -176469 cd01597 pCLME prokaryotic 3-carboxy-cis,cis-muconate cycloisomerase (CMLE)_like. This subgroup contains pCLME and related proteins, and belongs to the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. CMLE catalyzes the cyclization of 3-carboxy-cis,cis-muconate (3CM) to 4-carboxy-muconolactone in the beta-ketoadipate pathway. This pathway is responsible for the catabolism of a variety of aromatic compounds into intermediates of the citric cycle in prokaryotic and eukaryotic micro-organisms. 437 -176470 cd01598 PurB PurB_like adenylosuccinases (adenylsuccinate lyase, ASL). This subgroup contains EcASL, the product of the purB gene in Escherichia coli, and related proteins. It is a member of the Lyase class I family of the Lyase_I superfamily. Members of the Lyase class I family function as homotetramers to catalyze similar beta-elimination reactions in which a Calpha-N or Calpha-O bond is cleaved with the subsequent release of fumarate as one of the products. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. ASL catalyzes two non-sequential steps in the de novo purine biosynthesis pathway: the conversion of 5-aminoimidazole-(N-succinylocarboxamide) ribotide (SAICAR) into 5-aminoimidazole-4-carboxamide ribotide (AICAR) and; the conversion of adenylsuccinate (SAMP) into adenosine monophosphate (AMP). 425 -259845 cd01609 RNAP_beta'_N Largest subunit (beta') of bacterial DNA-dependent RNA polymerase (RNAP), N-terminal domain. Beta' is the largest subunit of bacterial DNA-dependent RNA polymerase (RNAP). This family also includes the eukaryotic plastid-encoded RNAP beta' subunit. Bacterial RNAP is a large multi-subunit complex responsible for the synthesis of all RNAs in the cell. Structure studies suggest that RNA polymerase complexes from different organisms share a crab-claw-shaped structure with two "pincers" defining a central cleft. Beta' and beta, the largest and the second largest subunits of bacterial RNAP, each makes up one pincer and part of the base of the cleft. Beta' contains part of the active site and binds two zinc ions that have a structural role in the formation of the active polymerase. 659 -238813 cd01610 PAP2_like PAP2_like proteins, a super-family of histidine phosphatases and vanadium haloperoxidases, includes type 2 phosphatidic acid phosphatase or lipid phosphate phosphatase (LPP), Glucose-6-phosphatase, Phosphatidylglycerophosphatase B and bacterial acid phosphatase, vanadium chloroperoxidases, vanadium bromoperoxidases, and several other mostly uncharacterized subfamilies. Several members of this superfamily have been predicted to be transmembrane proteins. 122 -340453 cd01611 Ubl_Autophagy_like ubiquitin-like (Ubl) domain found in autophagy-related ubiquitin-like protein. Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. The autophagy-related ubiquitin-like proteins, such as Saccharomyces cerevisiae Atg8p, undergo a unique ubiquitin-like (Ubl) conjugation, a process essential for autophagosome formation. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The ubiquitination process comprises a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of ubiquitin and the epsilon-amino group of a substrate lysine. ATG8 family proteins undergo multistep modifications by the E1-like (ubiquitin activating) enzyme ATG7, and the E2-like (ubiquitin conjugating) enzyme ATG3. The mammalian ATG8 family is classified into three subfamilies: i) MAP1LC3 (microtubule associated protein 1 light chain 3) which includes MAP1LC3A, MAP1LC3B, MAP1LC3B2, and MAP1LC3C, ii) GABARAP (GABA type A receptor associated protein) which includes GABARAP, GABARAPL1, and GABARAPL3, and iii) GABARAPL2 (GABA type A receptor associated protein like 2), also known as GATE-16 (golgi-associated adenosine triphosphatase enhancer of 16 kDa). 84 -340454 cd01612 Ubl_ATG12 ubiquitin-like (Ubl) domain found in autophagy-related protein 12 (ATG12). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. The autophagy-related ubiquitin-like (Ubl) proteins such as ATG12 protein have a conserved Ubl fold structure and undergo a unique Ubl conjugation, a process essential for autophagosome formation. ATG12 is conjugated to ATG5 by multistep modifications of the E1-like (ubiquitin activating) enzyme ATG7, and the E2-like (ubiquitin conjugating) enzyme ATG10. The ATG12-ATG5 conjugate facilitates the lipidation of ATG8 and directs its correct subcellular localization. ATG12 is localized at the developing autophagosome. 86 -133473 cd01614 EutN_CcmL Ethanolamine utilisation protein and carboxysome structural protein domain family. Beside the Escherichia coli ethanolamine utilization protein EutN and the Synechocystis sp. carboxysome (beta-type) structural protein CcmL, this family also includes alpha-type carboxysome structural proteins CsoS4A and CsoS4B (previously known as OrfA and OrfB), propanediol utilizationprotein PduN, and some hypothetical homologous of various bacterial microcompartments. The carboxysome, a polyhedral organelle, participates in carbon fixation by sequestering enzymes. It is the prototypical bacterial microcompartment. Its enzymatic components, ribulose bisphosphate carboxylase/oxygenase(RuBisCO) and carbonic anhydrase (CA), are surrounded by a polyhedral protein shell. Similarly, the ethanolamine utilization (eut) microcompartment, and the 1,2-propanediol utilization (pdu) microcompartment encapsulate the enzymes necessary for the process of cobalamin-dependent ethanolamine degradation, and coenzyme B12-dependent degradation of 1,2-propanediol, respectively, within its polyhedral protein shells. It is interesting that both carboxysome structural proteins CcmL and CsoS4A assemble as pentamers in the crystal structures, which might constitute the twelve pentameric vertices of a regular icosahedral carboxysome. However, the reported EutN structure is hexameric rather than pentameric. The absence of pentamers in Eut microcompartments might lead to less-regular icosahedral shell shapes. Due to the lack of structure evidence, the functional roles of the CsoS4A adjacent paralog, CsoS4B, and propanediol utilization protein PduN are not yet clear. 83 -119367 cd01615 CIDE_N CIDE_N domain, found at the N-terminus of the CIDE (cell death-inducing DFF45-like effector) proteins, as well as CAD nuclease (caspase-activated DNase/DNA fragmentation factor, DFF40) and its inhibitor, ICAD(DFF45). These proteins are associated with the chromatin condensation and DNA fragmentation events of apoptosis; the CIDE_N domain is thought to regulate the activity of ICAD/DFF45, and the CAD/DFF40 and CIDE nucleases during apoptosis. The CIDE-N domain is also found in the FSP27/CIDE-C protein. 78 -340455 cd01616 TGS TGS (ThrRS, GTPase and SpoT) domain structurally similar to a beta-grasp ubiquitin-like fold. This family includes eukaryotic and some bacterial threonyl-tRNA synthetases (ThrRSs), a distinct Obg family GTPases, and guanosine polyphosphate hydrolase (SpoT) and synthetase (RelA), which are involved in stringent response in bacteria, as well as uridine kinase (UDK) from Thermotogales. All family members contain a TGS domain named after the ThrRS, GTPase, and SpoT/RelA proteins where it occurs. It is a small domain with a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. The functions of the TGS domain remains unclear, but its presence in two types of regulatory proteins (the GTPases and guanosine polyphosphate phosphohydrolases/synthetases) suggests a ligand (most likely nucleotide)-binding, with a regulatory role. 61 -340456 cd01617 DCX Dublecortin-like domain structurally similar to a beta-grasp ubiquitin-like fold. Dublecortin (DCX) is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. The DCX gene family consists of eleven paralogs in human and mouse, and its DCX protein domains can occur in double tandem or as single DCX repeats. Proteins with DCX tandem domains in general have roles in microtubule (MT) regulation and signal transduction such as X-linked doublecortin (DCX), retinitis pigmentosa-1 (RP1) and doublecortin-like kinase (DCLK). Single DCX repeat proteins are normally localized to actin-rich subcellular structures, or the nucleus such as DCDC2. DCX is not only a unique MAP in terms of structure, it also interacts with multiple additional proteins. Mutations in human DCX genes are associated with abnormal neuronal migration, epilepsy, and mental retardation. 73 -240620 cd01619 LDH_like D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains. D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-HicDH is a NAD-dependent member of the hydroxycarboxylate dehydrogenase family, and shares the Rossmann fold typical of many NAD binding proteins. D-HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. Similar to the structurally distinct L-HicDH, D-HicDH exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. (R)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 323 -240621 cd01620 Ala_dh_like Alanine dehydrogenase and related dehydrogenases. Alanine dehydrogenase/Transhydrogenase, such as the hexameric L-alanine dehydrogenase of Phormidium lapideum, contain 2 Rossmann fold-like domains linked by an alpha helical region. Related proteins include Saccharopine Dehydrogenase (SDH), bifunctional lysine ketoglutarate reductase /saccharopine dehydrogenase enzyme, N(5)-(carboxyethyl)ornithine synthase, and Rubrum transdehydrogenase. Alanine dehydrogenase (L-AlaDH) catalyzes the NAD-dependent conversion of pyrucate to L-alanine via reductive amination. Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matirx side. DI contains 2 domains with Rossmann folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with one dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than classical Rossmann domains. 317 -319765 cd01624 HAD_VSP_like vegetative storage proteins and related proteins, similar to soybean VSPalpha and VSPbeta proteins; belongs to the haloacid dehalogenase-like superfamily. Soybean [Glycine max (L.) Merr.] vegetative storage protein VSPalpha and VSPbeta levels were identified as storage proteins due to their abundance and pattern of expression in plant tissues, they accumulate to almost one-half the amount of soluble leaf protein when soybean plants are continually depodded. They possess acid phosphatase activity which appears to be low compared to several other plant acid phosphatases; it increases in the leaves of depodded soybean plants, but to no more than 0.1% of the total acid phosphatase activity in these leaves. This acid phosphatase activity has maximal activity at pH 5.0 - 5.5, and can liberate Pi from different substrates such as napthyl acid phosphate, carboxyphenyl phosphate, sugar-phosphates, glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, ATP, ADP, PPi, and short chain polyphosphates; they cleave phosphoenolpyruvate, ATP, ADP, PPI, and polyphosphates most efficiently. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Soybean VSPalpha and VSPbeta lack this active site aspartate, other members of this family have this aspartate and may be more active. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 160 -319766 cd01625 HAD_PNP polynucleotide 3'-phosphatase domain similar to the phosphatase domain of the bifunctional enzyme polynucleotide 5'-kinase/3'-phosphatase. Polynucleotide 3'-phosphatase (PNP) domain. This domain dephosphorylates single-stranded as well as double-stranded 3'-phospho termini. It is found in bifunctional enzyme polynucleotide kinase/phosphatase (PNKP) which contain both kinase and phosphatase domains. PNKP plays a key role in both base excision repair and non-homologous end-joining DNA repair pathway. DNA strand breaks can result from DNA damage by ionizing radiation and chemical agents, such as alkylating agents or anticancer agents. Such DNA damage often results in DNA strands with 5'-hydroxyl and 3'-phosphate termini. However, the repair of DNA damage by DNA polymerases and ligases requires 5'-phosphate and 3'-hydroxyl termini. PNKP acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 154 -319767 cd01627 HAD_TPP trehalose-phosphate phosphatase similar to Escherichia coli trehalose-6-phosphate phosphatase OtsB and Saccharomyces cerevisiae trehalose-phosphatase TPS2. Trehalose biosynthesis in bacteria is known through three pathways - OtsAB, TreYZ and TreS. The OtsAB pathway, also known as the trehalose 6-phosphate synthase (TSP)/ Trehalose-6-phosphate phosphatase (TPP) pathway, is the most common route known to be involved in the stress response of Escherichia coli. It involves converting glucose-6-phosphate and UDP-glucose to form trehalose-6-phosphate (T6P), catalyzed by TPS, the product of the otsA gene, this step is followed by the dephosphorylation of T6P to yield trehalose and inorganic phosphate, catalyzed by a specific TPP, the product of otsB gene. This OtsAB (or TSP/TPP) pathway, is also the most common route known to be involved in the stress response of yeast In Saccharomyces cerevisiae, the corresponding enzymes, TPS1p and TPS2p, form a multimeric synthase complex together with additional regulatory subunits encoded by Tsl1 and Tps3. Trehalose is a common disaccharide accumulated by organisms as a reservation of carbohydrate and in response to unfavorable growth conditions. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 228 -319768 cd01629 HAD_EP Enolase-phosphatase similar to human enolase-phosphatase E1 and and Xanthomonas oryzae pv. Oryzae enolase-phosphatase Xep. Enolase-phosphatase E1 (also called MASA) is a bifunctional enolase- phosphatase which promotes the conversion of 2,3-diketo-5-methylthio-1-phosphopentane to 1,2-dihydroxy-3-keto-5-methylthiopentene anion (an aci-reductone) in the methionine salvage pathway. The catalytic reaction is carried out continuously by enolization and dephosphorylation, and the enolase activity cannot be classified as typical enzymatic enolization. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 204 -319769 cd01630 HAD_KDO-like haloacid dehalogenase-like (HAD) hydrolase, similar to Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO 8-P) phosphatase KdsC, and rainbow trout N-acylneuraminate cytidylyltransferase. KDO 8-P phosphatase catalyzes the hydrolysis of KDO 8-P to KDO (3-deoxy-D-manno-octulosonate) and inorganic phosphate and is the last enzyme in the KDO biosynthetic pathway. KDO is an 8-carbon sugar that links the lipid A and polysaccharide moieties of the lipopolysaccharide region in Gram-negative bacteria. An interruption in KDO biosynthesis leads to the accumulation of lipid A precursors and subsequent arrest in cell growth. The KDO biosynthesis pathway involves five sequential enzymatic reactions. This family also includes rainbow trout CMP-sialic acid synthetase which effectively converts both deaminoneuraminic acid (KDN, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) and N-acetylneuraminic acid (Neu5Ac) to CMP-KDN and CMP-Neu5Ac, respectively. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 146 -340816 cd01635 Glycosyltransferase_GTB-type glycosyltransferase family 1 and related proteins with GTB topology. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 235 -238814 cd01636 FIG FIG, FBPase/IMPase/glpX-like domain. A superfamily of metal-dependent phosphatases with various substrates. Fructose-1,6-bisphospatase (both the major and the glpX-encoded variant) hydrolyze fructose-1,6,-bisphosphate to fructose-6-phosphate in gluconeogenesis. Inositol-monophosphatases and inositol polyphosphatases play vital roles in eukaryotic signalling, as they participate in metabolizing the messenger molecule Inositol-1,4,5-triphosphate. Many of these enzymes are inhibited by Li+. 184 -238815 cd01637 IMPase_like Inositol-monophosphatase-like domains. This family of phosphatases is dependent on bivalent metal ions such as Mg++, and many members are inhibited by Li+ (which is thought to displace a bivalent ion in the active site). Substrates include fructose-1,6-bisphosphate, inositol poly- and monophosphates, PAP and PAPS, sedoheptulose-1,7-bisphosphate and probably others. 238 -238816 cd01638 CysQ CysQ, a 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) 3'-phosphatase, is a bacterial member of the inositol monophosphatase family. It has been proposed that CysQ helps control intracellular levels of PAPS, which is an intermediate in cysteine biosynthesis (a principal route of sulfur assimilation). 242 -238817 cd01639 IMPase IMPase, inositol monophosphatase and related domains. A family of Mg++ dependent phosphatases, inhibited by lithium, many of which may act on inositol monophosphate substrate. They dephosphorylate inositol phosphate to generate inositol, which may be recycled into inositol lipids; in eukaryotes IMPase plays a vital role in intracellular signaling. IMPase is one of the proposed targets of Li+ therapy in manic-depressive illness. This family contains some bacterial members of the inositol monophosphatase family classified as SuhB-like. E. coli SuhB has been suggested to participate in posstranscriptional control of gene expression, and its inositol monophosphatase activity doesn't appear to be sufficient for its cellular function. It has been proposed, that SuhB plays a role in the biosynthesis of phosphatidylinositol in mycobacteria. 244 -238818 cd01640 IPPase IPPase; Inositol polyphosphate-1-phosphatase, a member of the Mg++ dependent family of inositol monophosphatase-like domains, hydrolyzes the 1' position phosphate from inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate. Members in this group may also exhibit 3'-phosphoadenosine 5'-phosphate phosphatase activity, and they all appear to be inhibited by lithium. IPPase is one of the proposed targets of Li+ therapy in manic-depressive illness. 293 -238819 cd01641 Bacterial_IMPase_like_1 Predominantly bacterial family of Mg++ dependend phosphatases, related to inositol monophosphatases. These enzymes may dephosphorylate fructose-1,6-bisphosphate, inositol monophospate, 3'-phosphoadenosine-5'-phosphate, or similar substrates. 248 -238820 cd01642 Arch_FBPase_2 Putative fructose-1,6-bisphosphatase or related enzymes of inositol monophosphatase family. These are Mg++ dependent phosphatases. Members in this family may have fructose-1,6-bisphosphatase and/or inositol-monophosphatase activity. Fructose-1,6-bisphosphatase catalyzes the hydrolysis of fructose-1,6-biphosphate into fructose-6-phosphate and is critical in gluconeogenesis pathway. 244 -238821 cd01643 Bacterial_IMPase_like_2 Bacterial family of Mg++ dependent phosphatases, related to inositol monophosphatases. These enzymes may dephosphorylate inositol monophosphate or similar substrates. 242 -238822 cd01644 RT_pepA17 RT_pepA17: Reverse transcriptase (RTs) in retrotransposons. This subfamily represents the RT domain of a multifunctional enzyme. C-terminal to the RT domain is a domain homologous to aspartic proteinases (corresponding to Merops family A17) encoded by retrotransposons and retroviruses. RT catalyzes DNA replication from an RNA template and is responsible for the replication of retroelements. 213 -238823 cd01645 RT_Rtv RT_Rtv: Reverse transcriptases (RTs) from retroviruses (Rtvs). RTs catalyze the conversion of single-stranded RNA into double-stranded viral DNA for integration into host chromosomes. Proteins in this subfamily contain long terminal repeats (LTRs) and are multifunctional enzymes with RNA-directed DNA polymerase, DNA directed DNA polymerase, and ribonuclease hybrid (RNase H) activities. The viral RNA genome enters the cytoplasm as part of a nucleoprotein complex, and the process of reverse transcription generates in the cytoplasm forming a linear DNA duplex via an intricate series of steps. This duplex DNA is colinear with its RNA template, but contains terminal duplications known as LTRs that are not present in viral RNA. It has been proposed that two specialized template switches, known as strand-transfer reactions or "jumps", are required to generate the LTRs. 213 -238824 cd01646 RT_Bac_retron_I RT_Bac_retron_I: Reverse transcriptases (RTs) in bacterial retrotransposons or retrons. The polymerase reaction of this enzyme leads to the production of a unique RNA-DNA complex called msDNA (multicopy single-stranded (ss)DNA) in which a small ssDNA branches out from a small ssRNA molecule via a 2'-5'phosphodiester linkage. Bacterial retron RTs produce cDNA corresponding to only a small portion of the retron genome. 158 -238825 cd01647 RT_LTR RT_LTR: Reverse transcriptases (RTs) from retrotransposons and retroviruses which have long terminal repeats (LTRs) in their DNA copies but not in their RNA template. RT catalyzes DNA replication from an RNA template, and is responsible for the replication of retroelements. An RT gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. RTs are present in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and Caulimoviruses. 177 -238826 cd01648 TERT TERT: Telomerase reverse transcriptase (TERT). Telomerase is a ribonucleoprotein (RNP) that synthesizes telomeric DNA repeats. The telomerase RNA subunit provides the template for synthesis of these repeats. The catalytic subunit of RNP is known as telomerase reverse transcriptase (TERT). The reverse transcriptase (RT) domain is located in the C-terminal region of the TERT polypeptide. Single amino acid substitutions in this region lead to telomere shortening and senescence. Telomerase is an enzyme that, in certain cells, maintains the physical ends of chromosomes (telomeres) during replication. In somatic cells, replication of the lagging strand requires the continual presence of an RNA primer approximately 200 nucleotides upstream, which is complementary to the template strand. Since there is a region of DNA less than 200 base pairs from the end of the chromosome where this is not possible, the chromosome is continually shortened. However, a surplus of repetitive DNA at the chromosome ends protects against the erosion of gene-encoding DNA. Telomerase is not normally expressed in somatic cells. It has been suggested that exogenous TERT may extend the lifespan of, or even immortalize, the cell. However, recent studies have shown that telomerase activity can be induced by a number of oncogenes. Conversely, the oncogene c-myc can be activated in human TERT immortalized cells. Sequence comparisons place the telomerase proteins in the RT family but reveal hallmarks that distinguish them from retroviral and retrotransposon relatives. 119 -238827 cd01650 RT_nLTR_like RT_nLTR: Non-LTR (long terminal repeat) retrotransposon and non-LTR retrovirus reverse transcriptase (RT). This subfamily contains both non-LTR retrotransposons and non-LTR retrovirus RTs. RTs catalyze the conversion of single-stranded RNA into double-stranded DNA for integration into host chromosomes. RT is a multifunctional enzyme with RNA-directed DNA polymerase, DNA directed DNA polymerase and ribonuclease hybrid (RNase H) activities. 220 -238828 cd01651 RT_G2_intron RT_G2_intron: Reverse transcriptases (RTs) with group II intron origin. RT transcribes DNA using RNA as template. Proteins in this subfamily are found in bacterial and mitochondrial group II introns. Their most probable ancestor was a retrotransposable element with both gag-like and pol-like genes. This subfamily of proteins appears to have captured the RT sequences from transposable elements, which lack long terminal repeats (LTRs). 226 -153210 cd01653 GATase1 Type 1 glutamine amidotransferase (GATase1)-like domain. Type 1 glutamine amidotransferase (GATase1)-like domain. This group includes proteins similar to Class I glutamine amidotransferases, the intracellular PH1704 from Pyrococcus horikoshii, the C-terminal of the large catalase: Escherichia coli HP-II, Sinorhizobium meliloti Rm1021 ThuA. and, the A4 beta-galactosidase middle domain. The majority of proteins in this group have a reactive Cys found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. For Class I glutamine amidotransferases proteins which transfer ammonia from the amide side chain of glutamine to an acceptor substrate, this Cys forms a Cys-His-Glu catalytic triad in the active site. Glutamine amidotransferases activity can be found in a range of biosynthetic enzymes included in this cd: glutamine amidotransferase, formylglycinamide ribonucleotide, GMP synthetase, anthranilate synthase component II, glutamine-dependent carbamoyl phosphate synthase, cytidine triphosphate synthetase, gamma-glutamyl hydrolase, imidazole glycerol phosphate synthase and, cobyric acid synthase. For Pyrococcus horikoshii PH1704, the Cys of the nucleophile elbow together with a different His and, a Glu from an adjacent monomer form a catalytic triad different from the typical GATase1 triad. The E. coli HP-II C-terminal domain, S. meliloti Rm1021 ThuA and the A4 beta-galactosidase middle domain lack the catalytic triad typical GATaseI domains. GATase1-like domains can occur either as single polypeptides, as in Class I glutamine amidotransferases, or as domains in a much larger multifunctional synthase protein, such as CPSase. 115 -100099 cd01657 Ribosomal_L7_archeal_euk Ribosomal protein L7, which is found in archaea and eukaryotes but not in prokaryotes, binds domain II of the 23S rRNA as well as the 5S rRNA and is one of five ribosomal proteins that mediate the interactions 5S rRNA makes with the ribosome. The eukaryotic L7 members have an N-terminal extension not found in the archeal L7 orthologs. L7 is closely related to the ribosomal L30 protein found in eukaryotes and prokaryotes. 159 -100100 cd01658 Ribosomal_L30 Ribosomal protein L30, which is found in eukaryotes and prokaryotes but not in archaea, is one of the smallest ribosomal proteins with a molecular mass of about 7kDa. L30 binds the 23SrRNA as well as the 5S rRNA and is one of five ribosomal proteins that mediate the interactions 5S rRNA makes with the ribosome. The eukaryotic L30 members have N- and/or C-terminal extensions not found in their prokaryotic orthologs. L30 is closely related to the ribosomal L7 protein found in eukaryotes and archaea. 54 -238829 cd01659 TRX_superfamily Thioredoxin (TRX) superfamily; a large, diverse group of proteins containing a TRX-fold. Many members contain a classic TRX domain with a redox active CXXC motif. They function as protein disulfide oxidoreductases (PDOs), altering the redox state of target proteins via the reversible oxidation of their active site dithiol. The PDO members of this superfamily include TRX, protein disulfide isomerase (PDI), tlpA-like, glutaredoxin, NrdH redoxin, and the bacterial Dsb (DsbA, DsbC, DsbG, DsbE, DsbDgamma) protein families. Members of the superfamily that do not function as PDOs but contain a TRX-fold domain include phosducins, peroxiredoxins and glutathione (GSH) peroxidases, SCO proteins, GSH transferases (GST, N-terminal domain), arsenic reductases, TRX-like ferredoxins and calsequestrin, among others. 69 -238830 cd01660 ba3-like_Oxidase_I ba3-like heme-copper oxidase subunit I. The ba3 family of heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and some archaea which catalyze the reduction of O2 and simultaneously pump protons across the membrane. It has been proposed that Archaea acquired heme-copper oxidases through gene transfer from Gram-positive bacteria. The ba3 family contains oxidases that lack the conserved residues that form the D- and K-pathways in CcO and ubiquinol oxidase. Instead they contain a potential alternative K-pathway. Additional proton channels have been proposed for this family of oxidases but none have been identified definitively. For general information on the heme-copper oxidase superfamily, please see cd00919. 473 -238831 cd01661 cbb3_Oxidase_I Cytochrome cbb3 oxidase subunit I. Cytochrome cbb3 oxidase, the terminal oxidase in the respiratory chains of proteobacteria, is a multi-chain transmembrane protein located in the cell membrane. Like other cytochrome oxidases, it catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. Found mainly in proteobacteria, cbb3 is believed to be a modern enzyme that has evolved independently to perform a specialized function in microaerobic energy metabolism. Subunit I contains a heme-copper binuclear center (the active site where O2 is reduced to water) formed by a high-spin heme and a copper ion. It also contains a low-spin heme, believed to participate in the transfer of electrons to the binuclear center. The cbb3 operon contains four genes (ccoNOQP or fixNOQP), with ccoN coding for subunit I. Instead of a CuA-containing subunit II analogous to other cytochrome oxidases, cbb3 utilizes subunits ccoO and ccoP, which contain one and two hemes, respectively, to transfer electrons to the binuclear center. The fourth subunit (ccoQ) has been shown to protect the core complex from proteolytic degradation by serine proteases. For every reduction of an O2 molecule, eight protons are taken from the inside aqueous compartment and four electrons are taken from cytochrome c on the opposite side of the membrane. The four electrons and four of the protons are used in the reduction of O2; the four remaining protons are pumped across the membrane. This charge separation of four charges contributes to the electrochemical gradient used for ATP synthesis. The polar residues that form the D- and K-pathways in subunit I of other cytochrome c and ubiquinol oxidases are absent in cbb3. The proton pathways remain undefined. A pathway for the transfer of pumped protons beyond the binuclear center also remains undefined. It is believed that electrons are passed from cytochrome c (the electron donor) to the low-spin heme via ccoP and ccoO, respectively, and directly from the low-spin heme to the binuclear center. 493 -238832 cd01662 Ubiquinol_Oxidase_I Ubiquinol oxidase subunit I. Ubiquinol oxidase, the terminal oxidase in the respiratory chains of aerobic bacteria, is a multi-chain transmembrane protein located in the cell membrane. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits in ubiquinol oxidase varies from two to five. Subunit I contains a heme-copper binuclear center (the active site where O2 is reduced to water) formed by a high-spin heme and a copper ion. It also contains a low-spin heme, believed to participate in the transfer of electrons from ubiquinol to the binuclear center. For every reduction of an O2 molecule, eight protons are taken from the inside aqueous compartment and four electrons are taken from ubiquinol on the opposite side of the membrane. The four electrons and four of the protons are used in the reduction of O2; the four remaining protons are pumped across the membrane. This charge separation of four charges contributes to the electrochemical gradient used for ATP synthesis. Two proton channels, the D-pathway and K-pathway, leading to the binuclear center have been identified in subunit I. It is generally believed that the channels contain water molecules that act as 'proton wires' to transfer the protons. A well-defined pathway for the transfer of pumped protons beyond the binuclear center has not been identified. Electrons are believed to be transferred directly from ubiquinol (the electron donor) to the low-spin heme, and directly from the low-spin heme to the binuclear center. 501 -238833 cd01663 Cyt_c_Oxidase_I Cytochrome C oxidase subunit I. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Only subunits I and II are essential for function, but subunit III, which is also conserved, may play a role in assembly or oxygen delivery to the active site. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunit I contains a heme-copper binuclear center (the active site where O2 is reduced to water) formed by a high-spin heme (heme a3) and a copper ion (CuB). It also contains a low-spin heme (heme a), believed to participate in the transfer of electrons to the binuclear center. For every reduction of an O2 molecule, eight protons are taken from the inside aqueous compartment and four electrons are taken from cytochrome c on the opposite side of the membrane. The four electrons and four of the protons are used in the reduction of O2; the four remaining protons are pumped across the membrane. This charge separation of four charges contributes to the electrochemical gradient used for ATP synthesis. Two proton channels, the D-pathway and K-pathway, leading to the binuclear center have been identified in subunit I. A well-defined pathway for the transfer of pumped protons beyond the binuclear center has not been identified. Electrons are transferred from cytochrome c (the electron donor) to heme a via the CuA binuclear site in subunit II, and directly from heme a to the binuclear center. 488 -238834 cd01665 Cyt_c_Oxidase_III Cytochrome c oxidase subunit III. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. CcO catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Only subunits I and II are essential for function, but subunit III, which is also conserved, is believed to play a role in assembly of the multimer complex. Rhodobacter CcO subunit III stabilizes the integrity of the binuclear center in subunit I. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunit III contains bound phospholipids in several crystal structures and is proposed to contain a "lipid pool." These phospholipids are believed to intrinsic constituents similar to cofactors of the enzyme. 243 -340457 cd01666 TGS_DRG TGS (ThrRS, GTPase and SpoT) domain found in developmentally regulated GTP binding protein (DRG) family. DRG-1 and DRG-2 comprise a highly conserved DRG subfamily of GTP-binding proteins found in archaea, plants, fungi and animals. The exact function of DRG proteins is unknown, although phylogenetic and biochemical fraction studies have linked them to translation, differentiation and growth. Their abnormal expressions may trigger cell transformation or cell cycle arrest. DRG-1 and DRG-2 bind to DFRP1 (DRG family regulatory protein 1) and DFRP2, respectively. Both DRG-1 and DRG-2 contain a domain of characteristic Obg-type G-motifs that may be the core of GTPase activity, as well as the C-terminal TGS (ThrRS, GTPase and SpoT) domain, which has a predominantly beta-grasp ubiquitin-like fold and may be related to RNA binding. DRG subfamily belongs to the Obg family of GTPases. 77 -340458 cd01667 TGS_ThrRS TGS (ThrRS, GTPase and SpoT) domain found in threonyl-tRNA synthetase (ThrRS) and similar proteins. ThrRS, also termed cytoplasmic threonine--tRNA ligase, is a class II aminoacyl-tRNA synthetase (aaRS) that plays an essential role in protein synthesis by catalyzing the aminoacylation of tRNA(Thr), generating aminoacyl-tRNA, and editing misacylation. In addition to its catalytic and anticodon-binding domains, ThrRS has an N-terminal TGS domain, named after the ThrRS, GTPase, and SpoT/RelA proteins where it occurs. TGS is a small domain with a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. 65 -340459 cd01668 TGS_RSH TGS (ThrRS, GTPase and SpoT) domain found in the RelA/SpoT homolog (RSH) family. The RelA/SpoT homolog (RSH) family consists of long RSH proteins and short RSH proteins. Long RSH proteins have been characterized as containing an N-terminal region and a C-terminal region. The N-terminal region contains a pseudo-hydrolase (inactive-hydrolase) domain and a (p)ppGpp synthetase domain. The C-terminal region contains a ubiquitin-like TGS (ThrRS, GTPase and SpoT) domain, a conserved cysteine domain (CC), helical and ACT (aspartate kinase, chorismate mutase, TyrA domain) domains connected by a linker region. Short RSH proteins have a truncated C-terminal region without ACT domain. The RSH family includes two classes of enzyme: i) monofunctional (p)ppGpp synthetase I, RelA, and ii) bifunctional (p)ppGpp synthetase II/hydrolase, SpoT (also called Rel). Both classes are capable of synthesizing (p)ppGpp but only bifunctional enzymes are capable of (p)ppGpp hydrolysis. SpoT is a ribosome-associated protein that is activated during amino acid starvation and thought to mediate the stringent response. The function of the TGS domain of SpoT is in transcription of survival and virulence genes in respond to environmental stress. RelA is an ATP:GTP(GDP) pyrophosphate transferase that is recruited to stalled ribosomes and activated to synthesize (p)ppGpp, which acts as a pleiotropic secondary messenger. 59 -340460 cd01669 TGS_MJ1332_like TGS (ThrRS, GTPase and SpoT) domain found in Methanocaldococcus jannaschii uncharacterized GTP-binding protein MJ1332 and similar proteins. This family includes a group of uncharacterized GTP-binding proteins from archaea, which belong to the Obg family of GTPases. The family members contain a domain of characteristic Obg-type G-motifs that may be the core of GTPase activity, as well as a C-terminal TGS (ThrRS, GTPase and SpoT) domain that has a predominantly beta-grasp ubiquitin-like fold. 78 -260017 cd01670 Death Death Domain: a protein-protein interaction domain. Death Domains (DDs) are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. Structural analysis of DD-DD complexes show that the domains interact with each other in many different ways. DD-containing proteins serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. In mammals, they are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways. In invertebrates, they are involved in transcriptional regulation of zygotic patterning genes in insect embryogenesis, and are components of the ToII/NF-kappaB pathway, a conserved innate immune pathway in animal cells. 79 -260018 cd01671 CARD Caspase activation and recruitment domain: a protein-protein interaction domain. Caspase activation and recruitment domains (CARDs) are death domains (DDs) found associated with caspases. Caspases are aspartate-specific cysteine proteases with functions in apoptosis, immune signaling, inflammation, and host-defense mechanisms. In addition to caspases, proteins containing CARDs include adaptor proteins such as RAIDD, CARD9, and RIG-I-like helicases, which can form multiprotein complexes and play important roles in mediating the signals to induce immune and inflammatory responses. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 79 -238835 cd01672 TMPK Thymidine monophosphate kinase (TMPK), also known as thymidylate kinase, catalyzes the phosphorylation of thymidine monophosphate (TMP) to thymidine diphosphate (TDP) utilizing ATP as its preferred phophoryl donor. TMPK represents the rate-limiting step in either de novo or salvage biosynthesis of thymidine triphosphate (TTP). 200 -238836 cd01673 dNK Deoxyribonucleoside kinase (dNK) catalyzes the phosphorylation of deoxyribonucleosides to yield corresponding monophosphates (dNMPs). This family consists of various deoxynucleoside kinases including deoxyribo- cytidine (EC 2.7.1.74), guanosine (EC 2.7.1.113), adenosine (EC 2.7.1.76), and thymidine (EC 2.7.1.21) kinases. They are key enzymes in the salvage of deoxyribonucleosides originating from extra- or intracellular breakdown of DNA. 193 -238837 cd01674 Homoaconitase_Swivel Homoaconitase swivel domain. This family includes homoaconitase and other uncharacterized proteins of the Aconitase family. Homoaconitase is part of an unusual lysine biosynthesis pathway found only in filamentous fungi, in which lysine is synthesized via the alpha-aminoadipate pathway. In this pathway, homoaconitase catalyzes the conversion of cis-homoaconitic acid into homoisocitric acid. The reaction mechanism is believed to be similar to that of other aconitases. This is the swivel domain, which is believed to undergo swivelling conformational change in the enzyme mechanism. 129 -153084 cd01675 RNR_III Class III ribonucleotide reductase. Ribonucleotide reductase (RNR) catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides. It provides the precursors necessary for DNA synthesis. RNRs are separated into three classes based on their metallocofactor usage. Class I RNRs, found in eukaryotes, bacteria, and bacteriophage, use a diiron-tyrosyl radical. Class II RNRs, found in bacteria, bacteriophage, algae and archaea, use coenzyme B12 (adenosylcobalamin, AdoCbl). Class III RNRs, found in strict or facultative anaerobic bacteria, bacteriophage, and archaea, use an FeS cluster and S-adenosylmethionine to generate a glycyl radical. Many organisms have more than one class of RNR present in their genomes. All three RNRs have a ten-stranded alpha-beta barrel domain that is structurally similar to the domain of PFL (pyruvate formate lyase). The class III enzyme from phage T4 consists of two subunits, this model covers the larger subunit which contains the active and allosteric sites. 555 -153085 cd01676 RNR_II_monomer Class II ribonucleotide reductase, monomeric form. Ribonucleotide reductase (RNR) catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides. It provides the precursors necessary for DNA synthesis. RNRs are separated into three classes based on their metallocofactor usage. Class I RNRs, found in eukaryotes, bacteria, and bacteriophage, use a diiron-tyrosyl radical. Class II RNRs, found in bacteria, bacteriophage, algae and archaea, use coenzyme B12 (adenosylcobalamin, AdoCbl). Class III RNRs, found in anaerobic bacteria, bacteriophage, and archaea, use an FeS cluster and S-adenosylmethionine to generate a glycyl radical. Many organisms have more than one class of RNR present in their genomes. All three RNRs have a ten-stranded alpha-beta barrel domain that is structurally similar to the domain of PFL (pyruvate formate lyase). Class II RNRs are found in bacteria that can live under both aerobic and anaerobic conditions. Many, but not all members of this class, are found to be homodimers. This particular subfamily is found to be active as a monomer. Adenosylcobalamin interacts directly with an active site cysteine to form the reactive cysteine radical. 658 -153086 cd01677 PFL2_DhaB_BssA Pyruvate formate lyase 2 and related enzymes. This family includes pyruvate formate lyase 2 (PFL2), B12-independent glycerol dehydratase (DhaB) and the alpha subunit of benzylsuccinate synthase (BssA), all of which have a highly conserved ten-stranded alpha/beta barrel domain, which is similar to those of PFL1 (pyruvate formate lyase 1) and RNR (ribonucleotide reductase). Pyruvate formate lyase catalyzes a key step in anaerobic glycolysis, the conversion of pyruvate and CoenzymeA to formate and acetylCoA. DhaB catalyzes the first step in the conversion of glycerol to 1,3-propanediol while BssA catalyzes the first step in the anaerobic mineralization of both toluene and m-xylene. 781 -153087 cd01678 PFL1 Pyruvate formate lyase 1. Pyruvate formate lyase catalyzes a key step in anaerobic glycolysis, the conversion of pyruvate and CoenzymeA to formate and acetylCoA. The PFL mechanism involves an unusual radical cleavage of pyruvate in which two cysteines and one glycine form radicals that are required for catalysis. PFL has a ten-stranded alpha/beta barrel domain that is structurally similar to those of all three ribonucleotide reductase (RNR) classes as well as benzylsuccinate synthase and B12-independent glycerol dehydratase. 738 -153088 cd01679 RNR_I Class I ribonucleotide reductase. Ribonucleotide reductase (RNR) catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides. It provides the precursors necessary for DNA synthesis. RNRs are separated into three classes based on their metallocofactor usage. Class I RNRs, found in eukaryotes, bacteria, and many viruses, use a diiron-tyrosyl radical. Class II RNRs, found in bacteria, bacteriophage, algae and archaea, use coenzyme B12 (adenosylcobalamin, AdoCbl). Class III RNRs, found in anaerobic bacteria, bacteriophages, and archaea, use an FeS cluster and S-adenosylmethionine to generate a glycyl radical. Many organisms have more than one class of RNR present in their genomes. All three RNRs have a ten-stranded alpha-beta barrel domain that is structurally similar to the domain of PFL (pyruvate formate lyase). Class I RNR is oxygen-dependent and can be subdivided into classes Ia (eukaryotes, prokaryotes, viruses and phages) and Ib (which is found in prokaryotes only). It is a tetrameric enzyme of two alpha and two beta subunits; this model covers the major part of the alpha or large subunit, called R1 in class Ia and R1E in class Ib. 460 -238838 cd01680 EFG_like_IV Elongation Factor G-like domain IV. This family includes the translational elongation factor termed EF-2 (for Archaea and Eukarya) and EF-G (for Bacteria), ribosomal protection proteins that mediate tetracycline resistance and, an evolutionarily conserved U5 snRNP-specific protein (U5-116kD). In complex with GTP, EF-G/EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site of the small subunit of ribosome and the mRNA is shifted one codon relative to the ribosome. It has been shown that EF-G/EF-2_IV domain mimics the shape of anticodon arm of the tRNA in the structurally homologous ternary complex of Petra, EF-Tu (another transcriptional elongation factor) and GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, implying that EF-G/EF-2 displaces the A-site tRNA to the P-site by physical interaction with the anticodon arm. 116 -238839 cd01681 aeEF2_snRNP_like_IV This family represents domain IV of archaeal and eukaryotic elongation factor 2 (aeEF-2) and of an evolutionarily conserved U5 snRNP-specific protein. U5 snRNP is a GTP-binding factor closely related to the ribosomal translocase EF-2. In complex with GTP, EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site of the small subunit of ribosome and the mRNA is shifted one codon relative to the ribosome. It has been shown that EF-2_IV domain mimics the shape of anticodon arm of the tRNA in the structurally homologous ternary complex of Phe-tRNA, EF-1 (another transcriptional elongation factor) and GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, implying that EF-2 displaces the A-site tRNA to the P-site by physical interaction with the anticodon arm. 177 -238840 cd01683 EF2_IV_snRNP EF-2_domain IV_snRNP domain is a part of 116kD U5-specific protein of the U5 small nucleoprotein (snRNP) particle, essential component of the spliceosome. The protein is structurally closely related to the eukaryotic translational elongation factor EF2. This domain has been also identified in 114kD U5-specific protein of Saccharomyces cerevisiae and may play an important role either in splicing process itself or the recycling of spliceosomal snRNP. 178 -238841 cd01684 Tet_like_IV EF-G_domain IV_RPP domain is a part of bacterial ribosomal protected proteins (RPP) family. RPPs such as tetracycline resistance proteins Tet(M) and Tet(O) mediate tetracycline resistance in both gram-positive and -negative species. Tetracyclines inhibit the accommodation of aminoacyl-tRNA into ribosomal A site and therefore prevent the addition of new amino acids to the growing polypeptide. RPPs Tet(M) confer tetracycline resistance by releasing tetracycline from the ribosome and thereby freeing the ribosome from inhibitory effects of the drug, such that aa-tRNA can bind to the A site and protein synthesis can continue. 115 -238842 cd01693 mtEFG2_like_IV mtEF-G2 domain IV. This subfamily is a part the of mitochondrial transcriptional elongation factor, mtEF-G2. Mitochondrial translation is crucial for maintaining mitochondrial function and mutations in this system lead to a breakdown in the respiratory chain-oxidative phosphorylation system and to impaired maintenance of mitochondrial DNA. In complex with GTP, EF-G promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site of the small subunit of ribosome and the mRNA is shifted one codon relative to the ribosome. 120 -238843 cd01699 RNA_dep_RNAP RNA_dep_RNAP: RNA-dependent RNA polymerase (RdRp) is an essential protein encoded in the genomes of all RNA containing viruses with no DNA stage. RdRp catalyzes synthesis of the RNA strand complementary to a given RNA template. RdRps of many viruses are products of processing of polyproteins. Some RdRps consist of one polypeptide chain, and others are complexes of several subunits. The domain organization and the 3D structure of the catalytic center of a wide range of RdRps, including those with a low overall sequence homology, are conserved. The catalytic center is formed by several motifs containing a number of conserved amino acid residues. This subfamily represents the RNA-dependent RNA polymerases from all positive-strand RNA eukaryotic viruses with no DNA stage. 278 -176454 cd01700 PolY_Pol_V_umuC umuC subunit of DNA Polymerase V. umuC subunit of Pol V. Pol V is a bacterial translesion synthesis (TLS) polymerase that consists of the heterotrimer of one umuC and two umuD subunits. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Pol V, RecA, single stranded DNA-binding protein, beta sliding clamp, and gamma clamp loading complex are responsible for inducing the SOS response in bacteria to repair UV-induced DNA damage. 344 -176455 cd01701 PolY_Rev1 DNA polymerase Rev1. Rev1 is a translesion synthesis (TLS) polymerase found in eukaryotes. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Rev1 has both structural and enzymatic roles. Structurally, it is believed to interact with other nonclassical polymerases and replication machinery to act as a scaffold. Enzymatically, it catalyzes the specific insertion of dCMP opposite abasic sites. Rev1 interacts with the Rev7 subunit of the B-family TLS polymerase Pol zeta (Rev3/Rev7). Rev1 is known to actively promote the introduction of mutations, potentially making it a significant target for cancer treatment. 404 -176456 cd01702 PolY_Pol_eta DNA Polymerase eta. Pol eta, also called Rad30A, is a translesion synthesis (TLS) polymerase. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Unlike other Y-family members, Pol eta can efficiently and accurately replicate DNA past UV-induced lesions. Its activity is initiated by two simultaneous interactions: the PIP box in pol eta interacting with PCNA, and the UBZ (ubiquitin-binding zinc finger) in pol eta interacting with monoubiquitin attached to PCNA. Pol eta is more efficient in copying damaged DNA than undamaged DNA and seems to recognize when a lesion has been passed, facilitating a lesion-dependent dissociation from the DNA. 359 -176457 cd01703 PolY_Pol_iota DNA Polymerase iota. Pol iota, also called Rad30B, is a translesion synthesis (TLS) polymerase. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Pol iota is thought to be one of the least efficient polymerases, particularly when opposite pyrimidines; it can incorporate the correct nucleotide opposite a purine much more efficiently than opposite a pyrimidine, and prefers to insert guanosine instead of adenosine opposite thymidine. Pol iota is believed to use Hoogsteen rather than Watson-Crick base pairing, which may explain the varying efficiency for different template nucleotides. 379 -238844 cd01709 RT_like_1 RT_like_1: A subfamily of reverse transcriptases (RTs). An RT gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. RTs occur in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and caulimoviruses. These elements can be divided into two major groups. One group contains retroviruses and DNA viruses whose propagation involves an RNA intermediate. They are grouped together with transposable elements containing long terminal repeats (LTRs). The other group, also called poly(A)-type retrotransposons, contain fungal mitochondrial introns and transposable elements that lack LTRs. 346 -238845 cd01712 ThiI ThiI is required for thiazole synthesis in the thiamine biosynthesis pathway. It belongs to the Adenosine Nucleotide Hydrolysis suoerfamily and predicted to bind to Adenosine nucleotide. 177 -238846 cd01713 PAPS_reductase This domain is found in phosphoadenosine phosphosulphate (PAPS) reductase enzymes or PAPS sulphotransferase. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N type ATP PPases and ATP sulphurylases. A highly modified version of the P loop, the fingerprint peptide of mononucleotide-binding proteins, is present in the active site of the protein, which appears to be a positively charged cleft containing a number of conserved arginine and lysine residues. Although PAPS reductase has no ATPase activity, it shows a striking similarity to the structure of the ATP pyrophosphatase (ATP PPase) domain of GMP synthetase, indicating that both enzyme families have evolved from a common ancestral nucleotide-binding fold. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP) . It is also found in NodP nodulation protein P from Rhizobium meliloti which has ATP sulphurylase activity (sulphate adenylate transferase) . 173 -238847 cd01714 ETF_beta The electron transfer flavoprotein (ETF) serves as a specific electron acceptor for various mitochondrial dehydrogenases. ETF transfers electrons to the main respiratory chain via ETF-ubiquinone oxidoreductase. ETF is an heterodimer that consists of an alpha and a beta subunit which binds one molecule of FAD per dimer . A similar system also exists in some bacteria. The homologous pair of proteins (FixA/FixB) are essential for nitrogen fixation. The beta subunit protein is distantly related to and forms a heterodimer with the alpha subunit. 202 -238848 cd01715 ETF_alpha The electron transfer flavoprotein (ETF) serves as a specific electron acceptor for various mitochondrial dehydrogenases. ETF transfers electrons to the main respiratory chain via ETF-ubiquinone oxidoreductase. ETF is an heterodimer that consists of an alpha and a beta subunit which binds one molecule of FAD per dimer . A similar system also exists in some bacteria. The homologous pair of proteins (FixA/FixB) are essential for nitrogen fixation. The alpha subunit of ETF is structurally related to the bacterial nitrogen fixation protein fixB which could play a role in a redox process and feed electrons to ferredoxin. 168 -212463 cd01716 Hfq bacterial Hfq-like. Hfq, an abundant, ubiquitous RNA-binding protein, functions as a pleiotropic regulator of RNA metabolism in prokaryotes, required for transcription of some transcripts and degradation of others. Hfq binds small RNA molecules called riboregulators that modulate the stability or translation efficiency of RNA transcripts. Hfq binds preferentially to unstructured A/U-rich RNA sequences and is similar to the eukaryotic Sm proteins in both sequence and structure. Hfq forms a homo-hexameric ring similar to the heptameric ring of the Sm proteins. 60 -212464 cd01717 Sm_B Sm protein B. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 80 -212465 cd01718 Sm_E Sm protein E. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit E binds subunits F and G to form a trimer which then assembles onto snRNA along with the D1/D2 and D3/B heterodimers forming a seven-membered ring structure. 79 -212466 cd01719 Sm_G Sm protein G. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit G binds subunits E and F to form a trimer which then assembles onto snRNA along with the D1/D2 and D3/B heterodimers forming a seven-membered ring structure. 70 -212467 cd01720 Sm_D2 Sm protein D2. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit D2 heterodimerizes with subunit D1 and three such heterodimers form a hexameric ring structure with alternating D1 and D2 subunits. The D1 - D2 heterodimer also assembles into a heptameric ring containing D2, D3, E, F, and G subunits. 89 -212468 cd01721 Sm_D3 Sm protein D3. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit D3 heterodimerizes with subunit B and three such heterodimers form a hexameric ring structure with alternating B and D3 subunits. The D3 - B heterodimer also assembles into a heptameric ring containing D1, D2, E, F, and G subunits. 70 -212469 cd01722 Sm_F Sm protein F. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit F is capable of forming both homo- and hetero-heptamer ring structures. To form the hetero-heptamer, Sm subunit F initially binds subunits E and G to form a trimer which then assembles onto snRNA along with the D3/B and D1/D2 heterodimers. 69 -212470 cd01723 LSm4 Like-Sm protein 4. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 76 -212471 cd01724 Sm_D1 Sm protein D1. The eukaryotic Sm proteins (B/B', D1, D2, D3, E, F and G) assemble into a hetero-heptameric ring around the Sm site of the 2,2,7-trimethyl guanosine (m3G) capped U1, U2, U4 and U5 snRNAs (Sm snRNAs) forming the core of the snRNP particle. The snRNP particle, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm subunit D1 heterodimerizes with subunit D2 and three such heterodimers form a hexameric ring structure with alternating D1 and D2 subunits. The D1 - D2 heterodimer also assembles into a heptameric ring containing DB, D3, E, F, and G subunits. 92 -212472 cd01725 LSm2 Like-Sm protein 2. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 89 -212473 cd01726 LSm6 Like-Sm protein 6. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 68 -212474 cd01727 LSm8 Like-Sm protein 8. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 91 -212475 cd01728 LSm1 Like-Sm protein 1. The eukaryotic LSm proteins (LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. Accumulation of uridylated RNAs in an lsm1 mutant suggests an involvement of the LSm1-7 complex in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm1-7, together with Pat1, are also called the decapping activator. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 74 -212476 cd01729 LSm7 Like-Sm protein 7. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. LSm657 is believed to be an assembly intermediate for both the LSm1-7 and LSm2-8 rings. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 89 -212477 cd01730 LSm3 Like-Sm protein 3. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 82 -212478 cd01731 archaeal_Sm1 archaeal Sm protein 1. The archaeal Sm1 proteins: The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. They function to mediate RNA-RNA interactions and RNA biogenesis. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Eukaryotic Sm proteins form part of specific small nuclear ribonucleoproteins (snRNPs) that are involved in the processing of pre-mRNAs to mature mRNAs, and are a major component of the eukaryotic spliceosome. Most snRNPs consist of seven Sm proteins (B/B', D1, D2, D3, E, F and G) arranged in a ring on a uridine-rich sequence (Sm site), plus a small nuclear RNA (snRNA) (either U1, U2, U5 or U4/6). Since archaebacteria do not have any splicing apparatus, their Sm proteins may play a more general role. Archaeal LSm proteins are likely to represent the ancestral Sm domain. 69 -212479 cd01732 LSm5 Like-Sm protein 5. The eukaryotic LSm proteins (LSm2-8 or LSm1-7) assemble into a hetero-heptameric ring around the 3'-terminus uridylation tag of the gamma-methyl triphosphate (gamma-m-P3) capped U6 snRNA. LSm2-8 form the core of the snRNP particle that, in turn, assembles with other components onto the pre-mRNA to form the spliceosome which is responsible for the excision of introns and the ligation of exons. LSm1-7 is involved in recognition of the 3' uridylation tag and recruitment of the decapping machinery. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. 76 -212480 cd01733 LSm10 Like-Sm protein 10. The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. LSm10 is an SmD1-like protein which is thought to bind U7 snRNA along with LSm11 and five other Sm subunits to form a 7-membered ring structure. LSm10 and the U7 snRNP of which it is a part are thought to play an important role in histone mRNA 3' processing. 78 -212481 cd01734 YlxS_C Bacillus subtilis YxlS-like, C-terminal domain. YxlS is a Bacillus subtilis gene of unknown function with two domains that each have an alpha/beta fold. The N-terminal domain is composed of two alpha-helices and a three-stranded beta-sheet, while the C-terminal domain is composed of one alpha-helix and a five-stranded beta-sheet. This CD represents the C-terminal domain which has a fold similar to the Sm fold of proteins like Sm-D3. 72 -212482 cd01735 LSm12_N Like-Sm protein 12, N-terminal domain. LSm12 belongs to a family of Sm-like proteins that associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet that associates with other Sm proteins to form hexameric and heptameric ring structures. In addition to the N-terminal Sm-like domain, LSm12 has a novel methyltransferase domain. 61 -212483 cd01736 LSm14_N Like-Sm protein 14, N-terminal domain. LSm14 (also known as RAP55) belongs to a family of Sm-like proteins that associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet, that associates with other Sm proteins to form hexameric and heptameric ring structures. In addition to the N-terminal Sm-like domain, LSm14 has an uncharacterized C-terminal domain containing a conserved DFDF box. In Xenopus laevis, LSm14 is an oocyte-specific constituent of ribonucleoprotein particles. 74 -212484 cd01737 LSm16_N Like-Sm protein 16, N-terminal domain. LSm16 (also known as enhancer of decapping-3 or EDC3) has been shown to be associated with an mRNA-decapping complex Dcp1-Dcp2, required for removal of the 5-prime cap from mRNA prior to its degradation from the 5-prime end. EDC3 is believed to be a scaffold for decapping complex formation. It belongs to a family of Sm-like proteins that associate with RNA to form complexes involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold, containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet, that associates with other Sm proteins to form hexameric and heptameric ring structures. LSm16 has, in addition to its N-terminal Sm-like domain, a C-terminal Yjef_N-type Rossmann fold domain of unknown function. 65 -212485 cd01739 LSm11_M Like-Sm protein 11, middle domain. The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. LSm11 is an SmD2-like subunit which binds U7 snRNA along with LSm10 and five other Sm subunits to form a 7-membered ring structure. LSm11 and the U7 snRNP of which it is a part are thought to play an important role in histone mRNA 3' processing. 63 -153211 cd01740 GATase1_FGAR_AT Type 1 glutamine amidotransferase (GATase1)-like domain found in Formylglycinamide ribonucleotide amidotransferase. Type 1 glutamine amidotransferase (GATase1)-like domain found in Formylglycinamide ribonucleotide amidotransferase (FGAR-AT). FGAR-AT catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, Pi, and glutamate in the fourth step of the purine biosynthetic pathway. FGAR-AT is a glutamine amidotransferase. Glutamine amidotransferase activity catalyses the transfer of ammonia from the amide side chain of glutamine to an acceptor substrate. FGAR-AT belongs to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site 238 -153212 cd01741 GATase1_1 Subgroup of proteins having the Type 1 glutamine amidotransferase (GATase1) domain. This group contains a subgroup of proteins having the Type 1 glutamine amidotransferase (GATase1) domain. GATase activity catalyses the transfer of ammonia from the amide side chain of glutamine to an acceptor substrate. Glutamine amidotransferases (GATase) includes the triad family of amidotransferases which have a conserved Cys-His-Glu catalytic triad in the glutaminase active site. In this subgroup this triad is conserved. GATase activity can be found in a range of biosynthetic enzymes, including: glutamine amidotransferase, formylglycinamide ribonucleotide, GMP synthetase , anthranilate synthase component II, glutamine-dependent carbamoyl phosphate synthase, cytidine triphosphate synthetase, gamma-glutamyl hydrolase, imidazole glycerol phosphate synthase and, cobyric acid synthase. Glutamine amidotransferase (GATase) domains can occur either as single polypeptides, as in glutamine amidotransferases, or as domains in a much larger multifunctional synthase protein, such as CPSase. 188 -153213 cd01742 GATase1_GMP_Synthase Type 1 glutamine amidotransferase (GATase1) domain found in GMP synthetase. Type 1 glutamine amidotransferase (GATase1) domain found in GMP synthetase. GMP synthetase is a glutamine amidotransferase from the de novo purine biosynthetic pathway. Glutamine amidotransferase (GATase) activity catalyse the transfer of ammonia from the amide side chain of glutamine to an acceptor substrate. GMP synthetase catalyses the amination of the nucleotide precursor xanthosine 5'-monophospahte to form GMP. GMP synthetase belongs to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site. 181 -153214 cd01743 GATase1_Anthranilate_Synthase Type 1 glutamine amidotransferase (GATase1) domain found in Anthranilate synthase. Type 1 glutamine amidotransferase (GATase1) domain found in Anthranilate synthase (ASase). This group contains proteins similar to para-aminobenzoate (PABA) synthase and ASase. These enzymes catalyze similar reactions and produce similar products, PABA and ortho-aminobenzoate (anthranilate). Each enzyme is composed of non-identical subunits: a glutamine amidotransferase subunit (component II) and a subunit that produces an aminobenzoate products (component I). ASase catalyses the synthesis of anthranilate from chorismate and glutamine and is a tetrameric protein comprising two copies each of components I and II. Component II of ASase belongs to the family of triad GTases which hydrolyze glutamine and transfer nascent ammonia between the active sites. In some bacteria, such as Escherichia coli, component II can be much larger than in other organisms, due to the presence of phosphoribosyl-anthranilate transferase (PRTase) activity. PRTase catalyses the second step in tryptophan biosynthesis and results in the addition of 5-phosphoribosyl-1-pyrophosphate to anthranilate to create N-5'-phosphoribosyl-anthranilate. In E.coli, the first step in the conversion of chorismate to PABA involves two proteins: PabA and PabB which co-operate to transfer the amide nitrogen of glutamine to chorismate forming 4-amino-4 deoxychorismate (ADC). PabA acts as a glutamine amidotransferase, supplying an amino group to PabB, which carries out the amination reaction. A third protein PabC then mediates elimination of pyruvate and aromatization to give PABA. Several organisms have bipartite proteins containing fused domains homologous to PabA and PabB commonly called PABA synthases. These hybrid PABA synthases may produce ADC and not PABA. 184 -153215 cd01744 GATase1_CPSase Small chain of the glutamine-dependent form of carbamoyl phosphate synthase, CPSase II. This group of sequences represents the small chain of the glutamine-dependent form of carbamoyl phosphate synthase, CPSase II. CPSase II catalyzes the production of carbomyl phosphate (CP) from bicarbonate, glutamine and two molecules of MgATP. The reaction is believed to proceed by a series of four biochemical reactions involving a minimum of three discrete highly reactive intermediates. The synthesis of CP is critical for the initiation of two separate biosynthetic pathways. In one CP is coupled to aspartate, its carbon and nitrogen nuclei ultimately incorporated into the aromatic moieties of pyrimidine nucleotides. In the second pathway CP is condensed with ornithine at the start of the urea cycle and is utilized for the detoxification of ammonia and biosynthesis of arginine. CPSases may be encoded by one or by several genes, depending on the species. The E.coli enzyme is a heterodimer consisting of two polypeptide chains referred to as the small and large subunit. Ammonia an intermediate during the biosynthesis of carbomyl phosphate produced by the hydrolysis of glutamine in the small subunit of the enzyme is delivered via a molecular tunnel between the remotely located carboxyphosphate active site in the large subunit. CPSase IIs belong to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site. This group also contains the sequence from the mammalian urea cycle form which has lost the active site Cys, resulting in an ammonia-dependent form, CPSase I. 178 -153216 cd01745 GATase1_2 Subgroup of proteins having the Type 1 glutamine amidotransferase (GATase1) domain. This group contains a subgroup of proteins having the Type 1 glutamine amidotransferase (GATase1) domain. GATase activity catalyses the transfer of ammonia from the amide side chain of glutamine to an acceptor substrate. Glutamine amidotransferases (GATase) includes the triad family of amidotransferases which have a conserved Cys-His-Glu catalytic triad in the glutaminase active site. In this subgroup this triad is conserved. GATase activity can be found in a range of biosynthetic enzymes, including: glutamine amidotransferase, formylglycinamide ribonucleotide, GMP synthetase , anthranilate synthase component II, glutamine-dependent carbamoyl phosphate synthase, cytidine triphosphate synthetase, gamma-glutamyl hydrolase, imidazole glycerol phosphate synthase and, cobyric acid synthase. Glutamine amidotransferase (GATase) domains can occur either as single polypeptides, as in glutamine amidotransferases, or as domains in a much larger multifunctional synthase protein, such as CPSase. 189 -153217 cd01746 GATase1_CTP_Synthase Type 1 glutamine amidotransferase (GATase1) domain found in Cytidine Triphosphate Synthetase. Type 1 glutamine amidotransferase (GATase1) domain found in Cytidine Triphosphate Synthetase (CTP). CTP is involved in pyrimidine ribonucleotide/ribonucleoside metabolism. CTPs produce CTP from UTP and glutamine and regulate intracellular CTP levels through interactions with four ribonucleotide triphosphates. The enzyme exists as a dimer of identical chains that aggregates as a tetramer. CTP is derived form UTP in three separate steps involving two active sites. In one active site, the UTP O4 oxygen is activated by Mg-ATP-dependent phosphorylation, followed by displacement of the resulting 4-phosphate moiety by ammonia. At a separate site, ammonia is generated via rate limiting glutamine hydrolysis (glutaminase) activity. A gated channel that spans between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. CTPs belong to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site. 235 -153218 cd01747 GATase1_Glutamyl_Hydrolase Type 1 glutamine amidotransferase (GATase1) domain found in gamma-Glutamyl Hydrolase. Type 1 glutamine amidotransferase (GATase1) domain found in gamma-Glutamyl Hydrolase. gamma-Glutamyl Hydrolase catalyzes the cleavage of the gamma-glutamyl chain of folylpoly-gamma-glutamyl substrates and is a central enzyme in folyl and antifolyl poly-gamma-glutamate metabolism. GATase activity involves the removal of the ammonia group from a glutamate molecule and its subsequent transfer to a specific substrate, thus creating a new carbon-nitrogen group on the substrate. gamma-Glutamyl hydrolases belong to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site. 273 -153219 cd01748 GATase1_IGP_Synthase Type 1 glutamine amidotransferase (GATase1) domain found in imidazole glycerol phosphate synthase (IGPS). Type 1 glutamine amidotransferase (GATase1) domain found in imidazole glycerol phosphate synthase (IGPS). IGPS incorporates ammonia derived from glutamine into N1-[(5'-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to form 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR) and imidazole glycerol phosphate (IGP). The glutamine amidotransferase domain generates the ammonia nucleophile which is channeled from the glutaminase active site to the PRFAR active site. IGPS belong to the triad family of amidotransferases having a conserved Cys-His-Glu catalytic triad in the glutaminase active site. 198 -153220 cd01749 GATase1_PB Glutamine Amidotransferase (GATase_I) involved in pyridoxine biosynthesis. Glutamine Amidotransferase (GATase_I) involved in pyridoxine biosynthesis. Glutamine amidotransferase (GATase) activity involves the removal of the ammonia group from a glutamate molecule and its subsequent transfer to a specific substrate, thus creating a new carbon-nitrogen group on the substrate. This group contains proteins like Bacillus subtilus YaaE and Plasmodium falciparum Pdx2 which are members of the triad glutamine aminotransferase family and function in a pathway for the biosynthesis of vitamin B6. 183 -153221 cd01750 GATase1_CobQ Type 1 glutamine amidotransferase (GATase1) domain found in Cobyric Acid Synthase (CobQ). Type 1 glutamine amidotransferase (GATase1) domain found in Cobyric Acid Synthase (CobQ). CobQ plays a role in cobalamin biosythesis. CobQ catalyses amidations at positions B, D, E, and G on adenosylcobyrinic A,C-diamide in the biosynthesis of cobalamin. CobQ belongs to the triad family of amidotransferases. Two of the three residues of the catalytic triad that are involved in glutamine binding, hydrolysis and transfer of the resulting ammonia to the acceptor substrate in other triad aminodotransferases are conserved in CobQ. 194 -238849 cd01751 PLAT_LH2 PLAT/ LH2 domain of plant lipoxygenase related proteins. Lipoxygenases are nonheme, nonsulfur iron dioxygenases that act on lipid substrates containing one or more (Z,Z)-1,4-pentadiene moieties. In plants, the immediate products are involved in defense mechanisms against pathogens and may be precursors of metabolic regulators. The generally proposed function of PLAT/LH2 domains is to mediate interaction with lipids or membrane bound proteins. 137 -238850 cd01752 PLAT_polycystin PLAT/LH2 domain of polycystin-1 like proteins. Polycystins are a large family of membrane proteins composed of multiple domains, present in fish, invertebrates, mammals, and humans that are widely expressed in various cell types and whose biological functions remain poorly defined. In human, mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2) have been shown to be the cause for autosomal dominant polycystic kidney disease (ADPKD). The generally proposed function of PLAT/LH2 domains is to mediate interaction with lipids or membrane bound proteins. 120 -238851 cd01753 PLAT_LOX PLAT domain of 12/15-lipoxygenase. As a unique subfamily of the mammalian lipoxygenases, they catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Both types of enzymes are cytosolic but need this domain to access their sequestered membrane or micelle bound substrates. 113 -238852 cd01754 PLAT_plant_stress PLAT/LH2 domain of plant-specific single domain protein family with unknown function. Many of its members are stress induced. In general, PLAT/LH2 consists of an eight stranded beta-barrel and it's proposed function is to mediate interaction with lipids or membrane bound proteins. 129 -238853 cd01755 PLAT_lipase PLAT/ LH2 domain present in connection with a lipase domain. This family contains two major subgroups, the lipoprotein lipase (LPL) and the pancreatic triglyceride lipase. LPL is a key enzyme in catabolism of plasma lipoprotein triglycerides (TGs). The central role of triglyceride lipases is in energy production. In general, PLAT/LH2 domain's proposed function is to mediate interaction with lipids or membrane bound proteins. 120 -238854 cd01756 PLAT_repeat PLAT/LH2 domain repeats of family of proteins with unknown function. In general, PLAT/LH2 consists of an eight stranded beta-barrel and it's proposed function is to mediate interaction with lipids or membrane bound proteins. 120 -238855 cd01757 PLAT_RAB6IP1 PLAT/LH2 domain present in RAB6 interacting protein 1 (Rab6IP1)_like family. PLAT/LH2 domains consists of an eight stranded beta-barrel. In RabIP1 this domain may participate in lipid-mediated modulation of Rab6IP1's function via it's generally proposed function of mediating interaction with lipids or membrane bound proteins. 114 -238856 cd01758 PLAT_LPL PLAT/ LH2 domain present in lipoprotein lipase (LPL). LPL is a key enzyme in catabolism of plasma lipoprotein triglycerides (TGs) and has therefeore has a profound influence on triglyceride and high-density lipoprotein (HDL) cholesterol levels in the blood. In general, PLAT/LH2 domain's proposed function is to mediate interaction with lipids or membrane bound proteins. 137 -238857 cd01759 PLAT_PL PLAT/LH2 domain of pancreatic triglyceride lipase. Lipases hydrolyze phospholipids and triglycerides to generate fatty acids for energy production or for storage and to release inositol phosphates that act as second messengers. The central role of triglyceride lipases is in energy production. The proposed function of PLAT/LH2 domains is to mediate interaction with lipids or membrane bound proteins. 113 -340461 cd01760 RBD Ras-binding domain (RBD), structurally similar to a beta-grasp ubiquitin-like fold. The RBD of the serine/threonine kinase Raf is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. A Raf-like RBD is also present in Regulator of G protein Signaling (RGS12 and RGS14) members of GTPase activating proteins. 71 -340462 cd01763 Ubl_SUMO_like ubiquitin-like (Ubl) domain found in small ubiquitin-related modifier (SUMO) and similar proteins. SUMO (also known as "Smt3" and "sentrin" in other organisms) resembles ubiquitin (Ub) in structure, ligation to other proteins, and the mechanism of ligation. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of Ub and the epsilon-amino group of a substrate lysine. SUMOs, like Ub, are covalently conjugated to lysine residues in a wide variety of target proteins in eukaryotic cells and regulate numerous cellular processes, such as transcription, epigenetic gene control, genomic instability, and protein degradation. The mammalian SUMOs have four paralogs, SUMO1 through SUMO4, which all regulate different cellular functions by conjugating to different proteins. SUMO2-4 are more closely related to each other than to SUMO1. 72 -340463 cd01764 Ubl_Urm1 ubiquitin-like (Ubl) domain found in ubiquitin-related modifier 1 (Urm1). Urm1 acts as a sulfur carrier in the thiolation of eukaryotic tRNA via a mechanism that requires the formation of a thiocarboxylated Urm1, which is similar to that of prokaryotic sulfur carrier proteins such as ThiS and MoaD, containing the beta-grasp ubiquitin-like (Ubl) fold. Urm1 can be covalently conjugated to lysine residues of other proteins through a mechanism involving the E1-like protein Uba4. Urm1 is involved in yeast bioprocesses such as budding, nutrient sensing, high temperature sensitivity, antioxidant stress response and post-translation modification of the elongator subunit. 94 -340464 cd01765 FERM_F0_F1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found in FERM (Four.1/Ezrin/Radixin/Moesin) family proteins. FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling functions. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N), which is structurally similar to ubiquitin. 80 -340465 cd01766 Ubl_UFM1 ubiquitin-like (Ubl) domain found in ubiquitin fold modifier 1 (UFM1). UFM1 belongs to the ubiquitin-like protein family with similar ubiquitin beta-grasp folds and mechanism of ligation to other proteins. UFM1 is present in nearly all eukaryotic organisms except fungi. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The UNF1 cascade has been implicated in endoplasmic reticulum functions, cell cycle control and cell differentiation. The involvement of the UFM1 cascade in diseases is diverse; reports include its involvement in ischemic heart diseases, diabetes, gastric lesions, schizophrenia, hip dysplasia and cancer. 75 -340466 cd01767 UBX Ubiquitin regulatory domain X (UBX) structurally similar to a beta-grasp ubiquitin-like fold. The UBXD family of proteins contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. Members in this family function as cofactors of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. Based on domain composition, UBXD proteins can be divided into two main groups, with and without ubiquitin-associated (UBA) domain. 74 -340467 cd01768 RA_FERM_F0_F1_like Ras-associating (RA) domain, FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0/F1 sub-domain, structurally similar to a beta-grasp ubiquitin-like fold. RA domain-containing proteins function by interacting, directly or indirectly, with Ras proteins and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras protein is a small GTPase that is involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon. The FERM domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, also known as the N-terminal Ubl-like structural domain of the FERM domain (FERM_N), which is structurally similar to Ub. Some FERM domain-containing proteins contain an N-terminal region, which also has the beta-grasp Ub-like fold, precedes the FERM domain and has been referred to as the F0 domain. 110 -340468 cd01770 UBX_UBXN2 Ubiquitin regulatory domain X (UBX) found in UBX domain-containing proteins UBXN2A, UBXN2B, NSFL1C/UBXN2C, and similar proteins. This family includes UBX domain-containing proteins UBXN2A, UBXN2B, and NSFL1C/UBXN2C, which contain a SEP (Saccharomyces cerevisiae Shp1, Drosophila melanogaster eyes closed gene (eyc), and vertebrate p47) domain, and a ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold at the C-terminus. UBX domain participates broadly in the regulation of protein degradation. UBXN2A, UBXN2B, and UBXN2C function as the adaptor proteins of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. 71 -340469 cd01771 UBX_UBXN3A Ubiquitin regulatory domain X (UBX) found in FAS associated factor 1 (FAF1, also known as UBXN3A) and similar proteins. UBX domain-containing protein 3A (UBXN3A),also termed UBX domain-containing protein 12 (UBXD12), or FAF1, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, FAF1 contains two tandem ubiquitin-like (Ubl) domains, which shows high structural similarity with UBX domain. FAF1 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The FAF1-p97 complex inhibits the proteasomal protein degradation in which p97 acts as a co-chaperone. Moreover, FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. This family corresponds to UBX domain. 80 -340470 cd01772 UBX_UBXN1 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 1 (UBXN1) and similar proteins. UBXN1, also termed SAPK substrate protein 1 (SAKS1), UBA/UBX 33.3 kDa protein (Y33K), or UBXD10, is a widely expressed protein containing an N-terminal ubiquitin-associated (UBA) domain, a coiled-coil region, and a C-terminal ubiquitin-like (Ubl or UBX) domain that has a beta-grasp ubiquitin-like fold without the C-terminal double glycine motif. UBXN1 has been identified as a substrate for stress-activated protein kinases (SAPKs). It binds polyubiquitin and valosin-containing protein (VCP), suggesting a role as an adaptor that directs VCP to polyubiquitinated proteins facilitating its destruction by the proteasome. In addition, UBXN1 specifically binds to Homer2b. It may also interact with ubiquitin (Ub) and be involved in the Ub-proteasome proteolytic pathways. UBXN1 can also associate with autoubiquitinated BRCA1 tumor suppressor and inhibit its enzymatic function through its UBA domains. 81 -340471 cd01773 UBX_UBXN7 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 7 (UBXN7) and similar proteins. UBXN7, also termed UBX domain-containing protein 7 (UBXD7), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN7 functions as a ubiquitin-binding adaptor that mediates the interaction between the AAA+ ATPase p97 (also known as VCP or Cdc48) and the transcription factor HIF1-alpha. It binds only to the active, NEDD8- or Rub1-modified form of cullins. In addition to having a UBX domain, UBXD7 contains a ubiquitin-associated (UBA), ubiquitin-associating (UAS), and ubiquitin-interacting motif (UIM) domains. Either UBA or UIM could serve as a docking site for neddylated-cullins. UBA domain is required for binding ubiquitylated-protein substrates, while the UIM motif is responsible for the binding to cullin RING ligases (CRLs), and the UBX domain is essential for p97 binding. 76 -340472 cd01774 UBX_UBXN8 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 8 (UBXN8) and similar proteins. UBXN8, also termed reproduction 8 protein (Rep8), or UBX domain-containing protein 6 (UBXD6), or D8S2298E, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN8 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. UBXN8 is a transmembrane protein that localizes to the endoplasmic reticulum (ER) membrane with its UBX domain facing the cytoplasm. It facilitates efficient ER-associated degradation (ERAD) by tethering p97 to the ER membrane. 76 -340473 cd01775 RA_PHLPP_like Ras-associating (RA) domain found in PH domain leucine-rich repeat-containing protein phosphatases, fungal adenylate cyclase, and similar proteins. PHLPP represents a novel family of Ser/Thr protein phosphatases, which is involved in two key signaling pathways, the phosphatidylinositol 3-kinase and diacylglycerol signaling pathways, by directly dephosphorylating and inactivating Akt serine-threonine kinases (Akt1, Akt2, Akt3) and protein kinase C (PKC) isoforms. PHLPP contains a putative Ras-associating (RA) domain followed by a pleckstrin homology (PH) domain, a series of leucine-rich repeats and a protein phosphatase 2C (PP2C) domain. Fungal adenylate cyclase regulates developmental processes such as hyphal growth, biofilm formation, and phenotypic switching. It plays an essential role in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP. Fungal adenylate cyclase has at least four domains, including an N-terminal adenylate cyclase G-alpha binding domain, a Ras-associating (RA) domain, a middle leucine-rich repeat region, and a catalytic domain. The RA domain of adenylate cyclase post-translationally modifies a small GTPase called Ras, which is involved in cellular signal transduction. The activity of adenylate cyclase is stimulated directly by regulatory proteins (Ras1 and Gpa2), peptidoglycan fragments and carbon dioxide. 99 -340474 cd01776 RA_Rin Ras-associating (RA) domain of Ras and Rab interactor (Rin) protein family. Family of Ras-interaction/interference (Rin) proteins, also known as Ras and Rab interactors, is composed of Rin1, Rin2, and Rin3, which have multifunctional domains, including SH2 and proline-rich domains in the N-terminal region, and RH, VPS9, and RA domains in the C-terminal region. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The RA domains of Rin1, Rin2, and Rin3 are well conserved and they all have Ras binding characteristics. 90 -340475 cd01777 FERM_F1_SNX27 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in sorting nexin protein 27 (SNX27). SNX27 is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. In addition to a PX (Phox homology) domain that regulates its endosomal localization, SNX27 has a unique PDZ (Psd-95/Dlg/ZO1) domain and an atypical FERM (4.1, ezrin, radixin, moesin) domain that both function to bind short peptide sequence motifs in the cytoplasmic domains of the cargo receptors. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 92 -340476 cd01778 RA_RASSF1_like Ras-associating (RA) domain found in Ras-association domain family members, RASSF1, RASSF3, and RASSF5. The RASSF family of proteins shares a conserved RalGDS/AF6 Ras association (RA) domain which is located either at the C-terminus (RASSF1-6, the classical group) or at the N-terminus (RASSF7-10). RASSF1-6 contains a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that functions in scaffolding and regulatory interactions. The RA domain of the classical RASSF proteins has a beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. Classical RASSF members interact either directly or indirectly with activated Ras. Ras proteins are small GTPases that are involved in cellular signal transduction. The classical RASSF proteins seem to modulate some of the growth inhibitory responses mediated by Ras and may serve as tumor suppressor genes. This family contains RASSF1, RASSF3, and RASSF5. 130 -340477 cd01779 RA_Myosin-IX Ras-associating (RA) domain found in Myosin-IX. Myosins IX (Myo9) is a class of unique motor proteins with a common structure of an N-terminal extension preceding a myosin head homologous to the Ras-association (RA) domain, a head (motor) domain, a neck with IQ motifs that bind light chains and a C-terminal tail containing a Rho-GTPase activating protein (RhoGAP) domain. The RA domain is located at its head domain and has the beta-grasp ubiquitin-like fold with unknown function. There are two genes for myosins IX in humans, IXa and IXb, that are different in their expression and localization. IXa is expressed abundantly in brain and testis and IXb is expressed abundantly in tissues of the immune system. 97 -340478 cd01780 RA2_PLC-epsilon Ras-associating (RA) domain 2 found in Phosphatidylinositide-specific phospholipase C (PLC)-epsilon. PLC is a signaling enzyme that hydrolyzes membrane phospholipids to generate inositol triphosphate. PLC-epsilon represents a novel forth class of PLC that has a PLC catalytic core domain, a CDC25 guanine nucleotide exchange factor domain and two RA (Ras-association) domains. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. Although PLC RA1 and RA2 have homologous ubiquitin-like folds only RA2 can bind Ras and activate it. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and involve in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. This family corresponds to the second RA domain of PLC-epsilon. 102 -340479 cd01781 RA2_Afadin Ras-associating (RA) domain 2 found in Afadin. Afadin, also termed ALL1-fused gene from chromosome 6 protein (AF-6), or canoe, is involved in many fundamental signaling cascades in cells. In addition, it is involved in oncogenesis and metastasis. Afadin has multiple domains: from the N-terminus to the C-terminus it has two Ras-associated (RA) domains, a forkhead-associated domain, a dilute domain, a PDZ domain, three proline-rich domains, and an F-actin binding domain. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has a beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Afadin is abundant at cadherin-based adherens junctions in epithelial cells, endothelial cells, and fibroblasts. This family corresponds to the second RA domain of afadin. 102 -340480 cd01782 RA1_Afadin Ras-associating (RA) domain 1 found in Afadin. Afadin, also termed ALL1-fused gene from chromosome 6 protein (AF-6), or canoe, is involved in many fundamental signaling cascades in cells. In addition, it is involved in oncogenesis and metastasis. Afadin has multiple domains: from the N-terminus to the C-terminus it has two Ras-associated (RA) domains, a forkhead-associated domain, a dilute domain, a PDZ domain, three proline-rich domains, and an F-actin-binding domain. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has a beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Afadin is abundant at cadherin-based adherens junctions in epithelial cells, endothelial cells, and fibroblasts. This family corresponds to the first RA domain of afadin, which mediates its self-association. 112 -340481 cd01783 RA2_DAGK-theta Ras-associating (RA) domain 2 found in diacylgylcerol kinase theta (DAGK-theta) and similar proteins. DAGK phosphorylates the second messenger diacylglycerol to phosphatidic acid as part of a protein kinase C pathway. DAGK-theta is characterized as a type V DAGK that has three cysteine-rich domains (all other isoforms have two), a proline/glycine-rich domain at its N-terminal, and a proposed Ras-associating (RA) domain. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has a beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. There are ten mammalian isoforms of DAGK have been identified to date, these are organized into five categories based on the domain architecture. DAGK-theta also contains a pleckstrin homology (PH) domain. The subcellular localization and the activity of DAGK-theta are regulated in a complex (stimulation- and cell type-dependent) manner. This family corresponds to the second RA domain of DAGK-theta. 95 -340482 cd01784 RA_RASSF2_like Ras-associating (RA) domain found in Ras-association domain family members, RASSF2, RASSF4, and RASSF6. The RASSF family of proteins shares a conserved RalGDS/AF6 RA domain either in the C-terminus (RASSF1-6) or N-terminus (RASSF7-10). The classical family members (RASSF1-6) contain a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that functions as scaffolding and regulatory interactions. The RA domain of the classical RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. Classical RASSF members interact either directly or indirectly with activated Ras. Ras proteins are small GTPases that are involved in cellular signal transduction. The classical RASSF protein family seem to modulate some of the growth inhibitory responses mediated by Ras and may serve as tumor suppressor genes. This family contains RASSF2, RASSF4, and RASSF6. 87 -340483 cd01785 RA_PDZ-GEF1 Ras-associating (RA) domain found in PDZ domain-containing guanine nucleotide exchange factor 1 (PDZ-GEF1) and similar proteins. PDZ-GEF1, also termed Rap guanine nucleotide exchange factor 2, or cyclic nucleotide ras GEF (CNrasGEF), or neural RAP guanine nucleotide exchange protein (nRap GEP), or Ras/Rap1-associating GEF-1 (RA-GEF-1), is a Rap-specific guanine nucleotide exchange factor (GEF) that has a PSD-95/DlgA/ZO-1 (PDZ) domain, a RA domain and a region related to a cyclic nucleotide binding domain (RCBD). The RA domain of PDZ-GEF interacts with Rap1 and also contributes to the membrane localization of PDZ-GEF. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and involve in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 85 -340484 cd01786 RA_STE50 Ras-associating (RA) domain found in the fungal adaptor protein STE50. The fungal adaptor protein STE50 is an essential component of three MAPK-mediated signaling pathways that control the mating response, invasive/filamentous growth and osmotolerance (HOG pathway), respectively. STE50 functions in cell signaling between the activated G protein and STE11. The domain architecture of STE50 includes an amino-terminal SAM (sterile alpha motif) domain in addition to the carboxy-terminal ubiquitin-like RA (RAS-associated) domain. RA domain of STE50 interacts with the small GTPase Cdc42p, a member of Rho type of the Ras superfamily. This interaction activates Ste11p/Ste7p/Kss1pMAP kinase cascade that controls filamentous growth. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 101 -340485 cd01787 RA_MRL Ras-associating (RA) domain of Mig10/RIAM/Lpd (MRL) family. MRL proteins share a common structural architecture, including a central structural unit consisting of a Ras-associating (RA) domain and a pleckstrin homology (PH) domain, an upstream coiled-coil region, and a number of polyproline motifs. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RA and PH form a tandem domain pair (RA-PH), and serve tightly coordinated functions in both Ras GTPase signaling via the RA domain and membrane translocalization via the PH domain. MRL proteins have distinct functions in cell migration and adhesion, signaling, and in cell growth. 85 -340486 cd01788 Ubl_ElonginB ubiquitin-like (Ubl) domain found in transcription elongation factor B (Elongin B) and similar proteins. Elongin B, also termed Elongin 18 kDa subunit, or EloB, or RNA polymerase II transcription factor SIII subunit B (SIII p18), is part of an E3 ubiquitin ligase complex called VEC that activates ubiquitination by the E2 ubiquitin-conjugating enzyme Ubc5. VEC is composed of von Hippel-Lindau tumor suppressor protein (pVHL), elongin C, cullin 2, NEDD8, and Rbx1. ElonginB binds elonginC to form the elonginBC complex which is a positive regulator of RNA polymerase II elongation factor Elongin A. The BC complex then binds VHL (von Hippel-Lindau) tumor suppressor protein to form a VCB ternary complex. Elongin B has a ubiquitin-like (Ubl) domain. Ub has a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. 101 -340487 cd01789 Ubl_TBCB ubiquitin-like (Ubl) domain found in tubulin-folding cofactor B (TBCB) and similar proteins. TBCB, also termed cytoskeleton-associated protein 1, or cytoskeleton-associated protein CKAPI, or tubulin-specific chaperone B, is one of protein cofactors A through E that is required for the folding of tubulins prior to their incorporation into microtubules and heterodimer assembly. TBCB comprises an N-terminal ubiquitin-like (Ubl) domain and a C-terminal cytoskeleton-associated protein with glycine-rich segment (CAP-Gly) domain. The Ubl domain of TBCB is essential for proper folding and assembly of tubulin alpha. It has a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. TBC-A through E are necessary for the biogenesis of microtubules and for cell viability. 80 -340488 cd01790 Ubl_HERP ubiquitin-like (Ubl) domain found in homocysteine-inducible endoplasmic reticulum stress protein HERP. HERP is an endoplasmic reticulum (ER) integral membrane protein containing an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. The Ubl domain is required for the degradation of HERP itself as well as for HERP-mediated anti-apoptotic effects. HERP is induced by the ER stress response pathway and is involved in improving the balance of folding capacity and protein loads in the ER. There are two types of HERP, HERP1 and HERP2, which are encoded by the HERPUD1 and HERPUD2 genes, respectively. 78 -340489 cd01791 Ubl_UBL5 ubiquitin-like (Ubl) domain found in ubiquitin-like protein 5 (UBL5) and similar proteins. UBL5, known as Hub1 in yeast, is an atypical ubiquitin-like (Ubl) post-translational modifier that contains a conserved Ubl domain with a beta-grasp Ubl fold. At the C-terminal end of its Ubl fold is a di-tyrosine motif followed by a single variable residue instead of the characteristic di-glycine found in all other Ubl modifiers, and thus UBL5 does not form covalent conjugates with cellular proteins. The yeast Hub1p binds non-covalently to the HIND element of spliceosomal protein Snu66p (Snu66p is termed SART1 in mammals) and modifies the spliceosome by this unconventional Ubl modifier. In higher eukaryotes, UBL5/Hub1 plays a role in modulating pre-mRNA splicing. It also is required for signaling in the mitochondrial unfolded protein response, through interaction with the transcription factor DVE-1 and upregulation of chaperone genes in response to mitochondrial stress. Moreover, UBL5 functions as a factor that directly binds to and stabilizes FANCI, and promotes the functionality of the Fanconi anemia (FA) DNA repair pathway. 71 -340490 cd01792 Ubl1_ISG15 ubiquitin-like (Ubl) domain 1 found in interferon-stimulated gene 15 (ISG15) and similar proteins. ISG15, also termed interferon-induced 15 kDa protein, or interferon-induced 17 kDa protein (IP17), or ubiquitin cross-reactive protein (UCRP), is an antiviral interferon-induced ubiquitin-like protein (Ubl) that upon viral infection, modifies cellular and viral proteins by mechanisms similar to ubiquitination. Although ISG15 has properties similar to those of other Ubl molecules, it is a unique member of the Ubl superfamily, whose expression and conjugation to target proteins are tightly regulated by specific signaling pathways, indicating it may have specialized functions in the immune system. ISG15 contains two tandem Ubl domains with a beta-grasp Ubl fold. This family corresponds to the first Ubl domain. 75 -340491 cd01793 Ubl_FUBI ubiquitin-like (Ubl) domain found in ubiquitin-like protein FUBI and similar proteins. FUBI is a pro-apoptotic regulatory gene FAU encoding ubiquitin-like protein with ribosomal protein S30 as a C-terminal extension. FUBI functions as a tumor suppressor protein that may be involved in the ATP-dependent proteolytic activity of ubiquitin. The N-terminal ubiquitin-like (Ubl) domain of FUBI has the beta-grasp Ubl fold, and it may act as a substitute or an inhibitor of ubiquitin or one of ubiquitin's close relatives UCRP, FAT10, and Nedd8. 74 -340492 cd01794 Ubl_UBTD ubiquitin-like (Ubl) domain found in ubiquitin domain-containing proteins UBTD1, UBTD2, and similar proteins. This family represents a group of ubiquitin-like (Ubl) domain-containing proteins evolutionarily conserved and found in metazoa, fungi, and plants. They may regulate the activity and/or specificity of E2 ubiquitin conjugating enzymes belonging to the UBE2D family. Members in this family contain an N-terminal ubiquitin binding domain (UBD) and a C-terminal Ubl domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 69 -340493 cd01795 Ubl_USP48 ubiquitin-like (Ubl) domain found in ubiquitin-specific-processing protease 48 (USP48) and similar proteins. USP48, also termed USP31, or deubiquitinating enzyme 48, or ubiquitin thioesterase 48, or ubiquitin carboxyl-terminal hydrolase 48, belongs to the ubiquitin specific protease (USP) family that is one of at least seven deubiquitylating enzyme (DUB) families capable of deconjugating ubiquitin (Ub)and ubiquitin-like (Ubl) adducts. While the USP proteins have a conserved catalytic core domain, USP48 differs in its domain architecture. It contains an N-terminal USP domain, three DUSP (domain present in ubiquitin-specific protease) domains, and a C-terminal Ubl domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. USP48 is a deubiquitinating enzyme that interacts with TNF receptor-associated factor 2 (TRAF2) and has been implicated in activation of nuclear factor-kappaB (NF-kappaB). Moreover, as a nuclear deubiquitinase regulated by casein kinase 2 (CK2), USP48 controls the ubiquitin/proteasome-system (UPS)-dependent turnover of activated NF-kappaB/RelA in the nucleus together with the COP9 signalosome, suggesting a role of USP48 in a timely control of immune responses. 99 -340494 cd01796 Ubl_Ddi1_like ubiquitin-like (Ubl) domain found in the eukaryotic Ddi1 family. The eukaryotic Ddi1 family, including yeast aspartyl protease DNA-damage inducible 1 (Ddi1) and Ddi1-like proteins from vertebrates and other eukaryotes, has been characterized by containing an N-terminal ubiquitin-like (Ubl) domain and a conserved retroviral aspartyl-protease-like domain (RVP) that is important in cell-cycle control. Yeast Ddi1 and many family members also contain a C-terminal ubiquitin-association (UBA) domain, however, Ddi1-like proteins from all vertebrates lack the UBA domain. Ddi1, also termed v-SNARE-master 1 (Vsm1), is an ubiquitin receptor involved in the cell cycle and late secretory pathway in Saccharomyces cerevisiae. It functions as an UBA-Ubl shuttle protein that is required for the proteasome to enable ubiquitin-dependent degradation of its ligands. For instance, Ddi1 plays an essential role in the final stages of proteasomal degradation of Ho endonuclease and of its cognate FBP, Ufo1. Moreover, Ddi1 and its associated protein Rad23p play a cooperative role as negative regulators in yeast PHO pathway. This family also includes mammalian regulatory solute carrier protein family 1 member 1 (RSC1A1), also termed transporter regulator RS1 (RS1), which mediates transcriptional and post-transcriptional regulation of Na(+)-D-glucose cotransporter SGLT1. Ddi1-like proteins play a significant role in cell cycle control, growth control, and trafficking in yeast and may play a crucial role in embryogenesis in higher eukaryotes. 73 -340495 cd01797 Ubl_UHRF ubiquitin-like (Ubl) domain found in ubiquitin-like PHD and RING finger domain-containing proteins, UHRF1 and UHRF2, and similar proteins. UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma, gastric cancer, esophageal squamous cell carcinoma, colorectal cancer, prostate cancer, and breast cancer. UHRF1 can acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumor suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) through interacting with HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (Ubl), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a set- and ring-associated (SRA) domain, and a C-terminal RING finger. 74 -340496 cd01798 Ubl_parkin ubiquitin-like (Ubl) domain found in parkin and similar proteins. Parkin, also termed Parkinson juvenile disease protein 2, is a RBR-type E3 ubiquitin-protein ligase that is associated with recessive early onset Parkinson's disease (PD), and exerts a protective effect against dopamine-induced alpha-synuclein-dependent cell toxicity. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Parkin functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746 and AIMP2. It mediates monoubiquitination as well as Lys-6-, Lys-11-, Lys-48- and Lys-63-linked polyubiquitination of substrates depending on the context. Parkin may enhance cell viability and protects dopaminergic neurons from oxidative stress-mediated death by regulating mitochondrial function. It also limits the production of reactive oxygen species (ROS), and regulates cyclin-E during neuronal apoptosis. Moreover, parkin displays a ubiquitin ligase-independent function in transcriptional repression of p53. Parkin contains an N-terminal ubiquitin-like (Ubl) domain and a C-terminal RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. 74 -340497 cd01799 Ubl_HOIL1 ubiquitin-like (Ubl) domain found in heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1) and similar proteins. HOIL-1, also termed RBCK1, or HOIL-1L, or RanBP-type and C3HC4-type zinc finger-containing protein 1, HBV-associated factor 4, or Hepatitis B virus X-associated protein 4, or RING finger protein 54 (RNF54), or ubiquitin-conjugating enzyme 7-interacting protein 3, or UbcM4-interacting protein 28 (UIP28), together with E3 ubiquitin-protein ligase RNF31 (also known as HOIP) and SHANK-associated RH domain interacting protein (SHARPIN), forms the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis through conjugation of linear polyubiquitin chains to NF-kappaB essential modulator (also known as NEMO or IKBKG). HOIL-1 plays a crucial role in TNF-alpha-mediated NF-kappaB activation. It also functions as an ubiquitin-protein ligase E3 that interacts with not only PKCbeta but also PKCzeta. It can recognize heme-oxidized IRP2 (iron regulatory protein2) and is thought to affect the turnover of oxidatively damaged proteins. HOIL-1 contains an N-terminal ubiqutin-like (UBL) domain and an Npl4 zinc-finger (NZF) domain, which regulate the interaction with the LUBAC subunit RNF31 and ubiquitin, respectively. The NZF domain belongs to RanBP2-type zinc finger (zf-RanBP2) domain superfamily. In addition, HOIL-1 has a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. 81 -340498 cd01800 Ubl_SF3a120 ubiquitin-like (Ubl) domain found in splicing factor 3A 120kDa subunit (SF3a120) and similar proteins. Mammalian splicing factor SF3a consists of three subunits of 60, 66, and 120 kDa and functions early during pre-mRNA splicing by converting the U2 snRNP to its active form. The 120kDa subunit SF3a120, also termed splicing factor 3A subunit 1 (SF3A1), or spliceosome-associated protein 114 (SAP114), is the U2 snRNP-specific protein that is critical for spliceosome assembly and normal splicing events. During splicing, SF3a120, together with the U2 snRNP and other proteins, are recruited to the 3' splicing site to generate the splicing complex A after the recognition of the 3' splicing site. SF3a120 contains two N-terminal SWAP (suppressor-of-white-apricot) domains, referred to collectively as the SURP module, as well as a C-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 84 -340499 cd01801 Ubl_TECR_like ubiquitin-like (Ubl) domain found in trans-2,3-enoyl-CoA reductase (TECR) and similar proteins. This family includes TECR and many TECR-like proteins, such as TECRL. TECR, also termed very-long-chain enoyl-CoA reductase, or synaptic glycoprotein SC2, or TER, or GPSN2, is a synaptic glycoprotein that catalyzes the fourth reaction in the synthesis of very long-chain fatty acids (VLCFA) which is the reduction step of the microsomal fatty acyl-elongation process. Diseases involving perturbations to normal synthesis and degradation of VLCFA (e.g. adrenoleukodystrophy and Zellweger syndrome) have significant neurological consequences. The mammalian TECR P182L mutation causes nonsyndromic mental retardation. Deletion of the yeast TECR (TSC13) homolog is lethal. TECR contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions, as well as a C-terminal catalytic domain. TECRL, also termed steroid 5-alpha-reductase 2-like 2 protein (SRD5A2L2), is associated with life-threatening inherited arrhythmias displaying features of both long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). Both TECR and TECRL contain an N-terminal Ubl domain with a beta-grasp Ubl fold, and a C-terminal catalytic domain. 77 -340500 cd01802 Ubl_ZFAND4 ubiquitin-like (Ubl) domain found in AN1-type zinc finger protein 4 (ZFAND4) and similar proteins. ZFAND4, also termed AN1-type zinc finger and ubiquitin domain-containing protein-like 1 (ANUBL1), may function as an oncogene that promotes proliferation and regulates relevant tumor suppressor genes in gastric cancer, suggesting a role in gastric cancer initiation and progression. ZFAND4contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions, as well as a C-terminal AN1-type zinc finger. Unlike ubiquitin polyproteins and most ubiquitin fusion proteins, the N-terminal Ubl domain of ZFAND4 does not undergo proteolytic processing. 74 -340501 cd01803 Ubl_ubiquitin ubiquitin-like (Ubl) domain found in ubiquitin. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of ubiquitin and the epsilon-amino group of a substrate lysine. Ubiquitin-like (Ubl) proteins have similar ubiquitin beta-grasp fold and attach to other proteins in a Ubl manner but with biochemically distinct roles. Ubiquitin (Ub)and Ubl proteins conjugate and deconjugate via ligases and peptidases to covalently modify target polypeptides. Ub includes Ubq/RPL40e and Ubq/RPS27a fusions as well as homopolymeric multiubiquitin protein chains. 76 -340502 cd01804 Ubl_midnolin ubiquitin-like (Ubl) domain found in midnolin and similar proteins. Midnolin, also termed midbrain nucleolar protein, is a nucleolar protein that may be involved in regulation of genes related to neurogenesis in the nucleolus. It is strongly expressed at the mesencephalon (midbrain) of the embryo in day 12.5 (E12.5) mice and its expression is developmentally regulated. Midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells. It can also control development via regulation of mRNA transport in cells. Midnolin contains an N-terminal conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 70 -340503 cd01805 Ubl_Rad23 ubiquitin-like (Ubl) domain found in the Rad23 protein family. The Rad23 family includes the yeast nucleotide excision repair (NER) proteins, Rad23p (in Saccharomyces cerevisiae) and Rhp23p (in Schizosaccharomyces pombe), their mammalian orthologs HR23A and HR23B, and putative DNA repair proteins from plants. Rad23 proteins play dual roles in DNA repair as well as in proteosomal degradation. They have affinity for both the proteasome and ubiquitinylated proteins and participate in translocating polyubiquitinated proteins to the proteasome. Rad23 proteins carry an ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, and two ubiquitin-associated (UBA) domains, as well as a xeroderma pigmentosum group C (XPC) protein-binding domain. The Ubl domain is responsible for the binding to proteasome. The UBA domains are important for binding of ubiquitin (Ub) or multi-ubiquitinated substrates, which suggests Rad23 proteins might be involved in certain pathways of Ub metabolism. Both the Ubl domain and the XPC-binding domain are necessary for efficient NER function of Rad23 proteins. 72 -340504 cd01806 Ubl_NEDD8 ubiquitin-like (Ubl) domain found in neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) and similar proteins. NEDD8, also termed Neddylin, or RELATED TO UBIQUITIN (RUB/Rub1p) in plant and yeast, is a ubiquitin-like protein that conjugates to nuclear proteins in a manner analogous to ubiquitination and sentrinization. It modifies a family of molecular scaffold proteins called cullins that are responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. NEDD8 deamidation and its inhibition of Cullin-RING ubiquitin ligases (CRLs) activity are responsible for Cycle-inhibiting factor (Cif)/Cif homolog in Burkholderia pseudomallei (CHBP)-induced cytopathic effect. NEDD8 contains a single conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. Polyubiquitination, signals for a diverse set of cellular events via different isopeptide linkages formed between the C terminus of one ubiquitin (Ub) and the epsilon-amine of K6, K11, K27, K29, K33, K48, or K63 of a second Ub. Ubl NEDD8, contains many of the same lysines (K6, K11, K27, K33, K48) as Ub, where K27 has an role (other than conjugation) in the mechanism of protein neddylation. 74 -340505 cd01807 Ubl_UBL4A_like ubiquitin-like (Ubl) domain found in ubiquitin-like proteins UBL4A and similar proteins. UBL4A, also termed GdX, is a ubiquitously expressed ubiquitin-like (Ubl) protein that forms a complex with partner proteins and participates in the protein processing through endoplasmic reticulum (ER), acting as a chaperone. As a key component of the BCL2-associated athanogene 6 (BAG6) chaperone complex, UBL4A plays a role in mediating DNA damage signaling and cell death. UBL4A also regulates insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Moreover, UBL4A specifically stabilizes the TC45/STAT3 association and promotes dephosphorylation of STAT3 to repress tumorigenesis. UBL4B is testis-specific, and encoded by an X-derived retrogene Ubl4b, which is specifically expressed in post-meiotic germ cells in mammals. As a germ cell-specific cytoplasmic protein, UBL4B is not present in somatic cells. Moreover, UBL4B is present in elongated spermatids, but not in spermatocytes and round spermatids, suggesting its function is restricted to late spermiogenesis. The function of UBL4A may be compensated by either UBL4B or other Ubl proteins in normal conditions. Both UBL4A and UBL4B contain a conserved Ubl domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 72 -340506 cd01808 Ubl_PLICs ubiquitin-like (Ubl) domain found in eukaryotic protein linking integrin-associated protein (IAP, also known as CD47) with cytoskeleton (PLIC) proteins. The PLIC proteins (or ubiquilins) family contains human homologs of the yeast ubiquitin-like (Ubl) Dsk2 protein, PLIC-1 (also termed ubiquilin-1), PLIC-2 (also termed ubiquilin-2, or Chap1), PLIC-3 (also termed ubiquilin-3) and PLIC-4 (also termed ubiquilin-4, ataxin-1 interacting ubiquitin-like protein, A1Up, connexin43-interacting protein of 75 kDa, or CIP75), and mouse PLIC proteins. They are ubiquitin (Ub)-binding adaptor proteins involved in all protein degradation pathways through delivering ubiquitinated substrates to proteasomes. They also promote autophagy-dependent cell survival during nutrient starvation. PLIC-1 regulates the function of the thrombospondin receptor CD47 and G protein signaling. It plays a role in TLR4-mediated signaling through interacting with the Toll/interleukin-1 receptor (TIR) domain of TLR4. It also inhibits the TLR3-Trif antiviral pathway by reducing the abundance of Trif. Moreover, PLIC-1 binds to gamma-aminobutyric acid receptors (GABAARs) and modulates the Ub-dependent, proteasomal degradation of GABAARs. Furthermore, PLIC-1 acts as a molecular chaperone regulating amyloid precursor protein (APP) biosynthesis, trafficking, and degradation by stimulating K63-linked polyubiquitination of lysine 688 in the APP intracellular domain. In addition, PLIC-1 is involved in the protein aggregation-stress pathway via associating with the Ub-interacting motif (UIM) proteins ataxin 3, HSJ1a, and epidermal growth factor substrate 15 (EPS15). PLIC-2 is a protein that binds the ATPase domain of the HSP70-like Stch protein. It functions as a negative regulator of G protein-coupled receptor (GPCR) endocytosis. It also involved in amyotrophic lateral sclerosis (ALS)-related dementia. PLIC-3 is encoded by UbiquilinN3, a testis-specific gene. It shows high sequence similarity with the Xenopus protein XDRP1, a nuclear phosphoprotein that binds to the N-terminus of cyclin A and inhibits Ca2+-induced degradation of cyclin A, but not cyclin B. PLIC-4 is an ubiquitin-like (Ubl) nuclear protein that interacts with ataxin-1 and further links ataxin-1 with the chaperone and Ub-proteasome pathways. It also binds to the non-ubiquitinated gap junction protein connexin43 (Cx43) and regulates the turnover of Cx43 through the proteasomal pathway. PLIC proteins contain an N-terminal Ubl domain that is responsible for the binding of Ub-interacting motifs (UIMs) expressed by proteasomes and endocytic adaptors, and C-terminal Ub-associated (UBA) domain that interacts with Ub chains present on proteins destined for proteasomal degradation. In addition, mammalian PLIC2 proteins have an extra collagen-like motif region, which is absent in other PLIC proteins and the yeast Dsk2 protein. 73 -340507 cd01809 Ubl_BAG6 ubiquitin-like (Ubl) domain found in BCL2-associated athanogene 6 (BAG6) and similar proteins. BAG6, also termed large proline-rich protein BAG6, or BAG family molecular chaperone regulator 6, or HLA-B-associated transcript 3 (Bat3), or protein Scythe, or protein G3, is a nucleo-cytoplasmic shuttling chaperone protein that is highly conserved in eukaryotes. It functions in two distinct biological pathways, ubiquitin-mediated protein degradation of defective polypeptides and tail-anchored transmembrane protein biogenesis in mammals. BAG6 is a component of the heterotrimeric BAG6 sortase complex composed of BAG6, transmembrane recognition complex 35 (TRC35) and ubiquitin-like protein 4A (UBL4A). The BAG6 complex together with the cochaperone small, glutamine-rich, tetratricopeptide repeat-containing, protein alpha (SGTA) plays a role in the biogenesis of tail-anchored membrane proteins and subsequently shown to regulate the ubiquitination and proteasomal degradation of mislocalized proteins. Moreover, BAG6 acts as an apoptotic regulator that binds reaper, a potent apoptotic inducer. BAG6/reaper is thought to signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules. It is also likely a key regulator of the molecular chaperone Heat Shock Protein A2 (HSPA2) stability/function in human germ cells. Furthermore, aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. BAG6 contains a ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, which provides a platform for discriminating substrates with shorter hydrophobicity stretches as a signal for defective proteins. 71 -340508 cd01810 Ubl2_ISG15 ubiquitin-like (Ubl) domain 2 found in interferon-stimulated gene 15 (ISG15) and similar proteins. ISG15, also termed interferon-induced 15 kDa protein, or interferon-induced 17 kDa protein (IP17), or ubiquitin cross-reactive protein (UCRP), is an antiviral interferon-induced ubiquitin-like protein that upon viral infection it modifies cellular and viral proteins by mechanisms similar to ubiquitination. Although ISG15 has properties similar to those of other ubiquitin-like (Ubl) molecules, it is a unique member of the Ubl superfamily, whose expression and conjugation to target proteins are tightly regulated by specific signaling pathways, indicating it may have specialized functions in the immune system. ISG15 contains two tandem Ubl domains with a beta-grasp Ubl fold. This family corresponds to the second Ubl domain. 74 -340509 cd01811 Ubl1_OASL ubiquitin-like (Ubl) domain 1 found in 2'-5'-oligoadenylate synthase-like protein (OASL) and similar proteins. OASL, also termed 2'-5'-OAS-related protein (2'-5'-OAS-RP), or 59 kDa 2'-5'-oligoadenylate synthase-like protein, or thyroid receptor-interacting protein 14, or TR-interacting protein 14 (TRIP-14), or p59 OASL (p59OASL), is an interferon (IFN)-induced antiviral protein that plays an important role in the IFNs-mediated antiviral signaling pathway. It inhibits respiratory syncytial virus replication and is targeted by the viral nonstructural protein 1 (NS1). It also displays antiviral activity against encephalomyocarditis virus (EMCV) and hepatitis C virus (HCV) via an alternative antiviral pathway independent of RNase L. Moreover, OASL does not have 2'-5'-OAS activity, but can bind double-stranded RNA (dsRNA) to enhance RIG-I signaling. OASL belongs to the 2'-5' oligoadenylate synthase (OAS) family. While each member of this family has a conserved N-terminal OAS catalytic domain, only OASL has two tandem C-terminal ubiquitin-like (Ubl) repeats, which is required for its antiviral activity. This family corresponds to the first Ubl domain. 75 -340510 cd01812 Ubl_BAG1 ubiquitin-like (Ubl) domain found in BAG family molecular chaperone regulator 1 (BAG1) and similar proteins. BAG1, also termed Bcl-2-associated athanogene 1, or HAP, is a multifunctional protein involved in a variety of cellular functions such as apoptosis, transcription, and proliferative pathways, as well as in cell signaling and differentiation. It delivers chaperone-recognized unfolded substrates to the proteasome for degradation. BAG1 functions as a co-chaperone for Hsp70/Hsc70 to increase Hsp70 foldase activity. It also suppresses apoptosis and enhances neuronal differentiation. As an anti-apoptotic factor, BAG1 interacts with tau and regulates its proteasomal degradation. It also binds to BCR-ABL with a high affinity, and directly routes immature BCR-ABL for proteasomal degradation. It acts as a potential therapeutic target in Parkinson's disease. It also modulates huntingtin toxicity, aggregation, degradation, and subcellular distribution, suggesting a role in Huntington's disease. There are at least four isoforms of Bag1 protein that are formed by alternative initiation of translation within a common mRNA. BAG1 contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, and a C-terminal BAG domain. 77 -340511 cd01813 Ubl_UBLCP1 ubiquitin-like (Ubl) domain found in ubiquitin-like domain-containing CTD phosphatase 1 (UBLCP1) and similar proteins. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. It is localized in the nucleus and it contains conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, which directly interacts with the proteasome. Knockdown of UBLCP1 in cells promotes 26S proteasome assembly and selectively enhances nuclear proteasome activity. UBLCP1 may also play a role in the regulation of phosphorylation state of RNA polymerase II C-terminal domain, a key event during mRNA metabolism. 74 -340512 cd01814 Ubl_MUBs_plant ubiquitin-like (Ubl) domain found in plant membrane-anchored ubiquitin-fold proteins (MUBs). The plant MUBs belong to a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. They may serve as docking site to facilitate the association of specific E2s to the plasma membrane. MUBs contain a ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. 89 -340513 cd01815 Ubl_UBL7 ubiquitin-like (Ubl) domain found in ubiquitin-like protein 7 (UBL7) and similar proteins. UBL7, also termed bone marrow stromal cell ubiquitin-like (Ubl)protein (BMSC-UbP), or ubiquitin-like protein SB132, is a novel Ubl protein that may play roles in regulation of bone marrow stromal cell (BMSC) function or cell differentiation via an evocator-associated and cell-specific pattern. UBL7 contains an N-terminal Ubl domain with a beta-grasp Ubl fold, and a C-terminal ubiquitin-associated (UBA) domain. The Ubl domain interacts with 26S proteasome-dependent degradation, and the UBA domain links cellular processes and the ubiquitin system. 92 -340514 cd01816 RBD_RAF Ras-binding domain (RBD) found in RAF family serine/threonine kinases. The RAF family includes three RAF serine/threonine kinases ARAF, BRAF, and RAF1/CRAF. These are encoded by proto-oncogenes, and activate the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) cascade downstream of RAS. They share a common structure consisting of an N-terminal regulatory domain and a C-terminal kinase domain. There are three conserved regions (CR1-3) in the regulatory domain, CR1 contains a Ras-binding domain (RBD) and a cysteine-rich domain (CRD), CR2 is a serine/threonine-rich domain, and CR3 encodes the kinase domain required for RAF. The RBD of RAF has a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. 71 -340515 cd01817 RBD1_RGS12_like Ras-binding domain (RBD) 1 of regulator of G protein signaling 12 (RGS12) and similar proteins. Regulator of G protein signaling (RGS) proteins belong to a large family of GTpase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. This RGS12-like subfamily is composed of RGS12 and RGS14, with multidomain architectures including a RGS domain, two tandem Ras-binding domains (RBDs), and a second Galpha interacting domain, the GoLoco motif. The RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. 70 -132836 cd01819 Patatin_and_cPLA2 Patatins and Phospholipases. Patatin-like phospholipase. This family consists of various patatin glycoproteins from plants. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of a lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have also been found in vertebrates. This family also includes the catalytic domain of cytosolic phospholipase A2 (PLA2; EC 3.1.1.4) hydrolyzes the sn-2-acyl ester bond of phospholipids to release arachidonic acid. At the active site, cPLA2 contains a serine nucleophile through which the catalytic mechanism is initiated. The active site is partially covered by a solvent-accessible flexible lid. cPLA2 displays interfacial activation as it exists in both "closed lid" and "open lid" forms. 155 -238858 cd01820 PAF_acetylesterase_like PAF_acetylhydrolase (PAF-AH)_like subfamily of SGNH-hydrolases. Platelet-activating factor (PAF) and PAF-AH are key players in inflammation and in atherosclerosis. PAF-AH is a calcium independent phospholipase A2 which exhibits strong substrate specificity towards PAF, hydrolyzing an acetyl ester at the sn-2 position. PAF-AH also degrades a family of oxidized PAF-like phospholipids with short sn-2 residues. In addition, PAF and PAF-AH are associated with neural migration and mammalian reproduction. 214 -238859 cd01821 Rhamnogalacturan_acetylesterase_like Rhamnogalacturan_acetylesterase_like subgroup of SGNH-hydrolases. Rhamnogalacturan acetylesterase removes acetyl esters from rhamnogalacturonan substrates, and renders them susceptible to degradation by rhamnogalacturonases. Rhamnogalacturonans are highly branched regions in pectic polysaccharides, consisting of repeating -(1,2)-L-Rha-(1,4)-D-GalUA disaccharide units, with many rhamnose residues substituted by neutral oligosaccharides such as arabinans, galactans and arabinogalactans. Extracellular enzymes participating in the degradation of plant cell wall polymers, such as Rhamnogalacturonan acetylesterase, would typically be found in saprophytic and plant pathogenic fungi and bacteria. 198 -238860 cd01822 Lysophospholipase_L1_like Lysophospholipase L1-like subgroup of SGNH-hydrolases. The best characterized member in this family is TesA, an E. coli periplasmic protein with thioesterase, esterase, arylesterase, protease and lysophospholipase activity. 177 -238861 cd01823 SEST_like SEST_like. A family of secreted SGNH-hydrolases similar to Streptomyces scabies esterase (SEST), a causal agent of the potato scab disease, which hydrolyzes a specific ester bond in suberin, a plant lipid. The tertiary fold of this enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles two of the three components of typical Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxylic acid. 259 -238862 cd01824 Phospholipase_B_like Phospholipase-B_like. This subgroup of the SGNH-family of lipolytic enzymes may have both esterase and phospholipase-A/lysophospholipase activity. It's members may be involved in the conversion of phosphatidylcholine to fatty acids and glycerophosphocholine, perhaps in the context of dietary lipid uptake. Members may be membrane proteins. The tertiary fold of the SGNH-hydrolases is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; Its active site closely resembles two of the three components of typical Ser-His-Asp(Glu) triad from other serine hydrolases. 288 -238863 cd01825 SGNH_hydrolase_peri1 SGNH_peri1; putative periplasmic member of the SGNH-family of hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 189 -238864 cd01826 acyloxyacyl_hydrolase_like Acyloxyacyl-hydrolase like subfamily of the SGNH-hydrolase family. Acyloxyacyl-hydrolase is a leukocyte-secreted enzyme that deacetylates bacterial lipopolysaccharides. 305 -238865 cd01827 sialate_O-acetylesterase_like1 sialate O-acetylesterase_like family of the SGNH hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 188 -238866 cd01828 sialate_O-acetylesterase_like2 sialate_O-acetylesterase_like subfamily of the SGNH-hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 169 -238867 cd01829 SGNH_hydrolase_peri2 SGNH_peri2; putative periplasmic member of the SGNH-family of hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 200 -238868 cd01830 XynE_like SGNH_hydrolase subfamily, similar to the putative arylesterase/acylhydrolase from the rumen anaerobe Prevotella bryantii XynE. The P. bryantii XynE gene is located in a xylanase gene cluster. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 204 -238869 cd01831 Endoglucanase_E_like Endoglucanase E-like members of the SGNH hydrolase family; Endoglucanase E catalyzes the endohydrolysis of 1,4-beta-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans. 169 -238870 cd01832 SGNH_hydrolase_like_1 Members of the SGNH-hydrolase superfamily, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxlic acid. Myxobacterial members of this subfamily have been reported to be involved in adventurous gliding motility. 185 -238871 cd01833 XynB_like SGNH_hydrolase subfamily, similar to Ruminococcus flavefaciens XynB. Most likely a secreted hydrolase with xylanase activity. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 157 -238872 cd01834 SGNH_hydrolase_like_2 SGNH_hydrolase subfamily. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 191 -238873 cd01835 SGNH_hydrolase_like_3 SGNH_hydrolase subfamily. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 193 -238874 cd01836 FeeA_FeeB_like SGNH_hydrolase subfamily, FeeA, FeeB and similar esterases/lipases. FeeA and FeeB are part of a biosynthetic gene cluster and may participate in the biosynthesis of long-chain N-acyltyrosines by providing saturated and unsaturated fatty acids, which it turn are loaded onto the acyl carrier protein FeeL. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 191 -238875 cd01837 SGNH_plant_lipase_like SGNH_plant_lipase_like, a plant specific subfamily of the SGNH-family of hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 315 -238876 cd01838 Isoamyl_acetate_hydrolase_like Isoamyl-acetate hydrolyzing esterase-like proteins. SGNH_hydrolase subfamily similar to the Saccharomyces cerevisiae IAH1. IAH1 may be the major esterase that hydrolyses isoamyl acetate in sake mash. The SGNH-family of hydrolases is a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases 199 -238877 cd01839 SGNH_arylesterase_like SGNH_hydrolase subfamily, similar to arylesterase (7-aminocephalosporanic acid-deacetylating enzyme) of A. tumefaciens. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 208 -238878 cd01840 SGNH_hydrolase_yrhL_like yrhL-like subfamily of SGNH-hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. Most members of this sub-family appear to co-occur with N-terminal acyltransferase domains. Might be involved in lipid metabolism. 150 -238879 cd01841 NnaC_like NnaC (CMP-NeuNAc synthetase) _like subfamily of SGNH_hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles two of the three components of typical Ser-His-Asp(Glu) triad from other serine hydrolases. E. coli NnaC appears to be involved in polysaccharide synthesis. 174 -238880 cd01842 SGNH_hydrolase_like_5 SGNH_hydrolase subfamily. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 183 -238881 cd01844 SGNH_hydrolase_like_6 SGNH_hydrolase subfamily. SGNH hydrolases are a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. 177 -238882 cd01846 fatty_acyltransferase_like Fatty acyltransferase-like subfamily of the SGNH hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. Might catalyze fatty acid transfer between phosphatidylcholine and sterols. 270 -238883 cd01847 Triacylglycerol_lipase_like Triacylglycerol lipase-like subfamily of the SGNH hydrolases, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad found in other serine hydrolases. Members of this subfamily might hydrolyze triacylglycerol into diacylglycerol and fatty acid anions. 281 -206746 cd01849 YlqF_related_GTPase Circularly permuted YlqF-related GTPases. These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. 146 -206649 cd01850 CDC_Septin CDC/Septin GTPase family. Septins are a conserved family of GTP-binding proteins associated with diverse processes in dividing and non-dividing cells. They were first discovered in the budding yeast S. cerevisiae as a set of genes (CDC3, CDC10, CDC11 and CDC12) required for normal bud morphology. Septins are also present in metazoan cells, where they are required for cytokinesis in some systems, and implicated in a variety of other processes involving organization of the cell cortex and exocytosis. In humans, 12 septin genes generate dozens of polypeptides, many of which comprise heterooligomeric complexes. Since septin mutants are commonly defective in cytokinesis and formation of the neck formation of the neck filaments/septin rings, septins have been considered to be the primary constituents of the neck filaments. Septins belong to the GTPase superfamily for their conserved GTPase motifs and enzymatic activities. 275 -206650 cd01851 GBP Guanylate-binding protein (GBP) family (N-terminal domain). Guanylate-binding protein (GBP), N-terminal domain. Guanylate-binding proteins (GBPs) define a group of proteins that are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. Furthermore, two unique regions around the base and the phosphate-binding areas, the guanine and the phosphate caps, respectively, give the nucleotide-binding site a unique appearance not found in the canonical GTP-binding proteins. The phosphate cap, which constitutes the region analogous to switch I, completely shields the phosphate-binding site from solvent such that a potential GTPase-activating protein (GAP) cannot approach. 224 -206651 cd01852 AIG1 AvrRpt2-Induced Gene 1 (AIG1). This group represents Arabidoposis protein AIG1 (avrRpt2-induced gene 1) that appears to be involved in plant resistance to bacteria. The Arabidopsis disease resistance gene RPS2 is involved in recognition of bacterial pathogens carrying the avirulence gene avrRpt2. AIG1 exhibits RPS2- and avrRpt1-dependent induction early after infection with Pseudomonas syringae carrying avrRpt2. This subfamily also includes IAN-4 protein, which has GTP-binding activity and shares sequence homology with a novel family of putative GTP-binding proteins: the immuno-associated nucleotide (IAN) family. The evolutionary conservation of the IAN family provides a unique example of a plant pathogen response gene conserved in animals. The IAN/IMAP subfamily has been proposed to regulate apoptosis in vertebrates and angiosperm plants, particularly in relation to cancer, diabetes, and infections. The human IAN genes were renamed GIMAP (GTPase of the immunity associated proteins). 201 -206652 cd01853 Toc34_like Translocon at the Outer-envelope membrane of Chloroplasts 34-like (Toc34-like). The Toc34-like (Translocon at the Outer-envelope membrane of Chloroplasts) family contains several Toc proteins, including Toc34, Toc33, Toc120, Toc159, Toc86, Toc125, and Toc90. The Toc complex at the outer envelope membrane of chloroplasts is a molecular machine of ~500 kDa that contains a single Toc159 protein, four Toc75 molecules, and four or five copies of Toc34. Toc64 and Toc12 are associated with the translocon, but do not appear to be part of the core complex. The Toc translocon initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. Toc34 and Toc159 are both GTPases, while Toc75 is a beta-barrel integral membrane protein. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon. 248 -206747 cd01854 YjeQ_EngC Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases. YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain. 211 -206748 cd01855 YqeH Circularly permuted YqeH GTPase. YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. 191 -206749 cd01856 YlqF Circularly permuted YlqF GTPase. Proteins of the YlqF family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. The YlqF subfamily is represented in all eukaryotes as well as a phylogenetically diverse array of bacteria (including gram-positive bacteria, proteobacteria, Synechocystis, Borrelia, and Thermotoga). 171 -206750 cd01857 HSR1_MMR1 A circularly permuted subfamily of the Ras GTPases. Human HSR1 is localized to the human MHC class I region and is highly homologous to a putative GTP-binding protein, MMR1 from mouse. These proteins represent a new subfamily of GTP-binding proteins that has only eukaryote members. This subfamily shows a circular permutation of the GTPase signature motifs so that the C-terminal strands 5, 6, and 7 (strand 6 contains the G4 box with sequence NKXD) are relocated to the N-terminus. 140 -206751 cd01858 NGP_1 A novel nucleolar GTP-binding protein, circularly permuted subfamily of the Ras GTPases. Autoantigen NGP-1 (Nucleolar G-protein gene 1) has been shown to localize in the nucleolus and nucleolar organizers in all cell types analyzed, which is indicative of a function in ribosomal assembly. NGP-1 and its homologs show a circular permutation of the GTPase signature motifs so that the C-terminal strands 5, 6, and 7 (strand 6 contains the G4 box with NKXD motif) are relocated to the N terminus. 157 -206752 cd01859 MJ1464 An uncharacterized, circularly permuted subfamily of the Ras GTPases. This family represents archaeal GTPase typified by the protein MJ1464 from Methanococcus jannaschii. The members of this family show a circular permutation of the GTPase signature motifs so that C-terminal strands 5, 6, and 7 (strands 6 contain the NKxD motif) are relocated to the N terminus. 157 -206653 cd01860 Rab5_related Rab-related GTPase family includes Rab5 and Rab22; regulates early endosome fusion. The Rab5-related subfamily includes Rab5 and Rab22 of mammals, Ypt51/Ypt52/Ypt53 of yeast, and RabF of plants. The members of this subfamily are involved in endocytosis and endocytic-sorting pathways. In mammals, Rab5 GTPases localize to early endosomes and regulate fusion of clathrin-coated vesicles to early endosomes and fusion between early endosomes. In yeast, Ypt51p family members similarly regulate membrane trafficking through prevacuolar compartments. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 163 -206654 cd01861 Rab6 Rab GTPase family 6 (Rab6). Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. Rab6A of mammals is implicated in retrograde transport through the Golgi stack, and is also required for a slow, COPI-independent, retrograde transport pathway from the Golgi to the endoplasmic reticulum (ER). This pathway may allow Golgi residents to be recycled through the ER for scrutiny by ER quality-control systems. Yeast Ypt6p, the homolog of the mammalian Rab6 GTPase, is not essential for cell viability. Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 161 -206655 cd01862 Rab7 Rab GTPase family 7 (Rab7). Rab7 subfamily. Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. The yeast Ypt7 and mammalian Rab7 are both involved in transport to the vacuole/lysosome, whereas Ypt7 is also required for homotypic vacuole fusion. Mammalian Rab7 is an essential participant in the autophagic pathway for sequestration and targeting of cytoplasmic components to the lytic compartment. Mammalian Rab7 is also proposed to function as a tumor suppressor. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 172 -206656 cd01863 Rab18 Rab GTPase family 18 (Rab18). Rab18 subfamily. Mammalian Rab18 is implicated in endocytic transport and is expressed most highly in polarized epithelial cells. However, trypanosomal Rab, TbRAB18, is upregulated in the BSF (Blood Stream Form) stage and localized predominantly to elements of the Golgi complex. In human and mouse cells, Rab18 has been identified in lipid droplets, organelles that store neutral lipids. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 161 -133267 cd01864 Rab19 Rab GTPase family 19 (Rab19). Rab19 subfamily. Rab19 proteins are associated with Golgi stacks. Similarity analysis indicated that Rab41 is closely related to Rab19. However, the function of these Rabs is not yet characterized. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 165 -206657 cd01865 Rab3 Rab GTPase family 3 contains Rab3A, Rab3B, Rab3C and Rab3D. The Rab3 subfamily contains Rab3A, Rab3B, Rab3C, and Rab3D. All four isoforms were found in mouse brain and endocrine tissues, with varying levels of expression. Rab3A, Rab3B, and Rab3C localized to synaptic and secretory vesicles; Rab3D was expressed at high levels only in adipose tissue, exocrine glands, and the endocrine pituitary, where it is localized to cytoplasmic secretory granules. Rab3 appears to control Ca2+-regulated exocytosis. The appropriate GDP/GTP exchange cycle of Rab3A is required for Ca2+-regulated exocytosis to occur, and interaction of the GTP-bound form of Rab3A with effector molecule(s) is widely believed to be essential for this process. Functionally, most studies point toward a role for Rab3 in the secretion of hormones and neurotransmitters. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 165 -206658 cd01866 Rab2 Rab GTPase family 2 (Rab2). Rab2 is localized on cis-Golgi membranes and interacts with Golgi matrix proteins. Rab2 is also implicated in the maturation of vesicular tubular clusters (VTCs), which are microtubule-associated intermediates in transport between the ER and Golgi apparatus. In plants, Rab2 regulates vesicle trafficking between the ER and the Golgi bodies and is important to pollen tube growth. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 168 -206659 cd01867 Rab8_Rab10_Rab13_like Rab GTPase families 8, 10, 13 (Rab8, Rab10, Rab13). Rab8/Sec4/Ypt2 are known or suspected to be involved in post-Golgi transport to the plasma membrane. It is likely that these Rabs have functions that are specific to the mammalian lineage and have no orthologs in plants. Rab8 modulates polarized membrane transport through reorganization of actin and microtubules, induces the formation of new surface extensions, and has an important role in directed membrane transport to cell surfaces. The Ypt2 gene of the fission yeast Schizosaccharomyces pombe encodes a member of the Ypt/Rab family of small GTP-binding proteins, related in sequence to Sec4p of Saccharomyces cerevisiae but closer to mammalian Rab8. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 167 -206660 cd01868 Rab11_like Rab GTPase family 11 (Rab11)-like includes Rab11a, Rab11b, and Rab25. Rab11a, Rab11b, and Rab25 are closely related, evolutionary conserved Rab proteins that are differentially expressed. Rab11a is ubiquitously synthesized, Rab11b is enriched in brain and heart and Rab25 is only found in epithelia. Rab11/25 proteins seem to regulate recycling pathways from endosomes to the plasma membrane and to the trans-Golgi network. Furthermore, Rab11a is thought to function in the histamine-induced fusion of tubulovesicles containing H+, K+ ATPase with the plasma membrane in gastric parietal cells and in insulin-stimulated insertion of GLUT4 in the plasma membrane of cardiomyocytes. Overexpression of Rab25 has recently been observed in ovarian cancer and breast cancer, and has been correlated with worsened outcomes in both diseases. In addition, Rab25 overexpression has also been observed in prostate cancer, transitional cell carcinoma of the bladder, and invasive breast tumor cells. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 165 -206661 cd01869 Rab1_Ypt1 Rab GTPase family 1 includes the yeast homolog Ypt1. Rab1/Ypt1 subfamily. Rab1 is found in every eukaryote and is a key regulatory component for the transport of vesicles from the ER to the Golgi apparatus. Studies on mutations of Ypt1, the yeast homolog of Rab1, showed that this protein is necessary for the budding of vesicles of the ER as well as for their transport to, and fusion with, the Golgi apparatus. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 166 -206662 cd01870 RhoA_like Ras homology family A (RhoA)-like includes RhoA, RhoB and RhoC. The RhoA subfamily consists of RhoA, RhoB, and RhoC. RhoA promotes the formation of stress fibers and focal adhesions, regulating cell shape, attachment, and motility. RhoA can bind to multiple effector proteins, thereby triggering different downstream responses. In many cell types, RhoA mediates local assembly of the contractile ring, which is necessary for cytokinesis. RhoA is vital for muscle contraction; in vascular smooth muscle cells, RhoA plays a key role in cell contraction, differentiation, migration, and proliferation. RhoA activities appear to be elaborately regulated in a time- and space-dependent manner to control cytoskeletal changes. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. RhoA and RhoC are observed only in geranylgeranylated forms; however, RhoB can be present in palmitoylated, farnesylated, and geranylgeranylated forms. RhoA and RhoC are highly relevant for tumor progression and invasiveness; however, RhoB has recently been suggested to be a tumor suppressor. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 175 -206663 cd01871 Rac1_like Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)-like consists of Rac1, Rac2 and Rac3. The Rac1-like subfamily consists of Rac1, Rac2, and Rac3 proteins, plus the splice variant Rac1b that contains a 19-residue insertion near switch II relative to Rac1. While Rac1 is ubiquitously expressed, Rac2 and Rac3 are largely restricted to hematopoietic and neural tissues respectively. Rac1 stimulates the formation of actin lamellipodia and membrane ruffles. It also plays a role in cell-matrix adhesion and cell anoikis. In intestinal epithelial cells, Rac1 is an important regulator of migration and mediates apoptosis. Rac1 is also essential for RhoA-regulated actin stress fiber and focal adhesion complex formation. In leukocytes, Rac1 and Rac2 have distinct roles in regulating cell morphology, migration, and invasion, but are not essential for macrophage migration or chemotaxis. Rac3 has biochemical properties that are closely related to Rac1, such as effector interaction, nucleotide binding, and hydrolysis; Rac2 has a slower nucleotide association and is more efficiently activated by the RacGEF Tiam1. Both Rac1 and Rac3 have been implicated in the regulation of cell migration and invasion in human metastatic breast cancer. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 174 -133275 cd01873 RhoBTB RhoBTB protein is an atypical member of the Rho family of small GTPases. Members of the RhoBTB subfamily of Rho GTPases are present in vertebrates, Drosophila, and Dictyostelium. RhoBTB proteins are characterized by a modular organization, consisting of a GTPase domain, a proline rich region, a tandem of two BTB (Broad-Complex, Tramtrack, and Bric a brac) domains, and a C-terminal region of unknown function. RhoBTB proteins may act as docking points for multiple components participating in signal transduction cascades. RhoBTB genes appeared upregulated in some cancer cell lines, suggesting a participation of RhoBTB proteins in the pathogenesis of particular tumors. Note that the Dictyostelium RacA GTPase domain is more closely related to Rac proteins than to RhoBTB proteins, where RacA actually belongs. Thus, the Dictyostelium RacA is not included here. Most Rho proteins contain a lipid modification site at the C-terminus; however, RhoBTB is one of few Rho subfamilies that lack this feature. 195 -206664 cd01874 Cdc42 cell division cycle 42 (Cdc42) is a small GTPase of the Rho family. Cdc42 is an essential GTPase that belongs to the Rho family of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. Cdc42 transduces signals to the actin cytoskeleton to initiate and maintain polarized growth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42 plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42 regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42 mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42 has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 175 -133277 cd01875 RhoG Ras homolog family, member G (RhoG) of small guanosine triphosphatases (GTPases). RhoG is a GTPase with high sequence similarity to members of the Rac subfamily, including the regions involved in effector recognition and binding. However, RhoG does not bind to known Rac1 and Cdc42 effectors, including proteins containing a Cdc42/Rac interacting binding (CRIB) motif. Instead, RhoG interacts directly with Elmo, an upstream regulator of Rac1, in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG-Elmo-Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. Thus RhoG activates Rac1 through Elmo and Dock180 to control cell morphology. RhoG has also been shown to play a role in caveolar trafficking and has a novel role in signaling the neutrophil respiratory burst stimulated by G protein-coupled receptor (GPCR) agonists. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. 191 -206665 cd01876 YihA_EngB YihA (EngB) GTPase family. The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. 170 -206666 cd01878 HflX HflX GTPase family. HflX subfamily. A distinct conserved domain with a glycine-rich segment N-terminal of the GTPase domain characterizes the HflX subfamily. The E. coli HflX has been implicated in the control of the lambda cII repressor proteolysis, but the actual biological functions of these GTPases remain unclear. HflX is widespread, but not universally represented in all three superkingdoms. 204 -206667 cd01879 FeoB Ferrous iron transport protein B (FeoB) family. Ferrous iron transport protein B (FeoB) subfamily. E. coli has an iron(II) transport system, known as feo, which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. 159 -206668 cd01881 Obg_like Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1. The Obg-like subfamily consists of five well-delimited, ancient subfamilies, namely Obg, DRG, YyaF/YchF, Ygr210, and NOG1. Four of these groups (Obg, DRG, YyaF/YchF, and Ygr210) are characterized by a distinct glycine-rich motif immediately following the Walker B motif (G3 box). Obg/CgtA is an essential gene that is involved in the initiation of sporulation and DNA replication in the bacteria Caulobacter and Bacillus, but its exact molecular role is unknown. Furthermore, several OBG family members possess a C-terminal RNA-binding domain, the TGS domain, which is also present in threonyl-tRNA synthetase and in bacterial guanosine polyphosphatase SpoT. Nog1 is a nucleolar protein that might function in ribosome assembly. The DRG and Nog1 subfamilies are ubiquitous in archaea and eukaryotes, the Ygr210 subfamily is present in archaea and fungi, and the Obg and YyaF/YchF subfamilies are ubiquitous in bacteria and eukaryotes. The Obg/Nog1 and DRG subfamilies appear to form one major branch of the Obg family and the Ygr210 and YchF subfamilies form another branch. No GEFs, GAPs, or GDIs for Obg have been identified. 167 -206669 cd01882 BMS1 Bms1, an essential GTPase, promotes assembly of preribosomal RNA processing complexes. Bms1 is an essential, evolutionarily conserved, nucleolar protein. Its depletion interferes with processing of the 35S pre-rRNA at sites A0, A1, and A2, and the formation of 40S subunits. Bms1, the putative endonuclease Rc11, and the essential U3 small nucleolar RNA form a stable subcomplex that is believed to control an early step in the formation of the 40S subumit. The C-terminal domain of Bms1 contains a GTPase-activating protein (GAP) that functions intramolecularly. It is believed that Rc11 activates Bms1 by acting as a guanine-nucleotide exchange factor (GEF) to promote GDP/GTP exchange, and that activated (GTP-bound) Bms1 delivers Rc11 to the preribosomes. 231 -206670 cd01883 EF1_alpha Elongation Factor 1-alpha (EF1-alpha) protein family. EF1 is responsible for the GTP-dependent binding of aminoacyl-tRNAs to the ribosomes. EF1 is composed of four subunits: the alpha chain which binds GTP and aminoacyl-tRNAs, the gamma chain that probably plays a role in anchoring the complex to other cellular components and the beta and delta (or beta') chains. This subfamily is the alpha subunit, and represents the counterpart of bacterial EF-Tu for the archaea (aEF1-alpha) and eukaryotes (eEF1-alpha). eEF1-alpha interacts with the actin of the eukaryotic cytoskeleton and may thereby play a role in cellular transformation and apoptosis. EF-Tu can have no such role in bacteria. In humans, the isoform eEF1A2 is overexpressed in 2/3 of breast cancers and has been identified as a putative oncogene. This subfamily also includes Hbs1, a G protein known to be important for efficient growth and protein synthesis under conditions of limiting translation initiation in yeast, and to associate with Dom34. It has been speculated that yeast Hbs1 and Dom34 proteins may function as part of a complex with a role in gene expression. 219 -206671 cd01884 EF_Tu Elongation Factor Tu (EF-Tu) GTP-binding proteins. EF-Tu subfamily. This subfamily includes orthologs of translation elongation factor EF-Tu in bacteria, mitochondria, and chloroplasts. It is one of several GTP-binding translation factors found in the larger family of GTP-binding elongation factors. The eukaryotic counterpart, eukaryotic translation elongation factor 1 (eEF-1 alpha), is excluded from this family. EF-Tu is one of the most abundant proteins in bacteria, as well as, one of the most highly conserved, and in a number of species the gene is duplicated with identical function. When bound to GTP, EF-Tu can form a complex with any (correctly) aminoacylated tRNA except those for initiation and for selenocysteine, in which case EF-Tu is replaced by other factors. Transfer RNA is carried to the ribosome in these complexes for protein translation. 195 -206672 cd01885 EF2 Elongation Factor 2 (EF2) in archaea and eukarya. Translocation requires hydrolysis of a molecule of GTP and is mediated by EF-G in bacteria and by eEF2 in eukaryotes. The eukaryotic elongation factor eEF2 is a GTPase involved in the translocation of the peptidyl-tRNA from the A site to the P site on the ribosome. The 95-kDa protein is highly conserved, with 60% amino acid sequence identity between the human and yeast proteins. Two major mechanisms are known to regulate protein elongation and both involve eEF2. First, eEF2 can be modulated by reversible phosphorylation. Increased levels of phosphorylated eEF2 reduce elongation rates presumably because phosphorylated eEF2 fails to bind the ribosomes. Treatment of mammalian cells with agents that raise the cytoplasmic Ca2+ and cAMP levels reduce elongation rates by activating the kinase responsible for phosphorylating eEF2. In contrast, treatment of cells with insulin increases elongation rates by promoting eEF2 dephosphorylation. Second, the protein can be post-translationally modified by ADP-ribosylation. Various bacterial toxins perform this reaction after modification of a specific histidine residue to diphthamide, but there is evidence for endogenous ADP ribosylase activity. Similar to the bacterial toxins, it is presumed that modification by the endogenous enzyme also inhibits eEF2 activity. 218 -206673 cd01886 EF-G Elongation factor G (EF-G) family involved in both the elongation and ribosome recycling phases of protein synthesis. Translocation is mediated by EF-G (also called translocase). The structure of EF-G closely resembles that of the complex between EF-Tu and tRNA. This is an example of molecular mimicry; a protein domain evolved so that it mimics the shape of a tRNA molecule. EF-G in the GTP form binds to the ribosome, primarily through the interaction of its EF-Tu-like domain with the 50S subunit. The binding of EF-G to the ribosome in this manner stimulates the GTPase activity of EF-G. On GTP hydrolysis, EF-G undergoes a conformational change that forces its arm deeper into the A site on the 30S subunit. To accommodate this domain, the peptidyl-tRNA in the A site moves to the P site, carrying the mRNA and the deacylated tRNA with it. The ribosome may be prepared for these rearrangements by the initial binding of EF-G as well. The dissociation of EF-G leaves the ribosome ready to accept the next aminoacyl-tRNA into the A site. This group contains both eukaryotic and bacterial members. 270 -206674 cd01887 IF2_eIF5B Initiation Factor 2 (IF2)/ eukaryotic Initiation Factor 5B (eIF5B) family. IF2/eIF5B contribute to ribosomal subunit joining and function as GTPases that are maximally activated by the presence of both ribosomal subunits. As seen in other GTPases, IF2/IF5B undergoes conformational changes between its GTP- and GDP-bound states. Eukaryotic IF2/eIF5Bs possess three characteristic segments, including a divergent N-terminal region followed by conserved central and C-terminal segments. This core region is conserved among all known eukaryotic and archaeal IF2/eIF5Bs and eubacterial IF2s. 169 -206675 cd01888 eIF2_gamma Gamma subunit of initiation factor 2 (eIF2 gamma). eIF2 is a heterotrimeric translation initiation factor that consists of alpha, beta, and gamma subunits. The GTP-bound gamma subunit also binds initiator methionyl-tRNA and delivers it to the 40S ribosomal subunit. Following hydrolysis of GTP to GDP, eIF2:GDP is released from the ribosome. The gamma subunit has no intrinsic GTPase activity, but is stimulated by the GTPase activating protein (GAP) eIF5, and GDP/GTP exchange is stimulated by the guanine nucleotide exchange factor (GEF) eIF2B. eIF2B is a heteropentamer, and the epsilon chain binds eIF2. Both eIF5 and eIF2B-epsilon are known to bind strongly to eIF2-beta, but have also been shown to bind directly to eIF2-gamma. It is possible that eIF2-beta serves simply as a high-affinity docking site for eIF5 and eIF2B-epsilon, or that eIF2-beta serves a regulatory role. eIF2-gamma is found only in eukaryotes and archaea. It is closely related to SelB, the selenocysteine-specific elongation factor from eubacteria. The translational factor components of the ternary complex, IF2 in eubacteria and eIF2 in eukaryotes are not the same protein (despite their unfortunately similar names). Both factors are GTPases; however, eubacterial IF-2 is a single polypeptide, while eIF2 is heterotrimeric. eIF2-gamma is a member of the same family as eubacterial IF2, but the two proteins are only distantly related. This family includes translation initiation, elongation, and release factors. 197 -206676 cd01889 SelB_euk SelB, the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. SelB is an elongation factor needed for the co-translational incorporation of selenocysteine. Selenocysteine is coded by a UGA stop codon in combination with a specific downstream mRNA hairpin. In bacteria, the C-terminal part of SelB recognizes this hairpin, while the N-terminal part binds GTP and tRNA in analogy with elongation factor Tu (EF-Tu). It specifically recognizes the selenocysteine charged tRNAsec, which has a UCA anticodon, in an EF-Tu like manner. This allows insertion of selenocysteine at in-frame UGA stop codons. In E. coli SelB binds GTP, selenocysteyl-tRNAsec and a stem-loop structure immediately downstream of the UGA codon (the SECIS sequence). The absence of active SelB prevents the participation of selenocysteyl-tRNAsec in translation. Archaeal and animal mechanisms of selenocysteine incorporation are more complex. Although the SECIS elements have different secondary structures and conserved elements between archaea and eukaryotes, they do share a common feature. Unlike in E. coli, these SECIS elements are located in the 3' UTRs. This group contains eukaryotic SelBs and some from archaea. 192 -206677 cd01890 LepA LepA also known as Elongation Factor 4 (EF4). LepA (also known as elongation factor 4, EF4) belongs to the GTPase family and exhibits significant homology to the translation factors EF-G and EF-Tu, indicating its possible involvement in translation and association with the ribosome. LepA is ubiquitous in bacteria and eukaryota (e.g. yeast GUF1p), but is missing from archaea. This pattern of phyletic distribution suggests that LepA evolved through a duplication of the EF-G gene in bacteria, followed by early transfer into the eukaryotic lineage, most likely from the promitochondrial endosymbiont. Yeast GUF1p is not essential and mutant cells did not reveal any marked phenotype. 179 -206678 cd01891 TypA_BipA Tyrosine phosphorylated protein A (TypA)/BipA family belongs to ribosome-binding GTPases. BipA is a protein belonging to the ribosome-binding family of GTPases and is widely distributed in bacteria and plants. BipA was originally described as a protein that is induced in Salmonella typhimurium after exposure to bactericidal/permeability-inducing protein (a cationic antimicrobial protein produced by neutrophils), and has since been identified in E. coli as well. The properties thus far described for BipA are related to its role in the process of pathogenesis by enteropathogenic E. coli. It appears to be involved in the regulation of several processes important for infection, including rearrangements of the cytoskeleton of the host, bacterial resistance to host defense peptides, flagellum-mediated cell motility, and expression of K5 capsular genes. It has been proposed that BipA may utilize a novel mechanism to regulate the expression of target genes. In addition, BipA from enteropathogenic E. coli has been shown to be phosphorylated on a tyrosine residue, while BipA from Salmonella and from E. coli K12 strains is not phosphorylated under the conditions assayed. The phosphorylation apparently modifies the rate of nucleotide hydrolysis, with the phosphorylated form showing greatly increased GTPase activity. 194 -206679 cd01892 Miro2 Mitochondrial Rho family 2 (Miro2), C-terminal. Miro2 subfamily. Miro (mitochondrial Rho) proteins have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms. This CD represents the putative GTPase domain in the C terminus of Miro proteins. These atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. Most Rho proteins contain a lipid modification site at the C-terminus; however, Miro is one of few Rho subfamilies that lack this feature. 180 -206680 cd01893 Miro1 Mitochondrial Rho family 1 (Miro1), N-terminal. Miro1 subfamily. Miro (mitochondrial Rho) proteins have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms. This CD represents the N-terminal GTPase domain of Miro proteins. These atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. Most Rho proteins contain a lipid modification site at the C-terminus; however, Miro is one of few Rho subfamilies that lack this feature. 168 -206681 cd01894 EngA1 EngA1 GTPase contains the first domain of EngA. This EngA1 subfamily CD represents the first GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. 157 -206682 cd01895 EngA2 EngA2 GTPase contains the second domain of EngA. This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. 174 -206683 cd01896 DRG Developmentally Regulated GTP-binding protein (DRG). The developmentally regulated GTP-binding protein (DRG) subfamily is an uncharacterized member of the Obg family, an evolutionary branch of GTPase superfamily proteins. GTPases act as molecular switches regulating diverse cellular processes. DRG2 and DRG1 comprise the DRG subfamily in eukaryotes. In view of their widespread expression in various tissues and high conservation among distantly related species in eukaryotes and archaea, DRG proteins may regulate fundamental cellular processes. It is proposed that the DRG subfamily proteins play their physiological roles through RNA binding. 233 -206684 cd01897 NOG Nucleolar GTP-binding protein (NOG). NOG1 is a nucleolar GTP-binding protein present in eukaryotes ranging from trypanosomes to humans. NOG1 is functionally linked to ribosome biogenesis and found in association with the nuclear pore complexes and identified in many preribosomal complexes. Thus, defects in NOG1 can lead to defects in 60S biogenesis. The S. cerevisiae NOG1 gene is essential for cell viability, and mutations in the predicted G motifs abrogate function. It is a member of the ODN family of GTP-binding proteins that also includes the bacterial Obg and DRG proteins. 167 -206685 cd01898 Obg Obg GTPase. The Obg nucleotide binding protein subfamily has been implicated in stress response, chromosome partitioning, replication initiation, mycelium development, and sporulation. Obg proteins are among a large group of GTP binding proteins conserved from bacteria to humans. The E. coli homolog, ObgE is believed to function in ribosomal biogenesis. Members of the subfamily contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain. 170 -206686 cd01899 Ygr210 Ygr210 GTPase. Ygr210 is a member of Obg-like family and present in archaea and fungi. They are characterized by a distinct glycine-rich motif immediately following the Walker B motif. The Ygr210 and YyaF/YchF subfamilies appear to form one major branch of the Obg-like family. Among eukaryotes, the Ygr210 subfamily is represented only in fungi. These fungal proteins form a tight cluster with their archaeal orthologs, which suggests the possibility of horizontal transfer from archaea to fungi. 318 -206687 cd01900 YchF YchF GTPase. YchF is a member of the Obg family, which includes four other subfamilies of GTPases: Obg, DRG, Ygr210, and NOG1. Obg is an essential gene that is involved in DNA replication in C. crescentus and Streptomyces griseus and is associated with the ribosome. Several members of the family, including YchF, possess the TGS domain related to the RNA-binding proteins. Experimental data and genomic analysis suggest that YchF may be part of a nucleoprotein complex and may function as a GTP-dependent translational factor. 274 -238884 cd01901 Ntn_hydrolase The Ntn hydrolases (N-terminal nucleophile) are a diverse superfamily of of enzymes that are activated autocatalytically via an N-terminally lcated nucleophilic amino acid. N-terminal nucleophile (NTN-) hydrolase superfamily, which contains a four-layered alpha, beta, beta, alpha core structure. This family of hydrolases includes penicillin acylase, the 20S proteasome alpha and beta subunits, and glutamate synthase. The mechanism of activation of these proteins is conserved, although they differ in their substrate specificities. All known members catalyze the hydrolysis of amide bonds in either proteins or small molecules, and each one of them is synthesized as a preprotein. For each, an autocatalytic endoproteolytic process generates a new N-terminal residue. This mature N-terminal residue is central to catalysis and acts as both a polarizing base and a nucleophile during the reaction. The N-terminal amino group acts as the proton acceptor and activates either the nucleophilic hydroxyl in a Ser or Thr residue or the nucleophilic thiol in a Cys residue. The position of the N-terminal nucleophile in the active site and the mechanism of catalysis are conserved in this family, despite considerable variation in the protein sequences. 164 -238885 cd01902 Ntn_CGH Choloylglycine hydrolase (CGH) is a bile salt-modifying enzyme that hydrolyzes non-peptide carbon-nitrogen bonds in choloylglycine and choloyltaurine, both of which are present in bile. CGH is present in a number of probiotic microbial organisms that inhabit the gut. CGH has an N-terminal nucleophilic cysteine, as do other members of the Ntn hydrolase family to which CGH belongs. 291 -238886 cd01903 Ntn_AC_NAAA AC_NAAA This conserved domain includes two closely related proteins, acid ceramidase (AC, also known as N-acylsphingosine amidohydrolase), and N-acylethanolamine-hydrolyzing acid amidase (NAAA). AC catalyzes the hydrolysis of ceramide to sphingosine and fatty acid. Ceramide is required for the biosynthesis of most sphingolipids and plays an important role in many signal transduction pathways by inducing apoptosis and/or arresting cell growth. An inherited deficiency of AC activity leads to the lysosomal storage disorder known as Farber disease. AC is considered a "rheostat" important for maintaining the proper intracellular levels of these lipids since hydrolysis of ceramide is the only source of sphingosine in cells. NAAA is a eukaryotic glycoprotein that hydrolyzes bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), to fatty acids and ethanolamine at acidic pH. NAAA shows structural and functional similarity to acid ceramidase, but lacks the ceramide-hydrolyzing activity of AC. 231 -238887 cd01906 proteasome_protease_HslV proteasome_protease_HslV. This group contains the eukaryotic proteosome alpha and beta subunits and the prokaryotic protease hslV subunit. Proteasomes are large multimeric self-compartmentalizing proteases, involved in the clearance of misfolded proteins, the breakdown of regulatory proteins, and the processing of proteins such as the preparation of peptides for immune presentation. Two main proteasomal types are distinguished by their different tertiary structures: the eukaryotic/archeal 20S proteasome and the prokaryotic proteasome-like heat shock protein encoded by heat shock locus V, hslV. The proteasome core particle is a highly conserved cylindrical structure made up of non-identical subunits that have their active sites on the inner walls of a large central cavity. The proteasome subunits of bacteria, archaea, and eukaryotes all share a conserved Ntn (N terminal nucleophile) hydrolase fold and a catalytic mechanism involving an N-terminal nucleophilic threonine that is exposed by post-translational processing of an inactive propeptide. 182 -238888 cd01907 GlxB Glutamine amidotransferases class-II (Gn-AT)_GlxB-type. GlxB is a glutamine amidotransferase-like protein of unknown function found in bacteria and archaea. GlxB has a structural fold similar to that of other class II glutamine amidotransferases including glucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), beta lactam synthetase (beta-LS) and glutamate synthase (GltS). The GlxB fold is also somewhat similar to the Ntn (N-terminal nucleophile) hydrolase fold of the proteasomal alpha and beta subunits. 249 -238889 cd01908 YafJ Glutamine amidotransferases class-II (Gn-AT)_YafJ-type. YafJ is a glutamine amidotransferase-like protein of unknown function found in prokaryotes, eukaryotes and archaea. YafJ has a conserved structural fold similar to those of other class II glutamine amidotransferases including lucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), beta lactam synthetase (beta-LS) and glutamate synthase (GltS). The YafJ fold is also somwhat similar to the Ntn (N-terminal nucleophile) hydrolase fold of the proteasomal alpha and beta subunits. 257 -238890 cd01909 betaLS_CarA_N Glutamine amidotransferases class-II (GATase) asparagine synthase_betaLS-type. Carbapenam synthetase (CarA) is an ATP/Mg2+-dependent enzyme that catalyzes the formation of the beta-lactam ring in (5R)-carbapenem-3-carboxylic acid biosynthesis. CarA is homologous to beta-lactam synthetase (beta-LS), which is involved in the biosynthesis of clavulanic acid, a clinically important beta-lactamase inhibitor. CarA and beta-LS each have two distinct domains, an N-terminal Ntn hydrolase domain and a C-terminal synthetase domain, a domain architecture similar to that of the class-B asparagine synthetases (AS-B's). The N-terminal domain of these enzymes hydrolyzes glutamine to glutamate and ammonia. CarA forms a homotetramer while betaLS forms a heterodimer. The N-terminal folds of CarA and beta-LS are similar to those of other class II glutamine amidotransferases including lucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), and glutamate synthase (GltS). This fold is also somwhat similar to the Ntn (N-terminal nucleophile) hydrolase fold of the proteasomal alpha and beta subunits. 199 -238891 cd01910 Wali7 This domain is present in Wali7, a protein of unknown function, expressed in wheat and induced by aluminum. Wali7 has a single domain similar to the glutamine amidotransferase domain of glucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), beta lactam synthetase (beta-LS) and glutamate synthase (GltS). The Wali7 domain is also somewhat similar to the Ntn hydrolase fold of the proteasomal alph and beta subunits. 224 -238892 cd01911 proteasome_alpha proteasome alpha subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 different alpha and 10 different beta proteasome subunit genes while archaea have one of each. 209 -238893 cd01912 proteasome_beta proteasome beta subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 189 -238894 cd01913 protease_HslV Protease HslV and the ATPase/chaperone HslU are part of an ATP-dependent proteolytic system that is the prokaryotic homolog of the proteasome. HslV is a dimer of hexamers (a dodecamer) that forms a central proteolytic chamber with active sites on the interior walls of the cavity. HslV shares significant sequence and structural similarity with the proteasomal beta-subunit and both are members of the Ntn-family of hydrolases. HslV has a nucleophilic threonine residue at its N-terminus that is exposed after processing of the propeptide and is directly involved in active site catalysis. 171 -238895 cd01914 HCP Hybrid cluster protein (HCP), formerly known as prismane, is thought to play a role in nitrogen metabolism but its specific function is unknown. HCP has three structural domains, an N-terminal alpha-helical domain, and two similar domains comprising a central beta-sheet flanked by alpha-helices. HCP contains two iron-sulfur clusters, one of which is a [Fe4-S4] cubane cluster similar to that of carbon monoxide dehydrogenase (CODH). The second cluster, referred to as the hybrid cluster, is a hybrid [Fe4-S2-O2] center located at the interface of the three domains. Although the hybrid cluster is buried within the protein, it is accessible through a large hydrophobic cavity. 423 -238896 cd01915 CODH Carbon monoxide dehydrogenase (CODH) is found in acetogenic and methanogenic organisms and is responsible for the synthesis and breakdown of acetyl-CoA, respectively. CODH has two types of metal clusters, a cubane [Fe4-S4] center (B-cluster) similar to that of hybrid cluster protein (HCP) and a Ni-Fe-S center (C-cluster) where carbon monoxide oxidation occurs. Bifunctional CODH forms a heterotetramer with acetyl-CoA synthase (ACS) consisting of two CODH and two ACS subunits while monofunctional CODH forms a homodimer. Bifunctional CODH reduces carbon dioxide to carbon monoxide and ACS then synthesizes acetyl-CoA from carbon monoxide, CoA, and a methyl group donated by another protein (CoFeSP), while monofunctional CODH oxidizes carbon monoxide to carbon dioxide. CODH and ACS each have a metal cluster referred to as the C- and A-clusters, respectively. 613 -238897 cd01916 ACS_1 Acetyl-CoA synthase (ACS), also known as acetyl-CoA decarbonylase, is found in acetogenic and methanogenic organisms and is responsible for the synthesis and breakdown of acetyl-CoA. ACS forms a heterotetramer with carbon monoxide dehydrogenase (CODH) consisting of two ACS and two CODH subunits. CODH reduces carbon dioxide to carbon monoxide and ACS then synthesizes acetyl-CoA from carbon monoxide, CoA, and a methyl group donated by another protein (CoFeSP). ACS has three structural domains, an N-terminal rossman fold domain with a helical region at its N-terminus which interacts with CODH, and two alpha + beta fold domains. A Ni-Fe-S center referred to as the A-cluster is located in the C-terminal domain. A large cavity exists between the three domains which may bind CoA. 731 -238898 cd01917 ACS_2 Acetyl-CoA synthase (ACS), also known as acetyl-CoA decarbonylase, is found in acetogenic and methanogenic organisms and is responsible for the synthesis and breakdown of acetyl-CoA. ACS forms a heterotetramer with carbon monoxide dehydrogenase (CODH) consisting of two ACS and two CODH subunits. CODH reduces carbon dioxide to carbon monoxide and ACS then synthesizes acetyl-CoA from carbon monoxide, CoA, and a methyl group donated by another protein (CoFeSP). ACS has three structural domains, an N-terminal rossman fold domain with a helical region at its N-terminus which interacts with CODH, and two alpha + beta fold domains. A Ni-Fe-S center referred to as the A-cluster is located in the C-terminal domain. A large cavity exists between the three domains which may bind CoA. 287 -238899 cd01918 HprK_C HprK/P, the bifunctional histidine-containing protein kinase/phosphatase, controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The latter reaction uses inorganic phosphate as substrate and produces pyrophosphate. Phosphoenolpyruvate carboxykinase (PEPCK) and the C-terminal catalytic domain of HprK/P are structurally similar with conserved active site residues suggesting these two phosphotransferases have related functions. The HprK/P N-terminal domain is structurally similar to the N-terminal domains of the MurE and MurF amino acid ligases. 149 -238900 cd01919 PEPCK Phosphoenolpyruvate carboxykinase (PEPCK), a critical gluconeogenic enzyme, catalyzes the first committed step in the diversion of tricarboxylic acid cycle intermediates toward gluconeogenesis. It catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to yield phosphoenolpyruvate and carbon dioxide, using a nucleotide molecule (ATP or GTP) for the phosphoryl transfer, and has a strict requirement for divalent metal ions for activity. PEPCK's separate into two phylogenetic groups based on their nucleotide substrate specificity (the ATP-, and GTP-dependent groups). 515 -238901 cd01920 cyclophilin_EcCYP_like cyclophilin_EcCYP_like: cyclophilin-type A-like peptidylprolyl cis- trans isomerase (PPIase) domain similar to the cytosolic E. coli cyclophilin A and Streptomyces antibioticus SanCyp18. Compared to the archetypal cyclophilin Human cyclophilin A, these have reduced affinity for cyclosporin A. E. coli cyclophilin A has a similar peptidylprolyl cis- trans isomerase activity to the human cyclophilin A. Most members of this subfamily contain a phenylalanine residue at the position equivalent to Human cyclophilin W121, where a tyrptophan has been shown to be important for cyclophilin binding. 155 -238902 cd01921 cyclophilin_RRM cyclophilin_RRM: cyclophilin-type peptidylprolyl cis- trans isomerase domain occuring with a C-terminal RNA recognition motif domain (RRM). This subfamily of the cyclophilin domain family contains a number of eukaryotic cyclophilins having the RRM domain including the nuclear proteins: human hCyP-57, Arabidopsis thaliana AtCYP59, Caenorhabditis elegans CeCyP-44 and Paramecium tetrurelia Kin241. The Kin241 protein has been shown to have a role in cell morphogenesis. 166 -238903 cd01922 cyclophilin_SpCYP2_like cyclophilin_SpCYP2_like: cyclophilin 2-like peptidylprolyl cis- trans isomerase (PPIase) domain similar to Schizosaccharomyces pombe cyp-2. These proteins bind their respective SNW chromatin binding protein in autologous systems, in a CsA independent manner indicating interaction with a surface outside the PPIase active site. SNW proteins play a basic and broad range role in signaling. 146 -238904 cd01923 cyclophilin_RING cyclophilin_RING: cyclophilin-type peptidylprolyl cis- trans isomerases (cyclophilins) having a modified RING finger domain. This group includes the nuclear proteins, Human hCyP-60 and Caenorhabditis elegans MOG-6 which, compared to the archetypal cyclophilin Human cyclophilin A exhibit reduced peptidylprolyl cis- trans isomerase activity and lack a residue important for cyclophilin binding. Human hCyP-60 has been shown to physically interact with the proteinase inhibitor peptide eglin c and; C. elegans MOG-6 to physically interact with MEP-1, a nuclear zinc finger protein. MOG-6 has been shown to function in germline sex determination. 159 -238905 cd01924 cyclophilin_TLP40_like cyclophilin_TLP40_like: cyclophilin-type peptidylprolyl cis- trans isomerases (cyclophilins) similar ot the Spinach thylakoid lumen protein TLP40. Compared to the archetypal cyclophilin Human cyclophilin A, these proteins have similar peptidylprolyl cis- trans isomerase activity and reduced affinity for cyclosporin A. Spinach TLP40 has been shown to have a dual function as a folding catalyst and regulator of dephosphorylation. 176 -238906 cd01925 cyclophilin_CeCYP16-like cyclophilin_CeCYP16-like: cyclophilin-type peptidylprolyl cis- trans isomerase) (PPIase) domain similar to Caenorhabditis elegans cyclophilin 16. C. elegans CeCYP-16, compared to the archetypal cyclophilin Human cyclophilin A has, a reduced peptidylprolyl cis- trans isomerase activity, is cyclosporin insensitive and shows an altered substrate preference favoring, hydrophobic, acidic or amide amino acids. Most members of this subfamily have a glutamate residue in the active site at the position equivalent to a tryptophan (W121 in Human cyclophilin A), which has been shown to be important for cyclophilin binding. 171 -238907 cd01926 cyclophilin_ABH_like cyclophilin_ABH_like: Cyclophilin A, B and H-like cyclophilin-type peptidylprolyl cis- trans isomerase (PPIase) domain. This family represents the archetypal cystolic cyclophilin similar to human cyclophilins A, B and H. PPIase is an enzyme which accelerates protein folding by catalyzing the cis-trans isomerization of the peptide bonds preceding proline residues. These enzymes have been implicated in protein folding processes which depend on catalytic /chaperone-like activities. As cyclophilins, Human hCyP-A, human cyclophilin-B (hCyP-19), S. cerevisiae Cpr1 and C. elegans Cyp-3, are inhibited by the immunosuppressive drug cyclopsporin A (CsA). CsA binds to the PPIase active site. Cyp-3. S. cerevisiae Cpr1 interacts with the Rpd3 - Sin3 complex and in addition is a component of the Set3 complex. S. cerevisiae Cpr1 has also been shown to have a role in Zpr1p nuclear transport. Human cyclophilin H associates with the [U4/U6.U5] tri-snRNP particles of the splicesome. 164 -238908 cd01927 cyclophilin_WD40 cyclophilin_WD40: cyclophilin-type peptidylprolyl cis- trans isomerases (cyclophilins) having a WD40 domain. This group consists of several hypothetical and putative eukaryotic and bacterial proteins which have a cyclophilin domain and a WD40 domain. Function of the protein is not known. 148 -238909 cd01928 Cyclophilin_PPIL3_like Cyclophilin_PPIL3_like. Proteins similar to Human cyclophilin-like peptidylprolyl cis- trans isomerase (PPIL3). Members of this family lack a key residue important for cyclosporin binding: the tryptophan residue corresponding to W121 in human hCyP-18a; most members have a histidine at this position. The exact function of the protein is not known. 153 -238910 cd01935 Ntn_CGH_like Choloylglycine hydrolase (CGH)_like. This family of choloylglycine hydrolase-like proteins includes conjugated bile acid hydrolase (CBAH), penicillin V acylase (PVA), acid ceramidase (AC), and N-acylethanolamine-hydrolyzing acid amidase (NAAA) which cleave non-peptide carbon-nitrogen bonds in bile salt constituents. These enzymes have an N-terminal nucleophilic cysteine, as do other members of the Ntn hydrolase family to which they belong. This nucleophilic cysteine is exposed by post-translational prossessing of the precursor protein. 229 -238911 cd01936 Ntn_CA Cephalosporin acylase (CA) belongs to a family of beta-lactam acylases that includes penicillin G acylase (PGA) and aculeacin A acylase. PGA and CA are crucial for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. While both PGA and CA have a conserved Ntn (N-terminal nucleophile) hydrolase fold and the structural similarity at their active sites is very high, their sequence similarity to other Ntn's is low. 469 -238912 cd01937 ribokinase_group_D Ribokinase-like subgroup D. Found in bacteria and archaea, this subgroup is part of the ribokinase/pfkB superfamily. Its oligomerization state is unknown at this time. 254 -238913 cd01938 ADPGK_ADPPFK ADP-dependent glucokinase (ADPGK) and phosphofructokinase (ADPPFK). ADPGK and ADPPFK are proteins that rely on ADP rather than ATP to donate a phosphoryl group. They are found in certain hyperthermophilic archaea and in higher eukaryotes. A functional ADPGK has been characterized in mouse and is assumed to be desirable during ischemia/hypoxia. ADPGK and ADPPFK contain a large and a small domain with the binding site located in a groove between the domains. Partial domain closing is seen when ADP is bound, and further domain closing is observed when glucose is also bound. The oligomerization state apparently varies depending on the species, with some existing as monomers, some as dimers, and some as tetramers. 445 -238914 cd01939 Ketohexokinase Ketohexokinase (fructokinase, KHK) catalyzes the phosphorylation of fructose to fructose-1-phosphate (F1P), the first step in the metabolism of dietary fructose. KHK can also phosphorylate several other furanose sugars. It is found in higher eukaryotes where it is believed to function as a dimer and requires K(+) and ATP to be active. In humans, hepatic KHK deficiency causes fructosuria, a benign inborn error of metabolism. 290 -238915 cd01940 Fructoselysine_kinase_like Fructoselysine kinase-like. Fructoselysine is a fructoseamine formed by glycation, a non-enzymatic reaction of glucose with a primary amine followed by an Amadori rearrangement, resulting in a protein that is modified at the amino terminus and at the lysine side chains. Fructoseamines are typically metabolized by fructoseamine-3-kinase, especially in higher eukaryotes. In E. coli, fructoselysine kinase has been shown in vitro to catalyze the phosphorylation of fructoselysine. It is proposed that fructoselysine is released from glycated proteins during human digestion and is partly metabolized by bacteria in the hind gut using a protein such as fructoselysine kinase. This family is found only in bacterial sequences, and its oligomeric state is currently unknown. 264 -238916 cd01941 YeiC_kinase_like YeiC-like sugar kinase. Found in eukaryotes and bacteria, YeiC-like kinase is part of the ribokinase/pfkB sugar kinase superfamily. Its oligomerization state is unknown at this time. 288 -238917 cd01942 ribokinase_group_A Ribokinase-like subgroup A. Found in bacteria and archaea, this subgroup is part of the ribokinase/pfkB superfamily. Its oligomerization state is unknown at this time. 279 -238918 cd01943 MAK32 MAK32 kinase. MAK32 is a protein found primarily in fungi that is necessary for the structural stability of L-A particles. The L-A virus particule is a specialized compartment for the transcription and replication of double-stranded RNA, known to infect yeast and other fungi. MAK32 is part of the host machinery used by the virus to multiply. 328 -238919 cd01944 YegV_kinase_like YegV-like sugar kinase. Found only in bacteria, YegV-like kinase is part of the ribokinase/pfkB sugar kinase superfamily. Its oligomerization state is unknown at this time. 289 -238920 cd01945 ribokinase_group_B Ribokinase-like subgroup B. Found in bacteria and plants, this subgroup is part of the ribokinase/pfkB superfamily. Its oligomerization state is unknown at this time. . 284 -238921 cd01946 ribokinase_group_C Ribokinase-like subgroup C. Found only in bacteria, this subgroup is part of the ribokinase/pfkB superfamily. Its oligomerization state is unknown at this time. 277 -238922 cd01947 Guanosine_kinase_like Guanosine kinase-like sugar kinases. Found in bacteria and archaea, the guanosine kinase-like group is part of the ribokinase/pfkB sugar kinase superfamily. Its oligomerization state is unknown at this time. 265 -238923 cd01948 EAL EAL domain. This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues and is also known as domain of unknown function 2 (DUF2). The EAL domain has been shown to stimulate degradation of a second messenger, cyclic di-GMP, and is a good candidate for a diguanylate phosphodiesterase function. Together with the GGDEF domain, EAL might be involved in regulating cell surface adhesiveness in bacteria. 240 -143635 cd01949 GGDEF Diguanylate-cyclase (DGC) or GGDEF domain. Diguanylate-cyclase (DGC) or GGDEF domain: Originally named after a conserved residue pattern, and initially described as a domain of unknown function 1 (DUF1). This domain is widely present in bacteria, linked to a wide range of non-homologous domains in a variety of cell signaling proteins. The domain shows homology to the adenylyl cyclase catalytic domain. This correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. Together with the EAL domain, GGDEF might be involved in regulating cell surface adhesion in bacteria. 158 -173886 cd01951 lectin_L-type legume lectins. The L-type (legume-type) lectins are a highly diverse family of carbohydrate binding proteins that generally display no enzymatic activity toward the sugars they bind. This family includes arcelin, concanavalinA, the lectin-like receptor kinases, the ERGIC-53/VIP36/EMP46 type1 transmembrane proteins, and an alpha-amylase inhibitor. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 223 -238924 cd01958 HPS_like HPS_like: Hydrophobic Protein from Soybean (HPS)-like subfamily; composed of proteins with similarity to HPS, a small hydrophobic protein with unknown function related to cereal-type alpha-amylase inhibitors and lipid transfer proteins. In addition to HPS, members of this subfamily include a hybrid proline-rich protein (HyPRP) from maize, a dark-inducible protein (LeDI-2) from Lithospermum erythrorhizon, maize ZRP3 protein, and rice RcC3 protein. HyPRP is an embryo-specific protein that contains an N-terminal proline-rich domain and a C-terminal HPS-like cysteine-rich domain. It has been suggested that HyPRP may be involved in the stability and defense of the developing embryo. LeDI-2 is a root-specific protein that may be involved in regulating the biosynthesis of shikonin derivatives in L. erythrorhizon. Maize ZRP3 and rice RcC3 are root-specific proteins whose functions are yet to be determined. It has been reported that ZRP3 largely accumulates in a distinct subset of cortical cells. 85 -238925 cd01959 nsLTP2 nsLTP2: Non-specific lipid-transfer protein type 2 (nsLTP2) subfamily; Plant nsLTPs are small, soluble proteins that facilitate the transfer of fatty acids, phospholipids, glycolipids, and steroids between membranes. In addition to lipid transport and assembly, nsLTPs also play a key role in the defense of plants against pathogens. There are two closely-related types of nsLTPs, types 1 and 2, which differ in protein sequence, molecular weight, and biological properties. nsLTPs contain an internal hydrophobic cavity, which serves as the binding site for lipids. nsLTP2 can bind lipids and sterols. Structure studies of rice nsLTPs show that the plasticity of the hydrophobic cavity is an important factor in ligand binding. The flexibility of the sLTP2 cavity allows its binding to rigid sterol molecules, whereas nsLTP1 cannot bind sterols despite its larger cavity size. The resulting nsLTP2/sterol complexes may bind to receptors that trigger defense responses. nsLTP2 gene expression has been observed in barley and rice developing seeds, during Zinnia elegans cell differentiation, and under abiotic stress conditions in barley roots. The nsLTP2 of Brassica rapa has also been identified as a potent allergen. 66 -238926 cd01960 nsLTP1 nsLTP1: Non-specific lipid-transfer protein type 1 (nsLTP1) subfamily; Plant nsLTPs are small, soluble proteins that facilitate the transfer of fatty acids, phospholipids, glycolipids, and steroids between membranes. In addition to lipid transport and assembly, nsLTPs also play a key role in the defense of plants against pathogens. There are two closely-related types of nsLTPs, types 1 and 2, which differ in protein sequence, molecular weight, and biological properties. nsLTPs contain an internal hydrophobic cavity, which serves as the binding site for lipids. The hydrophobic cavity accommodates various fatty acid ligands containing from ten to 18 carbon atoms. In general, the cavity is larger in nsLTP1 than in nsLTP2. nsLTP1 proteins are located in extracellular layers and in vacuolar structures. They may be involved in the formation of cutin layers on plant surfaces by transporting cutin monomers. Many nsLTP1 proteins have been characterized as allergens in humans. 89 -238927 cd01965 Nitrogenase_MoFe_beta_like Nitrogenase_MoFe_beta_like: Nitrogenase MoFe protein, beta subunit_like. The nitrogenase enzyme catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia. This group contains the beta subunits of component 1 of the three known genetically distinct types of nitrogenase systems: a molybdenum-dependent nitrogenase (Mo-nitrogenase), a vanadium-dependent nitrogenase (V-nitrogenase), and an iron-only nitrogenase (Fe-nitrogenase). These nitrogenase systems consist of component 1 (MoFe protein, VFe protein or, FeFe protein respectively) and, component 2 (Fe protein). The most widespread and best characterized of these systems is the Mo-nitrogenase. MoFe is an alpha2beta2 tetramer, the alternative nitrogenases are alpha2beta2delta2 hexamers having alpha and beta subunits similar to the alpha and beta subunits of MoFe. For MoFe, each alphabeta pair contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein contains, a single [4Fe-4S] cluster from which electrons are transferred to the P-cluster of the MoFe and in turn, to FeMoCo, the site of substrate reduction. The V-nitrogenase requires an iron-vanadium cofactor (FeVco), the iron only-nitrogenase an iron only cofactor (FeFeco). These cofactors are analogous to the FeMoco. The V-nitrogenase has P clusters identical to those of MoFe. In addition to N2, nitrogenase also catalyzes the reduction of a variety of other substrates such as acetylene The V-nitrogenase differs from the Mo-nitrogenase in that it produces free hydrazine, as a minor product during N2-reduction and, ethane as a minor product during acetylene reduction 428 -238928 cd01966 Nitrogenase_NifN_1 Nitrogenase_nifN1: A subgroup of the NifN subunit of the NifEN complex: NifN forms an alpha2beta2 tetramer with NifE. NifN and nifE are structurally homologous to nitrogenase MoFe protein beta and alpha subunits respectively. NifEN participates in the synthesis of the iron-molybdenum cofactor (FeMoco) of the MoFe protein. NifB-co (an iron and sulfur containing precursor of the FeMoco) from NifB is transferred to the NifEN complex where it is further processed to FeMoco. The nifEN bound precursor of FeMoco has been identified as a molybdenum-free, iron- and sulfur- containing analog of FeMoco. It has been suggested that this nifEN bound precursor also acts as a cofactor precursor in nitrogenase systems which require a cofactor other than FeMoco: i.e. iron-vanadium cofactor (FeVco) or iron only cofactor (FeFeco). 417 -238929 cd01967 Nitrogenase_MoFe_alpha_like Nitrogenase_MoFe_alpha_like: Nitrogenase MoFe protein, alpha subunit_like. The nitrogenase enzyme catalyzes the ATP-dependent reduction of dinitrogen to ammonia. Three genetically distinct types of nitrogenase systems are known to exist: a molybdenum-dependent nitrogenase (Mo-nitrogenase), a vanadium dependent nitrogenase (V-nitrogenase), and an iron-only nitrogenase (Fe-nitrogenase). These nitrogenase systems consist of component 1 (MoFe protein, VFe protein or, FeFe protein respectively) and, component 2 (Fe protein). This group contains the alpha subunit of component 1 of all three different forms. The most widespread and best characterized of these systems is the Mo-nitrogenase. MoFe is an alpha2beta2 tetramer, the alternative nitrogenases are alpha2beta2delta2 hexamers having alpha and beta subunits similar to the alpha and beta subunits of MoFe. The role of the delta subunit is unknown. For MoFe, each alphabeta pair of subunits contains one P-cluster (located at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein is a homodimer which contains, a single [4Fe-4S] cluster from which electrons are transferred to the P-cluster of the MoFe and in turn, to FeMoCo the site of substrate reduction. The V-nitrogenase requires an iron-vanadium cofactor (FeVco), the iron only-nitrogenase an iron only cofactor (FeFeco). These cofactors are analogous to the FeMoco. The V-nitrogenase has P clusters identical to those of MoFe. In addition to N2, nitrogenase also catalyzes the reduction of a variety of other substrates such as acetylene The V-nitrogenase differs from the Mo- nitrogenase in that it produces free hydrazine, as a minor product during dinitrogen reduction and, ethane as a minor product during acetylene reduction. 406 -238930 cd01968 Nitrogenase_NifE_I Nitrogenase_NifE_I: a subgroup of the NifE subunit of the NifEN complex: NifE forms an alpha2beta2 tetramer with NifN. NifE and NifN are structurally homologous to nitrogenase MoFe protein alpha and beta subunits respectively. NifEN participates in the synthesis of the iron-molybdenum cofactor (FeMoco) of the MoFe protein. NifB-co (an iron and sulfur containing precursor of the FeMoco) from NifB is transferred to the NifEN complex where it is further processed to FeMoco. The NifEN bound precursor of FeMoco has been identified as a molybdenum-free, iron- and sulfur- containing analog of FeMoco. It has been suggested that this NifEN bound precursor also acts as a cofactor precursor in nitrogenase systems which require a cofactor other than FeMoco: i.e. iron-vanadium cofactor (FeVco) or iron only cofactor (FeFeco). 410 -238931 cd01971 Nitrogenase_VnfN_like Nitrogenase_vnfN_like: VnfN subunit of the VnfEN complex-like. This group in addition to VnfN contains a subset of the beta subunit of the nitrogenase MoFe protein and NifN-like proteins. The nitrogenase enzyme system catalyzes the ATP-dependent reduction of dinitrogen to ammonia. NifEN participates in the synthesis of the iron-molybdenum cofactor (FeMoco) of MoFe protein of the molybdenum(Mo)-nitrogenase. NifB-co (an iron and sulfur containing precursor of the FeMoco) from NifB is transferred to NifEN where it is further processed to FeMoco. VnfEN may similarly be a scaffolding protien for the iron-vanadium cofactor (FeVco) of the vanadium-dependent (V)-nitrogenase. NifE and NifN are essential for the Mo-nitrogenase, VnfE and VnfN are not essential for the V-nitrogenase. NifE and NifN can substitute when the vnfEN genes are inactivated. 427 -238932 cd01972 Nitrogenase_VnfE_like Nitrogenase_VnfE_like: VnfE subunit of the VnfEN complex_like. This group in addition to VnfE contains a subset of the alpha subunit of the nitrogenase MoFe protein and NifE-like proteins. The nitrogenase enzyme system catalyzes the ATP-dependent reduction of dinitrogen to ammonia. NifEN participates in the synthesis of the iron-molybdenum cofactor (FeMoco) of MoFe protein of the molybdenum(Mo)-nitrogenase. NifB-co (an iron and sulfur containing precursor of the FeMoco) from NifB is transferred to NifEN where it is further processed to FeMoco. VnfEN may similarly be a scaffolding protein for the iron-vanadium cofactor (FeVco) of the vanadium-dependent (V)-nitrogenase. NifE and NifN are essential for the Mo-nitrogenase, VnfE and VnfN are not essential for the V-nitrogenase. NifE and NifN can substitute when the vnfEN genes are inactivated. 426 -238933 cd01973 Nitrogenase_VFe_beta_like Nitrogenase_VFe_beta -like: Nitrogenase VFe protein, beta subunit like. This group contains proteins similar to the beta subunits of the VFe protein of the vanadium-dependent (V-) nitrogenase. Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia. In addition to V-nitrogenase there is a molybdenum (Mo)-dependent nitrogenase and an iron only (Fe-) nitrogenase. The Mo-nitrogenase is the most widespread and best characterized of these systems. These systems consist of component 1 (VFe protein, FeFe protein or, MoFe protein respectively) and, component 2 (Fe protein). MoFe is an alpha2beta2 tetramer, V-and Fe- nitrogenases are alpha2beta2delta2 hexamers. The alpha and beta subunits of VFe and FeFe are similar to the alpha and beta subunits of MoFe. For MoFe each alphabeta pair contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein which has a practically identical structure in all three systems, it contains a single [4Fe-4S] cluster. Electrons are transferred from the [4Fe-4S] cluster of the Fe protein to the P-cluster of the MoFe and in turn to FeMoCo, the site of substrate reduction. The V-nitrogenase requires an iron-vanadium cofactor (FeVco), the iron only-nitrogenase an iron only cofactor (FeFeco). These cofactors are analogous to the FeMoco. The V-nitrogenase has P clusters identical to those of MoFe. In addition to N2, nitrogenase also catalyzes the reduction of a variety of other substrates such as acetylene The V-nitrogenase differs from the Mo-nitrogenase in that it produces free hydrazine, as a minor product during dinitrogen reduction and, ethane as a minor product during acetylene reduction. 454 -238934 cd01974 Nitrogenase_MoFe_beta Nitrogenase_MoFe_beta: Nitrogenase MoFe protein, beta subunit. The nitrogenase enzyme catalyzes the ATP-dependent reduction of dinitrogen to ammonia. The Molybdenum (Mo-) nitrogenase is the most widespread and best characterized of these systems. Mo-nitrogenase consists of the MoFe protein (component 1) and the Fe protein (component 2). MoFe is an alpha2beta2 tetramer. This group contains the beta subunit of the MoFe protein. Each alphabeta pair of MoFe contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein contains a single [4Fe-4S] cluster. Electrons are transferred from the [4Fe-4S] cluster of the Fe protein to the P-cluster of the MoFe and in turn to FeMoCo, the site of substrate reduction. 435 -238935 cd01976 Nitrogenase_MoFe_alpha Nitrogenase_MoFe_alpha_II: Nitrogenase MoFe protein, beta subunit. A group of proteins similar to the alpha subunit of the MoFe protein of the molybdenum (Mo-) nitrogenase. The nitrogenase enzyme catalyzes the ATP-dependent reduction of dinitrogen to ammonia. The Mo-nitrogenase is the most widespread and best characterized of these systems. Mo-nitrogenase consists of the MoFe protein (component 1) and the Fe protein (component 2). MoFe is an alpha2beta2 tetramer. Each alphabeta pair of MoFe contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein contains a single [4Fe-4S] cluster. Electrons are transferred from the [4Fe-4S] cluster of the Fe protein to the P-cluster of the MoFe and in turn to FeMoCo, the site of substrate reduction. 421 -238936 cd01977 Nitrogenase_VFe_alpha Nitrogenase_VFe_alpha -like: Nitrogenase VFe protein, alpha subunit like. This group contains proteins similar to the alpha subunits of, the VFe protein of the vanadium-dependent (V-) nitrogenase and the FeFe protein of the iron only (Fe-) nitrogenase Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia. In addition to V- and Fe- nitrogenases there is a molybdenum (Mo)-dependent nitrogenase which is the most widespread and best characterized of these systems. These systems consist of component 1 (VFe protein, FeFe protein or, MoFe protein respectively) and, component 2 (Fe protein). MoFe is an alpha2beta2 tetramer, V-and Fe- nitrogenases are alpha2beta2delta2 hexamers. The alpha and beta subunits of VFe and FeFe are similar to the alpha and beta subunits of MoFe. For MoFe each alphabeta pair contains one P-cluster (at the alphabeta interface) and, one molecule of iron molybdenum cofactor (FeMoco) contained within the alpha subunit. The Fe protein which has a practically identical structure in all three systems, it contains a single [4Fe-4S] cluster. Electrons are transferred from the [4Fe-4S] cluster of the Fe protein to the P-cluster of the MoFe and in turn to FeMoCo, the site of substrate reduction. The V-nitrogenase requires an iron-vanadium cofactor (FeVco), the iron only-nitrogenase an iron only cofactor (FeFeco). These cofactors are analogous to the FeMoco. The V-nitrogenase has P clusters identical to those of MoFe. In addition to N2, nitrogenase also catalyzes the reduction of a variety of other substrates such as acetylene The V-nitrogenase differs from the Mo-nitrogenase in that it produces free hydrazine, as a minor product during dinitrogen reduction and, ethane as a minor product during acetylene reduction. 415 -238937 cd01979 Pchlide_reductase_N Pchlide_reductase_N: N protein of the NB protein complex of Protochlorophyllide (Pchlide)_reductase. Pchlide reductase catalyzes the reductive formation of chlorophyllide (chlide) from protochlorophyllide (pchlide) during biosynthesis of chlorophylls and bacteriochlorophylls. This group contains both the light-independent Pchlide reductase (DPOR) and light-dependent Pchlide reductase (LPOR). Angiosperms contain only LPOR, cyanobacteria, algae and gymnosperms contain both DPOR and LPOR, primitive anoxygenic photosynthetic bacteria contain only DPOR. NB is structurally similar to the FeMo protein of nitrogenase, forming an N2B2 heterotetramer. N and B are homologous to the FeMo alpha and beta subunits respectively. Also in common with nitrogenase in vitro DPOR activity requires ATP hydrolysis and dithoionite or ferredoxin as electron donor. The NB protein complex may serve as a catalytic site for Pchlide reduction similar to MoFe for nitrogen reduction. 396 -238938 cd01980 Chlide_reductase_Y Chlide_reductase_Y : Y subunit of chlorophyllide (chlide) reductase (BchY). Chlide reductase participates in photosynthetic pigment synthesis playing a role in the conversion of chlorophylls(Chl) into bacteriochlorophylls (BChl). Chlide reductase catalyzes the reduction of the B-ring of the tetrapyrolle. Chlide reductase is a three subunit enzyme (subunits are designated BchX, BchY and BchZ). The similarity between these three subunits and the subunits for nitrogenase suggests that BchX serves as an electron donor for the BchY-BchY catalytic subunits. 416 -238939 cd01981 Pchlide_reductase_B Pchlide_reductase_B: B protein of the NB protein complex of Protochlorophyllide (Pchlide)_reductase. Pchlide reductase catalyzes the reductive formation of chlorophyllide (chlide) from protochlorophyllide (pchlide) during biosynthesis of chlorophylls and bacteriochlorophylls. This group contains both the light-independent Pchlide reductase (DPOR) and light-dependent Pchlide reductase (LPOR). Angiosperms contain only LPOR, cyanobacteria, algae and gymnosperms contain both DPOR and LPOR, primitive anoxygenic photosynthetic bacteria contain only DPOR. NB is structurally similar to the FeMo protein of nitrogenase, forming an N2B2 heterotetramer. N and B are homologous to the FeMo alpha and beta subunits respectively. Also in common with nitrogenase in vitro DPOR activity requires ATP hydrolysis and dithoionite or ferredoxin as electron donor. The NB protein complex may serve as a catalytic site for Pchlide reduction similar to MoFe for nitrogen reduction. 430 -238940 cd01982 Chlide_reductase_Z Chlide_reductase_Z : Z subunit of chlorophyllide (chlide) reductase (BchZ). Chlide reductase participates in photosynthetic pigment synthesis playing a role in the conversion of chlorophylls(Chl) into bacteriochlorophylls (BChl). Chlide reductase catalyzes the reduction of the B-ring of the tetrapyrolle. Chlide reductase is a three subunit enzyme (subunits are designated BchX, BchY and BchZ). The similarity between these three subunits and the subunits for nitrogenase suggests that BchX serves as an electron donor for the BchY-BchY catalytic subunits. 412 -349751 cd01983 SIMIBI SIMIBI (signal recognition particle, MinD and BioD)-class NTPases. SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. Functionally, proteins in this superfamily use the energy from hydrolysis of NTP to transfer electron or ion. 107 -238942 cd01984 AANH_like Adenine nucleotide alpha hydrolases superfamily including N type ATP PPases, ATP sulphurylases Universal Stress Response protein and electron transfer flavoprotein (ETF). The domain forms a apha/beta/apha fold which binds to Adenosine nucleotide. 86 -238943 cd01985 ETF The electron transfer flavoprotein (ETF) serves as a specific electron acceptor for various mitochondrial dehydrogenases. ETF transfers electrons to the main respiratory chain via ETF-ubiquinone oxidoreductase. ETF is an heterodimer that consists of an alpha and a beta subunit which binds one molecule of FAD per dimer . A similar system also exists in some bacteria. The homologous pair of proteins (FixA/FixB) are essential for nitrogen fixation. The alpha subunit of ETF is structurally related to the bacterial nitrogen fixation protein fixB which could play a role in a redox process and feed electrons to ferredoxin. The beta subunit protein is distantly related to and forms a heterodimer with the alpha subunit. 181 -238944 cd01986 Alpha_ANH_like Adenine nucleotide alpha hydrolases superfamily including N type ATP PPases and ATP sulphurylases. The domain forms a apha/beta/apha fold which binds to Adenosine group.. 103 -238945 cd01987 USP_OKCHK USP domain is located between the N-terminal sensor domain and C-terminal catalytic domain of this Osmosensitive K+ channel histidine kinase family. The family of KdpD sensor kinase proteins regulates the kdpFABC operon responsible for potassium transport. The USP domain is homologous to the universal stress protein Usp Usp is a small cytoplasmic bacterial protein whose expression is enhanced when the cell is exposed to stress agents. Usp enhances the rate of cell survival during prolonged exposure to such conditions, and may provide a general "stress endurance" activity. 124 -238946 cd01988 Na_H_Antiporter_C The C-terminal domain of a subfamily of Na+ /H+ antiporter existed in bacteria and archea . Na+/H+ exchange proteins eject protons from cells, effectively eliminating excess acid from actively metabolising cells. Na+ /H+ exchange activity is also crucial for the regulation of cell volume, and for the reabsorption of NaCl across renal, intestinal, and other epithelia. These antiports exchange Na+ for H+ in an electroneutral manner, and this activity is carried out by a family of Na+ /H+ exchangers, or NHEs, which are known to be present in both prokaryotic and eukaryotic cells. These exchangers are highly-regulated (glyco)phosphoproteins, which, based on their primary structure, appear to contain 10-12 membrane-spanning regions (M) at the N-terminus and a large cytoplasmic region at the C-terminus. The transmembrane regions M3-M12 share identity wit h other members of the family. The M6 and M7 regions are highly conserved. Thus, this is thought to be the region that is involved in the transport of sodium and hydrogen ions. The cytoplasmic region or C-terminal has homology with a family universal stress protein.Usp is a small cytoplasmic bacterial protein whose expression is enhanced when the cell is exposed to stress agents. Usp enhances the rate of cell survival during prolonged exposure to such conditions, and may provide a general "stress endurance" activity. 132 -238947 cd01989 STK_N The N-terminal domain of Eukaryotic Serine Threonine kinases. The Serine Threonine kinases are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. The N-terminal domain is homologous to the USP family which has a ATP binding fold. The N-terminal domain is predicted to be involved in ATP binding. 146 -238948 cd01990 Alpha_ANH_like_I This is a subfamily of Adenine nucleotide alpha hydrolases superfamily. Adenine nucleotide alpha hydrolases superfamily includes N type ATP PPases and ATP sulphurylases. It forms a apha/beta/apha fold which binds to Adenosine group. This subfamily of proteins probably binds ATP. This domain is about 200 amino acids long with a strongly conserved motif SGGKD at the N terminus. 202 -238949 cd01991 Asn_Synthase_B_C The C-terminal domain of Asparagine Synthase B. This domain is always found associated n-terminal amidotransferase domain. Family members that contain this domain catalyse the conversion of aspartate to asparagine. Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. The three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase . 269 -238950 cd01992 PP-ATPase N-terminal domain of predicted ATPase of the PP-loop faimly implicated in cell cycle control [Cell division and chromosome partitioning]. This is a subfamily of Adenine nucleotide alpha hydrolases superfamily.Adeninosine nucleotide alpha hydrolases superfamily includes N type ATP PPases and ATP sulphurylases. It forms a apha/beta/apha fold which binds to Adenosine group. This domain has a strongly conserved motif SGGXD at the N terminus. 185 -238951 cd01993 Alpha_ANH_like_II This is a subfamily of Adenine nucleotide alpha hydrolases superfamily.Adeninosine nucleotide alpha hydrolases superfamily includes N type ATP PPases and ATP sulphurylases. It forms a apha/beta/apha fold which binds to Adenosine group. This subfamily of proteins is predicted to bind ATP. This domainhas a strongly conserved motif SGGKD at the N terminus. 185 -238952 cd01994 Alpha_ANH_like_IV This is a subfamily of Adenine nucleotide alpha hydrolases superfamily.Adeninosine nucleotide alpha hydrolases superfamily includes N type ATP PPases and ATP sulphurylases. It forms a apha/beta/apha fold which binds to Adenosine group. This subfamily of proteins is predicted to bind ATP. This domainhas a strongly conserved motif SGGKD at the N terminus. 194 -238953 cd01995 ExsB ExsB is a transcription regulator related protein. It is a subfamily of a Adenosine nucleotide binding superfamily of proteins. This protein family is represented by a single member in nearly every completed large (> 1000 genes) prokaryotic genome. In Rhizobium meliloti, a species in which the exo genes make succinoglycan, a symbiotically important exopolysaccharide, exsB is located nearby and affects succinoglycan levels, probably through polar effects on exsA expression or the same polycistronic mRNA. In Arthrobacter viscosus, the homologous gene is designated ALU1 and is associated with an aluminum tolerance phenotype. The function is unknown 169 -238954 cd01996 Alpha_ANH_like_III This is a subfamily of Adenine nucleotide alpha hydrolases superfamily.Adeninosine nucleotide alpha hydrolases superfamily includes N type ATP PPases and ATP sulphurylases. It forms a apha/beta/apha fold which binds to Adenosine group. This subfamily of proteins is predicted to bind ATP. This domain has a strongly conserved motif SGGKD at the N terminus. 154 -238955 cd01997 GMP_synthase_C The C-terminal domain of GMP synthetase. It contains two subdomains; the ATP pyrophosphatase domain which closes to the N-termial and the dimerization domain at C-terminal end. The ATP-PPase is a twisted, five-stranded parallel beta-sheet sandwiched between helical layers. It has a signature nucleotide-binding motif, or P-loop, at the end of the first-beta strand.The dimerization domain formed by the C-terminal 115 amino acid for prokaryotic proteins. It is adjacent to teh ATP-binding site of the ATP-PPase subdomain. The largest difference between the primary sequence of prokaryotic and eukaryotic GMP synthetase map to the dimerization domain.Eukaryotic GMP synthetase has several large insertions relative to prokaryotes. 295 -238956 cd01998 tRNA_Me_trans tRNA methyl transferase. This family represents tRNA(5-methylaminomethyl-2-thiouridine)-methyltransferase which is involved in the biosynthesis of the modified nucleoside 5-methylaminomethyl-2-thiouridine present in the wobble position of some tRNAs. This family of enzyme only presents in bacteria and eukaryote. The archaeal counterpart of this enzyme performs same function, but is completely unrelated in sequence. 349 -238957 cd01999 Argininosuccinate_Synthase Argininosuccinate synthase. The Argininosuccinate synthase is a urea cycle enzyme that catalyzes the penultimate step in arginine biosynthesis: the ATP-dependent ligation of citrulline to aspartate to form argininosuccinate, AMP and pyrophosphate . In humans, a defect in the AS gene causes citrullinemia, a genetic disease characterized by severe vomiting spells and mental retardation. AS is a homotetrameric enzyme of chains of about 400 amino-acid residues. An arginine seems to be important for the enzyme's catalytic mechanism. The sequences of AS from various prokaryotes, archaebacteria and eukaryotes show significant similarity 385 -238958 cd02000 TPP_E1_PDC_ADC_BCADC Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins similar to the E1 components of the human pyruvate dehydrogenase complex (PDC), the acetoin dehydrogenase complex (ADC) and the branched chain alpha-keto acid dehydrogenase/2-oxoisovalerate dehydrogenase complex (BCADC). PDC catalyzes the irreversible oxidative decarboxylation of pyruvate to produce acetyl-CoA in the bridging step between glycolysis and the citric acid cycle. ADC participates in the breakdown of acetoin while BCADC participates in the breakdown of branched chain amino acids. BCADC catalyzes the oxidative decarboxylation of 4-methyl-2-oxopentanoate, 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate (branched chain 2-oxo acids derived from the transamination of leucine, valine and isoleucine). 293 -238959 cd02001 TPP_ComE_PpyrDC Thiamine pyrophosphate (TPP) family, ComE and PpyrDC subfamily, TPP-binding module; composed of proteins similar to sulfopyruvate decarboxylase beta subunit (ComE) and phosphonopyruvate decarboxylase (Ppyr decarboxylase). Methanococcus jannaschii sulfopyruvate decarboxylase (ComDE) is a dodecamer of six alpha (D) subunits and six (E) beta subunits which, catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde in the coenzyme M pathway. Ppyr decarboxylase is a homotrimeric enzyme which functions in the biosynthesis of C-P compounds such as bialaphos tripeptide in Streptomyces hygroscopicus. Ppyr decarboxylase and ComDE require TPP and divalent metal cation cofactors. 157 -238960 cd02002 TPP_BFDC Thiamine pyrophosphate (TPP) family, BFDC subfamily, TPP-binding module; composed of proteins similar to Pseudomonas putida benzoylformate decarboxylase (BFDC). P. putida BFDC plays a role in the mandelate pathway, catalyzing the conversion of benzoylformate to benzaldehyde and carbon dioxide. This enzyme is dependent on TPP and a divalent metal cation as cofactors. 178 -238961 cd02003 TPP_IolD Thiamine pyrophosphate (TPP) family, IolD subfamily, TPP-binding module; composed of proteins similar to Rhizobium leguminosarum bv. viciae IolD. IolD plays an important role in myo-inositol catabolism. 205 -238962 cd02004 TPP_BZL_OCoD_HPCL Thiamine pyrophosphate (TPP) family, BZL_OCoD_HPCL subfamily, TPP-binding module; composed of proteins similar to benzaldehyde lyase (BZL), oxalyl-CoA decarboxylase (OCoD) and 2-hydroxyphytanoyl-CoA lyase (2-HPCL). Pseudomonas fluorescens biovar I BZL cleaves the acyloin linkage of benzoin producing 2 molecules of benzaldehyde and enabling the Pseudomonas to grow on benzoin as the sole carbon and energy source. OCoD has a role in the detoxification of oxalate, catalyzing the decarboxylation of oxalyl-CoA to formate. 2-HPCL is a peroxisomal enzyme which plays a role in the alpha-oxidation of 3-methyl-branched fatty acids, catalyzing the cleavage of 2-hydroxy-3-methylacyl-CoA into formyl-CoA and a 2-methyl-branched fatty aldehyde. All these enzymes depend on Mg2+ and TPP for activity. 172 -238963 cd02005 TPP_PDC_IPDC Thiamine pyrophosphate (TPP) family, PDC_IPDC subfamily, TPP-binding module; composed of proteins similar to pyruvate decarboxylase (PDC) and indolepyruvate decarboxylase (IPDC). PDC, a key enzyme in alcoholic fermentation, catalyzes the conversion of pyruvate to acetaldehyde and CO2. It is able to utilize other 2-oxo acids as substrates. In plants and various plant-associated bacteria, IPDC plays a role in the indole-3-pyruvic acid (IPA) pathway, a tryptophan-dependent biosynthetic route to indole-3-acetaldehyde (IAA). IPDC catalyzes the decarboxylation of IPA to IAA. Both PDC and IPDC depend on TPP and Mg2+ as cofactors. 183 -238964 cd02006 TPP_Gcl Thiamine pyrophosphate (TPP) family, Gcl subfamily, TPP-binding module; composed of proteins similar to Escherichia coli glyoxylate carboligase (Gcl). E. coli glyoxylate carboligase, plays a key role in glyoxylate metabolism where it catalyzes the condensation of two molecules of glyoxylate to give tartronic semialdehyde and carbon dioxide. This enzyme requires TPP, magnesium ion and FAD as cofactors. 202 -238965 cd02007 TPP_DXS Thiamine pyrophosphate (TPP) family, DXS subfamily, TPP-binding module; 1-Deoxy-D-xylulose-5-phosphate synthase (DXS) is a regulatory enzyme of the mevalonate-independent pathway involved in terpenoid biosynthesis. Terpeniods are plant natural products with important pharmaceutical activity. DXS catalyzes a transketolase-type condensation of pyruvate with D-glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate (DXP) and carbon dioxide. The formation of DXP leads to the formation of the terpene precursor IPP (isopentyl diphosphate) and to the formation of thiamine (vitamin B1) and pyridoxal (vitamin B6). 195 -238966 cd02008 TPP_IOR_alpha Thiamine pyrophosphate (TPP) family, IOR-alpha subfamily, TPP-binding module; composed of proteins similar to indolepyruvate ferredoxin oxidoreductase (IOR) alpha subunit. IOR catalyzes the oxidative decarboxylation of arylpyruvates, such as indolepyruvate or phenylpyruvate, which are generated by the transamination of aromatic amino acids, to the corresponding aryl acetyl-CoA. 178 -238967 cd02009 TPP_SHCHC_synthase Thiamine pyrophosphate (TPP) family, SHCHC synthase subfamily, TPP-binding module; composed of proteins similar to Escherichia coli 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase (also called MenD). SHCHC synthase plays a key role in the menaquinone biosynthetic pathway, converting isochorismate and 2-oxoglutarate to SHCHC, pyruvate and carbon dioxide. The enzyme requires TPP and a divalent metal cation for activity. 175 -238968 cd02010 TPP_ALS Thiamine pyrophosphate (TPP) family, Acetolactate synthase (ALS) subfamily, TPP-binding module; composed of proteins similar to Klebsiella pneumoniae ALS, a catabolic enzyme required for butanediol fermentation. ALS catalyzes the conversion of 2 molecules of pyruvate to acetolactate and carbon dioxide. ALS does not contain FAD, and requires TPP and a divalent metal cation for activity. 177 -238969 cd02011 TPP_PK Thiamine pyrophosphate (TPP) family, Phosphoketolase (PK) subfamily, TPP-binding module; PK catalyzes the conversion of D-xylulose 5-phosphate and phosphate to acetyl phosphate, D-glyceraldehyde-3-phosphate and H2O. This enzyme requires divalent magnesium ions and TPP for activity. 227 -238970 cd02012 TPP_TK Thiamine pyrophosphate (TPP) family, Transketolase (TK) subfamily, TPP-binding module; TK catalyzes the transfer of a two-carbon unit from ketose phosphates to aldose phosphates. In heterotrophic organisms, TK provides a link between glycolysis and the pentose phosphate pathway and provides precursors for nucleotide, aromatic amino acid and vitamin biosynthesis. In addition, the enzyme plays a central role in the Calvin cycle in plants. Typically, TKs are homodimers. They require TPP and divalent cations, such as magnesium ions, for activity. 255 -238971 cd02013 TPP_Xsc_like Thiamine pyrophosphate (TPP) family, Xsc-like subfamily, TPP-binding module; composed of proteins similar to Alcaligenes defragrans sulfoacetaldehyde acetyltransferase (Xsc). Xsc plays a key role in the degradation of taurine, catalyzing the desulfonation of 2-sulfoacetaldehyde into sulfite and acetyl phosphate. This enzyme requires TPP and divalent metal ions for activity. 196 -238972 cd02014 TPP_POX Thiamine pyrophosphate (TPP) family, Pyruvate oxidase (POX) subfamily, TPP-binding module; composed of proteins similar to Lactobacillus plantarum POX, which plays a key role in controlling acetate production under aerobic conditions. POX decarboxylates pyruvate, producing hydrogen peroxide and the energy-storage metabolite acetylphosphate. It requires FAD in addition to TPP and a divalent cation as cofactors. 178 -238973 cd02015 TPP_AHAS Thiamine pyrophosphate (TPP) family, Acetohydroxyacid synthase (AHAS) subfamily, TPP-binding module; composed of proteins similar to the large catalytic subunit of AHAS. AHAS catalyzes the condensation of two molecules of pyruvate to give the acetohydroxyacid, 2-acetolactate. 2-Acetolactate is the precursor of the branched chain amino acids, valine and leucine. AHAS also catalyzes the condensation of pyruvate and 2-ketobutyrate to form 2-aceto-2-hydroxybutyrate in isoleucine biosynthesis. In addition to requiring TPP and a divalent metal ion as cofactors, AHAS requires FAD. 186 -238974 cd02016 TPP_E1_OGDC_like Thiamine pyrophosphate (TPP) family, E1 of OGDC-like subfamily, TPP-binding module; composed of proteins similar to the E1 component of the 2-oxoglutarate dehydrogenase multienzyme complex (OGDC). OGDC catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA and carbon dioxide, a key reaction of the tricarboxylic acid cycle. 265 -238975 cd02017 TPP_E1_EcPDC_like Thiamine pyrophosphate (TPP) family, E1 of E. coli PDC-like subfamily, TPP-binding module; composed of proteins similar to the E1 component of the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDC). PDC catalyzes the oxidative decarboxylation of pyruvate and the subsequent acetylation of coenzyme A to acetyl-CoA. The E1 component of PDC catalyzes the first step of the multistep process, using TPP and a divalent cation as cofactors. E. coli PDC is a homodimeric enzyme. 386 -238976 cd02018 TPP_PFOR Thiamine pyrophosphate (TPP family), Pyruvate ferredoxin/flavodoxin oxidoreductase (PFOR) subfamily, TPP-binding module; PFOR catalyzes the oxidative decarboxylation of pyruvate to form acetyl-CoA, a crucial step in many metabolic pathways. Archaea, anaerobic bacteria and eukaryotes that lack mitochondria (and therefore pyruvate dehydrogenase) use PFOR to oxidatively decarboxylate pyruvate, with ferredoxin or flavodoxin as the electron acceptor. PFORs can be homodimeric, heterodimeric, or heterotetrameric, depending on the organism. These enzymes are dependent on TPP and a divalent metal cation as cofactors. 237 -238977 cd02019 NK Nucleoside/nucleotide kinase (NK) is a protein superfamily consisting of multiple families of enzymes that share structural similarity and are functionally related to the catalysis of the reversible phosphate group transfer from nucleoside triphosphates to nucleosides/nucleotides, nucleoside monophosphates, or sugars. Members of this family play a wide variety of essential roles in nucleotide metabolism, the biosynthesis of coenzymes and aromatic compounds, as well as the metabolism of sugar and sulfate. 69 -238978 cd02020 CMPK Cytidine monophosphate kinase (CMPK) catalyzes the reversible phosphorylation of cytidine monophosphate (CMP) to produce cytidine diphosphate (CDP), using ATP as the preferred phosphoryl donor. 147 -238979 cd02021 GntK Gluconate kinase (GntK) catalyzes the phosphoryl transfer from ATP to gluconate. The resulting product gluconate-6-phoshate is an important precursor of gluconate metabolism. GntK acts as a dimmer composed of two identical subunits. 150 -238980 cd02022 DPCK Dephospho-coenzyme A kinase (DPCK, EC 2.7.1.24) catalyzes the phosphorylation of dephosphocoenzyme A (dCoA) to yield CoA, which is the final step in CoA biosynthesis. 179 -238981 cd02023 UMPK Uridine monophosphate kinase (UMPK, EC 2.7.1.48), also known as uridine kinase or uridine-cytidine kinase (UCK), catalyzes the reversible phosphoryl transfer from ATP to uridine or cytidine to yield UMP or CMP. In the primidine nucleotide-salvage pathway, this enzyme combined with nucleoside diphosphate kinases further phosphorylates UMP and CMP to form UTP and CTP. This kinase also catalyzes the phosphorylation of several cytotoxic ribonucleoside analogs such as 5-flurrouridine and cyclopentenyl-cytidine. 198 -238982 cd02024 NRK1 Nicotinamide riboside kinase (NRK) is an enzyme involved in the metabolism of nicotinamide adenine dinucleotide (NAD+). This enzyme catalyzes the phosphorylation of nicotinamide riboside (NR) to form nicotinamide mononucleotide (NMN). It defines the NR salvage pathway of NAD+ biosynthesis in addition to the pathways through nicotinic acid mononucleotide (NaMN). This enzyme can also phosphorylate the anticancer drug tiazofurin, which is an analog of nicotinamide riboside. 187 -238983 cd02025 PanK Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenic acid to form 4'-phosphopantothenic, which is the first of five steps in coenzyme A (CoA) biosynthetic pathway. The reaction carried out by this enzyme is a key regulatory point in CoA biosynthesis. 220 -238984 cd02026 PRK Phosphoribulokinase (PRK) is an enzyme involved in the Benson-Calvin cycle in chloroplasts or photosynthetic prokaryotes. This enzyme catalyzes the phosphorylation of D-ribulose 5-phosphate to form D-ribulose 1, 5-biphosphate, using ATP and NADPH produced by the primary reactions of photosynthesis. 273 -238985 cd02027 APSK Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5'-phosphosulfate to form 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The end-product PAPS is a biologically "activated" sulfate form important for the assimilation of inorganic sulfate. 149 -238986 cd02028 UMPK_like Uridine monophosphate kinase_like (UMPK_like) is a family of proteins highly similar to the uridine monophosphate kinase (UMPK, EC 2.7.1.48), also known as uridine kinase or uridine-cytidine kinase (UCK). 179 -238987 cd02029 PRK_like Phosphoribulokinase-like (PRK-like) is a family of proteins similar to phosphoribulokinase (PRK), the enzyme involved in the Benson-Calvin cycle in chloroplasts or photosynthetic prokaryotes. PRK catalyzes the phosphorylation of D-ribulose 5-phosphate to form D-ribulose 1, 5-biphosphate, using ATP and NADPH produced by the primary reactions of photosynthesis. 277 -238988 cd02030 NDUO42 NADH:Ubiquinone oxioreductase, 42 kDa (NDUO42) is a family of proteins that are highly similar to deoxyribonucleoside kinases (dNK). Members of this family have been identified as one of the subunits of NADH:Ubiquinone oxioreductase (complex I), a multi-protein complex located in the inner mitochondrial membrane. The main function of the complex is to transport electrons from NADH to ubiquinone, which is accompanied by the translocation of protons from the mitochondrial matrix to the inter membrane space. 219 -349752 cd02032 Bchl-like L-subunit of protochlorophyllide reductase. This family of proteins contains BchL and ChlL. Protochlorophyllide reductase catalyzes the reductive formation of chlorophyllide from protochlorophyllide during biosynthesis of chlorophylls and bacteriochlorophylls. Three genes, bchL, bchN and bchB, are involved in light-independent protochlorophyllide reduction in bacteriochlorophyll biosynthesis. In cyanobacteria, algae, and gymnosperms, three similar genes, chlL, chlN and chlB are involved in protochlorophyllide reduction during chlorophylls biosynthesis. BchL/chlL, bchN/chlN and bchB/chlB exhibit significant sequence similarity to the nifH, nifD and nifK subunits of nitrogenase, respectively. Nitrogenase catalyzes the reductive formation of ammonia from dinitrogen. 267 -349753 cd02033 BchX X-subunit of protochlorophyllide reductase. Chlorophyllide reductase converts chlorophylls into bacteriochlorophylls by reducing the chlorin B-ring. This family contains the X subunit of this three-subunit enzyme. Sequence and structure similarity between bchX, protochlorophyllide reductase L subunit (bchL and chlL) and nitrogenase Fe protein (nifH gene) suggest their functional similarity. Members of the BchX family serve as the unique electron donors to their respective catalytic subunits (bchN-bchB, bchY-bchZ and nitrogenase component 1). Mechanistically, they hydrolyze ATP and transfer electrons through a Fe4-S4 cluster. 329 -349754 cd02034 CooC1 accessory protein CooC1. The accessory protein CooC1, a nickel-binding ATPase, participates in the incorporation of nickel into the complex active site ([Ni-4Fe-4S]) cluster of Ni,Fe-dependent carbon monoxide dehydrogenase (CODH). CODH from Rhodospirillum rubrum catalyzes the reversible oxidation of CO to CO2. CODH contains a nickel-iron-sulfur cluster (C-center) and an iron-sulfur cluster (B-center). CO oxidation occurs at the C-center. Three accessory proteins encoded by cooCTJ genes are involved in nickel incorporation into a nickel site. CooC functions as a nickel insertase that mobilizes nickel to apoCODH using energy released from ATP hydrolysis. CooC is a homodimer and has NTPase activities. Mutation at the P-loop abolishs its function. 249 -349755 cd02035 ArsA Arsenical pump-driving ATPase ArsA. ArsA ATPase functions as an efflux pump located on the inner membrane of the cell. This ATP-driven oxyanion pump catalyzes the extrusion of arsenite, antimonite and arsenate. Maintenance of a low intracellular concentration of oxyanion produces resistance to the toxic agents. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB, which are encoded by arsA and arsB genes, respectively. Arsenic efflux in bacteria is catalyzed by either ArsB alone or by ArsAB complex. The ATP-coupled pump, however, is more efficient. ArsA is composed of two homologous halves, A1 and A2, connected by a short linker sequence. 250 -349756 cd02036 MinD septum site-determining protein MinD. Septum site-determining protein MinD is part of the operon MinCDE that determines the site of the formation of a septum at mid-cell, an important part of bacterial cell division. MinC is a nonspecific inhibitor of the septum protein FtsZ. MinE is the supressor of MinC. MinD plays a pivotal role, selecting the mid-cell over other sites through the activation and regulation of MinC and MinE. MinD is a membrane-associated ATPase, related to nitrogenase iron protein. 236 -349757 cd02037 Mrp_NBP35 Mrp/NBP35 ATP-binding protein family. Mrp/NBP35 ATP-binding family protein are typically iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Members include the eukaryotic nucleotide-binding protein 1 (NUBP1) which is a component of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery and the archael [NiFe] hydrogenase maturation protein HypB which is required for nickel insertion into [NiFe] hydrogenase. 213 -349758 cd02038 FlhG-like MinD-like ATPase FlhG. FlhG is a member of the SIMIBI superfamily. FlhG (also known as YlxH) is a major determinant for a variety of flagellation patterns. It effects location and number of bacterial flagella during C-ring assembly. 230 -185678 cd02039 cytidylyltransferase_like Cytidylyltransferase-like domain. Cytidylyltransferase-like domain. Many of these proteins are known to use CTP or ATP and release pyrophosphate. Protein families that contain at least one copy of this domain include citrate lyase ligase, pantoate-beta-alanine ligase, glycerol-3-phosphate cytidyltransferase, ADP-heptose synthase, phosphocholine cytidylyltransferase, lipopolysaccharide core biosynthesis protein KdtB, the bifunctional protein NadR, and a number whose function is unknown. 143 -349759 cd02040 NifH nitrogenase component II NifH. NifH gene encodes component II (iron protein) of nitrogenase. Nitrogenase is responsible for the biological nitrogen fixation, i.e. reduction of molecular nitrogen to ammonia. NifH consists of two oxygen-sensitive metallosulfur proteins: the mollybdenum-iron (alternatively, vanadium-iron or iron-iron) protein (commonly referred to as component 1), and the iron protein (commonly referred to as component 2). The iron protein is a homodimer, with an Fe4S4 cluster bound between the subunits and two ATP-binding domains. It supplies energy by ATP hydrolysis, and transfers electrons from reduced ferredoxin or flavodoxin to component 1 for the reduction of molecular nitrogen to ammonia. 265 -349760 cd02042 ParAB_family partition proteins ParAB family. ParA and ParB of Caulobacter crescentus belong to a conserved family of bacterial proteins implicated in chromosome segregation. ParB binds to DNA sequences adjacent to the origin of replication and localizes to opposite cell poles shortly following the initiation of DNA replication. ParB regulates the ParA ATPase activity by promoting nucleotide exchange in a fashion reminiscent of the exchange factors of eukaryotic G proteins. ADP-bound ParA binds single-stranded DNA, whereas the ATP-bound form dissociates ParB from its DNA binding sites. Increasing the fraction of ParA-ADP in the cell inhibits cell division, suggesting that this simple nucleotide switch may regulate cytokinesis. ParA shares sequence similarity to a conserved and widespread family of ATPases which includes the repA protein of the repABC operon in Rhizobium etli symbiotic plasmid. This operon is involved in the plasmid replication and partition. 130 -238998 cd02043 plant_SERPIN SERine Proteinase INhibitors (serpins), plant specific subgroup. It has been suggested that plant serpins play a role in defense against insect predators. This subgroup corresponds to clade P of the serpin superfamily. In general, serpins exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. 381 -238999 cd02044 ov-serpin ovalbumin family of serpins (ov-serpins). Family of closely related proteins, whose members can be secreted (ovalbumin), cytosolic (leukocyte elastase inhibitor, LEI), or targeted to both compartments (plasminogen activator inhibitor 2, PAI-2). This subgroup corresponds to clade B of the serpin superfamily. In general, serpins exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. Serpins are of medical interest because mutants can cause blood clotting disorders, emphysema, cirrhosis, and dementia. 370 -239000 cd02045 antithrombin-III_like Antithrombin is a serine proteinase inhibitor (serpin) which controls the process of coagulation. It is the most important anticoagulant molecule in mammalian circulation systems, controlled by its interaction with the co-factor, heparin, which accelerates its interaction with target proteases, such as thrombin and factor Xa. This subgroup corresponds to clade C of the serpin superfamily. 381 -239001 cd02046 hsp47 Heat shock protein 47 (Hsp47), also called colligin, because of its collagen binding ability, is a chaperone specific for procollagen. It has been shown to be essential for collagen biosynthesis, but its exact function is still unclear. Hsp47 is a non-inhibitory member of the SERPIN superfamily and corresponds to clade H. 366 -239002 cd02047 HCII Heparin cofactor II (HCII) inhibits thrombin, the final protease of the coagulation cascade. HCII is allosterically activated by binding to cell surface glycosaminoglycans (GAGs). The specificity of HCII for thrombin is conferred by a highly acidic hirudin-like N-terminal tail, which becomes available after GAG binding for interaction with the anion-binding exosite I of thrombin. This subgroup corresponds to clade D of the serpin superfamily. 436 -239003 cd02048 neuroserpin Neuroserpin is a inhibitory member of the SERine Proteinase INhibitor (serpin) family that reacts preferentially with tissue-type plasminogen activator (tPA). It is located in neurons in regions of the brain where tPA is also found, suggesting that neuroserpin is the selective inhibitor of tPA in the central nervous system (CNS). This subgroup corresponds to clade I of the serpin superfamily. 388 -239004 cd02049 bacterial_SERPIN SERine Proteinase INhibitors (serpins), prokaryotic subgroup. Little information about specific functions is available for this subgroup, most likely they are inhibitory members of the serpin superfamily. In general, serpins exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors. 364 -239005 cd02050 C1_inh C1 inhibitor (C1-Inh) is a protease inhibitor of the serpin family. It plays a pivotal role in regulating the activation of the classical complement pathway and of the contact system, via regulating bradykinin formation, inhibiting factor XII and kallikrein of the contact system, and via acting on factor XI in the coagulation cascade. This subgroup corresponds to clade G of the serpin superfamily. 352 -239006 cd02051 PAI-1_nexin-1 Plasminogen activator inhibitor-1_like. Plasminogen activator inhibitor-1 (PAI-1) is the primary, fast-acting inhibitor of plasminogen activators. It is often bound to vitronectin, an abundant component of the extracellular matrix in many tissues. Protease nexin-1 is a potent serpin able to inhibit thrombin, plasmin, and plasminogen activators. PAI-1 and nexin-1 are members of the serpin superfamily and represent clade E. In general, SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. 377 -239007 cd02052 PEDF Pigment epithelium-derived factor (PEDF)_like. PEDF is non-inhibitory member of the Serpin superfamily. It exhibits neurotrophic, neuroprotective and antiangiogenic properties and is widely expressed in the developing and adult nervous systems. This subgroup corresponds to clade F1 of the serpin superfamily. 374 -239008 cd02053 alpha2AP Alpha2-antiplasmin (alpha2AP) is the primary inhibitor of plasmin, a proteinase that digests fibrin, the main component of blood clots. Alpha2-Antiplasmin forms an inactive 1 : 1 stoichiometric complex with plasmin. It also rapidly crosslinks to fibrin during blood clotting by activated coagulation factor XIII, and as a consequence fibrin becomes more resistant to fibrinolysis. Therefore alpha2AP is important in modulating the effectiveness and persistence of fibrin with respect to its susceptibility to digestion and removal by plasmin. This subgroup corresponds to clade F2 of the serpin superfamily. 351 -239009 cd02054 angiotensinogen Angiotensinogen is part of the renin-angiotensin system (RAS), which plays an important role in blood pressure regulation, renal haemodynamics, fluid and electrolyte homeostasis. It is also involved in normal and abnormal growth processes. The growth promoting actions of angiotensin have been shown in a variety of cells and tissues. This subgroup represents clade A8 of the serpin superfamily. In general, SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. 372 -239010 cd02055 PZI Protein Z-dependent protease inhibitor (ZPI) is a member of the serpin superfamily of proteinase inhibitors (clade A10). ZPI inhibits coagulation factor Xa , dependent on protein Z (PZ), a vitamin K-dependent plasma protein. ZPI also inhibits factor XIa in a process that does not require PZ. In general, SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. 365 -239011 cd02056 alpha-1-antitrypsin_like alpha-1-antitrypsin_like. This family contains a variety of different members of clade A of the serpin superfamily. They include the classical serine proteinase inhibitors, alpha-1-antitrypsin and alpha-1-antichymotrypsin, protein C inhibitor, kallistatin, and noninhibitory serpins, like corticosteroid and thyroxin binding globulins. In general, SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. Serpins are of medical interest because mutants have been associated with blood clotting disorders, emphysema, cirrhosis, and dementia. 361 -239012 cd02057 maspin_like Maspin (mammary serine proteinase inhibitor), a member of the serpin superfamily, with a multitude of effects on cells and tissues at an assortment of developmental stages. Maspin has tumor suppressing activity against breast and prostate cancer. In general, SERine Proteinase INhibitors (serpins) exhibit conformational polymorphism shifting from native to cleaved, latent, delta, or polymorphic forms. Many serpins, such as antitrypsin and antichymotrypsin, function as serine protease inhibitors which regulate blood coagulation cascades. Non-inhibitory serpins perform many diverse functions such as chaperoning proteins or transporting hormones. 372 -239013 cd02058 PAI-2 Plasminogen Activator Inhibitor-2 (PAI-2). PAI-2 is a serine protease inhibitor that belongs to the ov-serpin branch of the serpin superfamily. It is is an effective inhibitor of urinary plasminogen activator (urokinase or uPA) and is involved in cell differentiation, tissue growth and regeneration. 380 -239014 cd02059 ovalbumin_like The ovalbumin_like group of serpins contains ovalbumin, the squamous cell carcinoma antigen 1 (SCCA1) and other closely related serpins of clade B of the serpin superfamily. Ovalbumin, the major protein component of avian egg white, is a non-inhibitory member of SERine Proteinase INhibitorS (serpins). In contrast, SCCA1 inhibits cysteine proteinases such as cathepsin S, K, L, and papain, a so called cross-class serpin. 389 -239015 cd02062 Nitro_FMN_reductase Proteins of this family catalyze the reduction of flavin or nitrocompounds using NAD(P)H as electron donor in a obligatory two-electron transfer, utilizing FMN or FAD as cofactor. They are often found to be homodimers. Enzymes of this family are described as NAD(P)H:FMN oxidoreductases, oxygen-insensitive nitroreductase, flavin reductase P, dihydropteridine reductase, NADH oxidase or NADH dehydrogenase. 122 -185679 cd02064 FAD_synthetase_N FAD synthetase, N-terminal domain of the bifunctional enzyme. FAD synthetase_N. N-terminal domain of the bifunctional riboflavin biosynthesis protein riboflavin kinase/FAD synthetase. These enzymes have both ATP:riboflavin 5'-phosphotransferase and ATP:FMN-adenylyltransferase activities. The N-terminal domain is believed to play a role in the adenylylation reaction of FAD synthetases. The C-terminal domain is thought to have kinase activity. FAD synthetase is present among all kingdoms of life. However, the bifunctional enzyme is not found in mammals, which use separate enzymes for FMN and FAD formation. 180 -239016 cd02065 B12-binding_like B12 binding domain (B12-BD). Most of the members bind different cobalamid derivates, like B12 (adenosylcobamide) or methylcobalamin or methyl-Co(III) 5-hydroxybenzimidazolylcobamide. This domain is found in several enzymes, such as glutamate mutase, methionine synthase and methylmalonyl-CoA mutase. Cobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in many cobalamin-binding proteins. Not all members of this family contain the conserved binding motif. 125 -239017 cd02066 GRX_family Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which are members of this family. E. coli GRX2, however, is a 24-kDa protein that belongs to the GSH S-transferase (GST) family. 72 -239018 cd02067 B12-binding B12 binding domain (B12-BD). This domain binds different cobalamid derivates, like B12 (adenosylcobamide) or methylcobalamin or methyl-Co(III) 5-hydroxybenzimidazolylcobamide, it is found in several enzymes, such as glutamate mutase, methionine synthase and methylmalonyl-CoA mutase. Cobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in many cobalamin-binding proteins. 119 -239019 cd02068 radical_SAM_B12_BD B12 binding domain_like associated with radical SAM domain. This domain shows similarity with B12 (adenosylcobamide) binding domains found in several enzymes, such as glutamate mutase, methionine synthase and methylmalonyl-CoA mutase, but it lacks the signature motif Asp-X-His-X-X-Gly, which contains the histidine that acts as a cobalt ligand. The function of this domain remains unclear. 127 -239020 cd02069 methionine_synthase_B12_BD B12 binding domain of methionine synthase. This domain binds methylcobalamin, which it uses as an intermediate methyl carrier from methyltetrahydrofolate (CH3H4folate) to homocysteine (Hcy). 213 -239021 cd02070 corrinoid_protein_B12-BD B12 binding domain of corrinoid proteins. A family of small methanogenic corrinoid proteins that bind methyl-Co(III) 5-hydroxybenzimidazolylcobamide as a cofactor. They play a role on the methanogenesis from trimethylamine, dimethylamine or monomethylamine, which is initiated by a series of corrinoid-dependent methyltransferases. 201 -239022 cd02071 MM_CoA_mut_B12_BD methylmalonyl CoA mutase B12 binding domain. This domain binds to B12 (adenosylcobamide), which initiates the conversion of succinyl CoA and methylmalonyl CoA by forming an adenosyl radical, which then undergoes a rearrangement exchanging a hydrogen atom with a group attached to a neighboring carbon atom. This family is present in both mammals and bacteria. Bacterial members are heterodimers and involved in the fermentation of pyruvate to propionate. Mammalian members are homodimers and responsible for the conversion of odd-chain fatty acids and branched-chain amino acids via propionyl CoA to succinyl CoA for further degradation. 122 -239023 cd02072 Glm_B12_BD B12 binding domain of glutamate mutase (Glm). Glutamate mutase catalysis the conversion of (S)-glutamate with (2S,3S)-3-methylaspartate. The rearrangement reaction is initiated by the extraction of a hydrogen from the protein-bound substrate by a 5'-desoxyadenosyl radical, which is generated by the homolytic cleavage of the organometallic bond of the cofactor B12. Glm is a heterotetrameric molecule consisting of two alpha and two epsilon polypeptide chains. 128 -319770 cd02073 P-type_ATPase_APLT_Dnf-like Aminophospholipid translocases (APLTs), similar to Saccharomyces cerevisiae Dnf1-3p, Drs2p, and human ATP8A2, -10D, -11B, -11C. Aminophospholipid translocases (APLTs), also known as type 4 P-type ATPases, act as flippases, and translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes. Yeast Dnf1 and Dnf2 mediate the transport of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine from the outer to the inner leaflet of the plasma membrane. This subfamily includes mammalian flippases such as ATP11C which may selectively transports PS and PE from the outer leaflet of the plasma membrane to the inner leaflet. It also includes Arabidopsis phospholipid flippases including ALA1, and Caenorhabditis elegans flippases, including TAT-1, the latter has been shown to facilitate the inward transport of phosphatidylserine. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 836 -319771 cd02076 P-type_ATPase_H plant and fungal plasma membrane H(+)-ATPases, and related bacterial and archaeal putative H(+)-ATPases. This subfamily includes eukaryotic plasma membrane H(+)-ATPase which transports H(+) from the cytosol to the extracellular space, thus energizing the plasma membrane for the uptake of ions and nutrients, and is expressed in plants and fungi. This H(+)-ATPase consists of four domains: a transmembrane domain and three cytosolic domains: nucleotide-binding domain, phosphorylation domain and actuator domain, and belongs to the P-type ATPase type III subfamily. This subfamily also includes the putative P-type H(+)-ATPase, MJ1226p of the anaerobic hyperthermophilic archaea Methanococcus jannaschii. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 781 -319772 cd02077 P-type_ATPase_Mg magnesium transporting ATPase (MgtA), similar to Escherichia coli MgtA and Salmonella typhimurium MgtA. MgtA is a membrane protein which actively transports Mg(2+) into the cytosol with its electro-chemical gradient rather than against the gradient as other cation transporters do. It may act both as a transporter and as a sensor for Mg(2+). In Salmonella typhimurium and Escherichia coli, the two-component system PhoQ/PhoP regulates the transcription of the mgtA gene by sensing Mg(2+) concentrations in the periplasm. MgtA is activated by cardiolipin and it highly sensitive to free magnesium in vitro. It consists of a transmembrane domain and three cytosolic domains: nucleotide-binding domain, phosphorylation domain and actuator domain, and belongs to the P-type ATPase type III subfamily. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 768 -319773 cd02078 P-type_ATPase_K potassium-transporting ATPase ATP-binding subunit, KdpB, a subunit of the prokaryotic high-affinity potassium uptake system KdpFABC; similar to Escherichia coli KdpB. KdpFABC is a prokaryotic high-affinity potassium uptake system. It is expressed under K(+) limiting conditions when the other potassium transport systems are not able to provide a sufficient flow of K(+) into the bacteria. The KdpB subunit represents the catalytic subunit performing ATP hydrolysis. KdpB is comprised of four domains: the transmembrane domain, the nucleotide-binding domain, the phosphorylation domain, and the actuator domain. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 667 -319774 cd02079 P-type_ATPase_HM P-type heavy metal-transporting ATPase. Heavy metal-transporting ATPases (Type IB ATPases) transport heavy metal ions (Cu(+), Cu(2+), Zn(2+), Cd(2+), Co(2+), etc.) across biological membranes. These ATPases include mammalian copper-transporting ATPases, ATP7A and ATP7B, Bacillus subtilis CadA which transports cadmium, zinc and cobalt out of the cell, Bacillus subtilis ZosA/PfeT which transports copper, and perhaps also zinc and ferrous iron, Archaeoglobus fulgidus CopA and CopB, Staphylococcus aureus plasmid pI258 CadA, a cadmium-efflux ATPase, and Escherichia coli ZntA which is selective for Pb(2+), Zn(2+), and Cd(2+). The characteristic N-terminal heavy metal associated (HMA) domain of this group is essential for the binding of metal ions. This family belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 617 -319775 cd02080 P-type_ATPase_cation P-type cation-transporting ATPase similar to Exiguobacterium aurantiacum Mna, an Na(+)-ATPase, and Synechocystis sp. PCC 6803 PMA1, a putative Ca(2+)-ATPase. This subfamily includes the P-type Na(+)-ATPase of an alkaliphilic bacterium Exiguobacterium aurantiacum Mna and cyanobacterium Synechocystis sp. PCC 6803 PMA1, a cation-transporting ATPase which may translocate calcium. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 819 -319776 cd02081 P-type_ATPase_Ca_PMCA-like animal plasma membrane Ca2(+)-ATPases (PMCA), similar to human ATP2B1-4/PMCA1-4, and related Ca2(+)-ATPases including Saccharomyces cerevisiae vacuolar PMC1. Animal PMCAs function to export Ca(2+) from cells and play a role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. Many PMCA pump variants exist due to alternative splicing of transcripts. PMCAs are regulated by the binding of calmodulin or by kinase-mediated phosphorylation. Saccharomyces cerevisiae vacuolar transporter Pmc1p facilitates the accumulation of Ca2+ into vacuoles. Pmc1p is not regulated by direct calmodulin binding but responds to the calmodulin/calcineurin-signaling pathway and is controlled by the transcription factor complex Tcn1p/Crz1p. Similarly, the expression of the gene for Dictyostelium discoideum Ca(2+)-ATPase PAT1, patA, is under the control of a calcineurin-dependent transcription factor. Plant vacuolar Ca(2+)-ATPases, are regulated by direct-calmodulin binding. Plant Ca(2+)-ATPases are present at various cellular locations including the plasma membrane, endoplasmic reticulum, chloroplast and vacuole. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 721 -319777 cd02082 P-type_ATPase_cation P-type cation-transporting ATPases, similar to human ATPase type 13A1-A4 (ATP13A1-A4) proteins and Saccharomyces cerevisiae Ypk9p and Spf1p. Saccharomyces cerevisiae Yph9p localizes to the yeast vacuole and may play a role in sequestering heavy metal ions, its deletion confers sensitivity for growth for cadmium, manganese, nickel or selenium. Saccharomyces 1 Spf1p may mediate manganese transport into the endoplasmic reticulum. Human ATP13A2 (PARK9/CLN12) is a lysosomal transporter with zinc as the possible substrate. Mutation in the ATP13A2 gene has been linked to Parkinson's disease and Kufor-Rakeb syndrome, and to neuronal ceroid lipofuscinoses. ATP13A3/AFURS1 is a candidate gene for oculo auriculo vertebral spectrum (OAVS), being one of nine genes included in a 3q29 microduplication in a patient with OAVS. Mutation in the human ATP13A4 may be involved in a speech-language disorder. The expression of ATP13A1 has been followed during mouse development, ATP13A1 transcript expression showed an increase as development progressed, with the highest expression at the peak of neurogenesis. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 786 -319778 cd02083 P-type_ATPase_SERCA sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), similar to mammalian ATP2A1-3/SERCA1-3. SERCA is a transmembrane (Ca2+)-ATPase and a major regulator of Ca(2+) homeostasis and contractility in cardiac and skeletal muscle. It re-sequesters cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. Three genes (ATP2A1-3/SERCA1-3) encode SERCA pumps in mammals, further isoforms exist due to alternative splicing of transcripts. The activity of SERCA is regulated by two small membrane proteins called phospholamban and sarcolipin. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 979 -319779 cd02085 P-type_ATPase_SPCA golgi-associated secretory pathway Ca(2+) transport ATPases, similar to human ATPase secretory pathway Ca(2+) transporting 1/hSPCA1 and Saccharomyces cerevisiae Ca(2+)/Mn(2+)-transporting P-type ATPase, Pmr1p. SPCAs are Ca(2+) pumps important for the golgi-associated secretion pathway, in addition some function as Mn(2+) pumps in Mn(2+) detoxification. Saccharomyces cerevisiae Pmr1p is a high affinity Ca(2+)/Mn(2+) ATPase which transports Ca(2+) and Mn(2+) from the cytoplasm into the Golgi. Pmr1p also contributes to Cd(2+) detoxification. This subfamily includes human SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes; autosomal dominant Hailey-Hailey disease is caused by mutations in the human ATP2C1 gene. It also includes Strongylocentrotus purpuratus testis secretory pathway calcium transporting ATPase SPCA which plays an important role in fertilization. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 804 -319780 cd02086 P-type_ATPase_Na_ENA fungal-type Na(+)-ATPase, similar to the plasma membrane sodium transporters Saccharomyces cerevisiae Ena1p, Ena2p and Ustilago maydis Ena1, and the endoplasmic reticulum sodium transporter Ustilago maydis Ena2. Fungal-type Na(+)-ATPase (also called ENA ATPases). This subfamily includes the Saccharomyces cerevisiae plasma membrane transporters: Na(+)/Li(+)-exporting ATPase Ena1p which may also extrudes K(+), and Na(+)-exporting P-type ATPase Ena2p. It also includes Ustilago maydis plasma membrane Ena1, an K(+)/Na(+)-ATPase whose chief role is to pump Na(+) and K(+) out of the cytoplasm, especially at high pH values, and endoplasmic reticulum Ena2 ATPase which mediates Na(+) or K(+) fluxes in the ER or in other endomembranes. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 920 -319781 cd02089 P-type_ATPase_Ca_prok prokaryotic P-type Ca(2+)-ATPase similar to Synechococcus elongatus sp. strain PCC 7942 PacL and Listeria monocytogenes LMCA1. Ca(2+) transport ATPase is a plasma membrane protein which pumps Ca(2+) ion out of the cytoplasm. This prokaryotic subfamily includes the Ca(2+)-ATPase Synechococcus elongatus PacL, Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1) which has a low Ca(2+) affinity and a high pH optimum (pH about 9) and may remove Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH, and the Bacillus subtilis putative P-type Ca(2+)-transport ATPase encoded by the yloB gene, which is expressed during sporulation. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 674 -319782 cd02092 P-type_ATPase_FixI-like Rhizobium meliloti FixI and related proteins; belongs to P-type heavy metal-transporting ATPase subfamily. FixI may be a pump of a specific cation involved in symbiotic nitrogen fixation. The Rhizobium fixI gene is part of an operon conserved among rhizobia, fixGHIS. FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG, an iron-sulfur protein. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 605 -319783 cd02094 P-type_ATPase_Cu-like P-type heavy metal-transporting ATPase, similar to human copper-transporting ATPases, ATP7A and ATP7B. The mammalian copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of copper homeostasis. Menkes and Wilson diseases are caused by mutation in ATP7A and ATP7B respectively. This subfamily includes other copper-transporting ATPases such as: Bacillus subtilis CopA , Archeaoglobus fulgidus CopA, and Saccharomyces cerevisiae Ccc2p. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 647 -259797 cd02106 SPFH_like core domain of the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes proteins similar to stomatin, prohibitin, flotillin, HflK/C (SPFH) and podocin. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Many superfamily members are associated with lipid rafts. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons, and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic HflK/C plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. Flotillins have been implicated in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, and in cancer invasion and metastasis. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. 110 -239025 cd02107 YedY_like_Moco YedY_like molybdopterin cofactor (Moco) binding domain, a subgroup of the sulfite oxidase (SO) family of molybdopterin binding domains. Escherichia coli YedY has been propsed to form a heterodimer, consisting of a soluble catalytic subunit termed YedY, which is likely membrane-anchored by a heme-containing trans-membrane subunit YedZ. Preliminary results indicate that YedY may represent a new type of membrane-associated bacterial reductase. Common features of all known members of this family are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 218 -239026 cd02108 bact_SO_family_Moco bacterial subgroup of the sulfite oxidase (SO) family of molybdopterin binding domains. This domain is found in a variety of oxidoreductases. Common features of all known members of this family, like sulfite oxidase and nitrite reductase, are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. The specific function of this subgroup is unknown. 185 -239027 cd02109 arch_bact_SO_family_Moco bacterial and archael members of the sulfite oxidase (SO) family of molybdopterin binding domains. This molybdopterin cofactor (Moco) binding domain is found in a variety of oxidoreductases, main members of this family are nitrate reductase (NR) and sulfite oxidase (SO). Common features of all known members of this family are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. The specific function of this subgroup is unknown. 180 -239028 cd02110 SO_family_Moco_dimer Subgroup of sulfite oxidase (SO) family molybdopterin binding domains that contains conserved dimerization domain. This molybdopterin cofactor (Moco) binding domain is found in a variety of oxidoreductases, main members of this family are nitrate reductase (NR) and sulfite oxidase (SO). 317 -239029 cd02111 eukary_SO_Moco molybdopterin binding domain of sulfite oxidase (SO). SO catalyzes the terminal reaction in the oxidative degradation of the sulfur-containing amino acids cysteine and methionine. Common features of all known members of the sulfite oxidase (SO) family of molybdopterin binding domains are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 365 -239030 cd02112 eukary_NR_Moco molybdopterin binding domain of eukaryotic nitrate reductase (NR). Assimilatory NRs catalyze the reduction of nitrate to nitrite which is subsequently converted to NH4+ by nitrite reductase. Eukaryotic assimilatory nitrate reductases are cytosolic homodimeric enzymes with three prosthetic groups, flavin adenine dinucleotide (FAD), cytochrome b557, and Mo cofactor, which are located in three functional domains. Common features of all known members of the sulfite oxidase (SO) family of molybdopterin binding domains are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 386 -239031 cd02113 bact_SoxC_Moco bacterial SoxC is a member of the sulfite oxidase (SO) family of molybdopterin binding domains. SoxC is involved in oxidation of sulfur compounds during chemolithothrophic growth. Together with SoxD, a small c-type heme containing subunit, it forms a hetrotetrameric sulfite dehydrogenase. This molybdopterin cofactor (Moco) binding domain is found in a variety of oxidoreductases, main members of this family are nitrate reductase (NR) and sulfite oxidase (SO). Common features of all known members of this family are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 326 -239032 cd02114 bact_SorA_Moco sulfite:cytochrome c oxidoreductase subunit A (SorA), molybdopterin binding domain. SorA is involved in oxidation of sulfur compounds during chemolithothrophic growth. Together with SorB, a small c-type heme containing subunit, it forms a hetrodimer. It is a member of the sulfite oxidase (SO) family of molybdopterin binding domains. This molybdopterin cofactor (Moco) binding domain is found in a variety of oxidoreductases, main members of this family are nitrate reductase (NR) and sulfite oxidase (SO). Common features of all known members of this family are that they contain one single pterin cofactor and part of the coordination of the metal (Mo) is a cysteine ligand of the protein and that they catalyze the transfer of an oxygen to or from a lone pair of electrons on the substrate. 367 -239033 cd02115 AAK Amino Acid Kinases (AAK) superfamily, catalytic domain; present in such enzymes like N-acetylglutamate kinase (NAGK), carbamate kinase (CK), aspartokinase (AK), glutamate-5-kinase (G5K) and UMP kinase (UMPK). The AAK superfamily includes kinases that phosphorylate a variety of amino acid substrates. These kinases catalyze the formation of phosphoric anhydrides, generally with a carboxylate, and use ATP as the source of the phosphoryl group; are involved in amino acid biosynthesis. Some of these kinases control the process via allosteric feed-back inhibition. 248 -153139 cd02116 ACT ACT domains are commonly involved in specifically binding an amino acid or other small ligand leading to regulation of the enzyme. Members of this CD belong to the superfamily of ACT regulatory domains. Pairs of ACT domains are commonly involved in specifically binding an amino acid or other small ligand leading to regulation of the enzyme. The ACT domain has been detected in a number of diverse proteins; some of these proteins are involved in amino acid and purine biosynthesis, phenylalanine hydroxylation, regulation of bacterial metabolism and transcription, and many remain to be characterized. ACT domain-containing enzymes involved in amino acid and purine synthesis are in many cases allosteric enzymes with complex regulation enforced by the binding of ligands. The ACT domain is commonly involved in the binding of a small regulatory molecule, such as the amino acids L-Ser and L-Phe in the case of D-3-phosphoglycerate dehydrogenase and the bifunctional chorismate mutase-prephenate dehydratase enzyme (P-protein), respectively. Aspartokinases typically consist of two C-terminal ACT domains in a tandem repeat, but the second ACT domain is inserted within the first, resulting in, what is normally the terminal beta strand of ACT2, formed from a region N-terminal of ACT1. ACT domain repeats have been shown to have nonequivalent ligand-binding sites with complex regulatory patterns such as those seen in the bifunctional enzyme, aspartokinase-homoserine dehydrogenase (ThrA). In other enzymes, such as phenylalanine hydroxylases, the ACT domain appears to function as a flexible small module providing allosteric regulation via transmission of conformational changes, these conformational changes are not necessarily initiated by regulatory ligand binding at the ACT domain itself. ACT domains are present either singularly, N- or C-terminal, or in pairs present C-terminal or between two catalytic domains. Unique to cyanobacteria are four ACT domains C-terminal to an aspartokinase domain. A few proteins are composed almost entirely of ACT domain repeats as seen in the four ACT domain protein, the ACR protein, found in higher plants; and the two ACT domain protein, the glycine cleavage system transcriptional repressor (GcvR) protein, found in some bacteria. Also seen are single ACT domain proteins similar to the Streptococcus pneumoniae ACT domain protein (uncharacterized pdb structure 1ZPV) found in both bacteria and archaea. Purportedly, the ACT domain is an evolutionarily mobile ligand binding regulatory module that has been fused to different enzymes at various times. 60 -349761 cd02117 NifH-like NifH family. This family contains the NifH (iron protein) of nitrogenase, L subunit (BchL/ChlL) of the protochlorophyllide reductase, and the BchX subunit of the Chlorophyllide reductase. Members of this family use energy from ATP hydrolysis and transfer electrons through a Fe4-S4 cluster to other subunit for substrate reduction 266 -239035 cd02120 PA_subtilisin_like PA_subtilisin_like: Protease-associated domain containing subtilisin-like proteases. This group contains various PA domain-containing subtilisin-like proteases including melon cucumisin, Arabidopsis thaliana Ara12, a nodule specific serine protease from Alnus glutinosa ag12, members of the tomato P69 family, and tomato LeSBT2. These proteins belong to the peptidase S8 family. Cucumisin from the juice of melon fruits is a thermostable serine peptidase, with a broad substrate specificity for oligopeptides and proteins. A. thaliana Ara12 is a thermostable, extracellular serine protease, found chiefly in silique tissue and stem tissue. Ara12 is stimulated by Ca2+ ions. A. glutinosa ag12 is expressed at high levels in the nodules, and at low levels in the shoot tips; it is implicated in both symbiotic and non-symbiotic processes in plant development. The tomato P69 protease family is comprised of various protein isoforms of approximately 69KDa. These isoforms accumulate extracellularly. Some of the P69 genes are tightly regulated in a tissue specific fashion, and by environmental and developmental signals. For example: infection with avirulent bacteria activates transcription of the genes for the P69 B and C isoforms, the P69 E transcript was detected only in roots, and the P69F transcript only in hydathodes. The Tomato LeSBT2 subtilase transcript was not detected in flowers and roots, but was present in cotyledons and leaves. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 126 -239036 cd02121 PA_GCPII_like PA_GCPII_like: Protease-associated domain containing protein, glutamate carboxypeptidase II (GCPII)-like. This group contains various PA domain-containing proteins similar to GCPII including, GCPIII (NAALADase2) and NAALADase L. These proteins belong to the peptidase M28 family. GCPII is also known N-acetylated-alpha-linked acidic dipeptidase (NAALDase1), folate hydrolase or prostate-specific membrane antigen (PSMA). GCPII is found in various human tissues including prostate, small intestine, and the central nervous system. In the brain, GCPII is known as NAALDase1, it functions as a NAALDase hydrolyzing the neuropeptide N-acetyl-L-aspartyl-L-glutamate (alpha-NAAG), to release free glutamate. In the small intestine, GCPII releases the terminal glutamate from poly-gamma-glutamated folates. GCPII (PSMA) is a useful cancer marker; its expression is markedly increased in prostate cancer and in tumor-associated neovasculature. GCPIII hydrolyzes alpha-NAAG with a lower efficiency than does GCPII; NAALADase L is not able to hydrolyze alpha-NAAG. The GCPII PA domain (referred to as the apical domain) participates in substrate binding and may act as a protein-protein interaction domain. 220 -239037 cd02122 PA_GRAIL_like PA _GRAIL_like: Protease-associated (PA) domain GRAIL-like. This group includes PA domain containing E3 (ubiquitin ligases) similar to human GRAIL (gene related to anergy in lymphocytes) protein. Proteins in this group contain a C3H2C3 RING finger. E3 ubiquitin ligase is part of an enzymic cascade, the end result of which is the ubiquitination of proteins. In this cascade, E1 activates the ubiquitin, the activated ubiquitin is carried by E2, and E3 recognizes the acceptor protein as well as catalyzes the transfer of the activated ubiquitin from E2 to this acceptor. GRAIL, a transmembrane protein localized in the endosomes, controls the development of T cell clonal anergy, and may ubiquitinate membrane-associated targets for T cell activation. GRAIL1 is associated with, and regulated by, two isoforms of otubain 1 (the ubiquitin-specific protease). Additional E3s belonging to this group include human (h)Goliath and Xenopus GREUL1 (Goliath Related E3 Ubiquitin Ligase 1). hGoliath and GRAIL both have the property of self-ubiquitination. hGoliath is expressed in leukocytes; its expression and localization is not modified in leukemia. GREUL1 may play a role in the generation of anterior ectoderm. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 138 -239038 cd02123 PA_C_RZF_like PA_C-RZF_ like: Protease-associated (PA) domain C_RZF-like. This group includes various PA domain-containing proteins similar to C-RZF (chicken embryo RING zinc finger) protein. These proteins contain a C3H2C3 RING finger. C-RZF is expressed in embryo cells and is restricted mainly to brain and heart, it is localized to both the nucleus and endosomes. Additional C3H2C3 RING finger proteins belonging to this group, include Arabidopsis ReMembR-H2 protein and mouse sperizin. ReMembR-H2 is likely to be an integral membrane protein, and to traffic through the endosomal pathway. Sperizin is expressed in haploid germ cells and localized in the cytoplasm, it may participate in spermatogenesis. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 153 -239039 cd02124 PA_PoS1_like PA_PoS1_like: Protease-associated (PA) domain PoS1-like. This group includes various PA domain-containing proteins similar to Pleurotus ostreatus (Po)S1. PoSl, the main extracellular protease in P. ostreatus is a subtilisin-like serine protease belonging to the peptidase S8 family. Ca2+ and Mn2+ both stimulate the protease activity of (Po)S1. Ca2+ protects PoS1 from autolysis. PoS1 is a monomeric glycoprotein, which may play a role in the regulation of laccases in lignin formation. (Po)S1 participates in the degradation of POXA1b, and in the activation of POXA3, (POXA1b and POXA3 are laccase isoenzymes), but its effect may be indirect. The significance of the PA domain to PoS1 has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 129 -239040 cd02125 PA_VSR PA_VSR: Protease-associated (PA) domain-containing plant vacuolar sorting receptor (VSR). This group includes various PA domain-containing VSRs such as garden pea BP-80, pumpkin PV72, and various Arabidopsis VSRs including AtVSR1. In contrast to most eukaryotes, which only have one or two VSRs, plants have several. This may in part be a reflection of having a more complex vacuolar system with both lytic vacuoles and storage vacuoles. The lytic vacuole is thought to be equivalent to the mammalian lysosome and the yeast vacuole. Pea BP-80 is a type 1 transmembrane protein, involved in the targeting of proteins to the lytic vacuole; it has been suggested that this protein also mediates targeting to the storage vacuole. PV72 and AtVSR1 may mediate transport of seed storage proteins to protein storage vacuoles. The significance of the PA domain to VSRs has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 127 -239041 cd02126 PA_EDEM3_like PA_EDEM3_like: protease associated domain (PA) domain-containing EDEM3-like proteins. This group contains various PA domain-containing proteins similar to mouse EDEM3 (ER-degradation-enhancing mannosidase-like 3 protein). EDEM3 contains a region, similar to Class I alpha-mannosidases (gylcosyl hydrolase family 47), N-terminal to the PA domain. EDEM3 accelerates glycoprotein ERAD (ER-associated degradation). In transfected mammalian cells, overexpression of EDEM3 enhances the mannose trimming from the N-glycans, of a model misfolded protein [alpha1-antitrypsin null (Hong Kong)] as well as, from total glycoproteins. Mannose trimming appears to be involved in the selection of ERAD substrates. EDEM3 has a different specificity of trimming than ER alpha-mannosidase 1. The significance of the PA domain to EDEM3 has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 126 -239042 cd02127 PA_hPAP21_like PA_hPAP21_like: Protease-associated domain containing proteins like the human secreted glycoprotein hPAP21 (human protease-associated domain-containing protein, 21kDa). This group contains various PA domain-containing proteins similar to hPAP21. Complex N-glycosylation may be required for the secretion of hPAP21. The significance of the PA domain to hPAP21 has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 118 -239043 cd02128 PA_TfR PA_TfR: Protease-associated domain containing proteins like transferrin receptor (TfR). This group contains various PA domain-containing proteins similar to human TfR1 and TfR2. TfR1 and TfR2 are type II membrane proteins, belonging to the peptidase M28 family. TfR1 is homodimeric, widely expressed, and a key player in the uptake of iron-loaded transferrin (Tf) into cells. The TfR1 homodimer binds two molecules of Tf and this complex is internalized. In addition to its role in iron uptake, TfR1 may participate in cell growth and proliferation. TfR2 also binds Tf but with a significantly lower affinity than does TfR1. TfR2 is expressed chiefly in hepatocytes, hematopoietic cells, and duodenal crypt cells; its expression overlaps with that of hereditary hemochromatosis protein (HFE). TfR2 is involved in iron homeostasis. HFE and TfR2 interact in cells. By one model for serum iron sensing, at low or basal iron concentrations, HFE and TFR1 form a complex at the plasma membrane; at increased Tf, Tf competes with HFE for binding of TfR1, resulting in HFE disassociating from TfR1 and associating with TfR2 . The TfR1-TfR2 association might initiate a signal cascade leading to the induction of hepcidin (a small peptide hormone that controls systemic iron levels). Human mutations in TfR2 are associated with a form of hemochromatosis (HFE3). The significance of the PA domain to TfRs has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 183 -239044 cd02129 PA_hSPPL_like PA_hSPPL_like: Protease-associated domain containing human signal peptide peptidase-like (hSPPL)-like. This group contains various PA domain-containing proteins similar to hSPPL2a and 2b. These SPPLs are GxGD aspartic proteases. SPPL2a is sorted to the late endosomes, SPPL2b to the plasma membrane. In activated dendritic cells, hSPPL2a and 2b catalyze the intramembrane proteolysis of tumor necrosis factor alpha triggering IL-12 production. hSPPL2a and 2b may have a broad substrate spectrum. The significance of the PA domain to these SPPLs has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 120 -239045 cd02130 PA_ScAPY_like PA_ScAPY_like: Protease-associated domain containing proteins like Saccharomyces cerevisiae aminopeptidase Y (ScAPY). This group contains various PA domain-containing proteins similar to the S. cerevisiae APY, including Trichophyton rubrum leucine aminopeptidase 1(LAP1). Proteins in this group belong to the peptidase M28 family. ScAPY hydrolyzes amino acid-4-methylcoumaryl-7-amides (MCAs). ScAPY more rapidly hydrolyzes dipeptidyl-MCAs. Hydrolysis of amino acid-MCAs or dipeptides is stimulated by Co2+ while the hydrolysis of dipeptidyl-MCAs, tripeptides, and longer peptides is inhibited by Co2+. ScAPY is vacuolar and is activated by proteolytic processing. LAP1 is a secreted leucine aminopeptidase. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 122 -239046 cd02131 PA_hNAALADL2_like PA_hNAALADL2_like: Protease-associated domain containing proteins like human N-acetylated alpha-linked acidic dipeptidase-like 2 protein (hNAALADL2). This group contains various PA domain-containing proteins similar to hNAALADL2. The function of hNAALADL2 is unknown. This gene has been mapped to a chromosomal region associated with Cornelia de Lange syndrome. The significance of the PA domain to hNAALADL2 has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 153 -239047 cd02132 PA_GO-like PA_GO-like: Protease-associated domain containing proteins like Arabidopsis thaliana growth-on protein GRO10. This group contains various PA domain-containing proteins similar to the functionally uncharacterized Arabidopsis GRO10. The PA domain may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 139 -239048 cd02133 PA_C5a_like PA_C5a_like: Protease-associated domain containing proteins like Streptococcus pyogenes C5a peptidase. This group contains various PA domain-containing proteins similar to S. pyogenes C5a, including, i) Vpr, a minor extracellular serine protease from Bacillus subtilis, ii) a large molecular mass collagenolytic protease from Geobacillus collagenovorans MO-1, and iii) PrtS, a cell envelope protease from Streptococcus thermophilus CNRZ 385. Proteins in this group belong to the peptidase S8 family. C5a peptidase is a cell surface serine protease which specifically inactivates C5a [a chemotactic peptide, which attracts polymorphonuclear leukocytes (PMNs)], by cleaving it to release a 7-residue carboxy-terminal fragment which contains the PMN binding site. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 143 -239049 cd02134 NusA_KH NusA_K homology RNA-binding domain (KH). NusA is an essential multifunctional transcription elongation factor that is universally conserved among prokaryotes and archaea. NusA anti-termination function plays an important role in the expression of ribosomal rrn operons. During transcription of many other genes, NusA-induced RNAP pausing provides a mechanism for synchronizing transcription and translation . The N-terminal RNAP-binding domain (NTD) is connected through a flexible hinge helix to three globular domains, S1, KH1 and KH2. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. 61 -239050 cd02135 Arsenite_oxidase Nitroreductase-like family which includes NADH oxidase and arsenite oxidiase. NADH oxidase catalyses the oxidation of NAD(P)H and accepts a wide broad range of compounds as electron acceptors, such as nitrocompound. Arsenite oxidase in a beta-proteobacterial strain is able to oxidize arsenite to arsenate. 160 -239051 cd02136 Nitroreductase Nitroreductase family. Members of this family utilize FMN as a cofactor and catalyze reduction of a variety of nitroaromatic compounds, including nitrofurans, nitrobenzens, nitrophenol, nitrobenzoate and quinones by using either NADH or NADPH as a source of reducing equivalents in an obligatory two-election transfer mechanism. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 178 -239052 cd02137 Nitroreductase_1 Nitroreductase-like family 1. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 148 -239053 cd02138 Nitroreductase_2 Nitroreductase-like family 2. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 181 -239054 cd02139 Nitroreductase_3 Nitroreductase-like family 3. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 164 -239055 cd02140 Nitroreductase_4 Nitroreductase-like family 4. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 192 -239056 cd02142 mcbC-like_oxidoreductase This family is the oxydase domain of NRPS (non-ribosomal peptide synthetase) and other proteins that modify polypeptides by cyclizing a thioester to form a ring. These include epoB, part of the epothilone biosynthesis pathway; tubD, part of the tubulysin biosynthesis pathway, mtsD, part of the myxothiozol biosynthesis pathway; indC, part of the indigoidine biosynthesis pathway and tfxB, part of the trifitoxin processing pathway. All are FMN-dependent and oxidize the product of the cyclization of thioesters in short polypeptides. 180 -239057 cd02143 NADH_nitroreductase Nitroreductase family. Members of this family utilize FMN as a cofactor. This family is involved in the reduction of flavin or nitroaromatic compounds by using NAD(P)H as electron donor in a obligatory two-electron transfer. Nitrogenase is homodimer. Each subunit contains one FMN molecule. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 147 -239058 cd02144 iodotyrosine_dehalogenase Iodotyrosine dehalogenase catalyzes the removal of iodine from the 3, 5 positions of L-tyosine in thyroid, liver and kidney, using NADPH as electron donor. This enzyme is a homolog of the nitroreductase family. These enzymes are usually homodimers. 193 -239059 cd02145 BluB Subfamily of the nitroreductase family that includes BluB protein in Rhodobacter capsulatus is involved in the conversion of cobinamide to cobalamin in Cobalamin (vitamin B12) biosynthesis. Nitroreductases typically reduce their substrates by using NAD(P)H as electron donor and often use FMN as a cofactor. 196 -239060 cd02146 NfsA_FRP This family contains NADPH-dependent flavin reductase and oxygen-insensitive nitroreductase. These enzymes are homodimeric flavoproteins that contain one FMN per monomer as a cofactor. Flavin reductase catalyzes the reduction of flavin by using NADPH as an electron donor. Oxygen-insensitive nitroreductase, such as NfsA protein in Escherichia coli, catalyzes reduction of nitrocompounds using NADPH as electron donor. 229 -239061 cd02148 Nitroreductase_5 Nitroreductase-like family 5. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 185 -239062 cd02149 NfsB_like_nitroreductase NAD(P)H:FMN oxidoreductase family. This domain catalyzes the reduction of flavin, nitrocompound, quinones and azo compounds using NADH or NADPH as an electron donor. The enzyme is a homodimer, and each monomer binds a FMN as co-factor. This family includes FRase I in Vibrio fischeri, wihich reduces FMN into FMNH2 as part of the bioluminescent reaction. The family also includes oxygen-insensitive nitroreductases that use NADH or NADPH as an electron donor in the ping pong bi bi mechanism. This type of nitroreductase can be used in cancer chemotherapy to activate a range of prodrugs. 157 -239063 cd02150 NADPH_oxidoreductase_1 NAD(P)H:flavin oxidoreductase-like family 1. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 166 -239064 cd02151 NADPH_oxidoreductase_2 NAD(P)H:flavin oxidoreductase-like family 2. A subfamily of the nitroreductase family containing uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 162 -239065 cd02152 OAT Ornithine acetyltransferase (OAT) family; also referred to as ArgJ. OAT catalyzes the first and fifth steps in arginine biosynthesis, coupling acetylation of glutamate with deacetylation of N-acetylornithine, which allows recycling of the acetyl group in the arginine biosynthetic pathway. Members of this family may experience feedback inhibition by L-arginine. The active enzyme is a heterotetramer of two alpha and two beta chains, where the alpha and beta chains are the result of autocatalytic cleavage. OATs found in the clavulanic acid biosynthesis gene cluster catalyze the fifth step only, and may utilize acetyl acceptors other than glutamate. 390 -239066 cd02153 tRNA_bindingDomain The tRNA binding domain is also known as the Myf domain in literature. This domain is found in a diverse collection of tRNA binding proteins, including prokaryotic phenylalanyl tRNA synthetases (PheRS), methionyl-tRNA synthetases (MetRS), human tyrosyl-tRNA synthetase(hTyrRS), Saccharomyces cerevisiae Arc1p, Thermus thermophilus CsaA, Aquifex aeolicus Trbp111, human p43 and human EMAP-II. PheRS, MetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. The molecular chaperones Trbp111 and CsaA also contain this domain. CsaA has export related activities; Trbp111 is structure-specific recognizing the L-shape of the tRNA fold. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multiple activities during apoptosis, angiogenesis and inflammation and participates in malignant transformation. An EMAP-II-like cytokine is released from hTyrRS upon cleavage. The active cytokine heptapeptide locates to this domain. For homodimeric members of this group which include CsaA, Trbp111 and Escherichia coli MetRS this domain acts as a dimerization domain. 99 -173912 cd02156 nt_trans nucleotidyl transferase superfamily. nt_trans (nucleotidyl transferase) This superfamily includes the class I amino-acyl tRNA synthetases, pantothenate synthetase (PanC), ATP sulfurylase, and the cytidylyltransferases, all of which have a conserved dinucleotide-binding domain. 105 -173914 cd02163 PPAT Phosphopantetheine adenylyltransferase. Phosphopantetheine adenylyltransferase (PPAT). PPAT is an essential enzyme in bacteria, responsible for catalyzing the rate-limiting step in coenzyme A (CoA) biosynthesis. The dinucleotide-binding fold of PPAT is homologous to class I aminoacyl-tRNA synthetases. CoA has been shown to inhibit PPAT and competes with ATP, PhP, and dPCoA. PPAT is a homohexamer in E. coli. 153 -173915 cd02164 PPAT_CoAS phosphopantetheine adenylyltransferase domain of eukaryotic and archaeal bifunctional enzymes. The PPAT domain of the bifunctional enzyme with PPAT and DPCK functions. The final two steps of the CoA biosynthesis pathway are catalyzed by phosphopantetheine adenylyltransferase (PPAT) and dephospho-CoA (dPCoA) kinase (DPCK). The PPAT reaction involves the reversible adenylation of 4'-phosphopantetheine to form 3'-dPCoA and PPi, and DPCK catalyses phosphorylation of the 3'-hydroxy group of the ribose moiety of dPCoA. In eukaryotes the two enzymes are part of a large multienzyme complex . Studies in Corynebacterium ammoniagenes suggested that separate enzymes were present, and this was confirmed through identification of the bacterial PPAT/CoAD. 143 -185680 cd02165 NMNAT Nicotinamide/nicotinate mononucleotide adenylyltransferase. Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT). NMNAT represents the primary bacterial and eukaryotic adenylyltransferases for nicotinamide-nucleotide and for the deamido form, nicotinate nucleotide. It is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Nicotinamide-nucleotide adenylyltransferase synthesizes NAD via the salvage pathway, while nicotinate-nucleotide adenylyltransferase synthesizes the immediate precursor of NAD via the de novo pathway. Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, and can participate in both de novo and salvage pathways of NAD synthesis. 192 -173917 cd02166 NMNAT_Archaea Nicotinamide/nicotinate mononucleotide adenylyltransferase, archaeal. This family of archaeal proteins exhibits nicotinamide-nucleotide adenylyltransferase (NMNAT) activity utilizing the salvage pathway to synthesize NAD. In some cases, the enzyme was tested and found also to have the activity of nicotinate-nucleotide adenylyltransferase an enzyme of NAD de novo biosynthesis, although with a higher Km. In some archaeal species, a number of proteins which are uncharacterized with respect to activity, are also present. 163 -173918 cd02167 NMNAT_NadR Nicotinamide/nicotinate mononucleotide adenylyltransferase of bifunctional NadR-like proteins. NMNAT domain of NadR protein. The NadR protein (NadR) is a bifunctional enzyme possessing both NMN adenylytransferase (NMNAT) and ribosylnicotinamide kinase (RNK) activities. Its function is essential for the growth and survival of H. influenzae and thus may present a new highly specific anti-infectious drug target. The N-terminal domain that hosts the NMNAT activity is closely related to archaeal NMNAT. The bound NAD at the active site of the NMNAT domain reveals several critical interactions between NAD and the protein.The NMNAT domain of hiNadR defines yet another member of the pyridine nucleotide adenylyltransferase 158 -173919 cd02168 NMNAT_Nudix Nicotinamide/nicotinate mononucleotide adenylyltransferase of bifunctional proteins, also containing a Nudix hydrolase domain. N-terminal NMNAT (Nicotinamide/nicotinate mononucleotide adenylyltransferase) domain of a novel bifunctional enzyme endowed with NMN adenylyltransferase and Nudix hydrolase activities. This domain is highly homologous to the archeal NMN adenyltransferase that catalyzes NAD synthesis from NMN and ATP. NMNAT is an essential enzyme in the biosynthesis of NAD(+) and NADP(+). Nicotinamide-nucleotide adenylyltransferase synthesizes NAD via the salvage pathway, while nicotinate-nucleotide adenylyltransferase synthesizes the immediate precursor of NAD via the de novo pathway. The C-terminal domain of this enzyme shares homology with the archaeal ADP-ribose pyrophosphatase, a member of the 'Nudix' hydrolase family. 181 -173920 cd02169 Citrate_lyase_ligase Citrate lyase ligase. Citrate lyase ligase, also known as [Citrate (pro-3S)-lyase] ligase, is responsible for acetylation of the (2-(5''-phosphoribosyl)-3'-dephosphocoenzyme-A) prosthetic group of the gamma subunit of citrate lyase, converting the inactive thiol form of this enzyme to the active form. The acetylation of 1 molecule of deacetyl-citrate lyase to enzymatically active citrate lyase requires 6 molecules of ATP. The Adenylylyltranferase activity of the enzyme involves the formation of AMP and and pyrophosphate in the acetylation reaction. 297 -173921 cd02170 cytidylyltransferase cytidylyltransferase. The cytidylyltransferase family includes cholinephosphate cytidylyltransferase (CCT), glycerol-3-phosphate cytidylyltransferase, RafE and phosphoethanolamine cytidylyltransferase (ECT). All enzymes catalyze the transfer of a cytidylyl group from CTP to various substrates. 136 -173922 cd02171 G3P_Cytidylyltransferase glycerol-3-phosphate cytidylyltransferase. Glycerol-3-phosphate cytidylyltransferase,(CDP-glycerol pyrophosphorylase). Glycerol-3-phosphate cytidyltransferase acts in pathways of teichoic acid biosynthesis. Teichoic acids are substituted polymers, linked by phosphodiester bonds, of glycerol, ribitol, etc. An example is poly(glycerol phosphate), the major teichoic acid of the Bacillus subtilis cell wall. Most, but not all, species encoding proteins in this family are Gram-positive bacteria. A closely related protein assigned a different function experimentally is a human ethanolamine-phosphate cytidylyltransferase. 129 -173923 cd02172 RfaE_N N-terminal domain of RfaE. RfaE is a protein involved in the biosynthesis of ADP-L-glycero-D-manno-heptose, a precursor for LPS inner core biosynthesis. RfaE is a bifunctional protein in Escherichia coli, and separate proteins in other organisms. Domain I is suggested to act in D-glycero-D-manno-heptose 1-phosphate biosynthesis, while domain II (this family) adds ADP to yield ADP-D-glycero-D-manno-heptose . 144 -173924 cd02173 ECT CTP:phosphoethanolamine cytidylyltransferase (ECT). CTP:phosphoethanolamine cytidylyltransferase (ECT) catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine as part of the CDP-ethanolamine biosynthesis pathway. ECT expression in hepatocytes is localized predominantly to areas of the cytoplasm that are rich in rough endoplasmic reticulum. Several ECTs, including yeast and human ECT, have large repetitive sequences located within their N- and C-termini. 152 -173925 cd02174 CCT CTP:phosphocholine cytidylyltransferase. CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the condensation of CTP and phosphocholine to form CDP-choline as the rate-limiting and regulatory step in the CDP-choline pathway. CCT is unique in that its enzymatic activity is regulated by the extent of its association with membrane structures. A current model posts that the elastic stress of the bilayer curvature is sensed by CCT and this governs the degree of membrane association, thus providing a mechanism for both positive and negative regulation of activity. 150 -185684 cd02175 GH16_lichenase lichenase, member of glycosyl hydrolase family 16. Lichenase, also known as 1,3-1,4-beta-glucanase, is a member of glycosyl hydrolase family 16, that specifically cleaves 1,4-beta-D-glucosidic bonds in mixed-linked beta glucans that also contain 1,3-beta-D-glucosidic linkages. Natural substrates of beta-glucanase are beta-glucans from grain endosperm cell walls or lichenan from the Islandic moss, Cetraria islandica. This protein is found not only in bacteria but also in anaerobic fungi. This domain includes two seven-stranded antiparallel beta-sheets that are adjacent to one another forming a compact, jellyroll beta-sandwich structure. 212 -185685 cd02176 GH16_XET Xyloglucan endotransglycosylase, member of glycosyl hydrolase family 16. Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Xyloglucan is a soluble hemicellulose with a backbone of beta-1,4-linked glucose units, partially substituted with alpha-1,6-linked xylopyranose branches. It binds noncovalently to cellulose, cross-linking the adjacent cellulose microfibrils, giving it a key structural role as a matrix polymer. Therefore, XET plays an important role in all plant processes that require cell wall remodeling. 263 -185686 cd02177 GH16_kappa_carrageenase Kappa-carrageenase, member of glycosyl hydrolase family 16. Kappa-carrageenase is a glycosyl hydrolase family 16 (GH16) member that hydrolyzes the internal beta-1,4-linkage of kappa-carrageenans, a hydrophilic polysaccharide found in the cell wall of Rhodophyceaea, marine red algae. Carrageenans are linear chains of galactose units linked by alternating D-alpha-1,3- and D-beta-1,4-linkages that are additionally modified by a 3,6-anhydro-bridge. Depending on the position and number of sulfate ester modifications they are subdivided into kappa-, iota-, and lambda-carrageenases, kappa being modified once. Carrageenans form thermo-reversible gels widely used for industrial applications. Kappa-carrageenases exist in bacteria belonging to at least three phylogenetically distant branches, including pseudoalteromonas, planctomycetes, and baceroidetes. This domain adopts a curved beta-sandwich conformation, with a tunnel-shaped active site cavity, referred to as a jellyroll fold. 269 -185687 cd02178 GH16_beta_agarase Beta-agarase, member of glycosyl hydrolase family 16. Beta-agarase is a glycosyl hydrolase family 16 (GH16) member that hydrolyzes the internal beta-1,4-linkage of agarose, a hydrophilic polysaccharide found in the cell wall of Rhodophyceaea, marine red algae. Agarose is a linear chain of galactose units linked by alternating L-alpha-1,3- and D-beta-1,4-linkages that are additionally modified by a 3,6-anhydro-bridge. Agarose forms thermo-reversible gels that are widely used in the food industry or as a laboratory medium. While beta-agarases are also found in two other families derived from the sequence-based classification of glycosyl hydrolases (GH50, and GH86) the GH16 members are most abundant. This domain adopts a curved beta-sandwich conformation, with a tunnel-shaped active site cavity, referred to as a jellyroll fold. 258 -185688 cd02179 GH16_beta_GRP beta-1,3-glucan recognition protein, member of glycosyl hydrolase family 16. Beta-GRP (beta-1,3-glucan recognition protein) is one of several pattern recognition receptors (PRRs), also referred to as biosensor proteins, that complexes with pathogen-associated beta-1,3-glucans and then transduces signals necessary for activation of an appropriate innate immune response. They are present in insects and lack all catalytic residues. This subgroup also contains related proteins of unknown function that still contain the active site. Their structures adopt a jelly roll fold with a deep active site channel harboring the catalytic residues, like those of other glycosyl hydrolase family 16 members. 321 -185689 cd02180 GH16_fungal_KRE6_glucanase Saccharomyces cerevisiae KRE6 and related glucanses, member of glycosyl hydrolase family 16. KRE6 is a Saccharomyces cerevisiae glucanase that participates in the synthesis of beta-1,6-glucan, a major structural component of the cell wall. It is a golgi membrane protein required for normal beta-1,6-glucan levels in the cell wall. KRE6 is closely realted to laminarinase, a glycosyl hydrolase family 16 member that hydrolyzes 1,3-beta-D-glucosidic linkages in 1,3-beta-D-glucans such as laminarins, curdlans, paramylons, and pachymans, with very limited action on mixed-link (1,3-1,4-)-beta-D-glucans. 295 -185690 cd02181 GH16_fungal_Lam16A_glucanase fungal 1,3(4)-beta-D-glucanases, similar to Phanerochaete chrysosporium laminarinase 16A. Group of fungal 1,3(4)-beta-D-glucanases, similar to Phanerochaete chrysosporium laminarinase 16A. Lam16A belongs to the 'nonspecific' 1,3(4)-beta-glucanase subfamily, although beta-1,6 branching and beta-1,4 bonds specifically define where Lam16A hydrolyzes its substrates, like curdlan (beta-1,3-glucan), lichenin (beta-1,3-1,4-mixed linkage glucan), and laminarin (beta-1,6-branched-1,3-glucan). 293 -185691 cd02182 GH16_Strep_laminarinase_like Streptomyces laminarinase-like, member of glycosyl hydrolase family 16. Proteins similar to Streptomyces sioyaensis beta-1,3-glucanase (laminarinase) present in Actinomycetales as well as Peziomycotina. Laminarinases belong to glycosyl hydrolase family 16 and hydrolyze the glycosidic bond of the 1,3-beta-linked glucan, a major component of fungal and plant cell walls and the structural and storage polysaccharides (laminarin) of marine macro-algae. Members of the GH16 family have a conserved jelly roll fold with an active site channel. 259 -185692 cd02183 GH16_fungal_CRH1_transglycosylase glycosylphosphatidylinositol-glucanosyltransferase. Group of fungal GH16 members related to Saccharomyces cerevisiae Crh1p. Chr1p and Crh2p are transglycosylases that are required for the linkage of chitin to beta(1-3)glucose branches of beta(1-6)glucan, an important step in the assembly of new cell wall. Both have been shown to be glycosylphosphatidylinositol (GPI)-anchored. A third homologous protein, Crr1p, functions in the formation of the spore wall. They belongs to the family 16 of glycosyl hydrolases that includes lichenase, xyloglucan endotransglycosylase (XET), beta-agarase, kappa-carrageenase, endo-beta-1,3-glucanase, endo-beta-1,3-1,4-glucanase, and endo-beta-galactosidase, all of which have a conserved jelly roll fold with a deep active site channel harboring the catalytic residues. 203 -100026 cd02185 AroH Chorismate mutase (AroH) is one of at least five chorismate-utilizing enzymes present in microorganisms that catalyze the rearrangement of chorismate to prephenic acid, the first committed step in the biosynthesis of aromatic amino acids. In prokaryotes, chorismate mutase may be fused to prephenate dehydratase, prephenate dehydrogenase, or 3-deoxy-D-arabino-heptulosonat-7-phosphate (DAHP) as part of a bifunctional enzyme. The AroH domain forms a homotrimer with three-fold symmetry. 117 -276955 cd02186 alpha_tubulin The alpha-tubulin family. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins and a sixth family (zeta-tubulin) which is present only in kinetoplastid protozoa. The alpha- and beta-tubulins are the major components of microtubules, while gamma-tubulin plays a major role in the nucleation of microtubule assembly. The delta- and epsilon-tubulins are widespread but unlike the alpha, beta, and gamma-tubulins they are not ubiquitous among eukaryotes. The alpha/beta-tubulin heterodimer is the structural subunit of microtubules. The alpha- and beta-tubulins share 40% amino-acid sequence identity, exist in several isotype forms, and undergo a variety of posttranslational modifications. The structures of alpha- and beta-tubulin are basically identical: each monomer is formed by a core of two beta-sheets surrounded by alpha-helices. The monomer structure is very compact, but can be divided into three regions based on function: the amino-terminal nucleotide-binding region, an intermediate taxol-binding region and the carboxy-terminal region which probably constitutes the binding surface for motor proteins. 434 -276956 cd02187 beta_tubulin The beta-tubulin family. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins and a sixth family (zeta-tubulin) which is present only in kinetoplastid protozoa. The alpha- and beta-tubulins are the major components of microtubules, while gamma-tubulin plays a major role in the nucleation of microtubule assembly. The delta- and epsilon-tubulins are widespread but unlike the alpha, beta, and gamma-tubulins they are not ubiquitous among eukaryotes. The alpha/beta-tubulin heterodimer is the structural subunit of microtubules. The alpha- and beta-tubulins share 40% amino-acid sequence identity, exist in several isotype forms, and undergo a variety of posttranslational modifications. The structures of alpha- and beta-tubulin are basically identical: each monomer is formed by a core of two beta-sheets surrounded by alpha-helices. The monomer structure is very compact, but can be divided into three regions based on function: the amino-terminal nucleotide-binding region, an intermediate taxol-binding region and the carboxy-terminal region which probably constitutes the binding surface for motor proteins. 425 -276957 cd02188 gamma_tubulin The gamma-tubulin family. Gamma-tubulin is a ubiquitous phylogenetically conserved member of tubulin superfamily. Gamma is a low abundance protein present within the cells in both various types of microtubule-organizing centers and cytoplasmic protein complexes. Gamma-tubulin recruits the alpha/beta-tubulin dimers that form the minus ends of microtubules and is thought to be involved in microtubule nucleation and capping. 430 -276958 cd02189 delta_zeta_tubulin-like The delta- and zeta-tubulin families. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins and a sixth family (zeta-tubulin) which is present only in kinetoplastid protozoa. The alpha- and beta-tubulins are the major components of microtubules, while gamma-tubulin plays a major role in the nucleation of microtubule assembly. The delta- and epsilon-tubulins are widespread but unlike the alpha, beta, and gamma-tubulins they are not ubiquitous among eukaryotes. Delta-tubulin plays an essential role in forming the triplet microtubules of centrioles and basal bodies. 433 -276959 cd02190 epsilon_tubulin The epsilon-tubulin family. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins and a sixth family (zeta-tubulin) which is present only in kinetoplastid protozoa. The epsilon-tubulins which are widespread but not ubiquitous among eukaryotes play a role in basal body/centriole morphogenesis. 449 -276960 cd02191 FtsZ_CetZ-like Subfamily of FitZ and Cell-structure-related euryarchaeota tubulin/FtsZ homolog-like. FtsZ is a GTPase that is similar to the eukaryotic tubulins and is essential for cell division in prokaryotes. CetZ-like proteins are related to tubulin and FtsZ and co-exists with FtsZ in many archaea. However, a recent study found that Cetz proteins (formerly annotated FtsZ type 2) are not required for cell division. Instead, CetZ proteins are shown to be involved in controlling archaeal cell shape dynamics. The results from inactivation studies of CetZ proteins in Haloferax volcanii suggest that CetZ1 is essential for normal swimming motility and rod-cell development. 308 -100028 cd02192 PurM-like3 AIR synthase (PurM) related protein, subgroup 3 of unknown function. The family of PurM related proteins includes Hydrogen expression/formation protein HypE, AIR synthases, FGAM synthase and Selenophosphate synthetase (SelD). They all contain two conserved domains and seem to dimerize. The N-terminal domain forms the dimer interface and is a putative ATP binding domain. 283 -100029 cd02193 PurL Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, phosphate, and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaea FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. PurL itself contains two tandem N- and C-terminal domains (four domains altogether). The N-terminal domains bind ATP and are related to the ATP-binding domains of HypE, ThiL, SelD and PurM. 272 -100030 cd02194 ThiL ThiL (Thiamine-monophosphate kinase) plays a dual role in de novo biosynthesis and in salvage of exogenous thiamine. Thiamine salvage occurs in two steps, with thiamine kinase catalyzing the formation of thiamine phosphate, and ThiL catalyzing the conversion of this intermediate to thiamine pyrophosphate. The N-terminal domain of ThiL binds ATP and is related to the ATP-binding domains of hydrogen expression/formation protein HypE, the AIR synthases, FGAM synthase and selenophosphate synthetase (SelD). 291 -100031 cd02195 SelD Selenophosphate synthetase (SelD) catalyzes the conversion of selenium to selenophosphate which is required by a number of bacterial, archaeal and eukaryotic organisms for synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. The N-terminal domain of SelD is related to the ATP-binding domains of hydrogen expression/formation protein HypE, the AIR synthases, and FGAM synthase and is thought to bind ATP. 287 -100032 cd02196 PurM PurM (Aminoimidazole Ribonucleotide [AIR] synthetase), one of eleven enzymes required for purine biosynthesis, catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and Pi, the fifth step in de novo purine biosynthesis. The N-terminal domain of PurM is related to the ATP-binding domains of hydrogen expression/formation protein HypE, the AIR synthases, selenophosphate synthetase (SelD), and FGAM synthase and is thought to bind ATP. 297 -100033 cd02197 HypE HypE (Hydrogenase expression/formation protein). HypE is involved in Ni-Fe hydrogenase biosynthesis. HypE dehydrates its own carbamoyl moiety in an ATP-dependent process to yield the enzyme thiocyanate. The N-terminal domain of HypE is related to the ATP-binding domains of the AIR synthases, selenophosphate synthetase (SelD), and FGAM synthase and is thought to bind ATP. 293 -100005 cd02198 YjgH_like YjgH belongs to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 111 -100006 cd02199 YjgF_YER057c_UK114_like_1 This group of proteins belong to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 142 -276961 cd02201 FtsZ_type1 Filamenting temperature sensitive mutant Z, type 1. FtsZ is a GTPase that is similar to the eukaryotic tubulins and is essential for cell division in prokaryotes. FtsZ is capable of polymerizing in a GTP-driven process into structures similar to those formed by tubulin. FtsZ forms a ring-shaped septum at the site of bacterial cell division, which is required for constriction of cell membrane and cell envelope to yield two daughter cells. 303 -276962 cd02202 CetZ_tubulin-like Cell-structure-related euryarchaeota tubulin/FtsZ homologs. CetZ proteins comprise a distinct tubulin/FtsZ family. The crystal structures of CetZ contain the FtsZ/tubulin superfamily fold and its family members have mosaic of tubulin-like and FtsZ-like amino acid residues. However, a recent study found that CetZ proteins (formerly annotated FtsZ type 2) are not required for cell division, whereas FtsZ proteins play an important role. Instead, CetZ proteins are shown to be involved in controlling archaeal cell shape dynamics. The results from inactivation studies of CetZ proteins in Haloferax volcanii suggest that CetZ1 is essential for normal swimming motility and rod-cell development. 357 -100034 cd02203 PurL_repeat1 PurL subunit of the formylglycinamide ribonucleotide amidotransferase (FGAR-AT), first repeat. FGAR-AT catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, phosphate, and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaea FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. PurL itself contains two tandem N- and C-terminal domains (four domains altogether). The N-terminal domains bind ATP and are related to the ATP-binding domains of HypE, ThiL, SelD and PurM. 313 -100035 cd02204 PurL_repeat2 PurL subunit of the formylglycinamide ribonucleotide amidotransferase (FGAR-AT), second repeat. FGAR-AT catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, phosphate, and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaea FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. PurL itself contains two tandem N- and C-terminal domains (four domains altogether). The N-terminal domains bind ATP and are related to the ATP-binding domains of HypE, ThiL, SelD and PurM. 264 -341358 cd02205 CBS_pair_SF Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 113 -239068 cd02248 Peptidase_C1A Peptidase C1A subfamily (MEROPS database nomenclature); composed of cysteine peptidases (CPs) similar to papain, including the mammalian CPs (cathepsins B, C, F, H, L, K, O, S, V, X and W). Papain is an endopeptidase with specific substrate preferences, primarily for bulky hydrophobic or aromatic residues at the S2 subsite, a hydrophobic pocket in papain that accommodates the P2 sidechain of the substrate (the second residue away from the scissile bond). Most members of the papain subfamily are endopeptidases. Some exceptions to this rule can be explained by specific details of the catalytic domains like the occluding loop in cathepsin B which confers an additional carboxydipeptidyl activity and the mini-chain of cathepsin H resulting in an N-terminal exopeptidase activity. Papain-like CPs have different functions in various organisms. Plant CPs are used to mobilize storage proteins in seeds. Parasitic CPs act extracellularly to help invade tissues and cells, to hatch or to evade the host immune system. Mammalian CPs are primarily lysosomal enzymes with the exception of cathepsin W, which is retained in the endoplasmic reticulum. They are responsible for protein degradation in the lysosome. Papain-like CPs are synthesized as inactive proenzymes with N-terminal propeptide regions, which are removed upon activation. In addition to its inhibitory role, the propeptide is required for proper folding of the newly synthesized enzyme and its stabilization in denaturing pH conditions. Residues within the propeptide region also play a role in the transport of the proenzyme to lysosomes or acidified vesicles. Also included in this subfamily are proteins classified as non-peptidase homologs, which lack peptidase activity or have missing active site residues. 210 -239069 cd02249 ZZ Zinc finger, ZZ type. Zinc finger present in dystrophin, CBP/p300 and many other proteins. The ZZ motif coordinates one or two zinc ions and most likely participates in ligand binding or molecular scaffolding. Many proteins containing ZZ motifs have other zinc-binding motifs as well, and the majority serve as scaffolds in pathways involving acetyltransferase, protein kinase, or ubiqitin-related activity. ZZ proteins can be grouped into the following functional classes: chromatin modifying, cytoskeletal scaffolding, ubiquitin binding or conjugating, and membrane receptor or ion-channel modifying proteins. 46 -239070 cd02252 nylC_like nylC-like family; composed of proteins with similarity to Flavobacterium endo-type 6-aminohexanoate-oligomer hydrolase (EIII), the product of the nylon oligomer degradation gene, nylC. EIII is an amide hydrolase that catalyzes the degradation of highly-polymerized 6-aminohexanoate oligomers. Together with other nylon degradation enzymes, such as 6-aminohexanoate cyclic dimer hydrolase (EI) and 6-aminohexanoate dimer hydrolase (EII), EIII plays a role in the detoxification and biological removal of the synthetic by-products of nylon manufacture. EIII shows sequence similarity to L-aminopeptidase D-amidase/D-esterase (DmpA), an aminopeptidase that releases N-terminal D and L amino acids from peptide substrates. Like DmpA, EIII undergoes autocatalytic cleavage in front of a nucleophile to form a heterodimer. DmpA shows similarity in catalytic mechanism to N-terminal nucleophile (Ntn) hydrolases, which are enzymes that catalyze the cleavage of amide bonds through the nucleophilic attack of the side chain of an N-terminal serine, threonine, or cysteine. 260 -239071 cd02253 DmpA L-Aminopeptidase D-amidase/D-esterase (DmpA) family; DmpA catalyzes the release of N-terminal D and L amino acids from peptide susbtrates. DmpA is synthesized as a single polypeptide precursor, which is autocatalytically cleaved to the active heterodimeric form. The cleavage results in two polypeptide chains, with one chain containing an N-terminal nucleophile. This group represents one of the rare aminopeptidases that are not metalloenzymes. DmpA shows similarity in catalytic mechanism to N-terminal nucleophile (Ntn) hydrolases, which are enzymes that catalyze the cleavage of amide bonds through the nucleophilic attack of the side chain of an N-terminal serine, threonine, or cysteine. 339 -187736 cd02255 Peptidase_C12 Cysteine peptidase C12 contains ubiquitin carboxyl-terminal hydrolase (UCH) families L1, L3, L5 and BAP1. The ubiquitin C-terminal hydrolase (UCH; ubiquitinyl hydrolase; ubiquitin thiolesterase) family of deubiquitinating enzymes (DUBs) consists of four members to date: UCH-L1, UCH-L3, UCH-L5 (UCH37) and BRCA1-associated protein-1 (BAP1), all containing a conserved catalytic domain with cysteine peptidase activity. UCH-L1 hydrolyzes carboxyl terminal esters and amides of ubiquitin (Ub). Dysfunction of this hydrolase activity can lead to an accumulation of alpha-synuclein, which is linked to Parkinson's disease (PD) and neurofibrillary tangles, linked to Alzheimer's disease (AD). UCH-L1, in its dimeric form, has additional enzymatic activity as a ubiquitin ligase. UCH-L3 hydrolyzes isopeptide bonds at the C-terminal glycine of either Ub or Nedd8, a ubiquitin-like protein. UCH-L3 can also interact with Lys48-linked Ub dimers to protect it from degradation while inhibiting its hydrolase activity at the same time. UCH-L1 and UCH-L3 are the most closely related of the UCH members. UCH-L5 (UCH37) is involved in the deubiquitinating activity in the 19S proteasome regulatory complex. It is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus. BAP1 binds to the wild-type BRCA1 RING finger domain, localized in the nucleus. It consists of the N-terminal UCH domain and two predicted nuclear localization signals (NLSs), only one of which is functional. The full-length human BRCA1 is a ubiquitin ligase. However, BAP1 does not appear to function in the deubiquitination of autoubiquitinated BRCA1. There is growing evidence that UCH enzymes and human malignancies are closely correlated. Studies show that UCH enzymes play a crucial role in some signaling pathways and in cell-cycle regulation. 222 -239072 cd02257 Peptidase_C19 Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyse bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 255 -199210 cd02258 Peptidase_C25_N Peptidase C25 family N-terminal domain, found in Arg-gingipain (Rgp), Lys-gingipain (Kgp) and related proteins. Peptidase family C25 is a unique class of cysteine proteases, exemplified by gingipain, which is produced by Porphyromonas gingivalis. P. gingivalis is one of the primary gram-negative pathogens that causes periodontitis, a disease that is also associated with other diseases such as diabetes and cardiovascular disease. Gingipains are a group of extracellular Arg- and Lys-specific proteinases called Arg-gingipain (Rgp) and Lys-gingipain (Kgp); RgpA and RgpB are homologous Arg-specific gingipains encoded by two closely related genes, rgpA and rgpB, while Lys-specific gingipain is encoded by the single kgp gene. Mutant studies have shown that, among the large quantities of proteolytic enzymes produced by P. gingivalis, these three proteases are major virulence factors of this bacterium. All three genes encode an N-terminal pre-pro fragment, followed by the protease domain; however, rgpA and kgp also encode additional C-terminal HA (hemaglutinin/adhesion) subunits which consist of several sequence-related adhesion domains. Although unique, their cysteine protease active site residues (His and Cys) forming the catalytic dyad are well-conserved, cleaving the C-terminal peptide bond with Arg or Lys residues. Gingipains are evolutionarily related to other highly specific proteases including caspases, clostripain, legumains, and separase. Gingipains function by dysregulating host defense and inflammatory responses, and degrading host proteins, e.g. tissue, cells, matrix, plasma and immunological proteins. They are proposed to enhance gingival crevicular fluid (GCF) production through activation of the kallikrein/kinin pathways, thus increasing vascular permeability and causing gingival inflammation, a distinctive feature of periodontitis. RgpA and RgpB are also able to cleave and activate coagulation factors IX and X in order to activate prothrombin to produce thrombin, which in turn increases production of GCF. The gingipains also play a pivotal role in the survival of P. gingivalis in the host by attacking the host defense system through cleavage of several immunological molecules, while at the same time evading the host-immune response by dysregulating the cytokine network. 382 -239073 cd02259 Peptidase_C39_like Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is not conserved in all sub-families. 122 -187535 cd02266 SDR Short-chain dehydrogenases/reductases (SDR). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase (KR) domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 186 -100064 cd02325 R3H R3H domain. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. R3H domains are found in proteins together with ATPase domains, SF1 helicase domains, SF2 DEAH helicase domains, Cys-rich repeats, ring-type zinc fingers, and KH domains. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 59 -239074 cd02334 ZZ_dystrophin Zinc finger, ZZ type. Zinc finger present in dystrophin and dystrobrevin. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. Dystrophin attaches actin filaments to an integral membrane glycoprotein complex in muscle cells. The ZZ domain in dystrophin has been shown to be essential for binding to the membrane protein beta-dystroglycan. 49 -239075 cd02335 ZZ_ADA2 Zinc finger, ZZ type. Zinc finger present in ADA2, a putative transcriptional adaptor, and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. 49 -239076 cd02336 ZZ_RSC8 Zinc finger, ZZ type. Zinc finger present in RSC8 and related proteins. RSC8 is a component of the RSC complex, which is closely related to the SWI/SNF complex and is involved in remodeling chromatin structure. The ZZ motif coordinates a zinc ion and most likely participates in ligand binding or molecular scaffolding. 45 -239077 cd02337 ZZ_CBP Zinc finger, ZZ type. Zinc finger present in CBP/p300 and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. CREB-binding protein (CBP) is a large multidomain protein that provides binding sites for transcriptional coactivators, the role of the ZZ domain in CBP/p300 is unclear. 41 -239078 cd02338 ZZ_PCMF_like Zinc finger, ZZ type. Zinc finger present in potassium channel modulatory factor (PCMF) 1 and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. Human potassium channel modulatory factor 1 or FIGC has been shown to possess intrinsic E3 ubiquitin ligase activity and to promote ubiquitination. 49 -239079 cd02339 ZZ_Mind_bomb Zinc finger, ZZ type. Zinc finger present in Drosophila Mind bomb (D-mib) and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. Mind bomb is an E3 ubiqitin ligase that has been shown to regulate signaling by the Notch ligand Delta in Drosophila melanogaster. 45 -239080 cd02340 ZZ_NBR1_like Zinc finger, ZZ type. Zinc finger present in Drosophila ref(2)P, NBR1, Human sequestosome 1 and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. Drosophila ref(2)P appears to control the multiplication of sigma rhabdovirus. NBR1 (Next to BRCA1 gene 1 protein) interacts with fasciculation and elongation protein zeta-1 (FEZ1) and calcium and integrin binding protein (CIB), and may function in cell signalling pathways. Sequestosome 1 is a phosphotyrosine independent ligand for the Lck SH2 domain and binds noncovalently to ubiquitin via its UBA domain. 43 -239081 cd02341 ZZ_ZZZ3 Zinc finger, ZZ type. Zinc finger present in ZZZ3 (ZZ finger containing 3) and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. 48 -239082 cd02342 ZZ_UBA_plant Zinc finger, ZZ type. Zinc finger present in plant ubiquitin-associated (UBA) proteins. The ZZ motif coordinates a zinc ion and most likely participates in ligand binding or molecular scaffolding. 43 -239083 cd02343 ZZ_EF Zinc finger, ZZ type. Zinc finger present in proteins with an EF_hand motif. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. 48 -239084 cd02344 ZZ_HERC2 Zinc finger, ZZ type. Zinc finger present in HERC2 and related proteins. HERC2 is a potential E3 ubiquitin protein ligase and/or guanine nucleotide exchange factor. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. 45 -239085 cd02345 ZZ_dah Zinc finger, ZZ type. Zinc finger present in Drosophila dah and related proteins. The ZZ motif coordinates two zinc ions and most likely participates in ligand binding or molecular scaffolding. Dah (discontinuous actin hexagon) is a membrane associated protein essential for cortical furrow formation in Drosophila. 49 -239086 cd02393 PNPase_KH Polynucleotide phosphorylase (PNPase) K homology RNA-binding domain (KH). PNPase is a polyribonucleotide nucleotidyl transferase that degrades mRNA in prokaryotes and plant chloroplasts. The C-terminal region of PNPase contains domains homologous to those in other RNA binding proteins: a KH domain and an S1 domain. KH domains bind single-stranded RNA and are found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 61 -239087 cd02394 vigilin_like_KH K homology RNA-binding domain_vigilin_like. The vigilin family is a large and extended family of multiple KH-domain proteins, including vigilin, also called high density lipoprotein binding protien (HBP), fungal Scp160 and bicaudal-C. Yeast Scp160p has been shown to bind RNA and to associate with both soluble and membrane-bound polyribosomes as a mRNP component. Bicaudal-C is a RNA-binding molecule believed to function in embryonic development at the post-transcriptional level. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 62 -239088 cd02395 SF1_like-KH Splicing factor 1 (SF1) K homology RNA-binding domain (KH). Splicing factor 1 (SF1) specifically recognizes the intron branch point sequence (BPS) UACUAAC in the pre-mRNA transcripts during spliceosome assembly. We show that the KH-QUA2 region of SF1 defines an enlarged KH (hnRNP K) fold which is necessary and sufficient for BPS binding. KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 120 -239089 cd02396 PCBP_like_KH K homology RNA-binding domain, PCBP_like. Members of this group possess KH domains in a tandem arrangement. Most members, similar to the poly(C) binding proteins (PCBPs) and Nova, containing three KH domains, with the first and second domains, which are represented here, in tandem arrangement, followed by a large spacer region, with the third domain near the C-terminal end of the protein. The poly(C) binding proteins (PCBPs) can be divided into two groups, hnRNPs K/J and the alphaCPs, which share a triple KH domain configuration and poly(C) binding specificity. They play roles in mRNA stabilization, translational activation, and translational silencing. Nova-1 and Nova-2 are nuclear RNA-binding proteins that regulate splicing. This group also contains plant proteins that seem to have two tandem repeat arrrangements, like Hen4, a protein that plays a role in AGAMOUS (AG) pre-mRNA processing and important step in plant development. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 65 -239090 cd02406 CRS2 Chloroplast RNA splicing 2 (CRS2) is a nuclear-encoded protein required for the splicing of group II introns in the chloroplast. CRS2 forms stable complexes with two CRS2-associated factors, CAF1 and CAF2, which are required for the splicing of distinct subsets of CRS2-dependent introns. CRS2 is closely related to bacterial peptidyl-tRNA hydrolases (PTH). 191 -239091 cd02407 PTH2_family Peptidyl-tRNA hydrolase, type 2 (PTH2)_like . Peptidyl-tRNA hydrolase activity releases tRNA from the premature translation termination product peptidyl-tRNA. Two structurally different enzymes have been reported to encode such activity, Pth present in bacteria and eukaryotes and Pth2 present in archaea and eukaryotes. 115 -239092 cd02409 KH-II KH-II (K homology RNA-binding domain, type II). KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins (e.g. ribosomal protein S3), transcription factors (e.g. NusA_K), and post-transcriptional modifiers of mRNA (e.g. hnRNP K). There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In addition to their KH core domain, KH-II proteins have an N-terminal alpha helical extension while KH-I proteins have a C-terminal alpha helical extension. 68 -239093 cd02410 archeal_CPSF_KH The archaeal cleavage and polyadenylation specificity factor (CPSF) contains an N-terminal K homology RNA-binding domain (KH). The archeal CPSFs are predicted to be metal-dependent RNases belonging to the beta-CASP family, a subgroup enzymes within the metallo-beta-lactamase fold. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In general, KH domains are known to bind single-stranded RNA or DNA and are found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 145 -239094 cd02411 archeal_30S_S3_KH K homology RNA-binding domain (KH) of the archaeal 30S small ribosomal subunit S3 protein. S3 is part of the head region of the 30S ribosomal subunit and is believed to interact with mRNA as it threads its way from the latch into the channel. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 85 -239095 cd02412 30S_S3_KH K homology RNA-binding (KH) domain of the prokaryotic 30S small ribosomal subunit protein S3. S3 is part of the head region of the 30S ribosomal subunit and is believed to interact with mRNA as it threads its way from the latch into the channel. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 109 -239096 cd02413 40S_S3_KH K homology RNA-binding (KH) domain of the eukaryotic 40S small ribosomal subunit protein S3. S3 is part of the head region of the 40S ribosomal subunit and is believed to interact with mRNA as it threads its way from the latch into the channel. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 81 -239097 cd02414 jag_KH jag_K homology RNA-binding domain. The KH domain is found in proteins homologous to the Bacillus subtilis protein Jag, which is associated with SpoIIIJ and is necessary for the third stage of sporulation. The KH motif is a beta-alpha-alpha-beta-beta unit that folds into an alpha-beta structure with a three stranded beta-sheet interupted by two contiguous helices. In general, KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. 77 -239098 cd02417 Peptidase_C39_likeA A sub-family of peptidase C39 which contains Cyclolysin and Hemolysin processing peptidases. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is not conserved in this sub-family. 121 -239099 cd02418 Peptidase_C39B A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family. 136 -239100 cd02419 Peptidase_C39C A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family. 127 -239101 cd02420 Peptidase_C39D A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family. 125 -239102 cd02421 Peptidase_C39_likeD A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is not conserved in this sub-family. 124 -239103 cd02423 Peptidase_C39G A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family of proteins with a single peptidase domain, which are lacking the nucleotide-binding transporter signature. 129 -239104 cd02424 Peptidase_C39E A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family, which contains Colicin V perocessing peptidase. 129 -239105 cd02425 Peptidase_C39F A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family. 126 -239106 cd02426 Pol_gamma_b_Cterm C-terminal domain of mitochondrial DNA polymerase gamma B subunit, which is required for processivity. Polymerase gamma replicates and repairs mitochondrial DNA. The c-terminal domain of its B subunit is strikingly similar to the anticodon-binding domain of glycyl tRNA synthetase. 128 -239107 cd02429 PTH2_like Peptidyl-tRNA hydrolase, type 2 (PTH2)_like . Peptidyl-tRNA hydrolase activity releases tRNA from the premature translation termination product peptidyl-tRNA. Two structurally different enzymes have been reported to encode such activity, Pth present in bacteria and eukaryotes and Pth2 present in archaea and eukaryotes. There is no functional information for this eukaryote-specific subgroup. 116 -239108 cd02430 PTH2 Peptidyl-tRNA hydrolase, type 2 (PTH2). Peptidyl-tRNA hydrolase (PTH) activity releases tRNA from the premature translation termination product peptidyl-tRNA, therefore allowing the tRNA and peptide to be reused in protein synthesis. PTH2 is present in archaea and eukaryotes. 115 -153122 cd02431 Ferritin_CCC1_C CCC1-related domain of ferritin. Ferritin_CCC1_like_C: The proteins of this family contain two domains. This is the C-terminal domain that is closely related to the CCC1, a vacuole transmembrane protein functioning as an iron and manganese transporter. The N-terminal domain is similar to ferritin-like diiron-carboxylate proteins, which are involved in a variety of iron ion related functions, such as iron storage and regulation, mono-oxygenation, and reactive radical production. This family may be unique to certain bacteria and archaea. 149 -153123 cd02432 Nodulin-21_like_1 Nodulin-21 and CCC1-related protein family. Nodulin-21_like_1: This is a family of proteins closely related to nodulin-21, a plant nodule-specific protein that may be involved in symbiotic nitrogen fixation. This family is also related to CCC1, a yeast vacuole transmembrane protein that functions as an iron and manganese transporter. 218 -153124 cd02433 Nodulin-21_like_2 Nodulin-21 and CCC1-related protein family. Nodulin-21_like_2: This is a family of proteins closely related to nodulin-21, a plant nodule-specific protein that may be involved in symbiotic nitrogen fixation. This family is also related to CCC1, a yeast vacuole transmembrane protein that functions as an iron and manganese transporter. 234 -153125 cd02434 Nodulin-21_like_3 Nodulin-21 and CCC1-related protein family. Nodulin-21_like_3: This is a family of proteins closely related to nodulin-21, a plant nodule-specific protein that may be involved in symbiotic nitrogen fixation. This family is also related to CCC1, a yeast vacuole transmembrane protein that functions as an iron and manganese transporter. 225 -153126 cd02435 CCC1 CCC1. CCC1: This domain is present in the CCC1, an iron and manganese transporter of Saccharomyces cerevisiae. CCC1 is a transmembrane protein that is located in the vacuole and transfers the iron and manganese ions from the cytosol to the vacuole. This domain may be unique to certain fungi and plants. 241 -153127 cd02436 Nodulin-21 Nodulin-21. Nodulin-21: This is a family of proteins that may be unique to certain plants. The family member in soybean is found to be nodule-specific and is abundant during nodule development. The proteins of this family thus may play a role in symbiotic nitrogen fixation. 152 -153128 cd02437 CCC1_like_1 CCC1-related protein family. CCC1_like_1: This is a protein family closely related to CCC1, a family of proteins involved in iron and manganese transport. Yeast CCC1 is a vacuole transmembrane protein responsible for the iron and manganese accumulation in vacuole. 175 -143332 cd02439 DMB-PRT_CobT Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (DMB-PRT), also called CobT. Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (DMB-PRT/CobT, not to be confused with the CobT subunit of cobaltochelatase, which does not belong to this group) catalyzes the synthesis of alpha-ribazole-5'-phosphate, from nicotinate mononucleotide (NAMN) and 5,6-dimethylbenzimidazole (DMB). This function is essential to the anaerobic biosynthesis pathway of cobalamin (vitamin B12), which is the largest and most complex cofactor in a number of enzyme-catalyzed reactions in bacteria, archaea and eukaryotes. Only eubacteria and archaebacteria can synthesize vitamin B12; multicellular organisms have lost this ability during evolution. DMB-PRT/CobT works sequentially with CobC (a phosphatase) to couple the lower ligand of cobalamin to a ribosyl moiety. DMB is the most common lower ligand of cobamides; other lower ligands include adenine, 5-methoxybenzimidazole or phenol. It has been suggested that earlier metabolic or enzymatic steps may control which lower ligand is available to DMB-PRT/CobT. In Salmonella enterica, for example, the lower ligand is DMB under aerobic conditions and adenine or 2-methyladenine under anaerobic conditions. Salmonella enterica DMB-PRT/CobT is a homodimer with two active sites, each active site is comprised of residues from both monomers. This group includes two distinct subfamilies, one archaeal-like, the other comprised of bacterial sequences. 315 -100107 cd02440 AdoMet_MTases S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; AdoMet-MTases are enzymes that use S-adenosyl-L-methionine (SAM or AdoMet) as a substrate for methyltransfer, creating the product S-adenosyl-L-homocysteine (AdoHcy). There are at least five structurally distinct families of AdoMet-MTases, class I being the largest and most diverse. Within this class enzymes can be classified by different substrate specificities (small molecules, lipids, nucleic acids, etc.) and different target atoms for methylation (nitrogen, oxygen, carbon, sulfur, etc.). 107 -133000 cd02503 MobA MobA catalyzes the formation of molybdopterin guanine dinucleotide. The prokaryotic enzyme molybdopterin-guanine dinucleotide biosynthesis protein A (MobA). All mononuclear molybdoenzymes bind molybdenum in complex with an organic cofactor termed molybdopterin (MPT). In many bacteria, including Escherichia coli, molybdopterin can be further modified by attachment of a GMP group to the terminal phosphate of molybdopterin to form molybdopterin guanine dinucleotide (MGD). This GMP attachment step is catalyzed by MobA, by linking a guanosine 5'-phosphate to MPT forming molybdopterin guanine dinucleotide. This reaction requires GTP, MgCl2, and the MPT form of the cofactor. It is a reaction unique to prokaryotes, and therefore may represent a potential drug target. 181 -133001 cd02507 eIF-2B_gamma_N_like The N-terminal of eIF-2B_gamma_like is predicted to have glycosyltransferase activity. N-terminal domain of eEIF-2B epsilon and gamma, subunits of eukaryotic translation initiators, is a subfamily of glycosyltranferase 2 and is predicted to have glycosyltranferase activity. eIF-2B is a guanine nucleotide-exchange factor which mediates the exchange of GDP (bound to initiation factor eIF2) for GTP, generating active eIF2.GTP complex. EIF2B is a complex multimeric protein consisting of five subunits named alpha, beta, gamma, delta and epsilon. Subunit epsilon shares sequence similarity with gamma subunit, and with a family of bifunctional nucleotide-binding enzymes such as ADP-glucose pyrophosphorylase, suggesting that epsilon subunit may play roles in nucleotide binding activity. In yeast, eIF2B gamma enhances the activity of eIF2B-epsilon leading to the idea that these subunits form the catalytic subcomplex. 216 -133002 cd02508 ADP_Glucose_PP ADP-glucose pyrophosphorylase is involved in the biosynthesis of glycogen or starch. ADP-glucose pyrophosphorylase (glucose-1-phosphate adenylyltransferase) catalyzes a very important step in the biosynthesis of alpha 1,4-glucans (glycogen or starch) in bacteria and plants: synthesis of the activated glucosyl donor, ADP-glucose, from glucose-1-phosphate and ATP. ADP-glucose pyrophosphorylase is a tetrameric allosterically regulated enzyme. While a homotetramer in bacteria, in plant chloroplasts and amyloplasts, it is a heterotetramer of two different, yet evolutionary related, subunits. There are a number of conserved regions in the sequence of bacterial and plant ADP-glucose pyrophosphorylase subunits. It is a subfamily of a very diverse glycosy transferase family 2. 200 -133003 cd02509 GDP-M1P_Guanylyltransferase GDP-M1P_Guanylyltransferase catalyzes the formation of GDP-Mannose. GDP-mannose-1-phosphate guanylyltransferase, also called GDP-mannose pyrophosphorylase (GDP-MP), catalyzes the formation of GDP-Mannose from mannose-1-phosphate and GTP. Mannose is a key monosaccharide for glycosylation of proteins and lipids. GDP-Mannose is the activated donor for mannosylation of various biomolecules. This enzyme is known to be bifunctional, as both mannose-6-phosphate isomerase and mannose-1-phosphate guanylyltransferase. This CD covers the N-terminal GDP-mannose-1-phosphate guanylyltransferase domain, whereas the isomerase function is located at the C-terminal half. GDP-MP is a member of the nucleotidyltransferase family of enzymes. 274 -133004 cd02510 pp-GalNAc-T pp-GalNAc-T initiates the formation of mucin-type O-linked glycans. UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-T) initiate the formation of mucin-type, O-linked glycans by catalyzing the transfer of alpha-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to hydroxyl groups of Ser or Thr residues of core proteins to form the Tn antigen (GalNAc-a-1-O-Ser/Thr). These enzymes are type II membrane proteins with a GT-A type catalytic domain and a lectin domain located on the lumen side of the Golgi apparatus. In human, there are 15 isozymes of pp-GalNAc-Ts, representing the largest of all glycosyltransferase families. Each isozyme has unique but partially redundant substrate specificity for glycosylation sites on acceptor proteins. 299 -133005 cd02511 Beta4Glucosyltransferase UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core. 229 -133006 cd02513 CMP-NeuAc_Synthase CMP-NeuAc_Synthase activates N-acetylneuraminic acid by adding CMP moiety. CMP-N-acetylneuraminic acid synthetase (CMP-NeuAc synthetase) or acylneuraminate cytidylyltransferase catalyzes the transfer the CMP moiety of CTP to the anomeric hydroxyl group of NeuAc in the presence of Mg++. It is the second to last step in the sialylation of the oligosaccharide component of glycoconjugates by providing the activated sugar-nucleotide cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), the substrate for sialyltransferases. Eukaryotic CMP-NeuAc synthetases are predominantly located in the nucleus. The activated CMP-Neu5Ac diffuses from the nucleus into the cytoplasm. 223 -133007 cd02514 GT13_GLCNAC-TI GT13_GLCNAC-TI is involved in an essential step in the synthesis of complex or hybrid-type N-linked oligosaccharides. Alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (GLCNAC-T I , GNT-I) transfers N-acetyl-D-glucosamine from UDP to high-mannose glycoprotein N-oligosaccharide, an essential step in the synthesis of complex or hybrid-type N-linked oligosaccharides. The enzyme is an integral membrane protein localized to the Golgi apparatus. The catalytic domain is located at the C-terminus. These proteins are members of the glycosy transferase family 13. 334 -133008 cd02515 Glyco_transf_6 Glycosyltransferase family 6 comprises enzymes responsible for the production of the human ABO blood group antigens. Glycosyltransferase family 6, GT_6, comprises enzymes with three known activities: alpha-1,3-galactosyltransferase, alpha-1,3 N-acetylgalactosaminyltransferase, and alpha-galactosyltransferase. UDP-galactose:beta-galactosyl alpha-1,3-galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-alpha-d-galactose into an alpha-1,3 linkage with beta-galactosyl groups in glycoconjugates. The enzyme exists in most mammalian species but is absent from humans, apes, and old world monkeys as a result of the mutational inactivation of the gene. The alpha-1,3 N-acetylgalactosaminyltransferase and alpha-galactosyltransferase are responsible for the production of the human ABO blood group antigens. A N-acetylgalactosaminyltransferases use a UDP-GalNAc donor to convert the H-antigen acceptor to the A antigen, whereas a galactosyltransferase uses a UDP-galactose donor to convert the H-antigen acceptor to the B antigen. Alpha-1,3 N-acetylgalactosaminyltransferase and alpha-galactosyltransferase differ only in the identity of four critical amino acid residues. 271 -133009 cd02516 CDP-ME_synthetase CDP-ME synthetase is involved in mevalonate-independent isoprenoid production. 4-diphosphocytidyl-2-methyl-D-erythritol synthase (CDP-ME), also called 2C-methyl-d-erythritol 4-phosphate cytidylyltransferase catalyzes the third step in the alternative (non-mevalonate) pathway of Isopentenyl diphosphate (IPP) biosynthesis: the formation of 4-diphosphocytidyl-2C-methyl-D-erythritol from CTP and 2C-methyl-D-erythritol 4-phosphate. This mevalonate independent pathway that utilizes pyruvate and glyceraldehydes 3-phosphate as starting materials for production of IPP occurs in a variety of bacteria, archaea and plant cells, but is absent in mammals. Thus, CDP-ME synthetase is an attractive targets for the structure-based design of selective antibacterial, herbicidal and antimalarial drugs. 218 -133010 cd02517 CMP-KDO-Synthetase CMP-KDO synthetase catalyzes the activation of KDO which is an essential component of the lipopolysaccharide. CMP-KDO Synthetase: 3-Deoxy-D-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase) catalyzes the conversion of CTP and 3-deoxy-D-manno-octulosonate into CMP-3-deoxy-D-manno-octulosonate (CMP-KDO) and pyrophosphate. KDO is an essential component of the lipopolysaccharide found in the outer surface of gram-negative eubacteria. It is also a constituent of the capsular polysaccharides of some gram-negative eubacteria. Its presence in the cell wall polysaccharides of green algae and plant were also discovered. However, they have not been found in yeast and animals. The absence of the enzyme in mammalian cells makes it an attractive target molecule for drug design. 239 -133011 cd02518 GT2_SpsF SpsF is a glycosyltrnasferase implicated in the synthesis of the spore coat. Spore coat polysaccharide biosynthesis protein F (spsF) is a glycosyltransferase implicated in the synthesis of the spore coat in a variety of bacteria challenged by stress as starvation. The spsF gene is expressed in the late stage of coat development responsible for a terminal step in coat formation that involves the glycosylation of the coat. SpsF gene mutation resulted in spores that appeared normal. But, the spores tended to aggregate and had abnormal adsorption properties, indicating a surface alteration. 233 -133012 cd02520 Glucosylceramide_synthase Glucosylceramide synthase catalyzes the first glycosylation step of glycosphingolipid synthesis. UDP-glucose:N-acylsphingosine D-glucosyltransferase (glucosylceramide synthase or ceramide glucosyltransferase) catalyzes the first glycosylation step of glycosphingolipid synthesis. Its product, glucosylceramide, serves as the core of more than 300 glycosphingolipids (GSL). GSLs are a group of membrane components that have the lipid portion embedded in the outer plasma membrane leaflet and the sugar chains extended to the outer environment. Several lines of evidence suggest the importance of GSLs in various cellular processes such as differentiation, adhesion, proliferation, and cell-cell recognition. In pathogenic fungus Cryptococcus neoformans, glucosylceramide serves as an antigen that elicits an antibody response in patients and it is essential for fungal growth in host extracellular environment. 196 -133013 cd02522 GT_2_like_a GT_2_like_a represents a glycosyltransferase family-2 subfamily with unknown function. Glycosyltransferase family 2 (GT-2) subfamily of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 221 -133014 cd02523 PC_cytidylyltransferase Phosphocholine cytidylyltransferases catalyze the synthesis of CDP-choline. This family contains proteins similar to prokaryotic phosphocholine (P-cho) cytidylyltransferases. Phosphocholine (PC) cytidylyltransferases catalyze the transfer of a cytidine monophosphate from CTP to phosphocholine to form CDP-choline. PC is the most abundant phospholipid in eukaryotic membranes and it is also important in prokaryotic membranes. For pathogenic prokaryotes, the cell surface PC facilitates the interaction with host surface and induces attachment and invasion. In addition cell wall PC serves as scaffold for a group of choline-binding proteins that are secreted from the cells. Phosphocholine (PC) cytidylyltransferase is a key enzyme in the prokaryotic choline metabolism pathway. It has been hypothesized to consist of a choline transport system, a choline kinase, CTP:phosphocholine cytidylyltransferase, and a choline phosphotransferase that transfers P-Cho from CDP-Cho to either lipoteichoic acid or lipopolysaccharide. 229 -133015 cd02524 G1P_cytidylyltransferase G1P_cytidylyltransferase catalyzes the production of CDP-D-Glucose. Alpha-D-Glucose-1-phosphate Cytidylyltransferase catalyzes the production of CDP-D-Glucose from alpha-D-Glucose-1-phosphate and MgCTP as substrate. CDP-D-Glucose is the precursor for synthesizing four of the five naturally occurring 3,6-dideoxy sugars-abequose (3,6-dideoxy-D-Xylo-hexose), ascarylose (3,6-dideoxy-L-arabino-hexose), paratose (3,6-dideoxy-D-ribohexose), and tyvelose (3,6-dideoxy-D-arabino-hexose. Deoxysugars are ubiquitous in nature where they function in a variety of biological processes, including cell adhesion, immune response, determination of ABO blood groups, fertilization, antibiotic function, and microbial pathogenicity. 253 -133016 cd02525 Succinoglycan_BP_ExoA ExoA is involved in the biosynthesis of succinoglycan. Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus. 249 -133017 cd02526 GT2_RfbF_like RfbF is a putative dTDP-rhamnosyl transferase. Shigella flexneri RfbF protein is a putative dTDP-rhamnosyl transferase. dTDP rhamnosyl transferases of Shigella flexneri add rhamnose sugars to N-acetyl-glucosamine in the O-antigen tetrasaccharide repeat. Lipopolysaccharide O antigens are important virulence determinants for many bacteria. The variations of sugar composition, the sequence of the sugars and the linkages in the O antigen provide structural diversity of the O antigen. 237 -133018 cd02537 GT8_Glycogenin Glycogenin belongs the GT 8 family and initiates the biosynthesis of glycogen. Glycogenin initiates the biosynthesis of glycogen by incorporating glucose residues through a self-glucosylation reaction at a Tyr residue, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. It contains a conserved DxD motif and an N-terminal beta-alpha-beta Rossmann-like fold that are common to the nucleotide-binding domains of most glycosyltransferases. The DxD motif is essential for coordination of the catalytic divalent cation, most commonly Mn2+. Glycogenin can be classified as a retaining glycosyltransferase, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed. It is placed in glycosyltransferase family 8 which includes lipopolysaccharide glucose and galactose transferases and galactinol synthases. 240 -133019 cd02538 G1P_TT_short G1P_TT_short is the short form of glucose-1-phosphate thymidylyltransferase. This family is the short form of glucose-1-phosphate thymidylyltransferase. Glucose-1-phosphate thymidylyltransferase catalyses the formation of dTDP-glucose, from dTTP and glucose 1-phosphate. It is the first enzyme in the biosynthesis of dTDP-L-rhamnose, a cell wall constituent and a feedback inhibitor of the enzyme.There are two forms of Glucose-1-phosphate thymidylyltransferase in bacteria and archeae; short form and long form. The homotetrameric, feedback inhibited short form is found in numerous bacterial species that produce dTDP-L-rhamnose. The long form, which has an extra 50 amino acids c-terminal, is found in many species for which it serves as a sugar-activating enzyme for antibiotic biosynthesis and or other, unknown pathways, and in which dTDP-L-rhamnose is not necessarily produced. 240 -133020 cd02540 GT2_GlmU_N_bac N-terminal domain of bacterial GlmU. The N-terminal domain of N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU). GlmU is an essential bacterial enzyme with both an acetyltransferase and an uridyltransferase activity which have been mapped to the C-terminal and N-terminal domains, respectively. This family represents the N-terminal uridyltransferase. GlmU performs the last two steps in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), which is an essential precursor in both the peptidoglycan and the lipopolysaccharide metabolic pathways in Gram-positive and Gram-negative bacteria, respectively. 229 -133021 cd02541 UGPase_prokaryotic Prokaryotic UGPase catalyses the synthesis of UDP-glucose. Prokaryotic UDP-Glucose Pyrophosphorylase (UGPase) catalyzes a reversible production of UDP-Glucose and pyrophosphate (PPi) from glucose-1-phosphate and UTP. UDP-glucose plays pivotal roles in galactose utilization, in glycogen synthesis, and in the synthesis of the carbohydrate moieties of glycolipids , glycoproteins , and proteoglycans. UGPase is found in both prokaryotes and eukaryotes, although prokaryotic and eukaryotic forms of UGPase catalyze the same reaction, they share low sequence similarity. 267 -239109 cd02549 Peptidase_C39A A sub-family of peptidase family C39. Peptidase family C39 mostly contains bacteriocin-processing endopeptidases from bacteria. The cysteine peptidases in family C39 cleave the "double-glycine" leader peptides from the precursors of various bacteriocins (mostly non-lantibiotic). The cleavage is mediated by the transporter as part of the secretion process. Bacteriocins are antibiotic proteins secreted by some species of bacteria that inhibit the growth of other bacterial species. The bacteriocin is synthesized as a precursor with an N-terminal leader peptide, and processing involves removal of the leader peptide by cleavage at a Gly-Gly bond, followed by translocation of the mature bacteriocin across the cytoplasmic membrane. Most endopeptidases of family C39 are N-terminal domains in larger proteins (ABC transporters) that serve both functions. The proposed protease active site is conserved in this sub-family of proteins with a single peptidase domain, which are lacking the nucleotide-binding transporter signature or have different domain architectures. 141 -211325 cd02550 PseudoU_synth_Rsu_Rlu_like Pseudouridine synthase, Rsu/Rlu family. This group is comprised of eukaryotic, bacterial and archeal proteins similar to eight site specific Escherichia coli pseudouridine synthases: RsuA, RluA, RluB, RluC, RluD, RluE, RluF and TruA. Pseudouridine synthases catalyze the isomerization of specific uridines in a n RNA molecule to pseudouridines (5-ribosyluracil, psi) requiring no cofactors. E. coli RluC for example makes psi955, 2504 and 2580 in 23S RNA. Some psi sites such as psi1917 in 23S RNA made by RluD are universally conserved. Other psi sites occur in a more restricted fashion, for example psi2819 in 21S mitochondrial ribosomal RNA made by S. cerevisiae Pus5p is only found in mitochondrial large subunit rRNAs from some other species and in gram negative bacteria. The E. coli counterpart of this psi residue is psi2580 in 23S rRNA. psi2604in 23S RNA made by RluF has only been detected in E.coli. 154 -211326 cd02552 PseudoU_synth_TruD_like Pseudouridine synthase, TruD family. This group consists of eukaryotic, bacterial and archeal pseudouridine synthases similar to Escherichia coli TruD and Saccharomyces cerevisiae Pus7. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). E. coli TruD and S. cerevisiae Pus7 make psi13 in cytoplasmic tRNAs. In addition S. cerevisiae Pus7 makes psi35 in U2 small nuclear RNA (U2 snRNA) and psi35 in pre-tRNATyr. Psi35 in U2 snRNA and psi13 in tRNAs are highly phylogenetically conserved. Psi34 is the mammalian U2 snRNA counterpart of yeast U2 snRNA psi35. 232 -211327 cd02553 PseudoU_synth_RsuA Pseudouridine synthase, Escherichia coli RsuA like. This group is comprised of eukaryotic and bacterial proteins similar to Escherichia coli RsuA. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RsuA makes psi516 in 16S RNA. Psi at this position is not generally conserved in other organisms. 167 -211328 cd02554 PseudoU_synth_RluF Pseudouridine synthase, Escherichia coli RluF like. This group is comprised of bacterial proteins similar to Escherichia coli RluF. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluF makes psi2604 in 23S RNA. psi2604 has only been detected in E. coli. It is absent from other eubacteria despite a precursor U at that site and from eukarya and archea which lack a precursor U at that site. 164 -211329 cd02555 PSSA_1 Pseudouridine synthase, a subgroup of the RsuA family. This group is comprised of bacterial proteins assigned to the RsuA family of pseudouridine synthases. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. The TruA family is comprised of proteins related to Escherichia coli RsuA. 177 -211330 cd02556 PseudoU_synth_RluB Pseudouridine synthase, Escherichia coli RluB like. This group is comprised of bacterial and eukaryotic proteins similar to E. coli RluB. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluB makes psi2605 in 23S RNA. psi2605 has been detected in eubacteria but, not in eukarya and archea despite the presence of a precursor U at that site. 167 -211331 cd02557 PseudoU_synth_ScRIB2 Pseudouridine synthases similar to Saccharomyces cerevisiae RIB2. Pseudouridine synthase, Saccharomyces cerevisiae RIB2_like. This group is comprised of eukaryotic and bacterial proteins similar to Saccharomyces cerevisiae RIB2, S. cerevisiae Pus6p and human hRPUDSD2. S. cerevisiae RIB2 displays two distinct catalytic activities. The N-terminal domain of RIB2 is RNA:psi-synthase which makes psi32 on cytoplasmic tRNAs. Psi32 is highly phylogenetically conserved. The C-terminal domain of RIB2 has a DRAP deaminase activity which catalyses the formation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate from 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate during riboflavin biosynthesis. S. cerevisiae Pus6p makes the psi31 of cytoplasmic and mitochondrial tRNAs. 213 -211332 cd02558 PSRA_1 Pseudouridine synthase, a subgroup of the RluA family. This group is comprised of bacterial proteins assigned to the RluA family of pseudouridine synthases. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. The RluA family is comprised of proteins related to Escherichia coli RluA. 246 -211333 cd02563 PseudoU_synth_TruC tRNA pseudouridine isomerase C. Pseudouridine synthases catalyze the isomerization of specific uridines in an tRNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. TruC makes psi65 in tRNAs. This psi residue is not universally conserved. 223 -211334 cd02566 PseudoU_synth_RluE Pseudouridine synthase, Escherichia coli RluE. This group is comprised of bacterial proteins similar to E. coli RluE. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. Escherichia coli RluE makes psi2457 in 23S RNA. psi2457 is not universally conserved. 168 -211335 cd02568 PseudoU_synth_PUS1_PUS2 Pseudouridine synthase, PUS1/ PUS2 like. This group consists of eukaryotic pseudouridine synthases similar to Saccharomyces cerevisiae Pus1p, S. cerevisiae Pus2p, Caenorhabditis elegans Pus1p and human PUS1. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. S. cerevisiae Pus1p catalyzes the formation of psi34 and psi36 in the intron-containing tRNAIle, psi35 in the intron-containing tRNATyr, psi27 and/or psi28 in several yeast cytoplasmic tRNAs and, psi44 in U2 small nuclear RNA (U2 snRNA). The presence of the intron is required for the formation of psi 34, 35 and 36. In addition S. cerevisiae PUS1 makes are psi 26, 65 and 67. C. elegans Pus1p does not modify psi44 in U2 snRNA. Mouse Pus1p makes psi27/28 in pre- tRNASer , tRNAVal and tRNAIle, psi 34/36 in tRNAIle and, psi 32 and potentially 67 in tRNAVal. Psi44 in U2 snRNA and psi32 in tRNAs are highly phylogenetically conserved. Psi 26,27,28,34,35,36,65 and 67 in tRNAs are less highly conserved. Mouse Pus1p regulates nuclear receptor activity through pseudouridylation of Steroid Receptor RNA Activator. Missense mutation in human PUS1 causes mitochondrial myopathy and sideroblastic anemia (MLASA). 245 -211336 cd02569 PseudoU_synth_ScPus3 Pseudouridine synthase, Saccharomyces cerevisiae Pus3 like. This group consists of eukaryotic pseudouridine synthases similar to S. cerevisiae Pus3p, mouse Pus3p and, human PUS2. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. S. cerevisiae Pus3p makes psi38 and psi39 in tRNAs. Mouse Pus3p has been shown to makes psi38 and, possibly also psi 39, in tRNAs. Psi38 and psi39 are highly conserved in tRNAs from eubacteria, archea and eukarya. 256 -211337 cd02570 PseudoU_synth_EcTruA Eukaryotic and bacterial pseudouridine synthases similar to E. coli TruA. This group consists of eukaryotic and bacterial pseudouridine synthases similar to E. coli TruA, Pseudomonas aeruginosa truA and human pseudouridine synthase-like 1 (PUSL1). Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E. coli TruA makes psi38/39 and/or 40 in tRNA. psi38 and psi39 in tRNAs are highly phylogenetically conserved. P. aeruginosa truA is required for induction of type III secretory genes and may act through modifying tRNAs critical for the expression of type III genes or their regulators. 239 -211338 cd02572 PseudoU_synth_hDyskerin Pseudouridine synthase, human dyskerin like. This group consists of eukaryotic and archeal pseudouridine synthases similar to human dyskerin, Saccharomyces cerevisiae Cbf5, and Drosophila melanogaster Mfl (minifly protein). Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactor is required. S. cerevisiae Cbf5 and human dyskerin are nucleolar proteins that, with the help of guide RNAs, make the hundreds of psueudouridnes present in rRNA and small nuclear RNAs (snRNAs). Cbf5/Dyskerin is the catalytic subunit of eukaryotic box H/ACA small nucleolar ribonucleoprotein (snoRNP) particles. D. melanogaster mfl hosts in its fourth intron, a box H/AC snoRNA gene. In addition dyskerin is likely to have a structural role in the telomerase complex. Mutations in human dyskerin cause X-linked dyskeratosis congenitas. Mutations in Drosophila Mfl results in miniflies that suffer abnormalities. 182 -211339 cd02573 PseudoU_synth_EcTruB Pseudouridine synthase, Escherichia coli TruB like. This group consists of bacterial pseudouridine synthases similar to E. coli TruB and Mycobacterium tuberculosis TruB. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). E. coli TruB and M. tuberculosis TruB make psi55 in the T loop of tRNAs. Psi55 is nearly universally conserved. E. coli TruB is not inhibited by RNA containing 5-fluorouridine. 213 -211340 cd02575 PseudoU_synth_EcTruD Pseudouridine synthase, similar to Escherichia coli TruD. This group consists of bacterial pseudouridine synthases similar to Escherichia coli TruD. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). E. coli TruD makes the highly phylogenetically conserved psi13 in tRNAs. 253 -211341 cd02576 PseudoU_synth_ScPUS7 Pseudouridine synthase, TruD family. This group consists of eukaryotic pseudouridine synthases similar to Saccharomyces cerevisiae Pus7. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). Saccharomyces cerevisiae Pus7 makes psi35 in U2 small nuclear RNA (U2 snRNA), psi13 in cytoplasmic tRNAs and psi35 in pre-tRNATyr. Psi35 in yeast U2 snRNA and psi13 in tRNAs are highly phylogenetically conserved. Psi34 is the mammalian U2 snRNA counterpart of yeast U2 snRNA psi35. 371 -211342 cd02577 PSTD1 Pseudouridine synthase, a subgroup of the TruD family. This group consists of several hypothetical archeal pseudouridine synthases assigned to the TruD family of psuedouridine synthases. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). The TruD family is comprised of proteins related to Escherichia coli TruD. 319 -259846 cd02582 RNAP_archeal_A' A' subunit of archaeal RNA polymerase (RNAP). A' is the largest subunit of the archaeal RNA polymerase (RNAP). Archaeal RNAP is closely related to RNA polymerases in eukaryotes based on the subunit compositions. Archaeal RNAP is a large multi-protein complex, made up of 11 to 13 subunits, depending on the species, that are responsible for the synthesis of RNA. Structure studies suggest that RNAP complexes from different organisms share a crab-claw-shaped structure. The largest eukaryotic RNAP subunit is encoded by two separate archaeal subunits (A' and A'') which correspond to the N- and C-terminal domains of eukaryotic RNAP II Rpb1, respectively. The N-terminal domain of Rpb1 forms part of the active site and includes the head and the core of one clamp as well as the pore and funnel structures of RNAP II. Based on a structural comparison among the archaeal, bacterial and eukaryotic RNAPs the DNA binding channel and the active site are part of A' subunit which is conserved. The strong similarity between subunit A' and the N-terminal domain of Rpb1 suggests a similar functional and structural role for these two proteins. 861 -259847 cd02583 RNAP_III_RPC1_N Largest subunit (RPC1) of eukaryotic RNA polymerase III (RNAP III), N-terminal domain. Rpc1 (C160) subunit forms part of the active site region of RNAP III. RNAP III is one of the three distinct classes of nuclear RNAP in eukaryotes that is responsible for the synthesis of tRNAs, 5SrRNA, Alu-RNA, U6 snRNA genes, and some others. RNAP III is the largest nuclear RNA polymerase with 17 subunits. Structure studies suggest that different RNA polymerase complexes share a similar crab-claw-shaped structure. The N-terminal domain of Rpb1, the largest subunit of RNAP II in yeast, forms part of the active site, making up the head and core of the one clamp, as well as the pore and funnel structures of RNAP II. The strong homology between Rpc1 and Rpb1 suggests a similar functional and structural role. 816 -132720 cd02584 RNAP_II_Rpb1_C Largest subunit (Rpb1) of Eukaryotic RNA polymerase II (RNAP II), C-terminal domain. RNA polymerase II (RNAP II) is a large multi-subunit complex responsible for the synthesis of mRNA. RNAP II consists of a 10-subunit core enzyme and a peripheral heterodimer of two subunits. The largest core subunit (Rpb1) of yeast RNAP II is the best characterized member of this family. Structure studies suggest that RNAP complexes from different organisms share a crab-claw-shape structure. In yeast, Rpb1 and Rpb2, the largest and the second largest subunits, each makes up one clamp, one jaw, and part of the cleft. Rpb1 interacts with Rpb2 to form the DNA entry and RNA exit channels in addition to the catalytic center of RNA synthesis. The C-terminal domain of Rpb1 makes up part of the foot and jaw structures. 410 -319784 cd02585 HAD_PMM phosphomannomutase, similar to human PMM1 and PMM2, Saccharomyces Sec53p, and Arabidopsis thaliana PMM. PMM catalyzes the interconversion of mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P); the conversion of M6P to M1P is an essential step in mannose activation and the biosynthesis of glycoconjugates in all eukaryotes. M1P is the substrate for the synthesis of GDP-mannose, which is an intermediate for protein glycosylation, protein sorting and secretion, and maintaining a functional endomembrane system in eukaryotic cells. Proteins in this family contains a conserved phosphorylated motif DxDx(T/V) shared with some other phosphotransferases. This family contains two human homologs, PMM1 and PMM2; PMM2 deficiency causes congenital disorder of glycosylation type I-a, also known as Jaeken syndrome. PMM1 can also act as glucose-1,6-bisphosphatase in the brain after stimulation with inosine monophosphate; PMM2 on the other hand, is insensitive to IMP and demonstrates low glucose-1,6-bisphosphatase activity. Arabidopsis thaliana PMM converted M1P into M6P and glucose-1-phosphate into glucose-6-phosphate, with the latter reaction being less efficient. Arabidopsis thaliana and Nicotiana benthamian PPMs are involved in ascorbic acid biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 238 -319785 cd02586 HAD_PHN Phosphonoacetaldehyde hydrolase (phosphonatase); similar to Bacillus cereus phosphonatase. Degradation of the ubiquitous natural phosphonate 2-aminoethylphosphonate (AEP) into useable forms of nitrogen, carbon, and phosphorus is a two-step metabolic pathway. The first step, catalyzed by AEP transaminase, involves the transfer of NH3 from AEP to pyruvate, yielding phosphonoacetaldehyde (P-Ald) and alanine. In the second step, phosphonatase catalyzes the hydrolytic P-C bond cleavage of P-Ald to form orthophosphate and acetaldehyde. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 242 -319786 cd02587 HAD_5-3dNT 5'(3')-deoxyribonucleotidase. This family includes cytosolic 5'(3')-deoxyribonucleotidase (cdN) and mitochondrial 5'(3')-deoxyribonucleotidase (mdN). cdN and mdN specifically dephosphorylate the deoxyribo form of nucleoside monophosphates helps maintain homeostasis of deoxynucleosides required for mitochondrial DNA synthesis. Their preferred substrates are dUMP and dTMP. cdN also dephosphorylates dGMP and dIMP efficiently. They can also dephosphorylate the 5'- or 3'-phosphates of pyrimidine ribonucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 161 -319787 cd02588 HAD_L2-DEX L-2-haloacid dehalogenase. L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of L-2-haloacids to produce the corresponding D-2-hydroxyacids with an inversion of the C2-configuration. 2-haloacid dehalogenases are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 216 -319788 cd02598 HAD_BPGM beta-phosphoglucomutase, similar to Lactococcus lactis beta-phosphoglucomutase (beta-PGM). Lactococcus lactis beta-PGM catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), forming beta-D-glucose 1,6-(bis)phosphate as an intermediate. In the forward G6P-forming direction, this reaction links polysaccharide phosphorolysis to glycolysis, in the reverse direction, the reaction provides G1P for the biosynthesis of exo-polysaccharides. This subfamily belongs to the beta-phosphoglucomutase-like family whose other members include Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 174 -319789 cd02601 HAD_Eya protein tyrosine phosphatase domain of the nuclear transcription factor of Eyes absent (Eya) and related phosphatase domains. Eyes absent (Eya) is a transcriptional coactivator, and an aspartyl-based protein tyrosine phosphatase. Eya and Six operate as a composite transcription factor, within a conserved network of transcription factors called the retinal determination (RD) network. The RD network interacts with a broad variety of signaling pathways to regulate the development and homeostasis of organs and tissues such as eye, muscle, kidney and ear. To date it is not clear what the physiologically relevant substrates of the Eya protein tyrosine phosphatase are, or whether this phosphatase activity plays a role in transcription. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 271 -319790 cd02603 HAD_sEH-N_like N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive. This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 195 -319791 cd02604 HAD_5NT haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to Saccharomyces cerevisiae Phm8p and Sdt1p. This family includes Saccharomyces cerevisiae Phm8p (phosphate metabolism protein 8) and Sdt1p (Suppressor of disruption of TFIIS). Phm8p participates in the ribose salvage pathway, it catalyzes the dephosphorylation of nucleotide monophosphates to nucleosides, its preferred substrates are nucleotide monophosphates AMP, GMP, CMP, and UMP. Phm8p is also a lysophosphatidic acid phosphatase, dephosphorylating lysophosphatidic acids (LPAs) to monoacylglycerol in response to phosphate starvation. Sdt1p is a pyrimidine and pyridine-specific 5'-nucleotidase; it is an NMN/NaMN 5'-nucleotidases involved in the production of nicotinamide riboside and nicotinic acid riboside, and is a pyrimidine 5'-nucleotidase with high specificity for UMP and CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 182 -319792 cd02605 HAD_SPP sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP. Sucrose-phosphatase (SPP; EC 3.1.3.24) catalyzes the dephosphorylation of sucrose-6(F)-phosphate (Suc6P)-the final step in the pathway of sucrose biosynthesis in plants and cyanobacteria. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 245 -319793 cd02607 HAD_ThrH_like bifunctional phosphoserine phosphatase/phosphoserine:homoserine phosphotransferase, similar to Pseudomonas aeruginosa ThrH. This family includes Pseudomonas aeruginosa ThrH which is a duel activity enzyme having both phosphoserine phosphatase and phosphoserine:homoserine phosphotransferase activities, i.e. it can dephosphorylate phosphoserine, and can transfer phosphate from phosphoserine to homoserine. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 195 -319794 cd02608 P-type_ATPase_Na-K_like alpha-subunit of Na(+)/K(+)-ATPases and of gastric H(+)/K(+)-ATPase, similar to the human Na(+)/K(+)-ATPase alpha subunits 1-4. This subfamily includes the alpha subunit of Na(+)/K(+)-ATPase a heteromeric transmembrane protein composed of an alpha- and beta-subunit and an optional third subunit belonging to the FXYD proteins which are more tissue specific regulatory subunits of the enzyme. The alpha-subunit is the catalytic subunit responsible for transport activities of the enzyme. This subfamily includes all four isotopes of the human alpha subunit: (alpha1-alpha4, encoded by the ATP1A1- ATP1A4 genes). Na(+)/K(+)-ATPase functions chiefly as an ion pump, hydrolyzing one molecule of ATP to pump three Na(+) out of the cell in exchange for two K(+)entering the cell per pump cycle. In addition Na(+)/K(+)-ATPase acts as a signal transducer. This subfamily also includes Oreochromis mossambicus (tilapia) Na(+)/K(+)-ATPase alpha 1 and alpha 3 subunits, and gastric H(+)/K(+)-ATPase which exchanges hydronium ion with potassium and is responsible for gastric acid secretion. Gastric H(+)/K(+)-ATPase is an alpha,beta-heterodimeric enzyme. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 905 -319795 cd02609 P-type_ATPase uncharacterized subfamily of P-type ATPase transporter, similar to uncharacterized Streptococcus pneumoniae exported protein 7, Exp7. This subfamily contains P-type ATPase transporters of unknown function, similar to Streptococcus pneumoniae Exp7. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids. They are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. A general characteristic of P-type ATPases is a bundle of transmembrane helices which make up the transport path, and three domains on the cytoplasmic side of the membrane. Members include pumps that transport various light metal ions, such as H(+), Na(+), K(+), Ca(2+), and Mg(2+), pumps that transport indispensable trace elements, such as Zn(2+) and Cu(2+), pumps that remove toxic heavy metal ions, such as Cd(2+), and pumps such as aminophospholipid translocases which transport phosphatidylserine and phosphatidylethanolamine. 661 -319796 cd02612 HAD_PGPPase phosphatidylglycerol-phosphate phosphatase, similar to Escherichia coli K-12 phosphatidylglycerol-phosphate phosphatase C. This family includes Escherichia coli K-12 phosphatidylglycerol-phosphate phosphatase C, PgpC (previously named yfhB) which catalyzes the dephosphorylation of phosphatidylglycerol-phosphate (PGP) to phosphatidylglycerol (PG). This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 195 -319797 cd02616 HAD_PPase pyrophosphatase similar to Bacillus subtilis PpaX. This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 207 -239110 cd02619 Peptidase_C1 C1 Peptidase family (MEROPS database nomenclature), also referred to as the papain family; composed of two subfamilies of cysteine peptidases (CPs), C1A (papain) and C1B (bleomycin hydrolase). Papain-like enzymes are mostly endopeptidases with some exceptions like cathepsins B, C, H and X, which are exopeptidases. Papain-like CPs have different functions in various organisms. Plant CPs are used to mobilize storage proteins in seeds while mammalian CPs are primarily lysosomal enzymes responsible for protein degradation in the lysosome. Papain-like CPs are synthesized as inactive proenzymes with N-terminal propeptide regions, which are removed upon activation. Bleomycin hydrolase (BH) is a CP that detoxifies bleomycin by hydrolysis of an amide group. It acts as a carboxypeptidase on its C-terminus to convert itself into an aminopeptidase and peptide ligase. BH is found in all tissues in mammals as well as in many other eukaryotes. It forms a hexameric ring barrel structure with the active sites imbedded in the central channel. Some members of the C1 family are proteins classified as non-peptidase homologs which lack peptidase activity or have missing active site residues. 223 -239111 cd02620 Peptidase_C1A_CathepsinB Cathepsin B group; composed of cathepsin B and similar proteins, including tubulointerstitial nephritis antigen (TIN-Ag). Cathepsin B is a lysosomal papain-like cysteine peptidase which is expressed in all tissues and functions primarily as an exopeptidase through its carboxydipeptidyl activity. Together with other cathepsins, it is involved in the degradation of proteins, proenzyme activation, Ag processing, metabolism and apoptosis. Cathepsin B has been implicated in a number of human diseases such as cancer, rheumatoid arthritis, osteoporosis and Alzheimer's disease. The unique carboxydipeptidyl activity of cathepsin B is attributed to the presence of an occluding loop in its active site which favors the binding of the C-termini of substrate proteins. Some members of this group do not possess the occluding loop. TIN-Ag is an extracellular matrix basement protein which was originally identified as a target Ag involved in anti-tubular basement membrane antibody-mediated interstitial nephritis. It plays a role in renal tubulogenesis and is defective in hereditary tubulointerstitial disorders. TIN-Ag is exclusively expressed in kidney tissues. 236 -239112 cd02621 Peptidase_C1A_CathepsinC Cathepsin C; also known as Dipeptidyl Peptidase I (DPPI), an atypical papain-like cysteine peptidase with chloride dependency and dipeptidyl aminopeptidase activity, resulting from its tetrameric structure which limits substrate access. Each subunit of the tetramer is composed of three peptides: the heavy and light chains, which together adopts the papain fold and forms the catalytic domain; and the residual propeptide region, which forms a beta barrel and points towards the substrate's N-terminus. The subunit composition is the result of the unique characteristic of procathepsin C maturation involving the cleavage of the catalytic domain and the non-autocatalytic excision of an activation peptide within its propeptide region. By removing N-terminal dipeptide extensions, cathepsin C activates granule serine peptidases (granzymes) involved in cell-mediated apoptosis, inflammation and tissue remodelling. Loss-of-function mutations in cathepsin C are associated with Papillon-Lefevre and Haim-Munk syndromes, rare diseases characterized by hyperkeratosis and early-onset periodontitis. Cathepsin C is widely expressed in many tissues with high levels in lung, kidney and placenta. It is also highly expressed in cytotoxic lymphocytes and mature myeloid cells. 243 -100065 cd02636 R3H_sperm-antigen R3H domain of a group of metazoan proteins that is related to the sperm-associated antigen 7. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 61 -100066 cd02637 R3H_PARN R3H domain of Poly(A)-specific ribonuclease (PARN). PARN is a poly(A)-specific 3' exonuclease from the RNase D family that, in Xenopus, deadenylates a specific class of maternal mRNAs which results in their translational repression. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA. 65 -100067 cd02638 R3H_unknown_1 R3H domain of a group of eukaryotic proteins with unknown function. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 62 -100068 cd02639 R3H_RRM R3H domain of mainly fungal proteins which are associated with a RNA recognition motif (RRM) domain. Present in this group is the RNA-binding post-transcriptional regulator Cip2 (Csx1-interacting protein 2) involved in counteracting Csx1 function. Csx1 plays a central role in controlling gene expression during oxidative stress. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 60 -100069 cd02640 R3H_NRF R3H domain of the NF-kappaB-repression factor (NRF). NRF is a nuclear inhibitor of NF-kappaB proteins that can silence the IFNbeta promoter via binding to a negative regulatory element (NRE). Beside R3H NRF also contains a G-patch domain. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 60 -100070 cd02641 R3H_Smubp-2_like R3H domain of Smubp-2_like proteins. Smubp-2_like proteins also contain a helicase_like and an AN1-like Zinc finger domain and have been shown to bind single-stranded DNA. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA. 60 -100071 cd02642 R3H_encore_like R3H domain of encore-like and DIP1-like proteins. Drosophila encore is involved in the germline exit after four mitotic divisions, by facilitating SCF-ubiquitin-proteasome-dependent proteolysis. Maize DBF1-interactor protein 1 (DIP1) containing an R3H domain is a potential regulator of DBF1 activity in stress responses. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 63 -100072 cd02643 R3H_NF-X1 R3H domain of the X1 box binding protein (NF-X1) and related proteins. Human NF-X1 is a transcription factor that regulates the expression of class II major histocompatibility complex (MHC) genes. The Drosophila homolog shuttle craft (STC) has been shown to be a DNA- or RNA-binding protein required for proper axon guidance in the central nervous system and, the yeast homolog FAP1 encodes a dosage suppressor of rapamycin toxicity. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 74 -100073 cd02644 R3H_jag R3H domain found in proteins homologous to Bacillus subtilus Jag, which is associated with SpoIIIJ. SpoIIIJ is necessary for the third stage of sporulation. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 67 -100074 cd02645 R3H_AAA R3H domain of a group of proteins with unknown function, who also contain a AAA-ATPase (AAA) domain. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to be binding ssDNA or ssRNA in a sequence-specific manner. 60 -100075 cd02646 R3H_G-patch R3H domain of a group of fungal and plant proteins with unknown function, who also contain a G-patch domain. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the R3H domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 58 -239113 cd02647 nuc_hydro_TvIAG nuc_hydro_ TvIAG: Nucleoside hydrolases similar to the Inosine-adenosine-guanosine-preferring nucleoside hydrolase from Trypanosoma vivax. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. Nucleoside hydrolases vary in their substrate specificity. This group contains eukaryotic and bacterial proteins similar to the purine specific inosine-adenosine-guanosine-preferring nucleoside hydrolase (IAG-NH) from T. vivax. T. vivax IAG-NH is of the order of a thousand to ten thousand fold more specific towards the naturally occurring purine nucleosides, than towards the pyrimidine nucleosides. 312 -239114 cd02648 nuc_hydro_1 NH_1: A subgroup of nucleoside hydrolases. This group contains fungal proteins similar to nucleoside hydrolases. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. 367 -239115 cd02649 nuc_hydro_CeIAG nuc_hydro_CeIAG: Nucleoside hydrolases similar to the inosine-adenosine-guanosine-preferring nucleoside hydrolase from Caenorhabditis elegans. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. This group contains eukaryotic, bacterial and archeal proteins similar to the purine-preferring nucleoside hydrolase (IAG-NH) from C. elegans and the salivary purine nucleosidase from Aedes aegypti. C. elegans IAG-NH exhibits a high affinity for the substrate analogue p-nitrophenylriboside (p-NPR). 306 -239116 cd02650 nuc_hydro_CaPnhB NH_hydro_CaPnhB: A subgroup of nucleoside hydrolases similar to Corynebacterium ammoniagenes Purine/pyrimidine nucleoside hydrolase (pnhB). Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. 304 -239117 cd02651 nuc_hydro_IU_UC_XIUA nuc_hydro_IU_UC_XIUA: inosine-uridine preferring, xanthosine-inosine-uridine-adenosine-preferring and, uridine-cytidine preferring nucleoside hydrolases. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. This group contains proteins similar to nucleoside hydrolases which hydrolyze both pyrimidine and purine ribonucleosides: the inosine-uridine preferring nucleoside hydrolase from Crithidia fasciculata, the inosine-uridine-xanthosine preferring nucleoside hydrolase RihC from Escherichia coli and the xanthosine-inosine-uridine-adenosine-preferring nucleoside hydrolase RihC from Salmonella enterica serovar Typhimurium. This group also contains proteins similar to the pyrimidine-specific uridine-cytidine preferring nucleoside hydrolases URH1 from Saccharomyces cerevisiae, E. coli RihA and E. coli RihB. E. coli RihA is equally efficient with uridine and cytidine, E. coli RihB prefers cytidine over uridine. S. cerevisiae URH1 prefers uridine over cytidine. 302 -239118 cd02652 nuc_hydro_2 NH_2: A subgroup of nucleoside hydrolases. This group contains eukaryotic and bacterial proteins similar to nucleoside hydrolases. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. 293 -239119 cd02653 nuc_hydro_3 NH_3: A subgroup of nucleoside hydrolases. This group contains eukaryotic and bacterial proteins similar to nucleoside hydrolases. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. 320 -239120 cd02654 nuc_hydro_CjNH nuc_hydro_CjNH. Nucleoside hydrolases similar to Campylobacter jejuni nucleoside hydrolase. This group contains eukaryotic and bacterial proteins similar to C. jejuni nucleoside hydrolase. Nucleoside hydrolases cleave the N-glycosidic bond in nucleosides generating ribose and the respective base. These enzymes vary in their substrate specificity. C. jejuni nucleoside hydrolase is inactive against natural nucleosides or against common nucleoside analogues. 318 -132721 cd02655 RNAP_beta'_C Largest subunit (beta') of Bacterial DNA-dependent RNA polymerase (RNAP), C-terminal domain. Bacterial RNA polymerase (RNAP) is a large multi-subunit complex responsible for the synthesis of all RNAs in the cell. This family also includes the eukaryotic plastid-encoded RNAP beta" subunit. Structure studies suggest that RNAP complexes from different organisms share a crab-claw-shape structure with two pincers defining a central cleft. Beta' and beta, the largest and the second largest subunits of bacterial RNAP, each makes up one pincer and part of the base of the cleft. The C-terminal domain includes a G loop that forms part of the floor of the downstream DNA-binding cavity. The position of the G loop may determine the switch of the bridge helix between flipped-out and normal alpha-helical conformations. 204 -239121 cd02656 MIT MIT: domain contained within Microtubule Interacting and Trafficking molecules. The MIT domain is found in sorting nexins, the nuclear thiol protease PalBH, the AAA protein spastin and archaebacterial proteins with similar domain architecture, vacuolar sorting proteins and others. The molecular function of the MIT domain is unclear. 75 -239122 cd02657 Peptidase_C19A A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyse bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 305 -239123 cd02658 Peptidase_C19B A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 311 -239124 cd02659 peptidase_C19C A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 334 -239125 cd02660 Peptidase_C19D A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 328 -239126 cd02661 Peptidase_C19E A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 304 -239127 cd02662 Peptidase_C19F A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 240 -239128 cd02663 Peptidase_C19G A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 300 -239129 cd02664 Peptidase_C19H A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 327 -239130 cd02665 Peptidase_C19I A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 228 -239131 cd02666 Peptidase_C19J A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 343 -239132 cd02667 Peptidase_C19K A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 279 -239133 cd02668 Peptidase_C19L A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 324 -239134 cd02669 Peptidase_C19M A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 440 -239135 cd02670 Peptidase_C19N A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 241 -239136 cd02671 Peptidase_C19O A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 332 -239137 cd02672 Peptidase_C19P A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 268 -239138 cd02673 Peptidase_C19Q A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 245 -239139 cd02674 Peptidase_C19R A subfamily of peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 230 -259861 cd02675 Ephrin_ectodomain Ectodomain of Ephrins. Ephrins and their receptors EphR play an important role in cell communication in normal physiology, as well as in disease pathogenesis. Binding of the ephrin (Eph) ligand to EphR requires cell-cell contact, since both molecules are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling, depending on Eph kinase activity) and ephrin-expressing cells (reverse signaling). Eph signaling controls cell morphology, adhesion, migration and invasion. Ephrins can be subdivided into 2 groups, A and B, depending on their respective receptors EphA or EphB. The nine human EphA receptors bind to five GPI-linked ephrin-A ligands and the five EphB receptors bind to three transmembrane ephrin-B ligands. Interactions are promiscuous within each class, and some Eph receptors can also bind to ephrins of the other class. All ephrins contain a highly conserved ectodomain for receptor binding, which is characterized by this domain hierarchy. 136 -239140 cd02677 MIT_SNX15 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This MIT domain sub-family is found in sorting nexin 15 and related proteins. The molecular function of the MIT domain is unclear. 75 -239141 cd02678 MIT_VPS4 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in intracellular protein transport proteins of the AAA-ATPase family. The molecular function of the MIT domain is unclear. 75 -239142 cd02679 MIT_spastin MIT: domain contained within Microtubule Interacting and Trafficking molecules. This MIT domain sub-family is found in the AAA protein spastin, a probable ATPase involved in the assembly or function of nuclear protein complexes; spastins might also be involved in microtubule dynamics. The molecular function of the MIT domain is unclear. 79 -239143 cd02680 MIT_calpain7_2 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in the nuclear thiol protease PalBH. The molecular function of the MIT domain is unclear. 75 -239144 cd02681 MIT_calpain7_1 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in the nuclear thiol protease PalBH. The molecular function of the MIT domain is unclear. 76 -239145 cd02682 MIT_AAA_Arch MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in mostly archaebacterial AAA-ATPases. The molecular function of the MIT domain is unclear. 75 -239146 cd02683 MIT_1 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in proteins with unknown function, co-occuring with an as yet undescribed domain. The molecular function of the MIT domain is unclear. 77 -239147 cd02684 MIT_2 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in proteins with an n-terminal serine/threonine kinase domain. The molecular function of the MIT domain is unclear. 75 -239148 cd02685 MIT_C MIT_C; domain found C-terminal to MIT (contained within Microtubule Interacting and Trafficking molecules) domains, as well as in some bacterial proteins. The function of this domain is unknown. 148 -199878 cd02688 E_set Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the N or C terminus. The E or "early" set domains of sugar utilizing enzymes are associated with different types of catalytic domains at either the N-terminal or C-terminal end. These domains may be related to the immunoglobulin and/or fibronectin type III superfamilies. Members of this family include alpha amylase, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. A subset of these members were recently identified as members of the CBM48 (Carbohydrate Binding Module 48) family. Members of the CBM48 family include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase. 82 -349868 cd02690 M28 M28 Zn-peptidases include aminopeptidases and carboxypeptidases. Peptidase M28 family (also called aminopeptidase Y family) contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. The aminopeptidases in this family are also called bacterial leucyl aminopeptidases, but are able to release a variety of N-terminal amino acids. IAP aminopeptidase and aminopeptidase Y preferentially release basic amino acids while glutamate carboxypeptidase II preferentially releases C-terminal glutamates. Plasma glutamate carboxypeptidase (PGCP) and glutamate carboxypeptidase II (NAALADase) hydrolyze dipeptides. Several members of the M28 peptidase family have PA domain inserts which may participate in substrate binding and/or in promoting conformational changes, which influence the stability and accessibility of the site to substrate. These include prostate-specific membrane antigen (PSMA), yeast aminopeptidase S (SGAP), human transferrin receptors (TfR1 and TfR2), plasma glutamate carboxypeptidase (PGCP) and several predicted aminopeptidases where relatively little is known about them. Also included in the M28 family are glutaminyl cyclases (QC), which are involved in N-terminal glutamine cyclization of many endocrine peptides. Nicastrin and nicalin belong to this family but lack the amino-acid conservation required for catalytically active aminopeptidases. 202 -100036 cd02691 PurM-like2 AIR synthase (PurM) related protein, archaeal subgroup 2 of unknown function. The family of PurM related proteins includes Hydrogen expression/formation protein HypE, AIR synthases, FGAM synthase and Selenophosphate synthetase (SelD). They all contain two conserved domains and seem to dimerize. The N-terminal domain forms the dimer interface and is a putative ATP binding domain. 346 -119407 cd02696 MurNAc-LAA N-acetylmuramoyl-L-alanine amidase or MurNAc-LAA (also known as peptidoglycan aminohydrolase, NAMLA amidase, NAMLAA, Amidase 3, and peptidoglycan amidase; EC 3.5.1.28) is an autolysin that hydrolyzes the amide bond between N-acetylmuramoyl and L-amino acids in certain cell wall glycopeptides. These proteins are Zn-dependent peptidases with highly conserved residues involved in cation co-ordination. MurNAc-LAA in this family is one of several peptidoglycan hydrolases (PGHs) found in bacterial and bacteriophage or prophage genomes that are involved in the degradation of the peptidoglycan. In Escherichia coli, there are five MurNAc-LAAs present: AmiA, AmiB, AmiC and AmiD that are periplasmic, and AmpD that is cytoplasmic. Three of these (AmiA, AmiB and AmiC) belong to this family, the other two (AmiD and AmpD) do not. E. coli AmiA, AmiB and AmiC play an important role in cleaving the septum to release daughter cells after cell division. In general, bacterial MurNAc-LAAs are members of the bacterial autolytic system and carry a signal peptide in their N-termini that allows their transport across the cytoplasmic membrane. However, the bacteriophage MurNAc-LAAs are endolysins since these phage-encoded enzymes break down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle. As opposed to autolysins, almost all endolysins have no signal peptides and their translocation through the cytoplasmic membrane is thought to proceed with the help of phage-encoded holin proteins. The amidase catalytic module is fused to another functional module (cell wall binding module or CWBM) either at the N- or C-terminus, which is responsible for high affinity binding of the protein to the cell wall. 172 -349869 cd02697 M20_like M20 Zn-peptidases include exopeptidases. Peptidase M20 family; uncharacterized subfamily. These hypothetical proteins have been inferred by homology to be exopeptidases: carboxypeptidases, dipeptidases and a specialized aminopeptidase. In general, the peptidase hydrolyzes the late products of protein degradation in order to complete the conversion of proteins to free amino acids. Members of this subfamily may bind metal ions such as zinc. 394 -239149 cd02698 Peptidase_C1A_CathepsinX Cathepsin X; the only papain-like lysosomal cysteine peptidase exhibiting carboxymonopeptidase activity. It can also act as a carboxydipeptidase, like cathepsin B, but has been shown to preferentially cleave substrates through a monopeptidyl carboxypeptidase pathway. The propeptide region of cathepsin X, the shortest among papain-like peptidases, is covalently attached to the active site cysteine in the inactive form of the enzyme. Little is known about the biological function of cathepsin X. Some studies point to a role in early tumorigenesis. A more recent study indicates that cathepsin X expression is restricted to immune cells suggesting a role in phagocytosis and the regulation of the immune response. 239 -341048 cd02699 M4_M36 Peptidase M4 family (includes thermolysin, aureolysin, neutral protease and bacillolysin) and Peptidase M36 family (also known as fungalysin). This family includes the peptidases M4 as well as M36, both belonging to the Gluzincin family. The M4 peptidase family includes numerous zinc-dependent metallopeptidases that hydrolyze peptide bonds, such as thermolysin (EC 3.4.24.27), pseudolysin (the extracellullar elastase of Pseudomonas aeruginosa), aureolysin (the extracellular metalloproteinase from Staphylococcus aureus), neutral protease from Bacillus cereus, as well as bacillolysin (EC 3.4.24.28). The M36 family also known as fungalysin (elastinolytic metalloproteinase) family, includes endopeptidases from pathogenic fungi. Both M4 and M36 families have similar folds and contain the Zn-binding site and the active site HEXXH motif. The eukaryotic M36 and bacterial M4 families of metalloproteases also share a conserved domain in their propeptides called FTP (fungalysin/thermolysin propeptide). 313 -259848 cd02733 RNAP_II_RPB1_N Largest subunit (Rpb1) of eukaryotic RNA polymerase II (RNAP II), N-terminal domain. The two largest subunits of RNA polymerase II (RNAP II), Rpb1 and Rpb2, form the active site, DNA entry channel and RNA exit channel. RNAP II is a large multi-subunit complex responsible for the synthesis of mRNA in eukaryotes. RNAP II consists of a 10-subunit core enzyme and a peripheral heterodimer of two subunits. Structure studies suggest that RNAP complexes from different organisms share a crab-claw-shape structure. In yeast, Rpb1 and Rpb2, each makes up one clamp, one jaw, and part of the cleft. Rpb1_N contains part of the active site, forms the head and core of the one clamp, and makes up the pore and funnel regions of RNAP II. 751 -132722 cd02735 RNAP_I_Rpa1_C Largest subunit (Rpa1) of Eukaryotic RNA polymerase I (RNAP I), C-terminal domain. RNA polymerase I (RNAP I) is a multi-subunit protein complex responsible for the synthesis of rRNA precursor. It consists of at least 14 different subunits, and the largest one is homologous to subunit Rpb1 of yeast RNAP II and subunit beta' of bacterial RNAP. Rpa1 is also known as Rpa190 in yeast. Structure studies suggest that different RNAP complexes share a similar crab-claw-shape structure. The C-terminal domain of Rpb1, the largest subunit of RNAP II, makes up part of the foot and jaw structures of RNAP II. The similarity between this domain and the C-terminal domain of Rpb1, its counterpart in RNAP II, suggests a similar functional and structural role. 309 -132723 cd02736 RNAP_III_Rpc1_C Largest subunit (Rpc1) of Eukaryotic RNA polymerase III (RNAP III), C-terminal domain. Eukaryotic RNA polymerase III (RNAP III) is a large multi-subunit complex responsible for the synthesis of tRNAs, 5SrRNA, Alu-RNA, U6 snRNA, among others. Rpc1 is also known as C160 in yeast. Structure studies suggest that different RNA polymerase complexes share a similar crab-claw-shape structure. The C-terminal domain of Rpb1, the largest subunit of RNAP II, makes up part of the foot and jaw structures of RNAP II. The similarity between this domain and the C-terminal domain of Rpb1, its counterpart in RNAP II, suggests a similar functional and structural role. 300 -132724 cd02737 RNAP_IV_NRPD1_C Largest subunit (NRPD1) of Higher plant RNA polymerase IV, C-terminal domain. Higher plants have five multi-subunit nuclear RNA polymerases: RNAP I, RNAP II and RNAP III, which are essential for viability; plus the two isoforms of the non-essential polymerase RNAP IV (IVa and IVb), which specialize in small RNA-mediated gene silencing pathways. RNAP IVa and/or RNAP IVb might be involved in RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. NRPD1a is the largest subunit of RNAP IVa, whereas NRPD1b is the largest subunit of RNAP IVb. The full subunit compositions of RNAP IVa and RNAP IVb are not known, nor are their templates or enzymatic products. However, it has been shown that RNAP IVa and, to a lesser extent, RNAP IVb are crucial for several RNA-mediated gene silencing phenomena. 381 -119331 cd02742 GH20_hexosaminidase Beta-N-acetylhexosaminidases of glycosyl hydrolase family 20 (GH20) catalyze the removal of beta-1,4-linked N-acetyl-D-hexosamine residues from the non-reducing ends of N-acetyl-beta-D-hexosaminides including N-acetylglucosides and N-acetylgalactosides. These enzymes are broadly distributed in microorganisms, plants and animals, and play roles in various key physiological and pathological processes. These processes include cell structural integrity, energy storage, cellular signaling, fertilization, pathogen defense, viral penetration, the development of carcinomas, inflammatory events and lysosomal storage disorders. The GH20 enzymes include the eukaryotic beta-N-acetylhexosaminidases A and B, the bacterial chitobiases, dispersin B, and lacto-N-biosidase. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by the solvent or the enzyme, but by the substrate itself. 303 -239150 cd02749 Macro Macro domain, a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. 147 -239151 cd02750 MopB_Nitrate-R-NarG-like Respiratory nitrate reductase A (NarGHI), alpha chain (NarG) and related proteins. Under anaerobic conditions in the presence of nitrate, E. coli synthesizes the cytoplasmic membrane-bound quinol-nitrate oxidoreductase (NarGHI), which reduces nitrate to nitrite and forms part of a redox loop generating a proton-motive force. Found in prokaryotes and some archaea, NarGHI usually functions as a heterotrimer. The alpha chain contains the molybdenum cofactor-containing Mo-bisMGD catalytic subunit. Members of the MopB_Nitrate-R-NarG-like CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 461 -239152 cd02751 MopB_DMSOR-like The MopB_DMSOR-like CD contains dimethylsulfoxide reductase (DMSOR), biotin sulfoxide reductase (BSOR), trimethylamine N-oxide reductase (TMAOR) and other related proteins. DMSOR catalyzes the reduction of DMSO to dimethylsulfide, but its cellular location and oligomerization state are organism-dependent. For example, in Rhodobacter sphaeriodes and Rhodobacter capsulatus, it is an 82-kDa monomeric soluble protein found in the periplasmic space; in E. coli, it is membrane-bound and exists as a heterotrimer. BSOR catalyzes the reduction of biotin sulfixode to biotin, and is unique among Mo enzymes because no additional auxiliary proteins or cofactors are required. TMAOR is similar to DMSOR, but its only natural substrate is TMAO. Also included in this group is the pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici. Members of the MopB_DMSOR-like CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 609 -239153 cd02752 MopB_Formate-Dh-Na-like Formate dehydrogenase N, alpha subunit (Formate-Dh-Na) is a major component of nitrate respiration in bacteria such as in the E. coli formate dehydrogenase N (Fdh-N). Fdh-N is a membrane protein that is a complex of three different subunits and is the major electron donor to the nitrate respiratory chain. Also included in this CD is the Desulfovibrio gigas tungsten formate dehydrogenase, DgW-FDH. In contrast to Fdh-N, which is a functional heterotrimer, DgW-FDH is a heterodimer. The DgW-FDH complex is composed of a large subunit carrying the W active site and one [4Fe-4S] center, and a small subunit that harbors a series of three [4Fe-4S] clusters as well as a putative vacant binding site for a fourth cluster. The smaller subunit is not included in this alignment. Members of the MopB_Formate-Dh-Na-like CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 649 -239154 cd02753 MopB_Formate-Dh-H Formate dehydrogenase H (Formate-Dh-H) catalyzes the reversible oxidation of formate to CO2 with the release of a proton and two electrons. It is a component of the anaerobic formate hydrogen lyase complex. The E. coli formate dehydrogenase H (Fdh-H) is a monomer composed of a single polypeptide chain with a Mo active site region and a [4Fe-4S] center. Members of the MopB_Formate-Dh-H CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 512 -239155 cd02754 MopB_Nitrate-R-NapA-like Nitrate reductases, NapA (Nitrate-R-NapA), NasA, and NarB catalyze the reduction of nitrate to nitrite. Monomeric Nas is located in the cytoplasm and participates in nitrogen assimilation. Dimeric Nap is located in the periplasm and is coupled to quinol oxidation via a membrane-anchored tetraheme cytochrome. Members of the MopB_Nitrate-R-NapA CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 565 -239156 cd02755 MopB_Thiosulfate-R-like The MopB_Thiosulfate-R-like CD contains thiosulfate-, sulfur-, and polysulfide-reductases, and other related proteins. Thiosulfate reductase catalyzes the cleavage of sulfur-sulfur bonds in thiosulfate. Polysulfide reductase is a membrane-bound enzyme that catalyzes the reduction of polysulfide using either hydrogen or formate as the electron donor. Members of the MopB_Thiosulfate-R-like CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 454 -239157 cd02756 MopB_Arsenite-Ox Arsenite oxidase (Arsenite-Ox) oxidizes arsenite to the less toxic arsenate; it transfers the electrons obtained from the oxidation of arsenite towards the soluble periplasmic electron carriers cytochrome c and/or amicyanin. Arsenite oxidase is a heterodimeric enzyme containing a large and a small subunit. The large catalytic subunit harbors the molybdopterin cofactor and the [3Fe-4S] cluster; and the small subunit belongs to the structural class of the Rieske proteins. The small subunit is not included in this alignment. Members of MopB_Arsenite-Ox CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 676 -239158 cd02757 MopB_Arsenate-R This CD includes the respiratory arsenate reductase, As(V), catalytic subunit (ArrA) and other related proteins. These members belong to the molybdopterin_binding (MopB) superfamily of proteins. 523 -239159 cd02758 MopB_Tetrathionate-Ra The MopB_Tetrathionate-Ra CD contains tetrathionate reductase, subunit A, (TtrA) and other related proteins. The Salmonella enterica tetrathionate reductase catalyses the reduction of trithionate but not sulfur or thiosulfate. Members of this CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 735 -239160 cd02759 MopB_Acetylene-hydratase The MopB_Acetylene-hydratase CD contains acetylene hydratase (Ahy) and other related proteins. The acetylene hydratase of Pelobacter acetylenicus is a tungsten iron-sulfur protein involved in the fermentation of acetylene to ethanol and acetate. Members of this CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 477 -239161 cd02760 MopB_Phenylacetyl-CoA-OR The MopB_Phenylacetyl-CoA-OR CD contains the phenylacetyl-CoA:acceptor oxidoreductase, large subunit (PadB2), and other related proteins. The phenylacetyl-CoA:acceptor oxidoreductase has been characterized as a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. Members of this CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 760 -239162 cd02761 MopB_FmdB-FwdB The MopB_FmdB-FwdB CD contains the molybdenum/tungsten formylmethanofuran dehydrogenases, subunit B (FmdB/FwdB), and other related proteins. Formylmethanofuran dehydrogenase catalyzes the first step in methane formation from CO2 in methanogenic archaea and some eubacteria. Members of this CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 415 -239163 cd02762 MopB_1 The MopB_1 CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins. 539 -239164 cd02763 MopB_2 The MopB_2 CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins 679 -239165 cd02764 MopB_PHLH The MopB_PHLH CD includes a group of related uncharacterized putative hydrogenase-like homologs (PHLH) of molybdopterin binding (MopB) proteins. This CD is of the PHLH region homologous to the catalytic molybdopterin-binding subunit of MopB homologs. 524 -239166 cd02765 MopB_4 The MopB_4 CD includes a group of related uncharacterized bacterial and archaeal molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins 567 -239167 cd02766 MopB_3 The MopB_3 CD includes a group of related uncharacterized bacterial and archaeal molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins 501 -239168 cd02767 MopB_ydeP The MopB_ydeP CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative molybdopterin cofactor binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins. 574 -239169 cd02768 MopB_NADH-Q-OR-NuoG2 MopB_NADH-Q-OR-NuoG2: The NuoG/Nad11/75-kDa subunit (second domain) of the NADH-quinone oxidoreductase (NADH-Q-OR)/respiratory complex I/NADH dehydrogenase-1 (NDH-1). The NADH-Q-OR is the first energy-transducting complex in the respiratory chains of many prokaryotes and eukaryotes. Mitochondrial complex I and its bacterial counterpart, NDH-1, function as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. The atomic structure of complex I is not known and the mechanisms of electron transfer and proton pumping are not established. The nad11 gene codes for the largest (75-kDa) subunit of the mitochondrial NADH:ubiquinone oxidoreductase, it constitutes the electron input part of the enzyme, or the so-called NADH dehydrogenase fragment. In Escherichia coli, this subunit is encoded by the nuoG gene, and is part of the 14 distinct subunits constituting the 'minimal' functional enzyme. The nad11 gene is nuclear-encoded in animals, plants, and fungi, but is still encoded in the mitochondrial genome of some protists. The Nad11/NuoG subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain family belongs to the molybdopterin_binding (MopB) superfamily of proteins. Bacterial type II NADH-quinone oxidoreductases and NQR-type sodium-motive NADH-quinone oxidoreductases are not homologs of this domain family. 386 -239170 cd02769 MopB_DMSOR-BSOR-TMAOR The MopB_DMSOR-BSOR-TMAOR CD contains dimethylsulfoxide reductase (DMSOR), biotin sulfoxide reductase (BSOR), trimethylamine N-oxide reductase (TMAOR) and other related proteins. DMSOR always catalyzes the reduction of DMSO to dimethylsulfide, but its cellular location and oligomerization state are organism-dependent. For example, in Rhodobacter sphaeriodes and Rhodobacter capsulatus, it is an 82-kDa monomeric soluble protein found in the periplasmic space; in E. coli, it is membrane-bound and exists as a heterotrimer. BSOR catalyzes the reduction of biotin sulfixode to biotin, and is unique among Mo enzymes because no additional auxiliary proteins or cofactors are required. TMAOR is similar to DMSOR, but its only natural substrate is TMAO. Members of this CD belong to the molybdopterin_binding (MopB) superfamily of proteins. 609 -239171 cd02770 MopB_DmsA-EC This CD (MopB_DmsA-EC) includes the DmsA enzyme of the dmsABC operon encoding the anaerobic dimethylsulfoxide reductase (DMSOR) of Escherichia coli and other related DMSOR-like enzymes. Unlike other DMSOR-like enzymes, this group has a predicted N-terminal iron-sulfur [4Fe-4S] cluster binding site. These members belong to the molybdopterin_binding (MopB) superfamily of proteins. 617 -239172 cd02771 MopB_NDH-1_NuoG2-N7 MopB_NDH-1_NuoG2-N7: The second domain of the NuoG subunit (with a [4Fe-4S] cluster, N7) of the NADH-quinone oxidoreductase/NADH dehydrogenase-1 (NDH-1) found in various bacteria. The NDH-1 is the first energy-transducting complex in the respiratory chain and functions as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. In Escherichia coli NDH-1, the largest subunit is encoded by the nuoG gene, and is part of the 14 distinct subunits constituting the functional enzyme. The NuoG subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Unique to this group, compared to the other prokaryotic and eukaryotic groups in this domain protein family (NADH-Q-OR-NuoG2), is an N-terminal [4Fe-4S] cluster (N7/N1c) present in the second domain. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain belongs to the molybdopterin_binding (MopB) superfamily of proteins. 472 -239173 cd02772 MopB_NDH-1_NuoG2 MopB_NDH-1_NuoG2: The second domain of the NuoG subunit of the NADH-quinone oxidoreductase/NADH dehydrogenase-1 (NDH-1), found in beta- and gammaproteobacteria. The NDH-1 is the first energy-transducting complex in the respiratory chain and functions as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. In Escherichia coli NDH-1, the largest subunit is encoded by the nuoG gene, and is part of the 14 distinct subunits constituting the functional enzyme. The NuoG subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain belongs to the molybdopterin_binding (MopB) superfamily of proteins. 414 -239174 cd02773 MopB_Res-Cmplx1_Nad11 MopB_Res_Cmplx1_Nad11: The second domain of the Nad11/75-kDa subunit of the NADH-quinone oxidoreductase/respiratory complex I/NADH dehydrogenase-1(NDH-1) of eukaryotes and the Nqo3/G subunit of alphaproteobacteria NDH-1. The NADH-quinone oxidoreductase is the first energy-transducting complex in the respiratory chains of many prokaryotes and eukaryotes. Mitochondrial complex I and its bacterial counterpart, NDH-1, function as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. The nad11 gene codes for the largest (75 kDa) subunit of the mitochondrial NADH:ubiquinone oxidoreductase, it constitutes the electron input part of the enzyme, or the so-called NADH dehydrogenase fragment. In Paracoccus denitrificans, this subunit is encoded by the nqo3 gene, and is part of the 14 distinct subunits constituting the 'minimal' functional enzyme. The Nad11/Nqo3 subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain belongs to the molybdopterin_binding (MopB) superfamily of proteins. 375 -239175 cd02774 MopB_Res-Cmplx1_Nad11-M MopB_Res_Cmplx1_Nad11_M: Mitochondrial-encoded NADH-quinone oxidoreductase/respiratory complex I, the second domain of the Nad11/75-kDa subunit of some protists. NADH-quinone oxidoreductase is the first energy-transducting complex in the respiratory chain and functions as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. The nad11 gene codes for the largest (75-kDa) subunit of the mitochondrial NADH-quinone oxidoreductase, it constitutes the electron input part of the enzyme, or the so-called NADH dehydrogenase fragment. The Nad11 subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain belongs to the molybdopterin_binding (MopB) superfamily of proteins. 366 -239176 cd02775 MopB_CT Molybdopterin-Binding, C-terminal (MopB_CT) domain of the MopB superfamily of proteins, a large, diverse, heterogeneous superfamily of enzymes that, in general, bind molybdopterin as a cofactor. The MopB domain is found in a wide variety of molybdenum- and tungsten-containing enzymes, including formate dehydrogenase-H (Fdh-H) and -N (Fdh-N), several forms of nitrate reductase (Nap, Nas, NarG), dimethylsulfoxide reductase (DMSOR), thiosulfate reductase, formylmethanofuran dehydrogenase, and arsenite oxidase. Molybdenum is present in most of these enzymes in the form of molybdopterin, a modified pterin ring with a dithiolene side chain, which is responsible for ligating the Mo. In many bacterial and archaeal species, molybdopterin is in the form of a dinucleotide, with two molybdopterin dinucleotide units per molybdenum. These proteins can function as monomers, heterodimers, or heterotrimers, depending on the protein and organism. Also included in the MopB superfamily is the eukaryotic/eubacterial protein domain family of the 75-kDa subunit/Nad11/NuoG (second domain) of respiratory complex 1/NADH-quinone oxidoreductase which is postulated to have lost an ancestral formate dehydrogenase activity and only vestigial sequence evidence remains of a molybdopterin binding site. This hierarchy is of the conserved MopB_CT domain present in many, but not all, MopB homologs. 101 -239177 cd02776 MopB_CT_Nitrate-R-NarG-like Respiratory nitrate reductase A (NarGHI), alpha chain (NarG) and related proteins. Under anaerobic conditions in the presence of nitrate, E. coli synthesizes the cytoplasmic membrane-bound quinol-nitrate oxidoreductase (NarGHI), which reduces nitrate to nitrite and forms part of a redox loop generating a proton-motive force. Found in prokaryotes and some archaea, NarGHI usually functions as a heterotrimer. The alpha chain contains the molybdenum cofactor-containing Mo-bisMGD catalytic subunit. This CD (MopB_CT_Nitrate-R-NarG-like) is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 141 -239178 cd02777 MopB_CT_DMSOR-like The MopB_CT_DMSOR-like CD contains dimethylsulfoxide reductase (DMSOR), biotin sulfoxide reductase (BSOR), trimethylamine N-oxide reductase (TMAOR) and other related proteins. DMSOR always catalyzes the reduction of DMSO to dimethylsulfide, but its cellular location and oligomerization state are organism-dependent. For example, in Rhodobacter sphaeriodes and Rhodobacter capsulatus, it is an 82-kDa monomeric soluble protein found in the periplasmic space; in E. coli, it is membrane-bound and exists as a heterotrimer. BSOR catalyzes the reduction of biotin sulfixode to biotin, and is unique among Mo enzymes because no additional auxiliary proteins or cofactors are required. TMAOR is similar to DMSOR, but its only natural substrate is TMAO. Also included in this group is the pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 127 -239179 cd02778 MopB_CT_Thiosulfate-R-like The MopB_CT_Thiosulfate-R-like CD contains thiosulfate-, sulfur-, and polysulfide-reductases, and other related proteins. Thiosulfate reductase catalyzes the cleavage of sulfur-sulfur bonds in thiosulfate. Polysulfide reductase is a membrane-bound enzyme that catalyzes the reduction of polysulfide using either hydrogen or formate as the electron donor. Also included in this CD is the phenylacetyl-CoA:acceptor oxidoreductase, large subunit (PadB2), which has been characterized as a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. The MopB_CT_Thiosulfate-R-like CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 123 -239180 cd02779 MopB_CT_Arsenite-Ox This CD contains the molybdopterin_binding C-terminal (MopB_CT) region of Arsenite oxidase (Arsenite-Ox) and related proteins. Arsenite oxidase oxidizes arsenite to the less toxic arsenate; it transfers the electrons obtained from the oxidation of arsenite towards the soluble periplasmic electron carriers cytochrome c and/or amicyanin. 115 -239181 cd02780 MopB_CT_Tetrathionate_Arsenate-R This CD contains the molybdopterin_binding C-terminal (MopB_CT) region of tetrathionate reductase, subunit A, (TtrA); respiratory arsenate As(V) reductase, catalytic subunit (ArrA); and other related proteins. 143 -239182 cd02781 MopB_CT_Acetylene-hydratase The MopB_CT_Acetylene-hydratase CD contains acetylene hydratase (Ahy) and other related proteins. The acetylene hydratase of Pelobacter acetylenicus is a tungsten iron-sulfur protein involved in the fermentation of acetylene to ethanol and acetate. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 130 -239183 cd02782 MopB_CT_1 The MopB_CT_1 CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 129 -239184 cd02783 MopB_CT_2 The MopB_CT_2 CD includes a group of related uncharacterized bacterial and archaeal molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 156 -239185 cd02784 MopB_CT_PHLH The MopB_CT_PHLH CD includes a group of related uncharacterized putative hydrogenase-like homologs (PHLH) of molybdopterin binding proteins. This CD is of the PHLH region homologous to the conserved molybdopterin-binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 137 -239186 cd02785 MopB_CT_4 The MopB_CT_4 CD includes a group of related uncharacterized bacterial and archaeal molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 124 -239187 cd02786 MopB_CT_3 The MopB_CT_3 CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative N-terminal iron-sulfur [4Fe-4S] cluster binding site and molybdopterin cofactor binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 116 -239188 cd02787 MopB_CT_ydeP The MopB_CT_ydeP CD includes a group of related uncharacterized bacterial molybdopterin-binding oxidoreductase-like domains with a putative molybdopterin cofactor binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 112 -239189 cd02788 MopB_CT_NDH-1_NuoG2-N7 MopB_CT_NDH-1_NuoG2-N7: C-terminal region of the NuoG-like subunit (of the variant with a [4Fe-4S] cluster, N7) of the NADH-quinone oxidoreductase/NADH dehydrogenase-1 (NDH-1) found in various bacteria. The NDH-1 is the first energy-transducting complex in the respiratory chain and functions as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. In Escherichia coli NDH-1, the largest subunit is encoded by the nuoG gene, and is part of the 14 distinct subunits constituting the functional enzyme. The NuoG subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain, is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Unique to this group, compared to the other prokaryotic and eukaryotic groups in this domain protein family (NADH-Q-OR-NuoG2), is an N-terminal [4Fe-4S] cluster (N7/N1c) present in the second domain and a C-terminal region (this CD) homologous to the formate dehydrogenase C-terminal molybdopterin_binding (MopB) region. 96 -239190 cd02789 MopB_CT_FmdC-FwdD The MopB_FmdC-FwdD CD includes the C-terminus of subunit C of molybdenum formylmethanofuran dehydrogenase (FmdC) and subunit D of tungsten formylmethanofuran dehydrogenase (FwdD), and other related proteins. Formylmethanofuran dehydrogenase catalyzes the first step in methane formation from CO2 in methanogenic archaea and some eubacteria. Members of this CD belong to the molybdopterin_binding superfamily of proteins. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 106 -239191 cd02790 MopB_CT_Formate-Dh_H Formate dehydrogenase H (Formate-Dh-H) catalyzes the reversible oxidation of formate to CO2 with the release of a proton and two electrons. It is a component of the anaerobic formate hydrogen lyase complex. The E. coli formate dehydrogenase H (Fdh-H) is a monomer composed of a single polypeptide chain with a Mo active site region and a [4Fe-4S] center. This CD (MopB_CT_Formate-Dh_H) is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 116 -239192 cd02791 MopB_CT_Nitrate-R-NapA-like Nitrate reductases, NapA (Nitrate-R-NapA), NasA, and NarB catalyze the reduction of nitrate to nitrite. Monomeric Nas is located in the cytoplasm and participates in nitrogen assimilation. Dimeric Nap is located in the periplasm and is coupled to quinol oxidation via a membrane-anchored tetraheme cytochrome. This CD (MopB_CT_Nitrate-R-Nap) is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs 122 -239193 cd02792 MopB_CT_Formate-Dh-Na-like Formate dehydrogenase N, alpha subunit (Formate-Dh-Na) is a major component of nitrate respiration in bacteria such as in the E. coli formate dehydrogenase N (Fdh-N). Fdh-N is a membrane protein that is a complex of three different subunits and is the major electron donor to the nitrate respiratory chain. Also included in this CD is the Desulfovibrio gigas tungsten formate dehydrogenase, DgW-FDH. In contrast to Fdh-N, which is a functional heterotrimer, DgW-FDH is a heterodimer. The DgW-FDH complex is composed of a large subunit carrying the W active site and one [4Fe-4S] center, and a small subunit that harbors a series of three [4Fe-4S] clusters as well as a putative vacant binding site for a fourth cluster. The smaller subunit is not included in this alignment. This CD (MopB_CT_Formate-Dh-Na-like) is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 122 -239194 cd02793 MopB_CT_DMSOR-BSOR-TMAOR The MopB_DMSOR-BSOR-TMAOR CD contains dimethylsulfoxide reductase (DMSOR), biotin sulfoxide reductase (BSOR), trimethylamine N-oxide reductase (TMAOR) and other related proteins. DMSOR always catalyzes the reduction of DMSO to dimethylsulfide, but its cellular location and oligomerization state are organism-dependent. For example, in Rhodobacter sphaeriodes and Rhodobacter capsulatus, it is an 82-kDa monomeric soluble protein found in the periplasmic space; in E. coli, it is membrane-bound and exists as a heterotrimer. BSOR catalyzes the reduction of biotin sulfixode to biotin, and is unique among Mo enzymes because no additional auxiliary proteins or cofactors are required. TMAOR is similar to DMSOR, but its only natural substrate is TMAO.This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 129 -239195 cd02794 MopB_CT_DmsA-EC The MopB_CT_DmsA-EC CD includes the DmsA enzyme of the dmsABC operon encoding the anaerobic dimethylsulfoxide reductase (DMSOR) of Escherichia coli and other related DMSOR-like enzymes. Unlike other DMSOR-like enzymes, this group has a predicted N-terminal iron-sulfur [4Fe-4S] cluster binding site. This CD is of the conserved molybdopterin_binding C-terminal (MopB_CT) region present in many, but not all, MopB homologs. 121 -271143 cd02795 CBM6-CBM35-CBM36_like Carbohydrate Binding Module 6 (CBM6) and CBM35_like superfamily. Carbohydrate binding module family 6 (CBM6, family 6 CBM), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36). These are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of the appended catalytic modules to their dedicated, insoluble substrates. Many of these CBMs are associated with glycoside hydrolase (GH) domains. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. CBM36s are calcium-dependent xylan binding domains. CBM35s display conserved specificity through extensive sequence similarity, but divergent function through their appended catalytic modules. This alignment model also contains the C-terminal domains of bacterial insecticidal toxins, where they may be involved in determining insect specificity through carbohydrate binding functionality. 124 -239196 cd02796 tRNA_bind_bactPheRS tRNA-binding-domain-containing prokaryotic phenylalanly tRNA synthetase (PheRS) beta chain. PheRS aminoacylate phenylalanine transfer RNAs (tRNAphe). PheRSs belong structurally to class II aminoacyl tRNA synthetases (aaRSs) but, as they aminoacylate the 2'OH of the terminal ribose of tRNA they belong functionally to class 1 aaRSs. This domain has general tRNA binding properties and is believed to direct tRNAphe to the active site of the enzyme. 103 -239197 cd02798 tRNA_bind_CsaA tRNA-binding-domain-containing CsaA-like proteins. CsaA is a molecular chaperone with export related activities. CsaA has a putative tRNA binding activity. The functional unit of CsaA is a homodimer and this domain acts as a dimerization domain. 107 -239198 cd02799 tRNA_bind_EMAP-II_like tRNA-binding-domain-containing EMAP2-like proteins. This family contains a diverse fraction of tRNA binding proteins, including Caenorhabditis elegans methionyl-tRNA synthetase (CeMetRS), human tyrosyl- tRNA synthetase (hTyrRS), Saccharomyces cerevisiae Arc1p, human p43 and EMAP2. CeMetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multiple activities during apoptosis, angiogenesis and inflammation and participates in malignant transformation. A EMAP-II-like cytokine also is released from hTyrRS upon cleavage. The active cytokine heptapeptide locates to this domain. 105 -239199 cd02800 tRNA_bind_EcMetRS_like tRNA-binding-domain-containing Escherichia coli methionyl-tRNA synthetase (EcMetRS)-like proteins. This family includes EcMetRS and Aquifex aeolicus Trbp111 (AaTrbp111). This domain has general tRNA binding properties. MetRS aminoacylates methionine transfer RNAs (tRNAmet). AaTrbp111 is structure-specific molecular chaperone recognizing the L-shape of the tRNA fold. AaTrbp111 plays a role in nuclear trafficking of tRNAs. The functional unit of EcMetRs and AaTrbp111 is a homodimer, this domain acts as the dimerization domain. 105 -239200 cd02801 DUS_like_FMN Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archaea. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. 1VHN, a putative flavin oxidoreductase, has high sequence similarity to DUS. The enzymatic mechanism of 1VHN is not known at the present. 231 -239201 cd02803 OYE_like_FMN_family Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. 327 -239202 cd02808 GltS_FMN Glutamate synthase (GltS) FMN-binding domain. GltS is a complex iron-sulfur flavoprotein that catalyzes the reductive synthesis of L-glutamate from 2-oxoglutarate and L-glutamine via intramolecular channelling of ammonia, a reaction in the plant, yeast and bacterial pathway for ammonia assimilation. It is a multifunctional enzyme that functions through three distinct active centers, carrying out L-glutamine hydrolysis, conversion of 2-oxoglutarate into L-glutamate, and electron uptake from an electron donor. 392 -239203 cd02809 alpha_hydroxyacid_oxid_FMN Family of homologous FMN-dependent alpha-hydroxyacid oxidizing enzymes. This family occurs in both prokaryotes and eukaryotes. Members of this family include flavocytochrome b2 (FCB2), glycolate oxidase (GOX), lactate monooxygenase (LMO), mandelate dehydrogenase (MDH), and long chain hydroxyacid oxidase (LCHAO). In green plants, glycolate oxidase is one of the key enzymes in photorespiration where it oxidizes glycolate to glyoxylate. LMO catalyzes the oxidation of L-lactate to acetate and carbon dioxide. MDH oxidizes (S)-mandelate to phenylglyoxalate. It is an enzyme in the mandelate pathway that occurs in several strains of Pseudomonas which converts (R)-mandelate to benzoate. 299 -239204 cd02810 DHOD_DHPD_FMN Dihydroorotate dehydrogenase (DHOD) and Dihydropyrimidine dehydrogenase (DHPD) FMN-binding domain. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively. DHPD catalyzes the first step in pyrimidine degradation: the NADPH-dependent reduction of uracil and thymine to the corresponding 5,6-dihydropyrimidines. DHPD contains two FAD, two FMN and eight [4Fe-4S] clusters, arranged in two electron transfer chains that pass its homodimeric interface twice. Two of the Fe-S clusters show a hitherto unobserved coordination involving a glutamine residue. 289 -239205 cd02811 IDI-2_FMN Isopentenyl-diphosphate:dimethylallyl diphosphate isomerase type 2 (IDI-2) FMN-binding domain. Two types of IDIs have been characterized at present. The long known IDI-1 is only dependent on divalent metals for activity, whereas IDI-2 requires a metal, FMN and NADPH. IDI-2 catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the mevalonate pathway. 326 -239206 cd02812 PcrB_like PcrB_like proteins. One member of this family, a protein from Archaeoglobus fulgidus, has been characterized as a (S)-3-O-geranylgeranylglyceryl phosphate synthase (AfGGGPS). AfGGGPS catalyzes the formation of an ether linkage between sn-glycerol-1-phosphate (G1P) and geranylgeranyl diphosphate (GGPP), the committed step in archaeal lipid biosynthesis. Therefore, it has been proposed that PcrB-like proteins are either prenyltransferases or are involved in lipoteichoic acid biosynthesis although the exact function is still unknown. 219 -239207 cd02825 PAZ PAZ domain, named PAZ after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. This parent model also contains structures of an archaeal PAZ domain. 115 -239208 cd02826 Piwi-like Piwi-like: PIWI domain. Domain found in proteins involved in RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The central component of the RNA-induced silencing complex (RISC) and related complexes is Argonaute. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. This domain is also found in closely related proteins, including the Piwi subfamily, where it is believed to perform a crucial role in germline cells, via a similar mechanism. 393 -239209 cd02843 PAZ_dicer_like PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA interference pathway. It generates dsRNAs which are approximately 20 bp long (siRNAs), which in turn target hydrolysis of homologous RNAs. PAZ domains are named after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. 122 -239210 cd02844 PAZ_CAF_like PAZ domain, CAF_like subfamily. CAF (for carpel factory) is a plant homolog of Dicer. CAF has been implicated in flower morphogenesis and in early Arabidopsis development and might function through posttranscriptional regulation of specific mRNA molecules. PAZ domains are named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. 135 -239211 cd02845 PAZ_piwi_like PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be essential for the maintenance of germline stem cells. In the Drosophila male germline, Piwi was shown to be involved in the silencing of retrotransposons in the male gametes. The Piwi proteins share their domain architecture with other members of the argonaute family. The PAZ domain has been named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. 117 -239212 cd02846 PAZ_argonaute_like PAZ domain, argonaute_like subfamily. Argonaute is part of the RNA-induced silencing complex (RISC), and is an endonuclease that plays a key role in the RNA interference pathway. The PAZ domain has been named after the proteins Piwi,Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. 114 -199879 cd02847 E_set_Chitobiase_C C-terminal Early set domain associated with the catalytic domain of chitobiase (also called N-acetylglucosaminidase). E or "early" set domains are associated with the catalytic domain of chitobiase at the C-terminus. Chitobiase digests the beta, 1-4 glycosidic bonds of the N-acetylglucosamine (NAG) oligomers found in chitin, an important structural element of fungal cell wall and arthropod exoskeletons. It is thought to proceed through an acid-base reaction mechanism, in which one protein carboxylate acts as the catalytic acid, while the nucleophile is the polar acetamido group of the sugar in a substrate-assisted reaction with retention of the anomeric configuration. The C-terminus of chitobiase may be related to the immunoglobulin and/or fibronectin type III superfamilies. E set domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 62 -199880 cd02848 E_set_Chitinase_N N-terminal Early set domain associated with the catalytic domain of chitinase. E or "early" set domains are associated with the catalytic domain of chitinase at the N-terminal end. Chitinases hydrolyze the abundant natural biopolymer chitin, producing smaller chito-oligosaccharides. Chitin consists of multiple N-acetyl-D-glucosamine (NAG) residues connected via beta-1,4-glycosidic linkages and is an important structural element of fungal cell wall and arthropod exoskeletons. On the basis of the mode of chitin hydrolysis, chitinases are classified as random, endo-, and exo-chitinases and belong to families 18 and 19 of glycosyl hydrolases based on sequence criteria. The N-terminal domain of chitinase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 105 -199881 cd02850 E_set_Cellulase_N N-terminal Early set domain associated with the catalytic domain of cellulase. E or "early" set domains are associated with the catalytic domain of cellulases at the N-terminal end. Cellulases are O-glycosyl hydrolases (GHs) that hydrolyze beta 1-4 glucosidic bonds in cellulose. They are usually categorized into either exoglucanases, which sequentially release terminal sugar units from the cellulose chain, or endoglucanases, which also attack the chain internally. The N-terminal domain of cellulase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 86 -199882 cd02851 E_set_GO_C C-terminal Early set domain associated with the catalytic domain of galactose oxidase. E or "early" set domains are associated with the catalytic domain of galactose oxidase at the C-terminal end. Galactose oxidase is an extracellular monomeric enzyme which catalyzes the stereospecific oxidation of a broad range of primary alcohol substrates and possesses a unique mononuclear copper site essential for catalyzing a two-electron transfer reaction during the oxidation of primary alcohols to corresponding aldehydes. The second redox active center necessary for the reaction was found to be situated at a tyrosine residue. The C-terminal domain of galactose oxidase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 103 -199883 cd02853 E_set_MTHase_like_N N-terminal Early set domain associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (also called Glycosyltrehalose trehalohydrolase) and similar proteins. E or "early" set domains are associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (MTHase) and similar proteins at the N-terminal end. This subfamily also includes bacterial alpha amylases and 1,4-alpha-glucan branching enzymes which are highly similar to MTHase. Maltooligosyl trehalose synthase (MTSase) and MTHase work together to produce trehalose. MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. The N-terminal domain of MTHase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 84 -199884 cd02854 E_set_GBE_euk_N N-terminal Early set domain associated with the catalytic domain of eukaryotic glycogen branching enzyme (also called 1,4 alpha glucan branching enzyme). This subfamily is composed of predominantly eukaryotic 1,4 alpha glucan branching enzymes, also called glycogen branching enzymes or starch binding enzymes in plants. E or "early" set domains are associated with the catalytic domain of the 1,4 alpha glucan branching enzymes at the N-terminal end. These enzymes catalyze the formation of alpha-1,6 branch points in either glycogen or starch by cleavage of the alpha-1,4 glucosidic linkage, yielding a non-reducing end oligosaccharide chain, as well as the subsequent attachment of short glucosyl chains to the alpha-1,6 position. Starch is composed of two types of glucan polymer: amylose and amylopectin. Amylose is mainly composed of linear chains of alpha-1,4 linked glucose residues and amylopectin consists of shorter alpha-1,4 linked chains connected by alpha-1,6 linkages. Amylopectin is synthesized from linear chains by starch branching enzyme. The N-terminal domains of the branching enzyme proteins may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 95 -199885 cd02855 E_set_GBE_prok_N N-terminal Early set domain associated with the catalytic domain of prokaryotic glycogen branching enzyme. This subfamily is composed of predominantly prokaryotic 1,4 alpha glucan branching enzymes, also called glycogen branching enzymes. E or "early" set domains are associated with the catalytic domain of glycogen branching enzymes at the N-terminal end. Glycogen branching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch by cleavage of the alpha-1,4 glucosidic linkage, yielding a non-reducing end oligosaccharide chain, as well as the subsequent attachment of short glucosyl chains to the alpha-1,6 position. By increasing the number of non-reducing ends, glycogen is more reactive to synthesis and digestion as well as being more soluble. The N-terminal domain of the 1,4 alpha glucan branching enzyme may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 105 -199886 cd02856 E_set_GDE_Isoamylase_N N-terminal Early set domain associated with the catalytic domain of Glycogen debranching enzyme and bacterial isoamylase (also called glycogen 6-glucanohydrolase). E or "early" set domains are associated with the catalytic domain of the glycogen debranching enzyme at the N-terminal end. Glycogen debranching enzymes have both 4-alpha-glucanotransferase and amylo-1,6-glucosidase activities. As a transferase, it transfers a segment of the 1,4-alpha-D-glucan to a new 4-position in an acceptor, which may be glucose or another 1,4-alpha-D-glucan. As a glucosidase, it catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. Bacterial isoamylases are also included in this subfamily. Isoamylase is one of the starch-debranching enzymes that catalyze the hydrolysis of alpha-1,6-glucosidic linkages specific in alpha-glucans such as amylopectin or glycogen. Isoamylase contains a bound calcium ion, but this is not in the same position as the conserved calcium ion that has been reported in other alpha-amylase family enzymes. The N-terminal domain of glycogen debranching enzyme may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 130 -199887 cd02857 E_set_CDase_PDE_N N-terminal Early set domain associated with the catalytic domain of cyclomaltodextrinase and pullulan-degrading enzymes. E or "early" set domains are associated with the catalytic domain of the cyclomaltodextrinase (CDase) and pullulan-degrading enzymes at the N-terminal end. Members of this subgroup include CDase, maltogenic amylase, and neopullulanase, all of which are capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The N-terminal domain of the CDase and pullulan-degrading enzymes may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 109 -199888 cd02858 E_set_Esterase_N N-terminal Early set domain associated with the catalytic domain of esterase. E or "early" set domains are associated with the catalytic domain of esterase at the N-terminal end. Esterases catalyze the hydrolysis of organic esters to release an alcohol or thiol and acid. The term esterase can be applied to enzymes that hydrolyze carboxylate, phosphate and sulphate esters, but is more often restricted to the first class of substrate. The N-terminal domain of esterase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 78 -199889 cd02859 E_set_AMPKbeta_like_N N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain of AMP-activated protein kinase beta subunit. E or "early" set domains are associated with the catalytic domain of AMP-activated protein kinase beta subunit glycogen binding domain at the N-terminal end. AMPK is a metabolic stress sensing protein that senses AMP/ATP and has recently been found to act as a glycogen sensor as well. The protein functions as an alpha-beta-gamma heterotrimer. This N-terminal domain is the glycogen binding domain of the beta subunit. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and isoamylase. 80 -199890 cd02860 E_set_Pullulanase Early set domain associated with the catalytic domain of pullulanase (also called dextrinase and alpha-dextrin endo-1,6-alpha glucosidase). E or "early" set domains are associated with the catalytic domain of pullulanase at either the N-terminal or C-terminal end, and in a few instances at both ends. Pullulanase is an enzyme with activity similar to that of isoamylase; it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. The E set domain of pullulanase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase. 97 -199891 cd02861 E_set_pullulanase_like Early set domain associated with the catalytic domain of pullulanase-like proteins. E or "early" set domains are associated with the catalytic domain of pullulanase at either the N-terminal or C-terminal end, and in a few instances at both ends. Pullulanase (also called dextrinase or alpha-dextrin endo-1,6-alpha glucosidase) is an enzyme with action similar to that of isoamylase; it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. The E set domain of pullulanase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase. 88 -239213 cd02862 NorE_like NorE_like subfamily of heme-copper oxidase subunit III. Heme-copper oxidases include cytochrome c and ubiquinol oxidases. Alcaligenes faecalis norE is found in a gene cluster containing norCB. norCB encodes the cytochrome c and cytochrome b subunits of nitric oxide reductase (NOR). Based on this and on its similarity to subunit III of cytochrome c oxidase (CcO) and ubiquinol oxidase, NorE has been speculated to be a subunit of NOR. 186 -239214 cd02863 Ubiquinol_oxidase_III Ubiquinol oxidase subunit III subfamily. Ubiquinol oxidase, the terminal oxidase in the respiratory chains of aerobic bacteria, is a multi-chain transmembrane protein located in the cell membrane. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. Ubiquinol oxidases feature four subunits in contrast to the 13 subunit bovine cytochrome c oxidase (CcO). Subunits I, II, and III of bovine CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunits I, II and III of ubiquinol oxidase are homologous to the corresponding subunits in bovine CcO. Although not required for catalytic activity, subunit III appears to be involved in assembly of the multimer complex. 186 -239215 cd02864 Heme_Cu_Oxidase_III_1 Heme-copper oxidase subunit III subfamily. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which couple the reduction of molecular oxygen to water to, proton pumping across the membrane. The heme-copper oxidase superfamily is diverse in terms of electron donors, subunit composition, and heme types. This superfamily includes cytochrome c and ubiquinol oxidases. Bacterial oxidases typically contain 3 or 4 subunits in contrast to the 13 subunit bovine cytochrome c oxidase (CcO). Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunits I, II and III of ubiquinol oxidase are homologous to the corresponding subunits in CcO. Although not required for catalytic activity, subunit III is believed to play a role in assembly of the multimer complex. Rhodobacter CcO subunit III stabilizes the integrity of the binuclear center in subunit I. It has been proposed that Archaea acquired heme-copper oxidases through gene transfer from Gram-positive bacteria. 202 -239216 cd02865 Heme_Cu_Oxidase_III_2 Heme-copper oxidase subunit III subfamily. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which couple the reduction of molecular oxygen to water to, proton pumping across the membrane. The heme-copper oxidase superfamily is diverse in terms of electron donors, subunit composition, and heme types. This superfamily includes cytochrome c and ubiquinol oxidases. Bacterial oxidases typically contain 3 or 4 subunits in contrast to the 13 subunit bovine cytochrome c oxidase (CcO). Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunits I, II and III of ubiquinol oxidase are homologous to the corresponding subunits in CcO. Although not required for catalytic activity, subunit III is believed to play a role in assembly of the multimer complex. Rhodobacter CcO subunit III stabilizes the integrity of the binuclear center in subunit I. It has been proposed that Archaea acquired heme-copper oxidases through gene transfer from Gram-positive bacteria. 184 -211343 cd02866 PseudoU_synth_TruA_Archea Archeal pseudouridine synthases. This group consists of archeal pseudouridine synthases.Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. This group of proteins make Psedouridine in tRNAs. 219 -211344 cd02867 PseudoU_synth_TruB_4 Pseudouridine synthase homolog 4. This group consists of Eukaryotic TruB proteins similar to Saccharomyces cerevisiae Pus4. S. cerevisiae Pus4, makes psi55 in the T loop of both cytoplasmic and mitochondrial tRNAs. Psi55 is almost universally conserved. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). 312 -211345 cd02868 PseudoU_synth_hTruB2_like Pseudouridine synthase, humanTRUB2_like. This group consists of eukaryotic pseudouridine synthases similar to human TruB pseudouridine synthase homolog 2 (TRUB2). Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). 226 -211346 cd02869 PseudoU_synth_RluCD_like Pseudouridine synthase, RsuA/RluD family. This group is comprised of eukaryotic, bacterial and archeal proteins similar to eight site specific Escherichia coli pseudouridine synthases: RsuA, RluA, RluB, RluC, RluD, RluE, RluF and TruA. Pseudouridine synthases catalyze the isomerization of specific uridines in a n RNA molecule to pseudouridines (5-ribosyluracil, psi) requiring no cofactors. E. coli RluC for example makes psi955, 2504 and 2580 in 23S RNA. Some psi sites such as psi1917 in 23S RNA made by RluD are universally conserved. Other psi sites occur in a more restricted fashion, for example psi2819 in 21S mitochondrial ribosomal RNA made by S. cerevisiae Pus5p is only found in mitochondrial large subunit rRNAs from some other species and in gram negative bacteria. The E. coli counterpart of this psi residue is psi2580 in 23S rRNA. psi2604in 23S RNA made by RluF has only been detected in E.coli. 185 -211347 cd02870 PseudoU_synth_RsuA_like Pseudouridine synthases, RsuA subfamily. Pseudouridine synthases are responsible for the synthesis of pseudouridine from uracil in ribosomal RNA. The RsuA subfamily includes Pseudouridine Synthase similar to Ribosomal small subunit pseudouridine 516 synthase. Most of the proteins in this family are bacterial proteins. 146 -119350 cd02871 GH18_chitinase_D-like GH18 domain of Chitinase D (ChiD). ChiD, a chitinase found in Bacillus circulans, hydrolyzes the 1,4-beta-linkages of N-acetylglucosamine in chitin and chitodextrins. The domain architecture of ChiD includes a catalytic glycosyl hydrolase family 18 (GH18) domain, a chitin-binding domain, and a fibronectin type III domain. The chitin-binding and fibronectin type III domains are located either N-terminal or C-terminal to the catalytic domain. This family includes exochitinase Chi36 from Bacillus cereus. 312 -119351 cd02872 GH18_chitolectin_chitotriosidase This conserved domain family includes a large number of catalytically inactive chitinase-like lectins (chitolectins) including YKL-39, YKL-40 (HCGP39), YM1, oviductin, and AMCase (acidic mammalian chitinase), as well as catalytically active chitotriosidases. The conserved domain is an eight-stranded alpha/beta barrel fold belonging to the family 18 glycosyl hydrolases. The fold has a pronounced active-site cleft at the C-terminal end of the beta-barrel. The chitolectins lack a key active site glutamate (the proton donor required for hydrolytic activity) but retain highly conserved residues involved in oligosaccharide binding. Chitotriosidase is a chitinolytic enzyme expressed in maturing macrophages, which suggests that it plays a part in antimicrobial defense. Chitotriosidase hydrolyzes chitotriose, as well as colloidal chitin to yield chitobiose and is therefore considered an exochitinase. Chitotriosidase occurs in two major forms, the large form being converted to the small form by either RNA or post-translational processing. Although the small form, containing the chitinase domain alone, is sufficient for the chitinolytic activity, the additional C-terminal chitin-binding domain of the large form plays a role in processing colloidal chitin. The chitotriosidase gene is nonessential in humans, as about 35% of the population are heterozygous and 6% homozygous for an inactivated form of the gene. HCGP39 is a 39-kDa human cartilage glycoprotein thought to play a role in connective tissue remodeling and defense against pathogens. 362 -119352 cd02873 GH18_IDGF The IDGF's (imaginal disc growth factors) are a family of growth factors identified in insects that include at least five members, some of which are encoded by genes in a tight cluster. The IDGF's have an eight-stranded alpha/beta barrel fold and are related to the glycosyl hydrolase family 18 (GH18) chitinases, but they have an amino acid substitution known to abolish chitinase catalytic activity. IDGFs may have evolved from chitinases to gain new functions as growth factors, interacting with cell surface glycoproteins involved in growth-promoting processes. 413 -119353 cd02874 GH18_CFLE_spore_hydrolase Cortical fragment-lytic enzyme (CFLE) is a peptidoglycan hydrolase involved in bacterial endospore germination. CFLE is expressed as an inactive preprotein (called SleB) in the forespore compartment of sporulating cells. SleB translocates across the forespore inner membrane and is deposited as a mature enzyme in the cortex layer of the spore. As part of a sensory mechanism capable of initiating germination, CFLE degrades a spore-specific peptidoglycan constituent called muramic-acid delta-lactam that comprises the outer cortex. CFLE has a C-terminal glycosyl hydrolase family 18 (GH18) catalytic domain as well as two N-terminal LysM peptidoglycan-binding domains. In addition to SleB, this family includes YaaH, YdhD, and YvbX from Bacillus subtilis. 313 -119354 cd02875 GH18_chitobiase Chitobiase (also known as di-N-acetylchitobiase) is a lysosomal glycosidase that hydrolyzes the reducing-end N-acetylglucosamine from the chitobiose core of oligosaccharides during the ordered degradation of asparagine-linked glycoproteins in eukaryotes. Chitobiase can only do so if the asparagine that joins the oligosaccharide to protein is previously removed by a glycosylasparaginase. Chitobiase is therefore the final step in the lysosomal degradation of the protein/carbohydrate linkage component of asparagine-linked glycoproteins. The catalytic domain of chitobiase is an eight-stranded alpha/beta barrel fold similar to that of other family 18 glycosyl hydrolases such as hevamine and chitotriosidase. 358 -119355 cd02876 GH18_SI-CLP Stabilin-1 interacting chitinase-like protein (SI-CLP) is a eukaryotic chitinase-like protein of unknown function that interacts with the endocytic/sorting transmembrane receptor stabilin-1 and is secreted from the lysosome. SI-CLP has a glycosyl hydrolase family 18 (GH18) domain but lacks a chitin-binding domain. The catalytic amino acids of the GH18 domain are not conserved in SI-CLP, similar to the chitolectins YKL-39, YKL-40, and YM1/2. Human SI-CLP is sorted to late endosomes and secretory lysosomes in alternatively activated macrophages. 318 -119356 cd02877 GH18_hevamine_XipI_class_III This conserved domain family includes xylanase inhibitor Xip-I, and the class III plant chitinases such as hevamine, concanavalin B, and PPL2, all of which have a glycosyl hydrolase family 18 (GH18) domain. Hevamine is a class III endochitinase that hydrolyzes the linear polysaccharide chains of chitin and peptidoglycan and is important for defense against pathogenic bacteria and fungi. PPL2 (Parkia platycephala lectin 2) is a class III chitinase from Parkia platycephala seeds that hydrolyzes beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. 280 -119357 cd02878 GH18_zymocin_alpha Zymocin, alpha subunit. Zymocin is a heterotrimeric enzyme that inhibits yeast cell cycle progression. The zymocin alpha subunit has a chitinase activity that is essential for holoenzyme action from the cell exterior while the gamma subunit contains the intracellular toxin responsible for G1 phase cell cycle arrest. The zymocin alpha and beta subunits are thought to act from the cell's exterior by docking to the cell wall-associated chitin, thus mediating gamma-toxin translocation. The alpha subunit has an eight-stranded TIM barrel fold similar to that of family 18 glycosyl hydrolases such as hevamine, chitolectin, and chitobiase. 345 -119358 cd02879 GH18_plant_chitinase_class_V The class V plant chitinases have a glycosyl hydrolase family 18 (GH18) domain, but lack the chitin-binding domain present in other GH18 enzymes. The GH18 domain of the class V chitinases has endochitinase activity in some cases and no catalytic activity in others. Included in this family is a lectin found in black locust (Robinia pseudoacacia) bark, which binds chitin but lacks chitinase activity. Also included is a chitinase-related receptor-like kinase (CHRK1) from tobacco (Nicotiana tabacum), with an N-terminal GH18 domain and a C-terminal kinase domain, which is thought to be part of a plant signaling pathway. The GH18 domain of CHRK1 is expressed extracellularly where it binds chitin but lacks chitinase activity. 299 -239217 cd02883 Nudix_Hydrolase Nudix hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of nudix hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. 123 -239218 cd02885 IPP_Isomerase Isopentenyl diphosphate (IPP) isomerase, a member of the Nudix hydrolase superfamily, is a key enzyme in the isoprenoid biosynthetic pathway. Isoprenoids comprise a large family of natural products including sterols, carotenoids, dolichols and prenylated proteins. These compounds are synthesized from two precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). IPP isomerase catalyzes the interconversion of IPP and DMAPP by a stereoselective antarafacial transposition of hydrogen. The enzyme requires one Mn2+ or Mg2+ ion in its active site to fold into an active conformation and also contains the Nudix motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. The metal binding site is present within the active site and plays structural and catalytical roles. IPP isomerase is well represented in several bacteria, archaebacteria and eukaryotes, including fungi, mammals and plants. Despite sequence variations (mainly at the N-terminus), the core structure is highly conserved. 165 -153089 cd02888 RNR_II_dimer Class II ribonucleotide reductase, dimeric form. Ribonucleotide reductase (RNR) catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides. It provides the precursors necessary for DNA synthesis. RNRs are separated into three classes based on their metallocofactor usage. Class I RNRs, found in eukaryotes, bacteria, and bacteriophage, use a diiron-tyrosyl radical. Class II RNRs, found in bacteria, bacteriophage, algae and archaea, use coenzyme B12 (adenosylcobalamin, AdoCbl). Class III RNRs, found in anaerobic bacteria, bacteriophage, and archaea, use an FeS cluster and S-adenosylmethionine to generate a glycyl radical. Many organisms have more than one class of RNR present in their genomes. All three RNRs have a ten-stranded alpha-beta barrel domain that is structurally similar to the domain of PFL (pyruvate formate lyase). Class II RNRs are found in bacteria that can live under both aerobic and anaerobic conditions. Many, but not all members of this class are found to be homodimers. Adenosylcobalamin interacts directly with an active site cysteine to form the reactive cysteine radical. 464 -239219 cd02889 SQCY Squalene cyclase (SQCY) domain; found in class II terpene cyclases that have an alpha 6 - alpha 6 barrel fold. Squalene cyclase (SQCY) and 2,3-oxidosqualene cyclase (OSQCY) are integral membrane proteins that catalyze a cationic cyclization cascade converting linear triterpenes to fused ring compounds. Bacterial SQCY catalyzes the convertion of squalene to hopene or diplopterol. Eukaryotic OSQCY transforms the 2,3-epoxide of squalene to compounds such as, lanosterol (a metabolic precursor of cholesterol and steroid hormones) in mammals and fungi or, cycloartenol in plants. Deletion of a single glycine residue of Alicyclobacillus acidocaldarius SQCY alters its substrate specificity into that of eukaryotic OSQCY. Both enzymes have a second minor domain, which forms an alpha-alpha barrel that is inserted into the major domain. This group also contains SQCY-like archael sequences and some bacterial SQCY's which lack this minor domain. 348 -239220 cd02890 PTase Protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). The protein prenyltransferase family of lipid-modifying enzymes includes protein farnesyltransferase (FTase) and geranylgeranyltransferase types I and II (GGTase-I and GGTase-II). They catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between the C1 atom of farnesyl (15-carbon by FTase) or geranylgeranyl (20-carbon by GGTase-I, II) isoprenoid lipids and cysteine residues at or near the C-terminus of protein acceptors. FTase and GGTase-I prenylate the cysteine in the terminal sequence, "CAAX"; and GGTase-II prenylates both cysteines in the "CC" (or "CXC") terminal sequence. These enzymes are heterodimeric with both alpha and beta subunits required for catalytic activity. In contrast to other prenyltransferases, GGTase-II does not recognize its protein acceptor directly but requires Rab to complex with REP (Rab escort protein) before prenylation can occur. These enzymes are found exclusively in eukaryotes. 286 -239221 cd02891 A2M_like Proteins similar to alpha2-macroglobulin (alpha (2)-M). Alpha (2)-M is a major carrier protein in serum. It is a broadly specific proteinase inhibitor. The structural thioester of alpha (2)-M, is involved in the immobilization and entrapment of proteases. This group contains another broadly specific proteinase inhibitor: pregnancy zone protein (PZP). PZP is a trace protein in the plasma of non-pregnant females and males which is elevated in pregnancy. Alpha (2)-M and PZ bind to placental protein-14 and may modulate its activity in T-cell growth and cytokine production thereby protecting the allogeneic fetus from attack by the maternal immune system. This group also contains C3, C4 and C5 of vertebrate complement. The vertebrate complement is an effector of both the acquired and innate immune systems The point of convergence of the classical, alternative and lectin pathways of the complement system is the proteolytic activation of C3. C4 plays a key role in propagating the classical and lectin pathways. C5 participates in the classical and alternative pathways. The thioester bond located within the structure of C3 and C4 is central to the function of complement. C5 does not contain an active thioester bond. 282 -239222 cd02892 SQCY_1 Squalene cyclase (SQCY) domain subgroup 1; found in class II terpene cyclases that have an alpha 6 - alpha 6 barrel fold. Squalene cyclase (SQCY) and 2,3-oxidosqualene cyclase (OSQCY) are integral membrane proteins that catalyze a cationic cyclization cascade converting linear triterpenes to fused ring compounds. This group contains bacterial SQCY which catalyzes the convertion of squalene to hopene or diplopterol and eukaryotic OSQCY which transforms the 2,3-epoxide of squalene to compounds such as, lanosterol in mammals and fungi or, cycloartenol in plants. Deletion of a single glycine residue of Alicyclobacillus acidocaldarius SQCY alters its substrate specificity into that of eukaryotic OSQCY. Both enzymes have a second minor domain, which forms an alpha-alpha barrel that is inserted into the major domain. 634 -239223 cd02893 FTase Protein farnesyltransferase (FTase)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). FTases are a subgroup of PTase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. These proteins are heterodimers of alpha and beta subunits. Both subunits are required for catalytic activity. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids. Ftase attaches a 15-carbon farnesyl group to the cysteine within the C-terminal CaaX motif of substrate proteins when X is Ala, Met, Ser, Cys or Gln. Protein farnesylation has been shown to play critical roles in a variety of cellular processes including Ras/mitogen activated protein kinase signaling pathways in mammals and, abscisic acid signal transduction in Arabidopsis. 299 -239224 cd02894 GGTase-II Geranylgeranyltransferase type II (GGTase-II)_like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). GGTase-IIs are a subgroup of the protein prenyltransferase family of lipid-modifying enzymes. PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids (geranylgeranyl (20-carbon) in the case of GGTase-II ). GGTase-II catalyzes alkylation of both cysteine residues in Rab proteins containing carboxy-terminal "CC", "CXCX" or "CXC" motifs. PTases are heterodimeric with both alpha and beta subunits required for catalytic activity. In contrast to other prenyltransferases, GGTas-II requires an escort protein to bring the substrate protein to the catalytic heterodimer and to escort the geryanylgeranylated product to the membrane. 287 -239225 cd02895 GGTase-I Geranylgeranyltransferase types I (GGTase-I)-like proteins containing the protein prenyltransferase (PTase) domain, beta subunit (alpha 6 - alpha 6 barrel fold). GGTase-I s are a subgroup of the protein prenyltransferase family of lipid-modifying enzymes PTases catalyze the carboxyl-terminal lipidation of Ras, Rab, and several other cellular signal transduction proteins, facilitating membrane associations and specific protein-protein interactions. Prenyltransferases employ a Zn2+ ion to alkylate a thiol group catalyzing the formation of thioether linkages between cysteine residues at or near the C-terminus of protein acceptors and the C1 atom of isoprenoid lipids (geranylgeranyl (20-carbon) in the case of GGTase-I ). GGTase-I prenylates the cysteine in the terminal sequence, "CAAX" when X is Leu or Phe. Substrates for GTTase-I include the gamma subunit of neural G-proteins and several Ras-related G-proteins. PTases are heterodimeric with both alpha and beta subunits required for catalytic activity. 307 -239226 cd02896 complement_C3_C4_C5 Proteins similar to C3, C4 and C5 of vertebrate complement. The vertebrate complement system, comprised of a large number of distinct plasma proteins, is an effector of both the acquired and innate immune systems. The point of convergence of the classical, alternative and lectin pathways of the complement system is the proteolytic activation of C3. C4 plays a key role in propagating the classical and lectin pathways. C5 participates in the classical and alternative pathways. The thioester bond located within the structure of C3 and C4 is central to the function of complement. C5 does not contain an active thioester bond. 297 -239227 cd02897 A2M_2 Proteins similar to alpha2-macroglobulin (alpha (2)-M). This group also contains the pregnancy zone protein (PZP). Alpha(2)-M and PZP are broadly specific proteinase inhibitors. Alpha (2)-M is a major carrier protein in serum. The structural thioester of alpha (2)-M, is involved in the immobilization and entrapment of proteases. PZP is a trace protein in the plasma of non-pregnant females and males which is elevated in pregnancy. Alpha (2)-M and PZ bind to placental protein-14 and may modulate its activity in T-cell growth and cytokine production contributing to fetal survival. It has been suggested that thioester bond cleavage promotes the binding of PZ and alpha (2)-M to the CD91 receptor clearing them from circulation. 292 -239228 cd02899 PLAT_SR Scavenger receptor protein. A subfamily of PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain or LH2 (Lipoxygenase homology 2) domain. It consists of an eight stranded beta-barrel. The domain can be found in various domain architectures, in case of lipoxygenases, alpha toxin, lipases and polycystin, but also as a single domain or as repeats.The putative function of this domain is to facilitate access to sequestered membrane or micelle bound substrates. This subfamily contains Toxoplasma gondii Scavenger protein TgSR1. 109 -239229 cd02900 Macro_Appr_pase Macro domain, Appr-1"-pase family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. The yeast protein Ymx7 and related proteins in this family contain a stand-alone macro domain and may be specific phosphatases catalyzing the conversion of ADP-ribose-1"-monophosphate (Appr-1"-p) to ADP-ribose. Appr-1"-p is an intermediate in a metabolic pathway involved in pre-tRNA splicing. 186 -239230 cd02901 Macro_Poa1p_like Macro domain, Poa1p_like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. Members of this family show similarity to the yeast protein Poa1p, reported to be a phosphatase specific for Appr-1"-p, a tRNA splicing metabolite. Poa1p may play a role in tRNA splicing regulation. 140 -239231 cd02903 Macro_BAL_like Macro domain, BAL_like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. Members of this family show similarity to BAL (B-aggressive lymphoma) proteins, which contain one to three macro domains. Most BAL family macro domains belong to this family except for the most N-terminal domain in multiple-domain containing proteins. Most BAL proteins also contain a C-terminal PARP active site and are also named as PARPs. Human BAL1 (or PARP-9) was originally identified as a risk-related gene in diffuse large B-cell lymphoma that promotes malignant B-cell migration. Some BAL family proteins exhibit PARP activity. Poly (ADP-ribosyl)ation is an immediate DNA-damage-dependent post-translational modification of histones and other nuclear proteins. BAL proteins may also function as transcription repressors. 137 -239232 cd02904 Macro_H2A_like Macro domain, Macro_H2A_like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. Members of this family are similar to macroH2A, a variant of the major-type core histone H2A, which contains an N-terminal H2A domain and a C-terminal nonhistone macro domain. Histone macroH2A is enriched on the inactive X chromosome of mammalian female cells. It does not bind poly ADP-ribose, but does bind the monomeric SirT1 metabolite O-acetyl-ADP-ribose (OAADPR) with high affinity through its macro domain. In addition, the macro domain of macroH2A associates with histone deacetylases and affects the acetylation status of nucleosomes. MacroH2A-containing nucleosomes are repressive toward transcription. 186 -239233 cd02905 Macro_GDAP2_like Macro domain, GDAP2_like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. This family contains proteins similar to human GDAP2, the ganglioside induced differentiation associated protein 2, whose gene is expressed at a higher level in differentiated Neuro2a cells compared with non-differentiated cells. GDAP2 contains an N-terminal macro domain and a C-terminal Sec14p-like lipid binding domain. It is specifically expressed in brain and testis. 140 -239234 cd02906 Macro_1 Macro domain, Unknown family 1. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. This family is composed of uncharacterized proteins containing a macro domain, either as a stand-alone domain or in addition to a C-terminal SIR2 (silent information regulator 2) domain. 147 -239235 cd02907 Macro_Af1521_BAL_like Macro domain, Af1521- and BAL-like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. The macro domains in this family show similarity to Af1521, a protein from Archaeoglobus fulgidus containing a stand-alone macro domain. Af1521 binds ADP-ribose and exhibits phosphatase activity toward Appr-1"-p. Also included in this family are the N-terminal (or first) macro domains of BAL (B-aggressive lymphoma) proteins which contain multiple macro domains. Most BAL proteins also contain a C-terminal PARP active site and are also named as PARPs. Human BAL1 (or PARP-9) was originally identified as a risk-related gene in diffuse large B-cell lymphoma that promotes malignant B-cell migration. Some BAL family proteins exhibit PARP activity. Poly (ADP-ribosyl)ation is an immediate DNA-damage-dependent post-translational modification of histones and other nuclear proteins. BAL proteins may also function as transcription repressors. 175 -239236 cd02908 Macro_Appr_pase_like Macro domain, Appr-1"-pase_like family. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. This family is composed of uncharacterized proteins that show similarity to Appr-1"-pase, containing conserved putative active site residues. Appr-1"-pase is a phosphatase specific for ADP-ribose-1"-monophosphate. 165 -239237 cd02911 arch_FMN Archeal FMN-binding domain. This family of archaeal proteins are part of the NAD(P)H-dependent flavin oxidoreductase (oxidored) FMN-binding family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN. The specific function of this group is unknown. 233 -239238 cd02922 FCB2_FMN Flavocytochrome b2 (FCB2) FMN-binding domain. FCB2 (AKA L-lactate:cytochrome c oxidoreductase) is a respiratory enzyme located in the intermembrane space of fungal mitochondria which catalyzes the oxidation of L-lactate to pyruvate. FCB2 also participates in a short electron-transport chain involving cytochrome c and cytochrome oxidase which ultimately directs the reducing equivalents gained from L-lactate oxidation to oxygen, yielding one molecule of ATP for every L-lactate molecule consumed. FCB2 is composed of 2 domains: a C-terminal flavin-binding domain, which includes the active site for lacate oxidation, and an N-terminal b2-cytochrome domain, required for efficient cytochrome c reduction. FCB2 is a homotetramer and contains two noncovalently bound cofactors, FMN and heme per subunit. 344 -239239 cd02929 TMADH_HD_FMN Trimethylamine dehydrogenase (TMADH) and histamine dehydrogenase (HD) FMN-binding domain. TMADH is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. The protein forms a symetrical dimer with each subunit containing one 4Fe-4S cluster and one FMN cofactor. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN which is bent by ~25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This modification of the conformation of the flavin is thought to facilitate catalysis.The closely related histamine dehydrogenase catalyzes oxidative deamination of histamine. 370 -239240 cd02930 DCR_FMN 2,4-dienoyl-CoA reductase (DCR) FMN-binding domain. DCR in E. coli is an iron-sulfur flavoenzyme which contains FMN, FAD, and a 4Fe-4S cluster. It is also a monomer, unlike that of its eukaryotic counterparts which form homotetramers and lack the flavin and iron-sulfur cofactors. Metabolism of unsaturated fatty acids requires auxiliary enzymes in addition to those used in b-oxidation. After a given number of cycles through the b-oxidation pathway, those unsaturated fatty acyl-CoAs with double bonds at even-numbered carbon positions contain 2-trans, 4-cis double bonds that can not be modified by enoyl-CoA hydratase. DCR utilizes NADPH to remove the C4-C5 double bond. DCR can catalyze the reduction of both natural fatty acids with cis double bonds, as well as substrates containing trans double bonds. The reaction is initiated by hybrid transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. The fully reduced FMN provides a hydrid ion to the C5 atom of substrate, and Tyr and His are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and completes the reaction. 353 -239241 cd02931 ER_like_FMN Enoate reductase (ER)-like FMN-binding domain. Enoate reductase catalyzes the NADH-dependent reduction of carbon-carbon double bonds of several molecules, including nonactivated 2-enoates, alpha,beta-unsaturated aldehydes, cyclic ketones, and methylketones. ERs are similar to 2,4-dienoyl-CoA reductase from E. coli and to the old yellow enzyme from Saccharomyces cerevisiae. 382 -239242 cd02932 OYE_YqiM_FMN Old yellow enzyme (OYE) YqjM-like FMN binding domain. YqjM is involved in the oxidative stress response of Bacillus subtilis. Like the other OYE members, each monomer of YqjM contains FMN as a non-covalently bound cofactor and uses NADPH as a reducing agent. The YqjM enzyme exists as a homotetramer that is assembled as a dimer of catalytically dependent dimers, while other OYE members exist only as monomers or dimers. Moreover, the protein displays a shared active site architecture where an arginine finger at the COOH terminus of one monomer extends into the active site of the adjacent monomer and is directly involved in substrate recognition. Another remarkable difference in the binding of the ligand in YqjM is represented by the contribution of the NH2-terminal tyrosine instead of a COOH-terminal tyrosine in OYE and its homologs. 336 -239243 cd02933 OYE_like_FMN Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include 12-oxophytodienoate reductase, pentaerythritol tetranitrate reductase, morphinone reductase, and related enzymes. 338 -239244 cd02940 DHPD_FMN Dihydropyrimidine dehydrogenase (DHPD) FMN-binding domain. DHPD catalyzes the first step in pyrimidine degradation: the NADPH-dependent reduction of uracil and thymine to the corresponding 5,6-dihydropyrimidines. DHPD contains two FAD, two FMN, and eight [4Fe-4S] clusters, arranged in two electron transfer chains that pass the dimer interface twice. Two of the Fe-S clusters show a hitherto unobserved coordination involving a glutamine residue. 299 239245 cd02947 TRX_family TRX family; composed of two groups: Group I, which includes proteins that exclusively encode a TRX domain; and Group II, which are composed of fusion proteins of TRX and additional domains. Group I TRX is a small ancient protein that alter the redox state of target proteins via the reversible oxidation of an active site dithiol, present in a CXXC motif, partially exposed at the protein's surface. TRX reduces protein disulfide bonds, resulting in a disulfide bond at its active site. Oxidized TRX is converted to the active form by TRX reductase, using reducing equivalents derived from either NADPH or ferredoxins. By altering their redox state, TRX regulates the functions of at least 30 target proteins, some of which are enzymes and transcription factors. It also plays an important role in the defense against oxidative stress by directly reducing hydrogen peroxide and certain radicals, and by serving as a reductant for peroxiredoxins. At least two major types of functional TRXs have been reported in most organisms; in eukaryotes, they are located in the cytoplasm and the mitochondria. Higher plants contain more types (at least 20 TRX genes have been detected in the genome of Arabidopsis thaliana), two of which (types f amd m) are located in the same compartment, the chloroplast. Also included in the alignment are TRX-like domains which show sequence homology to TRX but do not contain the redox active CXXC motif. Group II proteins, in addition to either a redox active TRX or a TRX-like domain, also contain additional domains, which may or may not possess homology to known proteins. 93 -239246 cd02948 TRX_NDPK TRX domain, TRX and NDP-kinase (NDPK) fusion protein family; most members of this group are fusion proteins which contain one redox active TRX domain containing a CXXC motif and three NDPK domains, and are characterized as intermediate chains (ICs) of axonemal outer arm dynein. Dyneins are molecular motors that generate force against microtubules to produce cellular movement, and are divided into two classes: axonemal and cytoplasmic. They are supramolecular complexes consisting of three protein groups classified according to size: dynein heavy, intermediate and light chains. Axonemal dyneins form two structures, the inner and outer arms, which are attached to doublet microtubules throughout the cilia and flagella. The human homolog is the sperm-specific Sptrx-2, presumed to be a component of the human sperm axoneme architecture. Included in this group is another human protein, TRX-like protein 2, a smaller fusion protein containing one TRX and one NDPK domain, which is also associated with microtubular structures. The other members of this group are hypothetical insect proteins containing a TRX domain and outer arm dynein light chains (14 and 16kDa) of Chlamydomonas reinhardtii. Using standard assays, the fusion proteins have shown no TRX enzymatic activity. 102 -239247 cd02949 TRX_NTR TRX domain, novel NADPH thioredoxin reductase (NTR) family; composed of fusion proteins found only in oxygenic photosynthetic organisms containing both TRX and NTR domains. The TRX domain functions as a protein disulfide reductase via the reversible oxidation of an active center dithiol present in a CXXC motif, while the NTR domain functions as a reductant to oxidized TRX. The fusion protein is bifunctional, showing both TRX and NTR activities, but it is not an independent NTR/TRX system. In plants, the protein is found exclusively in shoots and mature leaves and is localized in the chloroplast. It is involved in plant protection against oxidative stress. 97 -239248 cd02950 TxlA TRX-like protein A (TxlA) family; TxlA was originally isolated from the cyanobacterium Synechococcus. It is found only in oxygenic photosynthetic organisms. TRX is a small enzyme that participate in redox reactions, via the reversible oxidation of an active site dithiol present in a CXXC motif. Disruption of the txlA gene suggests that the protein is involved in the redox regulation of the structure and function of photosynthetic apparatus. The plant homolog (designated as HCF164) is localized in the chloroplast and is involved in the assembly of the cytochrome b6f complex, which takes a central position in photosynthetic electron transport. 142 -239249 cd02951 SoxW SoxW family; SoxW is a bacterial periplasmic TRX, containing a redox active CXXC motif, encoded by a genetic locus (sox operon) involved in thiosulfate oxidation. Sulfur bacteria oxidize sulfur compounds to provide reducing equivalents for carbon dioxide fixation during autotrophic growth and the respiratory electron transport chain. It is unclear what the role of SoxW is, since it has been found to be dispensable in the oxidation of thiosulfate to sulfate. SoxW is specifically kept in the reduced state by SoxV, which is essential in thiosulfate oxidation. 125 -239250 cd02952 TRP14_like Human TRX-related protein 14 (TRP14)-like family; composed of proteins similar to TRP14, a 14kD cytosolic protein that shows disulfide reductase activity in vitro with a different substrate specificity compared with another human cytosolic protein, TRX1. TRP14 catalyzes the reduction of small disulfide-containing peptides but does not reduce disulfides of ribonucleotide reductase, peroxiredoxin and methionine sulfoxide reductase, which are TRX1 substrates. TRP14 also plays a role in tumor necrosis factor (TNF)-alpha signaling pathways, distinct from that of TRX1. Its depletion promoted TNF-alpha induced activation of c-Jun N-terminal kinase and mitogen-activated protein kinases. 119 -239251 cd02953 DsbDgamma DsbD gamma family; DsbD gamma is the C-terminal periplasmic domain of the bacterial protein DsbD. It contains a CXXC motif in a TRX fold and shuttles the reducing potential from the membrane domain (DsbD beta) to the N-terminal periplasmic domain (DsbD alpha). DsbD beta, a transmembrane domain comprising of eight helices, acquires its reducing potential from the cytoplasmic thioredoxin. DsbD alpha transfers the acquired reducing potential from DsbD gamma to target proteins such as the periplasmic protein disulphide isomerases, DsbC and DsbG. This flow of reducing potential from the cytoplasm through DsbD allows DsbC and DsbG to act as isomerases in the oxidizing environment of the bacterial periplasm. DsbD also transfers reducing potential from the cytoplasm to specific reductases in the periplasm which are involved in the maturation of cytochromes. 104 -239252 cd02954 DIM1 Dim1 family; Dim1 is also referred to as U5 small nuclear ribonucleoprotein particle (snRNP)-specific 15kD protein. It is a component of U5 snRNP, which pre-assembles with U4/U6 snRNPs to form a [U4/U6:U5] tri-snRNP complex required for pre-mRNA splicing. Dim1 interacts with multiple splicing-associated proteins, suggesting that it functions at multiple control points in the splicing of pre-mRNA as part of a large spliceosomal complex involving many protein-protein interactions. U5 snRNP contains seven core proteins (common to all snRNPs) and nine U5-specific proteins, one of which is Dim1. Dim1 adopts a thioredoxin fold but does not contain the redox active CXXC motif. It is essential for G2/M phase transition, as a consequence to its role in pre-mRNA splicing. 114 -239253 cd02955 SSP411 TRX domain, SSP411 protein family; members of this family are highly conserved proteins present in eukaryotes, bacteria and archaea, about 600-800 amino acids in length, which contain a TRX domain with a redox active CXXC motif. The human/rat protein, called SSP411, is specifically expressed in the testis in an age-dependent manner. The SSP411 mRNA is increased during spermiogenesis and is localized in round and elongated spermatids, suggesting a function in fertility regulation. 124 -239254 cd02956 ybbN ybbN protein family; ybbN is a hypothetical protein containing a redox-inactive TRX-like domain. Its gene has been sequenced from several gammaproteobacteria and actinobacteria. 96 -239255 cd02957 Phd_like Phosducin (Phd)-like family; composed of Phd and Phd-like proteins (PhLP), characterized as cytosolic regulators of G protein functions. Phd and PhLPs specifically bind G protein betagamma (Gbg)-subunits with high affinity, resulting in the solubilization of Gbg from the plasma membrane and impeding G protein-mediated signal transduction by inhibiting the formation of a functional G protein trimer (G protein alphabetagamma). Phd also inhibits the GTPase activity of G protein alpha. Phd can be phosphorylated by protein kinase A and G protein-coupled receptor kinase 2, leading to its inactivation. Phd was originally isolated from the retina, where it is highly expressed and has been implicated to play an important role in light adaptation. It is also found in the pineal gland, liver, spleen, striated muscle and the brain. The C-terminal domain of Phd adopts a thioredoxin fold, but it does not contain a CXXC motif. Phd interacts with G protein beta mostly through the N-terminal helical domain. Also included in this family is a PhLP characterized as a viral inhibitor of apoptosis (IAP)-associated factor, named VIAF, that functions in caspase activation during apoptosis. 113 -239256 cd02958 UAS UAS family; UAS is a domain of unknown function. Most members of this family are uncharacterized proteins with similarity to FAS-associated factor 1 (FAF1) and ETEA because of the presence of a UAS domain N-terminal to a ubiquitin-associated UBX domain. FAF1 is a longer protein, compared to the other members of this family, having additional N-terminal domains, a ubiquitin-associated UBA domain and a nuclear targeting domain. FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. ETEA is the protein product of a highly expressed gene in T-cells and eosinophils of atopic dermatitis patients. The presence of the ubiquitin-associated UBX domain in the proteins of this family suggests the possibility of their involvement in ubiquitination. Recently, FAF1 has been shown to interact with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. Some members of this family are uncharacterized proteins containing only a UAS domain. 114 -239257 cd02959 ERp19 Endoplasmic reticulum protein 19 (ERp19) family; ERp19 is also known as ERp18, a protein located in the ER containing one redox active TRX domain. Denaturation studies indicate that the reduced form is more stable than the oxidized form, suggesting that the protein is involved in disulfide bond formation. In vitro, ERp19 has been shown to possess thiol-disulfide oxidase activity which is dependent on the presence of both active site cysteines. Although described as protein disulfide isomerase (PDI)-like, the protein does not complement for PDI activity. ERp19 shows a wide tissue distribution but is most abundant in liver, testis, heart and kidney. 117 -239258 cd02960 AGR Anterior Gradient (AGR) family; members of this family are similar to secreted proteins encoded by the cement gland-specific genes XAG-1 and XAG-2, expressed in the anterior region of dorsal ectoderm of Xenopus. They are implicated in the formation of the cement gland and the induction of forebrain fate. The human homologs, hAG-2 and hAG-3, are secreted proteins associated with estrogen-positive breast tumors. Yeast two-hybrid studies identified the metastasis-associated C4.4a protein and dystroglycan as binding partners, indicating possible roles in the development and progression of breast cancer. hAG-2 has also been implicated in prostate cancer. Its gene was cloned as an androgen-inducible gene and it was shown to be overexpressed in prostate cancer cells at the mRNA and protein levels. AGR proteins contain one conserved cysteine corresponding to the first cysteine in the CXXC motif of TRX. They show high sequence similarity to ERp19. 130 -239259 cd02961 PDI_a_family Protein Disulfide Isomerase (PDIa) family, redox active TRX domains; composed of eukaryotic proteins involved in oxidative protein folding in the endoplasmic reticulum (ER) by acting as catalysts and folding assistants. Members of this family include PDI and PDI-related proteins like ERp72, ERp57 (or ERp60), ERp44, P5, PDIR, ERp46 and the transmembrane PDIs. PDI, ERp57, ERp72, P5, PDIR and ERp46 are all oxidases, catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER. They also exhibit reductase activity in acting as isomerases to correct any non-native disulfide bonds, as well as chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. These proteins usually contain multiple copies of a redox active TRX (a) domain containing a CXXC motif, and may also contain one or more redox inactive TRX-like (b) domains. Only one a domain is required for the oxidase function but multiple copies are necessary for the isomerase function. The different types of PDIs may show different substrate specificities and tissue-specific expression, or may be induced by stress. PDIs are in their reduced form at steady state and are oxidized to the active form by Ero1, which is localized in the ER through ERp44. Some members of this family also contain a DnaJ domain in addition to the redox active a domains; examples are ERdj5 and Pfj2. Also included in the family is the redox inactive N-terminal TRX-like domain of ERp29. 101 -239260 cd02962 TMX2 TMX2 family; composed of proteins similar to human TMX2, a 372-amino acid TRX-related transmembrane protein, identified and characterized through the cloning of its cDNA from a human fetal library. It contains a TRX domain but the redox active CXXC motif is replaced with SXXC. Sequence analysis predicts that TMX2 may be a Type I membrane protein, with its C-terminal half protruding on the luminal side of the endoplasmic reticulum (ER). In addition to the TRX domain, transmembrane region and ER-retention signal, TMX2 also contains a Myb DNA-binding domain repeat signature and a dileucine motif in the tail. 152 -239261 cd02963 TRX_DnaJ TRX domain, DnaJ domain containing protein family; composed of uncharacterized proteins of about 500-800 amino acids, containing an N-terminal DnaJ domain followed by one redox active TRX domain. DnaJ is a member of the 40 kDa heat-shock protein (Hsp40) family of molecular chaperones, which regulate the activity of Hsp70s. TRX is involved in the redox regulation of many protein substrates through the reduction of disulfide bonds. TRX has been implicated to catalyse the reduction of Hsp33, a chaperone holdase that binds to unfolded protein intermediates. The presence of DnaJ and TRX domains in members of this family suggests that they could be involved in a redox-regulated chaperone network. 111 -239262 cd02964 TryX_like_family Tryparedoxin (TryX)-like family; composed of TryX and related proteins including nucleoredoxin (NRX), rod-derived cone viability factor (RdCVF) and the nematode homolog described as a 16-kD class of TRX. Most members of this family, except RdCVF, are protein disulfide oxidoreductases containing an active site CXXC motif, similar to TRX. 132 -239263 cd02965 HyaE HyaE family; HyaE is also called HupG and HoxO. They are proteins serving a critical role in the assembly of multimeric [NiFe] hydrogenases, the enzymes that catalyze the oxidation of molecular hydrogen to enable microorganisms to utilize hydrogen as the sole energy source. The E. coli HyaE protein is a chaperone that specifically interacts with the twin-arginine translocation (Tat) signal peptide of the [NiFe] hydrogenase-1 beta subunit precursor. Tat signal peptides target precursor proteins to the Tat protein export system, which facilitates the transport of fully folded proteins across the inner membrane. HyaE may be involved in regulating the traffic of [NiFe] hydrogenase-1 on the Tat transport pathway. 111 -239264 cd02966 TlpA_like_family TlpA-like family; composed of TlpA, ResA, DsbE and similar proteins. TlpA, ResA and DsbE are bacterial protein disulfide reductases with important roles in cytochrome maturation. They are membrane-anchored proteins with a soluble TRX domain containing a CXXC motif located in the periplasm. The TRX domains of this family contain an insert, approximately 25 residues in length, which correspond to an extra alpha helix and a beta strand when compared with TRX. TlpA catalyzes an essential reaction in the biogenesis of cytochrome aa3, while ResA and DsbE are essential proteins in cytochrome c maturation. Also included in this family are proteins containing a TlpA-like TRX domain with domain architectures similar to E. coli DipZ protein, and the N-terminal TRX domain of PilB protein from Neisseria which acts as a disulfide reductase that can recylce methionine sulfoxide reductases. 116 -239265 cd02967 mauD Methylamine utilization (mau) D family; mauD protein is the translation product of the mauD gene found in methylotrophic bacteria, which are able to use methylamine as a sole carbon source and a nitrogen source. mauD is an essential accessory protein for the biosynthesis of methylamine dehydrogenase (MADH), the enzyme that catalyzes the oxidation of methylamine and other primary amines. MADH possesses an alpha2beta2 subunit structure; the alpha subunit is also referred to as the large subunit. Each beta (small) subunit contains a tryptophan tryptophylquinone (TTQ) prosthetic group. Accessory proteins are essential for the proper transport of MADH to the periplasm, TTQ synthesis and the formation of several structural disulfide bonds. Bacterial mutants containing an insertion on the mauD gene were unable to grow on methylamine as a sole carbon source, were found to lack the MADH small subunit and had decreased amounts of the MADH large subunit. 114 -239266 cd02968 SCO SCO (an acronym for Synthesis of Cytochrome c Oxidase) family; composed of proteins similar to Sco1, a membrane-anchored protein possessing a soluble domain with a TRX fold. Members of this family are required for the proper assembly of cytochrome c oxidase (COX). They contain a metal binding motif, typically CXXXC, which is located in a flexible loop. COX, the terminal enzyme in the respiratory chain, is imbedded in the inner mitochondrial membrane of all eukaryotes and in the plasma membrane of some prokaryotes. It is composed of two subunits, COX I and COX II. It has been proposed that Sco1 specifically delivers copper to the CuA site, a dinuclear copper center, of the COX II subunit. Mutations in human Sco1 and Sco2 cause fatal infantile hepatoencephalomyopathy and cardioencephalomyopathy, respectively. Both disorders are associated with severe COX deficiency in affected tissues. More recently, it has been argued that the redox sensitivity of the copper binding properties of Sco1 implies that it participates in signaling events rather than functioning as a chaperone that transfers copper to COX II. 142 -239267 cd02969 PRX_like1 Peroxiredoxin (PRX)-like 1 family; hypothetical proteins that show sequence similarity to PRXs. Members of this group contain a conserved cysteine that aligns to the first cysteine in the CXXC motif of TRX. This does not correspond to the peroxidatic cysteine found in PRXs, which aligns to the second cysteine in the CXXC motif of TRX. In addition, these proteins do not contain the other two conserved residues of the catalytic triad of PRX. PRXs confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. 171 -239268 cd02970 PRX_like2 Peroxiredoxin (PRX)-like 2 family; hypothetical proteins that show sequence similarity to PRXs. Members of this group contain a CXXC motif, similar to TRX. The second cysteine in the motif corresponds to the peroxidatic cysteine of PRX, however, these proteins do not contain the other two residues of the catalytic triad of PRX. PRXs confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. TRXs alter the redox state of target proteins by catalyzing the reduction of their disulfide bonds via the CXXC motif using reducing equivalents derived from either NADPH or ferredoxins. 149 -239269 cd02971 PRX_family Peroxiredoxin (PRX) family; composed of the different classes of PRXs including many proteins originally known as bacterioferritin comigratory proteins (BCP), based on their electrophoretic mobility before their function was identified. PRXs are thiol-specific antioxidant (TSA) proteins also known as TRX peroxidases and alkyl hydroperoxide reductase C22 (AhpC) proteins. They confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either TRX, glutathione, trypanothione and AhpF. They are distinct from other peroxidases in that they have no cofactors such as metals or prosthetic groups. The first step of catalysis, common to all PRXs, is the nucleophilic attack by the catalytic cysteine (also known as the peroxidatic cysteine) on the peroxide leading to cleavage of the oxygen-oxygen bond and the formation of a cysteine sulfenic acid intermediate. The second step of the reaction, the resolution of the intermediate, distinguishes the different types of PRXs. The presence or absence of a second cysteine (the resolving cysteine) classifies PRXs as either belonging to the 2-cys or 1-cys type. The resolving cysteine of 2-cys PRXs is either on the same chain (atypical) or on the second chain (typical) of a functional homodimer. Structural and motif analysis of this growing family supports the need for a new classification system. The peroxidase activity of PRXs is regulated in vivo by irreversible cysteine over-oxidation into a sulfinic acid, phosphorylation and limited proteolysis. 140 -239270 cd02972 DsbA_family DsbA family; consists of DsbA and DsbA-like proteins, including DsbC, DsbG, glutathione (GSH) S-transferase kappa (GSTK), 2-hydroxychromene-2-carboxylate (HCCA) isomerase, an oxidoreductase (FrnE) presumed to be involved in frenolicin biosynthesis, a 27-kDa outer membrane protein, and similar proteins. Members of this family contain a redox active CXXC motif (except GSTK and HCCA isomerase) imbedded in a TRX fold, and an alpha helical insert of about 75 residues (shorter in DsbC and DsbG) relative to TRX. DsbA is involved in the oxidative protein folding pathway in prokaryotes, catalyzing disulfide bond formation of proteins secreted into the bacterial periplasm. DsbC and DsbG function as protein disulfide isomerases and chaperones to correct non-native disulfide bonds formed by DsbA and prevent aggregation of incorrectly folded proteins. 98 -239271 cd02973 TRX_GRX_like Thioredoxin (TRX)-Glutaredoxin (GRX)-like family; composed of archaeal and bacterial proteins that show similarity to both TRX and GRX, including the C-terminal TRX-fold subdomain of Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO). All members contain a redox-active CXXC motif and may function as PDOs. The archaeal proteins Mj0307 and Mt807 show structures more similar to GRX, but activities more similar to TRX. Some members of the family are similar to PfPDO in that they contain a second CXXC motif located in a second TRX-fold subdomain at the N-terminus; the superimposable N- and C-terminal TRX subdomains form a compact structure. PfPDO is postulated to be the archaeal counterpart of bacterial DsbA and eukaryotic protein disulfide isomerase (PDI). The C-terminal CXXC motif of PfPDO is required for its oxidase, reductase and isomerase activities. Also included in the family is the C-terminal TRX-fold subdomain of the N-terminal domain (NTD) of bacterial AhpF, which has a similar fold as PfPDO with two TRX-fold subdomains but without the second CXXC motif. 67 -239272 cd02974 AhpF_NTD_N Alkyl hydroperoxide reductase F subunit (AhpF) N-terminal domain (NTD) family, N-terminal TRX-fold subdomain; AhpF is a homodimeric flavoenzyme which catalyzes the NADH-dependent reduction of the peroxiredoxin AhpC, which in turn catalyzes the reduction of hydrogen peroxide and organic hydroperoxides. AhpF contains an NTD forming two contiguous TRX-fold subdomain similar to Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO). It also contains a catalytic core similar to TRX reductase containing FAD and NADH binding domains with an active site disulfide. The proposed mechanism of action of AhpF is similar to a TRX/TRX reductase system. The flow of reducing equivalents goes from NADH -> catalytic core of AhpF -> NTD of AhpF -> AhpC -> peroxide substrates. The N-terminal TRX-fold subdomain of AhpF NTD is redox inactive, but is proposed to contain an important residue that aids in the catalytic function of the redox-active CXXC motif contained in the C-terminal TRX-fold subdomain. 94 -239273 cd02975 PfPDO_like_N Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO)-like family, N-terminal TRX-fold subdomain; composed of proteins with similarity to PfPDO, a redox active thermostable protein believed to be the archaeal counterpart of bacterial DsbA and eukaryotic protein disulfide isomerase (PDI), which are both involved in oxidative protein folding. PfPDO contains two redox active CXXC motifs in two contiguous TRX-fold subdomains. The active site in the N-terminal TRX-fold subdomain is required for isomerase but not for reductase activity of PfPDO. The exclusive presence of PfPDO-like proteins in extremophiles may suggest that they have a special role in adaptation to extreme conditions. 113 -239274 cd02976 NrdH NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active CXXC motif within a TRX fold, characterized by a glutaredoxin (GRX)-like sequence and TRX-like activity profile. In vitro, it displays protein disulfide reductase activity that is dependent on TRX reductase, not glutathione (GSH). It is part of the NrdHIEF operon, where NrdEF codes for class Ib ribonucleotide reductase (RNR-Ib), an efficient enzyme at low oxygen levels. Under these conditions when GSH is mostly conjugated to spermidine, NrdH can still function and act as a hydrogen donor for RNR-Ib. It has been suggested that the NrdHEF system may be the oldest RNR reducing system, capable of functioning in a microaerophilic environment, where GSH was not yet available. NrdH from Corynebacterium ammoniagenes can form domain-swapped dimers, although it is unknown if this happens in vivo. Domain-swapped dimerization, which results in the blocking of the TRX reductase binding site, could be a mechanism for regulating the oxidation state of the protein. 73 -239275 cd02977 ArsC_family Arsenate Reductase (ArsC) family; composed of TRX-fold arsenic reductases and similar proteins including the transcriptional regulator, Spx. ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from glutathione (GSH) via glutaredoxin (GRX), through a single catalytic cysteine. This family of predominantly bacterial enzymes is unrelated to two other families of arsenate reductases which show similarity to low-molecular-weight acid phosphatases and phosphotyrosyl phosphatases. Spx is a general regulator that exerts negative and positive control over transcription initiation by binding to the C-terminal domain of the alpha subunit of RNA polymerase. 105 -239276 cd02978 KaiB_like KaiB-like family; composed of the circadian clock proteins, KaiB and the N-terminal KaiB-like sensory domain of SasA. KaiB is an essential protein in maintaining circadian rhythm. It was originally discovered from the cyanobacterium Synechococcus as part of the circadian clock gene cluster, kaiABC. KaiB attenuates KaiA-enhanced KaiC autokinase activity by interacting with KaiA-KaiC complexes in a circadian fashion. KaiB is membrane-associated as well as cytosolic. The amount of membrane-associated protein peaks in the evening (at circadian time (CT) 12-16) while the cytosolic form peaks later (at CT 20). The rhythmic localization of KaiB may function in regulating the formation of Kai complexes. SasA is a sensory histidine kinase which associates with KaiC. Although it is not an essential oscillator component, it is important in enhancing kaiABC expression and is important in metabolic growth control under day/night cycle conditions. SasA contains an N-terminal sensory domain with a TRX fold which is involved in the SasA-KaiC interaction. This domain shows high sequence similarity with KaiB. However, the KaiB structure does not show a classical TRX fold. The N-terminal half of KaiB shares the same beta-alpha-beta topology as TRX, but the topology of its C-terminal half diverges. 72 -239277 cd02979 PHOX_C FAD-dependent Phenol hydoxylase (PHOX) family, C-terminal TRX-fold domain; composed of proteins similar to PHOX from the aerobic topsoil yeast Trichosporon cutaneum. PHOX is a flavoprotein monooxygenase that catalyzes the hydroxylation of phenol and simple phenol derivatives in the ortho position with the consumption of NADPH and oxygen. This is the first step in the biodegradation and detoxification of phenolic compounds. PHOX contains three domains. The substrate and FAD/NAD(P) binding sites are contained in the first two domains, which adopt a complicated folding pattern. The third or C-terminal domain contains a TRX fold and is involved in dimerization. The functional unit of PHOX is a dimer, although active tetramers of the recombinant enzyme can be isolated when overproduced in bacteria. 167 -239278 cd02980 TRX_Fd_family Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains similar to TRX-like Fd including formate dehydrogenases, NAD-reducing hydrogenases and the subunit E of NADH:ubiquinone oxidoreductase (NuoE). TRX-like Fds are soluble low-potential electron carriers containing a single [2Fe-2S] cluster. The exact role of TRX-like Fd is still unclear. It has been suggested that it may be involved in nitrogen fixation. Its homologous domains in large redox enzymes (such as Nuo and hydrogenases) function as electron carriers. 77 -239279 cd02981 PDI_b_family Protein Disulfide Isomerase (PDIb) family, redox inactive TRX-like domain b; composed of eukaryotic proteins involved in oxidative protein folding in the endoplasmic reticulum (ER) by acting as catalysts and folding assistants. Members of this family include PDI, calsequestrin and other PDI-related proteins like ERp72, ERp57, ERp44 and PDIR. PDI, ERp57 (or ERp60), ERp72 and PDIR are all oxidases, catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER. They also exhibit reductase activity in acting as isomerases to correct any non-native disulfide bonds, as well as chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. These proteins contain multiple copies of a redox active TRX (a) domain containing a CXXC motif, and one or more redox inactive TRX-like (b) domains. The molecular structure of PDI is abb'a'. Also included in this family is the PDI-related protein ERp27, which contains only redox-inactive TRX-like (b and b') domains. The redox inactive b domains are implicated in substrate recognition. 97 -239280 cd02982 PDI_b'_family Protein Disulfide Isomerase (PDIb') family, redox inactive TRX-like domain b'; composed of eukaryotic proteins involved in oxidative protein folding in the endoplasmic reticulum (ER) by acting as catalysts and folding assistants. Members of this family include PDI, calsequestrin and other PDI-related proteins like ERp72, ERp57 (or ERp60), ERp44, P5 and PDIR. PDI, ERp57, ERp72, P5 and PDIR are all oxidases, catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER. They also exhibit reductase activity in acting as isomerases to correct any non-native disulfide bonds, as well as chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. These proteins contain multiple copies of a redox active TRX (a) domain containing a CXXC motif, and one or more redox inactive TRX-like (b) domains. The molecular structure of PDI is abb'a'. Also included in this family is the PDI-related protein ERp27, which contains only redox-inactive TRX-like (b and b') domains. The redox inactive domains are implicated in substrate recognition with the b' domain serving as the primary substrate binding site. Only the b' domain is necessary for the binding of small peptide substrates. In addition to the b' domain, other domains are required for the binding of larger polypeptide substrates. The b' domain is also implicated in chaperone activity. 103 -239281 cd02983 P5_C P5 family, C-terminal redox inactive TRX-like domain; P5 is a protein disulfide isomerase (PDI)-related protein with a domain structure of aa'b (where a and a' are redox active TRX domains and b is a redox inactive TRX-like domain). Like PDI, P5 is located in the endoplasmic reticulum (ER) and displays both isomerase and chaperone activities, which are independent of each other. Compared to PDI, the isomerase and chaperone activities of P5 are lower. The first cysteine in the CXXC motif of both redox active domains in P5 is necessary for isomerase activity. The P5 gene was first isolated as an amplified gene from a hydroxyurea-resistant hamster cell line. The zebrafish P5 homolog has been implicated to play a critical role in establishing left/right asymmetries in the embryonic midline. The C-terminal domain is likely involved in substrate binding, similar to the b and b' domains of PDI. 130 -239282 cd02984 TRX_PICOT TRX domain, PICOT (for PKC-interacting cousin of TRX) subfamily; PICOT is a protein that interacts with protein kinase C (PKC) theta, a calcium independent PKC isoform selectively expressed in skeletal muscle and T lymphocytes. PICOT contains an N-terminal TRX-like domain, which does not contain the catalytic CXXC motif, followed by one to three glutaredoxin domains. The TRX-like domain is required for interaction with PKC theta. PICOT inhibits the activation of c-Jun N-terminal kinase and the transcription factors, AP-1 and NF-kB, induced by PKC theta or T-cell activating stimuli. 97 -239283 cd02985 TRX_CDSP32 TRX family, chloroplastic drought-induced stress protein of 32 kD (CDSP32); CDSP32 is composed of two TRX domains, a C-terminal TRX domain which contains a redox active CXXC motif and an N-terminal TRX-like domain which contains an SXXS sequence instead of the redox active motif. CDSP32 is a stress-inducible TRX, i.e., it acts as a TRX by reducing protein disulfides and is induced by environmental and oxidative stress conditions. It plays a critical role in plastid defense against oxidative damage, a role related to its function as a physiological electron donor to BAS1, a plastidic 2-cys peroxiredoxin. Plants lacking CDSP32 exhibit decreased photosystem II photochemical efficiencies and chlorophyll retention compared to WT controls, as well as an increased proportion of BAS1 in its overoxidized monomeric form. 103 -239284 cd02986 DLP Dim1 family, Dim1-like protein (DLP) subfamily; DLP is a novel protein which shares 38% sequence identity to Dim1. Like Dim1, it is also implicated in pre-mRNA splicing and cell cycle progression. DLP is located in the nucleus and has been shown to interact with the U5 small nuclear ribonucleoprotein particle (snRNP)-specific 102kD protein (or Prp6). Dim1 protein, also known as U5 snRNP-specific 15kD protein is a component of U5 snRNP, which pre-assembles with U4/U6 snRNPs to form a [U4/U6:U5] tri-snRNP complex required for pre-mRNA splicing. Dim1 adopts a thioredoxin fold but does not contain the redox active CXXC motif. 114 -239285 cd02987 Phd_like_Phd Phosducin (Phd)-like family, Phd subfamily; Phd is a cytosolic regulator of G protein functions. It specifically binds G protein betagamma (Gbg)-subunits with high affinity, resulting in the solubilization of Gbg from the plasma membrane. This impedes the formation of a functional G protein trimer (G protein alphabetagamma), thereby inhibiting G protein-mediated signal transduction. Phd also inhibits the GTPase activity of G protein alpha. Phd can be phosphorylated by protein kinase A and G protein-coupled receptor kinase 2, leading to its inactivation. Phd was originally isolated from the retina, where it is highly expressed and has been implicated to play an important role in light adaptation. It is also found in the pineal gland, liver, spleen, striated muscle and the brain. The C-terminal domain of Phd adopts a thioredoxin fold, but it does not contain a CXXC motif. Phd interacts with G protein beta mostly through the N-terminal helical domain. 175 -239286 cd02988 Phd_like_VIAF Phosducin (Phd)-like family, Viral inhibitor of apoptosis (IAP)-associated factor (VIAF) subfamily; VIAF is a Phd-like protein that functions in caspase activation during apoptosis. It was identified as an IAP binding protein through a screen of a human B-cell library using a prototype IAP. VIAF lacks a consensus IAP binding motif and while it does not function as an IAP antagonist, it still plays a regulatory role in the complete activation of caspases. VIAF itself is a substrate for IAP-mediated ubiquitination, suggesting that it may be a target of IAPs in the prevention of cell death. The similarity of VIAF to Phd points to a potential role distinct from apoptosis regulation. Phd functions as a cytosolic regulator of G protein by specifically binding to G protein betagamma (Gbg)-subunits. The C-terminal domain of Phd adopts a thioredoxin fold, but it does not contain a CXXC motif. Phd interacts with G protein beta mostly through the N-terminal helical domain. 192 -239287 cd02989 Phd_like_TxnDC9 Phosducin (Phd)-like family, Thioredoxin (TRX) domain containing protein 9 (TxnDC9) subfamily; composed of predominantly uncharacterized eukaryotic proteins, containing a TRX-like domain without the redox active CXXC motif. The gene name for the human protein is TxnDC9. The two characterized members are described as Phd-like proteins, PLP1 of Saccharomyces cerevisiae and PhLP3 of Dictyostelium discoideum. Gene disruption experiments show that both PLP1 and PhLP3 are non-essential proteins. Unlike Phd and most Phd-like proteins, members of this group do not contain the Phd N-terminal helical domain which is implicated in binding to the G protein betagamma subunit. 113 -239288 cd02990 UAS_FAF1 UAS family, FAS-associated factor 1 (FAF1) subfamily; FAF1 contains a UAS domain of unknown function N-terminal to a ubiquitin-associated UBX domain. FAF1 also contains ubiquitin-associated UBA and nuclear targeting domains, N-terminal to the UAS domain. FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. It is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kB (NF-kB) by interfering with the nuclear translocation of the p65 subunit. FAF1 also interacts with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. 136 -239289 cd02991 UAS_ETEA UAS family, ETEA subfamily; composed of proteins similar to human ETEA protein, the translation product of a highly expressed gene in the T-cells and eosinophils of atopic dermatitis patients compared with those of normal individuals. ETEA shows homology to Fas-associated factor 1 (FAF1); both containing UAS and UBX (ubiquitin-associated) domains. Compared to FAF1, however, ETEA lacks the ubiquitin-associated UBA domain and a nuclear targeting domain. The function of ETEA is still unknown. A yeast two-hybrid assay showed that it can interact with Fas. Because of its homology to FAF1, it is postulated that ETEA could be involved in modulating Fas-mediated apoptosis of T-cells and eosinophils of atopic dermatitis patients, making them more resistant to apoptosis. 116 -239290 cd02992 PDI_a_QSOX PDIa family, Quiescin-sulfhydryl oxidase (QSOX) subfamily; QSOX is a eukaryotic protein containing an N-terminal redox active TRX domain, similar to that of PDI, and a small C-terminal flavin adenine dinucleotide (FAD)-binding domain homologous to the yeast ERV1p protein. QSOX oxidizes thiol groups to disulfides like PDI, however, unlike PDI, this oxidation is accompanied by the reduction of oxygen to hydrogen peroxide. QSOX is localized in high concentrations in cells with heavy secretory load and prefers peptides and proteins as substrates, not monothiols like glutathione. Inside the cell, QSOX is found in the endoplasmic reticulum and Golgi. The flow of reducing equivalents in a QSOX-catalyzed reaction goes from the dithiol substrate -> dithiol of the QSOX TRX domain -> dithiols of the QSOX ERV1p domain -> FAD -> oxygen. 114 -239291 cd02993 PDI_a_APS_reductase PDIa family, 5'-Adenylylsulfate (APS) reductase subfamily; composed of plant-type APS reductases containing a C-terminal redox active TRX domain and an N-terminal reductase domain which is part of a superfamily that includes N type ATP PPases. APS reductase catalyzes the reduction of activated sulfate to sulfite, a key step in the biosynthesis of sulfur-containing metabolites. Sulfate is first activated by ATP sulfurylase, forming APS, which can be phosphorylated to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Depending on the organism, either APS or PAPS can be used for sulfate reduction. Prokaryotes and fungi use PAPS, whereas plants use both APS and PAPS. Since plant-type APS reductase uses glutathione (GSH) as its electron donor, the C-terminal domain may function like glutaredoxin, a GSH-dependent member of the TRX superfamily. The flow of reducing equivalents goes from GSH -> C-terminal TRX domain -> N-terminal reductase domain -> APS. Plant-type APS reductase shows no homology to that of dissimilatory sulfate-reducing bacteria, which is an iron-sulfur flavoenzyme. Also included in the alignment is EYE2 from Chlamydomonas reinhardtii, a protein required for eyespot assembly. 109 -239292 cd02994 PDI_a_TMX PDIa family, TMX subfamily; composed of proteins similar to the TRX-related human transmembrane protein, TMX. TMX is a type I integral membrane protein; the N-terminal redox active TRX domain is present in the endoplasmic reticulum (ER) lumen while the C-terminus is oriented towards the cytoplasm. It is expressed in many cell types and its active site motif (CPAC) is unique. In vitro, TMX reduces interchain disulfides of insulin and renatures inactive RNase containing incorrect disulfide bonds. The C. elegans homolog, DPY-11, is expressed only in the hypodermis and resides in the cytoplasm. It is required for body and sensory organ morphogeneis. Another uncharacterized TRX-related transmembrane protein, human TMX4, is included in the alignment. The active site sequence of TMX4 is CPSC. 101 -239293 cd02995 PDI_a_PDI_a'_C PDIa family, C-terminal TRX domain (a') subfamily; composed of the C-terminal redox active a' domains of PDI, ERp72, ERp57 (or ERp60) and EFP1. PDI, ERp72 and ERp57 are endoplasmic reticulum (ER)-resident eukaryotic proteins involved in oxidative protein folding. They are oxidases, catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER. They also exhibit reductase activity in acting as isomerases to correct any non-native disulfide bonds, as well as chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. PDI and ERp57 have the abb'a' domain structure (where a and a' are redox active TRX domains while b and b' are redox inactive TRX-like domains). PDI also contains an acidic region (c domain) after the a' domain that is absent in ERp57. ERp72 has an additional a domain at the N-terminus (a"abb'a' domain structure). ERp57 interacts with the lectin chaperones, calnexin and calreticulin, and specifically promotes the oxidative folding of glycoproteins, while PDI shows a wider substrate specificity. ERp72 associates with several ER chaperones and folding factors to form complexes in the ER that bind nascent proteins. EFP1 is a binding partner protein of thyroid oxidase, which is responsible for the generation of hydrogen peroxide, a crucial substrate of thyroperoxidase, which functions to iodinate thyroglobulin and synthesize thyroid hormones. 104 -239294 cd02996 PDI_a_ERp44 PDIa family, endoplasmic reticulum protein 44 (ERp44) subfamily; ERp44 is an ER-resident protein, induced during stress, involved in thiol-mediated ER retention. It contains an N-terminal TRX domain, similar to that of PDIa, with a CXFS motif followed by two redox inactive TRX-like domains, homologous to the b and b' domains of PDI. The CXFS motif in the N-terminal domain allows ERp44 to form stable reversible mixed disulfides with its substrates. Through this activity, ERp44 mediates the ER localization of Ero1alpha, a protein that oxidizes protein disulfide isomerases into their active form. ERp44 also prevents the secretion of unassembled cargo protein with unpaired cysteines. It also modulates the activity of inositol 1,4,5-triphosphate type I receptor (IP3R1), an intracellular channel protein that mediates calcium release from the ER to the cytosol. 108 -239295 cd02997 PDI_a_PDIR PDIa family, PDIR subfamily; composed of proteins similar to human PDIR (for Protein Disulfide Isomerase Related). PDIR is composed of three redox active TRX (a) domains and an N-terminal redox inactive TRX-like (b) domain. Similar to PDI, it is involved in oxidative protein folding in the endoplasmic reticulum (ER) through its isomerase and chaperone activities. These activities are lower compared to PDI, probably due to PDIR acting only on a subset of proteins. PDIR is preferentially expressed in cells actively secreting proteins and its expression is induced by stress. Similar to PDI, the isomerase and chaperone activities of PDIR are independent; CXXC mutants lacking isomerase activity retain chaperone activity. 104 -239296 cd02998 PDI_a_ERp38 PDIa family, endoplasmic reticulum protein 38 (ERp38) subfamily; composed of proteins similar to the P5-like protein first isolated from alfalfa, which contains two redox active TRX (a) domains at the N-terminus, like human P5, and a C-terminal domain with homology to the C-terminal domain of ERp29, unlike human P5. The cDNA clone of this protein (named G1) was isolated from an alfalfa cDNA library by screening with human protein disulfide isomerase (PDI) cDNA. The G1 protein is constitutively expressed in all major organs of the plant and its expression is induced by treatment with tunicamycin, indicating that it may be a glucose-regulated protein. The G1 homolog in the eukaryotic social amoeba Dictyostelium discoideum is also described as a P5-like protein, which is located in the endoplasmic reticulum (ER) despite the absence of an ER-retrieval signal. G1 homologs from Aspergillus niger and Neurospora crassa have also been characterized, and are named TIGA and ERp38, respectively. Also included in the alignment is an atypical PDI from Leishmania donovani containing a single a domain, and the C-terminal a domain of a P5-like protein from Entamoeba histolytica. 105 -239297 cd02999 PDI_a_ERp44_like PDIa family, endoplasmic reticulum protein 44 (ERp44)-like subfamily; composed of uncharacterized PDI-like eukaryotic proteins containing only one redox active TRX (a) domain with a CXXS motif, similar to ERp44. CXXS is still a redox active motif; however, the mixed disulfide formed with the substrate is more stable than those formed by CXXC motif proteins. PDI-related proteins are usually involved in the oxidative protein folding in the ER by acting as catalysts and folding assistants. ERp44 is involved in thiol-mediated retention in the ER. 100 -239298 cd03000 PDI_a_TMX3 PDIa family, TMX3 subfamily; composed of eukaryotic proteins similar to human TMX3, a TRX related transmembrane protein containing one redox active TRX domain at the N-terminus and a classical ER retrieval sequence for type I transmembrane proteins at the C-terminus. The TMX3 transcript is found in a variety of tissues with the highest levels detected in skeletal muscle and the heart. In vitro, TMX3 showed oxidase activity albeit slightly lower than that of protein disulfide isomerase. 104 -239299 cd03001 PDI_a_P5 PDIa family, P5 subfamily; composed of eukaryotic proteins similar to human P5, a PDI-related protein with a domain structure of aa'b (where a and a' are redox active TRX domains and b is a redox inactive TRX-like domain). Like PDI, P5 is located in the endoplasmic reticulum (ER) and displays both isomerase and chaperone activities, which are independent of each other. Compared to PDI, the isomerase and chaperone activities of P5 are lower. The first cysteine in the CXXC motif of both redox active domains in P5 is necessary for isomerase activity. The P5 gene was first isolated as an amplified gene from a hydroxyurea-resistant hamster cell line. The zebrafish P5 homolog has been implicated to play a critical role in establishing left/right asymmetries in the embryonic midline. Some members of this subfamily are P5-like proteins containing only one redox active TRX domain. 103 -239300 cd03002 PDI_a_MPD1_like PDI family, MPD1-like subfamily; composed of eukaryotic proteins similar to Saccharomyces cerevisiae MPD1 protein, which contains a single redox active TRX domain located at the N-terminus, and an ER retention signal at the C-terminus indicative of an ER-resident protein. MPD1 has been shown to suppress the maturation defect of carboxypeptidase Y caused by deletion of the yeast PDI1 gene. Other characterized members of this subfamily include the Aspergillus niger prpA protein and Giardia PDI-1. PrpA is non-essential to strain viability, however, its transcript level is induced by heterologous protein expression suggesting a possible role in oxidative protein folding during high protein production. Giardia PDI-1 has the ability to refold scrambled RNase and exhibits transglutaminase activity. 109 -239301 cd03003 PDI_a_ERdj5_N PDIa family, N-terminal ERdj5 subfamily; ERdj5, also known as JPDI and macrothioredoxin, is a protein containing an N-terminal DnaJ domain and four redox active TRX domains. This subfamily is comprised of the first TRX domain of ERdj5 located after the DnaJ domain at the N-terminal half of the protein. ERdj5 is a ubiquitous protein localized in the endoplasmic reticulum (ER) and is abundant in secretory cells. It's transcription is induced during ER stress. It interacts with BiP through its DnaJ domain in an ATP-dependent manner. BiP, an ER-resident member of the Hsp70 chaperone family, functions in ER-associated degradation and protein translocation. 101 -239302 cd03004 PDI_a_ERdj5_C PDIa family, C-terminal ERdj5 subfamily; ERdj5, also known as JPDI and macrothioredoxin, is a protein containing an N-terminal DnaJ domain and four redox active TRX domains. This subfamily is composed of the three TRX domains located at the C-terminal half of the protein. ERdj5 is a ubiquitous protein localized in the endoplasmic reticulum (ER) and is abundant in secretory cells. It's transcription is induced during ER stress. It interacts with BiP through its DnaJ domain in an ATP-dependent manner. BiP, an ER-resident member of the Hsp70 chaperone family, functions in ER-associated degradation and protein translocation. Also included in the alignment is the single complete TRX domain of an uncharacterized protein from Tetraodon nigroviridis, which also contains a DnaJ domain at its N-terminus. 104 -239303 cd03005 PDI_a_ERp46 PDIa family, endoplasmic reticulum protein 46 (ERp46) subfamily; ERp46 is an ER-resident protein containing three redox active TRX domains. Yeast complementation studies show that ERp46 can substitute for protein disulfide isomerase (PDI) function in vivo. It has been detected in many tissues, however, transcript and protein levels do not correlate in all tissues, suggesting regulation at a posttranscriptional level. An identical protein, named endoPDI, has been identified as an endothelial PDI that is highly expressed in the endothelium of tumors and hypoxic lesions. It has a protective effect on cells exposed to hypoxia. 102 -239304 cd03006 PDI_a_EFP1_N PDIa family, N-terminal EFP1 subfamily; EFP1 is a binding partner protein of thyroid oxidase (ThOX), also called Duox. ThOX proteins are responsible for the generation of hydrogen peroxide, a crucial substrate of thyroperoxidase, which functions to iodinate thyroglobulin and synthesize thyroid hormones. EFP1 was isolated through a yeast two-hybrid method using the EF-hand fragment of dog Duox1 as a bait. It could be one of the partners in the assembly of a multiprotein complex constituting the thyroid hydrogen peroxide generating system. EFP1 contains two TRX domains related to the redox active TRX domains of protein disulfide isomerase (PDI). This subfamily is composed of the N-terminal TRX domain of EFP1, which contains a CXXS sequence in place of the typical CXXC motif, similar to ERp44. The CXXS motif allows the formation of stable mixed disulfides, crucial for the ER-retention function of ERp44. 113 -239305 cd03007 PDI_a_ERp29_N PDIa family, endoplasmic reticulum protein 29 (ERp29) subfamily; ERp29 is a ubiquitous ER-resident protein expressed in high levels in secretory cells. It forms homodimers and higher oligomers in vitro and in vivo. It contains a redox inactive TRX-like domain at the N-terminus, which is homologous to the redox active TRX (a) domains of PDI, and a C-terminal helical domain similar to the C-terminal domain of P5. The expression profile of ERp29 suggests a role in secretory protein production distinct from that of PDI. It has also been identified as a member of the thyroglobulin folding complex. The Drosophila homolog, Wind, is the product of windbeutel, an essential gene in the development of dorsal-ventral patterning. Wind is required for correct targeting of Pipe, a Golgi-resident type II transmembrane protein with homology to 2-O-sulfotransferase. 116 -239306 cd03008 TryX_like_RdCVF Tryparedoxin (TryX)-like family, Rod-derived cone viability factor (RdCVF) subfamily; RdCVF is a thioredoxin (TRX)-like protein specifically expressed in photoreceptors. RdCVF was isolated and identified as a factor that supports cone survival in retinal cultures. Cone photoreceptor loss is responsible for the visual handicap resulting from the inherited disease, retinitis pigmentosa. RdCVF shows 33% similarity to TRX but does not exhibit any detectable thiol oxidoreductase activity. 146 -239307 cd03009 TryX_like_TryX_NRX Tryparedoxin (TryX)-like family, TryX and nucleoredoxin (NRX) subfamily; TryX and NRX are thioredoxin (TRX)-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of an active center CXXC motif. TryX is involved in the regulation of oxidative stress in parasitic trypanosomatids by reducing TryX peroxidase, which in turn catalyzes the reduction of hydrogen peroxide and organic hydroperoxides. TryX derives reducing equivalents from reduced trypanothione, a polyamine peptide conjugate unique to trypanosomatids, which is regenerated by the NADPH-dependent flavoprotein trypanothione reductase. Vertebrate NRX is a 400-amino acid nuclear protein with one redox active TRX domain containing a CPPC active site motif followed by one redox inactive TRX-like domain. Mouse NRX transcripts are expressed in all adult tissues but is restricted to the nervous system and limb buds in embryos. Plant NRX, longer than the vertebrate NRX by about 100-200 amino acids, is a nuclear protein containing a redox inactive TRX-like domain between two redox active TRX domains. Both vertebrate and plant NRXs show thiol oxidoreductase activity in vitro. Their localization in the nucleus suggests a role in the redox regulation of nuclear proteins such as transcription factors. 131 -239308 cd03010 TlpA_like_DsbE TlpA-like family, DsbE (also known as CcmG and CycY) subfamily; DsbE is a membrane-anchored, periplasmic TRX-like reductase containing a CXXC motif that specifically donates reducing equivalents to apocytochrome c via CcmH, another cytochrome c maturation (Ccm) factor with a redox active CXXC motif. Assembly of cytochrome c requires the ligation of heme to reduced thiols of the apocytochrome. In bacteria, this assembly occurs in the periplasm. The reductase activity of DsbE in the oxidizing environment of the periplasm is crucial in the maturation of cytochrome c. 127 -239309 cd03011 TlpA_like_ScsD_MtbDsbE TlpA-like family, suppressor for copper sensitivity D protein (ScsD) and actinobacterial DsbE homolog subfamily; composed of ScsD, the DsbE homolog of Mycobacterium tuberculosis (MtbDsbE) and similar proteins, all containing a redox-active CXXC motif. The Salmonella typhimurium ScsD is a thioredoxin-like protein which confers copper tolerance to copper-sensitive mutants of E. coli. MtbDsbE has been characterized as an oxidase in vitro, catalyzing the disulfide bond formation of substrates like hirudin. The reduced form of MtbDsbE is more stable than its oxidized form, consistent with an oxidase function. This is in contrast to the function of DsbE from gram-negative bacteria which is a specific reductase of apocytochrome c. 123 -239310 cd03012 TlpA_like_DipZ_like TlpA-like family, DipZ-like subfamily; composed uncharacterized proteins containing a TlpA-like TRX domain. Some members show domain architectures similar to that of E. coli DipZ protein (also known as DsbD). The only eukaryotic members of the TlpA family belong to this subfamily. TlpA is a disulfide reductase known to have a crucial role in the biogenesis of cytochrome aa3. 126 -239311 cd03013 PRX5_like Peroxiredoxin (PRX) family, PRX5-like subfamily; members are similar to the human protein, PRX5, a homodimeric TRX peroxidase, widely expressed in tissues and found cellularly in mitochondria, peroxisomes and the cytosol. The cellular location of PRX5 suggests that it may have an important antioxidant role in organelles that are major sources of reactive oxygen species (ROS), as well as a role in the control of signal transduction. PRX5 has been shown to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. As with all other PRXs, the N-terminal peroxidatic cysteine of PRX5 is oxidized into a sulfenic acid intermediate upon reaction with peroxides. Human PRX5 is able to resolve this intermediate by forming an intramolecular disulfide bond with its C-terminal cysteine (the resolving cysteine), which can then be reduced by TRX, just like an atypical 2-cys PRX. This resolving cysteine, however, is not conserved in other members of the subfamily. In such cases, it is assumed that the oxidized cysteine is directly resolved by an external small-molecule or protein reductant, typical of a 1-cys PRX. In the case of the H. influenza PRX5 hybrid, the resolving glutaredoxin domain is on the same protein chain as PRX. PRX5 homodimers show an A-type interface, similar to atypical 2-cys PRXs. 155 -239312 cd03014 PRX_Atyp2cys Peroxiredoxin (PRX) family, Atypical 2-cys PRX subfamily; composed of PRXs containing peroxidatic and resolving cysteines, similar to the homodimeric thiol specific antioxidant (TSA) protein also known as TRX-dependent thiol peroxidase (Tpx). Tpx is a bacterial periplasmic peroxidase which differs from other PRXs in that it shows substrate specificity toward alkyl hydroperoxides over hydrogen peroxide. As with all other PRXs, the peroxidatic cysteine (N-terminal) of Tpx is oxidized into a sulfenic acid intermediate upon reaction with peroxides. Tpx is able to resolve this intermediate by forming an intramolecular disulfide bond with a conserved C-terminal cysteine (the resolving cysteine), which can then be reduced by thioredoxin. This differs from the typical 2-cys PRX which resolves the oxidized cysteine by forming an intermolecular disulfide bond with the resolving cysteine from the other subunit of the homodimer. Atypical 2-cys PRX homodimers have a loop-based interface (A-type for alternate), in contrast with the B-type interface of typical 2-cys and 1-cys PRXs. 143 -239313 cd03015 PRX_Typ2cys Peroxiredoxin (PRX) family, Typical 2-Cys PRX subfamily; PRXs are thiol-specific antioxidant (TSA) proteins, which confer a protective role in cells through its peroxidase activity by reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides. The functional unit of typical 2-cys PRX is a homodimer. A unique intermolecular redox-active disulfide center is utilized for its activity. Upon reaction with peroxides, its peroxidatic cysteine is oxidized into a sulfenic acid intermediate which is resolved by bonding with the resolving cysteine from the other subunit of the homodimer. This intermolecular disulfide bond is then reduced by thioredoxin, tryparedoxin or AhpF. Typical 2-cys PRXs, like 1-cys PRXs, form decamers which are stabilized by reduction of the active site cysteine. Typical 2-cys PRX interacts through beta strands at one edge of the monomer (B-type interface) to form the functional homodimer, and uses an A-type interface (similar to the dimeric interface in atypical 2-cys PRX and PRX5) at the opposite end of the monomer to form the stable decameric (pentamer of dimers) structure. 173 -239314 cd03016 PRX_1cys Peroxiredoxin (PRX) family, 1-cys PRX subfamily; composed of PRXs containing only one conserved cysteine, which serves as the peroxidatic cysteine. They are homodimeric thiol-specific antioxidant (TSA) proteins that confer a protective role in cells by reducing and detoxifying hydrogen peroxide, peroxynitrite, and organic hydroperoxides. As with all other PRXs, a cysteine sulfenic acid intermediate is formed upon reaction of 1-cys PRX with its substrates. Having no resolving cysteine, the oxidized enzyme is resolved by an external small-molecule or protein reductant such as thioredoxin or glutaredoxin. Similar to typical 2-cys PRX, 1-cys PRX forms a functional dimeric unit with a B-type interface, as well as a decameric structure which is stabilized in the reduced form of the enzyme. Other oligomeric forms, tetramers and hexamers, have also been reported. Mammalian 1-cys PRX is localized cellularly in the cytosol and is expressed at high levels in brain, eye, testes and lung. The seed-specific plant 1-cys PRXs protect tissues from reactive oxygen species during desiccation and are also called rehydrins. 203 -239315 cd03017 PRX_BCP Peroxiredoxin (PRX) family, Bacterioferritin comigratory protein (BCP) subfamily; composed of thioredoxin-dependent thiol peroxidases, widely expressed in pathogenic bacteria, that protect cells against toxicity from reactive oxygen species by reducing and detoxifying hydroperoxides. The protein was named BCP based on its electrophoretic mobility before its function was known. BCP shows substrate selectivity toward fatty acid hydroperoxides rather than hydrogen peroxide or alkyl hydroperoxides. BCP contains the peroxidatic cysteine but appears not to possess a resolving cysteine (some sequences, not all, contain a second cysteine but its role is still unknown). Unlike other PRXs, BCP exists as a monomer. The plant homolog of BCP is PRX Q, which is expressed only in leaves and is cellularly localized in the chloroplasts and the guard cells of stomata. Also included in this subfamily is the fungal nuclear protein, Dot5p (for disrupter of telomere silencing protein 5), which functions as an alkyl-hydroperoxide reductase during post-diauxic growth. 140 -239316 cd03018 PRX_AhpE_like Peroxiredoxin (PRX) family, AhpE-like subfamily; composed of proteins similar to Mycobacterium tuberculosis AhpE. AhpE is described as a 1-cys PRX because of the absence of a resolving cysteine. The structure and sequence of AhpE, however, show greater similarity to 2-cys PRXs than 1-cys PRXs. PRXs are thiol-specific antioxidant (TSA) proteins that confer a protective role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. The first step of catalysis is the nucleophilic attack by the peroxidatic cysteine on the peroxide leading to the formation of a cysteine sulfenic acid intermediate. The absence of a resolving cysteine suggests that functional AhpE is regenerated by an external reductant. The solution behavior and crystal structure of AhpE show that it forms dimers and octamers. 149 -239317 cd03019 DsbA_DsbA DsbA family, DsbA subfamily; DsbA is a monomeric thiol disulfide oxidoreductase protein containing a redox active CXXC motif imbedded in a TRX fold. It is involved in the oxidative protein folding pathway in prokaryotes, and is the strongest thiol oxidant known, due to the unusual stability of the thiolate anion form of the first cysteine in the CXXC motif. The highly unstable oxidized form of DsbA directly donates disulfide bonds to reduced proteins secreted into the bacterial periplasm. This rapid and unidirectional process helps to catalyze the folding of newly-synthesized polypeptides. To regain catalytic activity, reduced DsbA is then reoxidized by the membrane protein DsbB, which generates its disulfides from oxidized quinones, which in turn are reoxidized by the electron transport chain. 178 -239318 cd03020 DsbA_DsbC_DsbG DsbA family, DsbC and DsbG subfamily; V-shaped homodimeric proteins containing a redox active CXXC motif imbedded in a TRX fold. They function as protein disulfide isomerases and chaperones in the bacterial periplasm to correct non-native disulfide bonds formed by DsbA and prevent aggregation of incorrectly folded proteins. DsbC and DsbG are kept in their reduced state by the cytoplasmic membrane protein DsbD, which utilizes the TRX/TRX reductase system in the cytosol as a source of reducing equivalents. DsbG differ from DsbC in that it has a more limited substrate specificity, and it may preferentially act later in the folding process to catalyze disulfide rearrangements in folded or partially folded proteins. Also included in the alignment is the predicted protein TrbB, whose gene was sequenced from the enterohemorrhagic E. coli type IV pilus gene cluster, which is required for efficient plasmid transfer. 197 -239319 cd03021 DsbA_GSTK DsbA family, Glutathione (GSH) S-transferase Kappa (GSTK) subfamily; GSTK is a member of the GST family of enzymes which catalyzes the transfer of the thiol of GSH to electrophilic substrates. It is specifically located in the mitochondria and peroxisomes, unlike other members of the canonical GST family, which are mainly cytosolic. The biological substrates of GSTK are not yet known. It is presumed to have a protective role during respiration when large amounts of reactive oxygen species are generated. GSTK has the same general fold as DsbA, consisting of a thioredoxin domain interrupted by an alpha-helical domain and its biological unit is a homodimer. GSTK is closely related to the bacterial enzyme, 2-hydroxychromene-2-carboxylate (HCCA) isomerase. It shows little sequence similarity to the other members of the GST family. 209 -239320 cd03022 DsbA_HCCA_Iso DsbA family, 2-hydroxychromene-2-carboxylate (HCCA) isomerase subfamily; HCCA isomerase is a glutathione (GSH) dependent enzyme involved in the naphthalene catabolic pathway. It converts HCCA, a hemiketal formed spontaneously after ring cleavage of 1,2-dihydroxynapthalene by a dioxygenase, into cis-o-hydroxybenzylidenepyruvate (cHBPA). This is the fourth reaction in a six-step pathway that converts napthalene into salicylate. HCCA isomerase is unique to bacteria that degrade polycyclic aromatic compounds. It is closely related to the eukaryotic protein, GSH transferase kappa (GSTK). 192 -239321 cd03023 DsbA_Com1_like DsbA family, Com1-like subfamily; composed of proteins similar to Com1, a 27-kDa outer membrane-associated immunoreactive protein originally found in both acute and chronic disease strains of the pathogenic bacteria Coxiella burnetti. It contains a CXXC motif, assumed to be imbedded in a DsbA-like structure. Its homology to DsbA suggests that the protein is a protein disulfide oxidoreductase. The role of such a protein in pathogenesis is unknown. 154 -239322 cd03024 DsbA_FrnE DsbA family, FrnE subfamily; FrnE is a DsbA-like protein containing a CXXC motif. It is presumed to be a thiol oxidoreductase involved in polyketide biosynthesis, specifically in the production of the aromatic antibiotics frenolicin and nanaomycins. 201 -239323 cd03025 DsbA_FrnE_like DsbA family, FrnE-like subfamily; composed of uncharacterized proteins containing a CXXC motif with similarity to DsbA and FrnE. FrnE is presumed to be a thiol oxidoreductase involved in polyketide biosynthesis, specifically in the production of the aromatic antibiotics frenolicin and nanaomycins. 193 -239324 cd03026 AhpF_NTD_C TRX-GRX-like family, Alkyl hydroperoxide reductase F subunit (AhpF) N-terminal domain (NTD) subfamily, C-terminal TRX-fold subdomain; AhpF is a homodimeric flavoenzyme which catalyzes the NADH-dependent reduction of the peroxiredoxin AhpC, which then reduces hydrogen peroxide and organic hydroperoxides. AhpF contains an NTD containing two contiguous TRX-fold subdomains similar to Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO). It also contains a catalytic core similar to TRX reductase containing FAD and NADH binding domains with an active site disulfide. The proposed mechanism of action of AhpF is similar to a TRX/TRX reductase system. The flow of reducing equivalents goes from NADH -> catalytic core of AhpF -> NTD of AhpF -> AhpC -> peroxide substrates. The catalytic CXXC motif of the NTD of AhpF is contained in its C-terminal TRX subdomain. 89 -239325 cd03027 GRX_DEP Glutaredoxin (GRX) family, Dishevelled, Egl-10, and Pleckstrin (DEP) subfamily; composed of uncharacterized proteins containing a GRX domain and additional domains DEP and DUF547, both of which have unknown functions. GRX is a glutathione (GSH) dependent reductase containing a redox active CXXC motif in a TRX fold. It has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. By altering the redox state of target proteins, GRX is involved in many cellular functions. 73 -239326 cd03028 GRX_PICOT_like Glutaredoxin (GRX) family, PKC-interacting cousin of TRX (PICOT)-like subfamily; composed of PICOT and GRX-PICOT-like proteins. The non-PICOT members of this family contain only the GRX-like domain, whereas PICOT contains an N-terminal TRX-like domain followed by one to three GRX-like domains. It is interesting to note that PICOT from plants contain three repeats of the GRX-like domain, metazoan proteins (except for insect) have two repeats, while fungal sequences contain only one copy of the domain. PICOT is a protein that interacts with protein kinase C (PKC) theta, a calcium independent PKC isoform selectively expressed in skeletal muscle and T lymphocytes. PICOT inhibits the activation of c-Jun N-terminal kinase and the transcription factors, AP-1 and NF-kB, induced by PKC theta or T-cell activating stimuli. Both GRX and TRX domains of PICOT are required for its activity. Characterized non-PICOT members of this family include CXIP1, a CAX-interacting protein in Arabidopsis thaliana, and PfGLP-1, a GRX-like protein from Plasmodium falciparum. 90 -239327 cd03029 GRX_hybridPRX5 Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing peroxiredoxin (PRX) and GRX domains, which is found in some pathogenic bacteria and cyanobacteria. PRXs are thiol-specific antioxidant (TSA) proteins that confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins. PRX-GRX hybrid proteins from Haemophilus influenza and Neisseria meningitis exhibit GSH-dependent peroxidase activity. The flow of reducing equivalents in the catalytic cycle of the hybrid protein goes from NADPH -> GSH reductase -> GSH -> GRX domain of hybrid -> PRX domain of hybrid -> peroxide substrate. 72 -239328 cd03030 GRX_SH3BGR Glutaredoxin (GRX) family, SH3BGR (SH3 domain binding glutamic acid-rich protein) subfamily; a recently-identified subfamily composed of SH3BGR and similar proteins possessing significant sequence similarity to GRX, but without a redox active CXXC motif. The SH3BGR gene was cloned in an effort to identify genes mapping to chromosome 21, which could be involved in the pathogenesis of congenital heart disease affecting Down syndrome newborns. Several human SH3BGR-like (SH3BGRL) genes have been identified since, mapping to different locations in the chromosome. Of these, SH3BGRL3 was identified as a tumor necrosis factor (TNF) alpha inhibitory protein and was also named TIP-B1. Upregulation of expression of SH3BGRL3 is associated with differentiation. It has been suggested that it functions as a regulator of differentiation-related signal transduction pathways. 92 -239329 cd03031 GRX_GRX_like Glutaredoxin (GRX) family, GRX-like domain containing protein subfamily; composed of uncharacterized eukaryotic proteins containing a GRX-like domain having only one conserved cysteine, aligning to the C-terminal cysteine of the CXXC motif of GRXs. This subfamily is predominantly composed of plant proteins. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins via a redox active CXXC motif using a similar dithiol mechanism employed by TRXs. GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. Proteins containing only the C-terminal cysteine are generally redox inactive. 147 -239330 cd03032 ArsC_Spx Arsenate Reductase (ArsC) family, Spx subfamily; Spx is a unique RNA polymerase (RNAP)-binding protein present in bacilli and some mollicutes. It inhibits transcription by binding to the C-terminal domain of the alpha subunit of RNAP, disrupting complex formation between RNAP and certain transcriptional activator proteins like ResD and ComA. In response to oxidative stress, Spx can also activate transcription, making it a general regulator that exerts both positive and negative control over transcription initiation. Spx has been shown to exert redox-sensitive transcriptional control over genes like trxA (TRX) and trxB (TRX reductase), genes that function in thiol homeostasis. This redox-sensitive activity is dependent on the presence of a CXXC motif, present in some members of the Spx subfamily, that acts as a thiol/disulfide switch. Spx has also been shown to repress genes in a sulfate-dependent manner independent of the presence of the CXXC motif. 115 -239331 cd03033 ArsC_15kD Arsenate Reductase (ArsC) family, 15kD protein subfamily; composed of proteins of unknown function with similarity to thioredoxin-fold arsenic reductases, ArsC. It is encoded by an ORF present in a gene cluster associated with nitrogen fixation that also encodes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from glutathione via glutaredoxin, through a single catalytic cysteine. 113 -239332 cd03034 ArsC_ArsC Arsenate Reductase (ArsC) family, ArsC subfamily; arsenic reductases similar to that encoded by arsC on the R733 plasmid of Escherichia coli. E. coli ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], the first step in the detoxification of arsenic, using reducing equivalents derived from glutathione (GSH) via glutaredoxin (GRX). ArsC contains a single catalytic cysteine, within a thioredoxin fold, that forms a covalent thiolate-As(V) intermediate, which is reduced by GRX through a mixed GSH-arsenate intermediate. This family of predominantly bacterial enzymes is unrelated to two other families of arsenate reductases which show similarity to low-molecular-weight acid phosphatases and phosphotyrosyl phosphatases. 112 -239333 cd03035 ArsC_Yffb Arsenate Reductase (ArsC) family, Yffb subfamily; Yffb is an uncharacterized bacterial protein encoded by the yffb gene, related to the thioredoxin-fold arsenic reductases, ArsC. The structure of Yffb and the conservation of the catalytic cysteine suggest that it is likely to function as a glutathione (GSH)-dependent thiol reductase. ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from GSH via glutaredoxin, through a single catalytic cysteine. 105 -239334 cd03036 ArsC_like Arsenate Reductase (ArsC) family, unknown subfamily; uncharacterized proteins containing a CXXC motif with similarity to thioredoxin (TRX)-fold arsenic reductases, ArsC. Proteins containing a redox active CXXC motif like TRX and glutaredoxin (GRX) function as protein disulfide oxidoreductases, altering the redox state of target proteins via the reversible oxidation of the active site dithiol. ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from glutathione via GRX, through a single catalytic cysteine. 111 -239335 cd03037 GST_N_GRX2 GST_N family, Glutaredoxin 2 (GRX2) subfamily; composed of bacterial proteins similar to E. coli GRX2, an atypical GRX with a molecular mass of about 24kD, compared with other GRXs which are 9-12kD in size. GRX2 adopts a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. It contains a redox active CXXC motif located in the N-terminal domain but is not able to reduce ribonucleotide reductase like other GRXs. However, it catalyzes GSH-dependent protein disulfide reduction of other substrates efficiently. GRX2 is thought to function primarily in catalyzing the reversible glutathionylation of proteins in cellular redox regulation including stress responses. 71 -239336 cd03038 GST_N_etherase_LigE GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF. 84 -239337 cd03039 GST_N_Sigma_like GST_N family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation and mediation of allergy and inflammation. Other class Sigma members include the class II insect GSTs, S-crystallins from cephalopods and 28-kDa GSTs from parasitic flatworms. Drosophila GST2 is associated with indirect flight muscle and exhibits preference for catalyzing GSH conjugation to lipid peroxidation products, indicating an anti-oxidant role. S-crystallin constitutes the major lens protein in cephalopod eyes and is responsible for lens transparency and proper refractive index. The 28-kDa GST from Schistosoma is a multifunctional enzyme, exhibiting GSH transferase, GSH peroxidase and PGD2 synthase activities, and may play an important role in host-parasite interactions. Also members are novel GSTs from the fungus Cunninghamella elegans, designated as class Gamma, and from the protozoan Blepharisma japonicum, described as a light-inducible GST. 72 -239338 cd03040 GST_N_mPGES2 GST_N family; microsomal Prostaglandin E synthase Type 2 (mPGES2) subfamily; mPGES2 is a membrane-anchored dimeric protein containing a CXXC motif which catalyzes the isomerization of PGH2 to PGE2. Unlike cytosolic PGE synthase (cPGES) and microsomal PGES Type 1 (mPGES1), mPGES2 does not require glutathione (GSH) for its activity, although its catalytic rate is increased two- to four-fold in the presence of DTT, GSH or other thiol compounds. PGE2 is widely distributed in various tissues and is implicated in the sleep/wake cycle, relaxation/contraction of smooth muscle, excretion of sodium ions, maintenance of body temperature and mediation of inflammation. mPGES2 contains an N-terminal hydrophobic domain which is membrane associated, and a C-terminal soluble domain with a GST-like structure. 77 -239339 cd03041 GST_N_2GST_N GST_N family, 2 repeats of the N-terminal domain of soluble GSTs (2 GST_N) subfamily; composed of uncharacterized proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. 77 -239340 cd03042 GST_N_Zeta GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid. 73 -239341 cd03043 GST_N_1 GST_N family, unknown subfamily 1; composed of uncharacterized proteins, predominantly from bacteria, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. 73 -239342 cd03044 GST_N_EF1Bgamma GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. 75 -239343 cd03045 GST_N_Delta_Epsilon GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress. 74 -239344 cd03046 GST_N_GTT1_like GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. 76 -239345 cd03047 GST_N_2 GST_N family, unknown subfamily 2; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The sequence from Burkholderia cepacia was identified as part of a gene cluster involved in the degradation of 2,4,5-trichlorophenoxyacetic acid. Some GSTs (e.g. Class Zeta and Delta) are known to catalyze dechlorination reactions. 73 -239346 cd03048 GST_N_Ure2p_like GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related GSTs. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The N-terminal TRX-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. Characterized GSTs in this subfamily include Aspergillus fumigatus GSTs 1 and 2, and Schizosaccharomyces pombe GST-I. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. 81 -239347 cd03049 GST_N_3 GST_N family, unknown subfamily 3; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. 73 -239348 cd03050 GST_N_Theta GST_N family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenation of dihalomethanes. This is an essential process in methylotrophic bacteria to enable them to use chloromethane and DCM as sole carbon and energy sources. The presence of polymorphisms in human GSTT1-1 and its relationship to the onset of diseases including cancer is subject of many studies. Human GSTT2-2 exhibits a highly specific sulfatase activity, catalyzing the cleavage of sulfate ions from aralkyl sufate esters, but not from aryl or alkyl sulfate esters. 76 -239349 cd03051 GST_N_GTT2_like GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. 74 -239350 cd03052 GST_N_GDAP1 GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. 73 -239351 cd03053 GST_N_Phi GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. 76 -239352 cd03054 GST_N_Metaxin GST_N family, Metaxin subfamily; composed of metaxins and related proteins. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. Metaxin 2 binds to metaxin 1 and may also play a role in protein translocation into the mitochondria. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken and mammals. Sequence analysis suggests that all three metaxins share a common ancestry and that they possess similarity to GSTs. Also included in the subfamily are uncharacterized proteins with similarity to metaxins, including a novel GST from Rhodococcus with toluene o-monooxygenase and glutamylcysteine synthetase activities. 72 -239353 cd03055 GST_N_Omega GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. 89 -239354 cd03056 GST_N_4 GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. 73 -239355 cd03057 GST_N_Beta GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit limited GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they also bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. 77 -239356 cd03058 GST_N_Tau GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin, responses to soil stresses and responses to auxin and cytokinin hormones. 74 -239357 cd03059 GST_N_SspA GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal TRX-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis. 73 -239358 cd03060 GST_N_Omega_like GST_N family, Omega-like subfamily; composed of uncharacterized proteins with similarity to class Omega GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. Like Omega enzymes, proteins in this subfamily contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. 71 -239359 cd03061 GST_N_CLIC GST_N family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLIC1-5, p64, parchorin and similar proteins. They are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division and apoptosis. They can exist in both water-soluble and membrane-bound states, and are found in various vesicles and membranes. Biochemical studies of the C. elegans homolog, EXC-4, show that the membrane localization domain is present in the N-terminal part of the protein. The structure of soluble human CLIC1 reveals that it is monomeric and it adopts a fold similar to GSTs, containing an N-terminal domain with a TRX fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. The CLIC1 dimer bears no similarity to GST dimers. The redox-controlled structural rearrangement exposes a large hydrophobic surface, which is masked by dimerization in vitro. In vivo, this surface may represent the docking interface of CLIC1 in its membrane-bound state. The two cysteines in CLIC1 that form the disulfide bond in oxidizing conditions are essential for dimerization and chloride channel activity, however, in other subfamily members, the second cysteine is not conserved. 91 -239360 cd03062 TRX_Fd_Sucrase TRX-like [2Fe-2S] Ferredoxin (Fd) family, Sucrase subfamily; composed of proteins with similarity to a novel plant enzyme, isolated from potato, which contains a Fd-like domain and exhibits sucrolytic activity. The putative active site of the Fd-like domain of the enzyme contains two cysteines and two histidines for possible binding to iron-sulfur clusters, compared to four cysteines present in the active site of Fd. 97 -239361 cd03063 TRX_Fd_FDH_beta TRX-like [2Fe-2S] Ferredoxin (Fd) family, NAD-dependent formate dehydrogenase (FDH) beta subunit; composed of proteins similar to the beta subunit of NAD-linked FDH of Ralstonia eutropha, a soluble enzyme that catalyzes the irreversible oxidation of formate to carbon dioxide accompanied by the reduction of NAD to NADH. FDH is a heteromeric enzyme composed of four nonidentical subunits (alpha, beta, gamma and delta). The FDH beta subunit contains a NADH:ubiquinone oxidoreductase (Nuo) F domain C-terminal to a Fd-like domain without the active site cysteines. The absence of conserved metal-binding residues in the putative active site suggests that members of this subfamily have lost the ability to bind iron-sulfur clusters in the N-terminal Fd-like domain. The C-terminal NuoF domain is a component of Nuo, a multisubunit complex catalyzing the electron transfer of NADH to quinone coupled with the transfer of protons across the membrane. NuoF contains one [4Fe-4S] cluster and binds NADH and FMN. 92 -239362 cd03064 TRX_Fd_NuoE TRX-like [2Fe-2S] Ferredoxin (Fd) family, NADH:ubiquinone oxidoreductase (Nuo) subunit E subfamily; Nuo, also called respiratory chain Complex 1, is the entry point for electrons into the respiratory chains of bacteria and the mitochondria of eukaryotes. It is a multisubunit complex with at least 14 core subunits. It catalyzes the electron transfer of NADH to quinone coupled with the transfer of protons across the membrane, providing the proton motive force required for energy-consuming processes. Electrons are transferred from NADH to quinone through a chain of iron-sulfur clusters in Nuo, including the [2Fe-2S] cluster present in NuoE core subunit, also called the 24 kD subunit of Complex 1. This subfamily also include formate dehydrogenases, NiFe hydrogenases and NAD-reducing hydrogenases, that contain a NuoE domain. A subset of these proteins contain both NuoE and NuoF in a single chain. NuoF, also called the 51 kD subunit of Complex 1, contains one [4Fe-4S] cluster and also binds the NADH substrate and FMN. 80 -239363 cd03065 PDI_b_Calsequestrin_N PDIb family, Calsequestrin subfamily, N-terminal TRX-fold domain; Calsequestrin is the major calcium storage protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It stores calcium ions in sufficient quantities (up to 20 mM) to allow repetitive contractions and is essential to maintain movement, respiration and heart beat. A missense mutation in human cardiac calsequestrin is associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT), a rare disease characterized by seizures or sudden death in response to physiologic or emotional stress. Calsequestrin is a highly acidic protein with up to 50 calcium binding sites formed simply by the clustering of two or more acidic residues. The monomer contains three redox inactive TRX-fold domains. Calsequestrin is condensed as a linear polymer in the SR lumen and is membrane-anchored through binding with intra-membrane proteins triadin, junctin and ryanodine receptor (RyR) Ca2+ release channel. In addition to its role as a calcium ion buffer, calsequestrin also regulates the activity of the RyR channel, coordinating the release of calcium ions from the SR with the loading of the calcium store. The N-terminal TRX-fold domain (or domain I) mediates front-to-front dimer interaction, an important feature in the formation of calsequestrin polymers. 120 -239364 cd03066 PDI_b_Calsequestrin_middle PDIb family, Calsequestrin subfamily, Middle TRX-fold domain; Calsequestrin is the major calcium storage protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It stores calcium ions in sufficient quantities (up to 20 mM) to allow repetitive contractions and is essential to maintain movement, respiration and heart beat. A missense mutation in human cardiac calsequestrin is associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT), a rare disease characterized by seizures or sudden death in response to physiologic or emotional stress. Calsequestrin is a highly acidic protein with up to 50 calcium binding sites formed simply by the clustering of two or more acidic residues. The monomer contains three redox inactive TRX-fold domains. Calsequestrin is condensed as a linear polymer in the SR lumen and is membrane-anchored through binding with intra-membrane proteins triadin, junctin and ryanodine receptor (RyR) Ca2+ release channel. In addition to its role as a calcium ion buffer, calsequestrin also regulates the activity of the RyR channel, coordinating the release of calcium ions from the SR with the loading of the calcium store. 102 -239365 cd03067 PDI_b_PDIR_N PDIb family, PDIR subfamily, N-terminal TRX-like b domain; composed of proteins similar to human PDIR (for Protein Disulfide Isomerase Related). PDIR is composed of three redox active TRX (a) domains and an N-terminal redox inactive TRX-like (b) domain. Similar to PDI, it is involved in oxidative protein folding in the endoplasmic reticulum (ER) through its isomerase and chaperone activities. These activities are lower compared to PDI, probably due to PDIR acting only on a subset of proteins. PDIR is preferentially expressed in cells actively secreting proteins and its expression is induced by stress. Similar to PDI, the isomerase and chaperone activities of PDIR are independent; CXXC mutants lacking isomerase activity retain chaperone activity. The TRX-like b domain of PDIR is critical for its chaperone activity. 112 -239366 cd03068 PDI_b_ERp72 PDIb family, ERp72 subfamily, first redox inactive TRX-like domain b; ERp72 exhibits both disulfide oxidase and reductase functions like PDI, by catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER and acting as isomerases to correct any non-native disulfide bonds. It also displays chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. ERp72 contains three redox-active TRX (a) domains and two redox inactive TRX-like (b) domains. Its molecular structure is a"abb'a', compared to the abb'a' structure of PDI. ERp72 associates with several ER chaperones and folding factors to form complexes in the ER that bind nascent proteins. Similar to PDI, the b domain of ERp72 is likely involved in binding to substrates. 107 -239367 cd03069 PDI_b_ERp57 PDIb family, ERp57 subfamily, first redox inactive TRX-like domain b; ERp57 (or ERp60) exhibits both disulfide oxidase and reductase functions like PDI, by catalyzing the formation of disulfide bonds of newly synthesized polypeptides in the ER and acting as isomerases to correct any non-native disulfide bonds. It also displays chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. ERp57 contains two redox-active TRX (a) domains and two redox inactive TRX-like (b) domains. It shares the same domain arrangement of abb'a' as PDI, but lacks the C-terminal acid-rich region (c domain) that is present in PDI. ERp57 interacts with the lectin chaperones, calnexin and calreticulin, and specifically promotes the oxidative folding of glycoproteins. Similar to PDI, the b domain of ERp57 is likely involved in binding to substrates. 104 -239368 cd03070 PDI_b_ERp44 PDIb family, ERp44 subfamily, first redox inactive TRX-like domain b; ERp44 is an endoplasmic reticulum (ER)-resident protein, induced during stress, involved in thiol-mediated ER retention. It contains an N-terminal TRX domain with a CXFS motif followed by two redox inactive TRX-like domains, homologous to the b and b' domains of PDI. Through the formation of reversible mixed disulfides, ERp44 mediates the ER localization of Ero1alpha, a protein that oxidizes protein disulfide isomerases into their active form. ERp44 also prevents the secretion of unassembled cargo protein with unpaired cysteines. ERp44 also modulates the activity of inositol 1,4,5-triphosphate type I receptor (IP3R1), an intracellular channel protein that mediates calcium release from the ER to the cytosol. Similar to PDI, the b domain of ERp44 is likely involved in binding to substrates. 91 -239369 cd03071 PDI_b'_NRX PDIb' family, NRX subgroup, redox inactive TRX-like domain b'; composed of vertebrate nucleoredoxins (NRX). NRX is a 400-amino acid nuclear protein with one redox active TRX domain followed by one redox inactive TRX-like domain homologous to the b' domain of PDI. In vitro studies show that NRX has thiol oxidoreductase activity and that it may be involved in the redox regulation of transcription, in a manner different from that of TRX or glutaredoxin. NRX enhances the activation of NF-kB by TNFalpha, as well as PMA-1 induced AP-1 and FK-induced CREB activation. Mouse NRX transcripts are expressed in all adult tissues but is restricted to the nervous system and limb buds in embryos. The mouse NRX gene is implicated in streptozotocin-induced diabetes. Similar to PDI, the b' domain of NRX is likely involved in substrate recognition. 116 -239370 cd03072 PDI_b'_ERp44 PDIb' family, ERp44 subfamily, second redox inactive TRX-like domain b'; ERp44 is an endoplasmic reticulum (ER)-resident protein, induced during stress, involved in thiol-mediated ER retention. It contains an N-terminal TRX domain with a CXFS motif followed by two redox inactive TRX-like domains, homologous to the b and b' domains of PDI. Through the formation of reversible mixed disulfides, ERp44 mediates the ER localization of Ero1alpha, a protein that oxidizes protein disulfide isomerases into their active form. ERp44 also prevents the secretion of unassembled cargo protein with unpaired cysteines. ERp44 also modulates the activity of inositol 1,4,5-triphosphate type I receptor (IP3R1), an intracellular channel protein that mediates calcium release from the ER to the cytosol. Similar to PDI, the b' domain of ERp44 is likely involved in substrate recognition and may be the primary binding site. 111 -239371 cd03073 PDI_b'_ERp72_ERp57 PDIb' family, ERp72 and ERp57 subfamily, second redox inactive TRX-like domain b'; ERp72 and ER57 are involved in oxidative protein folding in the ER, like PDI. They exhibit both disulfide oxidase and reductase functions, by catalyzing the formation of disulfide bonds of newly synthesized polypeptides and acting as isomerases to correct any non-native disulfide bonds. They also display chaperone activity to prevent protein aggregation and facilitate the folding of newly synthesized proteins. ERp57 contains two redox-active TRX (a) domains and two redox inactive TRX-like (b) domains. It shares the same domain arrangement of abb'a' as PDI, but lacks the C-terminal acid-rich region (c domain) that is present in PDI. ERp72 contains one additional redox-active TRX (a) domain at the N-terminus with a molecular structure of a"abb'a'. ERp57 interacts with the lectin chaperones, calnexin and calreticulin, and specifically promotes the oxidative folding of glycoproteins. ERp72 associates with several ER chaperones and folding factors to form complexes in the ER that bind nascent proteins. The b' domain of ERp57 is the primary binding site and is adapted for ER lectin association. Similarly, the b' domain of ERp72 is likely involved in substrate recognition. 111 -239372 cd03074 PDI_b'_Calsequestrin_C Protein Disulfide Isomerase (PDIb') family, Calsequestrin subfamily, C-terminal TRX-fold domain; Calsequestrin is the major calcium storage protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It stores calcium ions in sufficient quantities (up to 20 mM) to allow repetitive contractions and is essential to maintain movement, respiration and heart beat. A missense mutation in human cardiac calsequestrin is associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT), a rare disease characterized by seizures or sudden death in response to physiologic or emotional stress. Calsequestrin is a highly acidic protein with up to 50 calcium binding sites formed simply by the clustering of two or more acidic residues. The monomer contains three redox inactive TRX-fold domains. Calsequestrin is condensed as a linear polymer in the SR lumen and is membrane-anchored through binding with intra-membrane proteins triadin, junctin and ryanodine receptor (RyR) Ca2+ release channel. In addition to its role as a calcium ion buffer, calsequestrin also regulates the activity of the RyR channel, coordinating the release of calcium ions from the SR with the loading of the calcium store. The C-terminal TRX-fold domain (or domain III) mediates back-to-back dimer interaction and also contriubutes to the front-to-front dimer interface, both of which are important features in the formation of calsequestrin polymers. 120 -239373 cd03075 GST_N_Mu GST_N family, Class Mu subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Mu subfamily is composed of eukaryotic GSTs. In rats, at least six distinct class Mu subunits have been identified, with homologous genes in humans for five of these subunits. Class Mu GSTs can form homodimers and heterodimers, giving a large number of possible isoenzymes that can be formed, all with overlapping activities but different substrate specificities. They are the most abundant GSTs in human liver, skeletal muscle and brain, and are believed to provide protection against diseases including cancer and neurodegenerative disorders. Some isoenzymes have additional specific functions. Human GST M1-1 acts as an endogenous inhibitor of ASK1 (apoptosis signal-regulating kinase 1), thereby suppressing ASK1-mediated cell death. Human GSTM2-2 and 3-3 have been identified as prostaglandin E2 synthases in the brain and may play crucial roles in temperature and sleep-wake regulation. 82 -239374 cd03076 GST_N_Pi GST_N family, Class Pi subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Pi GST is a homodimeric eukaryotic protein. The human GSTP1 is mainly found in erythrocytes, kidney, placenta and fetal liver. It is involved in stress responses and in cellular proliferation pathways as an inhibitor of JNK (c-Jun N-terminal kinase). Following oxidative stress, monomeric GSTP1 dissociates from JNK and dimerizes, losing its ability to bind JNK and causing an increase in JNK activity, thereby promoting apoptosis. GSTP1 is expressed in various tumors and is the predominant GST in a wide range of cancer cells. It has been implicated in the development of multidrug-resistant tumours. 73 -239375 cd03077 GST_N_Alpha GST_N family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Alpha subfamily is composed of eukaryotic GSTs which can form homodimer and heterodimers. There are at least six types of class Alpha GST subunits in rats, four of which have human counterparts, resulting in many possible isoenzymes with different activities, tissue distribution and substrate specificities. Human GSTA1-1 and GSTA2-2 show high GSH peroxidase activity. GSTA3-3 catalyzes the isomerization of intermediates in steroid hormone biosynthesis. GSTA4-4 preferentially catalyzes the GSH conjugation of alkenals. 79 -239376 cd03078 GST_N_Metaxin1_like GST_N family, Metaxin subfamily, Metaxin 1-like proteins; composed of metaxins 1 and 3, and similar proteins including Tom37 from fungi. Mammalian metaxin (or metaxin 1) and the fungal protein Tom37 are components of preprotein import complexes of the mitochondrial outer membrane. Metaxin extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. Like the murine gene, the human metaxin gene is located downstream to the glucocerebrosidase (GBA) pseudogene and is convergently transcribed. Inherited deficiency of GBA results in Gaucher disease, which presents many diverse clinical phenotypes. Alterations in the metaxin gene, in addition to GBA mutations, may be associated with Gaucher disease. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken and mammals. 73 -239377 cd03079 GST_N_Metaxin2 GST_N family, Metaxin subfamily, Metaxin 2; a metaxin 1 binding protein identified through a yeast two-hybrid system using metaxin 1 as the bait. Metaxin 2 shares sequence similarity with metaxin 1 but does not contain a C-terminal mitochondrial outer membrane signal-anchor domain. It associates with mitochondrial membranes through its interaction with metaxin 1, which is a component of the mitochondrial preprotein import complex of the outer membrane. The biological function of metaxin 2 is unknown. It is likely that it also plays a role in protein translocation into the mitochondria. However, this has not been experimentally validated. In a recent proteomics study, it has been shown that metaxin 2 is overexpressed in response to lipopolysaccharide-induced liver injury. 74 -239378 cd03080 GST_N_Metaxin_like GST_N family, Metaxin subfamily, Metaxin-like proteins; a heterogenous group of proteins, predominantly uncharacterized, with similarity to metaxins and GSTs. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. One characterized member of this subgroup is a novel GST from Rhodococcus with toluene o-monooxygenase and gamma-glutamylcysteine synthetase activities. Also members are the cadmium-inducible lysosomal protein CDR-1 and its homologs from C. elegans, and the failed axon connections (fax) protein from Drosophila. CDR-1 is an integral membrane protein that functions to protect against cadmium toxicity and may also have a role in osmoregulation to maintain salt balance in C. elegans. The fax gene of Drosophila was identified as a genetic modifier of Abelson (Abl) tyrosine kinase. The fax protein is localized in cellular membranes and is expressed in embryonic mesoderm and axons of the central nervous system. 75 -239379 cd03081 TRX_Fd_NuoE_FDH_gamma TRX-like [2Fe-2S] Ferredoxin (Fd) family, NADH:ubiquinone oxidoreductase (Nuo) subunit E subfamily, NAD-dependent formate dehydrogenase (FDH) gamma subunit; composed of proteins similar to the gamma subunit of NAD-linked FDH of Ralstonia eutropha, a soluble enzyme that catalyzes the irreversible oxidation of formate to carbon dioxide accompanied by the reduction of NAD+ to NADH. FDH is a heteromeric enzyme composed of four nonidentical subunits (alpha, beta, gamma and delta). The FDH gamma subunit is closely related to NuoE, which is part of a multisubunit complex (Nuo) catalyzing the electron transfer of NADH to quinone coupled with the transfer of protons across the membrane. Electrons are transferred from NADH to quinone through a chain of iron-sulfur clusters in Nuo, including the [2Fe-2S] cluster present in NuoE. Similarly, the FDH gamma subunit is hypothesized to be involved in an electron transport chain involving other FDH subunits, upon the oxidation of formate. 80 -239380 cd03082 TRX_Fd_NuoE_W_FDH_beta TRX-like [2Fe-2S] Ferredoxin (Fd) family, NADH:ubiquinone oxidoreductase (Nuo) subunit E family, Tungsten-containing formate dehydrogenase (W-FDH) beta subunit; composed of proteins similar to the W-FDH beta subunit of Methylobacterium extorquens. W-FDH is a heterodimeric NAD-dependent enzyme catalyzing the conversion of formate to carbon dioxide. The beta subunit is a fusion protein containing an N-terminal NuoE domain and a C-terminal NuoF domain. NuoE and NuoF are components of Nuo, a multisubunit complex catalyzing the electron transfer of NADH to quinone coupled with the transfer of protons across the membrane. Electrons are transferred from NADH to quinone through a chain of iron-sulfur clusters in Nuo, including the [2Fe-2S] cluster in NuoE and the [4Fe-4S] cluster in NuoF. In addition, NuoF is also the NADH- and FMN-binding subunit. Similarly, the beta subunit of W-FDH is most likely involved in the electron transport chain during the NAD-dependent oxidation of formate. 72 -239381 cd03083 TRX_Fd_NuoE_hoxF TRX-like [2Fe-2S] Ferredoxin (Fd) family, NADH:ubiquinone oxidoreductase (Nuo) subunit E subfamily, hoxF; composed of proteins similar to the NAD-reducing hydrogenase (hoxS) alpha subunit of Alcaligenes eutrophus H16. HoxS is a cytoplasmic hydrogenase catalyzing the oxidation of molecular hydrogen accompanied by the reduction of NAD. It is composed of four structural subunits encoded by the genes hoxF, hoxU, hoxY and hoxH. The hoxF protein (or alpha subunit) is a fusion protein containing an N-terminal NuoE-like domain and a C-terminal NuoF domain. NuoE and NuoF are components of Nuo, a multisubunit complex catalyzing the electron transfer of NADH to quinone coupled with the transfer of protons across the membrane. Electrons are transferred from NADH to quinone through a chain of iron-sulfur clusters in Nuo, including the [2Fe-2S] cluster in NuoE and the [4Fe-4S] cluster in NuoF. In addition, NuoF is also the NADH- and FMN-binding subunit. HoxF may be involved in the electron transport chain during the NAD-dependent oxidation of hydrogen through its NuoF domain. The NuoE-like domain of hoxF contains only one conserved cysteine in its putative active site, compared to four cysteines in NuoE, and may have lost the ability to bind [2Fe-2S] clusters. 80 -100086 cd03084 phosphohexomutase The alpha-D-phosphohexomutase superfamily includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this family include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). These enzymes play important and diverse roles in carbohydrate metabolism in organisms from bacteria to humans. Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 355 -100087 cd03085 PGM1 Phosphoglucomutase 1 (PGM1) catalyzes the bidirectional interconversion of glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P) via a glucose 1,6-diphosphate intermediate, an important metabolic step in prokaryotes and eukaryotes. In one direction, G-1-P produced from sucrose catabolism is converted to G-6-P, the first intermediate in glycolysis. In the other direction, conversion of G-6-P to G-1-P generates a substrate for synthesis of UDP-glucose which is required for synthesis of a variety of cellular constituents including cell wall polymers and glycoproteins. The PGM1 family also includes a non-enzymatic PGM-related protein (PGM-RP) thought to play a structural role in eukaryotes, as well as pp63/parafusin, a phosphoglycoprotein that plays an important role in calcium-regulated exocytosis in ciliated protozoans. PGM1 belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 548 -100088 cd03086 PGM3 PGM3 (phosphoglucomutase 3), also known as PAGM (phosphoacetylglucosamine mutase) and AGM1 (N-acetylglucosamine-phosphate mutase), is an essential enzyme found in eukaryotes that reversibly catalyzes the conversion of GlcNAc-6-phosphate into GlcNAc-1-phosphate as part of the UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthetic pathway. UDP-GlcNAc is an essential metabolite that serves as the biosynthetic precursor of many glycoproteins and mucopolysaccharides. AGM1 is a member of the alpha-D-phosphohexomutase superfamily, which catalyzes the intramolecular phosphoryl transfer of sugar substrates. The alpha-D-phosphohexomutases have four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 513 -100089 cd03087 PGM_like1 This archaeal PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 439 -100090 cd03088 ManB ManB is a bacterial phosphomannomutase (PMM) that catalyzes the conversion of mannose 6-phosphate to mannose-1-phosphate in the second of three steps in the GDP-mannose pathway, in which GDP-D-mannose is synthesized from fructose-6-phosphate. In Mycobacterium tuberculosis, the causative agent of tuberculosis, PMM is involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with host macrophage phagocytic receptors. ManB belongs to the the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 459 -100091 cd03089 PMM_PGM The phosphomannomutase/phosphoglucomutase (PMM/PGM) bifunctional enzyme catalyzes the reversible conversion of 1-phospho to 6-phospho-sugars (e.g. between mannose-1-phosphate and mannose-6-phosphate or glucose-1-phosphate and glucose-6-phosphate) via a bisphosphorylated sugar intermediate. The reaction involves two phosphoryl transfers, with an intervening 180 degree reorientation of the reaction intermediate during catalysis. Reorientation of the intermediate occurs without dissociation from the active site of the enzyme and is thus, a simple example of processivity, as defined by multiple rounds of catalysis without release of substrate. Glucose-6-phosphate and glucose-1-phosphate are known to be utilized for energy metabolism and cell surface construction, respectively. PMM/PGM belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the phosphoglucomutases (PGM1 and PGM2). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 443 -349762 cd03108 AdSS adenylosuccinate synthetase. Adenylosuccinate synthetase (AdSS) catalyzes the first step in the de novo biosynthesis of AMP. IMP and L-aspartate are conjugated in a two-step reaction accompanied by the hydrolysis of GTP to GDP in the presence of Mg2+. In the first step, the r-phosphate group of GTP is transferred to the 6-oxygen atom of IMP. An aspartate then displaces this 6-phosphate group to form the product adenylosuccinate. Because of its critical role in purine biosynthesis, AdSS is a target of antibiotics, herbicides and antitumor drugs. 316 -349763 cd03109 DTBS dethiobiotin synthetase. Dethiobiotin synthetase (DTBS) is the penultimate enzyme in the biotin biosynthesis pathway in Escherichia coli and other microorganisms. The enzyme catalyzes formation of the ureido ring of dethiobiotin from (7R,8S)-7,8-diaminononanoic acid (DAPA) and carbon dioxide. The enzyme utilizes carbon dioxide instead of hydrogen carbonate as substrate and is dependent on ATP and divalent metal ions as cofactors. 189 -349764 cd03110 SIMIBI_bact_arch bacterial and archaeal subfamily of SIMIBI. Uncharacterized bacterial and archaeal subfamily of SIMIBI superfamily. Proteins in this superfamily contain an ATP-binding domain and use energy from hydrolysis of ATP to transfer electron or ion. The specific function of this family is unknown. 246 -349765 cd03111 CpaE-like pilus assembly ATPase CpaE. This protein family consists of proteins similar to the cpaE protein of the Caulobacter pilus assembly and the orf4 protein of Actinobacillus pilus formation gene cluster. The function of these proteins are unkown. The Caulobacter pilus assembly contains 7 genes: pilA, cpaA, cpaB, cpaC, cpaD, cpaE and cpaF. These genes are clustered together on chromosome. 235 -349766 cd03112 CobW-like cobalamin synthesis protein CobW. The function of this protein family is unkown. The amino acid sequence of YjiA protein in E. coli contains several conserved motifs that characterizes it as a P-loop GTPase. YijA gene is among the genes significantly induced in response to DNA-damage caused by mitomycin. YijA gene is a homologue of the CobW gene which encodes the cobalamin synthesis protein/P47K. 198 -349767 cd03113 CTPS_N N-terminal domain of cytidine 5'-triphosphate synthase. Cytidine 5'-triphosphate synthase (CTPS) is a two-domain protein, which consists of an N-terminal synthetase domain and C-terminal glutaminase domain. The enzymes hydrolyze the amide bond of glutamine to ammonia and glutamate at the glutaminase domains and transfer nascent ammonia to the acceptor substrate at the synthetase domain to form an aminated product. 261 -349768 cd03114 MMAA-like methylmalonic aciduria associated protein. Methylmalonyl Co-A mutase-associated GTPase MeaB and its human homolog, methylmalonic aciduria associated protein (MMAA) are metallochaperones that function as a G-protein chaperone that assists AdoCbl cofactor delivery to the methylmalonyl-CoA mutase (MCM) and reactivation of the enzyme during catalysis. A member of the family, Escherichia coli ArgK, was previously thought to be a membrane ATPase which is required for transporting arginine, ornithine and lysine into the cells by the arginine and ornithine (AO system) and lysine, arginine and ornithine (LAO) transport systems. 252 -349769 cd03115 SRP_G_like GTPase domain similar to the signal recognition particle subunit 54. The signal recognition particle (SRP) mediates the transport to or across the plasma membrane in bacteria and the endoplasmic reticulum in eukaryotes. SRP recognizes N-terminal signal sequences of newly synthesized polypeptides at the ribosome. The SRP-polypeptide complex is then targeted to the membrane by an interaction between SRP and its cognated receptor (SR). In mammals, SRP consists of six protein subunits and a 7SL RNA. One of these subunits is a 54 kd protein (SRP54), which is a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 is a multidomain protein that consists of an N-terminal domain, followed by a central G (GTPase) domain and a C-terminal M domain. 193 -349770 cd03116 MobB molybdopterin-guanine dinucleotide biosynthesis protein B. Molybdenum is an essential trace element in the form of molybdenum cofactor (Moco) which is associated with the metabolism of nitrogen, carbon and sulfur by redox active enzymes. In Escherichia coli, the synthesis of Moco involves genes from several loci: moa, mob, mod, moe and mog. The mob locus contains mobA and mobB genes. MobB catalyzes the attachment of the guanine dinucleotide to molybdopterin. 157 -239391 cd03117 alpha_CA_IV_XV_like Carbonic anhydrase alpha, CA_IV, CA_XV, like isozymes. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidine residues. This subgroup, restricted to animals, contains isozyme IV and similar proteins such as mouse CA XV. Isozymes IV is attached to membranes via a glycosylphosphatidylinositol (GPI) tail. In mammals, Isozyme IV plays crucial roles in kidney and lung function, amongst others. This subgroup also contains the dual domain CA from the giant clam, Tridacna gigas. T. gigas CA plays a role in the movement of inorganic carbon from the surrounding seawater to the symbiotic algae found in the clam's tissues. CA XV is expressed in several species but not in humans or chimps. Similar to isozyme CA IV, CA XV attaches to membranes via a GPI tail. 234 -239392 cd03118 alpha_CA_V Carbonic anhydrase alpha, CA isozyme V_like subgroup. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidines. This vertebrate subgroup comprises isozyme V. CA V is the mitochondrial isozyme, which may play a role in gluconeogenesis and ureagenesis and possibly also in lipogenesis. 236 -239393 cd03119 alpha_CA_I_II_III_XIII Carbonic anhydrase alpha, isozymes I, II, and III and XIII. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidines. This vertebrate subgroup comprises isozymes I, II, and III, which are cytoplasmic enzymes. CA I, for example, is expressed in erythrocyes of many vertebrates; CA II is the most active cytosolic isozyme; while it is being expressed nearly ubiquitously, it comprises 95% of the renal carbonic anhydrase and is required for renal acidification; CA III has been implicated in protection from the damaging effect of oxidizing agents in hepatocytes. CAXIII may play important physiological roles in several organs. 259 -239394 cd03120 alpha_CARP_VIII Carbonic anhydrase alpha related protein, group VIII. Carbonic anhydrase related proteins (CARPs) are sequence similar to carbonic anhydrases. Carbonic anhydrases are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism. CARPs have lost conserved histidines involved in zinc binding and consequently their catalytic activity. CARP VIII may play roles in various biological processes of the central nervous system, and could be involved in protein-protein interactions. CARP VIII has been shown to bind inositol 1,4,5-triphosphate (IP3) receptor type I (IP3RI), reducing the affinity of the receptor for IP3. IP3RI is an intracellular IP3-gated Ca2+ channel located on intracellular Ca2+ stores. IP3RI converts IP3 signaling into Ca2+ signaling thereby participating in a variety of cell functions. 256 -239395 cd03121 alpha_CARP_X_XI_like Carbonic anhydrase alpha related protein: groups X, XI and related proteins. This subgroup contains carbonic anhydrase related proteins (CARPs) X and XI, which have been implicated in various biological processes of the central nervous system. CARPs are sequence similar to carbonic anhydrases. Carbonic anhydrases are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism. CARPs have lost conserved histidines involved in zinc binding and consequently their catalytic activity. CARP XI plays a role in the development of gastrointestinal stromal tumors. 256 -239396 cd03122 alpha_CARP_receptor_like Carbonic anhydrase alpha related protein, receptor_like subfamily. Carbonic anhydrase related proteins (CARPs) are sequence similar to carbonic anhydrases. Carbonic anhydrases are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism. CARPs have lost conserved histidines involved in zinc binding and consequently their catalytic activity. This sub-family of carbonic anhydrase-related domains found in tyrosine phosphatase receptors may play a role in cell adhesion. 253 -239397 cd03123 alpha_CA_VI_IX_XII_XIV Carbonic anhydrase alpha, isozymes VI, IX, XII and XIV. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Alpha CAs are mostly monomeric enzymes. The zinc ion is complexed by three histidine residues. This sub-family comprises the secreted CA VI, which is found in saliva, for example, and the membrane proteins CA IX, XII, and XIV. 248 -239398 cd03124 alpha_CA_prokaryotic_like Carbonic anhydrase alpha, prokaryotic-like subfamily. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidines. This sub-family includes bacterial carbonic anhydrase alpha, as well as plant enzymes such as tobacco nectarin III and yam dioscorin and, carbonic anhydrases from molluscs, such as nacrein, which are part of the organic matrix layer in shells. Other members of this family may be involved in maintaining pH balance, in facilitating transport of carbon dioxide or carbonic acid, or in sensing carbon dioxide levels in the environment. Dioscorin is the major storage protein of yam tubers and may play a role as an antioxidant. Tobacco Nectarin may play a role in the maintenace of pH and oxidative balance in nectar. Mollusc nacrein may participate in calcium carbonate crystal formation of the nacreous layer. This subfamily also includes three alpha carbonic anhydrases from Chlamydomonas reinhardtii (CAH 1-3). CAHs1-2 are localized in the periplasmic space. CAH1 faciliates the movement of carbon dioxide across the plasma membrane when the medium is alkaline. CAH3 is localized to the thylakoid lumen and provides CO2 to Rubisco. 216 -239399 cd03125 alpha_CA_VI Carbonic anhydrase alpha, isozyme VI. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidine residues. This sub-family comprises the secreted CA VI, which is found in saliva. 249 -239400 cd03126 alpha_CA_XII_XIV Carbonic anhydrase alpha, isozymes XII and XIV. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidine residues. This sub-family comprises the membrane proteins CA XII and XIV. 249 -239401 cd03127 tetraspanin_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL). Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. The tetraspanin family contains CD9, CD63, CD37, CD53, CD82, CD151, and CD81, amongst others. Tetraspanins are involved in diverse processes such as cell activation and proliferation, adhesion and motility, differentiation, cancer, and others. Their various functions may relate to their ability to act as molecular facilitators, grouping specific cell-surface proteins and affecting formation and stability of signaling complexes. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web", which may also include integrins. 90 -153222 cd03128 GAT_1 Type 1 glutamine amidotransferase (GATase1)-like domain. Type 1 glutamine amidotransferase (GATase1)-like domain. This group contains proteins similar to Class I glutamine amidotransferases, the intracellular PH1704 from Pyrococcus horikoshii, the C-terminal of the large catalase: Escherichia coli HP-II, Sinorhizobium meliloti Rm1021 ThuA, the A4 beta-galactosidase middle domain and peptidase E. The majority of proteins in this group have a reactive Cys found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. For Class I glutamine amidotransferases proteins which transfer ammonia from the amide side chain of glutamine to an acceptor substrate, this Cys forms a Cys-His-Glu catalytic triad in the active site. Glutamine amidotransferases activity can be found in a range of biosynthetic enzymes included in this cd: glutamine amidotransferase, formylglycinamide ribonucleotide, GMP synthetase, anthranilate synthase component II, glutamine-dependent carbamoyl phosphate synthase (CPSase), cytidine triphosphate synthetase, gamma-glutamyl hydrolase, imidazole glycerol phosphate synthase and, cobyric acid synthase. For Pyrococcus horikoshii PH1704, the Cys of the nucleophile elbow together with a different His and, a Glu from an adjacent monomer form a catalytic triad different from the typical GATase1 triad. Peptidase E is believed to be a serine peptidase having a Ser-His-Glu catalytic triad which differs from the Cys-His-Glu catalytic triad of typical GATase1 domains, by having a Ser in place of the reactive Cys at the nucleophile elbow. The E. coli HP-II C-terminal domain, S. meliloti Rm1021 ThuA and the A4 beta-galactosidase middle domain lack the catalytic triad typical GATaseI domains. GATase1-like domains can occur either as single polypeptides, as in Class I glutamine amidotransferases, or as domains in a much larger multifunctional synthase protein, such as CPSase. Peptidase E has a circular permutation in the common core of a typical GTAse1 domain. 92 -153223 cd03129 GAT1_Peptidase_E_like Type 1 glutamine amidotransferase (GATase1)-like domain found in peptidase E_like proteins. Type 1 glutamine amidotransferase (GATase1)-like domain found in peptidase E_like proteins. This group contains proteins similar to the aspartyl dipeptidases Salmonella typhimurium peptidase E and Xenopus laevis peptidase E and, extracellular cyanophycinases from Pseudomonas anguilliseptica BI (CphE) and Synechocystis sp. PCC 6803 CphB. In bacteria peptidase E is believed to play a role in degrading peptides generated by intracellular protein breakdown or imported into the cell as nutrient sources. Peptidase E uniquely hydrolyses only Asp-X dipeptides (where X is any amino acid), and one tripeptide Asp-Gly-Gly. Cyanophycinases are intracellular exopeptidases which hydrolyze the polymer cyanophycin (multi L-arginyl-poly-L-aspartic acid) to the dipeptide beta-Asp-Arg. Peptidase E and cyanophycinases are thought to have a Ser-His-Glu catalytic triad which differs from the Cys-His-Glu catalytic triad typical of GATase1 domains by having a Ser in place of the reactive Cys at the nucleophile elbow. Xenopus peptidase E is developmentally regulated in response to thyroid hormone and, it is thought to play a role in apoptosis during tail reabsorption. 210 -153224 cd03130 GATase1_CobB Type 1 glutamine amidotransferase (GATase1) domain found in Cobyrinic Acid a,c-Diamide Synthase. Type 1 glutamine amidotransferase (GATase1) domain found in Cobyrinic Acid a,c-Diamide Synthase. CobB plays a role in cobalamin biosythesis catalyzing the conversion of cobyrinic acid to cobyrinic acid a,c-diamide. CobB belongs to the triad family of amidotransferases. Two of the three residues of the catalytic triad that are involved in glutamine binding, hydrolysis and transfer of the resulting ammonia to the acceptor substrate in other triad aminodotransferases are conserved in CobB. 198 -153225 cd03131 GATase1_HTS Type 1 glutamine amidotransferase (GATase1)-like domain found in homoserine trans-succinylase (HTS). Type 1 glutamine amidotransferase (GATase1)-like domain found in homoserine trans-succinylase (HTS). HTS, the first enzyme in methionine biosynthesis in Escherichia coli, transfers a succinyl group from succinyl-CoA to homoserine forming succinyl homoserine. It has been suggested that the succinyl group of succinyl-CoA is initially transferred to an enzyme nucleophile before subsequent transfer to homoserine. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with GATase1 domains a reactive cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. It has been proposed that this cys is in the active site of the molecule. However, as succinyl has been found bound to a conserved lysine residue, this conserved cys may play a role in dimer formation. HTS activity is tightly regulated by several mechanisms including feedback inhibition and proteolysis. It represents a critical control point for cell growth and viability. 175 -153226 cd03132 GATase1_catalase Type 1 glutamine amidotransferase (GATase1)-like domain found in at the C-terminal of several large catalases. Type 1 glutamine amidotransferase (GATase1)-like domain found in at the C-terminal of several large catalases. Catalase catalyzes the dismutation of hydrogen peroxide (H2O2) to water and oxygen. This group includes the large catalases: Neurospora crassa Catalase-1 and Catalase-3 and, Escherichia coli HP-II. This GATase1-like domain has an essential role in HP-II catalase activity. However, it lacks enzymatic activity and the catalytic triad typical of GATase1 domains. Catalase-1 and -3 are homotetrameric, HP-II is homohexameric. It has been proposed that this domain may facilitate the folding and oligomerization process. The interface between this GATase1-like domain of HP-II and the core of the subunit forms part of a channel which provides access to the deeply buried catalase active sites of HPII. Catalase-1 is associated with non-growing cells; Catalase-3 is associated with growing conditions. HP-II is produced in stationary phase. Catalase-1 is induced by ethanol and heat shock. Catalase-3 is induced under stress conditions such a hydrogen peroxide, paraquat, cadmium, heat shock, uric acid and nitrate treatment. 142 -153227 cd03133 GATase1_ES1 Type 1 glutamine amidotransferase (GATase1)-like domain found in zebrafish ES1. Type 1 glutamine amidotransferase (GATase1)-like domain found in zebrafish ES1. This group includes, proteins similar to ES1, Escherichia coli enhancing lycopene biosynthesis protein 2, Azospirillum brasilense iaaC and, human HES1. The catalytic triad typical of GATase1domains is not conserved in this GATase1-like domain. However, in common with GATase1domains a reactive cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. Zebrafish ES1 is expressed specifically in adult photoreceptor cells and appears to be a cytoplasmic protein. A. brasilense iaaC is involved in controlling IAA biosynthesis. 213 -153228 cd03134 GATase1_PfpI_like A type 1 glutamine amidotransferase (GATase1)-like domain found in PfpI from Pyrococcus furiosus. A type 1 glutamine amidotransferase (GATase1)-like domain found in PfpI from Pyrococcus furiosus. This group includes proteins similar to PfpI from P. furiosus. and PH1704 from Pyrococcus horikoshii. These enzymes are ATP-independent intracellular proteases and may hydrolyze small peptides to provide a nutritional source. Only Cys of the catalytic triad typical of GATase1 domains is conserved in this group. This Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. For PH1704, it is believed that this Cys together with a different His in one monomer and Glu (from an adjacent monomer) forms a different catalytic triad from the typical GATase1domain. PfpI is homooligomeric. Protease activity is only found for oligomeric forms of PH1704. 165 -153229 cd03135 GATase1_DJ-1 Type 1 glutamine amidotransferase (GATase1)-like domain found in Human DJ-1. Type 1 glutamine amidotransferase (GATase1)-like domain found in Human DJ-1. DJ-1 is involved in multiple physiological processes including cancer, Parkinson's disease and male fertility. It is unclear how DJ-1 functions in these. DJ-1 has been shown to possess chaperone activity. DJ-1 is preferentially expressed in the testis and moderately in other tissues; it is induced together with genes involved in oxidative stress response. The Drosophila homologue (DJ-1A) plays an essential role in oxidative stress response and neuronal maintenance. Inhibition of DJ-1A function through RNAi, results in the cellular accumulation of reactive oxygen species, organismal hypersensitivity to oxidative stress, and dysfunction and degeneration of dopaminergic and photoreceptor neurons. DJ-1 has lacks enzymatic activity and the catalytic triad of typical GATase1 domains, however it does contain the highly conserved cysteine located at the nucelophile elbow region typical of these domains. This cysteine been proposed to be a site of regulation of DJ-1 activity by oxidation. DJ-1 is a dimeric enzyme. 163 -153230 cd03136 GATase1_AraC_ArgR_like AraC transcriptional regulators having an N-terminal Type 1 glutamine amidotransferase (GATase1)-like domain. A subgroup of AraC transcriptional regulators having an N-terminal Type 1 glutamine amidotransferase (GATase1)-like domain. This group contains proteins similar to the Pseudomonas aeruginosa ArgR regulator. ArgR functions in the control of expression of certain genes of arginine biosynthesis and catabolism. AraC regulators are defined by a AraC-type helix-turn-helix DNA binding domain at their C-terminal. AraC family transcriptional regulators are widespread among bacteria and are involved in regulating diverse and important biological functions, including carbon metabolism, stress responses and virulence in different microorganisms. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with typical GATase1domains a reactive cys residue is found in some sequences in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 185 -153231 cd03137 GATase1_AraC_1 AraC transcriptional regulators having a Type 1 glutamine amidotransferase (GATase1)-like domain. A subgroup of AraC transcriptional regulators having a Type 1 glutamine amidotransferase (GATase1)-like domain. AraC regulators are defined by a AraC-type helix-turn-helix DNA binding domain at their C-terminal. AraC family transcriptional regulators are widespread among bacteria and are involved in regulating diverse and important biological functions, including carbon metabolism, stress responses and virulence in different microorganisms. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with typical GATase1domains a reactive cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 187 -153232 cd03138 GATase1_AraC_2 AraC transcriptional regulators having a Type 1 glutamine amidotransferase (GATase1)-like domain. A subgroup of AraC transcriptional regulators having a Type 1 glutamine amidotransferase (GATase1)-like domain. AraC regulators are defined by a AraC-type helix-turn-helix DNA binding domain at their C-terminal. AraC family transcriptional regulators are widespread among bacteria and are involved in regulating diverse and important biological functions, including carbon metabolism, stress responses and virulence in different microorganisms. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with typical GATase1domains a reactive cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 195 -153233 cd03139 GATase1_PfpI_2 Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. PfpI is an ATP-independent intracellular proteases which may hydrolyze small peptides to provide a nutritional source. Only Cys of the catalytic triad typical of GATase1 domains is conserved in this group. This Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 183 -153234 cd03140 GATase1_PfpI_3 Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. PfpI is an ATP-independent intracellular proteases which may hydrolyze small peptides to provide a nutritional source. Only Cys of the catalytic triad typical of GATase1 domains is conserved in this group. This Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 170 -153235 cd03141 GATase1_Hsp31_like Type 1 glutamine amidotransferase (GATase1)-like domain found in proteins similar to Escherichia coli Hsp31 protein. Type 1 glutamine amidotransferase (GATase1)-like domain found in proteins similar to Escherichia coli Hsp31 protein (EcHsp31). This group includes EcHsp31 and Saccharomyces cerevisiae Ydr533c protein. EcHsp31 has chaperone activity. Ydr533c is upregulated in response to various stress conditions along with the heat shock family. EcHsp31 coordinates a metal ion using a 2-His-1-carboxylate motif present in various ions that use iron as a cofactor such as Carboxypeptidase A. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with a typical GATase1 domain, a reactive Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. For EcHsp31, this Cys together with a different His and, an Asp (rather than a Glu) residue form a different catalytic triad from the typical GATase1 domain. For Ydr533c a catalytic triad forms from the conserved Cys together with a different His and Glu from that of the typical GATase1domain. Ydr533c protein and EcHsp31 are homodimers. 221 -153236 cd03142 GATase1_ThuA Type 1 glutamine amidotransferase (GATase1)-like domain found in Sinorhizobium meliloti Rm1021 ThuA (SmThuA). Type 1 glutamine amidotransferase (GATase1)-like domain found in Sinorhizobium meliloti Rm1021 ThuA (SmThuA). This group includes proteins similar to SmThuA which plays a role in a major pathway for trehalose catabolism. SmThuA is induced by trehalose but not by related structurally similar disaccharides like sucrose or maltose. Proteins in this group lack the catalytic triad of typical GATase1 domains: a His replaces the reactive Cys found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. S. meliloti Rm1021 thuA mutants are impaired in competitive colonization of Medicago sativa roots but are more competitive than the wild-type Rml021 in infecting alfalfa roots and forming nitrogen-fixing nodules. 215 -153237 cd03143 A4_beta-galactosidase_middle_domain A4 beta-galactosidase middle domain: a type 1 glutamine amidotransferase (GATase1)-like domain. A4 beta-galactosidase middle domain: a type 1 glutamine amidotransferase (GATase1)-like domain. This group includes proteins similar to beta-galactosidase from Thermus thermophilus. Beta-Galactosidase hydrolyzes the beta-1,4-D-galactosidic linkage of lactose, as well as those of related chromogens, o-nitrophenyl-beta-D-galactopyranoside (ONP-Gal) and 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). This A4 beta-galactosidase middle domain lacks the catalytic triad of typical GATase1 domains. The reactive Cys residue found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow in typical GATase1 domains is not conserved in this group. 154 -153238 cd03144 GATase1_ScBLP_like Type 1 glutamine amidotransferase (GATase1)-like domain found in proteins similar to Saccharomyces cerevisiae biotin-apoprotein ligase (ScBLP). Type 1 glutamine amidotransferase (GATase1)-like domain found in proteins similar to Saccharomyces cerevisiae biotin-apoprotein ligase (ScBLP). Biotin-apoprotein ligase modifies proteins by covalently attaching biotin. ScBLP is known to biotinylate acety-CoA carboxylase and pyruvate carboxylase. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, the Cys residue found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow in a typical GATase1 domain is conserved. 114 -153239 cd03145 GAT1_cyanophycinase Type 1 glutamine amidotransferase (GATase1)-like domain found in cyanophycinase. Type 1 glutamine amidotransferase (GATase1)-like domain found in cyanophycinase. This group contains proteins similar to the extracellular cyanophycinases from Pseudomonas anguilliseptica BI (CphE) and Synechocystis sp. PCC 6803 CphB. Cyanophycinases are intracellular exopeptidases which hydrolyze the polymer cyanophycin (multi L-arginyl-poly-L-aspartic acid) to the dipeptide beta-Asp-Arg. Cyanophycinase is believed to be a serine-type exopeptidase having a Ser-His-Glu catalytic triad which differs from the Cys-His-Glu catalytic triad typical of GATase1 domains by having a Ser in place of the reactive Cys at the nucleophile elbow. 217 -153240 cd03146 GAT1_Peptidase_E Type 1 glutamine amidotransferase (GATase1)-like domain found in peptidase E. Type 1 glutamine amidotransferase (GATase1)-like domain found in peptidase E. This group contains proteins similar to the aspartyl dipeptidases Salmonella typhimurium peptidase E and Xenopus laevis peptidase E. In bacteria peptidase E is believed to play a role in degrading peptides generated by intracellular protein breakdown or imported into the cell as nutrient sources. Peptidase E uniquely hydrolyses only Asp-X dipeptides (where X is any amino acid), and one tripeptide Asp-Gly-Gly. Peptidase E is believed to be a serine peptidase having a Ser-His-Glu catalytic triad which differs from the Cys-His-Glu catalytic triad typical of GATase1 domains by having a Ser in place of the reactive Cys at the nucleophile elbow. Xenopus PepE is developmentally regulated in response to thyroid hormone and, it is thought to play a role in apoptosis during tail reabsorption. 212 -153241 cd03147 GATase1_Ydr533c_like Type 1 glutamine amidotransferase (GATase1)-like domain found in Saccharomyces cerevisiae Ydr533c protein. Type 1 glutamine amidotransferase (GATase1)-like domain found in Saccharomyces cerevisiae Ydr533c protein. This group includes proteins similar to S. cerevisiae Ydr533c. Ydr533c is upregulated in response to various stress conditions along with the heat shock family. The catalytic triad typical of GATase1domains is not conserved in this GATase1-like domain. However, in common with a typical GATase1domain, a reactive Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. This Cys together with a different His and Glu residue form a different catalytic triad from the typical GATase1domain. Ydr533c protein is a homodimer. 231 -153242 cd03148 GATase1_EcHsp31_like Type 1 glutamine amidotransferase (GATase1)-like domain found in Escherichia coli Hsp31 protein (EcHsp31). Type 1 glutamine amidotransferase (GATase1)-like domain found in Escherichia coli Hsp31 protein (EcHsp31). This group includes proteins similar to EcHsp31. EcHsp31 has chaperone activity. EcHsp31 coordinates a metal ion using a 2-His-1-carboxylate motif present in various ions that use iron as a cofactor such as Carboxypeptidase A. The catalytic triad typical of GATase1 domains is not conserved in this GATase1-like domain. However, in common with a typical GATase1domain, a reactive Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. This Cys together with a different His and, an Asp (rather than a Glu) residue form a different catalytic triad from the typical GATase1 domain. EcHsp31 is a homodimer. 232 -239402 cd03149 alpha_CA_VII Carbonic anhydrase alpha, CA isozyme VII_like subgroup. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. Most alpha CAs are monomeric enzymes. The zinc ion is complexed by three histidines. This vertebrate subgroup comprises isozyme VII. CA VII is the most active cytosolic enzyme after CA II, and may be highly expressed in the brain. Human CA VII may be a target of antiepileptic sulfonamides/sulfamates. 236 -239403 cd03150 alpha_CA_IX Carbonic anhydrase alpha, isozyme IX. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Alpha CAs are strictly monomeric enzymes. The zinc ion is complexed by three histidine residues. This sub-family comprises the membrane protein CA IX. CA IX is functionally implicated in tumor growth and survival. CA IX is mainly present in solid tumors and its expression in normal tissues is limited to the mucosa of alimentary tract. CA IX is a transmembrane protein with two extracellular domains: carbonic anhydrase and, a proteoglycan-like segment mediating cell-cell adhesion. There is evidence for an involvement of the MAPK pathway in the regulation of CA9 expression. 247 -239404 cd03151 CD81_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD81_like subfamily. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD81, also referred to as Target for anti-proliferative antigen-1, TAPA-1, is found in virtually all tissues, may be involved in regulation of cell growth and has been described as a member of the CD19/CD21/Leu-13 signal transduction complex identified on B cells (the B-Cell co-receptor). 84 -239405 cd03152 CD9_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD9 family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD9 is found in virtually all tissues and is potentially involved in developmental processes. It associates with the tetraspanins CD81 and CD63, as well as with some integrin, and has been shown to be involved in a variety of activation, adhesion, and cell motility functions, as well as cell-cell interactions - such as during fertilization. 84 -239406 cd03153 PHEMX_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), PHEMX_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". Phemx (pan hematopoietic expression) or TSSC6 may play a role in hematopoietic cell function. 87 -239407 cd03154 TM4SF3_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), TM4SF3_like subfamily. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contaions transmembrane 4 superfamily 3 (TM4SF3) or D6.1a and related proteins. D6.1a associates with alpha6beta4 integrin and supports cell motility, it has been ascribed a role in tumor progression and metastasis. 100 -239408 cd03155 CD151_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD151_Like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD151strongly associates with integrins, especially alpha3beta1, alpha6beta1, alpha7beta1, and alpha6beta4; it may play roles in cell-cell adhesion, cell migration, platelet aggregation, and angiogenesis. For example, CD151 is is involved in regulation of migration of neutrophils, endothelial cells, and various tumor cell lines; it associates specifically with laminin-binding integrins and strengthens alpha6beta1 integrin-mediated adhesion to laminin-1; CD151 also specifically attenuates adhesion-dependent activation of Ras and correspdonding downstream effects, and is involved in epithelial cell-cell adhesion as a modulator of PKC- and Cdc42-dependent actin cytoskeletal reorganization. 110 -239409 cd03156 uroplakin_I_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), uroplakin_I_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". Uroplakin Ia and Ib are components of the 16nm protein particles, which are packed hexagonally to form 2D crystals of asymmetric unit membranes, and cover the apical surface of mammalian urothelium, contributing to the urinay bladder's permeability barrier function. Uroplakins Ia and Ib are maturation facilitators. They trigger conformational changes in their single-transmembrane-domain binding partner proteins uroplakin II and IIIa, which in turn may lead to ER-exit, stabilization, and cell-surface expression. 114 -239410 cd03157 TM4SF12_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), TM4SF12_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This sub-family contains proteins similar to human transmembrane 4 superfamily member 12 (TM4SF12). 103 -239411 cd03158 penumbra_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), penumbra_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". Human Penumbra exhibits growth-suppressive activity in vitro and has been associated with myeloid malignancies. 119 -239412 cd03159 TM4SF9_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), TM4SF9_like subfamily. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contaions transmembrane 4 superfamily 9 (TM4SF9) or Tetraspanin-5 and related proteins. TM4SF9 is strongly expressed witin the central nervous system, and expression levels appear to correlate with differentiation status of particular neurons, hinting at a role in neuronal maturation. 121 -239413 cd03160 CD37_CD82_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD37_CD82_Like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD37 is a leukocyte-specific protein, and its restricted expression pattern suggests a role in the immune system. A regulatory role in T-cell proliferation has been suggested. CD82 is a metastasis suppressor implicated in biological processes ranging from fusion, adhesion, and migration to apoptosis and alterations of cell morphology. 117 -239414 cd03161 TM4SF2_6_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), TM4SF2_6_like subfamily. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contaions transmembrane 4 superfamily 2 (TM4SF2) or Tspan-7, transmembrane 4 superfamily 6 (TM4SF6) or Tspan-6, and related proteins. TM4SF2 has been identified as involved in some forms of X-linked mental retardation. 104 -239415 cd03162 peripherin_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), peripherin_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". Peripherin, or RDS (retinal degradation slow) is a glycoprotein expressed in vertebrate photoreceptors, located at the rim of the disc membranes of the photoreceptor outer segments. RDS is thought to play a major role in folding and stacking of the discs. Mutations in RDS have been linked to hereditary retinal dystrophies, which typically exhibit a wide phenotypic spectrum. 143 -239416 cd03163 TM4SF8_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), TM4SF8_like subfamily. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contaions transmembrane 4 superfamily 8 (TM4SF8) or Tspan-3 and related proteins. Tspan-3 has been reported to form a complex with integrin beta1 and OSP/claudin-11, which may be involved in oligodendrocyte proliferation and migration. 105 -239417 cd03164 CD53_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD53_Like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD53 is a tetraspanin of the lymphoid-myeloid lineage and has been implicated in apoptosis protection. It associates with integrin alpha4beta1. Some of the cellular responses modulated by CD53 may be mediated by JNK activation and/or via the AKT pathway. 86 -239418 cd03165 NET-5_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), NET-5_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This sub-family contains proteins similar to human tetraspan NET-5. 98 -239419 cd03166 CD63_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), CD63 family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". CD63 is present in platelets, neutrophils, and endothelial cells, amongst others. In platelets it associates with the integrin alphaIIBbeta3 and may modulate alphaIIbbeta3-dependent cytoskeletal reorganization. 99 -239420 cd03167 oculospanin_like_LEL Tetraspanin, extracellular domain or large extracellular loop (LEL), oculospanin_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contains sequences similar to oculospanin, which is found to be expressed in retinal pigment epithelium, iris, ciliary body, and retinal ganglion cells. 120 -153243 cd03169 GATase1_PfpI_1 Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. Type 1 glutamine amidotransferase (GATase1)-like domain found in a subgroup of proteins similar to PfpI from Pyrococcus furiosus. PfpI is an ATP-independent intracellular proteases which may hydrolyze small peptides to provide a nutritional source. Only Cys of the catalytic triad typical of GATase1 domains is conserved in this group. This Cys residue is found in the sharp turn between a beta strand and an alpha helix termed the nucleophile elbow. 180 -239421 cd03171 SORL_Dfx_classI Superoxide reductase-like (SORL) domain, class I; SORL-domains are present in a family of mononuclear non-heme iron proteins that includes superoxide reductase and desulfoferrodoxin. Superoxide reductase-like proteins scavenge superoxide anion radicals as a defense mechanism against reactive oxygen species and are found in anaerobic bacteria and archeae, and microaerophilic Treponema pallidum. Desulfoferrodoxin (class I) is a homodimeric protein, with each protomer comprised of two domains, the N-terminal desulforedoxin (DSRD) domain and C-terminal SORL domain. Each domain has a distinct iron center: the DSRD iron center I, Fe(S-Cys)4; and the SORL iron center II, Fe[His4Cys(Glu)]. 78 -239422 cd03172 SORL_classII Superoxide reductase-like (SORL) domain, class II; SORL-domains are present in a family of mononuclear non-heme iron proteins that includes superoxide reductase and desulfoferrodoxin. Superoxide reductase-like proteins scavenge superoxide anion radicals as a defense mechanism against reactive oxygen species and are found in anaerobic bacteria and archeae, and microaerophilic Treponema pallidum. The SORL domain contains an active iron site, Fe[His4Cys(Glu)], which in the reduced state loses the glutamate ligand. Superoxide reductase (class II) forms a homotetramer with four Fe[His4Cys(Glu)] centers. 104 -176264 cd03173 DUF619-like DUF619 domain of various N-acetylglutamate Kinases and N-acetylglutamate Synthases. DUF619-like: This family includes the DUF619 domain of various N-acetylglutamate synthases (NAGS) of the urea cycle found in humans and fish, the DUF619 domain of the NAGS of the fungal arginine-biosynthetic pathway (FABP), as well as the DUF619 domain present C-terminal of a NAG kinase-like domain in a limited number of predicted NAGSs found in bacteria and Dictyostelium. Ureogenic NAGS is a mitochondrial enzyme catalyzing the formation of NAG from acetylcoenzyme A and L-glutamate. NAGS is an essential allosteric activator of carbamylphosphate synthase I, the first and rate limiting enzyme of the urea cycle. Domain architecture of ureogenic and fungal NAGS consists of an N-terminal NAG kinase-like domain and a C-terminal DUF619 domain. This subgroup also includes the DUF619 domain of the FABP N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the second reaction of arginine biosynthesis; the phosphorylation of the gamma-carboxyl group of NAG to produce N-acetylglutamylphosphate (NAGP) which is subsequently converted to ornithine in two more steps. The nuclear-encoded, mitochondrial polyprotein precursor (ARG5,6) consists of an N-terminal NAGK (ArgB) domain, a central DUF619 domain, and a C-terminal reductase domain (ArgC, N-acetylglutamate phosphate reductase). The DUF619 domain function has yet to be characterized. 98 -163674 cd03174 DRE_TIM_metallolyase DRE-TIM metallolyase superfamily. The DRE-TIM metallolyase superfamily includes 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 265 -198287 cd03177 GST_C_Delta_Epsilon C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress. 117 -198288 cd03178 GST_C_Ure2p_like C-terminal, alpha helical domain of Ure2p and related Glutathione S-transferase-like proteins. Glutathione S-transferase (GST) C-terminal domain family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p, YfcG and YghU from Escherichia coli, and related GST-like proteins. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The N-terminal thioredoxin-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. YfcG and YghU are two of the nine GST homologs in the genome of Escherichia coli. They display very low or no GSH transferase, but show very good disulfide bond oxidoreductase activity. YghU also shows modest organic hydroperoxide reductase activity. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 110 -198289 cd03180 GST_C_2 C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 2; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 110 -198290 cd03181 GST_C_EF1Bgamma_like Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of Elongation Factor 1B and similar proteins. Glutathione S-transferase (GST) C-terminal domain family, Gamma subunit of Elongation Factor 1B (EF1Bgamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds to membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Also included in this subfamily is the GST_C-like domain at the N-terminus of human valyl-tRNA synthetase (ValRS) and its homologs. Metazoan ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. 123 -198291 cd03182 GST_C_GTT2_like C-terminal, alpha helical domain of GTT2-like Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the Saccharomyces cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. 116 -198292 cd03183 GST_C_Theta C-terminal, alpha helical domain of Class Theta Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenation of dihalomethanes. This is an essential process in methylotrophic bacteria to enable them to use chloromethane and DCM as sole carbon and energy sources. The presence of polymorphisms in human GSTT1-1 and its relationship to the onset of diseases including cancer is the subject of many studies. Human GSTT2-2 exhibits a highly specific sulfatase activity, catalyzing the cleavage of sulfate ions from aralkyl sufate esters, but not from the aryl or alkyl sulfate esters. 126 -198293 cd03184 GST_C_Omega C-terminal, alpha helical domain of Class Omega Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega GST genes may be associated with the development of some types of cancer and the age-at-onset of both Alzheimer's and Parkinson's diseases. 124 -198294 cd03185 GST_C_Tau C-terminal, alpha helical domain of Class Tau Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin, responses to soil stresses and responses to auxin and cytokinin hormones. 127 -198295 cd03186 GST_C_SspA C-terminal, alpha helical domain of Stringent starvation protein A. Glutathione S-transferase (GST) C-terminal domain family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis. 108 -198296 cd03187 GST_C_Phi C-terminal, alpha helical domain of Class Phi Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. 118 -198297 cd03188 GST_C_Beta C-terminal, alpha helical domain of Class Beta Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they are involved in the protection against oxidative stress and are able to bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs, contributing to antibiotic resistance. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. One member of this subfamily is a GST from Burkholderia xenovorans LB400 that is encoded by the bphK gene and is part of the biphenyl catabolic pathway. 113 -198298 cd03189 GST_C_GTT1_like C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. 123 -198299 cd03190 GST_C_Omega_like C-terminal, alpha helical domain of Class Omega-like Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae Omega-like subfamily; composed of three Saccharomyces cerevisiae GST omega-like (Gto) proteins, Gto1p, Gto2p (also known as Extracellular mutant protein 4 or ECM4p), and Gto3p, as well as similar uncharacterized proteins from fungi and bacteria. The three Saccharomyces cerevisiae Gto proteins are omega-class GSTs with low or no GST activity against standard substrates, but have glutaredoxin/thiol oxidoreductase and dehydroascorbate reductase activity through a single cysteine residue in the active site. Gto1p is located in the peroxisomes while Gto2p and Gto3p are cytosolic. The gene encoding Gto2p, called ECM4, is involved in cell surface biosynthesis and architecture. S. cerevisiae ECM4 mutants show increased amounts of the cell wall hexose, N-acetylglucosamine. More recently, global gene expression analysis shows that ECM4 is upregulated during genotoxic conditions and together with the expression profiles of 18 other genes could potentially differentiate between genotoxic and cytotoxic insults in yeast. 142 -198300 cd03191 GST_C_Zeta C-terminal, alpha helical domain of Class Zeta Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates, but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid. 121 -198301 cd03192 GST_C_Sigma_like C-terminal, alpha helical domain of Class Sigma-like Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi, and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation, and mediation of allergy and inflammation. Other class Sigma-like members include the class II insect GSTs, S-crystallins from cephalopods, nematode-specific GSTs, and 28-kDa GSTs from parasitic flatworms. Drosophila GST2 is associated with indirect flight muscle and exhibits preference for catalyzing GSH conjugation to lipid peroxidation products, indicating an anti-oxidant role. S-crystallin constitutes the major lens protein in cephalopod eyes and is responsible for lens transparency and proper refractive index. The 28-kDa GST from Schistosoma is a multifunctional enzyme, exhibiting GSH transferase, GSH peroxidase, and PGD2 synthase activities, and may play an important role in host-parasite interactions. Members also include novel GSTs from the fungus Cunninghamella elegans, designated as class Gamma, and from the protozoan Blepharisma japonicum, described as a light-inducible GST. 104 -198302 cd03193 GST_C_Metaxin C-terminal, alpha helical domain of Metaxin and related proteins. Glutathione S-transferase (GST) C-terminal domain family, Metaxin subfamily; composed of metaxins and related proteins. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. Metaxin 2 binds to metaxin 1 and may also play a role in protein translocation into the mitochondria. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken, and mammals. Sequence analysis suggests that all three metaxins share a common ancestry and that they possess similarity to GSTs. Also included in the subfamily are uncharacterized proteins with similarity to metaxins, including a novel GST from Rhodococcus with toluene o-monooxygenase and glutamylcysteine synthetase activities. Other members are the cadmium-inducible lysosomal protein CDR-1 and its homologs from C. elegans, and the failed axon connections (fax) protein from Drosophila. CDR-1 is an integral membrane protein that functions to protect against cadmium toxicity and may also have a role in osmoregulation to maintain salt balance in C. elegans. The fax gene of Drosophila was identified as a genetic modifier of Abelson (Abl) tyrosine kinase. The fax protein is localized in cellular membranes and is expressed in embryonic mesoderm and axons of the central nervous system. 88 -198303 cd03194 GST_C_3 C-terminal, alpha helical domain of an unknown subfamily 3 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 3; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 115 -198304 cd03195 GST_C_4 C-terminal, alpha helical domain of an unknown subfamily 4 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 114 -198305 cd03196 GST_C_5 C-terminal, alpha helical domain of an unknown subfamily 5 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 5; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 115 -198306 cd03197 GST_C_mPGES2 C-terminal, alpha helical domain of microsomal Prostaglandin E synthase Type 2. Glutathione S-transferase (GST) C-terminal domain family, microsomal Prostaglandin E synthase Type 2 (mPGES2) subfamily; mPGES2 is a membrane-anchored dimeric protein containing a CXXC motif which catalyzes the isomerization of PGH2 to PGE2. Unlike cytosolic PGE synthase (cPGES) and microsomal PGES Type 1 (mPGES1), mPGES2 does not require glutathione (GSH) for its activity, although its catalytic rate is increased two- to four-fold in the presence of DTT, GSH, or other thiol compounds. PGE2 is widely distributed in various tissues and is implicated in the sleep/wake cycle, relaxation/contraction of smooth muscle, excretion of sodium ions, maintenance of body temperature, and mediation of inflammation. mPGES2 contains an N-terminal hydrophobic domain which is membrane associated and a C-terminal soluble domain with a GST-like structure. The C-terminal GST-like domain contains two structural domains, an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST active site is located in a cleft between the two structural domains. 149 -198307 cd03198 GST_C_CLIC C-terminal, alpha helical domain of Chloride Intracellular Channels. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLICs (CLIC1-6 in vertebrates), p64, parchorin, and similar proteins. They are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. Biochemical studies of the Caenorhabditis elegans homolog, EXC-4, show that the membrane localization domain is present in the N-terminal part of the protein. CLICs display structural plasticity, with CLIC1 adopting two soluble conformations. The structure of soluble human CLIC1 reveals that it is monomeric and adopts a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. The CLIC1 dimer bears no similarity to GST dimers. The redox-controlled structural rearrangement exposes a large hydrophobic surface, which is masked by dimerization in vitro. In vivo, this surface may represent the docking interface of CLIC1 in its membrane-bound state. The two cysteines in CLIC1 that form the disulfide bond in oxidizing conditions are essential for dimerization and chloride channel activity, however, in other subfamily members, the second cysteine is not conserved. 119 -198308 cd03199 GST_C_GRX2 C-terminal, alpha helical domain of Glutaredoxin 2. Glutathione S-transferase (GST) C-terminal domain family, Glutaredoxin 2 (GRX2) subfamily; composed of Escherichia coli GRX2 and similar proteins. Escherichia coli GRX2 is an atypical GRX with a molecular mass of about 24kD (most GRXs range from 9-12kD). It adopts a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. It contains a redox active CXXC motif located in the N-terminal domain, but is not able to reduce ribonucleotide reductase like other GRXs. However, it catalyzes GSH-dependent protein disulfide reduction of other substrates efficiently. GRX2 is thought to function primarily in catalyzing the reversible glutathionylation of proteins in cellular redox regulation including stress responses. 128 -198309 cd03200 GST_C_AIMP2 Glutathione S-transferase C-terminal-like, alpha helical domain of Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein 2. Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein (AIMP) 2 subfamily; AIMPs are non-enzymatic cofactors that play critical roles in the assembly and formation of a macromolecular multi-tRNA synthetase protein complex that functions as a molecular hub to coordinate protein synthesis. There are three AIMPs, named AIMP1-3, which play diverse regulatory roles. AIMP2, also called p38 or JTV-1, contains a C-terminal domain with similarity to the C-terminal alpha helical domain of GSTs. It plays an important role in the control of cell fate via antiproliferative (by enhancing the TGF-beta signal) and proapoptotic (activation of p53 and TNF-alpha) activities. Its roles in the control of cell proliferation and death suggest that it is a potent tumor suppressor. AIMP2 heterozygous mice with lower than normal expression of AIMP2 show high susceptibility to tumorigenesis. AIMP2 is also a substrate of Parkin, an E3 ubiquitin ligase that is involved in the ubiquitylation and proteasomal degradation of its substrates. Mutations in the Parkin gene is found in 50% of patients with autosomal-recessive early-onset parkinsonism. The accumulation of AIMP2, due to impaired Parkin function, may play a role in the pathogenesis of Parkinson's disease. 96 -198310 cd03201 GST_C_DHAR C-terminal, alpha helical domain of Dehydroascorbate Reductase. Glutathione S-transferase (GST) C-terminal domain family, Dehydroascorbate Reductase (DHAR) subfamily; composed of plant-specific DHARs, which are monomeric enzymes catalyzing the reduction of DHA into ascorbic acid (AsA) using glutathione as the reductant. DHAR allows plants to recycle oxidized AsA before it is lost. AsA serves as a cofactor of violaxanthin de-epoxidase in the xanthophyll cycle and as an antioxidant in the detoxification of reactive oxygen species. Because AsA is the major reductant in plants, DHAR serves to regulate their redox state. It has been suggested that a significant portion of DHAR activity is plastidic, acting to reduce the large amounts of ascorbate oxidized during hydrogen peroxide scavenging by ascorbate peroxidase. DHAR contains a conserved cysteine in its active site and in addition to its reductase activity, shows thiol transferase activity similar to glutaredoxins. 121 -198311 cd03202 GST_C_etherase_LigE C-terminal, alpha helical domain of Beta etherase LigE. Glutathione S-transferase (GST) C-terminal domain family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. 124 -198312 cd03203 GST_C_Lambda C-terminal, alpha helical domain of Class Lambda Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Lambda subfamily; composed of plant-specific class Lambda GSTs. GSTs are cytosolic, usually dimeric, proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Lambda subfamily was recently discovered, together with dehydroascorbate reductases (DHARs), as two outlying groups of the GST superfamily in Arabidopsis thaliana, which contain conserved active site cysteines. Characterization of recombinant A. thaliana proteins show that Lambda class GSTs are monomeric, similar to DHARs. They do not exhibit GSH conjugating or DHAR activities, but are active as thiol transferases, similar to glutaredoxins. Members of this subfamily were originally identified as encoded proteins of the In2-1 gene, which can be induced by treatment with herbicide safeners. 120 -198313 cd03204 GST_C_GDAP1_like C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like proteins. Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1)-like subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. 111 -198314 cd03205 GST_C_6 C-terminal, alpha helical domain of an unknown subfamily 6 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 6; composed of uncharacterized bacterial proteins with similarity to GSTs, including Pseudomonas fluorescens GST with a known three-dimensional structure. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Though the three-dimensional structure of Pseudomonas fluorescens GST has been determined, there is no information on its functional characterization. 109 -198315 cd03206 GST_C_7 C-terminal, alpha helical domain of an unknown subfamily 7 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 7; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 100 -198316 cd03207 GST_C_8 C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 8; composed of Agrobacterium tumefaciens GST and other uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The three-dimensional structure of Agrobacterium tumefaciens GST has been determined but there is no information on its functional characterization. 101 -198317 cd03208 GST_C_Alpha C-terminal, alpha helical domain of Class Alpha Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Alpha subfamily is composed of vertebrate GSTs which can form homodimer and heterodimers. There are at least six types of class Alpha GST subunits in rats, four of which have human counterparts, resulting in many possible isoenzymes with different activities, tissue distribution and substrate specificities. Human GSTA1-1 and GSTA2-2 show high GSH peroxidase activity. GSTA3-3 catalyzes the isomerization of intermediates in steroid hormone biosynthesis. GSTA4-4 preferentially catalyzes the GSH conjugation of alkenals. 135 -198318 cd03209 GST_C_Mu C-terminal, alpha helical domain of Class Mu Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Mu subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Mu subfamily is composed of eukaryotic GSTs. In rats, at least six distinct class Mu subunits have been identified, with homologous genes in humans for five of these subunits. Class Mu GSTs can form homodimers and heterodimers, giving a large number of possible isoenzymes that can be formed, all with overlapping activities but different substrate specificities. They are the most abundant GSTs in human liver, skeletal muscle and brain, and are believed to provide protection against diseases including cancer and neurodegenerative disorders. Some isoenzymes have additional specific functions. Human GST M1-1 acts as an endogenous inhibitor of ASK1 (apoptosis signal-regulating kinase 1) thereby suppressing ASK1-mediated cell death. Human GSTM2-2 and 3-3 have been identified as prostaglandin E2 synthases in the brain and may play crucial roles in temperature and sleep-wake regulation. 121 -198319 cd03210 GST_C_Pi C-terminal, alpha helical domain of Class Pi Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Pi subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Pi GST is a homodimeric eukaryotic protein. The human GSTP1 is mainly found in erythrocytes, kidney, placenta and fetal liver. It is involved in stress responses and in cellular proliferation pathways as an inhibitor of JNK (c-Jun N-terminal kinase). Following oxidative stress, monomeric GSTP1 dissociates from JNK and dimerizes, losing its ability to bind JNK and causing an increase in JNK activity, thereby promoting apoptosis. GSTP1 is expressed in various tumors and is the predominant GST in a wide range of cancer cells. It has been implicated in the development of multidrug-resistant tumors. 126 -198320 cd03211 GST_C_Metaxin2 C-terminal, alpha helical domain of Metaxin 2. Glutathione S-transferase (GST) C-terminal domain family, Metaxin subfamily, Metaxin 2; a metaxin 1 binding protein identified through a yeast two-hybrid system using metaxin 1 as the bait. Metaxin 2 shares sequence similarity with metaxin 1 but does not contain a C-terminal mitochondrial outer membrane signal-anchor domain. It associates with mitochondrial membranes through its interaction with metaxin 1, which is a component of the mitochondrial preprotein import complex of the outer membrane. The biological function of metaxin 2 is unknown. It is likely that it also plays a role in protein translocation into the mitochondria. However, this has not been experimentally validated. In a recent proteomics study, it has been shown that metaxin 2 is overexpressed in response to lipopolysaccharide-induced liver injury. 126 -198321 cd03212 GST_C_Metaxin1_3 C-terminal, alpha helical domain of Metaxin 1, Metaxin 3, and similar proteins. Glutathione S-transferase (GST) C-terminal domain family, Metaxin subfamily, Metaxin 1-like proteins; composed of metaxins 1 and 3, and similar proteins. Mammalian metaxin (or metaxin 1) is a component of the preprotein import complex of the mitochondrial outer membrane. Metaxin extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. Like the murine gene, the human metaxin gene is located downstream to the glucocerebrosidase (GBA) pseudogene and is convergently transcribed. Inherited deficiency of GBA results in Gaucher disease, which presents many diverse clinical phenotypes. Alterations in the metaxin gene, in addition to GBA mutations, may be associated with Gaucher disease. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken, and mammals. 137 -213180 cd03213 ABCG_EPDR Eye pigment and drug resistance transporter subfamily G of the ATP-binding cassette superfamily. ABCG transporters are involved in eye pigment (EP) precursor transport, regulation of lipid-trafficking mechanisms, and pleiotropic drug resistance (DR). DR is a well-described phenomenon occurring in fungi and shares several similarities with processes in bacteria and higher eukaryotes. Compared to other members of the ABC transporter subfamilies, the ABCG transporter family is composed of proteins that have an ATP-binding cassette domain at the N-terminus and a TM (transmembrane) domain at the C-terminus. 194 -213181 cd03214 ABC_Iron-Siderophores_B12_Hemin ATP-binding component of iron-siderophores, vitamin B12 and hemin transporters and related proteins. ABC transporters, involved in the uptake of siderophores, heme, and vitamin B12, are widely conserved in bacteria and archaea. Only very few species lack representatives of the siderophore family transporters. The E. coli BtuCD protein is an ABC transporter mediating vitamin B12 uptake. The two ATP-binding cassettes (BtuD) are in close contact with each other, as are the two membrane-spanning subunits (BtuC); this arrangement is distinct from that observed for the E. coli lipid flippase MsbA. The BtuC subunits provide 20 transmembrane helices grouped around a translocation pathway that is closed to the cytoplasm by a gate region, whereas the dimer arrangement of the BtuD subunits resembles the ATP-bound form of the Rad50 DNA repair enzyme. A prominent cytoplasmic loop of BtuC forms the contact region with the ATP-binding cassette and represent a conserved motif among the ABC transporters. 180 -213182 cd03215 ABC_Carb_Monos_II Second domain of the ATP-binding cassette component of monosaccharide transport system. This family represents domain II of the carbohydrate uptake proteins that transport only monosaccharides (Monos). The Carb_Monos family is involved in the uptake of monosaccharides, such as pentoses (such as xylose, arabinose, and ribose) and hexoses (such as xylose, arabinose, and ribose), that cannot be broken down to simple sugars by hydrolysis. In members of Carb_Monos family the single hydrophobic gene product forms a homodimer, while the ABC protein represents a fusion of two nucleotide-binding domains. However, it is assumed that two copies of the ABC domains are present in the assembled transporter. 182 -213183 cd03216 ABC_Carb_Monos_I First domain of the ATP-binding cassette component of monosaccharide transport system. This family represents the domain I of the carbohydrate uptake proteins that transport only monosaccharides (Monos). The Carb_Monos family is involved in the uptake of monosaccharides, such as pentoses (such as xylose, arabinose, and ribose) and hexoses (such as xylose, arabinose, and ribose), that cannot be broken down to simple sugars by hydrolysis. Pentoses include xylose, arabinose, and ribose. Important hexoses include glucose, galactose, and fructose. In members of the Carb_monos family, the single hydrophobic gene product forms a homodimer while the ABC protein represents a fusion of two nucleotide-binding domains. However, it is assumed that two copies of the ABC domains are present in the assembled transporter. 163 -213184 cd03217 ABC_FeS_Assembly ABC-type transport system involved in Fe-S cluster assembly, ATPase component. Biosynthesis of iron-sulfur clusters (Fe-S) depends on multi-protein systems. The SUF system of E. coli and Erwinia chrysanthemi is important for Fe-S biogenesis under stressful conditions. The SUF system is made of six proteins: SufC is an atypical cytoplasmic ABC-ATPase, which forms a complex with SufB and SufD; SufA plays the role of a scaffold protein for assembly of iron-sulfur clusters and delivery to target proteins; SufS is a cysteine desulfurase which mobilizes the sulfur atom from cysteine and provides it to the cluster; SufE has no associated function yet. 200 -213185 cd03218 ABC_YhbG ATP-binding cassette component of YhbG transport system. The ABC transporters belonging to the YhbG family are similar to members of the Mj1267_LivG family, which is involved in the transport of branched-chain amino acids. The genes yhbG and yhbN are located in a single operon and may function together in cell envelope during biogenesis. YhbG is the putative ATP-binding cassette component and YhbN is the putative periplasmic-binding protein. Depletion of each gene product leads to growth arrest, irreversible cell damage and loss of viability in E. coli. The YhbG homolog (NtrA) is essential in Rhizobium meliloti, a symbiotic nitrogen-fixing bacterium. 232 -213186 cd03219 ABC_Mj1267_LivG_branched ATP-binding cassette component of branched chain amino acids transport system. The Mj1267/LivG ABC transporter subfamily is involved in the transport of the hydrophobic amino acids leucine, isoleucine and valine. MJ1267 is a branched-chain amino acid transporter with 29% similarity to both the LivF and LivG components of the E. coli branched-chain amino acid transporter. MJ1267 contains an insertion from residues 114 to 123 characteristic of LivG (Leucine-Isoleucine-Valine) homologs. The branched-chain amino acid transporter from E. coli comprises a heterodimer of ABCs (LivF and LivG), a heterodimer of six-helix TM domains (LivM and LivH), and one of two alternative soluble periplasmic substrate binding proteins (LivK or LivJ). 236 -213187 cd03220 ABC_KpsT_Wzt ATP-binding cassette component of polysaccharide transport system. The KpsT/Wzt ABC transporter subfamily is involved in extracellular polysaccharide export. Among the variety of membrane-linked or extracellular polysaccharides excreted by bacteria, only capsular polysaccharides, lipopolysaccharides, and teichoic acids have been shown to be exported by ABC transporters. A typical system is made of a conserved integral membrane and an ABC. In addition to these proteins, capsular polysaccharide exporter systems require two 'accessory' proteins to perform their function: a periplasmic (E.coli) or a lipid-anchored outer membrane protein called OMA (Neisseria meningitidis and Haemophilus influenza) and a cytoplasmic membrane protein MPA2. 224 -213188 cd03221 ABCF_EF-3 ATP-binding cassette domain of elongation factor 3, subfamily F. Elongation factor 3 (EF-3) is a cytosolic protein required by fungal ribosomes for in vitro protein synthesis and for in vivo growth. EF-3 stimulates the binding of the EF-1: GTP: aa-tRNA ternary complex to the ribosomal A site by facilitated release of the deacylated tRNA from the E site. The reaction requires ATP hydrolysis. EF-3 contains two ATP nucleotide binding sequence (NBS) motifs. NBSI is sufficient for the intrinsic ATPase activity. NBSII is essential for the ribosome-stimulated functions. 144 -213189 cd03222 ABC_RNaseL_inhibitor ATP-binding cassette domain of RNase L inhibitor. The ABC ATPase RNase L inhibitor (RLI) is a key enzyme in ribosomal biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. RLI's are not transport proteins, and thus cluster with a group of soluble proteins that lack the transmembrane components commonly found in other members of the family. Structurally, RLI's have an N-terminal Fe-S domain and two nucleotide-binding domains, which are arranged to form two composite active sites in their interface cleft. RLI is one of the most conserved enzymes between archaea and eukaryotes with a sequence identity more than 48%. The high degree of evolutionary conservation suggests that RLI performs a central role in archaeal and eukaryotic physiology. 177 -213190 cd03223 ABCD_peroxisomal_ALDP ATP-binding cassette domain of peroxisomal transporter, subfamily D. Peroxisomal ATP-binding cassette transporter (Pat) is involved in the import of very long-chain fatty acids (VLCFA) into the peroxisome. The peroxisomal membrane forms a permeability barrier for a wide variety of metabolites required for and formed during fatty acid beta-oxidation. To communicate with the cytoplasm and mitochondria, peroxisomes need dedicated proteins to transport such hydrophilic molecules across their membranes. X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ALD gene, which encodes ALDP (adrenoleukodystrophy protein ), a peroxisomal integral membrane protein that is a member of the ATP-binding cassette (ABC) transporter protein family. The disease is characterized by a striking and unpredictable variation in phenotypic expression. Phenotypes include the rapidly progressive childhood cerebral form (CCALD), the milder adult form, adrenomyeloneuropathy (AMN), and variants without neurologic involvement (i.e. asymptomatic). 166 -213191 cd03224 ABC_TM1139_LivF_branched ATP-binding cassette domain of branched-chain amino acid transporter. LivF (TM1139) is part of the LIV-I bacterial ABC-type two-component transport system that imports neutral, branched-chain amino acids. The E. coli branched-chain amino acid transporter comprises a heterodimer of ABC transporters (LivF and LivG), a heterodimer of six-helix TM domains (LivM and LivH), and one of two alternative soluble periplasmic substrate binding proteins (LivK or LivJ). ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. 222 -213192 cd03225 ABC_cobalt_CbiO_domain1 First domain of the ATP-binding cassette component of cobalt transport system. Domain I of the ABC component of a cobalt transport family found in bacteria, archaea, and eukaryota. The transition metal cobalt is an essential component of many enzymes and must be transported into cells in appropriate amounts when needed. This ABC transport system of the CbiMNQO family is involved in cobalt transport in association with the cobalamin (vitamin B12) biosynthetic pathways. Most of cobalt (Cbi) transport systems possess a separate CbiN component, the cobalt-binding periplasmic protein, and they are encoded by the conserved gene cluster cbiMNQO. Both the CbiM and CbiQ proteins are integral cytoplasmic membrane proteins, and the CbiO protein has the linker peptide and the Walker A and B motifs commonly found in the ATPase components of the ABC-type transport systems. 211 -213193 cd03226 ABC_cobalt_CbiO_domain2 Second domain of the ATP-binding cassette component of cobalt transport system. Domain II of the ABC component of a cobalt transport family found in bacteria, archaea, and eukaryota. The transition metal cobalt is an essential component of many enzymes and must be transported into cells in appropriate amounts when needed. The CbiMNQO family ABC transport system is involved in cobalt transport in association with the cobalamin (vitamin B12) biosynthetic pathways. Most cobalt (Cbi) transport systems possess a separate CbiN component, the cobalt-binding periplasmic protein, and they are encoded by the conserved gene cluster cbiMNQO. Both the CbiM and CbiQ proteins are integral cytoplasmic membrane proteins, and the CbiO protein has the linker peptide and the Walker A and B motifs commonly found in the ATPase components of the ABC-type transport systems. 205 -213194 cd03227 ABC_Class2 ATP-binding cassette domain of non-transporter proteins. ABC-type Class 2 contains systems involved in cellular processes other than transport. These families are characterized by the fact that the ABC subunit is made up of duplicated, fused ABC modules (ABC2). No known transmembrane proteins or domains are associated with these proteins. 162 -213195 cd03228 ABCC_MRP_Like ATP-binding cassette domain of multidrug resistance protein-like transporters. The MRP (Multidrug Resistance Protein)-like transporters are involved in drug, peptide, and lipid export. They belong to the subfamily C of the ATP-binding cassette (ABC) superfamily of transport proteins. The ABCC subfamily contains transporters with a diverse functional spectrum that includes ion transport, cell surface receptor, and toxin secretion activities. The MRP-like family, similar to all ABC proteins, have a common four-domain core structure constituted by two membrane-spanning domains, each composed of six transmembrane (TM) helices, and two nucleotide-binding domains (NBD). ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 171 -213196 cd03229 ABC_Class3 ATP-binding cassette domain of the binding protein-dependent transport systems. This class is comprised of all BPD (Binding Protein Dependent) systems that are largely represented in archaea and eubacteria and are primarily involved in scavenging solutes from the environment. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 178 -213197 cd03230 ABC_DR_subfamily_A ATP-binding cassette domain of the drug resistance transporter and related proteins, subfamily A. This family of ATP-binding proteins belongs to a multi-subunit transporter involved in drug resistance (BcrA and DrrA), nodulation, lipid transport, and lantibiotic immunity. In bacteria and archaea, these transporters usually include an ATP-binding protein and one or two integral membrane proteins. Eukaryotic systems of the ABCA subfamily display ABC domains that are quite similar to this family. The ATP-binding domain shows the highest similarity between all members of the ABC transporter family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 173 -213198 cd03231 ABC_CcmA_heme_exporter Cytochrome c biogenesis ATP-binding export protein. CcmA, the ATP-binding component of the bacterial CcmAB transporter. The CCM family is involved in bacterial cytochrome c biogenesis. Cytochrome c maturation in E. coli requires the ccm operon, which encodes eight membrane proteins (CcmABCDEFGH). CcmE is a periplasmic heme chaperon that binds heme covalently and transfers it onto apocytochrome c in the presence of CcmF, CcmG, and CcmH. The CcmAB proteins represent an ABC transporter and the CcmCD proteins participate in heme transfer to CcmE. 201 -213199 cd03232 ABCG_PDR_domain2 Second domain of the pleiotropic drug resistance-like (PDR) subfamily G of ATP-binding cassette transporters. The pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi and shares several similarities with processes in bacteria and higher eukaryotes. This PDR subfamily represents domain I of its (ABC-IM)2 organization. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 192 -213200 cd03233 ABCG_PDR_domain1 First domain of the pleiotropic drug resistance-like subfamily G of ATP-binding cassette transporters. The pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi and shares several similarities with processes in bacteria and higher eukaryotes. This PDR subfamily represents domain I of its (ABC-IM)2 organization. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide-binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 202 -213201 cd03234 ABCG_White White pigment protein homolog of ABCG transporter subfamily. The White subfamily represents ABC transporters homologous to the Drosophila white gene, which acts as a dimeric importer for eye pigment precursors. The eye pigmentation of Drosophila is developed from the synthesis and deposition in the cells of red pigments, which are synthesized from guanine, and brown pigments, which are synthesized from tryptophan. The pigment precursors are encoded by the white, brown, and scarlet genes, respectively. Evidence from genetic and biochemical studies suggest that the White and Brown proteins function as heterodimers to import guanine, while the White and Scarlet proteins function to import tryptophan. However, a recent study also suggests that White may be involved in the transport of a metabolite, such as 3-hydroxykynurenine, across intracellular membranes. Mammalian ABC transporters belonging to the White subfamily (ABCG1, ABCG5, and ABCG8) have been shown to be involved in the regulation of lipid-trafficking mechanisms in macrophages, hepatocytes, and intestinal mucosa cells. ABCG1 (ABC8), the human homolog of the Drosophila white gene is induced in monocyte-derived macrophages during cholesterol influx mediated by acetylated low-density lipoprotein. It is possible that human ABCG1 forms heterodimers with several heterologous partners. 226 -213202 cd03235 ABC_Metallic_Cations ATP-binding cassette domain of the metal-type transporters. This family includes transporters involved in the uptake of various metallic cations such as iron, manganese, and zinc. The ATPases of this group of transporters are very similar to members of iron-siderophore uptake family suggesting that they share a common ancestor. The best characterized metal-type ABC transporters are the YfeABCD system of Y. pestis, the SitABCD system of Salmonella enterica serovar Typhimurium, and the SitABCD transporter of Shigella flexneri. Moreover other uncharacterized homologs of these metal-type transporters are mainly found in pathogens like Haemophilus or enteroinvasive E. coli isolates. 213 -213203 cd03236 ABC_RNaseL_inhibitor_domain1 The ATP-binding cassette domain 1 of RNase L inhibitor. The ABC ATPase, RNase L inhibitor (RLI), is a key enzyme in ribosomal biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. RLI s are not transport proteins and thus cluster with a group of soluble proteins that lack the transmembrane components commonly found in other members of the family. Structurally, RLIs have an N-terminal Fe-S domain and two nucleotide binding domains which are arranged to form two composite active sites in their interface cleft. RLI is one of the most conserved enzymes between archaea and eukaryotes with a sequence identity more than 48%. The high degree of evolutionary conservation suggests that RLI performs a central role in archaeal and eukaryotic physiology. 255 -213204 cd03237 ABC_RNaseL_inhibitor_domain2 The ATP-binding cassette domain 2 of RNase L inhibitor. The ABC ATPase, RNase L inhibitor (RLI), is a key enzyme in ribosomal biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. RLI's are not transport proteins and thus cluster with a group of soluble proteins that lack the transmembrane components commonly found in other members of the family. Structurally, RLI's have an N-terminal Fe-S domain and two nucleotide-binding domains which are arranged to form two composite active sites in their interface cleft. RLI is one of the most conserved enzymes between archaea and eukaryotes with a sequence identity of more than 48%. The high degree of evolutionary conservation suggests that RLI performs a central role in archaeal and eukaryotic physiology. 246 -213205 cd03238 ABC_UvrA ATP-binding cassette domain of the excision repair protein UvrA. Nucleotide excision repair in eubacteria is a process that repairs DNA damage by the removal of a 12-13-mer oligonucleotide containing the lesion. Recognition and cleavage of the damaged DNA is a multistep ATP-dependent reaction that requires the UvrA, UvrB, and UvrC proteins. Both UvrA and UvrB are ATPases, with UvrA having two ATP binding sites, which have the characteristic signature of the family of ABC proteins, and UvrB having one ATP binding site that is structurally related to that of helicases. 176 -213206 cd03239 ABC_SMC_head The SMC head domain belongs to the ATP-binding cassette superfamily. The structural maintenance of chromosomes (SMC) proteins are essential for successful chromosome transmission during replication and segregation of the genome in all organisms. SMCs are generally present as single proteins in bacteria, and as at least six distinct proteins in eukaryotes. The proteins range in size from approximately 110 to 170 kDa, and each has five distinct domains: amino- and carboxy-terminal globular domains, which contain sequences characteristic of ATPases, two coiled-coil regions separating the terminal domains , and a central flexible hinge. SMC proteins function together with other proteins in a range of chromosomal transactions, including chromosome condensation, sister-chromatid cohesion, recombination, DNA repair, and epigenetic silencing of gene expression. 178 -213207 cd03240 ABC_Rad50 ATP-binding cassette domain of Rad50. The catalytic domains of Rad50 are similar to the ATP-binding cassette of ABC transporters, but are not associated with membrane-spanning domains. The conserved ATP-binding motifs common to Rad50 and the ABC transporter family include the Walker A and Walker B motifs, the Q loop, a histidine residue in the switch region, a D-loop, and a conserved LSGG sequence. This conserved sequence, LSGG, is the most specific and characteristic motif of this family and is thus known as the ABC signature sequence. 204 -213208 cd03241 ABC_RecN ATP-binding cassette domain of RecN. RecN ATPase involved in DNA repair; similar to ABC (ATP-binding cassette) transporter nucleotide-binding domain; ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 276 -213209 cd03242 ABC_RecF ATP-binding cassette domain of RecF. RecF is a recombinational DNA repair ATPase that maintains replication in the presence of DNA damage. When replication is prematurely disrupted by DNA damage, several recF pathway gene products play critical roles processing the arrested replication fork, allowing it to resume and complete its task. This CD represents the nucleotide binding domain of RecF. RecF belongs to a large superfamily of ABC transporters involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases with a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 270 -213210 cd03243 ABC_MutS_homologs ATP-binding cassette domain of MutS homologs. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family also possess a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 202 -213211 cd03244 ABCC_MRP_domain2 ATP-binding cassette domain 2 of multidrug resistance-associated protein. The ABC subfamily C is also known as MRP (multidrug resistance-associated protein). Some of the MRP members have five additional transmembrane segments in their N-terminus, but the function of these additional membrane-spanning domains is not clear. The MRP was found in the multidrug-resistance lung cancer cell in which p-glycoprotein was not overexpressed. MRP exports glutathione by drug stimulation, as well as, certain substrates in conjugated forms with anions, such as glutathione, glucuronate, and sulfate. 221 -213212 cd03245 ABCC_bacteriocin_exporters ATP-binding cassette domain of bacteriocin exporters, subfamily C. Many non-lantibiotic bacteriocins of lactic acid bacteria are produced as precursors which have N-terminal leader peptides that share similarities in amino acid sequence and contain a conserved processing site of two glycine residues in positions -1 and -2. A dedicated ATP-binding cassette (ABC) transporter is responsible for the proteolytic cleavage of the leader peptides and subsequent translocation of the bacteriocins across the cytoplasmic membrane. 220 -213213 cd03246 ABCC_Protease_Secretion ATP-binding cassette domain of PrtD, subfamily C. This family represents the ABC component of the protease secretion system PrtD, a 60-kDa integral membrane protein sharing 37% identity with HlyB, the ABC component of the alpha-hemolysin secretion pathway, in the C-terminal domain. They export degradative enzymes by using a type I protein secretion system and lack an N-terminal signal peptide, but contain a C-terminal secretion signal. The Type I secretion apparatus is made up of three components, an ABC transporter, a membrane fusion protein (MFP), and an outer membrane protein (OMP). For the HlyA transporter complex, HlyB (ABC transporter) and HlyD (MFP) reside in the inner membrane of E. coli. The OMP component is TolC, which is thought to interact with the MFP to form a continuous channel across the periplasm from the cytoplasm to the exterior. HlyB belongs to the family of ABC transporters, which are ubiquitous, ATP-dependent transmembrane pumps or channels. The spectrum of transport substrates ranges from inorganic ions, nutrients such as amino acids, sugars, or peptides, hydrophobic drugs, to large polypeptides, such as HlyA. 173 -213214 cd03247 ABCC_cytochrome_bd ATP-binding cassette domain of CydCD, subfamily C. The CYD subfamily implicated in cytochrome bd biogenesis. The CydC and CydD proteins are important for the formation of cytochrome bd terminal oxidase of E. coli and it has been proposed that they were necessary for biosynthesis of the cytochrome bd quinol oxidase and for periplasmic c-type cytochromes. CydCD were proposed to determine a heterooligomeric complex important for heme export into the periplasm or to be involved in the maintenance of the proper redox state of the periplasmic space. In Bacillus subtilis, the absence of CydCD does not affect the presence of halo-cytochrome c in the membrane and this observation suggests that CydCD proteins are not involved in the export of heme in this organism. 178 -213215 cd03248 ABCC_TAP ATP-binding cassette domain of the Transporter Associated with Antigen Processing, subfamily C. TAP (Transporter Associated with Antigen Processing) is essential for peptide delivery from the cytosol into the lumen of the endoplasmic reticulum (ER), where these peptides are loaded on major histocompatibility complex (MHC) I molecules. Loaded MHC I leave the ER and display their antigenic cargo on the cell surface to cytotoxic T cells. Subsequently, virus-infected or malignantly transformed cells can be eliminated. TAP belongs to the large family of ATP-binding cassette (ABC) transporters, which translocate a vast variety of solutes across membranes. 226 -213216 cd03249 ABC_MTABC3_MDL1_MDL2 ATP-binding cassette domain of a mitochondrial protein MTABC3 and related proteins. MTABC3 (also known as ABCB6) is a mitochondrial ATP-binding cassette protein involved in iron homeostasis and one of four ABC transporters expressed in the mitochondrial inner membrane, the other three being MDL1(ABC7), MDL2, and ATM1. In fact, the yeast MDL1 (multidrug resistance-like protein 1) and MDL2 (multidrug resistance-like protein 2) transporters are also included in this CD. MDL1 is an ATP-dependent permease that acts as a high-copy suppressor of ATM1 and is thought to have a role in resistance to oxidative stress. Interestingly, subfamily B is more closely related to the carboxyl-terminal component of subfamily C than the two halves of ABCC molecules are with one another. 238 -213217 cd03250 ABCC_MRP_domain1 ATP-binding cassette domain 1 of multidrug resistance-associated protein, subfamily C. This subfamily is also known as MRP (multidrug resistance-associated protein). Some of the MRP members have five additional transmembrane segments in their N-terminus, but the function of these additional membrane-spanning domains is not clear. The MRP was found in the multidrug-resisting lung cancer cell in which p-glycoprotein was not overexpressed. MRP exports glutathione by drug stimulation, as well as, certain substrates in conjugated forms with anions, such as glutathione, glucuronate, and sulfate. 204 -213218 cd03251 ABCC_MsbA ATP-binding cassette domain of the bacterial lipid flippase and related proteins, subfamily C. MsbA is an essential ABC transporter, closely related to eukaryotic MDR proteins. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 234 -213219 cd03252 ABCC_Hemolysin ATP-binding cassette domain of hemolysin B, subfamily C. The ABC-transporter hemolysin B is a central component of the secretion machinery that translocates the toxin, hemolysin A, in a Sec-independent fashion across both membranes of E. coli. The hemolysin A (HlyA) transport machinery is composed of the ATP-binding cassette (ABC) transporter HlyB located in the inner membrane, hemolysin D (HlyD), also anchored in the inner membrane, and TolC, which resides in the outer membrane. HlyD apparently forms a continuous channel that bridges the entire periplasm, interacting with TolC and HlyB. This arrangement prevents the appearance of periplasmic intermediates of HlyA during substrate transport. Little is known about the molecular details of HlyA transport, but it is evident that ATP-hydrolysis by the ABC-transporter HlyB is a necessary source of energy. 237 -213220 cd03253 ABCC_ATM1_transporter ATP-binding cassette domain of iron-sulfur clusters transporter, subfamily C. ATM1 is an ABC transporter that is expressed in the mitochondria. Although the specific function of ATM1 is unknown, its disruption results in the accumulation of excess mitochondrial iron, loss of mitochondrial cytochromes, oxidative damage to mitochondrial DNA, and decreased levels of cytosolic heme proteins. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 236 -213221 cd03254 ABCC_Glucan_exporter_like ATP-binding cassette domain of glucan transporter and related proteins, subfamily C. Glucan exporter ATP-binding protein. In A. tumefaciens cyclic beta-1, 2-glucan must be transported into the periplasmic space to exert its action as a virulence factor. This subfamily belongs to the MRP-like family and is involved in drug, peptide, and lipid export. The MRP-like family, similar to all ABC proteins, have a common four-domain core structure constituted by two membrane-spanning domains each composed of six transmembrane (TM) helices and two nucleotide-binding domains (NBD). ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 229 -213222 cd03255 ABC_MJ0796_LolCDE_FtsE ATP-binding cassette domain of the transporters involved in export of lipoprotein and macrolide, and cell division protein. This family is comprised of MJ0796 ATP-binding cassette, macrolide-specific ABC-type efflux carrier (MacAB), and proteins involved in cell division (FtsE), and release of lipoproteins from the cytoplasmic membrane (LolCDE). They are clustered together phylogenetically. MacAB is an exporter that confers resistance to macrolides, while the LolCDE system is not a transporter at all. An FtsE null mutants showed filamentous growth and appeared viable on high salt medium only, indicating a role for FtsE in cell division and/or salt transport. The LolCDE complex catalyzes the release of lipoproteins from the cytoplasmic membrane prior to their targeting to the outer membrane. 218 -213223 cd03256 ABC_PhnC_transporter ATP-binding cassette domain of the binding protein-dependent phosphonate transport system. Phosphonates are a class of organophosphorus compounds characterized by a chemically stable carbon-to-phosphorus (C-P) bond. Phosphonates are widespread among naturally occurring compounds in all kingdoms of wildlife, but only prokaryotic microorganisms are able to cleave this bond. Certain bacteria such as E. coli can use alkylphosphonates as a phosphorus source. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 241 -213224 cd03257 ABC_NikE_OppD_transporters ATP-binding cassette domain of nickel/oligopeptides specific transporters. The ABC transporter subfamily specific for the transport of dipeptides, oligopeptides (OppD), and nickel (NikDE). The NikABCDE system of E. coli belongs to this family and is composed of the periplasmic binding protein NikA, two integral membrane components (NikB and NikC), and two ATPase (NikD and NikE). The NikABCDE transporter is synthesized under anaerobic conditions to meet the increased demand for nickel resulting from hydrogenase synthesis. The molecular mechanism of nickel uptake in many bacteria and most archaea is not known. Many other members of this ABC family are also involved in the uptake of dipeptides and oligopeptides. The oligopeptide transport system (Opp) is a five-component ABC transport composed of a membrane-anchored substrate binding proteins (SRP), OppA, two transmembrane proteins, OppB and OppC, and two ATP-binding domains, OppD and OppF. 228 -213225 cd03258 ABC_MetN_methionine_transporter ATP-binding cassette domain of methionine transporter. MetN (also known as YusC) is an ABC-type transporter encoded by metN of the metNPQ operon in Bacillus subtilis that is involved in methionine transport. Other members of this system include the MetP permease and the MetQ substrate binding protein. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 233 -213226 cd03259 ABC_Carb_Solutes_like ATP-binding cassette domain of the carbohydrate and solute transporters-like. This family is comprised of proteins involved in the transport of apparently unrelated solutes and proteins specific for di- and oligosaccharides and polyols. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides and more complex organic molecules. The nucleotide-binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 213 -213227 cd03260 ABC_PstB_phosphate_transporter ATP-binding cassette domain of the phosphate transport system. Phosphate uptake is of fundamental importance in the cell physiology of bacteria because phosphate is required as a nutrient. The Pst system of E. coli comprises four distinct subunits encoded by the pstS, pstA, pstB, and pstC genes. The PstS protein is a phosphate-binding protein located in the periplasmic space. PstA and PstC are hydrophobic and they form the transmembrane portion of the Pst system. PstB is the catalytic subunit, which couples the energy of ATP hydrolysis to the import of phosphate across cellular membranes through the Pst system, often referred as ABC-protein. PstB belongs to one of the largest superfamilies of proteins characterized by a highly conserved adenosine triphosphate (ATP) binding cassette (ABC), which is also a nucleotide binding domain (NBD). 227 -213228 cd03261 ABC_Org_Solvent_Resistant ATP-binding cassette transport system involved in resistant to organic solvents. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 235 -213229 cd03262 ABC_HisP_GlnQ ATP-binding cassette domain of the histidine and glutamine transporters. HisP and GlnQ are the ATP-binding components of the bacterial periplasmic histidine and glutamine permeases, respectively. Histidine permease is a multi-subunit complex containing the HisQ and HisM integral membrane subunits and two copies of HisP. HisP has properties intermediate between those of integral and peripheral membrane proteins and is accessible from both sides of the membrane, presumably by its interaction with HisQ and HisM. The two HisP subunits form a homodimer within the complex. The domain structure of the amino acid uptake systems is typical for prokaryotic extracellular solute binding protein-dependent uptake systems. All of the amino acid uptake systems also have at least one, and in a few cases, two extracellular solute binding proteins located in the periplasm of Gram-negative bacteria, or attached to the cell membrane of Gram-positive bacteria. The best-studied member of the PAAT (polar amino acid transport) family is the HisJQMP system of S. typhimurium, where HisJ is the extracellular solute binding proteins and HisP is the ABC protein. 213 -213230 cd03263 ABC_subfamily_A ATP-binding cassette domain of the lipid transporters, subfamily A. The ABCA subfamily mediates the transport of a variety of lipid compounds. Mutations of members of ABCA subfamily are associated with human genetic diseases, such as, familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. The ABCA1 protein is involved in disorders of cholesterol transport and high-density lipoprotein (HDL) biosynthesis. The ABCA4 (ABCR) protein transports vitamin A derivatives in the outer segments of photoreceptor cells, and therefore, performs a crucial step in the visual cycle. The ABCA genes are not present in yeast. However, evolutionary studies of ABCA genes indicate that they arose as transporters that subsequently duplicated and that certain sets of ABCA genes were lost in different eukaryotic lineages. 220 -213231 cd03264 ABC_drug_resistance_like ABC-type multidrug transport system, ATPase component. The biological function of this family is not well characterized, but display ABC domains similar to members of ABCA subfamily. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 211 -213232 cd03265 ABC_DrrA Daunorubicin/doxorubicin resistance ATP-binding protein. DrrA is the ATP-binding protein component of a bacterial exporter complex that confers resistance to the antibiotics daunorubicin and doxorubicin. In addition to DrrA, the complex includes an integral membrane protein called DrrB. DrrA belongs to the ABC family of transporters and shares sequence and functional similarities with a protein found in cancer cells called P-glycoprotein. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region in addition to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 220 -213233 cd03266 ABC_NatA_sodium_exporter ATP-binding cassette domain of the Na+ transporter. NatA is the ATPase component of a bacterial ABC-type Na+ transport system called NatAB, which catalyzes ATP-dependent electrogenic Na+ extrusion without mechanically coupled proton or K+ uptake. NatB possess six putative membrane spanning regions at its C-terminus. In B. subtilis, NatAB is inducible by agents such as ethanol and protonophores, which lower the proton-motive force across the membrane. The closest sequence similarity to NatA is exhibited by DrrA of the two-component daunorubicin- and doxorubicin-efflux system. Hence, the functional NatAB is presumably assembled with two copies of a single ATP-binding protein and a single integral membrane protein. 218 -213234 cd03267 ABC_NatA_like ATP-binding cassette domain of an uncharacterized transporter similar in sequence to NatA. NatA is the ATPase component of a bacterial ABC-type Na+ transport system called NatAB, which catalyzes ATP-dependent electrogenic Na+ extrusion without mechanically coupled to proton or K+ uptake. NatB possess six putative membrane spanning regions at its C-terminus. In B. subtilis, NatAB is inducible by agents such as ethanol and protonophores, which lower the proton-motive force across the membrane. The closest sequence similarity to NatA is exhibited by DrrA of the two-component daunorubicin- and doxorubicin-efflux system. Hence, the functional NatAB is presumably assembled with two copies of the single ATP-binding protein and the single integral membrane protein. 236 -213235 cd03268 ABC_BcrA_bacitracin_resist ATP-binding cassette domain of the bacitracin-resistance transporter. The BcrA subfamily represents ABC transporters involved in peptide antibiotic resistance. Bacitracin is a dodecapeptide antibiotic produced by B. licheniformis and B. subtilis. The synthesis of bacitracin is non-ribosomally catalyzed by a multi-enzyme complex BcrABC. Bacitracin has potent antibiotic activity against gram-positive bacteria. The inhibition of peptidoglycan biosynthesis is the best characterized bacterial effect of bacitracin. The bacitracin resistance of B. licheniformis is mediated by the ABC transporter Bcr which is composed of two identical BcrA ATP-binding subunits and one each of the integral membrane proteins, BcrB and BcrC. B. subtilis cells carrying bcr genes on high-copy number plasmids develop collateral detergent sensitivity, a similar phenomenon in human cells with overexpressed multi-drug resistance P-glycoprotein. 208 -213236 cd03269 ABC_putative_ATPase ATP-binding cassette domain of an uncharacterized transporter. This subgroup is related to the subfamily A transporters involved in drug resistance, nodulation, lipid transport, and bacteriocin and lantibiotic immunity. In eubacteria and archaea, the typical organization consists of one ABC and one or two integral membranes. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region in addition to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 210 -213237 cd03270 ABC_UvrA_I ATP-binding cassette domain I of the excision repair protein UvrA. Nucleotide excision repair in eubacteria is a process that repairs DNA damage by the removal of a 12-13-mer oligonucleotide containing the lesion. Recognition and cleavage of the damaged DNA is a multistep ATP-dependent reaction that requires the UvrA, UvrB, and UvrC proteins. Both UvrA and UvrB are ATPases, with UvrA having two ATP binding sites, which have the characteristic signature of the family of ABC proteins, and UvrB having one ATP binding site that is structurally related to that of helicases. 226 -213238 cd03271 ABC_UvrA_II ATP-binding cassette domain II of the excision repair protein UvrA. Nucleotide excision repair in eubacteria is a process that repairs DNA damage by the removal of a 12-13-mer oligonucleotide containing the lesion. Recognition and cleavage of the damaged DNA is a multistep ATP-dependent reaction that requires the UvrA, UvrB, and UvrC proteins. Both UvrA and UvrB are ATPases, with UvrA having two ATP binding sites, which have the characteristic signature of the family of ABC proteins and UvrB having one ATP binding site that is structurally related to that of helicases. 261 -213239 cd03272 ABC_SMC3_euk ATP-binding cassette domain of eukaryotic SMC3 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 243 -213240 cd03273 ABC_SMC2_euk ATP-binding cassette domain of eukaryotic SMC2 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 251 -213241 cd03274 ABC_SMC4_euk ATP-binding cassette domain of eukaryotic SMC4 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 212 -213242 cd03275 ABC_SMC1_euk ATP-binding cassette domain of eukaryotic SMC1 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 247 -213243 cd03276 ABC_SMC6_euk ATP-binding cassette domain of eukaryotic SM6 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 198 -213244 cd03277 ABC_SMC5_euk ATP-binding cassette domain of eukaryotic SMC5 proteins. The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 213 -213245 cd03278 ABC_SMC_barmotin ATP-binding cassette domain of barmotin, a member of the SMC protein family. Barmotin is a tight junction-associated protein expressed in rat epithelial cells which is thought to have an important regulatory role in tight junction barrier function. Barmotin belongs to the SMC protein family. SMC proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18). 197 -213246 cd03279 ABC_sbcCD ATP-binding cassette domain of sbcCD. SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and are thought to play a role in removing protein bound to DNA termini. 213 -213247 cd03280 ABC_MutS2 ATP-binding cassette domain of MutS2. MutS2 homologs in bacteria and eukaryotes. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family also possess a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 200 -213248 cd03281 ABC_MSH5_euk ATP-binding cassette domain of eukaryotic MutS5 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 213 -213249 cd03282 ABC_MSH4_euk ATP-binding cassette domain of eukaryotic MutS4 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 204 -213250 cd03283 ABC_MutS-like ATP-binding cassette domain of MutS-like homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 199 -213251 cd03284 ABC_MutS1 ATP-binding cassette domain of MutS1 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 216 -213252 cd03285 ABC_MSH2_euk ATP-binding cassette domain of eukaryotic MutS2 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 222 -213253 cd03286 ABC_MSH6_euk ATP-binding cassette domain of eukaryotic MutS6 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 218 -213254 cd03287 ABC_MSH3_euk ATP-binding cassette domain of eukaryotic MutS3 homolog. The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family possess C-terminal domain with a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. MutS homologs (MSH) have been identified in most prokaryotic and all eukaryotic organisms examined. Prokaryotes have two homologs (MutS1 and MutS2), whereas seven MSH proteins (MSH1 to MSH7) have been identified in eukaryotes. The homodimer MutS1 and heterodimers MSH2-MSH3 and MSH2-MSH6 are primarily involved in mitotic mismatch repair, whereas MSH4-MSH5 is involved in resolution of Holliday junctions during meiosis. All members of the MutS family contain the highly conserved Walker A/B ATPase domain, and many share a common mechanism of action. MutS1, MSH2-MSH3, MSH2-MSH6, and MSH4-MSH5 dimerize to form sliding clamps, and recognition of specific DNA structures or lesions results in ADP/ATP exchange. 222 -213255 cd03288 ABCC_SUR2 ATP-binding cassette domain 2 of the sulfonylurea receptor SUR. The SUR domain 2. The sulfonylurea receptor SUR is an ATP binding cassette (ABC) protein of the ABCC/MRP family. Unlike other ABC proteins, it has no intrinsic transport function, neither active nor passive, but associates with the potassium channel proteins Kir6.1 or Kir6.2 to form the ATP-sensitive potassium (K(ATP)) channel. Within the channel complex, SUR serves as a regulatory subunit that fine-tunes the gating of Kir6.x in response to alterations in cellular metabolism. It constitutes a major pharmaceutical target as it binds numerous drugs, K(ATP) channel openers and blockers, capable of up- or down-regulating channel activity. 257 -213256 cd03289 ABCC_CFTR2 ATP-binding cassette domain 2 of CFTR,subfamily C. The cystic fibrosis transmembrane regulator (CFTR), the product of the gene mutated in patients with cystic fibrosis, has adapted the ABC transporter structural motif to form a tightly regulated anion channel at the apical surface of many epithelia. Use of the term assembly of a functional ion channel implies the coming together of subunits or at least smaller not-yet functional components of the active whole. In fact, on the basis of current knowledge only the CFTR polypeptide itself is required to form an ATP- and protein kinase A-dependent low-conductance chloride channel of the type present in the apical membrane of many epithelial cells. CFTR displays the typical organization (IM-ABC)2 and carries a characteristic hydrophilic R-domain that separates IM1-ABC1 from IM2-ABC2. 275 -213257 cd03290 ABCC_SUR1_N ATP-binding cassette domain of the sulfonylurea receptor, subfamily C. The SUR domain 1. The sulfonylurea receptor SUR is an ATP transporter of the ABCC/MRP family with tandem ATPase binding domains. Unlike other ABC proteins, it has no intrinsic transport function, neither active nor passive, but associates with the potassium channel proteins Kir6.1 or Kir6.2 to form the ATP-sensitive potassium (K(ATP)) channel. Within the channel complex, SUR serves as a regulatory subunit that fine-tunes the gating of Kir6.x in response to alterations in cellular metabolism. It constitutes a major pharmaceutical target as it binds numerous drugs, K(ATP) channel openers and blockers, capable of up- or down-regulating channel activity. 218 -213258 cd03291 ABCC_CFTR1 ATP-binding cassette domain of the cystic fibrosis transmembrane regulator, subfamily C. The CFTR subfamily domain 1. The cystic fibrosis transmembrane regulator (CFTR), the product of the gene mutated in patients with cystic fibrosis, has adapted the ABC transporter structural motif to form a tightly regulated anion channel at the apical surface of many epithelia. Use of the term assembly of a functional ion channel implies the coming together of subunits, or at least smaller not-yet functional components of the active whole. In fact, on the basis of current knowledge only the CFTR polypeptide itself is required to form an ATP- and protein kinase A-dependent low-conductance chloride channel of the type present in the apical membrane of many epithelial cells. CFTR displays the typical organization (IM-ABC)2 and carries a characteristic hydrophilic R-domain that separates IM1-ABC1 from IM2-ABC2. 282 -213259 cd03292 ABC_FtsE_transporter ATP-binding cassette domain of the cell division transporter. FtsE is a hydrophilic nucleotide-binding protein that binds FtsX to form a heterodimeric ATP-binding cassette (ABC)-type transporter that associates with the bacterial inner membrane. The FtsE/X transporter is thought to be involved in cell division and is important for assembly or stability of the septal ring. 214 -213260 cd03293 ABC_NrtD_SsuB_transporters ATP-binding cassette domain of the nitrate and sulfonate transporters. NrtD and SsuB are the ATP-binding subunits of the bacterial ABC-type nitrate and sulfonate transport systems, respectively. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 220 -213261 cd03294 ABC_Pro_Gly_Betaine ATP-binding cassette domain of the osmoprotectant proline/glycine betaine uptake system. This family comprises the glycine betaine/L-proline ATP binding subunit in bacteria and its equivalents in archaea. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporters is the obligatory coupling of ATP hydrolysis to substrate translocation. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 269 -213262 cd03295 ABC_OpuCA_Osmoprotection ATP-binding cassette domain of the osmoprotectant transporter. OpuCA is a the ATP binding component of a bacterial solute transporter that serves a protective role to cells growing in a hyperosmolar environment. ABC (ATP-binding cassette) transporter nucleotide-binding domain; ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition, to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 242 -213263 cd03296 ABC_CysA_sulfate_importer ATP-binding cassette domain of the sulfate transporter. Part of the ABC transporter complex cysAWTP involved in sulfate import. Responsible for energy coupling to the transport system. The complex is composed of two ATP-binding proteins (cysA), two transmembrane proteins (cysT and cysW), and a solute-binding protein (cysP). ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 239 -213264 cd03297 ABC_ModC_molybdenum_transporter ATP-binding cassette domain of the molybdenum transport system. ModC is an ABC-type transporter and the ATPase component of a molybdate transport system that also includes the periplasmic binding protein ModA and the membrane protein ModB. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 214 -213265 cd03298 ABC_ThiQ_thiamine_transporter ATP-binding cassette domain of the thiamine transport system. Part of the binding-protein-dependent transport system tbpA-thiPQ for thiamine and TPP. Probably responsible for the translocation of thiamine across the membrane. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 211 -213266 cd03299 ABC_ModC_like ATP-binding cassette domain similar to the molybdate transporter. Archaeal protein closely related to ModC. ModC is an ABC-type transporter and the ATPase component of a molybdate transport system that also includes the periplasmic binding protein ModA and the membrane protein ModB. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 235 -213267 cd03300 ABC_PotA_N ATP-binding cassette domain of the polyamine transporter. PotA is an ABC-type transporter and the ATPase component of the spermidine/putrescine-preferential uptake system consisting of PotA, -B, -C, and -D. PotA has two domains with the N-terminal domain containing the ATPase activity and the residues required for homodimerization with PotA and heterdimerization with PotB. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. 232 -213268 cd03301 ABC_MalK_N The N-terminal ATPase domain of the maltose transporter, MalK. ATP binding cassette (ABC) proteins function from bacteria to human, mediating the translocation of substances into and out of cells or organelles. ABC transporters contain two transmembrane-spanning domains (TMDs) or subunits and two nucleotide binding domains (NBDs) or subunits that couple transport to the hydrolysis of ATP. In the maltose transport system, the periplasmic maltose binding protein (MBP) stimulates the ATPase activity of the membrane-associated transporter, which consists of two transmembrane subunits, MalF and MalG, and two copies of the ATP binding subunit, MalK, and becomes tightly bound to the transporter in the catalytic transition state, ensuring that maltose is passed to the transporter as ATP is hydrolyzed. 213 -176471 cd03302 Adenylsuccinate_lyase_2 Adenylsuccinate lyase (ASL)_subgroup 2. This subgroup contains mainly eukaryotic proteins similar to ASL, a member of the Lyase class I family. Members of this family for the most part catalyze similar beta-elimination reactions in which a C-N or C-O bond is cleaved with the release of fumarate as one of the products. These proteins are active as tetramers. The four active sites of the homotetrameric enzyme are each formed by residues from three different subunits. ASL catalyzes two steps in the de novo purine biosynthesis: the conversion of 5-aminoimidazole-(N-succinylocarboxamide) ribotide (SAICAR) into 5-aminoimidazole-4-carboxamide ribotide (AICAR) and, the conversion of adenylsuccinate (SAMP) into adenosine monophosphate (AMP). ASL deficiency has been linked to several pathologies including psychomotor retardation with autistic features, epilepsy and muscle wasting. 436 -239423 cd03307 Mta_CmuA_like MtaA_CmuA_like family. MtaA/CmuA, also MtsA, or methyltransferase 2 (MT2) MT2-A and MT2-M isozymes, are methylcobamide:Coenzyme M methyltransferases, which play a role in metabolic pathways of methane formation from various substrates, such as methylated amines and methanol. Coenzyme M, 2-mercaptoethylsulfonate or CoM, is methylated during methanogenesis in a reaction catalyzed by three proteins. A methyltransferase methylates the corrinoid cofactor, which is bound to a second polypeptide, a corrinoid protein. The methylated corrinoid protein then serves as a substrate for MT2-A and related enzymes, which methylate CoM. 326 -239424 cd03308 CmuA_CmuC_like CmuA_CmuC_like: uncharacterized protein family similar to uroporphyrinogen decarboxylase (URO-D) and the methyltransferases CmuA and CmuC. 378 -239425 cd03309 CmuC_like CmuC_like. Proteins similar to the putative corrinoid methyltransferase CmuC. Its function has been inferred from sequence similarity to the methyltransferases CmuA and MtaA. Mutants of Methylobacterium sp. disrupted in cmuC and purU appear deficient in some step of chloromethane metabolism. 321 -239426 cd03310 CIMS_like CIMS - Cobalamine-independent methonine synthase, or MetE. Many members have been characterized as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferases, EC:2.1.1.14, mostly from bacteria and plants. This enzyme catalyses the last step in the production of methionine by transferring a methyl group from 5-methyltetrahydrofolate to L-homocysteine without using an intermediate methyl carrier. The active enzyme has a dual (beta-alpha)8-barrel structure, and this model covers both the N-and C-terminal barrel, and some single-barrel sequences, mostly from Archaea. It is assumed that the homologous N-terminal barrel has evolved from the C-terminus via gene duplication and has subsequently lost binding sites, and it seems as if the two barrels forming the active enzyme may sometimes reside on different polypeptides. The C-terminal domain incorporates the Zinc ion, which binds and activates homocysteine. Side chains from both barrels contribute to the binding of the folate substrate. 321 -239427 cd03311 CIMS_C_terminal_like CIMS - Cobalamine-independent methonine synthase, or MetE, C-terminal domain_like. Many members have been characterized as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferases, EC:2.1.1.14, mostly from bacteria and plants. This enzyme catalyses the last step in the production of methionine by transferring a methyl group from 5-methyltetrahydrofolate to L-homocysteine without using an intermediate methyl carrier. The active enzyme has a dual (beta-alpha)8-barrel structure, and this model covers the C-terminal barrel, and a few single-barrel sequences most similar to the C-terminal barrel. It is assumed that the homologous N-terminal barrel has evolved from the C-terminus via gene duplication and has subsequently lost binding sites, and it seems as if the two barrels forming the active enzyme may sometimes reside on different polypeptides. The C-terminal domain incorporates the Zinc ion, which binds and activates homocysteine. Sidechains from both barrels contribute to the binding of the folate substrate. 332 -239428 cd03312 CIMS_N_terminal_like CIMS - Cobalamine-independent methonine synthase, or MetE, N-terminal domain_like. Many members have been characterized as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferases, EC:2.1.1.14, mostly from bacteria and plants. This enzyme catalyses the last step in the production of methionine by transferring a methyl group from 5-methyltetrahydrofolate to L-homocysteine without using an intermediate methyl carrier. The active enzyme has a dual (beta-alpha)8-barrel structure, and this model covers the N-terminal barrel, and a few single-barrel sequences most similar to the N-terminal barrel. It is assumed that the homologous N-terminal barrel has evolved from the C-terminus via gene duplication and has subsequently lost binding sites, and it seems as if the two barrels forming the active enzyme may sometimes reside on different polypeptides. The C-terminal domain incorporates the Zinc ion, which binds and activates homocysteine. Side chains from both barrels contribute to the binding of the folate substrate. 360 -239429 cd03313 enolase Enolase: Enolases are homodimeric enzymes that catalyse the reversible dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate as part of the glycolytic and gluconeogenesis pathways. The reaction is facilitated by the presence of metal ions. 408 -239430 cd03314 MAL Methylaspartate ammonia lyase (3-methylaspartase, MAL) is a homodimeric enzyme, catalyzing the magnesium-dependent reversible alpha,beta-elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to mesaconic acid. This reaction is part of the main catabolic pathway for glutamate. MAL belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 369 -239431 cd03315 MLE_like Muconate lactonizing enzyme (MLE) like subgroup of the enolase superfamily. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and residues that can function as general acid/base catalysts, a Lys-X-Lys motif and another conserved lysine. Despite these conserved residues, the members of the MLE subgroup, like muconate lactonizing enzyme, o-succinylbenzoate synthase (OSBS) and N-acylamino acid racemase (NAAAR), catalyze different reactions. 265 -239432 cd03316 MR_like Mandelate racemase (MR)-like subfamily of the enolase superfamily. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. Members of the MR subgroup are mandelate racemase, D-glucarate/L-idarate dehydratase (GlucD), D-altronate/D-mannonate dehydratase , D-galactonate dehydratase (GalD) , D-gluconate dehydratase (GlcD), and L-rhamnonate dehydratase (RhamD). 357 -239433 cd03317 NAAAR N-acylamino acid racemase (NAAAR), an octameric enzyme that catalyzes the racemization of N-acylamino acids. NAAARs act on a broad range of N-acylamino acids rather than amino acids. Enantiopure amino acids are of industrial interest as chiral building blocks for antibiotics, herbicides, and drugs. NAAAR is a member of the enolase superfamily, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 354 -239434 cd03318 MLE Muconate Lactonizing Enzyme (MLE), an homooctameric enzyme, catalyses the conversion of cis,cis-muconate (CCM) to muconolactone (ML) in the catechol branch of the beta-ketoadipate pathway. This pathway is used in soil microbes to breakdown lignin-derived aromatics, catechol and protocatechuate, to citric acid cycle intermediates. Some bacterial species are also capable of dehalogenating chloroaromatic compounds by the action of chloromuconate lactonizing enzymes (Cl-MLEs). MLEs are members of the enolase superfamily characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and that is stabilized by coordination to the essential Mg2+ ion. 365 -239435 cd03319 L-Ala-DL-Glu_epimerase L-Ala-D/L-Glu epimerase catalyzes the epimerization of L-Ala-D/L-Glu and other dipeptides. The genomic context and the substrate specificity of characterized members of this family from E.coli and B.subtilis indicates a possible role in the metabolism of the murein peptide of peptidoglycan, of which L-Ala-D-Glu is a component. L-Ala-D/L-Glu epimerase is a member of the enolase-superfamily, which is characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 316 -239436 cd03320 OSBS o-Succinylbenzoate synthase (OSBS) catalyzes the conversion of 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB), a reaction in the menaquinone biosynthetic pathway. Menaquinone is an essential cofactor for anaerobic growth in eubacteria and some archaea. OSBS belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 263 -239437 cd03321 mandelate_racemase Mandelate racemase (MR) catalyzes the Mg2+-dependent 1,1-proton transfer reaction that interconverts the enantiomers of mandelic acid. MR is the first enzyme in the bacterial pathway that converts mandelic acid to benzoic acid and allows this pathway to utilize either enantiomer of mandelate. MR belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 355 -239438 cd03322 rpsA The starvation sensing protein RpsA from E.coli and its homologs are lactonizing enzymes whose putative targets are homoserine lactone (HSL)-derivative. They are part of the mandelate racemase (MR)-like subfamily of the enolase superfamily. Enzymes of this subfamily share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and catalytic residues, a partially conserved Lys-X-Lys motif and a conserved histidine-aspartate dyad. 361 -239439 cd03323 D-glucarate_dehydratase D-Glucarate dehydratase (GlucD) catalyzes the dehydration of both D-glucarate and L-idarate to form 5-keto-4-deoxy-D-glucarate (5-KDG) , the initial reaction of the catabolic pathway for (D)-glucarate. GlucD belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and that is stabilized by coordination to the essential Mg2+ ion. 395 -239440 cd03324 rTSbeta_L-fuconate_dehydratase Human rTS beta is encoded by the rTS gene which, through alternative RNA splicing, also encodes rTS alpha whose mRNA is complementary to thymidylate synthase mRNA. rTS beta expression is associated with the production of small molecules that appear to mediate the down-regulation of thymidylate synthase protein by a novel intercellular signaling mechanism. A member of this family, from Xanthomonas, has been characterized to be a L-fuconate dehydratase. rTS beta belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 415 -239441 cd03325 D-galactonate_dehydratase D-galactonate dehydratase catalyses the dehydration of galactonate to 2-keto-3-deoxygalactnate (KDGal), as part of the D-galactonate nonphosphorolytic catabolic Entner-Doudoroff pathway. D-galactonate dehydratase belongs to the enolase superfamily of enzymes, characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion. 352 -239442 cd03326 MR_like_1 Mandelate racemase (MR)-like subfamily of the enolase superfamily, subgroup 1. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. This subgroup's function is unknown. 385 -239443 cd03327 MR_like_2 Mandelate racemase (MR)-like subfamily of the enolase superfamily, subgroup 2. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. This subgroup's function is unknown. 341 -239444 cd03328 MR_like_3 Mandelate racemase (MR)-like subfamily of the enolase superfamily, subgroup 3. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. This subgroup's function is unknown. 352 -239445 cd03329 MR_like_4 Mandelate racemase (MR)-like subfamily of the enolase superfamily, subgroup 4. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. This subgroup's function is unknown. 368 -239446 cd03330 Macro_2 Macro domain, Unknown family 2. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. This family is composed of uncharacterized proteins containing a stand-alone macro domain. 133 -239447 cd03331 Macro_Poa1p_like_SNF2 Macro domain, Poa1p_like family, SNF2 subfamily. The macro domain is a high-affinity ADP-ribose binding module found in a variety of proteins as a stand-alone domain or in combination with other domains like in histone macroH2A and some PARPs (poly ADP-ribose polymerases). Some macro domains recognize poly ADP-ribose as a ligand. Previously identified as displaying an Appr-1"-p (ADP-ribose-1"-monophosphate) processing activity, the macro domain may play roles in distinct ADP-ribose pathways, such as the ADP-ribosylation of proteins, an important post-translational modification which occurs in DNA repair, transcription, chromatin biology, and long-term memory formation, among other processes. Members of this subfamily contain a C-terminal macro domain that show similarity to the yeast protein Poa1p, reported to be a phosphatase specific for Appr-1"-p, a tRNA splicing metabolite. In addition, they also contain an SNF2 domain, defined by the presence of seven motifs with sequence similarity to DNA helicases. SNF2 proteins have the capacity to use the energy released by their DNA-dependent ATPase activity to stabilize or perturb protein-DNA interactions and play important roles in transcriptional regulation, maintenance of chromosome integrity and DNA repair. 152 -239448 cd03332 LMO_FMN L-Lactate 2-monooxygenase (LMO) FMN-binding domain. LMO is a FMN-containing enzyme that catalyzes the conversion of L-lactate and oxygen to acetate, carbon dioxide, and water. LMO is a member of the family of alpha-hydroxy acid oxidases. It is thought to be a homooctamer with two- and four- fold axes in the center of the octamer. 383 -239449 cd03333 chaperonin_like chaperonin_like superfamily. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. There are 2 main chaperonin groups. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). The symmetry of type II is eight- or nine-fold and they are found in archea (thermosome), thermophilic bacteria (TF55) and in the eukaryotic cytosol (CTT). Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. This superfamily also contains related domains from Fab1-like phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinases that only contain the intermediate and apical domains. 209 -239450 cd03334 Fab1_TCP TCP-1 like domain of the eukaryotic phosphatidylinositol 3-phosphate (PtdIns3P) 5-kinase Fab1. Fab1p is important for vacuole size regulation, presumably by modulating PtdIns(3,5)P2 effector activity. In the human homolog p235/PIKfyve deletion of this domain leads to loss of catalytic activity. However no exact function this domain has been defined. In general, chaperonins are involved in productive folding of proteins. 261 -239451 cd03335 TCP1_alpha TCP-1 (CTT or eukaryotic type II) chaperonin family, alpha subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 527 -239452 cd03336 TCP1_beta TCP-1 (CTT or eukaryotic type II) chaperonin family, beta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 517 -239453 cd03337 TCP1_gamma TCP-1 (CTT or eukaryotic type II) chaperonin family, gamma subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 480 -239454 cd03338 TCP1_delta TCP-1 (CTT or eukaryotic type II) chaperonin family, delta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 515 -239455 cd03339 TCP1_epsilon TCP-1 (CTT or eukaryotic type II) chaperonin family, epsilon subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 526 -239456 cd03340 TCP1_eta TCP-1 (CTT or eukaryotic type II) chaperonin family, eta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 522 -239457 cd03341 TCP1_theta TCP-1 (CTT or eukaryotic type II) chaperonin family, theta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 472 -239458 cd03342 TCP1_zeta TCP-1 (CTT or eukaryotic type II) chaperonin family, zeta subunit. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. In contrast to bacterial group I chaperonins (GroEL), each ring of the eukaryotic cytosolic chaperonin (CTT) consists of eight different, but homologous subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. The best studied in vivo substrates of CTT are actin and tubulin. 484 -239459 cd03343 cpn60 cpn60 chaperonin family. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings. Archaeal cpn60 (thermosome), together with TF55 from thermophilic bacteria and the eukaryotic cytosol chaperonin (CTT), belong to the type II group of chaperonins. Cpn60 consists of two stacked octameric rings, which are composed of one or two different subunits. Their common function is to sequester nonnative proteins inside their central cavity and promote folding by using energy derived from ATP hydrolysis. 517 -239460 cd03344 GroEL GroEL_like type I chaperonin. Chaperonins are involved in productive folding of proteins. They share a common general morphology, a double toroid of 2 stacked rings, each composed of 7-9 subunits. The symmetry of type I is seven-fold and they are found in eubacteria (GroEL) and in organelles of eubacterial descent (hsp60 and RBP). With the aid of cochaperonin GroES, GroEL encapsulates non-native substrate proteins inside the cavity of the GroEL-ES complex and promotes folding by using energy derived from ATP hydrolysis. 520 -239461 cd03345 eu_TyrOH Eukaryotic tyrosine hydroxylase (TyrOH); a member of the biopterin-dependent aromatic amino acid hydroxylase family of non-heme, iron(II)-dependent enzymes that also includes prokaryotic and eukaryotic phenylalanine-4-hydroxylase (PheOH) and eukaryotic tryptophan hydroxylase (TrpOH). TyrOH catalyzes the conversion of tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of the catecholamines dopamine, noradrenaline, and adrenaline. 298 -239462 cd03346 eu_TrpOH Eukaryotic tryptophan hydroxylase (TrpOH); a member of the biopterin-dependent aromatic amino acid hydroxylase family of non-heme, iron(II)-dependent enzymes that also includes prokaryotic and eukaryotic phenylalanine-4-hydroxylase (PheOH) and eukaryotic tyrosine hydroxylase (TyrOH). TrpOH oxidizes L-tryptophan to 5-hydroxy-L-tryptophan, the rate-limiting step in the biosynthesis of serotonin (5-hydroxytryptamine), a widely distributed hormone and neurotransmitter. 287 -239463 cd03347 eu_PheOH Eukaryotic phenylalanine-4-hydroxylase (eu_PheOH); a member of the biopterin-dependent aromatic amino acid hydroxylase family of non-heme, iron(II)-dependent enzymes that also includes prokaryotic phenylalanine-4-hydroxylase (pro_PheOH), eukaryotic tyrosine hydroxylase (TyrOH) and eukaryotic tryptophan hydroxylase (TrpOH). PheOH catalyzes the first and rate-limiting step in the metabolism of the amino acid L-phenylalanine (L-Phe), the hydroxylation of L-Phe to L-tyrosine (L-Tyr). It uses (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) as the physiological electron donor. The catalytic activity of the tetrameric enzyme is tightly regulated by the binding of L-Phe and BH4 as well as by phosphorylation. Mutations in the human enzyme are linked to a severe variant of phenylketonuria. 306 -239464 cd03348 pro_PheOH Prokaryotic phenylalanine-4-hydroxylase (pro_PheOH); a member of the biopterin-dependent aromatic amino acid hydroxylase family of non-heme, iron(II)-dependent enzymes that also includes the eukaryotic proteins, phenylalanine-4-hydroxylase (eu_PheOH), tyrosine hydroxylase (TyrOH) and tryptophan hydroxylase (TrpOH). PheOH catalyzes the hydroxylation of L-Phe to L-tyrosine (L-Tyr). It uses (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) as the physiological electron donor. 228 -100040 cd03349 LbH_XAT Xenobiotic acyltransferase (XAT): The XAT class of hexapeptide acyltransferases is composed of a large number of microbial enzymes that catalyze the CoA-dependent acetylation of a variety of hydroxyl-bearing acceptors such as chloramphenicol and streptogramin, among others. Members of this class of enzymes include Enterococcus faecium streptogramin A acetyltransferase and Pseudomonas aeruginosa chloramphenicol acetyltransferase. They contain repeated copies of a six-residue hexapeptide repeat sequence motif (X-[STAV]-X-[LIV]-[GAED]-X) and adopt a left-handed parallel beta helix (LbH) structure. The active enzyme is a trimer with CoA and substrate binding sites at the interface of two separate LbH subunits. XATs are implicated in inactivating xenobiotics leading to xenobiotic resistance in patients. 145 -100041 cd03350 LbH_THP_succinylT 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate (THDP) N-succinyltransferase (also called THP succinyltransferase): THDP N-succinyltransferase catalyzes the conversion of tetrahydrodipicolinate and succinyl-CoA to N-succinyltetrahydrodipicolinate and CoA. It is the committed step in the succinylase pathway by which bacteria synthesize L-lysine and meso-diaminopimelate, a component of peptidoglycan. The enzyme is homotrimeric and each subunit contains an N-terminal region with alpha helices and hairpin loops, as well as a C-terminal region with a left-handed parallel alpha-helix (LbH) structural motif encoded by hexapeptide repeat motifs. 139 -100042 cd03351 LbH_UDP-GlcNAc_AT UDP-N-acetylglucosamine O-acyltransferase (UDP-GlcNAc acyltransferase): Proteins in this family catalyze the transfer of (R)-3-hydroxymyristic acid from its acyl carrier protein thioester to UDP-GlcNAc. It is the first enzyme in the lipid A biosynthetic pathway and is also referred to as LpxA. Lipid A is essential for the growth of Escherichia coli and related bacteria. It is also essential for maintaining the integrity of the outer membrane. UDP-GlcNAc acyltransferase is a homotrimer of left-handed parallel beta helix (LbH) subunits. Each subunit contains an N-terminal LbH region with 9 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X), and a C-terminal alpha-helical region. 254 -100043 cd03352 LbH_LpxD UDP-3-O-acyl-glucosamine N-acyltransferase (LpxD): The enzyme catalyzes the transfer of 3-hydroxymyristic acid or 3-hydroxy-arachidic acid, depending on the organism, from the acyl carrier protein (ACP) to UDP-3-O-acyl-glucosamine to produce UDP-2,3-diacyl-GlcNAc. This constitutes the third step in the lipid A biosynthetic pathway in Gram-negative bacteria. LpxD is a homotrimer, with each subunit consisting of a novel combination of an N-terminal uridine-binding domain, a core lipid-binding left-handed parallel beta helix (LbH) domain, and a C-terminal alpha-helical extension. The LbH domain contains 9 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). 205 -100044 cd03353 LbH_GlmU_C N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), C-terminal left-handed beta-helix (LbH) acetyltransferase domain: GlmU is also known as UDP-N-acetylglucosamine pyrophosphorylase. It is a bifunctional bacterial enzyme that catalyzes two consecutive steps in the formation of UDP-N-acetylglucosamine (UDP-GlcNAc), an important precursor in bacterial cell wall formation. The two enzymatic activities, uridyltransferase and acetyltransferase, are carried out by two independent domains. The C-terminal LbH domain possesses the acetyltransferase activity. It catalyzes the CoA-dependent acetylation of GlcN-1-phosphate to GlcNAc-1-phosphate. The LbH domain contains 10 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X. The acetyltransferase active site is located at the interface between two subunits of the active LbH trimer. 193 -100045 cd03354 LbH_SAT Serine acetyltransferase (SAT): SAT catalyzes the CoA-dependent acetylation of the side chain hydroxyl group of L-serine to form O-acetylserine, as the first step of a two-step biosynthetic pathway in bacteria and plants leading to the formation of L-cysteine. This reaction represents a key metabolic point of regulation for the cysteine biosynthetic pathway due to its feedback inhibition by cysteine. The enzyme is a 175 kDa homohexamer, composed of a dimer of homotrimers. Each subunit contains an N-terminal alpha helical region and a C-terminal left-handed beta-helix (LbH) subdomain with 5 turns, each containing a hexapeptide repeat motif characteristic of the acyltransferase superfamily of enzymes. The trimer interface mainly involves the C-terminal LbH subdomain while the dimer (of trimers) interface is mediated by the N-terminal alpha helical subdomain. 101 -100046 cd03356 LbH_G1P_AT_C_like Left-handed parallel beta-Helix (LbH) domain of a group of proteins with similarity to glucose-1-phosphate adenylyltransferase: Included in this family are glucose-1-phosphate adenylyltransferase, mannose-1-phosphate guanylyltransferase, and the eukaryotic translation initiation factor eIF-2B subunits, epsilon and gamma. Most members of this family contains an N-terminal catalytic domain that resembles a dinucleotide-binding Rossmann fold, followed by a LbH fold domain with at least 4 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). eIF-2B epsilon contains an additional domain of unknown function at the C-terminus. Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 79 -100047 cd03357 LbH_MAT_GAT Maltose O-acetyltransferase (MAT) and Galactoside O-acetyltransferase (GAT): MAT and GAT catalyze the CoA-dependent acetylation of the 6-hydroxyl group of their respective sugar substrates. MAT acetylates maltose and glucose exclusively at the C6 position of the nonreducing end glucosyl moiety. GAT specifically acetylates galactopyranosides. Furthermore, MAT shows higher affinity toward artificial substrates containing an alkyl or hydrophobic chain as well as a glucosyl unit. Active MAT and GAT are homotrimers, with each subunit consisting of an N-terminal alpha-helical region and a C-terminal left-handed parallel alpha-helix (LbH) subdomain with 6 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). 169 -100048 cd03358 LbH_WxcM_N_like WcxM-like, Left-handed parallel beta-Helix (LbH) N-terminal domain: This group is composed of Xanthomonas campestris WcxM and proteins with similarity to the WcxM N-terminal domain. WcxM is thought to be bifunctional, catalyzing both the isomerization and transacetylation reactions of keto-hexoses. It contains an N-terminal LbH domain responsible for the transacetylation function and a C-terminal isomerase domain. The LbH domain contains imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X), typical of enzymes with acyltransferase activity. 119 -100049 cd03359 LbH_Dynactin_5 Dynactin 5 (or subunit p25); Dynactin is a major component of the activator complex that stimulates dynein-mediated vesicle transport. Dynactin is a heterocomplex of at least eight subunits, including a 150,000-MW protein called Glued, the actin-capping protein Arp1, and dynamatin. In vitro binding experiments show that dynactin enhances dynein-dependent motility, possibly through interaction with microtubules and vesicles. Subunit p25 is part of the pointed-end subcomplex in dynactin that also includes p26, p27, and Arp11. This subcomplex interacts with membranous cargoes. p25 and p27 contain imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X), indicating a left-handed parallel beta helix (LbH) structural domain. Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 161 -100050 cd03360 LbH_AT_putative Putative Acyltransferase (AT), Left-handed parallel beta-Helix (LbH) domain; This group is composed of mostly uncharacterized proteins containing an N-terminal helical subdomain followed by a LbH domain. The alignment contains 6 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. A few members are identified as NeuD, a sialic acid (Sia) O-acetyltransferase that is required for Sia synthesis and surface polysaccharide sialylation. 197 -173781 cd03361 TOPRIM_TopoIA_RevGyr TopoIA_RevGyr : The topoisomerase-primase (TORPIM) domain found in members of the type IA family of DNA topoisomerases (Topo IA) similar to the ATP-dependent reverse gyrase found in archaea and thermophilic bacteria. Type IA DNA topoisomerases remove (relax) negative supercoils in the DNA by: cleaving one strand of the DNA duplex, covalently linking to the 5' phosphoryl end of the DNA break and, allowing the other strand of the duplex to pass through the gap. Reverse gyrase is also able to insert positive supercoils in the presence of ATP and negative supercoils in the presence of AMPPNP. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). For topoisomerases the conserved glutamate is believed to act as a general base in strand joining and, as a general acid in strand cleavage. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 170 -173782 cd03362 TOPRIM_TopoIA_TopoIII TOPRIM_TopoIA_TopoIII: The topoisomerase-primase (TORPIM) domain found in members of the type IA family of DNA topoisomerases (Topo IA) similar to topoisomerase III. Type IA DNA topoisomerases remove (relax) negative supercoils in the DNA by: cleaving one strand of the DNA duplex, covalently linking to the 5' phosphoryl end of the DNA break and, allowing the other strand of the duplex to pass through the gap. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). For topoisomerases the conserved glutamate is believed to act as a general base in strand joining and, as a general acid in strand cleavage. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 151 -173783 cd03363 TOPRIM_TopoIA_TopoI TOPRIM_TopoIA_TopoI: The topoisomerase-primase (TOPRIM) domain found in members of the type IA family of DNA topoisomerases (Topo IA) similar to Escherichia coli DNA topoisomerase I. Type IA DNA topoisomerases remove (relax) negative supercoils in the DNA by: cleaving one strand of the DNA duplex, covalently linking to the 5' phosphoryl end of the DNA break and, allowing the other strand of the duplex to pass through the gap. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). For topoisomerases the conserved glutamate is believed to act as a general base in strand joining and, as a general acid in strand cleavage. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 123 -173784 cd03364 TOPRIM_DnaG_primases TOPRIM_DnaG_primases: The topoisomerase-primase (TORPIM) nucleotidyl transferase/hydrolase domain found in the active site regions of proteins similar to Escherichia coli DnaG. Primases synthesize RNA primers for the initiation of DNA replication. DnaG type primases are often closely associated with DNA helicases in primosome assemblies. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). This glutamate and two aspartates, cluster together to form a highly acid surface patch. The conserved glutamate may act as a general base in nucleotide polymerization by primases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. E. coli DnaG is a single subunit enzyme. 79 -173785 cd03365 TOPRIM_TopoIIA TOPRIM_TopoIIA: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in proteins of the type IIA family of DNA topoisomerases similar to Saccharomyces cerevisiae Topoisomerase II. TopoIIA enzymes cut both strands of the duplex DNA to remove (relax) both positive and negative supercoils in DNA. These enzymes covalently attach to the 5' ends of the cut DNA, separate the free ends of the cleaved strands, pass another region of the duplex through this gap, then rejoin the ends. These proteins also catenate/ decatenate duplex rings. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). This glutamate and two aspartates, cluster together to form a highly acid surface patch. The conserved glutamate may act as a general base in strand joining and as a general acid in strand cleavage by topisomerases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 120 -173786 cd03366 TOPRIM_TopoIIA_GyrB TOPRIM_TopoIIA_GyrB: topoisomerase-primase (TOPRIM) nucleotidyl transferase/hydrolase domain of the type found in proteins of the type IIA family of DNA topoisomerases similar to the Escherichia coli GyrB subunit. TopoIIA enzymes cut both strands of the duplex DNA to remove (relax) both positive and negative supercoils in DNA. These enzymes covalently attach to the 5' ends of the cut DNA, separate the free ends of the cleaved strands, pass another region of the duplex through this gap, then rejoin the ends. These proteins also catenate/ decatenate duplex rings. DNA gyrase is more effective at relaxing supercoils than decatentating DNA. DNA gyrase in addition inserts negative supercoils in the presence of ATP. The TOPRIM domain has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). The conserved glutamate may act as a general base in strand joining and as a general acid in strand cleavage by topisomerases. The DXD motif may co-ordinate Mg2+, a cofactor required for full catalytic function. 114 -239465 cd03367 Ribosomal_S23 S12-like family, 40S ribosomal protein S23 subfamily; S23 is located at the interface of the large and small ribosomal subunits of eukaryotes, adjacent to the decoding center. It interacts with domain III of the eukaryotic elongation factor 2 (eEF2), which catalyzes the translocation of the growing peptidyl-tRNA to the P site to make room for the next aminoacyl-tRNA at the A (acceptor) site. Through its interaction with eEF2, S23 may play an important role in translocation. Also members of this subfamily are the archaeal 30S ribosomal S12 proteins. Prokaryotic S12 is essential for maintenance of a pretranslocation state and, together with S13, functions as control element for the rRNA- and tRNA-driven movements of translocation. S12 and S23 are also implicated in translation accuracy. Antibiotics such as streptomycin bind S12/S23 and cause the ribosome to misread the genetic code. 115 -239466 cd03368 Ribosomal_S12 S12-like family, 30S ribosomal protein S12 subfamily; S12 is located at the interface of the large and small ribosomal subunits of prokaryotes, chloroplasts and mitochondria, where it plays an important role in both tRNA and ribosomal subunit interactions. S12 is essential for maintenance of a pretranslocation state and, together with S13, functions as a control element for the rRNA- and tRNA-driven movements of translocation. Antibiotics such as streptomycin bind S12 and cause the ribosome to misread the genetic code. 108 -213269 cd03369 ABCC_NFT1 ATP-binding cassette domain 2 of NFT1, subfamily C. Domain 2 of NFT1 (New full-length MRP-type transporter 1). NFT1 belongs to the MRP (multidrug resistance-associated protein) family of ABC transporters. Some of the MRP members have five additional transmembrane segments in their N-terminus, but the function of these additional membrane-spanning domains is not clear. The MRP was found in the multidrug-resisting lung cancer cell in which p-glycoprotein was not overexpressed. MRP exports glutathione by drug stimulation, as well as, certain substrates in conjugated forms with anions such as glutathione, glucuronate, and sulfate. 207 -239467 cd03370 NADH_oxidase NADPH_oxidase. Nitroreductase family containing NADH oxidase and other, uncharacterized proteins that are similar to nitroreductase. Nitroreductase catalyzes the reduction of nitroaromatic compounds such as nitrotoluenes, nitrofurans and nitroimidazoles. This process requires NAD(P)H as electron donor in an obligatory two-electron transfer and uses FMN as cofactor. The enzyme is typically a homodimer. Members of this family are also called NADH dehydrogenase, oxygen-insensitive NAD(P)H nitrogenase or dihydropteridine reductase. 156 -239468 cd03371 TPP_PpyrDC Thiamine pyrophosphate (TPP) family, PpyrDC subfamily, TPP-binding module; composed of proteins similar to phosphonopyruvate decarboxylase (PpyrDC) proteins. PpyrDC is a homotrimeric enzyme which functions in the biosynthesis of C-P compounds such as bialaphos tripeptide in Streptomyces hygroscopicus. These proteins require TPP and divalent metal cation cofactors. 188 -239469 cd03372 TPP_ComE Thiamine pyrophosphate (TPP) family, ComE subfamily, TPP-binding module; composed of proteins similar to Methanococcus jannaschii sulfopyruvate decarboxylase beta subunit (ComE). M. jannaschii sulfopyruvate decarboxylase (ComDE) is a dodecamer of six alpha (D) subunits and six (E) beta subunits, which catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde in the coenzyme M pathway. ComDE requires TPP and divalent metal cation cofactors. 179 -239470 cd03375 TPP_OGFOR Thiamine pyrophosphate (TPP family), 2-oxoglutarate ferredoxin oxidoreductase (OGFOR) subfamily, TPP-binding module; OGFOR catalyzes the oxidative decarboxylation of 2-oxo-acids, with ferredoxin acting as an electron acceptor. In the TCA cycle, OGFOR catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. In the reductive tricarboxylic acid cycle found in the anaerobic autotroph Hydrogenobacter thermophilus, OGFOR catalyzes the reductive carboxylation of succinyl-CoA to produce 2-oxoglutarate. Thauera aromatica OGFOR has been shown to provide reduced ferredoxin to benzoyl-CoA reductase, a key enzyme in the anaerobic metabolism of aromatic compounds. OGFOR is dependent on TPP and a divalent metal cation for activity. 193 -239471 cd03376 TPP_PFOR_porB_like Thiamine pyrophosphate (TPP family), PFOR porB-like subfamily, TPP-binding module; composed of proteins similar to the beta subunit (porB) of the Helicobacter pylori four-subunit pyruvate ferredoxin oxidoreductase (PFOR), which are also found in archaea and some hyperthermophilic bacteria. PFOR catalyzes the oxidative decarboxylation of pyruvate to form acetyl-CoA, a crucial step in many metabolic pathways. Archaea, anaerobic bacteria and eukaryotes that lack mitochondria (and therefore pyruvate dehydrogenase) use PFOR to oxidatively decarboxylate pyruvate, with ferredoxin or flavodoxin as the electron acceptor. The 36-kDa porB subunit contains the binding sites for the cofactors, TPP and a divalent metal cation, which are required for activity. 235 -239472 cd03377 TPP_PFOR_PNO Thiamine pyrophosphate (TPP family), PFOR_PNO subfamily, TPP-binding module; composed of proteins similar to the single subunit pyruvate ferredoxin oxidoreductase (PFOR) of Desulfovibrio Africanus, present in bacteria and amitochondriate eukaryotes. This subfamily also includes proteins characterized as pyruvate NADP+ oxidoreductase (PNO). These enzymes are dependent on TPP and a divalent metal cation as cofactors. PFOR and PNO catalyze the oxidative decarboxylation of pyruvate to form acetyl-CoA, a crucial step in many metabolic pathways. Archaea, anaerobic bacteria and eukaryotes that lack mitochondria (and therefore pyruvate dehydrogenase) use PFOR to oxidatively decarboxylate pyruvate, with ferredoxin or flavodoxin as the electron acceptor. The PFOR from cyanobacterium Anabaena (NifJ) is required for the transfer of electrons from pyruvate to flavodoxin, which reduces nitrogenase. The facultative anaerobic mitochondrion of the photosynthetic protist Euglena gracilis oxidizes pyruvate with PNO. 365 -239473 cd03378 beta_CA_cladeC Carbonic anhydrases (CA) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism in which the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide is followed by the regeneration of an active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. CAs are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionarily distinct families of CAs (the alpha-, beta-, and gamma-CAs) which show no significant sequence identity or structural similarity. Within the beta-CA family there are four evolutionarily distinct clades (A through D). The beta-CAs are multimeric enzymes (forming dimers,tetramers,hexamers and octamers) which are present in higher plants, algae, fungi, archaea and prokaryotes. 154 -239474 cd03379 beta_CA_cladeD Carbonic anhydrases (CA) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism in which the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide is followed by the regeneration of an active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. CAs are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionarily distinct families of CAs (the alpha-, beta-, and gamma-CAs) which show no significant sequence identity or structural similarity. Within the beta-CA family there are four evolutionarily distinct clades (A through D). The beta-CAs are multimeric enzymes (forming dimers,tetramers,hexamers and octamers) which are present in higher plants, algae, fungi, archaea and prokaryotes. 142 -239475 cd03380 PAP2_like_1 PAP2_like_1 proteins, a sub-family of PAP2, containing bacterial acid phosphatase, vanadium chloroperoxidases and vanadium bromoperoxidases. 209 -239476 cd03381 PAP2_glucose_6_phosphatase PAP2_like proteins, glucose-6-phosphatase subfamily. Glucose-6-phosphatase converts glucose-6-phosphate into free glucose and is active in the lumen of the endoplasmic reticulum, where it is bound to the membrane. The generation of free glucose is an important control point in metabolism, and stands at the end of gluconeogenesis and the release of glucose from glycogen. Deficiency of glucose-6-phosphatase leads to von Gierke's disease. 235 -239477 cd03382 PAP2_dolichyldiphosphatase PAP2_like proteins, dolichyldiphosphatase subfamily. Dolichyldiphosphatase is a membrane-associated protein located in the endoplasmic reticulum and hydrolyzes dolichyl pyrophosphate, as well as dolichylmonophosphate at a low rate. The enzyme is necessary for maintaining proper levels of dolichol-linked oligosaccharides and protein N-glycosylation, and might play a role in re-utilization of the glycosyl carrier lipid for additional rounds of lipid intermediate biosynthesis after its release during protein N-glycosylation reactions. 159 -239478 cd03383 PAP2_diacylglycerolkinase PAP2_like proteins, diacylglycerol_kinase like sub-family. In some prokaryotes, PAP2_like phosphatase domains appear fused to E. coli DAGK-like trans-membrane diacylglycerol kinase domains. The cellular function of these architectures remains to be determined. 109 -239479 cd03384 PAP2_wunen PAP2, wunen subfamily. Most likely a family of membrane associated phosphatidic acid phosphatases. Wunen is a drosophila protein expressed in the central nervous system, which provides repellent activity towards primordial germ cells (PGCs), controls the survival of PGCs and is essential in the migration process of these cells towards the somatic gonadal precursors. 150 -239480 cd03385 PAP2_BcrC_like PAP2_like proteins, BcrC_like subfamily. Several members of this family have been annotated as bacitracin transport permeases, as it was suspected that they form the permease component of an ABC transporter system. It was shown, however, that BcrC from Bacillus subtilis posesses undecaprenyl pyrophosphate (UPP) phospatase activity, and it is hypothesized that it competes with bacitracin for UPP, increasing the cell's resistance to bacitracin. 144 -239481 cd03386 PAP2_Aur1_like PAP2_like proteins, Aur1_like subfamily. Yeast Aur1p or Ipc1p is necessary for the addition of inositol phosphate to ceramide, an essential step in yeast sphingolipid synthesis, and is the target of several antifungal compounds such as aureobasidin. 186 -239482 cd03388 PAP2_SPPase1 PAP2_like proteins, sphingosine-1-phosphatase subfamily. Sphingosine-1-phosphatase is an intracellular enzyme located in the endoplasmic reticulum, which regulates the level of sphingosine-1-phosphate (S1P), a bioactive lipid. S1P acts as a second messenger in the cell, and extracellularly by binding to G-protein coupled receptors of the endothelial differentiation gene family. 151 -239483 cd03389 PAP2_lipid_A_1_phosphatase PAP2_like proteins, Lipid A 1-phosphatase subfamily. Lipid A 1-phosphatase, or LpxE from Francisella novicida selectively dephosphorylates lipid A at the 1-position. Lipid A is the membrane-anchor component of lipopolysaccharides (LPS), the major constituents of the outer membrane in many gram-negative bacteria. 186 -239484 cd03390 PAP2_containing_1_like PAP2, subfamily similar to human phosphatidic_acid_phosphatase_type_2_domain_containing_1. Most likely membrane-associated phosphatidic acid phosphatases. Plant members of this group are constitutively expressed in many tissues and exhibit both diacylglycerol pyrophosphate phosphatase activity as well as phosphatidate (PA) phosphatase activity, they may have a more generic housekeeping role in lipid metabolism. 193 -239485 cd03391 PAP2_containing_2_like PAP2, subfamily similar to human phosphatidic_acid_phosphatase_type_2_domain_containing_2. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which is specific to eukaryota, lacks functional characterization and may act as a membrane-associated phosphatidic acid phosphatase. 159 -239486 cd03392 PAP2_like_2 PAP2_like_2 proteins. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which is specific to bacteria, lacks functional characterization and may act as a membrane-associated lipid phosphatase. 182 -239487 cd03393 PAP2_like_3 PAP2_like_3 proteins. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which is specific to bacteria and archaea, lacks functional characterization and may act as a membrane-associated lipid phosphatase. 125 -239488 cd03394 PAP2_like_5 PAP2_like_5 proteins. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which is specific to bacteria, lacks functional characterization and may act as a membrane-associated lipid phosphatase. 106 -239489 cd03395 PAP2_like_4 PAP2_like_4 proteins. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which is specific to bacteria, lacks functional characterization and may act as a membrane-associated lipid phosphatase. 177 -239490 cd03396 PAP2_like_6 PAP2_like_6 proteins. PAP2 is a super-family of phosphatases and haloperoxidases. This subgroup, which mainly contains bacterial proteins, lacks functional characterization and may act as a membrane-associated lipid phosphatase. 197 -239491 cd03397 PAP2_acid_phosphatase PAP2, bacterial acid phosphatase or class A non-specific acid phosphatases. These enzymes catalyze phosphomonoester hydrolysis, with optimal activity in low pH conditions. They are secreted into the periplasmic space, and their physiological role remains to be determined. 232 -239492 cd03398 PAP2_haloperoxidase PAP2, haloperoxidase_like subfamily. Haloperoxidases catalyze the oxidation of halides such as bromide or chloride by hydrogen peroxide, which results in subsequent halogenation of organic substrates, or halide-assisted disproportionation of hydrogen peroxide forming dioxygen. They are likely to participate in the biosynthesis of halogenated natural products, such as volatile halogenated hydrocarbons, chiral halogenated terpenes, acetogenins and indoles. 232 -259798 cd03399 SPFH_flotillin Flotillin or reggie family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. The flotillin (reggie) like proteins are lipid raft-associated. Individual proteins of this SPFH family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. In addition, microdomains formed from flotillin proteins may be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and interact with a variety of proteins. They may play a role in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease and in cancer invasion, and metastasis. 145 -259799 cd03401 SPFH_prohibitin Prohibitin family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model characterizes proteins similar to prohibitin (a lipid raft-associated integral membrane protein). Individual proteins of the SPFH (band 7) domain superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. These microdomains, in addition to being stable scaffolds, may also be dynamic units with their own regulatory functions. Prohibitin is a mitochondrial inner-membrane protein which may act as a chaperone for the stabilization of mitochondrial proteins. Human prohibitin forms a hetero-oligomeric complex with Bap-37 (prohibitin 2, an SPFH domain carrying homolog). This complex may protect non-assembled membrane proteins against proteolysis by the m-AAA protease. Prohibitin and Bap-37 yeast homologs have been implicated in yeast longevity and in the maintenance of mitochondrial morphology. 195 -259800 cd03402 SPFH_like_u2 Uncharacterized family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes an uncharacterized family of proteins similar to stomatin, prohibitin, flotillin, HflK/C (SPFH) and podocin. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Many superfamily members are associated with lipid rafts. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic HflK/C plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. Flotillins have been implicated in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, and in cancer invasion and metastasis. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. 231 -259801 cd03403 SPFH_stomatin Stomatin, a subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. Stomatin (or band 7) is widely expressed and, highly expressed in red blood cells. It localizes predominantly to the plasma membrane and to intracellular vesicles of the endocytic pathway, where it is present in higher order homo-oligomeric complexes (of between 9 and 12 monomers). Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and, is implicated in trafficking of Glut1 glucose transporters. This subgroup found in animals, also contains proteins similar to Caenorhabditis elegans MEC-2. MEC-2 interacts with MEC-4, which is part of the degenerin channel complex required for response to gentle body touch. 202 -259802 cd03404 SPFH_HflK High frequency of lysogenization K (HflK) family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model characterizes proteins similar to prokaryotic HflK (High frequency of lysogenization K). Although many members of the SPFH (or band 7) superfamily are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this SPFH domain superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflK is an integral membrane protein which may localize to the plasma membrane. HflK associates with another SPFH superfamily member (HflC) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. 266 -259803 cd03405 SPFH_HflC High frequency of lysogenization C (HflC) family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model characterizes proteins similar to prokaryotic HflC (High frequency of lysogenization C). Although many members of the SPFH (or band 7) superfamily are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this SPFH domain superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflC is an integral membrane protein which may localize to the plasma membrane. HflC associates with another SPFH superfamily member (HflK) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. 249 -259804 cd03406 SPFH_like_u3 Uncharacterized family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes an uncharacterized family of proteins similar to stomatin, prohibitin, flotillin, HflK/C (SPFH) and podocin. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Many superfamily members are associated with lipid rafts. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic HflK/C plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. Flotillins have been implicated in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease and, in cancer invasion and metastasis. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. 293 -259805 cd03407 SPFH_like_u4 Uncharacterized family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes an uncharacterized family of proteins similar to stomatin, prohibitin, flotillin, HflK/C (SPFH) and podocin. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Many superfamily members are associated with lipid rafts. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic HflK/C plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. Flotillins have been implicated in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease and, in cancer invasion and metastasis. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. 269 -259806 cd03408 SPFH_like_u1 Uncharacterized family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes an uncharacterized family of proteins similar to stomatin, prohibitin, flotillin, HflK/C (SPFH) and podocin. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Many superfamily members are associated with lipid rafts. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic HflK/C plays a role in the decision between lysogenic and lytic cycle growth during lambda phage infection. Flotillins have been implicated in the progression of prion disease, in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's disease and, in cancer invasion and metastasis. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. 217 -239503 cd03409 Chelatase_Class_II Class II Chelatase: a family of ATP-independent monomeric or homodimeric enzymes that catalyze the insertion of metal into protoporphyrin rings. This family includes protoporphyrin IX ferrochelatase (HemH), sirohydrochlorin ferrochelatase (SirB) and the cobaltochelatases, CbiK and CbiX. HemH and SirB are involved in heme and siroheme biosynthesis, respectively, while the cobaltochelatases are associated with cobalamin biosynthesis. Excluded from this family are the ATP-dependent heterotrimeric chelatases (class I) and the multifunctional homodimeric enzymes with dehydrogenase and chelatase activities (class III). 101 -239504 cd03411 Ferrochelatase_N Ferrochelatase, N-terminal domain: Ferrochelatase (protoheme ferrolyase or HemH) is the terminal enzyme of the heme biosynthetic pathway. It catalyzes the insertion of ferrous iron into the protoporphyrin IX ring yielding protoheme. This enzyme is ubiquitous in nature and widely distributed in bacteria and eukaryotes. Recently, some archaeal members have been identified. The oligomeric state of these enzymes varies depending on the presence of a dimerization motif at the C-terminus. 159 -239505 cd03412 CbiK_N Anaerobic cobalamin biosynthetic cobalt chelatase (CbiK), N-terminal domain. CbiK is part of the cobalt-early path for cobalamin biosynthesis. It catalyzes the insertion of cobalt into the oxidized form of precorrin-2, factor II (sirohydrochlorin), the second step of the anaerobic branch of vitamin B12 biosynthesis. CbiK belongs to the class II family of chelatases and is a homomeric enzyme that does not require ATP for its enzymatic activity. 127 -239506 cd03413 CbiK_C Anaerobic cobalamin biosynthetic cobalt chelatase (CbiK), C-terminal domain. CbiK is part of the cobalt-early path for cobalamin biosynthesis. It catalyzes the insertion of cobalt into the oxidized form of precorrin-2, factor II (sirohydrochlorin), the second step of the anaerobic branch of vitamin B12 biosynthesis. CbiK belongs to the class II family of chelatases, and is a homomeric enzyme that does not require ATP for its enzymatic activity. 103 -239507 cd03414 CbiX_SirB_C Sirohydrochlorin cobalt chelatase (CbiX) and sirohydrochlorin iron chelatase (SirB), C-terminal domain. SirB catalyzes the ferro-chelation of sirohydrochlorin to siroheme, the prosthetic group of sulfite and nitrite reductases. CbiX is a cobaltochelatase, responsible for the chelation of Co2+ into sirohydrochlorin, an important step in the vitamin B12 biosynthetic pathway. CbiX often contains a C-terminal histidine-rich region that may be important for metal delivery and/or storage, and may also contain an iron-sulfur center. Both CbiX and SirB are found in a wide range of bacteria. 117 -239508 cd03415 CbiX_CbiC Archaeal sirohydrochlorin cobalt chelatase (CbiX) single domain. Proteins in this subgroup contain a single CbiX domain N-terminal to a precorrin-8X methylmutase (CbiC) domain. CbiX is a cobaltochelatase, responsible for the chelation of Co2+ into sirohydrochlorin, while CbiC catalyzes the conversion of cobalt-precorrin 8 to cobyrinic acid by methyl rearrangement. Both CbiX and CbiC are involved in vitamin B12 biosynthesis. 125 -239509 cd03416 CbiX_SirB_N Sirohydrochlorin cobalt chelatase (CbiX) and sirohydrochlorin iron chelatase (SirB), N-terminal domain. SirB catalyzes the ferro-chelation of sirohydrochlorin to siroheme, the prosthetic group of sulfite and nitrite reductases. CbiX is a cobaltochelatase, responsible for the chelation of Co2+ into sirohydrochlorin, an important step in the vitamin B12 biosynthetic pathway. CbiX often contains a C-terminal histidine-rich region that may be important for metal delivery and/or storage, and may also contain an iron-sulfur center. Both are found in a wide range of bacteria. This subgroup also contains single domain proteins from archaea and bacteria which may represent the ancestral form of class II chelatases before domain duplication occurred. 101 -239510 cd03418 GRX_GRXb_1_3_like Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of bacterial GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including E. coli GRX1 and GRX3, which are members of this subfamily. 75 -239511 cd03419 GRX_GRXh_1_2_like Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of proteins similar to human GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, which are members of this subfamily. Also included in this subfamily are the N-terminal GRX domains of proteins similar to human thioredoxin reductase 1 and 3. 82 -239512 cd03420 SirA_RHOD_Pry_redox SirA_RHOD_Pry_redox. SirA-like domain located within a multidomain protein of unknown function. Other domains include RHOD (rhodanese homology domain), and Pry_redox (pyridine nucleotide-disulphide oxidoreductase) as well as a C-terminal domain that corresponds to COG2210. This fold is referred to as a two-layered alpha/beta sandwich, structurally similar to that of translation initiation factor 3. 69 -239513 cd03421 SirA_like_N SirA_like_N, a protein of unknown function with an N-terminal SirA-like domain. The SirA, YedF, YeeD protein family is present in bacteria as well as archaea. SirA (also known as UvrY, and YhhP) belongs to a family of a two-component response regulators that controls secondary metabolism and virulence. The other member of this two-component system is a sensor kinase called BarA which phosphorylates SirA. A variety of microorganisms have similar proteins, all of which contain a common CPxP sequence motif in the N-terminal region. YhhP is suggested to be important for normal cell division and growth in rich nutrient medium. Moreover, despite a low primary sequence similarity, the YccP structure closely resembles the non-homologous C-terminal RNA-binding domain of E. coli translation initiation factor IF3. The signature CPxP motif serves to stabilize the N-terminal helix as part of the N-capping box and might be important in mRNA-binding. 67 -239514 cd03422 YedF YedF is a bacterial SirA-like protein of unknown function. SirA (also known as UvrY, and YhhP) belongs to a family of a two-component response regulators that controls secondary metabolism and virulence. The other member of this two-component system is a sensor kinase called BarA which phosphorylates SirA. A variety of microorganisms have similar proteins, all of which contain a common CPxP sequence motif in the N-terminal region. YhhP is suggested to be important for normal cell division and growth in rich nutrient medium. Moreover, despite a low primary sequence similarity, the YccP structure closely resembles the non-homologous C-terminal RNA-binding domain of E. coli translation initiation factor IF3. The signature CPxP motif serves to stabilize the N-terminal helix as part of the N-capping box and might be important in mRNA-binding. 69 -239515 cd03423 SirA SirA (also known as UvrY, and YhhP) belongs to a family of two-component response regulators that controls secondary metabolism and virulence. The other member of this two-component system is a sensor kinase called BarA which phosphorylates SirA. A variety of microorganisms have similar proteins, all of which contain a common CPxP sequence motif in the N-terminal region. YhhP is thought to be important for normal cell division and growth in rich nutrient medium. Moreover, despite a low primary sequence similarity, the YccP structure closely resembles the non-homologous C-terminal RNA-binding domain of E. coli translation initiation factor IF3. The signature CPxP motif serves to stabilize the N-terminal helix as part of the N-capping box and might be important in mRNA-binding. 69 -239516 cd03424 ADPRase_NUDT5 ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. Like other members of the Nudix hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue Nudix motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the Nudix motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. 137 -239517 cd03425 MutT_pyrophosphohydrolase The MutT pyrophosphohydrolase is a prototypical Nudix hydrolase that catalyzes the hydrolysis of nucleoside and deoxynucleoside triphosphates (NTPs and dNTPs) by substitution at a beta-phosphorus to yield a nucleotide monophosphate (NMP) and inorganic pyrophosphate (PPi). This enzyme requires two divalent cations for activity; one coordinates the phosphoryl groups of the NTP/dNTP substrate, and the other coordinates to the enzyme. It also contains the Nudix motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as metal binding and catalytic site. MutT pyrophosphohydrolase is important in preventing errors in DNA replication by hydrolyzing mutagenic nucleotides such as 8-oxo-dGTP (a product of oxidative damage), which can mispair with template adenine during DNA replication, to guanine nucleotides. 124 -239518 cd03426 CoAse Coenzyme A pyrophosphatase (CoAse), a member of the Nudix hydrolase superfamily, functions to catalyze the elimination of oxidized inactive CoA, which can inhibit CoA-utilizing enzymes. The need of CoAses mainly arises under conditions of oxidative stress. CoAse has a conserved Nudix fold and requires a single divalent cation for catalysis. In addition to a signature Nudix motif G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val, CoAse contains an additional motif upstream called the NuCoA motif (LLTXT(SA)X3RX3GX3FPGG) which is postulated to be involved in CoA recognition. CoA plays a central role in lipid metabolism. It is involved in the initial steps of fatty acid sythesis in the cytosol, in the oxidation of fatty acids and the citric acid cycle in the mitochondria, and in the oxidation of long-chain fatty acids in peroxisomes. CoA has the important role of activating fatty acids for further modification into key biological signalling molecules. 157 -239519 cd03427 MTH1 MutT homolog-1 (MTH1) is a member of the Nudix hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the Nudix family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the Nudix motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved nudix motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. 137 -239520 cd03428 Ap4A_hydrolase_human_like Diadenosine tetraphosphate (Ap4A) hydrolase is a member of the Nudix hydrolase superfamily. Ap4A hydrolases are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one subfamily and fungi/animals/archaea enzymes, represented by this subfamily, fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for inhibition of such invasive bacteria. Besides the signature nudix motif (G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val) that functions as a metal binding and catalytic site, and a required divalent cation, Ap4A hydrolase is structurally similar to the other members of the nudix superfamily with some degree of variation. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies. 130 -239521 cd03429 NADH_pyrophosphatase NADH pyrophosphatase, a member of the Nudix hydrolase superfamily, catalyzes the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP. Like other members of the Nudix family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the Nudix motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the nudix motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer. 131 -239522 cd03430 GDPMH GDP-mannose glycosyl hydrolase (AKA GDP-mannose mannosyl hydrolase (GDPMH)) is a member of the Nudix hydrolase superfamily. This class of enzymes is unique from other members of the superfamily in two aspects. First, it contains a modified Nudix signature sequence. The slight changes to the conserved sequence motif, GX5EX7REUXEEXGU, where U = I, L or V), are believed to contribute to the removal of all magnesium binding sites but one, retaining only the metal site that coordinates the pyrophosphate of the substrate. Secondly, it is not a pyrophosphatase that substitutes at a phosphorus; instead, it hydrolyzes nucleotide sugars such as GDP-mannose to GDP and mannose, cleaving the phosphoglycosyl bond by substituting at a carbon position. GDP-mannose provides mannosyl components for cell wall synthesis and is required for the synthesis of other glycosyl donors (such as GDP-fucose and colitose) for the cell wall. The importance of GDP-sugar hydrolase activities is thus closely related to the regulation of cell wall biosynthesis. Enzymes in this family are believed to regulate the concentration of GDP-mannose and GDP-glucose in the bacterial cell wall. 144 -239523 cd03431 DNA_Glycosylase_C DNA glycosylase (MutY in bacteria and hMYH in humans) is responsible for repairing misread A*oxoG residues to C*G by removing the inappropriately paired adenine base from the DNA backbone. It belongs to the Nudix hydrolase superfamily and is important for the repair of various genotoxic lesions. Enzymes belonging to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity. They are also recognized by a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V). However, DNA glycosylase does not seem to contain this signature motif. DNA glycosylase consists of 2 domains: the N-terminal domain contains the catalytic properties of the enzyme and the C-terminal domain affects substrate (oxoG) binding and enzymatic turnover. The C-terminal domain is highly similar to MutT, based on secondary structure and topology, despite low sequence identity. MutT sanitizes the nucleotide precursor pool by hydrolyzing oxo-dGTP to oxo-dGMO and inorganic pyrophosphate. The similarity strongly suggests that the two proteins share a common evolutionary origin. 118 -239524 cd03440 hot_dog The hotdog fold was initially identified in the E. coli FabA (beta-hydroxydecanoyl-acyl carrier protein (ACP)-dehydratase) structure and subsequently in 4HBT (4-hydroxybenzoyl-CoA thioesterase) from Pseudomonas. A number of other seemingly unrelated proteins also share the hotdog fold. These proteins have related, but distinct, catalytic activities that include metabolic roles such as thioester hydrolysis in fatty acid metabolism, and degradation of phenylacetic acid and the environmental pollutant 4-chlorobenzoate. This superfamily also includes the PaaI-like protein FapR, a non-catalytic bacterial homolog involved in transcriptional regulation of fatty acid biosynthesis. 100 -239525 cd03441 R_hydratase_like (R)-hydratase [(R)-specific enoyl-CoA hydratase]. Catalyzes the hydration of trans-2-enoyl CoA to (R)-3-hydroxyacyl-CoA as part of the PHA (polyhydroxyalkanoate) biosynthetic pathway. The structure of the monomer includes a five-strand antiparallel beta-sheet wrapped around a central alpha helix, referred to as a hot dog fold. The active site lies within a substrate-binding tunnel formed by the homodimer. Other enzymes with this fold include MaoC dehydratase, Hydratase-Dehydrogenase-Epimerase protein (HDE), and the fatty acid synthase beta subunit. 127 -239526 cd03442 BFIT_BACH Brown fat-inducible thioesterase (BFIT). Brain acyl-CoA hydrolase (BACH). These enzymes deacylate long-chain fatty acids by hydrolyzing acyl-CoA thioesters to free fatty acids and CoA-SH. Eukaryotic members of this family are expressed in brain, testis, and brown adipose tissues. The archeal and eukaryotic members of this family have two tandem copies of the conserved hot dog fold, while most bacterial members have only one copy. 123 -239527 cd03443 PaaI_thioesterase PaaI_thioesterase is a tetrameric acyl-CoA thioesterase with a hot dog fold and one of several proteins responsible for phenylacetic acid (PA) degradation in bacteria. Although orthologs of PaaI exist in archaea and eukaryotes, their function has not been determined. Sequence similarity between PaaI, E. coli medium chain acyl-CoA thioesterase II, and human thioesterase III suggests they all belong to the same thioesterase superfamily. The conserved fold present in these thioesterases is referred to as an asymmetric hot dog fold, similar to those of 4-hydroxybenzoyl-CoA thioesterase (4HBT) and the beta-hydroxydecanoyl-ACP dehydratases (FabA/FabZ). 113 -239528 cd03444 Thioesterase_II_repeat1 Thioesterase II (TEII) is thought to regenerate misprimed nonribosomal peptide synthetases (NRPSs) as well as modular polyketide synthases (PKSs) by hydrolyzing acetyl groups bound to the peptidyl carrier protein (PCP) and acyl carrier protein (ACP) domains, respectively. TEII has two tandem asymmetric hot dog folds that are structurally similar to one found in PaaI thioesterase, 4-hydroxybenzoyl-CoA thioesterase (4HBT) and beta-hydroxydecanoyl-ACP dehydratase and thus, the TEII monomer is equivalent to the homodimeric form of the latter three enzymes. Human TEII is expressed in T cells and has been shown to bind the product of the HIV-1 Nef gene. 104 -239529 cd03445 Thioesterase_II_repeat2 Thioesterase II (TEII) is thought to regenerate misprimed nonribosomal peptide synthetases (NRPSs) as well as modular polyketide synthases (PKSs) by hydrolyzing acetyl groups bound to the peptidyl carrier protein (PCP) and acyl carrier protein (ACP) domains, respectively. TEII has two tandem asymmetric hot dog folds that are structurally similar to one found in PaaI thioesterase, 4-hydroxybenzoyl-CoA thioesterase (4HBT) and beta-hydroxydecanoyl-ACP dehydratase and thus, the TEII monomer is equivalent to the homodimeric form of the latter three enzymes. Human TEII is expressed in T cells and has been shown to bind the product of the HIV-1 Nef gene. 94 -239530 cd03446 MaoC_like MoaC_like Similar to the MaoC (monoamine oxidase C) dehydratase regulatory protein but without the N-terminal PutA domain. This protein family has a hot-dog fold similar to that of (R)-specific enoyl-CoA hydratase, the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. 140 -239531 cd03447 FAS_MaoC FAS_MaoC, the MaoC-like hot dog fold of the fatty acid synthase, beta subunit. Other enzymes with this fold include MaoC dehydratase, Hydratase-Dehydrogenase-Epimerase protein (HDE), and 17-beta-hydroxysteriod dehydrogenase (HSD). 126 -239532 cd03448 HDE_HSD HDE_HSD The R-hydratase-like hot dog fold of the 17-beta-hydroxysteriod dehydrogenase (HSD), and Hydratase-Dehydrogenase-Epimerase (HDE) proteins. Other enzymes with this fold include MaoC dehydratase, and the fatty acid synthase beta subunit. 122 -239533 cd03449 R_hydratase (R)-hydratase [(R)-specific enoyl-CoA hydratase] catalyzes the hydration of trans-2-enoyl CoA to (R)-3-hydroxyacyl-CoA as part of the PHA (polyhydroxyalkanoate) biosynthetic pathway. (R)-hydratase contains a hot-dog fold similar to those of thioesterase II, and beta-hydroxydecanoyl-ACP dehydratase, MaoC dehydratase, Hydratase-Dehydrogenase-Epimerase protein (HDE), and the fatty acid synthase beta subunit. The active site lies within a substrate-binding tunnel formed by the (R)-hydratase homodimer. A subset of the bacterial (R)-hydratases contain a C-terminal phosphotransacetylase (PTA) domain. 128 -239534 cd03450 NodN NodN (nodulation factor N) contains a single hot dog fold similar to those of the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. Rhizobium and related species form nodules on the roots of their legume hosts, a symbiotic process that requires production of Nod factors, which are signal molecules involved in root hair deformation and meristematic cell division. The nodulation gene products, including NodN, are involved in producing the Nod factors, however the role played by NodN is unclear. 149 -239535 cd03451 FkbR2 FkbR2 is a Streptomyces hygroscopicus protein with a hot dog fold that belongs to a conserved family of proteins found in prokaryotes and archaea but not in eukaryotes. FkbR2 has sequence similarity to (R)-specific enoyl-CoA hydratase, the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. The function of FkbR2 is unknown. 146 -239536 cd03452 MaoC_C MaoC_C The C-terminal hot dog fold of the MaoC (monoamine oxidase C) dehydratase regulatory protein. Orthologs of MaoC include PaaZ [Escherichia coli] and PaaN [Pseudomonas putida], which are putative ring-opening enzymes involved in phenylacetic acid degradation. The C-terminal domain of MaoC has sequence similarity to (R)-specific enoyl-CoA hydratase,Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. MaoC also has an N-terminal PutA domain like that found in the E. coli PutA proline dehydrogenase and other members of the aldehyde dehydrogenase family. 142 -239537 cd03453 SAV4209_like SAV4209_like. Similar in sequence to the Streptomyces avermitilis SAV4209 protein, with a hot dog fold that is similar to those of (R)-specific enoyl-CoA hydratase, the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. 127 -239538 cd03454 YdeM YdeM is a Bacillus subtilis protein that belongs to a family of prokaryotic proteins of unkown function. YdeM has sequence similarity to the hot-dog fold of (R)-specific enoyl-CoA hydratase. Other enzymes with this fold include the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. 140 -239539 cd03455 SAV4209 SAV4209 is a Streptomyces avermitilis protein with a hot dog fold that is similar to those of (R)-specific enoyl-CoA hydratase, the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit. The alpha- and gamma-proteobacterial members of this CD have, in addition to a hot dog fold, an N-terminal extension. 123 -239540 cd03457 intradiol_dioxygenase_like Intradiol dioxygenase supgroup. Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. They break the catechol C1-C2 bond and utilize Fe3+, as opposed to the extradiol-cleaving enzymes which break the C2-C3 or C1-C6 bond and utilize Fe2+ and Mn+. The family contains catechol 1,2-dioxygenases and protocatechuate 3,4-dioxygenases. The specific function of this subgroup is unknown. 188 -239541 cd03458 Catechol_intradiol_dioxygenases Catechol intradiol dioxygenases can be divided into several subgroups according to their substrate specificity for catechol, chlorocatechols and hydroxyquinols. Almost all members of this family are homodimers containing one ferric ion (Fe3+) per monomer. They belong to the intradiol dioxygenase family, a family of mononuclear non-heme iron intradiol-cleaving enzymes that catalyze the oxygenation of catecholates to aliphatic acids via the cleavage of aromatic rings. 256 -239542 cd03459 3,4-PCD Protocatechuate 3,4-dioxygenase (3,4-PCD) catalyzes the oxidative ring cleavage of 3,4-dihydroxybenzoate to produce beta-carboxy-cis,cis-muconate. 3,4-PCDs are large aggregates of 12 protomers, each composed of an alpha- and beta-subunit and an Fe3+ ion bound in the beta-subunit at the alpha-beta-subunit interface. 3,4-PCD is a member of the aromatic dioxygenases which are non-heme iron intradiol-cleaving enzymes that break the C1-C2 bond and utilize Fe3+. 158 -239543 cd03460 1,2-CTD Catechol 1,2 dioxygenase (1,2-CTD) catalyzes an intradiol cleavage reaction of catechol to form cis,cis-muconate. 1,2-CTDs is homodimers with one catalytic non-heme ferric ion per monomer. They belong to the aromatic dioxygenase family, a family of mononuclear non-heme iron intradiol-cleaving enzymes that catalyze the oxygenation of catecholates to aliphatic acids via the cleavage of aromatic rings. 282 -239544 cd03461 1,2-HQD Hydroxyquinol 1,2-dioxygenase (1,2-HQD) catalyzes the ring cleavage of hydroxyquinol (1,2,4-trihydroxybenzene), a intermediate in the degradation of a large variety of aromatic compounds including some polychloro- and nitroaromatic pollutants, to form 3-hydroxy-cis,cis-muconates. 1,2-HQD blongs to the aromatic dioxygenase family, a family of mononuclear non-heme intradiol-cleaving enzymes. 277 -239545 cd03462 1,2-CCD chlorocatechol 1,2-dioxygenases (1,2-CCDs) (type II enzymes) are homodimeric intradiol dioxygenases that degrade chlorocatechols via the addition of molecular oxygen and the subsequent cleavage between two adjacent hydroxyl groups. This reaction is part of the modified ortho-cleavage pathway which is a central oxidative bacterial pathway that channels chlorocatechols, derived from the degradation of chlorinated benzoic acids, phenoxyacetic acids, phenols, benzenes, and other aromatics into the energy-generating tricarboxylic acid pathway. 247 -239546 cd03463 3,4-PCD_alpha Protocatechuate 3,4-dioxygenase (3,4-PCD) , alpha subunit. 3,4-PCD catalyzes the oxidative ring cleavage of 3,4-dihydroxybenzoate to produce beta-carboxy-cis,cis-muconate. 3,4-PCDs are large aggregates of 12 protomers, each composed of an alpha- and beta-subunit and an Fe3+ ion bound in the beta-subunit at the alpha-subunit-beta-subunit interface. 3,4-PCD is a member of the aromatic dioxygenases which are non-heme iron intradiol-cleaving enzymes that break the C1-C2 bond and utilize Fe3+. 185 -239547 cd03464 3,4-PCD_beta Protocatechuate 3,4-dioxygenase (3,4-PCD) , beta subunit. 3,4-PCD catalyzes the oxidative ring cleavage of 3,4-dihydroxybenzoate to produce beta-carboxy-cis,cis-muconate. 3,4-PCDs are large aggregates of 12 protomers, each composed of an alpha- and beta-subunit and an Fe3+ ion bound in the beta-subunit at the alpha-subunit-beta-subunit interface. 3,4-PCD is a member of the aromatic dioxygenases which are non-heme iron intradiol-cleaving enzymes that break the C1-C2 bond and utilize Fe3+. 220 -239548 cd03465 URO-D_like The URO-D _like protein superfamily includes bacterial and eukaryotic uroporphyrinogen decarboxylases (URO-D), coenzyme M methyltransferases and other putative bacterial methyltransferases. Uroporphyrinogen decarboxylase (URO-D) decarboxylates the four acetate side chains of uroporphyrinogen III (uro-III) to create coproporphyrinogen III, an important branching point of the tetrapyrrole biosynthetic pathway. The methyltransferases represented here are important for ability of methanogenic organisms to use other compounds than carbon dioxide for reduction to methane. 330 -239549 cd03466 Nitrogenase_NifN_2 Nitrogenase_nifN_2: A subgroup of the NifN subunit of the NifEN complex: NifN forms an alpha2beta2 tetramer with NifE. NifN and nifE are structurally homologous to nitrogenase MoFe protein beta and alpha subunits respectively. NifEN participates in the synthesis of the iron-molybdenum cofactor (FeMoco) of the MoFe protein. NifB-co (an iron and sulfur containing precursor of the FeMoco) from NifB is transferred to the NifEN complex where it is further processed to FeMoco. The nifEN bound precursor of FeMoco has been identified as a molybdenum-free, iron- and sulfur- containing analog of FeMoco. It has been suggested that this nifEN bound precursor also acts as a cofactor precursor in nitrogenase systems which require a cofactor other than FeMoco: i.e. iron-vanadium cofactor (FeVco) or iron only cofactor (FeFeco). This group also contains the Clostidium fused NifN-NifB protein. 429 -239550 cd03467 Rieske Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. The Rieske domain can be divided into two subdomains, with an incomplete six-stranded, antiparallel beta-barrel at one end, and an iron-sulfur cluster binding subdomain at the other. The Rieske iron-sulfur center contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In RO systems, the N-terminal Rieske domain of the alpha subunit acts as an electron shuttle that accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron in the alpha subunit C-terminal domain to be used for catalysis. 98 -176458 cd03468 PolY_like DNA Polymerase Y-family. Y-family DNA polymerases are a specialized subset of polymerases that facilitate translesion synthesis (TLS), a process that allows the bypass of a variety of DNA lesions. Unlike replicative polymerases, TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. The active sites of TLS polymerases are large and flexible to allow the accomodation of distorted bases. Expression of Y-family polymerases is often induced by DNA damage and is believed to be highly regulated. TLS is likely induced by the monoubiquitination of the replication clamp PCNA, which provides a scaffold for TLS polymerases to bind in order to access the lesion. Because of their high error rates, TLS polymerases are potential targets for cancer treatment and prevention. 335 -239551 cd03469 Rieske_RO_Alpha_N Rieske non-heme iron oxygenase (RO) family, N-terminal Rieske domain of the oxygenase alpha subunit; The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The oxygenase component may contain alpha and beta subunits, with the beta subunit having a purely structural function. Some oxygenase components contain only an alpha subunit. The oxygenase alpha subunit has two domains, an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from the reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Reduced pyridine nucleotide is used as the initial source of two electrons for dioxygen activation. 118 -239552 cd03470 Rieske_cytochrome_bc1 Iron-sulfur protein (ISP) component of the bc(1) complex family, Rieske domain; The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. The bc(1) complex is a multisubunit enzyme found in many different organisms including uni- and multi-cellular eukaryotes, plants (in their mitochondria) and bacteria. The cytochrome bc(1) and b6f complexes are central components of the respiratory and photosynthetic electron transport chains, respectively, which carry out similar core electron and proton transfer steps. The bc(1) and b6f complexes share a common core structure of three catalytic subunits: cyt b, the Rieske ISP, and either a cyt c1 in the bc(1) complex or cyt f in the b6f complex, which are arranged in an integral membrane-bound dimeric complex. While the core of the b6f complex is similar to that of the bc(1) complex, the domain arrangement outside the core and the complement of prosthetic groups are strikingly different. 126 -239553 cd03471 Rieske_cytochrome_b6f Iron-sulfur protein (ISP) component of the b6f complex family, Rieske domain; The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. The cytochrome b6f complex from Mastigocladus laminosus, a thermophilic cyanobacterium, contains four large subunits, including cytochrome f, cytochrome b6, the Rieske ISP, and subunit IV; as well as four small hydrophobic subunits, PetG, PetL, PetM, and PetN. Rieske ISP, one of the large subunits of the cytochrome bc-type complexes, is involved in respiratory and photosynthetic electron transfer. The core of the chloroplast b6f complex is similar to the analogous respiratory cytochrome bc(1) complex, but the domain arrangement outside the core and the complement of prosthetic groups are strikingly different. 126 -239554 cd03472 Rieske_RO_Alpha_BPDO_like Rieske non-heme iron oxygenase (RO) family, Biphenyl dioxygenase (BPDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of BPDO and similar proteins including cumene dioxygenase (CumDO), nitrobenzene dioxygenase (NBDO), alkylbenzene dioxygenase (AkbDO) and dibenzofuran 4,4a-dioxygenase (DFDO). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. BPDO degrades biphenyls and polychlorinated biphenyls (PCB's) while CumDO degrades cumene (isopropylbenzene), an aromatic hydrocarbon that is intermediate in size between ethylbenzene and biphenyl. NBDO catalyzes the initial reaction in nitrobenzene degradation, oxidizing the aromatic rings of mono- and dinitrotoluenes to form catechol and nitrite. NBDO belongs to the naphthalene subfamily of ROs. AkbDO is involved in alkylbenzene catabolism, converting o-xylene to 2,3- and 3,4-dimethylphenol and ethylbenzene to cis-dihydrodiol. DFDO is involved in dibenzofuran degradation. 128 -239555 cd03473 Rieske_CMP_Neu5Ac_hydrolase_N Cytidine monophosphate-N-acetylneuraminic acid (CMP Neu5Ac) hydroxylase family, N-terminal Rieske domain; The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. CMP Neu5Ac hydroxylase is the key enzyme for the synthesis of N-glycolylneuraminic acid (NeuGc) from N-acetylneuraminic acid (Neu5Ac), NeuGc and Neu5Ac are members of a family of cell surface sugars called sialic acids. All mammals except humans have both NeuGc variants on their cell surfaces. In humans, the gene encoding CMP Neu5Ac hydroxylase has a mutation within its coding region that abolishes NeuGc production. 107 -239556 cd03474 Rieske_T4moC Toluene-4-monooxygenase effector protein complex (T4mo), Rieske ferredoxin subunit; The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. T4mo is a four-protein complex that catalyzes the NADH- and O2-dependent hydroxylation of toluene to form p-cresol. T4mo consists of an NADH oxidoreductase (T4moF), a diiron hydroxylase (T4moH), a catalytic effector protein (T4moD), and a Rieske ferredoxin (T4moC). T4moC contains a Rieske domain and functions as an obligate electron carrier between T4moF and T4moH. Rieske ferredoxins are found as subunits of membrane oxidase complexes, cis-dihydrodiol-forming aromatic dioxygenases, bacterial assimilatory nitrite reductases, and arsenite oxidase. Rieske ferredoxins are also found as soluble electron carriers in bacterial dioxygenase and monooxygenase complexes. 108 -239557 cd03475 Rieske_SoxF_SoxL SoxF and SoxL family, Rieske domain; The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. SoxF is a subunit of the terminal oxidase supercomplex SoxM in the plasma membrane of Sulfolobus acidocaldarius that combines features of a cytochrome bc(1) complex and a cytochrome. The Rieske domain of SoxF has a 12 residue insertion which is not found in eukaryotic and bacterial Rieske proteins and is thought to influence the redox properties of the iron-sulfur cluster. SoxL is a Rieske protein which may be part of an archaeal bc-complex homologue whose physiological function is still unknown. SoxL has two features not seen in other Rieske proteins; (i) a significantly greater distance between the two cluster-binding sites and (ii) an unexpected Pro -> Asp substitution at one of the cluster binding sites. SoxF and SoxL are found in archaea and in bacteria. 171 -239558 cd03476 Rieske_ArOX_small Small subunit of Arsenite oxidase (ArOX) family, Rieske domain; ArOX is a molybdenum/iron protein involved in the detoxification of arsenic, oxidizing it to arsenate. It consists of two subunits, a large subunit similar to members of the DMSO reductase family of molybdenum enzymes and a small subunit with a Rieske-type [2Fe-2S] cluster. The large subunit of ArOX contains the molybdenum site at which the oxidation of arsenite occurs. The small subunit contains a domain homologous to the Rieske domains of the cytochrome bc(1) and cytochrome b6f complexes as well as naphthalene 1,2-dioxygenase. The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. 126 -239559 cd03477 Rieske_YhfW_C YhfW family, C-terminal Rieske domain; YhfW is a protein of unknown function with an N-terminal DadA-like (glycine/D-amino acid dehydrogenase) domain and a C-terminal Rieske domain. The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. It is commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. YhfW is found in bacteria, some eukaryotes and archaea. 91 -239560 cd03478 Rieske_AIFL_N AIFL (apoptosis-inducing factor like) family, N-terminal Rieske domain; members of this family show similarity to human AIFL, containing an N-terminal Rieske domain and a C-terminal pyridine nucleotide-disulfide oxidoreductase domain (Pyr_redox). The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. AIFL shares 35% homology with human AIF (apoptosis-inducing factor), mainly in the Pyr_redox domain. AIFL is predominantly localized to the mitochondria. AIFL induces apoptosis in a caspase-dependent manner. 95 -239561 cd03479 Rieske_RO_Alpha_PhDO_like Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of PhDO and similar proteins including 3-chlorobenzoate 3,4-dioxygenase (CBDO), phenoxybenzoate dioxygenase (POB-dioxygenase) and 3-nitrobenzoate oxygenase (MnbA). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PhDO and CBDO are two-component RO systems, containing oxygenase and reductase components. PhDO catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). CBDO, together with CbaC dehydrogenase, converts the environmental pollutant 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. POB-dioxygenase catalyzes the initial catabolic step in the angular dioxygenation of phenoxybenzoate, converting mono- and dichlorinated phenoxybenzoates to protocatechuate and chlorophenols. These phenoxybenzoates are metabolic products formed during the degradation of pyrethroid insecticides. 144 -239562 cd03480 Rieske_RO_Alpha_PaO Rieske non-heme iron oxygenase (RO) family, Pheophorbide a oxygenase (PaO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of a small subfamily of enzymes found in plants as well as oxygenic cyanobacterial photosynthesizers including LLS1 (lethal leaf spot 1, also known as PaO) and ACD1 (accelerated cell death 1). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PaO expression increases upon physical wounding of plant leaves and is thought to catalyze a key step in chlorophyll degradation. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of PaO. 138 -239563 cd03481 TopoIIA_Trans_ScTopoIIA TopoIIA_Trans_ScTopoIIA: Transducer domain, having a ribosomal S5 domain 2-like fold, of the type found in proteins of the type IIA family of DNA topoisomerases similar to Saccharomyces cerevisiae Topo IIA. S. cerevisiae Topo IIA is a homodimer encoded by a single gene. The type IIA enzymes are the predominant form of topoisomerase and are found in some bacteriophages, viruses and archaea, and in all bacteria and eukaryotes. All type IIA topoisomerases are related to each other at amino acid sequence level, though their oligomeric organization sometimes differs. TopoIIA enzymes cut both strands of the duplex DNA to remove (relax) both positive and negative supercoils in DNA. These enzymes covalently attach to the 5' ends of the cut DNA, separate the free ends of the cleaved strands, pass another region of the duplex through this gap, then rejoin the ends. TopoIIA enzymes also catenate/ decatenate duplex rings. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. 153 -239564 cd03482 MutL_Trans_MutL MutL_Trans_MutL: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to Escherichia coli MutL. EcMutL belongs to the DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from the ATP-binding site to the DNA breakage/reunion regions of the enzymes. It has been suggested that during initiation of DNA mismatch repair in E. coli, the mismatch recognition protein MutS recruits MutL in the presence of ATP. The MutS(ATP)-MutL ternary complex formed, then recruits the latent endonuclease MutH. Prokaryotic MutS and MutL are homodimers. 123 -239565 cd03483 MutL_Trans_MLH1 MutL_Trans_MLH1: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to yeast and human MLH1 (MutL homologue 1). This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. MLH1 forms heterodimers with PMS2, PMS1 and MLH3. These three complexes have distinct functions in meiosis. hMLH1-hPMS2 also participates in the repair of all DNA mismatch repair (MMR) substrates. Roles for hMLH1-hPMS1 or hMLH1-hMLH3 in MMR have not been established. Cells lacking hMLH1 have a strong mutator phenotype and display microsatellite instability (MSI). Mutation in hMLH1 causes predisposition to HNPCC, Muir-Torre syndrome and Turcot syndrome (HNPCC variant). Mutation in hMLH1 accounts for a large fraction of HNPCC families. 127 -239566 cd03484 MutL_Trans_hPMS_2_like MutL_Trans_hPMS2_like: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to human PSM2 (hPSM2). hPSM2 belongs to the DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. Included in this group are proteins similar to yeast PMS1. The yeast MLH1-PMS1 and the human MLH1-PMS2 heterodimers play a role in meiosis. hMLH1-hPMS2 also participates in the repair of all DNA mismatch repair (MMR) substrates. Cells lacking hPMS2 have a strong mutator phenotype and display microsatellite instability (MSI). Mutation in hPMS2 causes predisposition to HPNCC and Turcot syndrome. 142 -239567 cd03485 MutL_Trans_hPMS_1_like MutL_Trans_hPMS1_like: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to human PSM1 (hPSM1) and yeast MLH2. hPSM1 and yMLH2 are members of the DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. PMS1 forms a heterodimer with MLH1. The MLH1-PMS1 complex functions in meiosis. Loss of yMLH2 results in a small but significant decrease in spore viability and a significant increase in gene conversion frequencies. A role for hMLH1-hPMS1 in DNA mismatch repair has not been established. Mutation in hMLH1 accounts for a large fraction of Lynch syndrome (HNPCC) families, however there is no convincing evidence to support hPMS1 having a role in HNPCC predisposition. 132 -239568 cd03486 MutL_Trans_MLH3 MutL_Trans_MLH3: transducer domain, having a ribosomal S5 domain 2-like fold, found in proteins similar to yeast and human MLH3 (MutL homologue 3). MLH3 belongs to the DNA mismatch repair (MutL/MLH1/PMS2) family. This transducer domain is homologous to the second domain of the DNA gyrase B subunit, which is known to be important in nucleotide hydrolysis and the transduction of structural signals from ATP-binding site to the DNA breakage/reunion regions of the enzymes. MLH1 forms heterodimers with MLH3. The MLH1-MLH3 complex plays a role in meiosis. A role for hMLH1-hMLH3 in DNA mismatch repair (MMR) has not been established. It has been suggested that hMLH3 may be a low risk gene for colorectal cancer; however there is little evidence to support it having a role in classical HNPCC. 141 -239569 cd03487 RT_Bac_retron_II RT_Bac_retron_II: Reverse transcriptases (RTs) in bacterial retrotransposons or retrons. The polymerase reaction of this enzyme leads to the production of a unique RNA-DNA complex called msDNA (multicopy single-stranded (ss)DNA) in which a small ssDNA branches out from a small ssRNA molecule via a 2'-5'phosphodiester linkage. Bacterial retron RTs produce cDNA corresponding to only a small portion of the retron genome. 214 -239570 cd03488 Topoisomer_IB_N_htopoI_like Topoisomer_IB_N_htopoI_like : N-terminal DNA binding fragment found in eukaryotic DNA topoisomerase (topo) IB proteins similar to the monomeric yeast and human topo I. Topo I enzymes are divided into: topo type IA (bacterial) and type IB (eukaryotic). Topo I relaxes superhelical tension in duplex DNA by creating a single-strand nick, the broken strand can then rotate around the unbroken strand to remove DNA supercoils and, the nick is religated, liberating topo I. These enzymes regulate the topological changes that accompany DNA replication, transcription and other nuclear processes. Human topo I is the target of a diverse set of anticancer drugs including camptothecins (CPTs). CPTs bind to the topo I-DNA complex and inhibit religation of the single-strand nick, resulting in the accumulation of topo I-DNA adducts. This family may represent more than one structural domain. 215 -239571 cd03489 Topoisomer_IB_N_LdtopoI_like Topoisomer_IB_N_LdtopoI_like: N-terminal DNA binding fragment found in eukaryotic DNA topoisomerase (topo) IB proteins similar to the heterodimeric topo I from Leishmania donvanni. Topo I enzymes are divided into: topo type IA (bacterial) and type IB (eukaryotic). Topo I relaxes superhelical tension in duplex DNA by creating a single-strand nick, the broken strand can then rotate around the unbroken strand to remove DNA supercoils and, the nick is religated, liberating topo I. These enzymes regulate the topological changes that accompany DNA replication, transcription and other nuclear processes. Human topo I is the target of a diverse set of anticancer drugs including camptothecins (CPTs). CPTs bind to the topo I-DNA complex and inhibit re-ligation of the single-strand nick, resulting in the accumulation of topo I-DNA adducts. In addition to differences in structure and some biochemical properties, Trypanosomatid parasite topo I differ from human topo I in their sensitivity to CPTs and other classical topo I inhibitors. Trypanosomatid topo I play putative roles in organizing the kinetoplast DNA network unique to these parasites. This family may represent more than one structural domain. 212 -239572 cd03490 Topoisomer_IB_N_1 Topoisomer_IB_N_1: A subgroup of the N-terminal DNA binding fragment found in eukaryotic DNA topoisomerase (topo) IB. Topo IB proteins include the monomeric yeast and human topo I and heterodimeric topo I from Leishmania donvanni. Topo I enzymes are divided into: topo type IA (bacterial) and type IB (eukaryotic). Topo I relaxes superhelical tension in duplex DNA by creating a single-strand nick, the broken strand can then rotate around the unbroken strand to remove DNA supercoils and, the nick is religated, liberating topo I. These enzymes regulate the topological changes that accompany DNA replication, transcription and other nuclear processes. Human topo I is the target of a diverse set of anticancer drugs including camptothecins (CPTs). CPTs bind to the topo I-DNA complex and inhibit religation of the single-strand nick, resulting in the accumulation of topo I-DNA adducts. In addition to differences in structure and some biochemical properties, Trypanosomatid parasite topos I differ from human topo I in their sensitivity to CPTs and other classical topo I inhibitors. Trypanosomatid topos I have putative roles in organizing the kinetoplast DNA network unique to these parasites. This family may represent more than one structural domain. 217 -239573 cd03493 SQR_QFR_TM Succinate:quinone oxidoreductase (SQR) and Quinol:fumarate reductase (QFR) family, transmembrane subunits; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol, while QFR catalyzes the reverse reaction. SQR, also called succinate dehydrogenase or Complex II, is part of the citric acid cycle and the aerobic respiratory chain, while QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQRs may reduce either high or low potential quinones while QFRs oxidize only low potential quinols. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit(s) containing the electron donor/acceptor (quinol or quinone). The reversible reduction of quinone is an essential feature of respiration, allowing the transfer of electrons between respiratory complexes. SQRs and QFRs can be classified into five types (A-E) according to the number of their hydrophobic subunits and heme groups. This classification is consistent with the characteristics and phylogeny of the catalytic and iron-sulfur subunits. Type E proteins, e.g. non-classical archael SQRs, contain atypical transmembrane subunits and are not included in this hierarchy. The heme and quinone binding sites reside in the transmembrane subunits. Although succinate oxidation and fumarate reduction are carried out by separate enzymes in most organisms, some bifunctional enzymes that exhibit both SQR and QFR activities exist. 98 -239574 cd03494 SQR_TypeC_SdhD Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. E. coli SQR, a member of this subfamily, reduces the high potential quinine, ubiquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type C SQRs because they contain two transmembrane subunits and one heme group. SdhD and SdhC are the two transmembrane proteins of bacterial SQRs. They contain heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 99 -239575 cd03495 SQR_TypeC_SdhD_like Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) subunit-like; composed of predominantly uncharacterized bacterial proteins with similarity to the E. coli SdhD subunit. One characterized protein is the respiratory Complex II SdhD subunit of the only eukaryotic member, Reclinomonas americana. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. It is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. E. coli SQR is classified as Type C SQRs because it contains two transmembrane subunits and one heme group. The SdhD and SdhC subunits are membrane anchor subunits containing heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 100 -239576 cd03496 SQR_TypeC_CybS SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Eukaryotic SQRs reduce high potential quinones such as ubiquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type C SQRs because they contain two transmembrane subunits and one heme group. CybS and CybL are the two transmembrane proteins of eukaryotic SQRs. They contain heme and quinone binding sites. CybS is the eukaryotic homolog of the bacterial SdhD subunit. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the transmembrane subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Mutations in human Complex II result in various physiological disorders including hereditary paraganglioma and pheochromocytoma tumors. The gene encoding for the SdhD subunit is classified as a tumor suppressor gene. 104 -239577 cd03497 SQR_TypeB_1_TM Succinate:quinone oxidoreductase (SQR) Type B subfamily 1, transmembrane subunit; composed of proteins similar to Bacillus subtilis SQR. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Bacillus subtilis SQR reduces low potential quinones such as menaquinone. SQR is also called succinate dehydrogenase (Sdh) or Complex II and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type B as they contain one transmembrane subunit and two heme groups. The heme and quinone binding sites reside on the transmembrane subunit. The transmembrane subunit of Bacillus subtilis SQR is also called Sdh cytochrome b558 subunit. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron acceptor (quinone). The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 207 -239578 cd03498 SQR_TypeB_2_TM Succinate:quinone oxidoreductase (SQR)-like Type B subfamily 2, transmembrane subunit; composed of proteins with similarity to the SQRs of Geobacter metallireducens and Corynebacterium glutamicum. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. C. glutamicum SQR reduces low potential quinones such as menaquinone. SQR is also called succinate dehydrogenase (Sdh) or Complex II and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type B as they contain one transmembrane subunit and two heme groups. The heme and quinone binding sites reside in the transmembrane subunit. The transmembrane subunit of members of this subfamily is also called Sdh cytochrome b558 subunit based on the Bacillus subtilis protein. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron acceptor (quinone). The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Proteins in this subfamily from G. metallireducens and G. sulfurreducens are bifunctional enzymes with SQR and QFR activities. 209 -239579 cd03499 SQR_TypeC_SdhC Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase C (SdhC) subunit; composed of bacterial SdhC and eukaryotic large cytochrome b binding (CybL) proteins. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Members of this family reduce high potential quinones such as ubiquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Proteins in this subfamily are classified as Type C SQRs because they contain two transmembrane subunits and one heme group. The heme and quinone binding sites reside in the transmembrane subunits. The SdhC or CybL protein is one of the two transmembrane subunits of bacterial and eukaryotic SQRs. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 117 -239580 cd03500 SQR_TypeA_SdhD_like Succinate:quinone oxidoreductase (SQR) Type A subfamily, Succinate dehydrogenase D (SdhD)-like subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Members of this subfamily reduce low potential quinones such as menaquinone and thermoplasmaquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are similar to the Thermoplasma acidophilum SQR and are classified as Type A because they contain two transmembrane subunits as well as two heme groups. Although there are no structures available for this subfamily, the presence of two hemes has been proven spectroscopically for T. acidophilum. The two membrane anchor subunits are similar to the SdhD and SdhC subunits of bacterial SQRs, which contain heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 106 -239581 cd03501 SQR_TypeA_SdhC_like Succinate:quinone oxidoreductase (SQR) Type A subfamily, Succinate dehydrogenase C (SdhC)-like subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Members of this subfamily reduce low potential quinones such as menaquinone and thermoplasmaquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are similar to the Thermoplasma acidophilum SQR and are classified as Type A because they contain two transmembrane subunits as well as two heme groups. Although there are no structures available for this subfamily, the presence of two hemes has been proven spectroscopically for T. acidophilum. The two membrane anchor subunits are similar to the SdhD and SdhC subunits of bacterial SQRs, which contain heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. 101 -239582 cd03505 Delta9-FADS-like The Delta9 Fatty Acid Desaturase (Delta9-FADS)-like CD includes the delta-9 and delta-11 acyl CoA desaturases found in various eukaryotes including vertebrates, insects, higher plants, and fungi. The delta-9 acyl-lipid desaturases are found in a wide range of bacteria. These enzymes play essential roles in fatty acid metabolism and the regulation of cell membrane fluidity. Acyl-CoA desaturases are the enzymes involved in the CoA-bound desaturation of fatty acids. Mammalian stearoyl-CoA delta-9 desaturase is a key enzyme in the biosynthesis of monounsaturated fatty acids, and in yeast, the delta-9 acyl-CoA desaturase (OLE1) reaction accounts for all de nova unsaturated fatty acid production in Saccharomyces cerevisiae. These non-heme, iron-containing, ER membrane-bound enzymes are part of a three-component enzyme system involving cytochrome b5, cytochrome b5 reductase, and the delta-9 fatty acid desaturase. This complex catalyzes the NADH- and oxygen-dependent insertion of a cis double bond between carbons 9 and 10 of the saturated fatty acyl substrates, palmitoyl (16:0)-CoA or stearoyl (18:0)-CoA, yielding the monoenoic products palmitoleic (16:l) or oleic (18:l) acids, respectively. In cyanobacteria, the biosynthesis of unsaturated fatty acids is initiated by delta 9 acyl-lipid desaturase (DesC) which introduces the first double bond at the delta-9 position of a saturated fatty acid that has been esterified to a glycerolipid. This domain family has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain the residues: HXXXXH, HXXHH, and H/QXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the rat stearoyl CoA delta-9 desaturase. Some eukaryotic (Fungi, Euglenozoa, Mycetozoa, Rhodophyta) desaturase domains have an adjacent C-terminal cytochrome b5-like domain. 178 -239583 cd03506 Delta6-FADS-like The Delta6 Fatty Acid Desaturase (Delta6-FADS)-like CD includes the integral-membrane enzymes: delta-4, delta-5, delta-6, delta-8, delta-8-sphingolipid, and delta-11 desaturases found in vertebrates, higher plants, fungi, and bacteria. These desaturases are required for the synthesis of highly unsaturated fatty acids (HUFAs), which are mainly esterified into phospholipids and contribute to maintaining membrane fluidity. While HUFAs may be required for cold tolerance in bacteria, plants and fish, the primary role of HUFAs in mammals is cell signaling. These enzymes are described as front-end desaturases because they introduce a double bond between the pre-exiting double bond and the carboxyl (front) end of the fatty acid. Various substrates are involved, with both acyl-coenzyme A (CoA) and acyl-lipid desaturases present in this CD. Acyl-lipid desaturases are localized in the membranes of cyanobacterial thylakoid, plant endoplasmic reticulum (ER), and plastid; and acyl-CoA desaturases are present in ER membrane. ER-bound plant acyl-lipid desaturases and acyl-CoA desaturases require cytochrome b5 as an electron donor. Most of the eukaryotic desaturase domains have an adjacent N-terminal cytochrome b5-like domain. This domain family has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain the residues: HXXXH, HXX(X)HH, and Q/HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the homolog, stearoyl CoA desaturase. 204 -239584 cd03507 Delta12-FADS-like The Delta12 Fatty Acid Desaturase (Delta12-FADS)-like CD includes the integral-membrane enzymes, delta-12 acyl-lipid desaturases, oleate 12-hydroxylases, omega3 and omega6 fatty acid desaturases, and other related proteins, found in a wide range of organisms including higher plants, green algae, diatoms, nematodes, fungi, and bacteria. The expression of these proteins appears to be temperature dependent: decreases in temperature result in increased levels of fatty acid desaturation within membrane lipids subsequently altering cell membrane fluidity. An important enzyme for the production of polyunsaturates in plants is the oleate delta-12 desaturase (Arabidopsis FAD2) of the endoplasmic reticulum. This enzyme accepts l-acyl-2-oleoyl-sn-glycero-3-phosphocholine as substrate and requires NADH:cytochrome b oxidoreductase, cytochrome b, and oxygen for activity. FAD2 converts oleate(18:1) to linoleate (18:2) and is closely related to oleate 12-hydroxylase which catalyzes the hydroxylation of oleate to ricinoleate. Plastid-bound desaturases (Arabidopsis delta-12 desaturase (FAD6), omega-3 desaturase (FAD8), omega-6 desaturase (FAD6)), as well as, the cyanobacterial thylakoid-bound FADSs require oxygen, ferredoxin, and ferredoxin oxidoreductase for activity. As in higher plants, the cyanobacteria delta-12 (DesA) and omega-3 (DesB) FADSs desaturate oleate (18:1) to linoleate (18:2) and linoleate (18:2) to linolenate (18:3), respectively. Omega-3 (DesB/FAD8) and omega-6 (DesD/FAD6) desaturases catalyze reactions that introduce a double bond between carbons three and four, and carbons six and seven, respectively, from the methyl end of fatty acids. As with other members of this superfamily, this domain family has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXX(X)HH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the homologue, stearoyl CoA desaturase. Mutation of any one of four of these histidines in the Synechocystis delta-12 acyl-lipid desaturase resulted in complete inactivity. 222 -239585 cd03508 Delta4-sphingolipid-FADS-like The Delta4-sphingolipid Fatty Acid Desaturase (Delta4-sphingolipid-FADS)-like CD includes the integral-membrane enzymes, dihydroceramide Delta-4 desaturase, involved in the synthesis of sphingosine; and the human membrane fatty acid (lipid) desaturase (MLD), reported to modulate biosynthesis of the epidermal growth factor receptor; and other related proteins. These proteins are found in various eukaryotes including vertebrates, higher plants, and fungi. Studies show that MLD is localized to the endoplasmic reticulum. As with other members of this superfamily, this domain family has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the homolog, stearoyl CoA desaturase. 289 -239586 cd03509 DesA_FADS-like Fatty acid desaturase protein family subgroup, a delta-12 acyl-lipid desaturase-like, DesA-like, yet uncharacterized subgroup of membrane fatty acid desaturase proteins found in alpha-, beta-, and gamma-proteobacteria. Sequences of this domain family appear to be structurally related to membrane fatty acid desaturases and alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 288 -239587 cd03510 Rhizobitoxine-FADS-like This CD includes the dihydrorhizobitoxine fatty acid desaturase (RtxC) characterized in Bradyrhizobium japonicum USDA110, and other related proteins. Dihydrorhizobitoxine desaturase is reported to be involved in the final step of rhizobitoxine biosynthesis. This domain family appears to be structurally related to the membrane fatty acid desaturases and the alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXX(X)HH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 175 -239588 cd03511 Rhizopine-oxygenase-like This CD includes the putative hydrocarbon oxygenase, MocD, a bacterial rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) oxygenase, and other related proteins. It has been proposed that MocD, MocE (Rieske-like ferredoxin), and MocF (ferredoxin reductase) under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine. This domain family appears to be structurally related to the membrane fatty acid desaturases and the alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of sequences also reveals the existence of three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 285 -239589 cd03512 Alkane-hydroxylase Alkane hydroxylase is a bacterial, integral-membrane di-iron enzyme that shares a requirement for iron and oxygen for activity similar to that of the non-heme integral-membrane acyl coenzyme A (CoA) desaturases and acyl lipid desaturases. The alk genes in Pseudomonas oleovorans encode conversion of alkanes to acyl CoA. The alkane omega-hydroxylase (AlkB) system is responsible for the initial oxidation of inactivated alkanes. It is a three-component system comprising a soluble NADH-rubredoxin reductase (AlkT), a soluble rubredoxin (AlkG), and the integral membrane oxygenase (AlkB). AlkB utilizes the oxygen rebound mechanism to hydroxylate alkanes. This mechanism involves homolytic cleavage of the C-H bond by an electrophilic metal-oxo intermediate to generate a substrate-based radical. As with other members of this superfamily, this domain family has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. The active site structure of AlkB is not known, however, spectroscopic and genetic evidence points to a nitrogen-rich coordination environment located in the cytoplasm with as many as eight histidines coordinating the two iron ions and a carboxylate residue bridging the two metals. Like all other members of this superfamily, there are eight conserved histidines seen in the histidine cluster motifs: HXXXH, HXXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the homolog, stearoyl CoA desaturase. Also included in this CD are terminal alkane hydroxylases (AlkM), xylene monooxygenase hydroxylases (XylM), p-cymene monooxygenase hydroxylases (CymAa), and other related proteins. 314 -239590 cd03513 CrtW_beta-carotene-ketolase Beta-carotene ketolase/oxygenase (CrtW, also known as CrtO), the carotenoid astaxanthin biosynthetic enzyme, initially catalyzes the addition of two keto groups to carbons C4 and C4' of beta-carotene. Carotenoids are important natural pigments produced by many microorganisms and plants. Astaxanthin is reported to be an antioxidant, an anti-cancer agent, and an immune system stimulant. A number of bacteria and green algae can convert beta-carotene into astaxanthin by using several ketocarotenoids as intermediates and CrtW and a beta-carotene hydroxylase (CrtZ). CrtW initially converts beta-carotene to canthaxanthin via echinenone, and CrtZ initially mediates the conversion of beta-carotene to zeaxanthin via beta-cryptoxanthin. After a few more intermediates are formed, CrtW and CrtZ act in combination to produce astaxanthin. Sequences of this domain family appear to be structurally related to membrane fatty acid desaturases and alkane hydroxylases. They all share in common extensive hydrophobic regions that are capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 225 -239591 cd03514 CrtR_beta-carotene-hydroxylase Beta-carotene hydroxylase (CrtR), the carotenoid zeaxanthin biosynthetic enzyme catalyzes the addition of hydroxyl groups to the beta-ionone rings of beta-carotene to form zeaxanthin and is found in bacteria and red algae. Carotenoids are important natural pigments; zeaxanthin and lutein are the only dietary carotenoids that accumulate in the macular region of the retina and lens. It is proposed that these carotenoids protect ocular tissues against photooxidative damage. CrtR does not show overall amino acid sequence similarity to the beta-carotene hydroxylases similar to CrtZ, an astaxanthin biosynthetic beta-carotene hydroxylase. However, CrtR does show sequence similarity to the green alga, Haematococcus pluvialis, beta-carotene ketolase (CrtW), which converts beta-carotene to canthaxanthin. Sequences of the CrtR_beta-carotene-hydroxylase domain family, as well as, the CrtW_beta-carotene-ketolase domain family appear to be structurally related to membrane fatty acid desaturases and alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 207 -239592 cd03515 Link_domain_TSG_6_like This is the extracellular link domain of the type found in human TSG-6. The link domain is a hyaluronan (HA)-binding domain. TSG-6 is the protein product of tumor necrosis factor-stimulated gene-6. TSG-6 is up-regulated in inflammatory lesions and in the ovary during ovulation. It has a strong anti-inflammatory and chondroprotective effect in models of acute inflammation and autoimmune arthritis and plays an essential role in female fertility. Also included in this group are the stabilins: stabilin-1 (FEEL-1, CLEVER-1) and stabilin-2 (FEEL-2). Stabilin-2 functions as the major liver and lymph node-scavenging receptor for HA and related glycosaminoglycans. Stabilin-2 is a scavenger receptor with a broad range of ligands including advanced glycation end (AGE) products, acetylated low density lipoprotein and procollagen peptides. In contrast, stabilin-1 does not bind HA, but binds acetylated low density lipoprotein and AGEs with lower affinity. As AGEs accumulate in vascular tissues during aging and diabetes, these receptors may be implicated in the pathologies of these states. Both stabilins are present in the early endocytic pathway in hepatic sinusoidal epithelium associating with clathrin/AP-2. Stabilin-1 is expressed in macrophages. Stabilin-2 is absent from the latter. In macrophages: stabilin-1 is involved in trafficking between early/sorting endosomes and the trans-Golgi network. Stabilin-1 has also been implicated in angiogenesis and possibly leucocyte trafficking. Both stabilins bind gram-positive and gram-negative bacteria. TSG-6 and stabilins contain a single link module which supports high affinity binding to HA. 93 -239593 cd03516 Link_domain_CD44_like This domain is a hyaluronan (HA)-binding domain. It is found in CD44 receptor and mediates adhesive interactions during inflammatory leukocyte homing and tumor metastasis. It also plays an important role in arteriogenesis. The functional HA-binding domain of CD44 is an extended domain comprised of a single link module flanked with N-and C- extensions. These extensions are essential for folding and for functional activity. This group also contains the cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) and lymph vessel endothelial receptor-1 (LYVE-1). CRSBP-1 is a cell surface binding protein for the CRS motif of PDGF-BB (platelet-derived growth factor-BB) and is responsible for the cell surface retention of PDGF-BB in SSV-transformed cells. CRSBP-1 may play a role in autocrine regulation of cell growth mediated by CRS containing growth regulators. LYVE-1 is preferentially expressed on the lymphatic endothelium and is used as a molecular marker for the detection and characterization of lymphatic vessels in tumors. 144 -239594 cd03517 Link_domain_CSPGs_modules_1_3 Link_domain_CSPGs_modules_1_3; this extracellular link domain is found in the first and third link modules of the chondroitin sulfate proteoglycan core protein (CSPG) aggrecan. In addition, it is found in the first link module of three other CSPGs: versican, neurocan, and brevican. The link domain is a hyaluronan (HA)-binding domain. CSPGs are characterized by an N-terminal globular domain (G1 domain) containing two contiguous link modules (modules 1 and 2). Both link modules of the G1 domain of aggrecan are involved in interaction with HA. In addition, aggrecan contains a second globular domain (G2) which contains link modules 3 and 4. G2 appears to lack HA-binding activity. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 95 -239595 cd03518 Link_domain_HAPLN_module_1 Link_domain_HAPLN_module_1; this link domain is found in the first link module of proteins similar to the vertebrate HAPLN (hyaluronan/HA and proteoglycan binding link) protein family which includes cartilage link protein. The link domain is a HA-binding domain. HAPLNs contain two contiguous link modules. Both link modules of cartilage link protein are involved in interaction with HA. In cartilage, a chondroitin sulfate proteoglycan core protein (CSPG) aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggregates with other CSPGs substituting for aggregan may contribute to the structural integrity of many different tissues. Members of the vertebrate HAPLN gene family are physically linked adjacent to CSPG genes. 95 -239596 cd03519 Link_domain_HAPLN_module_2 Link_domain_HAPLN_module_2; this link domain is found in the second link module of proteins similar to the vertebrate HAPLN (hyaluronan/HA and proteoglycan binding link) protein family which includes cartilage link protein. The link domain is a HA-binding domain. HAPLNs contain two contiguous link modules. Both link modules of cartilage link protein are involved in interaction with HA. In cartilage, a chondroitin sulfate proteoglycan core protein (CSPG) aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggregates with other CSPGs substituting for aggregan may contribute to the structural integrity of many different tissues. Members of the vertebrate HAPLN gene family are physically linked adjacent to CSPG genes. 91 -239597 cd03520 Link_domain_CSPGs_modules_2_4 Link_domain_CSPGs_modules_2_4; this link domain is found in the second and fourth link modules of the chondroitin sulfate proteoglycan core protein (CSPG) aggrecan and, in the second link module of three other CSPGs: versican, neurocan, and brevican. The link domain is a hyaluronan (HA)-binding domain. CSPGs are characterized by an N-terminal globular domain (G1 domain) containing two contiguous link modules (modules 1 and 2). Both link modules of the G1 domain of aggrecan are involved in interaction with HA. Aggrecan in addition contains a second globular domain (G2) having link modules 3 and 4 which lack HA-binding activity. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggregates having other CSPGs substituting for aggregan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 96 -239598 cd03521 Link_domain_KIAA0527_like Link_domain_KIAA0527_like; this domain is found in the human protein KIAA0527. Sequence-wise, it is highly similar to the link domain. The link domain is a hyaluronan-binding (HA) domain. KIAA0527 contains a single link module. The KIAA0527 gene was originally cloned from human brain tissue. 95 -239599 cd03522 MoeA_like MoeA_like. This domain is similar to a domain found in a variety of proteins involved in biosynthesis of molybdopterin cofactor, like MoaB, MogA, and MoeA. There this domain is presumed to bind molybdopterin. The exact function of this subgroup is unknown. 312 -239600 cd03523 NTR_like NTR_like domain; a beta barrel with an oligosaccharide/oligonucleotide-binding fold found in netrins, complement proteins, tissue inhibitors of metalloproteases (TIMP), and procollagen C-proteinase enhancers (PCOLCE), amongst others. In netrins, the domain plays a role in controlling axon branching in neural development, while the common function of these modules in TIMPs appears to be binding to metzincins. A subset of this family is also known as the C345C domain because it occurs as a C-terminal domain in complement C3, C4 and C5. In C5, the domain interacts with various partners during the formation of the membrane attack complex. 105 -239601 cd03524 RPA2_OBF_family RPA2_OBF_family: A family of oligonucleotide binding (OB) folds with similarity to the OB fold of the single strand (ss) DNA-binding domain (DBD)-D of human RPA2 (also called RPA32). RPA2 is a subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). RPA contains six OB folds, which are involved in ssDNA binding and in trimerization. The ssDNA binding mechanism is believed to be multistep and to involve conformational change. This family also includes OB folds similar to those found in Escherichia coli SSB, the wedge domain of E. coli RecG (a branched-DNA-specific helicase), E. coli ssDNA specific exodeoxyribonuclease VII large subunit, Pyrococcus abyssi DNA polymerase II (Pol II) small subunit, Sulfolobus solfataricus SSB, and Bacillus subtilis YhaM (a 3'-to-5'exoribonuclease). It also includes the OB folds of breast cancer susceptibility gene 2 protein (BRCA2), Oxytricha nova telomere end binding protein (TEBP), Saccharomyces cerevisiae telomere-binding protein (Cdc13), and human protection of telomeres 1 protein (POT1). 75 -239602 cd03526 SQR_QFR_TypeB_TM Succinate:quinone oxidoreductase (SQR) and Quinol:fumarate reductase (QFR) Type B subfamily, transmembrane subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol, while QFR catalyzes the reverse reaction. SQR, also called succinate dehydrogenase or Complex II, is part of the citric acid cycle and the aerobic respiratory chain, while QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Type B proteins contain one transmembrane subunit and two heme groups. The heme and quinone binding sites reside in the transmembrane subunits. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit containing the electron donor/acceptor (quinol or quinone). The reversible reduction of quinone is an essential feature of respiration, allowing the transfer of electrons between respiratory complexes. 199 -239603 cd03527 RuBisCO_small Ribulose bisphosphate carboxylase/oxygenase (Rubisco), small subunit. Rubisco is a bifunctional enzyme catalyzes the initial steps of two opposing metabolic pathways: photosynthetic carbon fixation and the competing process of photorespiration. Rubisco Form I, present in plants and green algae, is composed of eight large and eight small subunits. The nearly identical small subunits are encoded by a family of nuclear genes. After translation, the small subunits are translocated across the chloroplast membrane, where an N-terminal signal peptide is cleaved off. While the large subunits contain the catalytic activities, it has been shown that the small subunits are important for catalysis by enhancing the catalytic rate through inducing conformational changes in the large subunits. 99 -239604 cd03528 Rieske_RO_ferredoxin Rieske non-heme iron oxygenase (RO) family, Rieske ferredoxin component; composed of the Rieske ferredoxin component of some three-component RO systems including biphenyl dioxygenase (BPDO) and carbazole 1,9a-dioxygenase (CARDO). The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The ferredoxin component contains either a plant-type or Rieske-type [2Fe-2S] cluster. The Rieske ferredoxin component in this family carries an electron from the RO reductase component to the terminal RO oxygenase component. BPDO degrades biphenyls and polychlorinated biphenyls. BPDO ferredoxin (BphF) has structural features consistent with a minimal and perhaps archetypical Rieske protein in that the insertions that give other Rieske proteins unique structural features are missing. CARDO catalyzes dihydroxylation at the C1 and C9a positions of carbazole. Rieske ferredoxins are found as subunits of membrane oxidase complexes, cis-dihydrodiol-forming aromatic dioxygenases, bacterial assimilatory nitrite reductases, and arsenite oxidase. Rieske ferredoxins are also found as soluble electron carriers in bacterial dioxygenase and monooxygenase complexes. 98 -239605 cd03529 Rieske_NirD Assimilatory nitrite reductase (NirD) family, Rieske domain; Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. Members include bacterial and fungal proteins. The bacterial NirD contains a single Rieske domain while fungal proteins have a C-terminal Rieske domain in addition to several other domains. The fungal NirD is involved in nutrient acquisition, functioning at the soil/fungus interface to control nutrient exchange between the fungus and the host plant. The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. The Rieske [2Fe-2S] cluster is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In this family, only a few members contain these residues. Other members may have lost the ability to bind the Rieske [2Fe-2S] cluster. 103 -239606 cd03530 Rieske_NirD_small_Bacillus Small subunit of nitrite reductase (NirD) family, Rieske domain; composed of proteins similar to the Bacillus subtilis small subunit of assimilatory nitrite reductase containing a Rieske domain. The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. 98 -239607 cd03531 Rieske_RO_Alpha_KSH The alignment model represents the N-terminal rieske iron-sulfur domain of KshA, the oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KSH). The terminal oxygenase component of KSH is a key enzyme in the microbial steroid degradation pathway, catalyzing the 9 alpha-hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). KSH is a two-component class IA monooxygenase, with terminal oxygenase (KshA) and oxygenase reductase (KshB) components. KSH activity has been found in many actino- and proteo- bacterial genera including Rhodococcus, Nocardia, Arthrobacter, Mycobacterium, and Burkholderia. 115 -239608 cd03532 Rieske_RO_Alpha_VanA_DdmC Rieske non-heme iron oxygenase (RO) family, Vanillate-O-demethylase oxygenase (VanA) and dicamba O-demethylase oxygenase (DdmC) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Vanillate-O-demethylase is a heterodimeric enzyme consisting of a terminal oxygenase (VanA) and reductase (VanB) components. This enzyme reductively catalyzes the conversion of vanillate into protocatechuate and formaldehyde. Protocatechuate and vanillate are important intermediate metabolites in the degradation pathway of lignin-derived compounds such as ferulic acid and vanillin by soil microbes. DDmC is the oxygenase component of a three-component dicamba O-demethylase found in Pseudomonas maltophila, that catalyzes the conversion of a widely used herbicide called herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). 116 -239609 cd03535 Rieske_RO_Alpha_NDO Rieske non-heme iron oxygenase (RO) family, Nathphalene 1,2-dioxygenase (NDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. NDO is a three-component RO system consisting of a reductase, a ferredoxin, and a hetero-hexameric alpha-beta subunit oxygenase component. NDO catalyzes the oxidation of naphthalene to cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene (naphthalene cis-dihydrodiol) with the consumption of O2 and NAD(P)H. NDO has a relaxed substrate specificity and can oxidize almost 100 substrates. Included in its varied activities are the enantiospecific cis-dihydroxylation of polycyclic aromatic hydrocarbons and benzocycloalkenes, benzylic hydroxylation, N- and O-dealkylation, sulfoxidation and desaturation reactions. 123 -239610 cd03536 Rieske_RO_Alpha_DTDO This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit (DitA) of diterpenoid dioxygenase (DTDO). DTDO is a novel aromatic-ring-hydroxylating dioxygenase found in Pseudomonas and other proteobacteria that degrades dehydroabietic acid (DhA). Specifically, DitA hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8, 13-abietadien acid. The ditA1 and ditA2 genes encode the alpha and beta subunits of the oxygenase component of DTDO while the ditA3 gene encodes the ferredoxin component of DTDO. The organization of the genes encoding the various diterpenoid dioxygenase components, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual iron-sulfur cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases. 123 -239611 cd03537 Rieske_RO_Alpha_PrnD This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit of aminopyrrolnitrin oxygenase (PrnD). PrnD is a novel Rieske N-oxygenase that catalyzes the final step in the pyrrolnitrin biosynthetic pathway, the oxidation of the amino group in aminopyrrolnitrin to a nitro group, forming the antibiotic pyrrolnitrin. The biosynthesis of pyrrolnitrin is one of the best examples of enzyme-catalyzed arylamine oxidation. Although arylamine oxygenases are widely distributed within the microbial world and used in a variety of metabolic reactions, PrnD represents one of only two known examples of arylamine oxygenases or N-oxygenases involved in arylnitro group formation, the other being AurF involved in aureothin biosynthesis. 123 -239612 cd03538 Rieske_RO_Alpha_AntDO Rieske non-heme iron oxygenase (RO) family, Anthranilate 1,2-dioxygenase (AntDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. AntDO converts anthranilate to catechol, a naturally occurring compound formed through tryptophan degradation and an important intermediate in the metabolism of many N-heterocyclic compounds such as indole, o-nitrobenzoate, carbazole, and quinaldine. 146 -239613 cd03539 Rieske_RO_Alpha_S5H This alignment model represents the N-terminal rieske iron-sulfur domain of the oxygenase alpha subunit (NagG) of salicylate 5-hydroxylase (S5H). S5H converts salicylate (2-hydroxybenzoate), a metabolic intermediate of phenanthrene, to gentisate (2,5-dihydroxybenzoate) as part of an alternate pathway for naphthalene catabolism. S5H is a multicomponent enzyme made up of NagGH (the oxygenase components), NagAa (the ferredoxin reductase component), and NagAb (the ferredoxin component). The oxygenase component is made up of alpha (NagG) and beta (NagH) subunits. 129 -239614 cd03541 Rieske_RO_Alpha_CMO Rieske non-heme iron oxygenase (RO) family, Choline monooxygenase (CMO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. CMO is a novel RO found in certain plants which catalyzes the first step in betaine synthesis. CMO is not found in animals or bacteria. In these organisms, the first step in betaine synthesis is catalyzed by either the membrane-bound choline dehydrogenase (CDH) or the soluble choline oxidase (COX). 118 -239615 cd03542 Rieske_RO_Alpha_HBDO Rieske non-heme iron oxygenase (RO) family, 2-Halobenzoate 1,2-dioxygenase (HBDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. HBDO catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. 123 -239616 cd03545 Rieske_RO_Alpha_OHBDO_like Rieske non-heme iron oxygenase (RO) family, Ortho-halobenzoate-1,2-dioxygenase (OHBDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of OHBDO, salicylate 5-hydroxylase (S5H), terephthalate 1,2-dioxygenase system (TERDOS) and similar proteins. ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. OHBDO converts 2-chlorobenzoate (2-CBA) to catechol as well as 2,4-dCBA and 2,5-dCBA to 4-chlorocatechol, as part of the chlorobenzoate degradation pathway. Although ortho-substituted chlorobenzoates appear to be particularly recalcitrant to biodegradation, several strains utilize 2-CBA and the dCBA derivatives as a sole carbon and energy source. S5H converts salicylate (2-hydroxybenzoate), a metabolic intermediate of phenanthrene, to gentisate (2,5-dihydroxybenzoate) as part of an alternate pathway for naphthalene catabolism. S5H is a multicomponent enzyme made up of NagGH (the oxygenase components), NagAa (the ferredoxin reductase component), and NagAb (the ferredoxin component). The oxygenase component is made up of alpha (NagG) and beta (NagH) subunits. TERDOS is present in gram-positive bacteria and proteobacteria where it converts terephthalate (1,4-dicarboxybenzene) to protocatechuate as part of the terephthalate degradation pathway. The oxygenase component of TERDOS, called TerZ, is a hetero-hexamer with 3 alpha (TerZalpha) and 3 beta (TerZbeta) subunits. 150 -239617 cd03548 Rieske_RO_Alpha_OMO_CARDO Rieske non-heme iron oxygenase (RO) family, 2-Oxoquinoline 8-monooxygenase (OMO) and Carbazole 1,9a-dioxygenase (CARDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. OMO catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline, the second step in the bacterial degradation of quinoline. OMO consists of a reductase component (OMR) and an oxygenase component (OMO) that together function to shuttle electrons from the reduced pyridine nucleotide to the active site of OMO, where O2 activation and 2-oxoquinoline hydroxylation occurs. CARDO, which contains oxygenase (CARDO-O), ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R) components, catalyzes the dihydroxylation at the C1 and C9a positions of carbazole. The oxygenase component of OMO and CARDO contain only alpha subunits arranged in a trimeric structure. 136 -239618 cd03556 L-fucose_isomerase L-fucose isomerase (FucIase); FucIase converts L-fucose, an aldohexose, to its ketose form, which prepares it for aldol cleavage (similar to the isomerization of glucose during glycolysis). L-fucose (or 6-deoxy-L-galactose) is found in blood group determinants as well as in various oligo- and polysaccharides, and glycosides in mammals, bacteria and plants. 584 -239619 cd03557 L-arabinose_isomerase L-Arabinose isomerase (AI) catalyzes the isomerization of L-arabinose to L-ribulose, the first reaction in its conversion into D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway, which allows L-arabinose to be used as a carbon source. AI can also convert D-galactose to D-tagatose at elevated temperatures in the presence of divalent metal ions. D-tagatose, rarely found in nature, is of commercial interest as a low-calorie sugar substitute. 484 -349787 cd03558 LGIC_ECD extracellular domain (ECD) of Cys-loop neurotransmitter-gated ion channels (also known as ligand-gated ion channel (LGIC)). This superfamily contains the extracellular domain (ECD) of Cys-loop neurotransmitter-gated ion channels, which include nicotinic acetylcholine receptor (nAChR), serotonin 5-hydroxytryptamine receptor (5-HT3), type-A gamma-aminobutyric acid receptor (GABAAR) and glycine receptor (GlyR). These ligand-gated ion channels (LGICs) are found across metazoans and have close homologs in bacteria. They are vital for communication throughout the nervous system. GABAAR and GlyR are anionic channels, both mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR receptor pore, resulting in hyperpolarization of the neuron. nAChR is a non-selective cation channel that is permeable to Na+ and K+, and some subunit combinations are also permeable to Ca2+. Na+ enters and K+ exits to allow net flow of positively charged ions inward. 5-HT3, a cation-selective channel, binds serotonin and is permeable to Na+, K+, and Ca2+. It mediates neuronal depolarization and excitation within the central and peripheral nervous systems. These ligand-gated chloride channels are critical not only for maintaining appropriate neuronal activity, but have long been important therapeutic targets: benzodiazepines, barbiturates, some intravenous and volatile anaesthetics, alcohol, strychnine, picrotoxin, and ivermectin all derive their biological activity from acting on the inhibitory half of the Cys-loop receptor family. The ECD contains the ligand binding sites for these receptors. 179 -349850 cd03559 LGIC_TM transmembrane domain of Cys-loop neurotransmitter-gated ion channels. This superfamily contains the transmembrane domain of Cys-loop neurotransmitter-gated ion channels, which include nicotinic acetylcholine receptor (nAChR), serotonin 5-hydroxytryptamine receptor (5-HT3), type-A gamma-aminobutyric acid receptor (GABAAR), and glycine receptor (GlyR). These ligand-gated ion channels (LGICs) are found across metazoans and have close homologs in bacteria. They are vital for communication throughout the nervous system where the sign of synaptic connections (excitatory or inhibitory) is determined by the charge of the ions that flow through these channels. In general, channels that conduct positive ions are excitatory, whereas channels that conduct negative ions are inhibitory. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR and GlyR are anionic channels, both mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR receptor pore, resulting in hyperpolarization of the neuron. nAChR is a non-selective cation channel that is permeable to Na+ and K+, and some subunit combinations are also permeable to Ca2+. Na+ enters and K+ exits to allow net flow of positively charged ions inward. 5-HT3, a cation-selective channel, binds serotonin and is permeable to Na+, K+, and Ca2+. It mediates neuronal depolarization and excitation within the central and peripheral nervous systems. These ligand-gated chloride channels are critical not only for maintaining appropriate neuronal activity, but have long been important therapeutic targets: benzodiazepines, barbiturates, some intravenous and volatile anaesthetics, alcohol, strychnine, picrotoxin, and ivermectin all derive their biological activity from acting on the inhibitory half of the Cys-loop receptor family. 116 -340765 cd03561 VHS VHS (Vps27/Hrs/STAM) domain family. The VHS domain is present in Vps27 (Vacuolar Protein Sorting), Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (Signal Transducing Adaptor Molecule). It has a superhelical structure similar to that of the ARM (Armadillo) repeats and is present at the N-termini of proteins involved in intracellular membrane trafficking. There are four general groups of VHS domain containing proteins based on their association with other domains. The first group consists of proteins of the STAM/EAST/Hbp family, which has the domain composition of VHS-SH3-ITAM. The second consists of proteins with a FYVE domain C-terminal to VHS. The third consists of GGA proteins with a domain composition of VHS-GAT (GGA and TOM)-GAE (Gamma-Adaptin Ear) domain. The fourth consists of proteins with a VHS domain alone or with domains other than those mentioned above. In GGA proteins, VHS domains are involved in cargo recognition in trans-Golgi, thereby having a general membrane targeting/cargo recognition role in vesicular trafficking. 131 -340766 cd03562 CID CID (CTD-Interacting Domain) family. The CTD-Interacting Domain (CID) is present in several eukaryotic RNA-processing factors including yeast proteins, Pcf11 and Nrd1, and vertebrate proteins, CTD-associated factors 8 (SCAF8) and Regulation of nuclear pre-mRNA domain-containing proteins (such as RPRD1 and RPRD2). Pcf11 is a conserved and essential subunit of the yeast cleavage factor IA, which is required for polyadenylation-dependent 3'-RNA processing and transcription termination. Nrd1 is implicated in polyadenylation-independent 3'-RNA processing. CID binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II (RNAP II). During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 123 -340767 cd03564 ANTH_N ANTH (AP180 N-Terminal Homology) domain family, N-terminal region. The ANTH (AP180 N-Terminal Homology) domain family is composed of Adaptor Protein 180 (AP180), Clathrin Assembly Lymphoid Myeloid Leukemia protein (CALM), and similar proteins. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ANTH-bearing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that the ANTH domain is a universal component of the machinery for clathrin-mediated membrane budding. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. This model describes the N-terminal region of ANTH domains. 120 -340768 cd03565 VHS_Tom1_like VHS (Vps27/Hrs/STAM) domain of Tom1 subfamily. This subfamily is composed of Tom1 (Target of myb1 - retroviral oncogene) protein, Tom1L1 (Tom1-like1), Tom1L2 (Tom1-like2), and similar proteins. Proteins belonging to this subfamily are characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. They are novel regulators for post-Golgi trafficking and signaling. Yeast do not contain homologous proteins of the Tom1 subfamily, suggesting these proteins have evolved to accommodate more complex cellular processes. Tom1 is essential for the negative regulation of Interleukin-1 and Tumor Necrosis Factor-induced signaling pathways. The VHS domain has a superhelical structure similar to the structure of the ARM repeats and is present at the very N-termini of proteins. It is a right-handed superhelix of eight alpha helices. The VHS domain has been found in a number of proteins, some of which have been implicated in intracellular trafficking and sorting. 138 -340769 cd03567 VHS_GGA_metazoan VHS (Vps27/Hrs/STAM) domain of metazoan GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) proteins. GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) comprises a subfamily of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. Jawed vertebrates contain as many as three GGA proteins: GGA1, GGA2, and GGA3. The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 139 -340770 cd03568 VHS_STAM VHS (Vps27/Hrs/STAM) domain of the STAM (Signal Transducing Adaptor Molecule) subfamily. STAM (Signal Transducing Adaptor Molecule) subfamily members have at their N-termini a VHS domain, which is involved in cytokine-mediated intracellular signal transduction and has a superhelical structure similar to the structure of ARM (Armadillo) repeats, followed by a Ubiquitin-Interacting Motif (UIM) and a SH3 (Src Homology 3) domain, which is a well-established protein-protein interaction domain, and a GAT (GGA and TOM) domain. At the C-termini of most vertebrate STAMs, an Immunoreceptor Tyrosine-based Activation Motif (ITAM) is present, which mediates the binding of HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) in endocytic and exocytic machineries. STAM is a component of the ESCRT (Endosomal Sorting Complex Required for Transport)-0 machinery and together with Hrs, functions to bind and sequester cargoes for downstream sorting into intralumenal vesicles. Jawed vertebrates have two STAM subfamily members, STAM1 and STAM2. 132 -340771 cd03569 VHS_Hrs VHS (Vps27/Hrs/STAM) domain of Hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs. Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate) plays a role in at least three vesicle trafficking events: exocytosis, endocytosis, and endosome to lysosome trafficking. Hrs is involved in promoting rapid recycling of endocytosed signaling receptors to the plasma membrane. Together with STAM or STAM2, it comprises the ESCRT (Endosomal Sorting Complex Required for Transport)-0 machinery, which functions to bind and sequester cargoes for downstream sorting into intralumenal vesicles. Hrs contains an N-terminal VHS domain, which has a superhelical structure similar to the structure of ARM (Armadillo) repeats, a FYVE (Fab1p, YOTB, Vac1p, and EEA1) zinc finger domain, a Double Ubiquitin-Interacting Motif (DUIM), a P(S/T)XP motif that recruit ESCRT-I, a GAT (GGA and TOM) domain, and a short peptide motif near the C-terminus that recruits clathrin. 138 -340772 cd03571 ENTH Epsin N-Terminal Homology (ENTH) domain family. The Epsin N-Terminal Homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, contributing to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 117 -340773 cd03572 ENTH_like_Tepsin Epsin N-Terminal Homology (ENTH)-like domain of AP-4 complex accessory subunit Tepsin and similar domains. This family is composed of proteins containing an ENTH-like domain including vertebrate AP-4 complex accessory subunit Tepsin and Arabidopsis thaliana VHS domain-containing protein At3g16270. Tepsin is also called ENTH Domain-containing protein 2 (ENTHD2), Epsin for AP-4, or Tetra-epsin. It associates with the adapter-like complex 4 (AP-4), a heterotetramer composed of two large adaptins (epsilon and beta), a medium adaptin (mu) and a small adaptin (sigma), which forms a non-clathrin coat on vesicles departing the Trans-Golgi Network. The Epsin N-Terminal Homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 119 -239629 cd03574 NTR_complement_C345C NTR/C345C domain; The NTR domains that are found in the C-termini of complement C3, C4 and C5, are also called C345C domains. In C5, the domain interacts with various partners during the formation of the membrane attack complex, a fundamental process in the mammalian defense against infection. It's role in component C3 and C4 is not well understood. 147 -239630 cd03575 NTR_WFIKKN NTR domain, WFIKKN subfamily; WFIKKN proteins contain a C-terminal NTR domain and are putative secreted proteins which may be multivalent protease inhibitors that act on serine proteases as well as metalloproteases. Human WFIKKN and a related protein sharing the same domain architecture were observed to have distinct tissue expression patterns. WFIKKN is also referred to as growth and differentiation factor-associated serum protein-1 (GASP-1). It inhibits the activity of mature myostatin, a specific regulator of skeletal muscle mass and a member of the TGFbeta superfamily. 109 -239631 cd03576 NTR_PCOLCE NTR domain, PCOLCE subfamily; Procollagen C-endopeptidase enhancers (PCOLCEs) are extracellular matrix proteins that enhance the activity of procollagen C-proteases, by binding to the procollagen I C-peptide. They contain a C-terminal NTR domain, which have been suggested to possess inhibitory functions towards specific serine proteases but not towards metzincins, which are inhibited by the related TIMPs. 124 -239632 cd03577 NTR_TIMP_like NTR domain, TIMP-like subfamily; TIMPs, or tissue inibitors of metalloproteases, are essential regulators of extracellular matrix turnover and remodeling. They form complexes with matrix metalloproteases (MMPs) and inactivate them irreversibly by non-covalently binding their active zinc-binding sites. This group contains domains similar to the TIMP NTR domain, which binds MMPs. Members of this group may or may not function as MMP inhibitors. 116 -239633 cd03578 NTR_netrin-4_like NTR domain, Netrin-4-like subfamily; composed of the C-terminal NTR domains of netrin-4 (beta netrin) and similar proteins. Netrins are secreted proteins that function as tropic cues in the direction of axon growth and cell migration during neural development. Netrin-4 is a basement membrane component that is important in neural, kidney and vascular development. It may also be involved in regulating the outgrowth and shape of epithelial cells during lung branching morphogenesis. 111 -239634 cd03579 NTR_netrin-1_like NTR domain, Netrin-1-like subfamily; The C-terminal NTR domain of netrins is also called domain C in the context of C. elegans netrin UNC-6. Netrins are secreted proteins that function as tropic cues in the direction of axon growth and cell migration during neural development. These proteins may be chemoattractive to some neurons and chemorepellant for others. In the case of netrin-1, attraction and repulsion responses are mediated by the DCC and UNC-5 receptor families. The biological activities of C. elegans UNC-6, which may either attract or repel migrating cells or axons, are mediated by its different domains. The C-terminal NTR domain of UNC-6 has been shown to inhibit axon branching activity. 115 -239635 cd03580 NTR_Sfrp1_like NTR domain, Secreted frizzled-related protein (Sfrp) 1-like subfamily; composed of proteins similar to human Sfrp1, Sfrp2 and Sfrp5. Sfrps are soluble proteins containing an NTR domain C-terminal to a cysteine-rich Frizzled domain. They show diverse functions and are thought to work in Wnt signaling indirectly, as modulators or antagonists by binding Wnt ligands, and directly, via the Wnt receptor, Frizzled. They participate in regulating the patterning along the anteroposterior axis in vertebrates. Human Sfrp1 has been found frequently to be downregulated in breast cancer and is associated with disease progression and poor prognosis. 126 -239636 cd03581 NTR_Sfrp3_like NTR domain, Secreted frizzled-related protein (Sfrp) 3-like subfamily; composed of proteins similar to human Sfrp3 and Sfrp4. Sfrps are soluble proteins containing an NTR domain C-terminal to a cysteine-rich Frizzled domain. They show diverse functions and are thought to work in Wnt signaling indirectly, as modulators or antagonists by binding Wnt ligands, and directly, via the Wnt receptor, Frizzled. They participate in regulating the patterning along the anteroposterior axis in vertebrates. Human Sfrp3 may suppress the growth and invasiveness of androgen-independent prostate cancer cells. 111 -239637 cd03582 NTR_complement_C5 NTR/C345C domain, complement C5 subfamily; The NTR domain found in complement C5 is also known as C345C because it occurs at the C-terminus of complement C3, C4 and C5. Complement C5 is activated by C5 convertase, which itself is a complex between C3b and C3 convertase. The small cleavage fragment, C5a, is the most important small peptide mediator of inflammation, and the larger active fragment, C5b, initiates late events of complement activation. The NTR/C345C domain is important in the function of C5 as it interacts with enzymes that convert C5 to the active form, C5b. The domain has also been found to bind to complement components C6 and C7, and may specifically interact with their factor I modules. 150 -239638 cd03583 NTR_complement_C3 NTR/C345C domain, complement C3 subfamily; The NTR domain found in complement C3 is also known as the C345C domain because it occurs at the C-terminus of complement C3, C4 and C5. Complement C3 plays a pivotal role in the activation of the complement systems, as all pathways (classical, alternative, and lectin) result in the processing of C3 by C3 convertase. The larger fragment, activated C3b, contains the NTR/C345C domain and binds covalently, via a reactive thioester, to cell surface carbohydrates including components of bacterial cell walls and immune aggregates. The smaller cleavage product, C3a, acts independently as a diffusible signal to mediate local inflammatory processes. The structure of C3 shows that the NTR/C345C domain is located in an exposed position relative to the rest of the molecule. The function of the domain in complement C3 is poorly understood. 149 -239639 cd03584 NTR_complement_C4 NTR/C345C domain, complement C4 subfamily; The NTR domain found in complement C4 is also known as the C345C domain because it occurs at the C-terminus of complement C3, C4 and C5. Complement C4 is a key player in the activation of the component classical pathway. C4 is cleaved by activated C1 to yield C4a anaphylatoxin, and the larger fragment C4b, an essential component of the C3- and C5-convertase enzymes. C4b binds covalently to the surface of pathogens through a reactive thioester. The role of the NTR/C345C domain in C4 (C4b) is unclear. 153 -239640 cd03585 NTR_TIMP NTR domain, TIMP subfamily; TIMPs, or tissue inibitors of metalloproteases, are essential regulators of extracellular matrix turnover and remodeling. They form complexes with matrix metalloproteases (MMPs) and inactivate them irreversibly by non-covalently binding their active zinc-binding sites. The levels of activated membrane-type MMPs, MMPs, and free TIMPs determine the balance between matrix degradation and matrix formation or stabilization. Consequently, TIMPs play roles in processes that require the remodeling and degradation of connective tissue, such as development, morphogenesis, wound healing, as well as in various diseases and pathological states such as tumor cell metastasis, arthritis, and artherosclerosis. Most TIMPs bind to a variety of MMPs. TIMP-1 and TIMP-2 appear to be multifunctional proteins with diverse biological action. They may exhibit growth factor-like activity and can inhibit angiogenesis. TIMP-3 has been implicated in apoptosis. 183 -176459 cd03586 PolY_Pol_IV_kappa DNA Polymerase IV/Kappa. Pol IV, also known as Pol kappa, DinB, and Dpo4, is a translesion synthesis (TLS) polymerase. Translesion synthesis is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Known primarily as Pol IV in prokaryotes and Pol kappa in eukaryotes, this polymerase has a propensity for generating frameshift mutations. The eukaryotic Pol kappa differs from Pol IV and Dpo4 by an N-terminal extension of ~75 residues known as the "N-clasp" region. The structure of Pol kappa shows DNA that is almost totally encircled by Pol kappa, with the N-clasp region augmenting the interactions between DNA and the polymerase. Pol kappa is more resistant than Pol eta and Pol iota to bulky guanine adducts and is efficient at catalyzing the incorporation of dCTP. Bacterial pol IV has a higher error rate than other Y-family polymerases. 334 -239641 cd03587 SOCS SOCS (suppressors of cytokine signaling) box. The SOCS box is found in the C-terminal region of CIS/SOCS family proteins (in combination with a SH2 domain), ASBs (ankyrin repeat-containing proteins with a SOCS box), SSBs (SPRY domain-containing proteins with a SOCS box), and WSBs (WD40 repeat-containing proteins with a SOCS box), as well as, other miscellaneous proteins. The function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 41 -153058 cd03588 CLECT_CSPGs C-type lectin-like domain (CTLD) of the type found in chondroitin sulfate proteoglycan core proteins. CLECT_CSPGs: C-type lectin-like domain (CTLD) of the type found in chondroitin sulfate proteoglycan core proteins (CSPGs) in human and chicken aggrecan, frog brevican, and zebra fish dermacan. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with hyaluronan (HA). These aggregates contribute to the tissue's load bearing properties. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Xenopus brevican is expressed in the notochord and the brain during early embryogenesis. Zebra fish dermacan is expressed in dermal bones and may play a role in dermal bone development. CSPGs do contain LINK domain(s) which bind HA. These LINK domains are considered by one classification system to be a variety of CTLD, but are omitted from this hierarchical classification based on insignificant sequence similarity. 124 -153059 cd03589 CLECT_CEL-1_like C-type lectin-like domain (CTLD) of the type found in CEL-1 from Cucumaria echinata and Echinoidin from Anthocidaris crassispina. CLECT_CEL-1_like: C-type lectin-like domain (CTLD) of the type found in CEL-1 from Cucumaria echinata and Echinoidin from Anthocidaris crassispina. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. The CEL-1 CTLD binds three calcium ions and has a high specificity for N-acteylgalactosamine (GalNAc). CEL-1 exhibits strong cytotoxicity which is inhibited by GalNAc. This protein may play a role as a toxin defending against predation. Echinoidin is found in the coelomic fluid of the sea urchin and is specific for GalBeta1-3GalNAc. Echinoidin has a cell adhesive activity towards human cancer cells which is not mediated through the CTLD. Both CEL-1 and Echinoidin are multimeric proteins comprised of multiple dimers linked by disulfide bonds. 137 -153060 cd03590 CLECT_DC-SIGN_like C-type lectin-like domain (CTLD) of the type found in human dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and the related receptor, DC-SIGN receptor (DC-SIGNR). CLECT_DC-SIGN_like: C-type lectin-like domain (CTLD) of the type found in human dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and the related receptor, DC-SIGN receptor (DC-SIGNR). This group also contains proteins similar to hepatic asialoglycoprotein receptor (ASGP-R) and langerin in human. These proteins are type II membrane proteins with a CTLD ectodomain. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. DC-SIGN is thought to mediate the initial contact between dendritic cells and resting T cells, and may also mediate the rolling of DCs on epithelium. DC-SIGN and DC-SIGNR bind to oligosaccharides present on human tissues, as well as, on pathogens including parasites, bacteria, and viruses. DC-SIGN and DC-SIGNR bind to HIV enhancing viral infection of T cells. DC-SIGN and DC-SIGNR are homotetrameric, and contain four CTLDs stabilized by a coiled coil of alpha helices. The hepatic ASGP-R is an endocytic recycling receptor which binds and internalizes desialylated glycoproteins having a terminal galactose or N-acetylgalactosamine residues on their N-linked carbohydrate chains, via the clathrin-coated pit mediated endocytic pathway, and delivers them to lysosomes for degradation. It has been proposed that glycoproteins bearing terminal Sia (sialic acid) alpha2, 6GalNAc and Sia alpha2, 6Gal are endogenous ligands for ASGP-R and that ASGP-R participates in regulating the relative concentration of serum glycoproteins bearing alpha 2,6-linked Sia. The human ASGP-R is a hetero-oligomer composed of two subunits, both of which are found within this group. Langerin is expressed in a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin induces the formation of Birbeck Granules (BGs) and associates with these BGs following internalization. Langerin binds, in a calcium-dependent manner, to glyco-conjugates containing mannose and related sugars mediating their uptake and degradation. Langerin molecules oligomerize as trimers with three CTLDs held together by a coiled-coil of alpha helices. 126 -153061 cd03591 CLECT_collectin_like C-type lectin-like domain (CTLD) of the type found in human collectins including lung surfactant proteins A and D, mannose- or mannan binding lectin (MBL), and CL-L1 (collectin liver 1). CLECT_collectin_like: C-type lectin-like domain (CTLD) of the type found in human collectins including lung surfactant proteins A and D, mannose- or mannan binding lectin (MBL), and CL-L1 (collectin liver 1). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. The CTLDs of these collectins bind carbohydrates on surfaces (e.g. pathogens, allergens, necrotic, or apoptotic cells) and mediate functions associated with killing and phagocytosis. MBPs recognize high mannose oligosaccharides in a calcium dependent manner, bind to a broad range of pathogens, and trigger cell killing by activating the complement pathway. MBP also acts directly as an opsonin. SP-A and SP-D in addition to functioning as host defense components, are components of pulmonary surfactant which play a role in surfactant homeostasis. Pulmonary surfactant is a phospholipid-protein complex which reduces the surface tension within the lungs. SP-A binds the major surfactant lipid: dipalmitoylphosphatidylcholine (DPPC). SP-D binds two minor components of surfactant that contain sugar moieties: glucosylceramide and phosphatidylinositol (PI). MBP and SP-A, -D monomers are homotrimers with an N-terminal collagen region and three CTLDs. Multiple homotrimeric units associate to form supramolecular complexes. MBL deficiency results in an increased susceptibility to a large number of different infections and to inflammatory disease, such as rheumatoid arthritis. 114 -153062 cd03592 CLECT_selectins_like C-type lectin-like domain (CTLD) of the type found in the type 1 transmembrane proteins: P(platlet)-, E(endothelial)-, and L(leukocyte)- selectins (sels). CLECT_selectins_like: C-type lectin-like domain (CTLD) of the type found in the type 1 transmembrane proteins: P(platlet)-, E(endothelial)-, and L(leukocyte)- selectins (sels). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. P- E- and L-sels are cell adhesion receptors that mediate the initial attachment, tethering, and rolling of lymphocytes on inflamed vascular walls enabling subsequent lymphocyte adhesion and transmigration. L- sel is expressed constitutively on most leukocytes. P-sel is stored in the Weibel-Palade bodies of endothelial cells and in the alpha granules of platlets. E- sels are present on endothelial cells. Following platelet and/or endothelial cell activation P- sel is rapidly translocated to the cell surface and E-sel expression is induced. The initial step in leukocyte migration involves interactions of selectins with fucosylated, sialylated, and sulfated carbohydrate moieties on target ligands displayed on glycoprotein scaffolds on endothelial cells and leucocytes. A major ligand of P- E- and L-sels is PSGL-1 (P-sel glycoprotein ligand). Interactions of E- and P- sels with tumor cells may promote extravasation of cancer cells. Regulation of L-sel and P-sel function includes proteolytic shedding of the most extracellular portion (containing the CTLD) from the cell surface. Increased levels of the soluble form of P-sel in the plasma have been found in a number of diseases including coronary disease and diabetes. E- and P- sel also play roles in the development of synovial inflammation in inflammatory arthritis. Platelet P-sel, but not endothelial P-sel, plays a role in the inflammatory response and neointimal formation after arterial injury. Selectins may also function as signal-transducing receptors. 115 -153063 cd03593 CLECT_NK_receptors_like C-type lectin-like domain (CTLD) of the type found in natural killer cell receptors (NKRs). CLECT_NK_receptors_like: C-type lectin-like domain (CTLD) of the type found in natural killer cell receptors (NKRs), including proteins similar to oxidized low density lipoprotein (OxLDL) receptor (LOX-1), CD94, CD69, NKG2-A and -D, osteoclast inhibitory lectin (OCIL), dendritic cell-associated C-type lectin-1 (dectin-1), human myeloid inhibitory C-type lectin-like receptor (MICL), mast cell-associated functional antigen (MAFA), killer cell lectin-like receptors: subfamily F, member 1 (KLRF1) and subfamily B, member 1 (KLRB1), and lys49 receptors. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. NKRs are variously associated with activation or inhibition of natural killer (NK) cells. Activating NKRs stimulate cytolysis by NK cells of virally infected or transformed cells; inhibitory NKRs block cytolysis upon recognition of markers of healthy self cells. Most Lys49 receptors are inhibitory; some are stimulatory. OCIL inhibits NK cell function via binding to the receptor NKRP1D. Murine OCIL in addition to inhibiting NK cell function inhibits osteoclast differentiation. MAFA clusters with the type I Fc epsilon receptor (FcepsilonRI) and inhibits the mast cells secretory response to FcepsilonRI stimulus. CD72 is a negative regulator of B cell receptor signaling. NKG2D is an activating receptor for stress-induced antigens; human NKG2D ligands include the stress induced MHC-I homologs, MICA, MICB, and ULBP family of glycoproteins Several NKRs have a carbohydrate-binding capacity which is not mediated through calcium ions (e.g. OCIL binds a range of high molecular weight sulfated glycosaminoglycans including dextran sulfate, fucoidan, and gamma-carrageenan sugars). Dectin-1 binds fungal beta-glucans and in involved in the innate immune responses to fungal pathogens. MAFA binds saccharides having terminal alpha-D mannose residues in a calcium-dependent manner. LOX-1 is the major receptor for OxLDL in endothelial cells and thought to play a role in the pathology of atherosclerosis. Some NKRs exist as homodimers (e.g.Lys49, NKG2D, CD69, LOX-1) and some as heterodimers (e.g. CD94/NKG2A). Dectin-1 can function as a monomer in vitro. 116 -153064 cd03594 CLECT_REG-1_like C-type lectin-like domain (CTLD) of the type found in Human REG-1 (lithostathine), REG-4, and avian eggshell-specific proteins: ansocalcin, structhiocalcin-1(SCA-1), and -2(SCA-2). CLECT_REG-1_like: C-type lectin-like domain (CTLD) of the type found in Human REG-1 (lithostathine), REG-4, and avian eggshell-specific proteins: ansocalcin, structhiocalcin-1(SCA-1), and -2(SCA-2). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. REG-1 is a proliferating factor which participates in various kinds of tissue regeneration including pancreatic beta-cell regeneration, regeneration of intestinal mucosa, regeneration of motor neurons, and perhaps in tissue regeneration of damaged heart. REG-1 may play a role on the pathophysiology of Alzheimer's disease and in the development of gastric cancers. Its expression is correlated with reduced survival from early-stage colorectal cancer. REG-1 also binds and aggregates several bacterial strains from the intestinal flora and it has been suggested that it is involved in the control of the intestinal bacterial ecosystem. Rat lithostathine has calcium carbonate crystal inhibitor activity in vitro. REG-IV is unregulated in pancreatic, gastric, hepatocellular, and prostrate adenocarcinomas. REG-IV activates the EGF receptor/Akt/AP-1 signaling pathway in colorectal carcinoma. Ansocalcin, SCA-1 and -2 are found at high concentration in the calcified egg shell layer of goose and ostrich, respectively and tend to form aggregates. Ansocalcin nucleates calcite crystal aggregates in vitro. 129 -153065 cd03595 CLECT_chondrolectin_like C-type lectin-like domain (CTLD) of the type found in the human type-1A transmembrane proteins chondrolectin (CHODL) and layilin. CLECT_chondrolectin_like: C-type lectin-like domain (CTLD) of the type found in the human type-1A transmembrane proteins chondrolectin (CHODL) and layilin. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. CHODL is predominantly expressed in muscle cells and is associated with T-cell maturation. Various alternatively spliced isoforms have been of CHODL have been identified. The transmembrane form of CHODL is localized in the ER-Golgi apparatus. Layilin is widely expressed in different cell types. The extracellular CTLD of layilin binds hyaluronan (HA), a major constituent of the extracellular matrix (ECM). The cytoplasmic tail of layilin binds various members of the band 4.1/ERM superfamily (talin, radixin, and merlin). The ERM proteins are cytoskeleton-membrane linker molecules which link actin to receptors in the plasma membrane. Layilin co-localizes in with talin in membrane ruffles and may mediate signals from the ECM to the cell cytoskeleton. 149 -153066 cd03596 CLECT_tetranectin_like C-type lectin-like domain (CTLD) of the type found in the tetranectin (TN), cartilage derived C-type lectin (CLECSF1), and stem cell growth factor (SCGF). CLECT_tetranectin_like: C-type lectin-like domain (CTLD) of the type found in the tetranectin (TN), cartilage derived C-type lectin (CLECSF1), and stem cell growth factor (SCGF). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. TN binds to plasminogen and stimulates activation of plasminogen, playing a key role in the regulation of proteolytic processes. The TN CTLD binds two calcium ions. Its calcium free form binds to various kringle-like protein ligands. Two residues involved in the coordination of calcium are critical for the binding of TN to the fourth kringle (K4) domain of plasminogen (Plg K4). TN binds the kringle 1-4 form of angiostatin (AST K1-4). AST K1-4 is a fragment of Plg, commonly found in cancer tissues. TN inhibits the binding of Plg and AST K1-4 to the extracellular matrix (EMC) of endothelial cells and counteracts the antiproliferative effects of AST K1-4 on these cells. TN also binds the tenth kringle domain of apolipoprotein (a). In addition, TN binds fibrin and complex polysaccharides in a Ca2+ dependent manner. The binding site for complex sulfated polysaccharides is N-terminal to the CTLD. TN is homotrimeric; N-terminal to the CTLD is an alpha helical domain responsible for trimerization of monomeric units. TN may modulate angiogenesis through interactions with angiostatin and coagulation through interaction with fibrin. TN may play a role in myogenesis and in bone development. Mice having a deletion in the TN gene exhibit a kyphotic spine abnormality. TN is a useful prognostic marker of certain cancer types. CLECSF1 is expressed in cartilage tissue, which is primarily intracellular matrix (ECM), and is a candidate for organizing ECM. SCGF is strongly expressed in bone marrow and is a cytokine for primitive hematopoietic progenitor cells. 129 -153067 cd03597 CLECT_attractin_like C-type lectin-like domain (CTLD) of the type found in human and mouse attractin (AtrN) and attractin-like protein (ALP). CLECT_attractin_like: C-type lectin-like domain (CTLD) of the type found in human and mouse attractin (AtrN) and attractin-like protein (ALP). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. Mouse AtrN (the product of the mahogany gene) has been shown to bind Agouti protein and to function in agouti-induced pigmentation and obesity. Mutations in AtrN have also been shown to cause spongiform encephalopathy and hypomyelination in rats and hamsters. The cytoplasmic region of mouse ALP has been shown to binds to melanocortin receptor (MCR4). Signaling through MCR4 plays a role in appetite suppression. Attractin may have therapeutic potential in the treatment of obesity. Human attractin (hAtrN) has been shown to be expressed on activated T cells and released extracellularly. The circulating serum attractin induces the spreading of monocytes that become the focus of the clustering of non-proliferating T cells. 129 -153068 cd03598 CLECT_EMBP_like C-type lectin-like domain (CTLD) of the type found in the human proteins, eosinophil major basic protein (EMBP) and prepro major basic protein homolog (MBPH). CLECT_EMBP_like: C-type lectin-like domain (CTLD) of the type found in the human proteins, eosinophil major basic protein (EMBP) and prepro major basic protein homolog (MBPH). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. Eosinophils and basophils carry out various functions in allergic, parasitic, and inflammatory diseases. EMBP is stored in eosinophil crystalloid granules and is released upon degranulation. EMBP is also expressed in basophils. The proform of EMBP is expressed in placental X cells and breast tissue and increases significantly during human pregnancy. EMBP has cytotoxic properties and damages bacteria and mammalian cells, in vitro, as well as, helminth parasites. EMBP deposition has been observed in the inflamed tissue of allergy patients in a variety of diseases including asthma, atopic dermatitis, and rhinitis. In addition to its cytotoxic functions, EMBP activates cells and stimulates cytokine production. EMBP has been shown to bind the proteoglycan heparin. The binding site is similar to the carbohydrate binding site of other classical CTLD, such as mannose-binding protein (MBP1), however, heparin binding to EMBP is calcium ion independent. MBPH has reduced potency in cytotoxic and cytostimulatory assays compared with EMBP. 117 -153069 cd03599 CLECT_DGCR2_like C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS). CLECT_DGCR2_like: C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. DGS is also known velo-cardio-facial syndrome (VCFS). DGS is a genetic abnormality that results in malformations of the heart, face, and limbs and is associated with schizophrenia and depressive disorders. DGCR2 is a candidate for involvement in the pathogenesis of DGS since the DGCR2 gene lies within the minimal DGS critical region (MDGRC) of 22q11, which when deleted gives rise to DGS, and the DGCR2 gene is in close proximity to the balanced translocation breakpoint in a DGS patient having a balanced translocation. 153 -153070 cd03600 CLECT_thrombomodulin_like C-type lectin-like domain (CTLD) of the type found in human thrombomodulin(TM), Endosialin, C14orf27, and C1qR. CLECT_thrombomodulin_like: C-type lectin-like domain (CTLD) of the type found in human thrombomodulin(TM), Endosialin, C14orf27, and C1qR. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. In these thrombomodulin-like proteins the residues involved in coordinating Ca2+ in the classical MBP-A CTLD are not conserved. TM exerts anti-fibrinolytic and anti-inflammatory activity. TM also regulates blood coagulation in the anticoagulant protein C pathway. In this pathway, the procoagulant properties of thrombin (T) are lost when it binds TM. TM also plays a key role in tumor biology. It is expressed on endothelial cells and on several type of tumor cell including squamous cell carcinoma. Loss of TM expression correlates with advanced stage and poor prognosis. Loss of function of TM function may be associated with arterial or venous thrombosis and with late fetal loss. Soluble molecules of TM retaining the CTLD are detected in human plasma and urine where higher levels indicate injury and/or enhanced turnover of the endothelium. C1qR is expressed on endothelial cells and stem cells. It is also expressed on monocots and neutrophils, where it is subject to ectodomain shedding. Soluble forms of C1qR retaining the CTLD is detected in human plasma. C1qR modulates the phagocytosis of apoptotic cells in vivo. C1qR-deficient mice are defective in clearance of apoptotic cells in vivo. The cytoplasmic tail of C1qR, C-terminal to the CTLD of CD93, contains a PDZ binding domain which interacts with the PDZ domain-containing adaptor protein, GIPC. The juxtamembrane region of this tail interacts with the ezrin/radixin/moesin family. Endosialin functions in the growth and progression of abdominal tumors and is expressed in the stroma of several tumors. 141 -153071 cd03601 CLECT_TC14_like C-type lectin-like domain (CTLD) of the type found in lectins TC14, TC14-2, TC14-3, and TC14-4 from the budding tunicate Polyandrocarpa misakiensis and PfG6 from the Acorn worm. CLECT_TC14_like: C-type lectin-like domain (CTLD) of the type found in lectins TC14, TC14-2, TC14-3, and TC14-4 from the budding tunicate Polyandrocarpa misakiensis and PfG6 from the Acorn worm. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. TC14 is homodimeric. The CTLD of TC14 binds D-galactose and D-fucose. TC14 is expressed constitutively by multipotent epithelial and mesenchymal cells and plays in role during budding, in inducing the aggregation of undifferentiated mesenchymal cells to give rise to epithelial forming tissue. TC14-2 and TC14-3 shows calcium-dependent galactose binding activity. TC14-3 is a cytostatic factor which blocks cell growth and dedifferentiation of the atrial epithelium during asexual reproduction. It may also act as a differentiation inducing factor. Galactose inhibits the cytostatic activity of TC14-3. The gene for Acorn worm PfG6 is gill-specific; PfG6 may be a secreted protein. 119 -153072 cd03602 CLECT_1 C-type lectin (CTL)/C-type lectin-like (CTLD) domain subgroup 1; a subgroup of protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. CLECT_1: C-type lectin (CTL)/C-type lectin-like (CTLD) domain subgroup 1; a subgroup of protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. Many CTLDs are calcium-dependent carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic surfaces including CaCO3 and ice. Animal C-type lectins are involved in such functions as extracellular matrix organization, endocytosis, complement activation, pathogen recognition, and cell-cell interactions. CTLDs may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose. CTLDs associate with each other through several different surfaces to form dimers, trimers, or tetramers from which ligand-binding sites project in different orientations. In some CTLDs a loop extends to the adjoining domain to form a loop-swapped dimer. 108 -153073 cd03603 CLECT_VCBS A bacterial subgroup of the C-type lectin-like (CTLD) domain; a subgroup of bacterial protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. CLECT_VCBS: A bacterial subgroup of the C-type lectin-like (CTLD) domain; a subgroup of bacterial protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. Many CTLDs are calcium-dependent carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic surfaces including CaCO3 and ice. Bacterial CTLDs within this group are functionally uncharacterized. Animal C-type lectins are involved in such functions as extracellular matrix organization, endocytosis, complement activation, pathogen recognition, and cell-cell interactions. CTLDs may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose. CTLDs associate with each other through several different surfaces to form dimers, trimers, or tetramers from which ligand-binding sites project in different orientations. In some CTLDs a loop extends to the adjoining domain to form a loop-swapped dimer. 118 -239642 cd03670 ADPRase_NUDT9 ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the Nudix hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue Nudix motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the Nudix motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer. 186 -239643 cd03671 Ap4A_hydrolase_plant_like Diadenosine tetraphosphate (Ap4A) hydrolase is a member of the Nudix hydrolase superfamily. Members of this family are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one group (represented by this subfamily) and fungi/animals/archaea enzymes fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for the inhibition of such invasive bacteria. Besides the signature nudix motif (G[X5]E[X7]REUXEEXGU where U is Ile, Leu, or Val), Ap4A hydrolase is structurally similar to the other members of the nudix superfamily with some degree of variations. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies. 147 -239644 cd03672 Dcp2p mRNA decapping enzyme 2 (Dcp2p), the catalytic subunit, and Dcp1p are the two components of the decapping enzyme complex. Decapping is a key step in both general and nonsense-mediated 5'->3' mRNA-decay pathways. Dcp2p contains an all-alpha helical N-terminal domain and a C-terminal domain which has the Nudix fold. While decapping is not dependent on the N-terminus of Dcp2p, it does affect its efficiency. Dcp1p binds the N-terminal domain of Dcp2p stimulating the decapping activity of Dcp2p. Decapping permits the degradation of the transcript and is a site of numerous control inputs. It is responsible for nonsense-mediated decay as well as AU-rich element (ARE)-mediated decay. In addition, it may also play a role in the levels of mRNA. Enzymes belonging to the Nudix superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and are recognized by a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V). 145 -239645 cd03673 Ap6A_hydrolase Diadenosine hexaphosphate (Ap6A) hydrolase is a member of the Nudix hydrolase superfamily. Ap6A hydrolase specifically hydrolyzes diadenosine polyphosphates, but not ATP or diadenosine triphosphate, and it generates ATP as the product. Ap6A, the most preferred substrate, hydrolyzes to produce two ATP molecules, which is a novel hydrolysis mode for Ap6A. These results indicate that Ap6A hydrolase is a diadenosine polyphosphate hydrolase. It requires the presence of a divalent cation, such as Mn2+, Mg2+, Zn2+, and Co2+, for activity. Members of the Nudix superfamily are recognized by a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. 131 -239646 cd03674 Nudix_Hydrolase_1 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity. They also contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, U=I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 138 -239647 cd03675 Nudix_Hydrolase_2 Contains a crystal structure of the Nudix hydrolase from Nitrosomonas europaea, which has an unknown function. In general, members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity. They also contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 134 -239648 cd03676 Nudix_hydrolase_3 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 180 -239649 cd03677 MM_CoA_mutase_beta Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM) family, Beta subunit-like subfamily; contains bacterial proteins similar to the beta subunit of MCMs from Propionbacterium shermanni and Streptomyces cinnamonensis, which are alpha/beta heterodimers. For P. shermanni MCM, it is known that only the alpha subunit binds coenzyme B12 and substrates. The role of the beta subunit is unclear. MCM catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA. The reaction proceeds via radical intermediates beginning with a substrate-induced homolytic cleavage of the Co-C bond of coenzyme B12 to produce cob(II)alamin and the deoxyadenosyl radical. MCM plays an important role in the conversion of propionyl-CoA to succinyl-CoA during the degradation of propionate for the Krebs cycle. Methylobacterium extorquens MCM participates in the glyoxylate regeneration pathway. In M. extorquens, MCM forms a complex with MeaB; MeaB may protect MCM from irreversible inactivation. In some bacteria, MCM is involved in the reverse metabolic reaction, the rearrangement of succinyl-CoA to methylmalonyl-CoA. Examples include P. shermanni MCM during propionic acid fermentation and Streptomyces MCM in polyketide biosynthesis. 424 -239650 cd03678 MM_CoA_mutase_1 Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM) family, unknown subfamily 1; composed of uncharacterized bacterial proteins containing a C-terminal MCM domain. MCM catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA. The reaction proceeds via radical intermediates beginning with a substrate-induced homolytic cleavage of the Co-C bond of coenzyme B12 to produce cob(II)alamin and the deoxyadenosyl radical. MCM plays an important role in the conversion of propionyl-CoA to succinyl-CoA during the degradation of propionate for the Krebs cycle. In some bacteria, MCM is involved in the reverse metabolic reaction, the rearrangement of succinyl-CoA to methylmalonyl-CoA. Members of this subfamily also contain an N-terminal coenzyme B12 binding domain followed by a domain similar to the E. coli ArgK membrane ATPase. 495 -239651 cd03679 MM_CoA_mutase_alpha_like Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM) family, Alpha subunit-like subfamily; contains proteins similar to the alpha subunit of Propionbacterium shermanni MCM, as well as human and E. coli MCM. Members of this subfamily contain an N-terminal MCM domain and a C-terminal coenzyme B12 binding domain. MCM catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA. The reaction proceeds via radical intermediates beginning with a substrate-induced homolytic cleavage of the Co-C bond of coenzyme B12 to produce cob(II)alamin and the deoxyadenosyl radical. MCM plays an important role in the conversion of propionyl-CoA to succinyl-CoA during the degradation of propionate for the Krebs cycle. In higher animals, MCM is involved in the breakdown of odd-chain fatty acids, several amino acids, and cholesterol. Methylobacterium extorquens MCM participates in the glyoxylate regeneration pathway. In M. extorquens, MCM forms a complex with MeaB; MeaB may protect MCM from irreversible inactivation. In some bacteria, MCM is involved in the reverse metabolic reaction, the rearrangement of succinyl-CoA to methylmalonyl-CoA. Examples include P. shermanni MCM during propionic acid fermentation, E.coli MCM in a pathway for the conversion of succinate to propionate and Streptomyces MCM in polyketide biosynthesis. Sinorhizobium meliloti strain SU47 MCM plays a role in the polyhydroxyalkanoate degradation pathway. P. shermanni and Streptomyces cinnamonensis MCMs are alpha/beta heterodimers. It has been shown for P. shermanni MCM that only the alpha subunit binds coenzyme B12 and substrates. Human MCM is a homodimer with two active sites. Mouse and E.coli MCMs are also homodimers. In humans, impaired activity of MCM results in methylmalonic aciduria, a disorder of propionic acid metabolism. 536 -239652 cd03680 MM_CoA_mutase_ICM_like Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM) family, isobutyryl-CoA mutase (ICM)-like subfamily; contains archaeal and bacterial proteins similar to the large subunit of Streptomyces cinnamonensis coenzyme B12-dependent ICM. ICM from S. cinnamonensis is comprised of a large and a small subunit. The holoenzyme appears to be an alpha2beta2 heterotetramer with up to 2 molecules of coenzyme B12 bound. The small subunit binds coenzyme B12. ICM catalyzes the reversible rearrangement of n-butyryl-CoA to isobutyryl-CoA, intermediates in fatty acid and valine catabolism, which in S. cinnamonensis can be converted to methylmalonyl-CoA and used in polyketide synthesis. 538 -239653 cd03681 MM_CoA_mutase_MeaA Coenzyme B12-dependent-methylmalonyl coenzyme A (CoA) mutase (MCM) family, MeaA-like subfamily; contains various methylmalonyl coenzyme A (CoA) mutase (MCM)-like proteins similar to the Streptomyces cinnamonensis MeaA, Methylobacterium extorquens MeaA and Streptomyces collinus B12-dependent mutase. Members of this subfamily contain an N-terminal MCM domain and a C-terminal coenzyme B12 binding domain. S. cinnamonensis MeaA is a putative B12-dependent mutase which provides methylmalonyl-CoA precursors for the biosynthesis of the monensin polyketide via an unknown pathway. S. collinus B12-dependent mutase may be involved in a pathway for acetate assimilation. 407 -239654 cd03682 ClC_sycA_like ClC sycA-like chloride channel proteins. This ClC family presents in bacteria, where it facilitates acid resistance in acidic soil. Mutation of this gene (sycA) in Rhizobium tropici CIAT899 causes serious deficiencies in nodule development, nodulation competitiveness, and N2 fixation on Phaseolus vulgaris plants, due to its reduced ability for acid resistance. This family is part of the ClC chloride channel superfamiy. These proteins catalyse the selective flow of Cl- ions across cell membranes and Cl-/H+ exchange transport. These proteins share two characteristics that are apparently inherent to the entire ClC chloride channel superfamily: a unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. 378 -239655 cd03683 ClC_1_like ClC-1-like chloride channel proteins. This CD includes isoforms ClC-0, ClC-1, ClC-2 and ClC_K. ClC-1 is expressed in skeletal muscle and its mutation leads to both recessively and dominantly-inherited forms of muscle stiffness or myotonia. ClC-K is exclusively expressed in kidney. Similarly, mutation of ClC-K leads to nephrogenic diabetes insipidus in mice and Bartter's syndrome in human. These proteins belong to the ClC superfamily of chloride ion channels, which share the unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. This domain is found in the eukaryotic halogen ion (Cl-, Br- and I-) channel proteins, that perform a variety of functions including cell volume regulation, regulation of intracelluar chloride concentration, membrane potential stabilization, charge compensation necessary for the acidification of intracellular organelles and transepithelial chloride transport. 426 -239656 cd03684 ClC_3_like ClC-3-like chloride channel proteins. This CD includes ClC-3, ClC-4, ClC-5 and ClC-Y1. ClC-3 was initially cloned from rat kidney. Expression of ClC-3 produces outwardly-rectifying Cl currents that are inhibited by protein kinase C activation. It has been suggested that ClC-3 may be a ubiquitous swelling-activated Cl channel that has very similar characteristics to those of native volume-regulated Cl currents. The function of ClC-4 is unclear. Studies of human ClC-4 have revealed that it gives rise to Cl currents that rapidly activate at positive voltages, and are sensitive to extracellular pH, with currents decreasing when pH falls below 6.5. ClC-4 is broadly distributed, especially in brain and heart. ClC-5 is predominantly expressed in the kidney, but can be found in the brain and liver. Mutations in the ClC-5 gene cause certain hereditary diseases, including Dent's disease, an X-chromosome linked syndrome characterised by proteinuria, hypercalciuria, and kidney stones (nephrolithiasis), leading to progressive renal failure. These proteins belong to the ClC superfamily of chloride ion channels, which share the unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. This domain is found in the eukaryotic halogen ion (Cl- and I-) channel proteins, that perform a variety of functions including cell volume regulation, the membrane potential stabilization, transepithelial chloride transport and charge compensation necessary for the acidification of intracellular organelles. 445 -239657 cd03685 ClC_6_like ClC-6-like chloride channel proteins. This CD includes ClC-6, ClC-7 and ClC-B, C, D in plants. Proteins in this family are ubiquitous in eukarotes and their functions are unclear. They are expressed in intracellular organelles membranes. This family belongs to the ClC superfamily of chloride ion channels, which share the unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. ClC chloride ion channel superfamily perform a variety of functions including cellular excitability regulation, cell volume regulation, membrane potential stabilization, acidification of intracellular organelles, signal transduction, and transepithelial transport in animals. 466 -239658 cd03687 Dehydratase_LU Dehydratase large subunit. This family contains the large (alpha) subunit of B12-dependent glycerol dehydratases (GDHs) and B12-dependent diol dehydratases (DDHs). GDH is isofunctional with DDH. These enzymes can each catalyze the conversion of 1,2-propanediol, glycerol, and 1,2-ethanediol to the corresponding aldehydes via a coenzyme B12 (adenosylcobalamin)-dependent radical mechanism. Both enzymes exhibit a subunit composition of alpha2beta2gamma2. The enzymes differ in substrate specificity; glycerol is the preferred substrate for GDH and 1,2-propanediol for DDH. GDH shows almost equal affinity for both (R) and (S)-isomers while DDH prefers the (S) isomer. GDH plays a key role in the dihydroxyacetone (DHA) pathway and DDH in the anaerobic degradation of 1,2-diols. The radical mechanism has been well studied for Klebsiella oxytoca DDH and involves binding of 1,2-propanediol to the enzyme to induce hemolytic cleavage of the Co-C5' bond of the coenzyme to form cob(II)alamin and the adenosyl radical. Hydrogen abstraction from the substrate follows producing a substrate generated radical and 5'-deoxyadenosine. Rearrangement to the product radical is then followed by abstraction of a hydrogen atom from 5'-deoxyadenosine to produce the hydrated propionaldehyde and regenerate the adenosyl radical. After the Co-C5' bond is reformed and the hydrated aldehyde dehydrated, the process is complete. GDH has a higher affinity for coenzyme B12 than DDH. Both GDH and DDH are activated by various monovalent cations with K+, NH4+, and Rb+ being the most effective. However, DDH differs from GDH in that it is partially active with Cs+ and Na+. In general, the alpha and beta subunits for both enzymes are on different chains. However, for a subset of the GDHs, alpha and beta subunits appear to be on a single chain. 545 -293889 cd03688 eIF2_gamma_II Domain II of the gamma subunit of eukaryotic translation initiation factor 2. This subfamily represents domain II of the gamma subunit of eukaryotic translation initiation factor 2 (eIF2-gamma) found in eukaryota and archaea. eIF2 is a G protein that delivers the methionyl initiator tRNA to the small ribosomal subunit and releases it upon GTP hydrolysis after the recognition of the initiation codon. eIF2 is composed of three subunits, alpha, beta and gamma. Subunit gamma shows strongest conservation, and it confers both tRNA binding and GTP/GDP binding. 113 -293890 cd03689 RF3_II Domain II of bacterial Release Factor 3. This subfamily represents domain II of bacterial Release Factor 3 (RF3). Termination of protein synthesis by the ribosome requires two release factor (RF) classes. The class II RF3 is a GTPase that removes class I RFs (RF1 or RF2) from the ribosome after release of the nascent polypeptide. RF3 in the GDP state binds to the ribosomal class I RF complex, followed by an exchange of GDP for GTP and release of the class I RF. Sequence comparison of class II release factors with elongation factors shows that prokaryotic RF3 is more similar to EF-G whereas eukaryotic eRF3 is more similar to eEF1A, implying that their precise function may differ. 87 -293891 cd03690 Tet_II Domain II of ribosomal protection proteins Tet(M) and Tet(O). This subfamily represents domain II of ribosomal protection proteins Tet(M) and Tet(O). This domain has homology to domain II of the elongation factors EF-G and EF-2. Tet(M) and Tet(O) catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner thereby mediating Tc resistance. Tcs are broad-spectrum antibiotics. Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the occupation of site A by aminoacyl-tRNA. 86 -293892 cd03691 BipA_TypA_II Domain II of BipA. BipA (also called TypA) is a highly conserved protein with global regulatory properties in Escherichia coli. BipA is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways. BipA functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of EF-G and has a GTPase activity that is sensitive to high GDP:GTP ratios and is stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. The domain II of BipA shows similarity to the domain II of the elongation factors (EFs) EF-G and EF-Tu. 94 -293893 cd03692 mtIF2_IVc C2 subdomain of domain IV in mitochondrial translation initiation factor 2. This model represents the C2 subdomain of domain IV of mitochondrial translation initiation factor 2 (mtIF2) which adopts a beta-barrel fold displaying a high degree of structural similarity with domain II of the translation elongation factor EF-Tu. The C-terminal part of mtIF2 contains the entire fMet-tRNAfmet binding site of IF-2 and is resistant to proteolysis. This C-terminal portion consists of two domains, IF2 C1 and IF2 C2. IF2 C2 has been shown to contain all molecular determinants necessary and sufficient for the recognition and binding of fMet-tRNAfMet. Like IF2 from certain prokaryotes such as Thermus thermophilus, mtIF2lacks domain II which is thought to be involved in binding of E.coli IF-2 to 30S subunits. 84 -293894 cd03693 EF1_alpha_II Domain II of elongation factor 1-alpha. This family represents domain II of elongation factor 1-alpha (EF-1A) that is found in archaea and all eukaryotic lineages. EF-1A is very abundant in the cytosol, where it is involved in the GTP-dependent binding of aminoacyl-tRNAs to the A site of the ribosomes in the second step of translation from mRNAs to proteins. Both domain II of EF-1A and domain IV of IF2/eIF5B have been implicated in recognition of the 3'-ends of tRNA. More than 61% of eukaryotic elongation factor 1A (eEF-1A) in cells is estimated to be associated with actin cytoskeleton. The binding of eEF-1A to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. 91 -293895 cd03694 GTPBP_II Domain II of the GTPBP family of GTP binding proteins. This group includes proteins similar to GTPBP1 and GTPBP2. GTPBP1 is structurally related to elongation factor 1 alpha, a key component of the protein biosynthesis machinery. Immunohistochemical analyses on mouse tissues revealed that GTPBP1 is expressed in some neurons and smooth muscle cells of various organs as well as macrophages. Immunofluorescence analyses revealed that GTPBP1 is localized exclusively in cytoplasm and shows a diffuse granular network forming a gradient from the nucleus to the periphery of the cells in smooth muscle cell lines and macrophages. No significant difference was observed in the immune response to protein antigen between mutant mice and wild-type mice, suggesting normal function of antigen-presenting cells of the mutant mice. The absence of an eminent phenotype in GTPBP1-deficient mice may be due to functional compensation by GTPBP2, which is similar to GTPBP1 in structure and tissue distribution. 87 -293896 cd03695 CysN_NodQ_II Domain II of the large subunit of ATP sulfurylase. This subfamily represents domain II of the large subunit of ATP sulfurylase (ATPS): CysN or the N-terminal portion of NodQ, found mainly in proteobacteria and homologous to the domain II of EF-Tu. Escherichia coli ATPS consists of CysN and a smaller subunit CysD. ATPS produces adenosine-5'-phosphosulfate (APS) from ATP and sulfate, coupled with GTP hydrolysis. In the subsequent reaction, APS is phosphorylated by an APS kinase (CysC), to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for use in amino acid (aa) biosynthesis. The Rhizobiaceae group (alpha-proteobacteria) appears to carry out the same chemistry for the sulfation of a nodulation factor. In Rhizobium meliloti, the heterodimeric complex comprised of NodP and NodQ appears to possess both ATPS and APS kinase activities. The N and C termini of NodQ correspond to CysN and CysC, respectively. Other eubacteria, archaea, and eukaryotes use a different ATP sulfurylase, which shows no amino acid sequence similarity to CysN or NodQ. CysN and the N-terminal portion of NodQ show similarity to GTPases involved in translation, in particular, EF-Tu and EF-1alpha. 81 -293897 cd03696 SelB_II Domain II of elongation factor SelB. This subfamily represents the domain of elongation factor SelB that is homologous to domain II of EF-Tu. SelB may function by replacing EF-Tu. In prokaryotes, the incorporation of selenocysteine as the 21st amino acid, encoded by TGA, requires several elements: SelC is the tRNA itself, SelD acts as a donor of reduced selenium, SelA modifies a serine residue on SelC into selenocysteine, and SelB is a selenocysteine-specific translation elongation factor. 3' or 5' non-coding elements of mRNA have been found as probable structures for directing selenocysteine incorporation. 83 -293898 cd03697 EFTU_II Domain II of elongation factor Tu. Elongation factors Tu (EF-Tu) are three-domain GTPases with an essential function in the elongation phase of mRNA translation. The GTPase center of EF-Tu is in the N-terminal domain (domain I), also known as the catalytic or G-domain. The G-domain is composed of about 200 amino acid residues, arranged into a predominantly parallel six-stranded beta-sheet core surrounded by seven alpha helices. Non-catalytic domains II and III are beta-barrels of seven and six, respectively, antiparallel beta-strands that share an extended interface. Both non-catalytic domains are composed of about 100 amino acid residues. EF-Tu proteins exist in two principal conformations: a compact one, EF-Tu*GTP, with tight interfaces between all three domains and a high affinity for aminoacyl-tRNA; and an open one, EF-Tu*GDP, with essentially no G-domain-domain II interactions and a low affinity for aminoacyl-tRNA. EF-Tu has approximately a 100-fold higher affinity for GDP than for GTP. 87 -293899 cd03698 eRF3_II_like Domain II of the eukaryotic class II release factor-like proteins. This model represents the domain similar to domain II of the eukaryotic class II release factor (eRF3). In eukaryotes, translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act as class I and II factors, respectively. eRF1 functions as an omnipotent release factor, decoding all three stop codons and triggering the release of the nascent peptide catalyzed by the ribosome. eRF3 is a GTPase, which enhances termination efficiency by stimulating eRF1 activity in a GTP-dependent manner. Sequence comparison of class II release factors with elongation factors shows that eRF3 is more similar to eEF-1alpha whereas prokaryote RF3 is more similar to EF-G, implying that their precise function may differ. Only eukaryote RF3s are found in this group. Saccharomyces cerevisiae eRF3 (Sup35p) is a translation termination factor which is divided into three regions N, M and a C-terminal eEF1a-like region essential for translation termination. Sup35NM is a non-pathogenic prion-like protein with the property of aggregating into polymer-like fibrils. This group also contains proteins similar to S. cerevisiae Hbs1, a G protein known to be important for efficient growth and protein synthesis under conditions of limiting translation initiation and to associate with Dom34. It has been speculated that yeast Hbs1 and Dom34 proteins may function as part of a complex with a role in gene expression. 84 -293900 cd03699 EF4_II Domain II of Elongation Factor 4 (EF4). Elongation factor 4 (EF4 or LepA) is a highly conserved guanosine triphosphatase found in bacteria and eukaryotic mitochondria and chloroplasts. EF4 functions as a translation factor, which promotes back-translocation of tRNAs on posttranslocational ribosome complexes and competes with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. 86 -293901 cd03700 EF2_snRNP_like_II Domain II of elongation factor 2 and C-terminal domain of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein. This subfamily represents domain II of elongation factor (EF) EF-2 found in eukaryotes and archaea, and the C-terminal portion of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and its yeast counterpart Snu114p. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. This translocation step is catalyzed by EF-2_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP. Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of U5-116 kD/Snu114p. 95 -293902 cd03701 IF2_IF5B_II Domain II of prokaryotic Initiation Factor 2 and archaeal and eukaryotic Initiation Factor 5. This family represents domain II of prokaryotic Initiation Factor 2 (IF2) and its archaeal and eukaryotic homologue aeIF5B. IF2, the largest initiation factor, is an essential GTP binding protein. In E. coli, three natural forms of IF2 exist in the cell, IF2alpha, IF2beta1, and IF2beta2. Disruption of the eIF5B gene (FUN12) in yeast causes a severe slow-growth phenotype, associated with a defect in translation. eIF5B has a function analogous to prokaryotic IF2 in mediating the joining of the 60S ribosomal subunit. The eIF5B consists of three N-terminal domains (I, II, II) connected by a long helix to domain IV. Domain I is a G domain, domain II and IV are beta-barrels and domain III has a novel alpha-beta-alpha sandwich fold. The G domain and the beta-barrel domain II display a similar structure and arrangement to the homologous domains in EF1A, eEF1A and aeIF2gamma. 96 -293903 cd03702 IF2_mtIF2_II Domain II of bacterial and mitochondrial Initiation Factor 2. This family represents domain II of bacterial Initiation Factor 2 (IF2) and its eukaryotic mitochondrial homolog mtIF2. IF2, the largest initiation factor, is an essential GTP binding protein. In E. coli, three natural forms of IF2 exist in the cell, IF2alpha, IF2beta1, and IF2beta2. Bacterial IF-2 is structurally and functionally related to eukaryotic mitochondrial mtIF-2. 96 -293904 cd03703 aeIF5B_II Domain II of archaeal and eukaryotic Initiation Factor 5. This family represents domain II of archaeal and eukaryotic IF5B. aIF5B and eIF5B are homologs of prokaryotic Initiation Factor 2 (IF2). Disruption of the eIF5B gene (FUN12) in yeast causes a severe slow-growth phenotype, associated with a defect in translation. eIF5B has a function analogous to prokaryotic IF2 in mediating the joining of joining of 60S subunits. The eIF5B consists of three N-terminal domains (I, II, II) connected by a long helix to domain IV. Domain I is a G domain, domain II and IV are beta-barrels and domain III has a novel alpha-beta-alpha sandwich fold. The G domain and the beta-barrel domain II display a similar structure and arrangement to the homologous domains of EF1A, eEF1A and aeIF2gamma. 111 -294003 cd03704 eRF3_C_III C-terminal domain of eRF3. This model represents the eEF1alpha-like C-terminal region of eRF3, which is homologous to the domain III of EF-Tu. eRF3 is a GTPase which enhances termination efficiency by stimulating eRF1 activity in a GTP-dependent manner. The C-terminal region is responsible for translation termination activity and is essential for viability. Saccharomyces cerevisiae eRF3 (Sup35p) is a translation termination factor which is divided into three regions: N, M and a C-terminal eEF1a-like region essential for translation termination. Sup35NM is a non-pathogenic prion-like protein with the property of aggregating into polymer-like fibrils. 108 -294004 cd03705 EF1_alpha_III Domain III of Elongation Factor 1. Eukaryotic elongation factor 1 (EF-1) is responsible for the GTP-dependent binding of aminoacyl-tRNAs to ribosomes. EF-1 is composed of four subunits: the alpha chain, which binds GTP and aminoacyl-tRNAs; the gamma chain that probably plays a role in anchoring the complex to other cellular components; and the beta and delta (or beta') chains. This model represents the alpha subunit, which is the counterpart of bacterial EF-Tu for archaea (aEF-1 alpha) and eukaryotes (eEF-1 alpha). 104 -294005 cd03706 mtEFTU_III Domain III of mitochondrial EF-TU (mtEF-TU). mtEF-TU is highly conserved and is 55-60% identical to bacterial EF-TU. The overall structure is similar to that observed in the Escherichia coli and Thermus aquaticus EF-TU. However, compared with that observed in prokaryotic EF-TU, the nucleotide-binding domain (domain I) of mtEF-TU is in a different orientation relative to the rest of the structure. Furthermore, domain III is followed by a short 11-amino acid extension that forms one helical turn. This extension seems to be specific to the mitochondrial factors and has not been observed in any of the prokaryotic factors. 93 -294006 cd03707 EFTU_III Domain III of Elongation Factor (EF) Tu. EF-Tu consists of three structural domains, designated I, II, and III. Domain III adopts a beta barrel structure. Domain III is involved in binding to both charged tRNA and to elongation factor Ts (EF-Ts). EF-Ts is the guanine-nucleotide-exchange factor for EF-Tu. EF-Tu and EF-G participate in the elongation phase during protein biosynthesis on the ribosome. Their functional cycles depend on GTP binding and its hydrolysis. The EF-Tu complexed with GTP and aminoacyl-tRNA delivers tRNA to the ribosome, whereas EF-G stimulates translocation, a process in which tRNA and mRNA movements occur in the ribosome. Crystallographic studies revealed structural similarities ("molecular mimicry") between tertiary structures of EF-G and the EF-Tu-aminoacyl-tRNA ternary complex. Domains III, IV, and V of EF-G mimic the tRNA structure in the EF-Tu ternary complex; domains III, IV and V can be related to the acceptor stem, anticodon helix and T stem of tRNA respectively. 90 -294007 cd03708 GTPBP_III Domain III of the GP-1 family of GTPases. This family includes proteins similar to GTPBP1 and GTPBP2. GTPBP1 is structurally related to elongation factor 1 alpha, a key component of the protein biosynthesis machinery. Immunohistochemical analyses on mouse tissues revealed that GTPBP1 is expressed in some neurons and smooth muscle cells of various organs as well as macrophages. Immunofluorescence analyses revealed that GTPBP1 is localized exclusively in the cytoplasm and shows a diffuse granular network forming a gradient from the nucleus to the periphery of the cells in smooth muscle cell lines and macrophages. No significant difference was observed in the immune response to protein antigen between mutant mice and wild-type mice, suggesting normal function of antigen-presenting cells of the mutant mice. The absence of an eminent phenotype in GTPBP1-deficient mice may be due to functional compensation by GTPBP2, which is similar to GTPBP1 in structure and tissue distribution. 87 -239680 cd03709 lepA_C lepA_C: This family represents the C-terminal region of LepA, a GTP-binding protein localized in the cytoplasmic membrane. LepA is ubiquitous in Bacteria and Eukaryota (e.g. Saccharomyces cerevisiae GUF1p), but is missing from Archaea. LepA exhibits significant homology to elongation factors (EFs) Tu and G. The function(s) of the proteins in this family are unknown. The N-terminal domain of LepA is homologous to a domain of similar size found in initiation factor 2 (IF2), and in EF-Tu and EF-G (factors required for translation in Escherichia coli). Two types of phylogenetic tree, rooted by other GTP-binding proteins, suggest that eukaryotic homologs (including S. cerevisiae GUF1) originated within the bacterial LepA family. LepA has never been observed in archaea, and eukaryl LepA is organellar. LepA is therefore a true bacterial GTPase, found only in the bacterial lineage. 80 -239681 cd03710 BipA_TypA_C BipA_TypA_C: a C-terminal portion of BipA or TypA having homology to the C terminal domains of the elongation factors EF-G and EF-2. A member of the ribosome binding GTPase superfamily, BipA is widely distributed in bacteria and plants. BipA is a highly conserved protein with global regulatory properties in Escherichia coli. BipA is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways. BipA functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of EF-G and has a GTPase activity that is sensitive to high GDP:GTP ratios and, is stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. 79 -239682 cd03711 Tet_C Tet_C: C-terminus of ribosomal protection proteins Tet(M) and Tet(O). This domain has homology to the C terminal domains of the elongation factors EF-G and EF-2. Tet(M) and Tet(O) catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner thereby mediating Tc resistance. Tcs are broad-spectrum antibiotics. Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the occupation of site A by aminoacyl-tRNA. 78 -239683 cd03713 EFG_mtEFG_C EFG_mtEFG_C: domains similar to the C-terminal domain of the bacterial translational elongation factor (EF) EF-G. Included in this group is the C-terminus of mitochondrial Elongation factor G1 (mtEFG1) and G2 (mtEFG2) proteins. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. In bacteria this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. No clear phenotype has been found for mutants in the yeast homologue of mtEFG2, MEF2. 78 -239684 cd03714 RT_DIRS1 RT_DIRS1: Reverse transcriptases (RTs) occurring in the DIRS1 group of retransposons. Members of the subfamily include the Dictyostelium DIRS-1, Volvox carteri kangaroo, and Panagrellus redivivus PAT elements. These elements differ from LTR and conventional non-LTR retrotransposons. They contain split direct repeat (SDR) termini, and have been proposed to integrate via double-stranded closed-circle DNA intermediates assisted by an encoded recombinase which is similar to gamma-site-specific integrase. 119 -239685 cd03715 RT_ZFREV_like RT_ZFREV_like: A subfamily of reverse transcriptases (RTs) found in sequences similar to the intact endogenous retrovirus ZFERV from zebrafish and to Moloney murine leukemia virus RT. An RT gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. RTs occur in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and caulimoviruses. These elements can be divided into two major groups. One group contains retroviruses and DNA viruses whose propagation involves an RNA intermediate. They are grouped together with transposable elements containing long terminal repeats (LTRs). The other group, also called poly(A)-type retrotransposons, contain fungal mitochondrial introns and transposable elements that lack LTRs. Phylogenetic analysis suggests that ZFERV belongs to a distinct group of retroviruses. 210 -239686 cd03716 SOCS_ASB_like SOCS (suppressors of cytokine signaling) box of ASB (ankyrin repeat and SOCS box) and SSB (SPRY domain-containing SOCS box proteins) protein families. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of a variable number of repeats. SSB proteins contain a central SPRY domain and a C-terminal SOCS. Recently, it has been shown that all four SSB proteins interact with the MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF), and that SSB-1, SSB-2, and SSB-4 interact with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. 42 -239687 cd03717 SOCS_SOCS_like SOCS (suppressors of cytokine signaling) box of SOCS-like proteins. The CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. These intracellular proteins regulate the responses of immune cells to cytokines. Identified as negative regulators of the cytokine-JAK-STAT pathway, they seem to play a role in many immunological and pathological processes. The function of the SOCS box is the recruitment of the ubiquitin-transferase system. Related SOCS boxes are also present in Rab40-like proteins and insect proteins of unknown function that also contain a NEUZ (domain in neuralized proteins) domain. 39 -239688 cd03718 SOCS_SSB1_4 SOCS (suppressors of cytokine signaling) box of SSB1 and SSB4 (SPRY domain-containing SOCS box proteins)-like proteins. SSB proteins contain a central SPRY domain and a C-terminal SOCS. SSB1 and SSB4 has been shown to bind to MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF) and also interacts with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239689 cd03719 SOCS_SSB2 SOCS (suppressors of cytokine signaling) box of SSB2 (SPRY domain-containing SOCS box proteins)-like proteins. SSB proteins contain a central SPRY domain and a C-terminal SOCS. SSB2 has been shown to bind to MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF). SSB2, like SSB4 and SSB1, also interacts with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239690 cd03720 SOCS_ASB1 SOCS (suppressors of cytokine signaling) box of ASB1-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239691 cd03721 SOCS_ASB2 SOCS (suppressors of cytokine signaling) box of ASB2-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. ASB2 targets specific proteins to destruction by the proteasome in leukemia cells that have been induced to differentiate. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 45 -239692 cd03722 SOCS_ASB3 SOCS (suppressors of cytokine signaling) box of ASB3-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. ABS3 has been shown to be negative regulator of TNF-R2-mediated cellular responses to TNF-alpha by direct targeting of tumor necrosis factor receptor II (TNF-R2) for ubiquitination and proteasome-mediated degradation. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 51 -239693 cd03723 SOCS_ASB4_ASB18 SOCS (suppressors of cytokine signaling) box of ASB4 and ASB18 proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. Asb4 was identified as imprinted gene in mice. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 48 -239694 cd03724 SOCS_ASB5 SOCS (suppressors of cytokine signaling) box of ASB5-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. ASB5 has been implicated in the initiation of arteriogenesis. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239695 cd03725 SOCS_ASB6 SOCS (suppressors of cytokine signaling) box of ASB6-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. ASB6 interacts with the adaptor protein APS and recruits elongin B/C to the insulin receptor signaling complex. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 44 -239696 cd03726 SOCS_ASB7 SOCS (suppressors of cytokine signaling) box of ASB7-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 45 -239697 cd03727 SOCS_ASB8 SOCS (suppressors of cytokine signaling) box of ASB8-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. Human ASB8 is highly transcribed in skeletal muscle and in lung carcinoma cell lines. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 43 -239698 cd03728 SOCS_ASB_9_11 SOCS (suppressors of cytokine signaling) box of ASB9 and 11 proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239699 cd03729 SOCS_ASB13 SOCS (suppressors of cytokine signaling) box of ASB13-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239700 cd03730 SOCS_ASB14 SOCS (suppressors of cytokine signaling) box of ASB14-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 57 -239701 cd03731 SOCS_ASB15 SOCS (suppressors of cytokine signaling) box of ASB15-like proteins. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence. Human ASB15 is expressed predominantly in skeletal muscle and participates in the regulation of protein turnover and muscle cell development by stimulating protein synthesis and regulating differentiation of muscle cells. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 56 -239702 cd03733 SOCS_WSB_SWIP SOCS (suppressors of cytokine signaling) box of WSB/SWiP-like proteins. This subfamily contains WSB-1 (SOCS-box-containing WD-40 protein), part of an E3 ubiquitin ligase for the thyroid-hormone-activating type 2 iodothyronine deiodinase (D2), and SWiP-1 (SOCS box and WD-repeats in Protein), a WD40-containing protein that is expressed in embryonic structures of chickens and regulated by Sonic Hedgehog (Shh), as well as, their isoforms WSB-2 and SWiP-2. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 39 -239703 cd03734 SOCS_CIS1 SOCS (suppressors of cytokine signaling) box of CIS (cytokine-inducible SH2 protein) 1-like proteins. Together with the SOCS proteins, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. CIS1, like SOCS1 and SOCS3, is involved in the down-regulation of the JAK/STAT pathway. CIS1 binds to cytokine receptors at STAT5-docking sites, which prohibits recruitment of STAT5 to the receptor signaling complex and results in the down-regulation of activation by STAT5. 41 -239704 cd03735 SOCS_SOCS1 SOCS (suppressors of cytokine signaling) box of SOCS1-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS1, like CIS1 and SOCS3, is involved in the down-regulation of the JAK/STAT pathway. SOCS1 has a dual function as a direct potent JAK kinase inhibitor and as a component of an E3 ubiquitin-ligase complex recruiting substrates to the protein degradation machinery. 43 -239705 cd03736 SOCS_SOCS2 SOCS (suppressors of cytokine signaling) box of SOCS2-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS2 has recently been shown to regulate neuronal differentiation by controlling expression of a neurogenic transcription factor, Neurogenin-1. SOCS2 binds to GH receptors and inhibits the activation of STAT5b induced by GH. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 41 -239706 cd03737 SOCS_SOCS3 SOCS (suppressors of cytokine signaling) box of SOCS3-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS3, like CIS1 and SOCS1, is involved in the down-regulation of the JAK/STAT pathway. SOCS3 inhibits JAK activity indirectly through recruitment to the cytokine receptors. SOCS3 has been shown to play an essential role in placental development and a non-essential role in embryo development. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239707 cd03738 SOCS_SOCS4 SOCS (suppressors of cytokine signaling) box of SOCS4-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 56 -239708 cd03739 SOCS_SOCS5 SOCS (suppressors of cytokine signaling) box of SOCS5-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS5 inhibits Th2 differentiation by inhibiting IL-4 signaling. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 57 -239709 cd03740 SOCS_SOCS6 SOCS (suppressors of cytokine signaling) box of SOCS6-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 41 -239710 cd03741 SOCS_SOCS7 SOCS (suppressors of cytokine signaling) box of SOCS7-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS7 is important in the functioning of neuronal cells. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 49 -239711 cd03742 SOCS_Rab40 SOCS (suppressors of cytokine signaling) box of Rab40-like proteins. Rab40 is part of the Rab family of small GTP-binding proteins that form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. Rab40 is characterized by a SOCS box c-terminal to the GTPase domain. The SOCS boxes interact with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 43 -239712 cd03743 SOCS_SSB4 SOCS (suppressors of cytokine signaling) box of SSB4 (SPRY domain-containing SOCS box proteins)-like proteins. SSB proteins contain a central SPRY domain and a C-terminal SOCS. SSB4 has been shown to bind to MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF). SSB4, like SSB2 and SSB1, also interacts with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239713 cd03744 SOCS_SSB1 SOCS (suppressors of cytokine signaling) box of SSB1 (SPRY domain-containing SOCS box proteins)-like proteins. SSB proteins contain a central SPRY domain and a C-terminal SOCS. SSB1 has been shown to bind to MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF), both the absence and the presence of HGF and enhances the HGF-MET-induced mitogen-activated protein kinases Erk-transcription factor Elk-1-serum response elements (SRE) pathway. SSB1, like SSB2 and SSB4, also interacts with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 42 -239714 cd03745 SOCS_WSB2_SWIP2 SOCS (suppressors of cytokine signaling) box of WSB2/SWiP2-like proteins. This family consists of WSB-2 (SOCS-box-containing WD-40 protein) and SWiP-2 (SOCS box and WD-repeats in Protein). No functional information is available for WSB2 or SWiP-2, but limited information is available for the isoforms WSB-1 and SWiP-1. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 39 -239715 cd03746 SOCS_WSB1_SWIP1 SOCS (suppressors of cytokine signaling) box of WSB1/SWiP1-like proteins. This subfamily contains WSB-1 (SOCS-box-containing WD-40 protein), part of an E3 ubiquitin ligase for the thyroid-hormone-activating type 2 iodothyronine deiodinase (D2) and SWiP-1 (SOCS box and WD-repeats in Protein), a WD40-containing protein that is expressed in embryonic structures of chickens and regulated by Sonic Hedgehog (Shh). The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. 40 -239716 cd03747 Ntn_PGA_like Penicillin G acylase (PGA) belongs to a family of beta-lactam acylases that includes cephalosporin acylase (CA) and aculeacin A acylase. PGA and CA are crucial for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. While both PGA and CA have a conserved Ntn (N-terminal nucleophile) hydrolase fold and the structural similarity at their active sites is very high, their sequence similarity is low. 312 -239717 cd03748 Ntn_PGA Penicillin G acylase (PGA) is the key enzyme in the industrial production of beta-lactam antibiotics. PGA hydrolyzes the side chain of penicillin G and related beta-lactam antibiotics releasing 6-amino penicillanic acid (6-APA), a building block in the production of semisynthetic penicillins. PGA is widely distributed among microorganisms, including bacteria, yeast and filamentous fungi but it's in vivo role remains unclear. 488 -239718 cd03749 proteasome_alpha_type_1 proteasome_alpha_type_1. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 211 -239719 cd03750 proteasome_alpha_type_2 proteasome_alpha_type_2. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 227 -239720 cd03751 proteasome_alpha_type_3 proteasome_alpha_type_3. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 212 -239721 cd03752 proteasome_alpha_type_4 proteasome_alpha_type_4. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 213 -239722 cd03753 proteasome_alpha_type_5 proteasome_alpha_type_5. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 213 -239723 cd03754 proteasome_alpha_type_6 proteasome_alpha_type_6. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 215 -239724 cd03755 proteasome_alpha_type_7 proteasome_alpha_type_7. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 207 -239725 cd03756 proteasome_alpha_archeal proteasome_alpha_archeal. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 211 -239726 cd03757 proteasome_beta_type_1 proteasome beta type-1 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 212 -239727 cd03758 proteasome_beta_type_2 proteasome beta type-2 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis.Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 193 -239728 cd03759 proteasome_beta_type_3 proteasome beta type-3 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 195 -239729 cd03760 proteasome_beta_type_4 proteasome beta type-4 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis.Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 197 -239730 cd03761 proteasome_beta_type_5 proteasome beta type-5 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 188 -239731 cd03762 proteasome_beta_type_6 proteasome beta type-6 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 188 -239732 cd03763 proteasome_beta_type_7 proteasome beta type-7 subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 189 -239733 cd03764 proteasome_beta_archeal Archeal proteasome, beta subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme for non-lysosomal protein degradation in both the cytosol and the nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are both members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 188 -239734 cd03765 proteasome_beta_bacterial Bacterial proteasome, beta subunit. The 20S proteasome, multisubunit proteolytic complex, is the central enzyme of nonlysosomal protein degradation in both the cytosol and nucleus. It is composed of 28 subunits arranged as four homoheptameric rings that stack on top of one another forming an elongated alpha-beta-beta-alpha cylinder with a central cavity. The proteasome alpha and beta subunits are members of the N-terminal nucleophile (Ntn)-hydrolase superfamily. Their N-terminal threonine residues are exposed as a nucleophile in peptide bond hydrolysis. Mammals have 7 alpha and 7 beta proteasome subunits while archaea have one of each. 236 -239735 cd03766 Gn_AT_II_novel Gn_AT_II_novel. This asparagine synthase-related domain is present in eukaryotes but its function has not yet been determined. The glutaminase domain catalyzes an amide nitrogen transfer from glutamine to the appropriate substrate. In this process, glutamine is hydrolyzed to glutamic acid and ammonia. This domain is related to members of the Ntn (N-terminal nucleophile) hydrolase superfamily and is found at the N-terminus of enzymes such as glucosamine-fructose 6-phosphate synthase (GLMS or GFAT), glutamine phosphoribosylpyrophosphate (Prpp) amidotransferase (GPATase), asparagine synthetase B (AsnB), beta lactam synthetase (beta-LS) and glutamate synthase (GltS). GLMS catalyzes the formation of glucosamine 6-phosphate from fructose 6-phosphate and glutamine in amino sugar synthesis. GPATase catalyzes the first step in purine biosynthesis, an amide transfer from glutamine to PRPP, resulting in phosphoribosylamine, pyrophosphate and glutamate. Asparagine synthetase B synthesizes asparagine from aspartate and glutamine. Beta-LS catalyzes the formation of the beta-lactam ring in the beta-lactamase inhibitor clavulanic acid. GltS synthesizes L-glutamate from 2-oxoglutarate and L-glutamine. These enzymes are generally dimers, but GPATase also exists as a homotetramer. 181 -239736 cd03767 SR_Res_par Serine recombinase (SR) family, Partitioning (par)-Resolvase subfamily, catalytic domain; Serine recombinases catalyze site-specific recombination of DNA molecules by a concerted, four-strand cleavage and rejoining mechanism which involves a transient phosphoserine linkage between DNA and the enzyme. They are functionally versatile and include resolvases, invertases, integrases, and transposases. This subgroup is composed of proteins similar to the E. coli resolvase found in the par region of the RP4 plasmid, which encodes a highly efficient partitioning system. This protein is part of a complex stabilization system involved in the resolution of plasmid dimers during cell division. Similar to Tn3 and other resolvases, members of this family may contain a C-terminal DNA binding domain. 146 -239737 cd03768 SR_ResInv Serine Recombinase (SR) family, Resolvase and Invertase subfamily, catalytic domain; members contain a C-terminal DNA binding domain. Serine recombinases catalyze site-specific recombination of DNA molecules by a concerted, four-strand cleavage and rejoining mechanism which involves a transient phosphoserine linkage between DNA and the enzyme. They are functionally versatile and include resolvases, invertases, integrases, and transposases. Resolvases and invertases affect resolution or inversion and comprise a major phylogenic group. Resolvases (e.g. Tn3, gamma-delta, and Tn5044) normally recombine two sites in direct repeat causing deletion of the DNA between the sites. Invertases (e.g. Gin and Hin) recombine sites in inverted repeat to invert the DNA between the sites. Cointegrate resolution with gamma-delta resolvase requires the formation of a synaptosome of three resolvase dimers bound to each of two res sites on the DNA. Also included in this subfamily are some putative integrases including a sequence from bacteriophage phi-FC1. 126 -239738 cd03769 SR_IS607_transposase_like Serine Recombinase (SR) family, IS607-like transposase subfamily, catalytic domain; members contain a DNA binding domain with homology to MerR/SoxR located N-terminal to the catalytic domain. Serine recombinases catalyze site-specific recombination of DNA molecules by a concerted, four-strand cleavage and rejoining mechanism which involves a transient phosphoserine linkage between DNA and the enzyme. They are functionally versatile and include resolvases, invertases, integrases, and transposases. This subfamily is composed of proteins that catalyze the transposition of insertion sequence (IS) elements such as IS607 from Helicobacter and IS1535 from Mycobacterium, and similar proteins from other bacteria and several archaeal species. IS elements are DNA segments that move to new sites in prokaryotic and eukaryotic genomes causing insertion mutations and gene rearrangements. 134 -239739 cd03770 SR_TndX_transposase Serine Recombinase (SR) family, TndX-like transposase subfamily, catalytic domain; composed of large serine recombinases similar to Clostridium TndX and TnpX transposases. Serine recombinases catalyze site-specific recombination of DNA molecules by a concerted, four-strand cleavage and rejoining mechanism which involves a transient phosphoserine linkage between DNA and the enzyme. They are functionally versatile and include resolvases, invertases, integrases, and transposases. TndX mediates the excision and circularization of the conjugative transposon Tn5397 from Clostridium difficile. TnpX is responsible for the movement of the nonconjugative chloramphenicol resistance elements of the Tn4451/3 family. Mobile genetic elements such as transposons are important vehicles for the transmission of virulence and antibiotic resistance in many microorganisms. 140 -239740 cd03771 MATH_Meprin Meprin family, MATH domain; Meprins are multidomain, highly glycosylated extracellular metalloproteases, which are either anchored to the membrane or secreted into extracellular spaces. They are expressed in renal and intestinal brush border membranes, leukocytes, and cancer cells, and are capable of cleaving growth factors, cytokines, extracellular matrix proteins, and biologically active peptides. Meprin proteases are composed of two related subunits, alpha and beta, which form homo- or hetro-complexes where the basic unit is a disulfide-linked dimer. Despite their similarity, the two subunits differ in their ability to self-associate, in proteolytic processing during biosynthesis and in substrate specificity. Both subunits are synthesized as membrane spanning proteins, however, the alpha subunit is cleaved during biosynthesis and loses its transmembrane domain. Meprin beta forms homodimers or heterotetramers while meprin alpha oligomerizes into large complexes containing 10-100 subunits. Both alpha and beta subunits contain a catalytic astacin (M12 family) protease domain followed by the adhesion or interaction domains MAM, MATH and AM. The MATH and MAM domains provide symmetrical intersubunit disulfide bonds necessary for the dimerization of meprin subunits. The MATH domain may also be required for folding of an activable zymogen. 167 -239741 cd03772 MATH_HAUSP Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7) family, N-terminal MATH (TRAF-like) domain; composed of proteins similar to human HAUSP, an enzyme that specifically catalyzes the deubiquitylation of p53 and MDM2, hence playing an important role in the p53-MDM2 pathway. It contains an N-terminal TRAF-like domain and a C-terminal catalytic protease (C19 family) domain. The tumor suppressor p53 protein is a transcription factor that responds to many cellular stress signals and is regulated primarily through ubiquitylation and subsequent degradation. MDM2 is a RING-finger E3 ubiquitin ligase that promotes p53 ubiquitinylation. p53 and MDM2 bind to the same site in the N-terminal TRAF-like domain of HAUSP in a mutually exclusive manner. HAUSP also interacts with the Epstein-Barr nuclear antigen 1 (EBNA1) protein of the Epstein-Barr virus (EBV), which efficiently immortalizes infected cells predisposing the host to a variety of cancers. EBNA1 plays several important roles in EBV latent infection and cellular transformation. It binds the same pocket as p53 in the HAUSP TRAF-like domain. Through interactions with p53, MDM2 and EBNA1, HAUSP plays a role in cell proliferation, apoptosis and EBV-mediated immortalization. 137 -239742 cd03773 MATH_TRIM37 Tripartite motif containing protein 37 (TRIM37) family, MATH domain; TRIM37 is a peroxisomal protein and is a member of the tripartite motif (TRIM) protein subfamily, also known as the RING-B-box-coiled-coil (RBCC) subfamily of zinc-finger proteins. Mutations in the human TRIM37 gene (also known as MUL) cause Mulibrey (muscle-liver-brain-eye) nanism, a rare growth disorder of prenatal onset characterized by dysmorphic features, pericardial constriction and hepatomegaly. TRIM37, similar to other TRIMs, contains a cysteine-rich, zinc-binding RING-finger domain followed by another cysteine-rich zinc-binding domain, the B-box, and a coiled-coil domain. TRIM37 is autoubiquitinated in a RING domain-dependent manner, indicating that it functions as an ubiquitin E3 ligase. In addition to the tripartite motif, TRIM37 also contains a MATH domain C-terminal to the coiled-coil domain. The MATH domain of TRIM37 has been shown to interact with the TRAF domain of six known TRAFs in vitro, however, it is unclear whether this is physiologically relevant. Eleven TRIM37 mutations have been associated with Mulibrey nanism so far. One mutation, Gly322Val, is located in the MATH domain and is the only mutation that does not affect the length of the protein. It results in the incorrect subcellular localization of TRIM37. 132 -239743 cd03774 MATH_SPOP Speckle-type POZ protein (SPOP) family, MATH domain; composed of proteins with similarity to human SPOP. SPOP was isolated as a novel antigen recognized by serum from a scleroderma patient, whose overexpression in COS cells results in a discrete speckled pattern in the nuclei. It contains an N-terminal MATH domain and a C-terminal BTB (also called POZ) domain. Together with Cul3, SPOP constitutes an ubiquitin E3 ligase which is able to ubiquitinate the PcG protein BMI1, the variant histone macroH2A1 and the death domain-associated protein Daxx. Therefore, SPOP may be involved in the regulation of these proteins and may play a role in transcriptional regulation, apoptosis and X-chromosome inactivation. Cul3 binds to the BTB domain of SPOP whereas Daxx and the macroH2A1 nonhistone region have been shown to bind to the MATH domain. Both MATH and BTB domains are necessary for the nuclear speckled accumulation of SPOP. There are many proteins, mostly uncharacterized, containing both MATH and BTB domains from C. elegans and plants which are excluded from this family. 139 -239744 cd03775 MATH_Ubp21p Ubiquitin-specific protease 21 (Ubp21p) family, MATH domain; composed of fungal proteins with similarity to Ubp21p of fission yeast. Ubp21p is a deubiquitinating enzyme that may be involved in the regulation of the protein kinase Prp4p, which controls the formation of active spliceosomes. Members of this family are similar to human HAUSP (Herpesvirus-associated ubiquitin-specific protease) in that they contain an N-terminal MATH domain and a C-terminal catalytic protease (C19 family) domain. HAUSP is also an ubiquitin-specific protease that specifically catalyzes the deubiquitylation of p53 and MDM2. The MATH domain of HAUSP contains the binding site for p53 and MDM2. Similarly, the MATH domain of members in this family may be involved in substrate binding. 134 -239745 cd03776 MATH_TRAF6 Tumor Necrosis Factor Receptor (TNFR)-Associated Factor (TRAF) family, TRAF6 subfamily, TRAF domain, C-terminal MATH subdomain; composed of proteins with similarity to human TRAF6, including the Drosophila protein DTRAF2. TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF6 is the most divergent in its TRAF domain among the mammalian TRAFs. In addition to mediating TNFR family signaling, it is also an essential signaling molecule of the interleukin-1/Toll-like receptor superfamily. Whereas other TRAF molecules display similar and overlapping TNFR-binding specificities, TRAF6 binds completely different sites on receptors such as CD40 and RANK. TRAF6 serves as a molecular bridge between innate and adaptive immunity and plays a central role in osteoimmunology. DTRAF2, as an activator of nuclear factor-kappaB, plays a pivotal role in Drosophila development and innate immunity. TRAF6 contains a RING finger domain, five zinc finger domains, and a TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 147 -239746 cd03777 MATH_TRAF3 Tumor Necrosis Factor Receptor (TNFR)-Associated Factor (TRAF) family, TRAF3 subfamily, TRAF domain; TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF3 was first described as a molecule that binds the cytoplasmic tail of CD40. However, it is not required for CD40 signaling. More recently, TRAF3 has been identified as a key regulator of type I interferon (IFN) production and the mammalian innate antiviral immunity. It mediates IFN responses in Toll-like receptor (TLR)-dependent as well as TLR-independent viral recognition pathways. It is also a key element in immunological homeostasis through its regulation of the anti-inflammatory cytokine interleukin-10. TRAF3 contains a RING finger domain, five zinc finger domains, and a TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 186 -239747 cd03778 MATH_TRAF2 Tumor Necrosis Factor Receptor (TNFR) Associated Factor (TRAF) family, TRAF2 subfamily, TRAF domain; TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF2 associates with the receptors TNFR-1, TNFR-2, RANK (which mediates differentiation and maturation of osteoclasts) and CD40 (which is important for the proliferation and activation of B cells), among others. It regulates distinct pathways that lead to the activation of nuclear factor-kappaB and Jun NH2-terminal kinases. TRAF2 also indirectly associates with death receptors through its interaction with TRADD (TNFR-associated death domain protein). It is involved in regulating oxidative stress or ROS-induced cell death and in the preconditioning of cells by sublethal stress for protection from subsequent injury. TRAF2 contains a RING finger domain, five zinc finger domains, and a TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 164 -239748 cd03779 MATH_TRAF1 Tumor Necrosis Factor Receptor (TNFR) Associated Factor (TRAF) family, TRAF1 subfamily, TRAF domain, C-terminal MATH subdomain; TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF1 expression is the most restricted among the TRAFs. It is found exclusively in activated lymphocytes, dendritic cells and certain epithelia. TRAF1 associates, directly or indirectly through heterodimerization with TRAF2, with the TNFR family receptors TNFR-2, CD30, RANK, CD40 and LMP1, among others. It also binds the intracellular proteins TRADD, TANK, TRIP, RIP1, RIP2 and FLIP. TRAF1 is unique among the TRAFs in that it lacks a RING domain, which is critical for the activation of nuclear factor-kappaB and Jun NH2-terminal kinase. Studies on TRAF1-deficient mice suggest that TRAF1 has a negative regulatory role in TNFR-mediated signaling events. TRAF1 contains one zinc finger and one TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 147 -239749 cd03780 MATH_TRAF5 Tumor Necrosis Factor Receptor (TNFR)-Associated Factor (TRAF) family, TRAF5 subfamily, TRAF domain, C-terminal MATH subdomain; TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF5 was identified as an activator of nuclear factor-kappaB and a regulator of lymphotoxin-beta receptor and CD40 signaling. Its interaction with CD40 is indirect, involving hetero-oligomerization with TRAF3. In addition, TRAF5 has been shown to associate with other TNFRs including CD27, CD30, OX40 and GITR (glucocorticoid-induced TNFR). It plays a role in modulating Th2 immune responses (driven by OX40 costimulation) and T-cell activation (triggered by GITR). It is also involved in osteoclastogenesis. TRAF5 contains a RING finger domain, five zinc finger domains, and a TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 148 -239750 cd03781 MATH_TRAF4 Tumor Necrosis Factor Receptor (TNFR)-Associated Factor (TRAF) family, TRAF4 subfamily, TRAF domain, C-terminal MATH subdomain; composed of proteins with similarity to human TRAF4, including the Drosophila protein DTRAF1. TRAF molecules serve as adapter proteins that link TNFRs and downstream kinase cascades resulting in the activation of transcription factors and the regulation of cell survival, proliferation and stress responses. TRAF4 is highly expressed during embryogenesis, especially in the central and peripheral nervous system. Studies using TRAF4-deficient mice show that TRAF4 is required for neurogenesis, as well as the development of the trachea and the axial skeleton. In addition, TRAF4 augments nuclear factor-kappaB activation triggered by GITR (glucocorticoid-induced TNFR), a receptor expressed in T-cells, B-cells and macrophages. It also participates in counteracting the signaling mediated by Toll-like receptors through its association with TRAF6 and TRIF. DTRAF1 plays a pivotal role in the development of eye imaginal discs and photosensory neuron arrays in Drosophila. TRAF4 contains a RING finger domain, seven zinc finger domains, and a TRAF domain. The TRAF domain can be divided into a more divergent N-terminal alpha helical region (TRAF-N), and a highly conserved C-terminal MATH subdomain (TRAF-C) with an eight-stranded beta-sandwich structure. TRAF-N mediates trimerization while TRAF-C interacts with receptors. 154 -239751 cd03782 MATH_Meprin_Beta Meprin family, Beta subunit, MATH domain; Meprins are multidomain extracellular metalloproteases capable of cleaving growth factors, cytokines, extracellular matrix proteins, and biologically active peptides. They are composed of two related subunits, alpha and beta, which form homo- or hetro-complexes where the basic unit is a disulfide-linked dimer. The beta subunit is a type I membrane protein, which forms homodimers or heterotetramers (alpha2beta2 or alpha3beta). Meprin beta shows preference for acidic residues at the P1 and P1' sites of its substrate. Among its best substrates are growth factors and chemokines such as gastrin and osteopontin. Both alpha and beta subunits contain a catalytic astacin (M12 family) protease domain followed by the adhesion or interaction domains MAM, MATH and AM. The MATH and MAM domains provide symmetrical intersubunit disulfide bonds necessary for the dimerization of meprin subunits. The MATH domain may also be required for folding of an activable zymogen. 167 -239752 cd03783 MATH_Meprin_Alpha Meprin family, Alpha subunit, MATH domain; Meprins are multidomain extracellular metalloproteases capable of cleaving growth factors, cytokines, extracellular matrix proteins, and biologically active peptides. They are composed of two related subunits, alpha and beta, which form homo- or hetro-complexes where the basic unit is a disulfide-linked dimer. The alpha subunit is synthesized as a membrane spanning protein, however, it is cleaved during biosynthesis and loses its transmembrane domain. It oligomerizes into large complexes, containing 10-100 subunits (dimers that associate noncovalently), which are secreted as latent proteases and can move through extracellular spaces in a nondestructive manner. This allows delivery of the concentrated protease to sites containing activating enzymes, such as sites of inflammation, infection or cancerous growth. Meprin alpha shows preference for small or hydrophobic residues at the P1 and P1' sites of its substrate. Both alpha and beta subunits contain a catalytic astacin (M12 family) protease domain followed by the adhesion or interaction domains MAM, MATH and AM. The MATH and MAM domains provide symmetrical intersubunit disulfide bonds necessary for the dimerization of meprin subunits. The MATH domain may also be required for folding of an activable zymogen. 167 -340817 cd03784 GT1_Gtf-like UDP-glycosyltransferases and similar proteins. This family includes the Gtfs, a group of homologous glycosyltransferases involved in the final stages of the biosynthesis of antibiotics vancomycin and related chloroeremomycin. Gtfs transfer sugar moieties from an activated NDP-sugar donor to the oxidatively cross-linked heptapeptide core of vancomycin group antibiotics. The core structure is important for the bioactivity of the antibiotics. 404 -340818 cd03785 GT28_MurG undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase. MurG (EC 2.4.1.227) is an N-acetylglucosaminyltransferase, the last enzyme involved in the intracellular phase of peptidoglycan biosynthesis. It transfers N-acetyl-D-glucosamine (GlcNAc) from UDP-GlcNAc to the C4 hydroxyl of a lipid-linked N-acetylmuramoyl pentapeptide (NAM). The resulting disaccharide is then transported across the cell membrane, where it is polymerized into NAG-NAM cell-wall repeat structure. MurG belongs to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains, each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 350 -340819 cd03786 GTB_UDP-GlcNAc_2-Epimerase UDP-N-acetylglucosamine 2-epimerase and similar proteins. Bacterial members of the UDP-N-Acetylglucosamine (GlcNAc) 2-Epimerase family (EC 5.1.3.14) are known to catalyze the reversible interconversion of UDP-GlcNAc and UDP-N-acetylmannosamine (UDP-ManNAc). The enzyme serves to produce an activated form of ManNAc residues (UDP-ManNAc) for use in the biosynthesis of a variety of cell surface polysaccharides; The mammalian enzyme is bifunctional, catalyzing both the inversion of stereochemistry at C-2 and the hydrolysis of the UDP-sugar linkage to generate free ManNAc. It also catalyzes the phosphorylation of ManNAc to generate ManNAc 6-phosphate, a precursor to salic acids. In mammals, sialic acids are found at the termini of oligosaccharides in a large variety of cell surface glycoconjugates and are key mediators of cell-cell recognition events. Mutations in human members of this family have been associated with Sialuria, a rare disease caused by the disorders of sialic acid metabolism. This family belongs to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 365 -340820 cd03788 GT20_TPS trehalose-6-phosphate synthase. Trehalose-6-Phosphate Synthase (TPS, EC 2.4.1.15) is a glycosyltransferase that catalyses the synthesis of alpha,alpha-1,1-trehalose-6-phosphate from glucose-6-phosphate using a UDP-glucose donor. It is a key enzyme in the trehalose synthesis pathway. Trehalose is a nonreducing disaccharide present in a wide variety of organisms and may serve as a source of energy and carbon. It is characterized most notably in insect, plant, and microbial cells. Its production is often associated with a variety of stress conditions, including desiccation, dehydration, heat, cold, and oxidation. This family represents the catalytic domain of the TPS. Some members of this domain family coexist with a C-terminal trehalose phosphatase domain. 463 -340821 cd03789 GT9_LPS_heptosyltransferase lipopolysaccharide heptosyltransferase and similar proteins. Lipopolysaccharide heptosyltransferase (2.4.99.B6) is involved in the biosynthesis of lipooligosaccharide (LOS). Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria. LPS heptosyltransferase transfers heptose molecules from ADP-heptose to 3-deoxy-D-manno-octulosonic acid (KDO), a part of the inner core component of LPS. This family also contains lipopolysaccharide 1,2-N-acetylglucosaminetransferase EC 2.4.1.56 and belongs to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 277 -340822 cd03791 GT5_Glycogen_synthase_DULL1-like Glycogen synthase GlgA and similar proteins. This family is most closely related to the GT5 family of glycosyltransferases. Glycogen synthase (EC:2.4.1.21) catalyzes the formation and elongation of the alpha-1,4-glucose backbone using ADP-glucose, the second and key step of glycogen biosynthesis. This family includes starch synthases of plants, such as DULL1 in Zea mays and glycogen synthases of various organisms. 474 -340823 cd03792 GT4_trehalose_phosphorylase trehalose phosphorylase and similar proteins. Trehalose phosphorylase (TP) reversibly catalyzes trehalose synthesis and degradation from alpha-glucose-1-phosphate (alpha-Glc-1-P) and glucose. The catalyzing activity includes the phosphorolysis of trehalose, which produce alpha-Glc-1-P and glucose, and the subsequent synthesis of trehalose. This family is most closely related to the GT4 family of glycosyltransferases. 378 -340824 cd03793 GT3_GSY2-like glycogen synthase GSY2 and similar proteins. Glycogen synthase, which is most closely related to the GT3 family of glycosyltransferases, catalyzes the transfer of a glucose molecule from UDP-glucose to a terminal branch of a glycogen molecule, a rate-limit step of glycogen biosynthesis. GSY2, the member of this family in S. cerevisiae, has been shown to possess glycogen synthase activity. 590 -340825 cd03794 GT4_WbuB-like Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase. 391 -340826 cd03795 GT4_WfcD-like Escherichia coli alpha-1,3-mannosyltransferase WfcD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP-linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. 355 -340827 cd03796 GT4_PIG-A-like phosphatidylinositol N-acetylglucosaminyltransferase subunit A and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Phosphatidylinositol glycan-class A (PIG-A), an X-linked gene in humans, is necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, a very early intermediate in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is an important cellular structure that facilitates the attachment of many proteins to cell surfaces. Somatic mutations in PIG-A have been associated with Paroxysmal Nocturnal Hemoglobinuria (PNH), an acquired hematological disorder. 398 -340828 cd03798 GT4_WlbH-like Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. 376 -340829 cd03799 GT4_AmsK-like Erwinia amylovora AmsK and similar proteins. This is a family of GT4 glycosyltransferases found specifically in certain bacteria. AmsK in Erwinia amylovora, has been reported to be involved in the biosynthesis of amylovoran, a exopolysaccharide acting as a virulence factor. 350 -340830 cd03800 GT4_sucrose_synthase sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light. 398 -340831 cd03801 GT4_PimA-like phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. 366 -340832 cd03802 GT4_AviGT4-like UDP-Glc:tetrahydrobiopterin alpha-glucosyltransferase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. aviGT4 in Streptomyces viridochromogenes has been shown to be involved in biosynthesis of oligosaccharide antibiotic avilamycin A. Inactivation of aviGT4 resulted in a mutant that accumulated a novel avilamycin derivative lacking the terminal eurekanate residue. 333 -340833 cd03804 GT4_WbaZ-like mannosyltransferase WbaZ and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbaZ in Salmonella enterica has been shown to possess mannosyltransferase activity. 356 -340834 cd03805 GT4_ALG2-like alpha-1,3/1,6-mannosyltransferase ALG2 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ALG2, a 1,3-mannosyltransferase, in yeast catalyzes the mannosylation of Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)-dolichol diphosphate. A deficiency of this enzyme causes an abnormal accumulation of Man1GlcNAc2-PP-dolichol and Man2GlcNAc2-PP-dolichol, which is associated with a type of congenital disorders of glycosylation (CDG), designated CDG-Ii, in humans. 392 -340835 cd03806 GT4_ALG11-like alpha-1,2-mannosyltransferase ALG11 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ALG11 in yeast is involved in adding the final 1,2-linked Man to the Man5GlcNAc2-PP-Dol synthesized on the cytosolic face of the ER. The deletion analysis of ALG11 was shown to block the early steps of core biosynthesis that takes place on the cytoplasmic face of the ER and lead to a defect in the assembly of lipid-linked oligosaccharides. 419 -340836 cd03807 GT4_WbnK-like Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis. 362 -340837 cd03808 GT4_CapM-like capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides. 358 -340838 cd03809 GT4_MtfB-like glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide. 362 -340839 cd03811 GT4_GT28_WabH-like family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. 351 -340840 cd03812 GT4_CapH-like capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1). 357 -340841 cd03813 GT4-like glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes. 474 -340842 cd03814 GT4-like glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases and includes a sequence annotated as alpha-D-mannose-alpha(1-6)phosphatidyl myo-inositol monomannoside transferase from Bacillus halodurans. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. 365 -340843 cd03816 GT33_ALG1-like chitobiosyldiphosphodolichol beta-mannosyltransferase and similar proteins. This family is most closely related to the GT33 family of glycosyltransferases. The yeast gene ALG1 has been shown to function as a mannosyltransferase that catalyzes the formation of dolichol pyrophosphate (Dol-PP)-GlcNAc2Man from GDP-Man and Dol-PP-Glc-NAc2, and participates in the formation of the lipid-linked precursor oligosaccharide for N-glycosylation. In humans ALG1 has been associated with the congenital disorders of glycosylation (CDG) designated as subtype CDG-Ik. 411 -340844 cd03817 GT4_UGDG-like UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol. 372 -340845 cd03818 GT4_ExpC-like Rhizobium meliloti ExpC and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpC in Rhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucan (exopolysaccharide II). 396 -340846 cd03819 GT4_WavL-like Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core. 345 -340847 cd03820 GT4_AmsD-like amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran. 351 -340848 cd03821 GT4_Bme6-like Brucella melitensis Bme6 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Bme6 in Brucella melitensis has been shown to be involved in the biosynthesis of a polysaccharide. 377 -340849 cd03822 GT4_mannosyltransferase-like mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides. 370 -340850 cd03823 GT4_ExpE7-like glycosyltransferase ExpE7 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II). 357 -340851 cd03825 GT4_WcaC-like putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Escherichia coli WcaC has been predicted to function in colanic acid biosynthesis. WcfI in Bacteroides fragilis has been shown to be involved in the capsular polysaccharide biosynthesis. 364 -239753 cd03829 Sina Seven in absentia (Sina) protein family, C-terminal substrate binding domain; composed of the Drosophila Sina protein, the mammalian Sina homolog (Siah), the plant protein SINAT5, and similar proteins. Sina, Siah and SINAT5 are RING-containing proteins that function as E3 ubiquitin ligases, acting either as single proteins or as a part of multiprotein complexes. Sina is expressed in many cells in the developing eye but is essential specifically for R7 photoreceptor cell development. Sina cooperates with Phyllopod (Phyl), Ebi and the E2 ubiquitin-conjugating enzyme Ubcd1 to catalyze the ubiquitination and subsequent degradation of Tramtrack (Ttk88); Ttk88 is a transcriptional repressor that blocks photoreceptor differentiation. Similarly, the mammalian homologue Siah1 cooperates with SIP (Siah-interacting protein), Ebi and the adaptor protein Skp1, to target beta-catenin for ubiquitination and degradation via a p53-dependent mechanism. SINAT5 targets NAC1 for ubiquitin-mediated degradation resulting in the downregulation of auxin, a hormone that controls many aspects of plant development. Other targets of Sina family proteins include c-Myb, synaptophysin, group 1 glutamate receptors, promyelocytic leukemia protein, alpha-synuclein, synphilin-1 and alpha-ketoglutarate dehydrogenase, among others. Sina proteins also bind proteins that are not targets for ubiquitination such as Phyl, adenomatous polyposis coli, VAV, BAG-1 and Dab-1. Siah binds to a consensus motif, PXAXVXP, which is present in Siah-binding proteins. Siah is a dimeric protein consisting of an N-terminal RING domain, two zinc finger motifs and a C-terminal substrate-binding domain (SBD); this SBD contains an eight-stranded antiparallel beta-sandwich fold similar to the MATH (meprin and TRAF-C homology) domain. 127 -349428 cd03855 M14_ASTE Peptidase M14 Succinylglutamate desuccinylase (ASTE) subfamily. Peptidase M14 Succinylglutamate desuccinylase (ASTE, also known as N-succinyl-L-glutamate amidohydrolase, N2-succinylglutamate desuccinylase, and SGDS; EC 3.5.1.96) belongs to the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily of the M14 family of metallocarboxypeptidases. This group includes succinylglutamate desuccinylase that catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway. It hydrolyzes N-succinyl-L-glutamate to succinate and L-glutamate. 239 -349429 cd03856 M14_Nna1-like Peptidase M14-like domain of ATP/GTP binding proteins, cytosolic carboxypeptidases and related proteins. Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This subfamily includes the human AGTPBP-1 and AGBL -2, -3, -4, and -5, and the mouse Nna1/CCP-1 and CCP -2 through -6. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a characteristic N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 252 -349430 cd03857 M14-like Peptidase M14-like domain; uncharacterized subfamily. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 203 -349431 cd03858 M14_CP_N-E_like Peptidase M14 carboxypeptidase subfamily N/E-like. Carboxypeptidase (CP) N/E-like subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. The N/E subfamily includes eight members, of which five (CPN, CPE, CPM, CPD, CPZ) are considered enzymatically active, while the other three are non-active (CPX1, PCX2, ACLP/AEBP1) and lack the critical active site and substrate-binding residues considered necessary for CP activity. These non-active members may function as binding proteins or display catalytic activity towards other substrates. Unlike the A/B CP subfamily, enzymes belonging to the N/E subfamily are not produced as inactive precursors that require proteolysis to produce the active form; rather, they rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages that would otherwise damage the cell. In addition, all members of the N/E subfamily contain an extra C-terminal domain that is not present in the A/B subfamily. This domain has structural homology to transthyretin and other proteins and has been proposed to function as a folding domain. The active N/E enzymes fulfill a variety of cellular functions, including prohormone processing, regulation of peptide hormone activity, alteration of protein-protein or protein-cell interactions and transcriptional regulation. 292 -349432 cd03859 M14_CPT Peptidase M14 Carboxypeptidase T subfamily. Peptidase M14-like domain of carboxypeptidase (CP) T (CPT), CPT belongs to the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPT has moderate similarity to CPA and CPB, and exhibits dual-substrate specificity by cleaving C-terminal hydrophobic amino acid residues like CPA and C-terminal positively charged residues like CPB. CPA and CPB are M14 family peptidases but do not belong to this CPT group. The substrate specificity difference between CPT and CPA and CPB is ascribed to a few amino acid substitutions at the substrate-binding pocket while the spatial organization of the binding site remains the same as in all Zn-CPs. CPT has increased thermal stability in presence of Ca2+ ions, and two disulfide bridges which give an additional stabilization factor. 292 -349433 cd03860 M14_CP_A-B_like Peptidase M14 carboxypeptidase subfamily A/B-like. The Peptidase M14 Carboxypeptidase (CP) A/B subfamily is one of two main M14 CP subfamilies defined by sequence and structural homology, the other being the N/E subfamily. CPs hydrolyze single, C-terminal amino acids from polypeptide chains. They have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by a globular N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. There are nine members in the A/B family: CPA1, CPA2, CPA3, CPA4, CPA5, CPA6, CPB, CPO and CPU. CPA1, CPA2 and CPB are produced by the pancreas. The A forms have slightly different specificities, with CPA1 preferring aliphatic and small aromatic residues, and CPA2 preferring the bulkier aromatic side chains. CPA3 is found in secretory granules of mast cells and functions in inflammatory processes. CPA4 is detected in hormone-regulated tissues, and is thought to play a role in prostate cancer. CPA5 is present in discrete regions of pituitary and other tissues, and cleaves aliphatic C-terminal residues. CPA6 is highly expressed in embryonic brain and optic muscle, suggesting that it may play a specific role in cell migration and axonal guidance. CPU (also called CPB2) is produced and secreted by the liver as the inactive precursor, PCPU, commonly referred to as thrombin-activatable fibrinolysis inhibitor (TAFI). Little is known about CPO but it has been suggested to have specificity for acidic residues. 300 -349434 cd03862 M14-like Peptidase M14-like domain; uncharacterized subfamily. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 245 -349435 cd03863 M14_CPD_II Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase D, domain II subgroup. The second carboxypeptidase (CP)-like domain of Carboxypeptidase D (CPD; EC 3.4.17.22), domain II. CPD differs from all other metallocarboxypeptidases in that it contains multiple CP-like domains. CPD belongs to the N/E-like subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPD is a single-chain protein containing a signal peptide, three tandem repeats of CP-like domains separated by short bridge regions, followed by a transmembrane domain, and a C-terminal cytosolic tail. The first two CP-like domains of CPD contain all of the essential active site and substrate-binding residues, while the third CP-like domain lacks critical residues necessary for enzymatic activity and is inactive towards standard CP substrates. Domain I is optimally active at pH 6.3-7.5 and prefers substrates with C-terminal Arg, whereas domain II is active at pH 5.0-6.5 and prefers substrates with C-terminal Lys. CPD functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates as well as Drosophila. It is broadly distributed in all tissue types. Within cells, CPD is present in the trans-Golgi network and immature secretory vesicles, but is excluded from mature vesicles. It is thought to play a role in the processing of proteins that are initially processed by furin or related endopeptidases present in the trans-Golgi network, such as growth factors and receptors. CPD is implicated in the pathogenesis of lupus erythematosus (LE), it is regulated by TGF-beta in various cell types of murine and human origin and is significantly down-regulated in CD14 positive cells isolated from patients with LE. As down -regulation of CPD leads to down-modulation of TGF-beta, CPD may have a role in a positive feedback loop. 296 -349436 cd03864 M14_CPN Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase N subgroup. Peptidase M14 Carboxypeptidase N (CPN, also known as kininase I, creatine kinase conversion factor, plasma carboxypeptidase B, arginine carboxypeptidase, and protaminase; EC 3.4.17.3) is an extracellular glycoprotein synthesized in the liver and released into the blood, where it is present in high concentrations. CPN belongs to the N/E subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPN plays an important role in protecting the body from excessive buildup of potentially deleterious peptides that normally act as local autocrine or paracrine hormones. It specifically removes C-terminal basic residues. As CPN can cleave lysine more avidly than arginine residues it is also called lysine carboxypeptidase. CPN substrates include peptides found in the bloodstream, such as kinins (e.g. bradykinin, kalinin, met-lys-bradykinin), complement anaphylatoxins and creatine kinase MM (CK-MM). By removing just one amino acid, CPN can alter peptide activity and receptor binding. For example Bradykinin, a nine-residue peptide released from kiningen in response to tissue injury which is inactivated by CPN, anaphylatoxins which are regulated by CPN by the cleaving and removal of their C-terminal arginines resulting in a reduction in their biological activities of 10-100-fold, and creatine kinase MM, a cytosolic enzyme that catalyzes the reversible transfer of a phosphate group from ATP to creatine, and is regulated by CPN by the cleavage of C-terminal lysines. Like the other N/E subfamily members, two surface loops surrounding the active-site groove restrict access to the catalytic center, thus restricting larger protein carboxypeptidase inhibitors from inhibiting CPN. 313 -349437 cd03865 M14_CPE Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase E subgroup. Peptidase M14 Carboxypeptidase (CP) E (CPE, also known as carboxypeptidase H, and enkephalin convertase; EC 3.4.17.10) belongs to the N/E subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPE is an important enzyme responsible for the proteolytic processing of prohormone intermediates (such as pro-insulin, pro-opiomelanocortin, or pro-gonadotropin-releasing hormone) by specifically removing C-terminal basic residues. In addition, it has been proposed that the regulated secretory pathway (RSP) of the nervous and endocrine systems utilizes membrane-bound CPE as a sorting receptor. A naturally occurring point mutation in CPE reduces the stability of the enzyme and causes its degradation, leading to an accumulation of numerous neuroendocrine peptides that result in obesity and hyperglycemia. Reduced CPE enzyme and receptor activity could underlie abnormal placental phenotypes from the observation that CPE is down-regulated in enlarged placentas of interspecific hybrid (interspecies hybrid placental dysplasia, IHPD) and cloned mice. 319 -349438 cd03866 M14_CPM Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase M subgroup. Peptidase M14 Carboxypeptidase (CP) M (CPM) belongs to the N/E subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPM is an extracellular glycoprotein, bound to cell membranes via a glycosyl-phosphatidylinositol on the C-terminus of the protein. It specifically removes C-terminal basic residues such as lysine and arginine from peptides and proteins. The highest levels of CPM have been found in human lung and placenta, but significant amounts are present in kidney, blood vessels, intestine, brain, and peripheral nerves. CPM has also been found in soluble form in various body fluids, including amniotic fluid, seminal plasma and urine. Due to its wide distribution in a variety of tissues, it is believed that it plays an important role in the control of peptide hormones and growth factor activity on the cell surface and in the membrane-localized degradation of extracellular proteins, for example it hydrolyses the C-terminal arginine of epidermal growth factor (EGF) resulting in des-Arg-EGF which binds to the EGF receptor (EGFR) with an equal or greater affinity than native EGF. CPM is a required processing enzyme that generates specific agonists for the B1 receptor. 289 -349439 cd03867 M14_CPZ Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase Z subgroup. Peptidase M14-like domain of carboxypeptidase (CP) Z (CPZ), CPZ belongs to the N/E subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPZ is a secreted Zn-dependent enzyme whose biological function is largely unknown. Unlike other members of the N/E subfamily, CPZ has a bipartite structure, which consists of an N-terminal cysteine-rich domain (CRD) whose sequence is similar to Wnt-binding proteins, and a C-terminal CP catalytic domain that removes C-terminal Arg residues from substrates. CPZ is enriched in the extracellular matrix and is widely distributed during early embryogenesis. That the CRD of CPZ can bind to Wnt4 suggests that CPZ plays a role in Wnt signaling. 315 -349440 cd03868 M14_CPD_I Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase D, domain I subgroup. The first carboxypeptidase (CP)-like domain of Carboxypeptidase D (CPD; EC 3.4.17.22), domain I. CPD differs from all other metallocarboxypeptidases in that it contains multiple CP-like domains. CPD belongs to the N/E-like subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPD is a single-chain protein containing a signal peptide, three tandem repeats of CP-like domains separated by short bridge regions, followed by a transmembrane domain, and a C-terminal cytosolic tail. The first two CP-like domains of CPD contain all of the essential active site and substrate-binding residues, the third CP-like domain lacks critical residues necessary for enzymatic activity and is inactive towards standard CP substrates. Domain I is optimally active at pH 6.3-7.5 and prefers substrates with C-terminal Arg, whereas domain II is active at pH 5.0-6.5 and prefers substrates with C-terminal Lys. This Domain I family contains two contiguous surface cysteines that may become palmitoylated and target the enzyme to membranes, thus regulating intracellular trafficking. CPD functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates as well as Drosophila. It is broadly distributed in all tissue types. Within cells, CPD is present in the trans Golgi network and immature secretory vesicles, but is excluded from mature vesicles. It is thought to play a role in the processing of proteins that are initially processed by furin or related endopeptidases present in the trans Golgi network, such as growth factors and receptors. CPD is implicated in the pathogenesis of lupus erythematosus (LE), it is regulated by TGF-beta in various cell types of murine and human origin and is significantly down-regulated in CD14 positive cells isolated from patients with LE. As down-regulation of CPD leads to down-modulation of TGF-beta, CPD may have a role in a positive feedback loop. In D. melanogaster, the CPD variant 1B short (DmCPD1Bs) is necessary and sufficient for viability of the fruit fly. 294 -349441 cd03869 M14_CPX_like Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase X subgroup. Peptidase M14-like domain of carboxypeptidase (CP)-like protein X (CPX), CPX forms a distinct subgroup of the N/E subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Proteins belonging to this subgroup include CP-like protein X1 (CPX1), CP-like protein X2 (CPX2), and aortic CP-like protein (ACLP) and its isoform adipocyte enhancer binding protein-1 (AEBP1). AEBP1 is a truncated form of ACLP, which may arise from alternative splicing of the gene. These proteins are inactive towards standard CP substrates because they lack one or more critical active site and substrate-binding residues that are necessary for activity. They may function as binding proteins rather than as active CPs or display catalytic activity toward other substrates. Proteins in this subgroup also contain an N-terminal discoidin domain. The CP domain is important for the function of AEBP1 as a transcriptional repressor. AEBP1 is involved in several biological processes including adipogenesis, macrophage cholesterol homeostasis, and inflammation. In macrophages, AEBP1 promotes the expression of IL-6, TNF-alpha, MCP-1, and iNOS whose expression is tightly regulated by NF-kappaB activity. ACLP, a secreted protein that associates with the extracellular matrix, is essential for abdominal wall development and contributes to dermal wound healing. 322 -349442 cd03870 M14_CPA Peptidase M14 carboxypeptidase subfamily A/B-like; Carboxypeptidase A subgroup. Peptidase M14 Carboxypeptidase (CP) A (CPA) belongs to the A/B subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPA enzymes generally favor hydrophobic residues. A/B subfamily enzymes are normally synthesized as inactive precursors containing preceding signal peptide, followed by a globular N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The procarboxypeptidase A (PCPA) is produced by the exocrine pancreas and stored as a stable zymogen in the pancreatic granules until secretion into the digestive tract occurs. This subfamily includes CPA1, CPA2 and CPA4 forms. Within these A forms, there are slightly different specificities, with CPA1 preferring aliphatic and small aromatic residues, and CPA2 preferring the bulkier aromatic side chains. CPA4, detected in hormone-regulated tissues, is thought to play a role in prostate cancer. 301 -349443 cd03871 M14_CPB Peptidase M14 carboxypeptidase subfamily A/B-like; Carboxypeptidase B subgroup. Peptidase M14 Carboxypeptidase B (CPB) belongs to the carboxypeptidase A/B subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Carboxypeptidase B (CPB) enzymes only cleave the basic residues lysine or arginine. A/B subfamily enzymes are normally synthesized as inactive precursors containing preceding signal peptide, followed by a globular N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The procarboxypeptidase B (PCPB) is produced by the exocrine pancreas and stored as stable zymogen in the pancreatic granules until secretion into the digestive tract occurs. PCPB has been reported to be a good serum marker for the diagnosis of acute pancreatitis and graft rejection in pancreas transplant recipients. this subfamily also includes thrombin activatable fibrinolysis inhibitor (TAFIa), a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help in prevention of thrombosis. 300 -349444 cd03872 M14_CPA6 Peptidase M14 carboxypeptidase subfamily A/B-like; Carboxypeptidase A6 subgroup. Carboxypeptidase (CP) A6 (CPA6, also known as CPAH; EC 3.4.17.1), belongs to the carboxypeptidase A/B subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPA6 prefers large hydrophobic C-terminal amino acids as well as histidine, while peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides are processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, but converts inactive angiotensin I into the biologically active angiotensin II. Thus, CPA6 plays a possible role in the regulation of neuropeptides in the extracellular environment within the olfactory bulb where it is highly expressed. It is also broadly expressed in embryonic tissue, being found in neuronal tissues, bone, skin as well as the lateral rectus eye muscle. A disruption in the CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. 300 -349870 cd03873 Zinc_peptidase_like Zinc peptidases M18, M20, M28, and M42. Zinc peptidases play vital roles in metabolic and signaling pathways throughout all kingdoms of life. This hierarchy contains zinc peptidases that correspond to the MH clan in the MEROPS database, which contains 4 families (M18, M20, M28, M42). The peptidase M20 family includes carboxypeptidases such as the glutamate carboxypeptidase from Pseudomonas, the thermostable carboxypeptidase Ss1 of broad specificity from archaea and yeast Gly-X carboxypeptidase. The dipeptidases include bacterial dipeptidase, peptidase V (PepV), a non-specific eukaryotic dipeptidase, and two Xaa-His dipeptidases (carnosinases). There is also the bacterial aminopeptidase, peptidase T (PepT) that acts only on tripeptide substrates and has therefore been termed a tripeptidase. Peptidase family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. However, several enzymes in this family utilize other first row transition metal ions such as cobalt and manganese. Each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. The aminopeptidases in this family are also called bacterial leucyl aminopeptidases, but are able to release a variety of N-terminal amino acids. IAP aminopeptidase and aminopeptidase Y preferentially release basic amino acids while glutamate carboxypeptidase II preferentially releases C-terminal glutamates. Glutamate carboxypeptidase II and plasma glutamate carboxypeptidase hydrolyze dipeptides. Peptidase families M18 and M42 contain metallo-aminopeptidases. M18 is widely distributed in bacteria and eukaryotes. However, only yeast aminopeptidase I and mammalian aspartyl aminopeptidase have been characterized in detail. Some M42 (also known as glutamyl aminopeptidase) enzymes exhibit aminopeptidase specificity while others also have acylaminoacyl-peptidase activity (i.e. hydrolysis of acylated N-terminal residues). 200 -349871 cd03874 M28_PMSA_TfR_like M28 Zn-peptidase Transferrin Receptor-like family. Peptidase M28 family; Transferrin Receptor (TfR) and prostate-specific membrane antigen (PSMA, also called glutamate carboxypeptidase or GCP-II) subfamily. TfR and PSMA are homodimeric type II transmembrane proteins containing three distinct domains: protease-like, apical or protease-associated (PA) and helical domains. The protease-like domain is a large extracellular portion (ectodomain). In TfR, it contains a binding site for the transferrin molecule and has 28% identity to membrane glutamate carboxypeptidase II (mGCP-II or PSMA). The PA domain is inserted between the first and second strands of the central beta sheet in the protease-like domain. TfR1 is widely expressed, and is a key player in the uptake of iron-loaded transferrin (Tf) into cells. The TfR1 homodimer binds two molecules of Tf and the complex is then internalized. TfR1 may also participate in cell growth and proliferation. TfR2 binds Tf but with a significantly lower affinity than TfR1. It is expressed chiefly in hepatocytes, hematopoietic cells, and duodenal crypt cells; its expression overlaps with that of hereditary hemochromatosis protein (HFE). TfR2 is involved in iron homeostasis; in humans, mutations in TfR2 are associated with a form of hemochromatosis (HFE3). PSMA is over-expressed predominantly in prostate cancer (PCa) as well as in the neovasculature of most solid tumors, but not in the vasculature of normal tissues. PSMA is considered a biomarker for PCa and possibly for use as an imaging and therapeutic target. The extracellular domain of PSMA possesses two unique enzymatic functions: N-acetylated, alpha-linked acidic dipeptidase (NAALADase) which cleaves terminal glutamate from the neurodipeptide N-acetyl-aspartyl-glutamate (NAAG), and folate hydrolase (FOLH) which cleaves the terminal glutamates from gamma-linked polyglutamates (carboxypeptidase). A mutation in this gene may be associated with impaired intestinal absorption of dietary folates, resulting in low blood folate levels and consequent hyperhomocysteinemia. Expression of this protein in the brain may be involved in a number of pathological conditions associated with glutamate excitotoxicity. This gene likely arose from a duplication event of a nearby chromosomal region. Alternative splicing gives rise to multiple transcript variants. While related in sequence to peptidase M28 GCP-II, TfR lacks the metal ion coordination centers and protease activity. 278 -349872 cd03875 M28_Fxna_like M28 Zn-peptidase Endoplasmic reticulum metallopeptidase 1. Peptidase family M28; Endoplasmic reticulum metallopeptidase 1 (ERMP1; Felix-ina, FXNA or Fxna peptidase; KIAA1815) subfamily. ERMP1 is a multi-pass membrane protein located in the endoplasmic reticulum membrane. In humans, Fxna may play a crucial role in processing proteins required for the organization of somatic cells and oocytes into discrete follicular structures, although which proteins are hydrolyzed has not yet been determined. Another member of this subfamily is the 24-kDa vacuolar protein (VP24) which is probably involved in the formation of intravacuolar pigmented globules (cyanoplasts) in highly anthocyanin-containing vacuoles; however, the biological function of the C-terminal region which includes the putative transmembrane metallopeptidase domain is unknown. 307 -349873 cd03876 M28_SGAP_like M28 Zn-peptidase Streptomyces griseus aminopeptidase and similar proteins. Peptidase family M28; Streptomyces griseus Aminopeptidase (SGAP, Leucine aminopeptidase (LAP), aminopeptidase S, Mername-AA022 peptidase) subfamily. SGAP is a di-zinc exopeptidase with high preference towards large hydrophobic amino-terminal residues, with Leu being the most efficiently cleaved. It can accommodate all except Pro and Glu residues in the P1' position. It is a monomeric (30 kDa), calcium-activated and calcium-stabilized enzyme; its activation by calcium correlates with substrate specificity and it has thermal stability only in the presence of calcium. Although SGAP contains a calcium binding site, it is not conserved in many members of this subfamily. SGAP is present in the extracellular fluid of S. griseus cultures. 289 -349874 cd03877 M28_like M28 Zn-peptidase, many containing a protease-associated (PA) domain insert. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This subfamily is composed of uncharacterized proteins, many of which contain a protease-associated (PA) domain insert which may participate in substrate binding and/or promote conformational changes, influencing the stability and accessibility of the site to substrate. Some proteins in this subfamily are also associated with the PDZ domain, a widespread protein module that has been recruited to serve multiple functions during the course of evolution. 206 -349875 cd03879 M28_AAP M28 Zn-peptidase Aeromonas (Vibrio) proteolytica aminopeptidase. Peptidase family M28; Aeromonas (Vibrio) proteolytica aminopeptidase (AAP; leucine aminopeptidase from Vibrio proteolyticus; Bacterial leucyl aminopeptidase; E.C. 3.4.11.10) subfamily. AAP is a small (32kDa), heat stable leucine aminopeptidase and is active as a monomer. Similar forms of the enzyme have been isolated from Escherichia coli and Staphylococcus thermophilus. Leucine aminopeptidases, in general, play important roles in many biological processes such as protein catabolism, hormone degradation, regulation of migration and cell proliferation, as well as HIV infection and proliferation. AAP is a broad-specificity enzyme, utilizing two zinc(II) ions in its active site to remove N-terminal amino acids, with preference for large hydrophobic amino acids in the P1 position of the substrate, Leu being the most efficiently cleaved. It can accommodate all residues, except Pro, Asp and Glu in the P1' position. 286 -349876 cd03880 M28_QC_like M28 Zn-peptidase glutaminyl cyclase. Peptidase M28 family, glutaminyl cyclase (QC; EC 2.3.2.5) subfamily. QC is involved in N-terminal glutamine cyclization of many endocrine peptides and is typically abundant in brain tissue. N-terminal glutamine residue cyclization is an important post-translational event in the processing of numerous bioactive proteins, including neuropeptides, hormones, and cytokines during their maturation in the secretory pathway. The N-terminal pGlu protects them from exopeptidase degradation and/or enables them to have proper conformation for binding to their receptors. QCs are highly conserved from yeast to human. In humans, several genetic diseases, such as osteoporosis, appear to result from mutations of the QC gene. N-terminal glutamate cyclization into pyroglutamate (pGlu) is a reaction that may be related to the formation of several plaque-forming peptides, such as amyloid-(A) peptides and collagen-like Alzheimer amyloid plaque component, which play a pivotal role in Alzheimer's disease. 305 -349877 cd03881 M28_Nicastrin M28 Zn-peptidase nicastrin, a main component of gamma-secretase complex. Peptidase M28 family, nicastrin subfamily. Nicastrin is a main component of the gamma-secretase complex, which also contains presenilin, Pen-2 and Aph-1. Its extracellular domain sequence resembles aminopeptidases, but certain catalytic residues are not conserved. It is mainly localized to the endoplasmic reticulum and Golgi. It is highly glycosylated (Mr 120 kDa) and is essential for substrate recognition of the N-terminus of gamma-secretase substrates derived from APP and Notch. Nicastrin facilitates substrate cleavage by the catalytic presenilin subunit in the gamma-secretase complex. One conserved glutamate is especially important, probably because this residue forms an ion pair with the amino terminus of the substrate. This substrate-binding domain is often called the DAP domain (named after DYIGS, the amino acid stretch that modulates amyloid precursor protein (APP) processing, and Peptidase homologous region). The sequence of the substrate N-terminus is apparently not critical for the interaction, but a free amino group is. Thus, nicastrin can be considered a kind of gatekeeper for the gamma-secretase complex: type I membrane proteins that have not shed their ectodomains cannot interact properly with nicastrin and do not gain access to the active site. Dysfunction of gamma-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). 519 -349878 cd03882 M28_nicalin_like M28 Zn-Peptidase Nicalin, Nicastrin-like protein. Peptidase M28 family, Nicalin (nicastrin-like protein) subfamily. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo (nodal modulator) pM5. Similar to Nicastrin, Nicalin lacks the amino-acid conservation required for catalytically active aminopeptidases. Functional studies in zebrafish embryos and cultured human cells reveal that nicalin and Nomo collaborate to antagonize the Nodal/TGFbeta signaling pathway. Thus, nicastrin and nicalin are both associated with protein complexes involved in cell fate decisions during early embryonic development. 296 -349879 cd03883 M28_Pgcp_like M28 Zn-Peptidase Plasma glutamate carboxypeptidase. Peptidase M28 family; Plasma glutamate carboxypeptidase (PGCP; blood plasma glutamate carboxypeptidase; EC 3.4.17.21) subfamily. PGCP is a 56kDa glutamate carboxypeptidase that is mainly produced in mammalian placenta and kidney, the majority of which is thought to be secreted into the bloodstream. Similar proteins are also found in other species, including bacteria. These proteins contain protease-associated (PA) domain inserts between the first and second strands of the central beta sheet in the protease-like domain. The PA domains may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. The exact physiological substrates of PGCP are unknown, although this enzyme may play an important role in the hydrolysis of circulating peptides. Its closest homolog encodes an important brain glutamate carboxypeptidase II (NAALADase) identical to the prostate-specific membrane antigen (PSMA), which serves as a marker for prostatic cancer metastasis. Hypermethylation of PGCP gene has been associated with human bronchial epithelial (HBE) cell immortalization and lung cancer. PGCP also provides an attractive target for serological analysis in hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) patients. 425 -349880 cd03884 M20_bAS M20 Peptidase beta-alanine synthase, an amidohydrolase. Peptidase M20 family, beta-alanine synthase (bAS; N-carbamoyl-beta-alanine amidohydrolase and beta-ureidopropionase; EC 3.5.1.6) subfamily. bAS is an amidohydrolase and is the final enzyme in the pyrimidine catabolic pathway, which is involved in the regulation of the cellular pyrimidine pool. bAS catalyzes the irreversible hydrolysis of the N-carbamylated beta-amino acids to beta-alanine or aminoisobutyrate with the release of carbon dioxide and ammonia. Also included in this subfamily is allantoate amidohydrolase (allantoate deiminase), which catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. It is possible that these two enzymes arose from the same ancestral peptidase that evolved into two structurally related enzymes with distinct catalytic properties and biochemical roles within the cell. Downstream enzyme (S)-ureidoglycolate amidohydrolase (UAH) is homologous in structure and sequence with AAH and catalyzes the conversion of (S)-ureidoglycolate into glyoxylate, releasing two molecules of ammonia as by-products. Yeast requires beta-alanine as a precursor of pantothenate and coenzyme A biosynthesis, but generates it mostly via degradation of spermine. Disorders in pyrimidine degradation and beta-alanine metabolism caused by beta-ureidopropionase deficiency (UPB1 gene) in humans are normally associated with neurological disorders. 398 -349881 cd03885 M20_CPDG2 M20 Peptidase Glutamate carboxypeptidase, a periplasmic enzyme. Peptidase M20 family, Glutamate carboxypeptidase (carboxypeptidase G; carboxypeptidase G1; carboxypeptidase G2; CPDG2; CPG2; Folate hydrolase G2; Pteroylmonoglutamic acid hydrolase G2; Glucarpidase; E.C. 3.4.17.11) subfamily. CPDG2 is a periplasmic enzyme that is synthesized with a signal peptide. It is a dimeric zinc-dependent exopeptidase, with two domains, a catalytic domain, which provides the ligands for the two zinc ions in the active site, and a dimerization domain. CPDG2 cleaves the C-terminal glutamate moiety from a wide range of N-acyl groups, including peptidyl, aminoacyl, benzoyl, benzyloxycarbonyl, folyl, and pteroyl groups to release benzoic acid, phenol, and aniline mustards. It is used clinically to treat methotrexate toxicity by hydrolyzing it to inactive and non-toxic metabolites. It is also proposed for use in antibody-directed enzyme prodrug therapy; for example, glutamate can be cleaved from glutamated benzoyl nitrogen mustards, producing nitrogen mustards with effective cytotoxicity against tumor cells. 362 -349882 cd03886 M20_Acy1 M20 Peptidase Aminoacylase 1 family. Peptidase M20 family, Aminoacylase 1 (ACY1; hippuricase; acylase I; amido acid deacylase; IAA-amino acid hydrolase; dehydropeptidase II; N-acyl-L-amino-acid amidohydrolase; EC 3.5.1.14) subfamily. ACY1 is the most abundant of the aminoacylases, a class of zinc binding homodimeric enzymes involved in the hydrolysis of N-acetylated proteins. It is encoded by the aminoacylase 1 gene (Acy1) on chromosome 3p21 that comprises 15 exons. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity; substrates include indoleacetic acid (IAA) N-conjugates of amino acids, N-acetyl-L-amino acids and aminobenzoylglutamate. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). ACY1 appears to physically interact with Sphingosine kinase type 1 (SphK1) and may influence its physiological functions; SphK1 and its product sphingosine-1-phosphate have been shown to promote cell growth and inhibit apoptosis of tumor cells. Strong expression of the human gene and its mouse ortholog Acy1 in brain, liver, and kidney, suggest a role of the enzyme in amino acid metabolism of these organs. Defects in ACY1 are the cause of aminoacylase-1 deficiency (ACY1D), resulting in a metabolic disorder manifesting encephalopathy and psychomotor delay. 371 -349883 cd03887 M20_Acy1L2 M20 Peptidase Aminoacylase 1-like protein 2, amidohydrolase family. Peptidase M20 family, Aminoacylase 1-like protein 2 (ACY1L2; amidohydrolase) subfamily. This group contains many uncharacterized proteins predicted as amidohydrolases, including gene products of abgA and abgB that catalyze the cleavage of p-aminobenzoyl-glutamate, a folate catabolite in Escherichia coli, to p-aminobenzoate and glutamate. p-Aminobenzoyl-glutamate utilization is catalyzed by the abg region gene product, AbgT. Aminoacylase 1 (ACY1) proteins are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 360 -349884 cd03888 M20_PepV M20 Peptidase Xaa-His dipeptidase (PepV) degrades hydrophobic dipeptides. Peptidase M20 family, Peptidase V (Xaa-His dipeptidase; PepV g.p. (Lactobacillus lactis); X-His dipeptidase; beta-Ala-His dipeptidase; carnosinase) subfamily. The PepV group of proteins is widely distributed in lactic acid bacteria. PepV, along with PepT, functions at the end of the proteolytic processing system. PepV is a monomeric metalloenzyme that preferentially degrades hydrophobic dipeptides. The Streptococcus gordonii PepV gene is homologous to the PepV gene family from Lactobacillus and Lactococcus spp. PepV recognizes and fixes the dipeptide backbone, while the side chains are not specifically probed and can vary, rendering it a nonspecific dipeptidase. It has been shown that Lactococcus lactis subspecies lactis (L9) PepV does not hydrolyze dipeptides containing Pro or D-amino acids at the C-terminus, while PepV from Lactobaccilus has been shown to have L-carnosine hydrolyzing activity. The mammalian PepV also acts on anserine and homocarnosine (but not on homoanserine), and to a lesser extent on some other aminoacyl-L-histidine dipeptides. Also included is the Staphylococcus aureus metallopeptidase, Sapep, a Mn(2+)-dependent dipeptidase where large interdomain movements could potentially regulate the activity of this enzyme. 449 -349885 cd03890 M20_pepD M20 Peptidase D has specificity for beta-alanyl-L-histidine dipeptide. Peptidase M20 family, Peptidase D (PepD, Xaa-His dipeptidase; X-His dipeptidase; aminoacylhistidine dipeptidase; dipeptidase D; Beta-alanyl-histidine dipeptidase; pepD g.p. (Escherichia coli); EC 3.4.13.3) subfamily. PepD is a cytoplasmic enzyme family characterized by its unusual specificity for the dipeptides beta-alanyl-L-histidine (L-carnosine or beta-Ala-His) and gamma-aminobutyryl histidine (L-homocarnosine or gamma-amino-butyl-His). Homocarnosine has been suggested as a precursor for the neurotransmitter gamma-aminobutyric acid (GABA), acting as a GABA reservoir, and may mediate anti-seizure effects of GABAergic therapies. It has also been reported that glucose metabolism could be influenced by L-carnosine. PepD also includes a lid domain that forms a homodimer; however, the physiological function of this extra domain remains unclear. 474 -349886 cd03891 M20_DapE_proteobac M20 Peptidase proteobacterial DapE encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. Peptidase M20 family, proteobacterial DapE encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE; aspartyl dipeptidase; succinyl-diaminopimelate desuccinylase) subfamily. DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. It has been shown that DapE is essential for cell growth and proliferation. DapEs have been purified from Escherichia coli and Haemophilus influenzae, while the genes that encode for DapEs have been sequenced from several bacterial sources such as Corynebacterium glutamicum, Helicobacter pylori, Neisseria meningitidis and Mycobacterium tuberculosis. DapE is a small, dimeric enzyme that requires two zinc atoms per molecule for full enzymatic activity. All of the amino acids that function as metal binding ligands are strictly conserved in DapE. 366 -349887 cd03892 M20_peptT M20 Peptidase T specifically cleaves tripeptides. Peptidase M20 family, Peptidase T (peptT; tripeptide aminopeptidase; tripeptidase) subfamily. PepT acts only on tripeptide substrates, and is thus called a tripeptidase. It catalyzes the release of N-terminal amino acids with hydrophobic side chains from tripeptides with high specificity; dipeptides, tetrapeptides or tripeptides with the N-terminus blocked are not cleaved. Tripeptidases are known to function at the final stage of proteolysis in lactococcal bacteria and release amino acids from tripeptides produced during the digestion of milk proteins such as casein. 400 -349888 cd03893 M20_Dipept_like M20 Dipeptidases. Peptidase M20 family, dipeptidase-like subfamily. This group contains a large variety of enzymes, including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase), canosinase, DUG2 type proteins, as well as many proteins inferred by homology to be dipeptidases. These enzymes have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. Substrates of CNDP are varied and not limited to Xaa-His dipeptides. DUG2 proteins contain a metallopeptidase domain and a large N-terminal WD40 repeat region, and are involved in the alternative pathway of glutathione degradation. 426 -349889 cd03894 M20_ArgE M20 Peptidase acetylornithine deacetylase. Peptidase M20 family, acetylornithine deacetylase (ArgE, Acetylornithinase, AO, N2-acetyl-L-ornithine amidohydrolase, EC 3.5.1.16) subfamily. ArgE catalyzes the conversion of N-acetylornithine to ornithine, which can then be incorporated into the urea cycle for the final stage of arginine synthesis. The substrate specificity of ArgE is quite broad; several alpha-N-acyl-L-amino acids can be hydrolyzed, including alpha-N-acetylmethionine and alpha-N-formylmethionine. ArgE shares significant sequence homology and biochemical features, and possibly a common origin, with glutamate carboxypeptidase (CPG2) and succinyl-diaminopimelate desuccinylase (DapE), and aminoacylase I (ACY1), having all metal ligand binding residues conserved. 367 -349890 cd03895 M20_ArgE_DapE-like M20 Peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly bacterial, and have been inferred by homology as being related to both ArgE and DapE. 400 -349891 cd03896 M20_PAAh_like M20 Peptidases, Poly(aspartic acid) hydrolase-like proteins. Peptidase M20 family, Poly(aspartic acid) hydrolase (PAA hydrolase)-like subfamily. PAA hydrolase enzymes are involved in alpha,beta-poly(D,L-aspartic acid) (tPAA) biodegradation. PAA is being extensively studied as a replacement for commercial polycarboxylate components since it can be degraded by enzymes from isolated tPAA degrading bacteria. Thus far, two types of PAA degrading bacteria (Sphingomonas sp. KT-1 and Pedobacter sp. KP-2) have been investigated in detail; the former can completely degrade tPAA of low-molecular weights below 5000, while the latter can degrade high molecular weight tPAA to release oligo(aspartic acid) (OAA) as a product, suggesting two kinds of PAA degrading enzymes. It has been shown that PAA hydrolase-1 from Sphingomonas sp. KT-1 hydrolyzes beta,beta-aspartic acid units in tPAA to produce OAA, and it is suggested that PAA hydrolase-2 hydrolyzes OAA to aspartic acid. Also included in this family is Bradyrhizobium 5-nitroanthranilic acid (5NAA)-aminohydrolase (5NAA-A), a biodegradation enzyme that converts 5NAA to 5-nitrosalicylic acid; 5NAA is a metabolite secreted by Streptomyces scabies, the bacterium responsible for potato scab, and metabolized by Bradyrhizobium species strain JS329. 357 -175976 cd04009 C2B_Munc13-like C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 133 -175977 cd04010 C2B_RasA3 C2 domain second repeat present in RAS p21 protein activator 3 (RasA3). RasA3 are members of GTPase activating protein 1 (GAP1), a Ras-specific GAP, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA3 contains an N-terminal C2 domain, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 148 -175978 cd04011 C2B_Ferlin C2 domain second repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 111 -175979 cd04012 C2A_PI3K_class_II C2 domain first repeat present in class II phosphatidylinositol 3-kinases (PI3Ks). There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. Class II PIK3s act downstream of receptors for growth factors, integrins, and chemokines. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 171 -175980 cd04013 C2_SynGAP_like C2 domain present in Ras GTPase activating protein (GAP) family. SynGAP, GAP1, RasGAP, and neurofibromin are all members of the Ras-specific GAP (GTPase-activating protein) family. SynGAP regulates the MAP kinase signaling pathway and is critical for cognition and synapse function. Mutations in this gene causes mental retardation in humans. SynGAP contains a PH-like domain, a C2 domain, and a Ras-GAP domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 146 -175981 cd04014 C2_PKC_epsilon C2 domain in Protein Kinase C (PKC) epsilon. A single C2 domain is found in PKC epsilon. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1 (alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. 132 -175982 cd04015 C2_plant_PLD C2 domain present in plant phospholipase D (PLD). PLD hydrolyzes terminal phosphodiester bonds in diester glycerophospholipids resulting in the degradation of phospholipids. In vitro PLD transfers phosphatidic acid to primary alcohols. In plants PLD plays a role in germination, seedling growth, phosphatidylinositol metabolism, and changes in phospholipid composition. There is a single Ca(2+)/phospholipid-binding C2 domain in PLD. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 158 -175983 cd04016 C2_Tollip C2 domain present in Toll-interacting protein (Tollip). Tollip is a part of the Interleukin-1 receptor (IL-1R) signaling pathway. Tollip is proposed to link serine/threonine kinase IRAK to IL-1Rs as well as inhibiting phosphorylation of IRAK. There is a single C2 domain present in Tollip. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 121 -175984 cd04017 C2D_Ferlin C2 domain fourth repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. 135 -175985 cd04018 C2C_Ferlin C2 domain third repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 151 -175986 cd04019 C2C_MCTP_PRT_plant C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset. MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 150 -175987 cd04020 C2B_SLP_1-2-3-4 C2 domain second repeat present in Synaptotagmin-like proteins 1-4. All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 162 -175988 cd04021 C2_E3_ubiquitin_ligase C2 domain present in E3 ubiquitin ligase. E3 ubiquitin ligase is part of the ubiquitylation mechanism responsible for controlling surface expression of membrane proteins. The sequential action of several enzymes are involved: ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin-protein ligase E3 which is responsible for substrate recognition and promoting the transfer of ubiquitin to the target protein. E3 ubiquitin ligase is composed of an N-terminal C2 domain, 4 WW domains, and a HECTc domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 125 -175989 cd04022 C2A_MCTP_PRT_plant C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset. MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 127 -175990 cd04024 C2A_Synaptotagmin-like C2 domain first repeat present in Synaptotagmin-like proteins. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 128 -175991 cd04025 C2B_RasA1_RasA4 C2 domain second repeat present in RasA1 and RasA4. RasA1 and RasA4 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both proteins contain two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 123 -175992 cd04026 C2_PKC_alpha_gamma C2 domain in Protein Kinase C (PKC) alpha and gamma. A single C2 domain is found in PKC alpha and gamma. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1(alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. 131 -175993 cd04027 C2B_Munc13 C2 domain second repeat in Munc13 (mammalian uncoordinated) proteins. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 127 -175994 cd04028 C2B_RIM1alpha C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins. RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. 146 -175995 cd04029 C2A_SLP-4_5 C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5. All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp4/granuphilin promotes dense-core vesicle exocytosis. The C2A domain of Slp4 is Ca2+ dependent. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 125 -175996 cd04030 C2C_KIAA1228 C2 domain third repeat present in uncharacterized human KIAA1228-like proteins. KIAA proteins are uncharacterized human proteins. They were compiled by the Kazusa mammalian cDNA project which identified more than 2000 human genes. They are identified by 4 digit codes that precede the KIAA designation. Many KIAA genes are still functionally uncharacterized including KIAA1228. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 127 -175997 cd04031 C2A_RIM1alpha C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins. RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. 125 -175998 cd04032 C2_Perforin C2 domain of Perforin. Perforin contains a single copy of a C2 domain in its C-terminus and plays a role in lymphocyte-mediated cytotoxicity. Mutations in perforin leads to familial hemophagocytic lymphohistiocytosis type 2. The function of perforin is calcium dependent and the C2 domain is thought to confer this binding to target cell membranes. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 127 -175999 cd04033 C2_NEDD4_NEDD4L C2 domain present in the Human neural precursor cell-expressed, developmentally down-regulated 4 (NEDD4) and NEDD4-like (NEDD4L/NEDD42). Nedd4 and Nedd4-2 are two of the nine members of the Human Nedd4 family. All vertebrates appear to have both Nedd4 and Nedd4-2 genes. They are thought to participate in the regulation of epithelial Na+ channel (ENaC) activity. They also have identical specificity for ubiquitin conjugating enzymes (E2). Nedd4 and Nedd4-2 are composed of a C2 domain, 2-4 WW domains, and a ubiquitin ligase Hect domain. Their WW domains can bind PPxY (PY) or LPSY motifs, and in vitro studies suggest that WW3 and WW4 of both proteins bind PY motifs in the key substrates, with WW3 generally exhibiting higher affinity. Most Nedd4 family members, especially Nedd4-2, also have multiple splice variants, which might play different roles in regulating their substrates. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 133 -176000 cd04035 C2A_Rabphilin_Doc2 C2 domain first repeat present in Rabphilin and Double C2 domain. Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 123 -176001 cd04036 C2_cPLA2 C2 domain present in cytosolic PhosphoLipase A2 (cPLA2). A single copy of the C2 domain is present in cPLA2 which releases arachidonic acid from membranes initiating the biosynthesis of potent inflammatory mediators such as prostaglandins, leukotrienes, and platelet-activating factor. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members of this cd have a type-II topology. 119 -176002 cd04037 C2E_Ferlin C2 domain fifth repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. 124 -176003 cd04038 C2_ArfGAP C2 domain present in Arf GTPase Activating Proteins (GAP). ArfGAP is a GTPase activating protein which regulates the ADP ribosylation factor Arf, a member of the Ras superfamily of GTP-binding proteins. The GTP-bound form of Arf is involved in Golgi morphology and is involved in recruiting coat proteins. ArfGAP is responsible for the GDP-bound form of Arf which is necessary for uncoating the membrane and allowing the Golgi to fuse with an acceptor compartment. These proteins contain an N-terminal ArfGAP domain containing the characteristic zinc finger motif (Cys-x2-Cys-x(16,17)-x2-Cys) and C-terminal C2 domain. C2 domains were first identified in Protein Kinase C (PKC). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 145 -176004 cd04039 C2_PSD C2 domain present in Phosphatidylserine decarboxylase (PSD). PSD is involved in the biosynthesis of aminophospholipid by converting phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn). There is a single C2 domain present and it is thought to confer PtdSer binding motif that is common to PKC and synaptotagmin. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 108 -176005 cd04040 C2D_Tricalbin-like C2 domain fourth repeat present in Tricalbin-like proteins. 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. 115 -176006 cd04041 C2A_fungal C2 domain first repeat; fungal group. C2 domains were first identified in Protein Kinase C (PKC). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 111 -176007 cd04042 C2A_MCTP_PRT C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP). MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 121 -176008 cd04043 C2_Munc13_fungal C2 domain in Munc13 (mammalian uncoordinated) proteins; fungal group. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 126 -176009 cd04044 C2A_Tricalbin-like C2 domain first repeat present in Tricalbin-like proteins. 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 124 -176010 cd04045 C2C_Tricalbin-like C2 domain third repeat present in Tricalbin-like proteins. 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 120 -176011 cd04046 C2_Calpain C2 domain present in Calpain proteins. A single C2 domain is found in calpains (EC 3.4.22.52, EC 3.4.22.53), calcium-dependent, non-lysosomal cysteine proteases. Caplains are classified as belonging to Clan CA by MEROPS and include six families: C1, C2, C10, C12, C28, and C47. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 126 -176012 cd04047 C2B_Copine C2 domain second repeat in Copine. There are 2 copies of the C2 domain present in copine, a protein involved in membrane trafficking, protein-protein interactions, and perhaps even cell division and growth. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 110 -176013 cd04048 C2A_Copine C2 domain first repeat in Copine. There are 2 copies of the C2 domain present in copine, a protein involved in membrane trafficking, protein-protein interactions, and perhaps even cell division and growth. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 120 -176014 cd04049 C2_putative_Elicitor-responsive_gene C2 domain present in the putative elicitor-responsive gene. In plants elicitor-responsive proteins are triggered in response to specific elicitor molecules such as glycolproteins, peptides, carbohydrates and lipids. A host of defensive responses are also triggered resulting in localized cell death. Antimicrobial secondary metabolites, such as phytoalexins, or defense-related proteins, including pathogenesis-related (PR) proteins are also produced. There is a single C2 domain present here. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members have a type-II topology. 124 -176015 cd04050 C2B_Synaptotagmin-like C2 domain second repeat present in Synaptotagmin-like proteins. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 105 -176016 cd04051 C2_SRC2_like C2 domain present in Soybean genes Regulated by Cold 2 (SRC2)-like proteins. SRC2 production is a response to pathogen infiltration. The initial response of increased Ca2+ concentrations are coupled to downstream signal transduction pathways via calcium binding proteins. SRC2 contains a single C2 domain which localizes to the plasma membrane and is involved in Ca2+ dependent protein binding. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 125 -176017 cd04052 C2B_Tricalbin-like C2 domain second repeat present in Tricalbin-like proteins. 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 111 -176018 cd04054 C2A_Rasal1_RasA4 C2 domain first repeat present in RasA1 and RasA4. Rasal1 and RasA4 are both members of GAP1 (GTPase activating protein 1). Rasal1 responds to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. RasA4 suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both of these proteins contains two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 121 -173788 cd04056 Peptidases_S53 Peptidase domain in the S53 family. Members of the peptidases S53 (sedolisin) family include endopeptidases and exopeptidases sedolisin, kumamolysin, and (PSCP) Pepstatin-insensitive Carboxyl Proteinase. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of Asn in subtilisin. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. Characterized sedolisins include Kumamolisin, an extracellular calcium-dependent thermostable endopeptidase from Bacillus. The enzyme is synthesized with a 188 amino acid N-terminal preprotein region which is cleaved after the extraction into the extracellular space with low pH. One kumamolysin paralog, kumamolisin-As, is believed to be a collagenase. TPP1 is a serine protease that functions as a tripeptidyl exopeptidase as well as an endopeptidase. Less is known about PSCP from Pseudomonas which is thought to be an aspartic proteinase. 361 -173789 cd04059 Peptidases_S8_Protein_convertases_Kexins_Furin-like Peptidase S8 family domain in Protein convertases. Protein convertases, whose members include furins and kexins, are members of the peptidase S8 or Subtilase clan of proteases. They have an Asp/His/Ser catalytic triad that is not homologous to trypsin. Kexins are involved in the activation of peptide hormones, growth factors, and viral proteins. Furin cleaves cell surface vasoactive peptides and proteins involved in cardiovascular tissue remodeling in the TGN, at cell surface, or in endosomes but rarely in the ER. Furin also plays a key role in blood pressure regulation though the activation of transforming growth factor (TGF)-beta. High specificity is seen for cleavage after dibasic (Lys-Arg or Arg-Arg) or multiple basic residues in protein convertases. There is also strong sequence conservation. 297 -173790 cd04077 Peptidases_S8_PCSK9_ProteinaseK_like Peptidase S8 family domain in ProteinaseK-like proteins. The peptidase S8 or Subtilase clan of proteases have a Asp/His/Ser catalytic triad that is not homologous to trypsin. This CD contains several members of this clan including: PCSK9 (Proprotein convertase subtilisin/kexin type 9), Proteinase_K, Proteinase_T, and other subtilisin-like serine proteases. PCSK9 posttranslationally regulates hepatic low-density lipoprotein receptors (LDLRs) by binding to LDLRs on the cell surface, leading to their degradation. The binding site of PCSK9 has been localized to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. Characterized Proteinases K are secreted endopeptidases with a high degree of sequence conservation. Proteinases K are not substrate-specific and function in a wide variety of species in different pathways. It can hydrolyze keratin and other proteins with subtilisin-like specificity. The number of calcium-binding motifs found in these differ. Proteinase T is a novel proteinase from the fungus Tritirachium album Limber. The amino acid sequence of proteinase T as deduced from the nucleotide sequence is about 56% identical to that of proteinase K. 255 -271144 cd04078 CBM36_xylanase-like Carbohydrate Binding Module family 36 (CBM36); appended mainly to glycoside hydrolase family 11 (GH11) domains; xylan binding. This family includes carbohydrate binding module family 36 (CBM36) most of which appear appended to glycoside hydrolase family 11 (GH11) domains. These CBMs are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH11 catalytic modules with their dedicated, insoluble substrates. GH11 domains have xylanase (endo-1,4-beta-xylanase) activity which catalyzes the hydrolysis of beta-1,4 bonds of xylan, the major component of hemicelluloses, to generate xylooligosaccharides and xylose. This family includes XynB from Dictyoglomus thermophilum Rt46B.1 and Xyn11A from Pseudobutyrivibrio xylanivorans Mz5T. Xyn11A is a multicatalytic enzyme with an N-terminal GH11 domain, a CBM36 domain, and a C-terminal putative NodB-like polysaccharide deacetylase which is predicted to be an acetyl esterase involved in debranching activity in the xylan backbone. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. Consistent with its structural and sequence similarity to CBM6, CBM36 binds xylan, but only at binding site I, and in a calcium-dependent manner; the latter suggests its potential application in affinity labeling. 119 -271145 cd04079 CBM6_agarase-like Carbohydrate Binding Module 6 (CBM6); appended mainly to glycoside hydrolase (GH) family 16 alpha- and beta agarases. This family includes carbohydrate binding module 6 (CBM6) domains that are appended mainly to glycoside hydrolase (GH) family 16 agarases. These CBM6s are non-catalytic carbohydrate binding domains that facilitate the activity of alpha- and beta-agarase catalytic modules which are involved in the hydrolysis of 1,4-beta-D-galactosidic linkages. These CBM6s bind specifically to the non-reducing end of agarose chains, recognizing only the first repeat of the disaccharide, and directing the appended catalytic modules to areas of the plant cell wall attacked by beta-agarases. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. This family includes three tandem CBM6s from the Saccharophagus degradans agarase Aga86E, and three tandem CBM6s from Vibrio sp. strain PO-303 AgaA; in both these proteins these are appended to a GH16 domain. Vibrio AgaA also contains a Big-2-like protein-protein interaction domain. This family also includes two tandem CBM6s from an endo-type beta-agarase from a deep-sea Microbulbifer-like isolate, which are appended to a GH16 domain, and two of three CBM6s of Alteromonas agarilytica AgaA alpha-agarase, which are appended to a GH96 domain. 134 -271146 cd04080 CBM6_cellulase-like Carbohydrate Binding Module 6 (CBM6); appended to glycoside hydrolase (GH) domains, including GH5 (cellulase). This family includes carbohydrate binding module 6 (CBM6) domains that are appended to several glycoside hydrolase (GH) domains, including GH5 (cellulase) and GH16, as well as to coagulation factor 5/8 carbohydrate-binding domains. CBM6s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. The CBM6s are appended to GHs that display a diversity of substrate specificities. For some members of this family information is available about the specific substrates of the appended GH domains. It includes the CBM domains of various enzymes involved in cell wall degradation including, an extracellular beta-1,3-glucanase from Lysobacter enzymogenes encoded by the gluC gene (its catalytic domain belongs to the GH16 family), the tandem CBM domains of Pseudomonas sp. PE2 beta-1,3(4)-glucanase A (its catalytic domain also belongs to GH16), and a family 6 CBM from Cellvibrio mixtus Endoglucanase 5A (CmCBM6) which binds to the beta1,4-beta1,3-mixed linked glucans lichenan, and barley beta-glucan, cello-oligosaccharides, insoluble forms of cellulose, the beta1,3-glucan laminarin, and xylooligosaccharides, and the CBM6 of Fibrobacter succinogenes S85 XynD xylanase, appended to a GH10 domain, and Cellvibrio japonicas Cel5G appended to a GH5 (cellulase) domain. GH5 (cellulase) family includes enzymes with several known activities such as endoglucanase, beta-mannanase, and xylanase, which are involved in the degradation of cellulose and xylans. GH16 family includes enzymes with lichenase, xyloglucan endotransglycosylase (XET), and beta-agarase activities. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. For CmCBM6 it has been shown that these two binding sites have different ligand specificities. 144 -271147 cd04081 CBM35_galactosidase-like Carbohydrate Binding Module family 35 (CBM35); appended mainly to enzymes that bind alpha-D-galactose (CBM35-Gal), including glycoside hydrolase (GH) families GH27 and GH43. This family includes carbohydrate binding module family 35 (CBM35); these are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind alpha-D-galactose (CBM35-Gal), including glycoside hydrolase (GH) families GH27 and GH43. Examples of proteins which contain CBM35s belonging to this family includes the CBM35 of an exo-beta-1,3-galactanase from Phanerochaete chrysosporium 9 (Pc1,3Gal43A) which is appended to a GH43 domain, and the CBM35 domain of two bifunctional proteins with beta-L-arabinopyranosidase/alpha-D-galactopyranosidase activities from Fusarium oxysporum 12S, Foap1 and Foap2 (Fo/AP1 and Fo/AP2), that are appended to GH27 domains. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). Some CBM35s bind their ligands in a calcium-dependent manner. In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. GH43 includes beta-xylosidases and beta-xylanases, using aryl-glycosides as substrates, while family GH27 includes alpha-galactosidases, alpha-N-acetylgalactosaminidases, and isomaltodextranases. 125 -271148 cd04082 CBM35_pectate_lyase-like Carbohydrate Binding Module family 35 (CBM35), pectate lyase-like; appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. This family includes carbohydrate binding module family 35 (CBM35) domains that are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. Included in this family are CBM35s of pectate lyases, including pectate lyase 10A from Cellvibrio japonicas, these enzymes release delta-4,5-anhydrogalaturonic acid (delta4,5-GalA) from pectin, thus identifying a signature molecule for plant cell wall degradation. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. Some CBM35s bind their ligands in a calcium-dependent manner, especially those binding uronic acids. 124 -271149 cd04083 CBM35_Lmo2446-like Carbohydrate Binding Module 35 (CBM35) domains similar to Lmo2446. This family includes carbohydrate binding module 35 (CBM35) domains that are appended to several carbohydrate binding enzymes. Some CBM35 domains belonging to this family are appended to glycoside hydrolase (GH) family domains, including glycoside hydrolase family 31 (GH31), for example the CBM35 domain of Lmo2446, an uncharacterized protein from Listeria monocytogenes EGD-e. These CBM35s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. GH31 has a wide range of hydrolytic activities such as alpha-glucosidase, alpha-xylosidase, 6-alpha-glucosyltransferase, or alpha-1,4-glucan lyase, cleaving a terminal carbohydrate moiety from a substrate that may be a starch or a glycoprotein. Most characterized GH31 enzymes are alpha-glucosidases. 125 -271150 cd04084 CBM6_xylanase-like Carbohydrate Binding Module 6 (CBM6); many are appended to glycoside hydrolase (GH) family 11 and GH43 xylanase domains. This family includes carbohydrate binding module 6 (CBM6) domains that are appended mainly to glycoside hydrolase (GH) family domains, including GH3, GH11, and GH43 domains. These CBM6s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. Examples of proteins having CMB6s belonging to this family are Microbispora bispora GghA, a 1,4-beta-D-glucan glucohydrolase (GH3); Clostridium thermocellum xylanase U (GH11), and Penicillium purpurogenum ABF3, a bifunctional alpha-L-arabinofuranosidase/xylobiohydrolase (GH43). GH3 comprises enzymes with activities including beta-glucosidase (hydrolyzes beta-galactosidase) and beta-xylosidase (hydrolyzes 1,4-beta-D-xylosidase). GH11 family comprises enzymes with xylanase (endo-1,4-beta-xylanase) activity which catalyze the hydrolysis of beta-1,4 bonds of xylan, the major component of hemicelluloses, to generate xylooligosaccharides and xylose. GH43 includes beta-xylosidases and beta-xylanases, using aryl-glycosides as substrates. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. 123 -271151 cd04085 delta_endotoxin_C delta-endotoxin C-terminal domain may be associated with carbohydrate binding functionality. Delta-endotoxin C-terminal domain (delta endotoxin domain III) is part of the activated region of delta endotoxins, which are insecticidal toxins produced during sporulation by Bacillus species of bacteria. The activated endotoxin binds to the gut epithelium and causes cell lysis leading to death. This activated region of the delta endotoxin is composed of three structural domains. The N-terminal helical domain (I) is involved in membrane insertion and pore formation, while the second and third domains (II and III) are involved in receptor binding. Domain III structurally resembles the carbohydrate binding domain 6 (CBM6) and it is possible that insect specificity is determined by protein-protein or protein-carbohydrate interactions mediated by both domains II and III of the toxin. Delta-endotoxins are of great interest for development of new bioinsecticides and in the control of mosquitoes. 152 -271152 cd04086 CBM35_mannanase-like Carbohydrate Binding Module 35 (CBM35); appended to several carbohydrate binding enzymes, including several glycoside hydrolase (GH) family 26 mannanase domains. This family includes carbohydrate binding module 35 (CBM35) domains that are appended to several carbohydrate binding enzymes, including periplasmic component of ABC-type sugar transport system involved in carbohydrate transport and metabolism, and several glycoside hydrolase (GH) domains, including GH26. These CBM6s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. Examples of proteins having CMB35s belonging to this family are mannanase A from Clostridium thermocellum (GH26), Man26B from Paenibacillus sp. BME-14 (GH26), and the multifunctional Cel44C-Man26A from Paenibacillus polymyxa GS01 (which has two GH domains, GH44 and GH26). GH26 mainly includes mannan endo-1,4-beta-mannosidase which hydrolyzes 1,4-beta-D-linkages in mannans, galacto-mannans, glucomannans, and galactoglucomannans, but displays little activity towards other plant cell wall polysaccharides. A few proteins belonging to this family have additional CBM3 domains; these CBM3s are not found in the CBM6-CBM35-CBM36_like superfamily. 119 -239754 cd04087 PTPA Phosphotyrosyl phosphatase activator (PTPA) is also known as protein phosphatase 2A (PP2A) phosphatase activator. PTPA is an essential, well conserved protein that stimulates the tyrosyl phosphatase activity of PP2A. It also reactivates the serine/threonine phosphatase activity of an inactive form of PP2A. Together, PTPA and PP2A constitute an ATPase. It has been suggested that PTPA alters the relative specificity of PP2A from phosphoserine/phosphothreonine substrates to phosphotyrosine substrates in an ATP-hydrolysis-dependent manner. Basal expression of PTPA is controlled by the transcription factor Yin Yang1 (YY1). PTPA has been suggested to play a role in the insertion of metals to the PP2A catalytic subunit (PP2Ac) active site, to act as a chaperone, and more recently, to have peptidyl prolyl cis/trans isomerase activity that specifically targets human PP2Ac. 266 -293905 cd04088 EFG_mtEFG_II Domain II of bacterial elongation factor G and C-terminal domain of mitochondrial Elongation factors G1 and G2. This family represents the domain II of bacterial Elongation factor G (EF-G)and mitochondrial Elongation factors G1 (mtEFG1) and G2 (mtEFG2). During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. In bacteria this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. mtEFG1 and mtEFG2 show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. No clear phenotype has been found for mutants in the yeast homolog of mtEFG2, MEF2. 83 -293906 cd04089 eRF3_II Domain II of the eukaryotic class II release factor. In eukaryotes, translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act as class I and II factors, respectively. eRF1 functions as an omnipotent release factor, decoding all three stop codons and triggering the release of the nascent peptide catalyzed by the ribosome. eRF3 is a GTPase, which enhances termination efficiency by stimulating eRF1 activity in a GTP-dependent manner. Sequence comparison of class II release factors with elongation factors shows that eRF3 is more similar to eEF-1alpha whereas prokaryote RF3 is more similar to EF-G, implying that their precise function may differ. Only eukaryote RF3s are found in this group. Saccharomyces cerevisiae eRF3 (Sup35p) is a translation termination factor which is divided into three regions N, M and a C-terminal eEF1a-like region essential for translation termination. Sup35NM is a non-pathogenic prion-like protein with the property of aggregating into polymer-like fibrils. 82 -293907 cd04090 EF2_II_snRNP Domain II of the spliceosomal 116kD U5 small nuclear ribonucleoprotein (snRNP) component. This subfamily includes domain II of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and its yeast counterpart Snu114p. This domain is homologous to domain II of the eukaryotic translational elongation factor EF-2. U5-116 kD is a GTPase which is a component of the spliceosome complex which processes precursor mRNAs to produce mature mRNAs. 94 -293908 cd04091 mtEFG1_II_like Domain II of mitochondrial elongation factor G1-like proteins found in eukaryotes. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. Eukaryotic EF-2 operates in the cytosolic protein synthesis machinery of eukaryotes, EF-Gs in protein synthesis in bacteria. Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. There are two forms of mtEFG present in mammals (designated mtEFG1s and mtEFG2s); mtEFG2s are not present in this group. 81 -293909 cd04092 mtEFG2_II_like Domain II of mitochondrial elongation factor G2-like proteins found in eukaryotes. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. Eukaryotic EF-2 operates in the cytosolic protein synthesis machinery of eukaryotes, EF-Gs in protein synthesis in bacteria. Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs. No clear phenotype has been found for mutants in the yeast homolog of mtEFG2, MEF2. There are two forms of mtEFG present in mammals (designated mtEFG1s and mtEFG2s); mtEFG1s are not present in this group. 83 -294008 cd04093 HBS1_C_III C-terminal domain of Hsp70 subfamily B suppressor 1 (HBS1). This model represents the C-terminal domain of Hsp70 subfamily B suppressor 1 (HBS1), which is homologous to the domain III of EF-1alpha. This group contains proteins similar to yeast Hbs1, which together with Dom34, promotes the No-go decay (NGD) of mRNA. The NGD targets mRNAs whose elongation stalled for degradation initiated by endonucleolytic cleavage in the vicinity of the stalled ribosome. 109 -294009 cd04094 eSelB_III Domain III of eukaryotic and archaeal elongation factor SelB. This model represents the domain III of archaeal and eukaryotic selenocysteine (Sec)-specific eukaryotic elongation factor (eEFSec or eSelB), which is homologous to domain III of EF-Tu. SelB is a specialized translation elongation factor responsible for the co-translational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop, called Sec insertion sequence (SECIS) element. 114 -294010 cd04095 CysN_NoDQ_III Domain III of the large subunit of ATP sulfurylase (ATPS). This model represents domain III of the large subunit of ATP sulfurylase (ATPS): CysN or the N-terminal portion of NodQ, found mainly in proteobacteria and is homologous to domain III of EF-Tu. Escherichia coli ATPS consists of CysN and a smaller subunit CysD and CysN. ATPS produces adenosine-5'-phosphosulfate (APS) from ATP and sulfate, coupled with GTP hydrolysis. In the subsequent reaction APS is phosphorylated by an APS kinase (CysC), to produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for use in amino acid (aa) biosynthesis. The Rhizobiaceae group (alpha-proteobacteria) appears to carry out the same chemistry for the sulfation of a nodulation factor. In Rhizobium meliloti, the heterodimeric complex comprised of NodP and NodQ appears to possess both ATPS and APS kinase activities. The N- and C-termini of NodQ correspond to CysN and CysC, respectively. Other eubacteria, archaea, and eukaryotes use a different ATP sulfurylase, which shows no amino acid sequence similarity to CysN or NodQ. CysN and the N-terminal portion of NodQ show similarity to GTPases involved in translation, in particular, EF-Tu and EF-1alpha. 103 -239763 cd04096 eEF2_snRNP_like_C eEF2_snRNP_like_C: this family represents a C-terminal domain of eukaryotic elongation factor 2 (eEF-2) and a homologous domain of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and, its yeast counterpart Snu114p. Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP. Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of the U5-116 kD/Snu114p. In complex with GTP, EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the uncharged tRNA from the P site to the E-site and, the mRNA is shifted one codon relative to the ribosome. 80 -239764 cd04097 mtEFG1_C mtEFG1_C: C-terminus of mitochondrial Elongation factor G1 (mtEFG1)-like proteins found in eukaryotes. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. Eukaryotic EF-2 operates in the cytosolic protein synthesis machinery of eukaryotes, EF-Gs in protein synthesis in bacteria. Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. There are two forms of mtEFG present in mammals (designated mtEFG1s and mtEFG2s) mtEFG2s are not present in this group. 78 -239765 cd04098 eEF2_C_snRNP eEF2_C_snRNP: This family includes a C-terminal portion of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and, its yeast counterpart Snu114p. This domain is homologous to the C-terminal domain of the eukaryotic translational elongation factor EF-2. Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP. Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of the U5-116 kD/Snu114p. In complex with GTP, EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the uncharged tRNA from the P site to the E-site and, the mRNA is shifted one codon relative to the ribosome. 80 -239766 cd04100 Asp_Lys_Asn_RS_N Asp_Lys_Asn_RS_N: N-terminal, anticodon recognition domain of class 2b aminoacyl-tRNA synthetases (aaRSs). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. Class 2b aaRSs include the homodimeric aspartyl-, asparaginyl-, and lysyl-tRNA synthetases (AspRS, AsnRS, and LysRS). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic protein synthesis, whereas the other exclusively with mitochondrial protein synthesis. Included in this group are archeal and archeal-like AspRSs which are non-discriminating and can charge both tRNAAsp and tRNAAsn. E. coli cells have two isoforms of LysRSs (LysS and LysU) encoded by two distinct genes, which are differentially regulated. The cytoplasmic and the mitochondrial isoforms of human LysRS are encoded by a single gene. Yeast cytoplasmic and mitochondrial LysRSs participate in mitochondrial import of cytoplasmic tRNAlysCUU. In addition to their housekeeping role, human LysRS may function as a signaling molecule that activates immune cells. Tomato LysRS may participate in a process possibly connected to conditions of oxidative-stress conditions or heavy metal uptake. It is known that human tRNAlys and LysRS are specifically packaged into HIV-1 suggesting a role for LysRS in tRNA packaging. AsnRS is immunodominant antigen of the filarial nematode Brugia malayai and is of interest as a target for anti-parasitic drug design. Human AsnRS has been shown to be a pro-inflammatory chemokine which interacts with CCR3 chemokine receptors on T cells, immature dendritic cells and macrophages. 85 -206688 cd04101 RabL4 Rab GTPase-like family 4 (Rab-like4). RabL4 (Rab-like4) subfamily. RabL4s are novel proteins that have high sequence similarity with Rab family members, but display features that are distinct from Rabs, and have been termed Rab-like. As in other Rab-like proteins, RabL4 lacks a prenylation site at the C-terminus. The specific function of RabL4 remains unknown. 167 -206689 cd04102 RabL3 Rab GTPase-like family 3 (Rab-like3). RabL3 (Rab-like3) subfamily. RabL3s are novel proteins that have high sequence similarity with Rab family members, but display features that are distinct from Rabs, and have been termed Rab-like. As in other Rab-like proteins, RabL3 lacks a prenylation site at the C-terminus. The specific function of RabL3 remains unknown. 204 -133303 cd04103 Centaurin_gamma Centaurin gamma (CENTG) GTPase. The centaurins (alpha, beta, gamma, and delta) are large, multi-domain proteins that all contain an ArfGAP domain and ankyrin repeats, and in some cases, numerous additional domains. Centaurin gamma contains an additional GTPase domain near its N-terminus. The specific function of this GTPase domain has not been well characterized, but centaurin gamma 2 (CENTG2) may play a role in the development of autism. Centaurin gamma 1 is also called PIKE (phosphatidyl inositol (PI) 3-kinase enhancer) and centaurin gamma 2 is also known as AGAP (ArfGAP protein with a GTPase-like domain, ankyrin repeats and a Pleckstrin homology domain) or GGAP. Three isoforms of PIKE have been identified. PIKE-S (short) and PIKE-L (long) are brain-specific isoforms, with PIKE-S restricted to the nucleus and PIKE-L found in multiple cellular compartments. A third isoform, PIKE-A was identified in human glioblastoma brain cancers and has been found in various tissues. GGAP has been shown to have high GTPase activity due to a direct intramolecular interaction between the N-terminal GTPase domain and the C-terminal ArfGAP domain. In human tissue, AGAP mRNA was detected in skeletal muscle, kidney, placenta, brain, heart, colon, and lung. Reduced expression levels were also observed in the spleen, liver, and small intestine. 158 -206690 cd04104 p47_IIGP_like p47 GTPase family includes IGTP, TGTP/Mg21, IRG-47, GTPI, LRG-47, and IIGP1. The p47 GTPase family consists of several highly homologous proteins, including IGTP, TGTP/Mg21, IRG-47, GTPI, LRG-47, and IIGP1. They are found in higher eukaryotes where they play a role in immune resistance against intracellular pathogens. p47 proteins exist at low resting levels in mouse cells, but are strongly induced by Type II interferon (IFN-gamma). ITGP is critical for resistance to Toxoplasma gondii infection and in involved in inhibition of Coxsackievirus-B3-induced apoptosis. TGTP was shown to limit vesicular stomatitis virus (VSV) infection of fibroblasts in vitro. IRG-47 is involved in resistance to T. gondii infection. LRG-47 has been implicated in resistance to T. gondii, Listeria monocytogenes, Leishmania, and mycobacterial infections. IIGP1 has been shown to localize to the ER and to the Golgi membranes in IFN-induced cells and inflamed tissues. In macrophages, IIGP1 interacts with hook3, a microtubule binding protein that participates in the organization of the cis-Golgi compartment. 197 -206691 cd04105 SR_beta Signal recognition particle receptor, beta subunit (SR-beta), together with SR-alpha, forms the heterodimeric signal recognition particle (SRP). Signal recognition particle receptor, beta subunit (SR-beta). SR-beta and SR-alpha form the heterodimeric signal recognition particle (SRP or SR) receptor that binds SRP to regulate protein translocation across the ER membrane. Nascent polypeptide chains are synthesized with an N-terminal hydrophobic signal sequence that binds SRP54, a component of the SRP. SRP directs targeting of the ribosome-nascent chain complex (RNC) to the ER membrane via interaction with the SR, which is localized to the ER membrane. The RNC is then transferred to the protein-conducting channel, or translocon, which facilitates polypeptide translation across the ER membrane or integration into the ER membrane. SR-beta is found only in eukaryotes; it is believed to control the release of the signal sequence from SRP54 upon binding of the ribosome to the translocon. High expression of SR-beta has been observed in human colon cancer, suggesting it may play a role in the development of this type of cancer. 202 -133306 cd04106 Rab23_like Rab GTPase family 23 (Rab23)-like. Rab23-like subfamily. Rab23 is a member of the Rab family of small GTPases. In mouse, Rab23 has been shown to function as a negative regulator in the sonic hedgehog (Shh) signaling pathway. Rab23 mediates the activity of Gli2 and Gli3, transcription factors that regulate Shh signaling in the spinal cord, primarily by preventing Gli2 activation in the absence of Shh ligand. Rab23 also regulates a step in the cytoplasmic signal transduction pathway that mediates the effect of Smoothened (one of two integral membrane proteins that are essential components of the Shh signaling pathway in vertebrates). In humans, Rab23 is expressed in the retina. Mice contain an isoform that shares 93% sequence identity with the human Rab23 and an alternative splicing isoform that is specific to the brain. This isoform causes the murine open brain phenotype, indicating it may have a role in the development of the central nervous system. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 162 -206692 cd04107 Rab32_Rab38 Rab GTPase families 18 (Rab18) and 32 (Rab32). Rab38/Rab32 subfamily. Rab32 and Rab38 are members of the Rab family of small GTPases. Human Rab32 was first identified in platelets but it is expressed in a variety of cell types, where it functions as an A-kinase anchoring protein (AKAP). Rab38 has been shown to be melanocyte-specific. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 201 -206693 cd04108 Rab36_Rab34 Rab GTPase families 34 (Rab34) and 36 (Rab36). Rab34/Rab36 subfamily. Rab34, found primarily in the Golgi, interacts with its effector, Rab-interacting lysosomal protein (RILP). This enables its participation in microtubular dynenin-dynactin-mediated repositioning of lysosomes from the cell periphery to the Golgi. A Rab34 (Rah) isoform that lacks the consensus GTP-binding region has been identified in mice. This isoform is associated with membrane ruffles and promotes macropinosome formation. Rab36 has been mapped to human chromosome 22q11.2, a region that is homozygously deleted in malignant rhabdoid tumors (MRTs). However, experimental assessments do not implicate Rab36 as a tumor suppressor that would enable tumor formation through a loss-of-function mechanism. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 170 -206694 cd04109 Rab28 Rab GTPase family 28 (Rab28). Rab28 subfamily. First identified in maize, Rab28 has been shown to be a late embryogenesis-abundant (Lea) protein that is regulated by the plant hormone abcisic acid (ABA). In Arabidopsis, Rab28 is expressed during embryo development and is generally restricted to provascular tissues in mature embryos. Unlike maize Rab28, it is not ABA-inducible. Characterization of the human Rab28 homolog revealed two isoforms, which differ by a 95-base pair insertion, producing an alternative sequence for the 30 amino acids at the C-terminus. The two human isoforms are presumably the result of alternative splicing. Since they differ at the C-terminus but not in the GTP-binding region, they are predicted to be targeted to different cellular locations. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 213 -133310 cd04110 Rab35 Rab GTPase family 35 (Rab35). Rab35 is one of several Rab proteins to be found to participate in the regulation of osteoclast cells in rats. In addition, Rab35 has been identified as a protein that interacts with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) in human cells. Overexpression of NPM-ALK is a key oncogenic event in some anaplastic large-cell lymphomas; since Rab35 interacts with N|PM-ALK, it may provide a target for cancer treatments. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 199 -133311 cd04111 Rab39 Rab GTPase family 39 (Rab39). Found in eukaryotes, Rab39 is mainly found in epithelial cell lines, but is distributed widely in various human tissues and cell lines. It is believed to be a novel Rab protein involved in regulating Golgi-associated vesicular transport during cellular endocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 211 -206695 cd04112 Rab26 Rab GTPase family 26 (Rab26). Rab26 subfamily. First identified in rat pancreatic acinar cells, Rab26 is believed to play a role in recruiting mature granules to the plasma membrane upon beta-adrenergic stimulation. Rab26 belongs to the Rab functional group III, which are considered key regulators of intracellular vesicle transport during exocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 191 -206696 cd04113 Rab4 Rab GTPase family 4 (Rab4). Rab4 subfamily. Rab4 has been implicated in numerous functions within the cell. It helps regulate endocytosis through the sorting, recycling, and degradation of early endosomes. Mammalian Rab4 is involved in the regulation of many surface proteins including G-protein-coupled receptors, transferrin receptor, integrins, and surfactant protein A. Experimental data implicate Rab4 in regulation of the recycling of internalized receptors back to the plasma membrane. It is also believed to influence receptor-mediated antigen processing in B-lymphocytes, in calcium-dependent exocytosis in platelets, in alpha-amylase secretion in pancreatic cells, and in insulin-induced translocation of Glut4 from internal vesicles to the cell surface. Rab4 is known to share effector proteins with Rab5 and Rab11. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 161 -133314 cd04114 Rab30 Rab GTPase family 30 (Rab30). Rab30 subfamily. Rab30 appears to be associated with the Golgi stack. It is expressed in a wide variety of tissue types and in humans maps to chromosome 11. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 169 -133315 cd04115 Rab33B_Rab33A Rab GTPase family 33 includes Rab33A and Rab33B. Rab33B/Rab33A subfamily. Rab33B is ubiquitously expressed in mouse tissues and cells, where it is localized to the medial Golgi cisternae. It colocalizes with alpha-mannose II. Together with the other cisternal Rabs, Rab6A and Rab6A', it is believed to regulate the Golgi response to stress and is likely a molecular target in stress-activated signaling pathways. Rab33A (previously known as S10) is expressed primarily in the brain and immune system cells. In humans, it is located on the X chromosome at Xq26 and its expression is down-regulated in tuberculosis patients. Experimental evidence suggests that Rab33A is a novel CD8+ T cell factor that likely plays a role in tuberculosis disease processes. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 170 -206697 cd04116 Rab9 Rab GTPase family 9 (Rab9). Rab9 is found in late endosomes, together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kD (TIP47). Rab9 is a key mediator of vesicular transport from late endosomes to the trans-Golgi network (TGN) by redirecting the MPRs. Rab9 has been identified as a key component for the replication of several viruses, including HIV1, Ebola, Marburg, and measles, making it a potential target for inhibiting a variety of viruses. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 170 -206698 cd04117 Rab15 Rab GTPase family 15 (Rab15). Rab15 colocalizes with the transferrin receptor in early endosome compartments, but not with late endosomal markers. It codistributes with Rab4 and Rab5 on early/sorting endosomes, and with Rab11 on pericentriolar recycling endosomes. It is believed to function as an inhibitory GTPase that regulates distinct steps in early endocytic trafficking. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 164 -133318 cd04118 Rab24 Rab GTPase family 24 (Rab24). Rab24 is distinct from other Rabs in several ways. It exists primarily in the GTP-bound state, having a low intrinsic GTPase activity; it is not efficiently geranyl-geranylated at the C-terminus; it does not form a detectable complex with Rab GDP-dissociation inhibitors (GDIs); and it has recently been shown to undergo tyrosine phosphorylation when overexpressed in vitro. The specific function of Rab24 still remains unknown. It is found in a transport route between ER-cis-Golgi and late endocytic compartments. It is putatively involved in an autophagic pathway, possibly directing misfolded proteins in the ER to degradative pathways. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 193 -133319 cd04119 RJL Rab GTPase family J-like (RabJ-like). RJLs are found in many protists and as chimeras with C-terminal DNAJ domains in deuterostome metazoa. They are not found in plants, fungi, and protostome metazoa, suggesting a horizontal gene transfer between protists and deuterostome metazoa. RJLs lack any known membrane targeting signal and contain a degenerate phosphate/magnesium-binding 3 (PM3) motif, suggesting an impaired ability to hydrolyze GTP. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. 168 -206699 cd04120 Rab12 Rab GTPase family 12 (Rab12). Rab12 was first identified in canine cells, where it was localized to the Golgi complex. The specific function of Rab12 remains unknown, and inconsistent results about its cellular localization have been reported. More recent studies have identified Rab12 associated with post-Golgi vesicles, or with other small vesicle-like structures but not with the Golgi complex. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 202 -133321 cd04121 Rab40 Rab GTPase family 40 (Rab40) contains Rab40a, Rab40b and Rab40c. The Rab40 subfamily contains Rab40a, Rab40b, and Rab40c, which are all highly homologous. In rat, Rab40c is localized to the perinuclear recycling compartment (PRC), and is distributed in a tissue-specific manor, with high expression in brain, heart, kidney, and testis, low expression in lung and liver, and no expression in spleen and skeletal muscle. Rab40c is highly expressed in differentiated oligodendrocytes but minimally expressed in oligodendrocyte progenitors, suggesting a role in the vesicular transport of myelin components. Unlike most other Ras-superfamily proteins, Rab40c was shown to have a much lower affinity for GTP, and an affinity for GDP that is lower than for GTP. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 189 -133322 cd04122 Rab14 Rab GTPase family 14 (Rab14). Rab14 GTPases are localized to biosynthetic compartments, including the rough ER, the Golgi complex, and the trans-Golgi network, and to endosomal compartments, including early endosomal vacuoles and associated vesicles. Rab14 is believed to function in both the biosynthetic and recycling pathways between the Golgi and endosomal compartments. Rab14 has also been identified on GLUT4 vesicles, and has been suggested to help regulate GLUT4 translocation. In addition, Rab14 is believed to play a role in the regulation of phagocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 166 -133323 cd04123 Rab21 Rab GTPase family 21 (Rab21). The localization and function of Rab21 are not clearly defined, with conflicting data reported. Rab21 has been reported to localize in the ER in human intestinal epithelial cells, with partial colocalization with alpha-glucosidase, a late endosomal/lysosomal marker. More recently, Rab21 was shown to colocalize with and affect the morphology of early endosomes. In Dictyostelium, GTP-bound Rab21, together with two novel LIM domain proteins, LimF and ChLim, has been shown to regulate phagocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 162 -133324 cd04124 RabL2 Rab GTPase-like family 2 (Rab-like2). RabL2 (Rab-like2) subfamily. RabL2s are novel Rab proteins identified recently which display features that are distinct from other Rabs, and have been termed Rab-like. RabL2 contains RabL2a and RabL2b, two very similar Rab proteins that share > 98% sequence identity in humans. RabL2b maps to the subtelomeric region of chromosome 22q13.3 and RabL2a maps to 2q13, a region that suggests it is also a subtelomeric gene. Both genes are believed to be expressed ubiquitously, suggesting that RabL2s are the first example of duplicated genes in human proximal subtelomeric regions that are both expressed actively. Like other Rab-like proteins, RabL2s lack a prenylation site at the C-terminus. The specific functions of RabL2a and RabL2b remain unknown. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. 161 -133326 cd04126 Rab20 Rab GTPase family 20 (Rab20). Rab20 is one of several Rab proteins that appear to be restricted in expression to the apical domain of murine polarized epithelial cells. It is expressed on the apical side of polarized kidney tubule and intestinal epithelial cells, and in non-polarized cells. It also localizes to vesico-tubular structures below the apical brush border of renal proximal tubule cells and in the apical region of duodenal epithelial cells. Rab20 has also been shown to colocalize with vacuolar H+-ATPases (V-ATPases) in mouse kidney cells, suggesting a role in the regulation of V-ATPase traffic in specific portions of the nephron. It was also shown to be one of several proteins whose expression is upregulated in human myelodysplastic syndrome (MDS) patients. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. 220 -206700 cd04127 Rab27A Rab GTPase family 27a (Rab27a). The Rab27a subfamily consists of Rab27a and its highly homologous isoform, Rab27b. Unlike most Rab proteins whose functions remain poorly defined, Rab27a has many known functions. Rab27a has multiple effector proteins, and depending on which effector it binds, Rab27a has different functions as well as tissue distribution and/or cellular localization. Putative functions have been assigned to Rab27a when associated with the effector proteins Slp1, Slp2, Slp3, Slp4, Slp5, DmSlp, rabphilin, Dm/Ce-rabphilin, Slac2-a, Slac2-b, Slac2-c, Noc2, JFC1, and Munc13-4. Rab27a has been associated with several human diseases, including hemophagocytic syndrome (Griscelli syndrome or GS), Hermansky-Pudlak syndrome, and choroidermia. In the case of GS, a rare, autosomal recessive disease, a Rab27a mutation is directly responsible for the disorder. When Rab27a is localized to the secretory granules of pancreatic beta cells, it is believed to mediate glucose-stimulated insulin secretion, making it a potential target for diabetes therapy. When bound to JFC1 in prostate cells, Rab27a is believed to regulate the exocytosis of prostate- specific markers. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 180 -206701 cd04128 Spg1 Septum-promoting GTPase (Spg1). Spg1p. Spg1p (septum-promoting GTPase) was first identified in the fission yeast S. pombe, where it regulates septum formation in the septation initiation network (SIN) through the cdc7 protein kinase. Spg1p is an essential gene that localizes to the spindle pole bodies. When GTP-bound, it binds cdc7 and causes it to translocate to spindle poles. Sid4p (septation initiation defective) is required for localization of Spg1p to the spindle pole body, and the ability of Spg1p to promote septum formation from any point in the cell cycle depends on Sid4p. Spg1p is negatively regulated by Byr4 and cdc16, which form a two-component GTPase activating protein (GAP) for Spg1p. The existence of a SIN-related pathway in plants has been proposed. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. 182 -206702 cd04129 Rho2 Ras homology family 2 (Rho2) of small guanosine triphosphatases (GTPases). Rho2 is a fungal GTPase that plays a role in cell morphogenesis, control of cell wall integrity, control of growth polarity, and maintenance of growth direction. Rho2 activates the protein kinase C homolog Pck2, and Pck2 controls Mok1, the major (1-3) alpha-D-glucan synthase. Together with Rho1 (RhoA), Rho2 regulates the construction of the cell wall. Unlike Rho1, Rho2 is not an essential protein, but its overexpression is lethal. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for proper intracellular localization via membrane attachment. As with other Rho family GTPases, the GDP/GTP cycling is regulated by GEFs (guanine nucleotide exchange factors), GAPs (GTPase-activating proteins) and GDIs (guanine nucleotide dissociation inhibitors). 190 -133330 cd04130 Wrch_1 Wnt-1 responsive Cdc42 homolog (Wrch-1) is a Rho family GTPase similar to Cdc42. Wrch-1 (Wnt-1 responsive Cdc42 homolog) is a Rho family GTPase that shares significant sequence and functional similarity with Cdc42. Wrch-1 was first identified in mouse mammary epithelial cells, where its transcription is upregulated in Wnt-1 transformation. Wrch-1 contains N- and C-terminal extensions relative to cdc42, suggesting potential differences in cellular localization and function. The Wrch-1 N-terminal extension contains putative SH3 domain-binding motifs and has been shown to bind the SH3 domain-containing protein Grb2, which increases the level of active Wrch-1 in cells. Unlike Cdc42, which localizes to the cytosol and perinuclear membranes, Wrch-1 localizes extensively with the plasma membrane and endosomes. The membrane association, localization, and biological activity of Wrch-1 indicate an atypical model of regulation distinct from other Rho family GTPases. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 173 -206703 cd04131 Rnd Rho family GTPase subfamily Rnd includes Rnd1/Rho6, Rnd2/Rho7, and Rnd3/RhoE/Rho8. The Rnd subfamily contains Rnd1/Rho6, Rnd2/Rho7, and Rnd3/RhoE/Rho8. These novel Rho family proteins have substantial structural differences compared to other Rho members, including N- and C-terminal extensions relative to other Rhos. Rnd3/RhoE is farnesylated at the C-terminal prenylation site, unlike most other Rho proteins that are geranylgeranylated. In addition, Rnd members are unable to hydrolyze GTP and are resistant to GAP activity. They are believed to exist only in the GTP-bound conformation, and are antagonists of RhoA activity. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 176 -206704 cd04132 Rho4_like Ras homology family 4 (Rho4) of small guanosine triphosphatases (GTPases)-like. Rho4 is a GTPase that controls septum degradation by regulating secretion of Eng1 or Agn1 during cytokinesis. Rho4 also plays a role in cell morphogenesis. Rho4 regulates septation and cell morphology by controlling the actin cytoskeleton and cytoplasmic microtubules. The localization of Rho4 is modulated by Rdi1, which may function as a GDI, and by Rga9, which is believed to function as a GAP. In S. pombe, both Rho4 deletion and Rho4 overexpression result in a defective cell wall, suggesting a role for Rho4 in maintaining cell wall integrity. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. 197 -206705 cd04133 Rop_like Rho-related protein from plants (Rop)-like. The Rop (Rho-related protein from plants) subfamily plays a role in diverse cellular processes, including cytoskeletal organization, pollen and vegetative cell growth, hormone responses, stress responses, and pathogen resistance. Rops are able to regulate several downstream pathways to amplify a specific signal by acting as master switches early in the signaling cascade. They transmit a variety of extracellular and intracellular signals. Rops are involved in establishing cell polarity in root-hair development, root-hair elongation, pollen-tube growth, cell-shape formation, responses to hormones such as abscisic acid (ABA) and auxin, responses to abiotic stresses such as oxygen deprivation, and disease resistance and disease susceptibility. An individual Rop can have a unique function or an overlapping function shared with other Rop proteins; in addition, a given Rop-regulated function can be controlled by one or multiple Rop proteins. For example, Rop1, Rop3, and Rop5 are all involved in pollen-tube growth; Rop2 plays a role in response to low-oxygen environments, cell-morphology, and root-hair development; root-hair development is also regulated by Rop4 and Rop6; Rop6 is also responsible for ABA response, and ABA response is also regulated by Rop10. Plants retain some of the regulatory mechanisms that are shared by other members of the Rho family, but have also developed a number of unique modes for regulating Rops. Unique RhoGEFs have been identified that are exclusively active toward Rop proteins, such as those containing the domain PRONE (plant-specific Rop nucleotide exchanger). Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 173 -206706 cd04134 Rho3 Ras homology family 3 (Rho3) of small guanosine triphosphatases (GTPases). Rho3 is a member of the Rho family found only in fungi. Rho3 is believed to regulate cell polarity by interacting with the diaphanous/formin family protein For3 to control both the actin cytoskeleton and microtubules. Rho3 is also believed to have a direct role in exocytosis that is independent of its role in regulating actin polarity. The function in exocytosis may be two-pronged: first, in the transport of post-Golgi vesicles from the mother cell to the bud, mediated by myosin (Myo2); second, in the docking and fusion of vesicles to the plasma membrane, mediated by an exocyst (Exo70) protein. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. 185 -206707 cd04135 Tc10 Rho GTPase TC10 (Tc10). TC10 is a Rho family protein that has been shown to induce microspike formation and neurite outgrowth in vitro. Its expression changes dramatically after peripheral nerve injury, suggesting an important role in promoting axonal outgrowth and regeneration. TC10 regulates translocation of insulin-stimulated GLUT4 in adipocytes and has also been shown to bind directly to Golgi COPI coat proteins. GTP-bound TC10 in vitro can bind numerous potential effectors. Depending on its subcellular localization and distinct functional domains, TC10 can differentially regulate two types of filamentous actin in adipocytes. TC10 mRNAs are highly expressed in three types of mouse muscle tissues: leg skeletal muscle, cardiac muscle, and uterus; they were also present in brain, with higher levels in adults than in newborns. TC10 has also been shown to play a role in regulating the expression of cystic fibrosis transmembrane conductance regulator (CFTR) through interactions with CFTR-associated ligand (CAL). The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated DFTR degradation in the lysosome. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 174 -206708 cd04136 Rap_like Rap-like family consists of Rap1, Rap2 and RSR1. The Rap subfamily consists of the Rap1, Rap2, and RSR1. Rap subfamily proteins perform different cellular functions, depending on the isoform and its subcellular localization. For example, in rat salivary gland, neutrophils, and platelets, Rap1 localizes to secretory granules and is believed to regulate exocytosis or the formation of secretory granules. Rap1 has also been shown to localize in the Golgi of rat fibroblasts, zymogen granules, plasma membrane, and microsomal membrane of the pancreatic acini, as well as in the endocytic compartment of skeletal muscle cells and fibroblasts. Rap1 localizes in the nucleus of human oropharyngeal squamous cell carcinomas (SCCs) and cell lines. Rap1 plays a role in phagocytosis by controlling the binding of adhesion receptors (typically integrins) to their ligands. In yeast, Rap1 has been implicated in multiple functions, including activation and silencing of transcription and maintenance of telomeres. Rap2 is involved in multiple functions, including activation of c-Jun N-terminal kinase (JNK) to regulate the actin cytoskeleton and activation of the Wnt/beta-catenin signaling pathway in embryonic Xenopus. A number of effector proteins for Rap2 have been identified, including isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and Traf2- and Nck-interacting kinase (TNIK), and the RalGEFs RalGDS, RGL, and Rlf, which also interact with Rap1 and Ras. RSR1 is the fungal homolog of Rap1 and Rap2. In budding yeasts, it is involved in selecting a site for bud growth, which directs the establishment of cell polarization. The Rho family GTPase Cdc42 and its GEF, Cdc24, then establish an axis of polarized growth. It is believed that Cdc42 interacts directly with RSR1 in vivo. In filamentous fungi such as Ashbya gossypii, RSR1 is a key regulator of polar growth in the hypha. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 164 -206709 cd04137 RheB Ras Homolog Enriched in Brain (RheB) is a small GTPase. Rheb (Ras Homolog Enriched in Brain) subfamily. Rheb was initially identified in rat brain, where its expression is elevated by seizures or by long-term potentiation. It is expressed ubiquitously, with elevated levels in muscle and brain. Rheb functions as an important mediator between the tuberous sclerosis complex proteins, TSC1 and TSC2, and the mammalian target of rapamycin (TOR) kinase to stimulate cell growth. TOR kinase regulates cell growth by controlling nutrient availability, growth factors, and the energy status of the cell. TSC1 and TSC2 form a dimeric complex that has tumor suppressor activity, and TSC2 is a GTPase activating protein (GAP) for Rheb. The TSC1/TSC2 complex inhibits the activation of TOR kinase through Rheb. Rheb has also been shown to induce the formation of large cytoplasmic vacuoles in a process that is dependent on the GTPase cycle of Rheb, but independent of the TOR kinase, suggesting Rheb plays a role in endocytic trafficking that leads to cell growth and cell-cycle progression. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. 180 -133338 cd04138 H_N_K_Ras_like Ras GTPase family containing H-Ras,N-Ras and K-Ras4A/4B. H-Ras/N-Ras/K-Ras subfamily. H-Ras, N-Ras, and K-Ras4A/4B are the prototypical members of the Ras family. These isoforms generate distinct signal outputs despite interacting with a common set of activators and effectors, and are strongly associated with oncogenic progression in tumor initiation. Mutated versions of Ras that are insensitive to GAP stimulation (and are therefore constitutively active) are found in a significant fraction of human cancers. Many Ras guanine nucleotide exchange factors (GEFs) have been identified. They are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active (GTP-bound) Ras interacts with several effector proteins that stimulate a variety of diverse cytoplasmic signaling activities. Some are known to positively mediate the oncogenic properties of Ras, including Raf, phosphatidylinositol 3-kinase (PI3K), RalGEFs, and Tiam1. Others are proposed to play negative regulatory roles in oncogenesis, including RASSF and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 162 -206710 cd04139 RalA_RalB Ral (Ras-like) family containing highly homologous RalA and RalB. The Ral (Ras-like) subfamily consists of the highly homologous RalA and RalB. Ral proteins are believed to play a crucial role in tumorigenesis, metastasis, endocytosis, and actin cytoskeleton dynamics. Despite their high sequence similarity (>80% sequence identity), nonoverlapping and opposing functions have been assigned to RalA and RalBs in tumor migration. In human bladder and prostate cancer cells, RalB promotes migration while RalA inhibits it. A Ral-specific set of GEFs has been identified that are activated by Ras binding. This RalGEF activity is enhanced by Ras binding to another of its target proteins, phosphatidylinositol 3-kinase (PI3K). Ral effectors include RLIP76/RalBP1, a Rac/cdc42 GAP, and the exocyst (Sec6/8) complex, a heterooctomeric protein complex that is involved in tethering vesicles to specific sites on the plasma membrane prior to exocytosis. In rat kidney cells, RalB is required for functional assembly of the exocyst and for localizing the exocyst to the leading edge of migrating cells. In human cancer cells, RalA is required to support anchorage-independent proliferation and RalB is required to suppress apoptosis. RalA has been shown to localize to the plasma membrane while RalB is localized to the intracellular vesicles. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 163 -206711 cd04140 ARHI_like A Ras homolog member I (ARHI). ARHI (A Ras homolog member I) is a member of the Ras family with several unique structural and functional properties. ARHI is expressed in normal human ovarian and breast tissue, but its expression is decreased or eliminated in breast and ovarian cancer. ARHI contains an N-terminal extension of 34 residues (human) that is required to retain its tumor suppressive activity. Unlike most other Ras family members, ARHI is maintained in the constitutively active (GTP-bound) state in resting cells and has modest GTPase activity. ARHI inhibits STAT3 (signal transducers and activators of transcription 3), a latent transcription factor whose abnormal activation plays a critical role in oncogenesis. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 165 -206712 cd04141 Rit_Rin_Ric Ras-like protein in all tissues (Rit), Ras-like protein in neurons (Rin) and Ras-related protein which interacts with calmodulin (Ric). Rit (Ras-like protein in all tissues), Rin (Ras-like protein in neurons) and Ric (Ras-related protein which interacts with calmodulin) form a subfamily with several unique structural and functional characteristics. These proteins all lack a the C-terminal CaaX lipid-binding motif typical of Ras family proteins, and Rin and Ric contain calmodulin-binding domains. Rin, which is expressed only in neurons, induces neurite outgrowth in rat pheochromocytoma cells through its association with calmodulin and its activation of endogenous Rac/cdc42. Rit, which is ubiquitously expressed in mammals, inhibits growth-factor withdrawl-mediated apoptosis and induces neurite extension in pheochromocytoma cells. Rit and Rin are both able to form a ternary complex with PAR6, a cell polarity-regulating protein, and Rac/cdc42. This ternary complex is proposed to have physiological function in processes such as tumorigenesis. Activated Ric is likely to signal in parallel with the Ras pathway or stimulate the Ras pathway at some upstream point, and binding of calmodulin to Ric may negatively regulate Ric activity. 172 -133342 cd04142 RRP22 Ras-related protein on chromosome 22 (RRP22) family. RRP22 (Ras-related protein on chromosome 22) subfamily consists of proteins that inhibit cell growth and promote caspase-independent cell death. Unlike most Ras proteins, RRP22 is down-regulated in many human tumor cells due to promoter methylation. RRP22 localizes to the nucleolus in a GTP-dependent manner, suggesting a novel function in modulating transport of nucleolar components. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Like most Ras family proteins, RRP22 is farnesylated. 198 -133343 cd04143 Rhes_like Ras homolog enriched in striatum (Rhes) and activator of G-protein signaling 1 (Dexras1/AGS1). This subfamily includes Rhes (Ras homolog enriched in striatum) and Dexras1/AGS1 (activator of G-protein signaling 1). These proteins are homologous, but exhibit significant differences in tissue distribution and subcellular localization. Rhes is found primarily in the striatum of the brain, but is also expressed in other areas of the brain, such as the cerebral cortex, hippocampus, inferior colliculus, and cerebellum. Rhes expression is controlled by thyroid hormones. In rat PC12 cells, Rhes is farnesylated and localizes to the plasma membrane. Rhes binds and activates PI3K, and plays a role in coupling serpentine membrane receptors with heterotrimeric G-protein signaling. Rhes has recently been shown to be reduced under conditions of dopamine supersensitivity and may play a role in determining dopamine receptor sensitivity. Dexras1/AGS1 is a dexamethasone-induced Ras protein that is expressed primarily in the brain, with low expression levels in other tissues. Dexras1 localizes primarily to the cytoplasm, and is a critical regulator of the circadian master clock to photic and nonphotic input. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. 247 -133344 cd04144 Ras2 Rat sarcoma (Ras) family 2 of small guanosine triphosphatases (GTPases). The Ras2 subfamily, found exclusively in fungi, was first identified in Ustilago maydis. In U. maydis, Ras2 is regulated by Sql2, a protein that is homologous to GEFs (guanine nucleotide exchange factors) of the CDC25 family. Ras2 has been shown to induce filamentous growth, but the signaling cascade through which Ras2 and Sql2 regulate cell morphology is not known. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. 190 -133345 cd04145 M_R_Ras_like R-Ras2/TC21, M-Ras/R-Ras3. The M-Ras/R-Ras-like subfamily contains R-Ras2/TC21, M-Ras/R-Ras3, and related members of the Ras family. M-Ras is expressed in lympho-hematopoetic cells. It interacts with some of the known Ras effectors, but appears to also have its own effectors. Expression of mutated M-Ras leads to transformation of several types of cell lines, including hematopoietic cells, mammary epithelial cells, and fibroblasts. Overexpression of M-Ras is observed in carcinomas from breast, uterus, thyroid, stomach, colon, kidney, lung, and rectum. In addition, expression of a constitutively active M-Ras mutant in murine bone marrow induces a malignant mast cell leukemia that is distinct from the monocytic leukemia induced by H-Ras. TC21, along with H-Ras, has been shown to regulate the branching morphogenesis of ureteric bud cell branching in mice. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 164 -206713 cd04146 RERG_RasL11_like Ras-related and Estrogen-Regulated Growth inhibitor (RERG) and Ras-like 11 (RasL11)-like families. RERG (Ras-related and Estrogen- Regulated Growth inhibitor) and Ras-like 11 are members of a novel subfamily of Ras that were identified based on their behavior in breast and prostate tumors, respectively. RERG expression was decreased or lost in a significant fraction of primary human breast tumors that lack estrogen receptor and are correlated with poor clinical prognosis. Elevated RERG expression correlated with favorable patient outcome in a breast tumor subtype that is positive for estrogen receptor expression. In contrast to most Ras proteins, RERG overexpression inhibited the growth of breast tumor cells in vitro and in vivo. RasL11 was found to be ubiquitously expressed in human tissue, but down-regulated in prostate tumors. Both RERG and RasL11 lack the C-terminal CaaX prenylation motif, where a = an aliphatic amino acid and X = any amino acid, and are localized primarily in the cytoplasm. Both are believed to have tumor suppressor activity. 166 -206714 cd04147 Ras_dva Ras - dorsal-ventral anterior localization (Ras-dva) family. Ras-dva subfamily. Ras-dva (Ras - dorsal-ventral anterior localization) subfamily consists of a set of proteins characterized only in Xenopus leavis, to date. In Xenopus Ras-dva expression is activated by the transcription factor Otx2 and begins during gastrulation throughout the anterior ectoderm. Ras-dva expression is inhibited in the anterior neural plate by factor Xanf1. Downregulation of Ras-dva results in head development abnormalities through the inhibition of several regulators of the anterior neural plate and folds patterning, including Otx2, BF-1, Xag2, Pax6, Slug, and Sox9. Downregulation of Ras-dva also interferes with the FGF-8a signaling within the anterior ectoderm. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. 197 -206715 cd04148 RGK Rem, Rem2, Rad, Gem/Kir (RGK) subfamily of Ras GTPases. RGK subfamily. The RGK (Rem, Rem2, Rad, Gem/Kir) subfamily of Ras GTPases are expressed in a tissue-specific manner and are dynamically regulated by transcriptional and posttranscriptional mechanisms in response to environmental cues. RGK proteins bind to the beta subunit of L-type calcium channels, causing functional down-regulation of these voltage-dependent calcium channels, and either termination of calcium-dependent secretion or modulation of electrical conduction and contractile function. Inhibition of L-type calcium channels by Rem2 may provide a mechanism for modulating calcium-triggered exocytosis in hormone-secreting cells, and has been proposed to influence the secretion of insulin in pancreatic beta cells. RGK proteins also interact with and inhibit the Rho/Rho kinase pathway to modulate remodeling of the cytoskeleton. Two characteristics of RGK proteins cited in the literature are N-terminal and C-terminal extensions beyond the GTPase domain typical of Ras superfamily members. The N-terminal extension is not conserved among family members; the C-terminal extension is reported to be conserved among the family and lack the CaaX prenylation motif typical of membrane-associated Ras proteins. However, a putative CaaX motif has been identified in the alignment of the C-terminal residues of this CD. 219 -206716 cd04149 Arf6 ADP ribosylation factor 6 (Arf6). Arf6 subfamily. Arf6 (ADP ribosylation factor 6) proteins localize to the plasma membrane, where they perform a wide variety of functions. In its active, GTP-bound form, Arf6 is involved in cell spreading, Rac-induced formation of plasma membrane ruffles, cell migration, wound healing, and Fc-mediated phagocytosis. Arf6 appears to change the actin structure at the plasma membrane by activating Rac, a Rho family protein involved in membrane ruffling. Arf6 is required for and enhances Rac formation of ruffles. Arf6 can regulate dendritic branching in hippocampal neurons, and in yeast it localizes to the growing bud, where it plays a role in polarized growth and bud site selection. In leukocytes, Arf6 is required for chemokine-stimulated migration across endothelial cells. Arf6 also plays a role in down-regulation of beta2-adrenergic receptors and luteinizing hormone receptors by facilitating the release of sequestered arrestin to allow endocytosis. Arf6 is believed to function at multiple sites on the plasma membrane through interaction with a specific set of GEFs, GAPs, and effectors. Arf6 has been implicated in breast cancer and melanoma cell invasion, and in actin remodelling at the invasion site of Chlamydia infection. 168 -206717 cd04150 Arf1_5_like ADP-ribosylation factor-1 (Arf1) and ADP-ribosylation factor-5 (Arf5). The Arf1-Arf5-like subfamily contains Arf1, Arf2, Arf3, Arf4, Arf5, and related proteins. Arfs1-5 are soluble proteins that are crucial for assembling coat proteins during vesicle formation. Each contains an N-terminal myristoylated amphipathic helix that is folded into the protein in the GDP-bound state. GDP/GTP exchange exposes the helix, which anchors to the membrane. Following GTP hydrolysis, the helix dissociates from the membrane and folds back into the protein. A general feature of Arf1-5 signaling may be the cooperation of two Arfs at the same site. Arfs1-5 are generally considered to be interchangeable in function and location, but some specific functions have been assigned. Arf1 localizes to the early/cis-Golgi, where it is activated by GBF1 and recruits the coat protein COPI. It also localizes to the trans-Golgi network (TGN), where it is activated by BIG1/BIG2 and recruits the AP1, AP3, AP4, and GGA proteins. Humans, but not rodents and other lower eukaryotes, lack Arf2. Human Arf3 shares 96% sequence identity with Arf1 and is believed to generally function interchangeably with Arf1. Human Arf4 in the activated (GTP-bound) state has been shown to interact with the cytoplasmic domain of epidermal growth factor receptor (EGFR) and mediate the EGF-dependent activation of phospholipase D2 (PLD2), leading to activation of the activator protein 1 (AP-1) transcription factor. Arf4 has also been shown to recognize the C-terminal sorting signal of rhodopsin and regulate its incorporation into specialized post-Golgi rhodopsin transport carriers (RTCs). There is some evidence that Arf5 functions at the early-Golgi and the trans-Golgi to affect Golgi-associated alpha-adaptin homology Arf-binding proteins (GGAs). 159 -206718 cd04151 Arl1 ADP ribosylation factor 1 (Arf1). Arl1 subfamily. Arl1 (Arf-like 1) localizes to the Golgi complex, where it is believed to recruit effector proteins to the trans-Golgi network. Like most members of the Arf family, Arl1 is myristoylated at its N-terminal helix and mutation of the myristoylation site disrupts Golgi targeting. In humans, the Golgi-localized proteins golgin-97 and golgin-245 have been identified as Arl1 effectors. Golgins are large coiled-coil proteins found in the Golgi, and these golgins contain a C-terminal GRIP domain, which is the site of Arl1 binding. Additional Arl1 effectors include the GARP (Golgi-associated retrograde protein)/VFT (Vps53) vesicle-tethering complex and Arfaptin 2. Arl1 is not required for exocytosis, but appears necessary for trafficking from the endosomes to the Golgi. In Drosophila zygotes, mutation of Arl1 is lethal, and in the host-bloodstream form of Trypanosoma brucei, Arl1 is essential for viability. 158 -206719 cd04152 Arl4_Arl7 Arf-like 4 (Arl4) and 7 (Arl7) GTPases. Arl4 (Arf-like 4) is highly expressed in testicular germ cells, and is found in the nucleus and nucleolus. In mice, Arl4 is developmentally expressed during embryogenesis, and a role in somite formation and central nervous system differentiation has been proposed. Arl7 has been identified as the only Arf/Arl protein to be induced by agonists of liver X-receptor and retinoid X-receptor and by cholesterol loading in human macrophages. Arl7 is proposed to play a role in transport between a perinuclear compartment and the plasma membrane, apparently linked to the ABCA1-mediated cholesterol secretion pathway. Older literature suggests that Arl6 is a part of the Arl4/Arl7 subfamily, but analyses based on more recent sequence data place Arl6 in its own subfamily. 183 -133353 cd04153 Arl5_Arl8 Arf-like 5 (Arl5) and 8 (Arl8) GTPases. Arl5/Arl8 subfamily. Arl5 (Arf-like 5) and Arl8, like Arl4 and Arl7, are localized to the nucleus and nucleolus. Arl5 is developmentally regulated during embryogenesis in mice. Human Arl5 interacts with the heterochromatin protein 1-alpha (HP1alpha), a nonhistone chromosomal protein that is associated with heterochromatin and telomeres, and prevents telomere fusion. Arl5 may also play a role in embryonic nuclear dynamics and/or signaling cascades. Arl8 was identified from a fetal cartilage cDNA library. It is found in brain, heart, lung, cartilage, and kidney. No function has been assigned for Arl8 to date. 174 -206720 cd04154 Arl2 Arf-like 2 (Arl2) GTPase. Arl2 (Arf-like 2) GTPases are members of the Arf family that bind GDP and GTP with very low affinity. Unlike most Arf family proteins, Arl2 is not myristoylated at its N-terminal helix. The protein PDE-delta, first identified in photoreceptor rod cells, binds specifically to Arl2 and is structurally very similar to RhoGDI. Despite the high structural similarity between Arl2 and Rho proteins and between PDE-delta and RhoGDI, the interactions between the GTPases and their effectors are very different. In its GTP bound form, Arl2 interacts with the protein Binder of Arl2 (BART), and the complex is believed to play a role in mitochondrial adenine nucleotide transport. In its GDP bound form, Arl2 interacts with tubulin- folding Cofactor D; this interaction is believed to play a role in regulation of microtubule dynamics that impact the cytoskeleton, cell division, and cytokinesis. 173 -206721 cd04155 Arl3 Arf-like 3 (Arl3) GTPase. Arl3 (Arf-like 3) is an Arf family protein that differs from most Arf family members in the N-terminal extension. In is inactive, GDP-bound form, the N-terminal extension forms an elongated loop that is hydrophobically anchored into the membrane surface; however, it has been proposed that this region might form a helix in the GTP-bound form. The delta subunit of the rod-specific cyclic GMP phosphodiesterase type 6 (PDEdelta) is an Arl3 effector. Arl3 binds microtubules in a regulated manner to alter specific aspects of cytokinesis via interactions with retinitis pigmentosa 2 (RP2). It has been proposed that RP2 functions in concert with Arl3 to link the cell membrane and the cytoskeleton in photoreceptors as part of the cell signaling or vesicular transport machinery. In mice, the absence of Arl3 is associated with abnormal epithelial cell proliferation and cyst formation. 174 -133356 cd04156 ARLTS1 Arf-like tumor suppressor gene 1 (ARLTS1 or Arl11). ARLTS1 (Arf-like tumor suppressor gene 1), also known as Arl11, is a member of the Arf family of small GTPases that is believed to play a major role in apoptotic signaling. ARLTS1 is widely expressed and functions as a tumor suppressor gene in several human cancers. ARLTS1 is a low-penetrance suppressor that accounts for a small percentage of familial melanoma or familial chronic lymphocytic leukemia (CLL). ARLTS1 inactivation seems to occur most frequently through biallelic down-regulation by hypermethylation of the promoter. In breast cancer, ARLTS1 alterations were typically a combination of a hypomorphic polymorphism plus loss of heterozygosity. In a case of thyroid adenoma, ARLTS1 alterations were polymorphism plus promoter hypermethylation. The nonsense polymorphism Trp149Stop occurs with significantly greater frequency in familial cancer cases than in sporadic cancer cases, and the Cys148Arg polymorphism is associated with an increase in high-risk familial breast cancer. 160 -206722 cd04157 Arl6 Arf-like 6 (Arl6) GTPase. Arl6 (Arf-like 6) forms a subfamily of the Arf family of small GTPases. Arl6 expression is limited to the brain and kidney in adult mice, but it is expressed in the neural plate and somites during embryogenesis, suggesting a possible role for Arl6 in early development. Arl6 is also believed to have a role in cilia or flagella function. Several proteins have been identified that bind Arl6, including Arl6 interacting protein (Arl6ip), and SEC61beta, a subunit of the heterotrimeric conducting channel SEC61p. Based on Arl6 binding to these effectors, Arl6 is also proposed to play a role in protein transport, membrane trafficking, or cell signaling during hematopoietic maturation. At least three specific homozygous Arl6 mutations in humans have been found to cause Bardet-Biedl syndrome, a disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Older literature suggests that Arl6 is a part of the Arl4/Arl7 subfamily, but analyses based on more recent sequence data place Arl6 in its own subfamily. 162 -206723 cd04158 ARD1 (ADP-ribosylation factor domain protein 1 (ARD1). ARD1 (ADP-ribosylation factor domain protein 1) is an unusual member of the Arf family. In addition to the C-terminal Arf domain, ARD1 has an additional 46-kDa N-terminal domain that contains a RING finger domain, two predicted B-Boxes, and a coiled-coil protein interaction motif. This domain belongs to the TRIM (tripartite motif) or RBCC (RING, B-Box, coiled-coil) family. Like most Arfs, the ARD1 Arf domain lacks detectable GTPase activity. However, unlike most Arfs, the full-length ARD1 protein has significant GTPase activity due to the GAP (GTPase-activating protein) activity exhibited by the 46-kDa N-terminal domain. The GAP domain of ARD1 is specific for its own Arf domain and does not bind other Arfs. The rate of GDP dissociation from the ARD1 Arf domain is slowed by the adjacent 15 amino acids, which act as a GDI (GDP-dissociation inhibitor) domain. ARD1 is ubiquitously expressed in cells and localizes to the Golgi and to the lysosomal membrane. Two Tyr-based motifs in the Arf domain are responsible for Golgi localization, while the GAP domain controls lysosomal localization. 169 -206724 cd04159 Arl10_like Arf-like 9 (Arl9) and 10 (Arl10) GTPases. Arl10-like subfamily. Arl9/Arl10 was identified from a human cancer-derived EST dataset. No functional information about the subfamily is available at the current time, but crystal structures of human Arl10b and Arl10c have been solved. 159 -206725 cd04160 Arfrp1 Arf-related protein 1 (Arfrp1). Arfrp1 (Arf-related protein 1), formerly known as ARP, is a membrane-associated Arf family member that lacks the N-terminal myristoylation motif. Arfrp1 is mainly associated with the trans-Golgi compartment and the trans-Golgi network, where it regulates the targeting of Arl1 and the GRIP domain-containing proteins, golgin-97 and golgin-245, onto Golgi membranes. It is also involved in the anterograde transport of the vesicular stomatitis virus G protein from the Golgi to the plasma membrane, and in the retrograde transport of TGN38 and Shiga toxin from endosomes to the trans-Golgi network. Arfrp1 also inhibits Arf/Sec7-dependent activation of phospholipase D. Deletion of Arfrp1 in mice causes embryonic lethality at the gastrulation stage and apoptosis of mesodermal cells, indicating its importance in development. 168 -133361 cd04161 Arl2l1_Arl13_like Arl2-like protein 1 (Arl2l1) and Arl13. Arl2l1 (Arl2-like protein 1) and Arl13 form a subfamily of the Arf family of small GTPases. Arl2l1 was identified in human cells during a search for the gene(s) responsible for Bardet-Biedl syndrome (BBS). Like Arl6, the identified BBS gene, Arl2l1 is proposed to have cilia-specific functions. Arl13 is found on the X chromosome, but its expression has not been confirmed; it may be a pseudogene. 167 -133362 cd04162 Arl9_Arfrp2_like Arf-like 9 (Arl9)/Arfrp2-like GTPase. Arl9/Arfrp2-like subfamily. Arl9 (Arf-like 9) was first identified as part of the Human Cancer Genome Project. It maps to chromosome 4q12 and is sometimes referred to as Arfrp2 (Arf-related protein 2). This is a novel subfamily identified in human cancers that is uncharacterized to date. 164 -206726 cd04163 Era E. coli Ras-like protein (Era) is a multifunctional GTPase. Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. 168 -206727 cd04164 trmE trmE is a tRNA modification GTPase. TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. 159 -206728 cd04165 GTPBP1_like GTP binding protein 1 (GTPBP1)-like family includes GTPBP2. Mammalian GTP binding protein 1 (GTPBP1), GTPBP2, and nematode homologs AGP-1 and CGP-1 are GTPases whose specific functions remain unknown. In mouse, GTPBP1 is expressed in macrophages, in smooth muscle cells of various tissues and in some neurons of the cerebral cortex; GTPBP2 tissue distribution appears to overlap that of GTPBP1. In human leukemia and macrophage cell lines, expression of both GTPBP1 and GTPBP2 is enhanced by interferon-gamma (IFN-gamma). The chromosomal location of both genes has been identified in humans, with GTPBP1 located in chromosome 22q12-13.1 and GTPBP2 located in chromosome 6p21-12. Human glioblastoma multiforme (GBM), a highly-malignant astrocytic glioma and the most common cancer in the central nervous system, has been linked to chromosomal deletions and a translocation on chromosome 6. The GBM translocation results in a fusion of GTPBP2 and PTPRZ1, a protein involved in oligodendrocyte differentiation, recovery, and survival. This fusion product may contribute to the onset of GBM. 224 -206729 cd04166 CysN_ATPS CysN, together with protein CysD, forms the ATP sulfurylase (ATPS) complex. CysN_ATPS subfamily. CysN, together with protein CysD, form the ATP sulfurylase (ATPS) complex in some bacteria and lower eukaryotes. ATPS catalyzes the production of ATP sulfurylase (APS) and pyrophosphate (PPi) from ATP and sulfate. CysD, which catalyzes ATP hydrolysis, is a member of the ATP pyrophosphatase (ATP PPase) family. CysN hydrolysis of GTP is required for CysD hydrolysis of ATP; however, CysN hydrolysis of GTP is not dependent on CysD hydrolysis of ATP. CysN is an example of lateral gene transfer followed by acquisition of new function. In many organisms, an ATPS exists which is not GTP-dependent and shares no sequence or structural similarity to CysN. 209 -206730 cd04167 Snu114p Snu114p, a spliceosome protein, is a GTPase. Snu114p subfamily. Snu114p is one of several proteins that make up the U5 small nuclear ribonucleoprotein (snRNP) particle. U5 is a component of the spliceosome, which catalyzes the splicing of pre-mRNA to remove introns. Snu114p is homologous to EF-2, but typically contains an additional N-terminal domain not found in Ef-2. This protein is part of the GTP translation factor family and the Ras superfamily, characterized by five G-box motifs. 213 -206731 cd04168 TetM_like Tet(M)-like family includes Tet(M), Tet(O), Tet(W), and OtrA, containing tetracycline resistant proteins. Tet(M), Tet(O), Tet(W), and OtrA are tetracycline resistance genes found in Gram-positive and Gram-negative bacteria. Tetracyclines inhibit protein synthesis by preventing aminoacyl-tRNA from binding to the ribosomal acceptor site. This subfamily contains tetracycline resistance proteins that function through ribosomal protection and are typically found on mobile genetic elements, such as transposons or plasmids, and are often conjugative. Ribosomal protection proteins are homologous to the elongation factors EF-Tu and EF-G. EF-G and Tet(M) compete for binding on the ribosomes. Tet(M) has a higher affinity than EF-G, suggesting these two proteins may have overlapping binding sites and that Tet(M) must be released before EF-G can bind. Tet(M) and Tet(O) have been shown to have ribosome-dependent GTPase activity. These proteins are part of the GTP translation factor family, which includes EF-G, EF-Tu, EF2, LepA, and SelB. 237 -206732 cd04169 RF3 Release Factor 3 (RF3) protein involved in the terminal step of translocation in bacteria. Peptide chain release factor 3 (RF3) is a protein involved in the termination step of translation in bacteria. Termination occurs when class I release factors (RF1 or RF2) recognize the stop codon at the A-site of the ribosome and activate the release of the nascent polypeptide. The class II release factor RF3 then initiates the release of the class I RF from the ribosome. RF3 binds to the RF/ribosome complex in the inactive (GDP-bound) state. GDP/GTP exchange occurs, followed by the release of the class I RF. Subsequent hydrolysis of GTP to GDP triggers the release of RF3 from the ribosome. RF3 also enhances the efficiency of class I RFs at less preferred stop codons and at stop codons in weak contexts. 268 -206733 cd04170 EF-G_bact Elongation factor G (EF-G) family. Translocation is mediated by EF-G (also called translocase). The structure of EF-G closely resembles that of the complex between EF-Tu and tRNA. This is an example of molecular mimicry; a protein domain evolved so that it mimics the shape of a tRNA molecule. EF-G in the GTP form binds to the ribosome, primarily through the interaction of its EF-Tu-like domain with the 50S subunit. The binding of EF-G to the ribosome in this manner stimulates the GTPase activity of EF-G. On GTP hydrolysis, EF-G undergoes a conformational change that forces its arm deeper into the A site on the 30S subunit. To accommodate this domain, the peptidyl-tRNA in the A site moves to the P site, carrying the mRNA and the deacylated tRNA with it. The ribosome may be prepared for these rearrangements by the initial binding of EF-G as well. The dissociation of EF-G leaves the ribosome ready to accept the next aminoacyl-tRNA into the A site. This group contains only bacterial members. 268 -206734 cd04171 SelB SelB, the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. SelB is an elongation factor needed for the co-translational incorporation of selenocysteine. Selenocysteine is coded by a UGA stop codon in combination with a specific downstream mRNA hairpin. In bacteria, the C-terminal part of SelB recognizes this hairpin, while the N-terminal part binds GTP and tRNA in analogy with elongation factor Tu (EF-Tu). It specifically recognizes the selenocysteine charged tRNAsec, which has a UCA anticodon, in an EF-Tu like manner. This allows insertion of selenocysteine at in-frame UGA stop codons. In E. coli SelB binds GTP, selenocysteyl-tRNAsec, and a stem-loop structure immediately downstream of the UGA codon (the SECIS sequence). The absence of active SelB prevents the participation of selenocysteyl-tRNAsec in translation. Archaeal and animal mechanisms of selenocysteine incorporation are more complex. Although the SECIS elements have different secondary structures and conserved elements between archaea and eukaryotes, they do share a common feature. Unlike in E. coli, these SECIS elements are located in the 3' UTRs. This group contains bacterial SelBs, as well as, one from archaea. 170 -206735 cd04172 Rnd3_RhoE_Rho8 Rnd3/RhoE/Rho8 GTPases. Rnd3/RhoE/Rho8 subfamily. Rnd3/RhoE/Rho8 is a member of the novel Rho subfamily Rnd, together with Rnd1/Rho6 and Rnd2/Rho7. Rnd3/RhoE is known to bind the serine-threonine kinase ROCK I. Unphosphorylated Rnd3/RhoE associates primarily with membranes, but ROCK I-phosphorylated Rnd3/RhoE localizes in the cytosol. Phosphorylation of Rnd3/RhoE correlates with its activity in disrupting RhoA-induced stress fibers and inhibiting Ras-induced fibroblast transformation. In cells that lack stress fibers, such as macrophages and monocytes, Rnd3/RhoE induces a redistribution of actin, causing morphological changes in the cell. In addition, Rnd3/RhoE has been shown to inhibit cell cycle progression in G1 phase at a point upstream of the pRb family pocket protein checkpoint. Rnd3/RhoE has also been shown to inhibit Ras- and Raf-induced fibroblast transformation. In mammary epithelial tumor cells, Rnd3/RhoE regulates the assembly of the apical junction complex and tight junction formation. Rnd3/RhoE is underexpressed in prostate cancer cells both in vitro and in vivo; re-expression of Rnd3/RhoE suppresses cell cycle progression and increases apoptosis, suggesting it may play a role in tumor suppression. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 182 -206736 cd04173 Rnd2_Rho7 Rnd2/Rho7 GTPases. Rnd2/Rho7 is a member of the novel Rho subfamily Rnd, together with Rnd1/Rho6 and Rnd3/RhoE/Rho8. Rnd2/Rho7 is transiently expressed in radially migrating cells in the brain while they are within the subventricular zone of the hippocampus and cerebral cortex. These migrating cells typically develop into pyramidal neurons. Cells that exogenously expressed Rnd2/Rho7 failed to migrate to upper layers of the brain, suggesting that Rnd2/Rho7 plays a role in the radial migration and morphological changes of developing pyramidal neurons, and that Rnd2/Rho7 degradation is necessary for proper cellular migration. The Rnd2/Rho7 GEF Rapostlin is found primarily in the brain and together with Rnd2/Rho7 induces dendrite branching. Unlike Rnd1/Rho6 and Rnd3/RhoE/Rho8, which are RhoA antagonists, Rnd2/Rho7 binds the GEF Pragmin and significantly stimulates RhoA activity and Rho-A mediated cell contraction. Rnd2/Rho7 is also found to be expressed in spermatocytes and early spermatids, with male-germ-cell Rac GTPase-activating protein (MgcRacGAP), where it localizes to the Golgi-derived pro-acrosomal vesicle. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. 221 -206737 cd04174 Rnd1_Rho6 Rnd1/Rho6 GTPases. Rnd1/Rho6 is a member of the novel Rho subfamily Rnd, together with Rnd2/Rho7 and Rnd3/RhoE/Rho8. Rnd1/Rho6 binds GTP but does not hydrolyze it to GDP, indicating that it is constitutively active. In rat, Rnd1/Rho6 is highly expressed in the cerebral cortex and hippocampus during synapse formation, and plays a role in spine formation. Rnd1/Rho6 is also expressed in the liver and in endothelial cells, and is upregulated in uterine myometrial cells during pregnancy. Like Rnd3/RhoE/Rho8, Rnd1/Rho6 is believed to function as an antagonist to RhoA. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 232 -133375 cd04175 Rap1 Rap1 family GTPase consists of Rap1a and Rap1b isoforms. The Rap1 subgroup is part of the Rap subfamily of the Ras family. It can be further divided into the Rap1a and Rap1b isoforms. In humans, Rap1a and Rap1b share 95% sequence homology, but are products of two different genes located on chromosomes 1 and 12, respectively. Rap1a is sometimes called smg p21 or Krev1 in the older literature. Rap1 proteins are believed to perform different cellular functions, depending on the isoform, its subcellular localization, and the effector proteins it binds. For example, in rat salivary gland, neutrophils, and platelets, Rap1 localizes to secretory granules and is believed to regulate exocytosis or the formation of secretory granules. Rap1 has also been shown to localize in the Golgi of rat fibroblasts, zymogen granules, plasma membrane, and the microsomal membrane of pancreatic acini, as well as in the endocytic compartment of skeletal muscle cells and fibroblasts. High expression of Rap1 has been observed in the nucleus of human oropharyngeal squamous cell carcinomas (SCCs) and cell lines; interestingly, in the SCCs, the active GTP-bound form localized to the nucleus, while the inactive GDP-bound form localized to the cytoplasm. Rap1 plays a role in phagocytosis by controlling the binding of adhesion receptors (typically integrins) to their ligands. In yeast, Rap1 has been implicated in multiple functions, including activation and silencing of transcription and maintenance of telomeres. Rap1a, which is stimulated by T-cell receptor (TCR) activation, is a positive regulator of T cells by directing integrin activation and augmenting lymphocyte responses. In murine hippocampal neurons, Rap1b determines which neurite will become the axon and directs the recruitment of Cdc42, which is required for formation of dendrites and axons. In murine platelets, Rap1b is required for normal homeostasis in vivo and is involved in integrin activation. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 164 -133376 cd04176 Rap2 Rap2 family GTPase consists of Rap2a, Rap2b, and Rap2c. The Rap2 subgroup is part of the Rap subfamily of the Ras family. It consists of Rap2a, Rap2b, and Rap2c. Both isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and Traf2- and Nck-interacting kinase (TNIK) are putative effectors of Rap2 in mediating the activation of c-Jun N-terminal kinase (JNK) to regulate the actin cytoskeleton. In human platelets, Rap2 was shown to interact with the cytoskeleton by binding the actin filaments. In embryonic Xenopus development, Rap2 is necessary for the Wnt/beta-catenin signaling pathway. The Rap2 interacting protein 9 (RPIP9) is highly expressed in human breast carcinomas and correlates with a poor prognosis, suggesting a role for Rap2 in breast cancer oncogenesis. Rap2b, but not Rap2a, Rap2c, Rap1a, or Rap1b, is expressed in human red blood cells, where it is believed to be involved in vesiculation. A number of additional effector proteins for Rap2 have been identified, including the RalGEFs RalGDS, RGL, and Rlf, which also interact with Rap1 and Ras. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. 163 -133377 cd04177 RSR1 RSR1/Bud1p family GTPase. RSR1/Bud1p is a member of the Rap subfamily of the Ras family that is found in fungi. In budding yeasts, RSR1 is involved in selecting a site for bud growth on the cell cortex, which directs the establishment of cell polarization. The Rho family GTPase cdc42 and its GEF, cdc24, then establish an axis of polarized growth by organizing the actin cytoskeleton and secretory apparatus at the bud site. It is believed that cdc42 interacts directly with RSR1 in vivo. In filamentous fungi, polar growth occurs at the tips of hypha and at novel growth sites along the extending hypha. In Ashbya gossypii, RSR1 is a key regulator of hyphal growth, localizing at the tip region and regulating in apical polarization of the actin cytoskeleton. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. 168 -206753 cd04178 Nucleostemin_like A circularly permuted subfamily of the Ras GTPases. Nucleostemin (NS) is a nucleolar protein that functions as a regulator of cell growth and proliferation in stem cells and in several types of cancer cells, but is not expressed in the differentiated cells of most mammalian adult tissues. NS shuttles between the nucleolus and nucleoplasm bidirectionally at a rate that is fast and independent of cell type. Lowering GTP levels decreases the nucleolar retention of NS, and expression of NS is abruptly down-regulated during differentiation prior to terminal cell division. Found only in eukaryotes, NS consists of an N-terminal basic domain, a coiled-coil domain, a GTP-binding domain, an intermediate domain, and a C-terminal acidic domain. Experimental evidence indicates that NS uses its GTP-binding property as a molecular switch to control the transition between the nucleolus and nucleoplasm, and this process involves interaction between the basic, GTP-binding, and intermediate domains of the protein. 171 -133022 cd04179 DPM_DPG-synthase_like DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily. DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. 185 -133023 cd04180 UGPase_euk_like Eukaryotic UGPase-like includes UDPase and UDPGlcNAc pyrophosphorylase enzymes. This family includes UDP-Glucose Pyrophosphorylase (UDPase) and UDPGlcNAc pyrophosphorylase enzymes. The two enzymes share significant sequence and structure similarity. UDP-Glucose Pyrophosphorylase catalyzes a reversible production of UDP-Glucose and pyrophosphate (PPi) from Glucose-1-phosphate and UTP. UDP-glucose plays pivotal roles in galactose utilization, in glycogen synthesis, and in the synthesis of the carbohydrate moieties of glycolipids , glycoproteins , and proteoglycans . UDP-N-acetylglucosamine (UDPGlcNAc) pyrophosphorylase (UAP) (also named GlcNAc1P uridyltransferase), catalyzes the reversible conversion of UTP and GlcNAc1P from PPi and UDPGlcNAc, which is a key precursor of N- and O-linked glycosylations and is essential for the synthesis of chitin (a major component of the fungal cell wall) and of the glycosylphosphatidylinositol (GPI) linker anchoring a variety of cell surface proteins to the plasma membrane. In bacteria, UDPGlcNAc represents an essential precursor for both peptidoglycan and lipopolysaccharide biosynthesis. 266 -133024 cd04181 NTP_transferase NTP_transferases catalyze the transfer of nucleotides onto phosphosugars. Nucleotidyltransferases transfer nucleotides onto phosphosugars. The enzyme family includes Alpha-D-Glucose-1-Phosphate Cytidylyltransferase, Mannose-1-phosphate guanyltransferase, and Glucose-1-phosphate thymidylyltransferase. The products are activated sugars that are precursors for synthesis of lipopolysaccharide, glycolipids and polysaccharides. 217 -133025 cd04182 GT_2_like_f GT_2_like_f is a subfamily of the glycosyltransferase family 2 (GT-2) with unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 186 -133026 cd04183 GT2_BcE_like GT2_BcbE_like is likely involved in the biosynthesis of the polysaccharide capsule. GT2_BcbE_like: The bcbE gene is one of the genes in the capsule biosynthetic locus of Pasteurella multocida. Its deducted product is likely involved in the biosynthesis of the polysaccharide capsule, which is found on surface of a wide range of bacteria. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. 231 -133027 cd04184 GT2_RfbC_Mx_like Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. 202 -133028 cd04185 GT_2_like_b Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 202 -133029 cd04186 GT_2_like_c Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 166 -133030 cd04187 DPM1_like_bac Bacterial DPM1_like enzymes are related to eukaryotic DPM1. A family of bacterial enzymes related to eukaryotic DPM1; Although the mechanism of eukaryotic enzyme is well studied, the mechanism of the bacterial enzymes is not well understood. The eukaryotic DPM1 is the catalytic subunit of eukaryotic Dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. The enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. This protein family belongs to Glycosyltransferase 2 superfamily. 181 -133031 cd04188 DPG_synthase DPG_synthase is involved in protein N-linked glycosylation. UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. 211 -133032 cd04189 G1P_TT_long G1P_TT_long represents the long form of glucose-1-phosphate thymidylyltransferase. This family is the long form of Glucose-1-phosphate thymidylyltransferase. Glucose-1-phosphate thymidylyltransferase catalyses the formation of dTDP-glucose, from dTTP and glucose 1-phosphate. It is the first enzyme in the biosynthesis of dTDP-L-rhamnose, a cell wall constituent and a feedback inhibitor of the enzyme.There are two forms of Glucose-1-phosphate thymidylyltransferase in bacteria and archeae; short form and long form. The long form, which has an extra 50 amino acids c-terminal, is found in many species for which it serves as a sugar-activating enzyme for antibiotic biosynthesis and or other, unknown pathways, and in which dTDP-L-rhamnose is not necessarily produced.The long from enzymes also have a left-handed parallel helix domain at the c-terminus, whereas, th eshort form enzymes do not have this domain. The homotetrameric, feedback inhibited short form is found in numerous bacterial species that produce dTDP-L-rhamnose. 236 -133033 cd04190 Chitin_synth_C C-terminal domain of Chitin Synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin. Chitin synthase, also called UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase, catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of GlcNAc residues formed by covalent beta-1,4 linkages. Chitin is an important component of the cell wall of fungi and bacteria and it is synthesized on the cytoplasmic surface of the cell membrane by membrane bound chitin synthases. Studies with fungi have revealed that most of them contain more than one chitin synthase gene. At least five subclasses of chitin synthases have been identified. 244 -133034 cd04191 Glucan_BSP_ModH Glucan_BSP_ModH catalyzes the elongation of beta-1,2 polyglucose chains of glucan. Periplasmic Glucan Biosynthesis protein ModH is a glucosyltransferase that catalyzes the elongation of beta-1,2 polyglucose chains of glucan, requiring a beta-glucoside as a primer and UDP-glucose as a substrate. Glucans are composed of 5 to 10 units of glucose forming a highly branched structure, where beta-1,2-linked glucose constitutes a linear backbone to which branches are attached by beta-1,6 linkages. In Escherichia coli, glucans are located in the periplasmic space, functioning as regulator of osmolarity. It is synthesized at a maximum when cells are grown in a medium with low osmolarity. It has been shown to span the cytoplasmic membrane. 254 -133035 cd04192 GT_2_like_e Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 229 -133036 cd04193 UDPGlcNAc_PPase UDPGlcNAc pyrophosphorylase catalayzes the synthesis of UDPGlcNAc. UDP-N-acetylglucosamine (UDPGlcNAc) pyrophosphorylase (UAP) (also named GlcNAc1P uridyltransferase), catalyzes the reversible conversion of UTP and GlcNAc1 to PPi and UDPGlcNAc. UDP-N-acetylglucosamine (UDPGlcNAc), the activated form of GlcNAc, is a key precursor of N- and O-linked glycosylations. It is essential for the synthesis of chitin (a major component of the fungal cell wall) and of the glycosylphosphatidylinositol (GPI) linker which anchors a variety of cell surface proteins to the plasma membrane. In bacteria, UDPGlcNAc represents an essential precursor for both peptidoglycan and lipopolysaccharide biosynthesis. Human UAP has two isoforms, resulting from alternative splicing of a single gene and differing by the presence or absence of 17 amino acids. UDPGlcNAc pyrophosphorylase shares significant sequence and structure conservation with UDPglucose pyrophosphorylase. 323 -133037 cd04194 GT8_A4GalT_like A4GalT_like proteins catalyze the addition of galactose or glucose residues to the lipooligosaccharide (LOS) or lipopolysaccharide (LPS) of the bacterial cell surface. The members of this family of glycosyltransferases catalyze the addition of galactose or glucose residues to the lipooligosaccharide (LOS) or lipopolysaccharide (LPS) of the bacterial cell surface. The enzymes exhibit broad substrate specificities. The known functions found in this family include: Alpha-1,4-galactosyltransferase, LOS-alpha-1,3-D-galactosyltransferase, UDP-glucose:(galactosyl) LPS alpha1,2-glucosyltransferase, UDP-galactose: (glucosyl) LPS alpha1,2-galactosyltransferase, and UDP-glucose:(glucosyl) LPS alpha1,2-glucosyltransferase. Alpha-1,4-galactosyltransferase from N. meningitidis adds an alpha-galactose from UDP-Gal (the donor) to a terminal lactose (the acceptor) of the LOS structure of outer membrane. LOSs are virulence factors that enable the organism to evade the immune system of host cells. In E. coli, the three alpha-1,2-glycosyltransferases, that are involved in the synthesis of the outer core region of the LPS, are all members of this family. The three enzymes share 40 % of sequence identity, but have different sugar donor or acceptor specificities, representing the structural diversity of LPS. 248 -133038 cd04195 GT2_AmsE_like GT2_AmsE_like is involved in exopolysaccharide amylovora biosynthesis. AmsE is a glycosyltransferase involved in exopolysaccharide amylovora biosynthesis in Erwinia amylovora. Amylovara is one of the three exopolysaccharide produced by E. amylovora. Amylovara-deficient mutants are non-pathogenic. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. 201 -133039 cd04196 GT_2_like_d Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 214 -133040 cd04197 eIF-2B_epsilon_N The N-terminal domain of epsilon subunit of the eIF-2B is a subfamily of glycosyltransferase 2. N-terminal domain of epsilon subunit of the eukaryotic translation initiation factor 2B (eIF-2B): eIF-2B is a guanine nucleotide-exchange factor which mediates the exchange of GDP (bound to initiation factor eIF2) for GTP, generating active eIF2.GTP complex. EIF2B is a complex multimeric protein consisting of five subunits named alpha, beta, gamma, delta and epsilon. Subunit epsilon shares sequence similarity with gamma subunit, and with a family of bifunctional nucleotide-binding enzymes such as ADP-glucose pyrophosphorylase, suggesting that epsilon subunit may play roles in nucleotide binding activity. In yeast, eIF2B gamma enhances the activity of eIF2B-epsilon leading to the idea that these subunits form the catalytic subcomplex. 217 -133041 cd04198 eIF-2B_gamma_N The N-terminal domain of gamma subunit of the eIF-2B is a subfamily of glycosyltransferase 2. N-terminal domain of gamma subunit of the eukaryotic translation initiation factor 2B (eIF-2B): eIF-2B is a guanine nucleotide-exchange factor which mediates the exchange of GDP (bound to initiation factor eIF2) for GTP, generating active eIF2.GTP complex. EIF2B is a complex multimeric protein consisting of five subunits named alpha, beta, gamma, delta and epsilon. Subunit gamma shares sequence similarity with epsilon subunit, and with a family of bifunctional nucleotide-binding enzymes such as ADP-glucose pyrophosphorylase, suggesting that epsilon subunit may play roles in nucleotide binding activity. In yeast, eIF2B gamma enhances the activity of eIF2B-epsilon leading to the idea that these subunits form the catalytic subcomplex. 214 -259862 cd04199 CuRO_1_ceruloplasmin_like Cupredoxin domains 1, 3, and 5 of ceruloplasmin and similar proteins. This family includes the first, third, and fifth cupredoxin domains of ceruloplasmin and similar proteins including the first, third and fifth cupredoxin domains of unprocessed coagulation factors V and VIII. Ceruloplasmin (ferroxidase) is a multicopper oxidase essential for normal iron homeostasis. It functions in copper transport, amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains and exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. Human Factor VIII facilitates blood clotting by acting as a cofactor for factor IXa. Factor VIII and IXa forms a complex in the presence of Ca+2 and phospholipids that converts factor X to the activated form Xa. 177 -259863 cd04200 CuRO_2_ceruloplasmin_like Cupredoxin domains 2, 4, and 6 of ceruloplasmin and similar proteins. This family includes the second, fourth and sixth cupredoxin domains of ceruloplasmin and similar proteins, including the second, fourth, and sixth cupredoxin domains of unprocessed coagulation factors V and VIII. Ceruloplasmin (ferroxidase) is a multicopper oxidase essential for normal iron homeostasis. Ceruloplasmin also functions in copper transport, amine oxidase and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains and exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. Human Factor VIII facilitates blood clotting by acting as a cofactor for factor IXa Factor VIII and IXa forms a complex in the presence of Ca+2 and phospholipids that converts factor X to the activated form Xa. 141 -259864 cd04201 CuRO_1_CuNIR_like Cupredoxin domain 1 of Copper-containing nitrite reductase and two-domain laccase. Copper-containing nitrite reductase (CuNIR), which catalyzes the reduction of NO2- to NO, is the key enzyme in the denitrification process in denitrifying bacteria. CuNIR contains at least one type 1 copper center and a type 2 copper center, which serves as the active site of the enzyme. A histidine, bound to the Type 2 Cu center, is responsible for binding and reducing nitrite. A Cys-His bridge plays an important role in facilitating rapid electron transfer from the type 1 center to the type 2 center. A reduced type I blue copper protein (pseudoazurin) was found to be a specific electron transfer donor for the copper-containing NIR in bacteria Alcaligenes faecalis. The two-domain laccase (small laccase) in this family differs significantly from all laccases. It resembles two domain nitrite reductase in both sequence homology and structure similarity. It consists of two domains and forms trimers and hence resembles the quaternary structure of nitrite reductases more than that of larger laccases. 120 -259865 cd04202 CuRO_D2_2dMcoN_like The second cupredoxin domain of bacterial two domain multicopper oxidase McoN and similar proteins. This family includes bacterial two domain multicopper oxidases (2dMCOs) represented by the McoN from Nitrosomonas europaea. McoN is a trimeric type C blue copper oxidase. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The 2dMCO is proposed to be a key intermediate in the evolution of three domain MCOs. The biological function of McoN has not been characterized. Multicopper oxidases couple oxidation of substrates with reduction of dioxygen to water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. 138 -259866 cd04203 Cupredoxin_like_3 Uncharacterized subfamiy of Cupredoxin. Cupredoxins contain type I copper centers and are involved in inter-molecular electron transfer reactions. Cupredoxins are blue copper proteins, having an intense blue color due to the presence of a mononuclear type 1 (T1) copper site. Structurally, the cupredoxin-like fold consists of a beta-sandwich with 7 strands in 2 beta-sheets, which is arranged in a Greek-key beta-barrel. Some of these proteins have lost the ability to bind copper. Majority of family members contain multiple cupredoxin domain repeats: ceruloplamin and coagulation factors V/VIII have six repeats; laccase, ascorbate oxidase, and spore coat protein A, and multicopper oxidase CueO contain three repeats; and nitrite reductase has two repeats. Others are mono-domain cupredoxins, such as plastocyanin, pseudoazurin, plantacyanin, azurin, rusticyanin, stellacyanin, quinol oxidase and the periplasmic domain of cytochrome c oxidase subunit II. Proteins of this uncharacterized subfamily contain a single cupredoxin domain. 84 -259867 cd04204 Pseudoazurin_like Small blue copper proteins including pseudocyanin, plastocyanin, halocyanin and amicyanin. The Pseudocyanin-like family of copper-binding proteins (or blue (type 1) copper domain) is a family of small proteins that bind a single copper atom and are characterized by an intense electronic absorption band near 600 nm. Pseudoazurin (PAz) has been identified as a electron donor in the denitrification pathway. For example, PAz acts as an electron donor to cytochrome c peroxidase and N2OR from Paracoccus pantotrophus (Pp), and to the copper containing nitrite reductase (NiR) that catalyzes the second step of denitrification. Plastocyanin is found in cyanobacteria, higher plants, and some algae where it plays a role in photosynthesis. Plastocyanin is responsible for transporting electrons from PSII to PSI. This family also includes halocyanins found in halophilic archaea such as Natronomonas pharaonis (Natronobacterium pharaonis) and amicyanin found in bacteria Paracoccus denitrificans. 92 -259868 cd04205 CuRO_2_LCC_like Cupredoxin domain 2 of laccase-like multicopper oxidases; including laccase, CueO, spore coat protein A, ascorbate oxidase and similar proteins. Laccase-like multicopper oxidases (MCOs) are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 152 -259869 cd04206 CuRO_1_LCC_like Cupredoxin domain 1 of laccase-like multicopper oxidases; including laccase, CueO, spore coat protein A, ascorbate oxidase and similar proteins. Laccase-like multicopper oxidases (MCOs) in this family contain three cupredoxin domains. They are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites; Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. Also included in this family are cupredoxin domains 1, 3, and 5 of the 6-domain MCO ceruloplasmin and similar proteins. 120 -259870 cd04207 CuRO_3_LCC_like Cupredoxin domain 3 of laccase-like multicopper oxidases; including laccase, CueO, spore coat protein A, ascorbate oxidase and similar proteins. Laccase-like multicopper oxidases (MCOs) in this family contain three cupredoxin domains. They are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites; Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. Also included in this family are cupredoxin domains 2, 4, and 6 of the 6-domain MCO ceruloplasmin and similar proteins. 132 -259871 cd04208 CuRO_2_CuNIR Cupredoxin domain 2 of Copper-containing nitrite reductase. Copper-containing nitrite reductase (CuNIR), which catalyzes the reduction of NO2- to NO, is the key enzyme in the denitrification process in denitrifying bacteria. CuNIR contains at least one type 1 copper center and a type 2 copper center in the protein. The type 2 copper center of a copper nitrite reductase is the active site of the enzyme. A histidine, bound to the Type 2 Cu center, is responsible for binding and reducing nitrite. A Cys-His bridge plays an important role in facilitating rapid electron transfer from the type 1 center to the type 2 center. A reduced type I blue copper protein (pseudoazurin) was found to be a specific electron transfer donor for the copper-containing NIR in bacteria Alcaligenes faecalis. 143 -259872 cd04210 Cupredoxin_like_1 Uncharacterized Cupredoxin-like subfamily. Cupredoxins contain type I copper centers and are involved in inter-molecular electron transfer reactions. Cupredoxins are blue copper proteins because they have an intense blue color due to the presence of a mononuclear type 1 (T1) copper site. Structurally, the cupredoxin-like fold consists of a beta-sandwich with 7 strands in 2 beta-sheets, which is arranged in a Greek-key beta-barrel. Some of these proteins have lost the ability to bind copper. Majority of family members contain multiple cupredoxin domain repeats; ceruloplasmin and coagulation factors V/VIII have six repeats; Laccase, ascorbate oxidase, and spore coat protein A, and multicopper oxidase CueO contain three repeats; and nitrite reductase has two repeats. Others are mono-domain cupredoxins, such as plastocyanin, pseudoazurin, plantacyanin, azurin, rusticyanin, stellacyanin, quinol oxidase and the periplasmic domain of cytochrome c oxidase subunit II. 111 -259873 cd04211 Cupredoxin_like_2 Uncharacterized Cupredoxin-like subfamily. Cupredoxins contain type I copper centers and are involved in inter-molecular electron transfer reactions. Cupredoxins are blue copper proteins because they have an intense blue color due to the presence of a mononuclear type 1 (T1) copper site. Structurally, the cupredoxin-like fold consists of a beta-sandwich with 7 strands in 2 beta-sheets, which is arranged in a Greek-key beta-barrel. Some of these proteins have lost the ability to bind copper. Majority of family members contain multiple cupredoxin domain repeats; ceruloplasmin and coagulation factors V/VIII have six repeats; Laccase, ascorbate oxidase, and spore coat protein A, and multicopper oxidase CueO contain three repeats; and nitrite reductase has two repeats. Others are mono-domain cupredoxins, such as plastocyanin, pseudoazurin, plantacyanin, azurin, rusticyanin, stellacyanin, quinol oxidase and the periplasmic domain of cytochrome c oxidase subunit II. 110 -259874 cd04212 CuRO_UO_II The cupredoxin domain of Ubiquinol oxidase subunit II. Ubiquinol oxidase, the terminal oxidase in the respiratory chains of aerobic bacteria, is a multi-chain transmembrane protein located in the cell membrane. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits in ubiquinol oxidase varies from two to five. Although subunit II of ubiquinol oxidase lacks the binuclear CuA site found in cytochrome c oxidases, the structure is conserved. 99 -259875 cd04213 CuRO_CcO_Caa3_II The cupredoxin domain of Caa3 type Cytochrome c oxidase subunit II. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of most bacteria, is a multi-chain transmembrane protein located in the inner membrane the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. Caa3 type of CcO Subunit II contains a copper-copper binuclear site called CuA, which is believed to be involved in electron transfer from cytochrome c to the cytochromes a, a3 and CuB active site in subunit I. 103 -259876 cd04214 PAD_N N-terminal non-catalytic domain of protein-arginine deiminase. The N-terminal non-catalytic domain of protein-arginine deiminase has a cupredoxin-like fold, but lacks the Cu binding site. PAD (protein-arginine deiminase) and protein L-arginine iminohydrolase catalyze the conversion of protein arginine residues to citrulline residues post-translationally in a process called citrullination. The modification plays crucial regulatory roles in development and cell differentiation. 108 -259877 cd04215 Nitrosocyanin Nitrosocyanin (NC) is a mononuclear red copper protein. Nitrosocyanin (NC) is isolated from the ammonia oxidizing bacterium Nitrosomonas europaea. Nitrosocyanin exhibits remote sequence homology to classic blue copper proteins; its spectroscopic and electrochemical properties are different. The structure of NC is a trimer of single domain cupredoxins. Nitroscocyanin may mediate electron transfer. It could have a novel role as a nitric oxide dehydrogenase or a nitric oxide reductase in the oxidation of ammonia. 107 -259878 cd04216 Phytocyanin Phytocyanins are plant blue or type I copper proteins. Phytocyanins are plant blue or type I copper proteins. They are involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. Phytocyanins are classified into four groups: stellacyanin, plantacyanin, uclacyanin and early nodulin groups. Stellacyanin appears to be associated with the plant cell wall; it may be involved in oxidative reactions to build polymeric material making up the cell wall. Plantacyanin is shown to play a role in reproduction in Arabidopsis. Plantacyanins may also be stress-related proteins and may be involved in plant defense responses. The early nodulin-like protein (OsENODL1) from Oryza sativa is expressed specifically at the late developmental stage of the seeds. 98 -259879 cd04217 Cupredoxin_Fibrocystin-L_like Cupredoxin domain of PKHDL1, a homolog of the autosomal recessive polycystic kidney disease protein. One member of this family is Fibrocystin-L, a homolog of the autosomal recessive polycystic kidney disease protein PKHD1. Human fibrocystin-L is predicted to be a large receptor protein (466 kDa) with a signal peptide, a single transmembrane domain and a short cytoplasmic tail. Fibrocystin-L is widely expressed at a low level in most tissues but is up-regulated specifically in T lymphocytes following activation signals. It may play roles in immunity. 86 -259880 cd04218 Pseudoazurin Pseudoazurin (Paz) is a type I blue copper electron-transfer protein. Pseudoazurin (PAz) has been identified as an electron donor to the denitrification pathway. For example, PAz acts as an electron donor to cytochrome c peroxidase and N2OR from Paracoccus pantotrophus (Pp), and to the copper containing nitrite reductase (NiR) that catalyzes the second step of denitrification. It has been shown that pseudoazurin dramatically enhances the reaction profile of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 and facilitates release of the product nitric oxide. The ability of this small redox protein to interact with a multitude of structurally different partners has been attributed to the hydrophobic character of the binding surface. 117 -259881 cd04219 Plastocyanin Plastocyanin is a type I copper protein and functions in the electron transfer from PSII to PSI. Plastocyanin is a small copper-containing protein found in cyanobacteria, higher plants, and some algae, where it plays a role in photosynthesis. The two photosystems that are primarily responsible for photosynthesis are photosystem I (PSI) and photosystem II (PSII). The flow of electrons begins in PSII, which acts as a proton pump. Plastocyanin is responsible for transporting electrons from PSII to PSI. 97 -259882 cd04220 Halocyanin Halocyanin is an archaea blue (type I) copper redox protein. Halocyanins are blue (type I) copper redox proteins found in halophilic archaea such as Natronomonas pharaonis (Natronobacterium pharaonis). Halocyanin may serve as a mobile electron carrier at a peripheral membrane protein. The copper-binding domain is present only once in some halocyanins and is duplicated in others. 92 -259883 cd04221 MauL Methylamine utilization protein MauL. MauL is one of the products from the methylamine utilization gene cluster in Methylobacterium extorquens AM1. Mutants generated by insertions in mauL were not able to grow on methylamine or any other primary amine as carbon sources. MauL belongs to the blue or type I copper protein family. They are involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. 83 -259884 cd04222 CuRO_1_ceruloplasmin The first cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the first cupredoxin domain of ceruloplasmin. 183 -259885 cd04223 N2OR_C The C-terminal cupredoxin domain of Nitrous-oxide reductase. Nitrous-oxide reductase participates in nitrogen metabolism and catalyzes the last step in dissimilatory nitrate reduction, the two-electron reduction of N2O to N2. It contains copper ions as cofactors in the form of a binuclear CuA center at the site of electron entry and a tetranuclear CuZ centre at the active site. The C-terminus of Nitrous-oxide reductase is a cupredoxin domain. 95 -259886 cd04224 CuRO_3_ceruloplasmin The third cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the third cupredoxin domain of ceruloplasmin. 197 -259887 cd04225 CuRO_5_ceruloplasmin The fifth cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the fifth cupredoxin domain of ceruloplasmin. 171 -259888 cd04226 CuRO_1_FV_like The first cupredoxin domain of coagulation factor VIII and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 1 of unprocessed Factor V or the heavy chain of Factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 165 -259889 cd04227 CuRO_3_FVIII_like The third cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 3 of unprocessed Factor VIII or the heavy chain of circulating Factor VIII, and similar proteins. 177 -259890 cd04228 CuRO_5_FVIII_like The fifth cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 5 of unprocessed Factor VIII or the first cupredoxin domain of the light chain of circulating Factor VIII, and similar proteins. 169 -259891 cd04229 CuRO_1_Ceruloplasmin_like_1 cupredoxin domain of ceruloplasmin homologs. Uncharacterized subfamily of ceruloplasmin homologous proteins. Ceruloplasmin (ferroxidase) is a multicopper oxidase essential for normal iron homeostasis. Ceruloplasmin also functions in copper transport, amine oxidase and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains and exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the first domain of the triplicated units. 175 -259892 cd04230 Sulfocyanin Sulfocyanin is a blue copper protein in archaebacterium Sulfolobus acidocaldarius. Sulfocyanin is a blue copper protein with a putative membrane anchoring hydrophobic motif at the N-terminus. It may substitute for cytochrome C in electron transfer reactions in archaea. 143 -259893 cd04231 Rusticyanin Rusticyanin is a cupredoxin in archaea and proteobacteria. Rusticyanin is a copper-containing protein which is involved in electron-transfer. The members of this family are found in archaea and proteobacteria. It is a cupredoxin, or blue-copper protein due to its color. Rusticyanin, extracted from the bacteria Thiobacillus ferrooxidans is redox active down to PH 2.0 and the acid-stable cytochrome c is the primary acceptor of the electron. This organism can grow on Fe2+ as its sole energy source. Rusticyanin is thought to be a principal component in the iron respiratory electron transport chain of T. ferrooxidans. 127 -259894 cd04232 CuRO_1_CueO_FtsP The first Cupredoxin domain of the multicopper oxidase CueO, the cell division protein FtsP, and similar proteins. CueO is a multicopper oxidase (MCO) that is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CueO is a periplasmic multicopper oxidase that is stimulated by exogenous copper(II). FtsP (also named SufI) is a component of the cell division apparatus. It is involved in protecting or stabilizing the assembly of divisomes under stress conditions. FtsP belongs to the multicopper oxidase superfamily but lacks metal cofactors. The protein is localized at septal rings and may serve as a scaffolding function. Members of this subfamily contain three cupredoxin domains and this model represents the first domain. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. FtsP does not contain any copper binding sites. 120 -259895 cd04233 Auracyanin Auracyanins A and B and similar proteins. This subfamily includes both auracyanins A and B from the photosynthetic bacterium Chloroflexus aurantiacus and similar proteins. Auracyanins A and B are very similar blue copper proteins with 38% sequence identity and are homologous to the bacterial redox protein Azurin. However, auracyanin A is expressed only when C. aurantiacus cells are grown in light, whereas auracyanin B is expressed in both dark and light conditions. Thus, auracyanin A may function as a redox partner in photosynthesis, while auracyanin B may function in aerobic respiration. 121 -239767 cd04234 AAK_AK AAK_AK: Amino Acid Kinase Superfamily (AAK), Aspartokinase (AK); this CD includes the N-terminal catalytic domain of aspartokinase (4-L-aspartate-4-phosphotransferase;). AK is the first enzyme in the biosynthetic pathway of the aspartate family of amino acids (lysine, threonine, methionine, and isoleucine) and the bacterial cell wall component, meso-diaminopimelate. It also catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. One mechanism for the regulation of this pathway is by the production of several isoenzymes of aspartokinase with different repressors and allosteric inhibitors. Pairs of ACT domains are proposed to specifically bind amino acids leading to allosteric regulation of the enzyme. In Escherichia coli, three different aspartokinase isoenzymes are regulated specifically by lysine, methionine, and threonine. AK-HSDHI (ThrA) and AK-HSDHII (MetL) are bifunctional enzymes that consist of an N-terminal AK and a C-terminal homoserine dehydrogenase (HSDH). ThrA and MetL are involved in threonine and methionine biosynthesis, respectively. The third isoenzyme, AKIII (LysC), is monofunctional and is involved in lysine synthesis. The three Bacillus subtilis isoenzymes, AKI (DapG), AKII (LysC), and AKIII (YclM), are feedback-inhibited by meso-diaminopimelate, lysine, and lysine plus threonine, respectively. The E. coli lysine-sensitive AK is described as a homodimer, whereas, the B. subtilis lysine-sensitive AK is described as a heterodimeric complex of alpha- and beta- subunits that are formed from two in-frame overlapping genes. A single AK enzyme type has been described in Pseudomonas, Amycolatopsis, and Corynebacterium. The fungal aspartate pathway is regulated at the AK step, with L-Thr being an allosteric inhibitor of the Saccharomyces cerevisiae AK (Hom3). At least two distinct AK isoenzymes can occur in higher plants, one is a monofunctional lysine-sensitive isoenzyme, which is involved in the overall regulation of the pathway and can be synergistically inhibited by S-adenosylmethionine. The other isoenzyme is a bifunctional, threonine-sensitive AK-HSDH protein. Also included in this CD is the catalytic domain of the Methylomicrobium alcaliphilum ectoine AK, the first enzyme of the ectoine biosynthetic pathway, found in this bacterium, and several other halophilic/halotolerant bacteria. 227 -239768 cd04235 AAK_CK AAK_CK: Carbamate kinase (CK) catalyzes both the ATP-phosphorylation of carbamate and carbamoyl phosphate (CP) utilization with the production of ATP from ADP and CP. Both CK (this CD) and nonhomologous CP synthetase synthesize carbamoyl phosphate, an essential precursor of arginine and pyrimidine bases, in the presence of ATP, bicarbonate, and ammonia. CK is a homodimer of 33 kDa subunits and is a member of the Amino Acid Kinase Superfamily (AAK). 308 -239769 cd04236 AAK_NAGS-Urea AAK_NAGS-Urea: N-acetylglutamate (NAG) kinase-like domain of the NAG Synthase (NAGS) of the urea cycle found in animals. Ureogenic NAGS is a mitochondrial enzyme catalyzing the formation of NAG from acetylcoenzyme A and L-glutamate; NAG is an essential allosteric activator of carbamylphosphate synthase I, the first and rate limiting enzyme of the urea cycle. Ureogenic NAGS activity is dependent on the concentration of glutamate (substrate) and arginine (activator). Domain architecture of ureogenic NAGS consists of an N-terminal NAG kinase-like (ArgB) domain (this CD) and a C-terminal DUF619 domain. Members of this CD belong to the protein superfamily, the Amino Acid Kinase Family (AAKF). 271 -239770 cd04237 AAK_NAGS-ABP AAK_NAGS-ABP: N-acetylglutamate (NAG) kinase-like domain of the NAG Synthase (NAGS) of the arginine-biosynthesis pathway (ABP) found in gamma- and beta-proteobacteria and higher plant chloroplasts. Domain architecture of these NAGS consisted of an N-terminal NAG kinase-like (ArgB) domain (this CD) and a C-terminal NAG synthase, acetyltransferase (ArgA) domain. Both bacterial and plant sequences in this CD have a conserved N-terminal extension; a similar sequence in the NAG kinases of the cyclic arginine-biosynthesis pathway has been implicated in feedback inhibition sensing. Plant sequences also have an N-terminal chloroplast transit peptide and an insert (approx. 70 residues) in the C-terminal region of ArgB. Members of this CD belong to the Amino Acid Kinase Superfamily (AAK). 280 -239771 cd04238 AAK_NAGK-like AAK_NAGK-like: N-Acetyl-L-glutamate kinase (NAGK)-like . Included in this CD are the Escherichia coli and Pseudomonas aeruginosa type NAGKs which catalyze the phosphorylation of N-acetyl-L-glutamate (NAG) by ATP in the second step of arginine biosynthesis found in bacteria and photosynthetic organisms using either the acetylated, noncyclic (NC), or non-acetylated, cyclic (C) route of ornithine biosynthesis. Also included in this CD is a distinct group of uncharacterized (UC) bacterial and archeal NAGKs. Members of this CD belong to the Amino Acid Kinase Superfamily (AAK). 256 -239772 cd04239 AAK_UMPK-like AAK_UMPK-like: UMP kinase (UMPK)-like, the microbial/chloroplast uridine monophosphate kinase (uridylate kinase) enzyme that catalyzes UMP phosphorylation and plays a key role in pyrimidine nucleotide biosynthesis. Regulation of this process is via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). The UMP kinases of E. coli (Ec) and Pyrococcus furiosus (Pf) are known to function as homohexamers, with GTP and UTP being allosteric effectors. Like other related enzymes (carbamate kinase, aspartokinase, and N-acetylglutamate kinase) the E. coli and most bacterial UMPKs have a conserved, N-terminal, lysine residue proposed to function in the catalysis of the phosphoryl group transfer, whereas most archaeal UMPKs appear to lack this residue and the Pyrococcus furiosus structure has an additional Mg ion bound to the ATP molecule which is proposed to function as the catalysis instead. Also included in this CD are the alpha and beta subunits of the Mo storage protein (MosA and MosB) characterized as an alpha4-beta4 octamer containing an ATP-dependent, polynuclear molybdenum-oxide cluster. These and related sequences in this CD are members of the Amino Acid Kinase Superfamily (AAK). 229 -239773 cd04240 AAK_UC AAK_UC: Uncharacterized (UC) amino acid kinase-like proteins found mainly in archaea and a few bacteria. Sequences in this CD are members of the Amino Acid Kinase (AAK) superfamily. 203 -239774 cd04241 AAK_FomA-like AAK_FomA-like: This CD includes a fosfomycin biosynthetic gene product, FomA, and similar proteins found in a wide range of organisms. Together, the fomA and fomB genes in the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis confer high-level fosfomycin resistance. FomA and FomB proteins converted fosfomycin to fosfomycin monophosphate and fosfomycin diphosphate in the presence of ATP and a magnesium ion, indicating that FomA and FomB catalyzed phosphorylations of fosfomycin and fosfomycin monophosphate, respectively. FomA and related sequences in this CD are members of the Amino Acid Kinase Superfamily (AAK). 252 239775 cd04242 AAK_G5K_ProB AAK_G5K_ProB: Glutamate-5-kinase (G5K) catalyzes glutamate-dependent ATP cleavage; G5K transfers the terminal phosphoryl group of ATP to the gamma-carboxyl group of glutamate, in the first and controlling step of proline (and, in mammals, ornithine) biosynthesis. G5K is subject to feedback allosteric inhibition by proline or ornithine. In microorganisms and plants, proline plays an important role as an osmoprotectant and, in mammals, ornithine biosynthesis is crucial for proper ammonia detoxification, since a G5K mutation has been shown to cause human hyperammonaemia. Microbial G5K generally consists of two domains: a catalytic G5K domain and one PUA (pseudo uridine synthases and archaeosine-specific transglycosylases) domain, and some lack the PUA domain. G5K requires free Mg for activity, it is tetrameric, and it aggregates to higher forms in a proline-dependent way. G5K lacking the PUA domain remains tetrameric, active, and proline-inhibitable, but the Mg requirement and the proline-triggered aggregation are greatly diminished and abolished, respectively, and more proline is needed for inhibition. Although plant and animal G5Ks are part of a bifunctional polypeptide, delta 1-pyrroline-5-carboxylate synthetase (P5CS), composed of an N-terminal G5K (ProB) and a C-terminal glutamyl 5- phosphate reductase (G5PR; ProA); bacterial and yeast G5Ks are monofunctional single-polypeptide enzymes. In this CD, all three domain architectures are present: G5K, G5K+PUA, and G5K+G5PR. 251 -239776 cd04243 AAK_AK-HSDH-like AAK_AK-HSDH-like: Amino Acid Kinase Superfamily (AAK), AK-HSDH-like; this family includes the N-terminal catalytic domain of aspartokinase (AK) of the bifunctional enzyme AK- homoserine dehydrogenase (HSDH). These aspartokinases are found in such bacteria as E. coli (AKI-HSDHI, ThrA and AKII-HSDHII, MetL) and in higher plants (Z. mays AK-HSDH). AK and HSDH are the first and third enzymes in the biosynthetic pathway of the aspartate family of amino acids. AK catalyzes the phosphorylation of Asp to P-aspartyl phosphate. HSDH catalyzes the NADPH-dependent conversion of Asp 3-semialdehyde to homoserine. ThrA and MetL are involved in threonine and methionine biosynthesis, respectively. In E. coli, ThrA is subject to allosteric regulation by the end product L-threonine and the native enzyme is reported to be tetrameric. As with bacteria, plant AK and HSDH are feedback inhibited by pathway end products. Maize AK-HSDH is a Thr-sensitive 180-kD enzyme. Arabidopsis AK-HSDH is an alanine-activated, threonine-sensitive enzyme whose ACT domains, located C-terminal to the AK catalytic domain, were shown to be involved in allosteric activation. Also included in this CD is the catalytic domain of the aspartokinase (AK) of the lysine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme (LysC) found in some bacteria such as E. coli. In E. coli, LysC is reported to be a homodimer of 50 kD subunits. Also included in this CD is the catalytic domain of aspartokinase (AK) of the bifunctional enzyme AK - DAP decarboxylase (DapDC) found in some bacteria. DapDC, which is the lysA gene product, catalyzes the decarboxylation of DAP to lysine. 293 -239777 cd04244 AAK_AK-LysC-like AAK_AK-LysC-like: Amino Acid Kinase Superfamily (AAK), AK-LysC-like; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the lysine-sensitive AK isoenzyme found in higher plants. The lysine-sensitive AK isoenzyme is a monofunctional protein. It is involved in the overall regulation of the aspartate pathway and can be synergistically inhibited by S-adenosylmethionine. Also included in this CD is an uncharacterized LysC-like AK found in Euryarchaeota and some bacteria. AK catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. 298 -239778 cd04245 AAK_AKiii-YclM-BS AAK_AKiii-YclM-BS: Amino Acid Kinase Superfamily (AAK), AKiii-YclM-BS; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the lysine plus threonine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in Bacilli (Bacillus subtilis YclM) and Clostridia species. Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. In Bacillus subtilis (BS), YclM is reported to be a single polypeptide of 50 kD. The Bacillus subtilis 168 AKIII is induced by lysine and repressed by threonine, and it is synergistically inhibited by lysine and threonine. 288 -239779 cd04246 AAK_AK-DapG-like AAK_AK-DapG-like: Amino Acid Kinase Superfamily (AAK), AK-DapG-like; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the diaminopimelate-sensitive aspartokinase isoenzyme AKI (DapG), a monofunctional enzymes found in Bacilli (Bacillus subtilis 168), Clostridia, and Actinobacteria bacterial species, as well as, the catalytic AK domain of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis 168, the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, and related isoenzymes. In Bacillus subtilis, the regulation of the diaminopimelate-lysine biosynthetic pathway involves dual control by diaminopimelate and lysine, effected through separate diaminopimelate- and lysine-sensitive aspartokinase isoenzymes. The role of the AKI isoenzyme is most likely to provide a constant level of aspartyl-beta-phosphate for the biosynthesis of diaminopimelate for peptidoglycan synthesis and dipicolinate during sporulation. The B. subtilis 168 AKII is induced by methionine, and repressed and inhibited by lysine. In Corynebacterium glutamicum and other various Gram-positive bacteria, the DAP-lysine pathway is feedback regulated by the concerted action of lysine and threonine. Also included in this CD are the aspartokinases of the extreme thermophile, Thermus thermophilus HB27, the Gram-negative obligate methylotroph, Methylophilus methylotrophus AS1, and those single aspartokinase isoenzyme types found in Pseudomonas, C. glutamicum, and Amycolatopsis lactamdurans. The B. subtilis AKI is tetrameric consisting of two alpha and two beta subunits; the alpha (43 kD) and beta (17 kD) subunit formed by two in-phase overlapping genes. The alpha subunit contains the AK catalytic domain and two ACT domains. The beta subunit contains two ACT domains. The B. subtilis 168 AKII aspartokinase is also described as tetrameric consisting of two alpha and two beta subunits. Some archeal aspartokinases in this group lack recognizable ACT domains. 239 -239780 cd04247 AAK_AK-Hom3 AAK_AK-Hom3: Amino Acid Kinase Superfamily (AAK), AK-Hom3; this CD includes the N-terminal catalytic domain of the aspartokinase HOM3, a monofunctional class enzyme found in Saccharomyces cerevisiae and other related AK domains. Aspartokinase, the first enzyme in the aspartate metabolic pathway, catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP, and in fungi, is responsible for the production of threonine, isoleucine and methionine. S. cerevisiae has a single aspartokinase isoenzyme type, which is regulated by feedback, allosteric inhibition by L-threonine. Recent studies show that the allosteric transition triggered by binding of threonine to AK involves a large change in the conformation of the native hexameric enzyme that is converted to an inactive one of different shape and substantially smaller hydrodynamic size. 306 -239781 cd04248 AAK_AK-Ectoine AAK_AK-Ectoine: Amino Acid Kinase Superfamily (AAK), AK-Ectoine; this CD includes the N-terminal catalytic domain of the aspartokinase of the ectoine (1,4,5,6-tetrahydro-2-methyl pyrimidine-4-carboxylate) biosynthetic pathway found in Methylomicrobium alcaliphilum, Vibrio cholerae, and other various halotolerant or halophilic bacteria. Bacteria exposed to hyperosmotic stress accumulate organic solutes called 'compatible solutes' of which ectoine, a heterocyclic amino acid, is one. Apart from its osmotic function, ectoine also exhibits a protective effect on proteins, nucleic acids and membranes against a variety of stress factors. de novo synthesis of ectoine starts with the phosphorylation of L-aspartate and shares its first two enzymatic steps with the biosynthesis of amino acids of the aspartate family: aspartokinase and L-aspartate-semialdehyde dehydrogenase. The M. alcaliphilum and the V. cholerae aspartokinases are encoded on the ectABCask operon. 304 -239782 cd04249 AAK_NAGK-NC AAK_NAGK-NC: N-Acetyl-L-glutamate kinase - noncyclic (NAGK-NC) catalyzes the phosphorylation of the gamma-COOH group of N-acetyl-L-glutamate (NAG) by ATP in the second step of microbial arginine biosynthesis using the acetylated, noncyclic route of ornithine biosynthesis. There are two variants of this pathway. In one, typified by the pathway in Escherichia coli, glutamate is acetylated by acetyl-CoA and acetylornithine is deacylated hydrolytically. In this pathway, feedback inhibition by arginine occurs at the initial acetylation of glutamate and not at the phosphorylation of NAG by NAGK. Homodimeric NAGK-NC are members of the Amino Acid Kinase Superfamily (AAK). 252 -239783 cd04250 AAK_NAGK-C AAK_NAGK-C: N-Acetyl-L-glutamate kinase - cyclic (NAGK-C) catalyzes the phosphorylation of the gamma-COOH group of N-acetyl-L-glutamate (NAG) by ATP in the second step of arginine biosynthesis found in some bacteria and photosynthetic organisms using the non-acetylated, cyclic route of ornithine biosynthesis. In this pathway, glutamate is first N-acetylated and then phosphorylated by NAGK to give phosphoryl NAG, which is converted to NAG-ornithine. There are two variants of this pathway. In one, typified by the pathway in Thermotoga maritima and Pseudomonas aeruginosa, the acetyl group is recycled by reversible transacetylation from acetylornithine to glutamate. The phosphorylation of NAG by NAGK is feedback inhibited by arginine. In photosynthetic organisms, NAGK is the target of the nitrogen-signaling protein PII. Hexameric formation of NAGK domains appears to be essential to both arginine inhibition and NAGK-PII complex formation. NAGK-C are members of the Amino Acid Kinase Superfamily (AAK). 279 -239784 cd04251 AAK_NAGK-UC AAK_NAGK-UC: N-Acetyl-L-glutamate kinase - uncharacterized (NAGK-UC). This domain is similar to Escherichia coli and Pseudomonas aeruginosa NAGKs which catalyze the phosphorylation of the gamma-COOH group of N-acetyl-L-glutamate (NAG) by ATP in the second step of microbial arginine biosynthesis. These uncharacterized domain sequences are found in some bacteria (Deinococci and Chloroflexi) and archea and belong to the Amino Acid Kinase Superfamily (AAK). 257 -239785 cd04252 AAK_NAGK-fArgBP AAK_NAGK-fArgBP: N-Acetyl-L-glutamate kinase (NAGK) of the fungal arginine-biosynthetic pathway (fArgBP). The nuclear-encoded, mitochondrial polyprotein precursor with an N-terminal NAGK (ArgB) domain (this CD), a central DUF619 domain, and a C-terminal reductase domain (ArgC, N-Acetylglutamate Phosphate Reductase, NAGPR). The precursor is cleaved in the mitochondria into two distinct enzymes (NAGK-DUF619 and NAGPR). Native molecular weights of these proteins indicate that the kinase is an octamer whereas the reductase is a dimer. This CD also includes some gamma-proteobacteria (Xanthomonas and Xylella) NAG kinases with an N-terminal NAGK (ArgB) domain (this CD) and a C-terminal DUF619 domain. The DUF619 domain is described as a putative distant homolog of the acetyltransferase, ArgA, predicted to function in NAG synthase association in fungi. Eukaryotic sequences have an N-terminal mitochondrial transit peptide. Members of this NAG kinase domain CD belong to the Amino Acid Kinase Superfamily (AAK). 248 -239786 cd04253 AAK_UMPK-PyrH-Pf AAK_UMPK-PyrH-Pf: UMP kinase (UMPK)-Pf, the mostly archaeal uridine monophosphate kinase (uridylate kinase) enzymes that catalyze UMP phosphorylation and play a key role in pyrimidine nucleotide biosynthesis; regulation of this process is via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). The UMP kinase of Pyrococcus furiosus (Pf) is known to function as a homohexamer, with GTP and UTP being allosteric effectors. Like other related enzymes (carbamate kinase, aspartokinase, and N-acetylglutamate kinase) the E. coli and most bacterial UMPKs have a conserved, N-terminal, lysine residue proposed to function in the catalysis of the phosphoryl group transfer, whereas most archaeal UMPKs (this CD) appear to lack this residue and the Pyrococcus furiosus structure has an additional Mg ion bound to the ATP molecule which is proposed to function as the catalysis instead. Members of this CD belong to the Amino Acid Kinase Superfamily (AAK). 221 -239787 cd04254 AAK_UMPK-PyrH-Ec UMP kinase (UMPK)-Ec, the microbial/chloroplast uridine monophosphate kinase (uridylate kinase) enzyme that catalyzes UMP phosphorylation and plays a key role in pyrimidine nucleotide biosynthesis; regulation of this process is via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). The UMP kinase of E. coli (Ec) is known to function as a homohexamer, with GTP and UTP being allosteric effectors. Like other related enzymes (carbamate kinase, aspartokinase, and N-acetylglutamate kinase) the E. coli and most bacterial and chloroplast UMPKs (this CD) have a conserved, N-terminal, lysine residue proposed to function in the catalysis of the phosphoryl group transfer, whereas most archaeal UMPKs appear to lack this residue and the Pyrococcus furiosus structure has an additional Mg ion bound to the ATP molecule which is proposed to function as the catalysis instead. Members of this CD belong to the Amino Acid Kinase Superfamily (AAK). 231 -239788 cd04255 AAK_UMPK-MosAB AAK_UMPK-MosAB: This CD includes the alpha and beta subunits of the Mo storage protein (MosA and MosB) which are related to uridine monophosphate kinase (UMPK) enzymes that catalyze the phosphorylation of UMP by ATP, yielding UDP, and playing a key role in pyrimidine nucleotide biosynthesis. The Mo storage protein from the nitrogen-fixing bacterium, Azotobacter vinelandii, is characterized as an alpha4-beta4 octamer containing a polynuclear molybdenum-oxide cluster which is ATP-dependent to bind Mo and pH-dependent to release Mo. These and related bacterial sequences in this CD are members of the Amino Acid Kinase Superfamily (AAK). 262 -239789 cd04256 AAK_P5CS_ProBA AAK_P5CS_ProBA: Glutamate-5-kinase (G5K) domain of the bifunctional delta 1-pyrroline-5-carboxylate synthetase (P5CS), composed of an N-terminal G5K (ProB) and a C-terminal glutamyl 5- phosphate reductase (G5PR, ProA), the first and second enzyme catalyzing proline (and, in mammals, ornithine) biosynthesis. G5K transfers the terminal phosphoryl group of ATP to the gamma-carboxyl group of glutamate, and is subject to feedback allosteric inhibition by proline or ornithine. In plants, proline plays an important role as an osmoprotectant and, in mammals, ornithine biosynthesis is crucial for proper ammonia detoxification, since a G5K mutation has been shown to cause human hyperammonaemia. 284 -239790 cd04257 AAK_AK-HSDH AAK_AK-HSDH: Amino Acid Kinase Superfamily (AAK), AK-HSDH; this CD includes the N-terminal catalytic domain of aspartokinase (AK) of the bifunctional enzyme AK - homoserine dehydrogenase (HSDH). These aspartokinases are found in bacteria (E. coli AKI-HSDHI, ThrA and E. coli AKII-HSDHII, MetL) and higher plants (Z. mays AK-HSDH). AK and HSDH are the first and third enzymes in the biosynthetic pathway of the aspartate family of amino acids. AK catalyzes the phosphorylation of Asp to P-aspartyl phosphate. HSDH catalyzes the NADPH-dependent conversion of Asp 3-semialdehyde to homoserine. ThrA and MetL are involved in threonine and methionine biosynthesis, respectively. In E. coli, ThrA is subject to allosteric regulation by the end product L-threonine and the native enzyme is reported to be tetrameric. As with bacteria, plant AK and HSDH are feedback inhibited by pathway end products. Maize AK-HSDH is a Thr-sensitive 180-kD enzyme. Arabidopsis AK-HSDH is an alanine-activated, threonine-sensitive enzyme whose ACT domains, located C-terminal to the AK catalytic domain, were shown to be involved in allosteric activation. 294 -239791 cd04258 AAK_AKiii-LysC-EC AAK_AKiii-LysC-EC: Amino Acid Kinase Superfamily (AAK), AKiii-LysC-EC: this CD includes the N-terminal catalytic aspartokinase (AK) domain of the lysine-sensitive aspartokinase isoenzyme AKIII. AKIII is a monofunctional class enzyme (LysC) found in some bacteria such as E. coli. Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. In E. coli, LysC is reported to be a homodimer of 50 kD subunits. 292 -239792 cd04259 AAK_AK-DapDC AAK_AK-DapDC: Amino Acid Kinase Superfamily (AAK), AK-DapDC; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the bifunctional enzyme AK - DAP decarboxylase (DapDC) found in some bacteria. Aspartokinase is the first enzyme in the aspartate metabolic pathway, catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. DapDC, which is the lysA gene product, catalyzes the decarboxylation of DAP to lysine. 295 -239793 cd04260 AAK_AKi-DapG-BS AAK_AKi-DapG-BS: Amino Acid Kinase Superfamily (AAK), AKi-DapG; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the diaminopimelate-sensitive aspartokinase isoenzyme AKI (DapG), a monofunctional class enzyme found in Bacilli (Bacillus subtilis 168), Clostridia, and Actinobacteria bacterial species. In Bacillus subtilis, the regulation of the diaminopimelate-lysine biosynthetic pathway involves dual control by diaminopimelate and lysine, effected through separate diaminopimelate- and lysine-sensitive aspartokinase isoenzymes. AKI activity is invariant during the exponential and stationary phases of growth and is not altered by addition of amino acids to the growth medium. The role of this isoenzyme is most likely to provide a constant level of aspartyl-beta-phosphate for the biosynthesis of diaminopimelate for peptidoglycan synthesis and dipicolinate during sporulation. The B. subtilis AKI is tetrameric consisting of two alpha and two beta subunits; the alpha (43 kD) and beta (17 kD) subunit formed by two in-phase overlapping genes. The alpha subunit contains the AK catalytic domain and two ACT domains. The beta subunit contains two ACT domains. 244 -239794 cd04261 AAK_AKii-LysC-BS AAK_AKii-LysC-BS: Amino Acid Kinase Superfamily (AAK), AKii; this CD includes the N-terminal catalytic aspartokinase (AK) domain of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis 168, and the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, and related sequences. In B. subtilis 168, the regulation of the diaminopimelate (Dap)-lysine biosynthetic pathway involves dual control by Dap and lysine, effected through separate Dap- and lysine-sensitive aspartokinase isoenzymes. The B. subtilis 168 AKII is induced by methionine, and repressed and inhibited by lysine. Although Corynebacterium glutamicum is known to contain a single aspartokinase isoenzyme type, both the succinylase and dehydrogenase variant pathways of DAP-lysine synthesis operate simultaneously in this organism. In this organism and other various Gram-positive bacteria, the DAP-lysine pathway is feedback regulated by the concerted action of lysine and theronine. Also included in this CD are the aspartokinases of the extreme thermophile, Thermus thermophilus HB27, the Gram-negative obligate methylotroph, Methylophilus methylotrophus AS1, and those single aspartokinases found in Pseudomons, C. glutamicum, and Amycolatopsis lactamdurans. B. subtilis 168 AKII, and the C. glutamicum, Streptomyces clavuligerus and A. lactamdurans aspartokinases are described as tetramers consisting of two alpha and two beta subunits; the alpha (44 kD) and beta (18 kD) subunits formed by two in-phase overlapping polypeptides. 239 -176265 cd04263 DUF619-NAGK-FABP DUF619 domain of N-acetylglutamate kinase (NAGK) of the fungal arginine-biosynthetic pathway. DUF619-NAGK-FABP: DUF619 domain of N-acetylglutamate kinase (NAGK) of the fungal arginine-biosynthetic pathway (FABP). The nuclear-encoded, mitochondrial polyprotein precursor (ARG5,6) consists of an N-terminal NAGK (ArgB) domain, a central DUF619 domain, and a C-terminal reductase domain (ArgC, N-Acetylglutamate Phosphate Reductase, NAGPR). The precursor is cleaved into two distinct enzymes (NAGK-DUF619 and NAGPR) in the mitochondria. Native molecular weights of these proteins indicate that the kinase is an octamer whereas the reductase is a dimer. Arg5,6 catalyzes the second reaction of arginine biosynthesis; the phosphorylation of the gamma-carboxyl group of NAG to produce N-acetylglutamylphosphate (NAGP) which is subsequently converted to ornithine in two more steps. It also binds and regulates the promoters of nuclear and mitochondrial genes, and may possibly regulate precursor mRNA metabolism. The DUF619 domain function has yet to be characterized. 98 -176266 cd04264 DUF619-NAGS DUF619 domain of various N-acetylglutamate Synthases of the fungal arginine-biosynthetic pathway and urea cycle found in humans and fish. DUF619-NAGS: This family includes the DUF619 domain of various N-acetylglutamate synthases (NAGS) of the urea cycle found in humans and fish, the DUF619 domain of the NAGS of the fungal arginine-biosynthetic pathway (FABP), as well as the DUF619 domain present in C-terminal of a NAG kinase-like domain in a limited number of predicted NAGSs found in bacteria and Dictyostelium. Ureogenic NAGS is a mitochondrial enzyme catalyzing the formation of NAG from acetylcoenzyme A and L-glutamate. NAGS is an essential allosteric activator of carbamylphosphate synthase I, the first and rate limiting enzyme of the urea cycle. Domain architecture of ureogenic and fungal NAGS consists of an N-terminal NAG kinase-like domain and a C-terminal DUF619 domain. The DUF619 domain function has yet to be characterized. 99 -176267 cd04265 DUF619-NAGS-U DUF619 domain of various N-acetylglutamate Synthases (NAGS) of the urea (U) cycle of humans and fish. This family includes the DUF619 domain of various N-acetylglutamate synthases (NAGS) of the urea cycle found in humans and fish, the DUF619 domain of the NAGS of the fungal arginine-biosynthetic pathway (FABP), as well as the DUF619 domain present in C-terminal of a NAG kinase-like domain in a limited number of predicted NAGSs found in bacteria and Dictyostelium. Ureogenic NAGS is a mitochondrial enzyme catalyzing the formation of NAG from acetylcoenzyme A and L-glutamate. NAGS is an essential allosteric activator of carbamylphosphate synthase I, the first and rate limiting enzyme of the urea cycle. Domain architecture of ureogenic and fungal NAGS consists of an N-terminal NAG kinase-like domain and a C-terminal DUF619 domain. The DUF619 domain function has yet to be characterized. 99 -176268 cd04266 DUF619-NAGS-FABP DUF619 domain of N-acetylglutamate Synthase of the fungal arginine-biosynthetic pathway. DUF619-NAGS-FABP: This family includes the DUF619 domain of N-acetylglutamate synthase (NAGS) of the fungal arginine-biosynthetic pathway (FABP). This NAGS (also known as arginine-requiring protein 2 or ARG2) consists of an N-terminal NAG kinase-like domain and a C-terminal DUF619 domain. NAGS catalyzes the formation of NAG from acetylcoenzyme A and L-glutamate. The DUF619 domain, yet to be characterized, is predicted to function in NAGS association in fungi. 108 -239795 cd04267 ZnMc_ADAM_like Zinc-dependent metalloprotease, ADAM_like or reprolysin_like subgroup. The adamalysin_like or ADAM family of metalloproteases contains proteolytic domains from snake venoms, proteases from the mammalian reproductive tract, and the tumor necrosis factor alpha convertase, TACE. ADAMs (A Disintegrin And Metalloprotease) are glycoproteins, which play roles in cell signaling, cell fusion, and cell-cell interactions. 192 -239796 cd04268 ZnMc_MMP_like Zinc-dependent metalloprotease, MMP_like subfamily. This group contains matrix metalloproteinases (MMPs), serralysins, and the astacin_like family of proteases. 165 -239797 cd04269 ZnMc_adamalysin_II_like Zinc-dependent metalloprotease; adamalysin_II_like subfamily. Adamalysin II is a snake venom zinc endopeptidase. This subfamily contains other snake venom metalloproteinases, as well as membrane-anchored metalloproteases belonging to the ADAM family. ADAMs (A Disintegrin And Metalloprotease) are glycoproteins, which play roles in cell signaling, cell fusion, and cell-cell interactions. 194 -239798 cd04270 ZnMc_TACE_like Zinc-dependent metalloprotease; TACE_like subfamily. TACE, the tumor-necrosis factor-alpha converting enzyme, releases soluble TNF-alpha from transmembrane pro-TNF-alpha. 244 -239799 cd04271 ZnMc_ADAM_fungal Zinc-dependent metalloprotease, ADAM_fungal subgroup. The adamalysin_like or ADAM (A Disintegrin And Metalloprotease) family of metalloproteases are integral membrane proteases acting on a variety of extracellular targets. They are involved in shedding soluble peptides or proteins from the cell surface. This subfamily contains fungal ADAMs, whose precise function has yet to be determined. 228 -239800 cd04272 ZnMc_salivary_gland_MPs Zinc-dependent metalloprotease, salivary_gland_MPs. Metalloproteases secreted by the salivary glands of arthropods. 220 -239801 cd04273 ZnMc_ADAMTS_like Zinc-dependent metalloprotease, ADAMTS_like subgroup. ADAMs (A Disintegrin And Metalloprotease) are glycoproteins, which play roles in cell signaling, cell fusion, and cell-cell interactions. This particular subfamily represents domain architectures that combine ADAM-like metalloproteinases with thrombospondin type-1 repeats. ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases are inhibited by TIMPs (tissue inhibitors of metalloproteinases), and they play roles in coagulation, angiogenesis, development and progression of arthritis. They hydrolyze the von Willebrand factor precursor and various components of the extracellular matrix. 207 -239802 cd04275 ZnMc_pappalysin_like Zinc-dependent metalloprotease, pappalysin_like subfamily. The pregnancy-associated plasma protein A (PAPP-A or pappalysin-1) cleaves insulin-like growth factor-binding proteins 4 and 5, thereby promoting cell growth by releasing bound growth factor. This model includes pappalysins and related metalloprotease domains from all three kingdoms of life. The three-dimensional structure of an archaeal representative, ulilysin, has been solved. 225 -239803 cd04276 ZnMc_MMP_like_2 Zinc-dependent metalloprotease; MMP_like sub-family 2. A group of bacterial metalloproteinase domains similar to matrix metalloproteinases and astacin. 197 -239804 cd04277 ZnMc_serralysin_like Zinc-dependent metalloprotease, serralysin_like subfamily. Serralysins and related proteases are important virulence factors in pathogenic bacteria. They may be secreted into the medium via a mechanism found in gram-negative bacteria, that does not require n-terminal signal sequences which are cleaved after the transmembrane translocation. A calcium-binding domain c-terminal to the metalloprotease domain, which contains multiple tandem repeats of a nine-residue motif including the pattern GGxGxD, and which forms a parallel beta roll may be involved in the translocation mechanism and/or substrate binding. Serralysin family members may have a broad spectrum of substrates each, including host immunoglobulins, complement proteins, cell matrix and cytoskeletal proteins, as well as antimicrobial peptides. 186 -239805 cd04278 ZnMc_MMP Zinc-dependent metalloprotease, matrix metalloproteinase (MMP) sub-family. MMPs are responsible for a great deal of pericellular proteolysis of extracellular matrix and cell surface molecules, playing crucial roles in morphogenesis, cell fate specification, cell migration, tissue repair, tumorigenesis, gain or loss of tissue-specific functions, and apoptosis. In many instances, they are anchored to cell membranes via trans-membrane domains, and their activity is controlled via TIMPs (tissue inhibitors of metalloproteinases). 157 -239806 cd04279 ZnMc_MMP_like_1 Zinc-dependent metalloprotease; MMP_like sub-family 1. A group of bacterial, archaeal, and fungal metalloproteinase domains similar to matrix metalloproteinases and astacin. 156 -239807 cd04280 ZnMc_astacin_like Zinc-dependent metalloprotease, astacin_like subfamily or peptidase family M12A, a group of zinc-dependent proteolytic enzymes with a HExxH zinc-binding site/active site. Members of this family may have an amino terminal propeptide, which is cleaved to yield the active protease domain, which is consequently always found at the N-terminus in multi-domain architectures. This family includes: astacin, a digestive enzyme from Crayfish; meprin, a multiple domain membrane component that is constructed from a homologous alpha and beta chain, proteins involved in (bone) morphogenesis, tolloid from drosophila, and the sea urchin SPAN protein, which may also play a role in development. 180 -239808 cd04281 ZnMc_BMP1_TLD Zinc-dependent metalloprotease; BMP1/TLD-like subfamily. BMP1 (Bone morphogenetic protein 1) and TLD (tolloid)-like metalloproteases play vital roles in extracellular matrix formation, by cleaving precursor proteins such as enzymes, structural proteins, and proteins involved in the mineralization of the extracellular matrix. The drosophila protein tolloid and its Xenopus homologue xolloid cleave and inactivate Sog and chordin, respectively, which are inhibitors of Dpp (the Drosophila decapentaplegic gene product) and its homologue BMP4, involved in dorso-ventral patterning. 200 -239809 cd04282 ZnMc_meprin Zinc-dependent metalloprotease, meprin_like subfamily. Meprins are membrane-bound or secreted extracellular proteases, which cleave a variety of targets, including peptides such as parathyroid hormone, gastrin, and cholecystokinin, cytokines such as osteopontin, and proteins such as collagen IV, fibronectin, casein and gelatin. Meprins may also be able to release proteins from the cell surface. Closely related meprin alpha- and beta-subunits form homo- and hetero-oligomers; these complexes are found on epithelial cells of the intestine, for example, and are also expressed in certain cancer cells. 230 -239810 cd04283 ZnMc_hatching_enzyme Zinc-dependent metalloprotease, hatching enzyme-like subfamily. Hatching enzymes are secreted by teleost embryos to digest the egg envelope or chorion. In some teleosts, the hatching enzyme may be a system consisting of two evolutionary related metalloproteases, high choriolytic enzyme and low choriolytic enzyme (HCE and LCE), which may have different substrate specificities and cooperatively digest the chorion. 182 -340852 cd04299 GT35_Glycogen_Phosphorylase-like proteins similar to glycogen phosphorylase. This family is most closely related to the oligosaccharide phosphorylase domain family and other unidentified sequences. Oligosaccharide phosphorylase catalyzes the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. 776 -340853 cd04300 GT35_Glycogen_Phosphorylase glycogen phosphorylase and similar proteins. This is a family of oligosaccharide phosphorylases. It includes yeast and mammalian glycogen phosphorylases, plant starch/glucan phosphorylase, as well as the maltodextrin phosphorylases of bacteria. The members of this family catalyze the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. The allosteric control mechanisms of yeast and mammalian members of this family are different from that of bacterial members. The members of this family belong to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 795 -173926 cd04301 NAT_SF N-Acyltransferase superfamily: Various enzymes that characteristically catalyze the transfer of an acyl group to a substrate. NAT (N-Acyltransferase) is a large superfamily of enzymes that mostly catalyze the transfer of an acyl group to a substrate and are implicated in a variety of functions, ranging from bacterial antibiotic resistance to circadian rhythms in mammals. Members include GCN5-related N-Acetyltransferases (GNAT) such as Aminoglycoside N-acetyltransferases, Histone N-acetyltransferase (HAT) enzymes, and Serotonin N-acetyltransferase, which catalyze the transfer of an acetyl group to a substrate. The kinetic mechanism of most GNATs involves the ordered formation of a ternary complex: the reaction begins with Acetyl Coenzyme A (AcCoA) binding, followed by binding of substrate, then direct transfer of the acetyl group from AcCoA to the substrate, followed by product and subsequent CoA release. Other family members include Arginine/ornithine N-succinyltransferase, Myristoyl-CoA: protein N-myristoyltransferase, and Acyl-homoserinelactone synthase which have a similar catalytic mechanism but differ in types of acyl groups transferred. Leucyl/phenylalanyl-tRNA-protein transferase and FemXAB nonribosomal peptidyltransferases which catalyze similar peptidyltransferase reactions are also included. 65 -319798 cd04302 HAD_5NT haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065. 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 209 -319799 cd04303 HAD_PGPase phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase PGP/CbbZ. Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 201 -319800 cd04305 HAD_Neu5Ac-Pase_like human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase YjjG, and related phosphatases. N-acetylneuraminate-9- phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) catalyzes the dephosphorylation of N-acylneuraminate 9-phosphate during the synthesis of N-acetylneuraminate; Escherichia coli nucleotide phosphatase YjjG has a broad pyrimidine nucleotide activity spectrum and functions as an in vivo house-cleaning phosphatase for noncanonical pyrimidine nucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 109 -319801 cd04309 HAD_PSP_eu phosphoserine phosphatase eukaryotic-like, similar to human phosphoserine phosphatase. Human PSP, EC 3.1.3.3, catalyzes the third and final of the L-serine biosynthesis pathway, the Mg2+-dependent hydrolysis of phospho-L-serine to L-serine and inorganic phosphate, L-serine is a precursor for the biosynthesis of glycine. HPSP regulates the levels of glycine and D-serine (converted from L-serine), the putative co-agonists for the glycine site of the NMDA receptor in the brain. Plant 3-PSP catalyzes the conversion of 3-phosphoserine to serine in the last step of the plastidic pathway of serine biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 202 -239811 cd04316 ND_PkAspRS_like_N ND_PkAspRS_like_N: N-terminal, anticodon recognition domain of the type found in the homodimeric non-discriminating (ND) Pyrococcus kodakaraensis aspartyl-tRNA synthetase (AspRS). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. P. kodakaraensis AspRS is a class 2b aaRS. aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. P. kodakaraensis ND-AspRS can charge both tRNAAsp and tRNAAsn. Some of the enzymes in this group may be discriminating, based on the presence of homologs of asparaginyl-tRNA synthetase (AsnRS) in their completed genomes. 108 -239812 cd04317 EcAspRS_like_N EcAspRS_like_N: N-terminal, anticodon recognition domain of the type found in Escherichia coli aspartyl-tRNA synthetase (AspRS), the human mitochondrial (mt) AspRS-2, the discriminating (D) Thermus thermophilus AspRS-1, and the nondiscriminating (ND) Helicobacter pylori AspRS. These homodimeric enzymes are class2b aminoacyl-tRNA synthetases (aaRSs). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic synthesis, whereas the other exclusively with mitochondrial protein synthesis. Human mtAspRS participates in mitochondrial biosynthesis; this enzyme been shown to charge E.coli native tRNAsp in addition to in vitro transcribed human mitochondrial tRNAsp. T. thermophilus is rare among bacteria in having both a D_AspRS and a ND_AspRS. H.pylori ND-AspRS can charge both tRNAASp and tRNAAsn, it is fractionally more efficient at aminoacylating tRNAAsp over tRNAAsn. The H.pylori genome does not contain AsnRS. 135 -239813 cd04318 EcAsnRS_like_N EcAsnRS_like_N: N-terminal, anticodon recognition domain of the type found in Escherichia coli asparaginyl-tRNA synthetase (AsnRS) and, in Arabidopsis thaliana and Saccharomyces cerevisiae mitochondrial (mt) AsnRS. This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. The enzymes in this group are homodimeric class2b aminoacyl-tRNA synthetases (aaRSs). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic protein synthesis, whereas the other exclusively with mitochondrial protein synthesis. S. cerevisiae mtAsnRS can charge E.coli tRNA with asparagines. Mutations in the gene for S. cerevisiae mtAsnRS has been found to induce a "petite" phenotype typical for a mutation in a nuclear gene that results in a non-functioning mitochondrial protein synthesis system. 82 -239814 cd04319 PhAsnRS_like_N PhAsnRS_like_N: N-terminal, anticodon recognition domain of the type found in Pyrococcus horikoshii AsnRS asparaginyl-tRNA synthetase (AsnRS). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. The archeal enzymes in this group are homodimeric class2b aminoacyl-tRNA synthetases (aaRSs). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. 103 -239815 cd04320 AspRS_cyto_N AspRS_cyto_N: N-terminal, anticodon recognition domain of the type found in Saccharomyces cerevisiae and human cytoplasmic aspartyl-tRNA synthetase (AspRS). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. The enzymes in this group are homodimeric class2b aminoacyl-tRNA synthetases (aaRSs). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic protein synthesis, whereas the other exclusively with mitochondrial protein synthesis. 102 -239816 cd04321 ScAspRS_mt_like_N ScAspRS_mt_like_N: N-terminal, anticodon recognition domain of the type found in Saccharomyces cerevisiae mitochondrial (mt) aspartyl-tRNA synthetase (AspRS). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. The enzymes in this fungal group are homodimeric class2b aminoacyl-tRNA synthetases (aaRSs). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic protein synthesis, whereas the other exclusively with mitochondrial protein synthesis. Mutations in the gene for S. cerevisiae mtAspRS result in a "petite" phenotype typical for a mutation in a nuclear gene that results in a non-functioning mitochondrial protein synthesis system. 86 -239817 cd04322 LysRS_N LysRS_N: N-terminal, anticodon recognition domain of lysyl-tRNA synthetases (LysRS). These enzymes are homodimeric class 2b aminoacyl-tRNA synthetases (aaRSs). This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Included in this group are E. coli LysS and LysU. These two isoforms of LysRS are encoded by distinct genes which are differently regulated. Eukaryotes contain 2 sets of aaRSs, both of which encoded by the nuclear genome. One set concerns with cytoplasmic protein synthesis, whereas the other exclusively with mitochondrial protein synthesis. Saccharomyces cerevisiae cytoplasmic and mitochondrial LysRSs have been shown to participate in the mitochondrial import of the only nuclear-encoded tRNA of S. cerevisiae (tRNAlysCUU). The gene for human LysRS encodes both the cytoplasmic and the mitochondrial isoforms of LysRS. In addition to their housekeeping role, human lysRS may function as a signaling molecule that activates immune cells and tomato LysRS may participate in a root-specific process possibly connected to conditions of oxidative-stress conditions or heavy metal uptake. It is known that human tRNAlys and LysRS are specifically packaged into HIV-1 suggesting a role for LysRS in tRNA packaging. 108 -239818 cd04323 AsnRS_cyto_like_N AsnRS_cyto_like_N: N-terminal, anticodon recognition domain of the type found in human and Saccharomyces cerevisiae cytoplasmic asparaginyl-tRNA synthetase (AsnRS), in Brugia malayai AsnRs and, in various putative bacterial AsnRSs. This domain is a beta-barrel domain (OB fold) involved in binding the tRNA anticodon stem-loop. The enzymes in this group are homodimeric class2b aminoacyl-tRNA synthetases (aaRSs). aaRSs catalyze the specific attachment of amino acids (AAs) to their cognate tRNAs during protein biosynthesis. This 2-step reaction involves i) the activation of the AA by ATP in the presence of magnesium ions, followed by ii) the transfer of the activated AA to the terminal ribose of tRNA. In the case of the class2b aaRSs, the activated AA is attached to the 3'OH of the terminal ribose. Eukaryotes contain 2 sets of aaRSs, both of which are encoded by the nuclear genome. One set concerns with cytoplasmic synthesis, whereas the other exclusively with mitochondrial protein synthesis. AsnRS is immunodominant antigen of the filarial nematode B. malayai and of interest as a target for anti-parasitic drug design. Human AsnRS has been shown to be a pro-inflammatory chemokine which interacts with CCR3 chemokine receptors on T cells, immature dendritic cells and macrophages. 84 -239819 cd04327 ZnMc_MMP_like_3 Zinc-dependent metalloprotease; MMP_like sub-family 3. A group of bacterial and fungal metalloproteinase domains similar to matrix metalloproteinases and astacin. 198 -239820 cd04328 RNAP_I_Rpa43_N RNAP_I_Rpa43_N: Rpa43, N-terminal ribonucleoprotein (RNP) domain. Rpa43 is a subunit of eukaryotic RNA polymerase (RNAP) I that is homologous to Rpb7 of eukaryotic RNAP II, Rpc25 of eukaryotic RNP III, and RpoE of archaeal RNAP. Rpa43 has two domains, an N-terminal RNP domain and a C-terminal oligonucleotide-binding (OB) domain. Rpa43 heterodimerizes with Rpa14 and this heterodimer has genetic and biochemical characteristics similar to those of the Rpb7/Rpb4 heterodimer of RNAP II. In addition, the Rpa43/Rpa14 heterodimer binds single-stranded RNA, as is the case for the Rpb7/Rpb4 and the archaeal E/F complexes. The position of Rpa43/Rpa14 in the three-dimensional structure of RNAP I is similar to that of Rpb4/Rpb7, which forms an upstream interface between the C-terminal domain of Rpb1 and the transcription factor IIB (TFIIB), recruiting pol II to the pol II promoter. Rpb43 binds Rrn3, an rDNA-specific transcription factor, functionally equivalent to TFIIB, involved in recruiting RNAP I to the pol I promoter. 89 -239821 cd04329 RNAP_II_Rpb7_N RNAP_II_Rpb7_N: Rpb7, N-terminal ribonucleoprotein (RNP) domain. Rpb7 is a subunit of eukaryotic RNA polymerase (RNAP) II that is homologous to Rpc25 of RNAP III, RpoE of archaeal RNAP, and Rpa43 of eukaryotic RNAP I. Rpb7 heterodimerizes with Rpb4 and this heterodimer binds the 10-subunit core of RNAP II, forming part of the floor of the DNA-binding cleft. Rpb7 has two domains, an N-terminal RNP domain and a C-terminal oligonucleotide-binding (OB) domain, both of which bind single-stranded RNA. Rpb7 is thought to interact with the nascent RNA strand as it exits the RNAP II complex during transcription elongation. The Rpb7/Rpb4 heterodimer is also thought to serve as an upstream interface between the C-terminal domain of Rpb1 and the transcription factor IIB (TFIIB), recruiting pol II to the pol II promoter. 80 -239822 cd04330 RNAP_III_Rpc25_N RNAP_III_Rpc25_N: Rpc25, N-terminal ribonucleoprotein (RNP) domain. Rpc25 is a subunit of eukaryotic RNA polymerase (RNAP) III and is homologous to Rpa43 of eukaryotic RNAP I, Rpb7 of eukaryotic RNAP II, and RpoE of archaeal RNAP. Rpc25 has two domains, an N-terminal RNP domain and a C-terminal oligonucleotide-binding (OB) domain, both of which are thought to bind single-stranded RNA. Rpc25 heterodimerizes with Rpc17 and plays an important role in transcription initiation. RNAP III transcribes diverse structural and catalytic RNAs including 5S ribosomal RNAs, tRNAs, and a small number of snRNAs involved in RNA and protein synthesis. 80 -239823 cd04331 RNAP_E_N RNAP_E_N: RpoE, N-terminal ribonucleoprotein (RNP) domain. RpoE (subunit E) is a subunit of the archaeal RNA polymerase (RNAP) that is homologous to Rpb7 of eukaryotic RNAP II, Rpc25 of eukaryotic RNAP III, and Rpa43 of eukaryotic RNAP I. RpoE heterodimerizes with RpoF, another RNA polymerase subunit. RpoE has an elongated two-domain structure that includes an N-terminal RNP domain and a C-terminal oligonucleotide-binding (OB) domain. Both domains of RpoE bind single-stranded RNA. 80 -239824 cd04332 YbaK_like YbaK-like. The YbaK family of deacylase domains includes the INS amino acid-editing domain of the bacterial class II prolyl tRNA synthetase (ProRS), and it's trans-acting homologs, YbaK, ProX, and PrdX. The primary function of INS is to hydrolyze mischarged cysteinyl-tRNA(Pro)'s, thus helping ensure the fidelity of translation. Organisms whose ProRS lacks the INS domain express an INS homolog in trans (e.g. YbaK, ProX, or PrdX). 136 -239825 cd04333 ProX_deacylase This CD, composed mainly of bacterial single-domain proteins, includes the Thermus thermophilus (Tt) YbaK-like protein, a homolog of the trans-acting Escherichia coli YbaK Cys-tRNA(Pro) deacylase and the Agrobacterium tumefaciens ProX Ala-tRNA(Pro) deacylase and also the cis-acting prolyl-tRNA synthetase-editing domain (ProRS-INS). While ProX and ProRS-INS hydrolyze misacylated Ala-tRNA(Pro), the E. coli YbaK hydrolyzes misacylated Cys-tRNA(Pro). A few CD members are N-terminal, YbaK-ProX-like domains of an uncharacterized protein with a C-terminal, predicted Fe-S protein domain. 148 -239826 cd04334 ProRS-INS INS is an amino acid-editing domain inserted (INS) into the bacterial class II prolyl-tRNA synthetase (ProRS) however, this CD is not exclusively bacterial. It is also found at the N-terminus of the eukaryotic/archaea-like ProRS's of yeasts and single-celled parasites. ProRS catalyzes the attachment of proline to tRNA(Pro); proline is first activated by ATP, and then transferred to the acceptor end of tRNA(Pro). ProRS can inadvertently process noncognate amino acids such as alanine and cysteine, and to avoid such errors, in post-transfer editing, the INS domain deacylates mischarged Ala-tRNA(Pro), thus ensuring the fidelity of translation. Misacylated Cys-tRNA(Pro) is not edited by ProRS. In addition to the INS editing domain, the prokaryote-like ProRS protein contains catalytic and anticodon-binding domains which form a dimeric interface. 160 -239827 cd04335 PrdX_deacylase This CD includes bacterial (Agrobacterium tumefaciens and Caulobacter crescentus ProX, and Clostridium sticklandii PrdX) and eukaryotic (Plasmodium falciparum N-terminal ProRS editing domain) sequences. The C. sticklandii PrdX protein, a homolog of the YbaK and ProX proteins, and the prolyl-tRNA synthetase-editing domain (ProRS-INS), specifically hydrolyzes Ala-tRNA(Pro). In this CD, many of the eukaryotic editing domains are N-terminal and cis-acting, expressed from a multidomain ProRS, however, similar to the bacterial PrdX, the mammalian, amphibian, and echinoderm PrdX-like proteins are trans-acting, single-domain proteins. 156 -239828 cd04336 YeaK YeaK is an uncharacterized Echerichia coli protein with a YbaK-like domain of unknown function. The YbaK-like domain family includes the INS amino acid-editing domain of the bacterial class II prolyl tRNA synthetase (ProRS), and it's trans-acting homologs, YbaK, and ProX. The primary function of INS is to hydrolyze mischarged cysteinyl-tRNA(Pro)'s, thus helping ensure the fidelity of translation. Organisms whose ProRS lacks the INS domain express a single-domain INS homolog such as YbaK, ProX, or PrdX which supplies the function of INS in trans. 153 -239829 cd04337 Rieske_RO_Alpha_Cao Cao (chlorophyll a oxygenase) is a rieske non-heme iron-sulfur protein located within the plastid-envelope inner and thylakoid membranes, that catalyzes the conversion of chlorophyllide a to chlorophyllide b. CAO is found not only in plants but also in chlorophytes and prochlorophytes. This domain represents the N-terminal rieske domain of the oxygenase alpha subunit. ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Cao is closely related to several other plant RO's including Tic 55, a 55 kDa protein associated with protein transport through the inner chloroplast membrane; Ptc 52, a novel 52 kDa protein isolated from chloroplasts; and LLS1/Pao (Lethal-leaf spot 1/pheophorbide a oxygenase). 129 -239830 cd04338 Rieske_RO_Alpha_Tic55 Tic55 is a 55kDa LLS1-related non-heme iron oxygenase associated with protein transport through the plant inner chloroplast membrane. This domain represents the N-terminal Rieske domain of the Tic55 oxygenase alpha subunit. Tic55 is closely related to the oxygenase alpha subunits of a small subfamily of enzymes found in plants as well as oxygenic cyanobacterial photosynthesizers including LLS1 (lethal leaf spot 1, also known as PaO), Ptc52, and ACD1 (accelerated cell death 1). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. 134 -239831 cd04365 IlGF_relaxin_like IlGF_like family, relaxin_like subgroup, specific to vertebrates. Members include a number of active peptides including (pro)relaxin, mammalian Leydig cell-specific insulin-like peptide (gene INSL3), early placenta insulin-like peptide (ELIP; gene INSL4), and insulin-like peptides 5 (INSL5) and 6 (INSL6). Members of this subgroup are widely expressed in testes (INSL3, INSL6), decidua, placenta, prostate, corpus luteum, brain (various relaxins), GI tract, and kidney (INSL5) where they serve a variety of functions in parturition and development. Typically, the active forms of these peptide hormones are composed of two chains (A and B) linked by two disulfide bonds; the arrangement of four cysteines is conserved in the "A" chain: Cys1 is linked by a disulfide bond to Cys3, Cys2 and Cys4 are linked by interchain disulfide bonds to cysteines in the "B" chain. This alignment contains both chains, plus the intervening linker region, arranged as found in the propeptide form. Propeptides are cleaved to yield two separate chains linked covalently by the two disulfide bonds. 59 -239832 cd04366 IlGF_insulin_bombyxin_like IlGF_like family, insulin_bombyxin_like subgroup. Members include a number of peptides including insulin, insulin-like growth factors I and II, insect prothoracicotropic hormone (bombyxin), locust insulin-related peptide (LIRP), molluscan insulin-related peptides 1 to 5 (MIP), and C. elegans insulin-like peptides. With the exception of insulin-like growth factors, the active forms of these peptide hormones are composed of two chains (A and B) linked by two disulfide bonds; the arrangement of four cysteines is conserved in the "A" chain: Cys1 is linked by a disulfide bond to Cys3, Cys2 and Cys4 are linked by interchain disulfide bonds to cysteines in the "B" chain. This alignment contains both chains, plus the intervening linker region, arranged as found in the propeptide form. Propeptides are cleaved to yield two separate chains linked covalently by the two disulfide bonds. 42 -239833 cd04367 IlGF_insulin_like IlGF_like family, insulin_like subgroup, specific to vertebrates. Members include a number of peptides including insulin and insulin-like growth factors I and II, which play a variety of roles in controlling processes such as metabolism, growth and differentiation, and reproduction. On a cellular level they affect cell cycle, apoptosis, cell migration, and differentiation. With the exception of the insulin-like growth factors, the active forms of these peptide hormones are composed of two chains (A and B) linked by two disulfide bonds; the arrangement of four cysteines is conserved in the "A" chain: Cys1 is linked by a disulfide bond to Cys3, Cys2 and Cys4 are linked by interchain disulfide bonds to cysteines in the "B" chain. This alignment contains both chains, plus the intervening linker region, arranged as found in the propeptide form. Propeptides are cleaved to yield two separate chains linked covalently by the two disulfide bonds. 79 -239834 cd04368 IlGF IlGF, insulin_like growth factors; specific to vertebrates. Members include a number of peptides including insulin-like growth factors I and II, which play a variety of roles in controlling processes such as growth, differentiation, and reproduction. On a cellular level they affect cell cycle, apoptosis, cell migration, proliferation, and differentiation. Typically, the active forms of these peptide hormones are single chains cross-linked by three disulfide bonds. 67 -99922 cd04369 Bromodomain Bromodomain. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. 99 -239835 cd04370 BAH BAH, or Bromo Adjacent Homology domain (also called ELM1 and BAM for Bromo Adjacent Motif). BAH domains have first been described as domains found in the polybromo protein and Yeast Rsc1/Rsc2 (Remodeling of the Structure of Chromatin). They also occur in mammalian DNA methyltransferases and the MTA1 subunits of histone deacetylase complexes. A BAH domain is also found in Yeast Sir3p and in the origin receptor complex protein 1 (Orc1p), where it was found to interact with the N-terminal lobe of the silence information regulator 1 protein (Sir1p), confirming the initial hypothesis that BAH plays a role in protein-protein interactions. 123 -239836 cd04371 DEP DEP domain, named after Dishevelled, Egl-10, and Pleckstrin, where this domain was first discovered. The function of this domain is still not clear, but it is believed to be important for the membrane association of the signaling proteins in which it is present. New studies show that the DEP domain of Sst2, a yeast RGS protein is necessary and sufficient for receptor interaction. 81 -239837 cd04372 RhoGAP_chimaerin RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 194 -239838 cd04373 RhoGAP_p190 RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 185 -239839 cd04374 RhoGAP_Graf RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 203 -239840 cd04375 RhoGAP_DLC1 RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of DLC1-like proteins. DLC1 shows in vitro GAP activity towards RhoA and CDC42. Beside its C-terminal GAP domain, DLC1 also contains a SAM (sterile alpha motif) and a START (StAR-related lipid transfer action) domain. DLC1 has tumor suppressor activity in cell culture. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 220 -239841 cd04376 RhoGAP_ARHGAP6 RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 206 -239842 cd04377 RhoGAP_myosin_IX RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 186 -239843 cd04378 RhoGAP_GMIP_PARG1 RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 203 -239844 cd04379 RhoGAP_SYD1 RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 207 -239845 cd04380 RhoGAP_OCRL1 RhoGAP_OCRL1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in OCRL1-like proteins. OCRL1 (oculocerebrorenal syndrome of Lowe 1)-like proteins contain two conserved domains: a central inositol polyphosphate 5-phosphatase domain and a C-terminal Rho GAP domain, this GAP domain lacks the catalytic residue and therefore maybe inactive. OCRL-like proteins are type II inositol polyphosphate 5-phosphatases that can hydrolyze lipid PI(4,5)P2 and PI(3,4,5)P3 and soluble Ins(1,4,5)P3 and Ins(1,3,4,5)P4, but their individual specificities vary. The functionality of the RhoGAP domain is still unclear. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 220 -239846 cd04381 RhoGap_RalBP1 RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in RalBP1 proteins, also known as RLIP, RLIP76 or cytocentrin. RalBP1 plays an important role in endocytosis during interphase. During mitosis, RalBP1 transiently associates with the centromere and has been shown to play an essential role in the proper assembly of the mitotic apparatus. RalBP1 is an effector of the Ral GTPase which itself is an effector of Ras. RalBP1 contains a RhoGAP domain, which shows weak activity towards Rac1 and Cdc42, but not towards Ral, and a Ral effector domain binding motif. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 182 -239847 cd04382 RhoGAP_MgcRacGAP RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 193 -239848 cd04383 RhoGAP_srGAP RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 188 -239849 cd04384 RhoGAP_CdGAP RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of CdGAP-like proteins; CdGAP contains an N-terminal RhoGAP domain and a C-terminal proline-rich region, and it is active on both Cdc42 and Rac1 but not RhoA. CdGAP is recruited to focal adhesions via the interaction with the scaffold protein actopaxin (alpha-parvin). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 195 -239850 cd04385 RhoGAP_ARAP RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 184 -239851 cd04386 RhoGAP_nadrin RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 203 -239852 cd04387 RhoGAP_Bcr RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 196 -239853 cd04388 RhoGAP_p85 RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 200 -239854 cd04389 RhoGAP_KIAA1688 RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in KIAA1688-like proteins; KIAA1688 is a protein of unknown function that contains a RhoGAP domain and a myosin tail homology 4 (MyTH4) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 187 -239855 cd04390 RhoGAP_ARHGAP22_24_25 RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 199 -239856 cd04391 RhoGAP_ARHGAP18 RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 216 -239857 cd04392 RhoGAP_ARHGAP19 RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 208 -239858 cd04393 RhoGAP_FAM13A1a RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude. 189 -239859 cd04394 RhoGAP-ARHGAP11A RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 202 -239860 cd04395 RhoGAP_ARHGAP21 RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 196 -239861 cd04396 RhoGAP_fSAC7_BAG7 RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 225 -239862 cd04397 RhoGAP_fLRG1 RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal LRG1-like proteins. Yeast Lrg1p is required for efficient cell fusion, and mother-daughter cell separation, possibly through acting as a RhoGAP specifically regulating 1,3-beta-glucan synthesis. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 213 -239863 cd04398 RhoGAP_fRGD1 RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 192 -239864 cd04399 RhoGAP_fRGD2 RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD2-like proteins. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 212 -239865 cd04400 RhoGAP_fBEM3 RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 190 -239866 cd04401 RhoGAP_fMSB1 RhoGAP_fMSB1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal MSB1-like proteins. Msb1 was originally identified as a multicopy suppressor of temperature sensitive cdc42 mutation. Msb1 is a positive regulator of the Pkc1p-MAPK pathway and 1,3-beta-glucan synthesis, both pathways involve Rho1 regulation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 198 -239867 cd04402 RhoGAP_ARHGAP20 RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP20-like proteins. ArhGAP20, also known as KIAA1391 and RA-RhoGAP, contains a RhoGAP, a RA, and a PH domain, and ANXL repeats. ArhGAP20 is activated by Rap1 and induces inactivation of Rho, which in turn leads to neurite outgrowth. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 192 -239868 cd04403 RhoGAP_ARHGAP27_15_12_9 RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 187 -239869 cd04404 RhoGAP-p50rhoGAP RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 195 -239870 cd04405 RhoGAP_BRCC3-like RhoGAP_BRCC3-like: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of BRCC3-like proteins. This subgroup also contains two groups of closely related proteins, BRCC3 and DEPDC7, which both contain a C-terminal RhoGAP-like domain and an N-terminal DEP (Disheveled, Egl-10, and Pleckstrin) domain. The function(s) of BRCC3 and DEPDC7 are unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 235 -239871 cd04406 RhoGAP_myosin_IXA RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 186 -239872 cd04407 RhoGAP_myosin_IXB RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 186 -239873 cd04408 RhoGAP_GMIP RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 200 -239874 cd04409 RhoGAP_PARG1 RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. 211 -319870 cd04410 DMSOR_beta-like Beta subunit of the DMSO Reductase (DMSOR) family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 136 -100108 cd04411 Ribosomal_P1_P2_L12p Ribosomal protein P1, P2, and L12p. Ribosomal proteins P1 and P2 are the eukaryotic proteins that are functionally equivalent to bacterial L7/L12. L12p is the archaeal homolog. Unlike other ribosomal proteins, the archaeal L12p and eukaryotic P1 and P2 do not share sequence similarity with their bacterial counterparts. They are part of the ribosomal stalk (called the L7/L12 stalk in bacteria), along with 28S rRNA and the proteins L11 and P0 in eukaryotes (23S rRNA, L11, and L10e in archaea). In bacterial ribosomes, L7/L12 homodimers bind the extended C-terminal helix of L10 to anchor the L7/L12 molecules to the ribosome. Eukaryotic P1/P2 heterodimers and archaeal L12p homodimers are believed to bind the L10 equivalent proteins, eukaryotic P0 and archaeal L10e, in a similar fashion. P1 and P2 (L12p, L7/L12) are the only proteins in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain six copies of L12p (three homodimers), while eukaryotes have two copies each of P1 and P2 (two heterodimers). Bacteria may have four or six copies (two or three homodimers), depending on the species. As in bacteria, the stalk is crucial for binding of initiation, elongation, and release factors in eukaryotes and archaea. 105 -239875 cd04412 NDPk7B Nucleoside diphosphate kinase 7 domain B (NDPk7B): The nm23-H7 class of nucleoside diphosphate kinase (NDPk7) consists of an N-terminal DM10 domain and two functional catalytic NDPk modules, NDPk7A and NDPk7B. The function of the DM10 domain, which also occurs in multiple copies in other proteins, is unknown. NDPk7 is predominantly expressed in testes, although appreciable amount are also found in liver, heart, brain, ovary, small intestine and spleen. The nm23-H7 gene is located in or near the hereditary prostrate cancer susceptibility locus. Nm23-H7 may be involved in the development of colon and gastric carcinoma, the latter possibly in a type-specific manner. 134 -239876 cd04413 NDPk_I Nucleoside diphosphate kinase Group I (NDPk_I)-like: NDP kinase domains are present in a large family of structurally and functionally conserved proteins from bacteria to humans that generally catalyze the transfer of gamma-phosphates of a nucleoside triphosphate (NTP) donor onto a nucleoside diphosphate (NDP) acceptor through a phosphohistidine intermediate. The mammalian nm23/NDP kinase gene family can be divided into two distinct groups. The group I genes encode proteins that generally have highly homologous counterparts in other organisms and possess the classic enzymatic activity of a kinase. This group includes vertebrate NDP kinases A-D (Nm23- H1 to -H4), and its counterparts in bacteria, archea and other eukaryotes. NDP kinases exist in two different quaternary structures; all known eukaryotic enzymes are hexamers, while some bacterial enzymes are tetramers, as in Myxococcus. They possess the NDP kinase active site motif (NXXH[G/A]SD) and the nine residues that are most essential for catalysis. 130 -239877 cd04414 NDPk6 Nucleoside diphosphate kinase 6 (NDP kinase 6, NDPk6, NM23-H6; NME6; Inhibitor of p53-induced apoptosis-alpha, IPIA-alpha): The nm23-H6 gene encoding NDPk6 is expressed mainly in mitochondria, but also found at a lower level in most tissues. NDPk6 has all nine residues considered crucial for enzyme structure and activity, and has been found to have NDP kinase activity. It may play a role in cell growth and cell cycle progression. The nm23-H6 gene locus has been implicated in a variety of malignant tumors. 135 -239878 cd04415 NDPk7A Nucleoside diphosphate kinase 7 domain A (NDPk7A): The nm23-H7 class of nucleoside diphosphate kinase (NDPk7) consists of an N-terminal DM10 domain and two functional catalytic NDPk modules, NDPk7A and NDPk7B. The function of the DM10 domain, which also occurs in multiple copies in other proteins, is unknown. NDPk7 is predominantly expressed in testes, although appreciable amount are also found in liver, heart, brain, ovary, small intestine and spleen. The nm23-H7 gene is located in or near the hereditary prostrate cancer susceptibility locus. Nm23-H7 may be involved in the development of colon and gastric carcinoma, the latter possibly in a type-specific manner. 131 -239879 cd04416 NDPk_TX NDP kinase domain of thioredoxin domain-containing proteins (TXNDC3 and TXNDC6): Txl-2 (TXNDC6) and Sptrx-2 (TXNDC3) are fusion proteins of Group II N-terminal thioredoxin domains followed by one or three NDP kinase domains, respectively. Sptrx-2, which has a tissue specific distribution in human testis, has been considered as a member of the nm23 family (nm23-H8) and exhibits a high homology with sea urchin IC1 (intermediate chain-1) protein, a component of the sperm axonemal outer dynein arm complex. Txl-2 is mainly represented in close association with microtubules within tissues with cilia and flagella such as seminiferous epithelium (spermatids) and lung airway epithelium, suggesting possible role in control of microtubule stability and maintenance. 132 -239880 cd04418 NDPk5 Nucleoside diphosphate kinase homolog 5 (NDP kinase homolog 5, NDPk5, NM23-H5; Inhibitor of p53-induced apoptosis-beta, IPIA-beta): In human, mRNA for NDPk5 is almost exclusively found in testis, especially in the flagella of spermatids and spermatozoa, in association with axoneme microtubules, and may play a role in spermatogenesis by increasing the ability of late-stage spermatids to eliminate reactive oxygen species. It belongs to the nm23 Group II genes and appears to differ from the other human NDPks in that it lacks two important catalytic site residues, and thus does not appear to possess NDP kinase activity. NDPk5 confers protection from cell death by Bax and alters the cellular levels of several antioxidant enzymes, including glutathione peroxidase 5 (Gpx5). 132 -341228 cd04433 AFD_class_I Adenylate forming domain, Class I, also known as the ANL superfamily. This family is known as the ANL (acyl-CoA synthetases, the NRPS adenylation domains, and the Luciferase enzymes) superfamily. It includes acyl- and aryl-CoA ligases, as well as the adenylation domain of nonribosomal peptide synthetases and firefly luciferases.The adenylate-forming enzymes catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain. 336 -271198 cd04434 LanC_like Cyclases involved in the biosynthesis of lantibiotics, and similar proteins. LanC is the cyclase enzyme of the lanthionine synthetase. Lanthionine is a lantibiotic, a unique class of peptide antibiotics. They are ribosomally synthesized as a precursor peptide and then post-translationally modified to contain thioether cross-links called lanthionines (Lans) or methyllanthionines (MeLans), in addition to 2,3-didehydroalanine (Dha) and (Z)-2,3-didehydrobutyrine (Dhb). These unusual amino acids are introduced by the dehydration of serine and threonine residues, followed by thioether formation via addition of cysteine thiols, catalysed by LanB and LanC or LanM. LanC, the cyclase component, is a zinc metalloprotein, whose bound metal has been proposed to activate the thiol substrate for nucleophilic addition. A related domain is also present in LanM and other pro- and eukaryotic proteins with poorly characterized functions. 351 -239882 cd04435 DEP_fRom2 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in fungal RhoGEF (GDP/GTP exchange factor) Rom2-like proteins. Rom2-like proteins share a common domain architecture, containing, beside the RhoGEF domain, a DEP, a PH (pleckstrin homology) and a CNH domain. Rom2, a yeast GEF for Rho1 and Rho2, is involved in mediating stress response via the Ras-cAMP pathway and also plays a role in mediating resistance to sphingolipid disturbances. 82 -239883 cd04436 DEP_fRgd2 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in fungal RhoGAP (GTPase-activator protein) Rgd2-like proteins. Rgd2-like proteins share a common domain architecture, containing, beside the RhoGAP domain, a DEP and a FCH (Fes/CIP4 homology) domain. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. 84 -239884 cd04437 DEP_Epac DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in Epac-like proteins. Epac (exchange proteins directly activated by cAMP) proteins are GEFs (guanine-nucleotide-exchange factors) for the small GTPases, Rap1 and Rap2. They are directly regulated by cyclic AMP, a second messenger that plays a role in the control of diverse cellular processes, such as cell adhesion and insulin secretion. Epac-like proteins share a common domain architecture, containing RasGEF, DEP and CAP-effector (cAMP binding) domains. The DEP domain is involved in membrane localization. 125 -239885 cd04438 DEP_dishevelled DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in dishevelled-like proteins. Dishevelled-like proteins play a key role in the transduction of the Wnt signal from the cell surface to the nucleus, which in turn is an important regulatory pathway for cellular development and growth. They contain an N-terminal DIX domain, a central PDZ domain, and a C-terminal DEP domain. 84 -239886 cd04439 DEP_1_P-Rex DEP (Dishevelled, Egl-10, and Pleckstrin) domain 1 found in P-Rex-like proteins. The P-Rex family is the guanine-nucleotide exchange factor (GEF) for the small GTPase Rac that contains an N-terminal RhoGEF domain, two DEP and PDZ domains. Rac-GEF activity is stimulated by phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), a lipid second messenger, and by the G beta-gamma subunits of heterotrimeric G proteins. The DEP domains are not involved in mediating these stimuli, but may be of importance for basal and stimulated levels Rac-GEF activity. 81 -239887 cd04440 DEP_2_P-Rex DEP (Dishevelled, Egl-10, and Pleckstrin) domain 2 found in P-Rex-like proteins. The P-Rex family is the guanine-nucleotide exchange factor (GEF) for the small GTPase Rac that contains an N-terminal RhoGEF domain, two DEP and PDZ domains. Rac-GEF activity is stimulated by phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), a lipid second messenger, and the G beta-gamma subunits of heterotrimeric G proteins. The DEP domains are not involved in mediating these stimuli, but may be of importance for basal and stimulated levels Rac-GEF activity. 93 -239888 cd04441 DEP_2_DEP6 DEP (Dishevelled, Egl-10, and Pleckstrin) domain 2 found in DEP6-like proteins. DEP6 proteins contain two DEP and a PDZ domain. Their function is unknown. 85 -239889 cd04442 DEP_1_DEP6 DEP (Dishevelled, Egl-10, and Pleckstrin) domain 1 found in DEP6-like proteins. DEP6 proteins contain two DEP and a PDZ domain. Their function is unknown. 82 -239890 cd04443 DEP_GPR155 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in GPR155-like proteins. GRP155-like proteins, also known as PGR22, contain an N-terminal permease domain, a central transmembrane region and a C-terminal DEP domain. They are orphan receptors of the class B G protein-coupled receptors. Their function is unknown. 83 -239891 cd04444 DEP_PLEK2 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in pleckstrin 2-like proteins. Pleckstrin 2 is found in a wide variety of cell types, which suggest a more general role in signaling than pleckstrin 1. Pleckstrin-like proteins contain a central DEP domain, flanked by 2 PH (pleckstrin homology) domains. 109 -239892 cd04445 DEP_PLEK1 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in pleckstrin 1-like proteins. Pleckstrin 1 plays a role in cell spreading and reorganization of actin cytoskeleton in platelets and leukocytes. Its activity is highly regulated by phosphorylation, mainly by protein kinase C. Pleckstrin-like proteins contain a central DEP domain, flanked by 2 PH (pleckstrin homology) domains. 99 -239893 cd04446 DEP_DEPDC4 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in DEPDC4-like proteins. DEPDC4 is a DEP domain containing protein of unknown function. 95 -239894 cd04447 DEP_BRCC3 DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in BBRC3-like proteins. BBRC3, also known as DEPDC1B, is a DEP containing protein of unknown function. 92 -239895 cd04448 DEP_PIKfyve DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in fungal RhoGEF (GDP/GTP exchange factor) PIKfyve-like proteins. PIKfyve contains N-terminal Fyve finger and DEP domains, a central chaperonin-like domain and a C-terminal PIPK (phosphatidylinositol phosphate kinase) domain. PIKfyve-like proteins are important phosphatidylinositol (3)-monophosphate (PtdIns(3)P)-5-kinases, producing PtdIns(3,5)P2, which plays a major role in multivesicular body (MVB) sorting and control of retrograde traffic from the vacuole back to the endosome and/or Golgi. PIKfyve itself has been shown to be play a role in regulating early-endosome-to-trans-Golgi network (TGN) retrograde trafficking. 81 -239896 cd04449 DEP_DEPDC5-like DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in DEPDC5-like proteins. DEPDC5, in human also known as KIAA0645, is a DEP domain containing protein of unknown function. 83 -239897 cd04450 DEP_RGS7-like DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in RGS (regulator of G-protein signaling) proteins of the subfamily R7. This subgroup contains RGS7, RGS6, RGS9 and RGS11. They share a common domain architecture, containing, beside the RGS domain, a DEP domain and a GGL (G-protein gamma subunit-like ) domain. RGS proteins are GTPase-activating (GAP) proteins of heterotrimeric G proteins by increasing the rate of GTP hydrolysis of the alpha subunit. The fungal homologs, like yeast Sst2, share a related common domain architecture, containing RGS and DEP domains. Sst2 has been identified as the principal regulator of mating pheromone signaling and recently the DEP domain of Sst2 has been shown to be necessary and sufficient to mediate receptor interaction. 88 -239898 cd04451 S1_IF1 S1_IF1: Translation Initiation Factor IF1, S1-like RNA-binding domain. IF1 contains an S1-like RNA-binding domain, which is found in a wide variety of RNA-associated proteins. Translation initiation includes a number of interrelated steps preceding the formation of the first peptide bond. In Escherichia coli, the initiation mechanism requires, in addition to mRNA, fMet-tRNA, and ribosomal subunits, the presence of three additional proteins (initiation factors IF1, IF2, and IF3) and at least one GTP molecule. The three initiation factors influence both the kinetics and the stability of ternary complex formation. IF1 is the smallest of the three factors. IF1 enhances the rate of 70S ribosome subunit association and dissociation and the interaction of 30S ribosomal subunit with IF2 and IF3. It stimulates 30S complex formation. In addition, by binding to the A-site of the 30S ribosomal subunit, IF1 may contribute to the fidelity of the selection of the initiation site of the mRNA. 64 -239899 cd04452 S1_IF2_alpha S1_IF2_alpha: The alpha subunit of translation Initiation Factor 2, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. Eukaryotic and archaeal Initiation Factor 2 (e- and aIF2, respectively) are heterotrimeric proteins with three subunits (alpha, beta, and gamma). IF2 plays a crucial role in the process of translation initiation. The IF2 gamma subunit contains a GTP-binding site. The IF2 beta and gamma subunits together are thought to be responsible for binding methionyl-initiator tRNA. The ternary complex consisting of IF2, GTP, and the methionyl-initiator tRNA binds to the small subunit of the ribosome, as part of a pre-initiation complex that scans the mRNA to find the AUG start codon. The IF2-bound GTP is hydrolyzed to GDP when the methionyl-initiator tRNA binds the AUG start codon, at which time the IF2 is released with its bound GDP. The large ribosomal subunit then joins with the small subunit to complete the initiation complex, which is competent to begin translation. The IF2a subunit is a major site of control of the translation initiation process, via phosphorylation of a specific serine residue. This alpha subunit is well conserved in eukaryotes and archaea but is not present in bacteria. IF2 is a cold-shock-inducible protein. 76 -239900 cd04453 S1_RNase_E S1_RNase_E: RNase E and RNase G, S1-like RNA-binding domain. RNase E is an essential endoribonuclease in the processing and degradation of RNA. In addition to its role in mRNA degradation, RNase E has also been implicated in the processing of rRNA, and the maturation of tRNA, 10Sa RNA and the M1 precursor of RNase P. RNase E associates with PNPase (3' to 5' exonuclease), Rhl B (DEAD-box RNA helicase) and enolase (glycolytic enzyme) to form the RNA degradosome. RNase E tends to cut mRNA within single-stranded regions that are rich in A/U nucleotides. The N-terminal region of RNase E contains the catalytic site. Within the conserved N-terminal domain of RNAse E and RNase G, there is an S1-like subdomain, which is an ancient single-stranded RNA-binding domain. S1 domain is an RNA-binding module originally identified in the ribosomal protein S1. The S1 domain is required for RNA cleavage by RNase E. RNase G is paralogous to RNase E with an N-terminal catalytic domain that is highly homologous to that of RNase E. RNase G not only shares sequence similarity with RNase E, but also functionally overlaps with RNase E. In Escherichia coli, RNase G is involved in the maturation of the 5' end of the 16S rRNA. RNase G plays a secondary role in mRNA decay. 88 -239901 cd04454 S1_Rrp4_like S1_Rrp4_like: Rrp4-like, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. Rrp4 protein, and Rrp40 and Csl4 proteins, also represented in this group, are subunits of the exosome complex. The exosome plays a central role in 3' to 5' RNA processing and degradation in eukarytes and archaea. Its functions include the removal of incorrectly processed RNA and the maintenance of proper levels of mRNA, rRNA and a number of small RNA species. In Saccharomyces cerevisiae, the exosome includes nine core components, six of which are homologous to bacterial RNase PH. These form a hexameric ring structure. The other three subunits (RrP4, Rrp40, and Csl4) contain an S1 RNA binding domain and are part of the "S1 pore structure". 82 -239902 cd04455 S1_NusA S1_NusA: N-utilizing substance A protein (NusA), S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. NusA is a transcription elongation factor containing an N-terminal catalytic domain and three RNA binding domains (RBD's). The RBD's include one S1 domain and two KH domains that form an RNA binding surface. DNA transcription by RNA polymerase (RNAP) includes three phases - initiation, elongation, and termination. During initiation, sigma factors bind RNAP and target RNAP to specific promoters. During elongation, N-utilization substances (NusA, B, E, and G) replace sigma factors and regulate pausing, termination, and antitermination. NusA is cold-shock-inducible. 67 -239903 cd04456 S1_IF1A_like S1_IF1A_like: Translation initiation factor IF1A-like, S1-like RNA-binding domain. IF1A is also referred to as eIF1A in eukaryotes and aIF1A in archaea. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. IF1A is essential for translation initiation. eIF1A acts synergistically with eIF1 to mediate assembly of ribosomal initiation complexes at the initiation codon and maintain the accuracy of this process by recognizing and destabilizing aberrant preinitiation complexes from the mRNA. Without eIF1A and eIF1, 43S ribosomal preinitiation complexes can bind to the cap-proximal region, but are unable to reach the initiation codon. eIF1a also enhances the formation of 5'-terminal complexes in the presence of other translation initiation factors. This protein family is only found in eukaryotes and archaea. 78 -239904 cd04457 S1_S28E S1_S28E: S28E, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. S28E protein is a component of the 30S ribosomal subunit. S28E is highly conserved among archaea and eukaryotes. S28E may control precursor RNA splicing and turnover in mRNA maturation process but its function in the ribosome is largely unknown. The structure contains an OB-fold found in many oligosaccharide and nucleic acid binding proteins. This implies that S28E might be involved in protein synthesis. 60 -239905 cd04458 CSP_CDS Cold-Shock Protein (CSP) contains an S1-like cold-shock domain (CSD) that is found in eukaryotes, prokaryotes, and archaea. CSP's include the major cold-shock proteins CspA and CspB in bacteria and the eukaryotic gene regulatory factor Y-box protein. CSP expression is up-regulated by an abrupt drop in growth temperature. CSP's are also expressed under normal condition at lower level. The function of cold-shock proteins is not fully understood. They preferentially bind poly-pyrimidine region of single-stranded RNA and DNA. CSP's are thought to bind mRNA and regulate ribosomal translation, mRNA degradation, and the rate of transcription termination. The human Y-box protein, which contains a CSD, regulates transcription and translation of genes that contain the Y-box sequence in their promoters. This specific ssDNA-binding properties of CSD are required for the binding of Y-box protein to the promoter's Y-box sequence, thereby regulating transcription. 65 -239906 cd04459 Rho_CSD Rho_CSD: Rho protein cold-shock domain (CSD). Rho protein is a transcription termination factor in most bacteria. In bacteria, there are two distinct mechanisms for mRNA transcription termination. In intrinsic termination, RNA polymerase and nascent mRNA are released from DNA template by an mRNA stem loop structure, which resembles the transcription termination mechanism used by eukaryotic pol III. The second mechanism is mediated by Rho factor. Rho factor terminates transcription by using energy from ATP hydrolysis to forcibly dissociate the transcripts from RNA polymerase. Rho protein contains an N-terminal S1-like domain, which binds single-stranded RNA. Rho has a C-terminal ATPase domain which hydrolyzes ATP to provide energy to strip RNA polymerase and mRNA from the DNA template. Rho functions as a homohexamer. 68 -239907 cd04460 S1_RpoE S1_RpoE: RpoE, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. RpoE is subunit E of archaeal RNA polymerase. Archaeal cells contain a single RNA polymerase made up of 12 subunits, which are homologous to the 12 subunits (RPB1-12) of eukaryotic RNA polymerase II. RpoE is homologous to Rpa43 of eukaryotic RNA polymerase I, RPB7 of eukaryotic RNA polymerase II, and Rpc25 of eukaryotic RNA polymerase III. RpoE is composed of two domains, the N-terminal RNP (ribonucleoprotein) domain and the C-terminal S1 domain. This S1 domain binds ssRNA and ssDNA. This family is classified based on the C-terminal S1 domain. The function of RpoE is not fully understood. In eukaryotes, RPB7 and RPB4 form a heterodimer that reversibly associates with the RNA polymerase II core. 99 -239908 cd04461 S1_Rrp5_repeat_hs8_sc7 S1_Rrp5_repeat_hs8_sc7: Rrp5 Homo sapiens S1 repeat 8 (hs8) and Saccharomyces cerevisiae S1 repeat 7 (sc7)-like domains. Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in S. cerevisiae Rrp5 and 14 S1 repeats in H. sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 8 and S. cerevisiae S1 repeat 7. Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 83 -239909 cd04462 S1_RNAPII_Rpb7 S1_RNAPII_Rpb7: Eukaryotic RNA polymerase II (RNAPII) Rpb7 subunit C-terminal S1 domain. RNAPII is composed of 12 subunits (Rpb1-12). Rpb4 and Rpb7 form a heterodimer that associate with the RNAPII core. Rpb7 is a homolog of the Rpc25 of RNA polymerase III, RpoE of the archaeal RNA polymerase, and Rpa43 of eukaryotic RNA polymerase I. Rpb7 has two domains, an N-terminal ribonucleoprotein (RNP) domain and a C-terminal S1 domain, both of which bind single-stranded RNA. It is possible that the S1 domain interacts with the nascent RNA transcript, assisted by the RNP domain. In yeast, Rpb4/Rpb7 is necessary for promoter-directed transcription initiation. They also play a role in regulating transcription-coupled repair in the Rad26-dependent pathway, in efficient mRNA export, and in transcription termination. 88 -239910 cd04463 S1_EF_like S1_EF_like: EF-like, S1-like RNA-binding domain. The EF-like superfamily contains the bacterial translation elongation factor P and its archeal and eukaryotic homologs, aIF5A and eIF5A. All proteins in this superfamily contain an S1 domain, which binds RNA or single-stranded DNA and often interacts with the ribosome. Hex-1, the SI-like domain of which is also found in this group, is structurally homologous to eIF5A and might have evolved from an ancestral eIF5A through gene duplication. 55 -239911 cd04465 S1_RPS1_repeat_ec2_hs2 S1_RPS1_repeat_ec2_hs2: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain.While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 2 of the Escherichia coli and Homo sapiens RPS1 (ec2 and hs2, respectively). Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 67 -239912 cd04466 S1_YloQ_GTPase S1_YloQ_GTPase: YloQ GTase family (also known as YjeQ and CpgA), S1-like RNA-binding domain. Proteins in the YloQ GTase family bind the ribosome and have GTPase activity. The precise role of this family is unknown. The protein structure is composed of three domains: an N-terminal S1 domain, a central GTPase domain, and a C-terminal zinc finger domain. This N-terminal S1 domain binds ssRNA. The central GTPase domain contains nucleotide-binding signature motifs: G1 (walker A), G3 (walker B) and G4 motifs. Experiments show that the bacterial YloQ and YjeQ proteins have low intrinsic GTPase activity. The C-terminal zinc-finger domain has structural similarity to a portion of the DNA-repair protein Rad51. This suggests a possible role for this GTPase as a regulator of translation, perhaps as a translation initiation factor. This family is classified based on the N-terminal S1 domain. 68 -239913 cd04467 S1_aIF5A S1_aIF5A: Archaeal translation Initiation Factor 5A (aIF5A), S1-like RNA-binding domain. aIF5A is a homolog of eukaryotic eIF5A. IF5A is the only protein known to have the unusual amino acid hypusine. Hypusine is a post-translationally modified lysine and is essential for IF5A function. In yeast, eIF5A interacts with components of the 80S ribosome and translation elongation factors 2 (eEF2) in a hypusine-dependent manner. This C-terminal S1 domain resembles the cold-shock domain which binds RNA. Moreover, IF5A prefers binding to the actively translating ribosome. This evidence suggests that IF5A plays a role in translation elongation instead of translation initiation as previously proposed. 57 -239914 cd04468 S1_eIF5A S1_eIF5A: Eukaryotic translation Initiation Factor 5A (eIF5A), S1-like RNA-binding domain. eIF5A is an evolutionarily conserved protein found in eukaryotes. eIF5A is the only protein known to have the unusual amino acid hypusine. Hypusine is essential for eIF5A function and is a post-translationally modified lysine. eIF5A interacts with components of the 80S ribosome and translation elongation factors 2 (eEF2) in a hypusine-dependent manner. This C-terminal S1 domain resembles the oligonucleotides-binding fold (OB fold) which binds RNA. Moreover, eIF5A prefers binding to the actively translating ribosome. This evidence suggests that eIF5A plays a role in translation elongation instead of translation initiation as previously proposed. 69 -239915 cd04469 S1_Hex1 S1_Hex1: Hex1, S1-like RNA-binding domain. Hex1 protein is the major component of the Woronin body in filamentous fungi. The Woronin body is a dense vesicle and plays a vital role in filamentous fungi cell integrity. When cell damage occurs, Woronin bodies seal the septal pore to prevent further cytoplasmic bleeding. Hex1 protein self-assembles to form the solid core of the Woronin body vesicle. The Hex1 sequence and structure are similar to eukaryotic initiation factor 5A (eIF5A), suggesting they share a common ancestor during evolution. All members of the EF superfamily to which Hex1 belongs, contain an S1 domain, which has been shown to bind RNA or single-stranded DNA and often interacts with the ribosome. 75 -239916 cd04470 S1_EF-P_repeat_1 S1_EF-P_repeat_1: Translation elongation factor P (EF-P), S1-like RNA-binding domain, repeat 1. EF-P stimulates the peptidyltransferase activity in the prokaryotic 70S ribosome. EF-P enhances the synthesis of certain dipeptides with N-formylmethionyl-tRNA and puromycine in vitro. EF-P binds to both the 30S and 50S ribosomal subunits. EF-P binds near the streptomycine binding site of the 16S rRNA in the 30S subunit. EF-P interacts with domains 2 and 5 of the 23S rRNA. The L16 ribosomal protein of the 50S or its N-terminal fragment are required for EF-P mediated peptide bond synthesis, whereas L11, L15, and L7/L12 are not required in this reaction, suggesting that EF-P may function at a different ribosomal site than most other translation factors. EF-P is essential for cell viability and is required for protein synthesis. EF-P is mainly present in bacteria. The EF-P homologs in archaea and eukaryotes are the initiation factors aIF5A and eIF5A, respectively. EF-P has 3 domains (domains I, II, and III). Domains II and III are S1-like domains. This CD includes domain II (the first S1 domain of EF_P). Domains II and III have structural homology to the eIF5A domain C, suggesting that domains II and III evolved by duplication. 61 -239917 cd04471 S1_RNase_R S1_RNase_R: RNase R C-terminal S1 domain. RNase R is a processive 3' to 5' exoribonuclease, which is a homolog of RNase II. RNase R degrades RNA with secondary structure having a 3' overhang of at least 7 nucleotides. RNase R and PNPase play an important role in the degradation of RNA with extensive secondary structure, such as rRNA, tRNA, and certain mRNA which contains repetitive extragenic palindromic sequences. The C-terminal S1 domain binds ssRNA. 83 -239918 cd04472 S1_PNPase S1_PNPase: Polynucleotide phosphorylase (PNPase), ), S1-like RNA-binding domain. PNPase is a polyribonucleotide nucleotidyl transferase that degrades mRNA. It is a trimeric multidomain protein. The C-terminus contains the S1 domain which binds ssRNA. This family is classified based on the S1 domain. PNPase nonspecifically removes the 3' nucleotides from mRNA, but is stalled by double-stranded RNA structures such as a stem-loop. Evidence shows that a minimum of 7-10 unpaired nucleotides at the 3' end, is required for PNPase degradation. It is suggested that PNPase also dephosphorylates the RNA 5' end. This additional activity may regulate the 5'-dependent activity of RNaseE in vivo. 68 -239919 cd04473 S1_RecJ_like S1_RecJ_like: The S1 domain of the archaea-specific RecJ-like exonuclease. The function of this family is not fully understood. In Escherichia coli, RecJ degrades single-stranded DNA in the 5'-3' direction and participates in homologous recombination and mismatch repair. 77 -239920 cd04474 RPA1_DBD_A RPA1_DBD_A: A subfamily of OB folds corresponding to the second OB fold, the ssDNA-binding domain (DBD)-A, of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). In addition to DBD-A, RPA1 contains three other OB folds: DBD-B, DBD-C, and RPA1N. The major DNA binding activity of human RPA (hRPA) and Saccharomyces cerevisiae RPA (ScRPA) is associated with DBD-A and DBD-B of RPA1. RPA1 DBD-C is involved in trimerization. The ssDNA-binding mechanism is believed to be multistep and to involve conformational change. Although ScRPA and the hRPA have similar ssDNA-binding properties, they differ functionally. Antibodies to hRPA do not cross-react with ScRPA, and null mutations in the ScRPA subunits are not complemented by corresponding human genes. Also, ScRPA cannot support Simian virus 40 (SV40) DNA replication in vitro, whereas human RPA can. 104 -239921 cd04475 RPA1_DBD_B RPA1_DBD_B: A subfamily of OB folds corresponding to the third OB fold, the ssDNA-binding domain (DBD)-B, of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). In addition to DBD-B, RPA1 contains three other OB folds: DBD-A, DBD-C, and RPA1N. The major DNA binding activity of human RPA (hRPA) and Saccharomyces cerevisiae RPA (ScRPA) is associated with RPA1 DBD-A and DBD-B. RPA1 DBD-C is involved in trimerization. The ssDNA binding mechanism is believed to be multistep and to involve conformational change. Although ScRPA and the hRPA have similar ssDNA-binding properties, they differ functionally. Antibodies to hRPA do not cross-react with ScRPA, and null mutations in the ScRPA subunits are not complemented by corresponding human genes. Also, ScRPA cannot support Simian virus 40 (SV40) DNA replication in vitro, whereas human RPA can. 101 -239922 cd04476 RPA1_DBD_C RPA1_DBD_C: A subfamily of OB folds corresponding to the C-terminal OB fold, the ssDNA-binding domain (DBD)-C, of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). In addition to DBD-C, RPA1 contains three other OB folds: DBD-A, DBD-B, and RPA1N. The major DNA binding activity of RPA is associated with RPA1 DBD-A and DBD-B. RPA1 DBD-C is involved in DNA binding and trimerization. It contains two structural insertions not found to date in other OB-folds: a zinc ribbon and a three-helix bundle. RPA1 DBD-C also contains a Cys4-type zinc-binding motif, which plays a role in the ssDNA binding function of this domain. It appears that zinc itself may not be required for ssDNA binding. 166 -239923 cd04477 RPA1N RPA1N: A subfamily of OB folds corresponding to the N-terminal OB-fold domain of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). RPA1N is known to specifically interact with the p53 tumor suppressor, DNA polymerase alpha, and transcription factors. In addition to RPA1N, RPA1 contains three other OB folds: ssDNA-binding domain (DBD)-A, DBD-B, and DBD-C. 97 -239924 cd04478 RPA2_DBD_D RPA2_DBD_D: A subfamily of OB folds corresponding to the OB fold of the central ssDNA-binding domain (DBD)-D of human RPA2 (also called RPA32). RPA2 is a subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). The major DNA binding activity of RPA is associated with RPA1 DBD-A and DBD-B; RPA2 DBD-D is a weak ssDNA-binding domain. RPA2 DBD-D is also involved in trimerization. The ssDNA binding mechanism is believed to be multistep and to involve conformational change. N-terminal to human RPA2 DBD-D is a domain containing all the known phosphorylation sites of RPA. Human RPA2 is phosphorylated in a cell cycle dependent manner in response to DNA damage. RPA2 interacts physically with menin; the gene encoding menin is a tumor suppressor gene disrupted in multiple endocrine neoplasia type I. This subfamily also includes RPA2 from Cryptosporidium parvum (CpRPA2). CpRPA2 is an SSB, which can be phosphorylated by DNA-PK in vitro. 95 -239925 cd04479 RPA3 RPA3: A subfamily of OB folds similar to human RPA3 (also called RPA14). RPA3 is the smallest subunit of Replication protein A (RPA). RPA is a nuclear ssDNA binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). RPA3 is believed to have a structural role in assembly of the RPA heterotrimer. 101 -239926 cd04480 RPA1_DBD_A_like RPA1_DBD_A_like: A subgroup of uncharacterized plant OB folds with similarity to the second OB fold, the ssDNA-binding domain (DBD)-A, of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). In addition to DBD-A, RPA1 contains three other OB folds: DBD-B, DBD-C, and RPA1N. The major DNA binding activity of RPA is associated with DBD-A and DBD-B of RPA1. RPA1 DBD-C is involved in trimerization. The ssDNA-binding mechanism is believed to be multistep and to involve conformational change. 86 -239927 cd04481 RPA1_DBD_B_like RPA1_DBD_B_like: A subgroup of uncharacterized, plant OB folds with similarity to the third OB fold, the ssDNA-binding domain (DBD)-B, of human RPA1 (also called RPA70). RPA1 is the large subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). In addition to DBD-B, RPA1 contains three other OB folds: DBD-A, DBD-C, and RPA1N. The major DNA binding activity of RPA is associated with RPA1 DBD-A and DBD-B. RPA1 DBD-C is involved in trimerization. The ssDNA binding mechanism is believed to be multistep and to involve conformational change. 106 -239928 cd04482 RPA2_OBF_like RPA2_OBF_like: A subgroup of uncharacterized archaeal OB folds with similarity to the OB fold of the central ssDNA-binding domain (DBD)-D of human RPA2 (also called RPA32). RPA2 is a subunit of Replication protein A (RPA). RPA is a nuclear ssDNA-binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). The major DNA binding activity of RPA is associated with RPA1 DBD-A and DBD-B; RPA2 DBD-D is a weak ssDNA-binding domain. RPA2 DBD-D is also involved in trimerization. The ssDNA binding mechanism is believed to be multistep and to involve conformational change. N-terminal to human RPA2 DBD-D is a domain containing all the known phosphorylation sites of RPA. Human RPA2 is phosphorylated in a cell cycle dependent manner in response to DNA damage. 91 -239929 cd04483 hOBFC1_like hOBFC1_like: A subfamily of OB folds similar to that found in human OB fold containing protein 1 (hOBFC1). Members of this group belong to the Replication protein A subunit 2 (RPA2) family of OB folds. RPA is a nuclear ssDNA binding protein (SSB) which appears to be involved in all aspects of DNA metabolism including replication, recombination, and repair. RPA also mediates specific interactions of various nuclear proteins. In animals, plants, and fungi, RPA is a heterotrimer with subunits of 70KDa (RPA1), 32kDa (RPA2), and 14 KDa (RPA3). The OB fold domain of RPA2 has dual roles in ssDNA binding and trimerization. 92 -239930 cd04484 polC_OBF polC_OBF: A subfamily of OB folds corresponding to the N-terminal OB-fold nucleic acid binding domain of Bacillus subtilis type C replicative DNA polymerase III alpha subunit (polC). Replication in B. subtilis and Staphylococcus aureus requires two different polymerases, polC and DnaE. The holoenzyme is thought to include the two different polymerases. At the B. subtilis replication fork, polC appears to be involved in leading strand synthesis and DnaE in lagging strand synthesis. 82 -239931 cd04485 DnaE_OBF DnaE_OBF: A subfamily of OB folds corresponding to the C-terminal OB-fold nucleic acid binding domain of Thermus aquaticus and Escherichia coli type C replicative DNA polymerase III alpha subunit (DnaE). The DNA polymerase holoenzyme of E. coli contains two copies of this replicative polymerase, each of which copies a different DNA strand. This group also contains Bacillus subtilis DnaE. Replication in B. subtilis and Staphylococcus aureus requires two different type C polymerases, polC and DnaE, both of which are thought to be included in the DNA polymerase holoenzyme. At the B. subtilis replication fork, polC appears to be involved in leading strand synthesis and DnaE in lagging strand synthesis. 84 -239932 cd04486 YhcR_OBF_like YhcR_OBF_like: A subfamily of OB-fold domains similar to the OB folds of Bacillus subtilis YhcR. YhcR is a sugar-nonspecific nuclease, which is active in the presence of Ca2+ and Mn2+. It cleaves RNA endonucleolytically, producing 3'-monophosphate nucleosides. YhcR appears to be the major Ca2+ activated nuclease of B. subtilis. YhcR may be localized in the cell wall. 78 -239933 cd04487 RecJ_OBF2_like RecJ_OBF2_like: A subfamily of OB folds corresponding to the second OB fold (OBF2) of archaeal-specific proteins with similarity to eubacterial RecJ. RecJ is an ssDNA-specific exonuclease. Although the overall sequence similarity of these proteins to eubacterial RecJ proteins is marginal, they appear to carry motifs, which have been shown to be essential for nuclease function in Escherichia coli RecJ. In addition to this OB fold, most proteins in this subfamily contain: i) an N-terminal OB fold belonging to a different domain family (the ribosomal S1-like RNA-binding family); and ii) a domain, C-terminal to OBF2, characteristic of DHH family proteins. DHH family proteins include E. coli RecJ, and are predicted to have a phosphoesterase function. 73 -239934 cd04488 RecG_wedge_OBF RecG_wedge_OBF: A subfamily of OB folds corresponding to the OB fold found in the N-terminal (wedge) domain of Escherichia coli RecG. RecG is a branched-DNA-specific helicase, which catalyzes the interconversion of a DNA replication fork to a four-stranded (Holliday) junction in vivo and in vitro. This interconversion provides a route to repair stalled forks. The RecG monomer contains three domains. The N-terminal domain is named for its wedge structure, and may provide the specificity of RecG for binding branched-DNA structures. During the reversal of fork to Holliday junction, the wedge domain is fixed at the junction of the fork where the leading and lagging strand duplex arms meet, and is thought to promote the unwinding of the nascent leading and lagging strands. In order to form the Holliday junction, these nascent strands would be annealed, and the parental strands reannealed. The wedge domain may also be a processivity factor of RecG on these branched chain substrates. 75 -239935 cd04489 ExoVII_LU_OBF ExoVII_LU_OBF: A subfamily of OB folds corresponding to the N-terminal OB-fold domain of Escherichia coli exodeoxyribonuclease VII (ExoVII) large subunit. E. coli ExoVII is composed of two non-identical subunits. E. coli ExoVII is a single-strand-specific exonuclease which degrades ssDNA from both 3-prime and 5-prime ends. ExoVII plays a role in methyl-directed mismatch repair in vivo. ExoVII may also guard the genome from mutagenesis by removing excess ssDNA, since the build up of ssDNA would lead to SOS induction and PolIV-dependent mutagenesis. 78 -239936 cd04490 PolII_SU_OBF PolII_SU_OBF: A subfamily of OB folds corresponding to the OB fold found in Pyrococcus abyssi DNA polymerase II (PolII) small subunit. PolII is a family D DNA polymerase, having a 3-prime to 5-prime exonuclease activity. P. abyssi PolII is heterodimeric. The large subunit appears to be the polymerase, and the small subunit may be the exonuclease. The small subunit contains a calcineurin-like phosphatase superfamily domain C-terminal to this OB-fold domain. 79 -239937 cd04491 SoSSB_OBF SoSSB_OBF: A subfamily of OB folds similar to the OB fold of the crenarchaeote Sulfolobus solfataricus single-stranded (ss) DNA-binding protein (SSoSSB). SSoSSB has a single OB fold, and it physically and functionally interacts with RNA polymerase. In vitro, SSoSSB can substitute for the basal transcription factor TBP, stimulating transcription from promoters under conditions in which TBP is limiting, and supporting transcription when TBP is absent. SSoSSB selectively melts the duplex DNA of promoter sequences. It also relieves transcriptional repression by the chromatin Alba. In addition, SSoSSB activates reverse gyrase activity, which involves DNA binding, DNA cleavage, strand passage and ligation. SSoSSB stimulates all these steps in the presence of the chromatin protein, Sul7d. SSoSSB antagonizes the inhibitory effect of Sul7d on reverse gyrase supercoiling activity. It also physically and functionally interacts with Mini-chromosome Maintenance (MCM), stimulating the DNA helicase activity of MCM. 82 -239938 cd04492 YhaM_OBF_like YhaM_OBF_like: A subfamily of OB folds similar to that found in Bacillus subtilis YhaM and Staphylococcus aureus cmp-binding factor-1 (SaCBF1). Both these proteins are 3'-to-5'exoribonucleases. YhaM requires Mn2+ or Co2+ for activity and is inactive in the presence of Mg2+. YhaM also has a Mn2+ dependent 3'-to-5'single-stranded DNA exonuclease activity. SaCBF is also a double-stranded DNA binding protein, binding specifically to cmp, the replication enhancer found in S. aureus plasmid pT181. Proteins in this group combine an N-terminal OB fold with a C-terminal HD domain. The HD domain is found in metal-dependent phosphohydrolases. 83 -239939 cd04493 BRCA2DBD_OB1 BRCA2DBD_OB1: A subfamily of OB folds corresponding to the first OB fold (OB1) of the 800-amino acid C-terminal ssDNA binding domain (DBD) of BRCA2 (breast cancer susceptibility gene 2) protein, called BRCA2DBD. BRCA2 participates in homologous recombination-mediated repair of double-strand DNA breaks. It stimulates the displacement of Replication protein A (RPA), the most abundant eukaryotic ssDNA binding protein. It also facilitates filament formation. Mutations that map throughout the BRCA2 protein are associated with breast cancer susceptibility. BRCA2 is a large nuclear protein and its most conserved region is the C-terminal BRCA2DBD. BRCA2DBD binds ssDNA in vitro, and is composed of five structural domains, three of which are OB folds (OB1, OB2, and OB3). BRCA2DBD OB2 and OB3 are arranged in tandem, and their mode of binding can be considered qualitatively similar to two OB folds of RPA1, DBD-A and DBD-B (the major DBDs of RPA). BRCA2DBD OB1 binds DNA weakly. 100 -239940 cd04494 BRCA2DBD_OB2 BRCA2DBD_OB2: A subfamily of OB folds corresponding to the second OB fold (OB2) of the 800-amino acid C-terminal ssDNA binding domain (DBD) of BRCA2 (breast cancer susceptibility gene 2) protein, called BRCA2DBD. BRCA2 participates in homologous recombination-mediated repair of double-strand DNA breaks. It stimulates the displacement of Replication protein A (RPA), the most abundant eukaryotic ssDNA binding protein. It also facilitates filament formation. Mutations that map throughout the BRCA2 protein are associated with breast cancer susceptibility. BRCA2 is a large nuclear protein and its most conserved region is the C-terminal BRCA2DBD. BRCA2DBD binds ssDNA in vitro, and is composed of five structural domains, three of which are OB folds (OB1, OB2, and OB3). BRCA2DBD OB2 and OB3 are arranged in tandem, and their mode of binding can be considered qualitatively similar to two OB folds of RPA1, DBD-A and DBD-B (the major DBDs of RPA). 251 -239941 cd04495 BRCA2DBD_OB3 BRCA2DBD_OB3: A subfamily of OB folds corresponding to the third OB fold (OB3) of the 800-amino acid C-terminal ssDNA binding domain (DBD) of BRCA2 (breast cancer susceptibility gene 2) protein, called BRCA2DBD. BRCA2 participates in homologous recombination-mediated repair of double-strand DNA breaks. It stimulates the displacement of Replication protein A (RPA), the most abundant eukaryotic ssDNA binding protein. It also facilitates filament formation. Mutations that map throughout the BRCA2 protein are associated with breast cancer susceptibility. BRCA2 is a large nuclear protein and its most conserved region is the C-terminal BRCA2DBD. BRCA2DBD binds ssDNA in vitro, and is composed of five structural domains, three of which are OB folds (OB1, OB2, and OB3). BRCA2DBD OB2 and OB3 are arranged in tandem, and their mode of binding can be considered qualitatively similar to two OB folds of RPA1, DBD-A and DBD-B (the major DBDs of RPA). 100 -239942 cd04496 SSB_OBF SSB_OBF: A subfamily of OB folds similar to the OB fold of ssDNA-binding protein (SSB). SSBs bind with high affinity to ssDNA. They bind to and protect ssDNA intermediates during DNA metabolic pathways. All bacterial and eukaryotic SSBs studied to date oligomerize to bring together four OB folds in their active state. The majority (e.g. Escherichia coli SSB) have a single OB fold per monomer, which oligomerize to form a homotetramer. However, Deinococcus and Thermus SSB proteins have two OB folds per monomer, which oligomerize to form a homodimer. Mycobacterium tuberculosis SSB varies in quaternary structure from E. coli SSB. It forms a dimer of dimers having a unique dimer interface, which lends the protein greater stability. Included in this group are OB folds similar to Escherichia coli PriB. E.coli PriB is homodimeric with each monomer having a single OB fold. It does not appear to form higher order oligomers. PriB is an essential protein for the replication restart at forks that have stalled at sites of DNA damage. It also plays a role in the assembly of primosome during replication initiation at the bacteriophage phiX174 origin. PriB physically interacts with SSB and binds ssDNA with high affinity. 100 -239943 cd04497 hPOT1_OB1_like hPOT1_OB1_like: A subfamily of OB folds similar to the first OB fold (OB1) of human protection of telomeres 1 protein (hPOT1), the single OB fold of the N-terminal domain of Schizosaccharomyces pombe POT1 (SpPOT1), and the first OB fold of the N-terminal domain of the alpha subunit (OB1Nalpha) of Oxytricha nova telomere end binding protein (OnTEBP). POT1 proteins recognize single-stranded (ss) 3-prime ends of the telomere. A 3-prime ss overhang is conserved in ciliated protozoa, yeast, and mammals. SpPOT1 is essential for telomere maintenance. It binds specifically to the ss G-rich telomeric sequence (GGTTAC) of S. pombe. hPOT1 binds specifically to ss telomeric DNA repeats ending with the sequence GGTTAG. Deletion of the S. pombe pot1+ gene results in a rapid loss of telomere sequences, chromosome mis-segregation and chromosome circularization. hPOT1 is implicated in telomere length regulation. The hPOT1 monomer consists of two closely connected OB folds (OB1-OB2) which cooperate to bind telomeric ssDNA. OB1 makes more extensive contact with the ssDNA than OB2. OB2 protects the 3' end of the ssDNA. A second OB fold has not been predicted in S. pombe POT1. OnTEBP binds the extreme 3-prime end of telomeric DNA. It is heterodimeric and contains four OB folds - three in the alpha subunit (two in the N-terminal domain and one in the C-terminal domain) and one in the beta subunit. OB1Nalpha, together with the second OB fold of the N-terminal domain of OnTEBP alpha subunit and the beta subunit OB fold, forms a deep cleft that binds ssDNA. 138 -239944 cd04498 hPOT1_OB2 hPOT1_OB2: A subfamily of OB folds similar to the second OB fold (OB2) of human protection of telomeres 1 protein (hPOT1). POT1 proteins bind to the single-stranded (ss) 3-prime ends of the telomere. hPOT1 binds specifically to ss telomeric DNA repeats ending with the sequence GGTTAG. The hPOT1 monomer consists of two closely connected OB folds (OB1-OB2) which cooperate to bind telomeric ssDNA. OB1 makes more extensive contact with the ssDNA than OB2. OB2 protects the 3' end of the ssDNA. hPOT1 is implicated in telomere length regulation. 123 -239945 cd04501 SGNH_hydrolase_like_4 Members of the SGNH-hydrolase superfamily, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxlic acid. 183 -239946 cd04502 SGNH_hydrolase_like_7 Members of the SGNH-hydrolase superfamily, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxlic acid. 171 -239947 cd04506 SGNH_hydrolase_YpmR_like Members of the SGNH-hydrolase superfamily, a diverse family of lipases and esterases. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases; its active site closely resembles the Ser-His-Asp(Glu) triad from other serine hydrolases, but may lack the carboxlic acid. This subfamily contains sequences similar to Bacillus YpmR. 204 -119391 cd04508 TUDOR Tudor domains are found in many eukaryotic organisms and have been implicated in protein-protein interactions in which methylated protein substrates bind to these domains. For example, the Tudor domain of Survival of Motor Neuron (SMN) binds to symmetrically dimethylated arginines of arginine-glycine (RG) rich sequences found in the C-terminal tails of Sm proteins. The SMN protein is linked to spinal muscular atrophy. Another example is the tandem tudor domains of 53BP1, which bind to histone H4 specifically dimethylated at Lys20 (H4-K20me2). 53BP1 is a key transducer of the DNA damage checkpoint signal. 48 -107261 cd04509 PBP1_ABC_transporter_GCPR_C_like Family C of G-protein coupled receptors and their close homologs, the type I periplasmic-binding proteins of ATP-binding cassette transporter-like systems. This CD includes members of the family C of G-protein coupled receptors and their close homologs, the type I periplasmic-binding proteins of ATP-binding cassette transporter-like systems. The family C GPCR includes glutamate/glycine-gated ion channels such as the NMDA receptor, G-protein-coupled receptors, metabotropic glutamate, GABA-B, calcium sensing, phermone receptors, and atrial natriuretic peptide-guanylate cyclase receptors. The glutamate receptors that form cation-selective ion channels, iGluR, can be classified into three different subgroups according to their binding-affinity for the agonists NMDA (N-methyl-D-asparate), AMPA (alpha-amino-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid), and kainate. L-glutamate is a major neurotransmitter in the brain of vertebrates and acts through either mGluRs or iGluRs. mGluRs subunits possess seven transmembrane segments and a large N-terminal extracellular domain. ABC-type leucine-isoleucine-valine-binding protein (LIVBP) is a bacterial periplasmic binding protein that has homology with the amino-terminal domain of the glutamate-receptor ion channels (iGluRs). The extracellular regions of iGluRs are made of two PBP-like domains in tandem, a LIVBP-like domain that constitutes the N terminus - which is included in this CD - followed by a domain related to lysine-arginine-ornithine-binding protein (LAOBP) that belongs to the type II periplasmic binding fold protein superfamily. The uncharacterized periplasmic components of various ABC-type transport systems are included in this group. 299 -239948 cd04511 Nudix_Hydrolase_4 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, U=I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 130 -271334 cd04512 Ntn_Asparaginase_2_like L-Asparaginase type 2-like enzymes of the NTN-hydrolase superfamily. This family includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2 enzymes. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoprotein. Taspase1 catalyzes the cleavage of the Mix Lineage Leukemia (MLL) nuclear protein and transcription factor TFIIA. L-Asparaginase type 2 hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzymes of this family undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. The family is circularly permuted relative to other NTN-hydrolase families. 249 -271335 cd04513 Glycosylasparaginase Glycosylasparaginase and similar proteins. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoproteins. This enzyme is an amidase located inside lysosomes. Mutation of this gene in humans causes a genetic disorder known as aspartylglycosaminuria (AGU). The glycosylasparaginase precursor undergoes autoproteolysis through an N-O or N-S acyl rearrangement of the peptide bond, which leads to the cleavage of a peptide bond between an Asp and a Thr. This proteolysis step generates an exposed N-terminal catalytic threonine and activates the enzyme. 294 -271336 cd04514 Taspase1_like Taspase 1 (threonine aspartase 1) and similar proteins. Taspase1 catalyzes the cleavage of the mix lineage leukemia (MLL) nuclear protein and transcription factor TFIIA. Taspase1 is a threonine aspartase, a member of the Ntn hydrolase superfamily and the type 2 asparaginase family. A threonine residue acts as the active site nucleophile in both endopeptidease and protease activities to cleave polypeptide substrates after an aspartate residue. The Taspase1 proenzyme undergoes autoproteolysis into alpha and beta subunits. The N-terminal residue of the beta subunit is a threonine which is the active catalytic residue. The active enzyme is a heterotetramer. 313 -341214 cd04515 Alpha_kinase Alpha kinase family. The alpha kinase family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional serine/threonine protein kinases. The family contains myosin heavy chain kinases, elongation factor-2 kinases, and bifunctional ion channel kinases. These kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+/Ca2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 213 -239952 cd04516 TBP_eukaryotes eukaryotic TATA box binding protein (TBP): Present in archaea and eukaryotes, TBPs are transcription factors that recognize promoters and initiate transcription. TBP has been shown to be an essential component of three different transcription initiation complexes: SL1, TFIID and TFIIIB, directing transcription by RNA polymerases I, II and III, respectively. TBP binds directly to the TATA box promoter element, where it nucleates polymerase assembly, thus defining the transcription start site. TBP's binding in the minor groove induces a dramatic DNA bending while its own structure barely changes. The conserved core domain of TBP, which binds to the TATA box, has a bipartite structure, with intramolecular symmetry generating a saddle-shaped structure that sits astride the DNA. 174 -239953 cd04517 TLF TBP-like factors (TLF; also called TLP, TRF, TRP), which are found in most metazoans. TLFs and TBPs have well-conserved core domains; however, they only share about 60% similarity. TLFs, like TBPs, interact with TFIIA and TFIIB, which are part of the basal transcription machinery. Yet, in contrast to TBPs, TLFs seem not to interact with the TATA-box and even have a negative effect on the transcription of TATA-containing promoters. Recent results indicate that TLFs are involved in the transcription via TATA-less promoters. 174 -239954 cd04518 TBP_archaea archaeal TATA box binding protein (TBP): TBPs are transcription factors present in archaea and eukaryotes, that recognize promoters and initiate transcription. TBP has been shown to be an essential component of three different transcription initiation complexes: SL1, TFIID and TFIIIB, directing transcription by RNA polymerases I, II and III, respectively. TBP binds directly to the TATA box promoter element, where it nucleates polymerase assembly, thus defining the transcription start site. TBP's binding in the minor groove induces a dramatic DNA bending while its own structure barely changes. The conserved core domain of TBP, which binds to the TATA box, has a bipartite structure, with intramolecular symmetry generating a saddle-shaped structure that sits astride the DNA. 174 -213328 cd04519 RasGAP Ras GTPase Activating Domain. RasGAP functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Proteins having a RasGAP domain include p120GAP, IQGAP, Rab5-activating protein 6, and Neurofibromin, among others. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP exhibit no similarity at their amino acid sequence level. RasGTPases function as molecular switches in a large number of signaling pathways. They are in the on state when bound to GTP, and in the off state when bound to GDP. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 256 -341359 cd04582 CBS_pair_ABC_OpuCA_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found associated with the ABC transporter OpuCA. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in association with the ABC transporter OpuCA. OpuCA is the ATP binding component of a bacterial solute transporter that serves a protective role to cells growing in a hyperosmolar environment but the function of the CBS domains in OpuCA remains unknown. In the related ABC transporter, OpuA, the tandem CBS domains have been shown to function as sensors for ionic strength, whereby they control the transport activity through an electronic switching mechanism. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. They are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 111 -341360 cd04583 CBS_pair_ABC_OpuCA_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found associated with the ABC transporter OpuCA. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in association with the ABC transporter OpuCA. OpuCA is the ATP binding component of a bacterial solute transporter that serves a protective role to cells growing in a hyperosmolar environment but the function of the CBS domains in OpuCA remains unknown. In the related ABC transporter, OpuA, the tandem CBS domains have been shown to function as sensors for ionic strength, whereby they control the transport activity through an electronic switching mechanism. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. They are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 110 -341361 cd04584 CBS_pair_AcuB_like Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ACT domain. The putative Acetoin Utilization Protein (Acub) from Vibrio Cholerae contains a CBS pair domain. The acetoin utilization protein plays a role in growth and sporulation on acetoin or butanediol for use as a carbon source. Acetoin is an important physiological metabolite excreted by many microorganisms. It is used as an external energy store by a number of fermentive bacteria. Acetoin is produced by the decarboxylation of alpha-acetolactate. Once superior carbon sources are exhausted, and the culture enters stationary phase, acetoin can be utilised in order to maintain the culture density. The conversion of acetoin into acetyl-CoA or 2,3-butanediol is catalysed by the acetoin dehydrogenase complex and acetoin reductase/2,3-butanediol dehydrogenase, respectively. Acetoin utilization proteins, acetylpolyamine amidohydrolases, and histone deacetylases are members of an ancient protein superfamily.This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the acetoin utilization proteins in bacteria. Acetoin is a product of fermentative metabolism in many prokaryotic and eukaryotic microorganisms. They produce acetoin as an external carbon storage compound and then later reuse it as a carbon and energy source during their stationary phase and sporulation. In addition these CBS domains are associated with a downstream ACT (aspartate kinase/chorismate mutase/TyrA) domain, which is linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 130 -341362 cd04586 CBS_pair_BON_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain. BON is a putative phospholipid-binding domain found in a family of osmotic shock protection proteins. It is also found in some secretins and a group of potential haemolysins. Its likely function is attachment to phospholipid membranes. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 137 -341363 cd04587 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT (Nucleotidyltransferase) Pol-beta-like domain, and the DUF294 domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT_Pol-beta-like domain, and the DUF294 domain. Members of CAP_ED, include CAP which binds cAMP, FNR (fumarate and nitrate reductase) which uses an iron-sulfur cluster to sense oxygen, and CooA a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. The NT_Pol-beta-like domain includes the Nucleotidyltransferase (NT) domains of DNA polymerase beta and other family X DNA polymerases, as well as the NT domains of class I and class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly (A) polymerases, terminal uridylyl transferases, Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. DUF294 is a putative nucleotidyltransferase with a conserved DxD motif. CBS is a small domain originally identified in cystathionine beta-synthase and subsequently found in a wide range of different proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 114 -341364 cd04588 CBS_pair_archHTH_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in archaea and associated with helix turn helix domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 111 -341365 cd04589 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT (Nucleotidyltransferase) Pol-beta-like domain, and the DUF294 domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT_Pol-beta-like domain, and the DUF294 domain. Members of CAP_ED, include CAP which binds cAMP, FNR (fumarate and nitrate reductase) which uses an iron-sulfur cluster to sense oxygen, and CooA a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. The NT_Pol-beta-like domain includes the Nucleotidyltransferase (NT) domains of DNA polymerase beta and other family X DNA polymerases, as well as the NT domains of class I and class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly (A) polymerases, terminal uridylyl transferases, Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. DUF294 is a putative nucleotidyltransferase with a conserved DxD motif. CBS is a small domain originally identified in cystathionine beta-synthase and subsequently found in a wide range of different proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 113 -341366 cd04590 CBS_pair_CorC_HlyC_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain. CorC_HlyC is a transporter associated domain. This small domain is found in Na+/H+ antiporters, in proteins involved in magnesium and cobalt efflux, and in association with some proteins of unknown function. The function of the CorC_HlyC domain is uncertain but it might be involved in modulating transport of ion substrates. These CBS domains are found in highly conserved proteins that either have unknown function or are puported to be hemolysins, exotoxins involved in lysis of red blood cells in vitro. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 119 -341367 cd04591 CBS_pair_voltage-gated_CLC_euk_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC (chloride channel) in eukaryotes and bacteria. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC voltage-gated chloride channel. The CBS pairs here are found in the EriC CIC-type chloride channels in eukaryotes and bacteria. These ion channels are proteins with a seemingly simple task of allowing the passive flow of chloride ions across biological membranes. CIC-type chloride channels come from all kingdoms of life, have several gene families, and can be gated by voltage. The members of the CIC-type chloride channel are double-barreled: two proteins forming homodimers at a broad interface formed by four helices from each protein. The two pores are not found at this interface, but are completely contained within each subunit, as deduced from the mutational analyses, unlike many other channels, in which four or five identical or structurally related subunits jointly form one pore. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 114 -341368 cd04592 CBS_pair_voltage-gated_CLC_euk_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC (chloride channel) in eukaryotes and bacteria. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC voltage-gated chloride channel. The CBS pairs here are found in the EriC CIC-type chloride channels in eukaryotes and bacteria. These ion channels are proteins with a seemingly simple task of allowing the passive flow of chloride ions across biological membranes. CIC-type chloride channels come from all kingdoms of life, have several gene families, and can be gated by voltage. The members of the CIC-type chloride channel are double-barreled: two proteins forming homodimers at a broad interface formed by four helices from each protein. The two pores are not found at this interface, but are completely contained within each subunit, as deduced from the mutational analyses, unlike many other channels, in which four or five identical or structurally related subunits jointly form one pore. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 128 -341369 cd04594 CBS_pair_voltage-gated_CLC_archaea Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC (chloride channel) in archaea. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC voltage-gated chloride channel. The CBS pairs here are found in the EriC CIC-type chloride channels in archaea. These ion channels are proteins with a seemingly simple task of allowing the passive flow of chloride ions across biological membranes. CIC-type chloride channels come from all kingdoms of life, have several gene families, and can be gated by voltage. The members of the CIC-type chloride channel are double-barreled: two proteins forming homodimers at a broad interface formed by four helices from each protein. The two pores are not found at this interface, but are completely contained within each subunit, as deduced from the mutational analyses, unlike many other channels, in which four or five identical or structurally related subunits jointly form one pore. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 107 -341370 cd04595 CBS_pair_DHH_polyA_Pol_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the DHH and nucleotidyltransferase (NT) domains. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with an upstream DHH domain which performs a phosphoesterase function and a downstream nucleotidyltransferase (NT) domain of family X DNA polymerases. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 110 -341371 cd04596 CBS_pair_DRTGG_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the DRTGG domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a DRTGG domain upstream. The function of the DRTGG domain, named after its conserved residues, is unknown. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 108 -341372 cd04597 CBS_pair_inorgPPase Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with family II inorganic pyrophosphatase. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a subgroup of family II inorganic pyrophosphatases (PPases) that also contain a DRTGG domain. The homolog from Clostridium has been shown to be inhibited by AMP and activated by a novel effector, diadenosine 5',5-P1,P4-tetraphosphate (AP(4)A), which has been shown to bind to the CBS domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. 106 -341373 cd04598 CBS_pair_GGDEF_EAL Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the GGDEF (DiGuanylate-Cyclase (DGC)) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in association with the GGDEF (DiGuanylate-Cyclase (DGC)) domain. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 121 -341374 cd04599 CBS_pair_GGDEF_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the GGDEF (DiGuanylate-Cyclase (DGC)) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in association with the GGDEF (DiGuanylate-Cyclase (DGC)) domain. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 107 -341375 cd04600 CBS_pair_HPP_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the HPP motif domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the HPP motif domain. These proteins are integral membrane proteins with four transmembrane spanning helices. The function of these proteins is uncertain, but they are thought to be transporters. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 133 -341376 cd04601 CBS_pair_IMPDH Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 110 -341377 cd04603 CBS_pair_KefB_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the KefB (Kef-type K+ transport systems) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the KefB (Kef-type K+ transport systems) domain which is involved in inorganic ion transport and metabolism. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 112 -341378 cd04604 CBS_pair_SIS_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the with the SIS (Sugar ISomerase) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the SIS (Sugar ISomerase) domain in the API [A5P (D-arabinose 5-phosphate) isomerase] protein KpsF/GutQ. These APIs catalyze the conversion of the pentose pathway intermediate D-ribulose 5-phosphate into A5P, a precursor of 3-deoxy-D-manno-octulosonate, which is an integral carbohydrate component of various glycolipids coating the surface of the outer membrane of Gram-negative bacteria, including lipopolysaccharide and many group 2 K-antigen capsules. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 124 -341379 cd04605 CBS_pair_arch_MET2_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the MET2 domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the MET2 domain. Met2 is a key enzyme in the biosynthesis of methionine. It encodes a homoserine transacetylase involved in converting homoserine to O-acetyl homoserine. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 116 -341380 cd04606 CBS_pair_Mg_transporter Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the magnesium transporter, MgtE. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domain in the magnesium transporter, MgtE. MgtE and its homologs are found in eubacteria, archaebacteria, and eukaryota. Members of this family transport Mg2+ or other divalent cations into the cell via two highly conserved aspartates. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 121 -341381 cd04607 CBS_pair_NTP_transferase_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domain associated with the NTP (Nucleotidyl transferase) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domain associated with the NTP (Nucleotidyl transferase) domain downstream. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 112 -341382 cd04608 CBS_pair_CBS Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain upstream. Cystathionine beta-synthase (CBS ) contains, besides the C-terminal regulatory CBS-pair, an N-terminal heme-binding module, followed by a pyridoxal phosphate (PLP) domain, which houses the active site. It is the first enzyme in the transsulfuration pathway, catalyzing the conversion of serine and homocysteine to cystathionine and water. In general, CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 120 -341383 cd04610 CBS_pair_ParBc_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain downstream. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 108 -341384 cd04611 CBS_pair_GGDEF_PAS_repeat2 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors, repeat 2. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors. PAS domains have been found to bind ligands, and to act as sensors for light and oxygen in signal transduction. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 131 -341385 cd04613 CBS_pair_voltage-gated_CLC_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC (chloride channel) in bacteria. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the voltage gated CLC voltage-gated chloride channel. The CBS pairs here are found in the EriC CIC-type chloride channels in bacteria. These ion channels are proteins with a seemingly simple task of allowing the passive flow of chloride ions across biological membranes. CIC-type chloride channels come from all kingdoms of life, have several gene families, and can be gated by voltage. The members of the CIC-type chloride channel are double-barreled: two proteins forming homodimers at a broad interface formed by four helices from each protein. The two pores are not found at this interface, but are completely contained within each subunit, as deduced from the mutational analyses, unlike many other channels, in which four or five identical or structurally related subunits jointly form one pore. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 119 -341386 cd04614 CBS_pair_arch2_repeat2 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 2. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in Inosine monophosphate (IMP) dehydrogenases and related proteins including IMP dehydrogenase IX from Methanothermobacter. IMP dehydrogenase is an essential enzyme in the de novo biosynthesis of Guanosine monophosphate (GMP), catalyzing the NAD-dependent oxidation of IMP to xanthosine monophosphate (XMP). The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 150 -341387 cd04617 CBS_pair_CcpN Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains of CcpN repressor. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 125 -341388 cd04618 CBS_euAMPK_gamma-like_repeat1 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in AMP-activated protein kinase gamma-like proteins, repeat 1. AMP-activated protein kinase (AMPK) plays multiple roles in the body's overall metabolic balance and response to exercise, nutritional stress, hormonal stimulation, and the glucose-lowering drugs metformin and rosiglitazone. AMPK consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, each with multiple isoforms that form active 1:1:1 heterotrimers. This cd contains 2 tandem repeats of the CBS domains found in the gamma subunits of AMPK. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 138 -341389 cd04620 CBS_two-component_sensor_histidine_kinase_repeat1 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins, repeat 1. This cd contains 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins. Two-component regulation is the predominant form of signal recognition and response coupling mechanism used by bacteria to sense and respond to diverse environmental stresses and cues ranging from common environmental stimuli to host signals recognized by pathogens and bacterial cell-cell communication signals. The structures of both sensors and regulators are modular, and numerous variations in domain architecture and composition have evolved to tailor to specific needs in signal perception and signal transduction. The simplest histidine kinase sensors consists of only sensing and kinase domains. The more complex hybrid sensors contain an additional REC domain typical of two-component regulators and in some cases a C-terminal histidine phosphotransferase (HPT) domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 136 -341390 cd04622 CBS_pair_HRP1_like CBS pair domain found in Hypoxic Response Protein 1 (HRP1) -like proteinds. Mycobacterium tuberculosis adapts to cellular stresses by upregulation of the dormancy survival regulon. Hypoxic response protein 1 (HRP1) is encoded by one of the most strongly upregulated genes in the dormancy survival regulon. HRP1 is a 'CBS-domain-only protein; however unlike other CBS containing proteins it does not appear to bind AMP. The biological function of the protein remains unclear, but is thought to contribute to the modulation of the host immune response. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 115 -341391 cd04623 CBS_pair_bac_euk Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and eukaryotes. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 113 -341392 cd04629 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 116 -341393 cd04630 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 120 -341394 cd04631 CBS_archAMPK_gamma-repeat2 CBS pair domains found in archeal 5'-AMP-activated protein kinase gamma subunit-like proteins. Archeal gamma-subunit of 5'-AMP-activated protein kinase (AMPK) contains four CBS domains in tandem repeats, similar to eukaryotic homologs. AMPK is an important regulator of metabolism and of energy homeostasis. It is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma subunit senses the intracellular energy status by competitively binding AMP and ATP and is believed to be responsible for allosteric regulation of the whole complex. In humans mutations in gamma- subunit of AMPK are associated with hypertrophic cardiomiopathy, Wolff-Parkinson-White syndrome and glycogen storage in the skeletal muscle. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. 130 -341395 cd04632 CBS_pair_arch1_repeat2 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 2. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 127 -341396 cd04638 CBS_pair_arch2_repeat1 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 1. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 109 -341397 cd04639 CBS_pair_peptidase_M50 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in the metalloprotease peptidase M50. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in peptidase M50. Members of the M50 metallopeptidase family include mammalian sterol-regulatory element binding protein (SREBP) site 2 proteases and various hypothetical bacterial homologues. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 120 -341398 cd04640 CBS_pair_proteobact Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in proteobacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 133 -341399 cd04641 CBS_euAMPK_gamma-like_repeat2 CBS pair domain found in 5'-AMP (adenosine monophosphate)-activated protein kinase. The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Most of the members of this cd contain two Bateman domains, each of which is composed of a tandem pair of cystathionine beta-synthase (CBS) motifs. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 124 -341400 cd04643 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 130 -100051 cd04645 LbH_gamma_CA_like Gamma carbonic anhydrase-like: This family is composed of gamma carbonic anhydrase (CA), Ferripyochelin Binding Protein (FBP), E. coli paaY protein, and similar proteins. CAs are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism, involving the nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Gamma CAs are trimeric enzymes with left-handed parallel beta helix (LbH) structural domain. 153 -100052 cd04646 LbH_Dynactin_6 Dynactin 6 (or subunit p27): Dynactin is a major component of the activator complex that stimulates dynein-mediated vesicle transport. Dynactin is a heterocomplex of at least eight subunits, including a 150,000-MW protein called Glued, the actin-capping protein Arp1, and dynamatin. In vitro binding experiments show that dynactin enhances dynein-dependent motility, possibly through interaction with microtubules and vesicles. Subunit p27 is part of the pointed-end subcomplex in dynactin that also includes p25, p26, and Arp11. This subcomplex interacts with membranous cargoes. p25 and p27 contain the imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X), indicating a left-handed parallel beta helix (LbH) structural domain. Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 164 -100053 cd04647 LbH_MAT_like Maltose O-acyltransferase (MAT)-like: This family is composed of maltose O-acetyltransferase, galactoside O-acetyltransferase (GAT), xenobiotic acyltransferase (XAT) and similar proteins. MAT and GAT catalyze the CoA-dependent acetylation of the 6-hydroxyl group of their respective sugar substrates. MAT acetylates maltose and glucose exclusively while GAT specifically acetylates galactopyranosides. XAT catalyzes the CoA-dependent acetylation of a variety of hydroxyl-bearing acceptors such as chloramphenicol and streptogramin, among others. XATs are implicated in inactivating xenobiotics leading to xenobiotic resistance in patients. Members of this family contain a a left-handed parallel beta-helix (LbH) domain with at least 5 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). They are trimeric in their active form. 109 -100054 cd04649 LbH_THP_succinylT_putative Putative 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate (THDP) N-succinyltransferase (THP succinyltransferase), C-terminal left-handed parallel alpha-helix (LbH) domain: This group is composed of mostly uncharacterized proteins containing an N-terminal domain of unknown function and a C-terminal LbH domain with similarity to THP succinyltransferase LbH. THP succinyltransferase catalyzes the conversion of tetrahydrodipicolinate and succinyl-CoA to N-succinyltetrahydrodipicolinate and CoA. It is the committed step in the succinylase pathway by which bacteria synthesize L-lysine and meso-diaminopimelate, a component of peptidoglycan. The enzyme is trimeric and displays the left-handed parallel alpha-helix (LbH) structural motif encoded by the hexapeptide repeat motif. 147 -100055 cd04650 LbH_FBP Ferripyochelin Binding Protein (FBP): FBP is an outer membrane protein which plays a role in iron acquisition. It binds iron when it is complexed with pyochelin. It adopts the left-handed parallel beta-helix (LbH) structure, and contains imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. Acyltransferase activity has not been observed in this group. 154 -100056 cd04651 LbH_G1P_AT_C Glucose-1-phosphate adenylyltransferase, C-terminal Left-handed parallel beta helix (LbH) domain: Glucose-1-phosphate adenylyltransferase is also known as ADP-glucose synthase or ADP-glucose pyrophosphorylase. It catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria. The enzyme is a homotetramer, with each subunit containing an N-terminal catalytic domain that resembles a dinucleotide-binding Rossmann fold and a C-terminal LbH fold domain with at 5 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). The LbH domain is involved in cooperative allosteric regulation and oligomerization. 104 -100057 cd04652 LbH_eIF2B_gamma_C eIF-2B gamma subunit, C-terminal Left-handed parallel beta-Helix (LbH) domain: eIF-2B is a eukaryotic translation initiator, a guanine nucleotide exchange factor (GEF) composed of five different subunits (alpha, beta, gamma, delta and epsilon). eIF2B is important for regenerating GTP-bound eIF2 during the initiation process. This event is obligatory for eIF2 to bind initiator methionyl-tRNA, forming the ternary initiation complex. The eIF-2B gamma subunit contains an N-terminal domain that resembles a dinucleotide-binding Rossmann fold and a C-terminal LbH domain with 4 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). The epsilon and gamma subunits form the catalytic subcomplex of eIF-2B, which binds eIF2 and catalyzes guanine nucleotide exchange. 81 -240015 cd04657 Piwi_ago-like Piwi_ago-like: PIWI domain, Argonaute-like subfamily. Argonaute is the central component of the RNA-induced silencing complex (RISC) and related complexes. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. 426 -240016 cd04658 Piwi_piwi-like_Euk Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found in Piwi and closely related proteins, where it is believed to perform a crucial role in germline cells, via RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The mechanism in Piwi is believed to be similar to that in Argonaute, the central component of the RNA-induced silencing complex (RISC). The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. 448 -240017 cd04659 Piwi_piwi-like_ProArk Piwi_piwi-like_ProArk: PIWI domain, Piwi-like subfamily found in Archaea and Bacteria. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The central component of the RNA-induced silencing complex (RISC) and related complexes is Argonaute. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. This domain is also found in closely related proteins, including the Piwi subfamily, where it is believed to perform a crucial role in germline cells, via a similar mechanism. 404 -240018 cd04660 nsLTP_like nsLTP_like: Non-specific lipid-transfer protein (nsLTP)-like subfamily; composed of predominantly uncharacterized proteins with similarity to nsLTPs, including Medicago truncatula MtN5, the root-specific Phaseolus vulgaris PVR3, Antirrhinum majus FIL1, and Lilium longiflorum LIM3. Plant nsLTPs are small, soluble proteins that facilitate the transfer of fatty acids, phospholipids, glycolipids, and steroids between membranes. The MtN5 gene is induced during root nodule development. FIL1 is thought to be important in petal and stamen formation. The LIM3 gene is induced during the early prophase stage of meiosis in lily microsporocytes. 73 -240019 cd04661 MRP_L46 Mitochondrial ribosomal protein L46 (MRP L46) is a component of the large subunit (39S) of the mammalian mitochondrial ribosome and a member of the Nudix hydrolase superfamily. MRPs are thought to be involved in the maintenance of the mitochondrial DNA. In general, members of the Nudix superfamily require a divalent cation, such as Mg2+ or Mn2+, for activity and contain the Nudix motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. MRP L46 appears to contain a modified nudix motif. 132 -240020 cd04662 Nudix_Hydrolase_5 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 126 -240021 cd04663 Nudix_Hydrolase_6 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, U=I, L or V) which functions as metal binding and catalytic site. Substrates of nudix hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 126 -240022 cd04664 Nudix_Hydrolase_7 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 129 -240023 cd04665 Nudix_Hydrolase_8 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 118 -240024 cd04666 Nudix_Hydrolase_9 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 122 -240025 cd04667 Nudix_Hydrolase_10 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 112 -240026 cd04669 Nudix_Hydrolase_11 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 121 -240027 cd04670 Nudix_Hydrolase_12 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 127 -240028 cd04671 Nudix_Hydrolase_13 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 123 -240029 cd04672 Nudix_Hydrolase_14 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 123 -240030 cd04673 Nudix_Hydrolase_15 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 122 -240031 cd04674 Nudix_Hydrolase_16 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 118 -240032 cd04676 Nudix_Hydrolase_17 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 129 -240033 cd04677 Nudix_Hydrolase_18 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 132 -240034 cd04678 Nudix_Hydrolase_19 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 129 -240035 cd04679 Nudix_Hydrolase_20 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 125 -240036 cd04680 Nudix_Hydrolase_21 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 120 -240037 cd04681 Nudix_Hydrolase_22 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 130 -240038 cd04682 Nudix_Hydrolase_23 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 122 -240039 cd04683 Nudix_Hydrolase_24 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 120 -240040 cd04684 Nudix_Hydrolase_25 Contains a crystal structure of the Nudix hydrolase from Enterococcus faecalis, which has an unknown function. In general, members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity. They also contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 128 -240041 cd04685 Nudix_Hydrolase_26 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily requires a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 133 -240042 cd04686 Nudix_Hydrolase_27 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 131 -240043 cd04687 Nudix_Hydrolase_28 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 128 -240044 cd04688 Nudix_Hydrolase_29 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 126 -240045 cd04689 Nudix_Hydrolase_30 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U=I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 125 -240046 cd04690 Nudix_Hydrolase_31 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 118 -240047 cd04691 Nudix_Hydrolase_32 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 117 -240048 cd04692 Nudix_Hydrolase_33 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 144 -240049 cd04693 Nudix_Hydrolase_34 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 127 -240050 cd04694 Nudix_Hydrolase_35 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 143 -240051 cd04695 Nudix_Hydrolase_36 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 131 -240052 cd04696 Nudix_Hydrolase_37 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 125 -240053 cd04697 Nudix_Hydrolase_38 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 126 -240054 cd04699 Nudix_Hydrolase_39 Members of the Nudix hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 129 -240055 cd04700 DR1025_like DR1025 from Deinococcus radiodurans, a member of the Nudix hydrolase superfamily, show nucleoside triphosphatase and dinucleoside polyphosphate pyrophosphatase activities. Like other enzymes belonging to this superfamily, it requires a divalent cation, in this case Mg2+, for its activity. It also contains a highly conserved 23-residue nudix motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. In general, substrates of nudix hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the nudix hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance & "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. 142 -271337 cd04701 Asparaginase_2 Bacterial/fungal L-Asparaginase type 2. L-Asparaginase hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzyme undergoes an autoproteolytic cleavage into alpha and beta subunits to expose a threonine residue which becomes the N-terminal residue of the beta subunit. The threonine residue plays a central role in hydrolase activity. Some asparaginases can also hydrolyze L-glutamine and are termed glutaminase-asparaginase. This is a member of the Ntn-hydrolase superfamily, and this subfamily covers mostly bacterial and fungal enzymes. 264 -271338 cd04702 ASRGL1_like Metazoan L-Asparaginase type 2. ASRGL1 and similar proteins constitute a subfamily of the L-Asparaginase type 2-like enzymes. The wider family includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2 enzymes. The proenzymes undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. ASRGL1, or asparaginase-like 1, has been cloned from mammalian testis cDNA libraries. It has been identified as a sperm antigen that may induce the production of autoantibodies following obstruction of the male reproductive tract, e.g. vasectomy. 289 -271339 cd04703 Asparaginase_2_like_1 Uncharacterized subfamily of the L-Asparaginase type 2-like enzymes, an Ntn-hydrolase family. The wider family of Asparaginase 2-like enzymes includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoprotein. Taspase1 catalyzes the cleavage of the Mix Lineage Leukemia (MLL) nuclear protein and transcription factor TFIIA. L-Asparaginase type 2 hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzymes of this family undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. 243 -153093 cd04704 PLA2_bee_venom_like PLA2_bee_venom_like: A sub-family of Phospholipase A2, similar to bee venom PLA2. PLA2 is a super-family of secretory and cytosolic enzymes; the latter are either Ca dependent or Ca independent. Enzymatically active PLA2 cleaves the sn-2 position of the glycerol backbone of phospholipids; secreted PLA2s have also been found to specifically bind to a variety of soluble and membrane proteins in mammals, including receptors. As a toxin, PLA2 is a potent presynaptic neurotoxin which blocks nerve terminals by binding to the nerve membrane and hydrolyzing stable membrane lipids. The products of the hydrolysis cannot form bilayers leading to a change in membrane conformation and ultimately to a block in the release of neurotransmitters. PLA2 may form dimers or oligomers. Bee venom PLA2 has fewer conserved disulfide bridges than most canonical PLA2s. 97 -153094 cd04705 PLA2_group_III_like PLA2_group_III_like: A sub-family of Phospholipase A2, similar to human group III PLA2. PLA2 is a super-family of secretory and cytosolic enzymes; the latter are either Ca dependent or Ca independent. Enzymatically active PLA2 cleaves the sn-2 position of the glycerol backbone of phospholipids; secreted PLA2s have also been found to specifically bind to a variety of soluble and membrane proteins in mammals, including receptors. As a toxin, PLA2 is a potent presynaptic neurotoxin which blocks nerve terminals by binding to the nerve membrane and hydrolyzing stable membrane lipids. The products of the hydrolysis cannot form bilayers leading to a change in membrane conformation and ultimately to a block in the release of neurotransmitters. PLA2 may form dimers or oligomers. 100 -153095 cd04706 PLA2_plant PLA2_plant: Plant-specific sub-family of Phospholipase A2, a super-family of secretory and cytosolic enzymes; the latter are either Ca dependent or Ca independent. Enzymatically active PLA2 cleaves the sn-2 position of the glycerol backbone of phospholipids; secreted PLA2s have also been found to specifically bind to a variety of soluble and membrane proteins in mammals, including receptors. As a toxin, PLA2 is a potent presynaptic neurotoxin which blocks nerve terminals by binding to the nerve membrane and hydrolyzing stable membrane lipids. The products of the hydrolysis cannot form bilayers leading to a change in membrane conformation and ultimately to a block in the release of neurotransmitters. PLA2 may form dimers or oligomers. This sub-family does not appear to have a conserved active site and metal-binding loop. 117 -153096 cd04707 otoconin_90 otoconin_90: Phospholipase A2-like domains present in otoconin-90 and otoconin-95, mammal proteins that are principal matrix proteins of calcitic otoconia. Interactions involving otoconin-90 may trigger or constitute key events in otoconia formation. The PLA2-like domains in otoconins may have lost their metal-binding sites. 117 -240059 cd04708 BAH_plantDCM_II BAH, or Bromo Adjacent Homology domain, second copy present in DNA (Cytosine-5)-methyltransferases (DCM) from plants. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the genome. These effects include transcriptional repression via inhibition of transcription factor binding, the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting, and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 202 -240060 cd04709 BAH_MTA BAH, or Bromo Adjacent Homology domain, as present in MTA1 and similar proteins. The Metastasis-associated protein MTA1 is part of the NURD (nucleosome remodeling and deacetylating) complex and plays a role in cellular transformation and metastasis. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 164 -240061 cd04710 BAH_fungalPHD BAH, or Bromo Adjacent Homology domain, as present in fungal proteins containing PHD domains. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 135 -240062 cd04711 BAH_Dnmt1_II BAH, or Bromo Adjacent Homology domain, second copy present in DNA (Cytosine-5)-methyltransferases from Bilateria, Dnmt1 and similar proteins. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the genome. These effects include transcriptional repression via inhibition of transcription factor binding, the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting, and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 137 -240063 cd04712 BAH_DCM_I BAH, or Bromo Adjacent Homology domain, as present in DNA (Cytosine-5)-methyltransferases (DCM) 1. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the genome. These effects include transcriptional repression via inhibition of transcription factor binding, the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting, and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 130 -240064 cd04713 BAH_plant_3 BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 146 -240065 cd04714 BAH_BAHCC1 BAH, or Bromo Adjacent Homology domain, as present in mammalian BAHCC1 and similar proteins. BAHCC1 stands for BAH domain and coiled-coil containing 1. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 121 -240066 cd04715 BAH_Orc1p_like BAH, or Bromo Adjacent Homology domain, as present in the Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae Orc1p and similar proteins. Orc1 is part of the Yeast Sir1-origin recognition complex, the Orc1p BAH doman functions in epigenetic silencing. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 159 -240067 cd04716 BAH_plantDCM_I BAH, or Bromo Adjacent Homology domain, first copy present in DNA (Cytosine-5)-methyltransferases (DCM) from plants. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the genome. These effects include transcriptional repression via inhibition of transcription factor binding, the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting, and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 122 -240068 cd04717 BAH_polybromo BAH, or Bromo Adjacent Homology domain, as present in polybromo and yeast RSC1/2. The human polybromo protein (BAF180) is a component of the SWI/SNF chromatin-remodeling complex PBAF. It is thought that polybromo participates in transcriptional regulation. Saccharomyces cerevisiae RSC1 and RSC2 are part of the 15-subunit nucleosome remodeling RSC complex. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 121 -240069 cd04718 BAH_plant_2 BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 148 -240070 cd04719 BAH_Orc1p_animal BAH, or Bromo Adjacent Homology domain, as present in animal homologs of Saccharomyces cerevisiae Orc1p. Orc1 is part of the Yeast Sir1-origin recognition complex. The Orc1p BAH doman functions in epigenetic silencing. In vertebrates, a similar ORC protein complex exists, which has been shown essential for DNA replication in Xenopus laevis. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 128 -240071 cd04720 BAH_Orc1p_Yeast BAH, or Bromo Adjacent Homology domain, as present in Orc1p, which again is part of the Saccharomyces cerevisiae Sir1-origin recognition complex, and as present in Sir3p. The Orc1p BAH doman functions in epigenetic silencing. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 179 -240072 cd04721 BAH_plant_1 BAH, or Bromo Adjacent Homology domain, plant-specific sub-family with unknown function. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 130 -240073 cd04722 TIM_phosphate_binding TIM barrel proteins share a structurally conserved phosphate binding motif and in general share an eight beta/alpha closed barrel structure. Specific for this family is the conserved phosphate binding site at the edges of strands 7 and 8. The phosphate comes either from the substrate, as in the case of inosine monophosphate dehydrogenase (IMPDH), or from ribulose-5-phosphate 3-epimerase (RPE) or from cofactors, like FMN. 200 -240074 cd04723 HisA_HisF Phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide (ProFAR) isomerase (HisA) and the cyclase subunit of imidazoleglycerol phosphate synthase (HisF). The ProFAR isomerase catalyzes the fourth step in histidine biosynthesis, an isomerisation of the aminoaldose moiety of ProFAR to the aminoketose of PRFAR (N-(5'-phospho-D-1'-ribulosylformimino)-5-amino-1-(5''-phospho-ribosyl)-4-imidazolecarboxamide). In bacteria and archaea, ProFAR isomerase is encoded by the HisA gene. The Imidazole glycerol phosphate synthase (IGPS) catalyzes the fifth step of histidine biosynthesis, the formation of the imidazole ring. IGPS converts N1-(5'-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to imidazole glycerol phosphate (ImGP) and 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR). This conversion involves two tightly coupled reactions in distinct active sites of IGPS. The two catalytic domains can be fused, like in fungi and plants, or peformed by a heterodimer (HisH-glutaminase and HisF-cyclase), like in bacteria. 233 -240075 cd04724 Tryptophan_synthase_alpha Ttryptophan synthase (TRPS) alpha subunit (TSA). TPRS is a bifunctional tetrameric enzyme (2 alpha and 2 beta subunits) that catalyzes the last two steps of L-tryptophan biosynthesis. Alpha and beta subunit catalyze two distinct reactions which are both strongly stimulated by the formation of the complex. The alpha subunit catalyzes the cleavage of indole 3-glycerol phosphate (IGP) to indole and d-glyceraldehyde 3-phosphate (G3P). Indole is then channeled to the active site of the beta subunit, a PLP-dependent enzyme that catalyzes a replacement reaction to convert L-serine into L-tryptophan. 242 -240076 cd04725 OMP_decarboxylase_like Orotidine 5'-phosphate decarboxylase (ODCase) is a dimeric enzyme that decarboxylates orotidine 5'-monophosphate (OMP) to form uridine 5'-phosphate (UMP), an essential step in the pyrimidine biosynthetic pathway. In mammals, UMP synthase contains two domains: the orotate phosphoribosyltransferase (OPRTase) domain that catalyzes the transfer of phosphoribosyl 5'-pyrophosphate (PRPP) to orotate to form OMP, and the orotidine-5'-phosphate decarboxylase (ODCase) domain that decarboxylates OMP to form UMP. 216 -240077 cd04726 KGPDC_HPS 3-Keto-L-gulonate 6-phosphate decarboxylase (KGPDC) and D-arabino-3-hexulose-6-phosphate synthase (HPS). KGPDC catalyzes the formation of L-xylulose 5-phosphate and carbon dioxide from 3-keto-L-gulonate 6-phosphate as part of the anaerobic pathway for L-ascorbate utilization in some eubacteria. HPS catalyzes the formation of D-arabino-3-hexulose-6-phosphate from D-ribulose 5-phosphate and formaldehyde in microorganisms that can use formaldehyde as a carbon source. Both catalyze reactions that involve the Mg2+-assisted formation and stabilization of 1,2-enediolate reaction intermediates. 202 -240078 cd04727 pdxS PdxS is a subunit of the pyridoxal 5'-phosphate (PLP) synthase, an important enzyme in deoxyxylulose 5-phosphate (DXP)-independent pathway for de novo biosynthesis of PLP, present in some eubacteria, in archaea, fungi, plants, plasmodia, and some metazoa. Together with PdxT, PdxS forms the PLP synthase, a heteromeric glutamine amidotransferase (GATase), whereby PdxT produces ammonia from glutamine and PdxS combines ammonia with five- and three-carbon phosphosugars to form PLP. PLP is the biologically active form of vitamin B6, an essential cofactor in many biochemical processes. PdxS subunits form two hexameric rings. 283 -240079 cd04728 ThiG Thiazole synthase (ThiG) is the tetrameric enzyme that is involved in the formation of the thiazole moiety of thiamin pyrophosphate, an essential ubiquitous cofactor that plays an important role in carbohydrate and amino acid metabolism. ThiG catalyzes the formation of thiazole from 1-deoxy-D-xylulose 5-phosphate (DXP) and dehydroglycine, with the help of the sulfur carrier protein ThiS that carries the sulfur needed for thiazole assembly on its carboxy terminus (ThiS-COSH). 248 -240080 cd04729 NanE N-acetylmannosamine-6-phosphate epimerase (NanE) converts N-acetylmannosamine-6-phosphate to N-acetylglucosamine-6-phosphate. This reaction is part of the pathway that allows the usage of sialic acid as a carbohydrate source. Sialic acids are a family of related sugars that are found as a component of glycoproteins, gangliosides, and other sialoglycoconjugates. 219 -240081 cd04730 NPD_like 2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDP is a member of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN. 236 -240082 cd04731 HisF The cyclase subunit of imidazoleglycerol phosphate synthase (HisF). Imidazole glycerol phosphate synthase (IGPS) catalyzes the fifth step of histidine biosynthesis, the formation of the imidazole ring. IGPS converts N1-(5'-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to imidazole glycerol phosphate (ImGP) and 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR). This conversion involves two tightly coupled reactions in distinct active sites of IGPS. The two catalytic domains can be fused, like in fungi and plants, or peformed by a heterodimer (HisH-glutaminase and HisF-cyclase), like in bacteria. 243 -240083 cd04732 HisA HisA. Phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide (ProFAR) isomerase catalyzes the fourth step in histidine biosynthesis, an isomerisation of the aminoaldose moiety of ProFAR to the aminoketose of PRFAR (N-(5'-phospho-D-1'-ribulosylformimino)-5-amino-1-(5''-phospho-ribosyl)-4-imidazolecarboxamide). In bacteria and archaea, ProFAR isomerase is encoded by the HisA gene. 234 -240084 cd04733 OYE_like_2_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 2. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. 338 -240085 cd04734 OYE_like_3_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 3. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. One member of this subgroup, the Sinorhizobium meliloti stachydrine utilization protein stcD, has been idenified as a putative N-methylproline demethylase. 343 -240086 cd04735 OYE_like_4_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 4. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. 353 -240087 cd04736 MDH_FMN Mandelate dehydrogenase (MDH)-like FMN-binding domain. MDH is part of a widespread family of homologous FMN-dependent a-hydroxy acid oxidizing enzymes that oxidizes (S)-mandelate to phenylglyoxalate. MDH is an enzyme in the mandelate pathway that occurs in several strains of Pseudomonas which converts (R)-mandelate to benzoate. This family occurs in both prokaryotes and eukaryotes. Members of this family include flavocytochrome b2 (FCB2), glycolate oxidase (GOX), lactate monooxygenase (LMO), mandelate dehydrogenase (MDH), and long chain hydroxyacid oxidase (LCHAO). 361 -240088 cd04737 LOX_like_FMN L-Lactate oxidase (LOX) FMN-binding domain. LOX is a member of the family of FMN-containing alpha-hydroxyacid oxidases and catalyzes the oxidation of l-lactate using molecular oxygen to generate pyruvate and H2O2. This family occurs in both prokaryotes and eukaryotes. Members of this family include flavocytochrome b2 (FCB2), glycolate oxidase (GOX), lactate monooxygenase (LMO), mandelate dehydrogenase (MDH), and long chain hydroxyacid oxidase (LCHAO). 351 -240089 cd04738 DHOD_2_like Dihydroorotate dehydrogenase (DHOD) class 2. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences, their cellular location and their natural electron acceptor used to reoxidize the flavin group. Members of class 1 are cytosolic enzymes and multimers, while class 2 enzymes are membrane associated, monomeric and use respiratory quinones as their physiological electron acceptors. 327 -240090 cd04739 DHOD_like Dihydroorotate dehydrogenase (DHOD) like proteins. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively. This subgroup has the conserved FMN binding site, but lacks some catalytic residues and may therefore be inactive. 325 -240091 cd04740 DHOD_1B_like Dihydroorotate dehydrogenase (DHOD) class 1B FMN-binding domain. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively. 296 -240092 cd04741 DHOD_1A_like Dihydroorotate dehydrogenase (DHOD) class 1A FMN-binding domain. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively. 294 -240093 cd04742 NPD_FabD 2-Nitropropane dioxygenase (NPD)-like domain, associated with the (acyl-carrier-protein) S-malonyltransferase FabD. NPD is part of the nitroalkaneoxidizing enzyme family, that catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDPs are members of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN. 418 -240094 cd04743 NPD_PKS 2-Nitropropane dioxygenase (NPD)-like domain, associated with polyketide synthases (PKS). NPD is part of the nitroalkaneoxidizing enzyme family, that catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDPs are members of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN. 320 -100058 cd04745 LbH_paaY_like paaY-like: This group is composed by uncharacterized proteins with similarity to the protein product of the E. coli paaY gene, which is part of the paa gene cluster responsible for phenylacetic acid degradation. Proteins in this group are expected to adopt the left-handed parallel beta-helix (LbH) structure. They contain imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Similarity to gamma carbonic anhydrase and Ferripyochelin Binding Protein (FBP) may suggest metal binding capacity. 155 -240095 cd04747 OYE_like_5_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 5. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. 361 -240096 cd04748 Commd COMM_Domain, a family of domains found at the C-terminus of HCarG, the copper metabolism gene MURR1 product, and related proteins. Presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. Murr1/Commd1 is a protein involved in copper homeostasis, which has also been identified as a regulator of the human delta epithelial sodium channel. HCaRG, a nuclear protein that might be involved in cell proliferation, is negatively regulated by extracellular calcium concentration, and its basal mRNA levels are higher in hypertensive animals. 87 -240097 cd04749 Commd1_MURR1 COMM_Domain containing protein 1, also called Murr1. Murr1/Commd1 is a protein involved in copper homeostasis, which has also been identified as a regulator of the human delta epithelial sodium channel. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 174 -240098 cd04750 Commd2 COMM_Domain containing protein 2. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 166 -240099 cd04751 Commd3 COMM_Domain containing protein 3. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 95 -240100 cd04752 Commd4 COMM_Domain containing protein 4. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 174 -240101 cd04753 Commd5_HCaRG COMM_Domain containing protein 5, also called HCaRG (hypertension-related, calcium-regulated gene). HCaRG is a nuclear protein that might be involved in cell proliferation; it is negatively regulated by extracellular calcium concentration, and its basal mRNA levels are higher in hypertensive animals. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 110 -240102 cd04754 Commd6 COMM_Domain containing protein 6. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 86 -240103 cd04755 Commd7 COMM_Domain containing protein 7. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 180 -240104 cd04756 Commd8 COMM_Domain containing protein 8. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 176 -240105 cd04757 Commd9 COMM_Domain containing protein 9. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 108 -240106 cd04758 Commd10 COMM_Domain containing protein 10. The COMM Domain is found at the C-terminus of a variety of proteins; presumably all COMM_Domain containing proteins are located in the nucleus and the COMM domain plays a role in protein-protein interactions. Several family members have been shown to bind and inhibit NF-kappaB. 186 -212498 cd04759 Rib_hydrolase ADP-ribosyl cyclase, also known as cyclic ADP-ribose hydrolase or CD38. ADP-ribosyl cyclase (EC:3.2.2.5) synthesizes the second messenger cyclic-ADP ribose (cADPR), which in turn releases calcium from internal stores. Mammals possess two membrane proteins, CD38 and BST-1/CD157, which exhibit ADP-ribosyl cyclase activity, as well as intracellular soluble ADP-ribose cyclases. CD38 is involved in differentiation, adhesion, and cell proliferation, and has been implicated in diseases such as AIDS, diabetes, and B-cell chronic lymphocytic leukemia. The extramembrane domain of CD38 acts as a multifunctional enzyme, and can synthesize cADPR from NAD+, hydrolyze NAD+ and cADPR to ADPR, as well as catalyze the exchange of the nicotinamide group of NADP+ with nicotinic acid under acidic conditions, to yield NAADP+ (nicotinic acid-adenine dinucleotide phosphate), a metabolite involved in Ca2+ mobilization from acidic stores. 244 -240107 cd04760 BAH_Dnmt1_I BAH, or Bromo Adjacent Homology domain, first copy present in DNA (Cytosine-5)-methyltransferases from Bilateria, Dnmt1 and similar proteins. DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the genome. These effects include transcriptional repression via inhibition of transcription factor binding, the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting, and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development and is an important player in both DNA repair and genome stability. BAH domains are found in a variety of proteins playing roles in transcriptional silencing and the remodeling of chromatin. It is assumed that in most or all of these instances the BAH domain mediates protein-protein interactions. 124 -133389 cd04761 HTH_MerR-SF Helix-Turn-Helix DNA binding domain of transcription regulators from the MerR superfamily. Helix-turn-helix (HTH) transcription regulator MerR superfamily, N-terminal domain. The MerR family transcription regulators have been shown to mediate responses to stress including exposure to heavy metals, drugs, or oxygen radicals in eubacterial and some archaeal species. They regulate transcription of multidrug/metal ion transporter genes and oxidative stress regulons by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 49 -133390 cd04762 HTH_MerR-trunc Helix-Turn-Helix DNA binding domain of truncated MerR-like proteins. Proteins in this family mostly have a truncated helix-turn-helix (HTH) MerR-like domain. They lack a portion of the C-terminal region, called Wing 2 and the long dimerization helix that is typically present in MerR-like proteins. These truncated domains are found in response regulator receiver (REC) domain proteins (i.e., CheY), cytosine-C5 specific DNA methylases, IS607 transposase-like proteins, and RacA, a bacterial protein that anchors chromosomes to cell poles. 49 -133391 cd04763 HTH_MlrA-like Helix-Turn-Helix DNA binding domain of MlrA-like transcription regulators. Helix-turn-helix (HTH) transcription regulator MlrA (merR-like regulator A) and related proteins, N-terminal domain. The MlrA protein, also known as YehV, has been shown to control cell-cell aggregation by co-regulating the expression of curli and extracellular matrix production in Escherichia coli and Salmonella typhimurium. Its close homolog, CarA from Myxococcus xanthus, is involved in activation of the carotenoid biosynthesis genes by light. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. Many MlrA-like proteins in this group appear to lack the long dimerization helix seen in the N-terminal domains of typical MerR-like proteins. 68 -133392 cd04764 HTH_MlrA-like_sg1 Helix-Turn-Helix DNA binding domain of putative MlrA-like transcription regulators. Putative helix-turn-helix (HTH) MlrA-like transcription regulators (subgroup 1). The MlrA protein, also known as YehV, has been shown to control cell-cell aggregation by co-regulating the expression of curli and extracellular matrix production in Escherichia coli and Salmonella typhimurium. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. Many MlrA-like proteins in this group appear to lack the long dimerization helix seen in the N-terminal domains of typical MerR-like proteins. 67 -133393 cd04765 HTH_MlrA-like_sg2 Helix-Turn-Helix DNA binding domain of putative MlrA-like transcription regulators. Putative helix-turn-helix (HTH) MlrA-like transcription regulators (subgroup 2), N-terminal domain. The MlrA protein, also known as YehV, has been shown to control cell-cell aggregation by co-regulating the expression of curli and extracellular matrix production in Escherichia coli and Salmonella typhimurium. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 99 -133394 cd04766 HTH_HspR Helix-Turn-Helix DNA binding domain of the HspR transcription regulator. Helix-turn-helix (HTH) transcription regulator HspR, N-terminal domain. Heat shock protein regulators (HspR) have been shown to regulate expression of specific regulons in response to high temperature or high osmolarity in Streptomyces and Helicobacter, respectively. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 91 -133395 cd04767 HTH_HspR-like_MBC Helix-Turn-Helix DNA binding domain of putative HspR-like transcription regulators. Putative helix-turn-helix (HTH) transcription regulator HspR-like proteins. Unlike the characterized HspR, these proteins have a C-terminal domain with putative metal binding cysteines (MBC). Heat shock protein regulators (HspR) have been shown to regulate expression of specific regulons in response to high temperature or high osmolarity in Streptomyces and Helicobacter, respectively. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 120 -133396 cd04768 HTH_BmrR-like Helix-Turn-Helix DNA binding domain of BmrR-like transcription regulators. Helix-turn-helix (HTH) BmrR-like transcription regulators (TipAL, Mta, SkgA, BmrR, and BltR), N-terminal domain. These proteins have been shown to regulate expression of specific regulons in response to various toxic substances, antibiotics, or oxygen radicals in Bacillus subtilis, Streptomyces, and Caulobacter crescentus. They are comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain HTH motifs that mediate DNA binding, while the C-terminal domains are often unrelated and bind specific coactivator molecules. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 96 -133397 cd04769 HTH_MerR2 Helix-Turn-Helix DNA binding domain of MerR2-like transcription regulators. Helix-turn-helix (HTH) transcription regulator MerR2 and related proteins. MerR2 in Bacillus cereus RC607 regulates resistance to organomercurials. The MerR family transcription regulators have been shown to mediate responses to stress including exposure to heavy metals, drugs, or oxygen radicals in eubacterial and some archaeal species. They regulate transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 116 -133398 cd04770 HTH_HMRTR Helix-Turn-Helix DNA binding domain of Heavy Metal Resistance transcription regulators. Helix-turn-helix (HTH) heavy metal resistance transcription regulators (HMRTR): MerR1 (mercury), CueR (copper), CadR (cadmium), PbrR (lead), ZntR (zinc), and other related proteins. These transcription regulators mediate responses to heavy metal stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 123 -133399 cd04772 HTH_TioE_rpt1 First Helix-Turn-Helix DNA binding domain of the regulatory protein TioE. Putative helix-turn-helix (HTH) regulatory protein, TioE, and related proteins. TioE is part of the thiocoraline gene cluster, which is involved in the biosynthesis of the antitumor thiocoraline from the marine actinomycete, Micromonospora. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. Proteins in this family are unique within the MerR superfamily in that they are composed of just two adjacent MerR-like N-terminal domains; this CD contains the N-terminal or first repeat (rpt1) of these tandem MerR-like domain proteins. 99 -133400 cd04773 HTH_TioE_rpt2 Second Helix-Turn-Helix DNA binding domain of the regulatory protein TioE. Putative helix-turn-helix (HTH) regulatory protein, TioE, and related proteins. TioE is part of the thiocoraline gene cluster, which is involved in the biosynthesis of the antitumor thiocoraline from the marine actinomycete, Micromonospora. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. Proteins in this family are unique within the MerR superfamily in that they are composed of just two adjacent MerR-like N-terminal domains; this CD mainly contains the C-terminal or second repeat (rpt2) of these tandem MerR-like domain proteins. 108 -133401 cd04774 HTH_YfmP Helix-Turn-Helix DNA binding domain of the YfmP transcription regulator. Helix-turn-helix (HTH) transcription regulator, YfmP, and related proteins; N-terminal domain. YfmP regulates the multidrug efflux protein, YfmO, and indirectly regulates the expression of the Bacillus subtilis copZA operon encoding a metallochaperone, CopZ, and a CPx-type ATPase efflux protein, CopA. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 96 -133402 cd04775 HTH_Cfa-like Helix-Turn-Helix DNA binding domain of Cfa-like transcription regulators. Putative helix-turn-helix (HTH) MerR-like transcription regulators; the HTH domain of Cfa, a cyclopropane fatty acid synthase, and other related methyltransferases, as well as, the N-terminal domain of a conserved, uncharacterized ~172 a.a. protein. Based on sequence similarity of the N-terminal domain, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 102 -133403 cd04776 HTH_GnyR Helix-Turn-Helix DNA binding domain of the regulatory protein GnyR. Putative helix-turn-helix (HTH) regulatory protein, GnyR, and other related proteins. GnyR belongs to the gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. 118 -133404 cd04777 HTH_MerR-like_sg1 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 1), N-terminal domain. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 107 -133405 cd04778 HTH_MerR-like_sg2 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 2). Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 219 -133406 cd04779 HTH_MerR-like_sg4 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 4). Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 134 -133407 cd04780 HTH_MerR-like_sg5 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 5), N-terminal domain. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 95 -133408 cd04781 HTH_MerR-like_sg6 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 6) with at least two conserved cysteines present in the C-terminal portion of the protein. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 120 -133409 cd04782 HTH_BltR Helix-Turn-Helix DNA binding domain of the BltR transcription regulator. Helix-turn-helix (HTH) multidrug-efflux transporter transcription regulator, BltR (BmrR-like transporter) of Bacillus subtilis, and related proteins; N-terminal domain. Blt, like Bmr, is a membrane protein which causes the efflux of a variety of toxic substances and antibiotics. These regulators are comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the C-terminal domains are often unrelated and bind specific coactivator molecules. They share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 97 -133410 cd04783 HTH_MerR1 Helix-Turn-Helix DNA binding domain of the MerR1 transcription regulator. Helix-turn-helix (HTH) transcription regulator MerR1. MerR1 transcription regulators, such as Tn21 MerR and Tn501 MerR, mediate response to mercury exposure in eubacteria. These proteins are comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain winged HTH motifs that mediate DNA binding, while the C-terminal domains have three conserved cysteines that define a mercury binding site. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 126 -133411 cd04784 HTH_CadR-PbrR Helix-Turn-Helix DNA binding domain of the CadR and PbrR transcription regulators. Helix-turn-helix (HTH) CadR and PbrR transcription regulators including Pseudomonas aeruginosa CadR and Ralstonia metallidurans PbrR that regulate expression of the cadmium and lead resistance operons, respectively. These proteins are comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the C-terminal domains have three conserved cysteines which form a putative metal binding site. Some members in this group have a histidine-rich C-terminal extension. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 127 -133412 cd04785 HTH_CadR-PbrR-like Helix-Turn-Helix DNA binding domain of the CadR- and PbrR-like transcription regulators. Helix-turn-helix (HTH) CadR- and PbrR-like transcription regulators. CadR and PbrR regulate expression of the cadmium and lead resistance operons, respectively. These proteins are comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the C-terminal domains have three conserved cysteines which comprise a putative metal binding site. Some members in this group have a histidine-rich C-terminal extension. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 126 -133413 cd04786 HTH_MerR-like_sg7 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 7) with a conserved cysteine present in the C-terminal portion of the protein. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 131 -133414 cd04787 HTH_HMRTR_unk Helix-Turn-Helix DNA binding domain of putative Heavy Metal Resistance transcription regulators. Putative helix-turn-helix (HTH) heavy metal resistance transcription regulators (HMRTR), unknown subgroup. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to heavy metal stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules, such as, metal ions, drugs, and organic substrates. This subgroup lacks one of the conserved, metal-binding cysteines seen in the MerR1 group. 133 -133415 cd04788 HTH_NolA-AlbR Helix-Turn-Helix DNA binding domain of the transcription regulators NolA and AlbR. Helix-turn-helix (HTH) transcription regulators NolA and AlbR, N-terminal domain. In Bradyrhizobium (Arachis) sp. NC92, NolA is required for efficient nodulation of host plants. In Xanthomonas albilineans, AlbR regulates the expression of the pathotoxin, albicidin. These proteins are putatively comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the C-terminal domains are often unrelated and bind specific coactivator molecules. They share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. 96 -133416 cd04789 HTH_Cfa Helix-Turn-Helix DNA binding domain of the Cfa transcription regulator. Putative helix-turn-helix (HTH) MerR-like transcription regulator; the N-terminal domain of Cfa, a cyclopropane fatty acid synthase and other related methyltransferases. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 102 -133417 cd04790 HTH_Cfa-like_unk Helix-Turn-Helix DNA binding domain of putative Cfa-like transcription regulators. Putative helix-turn-helix (HTH) MerR-like transcription regulator; conserved, Cfa-like, unknown proteins (~172 a.a.). The N-terminal domain of these proteins appears to be related to the HTH domain of Cfa, a cyclopropane fatty acid synthase. These Cfa-like proteins have a unique C-terminal domain with conserved histidines (motif HXXFX7HXXF). Based on sequence similarity of the N-terminal domains, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates. 172 -271199 cd04791 LanC_SerThrkinase Lanthionine synthetase C-like domain associated with serine/threonine kinases. Some members of this subgroup lack the zinc binding site and the active site residues, and therefore are most likely inactive. The function of this domain is unknown. 327 -271200 cd04792 LanM-like Cyclases involved in the biosynthesis of class II lantibiotics, and similar proteins. LanM-like proteins. LanM is a bifunctional enzyme, involved in the synthesis of class II lantibiotics. It is responsible for both the dehydration and the cyclization of the precursor-peptide during lantibiotic synthesis. The C-terminal domain shows similarity to LanC, the cyclase component of the lan operon, but the N terminus seems to be unrelated to the dehydratase, LanB. 836 -271201 cd04793 LanC Cyclases involved in the biosynthesis of lantibiotics. LanC is the cyclase enzyme of the lanthionine synthetase. Lanthinoine is a lantibiotic, a unique class of peptide antibiotics. They are ribosomally synthesized as precursor peptides and then post-translationally modified to contain thioether cross-links called lanthionines (Lans) or methyllanthionines (MeLans) in addition to 2,3-didehydroalanine (Dha) and (Z)-2,3-didehydrobutyrine (Dhb). These unusual amino acids are introduced by the dehydration of serine and threonine residues, followed by thioether formation via addition of cysteine thiols, catalysed by LanB and LanC or LanM. LanC, the cyclase component, is a zinc metalloprotein, whose bound metal has been proposed to activate the thiol substrate for nucleophilic addition. Also contains SpaC (the cyclase involved in the biosynthesis of subtilin), NisC, and homologs. 377 -271202 cd04794 euk_LANCL Eukaryotic Lanthionine synthetase C-like protein. This family contains the lanthionine synthetase C-like proteins 1 and 2 which are related to the bacterial lanthionine synthetase components C (LanC). LANCL1 and LANCL2 (testes-specific adriamycin sensitivity protein) were thought to be peptide-modifying enzyme components in eukaryotic cells. Both proteins are produced in large quantities in the brain and testes and may have role in the immune surveillance of these organs. More recently, they have been associated with signal transduction processes and insulin sensitization. In particular, LANCL2 has been shown to bind abscisic acid (ABA), and this interaction may play a role in signaling pathways triggered by ABA, such as in human granulocytes and rat insulinoma cells. This eukaryotic LANCL family also includes Arabidopsis GCR2. 349 -240112 cd04795 SIS SIS domain. SIS (Sugar ISomerase) domains are found in many phosphosugar isomerases and phosphosugar binding proteins. SIS domains are also found in proteins that regulate the expression of genes involved in synthesis of phosphosugars. 87 -341401 cd04801 CBS_pair_peptidase_M50 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in the metalloprotease peptidase M50. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in peptidase M50. Members of the M50 metallopeptidase family include mammalian sterol-regulatory element binding protein (SREBP) site 2 proteases and various hypothetical bacterial homologues. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 113 -240117 cd04813 PA_1 PA_1: Protease-associated (PA) domain subgroup 1. A subgroup of PA-domain containing proteins. Proteins in this subgroup contain a RING-finger (Really Interesting New Gene) domain C-terminal to this PA domain. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins in this group contain a C-terminal RING-finger domain. Proteins into which the PA domain is inserted include the following: i) various signal peptide peptidases: such as hSPPL2a and 2b, ii) various E3 ubiquitin ligases similar to human GRAIL (gene related to anergy in lymphocytes) protein, iii) various proteins containing a RING finger motif such as Arabidopsis ReMembR-H2 protein, iv) EDEM3 (ER-degradation-enhancing mannosidase-like 3 protein), v) various plant vacuolar sorting receptors such as Pisum sativum BP-80, vi) prostate-specific membrane antigen (PSMA), vii) yeast aminopeptidase Y viii) Vibrio metschnikovii VapT, a sodium dodecyl sulfate (SDS) resistant extracellular alkaline serine protease, ix) various subtilisin-like proteases such as Cucumisin from the juice of melon fruits, and x) human TfR (transferrin receptor) 1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 117 -240118 cd04814 PA_M28_1 PA_M28_1: Protease-associated (PA) domain, peptidase family M28, subfamily-1. A subfamily of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subfamilies, relatively little is known about proteins in this subfamily. 142 -240119 cd04815 PA_M28_2 PA_M28_2: Protease-associated (PA) domain, peptidase family M28, subfamily-2. A subfamily of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subfamilies; relatively little is known about proteins in this subfamily. 134 -240120 cd04816 PA_SaNapH_like PA_SaNapH_like: Protease-associated domain containing proteins like Streptomyces anulatus N-acetylpuromycin N-acetylhydrolase (SaNapH).This group contains various PA domain-containing proteins similar SaNapH. Proteins in this group belong to the peptidase M28 family. NapH is a terminal enzyme in the puromycin biosynthetic pathway; NapH hydrolyzes N-acetylpuromycin to the active antibiotic. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 122 -240121 cd04817 PA_VapT_like PA_VapT_like: Protease-associated domain containing proteins like VapT from Vibrio metschnikovii strain RH530. This group contains various PA domain-containing proteins similar to V. metschnikovii VapT, including the serine alkaline protease SapSh from the psychotroph Shewanella strain Ac10 and the Apa1 protease from the psychrotroph Pseudoalteromonas Sp. As-11. VapT is a sodium dodecyl sulfate (SDS) resistant extracellular alkaline serine protease showing high activity over a broad pH range and temperature. SapSh has a high level of protease activity at low temperatures. Apa1 is also cold-adapted. The significance of the PA domain to these proteins has not been ascertained. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. 139 -240122 cd04818 PA_subtilisin_1 PA_subtilisin_1: Protease-associated domain containing subtilisin-like proteases, subgroup 1. A subgroup of PA domain-containing subtilisin-like proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following subtilisin-like proteases: i) melon cucumisin, ii) Arabidopsis thaliana Ara12, iii) Alnus glutinosa ag12, iv) members of the tomato P69 family, and v) tomato LeSBT2. However, these proteins belong to other subtilisin-like subgroups. Relatively little is known about proteins in this subgroup. 118 -240123 cd04819 PA_2 PA_2: Protease-associated (PA) domain subgroup 2. A subgroup of PA-domain containing proteins. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins in this group contain a C-terminal RING-finger domain. Proteins into which the PA domain is inserted include the following: i) various signal peptide peptidases: such as hSPPL2a and 2b, ii) various E3 ubiquitin ligases similar to human GRAIL (gene related to anergy in lymphocytes) protein, iii) various proteins containing a RING finger motif such as Arabidopsis ReMembR-H2 protein, iv) EDEM3 (ER-degradation-enhancing mannosidase-like 3 protein), v) various plant vacuolar sorting receptors such as Pisum sativum BP-80, vi) prostate-specific membrane antigen (PSMA), vii) yeast aminopeptidase Y viii) Vibrio metschnikovii VapT, a sodium dodecyl sulfate (SDS) resistant extracellular alkaline serine protease, ix) various subtilisin-like proteases such as Cucumisin from the juice of melon fruits, and x) human TfR (transferrin receptor) 1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 127 -240124 cd04820 PA_M28_1_1 PA_M28_1_1: Protease-associated (PA) domain, peptidase family M28, subfamily-1, subgroup 1. A subgroup of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 137 -240125 cd04821 PA_M28_1_2 PA_M28_1_2: Protease-associated (PA) domain, peptidase family M28, subfamily-1, subgroup 2. A subgroup of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 157 -240126 cd04822 PA_M28_1_3 PA_M28_1_3: Protease-associated (PA) domain, peptidase family M28, subfamily-1, subgroup 3. A subgroup of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 151 -240127 cd04823 ALAD_PBGS_aspartate_rich Porphobilinogen synthase (PBGS), which is also called delta-aminolevulinic acid dehydratase (ALAD), catalyzes the condensation of two 5-aminolevulinic acid (ALA) molecules to form the pyrrole porphobilinogen (PBG), which is the second step in the biosynthesis of tetrapyrroles, such as heme, vitamin B12 and chlorophyll. This reaction involves the formation of a Schiff base link between the substrate and the enzyme. PBGSs are metalloenzymes, some of which have a second, allosteric metal binding site, beside the metal ion binding site in their active site. Although PBGS is a family of homologous enzymes, its metal ion utilization at catalytic site varies between zinc and magnesium and/or potassium. PBGS can be classified into two groups based on differences in their active site metal binding site. All of PBGS_aspartate_rich contain an aspartate rich metal binding site with the general sequence DXALDX(Y/F)X3G(H/Q)DG. They also contain an allosteric magnesium binding sequence RX~164DX~65EXXXD and are activated by magnesium and/or potassium, but not by zinc. PBGSs_aspartate_rich are found in some bacterial species and photosynthetic organisms such as vascular plants, mosses and algae, but not in archaea. 320 -240128 cd04824 eu_ALAD_PBGS_cysteine_rich Porphobilinogen synthase (PBGS), which is also called delta-aminolevulinic acid dehydratase (ALAD), catalyzes the condensation of two 5-aminolevulinic acid (ALA) molecules to form the pyrrole porphobilinogen (PBG), which is the second step in the biosynthesis of tetrapyrroles, such as heme, vitamin B12 and chlorophyll. This reaction involves the formation of a Schiff base link between the substrate and the enzyme. PBGSs are metalloenzymes, some of which have a second, allosteric metal binding site, beside the metal ion binding site in their active site. Although PBGS is a family of homologous enzymes, its metal ion utilization at catalytic site varies between zinc and magnesium and/or potassium. PBGS can be classified into two groups based on differences in their active site metal binding site. The eukaryotic PBGSs represented by this model, which contain a cysteine-rich zinc binding motif (DXCXCX(Y/F)X3G(H/Q)CG), require zinc for their activity, they do not contain an additional allosteric metal binding site and do not bind magnesium. 320 -173791 cd04842 Peptidases_S8_Kp43_protease Peptidase S8 family domain in Kp43 proteases. Kp43 proteases are members of the peptidase S8 or Subtilase clan of proteases. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure (an example of convergent evolution). Kp43 is topologically similar to kexin and furin both of which are proprotein convertases, but differ in amino acids sequence and the position of its C-terminal barrel. Kp43 has 3 Ca2+ binding sites that differ from the corresponding sites in the other known subtilisin-like proteases. KP-43 protease is known to be an oxidation-resistant protease when compared with the other subtilisin-like proteases 293 -173792 cd04843 Peptidases_S8_11 Peptidase S8 family domain, uncharacterized subfamily 11. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 277 -173793 cd04847 Peptidases_S8_Subtilisin_like_2 Peptidase S8 family domain in Subtilisin-like proteins. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 291 -173794 cd04848 Peptidases_S8_Autotransporter_serine_protease_like Peptidase S8 family domain in Autotransporter serine proteases. Autotransporter serine proteases belong to Peptidase S8 or Subtilase family. Subtilases, or subtilisin-like serine proteases, have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure (an example of convergent evolution). Autotransporters are a superfamily of outer membrane/secreted proteins of gram-negative bacteria. The presence of these subtilisin-like domains in these autotransporters are may enable them to be auto-catalytic and may also serve to allow them to act as a maturation protease cleaving other outer membrane proteins at the cell surface. 267 -173795 cd04852 Peptidases_S8_3 Peptidase S8 family domain, uncharacterized subfamily 3. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 307 -173796 cd04857 Peptidases_S8_Tripeptidyl_Aminopeptidase_II Peptidase S8 family domain in Tripeptidyl aminopeptidases_II. Tripeptidyl aminopeptidases II are member of the peptidase S8 or Subtilase family. Subtilases, or subtilisin-like serine proteases, have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure (an example of convergent evolution). Tripeptidyl aminopeptidase II removes tripeptides from the free N terminus of oligopeptides as well as having endoproteolytic activity. Some tripeptidyl aminopeptidases have been shown to cleave tripeptides and small peptides, e.g. angiotensin II and glucagon, while others are believed to be involved in MHC I processing. 412 -240129 cd04859 Prim_Pol Prim_Pol: Primase-polymerase (primpol) domain of the type found in bifunctional replicases from archaeal plasmids, including ORF904 protein of the crenarchaeal plasmid pRN1 from Sulfolobus islandicus (pRN1 primpol). These primpol domains belong to the archaeal/eukaryal primase (AEP) superfamily. This group includes archaeal plasmids and bacteriophage AEPs. The ORF904 protein is a multifunctional protein having ATPase, primase and DNA polymerase activity, and may play a role in the replication of the archaeal plasmid. The pRN1 primpol domain exhibits DNA polymerase and primase activities; a cluster of active site residues (three acidic residues, and a histidine) is required for both these activities. For pRN1 primpol, the primase activity prefers dNTPs to rNTPs; incorporation of dNTPs requires rNTP as cofactor. The pRN1 primpol contains an unusual zinc-binding stem, which is not conserved in other members of this group. 152 -240130 cd04860 AE_Prim_S AE_Prim_S: primase domain similar to that found in the small subunit of archaeal and eukaryotic (A/E) DNA primases. Primases are DNA-dependent RNA polymerases which synthesis the short RNA primers required for DNA replication. In addition to its catalytic role in replication, DNA primase may play a role in coupling replication to DNA damage repair and in checkpoint control during S phase. In eukaryotes, this small catalytically active primase subunit (p50) and a larger primase subunit (p60), referred to jointly as the core primase, associate with the B subunit and the DNA polymerase alpha subunit in a complex, called Pol alpha-pri. The function of the larger primase subunit is unclear. Included in this group are Pfu41 and Pfu46, these two proteins comprise the primase complex of the archaea Pyrococcus furiosus; Pfu41 and Pfu46 have sequence identity to the eukaryotic p50 and p60 primase proteins respectively. Pfu41 preferentially uses dNTPs as substrate. Pfu46 regulates the primase activity of Pfu41. 232 -240131 cd04861 LigD_Pol_like LigD_Pol_like: Polymerase (Pol) domain of bacterial LigD proteins similar to Pseudomonas aeruginosa (Pae) LigD. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. PaeLigD is monomeric, containing an N-terminal phosphoesterase module, a central polymerase (Pol) domain, and a C-terminal ATP-dependent ligase domain. Mycobacterium tuberculosis (Mt)LigD, also found in this group, is monomeric and contains the same modules but these are arranged differently: an N-terminal Pol domain, a central phosphoesterase module, and a C-terminal ligase domain. It has been suggested that LigD Pol contributes to NHEJ-mediated DNA DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The PaeLigD Pol domain in vitro, in a manganese-dependent fashion, catalyzes templated extensions of 5'-overhang duplex DNA, and nontemplated single-nucleotide additions to blunt-end duplex DNA; it preferentially adds single ribonucleotides at blunt DNA ends. PaeLigD Pol adds a correctly paired rNTP to the DNA primer termini more rapidly than it does a correctly paired dNTP; it has higher infidelity as an RNA polymerase than it does as a DNA polymerase, which is in keeping with the mutagenic property of NHEJ-mediated DNA DSB repair. The MtLigD Pol domain similarly is stimulated by manganese, is error-prone, and prefers adding rNTPs to dNTPs in vitro. The MtLigD Pol domain has been shown to prefer DNA gapped substrates containing a 5'-phosphate group at the gap. 227 -240132 cd04862 PaeLigD_Pol_like PaeLigD_Pol_like: Polymerase (Pol) domain of bacterial LigD proteins similar to Pseudomonas aeruginosa (Pae) LigD. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. PaeLigD is monomeric, containing an N-terminal phosphoesterase module, a central polymerase (Pol) domain, and a C-terminal ATP-dependent ligase domain. It has been suggested that LigD Pol contributes to NHEJ-mediated DNA DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The PaeLigD Pol domain in vitro, in a manganese-dependent fashion, catalyzes templated extensions of 5'-overhang duplex DNA, and nontemplated single-nucleotide additions to blunt-end duplex DNA; it preferentially adds single ribonucleotides at blunt DNA ends. PaeLigD Pol adds a correctly paired rNTP to the DNA primer termini more rapidly than it does a correctly paired dNTP; it has higher infidelity as an RNA polymerase than it does as a DNA polymerase, which is in keeping with the mutagenic property of NHEJ-mediated DNA DSB repair. 227 -240133 cd04863 MtLigD_Pol_like MtLigD_Pol_like: Polymerase (Pol) domain of bacterial LigD proteins similar to Mycobacterium tuberculosis (Mt)LigD. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. MtLigD is monomeric and contains an N-terminal Pol domain, a central phosphoesterase module, and a C-terminal ligase domain. It has been suggested that LigD Pol contributes to NHEJ-mediated DNA DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The MtLigD Pol domain is stimulated by manganese, is error-prone, and prefers adding rNTPs to dNTPs in vitro. The MtLigD Pol domain has been shown to prefer DNA gapped substrates containing a 5'-phosphate group at the gap. 231 -240134 cd04864 LigD_Pol_like_1 LigD_Pol_like_1: Polymerase (Pol) domain of mostly bacterial LigD proteins similar to Pseudomonas aeruginosa (Pae) LigD, subgroup 1. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. It has been suggested that LigD Pol contributes to NHEJ-mediated DNA DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The Pol domains of PaeLigD and Mycobacterium tuberculosis (Mt)LigD are stimulated by manganese, are error-prone, and prefer adding rNTPs to dNTPs in vitro; however PaeLigD and MtLigD belong to other subgroups, proteins in this subgroup await functional characterization. 228 -240135 cd04865 LigD_Pol_like_2 LigD_Pol_like_2: Polymerase (Pol) domain of bacterial LigD proteins similar to Pseudomonas aeruginosa (Pae) LigD, subgroup 2. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. It has been suggested that LigD Pol contributes to NHEJ-mediated DNA DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The Pol domains of PaeLigD and Mycobacterium tuberculosis (Mt)LigD are stimulated by manganese, are error-prone, and prefer adding rNTPs to dNTPs in vitro; however PaeLigD and MtLigD belong to other subgroups, proteins in this subgroup await functional characterization. 228 -240136 cd04866 LigD_Pol_like_3 LigD_Pol_like_3: Polymerase (Pol) domain of bacterial LigD proteins similar to Pseudomonas aeruginosa (Pae) LigD, subgroup 3. The LigD Pol domain belongs to the archaeal/eukaryal primase (AEP) superfamily. In prokaryotes, LigD along with Ku is required for non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSB). NHEJ-mediated DNA DSB repair is error-prone. It has been suggested that LigD Pol contributes to NHEJ-mediated repair DSB repair in vivo, by filling in short 5'-overhangs with ribonucleotides; the filled in termini would then be sealed by the associated LigD ligase domain, resulting in short stretches of RNA incorporated into the genomic DNA. The Pol domains of PaeLigD and Mycobacterium tuberculosis (Mt)LigD are stimulated by manganese, are error-prone, and prefer adding rNTPs to dNTPs in vitro; however PaeLigD and MtLigD belong to other subgroups, proteins in this subgroup await functional characterization. 223 -340516 cd04867 TGS_YchF_OLA1 TGS (ThrRS, GTPase and SpoT) domain found in the YchF/OLA1 family proteins. The YchF/Ola1 family includes bacterial ribosome-binding ATPase YchF as well as its human homolog Obg-like ATPase 1 (OLA1), both of which belong to the Obg family of GTPases, and are novel ATPases that bind and hydrolyze ATP more efficiently than GTP. They have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis, in addition to the regulation of the oxidative stress response. OLA1 is also termed DNA damage-regulated overexpressed in cancer 45 (DOC45), or GTP-binding protein 9 (GTPBP9). It is over-expressed in several human malignancies, including cancers of the colon, rectum, ovary, lung, stomach, and uterus. It is linked to the cellular stress response and tumorigenesis, and may also serve as a valuable tumor marker. Members in this family contain a central Obg-type G (guanine nucleotide-binding) domain, flanked by a coiled-coil domain and this TGS (ThrRS, GTPase, SpoT) domain of unknown function. 85 -153140 cd04868 ACT_AK-like ACT domains C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). This CD includes each of two ACT domains C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). Typically, AK consists of two ACT domains in a tandem repeat, but the second ACT domain is inserted within the first, resulting in, what is normally the terminal beta strand of ACT2, formed from a region N-terminal of ACT1. AK catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. Aspartokinase is the first enzyme in the pathway of the biosynthesis of the aspartate family of amino acids (lysine, threonine, methionine, and isoleucine) and the bacterial cell wall component, meso-diaminopimelate. One mechanism for the regulation of this pathway is by the production of several isoenzymes of aspartokinase with different repressors and allosteric inhibitors. Pairs of ACT domains are proposed to specifically bind amino acids leading to allosteric regulation of the enzyme. In Escherichia coli (EC), three different aspartokinase isoenzymes are regulated specifically by lysine, methionine, and threonine. AK-HSDHI (ThrA) and AK-HSDHII (MetL) are bifunctional enzymes that consist of an N-terminal AK and a C-terminal homoserine dehydrogenase (HSDH). ThrA and MetL are involved in threonine and methionine biosynthesis, respectively. The third isoenzyme, AKIII (LysC), is monofunctional and is involved in lysine synthesis. The three Bacillus subtilis (BS) isoenzymes, AKI (DapG), AKII (LysC), and AKIII (YclM), are feedback inhibited by meso-diaminopimelate, lysine, and lysine plus threonine, respectively. The E. coli lysine-sensitive AK is described as a homodimer, whereas, the B. subtilis lysine-sensitive AK is described as is a heterodimeric complex of alpha- and beta- subunits that are formed from two in-frame overlapping genes. A single AK enzyme type has been described in Pseudomonas, Amycolatopsis, and Corynebacterium, and apparently, unique to cyanobacteria, are aspartokinases with two tandem pairs of ACT domains, C-terminal to the catalytic domain. The fungal aspartate pathway is regulated at the AK step, with L-Thr being an allosteric inhibitor of the Saccharomyces cerevisiae AK (Hom3). At least two distinct AK isoenzymes can occur in higher plants, a monofunctional lysine-sensitive isoenzyme, which is involved in the overall regulation of the pathway and can be synergistically inhibited by S-adenosylmethionine. The other isoenzyme is a bifunctional, threonine-sensitive AK-HSDH protein. Also included in this AK family CD are the ACT domains of the Methylomicrobium alcaliphilum AK; the first enzyme of the ectoine biosynthetic pathway found in this bacterium and several other halophilic/halotolerant bacteria. Members of this CD belong to the superfamily of ACT regulatory domains. 60 -153141 cd04869 ACT_GcvR_2 ACT domains that comprise the Glycine Cleavage System Transcriptional Repressor (GcvR) protein, and other related domains. This CD includes the second of the two ACT domains that comprise the Glycine Cleavage System Transcriptional Repressor (GcvR) protein, and other related domains. The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. This enzyme system, encoded by the gcvTHP operon and lpd gene, catalyzes the cleavage of glycine into CO2 + NH3 and transfers a one-carbon unit to tetrahydrofolate, producing 5,10-methylenetetrahydrofolate. The gcvTHP operon is activated by the GcvA protein in response to glycine and repressed by a GcvA/GcvR interaction in the absence of glycine. It has been proposed that the co-activator glycine acts through a mechanism of de-repression by binding to GcvR and preventing GcvR from interacting with GcvA to block GcvA's activator function. Evidence also suggests that GcvR interacts directly with GcvA rather than binding to DNA to cause repression. Members of this CD belong to the superfamily of ACT regulatory domains. 81 -153142 cd04870 ACT_PSP_1 CT domains found N-terminal of phosphoserine phosphatase (PSP, SerB). The ACT_PSP_1 CD includes the first of the two ACT domains found N-terminal of phosphoserine phosphatase (PSP, SerB). PSPs belong to the L-2-haloacid dehalogenase-like protein superfamily. PSP is involved in serine metabolism; serine is synthesized from phosphoglycerate through sequential reactions catalyzed by 3-phosphoglycerate dehydrogenase (SerA), 3-phosphoserine aminotransferase (SerC), and SerB. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153143 cd04871 ACT_PSP_2 ACT domains found N-terminal of phosphoserine phosphatase (PSP, SerB). The ACT_PSP_2 CD includes the second of the two ACT domains found N-terminal of phosphoserine phosphatase (PSP, SerB). PSPs belong to the L-2-haloacid dehalogenase-like protein superfamily. PSP is involved in serine metabolism; serine is synthesized from phosphoglycerate through sequential reactions catalyzed by 3-phosphoglycerate dehydrogenase (SerA), 3-phosphoserine aminotransferase (SerC), and SerB. Members of this CD belong to the superfamily of ACT regulatory domains 84 -153144 cd04872 ACT_1ZPV ACT domain proteins similar to the yet uncharacterized Streptococcus pneumoniae ACT domain protein. This CD, ACT_1ZPV, includes those single ACT domain proteins similar to the yet uncharacterized Streptococcus pneumoniae ACT domain protein (pdb structure 1ZPV). Members of this CD belong to the superfamily of ACT regulatory domains. 88 -153145 cd04873 ACT_UUR-ACR-like ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD. This ACT domain family, ACT_UUR_ACR-like, includes the two C-terminal ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD; including those enzymes similar to the GlnD found in enteric Escherichia coli and those found in photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Also included in this CD are the four ACT domains of a novel protein composed almost entirely of ACT domain repeats (the ACR protein) and like proteins. These ACR proteins, found in Arabidopsis and Oryza, are proposed to function as novel regulatory or sensor proteins in plants. This CD also includes the first of the two ACT domains that comprise the Glycine Cleavage System Transcriptional Repressor (GcvR) protein and related domains, as well as, the N-terminal ACT domain of a yet characterized Arabidopsis/Oryza predicted tyrosine kinase. Members of this CD belong to the superfamily of ACT regulatory domains. 70 -153146 cd04874 ACT_Af1403 N-terminal ACT domain of the yet uncharacterized, small (~133 a.a.), putative amino acid binding protein, Af1403, and related domains. This CD includes the N-terminal ACT domain of the yet uncharacterized, small (~133 a.a.), putative amino acid binding protein, Af1403, from Archaeoglobus fulgidus and other related archeal ACT domains. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153147 cd04875 ACT_F4HF-DF N-terminal ACT domain of formyltetrahydrofolate deformylase (F4HF-DF; formyltetrahydrofolate hydrolase). This CD includes the N-terminal ACT domain of formyltetrahydrofolate deformylase (F4HF-DF; formyltetrahydrofolate hydrolase) which catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formyl-FH4 hydrolase generates the formate that is used by purT-encoded 5'-phosphoribosylglycinamide transformylase for step three of de novo purine nucleotide synthesis. Formyl-FH4 hydrolase, a hexamer which is activated by methionine and inhibited by glycine, is proposed to regulate the balance FH4 and C1-FH4 in response to changing growth conditions. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153148 cd04876 ACT_RelA-SpoT ACT domain found C-terminal of the RelA/SpoT domains. ACT_RelA-SpoT: the ACT domain found C-terminal of the RelA/SpoT domains. Enzymes of the Rel/Spo family enable bacteria to survive prolonged periods of nutrient limitation by controlling guanosine-3'-diphosphate-5'-(tri)diphosphate ((p)ppGpp) production and subsequent rRNA repression (stringent response). Both the synthesis of (p)ppGpp from ATP and GDP(GTP), and its hydrolysis to GDP(GTP) and pyrophosphate, are catalyzed by Rel/Spo proteins. In Escherichia coli and its close relatives, the metabolism of (p)ppGpp is governed by two homologous proteins, RelA and SpoT. The RelA protein catalyzes (p)ppGpp synthesis in a reaction requiring its binding to ribosomes bearing codon-specified uncharged tRNA. The major role of the SpoT protein is the breakdown of (p)ppGpp by a manganese-dependent (p)ppGpp pyrophosphohydrolase activity. Although the stringent response appears to be tightly regulated by these two enzymes in E. coli, a bifunctional Rel/Spo protein has been discovered in most gram-positive organisms studied so far. These bifunctional Rel/Spo homologs (rsh) appear to modulate (p)ppGpp levels through two distinct active sites that are controlled by a reciprocal regulatory mechanism ensuring inverse coupling of opposing activities. In studies with the Streptococcus equisimilis Rel/Spo homolog, the C-terminal domain appears to be involved in this reciprocal regulation of the two opposing catalytic activities present in the N-terminal domain, ensuring that both synthesis and degradation activities are not coinduced. Members of this CD belong to the superfamily of ACT regulatory domains. 71 -153149 cd04877 ACT_TyrR N-terminal ACT domain of the TyrR protein. ACT_TyrR: N-terminal ACT domain of the TyrR protein. The TyrR protein of Escherichia coli controls the expression of a group of transcription units (TyrR regulon) whose gene products are involved in the biosynthesis or transport of the aromatic amino acids. Binding to specific DNA sequences known as TyrR boxes, the TyrR protein can either activate or repress transcription at different sigma70 promoters. Its regulatory activity occurs in response to intracellular levels of tyrosine, phenylalanine and tryptophan. The TyrR protein consists of an N-terminal region important for transcription activation with an ATP-independent aromatic amino acid binding site (contained within the ACT domain) and is involved in dimerization; a central region with an ATP binding site, an ATP-dependent aromatic amino acid binding site and is involved in hexamerization; and a helix turn helix DNA binding C-terminal region. In solution, in the absence of cofactors or in the presence of phenylalanine alone, the TyrR protein exists as a dimer. However, in the presence of ATP and tyrosine the TyrR protein self-aggregates to form a hexamer. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153150 cd04878 ACT_AHAS N-terminal ACT domain of the Escherichia coli IlvH-like regulatory subunit of acetohydroxyacid synthase (AHAS). ACT_AHAS: N-terminal ACT domain of the Escherichia coli IlvH-like regulatory subunit of acetohydroxyacid synthase (AHAS). AHAS catalyses the first common step in the biosynthesis of the three branched-chain amino acids. The first step involves the condensation of either pyruvate or 2-ketobutyrate with the two-carbon hydroxyethyl fragment derived from another pyruvate molecule, covalently bound to the coenzyme thiamine diphosphate. Bacterial AHASs generally consist of regulatory and catalytic subunits. The effector (valine) binding sites are proposed to be located in two symmetrically related positions in the interface between a pair of N-terminal ACT domains with the C-terminal domain of IlvH contacting the catalytic dimer. Plants Arabidopsis and Oryza have tandem IlvH subunits; both the first and second ACT domain sequences are present in this CD. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153151 cd04879 ACT_3PGDH-like ACT_3PGDH-like CD includes the C-terminal ACT (regulatory) domain of D-3-phosphoglycerate dehydrogenase (3PGDH). ACT_3PGDH-like: The ACT_3PGDH-like CD includes the C-terminal ACT (regulatory) domain of D-3-phosphoglycerate dehydrogenase (3PGDH), with or without an extended C-terminal (xct) region found in various bacteria, archaea, fungi, and plants. 3PGDH is an enzyme that belongs to the D-isomer specific, 2-hydroxyacid dehydrogenase family and catalyzes the oxidation of D-3-phosphoglycerate to 3- phosphohydroxypyruvate, which is the first step in the biosynthesis of L-serine, using NAD+ as the oxidizing agent. In bacteria, 3PGDH is feedback controlled by the end product L-serine in an allosteric manner. In the Escherichia coli homotetrameric enzyme, the interface at adjacent ACT (regulatory) domains couples to create an extended beta-sheet. Each regulatory interface forms two serine-binding sites. The mechanism by which serine transmits inhibition to the active site is postulated to involve the tethering of the regulatory domains together to create a rigid quaternary structure with a solvent-exposed active site cleft. This CD also includes the C-terminal ACT domain of the L-serine dehydratase (LSD), iron-sulfur-dependent, beta subunit, found in various bacterial anaerobes such as Clostridium, Bacillus, and Treponema species. LSD enzymes catalyze the deamination of L-serine, producing pyruvate and ammonia. Unlike the eukaryotic L-serine dehydratase, which requires the pyridoxal-5'-phosphate (PLP) cofactor, the prokaryotic L-serine dehydratase contains an [4Fe-4S] cluster instead of a PLP active site. The LSD alpha and beta subunits of the 'clostridial' enzyme are encoded by the sdhA and sdhB genes. The single subunit bacterial homologs of L-serine dehydratase (LSD1, LSD2, TdcG) present in E. coli, and other Enterobacteriales, lack the ACT domain described here. Members of this CD belong to the superfamily of ACT regulatory domains. 71 -153152 cd04880 ACT_AAAH-PDT-like ACT domain of the nonheme iron-dependent, aromatic amino acid hydroxylases (AAAH). ACT domain of the nonheme iron-dependent, aromatic amino acid hydroxylases (AAAH): Phenylalanine hydroxylases (PAH), tyrosine hydroxylases (TH) and tryptophan hydroxylases (TPH), both peripheral (TPH1) and neuronal (TPH2) enzymes. This family of enzymes shares a common catalytic mechanism, in which dioxygen is used by an active site containing a single, reduced iron atom to hydroxylate an unactivated aromatic substrate, concomitant with a two-electron oxidation of tetrahydropterin (BH4) cofactor to its quinonoid dihydropterin form. Eukaryotic AAAHs have an N-terminal ACT (regulatory) domain, a middle catalytic domain and a C-terminal domain which is responsible for the oligomeric state of the enzyme forming a domain-swapped tetrameric coiled-coil. The PAH, TH, and TPH enzymes contain highly conserved catalytic domains but distinct N-terminal ACT domains and differ in their mechanisms of regulation. One commonality is that all three eukaryotic enzymes appear to be regulated, in part, by the phosphorylation of serine residues N-terminal of the ACT domain. Also included in this CD are the C-terminal ACT domains of the bifunctional chorismate mutase-prephenate dehydratase (CM-PDT) enzyme and the prephenate dehydratase (PDT) enzyme found in plants, fungi, bacteria, and archaea. The P-protein of Escherichia coli (CM-PDT) catalyzes the conversion of chorismate to prephenate and then the decarboxylation and dehydration to form phenylpyruvate. These are the first two steps in the biosynthesis of L-Phe and L-Tyr via the shikimate pathway in microorganisms and plants. The E. coli P-protein (CM-PDT) has three domains with an N-terminal domain with chorismate mutase activity, a middle domain with prephenate dehydratase activity, and an ACT regulatory C-terminal domain. The prephenate dehydratase enzyme has a PDT and ACT domain. The ACT domain is essential to bring about the negative allosteric regulation by L-Phe binding. L-Phe binds with positive cooperativity; with this binding, there is a shift in the protein to less active tetrameric and higher oligomeric forms from a more active dimeric form. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153153 cd04881 ACT_HSDH-Hom ACT_HSDH_Hom CD includes the C-terminal ACT domain of the NAD(P)H-dependent, homoserine dehydrogenase (HSDH) and related domains. The ACT_HSDH_Hom CD includes the C-terminal ACT domain of the NAD(P)H-dependent, homoserine dehydrogenase (HSDH) encoded by the hom gene of Bacillus subtilis and other related sequences. HSDH reduces aspartate semi-aldehyde to the amino acid homoserine, one that is required for the biosynthesis of Met, Thr, and Ile from Asp. Neither the enzyme nor the aspartate pathway is found in the animal kingdom. This mostly bacterial HSDH group has a C-terminal ACT domain and is believed to be involved in enzyme regulation. A C-terminal deletion in the Corynebacterium glutamicum HSDH abolished allosteric inhibition by L-threonine. Members of this CD belong to the superfamily of ACT regulatory domains. 79 -153154 cd04882 ACT_Bt0572_2 C-terminal ACT domain of a novel protein composed of just two ACT domains. Included in this CD is the C-terminal ACT domain of a novel protein composed of just two ACT domains, as seen in the yet uncharacterized structure (pdb 2F06) of the Bt0572 protein from Bacteroides thetaiotaomicron and related proteins. Members of this CD belong to the superfamily of ACT regulatory domains. 65 -153155 cd04883 ACT_AcuB C-terminal ACT domain of the Bacillus subtilis acetoin utilization protein, AcuB. This CD includes the C-terminal ACT domain of the Bacillus subtilis acetoin utilization protein, AcuB. AcuB is putatively involved in the anaerobic catabolism of acetoin, and related proteins. Studies report the induction of AcuB by nitrate respiration and also by fermentation. Since acetoin can be secreted and later serve as a source of carbon, it has been proposed that, during anaerobic growth when other carbon sources are exhausted, the induction of the AcuB protein results in acetoin catabolism. AcuB-like proteins have two N-terminal tandem CBS domains and a single C-terminal ACT domain. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153156 cd04884 ACT_CBS C-terminal ACT domain of the cystathionine beta-synthase (CBS) domain protein found in Thermotoga maritima, Tm0935, and delta proteobacteria. This CD includes the C-terminal ACT domain of the cystathionine beta-synthase (CBS) domain protein found in Thermotoga maritima, Tm0935, and delta proteobacteria. This protein has two N-terminal tandem CBS domains and a single C-terminal ACT domain. The CBS domain is found in a wide range of proteins, often in tandem arrangements and together with a variety of other functional domains. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153157 cd04885 ACT_ThrD-I Tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase). This CD includes each of two tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase) which catalyzes the committed step in branched chain amino acid biosynthesis in plants and microorganisms, the pyridoxal 5'-phosphate (PLP)-dependent dehydration/deamination of L-threonine (or L-serine) to 2-ketobutyrate (or pyruvate). ThrD-I is a cooperative, feedback-regulated (isoleucine and valine) allosteric enzyme that forms a tetramer and contains four pyridoxal phosphate moieties. Members of this CD belong to the superfamily of ACT regulatory domains. 68 -153158 cd04886 ACT_ThrD-II-like C-terminal ACT domain of biodegradative (catabolic) threonine dehydratase II (ThrD-II) and other related ACT domains. This CD includes the C-terminal ACT domain of biodegradative (catabolic) threonine dehydratase II (ThrD-II) and other related ACT domains. The Escherichia coli tdcB gene product, ThrD-II, anaerobically catalyzes the pyridoxal phosphate-dependent dehydration of L-threonine and L-serine to ammonia and to alpha-ketobutyrate and pyruvate, respectively. Tetrameric ThrD-II is subject to allosteric activation by AMP, inhibition by alpha-keto acids, and catabolite inactivation by several metabolites of glycolysis and the citric acid cycle. Also included in this CD are N-terminal ACT domains present in smaller (~170 a.a.) archaeal proteins of unknown function. Members of this CD belong to the superfamily of ACT regulatory domains. 73 -153159 cd04887 ACT_MalLac-Enz ACT_MalLac-Enz CD includes the N-terminal ACT domain of putative NAD-dependent malic enzyme 1, Bacillus subtilis YqkI and related domains. The ACT_MalLac-Enz CD includes the N-terminal ACT domain of putative NAD-dependent malic enzyme 1, Bacillus subtilis YqkI, a malolactic enzyme (MalLac-Enz) which converts malate to lactate, and other related ACT domains. The yqkJ product is predicted to convert malate directly to lactate, as opposed to related malic enzymes that convert malate to pyruvate. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153160 cd04888 ACT_PheB-BS C-terminal ACT domain of a small (~147 a.a.) putative phenylalanine biosynthetic pathway protein described in Bacillus subtilis (BS) PheB (PheB-BS) and related domains. This CD includes the C-terminal ACT domain of a small (~147 a.a.) putative phenylalanine biosynthetic pathway protein described in Bacillus subtilis (BS) PheB (PheB-BS) and other related ACT domains. In B. subtilis, the upstream gene of pheB, pheA encodes prephenate dehydratase (PDT). The presumed product of the pheB gene is chorismate mutase (CM). The deduced product of the B. subtilis pheB gene, however, has no significant homology to the CM portion of the bifunctional CM-PDT of Escherichia coli. The presence of an ACT domain lends support to the prediction that these proteins function as a phenylalanine-binding regulatory protein. Members of this CD belong to the superfamily of ACT regulatory domains. 76 -153161 cd04889 ACT_PDH-BS-like C-terminal ACT domain of the monofunctional, NAD dependent, prephenate dehydrogenase (PDH) enzyme that catalyzes the formation of 4-hydroxyphenylpyruvate from prephenate. Included in this CD is the C-terminal ACT domain of the monofunctional, NAD dependent, prephenate dehydrogenase (PDH) enzyme that catalyzes the formation of 4-hydroxyphenylpyruvate from prephenate, found in Bacillus subtilis (BS) and other Firmicutes, Deinococci, and Bacteroidetes. PDH is the first enzyme in the aromatic amino acid pathway specific for the biosynthesis of tyrosine. This enzyme is feedback inhibited by tyrosine in B. subtilis and other microorganisms. Both phenylalanine and tryptophan have been shown to be inhibitors of this activity in B. subtilis. Bifunctional chorismate mutase-PDH (TyrA) enzymes such as those seen in Escherichia coli do not contain an ACT domain. Also included in this CD is the N-terminal ACT domain of a novel protein composed almost entirely of two tandem ACT domains as seen in the uncharacterized structure (pdb 2F06) of the Bt0572 protein from Bacteroides thetaiotaomicron and related ACT domains. Members of this CD belong to the superfamily of ACT regulatory domains. 56 -153162 cd04890 ACT_AK-like_1 ACT domains found C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). This CD includes the first of two ACT domains found C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). AK catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP, and is the first enzyme in the pathway of the biosynthesis of the aspartate family of amino acids, lysine, threonine, methionine, and isoleucine. This CD, includes the first ACT domain of the Escherichia coli (EC) isoenzyme, AKIII (LysC) and the Arabidopsis isoenzyme, asparate kinase 1, both enzymes monofunctional and involved in lysine synthesis, as well as the the first ACT domain of Bacillus subtilis (BS) isoenzyme, AKIII (YclM), and of the Saccharomyces cerevisiae AK (Hom3). Also included are the first ACT domains of the Methylomicrobium alcaliphilum AK, the first enzyme of the ectoine biosynthetic pathway. Members of this CD belong to the superfamily of ACT regulatory domains. 62 -153163 cd04891 ACT_AK-LysC-DapG-like_1 ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII and related proteins. This CD includes the N-terminal of the two ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis (BS) strain 168, and the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, as well as, the first and third, of four, ACT domains present in cyanobacteria AK. Also included are the N-terminal of the two ACT domains of the diaminopimelate-sensitive aspartokinase isoenzyme AKI found in Bacilli (Bacillus subtilis strain 168), Clostridia, and Actinobacteria bacterial species. Members of this CD belong to the superfamily of ACT regulatory domains. 61 -153164 cd04892 ACT_AK-like_2 ACT domains C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). This CD includes the second of two ACT domains C-terminal to the catalytic domain of aspartokinase (AK; 4-L-aspartate-4-phosphotransferase). The exception in this group, is the inclusion of the first ACT domain of the bifunctional aspartokinase - homoserine dehydrogenase-like enzyme group (ACT_AKi-HSDH-ThrA-like_1) which includes the monofunctional, threonine-sensitive, aspartokinase found in Methanococcus jannaschii and other related archaeal species. AK catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. AK is the first enzyme in the pathway of the biosynthesis of the aspartate family of amino acids (lysine, threonine, methionine, and isoleucine) and the bacterial cell wall component, meso-diaminopimelate. One mechanism for the regulation of this pathway is by the production of several isoenzymes of AK with different repressors and allosteric inhibitors. Pairs of ACT domains are proposed to specifically bind amino acids leading to allosteric regulation of the enzyme. In Escherichia coli (EC), three different AK isoenzymes are regulated specifically by lysine, methionine, and threonine. AK-HSDHI (ThrA) and AK-HSDHII (MetL) are bifunctional enzymes that consist of an N-terminal AK and a C-terminal homoserine dehydrogenase (HSDH). ThrA and MetL are involved in threonine and methionine biosynthesis, respectively. The third isoenzyme, AKIII (LysC), is monofunctional and is involved in lysine synthesis. The three Bacillus subtilis (BS) isoenzymes, AKI (DapG), AKII (LysC), and AKIII (YclM), are feedback inhibited by meso-diaminopimelate, lysine, and lysine plus threonine, respectively. The E. coli lysine-sensitive AK is described as a homodimer, whereas, the B. subtilis lysine-sensitive AK is described as is a heterodimeric complex of alpha- and beta- subunits that are formed from two in-frame overlapping genes. A single AK enzyme type has been described in Pseudomonas, Amycolatopsis, and Corynebacterium, and apparently, unique to cyanobacteria, are AKs with two tandem pairs of ACT domains, C-terminal to the catalytic domain. The fungal aspartate pathway is regulated at the AK step, with L-Thr being an allosteric inhibitor of the Saccharomyces cerevisiae AK (Hom3). At least two distinct AK isoenzymes can occur in higher plants, a monofunctional lysine-sensitive isoenzyme, which is involved in the overall regulation of the pathway and can be synergistically inhibited by S-adenosylmethionine. The other isoenzyme is a bifunctional, threonine-sensitive AK-HSDH protein. Also included in this CD are the ACT domains of the Methylomicrobium alcaliphilum AK; the first enzyme of the ectoine biosynthetic pathway found in this bacterium and several other halophilic/halotolerant bacteria. Members of this CD belong to the superfamily of ACT regulatory domains. 65 -153165 cd04893 ACT_GcvR_1 ACT domains that comprise the Glycine Cleavage System Transcriptional Repressor (GcvR) protein, and other related domains. This CD includes the first of the two ACT domains that comprise the Glycine Cleavage System Transcriptional Repressor (GcvR) protein, and other related domains. The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. This enzyme system, encoded by the gcvTHP operon and lpd gene, catalyzes the cleavage of glycine into CO2 + NH3 and transfers a one-carbon unit to tetrahydrofolate, producing 5,10-methylenetetrahydrofolate. The gcvTHP operon is activated by the GcvA protein in response to glycine and repressed by a GcvA/GcvR interaction in the absence of glycine. It has been proposed that the co-activator glycine acts through a mechanism of de-repression by binding to GcvR and preventing GcvR from interacting with GcvA to block GcvA's activator function. Evidence also suggests that GcvR interacts directly with GcvA rather than binding to DNA to cause repression. Members of this CD belong to the superfamily of ACT regulatory domains. 77 -153166 cd04894 ACT_ACR-like_1 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the N-terminal ACT domain of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) have been described, however, the ACR-like sequences in this CD are distinct from those characterized. This CD includes the Oryza sativa ACR-like protein (Os05g0113000) encoded on chromosome 5 and the Arabidopsis thaliana predicted gene product, At2g39570. Members of this CD belong to the superfamily of ACT regulatory domains. 69 -153167 cd04895 ACT_ACR_1 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the N-terminal ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products have been described (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) and are represented in this CD. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153168 cd04896 ACT_ACR-like_3 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the third ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) have been described, however, the ACR-like sequences in this CD are distinct from those characterized. This CD includes the Oryza sativa ACR-like protein (Os05g0113000) encoded on chromosome 5 and the Arabidopsis thaliana predicted gene product, At2g39570. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153169 cd04897 ACT_ACR_3 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the third ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products have been described (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) and are represented in this CD. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153170 cd04898 ACT_ACR-like_4 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the C-terminal ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) have been described, however, the ACR-like sequences in this CD are distinct from those characterized. This CD includes the Oryza sativa ACR-like protein (Os05g0113000) encoded on chromosome 5 and the Arabidopsis thaliana predicted gene product, At2g39570. Members of this CD belong to the superfamily of ACT regulatory domains. 77 -153171 cd04899 ACT_ACR-UUR-like_2 C-terminal ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD and related domains. This ACT domain family, ACT_ACR-UUR-like_2, includes the second of two C-terminal ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD; including those enzymes similar to the GlnD found in enteric Escherichia coli and those found in photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Also included in this CD are the second and fourth ACT domains of a novel protein composed almost entirely of ACT domain repeats, the ACR protein. These ACR proteins, found in Arabidopsis and Oryza, are proposed to function as novel regulatory or sensor proteins in plants. Members of this CD belong to the superfamily of ACT regulatory domains. 70 -153172 cd04900 ACT_UUR-like_1 ACT domain family, ACT_UUR-like_1, includes the first of two C-terminal ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD and related domains. This ACT domain family, ACT_UUR-like_1, includes the first of two C-terminal ACT domains of the bacterial signal-transducing uridylyltransferase /uridylyl-removing (UUR) enzyme, GlnD; including those enzymes similar to the GlnD found in enteric Escherichia coli and those found in photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Also included in this CD is the N-terminal ACT domain of a yet characterized Arabidopsis/Oryza predicted tyrosine kinase. Members of this CD belong to the superfamily of ACT regulatory domains. 73 -153173 cd04901 ACT_3PGDH C-terminal ACT (regulatory) domain of D-3-Phosphoglycerate Dehydrogenase (3PGDH) found in fungi and bacteria. The C-terminal ACT (regulatory) domain of D-3-Phosphoglycerate Dehydrogenase (3PGDH) found in fungi and bacteria. 3PGDH is an enzyme that belongs to the D-isomer specific, 2-hydroxyacid dehydrogenase family and catalyzes the oxidation of D-3-phosphoglycerate to 3- phosphohydroxypyruvate, which is the first step in the biosynthesis of L-serine, using NAD+ as the oxidizing agent. In Escherichia coli, the SerA 3PGDH is feedback-controlled by the end product L-serine in an allosteric manner. In the homotetrameric enzyme, the interface at adjacent ACT (regulatory) domains couples to create an extended beta-sheet. Each regulatory interface forms two serine-binding sites. The mechanism by which serine transmits inhibition to the active site is postulated to involve the tethering of the regulatory domains together to create a rigid quaternary structure with a solvent-exposed active site cleft. Members of this CD belong to the superfamily of ACT regulatory domains. 69 -153174 cd04902 ACT_3PGDH-xct C-terminal ACT (regulatory) domain of D-3-phosphoglycerate dehydrogenase (3PGDH). The C-terminal ACT (regulatory) domain of D-3-phosphoglycerate dehydrogenase (3PGDH), with an extended C-terminal (xct) region from bacteria, archaea, fungi, and plants. 3PGDH is an enzyme that belongs to the D-isomer specific, 2-hydroxyacid dehydrogenase family and catalyzes the oxidation of D-3-phosphoglycerate to 3- phosphohydroxypyruvate, which is the first step in the biosynthesis of L-serine, using NAD+ as the oxidizing agent. In bacteria, 3PGDH is feedback-controlled by the end product L-serine in an allosteric manner. Some 3PGDH enzymes have an additional domain formed by an extended C-terminal region. This additional domain introduces significant asymmetry to the homotetramer. Adjacent ACT (regulatory) domains interact, creating two serine-binding sites, however, this asymmetric arrangement results in the formation of two different and distinct domain interfaces between identical domains in the asymmetric unit. How this asymmetry influences the mechanism of effector inhibition is still unknown. Members of this CD belong to the superfamily of ACT regulatory domains. 73 -153175 cd04903 ACT_LSD C-terminal ACT domain of the L-serine dehydratase (LSD), iron-sulfur-dependent, beta subunit. The C-terminal ACT domain of the L-serine dehydratase (LSD), iron-sulfur-dependent, beta subunit, found in various bacterial anaerobes such as Clostridium, Bacillis, and Treponema species. These enzymes catalyze the deamination of L-serine, producing pyruvate and ammonia. Unlike the eukaryotic L-serine dehydratase, which requires the pyridoxal-5'-phosphate (PLP) cofactor, the prokaryotic L-serine dehydratase contains an [4Fe-4S] cluster instead of a PLP active site. The LSD alpha and beta subunits of the 'clostridial' enzyme are encoded by the sdhA and sdhB genes. The single subunit bacterial homologs of L-serine dehydratase (LSD1, LSD2, TdcG) present in Escherichia coli, and other enterobacterials, lack the ACT domain described here. Members of this CD belong to the superfamily of ACT regulatory domains. 71 -153176 cd04904 ACT_AAAH ACT domain of the nonheme iron-dependent, aromatic amino acid hydroxylases (AAAH). ACT domain of the nonheme iron-dependent, aromatic amino acid hydroxylases (AAAH): Phenylalanine hydroxylases (PAH), tyrosine hydroxylases (TH) and tryptophan hydroxylases (TPH), both peripheral (TPH1) and neuronal (TPH2) enzymes. This family of enzymes shares a common catalytic mechanism, in which dioxygen is used by an active site containing a single, reduced iron atom to hydroxylate an unactivated aromatic substrate, concomitant with a two-electron oxidation of tetrahydropterin (BH4) cofactor to its quinonoid dihydropterin form. PAH catalyzes the hydroxylation of L-Phe to L-Tyr, the first step in the catabolic degradation of L-Phe; TH catalyses the hydroxylation of L-Tyr to 3,4-dihydroxyphenylalanine, the rate limiting step in the biosynthesis of catecholamines; and TPH catalyses the hydroxylation of L-Trp to 5-hydroxytryptophan, the rate limiting step in the biosynthesis of 5-hydroxytryptamine (serotonin) and the first reaction in the synthesis of melatonin. Eukaryotic AAAHs have an N-terminal ACT (regulatory) domain, a middle catalytic domain and a C-terminal domain which is responsible for the oligomeric state of the enzyme forming a domain-swapped tetrameric coiled-coil. The PAH, TH, and TPH enzymes contain highly conserved catalytic domains but distinct N-terminal ACT domains (this CD) and differ in their mechanisms of regulation. One commonality is that all three eukaryotic enzymes are regulated in part by the phosphorylation of serine residues N-terminal of the ACT domain. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153177 cd04905 ACT_CM-PDT C-terminal ACT domain of the bifunctional chorismate mutase-prephenate dehydratase (CM-PDT) enzyme and the prephenate dehydratase (PDT) enzyme. The C-terminal ACT domain of the bifunctional chorismate mutase-prephenate dehydratase (CM-PDT) enzyme and the prephenate dehydratase (PDT) enzyme, found in plants, fungi, bacteria, and archaea. The P-protein of E. coli (CM-PDT, PheA) catalyzes the conversion of chorismate to prephenate and then the decarboxylation and dehydration to form phenylpyruvate. These are the first two steps in the biosynthesis of L-Phe and L-Tyr via the shikimate pathway in microorganisms and plants. The E. coli P-protein (CM-PDT) has three domains with an N-terminal domain with chorismate mutase activity, a middle domain with prephenate dehydratase activity, and an ACT regulatory C-terminal domain. The prephenate dehydratase enzyme has a PDT and ACT domain. The ACT domain is essential to bring about the negative allosteric regulation by L-Phe binding. L-Phe binds with positive cooperativity; with this binding, there is a shift in the protein to less active tetrameric and higher oligomeric forms from a more active dimeric form. Members of this CD belong to the superfamily of ACT regulatory domains. 80 -153178 cd04906 ACT_ThrD-I_1 First of two tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase). This CD includes the first of two tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase) which catalyzes the committed step in branched chain amino acid biosynthesis in plants and microorganisms, the pyridoxal 5'-phosphate (PLP)-dependent dehydration/deamination of L-threonine (or L-serine) to 2-ketobutyrate (or pyruvate). ThrD-I is a cooperative, feedback-regulated (isoleucine and valine) allosteric enzyme that forms a tetramer and contains four pyridoxal phosphate moieties. Members of this CD belong to the superfamily of ACT regulatory domains. 85 -153179 cd04907 ACT_ThrD-I_2 Second of two tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase). This CD includes the second of two tandem C-terminal ACT domains of threonine dehydratase I (ThrD-I; L-threonine hydrolyase) which catalyzes the committed step in branched chain amino acid biosynthesis in plants and microorganisms, the pyridoxal 5'-phosphate (PLP)-dependent dehydration/deamination of L-threonine (or L-serine) to 2-ketobutyrate (or pyruvate). ThrD-I is a cooperative, feedback-regulated (isoleucine and valine) allosteric enzyme that forms a tetramer and contains four pyridoxal phosphate moieties. Members of this CD belong to the superfamily of ACT regulatory domains. 81 -153180 cd04908 ACT_Bt0572_1 N-terminal ACT domain of a novel protein composed almost entirely of two tandem ACT domains. Included in this CD is the N-terminal ACT domain of a novel protein composed almost entirely of two tandem ACT domains as seen in the uncharacterized structure (pdb 2F06) of the Bt0572 protein from Bacteroides thetaiotaomicron and related ACT domains. These tandem ACT domain proteins belong to the superfamily of ACT regulatory domains. 66 -153181 cd04909 ACT_PDH-BS C-terminal ACT domain of the monofunctional, NAD dependent, prephenate dehydrogenase (PDH). The C-terminal ACT domain of the monofunctional, NAD dependent, prephenate dehydrogenase (PDH) enzyme that catalyzes the formation of 4-hydroxyphenylpyruvate from prephenate, found in Bacillus subtilis (BS) and other Firmicutes, Deinococci, and Bacteroidetes. PDH is the first enzyme in the aromatic amino acid pathway specific for the biosynthesis of tyrosine. This enzyme is feedback-inhibited by tyrosine in B. subtilis and other microorganisms. Both phenylalanine and tryptophan have been shown to be inhibitors of this activity in B. subtilis. Bifunctional chorismate mutase-PDH (TyrA) enzymes such as those seen in Escherichia coli do not contain an ACT domain. Members of this CD belong to the superfamily of ACT regulatory domains. 69 -153182 cd04910 ACT_AK-Ectoine_1 ACT domains located C-terminal to the catalytic domain of the aspartokinase of the ectoine (1,4,5,6-tetrahydro-2-methyl pyrimidine-4-carboxylate) biosynthetic pathway. This CD includes the first of two ACT domains located C-terminal to the catalytic domain of the aspartokinase of the ectoine (1,4,5,6-tetrahydro-2-methyl pyrimidine-4-carboxylate) biosynthetic pathway found in Methylomicrobium alcaliphilum, Vibrio cholerae, and various other halotolerant or halophilic bacteria. Bacteria exposed to hyperosmotic stress accumulate organic solutes called 'compatible solutes' of which ectoine, a heterocyclic amino acid, is one. Apart from its osmotic function, ectoine also exhibits a protective effect on proteins, nucleic acids and membranes against a variety of stress factors. de novo synthesis of ectoine starts with the phosphorylation of L-aspartate and shares its first two enzymatic steps with the biosynthesis of amino acids of the aspartate family: aspartokinase and L-aspartate-semialdehyde dehydrogenase. The M. alcaliphilum and the V. cholerae aspartokinases are encoded on the ectABCask operon. Members of this CD belong to the superfamily of ACT regulatory domains. 71 -153183 cd04911 ACT_AKiii-YclM-BS_1 ACT domains located C-terminal to the catalytic domain of the lysine plus threonine-sensitive aspartokinase isoenzyme AKIII. This CD includes the first of two ACT domains located C-terminal to the catalytic domain of the lysine plus threonine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in Bacilli (Bacillus subtilis (BS) YclM) and Clostridia species. Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. Bacillus subtilis YclM is reported to be a single polypeptide of 50 kD. AKIII from Bacillus subtilis strain 168 is induced by lysine and repressed by threonine and it is synergistically inhibited by lysine and threonine. Members of this CD belong to the superfamily of ACT regulatory domains. 76 -153184 cd04912 ACT_AKiii-LysC-EC-like_1 ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII. This CD includes the first of two ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in bacteria (Escherichia coli (EC) LysC) and plants, (Zea mays Ask1, Ask2, and Arabidopsis thaliana AK1). Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. Like the A. thaliana AK1 (AK1-AT), the E. coli AKIII (LysC) has two bound feedback allosteric inhibitor lysine molecules at the dimer interface located between the ACT1 domain of two subunits. The lysine-sensitive plant isoenzyme is synergistically inhibited by S-adenosylmethionine. A homolog of this group appears to be the Saccharomyces cerevisiae AK (Hom3) which clusters with this group as well. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153185 cd04913 ACT_AKii-LysC-BS-like_1 ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis (BS) strain 168 and related proteins. This CD includes the N-terminal of the two ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis (BS) strain 168, and the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, and related sequences. In B. subtilis 168, the regulation of the diaminopimelate (Dap)-lysine biosynthetic pathway involves dual control by Dap and lysine, effected through separate Dap- and lysine-sensitive aspartokinase isoenzymes. The B. subtilis 168 AKII is induced by methionine and repressed and inhibited by lysine. Although Corynebacterium glutamicum is known to contain a single aspartokinase, both the succinylase and dehydrogenase variant pathways of DAP-lysine synthesis operate simultaneously in this organism. In corynebacteria and other various Gram-positive bacteria, the DAP-lysine pathway is feedback regulated by the concerted action of lysine and threonine. Conserved residues in the ACT domains have been shown to be involved in this concerted feedback inhibition. Also included in this CD are the aspartokinases of the extreme thermophile, Thermus thermophilus HB27, the Gram-negative obligate methylotroph, Methylophilus methylotrophus AS1, and those single aspartokinases found in Pseudomonas aeruginosa, C. glutamicum, and Amycolatopsis lactamdurans. B. subtilis 168 AKII, and the C. glutamicum, Streptomyces clavuligerus and A. lactamdurans aspartokinases are described as tetramers consisting of two alpha and two beta subunits; the alpha (44 kD) and beta (18 kD) subunits formed by two in-phase overlapping polypeptides. This CD includes the first ACT domain C-terminal to the AK catalytic domain of the alpha subunit and the first ACT domain of the beta subunit that lacks the AK catalytic domain. Unlike the C. glutamicum AK beta subunit, which is involved in feedback regulation, the B. subtilis AKII beta subunit is not. Cyanobacteria aspartokinases are unique to this CD and they have a unique domain architecture with two tandem pairs of ACT domains, C-terminal to the catalytic AK domain. In this CD, the first and third cyanobacteria AK ACT domains are present. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153186 cd04914 ACT_AKi-DapG-BS_1 ACT domains of the diaminopimelate-sensitive aspartokinase (AK) isoenzyme AKI. This CD includes the N-terminal of the two ACT domains of the diaminopimelate-sensitive aspartokinase (AK) isoenzyme AKI, a monofunctional class enzyme found in Bacilli (Bacillus subtilis (BS) strain 168), Clostridia, and Actinobacteria, bacterial species. In B. subtilis, the regulation of the diaminopimelate-lysine biosynthetic pathway involves dual control by diaminopimelate and lysine, effected through separate diaminopimelate- and lysine-sensitive aspartokinase isoenzymes. AKI activity is invariant during the exponential and stationary phases of growth and is not altered by addition of amino acids to the growth medium. The role of this isoenzyme is most likely to provide a constant level of aspartyl-beta-phosphate for the biosynthesis of diaminopimelate for peptidoglycan synthesis and dipicolinate during sporulation. The B. subtilis AKI is tetrameric consisting of two alpha and two beta subunits; the alpha (43 kD) and beta (17 kD) subunit formed by two in-phase overlapping genes. The alpha subunit contains the AK catalytic domain and two ACT domains. The beta subunit contains two ACT domains. Members of this CD belong to the superfamily of ACT regulatory domains. 67 -153187 cd04915 ACT_AK-Ectoine_2 ACT domains located C-terminal to the catalytic domain of the aspartokinase of the ectoine (1,4,5,6-tetrahydro-2-methyl pyrimidine-4-carboxylate) biosynthetic pathway. This CD includes the second of two ACT domains located C-terminal to the catalytic domain of the aspartokinase of the ectoine (1,4,5,6-tetrahydro-2-methyl pyrimidine-4-carboxylate) biosynthetic pathway found in Methylomicrobium alcaliphilum, Vibrio cholerae, and various other halotolerant or halophilic bacteria. Bacteria exposed to hyperosmotic stress accumulate organic solutes called 'compatible solutes' of which ectoine, a heterocyclic amino acid, is one. Apart from its osmotic function, ectoine also exhibits a protective effect on proteins, nucleic acids and membranes against a variety of stress factors. de novo synthesis of ectoine starts with the phosphorylation of L-aspartate and shares its first two enzymatic steps with the biosynthesis of amino acids of the aspartate family: aspartokinase and L-aspartate-semialdehyde dehydrogenase. The M. alcaliphilum and the V. cholerae aspartokinases are encoded on the ectABCask operon. Members of this CD belong to the superfamily of ACT regulatory domains. 66 -153188 cd04916 ACT_AKiii-YclM-BS_2 ACT domains located C-terminal to the catalytic domain of the lysine plus threonine-sensitive aspartokinase isoenzyme AKIII. This CD includes the second of two ACT domains located C-terminal to the catalytic domain of the lysine plus threonine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in Bacilli (Bacillus subtilis (BS) YclM) and Clostridia species. Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. B. subtilis YclM is reported to be a single polypeptide of 50 kD. AKIII from B. subtilis strain 168 is induced by lysine and repressed by threonine and it is synergistically inhibited by lysine and threonine. Members of this CD belong to the superfamily of ACT regulatory domains. 66 -153189 cd04917 ACT_AKiii-LysC-EC_2 ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII. This CD includes the second of two ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in bacteria (Escherichia coli (EC) LysC). Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. The E. coli AKIII (LysC) binds two feedback allosteric inhibitor lysine molecules at the dimer interface located between the ACT1 domain of two subunits. The second ACT domain (ACT2), this CD, is not involved in the binding of heterotrophic effectors. Members of this CD belong to the superfamily of ACT regulatory domains. 64 -153190 cd04918 ACT_AK1-AT_2 ACT domains located C-terminal to the catalytic domain of a monofunctional, lysine-sensitive, plant aspartate kinase 1 (AK1). This CD includes the second of two ACT domains located C-terminal to the catalytic domain of a monofunctional, lysine-sensitive, plant aspartate kinase 1 (AK1), which can be synergistically inhibited by S-adenosylmethionine (SAM). This isoenzyme is found in higher plants, Arabidopsis thaliana (AT) and Zea mays, and also in Chlorophyta. In its inactive state, Arabidopsis AK1 binds the effectors lysine and SAM (two molecules each) at the interface of two ACT1 domain subunits. The second ACT domain (ACT2), this CD, does not interact with an effector. Members of this CD belong to the superfamily of ACT regulatory domains. 65 -153191 cd04919 ACT_AK-Hom3_2 ACT domains located C-terminal to the catalytic domain of the aspartokinase (AK) HOM3. This CD includes the second of two ACT domains located C-terminal to the catalytic domain of the aspartokinase (AK) HOM3, a monofunctional class enzyme found in Saccharomyces cerevisiae, and other related ACT domains. AK is the first enzyme in the aspartate metabolic pathway, catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP, and in fungi, is responsible for the production of threonine, isoleucine and methionine. S. cerevisiae has a single AK, which is regulated by feedback, allosteric inhibition by L-threonine. Recent studies shown that the allosteric transition triggered by binding of threonine to AK involves a large change in the conformation of the native hexameric enzyme that is converted to an inactive one of different shape and substantially smaller hydrodynamic size. Members of this CD belong to the superfamily of ACT regulatory domains. 66 -153192 cd04920 ACT_AKiii-DAPDC_2 ACT domains of a bifunctional AKIII (LysC)-like aspartokinase/meso-diaminopimelate decarboxylase (DAPDC). This CD includes the second of two ACT domains of a bifunctional AKIII (LysC)-like aspartokinase/meso-diaminopimelate decarboxylase (DAPDC) bacterial protein. Aspartokinase (AK) is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. The lysA gene encodes the enzyme DAPDC, a pyridoxal-5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. Tandem ACT domains are positioned centrally with the AK catalytic domain N-terminal and the DAPDC domains C-terminal. Members of this CD belong to the superfamily of ACT regulatory domains. 63 -153193 cd04921 ACT_AKi-HSDH-ThrA-like_1 ACT domains of the bifunctional enzyme aspartokinase (AK) - homoserine dehydrogenase (HSDH). This CD includes the first of two ACT domains of the bifunctional enzyme aspartokinase (AK) - homoserine dehydrogenase (HSDH). The ACT domains are positioned between the N-terminal catalytic domain of AK and the C-terminal HSDH domain found in bacteria (Escherichia coli (EC) ThrA) and higher plants (Zea mays AK-HSDH). AK and HSDH are the first and third enzymes in the biosynthetic pathway of the aspartate family of amino acids. AK catalyzes the phosphorylation of Asp to P-aspartyl phosphate. HSDH catalyzes the NADPH-dependent conversion of Asp 3-semialdehyde to homoserine. HSDH is the first committed reaction in the branch of the pathway that leads to Thr and Met. In E. coli, ThrA is subject to allosteric regulation by the end product L-threonine and the native enzyme is reported to be tetrameric. As with bacteria, plant AK and HSDH are feedback inhibited by pathway end products. Maize AK-HSDH is a Thr-sensitive 180-kD enzyme. Arabidopsis AK-HSDH is an alanine-activated, threonine-sensitive enzyme whose ACT domains were shown to be involved in allosteric activation. Also included in this CD is the first of two ACT domains of a tetrameric, monofunctional, threonine-sensitive, AK found in Methanococcus jannaschii and other related archaeal species. Members of this CD belong to the superfamily of ACT regulatory domains. 80 -153194 cd04922 ACT_AKi-HSDH-ThrA_2 ACT domains of the bifunctional enzyme aspartokinase (AK) - homoserine dehydrogenase (HSDH). This CD includes the second of two ACT domains of the bifunctional enzyme aspartokinase (AK) - homoserine dehydrogenase (HSDH). The ACT domains are positioned between the N-terminal catalytic domain of AK and the C-terminal HSDH domain found in bacteria (Escherichia coli (EC) ThrA) and higher plants (Zea mays AK-HSDH). AK and HSDH are the first and third enzymes in the biosynthetic pathway of the aspartate family of amino acids. AK catalyzes the phosphorylation of Asp to P-aspartyl phosphate. HSDH catalyzes the NADPH-dependent conversion of Asp 3-semialdehyde to homoserine. HSDH is the first committed reaction in the branch of the pathway that leads to Thr and Met. In E. coli, ThrA is subject to allosteric regulation by the end product L-threonine and the native enzyme is reported to be tetrameric. As with bacteria, plant AK and HSDH are feedback inhibited by pathway end products. Maize AK-HSDH is a Thr-sensitive 180-kD enzyme. Arabidopsis AK-HSDH is an alanine-activated, threonine-sensitive enzyme whose ACT domains were shown to be involved in allosteric activation. Members of this CD belong to the superfamily of ACT regulatory domains. 66 -153195 cd04923 ACT_AK-LysC-DapG-like_2 ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis (BS) strain 168 and related domains. This CD includes the C-terminal of the two ACT domains of the lysine-sensitive aspartokinase isoenzyme AKII of Bacillus subtilis (BS) strain 168, and the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, as well as, the second and fourth, of four, ACT domains present in cyanobacteria AK. Also included are the C-terminal of the two ACT domains of the diaminopimelate-sensitive aspartokinase isoenzyme AKI found in Bacilli (B. subtilis strain 168), Clostridia, and Actinobacteria bacterial species. Members of this CD belong to the superfamily of ACT regulatory domains. 63 -153196 cd04924 ACT_AK-Arch_2 ACT domains of a monofunctional aspartokinase found mostly in Archaea species (ACT_AK-Arch_2). Included in this CD is the second of two ACT domains of a monofunctional aspartokinase found mostly in Archaea species (ACT_AK-Arch_2). The first or N-terminal ACT domain of these proteins cluster with the ThrA-like ACT 1 domains (ACT_AKi-HSDH-ThrA-like_1) which includes the threonine-sensitive archaeal Methanococcus jannaschii aspartokinase ACT 1 domain. Members of this CD belong to the superfamily of ACT regulatory domains. 66 -153197 cd04925 ACT_ACR_2 ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the second ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products have been described (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) and are represented in this CD. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153198 cd04926 ACT_ACR_4 C-terminal ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the C-terminal ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products have been described (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) and are represented in this CD. Members of this CD belong to the superfamily of ACT regulatory domains. 72 -153199 cd04927 ACT_ACR-like_2 Second ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). This CD includes the second ACT domain, of a novel type of ACT domain-containing protein which is composed almost entirely of four ACT domain repeats (the "ACR" protein). ACR proteins, found only in Arabidopsis and Oryza, as yet, are proposed to function as novel regulatory or sensor proteins in plants. Nine ACR gene products (ACR1-8 in Arabidopsis and OsARC1-9 in Oryza) have been described, however, the ACR-like sequences in this CD are distinct from those characterized. This CD includes the Oryza sativa ACR-like protein (Os05g0113000) encoded on chromosome 5 and the Arabidopsis thaliana predicted gene product, At2g39570. Members of this CD belong to the superfamily of ACT regulatory domains. 76 -153200 cd04928 ACT_TyrKc Uncharacterized, N-terminal ACT domain of an Arabidopsis/Oryza predicted tyrosine kinase and other related ACT domains. This CD includes a novel, yet uncharacterized, N-terminal ACT domain of an Arabidopsis/Oryza predicted tyrosine kinase and other related ACT domains. Members of this CD belong to the superfamily of ACT regulatory domains. 68 -153201 cd04929 ACT_TPH ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, tryptophan hydroxylases (TPH), both peripheral (TPH1) and neuronal (TPH2) enzymes. ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, tryptophan hydroxylases (TPH), both peripheral (TPH1) and neuronal (TPH2) enzymes. TPH catalyses the hydroxylation of L-Trp to 5-hydroxytryptophan, the rate limiting step in the biosynthesis of 5-hydroxytryptamine (serotonin) and the first reaction in the synthesis of melatonin. Very little is known about the role of the ACT domain in TPH, which appears to be regulated by phosphorylation but not by its substrate or cofactor. Members of this CD belong to the superfamily of ACT regulatory domains. 74 -153202 cd04930 ACT_TH ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, tyrosine hydroxylases (TH). ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, tyrosine hydroxylases (TH). TH catalyses the hydroxylation of L-Tyr to 3,4-dihydroxyphenylalanine, the rate limiting step in the biosynthesis of catecholamines (dopamine, noradrenaline and adrenaline), functioning as hormones and neurotransmitters. The enzyme is not regulated by its amino acid substrate, but instead by phosphorylation at several serine residues located N-terminal of the ACT domain, and by feedback inhibition by catecholamines at the active site. Members of this CD belong to the superfamily of ACT regulatory domains. 115 -153203 cd04931 ACT_PAH ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, phenylalanine hydroxylases (PAH). ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, phenylalanine hydroxylases (PAH). PAH catalyzes the hydroxylation of L-Phe to L-Tyr, the first step in the catabolic degradation of L-Phe. In PAH, an autoregulatory sequence, N-terminal of the ACT domain, extends across the catalytic domain active site and regulates the enzyme by intrasteric regulation. It appears that the activation by L-Phe induces a conformational change that converts the enzyme to a high-affinity and high-activity state. Modulation of activity is achieved through inhibition by BH4 and activation by phosphorylation of serine residues of the autoregulatory region. The molecular basis for the cooperative activation process is not fully understood yet. Members of this CD belong to the superfamily of ACT regulatory domains. 90 -153204 cd04932 ACT_AKiii-LysC-EC_1 ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII. This CD includes the first of two ACT domains located C-terminal to the catalytic domain of the lysine-sensitive aspartokinase isoenzyme AKIII, a monofunctional class enzyme found in bacteria (Escherichia coli (EC) LysC). Aspartokinase is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. The E. coli AKIII (LysC) binds two feedback allosteric inhibitor lysine molecules at the dimer interface located between the ACT1 domain of two subunits. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153205 cd04933 ACT_AK1-AT_1 ACT domains located C-terminal to the catalytic domain of a monofunctional, lysine-sensitive, plant aspartate kinase 1 (AK1). This CD includes the first of two ACT domains located C-terminal to the catalytic domain of a monofunctional, lysine-sensitive, plant aspartate kinase 1 (AK1), which can be synergistically inhibited by S-adenosylmethionine. This isoenzyme is found in higher plants, Arabidopsis thaliana (AT) and Zea mays, and also in Chlorophyta. Like the Escherichia coli AKIII (LysC), Arabidopsis AK1 binds two feedback allosteric inhibitor lysine molecules at the dimer interface located between the ACT1 domain of two subunits. A loop in common is involved in the binding of both Lys and S-adenosylmethionine providing an explanation for the synergistic inhibition by these effectors. Members of this CD belong to the superfamily of ACT regulatory domains. 78 -153206 cd04934 ACT_AK-Hom3_1 CT domains located C-terminal to the catalytic domain of the aspartokinase (AK) HOM3, a monofunctional class enzyme found in Saccharomyces cerevisiae, and other related ACT domains. This CD includes the first of two ACT domains located C-terminal to the catalytic domain of the aspartokinase (AK) HOM3, a monofunctional class enzyme found in Saccharomyces cerevisiae, and other related ACT domains. AK is the first enzyme in the aspartate metabolic pathway, catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP, and in fungi, is responsible for the production of threonine, isoleucine and methionine. S. cerevisiae has a single AK, which is regulated by feedback, allosteric inhibition by L-threonine. Recent studies shown that the allosteric transition triggered by binding of threonine to AK involves a large change in the conformation of the native hexameric enzyme that is converted to an inactive one of different shape and substantially smaller hydrodynamic size. Members of this CD belong to the superfamily of ACT regulatory domains. 73 -153207 cd04935 ACT_AKiii-DAPDC_1 ACT domains of a bifunctional AKIII (LysC)-like aspartokinase/meso-diaminopimelate decarboxylase (DAPDC) bacterial protein. This CD includes the first of two ACT domains of a bifunctional AKIII (LysC)-like aspartokinase/meso-diaminopimelate decarboxylase (DAPDC) bacterial protein. Aspartokinase (AK) is the first enzyme in the aspartate metabolic pathway and catalyzes the conversion of aspartate and ATP to aspartylphosphate and ADP. The lysA gene encodes the enzyme DAPDC, a pyridoxal-5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. Tandem ACT domains are positioned centrally with the AK catalytic domain N-terminal and the DAPDC domains C-terminal. Members of this CD belong to the superfamily of ACT regulatory domains. 75 -153208 cd04936 ACT_AKii-LysC-BS-like_2 ACT domains of the lysine-sensitive, aspartokinase (AK) isoenzyme AKII of Bacillus subtilis (BS) strain 168 and related domains. This CD includes the C-terminal of the two ACT domains of the lysine-sensitive, aspartokinase (AK) isoenzyme AKII of Bacillus subtilis (BS) strain 168, and the lysine plus threonine-sensitive aspartokinase of Corynebacterium glutamicum, and related sequences. In B. subtilis strain 168, the regulation of the diaminopimelate (Dap)-lysine biosynthetic pathway involves dual control by Dap and lysine, effected through separate Dap- and lysine-sensitive AK isoenzymes. The B. subtilis strain 168 AKII is induced by methionine and repressed and inhibited by lysine. Although C. glutamicum is known to contain a single AK, both the succinylase and dehydrogenase variant pathways of DAP-lysine synthesis operate simultaneously in this organism. In corynebacteria and other various Gram-positive bacteria, the DAP-lysine pathway is feedback regulated by the concerted action of lysine and threonine. Conserved residues in the ACT domains have been shown to be involved in this concerted feedback inhibition. Also included in this CD are the AKs of the extreme thermophile, Thermus thermophilus HB27, the Gram-negative obligate methylotroph, Methylophilus methylotrophus AS1, and those single AKs found in Pseudomons, C. glutamicum, and Amycolatopsis lactamdurans. B. subtilis strain 168 AKII, and the C. glutamicum, Streptomyces clavuligerus and A. lactamdurans AKs are described as tetramers consisting of two alpha and two beta subunits; the alpha (44 kD) and beta (18 kD) subunits formed by two in-phase overlapping polypeptides. This CD includes the second ACT domain C-terminal to the AK catalytic domain of the alpha subunit and the second ACT domain of the beta subunit that lacks the AK catalytic domain. Unlike the C. glutamicum AK beta subunit, which is involved in feedback regulation, the B. subtilis AKII beta subunit is not. Cyanobacteria AKs are unique to this CD and they have a unique domain architecture with two tandem pairs of ACT domains, C-terminal to the catalytic AK domain. In this CD, the second and fourth cyanobacteria AK ACT domains are present. Members of this CD belong to the superfamily of ACT regulatory domains. 63 -153209 cd04937 ACT_AKi-DapG-BS_2 ACT domains of the diaminopimelate-sensitive aspartokinase (AK) isoenzyme AKI. This CD includes the C-terminal of the two ACT domains of the diaminopimelate-sensitive aspartokinase (AK) isoenzyme AKI, a monofunctional class enzyme found in Bacilli (Bacillus subtilis (BS) strain 168), Clostridia, and Actinobacteria bacterial species. In B. subtilis, the regulation of the diaminopimelate-lysine biosynthetic pathway involves dual control by diaminopimelate and lysine, effected through separate diaminopimelate- and lysine-sensitive AK isoenzymes. AKI activity is invariant during the exponential and stationary phases of growth and is not altered by addition of amino acids to the growth medium. The role of this isoenzyme is most likely to provide a constant level of aspartyl-beta-phosphate for the biosynthesis of diaminopimelate for peptidoglycan synthesis and dipicolinate during sporulation. The BS AKI is tetrameric consisting of two alpha and two beta subunits; the alpha (43 kD) and beta (17 kD) subunit formed by two in-phase overlapping genes. The alpha subunit contains the AK catalytic domain and two ACT domains. The beta subunit contains two ACT domains. Members of this CD belong to the superfamily of ACT regulatory domains. 64 -340517 cd04938 TGS_Obg TGS (ThrRS, GTPase and SpoT) domain found in the Obg protein family. The Obg family of GTPases function has been implicated in cellular processes as diverse as sporulation, stress response, control of DNA replication, and ribosome assembly. It consists of several subfamilies such as DRG and YchF with TGS domain. The TGS domain is named after the various RNA-binding multidomain ThrRS, GTPase, and SpoT/RelA proteins in which this domain occurs. The TGS domain of Obg-like GTPases such as those present in DRG (developmentally regulated GTP-binding protein), and GTP-binding proteins Ygr210 and YchF has a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. 77 -240137 cd04939 PA2301 PA2301 is an uncharacterized Pseudomonas aeruginosa protein with a YbaK-like domain of unknown function. The YbaK-like domain family includes the INS amino acid-editing domain of the bacterial class II prolyl tRNA synthetase (ProRS), and it's trans-acting homologs, YbaK, and ProX. The primary function of INS is to hydrolyze mischarged cysteinyl-tRNA(Pro)'s, thus helping ensure the fidelity of translation. Organisms whose ProRS lacks the INS domain express a single-domain INS homolog such as YbaK, ProX, or PrdX which supplies the function of INS in trans. 139 -340854 cd04946 GT4_AmsK-like amylovoran biosynthesis glycosyltransferase AmsK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmsK is involved in the biosynthesis of amylovoran, which functions as a virulence factor. It functions as a glycosyl transferase which transfers galactose from UDP-galactose to a lipid-linked amylovoran-subunit precursor. The members of this family are found mainly in bacteria and Archaea. 401 -340855 cd04949 GT4_GtfA-like accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria. 328 -340856 cd04950 GT4_TuaH-like teichuronic acid biosynthesis glycosyltransferase TuaH and similar proteins. Members of this family may function in teichuronic acid biosynthesis/cell wall biogenesis. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 373 -340857 cd04951 GT4_WbdM_like LPS/UnPP-GlcNAc-Gal a-1,4-glucosyltransferase WbdM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after WbdM in Escherichia coli. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria. 360 -340858 cd04955 GT4-like glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in certain bacteria and Archaea. 379 -340859 cd04962 GT4_BshA-like N-acetyl-alpha-D-glucosaminyl L-malate synthase BshA and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes. 370 -319276 cd04967 Ig1_Contactin First immunoglobulin (Ig) domain of contactin. Ig1_Contactin: First Ig domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 91 -319277 cd04968 Ig3_Contactin Third immunoglobulin (Ig) domain of contactin. Ig3_Contactin_like: Third Ig domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III(FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal act ivity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 88 -319278 cd04969 Ig5_Contactin Fifth immunoglobulin (Ig) domain of contactin. Ig5_Contactin_like: Fifth Ig domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal act ivity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 73 -319279 cd04970 Ig6_Contactin Sixth immunoglobulin (Ig) domain of contactin. Ig6_Contactin_like: Sixth Ig domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neur onal act ivity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 85 -143172 cd04971 Ig_TrKABC_d5 Fifth domain (immunoglobulin-like) of Trk receptors TrkA, TrkB and TrkC. TrkABC_d5: the fifth domain of Trk receptors TrkA, TrkB and TrkC, an immunoglobulin (Ig)-like domain which binds to neurotrophin. The Trk family of receptors are tyrosine kinase receptors. They are activated by dimerization, leading to autophosphorylation of intracellular tyrosine residues, and triggering the signal transduction pathway. TrkA, TrkB, and TrkC share significant sequence homology and domain organization. The first three domains are leucine-rich domains. The fourth and fifth domains are Ig-like domains playing a part in ligand binding. TrkA, B, and C mediate the trophic effects of the neurotrophin Nerve growth factor (NGF) family. TrkA is recognized by NGF. TrkB is recognized by brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-4. TrkC is recognized by NT-3. NT-3 is promiscuous as in some cell systems it activates TrkA and TrkB receptors. TrkA is a receptor found in all major NGF targets, including the sympathetic, trigeminal, and dorsal root ganglia, cholinergic neurons of the basal forebrain and the striatum. TrKB transcripts are found throughout multiple structures of the central and peripheral nervous systems. The TrkC gene is expressed throughout the mammalian nervous system. 81 -143173 cd04972 Ig_TrkABC_d4 Fourth domain (immunoglobulin-like) of Trk receptors TrkA, TrkB and TrkC. TrkABC_d4: the fourth domain of Trk receptors TrkA, TrkB and TrkC, an immunoglobulin (Ig)-like domain which binds to neurotrophin. The Trk family of receptors are tyrosine kinase receptors. They are activated by dimerization, leading to autophosphorylation of intracellular tyrosine residues, and triggering the signal transduction pathway. TrkA, TrkB, and TrkC share significant sequence homology and domain organization. The first three domains are leucine-rich domains. The fourth and fifth domains are Ig-like domains playing a part in ligand binding. TrkA, B, and C mediate the trophic effects of the neurotrophin Nerve growth factor (NGF) family. TrkA is recognized by NGF. TrKB is recognized by brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-4. TrkC is recognized by NT-3. NT-3 is promiscuous as in some cell systems it activates TrkA and TrkB receptors. TrkA is a receptor found in all major NGF targets, including the sympathetic, trigeminal, and dorsal root ganglia, cholinergic neurons of the basal forebrain and the striatum. TrKB transcripts are found throughout multiple structures of the central and peripheral nervous systems. The TrkC gene is expressed throughout the mammalian nervous system. 90 -143174 cd04973 Ig1_FGFR First immunoglobulin (Ig)-like domain of fibroblast growth factor receptor (FGFR). Ig1_FGFR: The first immunoglobulin (Ig)-like domain of fibroblast growth factor receptor (FGFR). Fibroblast growth factors (FGFs) participate in morphogenesis, development, angiogenesis, and wound healing. These FGF-stimulated processes are mediated by four FGFR tyrosine kinases (FGRF1-4). FGFRs are comprised of an extracellular portion consisting of three Ig-like domains, a transmembrane helix, and a cytoplasmic portion having protein tyrosine kinase activity. The highly conserved Ig-like domains 2 and 3, and the linker region between D2 and D3 define a general binding site for all FGFs. 79 -319280 cd04974 Ig3_FGFR Third immunoglobulin (Ig)-like domain of fibroblast growth factor receptor (FGFR). Ig3_FGFR: third immunoglobulin (Ig)-like domain of fibroblast growth factor receptor (FGFR). Fibroblast growth factors (FGFs) participate in morphogenesis, development, angiogenesis, and wound healing. These FGF-stimulated processes are mediated by four FGFR tyrosine kinases (FGRF1-4). FGFRs are comprised of an extracellular portion consisting of three Ig-like domains, a transmembrane helix, and a cytoplasmic portion having protein tyrosine kinase activity. The highly conserved Ig-like domains 2 and 3, and the linker region between D2 and D3 define a general binding site for FGFs. 90 -319281 cd04975 Ig4_SCFR_like Fourth immunoglobulin (Ig)-like domain of stem cell factor receptor (SCFR) and similar proteins. Ig4_SCFR_like; fourth immunoglobulin (Ig)-like domain of stem cell factor receptor (SCFR). In addition to SCFR, this group also includes the fourth Ig domain of macrophage colony stimulating factor receptor (M-CSF-R). SCFR, also called receptor tyrosine kinase KIT or proto-oncogene c-Kit, contains an extracellular component having five Ig-like domains, a transmembrane segment, and a cytoplasmic portion having protein tyrosine kinase activity. SCFR and its ligand SCF are critical for normal hematopoiesis, mast cell development, melanocytes and gametogenesis. SCF binds to the second and third Ig-like domains of SCFR, this fourth Ig-like domain participates in SCFR dimerization, which follows ligand binding. Deletion of this fourth SCFR_Ig-like domain abolishes the ligand-induced dimerization of SCFR and completely inhibits signal transduction. M-CSF-R, also called proto-oncogene c-Fms, acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, such as macrophages and monocytes. 100 -319282 cd04976 Ig_VEGFR Immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor (VEGFR). Ig_VEGFR: immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor (VEGFR). The VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. The VEGFR family consists of three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4). VEGFRs bind VEGFs with high affinity at the Ig-like domains. VEGF-A is important to the growth and maintenance of vascular endothelial cells and to the development of new blood- and lymphatic-vessels in physiological and pathological states. VEGFR-2 is a major mediator of the mitogenic, angiogenic and microvascular permeability-enhancing effects of VEGF-A. VEGFR-1 may play an inhibitory part in these processes by binding VEGF and interfering with its interaction with VEGFR-2. VEGFR-1 has a signaling role in mediating monocyte chemotaxis. VEGFR-2 and -1 may mediate a chemotactic and a survival signal in hematopoietic stem cells or leukemia cells. VEGFR-3 has been shown to be involved in tumor angiogenesis and growth. 70 -319283 cd04977 Ig1_NCAM-1_like First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1 and similar proteins. Ig1_NCAM-1 like: first immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1. NCAM-1 plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-nonNCAM) interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves the Ig1, Ig2, and Ig3 domains. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Also included in this group is NCAM-2 (also known as OCAM/mamFas II and RNCAM). NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE). 93 -319284 cd04978 Ig4_L1-NrCAM_like Fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related). Ig4_L1-NrCAM_like: fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related). These proteins belong to the L1 subfamily of cell adhesion molecules (CAMs) and are comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. These molecules are primarily expressed in the nervous system. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. 76 -319285 cd04979 Ig_Semaphorin_C Immunoglobulin (Ig)-like domain of semaphorin. Ig_Semaphorin_C; Immunoglobulin (Ig)-like domain in semaphorins. Semaphorins are transmembrane protein that have important roles in a variety of tissues. Functionally, semaphorins were initially characterized for their importance in the development of the nervous system and in axonal guidance. Later they have been found to be important for the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal, reproductive, and respiratory systems. Semaphorins function through binding to their receptors and transmembrane semaphorins also serves as receptors themselves. Although molecular mechanism of semaphorins is poorly understood, the Ig-like domains may be involved in ligand binding or dimerization. 91 -143181 cd04980 IgV_L_kappa Immunoglobulin (Ig) light chain, kappa type, variable (V) domain. IgV_L_kappa: Immunoglobulin (Ig) light chain, kappa type, variable (V) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds.There are two types of light chains: kappa and lambda, each composed of a constant domain (CL) and a variable domain (VL). There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. 106 -319286 cd04981 IgV_H Immunoglobulin (Ig) heavy chain (H), variable (V) domain. IgV_H: Immunoglobulin (Ig) heavy chain (H), variable (V) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which can associate with any of the heavy chains. This family includes alpha, gamma, delta, epsilon, and mu heavy chains. 117 -143183 cd04982 IgV_TCR_gamma Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) gamma chain. IgV_TCR_gamma: immunoglobulin (Ig) variable (V) domain of the gamma chain of gamma/delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha/beta TCRs but a small subset contain gamma/delta TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma/delta TCRs recognize intact protein antigens; they recognize protein antigens directly and without antigen processing, and MHC independently of the bound peptide. Gamma/delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. The variable domain of gamma/delta TCRs is responsible for antigen recognition and is located at the N-terminus of the receptor. 116 -319287 cd04983 IgV_TCR_alpha Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) alpha chain and similar proteins. IgV_TCR_alpha: immunoglobulin (Ig) variable domain of the alpha chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. This group represents the variable domain of the alpha chain of TCRs and also includes the variable domain of delta chains of TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The variable domain of TCRs is responsible for antigen recognition, and is located at the N-terminus of the receptor. Gamma/delta TCRs recognize intact protein antigens; they recognize proteins antigens directly and without antigen processing, and MHC independently of the bound peptide. 109 -143185 cd04984 IgV_L_lambda Immunoglobulin (Ig) lambda light chain variable (V) domain. IgV_L_lambda: Immunoglobulin (Ig) light chain, lambda type, variable (V) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda, each composed of a constant domain (CL) and a variable domain (VL). There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. 98 -319288 cd04985 IgC_CH1_IgAEGM CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH2: The first immunoglobulin constant domain of alpha, epsilon, gamma, and mu heavy chains. This domain is found on the Fab antigen-binding fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 96 -319289 cd04986 IgC_CH2_IgA CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH2: The second immunoglobulin constant domain (IgC) of alpha heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 98 -240138 cd05005 SIS_PHI Hexulose-6-phosphate isomerase (PHI). PHI is a member of the SIS (Sugar ISomerase domain) superfamily. In the ribulose monophosphate pathway of formaldehyde fixation, hexulose-6-phosphate synthase catalyzes the condensation of ribulose-5-phosphate with formadelhyde to become hexulose-6-phosphate, which is then isomerized to fructose-6-phosphate by PHI. 179 -240139 cd05006 SIS_GmhA Phosphoheptose isomerase is a member of the SIS (Sugar ISomerase) superfamily. Phosphoheptose isomerase catalyzes the isomerization of sedoheptulose 7-phosphate into D-glycero-D-mannoheptose 7-phosphate. This is the first step of the biosynthesis of gram-negative bacteria inner core lipopolysaccharide precursor, L-glycero-D-mannoheptose (Gmh). 177 -240140 cd05007 SIS_Etherase N-acetylmuramic acid 6-phosphate etherase. Members of this family contain the SIS (Sugar ISomerase) domain. The SIS domain is found in many phosphosugar isomerases and phosphosugar binding proteins. The bacterial cell wall sugar N-acetylmuramic acid carries a unique D-lactyl ether substituent at the C3 position. The etherase catalyzes the cleavage of the lactyl ether bond of N-acetylmuramic acid 6-phosphate. 257 -240141 cd05008 SIS_GlmS_GlmD_1 SIS (Sugar ISomerase) domain repeat 1 found in Glucosamine 6-phosphate synthase (GlmS) and Glucosamine-6-phosphate deaminase (GlmD). The SIS domain is found in many phosphosugar isomerases and phosphosugar binding proteins. GlmS contains a N-terminal glutaminase domain and two C-terminal SIS domains and catalyzes the first step in hexosamine metabolism, converting fructose 6-phosphate into glucosamine 6-phosphate using glutamine as nitrogen source. The glutaminase domain hydrolyzes glutamine to glutamate and ammonia. Ammonia is transferred through a channel to the isomerase domain for glucosamine 6-phosphate synthesis. The end product of the pathway is N-acetylglucosamine, which plays multiple roles in eukaryotic cells including being a building block of bacterial and fungal cell walls. In the absence of glutamine, GlmS catalyzes the isomerization of fructose 6-phosphate into glucose 6- phosphate (PGI-like activity). Glucosamine-6-phosphate deaminase (GlmD) contains two SIS domains and catalyzes the deamination and isomerization of glucosamine-6-phosphate into fructose-6-phosphate with the release of ammonia; in presence of high ammonia concentration, GlmD can catalyze the reverse reaction. 126 -240142 cd05009 SIS_GlmS_GlmD_2 SIS (Sugar ISomerase) domain repeat 2 found in Glucosamine 6-phosphate synthase (GlmS) and Glucosamine-6-phosphate deaminase (GlmD). The SIS domain is found in many phosphosugar isomerases and phosphosugar binding proteins. GlmS contains a N-terminal glutaminase domain and two C-terminal SIS domains and catalyzes the first step in hexosamine metabolism, converting fructose 6-phosphate into glucosamine 6-phosphate using glutamine as nitrogen source. The glutaminase domain hydrolyzes glutamine to glutamate and ammonia. Ammonia is transferred through a channel to the isomerase domain for glucosamine 6-phosphate synthesis. The end product of the pathway is N-acetylglucosamine, which plays multiple roles in eukaryotic cells including being a building block of bacterial and fungal cell walls. In the absence of glutamine, GlmS catalyzes the isomerization of fructose 6-phosphate into glucose 6- phosphate (PGI-like activity). Glucosamine-6-phosphate deaminase (GlmD) contains two SIS domains and catalyzes the deamination and isomerization of glucosamine-6-phosphate into fructose-6-phosphate with the release of ammonia; in presence of high ammonia concentration, GlmD can catalyze the reverse reaction. 153 -240143 cd05010 SIS_AgaS_like AgaS-like protein. AgaS contains a SIS (Sugar ISomerase) domain which is found in many phosphosugar isomerases and phosphosugar binding proteins. AgaS is a putative isomerase in Escherichia coli. It is similar to the glucosamine-6-phosphate synthases (GlmS) which catalyzes the first step in hexosamine metabolism, converting fructose 6-phosphate into glucosamine 6-phosphate using glutamine as nitrogen source. 151 -240144 cd05013 SIS_RpiR RpiR-like protein. RpiR contains a SIS (Sugar ISomerase) domain, which is found in many phosphosugar isomerases and phosphosugar binding proteins. In E. coli, rpiR negatively regulates the expression of rpiB gene. Both rpiB and rpiA are ribose phosphate isomerases that catalyze the reversible reactions of ribose 5-phosphate into ribulose 5-phosphate. 139 -240145 cd05014 SIS_Kpsf KpsF-like protein. KpsF is an arabinose-5-phosphate isomerase which contains SIS (Sugar ISomerase) domains. SIS domains are found in many phosphosugar isomerases and phosphosugar binding proteins. KpsF catalyzes the reversible reaction of ribulose 5-phosphate to arabinose 5-phosphate. This is the second step in the CMP-Kdo biosynthesis pathway. 128 -240146 cd05015 SIS_PGI_1 Phosphoglucose isomerase (PGI) contains two SIS (Sugar ISomerase) domains. This classification is based on the alignment of the first SIS domain. PGI is a multifunctional enzyme which as an intracellular dimer catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. As an extracellular protein, PGI also has functions equivalent to neuroleukin (NLK), autocrine motility factor (AMF), and maturation factor (MF). Evidence suggests that PGI, NLK, AMF, and MF are closely related or identical. NLK is a neurotrophic growth factor that promotes regeneration and survival of neurons. The dimeric form of NLK has isomerase function, whereas its monomeric form carries out neurotrophic activity. AMF is a cytokine that stimulates cell migration and metastasis. MF mediates the differentiation of human myeloid leukemic HL-60 cells to terminal monocytic cells. 158 -240147 cd05016 SIS_PGI_2 Phosphoglucose isomerase (PGI) contains two SIS (Sugar ISomerase) domains. This classification is based on the alignment of the second SIS domain. PGI is a multifunctional enzyme which as an intracellular dimer catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. As an extracellular protein, PGI also has functions equivalent to neuroleukin (NLK), autocrine motility factor (AMF), and maturation factor (MF). Evidence suggests that PGI, NLK, AMF, and MF are closely related or identical. NLK is a neurotrophic growth factor that promotes regeneration and survival of neurons. The dimeric form of NLK has isomerase function, whereas its monomeric form carries out neurotrophic activity. AMF is a cytokine that stimulates cell migration and metastasis. MF mediates the differentiation of human myeloid leukemic HL-60 cells to terminal monocytic cells. 164 -240148 cd05017 SIS_PGI_PMI_1 The members of this protein family contain the SIS (Sugar ISomerase) domain and have both the phosphoglucose isomerase (PGI) and the phosphomannose isomerase (PMI) functions. These functions catalyze the reversible reactions of glucose 6-phosphate to fructose 6-phosphate, and mannose 6-phosphate to fructose 6-phosphate, respectively at an equal rate. This protein contains two SIS domains. This alignment is based on the first SIS domain. 119 -176853 cd05018 CoxG Carbon monoxide dehydrogenase subunit G (CoxG). CoxG has been shown, in Oligotropha carboxidovorans, to anchor the carbon monoxide (CO) dehydrogenase to the cytoplasmic membrane. The gene encoding CoxG is part of the Cox cluster (coxBCMSLDEFGHIK) located on a low-copy-number, circular, megaplasmid pHCG3. This cluster includes genes encoding subunits of CO dehydrogenase and several accessory components involved in the utilization of CO. This family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 144 -240149 cd05022 S-100A13 S-100A13: S-100A13 domain found in proteins similar to S100A13. S100A13 is a calcium-binding protein belonging to a large S100 vertebrate-specific protein family within the EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A13 group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100A13 is involved in the cellular export of interleukin-1 (IL-1) and of fibroblast growth factor-1 (FGF-1), which plays an important role in angiogenesis and tissue regeneration. Export is based on the CuII-dependent formation of multiprotein complexes containing the S100A13 protein. Assembly of these complexes occurs near the inner surface of the plasma membrane. Binding of two Ca(II) ions per monomer triggers key conformational changes leading to the creation of two identical and symmetrical Cu(II)-binding sites on the surface of the protein, close to the interface between the two monomers. These Cu(II)-binding sites are unique among the S100 proteins, which are reported to bind Cu(II) or Zn(II) ions in addition to Ca(II) ions. In addition, the three-dimensional structure of S100A13 differs significantly from those of other S100 proteins; the hydrophobic pocket that largely contributes to protein-protein interactions in other S100 proteins is absent in S100A13. The structure of S100A13 contains a large patch of negatively charged residues flanked by dense cationic clusters, formed mostly from positively charged residues from the C-terminal end, which plays major role in binding FGF-1. 89 -240150 cd05023 S-100A11 S-100A11: S-100A11 domain found in proteins similar to S100A11. S100A11 is a member of the S-100 domain family within EF-hand Ca2+-binding proteins superfamily. Note that the S-100 hierarchy, to which this S-100A11 group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins exhibit unique patterns of tissue- and cell type-specific expression and have been implicated in the Ca2+-dependent regulation of diverse physiological processes, including cell cycle regulation, differentiation, growth, and metabolic control . S100 proteins have also been associated with a variety of pathological events, including neoplastic transformation and neurodegenerative diseases such as Alzheimer's, usually via over expression of the protein. S100A11 is expressed in smooth muscle and other tissues and involves in calcium-dependent membrane aggregation, which is important for cell vesiculation . As is the case for many other S100 proteins, S100A11 is homodimer, which is able to form a heterodimer with S100B through subunit exchange. Ca2+ binding to S100A11 results in a conformational change in the protein, exposing a hydrophobic surface that interacts with target proteins. In addition to binding to annexin A1 and A6 S100A11 also interacts with actin and transglutaminase. 89 -240151 cd05024 S-100A10 S-100A10: A subgroup of the S-100A10 domain found in proteins similar to S100A10. S100A10 is a member of the S100 family of EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A10 group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins are expressed exclusively in vertebrates, and are implicated in intracellular and extracellular regulatory activities. A unique feature of S100A10 is that it contains mutation in both of the calcium binding sites, making it calcium insensitive. S100A10 has been detected in brain, heart, gastrointestinal tract, kidney, liver, lung, spleen, testes, epidermis, aorta, and thymus. Structural data supports the homo- and hetero-dimeric as well as hetero-tetrameric nature of the protein. S100A10 has multiple binding partners in its calcium free state and is therefore involved in many diverse biological functions. 91 -240152 cd05025 S-100A1 S-100A1: S-100A1 domain found in proteins similar to S100A1. S100A1 is a calcium-binding protein belonging to a large S100 vertebrate-specific protein family within the EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A1 group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. As is the case with many other members of S100 protein family, S100A1 is implicated in intracellular and extracellular regulatory activities, including interaction with myosin-associated twitchin kinase, actin-capping protein CapZ, sinapsin I, and tubulin. Structural data suggests that S100A1 proteins exist within cells as antiparallel homodimers, while heterodimers with S100A4 and S100B also has been reported. Upon binding calcium S100A1 changes conformation to expose a hydrophobic cleft which is the interaction site of S100A1 with its more that 20 known target proteins. 92 -240153 cd05026 S-100Z S-100Z: S-100Z domain found in proteins similar to S100Z. S100Z is a member of the S100 domain family within the EF-hand Ca2+-binding proteins superfamily. Note that the S-100 hierarchy, to which this S-100Z group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately.S100 proteins exhibit unique patterns of tissue- and cell type-specific expression and have been implicated in the Ca2+-dependent regulation of diverse physiological processes, including cell cycle regulation, differentiation, growth, and metabolic control. S100Z is normally expressed in various tissues, with its highest level of expression being in spleen and leukocytes. The function of S100Z remains unclear. Preliminary structural data suggests that S100Z is homodimer, however a heterodimer with S100P has been reported. S100Z is capable of binding calcium ions. When calcium binds to S110Z, the protein experiences a conformational change, which exposes hydrophobic surfaces on the protein. In comparison with their normal tissue counterparts, S100Z gene expression appears to be deregulated in some tumor tissues. 93 -240154 cd05027 S-100B S-100B: S-100B domain found in proteins similar to S100B. S100B is a calcium-binding protein belonging to a large S100 vertebrate-specific protein family within the EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100B group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100B is most abundant in glial cells of the central nervous system, predominately in astrocytes. S100B is involved in signal transduction via the inhibition of protein phoshorylation, regulation of enzyme activity and by affecting the calcium homeostasis. Upon calcium binding the S100B homodimer changes conformation to expose a hydrophobic cleft, which represents the interaction site of S100B with its more than 20 known target proteins. These target proteins include several cellular architecture proteins such as tubulin and GFAP; S100B can inhibit polymerization of these oligomeric molecules. Furthermore, S100B inhibits the phosphorylation of multiple kinase substrates including the Alzheimer protein tau and neuromodulin (GAP-43) through a calcium-sensitive interaction with the protein substrates. 88 -240155 cd05029 S-100A6 S-100A6: S-100A6 domain found in proteins similar to S100A6. S100A6 is a member of the S100 domain family within EF-hand Ca2+-binding proteins superfamily. Note that the S-100 hierarchy, to which this S-100A6 group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins exhibit unique patterns of tissue- and cell type-specific expression and have been implicated in the Ca2+-dependent regulation of diverse physiological processes, including cell cycle regulation, differentiation, growth, and metabolic control . S100A6 is normally expressed in the G1 phase of the cell cycle in neuronal cells. The function of S100A6 remains unclear, but evidence suggests that it is involved in cell cycle regulation and exocytosis. S100A6 may also be involved in tumorigenesis; the protein is overexpressed in several tumors. Ca2+ binding to S100A6 leads to a conformational change in the protein, which exposes a hydrophobic surface for interaction with target proteins. Several such proteins have been identified: glyceraldehyde-3-phosphate dehydrogenase , annexins 2, 6 and 11 and Calcyclin-Binding Protein (CacyBP). 88 -240156 cd05030 calgranulins Calgranulins: S-100 domain found in proteins belonging to the Calgranulin subgroup of the S100 family of EF-hand calcium-modulated proteins, including S100A8, S100A9, and S100A12 . Note that the S-100 hierarchy, to which this Calgranulin group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. These proteins are expressed mainly in granulocytes, and are involved in inflammation, allergy, and neuritogenesis, as well as in host-parasite response. Calgranulins are modulated not only by calcium, but also by other metals such as zinc and copper. Structural data suggested that calgranulins may exist in multiple structural forms, homodimers, as well as hetero-oligomers. For example, the S100A8/S100A9 complex called calprotectin plays important roles in the regulation of inflammatory processes, wound repair, and regulating zinc-dependent enzymes as well as microbial growth. 88 -240157 cd05031 S-100A10_like S-100A10_like: S-100A10 domain found in proteins similar to S100A10. S100A10 is a member of the S100 family of EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A1_like group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins are expressed exclusively in vertebrates, and are implicated in intracellular and extracellular regulatory activities. A unique feature of S100A10 is that it contains mutation in both of the calcium binding sites, making it calcium insensitive. S100A10 has been detected in brain, heart, gastrointestinal tract, kidney, liver, lung, spleen, testes, epidermis, aorta, and thymus. Structural data supports the homo- and hetero-dimeric as well as hetero-tetrameric nature of the protein. S100A10 has multiple binding partners in its calcium free state and is therefore involved in many diverse biological functions. 94 -173625 cd05032 PTKc_InsR_like Catalytic domain of Insulin Receptor-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The InsR subfamily is composed of InsR, Insulin-like Growth Factor-1 Receptor (IGF-1R), and similar proteins. InsR and IGF-1R are receptor PTKs (RTKs) composed of two alphabeta heterodimers. Binding of the ligand (insulin, IGF-1, or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR and IGF-1R, which share 84% sequence identity in their kinase domains, display physiologically distinct yet overlapping functions in cell growth, differentiation, and metabolism. InsR activation leads primarily to metabolic effects while IGF-1R activation stimulates mitogenic pathways. In cells expressing both receptors, InsR/IGF-1R hybrids are found together with classical receptors. Both receptors can interact with common adaptor molecules such as IRS-1 and IRS-2. The InsR-like subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270629 cd05033 PTKc_EphR Catalytic domain of Ephrin Receptor Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They can be classified into two classes (EphA and EphB), according to their extracellular sequences, which largely correspond to binding preferences for either GPI-anchored ephrin-A ligands or transmembrane ephrin-B ligands. Vertebrates have ten EphA and six EphB receptors, which display promiscuous ligand interactions within each class. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. This allows ephrin/EphR dimers to form, leading to the activation of the intracellular tyr kinase domain. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The main effect of ephrin/EphR interaction is cell-cell repulsion or adhesion. Ephrin/EphR signaling is important in neural development and plasticity, cell morphogenesis and proliferation, cell-fate determination, embryonic development, tissue patterning, and angiogenesis.The EphR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -270630 cd05034 PTKc_Src_like Catalytic domain of Src kinase-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, and Yes. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, and Lyn show a limited expression pattern. The Src-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 248 -270631 cd05035 PTKc_TAM Catalytic Domain of TAM (Tyro3, Axl, Mer) Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The TAM subfamily consists of Tyro3 (or Sky), Axl, Mer (or Mertk), and similar proteins. TAM subfamily members are receptor tyr kinases (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. TAM proteins are implicated in a variety of cellular effects including survival, proliferation, migration, and phagocytosis. They are also associated with several types of cancer as well as inflammatory, autoimmune, vascular, and kidney diseases. The TAM subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 273 -270632 cd05036 PTKc_ALK_LTK Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte Tyrosine Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyr residues in protein substrates. ALK and LTK are orphan receptor PTKs (RTKs) whose ligands are not yet well-defined. ALK appears to play an important role in mammalian neural development as well as visceral muscle differentiation in Drosophila. ALK is aberrantly expressed as fusion proteins, due to chromosomal translocations, in about 60% of anaplastic large cell lymphomas (ALCLs). ALK fusion proteins are also found in rare cases of diffuse large B cell lymphomas (DLBCLs). LTK is mainly expressed in B lymphocytes and neuronal tissues. It is important in cell proliferation and survival. Transgenic mice expressing TLK display retarded growth and high mortality rate. In addition, a polymorphism in mouse and human LTK is implicated in the pathogenesis of systemic lupus erythematosus. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. They are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The ALK/LTK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270633 cd05037 PTK_Jak_rpt1 Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases. The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. In the case of Jak2, the presumed pseudokinase (repeat 1) domain exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270634 cd05038 PTKc_Jak_rpt2 Catalytic (repeat 2) domain of the Protein Tyrosine Kinases, Janus kinases. The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are PTKs, catalyzing the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jaks are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270635 cd05039 PTKc_Csk_like Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of Csk, Chk, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. They negatively regulate the activity of Src kinases that are anchored to the plasma membrane. To inhibit Src kinases, Csk and Chk are translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Chk inhibit Src kinases using a noncatalytic mechanism by simply binding to them. As negative regulators of Src kinases, Csk and Chk play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. The Csk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270636 cd05040 PTKc_Ack_like Catalytic domain of the Protein Tyrosine Kinase, Activated Cdc42-associated kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes Ack1, thirty-eight-negative kinase 1 (Tnk1), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal catalytic domain, an SH3 domain, a Cdc42-binding CRIB domain, and a proline-rich region. They are mainly expressed in brain and skeletal tissues and are involved in the regulation of cell adhesion and growth, receptor degradation, and axonal guidance. Ack1 is also associated with androgen-independent prostate cancer progression. Tnk1 regulates TNFalpha signaling and may play an important role in cell death. The Ack-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270637 cd05041 PTKc_Fes_like Catalytic domain of Fes-like Protein Tyrosine Kinases. Protein Tyrosine Kinase (PTK) family; Fes subfamily; catalytic (c) domain. Fes subfamily members include Fes (or Fps), Fer, and similar proteins. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes subfamily proteins are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated tyr kinase activity. Fes and Fer kinases play roles in haematopoiesis, inflammation and immunity, growth factor signaling, cytoskeletal regulation, cell migration and adhesion, and the regulation of cell-cell interactions. Fes and Fer show redundancy in their biological functions. 251 -270638 cd05042 PTKc_Aatyk Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Aatyk subfamily is also referred to as the lemur tyrosine kinase (Lmtk) subfamily. It consists of Aatyk1 (Lmtk1), Aatyk2 (Lmtk2, Brek), Aatyk3 (Lmtk3), and similar proteins. Aatyk proteins are mostly receptor PTKs (RTKs) containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk1 does not contain a transmembrane segment and is a cytoplasmic (or nonreceptor) kinase. Aatyk proteins are classified as PTKs based on overall sequence similarity and the phylogenetic tree. However, analysis of catalytic residues suggests that Aatyk proteins may be multispecific kinases, functioning also as serine/threonine kinases. They are involved in neural differentiation, nerve growth factor (NGF) signaling, apoptosis, and spermatogenesis. The Aatyk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -270639 cd05043 PTK_Ryk Pseudokinase domain of Ryk (Receptor related to tyrosine kinase). Ryk is a receptor tyr kinase (RTK) containing an extracellular region with two leucine-rich motifs, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. The extracellular region of Ryk shows homology to the N-terminal domain of Wnt inhibitory factor-1 (WIF) and serves as the ligand (Wnt) binding domain of Ryk. Ryk is expressed in many different tissues both during development and in adults, suggesting a widespread function. It acts as a chemorepulsive axon guidance receptor of Wnt glycoproteins and is responsible for the establishment of axon tracts during the development of the central nervous system. In addition, studies in mice reveal that Ryk is essential in skeletal, craniofacial, and cardiac development. Thus, it appears Ryk is involved in signal transduction despite its lack of kinase activity. Ryk may function as an accessory protein that modulates the signals coming from catalytically active partner RTKs such as the Eph receptors. The Ryk subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270640 cd05044 PTKc_c-ros Catalytic domain of the Protein Tyrosine Kinase, C-ros. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily contains c-ros, Sevenless, and similar proteins. The proto-oncogene c-ros encodes an orphan receptor PTK (RTK) with an unknown ligand. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. C-ros is expressed in embryonic cells of the kidney, intestine and lung, but disappears soon after birth. It persists only in the adult epididymis. Male mice bearing inactive mutations of c-ros lack the initial segment of the epididymis and are infertile. The Drosophila protein, Sevenless, is required for the specification of the R7 photoreceptor cell during eye development. The c-ros subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -173631 cd05045 PTKc_RET Catalytic domain of the Protein Tyrosine Kinase, REarranged during Transfection protein. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. RET is a receptor PTK (RTK) containing an extracellular region with four cadherin-like repeats, a calcium-binding site, and a cysteine-rich domain, a transmembrane segment, and an intracellular catalytic domain. It is part of a multisubunit complex that binds glial-derived neurotropic factor (GDNF) family ligands (GFLs) including GDNF, neurturin, artemin, and persephin. GFLs bind RET along with four GPI-anchored coreceptors, bringing two RET molecules together, leading to autophosphorylation, activation, and intracellular signaling. RET is essential for the development of the sympathetic, parasympathetic and enteric nervous systems, and the kidney. RET disruption by germline mutations causes diseases in humans including congenital aganglionosis of the gastrointestinal tract (Hirschsprung's disease) and three related inherited cancers: multiple endocrine neoplasia type 2A (MEN2A), MEN2B, and familial medullary thyroid carcinoma. The RET subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -133178 cd05046 PTK_CCK4 Pseudokinase domain of the Protein Tyrosine Kinase, Colon Carcinoma Kinase 4. CCK4, also called protein tyrosine kinase 7 (PTK7), is an orphan receptor PTK (RTK) containing an extracellular region with seven immunoglobulin domains, a transmembrane segment, and an intracellular inactive pseudokinase domain, which shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. Studies in mice reveal that CCK4 is essential for neural development. Mouse embryos containing a truncated CCK4 die perinatally and display craniorachischisis, a severe form of neural tube defect. The mechanism of action of the CCK4 pseudokinase is still unknown. Other pseudokinases such as HER3 rely on the activity of partner RTKs. The CCK4 subfamily is part of a larger superfamily that includes other pseudokinases and the catalytic domains of active kinases including PTKs, protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270641 cd05047 PTKc_Tie Catalytic domain of Tie Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie proteins, consisting of Tie1 and Tie2, are receptor PTKs (RTKs) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2, while no specific ligand has been identified for Tie1. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. In vivo studies of Tie1 show that it is critical in vascular development. The Tie subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -270642 cd05048 PTKc_Ror Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Ror subfamily consists of Ror1, Ror2, and similar proteins. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. Ror kinases are expressed in many tissues during development. They play important roles in bone and heart formation. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Drosophila Ror is expressed only in the developing nervous system during neurite outgrowth and neuronal differentiation, suggesting a role for Drosophila Ror in neural development. More recently, mouse Ror1 and Ror2 have also been found to play an important role in regulating neurite growth in central neurons. Ror1 and Ror2 are believed to have some overlapping and redundant functions. The Ror subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -270643 cd05049 PTKc_Trk Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Trk subfamily consists of TrkA, TrkB, TrkC, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, the nerve growth factor (NGF) family of neutrotrophins, leads to Trk receptor oligomerization and activation of the catalytic domain. Trk receptors are mainly expressed in the peripheral and central nervous systems. They play important roles in cell fate determination, neuronal survival and differentiation, as well as in the regulation of synaptic plasticity. Altered expression of Trk receptors is associated with many human diseases. The Trk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 280 -133181 cd05050 PTKc_Musk Catalytic domain of the Protein Tyrosine Kinase, Muscle-specific kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Musk is a receptor PTK (RTK) containing an extracellular region with four immunoglobulin-like domains and a cysteine-rich cluster, a transmembrane segment, and an intracellular catalytic domain. Musk is expressed and concentrated in the postsynaptic membrane in skeletal muscle. It is essential for the establishment of the neuromuscular junction (NMJ), a peripheral synapse that conveys signals from motor neurons to muscle cells. Agrin, a large proteoglycan released from motor neurons, stimulates Musk autophosphorylation and activation, leading to the clustering of acetylcholine receptors (AChRs). To date, there is no evidence to suggest that agrin binds directly to Musk. Mutations in AChR, Musk and other partners are responsible for diseases of the NMJ, such as the autoimmune syndrome myasthenia gravis. The Musk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -270644 cd05051 PTKc_DDR Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The DDR subfamily consists of homologs of mammalian DDR1, DDR2, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 297 -270645 cd05052 PTKc_Abl Catalytic domain of the Protein Tyrosine Kinase, Abelson kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Abl (or c-Abl) is a ubiquitously-expressed cytoplasmic (or nonreceptor) PTK that contains SH3, SH2, and tyr kinase domains in its N-terminal region, as well as nuclear localization motifs, a putative DNA-binding domain, and F- and G-actin binding domains in its C-terminal tail. It also contains a short autoinhibitory cap region in its N-terminus. Abl function depends on its subcellular localization. In the cytoplasm, Abl plays a role in cell proliferation and survival. In response to DNA damage or oxidative stress, Abl is transported to the nucleus where it induces apoptosis. In chronic myelogenous leukemia (CML) patients, an aberrant translocation results in the replacement of the first exon of Abl with the BCR (breakpoint cluster region) gene. The resulting BCR-Abl fusion protein is constitutively active and associates into tetramers, resulting in a hyperactive kinase sending a continuous signal. This leads to uncontrolled proliferation, morphological transformation and anti-apoptotic effects. BCR-Abl is the target of selective inhibitors, such as imatinib (Gleevec), used in the treatment of CML. Abl2, also known as ARG (Abelson-related gene), is thought to play a cooperative role with Abl in the proper development of the nervous system. The Tel-ARG fusion protein, resulting from reciprocal translocation between chromosomes 1 and 12, is associated with acute myeloid leukemia (AML). The TEL gene is a frequent fusion partner of other tyr kinase oncogenes, including Tel/Abl, Tel/PDGFRbeta, and Tel/Jak2, found in patients with leukemia and myeloproliferative disorders. The Abl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270646 cd05053 PTKc_FGFR Catalytic domain of the Protein Tyrosine Kinases, Fibroblast Growth Factor Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The FGFR subfamily consists of FGFR1, FGFR2, FGFR3, FGFR4, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, and to heparin/heparan sulfate (HS) results in the formation of a ternary complex, which leads to receptor dimerization and activation, and intracellular signaling. There are at least 23 FGFs and four types of FGFRs. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. FGF/FGFR signaling is important in the regulation of embryonic development, homeostasis, and regenerative processes. Depending on the cell type and stage, FGFR signaling produces diverse cellular responses including proliferation, growth arrest, differentiation, and apoptosis. Aberrant signaling leads to many human diseases such as skeletal, olfactory, and metabolic disorders, as well as cancer. The FGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase . 294 -270647 cd05054 PTKc_VEGFR Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The VEGFR subfamily consists of VEGFR1 (Flt1), VEGFR2 (Flk1), VEGFR3 (Flt4), and similar proteins. VEGFR subfamily members are receptor PTKss (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. There are five VEGF ligands in mammals, which bind, in an overlapping pattern to the three VEGFRs, which can form homo or heterodimers. VEGFRs regulate the cardiovascular system. They are critical for vascular development during embryogenesis and blood vessel formation in adults. They induce cellular functions common to other growth factor receptors such as cell migration, survival, and proliferation. The VEGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 298 -133186 cd05055 PTKc_PDGFR Catalytic domain of the Protein Tyrosine Kinases, Platelet Derived Growth Factor Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The PDGFR subfamily consists of PDGFR alpha, PDGFR beta, KIT, CSF-1R, the mammalian FLT3, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. PDGFR kinase domains are autoinhibited by their juxtamembrane regions containing tyr residues. The binding to their ligands leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR subfamily receptors are important in the development of a variety of cells. PDGFRs are expressed in a many cells including fibroblasts, neurons, endometrial cells, mammary epithelial cells, and vascular smooth muscle cells. PDGFR signaling is critical in normal embryonic development, angiogenesis, and wound healing. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. Mammalian FLT3 plays an important role in the survival, proliferation, and differentiation of stem cells. The PDGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase . 302 -133187 cd05056 PTKc_FAK Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. FAK is a cytoplasmic (or nonreceptor) PTK that contains an autophosphorylation site and a FERM domain at the N-terminus, a central tyr kinase domain, proline-rich regions, and a C-terminal FAT (focal adhesion targeting) domain. FAK activity is dependent on integrin-mediated cell adhesion, which facilitates N-terminal autophosphorylation. Full activation is achieved by the phosphorylation of its two adjacent A-loop tyrosines. FAK is important in mediating signaling initiated at sites of cell adhesions and at growth factor receptors. Through diverse molecular interactions, FAK functions as a biosensor or integrator to control cell motility. It is a key regulator of cell survival, proliferation, migration and invasion, and thus plays an important role in the development and progression of cancer. Src binds to autophosphorylated FAK forming the FAK-Src dual kinase complex, which is activated in a wide variety of tumor cells and generates signals promoting growth and metastasis. FAK is being developed as a target for cancer therapy. The FAK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -270648 cd05057 PTKc_EGFR_like Catalytic domain of Epidermal Growth Factor Receptor-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER, ErbB) subfamily members include EGFR (HER1, ErbB1), HER2 (ErbB2), HER3 (ErbB3), HER4 (ErbB4), and similar proteins. They are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, resulting in the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Collectively, they can recognize a variety of ligands including EGF, TGFalpha, and neuregulins, among others. All four subfamily members can form homo- or heterodimers. HER3 contains an impaired kinase domain and depends on its heterodimerization partner for activation. EGFR subfamily members are involved in signaling pathways leading to a broad range of cellular responses including cell proliferation, differentiation, migration, growth inhibition, and apoptosis. Gain of function alterations, through their overexpression, deletions, or point mutations in their kinase domains, have been implicated in various cancers. These receptors are targets of many small molecule inhibitors and monoclonal antibodies used in cancer therapy. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270649 cd05058 PTKc_Met_Ron Catalytic domain of the Protein Tyrosine Kinases, Met and Ron. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Met and Ron are receptor PTKs (RTKs) composed of an alpha-beta heterodimer. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. Met binds to the ligand, hepatocyte growth factor/scatter factor (HGF/SF), and is also called the HGF receptor. HGF/Met signaling plays a role in growth, transformation, cell motility, invasion, metastasis, angiogenesis, wound healing, and tissue regeneration. Aberrant expression of Met through mutations or gene amplification is associated with many human cancers including hereditary papillary renal and gastric carcinomas. The ligand for Ron is macrophage stimulating protein (MSP). Ron signaling is important in regulating cell motility, adhesion, proliferation, and apoptosis. Aberrant Ron expression is implicated in tumorigenesis and metastasis. The Met/Ron subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -173637 cd05059 PTKc_Tec_like Catalytic domain of Tec-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Tec-like subfamily is composed of Tec, Btk, Bmx (Etk), Itk (Tsk, Emt), Rlk (Txk), and similar proteins. They are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, some members contain the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. Tec kinases form the second largest subfamily of nonreceptor PTKs and are expressed mainly by haematopoietic cells, although Tec and Bmx are also found in endothelial cells. B-cells express Btk and Tec, while T-cells express Itk, Txk, and Tec. Collectively, Tec kinases are expressed in a variety of myeloid cells such as mast cells, platelets, macrophages, and dendritic cells. Each Tec kinase shows a distinct cell-type pattern of expression. Tec kinases play important roles in the development, differentiation, maturation, regulation, survival, and function of B-cells and T-cells. Mutations in Btk cause the severe B-cell immunodeficiency, X-linked agammaglobulinaemia (XLA). The Tec-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270650 cd05060 PTKc_Syk_like Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Syk-like subfamily is composed of Syk, ZAP-70, Shark, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. They are involved in the signaling downstream of activated receptors (including B-cell, T-cell, and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. Syk is important in B-cell receptor signaling, while Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor signaling. Syk also plays a central role in Fc receptor-mediated phagocytosis in the adaptive immune system. Shark is exclusively expressed in ectodermally derived epithelia, and is localized preferentially to the apical surface of the epithelial cells, it may play a role in a signaling pathway for epithelial cell polarity. The Syk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -133192 cd05061 PTKc_InsR Catalytic domain of the Protein Tyrosine Kinase, Insulin Receptor. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. InsR is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the insulin ligand to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, stimulating downstream kinase activities, which initiate signaling cascades and biological function. InsR signaling plays an important role in many cellular processes including glucose homeostasis, glycogen synthesis, lipid and protein metabolism, ion and amino acid transport, cell cycle and proliferation, cell differentiation, gene transcription, and nitric oxide synthesis. Insulin resistance, caused by abnormalities in InsR signaling, has been described in diabetes, hypertension, cardiovascular disease, metabolic syndrome, heart failure, and female infertility. The InsR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -133193 cd05062 PTKc_IGF-1R Catalytic domain of the Protein Tyrosine Kinase, Insulin-like Growth Factor-1 Receptor. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. IGF-1R is a receptor PTK (RTK) that is composed of two alphabeta heterodimers. Binding of the ligand (IGF-1 or IGF-2) to the extracellular alpha subunit activates the intracellular tyr kinase domain of the transmembrane beta subunit. Receptor activation leads to autophosphorylation, which stimulates downstream kinase activities and biological function. IGF-1R signaling is important in the differentiation, growth, and survival of normal cells. In cancer cells, where it is frequently overexpressed, IGF-1R is implicated in proliferation, the suppression of apoptosis, invasion, and metastasis. IGF-1R is being developed as a therapeutic target in cancer treatment. The IGF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -133194 cd05063 PTKc_EphR_A2 Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The EphA2 receptor is overexpressed in tumor cells and tumor blood vessels in a variety of cancers including breast, prostate, lung, and colon. As a result, it is an attractive target for drug design since its inhibition could affect several aspects of tumor progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). 268 -133195 cd05064 PTKc_EphR_A10 Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A10. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EphA10, which contains an inactive tyr kinase domain, may function to attenuate signals of co-clustered active receptors. EphA10 is mainly expressed in the testis. Ephrin/EphR interaction results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. EphRs comprise the largest subfamily of receptor tyr kinases (RTKs). In general, class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The EphA10 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -173638 cd05065 PTKc_EphR_B Catalytic domain of the Protein Tyrosine Kinases, Class EphB Ephrin Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EphB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. One exception is EphB2, which also interacts with ephrin A5. EphB receptors play important roles in synapse formation and plasticity, spine morphogenesis, axon guidance, and angiogenesis. In the intestinal epithelium, EphBs are Wnt signaling target genes that control cell compartmentalization. They function as suppressors of colon cancer progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). They contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. The EphB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -270651 cd05066 PTKc_EphR_A Catalytic domain of the Protein Tyrosine Kinases, Class EphA Ephrin Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of most class EphA receptors including EphA3, EphA4, EphA5, and EphA7, but excluding EphA1, EphA2 and EphA10. Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. One exception is EphA4, which also binds ephrins-B2/B3. EphA receptors and ephrin-A ligands are expressed in multiple areas of the developing brain, especially in the retina and tectum. They are part of a system controlling retinotectal mapping. EphRs comprise the largest subfamily of receptor PTKs (RTKs). EphRs contain an ephrin-binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270652 cd05067 PTKc_Lck_Blk Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lck and Blk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lck is expressed in T-cells and natural killer cells. It plays a critical role in T-cell maturation, activation, and T-cell receptor (TCR) signaling. Lck phosphorylates ITAM (immunoreceptor tyr activation motif) sequences on several subunits of TCRs, leading to the activation of different second messenger cascades. Phosphorylated ITAMs serve as binding sites for other signaling factor such as Syk and ZAP-70, leading to their activation and propagation of downstream events. In addition, Lck regulates drug-induced apoptosis by interfering with the mitochondrial death pathway. The apototic role of Lck is independent of its primary function in T-cell signaling. Blk is expressed specifically in B-cells. It is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lck/Blk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 264 -270653 cd05068 PTKc_Frk_like Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Frk and Srk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Frk, also known as Rak, is specifically expressed in liver, lung, kidney, intestine, mammary glands, and the islets of Langerhans. Rodent homologs were previously referred to as GTK (gastrointestinal tyr kinase), BSK (beta-cell Src-like kinase), or IYK (intestinal tyr kinase). Studies in mice reveal that Frk is not essential for viability. It plays a role in the signaling that leads to cytokine-induced beta-cell death in Type I diabetes. It also regulates beta-cell number during embryogenesis and early in life. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Frk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270654 cd05069 PTKc_Yes Catalytic domain of the Protein Tyrosine Kinase, Yes. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Yes (or c-Yes) is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. c-Yes kinase is the cellular homolog of the oncogenic protein (v-Yes) encoded by the Yamaguchi 73 and Esh sarcoma viruses. It displays functional overlap with other Src subfamily members, particularly Src. It also shows some unique functions such as binding to occludins, transmembrane proteins that regulate extracellular interactions in tight junctions. Yes also associates with a number of proteins in different cell types that Src does not interact with, like JAK2 and gp130 in pre-adipocytes, and Pyk2 in treated pulmonary vein endothelial cells. Although the biological function of Yes remains unclear, it appears to have a role in regulating cell-cell interactions and vesicle trafficking in polarized cells. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Yes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 279 -270655 cd05070 PTKc_Fyn Catalytic domain of the Protein Tyrosine Kinase, Fyn. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fyn and Yrk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Fyn, together with Lck, plays a critical role in T-cell signal transduction by phosphorylating ITAM (immunoreceptor tyr activation motif) sequences on T-cell receptors, ultimately leading to the proliferation and differentiation of T-cells. In addition, Fyn is involved in the myelination of neurons, and is implicated in Alzheimer's and Parkinson's diseases. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Fyn/Yrk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase. 274 -270656 cd05071 PTKc_Src Catalytic domain of the Protein Tyrosine Kinase, Src. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src (or c-Src) is a cytoplasmic (or non-receptor) PTK, containing an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region with a conserved tyr. It is activated by autophosphorylation at the tyr kinase domain, and is negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). c-Src is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. The Src subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270657 cd05072 PTKc_Lyn Catalytic domain of the Protein Tyrosine Kinase, Lyn. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lyn is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lyn is expressed in B lymphocytes and myeloid cells. It exhibits both positive and negative regulatory roles in B cell receptor (BCR) signaling. Lyn, as well as Fyn and Blk, promotes B cell activation by phosphorylating ITAMs (immunoreceptor tyr activation motifs) in CD19 and in Ig components of BCR. It negatively regulates signaling by its unique ability to phosphorylate ITIMs (immunoreceptor tyr inhibition motifs) in cell surface receptors like CD22 and CD5. Lyn also plays an important role in G-CSF receptor signaling by phosphorylating a variety of adaptor molecules. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lyn subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270658 cd05073 PTKc_Hck Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Hck is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Hck is present in myeloid and lymphoid cells that play a role in the development of cancer. It may be important in the oncogenic signaling of the protein Tel-Abl, which induces a chronic myelogenous leukemia (CML)-like disease. Hck also acts as a negative regulator of G-CSF-induced proliferation of granulocytic precursors, suggesting a possible role in the development of acute myeloid leukemia (AML). In addition, Hck is essential in regulating the degranulation of polymorphonuclear leukocytes. Genetic polymorphisms affect the expression level of Hck, which affects PMN mediator release and influences the development of chronic obstructive pulmonary disease (COPD). Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Hck subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270659 cd05074 PTKc_Tyro3 Catalytic domain of the Protein Tyrosine Kinase, Tyro3. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyro3 (or Sky) is predominantly expressed in the central nervous system and the brain, and functions as a neurotrophic factor. It is also expressed in osteoclasts and has a role in bone resorption. Tyro3 is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Tyro3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270660 cd05075 PTKc_Axl Catalytic domain of the Protein Tyrosine Kinase, Axl. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Axl is widely expressed in a variety of organs and cells including epithelial, mesenchymal, hematopoietic, as well as non-transformed cells. It is important in many cellular functions such as survival, anti-apoptosis, proliferation, migration, and adhesion. Axl was originally isolated from patients with chronic myelogenous leukemia and a chronic myeloproliferative disorder. It is overexpressed in many human cancers including colon, squamous cell, thyroid, breast, and lung carcinomas. Axl is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to its ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Axl subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270661 cd05076 PTK_Tyk2_rpt1 Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2. Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 273 -270662 cd05077 PTK_Jak1_rpt1 Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 1. Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits, common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -270663 cd05078 PTK_Jak2_rpt1 Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 2. Jak2 is widely expressed in many tissues. It is essential for the signaling of hormone-like cytokines such as growth hormone, erythropoietin, thrombopoietin, and prolactin, as well as some IFNs and cytokines that signal through the IL-3 and gp130 receptors. Disruption of Jak2 in mice results in an embryonic lethal phenotype with multiple defects including erythropoietic and cardiac abnormalities. It is the only Jak gene that results in a lethal phenotype when disrupted in mice. A mutation in the pseudokinase domain of Jak2, V617F, is present in many myeloproliferative diseases, including almost all patients with polycythemia vera, and 50% of patients with essential thrombocytosis and myelofibrosis. Jak2 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. Despite this, the presumed pseudokinase (repeat 1) domain of Jak2 exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Inactivation of the repeat 1 domain increased Jak2 basal activity, suggesting that it modulates the kinase activity of the C-terminal catalytic (repeat 2) domain. The Jak2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -173644 cd05079 PTKc_Jak1_rpt2 Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270664 cd05080 PTKc_Tyk2_rpt2 Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -270665 cd05081 PTKc_Jak3_rpt2 Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 3. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -133213 cd05082 PTKc_Csk Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Csk is expressed in a wide variety of tissues. As a negative regulator of Src, Csk plays a role in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Csk is a cytoplasmic (or nonreceptor) PTK containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases, Csk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. In addition, Csk also shows Src-independent functions. It is a critical component in G-protein signaling, and plays a role in cytoskeletal reorganization and cell migration. The Csk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270666 cd05083 PTKc_Chk Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Chk is also referred to as megakaryocyte-associated tyrosine kinase (Matk). Chk inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Chk is expressed in brain and hematopoietic cells. Like Csk, it is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases that are anchored to the plasma membrane, Chk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Studies in mice reveal that Chk is not functionally redundant with Csk and that it plays an important role as a regulator of immune responses. Chk also plays a role in neural differentiation in a manner independent of Src by enhancing Mapk activation via Ras-mediated signaling. The Chk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270667 cd05084 PTKc_Fes Catalytic domain of the Protein Tyrosine Kinase, Fes. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes (or Fps) is a cytoplasmic (or nonreceptor) PTK containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated PTK activity. Fes kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells. It plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. A recent study implicates Fes kinase as a tumor suppressor in colorectal cancer. The Fes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270668 cd05085 PTKc_Fer Catalytic domain of the Protein Tyrosine Kinase, Fer. Protein Tyrosine Kinase (PTK) family; Fer kinase; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fer kinase is a member of the Fes subfamily of proteins which are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. Fer kinase is expressed in a wide variety of tissues, and is found to reside in both the cytoplasm and the nucleus. It plays important roles in neuronal polarization and neurite development, cytoskeletal reorganization, cell migration, growth factor signaling, and the regulation of cell-cell interactions mediated by adherens junctions and focal adhesions. Fer kinase also regulates cell cycle progression in malignant cells. 251 -270669 cd05086 PTKc_Aatyk2 Catalytic domain of the Protein Tyrosine Kinase, Apoptosis-associated tyrosine kinase 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk2 is a member of the Aatyk subfamily of proteins, which are receptor kinases containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. Aatyk2 is also called lemur tyrosine kinase 2 (Lmtk2) or brain-enriched kinase (Brek). It is expressed at high levels in early postnatal brain, and has been shown to play a role in nerve growth factor (NGF) signaling. Studies with knockout mice reveal that Aatyk2 is essential for late stage spermatogenesis. Although it is classified as a PTK based on sequence similarity and the phylogenetic tree, Aatyk2 has been functionally characterized as a serine/threonine kinase. The Aatyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -270670 cd05087 PTKc_Aatyk1 Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk1 (or simply Aatyk) is also called lemur tyrosine kinase 1 (Lmtk1). It is a cytoplasmic (or nonreceptor) kinase containing a long C-terminal region. The expression of Aatyk1 is upregulated during growth arrest and apoptosis in myeloid cells. Aatyk1 has been implicated in neural differentiation, and is a regulator of the Na-K-2Cl cotransporter, a membrane protein involved in cell proliferation and survival, epithelial transport, and blood pressure control. The Aatyk1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -133219 cd05088 PTKc_Tie2 Catalytic domain of the Protein Tyrosine Kinase, Tie2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie2 is a receptor PTK (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie2 is expressed mainly in endothelial cells and hematopoietic stem cells. It is also found in a subset of tumor-associated monocytes and eosinophils. The angiopoietins (Ang-1 to Ang-4) serve as ligands for Tie2. The binding of Ang-1 to Tie2 leads to receptor autophosphorylation and activation, promoting cell migration and survival. In contrast, Ang-2 binding to Tie2 does not result in the same response, suggesting that Ang-2 may function as an antagonist. Tie2 signaling plays key regulatory roles in vascular integrity and quiescence, and in inflammation. The Tie2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 303 -270671 cd05089 PTKc_Tie1 Catalytic domain of the Protein Tyrosine Kinase, Tie1. Protein Tyrosine Kinase (PTK) family; Tie1; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tie1 is a receptor tyr kinase (RTK) containing an extracellular region, a transmembrane segment, and an intracellular catalytic domain. The extracellular region contains an immunoglobulin (Ig)-like domain, three epidermal growth factor (EGF)-like domains, a second Ig-like domain, and three fibronectin type III repeats. Tie receptors are specifically expressed in endothelial cells and hematopoietic stem cells. No specific ligand has been identified for Tie1, although the angiopoietin, Ang-1, binds to Tie1 through integrins at high concentrations. In vivo studies of Tie1 show that it is critical in vascular development. 297 -270672 cd05090 PTKc_Ror1 Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror kinases are expressed in many tissues during development. Avian Ror1 was found to be involved in late limb development. Studies in mice reveal that Ror1 is important in the regulation of neurite growth in central neurons, as well as in respiratory development. Loss of Ror1 also enhances the heart and skeletal abnormalities found in Ror2-deficient mice. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -270673 cd05091 PTKc_Ror2 Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror2 plays important roles in skeletal and heart formation. Ror2-deficient mice show widespread bone abnormalities, ventricular defects in the heart, and respiratory dysfunction. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Ror2 is also implicated in neural development. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270674 cd05092 PTKc_TrkA Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase A. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkA is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkA to its ligand, nerve growth factor (NGF), results in receptor oligomerization and activation of the catalytic domain. TrkA is expressed mainly in neural-crest-derived sensory and sympathetic neurons of the peripheral nervous system, and in basal forebrain cholinergic neurons of the central nervous system. It is critical for neuronal growth, differentiation and survival. Alternative TrkA splicing has been implicated as a pivotal regulator of neuroblastoma (NB) behavior. Normal TrkA expression is associated with better NB prognosis, while the hypoxia-regulated TrkAIII splice variant promotes NB pathogenesis and progression. Aberrant TrkA expression has also been demonstrated in non-neural tumors including prostate, breast, lung, and pancreatic cancers. The TrkA subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 280 -270675 cd05093 PTKc_TrkB Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkB is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkB to its ligands, brain-derived neurotrophic factor (BDNF) or neurotrophin 4 (NT4), results in receptor oligomerization and activation of the catalytic domain. TrkB is broadly expressed in the nervous system and in some non-neural tissues. It plays important roles in cell proliferation, differentiation, and survival. BDNF/Trk signaling plays a key role in regulating activity-dependent synaptic plasticity. TrkB also contributes to protection against gp120-induced neuronal cell death. TrkB overexpression is associated with poor prognosis in neuroblastoma (NB) and other human cancers. It acts as a suppressor of anoikis (detachment-induced apoptosis) and contributes to tumor metastasis. The TrkB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -270676 cd05094 PTKc_TrkC Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkC is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkC to its ligand, neurotrophin 3 (NT3), results in receptor oligomerization and activation of the catalytic domain. TrkC is broadly expressed in the nervous system and in some non-neural tissues including the developing heart. NT3/TrkC signaling plays an important role in the innervation of the cardiac conducting system and the development of smooth muscle cells. Mice deficient with NT3 and TrkC have multiple heart defects. NT3/TrkC signaling is also critical for the development and maintenance of enteric neurons that are important for the control of gut peristalsis. The TrkC subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -270677 cd05095 PTKc_DDR2 Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR2 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR2 results in a slow but sustained receptor activation. DDR2 binds mostly to fibrillar collagens as well as collagen X. DDR2 is widely expressed in many tissues with the highest levels found in skeletal muscle, skin, kidney and lung. It is important in cell proliferation and development. Mice, with a deletion of DDR2, suffer from dwarfism and delayed healing of epidermal wounds. DDR2 also contributes to collagen (type I) regulation by inhibiting fibrillogenesis and altering the morphology of collagen fibers. It is also expressed in immature dendritic cells (DCs), where it plays a role in DC activation and function. The DDR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 297 -133227 cd05096 PTKc_DDR1 Catalytic domain of the Protein Tyrosine Kinase, Discoidin Domain Receptor 1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR1 is a receptor PTK (RTK) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDR1 results in a slow but sustained receptor activation. DDR1 binds to all collagens tested to date (types I-IV). It is widely expressed in many tissues. It is abundant in the brain and is also found in keratinocytes, colonic mucosa epithelium, lung epithelium, thyroid follicles, and the islets of Langerhans. During embryonic development, it is found in the developing neuroectoderm. DDR1 is a key regulator of cell morphogenesis, differentiation and proliferation. It is important in the development of the mammary gland, the vasculator and the kidney. DDR1 is also found in human leukocytes, where it facilitates cell adhesion, migration, maturation, and cytokine production. The DDR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 304 -133228 cd05097 PTKc_DDR_like Catalytic domain of Discoidin Domain Receptor-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. DDR-like proteins are members of the DDR subfamily, which are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 295 -270678 cd05098 PTKc_FGFR1 Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Alternative splicing of FGFR1 transcripts produces a variety of isoforms, which are differentially expressed in cells. FGFR1 binds the ligands, FGF1 and FGF2, with high affinity and has also been reported to bind FGF4, FGF6, and FGF9. FGFR1 signaling is critical in the control of cell migration during embryo development. It promotes cell proliferation in fibroblasts. Nuclear FGFR1 plays a role in the regulation of transcription. Mutations, insertions or deletions of FGFR1 have been identified in patients with Kallman's syndrome (KS), an inherited disorder characterized by hypogonadotropic hypogonadism and loss of olfaction. Aberrant FGFR1 expression has been found in some human cancers including 8P11 myeloproliferative syndrome (EMS), breast cancer, and pancreatic adenocarcinoma. FGFR1 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 302 -133230 cd05099 PTKc_FGFR4 Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 4. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Unlike other FGFRs, there is only one splice form of FGFR4. It binds FGF1, FGF2, FGF6, FGF19, and FGF23. FGF19 is a selective ligand for FGFR4. Although disruption of FGFR4 in mice causes no obvious phenotype, in vivo inhibition of FGFR4 in cultured skeletal muscle cells resulted in an arrest of muscle progenitor differentiation. FGF6 and FGFR4 are uniquely expressed in myofibers and satellite cells. FGF6/FGFR4 signaling appears to play a key role in the regulation of muscle regeneration. A polymorphism in FGFR4 is found in head and neck squamous cell carcinoma. FGFR4 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 314 -173652 cd05100 PTKc_FGFR3 Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 3. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Many FGFR3 splice variants have been reported with the IIIb and IIIc isoforms being the predominant forms. FGFR3 IIIc is the isoform expressed in chondrocytes, the cells affected in dwarfism, while IIIb is expressed in epithelial cells. FGFR3 ligands include FGF1, FGF2, FGF4, FGF8, FGF9, and FGF23. It is a negative regulator of long bone growth. In the cochlear duct and in the lens, FGFR3 is involved in differentiation while it appears to have a role in cell proliferation in epithelial cells. Germline mutations in FGFR3 are associated with skeletal disorders including several forms of dwarfism. Some missense mutations are associated with multiple myeloma and carcinomas of the bladder and cervix. Overexpression of FGFR3 is found in thyroid carcinoma. FGFR3 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 334 -270679 cd05101 PTKc_FGFR2 Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. There are many splice variants of FGFR2 which show differential expression and binding to FGF ligands. Disruption of either FGFR2 or FGFR2b is lethal in mice, due to defects in the placenta or severe impairment of tissue development including lung, limb, and thyroid, respectively. Disruption of FGFR2c in mice results in defective bone and skull development. Genetic alterations of FGFR2 are associated with many human skeletal disorders including Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, and Pfeiffer syndrome. FGFR2 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270680 cd05102 PTKc_VEGFR3 Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 3. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR3 (or Flt4) preferentially binds the ligands VEGFC and VEGFD. VEGFR3 is essential for lymphatic endothelial cell (EC) development and function. It has been shown to regulate adaptive immunity during corneal transplantation. VEGFR3 is upregulated on blood vascular ECs in pathological conditions such as vascular tumors and the periphery of solid tumors. It plays a role in cancer progression and lymph node metastasis. Missense mutations in the VEGFR3 gene are associated with primary human lymphedema. VEGFR3 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. In VEGFR3, the fifth Ig-like domain is replaced by a disulfide bridge. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 336 -270681 cd05103 PTKc_VEGFR2 Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR2 (or Flk1) binds the ligands VEGFA, VEGFC, VEGFD and VEGFE. VEGFR2 signaling is implicated in all aspects of normal and pathological vascular endothelial cell biology. It induces a variety of cellular effects including migration, survival, and proliferation. It is critical in regulating embryonic vascular development and angiogenesis. VEGFR2 is the major signal transducer in pathological angiogenesis including cancer and diabetic retinopathy, and is a target for inhibition in cancer therapy. The carboxyl terminus of VEGFR2 plays an important role in its autophosphorylation and activation. VEGFR2 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 343 -270682 cd05104 PTKc_Kit Catalytic domain of the Protein Tyrosine Kinase, Kit. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Kit is important in the development of melanocytes, germ cells, mast cells, hematopoietic stem cells, the interstitial cells of Cajal, and the pacemaker cells of the GI tract. Kit signaling is involved in major cellular functions including cell survival, proliferation, differentiation, adhesion, and chemotaxis. Mutations in Kit, which result in constitutive ligand-independent activation, are found in human cancers such as gastrointestinal stromal tumor (GIST) and testicular germ cell tumor (TGCT). The aberrant expression of Kit and/or SCF is associated with other tumor types such as systemic mastocytosis and cancers of the breast, neurons, lung, prostate, colon, and rectum. Although the structure of the human Kit catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. Kit is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of Kit to its ligand, the stem-cell factor (SCF), leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. The Kit subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 375 -173653 cd05105 PTKc_PDGFR_alpha Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor alpha. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR alpha is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR alpha forms homodimers or heterodimers with PDGFR beta, depending on the nature of the PDGF ligand. PDGF-AA, PDGF-AB, and PDGF-CC induce PDGFR alpha homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR alpha signaling is important in the formation of lung alveoli, intestinal villi, mesenchymal dermis, and hair follicles, as well as in the development of oligodendrocytes, retinal astrocytes, neural crest cells, and testicular cells. Aberrant PDGFR alpha expression is associated with some human cancers. Mutations in PDGFR alpha have been found within a subset of gastrointestinal stromal tumors (GISTs). An active fusion protein FIP1L1-PDGFR alpha, derived from interstitial deletion, is associated with idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. The PDGFR alpha subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 400 -133237 cd05106 PTKc_CSF-1R Catalytic domain of the Protein Tyrosine Kinase, Colony-Stimulating Factor-1 Receptor. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. CSF-1R, also called c-Fms, is a member of the Platelet Derived Growth Factor Receptor (PDGFR) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of CSF-1R to its ligand, CSF-1, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. CSF-1R signaling is critical in the regulation of macrophages and osteoclasts. It leads to increases in gene transcription and protein translation, and induces cytoskeletal remodeling. CSF-1R signaling leads to a variety of cellular responses including survival, proliferation, and differentiation of target cells. It plays an important role in innate immunity, tissue development and function, and the pathogenesis of some diseases including atherosclerosis and cancer. CSF-1R signaling is also implicated in mammary gland development during pregnancy and lactation. Aberrant CSF-1/CSF-1R expression correlates with tumor cell invasiveness, poor clinical prognosis, and bone metastasis in breast cancer. Although the structure of the human CSF-1R catalytic domain is known, it is excluded from this specific alignment model because it contains a deletion in its sequence. The CSF-1R subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 374 -133238 cd05107 PTKc_PDGFR_beta Catalytic domain of the Protein Tyrosine Kinase, Platelet Derived Growth Factor Receptor beta. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. PDGFR beta is a receptor PTK (RTK) containing an extracellular ligand-binding region with five immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding to its ligands, the PDGFs, leads to receptor dimerization, trans phosphorylation and activation, and intracellular signaling. PDGFR beta forms homodimers or heterodimers with PDGFR alpha, depending on the nature of the PDGF ligand. PDGF-BB and PDGF-DD induce PDGFR beta homodimerization. PDGFR signaling plays many roles in normal embryonic development and adult physiology. PDGFR beta signaling leads to a variety of cellular effects including the stimulation of cell growth and chemotaxis, as well as the inhibition of apoptosis and GAP junctional communication. It is critical in normal angiogenesis as it is involved in the recruitment of pericytes and smooth muscle cells essential for vessel stability. Aberrant PDGFR beta expression is associated with some human cancers. The continuously-active fusion proteins of PDGFR beta with COL1A1 and TEL are associated with dermatofibrosarcoma protuberans (DFSP) and a subset of chronic myelomonocytic leukemia (CMML), respectively. The PDGFR beta subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 401 -270683 cd05108 PTKc_EGFR Catalytic domain of the Protein Tyrosine Kinase, Epidermal Growth Factor Receptor. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER1, ErbB1) is a receptor PTK (RTK) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands for EGFR include EGF, heparin binding EGF-like growth factor (HBEGF), epiregulin, amphiregulin, TGFalpha, and betacellulin. Upon ligand binding, EGFR can form homo- or heterodimers with other EGFR subfamily members. The EGFR signaling pathway is one of the most important pathways regulating cell proliferation, differentiation, survival, and growth. Overexpression and mutation in the kinase domain of EGFR have been implicated in the development and progression of a variety of cancers. A number of monoclonal antibodies and small molecule inhibitors have been developed that target EGFR, including the antibodies Cetuximab and Panitumumab, which are used in combination with other therapies for the treatment of colorectal cancer and non-small cell lung carcinoma (NSCLC). The small molecule inhibitors Gefitinib (Iressa) and Erlotinib (Tarceva), already used for NSCLC, are undergoing clinical trials for other types of cancer including gastrointestinal, breast, head and neck, and bladder. The EGFR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270684 cd05109 PTKc_HER2 Catalytic domain of the Protein Tyrosine Kinase, HER2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER2 (ErbB2, HER2/neu) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER2 does not bind to any known EGFR subfamily ligands, but contributes to the kinase activity of all possible heterodimers. It acts as the preferred partner of other ligand-bound EGFR proteins and functions as a signal amplifier, with the HER2-HER3 heterodimer being the most potent pair in mitogenic signaling. HER2 plays an important role in cell development, proliferation, survival and motility. Overexpression of HER2 results in its activation and downstream signaling, even in the absence of ligand. HER2 overexpression, mainly due to gene amplification, has been shown in a variety of human cancers. Its role in breast cancer is especially well-documented. HER2 is up-regulated in about 25% of breast tumors and is associated with increases in tumor aggressiveness, recurrence and mortality. HER2 is a target for monoclonal antibodies and small molecule inhibitors, which are being developed as treatments for cancer. The first humanized antibody approved for clinical use is Trastuzumab (Herceptin), which is being used in combination with other therapies to improve the survival rates of patients with HER2-overexpressing breast cancer. The HER2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -173655 cd05110 PTKc_HER4 Catalytic domain of the Protein Tyrosine Kinase, HER4. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. HER4 (ErbB4) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands that bind HER4 fall into two groups, the neuregulins (or heregulins) and some EGFR (HER1) ligands including betacellulin, HBEGF, and epiregulin. All four neuregulins (NRG1-4) interact with HER4. Upon ligand binding, HER4 forms homo- or heterodimers with other HER proteins. HER4 is essential in embryonic development. It is implicated in mammary gland, cardiac, and neural development. As a postsynaptic receptor of NRG1, HER4 plays an important role in synaptic plasticity and maturation. The impairment of NRG1/HER4 signaling may contribute to schizophrenia. The HER4 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 303 -173656 cd05111 PTK_HER3 Pseudokinase domain of the Protein Tyrosine Kinase, HER3. HER3 (ErbB3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. HER3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The HER2-HER3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. HER3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. The HER3 subfamily is part of a larger superfamily that includes other pseudokinases and the the catalytic domains of active kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -133243 cd05112 PTKc_Itk Catalytic domain of the Protein Tyrosine Kinase, Interleukin-2-inducible T-cell Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Itk, also known as Tsk or Emt, is a member of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Itk contains the Tec homology (TH) domain containing one proline-rich region and a zinc-binding region. Itk is expressed in T-cells and mast cells, and is important in their development and differentiation. Of the three Tec kinases expressed in T-cells, Itk plays the predominant role in T-cell receptor (TCR) signaling. It is activated by phosphorylation upon TCR crosslinking and is involved in the pathway resulting in phospholipase C-gamma1 activation and actin polymerization. It also plays a role in the downstream signaling of the T-cell costimulatory receptor CD28, the T-cell surface receptor CD2, and the chemokine receptor CXCR4. In addition, Itk is crucial for the development of T-helper(Th)2 effector responses. The Itk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -173657 cd05113 PTKc_Btk_Bmx Catalytic domain of the Protein Tyrosine Kinases, Bruton's tyrosine kinase and Bone marrow kinase on the X chromosome. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Btk and Bmx (also named Etk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, Btk contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Btk is expressed in B-cells, and a variety of myeloid cells including mast cells, platelets, neutrophils, and dendrictic cells. It interacts with a variety of partners, from cytosolic proteins to nuclear transcription factors, suggesting a diversity of functions. Stimulation of a diverse array of cell surface receptors, including antigen engagement of the B-cell receptor, leads to PH-mediated membrane translocation of Btk and subsequent phosphorylation by Src kinase and activation. Btk plays an important role in the life cycle of B-cells including their development, differentiation, proliferation, survival, and apoptosis. Mutations in Btk cause the primary immunodeficiency disease, X-linked agammaglobulinaemia (XLA) in humans. Bmx is primarily expressed in bone marrow and the arterial endothelium, and plays an important role in ischemia-induced angiogenesis. It facilitates arterial growth, capillary formation, vessel maturation, and bone marrow-derived endothelial progenitor cell mobilization. The Btk/Bmx subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270685 cd05114 PTKc_Tec_Rlk Catalytic domain of the Protein Tyrosine Kinases, Tyrosine kinase expressed in hepatocellular carcinoma and Resting lymphocyte kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tec and Rlk (also named Txk) are members of the Tec-like subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs with similarity to Src kinases in that they contain Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Unlike Src kinases, most Tec subfamily members except Rlk also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. Instead of PH, Rlk contains an N-terminal cysteine-rich region. In addition to PH, Tec also contains the Tec homology (TH) domain with proline-rich and zinc-binding regions. Tec kinases are expressed mainly by haematopoietic cells. Tec is more widely-expressed than other Tec-like subfamily kinases. It is found in endothelial cells, both B- and T-cells, and a variety of myeloid cells including mast cells, erythroid cells, platelets, macrophages and neutrophils. Rlk is expressed in T-cells and mast cell lines. Tec and Rlk are both key components of T-cell receptor (TCR) signaling. They are important in TCR-stimulated proliferation, IL-2 production and phopholipase C-gamma1 activation. The Tec/Rlk subfamily is part of a larger superfamily, that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -270686 cd05115 PTKc_Zap-70 Catalytic domain of the Protein Tyrosine Kinase, Zeta-chain-associated protein of 70kDa. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Zap-70 is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor (TCR) signaling. Zap-70 binds the phosphorylated ITAM (immunoreceptor tyr activation motif) sequences of the activated TCR zeta-chain through its SH2 domains, leading to its phosphorylation and activation. It then phosphorylates target proteins, which propagate the signals to downstream pathways. Zap-70 is hardly detected in normal peripheral B-cells, but is present in some B-cell malignancies. It is used as a diagnostic marker for chronic lymphocytic leukemia (CLL) as it is associated with the more aggressive subtype of the disease. The Zap-70 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -133247 cd05116 PTKc_Syk Catalytic domain of the Protein Tyrosine Kinase, Spleen tyrosine kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Syk is a cytoplasmic (or nonreceptor) PTK containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. Syk was first cloned from the spleen, and its function in hematopoietic cells is well-established. It is involved in the signaling downstream of activated receptors (including B-cell and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. More recently, Syk expression has been detected in other cell types (including epithelial cells, vascular endothelial cells, neurons, hepatocytes, and melanocytes), suggesting a variety of biological functions in non-immune cells. Syk plays a critical role in maintaining vascular integrity and in wound healing during embryogenesis. It also regulates Vav3, which is important in osteoclast function including bone development. In breast epithelial cells, where Syk acts as a negative regulator for EGFR signaling, loss of Syk expression is associated with abnormal proliferation during cancer development suggesting a potential role as a tumor suppressor. In mice, Syk has been shown to inhibit malignant transformation of mammary epithelial cells induced with murine mammary tumor virus (MMTV). The Syk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270687 cd05117 STKc_CAMK The catalytic domain of CAMK family Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270688 cd05118 STKc_CMGC Catalytic domain of CMGC family Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 249 -270689 cd05119 RIO Catalytic domain of the atypical protein serine kinases, RIO kinases. RIO kinases are atypical protein serine kinases present in archaea, bacteria and eukaryotes. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. RIO kinases contain a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. Most organisms contain at least two RIO kinases, RIO1 and RIO2. A third protein, RIO3, is present in multicellular eukaryotes. In yeast, RIO1 and RIO2 are essential for survival. They function as non-ribosomal factors necessary for late 18S rRNA processing. RIO1 is also required for proper cell cycle progression and chromosome maintenance. The biological substrates for RIO kinases are still unknown. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 192 -270690 cd05120 APH_ChoK_like Aminoglycoside 3'-phosphotransferase and Choline Kinase family. This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 158 -270691 cd05121 ABC1_ADCK3-like Activator of bc1 complex (ABC1) kinases (also called aarF domain containing kinase 3) and similar proteins. This family is composed of the atypical yeast protein kinase Abc1p, its human homolog ADCK3 (also called CABC1), and similar proteins. Abc1p (also called Coq8p) is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is necessary for the formation of a multi-subunit Q-biosynthetic complex and may also function in the regulation of Q synthesis. Human ADCK3 is able to rescue defects in Q synthesis and the phosphorylation state of Coq proteins in yeast Abc1 (or Coq8) mutants. Mutations in ADCK3 cause progressive cerebellar ataxia and atrophy due to Q10 deficiency. Eukaryotes contain at least two more ABC1/ADCK3-like proteins: in humans, these are the putative atypical protein kinases named ADCK1 and ADCK2. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Eight of these plant ABC1 kinase subfamilies (ABC1K1-8) are specific for photosynthetic organisms. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. 247 -270692 cd05122 PKc_STE Catalytic domain of STE family Protein Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270693 cd05123 STKc_AGC Catalytic domain of AGC family Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. 250 -270694 cd05124 AFK Catalytic domain of Actin-Fragmin Kinase. AFK is found in slime molds, ciliates, and flowering plants. It catalyzes the transfer of the gamma-phosphoryl group from ATP specifically to threonine residues in the actin-fragmin complex. The phosphorylation sites are located at a minor contact site for DNase I and at an actin-actin contact site. Fragmin is an actin-binding protein that functions as a regulator of the microfilament system. It interferes with the growth of F-actin by severing actin filaments and capping their ends. The phosphorylation of the actin-fragmin complex inhibits its nucleation activity and results in calcium-dependent capping activity. Thus, AFK plays a role in regulating actin polymerization. The AFK catalytic domain is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 240 -240161 cd05125 Mth938_2P1-like Mth938_2P1-like domain. This model contains sequences that are similar to 2P1, a partially characterized nuclear protein, which is homologous to E3-3 from rat and known to be alternatively spliced. Its function is unknown. This family is part of the Mth938 family, for which structures, but no functional data are available. 114 -240162 cd05126 Mth938 Mth938 domain. Mth938 is a hypothetical protein encoded by the Methanobacterium thermoautotrophicum (Mth) genome. This protein crystallizes as a dimer, although it is monomeric in solution, with one disulfide bond in each monomer. The function of the protein has not been determined. 117 -213329 cd05127 RasGAP_IQGAP_like Ras-GTPase Activating Domain of IQ motif containing GTPase activating proteins. This family represents IQ motif containing GTPase activating protein (IQGAP) which associated with the Ras GTP-binding protein. A primary function of IQGAP proteins is to modulate cytoskeletal architecture. There are three known IQGAP family members: IQGAP1, IQGAP2 and IQGAP3. Human IQGAP1 and IQGAP2 share 62% identity. IQGAPs are multi-domain molecules having a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeats, a single WW domain, four IQ motifs that mediate interactions with calmodulin, and a RasGAP related domain that binds active Rho family GTPases. IQGAP is an essential regulator of cytoskeletal function. IQGAP1 negatively regulates Ras family GTPases by stimulating their intrinsic GTPase activity, the protein actually lacks GAP activity. Both IQGAP1 and IQGAP2 specifically bind to Cdc42 and Rac1, but not to RhoA. Despite of their similarities to part of the sequence of RasGAP, neither IQGAP1 nor IQGAP2 interacts with Ras. IQGAP3, only present in mammals, regulates the organization of the cytoskeleton under the regulation of Rac1 and Cdc42 in neuronal cells. The depletion of IQGAP3 is shown to impair neurite or axon outgrowth in neuronal cells with disorganized cytoskeleton. 331 -213330 cd05128 RasGAP_GAP1_like Ras-GTPase Activating Domain of GAP1 and similar proteins. The GAP1 family of Ras GTPase-activating proteins includes GAP1(m) (or RASA2), GAP1_IP4BP (or RASA3), Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), and Ras GTPase activating-like proteins (RASAL) or RASAL1. The members are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin homology domain that is associated with a Bruton's tyrosine kinase motif. While this domain structure is conserved, a small change in the function of each individual domain and the interaction between domains has a marked effect on the regulation of each protein. 269 -213331 cd05129 RasGAP_RAP6 Ras-GTPase Activating Domain of Rab5-activating protein 6. Rab5-activating protein 6 (RAP6) is an endosomal protein with a role in the regulation of receptor-mediated endocytosis. RAP6 contains a Vps9 domain, which is involved in the activation of Rab5, and a Ras GAP domain (RGD). Rab5 is a small GTPase required for the control of the endocytic route, and its activity is regulated by guanine nucleotide exchange factor, such as Rabex5, and GAPs, such as RN-tre. Human Rap6 protein is localized on the plasma membrane and on the endosome. RAP6 binds to Rab5 and Ras through the Vps9 and RGD domains, respectively. 365 -213332 cd05130 RasGAP_Neurofibromin Ras-GTPase Activating Domain of neurofibromin. Neurofibromin is the product of the neurofibromatosis type 1 gene (NF1) and shares a region of similarity with catalytic domain of the mammalian p120RasGAP protein and an extended similarity with the Saccharomyces cerevisiae RasGAP proteins Ira1 and Ira2. Neurofibromin has been shown to function as a GAP (GTPase-activating protein) which inhibits low molecular weight G proteins such as Ras by stimulating their intrinsic GTPase activity. NF1 is a common genetic disorder characterized by various symptoms ranging from predisposition for the development of tumors to learning disability or mental retardation. Loss of neurofibromin activity can be correlated to the increase in Ras-GTP concentration in neurofibromas of NF1 of patients, supporting the notion that unregulated Ras signaling may contribute to their development. 332 -213333 cd05131 RasGAP_IQGAP2 Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 2. IQGAP2 is a member of the IQGAP family that contains a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeat, a single WW domain, four IQ motifs which mediate interactions with calmodulin, and a Ras-GTPase-activating protein (GAP)-related domain that binds Rho family GTPases. IQGAP2 and IQGAP3 play important roles in the regulation of the cytoskeleton for axon outgrowth in hippocampal neurons and are thought to stay in a common regulatory pathway. The results of RNA interference studies indicated that IQGAP3 partially compensates functions of IQGAP2, but has lesser ability than IQGAP2 to promote axon outgrowth in hippocampal neuron. Moreover, IQGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos. 359 -213334 cd05132 RasGAP_GAPA Ras-GTPase Activating Domain of GAPA. GAPA is an IQGAP-related protein and is predicted to bind to small GTPases, which are yet to be identified. IQGAP proteins are integral components of cytoskeletal regulation. Results from truncated GAPAs indicated that almost the entire region of GAPA homologous to IQGAP is required for cytokinesis in Dictyostelium. More members of the IQGAP family are emerging, and evidence suggests that there are both similarities and differences in their function. 352 -213335 cd05133 RasGAP_IQGAP1 Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 1. IQGAP1 is a homodimeric protein that is widely expressed among vertebrate cell types from early embryogenesis. Mammalian IQGAP1 protein is the best characterized member of the IQGAP family, and contains several protein-interacting domains. Human IQGAP1 is most similar to mouse Iqgap1 (94% identity) and has 62% identity to human IQGAP2. IQGAP1 binds and cross-links actin filaments in vitro and has been implicated in Ca2+/calmodulin signaling, E-cadherin-dependent cell adhesion, cell motility, and invasion. Yeast IQGAP homologs have a role in the recruitment of actin filaments, are components of the spindle pole body, and are required for actomyosin ring assembly and cytokinesis. Furthermore, IQGAP1 over-expression has also been detected in gastric and colorectal carcinomas and gastric cancer cell lines. 380 -213336 cd05134 RasGAP_RASA3 Ras-GTPase Activating Domain of RASA3. RASA3 (or GAP1_IP4BP) is a member of the GAP1 family and has been shown to specifically bind 1,3,4,5-tetrakisphosphate (IP4). Thus, RASA3 may function as an IP4 receptor. The members of GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. Purified RASA3 stimulates GAP activity on Ras with about a five-fold lower potency than p120RasGAP, but shows no GAP-stimulating activity at all against Rac or Rab3A. 269 -213337 cd05135 RasGAP_RASAL Ras-GTPase Activating Domain of RASAL1 and similar proteins. Ras GTPase activating-like protein (RASAL) or RASAL1 is a member of the GAP1 family, and a Ca2+ sensor responding in-phase to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. It contains a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. However, unlike RASAL4, RASAL undergoes an oscillatory translocation to the plasma membrane that occurs in synchrony with repetitive Ca2+ spikes. 287 -213338 cd05136 RasGAP_DAB2IP Ras-GTPase Activating Domain of DAB2IP and similar proteins. The DAB2IP family of Ras GTPase-activating proteins includes DAB2IP, nGAP, and Syn GAP. Disabled 2 interactive protein, (DAB2IP; also known as ASK-interacting protein 1 (AIP1)), is a member of the GTPase-activating proteins, down-regulates Ras-mediated signal pathways, and mediates TNF-induced activation of ASK1-JNK signaling pathways. The mechanism by which TNF signaling is coupled to DAB2IP is not known. 324 -213339 cd05137 RasGAP_CLA2_BUD2 Ras-GTPase Activating Domain of CLA2/BUD2. CLA2/BUD2 functions as a GTPase-activating protein (GAP) for BUD1/RSR1 and is necessary for proper bud-site selection in yeast. BUD2 has sequence similarity to the catalytic domain of RasGAPs, and stimulates the hydrolysis of BUD1-GTP to BUD1-GDP. Elimination of Bud2p activity by mutation causes a random budding pattern with no growth defect. Overproduction of Bud2p also alters the budding pattern. 356 -240163 cd05140 Barstar_AU1054-like Barstar_AU1054-like contains uncharacterized sequences similar to the uncharacterized, predicted RNAase inhibitor AU1054 found in Burkholderia cenocepacia. This is a subfamily of the Barstar family of RNAase inhibitors. Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it thus inhibiting its potentially lethal RNase activity inside the cell. Barstar also binds and inhibits a ribonuclease called RNase Sa (produced by Streptomyces aureofaciens) which belongs to the same enzyme family as does barnase. 86 -240164 cd05141 Barstar_evA4336-like Barstar_evA4336-like contains uncharacterized sequences similar to the uncharacterized, predicted RNAase inhibitor evA4336 found in Azoarcus sp. EvN1. This is a subfamily of the Barstar family of RNAase inhibitors. Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it thus inhibiting its potentially lethal RNase activity inside the cell. Barstar also binds and inhibits a ribonuclease called RNase Sa (produced by Streptomyces aureofaciens) which belongs to the same enzyme family as does barnase. 81 -240165 cd05142 Barstar Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it thus inhibiting its potentially lethal RNase activity inside the cell. Barstar also binds and inhibits a ribonuclease called RNase Sa (produced by Streptomyces aureofaciens) which belongs to the same enzyme family as does barnase. 87 -240166 cd05143 Barstar_SaI14_like Barstar_SaI14_like contains sequences that are similar to SaI14, an RNAase inhibitor, which are members of the Barstar family. Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it thus inhibiting its potentially lethal RNase activity inside the cell. The sequences in this subfamily are mostly uncharacterized, but believed to have a similar function and role. 88 -270695 cd05144 RIO2_C C-terminal catalytic domain of the atypical protein serine kinase, RIO2 kinase. RIO2 is present in archaea and eukaryotes. It contains an N-terminal winged helix (wHTH) domain and a C-terminal RIO kinase catalytic domain. The wHTH domain is primarily seen in DNA-binding proteins, although some wHTH domains may be involved in RNA recognition. RIO2 is essential for survival and is necessary for rRNA cleavage during 40S ribosomal subunit maturation. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO2 kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 183 -270696 cd05145 RIO1_like Catalytic domain of the atypical protein serine kinases, RIO1 and RIO3 kinases and similar proteins. RIO1 is present in archaea, bacteria and eukaryotes. In addition, RIO3 is present in multicellular eukaryotes. Both RIO1 and RIO3 are associated with precursors of 40S ribosomal subunits, just like RIO2. RIO1 is essential for survival and is required for 18S rRNA processing, proper cell cycle progression and chromosome maintenance. Although depletion of either RIO1 and RIO2 results in similar effects, the two kinases are not fully interchangeable. The specific function of RIO3 is unknown. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 189 -270697 cd05146 RIO3_euk Catalytic domain of the atypical protein serine kinase, RIO3 kinase. RIO3 is present only in multicellular eukaryotes. It is associated with precursors of 40S ribosomal subunits, just like RIO1 and RIO2. Its specific function is still unknown. Like RIO1 and RIO2, it may be involved in ribosomal subunit processing and maturation. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO3 kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 196 -270698 cd05147 RIO1_euk Catalytic domain of the atypical protein serine kinase, Eukaryotic RIO1 kinase. RIO1 is present in archaea, bacteria and eukaryotes. This subfamily is composed of RIO1 proteins from eukaryotes. RIO1 is essential for survival and is required for 18S rRNA processing, proper cell cycle progression and chromosome maintenance. It is associated with precursors of 40S ribosomal subunits, just like RIO2. Although depletion of either RIO1 and RIO2 results in similar effects, the two kinases are not fully interchangeable. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 190 -133248 cd05148 PTKc_Srm_Brk Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (Srm) and Breast tumor kinase (Brk). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Srm and Brk (also called protein tyrosine kinase 6) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Brk has been found to be overexpressed in a majority of breast tumors. Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Srm and Brk however, lack the N-terminal myristylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. The Srm/Brk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -270699 cd05150 APH Aminoglycoside 3'-phosphotransferase. APH catalyzes the transfer of the gamma-phosphoryl group from ATP to aminoglycoside antibiotics such as kanamycin, streptomycin, neomycin, and gentamicin, among others. The aminoglycoside antibiotics target the 30S ribosome and promote miscoding, leading to the production of defective proteins which insert into the bacterial membrane, resulting in membrane damage and the ultimate demise of the bacterium. Phosphorylation of the aminoglycoside antibiotics results in their inactivation, leading to bacterial antibiotic resistance. The APH gene is found on transposons and plasmids and is thought to have originated as a self-defense mechanism used by microorganisms that produce the antibiotics. The APH subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 244 -270700 cd05151 ChoK-like Choline Kinase and similar proteins. This subfamily is composed of bacterial and eukaryotic choline kinases, as well as eukaryotic ethanolamine kinase. ChoK catalyzes the transfer of the gamma-phosphoryl group from ATP (or CTP) to its substrate, choline, producing phosphorylcholine (PCho), a precursor to the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC), and sphingomyelin (SM). Although choline is the preferred substrate, ChoK also shows substantial activity towards ethanolamine and its N-methylated derivatives. Bacterial ChoK is also referred to as licA protein. ETNK catalyzes the transfer of the gamma-phosphoryl group from CTP to ethanolamine (Etn), the first step in the CDP-Etn pathway for the formation of the major phospholipid, phosphatidylethanolamine (PtdEtn). Unlike ChoK, ETNK shows specific activity for its substrate and displays negligible activity towards N-methylated derivatives of Etn. ChoK plays an important role in cell signaling pathways and the regulation of cell growth. The ChoK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 152 -270701 cd05152 MPH2' Macrolide 2'-Phosphotransferase. MPH2' catalyzes the transfer of the gamma-phosphoryl group from ATP to the 2'-hydroxyl of macrolide antibiotics such as erythromycin, clarithromycin, and azithromycin, among others. Macrolides penetrate the bacterial cell and bind to ribosomes, where it interrupts protein elongation, leading ultimately to the demise of the bacterium. Phosphorylation of macrolides leads to their inactivation. Based on substrate specificity and amino acid sequence, MPH2' is divided into types I and II, encoded by mphA and mphB genes, respectively. MPH2'I inactivates 14-membered ring macrolides while MPH2'II inactivates both 14- and 16-membered ring macrolides. Enzymatic inactivation of macrolides has been reported as a mechanism for bacterial resistance in clinical samples. MPH2' is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 276 -270702 cd05153 HomoserineK_II Type II Homoserine Kinase. This subfamily is composed of unusual homoserine kinases, from a subset of bacteria, which have a Protein Kinase fold. These proteins do not bear any similarity to the GHMP family homoserine kinases present in most bacteria and eukaryotes. Homoserine kinase catalyzes the transfer of the gamma-phosphoryl group from ATP to L-homoserine producing L-homoserine phosphate, an intermediate in the production of the amino acids threonine, methionine, and isoleucine. The Type II homoserine kinase subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 300 -270703 cd05154 ACAD10_11_N-like N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins. This subfamily is composed of the N-terminal domains of vertebrate ACAD10 and ACAD11, and similar uncharacterized bacterial and eukaryotic proteins. ACADs are a family of flavoproteins that are involved in the beta-oxidation of fatty acyl-CoA derivatives. ACAD deficiency can cause metabolic disorders including muscle fatigue, hypoglycemia, and hepatic lipidosis. There are at least 11 distinct ACADs, some of which show distinct substrate specificities to either straight-chain or branched-chain fatty acids. ACAD10 is widely expressed in human tissues and highly expressed in liver, kidney, pancreas, and spleen. ACAD10 and ACAD11 are both significantly expressed in human brain tissues. They contain a long N-terminal domain with similarity to phosphotransferases with a Protein Kinase fold, which is absent in other ACADs. They may exhibit multiple functions in acyl-CoA oxidation pathways. ACAD11 utilizes substrates with carbon chain lengths of 20 to 26, with optimal activity towards C22CoA. ACAD10 may be associated with an increased risk in type II diabetes. The ACAD10/11-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 254 -270704 cd05155 APH_ChoK_like_1 Uncharacterized bacterial proteins with similarity to Aminoglycoside 3'-phosphotransferase and Choline kinase. This subfamily is composed of uncharacterized bacterial proteins with similarity to APH and ChoK. Other APH/ChoK-like proteins include ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). These proteins catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates, such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides, and macrolides leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 234 -270705 cd05156 ChoK_euk Euykaryotic Choline Kinase. ChoK catalyzes the transfer of the gamma-phosphoryl group from ATP (or CTP) to its substrate, choline, producing phosphorylcholine (PCho), a precursor to the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC) and sphingomyelin (SM). Although choline is the preferred substrate, ChoK also shows substantial activity towards ethanolamine and its N-methylated derivatives. ChoK plays an important role in cell signaling pathways and the regulation of cell growth. Along with PCho, it is involved in malignant transformation through Ras oncogenes in various human cancers such as breast, lung, colon, prostate, neuroblastoma, and hepatic lymphoma. In mammalian cells, there are three ChoK isoforms (A-1, A-2, and B) which are active in homo- or heterodimeric forms. The ChoK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 326 -270706 cd05157 ETNK_euk Euykaryotic Ethanolamine kinase. ETNK catalyzes the transfer of the gamma-phosphoryl group from CTP to ethanolamine (Etn), the first step in the CDP-Etn pathway for the formation of the major phospholipid, phosphatidylethanolamine (PtdEtn). Unlike ChoK, ETNK shows specific activity for its substrate, and displays negligible activity towards N-methylated derivatives of Etn. The Drosophila ETNK is implicated in development and neuronal function. Mammals contain two ETNK proteins, ETNK1 and ETNK2. ETNK1 selectively increases Etn uptake and phosphorylation, as well as PtdEtn synthesis. ETNK2 is found primarily in the liver and reproductive tissues. It plays a critical role in regulating placental hemostasis to support late embryonic development. It may also have a role in testicular maturation. ETNK is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 307 -176646 cd05160 DEDDy_DNA_polB_exo DEDDy 3'-5' exonuclease domain of family-B DNA polymerases. The 3'-5' exonuclease domain of family-B DNA polymerases. This domain has a fundamental role in reducing polymerase errors and is involved in proofreading activity. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. This domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The exonuclease domain of family B polymerase also contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. Members include Escherichia coli DNA polymerase II, some eubacterial phage DNA polymerases, nuclear replicative DNA polymerases (alpha, delta, epsilon and zeta), and eukaryotic viral and plasmid-borne enzymes. Nuclear DNA polymerases alpha and zeta lack the four conserved acidic metal-binding residues. Family-B DNA polymerases are predominantly involved in DNA replication and DNA repair. 199 -99894 cd05162 PWWP The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. The function of the PWWP domain is still not known precisely; however, based on the fact that other regions of PWWP-domain proteins are responsible for nuclear localization and DNA-binding, is likely that the PWWP domain acts as a site for protein-protein binding interactions, influencing chromatin remodeling and thereby regulating transcriptional processes. Some PWWP-domain proteins have been linked to cancer or other diseases; some are known to function as growth factors. 87 -270707 cd05163 PIKK_TRRAP Pseudokinase domain of TRansformation/tRanscription domain-Associated Protein. TRRAP belongs to the the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. It contains a FATC (FRAP, ATM and TRRAP, C-terminal) domain and has a large molecular weight. Unlike most PIKK proteins, however, it contains an inactive PI3K-like pseudokinase domain, which lacks the conserved residues necessary for ATP binding and catalytic activity. TRRAP also contains many motifs that may be critical for protein-protein interactions. TRRAP is a common component of many histone acetyltransferase (HAT) complexes, and is responsible for the recruitment of these complexes to chromatin during transcription, replication, and DNA repair. TRRAP also exists in non-HAT complexes such as the p400 and MRN complexes, which are implicated in ATP-dependent remodeling and DNA repair, respectively. The TRRAP pseudokinase domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 252 -270708 cd05164 PIKKc Catalytic domain of Phosphoinositide 3-kinase-related protein kinases. PIKK subfamily members include ATM (Ataxia telangiectasia mutated), ATR (Ataxia telangiectasia and Rad3-related), TOR (Target of rapamycin), SMG-1 (Suppressor of morphogenetic effect on genitalia-1), and DNA-PK (DNA-dependent protein kinase). PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). They show strong preference for phosphorylating serine/threonine residues followed by a glutamine and are also referred to as (S/T)-Q-directed kinases. They all contain a FATC (FRAP, ATM and TRRAP, C-terminal) domain. PIKKs have diverse functions including cell-cycle checkpoints, genome surveillance, mRNA surveillance, and translation control. The PIKK catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 222 -270709 cd05165 PI3Kc_I Catalytic domain of Class I Phosphoinositide 3-kinase. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. In vitro, they can also phosphorylate the substrates PtdIns and PtdIns(4)P. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. They are further classified into class IA (alpha, beta and delta) and IB (gamma). PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 363 -270710 cd05166 PI3Kc_II Catalytic domain of Class II Phosphoinositide 3-kinase. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PtdIns as a substrate to produce PtdIns(3)P, but can also phosphorylate PtdIns(4)P. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a Phox homology (PX) domain, and a second C2 domain at the C-terminus. They are activated by a variety of stimuli including chemokines, cytokines, lysophosphatidic acid (LPA), insulin, and tyrosine kinase receptors. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 352 -270711 cd05167 PI4Kc_III_alpha Catalytic domain of Type III Phosphoinositide 4-kinase alpha. PI4Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 4-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) to generate PtdIns(4)P, the major precursor in the synthesis of other phosphoinositides including PtdIns(4,5)P2, PtdIns(3,4)P2, and PtdIns(3,4,5)P3. Two isoforms of type III PI4K, alpha and beta, exist in most eukaryotes. PI4KIIIalpha is a 220 kDa protein found in the plasma membrane and the endoplasmic reticulum (ER). The role of PI4KIIIalpha in the ER remains unclear. In the plasma membrane, it provides PtdIns(4)P, which is then converted by PI5Ks to PtdIns(4,5)P2, an important signaling molecule. Vertebrate PI4KIIIalpha is also part of a signaling complex associated with P2X7 ion channels. The yeast homolog, Stt4p, is also important in regulating the conversion of phosphatidylserine to phosphatidylethanolamine at the ER and Golgi interface. Mammalian PI4KIIIalpha is highly expressed in the nervous system. The PI4K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 307 -270712 cd05168 PI4Kc_III_beta Catalytic domain of Type III Phosphoinositide 4-kinase beta. PI4Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 4-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) to generate PtdIns(4)P, the major precursor in the synthesis of other phosphoinositides including PtdIns(4,5)P2, PtdIns(3,4)P2, and PtdIns(3,4,5)P3. Two isoforms of type III PI4K, alpha and beta, exist in most eukaryotes. PI4KIIIbeta (also called Pik1p in yeast) is a 110 kDa protein that is localized to the Golgi and the nucleus. It is required for maintaining the structural integrity of the Golgi complex (GC), and is a key regulator of protein transport from the GC to the plasma membrane. PI4KIIIbeta also functions in the genesis, transport, and exocytosis of synaptic vesicles. The Drosophila PI4KIIIbeta is essential for cytokinesis during spermatogenesis. The PI4K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 292 -270713 cd05169 PIKKc_TOR Catalytic domain of Target of Rapamycin. TOR contains a rapamycin binding domain, a catalytic domain, and a FATC (FRAP, ATM and TRRAP, C-terminal) domain at the C-terminus. It is also called FRAP (FK506 binding protein 12-rapamycin associated protein). TOR is a central component of the eukaryotic growth regulatory network. It controls the expression of many genes transcribed by all three RNA polymerases. It associates with other proteins to form two distinct complexes, TORC1 and TORC2. TORC1 is involved in diverse growth-related functions including protein synthesis, nutrient use and transport, autophagy and stress responses. TORC2 is involved in organizing cytoskeletal structures. TOR is a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). The TOR catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 279 -270714 cd05170 PIKKc_SMG1 Catalytic domain of Suppressor of Morphogenetic effect on Genitalia-1. SMG-1 plays a critical role in the mRNA surveillance mechanism known as non-sense mediated mRNA decay (NMD). NMD protects the cells from the accumulation of aberrant mRNAs with premature termination codons (PTCs) generated by genome mutations and by errors during transcription and splicing. SMG-1 phosphorylates Upf1, another central component of NMD, at the C-terminus upon recognition of PTCs. The phosphorylation/dephosphorylation cycle of Upf1 is essential for promoting NMD. In addition to its catalytic domain, SMG-1 contains a FATC (FRAP, ATM and TRRAP, C-terminal) domain at the C-terminus. SMG-1 is a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). The SMG-1 catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 304 -270715 cd05171 PIKKc_ATM Catalytic domain of Ataxia Telangiectasia Mutated. ATM is critical in the response to DNA double strand breaks (DSBs) caused by radiation. It is activated at the site of a DSB and phosphorylates key substrates that trigger pathways that regulate DNA repair and cell cycle checkpoints at the G1/S, S phase, and G2/M transition. Patients with the human genetic disorder Ataxia telangiectasia (A-T), caused by truncating mutations in ATM, show genome instability, increased cancer risk, immunodeficiency, compromised mobility, and neurodegeneration. A-T displays clinical heterogeneity, which is correlated to the degree of retained ATM activity. ATM contains a FAT (FRAP, ATM and TRRAP) domain, a catalytic domain, and a FATC domain at the C-terminus. It is a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). The ATM catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 282 -270716 cd05172 PIKKc_DNA-PK Catalytic domain of DNA-dependent protein kinase. DNA-PK is comprised of a regulatory subunit, containing the Ku70/80 subunit, and a catalytic subunit, which contains a NUC194 domain of unknown function, a FAT (FRAP, ATM and TRRAP) domain, a catalytic domain, and a FATC domain at the C-terminus. It is part of a multi-component system involved in non-homologous end joining (NHEJ), a process of repairing double strand breaks (DSBs) by joining together two free DNA ends of little homology. DNA-PK functions as a molecular sensor for DNA damage that enhances the signal via phosphorylation of downstream targets. It may also act as a protein scaffold that aids the localization of DNA repair proteins to the site of DNA damage. DNA-PK also plays a role in the maintenance of telomeric stability and the prevention of chromosomal end fusion. DNA-PK is a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) subfamily. PIKKs have intrinsic serine/threonine kinase activity and are distinguished from other PKs by their unique catalytic domain, similar to that of lipid PI3K, and their large molecular weight (240-470 kDa). The DNA-PK catalytic domain subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 235 -270717 cd05173 PI3Kc_IA_beta Catalytic domain of Class IA Phosphoinositide 3-kinase beta. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Kbeta can be activated by G-protein-coupled receptors. Deletion of PI3Kbeta in mice results in early lethality at around day three of development. PI3Kbeta plays an important role in regulating sustained integrin activation and stable platelet agrregation, especially under conditions of high shear stress. PI3Ks can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. They are further classified into class IA (alpha, beta and delta) and IB (gamma). Class IA enzymes contain an N-terminal p85 binding domain, a Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, and a C-terminal ATP-binding cataytic domain. They associate with a regulatory subunit of the p85 family and are activated by tyrosine kinase receptors. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 362 -270718 cd05174 PI3Kc_IA_delta Catalytic domain of Class IA Phosphoinositide 3-kinase delta. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Kdelta is mainly expressed in immune cells and plays an important role in cellular and humoral immunity. It plays a major role in antigen receptor signaling in B-cells, T-cells, and mast cells. It regulates the differentiation of peripheral helper T-cells and controls the development and function of regulatory T-cells. PI3Ks can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. They are further classified into class IA (alpha, beta and delta) and IB (gamma). Class IA enzymes contain an N-terminal p85 binding domain, a Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, and a C-terminal ATP-binding cataytic domain. They associate with a regulatory subunit of the p85 family and are activated by tyrosine kinase receptors. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 366 -270719 cd05175 PI3Kc_IA_alpha Catalytic domain of Class IA Phosphoinositide 3-kinase alpha. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. PI3Kalpha plays an important role in insulin signaling. It also mediates physiologic heart growth and provides protection from stress. Activating mutations of PI3Kalpha is associated with diverse forms of cancer at high frequency. PI3Ks can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class I PI3Ks are the only enzymes capable of converting PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. Class I enzymes are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. They are further classified into class IA (alpha, beta and delta) and IB (gamma). Class IA enzymes contain an N-terminal p85 binding domain, a Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, and a C-terminal ATP-binding cataytic domain. They associate with a regulatory subunit of the p85 family and are activated by tyrosine kinase receptors. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 370 -270720 cd05176 PI3Kc_C2_alpha Catalytic domain of Class II Phosphoinositide 3-kinase alpha. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. The class II alpha isoform, PI3K-C2alpha, plays key roles in clathrin assembly and clathrin-mediated membrane trafficking, insulin signaling, vascular smooth muscle contraction, and the priming of neurosecretory granule exocytosis. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PtdIns as a substrate to produce PtdIns(3)P, but can also phosphorylate PtdIns(4)P. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a Phox homology (PX) domain, and a second C2 domain at the C-terminus. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 353 -270721 cd05177 PI3Kc_C2_gamma Catalytic domain of Class II Phosphoinositide 3-kinase gamma. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. The class II gamma isoform, PI3K-C2gamma, is expressed in the liver, breast, and prostate. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They can be divided into three main classes (I, II, and III), defined by their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PtdIns as a substrate to produce PtdIns(3)P, but can also phosphorylate PtdIns(4)P. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a Phox homology (PX) domain, and a second C2 domain at the C-terminus. It's biological function remains unknown. The PI3K catalytic domain family is part of a larger superfamily that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and RIO kinases. 354 -176178 cd05188 MDR Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family. The medium chain reductase/dehydrogenases (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH) , quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. 271 -133449 cd05191 NAD_bind_amino_acid_DH NAD(P) binding domain of amino acid dehydrogenase-like proteins. Amino acid dehydrogenase(DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and are found in glutamate, leucine, and phenylalanine DHs (DHs), methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 86 -187536 cd05193 AR_like_SDR_e aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs. This subgroup contains aldehyde reductase and flavonoid reductase of the extended SDR-type and related proteins. Proteins in this subgroup have a complete SDR-type active site tetrad and a close match to the canonical extended SDR NADP-binding motif. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 295 -176179 cd05195 enoyl_red enoyl reductase of polyketide synthase. Putative enoyl reductase of polyketide synthase. Polyketide synthases produce polyketides in step by step mechanism that is similar to fatty acid synthesis. Enoyl reductase reduces a double to single bond. Erythromycin is one example of a polyketide generated by 3 complex enzymes (megasynthases). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 293 -133425 cd05197 GH4_glycoside_hydrolases Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 425 -240622 cd05198 formate_dh_like Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase family. Formate dehydrogenase, D-specific 2-hydroxy acid dehydrogenase, Phosphoglycerate Dehydrogenase, Lactate dehydrogenase, Thermostable Phosphite Dehydrogenase, and Hydroxy(phenyl)pyruvate reductase, among others, share a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production and in the stress responses of plants. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase, among others. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 302 -240623 cd05199 SDH_like Saccharopine Dehydrogenase like proteins. Saccharopine Dehydrogenase (SDH) and related proteins, including bifunctional lysine ketoglutarate reductase/SDH enzymes and N(5)-(carboxyethyl)ornithine synthases. SDH catalyzes the final step in the reversible NAD-dependent oxidative deamination of saccharopine to alpha-ketoglutarate and lysine, in the alpha-aminoadipate pathway of L-lysine biosynthesis. SDH is structurally related to formate dehydrogenase and similar enzymes, having a 2-domain structure in which a Rossmann-fold NAD(P)-binding domain is inserted within the linear sequence of a catalytic domain of related structure. Bifunctional lysine ketoglutarate reductase/SDH protein is a pair of enzymes linked on a single polypeptide chain that catalyze the initial, consecutive steps of lysine degradation. These proteins are related to the 2-domain saccharopine dehydrogenases. 319 -133450 cd05211 NAD_bind_Glu_Leu_Phe_Val NAD(P) binding domain of glutamate dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and valine dehydrogenase. Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NAD(P)+. This subfamily includes glutamate, leucine, phenylalanine, and valine DHs. Glutamate DH is a multi-domain enzyme that catalyzes the reaction from glutamate to 2-oxyoglutarate and ammonia in the presence of NAD or NADP. It is present in all organisms. Enzymes involved in ammonia assimilation are typically NADP+-dependent, while those involved in glutamate catabolism are generally NAD+-dependent. As in other NAD+-dependent DHs, monomers in this family have 2 domains separated by a deep cleft. Here the c-terminal domain contains a modified NAD-binding Rossmann fold with 7 rather than the usual 6 beta strands and one strand anti-parrallel to the others. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 217 -133451 cd05212 NAD_bind_m-THF_DH_Cyclohyd_like NAD(P) binding domain of methylene-tetrahydrofolate dehydrogenase and methylene-tetrahydrofolate dehydrogenase/cyclohydrolase. NAD(P) binding domains of methylene-tetrahydrofolate dehydrogenase (m-THF DH) and m-THF DH/cyclohydrolase bifunctional enzymes (m-THF DH/cyclohydrolase). M-THF is a versatile carrier of activated one-carbon units. The major one-carbon folate donors are N-5 methyltetrahydrofolate, N5,N10-m-THF, and N10-formayltetrahydrofolate. The oxidation of metabolic intermediate m-THF to m-THF requires the enzyme m-THF DH. In addition, most DHs also have an associated cyclohydrolase activity which catalyzes its hydrolysis to N10-formyltetrahydrofolate. m-THF DH is typically found as part of a multifunctional protein in eukaryotes. NADP-dependent m-THF DH in mammals, birds and yeast are components of a trifunctional enzyme with DH, cyclohydrolase, and synthetase activities. Certain eukaryotic cells also contain homodimeric bifunctional DH/cyclodrolase form. In bacteria, mono-functional DH, as well as bifunctional DH/cyclodrolase are found. In addition, yeast (S. cerevisiae) also express a monofunctional DH. M-THF DH, like other amino acid DH-like NAD(P)-binding domains, is a member of the Rossmann fold superfamily which includes glutamate, leucine, and phenylalanine DHs, m-THF DH, methylene-tetrahydromethanopterin DH, m-THF DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 140 -133452 cd05213 NAD_bind_Glutamyl_tRNA_reduct NADP-binding domain of glutamyl-tRNA reductase. Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 311 -187537 cd05226 SDR_e_a Extended (e) and atypical (a) SDRs. Extended or atypical short-chain dehydrogenases/reductases (SDRs, aka tyrosine-dependent oxidoreductases) are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 176 -187538 cd05227 AR_SDR_e aldehyde reductase, extended (e) SDRs. This subgroup contains aldehyde reductase of the extended SDR-type and related proteins. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 301 -187539 cd05228 AR_FR_like_1_SDR_e uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs. This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 318 -187540 cd05229 SDR_a3 atypical (a) SDRs, subgroup 3. These atypical SDR family members of unknown function have a glycine-rich NAD(P)-binding motif consensus that is very similar to the extended SDRs, GXXGXXG. Generally, this group has poor conservation of the active site tetrad, However, individual sequences do contain matches to the YXXXK active site motif, and generally Tyr or Asn in place of the upstream Ser found in most SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 302 -187541 cd05230 UGD_SDR_e UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs. UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 305 -187542 cd05231 NmrA_TMR_like_1_SDR_a NmrA (a transcriptional regulator) and triphenylmethane reductase (TMR) like proteins, subgroup 1, atypical (a) SDRs. Atypical SDRs related to NMRa, TMR, and HSCARG (an NADPH sensor). This subgroup resembles the SDRs and has a partially conserved characteristic [ST]GXXGXXG NAD-binding motif, but lacks the conserved active site residues. NmrA is a negative transcriptional regulator of various fungi, involved in the post-translational modulation of the GATA-type transcription factor AreA. NmrA lacks the canonical GXXGXXG NAD-binding motif and has altered residues at the catalytic triad, including a Met instead of the critical Tyr residue. NmrA may bind nucleotides but appears to lack any dehydrogenase activity. HSCARG has been identified as a putative NADP-sensing molecule, and redistributes and restructures in response to NADPH/NADP ratios. Like NmrA, it lacks most of the active site residues of the SDR family, but has an NAD(P)-binding motif similar to the extended SDR family, GXXGXXG. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Atypical SDRs are distinct from classical SDRs. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 259 -187543 cd05232 UDP_G4E_4_SDR_e UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 303 -212491 cd05233 SDR_c classical (c) SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 234 -187545 cd05234 UDP_G4E_2_SDR_e UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of archaeal and bacterial proteins, and has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 305 -187546 cd05235 SDR_e1 extended (e) SDRs, subgroup 1. This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 290 -187547 cd05236 FAR-N_SDR_e fatty acyl CoA reductases (FARs), extended (e) SDRs. SDRs are Rossmann-fold NAD(P)H-binding proteins, many of which may function as fatty acyl CoA reductases (FAR), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. This N-terminal domain shares the catalytic triad (but not the upstream Asn) and characteristic NADP-binding motif of the extended SDR family. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 320 -187548 cd05237 UDP_invert_4-6DH_SDR_e UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs. UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 287 -187549 cd05238 Gne_like_SDR_e Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs. Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 305 -187550 cd05239 GDP_FS_SDR_e GDP-fucose synthetase, extended (e) SDRs. GDP-fucose synthetase (aka 3, 5-epimerase-4-reductase) acts in the NADP-dependent synthesis of GDP-fucose from GDP-mannose. Two activities have been proposed for the same active site: epimerization and reduction. Proteins in this subgroup are extended SDRs, which have a characteristic active site tetrad and an NADP-binding motif, [AT]GXXGXXG, that is a close match to the archetypical form. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 300 -187551 cd05240 UDP_G4E_3_SDR_e UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs. Members of this bacterial subgroup are identified as possible sugar epimerases, such as UDP-glucose 4 epimerase. However, while the NAD(P)-binding motif is fairly well conserved, not all members retain the canonical active site tetrad of the extended SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 306 -187552 cd05241 3b-HSD-like_SDR_e 3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs. Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 331 -187553 cd05242 SDR_a8 atypical (a) SDRs, subgroup 8. This subgroup contains atypical SDRs of unknown function. Proteins in this subgroup have a glycine-rich NAD(P)-binding motif consensus that resembles that of the extended SDRs, (GXXGXXG or GGXGXXG), but lacks the characteristic active site residues of the SDRs. A Cys often replaces the usual Lys of the YXXXK active site motif, while the upstream Ser is generally present and Arg replaces the usual Asn. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 296 -187554 cd05243 SDR_a5 atypical (a) SDRs, subgroup 5. This subgroup contains atypical SDRs, some of which are identified as putative NAD(P)-dependent epimerases, one as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is very similar to the extended SDRs, GXXGXXG, and binds NADP. Generally, this subgroup has poor conservation of the active site tetrad; however, individual sequences do contain matches to the YXXXK active site motif, the upstream Ser, and there is a highly conserved Asp in place of the usual active site Asn throughout the subgroup. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 203 -187555 cd05244 BVR-B_like_SDR_a biliverdin IX beta reductase (BVR-B, aka flavin reductase)-like proteins; atypical (a) SDRs. Human BVR-B catalyzes pyridine nucleotide-dependent production of bilirubin-IX beta during fetal development; in the adult BVR-B has flavin and ferric reductase activities. Human BVR-B catalyzes the reduction of FMN, FAD, and riboflavin. Recognition of flavin occurs mostly by hydrophobic interactions, accounting for the broad substrate specificity. Atypical SDRs are distinct from classical SDRs. BVR-B does not share the key catalytic triad, or conserved tyrosine typical of SDRs. The glycine-rich NADP-binding motif of BVR-B is GXXGXXG, which is similar but not identical to the pattern seen in extended SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 207 -187556 cd05245 SDR_a2 atypical (a) SDRs, subgroup 2. This subgroup contains atypical SDRs, one member is identified as Escherichia coli protein ybjT, function unknown. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif consensus that generally matches the extended SDRs, TGXXGXXG, but lacks the characteristic active site residues of the SDRs. This subgroup has basic residues (HXXXR) in place of the active site motif YXXXK, these may have a catalytic role. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 293 -187557 cd05246 dTDP_GD_SDR_e dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs. This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 315 -187558 cd05247 UDP_G4E_1_SDR_e UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 323 -187559 cd05248 ADP_GME_SDR_e ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs. This subgroup contains ADP-L-glycero-D-mannoheptose 6-epimerase, an extended SDR, which catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. This subgroup has the canonical active site tetrad and NAD(P)-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 317 -187560 cd05250 CC3_like_SDR_a CC3(TIP30)-like, atypical (a) SDRs. Atypical SDRs in this subgroup include CC3 (also known as TIP30) which is implicated in tumor suppression. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine rich NAD(P)-binding motif that resembles the extended SDRs, and have an active site triad of the SDRs (YXXXK and upstream Ser), although the upstream Asn of the usual SDR active site is substituted with Asp. For CC3, the Tyr of the triad is displaced compared to the usual SDRs and the protein is monomeric, both these observations suggest that the usual SDR catalytic activity is not present. NADP appears to serve an important role as a ligand, and may be important in the interaction with other macromolecules. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 214 -187561 cd05251 NmrA_like_SDR_a NmrA (a transcriptional regulator) and HSCARG (an NADPH sensor) like proteins, atypical (a) SDRs. NmrA and HSCARG like proteins. NmrA is a negative transcriptional regulator of various fungi, involved in the post-translational modulation of the GATA-type transcription factor AreA. NmrA lacks the canonical GXXGXXG NAD-binding motif and has altered residues at the catalytic triad, including a Met instead of the critical Tyr residue. NmrA may bind nucleotides but appears to lack any dehydrogenase activity. HSCARG has been identified as a putative NADP-sensing molecule, and redistributes and restructures in response to NADPH/NADP ratios. Like NmrA, it lacks most of the active site residues of the SDR family, but has an NAD(P)-binding motif similar to the extended SDR family, GXXGXXG. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Atypical SDRs are distinct from classical SDRs. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 242 -187562 cd05252 CDP_GD_SDR_e CDP-D-glucose 4,6-dehydratase, extended (e) SDRs. This subgroup contains CDP-D-glucose 4,6-dehydratase, an extended SDR, which catalyzes the conversion of CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 336 -187563 cd05253 UDP_GE_SDE_e UDP glucuronic acid epimerase, extended (e) SDRs. This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 332 -187564 cd05254 dTDP_HR_like_SDR_e dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs. dTDP-6-deoxy-L-lyxo-4-hexulose reductase, an extended SDR, synthesizes dTDP-L-rhamnose from alpha-D-glucose-1-phosphate, providing the precursor of L-rhamnose, an essential cell wall component of many pathogenic bacteria. This subgroup has the characteristic active site tetrad and NADP-binding motif. This subgroup also contains human MAT2B, the regulatory subunit of methionine adenosyltransferase (MAT); MAT catalyzes S-adenosylmethionine synthesis. The human gene encoding MAT2B encodes two major splicing variants which are induced in human cell liver cancer and regulate HuR, an mRNA-binding protein which stabilizes the mRNA of several cyclins, to affect cell proliferation. Both MAT2B variants include this extended SDR domain. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 280 -187565 cd05255 SQD1_like_SDR_e UDP_sulfoquinovose_synthase (Arabidopsis thaliana SQD1 and related proteins), extended (e) SDRs. Arabidopsis thaliana UDP-sulfoquinovose-synthase ( SQD1), an extended SDR, catalyzes the transfer of SO(3)(-) to UDP-glucose in the biosynthesis of plant sulfolipids. Members of this subgroup share the conserved SDR catalytic residues, and a partial match to the characteristic extended-SDR NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 382 -187566 cd05256 UDP_AE_SDR_e UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs. This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 304 -187567 cd05257 Arna_like_SDR_e Arna decarboxylase_like, extended (e) SDRs. Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 316 -187568 cd05258 CDP_TE_SDR_e CDP-tyvelose 2-epimerase, extended (e) SDRs. CDP-tyvelose 2-epimerase is a tetrameric SDR that catalyzes the conversion of CDP-D-paratose to CDP-D-tyvelose, the last step in tyvelose biosynthesis. This subgroup is a member of the extended SDR subfamily, with a characteristic active site tetrad and NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 337 -187569 cd05259 PCBER_SDR_a phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs. PCBER and pinoresinol-lariciresinol reductases are NADPH-dependent aromatic alcohol reductases, and are atypical members of the SDR family. Other proteins in this subgroup are identified as eugenol synthase. These proteins contain an N-terminus characteristic of NAD(P)-binding proteins and a small C-terminal domain presumed to be involved in substrate binding, but they do not have the conserved active site Tyr residue typically found in SDRs. Numerous other members have unknown functions. The glycine rich NADP-binding motif in this subgroup is of 2 forms: GXGXXG and G[GA]XGXXG; it tends to be atypical compared with the forms generally seen in classical or extended SDRs. The usual SDR active site tetrad is not present, but a critical active site Lys at the usual SDR position has been identified in various members, though other charged and polar residues are found at this position in this subgroup. Atypical SDR-related proteins retain the Rossmann fold of the SDRs, but have limited sequence identity and generally lack the catalytic properties of the archetypical members. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 282 -187570 cd05260 GDP_MD_SDR_e GDP-mannose 4,6 dehydratase, extended (e) SDRs. GDP-mannose 4,6 dehydratase, a homodimeric SDR, catalyzes the NADP(H)-dependent conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose in the fucose biosynthesis pathway. These proteins have the canonical active site triad and NAD-binding pattern, however the active site Asn is often missing and may be substituted with Asp. A Glu residue has been identified as an important active site base. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 316 -187571 cd05261 CAPF_like_SDR_e capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs. This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 248 -187572 cd05262 SDR_a7 atypical (a) SDRs, subgroup 7. This subgroup contains atypical SDRs of unknown function. Members of this subgroup have a glycine-rich NAD(P)-binding motif consensus that matches the extended SDRs, TGXXGXXG, but lacks the characteristic active site residues of the SDRs. This subgroup has basic residues (HXXXR) in place of the active site motif YXXXK, these may have a catalytic role. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 291 -187573 cd05263 MupV_like_SDR_e Pseudomonas fluorescens MupV-like, extended (e) SDRs. This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 293 -187574 cd05264 UDP_G4E_5_SDR_e UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs. This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 300 -187575 cd05265 SDR_a1 atypical (a) SDRs, subgroup 1. Atypical SDRs in this subgroup are poorly defined and have been identified putatively as isoflavones reductase, sugar dehydratase, mRNA binding protein etc. Atypical SDRs are distinct from classical SDRs. Members of this subgroup retain the canonical active site triad (though not the upstream Asn found in most SDRs) but have an unusual putative glycine-rich NAD(P)-binding motif, GGXXXXG, in the usual location. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 250 -187576 cd05266 SDR_a4 atypical (a) SDRs, subgroup 4. Atypical SDRs in this subgroup are poorly defined, one member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is related to, but is different from, the archetypical SDRs, GXGXXG. This subgroup also lacks most of the characteristic active site residues of the SDRs; however, the upstream Ser is present at the usual place, and some potential catalytic residues are present in place of the usual YXXXK active site motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 251 -187577 cd05267 SDR_a6 atypical (a) SDRs, subgroup 6. These atypical SDR family members of unknown function have only a partial match to a prototypical glycine-rich NAD(P)-binding motif consensus, GXXG, which conserves part of the motif of extended SDR. Furthermore, they lack the characteristic active site residues of the SDRs. This subgroup is related to phenylcoumaran benzylic ether reductase, an NADPH-dependent aromatic alcohol reductase. One member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 203 -187578 cd05269 TMR_SDR_a triphenylmethane reductase (TMR)-like proteins, NMRa-like, atypical (a) SDRs. TMR is an atypical NADP-binding protein of the SDR family. It lacks the active site residues of the SDRs but has a glycine rich NAD(P)-binding motif that matches the extended SDRs. Proteins in this subgroup however, are more similar in length to the classical SDRs. TMR was identified as a reducer of triphenylmethane dyes, important environmental pollutants. This subgroup also includes Escherichia coli NADPH-dependent quinine oxidoreductase (QOR2), which catalyzes two-electron reduction of quinone; but is unlikely to play a major role in protecting against quinone cytotoxicity. Atypical SDRs are distinct from classical SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 272 -187579 cd05271 NDUFA9_like_SDR_a NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs. This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 273 -187580 cd05272 TDH_SDR_e L-threonine dehydrogenase, extended (e) SDRs. This subgroup contains members identified as L-threonine dehydrogenase (TDH). TDH catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. This group is distinct from TDHs that are members of the medium chain dehydrogenase/reductase family. This group has the NAD-binding motif and active site tetrad of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 308 -187581 cd05273 GME-like_SDR_e Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs. This subgroup of NDP-sugar epimerase/dehydratases are extended SDRs; they have the characteristic active site tetrad, and an NAD-binding motif: TGXXGXX[AG], which is a close match to the canonical NAD-binding motif. Members include Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME) which catalyzes the epimerization of two positions of GDP-alpha-D-mannose to form GDP-beta-L-galactose. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 328 -187582 cd05274 KR_FAS_SDR_x ketoreductase (KR) and fatty acid synthase (FAS), complex (x) SDRs. Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consist of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthase uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 375 -176180 cd05276 p53_inducible_oxidoreductase PIG3 p53-inducible quinone oxidoreductase. PIG3 p53-inducible quinone oxidoreductase, a medium chain dehydrogenase/reductase family member, acts in the apoptotic pathway. PIG3 reduces ortho-quinones, but its apoptotic activity has been attributed to oxidative stress generation, since overexpression of PIG3 accumulates reactive oxygen species. PIG3 resembles the MDR family member quinone reductases, which catalyze the reduction of quinone to hydroxyquinone. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 323 -176181 cd05278 FDH_like Formaldehyde dehydrogenases. Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (aka ADH3) may be the ancestral form of alcohol dehydrogenase, which evolved to detoxify formaldehyde. This CD contains glutathione dependant FDH, glutathione independent FDH, and related alcohol dehydrogenases. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. Unlike typical FDH, Pseudomonas putida aldehyde-dismutating FDH (PFDH) is glutathione-independent. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 347 -176182 cd05279 Zn_ADH1 Liver alcohol dehydrogenase and related zinc-dependent alcohol dehydrogenases. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. There are 7 vertebrate ADH 7 classes, 6 of which have been identified in humans. Class III, glutathione-dependent formaldehyde dehydrogenase, has been identified as the primordial form and exists in diverse species, including plants, micro-organisms, vertebrates, and invertebrates. Class I, typified by liver dehydrogenase, is an evolving form. Gene duplication and functional specialization of ADH into ADH classes and subclasses created numerous forms in vertebrates. For example, the A, B and C (formerly alpha, beta, gamma) human class I subunits have high overall structural similarity, but differ in the substrate binding pocket and therefore in substrate specificity. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48), then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 365 -176183 cd05280 MDR_yhdh_yhfp Yhdh and yhfp-like putative quinone oxidoreductases. Yhdh and yhfp-like putative quinone oxidoreductases (QOR). QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 325 -176184 cd05281 TDH Threonine dehydrogenase. L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)- dependent oxidation. THD is a member of the zinc-requiring, medium chain NAD(H)-dependent alcohol dehydrogenase family (MDR). MDRs have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria) and have 2 tightly bound zinc atoms per subunit. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. 341 -176645 cd05282 ETR_like 2-enoyl thioester reductase-like. 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 323 -176186 cd05283 CAD1 Cinnamyl alcohol dehydrogenases (CAD). Cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family, reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 337 -176187 cd05284 arabinose_DH_like D-arabinose dehydrogenase. This group contains arabinose dehydrogenase (AraDH) and related alcohol dehydrogenases. AraDH is a member of the medium chain dehydrogenase/reductase family and catalyzes the NAD(P)-dependent oxidation of D-arabinose and other pentoses, the initial step in the metabolism of d-arabinose into 2-oxoglutarate. Like the alcohol dehydrogenases, AraDH binds a zinc in the catalytic cleft as well as a distal structural zinc. AraDH forms homotetramers as a dimer of dimers. AraDH replaces a conserved catalytic His with replace with Arg, compared to the canonical ADH site. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 340 -176188 cd05285 sorbitol_DH Sorbitol dehydrogenase. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. Aldose reductase catalyzes the NADP(H)-dependent conversion of glucose to sorbital, and SDH uses NAD(H) in the conversion of sorbitol to fructose. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 343 -176189 cd05286 QOR2 Quinone oxidoreductase (QOR). Quinone oxidoreductase (QOR) and 2-haloacrylate reductase. QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. 2-haloacrylate reductase, a member of this subgroup, catalyzes the NADPH-dependent reduction of a carbon-carbon double bond in organohalogen compounds. Although similar to QOR, Burkholderia 2-haloacrylate reductase does not act on the quinones 1,4-benzoquinone and 1,4-naphthoquinone. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 320 -176190 cd05288 PGDH Prostaglandin dehydrogenases. Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 329 -176191 cd05289 MDR_like_2 alcohol dehydrogenase and quinone reductase-like medium chain degydrogenases/reductases. Members identified as zinc-dependent alcohol dehydrogenases and quinone oxidoreductase. QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 309 -133426 cd05290 LDH_3 A subgroup of L-lactate dehydrogenases. L-lactate dehydrogenases (LDH) are tetrameric enzymes catalyzing the last step of glycolysis in which pyruvate is converted to L-lactate. This subgroup is composed of some bacterial LDHs from firmicutes, gammaproteobacteria, and actinobacteria. Vertebrate LDHs are non-allosteric, but some bacterial LDHs are activated by an allosteric effector such as fructose-1,6-bisphosphate. LDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenase, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 307 -133427 cd05291 HicDH_like L-2-hydroxyisocapronate dehydrogenases and some bacterial L-lactate dehydrogenases. L-2-hydroxyisocapronate dehydrogenase (HicDH) catalyzes the conversion of a variety of 2-oxo carboxylic acids with medium-sized aliphatic or aromatic side chains. This subfamily is composed of HicDHs and some bacterial L-lactate dehydrogenases (LDH). LDHs catalyze the last step of glycolysis in which pyruvate is converted to L-lactate. Bacterial LDHs can be non-allosteric or may be activated by an allosteric effector such as fructose-1,6-bisphosphate. Members of this subfamily with known structures such as the HicDH of Lactobacillus confusus, the non-allosteric LDH of Lactobacillus pentosus, and the allosteric LDH of Bacillus stearothermophilus, show that they exist as homotetramers. The HicDH-like subfamily is part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 306 -133428 cd05292 LDH_2 A subgroup of L-lactate dehydrogenases. L-lactate dehydrogenases (LDH) are tetrameric enzymes catalyzing the last step of glycolysis in which pyruvate is converted to L-lactate. This subgroup is composed predominantly of bacterial LDHs and a few fungal LDHs. Bacterial LDHs may be non-allosteric or may be activated by an allosteric effector such as fructose-1,6-bisphosphate. LDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 308 -133429 cd05293 LDH_1 A subgroup of L-lactate dehydrogenases. L-lactate dehydrogenases (LDH) are tetrameric enzymes catalyzing the last step of glycolysis in which pyruvate is converted to L-lactate. This subgroup is composed of eukaryotic LDHs. Vertebrate LDHs are non-allosteric. This is in contrast to some bacterial LDHs that are activated by an allosteric effector such as fructose-1,6-bisphosphate. LDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 312 -133430 cd05294 LDH-like_MDH_nadp A lactate dehydrogenases-like structure with malate dehydrogenase enzymatic activity. The LDH-like MDH proteins have a lactate dehyhydrogenase-like (LDH-like) structure and malate dehydrogenase (MDH) enzymatic activity. This subgroup is composed of some archaeal LDH-like MDHs that prefer NADP(H) rather than NAD(H) as a cofactor. One member, MJ0490 from Methanococcus jannaschii, has been observed to form dimers and tetramers during crystalization, although it is believed to exist primarilly as a tetramer in solution. In addition to its MDH activity, MJ0490 also possesses fructose-1,6-bisphosphate-activated LDH activity. Members of this subgroup have a higher sequence similarity to LDHs than to other MDHs. LDH catalyzes the last step of glycolysis in which pyruvate is converted to L-lactate. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. The LDH-like MDHs are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)- binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenase, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 309 -133431 cd05295 MDH_like Malate dehydrogenase-like. These MDH-like proteins are related to other groups in the MDH family but do not have conserved substrate and cofactor binding residues. MDH is one of the key enzymes in the citric acid cycle, facilitating both the conversion of malate to oxaloacetate and replenishing levels of oxalacetate by reductive carboxylation of pyruvate. Members of this subgroup are uncharacterized MDH-like proteins from animals. They are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 452 -133432 cd05296 GH4_P_beta_glucosidase Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 419 -133433 cd05297 GH4_alpha_glucosidase_galactosidase Glycoside Hydrolases Family 4; Alpha-glucosidases and alpha-galactosidases. linked to 3D####ucture 423 -133434 cd05298 GH4_GlvA_pagL_like Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others. 437 -240624 cd05299 CtBP_dh C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related repressor. The transcriptional corepressor CtBP is a dehydrogenase with sequence and structural similarity to the d2-hydroxyacid dehydrogenase family. CtBP was initially identified as a protein that bound the PXDLS sequence at the adenovirus E1A C terminus, causing the loss of CR-1-mediated transactivation. CtBP binds NAD(H) within a deep cleft, undergoes a conformational change upon NAD binding, and has NAD-dependent dehydrogenase activity. 312 -240625 cd05300 2-Hacid_dh_1 Putative D-isomer specific 2-hydroxyacid dehydrogenase. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomains but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of the hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production and in the stress responses of plants. 313 -240626 cd05301 GDH D-glycerate dehydrogenase/hydroxypyruvate reductase (GDH). D-glycerate dehydrogenase (GDH, also known as hydroxypyruvate reductase, HPR) catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. In humans, HPR deficiency causes primary hyperoxaluria type 2, characterized by over-excretion of L-glycerate and oxalate in the urine, possibly due to an imbalance in competition with L-lactate dehydrogenase, another formate dehydrogenase (FDH)-like enzyme. GDH, like FDH and other members of the D-specific hydroxyacid dehydrogenase family that also includes L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase, typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form, despite often low sequence identity. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 309 -240627 cd05302 FDH NAD-dependent Formate Dehydrogenase (FDH). NAD-dependent formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of a formate anion to carbon dioxide coupled with the reduction of NAD+ to NADH. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase family have 2 highly similar subdomains of the alpha/beta form, with NAD binding occurring in the cleft between subdomains. NAD contacts are primarily to the Rossmann-fold NAD-binding domain which is inserted within the linear sequence of the more diverse flavodoxin-like catalytic subdomain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of the hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production from C1 compounds such as methanol, and in the stress responses of plants. NAD-dependent FDH is useful in cofactor regeneration in asymmetrical biocatalytic reduction processes, where FDH irreversibly oxidizes formate to carbon dioxide, while reducing the oxidized form of the cofactor to the reduced form. 348 -240628 cd05303 PGDH_2 Phosphoglycerate dehydrogenase (PGDH) NAD-binding and catalytic domains. Phosphoglycerate dehydrogenase (PGDH) catalyzes the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDH comes in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. 301 -240629 cd05304 Rubrum_tdh Rubrum transdehydrogenase NAD-binding and catalytic domains. Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matrix side. DI contains 2 domains in Rossmann-like folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than a classical Rossmann domain. 363 -240630 cd05305 L-AlaDH Alanine dehydrogenase NAD-binding and catalytic domains. Alanine dehydrogenase (L-AlaDH) catalyzes the NAD-dependent conversion of pyruvate to L-alanine via reductive amination. Like formate dehydrogenase and related enzymes, L-AlaDH is comprised of 2 domains connected by a long alpha helical stretch, each resembling a Rossmann fold NAD-binding domain. The NAD-binding domain is inserted within the linear sequence of the more divergent catalytic domain. Ligand binding and active site residues are found in the cleft between the subdomains. L-AlaDH is typically hexameric and is critical in carbon and nitrogen metabolism in micro-organisms. 359 -133453 cd05311 NAD_bind_2_malic_enz NAD(P) binding domain of malic enzyme (ME), subgroup 2. Malic enzyme (ME), a member of the amino acid dehydrogenase (DH)-like domain family, catalyzes the oxidative decarboxylation of L-malate to pyruvate in the presence of cations (typically Mg++ or Mn++) with the concomitant reduction of cofactor NAD+ or NADP+. ME has been found in all organisms, and plays important roles in diverse metabolic pathways such as photosynthesis and lipogenesis. This enzyme generally forms homotetramers. The conversion of malate to pyruvate by ME typically involves oxidation of malate to produce oxaloacetate, followed by decarboxylation of oxaloacetate to produce pyruvate and CO2. This subfamily consists primarily of archaeal and bacterial ME. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 226 -133454 cd05312 NAD_bind_1_malic_enz NAD(P) binding domain of malic enzyme (ME), subgroup 1. Malic enzyme (ME), a member of the amino acid dehydrogenase (DH)-like domain family, catalyzes the oxidative decarboxylation of L-malate to pyruvate in the presence of cations (typically Mg++ or Mn++) with the concomitant reduction of cofactor NAD+ or NADP+. ME has been found in all organisms, and plays important roles in diverse metabolic pathways such as photosynthesis and lipogenesis. This enzyme generally forms homotetramers. The conversion of malate to pyruvate by ME typically involves oxidation of malate to produce oxaloacetate, followed by decarboxylation of oxaloacetate to produce pyruvate and CO2. This subfamily consists of eukaryotic and bacterial ME. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 279 -133455 cd05313 NAD_bind_2_Glu_DH NAD(P) binding domain of glutamate dehydrogenase, subgroup 2. Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NADP+. Glutamate DH is a multidomain enzyme that catalyzes the reaction from glutamate to 2-oxyoglutarate and ammonia in the presence of NAD or NADP. It is present in all organisms. Enzymes involved in ammonia asimilation are typically NADP+-dependent, while those involved in glutamate catabolism are generally NAD+-dependent. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha -beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. 254 -187583 cd05322 SDH_SDR_c_like Sorbitol 6-phosphate dehydrogenase (SDH), classical (c) SDRs. Sorbitol 6-phosphate dehydrogenase (SDH, aka glucitol 6-phosphate dehydrogenase) catalyzes the NAD-dependent interconversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate. SDH is a member of the classical SDRs, with the characteristic catalytic tetrad, but without a complete match to the typical NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 257 -187584 cd05323 ADH_SDR_c_like insect type alcohol dehydrogenase (ADH)-like, classical (c) SDRs. This subgroup contains insect type ADH, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) type I; these proteins are classical SDRs. ADH catalyzes the NAD+-dependent oxidation of alcohols to aldehydes/ketones. This subgroup is distinct from the zinc-dependent alcohol dehydrogenases of the medium chain dehydrogenase/reductase family, and evolved in fruit flies to allow the digestion of fermenting fruit. 15-PGDH catalyzes the NAD-dependent interconversion of (5Z,13E)-(15S)-11alpha,15-dihydroxy-9-oxoprost-13-enoate and (5Z,13E)-11alpha-hydroxy-9,15-dioxoprost-13-enoate, and has a typical SDR glycine-rich NAD-binding motif, which is not fully present in ADH. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 244 -187585 cd05324 carb_red_PTCR-like_SDR_c Porcine testicular carbonyl reductase (PTCR)-like, classical (c) SDRs. PTCR is a classical SDR which catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. Unlike most SDRs, PTCR functions as a monomer. This subgroup also includes human carbonyl reductase 1 (CBR1) and CBR3. CBR1 is an NADPH-dependent SDR with broad substrate specificity and may be responsible for the in vivo reduction of quinones, prostaglandins, and other carbonyl-containing compounds. In addition it includes poppy NADPH-dependent salutaridine reductase which catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine, and Arabidopsis SDR1,a menthone reductase, which catalyzes the reduction of menthone to neomenthol, a compound with antimicrobial activity; SDR1 can also carry out neomenthol oxidation. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 225 -187586 cd05325 carb_red_sniffer_like_SDR_c carbonyl reductase sniffer-like, classical (c) SDRs. Sniffer is an NADPH-dependent carbonyl reductase of the classical SDR family. Studies in Drosophila melanogaster implicate Sniffer in the prevention of neurodegeneration due to aging and oxidative-stress. This subgroup also includes Rhodococcus sp. AD45 IsoH, which is an NAD-dependent 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase involved in isoprene metabolism, Aspergillus nidulans StcE encoded by a gene which is part of a proposed sterigmatocystin biosynthesis gene cluster, Bacillus circulans SANK 72073 BtrF encoded by a gene found in the butirosin biosynthesis gene cluster, and Aspergillus parasiticus nor-1 involved in the biosynthesis of aflatoxins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 233 -187587 cd05326 secoisolariciresinol-DH_like_SDR_c secoisolariciresinol dehydrogenase (secoisolariciresinol-DH)-like, classical (c) SDRs. Podophyllum secoisolariciresinol-DH is a homo tetrameric, classical SDR that catalyzes the NAD-dependent conversion of (-)-secoisolariciresinol to (-)-matairesinol via a (-)-lactol intermediate. (-)-Matairesinol is an intermediate to various 8'-lignans, including the cancer-preventive mammalian lignan, and those involved in vascular plant defense. This subgroup also includes rice momilactone A synthase which catalyzes the conversion of 3beta-hydroxy-9betaH-pimara-7,15-dien-19,6beta-olide into momilactone A, Arabidopsis ABA2 which during abscisic acid (ABA) biosynthesis, catalyzes the conversion of xanthoxin to abscisic aldehyde and, maize Tasselseed2 which participate in the maize sex determination pathway. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 249 -212492 cd05327 retinol-DH_like_SDR_c_like retinol dehydrogenase (retinol-DH), Light dependent Protochlorophyllide (Pchlide) OxidoReductase (LPOR) and related proteins, classical (c) SDRs. Classical SDR subgroup containing retinol-DHs, LPORs, and related proteins. Retinol is processed by a medium chain alcohol dehydrogenase followed by retinol-DHs. Pchlide reductases act in chlorophyll biosynthesis. There are distinct enzymes that catalyze Pchlide reduction in light or dark conditions. Light-dependent reduction is via an NADP-dependent SDR, LPOR. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. This subgroup includes the human proteins: retinol dehydrogenase -12, -13 ,and -14, dehydrogenase/reductase SDR family member (DHRS)-12 , -13 and -X (a DHRS on chromosome X), and WWOX (WW domain-containing oxidoreductase), as well as a Neurospora crassa SDR encoded by the blue light inducible bli-4 gene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 269 -187589 cd05328 3alpha_HSD_SDR_c alpha hydroxysteroid dehydrogenase (3alpha_HSD), classical (c) SDRs. Bacterial 3-alpha_HSD, which catalyzes the NAD-dependent oxidoreduction of hydroxysteroids, is a dimeric member of the classical SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187590 cd05329 TR_SDR_c tropinone reductase-I and II (TR-1, and TR-II)-like, classical (c) SDRs. This subgroup includes TR-I and TR-II; these proteins are members of the SDR family. TRs catalyze the NADPH-dependent reductions of the 3-carbonyl group of tropinone, to a beta-hydroxyl group. TR-I and TR-II produce different stereoisomers from tropinone, TR-I produces tropine (3alpha-hydroxytropane), and TR-II, produces pseudotropine (sigma-tropine, 3beta-hydroxytropane). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 251 -187591 cd05330 cyclohexanol_reductase_SDR_c cyclohexanol reductases, including levodione reductase, classical (c) SDRs. Cyloclohexanol reductases,including (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase of Corynebacterium aquaticum, catalyze the reversible oxidoreduction of hydroxycyclohexanone derivatives. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 257 -187592 cd05331 DH-DHB-DH_SDR_c 2,3 dihydro-2,3 dihydrozybenzoate dehydrogenases, classical (c) SDRs. 2,3 dihydro-2,3 dihydrozybenzoate dehydrogenase shares the characteristics of the classical SDRs. This subgroup includes Escherichai coli EntA which catalyzes the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoate to 2,3-dihydroxybenzoate during biosynthesis of the siderophore Enterobactin. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 244 -187593 cd05332 11beta-HSD1_like_SDR_c 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-like, classical (c) SDRs. Human 11beta_HSD1 catalyzes the NADP(H)-dependent interconversion of cortisone and cortisol. This subgroup also includes human dehydrogenase/reductase SDR family member 7C (DHRS7C) and DHRS7B. These proteins have the GxxxGxG nucleotide binding motif and S-Y-K catalytic triad characteristic of the SDRs, but have an atypical C-terminal domain that contributes to homodimerization contacts. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 257 -187594 cd05333 BKR_SDR_c beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs. This subgroup includes the Escherichai coli K12 BKR, FabG. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 240 -187595 cd05334 DHPR_SDR_c_like dihydropteridine reductase (DHPR), classical (c) SDRs. Dihydropteridine reductase is an NAD-binding protein related to the SDRs. It converts dihydrobiopterin into tetrahydrobiopterin, a cofactor necessary in catecholamines synthesis. Dihydropteridine reductase has the YXXXK of these tyrosine-dependent oxidoreductases, but lacks the typical upstream Asn and Ser catalytic residues. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 221 -187596 cd05337 BKR_1_SDR_c putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR), subgroup 1, classical (c) SDR. This subgroup includes Escherichia coli CFT073 FabG. The Escherichai coli K12 BKR, FabG, belongs to a different subgroup. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 255 -187597 cd05338 DHRS1_HSDL2-like_SDR_c human dehydrogenase/reductase (SDR family) member 1 (DHRS1) and human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs. This subgroup includes human DHRS1 and human HSDL2 and related proteins. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. DHRS1 mRNA has been detected in many tissues, liver, heart, skeletal muscle, kidney and pancreas; a longer transcript is predominantly expressed in the liver , a shorter one in the heart. HSDL2 may play a part in fatty acid metabolism, as it is found in peroxisomes. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 246 -187598 cd05339 17beta-HSDXI-like_SDR_c human 17-beta-hydroxysteroid dehydrogenase XI-like, classical (c) SDRs. 17-beta-hydroxysteroid dehydrogenases (17betaHSD) are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. 17betaHSD type XI, a classical SDR, preferentially converts 3alpha-adiol to androsterone but not numerous other tested steroids. This subgroup of classical SDRs also includes members identified as retinol dehydrogenases, which convert retinol to retinal, a property that overlaps with 17betaHSD activity. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 243 -187599 cd05340 Ycik_SDR_c Escherichia coli K-12 YCIK-like, classical (c) SDRs. Escherichia coli K-12 YCIK and related proteins have a canonical classical SDR nucleotide-binding motif and active site tetrad. They are predicted oxoacyl-(acyl carrier protein/ACP) reductases. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 236 -187600 cd05341 3beta-17beta-HSD_like_SDR_c 3beta17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs. This subgroup includes members identified as 3beta17beta hydroxysteroid dehydrogenase, 20beta hydroxysteroid dehydrogenase, and R-alcohol dehydrogenase. These proteins exhibit the canonical active site tetrad and glycine rich NAD(P)-binding motif of the classical SDRs. 17beta-dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens, and include members of the SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 247 -187601 cd05343 Mgc4172-like_SDR_c human Mgc4172-like, classical (c) SDRs. Human Mgc4172-like proteins, putative SDRs. These proteins are members of the SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187602 cd05344 BKR_like_SDR_like putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR)-like, SDR. This subgroup resembles the SDR family, but does not have a perfect match to the NAD-binding motif or the catalytic tetrad characteristic of the SDRs. It includes the SDRs, Q9HYA2 from Pseudomonas aeruginosa PAO1 and APE0912 from Aeropyrum pernix K1. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 253 -187603 cd05345 BKR_3_SDR_c putative beta-ketoacyl acyl carrier protein [ACP] reductase (BKR), subgroup 3, classical (c) SDR. This subgroup includes the putative Brucella melitensis biovar Abortus 2308 BKR, FabG, Mesorhizobium loti MAFF303099 FabG, and other classical SDRs. BKR, a member of the SDR family, catalyzes the NADPH-dependent reduction of acyl carrier protein in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of 4 elongation steps, which are repeated to extend the fatty acid chain thru the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I Fas utilizes one or 2 multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 248 -187604 cd05346 SDR_c5 classical (c) SDR, subgroup 5. These proteins are members of the classical SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 249 -187605 cd05347 Ga5DH-like_SDR_c gluconate 5-dehydrogenase (Ga5DH)-like, classical (c) SDRs. Ga5DH catalyzes the NADP-dependent conversion of carbon source D-gluconate and 5-keto-D-gluconate. This SDR subgroup has a classical Gly-rich NAD(P)-binding motif and a conserved active site tetrad pattern. However, it has been proposed that Arg104 (Streptococcus suis Ga5DH numbering), as well as an active site Ca2+, play a critical role in catalysis. In addition to Ga5DHs this subgroup contains Erwinia chrysanthemi KduD which is involved in pectin degradation, and is a putative 2,5-diketo-3-deoxygluconate dehydrogenase. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107,15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 248 -187606 cd05348 BphB-like_SDR_c cis-biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB)-like, classical (c) SDRs. cis-biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB) is a classical SDR, it is of particular importance for its role in the degradation of biphenyl/polychlorinated biphenyls(PCBs); PCBs are a significant source of environmental contamination. This subgroup also includes Pseudomonas putida F1 cis-biphenyl-1,2-dihydrodiol-1,2-dehydrogenase (aka cis-benzene glycol dehydrogenase, encoded by the bnzE gene), which participates in benzene metabolism. In addition it includes Pseudomonas sp. C18 putative 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase (aka dibenzothiophene dihydrodiol dehydrogenase, encoded by the doxE gene) which participates in an upper naphthalene catabolic pathway. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 257 -187607 cd05349 BKR_2_SDR_c putative beta-ketoacyl acyl carrier protein [ACP]reductase (BKR), subgroup 2, classical (c) SDR. This subgroup includes Rhizobium sp. NGR234 FabG1. The Escherichai coli K12 BKR, FabG, belongs to a different subgroup. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 246 -187608 cd05350 SDR_c6 classical (c) SDR, subgroup 6. These proteins are members of the classical SDR family, with a canonical active site tetrad and a fairly well conserved typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 239 -187609 cd05351 XR_like_SDR_c xylulose reductase-like, classical (c) SDRs. Members of this subgroup include proteins identified as L-xylulose reductase (XR) and carbonyl reductase; they are members of the SDR family. XR, catalyzes the NADP-dependent reduction of L-xyulose and other sugars. Tetrameric mouse carbonyl reductase is involved in the metabolism of biogenic and xenobiotic carbonyl compounds. This subgroup also includes tetrameric chicken liver D-erythrulose reductase, which catalyzes the reduction of D-erythrulose to D-threitol. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). 244 -187610 cd05352 MDH-like_SDR_c mannitol dehydrogenase (MDH)-like, classical (c) SDRs. NADP-mannitol dehydrogenase catalyzes the conversion of fructose to mannitol, an acyclic 6-carbon sugar. MDH is a tetrameric member of the SDR family. This subgroup also includes various other tetrameric SDRs, including Pichia stipitis D-arabinitol dehydrogenase (aka polyol dehydrogenase), Candida albicans Sou1p, a sorbose reductase, and Candida parapsilosis (S)-specific carbonyl reductase (SCR, aka S-specific alcohol dehydrogenase) which catalyzes the enantioselective reduction of 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). 252 -187611 cd05353 hydroxyacyl-CoA-like_DH_SDR_c-like (3R)-hydroxyacyl-CoA dehydrogenase-like, classical(c)-like SDRs. Beta oxidation of fatty acids in eukaryotes occurs by a four-reaction cycle, that may take place in mitochondria or in peroxisomes. (3R)-hydroxyacyl-CoA dehydrogenase is part of rat peroxisomal multifunctional MFE-2, it is a member of the NAD-dependent SDRs, but contains an additional small C-terminal domain that completes the active site pocket and participates in dimerization. The atypical, additional C-terminal extension allows for more extensive dimerization contact than other SDRs. MFE-2 catalyzes the second and third reactions of the peroxisomal beta oxidation cycle. Proteins in this subgroup have a typical catalytic triad, but have a His in place of the usual upstream Asn. This subgroup also contains members identified as 17-beta-hydroxysteroid dehydrogenases, including human peroxisomal 17-beta-hydroxysteroid dehydrogenase type 4 (17beta-HSD type 4, aka MFE-2, encoded by HSD17B4 gene) which is involved in fatty acid beta-oxidation and steroid metabolism. This subgroup also includes two SDR domains of the Neurospora crassa and Saccharomyces cerevisiae multifunctional beta-oxidation protein (MFP, aka Fox2). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 250 -187612 cd05354 SDR_c7 classical (c) SDR, subgroup 7. These proteins are members of the classical SDR family, with a canonical active site triad (and also an active site Asn) and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 235 -187613 cd05355 SDR_c1 classical (c) SDR, subgroup 1. These proteins are members of the classical SDR family, with a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 270 -187614 cd05356 17beta-HSD1_like_SDR_c 17-beta-hydroxysteroid dehydrogenases (17beta-HSDs) types -1, -3, and -12, -like, classical (c) SDRs. This subgroup includes various 17-beta-hydroxysteroid dehydrogenases and 3-ketoacyl-CoA reductase, these are members of the SDR family, and contain the canonical active site tetrad and glycine-rich NAD-binding motif of the classical SDRs. 3-ketoacyl-CoA reductase (KAR, aka 17beta-HSD type 12, encoded by HSD17B12) acts in fatty acid elongation; 17beta- hydroxysteroid dehydrogenases are isozymes that catalyze activation and inactivation of estrogen and androgens, and include members of the SDR family. 17beta-estradiol dehydrogenase (aka 17beta-HSD type 1, encoded by HSD17B1) converts estrone to estradiol. Estradiol is the predominant female sex hormone. 17beta-HSD type 3 (aka testosterone 17-beta-dehydrogenase 3, encoded by HSD17B3) catalyses the reduction of androstenedione to testosterone, it also accepts estrogens as substrates. This subgroup also contains a putative steroid dehydrogenase let-767 from Caenorhabditis elegans, mutation in which results in hypersensitivity to cholesterol limitation. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 239 -187615 cd05357 PR_SDR_c pteridine reductase (PR), classical (c) SDRs. Pteridine reductases (PRs), members of the SDR family, catalyzes the NAD-dependent reduction of folic acid, dihydrofolate and related compounds. In Leishmania, pteridine reductase (PTR1) acts to circumvent the anti-protozoan drugs that attack dihydrofolate reductase activity. Proteins in this subgroup have an N-terminal NAD-binding motif and a YxxxK active site motif, but have an Asp instead of the usual upstream catalytic Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 234 -187616 cd05358 GlcDH_SDR_c glucose 1 dehydrogenase (GlcDH), classical (c) SDRs. GlcDH, is a tetrameric member of the SDR family, it catalyzes the NAD(P)-dependent oxidation of beta-D-glucose to D-glucono-delta-lactone. GlcDH has a typical NAD-binding site glycine-rich pattern as well as the canonical active site tetrad (YXXXK motif plus upstream Ser and Asn). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 253 -187617 cd05359 ChcA_like_SDR_c 1-cyclohexenylcarbonyl_coenzyme A_reductase (ChcA)_like, classical (c) SDRs. This subgroup contains classical SDR proteins, including members identified as 1-cyclohexenylcarbonyl coenzyme A reductase. ChcA of Streptomyces collinus is implicated in the final reduction step of shikimic acid to ansatrienin. ChcA shows sequence similarity to the SDR family of NAD-binding proteins, but it lacks the conserved Tyr of the characteristic catalytic site. This subgroup also contains the NADH-dependent enoyl-[acyl-carrier-protein(ACP)] reductase FabL from Bacillus subtilis. This enzyme participates in bacterial fatty acid synthesis, in type II fatty-acid synthases and catalyzes the last step in each elongation cycle. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 242 -187618 cd05360 SDR_c3 classical (c) SDR, subgroup 3. These proteins are members of the classical SDR family, with a canonical active site triad (and also active site Asn) and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 233 -187619 cd05361 haloalcohol_DH_SDR_c-like haloalcohol dehalogenase, classical (c) SDRs. Dehalogenases cleave carbon-halogen bonds. Haloalcohol dehalogenase show low sequence similarity to short-chain dehydrogenases/reductases (SDRs). Like the SDRs, haloalcohol dehalogenases have a conserved catalytic triad (Ser-Tyr-Lys/Arg), and form a Rossmann fold. However, the normal classical SDR NAD(P)-binding motif (TGXXGXG) and NAD-binding function is replaced with a halide binding site, allowing the enzyme to catalyze a dehalogenation reaction. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 242 -187620 cd05362 THN_reductase-like_SDR_c tetrahydroxynaphthalene/trihydroxynaphthalene reductase-like, classical (c) SDRs. 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) of Magnaporthe grisea and the related 1,3,8-trihydroxynaphthalene reductase (3HNR) are typical members of the SDR family containing the canonical glycine rich NAD(P)-binding site and active site tetrad, and function in fungal melanin biosynthesis. This subgroup also includes an SDR from Norway spruce that may function to protect against both biotic and abitoic stress. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 243 -187621 cd05363 SDH_SDR_c Sorbitol dehydrogenase (SDH), classical (c) SDR. This bacterial subgroup includes Rhodobacter sphaeroides SDH, and other SDHs. SDH preferentially interconverts D-sorbitol (D-glucitol) and D-fructose, but also interconverts L-iditol/L-sorbose and galactitol/D-tagatose. SDH is NAD-dependent and is a dimeric member of the SDR family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 254 -187622 cd05364 SDR_c11 classical (c) SDR, subgroup 11. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 253 -187623 cd05365 7_alpha_HSDH_SDR_c 7 alpha-hydroxysteroid dehydrogenase (7 alpha-HSDH), classical (c) SDRs. This bacterial subgroup contains 7 alpha-HSDHs, including Escherichia coli 7 alpha-HSDH. 7 alpha-HSDH, a member of the SDR family, catalyzes the NAD+ -dependent dehydrogenation of a hydroxyl group at position 7 of the steroid skeleton of bile acids. In humans the two primary bile acids are cholic and chenodeoxycholic acids, these are formed from cholesterol in the liver. Escherichia coli 7 alpha-HSDH dehydroxylates these bile acids in the human intestine. Mammalian 7 alpha-HSDH activity has been found in livers. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 242 -187624 cd05366 meso-BDH-like_SDR_c meso-2,3-butanediol dehydrogenase-like, classical (c) SDRs. 2,3-butanediol dehydrogenases (BDHs) catalyze the NAD+ dependent conversion of 2,3-butanediol to acetonin; BDHs are classified into types according to their stereospecificity as to substrates and products. Included in this subgroup are Klebsiella pneumonia meso-BDH which catalyzes meso-2,3-butanediol to D(-)-acetonin, and Corynebacterium glutamicum L-BDH which catalyzes lX+)-2,3-butanediol to L(+)-acetonin. This subgroup is comprised of classical SDRs with the characteristic catalytic triad and NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 257 -187625 cd05367 SPR-like_SDR_c sepiapterin reductase (SPR)-like, classical (c) SDRs. Human SPR, a member of the SDR family, catalyzes the NADP-dependent reduction of sepiaptern to 7,8-dihydrobiopterin (BH2). In addition to SPRs, this subgroup also contains Bacillus cereus yueD, a benzil reductase, which catalyzes the stereospecific reduction of benzil to (S)-benzoin. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 241 -187626 cd05368 DHRS6_like_SDR_c human DHRS6-like, classical (c) SDRs. Human DHRS6, and similar proteins. These proteins are classical SDRs, with a canonical active site tetrad and a close match to the typical Gly-rich NAD-binding motif. Human DHRS6 is a cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, which catalyses the conversion of (R)-hydroxybutyrate to acetoacetate. Also included in this subgroup is Escherichia coli UcpA (upstream cys P). Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Note: removed : needed to make this chiodl smaller when drew final trees: rmeoved text form description: Other proteins in this subgroup include Thermoplasma acidophilum aldohexose dehydrogenase, which has high dehydrogenase activity against D-mannose, Bacillus subtilis BacC involved in the biosynthesis of the dipeptide bacilysin and its antibiotic moiety anticapsin, Sphingomonas paucimobilis strain B90 LinC, involved in the degradation of hexachlorocyclohexane isomers...... P). 241 -187627 cd05369 TER_DECR_SDR_a Trans-2-enoyl-CoA reductase (TER) and 2,4-dienoyl-CoA reductase (DECR), atypical (a) SDR. TTER is a peroxisomal protein with a proposed role in fatty acid elongation. Fatty acid synthesis is known to occur in the both endoplasmic reticulum and mitochondria; peroxisomal TER has been proposed as an additional fatty acid elongation system, it reduces the double bond at C-2 as the last step of elongation. This system resembles the mitochondrial system in that acetyl-CoA is used as a carbon donor. TER may also function in phytol metabolism, reducting phytenoyl-CoA to phytanoyl-CoA in peroxisomes. DECR processes double bonds in fatty acids to increase their utility in fatty acid metabolism; it reduces 2,4-dienoyl-CoA to an enoyl-CoA. DECR is active in mitochondria and peroxisomes. This subgroup has the Gly-rich NAD-binding motif of the classical SDR family, but does not display strong identity to the canonical active site tetrad, and lacks the characteristic Tyr at the usual position. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 249 -187628 cd05370 SDR_c2 classical (c) SDR, subgroup 2. Short-chain dehydrogenases/reductases (SDRs, aka Tyrosine-dependent oxidoreductases) are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 228 -187629 cd05371 HSD10-like_SDR_c 17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs. HSD10, also known as amyloid-peptide-binding alcohol dehydrogenase (ABAD), was previously identified as a L-3-hydroxyacyl-CoA dehydrogenase, HADH2. In fatty acid metabolism, HADH2 catalyzes the third step of beta-oxidation, the conversion of a hydroxyl to a keto group in the NAD-dependent oxidation of L-3-hydroxyacyl CoA. In addition to alcohol dehydrogenase and HADH2 activites, HSD10 has steroid dehydrogenase activity. Although the mechanism is unclear, HSD10 is implicated in the formation of amyloid beta-petide in the brain (which is linked to the development of Alzheimer's disease). Although HSD10 is normally concentrated in the mitochondria, in the presence of amyloid beta-peptide it translocates into the plasma membrane, where it's action may generate cytotoxic aldehydes and may lower estrogen levels through its use of 17-beta-estradiol as a substrate. HSD10 is a member of the SRD family, but differs from other SDRs by the presence of two insertions of unknown function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 252 -187630 cd05372 ENR_SDR Enoyl acyl carrier protein (ACP) reductase (ENR), divergent SDR. This bacterial subgroup of ENRs includes Escherichia coli ENR. ENR catalyzes the NAD(P)H-dependent reduction of enoyl-ACP in the last step of fatty acid biosynthesis. De novo fatty acid biosynthesis is catalyzed by the fatty acid synthetase complex, through the serial addition of 2-carbon subunits. In bacteria and plants,ENR catalyzes one of six synthetic steps in this process. Oilseed rape ENR, and also apparently the NADH-specific form of Escherichia coli ENR, is tetrameric. Although similar to the classical SDRs, this group does not have the canonical catalytic tetrad, nor does it have the typical Gly-rich NAD-binding pattern. Such so-called divergent SDRs have a GXXXXXSXA NAD-binding motif and a YXXMXXXK (or YXXXMXXXK) active site motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187631 cd05373 SDR_c10 classical (c) SDR, subgroup 10. This subgroup resembles the classical SDRs, but has an incomplete match to the canonical glycine rich NAD-binding motif and lacks the typical active site tetrad (instead of the critical active site Tyr, it has Phe, but contains the nearby Lys). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 238 -187632 cd05374 17beta-HSD-like_SDR_c 17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs. 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 248 -349398 cd05379 CAP_bacterial Bacterial CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain proteins. Little is known about bacterial and archaeal members of the CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain family. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. Studies of eukaryotic proteins show that CAP domains have several functions, including the binding of cholesterol, lipids and heparan sulfate. This group includes Borrelia burgdorferi outer surface protein BB0689, which does not bind to cholesterol, lipids, or heparan sulfate, and whose function is unknown. 120 -349399 cd05380 CAP_euk Eukaryotic CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain proteins. The CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain is found mainly in eukaryotes. This family includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), and allergen 5 from vespid venom. 144 -349400 cd05381 CAP_PR-1 CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of pathogenesis-related protein 1 (PR-1) family proteins. Members of pathogenesis-related protein 1 (PR-1) family are among the most abundantly produced proteins in plants on pathogen attack. They are considered hallmarks of hypersensitive response/defense pathways and may act as anti-fungal agents or be involved in cell wall loosening. 136 -349401 cd05382 CAP_GAPR1-like CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of Golgi-associated plant pathogenesis-related protein 1 and similar proteins. Golgi-associated plant pathogenesis related protein 1 (GAPR1), also called Golgi-associated PR-1 protein or glioma pathogenesis-related protein 2 (GLIPR-2), forms amyloid-like fibrils in the presence of liposomes containing acidic phospholipids. It has been identified in mice as an up-regulated protein in kidney fibrosis, and is involved in epithelial to mesenchymal transition and in generating a pool of myofibroblasts contributing to fibrosis. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 132 -349402 cd05383 CAP_CRISP CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of cysteine-rich secretory proteins. Cysteine-rich secretory proteins (CRISPs) are two-domain proteins with an evolutionary diverse and structurally conserved N-terminal CAP domain and a C-terminal cysteine-rich domain, which is comprised of a hinge and an ICR (ion channel regulator) region. CRISPs are involved in response to pathogens, fertilization, and sperm maturation. One member, Tex31 from the venom duct of Conus textile, has been shown to possess proteolytic activity sensitive to serine protease inhibitors. CRISP-1 has been shown to mediate gamete fusion by binding to the egg surface. Other members of the CRISP family secreted in the testis (CRISP2), epididymis (CRISP3-4), or during ejaculation (CRISP3), are also involved in sperm-egg interaction, supporting the existence of a functional redundancy and cooperation between homolog proteins ensuring the success of fertilization. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1) and allergen 5 from vespid venom, among others. 139 -349403 cd05384 CAP_PRY1-like CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of pathogen-related yeast 1 (PRY1) protein and similar fungal proteins. PRY1, also called pathogenesis-related protein 1, is a yeast protein that is up-regulated in core ESCRT mutants. It is a secreted protein required for efficient export of lipids such as acetylated sterols, and acts in detoxification of hydrophobic compounds. This PRY1-like group also contains fruiting body proteins SC7/14 from Schizophyllum commune. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 129 -349404 cd05385 CAP_GLIPR1-like CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of glioma pathogenesis-related protein 1 and similar proteins. Glioma pathogenesis-related protein 1 (GLIPR1) is also called related to testes-specific, vespid, and pathogenesis protein 1 (RTVP-1). The GLIPR1 gene has been identified as a p53 target gene and was shown to be methylated and down-regulated in prostate cancer. It is a novel broad-spectrum tumor suppressor whose proapoptotic properties are exerted in part through ROS-JNK signaling. GLIPR1 is composed of a signal peptide that directs its secretion, a CAP domain, and a transmembrane domain. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 148 -349771 cd05386 TraL transfer origin protein TraL. The transfer origin protein TraL is member of the SIMIBI superfamily which contains a ATP-binding domain. Proteins in this superfamily use the energy from hydrolysis of NTP to transfer electron or ion. The specific function of TraL protein is unknown. 155 -349772 cd05387 BY-kinase bacterial tyrosine-kinase. Bacterial tyrosine (BY)-kinases catalyze the autophosphorylation on a C-terminal tyrosine cluster and also phosphorylate endogenous protein substrates by using ATP as phosphoryl donor. Besides their capacity to function as tyrosine kinase, most of these proteins are also involved in the production and transport of exopolysaccharides. BY-kinases are involved in a number of physiological processes ranging from stress resistance to pathogenicity. 190 -349773 cd05388 CobB_N N-terminal domain of cobyrinic acid a,c-diamide synthase. Cobyrinic acid a,c-diamide synthase (CobB, CbiA). Biosynthesis of cobalamin (vitamin B12) requires more than two dozen different enzymes. CobB catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinic acid, via the formation of a phosphorylated intermediate, using glutamine or ammonia as the nitrogen source. CobB is comprised of two protein domains: the C-terminal glutaminase domain and the N-terminal ATP-binding domain. The glutaminase domain catalyzes the hydrolysis of glutamine to glutamate and ammonia. It belongs to the triad class of glutamine amidotransferases. This classification is based on the N-terminal domain which catalyzes the ultimate synthesis of the diamide product by using energy from the hydrolysis of ATP and ammonia transferred from the C-terminal domain. 193 -349774 cd05389 CobQ_N N-terminal domain of cobyric acid synthase. Cobyric acid synthase (CobQ, CbiP) N-terminal domain. CobQ plays a role in the cobalamin (vitamin B12) biosynthesis pathway. CobQ catalyzes the ATP-dependent amidation of adenosyl-cobyrinic acid a,c-diamide at carboxylates positions b, d, e, and g to produce cobyric acid using glutamine or ammonia as the nitrogen source. The C-terminal glutaminase domain catalyzes the hydrolysis of glutamine to glutamate and ammonia. Ammonia is translocated via an intramolecular tunnel to the N-terminal domain for the synthesis of cobyric acid. 223 -349775 cd05390 HypB nickel incorporation protein HypB. HypB is one of numerous accessory proteins required for the maturation of nickel-dependent hydrogenases, like carbon monoxide dehydrogenase or urease. HypB is a GTP-binding protein and has GTP hyrolase activity. It forms homodimer and is capable of binding two nickel ions and two zinc ions. The active site is located on the dimer interface. Energy from hydrolysis of GTP is used to insert nickels into hydrogenases. 203 -213340 cd05391 RasGAP_p120GAP Ras-GTPase Activating Domain of p120. p120GAP is a negative regulator of Ras that stimulates hydrolysis of bound GTP to GDP. Once the Ras regulator p120GAP, a member of the GAP protein family, is recruited to the membrane, it is transiently immobilized to interact with Ras-GTP. The down-regulation of Ras by p120GAP is a critical step in the regulation of many cellular processes, which is disrupted in approximately 30% of human cancers. p120GAP contains SH2, SH3, PH, calcium- and lipid-binding domains, suggesting its involvement in a complex network of cellular interactions in vivo. 328 -213341 cd05392 RasGAP_Neurofibromin_like Ras-GTPase Activating Domain of proteins similar to neurofibromin. Neurofibromin-like proteins include the Saccharomyces cerevisiae RasGAP proteins Ira1 and Ira2, the closest homolog of neurofibromin, which is responsible for the human autosomal dominant disease neurofibromatosis type I (NF1). The RasGAP Ira1/2 proteins are negative regulators of the Ras-cAMP signaling pathway and conserved from yeast to human. In yeast Ras proteins are activated by GEFs, and inhibited by two GAPs, Ira1 and Ira2. Ras proteins activate the cAMP/protein kinase A (PKA) pathway, which controls metabolism, stress resistance, growth, and meiosis. Recent studies showed that the kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with Ira1 and Ira2. Gpb1/2 bind to a conserved C-terminal domain of Ira1/2, and loss of Gpb1/2 results in a destabilization of Ira1 and Ira2, leading to elevated levels of Ras2-GTP and uninhibited cAMP-PKA signaling. Since the Gpb1/2 binding domain on Ira1/2 is conserved in the human neurofibromin protein, the studies suggest that an analogous signaling mechanism may contribute to the neoplastic development of NF1. 317 -213342 cd05394 RasGAP_RASA2 Ras-GTPase Activating Domain of RASA2. RASA2 (or GAP1(m)) is a member of the GAP1 family of Ras GTPase-activating proteins that includes GAP1_IP4BP (or RASA3), CAPRI, and RASAL. In vitro, RASA2 has been shown to bind inositol 1,3,4,5-tetrakisphosphate (IP4), the water soluble inositol head group of the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). In vivo studies also demonstrated that RASA2 binds PIP3, and it is recruited to the plasma membrane following agonist stimulation of PI 3-kinase. Furthermore, the membrane translocation is a consequence of the ability of its pleckstrin homology (PH) domain to bind PIP3. 272 -213343 cd05395 RasGAP_RASA4 Ras-GTPase Activating Domain of RASA4. Ras GTPase activating-like 4 protein (RASAL4), also known as Ca2+ -promoted Ras inactivator (CAPRI), is a member of the GAP1 family. Members of the GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL4, like RASAL, is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to a receptor-mediated elevation in the concentration of intracellular free Ca2+ ([Ca2+]i). However, unlike RASAL, RASAL4 does not sense oscillations in [Ca2+]i. 287 -188647 cd05396 An_peroxidase_like Animal heme peroxidases and related proteins. A diverse family of enzymes, which includes prostaglandin G/H synthase, thyroid peroxidase, myeloperoxidase, linoleate diol synthase, lactoperoxidase, peroxinectin, peroxidasin, and others. Despite its name, this family is not restricted to metazoans: members are found in fungi, plants, and bacteria as well. 370 -143387 cd05397 NT_Pol-beta-like Nucleotidyltransferase (NT) domain of DNA polymerase beta and similar proteins. This superfamily includes the NT domains of DNA polymerase beta and other family X DNA polymerases, as well as the NT domains of Class I and Class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly (A) polymerases, terminal uridylyl transferases, and Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. The Escherichia coli CCA-adding enzyme belongs to this superfamily but is not included as this enzyme lacks the N-terminal helix conserved in the remainder of the superfamily. In the majority of the Pol beta-like superfamily NTs, two carboxylates, Dx[D/E], together with a third more distal carboxylate coordinate two divalent metal cations that are essential for catalysis. These divalent metal ions are involved in a two-metal ion mechanism of nucleotide addition. Two of the three catalytic carboxylates are found in Rel-Spo enzymes, with the second carboxylate of the DXD motif missing. Evidence supports a single-cation synthetase mechanism for Rel-Spo enzymes. 49 -143388 cd05398 NT_ClassII-CCAase Nucleotidyltransferase (NT) domain of ClassII CCA-adding enzymes. CCA-adding enzymes add the sequence [cytidine(C)-cytidine-adenosine (A)], one nucleotide at a time, onto the 3' end of tRNA, in a template-independent reaction. This Class II group is comprised mainly of eubacterial and eukaryotic enzymes and includes Bacillus stearothermophilus CCAase, Escherichia coli poly(A) polymerase I, human mitochondrial CCAase, and Saccharomyces cerevisiae CCAase (CCA1). CCA-adding enzymes have a single catalytic pocket, which recognizes both ATP and CTP substrates. Included in this subgroup are CC- and A-adding enzymes from various ancient species of bacteria such as Aquifex aeolicus; these enzymes collaborate to add CCA to tRNAs. This family belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. These carboxylate residues are fairly well conserved in this family. Escherichia coli CCAase is related to this group but has not been included in this alignment as this enzyme lacks the N-terminal helix conserved in the remainder of the NT superfamily. 139 -143389 cd05399 NT_Rel-Spo_like Nucleotidyltransferase (NT) domain of RelA- and SpoT-like ppGpp synthetases and hydrolases. This family includes the catalytic domains of Escherichia coli ppGpp synthetase (RelA), ppGpp synthetase/hydrolase (SpoT), and related proteins. RelA synthesizes (p)ppGpp in response to amino-acid starvation and in association with ribosomes. (p)ppGpp triggers the bacterial stringent response. SpoT catalyzes (p)ppGpp synthesis under carbon limitation in a ribosome-independent manner. It also catalyzes (p)ppGpp degradation. Gram-negative bacteria have two enzymes involved in (p)ppGpp metabolism while most Gram-positive organisms have a single Rel-Spo enzyme (Rel), which both synthesizes and degrades (p)ppGpp. The Arabidopsis thaliana Rel-Spo proteins, At-RSH1,-2, and-3 appear to regulate a rapid (p)ppGpp-mediated response to pathogens and other stresses. This catalytic domain is found in association with an N-terminal HD domain and a C-terminal metal dependent phosphohydrolase domain (TGS). Some Rel-Spo proteins also have a C-terminal regulatory ACT domain. This subgroup belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition.Two of the three catalytic carboxylates are found in Rel-Spo enzymes, with the second carboxylate of the DXD motif missing. Evidence supports a single-cation synthetase mechanism. 129 -143390 cd05400 NT_2-5OAS_ClassI-CCAase Nucleotidyltransferase (NT) domain of 2'5'-oligoadenylate (2-5A)synthetase (2-5OAS) and class I CCA-adding enzyme. In vertebrates, 2-5OASs are induced by interferon during the innate immune response to protect against RNA virus infections. In the presence of an RNA activator, 2-5OASs catalyze the oligomerization of ATP into 2-5A. 2-5A activates endoribonuclease L, which leads to degradation of the viral RNA. 2-5OASs are also implicated in cell growth control, differentiation, and apoptosis. This family includes human OAS1, -2, -3, and OASL. CCA-adding enzymes add the sequence [cytidine(C)-cytidine-adenosine (A)], one nucleotide at a time, onto the 3' end of tRNA, in a template-independent reaction. This class I group includes the archaeal Sulfolobus shibatae and Archeoglobus fulgidus CCA-adding enzymes. It belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. These carboxylate residues are conserved in this family. 143 -143391 cd05401 NT_GlnE_GlnD_like Nucleotidyltransferase (NT) domain of Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), and similar proteins. Escherichia coli GlnD and -E participate in the Glutamine synthetase (GS)/Glutamate synthase (GOGAT) pathway for the assimilation of ammonium nitrogen. In nitrogen sufficiency, GlnE adenylates GS, reducing GS activity; when nitrogen is limiting, GlnE deadenylates GS-AMP, restoring GS activity. When nitrogen is limiting, GlnD uridylylates the nitrogen regulatory protein PII to PII-UTP, and in nitrogen sufficiency, it removes the modifying groups. The activity of Escherichia coli GlnE is modulated by PII-proteins. PII-UMP promotes GlnE deadenylation activity, and PII promotes GlnE adenylation activity. Escherichia coli GlnE has two separate NT domains. The N-terminal NT domain catalyzes the deadenylylation of GS, and the C-terminal NT domain the adenylylation reaction. The majority of proteins in this family contain a C-terminal NT domain which is associated with a cystathionine beta-synthase (CBS) domain pair and a CAP_ED (cAMP receptor protein effector ) domain. This family belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. For the majority of proteins in this family, these carboxylate residues are conserved. 172 -143392 cd05402 NT_PAP_TUTase Nucleotidyltransferase (NT) domain of poly(A) polymerases and terminal uridylyl transferases. Poly(A) polymerases (PAPs) catalyze mRNA poly(A) tail synthesis, and terminal uridylyl transferases (TUTases) uridylate RNA. PAPs in this subgroup include human PAP alpha, mouse testis-specific cytoplasmic PAP beta, human nuclear PAP gamma, Saccharomyces cerevisiae PAP1, TRF4 and-5, Schizosaccharomyces pombe caffeine-induced death proteins -1, and -14, Caenorhabditis elegans Germ Line Development-2, and Chlamydomonas reinhardtii MUT68. This family also includes human U6 snRNA-specific TUTase1, and Trypanosoma brucei 3'-TUTase-1,-2, and 4. This family belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. For the majority of proteins in this family, these carboxylate residues are conserved. 114 -143393 cd05403 NT_KNTase_like Nucleotidyltransferase (NT) domain of Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. S. aureus KNTase is a plasmid encoded enzyme which confers resistance to a wide range of aminoglycoside antibiotics which have a 4'- or 4''-hydroxyl group in the equatorial position, such as kanamycin A. This enzyme transfers a nucleoside monophosphate group from a nucleotide (ATP,GTP, or UTP) to the 4'-hydroxyl group of kanamycin A. This enzyme is a homodimer, having two NT active sites. The nucleotide and antibiotic binding sites of each active site include residues from each monomer. Included in this subgroup is Escherichia coli AadA5 which confers resistance to the antibiotic spectinomycin and is a putative aminoglycoside-3'-adenylyltransferase. It is part of the aadA5 cassette of a class 1 integron. This subgroup also includes Haemophilus influenzae HI0073 which forms a 2:2 heterotetramer with an unrelated protein HI0074. Structurally HI0074 is related to the substrate-binding domain of S. aureus KNTase. The genes encoding HI0073 and HI0074 form an operon. Little is known about the substrate specificity or function of two-component NTs. The characterized members of this subgroup may not be representive of the function of this subgroup. This subgroup belongs to the Pol beta-like NT superfamily. In the majority of enzymes in this superfamily, two carboxylates, Dx[D/E], together with a third more distal carboxylate, co-ordinate two divalent metal cations involved in a two-metal ion mechanism of nucleotide addition. These carboxylate residues are conserved in this subgroup. 93 -176102 cd05466 PBP2_LTTR_substrate The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the type 2 periplasmic binding fold protein superfamily. This model and hierarchy represent the the substrate-binding domain of the LysR-type transcriptional regulators that form the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, oxidative stress responses, nodule formation of nitrogen-fixing bacteria, synthesis of virulence factors, toxin production, attachment and secretion, to name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 197 -119437 cd05467 CBM20 The family 20 carbohydrate-binding module (CBM20), also known as the starch-binding domain, is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 96 -176472 cd05468 pVHL von Hippel-Landau (pVHL) tumor suppressor protein. von Hippel-Landau (pVHL) protein, the gene product of VHL, is a critical regulator of the ubiquitous oxygen-sensing pathway. It is conserved throughout evolution, as its homologs are found in organisms ranging from mammals to the Drosophila melanogaster, Anopheles gambiae insects and the Caenorhabditis elegans nematode. pVHL acts as the substrate recognition component of an E3 ubiquitin ligase complex. Several proteins have been identified as pVHL-binding proteins that are subject to ubiquitin-mediated proteolysis; the best characterized putative substrates are the alpha subunits of the hypoxia-inducible factor (HIF1alpha, HIF2alpha, and HIF3alpha). In addition to HIF degradation, pVHL has been implicated to be involved in HIF independent cellular processes. Germline VHL mutations cause renal cell carcinomas, hemangioblastomas and pheochromocytomas in humans. pVHL can bind to and direct the proper deposition of fibronectin and collagen IV within the extracellular matrix. It works to stabilize microtubules and foster the maintenance of primary cilium. It also has been reported to promote the stabilization and activation of p53 in a HIF-independent manner and, in neuronal cells, promote apoptosis by down-regulation of Jun-B. 141 -100112 cd05469 Transthyretin_like Transthyretin_like. This domain is present in the transthyretin-like protein (TLP) family which includes transthyretin (TTR) and a transthyretin-related protein called 5-hydroxyisourate hydrolase (HIUase). TTR and HIUase are homotetrameric proteins with each subunit consisting of eight beta-strands arranged in two sheets and a short alpha-helix. The central channel of the tetramer contains two independent binding sites, each located between a pair of subunits. TTR transports thyroid hormones and retinol in the blood serum of vertebrates while HIUase catalyzes the second step in a three-step ureide pathway. TTRs are highly conserved and found only in vertebrates while the HIUases are found in a wide range of bacterial, plant, fungal, slime mold and vertebrate organisms. 113 -133137 cd05470 pepsin_retropepsin_like Cellular and retroviral pepsin-like aspartate proteases. This family includes both cellular and retroviral pepsin-like aspartate proteases. The cellular pepsin and pepsin-like enzymes are twice as long as their retroviral counterparts. The cellular pepsin-like aspartic proteases are found in mammals, plants, fungi and bacteria. These well known and extensively characterized enzymes include pepsins, chymosin, rennin, cathepsins, and fungal aspartic proteases. Several have long been known to be medically (rennin, cathepsin D and E, pepsin) or commercially (chymosin) important. The eukaryotic pepsin-like proteases contain two domains possessing similar topological features. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except in the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The eukaryotic pepsin-like proteases have two active site ASP residues with each N- and C-terminal lobe contributing one residue. While the fungal and mammalian pepsins are bilobal proteins, retropepsins function as dimers and the monomer resembles structure of the N- or C-terminal domains of eukaryotic enzyme. The active site motif (Asp-Thr/Ser-Gly-Ser) is conserved between the retroviral and eukaryotic proteases and between the N-and C-terminal of eukaryotic pepsin-like proteases. The retropepsin-like family includes pepsin-like aspartate proteases from retroviruses, retrotransposons and retroelements; as well as eukaryotic DNA-damage-inducible proteins (DDIs), and bacterial aspartate peptidases. Retropepsin is synthesized as part of the POL polyprotein that contains an aspartyl-protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A) and A2 (retropepsin family). 109 -133138 cd05471 pepsin_like Pepsin-like aspartic proteases, bilobal enzymes that cleave bonds in peptides at acidic pH. Pepsin-like aspartic proteases are found in mammals, plants, fungi and bacteria. These well known and extensively characterized enzymes include pepsins, chymosin, renin, cathepsins, and fungal aspartic proteases. Several have long been known to be medically (renin, cathepsin D and E, pepsin) or commercially (chymosin) important. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Aspartate residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. Most members of the pepsin family specifically cleave bonds in peptides that are at least six residues in length, with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap.The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 283 -133139 cd05472 cnd41_like Chloroplast Nucleoids DNA-binding Protease, catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Chloroplast Nucleoids DNA-binding Protease catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in senescent leaves of tobacco. Antisense tobacco with reduced amount of CND41 maintained green leaves and constant protein levels, especially Rubisco. CND41 has DNA-binding as well as aspartic protease activities. The pepsin-like aspartic protease domain is located at the C-terminus of the protein. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 299 -133140 cd05473 beta_secretase_like Beta-secretase, aspartic-acid protease important in the pathogenesis of Alzheimer's disease. Beta-secretase also called BACE (beta-site of APP cleaving enzyme) or memapsin-2. Beta-secretase is an aspartic-acid protease important in the pathogenesis of Alzheimer's disease, and in the formation of myelin sheaths in peripheral nerve cells. It cleaves amyloid precursor protein (APP) to reveal the N-terminus of the beta-amyloid peptides. The beta-amyloid peptides are the major components of the amyloid plaques formed in the brain of patients with Alzheimer's disease (AD). Since BACE mediates one of the cleavages responsible for generation of AD, it is regarded as a potential target for pharmacological intervention in AD. Beta-secretase is a member of pepsin family of aspartic proteases. Same as other aspartic proteases, beta-secretase is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The enzymes specifically cleave bonds in peptides which have at least six residues in length with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 364 -133141 cd05474 SAP_like SAPs, pepsin-like proteinases secreted from pathogens to degrade host proteins. SAPs (Secreted aspartic proteinases) are secreted from a group of pathogenic fungi, predominantly Candida species. They are secreted from the pathogen to degrade host proteins. SAP is one of the most significant extracellular hydrolytic enzymes produced by C. albicans. SAP proteins, encoded by a family of 10 SAP genes. All 10 SAP genes of C. albicans encode preproenzymes, approximately 60 amino acid longer than the mature enzyme, which are processed when transported via the secretory pathway. The mature enzymes contain sequence motifs typical for all aspartyl proteinases, including the two conserved aspartate residues other active site and conserved cysteine residues implicated in the maintenance of the three-dimensional structure. Most Sap proteins contain putative N-glycosylation sites, but it remains to be determined which Sap proteins are glycosylated. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). The overall structure of Sap protein conforms to the classical aspartic proteinase fold typified by pepsin. SAP is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. More recently evolved enzymes have similar three-dimensional structures, however their amino acid sequences are more divergent except for the conserved catalytic site motif. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 295 -133142 cd05475 nucellin_like Nucellins, plant aspartic proteases specifically expressed in nucellar cells during degradation. Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. This degradation is a characteristic of programmed cell death. Nucellins are plant aspartic proteases specifically expressed in nucellar cells during degradation. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region, and two other regions nearly identical to two regions of plant aspartic proteases. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. Although the three-dimensional structures of the two lobes are very similar, the amino acid sequences are more divergent, except for the conserved catalytic site motif. 273 -133143 cd05476 pepsin_A_like_plant Chroloplast Nucleoids DNA-binding Protease and Nucellin, pepsin-like aspartic proteases from plants. This family contains pepsin like aspartic proteases from plants including Chloroplast Nucleoids DNA-binding Protease and Nucellin. Chloroplast Nucleoids DNA-binding Protease catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in senescent leaves of tobacco and Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The enzymes specifically cleave bonds in peptides which have at least six residues in length with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. 265 -133144 cd05477 gastricsin Gastricsins, asparate proteases produced in gastric mucosa. Gastricsin is also called pepsinogen C. Gastricsins are produced in gastric mucosa of mammals. It is synthesized by the chief cells in the stomach as an inactive zymogen. It is self-converted to a mature enzyme under acidic conditions. Human gastricsin is distributed throughout all parts of the stomach. Gastricsin is synthesized as an inactive progastricsin that has an approximately 40 residue prosequence. It is self-converting to a mature enzyme being triggered by a drop in pH from neutrality to acidic conditions. Like other aspartic proteases, gastricsin are characterized by two catalytic aspartic residues at the active site, and display optimal activity at acidic pH. Mature enzyme has a pseudo-2-fold symmetry that passes through the active site between the catalytic aspartate residues. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic aspartate residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. Although the three-dimensional structures of the two lobes are very similar, the amino acid sequences are more divergent, except for the conserved catalytic site motif. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 318 -133145 cd05478 pepsin_A Pepsin A, aspartic protease produced in gastric mucosa of mammals. Pepsin, a well-known aspartic protease, is produced by the human gastric mucosa in seven different zymogen isoforms, subdivided into two types: pepsinogen A and pepsinogen C. The prosequence of the zymogens are self cleaved under acidic pH. The mature enzymes are called pepsin A and pepsin C, correspondingly. The well researched porcine pepsin is also in this pepsin A family. Pepsins play an integral role in the digestion process of vertebrates. Pepsins are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. More recently evolved enzymes have similar three-dimensional structures, however their amino acid sequences are more divergent except for the conserved catalytic site motif. Pepsins specifically cleave bonds in peptides which have at least six residues in length with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 317 -133146 cd05479 RP_DDI RP_DDI; retropepsin-like domain of DNA damage inducible protein. The family represents the retropepsin-like domain of DNA damage inducible protein. DNA damage inducible protein has a retropepsin-like domain and an amino-terminal ubiquitin-like domain and/or a UBA (ubiquitin-associated) domain. This CD represents the retropepsin-like domain of DDI. 124 -133147 cd05480 NRIP_C NRIP_C; putative nuclear receptor interacting protein. Proteins in this family have been described as probable nuclear receptor interacting proteins. The C-terminal domain of this family is homologous to the retroviral aspartyl protease domain. The domain is structurally related to one lobe of the pepsin molecule. The conserved active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 103 -133148 cd05481 retropepsin_like_LTR_1 Retropepsins_like_LTR; pepsin-like aspartate protease from retrotransposons with long terminal repeats. Retropepsin of retrotransposons with long terminal repeats are pepsin-like aspartate proteases. While fungal and mammalian pepsins are bilobal proteins with structurally related N and C-terminals, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 93 -133149 cd05482 HIV_retropepsin_like Retropepsins, pepsin-like aspartate proteases. This is a subfamily of retropepsins. The family includes pepsin-like aspartate proteases from retroviruses, retrotransposons and retroelements. While fungal and mammalian pepsins are bilobal proteins with structurally related N- and C-termini, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 87 -133150 cd05483 retropepsin_like_bacteria Bacterial aspartate proteases, retropepsin-like protease family. This family of bacteria aspartate proteases is a subfamily of retropepsin-like protease family, which includes enzymes from retrovirus and retrotransposons. While fungal and mammalian pepsin-like aspartate proteases are bilobal proteins with structurally related N- and C-termini, this family of bacteria aspartate proteases is half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate proteases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 96 -133151 cd05484 retropepsin_like_LTR_2 Retropepsins_like_LTR, pepsin-like aspartate proteases. Retropepsin of retrotransposons with long terminal repeats are pepsin-like aspartate proteases. While fungal and mammalian pepsins are bilobal proteins with structurally related N- and C-termini, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 91 -133152 cd05485 Cathepsin_D_like Cathepsin_D_like, pepsin family of proteinases. Cathepsin D is the major aspartic proteinase of the lysosomal compartment where it functions in protein catabolism. It is a member of the pepsin family of proteinases. This enzyme is distinguished from other members of the pepsin family by two features that are characteristic of lysosomal hydrolases. First, mature Cathepsin D is found predominantly in a two-chain form due to a posttranslational cleavage event. Second, it contains phosphorylated, N-linked oligosaccharides that target the enzyme to lysosomes via mannose-6-phosphate receptors. Cathepsin D preferentially attacks peptide bonds flanked by bulky hydrophobic amino acids and its pH optimum is between pH 2.8 and 4.0. Two active site aspartic acid residues are essential for the catalytic activity of aspartic proteinases. Like other aspartic proteinases, Cathepsin D is a bilobed molecule; the two evolutionary related lobes are mostly made up of beta-sheets and flank a deep active site cleft. Each of the two related lobes contributes one active site aspartic acid residue and contains a single carbohydrate group. Cathepsin D is an essential enzyme. Mice deficient for proteinase cathepsin D, generated by gene targeting, develop normally during the first 2 weeks, stop thriving in the third week and die in a state of anorexia in the fourth week. The mice develop atrophy of ileal mucosa followed by other degradation of intestinal organs. In these knockout mice, lysosomal proteolysis was normal. These results suggest that vital functions of cathepsin D are exerted by limited proteolysis of proteins regulating cell growth and/or tissue homeostasis, while its contribution to bulk proteolysis in lysosomes appears to be non-critical. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 329 -133153 cd05486 Cathespin_E Cathepsin E, non-lysosomal aspartic protease. Cathepsin E is an intracellular, non-lysosomal aspartic protease expressed in a variety of cells and tissues. The protease has proposed physiological roles in antigen presentation by the MHC class II system, in the biogenesis of the vasoconstrictor peptide endothelin, and in neurodegeneration associated with brain ischemia and aging. Cathepsin E is the only A1 aspartic protease that exists as a homodimer with a disulfide bridge linking the two monomers. Like many other aspartic proteases, it is synthesized as a zymogen which is catalytically inactive towards its natural substrates at neutral pH and which auto-activates in an acidic environment. The overall structure follows the general fold of aspartic proteases of the A1 family, it is composed of two structurally similar beta barrel lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The catalytic Asp residues are contained in an Asp-Thr-Gly-Ser/thr motif in both N- and C-terminal lobes of the enzyme. The aspartic acid residues act together to allow a water molecule to attack the peptide bond. One aspartic acid residue (in its deprotonated form) activates the attacking water molecule, whereas the other aspartic acid residue (in its protonated form) polarizes the peptide carbonyl, increasing its susceptibility to attack. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 316 -133154 cd05487 renin_like Renin stimulates production of angiotensin and thus affects blood pressure. Renin, also known as angiotensinogenase, is a circulating enzyme that participates in the renin-angiotensin system that mediates extracellular volume, arterial vasoconstriction, and consequently mean arterial blood pressure. The enzyme is secreted by the kidneys from specialized juxtaglomerular cells in response to decreases in glomerular filtration rate (a consequence of low blood volume), diminished filtered sodium chloride and sympathetic nervous system innervation. The enzyme circulates in the blood stream and hydrolyzes angiotensinogen secreted from the liver into the peptide angiotensin I. Angiotensin I is further cleaved in the lungs by endothelial bound angiotensin converting enzyme (ACE) into angiotensin II, the final active peptide. Renin is a member of the aspartic protease family. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Aspartate residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 326 -133155 cd05488 Proteinase_A_fungi Fungal Proteinase A , aspartic proteinase superfamily. Fungal Proteinase A, a proteolytic enzyme distributed among a variety of organisms, is a member of the aspartic proteinase superfamily. In Saccharomyces cerevisiae, targeted to the vacuole as a zymogen, activation of proteinases A at acidic pH can occur by two different pathways: a one-step process to release mature proteinase A, involving the intervention of proteinase B, or a step-wise pathway via the auto-activation product known as pseudo-proteinase A. Once active, S. cerevisiae proteinase A is essential to the activities of other yeast vacuolar hydrolases, including proteinase B and carboxypeptidase Y. The mature enzyme is bilobal, with each lobe providing one of the two catalytically essential aspartic acid residues in the active site. The crystal structure of free proteinase A shows that flap loop is atypically pointing directly into the S(1) pocket of the enzyme. Proteinase A preferentially hydrolyzes hydrophobic residues such as Phe, Leu or Glu at the P1 position and Phe, Ile, Leu or Ala at P1'. Moreover, the enzyme is inhibited by IA3, a natural and highly specific inhibitor produced by S. cerevisiae. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 320 -133156 cd05489 xylanase_inhibitor_I_like TAXI-I inhibits degradation of xylan in the cell wall. Xylanase inhibitor-I (TAXI-I) is a member of potent TAXI-type inhibitors of fungal and bacterial family 11 xylanases. Plants developed a diverse battery of defense mechanisms in response to continual challenges by a broad spectrum of pathogenic microorganisms. Their defense arsenal includes inhibitors of cell wall-degrading enzymes, which hinder a possible invasion and colonization by antagonists. Xylanases of fungal and bacterial pathogens are the key enzymes in the degradation of xylan in the cell wall. Plants secrete proteins that inhibit these degradation glycosidases, including xylanase. Surprisingly, TAXI-I displays structural homology with the pepsin-like family of aspartic proteases but is proteolytically nonfunctional, because one or more residues of the essential catalytic triad are absent. The structure of the TAXI-inhibitor, Aspergillus niger xylanase I complex, illustrates the ability of tight binding and inhibition with subnanomolar affinity and indicates the importance of the C-terminal end for the differences in xylanase specificity among different TAXI-type inhibitors. This family also contains pepsin-like aspartic proteinases homologous to TAXI-I. Unlike TAXI-I, they have active site aspartates and are functionally active. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 362 -133157 cd05490 Cathepsin_D2 Cathepsin_D2, pepsin family of proteinases. Cathepsin D is the major aspartic proteinase of the lysosomal compartment where it functions in protein catabolism. It is a member of the pepsin family of proteinases. This enzyme is distinguished from other members of the pepsin family by two features that are characteristic of lysosomal hydrolases. First, mature Cathepsin D is found predominantly in a two-chain form due to a posttranslational cleavage event. Second, it contains phosphorylated, N-linked oligosaccharides that target the enzyme to lysosomes via mannose-6-phosphate receptors. Cathepsin D preferentially attacks peptide bonds flanked by bulky hydrophobic amino acids and its pH optimum is between pH 2.8 and 4.0. Two active site aspartic acid residues are essential for the catalytic activity of aspartic proteinases. Like other aspartic proteinases, Cathepsin D is a bilobed molecule; the two evolutionary related lobes are mostly made up of beta-sheets and flank a deep active site cleft. Each of the two related lobes contributes one active site aspartic acid residue and contains a single carbohydrate group. Cathepsin D is an essential enzyme. Mice deficient for proteinase cathepsin D, generated by gene targeting, develop normally during the first 2 weeks, stop thriving in the third week and die in a state of anorexia in the fourth week. The mice develop atrophy of ileal mucosa followed by other degradation of intestinal organs. In these knockout mice, lysosomal proteolysis was normal. These results suggest that vital functions of cathepsin D are exerted by limited proteolysis of proteins regulating cell growth and/or tissue homeostasis, while its contribution to bulk proteolysis in lysosomes appears to be non-critical. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 325 -99923 cd05491 Bromo_TBP7_like Bromodomain; TBP7_like subfamily, limited to fungi. TBP7, or TAT-binding protein homolog 7, is a yeast protein of unknown function that contains AAA-superfamily ATP-ase domains and a bromodomain. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. 119 -99924 cd05492 Bromo_ZMYND11 Bromodomain; ZMYND11_like sub-family. ZMYND11 or BS69 is a ubiquitously expressed nuclear protein that has been shown to associate with chromatin. It interacts with chromatin remodeling factors and might play a role in chromatin remodeling and gene expression. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 109 -99925 cd05493 Bromo_ALL-1 Bromodomain, ALL-1 like proteins. ALL-1 is a vertebrate homologue of Drosophila trithorax and is often affected in chromosomal rearrangements that are linked to acute leukemias, such as acute lymphocytic leukemia (ALL). Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. 131 -99926 cd05494 Bromodomain_1 Bromodomain; uncharacterized subfamily. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. 114 -99927 cd05495 Bromo_cbp_like Bromodomain, cbp_like subfamily. Cbp (CREB binding protein or CREBBP) is an acetyltransferase acting on histone, which gives a specific tag for transcriptional activation and also acetylates non-histone proteins. CREBBP binds specifically to phosphorylated CREB protein and augments the activity of phosphorylated CREB to activate transcription of cAMP-responsive genes. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 108 -99928 cd05496 Bromo_WDR9_II Bromodomain; WDR9 repeat II_like subfamily. WDR9 is a human gene located in the Down Syndrome critical region-2 of chromosome 21. It encodes for a nuclear protein containing WD40 repeats and two bromodomains, which may function as a transcriptional regulator involved in chromatin remodeling and play a role in embryonic development. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 119 -99929 cd05497 Bromo_Brdt_I_like Bromodomain, Brdt_like subfamily, repeat I. Human Brdt is a testis-specific member of the BET subfamily of bromodomain proteins; the first bromodomain in Brdt has been shown to be essential for male germ cell differentiation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 107 -99930 cd05498 Bromo_Brdt_II_like Bromodomain, Brdt_like subfamily, repeat II. Human Brdt is a testis-specific member of the BET subfamily of bromodomain proteins; the first bromodomain in Brdt has been shown to be essential for male germ cell differentiation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 102 -99931 cd05499 Bromo_BDF1_2_II Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat II. BDF1 and BDF2 are yeast transcription factors involved in the expression of a wide range of genes, including snRNAs; they are required for sporulation and DNA repair and protect histone H4 from deacetylation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 102 -99932 cd05500 Bromo_BDF1_2_I Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat I. BDF1 and BDF2 are yeast transcription factors involved in the expression of a wide range of genes, including snRNAs; they are required for sporulation and DNA repair and protect histone H4 from deacetylation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 103 -99933 cd05501 Bromo_SP100C_like Bromodomain, SP100C_like subfamily. The SP100C protein is a splice variant of SP100, a major component of PML-SP100 nuclear bodies (NBs), which are poorly understood. It is covalently modified by SUMO-1 and may play a role in processes at the chromatin level. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 102 -99934 cd05502 Bromo_tif1_like Bromodomain; tif1_like subfamily. Tif1 (transcription intermediary factor 1) is a member of the tripartite motif (TRIM) protein family, which is characterized by a particular domain architecture. It functions by recruiting coactivators and/or corepressors to modulate transcription. Vertebrate Tif1-gamma, also labeled E3 ubiquitin-protein ligase TRIM33, plays a role in the control of hematopoiesis. Its homologue in Xenopus laevis, Ectodermin, has been shown to function in germ-layer specification and control of cell growth during embryogenesis. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 109 -99935 cd05503 Bromo_BAZ2A_B_like Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B (BAZ2B) were identified as a novel human bromodomain gene by cDNA library screening. BAZ2A is also known as Tip5 (Transcription termination factor I-interacting protein 5) and hWALp3. The proteins may play roles in transcriptional regulation. Human Tip5 is part of a complex termed NoRC (nucleolar remodeling complex), which induces nucleosome sliding and may play a role in the regulation of the rDNA locus. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 97 -99936 cd05504 Bromo_Acf1_like Bromodomain; Acf1_like or BAZ1A_like subfamily. Bromo adjacent to zinc finger 1A (BAZ1A) was identified as a novel human bromodomain gene by cDNA library screening. The Drosophila homologue, Acf1, is part of the CHRAC (chromatin accessibility complex) and regulates ISWI-induced nucleosome remodeling. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 115 -99937 cd05505 Bromo_WSTF_like Bromodomain; Williams syndrome transcription factor-like subfamily (WSTF-like). The Williams-Beuren syndrome deletion transcript 9 is a putative transcriptional regulator. WSTF was found to play a role in vitamin D-mediated transcription as part of two chromatin remodeling complexes, WINAC and WICH. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 97 -99938 cd05506 Bromo_plant1 Bromodomain, uncharacterized subfamily specific to plants. Might function as a global transcription factor. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 99 -99939 cd05507 Bromo_brd8_like Bromodomain, brd8_like subgroup. In mammals, brd8 (bromodomain containing 8) interacts with the thyroid hormone receptor in a ligand-dependent fashion and enhances thyroid hormone-dependent activation from thyroid response elements. Brd8 is thought to be a nuclear receptor coactivator. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 104 -99940 cd05508 Bromo_RACK7 Bromodomain, RACK7_like subfamily. RACK7 (also called human protein kinase C-binding protein) was identified as a potential tumor suppressor genes, it shares domain architecture with BS69/ZMYND11; both have been implicated in the regulation of cellular proliferation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 99 -99941 cd05509 Bromo_gcn5_like Bromodomain; Gcn5_like subfamily. Gcn5p is a histone acetyltransferase (HAT) which mediates acetylation of histones at lysine residues; such acetylation is generally correlated with the activation of transcription. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 101 -99942 cd05510 Bromo_SPT7_like Bromodomain; SPT7_like subfamily. SPT7 is a yeast protein that functions as a component of the transcription regulatory histone acetylation (HAT) complexes SAGA, SALSA, and SLIK. SAGA is involved in the RNA polymerase II-dependent transcriptional regulation of about 10% of all yeast genes. The SPT7 bromodomain has been shown to weakly interact with acetylated histone H3, but not H4. The human representative of this subfamily is cat eye syndrome critical region protein 2 (CECR2). Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 112 -99943 cd05511 Bromo_TFIID Bromodomain, TFIID-like subfamily. Human TAFII250 (or TAF250) is the largest subunit of TFIID, a large multi-domain complex, which initiates the assembly of the transcription machinery. TAFII250 contains two bromodomains that specifically bind to acetylated histone H4. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 112 -99944 cd05512 Bromo_brd1_like Bromodomain; brd1_like subfamily. BRD1 is a mammalian gene which encodes for a nuclear protein assumed to be a transcriptional regulator. BRD1 has been implicated with brain development and susceptibility to schizophrenia and bipolar affective disorder. Bromodomains are 110 amino acid long domains that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 98 -99945 cd05513 Bromo_brd7_like Bromodomain, brd7_like subgroup. The BRD7 gene encodes a nuclear protein that has been shown to inhibit cell growth and the progression of the cell cycle by regulating cell-cycle genes at the transcriptional level. BRD7 has been identified as a gene involved in nasopharyngeal carcinoma. The protein interacts with acetylated histone H3 via its bromodomain. Bromodomains are 110 amino acid long domains that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 98 -99946 cd05515 Bromo_polybromo_V Bromodomain, polybromo repeat V. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 105 -99947 cd05516 Bromo_SNF2L2 Bromodomain, SNF2L2-like subfamily, specific to animals. SNF2L2 (SNF2-alpha) or SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 is a global transcriptional activator, which cooperates with nuclear hormone receptors to boost transcriptional activation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 107 -99948 cd05517 Bromo_polybromo_II Bromodomain, polybromo repeat II. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 103 -99949 cd05518 Bromo_polybromo_IV Bromodomain, polybromo repeat IV. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 103 -99950 cd05519 Bromo_SNF2 Bromodomain, SNF2-like subfamily, specific to fungi. SNF2 is a yeast protein involved in transcriptional activation, it is the catalytic component of the SWI/SNF ATP-dependent chromatin remodeling complex. The protein is essential for the regulation of gene expression (both positive and negative) of a large number of genes. The SWI/SNF complex changes chromatin structure by altering DNA-histone contacts within the nucleosome, which results in a re-positioning of the nucleosome and facilitates or represses the binding of gene-specific transcription factors. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 103 -99951 cd05520 Bromo_polybromo_III Bromodomain, polybromo repeat III. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 103 -99952 cd05521 Bromo_Rsc1_2_I Bromodomain, repeat I in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are components of the RSC complex (remodeling the structure of chromatin), are essential for transcriptional control, and have a specific domain architecture including two bromodomains. The RSC complex has also been linked to homologous recombination and nonhomologous end-joining repair of DNA double strand breaks. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 106 -99953 cd05522 Bromo_Rsc1_2_II Bromodomain, repeat II in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are components of the RSC complex (remodeling the structure of chromatin), are essential for transcriptional control, and have a specific domain architecture including two bromodomains. The RSC complex has also been linked to homologous recombination and nonhomologous end-joining repair of DNA double strand breaks. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 104 -99954 cd05524 Bromo_polybromo_I Bromodomain, polybromo repeat I. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 113 -99955 cd05525 Bromo_ASH1 Bromodomain; ASH1_like sub-family. ASH1 (absent, small, or homeotic 1) is a member of the trithorax-group in Drosophila melanogaster, an epigenetic transcriptional regulator of HOX genes. Drosophila ASH1 has been shown to methylate specific lysines in histones H3 and H4. Mammalian ASH1 has been shown to methylate histone H3. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 106 -99956 cd05526 Bromo_polybromo_VI Bromodomain, polybromo repeat VI. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. 110 -99957 cd05528 Bromo_AAA Bromodomain; sub-family co-occurring with AAA domains. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. The structure(2DKW) in this alignment is an uncharacterized protein predicted from analysis of cDNA clones from human fetal liver 112 -99958 cd05529 Bromo_WDR9_I_like Bromodomain; WDR9 repeat I_like subfamily. WDR9 is a human gene located in the Down Syndrome critical region-2 of chromosome 21. It encodes for a nuclear protein containing WD40 repeats and two bromodomains, which may function as a transcriptional regulator involved in chromatin remodeling and play a role in embryonic development. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 128 -99913 cd05530 POLBc_B1 DNA polymerase type-B B1 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some archaeal members also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. 372 -99914 cd05531 POLBc_B2 DNA polymerase type-B B2 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some archaeal members also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. 352 -99915 cd05532 POLBc_alpha DNA polymerase type-B alpha subfamily catalytic domain. Three DNA-dependent DNA polymerases type B (alpha, delta, and epsilon) have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase (Pol) alpha is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. In most organisms no specific repair role, other than check point control, has been assigned to this enzyme. Pol alpha contains both polymerase and exonuclease domains, but lacks exonuclease activity suggesting that the exonuclease domain may be for structural purposes only. 400 -99916 cd05533 POLBc_delta DNA polymerase type-B delta subfamily catalytic domain. Three DNA-dependent DNA polymerases type B (alpha, delta, and epsilon) have been identified as essential for nuclear DNA replication in eukaryotes. Presently, no direct data is available regarding the strand specificity of DNA polymerase during DNA replication in vivo. However, mutation analysis supports the hypothesis that DNA polymerase delta is the enzyme responsible for both elongation and maturation of Okazaki fragments on the lagging strand. 393 -99917 cd05534 POLBc_zeta DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member of the eukaryotic B-family of DNA polymerases and distantly related to DNA Pol delta. Pol zeta plays a major role in translesion replication and the production of either spontaneous or induced mutations. Apart from its role in translesion replication, Pol zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen. 451 -99918 cd05535 POLBc_epsilon DNA polymerase type-B epsilon subfamily catalytic domain. Three DNA-dependent DNA polymerases type B (alpha, delta, and epsilon) have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase (Pol) epsilon has been proposed to play a role in elongation of the leading strand during DNA replication. Pol epsilon might also have a role in DNA repair. The structure of pol epsilon is characteristic of this family with the exception that it contains a large c-terminal domain with an unclear function. Phylogenetic analyses indicate that Pol epsilon is the ortholog to the archaeal Pol B3 rather than to Pol alpha, delta, or zeta. This might be because pol epsilon is ancestral to both archaea and eukaryotes DNA polymerases type B. 621 -99919 cd05536 POLBc_B3 DNA polymerase type-B B3 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some members of the archaea also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Structural comparison of the thermostable DNA polymerase type B to its mesostable homolog suggests several adaptations to high temperature such as shorter loops, disulfide bridges, and increasing electrostatic interaction at subdomain interfaces. 371 -99920 cd05537 POLBc_Pol_II DNA polymerase type-II subfamily catalytic domain. Bacteria contain five DNA polymerases (I, II, III, IV and V). DNA polymerase II (Pol II) is a prototype for the B-family of polymerases. The role of Pol II in a variety of cellular activities, such as repair of DNA damaged by UV irradiation or oxidation has been proven by genetic studies. DNA polymerase III is the main enzyme responsible for replication of the bacterial chromosome; however, In vivo studies have also shown that Pol II is able to participate in chromosomal DNA replication with larger role in lagging-strand replication. 371 -99921 cd05538 POLBc_Pol_II_B DNA polymerase type-II B subfamily catalytic domain. Bacteria contain five DNA polymerases (I, II, III, IV and V). DNA polymerase II (Pol II) is a prototype for the B-family of polymerases. The role of Pol II in a variety of cellular activities, such as repair of DNA damaged by UV irradiation or oxidation has been proved by genetic studies. DNA polymerase III is the main enzyme responsible for replication of the bacterial chromosome; however, In vivo studies have also shown that Pol II is able to participate in chromosomal DNA replication with larger role in lagging-strand replication. 347 -349776 cd05540 UreG urease accessory protein UreG. UreG is one of the four accessory proteins of urease. Urease is an enzyme which catalyzes the decomposition of urea to form ammonia and carbon dioxide. Bacterial urease is a trimer of three subunits which are encoded by genes ureA, ureB, and ureC. Up to four accessory proteins (ureD, ureE, ureF, and ureG) are required for urease catalytical function. UreG may play an important role in nickel incorporation of the urease metallocenter. UreG is a member of the Fer4_NifH superfamily which contains an ATP-binding domain. Proteins in this superfamily use the energy from hydrolysis of NTP to transfer electron or ion. 191 -349405 cd05559 CAP_PI16_HrTT-1 CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of peptidase inhibitor 16 and HrTT-1 protein. Human peptidase inhibitor 16 (PI16) is also called cysteine-rich secretory protein 9 (CRISP-9) or PSP94-binding protein. Mouse PI16 is also called cysteine-rich protease inhibitor. PI16 is predominantly expressed by cardiac fibroblasts and is exposed to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. It suppresses the activation of the chemokine chemerin in the myocardium, which may be a part of the cardiac stress response. At high endothelial shear stress, PI16 is an inflammation-regulated inhibitor of matrix metalloproteinase 2 (MMP2). Also included in this subfamily is the HrTT-1 protein, a tail-tip epidermis marker in ascidians. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 134 -240187 cd05560 Xcc1710_like Xcc1710_like family, specific to proteobacteria. Xcc1710 is a hypothetical protein from Xanthomonas campestris pv. campestris str. ATCC 33913, similar to Mth938, a hypothetical protein encoded by the Methanobacterium thermoautotrophicum (Mth) genome. Their three-dimensional structures have been determined, but their functions are unknown. 109 -173797 cd05561 Peptidases_S8_4 Peptidase S8 family domain, uncharacterized subfamily 4. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 239 -173798 cd05562 Peptidases_S53_like Peptidase domain in the S53 family. Members of the peptidase S53 (sedolisin) family include endopeptidases and exopeptidases. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of Asn in subtilisin. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. Characterized sedolisins include Kumamolisin, an extracellular calcium-dependent thermostable endopeptidase from Bacillus. The enzyme is synthesized with a 188 amino acid N-terminal preprotein region which is cleaved after the extraction into the extracellular space with low pH. One kumamolysin paralog, kumamolisin-As, is believed to be a collagenase. TPP1 is a serine protease that functions as a tripeptidyl exopeptidase as well as an endopeptidase. Less is known about PSCP from Pseudomonas which is thought to be an aspartic proteinase. 275 -99905 cd05563 PTS_IIB_ascorbate PTS_IIB_ascorbate: subunit IIB of enzyme II (EII) of the L-ascorbate-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In this system, EII is an L-ascorbate-specific permease with two cytoplasmic subunits (IIA and IIB) and a transmembrane channel IIC subunit. Subunits IIA, IIB, and IIC are encoded by the sgaA, sgaB, and sgaT genes of the E. coli sgaTBA operon. In some bacteria, the IIB (SgaB) domain is fused C-terminal to the IIA (SgaT) domain. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include ascorbate, chitobiose/lichenan, lactose, galactitol, mannitol, fructose, and a sensory system with similarity to the bacterial bgl system. 86 -99906 cd05564 PTS_IIB_chitobiose_lichenan PTS_IIB_chitobiose_lichenan: subunit IIB of enzyme II (EII) of the N,N-diacetylchitobiose-specific and lichenan-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In these systems, EII is either a lichenan- or an N,N-diacetylchitobiose-specific permease with two cytoplasmic domains (IIA and IIB) and a transmembrane channel IIC domain. In the chitobiose system, these subunits are expressed as separate proteins from chbA, chbB, and chbC of the chb operon (formerly the cel (cellulose) operon). In the lichenan system, these subunits are expressed from licA, licB, and licC of the lic operon. The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric beta-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The lic operon is transcribed from a gammaA-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include chitobiose/lichenan, ascorbate, lactose, galactitol, mannitol, fructose, and a sensory system with similarity to the bacterial bgl system. 96 -99907 cd05565 PTS_IIB_lactose PTS_IIB_lactose: subunit IIB of enzyme II (EII) of the lactose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) found in Firmicutes as well as Actinobacteria. In this system, EII is a lactose-specific permease with two cytoplasmic domains (IIA and IIB) and a transmembrane channel IIC domain. The IIC and IIB domains are expressed as a single protein from the lac operon. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include lactose, chitobiose/lichenan, ascorbate, galactitol, mannitol, fructose, and a sensory system with similarity to the bacterial bgl system. 99 -99908 cd05566 PTS_IIB_galactitol PTS_IIB_galactitol: subunit IIB of enzyme II (EII) of the galactitol-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In this system, EII is a galactitol-specific permease with two cytoplasmic domains (IIA and IIB) and a transmembrane channel IIC domain that are expressed on three distinct polypeptide chains, in contrast to other PTS sugar transporters. The three genes encoding these subunits (gatA, gatB, and gatC) comprise the gatCBA operon. Galactitol PTS permease takes up exogenous galactitol, releasing the phosphate ester into the cytoplasm in preparation for oxidation and further metabolism via a modified glycolytic pathway called the tagatose-6-phosphate glycolytic pathway. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include galactitol, chitobiose/lichenan, ascorbate, lactose, mannitol, fructose, and a sensory system with similarity to the bacterial bgl system. 89 -99909 cd05567 PTS_IIB_mannitol PTS_IIB_mannitol: subunit IIB of enzyme II (EII) of the mannitol-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In this system, EII is a mannitol-specific permease with two cytoplasmic domains (IIA and IIB) and a transmembrane channel IIC domain. The IIA, IIB, and IIC domains are expressed from the mtlA gene as a single protein, also known as the mannitol PTS permease, the mtl transporter, or MtlA. MtlA is only functional as a dimer with the dimer contacts occuring between the IIC domains. MtlA takes up exogenous mannitol releasing the phosphate ester into the cytoplasm in preparation for oxidation to fructose-6-phosphate by the NAD-dependent mannitol-P dehydrogenase (MtlD). The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include mannitol, chitobiose/lichenan, ascorbate, lactose, galactitol, fructose, and a sensory system with similarity to the bacterial bgl system. 87 -99910 cd05568 PTS_IIB_bgl_like PTS_IIB_bgl_like: the PTS (phosphotransferase system) IIB domain of a family of sensory systems composed of a membrane-bound sugar-sensor (similar to BglF) and a transcription antiterminator (similar to BglG) which regulate expression of genes involved in sugar utilization. The domain architecture of the IIB-containing protein includes a region N-terminal to the IIB domain which is homologous to the BglG transcription antiterminator with an RNA-binding domain followed by two homologous domains, PRD1 and PRD2 (PTS Regulation Domains). C-terminal to the IIB domain is a domain similar to the PTS IIA domain. In this system, the BglG-like region and the IIB and IIA-like domains are all expressed together as a single multidomain protein. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include this sensory system with similarity to the bacterial bgl system, chitobiose/lichenan, ascorbate, lactose, galactitol, mannitol, and fructose systems. 85 -99911 cd05569 PTS_IIB_fructose PTS_IIB_fructose: subunit IIB of enzyme II (EII) of the fructose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In this system, EII (also referred to as FruAB) is a fructose-specific permease made up of two proteins (FruA and FruB) each containing 3 domains. The FruA protein contains two tandem nonidentical IIB domains and a C-terminal IIC transmembrane domain. Both IIB domains of FruA are included in this alignment. The FruB protein (also referred to as diphosphoryl transfer protein) contains a IIA domain, a domain of unknown function, and an Hpr-like domain called FPr (fructose-inducible HPr). This familiy also includes the IIB domains of several fructose-like PTS permeases including the Frv permease encoded by the frvABXR operon, the Frw permease encoded by the frwACBD operon, the Frx permease encoded by the hrsA gene, and the Fry permease encoded by the fryABC (ypdDGH) operon. FruAB takes up exogenous fructose, releasing the 1-phosphate ester in to the cytoplasm in preparation for metabolism primarily via glycolysis. The IIB domain fold includes a central four-stranded parallel open twisted beta-sheet flanked by alpha-helices on both sides. The seven major PTS systems with this IIB fold include fructose, chitobiose/lichenan, ascorbate, lactose, galactitol, mannitol, and a sensory system with similarity to the bacterial bgl system. 96 -270722 cd05570 STKc_PKC Catalytic domain of the Serine/Threonine Kinase, Protein Kinase C. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, classical PKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. Novel PKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. Also included in this subfamily are the PKC-like proteins, called PKNs. The PKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 318 -270723 cd05571 STKc_PKB Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. There are three PKB isoforms from different genes, PKB-alpha (or Akt1), PKB-beta (or Akt2), and PKB-gamma (or Akt3). PKB contains an N-terminal pleckstrin homology (PH) domain and a C-terminal catalytic domain. It is activated downstream of phosphoinositide 3-kinase (PI3K) and plays important roles in diverse cellular functions including cell survival, growth, proliferation, angiogenesis, motility, and migration. PKB also has a central role in a variety of human cancers, having been implicated in tumor initiation, progression, and metastasis. The PKB subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. 322 -270724 cd05572 STKc_cGK Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mammals have two cGK isoforms from different genes, cGKI and cGKII. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. cGK consists of an N-terminal regulatory domain containing a dimerization and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is also expressed at lower concentrations in other tissues. cGKII is a membrane-bound protein that is most abundantly expressed in the intestine. It is also present in the brain nuclei, adrenal cortex, kidney, lung, and prostate. cGKI is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. cGKII plays a role in the regulation of secretion, such as renin secretion by the kidney and aldosterone secretion by the adrenal. It also regulates bone growth and the circadian rhythm. The cGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -270725 cd05573 STKc_ROCK_NDR_like Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear Dbf2-Related (NDR)-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include ROCK and ROCK-like proteins such as DMPK, MRCK, and CRIK, as well as NDR and NDR-like proteins such as LATS, CBK1 and Sid2p. ROCK and CRIK are effectors of the small GTPase Rho, while MRCK is an effector of the small GTPase Cdc42. NDR and NDR-like kinases contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Proteins in this subfamily are involved in regulating many cellular functions including contraction, motility, division, proliferation, apoptosis, morphogenesis, and cytokinesis. The ROCK/NDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 350 -270726 cd05574 STKc_phototropin_like Catalytic domain of Phototropin-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phototropins are blue-light receptors that control responses such as phototropism, stromatal opening, and chloroplast movement in order to optimize the photosynthetic efficiency of plants. They are light-activated STKs that contain an N-terminal photosensory domain and a C-terminal catalytic domain. The N-terminal domain contains two LOV (Light, Oxygen or Voltage) domains that binds FMN. Photoexcitation of the LOV domains results in autophosphorylation at multiple sites and activation of the catalytic domain. In addition to plant phototropins, included in this subfamily are predominantly uncharacterized fungal STKs whose catalytic domains resemble the phototropin kinase domain. One protein from Neurospora crassa is called nrc-2, which plays a role in growth and development by controlling entry into the conidiation program. The phototropin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 316 -270727 cd05575 STKc_SGK Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGKs are activated by insulin and growth factors via phosphoinositide 3-kinase and PDK1. They activate ion channels, ion carriers, and the Na-K-ATPase, as well as regulate the activity of enzymes and transcription factors. SGKs play important roles in transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. There are three isoforms of SGK, named SGK1, SGK2, and SGK3 (also called cytokine-independent survival kinase CISK). The SGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 323 -270728 cd05576 STKc_RPK118_like Catalytic domain of the Serine/Threonine Kinase, RPK118, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RPK118 contains an N-terminal Phox homology (PX) domain, a Microtubule Interacting and Trafficking (MIT) domain, and a kinase domain containing a long uncharacterized insert. Also included in the family is human RPK60 (or ribosomal protein S6 kinase-like 1), which also contains MIT and kinase domains but lacks a PX domain. RPK118 binds sphingosine kinase, a key enzyme in the synthesis of sphingosine 1-phosphate (SPP), a lipid messenger involved in many cellular events. RPK118 may be involved in transmitting SPP-mediated signaling. RPK118 also binds the antioxidant peroxiredoxin-3. RPK118 may be involved in the transport of PRDX3 from the cytoplasm to its site of function in the mitochondria. The RPK118-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270729 cd05577 STKc_GRK Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. GRKs play important roles in the cardiovascular, immune, respiratory, skeletal, and nervous systems. They contain a central catalytic domain, flanked by N- and C-terminal extensions. The N-terminus contains an RGS (regulator of G protein signaling) homology (RH) domain and several motifs. The C-terminus diverges among different groups of GRKs. There are seven types of GRKs, named GRK1 to GRK7, which are subdivided into three main groups: visual (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is widespread while GRK1/4/7 show a limited tissue distribution. The substrate spectrum of the widely expressed GRKs partially overlaps. The GRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 278 -270730 cd05578 STKc_Yank1 Catalytic domain of the Serine/Threonine Kinase, Yank1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily contains uncharacterized STKs with similarity to the human protein designated as Yank1 or STK32A. The Yank1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270731 cd05579 STKc_MAST_like Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270732 cd05580 STKc_PKA_like Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the cAMP-dependent protein kinases, PKA and PRKX, and similar proteins. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. PRKX is also reulated by the R subunit and is is present in many tissues including fetal and adult brain, kidney, and lung. It is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PKA-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270733 cd05581 STKc_PDK1 Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 278 -270734 cd05582 STKc_RSK_N N-terminal catalytic domain of the Serine/Threonine Kinase, 90 kDa ribosomal protein S6 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), p90-RSKs, or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 317 -270735 cd05583 STKc_MSK_N N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270736 cd05584 STKc_p70S6K Catalytic domain of the Serine/Threonine Kinase, 70 kDa ribosomal protein S6 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p70S6K (or S6K) contains only one catalytic kinase domain, unlike p90 ribosomal S6 kinases (RSKs). It acts as a downstream effector of the STK mTOR (mammalian Target of Rapamycin) and plays a role in the regulation of the translation machinery during protein synthesis. p70S6K also plays a pivotal role in regulating cell size and glucose homeostasis. Its targets include S6, the translation initiation factor eIF3, and the insulin receptor substrate IRS-1, among others. Mammals contain two isoforms of p70S6K, named S6K1 and S6K2 (or S6K-beta). The p70S6K subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 323 -270737 cd05585 STKc_YPK1_like Catalytic domain of Yeast Protein Kinase 1-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal proteins with similarity to the AGC STKs, Saccharomyces cerevisiae YPK1 and Schizosaccharomyces pombe Gad8p. YPK1 is required for cell growth and acts as a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. It also plays a role in efficient endocytosis and in the maintenance of cell wall integrity. Gad8p is a downstream target of Tor1p, the fission yeast homolog of mTOR. It plays a role in cell growth and sexual development. The YPK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270738 cd05586 STKc_Sck1_like Catalytic domain of Suppressor of loss of cAMP-dependent protein kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Sck1 and similar fungal proteins. Sck1 plays a role in trehalase activation triggered by glucose and a nitrogen source. Trehalase catalyzes the cleavage of the disaccharide trehalose to glucose. Trehalose, as a carbohydrate reserve and stress metabolite, plays an important role in the response of yeast to environmental changes. The Sck1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 330 -270739 cd05587 STKc_cPKC Catalytic domain of the Serine/Threonine Kinase, Classical (or Conventional) Protein Kinase C. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. cPKCs contain a calcium-binding C2 region in their regulatory domain. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. The cPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 320 -270740 cd05588 STKc_aPKC Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. aPKCs only require phosphatidylserine (PS) for activation. They contain a C2-like region, instead of a calcium-binding (C2) region found in classical PKCs, in their regulatory domain. There are two aPKC isoforms, zeta and iota. aPKCs are involved in many cellular functions including proliferation, migration, apoptosis, polarity maintenance and cytoskeletal regulation. They also play a critical role in the regulation of glucose metabolism and in the pathogenesis of type 2 diabetes. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. The aPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 328 -270741 cd05589 STKc_PKN Catalytic domain of the Serine/Threonine Kinase, Protein Kinase N. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKN has a C-terminal catalytic domain that is highly homologous to PKCs. Its unique N-terminal regulatory region contains antiparallel coiled-coil (ACC) domains. In mammals, there are three PKN isoforms from different genes (designated PKN-alpha, beta, and gamma), which show different enzymatic properties, tissue distribution, and varied functions. PKN can be activated by the small GTPase Rho, and by fatty acids such as arachidonic and linoleic acids. It is involved in many biological processes including cytokeletal regulation, cell adhesion, vesicle transport, glucose transport, regulation of meiotic maturation and embryonic cell cycles, signaling to the nucleus, and tumorigenesis. The PKN subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 326 -270742 cd05590 STKc_nPKC_eta Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-eta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 323 -270743 cd05591 STKc_nPKC_epsilon Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C epsilon. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-epsilon subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 321 -270744 cd05592 STKc_nPKC_theta_like Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 320 -270745 cd05593 STKc_PKB_gamma Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B gamma (also called Akt3). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKB-gamma is predominantly expressed in neuronal tissues. Mice deficient in PKB-gamma show a reduction in brain weight due to the decreases in cell size and cell number. PKB-gamma has also been shown to be upregulated in estrogen-deficient breast cancer cells, androgen-independent prostate cancer cells, and primary ovarian tumors. It acts as a key mediator in the genesis of ovarian cancer. PKB contains an N-terminal pleckstrin homology (PH) domain and a C-terminal catalytic domain. The PKB-gamma subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 348 -270746 cd05594 STKc_PKB_alpha Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B alpha (also called Akt1). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKB-alpha is predominantly expressed in endothelial cells. It is critical for the regulation of angiogenesis and the maintenance of vascular integrity. It also plays a role in adipocyte differentiation. Mice deficient in PKB-alpha exhibit perinatal morbidity, growth retardation, reduction in body weight accompanied by reduced sizes of multiple organs, and enhanced apoptosis in some cell types. PKB-alpha activity has been reported to be frequently elevated in breast and prostate cancers. In some cancer cells, PKB-alpha may act as a suppressor of metastasis. PKB contains an N-terminal pleckstrin homology (PH) domain and a C-terminal catalytic domain. The PKB-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 356 -173686 cd05595 STKc_PKB_beta Catalytic domain of the Serine/Threonine Kinase, Protein Kinase B beta (also called Akt2). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKB-beta is the predominant PKB isoform expressed in insulin-responsive tissues. It plays a critical role in the regulation of glucose homeostasis. It is also implicated in muscle cell differentiation. Mice deficient in PKB-beta display normal growth weights but exhibit severe insulin resistance and diabetes, accompanied by lipoatrophy and B-cell failure. PKB contains an N-terminal pleckstrin homology (PH) domain and a C-terminal catalytic domain.The PKB-beta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 323 -270747 cd05596 STKc_ROCK Catalytic domain of the Serine/Threonine Kinase, Rho-associated coiled-coil containing protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK is also referred to as Rho-associated kinase or simply as Rho kinase. It contains an N-terminal extension, a catalytic kinase domain, and a long C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD) and a pleckstrin homology (PH) domain. ROCK is auto-inhibited by the RBD and PH domain interacting with the catalytic domain. It is activated via interaction with Rho GTPases and is involved in many cellular functions including contraction, adhesion, migration, motility, proliferation, and apoptosis. The ROCK subfamily consists of two isoforms, ROCK1 and ROCK2, which may be functionally redundant in some systems, but exhibit different tissue distributions. Both isoforms are ubiquitously expressed in most tissues, but ROCK2 is more prominent in brain and skeletal muscle while ROCK1 is more pronounced in the liver, testes, and kidney. Studies in knockout mice result in different phenotypes, suggesting that the two isoforms do not compensate for each other during embryonic development. The ROCK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 352 -270748 cd05597 STKc_DMPK_like Catalytic domain of Myotonic Dystrophy protein kinase (DMPK)-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The DMPK-like subfamily is composed of DMPK and DMPK-related cell division control protein 42 (Cdc42) binding kinase (MRCK). DMPK is expressed in skeletal and cardiac muscles, and in central nervous tissues. The functional role of DMPK is not fully understood. It may play a role in the signal transduction and homeostasis of calcium. The DMPK gene is implicated in myotonic dystrophy 1 (DM1), an inherited multisystemic disorder with symptoms that include muscle hyperexcitability, progressive muscle weakness and wasting, cataract development, testicular atrophy, and cardiac conduction defects. The genetic basis for DM1 is the mutational expansion of a CTG repeat in the 3'-UTR of DMPK. MRCK is activated via interaction with the small GTPase Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. Three isoforms of MRCK are known, named alpha, beta and gamma. MRCKgamma is expressed in heart and skeletal muscles, unlike MRCKalpha and MRCKbeta, which are expressed ubiquitously. The DMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 331 -270749 cd05598 STKc_LATS Catalytic domain of the Serine/Threonine Kinase, Large Tumor Suppressor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LATS was originally identified in Drosophila using a screen for genes whose inactivation led to overproliferation of cells. In tetrapods, there are two LATS isoforms, LATS1 and LATS2. Inactivation of LATS1 in mice results in the development of various tumors, including sarcomas and ovarian cancer. LATS functions as a tumor suppressor and is implicated in cell cycle regulation. The LATS subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 333 -270750 cd05599 STKc_NDR_like Catalytic domain of Nuclear Dbf2-Related kinase-like Protein Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NDR kinases regulate mitosis, cell growth, embryonic development, and neurological processes. They are also required for proper centrosome duplication. Higher eukaryotes contain two NDR isoforms, NDR1 and NDR2. This subfamily also contains fungal NDR-like kinases. NDR kinase contains an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Like many other AGC kinases, NDR kinase requires phosphorylation at two sites, the activation loop (A-loop) and the hydrophobic motif (HM), for activity. The NDR kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 324 -270751 cd05600 STKc_Sid2p_like Catalytic domain of Fungal Sid2p-like Protein Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This group contains fungal kinases including Schizosaccharomyces pombe Sid2p and Saccharomyces cerevisiae Dbf2p. Group members show similarity to NDR kinases in that they contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Sid2p plays a crucial role in the septum initiation network (SIN) and in the initiation of cytokinesis. Dbf2p is important in regulating the mitotic exit network (MEN) and in cytokinesis. The Sid2p-like group is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 386 -270752 cd05601 STKc_CRIK Catalytic domain of the Serine/Threonine Kinase, Citron Rho-interacting kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CRIK (also called citron kinase) is an effector of the small GTPase Rho. It plays an important function during cytokinesis and affects its contractile process. CRIK-deficient mice show severe ataxia and epilepsy as a result of abnormal cytokinesis and massive apoptosis in neuronal precursors. A Down syndrome critical region protein TTC3 interacts with CRIK and inhibits CRIK-dependent neuronal differentiation and neurite extension. CRIK contains a catalytic domain, a central coiled-coil domain, and a C-terminal region containing a Rho-binding domain (RBD), a zinc finger, and a pleckstrin homology (PH) domain, in addition to other motifs. The CRIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 328 -270753 cd05602 STKc_SGK1 Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK1 is ubiquitously expressed and is under transcriptional control of numerous stimuli including cell stress (cell shrinkage), serum, hormones (gluco- and mineralocorticoids), gonadotropins, growth factors, interleukin-6, and other cytokines. It plays roles in sodium retention and potassium elimination in the kidney, nutrient transport, salt sensitivity, memory consolidation, and cardiac repolarization. A common SGK1 variant is associated with increased blood pressure and body weight. SGK1 may also contribute to tumor growth, neurodegeneration, fibrosing disease, and ischemia. The SGK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 339 -270754 cd05603 STKc_SGK2 Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK2 shows a more restricted distribution than SGK1 and is most abundantly expressed in epithelial tissues including kidney, liver, pancreas, and the choroid plexus of the brain. In vitro cellular assays show that SGK2 can stimulate the activity of ion channels, the glutamate transporter EEAT4, and the glutamate receptors, GluR6 and GLUR1. The SGK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 321 -270755 cd05604 STKc_SGK3 Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK3 (also called cytokine-independent survival kinase or CISK) is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. The SGK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 326 -270756 cd05605 STKc_GRK4_like Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the GRK4-like group include GRK4, GRK5, GRK6, and similar GRKs. They contain an N-terminal RGS homology (RH) domain and a catalytic domain, but lack a G protein betagamma-subunit binding domain. They are localized to the plasma membrane through post-translational lipid modification or direct binding to PIP2. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -270757 cd05606 STKc_beta_ARK Catalytic domain of the Serine/Threonine Kinase, beta-adrenergic receptor kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The beta-ARK group is composed of GRK2, GRK3, and similar proteins. GRK2 and GRK3 are both widely expressed in many tissues, although GRK2 is present at higher levels. They contain an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRK2 (also called beta-ARK or beta-ARK1) is important in regulating several cardiac receptor responses. It plays a role in cardiac development and in hypertension. Deletion of GRK2 in mice results in embryonic lethality, caused by hypoplasia of the ventricular myocardium. GRK2 also plays important roles in the liver (as a regulator of portal blood pressure), in immune cells, and in the nervous system. Altered GRK2 expression has been reported in several disorders including major depression, schizophrenia, bipolar disorder, and Parkinsonism. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The beta-ARK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270758 cd05607 STKc_GRK7 Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK7 (also called iodopsin kinase) belongs to the visual group of GRKs. It is primarily found in the retina and plays a role in the regulation of opsin light receptors. GRK7 is located in retinal cone outer segments and plays an important role in regulating photoresponse of the cones. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270759 cd05608 STKc_GRK1 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK1 (also called rhodopsin kinase) belongs to the visual group of GRKs and is expressed in retinal cells. It phosphorylates rhodopsin in rod cells, which leads to termination of the phototransduction cascade. Mutations in GRK1 are associated to a recessively inherited form of stationary nightblindness called Oguchi disease. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -270760 cd05609 STKc_MAST Catalytic domain of the Protein Serine/Threonine Kinase, Microtubule-associated serine/threonine kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. There are four mammalian MAST kinases, named MAST1-MAST4. MAST1 is also called syntrophin-associated STK (SAST) while MAST2 is also called MAST205. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MAST1, MAST2, and MAST3 bind and phosphorylate the tumor suppressor PTEN, and may contribute to the regulation and stabilization of PTEN. MAST2 is involved in the regulation of the Fc-gamma receptor of the innate immune response in macrophages, and may also be involved in the regulation of the Na+/H+ exchanger NHE3. The MAST kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 280 -270761 cd05610 STKc_MASTL Catalytic domain of the Serine/Threonine Kinase, Microtubule-associated serine/threonine-like kinase (also called greatwall kinase). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The MASTL kinases in this group carry only a catalytic domain, which contains a long insertion relative to MAST kinases. MASTL, also called greatwall kinase (Gwl), is involved in the regulation of mitotic entry, which is controlled by the coordinated activities of protein kinases and opposing protein phosphatases (PPs). The cyclin B/CDK1 complex induces entry into M-phase while PP2A-B55 shows anti-mitotic activity. MASTL/Gwl is activated downstream of cyclin B/CDK1 and indirectly inhibits PP2A-B55 by phosphorylating the small protein alpha-endosulfine (Ensa) or the cAMP-regulated phosphoprotein 19 (Arpp19), resulting in M-phase progression. Gwl kinase may also play roles in mRNA stabilization and DNA checkpoint recovery. The human MASTL gene has also been named FLJ14813; a missense mutation in FLJ14813 is associated with autosomal dominant thrombocytopenia. The MASTL kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 349 -270762 cd05611 STKc_Rim15_like Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include Saccharomyces cerevisiae Rim15, Schizosaccharomyces pombe cek1, and similar fungal proteins. They contain a central catalytic domain, which contains an insert relative to MAST kinases. In addition, Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. Rim15 (or Rim15p) functions as a regulator of meiosis. It acts as a downstream effector of PKA and regulates entry into stationary phase (G0). Thus, it plays a crucial role in regulating yeast proliferation, differentiation, and aging. Cek1 may facilitate progression of mitotic anaphase. The Rim15-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270763 cd05612 STKc_PRKX_like Catalytic domain of PRKX-like Protein Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include human PRKX (X chromosome-encoded protein kinase), Drosophila DC2, and similar proteins. PRKX is present in many tissues including fetal and adult brain, kidney, and lung. The PRKX gene is located in the Xp22.3 subregion and has a homolog called PRKY on the Y chromosome. An abnormal interchange between PRKX aand PRKY leads to the sex reversal disorder of XX males and XY females. PRKX is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PRKX-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -270764 cd05613 STKc_MSK1_N N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK1 plays a role in the regulation of translational control and transcriptional activation. It phosphorylates the transcription factors, CREB and NFkB. It also phosphorylates the nucleosomal proteins H3 and HMG-14. Increased phosphorylation of MSK1 is associated with the development of cerebral ischemic/hypoxic preconditioning. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270765 cd05614 STKc_MSK2_N N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 332 -270766 cd05615 STKc_cPKC_alpha Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. The cPKC-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 341 -270767 cd05616 STKc_cPKC_beta Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG, and in most cases, phosphatidylserine (PS) for activation. The cPKC-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 323 -270768 cd05617 STKc_aPKC_zeta Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C zeta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-zeta plays a critical role in activating the glucose transport response. It is activated by glucose, insulin, and exercise through diverse pathways. PKC-zeta also plays a central role in maintaining cell polarity in yeast and mammalian cells. In addition, it affects actin remodeling in muscle cells. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. The aPKC-zeta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 357 -270769 cd05618 STKc_aPKC_iota Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C iota. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-iota is directly implicated in carcinogenesis. It is critical to oncogenic signaling mediated by Ras and Bcr-Abl. The PKC-iota gene is the target of tumor-specific gene amplification in many human cancers, and has been identified as a human oncogene. In addition to its role in transformed growth, PKC-iota also promotes invasion, chemoresistance, and tumor cell survival. Expression profiling of PKC-iota is a prognostic marker of poor clinical outcome in several human cancers. PKC-iota also plays a role in establishing cell polarity, and has critical embryonic functions. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. The aPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 364 -270770 cd05619 STKc_nPKC_theta Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 331 -173710 cd05620 STKc_nPKC_delta Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. It slows down cell proliferation, inducing cell cycle arrest and enhancing cell differentiation. PKC-delta is also involved in the regulation of transcription as well as immune and inflammatory responses. It plays a central role in the genotoxic stress response that leads to DNA damaged-induced apoptosis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 316 -270771 cd05621 STKc_ROCK2 Catalytic domain of the Serine/Threonine Kinase, Rho-associated coiled-coil containing protein kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK2 was the first identified target of activated RhoA, and was found to play a role in stress fiber and focal adhesion formation. It is prominently expressed in the brain, heart, and skeletal muscles. It is implicated in vascular and neurological disorders, such as hypertension and vasospasm of the coronary and cerebral arteries. ROCK2 is also activated by caspase-2 cleavage, resulting in thrombin-induced microparticle generation in response to cell activation. Mice deficient in ROCK2 show intrauterine growth retardation and embryonic lethality because of placental dysfunction. ROCK contains an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD) and a pleckstrin homology (PH) domain. ROCK is auto-inhibited by the RBD and PH domain interacting with the catalytic domain, and is activated via interaction with Rho GTPases. The ROCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 379 -270772 cd05622 STKc_ROCK1 Catalytic domain of the Serine/Threonine Kinase, Rho-associated coiled-coil containing protein kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK1 is preferentially expressed in the liver, lung, spleen, testes, and kidney. It mediates signaling from Rho to the actin cytoskeleton. It is implicated in the development of cardiac fibrosis, cardiomyocyte apoptosis, and hyperglycemia. Mice deficient with ROCK1 display eyelids open at birth (EOB) and omphalocele phenotypes due to the disorganization of actin filaments in the eyelids and the umbilical ring. ROCK contains an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD) and a pleckstrin homology (PH) domain. ROCK is auto-inhibited by the RBD and PH domain interacting with the catalytic domain, and is activated via interaction with Rho GTPases. The ROCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 405 -270773 cd05623 STKc_MRCK_alpha Catalytic domain of the Serine/Threonine Kinase, DMPK-related cell division control protein 42 binding kinase (MRCK) alpha. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MRCK-alpha is expressed ubiquitously in many tissues. It plays a role in the regulation of peripheral actin reorganization and neurite outgrowth. It may also play a role in the transferrin iron uptake pathway. MRCK is activated via interaction with the small GTPase Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. The MRCK-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. This alignment model includes the dimerization domain. 409 -270774 cd05624 STKc_MRCK_beta Catalytic domain of the Protein Serine/Threonine Kinase, DMPK-related cell division control protein 42 binding kinase (MRCK) beta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MRCK-beta is expressed ubiquitously in many tissues. MRCK is activated via interaction with the small GTPase Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. The MRCK-beta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. This alignment model includes the dimerization domain. 409 -270775 cd05625 STKc_LATS1 Catalytic domain of the Serine/Threonine Kinase, Large Tumor Suppressor 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LATS1 functions as a tumor suppressor and is implicated in cell cycle regulation. Inactivation of LATS1 in mice results in the development of various tumors, including sarcomas and ovarian cancer. Promoter methylation, loss of heterozygosity, and missense mutations targeting the LATS1 gene have also been found in human sarcomas and ovarian cancers. In addition, decreased expression of LATS1 is associated with an aggressive phenotype and poor prognosis. LATS1 induces G2 arrest and promotes cytokinesis. It may be a component of the mitotic exit network in higher eukaryotes. The LATS1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 382 -173715 cd05626 STKc_LATS2 Catalytic domain of the Protein Serine/Threonine Kinase, Large Tumor Suppressor 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LATS2 is an essential mitotic regulator responsible for coordinating accurate cytokinesis completion and governing the stabilization of other mitotic regulators. It is also critical in the maintenance of proper chromosome number, genomic stability, mitotic fidelity, and the integrity of centrosome duplication. Downregulation of LATS2 is associated with poor prognosis in acute lymphoblastic leukemia and breast cancer. The LATS2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 381 -270776 cd05627 STKc_NDR2 Catalytic domain of the Serine/Threonine Kinase, Nuclear Dbf2-Related kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NDR2 (also called STK38-like) plays a role in proper centrosome duplication. In addition, it is involved in regulating neuronal growth and differentiation, as well as in facilitating neurite outgrowth. NDR2 is also implicated in fear conditioning as it contributes to the coupling of neuronal morphological changes with fear-memory consolidation. NDR kinase contains an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Like many other AGC kinases, NDR kinase requires phosphorylation at two sites, the activation loop (A-loop) and the hydrophobic motif (HM), for activity. The NDR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 366 -270777 cd05628 STKc_NDR1 Catalytic domain of the Serine/Threonine Kinase, Nuclear Dbf2-Related kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NDR1 (also called STK38) plays a role in proper centrosome duplication. It is highly expressed in thymus, muscle, lung and spleen. It is not an essential protein because mice deficient of NDR1 remain viable and fertile. However, these mice develop T-cell lymphomas and appear to be hypersenstive to carcinogenic treatment. NDR1 appears to also act as a tumor suppressor. NDR kinase contains an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Like many other AGC kinases, NDR kinase requires phosphorylation at two sites, the activation loop (A-loop) and the hydrophobic motif (HM), for activity. The NDR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 376 -270778 cd05629 STKc_NDR_like_fungal Catalytic domain of Fungal Nuclear Dbf2-Related kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This group is composed of fungal NDR-like proteins including Saccharomyces cerevisiae CBK1 (or CBK1p), Schizosaccharomyces pombe Orb6 (or Orb6p), Ustilago maydis Ukc1 (or Ukc1p), and Neurospora crassa Cot1. Like NDR kinase, group members contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. CBK1 is an essential component in the RAM (regulation of Ace2p activity and cellular morphogenesis) network. CBK1 and Orb6 play similar roles in coordinating cell morphology with cell cycle progression. Ukc1 is involved in morphogenesis, pathogenicity, and pigment formation. Cot1 plays a role in polar tip extension.The fungal NDR subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 377 -270779 cd05630 STKc_GRK6 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK6 is widely expressed in many tissues and is expressed as multiple splice variants with different domain architectures. It is post-translationally palmitoylated and localized in the membrane. GRK6 plays important roles in the regulation of dopamine, M3 muscarinic, opioid, and chemokine receptor signaling. It also plays maladaptive roles in addiction and Parkinson's disease. GRK6-deficient mice exhibit altered dopamine receptor regulation, decreased lymphocyte chemotaxis, and increased acute inflammation and neutrophil chemotaxis. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -173720 cd05631 STKc_GRK4 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK4 has a limited tissue distribution. It is mainly found in the testis, but is also present in the cerebellum and kidney. It is expressed as multiple splice variants with different domain architectures and is post-translationally palmitoylated and localized in the membrane. GRK4 polymorphisms are associated with hypertension and salt sensitivity, as they cause hyperphosphorylation, desensitization, and internalization of the dopamine 1 (D1) receptor while increasing the expression of the angiotensin II type 1 receptor. GRK4 plays a crucial role in the D1 receptor regulation of sodium excretion and blood pressure. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -270780 cd05632 STKc_GRK5 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK5 is widely expressed in many tissues. It associates with the membrane though an N-terminal PIP2 binding domain and also binds phospholipids via its C-terminus. GRK5 deficiency is associated with early Alzheimer's disease in humans and mouse models. GRK5 also plays a crucial role in the pathogenesis of sporadic Parkinson's disease. It participates in the regulation and desensitization of PDGFRbeta, a receptor tyrosine kinase involved in a variety of downstream cellular effects including cell growth, chemotaxis, apoptosis, and angiogenesis. GRK5 also regulates Toll-like receptor 4, which is involved in innate and adaptive immunity. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270781 cd05633 STKc_GRK3 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK3, also called beta-adrenergic receptor kinase 2 (beta-ARK2), is widely expressed in many tissues. It is involved in modulating the cholinergic response of airway smooth muscles, and also plays a role in dopamine receptor regulation. GRK3-deficient mice show a lack of olfactory receptor desensitization and altered regulation of the M2 muscarinic airway. GRK3 promoter polymorphisms may also be associated with bipolar disorder. GRK3 contains an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 346 -100059 cd05635 LbH_unknown Uncharacterized proteins, Left-handed parallel beta-Helix (LbH) domain: Members in this group are uncharacterized bacterial proteins containing a LbH domain with multiple turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 101 -100060 cd05636 LbH_G1P_TT_C_like Putative glucose-1-phosphate thymidylyltransferase, C-terminal Left-handed parallel beta-Helix (LbH) domain: Proteins in this family show simlarity to glucose-1-phosphate adenylyltransferases in that they contain N-terminal catalytic domains that resemble a dinucleotide-binding Rossmann fold and C-terminal LbH fold domains. Members in this family are predicted to be glucose-1-phosphate thymidylyltransferases, which are involved in the dTDP-L-rhamnose biosynthetic pathway. Glucose-1-phosphate thymidylyltransferase catalyzes the synthesis of deoxy-thymidine di-phosphate (dTDP)-L-rhamnose, an important component of the cell wall of many microorganisms. The C-terminal LbH domain contains multiple turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 163 -240188 cd05637 SIS_PGI_PMI_2 The members of this protein family contain the SIS (Sugar ISomerase) domain and have both the phosphoglucose isomerase (PGI) and the phosphomannose isomerase (PMI) functions. These functions catalyze the reversible reactions of glucose 6-phosphate to fructose 6-phosphate, and mannose 6-phosphate to fructose 6-phosphate, respectively at an equal rate. This protein contains two SIS domains. This alignment is based on the second SIS domain. 132 -193517 cd05638 M42 M42 Peptidases, also known as glutamyl aminopeptidase family. Peptidase M42 family proteins, also known as glutamyl aminopeptidases (GAP), are co-catalytic metallopeptidases, found in archaea and bacteria. They typically bind two zinc or cobalt atoms and include cellulase and endo-1,4-beta-glucanase (endoglucanase). Some of the enzymes exhibit typical aminopeptidase specificity, whereas others are also capable of N-terminal deblocking activity, i.e. hydrolyzing acylated N-terminal residues. GAP removes glutamyl residues from the N-terminus of peptide substrates, but is also effective against aspartyl and, to a lesser extent, seryl residues. Lactococcus lactis glutamyl aminopeptidase (PepA; aminopeptidase A) has high thermal stability and aids growth of the organism in milk. Pyrococcus horikoshii contain a thermostable de-blocking aminopeptidase member of this family, used commercially for N-terminal protein sequencing. 332 -349892 cd05639 M18 M18 peptidase aminopeptidase family. Peptidase M18 aminopeptidase family is widely distributed in bacteria and eukaryotes, but only the yeast aminopeptidase I and mammalian aspartyl aminopeptidase have been characterized to date. Yeast aminopeptidase I is active only in its dodecameric form with broad substrate specificity, acting on N-terminal leucine and most other amino acids. In contrast, the mammalian aspartyl aminopeptidase is highly selective for hydrolysis of N-terminal Asp or Glu residues from peptides. These enzymes have two catalytic zinc ions at the active site. 430 -349893 cd05640 M28_like M28 Zn-peptidase; uncharacterized subfamily. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. 281 -349894 cd05642 M28_like M28 Zn-peptidase-like; uncharacterized subfamily. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. 347 -349895 cd05643 M28_like M28 Zn-peptidase-like. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They typically have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This protein subfamily conserves some of the metal-coordinating residues of the typically co-catalytic M28 family which might suggest binding of a single metal ion. 290 -349896 cd05644 M28_like M28 Zn-peptidase-like, uncharacterized subfamily. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They typically have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. Proteins in this subfamily conserve some of the metal-coordinating residues of the typically co-catalytic M28 family, and appear to bind a single metal (Zn) ion. 415 -349897 cd05645 M20_peptidase_T M20 Peptidase T specifically cleaves tripeptides. Peptidase M20 family, Peptidase T (PepT; tripeptide aminopeptidase; tripeptidase) subfamily and similar proteins. PepT acts only on tripeptide substrates, and is thus termed a tripeptidase. It catalyzes the release of N-terminal amino acids with hydrophobic side chains from tripeptides with high specificity; dipeptides, tetrapeptides or tripeptides with the N-terminus blocked are not cleaved. Tripeptidases are known to function at the final stage of proteolysis in lactococcal bacteria and release amino acids from tripeptides produced during the digestion of milk proteins such as casein. 400 -349898 cd05646 M20_AcylaseI_like M20 Aminoacylase-I like subfamily. Peptidase M20 family, aminoacylase-I like (AcyI-like; acylase I; N-acyl-L-amino-acid amidohydrolase; EC 3.5.1.14) subfamily. Acylase I is involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate) and is considered as a potential target of antimicrobial agents. Porcine AcyI is also shown to deacetylate certain quorum-sensing N-acylhomoserine lactones, while the rat enzyme has been implicated in degradation of chemotactic peptides of commensal bacteria. Prokaryotic arginine synthesis usually involves the transfer of an acetyl group to glutamate by ornithine acetyltransferase in order to form ornithine. However, Escherichia coli acetylornithine deacetylase (acetylornithinase, ArgE) (EC 3.5.1.16) catalyzes the deacylation of N2-acetyl-L-ornithine to yield ornithine and acetate. Phylogenetic evidence suggests that the clustering of the arg genes in one continuous sequence pattern arose in an ancestor common to Enterobacteriaceae and Vibrionaceae, where ornithine acetyltransferase was lost and replaced by a deacylase. Elevated levels of serum aminoacylase-1 autoantibody have been seen in the disease progression of chronic hepatitis B (CHB), making ACY1 autoantibody a valuable serum biomarker for discriminating hepatitis B virus (HBV) related liver cirrhosis from CHB. 391 -349899 cd05647 M20_DapE_actinobac M20 Peptidase actinobacterial DapE encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. Peptidase M20 family, actinobacterial dapE encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) subfamily. This group is composed of predominantly actinobacterial DapE proteins. DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. It has been shown that DapE is essential for cell growth and proliferation. DapEs have been purified from proteobacteria such as Escherichia coli and Haemophilus influenzae, while genes that encode for DapEs have been sequenced from several bacterial sources such as the actinobacteria Corynebacterium glutamicum and Mycobacterium tuberculosis. DapE is a small, dimeric enzyme (41.6 kDa per subunit) that requires 2 atoms of zinc per molecule of polypeptide for full enzymatic activity. All of the amino acids that function as metal binding ligands are strictly conserved in DapE. 347 -349900 cd05649 M20_ArgE_DapE-like M20 Peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. This group includes the hypothetical protein ygeY from Escherichia coli, a putative deacetylase, but many in this subfamily are classified as unassigned peptidases. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly bacterial and archaeal, and have been inferred by homology as being related to both ArgE and DapE. 381 -349901 cd05650 M20_ArgE_DapE-like M20 Peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly bacterial and archaeal, and have been inferred by homology as being related to both ArgE and DapE. 389 -349902 cd05651 M20_ArgE_DapE-like M20 peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are bacterial, and have been inferred by homology as being related to both ArgE and DapE. 341 -349903 cd05652 M20_ArgE_DapE-like_fungal M20 Peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly fungal, and have been inferred by similarity as being related to both ArgE and DapE. 340 -349904 cd05653 M20_ArgE_LysK M20 Peptidase acetylornithine deacetylase/acetyl-lysine deacetylase. Peptidase M20 family, acetylornithine deacetylase (ArgE)/acetyl-lysine deacetylase (LysK) subfamily. Proteins in this subfamily are mainly archaeal with related bacterial species and are deacetylases with specificity for both N-acetyl-ornithine and N-acetyl-lysine found within a lysine biosynthesis operon. ArgE catalyzes the conversion of N-acetylornithine to ornithine, while LysK, a homolog of ArgE, has deacetylating activities for both N-acetyllysine and N-acetylornithine at almost equal efficiency. These results suggest that LysK which may share an ancestor with ArgE functions not only for lysine biosynthesis, but also for arginine biosynthesis in species such as Thermus thermophilus. The substrate specificity of ArgE is quite broad in that several alpha-N-acyl-L-amino acids can be hydrolyzed, including alpha-N-acetylmethionine and alpha-N-formylmethionine. ArgE shares significant sequence homology and biochemical features, and possibly a common origin, with glutamate carboxypeptidase (CPG2) and succinyl-diaminopimelate desuccinylase (DapE), and aminoacylase I (ACY1), having all metal ligand binding residues conserved. 343 -349905 cd05654 M20_ArgE_RocB M20 Peptidase arginine utilization protein, RocB. Peptidase M20 family, ArgE RocB (arginine utilization protein, RocB; arginine degradation protein, RocB) subfamily. This group of proteins is possibly related to acetylornithine deacetylase (ArgE) and may be involved in the arginine and/or ornithine degradation pathway. In Bacillus subtilis, RocB is one of the three genes found in the rocABC operon, which is sigma L dependent and induced by arginine. The function of members of this family is as yet unknown, although they are predicted as deacetylases. 534 -349906 cd05656 M42_Frv M42 Peptidase, endoglucanases. Peptidase M42 family, Frv (Frv Operon Protein; Endo-1 4-Beta-Glucanase; Cellulase Protein; Endoglucanase; Endo-1 4-Beta-Glucanase Homolog; Glucanase; EC. 3.2.1.4) subfamily. Frv is a co-catalytic metallopeptidase, found in archaea and bacteria, including Pyrococcus horikoshii tetrahedral shaped phTET1 (DAPPh1; FrvX; PhDAP aminopeptidase; PhTET aminopeptidase; deblocking aminopeptidase), phTET2 (DAPPh2) and phTET3 (DAPPh3), Haloarcula marismortui TET (HmTET) as well as Bacillus subtilis YsdC. All of these exhibit aminopeptidase and deblocking activities. The HmTET is a broad substrate aminopeptidase capable of degrading large peptides. PhTET2, which shares 24% identity with HmTET, is a cobalt-activated peptidase and possibly a deblocking aminopeptidase, assembled as a 12-subunit tetrahedral dodecamer, while PhTET1 can be alternatively assembled as a tetrahedral dodecamer or as an octahedral tetracosameric structure. The active site in such a self-compartmentalized complex is located on the inside such that substrate sizes are limited, indicating function as possible peptide scavengers. PhTET2 cleaves polypeptides by a nonprocessive mechanism, preferring N-terminal hydrophobic or uncharged polar amino acids. Streptococcus pneumoniae PepA (SpPepA) also forms dodecamer with tetrahedral architecture, and exhibits selective substrate specificity to acidic amino acids with the preference to glutamic acid, with the substrate binding S1 pocket containing an Arg allows electrostatic interactions with the N-terminal acidic residue in the substrate. The YsdC gene is conserved in a number of thermophiles, archaea and pathogenic bacterial species; the closest structural homolog is Thermotoga maritima FrwX (34% identity), which is annotated as either a cellulase or an endoglucanase, and is possibly involved in polysaccharide biosynthesis or degradation. 337 -349907 cd05657 M42_glucanase_like M42 Peptidase, endoglucanase-like subfamily. Peptidase M42 family, glucanase (endo-1,4-beta-glucanase or endoglucanase)-like subfamily. Proteins in this subfamily are co-catalytic metallopeptidases, found in archaea and bacteria. They show similarity to cellulase and endo-1,4-beta-glucanase (endoglucanase) which typically bind two zinc or cobalt atoms. Some of the enzymes exhibit typical aminopeptidase specificity, whereas others are also capable of N-terminal deblocking activity, i.e. hydrolyzing acylated N-terminal residues. Many of these enzymes are assembled either as tetrahedral dodecamers or as octahedral tetracosameric structures, with the active site located on the inside such that substrate sizes are limited, indicating function as possible peptide scavengers. 337 -349908 cd05658 M18_DAP M18 peptidase aspartyl aminopeptidase. Peptidase M18 family, aspartyl aminopeptidase (DAP; EC 3.4.11.21) subfamily, is widely distributed in bacteria and eukaryotes. DAP cleaves only unblocked N-terminal acidic amino-acid residues. It is a cytosolic enzyme and is highly conserved; for example, the human enzyme has 51% identity to an aspartyl aminopeptidase-like protein in Arabidopsis thaliana. The mammalian DAP is highly selective for hydrolysis of N-terminal aspartate or glutamate residues from peptides. Unlike glutamyl aminopeptidase (M42), DAP does not cleave simple aminoaryl-arylamide substrates. Although there is lack of understanding of the function of this enzyme, it is thought to act in concert with other aminopeptidases to facilitate protein turnover because of their restricted specificities for the N-terminal aspartic and glutamic acid, which cannot be cleaved by any other aminopeptidases. The mammalian aspartyl aminopeptidase is possibly contributing to the catabolism of peptides, including those produced by the proteasome. It may also trim the N-terminus of peptides that are intended for the MHC class I system. In humans, DAP has been implicated in the specific function of converting angiotensin II to the vasoactive angiotensin III within the brain. Saccharomyces cerevisiae aminopeptidase I (Ape1) is involved in protein degradation in vacuoles (the yeast lysosomes) where it is transported by the unique cytoplasm-to-vacuole targeting (Cvt) pathway under vegetative growth conditions and by the autophagy pathway during starvation. Its N-terminal propeptide region, which mediates higher-order complex formation, serves as a scaffolding cargo critical for the assembly of the Cvt vesicle for vacuolar delivery. Pseudomonas aeruginosa aminopeptidase (PaAP) shows that its activity is dependent on Co2+ rather than Zn2+, and is thus a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase. 439 -349909 cd05659 M18_API M18 peptidase aminopeptidase I. Peptidase M18 family, aminopeptidase I (vacuolar aminopeptidase I; polypeptidase; Leucine aminopeptidase IV; LAPIV; aminopeptidase III; aminopeptidase yscI; EC 3.4.11.22) subfamily. Aminopeptidase I is widely distributed in bacteria and eukaryotes, but only the yeast enzyme has been characterized to date. It is a vacuolar enzyme, synthesized as a cytosolic proform, and proteolytically matured upon arrival in the vacuole. The pro-aminopeptidase I (proAPI) does not enter the vacuole via the secretory pathway. In non-starved cells, it uses the cytoplasm to vacuole targeting (cvt) pathway and in cells starved for nitrogen, it is targeted to the vacuole via autophagy. Yeast aminopeptidase I is active only in its dodecameric form with broad substrate specificity, acting on all aminoacyl and peptidyl derivatives that contain a free alpha-amino group; this is in contrast to the highly selective M18 mammalian aspartyl aminopeptidase. N-terminal leucine and most other hydrophobic amino acid residues are the best substrates while glycine and charged amino acid residues in P1 position are cleaved much more slowly. This enzyme is strongly and specifically activated by zinc (Zn2+) and chloride (Cl-) ions. 446 -349910 cd05660 M28_like_PA M28 Zn-peptidase containing a protease-associated (PA) domain insert. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This subfamily is composed of uncharacterized proteins containing a protease-associated (PA) domain insert which may participate in substrate binding and/or promote conformational changes, influencing the stability and accessibility of the site to substrate. 290 -349911 cd05661 M28_like_PA M28 Zn-peptidase containing a PA domain insert. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This subfamily is composed of uncharacterized proteins containing a protease-associated (PA) domain insert which may participate in substrate binding and/or promote conformational changes, influencing the stability and accessibility of the site to substrate. 262 -349912 cd05662 M28_like M28 Zn-Peptidases. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This subfamily is composed of uncharacterized proteins that do not contain a protease-associated (PA) domain. 268 -349913 cd05663 M28_like_PA_PDZ_associated M28 Zn-peptidase containing a protease-associated (PA) domain insert and associated with a PDZ domain. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. This subfamily is composed of uncharacterized proteins, many of which contain a protease-associated (PA) domain insert which may participate in substrate binding and/or promote conformational changes, influencing the stability and accessibility of the site to substrate. Proteins in this subfamily are also associated with the PDZ domain, a widespread protein module that has been recruited to serve multiple functions during the course of evolution. 266 -349914 cd05664 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, Uncharacterized subfamily of proteins predicted as putative amidohydrolases or hippurate hydrolases. These are a class of zinc binding homodimeric enzymes involved in the hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as in the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 399 -349915 cd05665 M20_Acy1_IAAspH M20 Peptidases aminoacyclase-1 indole-3-acetic-L-aspartic acid hydrolase. Peptidase M20 family, bacterial and archaeal aminoacyclase-1 indole-3-acetic-L-aspartic acid hydrolase (IAA-Asp hydrolase; IAAspH; IAAH; IAA amidohydrolase; EC 3.5.1.-) subfamily. IAAspH hydrolyzes indole-3-acetyl-N-aspartic acid (IAA or auxin) to indole-3-acetic acid. Genes encoding IAA-amidohydrolases were first cloned from Arabidopsis; ILR1, IAR3, ILL1 and ILL2 encode active IAA- amino acid hydrolases, and three additional amidohydrolase-like genes (ILL3, ILL5, ILL6) have been isolated. In higher plants, the growth regulator indole-3-acetic acid (IAA or auxin) is found both free and conjugated via amide bonding to a variety of amino acids and peptides, and via an ester linkage to carbohydrates. IAA-Asp conjugates are involved in homeostatic control, protection, storing and subsequent use of free IAA. IAA-Asp is also found in some plants as a unique intermediate for entering into IAA non-decarboxylative oxidative pathway. IAA amidohydrolase cleaves the amide bond between the auxin and the conjugated amino acid. Enterobacter agglomerans IAAspH has very strong enzyme activity and substrate specificity towards IAA-Asp, although its substrate affinity is weaker compared to Arabidopsis enzymes of the ILR1 gene family. Enhanced IAA-hydrolase activity has been observed during clubroot disease in Chinese cabbage. 415 -349916 cd05666 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, uncharacterized subfamily of bacterial proteins predicted as putative amidohydrolases or hippurate hydrolases. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 373 -349917 cd05667 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, uncharacterized subfamily of bacterial proteins that have been predicted as N-acyl-L-amino acid amidohydrolase (amaA), thermostable carboxypeptidase (cpsA-1, cpsA-2 in Sulfolobus solfataricus) and abgB (aminobenzoyl-glutamate utilization protein B), and generally are involved in the urea cycle and metabolism of amino groups. Aminoacylases 1 (ACY1s) comprise a class of zinc binding homodimeric enzymes involved in the hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and is a highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 403 -349918 cd05668 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, uncharacterized subfamily of bacterial uncharacterized proteins predicted as putative amidohydrolases. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 371 -349919 cd05669 M20_Acy1_YxeP-like M20 Peptidase aminoacyclase-1 YxeP-like proteins, including YxeP, YtnL, YjiB and HipO2. Peptidase M20 family, aminoacyclase-1 YxeP-like subfamily including YxeP, YtnL, YjiB and HipO2, most of which have not been well characterized to date. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity; substrates include indoleacetic acid (IAA) N-conjugates of amino acids, N-acetyl-L-amino acids and aminobenzoylglutamate. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as in the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). ACY1 appears to physically interact with Sphingosine kinase type 1 (SphK1) and may influence its physiological functions; SphK1 and its product sphingosine-1-phosphate have been shown to promote cell growth and inhibit apoptosis of tumor cells. Strong expression of the human gene and its mouse ortholog Acy1 in brain, liver, and kidney suggest a role of the enzyme in amino acid metabolism of these organs. 371 -349920 cd05670 M20_Acy1_YkuR-like M20 Peptidase aminoacyclase-1 YkuR-like proteins, including YkuR and Ama/HipO/HyuC proteins. Peptidase M20 family, aminoacyclase-1 YkuR-like subfamily including YkuR and Ama/HipO/HyuC proteins, most of which have not been well characterized to date. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity; substrates include indoleacetic acid (IAA) N-conjugates of amino acids, N-acetyl-L-amino acids and aminobenzoylglutamate. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as in the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). ACY1 appears to physically interact with Sphingosine kinase type 1 (SphK1) and may influence its physiological functions; SphK1 and its product sphingosine-1-phosphate have been shown to promote cell growth and inhibit apoptosis of tumor cells. Strong expression of the human gene and its mouse ortholog Acy1 in brain, liver, and kidney suggest a role of the enzyme in amino acid metabolism of these organs. 367 -349921 cd05672 M20_ACY1L2-like M20 Peptidase aminoacylase 1-like protein 2-like, amidohydrolase subfamily. Peptidase M20 family, aminoacylase 1-like protein 2 (ACY1L2; amidohydrolase)-like subfamily. This group contains many uncharacterized proteins predicted as amidohydrolases, including gene products of abgA and abgB that catalyze the cleavage of p-aminobenzoyl-glutamate, a folate catabolite in Escherichia coli, to p-aminobenzoate and glutamate. p-Aminobenzoyl-glutamate utilization is catalyzed by the abg region gene product, AbgT. This subfamily includes Staphylococcus aureus antibiotic resistance factor HmrA that has been shown to participate in methicillin resistance mechanisms in vivo in the presence of beta-lactams. Aminoacylase 1 (ACY1) proteins are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 360 -349922 cd05673 M20_Acy1L2_AbgB M20 Peptidase Aminoacylase 1-like protein 2 aminobenzoyl-glutamate utilization protein B subfamily. Peptidase M20 family, ACY1L2 aminobenzoyl-glutamate utilization protein B (AbgB) subfamily. This group contains mostly bacterial amidohydrolases, including gene products of abgB that catalyze the cleavage of p-aminobenzoyl-glutamate, a folate catabolite in Escherichia coli, to p-aminobenzoate and glutamate. p-Aminobenzoyl-glutamate is a natural end product of folate catabolism, and its utilization is initiated by the abg region gene product, AbgT, by enabling uptake of its into the cell in a concentration-dependent, saturable manner. It is subsequently cleaved by AbgA and AbgB (sometimes referred to as AbgAB). 437 -349923 cd05674 M20_yscS M20 Peptidase, carboxypeptidase yscS. Peptidase M20 family, yscS (GlyX-carboxypeptidase, CPS1, carboxypeptidase S, carboxypeptidase a, carboxypeptidase yscS, glycine carboxypeptidase)-like subfamily. This group mostly contains proteins that have been uncharacterized to date, but also includes vacuolar proteins involved in nitrogen metabolism which are essential for use of certain peptides that are sole nitrogen sources. YscS releases a C-terminal amino acid from a peptide that has glycine as the penultimate residue. It is synthesized as one polypeptide chain precursor which yields two active precursor molecules after carbohydrate modification in the secretory pathway. The proteolytically unprocessed forms are associated with the membrane, whereas the mature forms of the enzyme are soluble. Enzymes in this subfamily may also cleave intracellularly generated peptides in order to recycle amino acids for protein synthesis. Also included in this subfamily is peptidase M20 domain containing 1 (PM20D1), that is enriched in uncoupling protein 1, UCP1(+) versus UCP1(-) adipocytes is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction; N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice studies show increased circulating PM20D1 augments respiration and increases N-acyl amino acids in blood, and administration of N-acyl amino acids improves glucose homeostasis and increases energy expenditure. 471 -349924 cd05675 M20_yscS_like M20 Peptidase, carboxypeptidase yscS-like. Peptidase M20 family, yscS (GlyX-carboxypeptidase, CPS1, carboxypeptidase S, carboxypeptidase a, carboxypeptidase yscS, glycine carboxypeptidase)-like subfamily. This group contains proteins that have been uncharacterized to date with similarity to vacuolar proteins involved in nitrogen metabolism which are essential for use of certain peptides that are sole nitrogen sources. YscS releases a C-terminal amino acid from a peptide that has glycine as the penultimate residue. It is synthesized as one polypeptide chain precursor which yields two active precursor molecules after carbohydrate modification in the secretory pathway. The proteolytically unprocessed forms are associated with the membrane, whereas the mature forms of the enzyme are soluble. Enzymes in this subfamily may also cleave intracellularly generated peptides in order to recycle amino acids for protein synthesis. 431 -349925 cd05676 M20_dipept_like_CNDP M20 cytosolic nonspecific dipeptidases including anserinase and serum carnosinase. Peptidase M20 family, CNDP (cytosolic nonspecific dipeptidase) subfamily including anserinase (Xaa-methyl-His dipeptidase, EC 3.4.13.5), 'serum' carnosinase (beta-alanyl-L-histidine dipeptidase; EC 3.4.13.20), and some uncharacterized proteins. Two genes, CN1 and CN2, coding for proteins that degrade carnosine (beta-alanyl-L-histidine) and homocarnosine (gamma-aminobutyric acid-L-histidine), two naturally occurring dipeptides with potential neuroprotective and neurotransmitter functions, have been identified. CN1 encodes for serum carnosinase and has narrow substrate specificity for Xaa-His dipeptides, where Xaa can be beta-alanine (carnosine), N-methyl beta-alanine, alanine, glycine and gamma-aminobutyric acid (homocarnosine). CN2 corresponds to the cytosolic nonspecific dipeptidase (CNDP; EC 3.4.13.18) and is not limited to Xaa-His dipeptides. CNDP requires Mn(2+) for full activity and does not hydrolyze homocarnosine. Anserinase is a dipeptidase that mainly catalyzes the hydrolysis of N-alpha-acetylhistidine. 467 -349926 cd05677 M20_dipept_like_DUG2_type M20 Defective in Utilization of Glutathione-type peptidases containing WD repeats. Peptidase M20 family, Defective in Utilization of Glutathione (DUG2) subfamily. DUG2-type proteins are metallopeptidases containing WD repeats at the N-terminus. DUG2 proteins are involved in the alternative pathway of glutathione (GSH) degradation. GSH, the major low-molecular-weight thiol compound in most eukaryotic cells, is normally degraded through the gamma-glutamyl cycle initiated by gamma-glutamyl transpeptidase. However, a novel pathway for the degradation of GSH has been characterized; it requires the participation of three genes identified in Saccharomyces cerevisiae as "defective in utilization of glutathione" genes including DUG1, DUG2, and DUG3. DUG1 encodes a probable di- or tri-peptidase identified as M20 metallopeptidase, DUG2 gene encodes a protein with a metallopeptidase domain and a large N-terminal WD40 repeat region, while DUG3 encodes a protein with a glutamine amidotransferase domain. Although dipeptides and tripeptides with a normal peptide bond, such as cys-gly or glu-cys-gly, can be hydrolyzed by the DUG1 protein, the presence of an unusual peptide bond, like in GSH, requires the participation of the DUG2 and DUG3 proteins as well. These three proteins form a GSH degradosomal complex. 436 -349927 cd05678 M20_dipept_like uncharacterized M20 dipeptidase. Peptidase M20 family, unknown dipeptidase-like subfamily (inferred by homology to be dipeptidases). M20 dipeptidases include a large variety of bacterial enzymes including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase),and canosinase. These dipeptidases have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. 466 -349928 cd05679 M20_dipept_like uncharacterized M20 dipeptidase. Peptidase M20 family, unknown dipeptidase-like subfamily (inferred by homology to be dipeptidases). M20 dipeptidases include a large variety of bacterial enzymes including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase),and canosinase. These dipeptidases have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. 448 -349929 cd05680 M20_dipept_like uncharacterized M20 dipeptidase. Peptidase M20 family, unknown dipeptidase-like subfamily (inferred by homology to be dipeptidases). M20 dipeptidases include a large variety of bacterial enzymes including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase),and canosinase. These dipeptidases have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. 437 -349930 cd05681 M20_dipept_Sso-CP2 uncharacterized M20 dipeptidase. Peptidase M20 family, unknown dipeptidase-like subfamily (inferred by homology to be dipeptidases). M20 dipeptidases include a large variety of bacterial enzymes including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase),and canosinase. These dipeptidases have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. This family includes Sso-CP2 from Sulfolobus solfataricus. 429 -349931 cd05682 M20_dipept_dapE uncharacterized M20 dipeptidase. Peptidase M20 family, unknown dipeptidase-like subfamily (inferred by homology to be dipeptidases). M20 dipeptidases include a large variety of bacterial enzymes including cytosolic nonspecific dipeptidase (CNDP), Xaa-methyl-His dipeptidase (anserinase),and canosinase. These dipeptidases have been shown to act on a wide range of dipeptides, but not larger peptides. For example, anserinase mainly catalyzes the hydrolysis of N-alpha-acetylhistidine while carnosinase degrades beta-alanyl-L-histidine. This family includes dapE (Lpg0809) from Legionella pneumophila. 451 -349932 cd05683 M20_peptT_like M20 Peptidase T like enzymes specifically cleave tripeptides. Peptidase M20 family, PeptT (tripeptide aminopeptidase; tripeptidase)-like subfamily. This group includes bacterial tripeptidases as well as predicted tripeptidases. Peptidase T acts only on tripeptide substrates, and is thus called a tripeptidase. It catalyzes the release of N-terminal amino acids with hydrophobic side chains from tripeptides with high specificity; dipeptides, tetrapeptides or tripeptides with the N-terminus blocked are not cleaved. Tripeptidases are known to function at the final stage of proteolysis in lactococcal bacteria and release amino acids from tripeptides produced during the digestion of milk proteins such as casein. 368 -240189 cd05684 S1_DHX8_helicase S1_DHX8_helicase: The N-terminal S1 domain of human ATP-dependent RNA helicase DHX8, a DEAH (Asp-Glu-Ala-His) box polypeptide. The DEAH-box RNA helicases are thought to play key roles in pre-mRNA splicing and DHX8 facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome. DHX8 is also known as HRH1 (human RNA helicase 1) in Homo sapiens and PRP22 in Saccharomyces cerevisiae. 79 -240190 cd05685 S1_Tex S1_Tex: The C-terminal S1 domain of a transcription accessory factor called Tex, which has been characterized in Bordetella pertussis and Pseudomonas aeruginosa. The tex gene is essential in Bortella pertusis and is named for its role in toxin expression. Tex has two functional domains, an N-terminal domain homologous to the Escherichia coli maltose repression protein, which is a poorly defined transcriptional factor, and a C-terminal S1 RNA-binding domain. Tex is found in prokaryotes, eukaryotes, and archaea. 68 -240191 cd05686 S1_pNO40 S1_pNO40: pNO40 , S1-like RNA-binding domain. pNO40 is a nucleolar protein of unknown function with an N-terminal S1 RNA binding domain, a CCHC type zinc finger, and clusters of basic amino acids representing a potential nucleolar targeting signal. pNO40 was identified through a yeast two-hybrid interaction screen of a human kidney cDNA library using the pinin (pnn) protein as bait. pNO40 is thought to play a role in ribosome maturation and/or biogenesis. 73 -240192 cd05687 S1_RPS1_repeat_ec1_hs1 S1_RPS1_repeat_ec1_hs1: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 1 of the Escherichia coli and Homo sapiens RPS1 (ec1 and hs1, respectively). Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 70 -240193 cd05688 S1_RPS1_repeat_ec3 S1_RPS1_repeat_ec3: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 3 (ec3) of the Escherichia coli RPS1. Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 68 -240194 cd05689 S1_RPS1_repeat_ec4 S1_RPS1_repeat_ec4: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 4 (ec4) of the Escherichia coli RPS1. Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 72 -240195 cd05690 S1_RPS1_repeat_ec5 S1_RPS1_repeat_ec5: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 5 (ec5) of the Escherichia coli RPS1. Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 69 -240196 cd05691 S1_RPS1_repeat_ec6 S1_RPS1_repeat_ec6: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 6 (ec6) of the Escherichia coli RPS1. Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 73 -240197 cd05692 S1_RPS1_repeat_hs4 S1_RPS1_repeat_hs4: Ribosomal protein S1 (RPS1) domain. RPS1 is a component of the small ribosomal subunit thought to be involved in the recognition and binding of mRNA's during translation initiation. The bacterial RPS1 domain architecture consists of 4-6 tandem S1 domains. In some bacteria, the tandem S1 array is located C-terminal to a 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HMBPP reductase) domain. While RPS1 is found primarily in bacteria, proteins with tandem RPS1-like domains have been identified in plants and humans, however these lack the N-terminal HMBPP reductase domain. This CD includes S1 repeat 4 (hs4) of the H. sapiens RPS1 homolog. Autoantibodies to double-stranded DNA from patients with systemic lupus erythematosus cross-react with the human RPS1 homolog. 69 -240198 cd05693 S1_Rrp5_repeat_hs1_sc1 S1_Rrp5_repeat_hs1_sc1: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 1 (hs1) and S. cerevisiae S1 repeat 1 (sc1). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 100 -240199 cd05694 S1_Rrp5_repeat_hs2_sc2 S1_Rrp5_repeat_hs2_sc2: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 2 (hs2) and S. cerevisiae S1 repeat 2 (sc2). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 74 -240200 cd05695 S1_Rrp5_repeat_hs3 S1_Rrp5_repeat_hs3: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 3 (hs3). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 66 -240201 cd05696 S1_Rrp5_repeat_hs4 S1_Rrp5_repeat_hs4: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 4 (hs4). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 71 -240202 cd05697 S1_Rrp5_repeat_hs5 S1_Rrp5_repeat_hs5: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 5 (hs5) and S. cerevisiae S1 repeat 5 (sc5). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 69 -240203 cd05698 S1_Rrp5_repeat_hs6_sc5 S1_Rrp5_repeat_hs6_sc5: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 6 (hs6) and S. cerevisiae S1 repeat 5 (sc5). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 70 -240204 cd05699 S1_Rrp5_repeat_hs7 S1_Rrp5_repeat_hs7: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 7 (hs7). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 72 -240205 cd05700 S1_Rrp5_repeat_hs9 S1_Rrp5_repeat_hs9: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes Homo sapiens S1 repeat 9 (hs9). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 65 -240206 cd05701 S1_Rrp5_repeat_hs10 S1_Rrp5_repeat_hs10: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 10 (hs10). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 69 -240207 cd05702 S1_Rrp5_repeat_hs11_sc8 S1_Rrp5_repeat_hs11_sc8: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 11 (hs11) and S. cerevisiae S1 repeat 8 (sc8). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 70 -240208 cd05703 S1_Rrp5_repeat_hs12_sc9 S1_Rrp5_repeat_hs12_sc9: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 12 (hs12) and S. cerevisiae S1 repeat 9 (sc9). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 73 -240209 cd05704 S1_Rrp5_repeat_hs13 S1_Rrp5_repeat_hs13: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 13 (hs13). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 72 -240210 cd05705 S1_Rrp5_repeat_hs14 S1_Rrp5_repeat_hs14: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes H. sapiens S1 repeat 14 (hs14). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 74 -240211 cd05706 S1_Rrp5_repeat_sc10 S1_Rrp5_repeat_sc10: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes S. cerevisiae S1 repeat 10 (sc10). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 73 -240212 cd05707 S1_Rrp5_repeat_sc11 S1_Rrp5_repeat_sc11: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes S. cerevisiae S1 repeat 11 (sc11). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 68 -240213 cd05708 S1_Rrp5_repeat_sc12 S1_Rrp5_repeat_sc12: Rrp5 is a trans-acting factor important for biogenesis of both the 40S and 60S eukaryotic ribosomal subunits. Rrp5 has two distinct regions, an N-terminal region containing tandemly repeated S1 RNA-binding domains (12 S1 repeats in Saccharomyces cerevisiae Rrp5 and 14 S1 repeats in Homo sapiens Rrp5) and a C-terminal region containing tetratricopeptide repeat (TPR) motifs thought to be involved in protein-protein interactions. Mutational studies have shown that each region represents a specific functional domain. Deletions within the S1-containing region inhibit pre-rRNA processing at either site A3 or A2, whereas deletions within the TPR region confer an inability to support cleavage of A0-A2. This CD includes S. cerevisiae S1 repeat 12 (sc12). Rrp5 is found in eukaryotes but not in prokaryotes or archaea. 77 -100078 cd05709 S2P-M50 Site-2 protease (S2P) class of zinc metalloproteases (MEROPS family M50) cleaves transmembrane domains of substrate proteins, regulating intramembrane proteolysis (RIP) of diverse signal transduction mechanisms. Members of this family use proteolytic activity within the membrane to transfer information across membranes to integrate gene expression with physiologic stresses occurring in another cellular compartment. The domain core structure appears to contain at least three transmembrane helices with a catalytic zinc atom coordinated by three conserved residues contained within the consensus sequence HExxH, together with a conserved aspartate residue. The S2P/M50 family of RIP proteases is widely distributed; in eukaryotic cells, they regulate such processes as sterol and lipid metabolism, and endoplasmic reticulum (ER) stress responses. In sterol-depleted mammalian cells, a two-step proteolytic process releases the N-terminal domains of sterol regulatory element-binding proteins (SREBPs) from membranes of the ER. These domains translocate into the nucleus, where they activate genes of cholesterol and fatty acid biosynthesis. It is the second proteolytic step that is carried out by the SREBP Site-2 protease (S2P) which is present in this CD superfamily. Prokaryotic S2P/M50 homologs have been shown to regulate stress responses, sporulation, cell division, and cell differentiation. In Escherichia coli, the S2P homolog RseP is involved in the sigmaE pathway of extracytoplasmic stress responses, and in Bacillus subtilis, the S2P homolog SpoIVFB is involved in the pro-sigmaK pathway of spore formation. Some of the subfamilies within this hierarchy contain one or two PDZ domain insertions, with putative regulatory roles, such as the inhibition of substrate cleavage as seen by the RseP PDZ domain. 180 -240214 cd05710 SIS_1 A subgroup of the SIS domain. SIS (Sugar ISomerase) domains are found in many phosphosugar isomerases and phosphosugar binding proteins. SIS domains are also found in proteins that regulate the expression of genes involved in synthesis of phosphosugars. 120 -319290 cd05711 Ig2_LILR_KIR_like Second immunoglobulin (Ig)-like domain found in Leukocyte Ig-like receptors, natural and similar domains. Ig2_LILR_KIR_like: domain similar to the second immunoglobulin (Ig)-like domain found in Leukocyte Ig-like receptors (LILRs) and Natural killer inhibitory receptors (KIRs). This group includes LILRB1 (or LIR-1), LILRA5 (or LIR9), an activating natural cytotoxicity receptor NKp46, the immune-type receptor glycoprotein VI (GPVI), and the IgA-specific receptor Fc-alphaRI (or CD89). LILRs are a family of immunoreceptors expressed on expressed on T and B cells, on monocytes, dendritic cells, and subgroups of natural killer (NK) cells. The human LILR family contains nine proteins (LILRA1-3,and 5, and LILRB1-5). From functional assays, and as the cytoplasmic domains of various LILRs, for example LILRB1 (LIR-1), LILRB2 (LIR-2), and LILRB3 (LIR-3) contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) it is thought that LIR proteins are inhibitory receptors. Of the eight LIR family proteins, only LIR-1 (LILRB1), and LIR-2 (LILRB2), show detectable binding to class I MHC molecules; ligands for the other members have yet to be determined. The extracellular portions of the different LIR proteins contain different numbers of Ig-like domains for example, four in the case of LILRB1 (LIR-1), and LILRB2 (LIR-2), and two in the case of LILRB4 (LIR-5). The activating natural cytotoxicity receptor NKp46 is expressed in natural killer cells, and is organized as an extracellular portion having two Ig-like extracellular domains, a transmembrane domain, and a small cytoplasmic portion. GPVI, which also contains two Ig-like domains, participates in the processes of collagen-mediated platelet activation and arterial thrombus formation. Fc-alphaRI is expressed on monocytes, eosinophils, neutrophils and macrophages; it mediates IgA-induced immune effector responses such as phagocytosis, antibody-dependent cell-mediated cytotoxicity and respiratory burst. 91 -143189 cd05712 Ig_Siglec_N Immunoglobulin (Ig) domain at the N terminus of Siglec (sialic acid-binding Ig-like lectins). Ig_Siglec_N: immunoglobulin (Ig) domain at the N terminus of Siglec (sialic acid-binding Ig-like lectins). Siglec refers to a structurally related protein family that specifically recognizes sialic acid in oligosaccharide chains of glycoproteins and glycolipids. Siglecs are type I transmembrane proteins, organized as an extracellular module composed of Ig-like domains (an N-terminal variable set of Ig-like carbohydrate recognition domains, and 1 to 16 constant Ig-like domains), followed by transmembrane and short cytoplasmic domains. Human siglecs are classified into two subgroups, one subgroup is comprised of sialoadhesin (Siglec-1), CD22 (Siglec-2), and MAG, the other subgroup is comprised of CD33-related Siglecs which include CD33 (Siglec-3) and human Siglecs 5-11. 119 -319291 cd05713 Ig_MOG_like Immunoglobulin (Ig)-like domain of myelin oligodendrocyte glycoprotein (MOG). Ig_MOG_like: immunoglobulin (Ig)-like domain of myelin oligodendrocyte glycoprotein (MOG). MOG, a minor component of the myelin sheath, is an important CNS-specific autoantigen, linked to the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). It is a transmembrane protein having an extracellular Ig domain. MOG is expressed in the CNS on the outermost lamellae of the myelin sheath, and on the surface of oligodendrocytes, and may participate in the completion, compaction, and/or maintenance of myelin. This group also includes butyrophilin (BTN). BTN is the most abundant protein in bovine milk-fat globule membrane (MFGM). 100 -319292 cd05714 Ig_CSPGs_LP Immunoglobulin (Ig)-like domain of chondroitin sulfate proteoglycans (CSPGs), human cartilage link protein (LP), and similar proteins. Ig_CSPGs_LP: immunoglobulin (Ig)-like domain similar to that found in chondroitin sulfate proteoglycans (CSPGs) and human cartilage link protein (LP). Included in this group are the CSPGs aggrecan, versican, and neurocan. In CSPGs, this Ig-like domain is followed by hyaluronan (HA)-binding tandem repeats, and a C-terminal region with epidermal growth factor-like, lectin-like, and complement regulatory protein-like domains. Separating these N- and C-terminal regions is a nonhomologous glycosaminoglycan attachment region. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with hyaluronan (HA). These aggregates contribute to the tissue's load bearing properties. Aggrecan and versican have a wide distribution in connective tissue and extracellular matrices. Neurocan is localized almost exclusively in nervous tissue. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. There is considerable evidence that HA-binding CSPGs are involved in developmental processes in the central nervous system. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 111 -319293 cd05715 Ig_P0-like Immunoglobulin (Ig)-like domain of Protein zero (P0) and similar proteins. Ig_P0ex-like: domain similar to the immunoglobulin (Ig) domain of Protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an extracellular Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. This group also contains the Ig domain of Sodium channel subunit beta-2 (SCN2B), and of epithelial V-like antigen 1 (EVA). EVA, also known as myelin protein zero-like 2, is an adhesion molecule, which may play a role in structural organization of the thymus and early lymphocyte development. SCN2B subunits play a role in determining sodium channel density and function in neurons,and in control of electrical excitability in the brain. 116 -143193 cd05716 Ig_pIgR_like Immunoglobulin (Ig)-like domain in the polymeric Ig receptor (pIgR) and similar domains. Ig_pIgR: Immunoglobulin (Ig)-like domain in the polymeric Ig receptor (pIgR) and similar domains. pIgR delivers dimeric IgA and pentameric IgM to mucosal secretions. Polymeric immunoglobulin (pIgs) are the first defense against pathogens and toxins. IgA and IgM can form polymers via an 18-residue extension at their c-termini referred to as the tailpiece. pIgR transports pIgs across mucosal epithelia into mucosal secretions. Human pIgR is a glycosylated type I transmembrane protein, comprised of a 620 residue extracellular region, a 23 residue transmembrane region, and a 103 residue cytoplasmic tail. The extracellular region contains five domains that share sequence similarity with Ig variable (v) regions. This group also contains the Ig-like extracellular domains of other receptors such as NK Cell Receptor Nkp44 and myeloid receptors, among others. 98 -319294 cd05717 Ig1_Necl_like First (N-terminal) immunoglobulin (Ig)-like domain of the nectin-like molecules. Ig1_Necl_like: N-terminal immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 (also known as cell adhesion molecule 3 (CADM3)), Necl-2 (CADM1), Necl-3 (CADM2), and similar proteins. At least five nectin-like molecules have been identified (Necl-1 to Necl-5). They all have an extracellular region containing three Ig-like domains, a transmembrane region, and a cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1, Necl-2, and Necl-3 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue, and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Necl-3 accumulates in central and peripheral nervous system tissue, and has been shown to selectively interact with oligodendrocytes. This group also contains Class-I MHC-restricted T-cell-associated molecule (CRTAM), whose expression pattern is consistent with its expression in Class-I MHC-restricted T-cells. 95 -319295 cd05718 Ig1_PVR_like First immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155) and similar proteins. Ig1_PVR_like: domain similar to the first immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155). Poliovirus (PV) binds to its cellular receptor (PVR/CD155) to initiate infection. CD155 is a membrane-anchored, single-span glycoprotein; its extracellular region has three Ig-like domains. There are four different isotypes of CD155 (referred to as alpha, beta, gamma, and delta), that result from alternate splicing of the CD155 mRNA, and have identical extracellular domains. CD155-beta and - gamma, are secreted, CD155-alpha and delta are membrane-bound and function as PV receptors. The virus recognition site is contained in the amino-terminal domain, D1. Having the virus attachment site on the receptor distal from the plasma membrane, may be important for successful initiation of infection of cells by the virus. CD155 binds in the poliovirus "canyon" with a footprint similar to that of the intercellular adhesion molecule-1 receptor on human rhinoviruses. This group also includes the first Ig-like domain of nectin-1 (also known as poliovirus receptor related protein(PVRL)1; CD111), nectin-3 (also known as PVRL 3), nectin-4 (also known as PVRL4; LNIR receptor)and DNAX accessory molecule 1 (DNAM-1; CD226). 99 -319296 cd05719 Ig2_PVR_like Second immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155) and similar proteins. Ig2_PVR_like: domain similar to the second immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155). Poliovirus (PV) binds to its cellular receptor (PVR/CD155) to initiate infection. CD155 is a membrane-anchored, single-span glycoprotein; its extracellular region has three Ig-like domains. There are four different isotypes of CD155 (referred to as alpha, beta, gamma, and delta), these result from alternate splicing of the CD155 mRNA, and have identical extracellular domains. CD155-beta and - gamma, are secreted, CD155-alpha and delta are membrane-bound and function as PV receptors. The virus recognition site is contained in the amino-terminal domain, D1. Having the virus attachment site on the receptor distal from the plasma membrane may be important for successful initiation of infection of cells by the virus. CD155 binds in the poliovirus "canyon", it has a footprint similar to that of the intercellular adhesion molecule-1 receptor on human rhinoviruses. This group also includes the second Ig-like domain of nectin-1 (also known as poliovirus receptor related protein(PVRL)1; CD111). 95 -143197 cd05720 Ig_CD8_alpha Immunoglobulin (Ig) like domain of CD8 alpha chain. Ig_CD8_alpha: immunoglobulin (Ig)-like domain in CD8 alpha. The CD8 glycoprotein plays an essential role in the control of T-cell selection, maturation and the T-cell receptor (TCR)-mediated response to peptide antigen. CD8 is comprised of alpha and beta subunits and is expressed as either an alpha,alpha or alpha,beta dimer. Both dimeric isoforms can serve as a coreceptor for T cell activation and differentiation, however they have distinct physiological roles, different cellular distributions, unique binding partners etc. Each CD8 subunit is comprised of an extracellular domain containing a v-type Ig-like domain, a single pass transmembrane portion and a short intracellular domain. The Ig domain of CD8 alpha binds to antibodies. 104 -143198 cd05721 IgV_CTLA-4 Immunoglobulin (Ig) domain of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). IgV_CTLA-4: domain similar to the variable(v)-type immunoglobulin (Ig) domain found in cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). CTLA-4 is involved in the regulation of T cell response, acting as an inhibitor of intracellular signalling. CTLA-4 is similar to CD28, a T cell co-receptor protein that recognizes the B7 proteins (CD80 and CD86). CD28 binding of the B7 proteins occurs after the presentation of antigen to the T cell receptor (TCR) via the peptide-MHC complex on the surface of an antigen presenting cell (APC). CTLA-4 also binds the B7 molecules with a higher affinity than does CD28. The B7/CTLA-4 interaction generates inhibitory signals down-regulating the response, and may prevent T cell activation by weak TCR signals. CD28 and CTLA-4 then elicit opposing signals in the regulation of T cell responsiveness and homeostasis. T cell activation leads to increased CTLA-4 gene expression and trafficking of CTLA-4 protein to the cell surface. CTLA-4 is not detected on the T-cell surface until 24 hours after activation. Covalent dimerization of CTLA-4 has been shown to be required for its high binding avidity, although each CTLA-4 monomer contains a binding site for CD80 and CD86. 115 -143199 cd05722 Ig1_Neogenin First immunoglobulin (Ig)-like domain in neogenin and similar proteins. Ig1_Neogenin: first immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues, and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC, which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. 95 -212460 cd05723 Ig4_Neogenin Fourth immunoglobulin (Ig)-like domain in neogenin and similar proteins. Ig4_Neogenin: fourth immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues, and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC, which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. 71 -143201 cd05724 Ig2_Robo Second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Ig2_Robo: domain similar to the second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. 86 -143202 cd05725 Ig3_Robo Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Ig3_Robo: domain similar to the third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. 69 -143203 cd05726 Ig4_Robo Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Ig4_Robo: domain similar to the third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. 90 -143204 cd05727 Ig2_Contactin-2-like Second Ig domain of the neural cell adhesion molecule contactin-2 and similar proteins. Ig2_Contactin-2-like: second Ig domain of the neural cell adhesion molecule contactin-2. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (aliases TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. The first four Ig domains form the intermolecular binding fragment which arranges as a compact U-shaped module by contacts between Ig domains 1 and 4, and domains 2 and 3. It has been proposed that a linear zipper-like array forms, from contactin-2 molecules alternatively provided by the two apposed membranes. 96 -143205 cd05728 Ig4_Contactin-2-like Fourth Ig domain of the neural cell adhesion molecule contactin-2 and similar proteins. Ig4_Contactin-2-like: fourth Ig domain of the neural cell adhesion molecule contactin-2. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (aliases TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. The first four Ig domains form the intermolecular binding fragment which arranges as a compact U-shaped module by contacts between Ig domains 1 and 4, and domains 2 and 3. It has been proposed that a linear zipper-like array forms, from contactin-2 molecules alternatively provided by the two apposed membranes. 85 -319297 cd05729 Ig2_FGFR_like Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor and similar proteins. Ig2_FGFR_like: domain similar to the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. FGF receptors bind FGF signaling polypeptides. FGFs participate in multiple processes such as morphogenesis, development, and angiogenesis. FGFs bind to four FGF receptor tyrosine kinases (FGFR1, -2, -3, -4). Receptor diversity is controlled by alternative splicing producing splice variants with different ligand binding characteristics and different expression patterns. FGFRs have an extracellular region comprised of three Ig-like domains, a single transmembrane helix, and an intracellular tyrosine kinase domain. Ligand binding and specificity reside in the Ig-like domains 2 and 3, and the linker region that connects these two. FGFR activation and signaling depend on FGF-induced dimerization, a process involving cell surface heparin or heparin sulfate proteoglycans. This group also contains fibroblast growth factor (FGF) receptor_like-1(FGFRL1). FGFRL1 does not have a protein tyrosine kinase domain at its C terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. 85 -143207 cd05730 Ig3_NCAM-1_like Third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM). Ig3_NCAM-1_like: domain similar to the third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1,and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. 95 -319298 cd05731 Ig3_L1-CAM_like Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). Ig3_L1-CAM_like: domain similar to the third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM and human neurofascin. 71 -143209 cd05732 Ig_NCAM-1_like Immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM) and similar proteins. Ig_NCAM-1 like: domain similar to the fourth immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Also included in this group is NCAM-2 (also known as OCAM/mamFas II and RNCAM) NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE). 96 -319299 cd05733 Ig_L1-CAM_like Immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins. Ig_L1-CAM_like: domain similar to the first immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains NrCAM [Ng(neuronglia)CAM-related cell adhesion molecule], which is primarily expressed in the nervous system, and human neurofascin. 77 -143211 cd05734 Ig_DSCAM Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM). Ig_DSCAM: immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM). DSCAM is a cell adhesion molecule expressed largely in the developing nervous system. The gene encoding DSCAM is located at human chromosome 21q22, the locus associated with the mental retardation phenotype of Down Syndrome. DSCAM is predicted to be the largest member of the IG superfamily. It has been demonstrated that DSCAM can mediate cation-independent homophilic intercellular adhesion. 79 -143212 cd05735 Ig_DSCAM Immunoglobulin (Ig) domain of Down Syndrome Cell Adhesion molecule (DSCAM). Ig_DSCAM: immunoglobulin (Ig) domain of Down Syndrome Cell Adhesion molecule (DSCAM). DSCAM is a cell adhesion molecule expressed largely in the developing nervous system. The gene encoding DSCAM is located at human chromosome 21q22, the locus associated with the mental retardation phenotype of Down Syndrome. DSCAM is predicted to be the largest member of the IG superfamily. It has been demonstrated that DSCAM can mediate cation-independent homophilic intercellular adhesion. 88 -143213 cd05736 Ig2_Follistatin_like Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5 and similar proteins. Ig2_Follistatin_like: domain similar to the second immunoglobulin (Ig)-like domain found in human Follistatin-related protein 5 (FSTL5) and a follistatin-like molecule encoded by the CNS-related Mahya gene. Mahya genes have been retained in certain Bilaterian branches during evolution. They are conserved in Hymenoptera and Deuterostomes, but are absent from other metazoan species such as fruit fly and nematode. Mahya proteins are secretory, with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two Ig-like domains, and a novel C-terminal domain. Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Follistatin is a secreted, multidomain protein that binds activins with high affinity and antagonizes their signaling. 76 -319300 cd05737 Ig_Myomesin_like_C C-temrinal immunoglobulin (Ig)-like domain of myomesin and M-protein. Ig_Myomesin_like_C: domain similar to the C-temrinal immunoglobulin (Ig)-like domain of myomesin and M-protein. Myomesin and M-protein are both structural proteins localized to the M-band, a transverse structure in the center of the sarcomere, and are candidates for M-band bridges. Both proteins are modular, consisting mainly of repetitive Ig-like and fibronectin type III (FnIII) domains. Myomesin is expressed in all types of vertebrate striated muscle; M-protein has a muscle-type specific expression pattern. Myomesin is present in both slow and fast fibers; M-protein is present only in fast fibers. It has been suggested that myomesin acts as a molecular spring with alternative splicing as a means of modifying its elasticity. 92 -319301 cd05738 Ig2_RPTP_IIa_LAR_like Second immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. Ig2_RPTP_IIa_LAR_like: domain similar to the second immunoglobulin (Ig)-like domain found in the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. LAR belongs to the RPTP type IIa subfamily. Members of this subfamily are cell adhesion molecule-like proteins involved in central nervous system (CNS) development. They have large extracellular portions, comprised of multiple Ig-like domains and two to nine fibronectin type III (FNIII) domains, and a cytoplasmic portion having two tandem phosphatase domains. 74 -143216 cd05739 Ig3_RPTP_IIa_LAR_like Third immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. Ig3_RPTP_IIa_LAR_like: domain similar to the third immunoglobulin (Ig)-like domain found in the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. LAR belongs to the RPTP type IIa subfamily. Members of this subfamily are cell adhesion molecule-like proteins involved in central nervous system (CNS) development. They have large extracellular portions, comprised of multiple Ig-like domains and two to nine fibronectin type III (FNIII) domains, and a cytoplasmic portion having two tandem phosphatase domains. Included in this group is Drosophila LAR (DLAR). 69 -143217 cd05740 Ig_CEACAM Immunoglobulin (Ig)-like domain of carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM). Ig_CEACAM: Immunoglobulin (Ig)-like domain 4 in carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) protein subfamily. The CEA family is a group of anchored or secreted glycoproteins, expressed by epithelial cells, leukocytes, endothelial cells and placenta. The CEA family is divided into the CEACAM and pregnancy-specific glycoprotein (PSG) subfamilies. This group represents the CEACAM subfamily. CEACAM1 has many important cellular functions, it is a cell adhesion molecule, and a signaling molecule that regulates the growth of tumor cells, it is an angiogenic factor, and is a receptor for bacterial and viral pathogens, including mouse hepatitis virus (MHV). In mice, four isoforms of CEACAM1 generated by alternative splicing have either two [D1, D4] or four [D1-D4] Ig-like domains on the cell surface. 91 -319302 cd05741 Ig_CEACAM_like Immunoglobulin (Ig)-like domain of carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) and similar proteins. Ig_CEACAM_like: immunoglobulin (Ig)-like domain in carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) and related domains. The CEA family is a group of anchored or secreted glycoproteins, expressed by epithelial cells, leukocytes, endothelial cells and placenta. The CEA family is divided into the CEACAM and pregnancy-specific glycoprotein (PSG) subfamilies. This group represents the CEACAM subfamily. CEACAM1 has many important cellular functions, it is a cell adhesion molecule, and a signaling molecule that regulates the growth of tumor cells, it is an angiogenic factor, and is a receptor for bacterial and viral pathogens, including mouse hepatitis virus (MHV). In mice, four isoforms of CEACAM1 generated by alternative splicing have either two [D1, D4] or four [D1-D4] Ig-like domains on the cell surface. This family corresponds to the D1 Ig-like domain. Also belonging to this group is the N-terminal immunoglobulin (Ig)-like domain of the signaling lymphocyte activation molecule (SLAM) family, CD84-like family. The SLAM family is a group of immune-cell specific receptors that can regulate both adaptive and innate immune responses. SLAM family proteins are organized as an extracellular domain with having two or four Ig-like domains, a single transmembrane segment, and a cytoplasmic region having tyr-based motifs. The extracellular domain is organized as a membrane-distal Ig variable (IgV) domain that is responsible for ligand recognition and a membrane-proximal truncated Ig constant-2 (IgC2) domain. 93 -319303 cd05742 Ig_VEGFR_like Immunoglobulin (Ig)-like domain of vascular endothelial growth factor (VEGF) receptor (R) and similar proteins. Ig_VEGFR_like: immunoglobulin (Ig)-like domain of vascular endothelial growth factor (VEGF) receptor (R) and related proteins. The VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. The VEGFR family consists of three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4). VEGF-A interacts with both VEGFR-1 and VEGFR-2. VEGFR-1 binds strongest to VEGF, VEGF-2 binds more weakly. VEGFR-3 appears not to bind VEGF, but binds other members of the VEGF family (VEGF-C and -D). VEGFRs bind VEGFs with high affinity with the IG-like domains. VEGF-A is important to the growth and maintenance of vascular endothelial cells and to the development of new blood- and lymphatic-vessels in physiological and pathological states. VEGFR-2 is a major mediator of the mitogenic, angiogenic and microvascular permeability-enhancing effects of VEGF-A. VEGFR-1 may play an inhibitory part in these processes by binding VEGF and interfering with its interaction with VEGFR-2. VEGFR-1 has a signaling role in mediating monocyte chemotaxis. VEGFR-2 and -1 may mediate a chemotactic and a survival signal in hematopoietic stem cells or leukemia cells. VEGFR-3 has been shown to be involved in tumor angiogenesis and growth. This group also contains alpha-type platelet-derived growth factor receptor precursor (PDGFR)-alpha (CD140a), and PDGFR-beta (CD140b). PDGFRs alpha and beta have an extracellular component with five Ig-like domains, a transmembrane segment, and a cytoplasmic portion that has protein tyrosine kinase activity. 85 -143220 cd05743 Ig_Perlecan_like Immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan, also known as HSPG2, and similar domains. Ig_Perlecan_like: the immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan, also known as HSPG2, and similar domains. Perlecan consists of five domains. Domain I has three putative heparan sulfate attachment sites; domain II has four LDL receptor-like repeats, and one Ig-like repeat; domain III resembles the short arm of laminin chains; domain IV has multiple Ig-like repeats (21 repeats in human perlecan); and domain V resembles the globular G domain of the laminin A chain and internal repeats of EGF. Perlecan may participate in a variety of biological functions including cell binding, LDL-metabolism, basement membrane assembly and selective permeability, calcium binding, and growth- and neurite-promoting activities. 78 -319304 cd05744 Ig_Myotilin_C_like Immunoglobulin (Ig)-like domain of myotilin, palladin, and myopalladin. Ig_Myotilin_like_C: immunoglobulin (Ig)-like domain in myotilin, palladin, and myopalladin. Myotilin, palladin, and myopalladin function as scaffolds that regulate actin organization. Myotilin and myopalladin are most abundant in skeletal and cardiac muscle; palladin is ubiquitously expressed in the organs of developing vertebrates and plays a key role in cellular morphogenesis. The three family members each interact with specific molecular partners: all three bind to alpha-actinin; in addition, palladin also binds to vasodilator-stimulated phosphoprotein (VASP) and ezrin, myotilin binds to filamin and actin, and myopalladin also binds to nebulin and cardiac ankyrin repeat protein (CARP). 75 -143222 cd05745 Ig3_Peroxidasin Third immunoglobulin (Ig)-like domain of peroxidasin. Ig3_Peroxidasin: the third immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death, and protection of the organism against non-self. 74 -143223 cd05746 Ig4_Peroxidasin Fourth immunoglobulin (Ig)-like domain of peroxidasin. Ig4_Peroxidasin: the fourth immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted, and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells, which have undergone programmed cell death, and protection of the organism against non-self. 69 -143224 cd05747 Ig_Titin_like Immunoglobulin (Ig)-like domain of human titin C terminus and similar domains. Ig_Titin_like: domain similar to the M5, fifth immunoglobulin (Ig)-like domain from the human titin C terminus. Titin (also called connectin) is a fibrous sarcomeric protein specifically found in vertebrate striated muscle. Titin is gigantic; depending on isoform composition it ranges from 2970 to 3700 kDa, and is of a length that spans half a sarcomere. Titin largely consists of multiple repeats of Ig-like and fibronectin type 3 (FN-III)-like domains. Titin connects the ends of myosin thick filaments to Z disks and extends along the thick filament to the H zone, and appears to function similar to an elastic band, keeping the myosin filaments centered in the sarcomere during muscle contraction or stretching. 92 -319305 cd05748 Ig_Titin_like Immunoglobulin (Ig)-like domain of titin and similar domains. Ig_Titin_like: immunoglobulin (Ig)-like domain found in titin-like proteins. Titin (also called connectin) is a fibrous sarcomeric protein specifically found in vertebrate striated muscle. Titin is a giant protein; depending on isoform composition, it ranges from 2970 to 3700 kDa, and is of a length that spans half a sarcomere. Titin largely consists of multiple repeats of Ig-like and fibronectin type 3 (FN-III)-like domains. Titin connects the ends of myosin thick filaments to Z disks and extends along the thick filament to the H zone. It appears to function similarly to an elastic band, keeping the myosin filaments centered in the sarcomere during muscle contraction or stretching. Within the sarcomere, titin is also attached to or is associated with myosin binding protein C (MyBP-C). MyBP-C appears to contribute to the generation of passive tension by titin, and similar to titin has repeated Ig-like and FN-III domains. Also included in this group are worm twitchin and insect projectin, thick filament proteins of invertebrate muscle, which also have repeated Ig-like and FN-III domains. 74 -143226 cd05749 Ig2_Axl_Tyro3_like Second immunoglobulin (Ig)-like domain of Axl/Tyro3 family receptor tyrosine kinases (RTKs). Ig2_Tyro3_like: the second immunoglobulin (Ig)-like domain in the Axl/Tyro3 family of receptor tyrosine kinases (RTKs). This family includes Axl (also known as Ark, Ufo, and Tyro7), Tyro3 (also known as Sky, Rse, Brt, Dtk, and Tif), and Mer (also known as Nyk, c-Eyk, and Tyro12). Axl/Tyro3 family receptors have an extracellular portion with two Ig-like domains followed by two fibronectin-types III (FNIII) domains, a membrane-spanning single helix, and a cytoplasmic tyrosine kinase domain. Axl, Tyro3 and Mer are widely expressed in adult tissues, though they show higher expression in the brain, in the lymphatic and vascular systems, and in the testis. Axl, Tyro3, and Mer bind the vitamin K dependent protein Gas6 with high affinity, and in doing so activate their tyrosine kinase activity. Axl/Gas6 signaling may play a part in cell adhesion processes, prevention of apoptosis, and cell proliferation. 81 -143227 cd05750 Ig_Pro_neuregulin Immunoglobulin (Ig)-like domain in neuregulins (NRGs). Ig_Pro_neuregulin: immunoglobulin (Ig)-like domain in neuregulins (NRGs). NRGs are signaling molecules, which participate in cell-cell interactions in the nervous system, breast, heart, and other organ systems, and are implicated in the pathology of diseases including schizophrenia, multiple sclerosis, and breast cancer. There are four members of the neuregulin gene family (NRG1, -2, -3, and -4). The NRG-1 protein, binds to and activates the tyrosine kinases receptors ErbB3 and ErbB4, initiating signaling cascades. The other NRGs proteins bind one or the other or both of these ErbBs. NRG-1 has multiple functions; for example, in the brain it regulates various processes such as radial glia formation and neuronal migration, dendritic development, and expression of neurotransmitters receptors; in the peripheral nervous system NRG-1 regulates processes such as target cell differentiation, and Schwann cell survival. There are many NRG-1 isoforms, which arise from the alternative splicing of mRNA. Less is known of the functions of the other NRGs. NRG-2 and -3 are expressed predominantly in the nervous system. NRG-2 is expressed by motor neurons and terminal Schwann cells, and is concentrated near synaptic sites and may be a signal that regulates synaptic differentiation. NRG-4 has been shown to direct pancreatic islet cell development towards the delta-cell lineage. 75 -319306 cd05751 Ig1_LILR_KIR_like First immunoglobulin (Ig)-like domain found in Leukocyte Ig-like receptors (LILRs), Natural killer inhibitory receptors (KIRs) and similar domains. Ig1_LILR_KIR_like: domain similar to the first immunoglobulin (Ig)-like domain found in Leukocyte Ig-like receptors (LILRs) and Natural killer inhibitory receptors (KIRs). This group includes LILRB1 (or LIR-1), LILRA5 (or LIR9), an activating natural cytotoxicity receptor NKp46, the immune-type receptor glycoprotein VI (GPVI), and the IgA-specific receptor Fc-alphaRI (or CD89). LILRs are a family of immunoreceptors expressed on expressed on T and B cells, on monocytes, dendritic cells, and subgroups of natural killer (NK) cells. The human LILR family contains nine proteins (LILRA1-3,and 5, and LILRB1-5). From functional assays, and as the cytoplasmic domains of various LILRs, for example LILRB1 (LIR-1), LILRB2 (LIR-2), and LILRB3 (LIR-3) contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) it is thought that LIR proteins are inhibitory receptors. Of the eight LIR family proteins, only LIR-1 (LILRB1), and LIR-2 (LILRB2), show detectable binding to class I MHC molecules; ligands for the other members have yet to be determined. The extracellular portions of the different LIR proteins contain different numbers of Ig-like domains for example, four in the case of LILRB1 (LIR-1), and LILRB2 (LIR-2), and two in the case of LILRB4 (LIR-5). The activating natural cytotoxicity receptor NKp46 is expressed in natural killer cells, and is organized as an extracellular portion having two Ig-like extracellular domains, a transmembrane domain, and a small cytoplasmic portion. GPVI, which also contains two Ig-like domains, participates in the processes of collagen-mediated platelet activation and arterial thrombus formation. Fc-alphaRI is expressed on monocytes, eosinophils, neutrophils and macrophages; it mediates IgA-induced immune effector responses such as phagocytosis, antibody-dependent cell-mediated cytotoxicity and respiratory burst. 92 -143229 cd05752 Ig1_FcgammaR_like Frst immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs) and similar proteins. Ig1_FcgammaR_like: domain similar to the first immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs). Interactions between IgG and FcgammaR are important to the initiation of cellular and humoral response. IgG binding to FcgammaR leads to a cascade of signals and ultimately to functions such as antibody-dependent-cellular-cytotoxicity (ADCC), endocytosis, phagocytosis, release of inflammatory mediators, etc. FcgammaR has two Ig-like domains. This group also contains FcepsilonRI, which binds IgE with high affinity. 78 -319307 cd05753 Ig2_FcgammaR_like Second immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs) and similar proteins. Ig2_FcgammaR_like: domain similar to the second immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs). Interactions between IgG and FcgammaR are important to the initiation of cellular and humoral response. IgG binding to FcgammaR leads to a cascade of signals and ultimately to functions such as antibody-dependent-cellular-cytotoxicity (ADCC), endocytosis, phagocytosis, release of inflammatory mediators, etc. FcgammaR has two Ig-like domains. This group also contains FcepsilonRI, which binds IgE with high affinity. 83 -143231 cd05754 Ig_Perlecan_like Igmmunoglobulin (Ig)-like domain found in Perlecan and similar proteins. Ig_Perlecan_like: domain similar to the third immunoglobulin (Ig)-like domain found in Perlecan. Perlecan is a large multi-domain heparin sulfate proteoglycan, important in tissue development and organogenesis. Perlecan can be represented as 5 major portions; its fourth major portion (domain IV) is a tandem repeat of immunoglobulin-like domains (Ig2-Ig15), which can vary in size due to alternative splicing. Perlecan binds many cellular and extracellular ligands. Its domain IV region has many binding sites. Some of these have been mapped at the level of individual Ig-like domains, including a site restricted to the Ig5 domain for heparin/sulfatide, a site restricted to the Ig3 domain for nidogen-1 and nidogen-2, a site restricted to Ig4-5 for fibronectin, and sites restricted to Ig2 and to Ig13-15 for fibulin-2. 85 -143232 cd05755 Ig2_ICAM-1_like Second immunoglobulin (Ig)-like domain of intercellular cell adhesion molecule-1 (ICAM-1, CD54) and similar proteins. Ig2_ ICAM-1_like: domain similar to the second immunoglobulin (Ig)-like domain of intercellular cell adhesion molecule-1 (ICAM-1, CD54). During the inflammation process, these molecules recruit leukocytes onto the vascular endothelium before extravasation to the injured tissues. ICAM-1 may be involved in organ targeted tumor metastasis. The interaction of ICAM-1 with leukocyte function-associated antigen-1 (LFA-1) plays a part in leukocyte-endothelial cell recognition. This group also contains ICAM-2, which also interacts with LFA-1. Transmigration of immature dendritic cells across resting endothelium is dependent on the interaction of ICAM-2 with, yet unidentified, ligand(s) on the dendritic cells. ICAM-1 has five Ig-like domains and ICAM-2 has two. ICAM-1 may also act as host receptor for viruses and parasites. 100 -319308 cd05756 Ig1_IL1R_like First immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R) and similar proteins. Ig1_IL1R_like: domain similar to the first immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R). IL-1 alpha and IL-1 beta are cytokines which participate in the regulation of inflammation, immune responses, and hematopoiesis. These cytokines bind to the IL-1 receptor type 1 (IL1R1), which is activated on additional association with an accessory protein, IL1RAP. IL-1 also binds a second receptor designated type II (IL1R2). Mature IL1R1 consists of three Ig-like domains, a transmembrane domain, and a large cytoplasmic domain. Mature IL1R2 is organized similarly except that it has a short cytoplasmic domain. The latter does not initiate signal transduction. A naturally occurring cytokine IL-1RA (IL-1 receptor antagonist) is widely expressed and binds to IL-1 receptors, inhibiting the binding of IL-1 alpha and IL-1 beta. 93 -319309 cd05757 Ig2_IL1R_like Second immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R) and similar proteins. Ig2_IL1R_like: domain similar to the second immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R). IL-1 alpha and IL-1 beta are cytokines which participate in the regulation of inflammation, immune responses, and hematopoiesis. These cytokines bind to the IL-1 receptor type 1 (IL1R1), which is activated on additional association with an accessory protein, IL1RAP. IL-1 also binds a second receptor designated type II (IL1R2). Mature IL1R1 consists of three IG-like domains, a transmembrane domain, and a large cytoplasmic domain. Mature IL1R2 is organized similarly except that it has a short cytoplasmic domain. The latter does not initiate signal transduction. A naturally occurring cytokine IL-1RA (IL-1 receptor antagonist) is widely expressed and binds to IL-1 receptors, inhibiting the binding of IL-1 alpha and IL-1 beta. This group also contains ILIR-like 1 (IL1R1L) which maps to the same chromosomal location as IL1R1 and IL1R2. 92 -319310 cd05758 Ig5_KIRREL3-like Fifth immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 (also known as Neph2) and similar proteins. Ig5_KIRREL3-like: domain similar to the fifth immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 (also known as Neph2). This protein has five Ig-like domains, one transmembrane domain, and a cytoplasmic tail. Included in this group is mammalian Kirrel (Neph1), Kirrel2 (Neph3), and Drosophila RST (irregular chiasm C-roughest) protein. These proteins contain multiple Ig domains, have properties of cell adhesion molecules, and are important in organ development. 98 -143236 cd05759 Ig2_KIRREL3-like Second immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 (also known as Neph2). Ig2_KIRREL3-like: domain similar to the second immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 (also known as Neph2). This protein has five Ig-like domains, one transmembrane domain, and a cytoplasmic tail. Included in this group is mammalian Kirrel (Neph1), Kirrel2 (Neph3), and Drosophila RST (irregular chiasm C-roughest) protein. These proteins contain multiple Ig domains, have properties of cell adhesion molecules, and are important in organ development. 82 -143237 cd05760 Ig2_PTK7 Second immunoglobulin (Ig)-like domain of protein tyrosine kinase (PTK) 7, also known as CCK4. Ig2_PTK7: domain similar to the second immunoglobulin (Ig)-like domain in protein tyrosine kinase (PTK) 7, also known as CCK4. PTK7 is a subfamily of the receptor protein tyrosine kinase family, and is referred to as an RPTK-like molecule. RPTKs transduce extracellular signals across the cell membrane, and play important roles in regulating cell proliferation, migration, and differentiation. PTK7 is organized as an extracellular portion having seven Ig-like domains, a single transmembrane region, and a cytoplasmic tyrosine kinase-like domain. PTK7 is considered a pseudokinase as it has several unusual residues in some of the highly conserved tyrosine kinase (TK) motifs; it is predicted to lack TK activity. PTK7 may function as a cell-adhesion molecule. PTK7 mRNA is expressed at high levels in placenta, melanocytes, liver, lung, pancreas, and kidney. PTK7 is overexpressed in several cancers, including melanoma and colon cancer lines. 77 -319311 cd05761 Ig2_Necl-1-4_like Second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 - Necl-4 (also known as cell adhesion molecules CADM3, CADM1, CADM2, and CADM4, respectively). Ig2_Necl-1-4_like: domain similar to the second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 (also known as cell adhesion molecule 3 (CADM3)), Necl-2 (CADM1), Necl-3 (CADM2) and Necl-4 (CADM4). These nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 and Necl-2 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Necl-3 has been shown to accumulate in tissues of the central and peripheral nervous system, where it is expressed in ependymal cells and myelinated axons. It is observed at the interface between the axon shaft and the myelin sheath. Necl-4 is expressed on Schwann cells, and plays a key part in initiating peripheral nervous system (PNS) myelination. Necl-4 participates in cell-cell adhesion and is proposed to play a role in tumor suppression. 83 -143239 cd05762 Ig8_hMLCK_like Eighth immunoglobulin (Ig)-like domain of human myosin light-chain kinase (MLCK) and similar domains. Ig8_hMLCK_like: the eighth immunoglobulin (Ig)-like domain of human myosin light-chain kinase (MLCK) and similar domains. MLCK is a key regulator of different forms of cell motility involving actin and myosin II. Agonist stimulation of smooth muscle cells increases cytosolic Ca2+, which binds calmodulin. This Ca2+-calmodulin complex in turn binds to and activates MLCK. Activated MLCK leads to the phosphorylation of the 20 kDa myosin regulatory light chain (RLC) of myosin II and the stimulation of actin-activated myosin MgATPase activity. MLCK is widely present in vertebrate tissues; it phosphorylates the 20 kDa RLC of both smooth and nonmuscle myosin II. Phosphorylation leads to the activation of the myosin motor domain and altered structural properties of myosin II. In smooth muscle MLCK it is involved in initiating contraction. In nonmuscle cells, MLCK may participate in cell division and cell motility; it has been suggested MLCK plays a role in cardiomyocyte differentiation and contraction through regulation of nonmuscle myosin II. 98 -143240 cd05763 Ig_1 Subgroup of the immunoglobulin (Ig) superfamily. Ig_1: subgroup of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of the Ig superfamily are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 75 -143241 cd05764 Ig_2 Subgroup of the immunoglobulin (Ig) superfamily. Ig_2: subgroup of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of the Ig superfamily are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 74 -143242 cd05765 Ig_3 Subgroup of the immunoglobulin (Ig) superfamily. Ig_3: subgroup of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of the Ig superfamily are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 81 -143243 cd05766 IgC_MHC_II_beta Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain. IgC_MHC_II_beta: Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class II beta chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. In both humans and in mice these molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), for example on B-lymphocytes, monocytes, and macrophages. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from protelytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. 94 -143244 cd05767 IgC_MHC_II_alpha Class II major histocompatibility complex (MHC) alpha chain immunoglobulin domain. IgC_MHC_II_alpha: Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class II alpha chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. In both humans and in mice these molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), for example on B-lymphocytes, monocytes, and macrophages. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from protelytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. 94 -319312 cd05768 IgC_CH3_IgAGD_CH4_IgAEM CH4 domain (fourth constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH3_IgAGD_CH4_IgAEM: Contains the third and fourth immunoglobulin constant domain (IgC) of alpha, delta, gamma and alpha, epsilon, and mu heavy chains, respectively. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 100 -143246 cd05769 IgC_TCR_beta T cell receptor (TCR) beta chain constant immunoglobulin domain. IgC_TCR_beta: Constant domain of the beta chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. This group includes the variable domain of the beta chain. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The antigen binding site is formed by the variable domains of the alpha and beta chains, located at the N-terminus of each chain. Alpha/beta TCRs recognize antigens differently from gamma/delta TCRs. 115 -143247 cd05770 IgC_beta2m Class I major histocompatibility complex (MHC) beta2-microglobulin. IgC_beta2m: Immunoglobulin-like domain in beta2-Microglobulin (beta2m). Beta2m is the non-covalently bound light chain of the human class I major histocompatibility complex (MHC-I). Beta2m is structured as a beta-sandwich domain composed of two facing beta-sheets (four stranded and three stranded), that is typical of the C-type immunoglobulin superfamily. This structure is stabilized by an intramolecular disulfide bridge connecting two Cys residues in the facing beta -sheets. In vivo, MHC-I continuously exposes beta2m on the cell surface, where it may be released to plasmatic fluids, transported to the kidneys, degraded and then excreted. 93 -319313 cd05771 IgC_Tapasin_R Tapasin-R immunoglobulin-like domain. IgC_Tapasin_R: Immunoglobulin-like domain on Tapasin-R. Tapasin is a V-C1 (variable-constant) immunoglobulin superfamily molecule present in the endoplasmic reticulum (ER), where it links MHC class I molecules to the transporter associated with antigen processing (TAP). Tapasin-R is a tapasin-related protein that contains similar structural motifs to Tapasin, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. The majority of Tapasin-R is located within the ER; however, there may be some expression of Tapasin-R at the cell surface. Tapasin-R lacks an obvious ER retention signal. 138 -319314 cd05772 IgC_SIRP_domain_2 Signal-regulatory protein (SIRP) immunoglobulin-like domain 2. IgC: immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 2 (C1 repeat 1). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains a single V-set and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs but also binds CD47, but with much less affinity. 103 -143250 cd05773 Ig_hNephrin_like Immunoglobulin-like domain of nephrin and similar domains. Ig_hNephrin_like: immunoglobulin-like domain in human nephrin and similar domains. Nephrin is an integral component of the slit diaphragm, and is a central component of the glomerular ultrafilter. Nephrin plays a structural role, and has a role in signaling. Nephrin is a transmembrane protein having a short intracellular portion, and an extracellular portion comprised of eight Ig-like domains, and one fibronectin type III-like domain. The extracellular portions of nephrin, from neighboring foot processes of separate podocyte cells, may interact with each other, and in association with other components of the slit diaphragm, form a porous molecular sieve within the slit pore. The intracellular portion of nephrin is associated with linker proteins, which connect nephrin to the actin cytoskeleton. The intracellular portion is tyrosine phosphorylated, and mediates signaling from the slit diaphragm into the podocytes. 109 -319315 cd05774 Ig_CEACAM_D1 First immunoglobulin (Ig)-like domain of carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM). IG_CEACAM_D1: immunoglobulin (Ig)-like domain 1 in carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) protein subfamily. The CEA family is a group of anchored or secreted glycoproteins, expressed by epithelial cells, leukocytes, endothelial cells and placenta. The CEA family is divided into the CEACAM and pregnancy-specific glycoprotein (PSG) subfamilies. This group represents the CEACAM subfamily. CEACAM1 has many important cellular functions, it is a cell adhesion molecule, and a signaling molecule that regulates the growth of tumor cells, it is an angiogenic factor, and is a receptor for bacterial and viral pathogens, including mouse hepatitis virus (MHV). In mice, four isoforms of CEACAM1 generated by alternative splicing have either two [D1, D4] or four [D1-D4] Ig-like domains on the cell surface. This family corresponds to the D1 Ig-like domain. 105 -319316 cd05775 Ig_CD2_like_N N-terminal immunoglobulin (Ig)-like domain of T-cell surface antigen CD2 and similar domains. Ig_CD2_like_N: The N-terminal immunoglobulin (Ig)-like domain (or domain 1) of T-cell surface antigen CD2 and similar domains. CD2 is a T-cell specific surface glycoprotein and is critically important for mediating adhesion between T cells and antigen-presenting cells, or between cytolytic T cells and target cells. CD2 is located on chromosome 1 at 1p13 in humans and on chromosome 3 in mice. CD2 contains an extracellular domain with two or Ig-like domains, a single transmembrane segment, and a cytoplasmic region rich in proline and basic residues. 94 -99819 cd05776 DNA_polB_alpha_exo inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase alpha, a family-B DNA polymerase. The 3'-5' exonuclease domain of eukaryotic DNA polymerase alpha. DNA polymerase alpha is a family-B DNA polymerase with a catalytic subunit that contains a DnaQ-like 3'-5' exonuclease domain. It is one of the three DNA-dependent type B DNA polymerases (delta and epsilon are the other two) that have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase alpha is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. It associates with DNA primase and is the only enzyme able to start DNA synthesis de novo. The catalytic subunit contains both polymerase and 3'-5' exonuclease domains, but only exhibits polymerase activity. The 3'-5' exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, without the four conserved acidic residues that are crucial for metal binding and catalysis. This explains why in most organisms, that no specific repair role, other than check point control, has been assigned to this enzyme. The exonuclease domain may have a structural role. 234 -99820 cd05777 DNA_polB_delta_exo DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase delta, a family-B DNA polymerase. The 3'-5' exonuclease domain of eukaryotic DNA polymerase delta. DNA polymerase delta is a family-B DNA polymerase with a catalytic subunit that contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain. It is one of the three DNA-dependent type B DNA polymerases (alpha and epsilon are the other two) that have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase delta is the enzyme responsible for both elongation and maturation of Okazaki fragments on the lagging strand. It is also implicated in mismatch repair (MMR) and base excision repair (BER). The catalytic subunit displays both polymerase and 3'-5' exonuclease activities. The exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues necessary for metal binding and catalysis. The exonuclease domain of family B polymerase also contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. 230 -99821 cd05778 DNA_polB_zeta_exo inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta, a family-B DNA polymerase. The 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta. DNA polymerase zeta is a family-B DNA polymerase which is distantly related to DNA polymerase delta. It plays a major role in translesion replication and the production of either spontaneous or induced mutations. In addition, DNA polymerase zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen. The catalytic subunit contains both polymerase and 3'-5' exonuclease domains, but only exhibits polymerase activity. The DnaQ-like 3'-5' exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, without the four conserved acidic residues that are crucial for metal binding and catalysis. 231 -99822 cd05779 DNA_polB_epsilon_exo DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase epsilon, a family-B DNA polymerase. The 3'-5' exonuclease domain of eukaryotic DNA polymerase epsilon. DNA polymerase epsilon is a family-B DNA polymerase with a catalytic subunit that contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain. It is one of the three DNA-dependent type B DNA polymerases (alpha and delta are the other two) that have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase epsilon plays a role in elongating the leading strand during DNA replication. It is also involved in DNA repair. The catalytic subunit contains both polymerase and 3'-5' exonuclease activities. The N-terminal exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and are involved in metal binding and catalysis. DNA polymerase epsilon also carries a unique large C-terminal domain with an unknown function. Phylogenetic analyses indicate that it is orthologous to the archaeal DNA polymerase B3 rather than to the eukaryotic alpha, delta, or zeta polymerases. The exonuclease domain of family-B polymerases contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation 204 -99823 cd05780 DNA_polB_Kod1_like_exo DEDDy 3'-5' exonuclease domain of Pyrococcus kodakaraensis Kod1 and similar archaeal family-B DNA polymerases. The 3'-5' exonuclease domain of archaeal family-B DNA polymerases with similarity to Pyrococcus kodakaraensis Kod1, including polymerases from Desulfurococcus (D. Tok Pol) and Thermococcus gorgonarius (Tgo Pol). Kod1, D. Tok Pol, and Tgo Pol are thermostable enzymes that exhibit both polymerase and 3'-5' exonuclease activities. They are family-B DNA polymerases. Their amino termini harbor a DEDDy-type DnaQ-like 3'-5' exonuclease domain that contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and are involved in metal binding and catalysis. The exonuclease domain of family B polymerases contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. Members of this subfamily show similarity to eukaryotic DNA polymerases involved in DNA replication. Some archaea possess multiple family-B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family-B DNA polymerases support independent gene duplications during the evolution of archaeal and eukaryotic family-B DNA polymerases. 195 -99824 cd05781 DNA_polB_B3_exo DEDDy 3'-5' exonuclease domain of Sulfurisphaera ohwakuensis DNA polymerase B3 and similar archaeal family-B DNA polymerases. The 3'-5' exonuclease domain of archaeal proteins with similarity to Sulfurisphaera ohwakuensis DNA polymerase B3. B3 is a family-B DNA polymerase. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. B3 exhibits both polymerase and 3'-5' exonuclease activities. This exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and are involved in metal binding and catalysis. The exonuclease domain of family B polymerases also contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some archaea possess multiple family-B DNA polymerases. B3 is mainly found in crenarchaea. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B-DNA polymerases support independent gene duplications during the evolution of archaeal and eukaryotic family-B DNA polymerases. 188 -99825 cd05782 DNA_polB_like1_exo Uncharacterized bacterial subgroup of the DEDDy 3'-5' exonuclease domain of family-B DNA polymerases. A subfamily of the 3'-5' exonuclease domain of family-B DNA polymerases. This subfamily is composed of uncharacterized bacterial family-B DNA polymerases. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. This exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are involved in metal binding and catalysis. The exonuclease domain of family-B DNA polymerases has a fundamental role in proofreading activity. It contains a beta hairpin structure that plays an important role in active site switching in the event of a nucleotide misincorporation. Family-B DNA polymerases are predominantly involved in DNA replication and DNA repair. 208 -99826 cd05783 DNA_polB_B1_exo DEDDy 3'-5' exonuclease domain of Sulfolobus solfataricus DNA polymerase B1 and similar archaeal family-B DNA polymerases. The 3'-5' exonuclease domain of Sulfolobus solfataricus DNA polymerase B1 and similar archaeal proteins. B1 is a family-B DNA polymerase. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. B1displays thermostable polymerase and 3'-5' exonuclease activities. This exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and are involved in metal binding and catalysis. The exonuclease domain of family-B polymerases also contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. Family-B DNA polymerases from thermophilic archaea are unique in that they are able to recognize the presence of uracil in the template strand, leading to the stalling of DNA synthesis. This is an additional safeguard mechanism against increased levels of deaminated bases during genome duplication at high temperatures. S. solfataricus B1 also interacts with DNA polymerase Y and may contribute to genome stability mechanisms. 204 -99827 cd05784 DNA_polB_II_exo DEDDy 3'-5' exonuclease domain of Escherichia coli DNA polymerase II and similar bacterial family-B DNA polymerases. The 3'-5' exonuclease domain of Escherichia coli DNA polymerase II (Pol II) and similar bacterial proteins. Pol II is a family-B DNA polymerase. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. This exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and are involved in metal binding and catalysis. The exonuclease domain has a fundamental role in the proofreading activity of polII. It contains a beta hairpin structure that plays an important role in active site switching in the event of a nucleotide misincorporation. Pol II is involved in a variety of cellular activities, such as the repair of DNA damaged by UV irradiation or oxidation. It plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Pol II is also involved in lagging strand synthesis. 193 -99828 cd05785 DNA_polB_like2_exo Uncharacterized bacterial subgroup of the DEDDy 3'-5' exonuclease domain of family-B DNA polymerases. A subfamily of the 3'-5' exonuclease domain of family-B DNA polymerases. This subfamily is composed of uncharacterized bacterial family-B DNA polymerases. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. This exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are involved in metal binding and catalysis. The exonuclease domain of family-B DNA polymerases has a fundamental role in proofreading activity. It contains a beta hairpin structure that plays an important role in active site switching in the event of a nucleotide misincorporation. Family-B DNA polymerases are predominantly involved in DNA replication and DNA repair. 207 -100061 cd05787 LbH_eIF2B_epsilon eIF-2B epsilon subunit, central Left-handed parallel beta-Helix (LbH) domain: eIF-2B is a eukaryotic translation initiator, a guanine nucleotide exchange factor (GEF) composed of five different subunits (alpha, beta, gamma, delta and epsilon). eIF2B is important for regenerating GTP-bound eIF2 during the initiation process. This event is obligatory for eIF2 to bind initiator methionyl-tRNA, forming the ternary initiation complex. The eIF-2B epsilon subunit contains an N-terminal domain that resembles a dinucleotide-binding Rossmann fold, a central LbH domain containing 4 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X), and a C-terminal domain of unknown function that is present in eIF-4 gamma, eIF-5, and eIF-2B epsilon. The epsilon and gamma subunits form the catalytic subcomplex of eIF-2B, which binds eIF2 and catalyzes guanine nucleotide exchange. 79 -240215 cd05789 S1_Rrp4 S1_Rrp4: Rrp4 S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. Rrp4 protein is a subunit of the exosome complex. The exosome plays a central role in 3' to 5' RNA processing and degradation in eukarytes and archaea. Its functions include the removal of incorrectly processed RNA and the maintenance of proper levels of mRNA, rRNA and a number of small RNA species. In Saccharomyces cerevisiae, the exosome includes nine core components, six of which are homologous to bacterial RNase PH. These form a hexameric ring structure. The other three subunits (RrP4, Rrp40, and Csl4) contain an S1 RNA binding domain and are part of the "S1 pore structure". 86 -240216 cd05790 S1_Rrp40 S1_Rrp40: Rrp40 S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. Rrp4 protein is a subunit of the exosome complex. The exosome plays a central role in 3' to 5' RNA processing and degradation in eukarytes and archaea. Its functions include the removal of incorrectly processed RNA and the maintenance of proper levels of mRNA, rRNA and a number of small RNA species. In Saccharomyces cerevisiae, the exosome includes nine core components, six of which are homologous to bacterial RNase PH. These form a hexameric ring structure. The other three subunits (RrP4, Rrp40, and Csl4) contain an S1 RNA binding domain and are part of the "S1 pore structure". 86 -240217 cd05791 S1_CSL4 S1_CSL4: CSL4, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. ScCSL4 protein is a subunit of the exosome complex. The exosome plays a central role in 3' to 5' RNA processing and degradation in eukarytes and archaea. Its functions include the removal of incorrectly processed RNA and the maintenance of proper levels of mRNA, rRNA and a number of small RNA species. In S. cerevisiae, the exosome includes nine core components, six of which are homologous to bacterial RNase PH. These form a hexameric ring structure. The other three subunits (RrP4, Rrp40, and Csl4) contain an S1 RNA binding domain and are part of the "S1 pore structure". 92 -240218 cd05792 S1_eIF1AD_like S1_eIF1AD_like: eukaryotic translation initiation factor 1A domain containing protein (eIF1AD)-like, S1-like RNA-binding domain. eIF1AD is also known as MGC11102 protein. Little is known about the function of eIF1AD. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins, including translation initiation factor IF1A (also referred to as eIF1A in eukaryotes). eIF1A is essential for translation initiation. eIF1A acts synergistically with eIF1 to mediate assembly of ribosomal initiation complexes at the initiation codon and maintain the accuracy of this process by recognizing and destabilizing aberrant preinitiation complexes from the mRNA. Without eIF1A and eIF1, 43S ribosomal preinitiation complexes can bind to the cap-proximal region, but are unable to reach the initiation codon. eIF1a also enhances the formation of 5'-terminal complexes in the presence of other translation initiation factors. 78 -240219 cd05793 S1_IF1A S1_IF1A: Translation initiation factor IF1A, also referred to as eIF1A in eukaryotes and aIF1A in archaea, S1-like RNA-binding domain. S1-like RNA-binding domains are found in a wide variety of RNA-associated proteins. IF1A is essential for translation initiation. eIF1A acts synergistically with eIF1 to mediate assembly of ribosomal initiation complexes at the initiation codon and maintain the accuracy of this process by recognizing and destabilizing aberrant preinitiation complexes from the mRNA. Without eIF1A and eIF1, 43S ribosomal preinitiation complexes can bind to the cap-proximal region, but are unable to reach the initiation codon. eIF1a also enhances the formation of 5'-terminal complexes in the presence of other translation initiation factors. This protein family is only found in eukaryotes and archaea. 77 -240220 cd05794 S1_EF-P_repeat_2 S1_EF-P_repeat_2: Translation elongation factor P (EF-P), S1-like RNA-binding domain, repeat 1. EF-P stimulates the peptidyltransferase activity in the prokaryotic 70S ribosome. EF-P enhances the synthesis of certain dipeptides with N-formylmethionyl-tRNA and puromycine in vitro. EF-P binds to both the 30S and 50S ribosomal subunits. EF-P binds near the streptomycine binding site of the 16S rRNA in the 30S subunit. EF-P interacts with domains 2 and 5 of the 23S rRNA. The L16 ribosomal protein of the 50S or its N-terminal fragment are required for EF-P mediated peptide bond synthesis, whereas L11, L15, and L7/L12 are not required in this reaction, suggesting that EF-P may function at a different ribosomal site than most other translation factors. EF-P is essential for cell viability and is required for protein synthesis. EF-P is mainly present in bacteria. The EF-P homologs in archaea and eukaryotes are the initiation factors aIF5A and eIF5A, respectively. EF-P has 3 domains (domains I, II, and III). Domains II and III are S1-like domains. This CD includes domain III (the second S1 domain of EF_P). Domains II and III of have structural homology to the eIF5A domain C, suggesting that domains II and III evolved by duplication. 56 -240221 cd05795 Ribosomal_P0_L10e Ribosomal protein L10 family, P0 and L10e subfamily; composed of eukaryotic 60S ribosomal protein P0 and the archaeal P0 homolog, L10e. P0 or L10e forms a tight complex with multiple copies of the small acidic protein L12(e). This complex forms a stalk structure on the large subunit of the ribosome. The stalk is known to contain the binding site for elongation factors G and Tu (EF-G and EF-Tu, respectively); however, there is disagreement as to whether or not L10 is involved in forming the binding site. The stalk is believed to be associated with GTPase activities in protein synthesis. In a neuroblastoma cell line, L10 has been shown to interact with the SH3 domain of Src and to activate the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and the WASP-interacting protein (WIP). These eukaryotic and archaeal P0 sequences have an additional C-terminal domain homologous with acidic proteins P1 and P2. 175 -240222 cd05796 Ribosomal_P0_like Ribosomal protein L10 family, P0-like protein subfamily; composed of uncharacterized eukaryotic proteins with similarity to the 60S ribosomal protein P0, including the Saccharomyces cerevisiae protein called mRNA turnover protein 4 (MRT4). MRT4 may be involved in mRNA decay. P0 forms a tight complex with multiple copies of the small acidic protein L12(e). This complex forms a stalk structure on the large subunit of the ribosome. It occupies the L7/L12 stalk of the ribosome. The stalk is known to contain the binding site for elongation factors EF-G and EF-Tu; however, there is disagreement as to whether or not P0 is involved in forming the binding site. The stalk is believed to be associated with GTPase activities in protein synthesis. In a neuroblastoma cell line, P0 has been shown to interact with the SH3 domain of Src and to activate the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and the WASP-interacting protein (WIP). Some eukaryotic P0 sequences have an additional C-terminal domain homologous with acidic proteins P1 and P2. 163 -240223 cd05797 Ribosomal_L10 Ribosomal protein L10 family, L10 subfamily; composed of bacterial 50S ribosomal protein and eukaryotic mitochondrial 39S ribosomal protein, L10. L10 occupies the L7/L12 stalk of the ribosome. The N-terminal domain (NTD) of L10 interacts with L11 protein and forms the base of the L7/L12 stalk, while the extended C-terminal helix binds to two or three dimers of the NTD of L7/L12 (L7 and L12 are identical except for an acetylated N-terminus). The L7/L12 stalk is known to contain the binding site for elongation factors G and Tu (EF-G and EF-Tu, respectively); however, there is disagreement as to whether or not L10 is involved in forming the binding site. The stalk is believed to be associated with GTPase activities in protein synthesis. In a neuroblastoma cell line, L10 has been shown to interact with the SH3 domain of Src and to activate the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and the WASP-interacting protein (WIP). These bacteria and eukaryotic sequences have no additional C-terminal domain, present in other eukaryotic and archaeal orthologs. 157 -240224 cd05798 SIS_TAL_PGI SIS_TAL_PGI: Transaldolase (TAL)/ Phosphoglucose isomerase (PGI). This group represents the SIS (Sugar ISomerase) PGI domain, of a multifunctional protein (TAL-PGI ) having both TAL and PGI activities. TAL_PGI contains an N-terminal TAL domain and a C-terminal PGI domain. TAL catalyzes the reversible conversion of sedoheptulose-7-phosphate (S7P) and glyceraldehyde-3-phosphate (G3P), to fructose-6-phosphate (F6P) and erythrose-4-phosphate (E4P). PGI catalyzes the reversible isomerization of F6P to glucose-6-phosphate (G6P). It has been suggested for Gluconobacter oxydans TAL_PGI that this enzyme generates E4P and G6P directly from S7P and G3P. G. oxydans TAL_PGI contributes to increased xylitol production from D-arabitol. As xylitol is an alternative natural sweetner to sucrose, the microbial conversion of D-arabitol to xylitol is of interest to food and pharmaceutical industries. 129 -100092 cd05799 PGM2 This CD includes PGM2 (phosphoglucomutase 2) and PGM2L1 (phosphoglucomutase 2-like 1). The mammalian PGM2 is thought to be a phosphopentomutase that catalyzes the conversion of the nucleoside breakdown products, ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses. PGM2L1 is thought to catalyze the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates that serve as cofactors for several sugar phosphomutases and possibly also as regulators of glycolytic enzymes. PGM2 and PGM2L1 belong to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 487 -100093 cd05800 PGM_like2 This PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily and is found in both archaea and bacteria. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four structural domains (subdomains) with a centrally located active site formed by four loops, one from each subdomain. All four subdomains are included in this alignment model. 461 -100094 cd05801 PGM_like3 This bacterial PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 522 -100095 cd05802 GlmM GlmM is a bacterial phosphoglucosamine mutase (PNGM) that belongs to the alpha-D-phosphohexomutase superfamily. It is required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate in the biosynthetic pathway of UDP-N-acetylglucosamine, an essential precursor to components of the cell envelope. In order to be active, GlmM must be phosphorylated, which can occur via autophosphorylation or by the Ser/Thr kinase StkP. GlmM functions in a classical ping-pong bi-bi mechanism with glucosamine-1,6-diphosphate as an intermediate. Other members of the alpha-D-phosphohexomutase superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 434 -100096 cd05803 PGM_like4 This PGM-like (phosphoglucomutase-like) domain is located C-terminal to a mannose-1-phosphate guanyltransferase domain in a protein of unknown function that is found in both prokaryotes and eukaryotes. This domain belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 445 -100115 cd05804 StaR_like StaR_like; a well-conserved protein found in bacteria, plants, and animals. A family member from Streptomyces toyocaensis, StaR is part of a gene cluster involved in the biosynthesis of glycopeptide antibiotics (GPAs), specifically A47934. It has been speculated that StaR could be a flavoprotein hydroxylating a tyrosine sidechain. Some family members have been annotated as proteins containing tetratricopeptide (TPR) repeats, which may at least indicate mostly alpha-helical secondary structure. 355 -100097 cd05805 MPG1_transferase GTP-mannose-1-phosphate guanyltransferase (MPG1 transferase), also known as GDP-mannose pyrophosphorylase, is a bifunctional enzyme with both phosphomannose isomerase (PMI) activity and GDP-mannose phosphorylase (GMP) activity. The protein contains an N-terminal NTP transferase domain, an L-beta-H domain, and a C-terminal PGM-like domain that belongs to the alpha-D-phosphohexomutase superfamily. This subfamily is limited to bacteria and archaea. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this group appear to lack conserved residues necessary for metal binding and catalytic activity. Other members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model. 441 -99881 cd05806 CBM20_laforin Laforin protein tyrosine phosphatase, N-terminal CBM20 (carbohydrate-binding module, family 20) domain. Laforin, encoded by the EPM2A gene, is a dual-specificity phosphatase that dephosphorylates complex carbohydrates. Mutations in the gene encoding laforin result in Lafora disease, a fatal autosomal recessive neurodegenerative disorder characterized by the presence of intracellular deposits of insoluble, abnormally branched, glycogen-like polymers, known as Lafora bodies, in neurons, muscle, liver, and other tissues. The molecular basis for the formation of these Lafora bodies is unknown. Laforin is one of the only phosphatases that contains a carbohydrate-binding module. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 112 -99882 cd05807 CBM20_CGTase CGTase, C-terminal CBM20 (carbohydrate-binding module, family 20) domain. CGTase, also known as cyclodextrin glycosyltransferase and cyclodextrin glucanotransferase, catalyzes the formation of various cyclodextrins (alpha-1,4-glucans) from starch. CGTase has, in addition to its C-terminal CBM20 domain, an N-terminal catalytic domain belonging to glycosyl hydrolase family 13 and an IPT domain of unknown function. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 101 -99883 cd05808 CBM20_alpha_amylase Alpha-amylase, C-terminal CBM20 (carbohydrate-binding module, family 20) domain. This domain is found in several bacterial and fungal alpha-amylases including the maltopentaose-forming amylases (G5-amylases). Most alpha-amylases have, in addition to the C-terminal CBM20 domain, an N-terminal catalytic domain belonging to glycosyl hydrolase family 13, which hydrolyzes internal alpha-1,4-glucosidic bonds in starch and related saccharides, yielding maltotriose and maltose. Two types of soluble substrates are used by alpha-amylases including long substrates (e.g. amylose) and short substrates (e.g. maltodextrins or maltooligosaccharides). The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 95 -99884 cd05809 CBM20_beta_amylase Beta-amylase, C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Beta-amylase has, in addition to its C-terminal CBM20 domain, an N-terminal catalytic domain belonging to glycosyl hydrolase family 14, which hydrolyzes the alpha-1,4-glucosidic bonds of starch, yielding beta-maltose from the nonreducing end of the substrate. Beta-amylase is found in both plants and microorganisms, however the plant members lack a C-terminal CBM20 domain and are not included in this group. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 99 -99885 cd05810 CBM20_alpha_MTH Glucan 1,4-alpha-maltotetraohydrolase (alpha-MTH), C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Alpha-MTH, also known as maltotetraose-forming exo-amylase or G4-amylase, is an exo-amylase found in bacteria that degrades starch from its non-reducing end. Most alpha-MTHs have, in addition to the C-terminal CBM20 domain, an N-terminal glycosyl hydrolase family 13 catalytic domain. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 97 -99886 cd05811 CBM20_glucoamylase Glucoamylase (glucan1,4-alpha-glucosidase), C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Glucoamylases are inverting, exo-acting starch hydrolases that hydrolyze starch and related polysaccharides by releasing the nonreducing end glucose. They are mainly active on alpha-1,4-glycosidic bonds but also have some activity towards 1,6-glycosidic bonds occurring in natural oligosaccharides. The ability of glucoamylases to cleave 1-6-glycosidic binds is called "debranching activity" and is of importance in industrial applications, where complete degradation of starch to glucose is needed. Most glucoamylases are multidomain proteins containing an N-terminal catalytic domain, a C-terminal CBM20 domain, and a highly O-glycosylated linker region that connects the two. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 106 -99887 cd05813 CBM20_genethonin_1 Genethonin-1, C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Genethonin-1 is a human skeletal muscle protein with no known function. It contains a C-terminal CBM20 domain. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 95 -99888 cd05814 CBM20_Prei4 Prei4, N-terminal CBM20 (carbohydrate-binding module, family 20) domain. Preimplantation protein 4 (Prei4) is a protein of unknown function that is expressed during mouse preimplantation embryogenesis. In addition to the N-terminal CBM20 domain, Prei4 contains a C-terminal glycerophosphoryl diester phosphodiesterase (GDPD) domain. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 120 -99889 cd05815 CBM20_DPE2_repeat1 Disproportionating enzyme 2 (DPE2), N-terminal CBM20 (carbohydrate-binding module, family 20) domain, repeat 1. DPE2 is a transglucosidase that is essential for the cytosolic metabolism of maltose in plant leaves at night. Maltose is an intermediate on the pathway from starch to sucrose and DPE2 is thought to metabolize the maltose that is exported from the chloroplast. DPE2 has two N-terminal CBM20 starch binding domains as well as a C-terminal amylomaltase (4-alpha-glucanotransferase) catalytic domain. DPE1, the plastid version of this enzyme, has a transglucosidase domain that is similar to that of DPE2 but lacks the N-terminal carbohydrate-binding domains. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 101 -99890 cd05816 CBM20_DPE2_repeat2 Disproportionating enzyme 2 (DPE2), N-terminal CBM20 (carbohydrate-binding module, family 20) domain, repeat 2. DPE2 is a transglucosidase that is essential for the cytosolic metabolism of maltose in plant leaves at night. Maltose is an intermediate on the pathway from starch to sucrose and DPE2 is thought to metabolize the maltose that is exported from the chloroplast. DPE2 has two N-terminal CBM20 domains as well as a C-terminal amylomaltase (4-alpha-glucanotransferase) catalytic domain. DPE1, the plastid version of this enzyme, has a transglucosidase domain that is similar to that of DPE2 but lacks the N-terminal CBM20 domains. Included in this group are PDE2-like proteins from Dictyostelium, Entamoeba, and Bacteroides. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 99 -99891 cd05817 CBM20_DSP Dual-specificity phosphatase (DSP), N-terminal CBM20 (carbohydrate-binding module, family 20) domain. This CBM20 domain is located at the N-terminus of a protein tyrosine phosphatase of unknown function found in slime molds and ciliated protozoans. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 100 -99892 cd05818 CBM20_water_dikinase Phosphoglucan water dikinase (also known as alpha-glucan water dikinase), N-terminal CBM20 (carbohydrate-binding module, family 20) domain. This domain is found in the chloroplast-encoded phosphoglucan water dikinase, one of two enzymes involved in the phosphorylation of plant starches. In addition to the CBM20 domain, phosphoglucan water dikinase contains a C-terminal pyruvate binding domain. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 92 -271320 cd05819 NHL NHL repeat unit of beta-propeller proteins. The NHL(NCL-1, HT2A and LIN-41)-repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. The repeats have a catalytic activity in Peptidyl-glycine alpha-amidating monooxygenase; proteolysis has shown that the Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activity is localized to the repeats. Tripartite motif-containing protein 32 interacts with the activation domain of Tat. This interaction is mediated by the NHL repeats. 269 -99893 cd05820 CBM20_novamyl Novamyl (also known as acarviose transferase, ATase, maltogenic alpha-amylase, glucan 1,4-alpha-maltohydrolase, and AcbD), C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Novamyl has a five-domain structure similar to that of cyclodextrin glucanotransferase (CGTase). Novamyl has a substrate-binding surface with an open groove which can accommodate both cyclodextrins and linear substrates. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 103 -100113 cd05821 TLP_Transthyretin Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in vertebrates. TTR distributes the two thyroid hormones T3 (3,5,3'-triiodo-L-thyronine) and T4 (Thyroxin, or 3,5,3',5'-tetraiodo-L-thyronine), as well as retinol (vitamin A) through the formation of a macromolecular complex that includes each of these as well as retinol-binding protein. Misfolded forms of TTR are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. TTR forms a homotetramer with each subunit consisting of eight beta-strands arranged in two sheets and a short alpha-helix. The central channel of the tetramer contains two independent binding sites, each located between a pair of subunits, which differ in their ligand binding affinity. A negative cooperativity has been observed for the binding of T4 and other TTR ligands. A fraction of plasma TTR is carried in high density lipoproteins by binding to apolipoprotein AI (apoA-I). TTR is able to proteolytically process apoA-I by cleaving its C-terminus; therefore TTR has protease activity in addition to its function in protein transport. 121 -100114 cd05822 TLP_HIUase HIUase (5-hydroxyisourate hydrolase) catalyzes the second step in a three-step ureide pathway in which 5-hydroxyisourate (HIU), a product of the uricase (urate oxidase) reaction, is hydrolyzed to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU). HIUase has high sequence similarity with transthyretins and is a member of the transthyretin-like protein (TLP) family. HIUase is distinguished from transthyretins by a conserved signature motif at its C-terminus that forms part of the active site. In HIUase, this motif is YRGS, while transthyretins have a conserved TAVV sequence in the same location. Most HIUases are cytosolic but in plants and slime molds, they are peroxisomal based on the presence of N-terminal periplasmic localization sequences. HIUase forms a homotetramer with each subunit consisting of eight beta-strands arranged in two sheets and a short alpha-helix. The central channel of the tetramer contains two independent binding sites, each located between a pair of subunits. 112 -100062 cd05824 LbH_M1P_guanylylT_C Mannose-1-phosphate guanylyltransferase, C-terminal Left-handed parallel beta helix (LbH) domain: Mannose-1-phosphate guanylyltransferase is also known as GDP-mannose pyrophosphorylase. It catalyzes the synthesis of GDP-mannose from GTP and mannose-1-phosphate, and is involved in the maintenance of cell wall integrity and glycosylation. Similar to ADP-glucose pyrophosphorylase, it contains an N-terminal catalytic domain that resembles a dinucleotide-binding Rossmann fold and a C-terminal LbH fold domain, presumably with 4 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. 80 -100063 cd05825 LbH_wcaF_like wcaF-like: This group is composed of the protein product of the E. coli wcaF gene and similar proteins. WcaF is part of the gene cluster responsible for the biosynthesis of the extracellular polysaccharide colanic acid. The wcaF protein is predicted to contain a left-handed parallel beta-helix (LbH) domain encoded by imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. Many are trimeric in their active forms. 107 -320675 cd05826 Sortase_B Sortase domain found in class B sortases. Class B sortases are membrane-bound cysteine transpeptidases broadly distributed in Gram-positive bacteria (mainly present in Firmicutes and Actinobacteria). They can have radically distinct functions. Some members of this group attach haemoproteins to the peptidoglycan of the cell wall, while others assemble pili, which are multi-subunit hair-like fibres that extend from the cell surface to promote microbial adhesion and biofilm formation. In transpeptidation reaction, the surface protein substrate is cleaved at a conserved cell wall-sorting signal (Class B sortases normally recognize the consensus NP[Q/K][T/S][N/G/S][D/A] motif), and covalently linked to peptidoglycan for display on the bacterial surface. The prototypical sortase B protein from Staphylococcus aureus (named Sa-SrtB) cleaves surface protein precursors between threonine and asparagine at a conserved NPQTN motif with subsequent covalent linkage to pentaglycine cross-bridges. It is required for anchoring the heme-iron binding surface protein IsdC to the cell wall envelope. SrtB contains an N-terminal hydrophobic region that functions as a signal peptide/transmembrane domain. At the C terminus, it contains an essential cysteine residue within the catalytic TLXTC signature sequence, where X is usually a serine. Genes encoding SrtB and its targets are generally clustered in the same locus. The prototypical class B sortase involved in pilus biogenesis is pilus-specific sortase C2 from Streptococcus pyogenes (named Sp-SrtC2) that anchors a surface protein containing a QVPTGV motif to the cell wall, as well as polymerizes the major pilin subunit Tee3/FctA and attaches the minor tip pilin Cpa. The linkage of Cpa to Tee3 by SrtC2 requires the VPPTG motif in the cell wall-sorting signal of Cpa. The family also includes SrtB enzymes from Bacillus anthracis (named Ba-SrtB) and Clostridium difficile (named Cd-SrtB). Ba-SrtB is thought to recognize the NPKTG motif, and attaches surface proteins to meso-diaminopimelic acid (mDAP) cross-bridges. Cd-SrtB does not play an essential role in pathogenesis. It cleaves short [SP]PXTG motif-containing peptides between the threonine and glycine residues and then covalently anchors the threonine residue to a nucleophile such as glycine or mDAP, but not to the peptidoglycan of C. difficile, suggesting a novel association of sortase activity with cyclic diGMP (c-diGMP)-mediated regulation to control levels of cell wall anchoring and secretion of putative adhesion molecules. 170 -320676 cd05827 Sortase_C Sortase domain found in class C sortases. Class C sortases are membrane-bound cysteine transpeptidases broadly distributed in Gram-positive bacteria (mainly present in Firmicutes and Actinobacteria). They function as pilin polymerases responsible for the assembly of pili, which are multi-subunit hair-like fibres that extend from the cell surface to promote microbial adhesion and biofilm formation. First, one or more class C sortases form the long thin shaft of the pilus through linking together pilin subunits via isopeptide bonds. The base of the pilus is then anchored to the cell wall by a housekeeping sortase or, in some cases, the class C sortase itself. Depending upon the organism both the number and type of sortase enzymes involved varies, and in some cases, accessory factors appear to be needed. In three-component spaA pilus from Corynebacterium diphtheriae, the prototypical class C sortase (named Cd-SrtA) catalyzes polymerization of the SpaA-type pilus, consisting of the shaft pilin SpaA, tip pilin SpaC and minor pilin SpaB. The pilus shaft is then attached to the cell wall by a housekeeping class E sortase, Cd-SrtF. In the absence of Cd-SrtF, Cd-SrtA attaches the pilus to the cell wall, albeit at a reduced rate. Cd-SrtA can recognize two distinct sorting signals (LPLTG in SpaA and SpaC, and LAFTG in SpaB) and it can employ lysine residues that originate from different proteins (either Lys190 within the pilin motif of SpaA or Lys139 in SpaB). However, Cd-SrtA cannot be able to polymerize the major pilin subunit SpaH, even though it contains LPLTG motif. In two-component pili of prototypical Bacillus cereus, the class C sortase (named Bc-SrtD) cleaves related sorting signals within a major pilin protein BcpA (LPVTG) and a minor tip pilin BcpB (IPNTG), and catalyzes a transpeptidation that joins the threonine residues in each signal to the side-chain of Lys162 in BcpA (located within a pilin motif). Unlike the SpaA pilus in C. diphtheriae, in B. cereus Bc-SrtD is unable to covalently attach the pilus to the cell wall without the help of the housekeeping sortase. 131 -320677 cd05828 Sortase_D_1 Sortase domain found in subfamily 1 of the class D family of sortases. Class D sortases are cysteine transpeptidases distributed in Gram-positive bacteria (mainly present in Firmicutes). The prototypical subfamily 1 of class D sortase from Bacillus anthracis (named Ba-SrtC) covalently attaches proteins bearing a noncanonical LPNTA sorting signal, such as the BasH and BasI proteins, to the peptidoglycan of the cell wall that facilitate sporulation. BasH is exclusively anchored to the forespore cell wall envelope, while BasI is attached to the diaminopimelic acid moiety of the peptidoglycan of predivisional cells. Ba-SrtC lacks the N-terminal signal peptide and membrane anchor. The family also includes many class D sortase homologs from Gram-negative bacteria, but the functions of these enzymes are unknown. 127 -320678 cd05829 Sortase_F Sortase domain found in the class F family of sortases. Class F sortases are mainly present in Actinobacteria, Chlorobacteria and Firmicutes. Their functions are largely unknown. 144 -320679 cd05830 Sortase_E Sortase domain found in the class E family of sortases. Class E sortases are membrane-bound cysteine transpeptidases distributed in Gram-positive bacteria (mainly present in Actinobacteria). Genes encoding class A and E sortases are never found in the same organism, and similar to class A sortases, the genes encoding class E sortases are not positioned adjacent to genes encoding potential protein substrates, suggesting a housekeeping sortase function of class E sortases in some high G + C Gram-positive bacteria. Similar to class A sortase, class E sortases are capable of anchoring a large number of functionally distinct surface proteins containing a cell wall sorting signal to an amino group located on the bacterial cell wall. They recognize an LAXTG sorting signal, instead of the canonical LPXTG motif processed by class A sortases. The prototypical class E sortase from Corynebacterium diphtheria (named Cd-SrtF) is a non-polymerization sortase that is not required for pilus polymerization, and proceeds to complete the assembly process by anchoring the polymer to the cell wall peptidoglycan. Moreover, in Streptomyces coelicolor, one or both of Staphylococcus aureus SrtA homologs may function as class E sortase responsible for the cell wall anchoring of the long chaplin proteins (ChpA-C) containing an LAXTG sorting signal, which presumably mediate aerial hyphae formation. The family also includes some class E sortase homologs from Gram-negative and Archaebacterial species, but the functions of these enzymes are unknown. 135 -100109 cd05831 Ribosomal_P1 Ribosomal protein P1. This subfamily represents the eukaryotic large ribosomal protein P1. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P1 is located in the L12 stalk, with proteins P2, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers) and bacteria may have four or six copies (two or three homodimers), depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2A, and P2B, which form P1A/P2B and P1B/P2A heterodimers. Some plant species have a third P-protein, called P3, which is not homologous to P1 and P2. In humans, P1 and P2 are strongly autoimmunogenic. They play a significant role in the etiology and pathogenesis of systemic lupus erythema (SLE). In addition, the ribosome-inactivating protein trichosanthin (TCS) interacts with human P0, P1, and P2, with its primary binding site located in the C-terminal region of P2. TCS inactivates the ribosome by depurinating a specific adenine in the sarcin-ricin loop of 28S rRNA. 103 -100110 cd05832 Ribosomal_L12p Ribosomal protein L12p. This subfamily includes archaeal L12p, the protein that is functionally equivalent to L7/L12 in bacteria and the P1 and P2 proteins in eukaryotes. L12p is homologous to P1 and P2 but is not homologous to bacterial L7/L12. It is located in the L12 stalk, with proteins L10, L11, and 23S rRNA. L12p is the only protein in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain six copies of L12p (three homodimers), while eukaryotes have four copies (two heterodimers), and bacteria may have four or six copies (two or three homodimers), depending on the species. The organization of proteins within the stalk has been characterized primarily in bacteria, where L7/L12 forms either two or three homodimers and each homodimer binds to the extended C-terminal helix of L10. L7/L12 is attached to the ribosome through L10 and is the only ribosomal protein that does not directly interact with rRNA. Archaeal L12p is believed to function in a similar fashion. However, hybrid ribosomes containing the large subunit from E. coli with an archaeal stalk are able to bind archaeal and eukaryotic elongation factors but not bacterial elongation factors. In several mesophilic and thermophilic archaeal species, the binding of 23S rRNA to protein L11 and to the L10/L12p pentameric complex was found to be temperature-dependent and cooperative. 106 -100111 cd05833 Ribosomal_P2 Ribosomal protein P2. This subfamily represents the eukaryotic large ribosomal protein P2. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P2 is located in the L12 stalk, with proteins P1, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers). Bacteria may have four or six copies of L7/L12 (two or three homodimers) depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2A, and P2B, which form P1A/P2B and P1B/P2A heterodimers. Some plants have a third P-protein, called P3, which is not homologous to P1 and P2. In humans, P1 and P2 are strongly autoimmunogenic. They play a significant role in the etiology and pathogenesis of systemic lupus erythema (SLE). In addition, the ribosome-inactivating protein trichosanthin (TCS) interacts with human P0, P1, and P2, with its primary binding site in the C-terminal region of P2. TCS inactivates the ribosome by depurinating a specific adenine in the sarcin-ricin loop of 28S rRNA. 109 -99895 cd05834 HDGF_related The PWWP domain is an essential part of the Hepatoma Derived Growth Factor (HDGF) family of proteins, and is necessary for DNA binding by HDGF. This family of endogenous nuclear-targeted mitogens includes HRP (HDGF-related proteins 1, 2, 3, 4, or HPR1, HPR2, HPR3, HPR4, respectively) and lens epithelium-derived growth factor, LEDGF. Members of the HDGF family have been linked to human diseases, and HDGF is a prognostic factor in several types of cancer. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 83 -99896 cd05835 Dnmt3b_related The PWWP domain is an essential component of DNA methyltransferase 3 B (Dnmt3b) which is responsible for establishing DNA methylation patterns during embryogenesis and gametogenesis. In tumorigenesis, DNA methylation by Dnmt3b is known to play a role in the inactivation of tumor suppressor genes. In addition, a point mutation in the PWWP domain of Dnmt3b has been identified in patients with ICF syndrome (immunodeficiency, centromeric instability, and facial anomalies), a rare autosomal recessive disorder characterized by hypomethylation of classical satellite DNA. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 87 -99897 cd05836 N_Pac_NP60 The PWWP domain is an essential part of the cytokine-like nuclear factor n-pac protein, or NP60, which enhances the activity of MAP2K4 and MAP2K6 kinases to phosphorylate p38-alpha. In a variety of cell lines, NP60 has been shown to localize to the nucleus. In addition to the PWWP domain, NP60 also contains an AT-hook and a C-terminal NAD-binding domain. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding proteins, that function as transcription factors regulating a variety of developmental processes. 86 -99898 cd05837 MSH6_like The PWWP domain is present in MSH6, a mismatch repair protein homologous to bacterial MutS. The PWWP domain of histone-lysine N-methyltransferase, also known as Nuclear SET domain-containing protein 3, is also included. Mutations in MSH6 have been linked to increased cancer susceptibility, particularly in hereditary nonpolyposis colorectal cancer in humans. The role of the PWWP domain in MSH6 is not clear; MSH6 orthologs found in S. cerevisiae, Caenorhabditis elegans and Arabidopsis thaliana lack the PWWP domain. Histone methyltransferases (HMTases) induce the posttranslational methylation of lysine residues in histones and play a role in apoptosis. In the HMTase Whistle, the PWWP domain is necessary for HMTase activity. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 110 -99899 cd05838 WHSC1_related The PWWP domain was first identified in the WHSC1 (Wolf-Hirschhorn syndrome candidate 1) protein, a protein implicated in Wolf-Hirschhorn syndrome (WHS). When translocated, WHSC1 plays a role in lymphoid multiple myeloma (MM) disease, also known as plasmacytoma. WHCS1 proteins typically contain two copies of the PWWP domain. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 95 -99900 cd05839 BR140_related The PWWP domain is found in the BR140 family, which includes peregrin and BR140-like proteins 1 and 2. BR140 is the only family to contain the PWWP domain at the C terminus, with PHD and bromo domains in the N-terminal region. In myeloid leukemias, BR140 is disrupted by chromosomal translocations, similar to translocations of WHSC1 in lymphoid multiple myeloma. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding proteins, that function as transcription factors regulating a variety of developmental processes. 111 -99901 cd05840 SPBC215_ISWI_like The PWWP domain is a component of the S. pombe hypothetical protein SPBC215, as well as ISWI complex protein 4. The ISWI (imitation switch) proteins are ATPases responsible for chromatin remodeling in eukaryotes, and SPBC215 is proposed to also bind chromatin. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 93 -99902 cd05841 BS69_related The PWWP domain is part of BS69 protein, a nuclear protein that specifically binds adenoviral E1A and Epstein-Barr viral EBNA2 proteins, suppressing their transactivation functions. BS69 is a multi-domain protein, containing bromo, PHD, PWWP, and MYND domains. The specific role of the PWWP domain within BS69 is not clearly identified, but BS69 functions in chromatin remodeling, consistent with other PWWP-containing proteins. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 83 -320682 cd05843 Peptidase_M48_M56 Peptidases M48 (Ste24 endopeptidase or htpX homolog) and M56 (in MecR1 and BlaR1), integral membrane metallopeptidases. This family contains peptidase M48 (also known as Ste24 peptidase, Ste24p, Ste24 endopeptidase, a-factor converting enzyme, AFC1), M56 (also known as BlaR1 peptidase) as well as a novel family called minigluzincins. Peptidase M48 belongs to Ste24 endopeptidase family. Members of this family include Ste24 protease (peptidase M48A), protease htpX homolog (peptidase M48B), or CAAX prenyl protease 1, and mitochondrial metalloendopeptidase OMA1 (peptidase M48C). They proteolytically remove the C-terminal three residues of farnesylated proteins. They are integral membrane proteins associated with the endoplasmic reticulum and golgi, binding one zinc ion per subunit. In eukaryotes, Ste24p is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification (C is cysteine; A is usually aliphatic; X is one of several amino acids) is complete. The Ste24p contains multiple membrane spans, a zinc metalloprotease motif (HEXXH), and a COOH-terminal ER retrieval signal (KKXX). Mutation studies have shown that the HEXXH protease motif, which is extracellular but adjacent to a transmembrane domain and therefore close to the membrane surface, is critical for Ste24p activity. Ste24p has limited homology to HtpX family of prokaryotic proteins; HtpX proteins, also part of the M48 peptidase family, are smaller and homology is restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins; HtpX then undergoes self-degradation and collaborates with FtsH to eliminate these misfolded proteins. Peptidase M56 includes zinc metalloprotease domain in MecR1 and BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain beta-lactam antibiotics in MRSA. Also included are a novel family of related proteins that consist of the soluble minimal scaffold similar to the catalytic domains of the integral-membrane metallopeptidase M48 and M56, thus called minigluzincins. 94 -340860 cd05844 GT4-like glycosyltransferase family 4 proteins. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to glycosyltransferase family 4 (GT4). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 365 -143253 cd05845 Ig2_L1-CAM_like Second immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins. Ig2_L1-CAM_like: domain similar to the second immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains, five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. 95 -319317 cd05846 Ig1_MRC-OX-2_like First immunoglobulin (Ig) domain of rat MRC OX-2 antigen (also known as CD200) and similar domains. Ig1_ MRC-OX-2_like: domain similar to the first immunoglobulin (Ig) domain of rat MRC OX-2 antigen (also known as CD200). MRC OX-2 is a membrane glycoprotein expressed in a variety of lymphoid and non-lymphoid cells in rats. It has a similar broad distribution pattern in humans. MRC OX-2 may regulate myeloid cell activity. The protein has an extracellular portion containing two Ig-like domains, a transmembrane portion, and a cytoplasmic portion. 95 -143255 cd05847 IgC_CH2_IgE CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin E (IgE). IgC_CH2_IgE: The second constant domain of the heavy chain of immunoglobulin E (IgE). The basic structure of immunoglobulin (Ig) molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) and three (in alpha, delta, and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). The different classes of antibodies vary in their heavy chains; the IgE class has the epsilon type. This domain (Cepsilon2) of IgE is in place of the flexible hinge region found in IgG. 94 -143256 cd05848 Ig1_Contactin-5 First immunoglobulin (Ig) domain of contactin-5. Ig1_Contactin-5: First Ig domain of the neural cell adhesion molecule contactin-5. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains, anchored to the membrane by glycosylphosphatidylinositol. The different contactins show different expression patterns in the central nervous system. In rats, a lack of contactin-5 (NB-2) results in an impairment of the neuronal activity in the auditory system. Contactin-5 is expressed specifically in the postnatal nervous system, peaking at about 3 weeks postnatal. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala; lower levels of expression have been detected in the corpus callosum, caudate nucleus, and spinal cord. 94 -143257 cd05849 Ig1_Contactin-1 First immunoglobulin (Ig) domain of contactin-1. Ig1_Contactin-1: First Ig domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 93 -143258 cd05850 Ig1_Contactin-2 First immunoglobulin (Ig) domain of contactin-2. Ig1_Contactin-2: First Ig domain of the neural cell adhesion molecule contactin-2-like. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. It may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module by contacts between IG domains 1 and 4, and domains 2 and 3. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-2 is also expressed in retinal amacrine cells in the developing chick retina, corresponding to the period of formation and maturation of AC processes. 94 -143259 cd05851 Ig3_Contactin-1 Third immunoglobulin (Ig) domain of contactin-1. Ig3_Contactin-1: Third Ig domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 88 -143260 cd05852 Ig5_Contactin-1 Fifth immunoglobulin (Ig) domain of contactin-1. Ig5_Contactin-1: fifth Ig domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. 73 -143261 cd05853 Ig6_Contactin-4 Sixth immunoglobulin (Ig) domain of contactin-4. Ig6_Contactin-4: sixth Ig domain of the neural cell adhesion molecule contactin-4. Contactins are neural cell adhesion molecules, and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The different contactins show different expression patterns in the central nervous system. Highest expresson of contactin-4 is in testes, thyroid, small intestine, uterus and brain. Contactin-4 plays a role in the response of neuroblastoma cells to differentiating agents, such as retinoids. The contactin 4 gene is associated with cerebellar degeneration in spinocerebellar ataxia type 16. 85 -143262 cd05854 Ig6_Contactin-2 Sixth immunoglobulin (Ig) domain of contactin-2. Ig6_Contactin-2: Sixth Ig domain of the neural cell adhesion molecule contactin-2-like. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. It may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module by contacts between IG domains 1 and 4, and domains 2 and 3. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-2 is also expressed in retinal amacrine cells (AC) in the developing chick retina, corresponding to the period of formation and maturation of AC processes. 85 -143263 cd05855 Ig_TrkB_d5 Fifth domain (immunoglobulin-like) of Trk receptor TrkB. TrkB_d5: the fifth domain of Trk receptor TrkB, an immunoglobulin (Ig)-like domain which binds to neurotrophin. The Trk family of receptors are tyrosine kinase receptors, which mediate the trophic effects of the neurotrophin Nerve growth factor (NGF) family. The Trks are activated by dimerization, leading to autophosphorylation of intracellular tyrosine residues, and triggering the signal transduction pathway. TrkB shares significant sequence homology and domain organization with TrkA, and TrkC. The first three domains are leucine-rich domains. The fourth and fifth domains are Ig-like domains playing a part in ligand binding. TrKB is recognized by brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-4. In some cell systems NT-3 can activate TrkA and TrkB receptors. TrKB transcripts are found throughout multiple structures of the central and peripheral nervous systems. 79 -143264 cd05856 Ig2_FGFRL1-like Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1(FGFRL1). Ig2_FGFRL1-like: second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1(FGFRL1). FGFRL1 is comprised of a signal peptide, three extracellular Ig-like modules, a transmembrane segment, and a short intracellular domain. FGFRL1 is expressed preferentially in skeletal tissues. Similar to FGF receptors, the expressed protein interacts specifically with heparin and with FGF2. FGFRL1 does not have a protein tyrosine kinase domain at its C terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. 82 -143265 cd05857 Ig2_FGFR Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. Ig2_FGFR: second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. FGF receptors bind FGF signaling polypeptides. FGFs participate in multiple processes such as morphogenesis, development, and angiogenesis. FGFs bind to four FGF receptor tyrosine kinases (FGFR1, -2, -3, -4). Receptor diversity is controlled by alternative splicing producing splice variants with different ligand binding characteristics and different expression patterns. FGFRs have an extracellular region comprised of three IG-like domains, a single transmembrane helix, and an intracellular tyrosine kinase domain. Ligand binding and specificity reside in the Ig-like domains 2 and 3, and the linker region that connects these two. FGFR activation and signaling depend on FGF-induced dimerization, a process involving cell surface heparin or heparin sulfate proteoglycans. 85 -143266 cd05858 Ig3_FGFR-2 Third immunoglobulin (Ig)-like domain of fibroblast growth factor receptor 2 (FGFR2). Ig3_FGFR-2-like; domain similar to the third immunoglobulin (Ig)-like domain of human fibroblast growth factor receptor 2 (FGFR2). Fibroblast growth factors (FGFs) participate in morphogenesis, development, angiogenesis, and wound healing. These FGF-stimulated processes are mediated by four FGFR tyrosine kinases (FGRF1-4). FGFRs are comprised of an extracellular portion consisting of three Ig-like domains, a transmembrane helix, and a cytoplasmic portion having protein tyrosine kinase activity. The highly conserved Ig-like domains 2 and 3, and the linker region between D2 and D3 define a general binding site for FGFs. FGFR2 is required for male sex determination. 90 -143267 cd05859 Ig4_PDGFR Fourth immunoglobulin (Ig)-like domain of platelet-derived growth factor receptor (PDGFR). IG4_PDGFR: The fourth immunoglobulin (Ig)-like domain of platelet-derived growth factor receptor (PDGFR) alpha and beta. PDGF is a potent mitogen for connective tissue cells. PDGF-stimulated processes are mediated by three different PDGFs (PDGF-A,-B, and C). PDGFR alpha binds to all three PDGFs, whereas the PDGFR beta binds only to PDGF-B. PDGF alpha is organized as an extracellular component having five Ig-like domains, a transmembrane segment, and a cytoplasmic portion having protein tyrosine kinase activity. In mice, PDGFR alpha and PDGFR beta are essential for normal development. 101 -319318 cd05860 Ig4_SCFR Fourth immunoglobulin (Ig)-like domain of stem cell factor receptor (SCFR). Ig4_SCFR: The fourth Immunoglobulin (Ig)-like domain in stem cell factor receptor (SCFR). SCFR is organized as an extracellular component having five IG-like domains, a transmembrane segment, and a cytoplasmic portion having protein tyrosine kinase activity. SCFR and its ligand SCF are critical for normal hematopoiesis, mast cell development, melanocytes and gametogenesis. SCF binds to the second and third Ig-like domains of SCFR. This fourth Ig-like domain participates in SCFR dimerization, which follows ligand binding. Deletion of this fourth domain abolishes the ligand-induced dimerization of SCFR and completely inhibits signal transduction. 101 -143269 cd05861 Ig_PDGFR-alphabeta Immunoglobulin (Ig)-like domain of platelet-derived growth factor (PDGF) receptors (R), alpha (CD140a), and beta (CD140b). Ig_PDGFR-alphabeta: immunoglobulin (Ig)-like domain of platelet-derived growth factor (PDGF) receptors (R), alpha (CD140a), and beta (CD140b). PDGF is a potent mitogen for connective tissue cells. PDGF-stimulated processes are mediated by three different PDGFs (PDGF-A,-B, and C). PDGFRalpha binds to all three PDGFs, whereas the PDGFRbeta binds only to PDGF-B. PDGFRs alpha and beta have similar organization: an extracellular component with five Ig-like domains, a transmembrane segment, and a cytoplasmic portion having protein tyrosine kinase activity. In mice, PDGFRalpha and PDGFRbeta are essential for normal development. 84 -143270 cd05862 Ig_VEGFR Immunoglobulin (Ig)-like domain of vascular endothelial growth factor (VEGF) receptor(R). Ig_VEGFR: immunoglobulin (Ig)-like domain of vascular endothelial growth factor (VEGF) receptor(R). The VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. The VEGFR family consists of three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4). VEGF_A interacts with both VEGFR-1 and VEGFR-2. VEGFR-1 binds strongest to VEGF, VEGF-2 binds more weakly. VEGFR-3 appears not to bind VEGF, but binds other members of the VEGF family (VEGF-C and -D). VEGFRs bind VEGFs with high affinity with the IG-like domains. VEGF-A is important to the growth and maintenance of vascular endothelial cells and to the development of new blood- and lymphatic-vessels in physiological and pathological states. VEGFR-2 is a major mediator of the mitogenic, angiogenic and microvascular permeability-enhancing effects of VEGF-A. VEGFR-1 may play an inhibitory part in these processes by binding VEGF and interfering with its interaction with VEGFR-2. VEGFR-1 has a signaling role in mediating monocyte chemotaxis. VEGFR-2 and -1 may mediate a chemotactic and a survival signal in hematopoietic stem cells or leukemia cells. VEGFR-3 has been shown to be involved in tumor angiogenesis and growth. 86 -143271 cd05863 Ig_VEGFR-3 Immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 3 (VEGFR-3). Ig_VEGFR-3: immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 3 (VEGFR-3). The VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. VEGFRs bind VEGFs with high affinity at the Ig-like domains. VEGFR-3 (Flt-4) binds two members of the VEGF family (VEGF-C and -D) and is involved in tumor angiogenesis and growth. 67 -143272 cd05864 Ig_VEGFR-2 Immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 2 (VEGFR-2). Ig_VEGF-2: immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 2 (VEGFR-2). The VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. VEGFRs bind VEGFs with high affinity at the Ig-like domains. VEGFR-2 (KDR/Flk-1) is a major mediator of the mitogenic, angiogenic and microvascular permeability-enhancing effects of VEGF-A; VEGF-A is important to the growth and maintenance of vascular endothelial cells and to the development of new blood- and lymphatic-vessels in physiological and pathological states. VEGF-A also interacts with VEGFR-1, which it binds more strongly than VEGFR-2. VEGFR-2 and -1 may mediate a chemotactic and a survival signal in hematopoietic stem cells or leukemia cells. 70 -143273 cd05865 Ig1_NCAM-1 First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1. Ig1_NCAM-1: first immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1. NCAM-1 plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-nonNCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves the Ig1, Ig2, and Ig3 domains. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. 96 -143274 cd05866 Ig1_NCAM-2 First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-2. Ig1_NCAM-2: first immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-2 (OCAM/mamFas II, RNCAM). NCAM-2 is organized similarly to NCAM-1, including five N-terminal Ig-like domains and two fibronectin type III domains. NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE), and may function like NCAM, as an adhesion molecule. 92 -143275 cd05867 Ig4_L1-CAM_like Fourth immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). Ig4_L1-CAM_like: fourth immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM. 76 -143276 cd05868 Ig4_NrCAM Fourth immunoglobulin (Ig)-like domain of NrCAM (NgCAM-related cell adhesion molecule). Ig4_ NrCAM: fourth immunoglobulin (Ig)-like domain of NrCAM (NgCAM-related cell adhesion molecule). NrCAM belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six IG-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. NrCAM is primarily expressed in the nervous system. 76 -143277 cd05869 Ig_NCAM-1 Immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM). Ig_NCAM-1: immunoglobulin (Ig)-like domain similar to the fourth Ig domain of Neural Cell Adhesion Molecule NCAM-1 (NCAM). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM) interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. 97 -143278 cd05870 Ig_NCAM-2 Immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule NCAM-2 (also known as OCAM/mamFas II and RNCAM). Ig_NCAM-2: immunoglobulin (Ig)-like domain similar to the fourth Ig domain of Neural Cell Adhesion Molecule NCAM-2 (also known as OCAM/mamFas II and RNCAM). NCAM-2 is organized similarly to NCAM , including five N-terminal Ig-like domains and two fibronectin type III domains. NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE), and may function like NCAM, as an adhesion molecule. 98 -143279 cd05871 Ig_Semaphorin_classIII Immunoglobulin (Ig)-like domain of class III semaphorin. Ig_Semaphorin_class III; Immunoglobulin (Ig)-like domain of class III semaphorins. Semaphorins are classified into various classes on the basis of structural features additional to the Sema domain. Class III semaphorins are a vertebrate class having a Sema domain, an Ig domain, a short basic domain, and are secreted. They have been shown to be axonal guidance cues and have a part in the regulation of the cardiovascular, immune and respiratory systems. Sema3A, the prototype member of this class III subfamily, induces growth cone collapse and is an inhibitor of axonal sprouting. In perinatal rat cortex, it acts as a chemoattractant and functions to direct the orientated extension of apical dendrites. It may play a role, prior to the development of apical dendrites, in signaling the radial migration of newborn cortical neurons towards the upper layers. Sema3A selectively inhibits vascular endothelial growth factor receptor (VEGF)-induced angiogenesis and induces microvascular permeability. This group also includes Sema3B, -C, -D, -E, -G. 91 -143280 cd05872 Ig_Sema4B_like Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4B. Ig_Sema4B_like; Immunoglobulin (Ig)-like domain of Sema4B and similar proteins. Sema4B is a Class IV semaphorin. Semaphorins are classified based on structural features additional to the Sema domain. Sema4B has extracellular Sema and Ig domains, a transmembrane domain and a short cytoplasmic domain. Sema4B has been shown to preferentially regulate the development of the postsynaptic specialization at the glutamatergic synapses. This cytoplasmic domain includes a PDZ-binding motif upon which the synaptic localization of Sem4B is dependent. Sema4B is a ligand of CLCP1. CLCP1 was identified in an expression profiling analysis, which compared a highly metastic lung cancer subline with its low metastic parental line. Sema4B was shown to promote CLCP1 endocytosis, and their interaction is a potential target for therapeutic intervention of metastasis. 85 -143281 cd05873 Ig_Sema4D_like Immunoglobulin (Ig)-like domain of the class IV semaphorin Sema4D. Ig_Sema4D_like; Immunoglobulin (Ig)-like domain of Sema4D. Sema4D is a Class IV semaphorin. Semaphorins are classified based on structural features additional to the Sema domain. Sema4D has extracellular Sema and Ig domains, a transmembrane domain, and a short cytoplasmic domain. Sema4D plays a part in the development of GABAergic synapses. Sema4D in addition is an immune semaphorin. It is abundant on resting T cells; its expression is weak on resting B cells and antigen presenting cells (APCs), but is upregulated by various stimuli. The receptor used by Sema4D in the immune system is CD72. Sem4D enhances the activation of B cells and DCs through binding CD72, perhaps by reducing CD72s inhibitory signals. The receptor used by Sema4D in the non-lymphatic tissues is plexin-B1. Sem4D is anchored to the cell surface but its extracellular domain can be released from the cell surface by a metalloprotease-dependent process. Sem4D may mediate its effects in its membrane bound form, and/or its cleaved form. 87 -143282 cd05874 Ig_NrCAM Immunoglobulin (Ig)-like domain of NrCAM (Ng (neuronglia) CAM-related cell adhesion molecule). Ig_NrCAM: domain similar to the first immunoglobulin (Ig)-like domain of NrCAM (Ng (neuronglia) CAM-related cell adhesion molecule). NrCAM belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region, and an intracellular domain. NrCAM is primarily expressed in the nervous system. 77 -143283 cd05875 Ig_hNeurofascin_like Immunoglobulin (Ig)-like domain of human neurofascin (NF). Ig_hNeurofascin_like: domain similar to the first immunoglobulin (Ig)-like domain of human neurofascin (NF). NF belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region, and a cytoplasmic domain. NF has many alternatively spliced isoforms having different temporal expression patterns during development. NF participates in axon subcellular targeting and synapse formation, however little is known of the functions of the different isoforms. 77 -143284 cd05876 Ig3_L1-CAM Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). Ig3_L1-CAM: third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains, five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM. 71 -143285 cd05877 Ig_LP_like Immunoglobulin (Ig)-like domain of human cartilage link protein (LP). Ig_LP_like: immunoglobulin (Ig)-like domain similar to that that found in human cartilage link protein (LP), also called hyaluronan and proteoglycan link protein. In cartilage, chondroitin-keratan sulfate proteoglycan (CSPG), aggrecan, forms cartilage link protein stabilized aggregates with hyaluronan (HA). These aggregates contribute to the tissue's load bearing properties. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 106 -319319 cd05878 Ig_Aggrecan_like Immunoglobulin (Ig)-like domain of the aggrecan-like chondroitin sulfate proteoglycan core protein (CSPG). Ig_Aggrecan_like: immunoglobulin (Ig)-like domain of the aggrecan-like chondroitin sulfate proteoglycan core proteins (CSPGs). Included in this group are the Ig domains of other CSPGs: versican, and neurocan. In CSPGs, this Ig-like domain is followed by hyaluronan (HA)-binding tandem repeats, and a C-terminal region with epidermal growth factor-like, lectin-like, and complement regulatory protein-like domains. Separating these N- and C-terminal regions is a nonhomologous glycosaminoglycan attachment region. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with hyaluronan (HA). These aggregates contribute to the tissue's load bearing properties. Aggrecan and versican have a wide distribution in connective tissue and extracellular matrices. Neurocan is localized almost exclusively in nervous tissue. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 113 -143287 cd05879 Ig_P0 Immunoglobulin (Ig)-like domain of Protein zero (P0). Ig_P0ex: immunoglobulin (Ig) domain of Protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. 116 -143288 cd05880 Ig_EVA1 Immunoglobulin (Ig)-like domain of epithelial V-like antigen 1 (EVA). Ig_EVA: immunoglobulin (Ig) domain of epithelial V-like antigen 1 (EVA). EVA is also known as myelin protein zero-like 2. EVA is an adhesion molecule and may play a role in the structural organization of the thymus and early lymphocyte development. 115 -143289 cd05881 Ig1_Necl-2 First (N-terminal) immunoglobulin (Ig)-like domain of nectin-like molecule 2. Ig1_Necl-2: domain similar to the N-terminal immunoglobulin (Ig)-like domain of nectin-like molecule-2, Necl-2 (also known as cell adhesion molecule 1 (CADM1), SynCAM1, IGSF4A, Tslc1, sgIGSF, and RA175). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). They all have an extracellular region containing three Ig-like domains, a transmembrane region, and a cytoplasmic region. The N-terminal Ig-like domain of the extracellular region, belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-2 has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. 95 -143290 cd05882 Ig1_Necl-1 First (N-terminal) immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1, also known as cell adhesion molecule3 (CADM3)). Ig1_Necl-1: domain similar to the N-terminal immunoglobulin (Ig)-like domain of nectin-like molecule-1, Necl-1 (also known as celll adhesion molecule 3 (CADM3), SynCAM2, IGSF4). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). They all have an extracellular region containing three Ig-like domains, a transmembrane region, and a cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue, and is important to the formation of synapses, axon bundles, and myelinated axons. 95 -143291 cd05883 Ig2_Necl-2 Second immunoglobulin (Ig)-like domain of nectin-like molecule 2 (also known as cell adhesion molecule 1 (CADM1)). Ig2_Necl-2: second immunoglobulin (Ig)-like domain of nectin-like molecule 2 (also known as cell adhesion molecule 1 (CADM1)). Nectin-like molecules (Necls) have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. Necl-2 has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Ig domains are likely to participate in ligand binding and recognition. 82 -319320 cd05884 Ig2_Necl-3 Second immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3, also known as cell adhesion molecule 2 (CADM2)). Ig2_Necl-3: second immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3, also known as cell adhesion molecule 2 (CADM2)). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. Necl-3 has been shown to accumulate in tissues of the central and peripheral nervous system, where it is expressed in ependymal cells and myelinated axons. It is observed at the interface between the axon shaft and the myelin sheath. Ig domains are likely to participate in ligand binding and recognition. 83 -143293 cd05885 Ig2_Necl-4 Second immunoglobulin (Ig)-like domain of nectin-like molecule-4 (Necl-4, also known as cell adhesion molecule 4 (CADM4)). Ig2_Necl-4: second immunoglobulin (Ig)-like domain of nectin-like molecule-4 (Necl-4, also known as cell adhesion molecule 4 (CADM4)). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1-Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. Ig domains are likely to participate in ligand binding and recognition. Necl-4 is expressed on Schwann cells, and plays a key part in initiating peripheral nervous system (PNS) myelination. In injured peripheral nerve cells, the mRNA signal for both Necl-4 and Necl-5 was observed to be elevated. Necl-4 participates in cell-cell adhesion and is proposed to play a role in tumor suppression. 80 -143294 cd05886 Ig1_Nectin-1_like First immunoglobulin (Ig) domain of nectin-1 (also known as poliovirus receptor related protein 1, or as CD111) and similar proteins. Ig1_Nectin-1_like: domain similar to the first immunoglobulin (Ig) domain of nectin-1 (also known as poliovirus receptor related protein 1, or as CD111). Nectin-1 belongs to the nectin family comprised of four transmembrane glycoproteins (nectins-1 through -4). Nectins are synaptic cell adhesion molecules (CAMs) which facilitate adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. In addition nectins heterophilically trans-interact with other CAMs such as nectin-like molecules (Necls), nectin-1 for example, has been shown to trans-interact with Necl-1. Nectins also interact with various other proteins, including the actin filament (F-actin)-binding protein, afadin. Mutation in the human nectin-1 gene is associated with cleft lip/palate ectodermal dysplasia syndrome (CLPED1). Nectin-1 is a major receptor for herpes simplex virus through interaction with the viral envelope glycoprotein D. 99 -143295 cd05887 Ig1_Nectin-3_like First immunoglobulin (Ig) domain of nectin-3 (also known as poliovirus receptor related protein 3) and similar proteins. Ig1_Nectin-3_like: domain similar to the first immunoglobulin (Ig) domain of nectin-3 (also known as poliovirus receptor related protein 3). Nectin-3 belongs to the nectin family comprised of four transmembrane glycoproteins (nectins-1 through -4). Nectins are synaptic cell adhesion molecules (CAMs) which participate in adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. For example, during spermatid development, the nectin-3,-2 trans-interaction is required for the formation of Sertoli cell-spermatid junctions in testis, and during morphogenesis of the ciliary body, the nectin-3,-1 trans-interaction is important for apex-apex adhesion between the pigment and non-pigment layers of the ciliary epithelia. Nectins also heterophilically trans-interact with other CAMs such as nectin-like molecules (Necls); nectin-3 for example, trans-interacts with Necl-5, regulating cell movement and proliferation. Other proteins with which nectin-3 interacts include the actin filament-binding protein, afadin, integrin alpha-beta3, Par-3, and PDGF receptor; its interaction with PDGF receptor regulates the latter's signaling for anti-apoptosis. 96 -143296 cd05888 Ig1_Nectin-4_like Frst immunoglobulin (Ig) domain of nectin-4 (also known as poliovirus receptor related protein 4, or as LNIR receptor) and similar proteins. Ig1_Nectin-4_like: domain similar to the first immunoglobulin (Ig) domain of nectin-4 (also known as poliovirus receptor related protein 4, or as LNIR receptor). Nectin-4 belongs to the nectin family, which is comprised of four transmembrane glycoproteins (nectins-1 through -4). Nectins are synaptic cell adhesion molecules (CAMs) which participate in adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. For example nectin-4 trans-interacts with nectin-1. Nectin-4 has also been shown to interact with the actin filament-binding protein, afadin. Unlike the other nectins, which are widely expressed in adult tissues, nectin-4 is mainly expressed during embryogenesis, and is not detected in normal adult tissue or in serum. Nectin-4 is re-expressed in breast carcinoma, and patients having metastatic breast cancer have a circulating form of nectin-4 formed from the ectodomain 100 -143297 cd05889 Ig1_DNAM-1_like First immunoglobulin (Ig) domain of DNAX accessory molecule 1 (DNAM-1, also known as CD226) and similar proteins. Ig1_DNAM-1_like: domain similar to the first immunoglobulin (Ig) domain of DNAX accessory molecule 1 (DNAM-1, also known as CD226). DNAM-1 is a transmembrane protein having two Ig-like domains. It is an adhesion molecule which plays a part in tumor-directed cytotoxicity and adhesion in natural killer (NK) cells and T lymphocytes. It has been shown to regulate the NK cell killing of several tumor types, including myeloma cells and ovarian carcinoma cells. DNAM-1 interacts specifically with poliovirus receptor (PVR; CD155) and nectin -2 (CD211), other members of the Ig superfamily. DNAM-1 is expressed in most peripheral T cells, NK cells, monocytes and a subset of B lymphocytes. 96 -143298 cd05890 Ig2_Nectin-1_like Second immunoglobulin (Ig) domain of nectin-1 (also known as poliovirus receptor related protein 1, or as CD111) and similar proteins. Ig2_Nectin-1_like: domain similar to the second immunoglobulin (Ig) domain of nectin-1 (also known as poliovirus receptor related protein 1, or as CD111). Nectin-1 belongs to the nectin family comprised of four transmembrane glycoproteins (nectins-1 through 4). Nectins are synaptic cell adhesion molecules (CAMs) which facilitate adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. Nectins also heterophilically trans-interact with other CAMs such as nectin-like molecules (necls); nectin-1 for example, has been shown to trans-interact with necl-1. Nectins also interact with various other proteins, including the actin filament (F-actin)-binding protein, afadin. Mutation in the human nectin-1 gene is associated with cleft lip/palate ectodermal dysplasia syndrome (CLPED1). Nectin-1 is a major receptor for herpes simplex virus through interaction with the viral envelope glycoprotein D. 98 -143299 cd05891 Ig_M-protein_C C-terminal immunoglobulin (Ig)-like domain of M-protein (also known as myomesin-2). Ig_M-protein_C: the C-terminal immunoglobulin (Ig)-like domain of M-protein (also known as myomesin-2). M-protein is a structural protein localized to the M-band, a transverse structure in the center of the sarcomere, and is a candidate for M-band bridges. M-protein is modular consisting mainly of repetitive IG-like and fibronectin type III (FnIII) domains, and has a muscle-type specific expression pattern. M-protein is present in fast fibers. 92 -143300 cd05892 Ig_Myotilin_C C-terminal immunoglobulin (Ig)-like domain of myotilin. Ig_Myotilin_C: C-terminal immunoglobulin (Ig)-like domain of myotilin. Mytolin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to the latter family contain multiple Ig-like domains and function as scaffolds, modulating actin cytoskeleton. Myotilin is most abundant in skeletal and cardiac muscle, and is involved in maintaining sarcomere integrity. It binds to alpha-actinin, filamin and actin. Mutations in myotilin lead to muscle disorders. 75 -143301 cd05893 Ig_Palladin_C C-terminal immunoglobulin (Ig)-like domain of palladin. Ig_Palladin_C: C-terminal immunoglobulin (Ig)-like domain of palladin. Palladin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to this family contain multiple Ig-like domains and function as scaffolds, modulating actin cytoskeleton. Palladin binds to alpha-actinin ezrin, vasodilator-stimulated phosphoprotein VASP, SPIN90 (DIP, mDia interacting protein), and Src. Palladin also binds F-actin directly, via its Ig3 domain. Palladin is expressed as several alternatively spliced isoforms, having various combinations of Ig-like domains, in a cell-type-specific manner. It has been suggested that palladin's different Ig-like domains may be specialized for distinct functions. 75 -143302 cd05894 Ig_C5_MyBP-C C5 immunoglobulin (Ig) domain of cardiac myosin binding protein C (MyBP-C). Ig_C5_MyBP_C: the C5 immunoglobulin (Ig) domain of cardiac myosin binding protein C (MyBP-C). MyBP_C consists of repeated domains, Ig and fibronectin type 3, and various linkers. Three isoforms of MYBP_C exist and are included in this group: cardiac(c), and fast and slow skeletal muscle (s) MyBP_C. cMYBP_C has insertions between and inside domains and an additional cardiac-specific Ig domain at the N-terminus. For cMYBP_C an interaction has been demonstrated between this C5 domain and the Ig C8 domain. 86 -143303 cd05895 Ig_Pro_neuregulin-1 Immunoglobulin (Ig)-like domain found in neuregulin (NRG)-1. Ig_Pro_neuregulin-1: immunoglobulin (Ig)-like domain found in neuregulin (NRG)-1. There are many NRG-1 isoforms which arise from the alternative splicing of mRNA. NRG-1 belongs to the neuregulin gene family, which is comprised of four genes. This group represents NRG-1. NRGs are signaling molecules, which participate in cell-cell interactions in the nervous system, breast, and heart, and other organ systems, and are implicated in the pathology of diseases including schizophrenia, multiple sclerosis, and breast cancer. The NRG-1 protein binds to and activates the tyrosine kinases receptors ErbB3 and ErbB4, initiating signaling cascades. NRG-1 has multiple functions; for example, in the brain it regulates various processes such as radial glia formation and neuronal migration, dendritic development, and expression of neurotransmitters receptors; in the peripheral nervous system NRG-1 regulates processes such as target cell differentiation, and Schwann cell survival. 76 -143304 cd05896 Ig1_IL1RAPL-1_like First immunoglobulin (Ig)-like domain of X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL-1). Ig1_ IL1RAPL-1_like: domain similar to the first immunoglobulin (Ig)-like domain of X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL-1). IL-1 alpha and IL-1 beta are cytokines which participates in the regulation of inflammation, immune responses, and hematopoiesis. These cytokines bind to the IL-1 receptor type 1 (IL1R1), which is activated on additional association with an accessory protein, IL1RAP. IL-1 also binds a second receptor designated type II (IL1R2). Mature IL1R1 consists of three Ig-like domains, a transmembrane domain, and a large cytoplasmic domain. Mature IL1R2 is organized similarly except that it has a short cytoplasmic domain. The latter does not initiate signal transduction. A naturally occurring cytokine IL-1RA (IL-1 receptor antagonist) is widely expressed and binds to IL-1 receptors, inhibiting the binding of IL-1 alpha and IL-1 beta. IL1RAPL is encoded by a gene on the X-chromosome, this gene is wholly or partially deleted in multiple cases of non-syndromic mental retardation. This group also contains IL1RAPL-2, which is also encoded by a gene on the X-chromosome and is a candidate for another non-syndromic mental retardation loci. 104 -143305 cd05897 Ig2_IL1R2_like Second immunoglobulin (Ig)-like domain of interleukin-1 receptor-2 (IL1R2). Ig2_IL1R2_like: domain similar to the second immunoglobulin (Ig)-like domain of interleukin-1 receptor-2 (IL1R2). IL-1 alpha and IL-1 beta are cytokines which participate in the regulation of inflammation, immune responses, and hematopoiesis. These cytokines bind to the IL-1 receptor type 1 (IL1R1), which is activated on additional association with an accessory protein, IL1RAP. IL-1 also binds the type II (IL1R2) represented in this group. Mature IL1R2 consists of three IG-like domains, a transmembrane domain, and a short cytoplasmic domain. It lacks the large cytoplasmic domain of Mature IL1R1, and does not initiate signal transduction. A naturally occurring cytokine IL-1RA (IL-1 receptor antagonist) is widely expressed and binds to IL-1 receptors, inhibiting the binding of IL-1 alpha and IL-1 beta. 95 -143306 cd05898 Ig5_KIRREL3 Fifth immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 protein (also known as Neph2). Ig5_KIRREL3: the fifth immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 protein (also known as Neph2). This protein has five Ig-like domains, one transmembrane domain, and a cytoplasmic tail. Included in this group is mammalian Kirrel (Neph1). These proteins contain multiple Ig domains, have properties of cell adhesion molecules, and are important in organ development. Neph1 and 2 may mediate axonal guidance and synapse formation in certain areas of the CNS. In the kidney, they participate in the formation of the slit diaphragm. 98 -143307 cd05899 IgV_TCR_beta Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) bet a chain. IgV_TCR_beta: immunoglobulin (Ig) variable domain of the beta chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. This group includes the variable domain of the alpha chain of alpha/beta TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The variable domain of TCRs is responsible for antigen recognition, and is located at the N-terminus of the receptor. Gamma/delta TCRs recognize intact protein antigens; they recognize proteins antigens directly and without antigen processing, and MHC independently of the bound peptide. 110 -143308 cd05900 Ig_Aggrecan Immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), aggrecan. Ig_Aggrecan: immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), aggrecan. In CSPGs, the Ig-like domain is followed by hyaluronan (HA)-binding tandem repeats, and a C-terminal region with epidermal growth factor-like, lectin-like, and complement regulatory protein-like domains. Separating these N- and C-terminal regions is a nonhomologous glycosaminoglycan attachment region. In cartilage, aggrecan forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Aggrecan has a wide distribution in connective tissue and extracellular matrices. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 112 -143309 cd05901 Ig_Versican Immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), versican. Ig_Versican: immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), versican. In CSPGs, the Ig-like domain is followed by hyaluronan (HA)-binding tandem repeats, and a C-terminal region with epidermal growth factor-like, lectin-like, and complement regulatory protein-like domains. Separating these N- and C-terminal regions is a nonhomologous glycosaminoglycan attachment region. In cartilage, the CSPG aggrecan (not included in this group) forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Like aggrecan, versican has a wide distribution in connective tissue and extracellular matrices. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 117 -143310 cd05902 Ig_Neurocan Immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), neurocan. Ig_Neurocan: immunoglobulin (Ig)-like domain of the chondroitin sulfate proteoglycan core protein (CSPG), neurocan. In CSPGs, the Ig-like domain is followed by hyaluronan (HA)-binding tandem repeats, and a C-terminal region with epidermal growth factor-like, lectin-like, and complement regulatory protein-like domains. Separating these N- and C-terminal regions is a nonhomologous glycosaminoglycan attachment region. In cartilage, the CSPG aggrecan (not included in this group) forms cartilage link protein stabilized aggregates with HA. These aggregates contribute to the tissue's load bearing properties. Unlike aggrecan which is widely distributed in connective tissue and extracellular matrices, neurocan is localized almost exclusively in nervous tissue. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. 110 -341229 cd05903 CHC_CoA_lg Cyclohexanecarboxylate-CoA ligase (also called cyclohex-1-ene-1-carboxylate:CoA ligase). Cyclohexanecarboxylate-CoA ligase activates the aliphatic ring compound, cyclohexanecarboxylate, for degradation. It catalyzes the synthesis of cyclohexanecarboxylate-CoA thioesters in a two-step reaction involving the formation of cyclohexanecarboxylate-AMP anhydride, followed by the nucleophilic substitution of AMP by CoA. 437 -341230 cd05904 4CL 4-Coumarate-CoA Ligase (4CL). 4-Coumarate:coenzyme A ligase is a key enzyme in the phenylpropanoid metabolic pathway for monolignol and flavonoid biosynthesis. It catalyzes the synthesis of hydroxycinnamate-CoA thioesters in a two-step reaction, involving the formation of hydroxycinnamate-AMP anhydride and the nucleophilic substitution of AMP by CoA. The phenylpropanoid pathway is one of the most important secondary metabolism pathways in plants and hydroxycinnamate-CoA thioesters are the precursors of lignin and other important phenylpropanoids. 505 -341231 cd05905 Dip2 Disco-interacting protein 2 (Dip2). Dip2 proteins show sequence similarity to other members of the adenylate forming enzyme family, including insect luciferase, acetyl CoA ligases and the adenylation domain of nonribosomal peptide synthetases (NRPS). However, its function may have diverged from other members of the superfamily. In mouse embryo, Dip2 homolog A plays an important role in the development of both vertebrate and invertebrate nervous systems. Dip2A appears to regulate cell growth and the arrangement of cells in organs. Biochemically, Dip2A functions as a receptor of FSTL1, an extracellular glycoprotein, and may play a role as a cardiovascular protective agent. 571 -341232 cd05906 A_NRPS_TubE_like The adenylation domain (A domain) of a family of nonribosomal peptide synthetases (NRPSs) synthesizing toxins and antitumor agents. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino)-acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family includes NRPSs that synthesize toxins and antitumor agents; for example, TubE for Tubulysine, CrpA for cryptophycin, TdiA for terrequinone A, KtzG for kutzneride, and Vlm1/Vlm2 for Valinomycin. Nonribosomal peptide synthetases are large multifunctional enzymes which synthesize many therapeutically useful peptides. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 540 -341233 cd05907 VL_LC_FACS_like Long-chain fatty acid CoA synthetases and Bubblegum-like very long-chain fatty acid CoA synthetases. This family includes long-chain fatty acid (C12-C20) CoA synthetases and Bubblegum-like very long-chain (>C20) fatty acid CoA synthetases. FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Eukaryotes generally have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. Drosophila melanogaster mutant bubblegum (BGM) have elevated levels of very-long-chain fatty acids (VLCFA) caused by a defective gene later named bubblegum. The human homolog (hsBG) of bubblegum has been characterized as a very long chain fatty acid CoA synthetase that functions specifically in the brain; hsBG may play a central role in brain VLCFA metabolism and myelinogenesis. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 452 -341234 cd05908 A_NRPS_MycA_like The adenylation domain of nonribosomal peptide synthetases (NRPS) similar to mycosubtilin synthase subunit A (MycA). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as (amino)-acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family includes NRPS similar to mycosubtilin synthase subunit A (MycA). Mycosubtilin, which is characterized by a beta-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, belongs to the iturin family of lipopeptide antibiotics. The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. Nonribosomal peptide synthetases are large multifunction enzymes that synthesize many therapeutically useful peptides. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 499 -341235 cd05909 AAS_C C-terminal domain of the acyl-acyl carrier protein synthetase (also called 2-acylglycerophosphoethanolamine acyltransferase, Aas). Acyl-acyl carrier protein synthase (Aas) is a membrane protein responsible for a minor pathway of incorporating exogenous fatty acids into membrane phospholipids. Its in vitro activity is characterized by the ligation of free fatty acids between 8 and 18 carbons in length to the acyl carrier protein sulfydryl group (ACP-SH) in the presence of ATP and Mg2+. However, its in vivo function is as a 2-acylglycerophosphoethanolamine (2-acyl-GPE) acyltransferase. The reaction occurs in two steps: the acyl chain is first esterified to acyl carrier protein (ACP) via a thioester bond, followed by a second step where the acyl chain is transferred to a 2-acyllysophospholipid, thus completing the transacylation reaction. This model represents the C-terminal domain of the enzyme, which belongs to the class I adenylate-forming enzyme family, including acyl-CoA synthetases. 490 -341236 cd05910 FACL_like_1 Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 457 -341237 cd05911 Firefly_Luc_like Firefly luciferase of light emitting insects and 4-Coumarate-CoA Ligase (4CL). This family contains insect firefly luciferases that share significant sequence similarity to plant 4-coumarate:coenzyme A ligases, despite their functional diversity. Luciferase catalyzes the production of light in the presence of MgATP, molecular oxygen, and luciferin. In the first step, luciferin is activated by acylation of its carboxylate group with ATP, resulting in an enzyme-bound luciferyl adenylate. In the second step, luciferyl adenylate reacts with molecular oxygen, producing an enzyme-bound excited state product (Luc=O*) and releasing AMP. This excited-state product then decays to the ground state (Luc=O), emitting a quantum of visible light. 486 -341238 cd05912 OSB_CoA_lg O-succinylbenzoate-CoA ligase (also known as O-succinylbenzoate-CoA synthase, OSB-CoA synthetase, or MenE). O-succinylbenzoic acid-CoA synthase catalyzes the coenzyme A (CoA)- and ATP-dependent conversion of o-succinylbenzoic acid to o-succinylbenzoyl-CoA. The reaction is the fourth step of the biosynthesis pathway of menaquinone (vitamin K2). In certain bacteria, menaquinone is used during fumarate reduction in anaerobic respiration. In cyanobacteria, the product of the menaquinone pathway is phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), a molecule used exclusively as an electron transfer cofactor in Photosystem 1. In green sulfur bacteria and heliobacteria, menaquinones are used as loosely bound secondary electron acceptors in the photosynthetic reaction center. 411 -341239 cd05913 PaaK Phenylacetate-CoA ligase (also known as PaaK). PaaK catalyzes the first step in the aromatic degradation pathway, by converting phenylacetic acid (PA) into phenylacetyl-CoA (PA-CoA). Phenylacetate-CoA ligase has been found in proteobacteria as well as gram positive prokaryotes. The enzyme is specifically induced after aerobic growth in a chemically defined medium containing PA or phenylalanine (Phe) as the sole carbon source. PaaKs are members of the adenylate-forming enzyme (AFE) family. However, sequence comparison reveals divergent features of PaaK with respect to the superfamily, including a novel N-terminal sequence. 425 -341240 cd05914 LC_FACL_like Uncharacterized subfamily of fatty acid CoA ligase (FACL). The members of this family are bacterial long-chain fatty acid CoA synthetase, most of which are as yet uncharacterized. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 463 -213283 cd05915 ttLC_FACS_like Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles. This family includes fatty acyl-CoA synthetases that can activate medium-chain to long-chain fatty acids. They catalyze the ATP-dependent acylation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. Fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. The fatty acyl-CoA synthetase from Thermus thermophiles in this family has been shown to catalyze the long-chain fatty acid, myristoyl acid, while another member in this family, the AlkK protein identified in Pseudomonas oleovorans, targets medium chain fatty acids. This family also includes an uncharacterized subgroup of FACS. 509 -341241 cd05917 FACL_like_2 Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 349 -341242 cd05918 A_NRPS_SidN3_like The adenylation (A) domain of siderophore-synthesizing nonribosomal peptide synthetases (NRPS). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. This family of siderophore-synthesizing NRPS includes the third adenylation domain of SidN from the endophytic fungus Neotyphodium lolii, ferrichrome siderophore synthetase, HC-toxin synthetase, and enniatin synthase. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 481 -341243 cd05919 BCL_like Benzoate CoA ligase (BCL) and similar adenylate forming enzymes. This family contains benzoate CoA ligase (BCL) and related ligases that catalyze the acylation of benzoate derivatives, 2-aminobenzoate and 4-hydroxybenzoate. Aromatic compounds represent the second most abundant class of organic carbon compounds after carbohydrates. Xenobiotic aromatic compounds are also a major class of man-made pollutants. Some bacteria use benzoate as the sole source of carbon and energy through benzoate degradation. Benzoate degradation starts with its activation to benzoyl-CoA by benzoate CoA ligase. The reaction catalyzed by benzoate CoA ligase proceeds via a two-step process; the first ATP-dependent step forms an acyl-AMP intermediate, and the second step forms the acyl-CoA ester with release of the AMP. 436 -341244 cd05920 23DHB-AMP_lg 2,3-dihydroxybenzoate-AMP ligase. 2,3-dihydroxybenzoate-AMP ligase activates 2,3-dihydroxybenzoate (DHB) by ligation of AMP from ATP with the release of pyrophosphate. However, it can also catalyze the ATP-PPi exchange for 2,3-DHB analogs, such as salicyclic acid (o-hydrobenzoate), as well as 2,4-DHB and 2,5-DHB, but with less efficiency. Proteins in this family are the stand-alone adenylation components of non-ribosomal peptide synthases (NRPSs) involved in the biosynthesis of siderophores, which are low molecular weight iron-chelating compounds synthesized by many bacteria to aid in the acquisition of this vital trace elements. In Escherichia coli, the 2,3-dihydroxybenzoate-AMP ligase is called EntE, the adenylation component of the enterobactin NRPS system. 482 -341245 cd05921 FCS Feruloyl-CoA synthetase (FCS). Feruloyl-CoA synthetase is an essential enzyme in the feruloyl acid degradation pathway and enables some proteobacteria to grow on media containing feruloyl acid as the sole carbon source. It catalyzes the transfer of CoA to the carboxyl group of ferulic acid, which then forms feruloyl-CoA in the presence of ATP and Mg2. The resulting feruloyl-CoA is further degraded to vanillin and acetyl-CoA. Feruloyl-CoA synthetase (FCS) is a subfamily of the adenylate-forming enzymes superfamily. 561 -341246 cd05922 FACL_like_6 Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 457 -341247 cd05923 CBAL 4-Chlorobenzoate-CoA ligase (CBAL). CBAL catalyzes the conversion of 4-chlorobenzoate (4-CB) to 4-chlorobenzoyl-coenzyme A (4-CB-CoA) by the two-step adenylation and thioester-forming reactions. 4-Chlorobenzoate (4-CBA) is an environmental pollutant derived from microbial breakdown of aromatic pollutants, such as polychlorinated biphenyls (PCBs), DDT, and certain herbicides. The 4-CBA degrading pathway converts 4-CBA to the metabolite 4-hydroxybezoate (4-HBA), allowing some soil-dwelling microbes to utilize 4-CBA as an alternate carbon source. This pathway consists of three chemical steps catalyzed by 4-CBA-CoA ligase, 4-CBA-CoA dehalogenase, and 4HBA-CoA thioesterase in sequential reactions. 493 -341248 cd05924 FACL_like_5 Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 364 -341249 cd05926 FACL_fum10p_like Subfamily of fatty acid CoA ligase (FACL) similar to Fum10p of Gibberella moniliformis. FACL catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, followed by the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Fum10p is a fatty acid CoA ligase involved in the synthesis of fumonisin, a polyketide mycotoxin, in Gibberella moniliformis. 493 -341250 cd05927 LC-FACS_euk Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS). The members of this family are eukaryotic fatty acid CoA synthetases that activate fatty acids with chain lengths of 12 to 20. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Organisms tend to have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. 545 -341251 cd05928 MACS_euk Eukaryotic Medium-chain acyl-CoA synthetase (MACS or ACSM). MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The acyl-CoA is a key intermediate in many important biosynthetic and catabolic processes. MACS enzymes are localized to mitochondria. Two murine MACS family proteins are found in liver and kidney. In rodents, a MACS member is detected particularly in the olfactory epithelium and is called O-MACS. O-MACS demonstrates substrate preference for the fatty acid lengths of C6-C12. 530 -341252 cd05929 BACL_like Bacterial Bile acid CoA ligases and similar proteins. Bile acid-Coenzyme A ligase catalyzes the formation of bile acid-CoA conjugates in a two-step reaction: the formation of a bile acid-AMP molecule as an intermediate, followed by the formation of a bile acid-CoA. This ligase requires a bile acid with a free carboxyl group, ATP, Mg2+, and CoA for synthesis of the final bile acid-CoA conjugate. The bile acid-CoA ligation is believed to be the initial step in the bile acid 7alpha-dehydroxylation pathway in the intestinal bacterium Eubacterium sp. 473 -341253 cd05930 A_NRPS The adenylation domain of nonribosomal peptide synthetases (NRPS). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 444 -341254 cd05931 FAAL Fatty acyl-AMP ligase (FAAL). FAAL belongs to the class I adenylate forming enzyme family and is homologous to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, FAALs produce only the acyl adenylate and are unable to perform the thioester-forming reaction, while FACLs perform a two-step catalytic reaction; AMP ligation followed by CoA ligation using ATP and CoA as cofactors. FAALs have insertion motifs between the N-terminal and C-terminal subdomains that distinguish them from the FACLs. This insertion motif precludes the binding of CoA, thus preventing CoA ligation. It has been suggested that the acyl adenylates serve as substrates for multifunctional polyketide synthases to permit synthesis of complex lipids such as phthiocerol dimycocerosate, sulfolipids, mycolic acids, and mycobactin. 547 -341255 cd05932 LC_FACS_bac Bacterial long-chain fatty acid CoA synthetase (LC-FACS), including Marinobacter hydrocarbonoclasticus isoprenoid Coenzyme A synthetase. The members of this family are bacterial long-chain fatty acid CoA synthetase. Marinobacter hydrocarbonoclasticus isoprenoid Coenzyme A synthetase in this family is involved in the synthesis of isoprenoid wax ester storage compounds when grown on phytol as the sole carbon source. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 508 -341256 cd05933 ACSBG_like Bubblegum-like very long-chain fatty acid CoA synthetase (VL-FACS). This family of very long-chain fatty acid CoA synthetase is named bubblegum because Drosophila melanogaster mutant bubblegum (BGM) has elevated levels of very-long-chain fatty acids (VLCFA) caused by a defective gene of this family. The human homolog (hsBG) has been characterized as a very long chain fatty acid CoA synthetase that functions specifically in the brain; hsBG may play a central role in brain VLCFA metabolism and myelinogenesis. VL-FACS is involved in the first reaction step of very long chain fatty acid degradation. It catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 596 -341257 cd05934 FACL_DitJ_like Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Members of this family include DitJ from Pseudomonas and similar proteins. 422 -341258 cd05935 LC_FACS_like Putative long-chain fatty acid CoA ligase. The members of this family are putative long-chain fatty acyl-CoA synthetases, which catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. Fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. 430 -341259 cd05936 FC-FACS_FadD_like Prokaryotic long-chain fatty acid CoA synthetases similar to Escherichia coli FadD. This subfamily of the AMP-forming adenylation family contains Escherichia coli FadD and similar prokaryotic fatty acid CoA synthetases. FadD was characterized as a long-chain fatty acid CoA synthetase. The gene fadD is regulated by the fatty acid regulatory protein FadR. Fatty acid CoA synthetase catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, followed by the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 468 -341260 cd05937 FATP_chFAT1_like Uncharacterized subfamily of bifunctional fatty acid transporter/very-long-chain acyl-CoA synthetase in fungi. Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. Members of this family are fungal FATPs, including FAT1 from Cochliobolus heterostrophus. 468 -341261 cd05938 hsFATP2a_ACSVL_like Fatty acid transport proteins (FATP) including hsFATP2, hsFATP5, and hsFATP6, and similar proteins. Fatty acid transport proteins (FATP) of this family transport long-chain or very-long-chain fatty acids across the plasma membrane. At least five copies of FATPs are identified in mammalian cells. This family includes hsFATP2, hsFATP5, and hsFATP6, and similar proteins. Each FATP has unique patterns of tissue distribution. These FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. The hsFATP proteins exist in two splice variants; the b variant, lacking exon 3, has no acyl-CoA synthetase activity. FATPs are key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. 537 -341262 cd05939 hsFATP4_like Fatty acid transport proteins (FATP), including FATP4 and FATP1, and similar proteins. Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. At least five copies of FATPs are identified in mammalian cells. This family includes FATP4, FATP1, and homologous proteins. Each FATP has unique patterns of tissue distribution. FATP4 is mainly expressed in the brain, testis, colon and kidney. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. 474 -341263 cd05940 FATP_FACS Fatty acid transport proteins (FATP) play dual roles as fatty acid transporters and its activation enzymes. Fatty acid transport protein (FATP) transports long-chain or very-long-chain fatty acids across the plasma membrane. FATPs also have fatty acid CoA synthetase activity, thus playing dual roles as fatty acid transporters and its activation enzymes. At least five copies of FATPs are identified in mammalian cells. This family also includes prokaryotic FATPs. FATPs are the key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. 449 -341264 cd05941 MCS Malonyl-CoA synthetase (MCS). MCS catalyzes the formation of malonyl-CoA in a two-step reaction consisting of the adenylation of malonate with ATP, followed by malonyl transfer from malonyl-AMP to CoA. Malonic acid and its derivatives are the building blocks of polyketides and malonyl-CoA serves as the substrate of polyketide synthases. Malonyl-CoA synthetase has broad substrate tolerance and can activate a variety of malonyl acid derivatives. MCS may play an important role in biosynthesis of polyketides, the important secondary metabolites with therapeutic and agrochemical utility. 442 -341265 cd05943 AACS Acetoacetyl-CoA synthetase (acetoacetate-CoA ligase, AACS). AACS is a cytosolic ligase that specifically activates acetoacetate to its coenzyme A ester by a two-step reaction. Acetoacetate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is the first step of the mevalonate pathway of isoprenoid biosynthesis via isopentenyl diphosphate. Isoprenoids are a large class of compounds found in all living organisms. AACS is widely distributed in bacteria, archaea and eukaryotes. In bacteria, AACS is known to exhibit an important role in the metabolism of poly-b-hydroxybutyrate, an intracellular reserve of organic carbon and chemical energy by some microorganisms. In mammals, AACS influences the rate of ketone body utilization for the formation of physiologically important fatty acids and cholesterol. 629 -341266 cd05944 FACL_like_4 Uncharacterized subfamily of fatty acid CoA ligase (FACL). Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 359 -341267 cd05945 DltA D-alanine:D-alanyl carrier protein ligase (DltA) and similar proteins. This family includes D-alanyl carrier protein ligase DltA and aliphatic beta-amino acid adenylation enzymes IdnL1 and CmiS6. DltA incorporates D-ala in techoic acids in gram-positive bacteria via a two-step process, starting with adenylation of D-alanine that transfers D-alanine to the D-alanyl carrier protein. IdnL1, a short-chain aliphatic beta-amino acid adenylation enzyme, recognizes 3-aminobutanoic acid, and is involved in the synthesis of the macrolactam antibiotic incednine. CmiS6 is a medium-chain beta-amino acid adenylation enzyme that recognizes 3-aminononanoic acid, and is involved in the synthesis of cremimycin, also a macrolactam antibiotic. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 449 -341268 cd05958 ABCL 2-aminobenzoate-CoA ligase (ABCL). ABCL catalyzes the initial step in the 2-aminobenzoate aerobic degradation pathway by activating 2-aminobenzoate to 2-aminobenzoyl-CoA. The reaction is carried out via a two-step process; the first step is ATP-dependent and forms a 2-aminobenzoyl-AMP intermediate, and the second step forms the 2-aminobenzoyl-CoA ester and releases the AMP. 2-Aminobenzoyl-CoA is further converted to 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA catalyzed by 2-aminobenzoyl-CoA monooxygenase/reductase. ABCL has been purified from cells aerobically grown with 2-aminobenzoate as sole carbon, energy, and nitrogen source, and has been characterized as a monomer. 439 -341269 cd05959 BCL_4HBCL Benzoate CoA ligase (BCL) and 4-Hydroxybenzoate-Coenzyme A Ligase (4-HBA-CoA ligase). Benzoate CoA ligase and 4-hydroxybenzoate-coenzyme A ligase catalyze the first activating step for benzoate and 4-hydroxybenzoate catabolic pathways, respectively. Although these two enzymes share very high sequence homology, they have their own substrate preference. The reaction proceeds via a two-step process; the first ATP-dependent step forms the substrate-AMP intermediate, while the second step forms the acyl-CoA ester, releasing the AMP. Aromatic compounds represent the second most abundant class of organic carbon compounds after carbohydrates. Some bacteria can use benzoic acid or benzenoid compounds as the sole source of carbon and energy through degradation. Benzoate CoA ligase and 4-hydroxybenzoate-Coenzyme A ligase are key enzymes of this process. 508 -341270 cd05966 ACS Acetyl-CoA synthetase (also known as acetate-CoA ligase and acetyl-activating enzyme). Acetyl-CoA synthetase (ACS, EC 6.2.1.1, acetate#CoA ligase or acetate:CoA ligase (AMP-forming)) catalyzes the formation of acetyl-CoA from acetate, CoA, and ATP. Synthesis of acetyl-CoA is carried out in a two-step reaction. In the first step, the enzyme catalyzes the synthesis of acetyl-AMP intermediate from acetate and ATP. In the second step, acetyl-AMP reacts with CoA to produce acetyl-CoA. This enzyme is widely present in all living organisms. The activity of this enzyme is crucial for maintaining the required levels of acetyl-CoA, a key intermediate in many important biosynthetic and catabolic processes. Acetyl-CoA is used in the biosynthesis of glucose, fatty acids, and cholesterol. It can also be used in the production of energy in the citric acid cycle. Eukaryotes typically have two isoforms of acetyl-CoA synthetase, a cytosolic form involved in biosynthetic processes and a mitochondrial form primarily involved in energy generation. 608 -341271 cd05967 PrpE Propionyl-CoA synthetase (PrpE). EC 6.2.1.17: propanoate:CoA ligase (AMP-forming) or propionate#CoA ligase (PrpE) catalyzes the first step of the 2-methylcitric acid cycle for propionate catabolism. It activates propionate to propionyl-CoA in a two-step reaction, which proceeds through a propionyl-AMP intermediate and requires ATP and Mg2+. In Salmonella enterica, the PrpE protein is required for growth of Salmonella enterica on propionate and can substitute for the acetyl-CoA synthetase (Acs) enzyme during growth on acetate. PrpE can also activate acetate, 3HP, and butyrate to their corresponding CoA-thioesters, although with less efficiency. 617 -341272 cd05968 AACS_like Uncharacterized acyl-CoA synthetase subfamily similar to Acetoacetyl-CoA synthetase. This uncharacterized acyl-CoA synthetase family (EC 6.2.1.16, or acetoacetate#CoA ligase or acetoacetate:CoA ligase (AMP-forming)) is highly homologous to acetoacetyl-CoA synthetase. However, the proteins in this family exist in only bacteria and archaea. AACS is a cytosolic ligase that specifically activates acetoacetate to its coenzyme A ester by a two-step reaction. Acetoacetate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is the first step of the mevalonate pathway of isoprenoid biosynthesis via isopentenyl diphosphate. Isoprenoids are a large class of compounds found in all living organisms. 610 -341273 cd05969 MACS_like_4 Uncharacterized subfamily of Acetyl-CoA synthetase like family (ACS). This family is most similar to acetyl-CoA synthetase. Acetyl-CoA synthetase (ACS) catalyzes the formation of acetyl-CoA from acetate, CoA, and ATP. Synthesis of acetyl-CoA is carried out in a two-step reaction. In the first step, the enzyme catalyzes the synthesis of acetyl-AMP intermediate from acetate and ATP. In the second step, acetyl-AMP reacts with CoA to produce acetyl-CoA. This enzyme is only present in bacteria. 442 -341274 cd05970 MACS_AAE_MA_like Medium-chain acyl-CoA synthetase (MACS) of AAE_MA like. MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This family of MACS enzymes is found in archaea and bacteria. It is represented by the acyl-adenylating enzyme from Methanosarcina acetivorans (AAE_MA). AAE_MA is most active with propionate, butyrate, and the branched analogs: 2-methyl-propionate, butyrate, and pentanoate. The specific activity is weaker for smaller or larger acids. 537 -341275 cd05971 MACS_like_3 Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS). MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria. 439 -341276 cd05972 MACS_like Medium-chain acyl-CoA synthetase (MACS or ACSM). MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The acyl-CoA is a key intermediate in many important biosynthetic and catabolic processes. 428 -341277 cd05973 MACS_like_2 Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS). MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria. 437 -341278 cd05974 MACS_like_1 Uncharacterized subfamily of medium-chain acyl-CoA synthetase (MACS). MACS catalyzes the two-step activation of medium chain fatty acids (containing 4-12 carbons). The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. MACS enzymes are localized to mitochondria. 432 -99716 cd05992 PB1 The PB1 domain is a modular domain mediating specific protein-protein interactions which play a role in many critical cell processes, such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as a noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 81 -100076 cd06006 R3H_unknown_2 R3H domain of a group of fungal proteins with unknown function. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 59 -100077 cd06007 R3H_DEXH_helicase R3H domain of a group of proteins which also contain a DEXH-box helicase domain, and may function as ATP-dependent DNA or RNA helicases. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to bind ssDNA or ssRNA in a sequence-specific manner. 59 -100116 cd06008 NF-X1-zinc-finger Presumably a zinc binding domain, which has been shown to bind to DNA in the human nuclear transcriptional repressor NF-X1. The zinc finger can be characterized by the pattern C-X(1-6)-H-X-C-X3-C(H/C)-X(3-4)-(H/C)-X(1-10)-C. The NF-X1 zinc finger co-occurs with atypical RING-finger and R3H domains. Human NF-X1 is involved in the transcriptional repression of major histocompatibility complex class II genes. The drosophila homolog encoded by stc (shuttle craft) plays a role in embryonic development, and the Arabidopsis homologue AtNFXL1 has been shown to function in the response to trichothecene and other defense mechanisms. 49 -276963 cd06059 Tubulin The tubulin superfamily and related homologs. The tubulin superfamily includes five distinct families, the alpha-, beta-, gamma-, delta-, and epsilon-tubulins and a sixth family (zeta-tubulin) which is present only in kinetoplastid protozoa. The alpha- and beta-tubulins are the major components of microtubules, while gamma-tubulin plays a major role in the nucleation of microtubule assembly. The delta- and epsilon-tubulins are widespread but unlike the alpha, beta, and gamma-tubulins they are not ubiquitous among eukaryotes. The alpha/beta-tubulin heterodimer is the structural subunit of microtubules. The alpha- and beta-tubulins share 40% amino-acid sequence identity, exist in several isotype forms, and undergo a variety of posttranslational modifications. The structures of alpha- and beta-tubulin are basically identical: each monomer is formed by a core of two beta-sheets surrounded by alpha-helices. The monomer structure is very compact, but can be divided into three regions based on function: the amino-terminal nucleotide-binding region, an intermediate taxol-binding region and the carboxy-terminal region which probably constitutes the binding surface for motor proteins. Also included in this group is the mitochondrial Misato/DML1 protein family, involved in mitochondrial fusion and in mitochondrial distribution and morphology. 387 -276964 cd06060 misato Misato segment II tubulin-like domain. Human Misato shows similarity with Tubulin/FtsZ family of GTPases and is localized to the the outer membrane of mitochondria. It has a role in mitochondrial fusion and in mitochondrial distribution and morphology. Mutations in its Drosophila homolog (misato) lead to irregular chromosome segregation during mitosis. Deletion of the budding yeast homolog DML1 is lethal and unregulate expression of DML1 leads to mitochondrial dispersion and abnormalities in cell morphology. The Misato/DML1 protein family is conserved from yeast to human, but its exact function is still unknown. 539 -100037 cd06061 PurM-like1 AIR synthase (PurM) related protein, subgroup 1 of unknown function. The family of PurM related proteins includes Hydrogen expression/formation protein HypE, AIR synthases, FGAM synthase and Selenophosphate synthetase (SelD). They all contain two conserved domains and seem to dimerize. The N-terminal domain forms the dimer interface and is a putative ATP binding domain. 298 -99873 cd06062 H2MP_MemB-H2up Endopeptidases belonging to membrane-bound hydrogenases group. These hydrogenases transfer electrons from H2 to a cytochrome that is bound to a membrane-located complex coupling electron transfer to transmembrane proton translocation. Endopeptidase HybD from E. coli is well studied in this group. Maturation of [NiFe] hydrogenases include proteolytic processing of large subunit, assembly with other subunits, and formation of the nickel metallocenter. Hydrogenase maturation endopeptidase (HybD) cleaves a short C-terminal peptide after a His or an Arg residue in the large subunit (pre-HybC) of hydrogenase 2 (hyb operon) in E. coli. This cleavage is nickel dependent. A variety of endopeptidases belong to this group that are similar in function and sequence homology. They include such proteins as HynC, HoxM, and HupD. 146 -99874 cd06063 H2MP_Cyano-H2up This group of endopeptidases include HupW enzymes that are specific to the cyanobacterial hydrogenase and are involved in the C-terminal cleavage of the hydrogenase large subunit precursor protein. Cyanobacterial nickel-iron (NiFe)-hydrogenases are found exclusively in the N2-fixing strains and are encoded by hup (hydrogen uptake) genes. These uptake hydrogenases are heterodimers with a large (hupL) and small subunit (hupS) and catalyze the consumption of the H2 produced during N2 fixation. Sequence similarity shows that the putative metal-binding resides are well conserved in this group of hydrogen maturation proteases. This group also includes such proteins as the hydrogenase III from Aquifex aeolicus. 146 -99875 cd06064 H2MP_F420-Reduc Endopeptidases belonging to F420-reducing hydrogenases group. These hydrogenases from methanogens are encoded by the fru, frc, or frh genes. Sequence comparison indicates that fruD and frcD gene products from Methanococcus voltae are similar to HycI protease of Escherichia coli and are putatively involved in the C-terminal processing of large subunits (FruA and FrcA respectively). FrhD (F420 reducing hydrogenase delta subunit) enzyme belongs to the gene cluster of 8-hydroxy-5-deazaflavin (F420) reducing hydrogenase (FRH) from the thermophilic methanogen Methanobacterium thermoautotrophicum delta H. FrhD subunit is putatively involved in the processing of the coenzyme F420 hydrogenase-processing. It is similar to those frhD genes found in Methanomicrobia and Methanobacteria. It is different from the FrhD conserved domain found in methyl viologen-reducing hydrogenase and F420-non-reducing hydrogenase iron-sulfur subunit D. 150 -99876 cd06066 H2MP_NAD-link-bidir Endopeptidases that belong to the bidirectional NAD-linked hydrogenase group. This group of endopeptidases are highly specific carboxyl-terminal protease (HoxW protease) which releases a 24-amino-acid peptide from HoxH prior to progression of subunit assembly. These bidirectional hydrogenases are heteropentamers encoded by the hox (hydrogen oxidation) genes, in which complex HoxEFU shows the diaphorase activity, and HoxYH constitutes the NiFe-hydrogenase. 139 -99877 cd06067 H2MP_MemB-H2evol Endopeptidases belonging to membrane-bound hydrogen evolving hydrogenase group. In hydrogenase 3 from E coli, the maturation of the large subunit (HycE) requires the cleavage of a C-terminal peptide by the endopeptidase HycI, before the final formation of the [NiFe] metallocenter. HycI protease is a monomer and lacks characteristic signature motifs of serine, zinc, cysteine, or acid proteases and thus its cleavage reaction is not inhibited by conventional inhibitors of serine and metalloproteases. Such hydrogenases as those from Methanosarcina barkeri (EchCE) and Rhodospirillum rubrum (CooLH) also belong to this group of membrane-bound hydrogen evolving hydrogenase. Sequence comparison of the large subunits from related hydrogenase indicates that in contrast to EchE (358 amino acids) and CooH (361 amino acids), the large subunit HycE (569 amino acids) contains an extra carboxy-terminal stretch of 32 amino acids that is cleaved during the maturation process. In the absence of this C-terminal stretch, there is no homolog of endopeptidase HycI found in these two related hydrogenase. 136 -99878 cd06068 H2MP_like-1 Putative [NiFe] hydrogenase-specific C-terminal protease. Sequence comparison shows similarity to hydrogenase specific C-terminal endopeptidases, also called Hydrogen Maturation Proteases (H2MP). Maturation of [FeNi] hydrogenases includes formation of the nickel metallocenter, proteolytic processing and assembly with other subunits. Hydrogenase maturation endopeptidases are responsible for the proteolytic processing, liberating a short C-terminal peptide by cleaving after a His or an Arg residue, e.g., HycI (E. coli) is involved in processing of HypE (the large subunit of hydrogenases 3). This cleavage is nickel dependent. 144 -99879 cd06070 H2MP_like-2 Putative [NiFe] hydrogenase-specific C-terminal protease. Sequence comparison shows similarity to hydrogenase specific C-terminal endopeptidases, also called Hydrogen Maturation Proteases (H2MP). Maturation of [FeNi] hydrogenases includes formation of the nickel metallocenter, proteolytic processing and assembly with other subunits. Hydrogenase maturation endopeptidases are responsible for the proteolytic processing, liberating a short C-terminal peptide by cleaving after a His or an Arg residue, e.g., HycI (E. coli) is involved in processing of HypE (the large subunit of hydrogenases 3). This cleavage is nickel dependent. 140 -100117 cd06071 Beach BEACH (Beige and Chediak-Higashi) domains, implicated in membrane trafficking, are present in a family of proteins conserved throughout eukaryotes. This group contains human lysosomal trafficking regulator (LYST), LPS-responsive and beige-like anchor (LRBA) and neurobeachin. Disruption of LYST leads to Chediak-Higashi syndrome, characterized by severe immunodeficiency, albinism, poor blood coagulation and neurologic problems. Neurobeachin is a candidate gene linked to autism. LBRA seems to be upregulated in several cancer types. It has been shown that the BEACH domain itself is important for the function of these proteins. 275 -99903 cd06080 MUM1_like Mutated melanoma-associated antigen 1 (MUM-1) is a melanoma-associated antigen (MAA). MUM-1 belongs to the mutated or aberrantly expressed type of MAAs, along with antigens such as CDK4, beta-catenin, gp100-in4, p15, and N-acetylglucosaminyltransferase V. It is highly expressed in several types of human cancers. The PWWP domain, named for a conserved Pro-Trp-Trp-Pro motif, is a small domain consisting of 100-150 amino acids. The PWWP domain is found in numerous proteins that are involved in cell division, growth and differentiation. Most PWWP-domain proteins seem to be nuclear, often DNA-binding, proteins that function as transcription factors regulating a variety of developmental processes. 80 -240505 cd06081 KOW_Spt5_1 KOW domain of Spt5, repeat 1. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 38 -240506 cd06082 KOW_Spt5_2 KOW domain of Spt5, repeat 2. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 51 -240507 cd06083 KOW_Spt5_3 KOW domain of Spt5, repeat 3. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 51 -240508 cd06084 KOW_Spt5_4 KOW domain of Spt5, repeat 4. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 43 -240509 cd06085 KOW_Spt5_5 KOW domain of Spt5, repeat 5. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 52 -240510 cd06086 KOW_Spt5_6 KOW domain of Spt5, repeat 6. Spt5, an eukaryotic ortholog of NusG, contains multiple KOW motifs at its C-terminus. Spt5 is involved in transcription elongation and termination. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW_Spt5 domains play critical roles in recruitment of multiple other eukaryotic transcription elongation and RNA biogenesis factors and additionally are involved in the binding of the eukaryotic Spt5 proteins to RNA polymerases. 58 -240511 cd06087 KOW_RPS4 KOW motif of Ribosomal Protein S4 (RPS4). RPS4 plays a critical role in the core assembly of the small ribosomal subunit with a KOW motif at its C-terminal. RPS4 also acts as a general transcription antiterminator factor and regulates ribosomal RNA expression level. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. RPS4 deficiency in human has been associated with Turner syndrome. Archeae RPS4 (RPS4e) showed substantial identity to the eukaryotic equivalents RPS4, but the archaeal proteins formed a different complex from the eukaryotic proteins. 55 -240512 cd06088 KOW_RPL14 KOW motif of Ribosomal Protein L14. RPL14 is a component of the large ribosomal subunit in both archaea and eukaryotes with KOW motif at its N terminal. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. Auto-antibodies to RPL14 in humans have been associated with systemic lupus erythematosus . Although RPL14 is well conserved, it is not found in all archaea, and therefore it is presumably not essential. 76 -240513 cd06089 KOW_RPL26 KOW motif of Ribosomal Protein L26. RPL26 and its bacterial paralogs RPL24 have a KOW motif at their N terminal. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. RPL26 makes a very minor contributions to the biogenesis, structure, and function of 60s ribosomal subunits. However, RPL24 is essential to generate the first intermediate during 50s ribosomal subunits assembly. RPL26 have an extra-ribosomal function to enhances p53 translation after DNA damage. 65 -240514 cd06090 KOW_RPL27 KOW motif of eukaryotic Ribosomal Protein L27. RPL27e has a KOW motif at its N terminal. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. 83 -240515 cd06091 KOW_NusG NusG contains an NGN domain at its N-terminus and KOW motif at its C-terminus. KOW_NusG motif is one of the two domains of N-Utilization Substance G (NusG) a transcription elongation and Rho-termination factor in bacteria and archaea. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. The eukaryotic ortholog of NusG is Spt5 with multiple KOW motifs at its C-terminus. 56 -132768 cd06093 PX_domain The Phox Homology domain, a phosphoinositide binding module. The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting. 106 -133158 cd06094 RP_Saci_like RP_Saci_like, retropepsin family. Retropepsin on retrotransposons with long terminal repeats (LTR) including Saci-1, -2 and -3 of Schistosoma mansoni. Retropepsins are related to fungal and mammalian pepsins. While fungal and mammalian pepsins are bilobal proteins with structurally related N- and C-termini, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 89 -133159 cd06095 RP_RTVL_H_like Retropepsin of the RTVL_H family of human endogenous retrovirus-like elements. This family includes aspartate proteases from retroelements with LTR (long terminal repeats) including the RTVL_H family of human endogenous retrovirus-like elements. While fungal and mammalian pepsins are bilobal proteins with structurally related N- and C-termini, retropepsins are half as long as their fungal and mammalian counterparts. The monomers are structurally related to one lobe of the pepsin molecule and retropepsins function as homodimers. The active site aspartate occurs within a motif (Asp-Thr/Ser-Gly), as it does in pepsin. Retroviral aspartyl protease is synthesized as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. In aspartate peptidases, Asp residues are ligands of an activated water molecule in all examples where catalytic residues have been identified. This group of aspartate peptidases is classified by MEROPS as the peptidase family A2 (retropepsin family, clan AA), subfamily A2A. 86 -133160 cd06096 Plasmepsin_5 Plasmepsins are a class of aspartic proteinases produced by the plasmodium parasite. The family contains a group of aspartic proteinases homologous to plasmepsin 5. Plasmepsins are a class of at least 10 enzymes produced by the plasmodium parasite. Through their haemoglobin-degrading activity, they are an important cause of symptoms in malaria sufferers. This family of enzymes is a potential target for anti-malarial drugs. Plasmepsins are aspartic acid proteases, which means their active site contains two aspartic acid residues. These two aspartic acid residue act respectively as proton donor and proton acceptor, catalyzing the hydrolysis of peptide bond in proteins. Aspartic proteinases are composed of two structurally similar beta barrel lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The catalytic Asp residues are contained in an Asp-Thr-Gly-Ser/thr motif in both N- and C-terminal lobes of the enzyme. There are four types of plasmepsins, closely related but varying in the specificity of cleavage site. The name plasmepsin may come from plasmodium (the organism) and pepsin (a common aspartic acid protease with similar molecular structure). This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 326 -133161 cd06097 Aspergillopepsin_like Aspergillopepsin_like, aspartic proteases of fungal origin. The members of this family are aspartic proteases of fungal origin, including aspergillopepsin, rhizopuspepsin, endothiapepsin, and rodosporapepsin. The various fungal species in this family may be the most economically important genus of fungi. They may serve as virulence factors or as industrial aids. For example, Aspergillopepsin from A. fumigatus is involved in invasive aspergillosis owing to its elastolytic activity and Aspergillopepsins from the mold A. saitoi are used in fermentation industry. Aspartic proteinases are a group of proteolytic enzymes in which the scissile peptide bond is attacked by a nucleophilic water molecule activated by two aspartic residues in a DT(S)G motif at the active site. They have a similar fold composed of two beta-barrel domains. Between the N-terminal and C-terminal domains, each of which contributes one catalytic aspartic residue, there is an extended active-site cleft capable of interacting with multiple residues of a substrate. Although members of the aspartic protease family of enzymes have very similar three-dimensional structures and catalytic mechanisms, each has unique substrate specificity. The members of this family has an optimal acidic pH (5.5) and cleaves protein substrates with similar specificity to that of porcine pepsin A, preferring hydrophobic residues at P1 and P1' in the cleave site. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 278 -133162 cd06098 phytepsin Phytepsin, a plant homolog of mammalian lysosomal pepsins. Phytepsin, a plant homolog of mammalian lysosomal pepsins, resides in grains, roots, stems, leaves and flowers. Phytepsin may participate in metabolic turnover and in protein processing events. In addition, it highly expressed in several plant tissues undergoing apoptosis. Phytepsin contains an internal region consisting of about 100 residues not present in animal or microbial pepsins. This region is thus called a plant specific insert. The insert is highly similar to saponins, which are lysosomal sphingolipid-activating proteins in mammalian cells. The saponin-like domain may have a role in the vacuolar targeting of phytepsin. Phytepsin, as its animal counterparts, possesses a topology typical of all aspartic proteases. They are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe has probably evolved from the other through a gene duplication event in the distant past. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). 317 -99853 cd06099 CS_ACL-C_CCL Citrate synthase (CS), citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) from citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. Some CS proteins function as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. CCL cleaves citryl-CoA (CiCoA) to AcCoA and OAA. ACLs catalyze an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA; they do this in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate CiCoA, and c) the hydrolysis of CiCoA to produce citrate and CoA. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. In fungi, yeast, plants, and animals ACL is cytosolic and generates AcCoA for lipogenesis. In several groups of autotrophic prokaryotes and archaea, ACL carries out the citrate-cleavage reaction of the reductive tricarboxylic acid (rTCA) cycle. In the family Aquificaceae this latter reaction in the rTCA cycle is carried out via a two enzyme system the second enzyme of which is CCL. 213 -99854 cd06100 CCL_ACL-C Citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CCL cleaves citryl-CoA (CiCoA) to acetyl-CoA (AcCoA) and oxaloacetate (OAA). ACL catalyzes an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. In fungi, yeast, plants, and animals ACL is cytosolic and generates AcCoA for lipogenesis. ACL may be required for fruiting body maturation in the filamentous fungus Sordaria macrospore. In several groups of autotrophic prokaryotes and archaea, ACL carries out the citrate-cleavage reaction of the reductive tricarboxylic acid (rTCA) cycle. In the family Aquificaceae this latter reaction in the rTCA cycle is carried out via a two enzyme system the second enzyme of which is CCL; the first enzyme is citryl-CoA synthetase (CCS) which is not included in this group. Chlorobium limicola ACL is an example of a two-subunit type ACL. It is comprised of a large and a small subunit; it has been speculated that the large subunit arose from a fusion of the small subunit of the two subunit CCS with CCL. The small ACL subunit is a homolog of the larger CCS subunit. Mammalian ACL is of the single-subunit type and may have arisen from the two-subunit ACL by another gene fusion. Mammalian ACLs are homotetramers; the ACLs of C. limicola and Arabidopsis are a heterooctomers (alpha4beta4). In cancer cells there is a shift in energy metabolism to aerobic glycolysis, the glycolytic end product pyruvate enters a truncated TCA cycle generating citrate which is cleaved in the cytosol by ACL. Inhibiting ACL limits the in-vitro proliferation and survival of these cancer cells, reduces in vivo tumor growth, and induces differentiation. 227 -99855 cd06101 citrate_synt Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and form homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. This subgroup includes both gram-positive and gram-negative bacteria. 265 -99856 cd06102 citrate_synt_like_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. This subgroup includes both gram-positive and gram-negative bacteria. 282 -99857 cd06103 ScCS-like Saccharomyces cerevisiae (Sc) citrate synthase (CS)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). This group includes three S. cerevisiae CS proteins, ScCit1,-2,-3. ScCit1 is a nuclear-encoded mitochondrial CS with highly specificity for AcCoA; in addition to having activity with AcCoA, it plays a part in the construction of the TCA cycle metabolon. Yeast cells deleted for Cit1 are hyper-susceptible to apoptosis induced by heat and aging stress. ScCit2 is a peroxisomal CS involved in the glyoxylate cycle; in addition to having activity with AcCoA, it may have activity with PrCoA. ScCit3 is a mitochondrial CS and functions in the metabolism of PrCoA; it is a dual specificity CS and 2MCS, having similar catalytic efficiency with both AcCoA and PrCoA. The pattern of expression of the ScCIT3 gene follows that of the ScCIT1 gene and its expression is increased in the presence of a ScCIT1 deletion. Included in this group is the Tetrahymena 14 nm filament protein which functions as a CS in mitochondria and as a cytoskeletal component in cytoplasm and Geobacter sulfurreducens (GSu) CS. GSuCS is dimeric and eukaryotic-like; it lacks 2MCS activity and is inhibited by ATP. In contrast to eukaryotic and other prokaryotic CSs, GSuCIT is not stimulated by K+ ions. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. 426 -99858 cd06105 ScCit1-2_like Saccharomyces cerevisiae (Sc) citrate synthases Cit1-2_like. Citrate synthases (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). ScCit1 is a nuclear-encoded mitochondrial CS with highly specificity for AcCoA. In addition to its CS function, ScCit1 plays a part in the construction of the TCA cycle metabolon. Yeast cells deleted for Cit1 are hyper-susceptible to apoptosis induced by heat and aging stress. ScCit2 is a peroxisomal CS involved in the glyoxylate cycle; in addition to having activity with AcCoA, it may have activity with PrCoA. Chicken and pig heart CS, two Arabidopsis thaliana (Ath) CSs, CSY4 and -5, and Aspergillus niger (An) CS also belong to this group. Ath CSY4 has a mitochondrial targeting sequence; AthCSY5 has no identifiable targeting sequence. AnCS encoded by the citA gene has both an N-terminal mitochondrial import signal and a C-terminal peroxisiomal target sequence; it is not known if both these signals are functional in vivo. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. 427 -99859 cd06106 ScCit3_like Saccharomyces cerevisiae (Sc) 2-methylcitrate synthase Cit3-like. 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxaloacetate (OAA) to form 2-methylcitrate and CoA. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with OAA to form citrate and CoA, the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). ScCit3 is mitochondrial and functions in the metabolism of PrCoA; it is a dual specificity CS and 2MCS, having similar catalytic efficiency with both AcCoA and PrCoA. The pattern of expression of the ScCIT3 gene follows that of the major mitochondrial CS gene (CIT1, not included in this group) and its expression is increased in the presence of a CIT1 deletion. This group also contains Aspergillus nidulans 2MCS; a deletion of the gene encoding this protein results in a strain unable to grow on propionate. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. 428 -99860 cd06107 EcCS_AthCS-per_like Escherichia coli (Ec) citrate synthase (CS) gltA and Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs, including EcCS, are strongly and specifically inhibited by NADH through an allosteric mechanism. Included in this group is an NADH-insensitive type II Acetobacter acetii CS which has retained many of the residues used by EcCS for NADH binding. C. aurantiacus is a gram-negative thermophilic green gliding bacterium; its CS belonging to this group may be a type I CS. It is not inhibited by NADH or 2-oxoglutarate and is inhibited by ATP. Both gram-positive and gram-negative bacteria are found in this group. This group also contains three Arabidopsis peroxisomal CS proteins, CYS-1, -2, and -3 which participate in the glyoxylate cycle. AthCYS1, in addition to a peroxisomal targeting sequence, has a predicted secretory signal peptide; it may be targeted to both the secretory pathway and the peroxisomes and perhaps is located in the extracellular matrix. AthCSY1 is expressed only in siliques and specifically in developing seeds. AthCSY2 and 3 are active during seed germination and seedling development and are thought to participate in the beta-oxidation of fatty acids. 382 -99861 cd06108 Ec2MCS_like Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate though it has partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate and prefer PrCoA as substrate, but can also use AcCoA. Re 2-MCS1 can use butyryl-CoA and valeryl-CoA at a lower rate. A second Ralstonia eutropha 2MCS, Re 2-MCS2, which is induced on propionate is also found in this group. This group may include proteins which may function exclusively as a CS, those which may function exclusively as a 2MCS, or those with dual specificity which functions as both a CS and a 2MCS. 363 -99862 cd06109 BsCS-I_like Bacillus subtilis (Bs) citrate synthase CS-I_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-I, one of two CS isozymes in the gram-positive B. subtilis. The majority of CS activity in B. subtilis is provided by the other isozyme, BsCS-II (not included in this group). BsCS-I has a lower catalytic activity than BsCS-II, and has a Glu in place of a key catalytic Asp residue. This change is conserved in other members of this group. For E. coli CS (not included in this group), site directed mutagenesis of the key Asp residue to a Glu converts the enzyme into citryl-CoA lyase which cleaves citryl-CoA to AcCoA and OAA. A null mutation in the gene encoding BsCS-I (citA) had little effect on B. subtilis CS activity or on sporulation. However, disruption of the citA gene in a strain null for the gene encoding BsCS-II resulted in a sporulation deficiency, a characteristic of strains defective in the Krebs cycle. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. Many of the gram-negative species represented in this group have a second CS isozyme which is in another group. 349 -99863 cd06110 BSuCS-II_like Bacillus subtilis (Bs) citrate synthase (CS)-II_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-II, the major CS of the gram-positive bacterium Bacillus subtilis. A mutation in the gene which encodes BsCS-II (citZ gene) has been described which resulted in a significant loss of CS activity, partial glutamate auxotrophy, and a sporulation deficiency, all of which are characteristic of strains defective in the Krebs cycle. Streptococcus mutans CS, found in this group, may participate in a pathway for the anaerobic biosynthesis of glutamate. This group also contains functionally uncharacterized CSs of various gram-negative bacteria. Some of the gram-negative species represented in this group have a second CS isozyme found in another group. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. 356 -99864 cd06111 DsCS_like Cold-active citrate synthase (CS) from an Antarctic bacterial strain DS2-3R (Ds)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. DsCS, compared with CS from the hyperthermophile Pyrococcus furiosus (not included in this group), has an increase in the size of surface loops, a higher proline content in the loop regions, a more accessible active site, and a higher number of intramolecular ion pairs. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. For example, included in this group are Corynebacterium glutamicum (Cg) PrpC1 and -2, which are only synthesized during growth on propionate-containing medium, can use PrCoA, AcCoA and butyryl-CoA as substrates, and have comparable catalytic activity with AcCoA as the major CgCS (GltA, not included in this group). 362 -99865 cd06112 citrate_synt_like_1_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. 373 -99866 cd06113 citrate_synt_like_1_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) a carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) hydrolysis of citryl-CoA to produce citrate and CoA. CSs are found in two structural types: type I (homodimeric) and type II CSs (homohexameric). Type II CSs are unique to gram-negative bacteria. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria. Type I CS is active as a homodimer, both subunits participating in the active site. Type II CS is a hexamer of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. This subgroup includes both gram-positive and gram-negative bacteria. 406 -99867 cd06114 EcCS_like Escherichia coli (Ec) citrate synthase (CS) GltA_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs including EcCS are strongly and specifically inhibited by NADH through an allosteric mechanism. Included in this group is an NADH-insensitive type II Acetobacter acetii CS which has retained many of the residues used by EcCS for NADH binding. 400 -99868 cd06115 AthCS_per_like Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains three Arabidopsis peroxisomal CS proteins, CYS1, -2, and -3 which are involved in the glyoxylate cycle. AthCYS1, in addition to a peroxisomal targeting sequence, has a predicted secretory signal peptide; it may be targeted to both the secretory pathway and the peroxisomes and is thought to be located in the extracellular matrix. AthCSY1 is expressed only in siliques and specifically in developing seeds. AthCSY2 and 3 are active during seed germination and seedling development and are thought to participate in the beta-oxidation of fatty acids. 410 -99869 cd06116 CaCS_like Chloroflexus aurantiacus (Ca) citrate synthase (CS)_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group is similar to gram-negative Escherichia coli (Ec) CS (type II, gltA) and Arabidopsis thaliana (Ath) peroxisomal (Per) CS. However EcCS and AthPerCS are not found in this group. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. C. aurantiacus is a gram-negative thermophilic green gliding bacterium, its CS belonging to this group may be a type I CS; it is not inhibited by NADH or 2-oxoglutarate and is inhibited by ATP. Both gram-positive and gram-negative bacteria are found in this group. 384 -99870 cd06117 Ec2MCS_like_1 Subgroup of Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate, but has a partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate, prefer PrCoA as substrate, but can also can use AcCoA. Re 2-MCS1 at a low rate can use butyryl-CoA and valeryl-CoA. A second Ralstonia eutropha 2MCS is also found in this group, Re 2-MCS2, which is induced on propionate. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. 366 -99871 cd06118 citrate_synt_like_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some type II CSs are strongly and specifically inhibited by NADH through an allosteric mechanism. 358 -176647 cd06125 DnaQ_like_exo DnaQ-like (or DEDD) 3'-5' exonuclease domain superfamily. The DnaQ-like exonuclease superfamily is a structurally conserved group of 3'-5' exonucleases, which catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. It is also called the DEDD superfamily, after the four invariant acidic residues present in the catalytic site of its members. The superfamily consists of DNA- and RNA-processing enzymes such as the proofreading domains of DNA polymerases, other DNA exonucleases, RNase D, RNase T, Oligoribonuclease and RNA exonucleases (REX). The DnaQ-like exonuclease domain contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, which are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The conservation patterns of the three motifs may vary among different subfamilies. DnaQ-like exonucleases are classified as DEDDy or DEDDh exonucleases depending on the variation of motif III as YX(3)D or HX(4)D, respectively. The significance of the motif differences is still unclear. Almost all RNase families in this superfamily are present only in eukaryotes and bacteria, but not in archaea, suggesting a later origin, which in some cases are accompanied by horizontal gene transfer. 96 -176648 cd06127 DEDDh DEDDh 3'-5' exonuclease domain family. DEDDh exonucleases, part of the DnaQ-like (or DEDD) exonuclease superfamily, catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. These proteins contain four invariant acidic residues in three conserved sequence motifs termed ExoI, ExoII and ExoIII. DEDDh exonucleases are classified as such because of the presence of specific Hx(4)D conserved pattern at the ExoIII motif. The four conserved acidic residues are clustered around the active site and serve as ligands for the two metal ions required for catalysis. Most DEDDh exonucleases are the proofreading subunits (epsilon) or domains of bacterial DNA polymerase III, the main replicating enzyme in bacteria, which functions as the chromosomal replicase. Other members include other DNA and RNA exonucleases such as RNase T, Oligoribonuclease, and RNA exonuclease (REX), among others. 159 -176649 cd06128 DNA_polA_exo DEDDy 3'-5' exonuclease domain of family-A DNA polymerases. The 3'-5' exonuclease domain of family-A DNA polymerases has a fundamental role in reducing polymerase errors and is involved in proofreading activity. Family-A DNA polymerases contain a DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-B DNA polymerases. The exonuclease domain contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, which are clustered around the active site and contain four invariant acidic residues that serve as ligands for the two metal ions required for catalysis. The Klenow fragment (KF) of Escherichia coli Pol I, the Thermus aquaticus (Taq) Pol I, and Bacillus stearothermophilus (BF) Pol I are examples of family-A DNA polymerases. They are involved in nucleotide excision repair and in the processing of Okazaki fragments that are generated during lagging strand synthesis. The N-terminal domains of BF Pol I and Taq Pol I resemble the fold of the 3'-5' exonuclease domain of KF without the proofreading activity of KF. The four critical metal-binding residues are not conserved in BF Pol I and Taq Pol I, and they are unable to bind metals necessary for exonuclease activity. 151 -176650 cd06129 RNaseD_like DEDDy 3'-5' exonuclease domain of RNase D, WRN, and similar proteins. The RNase D-like group is composed of RNase D, WRN, and similar proteins. They contain a DEDDy-type, DnaQ-like, 3'-5' exonuclease domain that contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. RNase D is involved in the 3'-end processing of tRNA precursors. RNase D-like proteins in eukaryotes include yeast Rrp6p, human PM/Scl-100 and Drosophila melanogaster egalitarian (Egl) protein. WRN is a unique DNA helicase possessing exonuclease activity. Mutation in the WRN gene is implicated in Werner syndrome, a disease associated with premature aging and increased predisposition to cancer. Yeast Rrp6p and the human Polymyositis/scleroderma autoantigen 100kDa (PM/Scl-100) are exosome-associated proteins involved in the degradation and processing of precursors to stable RNAs. Egl is a component of an mRNA-binding complex which is required for oocyte specification. The Egl subfamily does not possess a completely conserved YX(3)D pattern at the ExoIII motif. 161 -99834 cd06130 DNA_pol_III_epsilon_like an uncharacterized bacterial subgroup of the DEDDh 3'-5' exonuclease domain family with similarity to the epsilon subunit of DNA polymerase III. This subfamily is composed of uncharacterized bacterial proteins with similarity to the epsilon subunit of DNA polymerase III (Pol III), a multisubunit polymerase which is the main DNA replicating enzyme in bacteria, functioning as the chromosomal replicase. The Pol III holoenzyme is a complex of ten different subunits, three of which (alpha, epsilon, and theta) compose the catalytic core. The Pol III epsilon subunit, encoded by the dnaQ gene, is a DEDDh-type 3'-5' exonuclease which is responsible for the proofreading activity of the polymerase, increasing the fidelity of DNA synthesis. It contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The epsilon subunit of Pol III also functions as a stabilizer of the holoenzyme complex. 156 -99835 cd06131 DNA_pol_III_epsilon_Ecoli_like DEDDh 3'-5' exonuclease domain of the epsilon subunit of Escherichia coli DNA polymerase III and similar proteins. This subfamily is composed of the epsilon subunit of Escherichia coli DNA polymerase III (Pol III) and similar proteins. Pol III is the main DNA replicating enzyme in bacteria, functioning as the chromosomal replicase. It is a holoenzyme complex of ten different subunits, three of which (alpha, epsilon, and theta) compose the catalytic core. The Pol III epsilon subunit, encoded by the dnaQ gene, is a DEDDh-type 3'-5' exonuclease which is responsible for the proofreading activity of the polymerase, increasing the fidelity of DNA synthesis. It contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The epsilon subunit of Pol III also functions as a stabilizer of the holoenzyme complex. 167 -99836 cd06133 ERI-1_3'hExo_like DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and similar proteins. This subfamily is composed of Caenorhabditis elegans ERI-1, human 3' exonuclease (3'hExo), Drosophila exonuclease snipper (snp), and similar proteins from eukaryotes and bacteria. These are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. ERI-1 has been implicated in the degradation of small interfering RNAs (RNAi). 3'hExo participates in the degradation of histone mRNAs. Snp is a non-essential exonuclease that efficiently degrades structured RNA and DNA substrates as long as there is a minimum of 2 nucleotides in the 3' overhang to initiate degradation. Snp is not a functional homolog of either ERI-1 or 3'hExo. 176 -99837 cd06134 RNaseT DEDDh 3'-5' exonuclease domain of RNase T. RNase T is a DEDDh-type DnaQ-like 3'-5' exoribonuclease E implicated in the 3' maturation of small stable RNAs and 23srRNA, and in the end turnover of tRNA. It contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. RNase T is related to the proofreading domain of DNA polymerase III. Despite its important role, RNase T is mainly found only in gammaproteobacteria. It is speculated that it might have originated from DNA polymerase III at the time the gamma division of proteobacteria diverged from other bacteria. RNase T is a homodimer with the catalytic residues of one monomer contacting a large basic patch on the other monomer to form a functional active site. 189 -99838 cd06135 Orn DEDDh 3'-5' exonuclease domain of oligoribonuclease and similar proteins. Oligoribonuclease (Orn) is a DEDDh-type DnaQ-like 3'-5' exoribonuclease that is responsible for degrading small oligoribonucleotides to mononucleotides. It contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. Orn is essential for Escherichia coli survival. The human homolog, also called Sfn (small fragment nuclease), is able to hydrolyze short single-stranded RNA and DNA oligomers. It plays a role in cellular nucleotide recycling. 173 -99839 cd06136 TREX1_2 DEDDh 3'-5' exonuclease domain of three prime repair exonuclease (TREX)1, TREX2, and similar proteins. Three prime repair exonuclease (TREX)1 and TREX2 are closely related DEDDh-type DnaQ-like 3'-5' exonucleases. They contain three conserved sequence motifs known as ExoI, II, and III, with a specific Hx(4)D conserved pattern at ExoIII. These motifs contain four conserved acidic residues that participate in coordination of divalent metal ions required for catalysis. Both proteins play a role in the metabolism and clearance of DNA. TREX1 is the major 3'-5' exonuclease activity detected in mammalian cells. Mutations in the human TREX1 gene can cause Aicardi-Goutieres syndrome (AGS), which is characterized by perturbed innate immunity and presents itself as a severe neurological disease. TREX1 degrades ssDNA generated by aberrant replication intermediates to prevent checkpoint activation and autoimmune disease. There are distinct structural differences between TREX1 and TREX2 that point to different biological roles for these proteins. The main difference is the presence of about 70 amino acids at the C-terminus of TREX1. In addition, TREX1 has a nonrepetitive proline-rich region that is not present in the TREX2 protein. Furthermore, TREX2 contains a conserved DNA binding loop positioned adjacent to the active site that has a sequence distinct from the corresponding loop in TREX1. Truncations in the C-terminus of human TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy (RVCL), a neurovascular syndrome featuring a progressive loss of visual acuity combined with a variable neurological picture. 177 -99840 cd06137 DEDDh_RNase DEDDh 3'-5' exonuclease domain of the eukaryotic exoribonucleases PAN2, RNA exonuclease (REX)-1,-3, and -4, ISG20, and similar proteins. This group is composed of eukaryotic exoribonucleases that include PAN2, RNA exonuclease 1 (REX1 or Rex1p), REX3 (Rex3p), REX4 (or Rex4p), ISG20, and similar proteins. They are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. PAN2 is the catalytic subunit of poly(A) nuclease (PAN), a Pab1p-dependent 3'-5' exoribonuclease which plays an important role in the posttranscriptional maturation of pre-mRNAs. REX proteins are required for the processing and maturation of many RNA species, and ISG20 is an interferon-induced antiviral exonuclease with a strong preference for single-stranded RNA. 161 -99841 cd06138 ExoI_N N-terminal DEDDh 3'-5' exonuclease domain of Escherichia coli exonuclease I and similar proteins. This subfamily is composed of the N-terminal domain of Escherichia coli exonuclease I (ExoI) and similar proteins. ExoI is a monomeric enzyme that hydrolyzes single stranded DNA in the 3' to 5' direction. It plays a role in DNA recombination and repair. It primarily functions in repairing frameshift mutations. The N-terminal domain of ExoI is a DEDDh-type DnaQ-like 3'-5 exonuclease containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The ExoI structure is unique among DnaQ family enzymes in that there is a large distance between the two metal ions required for catalysis and the catalytic histidine is oriented away from the active site. 183 -176651 cd06139 DNA_polA_I_Ecoli_like_exo DEDDy 3'-5' exonuclease domain of Escherichia coli DNA polymerase I and similar bacterial family-A DNA polymerases. Escherichia coli-like Polymerase I (Pol I), a subgroup of family-A DNA polymerases, contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain in the same polypeptide chain as the polymerase domain. The exonuclease domain contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The 3'-5' exonuclease domain of DNA polymerases has a fundamental role in reducing polymerase errors and is involved in proofreading activity. E. coli DNA Pol I is involved in genome replication but is not the main replicating enzyme. It is also implicated in DNA repair. 193 -176652 cd06140 DNA_polA_I_Bacillus_like_exo inactive DEDDy 3'-5' exonuclease domain of Bacillus stearothermophilus DNA polymerase I and similar family-A DNA polymerases. Bacillus stearothermophilus-like Polymerase I (Pol I), a subgroup of the family-A DNA polymerases, contains an inactive DnaQ-like 3'-5' exonuclease domain in the same polypeptide chain as the polymerase region. The exonuclease-like domain of these proteins possess the same fold as the Klenow fragment (KF) of Escherichia coli Pol I, but does not contain the four critical metal-binding residues necessary for activity. The function of this domain is unknown. It might act as a spacer between the polymerase and the 5'-3' exonuclease domains. Some members of this subgroup, such as those from Bacillus sphaericus and Thermus aquaticus, are thermostable DNA polymerases. 178 -176653 cd06141 WRN_exo DEDDy 3'-5' exonuclease domain of WRN and similar proteins. WRN is a unique RecQ DNA helicase exhibiting an exonuclease activity. It contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain possessing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. Mutations in the WRN gene cause Werner syndrome, an autosomal recessive disorder associated with premature aging and increased susceptibility to cancer and type II diabetes. WRN interacts with key proteins involved in DNA replication, recombination, and repair. It is believed to maintain genomic stability and life span by participating in DNA processes. WRN is stimulated by Ku70/80, an important regulator of genomic stability. 170 -176654 cd06142 RNaseD_exo DEDDy 3'-5' exonuclease domain of Ribonuclease D and similar proteins. Ribonuclease (RNase) D is a bacterial enzyme involved in the maturation of small stable RNAs and the 3' maturation of tRNA. It contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain possessing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. In vivo, RNase D only becomes essential upon removal of other ribonucleases. Eukaryotic RNase D homologs include yeast Rrp6p, human PM/Scl-100, and the Drosophila melanogaster egalitarian protein. 178 -99846 cd06143 PAN2_exo DEDDh 3'-5' exonuclease domain of the eukaryotic exoribonuclease PAN2. PAN2 is the catalytic subunit of poly(A) nuclease (PAN), a Pab1p-dependent 3'-5' exoribonuclease which plays an important role in the posttranscriptional maturation of pre-mRNAs. PAN catalyzes the deadenylation of poly(A) tails, which are initially synthesized to default lengths of 70 to 90, to mRNA-specific lengths of 55 to 71. Pab1p and PAN also play a role in the export and decay of mRNA. PAN2 contains a DEDDh-type DnaQ-like 3'-5' exonuclease domain with three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. 174 -99847 cd06144 REX4_like DEDDh 3'-5' exonuclease domain of RNA exonuclease 4, XPMC2, Interferon Stimulated Gene product of 20 kDa, and similar proteins. This subfamily is composed of RNA exonuclease 4 (REX4 or Rex4p), XPMC2, Interferon (IFN) Stimulated Gene product of 20 kDa (ISG20), and similar proteins. REX4 is involved in pre-rRNA processing. It controls the ratio between the two forms of 5.8S rRNA in yeast. XPMC2 is a Xenopus gene which was identified through its ability to correct a mitotic defect in fission yeast. The human homolog of XPMC2 (hPMC2) may be involved in angiotensin II-induced adrenal cell cycle progression and cell proliferation. ISG20 is an IFN-induced antiviral exonuclease with a strong preference for single-stranded RNA and minor activity towards single-stranded DNA. These proteins are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. REX proteins function in the processing and maturation of many RNA species, similar to the function of Escherchia coli RNase T. 152 -99848 cd06145 REX1_like DEDDh 3'-5' exonuclease domain of RNA exonuclease 1, -3 and similar eukaryotic proteins. This subfamily is composed of RNA exonuclease 1 (REX1 or Rex1p), REX3 (or Rex3p), and similar eukaryotic proteins. In yeast, REX1 and REX3 are required for 5S rRNA and MRP (mitochondrial RNA processing) RNA maturation, respectively. They are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. REX1 is the major exonuclease responsible for pre-tRNA trail trimming and may also be involved in nuclear CCA turnover. REX proteins function in the processing and maturation of many RNA species, similar to the function of Escherichia coli RNase T. 150 -176655 cd06146 mut-7_like_exo DEDDy 3'-5' exonuclease domain of Caenorhabditis elegans mut-7 and similar proteins. The mut-7 subfamily is composed of Caenorhabditis elegans mut-7 and similar proteins found in plants and metazoans. Mut-7 is implicated in posttranscriptional gene silencing. It contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain possessing three conserved sequence motifs, termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. 193 -99850 cd06147 Rrp6p_like_exo DEDDy 3'-5' exonuclease domain of yeast Rrp6p, human polymyositis/scleroderma autoantigen 100kDa, and similar proteins. Yeast Rrp6p and its human homolog, the polymyositis/scleroderma autoantigen 100kDa (PM/Scl-100), are exosome-associated proteins involved in the degradation and processing of precursors to stable RNAs. Both proteins contain a DEDDy-type DnaQ-like 3'-5' exonuclease domain possessing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. The motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. PM/Scl-100, an autoantigen present in the nucleolar compartment of the cell, reacts with autoantibodies produced by about 50% of patients with polymyositis-scleroderma overlap syndrome. 192 -99851 cd06148 Egl_like_exo DEDDy 3'-5' exonuclease domain of Drosophila Egalitarian (Egl) and similar proteins. The Egalitarian (Egl) protein subfamily is composed of Drosophila Egl and similar proteins. Egl is a component of an mRNA-binding complex which is required for oocyte specification. Egl contains a DEDDy-type DnaQ-like 3'-5' exonuclease domain possessing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. The motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The conservation of this subfamily throughout eukaryotes suggests that its members may be part of ancient RNA processing complexes that are likely to participate in the regulated processing of specific mRNAs. Some members of this subfamily do not have a completely conserved YX(3)D pattern at the ExoIII motif. 197 -99852 cd06149 ISG20 DEDDh 3'-5' exonuclease domain of Interferon Stimulated Gene product of 20 kDa, and similar proteins. Interferon (IFN) Stimulated Gene product of 20 kDa (ISG20) is an IFN-induced antiviral exonuclease with a strong preference for single-stranded RNA and minor activity towards single-stranded DNA. It was also independently identified by its response to estrogen and was called HEM45 (human estrogen regulated transcript). ISG20 is a DEDDh-type DnaQ-like 3'-5' exonuclease containing three conserved sequence motifs termed ExoI, ExoII and ExoIII with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. ISG20 may be a major effector of innate immunity against pathogens including viruses, bacteria, and parasites. It is located in promyelocytic leukemia (PML) nuclear bodies, sites for oncogenic DNA viral transcription and replication. It may carry out its function by degrading viral RNAs as part of the IFN-regulated antiviral response. 157 -100007 cd06150 YjgF_YER057c_UK114_like_2 This group of proteins belong to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 105 -100008 cd06151 YjgF_YER057c_UK114_like_3 This group of proteins belong to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 126 -100009 cd06152 YjgF_YER057c_UK114_like_4 YjgF, YER057c, and UK114 belong to a large family of proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 114 -100010 cd06153 YjgF_YER057c_UK114_like_5 This group of proteins belong to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 114 -100011 cd06154 YjgF_YER057c_UK114_like_6 This group of proteins belong to a large family of YjgF/YER057c/UK114-like proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 119 -100012 cd06155 eu_AANH_C_1 A group of hypothetical eukaryotic proteins, characterized by the presence of an adenine nucleotide alpha hydrolase (AANH)-like domain located N-terminal to two distinctly different YjgF-YER057c-UK114-like domains. This CD contains the first of these domains. The YjgF-YER057c-UK114 protein family is a large family of proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 101 -100013 cd06156 eu_AANH_C_2 A group of hypothetical eukaryotic proteins, characterized by the presence of an adenine nucleotide alpha hydrolase (AANH)-like domain located N-terminal to two distinctly different YjgF-YER057c-UK114-like domains. This CD contains the second of these domains. The YjgF-YER057c-UK114 protein family is a large family of proteins present in bacteria, archaea, and eukaryotes with no definitive function. The conserved domain is similar in structure to chorismate mutase but there is no sequence similarity and no functional connection. Members of this family have been implicated in isoleucine (Yeo7, Ibm1, aldR) and purine (YjgF) biosynthesis, as well as threonine anaerobic degradation (tdcF) and mitochondrial DNA maintenance (Ibm1). This domain homotrimerizes forming a distinct intersubunit cavity that may serve as a small molecule binding site. 118 -132726 cd06157 NR_LBD The ligand binding domain of nuclear receptors, a family of ligand-activated transcription regulators. Ligand-binding domain (LBD) of nuclear receptor (NR): Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions in metazoans, from development, reproduction, to homeostasis and metabolism. The superfamily contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. The members of the family include receptors of steroids, thyroid hormone, retinoids, cholesterol by-products, lipids and heme. With few exceptions, NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 168 -100079 cd06158 S2P-M50_like_1 Uncharacterized homologs of Site-2 protease (S2P), zinc metalloproteases (MEROPS family M50) which cleave transmembrane domains of substrate proteins, regulating intramembrane proteolysis (RIP) of diverse signal transduction mechanisms. Members of the S2P/M50 family of RIP proteases use proteolytic activity within the membrane to transfer information across membranes to integrate gene expression with physiologic stresses occurring in another cellular compartment. In eukaryotic cells they regulate such processes as sterol and lipid metabolism, and endoplasmic reticulum stress responses. In prokaryotes they regulate such processes as sporulation, cell division, stress response, and cell differentiation. This group includes bacterial, eukaryotic, and Archaeal S2P/M50s homologs with a minimal core protein and no PDZ domains. 181 -100080 cd06159 S2P-M50_PDZ_Arch Uncharacterized Archaeal homologs of Site-2 protease (S2P), zinc metalloproteases (MEROPS family M50) which cleave transmembrane domains of substrate proteins, regulating intramembrane proteolysis (RIP) of diverse signal transduction mechanisms. Members of the S2P/M50 family of RIP proteases use proteolytic activity within the membrane to transfer information across membranes to integrate gene expression with physiologic stresses occurring in another cellular compartment. In eukaryotic cells they regulate such processes as sterol and lipid metabolism, and endoplasmic reticulum stress responses. In prokaryotes they regulate such processes as sporulation, cell division, stress response, and cell differentiation. This group appears to be limited to Archaeal S2P/M50s homologs with additional putative N-terminal transmembrane spanning regions, relative to the core protein, and either one or two PDZ domains present. 263 -100081 cd06160 S2P-M50_like_2 Uncharacterized homologs of Site-2 protease (S2P), zinc metalloproteases (MEROPS family M50) which cleave transmembrane domains of substrate proteins, regulating intramembrane proteolysis (RIP) of diverse signal transduction mechanisms. Members of the S2P/M50 family of RIP proteases use proteolytic activity within the membrane to transfer information across membranes to integrate gene expression with physiologic stresses occurring in another cellular compartment. In eukaryotic cells they regulate such processes as sterol and lipid metabolism, and endoplasmic reticulum stress responses. In prokaryotes they regulate such processes as sporulation, cell division, stress response, and cell differentiation. This group includes bacterial, eukaryotic, and Archaeal S2P/M50s homologs with additional putative N- and C-terminal transmembrane spanning regions, relative to the core protein, and no PDZ domains. 183 -100082 cd06161 S2P-M50_SpoIVFB SpoIVFB Site-2 protease (S2P), a zinc metalloprotease (MEROPS family M50B), regulates intramembrane proteolysis (RIP), and is involved in the pro-sigmaK pathway of bacterial spore formation. SpoIVFB (sporulation protein, stage IV cell wall formation, F locus, promoter-distal B) is one of 4 proteins involved in endospore formation; the others are SpoIVFA (sporulation protein, stage IV cell wall formation, F locus, promoter-proximal A), BofA (bypass-of-forespore A), and SpoIVB (sporulation protein, stage IV cell wall formation, B locus). SpoIVFB is negatively regulated by SpoIVFA and BofA and activated by SpoIVB. It is thought that SpoIVFB, SpoIVFA, and BofA are located in the mother-cell membrane that surrounds the forespore and that SpoIVB is secreted from the forespore into the space between the two where it activates SpoIVFB. 208 -100083 cd06162 S2P-M50_PDZ_SREBP Sterol regulatory element-binding protein (SREBP) Site-2 protease (S2P), a zinc metalloprotease (MEROPS family M50A), regulates intramembrane proteolysis (RIP) of SREBP and is part of a signal transduction mechanism involved in sterol and lipid metabolism. In sterol-depleted mammalian cells, a two-step proteolytic process releases the N-terminal domains of SREBPs from membranes of the endoplasmic reticulum (ER). These domains translocate into the nucleus, where they activate genes of cholesterol and fatty acid biosynthesis. The first cleavage occurs at Site-1 within the ER lumen to generate an intermediate that is subsequently released from the membrane by cleavage at Site-2, which lies within the first transmembrane domain. It is the second proteolytic step that is carried out by the SREBP Site-2 protease (S2P) which is present in this CD family. This group appears to be limited to eumetazoan proteins and contains one PDZ domain. 277 -100084 cd06163 S2P-M50_PDZ_RseP-like RseP-like Site-2 proteases (S2P), zinc metalloproteases (MEROPS family M50A), cleave transmembrane domains of substrate proteins, regulating intramembrane proteolysis (RIP) of diverse signal transduction mechanisms. In Escherichia coli, the S2P homolog RseP is involved in the sigmaE pathway of extracytoplasmic stress responses. Also included in this group are such homologs as Bacillus subtilis YluC, Mycobacterium tuberculosis Rv2869c S2P, and Bordetella bronchiseptica HurP. Rv2869c S2P appears to have a role in the regulation of prokaryotic lipid biosynthesis and membrane composition and YluC of Bacillus has a role in transducing membrane stress. This group includes bacterial and eukaryotic S2P/M50s homologs with either one or two PDZ domains present. PDZ domains are believed to have a regulatory role. The RseP PDZ domain is required for the inhibitory reaction that prevents cleavage of its substrate, RseA. 182 -100085 cd06164 S2P-M50_SpoIVFB_CBS SpoIVFB Site-2 protease (S2P), a zinc metalloprotease (MEROPS family M50B), regulates intramembrane proteolysis (RIP), and is involved in the pro-sigmaK pathway of bacterial spore formation. In this subgroup, SpoIVFB (sporulation protein, stage IV cell wall formation, F locus, promoter-distal B) contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domain. SpoIVFB is one of 4 proteins involved in endospore formation; the others are SpoIVFA (sporulation protein, stage IV cell wall formation, F locus, promoter-proximal A), BofA (bypass-of-forespore A), and SpoIVB (sporulation protein, stage IV cell wall formation, B locus). SpoIVFB is negatively regulated by SpoIVFA and BofA and activated by SpoIVB. It is thought that SpoIVFB, SpoIVFA, and BofA are located in the mother-cell membrane that surrounds the forespore and that SpoIVB is secreted from the forespore into the space between the two where it activates SpoIVFB. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. 227 -320680 cd06165 Sortase_A Sortase domain found in class A sortases. Class A sortases are membrane-bound cysteine transpeptidases distributed in Gram-positive bacteria (mainly present in Firmicutes). They perform a housekeeping role in the cell as members of this group are capable of anchoring a large number of functionally distinct surface proteins containing a cell wall sorting signal to an amino group located on the bacterial cell wall. They do so by catalyzing a transpeptidation reaction in which the surface protein substrate is cleaved at a conserved cell wall-sorting signal (Class A sortases recognize a canonical LPXTG motif, X can be any amino acid), and covalently linked to peptidoglycan for display on the bacterial surface. The prototypical sortase A protein from Staphylococcus aureus (named Sa-SrtA) cleaves the amide bond between threonine and glycine residues of the canonical LPXTG motif in a wide range of protein substrates with diverse functions that can promote bacterial adhesion, nutrient acquisition, host cell invasion, and immune evasion. Next, it catalyzes a transpeptidation reaction by which the proteins are covalently linked to the peptidoglycan precursor lipid II. SrtA is therefore affects the ability of a pathogen to establish successful infection. SrtA contains an N-terminal hydrophobic segment, a linker region and an extra-cellular C-terminal catalytic domain. The hydrophobic segment functions as both a signal peptide for secretion and a stop-transfer signal for membrane anchoring. The catalytic domain contains the catalytic TLXTC signature sequence where X is usually a valine, isoleucine or a threonine. The gene encoding SrtA is generally not located in the same gene cluster as its substrates while the gene encoding SrtB is usually clustered in the same locus as its substrate. 127 -320681 cd06166 Sortase_D_2 Sortase domain found in subfamily 2 of the class D family of sortases. Class D sortases are cysteine transpeptidases distributed in Gram-positive bacteria (mainly present in Firmicutes). They anchor surface proteins bearing a cell wall sorting signal to peptidoglycans of the bacterial cell wall envelope, which is responsible for spore formation under anaerobic conditions. This involves a transpeptidation reaction in which the surface protein substrate is cleaved at the cell wall sorting signal and covalently linked to peptidoglycan for display on the bacterial surface. The prototypical subfamily 2 of class D sortase from Clostridium perfringens (named Cp-SrtD) recognizes the LPQTGS signal motif for transpeptidation. Its catalytic activity is in a metal cation- and temperature- dependent manner. The presence of magnesium appears to enhance Cp-SrtD catalysis towards the LPQTGS signal motif. 127 -350201 cd06167 PIN_LabA-like PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing. It is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system. In particular, LabA seems necessary for KaiC-dependent repression of gene expression. This family also includes the N-terminal domain of limkain b1, a human autoantigen associated with cytoplasmic vesicles. Other members are the LabA-like PIN domains of human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family. 113 -212486 cd06168 LSMD1 LSM domain containing 1. The eukaryotic Sm and Sm-like (LSm) proteins associate with RNA to form the core domain of the ribonucleoprotein particles involved in a variety of RNA processing events including pre-mRNA splicing, telomere replication, and mRNA degradation. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. LSMD1 proteins have a single Sm-like domain structure. Sm-like proteins exist in archaea as well as prokaryotes, forming heptameric and hexameric ring structures similar to those found in eukaryotes. 73 -132884 cd06169 BMC Bacterial Micro-Compartment (BMC) domain. Bacterial micro-compartments are primitive protein-based organelles that sequester specific metabolic pathways in bacterial cells. The prototypical bacterial microcompartment is the carboxysome shell, a bacterial polyhedral organelle which increase the efficiency of CO2 fixation by encapsulating RuBisCO and carbonic anhydrase. They can be divided into two types: alpha-type carboxysomes (alpha-cyanobacteria and proteobacteria) and beta-type carboxysomes (beta-cyanobacteria). In addition to these proteins there are several homologous shell proteins including those found in pdu organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol and eut organelles involved in the cobalamin-dependent degradation of ethanolamine. Structure evidence shows that several carboxysome shell proteins and their homologs (Csos1A, CcmK1,2,4, and PduU) exist as hexamers which might further assemble into extended, tightly packed layers hypothesized to represent the flat facets of the polyhedral organelles outer shell. Although it has been suggested that other homologous proteins in this family might also form hexamers and play similar functional roles in the construction of their corresponding organelle outer shell at present no experimental evidence directly supports this view. 62 -99777 cd06170 LuxR_C_like C-terminal DNA-binding domain of LuxR-like proteins. This domain contains a helix-turn-helix motif and binds DNA. Proteins belonging to this group are response regulators; some act as transcriptional activators, others as transcriptional repressors. Many are active as homodimers. Many are two domain proteins in which the DNA binding property of the C-terminal DNA binding domain is modulated by modifications of the N-terminal domain. For example in the case of Lux R which participates in the regulation of gene expression in response to fluctuations in cell-population density (quorum-sensing), a signaling molecule, the pheromone Acyl HSL (N-acyl derivatives of homoserine lactone), binds to the N-terminal domain and leads to LuxR dimerization. For others phophorylation of the N-terminal domain leads to multimerization, for example Escherichia coli NarL and Sinorhizobium melilot FixJ. NarL controls gene expression of many respiratory-related operons when environmental nitrate or nitrite is present under anerobic conditions. FixJ is involved in the transcriptional activation of nitrogen fixation genes. The group also includes small proteins which lack an N-terminal signaling domain, such as Bacillus subtilis GerE. GerE is dimeric and acts in conjunction with sigmaK as an activator or a repressor modulating the expression of various genes in particular those encoding the spore-coat. These LuxR family regulators may share a similar organization of their target binding sites. For example the LuxR dimer binds the lux box, a 20bp inverted repeat, GerE dimers bind two 12bp consensus sequences in inverted orientation having the central four bases overlap, and the NarL dimer binds two 7bp inverted repeats separated by 2 bp. 57 -100119 cd06171 Sigma70_r4 Sigma70, region (SR) 4 refers to the most C-terminal of four conserved domains found in Escherichia coli (Ec) sigma70, the main housekeeping sigma, and related sigma-factors (SFs). A SF is a dissociable subunit of RNA polymerase, it directs bacterial or plastid core RNA polymerase to specific promoter elements located upstream of transcription initiation points. The SR4 of Ec sigma70 and other essential primary SFs contact promoter sequences located 35 base-pairs upstream of the initiation point, recognizing a 6-base-pair -35 consensus TTGACA. Sigma70 related SFs also include SFs which are dispensable for bacterial cell growth for example Ec sigmaS, SFs which activate regulons in response to a specific signal for example heat-shock Ec sigmaH, and a group of SFs which includes the extracytoplasmic function (ECF) SFs and is typified by Ec sigmaE which contains SR2 and -4 only. ECF SFs direct the transcription of genes that regulate various responses including periplasmic stress and pathogenesis. Ec sigmaE SR4 also contacts the -35 element, but recognizes a different consensus (a 7-base-pair GGAACTT). Plant SFs recognize sigma70 type promoters and direct transcription of the major plastid RNA polymerase, plastid-encoded RNA polymerase (PEP). 55 -340862 cd06172 MFS_LacY LacY proton/sugar symporter family of the Major Facilitator Superfamily of transporters. LacY proton/sugar family (also called LacY/RafB family) symporters are integral membrane proteins responsible for the transport of specific beta-glucosides into the cell accompanied by the import of a proton. Members include lactose permease (LacY), raffinose permease (RafB), and sucrose permease, which facilitate the transport of beta-galactosides, raffinose, and sucrose, respectively. The prototypical member, LacY, contains 12 transmembrane helices connected by hydrophilic loops with both N and C termini on the cytoplasmic face. The LacY/RafB permease family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340863 cd06173 MFS_MefA_like Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters. This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 383 -349949 cd06174 MFS Major Facilitator Superfamily. The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. 378 -340865 cd06175 MFS_POT Proton-coupled oligopeptide transporter (POT) family of the Major Facilitator Superfamily of transporters. The Proton-coupled oligopeptide transporter (POT) family is present across all major kingdoms of life and is known by a variety of names. It is referred to as the Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) in plants, and in addition to POT, it is also known as the Peptide transporter (PepT/PTR) or Solute Carrier 15 (SLC15) family in animals. Members of this family are proton-driven symporters involved in nitrogen acquisition in the form of di- and tripeptides. Plant members transport other nitrogenous ligands including nitrate, the plant hormone auxin, and glucosinolate compounds that are important for seed defense. POT proteins exhibit substrate multispecificity, with one transporter able to recognize as many as 8,400 types of di/tripeptides and certain peptide-like drugs. The POT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 422 -349950 cd06176 MFS_BCD_PucC-like Bacteriochlorophyll delivery (BCD) family, also called PucC family, of the Major Facilitator Superfamily. The bacteriochlorophyll delivery (BCD) family, also called PucC family, is composed of the PucC protein and related proteins including LhaA (also called ORF477 and F1696) and bacteriochlorophyll synthase 44.5 kDa chain (also called ORF428). These proteins are found in photosynthetic organisms. Rhodobacter capsulatus LhaA and PucC are implicated in light-harvesting complex 1 and 2 (LH1 and LH2) assembly. PucC may function to shepherd or sequester LH2 alpha and beta proteins to facilitate proper assembly, as well as deliver bacteriochlorophyll a to nascent LH2 complexes. The BCD family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 409 -340866 cd06177 MFS_NHS Nucleoside:H(+) symporter family of the Major Facilitator Superfamily of transporters. The prototypical members of the Nucleoside:H(+) symporter (NHS) family are Escherichia coli nucleoside permease NupG and xanthosine permease. Nucleoside:H(+) symporters are proton-driven transporters that facilitate the import of nucleosides across the cytoplasmic membrane. NupG is a broad-specificity transporter of purine and pyrimidine nucleosides. Xanthosine permease is involved in the uptake of xanthosine and other nucleosides such as inosine, adenosine, cytidine, uridine and thymidine. The NHS family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 386 -340867 cd06178 MFS_unc93-like Uncharacterized Unc-93-like proteins of the Major Facilitator Superfamily of transporters. This subfamily consists of uncharacterized proteins, mainly from fungi and plants, with similarity to Caenorhabditis elegans uncoordinated protein 93 (also called putative potassium channel regulatory protein unc-93). Unc-93 acts as a regulatory subunit of a multi-subunit potassium channel complex that may function in coordinating muscle contraction in C. elegans. The unc93-like subfamily belongs to the Unc-93 family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 415 -340868 cd06179 MFS_TRI12_like Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters. This family includes Fusarium sporotrichioides trichothecene efflux pump (TRI12), which may play a role in F. sporotrichioides self-protection against trichothecenes. TRI12 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 518 -340869 cd06180 MFS_YjiJ Uncharacterized protein YjiJ and similar proteins of the Major Facilitator Superfamily of transporters. This family is composed of Escherichia coli YjiJ and other uncharacterized proteins. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -198409 cd06181 BI-1-like BAX inhibitor (BI)-1/YccA-like protein family. Mammalian members of the BAX inhibitor (BI)-1 like family of small transmembrane proteins have been shown to have an antiapoptotic effect either by stimulating the antiapoptotic function of Bcl-2, a well-characterized oncogene, or by inhibiting the proapoptotic effect of Bax, another member of the Bcl-2 family. Their broad tissue distribution and high degree of conservation suggests an important regulatory role. This superfamily also contains the lifeguard(LFG)-like proteins and other subfamilies which appear to be related by common descent and also function as inhibitors of apoptosis. In plants, BI-1 like proteins play a role in pathogen resistance. A prokaryotic member, Escherichia coli YccA, has been shown to interact with ATP-dependent protease FtsH, which degrades abnormal membrane proteins as part of a quality control mechanism to keep the integrity of biological membranes. 202 -99779 cd06182 CYPOR_like NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. CYPOR has a C-terminal ferredoxin reducatase (FNR)- like FAD and NAD binding module, an FMN-binding domain, and an additional conecting domain (inserted within the FAD binding region) that orients the FNR and FMN binding domains. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria and participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2, which then transfers two electrons and a proton to NADP+ to form NADPH. 267 -99780 cd06183 cyt_b5_reduct_like Cytochrome b5 reductase catalyzes the reduction of 2 molecules of cytochrome b5 using NADH as an electron donor. Like ferredoxin reductases, these proteins have an N-terminal FAD binding subdomain and a C-terminal NADH binding subdomain, separated by a cleft, which accepts FAD. The NADH-binding moiety interacts with part of the FAD and resembles a Rossmann fold. However, NAD is bound differently than in canonical Rossmann fold proteins. Nitrate reductases, flavoproteins similar to pyridine nucleotide cytochrome reductases, catalyze the reduction of nitrate to nitrite. The enzyme can be divided into three functional fragments that bind the cofactors molybdopterin, heme-iron, and FAD/NADH. 234 -99781 cd06184 flavohem_like_fad_nad_binding FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain containing a B-type heme fused with a ferredoxin reductase-like FAD/NAD-binding domain. Flavohemoglobins detoxify nitric oxide (NO) via an NO dioxygenase reaction. The hemoglobin domain adopts a globin fold with an embedded heme molecule. Flavohemoglobins also have a C-terminal reductase domain with bindiing sites for FAD and NAD(P)H. This domain catalyzes the conversion of NO + O2 + NAD(P)H to NO3- + NAD(P)+. Instead of the oxygen transport function of hemoglobins, flavohemoglobins seem to act in NO dioxygenation and NO signalling. 247 -99782 cd06185 PDR_like Phthalate dioxygenase reductase (PDR) is an FMN-dependent reductase that mediates electron transfer from NADH to FMN to an iron sulfur cluster. PDR has an an N-terminal ferrredoxin reductase (FNR)-like NAD(H) binding domain and a C-terminal iron-sulfur [2Fe-2S] cluster domain. Although structurally homologous to FNR, PDR binds FMN rather than FAD in it's FNR-like domain. Electron transfer between pyrimidines and iron-sulfur clusters (Rieske center [2Fe-2S]) or heme groups is mediated by flavins in respiration, photosynthesis, and oxygenase systems. Type I dioxygenase systems, including the hydroxylate phthalate system, have 2 components, a monomeric reductase consisting of a flavin and a 2Fe-2S center and a multimeric oxygenase. In contrast to other Rieske dioxygenases the ferredoxin like domain is C-, not N-terminal. 211 -99783 cd06186 NOX_Duox_like_FAD_NADP NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. ROS were originally identified as bactericidal agents in phagocytes, but are now also implicated in cell signaling and metabolism. NOX has a 6-alpha helix heme-binding transmembrane domain fused to a flavoprotein with the nucleotide binding domain located in the cytoplasm. Duox enzymes link a peroxidase domain to the NOX domain via a single transmembrane and EF-hand Ca2+ binding sites. The flavoprotein module has a ferredoxin like FAD/NADPH binding domain. In classical phagocytic NOX2, electron transfer occurs from NADPH to FAD to the heme of cytb to oxygen leading to superoxide formation. 210 -99784 cd06187 O2ase_reductase_like The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial oxygenases which oxidize hydrocarbons using oxygen as the oxidant. Electron transfer is from NADH via FAD (in the oxygenase reductase) and an [2FE-2S] ferredoxin center (fused to the FAD/NADH domain and/or discrete) to the oxygenase. Dioxygenases add both atoms of oxygen to the substrate, while mono-oxygenases (aka mixed oxygenases) add one atom to the substrate and one atom to water. In dioxygenases, Class I enzymes are 2 component, containing a reductase with Rieske type [2Fe-2S] redox centers and an oxygenase. Class II are 3 component, having discrete flavin and ferredoxin proteins and an oxygenase. Class III have 2 [2Fe-2S] centers, one fused to the flavin domain and the other separate. 224 -99785 cd06188 NADH_quinone_reductase Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) FAD/NADH binding domain. (Na+-NQR) provides a means of storing redox reaction energy via the transmembrane translocation of Na2+ ions. The C-terminal domain resembles ferredoxin:NADP+ oxidoreductase, and has NADH and FAD binding sites. (Na+-NQR) is distinct from H+-translocating NADH:quinone oxidoreductases and noncoupled NADH:quinone oxidoreductases. The NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain of this group typically contains an iron-sulfur cluster binding domain. 283 -99786 cd06189 flavin_oxioreductase NAD(P)H dependent flavin oxidoreductases use flavin as a substrate in mediating electron transfer from iron complexes or iron proteins. Structurally similar to ferredoxin reductases, but with only 15% sequence identity, flavin reductases reduce FAD, FMN, or riboflavin via NAD(P)H. Flavin is used as a substrate, rather than a tightly bound prosthetic group as in flavoenzymes; weaker binding is due to the absence of a binding site for the AMP moeity of FAD. 224 -99787 cd06190 T4MO_e_transfer_like Toluene-4-monoxygenase electron transfer component of Pseudomonas mendocina hydroxylates toluene and forms p-cresol as part of a three component toluene-4-monoxygenase system. Electron transfer is from NADH to an NADH:ferredoxin oxidoreductase (TmoF in P. mendocina) to ferredoxin to an iron-containing oxygenase. TmoF is homologous to other mono- and dioxygenase systems within the ferredoxin reductase family. 232 -99788 cd06191 FNR_iron_sulfur_binding Iron-sulfur binding Ferredoxin Reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with a C-terminal iron-sulfur binding cluster domain. FNR was intially identified as a chloroplast reductase activity catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methnae assimilation in a variety of organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one- electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and 2 electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). 231 -99789 cd06192 DHOD_e_trans_like FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. 243 -99790 cd06193 siderophore_interacting Siderophore interacting proteins share the domain structure of the ferredoxin reductase like family. Siderophores are produced in various bacteria (and some plants) to extract iron from hosts. Binding constants are high, so iron can be pilfered from transferrin and lactoferrin for bacterial uptake, contributing to pathogen virulence. Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation in a variety of organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one-electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and two electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). 235 -99791 cd06194 FNR_N-term_Iron_sulfur_binding Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an N-terminal Iron-Sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 222 -99792 cd06195 FNR1 Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 241 -99793 cd06196 FNR_like_1 Ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which varies in orientation with respect to the NAD(P) binding domain. The N-terminal region may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. 218 -99794 cd06197 FNR_like_2 FAD/NAD(P) binding domain of ferredoxin reductase-like proteins. Ferredoxin reductase (FNR) was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and have a variety of physiological functions in a variety of organisms including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which varies in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one-electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and two electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). 220 -99795 cd06198 FNR_like_3 NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) domain, which varies in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. 216 -99796 cd06199 SiR Cytochrome p450- like alpha subunits of E. coli sulfite reductase (SiR) multimerize with beta subunits to catalyze the NADPH dependent reduction of sulfite to sulfide. Beta subunits have an Fe4S4 cluster and a siroheme, while the alpha subunits (cysJ gene) are of the cytochrome p450 (CyPor) family having FAD and FMN as prosthetic groups and utilizing NADPH. Cypor (including cyt -450 reductase, nitric oxide synthase, and methionine synthase reductase) are ferredoxin reductase (FNR)-like proteins with an additional N-terminal FMN domain and a connecting sub-domain inserted within the flavin binding portion of the FNR-like domain. The connecting domain orients the N-terminal FMN domain with the C-terminal FNR domain. 360 -99797 cd06200 SiR_like1 Cytochrome p450- like alpha subunits of E. coli sulfite reductase (SiR) multimerize with beta subunits to catalyze the NADPH dependent reduction of sulfite to sulfide. Beta subunits have an Fe4S4 cluster and a siroheme, while the alpha subunits (cysJ gene) are of the cytochrome p450 (CyPor) family having FAD and FMN as prosthetic groups and utilizing NADPH. Cypor (including cyt -450 reductase, nitric oxide synthase, and methionine synthase reductase) are ferredoxin reductase (FNR)-like proteins with an additional N-terminal FMN domain and a connecting sub-domain inserted within the flavin binding portion of the FNR-like domain. The connecting domain orients the N-terminal FMN domain with the C-terminal FNR domain. NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues, and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule, which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 245 -99798 cd06201 SiR_like2 Cytochrome p450- like alpha subunits of E. coli sulfite reductase (SiR) multimerize with beta subunits to catalyze the NADPH dependent reduction of sulfite to sulfide. Beta subunits have an Fe4S4 cluster and a siroheme, while the alpha subunits (cysJ gene) are of the cytochrome p450 (CyPor) family having FAD and FMN as prosthetic groups and utilizing NADPH. Cypor (including cyt -450 reductase, nitric oxide synthase, and methionine synthase reductase) are ferredoxin reductase (FNR)-like proteins with an additional N-terminal FMN domain and a connecting sub-domain inserted within the flavin binding portion of the FNR-like domain. The connecting domain orients the N-terminal FMN domain with the C-terminal FNR domain. NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 289 -99799 cd06202 Nitric_oxide_synthase The ferredoxin-reductase (FNR) like C-terminal domain of the nitric oxide synthase (NOS) fuses with a heme-containing N-terminal oxidase domain. The reductase portion is similar in structure to NADPH dependent cytochrome-450 reductase (CYPOR), having an inserted connecting sub-domain within the FAD binding portion of FNR. NOS differs from CYPOR in a requirement for the cofactor tetrahydrobiopterin and unlike most CYPOR is dimeric. Nitric oxide synthase produces nitric oxide in the conversion of L-arginine to L-citruline. NOS has been implicated in a variety of processes including cytotoxicity, anti-inflamation, neurotransmission, and vascular smooth muscle relaxation. 406 -99800 cd06203 methionine_synthase_red Human methionine synthase reductase (MSR) restores methionine sythase which is responsible for the regeneration of methionine from homocysteine, as well as the coversion of methyltetrahydrofolate to tetrahydrofolate. In MSR, electrons are transferred from NADPH to FAD to FMN to cob(II)alamin. MSR resembles proteins of the cytochrome p450 family including nitric oxide synthase, the alpha subunit of sulfite reductase, but contains an extended hinge region. NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. CYPORs resemble ferredoxin reductase (FNR) but have a connecting subdomain inserted within the flavin binding region, which helps orient the FMN binding doamin with the FNR module. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 398 -99801 cd06204 CYPOR NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 416 -99802 cd06206 bifunctional_CYPOR These bifunctional proteins fuse N-terminal cytochrome p450 with a cytochrome p450 reductase (CYPOR). NADPH cytochrome p450 reductase serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 384 -99803 cd06207 CyPoR_like NADPH cytochrome p450 reductase (CYPOR) serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 382 -99804 cd06208 CYPOR_like_FNR These ferredoxin reductases are related to the NADPH cytochrome p450 reductases (CYPOR), but lack the FAD-binding region connecting sub-domain. Ferredoxin-NADP+ reductase (FNR) is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins, such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap between the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2, which then transfers two electrons and a proton to NADP+ to form NADPH. CYPOR serves as an electron donor in several oxygenase systems and is a component of nitric oxide synthases, sulfite reducatase, and methionine synthase reductases. CYPOR transfers two electrons from NADPH to the heme of cytochrome p450 via FAD and FMN. CYPOR has a C-terminal FNR-like FAD and NAD binding module, an FMN-binding domain, and an additional connecting domain (inserted within the FAD binding region) that orients the FNR and FMN -binding domains. The C-terminal domain contains most of the NADP(H) binding residues, and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule, which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 286 -99805 cd06209 BenDO_FAD_NAD Benzoate dioxygenase reductase (BenDO) FAD/NAD binding domain. Oxygenases oxidize hydrocarbons using dioxygen as the oxidant. As a Class I bacterial dioxygenases, benzoate dioxygenase like proteins combine an [2Fe-2S] cluster containing N-terminal ferredoxin at the end fused to an FAD/NADP(P) domain. In dioxygenase FAD/NAD(P) binding domain, the reductase transfers 2 electrons from NAD(P)H to the oxygenase which insert into an aromatic substrate, an initial step in microbial aerobic degradation of aromatic rings. Flavin oxidoreductases use flavins as substrates, unlike flavoenzymes which have a flavin prosthetic group. 228 -99806 cd06210 MMO_FAD_NAD_binding Methane monooxygenase (MMO) reductase of methanotrophs catalyzes the NADH-dependent hydroxylation of methane to methanol. This multicomponent enzyme mediates electron transfer via a hydroxylase (MMOH), a coupling protein, and a reductase which is comprised of an N-terminal [2Fe-2S] ferredoxin domain, an FAD binding subdomain, and an NADH binding subdomain. Oxygenases oxidize hydrocarbons using dioxygen as the oxidant. Dioxygenases add both atom of oxygen to the substrate, while mono-oxygenases add one atom to the substrate and one atom to water. 236 -99807 cd06211 phenol_2-monooxygenase_like Phenol 2-monooxygenase (phenol hydroxylase) is a flavoprotein monooxygenase, able to use molecular oxygen as a substrate in the microbial degredation of phenol. This protein is encoded by a single gene and uses a tightly bound FAD cofactor in the NAD(P)H dependent conversion of phenol and O2 to catechol and H2O. This group is related to the NAD binding ferredoxin reductases. 238 -99808 cd06212 monooxygenase_like The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial oxygenases which oxidize hydrocarbons. These flavoprotein monooxygenases use molecular oxygen as a substrate and require reduced FAD. One atom of oxygen is incorportated into the aromatic compond, while the other is used to form a molecule of water. In contrast dioxygenases add both atoms of oxygen to the substrate. 232 -99809 cd06213 oxygenase_e_transfer_subunit The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial oxygenases which oxidize hydrocarbons. Electron transfer is from NADH via FAD (in the oxygenase reductase) and an [2FE-2S] ferredoxin center (fused to the FAD/NADH domain and/or discrete) to the oxygenase. Dioxygenases add both atoms of oxygen to the substrate while mono-oxygenases add one atom to the substrate and one atom to water. In dioxygenases, Class I enzymes are 2 component, containing a reductase with Rieske type [2Fe-2S] redox centers and an oxygenase. Class II are 3 component, having discrete flavin and ferredoxin proteins and an oxygenase. Class III have 2 [2Fe-2S] centers, one fused to the flavin domain and the other separate. 227 -99810 cd06214 PA_degradation_oxidoreductase_like NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation oxidoreductase. PA oxidoreductases of E. coli hydroxylate PA-CoA in the second step of PA degradation. Members of this group typically fuse a ferredoxin reductase-like domain with an iron-sulfur binding cluster domain. Ferredoxins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal portion may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria and participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 241 -99811 cd06215 FNR_iron_sulfur_binding_1 Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an iron-sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal portion of the FAD/NAD binding domain contains most of the NADP(H) binding residues and the N-terminal sub-domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. In this ferredoxin like sub-group, the FAD/NAD sub-domains is typically fused to a C-terminal iron-sulfur binding domain. Iron-sulfur proteins play an important role in electron transfer processes and in various enzymatic reactions. The family includes plant and algal ferredoxins which act as electron carriers in photosynthesis and ferredoxins which participate in redox chains from bacteria to mammals. Ferredoxin reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 231 -99812 cd06216 FNR_iron_sulfur_binding_2 Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an iron-sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 243 -99813 cd06217 FNR_iron_sulfur_binding_3 Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an iron-sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap between the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. 235 -99814 cd06218 DHOD_e_trans FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. 246 -99815 cd06219 DHOD_e_trans_like1 FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD, forming FADH2 via a semiquinone intermediate, and then transfers a hydride ion to convert NADP+ to NADPH. 248 -99816 cd06220 DHOD_e_trans_like2 FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. 233 -99817 cd06221 sulfite_reductase_like Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural similarity to ferredoxin reductase and sequence similarity to dihydroorotate dehydrogenases. Clostridium pasteurianum inducible dissimilatory type sulfite reductase is linked to ferredoxin and reduces NH2OH and SeO3 at a lesser rate than it's normal substate SO3(2-). Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. 253 -259998 cd06222 RNase_H_like Ribonuclease H-like superfamily, including RNase H, HI, HII, HIII, and RNase-like domain IV of spliceosomal protein Prp8. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. It is widely present in various organisms, including bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site residues and have the same catalytic mechanism and functions in cells. RNase H is involved in DNA replication, repair and transcription. An important RNase H function is to remove Okazaki fragments during DNA replication. RNase H inhibitors have been explored as anti-HIV drug targets since RNase H inactivation inhibits reverse transcription. This model also includes the Prp8 domain IV, which adopts the RNase fold but shows low sequence homology; domain IV is implicated in key spliceosomal interactions. 121 -206754 cd06223 PRTases_typeI Phosphoribosyl transferase (PRT)-type I domain. Phosphoribosyl transferase (PRT) domain. The type I PRTases are identified by a conserved PRPP binding motif which features two adjacent acidic residues surrounded by one or more hydrophobic residue. PRTases catalyze the displacement of the alpha-1'-pyrophosphate of 5-phosphoribosyl-alpha1-pyrpphosphate (PRPP) by a nitrogen-containing nucleophile. The reaction products are an alpha-1 substituted ribose-5'-phosphate and a free pyrophosphate (PP). PRPP, an activated form of ribose-5-phosphate, is a key metabolite connecting nucleotide synthesis and salvage pathways. The type I PRTase family includes a range of diverse phosphoribosyl transferase enzymes and regulatory proteins of the nucleotide synthesis and salvage pathways, including adenine phosphoribosyltransferase EC:2.4.2.7., hypoxanthine-guanine-xanthine phosphoribosyltransferase, hypoxanthine phosphoribosyltransferase EC:2.4.2.8., ribose-phosphate pyrophosphokinase EC:2.7.6.1., amidophosphoribosyltransferase EC:2.4.2.14., orotate phosphoribosyltransferase EC:2.4.2.10., uracil phosphoribosyltransferase EC:2.4.2.9., and xanthine-guanine phosphoribosyltransferase EC:2.4.2.22. 130 -100121 cd06224 REM Guanine nucleotide exchange factor for Ras-like GTPases; N-terminal domain (RasGef_N), also called REM domain (Ras exchanger motif). This domain is common in nucleotide exchange factors for Ras-like small GTPases and is typically found immediately N-terminal to the RasGef (Cdc25-like) domain. REM contacts the GTPase and is assumed to participate in the catalytic activity of the exchange factor. Proteins with the REM domain include Sos1 and Sos2, which relay signals from tyrosine-kinase mediated signalling to Ras, RasGRP1-4, RasGRF1,2, CNrasGEF, and RAP-specific nucleotide exchange factors, to name a few. 122 -100122 cd06225 HAMP Histidine kinase, Adenylyl cyclase, Methyl-accepting protein, and Phosphatase (HAMP) domain. HAMP is a signaling domain which occurs in a wide variety of signaling proteins, many of which are bacterial. The HAMP domain consists of two alpha helices connected by an extended linker. The structure of the HAMP dimer from Archaeoglobus fulgidus has been solved using nuclear magnetic resonance, revealing a parallel four-helix bundle; this structure has been confirmed by cross-linking analysis of HAMP domains from the Escherichia coli aerotaxis receptor Aer. It has been suggested that the four-helix arrangement can rotate between the unusually packed conformation observed in the NMR structure and a canonical coiled-coil arrangement. Such rotation may coincide with signal transduction, but a common mechanism by which HAMP domains relay a variety of input signals has yet to be established. 48 -349445 cd06226 M14_CPT_like Peptidase M14-like domain of an uncharacterized group of Peptidase M14 Carboxypeptidase T (CPT)-like proteins. Peptidase M14-like domain of an uncharacterized group of Peptidase M14 Carboxypeptidase T (CPT)-like proteins. This group belongs to the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPT exhibits dual-substrate specificity by cleaving C-terminal hydrophobic amino acid residues and C-terminal positively charged residues. However, CPT does not belong to this CPT-like group. 267 -349446 cd06227 M14-CPA-like Peptidase M14 carboxypeptidase A-like domain; uncharacterized subfamily. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 224 -349447 cd06228 M14-like Peptidase M14-like domain; uncharacterized subfamily. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 294 -349448 cd06229 M14_Endopeptidase_I Peptidase M14 carboxypeptidase family-like domain of Endopeptidase I. Peptidase M14-like domain of Gamma-D-glutamyl-L-diamino acid endopeptidase 1 (also known as Gamma-D-glutamyl-meso-diaminopimelate peptidase I, and Endopeptidase I (ENP1); EC 3.4.19.11). ENP1 is a member of the M14 family of metallocarboxypeptidases (MCPs), and is classified as belonging to subfamily C. However it has an exceptional type of activity of hydrolyzing the gamma-D-Glu-(L)meso-diaminopimelic acid (gamma-D-Glu-Dap) bond of L-Ala-gamma-D-Glu-(L)meso-diaminopimelic acid and L-Ala-gamma-D-Glu-(L)meso-diaminopimelic acid(L)-D-Ala peptides. ENP1 has a different substrate specificity and cellular role than MpaA (MpaA does not belong to this group). ENP1 hydrolyzes the gamma-D-Glu-Dap bond of MurNAc-tripeptide and MurNAc-tetrapeptide, as well as the amide bond of free tripeptide and tetrapeptide. ENP1 is active on spore cortex peptidoglycan, and is produced at stage IV of sporulation in forespore and spore integuments. 238 -349449 cd06230 M14_ASTE_ASPA_like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily. The Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily belongs to the M14 family of metallocarboxypeptidases (MCPs), and includes ASTE, which catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) which cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 177 -349450 cd06231 M14_REP34-like Peptidase M14-like domain similar to rapid encystment phenotype 34 (REP34). This family includes Francisella tularensis protein rapid encystment phenotype 34 (REP34) which is a zinc-containing monomeric protein demonstrating carboxypeptidase B-like activity. REP34 possesses a novel topology with its substrate binding pocket deviating from the canonical M14 peptidases with a possible catalytic role for a conserved tyrosine and distinct S1' recognition site. Thus, REP34, identified as an active carboxypeptidase and a potential key F. tularensis effector protein, may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 239 -349451 cd06232 M14-like Peptidase M14-like domain; uncharacterized subfamily. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 276 -349452 cd06233 M14-like Peptidase M14-like domain; uncharacterized subfamily. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 249 -349453 cd06234 M14_PaCCP-like Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases similar to Pseudomonas aerugnosa CCP (PaCCP). A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP)-like proteins. This subgroup includes PaCCP from Pseudomonas aeruginosa, a carboxypeptidase homologous to M14D subfamily of human CCPs. Structural complexes with well-known inhibitors of metallocarboxypeptidases indicate that PaCCP might only possess C-terminal hydrolase activity against cellular substrates of particular specificity. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 256 -349454 cd06235 M14_AGTPBP-like Peptidase M14-like domain of human Nna1/AGTPBP-1, AGBL2 -5, and related proteins. Subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human Nna1/AGTPBP-1 and AGBL -2, -3, -4, and -5, and the mouse Nna1/CCP-1 and CCP -2 through -6. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 256 -349455 cd06236 M14_AGBL5_like Peptidase M14-like domain of ATP/GTP binding protein (AGBL)-5 and related proteins. Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-5, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human AGBL5 and the mouse cytosolic carboxypeptidase (CCP)-5. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 263 -349456 cd06237 M14_Nna1-like Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; uncharacterized bacterial subgroup. A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP),-like proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 239 -349457 cd06238 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 217 -349458 cd06239 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 194 -349459 cd06240 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 212 -349460 cd06241 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 215 -349461 cd06242 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 220 -349462 cd06243 M14_CP_Csd4-like Peptidase M14 carboxypeptidase Csd4 and similar proteins. This family includes peptidase M14 carboxypeptidase Csd4 from H. pylori which has been shown to be DL-carboxypeptidase with a modified zinc binding site containing a glutamine residue in place of a conserved histidine. It is an archetype of a new carboxypeptidase subfamily with a domain arrangement that differs from this family of peptide-cleaving enzymes. Csd4 plays a role in trimming uncrosslinked peptidoglycan peptide chains by cleaving the amide bond between meso-diaminopimelate and iso-D-glutamic acid in truncated peptidoglycan side chains. It acts as a cell shape determinant, similar to Campylobacter jejuni Pgp1. The M14 family of metallocarboxypeptidases (MCPs), also known as funnelins, are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 227 -349463 cd06244 M14-like Peptidase M14-like domain; uncharacterized subgroup. Peptidase M14-like domain of a functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 223 -349464 cd06245 M14_CPD_III Peptidase M14 carboxypeptidase subfamily N/E-like; Carboxypeptidase D, domain III subgroup. The third carboxypeptidase (CP)-like domain of Carboxypeptidase D (CPD; EC 3.4.17.22), domain III. CPD differs from all other metallocarboxypeptidases in that it contains multiple CP-like domains. CPD belongs to the N/E-like subfamily of the M14 family of metallocarboxypeptidases (MCPs).The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPD is a single-chain protein containing a signal peptide, three tandem repeats of CP-like domains separated by short bridge regions, followed by a transmembrane domain, and a C-terminal cytosolic tail. The first two CP-like domains of CPD contain all of the essential active site and substrate-binding residues, the third CP-like domain lacks critical residues necessary for enzymatic activity and is inactive towards standard CP substrates. Domain I is optimally active at pH 6.3-7.5 and prefers substrates with C-terminal Arg, whereas domain II is active at pH 5.0-6.5 and prefers substrates with C-terminal Lys. CPD functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates as well as Drosophila. It is broadly distributed in all tissue types. Within cells, CPD is present in the trans-Golgi network and immature secretory vesicles, but is excluded from mature vesicles. It is thought to play a role in the processing of proteins that are initially processed by furin or related endopeptidases present in the trans-Golgi network, such as growth factors and receptors. CPD is implicated in the pathogenesis of lupus erythematosus (LE), it is regulated by TGF-beta in various cell types of murine and human origin and is significantly down-regulated in CD14 positive cells isolated from patients with LE. As down -regulation of CPD leads to down-modulation of TGF-beta, CPD may have a role in a positive feedback loop. 283 -349465 cd06246 M14_CPB2 Peptidase M14 carboxypeptidase subfamily A/B-like; Carboxypeptidase B2 subgroup. Peptidase M14 Carboxypeptidase (CP) B2 (CPB2, also known as plasma carboxypeptidase B, carboxypeptidase U, and CPU), belongs to the carboxpeptidase A/B subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPB2 enzyme displays B-like activity; it only cleaves the basic residues lysine or arginine. It is produced and secreted by the liver as the inactive precursor, procarboxypeptidase U or PCPB2, commonly referred to as thrombin-activatable fibrinolysis inhibitor (TAFI). It circulates in plasma as a zymogen bound to plasminogen, and the active enzyme, TAFIa, inhibits fibrinolysis. It is highly regulated, increased TAFI concentrations are thought to increase the risk of thrombosis and coronary artery disease by reducing fibrinolytic activity while low TAFI levels have been correlated with chronic liver disease. 300 -349466 cd06247 M14_CPO Peptidase M14 carboxypeptidase subfamily A/B-like; Carboxypeptidase O subgroup. Peptidase M14 carboxypeptidase (CP) O (CPO, also known as metallocarboxypeptidase C; EC 3.4.17.) belongs to the carboxypeptidase A/B subfamily of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. CPO has not been well characterized as yet, and little is known about it. Based on modeling studies, CPO has been suggested to have specificity for acidic residues rather than aliphatic/aromatic residues as in A-like enzymes or basic residues as in B-like enzymes. It remains to be demonstrated that CPO is functional as an MCP. 298 -349467 cd06248 M14_CP_insect Peptidase M14 carboxypeptidase subfamily A/B-like. This family includes peptidase M14 carboxypeptidases found specifically in insects, including B-type carboxypeptidase of H. zea (CPBHz, insect gut carboxypeptidase-3) that is insensitive to potato carboxypeptidase inhibitor (PCI) in corn earworm, and midgut procarboxypeptidase A (PCPAHa, insect gut carboxypeptidase-1) from Helicoverpa armigera larva, a devastating pest of crops. PCPAHa preferentially cleaves aliphatic and aromatic residues. The peptidase M14 Carboxypeptidase (CP) A/B subfamily is one of two main M14 CP subfamilies defined by sequence and structural homology, the other being the N/E subfamily. CPs hydrolyze single, C-terminal amino acids from polypeptide chains. They have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by a globular N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. There are nine members in the A/B family: CPA1, CPA2, CPA3, CPA4, CPA5, CPA6, CPB, CPO and CPU. CPA1, CPA2 and CPB are produced by the pancreas. The A forms have slightly different specificities, with CPA1 preferring aliphatic and small aromatic residues, and CPA2 preferring the bulkier aromatic side chains. CPA3 is found in secretory granules of mast cells and functions in inflammatory processes. CPA4 is detected in hormone-regulated tissues, and is thought to play a role in prostate cancer. CPA5 is present in discrete regions of pituitary and other tissues, and cleaves aliphatic C-terminal residues. CPA6 is highly expressed in embryonic brain and optic muscle, suggesting that it may play a specific role in cell migration and axonal guidance. CPU (also called CPB2) is produced and secreted by the liver as the inactive precursor, PCPU, commonly referred to as thrombin-activatable fibrinolysis inhibitor (TAFI). Little is known about CPO but it has been suggested to have specificity for acidic residues. 297 -349468 cd06250 M14_PaAOTO_like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like subfamily; subgroup includes Pseudomonas aeruginosa AotO. An uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the the M14 family of metallocarboxypeptidases. This subgroup includes Pseudomonas aeruginosa AotO and related proteins. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. The gene encoding P. aeruginosa AotO was characterized as part of an operon encoding an arginine and ornithine transport system, however it is not essential for arginine and ornithine uptake. 267 -349469 cd06251 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 195 -349470 cd06252 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 224 -349471 cd06253 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 211 -349472 cd06254 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 198 -349473 cd06255 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 223 -349474 cd06256 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 204 -99751 cd06257 DnaJ DnaJ domain or J-domain. DnaJ/Hsp40 (heat shock protein 40) proteins are highly conserved and play crucial roles in protein translation, folding, unfolding, translocation, and degradation. They act primarily by stimulating the ATPase activity of Hsp70s, an important chaperonine family. Hsp40 proteins are characterized by the presence of a J domain, which mediates the interaction with Hsp70. They may contain other domains as well, and the architectures provide a means of classification. 55 -341049 cd06258 M3_like M3-like Peptidases, zincin metallopeptidases, include M2_ACE, M3A, M3B_PepF, and M32 families. The peptidase M3-like family, also called neurolysin-like family, is part of the "zincin" metallopeptidases, and includes the M2, M3 and M32 families of metallopeptidases. The M2 angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc-dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II. The M3 family is subdivided into two subfamilies: the widespread M3A, which comprises a number of high-molecular mass endo- and exopeptidases from bacteria, archaea, protozoa, fungi, plants and animals, and the small M3B, whose members are enzymes primarily from bacteria. Well-known mammalian/eukaryotic M3A endopeptidases are the thimet oligopeptidase (TOP; endopeptidase 3.4.24.15), neurolysin (alias endopeptidase 3.4.24.16), and the mitochondrial intermediate peptidase. The first two are intracellular oligopeptidases, which act only on relatively short substrates of less than 20 amino acid residues, while the latter cleaves N-terminal octapeptides from proteins during their import into the mitochondria. The M3A subfamily also contains several bacterial endopeptidases, called oligopeptidases A, as well as a large number of bacterial carboxypeptidases, called dipeptidyl peptidases (Dcp; Dcp II; peptidyl dipeptidase; EC 3.4.15.5). M3B subfamily consists of oligopeptidase F (PepF) which hydrolyzes peptides containing 7-17 amino acid residues with fairly broad specificity. Peptidases in the M3 family contain the HEXXH motif that forms part of the active site in conjunction with a C-terminally-located Glutamic acid (Glu) residue. A single zinc ion is ligated by the side-chains of the two Histidine (His) residues, and the more C-terminal Glu. Most of the peptidases are synthesized without signal peptides or propeptides, and function intracellularly. There are similarities to the thermostable carboxypeptidases from Pyrococcus furiosus carboxypeptidase (PfuCP), and Thermus aquaticus (TaqCP), belonging to peptidase family M32. Little is known about function of this family, including carboxypeptidases Taq and Pfu. 473 -99750 cd06259 YdcF-like YdcF-like. YdcF-like is a large family of mainly bacterial proteins, with a few members found in fungi, plants, and archaea. Escherichia coli YdcF has been shown to bind S-adenosyl-L-methionine (AdoMet), but a biochemical function has not been idenitified. The family also includes Escherichia coli sanA and Salmonella typhimurium sfiX, which are involved in vancomycin resistance; sfiX may also be involved in murein synthesis. 150 -99749 cd06260 DUF820 Domain of unknown function (DUF820). This family consists of hypothetical proteins that are greatly expanded in cyanobacteria. The proteins are found sporadically in other bacteria. They have been predicted to belong to the PD-(D/E)xK superfamily of nucleases. 155 -119394 cd06261 TM_PBP2 Transmembrane subunit (TM) found in Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporters which generally bind type 2 PBPs. These types of transporters consist of a PBP, two TMs, and two cytoplasmic ABC ATPase subunits, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. For these transporters the ABCs and TMs are on independent polypeptide chains. These systems transport a diverse range of substrates. Most are specific for a single substrate or a group of related substrates; however some transporters are more promiscuous, transporting structurally diverse substrates such as the histidine/lysine and arginine transporter in Enterobacteriaceae. In the latter case, this is achieved through binding different PBPs with different specificities to the TMs. For other promiscuous transporters such as the multiple-sugar transporter Msm of Streptococcus mutans, the PBP has a wide substrate specificity. These transporters include the maltose-maltodextrin, phosphate and sulfate transporters, among others. 190 -293792 cd06262 metallo-hydrolase-like_MBL-fold mainly hydrolytic enzymes and related proteins which carry out various biological functions; MBL-fold metallohydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases which can catalyze the hydrolysis of a wide range of beta-lactam antibiotics, hydroxyacylglutathione hydrolases (also called glyoxalase II) which hydrolyze S-d-lactoylglutathione to d-lactate in the second step of the glycoxlase system, AHL lactonases which catalyze the hydrolysis and opening of the homoserine lactone rings of acyl homoserine lactones (AHLs), persulfide dioxygenase which catalyze the oxidation of glutathione persulfide to glutathione and persulfite in the mitochondria, flavodiiron proteins which catalyze the reduction of oxygen and/or nitric oxide to water or nitrous oxide respectively, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J which has both 5'-3' exoribonucleolytic and endonucleolytic activity and ribonuclease Z which catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors, cyclic nucleotide phosphodiesterases which decompose cyclic adenosine and guanosine 3', 5'-monophosphate (cAMP and cGMP) respectively, insecticide hydrolases, and proteins required for natural transformation competence. The diversity of biological roles is reflected in variations in the active site metallo-chemistry, for example classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, human persulfide dioxygenase ETHE1 is a mono-iron binding member of the superfamily; Arabidopsis thaliana hydroxyacylglutathione hydrolases incorporates iron, manganese, and zinc in its dinuclear metal binding site, and flavodiiron proteins contains a diiron site. 188 -99706 cd06263 MAM Meprin, A5 protein, and protein tyrosine phosphatase Mu (MAM) domain. MAM is an extracellular domain which mediates protein-protein interactions and is found in a diverse set of proteins, many of which are known to function in cell adhesion. Members include: type IIB receptor protein tyrosine phosphatases (such as RPTPmu), meprins (plasma membrane metalloproteases), neuropilins (receptors of secreted semaphorins), and zonadhesins (sperm-specific membrane proteins which bind to the extracellular matrix of the egg). In meprin A and neuropilin-1 and -2, MAM is involved in homo-oligomerization. In RPTPmu, it has been associated with both homophilic adhesive (trans) interactions and lateral (cis) receptor oligomerization. In a GPI-anchored protein that is expressed in cells in the embryonic chicken spinal chord, MDGA1, the MAM domain has been linked to heterophilic interactions with axon-rich region. 157 -119387 cd06265 RNase_A_canonical Canonical RNase A family includes all vertebrate homologues to the bovine pancreatic ribonuclease A (RNase A) that contain the catalytic site, necessary for RNase activity. In the human genome 8 RNases , refered to as "canonical" RNases, have been identified, pancreatic RNase (RNase 1), Eosinophil Derived Neurotoxin (SEDN/RNASE 2), Eosinophil Cationic Protein (ECP/RNase 3), RNase 4, Angiogenin (RNase 5), RNase 6 or k6, the skin derived RNase (RNase 7) and RNase 8. The eight human genes are all located in a cluster on chromosome 14. Canonical RNase A enzymes have special biological activities; for example, some stimulate the development of vascular endothelial cells, dendritic cells, and neurons, are cytotoxic/anti-tumoral and/or anti-pathogenic. RNase A is involved in endonucleolytic cleavage of 3'-phosphomononucleotides and 3'-phosphooligonucleotides ending in C-P or U-P with 2',3'-cyclic phosphate intermediates. The catalytic mechanism is a transphosphorylation of P-O 5' bonds on the 3' side of pyrimidines and subsequent hydrolysis to generate 3' phosphate groups. The canonical RNase A family proteins have a conserved catalytic triad (two histidines and one lysine). They also share 6 to 8 cysteines that form three to four disulfide bonds. Two disulfide bonds that are close to the N and C termini contribute most significantly to conformational stability. Angiogenin or RNAse 5 has been implicated in tumor-associated angiogenesis. Comparative analysis in mammals and birds indicates that the whole family may have originated from a RNase 5-like gene. This hypothesis is supported by the fact that only RNase 5-like RNases have been reported outside the mammalian class. The RNase 5 group would therefore be the most ancient form of this family, and all other members would have arisen during mammalian evolution. 115 -259999 cd06266 RNase_HII Ribonuclease H (RNase H) type II family (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). This family contains ribonucleases HII (RNases H2) which include bacterial RNase HII and HIII, and eukaryotic and archaeal RNase H2/HII. RNase H2 cleaves RNA sequences that are part of RNA/DNA hybrids or that are incorporated into DNA, thereby preventing genomic instability and the accumulation of aberrant nucleic acid which can induce Aicardi-Goutieres syndrome, a severe autoimmune disorder in humans. Ribonuclease H (RNase H) is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations. The enzyme can be found in bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes, but no prokaryotic genome contains the combination of only RNase HI and HIII. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. It appears that type I and type II RNases H also have overlapping functions in cells, as over-expression of Escherichia coli RNase HII can complement an RNase HI deletion phenotype in E. coli. 193 -107262 cd06267 PBP1_LacI_sugar_binding_like Ligand binding domain of the LacI tanscriptional regulator family belonging to the type I periplasmic-binding fold protein superfamily. Ligand binding domain of the LacI tanscriptional regulator family belonging to the type I periplasmic-binding fold protein superfamily. In most cases, ligands are monosaccharide including lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars. The LacI family of proteins consists of transcriptional regulators related to the lac repressor. In this case, the domain sugar binding changes the DNA binding activity of the repressor domain. 264 -107263 cd06268 PBP1_ABC_transporter_LIVBP_like Periplasmic binding domain of ATP-binding cassette transporter-like systems that belong to the type I periplasmic binding fold protein superfamily. Periplasmic binding domain of ATP-binding cassette transporter-like systems that belong to the type I periplasmic binding fold protein superfamily. They are mostly present in archaea and eubacteria, and are primarily involved in scavenging solutes from the environment. ABC-type transporters couple ATP hydrolysis with the uptake and efflux of a wide range of substrates across bacterial membranes, including amino acids, peptides, lipids and sterols, and various drugs. These systems are comprised of transmembrane domains, nucleotide binding domains, and in most bacterial uptake systems, periplasmic binding proteins (PBPs) which transfer the ligand to the extracellular gate of the transmembrane domains. These PBPs bind their substrates selectively and with high affinity. Members of this group include ABC-type Leucine-Isoleucine-Valine-Binding Proteins (LIVBP), which are homologous to the aliphatic amidase transcriptional repressor, AmiC, of Pseudomonas aeruginosa. The uncharacterized periplasmic components of various ABC-type transport systems are included in this group. 298 -153137 cd06269 PBP1_glutamate_receptors_like Family C G-protein couples receptors (GPCRs), membrane bound guanylyl cyclases such as the family of natriuretic peptide receptors (NPRs), and the N-terminal leucine/isoleucine/valine- binding protein (LIVBP)-like domain of the ionotropic glutamate receptors. This CD represents the ligand-binding domain of the family C G-protein couples receptors (GPCRs), membrane bound guanylyl cyclases such as the family of natriuretic peptide receptors (NPRs), and the N-terminal leucine/isoleucine/valine- binding protein (LIVBP)-like domain of the ionotropic glutamate receptors, all of which are structurally similar and related to the periplasmic-binding fold type I family. The family C GPCRs consist of metabotropic glutamate receptor (mGluR) receptors, a calcium-sensing receptor (CaSR), gamma-aminobutyric receptors (GABAb), the promiscuous L-alpha-amino acid receptor GPR6A, families of taste and pheromone receptors, and orphan receptors. Truncated splicing variants of the orphan receptors are not included in this CD. The family C GPCRs are activated by endogenous agonists such as amino acids, ions, and sugar based molecules. Their amino terminal ligand-binding region is homologous to the bacterial leucine-isoleucine-valine binding protein (LIVBP) and a leucine binding protein (LBP). The ionotropic glutamate receptors (iGluRs) have an integral ion channel and are subdivided into three major groups based on their pharmacology and structural similarities: NMDA receptors, AMPA receptors, and kainate receptors. The family of membrane bound guanylyl cyclases is further divided into three subfamilies: the ANP receptor (GC-A)/C-type natriuretic peptide receptor (GC-B), the heat-stable enterotoxin receptor (GC-C)/sensory organ specific membrane GCs such as retinal receptors (GC-E, GC-F), and olfactory receptors (GC-D and GC-G). 298 -107265 cd06270 PBP1_GalS_like Ligand binding domain of DNA transcription iso-repressor GalS, which is one of two regulatory proteins involved in galactose transport and metabolism. Ligand binding domain of DNA transcription iso-repressor GalS, which is one of two regulatory proteins involved in galactose transport and metabolism. Transcription of the galactose regulon genes is regulated by Gal iso-repressor (GalS) and Gal repressor (GalR) in different ways, but both repressors recognize the same DNA binding site in the absence of D-galactose. GalS is a dimeric protein like GalR,and its major role is in regulating expression of the high-affinity galactose transporter encoded by the mgl operon, whereas GalR is the exclusive regulator of galactose permease, the low-affinity galactose transporter. GalS and GalR are members of the LacI-GalR family of transcription regulators and both contain the type I periplasmic binding protein-like fold. Hence, they are homologous to the periplasmic sugar binding of ABC-type transport systems. 268 -107266 cd06271 PBP1_AglR_RafR_like Ligand-binding domain of DNA transcription repressors specific for raffinose (RafR) and alpha-glucosides (AglR) which are members of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressors specific for raffinose (RafR) and alpha-glucosides (AglR) which are members of the LacI-GalR family of bacterial transcription regulators. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 268 -107267 cd06272 PBP1_hexuronate_repressor_like Ligand-binding domain of DNA transcription repressor for the hexuronate utilization operon from Bacillus species and its close homologs from other bacteria, all of which are a member of the LacI-GalR family of bacterial transcription regulators. Ligand-binding domain of DNA transcription repressor for the hexuronate utilization operon from Bacillus species and its close homologs from other bacteria, all of which are a member of the LacI-GalR family of bacterial transcription regulators. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 261 -107268 cd06273 PBP1_GntR_like_1 This group includes the ligand-binding domain of putative DNA transcription repressors which are highly similar to that of the repressor specific for gluconate (GntR), a member of the LacI-GalR family of bacterial transcription regulators. This group includes the ligand-binding domain of putative DNA transcription repressors which are highly similar to that of the repressor specific for gluconate (GntR), a member of the LacI-GalR family of bacterial transcription regulators. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 268 -107269 cd06274 PBP1_FruR Ligand binding domain of DNA transcription repressor specific for fructose (FruR) and its close homologs. Ligand binding domain of DNA transcription repressor specific for fructose (FruR) and its close homologs, all of which are a member of the LacI-GalR family of bacterial transcription regulators. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to members of the type I periplasmic binding protein superfamily. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor 264 -107270 cd06275 PBP1_PurR Ligand-binding domain of purine repressor, PurR, which functions as the master regulatory protein of de novo purine nucleotide biosynthesis in Escherichia coli. Ligand-binding domain of purine repressor, PurR, which functions as the master regulatory protein of de novo purine nucleotide biosynthesis in Escherichia coli. This dimeric PurR belongs to the LacI-GalR family of transcription regulators and is activated to bind to DNA operator sites by initially binding either of high affinity corepressors, hypoxanthine or guanine. PurR is composed of two functional domains: aan N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the purine transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 269 -107271 cd06276 PBP1_FucR_like Ligand-binding domain of a transcription repressor, FucR, which functions as a molecular sensor of L-fucose availability. Ligand-binding domain of a transcription repressor, FucR, which functions as a molecular sensor of L-fucose availability. FcuR acts as an inducer of fucRRIAK and as a corepressor of another locus that regulates production of fucosylated glycans. FcuR and its close homologs in this group are a member of the LacI-GalR family repressors that are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 247 -107272 cd06277 PBP1_LacI_like_1 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 268 -107273 cd06278 PBP1_LacI_like_2 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 266 -107274 cd06279 PBP1_LacI_like_3 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 283 -107275 cd06280 PBP1_LacI_like_4 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 263 -107276 cd06281 PBP1_LacI_like_5 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 269 -107277 cd06282 PBP1_GntR_like_2 Ligand-binding domain of putative DNA transcription repressors highly similar to that of the repressor specific for gluconate (GntR) which is a member of the LacI-GalR family of bacterial transcription regulators. This group includes the ligand-binding domain of putative DNA transcription repressors highly similar to that of the repressor specific for gluconate (GntR) which is a member of the LacI-GalR family of bacterial transcription regulators. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor 266 -107278 cd06283 PBP1_RegR_EndR_KdgR_like Ligand-binding domain of DNA transcription repressor RegR and other putative regulators such as KdgR and EndR. Ligand-binding domain of DNA transcription repressor RegR and other putative regulators such as KdgR and EndR, all of which are members of the LacI-GalR family of bacterial transcription regulators. RegR regulates bacterial competence and the expression of virulence factors, including hyaluronidase. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 267 -107279 cd06284 PBP1_LacI_like_6 Ligand-binding domain of an uncharacterized transcription regulator from Actinobacillus succinogenes and its close homologs from other bacteria. This group includes the ligand-binding domain of an uncharacterized transcription regulator from Actinobacillus succinogenes and its close homologs from other bacteria. This group belongs to the the LacI-GalR family repressors and are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding. 267 -107280 cd06285 PBP1_LacI_like_7 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 265 -107281 cd06286 PBP1_CcpB_like Ligand-binding domain of a novel transcription factor implicated in catabolite repression in Bacillus and Clostridium species. This group includes the ligand-binding domain of a novel transcription factor implicated in catabolite repression in Bacillus and Clostridium species. CcpB is 30% identical in sequence to CcpA which functions as the major transcriptional regulator of carbon catabolite repression/regulation (CCR), a process in which enzymes necessary for the metabolism of alternative sugars are inhibited in the presence of glucose. Like CcpA, the DNA-binding protein CcpB exerts its catabolite-repressing effect by a mechanism dependent on the presence of HPr(Ser-P), the small phosphocarrier proteins of the phosphoenolpyruvate-sugar phosphotransferase system, but with a less significant degree. 260 -107282 cd06287 PBP1_LacI_like_8 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 269 -107283 cd06288 PBP1_sucrose_transcription_regulator Ligand-binding domain of DNA-binding regulatory proteins specific to sucrose that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of DNA-binding regulatory proteins specific to sucrose that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 269 -107284 cd06289 PBP1_MalI_like Ligand-binding domain of MalI, a transcription regulator of the maltose system of Escherichia coli and its close homologs from other bacteria. This group includes the ligand-binding domain of MalI, a transcription regulator of the maltose system of Escherichia coli and its close homologs from other bacteria. They are members of the LacI-GalR family of repressor proteins which are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 268 -107285 cd06290 PBP1_LacI_like_9 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 265 -107286 cd06291 PBP1_Qymf_like Ligand binding domain of the lacI-like transcription regulator from a novel metal-reducing bacterium Alkaliphilus Metalliredigens (strain Qymf) and its close homologs. This group includes the ligand binding domain of the lacI-like transcription regulator from a novel metal-reducing bacterium Alkaliphilus Metalliredigens (strain Qymf) and its close homologs. Qymf is a strict anaerobe that could be grown in the presence of borax and its cells are straight rods that produce endospores. This group is a member of the LacI-GalR family repressors that are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 265 -107287 cd06292 PBP1_LacI_like_10 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 273 -107288 cd06293 PBP1_LacI_like_11 Ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. This group includes the ligand-binding domain of uncharacterized DNA-binding regulatory proteins that are members of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 269 -107289 cd06294 PBP1_ycjW_transcription_regulator_like Ligand-binding domain of uncharacterized transcription regulator ycjW which is a member of the LacI-GalR family repressors. This group includes the ligand-binding domain of uncharacterized transcription regulator ycjW which is a member of the LacI-GalR family repressors that are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 270 -107290 cd06295 PBP1_CelR Ligand binding domain of a transcription regulator of cellulose genes, CelR, which is highly homologous to the LacI-GalR family of bacterial transcription regulators. This group includes the ligand binding domain of a transcription regulator of cellulose genes, CelR, which is highly homologous to the LacI-GalR family of bacterial transcription regulators. The binding of CelR to the celE promoter is inhibited specifically by cellobiose. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 275 -107291 cd06296 PBP1_CatR_like Ligand-binding domain of a LacI-like transcriptional regulator, CatR which is involved in catechol degradation. This group includes the ligand-binding domain of a LacI-like transcriptional regulator, CatR which is involved in catechol degradation. This group belongs to the the LacI-GalR family repressors that are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 270 -107292 cd06297 PBP1_LacI_like_12 Ligand-binding domain of uncharacterized transcription regulators from Thermus thermophilus and close homologs. Ligand-binding domain of uncharacterized transcription regulators from Thermus thermophilus and close homologs from other bacteria. This group belongs to the the LacI-GalR family repressors that are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding. 269 -107293 cd06298 PBP1_CcpA_like Ligand-binding domain of the catabolite control protein A (CcpA), which functions as the major transcriptional regulator of carbon catabolite repression/regulation. Ligand-binding domain of the catabolite control protein A (CcpA), which functions as the major transcriptional regulator of carbon catabolite repression/regulation (CCR), a process in which enzymes necessary for the metabolism of alternative sugars are inhibited in the presence of glucose. In gram-positive bacteria, CCR is controlled by HPr, a phosphoenolpyruvate:sugar phsophotrasnferase system (PTS) and a transcriptional regulator CcpA. Moreover, CcpA can regulate sporulation and antibiotic resistance as well as play a role in virulence development of certain pathogens such as the group A streptococcus. The ligand binding domain of CcpA is a member of the LacI-GalR family of bacterial transcription regulators. 268 -107294 cd06299 PBP1_LacI_like_13 Ligand-binding domain of DNA-binding regulatory protein from Corynebacterium glutamicum which has a unique ability to produce significant amounts of L-glutamate directly from cheap sugar and ammonia. This group includes the ligand-binding domain of DNA-binding regulatory protein from Corynebacterium glutamicum which has a unique ability to produce significant amounts of L-glutamate directly from cheap sugar and ammonia. This regulatory protein is a member of the LacI-GalR family of bacterial transcription repressors. The LacI-GalR family repressors are composed of two functional domains: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal ligand-binding domain, which is homologous to the sugar-binding domain of ABC-type transport systems that contain the type I periplasmic binding protein-like fold. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcription repressor undergoes a conformational change upon ligand binding which in turn changes the DNA binding affinity of the repressor. 265 -107295 cd06300 PBP1_ABC_sugar_binding_like_1 Periplasmic sugar-binding component of uncharacterized ABC-type transport systems that are members of the pentose/hexose sugar-binding protein family of the type I periplasmic binding protein superfamily. Periplasmic sugar-binding component of uncharacterized ABC-type transport systems that are members of the pentose/hexose sugar-binding protein family of the type I periplasmic binding protein superfamily, which consists of two alpha/beta globular domains connected by a three-stranded hinge. This Venus flytrap-like domain undergoes transition from an open to a closed conformational state upon ligand binding. Members of this group are predicted to be involved in the transport of sugar-containing molecules across cellular and organellar membranes; however their substrate specificity is not known in detail. 272 -107296 cd06301 PBP1_rhizopine_binding_like Periplasmic binding proteins specific to rhizopines. Periplasmic binding proteins specific to rhizopines, which are simple sugar-like compounds produced in the nodules induced by the symbiotic root nodule bacteria, such as Rhizobium and Sinorhizobium. Rhizopine-binding-like proteins from other bacteria are also included. Two inositol based rhizopine compounds are known to date: L-3-O-methly-scyllo-inosamine (3-O-MSI) and scyllo-inosamine. Bacterial strains that can metabolize rhizopine have a greater competitive advantage in nodulation and rhizopine synthesis is regulated by NifA/NtrA regulatory transcription activators which are maximally expressed at the onset of nitrogen fixation in bacteroids. The members of this group belong to the pentose/hexose sugar-binding protein family of the type I periplasmic binding protein superfamily. 272 -107297 cd06302 PBP1_LsrB_Quorum_Sensing Periplasmic binding domain of autoinducer-2 (AI-2) receptor LsrB from Salmonella typhimurium and its close homologs. Periplasmic binding domain of autoinducer-2 (AI-2) receptor LsrB from Salmonella typhimurium and its close homologs from other bacteria. The members of this group are homologous to a family of periplasmic pentose/hexose sugar-binding proteins that function as the primary receptors for chemotaxis and transporters of many sugar based solutes in bacteria and archaea and that are a member of the type I periplasmic binding protein superfamily. LsrB binds a chemically distinct form of the AI-2 signal that lacks boron, in contrast to the Vibrio harveyi AI-2 signaling molecule that has an unusual furanosyl borate diester. Hence, many bacteria coordinate their gene expression according to the local density of their population by producing species specific AI-2. This process of quorum sensing allows LsrB to function as a periplasmic AI-2 binding protein in interspecies signaling. 298 -107298 cd06303 PBP1_LuxPQ_Quorum_Sensing Periplasmic binding protein (LuxP) of autoinducer-2 (AI-2) receptor LuxPQ from Vibrio harveyi and its close homologs. Periplasmic binding protein (LuxP) of autoinducer-2 (AI-2) receptor LuxPQ from Vibrio harveyi and its close homologs from other bacteria. The members of this group are highly homologous to a family of periplasmic pentose/hexose sugar-binding proteins that function as the primary receptors for chemotaxis and transport of many sugar based solutes in bacteria and archaea, and that are members of the type I periplasmic binding protein superfamily. The Vibrio harveyi AI-2 receptor consists of two polypeptides, LuxP and LuxQ: LuxP is a periplasmic binding protein that binds AI-2 by clamping it between two domains, LuxQ is an integral membrane protein belonging to the two-component sensor kinase family. Unlike AI-2 bound to the LsrB receptor in Salmonella typhimurium, the Vibrio harveyi AI-2 signaling molecule has an unusual furanosyl borate diester. Hence, many bacteria coordinate their gene expression according to the local density of their population by producing species specific AI-2. This process of quorum sensing allows LuxPQ to control light production as well as its motility behavior. 280 -107299 cd06304 PBP1_BmpA_like Periplasmic binding component of a family of basic membrane lipoproteins from Borrelia and various putative lipoproteins from other bacteria. Periplasmic binding component of a family of basic membrane lipoproteins from Borrelia and various putative lipoproteins from other bacteria. These outer membrane proteins include Med, a cell-surface localized protein regulating the competence transcription factor gene comK in Bacillus subtilis, and PnrA, a periplasmic purine nucleoside binding protein of an ATP-binding cassette (ABC) transport system in Treponema pallidum. All contain the type I periplasmic sugar-binding protein-like fold. 260 -107300 cd06305 PBP1_methylthioribose_binding_like Methylthioribose-binding protein-like of ABC-type transport systems that belong to a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein (PBP1) superfamily. Methylthioribose-binding protein-like of ABC-type transport systems that belong to a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein (PBP1) superfamily, which consists of two alpha/beta globular domains connected by a three-stranded hinge. This Venus flytrap-like domain undergoes transition from an open to a closed conformational state upon ligand binding. The sugar-binding domain of the periplasmic proteins in this group is also homologous to the ligand-binding domain of eukaryotic receptors such as metabotropic glutamate receptor (mGluR), DNA-binding transcriptional repressors such as LacI and GalR. 273 -107301 cd06306 PBP1_TorT-like TorT-like proteins, a periplasmic binding protein family that activates induction of the Tor respiratory system upon trimethylamine N-oxide (TMAO) electron-acceptor binding in bacteria. TorT-like proteins, a periplasmic binding protein family that activates induction of the Tor respiratory system upon trimethylamine N-oxide (TMAO) electron-acceptor binding in bacteria. The Tor respiratory system is consists of three proteins (TorC, TorA, and TorD) and is induced in the presence of TMAO. The TMAO control is tightly regulated by three proteins: TorS, TorT, and TorR. Thus, the disruption of any of these proteins can abolish the Tor respiratory induction. TorT shares homology with the sugar-binding domain of the type I periplasmic binding proteins. The members of TorT-like family bind TMAO or related compounds and are predicted to be involved in signal transduction and/or substrate transport. 268 -107302 cd06307 PBP1_uncharacterized_sugar_binding Periplasmic sugar-binding domain of uncharacterized transport systems. Periplasmic sugar-binding domain of uncharacterized transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein (PBP1) superfamily. The members of this group are predicted to be involved in the transport of sugar-containing molecules across cellular and organellar membranes. 275 -107303 cd06308 PBP1_sensor_kinase_like Periplasmic binding domain of two-component sensor kinase signaling systems. Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail. 270 -107304 cd06309 PBP1_YtfQ_like Periplasmic binding domain of ABC-type YtfQ-like transport systems. Periplasmic binding domain of ABC-type YtfQ-like transport systems. The YtfQ protein from Escherichia coli is up-regulated under glucose-limited conditions and shares homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily. Members of this group are predicted to be involved in the transport of sugar-containing molecules across cellular and organellar membranes; however their ligand specificity is not determined experimentally. 273 -107305 cd06310 PBP1_ABC_sugar_binding_like_2 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 273 -107306 cd06311 PBP1_ABC_sugar_binding_like_3 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 274 -107307 cd06312 PBP1_ABC_sugar_binding_like_4 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 271 -107308 cd06313 PBP1_ABC_sugar_binding_like_5 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 272 -107309 cd06314 PBP1_tmGBP Periplasmic sugar-binding domain of Thermotoga maritima glucose-binding protein (tmGBP) and its close homologs. Periplasmic sugar-binding domain of Thermotoga maritima glucose-binding protein (tmGBP) and its close homologs from other bacteria. They are a member of the type I periplasmic binding protein superfamily which consists of two domains connected by a three-stranded hinge. TmGBP is specific for glucose and its binding pocket is buried at the interface of the two domains. TmGBP also exhibits high thermostability and the highest structural similarity to E. coli glucose binding protein (ecGBP). 271 -107310 cd06315 PBP1_ABC_sugar_binding_like_6 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 280 -107311 cd06316 PBP1_ABC_sugar_binding_like_7 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 294 -107312 cd06317 PBP1_ABC_sugar_binding_like_8 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Pperiplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 275 -107313 cd06318 PBP1_ABC_sugar_binding_like_9 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 282 -107314 cd06319 PBP1_ABC_sugar_binding_like_10 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 277 -107315 cd06320 PBP1_allose_binding Periplasmic allose-binding domain of bacterial transport systems that function as a primary receptor of active transport and chemotaxis. Periplasmic allose-binding domain of bacterial transport systems that function as a primary receptor of active transport and chemotaxis. The members of this group are belonging to a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily. Like other periplasmic receptors of the ABC-type transport systems, the allose-binding protein consists of two alpha/beta domains connected by a three-stranded hinge. This Venus flytrap-like domain undergoes transition from an open to a closed conformational state upon ligand binding. 275 -107316 cd06321 PBP1_ABC_sugar_binding_like_11 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. This group includes the periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consist of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 271 -107317 cd06322 PBP1_ABC_sugar_binding_like_12 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. This group includes the periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consist of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 267 -107318 cd06323 PBP1_ribose_binding Periplasmic sugar-binding domain of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein (ttRBP) and its mesophilic homologs. Periplasmic sugar-binding domain of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein (ttRBP) and its mesophilic homologs. Members of this group are belonging to the type I periplasmic binding protein superfamily, whose members are involved in chemotaxis, ATP-binding cassette transport, and intercellular communication in central nervous system. The thermophilic and mesophilic ribose-binding proteins are structurally very similar, but differ substantially in thermal stability. 268 -107319 cd06324 PBP1_ABC_sugar_binding_like_13 Periplasmic sugar-binding domain of uncharacterized ABC-type transport systems. This group includes the periplasmic sugar-binding domain of uncharacterized ABC-type transport systems that share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily, which consists of two domains connected by a three-stranded hinge. The substrate specificity of this group is not known, but it is predicted to be involved in the transport of sugar-containing molecules and chemotaxis. 305 -107320 cd06325 PBP1_ABC_uncharacterized_transporter Type I periplasmic ligand-binding domain of uncharacterized ABC-type transport systems that are predicted to be involved in the uptake of amino acids, peptides, or inorganic ions. This group includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type transport systems that are predicted to be involved in the uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); its ligand specificity has not been determined experimentally. 281 -107321 cd06326 PBP1_STKc_like Type I periplasmic binding domain of uncharacterized extracellular ligand-binding proteins. The type I periplasmic binding domain of uncharacterized extracellular ligand-binding proteins, some of which contain a conserved catalytic serine/threonine protein kinase (STKc) domain in the N-terminal region. Members of this group are sequence-similar to the branched-chain amino acid ABC transporter leucine-isoleucine-valine-binding protein (LIVBP); their ligand specificity has not been determined experimentally, however. 336 -107322 cd06327 PBP1_SBP_like_1 Periplasmic solute-binding domain of active transport proteins that belong to the type I periplasmic binding fold protein family. Periplasmic solute-binding domain of active transport proteins that belong to the type I periplasmic binding fold protein family. Solute binding proteins are the primary specific receptors that initiate uptake of a broad range of solutes, including amino acids, peptides and inorganic ions. The members are predicted to have a similar function to an active transport system for short chain amides and urea by sequence comparison and phylogenetic analysis. Moreover, this binding domain has high sequence identity to the family of hydrophobic amino acid transporters (HAAT), and thus may also be involved in transport of amino acids. 334 -107323 cd06328 PBP1_SBP_like_2 Periplasmic solute-binding domain of active transport proteins found in gram-negative and gram-positive bacteria. Periplasmic solute-binding domain of active transport proteins found in gram-negative and gram-positive bacteria. Members of this group are initial receptors in the process of active transport across cellular membrane, but their substrate specificities are not known in detail. However, they closely resemble the group of AmiC and active transport systems for short-chain amides and urea (FmdDEF), and thus are likely to exhibit a ligand-binding mode similar to that of the amide sensor protein AmiC from Pseudomonas aeruginosa. Moreover, this binding domain has high sequence identity to the family of hydrophobic amino acid transporters (HAAT), and thus it may also be involved in transport of amino acids. 333 -107324 cd06329 PBP1_SBP_like_3 Periplasmic solute-binding domain of active transport proteins. Periplasmic solute-binding domain of active transport proteins found in bacteria and Archaea. Members of this group are initial receptors in the process of active transport across cellular membrane, but their substrate specificities are not known in detail. However, they closely resemble the group of AmiC and active transport systems for short-chain amides and urea (FmdDEF), and thus are likely to exhibit a ligand-binding mode similar to that of the amide sensor protein AmiC from Pseudomonas aeruginosa. Moreover, this binding domain has high sequence identity to the family of hydrophobic amino acid transporters (HAAT), and thus it may also be involved in transport of amino acids. 342 -107325 cd06330 PBP1_Arsenic_SBP_like Periplasmic solute-binding domain of active transport proteins. Periplasmic solute-binding domain of active transport proteins found in bacteria and Archaea that is predicted to be involved in the efflux of toxic compounds. Members of this subgroup include proteins from Herminiimonas arsenicoxydans, which is resistant to arsenic and various heavy metals such as cadmium and zinc. Moreover, they show significant sequence similarity to the cluster of AmiC and active transport systems for short-chain amides and urea (FmdDEF), and thus are likely to exhibit a ligand-binding mode similar to that of the amide sensor protein AmiC from Pseudomonas aeruginosa. 346 -107326 cd06331 PBP1_AmiC_like Type I periplasmic components of amide-binding protein (AmiC) and the active transport system for short-chain and urea (FmdDEF). This group includes the type I periplasmic components of amide-binding protein (AmiC) and the active transport system for short-chain and urea (FmdDEF), found in bacteria and Archaea. AmiC controls expression of the amidase operon by a ligand-triggered conformational switch. In the absence of ligand or presence of butyramide (repressor), AmiC (the ligand sensor and negative regulator) adopts an open conformation and inhibits the transcription antitermination function of AmiR by direct protein-protein interaction. In the presence of inducing ligands such as acetamide, AmiC adopts a closed conformation which disrupts a silencing AmiC-AmiR complex and the expression of amidase and other genes of the operon is induced. FmdDEF is predicted to be an ATP-dependent transporter and closely resembles the periplasmic binding protein and the two transmembrane proteins present in various hydrophobic amino acid-binding transport systems. 333 -107327 cd06332 PBP1_aromatic_compounds_like Type I periplasmic binding proteins of active transport systems that are predicted to be involved in transport of aromatic compounds such as 2-nitrobenzoic acid and alkylbenzenes. This group includes the type I periplasmic binding proteins of active transport systems that are predicted to be involved in transport of aromatic compounds such as 2-nitrobenzoic acid and alkylbenzenes; their substrate specificities are not well characterized, however. Members also exhibit close similarity to active transport systems for short chain amides and/or urea found in bacteria and archaea. 333 -107328 cd06333 PBP1_ABC-type_HAAT_like Type I periplasmic binding component of ABC (ATPase Binding Cassette)-type transport systems that are predicted to be involved in uptake of amino acids. This subgroup includes the type I periplasmic binding component of ABC (ATPase Binding Cassette)-type transport systems that are predicted to be involved in uptake of amino acids. Members of this subgroup are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters (HAAT), such as leucine-isoleucine-valine-binding protein (LIVBP); their ligand specificity has not been determined experimentally, however. 312 -107329 cd06334 PBP1_ABC_ligand_binding_like_1 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters, such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 351 -107330 cd06335 PBP1_ABC_ligand_binding_like_2 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters, such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 347 -107331 cd06336 PBP1_ABC_ligand_binding_like_3 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This group includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters (HAAT), such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 347 -107332 cd06337 PBP1_ABC_ligand_binding_like_4 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters, such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 357 -107333 cd06338 PBP1_ABC_ligand_binding_like_5 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT); however their ligand specificity has not been determined experimentally. 345 -107334 cd06339 PBP1_YraM_LppC_lipoprotein_like Periplasmic binding component of lipoprotein LppC, an immunodominant antigen. This subgroup includes periplasmic binding component of lipoprotein LppC, an immunodominant antigen, whose molecular function is not characterized. Members of this subgroup are predicted to be involved in transport of lipid compounds, and they are sequence similar to the family of ABC-type hydrophobic amino acid transporters (HAAT). 336 -107335 cd06340 PBP1_ABC_ligand_binding_like_6 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 347 -107336 cd06341 PBP1_ABC_ligand_binding_like_7 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in transport of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters such as leucine-isoleucine-valine-binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 341 -107337 cd06342 PBP1_ABC_LIVBP_like Type I periplasmic ligand-binding domain of ABC (Atpase Binding Cassette)-type active transport systems that are involved in the transport of all three branched chain aliphatic amino acids (leucine, isoleucine and valine). This subgroup includes the type I periplasmic ligand-binding domain of ABC (Atpase Binding Cassette)-type active transport systems that are involved in the transport of all three branched chain aliphatic amino acids (leucine, isoleucine and valine). This subgroup also includes a leucine-specific binding protein (or LivK), which is very similar in sequence and structure to leucine-isoleucine-valine binding protein (LIVBP). ABC-type active transport systems are transmembrane proteins that function in the transport of diverse sets of substrates across extra- and intracellular membranes, including carbohydrates, amino acids, inorganic ions, dipeptides and oligopeptides, metabolic products, lipids and sterols, and heme, to name a few. 334 -107338 cd06343 PBP1_ABC_ligand_binding_like_8 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 362 -107339 cd06344 PBP1_ABC_ligand_binding_like_9 Type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (ATPase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. Members of this group are sequence-similar to members of the family of ABC-type hydrophobic amino acid transporters, such as leucine/isoleucine/valine binding protein (LIVBP); however their ligand specificity has not been determined experimentally. 332 -107340 cd06345 PBP1_ABC_ligand_binding_like_10 Type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 344 -107341 cd06346 PBP1_ABC_ligand_binding_like_11 Type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 312 -107342 cd06347 PBP1_ABC_ligand_binding_like_12 Type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 334 -107343 cd06348 PBP1_ABC_ligand_binding_like_13 Type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 344 -107344 cd06349 PBP1_ABC_ligand_binding_like_14 Type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems. This subgroup includes the type I periplasmic ligand-binding domain of uncharacterized ABC (Atpase Binding Cassette)-type active transport systems that are predicted to be involved in the uptake of amino acids, peptides, or inorganic ions. This subgroup has high sequence similarity to members of the family of hydrophobic amino acid transporters (HAAT), such as leucine/isoleucine/valine binding protein (LIVBP); however its ligand specificity has not been determined experimentally. 340 -153138 cd06350 PBP1_GPCR_family_C_like Ligand-binding domain of membrane-bound glutamate receptors that mediate excitatory transmission on the cellular surface through initial binding of glutamate and are categorized into ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). Ligand-binding domain of membrane-bound glutamate receptors that mediate excitatory transmission on the cellular surface through initial binding of glutamate and are categorized into ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The metabotropic glutamate receptors (mGluR) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. The mGluRs are coupled to G proteins and are thus distinct from the iGluRs which internally contain ligand-gated ion channels. The mGluR structure is divided into three regions: the extracellular region, the seven-spanning transmembrane region and the cytoplasmic region. The extracellular region is further devided into the ligand-binding domain (LBD) and the cysteine-rich domain. The LBD has sequence similarity to the LIVBP, which is a bacterial periplasmic protein (PBP), as well as to the extracellular region of both iGluR and the gamma-aminobutyric acid (GABA)b receptor. iGluRs are divided into three main subtypes based on pharmacological profile: NMDA, AMPA, and kainate receptors. All family C GPCRs have a large extracellular N terminus that contain a domain with homology to bacterial periplasmic amino acid-binding proteins. 348 -107346 cd06351 PBP1_iGluR_N_LIVBP_like N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NMDA, AMPA, and kainate receptor subtypes of ionotropic glutamate receptors (iGluRs). N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NMDA, AMPA, and kainate receptor subtypes of ionotropic glutamate receptors (iGluRs). While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Glutamate mediates the majority of excitatory synaptic transmission in the central nervous system via two broad classes of ionotropic receptors characterized by their response to glutamate agonists: N-methyl-aspartate (NMDA) and non-NMDA receptors. NMDA receptors have intrinsically slow kinetics, are highly permeable to Ca2+, and are blocked by extracellular Mg2+ in a voltage-dependent manner. On the other hand, non-NMDA receptors have faster kinetics, are weakly permeable to Ca2+, and are not blocked by extracellular Mg2+. While non-NMDA receptors typically mediate excitatory synaptic responses at resting membrane potentials, NMDA receptors contribute to several forms of synaptic plasticity and are suggested to play an important role in the development of synaptic pathways. 328 -107347 cd06352 PBP1_NPR_GC_like Ligand-binding domain of membrane guanylyl-cyclase receptors. Ligand-binding domain of membrane guanylyl-cyclase receptors. Membrane guanylyl cyclases (GC) have a single membrane-spanning region and are activated by endogenous and exogenous peptides. This family can be divided into three major subfamilies: the natriuretic peptide receptors (NPRs), sensory organ-specific membrane GCs, and the enterotoxin/guanylin receptors. The binding of peptide ligands to the receptor results in the activation of the cytosolic catalytic domain. Three types of NPRs have been cloned from mammalian tissues: NPR-A/GC-A, NPR-B/ GC-B, and NPR-C. In addition, two of the GCs, GC-D and GC-G, appear to be pseudogenes in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are produced in the heart, and both bind to the NPR-A. NPR-C, also termed the clearance receptor, binds each of the natriuretic peptides and can alter circulating levels of these peptides. The ligand binding domain of the NPRs exhibits strong structural similarity to the type I periplasmic binding fold protein family. 389 -107348 cd06353 PBP1_BmpA_Med_like Periplasmic binding domain of the basic membrane lipoprotein Med in Bacillus and its close homologs from other bacteria and Archaea. Periplasmic binding domain of the basic membrane lipoprotein Med in Bacillus and its close homologs from other bacteria and Archaea. Med, a cell-surface localized protein, which regulates the competence transcription factor gene comK in Bacillus subtilis, lacks the DNA binding domain when compared with structures of transcription regulators from the LacI family. Nevertheless, Med has significant overall sequence homology to various periplasmic substrate-binding proteins. Moreover, the structure of Med shows a striking similarity to PnrA, a periplasmic nucleoside binding protein of an ATP-binding cassette transport system. Members of this group contain the type I periplasmic sugar-binding protein-like fold. 258 -107349 cd06354 PBP1_BmpA_PnrA_like Periplasmic binding domain of basic membrane lipoprotein, PnrA, in Treponema pallidum and its homologs from other bacteria and Archaea. Periplasmic binding domain of basic membrane lipoprotein, PnrA, in Treponema pallidum and its homologs from other bacteria and Archaea. The PnrA lipoprotein, also known as Tp0319 or TmpC, represents a novel family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC) transport system (pnrABCDE). It shows a striking structural similarity to another basic membrane lipoprotein Med which regulates the competence transcription factor gene, comK, in Bacillus subtilis. The members of PnrA-like subgroup are likely to have similar nucleoside-binding functions and a similar type I periplasmic sugar-binding protein-like fold. 265 -107350 cd06355 PBP1_FmdD_like Periplasmic component (FmdD) of an active transport system for short-chain amides and urea (FmdDEF). This group includes the periplasmic component (FmdD) of an active transport system for short-chain amides and urea (FmdDEF), found in Methylophilus methylotrophus, and its homologs from other bacteria. FmdD, a type I periplasmic binding protein, is induced by short-chain amides and urea and repressed by excess ammonia, while FmdE and FmdF are hydrophobic transmembrane proteins. FmdDEF is predicted to be an ATP-dependent transporter and closely resembles the periplasmic binding protein and the two transmembrane proteins present in various hydrophobic amino acid-binding transport systems. 348 -107351 cd06356 PBP1_Amide_Urea_BP_like Periplasmic component (FmdD) of an active transport system for short-chain amides and urea (FmdDEF). This group includes the type I periplasmic-binding proteins that are predicted to have a function similar to that of an active transport system for short chain amides and/or urea in bacteria and Archaea, by sequence comparison and phylogenetic analysis. 334 -107352 cd06357 PBP1_AmiC Periplasmic binding domain of amidase (AmiC) that belongs to the type I periplasmic binding fold protein family. This group includes the periplasmic binding domain of amidase (AmiC) that belongs to the type I periplasmic binding fold protein family. AmiC controls expression of the amidase operon by the ligand-triggered conformational switch. In the absence of ligand or presence of butyramide (repressor), AmiC (the ligand sensor and negative regulator) adopts an open conformation and inhibits the transcription antitermination function of AmiR by direct protein-protein interaction. In the presence of inducing ligands such as acetamide, AmiC adopts a closed conformation which disrupts a silencing AmiC-AmiR complex and the expression of amidase and other genes of the operon are induced. 360 -107353 cd06358 PBP1_NHase Type I periplasmic-binding protein of the nitrile hydratase (NHase) system that selectively converts nitriles to corresponding amides. This group includes the type I periplasmic-binding protein of the nitrile hydratase (NHase) system that selectively converts nitriles to corresponding amides, which are subsequently converted by amidases to yield free carboxylic acids and ammonia. NHases from bacteria and fungi have been purified and characterized. In Rhodococcus sp., the nitrile hydratase operon consists of six genes encoding NHase regulator 2, NHase regulator 1, amidase, NHase alpha subunit, NHase beta subunit, and NHase activator. The operon produces a constitutive hydratase that has a broad substrate spectrum: aliphatic and aromatic nitriles, mononitriles and dinitriles, hydroxynitriles and amino-nitriles, and a constitutive amidase of equally low substrate specificity. NHases are metalloenzymes containing either cobalt or iron, and therefore can be classified into two subgroups: ferric NHases and cobalt NHases. 333 -107354 cd06359 PBP1_Nba_like Type I periplasmic binding component of active transport systems that are predicted to be involved in 2-nitrobenzoic acid degradation pathway. This group includes the type I periplasmic binding component of active transport systems that are predicted to be involved in 2-nitrobenzoic acid degradation pathway; their substrate specificities are not well characterized. 333 -107355 cd06360 PBP1_alkylbenzenes_like Type I periplasmic binding component of active transport systems that are predicted be involved in anaerobic biodegradation of alkylbenzenes such as toluene and ethylbenzene. This group includes the type I periplasmic binding component of active transport systems that are predicted be involved in anaerobic biodegradation of alkylbenzenes such as toluene and ethylbenzene; their substrate specificity is not well characterized, however. 336 -107356 cd06361 PBP1_GPC6A_like Ligand-binding domain of the promiscuous L-alpha-amino acid receptor GPRC6A which is a broad-spectrum amino acid-sensing receptor. This family includes the ligand-binding domain of the promiscuous L-alpha-amino acid receptor GPRC6A which is a broad-spectrum amino acid-sensing receptor, and its fish homolog, the 5.24 chemoreceptor. GPRC6A is a member of the family C of G-protein-coupled receptors that transduce extracellular signals into G-protein activation and ultimately into cellular responses. 403 -107357 cd06362 PBP1_mGluR Ligand binding domain of the metabotropic glutamate receptors (mGluR). Ligand binding domain of the metabotropic glutamate receptors (mGluR), which are members of the family C of G-protein-coupled receptors that transduce extracellular signals into G-protein activation and ultimately into cellular responses. mGluRs bind to glutamate and function as an excitatory neurotransmitter; they are involved in learning, memory, anxiety, and the perception of pain. Eight subtypes of mGluRs have been cloned so far, and are classified into three groups according to their sequence similarities, transduction mechanisms, and pharmacological profiles. Group I is composed of mGlu1R and mGlu5R that both stimulate PLC hydrolysis. Group II includes mGlu2R and mGlu3R, which inhibit adenylyl cyclase, as do mGlu4R, mGlu6R, mGlu7R, and mGlu8R, which form group III. 452 -107358 cd06363 PBP1_Taste_receptor Ligand-binding domain of the T1R taste receptor. Ligand-binding domain of the T1R taste receptor. The T1R is a member of the family C receptors within the G-protein coupled receptor superfamily, which also includes the metabotropic glutamate receptors, GABAb receptors, the calcium-sensing receptor (CaSR), the V2R pheromone receptors, and a small group of uncharacterized orphan receptors. 410 -107359 cd06364 PBP1_CaSR Ligand-binding domain of the CaSR calcium-sensing receptor, which is a member of the family C receptors within the G-protein coupled receptor superfamily. Ligand-binding domain of the CaSR calcium-sensing receptor, which is a member of the family C receptors within the G-protein coupled receptor superfamily. CaSR provides feedback control of extracellular calcium homeostasis by responding sensitively to acute fluctuations in extracellular ionized Ca2+ concentration. This ligand-binding domain has homology to the bacterial leucine-isoleucine-valine binding protein (LIVBP) and a leucine binding protein (LBP). CaSR is widely expressed in mammalian tissues and is active in tissues that are not directly involved in extracellular calcium homeostasis. Moreover, CaSR responds to aromatic, aliphatic, and polar amino acids, but not to positively charged or branched chain amino acids, which suggests that changes in plasma amino acid levels are likely to modulate whole body calcium metabolism. Additionally, the family C GPCRs includes at least two receptors with broad-spectrum amino acid-sensing properties: GPRC6A which recognizes basic and various aliphatic amino acids, its gold-fish homolog the 5.24 chemoreceptor, and a specific taste receptor (T1R) which responds to aliphatic, polar, charged, and branched amino acids, but not to aromatic amino acids. 510 -107360 cd06365 PBP1_Pheromone_receptor Ligand-binding domain of the V2R phermone receptor, a member of the family C receptors within the G-protein coupled receptor superfamily. Ligand-binding domain of the V2R phermone receptor, a member of the family C receptors within the G-protein coupled receptor superfamily, which also includes the metabotropic glutamate receptor, the GABAb receptor, the calcium-sensing receptor (CaSR), the T1R taste receptor, and a small group of uncharacterized orphan receptors. 469 -107361 cd06366 PBP1_GABAb_receptor Ligand-binding domain of GABAb receptors, which are metabotropic transmembrane receptors for gamma-aminobutyric acid (GABA). Ligand-binding domain of GABAb receptors, which are metabotropic transmembrane receptors for gamma-aminobutyric acid (GABA). GABA is the major inhibitory neurotransmitter in the mammalian CNS and, like glutamate and other transmitters, acts via both ligand gated ion channels (GABAa receptors) and G-protein coupled receptors (GABAb). GABAa receptors are members of the ionotropic receptor superfamily which includes alpha-adrenergic and glycine receptors. The GABAb receptor is a member of a receptor superfamily which includes the mGlu receptors. The GABAb receptor is coupled to G alpha_i proteins, and activation causes a decrease in calcium, an increase in potassium membrane conductance, and inhibition of cAMP formation. The response is thus inhibitory and leads to hyperpolarization and decreased neurotransmitter release, for example. 350 -107362 cd06367 PBP1_iGluR_NMDA N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. The function of the NMDA subtype receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 (A, B, C, and D) or NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 362 -107363 cd06368 PBP1_iGluR_non_NMDA_like N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the non-NMDA (N-methyl-d-asparate) subtypes of ionotropic glutamate receptors. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the non-NMDA (N-methyl-d-asparate) subtypes of ionotropic glutamate receptors. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Glutamate mediates the majority of excitatory synaptic transmission in the central nervous system via two broad classes of ionotropic receptors, characterized by their response to glutamate agonists: N-methyl-d -aspartate (NMDA) and non-NMDA receptors. NMDA receptors have intrinsically slow kinetics, are highly permeable to Ca2+, and are blocked by extracellular Mg2+ in a voltage-dependent manner. Non-NMDA receptors have faster kinetics, are most often only weakly permeable to Ca2+, and are not blocked by extracellular Mg2+. While non-NMDA receptors typically mediate excitatory synaptic responses at resting membrane potentials, NMDA receptors contribute several forms of synaptic plasticity and are thought to play an important role in the development of synaptic pathways. Non-NMDA receptors include alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA) and kainate receptors. 324 -107364 cd06369 PBP1_GC_C_enterotoxin_receptor Ligand-binding domain of the membrane guanylyl cyclase C. Ligand-binding domain of the membrane guanylyl cyclase C (GC-C or StaR). StaR is a key receptor for the STa (Escherichia coli Heat Stable enterotoxin), a potent stimulant of intestinal chloride and bicarbonate secretion that cause acute secretory diarrhea. The catalytic domain of the STa/guanylin receptor type membrane GC is highly similar to those of the natriuretic peptide receptor (NPR) type and sensory organ-specific type membrane GCs (GC-D, GC-E and GC-F). The GC-C receptor is mainly expressed in the intestine of most vertebrates, but is also found in the kidney and other organs. Moreover, GC-C is activated by guanylin and uroguanylin, endogenous peptide ligands synthesized in the intestine and kidney. Consequently, the receptor activation results in increased cGMP levels and phosphorylation of the CFTR chloride channel and secretion. 380 -107365 cd06370 PBP1_Speract_GC_like Ligand-binding domain of membrane bound guanylyl cyclases. Ligand-binding domain of membrane bound guanylyl cyclases (GCs), which are known to be activated by sperm-activating peptides (SAPs), such as speract or resact. These ligand peptides are released by a range of invertebrates to stimulate the metabolism and motility of spermatozoa and are also potent chemoattractants. These GCs contain a single transmembrane segment, an extracellular ligand binding domain, and intracellular protein kinase-like and cyclase catalytic domains. GCs of insect and nematodes, which exhibit high sequence similarity to the speract receptor are also included in this model. 404 -107366 cd06371 PBP1_sensory_GC_DEF_like Ligand-binding domain of membrane guanylyl cyclases (GC-D, GC-E, and GC-F) that are specifically expressed in sensory tissues. This group includes the ligand-binding domain of membrane guanylyl cyclases (GC-D, GC-E, and GC-F) that are specifically expressed in sensory tissues. They share a similar topology with an N-terminal extracellular ligand-binding domain, a single transmembrane domain, and a C-terminal cytosolic region that contains kinase-like and catalytic domains. GC-D is specifically expressed in a subpopulation of olfactory sensory neurons. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have important roles in phototransduction. Unlike the other family members, GC-E and GC-F have no known extracellular ligands. Instead, they are activated under low calcium conditions by guanylyl cyclase activating proteins called GCAPs. GC-D expressing neurons have been implicated in pheromone detection and GC-D is phylogenetically more similar to the Ca2+-regulated GC-E and GC-F than to receptor GC-A, -B and -C which are activated by peptide ligands. Moreover, these olfactory GCs and retinal GCs share characteristic sequence similarity in a regulatory domain that is involved in the binding of GCAPs, suggesting GC-D activity may be regulated by an unknown extracellular ligand and intracellular Ca2+. Rodent GC-D-expressing neurons have been implicated in pheromone detection and were recently shown to respond to atmospheric CO2 which is an olfactory stimulus for many invertebrates and regulates some insect innate behavior, such as the location of food and hosts. 382 -107367 cd06372 PBP1_GC_G_like Ligand-binding domain of membrane guanylyl cyclase G. This group includes the ligand-binding domain of membrane guanylyl cyclase G (GC-G) which is a sperm surface receptor and might function, similar to its sea urchin counterpart, in the early signaling event that regulates the Ca2+ influx/efflux and subsequent motility response in sperm. GC-G appears to be a pseudogene in human. Furthermore, in contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rat, including lung, intestine, kidney, and skeletal muscle. 391 -107368 cd06373 PBP1_NPR_like Ligand binding domain of natriuretic peptide receptor (NPR) family. Ligand binding domain of natriuretic peptide receptor (NPR) family which consists of three different subtypes: type A natriuretic peptide receptor (NPR-A, or GC-A), type B natriuretic peptide receptors (NPR-B, or GC-B), and type C natriuretic peptide receptor (NPR-C). There are three types of natriuretic peptide (NP) ligands specific to the receptors: atrial NP (ANP), brain or B-type NP (BNP), and C-type NP (CNP). The NP family is thought to have arisen through gene duplication during evolution and plays an essential role in cardiovascular and body fluid homeostasis. ANP and BNP bind mainly to NPR-A, while CNP binds specifically to NPR-B. Both NPR-A and NPR-B have guanylyl cyclase catalytic activity and produces intracellular secondary messenger cGMP in response to peptide-ligand binding. Consequently, the NPR-A activation results in vasodilation and inhibition of vascular smooth muscle cell proliferation. NPR-C acts as the receptor for all the three members of NP family, and functions as a clearance receptor. Unlike NPR-A and -B, NPR-C lacks an intracellular guanylyl cyclase domain and is thought to exert biological actions by sequestration of released natriuretic peptides and/or inhibition of adenylyl cyclase. 396 -107369 cd06374 PBP1_mGluR_groupI Ligand binding domain of the group I metabotropic glutamate receptor. Ligand binding domain of the group I metabotropic glutamate receptor, a family containing mGlu1R and mGlu5R, all of which stimulate phospholipase C (PLC) hydrolysis. The metabotropic glutamate receptor is a member of the family C of G-protein-coupled receptors that transduce extracellular signals into G-protein activation and ultimately into intracellular responses. The mGluRs are classified into three groups which comprise eight subtypes. 472 -107370 cd06375 PBP1_mGluR_groupII Ligand binding domain of the group II metabotropic glutamate receptor. Ligand binding domain of the group II metabotropic glutamate receptor, a family that contains mGlu2R and mGlu3R, all of which inhibit adenylyl cyclase. The metabotropic glutamate receptor is a member of the family C of G-protein-coupled receptors that transduce extracellular signals into G-protein activation and ultimately into intracellular responses. The mGluRs are classified into three groups which comprise eight subtypes 458 -107371 cd06376 PBP1_mGluR_groupIII Ligand-binding domain of the group III metabotropic glutamate receptor. Ligand-binding domain of the group III metabotropic glutamate receptor, a family which contains mGlu4R, mGluR6R, mGluR7, and mGluR8; all of which inhibit adenylyl cyclase. The metabotropic glutamate receptor is a member of the family C of G-protein-coupled receptors that transduce extracellular signals into G-protein activation and ultimately into intracellular responses. The mGluRs are classified into three groups which comprise eight subtypes. 463 -107372 cd06377 PBP1_iGluR_NMDA_NR3 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 382 -107373 cd06378 PBP1_iGluR_NMDA_NR2 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR2 subunit of NMDA receptor family. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR2 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 362 -107374 cd06379 PBP1_iGluR_NMDA_NR1 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR1, an essential channel-forming subunit of the NMDA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the NR1, an essential channel-forming subunit of the NMDA receptor. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer ccomposed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. When co-expressed with NR1, the NR3 subunits form receptors that are activated by glycine alone and therefore can be classified as excitatory glycine receptors. NR1/NR3 receptors are calcium-impermeable and unaffected by ligands acting at the NR2 glutamate-binding site 377 -107375 cd06380 PBP1_iGluR_AMPA N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the AMPA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor, a member of the glutamate-receptor ion channels (iGluRs). AMPA receptors are the major mediators of excitatory synaptic transmission in the central nervous system. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. AMPA receptors consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important roles in mediating the rapid excitatory synaptic current. 382 -107376 cd06381 PBP1_iGluR_delta_like N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2. This CD represents the N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. 363 -107377 cd06382 PBP1_iGluR_Kainate N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the kainate receptors. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the kainate receptors, non-NMDA ionotropic receptors which respond to the neurotransmitter glutamate. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Kainate receptors have five subunits, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. 327 -107378 cd06383 PBP1_iGluR_AMPA_Like N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of uncharacterized AMPA-like receptors. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of uncharacterized AMPA-like receptors. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. AMPA receptors consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important roles in mediating the rapid excitatory synaptic current. 368 -107379 cd06384 PBP1_NPR_B Ligand-binding domain of type B natriuretic peptide receptor. Ligand-binding domain of type B natriuretic peptide receptor (NPR-B). NPR-B is one of three known single membrane-spanning natriuretic peptide receptors that have been identified. Natriuretic peptides are family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. In mammals there are three natriuretic peptides: ANP, BNP, and CNP. Like NPR-A (or GC-A), NPR-B (or GC-B) is a transmembrane guanylyl cyclase, an enzyme that catalyzes the synthesis of cGMP. NPR-B is the predominant natriuretic peptide receptor in the brain. The rank of order activation of NPR-B by natriuretic peptides is CNP>>ANP>BNP. Homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. 399 -107380 cd06385 PBP1_NPR_A Ligand-binding domain of type A natriuretic peptide receptor. Ligand-binding domain of type A natriuretic peptide receptor (NPR-A). NPR-A is one of three known single membrane-spanning natriuretic peptide receptors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. In mammals there are three natriuretic peptides: ANP, BNP, and CNP. NPR-A is highly expressed in kidney, adrenal, terminal ileum, adipose, aortic, and lung tissues. The rank order of NPR-A activation by natriuretic peptides is ANP>BNP>>CNP. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure. 405 -107381 cd06386 PBP1_NPR_C_like Ligand-binding domain of type C natriuretic peptide receptor. Ligand-binding domain of type C natriuretic peptide receptor (NPR-C). NPR-C is found in atrial, mesentery, placenta, lung, kidney, venous tissue, aortic smooth muscle, and aortic endothelial cells. The affinity of NPR-C for natriuretic peptides is ANP>CNP>BNP. The extracellular domain of NPR-C is about 30% identical to NPR-A and NPR-B. However, unlike the cyclase-linked receptors, it contains only 37 intracellular amino acids and no guanylyl cyclase activity. Major function of NPR-C is to clear natriuretic peptides from the circulation or extracellular surroundings through constitutive receptor-mediated internalization and degradation. 387 -107382 cd06387 PBP1_iGluR_AMPA_GluR3 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR3 subunit of the AMPA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR3 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). 372 -107383 cd06388 PBP1_iGluR_AMPA_GluR4 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). 371 -107384 cd06389 PBP1_iGluR_AMPA_GluR2 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR2 subunit of the AMPA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR2 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). 370 -107385 cd06390 PBP1_iGluR_AMPA_GluR1 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR1 subunit of the AMPA receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR1 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). 364 -107386 cd06391 PBP1_iGluR_delta_2 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the delta2 receptor of an orphan glutamate receptor family. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the delta2 receptor of an orphan glutamate receptor family. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 are closer related to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq and tumor necrosis factor family that is secreted from cerebellar granule cells. 400 -107387 cd06392 PBP1_iGluR_delta_1 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the delta1 receptor of an orphan glutamate receptor family. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the delta1 receptor of an orphan glutamate receptor family. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 may be closer related to non-NMDA receptors. In contrast to GluRdelta2, GluRdelta1 is expressed in many areas in the developing CNS, including the hippocampus and the caudate putamen. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. 400 -107388 cd06393 PBP1_iGluR_Kainate_GluR5_7 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR5-7 subunits of Kainate receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the GluR5-7 subunits of Kainate receptor. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. 384 -107389 cd06394 PBP1_iGluR_Kainate_KA1_2 N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the KA1 and KA2 subunits of Kainate receptor. N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of the KA1 and KA2 subunits of Kainate receptor. While this N-terminal domain belongs to the periplasmic-binding fold type I superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type II. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMPA receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. 333 -99717 cd06395 PB1_Map2k5 PB1 domain is essential part of the mitogen-activated protein kinase kinase 5 (Map2k5, alias MEK5) one of the key member of the signaling kinases cascade which involved in angiogenesis and early cardiovascular development. The PB1 domain of Map2k5 interacts with the PB1 domain of another members of kinase cascade MEKK2 (or MEKK3). A canonical PB1-PB1 interaction, involving heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. The Map2k5 protein contains a type I PB1 domain. 91 -99718 cd06396 PB1_NBR1 The PB1 domain is an essential part of NBR1 protein, next to BRCA1, a scaffold protein mediating specific protein-protein interaction with both titin protein kinase and with another scaffold protein p62. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. The NBR1 protein contains a type I PB1 domain. 81 -99719 cd06397 PB1_UP1 Uncharacterized protein 1. The PB1 domain is a modular domain mediating specific protein-protein interaction which play a role in many critical cell processes, such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. 82 -99720 cd06398 PB1_Joka2 The PB1 domain is present in the Nicotiana plumbaginifolia Joka2 protein which interacts with sulfur stress inducible UP9 protein. The PB1 domain is a modular domain mediating specific protein-protein interactions which play a role in many critical cell processes, such as osteoclastogenesis, angiogenesis, early cardiovascular development and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 91 -99721 cd06399 PB1_P40 The PB1 domain is essential part of the p40 adaptor protein which plays an important role in activating phagocyte NADPH oxidase during phagocytosis. The PB1 domain is a modular domain mediating specific protein-protein interaction which play a role in many critical cell processes , such as osteoclastogenesis, angiogenesis, early cardiovascular development and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. The PB1 domain of p40 represents a type I PB1 domain which interacts with the PB1 domain of oxidase activator p67 which belong to type II PB1 domain. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 92 -99722 cd06401 PB1_TFG The PB1 domain found in TFG protein, an oncogenic gene product and fusion partner to nerve growth factor tyrosine kinase receptor TrkA and to the tyrosine kinase ALK. The PB1 domain is a modular domain mediating specific protein-protein interaction in many critical cell processes, such as osteoclastogenesis, angiogenesis, early cardiovascular development and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. The PB1 domains of TFG represent a type I/II PB1 domain. The physiological function of TFG remains unknown. 81 -99723 cd06402 PB1_p62 The PB1 domain is an essential part of p62 scaffold protein (alias sequestosome 1,SQSTM) involved in cell signaling, receptor internalization, and protein turnover. The PB1 domain is a modular domain mediating specific protein-protein interaction which play roles in many critical cell processes. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 87 -99724 cd06403 PB1_Par6 The PB1 domain is an essential part of Par6 protein which in complex with Par3 and aPKC proteins is crucial for establishment of apical-basal polarity of animal cells. The PB1 domain is a modular domain mediating specific protein-protein interactions which play a role in many critical cell processes. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. The Par6 protein contains a type II PB1 domain. 80 -99725 cd06404 PB1_aPKC PB1 domain is an essential modular domain of the atypical protein kinase C (aPKC) which in complex with Par6 and Par3 proteins is crucial for establishment of apical-basal polarity of animal cells. PB1 domain is a modular domain mediating specific protein-protein interaction which play roles in many critical cell processes. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. The aPKC protein contains a type I/II PB1 domain. 83 -99726 cd06405 PB1_Mekk2_3 The PB1 domain is present in the two mitogen-activated protein kinase kinases MEKK2 and MEKK3 which are two members of the signaling kinase cascade involved in angiogenesis and early cardiovascular development. The PB1 domain of MEKK2 (and/or MEKK3) interacts with the PB1 domain of another member of the kinase cascade Map2k5. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. The MEKK2 and MEKK3 proteins contain a type II PB1 domain. 79 -99727 cd06406 PB1_P67 A PB1 domain is present in p67 proteins which forms a signaling complex with p40, a crucial step for activation of NADPH oxidase during phagocytosis. PB1 domain is a modular domain mediating specific protein-protein interactions which play a role in many critical cell processes . A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. The p67 proteins contain a type II PB1 domain. 80 -99728 cd06407 PB1_NLP A PB1 domain is present in NIN like proteins (NLP), a key enzyme in a process of establishment of symbiosis betweeen legumes and nitrogen fixing bacteria (Rhizobium). The PB1 domain is a modular domain mediating specific protein-protein interaction which play a role in many critical cell processes like osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 82 -99729 cd06408 PB1_NoxR The PB1 domain is present in the Epichloe festucae NoxR protein (NADPH oxidase regulator), a key regulator of NADPH oxidase isoform, NoxA. NoxA is essential for growth control of the fungal endophyte in plant tissue in the process of symbiotic interaction between a fungi and its plant host. The Epichloe festucae p67(phox)-like regulator, NoxR, dispensable in culture but essential in plants for the symbiotic interaction. Plants infected with a noxR deletion mutant show severe stunting and premature senescence, whereas hyphae in the meristematic tissues show increased branching leading to increased fungal colonization of pseudostem and leaf blade tissue. The PB1 domain is a modular domain mediating specific protein-protein interactions which a play role in many critical cell processes such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 86 -99730 cd06409 PB1_MUG70 The MUG70 protein is a product of the meiotically up-regulated gene 70 which has a role in meiosis and harbors a PB1 domain. The PB1 domain is a modular domain mediating specific protein-protein interactions which play a role in many critical cell processes such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domains depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic amino acid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 86 -99731 cd06410 PB1_UP2 Uncharacterized protein 2. The PB1 domain is a modular domain mediating specific protein-protein interaction which play a role in many critical cell processes such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. 97 -99732 cd06411 PB1_p51 The PB1 domain is present in the p51 protein, a homolog of the p67 protein. p51 plays an important role in NADPH oxidase activation during phagosytosis. The PB1 domain is a modular domain mediating specific protein-protein interaction in many critical cell processes such as osteoclastogenesis, angiogenesis, early cardiovascular development, and cell polarity. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domains, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. Interactions of PB1 domains with other protein domains have been described as noncanonical PB1-interactions. The PB1 domain module is conserved in amoebas, fungi, animals, and plants. 78 -119374 cd06412 GH25_CH-type CH-type (Chalaropsis-type) lysozymes represent one of four functionally-defined classes of peptidoglycan hydrolases (also referred to as endo-N-acetylmuramidases) that cleave bacterial cell wall peptidoglycans. CH-type lysozymes exhibit both lysozyme (acetylmuramidase) and diacetylmuramidase activity. The first member of this family to be described was a muramidase from the fungus Chalaropsis. However, a majority of the CH-type lysozymes are found in bacteriophages and Gram-positive bacteria such as Streptomyces and Clostridium. CH-type lysozymes have a single glycosyl hydrolase family 25 (GH25) domain with an unusual beta/alpha-barrel fold in which the last strand of the barrel is antiparallel to strands beta7 and beta1. Most CH-type lysozymes appear to lack the cell wall-binding domain found in other GH25 muramidases. 199 -119375 cd06413 GH25_muramidase_1 Uncharacterized bacterial muramidase containing a glycosyl hydrolase family 25 (GH25) catalytic domain. Endo-N-acetylmuramidases are lysozymes (also referred to as peptidoglycan hydrolases) that degrade bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. 191 -119376 cd06414 GH25_LytC-like The LytC lysozyme of Streptococcus pneumoniae is a bacterial cell wall hydrolase that cleaves the beta1-4-glycosydic bond located between the N-acetylmuramoyl-N-glucosaminyl residues of the cell wall polysaccharide chains. LytC is composed of a C-terminal glycosyl hydrolase family 25 (GH25) domain and an N-terminal choline-binding module (CBM) consisting of eleven homologous repeats that specifically recognizes the choline residues of pneumococcal lipoteichoic and teichoic acids. This domain arrangement is the reverse of the major pneumococcal autolysin, LytA, and the CPL-1-like lytic enzymes of the pneumococcal bacteriophages, in which the CBM (consisting of six repeats) is at the C-terminus. This model represents the C-terminal catalytic domain of the LytC-like enzymes. 191 -119377 cd06415 GH25_Cpl1-like Cpl-1 lysin (also known as Cpl-9 lysozyme / muramidase) is a bacterial cell wall endolysin encoded by the pneumococcal bacteriophage Cp-1, which cleaves the glycosidic N-acetylmuramoyl-(beta1,4)-N-acetylglucosamine bonds of the pneumococcal glycan chain, thus acting as an enzymatic antimicrobial agent (an enzybiotic) against streptococcal infections. Cpl-1 belongs to the CP family of lysozymes (CPL lysozymes) which includes the Cpl-7 lysin. Cpl-1 has a glycosyl hydrolase family 25 (GH25) catalytic domain with an irregular (beta/alpha)5-beta3 barrel and a C-terminal cell wall-anchoring module formed by six similar choline-binding repeats (ChBr's). The ChBr's facilitate the anchoring of Cpl-1 to the choline-containing teichoic acid of the pneumococcal cell wall. Other members of this domain family have an N-terminal CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) domain similar to that of the firmicute CHAP lysins and associated with endopeptidase activity. The Cpl-7 lysin is also included here as is LysB of Lactococcus phage, and the Mur lysin of Lactobacillus phage. 196 -119378 cd06416 GH25_Lys1-like Lys-1 is a lysozyme encoded by the Caenorhabditis elegans lys-1 gene. This gene is one of a several lysozyme genes upregulated upon infection by the Gram-negative bacterial pathogen Serratia marcescens. Lys-1 contains a glycosyl hydrolase family 25 (GH25) catalytic domain. This family also includes Lys-5 from Caenorhabditis elegans. 196 -119379 cd06417 GH25_LysA-like LysA is a cell wall endolysin produced by Lactobacillus fermentum, which degrades bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. The N-terminal glycosyl hydrolase family 25 (GH25) domain of LysA has sequence similarity with other murein hydrolase catalytic domains while the C-terminal domain has sequence similarity with putative bacterial cell wall-binding SH3b domains. This domain family also includes LysL of Lactococcus lactis. 195 -119380 cd06418 GH25_BacA-like BacA is a bacterial lysin from Enterococcus faecalis that degrades bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. BacA is homologous to the YbfG and YkuG lysins of Bacillus subtilis. BacA has a C-terminal catalytic glycosyl hydrolase family 25 (GH25) domain and an N-terminal peptidoglycan-binding domain comprised of three alpha helices which is similar to a domain found in matrixins. 212 -119381 cd06419 GH25_muramidase_2 Uncharacterized bacterial muramidase containing a glycosyl hydrolase family 25 (GH25) catalytic domain. Endo-N-acetylmuramidases are lysozymes (also referred to as peptidoglycan hydrolases) that degrade bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. 190 -133042 cd06420 GT2_Chondriotin_Pol_N N-terminal domain of Chondroitin polymerase functions as a GalNAc transferase. Chondroitin polymerase is a two domain, bi-functional protein. The N-terminal domain functions as a GalNAc transferase. The bacterial chondroitin polymerase catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. The enzyme consists of N-terminal and C-terminal domains in which the two active sites catalyze the addition of GalNAc and GlcUA, respectively. Chondroitin chains range from 40 to over 100 repeating units of the disaccharide. Sulfated chondroitins are involved in the regulation of various biological functions such as central nervous system development, wound repair, infection, growth factor signaling, and morphogenesis, in addition to its conventional structural roles. In Caenorhabditis elegans, chondroitin is an essential factor for the worm to undergo cytokinesis and cell division. Chondroitin is synthesized as proteoglycans, sulfated and secreted to the cell surface or extracellular matrix. 182 -133043 cd06421 CESA_CelA_like CESA_CelA_like are involved in the elongation of the glucan chain of cellulose. Family of proteins related to Agrobacterium tumefaciens CelA and Gluconacetobacter xylinus BscA. These proteins are involved in the elongation of the glucan chain of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues. They are putative catalytic subunit of cellulose synthase, which is a glycosyltransferase using UDP-glucose as the substrate. The catalytic subunit is an integral membrane protein with 6 transmembrane segments and it is postulated that the protein is anchored in the membrane at the N-terminal end. 234 -133044 cd06422 NTP_transferase_like_1 NTP_transferase_like_1 is a member of the nucleotidyl transferase family. This is a subfamily of nucleotidyl transferases. Nucleotidyl transferases transfer nucleotides onto phosphosugars. The activated sugars are precursors for synthesis of lipopolysaccharide, glycolipids and polysaccharides. Other subfamilies of nucleotidyl transferases include Alpha-D-Glucose-1-Phosphate Cytidylyltransferase, Mannose-1-phosphate guanyltransferase, and Glucose-1-phosphate thymidylyltransferase. 221 -133045 cd06423 CESA_like CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. 180 -133046 cd06424 UGGPase UGGPase catalyzes the synthesis of UDP-Glucose/UDP-Galactose. UGGPase: UDP-Galactose/Glucose Pyrophosphorylase catalyzes the reversible production of UDP-Glucose/UDP-Galactose and pyrophosphate (PPi) from Glucose-1-phosphate/Galactose-1-phosphate and UTP. Its dual substrate specificity distinguishes it from the single substrate enzyme UDP-glucose pyrophosphorylase. It may play a key role in the galactose metabolism in raffinose oligosaccharide (RFO) metabolizing plants. RFO raffinose is a major photoassimilate and is a galactosylderivative of sucrose (Suc) containing a galactose (Gal) moiety. Upon arriving at the sink tissue, the Gal moieties of the RFOs are initially removed by alpha-galactosidase and then are phosphorylated to Gal-1-P. Gal-1-P is converted to UDP-Gal. The UDP-Gal is further metabolized to UDP-Glc via an epimerase reaction. The UDP-Glc can be directly utilized in cell wall metabolism or in Suc synthesis. However, for the Suc synthesis UDP-Glc must be further metabolized to Glc-1-P. This can be carried out either by the UGPase in the reverse direction or by the dual substrate PPase itself operating in the reverse direction. According to the latter possibility, the three-step pathway of Gal-1-P to Glc-1-P could be carried out by a single PPase, functioning sequentially in reverse directions separated by the epimerase reaction. 315 -133047 cd06425 M1P_guanylylT_B_like_N N-terminal domain of the M1P-guanylyltransferase B-isoform like proteins. GDP-mannose pyrophosphorylase (GTP: alpha-d-mannose-1-phosphate guanyltransferase) catalyzes the formation of GDP-d-mannose from GTP and alpha-d-mannose-1-Phosphate. It contains an N-terminal catalytic domain and a C-terminal Lefthanded-beta-Helix fold domain. GDP-d-mannose is the activated form of mannose for formation of cell wall lipoarabinomannan and various mannose-containing glycolipids and polysaccharides. The function of GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability. Repression of GDP-mannose pyrophosphorylase in yeast leads to phenotypes, such as cell lysis, defective cell wall, and failure of polarized growth and cell separation. 233 -133048 cd06426 NTP_transferase_like_2 NTP_trnasferase_like_2 is a member of the nucleotidyl transferase family. This is a subfamily of nucleotidyl transferases. Nucleotidyl transferases transfer nucleotides onto phosphosugars. The activated sugars are precursors for synthesis of lipopolysaccharide, glycolipids and polysaccharides. Other subfamilies of nucleotidyl transferases include Alpha-D-Glucose-1-Phosphate Cytidylyltransferase, Mannose-1-phosphate guanyltransferase, and Glucose-1-phosphate thymidylyltransferase. 220 -133049 cd06427 CESA_like_2 CESA_like_2 is a member of the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of glucan. 241 -133050 cd06428 M1P_guanylylT_A_like_N N-terminal domain of M1P_guanylyl_A_ like proteins are likely to be a isoform of GDP-mannose pyrophosphorylase. N-terminal domain of the M1P-guanylyltransferase A-isoform like proteins: The proteins of this family are likely to be a isoform of GDP-mannose pyrophosphorylase. Their sequences are highly conserved with mannose-1-phosphate guanyltransferase, but generally about 40-60 bases longer. GDP-mannose pyrophosphorylase (GTP: alpha-d-mannose-1-phosphate guanyltransferase) catalyzes the formation of GDP-d-mannose from GTP and alpha-d-mannose-1-Phosphate. It contains an N-terminal catalytic domain that resembles a dinucleotide-binding Rossmann fold and a C-terminal LbH fold domain. GDP-d-mannose is the activated form of mannose for formation of cell wall lipoarabinomannan and various mannose-containing glycolipids and polysaccharides. The function of GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability. Repression of GDP-mannose pyrophosphorylase in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. 257 -133051 cd06429 GT8_like_1 GT8_like_1 represents a subfamily of GT8 with unknown function. A subfamily of glycosyltransferase family 8 with unknown function: Glycosyltransferase family 8 comprises enzymes with a number of known activities; lipopolysaccharide galactosyltransferase lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase and inositol 1-alpha-galactosyltransferase. It is classified as a retaining glycosyltransferase, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed. 257 -133052 cd06430 GT8_like_2 GT8_like_2 represents a subfamily of GT8 with unknown function. A subfamily of glycosyltransferase family 8 with unknown function: Glycosyltransferase family 8 comprises enzymes with a number of known activities; lipopolysaccharide galactosyltransferase lipopolysaccharide glucosyltransferase 1, glycogenin glucosyltransferase and inositol 1-alpha-galactosyltransferase. It is classified as a retaining glycosyltransferase, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed. 304 -133053 cd06431 GT8_LARGE_C LARGE catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis. The catalytic domain of LARGE is a putative glycosyltransferase. Mutations of LARGE in mouse and human cause dystroglycanopathies, a disease associated with hypoglycosylation of the membrane protein alpha-dystroglycan (alpha-DG) and consequent loss of extracellular ligand binding. LARGE needs to both physically interact with alpha-dystroglycan and function as a glycosyltransferase in order to stimulate alpha-dystroglycan hyperglycosylation. LARGE localizes to the Golgi apparatus and contains three conserved DxD motifs. While two of the motifs are indispensible for glycosylation function, one is important for localization of th eenzyme. LARGE was originally named because it covers approximately large trunck of genomic DNA, more than 600bp long. The predicted protein structure contains an N-terminal cytoplasmic domain, a transmembrane region, a coiled-coil motif, and two putative catalytic domains. This catalytic domain has closest homology to GT8 glycosyltransferase involved in lipooligosaccharide synthesis. 280 -133054 cd06432 GT8_HUGT1_C_like The C-terminal domain of HUGT1-like is highly homologous to the GT 8 family. C-terminal domain of glycoprotein glucosyltransferase (UGT). UGT is a large glycoprotein whose C-terminus contains the catalytic activity. This catalytic C-terminal domain is highly homologous to Glycosyltransferase Family 8 (GT 8) and contains the DXD motif that coordinates donor sugar binding, characteristic for Family 8 glycosyltransferases. GT 8 proteins are retaining enzymes based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed. The non-catalytic N-terminal portion of the human UTG1 (HUGT1) has been shown to monitor the protein folding status and activate its glucosyltransferase activity. 248 -133055 cd06433 GT_2_WfgS_like WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. 202 -133056 cd06434 GT2_HAS Hyaluronan synthases catalyze polymerization of hyaluronan. Hyaluronan synthases (HASs) are bi-functional glycosyltransferases that catalyze polymerization of hyaluronan. HASs transfer both GlcUA and GlcNAc in beta-(1,3) and beta-(1,4) linkages, respectively to the hyaluronan chain using UDP-GlcNAc and UDP-GlcUA as substrates. HA is made as a free glycan, not attached to a protein or lipid. HASs do not need a primer for HA synthesis; they initiate HA biosynthesis de novo with only UDP-GlcNAc, UDP-GlcUA, and Mg2+. Hyaluronan (HA) is a linear heteropolysaccharide composed of (1-3)-linked beta-D-GlcUA-beta-D-GlcNAc disaccharide repeats. It can be found in vertebrates and a few microbes and is typically on the cell surface or in the extracellular space, but is also found inside mammalian cells. Hyaluronan has several physiochemical and biological functions such as space filling, lubrication, and providing a hydrated matrix through which cells can migrate. 235 -133057 cd06435 CESA_NdvC_like NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans during growth under hypoosmotic conditions. Two genes (ndvB, ndvC) are involved in the beta-(1, 3), beta-(1,6)-glucan synthesis. The ndvC mutant strain resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1, 3)-glycosyl linkages. The periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans function for osmoregulation. The ndvC mutation also affects the ability of the bacteria to establish a successful symbiotic interaction with host plant. Thus, the beta-glucans may function as suppressors of a host defense response. 236 -133058 cd06436 GlcNAc-1-P_transferase N-acetyl-glucosamine transferase is involved in the synthesis of Poly-beta-1,6-N-acetyl-D-glucosamine. N-acetyl-glucosamine transferase is responsible for the synthesis of bacteria Poly-beta-1,6-N-acetyl-D-glucosamine (PGA). Poly-beta-1,6-N-acetyl-D-glucosamine is a homopolymer that serves as an adhesion for the maintenance of biofilm structural stability in diverse eubacteria. N-acetyl-glucosamine transferase is the product of gene pgaC. Genetic analysis indicated that all four genes of the pgaABCD locus were required for the PGA production, pgaC being a glycosyltransferase. 191 -133059 cd06437 CESA_CaSu_A2 Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit substitute of the cellulose synthase complex. Cellulose synthase (CESA) catalyzes the polymerization reaction of cellulose using UDP-glucose as the substrate. Cellulose is an aggregate of unbranched polymers of beta-1,4-linked glucose residues, which is an abundant polysaccharide produced by plants and in varying degrees by several other organisms including algae, bacteria, fungi, and even some animals. Genomes from higher plants harbor multiple CESA genes. There are ten in Arabidopsis. At least three different CESA proteins are required to form a functional complex. In Arabidopsis, CESA1, 3 and 6 and CESA4, 7 and 8, are required for cellulose biosynthesis during primary and secondary cell wall formation. CESA2 is very closely related to CESA6 and is viewed as a prime substitute for CESA6. They functionally compensate each other. The cesa2 and cesa6 double mutant plants were significantly smaller, while the single mutant plants were almost normal. 232 -133060 cd06438 EpsO_like EpsO protein participates in the methanolan synthesis. The Methylobacillus sp EpsO protein is predicted to participate in the methanolan synthesis. Methanolan is an exopolysaccharide (EPS), composed of glucose, mannose and galactose. A 21 genes cluster was predicted to participate in the methanolan synthesis. Gene disruption analysis revealed that EpsO is one of the glycosyltransferase enzymes involved in the synthesis of repeating sugar units onto the lipid carrier. 183 -133061 cd06439 CESA_like_1 CESA_like_1 is a member of the cellulose synthase (CESA) superfamily. This is a subfamily of cellulose synthase (CESA) superfamily. CESA superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members of the superfamily include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. 251 -133062 cd06442 DPM1_like DPM1_like represents putative enzymes similar to eukaryotic DPM1. Proteins similar to eukaryotic DPM1, including enzymes from bacteria and archaea; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. This protein family belongs to Glycosyltransferase 2 superfamily. 224 -176473 cd06444 DNA_pol_A Family A polymerase primarily fills DNA gaps that arise during DNA repair, recombination and replication. DNA polymerase family A, 5'-3' polymerase domain. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified into six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaeota polymerase II (class D), human polymerase beta (class X), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerases are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I, mitochondrial polymerase gamma, and several bacteriophage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic polymerase I (pol I) has two functional domains located on the same polypeptide; a 5'-3' polymerase and a 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and the DNA polymerase activity to fill in the resulting gap. The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 347 -119438 cd06445 ATase The DNA repair protein O6-alkylguanine-DNA alkyltransferase (ATase; also known as AGT, AGAT and MGMT) reverses O6-alkylation DNA damage by transferring O6-alkyl adducts to an active site cysteine irreversibly, without inducing DNA strand breaks. ATases are specific for repair of guanines with O6-alkyl adducts, however human ATase is not limited to O6-methylguanine, repairing many other adducts at the O6-position of guanine as well. ATase is widely distributed among species. Most ATases have N- and C-terminal domains. The C-terminal domain contains the conserved active-site cysteine motif (PCHR), the O6-alkylguanine binding channel, and the helix-turn-helix (HTH) DNA-binding motif. The active site is located near the recognition helix of the HTH motif. While the C-terminal domain of ATase contains residues that are necessary for DNA binding and alkyl transfer, the function of the N-terminal domain is still unknown. Removal of the N-terminal domain abolishes the activity of the C-terminal domain, suggesting an important structural role for the N-terminal domain in orienting the C-terminal domain for proper catalysis. Some ATase C-terminal domain homologs are either single-domain proteins that lack an N-terminal domain, or have a tryptophan substituted in place of the acceptor cysteine (i.e. the motif PCHR is replaced by PWHR). ATase null mutant mice are viable, fertile, and have a normal lifespan. 79 -107207 cd06446 Trp-synth_B Tryptophan synthase-beta: Trptophan synthase is a bifunctional enzyme that catalyses the last two steps in the biosynthesis of L-tryptophan via its alpha and beta reactions. In the alpha reaction, indole 3-glycerol phosphate is cleaved reversibly to glyceraldehyde 3-phosphate and indole at the active site of the alpha subunit. In the beta reaction, indole undergoes a PLP-dependent reaction with L-serine to form L-tryptophan at the active site of the beta subunit. Members of this CD, Trp-synth_B, are found in all three major phylogenetic divisions. 365 -107208 cd06447 D-Ser-dehyd D-Serine dehydratase is a pyridoxal phosphate (PLP)-dependent enzyme which catalyzes the conversion of L- or D-serine to pyruvate and ammonia. D-serine dehydratase serves as a detoxifying enzyme in most E. coli strains where D-serine is a competitive antagonist of beta-alanine in the biosynthetic pathway to pentothenate and coenzyme A. D-serine dehydratase is different from other pyridoxal-5'-phosphate-dependent enzymes in that it catalyzes alpha, beta-elimination reactions on amino acids. 404 -107209 cd06448 L-Ser-dehyd Serine dehydratase is a pyridoxal phosphate (PLP)-dependent enzyme which catalyzes the conversion of L- , D-serine, or L-threonine to pyruvate/ketobutyrate and ammonia. 316 -107210 cd06449 ACCD Aminocyclopropane-1-carboxylate deaminase (ACCD): Pyridoxal phosphate (PLP)-dependent enzyme which catalyzes the conversion of 1-aminocyclopropane-L-carboxylate (ACC), a precursor of the plant hormone ethylene, to alpha-ketobutyrate and ammonia. 307 -99743 cd06450 DOPA_deC_like DOPA decarboxylase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to DOPA/tyrosine decarboxylase (DDC), histidine decarboxylase (HDC), and glutamate decarboxylase (GDC). DDC is active as a dimer and catalyzes the decarboxylation of tyrosine. GDC catalyzes the decarboxylation of glutamate and HDC catalyzes the decarboxylation of histidine. 345 -99744 cd06451 AGAT_like Alanine-glyoxylate aminotransferase (AGAT) family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to alanine-glyoxylate aminotransferase (AGAT), serine-glyoxylate aminotransferase (SGAT), and 3-hydroxykynurenine transaminase (HKT). AGAT is a homodimeric protein, which catalyses the transamination of glyoxylate to glycine, and SGAT converts serine and glyoxylate to hydroxypyruvate and glycine. HKT catalyzes the PLP-dependent transamination of 3-hydroxykynurenine, a potentially toxic metabolite of the kynurenine pathway. 356 -99745 cd06452 SepCysS Sep-tRNA:Cys-tRNA synthase. This family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). Cys-tRNA(Cys) is produced by O-phosphoseryl-tRNA synthetase which ligates O-phosphoserine (Sep) to tRNA(Cys), and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys), in methanogenic archaea. SepCysS forms a dimer, each monomer is composed of a large and small domain; the larger, a typical pyridoxal 5'-phosphate (PLP)-dependent-like enzyme fold. In the active site of each monomer, PLP is covalently bound to a conserved Lys residue near the dimer interface. 361 -99746 cd06453 SufS_like Cysteine desulfurase (SufS)-like. This family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to cysteine desulfurase (SufS) and selenocysteine lyase. SufS catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine; and selenocysteine lyase catalyzes the decomposition of L-selenocysteine. 373 -99747 cd06454 KBL_like KBL_like; this family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD corresponds to serine palmitoyltransferase (SPT), 5-aminolevulinate synthase (ALAS), 8-amino-7-oxononanoate synthase (AONS), and 2-amino-3-ketobutyrate CoA ligase (KBL). SPT is responsible for the condensation of L-serine with palmitoyl-CoA to produce 3-ketodihydrospingosine, the reaction of the first step in sphingolipid biosynthesis. ALAS is involved in heme biosynthesis; it catalyzes the synthesis of 5-aminolevulinic acid from glycine and succinyl-coenzyme A. AONS catalyses the decarboxylative condensation of l-alanine and pimeloyl-CoA in the first committed step of biotin biosynthesis. KBL catalyzes the second reaction step of the metabolic degradation pathway for threonine converting 2-amino-3-ketobutyrate, to glycine and acetyl-CoA. The members of this CD are widely found in all three forms of life. 349 -341050 cd06455 M3A_TOP Peptidase M3 thimet oligopeptidase (TOP), also includes neurolysin. Peptidase M3 Thimet oligopeptidase (TOP; PZ-peptidase; endo-oligopeptidase A; endopeptidase 24.15; soluble metallo-endopeptidase; EC 3.4.24.15) family also includes neurolysin (endopeptidase 24.16, microsomal endopeptidase, mitochondrial oligopeptidase M, neurotensin endopeptidase, soluble angiotensin II-binding protein, thimet oligopeptidase II) which hydrolyzes oligopeptides such as neurotensin, bradykinin and dynorphin A. TOP and neurolysin are neuropeptidases expressed abundantly in the testis, but are also found in the liver, lung and kidney. They are involved in the metabolism of neuropeptides under 20 amino acid residues long and cleave most bioactive peptides at the same sites, but recognize different positions on some naturally occurring and synthetic peptides; they cleave at distinct sites on the 13-residue bioactive peptide neurotensin, which modulates central dopaminergic and cholinergic circuits. TOP has been shown to degrade peptides released by the proteasome, limiting the extent of antigen presentation by major histocompatibility complex class I molecules, and has been associated with amyloid protein precursor processing. 642 -341051 cd06456 M3A_DCP Peptidase family M3, dipeptidyl carboxypeptidase (DCP). Peptidase family M3 dipeptidyl carboxypeptidase (DCP; Dcp II; peptidyl dipeptidase; EC 3.4.15.5). This metal-binding M3A family also includes oligopeptidase A (OpdA; EC 3.4.24.70). DCP cleaves dipeptides off the C-termini of various peptides and proteins, the smallest substrate being N-blocked tripeptides and unblocked tetrapeptides. DCP from Escherichia coli is inhibited by the anti-hypertensive drug captopril, an inhibitor of the mammalian angiotensin converting enzyme (ACE, also called peptidyl dipeptidase A). OpdA may play a specific role in the degradation of signal peptides after they are released from precursor forms of secreted proteins. It can also cleave N-acetyl-L-Ala. This family also includes Arabidopsis thaliana organellar oligopeptidase OOP (At5g65620), which plays a role in targeting peptide degradation in mitochondria and chloroplasts; it degrades peptide substrates that are between 8 to 23 amino acid residues, and shows a weak preference for hydrophobic residues (F/L) at the P1 position. 653 -341052 cd06457 M3A_MIP Peptidase M3 mitochondrial intermediate peptidase (MIP). Peptidase M3 mitochondrial intermediate peptidase (MIP; EC 3.4.24.59) belongs to the widespread subfamily M3A, that shows similarity to Thimet oligopeptidase (TOP). It is one of three peptidases responsible for the proteolytic processing of both nuclear and mitochondrial encoded precursor polypeptides targeted to various subcompartments of the mitochondria. It cleaves intermediate-size proteins initially processed by mitochondrial processing peptidase (MPP) to yield a processing intermediate with a typical N-terminal octapeptide that is sequentially cleaved by MIP to mature-size protein. MIP cleaves precursor proteins of respiratory components, including subunits of the electron transport chain and tri-carboxylic acid cycle enzymes, and components of the mitochondrial genetic machinery, including ribosomal proteins, translation factors, and proteins required for mitochondrial DNA metabolism. It has been suggested that the human MIP (HMIP polypeptide (gene symbol MIPEP) may be one of the loci predicted to influence the clinical manifestations of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disease caused by the lack of human frataxin. These proteins are enriched in cysteine residues, two of which are highly conserved, suggesting their importance to stability as well as in formation of metal binding sites, thus playing a role in MIP activity. 613 -341053 cd06459 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. 539 -341054 cd06460 M32_Taq Peptidase family M32, which includes thermostable carboxypeptidases TaqCP, PfuCP and FisCP. Peptidase family M32 is a subclass of metallocarboxypeptidases, distributed mainly in bacteria and archaea, whose members contain a HEXXH motif that participates in coordinating a divalent cation such as Zn2+ or Co2+. It includes the thermostable carboxypeptidases (E.C. 3.4.17.19) from Thermus aquaticus (TaqCP) and Pyrococcus furiosus (PfuCP), which have broad specificities toward a wide range of C-terminal substrates that include basic, aromatic, neutral and polar amino acids. These enzymes have a similar fold to the M3 peptidases such as neurolysin and the M2 angiotensin converting enzyme (ACE). The keratin-degrading extremophilic eubacterium Fervidobacterium islandicum M32 carboxypeptidase (FisCP) plays an important role in cellular metabolism, and significantly enhances the degradation of native chicken feathers. It has been shown to mainly cleave the C-termini of peptides with a basic amino acid sequence. Novel M32 peptidases from some eukaryotes: protozoa Trypanosoma cruzi, a causative agent of Chagas' disease, and Leishmania major, a parasite that causes leishmaniasis, have been identified, thus making these enzymes an attractive potential target for drug development against these organisms. 484 -341055 cd06461 M2_ACE Peptidase family M2, angiotensin converting enzyme (ACE). Peptidase family M2 angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc-dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II, by removing two C-terminal amino acids. There are two forms of the enzyme in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by the same gene through transcription from alternative promoters. Somatic ACE has two tandem active sites with distinct catalytic properties, whereas germinal ACE, the function of which is largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been identified in humans that differs from ACE; it preferentially removes carboxy-terminal hydrophobic or basic amino acids and appears to be important in cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been found in a wide variety of species, including those that neither have a cardiovascular system nor synthesize angiotensin. ACE is well-known as a key part of the renin-angiotensin system that regulates blood pressure and ACE inhibitors are important for the treatment of hypertension. 563 -119396 cd06462 Peptidase_S24_S26 The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal peptidase families. The S24 LexA protein domains include: the lambda repressor CI/C2 family and related bacterial prophage repressor proteins; LexA (EC 3.4.21.88), the repressor of genes in the cellular SOS response to DNA damage; MucA and the related UmuD proteins, which are lesion-bypass DNA polymerases, induced in response to mitogenic DNA damage; RulA, a component of the rulAB locus that confers resistance to UV, and RuvA, which is a component of the RuvABC resolvasome that catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. The S26 type I signal peptidase (SPase) family also includes mitochondrial inner membrane protease (IMP)-like members. SPases are essential membrane-bound proteases which function to cleave away the amino-terminal signal peptide from the translocated pre-protein, thus playing a crucial role in the transport of proteins across membranes in all living organisms. All members in this superfamily are unique serine proteases that carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. 84 -107220 cd06463 p23_like Proteins containing this p23_like domain include p23 and its Saccharomyces cerevisiae (Sc) homolog Sba1. Both are co-chaperones for the heat shock protein (Hsp) 90. p23 binds Hsp90 and participates in the folding of a number of Hsp90 clients, including the progesterone receptor. p23 also has a passive chaperoning activity and in addition may participate in prostaglandin synthesis. Both p23 and Sba1p can regulate telomerase activity. This group includes domains similar to the C-terminal CHORD-SGT1 (CS) domain of suppressor of G2 allele of Skp1 (Sgt1). Sgt1 interacts with multiple protein complexes and has the features of a co-chaperone. Human (h) Sgt1 interacts with both Hsp70 and Hsp90, and has been shown to bind Hsp90 through its CS domain. Saccharomyces cerevisiae (Sc) Sgt1 is a subunit of both core kinetochore and SCF (Skp1-Cul1-F-box) ubiquitin ligase complexes. Sgt1 is required for pathogen resistance in plants. This group also includes the p23_like domains of human butyrate-induced transcript 1 (hB-ind1), NUD (nuclear distribution) C, Melusin, and NAD(P)H cytochrome b5 (NCB5) oxidoreductase (OR). hB-ind1 plays a role in the signaling pathway mediated by the small GTPase Rac1, NUDC is needed for nuclear movement, Melusin interacts with two splice variants of beta1 integrin, and NCB5OR plays a part in maintaining viable pancreatic beta cells. 84 -107221 cd06464 ACD_sHsps-like Alpha-crystallin domain (ACD) of alpha-crystallin-type small(s) heat shock proteins (Hsps). sHsps are small stress induced proteins with monomeric masses between 12 -43 kDa, whose common feature is the Alpha-crystallin domain (ACD). sHsps are generally active as large oligomers consisting of multiple subunits, and are believed to be ATP-independent chaperones that prevent aggregation and are important in refolding in combination with other Hsps. 88 -107222 cd06465 p23_hB-ind1_like p23_like domain found in human (h) butyrate-induced transcript 1 (B-ind1) and similar proteins. hB-ind1 participates in signaling by the small GTPase Rac1. It binds to Rac1 and enhances different Rac1 effects including activation of nuclear factor (NF) kappaB and activation of c-Jun N-terminal kinase (JNK). hB-ind1 also plays a part in the RNA replication and particle production of Hepatitis C virus (HCV) through its interaction with heat shock protein Hsp90, HCV nonstructural protein 5A (NS5A), and the immunophilin FKBP8. hB-ind1 is upregulated in the outer layer of Chinese hamster V79 cells grown as multicell spheroids, versus in the same cells grown as monolayers. This group includes the Saccharomyces cerevisiae Sba1, a co-chaperone of the Hsp90. Sba1 has been shown to be is required for telomere length maintenance, and may modulate telomerase DNA-binding activity. 108 -107223 cd06466 p23_CS_SGT1_like p23_like domain similar to the C-terminal CHORD-SGT1 (CS) domain of Sgt1 (suppressor of G2 allele of Skp1). Sgt1 interacts with multiple protein complexes and has the features of a cochaperone. Human (h) Sgt1 interacts with both Hsp70 and Hsp90, and has been shown to bind Hsp90 through its CS domain. Saccharomyces cerevisiae (Sc) Sgt1 is a subunit of both core kinetochore and SCF (Skp1-Cul1-F-box) ubiquitin ligase complexes. Sgt1 is required for pathogen resistance in plants. ScSgt1 is needed for the G1/S and G2/M cell-cycle transitions, and for assembly of the core kinetochore complex (CBF3) via activation of Ctf13, the F-box protein. Binding of Hsp82 (a yeast Hsp90 homologue) to ScSgt1, promotes the binding of Sgt1 to Skp1 and of Skp1 to Ctf13. Some proteins in this group have an SGT1-specific (SGS) domain at the extreme C-terminus. The ScSgt1-SGS domain binds adenylate cyclase. The hSgt1-SGS domain interacts with some S100 family proteins, and studies suggest that the interaction of hSgt1 with Hsp90 and Hsp70 may be regulated by S100A6 in a Ca2+ dependent fashion. This group also includes the p23_like domains of Melusin and NAD(P)H cytochrome b5 (NCB5) oxidoreductase (OR). Melusin is a vertebrate protein which interacts with two splice variants of beta1 integrin, and NCB5OR plays a part in maintaining viable pancreatic beta cells. 84 -107224 cd06467 p23_NUDC_like p23_like domain of NUD (nuclear distribution) C and similar proteins. Aspergillus nidulas (An) NUDC is needed for nuclear movement. AnNUDC is localized at the hyphal cortex, and binds NUDF at spindle pole bodies (SPBs) and in the cytoplasm at different stages in the cell cycle. At the SPBs it is part of the dynein molecular motor/NUDF complex that regulates microtubule dynamics. Mammalian(m) NUDC associates both with the dynein complex and also with an anti-inflammatory enzyme, platelet activating factor acetylhydrolase I, PAF-AH(I) complex, through binding mNUDF, the regulatory beta subunit of PAF-AH(I). mNUDC is important for cell proliferation both in normal and tumor tissues. Its expression is elevated in various cell types undergoing mitosis or stimulated to proliferate, with high expression levels observed in leukemic cells and tumors. For a leukemic cell line, human NUDC was shown to activate the thrombopoietin (TPO) receptor (Mpl) by binding to its extracellular domain, and promoting cell proliferation and differentiation. This group also includes the human broadly immunogenic tumor associated antigen, CML66, which is highly expressed in a variety of solid tumors and in leukemias. In normal tissues high expression of CML66 is limited to testis and heart. 85 -107225 cd06468 p23_CacyBP p23_like domain found in proteins similar to Calcyclin-Binding Protein(CacyBP)/Siah-1-interacting protein (SIP). CacyBP/SIP interacts with S100A6 (calcyclin), with some other members of the S100 family, with tubulin, and with Siah-1 and Skp-1. The latter two are components of the ubiquitin ligase that regulates beta-catenin degradation. The beta-catenin gene is an oncogene participating in tumorigenesis in many different cancers. Overexpression of CacyBP/SIP, in part through its effect on the expression of beta-catenin, inhibits the proliferation, tumorigenicity, and invasion of gastric cancer cells. CacyBP/SIP is abundant in neurons and neuroblastoma NB2a cells. An extensive re-organization of microtubules accompanies the differentiation of NB2a cells. CacyBP/SIP may contribute to NB2a cell differentiation through binding to and increasing the oligomerization of tubulin. CacyBP/SIP is also implicated in differentiation of erythroid cells, rat neonatal cardiomyocytes, in mouse endometrial events, and in thymocyte development. 92 -107226 cd06469 p23_DYX1C1_like p23_like domain found in proteins similar to dyslexia susceptibility 1 (DYX1) candidate 1 (C1) protein, DYX1C1. The human gene encoding this protein is a positional candidate gene for developmental dyslexia (DD), it is located on 15q21.3 by the DYX1 DD susceptibility locus (15q15-21). Independent association studies have reported conflicting results. However, association of short-term memory, which plays a role in DD, with a variant within the DYX1C1 gene has been reported. Most proteins belonging to this group contain a C-terminal tetratricopeptide repeat (TPR) protein binding region. 78 -107227 cd06470 ACD_IbpA-B_like Alpha-crystallin domain (ACD) found in Escherichia coli inclusion body-associated proteins IbpA and IbpB, and similar proteins. IbpA and IbpB are 16 kDa small heat shock proteins (sHsps). sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. IbpA and IbpB are produced during high-level production of various heterologous proteins, specifically human prorenin, renin and bovine insulin-like growth factor 2 (bIGF-2), and are strongly associated with inclusion bodies containing these heterologous proteins. IbpA and IbpB work as an integrated system to stabilize thermally aggregated proteins in a disaggregation competent state. The chaperone activity of IbpB is also significantly elevated as the temperature increases from normal to heat shock. The high temperature results in the disassociation of 2-3-MDa IbpB oligomers into smaller approximately 600-kDa structures. This elevated activity seen under heat shock conditions is retained for an extended period of time after the temperature is returned to normal. IbpA also forms multimers. 90 -107228 cd06471 ACD_LpsHSP_like Group of bacterial proteins containing an alpha crystallin domain (ACD) similar to Lactobacillus plantarum (Lp) small heat shock proteins (sHsp) HSP 18.5, HSP 18.55 and HSP 19.3. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Transcription of the genes encoding Lp HSP 18.5, 18.55 and 19.3 is regulated by a variety of stresses including heat, cold and ethanol. Early growing L. plantarum cells contain elevated levels of these mRNAs which rapidly fall of as the cells enter stationary phase. Also belonging to this group is Bifidobacterium breve (Bb) HSP20 and Oenococcus oenis (syn. Leuconostoc oenos) (Oo) HSP18. Transcription of the gene encoding BbHSP20 is strongly induced following heat or osmotic shock, and that of the gene encoding OoHSP18 following heat, ethanol or acid shock. OoHSP18 is peripherally associated with the cytoplasmic membrane. 93 -107229 cd06472 ACD_ScHsp26_like Alpha crystallin domain (ACD) found in Saccharomyces cerevisiae (Sc) small heat shock protein (Hsp)26 and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. ScHsp26 is temperature-regulated, it switches from an inactive to a chaperone-active form upon elevation in temperature. It associates into large 24-mers storage forms which upon heat shock disassociate into dimers. These dimers initiate the interaction with non-native substrate proteins and re-assemble into large globular assemblies having one monomer of substrate bound per dimer. This group also contains Arabidopsis thaliana (Ath) Hsp15.7, a peroxisomal matrix protein which can complement the morphological phenotype of S. cerevisiae mutants deficient in Hsps26. AthHsp15.7 is minimally expressed under normal conditions and is strongly induced by heat and oxidative stress. Also belonging to this group is wheat HSP16.9 which differs in quaternary structure from the shell-type particles of ScHsp26, it assembles as a dodecameric double disc, with each disc organized as a trimer of dimers. 92 -107230 cd06475 ACD_HspB1_like Alpha crystallin domain (ACD) found in mammalian small (s)heat shock protein (Hsp)-27 (also denoted HspB1 in human) and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Hsp27 shows enhanced synthesis in response to stress. It is a molecular chaperone which interacts with a large number of different proteins. It is found in many types of human cells including breast, uterus, cervix, platelets and cancer cells. Hsp27 has diverse cellular functions including, chaperoning, regulation of actin polymerization, keratinocyte differentiation, regulation of inflammatory pathways in keratinocytes, and protection from oxidative stress through modulating glutathione levels. It is also a subunit of AUF1-containing protein complexes. It has been linked to several transduction pathways regulating cellular functions including differentiation, cell growth, development, and apoptosis. Its activity can be regulated by phosphorylation. Its unphosphorylated state is a high molecular weight aggregated form (100-800kDa) composed of up to 24 subunits, which forms as a result of multiple interactions within the ACD, and is required for chaperone function and resistance to oxidative stress. Upon phosphorylation these large aggregates rapidly disassociate to smaller oligomers and chaperone activity is modified. High constitutive levels of Hsp27 have been detected in various cancer cells, in particular those of carcinoma origin. Over-expression of Hsp27 has a protective effect against various diseases-processes, including Huntington's disease. Mutations in Hsp27 have been associated with a form of distal hereditary motor neuropathy type II and Charcot-Marie-Tooth disease type 2. 86 -107231 cd06476 ACD_HspB2_like Alpha crystallin domain (ACD) found in mammalian small heat shock protein (sHsp) HspB2/heat shock 27kDa protein 2 and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. HspB2 is preferentially and constitutively expressed in skeletal muscle and heart. HspB2 shows homooligomeric activity and forms aggregates in muscle cytosol. Although its expression is not induced by heat shock, it redistributes to the insoluble fraction in response to heat shock. In the mouse heart, HspB2 plays a role in maintaining energetic balance, by protecting cardiac energetics during ischemia/reperfusion, and allowing for increased work during acute inotropic challenge. hHspB2 [previously also known as myotonic dystrophy protein kinase (DMPK) binding protein (MKBP)] is selectively up-regulated in skeletal muscles from myotonic dystrophy patients. The ACD of hHspB2 binds the DMPK kinase domain. In vitro, hHspB2 enhances the kinase activity of DMPK and confers thermoresistance. The hHspB2 gene lies less than 1kb from the 5 prime end of the related alphaB (HspB4)-crystallin gene, with the opposite transcription direction. These two genes may share regulatory elements for their expression. 83 -107232 cd06477 ACD_HspB3_Like Alpha crystallin domain (ACD) found in mammalian HspB3, also known as heat-shock protein 27-like protein (HSPL27, 17-kDa) and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. HspB3 is expressed in adult skeletal muscle, smooth muscle, and heart, and in several other fetal tissues. In muscle cells HspB3 forms an oligomeric 150 kDa complex with myotonic dystrophy protein kinase-binding protein (MKBP/ HspB2), this complex may comprise one of two independent muscle-cell specific chaperone systems. The expression of HspB3 is induced during muscle differentiation controlled by the myogenic factor MyoD. HspB3 may also interact with Hsp22 (HspB8). 83 -107233 cd06478 ACD_HspB4-5-6 Alpha-crystallin domain found in alphaA-crystallin (HspB4), alphaB-crystallin (HspB5), and the small heat shock protein (sHsp) HspB6, also known as Hsp20. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Alpha crystallin, an abundant protein in the mammalian lens, is a large (700 kDa) heteropolymer composed of HspB4 and HspB5, generally in a molar ratio of HspB4:HspB5 of 3:1. Only trace amounts of HspB4 are found in tissues other than the lens. HspB5 on the other hand is also expressed constitutively in other tissues including brain, heart, and type I and type IIa skeletal muscle fibers, and in several cancers including gliomas, renal cell carcinomas, basal-like and metaplastic breast carcinomas, and head and neck cancer. HspB5's functions include effects on the apoptotic pathway and on metastasis. Phosphorylation of HspB5 reduces its oligomerization and anti-apoptotic activities. HspB5 is protective in demyelinating disease such as multiple sclerosis (MS), being a negative regulator of inflammation. In early active MS lesions it is the most abundant gene transcript and an autoantigen, the immune response against it would disrupt its function and worsen inflammation and demyelination. Given as therapy for ongoing demyelinating disease it may counteract this effect. It is an autoantigen in the pathogenesis of various other inflammatory disorders including Lens-associated uveitis (LAU), and Behcet's disease. Mutations in HspB5 have been associated with diseases including dominant cataract and desmin-related myopathy. Mutations in HspB4 have been associated with Autosomal Dominant Congenital Cataract (ADCC). HspB6 (Hsp20) is ubiquitous and is involved in diverse functions including regulation of glucose transport and contraction of smooth muscle, in platelet aggregation, in cardioprotection, and in the prevention of apoptosis. It interacts with the universal scaffolding and adaptor protein 14-3-3, and also with the proapoptotic protein Bax. 83 -107234 cd06479 ACD_HspB7_like Alpha crystallin domain (ACD) found in mammalian small heat shock protein (sHsp) HspB7, also known as cardiovascular small heat shock protein (cvHsp), and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. HspB7 is a 25-kDa protein, preferentially expressed in heart and skeletal muscle. It binds the cytoskeleton protein alpha-filamin (also known as actin-binding protein 280). The expression of HspB7 is increased during rat muscle aging. Its expression is also modulated in obesity implicating this protein in this and related metabolic disorders. As the human gene encoding HspB7 is mapped to chromosome 1p36.23-p34.3 it is a positional candidate for several dystrophies and myopathies. 81 -107235 cd06480 ACD_HspB8_like Alpha-crystallin domain (ACD) found in mammalian 21.6 KDa small heat shock protein (sHsp) HspB8, also denoted as Hsp22 in humans, and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. A chaperone complex formed of HspB8 and Bag3 stimulates degradation of protein complexes by macroautophagy. HspB8 also forms complexes with Hsp27 (HspB1), MKBP (HspB2), HspB3, alphaB-crystallin (HspB5), Hsp20 (HspB6), and cvHsp (HspB7). These latter interactions may depend on phosphorylation of the respective partner sHsp. HspB8 may participate in the regulation of cell proliferation, cardiac hypertrophy, apoptosis, and carcinogenesis. Point mutations in HspB8 have been correlated with the development of several congenital neurological diseases, including Charcot Marie tooth disease and distal motor neuropathy type II. 91 -107236 cd06481 ACD_HspB9_like Alpha crystallin domain (ACD) found in mammalian small heat shock protein (sHsp) HspB9 and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Human (h) HspB9 is expressed exclusively in the normal testis and in various tumor samples and is a cancer/testis antigen. hHspB9 interacts with TCTEL1 (T-complex testis expressed protein -1), a subunit of dynein. hHspB9 and TCTEL1 are co-expressed in similar cells within the testis and in tumor cells. Included in this group is Xenopus Hsp30, a developmentally-regulated heat-inducible molecular chaperone. 87 -107237 cd06482 ACD_HspB10 Alpha crystallin domain (ACD) found in mammalian small heat shock protein (sHsp) HspB10, also known as sperm outer dense fiber protein (ODFP), and similar proteins. sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Human (h) HspB10 occurs exclusively in the axoneme of sperm cells and may have a cytoskeletal role. 87 -107238 cd06488 p23_melusin_like p23_like domain similar to the C-terminal (tail) domain of vertebrate Melusin and related proteins. Melusin's tail domain interacts with the cytoplasmic domain of beta1-A and beta1-D isoforms of beta1 integrin, it does not bind other integrin beta subunits. Melusin is a muscle-specific protein expressed in skeletal and cardiac muscles but not in smooth muscle or other tissues. It is needed for heart hypertrophy following mechanical overload. The integrin-binding portion of this domain appears to be sequestered in the full length melusin protein, Ca2+ may modulate the protein's conformation exposing this binding site. This group includes Chordc1, also known as Chp-1, which is conserved from vertebrates to humans. Mammalian Chordc1 interacts with the heat shock protein (HSP) Hsp90 and is implicated in circadian and/or homeostatic mechanisms in the brain. The N-terminal portions of proteins belonging to this group contain two cysteine and histidine rich domain (CHORD) domains. 87 -107239 cd06489 p23_CS_hSgt1_like p23_like domain similar to the C-terminal CS (CHORD-SGT1) domain of human (h) Sgt1 and related proteins. hSgt1 is a co-chaperone which has been shown to be elevated in HEp-2 cells as a result of stress conditions such as heat shock. It interacts with the heat shock proteins (HSPs) Hsp70 and Hsp90, and it expression pattern is synchronized with these two Hsps. The interaction with HSP90 has been shown to involve the hSgt1_CS domain, and appears to be required for correct kinetochore assembly and efficient cell division. Some proteins in this subgroup contain a tetratricopeptide repeat (TPR) HSP-binding domain N-terminal to this CS domain, and most proteins in this subgroup contain a Sgt1-specific (SGS) domain C-terminal to the CS domain. The SGS domain interacts with some S100 family proteins. Studies suggest that S100A6 modulates in a Ca2+ dependent manner the interactions of hSgt1 with Hsp90 and Hsp70. The yeast Sgt1 CS domain is not found in this subgroup. 84 -107240 cd06490 p23_NCB5OR p23_like domain found in NAD(P)H cytochrome b5 (NCB5) oxidoreductase (OR) and similar proteins. NCB5OR is widely expressed in human organs and tissues and is localized in the ER (endoplasmic reticulum). It appears to play a critical role in maintaining viable pancreatic beta cells. Mice homozygous for a targeted knockout (KO) of the gene encoding NCB5OR develop an early-onset nonautoimmune diabetes phenotype with a non-inflammatory beta-cell deficiency. The role of NCB5OR in beta cells may be in maintaining or regulating their redox status. Proteins in this group in addition contain an N-terminal cytochrome b5 domain and a C-terminal cytochrome b5 oxidoreductase domain. The gene encoding NCB5OR has been considered as a positional candidate for type II diabetes and other diabetes subtypes related to B-cell dysfunction, however variation in its coding region does not appear not to be a major contributor to the pathogenesis of these diseases. 87 -107241 cd06492 p23_mNUDC_like p23-like NUD (nuclear distribution) C-like domain of mammalian(m) NUDC and similar proteins. Mammalian(m) NUDC associates both with the dynein complex and also with an anti-inflammatory enzyme, platelet activating factor acetylhydrolase I, PAF-AH(I) complex, through binding mNUDF, the regulatory beta subunit of PAF-AH(I). mNUDC is important for cell proliferation both in normal and tumor tissues. Its expression is elevated in various cell types undergoing mitosis or stimulated to proliferate, with high expression levels observed in leukemic cells and tumors. For a leukemic cell line, human NUDC was shown to activate the thrombopoietin (TPO) receptor (Mpl) by binding to its extracellular domain, and promoting cell proliferation and differentiation. 87 -107242 cd06493 p23_NUDCD1_like p23_NUDCD1: p23-like NUD (nuclear distribution) C-like domain found in human NUD (nuclear distribution) C domain-containing protein 1, NUDCD1 (also known as CML66), and similar proteins. NUDCD1/CML66 is a broadly immunogenic tumor associated antigen, which is highly expressed in a variety of solid tumors and in leukemias. In normal tissues high expression of NUDCD1/CML66 is limited to testis and heart. 85 -107243 cd06494 p23_NUDCD2_like p23-like NUD (nuclear distribution) C-like found in human NUDC domain-containing protein 2 (NUDCD2) and similar proteins. Little is known about the function of the proteins in this subgroup. 93 -107244 cd06495 p23_NUDCD3_like p23-like NUD (nuclear distribution) C-like domain found in human NUDC domain-containing protein 3 (NUDCD3) and similar proteins. Little is known about the function of the proteins in this subgroup. 102 -107245 cd06497 ACD_alphaA-crystallin_HspB4 Alpha-crystallin domain found in the small heat shock protein (sHsp) alphaA-crystallin (HspB4, 20kDa). sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Alpha crystallin, an abundant protein in the mammalian lens, is a large (700 kDa) heteropolymer composed of HspB4 and HspB5, generally in a molar ratio of HspB4:HspB5 of 3:1. Only trace amounts of HspB4 are found in tissues other than the lens. HspB5 does not belong to this group. Mutations inHspB4 have been associated with Autosomal Dominant Congenital Cataract (ADCC). The chaperone-like functions of HspB4 are considered important for maintaining lens transparency and preventing cataract. 86 -107246 cd06498 ACD_alphaB-crystallin_HspB5 Alpha-crystallin domain found in the small heat shock protein (sHsp) alphaB-crystallin (HspB5, 20kDa). sHsps are molecular chaperones that suppress protein aggregation and protect against cell stress, and are generally active as large oligomers consisting of multiple subunits. Alpha crystallin, an abundant protein in the mammalian lens, is a large (700 kDa) heteropolymer composed of HspB4 and HspB5, generally in a molar ratio of HspB4:HspB5 of 3:1. HspB4 does not belong to this group. HspB5 shows increased synthesis in response to stress. HspB5 is also expressed constitutively in other tissues including brain, heart, and type I and type IIa skeletal muscle fibers, and in several cancers including gliomas, renal cell carcinomas, basal-like and metaplastic breast carcinomas, and head and neck cancer. Its functions include effects on the apoptotic pathway and on metastasis. Phosphorylation of HspB5 reduces its oligomerization and anti-apoptotic activities. HspB5 is protective in demyelinating disease such as multiple sclerosis (MS), being a negative regulator of inflammation. In early active MS lesions it is the most abundant gene transcript and an autoantigen, the immune response against it would disrupt its function and worsen inflammation and demyelination. Given as therapy for ongoing demyelinating disease it may counteract this effect. It is an autoantigen in the pathogenesis of various other inflammatory disorders including Lens-associated uveitis (LAU), and Behcet's disease. Mutations in HspB5 have been associated with diseases including dominant cataract and desmin-related myopathy. 84 -133460 cd06499 GT_MraY-like Glycosyltransferase 4 (GT4) includes both eukaryotic and prokaryotic UDP-D-N-acetylhexosamine:polyprenol phosphate D-N-acetylhexosamine-1-phosphate transferases. They catalyze the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate, which is the initiation step of protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria. One member, D-N-acetylhexosamine 1-phosphate transferase (GPT) is a eukaryotic enzyme, which is specific for UDP-GlcNAc as donor substrate and dolichol-phosphate as the membrane bound acceptor. The bacterial members MraY, WecA, and WbpL/WbcO utilize undecaprenol phosphate as the acceptor substrate, but use different UDP-sugar donor substrates. MraY-type transferases are highly specific for UDP-N-acetylmuramate-pentapeptide, whereas WecA proteins are selective for UDP-N-acetylglucosamine (UDP-GlcNAc). The WbcO/WbpL substrate specificity has not yet been determined, but the structure of their biosynthetic endproducts implies that UDP-N-acetyl-D-fucosamine (UDP-FucNAc) and/or UDPN-acetyl-D-quinosamine (UDP-QuiNAc) are used. The eukaryotic reaction is the first step in the assembly of dolichol-linked oligosaccharide intermediates and is essential for N-glycosylation. The prokaryotic reactions lead to the formation of polyprenol-linked oligosaccharides involved in bacterial cell wall and peptidoglycan assembly. Archaeal and eukaryotic enzymes may use the same substrates and are evolutionarily closer than the bacterial enzyme. Archaea possess the same N-glycosylation pathway as eukaryotes. A glycosyl transferase gene Mv1751 in M. voltae encodes for the enzyme that carries out the first step in the pathway, the attachment of GlcNAc to a dolichol lipid carrier in the membrane. A lethal mutation in the alg7 (GPT) gene in Saccharomyces cerevisiae was successfully complemented with Mv1751, the archaea gene. 185 -99748 cd06502 TA_like Low-specificity threonine aldolase (TA). This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). TA catalyzes the conversion of L-threonine or L-allo-threonine to glycine and acetaldehyde in a secondary glycine biosynthetic pathway. 338 -349951 cd06503 ATP-synt_Fo_b F-type ATP synthase, membrane subunit b. Membrane subunit b is a component of the Fo complex of FoF1-ATP synthase. The F-type ATP synthases (FoF1-ATPase) consist of two structural domains: the F1 (assembly factor one) complex containing the soluble catalytic core, and the Fo (oligomycin sensitive factor) complex containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. F1 is composed of alpha (or A), beta (B), gamma (C), delta (D) and epsilon (E) subunits with a stoichiometry of 3:3:1:1:1, while Fo consists of the three subunits a, b, and c (1:2:10-14). An oligomeric ring of 10-14 c subunits (c-ring) make up the Fo rotor. The flux of protons through the ATPase channel (Fo) drives the rotation of the c-ring, which in turn is coupled to the rotation of the F1 complex gamma subunit rotor due to the permanent binding between the gamma and epsilon subunits of F1 and the c-ring of Fo. The F-ATP synthases are primarily found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts or in the plasma membranes of bacteria. The F-ATP synthases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. This group also includes F-ATP synthase that has also been found in the archaea Candidatus Methanoperedens. 132 -119382 cd06522 GH25_AtlA-like AtlA is an autolysin found in Gram-positive lactic acid bacteria that degrades bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. This family includes the AtlA and Aml autolysins from Streptococcus mutans which have a C-terminal glycosyl hydrolase family 25 (GH25) catalytic domain as well as six tandem N-terminal repeats of the GBS (group B Streptococcus) Bsp-like peptidoglycan-binding domain. Other members of this family have one or more C-terminal peptidoglycan-binding domain(s) (SH3 or LysM) in addition to the GH25 domain. 192 -119383 cd06523 GH25_PlyB-like PlyB is a bacteriophage endolysin that displays potent lytic activity toward Bacillus anthracis. PlyB has an N-terminal glycosyl hydrolase family 25 (GH25) catalytic domain and a C-terminal bacterial SH3-like domain, SH3b. Both domains are required for effective catalytic activity. Endolysins are produced by bacteriophages at the end of their life cycle and participate in lysing the bacterial cell in order to release the newly formed progeny. Endolysins (also referred to as endo-N-acetylmuramidases or peptidoglycan hydrolases) degrade bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. 177 -119384 cd06524 GH25_YegX-like YegX is an uncharacterized bacterial protein with a glycosyl hydrolase family 25 (GH25) catalytic domain that is similar in sequence to the CH-type (Chalaropsis-type) lysozymes of the GH25 family of endolysins. 194 -119385 cd06525 GH25_Lyc-like Lyc muramidase is an autolytic lysozyme (autolysin) from Clostridium acetobutylicum encoded by the lyc gene. Lyc has a glycosyl hydrolase family 25 (GH25) catalytic domain. Endo-N-acetylmuramidases are lysozymes (also referred to as peptidoglycan hydrolases) that degrade bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. 184 -107247 cd06526 metazoan_ACD Alpha-crystallin domain (ACD) of metazoan alpha-crystallin-type small(s) heat shock proteins (Hsps). sHsps are small stress induced proteins with monomeric masses between 12 -43 kDa, whose common feature is the Alpha-crystallin domain (ACD). sHsps are generally active as large oligomers consisting of multiple subunits, and are believed to be ATP-independent chaperones that prevent aggregation and are important in refolding in combination with other Hsps. 83 -132725 cd06528 RNAP_A'' A'' subunit of Archaeal RNA Polymerase (RNAP). Archaeal RNA polymerase (RNAP), like bacterial RNAP, is a large multi-subunit complex responsible for the synthesis of all RNAs in the cell. The relative positioning of the RNAP core is highly conserved between archaeal RNAP and the three classes of eukaryotic RNAPs. In archaea, the largest subunit is split into two polypeptides, A' and A'', which are encoded by separate genes in an operon. Sequence alignments reveal that the archaeal A'' subunit corresponds to the C-terminal one-third of the RNAPII largest subunit (Rpb1). In subunit A'', several loops in the jaw domain are shorter. The RNAPII Rpb1 interacts with the second-largest subunit (Rpb2) to form the DNA entry and RNA exit channels in addition to the catalytic center of RNA synthesis. 363 -119397 cd06529 S24_LexA-like Peptidase S24 LexA-like proteins are involved in the SOS response leading to the repair of single-stranded DNA within the bacterial cell. This family includes: the lambda repressor CI/C2 family and related bacterial prophage repressor proteins; LexA (EC 3.4.21.88), the repressor of genes in the cellular SOS response to DNA damage; MucA and the related UmuD proteins, which are lesion-bypass DNA polymerases, induced in response to mitogenic DNA damage; RulA, a component of the rulAB locus that confers resistance to UV, and RuvA, which is a component of the RuvABC resolvasome that catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. The LexA-like proteins contain two-domains: an N-terminal DNA binding domain and a C-terminal domain (CTD) that provides LexA dimerization as well as cleavage activity. They undergo autolysis, cleaving at an Ala-Gly or a Cys-Gly bond, separating the DNA-binding domain from the rest of the protein. In the presence of single-stranded DNA, the LexA, UmuD and MucA proteins interact with RecA, activating self cleavage, thus either derepressing transcription in the case of LexA or activating the lesion-bypass polymerase in the case of UmuD and MucA. The LexA proteins are serine proteases that carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. LexA sequence homologs are found in almost all of the bacterial genomes sequenced to date, covering a large number of phyla, suggesting both, an ancient origin and a widespread distribution of lexA and the SOS response. 81 -119398 cd06530 S26_SPase_I The S26 Type I signal peptidase (SPase; LepB; leader peptidase B; leader peptidase I; EC 3.4.21.89) family members are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidase I, which is the most intensively studied, has two N-terminal transmembrane segments inserted in the plasma membrane and a hydrophilic, C-terminal catalytic region that is located in the periplasmic space. Although the bacterial signal peptidase I is monomeric, signal peptidases of eukaryotic cells commonly function as oligomeric complexes containing two divergent copies of the catalytic monomer. These are the IMP1 and IMP2 signal peptidases of the mitochondrial inner membrane that remove leader peptides from nuclear- and mitochondrial-encoded proteins. Also, two components of the endoplasmic reticulum signal peptidase in mammals (18-kDa and 21-kDa) belong to this family and they process many proteins that enter the ER for retention or for export to the Golgi apparatus, secretory vesicles, plasma membranes or vacuole. An atypical member of the S26 SPase type I family is the TraF peptidase which has the remarkable activity of producing a cyclic protein of the Pseudomonas pilin system. The type I signal peptidases are unique serine proteases that utilize a serine/lysine catalytic dyad mechanism in place of the classical serine/histidine/aspartic acid catalytic triad mechanism. 85 -133474 cd06532 Glyco_transf_25 Glycosyltransferase family 25 [lipooligosaccharide (LOS) biosynthesis protein] is a family of glycosyltransferases involved in LOS biosynthesis. The members include the beta(1,4) galactosyltransferases: Lgt2 of Moraxella catarrhalis, LgtB and LgtE of Neisseria gonorrhoeae and Lic2A of Haemophilus influenzae. M. catarrhalis Lgt2 catalyzes the addition of galactose (Gal) to the growing chain of LOS on the cell surface. N. gonorrhoeae LgtB and LgtE link Gal-beta(1,4) to GlcNAc (N-acetylglucosamine) and Glc (glucose), respectively. The genes encoding LgtB and LgtE are two genes of a five gene locus involved in the synthesis of gonococcal LOS. LgtE is believed to perform the first step in LOS biosynthesis. 128 -119439 cd06533 Glyco_transf_WecG_TagA The glycosyltransferase WecG/TagA superfamily contains Escherichia coli WecG, Bacillus subtilis TagA and related proteins. E. coli WecG is believed to be a UDP-N-acetyl-D-mannosaminuronic acid transferase, and is involved in enterobacterial common antigen (eca) synthesis. B. subtilis TagA plays a key role in the Wall Teichoic Acid (WTA) biosynthetic pathway, catalyzing the transfer of N-acetylmannosamine to the C4 hydroxyl of a membrane-anchored N-acetylglucosaminyl diphospholipid to make ManNAc-beta-(1,4)-GlcNAc-pp-undecaprenyl. This is the first committed step in this pathway. Also included in this group is Xanthomonas campestris pv. campestris GumM, a glycosyltransferase participating in the biosynthesis of the exopolysaccharide xanthan. 171 -143395 cd06534 ALDH-SF NAD(P)+-dependent aldehyde dehydrogenase superfamily. The aldehyde dehydrogenase superfamily (ALDH-SF) of NAD(P)+-dependent enzymes, in general, oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes to their corresponding carboxylic acids and play an important role in detoxification. Besides aldehyde detoxification, many ALDH isozymes possess multiple additional catalytic and non-catalytic functions such as participating in metabolic pathways, or as binding proteins, or osmoregulants, to mention a few. The enzyme has three domains, a NAD(P)+ cofactor-binding domain, a catalytic domain, and a bridging domain; and the active enzyme is generally either homodimeric or homotetrameric. The catalytic mechanism is proposed to involve cofactor binding, resulting in a conformational change and activation of an invariant catalytic cysteine nucleophile. The cysteine and aldehyde substrate form an oxyanion thiohemiacetal intermediate resulting in hydride transfer to the cofactor and formation of a thioacylenzyme intermediate. Hydrolysis of the thioacylenzyme and release of the carboxylic acid product occurs, and in most cases, the reduced cofactor dissociates from the enzyme. The evolutionary phylogenetic tree of ALDHs appears to have an initial bifurcation between what has been characterized as the classical aldehyde dehydrogenases, the ALDH family (ALDH) and extended family members or aldehyde dehydrogenase-like (ALDH-L) proteins. The ALDH proteins are represented by enzymes which share a number of highly conserved residues necessary for catalysis and cofactor binding and they include such proteins as retinal dehydrogenase, 10-formyltetrahydrofolate dehydrogenase, non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase, delta(1)-pyrroline-5-carboxylate dehydrogenases, alpha-ketoglutaric semialdehyde dehydrogenase, alpha-aminoadipic semialdehyde dehydrogenase, coniferyl aldehyde dehydrogenase and succinate-semialdehyde dehydrogenase. Included in this larger group are all human, Arabidopsis, Tortula, fungal, protozoan, and Drosophila ALDHs identified in families ALDH1 through ALDH22 with the exception of families ALDH18, ALDH19, and ALDH20 which are present in the ALDH-like group. The ALDH-like group is represented by such proteins as gamma-glutamyl phosphate reductase, LuxC-like acyl-CoA reductase, and coenzyme A acylating aldehyde dehydrogenase. All of these proteins have a conserved cysteine that aligns with the catalytic cysteine of the ALDH group. 367 -119368 cd06535 CIDE_N_CAD CIDE_N domain of CAD nuclease. The CIDE_N (cell death-inducing DFF45-like effector, N-terminal) domain is found at the N-terminus of CAD nuclease (caspase-activated DNase/DNA fragmentation factor, DFF40) and its inhibitor, ICAD(DFF45). These proteins are associated with the chromatin condensation and DNA fragmentation events of apoptosis; the CIDE_N domain is thought to regulate the activity of CAD/DFF40 and ICAD/DFF45 during apoptosis. In normal cells, DFF exists in the nucleus as a heterodimer composed of CAD/DFF40 as a latent nuclease and its chaperone and inhibitor subunit ICAD/DFF45. Apoptotic activation of caspase-3 results in the cleavage of DFF45/ICAD and the release of active DFF40/CAD nuclease. 77 -119369 cd06536 CIDE_N_ICAD CIDE_N domain of ICAD. The CIDE_N (cell death-inducing DFF45-like effector, N-terminal) domain is found at the N-terminus of the CAD nuclease (caspase-activated DNase/DNA fragmentation factor, DFF40) and its inhibitor, ICAD (DFF45). These proteins are associated with the chromatin condensation and DNA fragmentation events of apoptosis; the CIDE_N domain is thought to regulate the activity of the CAD/DFF40 and ICAD/DFF45 during apoptosis. In normal cells, DFF exists in the nucleus as a heterodimer composed of CAD/DFF40 as a latent nuclease and its chaperone and inhibitor subunit ICAD/DFF45. Apoptotic activation of caspase-3 results in the cleavage of DFF45/ICAD and release of active DFF40/CAD nuclease. 80 -119370 cd06537 CIDE_N_B CIDE_N domain of CIDE-B proteins. The CIDE_N (cell death-inducing DFF45-like effector, N-terminal) domain is found at the N-terminus of the CIDE (cell death-inducing DFF45-like effector) proteins. These proteins are associated with the chromatin condensation and DNA fragmentation events of apoptosis; the CIDE_N domain is thought to regulate the activity of the CAD/DFF40, ICAD/DFF45 and CIDE nucleases during apoptosis. The CIDE protein family includes 3 members: CIDE-A, CIDE-B, and FSP27(CIDE-C). Based on sequence similarity with DFF40 and DFF45, CIDE proteins were initially characterized as mitochondrial activators of apoptosis. However, strong metabolic phenotypes of mice lacking CIDE-A and CIDE-B indicated that this family may play critical roles in energy balance. 81 -119371 cd06538 CIDE_N_FSP27 CIDE_N domain of FSP27 proteins. The CIDE-N (cell death-inducing DFF45-like effector, N-terminal) domain is found in the FSP27/CIDE-C protein, which has been identified as a n adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation. The CIDE protein family includes 3 members: CIDE-A, CIDE-B, and FSP27(CIDE-C). Based on sequence similarity with DFF40 and DFF45, CIDE proteins were initially characterized as mitochondrial activators of apoptosis. The CIDE-N domain of FSP27 is sufficient to increase apoptosis in vitro when overexpressed. 79 -119372 cd06539 CIDE_N_A CIDE_N domain of CIDE-A proteins. The CIDE_N (cell death-inducing DFF45-like effector, N-terminal) domain is found at the N-terminus of the CIDE (cell death-inducing DFF45-like effector) proteins. These proteins are associated with the chromatin condensation and DNA fragmentation events of apoptosis; the CIDE_N domain is thought to regulate the activity of the CAD/DFF40, ICAD/DFF45, and CIDE nucleases during apoptosis. The CIDE protein family includes 3 members: CIDE-A, CIDE-B, and FSP27(CIDE-C). Based on sequence similarity with DFF40 and DFF45, the CIDE proteins were initially characterized as mitochondrial activators of apoptosis. However, strong metabolic phenotypes of mice lacking CIDE-A and CIDE-B indicated that this family may play critical roles in energy balance. 78 -119343 cd06541 ASCH ASC-1 homology or ASCH domain, a small beta-barrel domain found in all three kingdoms of life. ASCH resembles the RNA-binding PUA domain and may also interact with RNA. ASCH has been proposed to function as an RNA-binding domain during coactivation, RNA-processing and the regulation of prokaryotic translation. The domain has been named after the ASC-1 protein, the activating signal cointegrator 1 or thyroid hormone receptor interactor protein 4 (TRIP4). ASC-1 is conserved in many eukaryotes and has been suggested to participate in a protein complex that interacts with RNA. It has been shown that ASC-1 mediates the interaction between various transciption factors and the basal transcriptional machinery. 105 -119359 cd06542 GH18_EndoS-like Endo-beta-N-acetylglucosaminidases are bacterial chitinases that hydrolyze the chitin core of various asparagine (N)-linked glycans and glycoproteins. The endo-beta-N-acetylglucosaminidases have a glycosyl hydrolase family 18 (GH18) catalytic domain. Some members also have an additional C-terminal glycosyl hydrolase family 20 (GH20) domain while others have an N-terminal domain of unknown function (pfam08522). Members of this family include endo-beta-N-acetylglucosaminidase S (EndoS) from Streptococcus pyogenes, EndoF1, EndoF2, EndoF3, and EndoH from Flavobacterium meningosepticum, and EndoE from Enterococcus faecalis. EndoS is a secreted endoglycosidase from Streptococcus pyogenes that specifically hydrolyzes the glycan on human IgG between two core N-acetylglucosamine residues. EndoE is a secreted endoglycosidase, encoded by the ndoE gene in Enterococcus faecalis, that hydrolyzes the glycan on human RNase B. 255 -119360 cd06543 GH18_PF-ChiA-like PF-ChiA is an uncharacterized chitinase found in the hyperthermophilic archaeon Pyrococcus furiosus with a glycosyl hydrolase family 18 (GH18) catalytic domain as well as a cellulose-binding domain. Members of this domain family are found not only in archaea but also in eukaryotes and prokaryotes. PF-ChiA exhibits hydrolytic activity toward both colloidal and crystalline (beta/alpha) chitins at high temperature. 294 -119361 cd06544 GH18_narbonin Narbonin is a plant 2S protein from the globulin fraction of narbon bean (Vicia narbonensis L.) cotyledons with unknown function. Narbonin has a glycosyl hydrolase family 18 (GH18) domain without the conserved catalytic residues and with no known enzymatic activity. Narbonin amounts to up to 3% of the total seed globulins of mature seeds and was thought to be a storage protein but was found to degrade too slowly during germination. This family also includes the VfNOD32 nodulin from Vicia faba. 253 -119362 cd06545 GH18_3CO4_chitinase The Bacteroides thetaiotaomicron protein represented by pdb structure 3CO4 is an uncharacterized bacterial member of the family 18 glycosyl hydrolases with homologs found in Flavobacterium, Stigmatella, and Pseudomonas. 253 -119363 cd06546 GH18_CTS3_chitinase GH18 domain of CTS3 (chitinase 3), an uncharacterized protein from the human fungal pathogen Coccidioides posadasii. CTS3 has a chitinase-like glycosyl hydrolase family 18 (GH18) domain; and has homologs in bacteria as well as fungi. 256 -119364 cd06547 GH85_ENGase Endo-beta-N-acetylglucosaminidase (ENGase) hydrolyzes the N-N'-diacetylchitobiosyl core of N-glycosylproteins. The beta-1,4-glycosyl bond located between two N-acetylglucosamine residues is hydrolyzed such that N-acetylglucosamine 1 remains with the protein and N-acetylglucosamine 2 forms the reducing end of the released glycan. ENGase is a key enzyme in the processing of free oligosaccharides in the cytosol of eukaryotes. Oligosaccharides formed in the lumen of the endoplasmic reticulum are transported into the cytosol where they are catabolized by cytosolic ENGases and other enzymes, possibly to maximize the reutilization of the component sugars. ENGases have an eight-stranded alpha/beta barrel topology and are classified as a family 85 glycosyl hydrolase (GH85) domain. The GH85 ENGases are sequence-similar to the family 18 glycosyl hydrolases, also known as GH18 chitinases. An ENGase-like protein is also found in bacteria and is included in this alignment model. 339 -119365 cd06548 GH18_chitinase The GH18 (glycosyl hydrolases, family 18) type II chitinases hydrolyze chitin, an abundant polymer of N-acetylglucosamine and have been identified in bacteria, fungi, insects, plants, viruses, and protozoan parasites. The structure of this domain is an eight-stranded alpha/beta barrel with a pronounced active-site cleft at the C-terminal end of the beta-barrel. 322 -119366 cd06549 GH18_trifunctional GH18 domain of an uncharacterized family of bacterial proteins, which share a common three-domain architecture: an N-terminal glycosyl hydrolase family 18 (GH18) domain, a glycosyl transferase family 2 domain, and a C-terminal polysaccharide deacetylase domain. 298 -119348 cd06550 TM_ABC_iron-siderophores_like Transmembrane subunit (TM), of Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporters involved in the uptake of siderophores, heme, vitamin B12, or the divalent cations Mg2+ and Zn2+. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP which delivers it to a gated translocation pathway formed by the two TMs. The TMs are bundles of alpha helices that transverse the cytoplasmic membrane multiple times. The two ABCs bind and hydrolyze ATP and drive the transport reaction. Each TM has a prominent cytoplasmic loop which contacts an ABC and represents a conserved motif. The two TMs form either a homodimer (e.g. in the case of the BtuC subunits of the Escherichia coli BtuCD vitamin B12 transporter), a heterodimer (e.g. the TroC and TroD subunits of the Treponema pallidum general transition metal transporter, TroBCD), or a pseudo-heterodimer (e.g. the FhuB protein of the E. coli ferrichrome transporter, FhuBC). FhuB contains two tandem TMs which associate to form the pseudo-heterodimer. Both FhuB TMs are found in this hierarchy. 261 -153244 cd06551 LPLAT Lysophospholipid acyltransferases (LPLATs) of glycerophospholipid biosynthesis. Lysophospholipid acyltransferase (LPLAT) superfamily members are acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis. These proteins catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this superfamily are LPLATs such as glycerol-3-phosphate 1-acyltransferase (GPAT, PlsB), 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT, PlsC), lysophosphatidylcholine acyltransferase 1 (LPCAT-1), lysophosphatidylethanolamine acyltransferase (LPEAT, also known as, MBOAT2, membrane-bound O-acyltransferase domain-containing protein 2), lipid A biosynthesis lauroyl/myristoyl acyltransferase, 2-acylglycerol O-acyltransferase (MGAT), dihydroxyacetone phosphate acyltransferase (DHAPAT, also known as 1 glycerol-3-phosphate O-acyltransferase 1) and Tafazzin (the protein product of the Barth syndrome (TAZ) gene). 187 -119344 cd06552 ASCH_yqfb_like ASC-1 homology domain, subfamily similar to Escherichia coli Yqfb. The ASCH domain, a small beta-barrel domain found in all three kingdoms of life, resembles the RNA-binding PUA domain and may also interact with RNA. ASCH has been proposed to function as an RNA-binding domain during coactivation, RNA-processing and the regulation of prokaryotic translation. 100 -119345 cd06553 ASCH_Ef3133_like ASC-1 homology domain, subfamily similar to Enterococcus faecalis Ef3133. The ASCH domain, a small beta-barrel domain found in all three kingdoms of life, resembles the RNA-binding PUA domain and may also interact with RNA. ASCH has been proposed to function as an RNA-binding domain during coactivation, RNA-processing and the regulation of prokaryotic translation. 127 -119346 cd06554 ASCH_ASC-1_like ASC-1 homology domain, ASC-1-like subfamily. The ASCH domain, a small beta-barrel domain found in all three kingdoms of life, resembles the RNA-binding PUA domain and may also interact with RNA. ASCH has been proposed to function as an RNA-binding domain during coactivation, RNA-processing and the regulation of prokaryotic translation. The domain has been named after the ASC-1 protein, the activating signal cointegrator 1 or thyroid hormone receptor interactor protein 4 (TRIP4). ASC-1 is conserved in many eukaryotes and has been suggested to participate in a protein complex that interacts with RNA. It has been shown that ASC-1 mediates the interaction between various transciption factors and the basal transcriptional machinery. 113 -119347 cd06555 ASCH_PF0470_like ASC-1 homology domain, subfamily similar to Pyrococcus furiosus Pf0470. The ASCH domain, a small beta-barrel domain found in all three kingdoms of life, resembles the RNA-binding PUA domain and may also interact with RNA. ASCH has been proposed to function as an RNA-binding domain during coactivation, RNA-processing and the regulation of prokaryotic translation. 109 -119341 cd06556 ICL_KPHMT Members of the ICL/PEPM_KPHMT enzyme superfamily catalyze the formation and cleavage of either P-C or C-C bonds. Typical members are phosphoenolpyruvate mutase (PEPM), phosphonopyruvate hydrolase (PPH), carboxyPEP mutase (CPEP mutase), oxaloacetate hydrolase (OAH), isocitrate lyase (ICL), 2-methylisocitrate lyase (MICL), and ketopantoate hydroxymethyltransferase (KPHMT). 240 -119342 cd06557 KPHMT-like Ketopantoate hydroxymethyltransferase (KPHMT) is the first enzyme in the pantothenate biosynthesis pathway. Ketopantoate hydroxymethyltransferase (KPHMT) catalyzes the first committed step in the biosynthesis of pantothenate (vitamin B5), which is a precursor to coenzyme A and is required for penicillin biosynthesis. 254 -119339 cd06558 crotonase-like Crotonase/Enoyl-Coenzyme A (CoA) hydratase superfamily. This superfamily contains a diverse set of enzymes including enoyl-CoA hydratase, napthoate synthase, methylmalonyl-CoA decarboxylase, 3-hydoxybutyryl-CoA dehydratase, and dienoyl-CoA isomerase. Many of these play important roles in fatty acid metabolism. In addition to a conserved structural core and the formation of trimers (or dimers of trimers), a common feature in this superfamily is the stabilization of an enolate anion intermediate derived from an acyl-CoA substrate. This is accomplished by two conserved backbone NH groups in active sites that form an oxyanion hole. 195 -143472 cd06559 Endonuclease_V Endonuclease_V, a DNA repair enzyme that initiates repair of nitrosative deaminated purine bases. Endonuclease_V (EndoV) is an enzyme that can initiate repair of all possible deaminated DNA bases. EndoV cleaves the DNA strand containing lesions at the second phosphodiester bond 3' to the lesion using Mg2+ as a cofactor. EndoV homologs are conserved throughout all domains of life from bacteria to humans. EndoV is encoded by the nfi gene and nfi null mutant mice have a phenotype prone to cancer. The ability of endonuclease V to recognize mismatches and abnormal replicative DNA structures suggests that the enzyme plays an important role in DNA metabolism. The details of downstream processing for the EndoV pathway remain unknown. 208 -143473 cd06560 PriL Archaeal/eukaryotic core primase: Large subunit, PriL. Primases synthesize the RNA primers required for DNA replication. Primases are grouped into two classes, bacteria/bacteriophage and archaeal/eukaryotic. The proteins in the two classes differ in structure and the replication apparatus components. The DNA replication machinery of archaeal organisms contains only the core primase, a simpler arrangement compared to eukaryotes. Archaeal/eukaryotic core primase is a heterodimeric enzyme consisting of a small catalytic subunit (PriS) and a large subunit (PriL). Although the catalytic activity resides within PriS, the PriL subunit is essential for primase function as disruption of the PriL gene in yeast is lethal. PriL is composed of two structural domains. Several functions have been proposed for PriL, such as the stabilization of PriS, involvement in the initiation of synthesis, the improvement of primase processivity, and the determination of product size. 166 -132880 cd06561 AlkD_like A new structural DNA glycosylase. This domain represents a new and uncharacterized structural superfamily of DNA glycosylases that form an alpha-alpha superhelix fold that are not belong to the identified five structural DNA glycosylase superfamilies (UDG, AAG/MNPG, MutM/Fpg and helix-hairpin-helix). DNA glycosylases removing alkylated base residues have been identified in all organisms investigated and may be universally present in nature. DNA glycosylases catalyze the first step in Base Excision Repair (BER) pathway by cleaving damaged DNA bases within double strand DNA to produce an abasic site. The resulting abasic site is further processed by AP endonuclease, phosphodiesterase, DNA polymerases, and DNA ligase functions to restore the DNA to an undamaged state. All glycosylase examined to date utilize a similar strategy for binding DNA and base flipping despite their structural diversity. 197 -119332 cd06562 GH20_HexA_HexB-like Beta-N-acetylhexosaminidases catalyze the removal of beta-1,4-linked N-acetyl-D-hexosamine residues from the non-reducing ends of N-acetyl-beta-D-hexosaminides including N-acetylglucosides and N-acetylgalactosides. The hexA and hexB genes encode the alpha- and beta-subunits of the two major beta-N-acetylhexosaminidase isoenzymes, N-acetyl-beta-D-hexosaminidase A (HexA) and beta-N-acetylhexosaminidase B (HexB). Both the alpha and the beta catalytic subunits have a TIM-barrel fold and belong to the glycosyl hydrolase family 20 (GH20). The HexA enzyme is a heterodimer containing one alpha and one beta subunit while the HexB enzyme is a homodimer containing two beta-subunits. Hexosaminidase mutations cause an inability to properly hydrolyze certain sphingolipids which accumulate in lysosomes within the brain, resulting in the lipid storage disorders Tay-Sachs and Sandhoff. Mutations in the alpha subunit cause in a deficiency in the HexA enzyme and result in Tay-Sachs, mutations in the beta-subunit cause in a deficiency in both HexA and HexB enzymes and result in Sandhoff disease. In both disorders GM(2) gangliosides accumulate in lysosomes. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 348 -119333 cd06563 GH20_chitobiase-like The chitobiase of Serratia marcescens is a beta-N-1,4-acetylhexosaminidase with a glycosyl hydrolase family 20 (GH20) domain that hydrolyzes the beta-1,4-glycosidic linkages in oligomers derived from chitin. Chitin is degraded by a two step process: i) a chitinase hydrolyzes the chitin to oligosaccharides and disaccharides such as di-N-acetyl-D-glucosamine and chitobiose, ii) chitobiase then further degrades these oligomers into monomers. This GH20 domain family includes an N-acetylglucosamidase (GlcNAcase A) from Pseudoalteromonas piscicida and an N-acetylhexosaminidase (SpHex) from Streptomyces plicatus. SpHex lacks the C-terminal PKD (polycystic kidney disease I)-like domain found in the chitobiases. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 357 -119334 cd06564 GH20_DspB_LnbB-like Glycosyl hydrolase family 20 (GH20) catalytic domain of dispersin B (DspB), lacto-N-biosidase (LnbB) and related proteins. Dispersin B is a soluble beta-N-acetylglucosamidase found in bacteria that hydrolyzes the beta-1,6-linkages of PGA (poly-beta-(1,6)-N-acetylglucosamine), a major component of the extracellular polysaccharide matrix. Lacto-N-biosidase hydrolyzes lacto-N-biose (LNB) type I oligosaccharides at the nonreducing terminus to produce lacto-N-biose as part of the GNB/LNB (galacto-N-biose/lacto-N-biose I) degradation pathway. The lacto-N-biosidase from Bifidobacterium bifidum has this GH20 domain, a carbohydrate binding module 32, and a bacterial immunoglobulin-like domain 2, as well as a YSIRK signal peptide and a G5 membrane anchor at the N and C termini, respectively. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 326 -119335 cd06565 GH20_GcnA-like Glycosyl hydrolase family 20 (GH20) catalytic domain of N-acetyl-beta-D-glucosaminidase (GcnA, also known as BhsA) and related proteins. GcnA is an exoglucosidase which cleaves N-acetyl-beta-D-galactosamine (NAG) and N-acetyl-beta-D-galactosamine residues from 4-methylumbelliferylated (4MU) substrates, as well as cleaving NAG from chito-oligosaccharides (i.e. NAG polymers). In contrast, sulfated forms of the substrate are unable to be cleaved and act instead as mild competitive inhibitors. Additionally, the enzyme is known to be poisoned by several first-row transition metals as well as by mercury. GcnA forms a homodimer with subunits comprised of three domains, an N-terminal zincin-like domain, this central catalytic GH20 domain, and a C-terminal alpha helical domain. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 301 -143475 cd06567 Peptidase_S41 C-terminal processing peptidase family S41. Peptidase family S41 (C-terminal processing peptidase or CTPase family) contains very different subfamilies; it includes photosystem II D1 C-terminal processing protease (CTPase), interphotoreceptor retinoid-binding protein IRBP and tricorn protease (TRI). CTPase and TRI both contain the PDZ domain while IRBP, although being very similar to the tail-specific protease domain, lacks the PDZ insertion domain and hydrolytic activity. These serine proteases have distinctly different active sites: in CTPase, the active site consists of a serine/lysine catalytic dyad while in tricorn core protease, it is a tetrad (serine, histidine, serine, glutamate). CPases with different substrate specificities in different species include processing of D1 protein of the photosystem II reaction center in higher plants and cleavage of a peptide of 11 residues from the precursor form of penicillin-binding protein; and others such as tricorn protease (TRI) act as a carboxypeptidase, involved in the degradation of proteasomal products. CTPase homolog IRBP, secreted by photoreceptors into the interphotoreceptor matrix, having arisen in the early evolution of the vertebrate eye, promotes the release of all-trans retinol from photoreceptors and facilitates its delivery to the retinal pigment epithelium. 224 -119336 cd06568 GH20_SpHex_like A subgroup of the Glycosyl hydrolase family 20 (GH20) catalytic domain found in proteins similar to the N-acetylhexosaminidase from Streptomyces plicatus (SpHex). SpHex catalyzes the hydrolysis of N-acetyl-beta-hexosaminides. An Asp residue within the active site plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. Proteins belonging to this subgroup lack the C-terminal PKD (polycystic kidney disease I)-like domain found in the chitobiases. 329 -119337 cd06569 GH20_Sm-chitobiase-like The chitobiase of Serratia marcescens is a beta-N-1,4-acetylhexosaminidase with a glycosyl hydrolase family 20 (GH20) domain that hydrolyzes the beta-1,4-glycosidic linkages in oligomers derived from chitin. Chitin is degraded by a two step process: i) a chitinase hydrolyzes the chitin to oligosaccharides and disaccharides such as di-N-acetyl-D-glucosamine and chitobiose, ii) chitobiase then further degrades these oligomers into monomers. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 445 -119338 cd06570 GH20_chitobiase-like_1 A functionally uncharacterized subgroup of the Glycosyl hydrolase family 20 (GH20) catalytic domain found in proteins similar to the chitobiase of Serratia marcescens, a beta-N-1,4-acetylhexosaminidase that hydrolyzes the beta-1,4-glycosidic linkages in oligomers derived from chitin. Chitin is degraded by a two step process: i) a chitinase hydrolyzes the chitin to oligosaccharides and disaccharides such as di-N-acetyl-D-glucosamine and chitobiose, ii) chitobiase then further degrades these oligomers into monomers. This subgroup lacks the C-terminal PKD (polycystic kidney disease I)-like domain found in the chitobiases. The GH20 hexosaminidases are thought to act via a catalytic mechanism in which the catalytic nucleophile is not provided by solvent or the enzyme, but by the substrate itself. 311 -119330 cd06571 Bac_DnaA_C C-terminal domain of bacterial DnaA proteins. The DNA-binding C-terminal domain of DnaA contains a helix-turn-helix motif that specifically interacts with the DnaA box, a 9-mer motif that occurs repetitively in the replication origin oriC. Multiple copies of DnaA, which is an ATPase, bind to 9-mers at the origin and form an initial complex in which the DNA strands are being separated in an ATP-dependent step. 90 -119329 cd06572 Histidinol_dh Histidinol dehydrogenase, HisD, E.C 1.1.1.23. Histidinol dehydrogenase catalyzes the last two steps in the L-histidine biosynthesis pathway, which is conserved in bacteria, archaea, fungi, and plants. These last two steps are (i) the NAD-dependent oxidation of L-histidinol to L-histidinaldehyde, and (ii) the NAD-dependent oxidation of L-histidinaldehyde to L-histidine. In most fungi and in the unicellular choanoflagellate Monosiga bevicollis, the HisD domain is fused with units that catalyze the second and third biosynthesis steps in this same pathway. 390 -119325 cd06573 PASTA PASTA domain. This domain is found at the C-termini of several Penicillin-binding proteins (PBPs) and bacterial serine/threonine kinases. It is a small globular fold consisting of 3 beta-sheets and an alpha-helix. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 53 -119320 cd06574 TM_PBP1_branched-chain-AA_like Transmembrane subunit (TM) of Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporters which are involved in the uptake of branched-chain amino acids (AAs), as well as TMs of transporters involved in the uptake of monosaccharides including ribose, galactose, and arabinose. These transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. This group includes Escherichia coli LivM and LivH, two TMs which heterodimerize to form the translocation pathway of the E. coli branched-chain AA LIV-1/LS transporter. This transporter is comprised of two TMs (LivM and LivH), two ABCs (LivG and LivF), and one of two alternative PBPs, LivJ (LIV-BP) and LivK (LS-BP). In addition to transporting branched-chain AAs including leucine, isoleucine and valine, the E. coli LIV-1/LS transporter is involved in the uptake of the aromatic AA, phenylalanine. Included in this group are proteins from transport systems that contain a single TM which homodimerizes to generate the transmembrane pore; for example E. coli RbsC, AlsC, and MglC, the TMs of the high affinity ribose transporter, the D-allose transporter and the galactose transporter, respectively. The D-allose transporter may also to be involved in low affinity ribose transport. 266 -119326 cd06575 PASTA_Pbp2x-like_2 PASTA domain of PBP2x-like proteins, second repeat. Penicillin-binding proteins (PBPs) are the major targets for beta-lactam antibiotics, like penicillins and cephalosporins. Beta-lactam antibiotics specifically inhibit transpeptidase activity by acylating the active site serine. PBPs catalyze key steps in the synthesis of the peptidoglycan, such as the interconnecting of glycan chains (polymers of N-glucosamine and N-acetylmuramic acid residues) and the cross-linking (transpeptidation) of short stem peptides, which are attached to glycan chains. Peptidoglycan is essential in cell division and protects bacteria from osmotic shock and lysis. PBP2x is one of the two monofunctional high molecular mass PBPs in Streptococcus pneumoniae and has been seen as the primary PBP target in beta-lactam-resistant strains. The PASTA domain is found at the C-termini of several PBPs and bacterial serine/threonine kinases. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 54 -119327 cd06576 PASTA_Pbp2x-like_1 PASTA domain of PBP2x-like proteins, first repeat. Penicillin-binding proteins (PBPs) are the major targets for beta-lactam antibiotics, like penicillins and cephalosporins. Beta-lactam antibiotics specifically inhibit transpeptidase activity by acylating the active site serine. PBPs catalyze key steps in the synthesis of the peptidoglycan, such as the interconnecting of glycan chains (polymers of N-glucosamine and N-acetylmuramic acid residues) and the cross-linking (transpeptidation) of short stem peptides, which are connected to glycan chains. Peptidoglycan is essential in cell division and protects bacteria from osmotic shock and lysis. PBP2x is one of the two monofunctional high molecular mass PBPs in Streptococcus pneumoniae and has been seen as the primary PBP target in beta-lactam-resistant strains. The PASTA domain is found at the C-termini of several PBPs and bacterial serine/threonine kinases. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 55 -119328 cd06577 PASTA_pknB PASTA domain of bacterial serine/threonine kinase pknB-like proteins. PknB is a member of a group of related transmembrane sensor kinases present in many gram positive bacteria, which has been shown to regulate cell shape in Mycobacterium tubercolosis. PknB is a receptor-like transmembrane protein with an extracellular signal sensor domain (containing multiple PASTA domains) and an intracellular, eukaryotic serine/threonine kinase-like domain. The PASTA domain is found at the C-termini of several Penicillin-binding proteins (PBPs) and bacterial serine/threonine kinases. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 62 -119440 cd06578 HemD Uroporphyrinogen-III synthase (HemD) catalyzes the asymmetrical cyclization of tetrapyrrole (linear) to uroporphyrinogen-III, the fourth step in the biosynthesis of heme. This ubiquitous enzyme is present in eukaryotes, bacteria and archaea. Mutations in the human uroporphyrinogen-III synthase gene cause congenital erythropoietic porphyria, a recessive inborn error of metabolism also known as Gunther disease. 239 -119321 cd06579 TM_PBP1_transp_AraH_like Transmembrane subunit (TM) of Escherichia coli AraH and related proteins. E. coli AraH is the TM of a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of the monosaccharide arabinose. This group also contains E. coli RbsC, AlsC, and MglC, which are TMs of other monosaccharide transporters, the ribose transporter, the D-allose transporter and the galactose transporter, respectively. The D-allose transporter may also be involved in low affinity ribose transport. These transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. Proteins in this subgroup have a single TM which homodimerizes to generate the transmembrane pore. 263 -119322 cd06580 TM_PBP1_transp_TpRbsC_like Transmembrane subunit (TM) of Treponema pallidum (Tp) RbsC-1, RbsC-2 and related proteins. This is a functionally uncharacterized subgroup of TMs which belong to a larger group of TMs of Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporters, which are mainly involved in the uptake of branched-chain amino acids (AAs) or in the uptake of monosaccharides including ribose, galactose, and arabinose, and which generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. 234 -119323 cd06581 TM_PBP1_LivM_like Transmembrane subunit (TM) of Escherichia coli LivM and related proteins. LivM is one of two TMs of the E. coli LIV-1/LS transporter, a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of branched-chain amino acids (AAs). These types of transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. E. coli LivM forms a heterodimer with another TM, LivH, to generate the transmembrane pore. LivH is not included in this subgroup. The LIV-1/LS transporter is comprised of two TMs (LivM and LivH), two ABCs (LivG and LivF), and one of two alternative PBPs, LivJ (LIV-BP) or LivK (LS-BP). In addition to transporting branched-chain AAs including leucine, isoleucine and valine, the E. coli LIV-1/LS transporter is involved in the uptake of the aromatic AA, phenylalanine. 268 -119324 cd06582 TM_PBP1_LivH_like Transmembrane subunit (TM) of Escherichia coli LivH and related proteins. LivH is one of two TMs of the E. coli LIV-1/LS transporter, a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of branched-chain amino acids (AAs). These types of transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. E. coli LivH forms a heterodimer with another TM, LivM, to generate the transmembrane pore. LivM is not included in this subgroup. The LIV-1/LS transporter is comprised of two TMs (LivM and LivH), two ABCs (LivG and LivF), and one of two alternative PBPs, LivJ (LIV-BP) or LivK (LS-BP). In addition to transporting branched-chain AAs including leucine, isoleucine and valine, the E. coli LIV-1/LS transporter is involved in the uptake of the aromatic AA, phenylalanine. 272 -133475 cd06583 PGRP Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors that bind, and in certain cases, hydrolyze peptidoglycans (PGNs) of bacterial cell walls. PGRPs have been divided into three classes: short PGRPs (PGRP-S), that are small (20 kDa) extracellular proteins; intermediate PGRPs (PGRP-I) that are 40-45 kDa and are predicted to be transmembrane proteins; and long PGRPs (PGRP-L), up to 90 kDa, which may be either intracellular or transmembrane. Several structures of PGRPs are known in insects and mammals, some bound with substrates like Muramyl Tripeptide (MTP) or Tracheal Cytotoxin (TCT). The substrate binding site is conserved in PGRP-LCx, PGRP-LE, and PGRP-Ialpha proteins. This family includes Zn-dependent N-Acetylmuramoyl-L-alanine Amidase, EC:3.5.1.28. This enzyme cleaves the amide bond between N-acetylmuramoyl and L-amino acids, preferentially D-lactyl-L-Ala, in bacterial cell walls. The structure for the bacteriophage T7 lysozyme shows that two of the conserved histidines and a cysteine are zinc binding residues. Site-directed mutagenesis of T7 lysozyme indicates that two conserved residues, a Tyr and a Lys, are important for amidase activity. 126 -132915 cd06586 TPP_enzyme_PYR Pyrimidine (PYR) binding domain of thiamine pyrophosphate (TPP)-dependent enzymes. Thiamine pyrophosphate (TPP) family, pyrimidine (PYR) binding domain; found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. A polar interaction between the conserved glutamate of the PYR domain and the N1' of the TPP aminopyrimidine ring is shared by most TPP-dependent enzymes, and participates in the activation of TPP. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this group. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. In the case of 2-oxoisovalerate dehydrogenase (2OXO), sulfopyruvate decarboxylase (ComDE), and the E1 component of human pyruvate dehydrogenase complex (E1- PDHc) the PYR and PP domains appear on different subunits. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites. For many of these enzymes the active sites lie between PP and PYR domains on different subunits. However, for the homodimeric enzymes 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and Desulfovibrio africanus pyruvate:ferredoxin oxidoreductase (PFOR), each active site lies at the interface of the PYR and PP domains from the same subunit. 154 -319898 cd06587 VOC vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. 112 -319899 cd06588 PhnB_like Escherichia coli PhnB and similar proteins. The Escherichia coli phnB gene is found next to an operon of fourteen genes (phnC-to-phnP) related to the cleavage of carbon-phosphorus (C-P) bonds in unactivated alkylphosphonates, supporting bacterial growth on alkylphosphonates as the sole phosphorus source. It was originally considered part of that operon. PhnB appears to play no direct catalytic role in the usage of alkylphosphonate. Although many of the proteins in this family have been annotated as 3-demethylubiquinone-9 3-methyltransferase enzymes by automatic annotation programs, the experimental evidence for this assignment is lacking. In Escherichia coli, the gene coding 3-demethylubiquinone-9 3-methyltransferase enzyme is ubiG, which belongs to the AdoMet-MTase protein family. PhnB-like proteins adopt a structural fold similar to bleomycin resistance proteins, glyoxalase I, and type I extradiol dioxygenases. 129 -269876 cd06589 GH31 glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. 265 -260000 cd06590 RNase_HII_bacteria_HIII_like Bacterial type 2 ribonuclease, HII and HIII-like. This family includes type 2 RNases H from several bacteria, such as Bacillus subtilis, which have two different RNases, HII and HIII. RNases HIII are distinguished by having a large (70-90 residues) N-terminal extension of unknown function. In addition, the active site of RNase HIII differs from that of other RNases H; replacing the fourth residue (aspartate) of the acidic "DEDD" motif with a glutamate. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes; however, no prokaryotic genomes contain the combination of both RNase HI and HIII. This mutual exclusive gene inheritance might be the result of functional redundancy of RNase HI and HIII in prokaryotes. Ribonuclease (RNase) H is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, archaeal RNase HII and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication or repair. 207 -269877 cd06591 GH31_xylosidase_XylS xylosidase XylS-like. XylS is a glycosyl hydrolase family 31 (GH31) alpha-xylosidase found in prokaryotes, eukaryotes, and archaea, that catalyzes the release of alpha-xylose from the non-reducing terminal side of the alpha-xyloside substrate. XylS has been characterized in Sulfolobus solfataricus where it hydrolyzes isoprimeverose, the p-nitrophenyl-beta derivative of isoprimeverose, and xyloglucan oligosaccharides, and has transxylosidic activity. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The XylS family corresponds to subgroup 3 in the Ernst et al classification of GH31 enzymes. 322 -269878 cd06592 GH31_NET37 glucosidase NET37. NET37 (also known as KIAA1161) is a human lamina-associated nuclear envelope transmembrane protein. A member of the glycosyl hydrolase family 31 (GH31) , it has been shown to be required for myogenic differentiation of C2C12 cells. Related proteins are found in eukaryotes and prokaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 364 -269879 cd06593 GH31_xylosidase_YicI alpha-xylosidase YicI-like. YicI alpha-xylosidase is a glycosyl hydrolase family 31 (GH31) enzyme that catalyzes the release of an alpha-xylosyl residue from the non-reducing end of alpha-xyloside substrates such as alpha-xylosyl fluoride and isoprimeverose. YicI forms a homohexamer (a trimer of dimers). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The YicI family corresponds to subgroup 4 in the Ernst et al classification of GH31 enzymes. 308 -269880 cd06594 GH31_glucosidase_YihQ alpha-glucosidase YihQ-like. YihQ is a bacterial alpha-glucosidase with a conserved glycosyl hydrolase family 31 (GH31) domain that catalyzes the release of an alpha-glucosyl residue from the non-reducing end of alpha-glucoside substrates such as alpha-glucosyl fluoride. Orthologs of YihQ that have not yet been functionally characterized are present in plants and fungi. YihQ has sequence similarity to other GH31 enzymes such as CtsZ, a 6-alpha-glucosyltransferase from Bacillus globisporus, and YicI, an alpha-xylosidase from Echerichia coli. These latter two belong to different GH31 subfamilies than YihQ. In bacteria, YihQ (along with YihO) is important for bacterial O-antigen capsule assembly and translocation. 325 -269881 cd06595 GH31_u1 glycosyl hydrolase family 31 (GH31); uncharacterized subgroup. This family represents an uncharacterized GH31 enzyme subgroup found in bacteria and eukaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 304 -269882 cd06596 GH31_CPE1046 Clostridium CPE1046-like. CPE1046 is an uncharacterized Clostridium perfringens protein with a glycosyl hydrolase family 31 (GH31) domain. The domain architecture of CPE1046 and its orthologs includes a C-terminal fibronectin type 3 (FN3) domain and a coagulation factor 5/8 type C domain in addition to the GH31 domain. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 334 -269883 cd06597 GH31_transferase_CtsY CtsY (cyclic tetrasaccharide-synthesizing enzyme Y)-like. CtsY is a bacterial 3-alpha-isomaltosyltransferase, first identified in Arthrobacter globiformis, that produces cyclic tetrasaccharides together with a closely related enzyme CtsZ. CtsY and CtsZ both have a glycosyl hydrolase family 31 (GH31) catalytic domain; CtsZ belongs to a different subfamily. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 326 -269884 cd06598 GH31_transferase_CtsZ CtsZ (cyclic tetrasaccharide-synthesizing enzyme Z)-like. CtsZ is a bacterial 6-alpha-glucosyltransferase, first identified in Arthrobacter globiformis, that produces cyclic tetrasaccharides together with a closely related enzyme CtsY. CtsZ and CtsY both have a glycosyl hydrolase family 31 (GH31) catalytic domain; CtsY belongs to a different subfamily. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 332 -269885 cd06599 GH31_glycosidase_Aec37 E.coli Aec37-like. Glycosyl hydrolase family 31 (GH31) domain of a bacterial protein family represented by Escherichia coli protein Aec37. The gene encoding Aec37 (aec-37) is located within a genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908. The function of Aec37 and its orthologs is unknown; however, deletion of a region of the genome that includes aec-37 affects the assimilation of seven carbohydrates, decreases growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 in chickens. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. 319 -269886 cd06600 GH31_MGAM-like maltase-glucoamylase (MGAM)-like. This family includes the following closely related glycosyl hydrolase family 31 (GH31) enzymes: maltase-glucoamylase (MGAM), sucrase-isomaltase (SI), lysosomal acid alpha-glucosidase (GAA), neutral alpha-glucosidase C (GANC), the alpha subunit of neutral alpha-glucosidase AB (GANAB), and alpha-glucosidase II. MGAM is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. SI is implicated in the digestion of dietary starch and major disaccharides such as sucrose and isomaltose, while GAA degrades glycogen in the lysosome, cleaving both alpha-1,4 and alpha-1,6 glucosidic linkages. MGAM and SI are anchored to small-intestinal brush-border epithelial cells. The absence of SI from the brush border membrane or its malfunction is associated with malabsorption disorders such as congenital sucrase-isomaltase deficiency (CSID). The domain architectures of MGAM and SI include two tandem GH31 catalytic domains, an N-terminal domain found near the membrane-bound end and a C-terminal luminal domain. Both of the tandem GH31 domains of MGAM and SI are included in this family. The domain architecture of GAA includes an N-terminal TFF (trefoil factor family) domain in addition to the GH31 catalytic domain. Deficient GAA expression causes Pompe disease, an autosomal recessive genetic disorder also known as glycogen storage disease type II (GSDII). GANC and GANAB are key enzymes in glycogen metabolism that hydrolyze terminal, non-reducing 1,4-linked alpha-D-glucose residues from glycogen in the endoplasmic reticulum. Alpha-glucosidase II is a GH31 enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This family also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source. The MGAM-like family corresponds to subgroup 1 in the Ernst et al classification of GH31 enzymes. 256 -269887 cd06601 GH31_lyase_GLase alpha-1,4-glucan lyase. GLases (alpha-1,4-glucan lyases) are glycosyl hydrolase family 31 (GH31) enzymes that degrade alpha-1,4-glucans and maltooligosaccharides via a nonhydrolytic pathway to yield 1,5-D-anhydrofructose from the nonreducing end. GLases cleave the bond between C1 and O1 of the nonreducing sugar residue of alpha-glucans to generate a monosaccharide product with a double bond between C1 and C2. This family corresponds to subgroup 2 in the Ernst et al classification of GH31 enzymes. 347 -269888 cd06602 GH31_MGAM_SI_GAA maltase-glucoamylase, sucrase-isomaltase, lysosomal acid alpha-glucosidase. This subgroup includes the following three closely related glycosyl hydrolase family 31 (GH31) enzymes: maltase-glucoamylase (MGAM), sucrase-isomaltase (SI), and lysosomal acid alpha-glucosidase (GAA), also known as acid-maltase. MGAM is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. SI is implicated in the digestion of dietary starch and major disaccharides such as sucrose and isomaltose, while GAA degrades glycogen in the lysosome, cleaving both alpha-1,4 and alpha-1,6 glucosidic linkages. MGAM and SI are anchored to small-intestinal brush-border epithelial cells. The absence of SI from the brush border membrane or its malfunction is associated with malabsorption disorders such as congenital sucrase-isomaltase deficiency (CSID). The domain architectures of MGAM and SI include two tandem GH31 catalytic domains, an N-terminal domain found near the membrane-bound end, and a C-terminal luminal domain. Both of the tandem GH31 domains of MGAM and SI are included in this family. The domain architecture of GAA includes an N-terminal TFF (trefoil factor family) domain in addition to the GH31 catalytic domain. Deficient GAA expression causes Pompe disease, an autosomal recessive genetic disorder also known as glycogen storage disease type II (GSDII). 367 -269889 cd06603 GH31_GANC_GANAB_alpha neutral alpha-glucosidase C, neutral alpha-glucosidase AB. This subgroup includes the closely related glycosyl hydrolase family 31 (GH31) isozymes, neutral alpha-glucosidase C (GANC) and the alpha subunit of heterodimeric neutral alpha-glucosidase AB (GANAB). Initially distinguished on the basis of differences in electrophoretic mobility in starch gel, GANC and GANAB have been shown to have other differences, including those of substrate specificity. GANC and GANAB are key enzymes in glycogen metabolism that hydrolyze terminal, non-reducing 1,4-linked alpha-D-glucose residues from glycogen in the endoplasmic reticulum. The GANC/GANAB family includes the alpha-glucosidase II (ModA) from Dictyostelium discoideum as well as the alpha-glucosidase II (GLS2, or ROT2 - Reversal of TOR2 lethality protein 2) from Saccharomyces cerevisiae. 467 -269890 cd06604 GH31_glucosidase_II_MalA Alpha-glucosidase II-like. Alpha-glucosidase II (alpha-D-glucoside glucohydrolase) is a glycosyl hydrolase family 31 (GH31) enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This subgroup also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source. 339 -270782 cd06605 PKc_MAPKK Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase Kinase. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MAPKKs are dual-specificity PKs that phosphorylate their downstream targets, MAPKs, at specific threonine and tyrosine residues. The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising the MAPK, which is phosphorylated and activated by a MAPK kinase (MAPKK or MKK or MAP2K), which itself is phosphorylated and activated by a MAPKK kinase (MAPKKK or MKKK or MAP3K). There are three MAPK subfamilies: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In mammalian cells, there are seven MAPKKs (named MKK1-7) and 20 MAPKKKs. Each MAPK subfamily can be activated by at least two cognate MAPKKs and by multiple MAPKKKs. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270783 cd06606 STKc_MAPKKK Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270784 cd06607 STKc_TAO Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. They activate the MAPKs, p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating the respective MAP/ERK kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. Vertebrates contain three TAO subfamily members, named TAO1, TAO2, and TAO3. The TAO subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270785 cd06608 STKc_myosinIII_N_like N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class III myosins are motor proteins with an N-terminal kinase catalytic domain and a C-terminal actin-binding motor domain. Class III myosins are present in the photoreceptors of invertebrates and vertebrates and in the auditory hair cells of mammals. The kinase domain of myosin III can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, and can autophosphorylate the C-terminal motor domain. Myosin III may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. It may also function as a cargo carrier during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The Drosophila class III myosin, called NinaC (Neither inactivation nor afterpotential protein C), is critical in normal adaptation and termination of photoresponse. Vertebrates contain two isoforms of class III myosin, IIIA and IIIB. This subfamily also includes mammalian NIK-like embryo-specific kinase (NESK), Traf2- and Nck-interacting kinase (TNIK), and mitogen-activated protein kinase (MAPK) kinase kinase kinase 4/6. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The class III myosin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270786 cd06609 STKc_MST3_like Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST3, MST4, STK25, Schizosaccharomyces pombe Nak1 and Sid1, Saccharomyces cerevisiae sporulation-specific protein 1 (SPS1), and related proteins. Nak1 is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Sid1 is a component in the septation initiation network (SIN) signaling pathway, and plays a role in cytokinesis. SPS1 plays a role in regulating proteins required for spore wall formation. MST4 plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. STK25 may play a role in the regulation of cell migration and polarization. The MST3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 274 -270787 cd06610 STKc_OSR1_SPAK Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and Ste20-related proline alanine-rich kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SPAK is also referred to as STK39 or PASK (proline-alanine-rich STE20-related kinase). OSR1 and SPAK regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. They are also implicated in cytoskeletal rearrangement, cell differentiation, transformation and proliferation. OSR1 and SPAK contain a conserved C-terminal (CCT) domain, which recognizes a unique motif ([RK]FX[VI]) present in their activating kinases (WNK1/WNK4) and their substrates. The OSR1 and SPAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -132942 cd06611 STKc_SLK_like Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the subfamily include SLK, STK10 (also called LOK for Lymphocyte-Oriented Kinase), SmSLK (Schistosoma mansoni SLK), and related proteins. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It also plays a role in mediating actin reorganization. STK10 is responsible in regulating the CD28 responsive element in T cells, as well as leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. SmSLK is capable of activating the MAPK Jun N-terminal kinase (JNK) pathway in human embryonic kidney cells as well as in Xenopus oocytes. It may participate in regulating MAPK cascades during host-parasite interactions. The SLK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 280 -132943 cd06612 STKc_MST1_2 Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270788 cd06613 STKc_MAP4K3_like Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAP4K3, MAP4K1, MAP4K2, MAP4K5, and related proteins. Vertebrate members contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K1, also called haematopoietic progenitor kinase 1 (HPK1), is a hematopoietic-specific STK involved in many cellular signaling cascades including MAPK, antigen receptor, apoptosis, growth factor, and cytokine signaling. It participates in the regulation of T cell receptor signaling and T cell-mediated immune responses. MAP4K2 was referred to as germinal center (GC) kinase because of its preferred location in GC B cells. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. It is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). The MAP4K3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270789 cd06614 STKc_PAK Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. PAK deregulation is associated with tumor development. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). Group II PAKs contain a PBD and a catalytic domain, but lack other motifs found in group I PAKs. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. Group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX; no such binding has been demonstrated for group II PAKs. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -132946 cd06615 PKc_MEK Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK1 and MEK2 are MAPK kinases (MAPKKs or MKKs), and are dual-specificity PKs that phosphorylate and activate the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK1/2, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. This cascade has also been implicated in synaptic plasticity, migration, morphological determination, and stress response immunological reactions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK1/2, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 308 -270790 cd06616 PKc_MKK4 Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase Kinase 4. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK4 is a dual-specificity PK that phosphorylates and activates the downstream targets, c-Jun N-terminal kinase (JNK) and p38 MAPK, on specific threonine and tyrosine residues. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. Their activation is associated with the induction of cell death. Mice deficient in MKK4 die during embryogenesis and display anemia, severe liver hemorrhage, and abnormal hepatogenesis. MKK4 may also play roles in the immune system and in cardiac hypertrophy. It plays a major role in cancer as a tumor and metastasis suppressor. Under certain conditions, MKK4 is pro-oncogenic. The MKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -173729 cd06617 PKc_MKK3_6 Catalytic domain of the dual-specificity Protein Kinases, Mitogen-activated protein Kinase Kinases 3 and 6. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK3 and MKK6 are dual-specificity PKs that phosphorylate and activate their downstream target, p38 MAPK, on specific threonine and tyrosine residues. MKK3/6 play roles in the regulation of cell cycle progression, cytokine- and stress-induced apoptosis, oncogenic transformation, and adult tissue regeneration. In addition, MKK6 plays a critical role in osteoclast survival in inflammatory disease while MKK3 is associated with tumor invasion, progression, and poor patient survival in glioma. The MKK3/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -270791 cd06618 PKc_MKK7 Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase Kinase 7. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK7 is a dual-specificity PK that phosphorylates and activates its downstream target, c-Jun N-terminal kinase (JNK), on specific threonine and tyrosine residues. Although MKK7 is capable of dual phosphorylation, it prefers to phosphorylate the threonine residue of JNK. Thus, optimal activation of JNK requires both MKK4 and MKK7. MKK7 is primarily activated by cytokines. MKK7 is essential for liver formation during embryogenesis. It plays roles in G2/M cell cycle arrest and cell growth. In addition, it is involved in the control of programmed cell death, which is crucial in oncogenesis, cancer chemoresistance, and antagonism to TNFalpha-induced killing, through its inhibition by Gadd45beta and the subsequent suppression of the JNK cascade. The MKK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 295 -132950 cd06619 PKc_MKK5 Catalytic domain of the dual-specificity Protein Kinase, Mitogen-activated protein Kinase Kinase 5. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MKK5 (also called MEK5) is a dual-specificity PK that phosphorylates its downstream target, extracellular signal-regulated kinase 5 (ERK5), on specific threonine and tyrosine residues. MKK5 is activated by MEKK2 and MEKK3 in response to mitogenic and stress stimuli. The ERK5 cascade promotes cell proliferation, differentiation, neuronal survival, and neuroprotection. This cascade plays an essential role in heart development. Mice deficient in either ERK5 or MKK5 die around embryonic day 10 due to cardiovascular defects including underdevelopment of the myocardium. In addition, MKK5 is associated with metastasis and unfavorable prognosis in prostate cancer. The MKK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270792 cd06620 PKc_Byr1_like Catalytic domain of fungal Byr1-like dual-specificity Mitogen-activated protein Kinase Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Byr1 from Schizosaccharomyces pombe, FUZ7 from Ustilago maydis, and related proteins. Byr1 phosphorylates its downstream target, the MAPK Spk1, and is regulated by the MAPKK kinase Byr2. The Spk1 cascade is pheromone-responsive and is essential for sporulation and sexual differentiation in fission yeast. FUZ7 phosphorylates and activates its target, the MAPK Crk1, which is required in mating and virulence in U. maydis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The Byr-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270793 cd06621 PKc_Pek1_like Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Pek1/Skh1 from Schizosaccharomyces pombe and MKK2 from Saccharomyces cerevisiae, and related proteins. Both fission yeast Pek1 and baker's yeast MKK2 are components of the cell integrity MAPK pathway. In fission yeast, Pek1 phosphorylates and activates Pmk1/Spm1 and is regulated by the MAPKK kinase Mkh1. In baker's yeast, the pathway involves the MAPK Slt2, the MAPKKs MKK1 and MKK2, and the MAPKK kinase Bck1. The cell integrity MAPK cascade is activated by multiple stress conditions, and is essential in cell wall construction, morphogenesis, cytokinesis, and ion homeostasis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -132953 cd06622 PKc_PBS2_like Catalytic domain of fungal PBS2-like dual-specificity Mitogen-Activated Protein Kinase Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Polymyxin B resistance protein 2 (PBS2) from Saccharomyces cerevisiae, Wis1 from Schizosaccharomyces pombe, and related proteins. PBS2 and Wis1 are components of stress-activated MAPK cascades in budding and fission yeast, respectively. PBS2 is the specific activator of the MAPK Hog1, which plays a central role in the response of budding yeast to stress including exposure to arsenite and hyperosmotic environments. Wis1 phosphorylates and activates the MAPK Sty1 (also called Spc1 or Phh1), which stimulates a transcriptional response to a wide range of cellular insults through the bZip transcription factors Atf1, Pcr1, and Pap1. The PBS2 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -132954 cd06623 PKc_MAPKK_plant_like Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and similar proteins. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include MAPKKs from plants, kinetoplastids, alveolates, and mycetozoa. The MAPKK, LmxPK4, from Leishmania mexicana, is important in differentiation and virulence. Dictyostelium discoideum MEK1 is required for proper chemotaxis; MEK1 null mutants display severe defects in cell polarization and directional movement. Plants contain multiple MAPKKs like other eukaryotes. The Arabidopsis genome encodes for 10 MAPKKs while poplar and rice contain 13 MAPKKs each. The functions of these proteins have not been fully elucidated. There is evidence to suggest that MAPK cascades are involved in plant stress responses. In Arabidopsis, MKK3 plays a role in pathogen signaling; MKK2 is involved in cold and salt stress signaling; MKK4/MKK5 participates in innate immunity; and MKK7 regulates basal and systemic acquired resistance. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 264 -270794 cd06624 STKc_ASK Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily are mitogen-activated protein kinase (MAPK) kinase kinases (MAPKKKs or MKKKs) and include ASK1, ASK2, and MAPKKK15. ASK1 (also called MAPKKK5) functions in the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. It plays important roles in cytokine and stress responses, as well as in reactive oxygen species-mediated cellular responses. ASK1 is implicated in various diseases mediated by oxidative stress including inschemic heart disease, hypertension, vessel injury, brain ischemia, Fanconi anemia, asthma, and pulmonary edema, among others. ASK2 (also called MAPKKK6) functions only in a heteromeric complex with ASK1, and can activate ASK1 by direct phosphorylation. The function of MAPKKK15 is still unknown. The ASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270795 cd06625 STKc_MEKK3_like Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MEKK3, MEKK2, and related proteins; all contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKK) that activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -270796 cd06626 STKc_MEKK4 Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK4 is a MAPK kinase kinase that phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. MEKK4 also plays roles in the re-polarization of the actin cytoskeleton in response to osmotic stress, in the proper closure of the neural tube, in cardiovascular development, and in immune responses. The MEKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270797 cd06627 STKc_Cdc7_like Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270798 cd06628 STKc_Byr2_like Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein Kinase Kinase Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae and Cryptococcus neoformans Ste11, and related proteins. They contain an N-terminal SAM (sterile alpha-motif) domain, which mediates protein-protein interaction, and a C-terminal catalytic domain. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Byr2 is regulated by Ras1. It responds to pheromone signaling and controls mating through the MAPK pathway. Budding yeast Ste11 functions in MAPK cascades that regulate mating, high osmolarity glycerol, and filamentous growth responses. The Byr2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270799 cd06629 STKc_Bck1_like Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein Kinase Kinase Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Saccharomyces cerevisiae Bck1 and Schizosaccharomyces pombe Mkh1, and related proteins. Budding yeast Bck1 is part of the cell integrity MAPK pathway, which is activated by stresses and aggressions to the cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the MAPK Slt2 make up the cascade that is important in the maintenance of cell wall homeostasis. Fission yeast Mkh1 is involved in MAPK cascades regulating cell morphology, cell wall integrity, salt resistance, and filamentous growth in response to stress. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The Bck1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -270800 cd06630 STKc_MEKK1 Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK1 is a MAPK kinase kinase (MAPKKK or MKKK) that phosphorylates and activates activates the ERK1/2 and c-Jun N-terminal kinase (JNK) pathways by activating their respective MAPKKs, MEK1/2 and MKK4/MKK7, respectively. MEKK1 is important in regulating cell survival and apoptosis. MEKK1 also plays a role in cell migration, tissue maintenance and homeostasis, and wound healing. The MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270801 cd06631 STKc_YSK4 Catalytic domain of the Serine/Threonine Kinase, Yeast Sps1/Ste20-related Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. YSK4 is a putative MAPKKK, whose mammalian gene has been isolated. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The YSK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -270802 cd06632 STKc_MEKK1_plant Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270803 cd06633 STKc_TAO3 Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO3 is also known as JIK (c-Jun N-terminal kinase inhibitory kinase) or KFC (kinase from chicken). It specifically activates JNK, presumably by phosphorylating and activating MKK4/MKK7. In Saccharomyces cerevisiae, TAO3 is a component of the RAM (regulation of Ace2p activity and cellular morphogenesis) signaling pathway. TAO3 is upregulated in retinal ganglion cells after axotomy, and may play a role in apoptosis. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270804 cd06634 STKc_TAO2 Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human TAO2 is also known as prostate-derived Ste20-like kinase (PSK) and was identified in a screen for overexpressed RNAs in prostate cancer. TAO2 possesses mitogen-activated protein kinase (MAPK) kinase kinase activity and activates both p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating their respective MAP/ERK kinases, MEK3/MEK6 and MKK4/MKK7. It contains a long C-terminal extension with autoinhibitory segments, and is activated by the release of this inhibition and the phosphorylation of its activation loop serine. TAO2 functions as a regulator of actin cytoskeletal and microtubule organization. In addition, it regulates the transforming growth factor-activated kinase 1 (TAK1), which is a MAPKKK that plays an essential role in the signaling pathways of tumor necrosis factor, interleukin 1, and Toll-like receptor. The TAO2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 308 -270805 cd06635 STKc_TAO1 Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO1 is sometimes referred to as prostate-derived sterile 20-like kinase 2 (PSK2). TAO1 activates the p38 MAPK through direct interaction with and activation of MEK3. TAO1 is highly expressed in the brain and may play a role in neuronal apoptosis. TAO1 interacts with the checkpoint proteins BubR1 and Mad2, and plays an important role in regulating mitotic progression, which is required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 may play a role in protecting genomic stability. TAO proteins possess MAPK kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 317 -270806 cd06636 STKc_MAP4K4_6_N N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 and 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K4 is also called Nck Interacting kinase (NIK). It facilitates the activation of the MAPKs, extracellular signal-regulated kinase (ERK) 1, ERK2, and c-Jun N-terminal kinase (JNK), by phosphorylating and activating MEKK1. MAP4K4 plays a role in tumor necrosis factor (TNF) alpha-induced insulin resistance. MAP4K4 silencing in skeletal muscle cells from type II diabetic patients restores insulin-mediated glucose uptake. MAP4K4, through JNK, also plays a broad role in cell motility, which impacts inflammation, homeostasis, as well as the invasion and spread of cancer. MAP4K4 is found to be highly expressed in most tumor cell lines relative to normal tissue. MAP4K6 (also called MINK for Misshapen/NIKs-related kinase) is activated after Ras induction and mediates activation of p38 MAPK. MAP4K6 plays a role in cell cycle arrest, cytoskeleton organization, cell adhesion, and cell motility. The MAP4K4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 282 -270807 cd06637 STKc_TNIK Catalytic domain of the Serine/Threonine Kinase, Traf2- and Nck-Interacting Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TNIK is an effector of Rap2, a small GTP-binding protein from the Ras family. TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway and plays a role in regulating the actin cytoskeleton. The TNIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 296 -132969 cd06638 STKc_myosinIIIA_N N-terminal Catalytic domain of the Serine/Threonine Kinase, Class IIIA myosin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class IIIA myosin is highly expressed in retina and in inner ear hair cells. It is localized to the distal ends of actin-bundled structures. Mutations in human myosin IIIA are responsible for progressive nonsyndromic hearing loss. Human myosin IIIA possesses ATPase and kinase activities, and the ability to move actin filaments in a motility assay. It may function as a cellular transporter capable of moving along actin bundles in sensory cells. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain. Class III myosins may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. In photoreceptor cells, they may also function as cargo carriers during light-dependent translocation of proteins such as transducin and arrestin. The class III myosin subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270808 cd06639 STKc_myosinIIIB_N N-terminal Catalytic domain of the Serine/Threonine Kinase, Class IIIB myosin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class IIIB myosin is expressed highly in retina. It is also present in the brain and testis. The human class IIIB myosin gene maps to a region that overlaps the locus for Bardet-Biedl syndrome, which is characterized by dysmorphic extremities, retinal dystrophy, obesity, male hypogenitalism, and renal abnormalities. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain. They may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. They may also function as cargo carriers during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The class III myosin subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -132971 cd06640 STKc_MST4 Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST4 is sometimes referred to as MASK (MST3 and SOK1-related kinase). It plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. It influences cell growth and transformation by modulating the extracellular signal-regulated kinase (ERK) pathway. MST4 may also play a role in tumor formation and progression. It localizes in the Golgi apparatus by interacting with the Golgi matrix protein GM130 and may play a role in cell migration. The MST4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270809 cd06641 STKc_MST3 Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. It may also regulate paxillin and consequently, cell migration. MST3 is present in human placenta, where it plays an essential role in the oxidative stress-induced apoptosis of trophoblasts in normal spontaneous delivery. Dysregulation of trophoblast apoptosis may result in pregnancy complications such as preeclampsia and intrauterine growth retardation. The MST3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270810 cd06642 STKc_STK25 Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK25 is also called Ste20/oxidant stress response kinase 1 (SOK1) or yeast Sps1/Ste20-related kinase 1 (YSK1). It is localized in the Golgi apparatus through its interaction with the Golgi matrix protein GM130. It may be involved in the regulation of cell migration and polarization. STK25 binds and phosphorylates CCM3 (cerebral cavernous malformation 3), also called PCD10 (programmed cell death 10), and may play a role in apoptosis. Human STK25 is a candidate gene responsible for pseudopseudohypoparathyroidism (PPHP), a disease that shares features with the Albright hereditary osteodystrophy (AHO) phenotype. The STK25 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270811 cd06643 STKc_SLK Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It acts as a MAPK kinase kinase by phosphorylating ASK1, resulting in the phosphorylation of p38. SLK also plays a role in mediating actin reorganization. It is part of a microtubule-associated complex that is targeted at adhesion sites, and is required in focal adhesion turnover and in regulating cell migration. The SLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -132975 cd06644 STKc_STK10 Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase or LOK). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK10/LOK is also called polo-like kinase kinase 1 in Xenopus (xPlkk1). It is highly expressed in lymphocytes and is responsible in regulating leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. It plays a role in regulating the CD28 responsive element in T cells, and may also function as a regulator of polo-like kinase 1 (Plk1), a protein which is overexpressed in multiple tumor types. The STK10 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -270812 cd06645 STKc_MAP4K3 Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. MAP4K3 is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. mTOR regulates ribosome biogenesis and protein translation, and is frequently deregulated in cancer. MAP4Ks are involved in MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270813 cd06646 STKc_MAP4K5 Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). MAP4K5 also facilitates Wnt signaling in B cells, and may therefore be implicated in the control of cell fate, proliferation, and polarity. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270814 cd06647 STKc_PAK_I Catalytic domain of the Serine/Threonine Kinase, Group I p21-activated kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group I PAKs, also called conventional PAKs, include PAK1, PAK2, and PAK3. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). They interact with the SH3 domain containing proteins Nck, Grb2 and PIX. Binding of group I PAKs to activated GTPases leads to conformational changes that destabilize the AID, allowing autophosphorylation and full activation of the kinase domain. Known group I PAK substrates include MLCK, Bad, Raf, MEK1, LIMK, Merlin, Vimentin, Myc, Stat5a, and Aurora A, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -270815 cd06648 STKc_PAK_II Catalytic domain of the Serine/Threonine Kinase, Group II p21-activated kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group II PAKs, also called non-conventional PAKs, include PAK4, PAK5, and PAK6. Group II PAKs contain PBD (p21-binding domain) and catalytic domains, but lack other motifs found in group I PAKs, such as an AID (autoinhibitory domain) and SH3 binding sites. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. While group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX, no such binding has been demonstrated for group II PAKs. Some known substrates of group II PAKs are also substrates of group I PAKs such as Raf, BAD, LIMK and GEFH1. Unique group II substrates include MARK/Par-1 and PDZ-RhoGEF. Group II PAKs play important roles in filopodia formation, neuron extension, cytoskeletal organization, and cell survival. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -132980 cd06649 PKc_MEK2 Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase 2. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK2 is a dual-specificity PK and a MAPK kinase (MAPKK or MKK) that phosphorylates and activates the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK2, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK2, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 331 -270816 cd06650 PKc_MEK1 Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase 1. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MEK1 is a dual-specificity PK and a MAPK kinase (MAPKK or MKK) that phosphorylates and activates the downstream targets, ERK1 and ERK2, on specific threonine and tyrosine residues. The ERK cascade starts with extracellular signals including growth factors, hormones, and neurotransmitters, which act through receptors and ion channels to initiate intracellular signaling that leads to the activation at the MAPKKK (Raf-1 or MOS) level, which leads to the transmission of signals to MEK1, and finally to ERK1/2. The ERK cascade plays an important role in cell proliferation, differentiation, oncogenic transformation, and cell cycle control, as well as in apoptosis and cell survival under certain conditions. Gain-of-function mutations in genes encoding ERK cascade proteins, including MEK1, cause cardiofaciocutaneous (CFC) syndrome, a condition leading to multiple congenital anomalies and mental retardation in patients. MEK1 also plays a role in cell cycle control. The MEK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 319 -270817 cd06651 STKc_MEKK3 Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK3 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. In addition, MEKK3 is involved in interleukin-1 receptor and Toll-like receptor 4 signaling. It is also a specific regulator of the proinflammatory cytokines IL-6 and GM-CSF in some immune cells. MEKK3 also regulates calcineurin, which plays a critical role in T cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. The MEKK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -270818 cd06652 STKc_MEKK2 Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK2 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK2 also activates ERK1/2, c-Jun N-terminal kinase (JNK) and p38 through their respective MAPKKs MEK1/2, JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays roles in T cell receptor signaling, immune synapse formation, cytokine gene expression, as well as in EGF and FGF receptor signaling. The MEKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 264 -270819 cd06653 STKc_MEKK3_like_u1 Catalytic domain of an Uncharacterized subfamily of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized proteins with similarity to MEKK3, MEKK2, and related proteins; they contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKKs), proteins that phosphorylate and activate MAPK kinases (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MEKK2 and MEKK3 activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 264 -270820 cd06654 STKc_PAK1 Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK1 is important in the regulation of many cellular processes including cytoskeletal dynamics, cell motility, growth, and proliferation. Although PAK1 has been regarded mainly as a cytosolic protein, recent reports indicate that PAK1 also exists in significant amounts in the nucleus, where it is involved in transcription modulation and in cell cycle regulatory events. PAK1 is also involved in transformation and tumorigenesis. Its overexpression, hyperactivation and increased nuclear accumulation is correlated to breast cancer invasiveness and progression. Nuclear accumulation is also linked to tamoxifen resistance in breast cancer cells. PAK1 belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 296 -132986 cd06655 STKc_PAK2 Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK2 plays a role in pro-apoptotic signaling. It is cleaved and activated by caspases leading to morphological changes during apoptosis. PAK2 is also activated in response to a variety of stresses including DNA damage, hyperosmolarity, serum starvation, and contact inhibition, and may play a role in coordinating the stress response. PAK2 also contributes to cancer cell invasion through a mechanism distinct from that of PAK1. It belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 296 -132987 cd06656 STKc_PAK3 Catalytic domain of the Protein Serine/Threonine Kinase, p21-activated kinase 3. Serine/threonine kinases (STKs), p21-activated kinase (PAK) 3, catalytic (c) domain. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. PAK3 belongs to group I. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAK3 is highly expressed in the brain. It is implicated in neuronal plasticity, synapse formation, dendritic spine morphogenesis, cell cycle progression, neuronal migration, and apoptosis. Inactivating mutations in the PAK3 gene cause X-linked non-syndromic mental retardation, the severity of which depends on the site of the mutation. 297 -132988 cd06657 STKc_PAK4 Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK4 regulates cell morphology and cytoskeletal organization. It is essential for embryonic viability and proper neural development. Mice lacking PAK4 die due to defects in the fetal heart. In addition, their spinal cord motor neurons showed failure to differentiate and migrate. PAK4 also plays a role in cell survival and tumorigenesis. It is overexpressed in many primary tumors including colon, esophageal, and mammary tumors. PAK4 has also been implicated in viral and bacterial infection pathways. PAK4 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -132989 cd06658 STKc_PAK5 Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK5 is mainly expressed in the brain. It is not required for viability, but together with PAK6, it is required for normal levels of locomotion and activity, and for learning and memory. PAK5 cooperates with Inca (induced in neural crest by AP2) in the regulation of cell adhesion and cytoskeletal organization in the embryo and in neural crest cells during craniofacial development. PAK5 may also play a role in controlling the signaling of Raf-1, an effector of Ras, at the mitochondria. PAK5 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -270821 cd06659 STKc_PAK6 Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK6 may play a role in stress responses through its activation by the mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 6 (MKK6) pathway. PAK6 is highly expressed in the brain. It is not required for viability, but together with PAK5, it is required for normal levels of locomotion and activity, and for learning and memory. Increased expression of PAK6 is found in primary and metastatic prostate cancer. PAK6 may play a role in the regulation of motility. PAK6 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 297 -119408 cd06660 Aldo_ket_red Aldo-keto reductases (AKRs) are a superfamily of soluble NAD(P)(H) oxidoreductases whose chief purpose is to reduce aldehydes and ketones to primary and secondary alcohols. AKRs are present in all phyla and are of importance to both health and industrial applications. Members have very distinct functions and include the prokaryotic 2,5-diketo-D-gluconic acid reductases and beta-keto ester reductases, the eukaryotic aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases, steroid 5beta-reductases, potassium channel beta-subunits and aflatoxin aldehyde reductases, among others. 285 -119400 cd06661 GGCT_like GGCT-like domains, also called AIG2-like family. Gamma-glutamyl cyclotransferase (GGCT) catalyzes the formation of pyroglutamic acid (5-oxoproline) from dipeptides containing gamma-glutamyl, and is a dimeric protein. In Homo sapiens, the protein is encoded by the gene C7orf24, and the enzyme participates in the gamma-glutamyl cycle. Hereditary defects in the gamma-glutamyl cycle have been described for some of the genes involved, but not for C7orf24. The synthesis and metabolism of glutathione (L-gamma-glutamyl-L-cysteinylglycine) ties the gamma-glutamyl cycle to numerous cellular processes; glutathione acts as a ubiquitous reducing agent in reductive mechanisms involved in protein and DNA synthesis, transport processes, enzyme activity, and metabolism. AIG2 (avrRpt2-induced gene) is an Arabidopsis protein that exhibits RPS2- and avrRpt2-dependent induction early after infection with Pseudomonas syringae pv maculicola strain ES4326 carrying avrRpt2. avrRpt2 is an avirulence gene that can convert virulent strains of P. syringae to avirulence on Arabidopsis thaliana, soybean, and bean. The family also includes bacterial tellurite-resistance proteins (trgB); tellurium (Te) compounds are used in industrial processes and had been used as antimicrobial agents in the past. Some members have been described proteins involved in cation transport (chaC). 99 -119401 cd06662 SURF1 SURF1 superfamily. Surf1/Shy1 has been implicated in the posttranslational steps of the biogenesis of the mitochondrially-encoded Cox1 subunit of cytochrome c oxidase (complex IV). Cytochrome c oxidase (complex IV), the terminal electron-transferring complex of the respiratory chain, is an assemblage of nuclear and mitochondrially-encoded subunits. Its assembly is mediated by nuclear encoded assembly factors, one of which is Surf1/Shy1. Mutations in human Surf1 are a major cause of Leigh syndrome, a severe neurodegenerative disorder. 202 -133456 cd06663 Biotinyl_lipoyl_domains Biotinyl_lipoyl_domains are present in biotin-dependent carboxylases/decarboxylases, the dihydrolipoyl acyltransferase component (E2) of 2-oxo acid dehydrogenases, and the H-protein of the glycine cleavage system (GCS). These domains transport CO2, acyl, or methylamine, respectively, between components of the complex/protein via a biotinyl or lipoyl group, which is covalently attached to a highly conserved lysine residue. 73 -143480 cd06664 IscU_like Iron-sulfur cluster scaffold-like proteins. IscU_like and NifU_like proteins. IscU and NifU function as a scaffold for the assembly of [2Fe-2S] clusters before they are transferred to apo target proteins. They are highly conserved and play vital roles in the ISC and NIF systems of Fe-S protein maturation. NIF genes participate in nitrogen fixation in several isolated bacterial species. The NifU domain, however, is also found in bacteria that do not fix nitrogen, so it may have wider significance in the cell. Human IscU interacts with frataxin, the Friedreich ataxia gene product, and incorrectly spliced IscU has been shown to disrupt iron homeostasis in skeletal muscle and cause myopathy. 123 -143484 cd06808 PLPDE_III Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes. The fold type III PLP-dependent enzyme family is predominantly composed of two-domain proteins with similarity to bacterial alanine racemases (AR) including eukaryotic ornithine decarboxylases (ODC), prokaryotic diaminopimelate decarboxylases (DapDC), biosynthetic arginine decarboxylases (ADC), carboxynorspermidine decarboxylases (CANSDC), and similar proteins. AR-like proteins contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. These proteins play important roles in the biosynthesis of amino acids and polyamine. The family also includes the single-domain YBL036c-like proteins, which contain a single PLP-binding TIM-barrel domain without any N- or C-terminal extensions. Due to the lack of a second domain, these proteins may possess only limited D- to L-alanine racemase activity or non-specific racemase activity. 211 -143485 cd06810 PLPDE_III_ODC_DapDC_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, Ornithine and Diaminopimelate Decarboxylases, and Related Enzymes. This family includes eukaryotic ornithine decarboxylase (ODC, EC 4.1.1.17), diaminopimelate decarboxylase (DapDC, EC 4.1.1.20), plant and prokaryotic biosynthetic arginine decarboxylase (ADC, EC 4.1.1.19), carboxynorspermidine decarboxylase (CANSDC), and ODC-like enzymes from diverse bacterial species. These proteins are fold type III PLP-dependent enzymes that catalyze essential steps in the biosynthesis of polyamine and lysine. ODC and ADC participate in alternative pathways of the biosynthesis of putrescine, which is the precursor of aliphatic polyamines in many organisms. ODC catalyzes the direct synthesis of putrescine from L-ornithine, while ADC converts L-arginine to agmatine, which is hydrolysed to putrescine by agmatinase in a pathway that exists only in plants and bacteria. DapDC converts meso-2,6-diaminoheptanedioate to L-lysine, which is the final step of lysine biosynthesis. CANSDC catalyzes the decarboxylation of carboxynorspermidine, which is the last step in the synthesis of norspermidine. The PLP-dependent decarboxylases in this family contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Prokaryotic ornithine, lysine and biodegradative arginine decarboxylases are fold type I PLP-dependent enzymes and are not included in this family. 368 -143486 cd06811 PLPDE_III_yhfX_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme yhfX. This subfamily is composed of the uncharacterized protein yhfX from Escherichia coli K-12 and similar bacterial proteins. These proteins are homologous to bacterial alanine racemases (AR), which are fold type III PLP-dependent enzymes containing an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. It catalyzes the interconversion between L- and D-alanine, which is an essential component of the peptidoglycan layer of bacterial cell walls. Members of this subfamily may act as PLP-dependent enzymes. 382 -143487 cd06812 PLPDE_III_DSD_D-TA_like_1 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes Similar to D-Serine Dehydratase and D-Threonine Aldolase, Unknown Group 1. This subfamily is composed of uncharacterized bacterial proteins with similarity to eukaryotic D-serine dehydratases (DSD) and D-threonine aldolases (D-TA). DSD catalyzes the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. D-TA reversibly catalyzes the aldol cleavage of D-threonine into glycine and acetaldehyde, and the synthesis of D-threonine from glycine and acetaldehyde. DSD and D-TA are fold type III PLP-dependent enzymes, similar to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on their similarity to AR, it is possible members of this family also form dimers in solution. 374 -143488 cd06813 PLPDE_III_DSD_D-TA_like_2 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes Similar to D-Serine Dehydratase and D-Threonine Aldolase, Unknown Group 2. This subfamily is composed of uncharacterized bacterial proteins with similarity to eukaryotic D-serine dehydratases (DSD) and D-threonine aldolases (D-TA). DSD catalyzes the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. D-TA reversibly catalyzes the aldol cleavage of D-threonine into glycine and acetaldehyde, and the synthesis of D-threonine from glycine and acetaldehyde. DSD and D-TA are fold type III PLP-dependent enzymes, similar to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on their similarity to AR, it is possible members of this family also form dimers in solution. 388 -143489 cd06814 PLPDE_III_DSD_D-TA_like_3 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes Similar to D-Serine Dehydratase and D-Threonine Aldolase, Unknown Group 3. This subfamily is composed of uncharacterized bacterial proteins with similarity to eukaryotic D-serine dehydratases (DSD) and D-threonine aldolases (D-TA). DSD catalyzes the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. D-TA reversibly catalyzes the aldol cleavage of D-threonine into glycine and acetaldehyde, and the synthesis of D-threonine from glycine and acetaldehyde. DSD and D-TA are fold type III PLP-dependent enzymes, similar to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on their similarity to AR, it is possible members of this family also form dimers in solution. 379 -143490 cd06815 PLPDE_III_AR_like_1 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Alanine Racemase-like 1. This subfamily is composed of uncharacterized bacterial proteins with similarity to bacterial alanine racemases (AR), which are fold type III PLP-dependent enzymes containing an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. It catalyzes the interconversion between L- and D-alanine, which is an essential component of the peptidoglycan layer of bacterial cell walls. Members of this subfamily may act as PLP-dependent enzymes. 353 -143491 cd06817 PLPDE_III_DSD Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Eukaryotic D-Serine Dehydratase. This subfamily is composed of chicken D-serine dehydratase (DSD, EC 4.3.1.18) and similar eukaryotic proteins. Chicken DSD catalyzes the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. It is a fold type III PLP-dependent enzyme with similarity to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as dimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Experimental data suggest that chicken DSD also exists as dimers. Sequence comparison and biochemical experiments show that chicken DSD is distinct from the ubiquitous bacterial DSDs coded by dsdA gene, mammalian L-serine dehydratases (LSD) and mammalian serine racemase (SerRac), which are fold type II PLP-dependent enzymes. 389 -143492 cd06818 PLPDE_III_cryptic_DSD Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Bacterial Cryptic D-Serine Dehydratase. This subfamily is composed of Burkholderia cepacia cryptic D-serine dehydratase (cryptic DSD), which is also called D-serine deaminase, and similar bacterial proteins. Members of this subfamily are fold type III PLP-dependent enzymes with similarity to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as dimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on similarity, it is possible cryptic DSDs may also form dimers. Cryptic DSDs are distinct from the ubiquitous bacterial DSDs coded by the dsdA gene, mammalian L-serine dehydratases (LSD) and mammalian serine racemase (SerRac), which are fold type II PLP-dependent enzymes. At present, the enzymatic and biochemical properties of cryptic DSDs are still poorly understood. Typically, DSDs catalyze the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. 382 -143493 cd06819 PLPDE_III_LS_D-TA Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Low Specificity D-Threonine Aldolase. Low specificity D-threonine aldolase (Low specificity D-TA, EC 4.3.1.18), encoded by dtaAS gene from Arthrobacter sp. strain DK-38, is the prototype of this subfamily. Low specificity D-TAs are fold type III PLP-dependent enzymes that catalyze the interconversion between D-threonine/D-allo-threonine and glycine plus acetaldehyde. Both PLP and divalent cations (eg. Mn2+) are required for catalytic activity. Members of this subfamily show similarity to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on its similarity to AR, it is possible that low specificity D-TAs also form dimers in solution. Experimental data show that the monomeric form of low specificity D-TAs exhibit full catalytic activity. 358 -143494 cd06820 PLPDE_III_LS_D-TA_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, Low Specificity D-Threonine Aldolase-like. This subfamily is composed of uncharacterized bacterial proteins with similarity to low specificity D-threonine aldolase (D-TA), which is a fold type III PLP-dependent enzyme that catalyzes the interconversion between D-threonine/D-allo-threonine and glycine plus acetaldehyde. Both PLP and divalent cations (eg. Mn2+) are required for catalytic activity. Low specificity D-TAs show similarity to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on its similarity to AR, it is possible that low specificity D-TAs also form dimers in solution. Experimental data show that the monomeric form of low specificity D-TAs exhibit full catalytic activity. 353 -143495 cd06821 PLPDE_III_D-TA Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme D-Threonine Aldolase. D-threonine aldolase (D-TA, EC 4.3.1.18) reversibly catalyzes the aldol cleavage of D-threonine into glycine and acetaldehyde, and the synthesis of D-threonine from glycine and acetaldehyde. Its activity is present in several genera of bacteria but not in fungi. It requires PLP and a divalent cation such as Co2+, Ni2+, Mn2+, or Mg2+ as cofactors for catalytic activity and thermal stability. Members of this subfamily show similarity to bacterial alanine racemase (AR), a fold type III PLP-dependent enzyme which contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on its similarity to AR, it is possible that low specificity D-TAs also form dimers in solution. Experimental data show that the monomeric form of low specificity D-TAs exhibit full catalytic activity. 361 -143496 cd06822 PLPDE_III_YBL036c_euk Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Eukaryotic YBL036c-like proteins. This subfamily contains mostly uncharacterized eukaryotic proteins with similarity to the yeast hypothetical protein YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. YBL036c is a single domain monomeric protein with a typical TIM barrel fold. It binds the PLP cofactor and has been shown to exhibit amino acid racemase activity. The YBL036c structure is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. The lack of a second domain in YBL036c may explain limited D- to L-alanine racemase or non-specific racemase activity. Some members of this subfamily are also referred to as PROSC (Proline synthetase co-transcribed bacterial homolog). 227 -143497 cd06824 PLPDE_III_Yggs_like Pyridoxal 5-phosphate (PLP)-binding TIM barrel domain of Type III PLP-Dependent Enzymes, Yggs-like proteins. This subfamily contains mainly uncharacterized proteobacterial proteins with similarity to the hypothetical Escherichia coli protein YggS, a homolog of yeast YBL036c, which is homologous to a Pseudomonas aeruginosa gene that is co-transcribed with a known proline biosynthetic gene. Like yeast YBL036c, Yggs is a single domain monomeric protein with a typical TIM-barrel fold. Its structure, which shows a covalently-bound PLP cofactor, is similar to the N-terminal domain of the fold type III PLP-dependent enzymes, bacterial alanine racemase and eukaryotic ornithine decarboxylase, which are two-domain dimeric proteins. YggS has not been characterized extensively and its biological function is still unkonwn. 224 -143498 cd06825 PLPDE_III_VanT Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, VanT and similar proteins. This subfamily is composed of Enterococcus gallinarum VanT and similar proteins. VanT is a membrane-bound serine racemase (EC 5.1.1.18) that is essential for vancomycin resistance in Enterococcus gallinarum. It converts L-serine into its D-enantiomer (D-serine) for peptidoglycan synthesis. The C-terminal region of this protein contains a PLP-binding TIM-barrel domain followed by beta-sandwich domain, which is homologous to the fold type III PLP-dependent enzyme, bacterial alanine racemase (AR). AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. On the basis of this similarity, it has been suggested that dimer formation of VanT is required for its catalytic activity, and that it catalyzes the racemization of serine in a mechanistically similar manner to that of alanine by bacterial AR. Some biochemical evidence indicates that VanT also exhibits alanine racemase activity and plays a role in the racemization of L-alanine. VanT contains a unique N-terminal transmembrane domain, which may function as an L-serine transporter. VanT serine racemases are not related to eukaryotic serine racemases, which are fold type II PLP-dependent enzymes. 368 -143499 cd06826 PLPDE_III_AR2 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme, Alanine Racemase 2. This subfamily is composed of bacterial alanine racemases (EC 5.1.1.1) with similarity to Yersinia pestis and Vibrio cholerae alanine racemase (AR) 2. ARs catalyze the interconversion between L- and D-alanine, an essential component of the peptidoglycan layer of bacterial cell walls. These proteins are similar to other bacterial ARs and are fold type III PLP-dependent enzymes containing contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Homodimer formation and the presence of the PLP cofactor are required for catalytic activity. 365 -143500 cd06827 PLPDE_III_AR_proteobact Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, Proteobacterial Alanine Racemases. This subfamily is composed mainly of proteobacterial alanine racemases (EC 5.1.1.1), fold type III PLP-dependent enzymes that catalyze the interconversion between L- and D-alanine, which is an essential component of the peptidoglycan layer of bacterial cell walls. hese proteins are similar to other bacterial ARs and are fold type III PLP-dependent enzymes containing contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Homodimer formation and the presence of the PLP cofactor are required for catalytic activity. 354 -143501 cd06828 PLPDE_III_DapDC Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Diaminopimelate Decarboxylase. Diaminopimelate decarboxylase (DapDC, EC 4.1.1.20) participates in the last step of lysine biosynthesis. It converts meso-2,6-diaminoheptanedioate to L-lysine. It is a fold type III PLP-dependent enzyme that contains an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. DapDC exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Homodimer formation and the presence of the PLP cofactor are required for catalytic activity. 373 -143502 cd06829 PLPDE_III_CANSDC Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Carboxynorspermidine Decarboxylase. Carboxynorspermidine decarboxylase (CANSDC) catalyzes the decarboxylation of carboxynorspermidine, the last step in the biosynthesis of norspermidine. It is homologous to eukaryotic ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC), which are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. Based on this similarity, CANSDC may require homodimer formation and the presence of the PLP cofactor for its catalytic activity. 346 -143503 cd06830 PLPDE_III_ADC Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Arginine Decarboxylase. This subfamily includes plants and biosynthetic prokaryotic arginine decarboxylases (ADC, EC 4.1.1.19). ADC is involved in the biosynthesis of putrescine, which is the precursor of aliphatic polyamines in many organisms. It catalyzes the decarboxylation of L-arginine to agmatine, which is then hydrolyzed to putrescine by agmatinase. ADC is homologous to eukaryotic ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC), which are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. Homodimer formation and the presence of both PLP and Mg2+ cofactors may be required for catalytic activity. Prokaryotic ADCs (biodegradative), which are fold type I PLP-dependent enzymes, are not included in this family. 409 -143504 cd06831 PLPDE_III_ODC_like_AZI Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Ornithine Decarboxylase-like Antizyme Inhibitor. Antizyme inhibitor (AZI) is homologous to the fold type III PLP-dependent enzyme ODC but does not retain any decarboxylase activity. Like ODC, AZI is presumed to exist as a homodimer. Antizyme is a regulatory protein that binds directly to the ODC monomer to block its active site, leading to its degradation by the 26S proteasome. AZI binds to Antizyme with a higher affinity than ODC, preventing the formation of the Antizyme-ODC complex. Thus, AZI blocks the ability of Antizyme to promote ODC degradation, which leads to increased ODC enzymatic activity and polyamine levels. AZI also prevents the degradation of other proteins regulated by Antizyme, such as cyclin D1. 394 -143505 cd06836 PLPDE_III_ODC_DapDC_like_1 Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes, Uncharacterized Proteins with similarity to Ornithine and Diaminopimelate Decarboxylases. This subfamily contains uncharacterized proteins with similarity to ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC). ODC and DapDC are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. They exist as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. ODC participates in the formation of putrescine by catalyzing the decarboxylation of ornithine, the first step in polyamine biosynthesis. DapDC participates in the last step of lysine biosynthesis, the conversion of meso-2,6-diaminoheptanedioate to L-lysine. Proteins in this subfamily may function as PLP-dependent decarboxylases. Homodimer formation and the presence of the PLP cofactor may be required for catalytic activity. 379 -143506 cd06839 PLPDE_III_Btrk_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Btrk Decarboxylase. This subfamily is composed of Bacillus circulans BtrK decarboxylase and similar proteins. These proteins are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases, eukaryotic ornithine decarboxylases and diaminopimelate decarboxylases. BtrK is presumed to function as a PLP-dependent decarboxylase involved in the biosynthesis of the aminoglycoside antibiotic butirosin. Homodimer formation and the presence of the PLP cofactor may be required for catalytic activity. 382 -143507 cd06840 PLPDE_III_Bif_AspK_DapDC Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Bifunctional Aspartate Kinase/Diaminopimelate Decarboxylase. Bifunctional aspartate kinase/diaminopimelate decarboxylase (AspK/DapDC, EC 4.1.1.20/EC 2.7.2.4) typically exists in bacteria. These proteins contain an N-terminal AspK region and a C-terminal DapDC region, which contains a PLP-binding TIM-barrel domain followed by beta-sandwich domain, characteristic of fold type III PLP-dependent enzymes. Members of this subfamily have not been fully characterized. Based on their sequence, these proteins may catalyze both reactions catalyzed by AspK and DapDC. AspK catalyzes the phosphorylation of L-aspartate to produce 4-phospho-L-aspartate while DapDC participates in the last step of lysine biosynthesis, the conversion of meso-2,6-diaminoheptanedioate to L-lysine. 368 -143508 cd06841 PLPDE_III_MccE_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme MccE. This subfamily is composed of uncharacterized proteins with similarity to Escherichia coli MccE, a hypothetical protein that is homologous to eukaryotic ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC). ODC and DapDC are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. ODC participates in the formation of putrescine by catalyzing the decarboxylation of ornithine, the first step in polyamine biosynthesis. DapDC participates in the last step of lysine biosynthesis, the conversion of meso-2,6-diaminoheptanedioate to L-lysine. Most members of this subfamily share the same domain architecture as ODC and DapDC. A few members, including Escherichia coli MccE, contain an additional acetyltransferase domain at the C-terminus. 379 -143509 cd06842 PLPDE_III_Y4yA_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme Y4yA. This subfamily is composed of the hypothetical Rhizobium sp. protein Y4yA and similar uncharacterized bacterial proteins. These proteins are homologous to eukaryotic ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC). ODC and DapDC are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. ODC participates in the formation of putrescine by catalyzing the decarboxylation of ornithine, the first step in polyamine biosynthesis. DapDC participates in the last step of lysine biosynthesis, the conversion of meso-2,6-diaminoheptanedioate to L-lysine. Proteins in this subfamily may function as PLP-dependent decarboxylases. 423 -143510 cd06843 PLPDE_III_PvsE_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzyme PvsE. This subfamily is composed of PvsE from Vibrio parahaemolyticus and similar proteins. PvsE is a vibrioferrin biosynthesis protein which is homologous to eukaryotic ornithine decarboxylase (ODC) and diaminopimelate decarboxylase (DapDC). ODC and DapDC are fold type III PLP-dependent enzymes that contain an N-terminal PLP-binding TIM-barrel domain and a C-terminal beta-sandwich domain, similar to bacterial alanine racemases. It has been suggested that PvsE may be involved in the biosynthesis of the polycarboxylate siderophore vibrioferrin. It may catalyze the decarboxylation of serine to yield ethanolamine. PvsE may require homodimer formation and the presence of the PLP cofactor for activity. 377 -132911 cd06844 STAS Sulphate Transporter and Anti-Sigma factor antagonist domain found in the C-terminal region of sulphate transporters as well as in bacterial and archaeal proteins involved in the regulation of sigma factors. The STAS (Sulphate Transporter and Anti-Sigma factor antagonist) domain is found in the C-terminal region of sulphate transporters as well as in bacterial and archaeal proteins involved in the regulation of sigma factors, like anti-anti-sigma factors and "stressosome" components. The sigma factor regulators are involved in protein-protein interaction which is regulated by phosphorylation. 100 -132900 cd06845 Bcl-2_like Apoptosis regulator proteins of the Bcl-2 family, named after B-cell lymphoma 2. This alignment model spans what have been described as Bcl-2 homology regions BH1, BH2, BH3, and BH4. Many members of this family have an additional C-terminal transmembrane segment. Some homologous proteins, which are not included in this model, may miss either the BH4 (Bax, Bak) or the BH2 (Bcl-X(S)) region, and some appear to only share the BH3 region (Bik, Bim, Bad, Bid, Egl-1). This family is involved in the regulation of the outer mitochondrial membrane's permeability and in promoting or preventing the release of apoptogenic factors, which in turn may trigger apoptosis by activating caspases. Bcl-2 and the closely related Bcl-X(L) are anti-apoptotic key regulators of programmed cell death. They are assumed to function via heterodimeric protein-protein interactions, binding pro-apoptotic proteins such as Bad (BCL2-antagonist of cell death), Bid, and Bim, by specifically interacting with their BH3 regions. Interfering with this heterodimeric interaction via small-molecule inhibitors may prove effective in targeting various cancers. This family also includes the Caenorhabditis elegans Bcl-2 homolog CED-9, which binds to CED-4, the C. Elegans homolog of mammalian Apaf-1. Apaf-1, however, does not seem to be inhibited by Bcl-2 directly. 144 -185704 cd06846 Adenylation_DNA_ligase_like Adenylation domain of proteins similar to ATP-dependent polynucleotide ligases. ATP-dependent polynucleotide ligases catalyze the phosphodiester bond formation of nicked nucleic acid substrates using ATP as a cofactor in a three step reaction mechanism. This family includes ATP-dependent DNA and RNA ligases. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent DNA ligases have a highly modular architecture, consisting of a unique arrangement of two or more discrete domains, including a DNA-binding domain, an adenylation or nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation domain binds ATP and contains many active site residues. Together with the C-terminal OB-fold domain, it comprises a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases including eukaryotic GRP-dependent mRNA-capping enzymes. The catalytic core contains both the active site as well as many DNA-binding residues. The RNA circularization protein from archaea and bacteria contains the minimal catalytic unit, the adenylation domain, but does not contain an OB-fold domain. This family also includes the m3G-cap binding domain of snurportin, a nuclear import adaptor that binds m3G-capped spliceosomal U small nucleoproteins (snRNPs), but doesn't have enzymatic activity. 182 -133457 cd06848 GCS_H Glycine cleavage H-protein. Glycine cleavage H-proteins are part of the glycine cleavage system (GCS) found in bacteria, archea and the mitochondria of eukaryotes. GCS is a multienzyme complex consisting of 4 different components (P-, H-, T- and L-proteins) which catalyzes the oxidative cleavage of glycine. The H-protein shuttles the methylamine group of glycine from the P-protein (glycine dehydrogenase) to the T-protein (aminomethyltransferase) via a lipoyl group, attached to a completely conserved lysine residue. 96 -133458 cd06849 lipoyl_domain Lipoyl domain of the dihydrolipoyl acyltransferase component (E2) of 2-oxo acid dehydrogenases. 2-oxo acid dehydrogenase multienzyme complexes, like pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase (OGDH) and branched-chain 2-oxo acid dehydrogenase (BCDH), contain at least three different enzymes, 2-oxo acid dehydrogenase (E1), dihydrolipoyl acyltransferase (E2) and dihydrolipoamide dehydrogenase (E3) and play a key role in redox regulation. E2, the central component of the complex, catalyzes the transfer of the acyl group of CoA from E1 to E3 via reductive acetylation of a lipoyl group covalently attached to a lysine residue. 74 -133459 cd06850 biotinyl_domain The biotinyl-domain or biotin carboxyl carrier protein (BCCP) domain is present in all biotin-dependent enzymes, such as acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, geranyl-CoA carboxylase, oxaloacetate decarboxylase, methylmalonyl-CoA decarboxylase, transcarboxylase and urea amidolyase. This domain functions in transferring CO2 from one subsite to another, allowing carboxylation, decarboxylation, or transcarboxylation. During this process, biotin is covalently attached to a specific lysine. 67 -133461 cd06851 GT_GPT_like This family includes eukaryotic UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (GPT) and archaeal GPT-like glycosyltransferases. Eukaryotic GPT catalyzes the transfer of GlcNAc-1-P from UDP-GlcNAc to dolichol-P to form GlcNAc-P-P-dolichol. The reaction is the first step in the assembly of dolichol-linked oligosaccharide intermediates and is essential for eukaryotic N-linked glycosylation. GPT activity has been identified in all eukaryotic cells examined to date. Evidence for the existence of the N-glycosylation pathway in archaea has emerged and genes responsible for the pathway have been identified. A glycosyl transferase gene Mv1751 in M. voltae encodes for the enzyme that carries out the first step in the pathway, the attachment of GlcNAc to a dolichol lipid carrier in the membrane. A lethal mutation in the alg7 (GPT) gene in Saccharomyces cerevisiae was successfully complemented with Mv1751, the archaeal gene, indicating eukaryotic and archaeal enzymes may use the same substrates and are evolutionarily closer than the bacterial enzyme, which uses a different substrate. 223 -133462 cd06852 GT_MraY Phospho-N-acetylmuramoyl-pentapeptide-transferase (mraY) is an enzyme responsible for the formation of the first lipid intermediate in the synthesis of bacterial cell wall peptidoglycan. It catalyzes the formation of undecaprenyl-pyrophosphoryl-N-acetylmuramoyl-pentapeptide from UDP-MurNAc-pentapeptide and undecaprenyl-phosphate. It is an integral membrane protein with possibly ten transmembrane domains. 280 -133463 cd06853 GT_WecA_like This subfamily contains Escherichia coli WecA, Bacillus subtilis TagO and related proteins. WecA is an UDP-N-acetylglucosamine (GlcNAc):undecaprenyl-phosphate (Und-P) GlcNAc-1-phosphate transferase that catalyzes the formation of a phosphodiester bond between a membrane-associated undecaprenyl-phosphate molecule and N-acetylglucosamine 1-phosphate, which is usually donated by a soluble UDP-N-acetylglucosamine precursor. WecA participates in the biosynthesis of O antigen LPS in many enteric bacteria and is also involved in the biosynthesis of enterobacterial common antigen. A conserved short sequence motif and a conserved arginine at a cytosolic loop of this integral membrane protein were shown to be critical in recognition of substrate UDP-N-acetylglucosamine. 249 -133464 cd06854 GT_WbpL_WbcO_like The members of this subfamily catalyze the formation of a phosphodiester bond between a membrane-associated undecaprenyl-phosphate (Und-P) molecule and N-acetylhexosamine 1-phosphate, which is usually donated by a soluble UDP-N-acetylhexosamine precursor. The WbcO/WbpL substrate specificity has not yet been determined, but the structure of their biosynthetic end products implies that UDP-N-acetyl-D-fucosamine (UDP-FucNAc) and/or UDPN-acetyl-D-quinosamine (UDP-QuiNAc) are used. The subgroup of bacterial UDP-HexNAc:polyprenol-P HexNAc-1-P transferases includes the WbcO protein from Yersinia enterocolitica and the WbpL protein from Pseudomonas aeruginosa. These transferases initiate LPS O-antigen biosynthesis. Similar to other GlcNAc/MurNAc-1-P transferase family members, WbpL is a highly hydrophobic protein possessing 11 predicted transmembrane segments. 253 -133465 cd06855 GT_GPT_euk UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (GPT) catalyzes the transfer of GlcNAc-1-P from UDP-GlcNAc to dolichol-P to form GlcNAc-P-P-dolichol. The reaction is the first step in the assembly of dolichol-linked oligosaccharide intermediates and is essential for eukaryotic N-glycosylation. GPT activity has been identified in all eukaryotic cells examined to date. A series of six conserved motifs designated A through F, ranging in length from 5 to 13 amino acid residues, has been identified in this family. They have been determined to be important for stable expression, substrate binding, or catalytic activities. 283 -133466 cd06856 GT_GPT_archaea UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (GPT)-like proteins in archaea. Eukaryotic GPT catalyzes the transfer of GlcNAc-1-P from UDP-GlcNAc to dolichol-P to form GlcNAc-P-P-dolichol. The reaction is the first step in the assembly of dolichol-linked oligosaccharide intermediates and is essential for eukaryotic N-linked glycosylation. Evidence for the existence of the N-glycosylation pathway in archaea has emerged and genes responsible for the pathway have been identified. A glycosyl transferase gene Mv1751 in M. voltae encodes for the enzyme that carries out the first step in the pathway, the attachment of GlcNAc to a dolichol lipid carrier in the membrane. A lethal mutation in the alg7 (GPT) gene in Saccharomyces cerevisiae was successfully complemented with Mv1751, the archaea gene, indicating that eukaryotic and archaeal enzymes may use the same substrates and are evolutionarily closer than the bacterial enzyme, which uses a different substrate. 280 -271356 cd06857 SLC5-6-like_sbd Solute carrier families 5 and 6-like; solute binding domain. This superfamily includes the solute-binding domain of SLC5 proteins (also called the sodium/glucose cotransporters or solute sodium symporters), SLC6 proteins (also called the sodium- and chloride-dependent neurotransmitter transporters or Na+/Cl--dependent transporters), and nucleobase-cation-symport-1 (NCS1) transporters. SLC5s co-transport Na+ with sugars, amino acids, inorganic ions or vitamins. SLC6s include Na+/Cl--dependent plasma membrane transporters for the monoamine neurotransmitters serotonin, dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. Members of this superfamily are important in human physiology and disease. They contain a functional core of 10 transmembrane helices (TMs): an inverted structural repeat, TMs1-5 and TMs6-10; TMs numbered to conform to the SLC6 Aquifex aeolicus LeuT. 407 -132769 cd06859 PX_SNX1_2_like The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX1, SNX2, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. SNX1 and SNX2 are components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. 114 -132770 cd06860 PX_SNX7_30_like The phosphoinositide binding Phox Homology domain of Sorting Nexins 7 and 30. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily consists of SNX7, SNX30, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of the sorting nexins in this subfamily has yet to be elucidated. 116 -132771 cd06861 PX_Vps5p The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Vsp5p is the yeast counterpart of human SNX1 and is part of the retromer complex, which functions in the endosome-to-Golgi retrieval of vacuolar protein sorting receptor Vps10p, the Golgi-resident membrane protein A-ALP, and endopeptidase Kex2. The PX domain of Vps5p binds phosphatidylinositol-3-phosphate (PI3P). Similar to SNX1, Vps5p contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. 112 -132772 cd06862 PX_SNX9_18_like The phosphoinositide binding Phox Homology domain of Sorting Nexins 9 and 18. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX9, SNX18, and similar proteins. They contain an N-terminal Src Homology 3 (SH3) domain, a PX domain, and a C-terminal Bin/Amphiphysin/Rvs (BAR) domain. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. 125 -132773 cd06863 PX_Atg24p The phosphoinositide binding Phox Homology domain of yeast Atg24p, an autophagic degradation protein. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The yeast Atg24p is a sorting nexin (SNX) which is involved in membrane fusion events at the vacuolar surface during pexophagy. This is facilitated via binding of Atg24p to phosphatidylinositol 3-phosphate (PI3P) through its PX domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. 118 -132774 cd06864 PX_SNX4 The phosphoinositide binding Phox Homology domain of Sorting Nexin 4. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX4 is involved in recycling traffic from the sorting endosome (post-Golgi endosome) back to the late Golgi. It shows a similar domain architecture as SNX1-2, among others, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. SNX4 is implicated in the regulation of plasma membrane receptor trafficking and interacts with receptors for EGF, insulin, platelet-derived growth factor and the long form of the leptin receptor. 129 -132775 cd06865 PX_SNX_like The phosphoinositide binding Phox Homology domain of SNX-like proteins. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily is composed of uncharacterized proteins, predominantly from plants, with similarity to sorting nexins. A few members show a similar domain architecture as a subfamily of sorting nexins, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX-BAR structural unit is known to determine specific membrane localization. 120 -132776 cd06866 PX_SNX8_Mvp1p_like The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX8 and the yeast counterpart Mvp1p are involved in sorting and delivery of late-Golgi proteins, such as carboxypeptidase Y, to vacuoles. 105 -132777 cd06867 PX_SNX41_42 The phosphoinositide binding Phox Homology domain of fungal Sorting Nexins 41 and 42. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX41 and SNX42 (also called Atg20p) form dimers with SNX4, and are required in protein recycling from the sorting endosome (post-Golgi endosome) back to the late Golgi in yeast. 112 -132778 cd06868 PX_HS1BP3 The phosphoinositide binding Phox Homology domain of HS1BP3. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Hematopoietic lineage cell-specific protein-1 (HS1) binding protein 3 (HS1BP3) associates with HS1 proteins through their SH3 domains, suggesting a role in mediating signaling. It has been reported that HS1BP3 might affect the IL-2 signaling pathway in hematopoietic lineage cells. Mutations in HS1BP3 may also be associated with familial Parkinson disease and essential tremor. HS1BP3 contains a PX domain, a leucine zipper, motifs similar to immunoreceptor tyrosine-based inhibitory motif and proline-rich regions. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. 120 -132779 cd06869 PX_UP2_fungi The phosphoinositide binding Phox Homology domain of uncharacterized fungal proteins. The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized fungal proteins containing a PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. 119 -132780 cd06870 PX_CISK The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Cytokine-independent survival kinase (CISK), also called Serum- and Glucocorticoid-induced Kinase 3 (SGK3), plays a role in cell growth and survival. It is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. CISK/SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. N-terminal to a catalytic kinase domain, CISK contains a PX domain which binds highly phosphorylated PIs, directs membrane localization, and regulates the enzyme's activity. 109 -132781 cd06871 PX_MONaKA The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. MONaKA (Modulator of Na,K-ATPase) binds the plasma membrane ion transporter, Na,K-ATPase, and modulates its enzymatic and ion pump activities. It modulates brain Na,K-ATPase and may be involved in regulating electrical excitability and synaptic transmission. MONaKA contains an N-terminal PX domain and a C-terminal catalytic kinase domain. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. 120 -132782 cd06872 PX_SNX19_like_plant The phosphoinositide binding Phox Homology domain of uncharacterized SNX19-like plant proteins. The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized plant proteins containing an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some sorting nexins (SNXs). This is the same domain architecture found in SNX19. SNX13 and SNX14 also contain these three domains but also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. 107 -132783 cd06873 PX_SNX13 The phosphoinositide binding Phox Homology domain of Sorting Nexin 13. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX13, also called RGS-PX1, contains an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. It specifically binds to the stimulatory subunit of the heterotrimeric G protein G(alpha)s, serving as its GTPase activating protein, through the RGS domain. It preferentially binds phosphatidylinositol-3-phosphate (PI3P) through the PX domain and is localized in early endosomes. SNX13 is involved in endosomal sorting of EGFR into multivesicular bodies (MVB) for delivery to the lysosome. 120 -132784 cd06874 PX_KIF16B_SNX23 The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. KIF16B, also called sorting nexin 23 (SNX23), is a family-3 kinesin which harbors an N-terminal kinesin motor domain containing ATP and microtubule binding sites, a ForkHead Associated (FHA) domain, and a C-terminal PX domain. The PX domain of KIF16B binds to phosphatidylinositol-3-phosphate (PI3P) in early endosomes and plays a role in the transport of early endosomes to the plus end of microtubules. By regulating early endosome plus end motility, KIF16B modulates the balance between recycling and degradation of receptors. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. 127 -132785 cd06875 PX_IRAS The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor Antisera-Selected. The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Imidazoline Receptor Antisera-Selected (IRAS), also called nischarin, contains an N-terminal PX domain, leucine rich repeats, and a predicted coiled coil domain. The PX domain of IRAS binds to phosphatidylinositol-3-phosphate in membranes. Together with the coiled coil domain, it is essential for the localization of IRAS to endosomes. IRAS has been shown to interact with integrin and inhibit cell migration. Its interaction with alpha5 integrin causes a redistribution of the receptor from the cell surface to endosomal structures, suggesting that IRAS may function as a sorting nexin (SNX) which regulates the endosomal trafficking of integrin. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. 116 -132786 cd06876 PX_MDM1p The phosphoinositide binding Phox Homology domain of yeast MDM1p. The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Yeast MDM1p is a filament-like protein localized in punctate structures distributed throughout the cytoplasm. It plays an important role in nuclear and mitochondrial transmission to daughter buds. Members of this subfamily show similar domain architectures as some sorting nexins (SNXs). Some members are similar to SNX19 in that they contain an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. Others are similar to SNX13 and SNX14, which also harbor these three domains as well as a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. 133 -132787 cd06877 PX_SNX14 The phosphoinositide binding Phox Homology domain of Sorting Nexin 14. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX14 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. It is expressed in the embryonic nervous system of mice, and is co-expressed in the motoneurons and the anterior pituary with Islet-1. SNX14 shows a similar domain architecture as SNX13, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. 119 -132788 cd06878 PX_SNX25 The phosphoinositide binding Phox Homology domain of Sorting Nexin 25. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. The function of SNX25 is not yet known. It has been found in exosomes from human malignant pleural effusions. SNX25 shows the same domain architecture as SNX13 and SNX14, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. 127 -132789 cd06879 PX_UP1_plant The phosphoinositide binding Phox Homology domain of uncharacterized plant proteins. The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized fungal proteins containing a PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. 138 -132790 cd06880 PX_SNX22 The phosphoinositide binding Phox Homology domain of Sorting Nexin 22. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX22 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. The biological function of SNX22 is not yet known. 110 -132791 cd06881 PX_SNX15_like The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily have similarity to sorting nexin 15 (SNX15), which contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Other members of this subfamily contain an additional C-terminal kinase domain, similar to human RPK118, which binds sphingosine kinase and the antioxidant peroxiredoxin-3 (PRDX3). RPK118 may be involved in the transport of proteins such as PRDX3 from the cytoplasm to its site of function in the mitochondria. 117 -132792 cd06882 PX_p40phox The phosphoinositide binding Phox Homology domain of the p40phox subunit of NADPH oxidase. The PX domain is a phosphoinositide binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. p40phox contains an N-terminal PX domain, a central SH3 domain that binds p47phox, and a C-terminal PB1 domain that interacts with p67phox. It is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) which plays a crucial role in the cellular response to bacterial infection. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p40phox positively regulates NADPH oxidase in both phosphatidylinositol-3-phosphate (PI3P)-dependent and PI3P-independent manner. The PX domain is a phospholipid-binding module involved in the membrane targeting of proteins. The p40phox PX domain binds to PI3P, an abundant lipid in phagosomal membranes, playing an important role in the localization of NADPH oxidase. The PX domain of p40phox is also involved in protein-protein interaction. 123 -132793 cd06883 PX_PI3K_C2 The phosphoinositide binding Phox Homology Domain of Class II Phosphoinositide 3-Kinases. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are also involved in the regulation of clathrin-mediated membrane trafficking as well as ATP-dependent priming of neurosecretory granule exocytosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. Class II PI3Ks include three vertebrate isoforms (alpha, beta, and gamma), the Drosophila PI3K_68D, and similar proteins. 109 -132794 cd06884 PX_PI3K_C2_68D The phosphoinositide binding Phox Homology Domain of Class II Phosphoinositide 3-Kinases similar to the Drosophila PI3K_68D protein. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. PI3K_68D is a novel PI3K which is widely expressed throughout the Drosophila life cycle. In vitro, it has been shown to phosphorylate PI and PI4P. It is involved in signaling pathways that affect pattern formation of Drosophila wings. 111 -132795 cd06885 PX_SNX17_31 The phosphoinositide binding Phox Homology domain of Sorting Nexins 17 and 31. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Members of this subfamily include sorting nexin 17 (SNX17), SNX31, and similar proteins. They contain an N-terminal PX domain followed by a truncated FERM (4.1, ezrin, radixin, and moesin) domain and a unique C-terminal region. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX17 is known to regulate the trafficking and processing of a number of proteins. It binds some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2, and others, regulating their endocytosis. It also binds P-selectin and may regulate its lysosomal degradation. SNX17 is highly expressed in neurons. It binds amyloid precursor protein (APP) and may be involved in its intracellular trafficking and processing to amyloid beta peptide, which plays a central role in the pathogenesis of Alzheimer's disease. The biological function of SNX31 is unknown. 104 -132796 cd06886 PX_SNX27 The phosphoinositide binding Phox Homology domain of Sorting Nexin 27. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX27 contains an N-terminal PDZ domain followed by a PX domain and a Ras-Associated (RA) domain. It binds G protein-gated potassium (Kir3) channels, which play a role in neuronal excitability control, through its PDZ domain. SNX27 downregulates Kir3 channels by promoting their movement in the endosome, reducing surface expression and increasing degradation. SNX27 also associates with 5-hydroxytryptamine type 4 receptor (5-HT4R), cytohesin associated scaffolding protein (CASP), and diacylglycerol kinase zeta, and may play a role in their intracellular trafficking and endocytic recycling. The SNX27 PX domain preferentially binds to phosphatidylinositol-3-phosphate (PI3P) and is important for targeting to the early endosome. 106 -132797 cd06887 PX_p47phox The phosphoinositide binding Phox Homology domain of the p47phox subunit of NADPH oxidase. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. p47phox is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox), which plays a key role in the ability of phagocytes to defend against bacterial infections. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p47phox is required for activation of NADH oxidase and plays a role in translocation. It contains an N-terminal PX domain, two Src Homology 3 (SH3) domains, and a C-terminal domain that contains PxxP motifs for binding SH3 domains. The PX domain of p47phox is unique in that it contains two distinct basic pockets on the membrane-binding surface: one preferentially binds phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and is analogous to the PI3P-binding pocket of p40phox, while the other binds anionic phospholipids such as phosphatidic acid or phosphatidylserine. Simultaneous binding in the two pockets results in increased membrane affinity. The PX domain of p47phox is also involved in protein-protein interaction. 118 -132798 cd06888 PX_FISH The phosphoinositide binding Phox Homology domain of Five SH protein. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Five SH (FISH), also called Tks5, is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. FISH contains an N-terminal PX domain and five Src homology 3 (SH3) domains. FISH binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. This subfamily also includes proteins with a different number of SH3 domains than FISH, such as Tks4, which contains four SH3 domains instead of five. The Tks4 adaptor protein is required for the formation of functional podosomes. It has overlapping, but not identical, functions as FISH. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 119 -132799 cd06889 PX_NoxO1 The phosphoinositide binding Phox Homology domain of Nox Organizing protein 1. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Nox Organizing protein 1 (NoxO1) is a critical regulator of enzyme kinetics of the nonphagocytic NADPH oxidase Nox1, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Nox1 is expressed in colon, stomach, uterus, prostate, and vascular smooth muscle cells. NoxO1, a homolog of the p47phox subunit of phagocytic NADPH oxidase, is involved in targeting activator subunits (such as NoxA1) to Nox1. It is co-localized with Nox1 in the membranes of resting cells and directs the subcellular localization of Nox1. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of NoxO1 preferentially binds phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2], PI5P, and PI4P. 121 -132800 cd06890 PX_Bem1p The phosphoinositide binding Phox Homology domain of Bem1p. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily bear similarity to Saccharomyces cerevisiae Bem1p, containing two Src Homology 3 (SH3) domains at the N-terminus, a central PX domain, and a C-terminal PB1 domain. Bem1p is a scaffolding protein that is critical for proper Cdc42p activation during bud formation in yeast. During budding and mating, Bem1p migrates to the plasma membrane where it can serve as an adaptor for Cdc42p and some other proteins. Bem1p also functions as an effector of the G1 cyclin Cln3p and the cyclin-dependent kinase Cdc28p in promoting vacuolar fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of Bem1p specifically binds phosphatidylinositol-4-phosphate (PI4P). 112 -132801 cd06891 PX_Vps17p The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps17p. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Vsp17p forms a dimer with Vps5p, the yeast counterpart of human SNX1, and is part of the retromer complex that mediates the transport of the carboxypeptidase Y receptor Vps10p from endosomes to Golgi. Similar to Vps5p and SNX1, Vps17p harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX-BAR structural unit helps determine specific membrane localization. 140 -132802 cd06892 PX_SNX5_like The phosphoinositide binding Phox Homology domain of Sorting Nexins 5 and 6. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Members of this subfamily include SNX5, SNX6, and similar proteins. They contain a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to other sorting nexins including SNX1-2. The PX-BAR structural unit helps determine the specific membrane-targeting of some SNXs. SNX5 and SNX6 may be components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. 141 -132803 cd06893 PX_SNX19 The phosphoinositide binding Phox Homology domain of Sorting Nexin 19. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX19 contains an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. These domains are also found in SNX13 and SNX14, which also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNX19 interacts with IA-2, a major autoantigen found in type-1 diabetes. It inhibits the conversion of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to PI(3,4,5)P3, which leads in the decrease of protein phosphorylation in the Akt signaling pathway, resulting in apoptosis. SNX19 may also be implicated in coronary heart disease and thyroid oncocytic tumors. 132 -132804 cd06894 PX_SNX3_like The phosphoinositide binding Phox Homology domain of Sorting Nexin 3 and related proteins. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily is composed of SNX3, SNX12, and fungal Grd19. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. SNX3/Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. 123 -132805 cd06895 PX_PLD The phosphoinositide binding Phox Homology domain of Phospholipase D. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine to generate membrane-bound phosphatidic acid and choline. Members of this subfamily contain PX and Pleckstrin Homology (PH) domains in addition to the catalytic domain. PLD activity has been detected in viruses, bacteria, yeast, plants, and mammals, but the PX domain is not present in PLDs from viruses and bacteria. PLDs are implicated in many cellular functions like signaling, cytoskeletal reorganization, vesicular transport, stress responses, and the control of differentiation, proliferation, and survival. Vertebrates contain two PLD isozymes, PLD1 and PLD2. PLD1 is located mainly in intracellular membranes while PLD2 is associated with plasma membranes. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 140 -132806 cd06896 PX_PI3K_C2_gamma The phosphoinositide binding Phox Homology Domain of the Gamma Isoform of Class II Phosphoinositide 3-Kinases. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. The class II gamma isoform, PI3K-C2gamma, is expressed in the liver, breast, and prostate. It's biological function remains unknown. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 101 -132807 cd06897 PX_SNARE The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 108 -132808 cd06898 PX_SNX10 The phosphoinositide binding Phox Homology domain of Sorting Nexin 10. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX10 may be involved in the regulation of endosome homeostasis. Its expression induces the formation of giant vacuoles in mammalian cells. 113 -173887 cd06899 lectin_legume_LecRK_Arcelin_ConA legume lectins, lectin-like receptor kinases, arcelin, concanavalinA, and alpha-amylase inhibitor. This alignment model includes the legume lectins (also known as agglutinins), the arcelin (also known as phytohemagglutinin-L) family of lectin-like defense proteins, the LecRK family of lectin-like receptor kinases, concanavalinA (ConA), and an alpha-amylase inhibitor. Arcelin is a major seed glycoprotein discovered in kidney beans (Phaseolus vulgaris) that has insecticidal properties and protects the seeds from predation by larvae of various bruchids. Arcelin is devoid of monosaccharide binding properties and lacks a key metal-binding loop that is present in other members of this family. Phytohaemagglutinin (PHA) is a lectin found in plants, especially beans, that affects cell metabolism by inducing mitosis and by altering the permeability of the cell membrane to various proteins. PHA agglutinates most mammalian red blood cell types by binding glycans on the cell surface. Medically, PHA is used as a mitogen to trigger cell division in T-lymphocytes and to activate latent HIV-1 from human peripheral lymphocytes. Plant L-type lectins are primarily found in the seeds of leguminous plants where they constitute about 10% of the total soluble protein of the seed extracts. They are synthesized during seed development several weeks after flowering and transported to the vacuole where they become condensed into specialized vesicles called protein bodies. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 236 -173888 cd06900 lectin_VcfQ VcfQ bacterial pilus biogenesis protein, lectin domain. This family includes bacterial proteins homologous to the VcfQ (also known as MshQ) bacterial pilus biogenesis protein. VcfQ is encoded by the vcfQ gene of the type IV pilus gene cluster of Vibrio cholerae and is essential for type IV pilus assembly. VcfQ has a Laminin G-like domain as well as an L-type lectin domain. 255 -173889 cd06901 lectin_VIP36_VIPL VIP36 and VIPL type 1 transmembrane proteins, lectin domain. The vesicular integral protein of 36 kDa (VIP36) is a type 1 transmembrane protein of the mammalian early secretory pathway that acts as a cargo receptor transporting high mannose type glycoproteins between the Golgi and the endoplasmic reticulum (ER). Lectins of the early secretory pathway are involved in the selective transport of newly synthesized glycoproteins from the ER to the ER-Golgi intermediate compartment (ERGIC). The most prominent cycling lectin is the mannose-binding type1 membrane protein ERGIC-53, which functions as a cargo receptor to facilitate export of glycoproteins from the ER. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 248 -173890 cd06902 lectin_ERGIC-53_ERGL ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain. ERGIC-53 and ERGL, N-terminal carbohydrate recognition domain. ERGIC-53 and ERGL are eukaryotic mannose-binding type 1 transmembrane proteins of the early secretory pathway that transport newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). ERGIC-53 and ERGL have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. ERGIC-53 functions as a 'cargo receptor' to facilitate the export of glycoproteins with different characteristics from the ER, while the ERGIC-53-like protein (ERGL) which may act as a regulator of ERGIC-53. In mammals, ERGIC-53 forms a complex with MCFD2 (multi-coagulation factor deficiency 2) which then recruits blood coagulation factors V and VIII. Mutations in either MCFD2 or ERGIC-53 cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). In addition to the lectin and transmembrane domains, ERGIC-53 and ERGL have a short N-terminal cytoplasmic region of about 12 amino acids. ERGIC-53 forms disulphide-linked homodimers and homohexamers. ERGIC-53 and ERGL are sequence-similar to the lectins of leguminous plants. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 225 -173891 cd06903 lectin_EMP46_EMP47 EMP46 and EMP47 type 1 transmembrane proteins, N-terminal lectin domain. EMP46 and EMP47, N-terminal carbohydrate recognition domain. EMP46 and EMP47 are fungal type-I transmembrane proteins that cycle between the endoplasmic reticulum and the golgi apparatus and are thought to function as cargo receptors that transport newly synthesized glycoproteins. EMP47 is a receptor for EMP46 responsible for the selective transport of EMP46 by forming hetero-oligomerization between the two proteins. EMP46 and EMP47 have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. EMP46 and EMP47 are 45% sequence-identical to one another and have sequence homology to a class of intracellular lectins defined by ERGIC-53 and VIP36. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 215 -349475 cd06904 M14_MpaA-like Peptidase M14-like domain of Escherichia coli Murein Peptide Amidase A and related proteins. Peptidase M14-like domain of Escherichia coli Murein Peptide Amidase A (MpaA) and related proteins. MpaA is a member of the M14 family of metallocarboxypeptidases (MCPs), however it has an exceptional type of activity, it hydrolyzes the gamma-D-glutamyl-meso-diaminopimelic acid (gamma-D-Glu-Dap) bond in murein peptides. MpaA is specific for cleavage of the gamma-D-Glu-Dap bond of free murein tripeptide; it may also cleave murein tetrapeptide. MpaA has a different substrate specificity and cellular role than endopeptidase I, ENP1 (ENP1 does not belong to this group). MpaA works on free murein peptide in the recycling pathway. 214 -349476 cd06905 M14-like Peptidase M14-like domain; uncharacterized subfamily. A functionally uncharacterized subgroup of the M14 family of metallocarboxypeptidases (MCPs). The M14 family are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism. 359 -349477 cd06906 M14_Nna1 Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases. Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP), and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the mouse Nna1/CCP-1, and -4 proteins, and the human Nna1/AGTPBP-1 protein. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Nna1 is widely expressed in the developing and adult nervous systems, including cerebellar Purkinje and granule neurons, miral cells of the olfactory bulb and retinal photoreceptors. Nna1 is also induced in axotomized motor neurons. Mutations in Nna1 cause Purkinje cell degeneration (pcd). The Nna1 CP domain is required to prevent the retinal photoreceptor loss and cerebellar ataxia phenotypes of pcd mice, and a functional zinc-binding domain is needed for Nna-1 to support neuron survival in these mice. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 271 -349478 cd06907 M14_AGBL2-3_like Peptidase M14-like domain of ATP/GTP binding protein AGBL-2 and AGBL-3, and related proteins. Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-2, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This subgroup includes the human AGBL-2, and -3, and the mouse cytosolic carboxypeptidase (CCPs)-2, and -3. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 252 -349479 cd06908 M14_AGBL4_like Peptidase M14-like domain of ATP/GTP binding protein AGBL-4 and related proteins. Peptidase M14-like domain of ATP/GTP binding protein_like (AGBL)-4, and related proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. This eukaryotic subgroup includes the human AGBL4 and the mouse cytosolic carboxypeptidase (CCP)-6. ATP/GTP binding protein (AGTPBP-1/Nna1)-like proteins are active metallopeptidases that are thought to act on cytosolic proteins such as alpha-tubulin, to remove a C-terminal tyrosine. Mutations in AGTPBP-1/Nna1 cause Purkinje cell degeneration (pcd). AGTPBP-1/Nna1 however does not belong to this subgroup. AGTPBP-1/Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 254 -349480 cd06909 M14_ASPA Peptidase M14 Aspartoacylase (ASPA) subfamily. Aspartoacylase (ASPA) belongs to the Succinylglutamate desuccinylase/aspartoacylase subfamily of the M14 family of metallocarboxypeptidases. ASPA (also known as aminoacylase 2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 190 -349481 cd06910 M14_ASTE_ASPA-like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 208 -132874 cd06911 VirB9_CagX_TrbG VirB9/CagX/TrbG, a component of the type IV secretion system. VirB9 is a component of the type IV secretion system, which is employed by pathogenic bacteria to export virulence proteins directly from the bacterial cytoplasm into the host cell. Unlike the more common type III secretion system, type IV systems evolved from the conjugative apparatus, which is used to transfer DNA between cells. VirB9 was initially identified as an essential virulence gene on the Agrobacterium tumefaciens Ti plasmid. In the pilin-like conjugative structure, VirB9 appears to form a stabilizing complex in the outer membrane, by interacting with the lipoprotein VirB7. The heterodimer has been shown to stabilize other components of the type IV system. This alignment model spans the C-terminal domain of VirB9. CagX is a component of the Helicobacter pylori cag PAI-encoded type IV secretion system. Some other members of this family are involved in conjugal transfer to T-DNA of plant cells. 86 -133467 cd06912 GT_MraY_like This subfamily is composed of uncharacterized bacterial glycosyltransferases in the MraY-like family. This family contains both eukaryotic and prokaryotic UDP-D-N-acetylhexosamine:polyprenol phosphate D-N-acetylhexosamine-1-phosphate transferases, which catalyze the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate. This is the initiation step of protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria. The three bacterial members MraY, WecA, and WbpL/WbcO, utilize undecaprenol phosphate as the acceptor substrate, but use different UDP-sugar donor substrates. MraY-type transferases are highly specific for UDP-N-acetylmuramate-pentapeptide, whereas WecA proteins are selective for UDP-N-acetylglucosamine (UDP-GlcNAc). The WbcO/WbpL substrate specificity has not yet been determined, but the structure of their biosynthetic end products implies that UDP-N-acetyl-D-fucosamine (UDP-FucNAc) and/or UDPN-acetyl-D-quinosamine (UDP-QuiNAc) are used. The prokaryotic enzyme-catalyzed reactions lead to the formation of polyprenol-linked oligosaccharides involved in bacterial cell wall and peptidoglycan assembly. 193 -133063 cd06913 beta3GnTL1_like Beta 1, 3-N-acetylglucosaminyltransferase is essential for the formation of poly-N-acetyllactosamine . This family includes human Beta3GnTL1 and related eukaryotic proteins. Human Beta3GnTL1 is a putative beta-1,3-N-acetylglucosaminyltransferase. Beta3GnTL1 is expressed at various levels in most of tissues examined. Beta 1, 3-N-acetylglucosaminyltransferase has been found to be essential for the formation of poly-N-acetyllactosamine. Poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine repeats. It is often an important part of cell-type-specific oligosaccharide structures and some functional oligosaccharides. It has been shown that the structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Several members of beta-1, 3-N-acetylglucosaminyltransferase have been identified. 219 -133064 cd06914 GT8_GNT1 GNT1 is a fungal enzyme that belongs to the GT 8 family. N-acetylglucosaminyltransferase is a fungal enzyme that catalyzes the addition of N-acetyl-D-glucosamine to mannotetraose side chains by an alpha 1-2 linkage during the synthesis of mannan. The N-acetyl-D-glucosamine moiety in mannan plays a role in the attachment of mannan to asparagine residues in proteins. The mannotetraose and its N-acetyl-D-glucosamine derivative side chains of mannan are the principle immunochemical determinants on the cell surface. N-acetylglucosaminyltransferase is a member of glycosyltransferase family 8, which are, based on the relative anomeric stereochemistry of the substrate and product in the reaction catalyzed, retaining glycosyltransferases. 278 -133065 cd06915 NTP_transferase_WcbM_like WcbM_like is a subfamily of nucleotidyl transferases. WcbM protein of Burkholderia mallei is involved in the biosynthesis, export or translocation of capsule. It is a subfamily of nucleotidyl transferases that transfer nucleotides onto phosphosugars. 223 -143512 cd06916 NR_DBD_like DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers. DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. It interacts with a specific DNA site upstream of the target gene and modulates the rate of transcriptional initiation. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Most nuclear receptors bind as homodimers or heterodimers to their target sites, which consist of two hexameric half-sites. Specificity is determined by the half-site sequence, the relative orientation of the half-sites and the number of spacer nucleotides between the half-sites. However, a growing number of nuclear receptors have been reported to bind to DNA as monomers. 72 -270822 cd06917 STKc_NAK1_like Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -132994 cd06919 Asp_decarbox Aspartate alpha-decarboxylase or L-aspartate 1-decarboxylase, a pyruvoyl group-dependent decarboxylase in beta-alanine production. Decarboxylation of aspartate is the major route of beta-alanine production in bacteria, and is catalyzed by the enzyme L-aspartate decarboxylase (ADC), EC:4.1.1.11 which requires a pyruvoyl group for its activity. The pyruvoyl cofactor is covalently bound to the enzyme. The protein is synthesized as a proenzyme and cleaved via self-processing at Gly23-Ser24 to yield an alpha chain (C-terminal fragment) and beta chain (N-terminal fragment), and the pyruvoyl group. Beta-alanine is required for the biosynthesis of pantothenate, in which the enzyme plays a critical regulatory role. The active site of the tetrameric enzyme is located at the interface of two subunits, with a Lysine and a Histidine from the beta chain of one subunit forming the active site with residues from the alpha chain of the adjacent subunit. This alignment model spans the precursor (or both beta and alpha chains) of aspartate decarboxylase. 111 -132993 cd06920 NEAT NEAr Transport domain, a component of cell surface proteins. NEAr Transporter (NEAT) domain; used by pathogenic bacteria to to scavenge heme-iron from host hemoproteins. The NEAT domain is a component of cell surface proteins (iron regulated surface determinants, or Isd, such as IsdA and IsdC) in various gram-positive bacteria, and may be arranged in tandem repeats. 117 -211312 cd06921 ChtBD1_GH19_hevein Hevein or Type 1 chitin binding domain subfamily co-occuring with family 19 glycosyl hydrolases or with barwin domains. This subfamily includes Hevein, a major IgE-binding allergen in natural rubber latex. ChtBD1 is a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 40 -211313 cd06922 ChtBD1_GH18_1 Hevein or Type 1 chitin binding domain subfamily that co-occurs with family 18 glycosyl hydrolases. ChtBD1 is a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 38 -211314 cd06923 ChtBD1_GH16 Hevein or Type 1 chitin binding domain subfamily that co-occurs with family 16 glycosyl hydrolases. This subfamily includes Saccharomyces cerevisiae Utr2p, also known as Crh2p, which participates in the cross-linking of chitin to beta(1-3)- and beta(1-6) glucan in the cell wall, and S. cerevisiae Crr1p, a putative transglycosidase which is needed for proper spore wall assembly. ChtBD1 is a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 47 -132902 cd06926 RNAP_II_RPB11 RPB11 subunit of Eukaryotic RNA polymerase II. The eukaryotic RPB11 subunit of RNA polymerase (RNAP) II is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III. RNAP II is responsible for the synthesis of mRNA precursor. The RPB11 subunit heterodimerizes with the RPB3 subunit, and together with RPB10 and RPB12, anchors the two largest subunits, RPB1 and RPB2, and stabilizes their association. 93 -132903 cd06927 RNAP_L L subunit of Archaeal RNA polymerase. The archaeal L subunit of RNA polymerase (RNAP) is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. A single distinct RNAP complex is found in archaea, which may be responsible for the synthesis of all RNAs. The archaeal RNAP harbors homologues of all eukaryotic RNAP II subunits with two exceptions (RPB8 and RPB9). The 12 archaeal subunits are designated by letters and can be divided into three functional groups that are engaged in: (I) catalysis (A'/A", B'/B" or B); (II) assembly (L, N, D and P); and (III) auxiliary functions (F, E, H and K). The assembly of the two largest archaeal RNAP subunits that provide most of the enzyme's catalytic functions depends on the presence of the archaeal D/L heterodimer. 83 -132904 cd06928 RNAP_alpha_NTD N-terminal domain of the Alpha subunit of Bacterial RNA polymerase. The bacterial alpha subunit of RNA polymerase (RNAP) consists of two independently folded domains: an amino-terminal domain (alphaNTD) and a carboxy-terminal domain (alphaCTD). AlphaCTD is not required for RNAP assembly but interacts with transcription activators. AlphaNTD is essential in vivo and in vitro for RNAP assembly and basal transcription. It is similar to the eukaryotic RPB3/AC40/archaeal D subunit, and contains two subdomains: one subdomain is similar the eukaryotic Rpb11/AC19/archaeal L subunit which is involved in dimerization; and the other is an inserted beta sheet subdomain. The alphaNTDs of plant plastid RNAP (PEP) are also included in this subfamily. PEP is largely responsible for the transcription of photosynthetic genes and is closely related to the multi-subunit bacterial RNAP, which is a large multi-subunit complex responsible for the synthesis of all bacterial RNAs. The bacterial RNAP core enzyme consists of four subunits (beta', beta, alpha and omega). All residues in the alpha subunit that is involved in dimerization or in the interaction with other subunits are located within alphaNTD. 215 -132727 cd06929 NR_LBD_F1 Ligand-binding domain of nuclear receptor family 1. Ligand-binding domain (LBD) of nuclear receptor (NR) family 1: This is one of the major subfamily of nuclear receptors, including thyroid receptor, retinoid acid receptor, ecdysone receptor, farnesoid X receptor, vitamin D receptor, and other related receptors. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 174 -132728 cd06930 NR_LBD_F2 Ligand-binding domain of nuclear receptor family 2. Ligand-binding domain (LBD) of nuclear receptor (NR) family 2: This is one of the major subfamily of nuclear receptors, including some well known nuclear receptors such as glucocorticoid receptor (GR), mineralocorticoid receptor (MR), estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR), other related receptors. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 165 -132729 cd06931 NR_LBD_HNF4_like The ligand binding domain of heptocyte nuclear factor 4, which is explosively expanded in nematodes. The ligand binding domain of hepatocyte nuclear factor 4 (HNF4) like proteins: HNF4 is a member of the nuclear receptor superfamily. HNF4 plays a key role in establishing and maintenance of hepatocyte differentiation in the liver. It is also expressed in gut, kidney, and pancreatic beta cells. HNF4 was originally classified as an orphan receptor, but later it is found that HNF4 binds with very high affinity to a variety of fatty acids. However, unlike other nuclear receptors, the ligands do not act as a molecular switch for HNF4. They seem to constantly bind to the receptor, which is constitutively active as a transcription activator. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, HNF4 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD domain is also responsible for recruiting co-activator proteins. More than 280 nuclear receptors are found in C. ele gans, most of which are originated from an explosive burst of duplications of HNF4. 222 -132730 cd06932 NR_LBD_PPAR The ligand binding domain of peroxisome proliferator-activated receptors. The ligand binding domain (LBD) of peroxisome proliferator-activated receptors (PPAR): Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response element located upstream of the peroxisome proliferator responsive genes and interacts with co-activators. There are three subtypes of peroxisome proliferator activated receptors, alpha, beta (or delta), and gamma, each with a distinct tissue distribution. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge a nd a C-terminal ligand binding domain (LBD). 259 -132731 cd06933 NR_LBD_VDR The ligand binding domain of vitamin D receptors, a member of the nuclear receptor superfamily. The ligand binding domain of vitamin D receptors (VDR): VDR is a member of the nuclear receptor (NR) superfamily that functions as classical endocrine receptors. VDR controls a wide range of biological activities including calcium metabolism, cell proliferation and differentiation, and immunomodulation. VDR is a high affinity receptor for the biologically most active Vitamin D metabolite, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). The binding of the ligand to the receptor induces a conformational change of the ligand binding domain (LBD) with consequent dissociation of corepressors. Upon ligand binding, VDR forms heterodimer with the retinoid X receptor (RXR) that binds to vitamin D response elements (VDREs), recruits coactivators. This leads to the expression of a large number of genes. Approximately 200 human genes are considered to be primary targets of VDR and even more genes are regulated indirectly. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, VDR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 238 -132732 cd06934 NR_LBD_PXR_like The ligand binding domain of xenobiotic receptors:pregnane X receptor and constitutive androstane receptor. The ligand binding domain of xenobiotic receptors: This xenobiotic receptor family includes pregnane X receptor (PXR), constitutive androstane receptor (CAR) and other related nuclear receptors. They function as sensors of toxic byproducts of cell metabolism and of exogenous chemicals, to facilitate their elimination. The nuclear receptor pregnane X receptor (PXR) is a ligand-regulated transcription factor that responds to a diverse array of chemically distinct ligands, including many endogenous compounds and clinical drugs. The ligand binding domain of PXR shows remarkable flexibility to accommodate both large and small molecules. PXR functions as a heterodimer with retinoic X receptor-alpha (RXRa) and binds to a variety of response elements in the promoter regions of a diverse set of target genes involved in the metabolism, transport, and elimination of these molecules from the cell. Constitutive androstane receptor (CAR) is a closest mammalian relative of PXR, which has also been proposed to function as a xenosensor. CAR is activated by some of the same ligands as PXR and regulates a subset of common genes. The sequence homology and functional similarity suggests that the CAR gene arose from a duplication of an ancestral PXR gene. Like other nuclear receptors, xenobiotic receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 226 -132733 cd06935 NR_LBD_TR The ligand binding domain of thyroid hormone receptor, a members of a superfamily of nuclear receptors. The ligand binding domain (LBD) of thyroid hormone receptors: Thyroid hormone receptors are members of a superfamily of nuclear receptors. Thyroid hormone receptors (TR) mediate the actions of thyroid hormones, which play critical roles in growth, development, and homeostasis in mammals. They regulate overall metabolic rate, cholesterol and triglyceride levels, and heart rate, and affect mood. TRs are expressed from two separate genes (alpha and beta) in human and each gene generates two isoforms of the receptor through differential promoter usage or splicing. TRalpha functions in the heart to regulate heart rate and rhythm and TRbeta is active in the liver and other tissues. The unliganded TRs function as transcription repressors, by binding to thyroid hormone response elements (TRE) predominantly as homodimers, or as heterodimers with retinoid X-receptors (RXR), and being associated with a complex of proteins containing corepressor proteins. Ligand binding promotes corepressor dissociation and binding of a coactivator to activate transcription. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 243 -132734 cd06936 NR_LBD_Fxr The ligand binding domain of Farnesoid X receptor:a member of the nuclear receptor superfamily of ligand-activated transcription factors. The ligand binding domain (LBD) of Farnesoid X receptor: Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. FXR is highly expressed in the liver, the intestine, the kidney, and the adrenals. FXR plays key roles in the regulation of bile acid, cholesterol, triglyceride, and glucose metabolism. Evidences show that it also regulates liver regeneration. Upon binding of ligands, such as bile acid, an endogenous ligand, FXRs bind to FXR response elements (FXREs) either as a monomer or as a heterodimer with retinoid X receptor (RXR), and regulate the expression of various genes involved in bile acid, lipid, and glucose metabolism. There are two FXR genes (FXRalpha and FXRbeta) in mammals. A single FXRalpha gene encodes four isoforms resulting from differential use of promoters and alternative splicing. FXRbeta is a functional receptor in mice, rats, rabbits and dogs, but is a pseudogene in humans and primates. Like other members of the nuclear receptor (NR) superfamily, farnesoid X receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 221 -132735 cd06937 NR_LBD_RAR The ligand binding domain (LBD) of retinoic acid receptor (RAR), a members of the nuclear receptor superfamily. The ligand binding domain (LBD) of retinoic acid receptor (RAR): Retinoic acid receptors are members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors. RARs mediate the biological effect of retinoids, including both naturally dietary vitamin A (retinol) metabolites and active synthetic analogs. Retinoids play key roles in a wide variety of essential biological processes, such as vertebrate embryonic morphogenesis and organogenesis, differentiation and apoptosis, and homeostasis. RARs function as heterodimers with retinoic X receptors by binding to specific RAR response elements (RAREs) found in the promoter regions of retinoid target genes. In the absence of ligand, the RAR-RXR heterodimer recruits the corepressor proteins NCoR or AMRT, and associated factors such as histone deacetylases or DNA-methyltransferases, leading to an inactive condensed chromatin structure, preventing transcription. Upon ligand binding, the corepressors are released, and coactivator complexes such as histone acetyltransferase or histone arginine methyltransferases are recruited to activate transcription. There are three RAR subtypes (alpha, beta, gamma), originating from three distinct genes. For each subtype, several isoforms exist that differ in their N-terminal region, allowing retinoids to exert their pleiotropic effects. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoic acid receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 231 -132736 cd06938 NR_LBD_EcR The ligand binding domain (LBD) of the Ecdysone receptor, a member of the nuclear receptors super family. The ligand binding domain (LBD) of the ecdysone receptor: The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) of ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and regulates the expression of a large number of genes during development and reproduction. ECR functions as a heterodimer by partnering with ultraspiracle protein (USP), the ortholog of the vertebrate retinoid X receptor (RXR). The natural ligands of ecdysone receptor are ecdysteroids#the endogenous steroidal hormones found in invertebrates. In addition, insecticide bisacylhydrazine used against pests has shown to act on EcR. EcR must be dimerised with a USP for high-affinity ligand binding to occur. The ligand binding triggers a conformational change in the C-terminal part of the EcR ligand-binding domain that leads to transcriptional activation of genes controlled by EcR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ec dysone receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 231 -132737 cd06939 NR_LBD_ROR_like The ligand binding domain of Retinoid-related orphan receptors, of the nuclear receptor superfamily. The ligand binding domain (LBD) of Retinoid-related orphan receptors (RORs): Retinoid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor superfamily. RORs are key regulators of many physiological processes during embryonic development. RORs bind as monomers to specific ROR response elements (ROREs) consisting of the consensus core motif AGGTCA preceded by a 5-bp A/T-rich sequence. Transcription regulation by RORs is mediated through certain corepressors, as well as coactivators. There are three subtypes of retinoid-related orphan receptors (RORs), alpha, beta, and gamma that differ only in N-terminal sequence and are distributed in distinct tissues. RORalpha plays a key role in the development of the cerebellum, particularly in the regulation of the maturation and survival of Purkinje cells. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. RORgamma is essential for lymph node organogenesis. Recently, it has been su ggested that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoid-related orphan receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 241 -132738 cd06940 NR_LBD_REV_ERB The ligand binding domain of REV-ERB receptors, members of the nuclear receptor superfamily. The ligand binding domain (LBD) of REV-ERB receptors: REV-ERBs are transcriptional regulators belonging to the nuclear receptor superfamily. They regulate a number of physiological functions including the circadian rhythm, lipid metabolism, and cellular differentiation. The LBD domain of REV-ERB is unusual in the nuclear receptor family by lacking the AF-2 region that is responsible for coactivator interaction. REV-ERBs act as constitutive repressors because of their inability to bind coactivators. REV-ERB receptors can bind to two classes of DNA response elements as either a monomer or heterodimer, indicating functional diversity. When bound to the DNA, they recruit corepressors (NcoR/histone deacetylase 3) to the promoter, resulting in repression of the target gene. The porphyrin heme has been demonstrated to function as a ligand for REV-ERB. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, REV-ERB receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 189 -132739 cd06941 NR_LBD_DmE78_like The ligand binding domain of Drosophila ecdysone-induced protein 78, a member of the nuclear receptor superfamily. The ligand binding domain (LBD) of Drosophila ecdysone-induced protein 78 (E78) like: Drosophila ecdysone-induced protein 78 (E78) is a transcription factor belonging to the nuclear receptor superfamily. E78 is a product of the ecdysone-inducible gene found in an early late puff locus at position 78C during the onset of Drosophila metamorphosis. Two isoforms of E78, E78A and E78B, are expressed from two nested transcription units. An E78 orthologue from the Platyhelminth Schistosoma mansoni (SmE78) has also been identified. It is the first E78 orthologue known outside of the molting animals--the Ecdysozoa. SmE78 may be involved in transduction of an ecdysone signal in S. mansoni, consistent with its function in Drosophila. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, E78-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 195 -132740 cd06942 NR_LBD_Sex_1_like The ligand binding domain of Caenorhabditis elegans nuclear hormone receptor Sex-1 protein. The ligand binding domain (LBD) of Caenorhabditis elegans nuclear hormone receptor Sex-1 protein like: Sex-1 protein of C. elegans is a transcription factor belonging to the nuclear receptor superfamily. Sex-1 plays pivotal role in sex fate of C. elegans by regulating the transcription of the sex-determination gene xol-1, which specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The Sex-1 protein directly represses xol-1 transcription by binding to its promoter. However, the active ligand for Sex-1 protein has not yet been identified. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, Sex-1 like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 191 -132741 cd06943 NR_LBD_RXR_like The ligand binding domain of the retinoid X receptor and Ultraspiracle, members of nuclear receptor superfamily. The ligand binding domain of the retinoid X receptor (RXR) and Ultraspiracle (USP): This family includes two evolutionary related nuclear receptors: retinoid X receptor (RXR) and Ultraspiracle (USP). RXR is a nuclear receptor in mammalian and USP is its counterpart in invertebrates. The native ligand of retinoid X receptor is 9-cis retinoic acid (RA). RXR functions as a DNA binding partner by forming heterodimers with other nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. RXRs can play different roles in these heterodimers. It acts either as a structural component of the heterodimer complex, required for DNA binding but not acting as a receptor or as both a structural and a functional component of the heterodimer, allowing 9-cis RA to signal through the corresponding heterodimer. In addition, RXR can also form homodimers, functioning as a receptor for 9-cis RA, independently of other nuclear receptors. Ultraspiracle (USP) plays similar roles as DNA binding partner of other nuclear rec eptors in invertebrates. USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, RXR and USP have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 207 -132742 cd06944 NR_LBD_Ftz-F1_like The ligand binding domain of FTZ-F1 like nuclear receptors. The ligand binding domain of FTZ-F1 like nuclear receptors: This nuclear receptor family includes at least three subgroups of receptors that function in embryo development and differentiation, and other processes. FTZ-F1 interacts with the cis-acting DNA motif of ftz gene, which required at several stages of development. Particularly, FTZ-F1 genes are strongly linked to steroid biosynthesis and sex-determination; LRH-1 is a regulator of bile-acid homeostasis, steroidogenesis, reverse cholesterol transport and the initial stages of embryonic development. SF-1 is an essential regulator of endocrine development and function and is considered a master regulator of reproduction; SF-1 functions cooperatively with other transcription factors to modulate gene expression. Phospholipids have been identified as potential ligand for LRH-1 and steroidogenic factor-1 (SF-1). However, the ligand for FTZ-F1 has not yet been identified. Most nuclear receptors function as homodimer or heterodimers. However, LRH-1 and SF-1 bind to DNA as a monomer. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, receptors in this family have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 237 -132743 cd06945 NR_LBD_Nurr1_like The ligand binding domain of Nurr1 and related nuclear receptor proteins, members of nuclear receptor superfamily. The ligand binding domain of nuclear receptor Nurr1_like: This family of nuclear receptors, including Nurr1, Nerve growth factor-induced-B (NGFI-B) and DHR38 are involved in the embryo development. Nurr1 is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. Structural studies have shown that the ligand binding pocket of Nurr1 is filled by bulky hydrophobic residues, making it unable to bind to ligands. Therefore, it belongs to the class of orphan receptors. However, Nurr1 forms heterodimers with RXR and can promote signaling via its partner, RXR. NGFI-B is an early immediate gene product of embryo development that is rapidly produced in response to a variety of cellular signals including nerve growth factor. It is involved in T-cell-mediated apoptosis, as well as neuronal differentiation and function. NGFI-B regulates transcription by binding to a specific DNA target upstream of its target genes and regulating the rate of tr anscriptional initiation. Another group of receptor in this family is DHR38. DHR38 is the Drosophila homolog to the vertebrate NGFI-B-type orphan receptor. It interacts with the USP component of the ecdysone receptor complex, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly, in addition to the ECR/USP pathway. Nurr1_like proteins exhibit a modular structure that is characteristic for nuclear receptors; they have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 239 -132744 cd06946 NR_LBD_ERR The ligand binding domain of estrogen receptor-related nuclear receptors. The ligand binding domain of estrogen receptor-related receptors (ERRs): The family of estrogen receptor-related receptors (ERRs), a subfamily of nuclear receptors, is closely related to the estrogen receptor (ER) family, but it lacks the ability to bind estrogen. ERRs can interfere with the classic ER-mediated estrogen signaling pathway, positively or negatively. ERRs share target genes, co-regulators and promoters with the estrogen receptor (ER) family. There are three subtypes of ERRs: alpha, beta and gamma. ERRs bind at least two types of DNA sequence, the estrogen response element and another site, originally characterized as SF-1 (steroidogenic factor 1) response element. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ERR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 221 -132745 cd06947 NR_LBD_GR_Like Ligand binding domain of nuclear hormone receptors:glucocorticoid receptor, mineralocorticoid receptor , progesterone receptor, and androgen receptor. The ligand binding domain of GR_like nuclear receptors: This family of NRs includes four distinct, but closely related nuclear hormone receptors: glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR), and androgen receptor (AR). These four receptors play key roles in some of the most fundamental physiological functions such as the stress response, metabolism, electrolyte homeostasis, immune function, growth, development, and reproduction. The NRs in this family use multiple signaling pathways and share similar functional mechanisms. The dominant signaling pathway is via direct DNA binding and transcriptional regulation of target genes. Another mechanism is via protein-protein interactions, mainly with other transcription factors such as nuclear factor-kappaB and activator protein-1, to regulate gene expression patterns. Both pathways can up-regulate or down-regulate gene expression and require ligand activation of the receptor and recruitment of other cofactors such as chaperone proteins and coregulator proteins. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GR, MR, PR, and AR share the same modular structure with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 246 -132746 cd06948 NR_LBD_COUP-TF Ligand binding domain of chicken ovalbumin upstream promoter transcription factors, a member of the nuclear receptor family. The ligand binding domain of chicken ovalbumin upstream promoter transcription factors (COUP-TFs): COUP-TFs are orphan members of the steroid/thyroid hormone receptor superfamily. They are expressed in many tissues and are involved in the regulation of several important biological processes, such as neurogenesis, organogenesis, cell fate determination, and metabolic homeostasis. In mammals two isoforms named COUP-TFI and COUP-TFII have been identified. Both genes show an exceptional homology and overlapping expression patterns, suggesting that they may serve redundant functions. Although COUP-TF was originally characterized as a transcriptional activator of the chicken ovalbumin gene, COUP-TFs are generally considered to be repressors of transcription for other nuclear hormone receptors, such as retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR), peroxisome proliferator activated receptor (PPAR), and hepatocyte nuclear factor 4 (HNF4). Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, COUP-TFs have a central well cons erved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 236 -132747 cd06949 NR_LBD_ER Ligand binding domain of Estrogen receptor, which are activated by the hormone 17beta-estradiol (estrogen). The ligand binding domain (LBD) of Estrogen receptor (ER): Estrogen receptor, a member of nuclear receptor superfamily, is activated by the hormone estrogen. Estrogen regulates many physiological processes including reproduction, bone integrity, cardiovascular health, and behavior. The main mechanism of action of the estrogen receptor is as a transcription factor by binding to the estrogen response element of target genes upon activation by estrogen and then recruiting coactivator proteins which are responsible for the transcription of target genes. Additionally some ERs may associate with other membrane proteins and can be rapidly activated by exposure of cells to estrogen. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ER has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The C-terminal LBD also contains AF-2 activation motif, the dimerization motif, and part of the nuclear localization region. Estrogen receptor has been linked to aging, cancer, obesity and other diseases. 235 -132748 cd06950 NR_LBD_Tlx_PNR_like The ligand binding domain of Tailless-like proteins, orphan nuclear receptors. The ligand binding domain of the photoreceptor cell-specific nuclear receptor (PNR) like family: This family includes photoreceptor cell-specific nuclear receptor (PNR), Tailless (TLX), and related receptors. TLX is an orphan receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). It plays a key role in neural development by promoting cell cycle progression and preventing apoptosis in the developing brain. PNR is expressed only in the outer layer of retinal photoreceptor cells. It may be involved in the signaling pathway regulating photoreceptor differentiation and/or maintenance. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TLX and PNR have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 206 -132749 cd06951 NR_LBD_Dax1_like The ligand binding domain of DAX1 protein, a nuclear receptor lacking DNA binding domain. The ligand binding domain of DAX1-like proteins: This orphan nuclear receptor family includes DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on chromosome X gene 1) and the Small Heterodimer Partner (SHP). Both receptors have a typical ligand binding domain, but lack the DNA binding domain, typical to almost all of the nuclear receptors. They function as a transcriptional coregulator by directly interacting with other nuclear receptors. DAX1 and SHP can form heterodimers with each other, as well as with many other nuclear receptors. In addition, DAX1 can also form homodimers. DAX1 plays an important role in the normal development of several hormone-producing tissues. SHP has shown to regulate a variety of target genes. 222 -132750 cd06952 NR_LBD_TR2_like The ligand binding domain of the orphan nuclear receptors TR4 and TR2. The ligand binding domain of the TR4 and TR2 (human testicular receptor 4 and 2): TR4 and TR2 are orphan nuclear receptors. Several isoforms of TR4 and TR2 have been isolated in various tissues. TR2 is abundantly expressed in the androgen-sensitive prostate. TR4 transcripts are expressed in many tissues, including central nervous system, adrenal gland, spleen, thyroid gland, and prostate. The expression of TR2 is negatively regulated by androgen, retinoids, and radiation. The expression of both mouse TR2 and TR4 is up-regulated by neurocytokine ciliary neurotrophic factor (CNTF) in mouse. It has shown that human TR2 binds to a wide spectrum of natural hormone response elements (HREs) with distinct affinities suggesting that TR2 may cross-talk with other gene expression regulation systems. The genes responding to TR2 or TR4 include genes that are regulated by retinoic acid receptor, vitamin D receptor, peroxisome proliferator-activated receptor. TR4/2 binds to HREs as a dimer. Like other members of the nuclea r receptor (NR) superfamily of ligand-activated transcription factors, TR2-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 222 -132751 cd06953 NR_LBD_DHR4_like The ligand binding domain of orphan nuclear receptor Ecdysone-induced receptor DHR4. The ligand binding domain of Ecdysone-induced receptor DHR4: Ecdysone-induced orphan receptor DHR4 is a member of the nuclear receptor family. DHR4 is expressed during the early Drosophila larval development and is induced by ecdysone. DHR4 coordinates growth and maturation in Drosophila by mediating endocrine response to the attainment of proper body size during larval development. Mutations in DHR4 result in shorter larval development which translates into smaller and lighter flies. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, DHR4 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 213 -132752 cd06954 NR_LBD_LXR The ligand binding domain of Liver X receptors, a family of nuclear receptors of ligand-activated transcription factors. The ligand binding domain of Liver X receptors: Liver X receptors (LXRs) belong to a family of nuclear receptors of ligand-activated transcription factors. LXRs operate as cholesterol sensors which protect from cholesterol overload by stimulating reverse cholesterol transport from peripheral tissues to the liver and its excretion in the bile. Oxidized cholesterol derivatives or oxysterols were identified as specific ligands for LXRs. Upon ligand binding a conformational change leads to recruitment of co-factors, which stimulates expression of target genes. Among the LXR target genes are several genes involved in cholesterol efflux from peripheral tissues such as the ATP-binding-cassette transporters ABCA1, ABCG1 and ApoE. There are two LXR isoforms in mammals, LXRalpha and LXRbeta. LXRalpha is expressed mainly in the liver, intestine, kidney, spleen, and adipose tissue, whereas LXRbeta is ubiquitously expressed at lower level. Both LXRalpha and LXRbeta function as heterodimers with the retinoid X receptor (RX R) which may be activated by either LXR ligands or 9-cis retinoic acid, a specific RXR ligand. The LXR/RXR complex binds to a liver X receptor response element (LXRE) in the promoter region of target genes. LXR has typical NR modular structure with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and the ligand binding domain (LBD) at the C-terminal. 236 -143513 cd06955 NR_DBD_VDR DNA-binding domain of vitamin D receptors (VDR) is composed of two C4-type zinc fingers. DNA-binding domain of vitamin D receptors (VDR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. VDR interacts with a VDR response element, a direct repeat of GGTTCA DNA site with 3 bp spacer upstream of the target gene, and modulates the rate of transcriptional initiation. VDR is a member of the nuclear receptor (NR) superfamily that functions as classical endocrine receptors. VDR controls a wide range of biological activities including calcium metabolism, cell proliferation and differentiation, and immunomodulation. VDR is a high-affinity receptor for the biologically most active Vitamin D metabolite, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). The binding of the ligand to the receptor induces a conformational change of the ligand binding domain (LBD) with consequent dissociation of corepressors. Upon ligand binding, VDR forms a heterodimer with the retinoid X receptor (RXR) that binds to vitamin D response elements (VDREs), recruits coactivators. This leads to the expression of a large number of genes. Approximately 200 human genes are considered to be primary targets of VDR and even more genes are regulated indirectly. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, VDR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 107 -143514 cd06956 NR_DBD_RXR DNA-binding domain of retinoid X receptor (RXR) is composed of two C4-type zinc fingers. DNA-binding domain of retinoid X receptor (RXR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. RXR functions as a DNA binding partner by forming heterodimers with other nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. All RXR heterodimers preferentially bind response elements composed of direct repeats of two AGGTCA sites with a 1-5 bp spacer. RXRs can play different roles in these heterodimers. RXR acts either as a structural component of the heterodimer complex, required for DNA binding but not acting as a receptor, or as both a structural and a functional component of the heterodimer, allowing 9-cis RA to signal through the corresponding heterodimer. In addition, RXR can also form homodimers, functioning as a receptor for 9-cis RA, independently of other nuclear receptors. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, RXR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 77 -143515 cd06957 NR_DBD_PNR_like_2 DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) like is composed of two C4-type zinc fingers. The DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) nuclear receptor-like family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. PNR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. This family includes nuclear receptor Tailless (TLX), photoreceptor cell-specific nuclear receptor (PNR) and related receptors. TLX is an orphan receptor that plays a key role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PNR is expressed only in the outer layer of retinal photoreceptor cells. It may be involved in the signaling pathway regulating photoreceptor differentiation and/or maintenance. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PNR-like receptors have a central well-conserved DNA-binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 82 -143516 cd06958 NR_DBD_COUP_TF DNA-binding domain of chicken ovalbumin upstream promoter transcription factors (COUP-TFs) is composed of two C4-type zinc fingers. DNA-binding domain of chicken ovalbumin upstream promoter transcription factors (COUP-TFs) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. COUP-TFs are orphan members of the steroid/thyroid hormone receptor superfamily. They are expressed in many tissues and are involved in the regulation of several important biological processes, such as neurogenesis, organogenesis, cell fate determination, and metabolic homeostasis. COUP-TFs homodimerize or heterodimerize with retinoid X receptor (RXR) and a few other nuclear receptors and bind to a variety of response elements that are composed of imperfect AGGTCA direct or inverted repeats with various spacings. COUP-TFs are generally considered to be repressors of transcription for other nuclear hormone receptors such as retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR), peroxisome proliferator activated receptor (PPAR), and hepatocyte nuclear factor 4 (HNF4). Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, COUP-TFs have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 73 -143517 cd06959 NR_DBD_EcR_like The DNA-binding domain of Ecdysone receptor (EcR) like nuclear receptor family is composed of two C4-type zinc fingers. The DNA-binding domain of Ecdysone receptor (EcR) like nuclear receptor family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. EcR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. This family includes three types of nuclear receptors: Ecdysone receptor (EcR), Liver X receptor (LXR) and Farnesoid X receptor (FXR). The DNA binding activity is regulated by their corresponding ligands. The ligands for EcR are ecdysteroids; LXR is regulated by oxidized cholesterol derivatives or oxysterols; and bile acids control FXR's activities. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, EcR-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 73 -143518 cd06960 NR_DBD_HNF4A DNA-binding domain of heptocyte nuclear factor 4 (HNF4) is composed of two C4-type zinc fingers. DNA-binding domain of hepatocyte nuclear factor 4 (HNF4) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. HNF4 interacts with a DNA site, composed of two direct repeats of AGTTCA with 1 bp spacer, which is upstream of target genes and modulates the rate of transcriptional initiation. HNF4 is a member of the nuclear receptor superfamily. HNF4 plays a key role in establishing and maintenance of hepatocyte differentiation in the liver. It is also expressed in gut, kidney, and pancreatic beta cells. HNF4 was originally classified as an orphan receptor, but later it is found that HNF4 binds with very high affinity to a variety of fatty acids. However, unlike other nuclear receptors, the ligands do not act as a molecular switch for HNF4. They seem to constantly bind to the receptor, which is constitutively active as a transcription activator. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, HNF4 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 76 -143519 cd06961 NR_DBD_TR DNA-binding domain of thyroid hormone receptors (TRs) is composed of two C4-type zinc fingers. DNA-binding domain of thyroid hormone receptors (TRs) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. TR interacts with the thyroid response element, which is a DNA site with direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pairs, upstream of target genes and modulates the rate of transcriptional initiation. Thyroid hormone receptor (TR) mediates the actions of thyroid hormones, which play critical roles in growth, development, and homeostasis in mammals. They regulate overall metabolic rate, cholesterol and triglyceride levels, and heart rate, and affect mood. TRs are expressed from two separate genes (alpha and beta) in human and each gene generates two isoforms of the receptor through differential promoter usage or splicing. TRalpha functions in the heart to regulate heart rate and rhythm and TRbeta is active in the liver and other tissues. The unliganded TRs function as transcription repressors, by binding to thyroid hormone response elements (TRE) predominantly as homodimers, or as heterodimers with retinoid X-receptors (RXR), and being associated with a complex of proteins containing corepressor proteins. Ligand binding promotes corepressor dissociation and binding of a coactivator to activate transcription. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 85 -143520 cd06962 NR_DBD_FXR DNA-binding domain of Farnesoid X receptor (FXR) family is composed of two C4-type zinc fingers. DNA-binding domain of Farnesoid X receptor (FXR) family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. FXR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. FXR is a member of the nuclear receptor family of ligand activated transcription factors. Bile acids are endogenous ligands for FXRs. Upon binding of a ligand, FXR binds to FXR response element (FXRE), which is an inverted repeat of TGACCT spaced by one nucleotide, either as a monomer or as a heterodimer with retinoid X receptor (RXR), to regulate the expression of various genes involved in bile acid, lipid, and glucose metabolism. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, FXR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 84 -143521 cd06963 NR_DBD_GR_like The DNA binding domain of GR_like nuclear receptors is composed of two C4-type zinc fingers. The DNA binding domain of GR_like nuclear receptors is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. It interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. This family of NRs includes four types of nuclear hormone receptors: glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR), and androgen receptor (AR). The receptors bind to common DNA elements containing a partial palindrome of the core sequence 5'-TGTTCT-3' with a 3bp spacer. These four receptors regulate some of the most fundamental physiological functions such as the stress response, metabolism, electrolyte homeostasis, immune function, growth, development, and reproduction. The NRs in this family have high sequence homology and share similar functional mechanisms. The dominant mechanism of function is by direct DNA binding and transcriptional regulation of target genes . The GR, MR, PR, and AR exhibit same modular structure. They have a central highly conserved DNA binding domain (DBD), a non-conserved N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 73 -143522 cd06964 NR_DBD_RAR DNA-binding domain of retinoic acid receptor (RAR) is composed of two C4-type zinc fingers. DNA-binding domain of retinoic acid receptor (RAR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. RAR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. RARs mediate the biological effect of retinoids, including both natural dietary vitamin A (retinol) metabolites and active synthetic analogs. Retinoids play key roles in a wide variety of essential biological processes, such as vertebrate embryonic morphogenesis and organogenesis, differentiation and apoptosis, and homeostasis. RAR function as a heterodimer with retinoic X receptor by binding to specific RAR response elements (RAREs), which are composed of two direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pair and found in the promoter regions of retinoid target genes. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoic acid receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 85 -143523 cd06965 NR_DBD_Ppar DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers. DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PPAR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response elements, which are composed of two direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pair located upstream of the peroxisome proliferator responsive genes, and interacts with co-activators. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 84 -143524 cd06966 NR_DBD_CAR DNA-binding domain of constitutive androstane receptor (CAR) is composed of two C4-type zinc fingers. DNA-binding domain (DBD) of constitutive androstane receptor (CAR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. CAR DBD interacts with CAR response element, a perfect repeat of two AGTTCA motifs with a 4 bp spacer upstream of the target gene, and modulates the rate of transcriptional initiation. The constitutive androstane receptor (CAR) is a ligand-regulated transcription factor that responds to a diverse array of chemically distinct ligands, including many endogenous compounds and clinical drugs. It functions as a heterodimer with RXR. The CAR/RXR heterodimer binds many common response elements in the promoter regions of a diverse set of target genes involved in the metabolism, transport, and ultimately, elimination of these molecules from the body. CAR is a closest mammalian relative of PXR and is activated by some of the same ligands as PXR and regulates a subset of common genes. The sequence homology and functional similarity suggests that the CAR gene arose from a duplication of an ancestral PXR gene. Like other nuclear receptors, CAR has a central well conserved DNA binding domain, a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain. 94 -143525 cd06967 NR_DBD_TR2_like DNA-binding domain of the TR2 and TR4 (human testicular receptor 2 and 4) is composed of two C4-type zinc fingers. DNA-binding domain of the TR2 and TR4 (human testicular receptor 2 and 4) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. TR2 and TR4 interact with specific DNA sites upstream of the target gene and modulate the rate of transcriptional initiation. TR4 and TR2 are orphan nuclear receptors; the physiological ligand is as yet unidentified. TR2 is abundantly expressed in the androgen-sensitive prostate. TR4 transcripts are expressed in many tissues, including central nervous system, adrenal gland, spleen, thyroid gland, and prostate. It has been shown that human TR2 binds to a wide spectrum of natural hormone response elements (HREs) with distinct affinities suggesting that TR2 may cross-talk with other gene expression regulation systems. The genes responding to TR2 or TR4 include genes that are regulated by retinoic acid receptor, vitamin D receptor, and peroxisome proliferator-activated receptor. TR4/2 binds to HREs as dimers. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TR2-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 87 -143526 cd06968 NR_DBD_ROR DNA-binding domain of Retinoid-related orphan receptors (RORs) is composed of two C4-type zinc fingers. DNA-binding domain of Retinoid-related orphan receptors (RORs) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. ROR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. RORS are key regulators of many physiological processes during embryonic development. RORs bind as monomers to specific ROR response elements (ROREs) consisting of the consensus core motif AGGTCA preceded by a 5-bp A/T-rich sequence. There are three subtypes of retinoid-related orphan receptors (RORs), alpha, beta, and gamma, which differ only in N-terminal sequence and are distributed in distinct tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. RORgamma is essential for lymph node organogenesis. Recently, it has been suggested that cholesterol or a cholesterol derivative are the natural ligands of RORalpha. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoid-related orphan receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 95 -143527 cd06969 NR_DBD_NGFI-B DNA-binding domain of the orphan nuclear receptor, nerve growth factor-induced-B. DNA-binding domain (DBD) of the orphan nuclear receptor, nerve growth factor-induced-B (NGFI-B) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. NGFI-B interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. NGFI-B is a member of the nuclear-steroid receptor superfamily. NGFI-B is classified as an orphan receptor because no ligand has yet been identified. NGFI-B is an early immediate gene product of embryo development that is rapidly produced in response to a variety of cellular signals including nerve growth factor. It is involved in T-cell-mediated apoptosis, as well as neuronal differentiation and function. NGFI-B regulates transcription by binding to a specific DNA target upstream of its target genes and regulating the rate of transcriptional initiation. NGFI-B binds to the NGFI-B response element (NBRE) 5'-(A/T)AAAGGTCA as a monomer. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, NGFI-B has a central well-conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 75 -143528 cd06970 NR_DBD_PNR DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) is composed of two C4-type zinc fingers. DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PNR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. PNR is a member of the nuclear receptor superfamily of the ligand-activated transcription factors. PNR is expressed only in the outer layer of retinal photoreceptor cells. It may be involved in the signaling pathway regulating photoreceptor differentiation and/or maintenance. It most likely binds to DNA as a homodimer. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PNR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 92 -133477 cd06971 PgpA Phosphatidylglycerophosphatase A; a bacterial membrane-associated enzyme involved in lipid metabolism. Phosphatidylglycerophosphatase A domain represents a family of bacterial membrane-associated enzymes involved in lipid metabolism. The prototype of this CD is a putative Phosphatidylglycerophosphatase A (PGPase A) from Listeria monocytogenes. PGPase A (EC: 3.1.3.27), encoded by the gene pgpA, specifically catalyzes the formation of phosphatidylglycerol from phosphatidyl glycerophosphate (PGP). It requires Mg2+ for activity and is inhibited by sulfhydryl agents and freezing/thawing. PGPase B encoded from pgpB is not included in this family, which also acts on phosphatidic acid (PA) and lysophosphatidic acid (LPA). Aside from PGPase A and B, evidence shows that there is another PGPase existing in E. coli. Thus, PGPase A is not essential for PGPase activity in E. coli. 143 -132992 cd06974 TerD_like Uncharacterized proteins involved in stress response, similar to tellurium resistance terD. Tellurium resistance terD like proteins. This family is composed of uncharacterized proteins involved in stress response, such as the tellurium resistance proteins, chemical-damaging agent resistance proteins, and general stress proteins from a variety of organisms. The tellurium resistance proteins are homologous terA,-D,-E,-F,-Z,-X gene products, which confer tellurium resistance mediated by plasmids. Currently, the biochemical mechanism of tellurium resistance remains unknown. The family also contains several ter gene homologues, YceC, YceD, YceE, for which there is no clear evidence for any involvement in the tellurium resistance. A putative cAMP-binding protin CABP1 shows a significant similarity to the terD protein and is also included in this family. 162 -270234 cd07012 PBP2_Bug_TTT Bug (Bordetella uptake gene) protein family of periplasmic solute-binding receptors; contains the type 2 periplasmic binding fold. The Bug (Bordetella uptake gene) protein family is a large family of periplasmic solute-binding (PBP) proteins present in a number of bacterial species, but mainly in proteobacteria. In eubacteria, at least three families of periplasmic binding-protein dependent transporters are known: the ATP-binding cassette (ABC) transporters, the tripartite ATP-independent periplasmic transporters, and the tripartite tricarboxylate transporters (TTT). Bug proteins are the PBP components of the TTT. Their expansive expansion in proteobacteria indicates a large functional diversity. The best studied examples are Bordetella pertussis BugD, which is an aspartic acid transporter, and BugE, which is glutamate transporter. 291 -132924 cd07013 S14_ClpP Caseinolytic protease (ClpP) is an ATP-dependent, highly conserved serine protease. Clp protease (caseinolytic protease; ClpP; Peptidase S14) is a highly conserved serine protease present throughout in bacteria and eukaryota, but seems to be absent in archaea, mollicutes and some fungi. Clp proteases are involved in a number of cellular processes such as degradation of misfolded proteins, regulation of short-lived proteins and housekeeping removal of dysfunctional proteins. Additionally, they are implicated in the control of cell growth, targeting DNA-binding protein from starved cells. ClpP has also been linked to the tight regulation of virulence genes in the pathogens Listeria monocytogenes and Salmonella typhimurium. This enzyme belong to the family of ATP-dependent proteases; the functional Clp protease is comprised of two components: a proteolytic component and one of several regulatory ATPase components, both of which are required for effective levels of protease activity in the presence of ATP, although the proteolytic subunit alone does possess some catalytic activity. Active site consists of the triad Ser, His and Asp; some members have lost all of these active site residues and are therefore inactive, while others may have one or two large insertions. ClpP seems to prefer hydrophobic or non-polar residues at P1 or P1' positions in its substrate. The protease exists as a tetradecamer made up of two heptameric rings stacked back-to-back such that the catalytic triad of each subunit is located at the interface between three monomers, thus making oligomerization essential for function. 162 -132925 cd07014 S49_SppA Signal peptide peptidase A. Signal peptide peptidase A (SppA; Peptidase S49; Protease IV): SppA is an intramembrane enzyme found in all three domains of life and is involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. Unlike the eukaryotic functional homologs that are proposed to be aspartic proteases, site-directed mutagenesis and sequence analysis have shown these bacterial, archaeal and thylakoid SppAs to be ClpP-like serine proteases. The predicted active site serine for members in this family occurs in a transmembrane domain, cleaving peptide bonds in the plane of the lipid bilayer. Mutagenesis studies also suggest that the catalytic center comprises a Ser-Lys dyad (both residues absolutely conserved within bacteria, chloroplast and mitochondrial signal peptidase family members) and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. In addition to the carboxyl-terminal protease domain that is conserved in all the S49 family members, the E. coli SppA contains an amino-terminal domain (sometimes referred to as 67K type). Others, including sohB peptidase, protein C, protein 1510-N and archaeal signal peptide peptidase, do not contain the amino-terminal domain (sometimes referred to as 36K type). Interestingly, the single membrane spanning E. coli SppA carries out catalysis using a Ser-Lys dyad with the serine located in the conserved carboxy-terminal protease domain and the lysine in the non-conserved amino-terminal domain. This family also contains homologs that either have been found experimentally to be without peptidase activity, or lack amino acid residues that are believed to be essential for the catalytic activity of peptidases. 177 -132926 cd07015 Clp_protease_NfeD Nodulation formation efficiency D (NfeD) is a membrane-bound ClpP-class protease. Nodulation formation efficiency D (NfeD; stomatin operon partner protein, STOPP; DUF107) is a member of membrane-anchored ClpP-class proteases. Currently, more than 300 NfeD homologs have been identified - all of which are bacterial or archaeal in origin. Majority of these genomes have been shown to possess operons containing a homologous NfeD/stomatin gene pair, causing NfeD to be previously named STOPP (stomatin operon partner protein). NfeD homologs can be divided into two groups: long and short forms. Long-form homologs have a putative ClpP-class serine protease domain while the short form homologs do not. Downstream from the ClpP-class domain is the so-called NfeD or DUF107 domain. N-terminal region of the NfeD homolog PH1510 (1510-N or PH1510-N) from Pyrococcus horikoshii has been shown to possess serine protease activity and has a Ser-Lys catalytic dyad, preferentially cleaving hydrophobic substrates. Difference in oligomeric form and catalytic residues between 1510-N (forming a dimer) and ClpP (forming a tetradecamer) shows a possible functional difference: 1510-N is likely to have a regulatory function while ClpP is involved in protein quality control. 172 -132927 cd07016 S14_ClpP_1 Caseinolytic protease (ClpP) is an ATP-dependent, highly conserved serine protease. Clp protease (caseinolytic protease; ClpP; Peptidase S14) is a highly conserved serine protease present throughout in bacteria and eukaryota, but seems to be absent in archaea, mollicutes and some fungi. This subfamily only contains bacterial sequences. Clp proteases are involved in a number of cellular processes such as degradation of misfolded proteins, regulation of short-lived proteins and housekeeping removal of dysfunctional proteins. They are also implicated in the control of cell growth, targeting DNA-binding protein from starved cells. ClpP has also been linked to the tight regulation of virulence genes in the pathogens Listeria monocytogenes and Salmonella typhimurium. This enzyme belong to the family of ATP-dependent proteases; the functional Clp protease is comprised of two components: a proteolytic component and one of several regulatory ATPase components, both of which are required for effective levels of protease activity in the presence of ATP, although the proteolytic subunit alone does possess some catalytic activity. Active site consists of the triad Ser, His and Asp; some members have lost all of these active site residues and are therefore inactive, while others may have one or two large insertions. ClpP seems to prefer hydrophobic or non-polar residues at P1 or P1' positions in its substrate. The protease exists as a tetradecamer made up of two heptameric rings stacked back-to-back such that the catalytic triad of each subunit is located at the interface between three monomers, thus making oligomerization essential for function. 160 -132928 cd07017 S14_ClpP_2 Caseinolytic protease (ClpP) is an ATP-dependent, highly conserved serine protease. Clp protease (caseinolytic protease; ClpP; Peptidase S14) is a highly conserved serine protease present throughout in bacteria and eukaryota, but seems to be absent in archaea, mollicutes and some fungi. Clp proteases are involved in a number of cellular processes such as degradation of misfolded proteins, regulation of short-lived proteins and housekeeping removal of dysfunctional proteins. They are also implicated in the control of cell growth, targeting DNA-binding protein from starved cells. ClpP has also been linked to the tight regulation of virulence genes in the pathogens Listeria monocytogenes and Salmonella typhimurium. This enzyme belong to the family of ATP-dependent proteases; the functional Clp protease is comprised of two components: a proteolytic component and one of several regulatory ATPase components, both of which are required for effective levels of protease activity in the presence of ATP, although the proteolytic subunit alone does possess some catalytic activity. Active site consists of the triad Ser, His and Asp; some members have lost all of these active site residues and are therefore inactive, while others may have one or two large insertions. ClpP seems to prefer hydrophobic or non-polar residues at P1 or P1' positions in its substrate. The protease exists as a tetradecamer made up of two heptameric rings stacked back-to-back such that the catalytic triad of each subunit is located at the interface between three monomers, thus making oligomerization essential for function. 171 -132929 cd07018 S49_SppA_67K_type Signal peptide peptidase A (SppA) 67K type, a serine protease, has catalytic Ser-Lys dyad. Signal peptide peptidase A (SppA; Peptidase S49; Protease IV) 67K type: SppA is found in all three domains of life and is involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. Members in this subfamily contain an amino-terminal domain in addition to the carboxyl-terminal protease domain that is conserved in all the S49 family members (sometimes referred to as 67K type), similar to E. coli and Arabidopsis thaliana SppA peptidases. Unlike the eukaryotic functional homologs that are proposed to be aspartic proteases, site-directed mutagenesis and sequence analysis have shown that members in this subfamily, mostly bacterial, are serine proteases. The predicted active site serine for members in this family occurs in a transmembrane domain. Mutagenesis studies also suggest that the catalytic center comprises a Ser-Lys dyad (both residues absolutely conserved within bacteria, chloroplast and mitochondrial signal peptidase family members) and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. Interestingly, the single membrane spanning E. coli SppA carries out catalysis using a Ser-Lys dyad with the serine located in the conserved carboxy-terminal protease domain and the lysine in the non-conserved amino-terminal domain. 222 -132930 cd07019 S49_SppA_1 Signal peptide peptidase A (SppA), a serine protease, has catalytic Ser-Lys dyad. Signal peptide peptidase A (SppA; Peptidase S49; Protease IV): SppAs in this subfamily are found in all three domains of life and are involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. Site-directed mutagenesis and sequence analysis have shown these bacterial, archaeal and thylakoid SppAs to be serine proteases. The predicted active site serine for members in this family occurs in a transmembrane domain. Mutagenesis studies also suggest that the catalytic center comprises a Ser-Lys dyad (both residues absolutely conserved within bacteria, chloroplast and mitochondrial signal peptidase family members) and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. In addition to the carboxyl-terminal protease domain that is conserved in all the S49 family members, the E. coli SppA contains an amino-terminal domain, similar to Arabidopsis thaliana SppA1 peptidase. Others, including sohB peptidase, protein C and archaeal signal peptide peptidase, do not contain the amino-terminal domain. Interestingly, the single membrane spanning E. coli SppA carries out catalysis using a Ser-Lys dyad with the serine located in the conserved carboxy-terminal protease domain and the lysine in the non-conserved amino-terminal domain. 211 -132931 cd07020 Clp_protease_NfeD_1 Nodulation formation efficiency D (NfeD) is a membrane-bound ClpP-class protease. Nodulation formation efficiency D (NfeD; stomatin operon partner protein, STOPP; DUF107) is a member of membrane-anchored ClpP-class proteases. Currently, more than 300 NfeD homologs have been identified - all of which are bacterial or archaeal in origin. Majority of these genomes have been shown to possess operons containing a homologous NfeD/stomatin gene pair, causing NfeD to be previously named STOPP (stomatin operon partner protein). NfeD homologs can be divided into two groups: long and short forms. Long-form homologs have a putative ClpP-class serine protease domain while the short form homologs do not. Downstream from the ClpP-class domain is the so-called NfeD or DUF107 domain. N-terminal region of the NfeD homolog PH1510 (1510-N or PH1510-N) from Pyrococcus horikoshii has been shown to possess serine protease activity and has a Ser-Lys catalytic dyad, preferentially cleaving hydrophobic substrates. Difference in oligomeric form and catalytic residues between 1510-N (forming a dimer) and ClpP (forming a tetradecamer) shows a possible functional difference: 1510-N is likely to have a regulatory function while ClpP is involved in protein quality control. 187 -132932 cd07021 Clp_protease_NfeD_like Nodulation formation efficiency D (NfeD) is a membrane-bound ClpP-class protease. Nodulation formation efficiency D (NfeD; stomatin operon partner protein, STOPP; DUF107) is a member of membrane-anchored ClpP-class proteases. Currently, more than 300 NfeD homologs have been identified - all of which are bacterial or archaeal in origin. Majority of these genomes have been shown to possess operons containing a homologous NfeD/stomatin gene pair, causing NfeD to be previously named STOPP (stomatin operon partner protein). NfeD homologs can be divided into two groups: long and short forms. Long-form homologs have a putative ClpP-class serine protease domain while the short form homologs do not. Downstream from the ClpP-class domain is the so-called NfeD or DUF107 domain. N-terminal region of the NfeD homolog PH1510 (1510-N or PH1510-N) from Pyrococcus horikoshii has been shown to possess serine protease activity and has a Ser-Lys catalytic dyad, preferentially cleaving hydrophobic substrates. Difference in oligomeric form and catalytic residues between 1510-N (forming a dimer) and ClpP (forming a tetradecamer) shows a possible functional difference: 1510-N is likely to have a regulatory function while ClpP is involved in protein quality control. 178 -132933 cd07022 S49_Sppa_36K_type Signal peptide peptidase A (SppA) 36K type, a serine protease, has catalytic Ser-Lys dyad. Signal peptide peptidase A (SppA; Peptidase S49; Protease IV) 36K type: SppA is found in all three domains of life and is involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. Members in this subfamily are all bacterial and include sohB peptidase and protein C. These are sometimes referred to as 36K type since they contain only one domain, unlike E. coli SppA that also contains an amino-terminal domain. Site-directed mutagenesis and sequence analysis have shown these SppAs to be serine proteases. The predicted active site serine for members in this family occurs in a transmembrane domain. Mutagenesis studies also suggest that the catalytic center comprises a Ser-Lys dyad and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. 214 -132934 cd07023 S49_Sppa_N_C Signal peptide peptidase A (SppA), a serine protease, has catalytic Ser-Lys dyad. Signal peptide peptidase A (SppA; Peptidase S49; Protease IV): SppA is found in all three domains of life and is involved in the cleavage of signal peptides after their removal from the precursor proteins by signal peptidases. This subfamily contains members with either a single domain (sometimes referred to as 36K type), such as sohB peptidase, protein C and archaeal signal peptide peptidase, or an amino-terminal domain in addition to the carboxyl-terminal protease domain that is conserved in all the S49 family members (sometimes referred to as 67K type), similar to E. coli and Arabidopsis thaliana SppA peptidases. Site-directed mutagenesis and sequence analysis have shown these SppAs to be serine proteases. The predicted active site serine for members in this family occurs in a transmembrane domain. Mutagenesis studies also suggest that the catalytic center comprises a Ser-Lys dyad and not the usual Ser-His-Asp catalytic triad found in the majority of serine proteases. Interestingly, the single membrane spanning E. coli SppA carries out catalysis using a Ser-Lys dyad with the serine located in the conserved carboxy-terminal protease domain and the lysine in the non-conserved amino-terminal domain. 208 -132882 cd07025 Peptidase_S66 LD-Carboxypeptidase, a serine protease, includes microcin C7 self immunity protein. LD-carboxypeptidase (Muramoyltetrapeptide carboxypeptidase; EC 3.4.17.13; Merops family S66; initially described as Carboxypeptidase II) family also includes the microcin c7 self-immunity protein (MccF) as well as uncharacterized proteins including hypothetical proteins. LD-carboxypeptidase hydrolyzes the amide bond that links the dibasic amino acids to C-terminal D-amino acids. The physiological substrates of LD-carboxypeptidase are tetrapeptide fragments (such as UDP-MurNAc-tetrapeptides) that are produced when bacterial cell walls are degraded; they contain an L-configured residue (L-lysine or meso-diaminopimelic acid residue) as the penultimate residue and D-alanine as the ultimate residue. A possible role of LD-carboxypeptidase is in peptidoglycan recycling whereby the resulting tripeptide (precursor for murein synthesis) can be reconverted into peptidoglycan by attachment of preformed D-Ala-D-Ala dipeptides. Some enzymes possessing LD-carboxypeptidase activity also act as LD-transpeptidase by replacing the terminal D-Ala with another D-amino acid. MccF contributes to self-immunity towards microcin C7 (MccC7), a ribosomally encoded peptide antibiotic that contains a phosphoramidate linkage to adenosine monophosphate at its C-terminus. Its possible biological role is to defend producer cells against exogenous microcin from re-entering after having been exported. It is suggested that MccF is involved in microcin degradation or sequestration in the periplasm. 282 -197305 cd07026 Ribosomal_L20 Ribosomal protein L20. The ribosomal protein family L20 contains members from eubacteria, as well as their mitochondrial and plastid homologs. L20 is an assembly protein, required for the first in-vitro reconstitution step of the 50S ribosomal subunit, but does not seem to be essential for ribosome activity. L20 has been shown to partially unfold in the absence of RNA, in regions corresponding to the RNA-binding sites. L20 represses the translation of its own mRNA via specific binding to two distinct mRNA sites, in a manner similar to the L20 interaction with 23S ribosomal RNA. 106 -132905 cd07027 RNAP_RPB11_like RPB11 subunit of RNA polymerase. The eukaryotic RPB11 subunit of RNA polymerase (RNAP), as well as its archaeal (L subunit) and bacterial (alpha subunit) counterparts, is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III, for the synthesis of ribosomal RNA precursor, mRNA precursor, and 5S and tRNA, respectively. A single distinct RNAP complex is found in prokaryotes and archaea, which may be responsible for the synthesis of all RNAs. The assembly of the two largest eukaryotic RNAP subunits that provide most of the enzyme's catalytic functions depends on the presence of RPB3/RPB11 heterodimer subunits. This is also true for the archaeal (D/L subunits) and bacterial (alpha subunit) counterparts. 83 -132906 cd07028 RNAP_RPB3_like RPB3 subunit of RNA polymerase. The eukaryotic RPB3 subunit of RNA polymerase (RNAP), as well as its archaeal (D subunit) and bacterial (alpha subunit) counterparts, is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III, for the synthesis of ribosomal RNA precursor, mRNA precursor, and 5S and tRNA, respectively. A single distinct RNAP complex is found in prokaryotes and archaea, which may be responsible for the synthesis of all RNAs. The RPB3 subunit is similar to the bacterial RNAP alpha subunit in that it contains two subdomains: one subdomain is similar to the eukaryotic Rpb11/AC19/archaeal L subunit which is involved in dimerization; and the other is an inserted beta sheet subdomain. The assembly of the two largest eukaryotic RNAP subunits that provide most of the enzyme's catalytic functions depends on the presence of RPB3/RPB11 heterodimer subunits. This is also true for the archaeal (D/L subunits) and bacterial (alpha subunit) counterparts. 212 -132907 cd07029 RNAP_I_III_AC19 AC19 subunit of Eukaryotic RNA polymerase (RNAP) I and RNAP III. The eukaryotic AC19 subunit of RNA polymerase (RNAP) I and RNAP III is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III. RNAP I is responsible for the synthesis of ribosomal RNA precursor, while RNAP III functions in the synthesis of 5S and tRNA. The AC19 subunit is the equivalent of the RPB11 subunit of RNAP II. The RPB11 subunit heterodimerizes with the RPB3 subunit, and together with RPB10 and RPB12, anchors the two largest subunits, RPB1 and RPB2, and stabilizes their association. The homology of AC19 to RPB11 suggests a similar function. The AC19 subunit is likely to associate with the RPB3 counterpart, AC40, to form a heterodimer, which stabilizes the association of the two largest subunits of RNAP I and RNAP III. 85 -132908 cd07030 RNAP_D D subunit of Archaeal RNA polymerase. The D subunit of archaeal RNA polymerase (RNAP) is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. A single distinct RNAP complex is found in archaea, which may be responsible for the synthesis of all RNAs. The archaeal RNAP harbors homologues of all eukaryotic RNAP II subunits with two exceptions (RPB8 and RPB9). The 12 archaeal subunits are designated by letters and can be divided into three functional groups that are engaged in: (I) catalysis (A'/A", B'/B" or B); (II) assembly (L, N, D and P); and (III) auxiliary functions (F, E, H and K). The D subunit is equivalent to the RPB3 subunit of eukaryotic RNAP II. It contains two subdomains: one subdomain is similar the eukaryotic Rpb11/AC19/archaeal L subunit which is involved in dimerization, and the other is an inserted beta sheet subdomain. The assembly of the two largest archaeal RNAP subunits that provide most of the enzyme's catalytic functions depends on the presence of the archaeal D/L heterodimer. 259 -132909 cd07031 RNAP_II_RPB3 RPB3 subunit of Eukaryotic RNA polymerase II. The eukaryotic RPB3 subunit of RNA polymerase (RNAP) II is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III. RNAP II is responsible for the synthesis of mRNA precursor. The RPB3 subunit is similar to the bacterial RNAP alpha subunit in that it contains two subdomains: one subdomain is similar the eukaryotic Rpb11/AC19/archaeal L subunit which is involved in dimerization, and the other is an inserted beta sheet subdomain. The RPB3 subunit heterodimerizes with the RPB11 subunit, and together with RPB10 and RPB12, anchors the two largest subunits, RPB1 and RPB2, and stabilizes their association. 265 -132910 cd07032 RNAP_I_II_AC40 AC40 subunit of Eukaryotic RNA polymerase (RNAP) I and RNAP III. The eukaryotic AC40 subunit of RNA polymerase (RNAP) I and RNAP III is involved in the assembly of RNAP subunits. RNAP is a large multi-subunit complex responsible for the synthesis of RNA. It is the principal enzyme of the transcription process, and is a final target in many regulatory pathways that control gene expression in all living cells. At least three distinct RNAP complexes are found in eukaryotic nuclei: RNAP I, RNAP II, and RNAP III. RNAP I is responsible for the synthesis of ribosomal RNA precursor, while RNAP III functions in the synthesis of 5S and tRNA. The AC40 subunit is the equivalent of the RPB3 subunit of RNAP II. The RPB3 subunit is similar to the bacterial RNAP alpha subunit in that it contains two subdomains: one subdomain is similar the eukaryotic Rpb11/AC19/archaeal L subunit which is involved in dimerization; and the other is an inserted beta sheet subdomain. The RPB3 subunit heterodimerizes with the RPB11 subunit, and together with RPB10 and RPB12, anchors the two largest subunits, RPB1 and RPB2, and stabilizes their association. The homology of AC40 to RPB3 suggests a similar function. The AC40 subunit is likely to associate with the RPB11 counterpart, AC19, to form a heterodimer, which stabilizes the association of the two largest subunits of RNAP I and RNAP III. 291 -132916 cd07033 TPP_PYR_DXS_TK_like Pyrimidine (PYR) binding domain of 1-deoxy-D-xylulose-5-phosphate synthase (DXS), transketolase (TK), and related proteins. Thiamine pyrophosphate (TPP) family, pyrimidine (PYR) binding domain of 1-deoxy-D-xylulose-5-phosphate synthase (DXS), transketolase (TK), and the beta subunits of the E1 component of the human pyruvate dehydrogenase complex (E1- PDHc), subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. A polar interaction between the conserved glutamate of the PYR domain and the N1' of the TPP aminopyrimidine ring is shared by most TPP-dependent enzymes, and participates in the activation of TPP. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Like many TPP-dependent enzymes DXS and TK are homodimers having a PYR and a PP domain on the same subunit. TK has two active sites per dimer which lie between PYR and PP domains of different subunits. For DXS each active site is located at the interface of a PYR and a PP domain from the same subunit. E1-PDHc is an alpha2beta2 dimer-of-heterodimers having two active sites but having the PYR and PP domains arranged on separate subunits, the PYR domains on the beta subunits, the PP domains on the alpha subunits. DXS is a regulatory enzyme of the mevalonate-independent pathway involved in terpenoid biosynthesis, it catalyzes a transketolase-type condensation of pyruvate with D-glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate (DXP) and carbon dioxide. TK catalyzes the transfer of a two-carbon unit from ketose phosphates to aldose phosphates. In heterotrophic organisms, TK provides a link between glycolysis and the pentose phosphate pathway and provides precursors for nucleotide, aromatic amino acid and vitamin biosynthesis. TK also plays a central role in the Calvin cycle in plants. PDHc catalyzes the irreversible oxidative decarboxylation of pyruvate to produce acetyl-CoA in the bridging step between glycolysis and the citric acid cycle. This subfamily includes the beta subunits of the E1 component of the acetoin dehydrogenase complex (ADC) and the branched chain alpha-keto acid dehydrogenase/2-oxoisovalerate dehydrogenase complex (BCADC). ADC participates in the breakdown of acetoin. BCADC catalyzes the oxidative decarboxylation of 4-methyl-2-oxopentanoate, 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate during the breakdown of branched chain amino acids. 156 -132917 cd07034 TPP_PYR_PFOR_IOR-alpha_like Pyrimidine (PYR) binding domain of pyruvate ferredoxin oxidoreductase (PFOR), indolepyruvate ferredoxin oxidoreductase alpha subunit (IOR-alpha), and related proteins. Thiamine pyrophosphate (TPP family), pyrimidine (PYR) binding domain, of pyruvate ferredoxin oxidoreductase (PFOR), indolepyruvate ferredoxin oxidoreductase (IOR) alpha subunit (IOR-alpha), and related proteins, subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. A polar interaction between the conserved glutamate of the PYR domain and the N1' of the TPP aminopyrimidine ring is shared by most TPP-dependent enzymes, and participates in the activation of TPP. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites. For many of these enzymes the active sites lie between PP and PYR domains on different subunits. However, for the homodimeric enzyme Desulfovibrio africanus pyruvate:ferredoxin oxidoreductase (PFOR), each active site lies at the interface of the PYR and PP domains from the same subunit. This subfamily includes proteins characterized as pyruvate NADP+ oxidoreductase (PNO). PFOR and PNO catalyze the oxidative decarboxylation of pyruvate to form acetyl-CoA, a crucial step in many metabolic pathways. The facultative anaerobic mitochondrion of the photosynthetic protist Euglena gracilis oxidizes pyruvate with PNO. IOR catalyzes the oxidative decarboxylation of arylpyruvates, such as indolepyruvate or phenylpyruvate. 160 -132918 cd07035 TPP_PYR_POX_like Pyrimidine (PYR) binding domain of POX and related proteins. Thiamine pyrophosphate (TPP family), pyrimidine (PYR) binding domain of pyruvate oxidase (POX) and related protiens subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. A polar interaction between the conserved glutamate of the PYR domain and the N1' of the TPP aminopyrimidine ring is shared by most TPP-dependent enzymes, and participates in the activation of TPP. For glyoxylate carboligase, which belongs to this subfamily, but lacks this conserved glutamate, the rate of the initial TPP activation step is reduced but the ensuing steps of the enzymic reaction proceed efficiently. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites, for many the active sites lie between PP and PYR domains on different subunits. POX decarboxylates pyruvate, producing hydrogen peroxide and the energy-storage metabolite acetylphosphate. This subfamily includes pyruvate decarboxylase (PDC) and indolepyruvate decarboxylase (IPDC). PDC catalyzes the conversion of pyruvate to acetaldehyde and CO2 in alcoholic fermentation. IPDC plays a role in the indole-3-pyruvic acid (IPA) pathway in plants and various plant-associated bacteria, it catalyzes the decarboxylation of IPA to IAA. This subfamily also includes the large catalytic subunit of acetohydroxyacid synthase (AHAS). AHAS catalyzes the condensation of two molecules of pyruvate to give the acetohydroxyacid, 2-acetolactate, a precursor of the branched chain amino acids, valine and leucine. AHAS also catalyzes the condensation of pyruvate and 2-ketobutyrate to form 2-aceto-2-hydroxybutyrate in isoleucine biosynthesis. Methanococcus jannaschii sulfopyruvate decarboxylase (MjComDE) and phosphonopyruvate decarboxylase (PpyrDc) also belong to this subfamily. PpyrDc is a homotrimeric enzyme having the PP and PYR domains tandemly arranged on the same subunit. It functions in the biosynthesis of C-P compounds such as bialaphos tripeptide in Streptomyces hygroscopicus. MjComDE is a dodecamer having the PYR and PP domains on different subunits, it has six alpha (PYR/ComD) subunits and six beta (PP/ComE) subunits. MjComDE catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde in the coenzyme M pathway. 155 -132919 cd07036 TPP_PYR_E1-PDHc-beta_like Pyrimidine (PYR) binding domain of the beta subunits of the E1 components of human pyruvate dehydrogenase complex (E1- PDHc) and related proteins. Thiamine pyrophosphate (TPP) family, pyrimidine (PYR) binding domain of the beta subunits of the E1 components of: human pyruvate dehydrogenase complex (E1- PDHc), the acetoin dehydrogenase complex (ADC), and the branched chain alpha-keto acid dehydrogenase/2-oxoisovalerate dehydrogenase complex (BCADC), subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. A polar interaction between the conserved glutamate of the PYR domain and the N1' of the TPP aminopyrimidine ring is shared by most TPP-dependent enzymes, and participates in the activation of TPP. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. E1-PDHc is an alpha2beta2 dimer-of-heterodimers having two active sites lying between PYR and PP domains of separate subunits, the PYR domains are arranged on the beta subunit, the PP domains on the alpha subunits. PDHc catalyzes the irreversible oxidative decarboxylation of pyruvate to produce acetyl-CoA in the bridging step between glycolysis and the citric acid cycle. ADC participates in the breakdown of acetoin. BCADC catalyzes the oxidative decarboxylation of 4-methyl-2-oxopentanoate, 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate during the breakdown of branched chain amino acids. 167 -132920 cd07037 TPP_PYR_MenD Pyrimidine (PYR) binding domain of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD) and related proteins. Thiamine pyrophosphate (TPP family), pyrimidine (PYR) binding domain of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate (SEPHCHC) synthase (MenD) subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites. Escherichia coli MenD (EcMenD) is a homotetramer (dimer-of-homodimers), having two active sites per homodimer lying between PYR and PP domains of different subunits. EcMenD catalyzes a Stetter-like conjugate addition of alpha-ketoglutarate to isochorismate, leading to the formation of SEPHCHC and carbon dioxide, this addition is the first committed step in the biosynthesis of vitamin K2 (menaquinone). 162 -132921 cd07038 TPP_PYR_PDC_IPDC_like Pyrimidine (PYR) binding domain of pyruvate decarboxylase (PDC), indolepyruvate decarboxylase (IPDC) and related proteins. Thiamine pyrophosphate (TPP family), pyrimidine (PYR) binding domain of pyruvate decarboxylase (PDC) and indolepyruvate decarboxylase (IPDC) subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites, for many the active sites lie between PP and PYR domains on different subunits. PDC catalyzes the conversion of pyruvate to acetaldehyde and CO2 in alcoholic fermentation. IPDC plays a role in the indole-3-pyruvic acid (IPA) pathway in plants and various plant-associated bacteria, it catalyzes the decarboxylation of IPA to IAA. Also belonging to this group is Mycobacterium tuberculosis alpha-keto acid decarboxylase (MtKDC) which participates in amino acid degradation via the Ehrlich pathway, and Lactococcus lactis branched-chain keto acid decarboxylase (KdcA) an enzyme identified as being involved in cheese ripening, which exhibits a very broad substrate range in the decarboxylation and carboligation reactions. 162 -132922 cd07039 TPP_PYR_POX Pyrimidine (PYR) binding domain of POX. Thiamine pyrophosphate (TPP family), pyrimidine (PYR) binding domain of pyruvate oxidase (POX) subfamily. The PYR domain is found in many key metabolic enzymes which use TPP (also known as thiamine diphosphate) as a cofactor. TPP binds in the cleft formed by a PYR domain and a PP domain. The PYR domain, binds the aminopyrimidine ring of TPP, the PP domain binds the diphosphate residue. The PYR and PP domains have a common fold, but do not share strong sequence conservation. The PP domain is not included in this sub-family. Most TPP-dependent enzymes have the PYR and PP domains on the same subunit although these domains can be alternatively arranged in the primary structure. TPP-dependent enzymes are multisubunit proteins, the smallest catalytic unit being a dimer-of-active sites. Lactobacillus plantarum POX is a homotetramer (dimer-of-homodimers), having two active sites per homodimer lying between PYR and PP domains of different subunits. POX decarboxylates pyruvate, producing hydrogen peroxide and the energy-storage metabolite acetylphosphate. 164 -132716 cd07040 HP Histidine phosphatase domain found in a functionally diverse set of proteins, mostly phosphatases; contains a His residue which is phosphorylated during the reaction. Catalytic domain of a functionally diverse set of proteins, most of which are phosphatases. The conserved catalytic core of this domain contains a His residue which is phosphorylated in the reaction. This set of proteins includes cofactor-dependent and cofactor-independent phosphoglycerate mutases (dPGM, and BPGM respectively), fructose-2,6-bisphosphatase (F26BP)ase, Sts-1, SixA, histidine acid phosphatases, phytases, and related proteins. Functions include roles in metabolism, signaling, or regulation, for example F26BPase affects glycolysis and gluconeogenesis through controlling the concentration of F26BP; BPGM controls the concentration of 2,3-BPG (the main allosteric effector of hemoglobin in human blood cells); human Sts-1 is a T-cell regulator; Escherichia coli Six A participates in the ArcB-dependent His-to-Asp phosphorelay signaling system; phytases scavenge phosphate from extracellular sources. Deficiency and mutation in many of the human members result in disease, for example erythrocyte BPGM deficiency is a disease associated with a decrease in the concentration of 2,3-BPG. Clinical applications include the use of prostatic acid phosphatase (PAP) as a serum marker for prostate cancer. Agricultural applications include the addition of phytases to animal feed. 153 -132912 cd07041 STAS_RsbR_RsbS_like Sulphate Transporter and Anti-Sigma factor antagonist domain of the "stressosome" complex proteins RsbS and RsbR, regulators of the bacterial stress activated alternative sigma factor sigma-B by phosphorylation. The STAS (Sulphate Transporter and Anti-Sigma factor antagonist) domain of proteins related to RsbS and RsbR which are part of the "stressosome" complex that plays an important role in the regulation of the bacterial stress activated alternative sigma factor sigma-B. During stress conditions RsbS and RsbR are phosphorylated which leads to the release of RsbT, an activator of of the RsbU phosphatase, which in turn activates RsbV which leads to the release and activation of sigma factor B. RsbS is a single domain protein (STAS domain), while RsbR-like proteins have a well-conserved C-terminal STATS domain and a variable N-terminal domain. The STAS domain is also found in the C- terminal region of sulphate transporters and anti-anti-sigma factors. 109 -132913 cd07042 STAS_SulP_like_sulfate_transporter Sulphate Transporter and Anti-Sigma factor antagonist domain of SulP-like sulfate transporters, plays a role in the function and regulation of the transport activity, proposed general NTP binding function. The SulP family is a large and diverse family of anion transporters, with members from eubacteria, plants, fungi, and mammals. They contain 10 to 14 transmembrane helices which form the catalytic core of the protein and a C-terminal extension, the STAS (Sulphate Transporter and AntiSigma factor antagonist) domain which plays a role in the function and regulation of the transport activity. The STAS domain is found in the C-terminal region of sulphate transporters and bacterial anti-sigma factor antagonists. It has been suggested that this domain may have a general NTP binding function. 107 -132914 cd07043 STAS_anti-anti-sigma_factors Sulphate Transporter and Anti-Sigma factor antagonist) domain of anti-anti-sigma factors, key regulators of anti-sigma factors by phosphorylation. Anti-anti-sigma factors play an important role in the regulation of several sigma factors and their corresponding anti-sigma factors. Upon dephosphorylation they bind the anti-sigma factor and induce the release of the sigma factor from the anti-sigma factor. In a feedback mechanism the anti-anti-sigma factor can be inactivated via phosphorylation by the anti-sigma factor. Well studied examples from Bacillus subtilis are SpoIIAA (regulating sigmaF and sigmaC which play an important role in sporulation) and RsbV (regulating sigmaB involved in the general stress response). The STAS domain is also found in the C- terminal region of sulphate transporters and stressosomes. 99 -132871 cd07044 CofD_YvcK Family of CofD-like proteins and proteins related to YvcK. CofD is a 2-phospho-L-lactate transferase that catalyzes the last step in the biosynthesis of coenzyme F(420)-0 (F(420) without polyglutamate) by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (F0). F420 is a hydride carrier, important for energy metabolism of methanogenic archaea, as well as for the biosynthesis of other natural products, like tetracycline in Streptomyces. F420 and some of its precursors are also utilized as cofactors for enzymes, like DNA photolyase in Mycobacterium tuberculosis. YvcK from Bacillus subtilis is a member of a family of mostly uncharacterized proteins and has been proposed to play a role in carbon metabolism, since its function is essential for growth on intermediates of the Krebs cycle and pentose phosphate pathway. Both families appear to have a conserved phosphate binding site, but have different substrate binding residues conserved within each family. 309 -132885 cd07045 BMC_CcmK_like Carbon dioxide concentrating mechanism K (CcmK)-like proteins, Bacterial Micro-Compartment (BMC) domain. Bacterial micro-compartments are primitive protein-based organelles that sequester specific metabolic pathways in bacterial cells. The prototypical bacterial microcompartment is the carboxysome shell, a bacterial polyhedral organelle which increase the efficiency of CO2 fixation by encapsulating RuBisCO and carbonic anhydrase. They can be divided into two types: alpha-type carboxysomes (alpha-cyanobacteria and proteobacteria) and beta-type carboxysomes (beta-cyanobacteria). Potential functional differences between the two types are not yet fully understood. In addition to these proteins there are several homologous shell proteins including those found in pdu organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol and eut organelles involved in the cobalamin-dependent degradation of ethanolamine. Structure evidence shows that several carboxysome shell proteins and their homologs (Csos1A, CcmK1,2,4, and PduU) exist as hexamers which might further assemble into extended, tightly packed layers hypothesized to represent the flat facets of the polyhedral organelles outer shell. Although it has been suggested that other homologous proteins in this family might also form hexamers and play similar functional roles in the construction of their corresponding organelle outer shells at present no experimental evidence directly supports this view. 84 -132886 cd07046 BMC_PduU-EutS 1,2-propanediol utilization protein U (PduU)/ethanolamine utilization protein S (EutS), Bacterial Micro-Compartment (BMC) domain. PduU encapsulates several related enzymes within a shell composed of a few thousand protein subunits. PduU exists as a hexamer which might further assemble into the flat facets of the polyhedral outer shell of the pdu organelle. This proteinaceous noncarboxysome microcompartment is involved in coenzyme B12-dependent degradation of 1,2-propanediol. The core of PduU is related to the typical BMC domain and its natural oligomeric state is a cyclic hexamer. Unlike other typical BMC domain proteins, the 3D topology of PduU reveals a circular permuted variation on the typical BMC fold which leads to several unique features. The exact functions related to those unique features are still not clear. Another difference is the presence of a deep cavity on one side of the hexamer as well as an intermolecular six-stranded beta barrel that seems to block the central pore that is present in other BMC domain proteins. EutS proteins included in this CD are sequence homologs of PduU. They are encoded within eut operon and may be required for the formation of the outer shell of bacterial eut polyhedral organelles which are involved in the cobalamin-dependent degradation of ethanolamine. Although it has been suggested that EutS might also form hexamers and play similar functional roles in the construction of the eut organelle outer shell at present no experimental evidence directly supports this view. 110 -132887 cd07047 BMC_PduB_repeat1 1,2-propanediol utilization protein B (PduB), Bacterial Micro-Compartment (BMC) domain repeat 1. PduB proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduB might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view. PduB proteins contain two tandem BMC domains repeats. This CD contains repeat 1 (the first BMC domain of PduB). 134 -132888 cd07048 BMC_PduB_repeat2 1,2-propanediol utilization protein B (PduB), Bacterial Micro-Compartment (BMC) domain repeat 2. PduB proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduB might form hexamers and further assemble into the flat facets of the polyhedral outer shell of the pdu organelles at present no experimental evidence directly supports this view. PduB proteins contain two tandem BMC domains repeats. This CD contains repeat 2 (the second BMC domain of PduB). 70 -132889 cd07049 BMC_EutL_repeat1 ethanolamine utilization protein S (EutS), Bacterial Micro-Compartment (BMC) domain repeat 1. EutL proteins are homologs of the carboxysome shell protein. They are encoded within the eut operon and might be required for the formation of the outer shell of the bacterial eut polyhedral organelles which are involved in the cobalamin-dependent degradation of ethanolamine. Although it has been suggested that EutL might form hexamers and further assemble into the flat facets of the polyhedral outer shell of the eut organelles at present no experimental evidence directly supports this view. EutL proteins contain two tandem BMC domains. This CD includes domain 1 (the first BMC domain of EutL). 103 -132890 cd07050 BMC_EutL_repeat2 ethanolamine utilization protein S (EutS), Bacterial Micro-Compartment (BMC) domain repeat 2. EutL proteins are homologs of the carboxysome shell protein. They are encoded within the eut operon and might be required for the formation of the outer shell of the bacterial eut polyhedral organelles which are involved in the cobalamin-dependent degradation of ethanolamine. Although it has been suggested that EutL might form hexamers and further assemble into the flat facets of the polyhedral outer shell of eut organelles at present no experimental evidence directly supports this view. EutL proteins contain two tandem BMC domains. This CD includes domain 2 (the second BMC domain of EutL). 87 -132891 cd07051 BMC_like_1_repeat1 Bacterial Micro-Compartment (BMC)-like domain 1 repeat 1. BMC-like domains exist in cyanobacteria, proteobacteria, and actinobacteria and are homologs of the carboxysome shell proteins. They might be encoded from putative organelles involved in unknown metabolic process. Although it has been suggested that these carboxysome shell protein homologs form hexamers and further assemble into the flat facets of the polyhedral bacterial organelles shell at present no experimental evidence exists to directly support this view. Proteins in this CD contain two tandem BMC domains. This CD includes repeat 1 (the first BMC domain of BMC like 1 proteins). 111 -132892 cd07052 BMC_like_1_repeat2 Bacterial Micro-Compartment (BMC)-like domain 1 repeat 2. BMC-like domains exist in cyanobacteria, proteobacteria, and actinobacteria and are homologs of the carboxysome shell proteins. They might be encoded from putative organelles involved in unknown metabolic process. Although it has been suggested that these carboxysome shell protein homologs form hexamers and further assemble into the flat facets of the polyhedral bacterial organelles shell at present no experimental evidence exists to directly support this view. Proteins in this CD contain two tandem BMC domains. This CD includes repeat 2 (the second BMC domain of BMC like 1 proteins). 79 -132893 cd07053 BMC_PduT_repeat1 1,2-propanediol utilization protein T (PduT), Bacterial Micro-Compartment (BMC) domain repeat 1. PduT proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduT might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view. PduT proteins contain two tandem BMC domains repeats. This CD contains repeat 1 (the first BMC domain of PduT) as well as carboxysome shell protein sequence homolog, EutM protein, are also included in this CD. They too might exist as hexamers and might play similar functional roles in the construction of the eut organelle outer shell which still remains poorly understood. 76 -132894 cd07054 BMC_PduT_repeat2 1,2-propanediol utilization protein T (PduT), Bacterial Micro-Compartment (BMC) domain repeat 2. PduT proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduT might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles, at present no experimental evidence directly supports this view. PduT proteins contain two tandem BMC domains repeats. This CD contains repeat 2 (the second BMC domain of PduT) as well as carboxysome shell protein sequence homolog, EutM protein, are also included in this CD. They too might exist as hexamers and might play similar functional roles in the construction of the eut organelle outer shell which still remains poorly understood. 78 -132895 cd07055 BMC_like_2 Bacterial Micro-Compartment (BMC)-like domain 2. BMC like 2 domains exist in cyanobacteria, proteobacteria, and actinobacteria and are homologs of carboxysome shell proteins. They might be encoded from putative organelles involved in unknown metabolic process. Although it has been suggested that these carboxysome shell protein homologs form hexamers and further assemble into the flat facets of the polyhedral bacterial organelles shell at present no experimental evidence exists to directly support this view. 61 -132896 cd07056 BMC_PduK 1,2-propanediol utilization protein K (PduK), Bacterial Micro-Compartment (BMC) domain repeat 1l. PduK proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduK might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view. 77 -132897 cd07057 BMC_CcmK Carbon dioxide concentrating mechanism (CcmK); Bacterial Micro-Compartment (BMC) domain. CcmK1-4 and CcmL proteins found in Synechocystis sp. strain PCC 6803 make up the beta carboxysome shell. These CcmK proteins have been shown to form hexameric units, while the CcmL proteins have been shown to form pentameric units. Together these proteins further assemble into the flat facets of the polyhedral carboxysome shell. The structures suggest that the central pores and the gaps between hexamers limit the transport of metabolites into and out of the the carboxysome. 88 -132898 cd07058 BMC_CsoS1 Carboxysome Shell 1 (CsoS1); Bacterial Micro-Compartment (BMC) domain. The cso operon in Halothiobacillus neapolitanus contains the genes involved in alpha carboxysome function including those for the carboxysome shell proteins: CsoS1A, CsoS1B, and CsoS1C. CsoS1A has been shown to form hexameric units which further assemble into the flat facets of the polyhedral carboxysome shell. The structures suggest that the central pores and the gaps between hexamers limit the transport of metabolites into and out of the the carboxysome. Although it has been suggested that other homologous proteins, CsoS1B and CsoS1C, in this family might also form hexamers and play similar functional roles in the construction of carboxysome outer shell at present no experimental evidence directly supports this view. 88 -132899 cd07059 BMC_PduA 1,2-propanediol utilization protein A (PduA), Bacterial Micro-Compartment (BMC) domain. PduA is encoded within the 1,2-propanediol utilization (pdu) operon along with other homologous carboxysome shell proteins PduB, B', J, K, T, and U. PduA is thought to be required for the formation of the outer shell of bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduA might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles, like PduU does, at present no experimental evidence directly supports this view. 85 -349952 cd07060 SPOUT_MTase SPOUT superfamily of SAM-dependent RNA methyltransferases. The SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, also known as class IV methyltransferase family, is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. Members of the SPOUT superfamily that have been characterized functionally are involved in post-transcriptional RNA modification by catalyzing methylation of the 2-OH group of ribose, the N-1 atom of guanosine 37 in tRNA, or the N-3 atom of uridine 1498 in 16S rRNA. 99 -132717 cd07061 HP_HAP_like Histidine phosphatase domain found in histidine acid phosphatases and phytases; contains a His residue which is phosphorylated during the reaction. Catalytic domain of HAP (histidine acid phosphatases) and phytases (myo-inositol hexakisphosphate phosphohydrolases). The conserved catalytic core of this domain contains a His residue which is phosphorylated in the reaction. Functions in this subgroup include roles in metabolism, signaling, or regulation, for example Escherichia coli glucose-1-phosphatase functions to scavenge glucose from glucose-1-phosphate and the signaling molecules inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6) are in vivo substrates for eukaryotic multiple inositol polyphosphate phosphatase 1 (Minpp1). Phytases scavenge phosphate from extracellular sources and are added to animal feed while prostatic acid phosphatase (PAP) has been used for many years as a serum marker for prostate cancer. Recently PAP has been shown in mouse models to suppress pain by functioning as an ecto-5prime-nucleotidase. In vivo it dephosphorylates extracellular adenosine monophosphate (AMP) generating adenosine,and leading to the activation of A1-adenosine receptors in dorsal spinal cord. 242 -132883 cd07062 Peptidase_S66_mccF_like Microcin C7 self-immunity protein determines resistance to exogenous microcin C7. Microcin C7 self-immunity protein (mccF): MccF, a homolog of the LD-carboxypeptidase family, mediates resistance against exogenously added microcin C7 (MccC7), a ribosomally-encoded peptide antibiotic that contains a phosphoramidate linkage to adenosine monophosphate at its C-terminus. The plasmid-encoded mccF gene is transcribed in the opposite direction to the other five genes (mccA-E) and is required for the full expression of immunity but not for production. The catalytic triad residues (Ser, His, Glu) of LD-carboxypeptidase are also conserved in MccF, strongly suggesting that MccF shares the hydrolytic activity with LD-carboxypeptidases. Substrates of MccF have not been deduced, but could likely be microcin C7 precursors. The possible role of MccF is to defend producer cells against exogenous microcin from re-entering after having been exported. It is suggested that MccF is involved in microcin degradation or sequestration in the periplasm. 308 -132881 cd07064 AlkD_like_1 A new structural DNA glycosylase containing HEAT-like repeats. This domain represents a new and uncharacterized structural superfamily of DNA glycosylases that form an alpha-alpha superhelix fold that are not belong to the identified five structural DNA glycosylase superfamilies (UDG, AAG/MNPG, MutM/Fpg and helix-hairpin-helix). DNA glycosylases removing alkylated base residues have been identified in all organisms investigated and may be universally present in nature. DNA glycosylases catalyze the first step in Base Excision Repair (BER) pathway by cleaving damaged DNA bases within double strand DNA to produce an abasic site. The resulting abasic site is further processed by AP endonuclease, phosphodiesterase, DNA polymerases, and DNA ligase functions to restore the DNA to an undamaged state. All glycosylase examined to date utilize a similar strategy for binding DNA and base flipping despite their structural diversity. The known structures for members of this family, AlkC and AlkD from Bacillus cereus, are distant homologues and are composed of six variant HEAT (Huntington/Elongation/ A subunit/Target of rapamycin) repeats. HEAT motifs are ~45-amino acid sequences that form antiparallel alpha-helices, which are packed by a conserved hyrophobic interface and are tandemly repeated to form superhelical alpha-structures. AlkD and AlkC are specific for removal of 3-methyladenine (3mA) and 7-methylguanine (7mG) from the DNA by base excision repair. Homologues of AlkC and AlkD were also identified in other organisms. 208 -143549 cd07066 CRD_FZ CRD_domain cysteine-rich domain, also known as Fz (frizzled) domain. CRD_FZ is an essential component of a number of cell surface receptors, which are involved in multiple signal transduction pathways, particularly in modulating the activity of the Wnt proteins, which play a fundamental role in the early development of metazoans. CRD is also found in secreted frizzled related proteins (SFRPs), which lack the transmembrane segment found in the frizzled protein. The CRD domain is also present in the alpha-1 chain of mouse type XVIII collagen, in carboxypeptidase Z, several receptor tyrosine kinases, and the mosaic transmembrane serine protease corin. The CRD domain is well conserved in metazoans - 10 frizzled proteins have been identified in mammals, 4 in Drosophila and 3 in Caenorhabditis elegans. CRD domains have also been identified in multiple tandem copies in a Dictyostelium discoideum protein. Very little is known about the mechanism by which CRD domains interact with their ligands. The domain contains 10 conserved cysteines. 119 -132718 cd07067 HP_PGM_like Histidine phosphatase domain found in phosphoglycerate mutases and related proteins, mostly phosphatases; contains a His residue which is phosphorylated during the reaction. Subgroup of the catalytic domain of a functionally diverse set of proteins, most of which are phosphatases. The conserved catalytic core of this domain contains a His residue which is phosphorylated in the reaction. This subgroup contains cofactor-dependent and cofactor-independent phosphoglycerate mutases (dPGM, and BPGM respectively), fructose-2,6-bisphosphatase (F26BP)ase, Sts-1, SixA, and related proteins. Functions include roles in metabolism, signaling, or regulation, for example, F26BPase affects glycolysis and gluconeogenesis through controlling the concentration of F26BP; BPGM controls the concentration of 2,3-BPG (the main allosteric effector of hemoglobin in human blood cells); human Sts-1 is a T-cell regulator; Escherichia coli Six A participates in the ArcB-dependent His-to-Asp phosphorelay signaling system. Deficiency and mutation in many of the human members result in disease, for example erythrocyte BPGM deficiency is a disease associated with a decrease in the concentration of 2,3-BPG. 153 -132753 cd07068 NR_LBD_ER_like The ligand binding domain of estrogen receptor and estrogen receptor-related receptors. The ligand binding domain of estrogen receptor (ER) and estrogen receptor-related receptors (ERRs): Estrogen receptors are a group of receptors which are activated by the hormone estrogen. Estrogen regulates many physiological processes including reproduction, bone integrity, cardiovascular health, and behavior. The main mechanism of action of the estrogen receptor is as a transcription factor by binding to the estrogen response element of target genes upon activation by estrogen and then recruiting coactivator proteins which are responsible for the transcription of target genes. Additionally some ERs may associate with other membrane proteins and can be rapidly activated by exposure of cells to estrogen. ERRs are closely related to the estrogen receptor (ER) family. But, it lacks the ability to bind estrogen. ERRs can interfere with the classic ER-mediated estrogen signaling pathway, positively or negatively. ERRs share target genes, co-regulators and promoters with the estrogen receptor (ER) family. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ER and ERRs have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 221 -132754 cd07069 NR_LBD_Lrh-1 The ligand binding domain of the liver receptor homolog-1, a member of nuclear receptor superfamily,. The ligand binding domain (LBD) of the liver receptor homolog-1 (LRH-1): LRH-1 belongs to nuclear hormone receptor superfamily, and is expressed mainly in the liver, intestine, exocrine pancreas, and ovary. Most nuclear receptors function as homodimer or heterodimers. However, LRH-1 binds DNA as a monomer, and is a regulator of bile-acid homeostasis, steroidogenesis, reverse cholesterol transport and the initial stages of embryonic development. Recently, phospholipids have been identified as potential ligand for LRH-1 and steroidogenic factor-1 (SF-1). Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, LRH-1 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 241 -132755 cd07070 NR_LBD_SF-1 The ligand binding domain of nuclear receptor steroidogenic factor 1, a member of nuclear receptor superfamily. The ligand binding domain of nuclear receptor steroidogenic factor 1 (SF-1): SF-1, a member of the nuclear hormone receptor superfamily, is an essential regulator of endocrine development and function and is considered a master regulator of reproduction. Most nuclear receptors function as homodimer or heterodimers, however SF-1 binds to its target genes as a monomer, recognizing the variations of the DNA sequence motif, T/CCA AGGTCA. SF-1 functions cooperatively with other transcription factors to modulate gene expression. Phospholipids have been determined as potential ligands of SF-1. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, SF-1 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 237 -132756 cd07071 NR_LBD_Nurr1 The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors. The ligand binding domain of nuclear receptor Nurr1: Nurr1 belongs to the conserved family of nuclear receptors. It is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. Structural studies have shown that the ligand binding pocket of Nurr1 is filled by bulky hydrophobic residues, making it unable to bind to ligands. Therefore, it belongs to the class of orphan receptors. However, Nurr1 forms heterodimers with RXR and can promote signaling via its partner, RXR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, Nurr1 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 238 -132757 cd07072 NR_LBD_DHR38_like Ligand binding domain of DHR38_like proteins, members of the nuclear receptor superfamily. The ligand binding domain of nuclear receptor DHR38_like proteins: DHR38 is a member of the steroid receptor superfamily in Drosophila. DHR38 interacts with the USP component of the ecdysone receptor complex, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly, in addition to the ECR/USP pathway. At least four differentially expressed mRNA isoforms have been detected during development. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, DHR38 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 239 -132758 cd07073 NR_LBD_AR Ligand binding domain of the nuclear receptor androgen receptor, ligand activated transcription regulator. The ligand binding domain of the androgen receptor (AR): AR is a member of the nuclear receptor family. It is activated by binding either of the androgenic hormones, testosterone or dihydrotestosterone, which are responsible for male primary sexual characteristics and for secondary male characteristics, respectively. The primary mechanism of action of ARs is by direct regulation of gene transcription. The binding of an androgen results in a conformational change in the androgen receptor which causes its transport from the cytosol into the cell nucleus, and dimerization. The receptor dimer binds to a hormone response element of AR-regulated genes and modulates their expression. Another mode of action is independent of their interactions with DNA. The receptors interact directly with signal transduction proteins in the cytoplasm, causing rapid changes in cell function, such as ion transport. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, AR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD is not only involved in binding to androgen, but also involved in binding of coactivator proteins and dimerization. A ligand dependent nuclear export signal is also present at the ligand binding domain. 246 -132759 cd07074 NR_LBD_PR Ligand binding domain of the progesterone receptor, a member of the nuclear hormone receptor. The ligand binding domain of the progesterone receptor (PR): PR is a member of the nuclear receptor superfamily of ligand dependent transcription factors, mediating the biological actions of progesterone. PR functions in a variety of biological processes including development of the mammary gland, regulating cell cycle progression, protein processing, and metabolism. When no binding hormone is present the carboxyl terminal inhibits transcription. Binding to a hormone induces a structural change that removes the inhibitory action. After progesterone binds to the receptor, PR forms a dimer and the complex enters the nucleus where it interacts with the hormone response element (HRE) in the promoters of progesterone responsive genes and alters their transcription. In addition, rapid actions of PR that occur independent of transcription, have also been observed in several tissues like brain, liver, mammary gland and spermatozoa. There are two natural PR isoforms called PR-A and PR-B. PR-B has an additional stretc h of 164 amino acids at the N terminus. The extra domain in PR-B performs activation functions by recruiting coactivators that could not be recruited by PR-A. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD is not only involved in binding to progesterone, but also involved in coactivator binding and dimerization. 248 -132760 cd07075 NR_LBD_MR Ligand binding domain of the mineralocorticoid receptor, a member of the nuclear receptor superfamily. The ligand binding domain of the mineralocorticoid receptor (MR): MR, also called aldosterone receptor, is a member of nuclear receptor superfamily involved in the regulation of electrolyte and fluid balance. The receptor is activated by mineralocorticoids such as aldosterone and deoxycorticosterone as well as glucocorticoids, like cortisol and cortisone. Binding of its ligand results in its translocation to the cell nucleus, homodimerization and binding to hormone response elements (HREs) present in the promoter of MR controlled genes. This results in the recruitment of the coactivators and the transcription of the activated genes. MR is expressed in many tissues and its activation results in the expression of proteins regulating electrolyte and fluid balance. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, MR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD ). The LBD, in addition to binding ligand, contains a ligand-dependent activation function-2 (AF-2). 248 -132761 cd07076 NR_LBD_GR Ligand binding domain of the glucocorticoid receptor, a member of the nuclear receptor superfamily. The ligand binding domain of the glucocorticoid receptor (GR): GR is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. It binds with high affinity to cortisol and other glucocorticoids. GR is expressed in almost every cell in the body and regulates genes controlling a wide variety of processes including the development, metabolism, and immune response of the organism. In the absence of hormone, the glucocorticoid receptor (GR) is complexes with a variety of heat shock proteins in the cytosol. The binding of the glucocorticoids results in release of the heat shock proteins and transforms it to its active state. One mechanism of action of GR is by direct activation of gene transcription. The activated form of GR forms dimers, translocates into the nucleus, and binds to specific hormone responsive elements, activating gene transcription. GR can also function as a repressor of other gene transcription activators, such as NF-kappaB and AF-1 by directly binding to them, and bloc king the expression of their activated genes. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD also functions for dimerization and chaperone protein association. 247 -143396 cd07077 ALDH-like NAD(P)+-dependent aldehyde dehydrogenase-like (ALDH-like) family. The aldehyde dehydrogenase-like (ALDH-like) group of the ALDH superfamily of NAD(P)+-dependent enzymes which, in general, oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes to their corresponding carboxylic acids and play an important role in detoxification. This group includes families ALDH18, ALDH19, and ALDH20 and represents such proteins as gamma-glutamyl phosphate reductase, LuxC-like acyl-CoA reductase, and coenzyme A acylating aldehyde dehydrogenase. All of these proteins have a conserved cysteine that aligns with the catalytic cysteine of the ALDH group. 397 -143397 cd07078 ALDH NAD(P)+ dependent aldehyde dehydrogenase family. The aldehyde dehydrogenase family (ALDH) of NAD(P)+ dependent enzymes, in general, oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes to their corresponding carboxylic acids and play an important role in detoxification. Besides aldehyde detoxification, many ALDH isozymes possess multiple additional catalytic and non-catalytic functions such as participating in metabolic pathways, or as binding proteins, or as osmoregulants, to mention a few. The enzyme has three domains, a NAD(P)+ cofactor-binding domain, a catalytic domain, and a bridging domain; and the active enzyme is generally either homodimeric or homotetrameric. The catalytic mechanism is proposed to involve cofactor binding, resulting in a conformational change and activation of an invariant catalytic cysteine nucleophile. The cysteine and aldehyde substrate form an oxyanion thiohemiacetal intermediate resulting in hydride transfer to the cofactor and formation of a thioacylenzyme intermediate. Hydrolysis of the thioacylenzyme and release of the carboxylic acid product occurs, and in most cases, the reduced cofactor dissociates from the enzyme. The evolutionary phylogenetic tree of ALDHs appears to have an initial bifurcation between what has been characterized as the classical aldehyde dehydrogenases, the ALDH family (ALDH) and extended family members or aldehyde dehydrogenase-like (ALDH-like) proteins. The ALDH proteins are represented by enzymes which share a number of highly conserved residues necessary for catalysis and cofactor binding and they include such proteins as retinal dehydrogenase, 10-formyltetrahydrofolate dehydrogenase, non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase, delta(1)-pyrroline-5-carboxylate dehydrogenases, alpha-ketoglutaric semialdehyde dehydrogenase, alpha-aminoadipic semialdehyde dehydrogenase, coniferyl aldehyde dehydrogenase and succinate-semialdehyde dehydrogenase. Included in this larger group are all human, Arabidopsis, Tortula, fungal, protozoan, and Drosophila ALDHs identified in families ALDH1 through ALDH22 with the exception of families ALDH18, ALDH19, and ALDH20 which are present in the ALDH-like group. 432 -143398 cd07079 ALDH_F18-19_ProA-GPR Gamma-glutamyl phosphate reductase (GPR), aldehyde dehydrogenase families 18 and 19. Gamma-glutamyl phosphate reductase (GPR), a L-proline biosynthetic pathway (PBP) enzyme that catalyzes the NADPH dependent reduction of L-gamma-glutamyl 5-phosphate into L-glutamate 5-semialdehyde and phosphate. The glutamate route of the PBP involves two enzymatic steps catalyzed by gamma-glutamyl kinase (GK, EC 2.7.2.11) and GPR (EC 1.2.1.41). These enzymes are fused into the bifunctional enzyme, ProA or delta(1)-pyrroline-5-carboxylate synthetase (P5CS) in plants and animals, whereas they are separate enzymes in bacteria and yeast. In humans, the P5CS (ALDH18A1), an inner mitochondrial membrane enzyme, is essential to the de novo synthesis of the amino acids proline and arginine. Tomato (Lycopersicon esculentum) has both the prokaryotic-like polycistronic operons encoding GK and GPR (PRO1, ALDH19) and the full-length, bifunctional P5CS (PRO2, ALDH18B1). 406 -143399 cd07080 ALDH_Acyl-CoA-Red_LuxC Acyl-CoA reductase LuxC. Acyl-CoA reductase, LuxC, (EC=1.2.1.50) is the fatty acid reductase enzyme responsible for synthesis of the aldehyde substrate for the luminescent reaction catalyzed by luciferase. The fatty acid reductase, a luminescence-specific, multienzyme complex (LuxCDE), reduces myristic acid to generate the long chain fatty aldehyde required for the luciferase-catalyzed reaction resulting in the emission of blue-green light. Mutational studies of conserved cysteines of LuxC revealed that the cysteine which aligns with the catalytic cysteine conserved throughout the ALDH superfamily is the LuxC acylation site. This CD is composed of mainly bacterial sequences but also includes a few archaeal sequences similar to the Methanospirillum hungateiacyl acyl-CoA reductase RfbN. 422 -143400 cd07081 ALDH_F20_ACDH_EutE-like Coenzyme A acylating aldehyde dehydrogenase (ACDH), Ethanolamine utilization protein EutE, and related proteins. Coenzyme A acylating aldehyde dehydrogenase (ACDH), an NAD+ and CoA-dependent acetaldehyde dehydrogenase, acetylating (EC=1.2.1.10), functions as a single enzyme (such as the Ethanolamine utilization protein, EutE, in Salmonella typhimurium) or as part of a multifunctional enzyme to convert acetaldehyde into acetyl-CoA. The E. coli aldehyde-alcohol dehydrogenase includes the functional domains, alcohol dehydrogenase (ADH), ACDH, and pyruvate-formate-lyase deactivase; and the Entamoeba histolytica aldehyde-alcohol dehydrogenase 2 (ALDH20A1) includes the functional domains ADH and ACDH, and may be critical enzymes in the fermentative pathway. 439 -143401 cd07082 ALDH_F11_NP-GAPDH NADP+-dependent non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase and ALDH family 11. NADP+-dependent non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase (NP-GAPDH, EC=1.2.1.9) catalyzes the irreversible oxidation of glyceraldehyde 3-phosphate to 3-phosphoglycerate generating NADPH for biosynthetic reactions. This CD also includes the Arabidopsis thaliana osmotic-stress-inducible ALDH family 11, ALDH11A3 and similar sequences. In autotrophic eukaryotes, NP-GAPDH generates NADPH for biosynthetic processes from photosynthetic glyceraldehyde-3-phosphate exported from the chloroplast and catalyzes one of the classic glycolytic bypass reactions unique to plants. 473 -143402 cd07083 ALDH_P5CDH ALDH subfamily NAD+-dependent delta(1)-pyrroline-5-carboxylate dehydrogenase-like. ALDH subfamily of the NAD+-dependent, delta(1)-pyrroline-5-carboxylate dehydrogenases (P5CDH, EC=1.5.1.12). The proline catabolic enzymes, proline dehydrogenase and P5CDH catalyze the two-step oxidation of proline to glutamate. P5CDH catalyzes the oxidation of glutamate semialdehyde, utilizing NAD+ as the electron acceptor. In some bacteria, the two enzymes are fused into the bifunctional flavoenzyme, proline utilization A (PutA). These enzymes play important roles in cellular redox control, superoxide generation, and apoptosis. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization genes. Monofunctional enzyme sequences such as those seen in the Bacillus RocA P5CDH are also present in this subfamily as well as the human ALDH4A1 P5CDH and the Drosophila Aldh17 P5CDH. 500 -143403 cd07084 ALDH_KGSADH-like ALDH subfamily: NAD(P)+-dependent alpha-ketoglutaric semialdehyde dehydrogenases and plant delta(1)-pyrroline-5-carboxylate dehydrogenase, ALDH family 12-like. ALDH subfamily which includes the NAD(P)+-dependent, alpha-ketoglutaric semialdehyde dehydrogenases (KGSADH, EC 1.2.1.26); plant delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH, EC=1.5.1.12 ), ALDH family 12; the N-terminal domain of the MaoC (monoamine oxidase C) dehydratase regulatory protein; and orthologs of MaoC, PaaZ and PaaN, which are putative ring-opening enzymes of the aerobic phenylacetic acid catabolic pathway. 442 -143404 cd07085 ALDH_F6_MMSDH Methylmalonate semialdehyde dehydrogenase and ALDH family members 6A1 and 6B2. Methylmalonate semialdehyde dehydrogenase (MMSDH, EC=1.2.1.27) [acylating] from Bacillus subtilis is involved in valine metabolism and catalyses the NAD+- and CoA-dependent oxidation of methylmalonate semialdehyde into propionyl-CoA. Mitochondrial human MMSDH ALDH6A1 and Arabidopsis MMSDH ALDH6B2 are also present in this CD. 478 -143405 cd07086 ALDH_F7_AASADH-like NAD+-dependent alpha-aminoadipic semialdehyde dehydrogenase and related proteins. ALDH subfamily which includes the NAD+-dependent, alpha-aminoadipic semialdehyde dehydrogenase (AASADH, EC=1.2.1.31), also known as Antiquitin-1, ALDH7A1, ALDH7B or delta-1-piperideine-6-carboxylate dehydrogenase (P6CDH), and other similar sequences, such as the uncharacterized aldehyde dehydrogenase of Candidatus kuenenia AldH (locus CAJ73105). 478 -143406 cd07087 ALDH_F3-13-14_CALDH-like ALDH subfamily: Coniferyl aldehyde dehydrogenase, ALDH families 3, 13, and 14, and other related proteins. ALDH subfamily which includes NAD(P)+-dependent, aldehyde dehydrogenase, family 3 member A1 and B1 (ALDH3A1, ALDH3B1, EC=1.2.1.5) and fatty aldehyde dehydrogenase, family 3 member A2 (ALDH3A2, EC=1.2.1.3), and also plant ALDH family members ALDH3F1, ALDH3H1, and ALDH3I1, fungal ALDH14 (YMR110C) and the protozoan family 13 member (ALDH13), as well as coniferyl aldehyde dehydrogenases (CALDH, EC=1.2.1.68), and other similar sequences, such as the Pseudomonas putida benzaldehyde dehydrogenase I that is involved in the metabolism of mandelate. 426 -143407 cd07088 ALDH_LactADH-AldA Escherichia coli lactaldehyde dehydrogenase AldA-like. Lactaldehyde dehydrogenase from Escherichia coli (AldA, LactADH, EC=1.2.1.22), an NAD(+)-dependent enzyme involved in the metabolism of L-fucose and L-rhamnose, and other similar sequences are present in this CD. 468 -143408 cd07089 ALDH_CddD-AldA-like Rhodococcus ruber 6-oxolauric acid dehydrogenase-like and related proteins. The 6-oxolauric acid dehydrogenase (CddD) from Rhodococcus ruber SC1 which converts 6-oxolauric acid to dodecanedioic acid; and the aldehyde dehydrogenase (locus SSP0762) from Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 and also, the Mycobacterium tuberculosis H37Rv ALDH AldA (locus Rv0768) sequence; and other similar sequences, are included in this CD. 459 -143409 cd07090 ALDH_F9_TMBADH NAD+-dependent 4-trimethylaminobutyraldehyde dehydrogenase, ALDH family 9A1. NAD+-dependent, 4-trimethylaminobutyraldehyde dehydrogenase (TMABADH, EC=1.2.1.47), also known as aldehyde dehydrogenase family 9 member A1 (ALDH9A1) in humans, is a cytosolic tetramer which catalyzes the oxidation of gamma-aminobutyraldehyde involved in 4-aminobutyric acid (GABA) biosynthesis and also oxidizes betaine aldehyde (gamma-trimethylaminobutyraldehyde) which is involved in carnitine biosynthesis. 457 -143410 cd07091 ALDH_F1-2_Ald2-like ALDH subfamily: ALDH families 1and 2, including 10-formyltetrahydrofolate dehydrogenase, NAD+-dependent retinal dehydrogenase 1 and related proteins. ALDH subfamily which includes the NAD+-dependent retinal dehydrogenase 1 (RALDH 1, ALDH1, EC=1.2.1.36), also known as aldehyde dehydrogenase family 1 member A1 (ALDH1A1), in humans, a homotetrameric, cytosolic enzyme that catalyzes the oxidation of retinaldehyde to retinoic acid. Human ALDH1B1 and ALDH2 are also in this cluster; both are mitochrondrial homotetramers which play important roles in acetaldehyde oxidation; ALDH1B1 in response to UV light exposure and ALDH2 during ethanol metabolism. 10-formyltetrahydrofolate dehydrogenase (FTHFDH, EC=1.5.1.6), also known as aldehyde dehydrogenase family 1 member L1 (ALDH1L1), in humans, a multi-domain homotetramer with an N-terminal formyl transferase domain and a C-terminal ALDH domain. FTHFDH catalyzes an NADP+-dependent dehydrogenase reaction resulting in the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Also included in this subfamily is the Arabidosis aldehyde dehydrogenase family 2 members B4 and B7 (EC=1.2.1.3), which are mitochondrial, homotetramers that oxidize acetaldehyde and glycolaldehyde, as well as, the Arabidosis cytosolic, homotetramer ALDH2C4 (EC=1.2.1.3), an enzyme involved in the oxidation of sinapalehyde and coniferaldehyde. Also included is the AldA aldehyde dehydrogenase of Aspergillus nidulans (locus AN0554), the aldehyde dehydrogenase 2 (YMR170c, ALD5, EC=1.2.1.5) of Saccharomyces cerevisiae, and other similar sequences. 476 -143411 cd07092 ALDH_ABALDH-YdcW Escherichia coli NAD+-dependent gamma-aminobutyraldehyde dehydrogenase YdcW-like. NAD+-dependent, tetrameric, gamma-aminobutyraldehyde dehydrogenase (ABALDH), YdcW of Escherichia coli K12, catalyzes the oxidation of gamma-aminobutyraldehyde to gamma-aminobutyric acid. ABALDH can also oxidize n-alkyl medium-chain aldehydes, but with a lower catalytic efficiency. 450 -143412 cd07093 ALDH_F8_HMSADH Human aldehyde dehydrogenase family 8 member A1-like. In humans, the aldehyde dehydrogenase family 8 member A1 (ALDH8A1) protein functions to convert 9-cis-retinal to 9-cis-retinoic acid and has a preference for NAD+. Also included in this CD is the 2-hydroxymuconic semialdehyde dehydrogenase (HMSADH) which catalyzes the conversion of 2-hydroxymuconic semialdehyde to 4-oxalocrotonate, a step in the meta cleavage pathway of aromatic hydrocarbons in bacteria. Such HMSADHs seen here are: XylG of the TOL plasmid pWW0 of Pseudomonas putida, TomC of Burkholderia cepacia G4, and AphC of Comamonas testosterone. 455 -143413 cd07094 ALDH_F21_LactADH-like ALDH subfamily: NAD+-dependent, lactaldehyde dehydrogenase, ALDH family 21 A1, and related proteins. ALDH subfamily which includes Tortula ruralis aldehyde dehydrogenase ALDH21A1 (RNP123), and NAD+-dependent, lactaldehyde dehydrogenase (EC=1.2.1.22) and like sequences. 453 -143414 cd07095 ALDH_SGSD_AstD N-succinylglutamate 5-semialdehyde dehydrogenase, AstD-like. N-succinylglutamate 5-semialdehyde dehydrogenase or succinylglutamic semialdehyde dehydrogenase (SGSD, E. coli AstD, EC=1.2.1.71) involved in L-arginine degradation via the arginine succinyltransferase (AST) pathway and catalyzes the NAD+-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. 431 -143415 cd07097 ALDH_KGSADH-YcbD Bacillus subtilis NADP+-dependent alpha-ketoglutaric semialdehyde dehydrogenase ycbD-like. Kinetic studies of the Bacillus subtilis ALDH-like ycbD protein, which is involved in d-glucarate/d-galactarate utilization, reveal that it is a NADP+-dependent, alpha-ketoglutaric semialdehyde dehydrogenase (KGSADH). KGSADHs (EC 1.2.1.26) catalyze the NAD(P)+-dependent conversion of KGSA to alpha-ketoglutarate. Interestingly, the NADP+-dependent, tetrameric, 2,5-dioxopentanoate dehydrogenase (EC=1.2.1.26), an enzyme involved in the catabolic pathway for D-arabinose in Sulfolobus solfataricus, also clusters in this group. This CD shows a distant phylogenetic relationship to the Azospirillum brasilense KGSADH-II (-III) group. 473 -143416 cd07098 ALDH_F15-22 Aldehyde dehydrogenase family 15A1 and 22A1-like. Aldehyde dehydrogenase family members ALDH15A1 (Saccharomyces cerevisiae YHR039C) and ALDH22A1 (Arabidopsis thaliana, EC=1.2.1.3), and similar sequences, are in this CD. Significant improvement of stress tolerance in tobacco plants was observed by overexpressing the ALDH22A1 gene from maize (Zea mays) and was accompanied by a reduction of malondialdehyde derived from cellular lipid peroxidation. 465 -143417 cd07099 ALDH_DDALDH Methylomonas sp. 4,4'-diapolycopene-dialdehyde dehydrogenase-like. The 4,4'-diapolycopene-dialdehyde dehydrogenase (DDALDH) involved in C30 carotenoid synthesis in Methylomonas sp. strain 16a and other similar sequences are present in this CD. DDALDH converts 4,4'-diapolycopene-dialdehyde into 4,4'-diapolycopene-diacid. 453 -143418 cd07100 ALDH_SSADH1_GabD1 Mycobacterium tuberculosis succinate-semialdehyde dehydrogenase 1-like. Succinate-semialdehyde dehydrogenase 1 (SSADH1, GabD1, EC=1.2.1.16) catalyzes the NADP(+)-dependent oxidation of succinate semialdehyde (SSA) to succinate. SSADH activity in Mycobacterium tuberculosis (Mtb) is encoded by both gabD1 (Rv0234c) and gabD2 (Rv1731). The Mtb GabD1 SSADH1 reportedly is an enzyme of the gamma-aminobutyrate shunt, which forms a functional link between two TCA half-cycles by converting alpha-ketoglutarate to succinate. 429 -143419 cd07101 ALDH_SSADH2_GabD2 Mycobacterium tuberculosis succinate-semialdehyde dehydrogenase 2-like. Succinate-semialdehyde dehydrogenase 2 (SSADH2) and similar proteins are in this CD. SSADH1 (GabD1, EC=1.2.1.16) catalyzes the NADP(+)-dependent oxidation of succinate semialdehyde to succinate. SSADH activity in Mycobacterium tuberculosis is encoded by both gabD1 (Rv0234c) and gabD2 (Rv1731), however ,the Vmax of GabD1 was shown to be much higher than that of GabD2, and GabD2 (SSADH2) is likely to serve physiologically as a dehydrogenase for a different aldehyde(s). 454 -143420 cd07102 ALDH_EDX86601 Uncharacterized aldehyde dehydrogenase of Synechococcus sp. PCC 7335 (EDX86601). Uncharacterized aldehyde dehydrogenase of Synechococcus sp. PCC 7335 (locus EDX86601) and other similar sequences, are present in this CD. 452 -143421 cd07103 ALDH_F5_SSADH_GabD Mitochondrial succinate-semialdehyde dehydrogenase and ALDH family members 5A1 and 5F1-like. Succinate-semialdehyde dehydrogenase, mitochondrial (SSADH, GabD, EC=1.2.1.24) catalyzes the NAD+-dependent oxidation of succinate semialdehyde (SSA) to succinate. This group includes the human aldehyde dehydrogenase family 5 member A1 (ALDH5A1) which is a mitochondrial homotetramer that converts SSA to succinate in the last step of 4-aminobutyric acid (GABA) catabolism. This CD also includes the Arabidopsis SSADH gene product ALDH5F1. Mutations in this gene result in the accumulation of H2O2, suggesting a role in plant defense against the environmental stress of elevated reactive oxygen species. 451 -143422 cd07104 ALDH_BenzADH-like ALDH subfamily: NAD(P)+-dependent benzaldehyde dehydrogenase II, vanillin dehydrogenase, p-hydroxybenzaldehyde dehydrogenase and related proteins. ALDH subfamily which includes the NAD(P)+-dependent, benzaldehyde dehydrogenase II (XylC, BenzADH, EC=1.2.1.28) involved in the oxidation of benzyl alcohol to benzoate; p-hydroxybenzaldehyde dehydrogenase (PchA, HBenzADH) which catalyzes the oxidation of p-hydroxybenzaldehyde to p-hydroxybenzoic acid; vanillin dehydrogenase (Vdh, VaniDH) involved in the metabolism of ferulic acid as seen in Pseudomonas putida KT2440; and other related sequences. 431 -143423 cd07105 ALDH_SaliADH Salicylaldehyde dehydrogenase, DoxF-like. Salicylaldehyde dehydrogenase (DoxF, SaliADH, EC=1.2.1.65) involved in the upper naphthalene catabolic pathway of Pseudomonas strain C18 and other similar sequences are present in this CD. 432 -143424 cd07106 ALDH_AldA-AAD23400 Streptomyces aureofaciens putative aldehyde dehydrogenase AldA (AAD23400)-like. Putative aldehyde dehydrogenase, AldA, from Streptomyces aureofaciens (locus AAD23400) and other similar sequences are present in this CD. 446 -143425 cd07107 ALDH_PhdK-like Nocardioides 2-carboxybenzaldehyde dehydrogenase, PhdK-like. Nocardioides sp. strain KP72-carboxybenzaldehyde dehydrogenase (PhdK), an enzyme involved in phenanthrene degradation, and other similar sequences, are present in this CD. 456 -143426 cd07108 ALDH_MGR_2402 Magnetospirillum NAD(P)+-dependent aldehyde dehydrogenase MSR-1-like. NAD(P)+-dependent aldehyde dehydrogenase of Magnetospirillum gryphiswaldense MSR-1 (MGR_2402) , and other similar sequences, are present in this CD. 457 -143427 cd07109 ALDH_AAS00426 Uncharacterized Saccharopolyspora spinosa aldehyde dehydrogenase (AAS00426)-like. Uncharacterized aldehyde dehydrogenase of Saccharopolyspora spinosa (AAS00426) and other similar sequences, are present in this CD. 454 -143428 cd07110 ALDH_F10_BADH Arabidopsis betaine aldehyde dehydrogenase 1 and 2, ALDH family 10A8 and 10A9-like. Present in this CD are the Arabidopsis betaine aldehyde dehydrogenase (BADH) 1 (chloroplast) and 2 (mitochondria), also known as, aldehyde dehydrogenase family 10 member A8 and aldehyde dehydrogenase family 10 member A9, respectively, and are putative dehydration- and salt-inducible BADHs (EC 1.2.1.8) that catalyze the oxidation of betaine aldehyde to the compatible solute glycine betaine. 456 -143429 cd07111 ALDH_F16 Aldehyde dehydrogenase family 16A1-like. Uncharacterized aldehyde dehydrogenase family 16 member A1 (ALDH16A1) and other related sequences are present in this CD. The active site cysteine and glutamate residues are not conserved in the human ALDH16A1 protein sequence. 480 -143430 cd07112 ALDH_GABALDH-PuuC Escherichia coli NADP+-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase PuuC-like. NADP+-dependent, gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase (GABALDH) PuuC of Escherichia coli which catalyzes the conversion of putrescine to 4-aminobutanoate and other similar sequences are present in this CD. 462 -143431 cd07113 ALDH_PADH_NahF Escherichia coli NAD+-dependent phenylacetaldehyde dehydrogenase PadA-like. NAD+-dependent, homodimeric, phenylacetaldehyde dehydrogenase (PADH, EC=1.2.1.39) PadA of Escherichia coli involved in the catabolism of 2-phenylethylamine, and other related sequences, are present in this CD. Also included is the Pseudomonas fluorescens ST StyD PADH involved in styrene catabolism, the Sphingomonas sp. LB126 FldD protein involved in fluorene degradation, and the Novosphingobium aromaticivorans NahF salicylaldehyde dehydrogenase involved in the NAD+-dependent conversion of salicylaldehyde to salicylate. 477 -143432 cd07114 ALDH_DhaS Uncharacterized Candidatus pelagibacter aldehyde dehydrogenase, DhaS-like. Uncharacterized aldehyde dehydrogenase from Candidatus pelagibacter (DhaS) and other related sequences are present in this CD. 457 -143433 cd07115 ALDH_HMSADH_HapE Pseudomonas fluorescens 4-hydroxymuconic semialdehyde dehydrogenase-like. 4-hydroxymuconic semialdehyde dehydrogenase (HapE, EC=1.2.1.61) of Pseudomonas fluorescens ACB involved in 4-hydroxyacetophenone degradation, and putative hydroxycaproate semialdehyde dehydrogenase (ChnE) of Brachymonas petroleovorans involved in cyclohexane metabolism, and other similar sequences, are present in this CD. 453 -143434 cd07116 ALDH_ACDHII-AcoD Ralstonia eutrophus NAD+-dependent acetaldehyde dehydrogenase II-like. Included in this CD is the NAD+-dependent, acetaldehyde dehydrogenase II (AcDHII, AcoD, EC=1.2.1.3) from Ralstonia (Alcaligenes) eutrophus H16 involved in the catabolism of acetoin and ethanol, and similar proteins, such as, the dimeric dihydrolipoamide dehydrogenase of the acetoin dehydrogenase enzyme system of Klebsiella pneumonia. Also included are sequences similar to the NAD+-dependent chloroacetaldehyde dehydrogenases (AldA and AldB) of Xanthobacter autotrophicus GJ10 which are involved in the degradation of 1,2-dichloroethane. These proteins apparently require RpoN factors for expression. 479 -143435 cd07117 ALDH_StaphAldA1 Uncharacterized Staphylococcus aureus AldA1 (SACOL0154) aldehyde dehydrogenase-like. Uncharacterized aldehyde dehydrogenase from Staphylococcus aureus (AldA1, locus SACOL0154) and other similar sequences are present in this CD. 475 -143436 cd07118 ALDH_SNDH Gluconobacter oxydans L-sorbosone dehydrogenase-like. Included in this CD is the L-sorbosone dehydrogenase (SNDH) from Gluconobacter oxydans UV10. In G. oxydans, D-sorbitol is converted to 2-keto-L-gulonate (a precursor of L-ascorbic acid) in sequential oxidation steps catalyzed by a FAD-dependent, L-sorbose dehydrogenase and an NAD(P)+-dependent, L-sorbosone dehydrogenase. 454 -143437 cd07119 ALDH_BADH-GbsA Bacillus subtilis NAD+-dependent betaine aldehyde dehydrogenase-like. Included in this CD is the NAD+-dependent, betaine aldehyde dehydrogenase (BADH, GbsA, EC=1.2.1.8) of Bacillus subtilis involved in the synthesis of the osmoprotectant glycine betaine from choline or glycine betaine aldehyde. 482 -143438 cd07120 ALDH_PsfA-ACA09737 Pseudomonas putida aldehyde dehydrogenase PsfA (ACA09737)-like. Included in this CD is the aldehyde dehydrogenase (PsfA, locus ACA09737) of Pseudomonas putida involved in furoic acid metabolism. Transcription of psfA was induced in response to 2-furoic acid, furfuryl alcohol, and furfural. 455 -143439 cd07121 ALDH_EutE Ethanolamine utilization protein EutE-like. Coenzyme A acylating aldehyde dehydrogenase (ACDH), an NAD+ and CoA-dependent acetaldehyde dehydrogenase, acetylating (EC=1.2.1.10), converts acetaldehyde into acetyl-CoA. This CD is limited to such monofunctional enzymes as the Ethanolamine utilization protein, EutE, in Salmonella typhimurium. Mutations in eutE abolish the ability to utilize ethanolamine as a carbon source. 429 -143440 cd07122 ALDH_F20_ACDH Coenzyme A acylating aldehyde dehydrogenase (ACDH), ALDH family 20-like. Coenzyme A acylating aldehyde dehydrogenase (ACDH, EC=1.2.1.10), an NAD+ and CoA-dependent acetaldehyde dehydrogenase, functions as a single enzyme (such as the Ethanolamine utilization protein, EutE, in Salmonella typhimurium) or as part of a multifunctional enzyme to convert acetaldehyde into acetyl-CoA . The E. coli aldehyde-alcohol dehydrogenase includes the functional domains, alcohol dehydrogenase (ADH), ACDH, and pyruvate-formate-lyase deactivase; and the Entamoeba histolytica aldehyde-alcohol dehydrogenase 2 (ALDH20A1) includes the functional domains ADH and ACDH and may be critical enzymes in the fermentative pathway. 436 -143441 cd07123 ALDH_F4-17_P5CDH Delta(1)-pyrroline-5-carboxylate dehydrogenase, ALDH families 4 and 17. Delta(1)-pyrroline-5-carboxylate dehydrogenase (EC=1.5.1.12 ), families 4 and 17: a proline catabolic enzyme of the aldehyde dehydrogenase (ALDH) protein superfamily. Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), also known as ALDH4A1 in humans, is a mitochondrial homodimer involved in proline degradation and catalyzes the NAD + -dependent conversion of P5C to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes. Also included in this CD is the Aldh17 Drosophila melanogaster (Q9VUC0) P5CDH and similar sequences. 522 -143442 cd07124 ALDH_PutA-P5CDH-RocA Delta(1)-pyrroline-5-carboxylate dehydrogenase, RocA. Delta(1)-pyrroline-5-carboxylate dehydrogenase (EC=1.5.1.12 ), RocA: a proline catabolic enzyme of the aldehyde dehydrogenase (ALDH) protein superfamily. The proline catabolic enzymes, proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), catalyze the two-step oxidation of proline to glutamate; P5CDH catalyzes the oxidation of glutamate semialdehyde, utilizing NAD+ as the electron acceptor. In some bacteria, the two enzymes are fused into the bifunctional flavoenzyme, proline utilization A (PutA). In this CD, monofunctional enzyme sequences such as seen in the Bacillus subtilis RocA P5CDH are also present. These enzymes play important roles in cellular redox control, superoxide generation, and apoptosis. 512 -143443 cd07125 ALDH_PutA-P5CDH Delta(1)-pyrroline-5-carboxylate dehydrogenase, PutA. The proline catabolic enzymes of the aldehyde dehydrogenase (ALDH) protein superfamily, proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH, (EC=1.5.1.12 )), catalyze the two-step oxidation of proline to glutamate; P5CDH catalyzes the oxidation of glutamate semialdehyde, utilizing NAD+ as the electron acceptor. In some bacteria, the two enzymes are fused into the bifunctional flavoenzyme, proline utilization A (PutA) These enzymes play important roles in cellular redox control, superoxide generation, and apoptosis. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization genes. 518 -143444 cd07126 ALDH_F12_P5CDH Delta(1)-pyrroline-5-carboxylate dehydrogenase, ALDH family 12. Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH, EC=1.5.1.12), family 12: a proline catabolic enzyme of the aldehyde dehydrogenase (ALDH) protein superfamily. P5CDH is a mitochondrial enzyme involved in proline degradation and catalyzes the NAD + -dependent conversion of P5C to glutamate. The P5CDH, ALDH12A1 gene, in Arabidopsis, has been identified as an osmotic-stress-inducible ALDH gene. This CD contains both Viridiplantae and Alveolata P5CDH sequences. 489 -143445 cd07127 ALDH_PAD-PaaZ Phenylacetic acid degradation proteins PaaZ (Escherichia coli) and PaaN (Pseudomonas putida)-like. Phenylacetic acid degradation (PAD) proteins PaaZ (Escherichia coli) and PaaN (Pseudomonas putida) are putative aromatic ring cleavage enzymes of the aerobic PA catabolic pathway. PaaZ mutants were defective for growth with PA as a sole carbon source due to interruption of the putative ring opening system. This CD is limited to bacterial monofunctional enzymes. 549 -143446 cd07128 ALDH_MaoC-N N-terminal domain of the monoamine oxidase C dehydratase. The N-terminal domain of the MaoC dehydratase, a monoamine oxidase regulatory protein. Orthologs of MaoC include PaaZ (Escherichia coli) and PaaN (Pseudomonas putida), which are putative ring-opening enzymes of the aerobic phenylacetic acid (PA) catabolic pathway. The C-terminal domain of MaoC has sequence similarity to enoyl-CoA hydratase. Also included in this CD is a novel Burkholderia xenovorans LB400 ALDH of the aerobic benzoate oxidation (box) pathway. This pathway involves first the synthesis of a CoA thio-esterified aromatic acid, with subsequent dihydroxylation and cleavage steps, yielding the CoA thio-esterified aliphatic aldehyde, 3,4-dehydroadipyl-CoA semialdehyde, which is further converted into its corresponding CoA acid by the Burkholderia LB400 ALDH. 513 -143447 cd07129 ALDH_KGSADH Alpha-Ketoglutaric Semialdehyde Dehydrogenase. Alpha-Ketoglutaric Semialdehyde (KGSA) Dehydrogenase (KGSADH, EC 1.2.1.26) catalyzes the NAD(P)+-dependent conversion of KGSA to alpha-ketoglutarate. This CD contains such sequences as those seen in Azospirillum brasilense, KGSADH-II (D-glucarate/D-galactarate-inducible) and KGSADH-III (hydroxy-L-proline-inducible). Both show similar high substrate specificity for KGSA and different coenzyme specificity; KGSADH-II is NAD+-dependent and KGSADH-III is NADP+-dependent. Also included in this CD is the NADP(+)-dependent aldehyde dehydrogenase from Vibrio harveyi which catalyzes the oxidation of long-chain aliphatic aldehydes to acids. 454 -143448 cd07130 ALDH_F7_AASADH NAD+-dependent alpha-aminoadipic semialdehyde dehydrogenase, ALDH family members 7A1 and 7B. Alpha-aminoadipic semialdehyde dehydrogenase (AASADH, EC=1.2.1.31), also known as ALDH7A1, Antiquitin-1, ALDH7B, or delta-1-piperideine-6-carboxylate dehydrogenase (P6CDH), is a NAD+-dependent ALDH. Human ALDH7A1 is involved in the pipecolic acid pathway of lysine catabolism, catalyzing the oxidation of alpha-aminoadipic semialdehyde to alpha-aminoadipate. Arabidopsis thaliana ALDH7B4 appears to be an osmotic-stress-inducible ALDH gene encoding a turgor-responsive or stress-inducible ALDH. The Streptomyces clavuligerus P6CDH appears to be involved in cephamycin biosynthesis, catalyzing the second stage of the two-step conversion of lysine to alpha-aminoadipic acid. The ALDH7A1 enzyme and others in this group have been observed as tetramers, yet the bacterial P6CDH enzyme has been reported as a monomer. 474 -143449 cd07131 ALDH_AldH-CAJ73105 Uncharacterized Candidatus kuenenia aldehyde dehydrogenase AldH (CAJ73105)-like. Uncharacterized aldehyde dehydrogenase of Candidatus kuenenia AldH (locus CAJ73105) and similar sequences with similarity to alpha-aminoadipic semialdehyde dehydrogenase (AASADH, human ALDH7A1, EC=1.2.1.31), Arabidopsis ALDH7B4, and Streptomyces clavuligerus delta-1-piperideine-6-carboxylate dehydrogenase (P6CDH) are included in this CD. 478 -143450 cd07132 ALDH_F3AB Aldehyde dehydrogenase family 3 members A1, A2, and B1 and related proteins. NAD(P)+-dependent, aldehyde dehydrogenase, family 3 members A1 and B1 (ALDH3A1, ALDH3B1, EC=1.2.1.5) and fatty aldehyde dehydrogenase, family 3 member A2 (ALDH3A2, EC=1.2.1.3), and similar sequences are included in this CD. Human ALDH3A1 is a homodimer with a critical role in cellular defense against oxidative stress; it catalyzes the oxidation of various cellular membrane lipid-derived aldehydes. Corneal crystalline ALDH3A1 protects the cornea and underlying lens against UV-induced oxidative stress. Human ALDH3A2, a microsomal homodimer, catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Human ALDH3B1 is highly expressed in the kidney and liver and catalyzes the oxidation of various medium- and long-chain saturated and unsaturated aliphatic aldehydes. 443 -143451 cd07133 ALDH_CALDH_CalB Coniferyl aldehyde dehydrogenase-like. Coniferyl aldehyde dehydrogenase (CALDH, EC=1.2.1.68) of Pseudomonas sp. strain HR199 (CalB) which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid, and similar sequences, are present in this CD. 434 -143452 cd07134 ALDH_AlkH-like Pseudomonas putida Aldehyde dehydrogenase AlkH-like. Aldehyde dehydrogenase AlkH (locus name P12693, EC=1.2.1.3) of the alkBFGHJKL operon that allows Pseudomonas putida to metabolize alkanes and the aldehyde dehydrogenase AldX of Bacillus subtilis (locus P46329, EC=1.2.1.3), and similar sequences, are present in this CD. 433 -143453 cd07135 ALDH_F14-YMR110C Saccharomyces cerevisiae aldehyde dehydrogenase family 14 and related proteins. Aldehyde dehydrogenase family 14 (ALDH14), isolated mainly from the mitochondrial outer membrane of Saccharomyces cerevisiae (YMR110C) and most closely related to the plant and animal ALDHs and fatty ALDHs family 3 members, and similar fungal sequences, are present in this CD. 436 -143454 cd07136 ALDH_YwdH-P39616 Bacillus subtilis aldehyde dehydrogenase ywdH-like. Uncharacterized Bacillus subtilis ywdH aldehyde dehydrogenase (locus P39616) most closely related to the ALDHs and fatty ALDHs of families 3 and 14, and similar sequences, are included in this CD. 449 -143455 cd07137 ALDH_F3FHI Plant aldehyde dehydrogenase family 3 members F1, H1, and I1 and related proteins. Aldehyde dehydrogenase family members 3F1, 3H1, and 3I1 (ALDH3F1, ALDH3H1, and ALDH3I1), and similar plant sequences, are in this CD. In Arabidopsis thaliana, stress-regulated expression of ALDH3I1 was observed in leaves and osmotic stress expression of ALDH3H1 was observed in root tissue, whereas, ALDH3F1 expression was not stress responsive. Functional analysis of ALDH3I1 suggest it may be involved in a detoxification pathway in plants that limits aldehyde accumulation and oxidative stress. 432 -143456 cd07138 ALDH_CddD_SSP0762 Rhodococcus ruber 6-oxolauric acid dehydrogenase-like. The 6-oxolauric acid dehydrogenase (CddD) from Rhodococcus ruber SC1 which converts 6-oxolauric acid to dodecanedioic acid, and the aldehyde dehydrogenase (locus SSP0762) from Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 and other similar sequences, are included in this CD. 466 -143457 cd07139 ALDH_AldA-Rv0768 Mycobacterium tuberculosis aldehyde dehydrogenase AldA-like. The Mycobacterium tuberculosis NAD+-dependent, aldehyde dehydrogenase PDB structure, 3B4W, and the Mycobacterium tuberculosis H37Rv aldehyde dehydrogenase AldA (locus Rv0768) sequence, as well as the Rhodococcus rhodochrous ALDH involved in haloalkane catabolism, and other similar sequences, are included in this CD. 471 -143458 cd07140 ALDH_F1L_FTFDH 10-formyltetrahydrofolate dehydrogenase, ALDH family 1L. 10-formyltetrahydrofolate dehydrogenase (FTHFDH, EC=1.5.1.6), also known as aldehyde dehydrogenase family 1 member L1 (ALDH1L1) in humans, is a multi-domain homotetramer with an N-terminal formyl transferase domain and a C-terminal ALDH domain. FTHFDH catalyzes an NADP+-dependent dehydrogenase reaction resulting in the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. The ALDH domain is also capable of the oxidation of short chain aldehydes to their corresponding acids. 486 -143459 cd07141 ALDH_F1AB_F2_RALDH1 NAD+-dependent retinal dehydrogenase 1, ALDH families 1A, 1B, and 2-like. NAD+-dependent retinal dehydrogenase 1 (RALDH 1, ALDH1, EC=1.2.1.36) also known as aldehyde dehydrogenase family 1 member A1 (ALDH1A1) in humans, is a homotetrameric, cytosolic enzyme that catalyzes the oxidation of retinaldehyde to retinoic acid. Human ALDH1B1 and ALDH2 are also in this cluster; both are mitochrondrial homotetramers which play important roles in acetaldehyde oxidation; ALDH1B1 in response to UV light exposure and ALDH2 during ethanol metabolism. 481 -143460 cd07142 ALDH_F2BC Arabidosis aldehyde dehydrogenase family 2 B4, B7, C4-like. Included in this CD is the Arabidosis aldehyde dehydrogenase family 2 members B4 and B7 (EC=1.2.1.3), which are mitochondrial homotetramers that oxidize acetaldehyde and glycolaldehyde, but not L-lactaldehyde. Also in this group, is the Arabidosis cytosolic, homotetramer ALDH2C4 (EC=1.2.1.3), an enzyme involved in the oxidation of sinapalehyde and coniferaldehyde. 476 -143461 cd07143 ALDH_AldA_AN0554 Aspergillus nidulans aldehyde dehydrogenase, AldA (AN0554)-like. NAD(P)+-dependent aldehyde dehydrogenase (AldA) of Aspergillus nidulans (locus AN0554), and other similar sequences, are present in this CD. 481 -143462 cd07144 ALDH_ALD2-YMR170C Saccharomyces cerevisiae aldehyde dehydrogenase 2 (YMR170c)-like. NAD(P)+-dependent Saccharomyces cerevisiae aldehyde dehydrogenase 2 (YMR170c, ALD5, EC=1.2.1.5) and other similar sequences, are present in this CD. 484 -143463 cd07145 ALDH_LactADH_F420-Bios Methanocaldococcus jannaschii NAD+-dependent lactaldehyde dehydrogenase-like. NAD+-dependent, lactaldehyde dehydrogenase (EC=1.2.1.22) involved the biosynthesis of coenzyme F(420) in Methanocaldococcus jannaschii through the oxidation of lactaldehyde to lactate and generation of NAPH, and similar sequences are included in this CD. 456 -143464 cd07146 ALDH_PhpJ Streptomyces putative phosphonoformaldehyde dehydrogenase PhpJ-like. Putative phosphonoformaldehyde dehydrogenase (PhpJ), an aldehyde dehydrogenase homolog reportedly involved in the biosynthesis of phosphinothricin tripeptides in Streptomyces viridochromogenes DSM 40736, and similar sequences are included in this CD. 451 -143465 cd07147 ALDH_F21_RNP123 Aldehyde dehydrogenase family 21A1-like. Aldehyde dehydrogenase ALDH21A1 (gene name RNP123) was first described in the moss Tortula ruralis and is believed to play an important role in the detoxification of aldehydes generated in response to desiccation- and salinity-stress, and ALDH21A1 expression represents a unique stress tolerance mechanism. So far, of plants, only the bryophyte sequence has been observed, but similar protein sequences from bacteria and archaea are also present in this CD. 452 -143466 cd07148 ALDH_RL0313 Uncharacterized ALDH ( RL0313) with similarity to Tortula ruralis aldehyde dehydrogenase ALDH21A1. Uncharacterized aldehyde dehydrogenase (locus RL0313) with sequence similarity to the moss Tortula ruralis aldehyde dehydrogenase ALDH21A1 (RNP123) believed to play an important role in the detoxification of aldehydes generated in response to desiccation- and salinity-stress, and similar sequences are included in this CD. 455 -143467 cd07149 ALDH_y4uC Uncharacterized ALDH (y4uC) with similarity to Tortula ruralis aldehyde dehydrogenase ALDH21A1. Uncharacterized aldehyde dehydrogenase (ORF name y4uC) with sequence similarity to the moss Tortula ruralis aldehyde dehydrogenase ALDH21A1 (RNP123) believed to play an important role in the detoxification of aldehydes generated in response to desiccation- and salinity-stress, and similar sequences are included in this CD. 453 -143468 cd07150 ALDH_VaniDH_like Pseudomonas putida vanillin dehydrogenase-like. Vanillin dehydrogenase (Vdh, VaniDH) involved in the metabolism of ferulic acid and other related sequences are included in this CD. The E. coli vanillin dehydrogenase (LigV) preferred NAD+ to NADP+ and exhibited a broad substrate preference, including vanillin, benzaldehyde, protocatechualdehyde, m-anisaldehyde, and p-hydroxybenzaldehyde. 451 -143469 cd07151 ALDH_HBenzADH NADP+-dependent p-hydroxybenzaldehyde dehydrogenase-like. NADP+-dependent, p-hydroxybenzaldehyde dehydrogenase (PchA, HBenzADH) which catalyzes oxidation of p-hydroxybenzaldehyde to p-hydroxybenzoic acid and other related sequences are included in this CD. 465 -143470 cd07152 ALDH_BenzADH NAD-dependent benzaldehyde dehydrogenase II-like. NAD-dependent, benzaldehyde dehydrogenase II (XylC, BenzADH, EC=1.2.1.28) is involved in the oxidation of benzyl alcohol to benzoate. In Acinetobacter calcoaceticus, this process is carried out by the chromosomally encoded, benzyl alcohol dehydrogenase (xylB) and benzaldehyde dehydrogenase II (xylC) enzymes; whereas in Pseudomonas putida they are encoded by TOL plasmids. 443 -133478 cd07153 Fur_like Ferric uptake regulator(Fur) and related metalloregulatory proteins; typically iron-dependent, DNA-binding repressors and activators. Ferric uptake regulator (Fur) and related metalloregulatory proteins are iron-dependent, DNA-binding repressors and activators mainly involved in iron metabolism. A general model for Fur repression under iron-rich conditions is that activated Fur (a dimer having one Fe2+ coordinated per monomer) binds to specific DNA sequences (Fur boxes) in the promoter region of iron-responsive genes, hindering access of RNA polymerase, and repressing transcription. Positive regulation by Fur can be direct or indirect, as in the Fur repression of an anti-sense regulatory small RNA. Some members sense metal ions other than Fe2+. For example, the zinc uptake regulator (Zur) responds to Zn2+, the manganese uptake regulator (Mur) responds to Mn2+, and the nickel uptake regulator (Nur) responds to Ni2+. Other members sense signals other than metal ions. For example, PerR, a metal-dependent sensor of hydrogen peroxide. PerR regulates DNA-binding activity through metal-based protein oxidation, and co-ordinates Mn2+ or Fe2+ at its regulatory site. Fur family proteins contain an N-terminal winged-helix DNA-binding domain followed by a dimerization domain; this CD spans both those domains. 116 -143529 cd07154 NR_DBD_PNR_like The DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) nuclear receptor-like family. The DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) nuclear receptor-like family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. PNR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. This family includes nuclear receptor Tailless (TLX), photoreceptor cell-specific nuclear receptor (PNR) and related receptors. TLX is an orphan receptor that plays a key role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PNR is expressed only in the outer layer of retinal photoreceptor cells. It may be involved in the signaling pathway regulating photoreceptor differentiation and/or maintenance. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PNR-like receptors have a central well-conserved DNA-binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 73 -143530 cd07155 NR_DBD_ER_like DNA-binding domain of estrogen receptor (ER) and estrogen related receptors (ERR) is composed of two C4-type zinc fingers. DNA-binding domains of estrogen receptor (ER) and estrogen related receptors (ERR) are composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. ER and ERR interact with the palindromic inverted repeat, 5'GGTCAnnnTGACC-3', upstream of the target gene and modulate the rate of transcriptional initiation. ERR and ER are closely related and share sequence similarity, target genes, co-regulators and promoters. While ER is activated by endogenous estrogen, ERR lacks the ability to bind to estrogen. Estrogen receptor mediates the biological effects of hormone estrogen by the binding of the receptor dimer to estrogen response element of target genes. However, ERRs seem to interfere with the classic ER-mediated estrogen responsive signaling by targeting the same set of genes. ERRs and ERs exhibit the common modular structure with other nuclear receptors. They have a central highly conserved DNA binding domain (DBD), a non-conserved N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 75 -143531 cd07156 NR_DBD_VDR_like The DNA-binding domain of vitamin D receptors (VDR) like nuclear receptor family is composed of two C4-type zinc fingers. The DNA-binding domain of vitamin D receptors (VDR) like nuclear receptor family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. This domain interacts with specific DNA site upstream of the target gene and modulates the rate of transcriptional initiation. This family includes three types of nuclear receptors: vitamin D receptors (VDR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR). VDR regulates calcium metabolism, cellular proliferation and differentiation. PXR and CAR function as sensors of toxic byproducts of cell metabolism and of exogenous chemicals, to facilitate their elimination. The DNA binding activity is regulated by their corresponding ligands. VDR is activated by Vitamin D; CAR and PXR respond to a diverse array of chemically distinct ligands, including many endogenous compounds and clinical drugs. Like other nuclear receptors, xenobiotic receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 72 -143532 cd07157 2DBD_NR_DBD1 The first DNA-binding domain (DBD) of the 2DBD nuclear receptors is composed of two C4-type zinc fingers. The first DNA-binding domain (DBD) of the 2DBD nuclear receptors(NRs) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. NRs interact with specific DNA sites upstream of the target gene and modulate the rate of transcriptional initiation. Theses proteins contain two DBDs in tandem, probably resulted from an ancient recombination event. The 2DBD-NRs are found only in flatworm species, mollusks and arthropods. Their biological function is unknown. 86 -143533 cd07158 NR_DBD_Ppar_like The DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) like nuclear receptor family. The DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) like nuclear receptor family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. These domains interact with specific DNA sites upstream of the target gene and modulate the rate of transcriptional initiation. This family includes three known types of nuclear receptors: peroxisome proliferator-activated receptors (PPAR), REV-ERB receptors and Drosophila ecdysone-induced protein 78 (E78). Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 73 -143534 cd07160 NR_DBD_LXR DNA-binding domain of Liver X receptors (LXRs) family is composed of two C4-type zinc fingers. DNA-binding domain of Liver X receptors (LXRs) family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. LXR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. LXR operates as cholesterol sensor which protects cells from cholesterol overload by stimulating reverse cholesterol transport from peripheral tissues to the liver and its excretion in the bile. Oxidized cholesterol derivatives or oxysterols were identified as specific ligands for LXRs. LXR functions as a heterodimer with the retinoid X receptor (RXR) which may be activated by either LXR agonist or 9-cis retinoic acid, a specific RXR ligand. The LXR/RXR complex binds to a liver X receptor response element (LXRE) in the promoter region of target genes. The ideal LXRE sequence is a direct repeat-4 (DR-4) DNA fragment consisting of two AGGTCA hexameric half-sites separated by a 4-nucleotide spacer. LXR has typical NR modular structure with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and the ligand binding domain (LBD) at the C-terminal. 101 -143535 cd07161 NR_DBD_EcR DNA-binding domain of Ecdysone receptor (ECR) family is composed of two C4-type zinc fingers. DNA-binding domain of Ecdysone receptor (EcR) family is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. EcR interacts with highly degenerate pseudo-palindromic response elements, resembling inverted repeats of 5'-AGGTCA-3' separated by 1 bp, upstream of the target gene and modulates the rate of transcriptional initiation. EcR is present only in invertebrates and regulates the expression of a large number of genes during development and reproduction. EcR functions as a heterodimer by partnering with ultraspiracle protein (USP), the ortholog of the vertebrate retinoid X receptor (RXR). The natural ligands of EcR are ecdysteroids, the endogenous steroidal hormones found in invertebrates. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, EcRs have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 91 -143536 cd07162 NR_DBD_PXR DNA-binding domain of pregnane X receptor (PXRs) is composed of two C4-type zinc fingers. DNA-binding domain (DBD)of pregnane X receptor (PXR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PXR DBD interacts with the PXR response element, a perfect repeat of two AGTTCA motifs with a 4 bp spacer upstream of the target gene, and modulates the rate of transcriptional initiation. The pregnane X receptor (PXR) is a ligand-regulated transcription factor that responds to a diverse array of chemically distinct ligands, including many endogenous compounds and clinical drugs. PXR functions as a heterodimer with retinoic X receptor-alpha (RXRa) and binds to a variety of promoter regions of a diverse set of target genes involved in the metabolism, transport, and ultimately, elimination of these molecules from the body. Like other nuclear receptors, PXR has a central well conserved DNA-binding domain, a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain. 87 -143537 cd07163 NR_DBD_TLX DNA-binding domain of Tailless (TLX) is composed of two C4-type zinc fingers. DNA-binding domain of Tailless (TLX) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. TLX interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. TLX is an orphan receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). It plays a key role in neural development by promoting cell cycle progression and preventing apoptosis in the developing brain. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TLX has a central well conserved DNA-binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 92 -143538 cd07164 NR_DBD_PNR_like_1 DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) like proteins is composed of two C4-type zinc fingers. DNA-binding domain of the photoreceptor cell-specific nuclear receptor (PNR) like proteins is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PNR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. PNR is a member of nuclear receptor superfamily of the ligand-activated transcription factors. PNR is expressed only in the outer layer of retinal photoreceptor cells. It may be involved in the signaling pathway regulating photoreceptor differentiation and/or maintenance. It most likely binds to DNA as a homodimer. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PNR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 78 -143539 cd07165 NR_DBD_DmE78_like DNA-binding domain of Drosophila ecdysone-induced protein 78 (E78) like is composed of two C4-type zinc fingers. DNA-binding domain of proteins similar to Drosophila ecdysone-induced protein 78 (E78) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. E78 interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Drosophila ecdysone-induced protein 78 (E78) is a transcription factor belonging to the nuclear receptor superfamily. E78 is a product of the ecdysone-inducible gene found in an early late puff locus at position 78C during the onset of Drosophila metamorphosis. An E78 orthologue from the Platyhelminth Schistosoma mansoni (SmE78) has also been identified. It is the first E78 orthologue known outside of the molting animals--the Ecdysozoa. The SmE78 may be involved in transduction of an ecdysone signal in S. mansoni, consistent with its function in Drosophila. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, E78-like receptors have a central well conserved DNA-binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 81 -143540 cd07166 NR_DBD_REV_ERB DNA-binding domain of REV-ERB receptor-like is composed of two C4-type zinc fingers. DNA-binding domain of REV-ERB receptor- like is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. This domain interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. REV-ERB receptors are transcriptional regulators belonging to the nuclear receptor superfamily. They regulate a number of physiological functions including the circadian rhythm, lipid metabolism, and cellular differentiation. REV-ERB receptors bind as a monomer to a (A/G)GGTCA half-site with a 5' AT-rich extension or as a homodimer to a direct repeat 2 element (AGGTCA sequence with a 2-bp spacer), indicating functional diversity. When bound to the DNA, they recruit corepressors (NcoR/histone deacetylase 3) to the promoter, resulting in repression of the target genes. The porphyrin heme has been demonstrated to function as a ligand for REV-ERB receptor. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, REV-ERB receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 89 -143541 cd07167 NR_DBD_Lrh-1_like The DNA-binding domain of Lrh-1 like nuclear receptor family like is composed of two C4-type zinc fingers. The DNA-binding domain of Lrh-1 like nuclear receptor family like is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. This domain interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. This nuclear receptor family includes at least three subgroups of receptors that function in embryo development and differentiation, and other processes. FTZ-F1 interacts with the cis-acting DNA motif of ftz gene, which is required at several stages of development. Particularly, FTZ-F1 regulated genes are strongly linked to steroid biosynthesis and sex-determination; LRH-1 is a regulator of bile-acid homeostasis, steroidogenesis, reverse cholesterol transport and the initial stages of embryonic development; SF-1 is an essential regulator of endocrine development and function and is considered a master regulator of reproduction; SF-1 functions cooperatively with other transcription factors to modulate gene expression. Phospholipids have been identified as potential ligand for LRH-1 and steroidogenic factor-1 (SF-1). However, the ligand for FTZ-F1 has not yet been identified. Most nuclear receptors function as homodimer or heterodimers. However, LRH-1 and SF-1 bind to DNA as monomers. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, receptors in this family have a central well conserved DNA-binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 93 -143542 cd07168 NR_DBD_DHR4_like DNA-binding domain of ecdysone-induced DHR4 orphan nuclear receptor is composed of two C4-type zinc fingers. DNA-binding domain of ecdysone-induced DHR4 orphan nuclear receptor is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. This domain interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Ecdysone-induced orphan receptor DHR4 is a member of the nuclear receptor family. DHR4 is expressed during the early Drosophila larval development and is induced by ecdysone. DHR4 coordinates growth and maturation in Drosophila by mediating endocrine response to the attainment of proper body size during larval development. Mutations in DHR4 result in shorter larval development which translates into smaller and lighter flies. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, DHR4 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 90 -143543 cd07169 NR_DBD_GCNF_like DNA-binding domain of Germ cell nuclear factor (GCNF) F1 is composed of two C4-type zinc fingers. DNA-binding domain of Germ cell nuclear factor (GCNF) F1 is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. This domain interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. GCNF is a transcription factor expressed in post-meiotic stages of developing male germ cells. In vitro, GCNF has the ability to bind to direct repeat elements of 5'-AGGTCA.AGGTCA-3', as well as to an extended half-site sequence 5'-TCA.AGGTCA-3'. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GCNF has a central well conserved DNA-binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 90 -143544 cd07170 NR_DBD_ERR DNA-binding domain of estrogen related receptors (ERR) is composed of two C4-type zinc fingers. DNA-binding domain of estrogen related receptors (ERRs) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. ERR interacts with the palindromic inverted repeat, 5'GGTCAnnnTGACC-3', upstream of the target gene and modulates the rate of transcriptional initiation. The estrogen receptor-related receptors (ERRs) are transcriptional regulators, which are closely related to the estrogen receptor (ER) family. Although ERRs lack the ability to bind to estrogen and are so-called orphan receptors, they share target genes, co-regulators and promoters with the estrogen receptor (ER) family. By targeting the same set of genes, ERRs seem to interfere with the classic ER-mediated estrogen response in various ways. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ERR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 97 -143545 cd07171 NR_DBD_ER DNA-binding domain of estrogen receptors (ER) is composed of two C4-type zinc fingers. DNA-binding domain of estrogen receptors (ER) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which coordinates a single zinc atom. ER interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Estrogen receptor is a transcription regulator that mediates the biological effects of hormone estrogen. The binding of estrogen to the receptor triggers the dimerization and the binding of the receptor dimer to estrogen response element, which is a palindromic inverted repeat: 5'GGTCAnnnTGACC-3', of target genes. Through ER, estrogen regulates development, reproduction and homeostasis. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ER has a central well-conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 82 -143546 cd07172 NR_DBD_GR_PR DNA-binding domain of glucocorticoid receptor (GR) is composed of two C4-type zinc fingers. DNA-binding domains of glucocorticoid receptor (GR) and progesterone receptor (PR) are composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinate a single zinc atom. The DBD from both receptors interact with the same hormone response element (HRE), which is an imperfect palindrome GGTACAnnnTGTTCT, upstream of target genes and modulates the rate of transcriptional initiation. GR is a transcriptional regulator that mediates the biological effects of glucocorticoids and PR regulates genes controlled by progesterone. GR is expressed in almost every cell in the body and regulates genes controlling a wide variety of processes including the development, metabolism, and immune response of the organism. PR functions in a variety of biological processes including development of the mammary gland, regulating cell cycle progression, protein processing, and metabolism. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GR and PR have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). 78 -143547 cd07173 NR_DBD_AR DNA-binding domain of androgen receptor (AR) is composed of two C4-type zinc fingers. DNA-binding domain of androgen receptor (AR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. To regulate gene expression, AR interacts with a palindrome of the core sequence 5'-TGTTCT-3' with a 3-bp spacer. It also binds to the direct repeat 5'-TGTTCT-3' hexamer in some androgen controlled genes. AR is activated by the androgenic hormones, testosterone or dihydrotestosterone, which are responsible for primary and for secondary male characteristics, respectively. The primary mechanism of action of ARs is by direct regulation of gene transcription. The binding of androgen results in a conformational change in the androgen receptor which causes its transport from the cytosol into the cell nucleus, and dimerization. The receptor dimer binds to a hormone response element of AR regulated genes and modulates their expression. Another mode of action of androgen receptor is independent of their interactions with DNA. The receptor interacts directly with signal transduction proteins in the cytoplasm, causing rapid changes in cell function, such as ion transport. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, AR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 82 -143580 cd07176 terB tellurite resistance protein terB. This family contains uncharacterized bacterial proteins involved in tellurium resistance. The prototype of this CD is the Kp-terB protein from Klebsiella pneumoniae, whose 3D structure was recently determined. The biological function of terB and the mechanism responsible for tellurium resistance are unknown. 111 -143581 cd07177 terB_like tellurium resistance terB-like protein. This family consists of tellurium resistance terB proteins, N-terminal domain of heat shock DnaJ-like proteins, N-terminal domain of Mo-dependent nitrogenase-like proteins, C-terminal domain of ABC transporter ATP-binding proteins, C-terminal domain of serine/threonine protein kinase, and many hypothetical bacterial proteins. The function of this family is unknown. 104 -143582 cd07178 terB_like_YebE tellurium resistance terB-like protein, subgroup 3. This family includes several uncharacterized bacterial proteins including an Escherichia coli protein called YebE. Protein sequence homology analysis shows they are similar to tellurium resistance protein terB, but the function of this family is unknown. 95 -143548 cd07179 2DBD_NR_DBD2 The second DNA-binding domain (DBD) of the 2DBD nuclear receptor is composed of two C4-type zinc fingers. The second DNA-binding domain (DBD) of the 2DBD nuclear receptor (NR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. NRs interact with specific DNA sites upstream of the target gene and modulate the rate of transcriptional initiation. The proteins contain two DBDs in tandem, probably resulting from an ancient recombination event. The 2DBD-NRs are found only in flatworm species, mollusks and arthropods. Their biological function is unknown. 74 -260001 cd07180 RNase_HII_archaea_like Archaeal Ribonuclease HII. This family includes type 2 RNases H from archaea, some of which show broad divalent cation specificity. It is proposed that three of the four acidic residues at the active site are involved in metal binding and the fourth one is involved in the catalytic process in archaea. Most archaeal genomes contain multiple RNase H genes. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. It appears that type I and type II RNases H also have overlapping functions in cells, as over-expression of Escherichia coli RNase HII can complement an RNase HI deletion phenotype in E. coli. RNase H is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, archaeal RNase HII and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication or repair. 204 -260002 cd07181 RNase_HII_eukaryota_like Eukaryotic RNase HII. This family includes eukaryotic type 2 RNase H (RNase HII or H2) which is active during replication and is believed to play a role in the removal of Okazaki fragment primers and single ribonucleotides in DNA-DNA duplexes. Eukaryotic RNase HII (RNASEH2A) is functional when it forms a heterotrimeric complex with two other accessory proteins (RNASEH2B and RNASEH2C). It is speculated that these accessory subunits are required for correct folding of the catalytic subunit of RNase HII. Mutations in the three subunits of human RNase HII cause the severe genetic neurological disorder Aicardi-Goutieres syndrome. Ribonuclease H (RNase H) is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication and repair. The enzyme can be found in bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. 221 -260003 cd07182 RNase_HII_bacteria_HII_like Bacterial Ribonuclease HII-like. This family includes mostly bacterial type 2 RNases H, with some eukaryotic members. Bacterial RNase HII has a role in primer removal based on its involvement in ribonucleotide-specific catalytic activity in the presence of RNA/DNA hybrid substrates. Several bacteria, such as Bacillus subtilis, have two different type II RNases H, RNases HII and HIII; double deletion of these leads to cellular lethality. It appears that type I and type II RNases H also have overlapping functions in cells, as over-expression of Escherichia coli RNase HII can complement an RNase HI deletion phenotype. In Leishmania mitochondria, of the four distinct RNase H genes (H1, HIIA, HIIB, HIIC), HIIC is essential for the survival of the parasite and thus can be a potential target for anti-leishmanial chemotherapy. Ribonuclease H (RNase H) is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication and repair. 177 -199892 cd07184 E_set_Isoamylase_like_N N-terminal Early set domain associated with the catalytic domain of isoamylase-like (also called glycogen 6-glucanohydrolase) proteins. E or "early" set domains are associated with the catalytic domain of isoamylase-like proteins at the N-terminal end. Isoamylase is one of the starch-debranching enzymes that catalyze the hydrolysis of alpha-1,6-glucosidic linkages specific in alpha-glucans such as amylopectin or glycogen. Isoamylase contains a bound calcium ion, but this is not in the same position as the conserved calcium ion that has been reported in other alpha-amylase family enzymes. The N-terminal domain of isoamylase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and the beta subunit of AMP-activated protein kinase. 86 -143586 cd07185 OmpA_C-like Peptidoglycan binding domains similar to the C-terminal domain of outer-membrane protein OmpA. OmpA-like domains (named after the C-terminal domain of Escherichia coli OmpA protein) have been shown to non-covalently associate with peptidoglycan, a network of glycan chains composed of disaccharides, which are crosslinked via short peptide bridges. Well-studied members of this family include the Escherichia coli outer membrane protein OmpA, the Escherichia coli lipoprotein PAL, Neisseria meningitdis RmpM, which interact with the outer membrane, as well as the Escherichia coli motor protein MotB, and the Vibrio flagellar motor proteins PomB and MotY, which interact with the inner membrane. 106 -132872 cd07186 CofD_like LPPG:FO 2-phospho-L-lactate transferase; important in F420 biosynthesis. CofD is a 2-phospho-L-lactate transferase that catalyzes the last step in the biosynthesis of coenzyme F(420)-0 (F(420) without polyglutamate) by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (F0). F420 is a hydride carrier, important for energy metabolism of methanogenic archaea, as well as for the biosynthesis of other natural products, like tetracycline in Streptomyces. F420 and some of its precursors are also utilized as cofactors for enzymes, like DNA photolyase in Mycobacterium tuberculosis. 303 -132873 cd07187 YvcK_like family of mostly uncharacterized proteins similar to B.subtilis YvcK. One member of this protein family, YvcK from Bacillus subtilis, has been proposed to play a role in carbon metabolism, since its function is essential for growth on intermediates of the Krebs cycle and the pentose phosphate pathway. In general, this family of mostly uncharacterized proteins is related to the CofD-like protein family. CofD has been characterized as a 2-phospho-L-lactate transferase involved in F420 biosynthesis. This family appears to have the same conserved phosphate binding site as the other family in this hierarchy, but a different substrate binding site. 308 -143587 cd07197 nitrilase Nitrilase superfamily, including nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes. This superfamily (also known as the C-N hydrolase superfamily) contains hydrolases that break carbon-nitrogen bonds; it includes nitrilases, cyanide dihydratases, aliphatic amidases, N-terminal amidases, beta-ureidopropionases, biotinidases, pantotheinase, N-carbamyl-D-amino acid amidohydrolases, the glutaminase domain of glutamine-dependent NAD+ synthetase, apolipoprotein N-acyltransferases, and N-carbamoylputrescine amidohydrolases, among others. These enzymes depend on a Glu-Lys-Cys catalytic triad, and work through a thiol acylenzyme intermediate. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. These oligomers include dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers, as well as variable length helical arrangements and homo-oligomeric spirals. These proteins have roles in vitamin and co-enzyme metabolism, in detoxifying small molecules, in the synthesis of signaling molecules, and in the post-translational modification of proteins. They are used industrially, as biocatalysts in the fine chemical and pharmaceutical industry, in cyanide remediation, and in the treatment of toxic effluent. This superfamily has been classified previously in the literature, based on global and structure-based sequence analysis, into thirteen different enzyme classes (referred to as 1-13). This hierarchy includes those thirteen classes and a few additional subfamilies. A putative distant relative, the plasmid-borne TraB family, has not been included in the hierarchy. 253 -132837 cd07198 Patatin Patatin-like phospholipase. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes PNPLA (1-9), TGL (3-5), ExoU-like, and SDP1-like subfamilies. There are some additional hypothetical proteins included in this family. 172 -132838 cd07199 Pat17_PNPLA8_PNPLA9_like Patatin-like phospholipase; includes PNPLA8, PNPLA9, and Pat17. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes subfamily of PNPLA8 (iPLA2-gamma) and PNPLA9 (iPLA2-beta) like phospholipases from human as well as the Pat17 isozyme from Solanum cardiophyllum. 258 -132839 cd07200 cPLA2_Grp-IVA Group IVA cytosolic phospholipase A2; catalytic domain; Ca-dependent. Group IVA cPLA2, an 85 kDa protein, consists of two domains: the regulatory C2 domain and the alpha/beta hydrolase PLA2 domain. Group IVA cPLA2 is also referred to as cPLA2-alpha. The catalytic domain of cytosolic phospholipase A2 (cPLA2; EC 3.1.1.4) hydrolyzes the sn-2-acyl ester bond of phospholipids to release arachidonic acid. At the active site, cPLA2 contains a serine nucleophile through which the catalytic mechanism is initiated. The active site is partially covered by a solvent-accessible flexible lid. cPLA2 displays interfacial activation as it exists in both "closed lid" and "open lid" forms. Movement of the cPLA2 lid possibly exposes a greater hydrophobic surface and the active site. cPLA2 belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Calcium is required for cPLA2 to bind with membranes or phospholipids. A calcium-dependent phospholipid binding domain resides in the N-terminal region of cPLA2; it is homologous to the C2 domain superfamily which is not included in this hierarchy. Includes PLA2G4A from chicken, human, and frog. 505 -132840 cd07201 cPLA2_Grp-IVB-IVD-IVE-IVF Group IVB, IVD, IVE, and IVF cytosolic phospholipase A2; catalytic domain; Ca-dependent. Group IVB, IVD, IVE, and IVF cPLA2 consists of two domains: the regulatory C2 domain and alpha/beta hydrolase PLA2 domain. Group IVB, IVD, IVE, and IVF cPLA2 are also referred to as cPLA2-beta, -delta, -epsilon, and -zeta respectively. cPLA2-beta is approximately 30% identical to cPLA2-alpha and it shows low enzymatic activity compared to cPLA2alpha. cPLA2-beta hydrolyzes palmitic acid from 1-[14C]palmitoyl-2-arachidonoyl-PC and arachidonic acid from 1-palmitoyl-2[14C]arachidonoyl-PC, but not from 1-O-alkyl-2[3H]arachidonoyl-PC. cPLA2-delta, -epsilon, and -zeta are approximately 45-50% identical to cPLA2-beta and 31-37% identical to cPLA2-alpha. It's possible that cPLA2-beta, -delta, -epsilon, and -zeta may have arisen by gene duplication from an ancestral gene. The catalytic domain of cytosolic phospholipase A2 (PLA2; EC 3.1.1.4) hydrolyzes the sn-2-acyl ester bond of phospholipids to release arachidonic acid. At the active site, cPLA2 contains a serine nucleophile through which the catalytic mechanism is initiated. The active site is partially covered by a solvent-accessible flexible lid. cPLA2 displays interfacial activation as it exists in both "closed lid" and "open lid" forms. Movement of the cPLA2 lid possibly exposes a greater hydrophobic surface and the active site. cPLA2 belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Calcium is required for cPLA2 to bind with membranes or phospholipids. The calcium-dependent phospholipid binding domain resides in the N-terminal region of cPLA2; it is homologous to the C2 domain superfamily which is not included in this hierarchy. It includes PLA2G4B, PLA2G4D, PLA2G4E, and PLA2G4F from humans. 541 -132841 cd07202 cPLA2_Grp-IVC Group IVC cytoplasmic phospholipase A2; catalytic domain; Ca-independent. Group IVC cPLA2, a small 61 kDa protein, is a single domain alpha/beta hydrolase. It lacks a C2 domain; therefore, it has no Ca-dependence. Group IVC cPLA2 is also referred to as cPLA2-gamma. The cPLA2-gamma enzyme is predominantly found in cardiac and skeletal muscles, and to a lesser extent in the brain. Human cPLA2-gamma is approximately 30% identical to cPLA2-alpha. The catalytic domain of cytosolic phospholipase A2 (PLA2; EC 3.1.1.4) hydrolyzes the sn-2-acyl ester bond of phospholipids to release arachidonic acid. At the active site, cPLA2 contains a serine nucleophile through which the catalytic mechanism is initiated. The active site is partially covered by a solvent-accessible flexible lid. cPLA2 displays interfacial activation as it exists in both "closed lid" and "open lid" forms. Movement of the cPLA2 lid possibly exposes a greater hydrophobic surface and the active site. cPLA2 belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Includes PLA2G4C protein from human and Pla2g4c protein from mouse. 430 -132842 cd07203 cPLA2_Fungal_PLB Fungal Phospholipase B-like; cPLA2 GrpIVA homologs; catalytic domain. Fungal phospholipase B are Group IV cPLA2 homologs. Aspergillus PLA2 is Ca-dependent, yet it does not contain a C2 domain. PLB deacylates both sn-1 and sn-2 chains of phospholipids and are abundantly expressed in fungi. It shows lysophospholipase (lysoPL) and transacylase activities. The active site residues from cPLA2 are also conserved in PLB. Like cPLA2, PLB also has a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). It includes PLB1 from Schizosaccharomyces pombe, PLB2 from Candida glabrata, and PLB3 from Saccharomyces cerevisiae. PLB1, PLB2, and PLB3 show PLB and lysoPL activities; PLB3 is specific for phosphoinositides. 552 -132843 cd07204 Pat_PNPLA_like Patatin-like phospholipase domain containing protein family. Members of this family share a patain domain, initially discovered in potato tubers. PNPLA protein members show non-specific hydrolase activity with a variety of substrates such as triacylglycerol, phospholipids, and retinylesters. It contains the lipase consensus sequence (Gly-X-Ser-X-Gly). Nomenclature of PNPLA family could be misleading as some of the mammalian members of this family show hydrolase, but no phospholipase activity. 243 -132844 cd07205 Pat_PNPLA6_PNPLA7_NTE1_like Patatin-like phospholipase domain containing protein 6, protein 7, and fungal NTE1. Patatin-like phospholipase domain containing protein 6 (PNPLA6) and protein 7 (PNPLA7) are included in this family. PNPLA6 is commonly known as Neuropathy Target Esterase (NTE). NTE has at least two functional domains: the N-terminal domain putatively regulatory domain and the C-terminal catalytic domain which shows esterase activity. NTE shows phospholipase activity for lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Exposure of NTE to organophosphates leads to organophosphate-induced delayed neurotoxicity (OPIDN). OPIDN is a progressive neurological condition that is characterized by weakness, paralysis, pain, and paresthesia. PNPLA7 is an insulin-regulated phospholipase that is homologus to Neuropathy Target Esterase (NTE or PNPLA6) and is also known as NTE-related esterase (NRE). Human NRE is predominantly expressed in prostate, white adipose, and pancreatic tissue. NRE hydrolyzes sn-1 esters in lysophosphatidylcholine and lysophosphatidic acid, but shows no lipase activity with substrates like triacylglycerols (TG), cholesteryl esters, retinyl esters (RE), phosphatidylcholine (PC), or monoacylglycerol (MG). This family includes subfamily of PNPLA6 (NTE) and PNPLA7 (NRE)-like phospholipases. 175 -132845 cd07206 Pat_TGL3-4-5_SDP1 Triacylglycerol lipase 3, 4, and 5 and Sugar-Dependent 1 lipase. Triacylglycerol lipases are involved in triacylglycerol mobilization and degradation; they are found in lipid particles. TGL4 is 30% homologus to TGL3, whereas TGL5 is 26% homologus to TGL3. Sugar-Dependent 1 (SDP1) lipase has a patatin-like acyl-hydrolase domain that initiates the breakdown of storage oil in germinating Arabidopsis seeds. This family includes subfamilies of proteins: TGL3, TGL4, TGL5, and SDP1. 298 -132846 cd07207 Pat_ExoU_VipD_like ExoU and VipD-like proteins; homologus to patatin, cPLA2, and iPLA2. ExoU, a 74-kDa enzyme, is a potent virulence factor of Pseudomonas aeruginosa. One of the pathogenic mechanisms of P. aeruginosa is to induce cytotoxicity by the injection of effector proteins (e.g. ExoU) using the type III secretion (T3S) system. ExoU is homologus to patatin and also has the conserved catalytic residues of mammalian calcium-independent (iPLA2) and cytosolic (cPLA2) PLA2. In vitro, ExoU cytotoxity is blocked by the inhibitor of cytosolic and Ca2-independent phospholipase A2 (cPLA2 and iPLA2) enzymes, suggesting that phospholipase A2 inhibitors may represent a novel mode of treatment for acute P. aeruginosa infections. ExoU requires eukaryotic superoxide dismutase as a cofactor and cleaves phosphatidylcholine and phosphatidylethanolamine in vitro. VipD, a 69-kDa cytosolic protein, belongs to the members of Legionella pneumophila family and is homologus to ExoU from Pseudomonas. Even though VipD shows high sequence similarity with several functional regions of ExoU (e.g. oxyanion hole, active site serine, active site aspartate), it has been shown to have no phospholipase activity. This family includes ExoU from Pseudomonas aeruginosa and VipD of Legionella pneumophila. 194 -132847 cd07208 Pat_hypo_Ecoli_yjju_like Hypothetical patatin similar to yjju protein of Escherichia coli. Patatin-like phospholipase similar to yjju protein of Escherichia coli. This family predominantly consists of bacterial patatin glycoproteins, and some representatives from eukaryotes and archaea. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of a lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have also been found in vertebrates. 266 -132848 cd07209 Pat_hypo_Ecoli_Z1214_like Hypothetical patatin similar to Z1214 protein of Escherichia coli. Patatin-like phospholipase similar to Z1214 protein of Escherichia coli. This family predominantly consists of bacterial patatin glycoproteins and some representatives from eukaryotes and archaea. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of a lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have also been found in vertebrates. 215 -132849 cd07210 Pat_hypo_W_succinogenes_WS1459_like Hypothetical patatin similar to WS1459 of Wolinella succinogenes. Patatin-like phospholipase. This family predominantly consists of bacterial patatin glycoproteins. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of a lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have also been found in vertebrates. 221 -132850 cd07211 Pat_PNPLA8 Patatin-like phospholipase domain containing protein 8. PNPLA8 is a Ca-independent myocardial phospholipase which maintains mitochondrial integrity. PNPLA8 is also known as iPLA2-gamma. In humans, it is predominantly expressed in heart tissue. iPLA2-gamma can catalyze both phospholipase A1 and A2 reactions (PLA1 and PLA2 respectively). This family includes PNPLA8 (iPLA2-gamma) from Homo sapiens and iPLA2-2 from Mus musculus. 308 -132851 cd07212 Pat_PNPLA9 Patatin-like phospholipase domain containing protein 9. PNPLA9 is a Ca-independent phospholipase that catalyzes the hydrolysis of glycerophospholipids at the sn-2 position. PNPLA9 is also known as PLA2G6 (phospholipase A2 group VI) or iPLA2beta. PLA2G6 is stimulated by ATP and inhibited by bromoenol lactone (BEL). In humans, PNPLA9 in expressed ubiquitously and is involved in signal transduction, cell proliferation, and apoptotic cell death. Mutations in human PLA2G6 leads to infantile neuroaxonal dystrophy (INAD) and idiopathic neurodegeneration with brain iron accumulation (NBIA). This family includes PLA2G6 from Homo sapiens and Rattus norvegicus. 312 -132852 cd07213 Pat17_PNPLA8_PNPLA9_like1 Patatin-like phospholipase. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes subfamily of PNPLA8 (iPLA2-gamma) and PNPLA9 (iPLA2-beta) like phospholipases from human as well as the Pat17 isozyme from Solanum cardiophyllum. 288 -132853 cd07214 Pat17_isozyme_like Patatin-like phospholipase of plants. Pat17 is an isozyme of patatin cloned from Solanum cardiophyllum. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue, and Nu = nucleophile). Patatin-like phospholipase are included in this group. Members of this family have also been found in vertebrates. 349 -132854 cd07215 Pat17_PNPLA8_PNPLA9_like2 Patatin-like phospholipase of bacteria. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes subfamily of PNPLA8 (iPLA2-gamma) and PNPLA9 (iPLA2-beta) like phospholipases from human as well as the Pat17 isozyme from Solanum cardiophyllum. 329 -132855 cd07216 Pat17_PNPLA8_PNPLA9_like3 Patatin-like phospholipase. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes subfamily of PNPLA8 (iPLA2-gamma) and PNPLA9 (iPLA2-beta) like phospholipases from human as well as the Pat17 isozyme from Solanum cardiophyllum. 309 -132856 cd07217 Pat17_PNPLA8_PNPLA9_like4 Patatin-like phospholipase. Patatin is a storage protein of the potato tuber that shows Phospholipase A2 activity (PLA2; EC 3.1.1.4). Patatin catalyzes the nonspecific hydrolysis of phospholipids, glycolipids, sulfolipids, and mono- and diacylglycerols, thereby showing lipid acyl hydrolase activity. The active site includes an oxyanion hole with a conserved GGxR motif; it is found in almost all the members of this family. The catalytic dyad is formed by a serine and an aspartate. Patatin belongs to the alpha-beta hydrolase family which is identified by a characteristic nucleophile elbow with a consensus sequence of Sm-X-Nu-Sm (Sm = small residue, X = any residue and Nu = nucleophile). Members of this family have been found also in vertebrates. This family includes subfamily of PNPLA8 (iPLA2-gamma) and PNPLA9 (iPLA2-beta) like phospholipases from human as well as the Pat17 isozyme from Solanum cardiophyllum. 344 -132857 cd07218 Pat_iPLA2 Calcium-independent phospholipase A2; Classified as Group IVA-1 PLA2. Calcium-independent phospholipase A2; otherwise known as Group IVA-1 PLA2. It contains the lipase consensus sequence (Gly-X-Ser-X-Gly);mutagenesis experiments confirm the role of this serine as a nucleophile. Some members of this group show triacylglycerol lipase activity (EC 3:1:1:3). Members include iPLA-1, iPLA-2, and iPLA-3 from Aedes aegypti and show acylglycerol transacylase/lipase activity. Also includes putative iPLA2-eta from Pediculus humanus corporis which shows patatin-like phospholipase activity. 245 -132858 cd07219 Pat_PNPLA1 Patatin-like phospholipase domain containing protein 1. Members of this family share a patatin domain, initially discovered in potato tubers. Some members of PNPLA1 subfamily do not have the lipase consensus sequence Gly-X-Ser-X-Gly which is essential for hydrolase activity. This family includes PNPLA1 from Homo sapiens and Gallus gallus. Currently, there is no literature available on the physiological role, structure, or enzymatic activity of PNPLA1. It is expressed in various human tissues in low mRNA levels. 382 -132859 cd07220 Pat_PNPLA2 Patatin-like phospholipase domain containing protein 2. PNPLA2 plays a key role in hydrolysis of stored triacylglecerols and is also known as adipose triglyceride lipase (ATGL). Members of this family share a patain domain, initially discovered in potato tubers. ATGL is expressed in white and brown adipose tissue in high mRNA levels. Mutations in PNPLA2 encoding adipose triglyceride lipase (ATGL) leads to neutral lipid storage disease (NLSD) which is characterized by the accumulation of triglycerides in multiple tissues. ATGL mutations are also commonly associated with severe forms of skeletal- and cardio-myopathy. This family includes patatin-like proteins: TTS-2.2 (transport-secretion protein 2.2), PNPLA2 (Patatin-like phospholipase domain-containing protein 2), and iPLA2-zeta (Calcium-independent phospholipase A2) from Homo sapiens. 249 -132860 cd07221 Pat_PNPLA3 Patatin-like phospholipase domain containing protein 3. PNPLA3 is a triacylglycerol lipase that mediates triacylglycerol hydrolysis in adipocytes and is an indicator of the nutritional state. PNPLA3 is also known as adiponutrin (ADPN) or iPLA2-epsilon. Human adiponutrins are bound to the cell membrane of adipocytes and show transacylase, TG hydrolase, and PLA2 activity. This family includes patatin-like proteins: ADPN (adiponutrin) from mammals, PNPLA3 (Patatin-like phospholipase domain-containing protein 3), and iPLA2-epsilon (Calcium-independent phospholipase A2) from Homo sapiens. 252 -132861 cd07222 Pat_PNPLA4 Patatin-like phospholipase domain containing protein 4. PNPLA4, also known as GS2 (gene sequence-2), shows both lipase and transacylation activities. GS2 lipase is expressed in various tissues, predominantly in muscle and adipocytes tissue. It is also expressed in keratinocytes and shows retinyl ester hydrolase, acylglycerol, TG hydrolase, and PLA2 activity. This family includes patatin-like proteins: GS2 from mammals, PNPLA4 (Patatin-like phospholipase domain-containing protein 4), and iPLA2-eta (Calcium-independent phospholipase A2) from Homo sapiens. 246 -132862 cd07223 Pat_PNPLA5-mammals Patatin-like phospholipase domain containing protein 5. PNPLA5, also known as GS2L (GS2-like), plays a role in regulation of adipocyte differentiation. PNPLA5 is expressed in brain tissue in high mRNA levels and low levels in liver tissue. There is no concrete evidence in support of the enzymatic activity of GS2L. This family includes patatin-like proteins: GS2L (GS2-like) and PNPLA5 (Patatin-like phospholipase domain-containing protein 5) reported exclusively in mammals. 405 -132863 cd07224 Pat_like Patatin-like phospholipase. Patatin-like phospholipase. This family consists of various patatin glycoproteins from plants. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of lipid acyl hydrolase, catalysing the cleavage of fatty acids from membrane lipids. Members of this family have been found also in vertebrates. 233 -132864 cd07225 Pat_PNPLA6_PNPLA7 Patatin-like phospholipase domain containing protein 6 and protein 7. Patatin-like phospholipase domain containing protein 6 (PNPLA6) and protein 7 (PNPLA7) are 60% identical to each other. PNPLA6 is commonly known as Neuropathy Target Esterase (NTE). NTE has at least two functional domains: the N-terminal domain putatively regulatory domain and the C-terminal catalytic domain which shows esterase activity. NTE shows phospholipase activity for lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Exposure of NTE to organophosphates leads to organophosphate-induced delayed neurotoxicity (OPIDN). OPIDN is a progressive neurological condition that is characterized by weakness, paralysis, pain, and paresthesia. PNPLA7 is an insulin-regulated phospholipase that is homologous to Neuropathy Target Esterase (NTE or PNPLA6) and is also known as NTE-related esterase (NRE). Human NRE is predominantly expressed in prostate, white adipose, and pancreatic tissue. NRE hydrolyzes sn-1 esters in lysophosphatidylcholine and lysophosphatidic acid, but shows no lipase activity with substrates like triacylglycerols (TG), cholesteryl esters, retinyl esters (RE), phosphatidylcholine (PC), or monoacylglycerol (MG). This family includes PNPLA6 and PNPLA7 from Homo sapiens, YMF9 from Yeast, and Swiss Cheese protein (sws) from Drosophila melanogaster. 306 -132865 cd07227 Pat_Fungal_NTE1 Fungal patatin-like phospholipase domain containing protein 6. These are fungal Neuropathy Target Esterase (NTE), commonly referred to as NTE1. Patatin-like phospholipase. NTE has at least two functional domains: the N-terminal domain putatively regulatory domain and the C-terminal catalytic domain which shows esterase activity. NTE shows phospholipase activity for lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Exposure of NTE to organophosphates leads to organophosphate-induced delayed neurotoxicity (OPIDN). OPIDN is a progressive neurological condition that is characterized by weakness, paralysis, pain, and paresthesia. This family includes NTE1 from fungi. 269 -132866 cd07228 Pat_NTE_like_bacteria Bacterial patatin-like phospholipase domain containing protein 6. Bacterial patatin-like phospholipase domain containing protein 6. PNPLA6 is commonly known as Neuropathy Target Esterase (NTE). NTE has at least two functional domains: the N-terminal domain putatively regulatory domain and the C-terminal catalytic domain which shows esterase activity. NTE shows phospholipase activity for lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Exposure of NTE to organophosphates leads to organophosphate-induced delayed neurotoxicity (OPIDN). OPIDN is a progressive neurological condition that is characterized by weakness, paralysis, pain, and paresthesia. This group includes YCHK and rssA from Escherichia coli as well as Ylbk from Bacillus amyloliquefaciens. 175 -132867 cd07229 Pat_TGL3_like Triacylglycerol lipase 3. Triacylglycerol lipase 3 (TGL3) are responsible for all the TAG lipase activity of the lipid particle. Triacylglycerol (TAG) lipases are also necessary for the mobilization of TAG stored in lipid particles. TGL3 contains the consensus sequence motif GXSXG, which is found in lipolytic enzymes. This family includes Tgl3p from Saccharomyces cerevisiae. 391 -132868 cd07230 Pat_TGL4-5_like Triacylglycerol lipase 4 and 5. TGL4 and TGL5 are triacylglycerol lipases that are involved in triacylglycerol mobilization and degradation; they are found in lipid particles. Tgl4 is a functional ortholog of mammalian adipose TG lipase (ATGL) and is phosphorylated and activated by cyclin-dependent kinase 1 (Cdk1/Cdc28). TGL4 is 30% homologus to TGL3, whereas TGL5 is 26% homologus to TGL3. This family includes TGL4 (STC1) and TGL5 (STC2) from Saccharomyces cerevisiae. 421 -132869 cd07231 Pat_SDP1-like Sugar-Dependent 1 like lipase. Sugar-Dependent 1 (SDP1) lipase has a patatin-like acyl-hydrolase domain that initiates the breakdown of storage oil in germinating Arabidopsis seeds. This acyl-hydrolase domain is homologus to yeast triacylglycerol lipase 3 and human adipose triglyceride lipase. This family includes SDP1 from Arabidopsis thaliana. 323 -132870 cd07232 Pat_PLPL Patain-like phospholipase. Patatin-like phospholipase. This family consists of various patatin glycoproteins from plants and fungi. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein, but it also has the enzymatic activity of a lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have been found also in vertebrates. 407 -319900 cd07233 GlxI_Zn Glyoxalase I that uses Zn(++) as cofactor. This family includes eukaryotic glyoxalase I that prefers the divalent cation zinc as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event. 142 -319901 cd07235 MRD Mitomycin C resistance protein (MRD). Mitomycin C (MC) is a naturally occurring antibiotic, and antitumor agent used in the treatment of cancer. Its antitumor activity is exerted primarily through monofunctional and bifunctional alkylation of DNA. MRD binds to MC and functions as a component of the MC exporting system. MC is bound to MRD by a stacking interaction between a His and a Trp. MRD adopts a structural fold similar to bleomycin resistance protein, glyoxalase I, and extradiol dioxygenases; and it has binding sites at an identical location to binding sites in these evolutionarily related enzymes. 123 -319902 cd07237 BphC1-RGP6_C_like C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase. This subfamily contains the C-terminal, catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its C-terminal repeat is represented in this subfamily. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, they belong to a different subfamily of the ED_TypeI_classII_C (C-terminal domain of type I, class II extradiol dioxygenases) family. 153 -319903 cd07238 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 112 -319904 cd07239 BphC5-RK37_C_like C-terminal, catalytic domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase). 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the C-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxygenases are activated by Fe(II). 143 -319905 cd07241 VOC_BsYyaH vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YyaH. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 125 -319906 cd07242 VOC_BsYqjT vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YqjT. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 126 -319907 cd07243 2_3_CTD_C C-terminal domain of catechol 2,3-dioxygenase. This subfamily contains the C-terminal, catalytic, domain of catechol 2,3-dioxygenase. Catechol 2,3-dioxygenase (2,3-CTD, catechol:oxygen 2,3-oxidoreductase) catalyzes an extradiol cleavage of catechol to form 2-hydroxymuconate semialdehyde with the insertion of two atoms of oxygen. The enzyme is a homotetramer and contains catalytically essential Fe(II) . The reaction proceeds by an ordered bi-unit mechanism. First, catechol binds to the enzyme, this is then followed by the binding of dioxygen to form a tertiary complex, and then the aromatic ring is cleaved to produce 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase belongs to the type I extradiol dioxygenase family. The subunit comprises the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. This subfamily represents the C-terminal domain. 144 -319908 cd07244 FosA fosfomycin resistant protein subfamily FosA. This subfamily family contains FosA, a fosfomycin resistant protein. FosA is a Mn(II) and K(+)-dependent glutathione transferase. Fosfomycin inhibits the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosA, catalyzes the addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, making it inactive. FosA is a Mn(II) dependent enzyme. It is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. 121 -319909 cd07245 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 117 -319910 cd07246 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping 124 -319911 cd07247 SgaA_N_like N-terminal domain of Streptomyces griseus SgaA and similar domains. SgaA suppresses the growth disturbances caused by high osmolarity and a high concentration of A-factor, a microbial hormone, during the early growth phase in Streptomyces griseus. A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) controls morphological differentiation and secondary metabolism in Streptomyces griseus. It is a chemical signaling molecule that at a very low concentration acts as a switch for yellow pigment production, aerial mycelium formation, streptomycin production, and streptomycin resistance. The structure and amino acid sequence of SgaA are closely related to a group of antibiotics resistance proteins, including bleomycin resistance protein, mitomycin resistance protein, and fosfomycin resistance proteins. SgaA might also function as a streptomycin resistance protein. 114 -319912 cd07249 MMCE Methylmalonyl-CoA epimerase (MMCE). MMCE, also called methylmalonyl-CoA racemase (EC 5.1.99.1) interconverts (2R)-methylmalonyl-CoA and (2S)-methylmalonyl-CoA. MMCE has been found in bacteria, archaea, and in animals. In eukaryotes, MMCE is an essential enzyme in a pathway that converts propionyl-CoA to succinyl-CoA, and is important in the breakdown of odd-chain length fatty acids, branched-chain amino acids, and other metabolites. In bacteria, MMCE participates in the reverse pathway for propionate fermentation, glyoxylate regeneration, and the biosynthesis of polyketide antibiotics. MMCE is closely related to glyoxalase I and type I extradiol dioxygenases. 127 -319913 cd07250 HPPD_C_like C-terminal domain of 4-hydroxyphenylpyruvate dioxygenase (HppD) and hydroxymandelate synthase (HmaS). HppD and HmaS are non-heme iron-dependent dioxygenases, which modify a common substrate, 4-hydroxyphenylpyruvate (HPP), but yield different products. HPPD catalyzes the second reaction in tyrosine catabolism, the conversion of 4-hydroxyphenylpyruvate to homogentisate (2,5-dihydroxyphenylacetic acid, HG). HmaS converts HPP to 4-hydroxymandelate, a committed step in the formation of hydroxyphenylglycerine, a structural component of nonproteinogenic macrocyclic peptide antibiotics, such as vancomycin. If the emphasis is on catalytic chemistry, HPPD and HmaS are classified as members of a large family of alpha-keto acid dependent mononuclear non-heme iron oxygenases most of which require Fe(II), molecular oxygen, and an alpha-keto acid (typically alpha-ketoglutarate) to either oxygenate or oxidize a third substrate. Both enzymes are exceptions in that they require two, instead of three, substrates, do not use alpha-ketoglutarate, and incorporate both atoms of dioxygen into the aromatic product. Both HPPD and HmaS exhibit duplicate beta barrel topology in their N- and C-terminal domains which share sequence similarity, suggestive of a gene duplication. Each protein has only one catalytic site located in at the C-terminal domain. This HPPD_C_like domain represents the C-terminal domain. 194 -319914 cd07251 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 120 -319915 cd07252 BphC1-RGP6_N_like N-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase. This subfamily contains the N-terminal, non-catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of 2,3-dihydroxybiphenyl 1,2-dioxygenases. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its N-terminal repeat is represented in this subfamily. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, they belong to a different family, the ED_TypeI_classII_C (C-terminal domain of type I, class II extradiol dioxygenases) family. 120 -319916 cd07253 GLOD5 Human glyoxalase domain-containing protein 5 and similar proteins. Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 123 -319917 cd07254 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 120 -319918 cd07255 VOC_BsCatE_like_N N-terminal of Bacillus subtilis CatE like protein. Uncharacterized subfamily of VOC superfamily contains Bacillus subtilis CatE and similar proteins. CatE is proposed to function as Catechol-2,3-dioxygenase. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 124 -319919 cd07256 HPCD_C_class_II C-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD). This subfamily contains the C-terminal, catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a different superfamily. 160 -319920 cd07257 THT_oxygenase_C The C-terminal domain of 2,4,5-trihydroxytoluene (THT) oxygenase. This subfamily contains the C-terminal, catalytic, domain of THT oxygenase. THT oxygenase is an extradiol dioxygenase in the 2,4-dinitrotoluene (DNT) degradation pathway. It catalyzes the conversion of 2,4,5-trihydroxytoluene to an unstable ring fission product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid. The native protein was determined to be a dimer by gel filtration. The enzyme belongs to the type I family of extradiol dioxygenases which contains two structurally homologous barrel-shaped domains at the N- and C-terminus of each monomer. The active-site metal is located in the C-terminal barrel. Fe(II) is required for its catalytic activity. 152 -319921 cd07258 PpCmtC_C C-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC). This subfamily contains the C-terminal, catalytic, domain of PpCmtC. 2,3-dihydroxy-p-cumate-3,4-dioxygenase (CmtC of Pseudomonas putida F1) is a dioxygenase involved in the eight-step catabolism pathway of p-cymene. CmtC acts upon the reaction intermediate 2,3-dihydroxy-p-cumate, yielding 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate. The CmtC belongs to the type I family of extradiol dioxygenases. Fe2+ was suggested as a cofactor, same as for other enzymes in the family. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. 138 -319922 cd07261 EhpR_like phenazine resistance protein, EhpR. Phenazine resistance protein (EhpR) in Enterobacter agglomerans confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. EhpR is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. 114 -319923 cd07262 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 121 -319924 cd07263 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping 120 -319925 cd07264 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 118 -319926 cd07265 2_3_CTD_N N-terminal domain of catechol 2,3-dioxygenase. This subfamily contains the N-terminal, non-catalytic, domain of catechol 2,3-dioxygenase. Catechol 2,3-dioxygenase (2,3-CTD, catechol:oxygen 2,3-oxidoreductase) catalyzes an extradiol cleavage of catechol to form 2-hydroxymuconate semialdehyde with the insertion of two atoms of oxygen. The enzyme is a homotetramer and contains catalytically essential Fe(II) . The reaction proceeds by an ordered bi-unit mechanism. First, catechol binds to the enzyme, this is then followed by the binding of dioxygen to form a tertiary complex, and then the aromatic ring is cleaved to produce 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase belongs to the type I extradiol dioxygenase family. The subunit comprises the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. This subfamily represents the N-terminal domain. 122 -319927 cd07266 HPCD_N_class_II N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD). This subfamily contains the N-terminal, non-catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a different superfamily. 118 -319928 cd07267 THT_Oxygenase_N N-terminal domain of 2,4,5-trihydroxytoluene (THT) oxygenase. This subfamily contains the N-terminal, non-catalytic, domain of THT oxygenase. THT oxygenase is an extradiol dioxygenase in the 2,4-dinitrotoluene (DNT) degradation pathway. It catalyzes the conversion of 2,4,5-trihydroxytoluene to an unstable ring fission product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid. The native protein was determined to be a dimer by gel filtration. The enzyme belongs to the type I family of extradiol dioxygenases which contains two structurally homologous barrel-shaped domains at the N- and C-terminus of each monomer. The active-site metal is located in the C-terminal barrel. Fe(II) is required for its catalytic activity. 113 -319929 cd07268 VOC_EcYecM_like Escherichia coli YecM and similar proteins, a vicinal oxygen chelate subfamily. Uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily contains Escherichia coli YecM and similar proteins.The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 171 -132809 cd07276 PX_SNX16 The phosphoinositide binding Phox Homology domain of Sorting Nexin 16. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX16 contains a central PX domain followed by a coiled-coil region. SNX16 is localized in early and recycling endosomes through the binding of its PX domain to phosphatidylinositol-3-phosphate (PI3P). It plays a role in epidermal growth factor (EGF) signaling by regulating EGF receptor membrane trafficking. 110 -132810 cd07277 PX_RUN The phosphoinositide binding Phox Homology domain of uncharacterized proteins containing PX and RUN domains. The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized proteins containing an N-terminal RUN domain and a C-terminal PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. The RUN domain is found in GTPases in the Rap and Rab families and may play a role in Ras-like signaling pathways. 118 -132811 cd07278 PX_RICS_like The phosphoinositide binding Phox Homology domain of PX-RICS-like proteins. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this family include PX-RICS, TCGAP (Tc10/Cdc42 GTPase-activating protein), and similar proteins. They contain N-terminal PX and Src Homology 3 (SH3) domains, a central Rho GAP domain, and C-terminal extensions. They act as Rho GTPase-activating proteins. PX-RICS is the main isoform expressed during neural development. It is involved in neural functions including axon and dendrite extension, postnatal remodeling, and fine-tuning of neural circuits during early brain development. The PX domain of PX-RICS specifically binds phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. TCGAP is widely expressed in the brain where it is involved in regulating the outgrowth of axons and dendrites and is regulated by the protein tyrosine kinase Fyn. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 114 -132812 cd07279 PX_SNX20_21_like The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX20, SNX21, and similar proteins. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. It may function in the sorting and cycling of PSGL-1 into endosomes. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development. 112 -132813 cd07280 PX_YPT35 The phosphoinositide binding Phox Homology domain of the fungal protein YPT35. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of YPT35 proteins from the fungal subkingdom Dikarya. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of YPT35 binds to phosphatidylinositol 3-phosphate (PI3P). It also serves as a protein interaction domain, binding to members of the Yip1p protein family, which localize to the ER and Golgi. YPT35 is mainly associated with endosomes and together with Yip1p proteins, may be involved in a specific function in the endocytic pathway. 120 -132814 cd07281 PX_SNX1 The phosphoinositide binding Phox Homology domain of Sorting Nexin 1. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX1 is both membrane associated and a cytosolic protein that exists as a tetramer in protein complexes. It can associate reversibly with membranes of the endosomal compartment, thereby coating these vesicles. SNX1 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. SNX1 contains a Bin/Amphiphysin/Rvs (BAR) domain C-terminal to the PX domain. The PX domain of SNX1 specifically binds phosphatidylinositol-3-phosphate (PI3P) and PI(3,5)P2, while the BAR domain detects membrane curvature. Both domains help determine the specific membrane-targeting of SNX1, which is localized to a microdomain in early endosomes where it regulates cation-independent mannose-6-phosphate receptor retrieval to the trans Golgi network. 124 -132815 cd07282 PX_SNX2 The phosphoinositide binding Phox Homology domain of Sorting Nexin 2. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX2 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Similar to SNX1, SNX2 contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX domain of SNX2 preferentially binds phosphatidylinositol-3-phosphate (PI3P), but not PI(3,4,5)P3. Studies on mice deficient with SNX1 and/or SNX2 suggest that they provide an essential function in embryogenesis and are functionally redundant. 124 -132816 cd07283 PX_SNX30 The phosphoinositide binding Phox Homology domain of Sorting Nexin 30. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX30 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-8, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of SNX30 has yet to be elucidated. 116 -132817 cd07284 PX_SNX7 The phosphoinositide binding Phox Homology domain of Sorting Nexin 7. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX7 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, SNX30, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of SNX7 has yet to be elucidated. 116 -132818 cd07285 PX_SNX9 The phosphoinositide binding Phox Homology domain of Sorting Nexin 9. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX9, also known as SH3PX1, is a cytosolic protein that interacts with proteins associated with clathrin-coated pits such as Cdc-42-associated tyrosine kinase 2 (ACK2). It contains an N-terminal Src Homology 3 (SH3) domain, a PX domain, and a C-terminal Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature. The PX-BAR structural unit helps determine specific membrane localization. Through its SH3 domain, SNX9 binds class I polyproline sequences found in dynamin 1/2 and the WASP/N-WASP actin regulators. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis. Its array of interacting partners suggests that SNX9 functions at the interface between endocytosis and actin cytoskeletal organization. 126 -132819 cd07286 PX_SNX18 The phosphoinositide binding Phox Homology domain of Sorting Nexin 18. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX18, like SNX9, contains an N-terminal Src Homology 3 (SH3) domain, a PX domain, and a C-terminal Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature. The PX-BAR structural unit helps determine specific membrane localization. SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. 127 -132820 cd07287 PX_RPK118_like The phosphoinositide binding Phox Homology domain of RPK118-like proteins. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily bear similarity to human RPK118, which contains an N-terminal PX domain, a Microtubule Interacting and Trafficking (MIT) domain, and a kinase domain. RPK118 binds sphingosine kinase, a key enzyme in the synthesis of sphingosine 1-phosphate (SPP), a lipid messenger involved in many cellular events. RPK118 may be involved in transmitting SPP-mediated signaling. It also binds the antioxidant peroxiredoxin-3 (PRDX3) and may be involved in the transport of PRDX3 from the cytoplasm to its site of function in the mitochondria. Members of this subfamily also show similarity to sorting nexin 15 (SNX15), which contains PX and MIT domains but does not contain a kinase domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. 118 -132821 cd07288 PX_SNX15 The phosphoinositide binding Phox Homology domain of Sorting Nexin 15. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX15 contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. It plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. 118 -132822 cd07289 PX_PI3K_C2_alpha The phosphoinositide binding Phox Homology Domain of the Alpha Isoform of Class II Phosphoinositide 3-Kinases. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. The class II alpha isoform, PI3K-C2alpha, plays key roles in clathrin assembly and clathrin-mediated membrane trafficking, insulin signaling, vascular smooth muscle contraction, and the priming of neurosecretory granule exocytosis. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 109 -132823 cd07290 PX_PI3K_C2_beta The phosphoinositide binding Phox Homology Domain of the Beta Isoform of Class II Phosphoinositide 3-Kinases. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The Phosphoinositide 3-Kinase (PI3K) family of enzymes catalyzes the phosphorylation of the 3-hydroxyl group of the inositol ring of phosphatidylinositol. PI3Ks play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. PI3Ks are divided into three main classes (I, II, and III) based on their substrate specificity, regulation, and domain structure. Class II PI3Ks preferentially use PI as a substrate to produce PI3P, but can also phosphorylate PI4P to produce PI(3,4)P2. They function as monomers and do not associate with any regulatory subunits. Class II enzymes contain an N-terminal Ras binding domain, a lipid binding C2 domain, a PI3K homology domain of unknown function, an ATP-binding cataytic domain, a PX domain, and a second C2 domain at the C-terminus. The class II beta isoform, PI3K-C2beta, contributes to the migration and survival of cancer cells. It regulates Rac activity and impacts membrane ruffling, cell motility, and cadherin-mediated cell-cell adhesion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 109 -132824 cd07291 PX_SNX5 The phosphoinositide binding Phox Homology domain of Sorting Nexin 5. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX5, abundantly expressed in macrophages, regulates macropinocytosis, a process that enables cells to internalize large amounts of external solutes. It may also be a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. It also binds the Fanconi anaemia complementation group A protein (FANCA). SNX5 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to other sorting nexins including SNX1-2. The PX-BAR structural unit helps determine the specific membrane-targeting of some SNXs. The PX domain of SNX5 binds phosphatidylinositol-3-phosphate (PI3P) and PI(3,4)P2. SNX5 is localized to a subdomain of early endosome and is recruited to the plasma membrane following EGF stimulation and elevation of PI(3,4)P2 levels. 141 -132825 cd07292 PX_SNX6 The phosphoinositide binding Phox Homology domain of Sorting Nexin 6. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX6 forms a stable complex with SNX1 and may be a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. It interacts with the receptor serine/threonine kinases from the transforming growth factor-beta family. It also plays roles in enhancing the degradation of EGFR and in regulating the activity of Na,K-ATPase through its interaction with Translationally Controlled Tumor Protein (TCTP). SNX6 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to other sorting nexins including SNX1-2. The PX-BAR structural unit helps determine the specific membrane-targeting of some SNXs. 141 -132826 cd07293 PX_SNX3 The phosphoinositide binding Phox Homology domain of Sorting Nexin 3. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX3 associates with early endosomes through a PX domain-mediated interaction with phosphatidylinositol-3-phosphate (PI3P). It associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. SNX3 is required for the formation of multivesicular bodies, which function as transport intermediates to late endosomes. It also promotes cell surface expression of the amiloride-sensitive epithelial Na+ channel (ENaC), which is critical in sodium homeostasis and maintenance of extracellular fluid volume. 123 -132827 cd07294 PX_SNX12 The phosphoinositide binding Phox Homology domain of Sorting Nexin 12. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. The specific function of SNX12 has yet to be elucidated. 132 -132828 cd07295 PX_Grd19 The phosphoinositide binding Phox Homology domain of fungal Grd19. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. 116 -132829 cd07296 PX_PLD1 The phosphoinositide binding Phox Homology domain of Phospholipase D1. The PX domain is a phosphoinositide binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine to generate membrane-bound phosphatidic acid and choline. PLDs are implicated in many cellular functions like signaling, cytoskeletal reorganization, vesicular transport, stress responses, and the control of differentiation, proliferation, and survival. PLD1 contains PX and Pleckstrin Homology (PH) domains in addition to the catalytic domain. It acts as an effector of Rheb in the signaling of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that transduces nutrients and other stimuli to regulate many cellular processes. PLD1 also regulates the secretion of the procoagulant von Willebrand factor (VWF) in endothelial cells. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of PLD1 specifically binds to phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3], which enables PLD1 to mediate signals via the ERK1/2 pathway. 135 -132830 cd07297 PX_PLD2 The phosphoinositide binding Phox Homology domain of Phospholipase D2. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine to generate membrane-bound phosphatidic acid and choline. PLD activity has been detected in viruses, bacteria, yeast, plants, and mammals, but the PX domain is not present in PLDs from viruses and bacteria. PLDs are implicated in many cellular functions like signaling, cytoskeletal reorganization, vesicular transport, stress responses, and the control of differentiation, proliferation, and survival. PLD2 contains PX and Pleckstrin Homology (PH) domains in addition to the catalytic domain. It mediates EGF-dependent insulin secretion and EGF-induced Ras activation by the guanine nucleotide-exchange factor Son of sevenless (Sos). It regulates mast cell activation by associating and promoting the activation of the protein tyrosine kinase Syk. PLD2 also participates in the sphingosine 1-phosphate-mediated pathway that stimulates the migration of endothelial cells, an important factor in angiogenesis. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. 130 -132831 cd07298 PX_RICS The phosphoinositide binding Phox Homology domain of PX-RICS. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. RICS is a Rho GTPase-activating protein for cdc42 and Rac1. It is implicated in the regulation of postsynaptic signaling and neurite outgrowth. An N-terminal splicing variant of RICS containing additional PX and Src Homology 3 (SH3) domains, also called PX-RICS, is the main isoform expressed during neural development. PX-RICS is involved in neural functions including axon and dendrite extension, postnatal remodeling, and fine-tuning of neural circuits during early brain development. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of PX-RICS specifically binds phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. 115 -132832 cd07299 PX_TCGAP The phosphoinositide binding Phox Homology domain of Tc10/Cdc42 GTPase-activating protein. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. TCGAP (Tc10/Cdc42 GTPase-activating protein) contains N-terminal PX and Src Homology 3 (SH3) domains, a central Rho GAP domain, and C-terminal proline-rich regions. It is widely expressed in the brain where it is involved in regulating the outgrowth of axons and dendrites and is regulated by the protein tyrosine kinase Fyn. It interacts with cdc42 and TC10beta through its GAP domain and with phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] through its PX domain. It is translocated to the plasma membrane in adipocytes in response to insulin and may be involved in the regulation of insulin-stimulated glucose transport. TCGAP has also been named sorting nexins 26 (SNX26). SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. It is unknown whether TCGAP also functions as a SNX. 113 -132833 cd07300 PX_SNX20 The phosphoinositide binding Phox Homology domain of Sorting Nexin 20. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. The PX domain of SNX20 binds PIs and targets the SNX20/PSGL-1 complex to endosomes. SNX20 may function in the sorting and cycling of PSGL-1 into endosomes. 114 -132834 cd07301 PX_SNX21 The phosphoinositide binding Phox Homology domain of Sorting Nexin 21. The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development. 112 -143636 cd07302 CHD cyclase homology domain. Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. 177 -132765 cd07303 Porin3 Eukaryotic porin family that forms channels in the mitochondrial outer membrane. The porin family 3 contains two sub-families that play vital roles in the mitochondrial outer membrane, a translocase for unfolded pre-proteins (Tom40) and the voltage-dependent anion channel (VDAC) that regulates the flux of mostly anionic metabolites through the outer mitochondrial membrane. 274 -143612 cd07304 Chorismate_synthase Chorismase synthase, the enzyme catalyzing the final step of the shikimate pathway. Chorismate synthase (CS; 5-enolpyruvylshikimate-3-phosphate phospholyase; 1-carboxyvinyl-3-phosphoshikimate phosphate-lyase; E.C. 4.2.3.5) catalyzes the seventh and final step in the shikimate pathway: the conversion of 5- enolpyruvylshikimate-3-phosphate (EPSP) to chorismate, a precursor for the biosynthesis of aromatic compounds. This process has an absolute requirement for reduced FMN as a co-factor which is thought to facilitate cleavage of C-O bonds by transiently donating an electron to the substrate, having no overall change its redox state. Depending on the capacity of these enzymes to regenerate the reduced form of FMN, chorismate synthases are divided into two classes: Enzymes, mostly from plants and eubacteria, that sequester CS from the cellular environment, are monofunctiona,l while those that can generate reduced FMN at the expense of NADPH, such as found in fungi and the ciliated protozoan Euglena gracilis, are bifunctional, having an additional NADPH:FMN oxidoreductase activity. Recently, bifunctionality of the Mycobacterium tuberculosis enzyme (MtCS) was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. Since shikimate pathway enzymes are present in bacteria, fungi and apicomplexan parasites (such as Toxoplasma gondii, Plasmodium falciparum, and Cryptosporidium parvum) but absent in mammals, they are potentially attractive targets for the development of new therapy against infectious diseases such as tuberculosis (TB). 344 -132766 cd07305 Porin3_Tom40 Translocase of outer mitochondrial membrane 40 (Tom40). Tom40 forms a channel in the mitochondrial outer membrane with a pore about 1.5 to 2.5 nanometers wide. It functions as a transport channel for unfolded protein chains and forms a complex with Tom5, Tom6, Tom7, and Tom22. The primary receptors Tom20 and Tom70 recruit the unfolded precursor protein from the mitochondrial-import stimulating factor (MSF) or cytosolic Hsc70. The precursor passes through the Tom40 channel and through another channel in the inner membrane, formed by Tim23, to be finally translocated into the mitochondrial matrix. The process depends on a proton motive force across the inner membrane and requires a contact site where the outer and inner membranes come close. Tom40 is also involved in inserting outer membrane proteins into the membrane, most likely not via a lateral opening in the pore, but by transfering precursor proteins to an outer membrane sorting and assembly machinery. 279 -132767 cd07306 Porin3_VDAC Voltage-dependent anion channel of the outer mitochondrial membrane. The voltage-dependent anion channel (VDAC) regulates the flux of mostly anionic metabolites through the outer mitochondrial membrane, which is highly permeable to small molecules. VDAC is the most abundant protein in the outer membrane, and membrane potentials can toggle VDAC between open or high-conducting and closed or low-conducting forms. VDAC binds to and is regulated in part by hexokinase, an interaction that renders mitochondria less susceptible to pro-apoptotic signals, most likely by intefering with VDAC's capability to respond to Bcl-2 family proteins. While VDAC appears to play a key role in mitochondrially induced cell death, a proposed involvement in forming the mitochondrial permeability transition pore, which is characteristic for damaged mitochondria and apoptosis, has been challenged by more recent studies. 276 -153271 cd07307 BAR The Bin/Amphiphysin/Rvs (BAR) domain, a dimerization module that binds membranes and detects membrane curvature. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. Mutations in BAR containing proteins have been linked to diseases and their inactivation in cells leads to altered membrane dynamics. A BAR domain with an additional N-terminal amphipathic helix (an N-BAR) can drive membrane curvature. These N-BAR domains are found in amphiphysins and endophilins, among others. BAR domains are also frequently found alongside domains that determine lipid specificity, such as the Pleckstrin Homology (PH) and Phox Homology (PX) domains which are present in beta centaurins (ACAPs and ASAPs) and sorting nexins, respectively. A FES-CIP4 Homology (FCH) domain together with a coiled coil region is called the F-BAR domain and is present in Pombe/Cdc15 homology (PCH) family proteins, which include Fes/Fes tyrosine kinases, PACSIN or syndapin, CIP4-like proteins, and srGAPs, among others. The Inverse (I)-BAR or IRSp53/MIM homology Domain (IMD) is found in multi-domain proteins, such as IRSp53 and MIM, that act as scaffolding proteins and transducers of a variety of signaling pathways that link membrane dynamics and the underlying actin cytoskeleton. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The I-BAR domain induces membrane protrusions in the opposite direction compared to classical BAR and F-BAR domains, which produce membrane invaginations. BAR domains that also serve as protein interaction domains include those of arfaptin and OPHN1-like proteins, among others, which bind to Rac and Rho GAP domains, respectively. 194 -173892 cd07308 lectin_leg-like legume-like lectins: ERGIC-53, ERGL, VIP36, VIPL, EMP46, and EMP47. The legume-like (leg-like) lectins are eukaryotic intracellular sugar transport proteins with a carbohydrate recognition domain similar to that of the legume lectins. This domain binds high-mannose-type oligosaccharides for transport from the endoplasmic reticulum to the Golgi complex. These leg-like lectins include ERGIC-53, ERGL, VIP36, VIPL, EMP46, EMP47, and the UIP5 (ULP1-interacting protein 5) precursor protein. Leg-like lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a calcium-dependent manner, suggesting a role in glycoprotein sorting and trafficking. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely. 218 -213985 cd07309 PHP Polymerase and Histidinol Phosphatase domain. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. PHP in polymerases has trinuclear zinc/magnesium dependent proofreading activity. It has also been shown that the PHP domain functions in DNA repair. The PHP structures have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 88 -143583 cd07311 terB_like_1 tellurium resistance terB-like protein, subgroup 1. This family includes several uncharacterized bacterial proteins. The prototype of this CD is tellurite resistance protein from Nostoc punctiforme that belongs to COG3793. Its precise biological function and its mechanism responsible for tellurium resistance still remains rather poorly understood. 150 -143584 cd07313 terB_like_2 tellurium resistance terB-like protein, subgroup 2. This family includes several uncharacterized bacterial proteins. Protein sequence homology analysis shows they are similar to tellurium resistance protein terB, but the function of this family is unknown. 104 -143585 cd07316 terB_like_DjlA N-terminal tellurium resistance protein terB-like domain of heat shock DnaJ-like proteins. Tellurium resistance terB-like domain of the DnaJ-like DjlA proteins. This family represents the terB-like domain of DjlA-like proteins, a subgroup of heat shock DnaJ-like proteins. Escherichia coli DjlA is a type III membrane protein with a small N-terminal transmembrane region and DnaJ-like domain on the extreme C-terminus. Overproduction has been shown to activate the RcsC pathway, which regulates the production of the capsular exopolysaccharide colanic acid. The specific function of this domain is unknown. 106 -153371 cd07320 Extradiol_Dioxygenase_3B_like Subunit B of Class III Extradiol ring-cleavage dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site of the aromatic ring. Intradiol enzymes cleave the aromatic ring between two hydroxyl groups, whereas extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Extradiol dioxygenases can be further divided into three classes. Class I and II enzymes are evolutionary related and show sequence similarity, with the two-domain class II enzymes evolving from the class I enzyme through gene duplication. Class III enzymes are different in sequence and structure and usually have two subunits, designated A and B. This model represents the catalytic subunit B of extradiol dioxygenase class III enzymes. Enzymes belonging to this family include Protocatechuate 4,5-dioxygenase (LigAB), 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB), 4,5-DOPA Dioxygenase, 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, and 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD). There are also some family members that do not show the typical dioxygenase activity. 260 -153390 cd07321 Extradiol_Dioxygenase_3A_like Subunit A of Class III extradiol dioxygenases. Extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. There are two major groups of dioxygenases according to the cleavage site of the aromatic ring. Intradiol enzymes cleave the aromatic ring between two hydroxyl groups, whereas extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Extradiol dioxygenases can be divided into three classes. Class I and II enzymes are evolutionary related and show sequence similarity, with the two domain class II enzymes evolving from the class I enzyme through gene duplication. Class III enzymes are different in sequence and structure and usually have two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents subunit A of class III extradiol dioxygenase enzymes. The A subunit is the smaller, non-catalytic subunit. Enzymes that belong to this family include Protocatechuate 4,5-dioxygenase (LigAB) A subunit, 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB) A subunit, Gallate Dioxygenase and proteins of unknown function. 77 -143474 cd07322 PriL_PriS_Eukaryotic Eukaryotic core primase: Large subunit, PriL. Primases synthesize the RNA primers required for DNA replication. Primases are grouped into two classes, bacteria/bacteriophage and archaeal/eukaryotic. The proteins in the two classes differ in structure and the replication apparatus components. Archaeal/eukaryotic core primase is a heterodimeric enzyme consisting of a small catalytic subunit (PriS) and a large subunit (PriL). In eukaryotic organisms, a heterotetrameric enzyme formed by DNA polymerase alpha, the B subunit and two primase subunits has primase activity. Although the catalytic activity resides within PriS, the PriL subunit is essential for primase function as disruption of the PriL gene in yeast is lethal. PriL is composed of two structural domains. Several functions have been proposed for PriL such as stabilization of the PriS, involvement in synthesis initiation, improvement of primase processivity, determination of product size and transfer of the products to DNA polymerase alpha. 390 -153396 cd07323 LAM LA motif RNA-binding domain. This domain is found at the N-terminus of La RNA-binding proteins as well as in other related proteins. Typically, the domain co-occurs with an RNA-recognition motif (RRM), and together these domains function to bind primary transcripts of RNA polymerase III in the La autoantigen (Lupus La protein, LARP3, or Sjoegren syndrome type B antigen, SS-B). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 75 -320683 cd07324 M48C_Oma1-like Oma1 peptidase-like, integral membrane metallopeptidase. This family contains peptidase M48 subfamily C (also known as Oma1 peptidase or mitochondrial metalloendopeptidase OMA1), including similar peptidases containing tetratricopeptide (TPR) repeats, as well as uncharacterized proteins such as E. coli bepA (formerly yfgC), ycaL and loiP (formerly yggG), considered to be putative metallopeptidases. Oma1 peptidase is part of the quality control system in the inner membrane of mitochondria, with its catalytic site facing the matrix space. It cleaves and thereby promotes the turnover of mistranslated or misfolded membrane proteins. Oma1 can cleave the misfolded multi-pass membrane protein Oxa1, thus exerting a function similar to the ATP-dependent m-AAA protease for quality control of inner membrane proteins. It has been proposed that in the absence of m-AAA protease, proteolysis of Oxa1 is mediated by Oma1 in an ATP-independent manner. Homologs of Oma1 are present in higher eukaryotes, eubacteria and archaebacteria, suggesting that Oma1 is the founding member of a conserved family of membrane-embedded metallopeptidases, all containing the zinc metalloprotease motif (HEXXH). M48 peptidases proteolytically remove the C-terminal three residues of farnesylated proteins. 142 -320684 cd07325 M48_Ste24p_like M48 Ste24 endopeptidase-like, integral membrane metallopeptidase. This family contains peptidase M48 family Ste24p-like proteins that are as yet uncharacterized, but probably function as intracellular, membrane-associated zinc metalloproteases; they all contain the HEXXH Zn-binding motif, which is critical for Ste24p activity. They likely remove the C-terminal three residues of farnesylated proteins proteolytically and are possibly associated with the endoplasmic reticulum and golgi. Some members also contain ankyrin domains which occur in very diverse families of proteins and mediate protein-protein interactions. 199 -320685 cd07326 M56_BlaR1_MecR1_like Peptidase M56-like including those in BlaR1 and MecR1, integral membrane metallopeptidase. This family contains peptidase M56, which includes zinc metalloprotease domain in MecR1 as well as BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain ?-lactam antibiotics in MRSA. Both, MecR1 and BlaR1, are transmembrane proteins that consist of four transmembrane helices, a cytoplasmic zinc protease domain, and the soluble C-terminal extracellular sensor domain, and are highly similar in sequence and function. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. All members contain the zinc metalloprotease motif (HEXXH). Homologs of this peptidase domain are also found in a number of other bacterial genome sequences, most of which are as yet uncharacterized. 165 -320686 cd07327 M48B_HtpX_like HtpX-like membrane-bound metallopeptidase. This family contains peptidase M48 subfamily B, also known as HtpX, which consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX, an integral membrane (IM) metallopeptidase, is widespread in bacteria and archaea, and plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Its expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and eliminating them by collaborating with FtsH, a membrane-bound and ATP-dependent protease. HtpX contains the zinc binding motif (HEXXH), has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. Mutation studies of HtpX-like M48 metalloprotease from Leptospira interrogans (LA4131) has been shown to result in altered expression of a subset of metal toxicity and stress response genes. 183 -320687 cd07328 M48_Ste24p_like M48 Ste24 endopeptidase-like, integral membrane metallopeptidase. This family contains peptidase M48-like proteins that are as yet uncharacterized, but probably function as intracellular, membrane-associated zinc metalloproteases; they all contain the HEXXH Zn-binding motif, which is critical for Ste24p activity. They likely remove the C-terminal three residues of farnesylated proteins proteolytically and are possibly associated with the endoplasmic reticulum and golgi. 160 -320688 cd07329 M56_like Peptidase M56-like, integral membrane metallopeptidase in bacteria. This family contains peptidase M56, which includes zinc metalloprotease domain in MecR1 as well as BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain beta-lactam antibiotics in MRSA. Both, MecR1 and BlaR1, are transmembrane proteins that consist of four transmembrane helices, a cytoplasmic zinc protease domain, and the soluble C-terminal extracellular sensor domain, and are highly similar in sequence and function. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. All members contain the zinc metalloprotease motif (HEXXH). Homologs of this peptidase domain are also found in a number of other bacterial genome sequences, most of which are as yet uncharacterized. 188 -320689 cd07330 M48A_Ste24p Peptidase M48 CaaX prenyl protease type 1, an integral membrane, Zn-dependent protein. This family of M48 CaaX prenyl protease 1-like family includes a number of well characterized genes such as those found in Taenia solium metacestode (TsSte24p), Arabidopsis (AtSte24), yeast Ste24p and human (Hs Ste24p) as well as several uncharacterized genes such as YhfN, some of which also containing tetratricopeptide (TPR) repeats. All members of this family contain the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. They are thought to be intimately associated with the endoplasmic reticulum (ER), regardless of whether their genes possess the conventional signal motif (KKXX) in the C-terminal. Proteins in this family proteolytically remove the C-terminal three residues of farnesylated proteins. The gene ZmpSte24, also known as FACE-1 in humans, a member of this family, is involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. ZmpSte24 deficiency causes an accumulation of prelamin A leading to lipodystrophy and other disease phenotypes while mutations in the protein lead to diseases of lamin processing (laminopathies), such as premature aging disease progeria and metabolic disorders. Some of these mutations map to the peptide-binding site. 285 -320690 cd07331 M48C_Oma1_like Peptidase M48C, integral membrane endopeptidase. This subfamily contains peptidase M48C Oma1 (also called mitochondrial metalloendopeptidase OMA1) protease homologs that are mostly uncharacterized. Oma1 is part of the quality control system in the inner membrane of mitochondria, with its catalytic site facing the matrix space. It cleaves and thereby promotes the turnover of mistranslated or misfolded membrane proteins. Oma1 can cleave the misfolded multi-pass membrane protein Oxa1, thus exerting a function similar to the ATP-dependent m-AAA protease for quality control of inner membrane proteins; it cleaves a misfolded polytopic membrane protein at multiple sites. It has been proposed that in the absence of m-AAA protease, proteolysis of Oxa1 is mediated by Oma1 in an ATP-independent manner. Oma1 is part of highly conserved mitochondrial metallopeptidases, with homologs present in higher eukaryotes, eubacteria and archaebacteria, all containing the zinc binding motif (HEXXH). It forms a high molecular mass complex in the inner membrane, possibly a homo-hexamer. 187 -320691 cd07332 M48C_Oma1_like Peptidase M48C Ste24p, integral membrane endopeptidase. This subfamily contains peptidase M48C Oma1 (also called mitochondrial metalloendopeptidase OMA1) protease homologs that are mostly uncharacterized. Oma1 is part of the quality control system in the inner membrane of mitochondria, with its catalytic site facing the matrix space. It cleaves and thereby promotes the turnover of mistranslated or misfolded membrane proteins. Oma1 can cleave the misfolded multi-pass membrane protein Oxa1, thus exerting a function similar to the ATP-dependent m-AAA protease for quality control of inner membrane proteins; it cleaves a misfolded polytopic membrane protein at multiple sites. It has been proposed that in the absence of m-AAA protease, proteolysis of Oxa1 is mediated by Oma1 in an ATP-independent manner. Oma1 is part of highly conserved mitochondrial metallopeptidases, with homologs present in higher eukaryotes, eubacteria and archaebacteria, all containing the zinc binding motif (HEXXH). It forms a high molecular mass complex in the inner membrane, possibly a homo-hexamer. 222 -320692 cd07333 M48C_bepA_like Peptidase M48C Ste24p bepA-like, integral membrane protein. This family contains peptidase M48C Ste24p protease bepA (formerly yfgC)-like proteins considered to be putative metallopeptidases, containing a zinc-binding motif, HEXXH, and a COOH-terminal ER retrieval signal (KKXX). They proteolytically remove the C-terminal three residues of farnesylated proteins. They are integral membrane proteins associated with the endoplasmic reticulum and golgi, binding one zinc ion per subunit. In eukaryotes, Ste24p is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification (C is cysteine; A is usually aliphatic; X is one of several amino acids) is complete. Mutation studies have shown that the HEXXH protease motif, which is extracellular but adjacent to a transmembrane domain and therefore close to the membrane surface, is critical for Ste24p activity. Several members of this family also contain tetratricopeptide (TPR) repeat motifs, which are involved in a variety of functions including protein-protein interactions. BepA has been shown to possess protease activity and is responsible for the degradation of incorrectly folded LptD, an essential outer-membrane protein (OMP) involved in OM transport and assembly of lipopolysaccharide. Overexpression of the bepA protease causes abnormal biofilm architecture. 174 -320693 cd07334 M48C_loiP_like Peptidase M48C Ste24p loiP-like, integral membrane protein. This subfamily contains peptidase M48 Ste24p protease loiP (formerly yggG)-like family are mostly uncharacterized proteins that include E. coli loiP and ycaLG, considered to be putative metallopeptidases, containing a zinc-binding motif, HEXXH, and a COOH-terminal ER retrieval signal (KKXX). They proteolytically remove the C-terminal three residues of farnesylated proteins. They are integral membrane proteins associated with the endoplasmic reticulum and golgi, binding one zinc ion per subunit. In eukaryotes, Ste24p is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification (C is cysteine; A is usually aliphatic; X is one of several amino acids) is complete. Mutation studies have shown that the HEXXH protease motif, which is extracellular but adjacent to a transmembrane domain and therefore close to the membrane surface, is critical for Ste24p activity. LoiP has been shown to be a metallopeptidase that cleaves its targets preferentially between Phe-Phe residues. It is upregulated when bacteria are subjected to media of low osmolarity, thus yggG was named LoiP (low osmolarity induced protease). Proper membrane localization of LoiP may depend on YfgC, another putative metalloprotease in this subfamily. 215 -320694 cd07335 M48B_HtpX_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This family contains peptidase M48 subfamily B, also known as HtpX, which consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX, an integral membrane (IM) metallopeptidase, is widespread in bacteria and archaea, and plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Its expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and eliminating them by collaborating with FtsH, a membrane-bound and ATP-dependent protease. HtpX contains the zinc binding motif (HEXXH), has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. Mutation studies of HtpX-like M48 metalloprotease from Leptospira interrogans (LA4131) has been shown to result in altered expression of a subset of metal toxicity and stress response genes. 240 -320695 cd07336 M48B_HtpX_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. 266 -320696 cd07337 M48B_HtpX_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. 203 -320697 cd07338 M48B_HtpX_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. 216 -320698 cd07339 M48B_HtpX_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. 229 -320699 cd07340 M48B_Htpx_like Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase. This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. 246 -320700 cd07341 M56_BlaR1_MecR1_like Peptidase M56-like including those in BlaR1 and MecR1, integral membrane metallopeptidase. This family contains peptidase M56, which includes zinc metalloprotease domain in MecR1 as well as BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain ?-lactam antibiotics in MRSA. Both, MecR1 and BlaR1, are transmembrane proteins that consist of four transmembrane helices, a cytoplasmic zinc protease domain, and the soluble C-terminal extracellular sensor domain, and are highly similar in sequence and function. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. All members contain the zinc metalloprotease motif (HEXXH). Homologs of this peptidase domain are also found in a number of other bacterial genome sequences, most of which are as yet uncharacterized. 187 -320701 cd07342 M48C_Oma1_like M48C peptidase, integral membrane endopeptidase. This subfamily contains peptidase M48C Oma1 (also called mitochondrial metalloendopeptidase OMA1) protease homologs that are mostly uncharacterized. Oma1 is part of the quality control system in the inner membrane of mitochondria, with its catalytic site facing the matrix space. It cleaves and thereby promotes the turnover of mistranslated or misfolded membrane proteins. Oma1 can cleave the misfolded multi-pass membrane protein Oxa1, thus exerting a function similar to the ATP-dependent m-AAA protease for quality control of inner membrane proteins; it cleaves a misfolded polytopic membrane protein at multiple sites. It has been proposed that in the absence of m-AAA protease, proteolysis of Oxa1 is mediated by Oma1 in an ATP-independent manner. Oma1 is part of highly conserved mitochondrial metallopeptidases, with homologs present in higher eukaryotes, eubacteria and archaebacteria, all containing the zinc binding motif (HEXXH). It forms a high molecular mass complex in the inner membrane, possibly a homo-hexamer. 158 -320702 cd07343 M48A_Zmpste24p_like Peptidase M48 subfamily A, a type 1 CaaX endopeptidase. This family contains peptidase family M48 subfamily A which includes a number of well-characterized genes such as those found in humans (ZMPSTE24, also known as farnesylated protein-converting enzyme 1 or FACE-1 or Hs Ste24), Taenia solium metacestode (TsSte24p), Arabidopsis (AtSte24) and yeast (Ste24p). Ste24p contains the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. It is thought to be intimately associated with the endoplasmic reticulum (ER), regardless of whether its genes possess the conventional signal motif (KKXX) in the C-terminal. Proteins in this family proteolytically remove the C-terminal three residues of farnesylated proteins. Ste24p is involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. ZmpSte24 deficiency causes an accumulation of prelamin A leading to lipodystrophy and other disease phenotypes, while mutations in this gene or in that encoding its substrate, prelamin A, result in a series of human inherited diseases known as laminopathies, the most severe of which are Hutchinson Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) which arise due to unsuccessful maturation of prelamin A. Two forms of mandibuloacral dysplasia, a condition that causes a variety of abnormalities involving bone development, skin pigmentation, and fat distribution, are caused by mutations in two different genes; mutations in the LMNA gene, which normally provides instructions for making lamin A and lamin C, cause mandibuloacral dysplasia with A-type lipodystrophy (MAD-A), and mutations in the ZMPSTE24 gene cause mandibuloacral dysplasia with B-type lipodystrophy (MAD-B). Within cells, these genes are involved in maintaining the structure of the nucleus and may play a role in many cellular processes. Certain HIV protease inhibitors have been shown to inhibit the enzymatic activity of ZMPSTE24, but not enzymes involved in prelamin A processing. 405 -320703 cd07344 M48_yhfN_like Peptidase M48 YhfN-like, a novel minigluzincin. M48 YhfN-like protease is considered as a CaaX prenyl protease 1 homolog, with most of the sequences in this family as yet uncharacterized. It contains the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. It is probably associated with the endoplasmic reticulum (ER), regardless of whether its genes possess the conventional signal motif (KKXX) in the C-terminal. Proteins in this family proteolytically remove the C-terminal three residues of farnesylated proteins. This novel family of related proteins consist of the soluble minimal scaffold similar to the catalytic domains of the integral-membrane metallopeptidase M48 and M56, thus called minigluzincins. 96 -320704 cd07345 M48A_Ste24p-like Peptidase M48 subfamily A-like, putative CaaX prenyl protease. This family contains peptidase family M48 subfamily A-like CaaX prenyl protease 1, most of which are uncharacterized. Some of these contain tetratricopeptide (TPR) repeats at the C-terminus. Proteins in this family contain the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. They are thought to be possibly associated with the endoplasmic reticulum (ER), regardless of whether their genes possess the conventional signal motif (KKXX) in the C-terminal. These proteins putatively remove the C-terminal three residues of farnesylated proteins proteolytically. 346 -349983 cd07346 ABC_6TM_exporters Six-transmembrane helical domain of the ATP-binding cassette transporters. This family represents a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. In addition to ABC exporters, ABC transporters include two classes of ABC importers, classified depending on details of their architecture and mechanism. Only the ABC exporters are included in this family. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting chemical diversity of the translocated substrates, whereas NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional unit. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 292 -259818 cd07347 harmonin_N_like N-terminal protein-binding module of harmonin and similar domains, also known as HHD (harmonin homology domain). This domain is found in harmonin, and similar proteins such as delphilin, and whirlin. These are postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold proteins. Harmonin and whirlin are organizers of the Usher protein network of the inner ear and the retina, delphilin is found at the cerebellar parallel fiber-Purkinje cell synapses. This domain is also found in CCM2 (also called malcavernin; C7orf22/chromosome 7 open reading frame 22; OSM). CCM2 along with CCM1 and CCM3 constitutes a set of proteins which when mutated are responsible for cerebral cavernous malformations, an autosomal dominant neurovascular disease characterized by cerebral hemorrhages and vascular malformations in the central nervous system. CCM2 plays many functional roles. CCM2 functions as a scaffold involved in small GTPase Rac-dependent p38 mitogen-activated protein kinase (MAPK) activation when the cell is under hyperosmotic stress. It associates with CCM1 in the signaling cascades that regulate vascular integrity and participates in HEG1 (the transmembrane receptor heart of glass 1) mediated endothelial cell junctions. CCM proteins also inhibit the activation of small GTPase RhoA and its downstream effector Rho kinase (ROCK) to limit vascular permeability. CCM2 mediates TrkA-dependent cell death via its N-terminal PTB domain in pediatric neuroblastic tumours; the C-terminal domain of malcavernin represented here has also been refered to as the Karet domain. Harmonin contains a single copy of this domain at its N-terminus which binds specifically to a short internal peptide fragment of the cadherin 23 cytoplasmic domain (a component of the Usher protein network). Whirlin contains two copies of this domain; the first of these has been assayed for interaction with the cytoplasmic domain of cadherin 23 and no interaction could be detected. 78 -132762 cd07348 NR_LBD_NGFI-B The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors. The ligand binding domain of Nerve growth factor-induced-B (NGFI-B): NGFI-B is a member of the nuclear#steroid receptor superfamily. NGFI-B is classified as an orphan receptor because no ligand has yet been identified. NGFI-B is an early immediate gene product of the embryo development that is rapidly produced in response to a variety of cellular signals including nerve growth factor. It is involved in T-cell-mediated apoptosis, as well as neuronal differentiation and function. NGFI-B regulates transcription by binding to a specific DNA target upstream of its target genes and regulating the rate of transcriptional initiation. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, NGFI-B has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). 238 -132763 cd07349 NR_LBD_SHP The ligand binding domain of DAX1 protein, a nuclear receptor lacking DNA binding domain. The ligand binding domain of the Small Heterodimer Partner (SHP): SHP is a member of the nuclear receptor superfamily. SHP has a ligand binding domain, but lacks the DNA binding domain, typical to almost all of the nuclear receptors. It functions as a transcriptional coregulator by directly interacting with other nuclear receptors through its AF-2 motif. The closest relative of SHP is DAX1 and they can form heterodimer. SHP is an orphan receptor, lacking an identified ligand. 222 -132764 cd07350 NR_LBD_Dax1 The ligand binding domain of DAX1 protein, a nuclear receptor lacking DNA binding domain. The ligand binding domain of the DAX1 protein: DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on chromosome X gene 1) is a nuclear receptor with a typical ligand binding domain, but lacks the DNA binding domain. DAX1 plays an important role in the normal development of several hormone-producing tissues. Duplications of the region of the X chromosome containing DAX1 cause dosage sensitive sex reversal. DAX1 acts as a global repressor of many nuclear receptors, including SF-1, LRH-1, ERR, ER, AR and PR. DAX1 can form homodimer and heterodimerizes with its alternatively spliced isoform DAX1A and other nuclear receptors such as SHP, ERalpha and SF-1. 232 -259819 cd07353 harmonin_N N-terminal protein-binding module of harmonin. Harmonin is a postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold protein, which organizes the Usher protein network of the inner ear and the retina. Harmonin contains a single copy of this domain, which is found at the N-terminus of all three harmonin isoform classes (a, b and c), and which preceeds the first PDZ protein-binding domain, PDZ1. This harmonin_N domain binds specifically to a short internal peptide fragment of the cadherin 23 cytoplasmic domain; cadherin 23 is a component of the Usher protein network. 79 -259820 cd07354 HN_L-delphilin-R1_like first harmonin_N_like domain (repeat 1) of L-delphilin, and related domains. This subgroup contains the first of two harmonin_N_like domains of an alternatively spliced longer variant of mouse delphilin (L-delphilin, isoform 1), and related domains. Delphilin is a scaffold protein which binds the glutamate receptor delta-2 (GRID2) subunit and the monocarboxylate transporter 2 at the cerebellar parallel fiber-Purkinje cell synapses. The N-terminus of L-delphilin contains this harmonin_N_like domain preceded by a postsynaptic density-95/discs-large/ZO-1 (PDZ) protein-binding domain, PDZ1. L-delphilin, in common with the shorter C-terminal isoforms (S-delphilin/delphilin alpha and delphilin beta) has a second harmonin_N_like domain (not belonging to this subgroup) and a second PDZ domain, PDZ2. This first harmonin_N_like domain is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. 80 -259821 cd07355 HN_L-delphilin-R2_like second harmonin_N_like domain (repeat 2) of L-delphilin, and related domains. This subgroup contains the second of two harmonin_N_like domains of an alternatively spliced longer variant of mouse delphilin (L-delphilin), and related domains. Delphilin is a postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold protein which binds the glutamate receptor delta-2 (GRID2) subunit and the monocarboxylate transporter 2 at the cerebellar parallel fiber-Purkinje cell synapses. This harmonin_N_like domain in L-delphilin follows the second PDZ protein-binding domain, PDZ2; it is also found in the shorter C-terminal isoforms (S-delphilin/delphilin alpha and delphilin beta). It is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. The first harmonin_N_like domain of L-delphilin belongs to a different subgroup and is missing from S-delphilin. 80 -259822 cd07356 HN_L-whirlin_R1_like first harmonin_N_like domain (repeat 1) of the long isoform of whirlin, and related domains. This subgroup contains the first of two harmonin_N_like domains of the long isoform of whirlin, and related domains. Whirlin is a postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold protein which binds various components of the Usher protein network of the inner ear and the retina: erythrocyte protein p55, usherin, VlGR1, and myosin XVa. The long isoform of whirlin contains two harmonin_N_like domains, and three PDZ protein-binding domains, PDZ1-3. This first harmonin_N_like domain precedes PDZ1, and is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. This first harmonin_N_like domain has been assayed for interaction with the cytoplasmic domain of cadherin 23 (a component of the Usher network and an interacting partner of the harmonin N-domain), however no interaction could be detected. The short whirlin isoform, derived from an alternative start ATG, lacks this first harmonin_N_like domain. The short isoform has in common with the long isoform, the second harmonin_N_like domain (designated repeat 2, not present in this subgroup), and PDZ3. 78 -259823 cd07357 HN_L-whirlin_R2_like second harmonin_N_like domain (repeat 2) of the long isoform of whirlin, and related domains. This subgroup contains the second of two harmonin_N_like domains found in the long isoform of whirlin, and related domains. Whirlin is a postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold protein which binds various components of the Usher protein network of the inner ear and the retina: erythrocyte protein p55, usherin, VlGR1, and myosin XVa. The long isoform of whirlin contains two harmonin_N_like domains, and three PDZ protein-binding domains, PDZ1-3. The short whirlin isoform, derived from an alternative start ATG, lacks the first harmonin_N_like domain but has in common with the long isoform, this second harmonin_N_like domain (designated repeat 2, included in this subgroup) and PDZ3. This second harmonin_N_like domain is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. 81 -259824 cd07358 HN_PDZD7_like harmonin_N_like domain, a protein-binding module of PDZ domain-containing protein 7 and related proteins. Human PDZD7 is a scaffolding protein which associates with the Usher Syndrome protein network, and localizes to the stereocilia Ankle-link. Usher syndrome is the leading cause of genetic deaf-blindness. PDZD7 has a role as in Usher syndrome type 2 (and not in USH1) in humans. Whirlin, Usherin and GRP98 are other USH2 proteins. The latter two form the ankle links and whirlin is thought to be a scaffold for protein interactions at these links. PDZD7, whirlin, and harmonin (an USH1 protein) have a similar domain composition. The domain represented here is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. Cooperative effects of mutations in PDZD7 and Usherin, and in PDZD7 and GPR98, result in a digenic USH2 phenotype. 78 -153372 cd07359 PCA_45_Doxase_B_like Subunit B of the Class III Extradiol dioxygenase, Protocatechuate 4,5-dioxygenase, and simlar enzymes. This subfamily of class III extradiol dioxygenases consists of a number of proteins with known enzymatic activities: Protocatechuate (PCA) 4,5-dioxygenase (LigAB), 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), 3-O-Methylgallate Dioxygenase, 2-aminophenol 1,6-dioxygenase, as well as proteins without any known enzymatic activity. These proteins play essential roles in the degradation of aromatic compounds by catalyzing the incorporation of both atoms of molecular oxygen into their preferred substrates. As members of the Class III extradiol dioxygenase family, the enzymes use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like class III enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. 271 -153373 cd07361 MEMO_like Memo (mediator of ErbB2-driven cell motility) is co-precipitated with the C terminus of ErbB2, a protein involved in cell motility. This subfamily is composed of Memo (mediator of ErbB2-driven cell motility) and similar proteins. Memo is a protein that is co-precipitated with the C terminus of ErbB2, a protein involved in cell motility. It is required for the ErbB2-driven cell mobility and is found in protein complexes with cofilin, ErbB2 and PLCgamma1. However, Memo is not homologous to any known signaling proteins, and its function in ErbB2 signaling is not known. Structural studies show that Memo binds directly to a specific ErbB2-derived phosphopeptide. Memo is homologous to class III nonheme iron-dependent extradiol dioxygenases, however, no metal binding or enzymatic activity can be detected for Memo. This subfamily also contains a few members containing a C-terminal AMMECR1-like domain. The AMMECR1 protein was proposed to be a regulatory factor that is potentially involved in the development of AMME contiguous gene deletion syndrome. 266 -153374 cd07362 HPCD_like Class III extradiol dioxygenases with similarity to homoprotocatechuate 2,3-dioxygenase, which catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate. This subfamily of class III extradiol dioxygenases consists of two types of proteins with known enzymatic activities; 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD) and 2-amino-5-chlorophenol 1,6-dioxygenase. HPCD catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate (hpca), a central intermediate in the bacterial degradation of aromatic compounds. The enzyme incorporates both atoms of molecular oxygen into hpca, resulting in aromatic ring-opening to yield the product alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. 2-amino-5-chlorophenol 1,6-dioxygenase catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. The enzyme is probably a heterotetramer composed of two alpha and two beta subunits. Alpha and beta subunits share significant sequence similarity and both belong to this family. Like all Class III extradiol dioxygenases, these enzymes use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 272 -153375 cd07363 45_DOPA_Dioxygenase The Class III extradiol dioxygenase, 4,5-DOPA Dioxygenase, catalyzes the incorporation of both atoms of molecular oxygen into 4,5-dihydroxy-phenylalanine. This subfamily is composed of plant 4,5-DOPA Dioxygenase, the uncharacterized Escherichia coli protein Jw3007, and similar proteins. 4,5-DOPA Dioxygenase catalyzes the incorporation of both atoms of molecular oxygen into 4,5-dihydroxy-phenylalanine (4,5-DOPA). The reaction results in the opening of the cyclic ring between carbons 4 and 5 and producing an unstable seco-DOPA that rearranges to betalamic acid. 4,5-DOPA Dioxygenase is a key enzyme in the biosynthetic pathway of the plant pigment betalain. Homologs of DODA are present not only in betalain-producing plants but also in bacteria and archaea. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 253 -153376 cd07364 PCA_45_Dioxygenase_B Subunit B of the Class III extradiol dioxygenase, Protocatechuate 4,5-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of protocatechuate. Protocatechuate 4,5-dioxygenase (LigAB) catalyzes the oxidization and subsequent ring-opening of protocatechuate (or 3,4-dihydroxybenzoic acid, PCA), an intermediate in the breakdown of lignin and other compounds. Protocatechuate 4,5-dioxygenase is an aromatic ring opening dioxygenase belonging to the class III extradiol enzyme family, a group of enyzmes that cleaves aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon using a non-heme Fe(II). LigAB is composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. The B subunit (LigB) is the catalytic subunit of LigAB. 277 -153377 cd07365 MhpB_like Subunit B of the Class III Extradiol ring-cleavage dioxygenase, 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), which catalyzes the oxidization and subsequent ring-opening of 2,3-dihydroxyphenylpropionate. 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) catalyzes the oxidization and subsequent ring-opening of 2,3-dihydroxyphenylpropionate, yielding the product 2-hydroxy-6-oxo-nona-2,4-diene 1,9-dicarboxylate. It is an essential enzyme in the beta-phenylpropionic degradation pathway, in which beta-phenylpropionic is first hydrolyzed to produce 2,3-dihydroxyphenylpropionate. The enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like class III enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. MhpB is likely to be a tetramer. 310 -153378 cd07366 3MGA_Dioxygenase Subunit B of the Class III Extradiol ring-cleavage dioxygenase, 3-O-Methylgallate Dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 3-O-Methylgallate. 3-O-Methylgallate Dioxygenase catalyzes the oxidization and subsequent ring-opening of 3-O-Methylgallate (3MGA) between carbons 2 and 3. 3-O-Methylgallate Dioxygenase is a key enzyme in the syringate degradation pathway, in which the syringate is first converted to 3-O-Methylgallate by O-demethylase. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which uses a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. 328 -153379 cd07367 CarBb CarBb is the B subunit of the Class III Extradiol ring-cleavage dioxygenase, 2-aminophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-aminophenyl-2,3-diol. CarBb is the B subunit of 2-aminophenol 1,6-dioxygenase (CarB), which catalyzes the oxidization and subsequent ring-opening of 2-aminophenyl-2,3-diol. It is a key enzyme in the carbazole degradation pathway isolated from bacterial strains with carbazole degradation ability. The enzyme is a heterotetramer composed of two A and two B subunits. CarB belongs to the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Although the enzyme was originally isolated as a meta-cleavage enzyme for 2'-aminobiphenyl-2,3-diol involved in carbazole degradation, it has also shown high specificity for 2,3-dihydroxybiphenyl. 268 -153380 cd07368 PhnC_Bs_like PhnC is a Class III Extradiol ring-cleavage dioxygenase involved in the polycyclic aromatic hydrocarbon (PAH) catabolic pathway. This subfamily is composed of Burkholderia sp. PhnC and similar poteins. PhnC is one of nine protein products encoded by the phn locus. These proteins are involved in the polycyclic aromatic hydrocarbon (PAH) catabolic pathway. PhnC is a member of the class III extradiol dioxygenase family, a group os enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. 277 -153381 cd07369 PydA_Rs_like PydA is a Class III Extradiol ring-cleavage dioxygenase required for the degradation of 3-hydroxy-4-pyridone (HP). This subfamily is composed of Rhizobium sp. PydA and similar proteins. PydA is required for the degradation of 3-hydroxy-4-pyridone (HP), an intermediate in the Leucaena toxin mimosine degradation pathway. It is a member of the class III extradiol dioxygenase family, a group of enzymes that use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. 329 -153382 cd07370 HPCD The Class III extradiol dioxygenase, homoprotocatechuate 2,3-dioxygenase, catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate. 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase (HPCD) catalyzes the key ring cleavage step in the metabolism of homoprotocatechuate (hpca), a central intermediate in the bacterial degradation of aromatic compounds. The enzyme incorporates both atoms of molecular oxygen into hpca, resulting in aromatic ring-opening to yield alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. HPCD is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 280 -153383 cd07371 2A5CPDO_AB The alpha and beta subunits of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol. This subfamily contains both alpha and beta subunits of 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO), which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation. 2A5CPDO is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. Alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication. 268 -153384 cd07372 2A5CPDO_B The beta subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol. 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO), catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active 2A5CPDO enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. The alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication. This model describes the beta subunit, which contains a putative metal binding site with two conserved histidines; these residues are equivalent to two out of three Fe(II) binding residues present in the catalytic subunit dioxygenase LigB. The alpha subunit does not contain these potential metal binding residues. The 2A5CPDO beta subunit may be the catalytic subunit of the enzyme. 294 -153385 cd07373 2A5CPDO_A The alpha subunit of the Class III extradiol dioxygenase, 2-amino-5-chlorophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol. 2-amino-5-chlorophenol 1,6-dioxygenase (2A5CPDO) catalyzes the oxidization and subsequent ring-opening of 2-amino-5-chlorophenol, which is an intermediate during p-chloronitrobenzene degradation. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. The active enzyme is probably a heterotetramer, composed of two alpha and two beta subunits. The alpha and beta subunits share significant sequence similarity and may have evolved by gene duplication. This model describes the alpha subunit, which does not contain a potential metal binding site and may not possess catalytic activity. 271 -143620 cd07374 CYTH-like_Pase CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) Phosphatases. CYTH-like superfamily enzymes hydrolyze triphosphate-containing substrates and require metal cations as cofactors. They have a unique active site located at the center of an eight-stranded antiparallel beta barrel tunnel (the triphosphate tunnel). The name CYTH originated from the gene designation for bacterial class IV adenylyl cyclases (CyaB), and from thiamine triphosphatase. Class IV adenylate cyclases catalyze the conversion of ATP to 3',5'-cyclic AMP (cAMP) and PPi. Thiamine triphosphatase is a soluble cytosolic enzyme which converts thiamine triphosphate to thiamine diphosphate. This domain superfamily also contains RNA triphosphatases, membrane-associated polyphosphate polymerases, tripolyphosphatases, nucleoside triphosphatases, nucleoside tetraphosphatases and other proteins with unknown functions. 174 -153408 cd07375 Anticodon_Ia_like Anticodon-binding domain of class Ia aminoacyl tRNA synthetases and similar domains. This domain is found in a variety of class Ia aminoacyl tRNA synthetases, C-terminal to the catalytic core domain. It recognizes and specifically binds to the anticodon of the tRNA. Aminoacyl tRNA synthetases catalyze the transfer of cognate amino acids to the 3'-end of their tRNAs by specifically recognizing cognate from non-cognate amino acids. Members include valyl-, leucyl-, isoleucyl-, cysteinyl-, arginyl-, and methionyl-tRNA synthethases. This superfamily also includes a domain from MshC, an enzyme in the mycothiol biosynthetic pathway. 117 -143511 cd07376 PLPDE_III_DSD_D-TA_like Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes Similar to D-Serine Dehydratase and D-Threonine Aldolase. This family includes eukaryotic D-serine dehydratases (DSD), cryptic DSDs from bacteria, D-threonine aldolases (D-TA), low specificity D-TAs, and similar uncharacterized proteins. DSD catalyzes the dehydration of D-serine to aminoacrylate, which is rapidly hydrolyzed to pyruvate and ammonia. D-TA reversibly catalyzes the aldol cleavage of D-threonine into glycine and acetaldehyde, and the synthesis of D-threonine from glycine and acetaldehyde. Members of this family are fold type III PLP-dependent enzymes, similar to bacterial alanine racemase (AR), which contains an N-terminal PLP-binding TIM barrel domain and a C-terminal beta-sandwich domain. AR exists as homodimers with active sites that lie at the interface between the TIM barrel domain of one subunit and the beta-sandwich domain of the other subunit. Based on similarity to AR, it is possible members of this family also form dimers in solution. 345 -153418 cd07377 WHTH_GntR Winged helix-turn-helix (WHTH) DNA-binding domain of the GntR family of transcriptional regulators. This CD represents the winged HTH DNA-binding domain of the GntR (named after the gluconate operon repressor in Bacillus subtilis) family of bacterial transcriptional regulators and their putative homologs found in eukaryota and archaea. The GntR family has over 6000 members distributed among almost all bacterial species, which is comprised of FadR, HutC, MocR, YtrA, AraR, PlmA, and other subfamilies for the regulation of the most varied biological process. The monomeric proteins of the GntR family are characterized by two function domains: a small highly conserved winged helix-turn-helix prokaryotic DNA binding domain in the N-terminus, and a very diverse regulatory ligand-binding domain in the C-terminus for effector-binding/oligomerization, which provides the basis for the subfamily classifications. Binding of the effector to GntR-like transcriptional regulators is presumed to result in a conformational change that regulates the DNA-binding affinity of the repressor. The GntR-like proteins bind as dimers, where each monomer recognizes a half-site of 2-fold symmetric DNA sequences. 66 -277324 cd07378 MPP_ACP5 Homo sapiens acid phosphatase 5 and related proteins, metallophosphatase domain. Acid phosphatase 5 (ACP5) removes the mannose 6-phosphate recognition marker from lysosomal proteins. The exact site of dephosphorylation is not clear. Evidence suggests dephosphorylation may take place in a prelysosomal compartment as well as in the lysosome. ACP5 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 286 -277325 cd07379 MPP_239FB Homo sapiens 239FB and related proteins, metallophosphatase domain. 239FB (Fetal brain protein 239) is thought to play a role in central nervous system development, but its specific role in unknown. 239FB is expressed predominantly in human fetal brain from a gene located in the chromosome 11p13 region associated with the mental retardation component of the WAGR (Wilms tumor, Aniridia, Genitourinary anomalies, Mental retardation) syndrome. Orthologous brp-like (brain protein 239-like) proteins have been identified in the invertebrate amphioxus group and in vertebrates. 239FB belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 135 -277326 cd07380 MPP_CWF19_N Schizosaccharomyces pombe CWF19 and related proteins, N-terminal metallophosphatase domain. CWF19 cell cycle control protein (also known as CWF19-like 1 (CWF19L1) in Homo sapiens), N-terminal metallophosphatase domain. CWF19 contains C-terminal domains similar to that found in the CwfJ cell cycle control protein. The metallophosphatase domain belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 149 -277327 cd07381 MPP_CapA CapA and related proteins, metallophosphatase domain. CapA is one of three membrane-associated enzymes in Bacillus anthracis that is required for synthesis of gamma-polyglutamic acid (PGA), a major component of the bacterial capsule. The YwtB and PgsA proteins of Bacillus subtilis are closely related to CapA and are also included in this alignment model. CapA belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 239 -277328 cd07382 MPP_DR1281 Deinococcus radiodurans DR1281 and related proteins, metallophosphatase domain. DR1281 is an uncharacterized Deinococcus radiodurans protein with a domain that belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 255 -277329 cd07383 MPP_Dcr2 Saccharomyces cerevisiae DCR2 phosphatase and related proteins, metallophosphatase domain. DCR2 phosphatase (Dosage-dependent Cell Cycle Regulator 2) functions together with DCR1 (Gid8) in a common pathway to accelerate initiation of DNA replication in Saccharomyces cerevisiae. Genetic analysis suggests that DCR1 functions upstream of DCR2. DCR2 interacts with and dephosphorylates Sic1, an inhibitor of mitotic cyclin/cyclin-dependent kinase complexes, which may serve to trigger the initiation of cell division. DCR2 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 202 -277330 cd07384 MPP_Cdc1_like Saccharomyces cerevisiae CDC1 and related proteins, metallophosphatase domain. Cdc1 (also known as XlCdc1 in Xenopus laevis) is an endoplasmic reticulum-localized transmembrane lipid phosphatase with a metallophosphatase domain facing the ER lumen. In budding yeast, the gene encoding CDC1 is essential while nonlethal mutations cause defects in Golgi inheritance and actin polarization. Cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1 is a lipid phosphatase. Cdc1 mutant cells also have highly elevated intracellular calcium levels suggesting a possible role for Cdc1 in calcium regulation. The 5' flanking region of Cdc1 is a regulatory region with conserved binding site motifs for AP1, AP2, Sp1, NF-1 and CREB. DNA polymerase delta consists of at least four subunits - Pol3, Cdc1, Cdc27, and Cdm1. This group also contains Saccharomyces cerevisiae TED1 (Trafficking of Emp24p/Erv25p-dependent cargo disrupted 1), which acts together with Emp24p and Erv25p in cargo exit from the ER, and human MPPE1. The human MPPE1 gene is a candidate susceptibility gene for bipolar disorder. These proteins belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 172 -277331 cd07385 MPP_YkuE_C Bacillus subtilis YkuE and related proteins, C-terminal metallophosphatase domain. YkuE is an uncharacterized Bacillus subtilis protein with a C-terminal metallophosphatase domain and an N-terminal twin-arginine (RR) motif. An RR-signal peptide derived from the Bacillus subtilis YkuE protein can direct Tat-dependent secretion of agarase in Streptomyces lividans. This is an indication that YkuE is transported by the Bacillus subtilis Tat (Twin-arginine translocation) pathway machinery. YkuE belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 224 -277332 cd07386 MPP_DNA_pol_II_small_archeal_C archeal DNA polymerase II, small subunit, C-terminal metallophosphatase domain. The small subunit of the archeal DNA polymerase II contains a C-terminal metallophosphatase domain. This domain is thought to be functionally active because the active site residues required for phosphoesterase activity in other members of this superfamily are intact. The archeal replicative DNA polymerases are thought to possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. This domain belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 243 -277333 cd07387 MPP_PolD2_C PolD2 (DNA polymerase delta, subunit 2), C-terminal domain. PolD2 (DNA polymerase delta, subunit 2) is an auxiliary subunit of the eukaryotic DNA polymerase delta (PolD) complex thought to play a regulatory role and to serve as a scaffold for PolD assembly by interacting simultaneously with all of the other three subunits. PolD2 is catalytically inactive and lacks the active site residues required for phosphoesterase activity in other members of this superfamily. PolD2 is also involved in the recruitment of several proteins regulating DNA metabolism, including p21, PDIP1, PDIP38, PDIP46, and WRN. Human PolD consists of four subunits: p125 (PolD1), p50 (PolD2), p66(PolD3), and p12(PolD4). PolD is one of three major replicases in eukaryotes. PolD also plays an essential role in translesion DNA synthesis, homologous recombination, and DNA repair. Within the PolD complex, PolD2 tightly associates with PolD3. PolD2 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 257 -277334 cd07388 MPP_Tt1561 Thermus thermophilus Tt1561 and related proteins, metallophosphatase domain. This family includes bacterial proteins related to Tt1561 (also known as Aq1956 in Aquifex aeolicus), an uncharacterized Thermus thermophilus protein. The conserved domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets, and is thought to allow for productive metal coordination. However, the active site residues required for phosphoesterase activity in other members of this superfamily are poorly conserved in this functionally uncharacterized family. 224 -277335 cd07389 MPP_PhoD Bacillus subtilis PhoD and related proteins, metallophosphatase domain. PhoD (also known as alkaline phosphatase D/APaseD in Bacillus subtilis) is a secreted phosphodiesterase encoded by phoD of the Pho regulon in Bacillus subtilis. PhoD homologs are found in prokaryotes, eukaryotes, and archaea. PhoD contains a twin arginine (RR) motif and is transported by the Tat (Twin-arginine translocation) translocation pathway machinery (TatAyCy). This family also includes the Fusarium oxysporum Fso1 protein. PhoD belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 242 -277336 cd07390 MPP_AQ1575 Aquifex aeolicus AQ1575 and related proteins, metallophosphatase domain. This family includes bacterial and archeal proteins homologous to AQ1575, an uncharacterized Aquifex aeolicus protein. AQ1575 may play an accessory role in DNA repair, based on the close proximity of its gene to Holliday junction resolvasome genes. The domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 170 -277337 cd07391 MPP_PF1019 Pyrococcus furiosus PF1019 and related proteins, metallophosphatase domain. This family includes bacterial and archeal proteins homologous to PF1019, an uncharacterized Pyrococcus furiosus protein. The domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 175 -277338 cd07392 MPP_PAE1087 Pyrobaculum aerophilum PAE1087 and related proteins, metallophosphatase domain. PAE1087 is an uncharacterized Pyrobaculum aerophilum protein with a metallophosphatase domain. The domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 190 -277339 cd07393 MPP_DR1119 Deinococcus radiodurans DR1119 and related proteins, metallophosphatase domain. DR1119 is an uncharacterized Deinococcus radiodurans protein with a metallophosphatase domain. The domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 238 -163637 cd07394 MPP_Vps29 Homo sapiens Vps29 and related proteins, metallophosphatase domain. Vps29 (vacuolar sorting protein 29), also known as vacuolar membrane protein Pep11, is a subunit of the retromer complex which is responsible for the retrieval of mannose-6-phosphate receptors (MPRs) from the endosomes for retrograde transport back to the Golgi. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer complex assembly as well as a phosphatase with specificity for the cytoplasmic tail of the MPR. The retromer includes the following 5 subunits: Vps35, Vps26, Vps29, and a dimer of the sorting nexins Vps5 (Snx1), and Vps17 (Snx2). Vps29 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 178 -277340 cd07395 MPP_CSTP1 Homo sapiens CSTP1 and related proteins, metallophosphatase domain. CSTP1 (complete S-transactivated protein 1) is an uncharacterized Homo sapiens protein with a metallophosphatase domain, that is transactivated by the complete S protein of hepatitis B virus. CSTP1 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 263 -277341 cd07396 MPP_Nbla03831 Homo sapiens Nbla03831 and related proteins, metallophosphatase domain. Nbla03831 (also known as LOC56985) is an uncharacterized Homo sapiens protein with a domain that belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 245 -277342 cd07397 MPP_NostocDevT-like Nostoc DevT and similar proteins, metallophosphatase domain. DevT (Alr4674) is a putative protein phosphatase from Nostoc PCC 7120 (Anabaena PCC 7120). DevT mutants form mature heterocysts, but they are unable to fix N(2) and must be supplied with a source of combined nitrogen in order to survive. Anabaena DevT shows homology to phosphatases of the PPP family and displays a Mn(2+)-dependent phosphatase activity. DevT is constitutively expressed in both vegetative cells and heterocysts, and is not regulated by NtcA. The heterocyst regulator HetR may exert a certain inhibition on the expression of devT. Under diazotrophic growth conditions, DevT protein accumulates specifically in mature heterocysts. The role that DevT plays in a late essential step of heterocyst differentiation is still unknown. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 245 -277343 cd07398 MPP_YbbF-LpxH Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain. YbbF/LpxH is an Escherichia coli UDP-2,3-diacylglucosamine hydrolase thought to catalyze the fourth step of lipid A biosynthesis, in which a precursor UDP-2,3-diacylglucosamine is hydrolyzed to yield 2,3-diacylglucosamine 1-phosphate and UMP. YbbF belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 217 -277344 cd07399 MPP_YvnB Bacillus subtilis YvnB and related proteins, metallophosphatase domain. YvnB (BSU35040) is an uncharacterized Bacillus subtilis protein with a metallophosphatase domain. This family includes bacterial and eukaryotic proteins similar to YvnB. YvnB belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 207 -277345 cd07400 MPP_1 Uncharacterized subfamily, metallophosphatase domain. Uncharacterized subfamily of the MPP superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 138 -277346 cd07401 MPP_TMEM62_N Homo sapiens TMEM62, N-terminal metallophosphatase domain. TMEM62 (transmembrane protein 62) is an uncharacterized Homo sapiens transmembrane protein with an N-terminal metallophosphatase domain. TMEM62 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 254 -277347 cd07402 MPP_GpdQ Enterobacter aerogenes GpdQ and related proteins, metallophosphatase domain. GpdQ (glycerophosphodiesterase Q, also known as Rv0805 in Mycobacterium tuberculosis) is a binuclear metallophosphoesterase from Enterobacter aerogenes that catalyzes the hydrolysis of mono-, di-, and triester substrates, including some organophosphate pesticides and products of the degradation of nerve agents. The GpdQ homolog, Rv0805, has 2',3'-cyclic nucleotide phosphodiesterase activity. GpdQ and Rv0805 belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 240 -277348 cd07403 MPP_TTHA0053 Thermus thermophilus TTHA0053 and related proteins, metallophosphatase domain. TTHA0053 is an uncharacterized Thermus thermophilus protein with a domain that belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 130 -277349 cd07404 MPP_MS158 Microscilla MS158 and related proteins, metallophosphatase domain. MS158 is an uncharacterized Microscilla protein with a metallophosphatase domain. Microscilla proteins MS152, and MS153 are also included in this family. The domain present in members of this family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 201 -277350 cd07405 MPP_UshA_N Escherichia coli UshA and related proteins, N-terminal metallophosphatase domain. UshA is a bacterial periplasmic enzyme with UDP-sugar hydrolase and dinucleoside-polyphosphate hydrolase activities associated with its N-terminal metallophosphatase domain, and 5'-nucleotidase activity associated with its C-terminal domain. UshA has been studied in Escherichia coli where it is expressed from the ushA gene as an immature precursor and proteolytically cleaved to form a mature product upon export to the periplasm. UshA hydrolyzes many different nucleotides and nucleotide derivatives and has been shown to degrade external UDP-glucose to uridine, glucose 1-phosphate and phosphate for utilization by the cell. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 287 -277351 cd07406 MPP_CG11883_N Drosophila melanogaster CG11883 and related proteins, N-terminal metallophosphatase domain. CG11883 is an uncharacterized Drosophila melanogaster UshA-like protein with two domains, an N-terminal metallophosphatase domain and a C-terminal nucleotidase domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 257 -277352 cd07407 MPP_YHR202W_N Saccharomyces cerevisiae YHR202W and related proteins, N-terminal metallophosphatase domain. YHR202W is an uncharacterized Saccharomyces cerevisiae UshA-like protein with two domains, an N-terminal metallophosphatase domain and a C-terminal nucleotidase domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 286 -277353 cd07408 MPP_SA0022_N Staphylococcus aureus SA0022 and related proteins, N-terminal metallophosphatase domain. SA0022 is an uncharacterized Staphylococcus aureus UshA-like protein with two putative domains, an N-terminal metallophosphatase domain and a C-terminal nucleotidase domain. SA0022 also contains a putative C-terminal cell wall anchor domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 255 -277354 cd07409 MPP_CD73_N CD73 ecto-5'-nucleotidase and related proteins, N-terminal metallophosphatase domain. CD73 is a mammalian ecto-5'-nucleotidase expressed in endothelial cells and lymphocytes that catalyzes the conversion of 5'-AMP to adenosine in the final step of a pathway that generates adenosine from ATP. This pathway also includes a CD39 nucleoside triphosphate dephosphorylase that mediates the dephosphorylation of ATP to ADP and then to 5'-AMP. These enzymes all have an N-terminal metallophosphatase domain and a C-terminal 5'nucleotidase domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 279 -277355 cd07410 MPP_CpdB_N Escherichia coli CpdB and related proteins, N-terminal metallophosphatase domain. CpdB is a bacterial periplasmic protein with an N-terminal metallophosphatase domain and a C-terminal 3'-nucleotidase domain. This alignment model represents the N-terminal metallophosphatase domain, which has 2',3'-cyclic phosphodiesterase activity, hydrolyzing the 2',3'-cyclic phosphates of adenosine, guanosine, cytosine and uridine to yield nucleoside and phosphate. CpdB also hydrolyzes the chromogenic substrates p-nitrophenyl phosphate (PNPP), bis(PNPP) and p-nitrophenyl phosphorylcholine (NPPC). CpdB is thought to play a scavenging role during RNA hydrolysis by converting the non-transportable nucleotides produced by RNaseI to nucleosides which can easily enter a cell for use as a carbon source. This family also includes YfkN, a Bacillus subtilis nucleotide phosphoesterase with two copies of each of the metallophosphatase and 3'-nucleotidase domains. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 280 -277356 cd07411 MPP_SoxB_N Thermus thermophilus SoxB and related proteins, N-terminal metallophosphatase domain. SoxB (sulfur oxidation protein B) is a periplasmic thiosulfohydrolase and an essential component of the sulfur oxidation pathway in archaea and bacteria. SoxB has a dinuclear manganese cluster and is thought to catalyze the release of sulfate from a protein-bound cysteine S-thiosulfonate. SoxB is expressed from the sox (sulfur oxidation) gene cluster, which encodes 15 other sox genes, and has two domains, an N-terminal metallophosphatase domain and a C-terminal 5'-nucleotidase domain. SoxB binds the SoxYZ complex and is thought to function as a sulfate-thiohydrolase. SoxB is closely related to the UshA, YchR, and CpdB proteins, all of which have the same two-domain architecture. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 273 -277357 cd07412 MPP_YhcR_N Bacillus subtilis YhcR endonuclease and related proteins, N-terminal metallophosphatase domain. YhcR is a Bacillus subtilis sugar-nonspecific endonuclease. It cleaves endonucleolytically to yield nucleotide 3'-monophosphate products, similar to Staphylococcus aureus micrococcal nuclease. YhcR appears to be located in the cell wall, and is thought to be a substrate for a Bacillus subtilis sortase. YhcR is the major calcium-activated nuclease of B. subtilis. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 295 -277358 cd07413 MPP_PA3087 Pseudomonas aeruginosa PA3087 and related proteins, metallophosphatase domain. PA3087 is an uncharacterized protein from Pseudomonas aeruginosa with a metallophosphatase domain that belongs to the phosphoprotein phosphatase (PPP) family. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 222 -277359 cd07414 MPP_PP1_PPKL PP1, PPKL (PP1 and kelch-like) enzymes, and related proteins, metallophosphatase domain. PP1 (protein phosphatase type 1) is a serine/threonine phosphatase that regulates many cellular processes including: cell-cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling, through its interaction with at least 180 known targeting proteins. PP1 occurs in all tissues and regulates many pathways, ranging from cell-cycle progression to carbohydrate metabolism. Also included here are the PPKL (PP1 and kelch-like) enzymes including the PPQ, PPZ1, and PPZ2 fungal phosphatases. These PPKLs have a large N-terminal kelch repeat in addition to a C-terminal phosphoesterase domain. The PPP (phosphoprotein phosphatase) family, to which PP1 belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 291 -277360 cd07415 MPP_PP2A_PP4_PP6 PP2A, PP4, and PP6 phosphoprotein phosphatases, metallophosphatase domain. PP2A-like family of phosphoprotein phosphatases (PPP's) including PP4 and PP6. PP2A (Protein phosphatase 2A) is a critical regulator of many cellular activities. PP2A comprises about 1% of total cellular proteins. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all serine/threonine phosphatase activities in most cells and tissues. The PP2A subunit in addition to having a catalytic domain homologous to PP1, has a unique C-terminal tail, containing a motif that is conserved in the catalytic subunits of all PP2A-like phosphatases including PP4 and PP6, and has an important role in PP2A regulation. The PP2A-like family of phosphatases all share a similar heterotrimeric architecture, that includes: a 65kDa scaffolding subunit (A), a 36kDa catalytic subunit (C), and one of 18 regulatory subunits (B). The PPP (phosphoprotein phosphatase) family, to which PP2A belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 285 -277361 cd07416 MPP_PP2B PP2B, metallophosphatase domain. PP2B (calcineurin) is a unique serine/threonine protein phosphatase in its regulation by a second messenger (calcium and calmodulin). PP2B is involved in many biological processes including immune responses, the second messenger cAMP pathway, sodium/potassium ion transport in the nephron, cell cycle progression in lower eukaryotes, cardiac hypertrophy, and memory formation. PP2B is highly conserved from yeast to humans, but is absent from plants. PP2B is a heterodimer consisting of a catalytic subunit (CnA) and a regulatory subunit (CnB); CnB contains four Ca2+ binding motifs referred to as EF hands. The PPP (phosphoprotein phosphatase) family, to which PP2B belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 305 -277362 cd07417 MPP_PP5_C PP5, C-terminal metallophosphatase domain. Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP gene family of protein phosphatases that is highly conserved among eukaryotes and widely expressed in mammalian tissues. PP5 has a C-terminal phosphatase domain and an extended N-terminal TPR (tetratricopeptide repeat) domain containing three TPR motifs. The PPP (phosphoprotein phosphatase) family, to which PP5 belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 316 -163661 cd07418 MPP_PP7 PP7, metallophosphatase domain. PP7 is a plant phosphoprotein phosphatase that is highly expressed in a subset of stomata and thought to play an important role in sensory signaling. PP7 acts as a positive regulator of signaling downstream of cryptochrome blue light photoreceptors. PP7 also controls amplification of phytochrome signaling, and interacts with nucleotidediphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signalling. In addition, PP7 interacts with heat shock transcription factor HSF and up-regulates protective heat shock proteins. PP7 may also play a role in salicylic acid-dependent defense signaling. The PPP (phosphoprotein phosphatase) family, to which PP7 belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP2A, PP2B (calcineurin), PP4, PP5, PP6, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 377 -277363 cd07419 MPP_Bsu1_C Arabidopsis thaliana Bsu1 phosphatase and related proteins, C-terminal metallophosphatase domain. Bsu1 encodes a nuclear serine-threonine protein phosphatase found in plants and protozoans. Bsu1 has a C-terminal phosphatase domain and an N-terminal Kelch-repeat domain. Bsu1 is preferentially expressed in elongating plant cells. It modulates the phosphorylation state of Bes1, a transcriptional regulator phosphorylated by the glycogen synthase kinase Bin2, as part of a steroid hormone signal transduction pathway. The PPP (phosphoprotein phosphatase) family, to which Bsu1 belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 311 -277364 cd07420 MPP_RdgC Drosophila melanogaster RdgC and related proteins, metallophosphatase domain. RdgC (retinal degeneration C) is a vertebrate serine-threonine protein phosphatase that is required to prevent light-induced retinal degeneration. In addition to its catalytic domain, RdgC has two C-terminal EF hands. Homologs of RdgC include the human phosphatases protein phosphatase with EF hands 1 and -2 (PPEF-1 and -2). PPEF-1 transcripts are present at low levels in the retina, PPEF-2 transcripts and PPEF-2 protein are present at high levels in photoreceptors. The PPP (phosphoprotein phosphatase) family, to which RdgC belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 297 -163664 cd07421 MPP_Rhilphs Rhilph phosphatases, metallophosphatase domain. Rhilphs (Rhizobiales/ Rhodobacterales/ Rhodospirillaceae-like phosphatases) are a phylogenetically distinct group of PPP (phosphoprotein phosphatases), found only in land plants. They are named for their close relationship to to PPP phosphatases from alpha-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. The PPP (phosphoprotein phosphatase) family, to which the Rhilphs belong, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 304 -277365 cd07422 MPP_ApaH Escherichia coli ApaH and related proteins, metallophosphatase domain. ApaH (also known as symmetrically cleaving Ap4A hydrolase and bis(5'nucleosyl)-tetraphosphatase) is a bacterial member of the PPP (phosphoprotein phosphatase) family of serine/threonine phosphatases that hydrolyzes the nucleotide-signaling molecule diadenosine tetraphosphate (Ap(4)A) into two ADP and also hydrolyzes Ap(5)A, Gp(4)G, and other extending compounds. Null mutations in apaH result in high intracellular levels of Ap(4)A which correlate with multiple phenotypes, including a decreased expression of catabolite-repressible genes, a reduction in the expression of flagellar operons, and an increased sensitivity to UV and heat. Ap4A hydrolase is important in responding to heat shock and oxidative stress via regulating the concentration of Ap4A in bacteria. Ap4A hydrolase is also thought to play a role in siderophore production, but the mechanism by which ApaH interacts with siderophore pathways in unknown. The PPP (phosphoprotein phosphatase) family, to which ApaH belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, and PrpA/PrpB. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 257 -277366 cd07423 MPP_Prp_like Bacillus subtilis PrpE and related proteins, metallophosphatase domain. PrpE (protein phosphatase E) is a bacterial member of the PPP (phosphoprotein phosphatase) family of serine/threonine phosphatases and a key signal transduction pathway component controlling the expression of spore germination receptors GerA and GerK in Bacillus subtilis. PrpE is closely related to ApaH (also known symmetrical Ap(4)A hydrolase and bis(5'nucleosyl)-tetraphosphatase). PrpE has specificity for phosphotyrosine only, unlike the serine/threonine phosphatases to which it is related. The Bacilli members of this family are single domain proteins while the other members have N- and C-terminal domains in addition to this phosphatase domain. Pnkp is the end-healing and end-sealing component of an RNA repair system present in bacteria. It is composed of three catalytic modules: an N-terminal polynucleotide 5' kinase, a central 2',3' phosphatase, and a C-terminal ligase. Pnkp is a Mn(2+)-dependent phosphodiesterase-monoesterase that dephosphorylates 2',3'-cyclic phosphate RNA ends. An RNA binding site is suggested by a continuous tract of positive surface potential flanking the active site. The PPP (phosphoprotein phosphatase) family, to which PrpE belongs, is one of two known protein phosphatase families specific for serine and threonine. The PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 235 -277367 cd07424 MPP_PrpA_PrpB PrpA and PrpB, metallophosphatase domain. PrpA and PrpB are bacterial type I serine/threonine and tyrosine phosphatases thought to modulate the expression of proteins that protect the cell upon accumulation of misfolded proteins in the periplasm. The PPP (phosphoprotein phosphatase) family, to which PrpA and PrpB belong, is one of two known protein phosphatase families specific for serine and threonine. This family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 201 -277368 cd07425 MPP_Shelphs Shewanella-like phosphatases, metallophosphatase domain. This family includes bacterial, eukaryotic, and archeal proteins orthologous to the Shewanella cold-active protein-tyrosine phosphatase, CAPTPase. CAPTPase is an uncharacterized protein that belongs to the Shelph (Shewanella-like phosphatase) family of PPP (phosphoprotein phosphatases). The PPP family is one of two known protein phosphatase families specific for serine and threonine. In addition to Shelps, the PPP family also includes: PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6, PP7, Bsu1, RdgC, PrpE, PrpA/PrpB, and ApA4 hydrolase. The PPP catalytic domain is defined by three conserved motifs (-GDXHG-, -GDXVDRG- and -GNHE-). The PPP enzyme family is ancient with members found in all eukaryotes, and in most bacterial and archeal genomes. Dephosphorylation of phosphoserines and phosphothreonines on target proteins plays a central role in the regulation of many cellular processes. PPPs belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 209 -143631 cd07429 Cby_like Chibby, a nuclear inhibitor of Wnt/beta-catenin mediated transcription, and similar proteins. Chibby(Cby) is a well-conserved nuclear protein that functions as part of the Wnt/beta-catenin signaling pathway. Specifically, Cby binds directly to beta-catenin by interacting with its central region, which harbors armadillo repeats. Cby-beta-catenin interactions may also involve 14-3-3 proteins. By competing with other binding partners of beta-catenin, the Tcf/Lef transcription factors, Cby inhibits transcriptional activation. Cby has been shown to play a role in adipocyte differentiation. The C-terminal region of Cby appears to contain an alpha-helical coiled-coil motif. 108 -143632 cd07430 GH15_N Glycoside hydrolase family 15, N-terminal domain. Members of this family are N-terminal domains uniquely found in bacterial and archaeal glucoamylases and glucodextranases. Glucoamylase (glucan 1,4-alpha-glucosidase; 4-alpha-D-glucan glucohydrolase; amyloglucosidase; exo-1,4-alpha-glucosidase; gamma-amylase; lysosomal alpha-glucosidase; EC 3.2.1.3) hydrolyzes beta-1,4-glucosidic linkages of starch, glycogen and malto-oligosaccharides, releasing beta-D-glucose from the non-reducing end. Glucodextranase (glucan 1,6-alpha-glucosidase; exo-1,6-alpha-glucosidase; EC 3.2.1.70) uses an inverting reaction mechanism to hydrolyze alpha-1,6-glucosidic linkages of dextran and related oligosaccharides, releasing beta-D-glucose from the non-reducing end. These N-terminal domains adopt a structure consisting of antiparallel beta-strands, divided into two beta-sheets, with one sheet wrapped by an extended polypeptide, which appears to stabilize the domain. The function of these domains in the enzymes is as yet unknown. However, it is suggested that domain N of bacterial GA is involved in folding and/or the thermostability of the A domain that forms an (alpha/alpha)6-barrel structure. 260 -213986 cd07431 PHP_PolIIIA Polymerase and Histidinol Phosphatase domain of alpha-subunit of bacterial polymerase III. PolIIIAs that contain an N-terminal PHP domain have been classified into four basic groups based on genome composition, phylogenetic, and domain structural analysis: polC, dnaE1, dnaE2, and dnaE3. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. DNA polymerase III holoenzyme is one of the five eubacterial DNA polymerases that is responsible for the replication of the DNA duplex. The alpha subunit of DNA polymerase III core enzyme catalyzes the reaction for polymerizing both DNA strands. The PolIIIA PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination, and like other PHP structures, exhibits a distorted (beta/alpha) 7 barrel and coordinates up to 3 metals. Initially, it was proposed that PHP region might be involved in pyrophosphate hydrolysis, but such activity has not been found. It has been shown that the PHP domain of PolIIIA has a trinuclear metal complex and is capable of proofreading activity. 179 -213987 cd07432 PHP_HisPPase Polymerase and Histidinol Phosphatase domain of Histidinol phosphate phosphatase. HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to produce histidinol. HisPPase can be classified into two types: the bifunctional HisPPase found in proteobacteria that belongs to the DDDD superfamily and the monofunctional Bacillus subtilis type that is a member of the PHP family. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. The PHP domain of HisPPase is structurally homologous to other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 129 -213988 cd07433 PHP_PolIIIA_DnaE1 Polymerase and Histidinol Phosphatase domain of alpha-subunit of bacterial polymerase III DnaE1. PolIIIAs that contain an N-terminal PHP domain have been classified into four basic groups based on genome composition, phylogenetic, and domain structural analysis: polC, dnaE1, dnaE2, and dnaE3. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. DNA polymerase III holoenzyme is one of the five eubacterial DNA polymerases that are responsible for the replication of the DNA duplex. PolIIIA core enzyme catalyzes the reaction for polymerizing both DNA strands. dnaE1 is the longest compared to dnaE2 and dnaE3. A unique motif was also identified in dnaE1 and dnaE3 genes. 277 -213989 cd07434 PHP_PolIIIA_DnaE2 Polymerase and Histidinol Phosphatase domain of alpha-subunit of bacterial polymerase III at DnaE2 gene. PolIIIA DnaE2 plays a role in SOS mutagenesis/translesion synthesis and has dominant effects in determining GC variability in the bacterial genome. PolIIIAs that contain an N-terminal PHP domain have been classified into four basic groups based on genome composition, phylogenetic, and domain structural analysis: polC, dnaE1, dnaE2, and dnaE3. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. DNA polymerase III holoenzyme is one of the five eubacterial DNA polymerases that are responsible for the replication of the DNA duplex. PolIIIA core enzyme catalyzes the reaction for polymerizing both DNA strands. PolC PHP is located in a different location compared to dnaE1, 2, and 3. dnaE1 is the longest compared to dnaE2 and dnaE3. A unique motif was also identified in dnaE1 and dnaE3 genes. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. PHP domains found in DnaEs of thermophilic origin exhibit 3'-5' exonuclease activity. 260 -213990 cd07435 PHP_PolIIIA_POLC Polymerase and Histidinol Phosphatase domain of alpha-subunit of bacterial polymerase III at PolC gene. DNA polymerase III alphas (PolIIIAs) that contain a PHP domain have been classified into four basic groups based on phylogenetic and domain structural analyses: polC, dnaE1, dnaE2, and dnaE3. The PolC group is distinct from the other three and is clustered together. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. DNA polymerase III holoenzyme is one of the five eubacterial DNA polymerases that are responsible for the replication of the DNA duplex. The alpha subunit of DNA polymerase III core enzyme catalyzes the reaction for polymerizing both DNA strands. PolC PHP is located in different location compare to dnaE1, 2, and 3. The PHP domain has four conserved sequence motifs and and contains an invariant histidine that is involved in metal ion coordination.The PHP domain of PolC is structurally homologous to other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. PHP domains found in dnaEs of thermophilic origin exhibit 3'-5' exonuclease activity. In contrast, PolC PHP lacks detectable nuclease activity. 268 -213991 cd07436 PHP_PolX Polymerase and Histidinol Phosphatase domain of bacterial polymerase X. The bacterial/archaeal X-family DNA polymerases (PolXs) have a PHP domain at their C-terminus. The bacterial/archaeal PolX core domain and PHP domain interact with each other and together are involved in metal dependent 3'-5' exonuclease activity. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. PolX is found in all kingdoms, however bacterial PolXs have a completely different domain structure from eukaryotic PolXs. Bacterial PolX has an extended conformation in contrast to the common closed 'right hand' conformation for DNA polymerases. This extended conformation is stabilized by the PHP domain. The PHP domain of PolX is structurally homologous to other members of the PHP family that has a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 237 -213992 cd07437 PHP_HisPPase_Ycdx_like Polymerase and Histidinol Phosphatase domain of Ycdx like. PHP Ycdx-like is a stand alone PHP domain similar to Ycdx E. coli protein with an unknown physiological role. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. It has also been shown that the PHP domain functions in DNA repair. The PHP structures have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. YcdX may be involved in swarming. 233 -213993 cd07438 PHP_HisPPase_AMP Polymerase and Histidinol Phosphatase domain of Histidinol phosphate phosphatase (HisPPase) AMP bound. The PHP domain of this HisPPase family has an unknown function. It has a second domain inserted in the middle that binds adenosine 5-monophosphate (AMP). The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to give histidinol. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. The PHP domain of HisPPase is structurally homologous to the other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 155 -143633 cd07439 FANCE_c-term Fanconi anemia complementation group E protein, C-terminal domain. Fanconi Anemia (FA) is an autosomal recessive disorder associated with increased susceptibility to various cancers, bone marrow failure, cardiac, renal, and limb malformations, and other characteristics. Cells are highly sensitive to DNA damaging agents. A multi-subunit protein complex, the FA core complex, is responsible for ubiquitination of the protein FANCD2 in response to DNA damage. This monoubiquitination results in a downstream effect on homology-directed DNA repair. FANCE is part of the FA core complex and its C-terminal domain, which is modeled here, has been shown to directly interact with FANCD2. The domain contains a five-fold repeat of a structural unit similar to ARM and HEAT repeats. FANCE appears conserved in metazoa and in plants. 254 -188659 cd07440 RGS Regulator of G protein signaling (RGS) domain superfamily. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. While inactive, G-alpha-subunits bind GDP, which is released and replaced by GTP upon agonist activation. GTP binding leads to dissociation of the alpha-subunit and the beta-gamma-dimer, allowing them to interact with effectors molecules and propagate signaling cascades associated with cellular growth, survival, migration, and invasion. Deactivation of the G-protein signaling controlled by the RGS domain accelerates GTPase activity of the alpha subunit by hydrolysis of GTP to GDP, which results in the reassociation of the alpha-subunit with the beta-gamma-dimer and thereby inhibition of downstream activity. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins are also involved in apoptosis and cell proliferation, as well as modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play important roles in neuronal signals modulation. Some RGS proteins are principal elements needed for proper vision. 113 -143550 cd07441 CRD_SFRP3 Cysteine-rich domain of the secreted frizzled-related protein 3 (SFRP3, alias FRZB), a Wnt antagonist. The cysteine-rich domain (CRD) is an essential part of the secreted frizzled-related protein 3 (SFRP3, alias FRZB), which plays important roles in embryogenesis and postnatal development as an antagonist of Wnt proteins, key players in a number of fundamental cellular processes. SFRPs antagonize the activation of Wnt signaling by binding to the CRD domains of frizzled proteins (Fz), thereby preventing Wnt proteins from binding to these receptors. SFRPs are also known to have functions unrelated to Wnt, as enhancers of procollagen cleavage by the TLD proteinases. SFRPs and Fz proteins both contain CRD domains, but SFRPs lack the seven-pass transmembrane domain which is an integral part of Fzs. SFRP3 regulates Wnt signaling activity in bone development and homeostasis. It is also involved in the control of planar cell polarity. 126 -143551 cd07442 CRD_SFRP4 Cysteine-rich domain of the secreted frizzled-related protein 4 (SFRP4), a Wnt antagonist. The cysteine-rich domain (CRD) is an essential part of the secreted frizzled-related Protein 4 (SFRP4), which regulates the activity of Wnt proteins, key players in a number of fundamental cellular processes such as embryogenesis and postnatal development. SFRPs antagonize the activation of Wnt signaling by binding to the CRDs domains of frizzled (Fz) proteins, thereby preventing Wnt proteins from binding to these receptors. SFRPs are also known to have functions unrelated to Wnt, as enhancers of procollagen cleavage by the TLD proteinases. SFRPs and Fz proteins both contain CRD domains, but SFRPs lack the seven-pass transmembrane domain which is an integral part of Fzs. 127 -143552 cd07443 CRD_SFRP1 Cysteine-rich domain of the secreted frizzled-related protein 1 (SFRP1), a regulator of Wnt activity. The cysteine-rich domain (CRD) is an essential part of the secreted frizzled-related protein 1 (SFRP1), which regulates the activity of Wnt proteins, key players in a number of fundamental cellular processes such as embryogenesis and postnatal development. SFRPs antagonize the activation of Wnt signaling by binding to the CRDs domains of frizzled (Fz) proteins, thereby preventing Wnt proteins from binding to these receptors. SFRPs are also known to have functions unrelated to Wnt, as enhancers of procollagen cleavage by the TLD proteinases. SFRPs and Fz proteins both contain CRD domains, but SFRPs lack the seven-pass transmembrane domain which is an integral part of Fzs. SFRP1 is expressed in many tissues and is involved in the regulation of Wnt signaling in osteoblasts, leading to enhanced trabecular bone formation in adults; it has also been shown to control the growth of retinal ganglion cell axons and the elongation of the antero-posterior axis. 124 -143553 cd07444 CRD_SFRP5 Cysteine-rich domain of the secreted frizzled-related protein 5 (SFRP5), a regulator of Wnt activity. The cysteine-rich domain (CRD) is an essential part of the secreted frizzled-related Protein 5 (SFRP5), which regulates the activity of Wnt proteins, key players in a number of fundamental cellular processes such as embryogenesis and postnatal development. SFRPs antagonize the activation of Wnt signaling by binding to the CRD domains of frizzled (Fz) proteins, thereby preventing Wnt proteins from binding to these receptors. SFRPs are also known to have functions unrelated to Wnt, as enhancers of procollagen cleavage by the TLD proteinases. SFRPs and Fz proteins both contain CRD domains, but SFRPs lack the seven-pass transmembrane domain which is an integral part of Fzs. 127 -143554 cd07445 CRD_corin_1 One of two cysteine-rich domains of the corin protein, a type II transmembrane serine protease . The cysteine-rich domain (CRD) is an essential component of corin, a type II transmembrane serine protease which functions as the convertase of the pro-atrial natriuretic peptide (pro-ANP) in the heart. Corin contains two CRDs in its extracellular region, which play an important role in recognition of the physiological substrate, pro-ANP. This model characterizes the first (N-terminal) CRD. 130 -143555 cd07446 CRD_SFRP2 Cysteine-rich domain of the secreted frizzled-related protein 2 (SFRP2), a regulator of Wnt activity. The cysteine-rich-domain (CRD) is an essential part of the secreted frizzled related protein 2 (SFRP2), which regulates the activity of Wnt proteins, key players in a number of fundamental cellular processes such as embryogenesis and postnatal development. SFRPs antagonize the activation of Wnt signaling by binding to CRD domains of frizzled (Fz) proteins, thereby preventing Wnt proteins from binding to these receptors. SFRPs and Fz proteins both contain CRD domains, but SFRPs lack the seven-pass transmembrane domain which is an integral part of Fzs. As a Wnt antagonist, SFRP2 regulates Nkx2.2 expression in the ventral spinal cord and anteroposterior axis elongation. SFRP2 also has a Wnt-independent function as an enhancer of procollagen cleavage by the TLD proteinases. SFRP2 binds both procollagen and TLD, thus facilitating the enzymatic reaction by bringing together the proteinase and its substrate. 128 -143556 cd07447 CRD_Carboxypeptidase_Z Cysteine-rich domain of carboxypeptidase Z, a member of the carboxypeptidase E family. The cysteine-rich-domain (CRD) is an essential part of carboxypeptidase Z, a member of the carboxypeptidase E family of metallocarboxypeptidases. This is a group of Zn-dependent enzymes implicated in the intra- and extracellular processing of proteins. Carboxypeptidase Z removes C-terminal basic amino acid residues from its substrates, particularly arginine. The CRD acts as a ligand-binding domain for Wnts involved in developmental processes. CPZ binds and may process Wnt-4, CPZ has also been found to enhance the induction of the homeobox gene Cdx1. During vertebrate embryogenesis, the CRD of CPZ upregulates Pax3, a Wnt reporter gene essential for patterning of somites and limb development. 128 -143557 cd07448 CRD_FZ4 Cysteine-rich Wnt-binding domain of the frizzled 4 (Fz4) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 4 (Fz4) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and the Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Frizzled 4 (Fz4) activates the Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C of the Wnt/Ca(2+) signaling pathway during retinal angiogenesis. Mutations in Fz4 lead to familial exudative vitreoretinopathy (FEVR), a hereditary ocular disorder characterized by failure of the peripheral retinal vascularization. In addition, the interplay between Fz4 and norrin as a receptor-ligand pair plays an important role in vascular development in the retina and inner ear in a Wnt-independent manner. 126 -143558 cd07449 CRD_FZ3 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 3 (Fz3) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 3 (Fz3) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Fz3 plays a vital role in the anterior-posterior guidance of commissural axons. Knockout mice without Fz3 show defects in fiber tracts in the rostral CNS. 127 -143559 cd07450 CRD_FZ6 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 6 (Fz6) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 6 (Fz6) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Frizzled 6 (Fz6) is expressed in the skin and hair follicles and controls hair patterning in mammals using a Fz-dependent tissue polarity system, which is similar to the one that patterns the Drosophila cuticle. 127 -143560 cd07451 CRD_SMO Cysteine-rich domain of the smoothened receptor (Smo) integral membrane protein. The cysteine-rich domain (CRD) is part of the smoothened receptor (Smo), an integral membrane protein and one of the key players in the Hedgehog (Hh) signaling pathway, critical for development, cell growth and migration, as well as stem cell maintenance. The CRD of Smo is conserved in vertebrates and can also be identified in invertebrates. The precise function of the CRD in Smo is unknown. Mutations in the Drosophila CRD disrupt Smo activity in vivo, while deletion of the CRD in mammalian cells does not seem to affect the activity of overexpressed Smo. 132 -143561 cd07452 CRD_sizzled Cysteine-rich domain of the sizzled protein. The cysteine-rich domain (CRD) is an essential part of the sizzled protein, which regulates bone morphogenetic protein (Bmp) signaling by stabilizing chordin, and plays a critical role in the patterning of vertebrate and invertebrate embryos. Sizzled also functions in the ventral region as a Wnt inhibitor and modulates canonical Wnt signaling. Sizzled proteins belong to the secreted frizzled-related protein family (SFRP), and have be identified in the genomes of birds, fishes and frogs, but not mammals. 141 -143562 cd07453 CRD_crescent Cysteine-rich domain of the crescent protein. The cysteine-rich domain (CRD) is an essential part of the crescent protein, a member of the secreted frizzled-related protein (SFRP) family, which regulates convergent extension movements (CEMs) during gastrulation and neurulation. Xenopus laevis crescent efficiently forms inhibitory complexes with Wnt5a and Wnt11, but this effect is cancelled in the presence of another member of the SFRP family, Frzb1. A potential role for Crescent in head formation is to regulate a non-canonical Wnt pathway positively in the adjacent posterior mesoderm, and negatively in the overlying anterior neuroectoderm. 135 -143563 cd07454 CRD_LIN_17 Cysteine-rich domain (CRD) of LIN_17. A cysteine-rich domain (CRD) is an essential component of a number of cell surface receptors, which are involved in multiple signal transduction pathways, particularly in modulating the activity of the Wnt proteins, which play a fundamental role in the early development of metazoans. CRD is also found in secreted frizzled related proteins (SFRPs), which lack the transmembrane segment found in the frizzled protein. The CRD domain is also present in the alpha-1 chain of mouse type XVIII collagen, in carboxypeptidase Z, several receptor tyrosine kinases, and the mosaic transmembrane serine protease corin. The CRD domain is well conserved in metazoans - 10 frizzled proteins have been identified in mammals, 4 in Drosophila and 3 in Caenorhabditis elegans. CRD domains have also been identified in multiple tandem copies in a Dictyostelium discoideum protein. Very little is known about the mechanism by which CRD domains interact with their ligands. The domain contains 10 conserved cysteines. The protein lin-17 is involved in cell type specification during Caenorhabditis elegans vulval development. 124 -143564 cd07455 CRD_Collagen_XVIII Cysteine-rich domain of the variant 3 of collagen XVIII (V3C18 ). The cysteine-rich domain (CRD) is an essential part of the variant 3 of collagen XVIII (V3C18), which regulates major cellular functions such as the differential epithelial morphogenesis of early lung and kidney development. V3C18 is a 170 kD protein, which is proteolotically processed into the CRD-containing 50 kD glucoprotein precursor that binds Wnt3a through its CRD domain and suppresses the Wnt3a-induced stabilization of beta catenin. Full-length V3C18 is unable to inhibit Wnt signaling. 123 -143565 cd07456 CRD_FZ5_like Cysteine-rich Wnt-binding domain (CRD) of receptors similar to frizzled 5. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 5 (Fz5) and frizzled 8 (Fz8) receptors, and similar proteins. This domain is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. The CRD domain is well conserved in metazoans - 10 frizzled proteins have been identified in mammals, 4 in Drosophila and 3 in Caenorhabditis elegans. Very little is known about the mechanism by which CRD domains interact with their ligands. The domain contains 10 conserved cysteines. 120 -143566 cd07457 CRD_FZ9_like Cysteine-rich Wnt-binding domain (CRD) of receptors similar to frizzled 9. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 9 (Fz9) and frizzled 10 (Fz10) receptors, and similar proteins. This domain is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. The CRD domain is well conserved in metazoans - 10 frizzled proteins have been identified in mammals, 4 in Drosophila and 3 in Caenorhabditis elegans. Very little is known about the mechanism by which CRD domains interact with their ligands. The domain contains 10 conserved cysteines. 121 -143567 cd07458 CRD_FZ1_like Cysteine-rich Wnt-binding domain (CRD) of receptors similar to frizzled 1. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 1 (Fz1), frizzled 2 (Fz2), and frizzled 7 (Fz7) receptors, and similar proteins. This domain is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. The CRD domain is well conserved in metazoans - 10 frizzled proteins have been identified in mammals, 4 in Drosophila and 3 in Caenorhabditis elegans. Very little is known about the mechanism by which CRD domains interact with their ligands. The domain contains 10 conserved cysteines. 119 -143568 cd07459 CRD_TK_ROR_like Cysteine-rich domain of tyrosine kinase-like orphan receptors. The cysteine-rich domain (CRD) is an essential part of the tyrosine kinase-like orphan receptor (Ror) proteins, a conserved family of tyrosine kinases that function in various processes, including neuronal and skeletal development, cell polarity, and cell movement. Ror proteins are receptors of Wnt proteins, which are key players in a number of fundamental cellular processes in embryogenesis and postnatal development. In different cellular contexts, Ror proteins can either activate or repress transcription of Wnt target genes, and can modulate Wnt signaling by sequestering Wnt ligands. In addition, a number of Wnt-independent functions have been proposed for both Ror1 and Ror2. 135 -143569 cd07460 CRD_FZ5 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 5 (Fz5) receptor.proteins. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 5 (Fz5) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Fz5 plays critical regulating roles in the yolk sac and placental angiogenesis, in the maturation of the Paneth cell phenotype, in governing the neural potential of progenitors in the developing retina, and in neuronal survival in the parafascicular nucleus. 127 -143570 cd07461 CRD_FZ8 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 8 (Fz8) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 8 (Fz8) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Xenopus Fz8 is important in Wnt/beta-catenin signaling pathways controlling the transcriptional activation of target genes Siamois and Xnr3 in the animal caps of late blastula. 125 -143571 cd07462 CRD_FZ10 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 10 (Fz10) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 10 (Fz10) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. The cellular functon of Fz10 is unknown. 127 -143572 cd07463 CRD_FZ9 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 9 (Fz9) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 9 (Fz9) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Fz9 may play a signaling role in lymphoid development and maturation, particularly at points where B cells undergo self-renewal prior to further differentiation. 127 -143573 cd07464 CRD_FZ2 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 2 (Fz2) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 2 (Fz2) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Fz2 is involved in the Wnt/beta-catenin signaling pathway and in the activation of protein kinase C and calcium/calmodulin-dependent protein kinase (CaM kinase). 127 -143574 cd07465 CRD_FZ1 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 1 (Fz1) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 1 (Fz1) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. 127 -143575 cd07466 CRD_FZ7 Cysteine-rich Wnt-binding domain (CRD) of the frizzled 7 (Fz7) receptor. The cysteine-rich domain (CRD) is an essential extracellular portion of the frizzled 7 (Fz7) receptor, and is required for binding Wnt proteins, which play fundamental roles in many aspects of early development, such as cell and tissue polarity, neural synapse formation, and the regulation of proliferation. Fz proteins serve as Wnt receptors for multiple signal transduction pathways, including both beta-catenin dependent and -independent cellular signaling, as well as the planar cell polarity pathway and Ca(2+) modulating signaling pathway. CRD containing Fzs have been found in diverse species from amoebas to mammals. 10 different frizzled proteins are found in vertebrata. Xenopus Fz7 is important in Wnt/beta-catenin signaling pathways controlling the transcriptional activation of target genes Siamois and Xnr3 in the animal caps of late blastula. 125 -143576 cd07467 CRD_TK_ROR1 Cysteine-rich domain of tyrosine kinase-like orphan receptor 1. The cysteine-rich domain (CRD) is an essential part of the tyrosine kinase-like orphan receptor 1 (Ror1), a conserved family of tyrosine kinases that function in various processes, including neuronal and skeletal development, cell polarity, and cell movement. Ror proteins are receptors of Wnt proteins, which are key players in a number of fundamental cellular processes in embryogenesis and postnatal development. In different cellular contexts, Ror proteins can either activate or repress transcription of Wnt target genes, and can modulate Wnt signaling by sequestering Wnt ligands. In addition, a number of Wnt-independent functions have been proposed for both Ror1 and Ror2. 142 -143577 cd07468 CRD_TK_ROR2 Cysteine-rich domain of tyrosine kinase-like orphan receptor 2. The cysteine-rich domain (CRD) is an essential part of the tyrosine kinase-like orphan receptor (Ror2), a conserved family of tyrosine kinases that function in various processes, including neuronal and skeletal development, cell polarity, and cell movement. Ror proteins are receptors of Wnt proteins, which are key players in a number of fundamental cellular processes in embryogenesis and postnatal development. In different cellular contexts, Ror proteins can either activate or repress transcription of Wnt target genes, and can modulate Wnt signaling by sequestering Wnt ligands. In addition, a number of Wnt-independent functions have been proposed for both Ror1 and Ror2. 140 -143578 cd07469 CRD_TK_ROR_related Cysteine-rich domain of proteins similar to tyrosine kinase-like orphan receptors. The cysteine-rich domain (CRD) is an essential part of the tyrosine kinase-like orphan receptor (Ror) proteins, a conserved family of tyrosine kinases that function in various processes, including neuronal and skeletal development, cell polarity, and cell movement. Ror proteins are receptors of Wnt proteins, which are key players in a number of fundamental cellular processes in embryogenesis and postnatal development. In different cellular contexts, Ror proteins can either activate or repress transcription of Wnt target genes, and can modulate Wnt signaling by sequestering Wnt ligands. 147 -143621 cd07470 CYTH-like_mRNA_RTPase CYTH-like mRNA triphosphatase (RTPase) component of the mRNA capping apparatus. This subgroup includes fungal and protozoal RTPases. RTPase catalyzes the first step in the mRNA cap formation process, the removal of the gamma-phosphate of triphosphate terminated pre-mRNA. This activity is metal-dependent. The 5'-end of the resulting mRNA diphosphate is subsequently capped with GMP by RNA guanylytransferase, and then further modified by one or more methyltransferases. The mRNA cap-forming activity is an essential step in mRNA processing. The RTPases are not conserved among eukarya. The structure and mechanism of this fungal RTPase domain group is different from that of higher eukaryotes. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. The RTPase domain of the mimivirus RTPase-GTase fusion mRNA capping enzyme also belongs to this subgroup. 243 -213030 cd07472 HmuY_like Bacterial proteins similar to Porphyromonas gingivalis HmuY and the C-terminal domain of PARMER_03218. HmuY is a hemophore that scavenges heme from infected hosts and delivers it to the outer membrane receptor HmuR. Related but uncharacterized proteins do not appear to share the specific heme-binding site. The C-terminal domain of PARMER_03128, an uncharacterized protein from Parabacteroides merdae, plus related proteins from Bacteroidetes, appear to be a distantly related family and have been included in this model. 157 -173799 cd07473 Peptidases_S8_Subtilisin_like Peptidase S8 family domain in Subtilisin-like proteins. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 259 -173800 cd07474 Peptidases_S8_subtilisin_Vpr-like Peptidase S8 family domain in Vpr-like proteins. The maturation of the peptide antibiotic (lantibiotic) subtilin in Bacillus subtilis ATCC 6633 includes posttranslational modifications of the propeptide and proteolytic cleavage of the leader peptide. Vpr was identified as one of the proteases, along with WprA, that are capable of processing subtilin. Asp, Ser, His triadPeptidases S8 or Subtilases are a serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 295 -173801 cd07475 Peptidases_S8_C5a_Peptidase Peptidase S8 family domain in Streptococcal C5a peptidases. Streptococcal C5a peptidase (SCP), is a highly specific protease and adhesin/invasin. The subtilisin-like protease domain is located at the N-terminus and contains a protease-associated domain inserted into a loop. There are three fibronectin type III (Fn) domains at the C-terminus. SCP binds to integrins with the help of Arg-Gly-Asp motifs which are thought to stabilize conformational changes required for substrate binding. Peptidases S8 or Subtilases are a serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 346 -173802 cd07476 Peptidases_S8_thiazoline_oxidase_subtilisin-like_protease Peptidase S8 family domain in Thiazoline oxidase/subtilisin-like proteases. Thiazoline oxidase/subtilisin-like protease is produced by the symbiotic bacteria Prochloron spp. that inhabit didemnid family ascidians. The cyclic peptides of the patellamide class found in didemnid extracts are now known to be synthesized by the Prochloron spp. The prepatellamide is heterocyclized to form thiazole and oxazoline rings and the peptide is cleaved to form the two cyclic patellamides A and C. Subtilases, or subtilisin-like serine proteases, have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure (an example of convergent evolution). 267 -173803 cd07477 Peptidases_S8_Subtilisin_subset Peptidase S8 family domain in Subtilisin proteins. This group is composed of many different subtilisins: Pro-TK-subtilisin, subtilisin Carlsberg, serine protease Pb92 subtilisin, and BPN subtilisins just to name a few. Pro-TK-subtilisin is a serine protease from the hyperthermophilic archaeon Thermococcus kodakaraensis and consists of a signal peptide, a propeptide, and a mature domain. TK-subtilisin is matured from pro-TK-subtilisin upon autoprocessing and degradation of the propeptide. Unlike other subtilisins though, the folding of the unprocessed form of pro-TK-subtilisin is induced by Ca2+ binding which is almost completed prior to autoprocessing. Ca2+ is required for activity unlike the bacterial subtilisins. The propeptide is not required for folding of the mature domain unlike the bacterial subtilases because of the stability produced from Ca2+ binding. Subtilisin Carlsberg is extremely similar in structure to subtilisin BPN'/Novo thought it has a 30% difference in amino acid sequence. The substrate binding regions are also similar and 2 possible Ca2+ binding sites have been identified recently. Subtilisin Carlsberg possesses the highest commercial importance as a proteolytic additive for detergents. Serine protease Pb92, the serine protease from the alkalophilic Bacillus strain PB92, also contains two calcium ions and the overall folding of the polypeptide chain closely resembles that of the subtilisins. Members of the peptidases S8 and S35 clan include endopeptidases, exopeptidases and also a tripeptidyl-peptidase. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The S53 family contains a catalytic triad Glu/Asp/Ser. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 229 -173804 cd07478 Peptidases_S8_CspA-like Peptidase S8 family domain in CspA-like proteins. GSP (germination-specific protease) converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores. Analysis of an enzyme fraction of GSP showed that it was composed of a gene cluster containing the processed forms of products of cspA, cspB, and cspC which are positioned in a tandem array just upstream of the 5' end of sleC. The amino acid sequences deduced from the nucleotide sequences of the csp genes showed significant similarity and showed a high degree of homology with those of the catalytic domain and the oxyanion binding region of subtilisin-like serine proteases. Members of the peptidases S8 and S35 clan include endopeptidases, exopeptidases and also a tripeptidyl-peptidase. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The S53 family contains a catalytic triad Glu/Asp/Ser. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 455 -173805 cd07479 Peptidases_S8_SKI-1_like Peptidase S8 family domain in SKI-1-like proteins. SKI-1 (type I membrane-bound subtilisin-kexin-isoenzyme) proteins are secretory Ca2+-dependent serine proteinases cleave at nonbasic residues: Thr, Leu, and Lys. SKI-1s play a critical role in the regulation of the synthesis and metabolism of cholesterol and fatty acid metabolism. Members of the peptidases S8 and S35 clan include endopeptidases, exopeptidases and also a tripeptidyl-peptidase. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The S53 family contains a catalytic triad Glu/Asp/Ser. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 255 -173806 cd07480 Peptidases_S8_12 Peptidase S8 family domain, uncharacterized subfamily 12. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 297 -173807 cd07481 Peptidases_S8_BacillopeptidaseF-like Peptidase S8 family domain in BacillopeptidaseF-like proteins. Bacillus subtilis produces and secretes proteases and other types of exoenzymes at the end of the exponential phase of growth. The ones that make up this group is known as bacillopeptidase F, encoded by bpr, a serine protease with high esterolytic activity which is inhibited by PMSF. Like other members of the peptidases S8 family these have a Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. 264 -173808 cd07482 Peptidases_S8_Lantibiotic_specific_protease Peptidase S8 family domain in Lantiobiotic (lanthionine-containing antibiotics) specific proteases. Lantiobiotic (lanthionine-containing antibiotics) specific proteases are very similar in structure to serine proteases. Lantibiotics are ribosomally synthesised antimicrobial agents derived from ribosomally synthesised peptides with antimicrobial activities against Gram-positive bacteria. The proteases that cleave the N-terminal leader peptides from lantiobiotics include: epiP, nsuP, mutP, and nisP. EpiP, from Staphylococcus, is thought to cleave matured epidermin. NsuP, a dehydratase from Streptococcus and NisP, a membrane-anchored subtilisin-like serine protease from Lactococcus cleave nisin. MutP is highly similar to epiP and nisP and is thought to process the prepeptide mutacin III of S. mutans. Members of the peptidases S8 (subtilisin and kexin) and S53 (sedolisin) clan include endopeptidases and exopeptidases. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. Serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of subtilisin. The serine residue here is the nucleophilic equivalent of the serine residue in the S8 family, while glutamic acid has the same role here as the histidine base. However, the aspartic acid residue that acts as an electrophile is quite different. In S53 the it follows glutamic acid, while in S8 it precedes histidine. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. There is a great diversity in the characteristics of their members: some contain disulfide bonds, some are intracellular while others are extracellular, some function at extreme temperatures, and others at high or low pH values. 294 -173809 cd07483 Peptidases_S8_Subtilisin_Novo-like Peptidase S8 family domain in Subtilisin_Novo-like proteins. Subtilisins are a group of alkaline proteinases originating from different strains of Bacillus subtilis. Novo is one of the strains that produced enzymes belonging to this group. The enzymes obtained from the Novo and BPN' strains are identical. The Carlsburg and Novo subtilisins are thought to have arisen from a common ancestral protein. They have similar peptidase and esterase activities, pH profiles, catalyze transesterification reactions, and are both inhibited by diispropyl fluorophosphate, though they differ in 85 positions in the amino acid sequence. Members of the peptidases S8 and S35 clan include endopeptidases, exopeptidases and also a tripeptidyl-peptidase. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of subtilisin.. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 291 -173810 cd07484 Peptidases_S8_Thermitase_like Peptidase S8 family domain in Thermitase-like proteins. Thermitase is a non-specific, trypsin-related serine protease with a very high specific activity. It contains a subtilisin like domain. The tertiary structure of thermitase is similar to that of subtilisin BPN'. It contains a Asp/His/Ser catalytic triad. Members of the peptidases S8 (subtilisin and kexin) and S53 (sedolisin) clan include endopeptidases and exopeptidases. The S8 family has an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. Serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of subtilisin. The serine residue here is the nucleophilic equivalent of the serine residue in the S8 family, while glutamic acid has the same role here as the histidine base. However, the aspartic acid residue that acts as an electrophile is quite different. In S53 the it follows glutamic acid, while in S8 it precedes histidine. The stability of these enzymes may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. There is a great diversity in the characteristics of their members: some contain disulfide bonds, some are intracellular while others are extracellular, some function at extreme temperatures, and others at high or low pH values. 260 -173811 cd07485 Peptidases_S8_Fervidolysin_like Peptidase S8 family domain in Fervidolysin. Fervidolysin found in Fervidobacterium pennivorans is an extracellular subtilisin-like keratinase. It is contains a signal peptide, a propeptide, and a catalytic region. The tertiary structure of fervidolysin is similar to that of subtilisin. It contains a Asp/His/Ser catalytic triad and is a member of the peptidase S8 (subtilisin and kexin) family. The catalytic triad is similar to that found in trypsin-like proteases, but it does not share their three-dimensional structure and are not homologous to trypsin. Serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base. The S53 family contains a catalytic triad Glu/Asp/Ser with an additional acidic residue Asp in the oxyanion hole, similar to that of subtilisin. The serine residue here is the nucleophilic equivalent of the serine residue in the S8 family, while glutamic acid has the same role here as the histidine base. However, the aspartic acid residue that acts as an electrophile is quite different. In S53, it follows glutamic acid, while in S8 it precedes histidine. The stability of these enzymes may be enhanced by calcium; some members have been shown to bind up to 4 ions via binding sites with different affinity. There is a great diversity in the characteristics of their members: some contain disulfide bonds, some are intracellular while others are extracellular, some function at extreme temperatures, and others at high or low pH values. 273 -173812 cd07487 Peptidases_S8_1 Peptidase S8 family domain, uncharacterized subfamily 1. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 264 -173813 cd07488 Peptidases_S8_2 Peptidase S8 family domain, uncharacterized subfamily 2. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 247 -173814 cd07489 Peptidases_S8_5 Peptidase S8 family domain, uncharacterized subfamily 5. gap in seq This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 312 -173815 cd07490 Peptidases_S8_6 Peptidase S8 family domain, uncharacterized subfamily 6. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 254 -173816 cd07491 Peptidases_S8_7 Peptidase S8 family domain, uncharacterized subfamily 7. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 247 -173817 cd07492 Peptidases_S8_8 Peptidase S8 family domain, uncharacterized subfamily 8. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 222 -173818 cd07493 Peptidases_S8_9 Peptidase S8 family domain, uncharacterized subfamily 9. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 261 -173819 cd07494 Peptidases_S8_10 Peptidase S8 family domain, uncharacterized subfamily 10. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 298 -173820 cd07496 Peptidases_S8_13 Peptidase S8 family domain, uncharacterized subfamily 13. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 285 -173821 cd07497 Peptidases_S8_14 Peptidase S8 family domain, uncharacterized subfamily 14. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 311 -173822 cd07498 Peptidases_S8_15 Peptidase S8 family domain, uncharacterized subfamily 15. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 242 -319802 cd07499 HAD_CBAP molecular class B acid phosphatases, similar to Escherichia coli AphA. class B acid phosphatases (CBAPs) have been detected in a minority of bacterial species which include a number of major pathogens such as Escherichia coli, Haemophilus influenzae, and Streptococcus pyogenes. This family includes the CBAP Escherichia coli AphA. The purified enzyme is a broad-spectrum nucleotidase highly active against both 3'- and 5'-mononucleotides and monodeoxynucleotides, which can also act as a phosphotransferase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 185 -319803 cd07500 HAD_PSP phosphoserine phosphatase (PSP), similar to Methanococcus Jannaschii PSP and Saccharomyces cerevisiae SER2p. This family includes Methanococcus jannaschii PSP, and Saccharomyces cerevisiae phosphoserine phosphatase SER2p, EC 3.1.3.3, which participates in a pathway whereby serine and glycine are synthesized from the glycolytic intermediate 3-phosphoglycerate; phosphoserine phosphatase catalyzes the hydrolysis of phospho-L-serine to L-serine and inorganic phosphate, the third reaction in this pathway. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 180 -319804 cd07501 HAD_MDP-1_like eukaryotic hypothetical phosphotyrosine phosphatase MDP-1 and related phosphatases, similar to Bacillus cereus phosphonoacetaldehyde hydrolase and Streptomyces FkbH. This family includes eukaryotic magnesium-dependent phosphatase-1 (MDP-1) which is most likely a phosphotyrosine phosphatase catalyzing the dephosphorylation of tyrosine-phosphorylated proteins, Bacillus cereus phosphonoacetaldehyde hydrolase (phosphonatase)which catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and phosphate using Mg(II) as cofactor, and sequences annotated as FkbH including BafAIV an FkbH-like protein from Streptomyces griseus encoded in ORF12 of the bafilomycin synthesis gene cluster. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 129 -319805 cd07502 HAD_PNKP-C C-terminal phosphatase domain of T4 polynucleotide kinase/phosphatase (PNKP) and related phosphatases. This family includes the C-terminal domain of the bifunctional enzyme T4 polynucleotide kinase/phosphatase, PNKP. The PNKP phosphatase domain can catalyze the hydrolytic removal of the 3'-phosphoryl of DNA, RNA and deoxynucleoside 3'-monophosphates. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 145 -319806 cd07503 HAD_HisB-N histidinol phosphate phosphatase and related phosphatases. This family includes the N-terminal domain of the Escherichia coli bifunctional enzyme histidinol-phosphate phosphatase/imidazole-glycerol-phosphate dehydratase, HisB. The N-terminal histidinol-phosphate phosphatase domain catalyzes the dephosphorylation of histidinol phosphate, the eight step of L-histidine biosynthesis. This family also includes Escherichia coli GmhB phosphatase which is highly specific for D-glycero-D-manno-heptose-1,7-bisphosphate, it removes the C(7)phosphate and not the C(1)phosphate, and this is the third essential step of lipopolysaccharide heptose biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 142 -319807 cd07504 HAD_5NT haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to human cytosolic IIIA and IIIB. 5'-nucleotidases dephosphorylate nucleoside 5prime-monophosphates. This family includes human 5'-nucleotidase, cytosolic IIIA (cN-IIIA, previously called cN-III; NT5C3A) the main pyrimidine 5'-nucleotidase in erythrocytes which dephosphorylates the pyrimidine nucleotides CMP, UMP, TMP, and the purine 7-methylguanosine monophosphate (m7GM), and possesses phosphotransferase activity. It also includes human 5'-nucleotidase, cytosolic IIIB (cN-IIIB; NT5C3B) which has a strong preference for m7GMP, dephosphorylates CMP and UMP and, with significantly lower efficiency, GMP and AMP, and can also act as a phosphotransferase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 273 -319808 cd07505 HAD_BPGM-like beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. This family represents the beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. Family members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. It belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 143 -319809 cd07506 HAD_like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 115 -319810 cd07507 HAD_Pase haloacid dehalogenase-like superfamily phosphatase similar to Pyrococcus horikoshii mannosyl-3-phosphoglycerate phosphatase and Persephonella marina glucosyl-3-phosphoglycerate phosphatase. This family includes Pyrococcus horikoshii and Thermus thermophilus HB27 mannosyl-3-phosphoglycerate phosphatases (MpgPs) which catalyze the dephosphorylation of alpha-mannosyl-3-phosphoglycerate (MPG) to produce alpha-mannosylglycerate (MG), and Persephonella marina glucosyl-3-phosphoglycerate phosphatase (GpgP) which catalyzes the dephosphorylation of glucosyl-3-phosphoglycerate (GPG) to produce glucosylglycerate (GG). It also includes Methanococcoides burtonii MpgP protein which is able to dephosphorylate GPG to GG, and MPG to MG. Similar flexibilities in substrate specificity have been confirmed in vitro for the MpgPs from Thermus thermophiles and Pyrococcus horikoshii. Screens with natural substrates have not yet detected activity for another member Escherichia Coli YedP. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 255 -319811 cd07508 HAD_Pase_UmpH-like haloacid dehalogenase-like superfamily phosphatases, UmpH/NagD family. Phosphatases in this UmpH/NagD family include Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase , Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase, human PGP phosphoglycolate phosphatase, Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase, Bacillus AraL a putative sugar phosphatase, and Plasmodium falciparum para nitrophenyl phosphate phosphatase PNPase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 270 -319812 cd07509 HAD_PPase inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). LHPP hydrolyzes nitrogen-phosphorus bonds in phospholysine, phosphohistidine and imidodiphosphate as well as oxygen-phosphorus bonds in inorganic pyrophosphate in vitro. This family also includes human haloacid dehalogenase like hydrolase domain containing 2 protine (HDHD2) a phosphatase which may be involved in polygenic hypertension. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 248 -319813 cd07510 HAD_Pase_UmpH-like UmpH/NagD family phosphatase, similar to human PGP phosphoglycolate phosphatase and Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase. This subfamily includes the phosphoglycolate phosphatases (human PGP and Arabidopsis thaliana PGLP2) and p-nitrophenylphosphatases (Schizosaccharomyces pombe PHO2 and Saccharomyces PHO13p). It belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 282 -319814 cd07511 HAD_like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to the uncharacterized human CECR5 (cat eye syndrome critical region protein 5). This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 136 -319815 cd07512 HAD_PGPase haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter sphaeroides CbbZ. Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 214 -319816 cd07514 HAD_Pase phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), and Pyrococcus horikoshii PH1421, a magnesium-dependent phosphatase; belongs to the haloacid dehalogenase-like superfamily. Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PGPase) catalyzes the magnesium-dependent dephosphorylation of phosphoglycolate. This family also includes Pyrococcus horikoshii OT3 PH1421, a magnesium-dependent phosphatase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 139 -319817 cd07515 HAD-like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 131 -319818 cd07516 HAD_Pase phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily. Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 253 -319819 cd07517 HAD_HPP phosphatase, similar to Bacteroides thetaiotaomicron VPI-5482 BT4131 hexose phosphate phosphatase; belongs to the haloacid dehalogenase-like superfamily. Bacteroides thetaiotaomicron VPI-5482 BT4131 is a phosphatase with preference for hexose phosphates. In addition this family includes uncharacterized Bacillus subtilis YkrA, a putative phosphatase and uncharacterized Streptococcus pyogenes MGAS10394 a putative bifunctional phosphatase/peptidyl-prolyl cis-trans isomerase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 213 -319820 cd07518 HAD_YbiV-Like Escherichia coli YbiV sugar phosphatase/phosphotransferase and related proteins; belongs to the haloacid dehalogenase-like superfamily. Escherichia coli YbiV can act as both a sugar phosphatase and as a phosphotransferase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 184 -319821 cd07519 HAD_PTase hydrolase domain of the bifunctional HAD hydrolase/UbiA family prenyltransferase proteins and related domains; belongs to the haloacid dehalogenase-like superfamily. This family includes bifunctional enzymes that have both an N-terminal HAD hydrolase domain and a C-terminal UbiA family prenyltransferase domain. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases (PTases) and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. PTases catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 105 -319822 cd07520 HAD_like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 144 -319823 cd07521 HAD_FCP1-like human CTD phosphatase subunit 1 (CTDP1/FCP1) and related proteins; belongs to the haloacid dehalogenase-like superfamily. Human CTDP1/FCP1 is a protein phosphatase which dephosphorylates the phosphorylated C terminus (CTD) of RNA polymerase II. CTD phosphorylation is a key mechanism of regulation of gene expression in eukaryotes. CTDP1/FCP1 may have other roles in in transcription regulation independent of its phosphatase activity. This family also includes human translocase of inner mitochondrial membrane 50 (TIMM50), CTD small phosphatase like (CTDSPL) and CTD small phosphatase like 2 (CTDSPL2), Saccharomyces cerevisiae (nuclear envelope morphology protein 1) Nem1p, and Xenopus Dullard. Yeast Nem1p in complex with Spo7p dephosphorylates the nuclear membrane-associated phosphatidic acid phosphatase, Smp2p, which may be part of a signaling cascade playing a role in nuclear membrane biogenesis. Xenopus Dullard is a potential regulator of neural tube development. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 134 -319824 cd07522 HAD_cN-II cytosolic 5'-nucleotidase II (cN-II) similar to human NT5DC1 (5'-nucleotidase domain-containing protein 1) and NT5DC2. Cytosolic 5'-nucleotidase II (cN-II), also known as purine 5'-nucleotidase, IMP-GMP specific nucleotidase, or high Km 5prime-nucleotidase, catalyzes the dephosphorylation of 6-hydroxypurine nucleoside monophosphates. It is ubiquitously expressed and likely to play an important role in the regulation of purine nucleotide interconversions and in the regulation of IMP and GMP pools within the cell. It is also acts as a phosphotransferase, catalyzing the reverse reaction, the transfer of a phosphate from a monophosphate substrate to a nucleoside acceptor, to form a nucleoside monophosphate. The nucleoside acceptor is preferentially inosine and deoxyinosine, phosphate donors include any 6-hydroxypurine monophosphate substrate of the nucleotidase reaction. Both the dephosphorylation and phosphotransferase reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 352 -319825 cd07523 HAD_YsbA-like uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the uncharacterized Lactococcus lactis YsbA. The specific function of Lactococcus lactis YsbA is unknown. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases 173 -319826 cd07524 HAD_Pase phosphatase, similar to Bacillus subtilis MtnX; belongs to the haloacid dehalogenase-like superfamily. Bacillus subtilis recycles two toxic byproducts of polyamine metabolism, methylthioadenosine and methylthioribose, into methionine by a salvage pathway. The sixth reaction in this pathway is catalyzed by B. subtilis MtnX: the dephosphorylation of 2- hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HKMTP- 1-P) into 1,2-dihydroxy-3-keto-5-methylthiopentene. The hydrolysis of HK-MTP-1-P is a two-step mechanism involving the formation of a transiently phosphorylated aspartyl intermediate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 211 -319827 cd07525 HAD_like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 253 -319828 cd07526 HAD_BPGM_like subfamily of beta-phosphoglucomutase-like family, similar to Escherichia coli 6-phosphogluconate phosphatase YieH. This subfamily includes Escherichia coli YieH/HAD3 an 6-phosphogluconate phosphatase, which can hydrolyzed purines and pyrimidines as secondary substrates. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate, and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 141 -319829 cd07527 HAD_ScGPP-like subfamily of beta-phosphoglucomutase-like family, similar to Saccharomyces cerevisiae DL-glycerol-3-phosphate phosphatase (GPP1p/ Rhr2p and GPP2p/HOR2p) and 2-deoxyglucose-6-phosphate phosphatase (DOG1p and DOG2p). This subfamily includes Saccharomyces cerevisiae DL-glycerol-3-phosphate phosphatase (GPP1p/ Rhr2p and GPP2p/HOR2p) and 2-deoxyglucose-6-phosphate phosphatase (DOG1p and DOG2p). GPP1p and GPP2p are involved in glycerol biosynthesis, GPP1 is induced in response to both anaerobic and hyperosmotic stress, GPP2 is induced in response to hyperosmotic or oxidative stress, and during diauxic shift; overexpression of DOG1 or DOG2 confers 2-deoxyglucose resistance. These belong to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 205 -319830 cd07528 HAD_CbbY-like subfamily of beta-phosphoglucomutase-like family, similar to Rhodobacter sphaeroides xylulose-1,5-bisphosphate phosphatase CbbY. This family includes Rhodobacter sphaeroides and Arabidopsis thaliana xylulose-1,5-bisphosphate phosphatase CbbY which convert xylulose-1,5-bisphosphate (a potent inhibitor of Ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco), to the non-inhibitory compound xylulose-5-phosphate. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 199 -319831 cd07529 HAD_AtGPP-like subfamily of beta-phosphoglucomutase-like family, similar to Arabidopsis thaliana Gpp1 and Gpp2. This subfamily includes Arabidopsis thaliana AtGpp1 and AtGpp2, and Drosophila GS1-like protein (Dmel\Gs1l) of unknown function. AtGpp1 and AtGpp2 are constitutively expressed in all the Arabidopsis tissues and unaffected under abiotic stress. Overexpression of AtGpp2 in transgenic Arabidopsis plants increases the specific DL-glycerol-3-phosphatase activity and improves the plants tolerance to salt, osmotic and oxidative stress. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 192 -319832 cd07530 HAD_Pase_UmpH-like UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase. Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 247 -319833 cd07531 HAD_Pase_UmpH-like UmpH/NagD family phosphatase, similar to Bacillus AraL phosphatase, a putative sugar phosphatase. Bacillus subtilis AraL is a phosphatase displaying activity towards different sugar phosphate substrates; it is encoded by the arabinose metabolic operon araABDLMNPQ-abfA and may play a role in the dephosphorylation of substrates related to l-arabinose metabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 252 -319834 cd07532 HAD_PNPase_UmpH-like UmpH/NagD family phosphatase para nitrophenyl phosphate phosphatase, similar to Plasmodium falciparum PNPase. Plasmodium falciparum para nitrophenyl phosphate phosphatase (PNPase) catalyzes the dephosphorylation of thiamine monophosphate to thiamine, other substrates on which its active are nucleotides, phosphorylated sugars, pyridoxal-5-phosphate, and paranitrophenyl phosphate. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 286 -319835 cd07533 HAD_like uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 207 -319836 cd07534 HAD_CAP molecular class C acid phosphatases, similar to Haemophilus influenzae e (P4) acid phosphatase; belongs to the haloacid dehalogenase-like hydrolase superfamily. Molecular class C acid phosphatases (CAPs) are nonspecific acid phosphatases with generally broad substrate specificity and optimum activity at neutral to acidic pH. Members include Haemophilus influenzae lipoprotein e (P4), Elizabethkingia meningosepticum OlpA, Helicobacter pylori HppA, Enterobacter sp. 4 acid phosphatase PhoI, and Streptococcus pyogenes M1 GAS LppC. Lipoprotein e (P4) exhibits phosphomonoesterase activity with aryl phosphate substrates including nicotinamide mononucleotide (NMN), tyrosine phosphate, phenyl phosphate, p-nitrophenyl phosphate, and 4-methylumbelliferyl phosphate. The role of P4 in NAD+ uptake appears to be the dephosphorylation of NMN to nicotinamide riboside, which is then taken up by the organism. Elizabethkingia meningosepticum OlpA is a broad-spectrum nucleotidase with preference for 5'-nucleotides, it efficiently hydrolyzes nucleotide monophosphates, with a strong preference for 5'-nucleotides and for 3'-AMP; OlpA can also hydrolyze sugar phosphates and beta-glycerol phosphate, although with a lower efficiency. Helicobacter pylori HppA is also a 5' nucleotidase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 196 -319837 cd07535 HAD_VSP vegetative storage proteins similar to soybean VSPalpha and VSPbeta proteins; belongs to the haloacid dehalogenase-like superfamily. Soybean [Glycine max (L.) Merr.] vegetative storage protein VSPalpha and VSPbeta levels were identified as storage proteins due to their abundance and pattern of expression in plant tissues, they accumulate to almost one-half the amount of soluble leaf protein when soybean plants are continually depodded. They possess acid phosphatase activity which appears to be low compared to several other plant acid phosphatases, it increases in the leaves of depodded soybean plants, but to no more than 0.1% of the total acid phosphatase activity in these leaves. This acid phosphatase activity has maximal activity at pH 5.0 - 5.5, and can liberate Pi from different substrates such as napthyl acid phosphate, carboxyphenyl phosphate, sugar-phosphates, glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, ATP, ADP, PPi, and short chain polyphosphates; they cleave phosphoenolpyruvate, ATP, ADP, PPI, and polyphosphates most efficiently. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Soybean VSPalpha and VSPbeta lack this active site aspartate, other members of this family have this aspartate and may be more active. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 186 -319838 cd07536 P-type_ATPase_APLT Aminophospholipid translocases (APLTs), similar to Saccharomyces cerevisiae Dnf1-3p, Drs2p, Neo1p, and human ATP8A2, -9B, -10D, -11B, and -11C. Aminophospholipid translocases (APLTs), also known as type 4 P-type ATPases, act as flippases, and translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes. Yeast Dnf1 and Dnf2 mediate the transport of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine from the outer to the inner leaflet of the plasma membrane. Mammalian ATP11C may selectively transports PS and PE from the outer leaflet of the plasma membrane to the inner leaflet. The yeast Neo1p localizes to the endoplasmic reticulum and the Golgi complex and plays a role in membrane trafficking within the endomembrane system. Human putative ATPase phospholipid transporting 9B, ATP9B, localizes to the trans-golgi network in a CDC50 protein-independent manner. It also includes Arabidopsis phospholipid flippases including ALA1, and Caenorhabditis elegans flippases, including TAT-1, the latter has been shown to facilitate the inward transport of phosphatidylserine. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 805 -319839 cd07538 P-type_ATPase uncharacterized subfamily of P-type ATPase transporters. This subfamily contains P-type ATPase transporters of unknown function. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids. They are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. A general characteristic of P-type ATPases is a bundle of transmembrane helices which make up the transport path, and three domains on the cytoplasmic side of the membrane. Members include pumps that transport various light metal ions, such as H(+), Na(+), K(+), Ca(2+), and Mg(2+), pumps that transport indispensable trace elements, such as Zn(2+) and Cu(2+), pumps that remove toxic heavy metal ions, such as Cd2+, and pumps such as aminophospholipid translocases which transport phosphatidylserine and phosphatidylethanolamine. 653 -319840 cd07539 P-type_ATPase uncharacterized subfamily of P-type ATPase transporters. This subfamily contains P-type ATPase transporters of unknown function. The P-type ATPases, are a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids. They are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. A general characteristic of P-type ATPases is a bundle of transmembrane helices which make up the transport path, and three domains on the cytoplasmic side of the membrane. Members include pumps that transport various light metal ions, such as H(+), Na(+), K(+), Ca(2+), and Mg(2+), pumps that transport indispensable trace elements, such as Zn(2+) and Cu(2+), pumps that remove toxic heavy metal ions, such as Cd2+, and pumps such as aminophospholipid translocases which transport phosphatidylserine and phosphatidylethanolamine. 634 -319841 cd07541 P-type_ATPase_APLT_Neo1-like Aminophospholipid translocases (APLTs), similar to Saccharomyces cerevisiae Neo1p and human putative APLT, ATP9B. Aminophospholipid translocases (APLTs), also known as type 4 P-type ATPases, act as a flippases, and translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes. The yeast Neo1 gene is an essential gene; Neo1p localizes to the endoplasmic reticulum and the Golgi complex and plays a role in membrane trafficking within the endomembrane system. Also included in this sub family is human putative ATPase phospholipid transporting 9B, ATP9B, which localizes to the trans-golgi network in a CDC50 protein-independent manner. Levels of ATP9B, along with levels of other ATPase genes, may contribute to expressivity of and atypical presentations of Hailey-Hailey disease (HHD), and the ATP9B gene has recently been identified as a putative Alzheimer's disease loci. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 792 -319842 cd07542 P-type_ATPase_cation P-type cation-transporting ATPases, similar to human ATPase type 13A2 (ATP13A2) protein and Saccharomyces cerevisiae Ypk9p. Saccharomyces cerevisiae Yph9p localizes to the yeast vacuole and may play a role in sequestering heavy metal ions, its deletion confers sensitivity for growth for cadmium, manganese, nickel or selenium. Human ATP13A2 (PARK9/CLN12) is a lysosomal transporter with zinc as the possible substrate. Mutation in the ATP13A2 gene has been linked to Parkinson's disease and Kufor-Rakeb syndrome, and to neuronal ceroid lipofuscinoses. ATP13A3/AFURS1 is a candidate gene for oculo auriculo vertebral spectrum (OAVS), being one of nine genes included in a 3q29 microduplication in a patient with OAVS. Mutation in the human ATP13A4 may be involved in a speech-language disorder. This subfamily also includes zebrafish ATP13A2 a lysosome-specific transmembrane ATPase protein of unknown function which plays a crucial role during embryonic development, its deletion is lethal. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 760 -319843 cd07543 P-type_ATPase_cation P-type cation-transporting ATPases, similar to human cation-transporting ATPase type 13A1 (ATP13A1) and Saccharomyces manganese-transporting ATPase 1 Spf1p. Saccharomyces Spf1p may mediate manganese transport into the endoplasmic reticulum (ER); one consequence of deletion of SPF1 is severe ER stress. This subfamily also includes Arabidopsis thaliana MIA (Male Gametogenesis Impaired Anthers) protein which is highly abundant in the endoplasmic reticulum and small vesicles of developing pollen grains and tapetum cells. The MIA gene functionally complements a mutant in the SPF1 from Saccharomyces cerevisiae. The expression of ATP13A1 has been followed during mouse development, ATP13A1 transcript expression showed an increase as development progressed, with the highest expression at the peak of neurogenesis. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 804 -319844 cd07544 P-type_ATPase_HM P-type heavy metal-transporting ATPase; uncharacterized subfamily. Uncharacterized subfamily of the heavy metal-transporting ATPases (Type IB ATPases) which transport heavy metal ions (Cu(+), Cu(2+), Zn(2+), Cd(2+), Co(2+), etc.) across biological membranes. The characteristic N-terminal heavy metal associated (HMA) domain of this group is essential for the binding of metal ions. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 596 -319845 cd07545 P-type_ATPase_Cd-like P-type heavy metal-transporting ATPase, similar to Staphylococcus aureus plasmid pI258 CadA, a cadmium-efflux ATPase. CadA from gram-positive Staphylococcus aureus plasmid pI258 is required for full Cd(2+) and Zn(2+) resistance. This subfamily also includes CadA, from the gram-negative bacilli, Stenotrophomonas maltophilia D457R, which is a cadmium efflux pump acquired as part of a cluster of antibiotic and heavy metal resistance genes from gram-positive bacteria. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 599 -319846 cd07546 P-type_ATPase_Pb_Zn_Cd2-like P-type heavy metal-transporting ATPase, similar to Escherichia coli ZntA which is selective for Pb(2+), Zn(2+), and Cd(2+). Escherichia coli ZntA mediates resistance to toxic levels of selected divalent metal ions. ZntA has the highest selectivity for Pb(2+), followed by Zn(2+) and Cd(2+); it also shows low levels of activity with Cu(2+), Ni(2+), and Co(2+). It is upregulated by the transcription factor ZntR at high zinc concentrations. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 597 -319847 cd07548 P-type_ATPase-Cd_Zn_Co_like P-type heavy metal-transporting ATPase, similar to Bacillus subtilis CadA which appears to transport cadmium, zinc and cobalt but not copper out of the cell. Bacillus subtilis CadA/YvgW appears to transport cadmium, zinc and cobalt but not copper, out of the cell. Functions in metal ion resistance and cellular metal ion homeostasis. CadA/YvgW is also important for sporulation in B. subtilis, the significant specific expression of the cadA/yvgW gene during the late stage of sporulation, is controlled by forespore-specific sigma factor, sigma G, and mother cell-specific sigma factor, sigma E. This subfamily also includes Helicobacter pylori CadA an essential resistance pump with ion specificity towards Cd(2+), Zn(2+) and Co(2+), and Zn-transporting ATPase, ZiaA(N) in Synechocystis PCC 6803. Transcription of ziaA is induced by Zn under the control of the Zn responsive repressor ZiaR. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 604 -319848 cd07550 P-type_ATPase_HM P-type heavy metal-transporting ATPase; uncharacterized subfamily. Uncharacterized subfamily of the heavy metal-transporting ATPases (Type IB ATPases) which transport heavy metal ions (Cu(+), Cu(2+), Zn(2+), Cd(2+), Co(2+), etc.) across biological membranes. The characteristic N-terminal heavy metal associated (HMA) domain of this group is essential for the binding of metal ions. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 592 -319849 cd07551 P-type_ATPase_HM_ZosA_PfeT-like P-type heavy metal-transporting ATPase, similar to Bacillus subtilis ZosA/PfeT which transports copper, and perhaps zinc under oxidative stress, and perhaps ferrous iron. Bacillus subtilis ZosA/PfeT (previously known as YkvW) transports copper, it may also transport zinc under oxidative stress and may also be involved in ferrous iron efflux. ZosA/PfeT is expressed under the regulation of the peroxide-sensing repressor PerR. It is involved in competence development. Disruption of the zosA/pfeT gene results in low transformability. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 611 -319850 cd07552 P-type_ATPase_Cu-like P-type heavy metal-transporting ATPase, similar to Archaeoglobus fulgidus CopB, a Cu(2+)-ATPase. Archaeoglobus fulgidus CopB transports Cu(2+) from the cytoplasm to the exterior of the cell using ATP as energy source, it transports preferentially Cu(2+) over Cu(+), it is activated by Cu(2+) with high affinity and partially by Cu(+) and Ag(+). This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 632 -319851 cd07553 P-type_ATPase_HM P-type heavy metal-transporting ATPase; uncharacterized subfamily. Uncharacterized subfamily of the heavy metal-transporting ATPases (Type IB ATPases) which transport heavy metal ions (Cu(+), Cu(2+), Zn(2+), Cd(2+), Co(2+), etc.) across biological membranes. The characteristic N-terminal heavy metal associated (HMA) domain of this group is essential for the binding of metal ions. This subclass of P-type ATPase is also referred to as CPx-type ATPases because their amino acid sequences contain a characteristic CPC or CPH motif associated with a stretch of hydrophobic amino acids and N-terminal ion-binding sequences. This subfamily belongs to the P-type ATPases, a large family of integral membrane transporters that are of critical importance in all kingdoms of life. They generate and maintain (electro-) chemical gradients across cellular membranes, by translocating cations, heavy metals and lipids, and are distinguished from other main classes of transport ATPases (F- , V- , and ABC- type) by the formation of a phosphorylated (P-) intermediate state in the catalytic cycle. 610 -143637 cd07556 Nucleotidyl_cyc_III Class III nucleotidyl cyclases. Class III nucleotidyl cyclases are the largest, most diverse group of nucleotidyl cyclases (NC's) containing prokaryotic and eukaryotic proteins. They can be divided into two major groups; the mononucleotidyl cyclases (MNC's) and the diguanylate cyclases (DGC's). The MNC's, which include the adenylate cyclases (AC's) and the guanylate cyclases (GC's), have a conserved cyclase homology domain (CHD), while the DGC's have a conserved GGDEF domain, named after a conserved motif within this subgroup. Their products, cyclic guanylyl and adenylyl nucleotides, are second messengers that play important roles in eukaryotic signal transduction and prokaryotic sensory pathways. 133 -143638 cd07557 trimeric_dUTPase Trimeric dUTP diphosphatases. Trimeric dUTP diphosphatases, or dUTPases, are the most common family of dUTPase, found in bacteria, eukaryotes, and archaea. They catalyze the hydrolysis of the dUTP-Mg complex (dUTP-Mg) into dUMP and pyrophosphate. This reaction is crucial for the preservation of chromosomal integrity as it removes dUTP and therefore reduces the cellular dUTP/dTTP ratio, and prevents dUTP from being incorporated into DNA. It also provides dUMP as the precursor for dTTP synthesis via the thymidylate synthase pathway. dUTPases are homotrimeric, except some monomeric viral dUTPases, which have been shown to mimic a trimer. Active sites are located at the subunit interface. 92 -143471 cd07559 ALDH_ACDHII_AcoD-like Ralstonia eutrophus NAD+-dependent acetaldehyde dehydrogenase II and Staphylococcus aureus AldA1 (SACOL0154)-like. Included in this CD is the NAD+-dependent, acetaldehyde dehydrogenase II (AcDHII, AcoD, EC=1.2.1.3) from Ralstonia (Alcaligenes) eutrophus H16 involved in the catabolism of acetoin and ethanol, and similar proteins, such as, the dimeric dihydrolipoamide dehydrogenase of the acetoin dehydrogenase enzyme system of Klebsiella pneumonia. Also included are sequences similar to the NAD+-dependent chloroacetaldehyde dehydrogenases (AldA and AldB) of Xanthobacter autotrophicus GJ10 which are involved in the degradation of 1,2-dichloroethane, as well as, the uncharacterized aldehyde dehydrogenase from Staphylococcus aureus (AldA1, locus SACOL0154) and other similar sequences. 480 -143476 cd07560 Peptidase_S41_CPP C-terminal processing peptidase; serine protease family S41. The C-terminal processing peptidase (CPP, EC 3.4.21.102) also known as tail-specific protease (tsp), the photosystem II D1 C-terminal processing protease (D1P), and other related S41 protease family members are present in this CD. CPP is synthesized as a precursor form with a carboxyl-terminal extension. It specifically recognizes a C-terminal tripeptide, Xaa-Yaa-Zaa, in which Xaa is preferably Ala or Leu, Yaa is preferably Ala or Tyr and Zaa is preferably Ala, but then cleaves at a variable distance from the C-terminus. The C-terminal carboxylate group is essential, and proteins where this group is amidated are not substrates. This family of proteases contains the PDZ domain that promotes protein-protein interactions and is important for substrate recognition. The active site consists of a serine/lysine catalytic dyad. The bacterial CCP-1 is believed to be important for the degradation of incorrectly synthesized proteins as well as protection from thermal and osmotic stresses. In E. coli, it is involved in the cleavage of a C-terminal peptide of 11 residues from the precursor form of penicillin-binding protein 3 (PBP3). In the plant chloroplast, the enzyme removes the C-terminal extension of the D1 polypeptide of photosystem II, allowing the light-driven assembly of the tetranuclear manganese cluster, which is responsible for photosynthetic water oxidation. 211 -143477 cd07561 Peptidase_S41_CPP_like C-terminal processing peptidase-like; serine protease family S41. Bacterial protease homologs of the S41 family related to C-terminal processing peptidase (CPP). CPP-1 is believed to be important for the degradation of incorrectly synthesized proteins as well as protection from thermal and osmotic stresses. CPP is synthesized with an extension on its carboxyl-terminus and specifically recognizes a C-terminal tripeptide, but cleaves at variable distance from the C-terminus. The CPP active site consists of a serine/lysine catalytic dyad. Conservation of these residues is seen in the CPP-like proteins of this group. CPP proteins contain a PDZ domain that promotes protein-protein interactions and is important for substrate recognition however, most of CPP-like proteins only have an internal fragment or lack the PDZ domain. 256 -143478 cd07562 Peptidase_S41_TRI Tricorn protease; serine protease family S41. The tricorn protease (TRI), a member of the S41 peptidase family and named for its tricorn-like shape, exists only in some archaea and eubacteria. It has been shown to act as a carboxypeptidase, involved in the degradation of proteasomal products to preferentially yield di- and tripeptides, with subsequent and final degradations to free amino acid residues by tricorn interacting factors, F1, F2 and F3. Tricorn is a hexameric D3-symmetric protease of 720kD, and can self-associate further into a giant icosahedral capsid structure containing twenty copies of the complex. Each tricorn peptidase monomer consists of five structural domains: a six-bladed beta-propeller and a seven-bladed beta-propeller that limit access to the active site, the two domains (C1 and C2) that carry the active site residues, and a PDZ-like domain (proposed to be important for substrate recognition) between the C1 and C2 domains. The active site tetrad residues are distributed between the C1 and C2 domains, with serine and histidine on C1 and serine and glutamate on C2. 266 -143479 cd07563 Peptidase_S41_IRBP Interphotoreceptor retinoid-binding protein; serine protease family S41. Interphotoreceptor retinoid-binding protein (IRBP) is a homolog of the S41 protease, C-terminal processing peptidase (CTPase) family. It is thought to facilitate the compartmentalization of the visual cycle that requires poorly soluble and potentially toxic retinoids to cross the aqueous subretinal space between the photoreceptors and the retinal pigment epithelium (RPE). IRBP is secreted by photoreceptors into the interphotoreceptor matrix (IPM) where it is rapidly turned over by a combination of RPE and photoreceptor endocytosis. It is the most abundant soluble protein component of the IPM, consisting of homologous modules, each repeat structure arising through the duplication (as in teleost IRBP) or quadruplication (in tetrapods) of an ancient gene, arisen in the early evolution of the vertebrate eye. IRBP has been shown to promote the release of all-trans retinol from photoreceptors and facilitates its delivery to the RPE. Conversely, IRBP can promote the release of 11-cis-retinal from the RPE, prevent its isomerization in the subretinal space, and transfer it to photoreceptors. In vivo evidence implicates IRBP as a retinoid transporter in the visual cycle, suggesting a critical role for IRBP in cone function essential for human vision. IRBP is a dominant autoimmune antigen in the eye; IRBP proteolysis analysis has proven a useful biomarker for autoimmune uveitis (AU) disorders, a major cause of blindness. This family also includes a chlamydia-secreted protein, designated chlamydia protease-like activity factor (CPAF), known to degrade host proteins, enabling Chlamydia to evade host defenses and replicate. 250 -143588 cd07564 nitrilases_CHs Nitrilases, cyanide hydratase (CH)s, and similar proteins (class 1 nitrilases). Nitrilases (nitrile aminohydrolases, EC:3.5.5.1) hydrolyze nitriles (RCN) to ammonia and the corresponding carboxylic acid. Most nitrilases prefer aromatic nitriles, some prefer arylacetonitriles and others aliphatic nitriles. This group includes the nitrilase cyanide dihydratase (CDH), which hydrolyzes inorganic cyanide (HCN) to produce formate. It also includes cyanide hydratase (CH), which hydrolyzes HCN to formamide. This group includes four Arabidopsis thaliana nitrilases (Ath)NIT1-4. AthNIT1-3 have a strong substrate preference for phenylpropionitrile (PPN) and other nitriles which may originate from the breakdown of glucosinolates. The product of PPN hydrolysis, phenylacetic acid has auxin activity. AthNIT1-3 can also convert indoacetonitrile to indole-3-acetic acid (IAA, auxin), but with a lower affinity and velocity. From their expression patterns, it has been speculated that NIT3 may produce IAA during the early stages of germination, and that NIT3 may produce IAA during embryo development and maturation. AthNIT4 has a strong substrate specificity for the nitrile, beta-cyano-L-alanine (Ala(CN)), an intermediate of cyanide detoxification. AthNIT4 has both a nitrilase activity and a nitrile hydratase (NHase) activity, which generate aspartic acid and asparagine respectively from Ala(CN). NHase catalyzes the hydration of nitriles to their corresponding amides. This subgroup belongs to a larger nitrilase superfamily comprised of belong to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 1. 297 -143589 cd07565 aliphatic_amidase aliphatic amidases (class 2 nitrilases). Aliphatic amidases catalyze the hydrolysis of short-chain aliphatic amides to form ammonia and the corresponding organic acid. This group includes Pseudomonas aeruginosa (Pa) AmiE, the amidase from Geobacillus pallidus RAPc8 (RAPc8 amidase), and Helicobacter pylori (Hp) AmiE and AmiF. PaAimE and HpAmiE hydrolyze various very short aliphatic amides, including propionamide, acetamide and acrylamide. HpAmiF is a formamidase which specifically hydrolyzes formamide. These proteins belong to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 2. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. HpAmiE , HpAmiF, and RAPc8 amidase, and PaAimE appear to be homohexameric enzymes, trimer of dimers. 291 -143590 cd07566 ScNTA1_like Saccharomyces cerevisiae N-terminal amidase NTA1, and related proteins (class 3 nitrilases). Saccharomyces cerevisiae NTA1 functions in the N-end rule protein degradation pathway. It specifically deaminates the N-terminal asparagine and glutamine residues of substrates of this pathway, to aspartate and glutamate respectively, these latter are the destabilizing residues. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 3. 295 -143591 cd07567 biotinidase_like biotinidase and vanins (class 4 nitrilases). These secondary amidases participate in vitamin recycling. Biotinidase (EC 3.5.1.12) has both a hydrolase and a transferase activity. It hydrolyzes free biocytin or small biotinyl-peptides produced during the proteolytic degradation of biotin-dependent carboxylases, to release free biotin (vitamin H), and it can transfer biotin to acceptor molecules such as histones. Biotinidase deficiency in humans is an autosomal recessive disorder characterized by neurological and cutaneous symptoms. This subgroup includes the three human vanins, vanin1-3. Vanins are ectoenzymes, Vanin-1, and -2 are membrane associated, vanin-3 is secreted. They are pantotheinases (EC 3.5.1.92, pantetheine hydrolase), which convert pantetheine, to pantothenic acid (vitamin B5) and cysteamine (2-aminoethanethiol, a potent anti-oxidant). They are potential targets for therapeutic intervention in inflammatory disorders. Vanin-1 deficient mice lacking free cysteamine are less susceptible to intestinal inflammation, and expression of vanin-1 and -3 is induced as part of the inflammatory-regenerative differentiation program of human epidermis. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 4. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 299 -143592 cd07568 ML_beta-AS_like mammalian-like beta-alanine synthase (beta-AS) and similar proteins (class 5 nitrilases). This family includes mammalian-like beta-AS (EC 3.5.1.6, also known as beta-ureidopropionase or N-carbamoyl-beta-alanine amidohydrolase). This enzyme catalyzes the third and final step in the catabolic pyrimidine catabolic pathway responsible for the degradation of uracil and thymine, the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate to the beta-amino acids, beta-alanine and beta-aminoisobutyrate respectively. This family belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 5. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Beta-ASs from this subgroup are found in various oligomeric states, dimer (human), hexamer (calf liver), decamer (Arabidopsis and Zea mays), and in the case of Drosophila melanogaster beta-AS, as a homooctamer assembled as a left-handed helical turn, with the possibility of higher order oligomers formed by adding dimers at either end. Rat beta-AS changes its oligomeric state (hexamer, trimer, dodecamer) in response to allosteric effectors. Eukaryotic Saccharomyces kluyveri beta-AS belongs to a different superfamily. 287 -143593 cd07569 DCase N-carbamyl-D-amino acid amidohydrolase (DCase, class 6 nitrilases). DCase hydrolyses N-carbamyl-D-amino acids to produce D-amino acids. It is an important biocatalyst in the pharmaceutical industry, producing useful D-amino acids for example in the preparation of beta-lactam antibiotics. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 6. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Agrobacterium radiobacter DCase forms a tetramer (dimer of dimers). Some DCases may form trimers. 302 -143594 cd07570 GAT_Gln-NAD-synth Glutamine aminotransferase (GAT, glutaminase) domain of glutamine-dependent NAD synthetases (class 7 and 8 nitrilases). Glutamine-dependent NAD synthetases are bifunctional enzymes, which have an N-terminal GAT domain and a C-terminal NAD+ synthetase domain. The GAT domain is a glutaminase (EC 3.5.1.2) which hydrolyses L-glutamine to L-glutamate and ammonia. The ammonia is used by the NAD+ synthetase domain in the ATP-dependent amidation of nicotinic acid adenine dinucleotide. Glutamine aminotransferases are categorized depending on their active site residues into different unrelated classes. This class of GAT domain belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to classes 7 and 8. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase forms a homooctamer. 261 -143595 cd07571 ALP_N-acyl_transferase Apolipoprotein N-acyl transferase (class 9 nitrilases). ALP N-acyl transferase (Lnt), is an essential membrane-bound enzyme in gram-negative bacteria, which catalyzes the N-acylation of apolipoproteins, the final step in lipoprotein maturation. This is a reverse amidase (i.e. condensation) reaction. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 9. 270 -143596 cd07572 nit Nit1, Nit 2, and related proteins, and the Nit1-like domain of NitFhit (class 10 nitrilases). This subgroup includes mammalian Nit1 and Nit2, the Nit1-like domain of the invertebrate NitFhit, and various uncharacterized bacterial and archaeal Nit-like proteins. Nit1 and Nit2 are candidate tumor suppressor proteins. In NitFhit, the Nit1-like domain is encoded as a fusion protein with the non-homologous tumor suppressor, fragile histidine triad (Fhit). Mammalian Nit1 and Fhit may affect distinct signal pathways, and both may participate in DNA damage-induced apoptosis. Nit1 is a negative regulator in T cells. Overexpression of Nit2 in HeLa cells leads to a suppression of cell growth through cell cycle arrest in G2. These Nit proteins and the Nit1-like domain of NitFhit belong to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 10. 265 -143597 cd07573 CPA N-carbamoylputrescine amidohydrolase (CPA) (class 11 nitrilases). CPA (EC 3.5.1.53, also known as N-carbamoylputrescine amidase and carbamoylputrescine hydrolase) converts N-carbamoylputrescine to putrescine, a step in polyamine biosynthesis in plants and bacteria. This subgroup includes Arabidopsis thaliana CPA, also known as nitrilase-like 1 (NLP1), and Pseudomonas aeruginosa AguB. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 11. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer; P. aeruginosa AugB is a homohexamer, Arabidopsis thaliana NLP1 is a homooctomer. 284 -143598 cd07574 nitrilase_Rim1_like Uncharacterized subgroup of the nitrilase superfamily; some members of this subgroup have an N-terminal RimI domain (class 12 nitrilases). Some members of this subgroup are implicated in post-translational modification, as they contain an N-terminal GCN5-related N-acetyltransferase (GNAT) protein RimI family domain. The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 12. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 280 -143599 cd07575 Xc-1258_like Xanthomonas campestris XC1258 and related proteins, members of the nitrilase superfamily (putative class 13 nitrilases). Uncharacterized subgroup belonging to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup either represents a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. XC1258 is a homotetramer. 252 -143600 cd07576 R-amidase_like Pseudomonas sp. MCI3434 R-amidase and related proteins (putative class 13 nitrilases). Pseudomonas sp. MCI3434 R-amidase hydrolyzes (R,S)-piperazine-2-tert-butylcarboxamide to form (R)-piperazine-2-carboxylic acid. It does so with strict R-stereoselectively. Its preferred substrates are carboxamide compounds which have the amino or imino group connected to their beta- or gamma-carbon. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), class 13 represents proteins that at the time were difficult to place in a distinct similarity group. It has been suggested that this subgroup represents a new class. Members of the nitrilase superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Native R-amidase however appears to be a monomer. 254 -143601 cd07577 Ph0642_like Pyrococcus horikoshii Ph0642 and related proteins, members of the nitrilase superfamily (putative class 13 nitrilases). Uncharacterized subgroup of the nitrilase superfamily. This superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. Pyrococcus horikoshii Ph0642 is a hypothetical protein belonging to this subgroup. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). This subgroup was classified as belonging to class 13, which represents proteins that at the time were difficult to place in a distinct similarity group. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 259 -143602 cd07578 nitrilase_1_R1 First nitrilase domain of an uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). Members of this subgroup have two nitrilase domains. This is the first of those two domains. The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 258 -143603 cd07579 nitrilase_1_R2 Second nitrilase domain of an uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). Members of this subgroup have two nitrilase domains. This is the second of those two domains. The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 279 -143604 cd07580 nitrilase_2 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 268 -143605 cd07581 nitrilase_3 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 255 -143606 cd07582 nitrilase_4 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 294 -143607 cd07583 nitrilase_5 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 253 -143608 cd07584 nitrilase_6 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 258 -143609 cd07585 nitrilase_7 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 261 -143610 cd07586 nitrilase_8 Uncharacterized subgroup of the nitrilase superfamily (putative class 13 nitrilases). The nitrilase superfamily is comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13). Class 13 represents proteins that at the time were difficult to place in a distinct similarity group; this subgroup represents either a new class or one that was included previously in class 13. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. 269 -143611 cd07587 ML_beta-AS mammalian-like beta-alanine synthase (beta-AS) and similar proteins (class 5 nitrilases). This subgroup includes mammalian-like beta-AS (EC 3.5.1.6, also known as beta-ureidopropionase or N-carbamoyl-beta-alanine amidohydrolase). This enzyme catalyzes the third and final step in the catabolic pyrimidine catabolic pathway responsible for the degradation of uracil and thymine, the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate to the beta-amino acids, beta-alanine and beta-aminoisobutyrate respectively. This subgroup belongs to a larger nitrilase superfamily comprised of nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes, which depend on a Glu-Lys-Cys catalytic triad. This superfamily has been classified in the literature based on global and structure based sequence analysis into thirteen different enzyme classes (referred to as 1-13), this subgroup corresponds to class 5. Members of this superfamily generally form homomeric complexes, the basic building block of which is a homodimer. Beta-ASs from this subgroup are found in various oligomeric states, dimer (human), hexamer (calf liver), decamer (Arabidopsis and Zea mays), and in the case of Drosophila melanogaster beta-AS, as a homooctamer assembled as a left-handed helical turn, with the possibility of higher order oligomers formed by adding dimers at either end. Rat beta-AS changes its oligomeric state (hexamer, trimer, dodecamer) in response to allosteric effectors. Eukaryotic Saccharomyces kluyveri beta-AS belongs to a different superfamily. 363 -153272 cd07588 BAR_Amphiphysin The Bin/Amphiphysin/Rvs (BAR) domain of Amphiphysins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Amphiphysins function primarily in endocytosis and other membrane remodeling events. They contain an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR), a variable central domain, and a C-terminal SH3 domain. This subfamily is composed of different isoforms of amphiphysin and Bridging integrator 2 (Bin2). Amphiphysin I proteins, enriched in the brain and nervous system, contain domains that bind clathrin, Adaptor Protein complex 2 (AP2), dynamin and synaptojanin. They function in synaptic vesicle endocytosis. Some amphiphysin II isoforms, also called Bridging integrator 1 (Bin1), are localized in many different tissues and may function in intracellular vesicle trafficking. In skeletal muscle, Bin1 plays a role in the organization and maintenance of the T-tubule network. Bin2 is mainly expressed in hematopoietic cells and is upregulated during granulocyte differentiation. The N-BAR domains of amphiphysins form a curved dimer with a positively-charged concave face that can drive membrane bending and curvature. 211 -153273 cd07589 BAR_DNMBP The Bin/Amphiphysin/Rvs (BAR) domain of Dynamin Binding Protein. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. DyNamin Binding Protein (DNMBP), also called Tuba, is a Cdc42-specific Guanine nucleotide Exchange Factor (GEF) that binds dynamin and various actin regulatory proteins. It serves as a link between dynamin function, Rho GTPase signaling, and actin dynamics. It plays an important role in regulating cell junction configuration. DNMBP contains BAR and SH3 domains as well as a Dbl Homology domain (DH domain), which harbors GEF activity. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of DNMBP may be involved in binding to membranes. The gene encoding DNMBP is a candidate gene for late onset Alzheimer's disease. 195 -153274 cd07590 BAR_Bin3 The Bin/Amphiphysin/Rvs (BAR) domain of Bridging integrator 3. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Bridging integrator 3 (Bin3) is widely expressed in many tissues except in the brain. It plays roles in regulating filamentous actin localization and in cell division. In humans, the Bin3 gene is located in chromosome 8p21.3, a region that is implicated in cancer suppression. Homozygous inactivation of the Bin3 gene in mice led to the development of cataracts and an increased likelihood of lymphomas during aging, suggesting a role for Bin3 in lens development and cancer suppression. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 225 -153275 cd07591 BAR_Rvs161p The Bin/Amphiphysin/Rvs (BAR) domain of Saccharomyces cerevisiae Reduced viability upon starvation protein 161 and similar proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of fungal proteins with similarity to Saccharomyces cerevisiae Reduced viability upon starvation protein 161 (Rvs161p) and Schizosaccharomyces pombe Hob3 (homolog of Bin3). S. cerevisiae Rvs161p plays a role in regulating cell polarity, actin cytoskeleton polarization, vesicle trafficking, endocytosis, bud formation, and the mating response. It forms a heterodimer with another BAR domain protein Rvs167p. Rvs161p and Rvs167p share common functions but are not interchangeable. Their BAR domains cannot be replaced with each other and the overexpression of one cannot suppress the mutant phenotypes of the other. S. pombe Hob3 is important in regulating filamentous actin localization and may be required in activating Cdc42 and recruiting it to cell division sites. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 224 -153276 cd07592 BAR_Endophilin_A The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-A. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins are accessory proteins, localized at synapses, which interact with the endocytic proteins, dynamin and synaptojanin. They are essential for synaptic vesicle formation from the plasma membrane. They interact with voltage-gated calcium channels, thus linking vesicle endocytosis to calcium regulation. They also play roles in virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Vertebrates contain three endophilin-A isoforms. Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. They tubulate membranes and regulate calcium influx into neurons to trigger the activation of the endocytic machinery. They are also involved in the sorting of plasma membrane proteins, actin filament assembly, and the uncoating of clathrin-coated vesicles for fusion with endosomes. The BAR domains of endophilin-A1 and A3 form crescent-shaped dimers that can detect membrane curvature and drive membrane bending. 223 -153277 cd07593 BAR_MUG137_fungi The Bin/Amphiphysin/Rvs (BAR) domain of Schizosaccharomyces pombe Meiotically Up-regulated Gene 137 protein and similar proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. This subfamily is composed predominantly of uncharacterized fungal proteins with similarity to Schizosaccharomyces pombe Meiotically Up-regulated Gene 137 protein (MUG137), which may play a role in meiosis and sporulation in fission yeast. MUG137 contains an N-terminal BAR domain and a C-terminal SH3 domain, similar to endophilins. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 215 -153278 cd07594 BAR_Endophilin_B The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-B. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Vertebrates contain two endophilin-B isoforms. Endophilin-B proteins are cytoplasmic proteins expressed mainly in the heart, placenta, and skeletal muscle. 229 -153279 cd07595 BAR_RhoGAP_Rich-like The Bin/Amphiphysin/Rvs (BAR) domain of Rich-like Rho GTPase Activating Proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of Rho and Rac GTPase activating proteins (GAPs) with similarity to GAP interacting with CIP4 homologs proteins (Rich). Members contain an N-terminal BAR domain, followed by a Rho GAP domain, and a C-terminal prolin-rich region. Vertebrates harbor at least three Rho GAPs in this subfamily including Rich1, Rich2, and SH3-domain binding protein 1 (SH3BP1). Rich1 and Rich2 play complementary roles in the establishment and maintenance of cell polarity. Rich1 is a Cdc42- and Rac-specific GAP that binds to polarity proteins through the scaffold protein angiomotin and plays a role in maintaining the integrity of tight junctions. Rich2 is a Rac GAP that interacts with CD317 and plays a role in actin cytoskeleton organization and the maintenance of microvilli in polarized epithelial cells. SH3BP1 is a Rac GAP that inhibits Rac-mediated platelet-derived growth factor (PDGF)-induced membrane ruffling. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of Rich1 has been shown to form oligomers, bind membranes and induce membrane tubulation. 244 -153280 cd07596 BAR_SNX The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 218 -153281 cd07597 BAR_SNX8 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 8. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX8 and the yeast counterpart Mvp1p are involved in sorting and delivery of late-Golgi proteins, such as carboxypeptidase Y, to vacuoles. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 246 -153282 cd07598 BAR_FAM92 The Bin/Amphiphysin/Rvs (BAR) domain of Family with sequence similarity 92 (FAM92). BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. This group is composed of proteins from the family with sequence similarity 92 (FAM92), which were originally identified by the presence of the unknown domain DUF1208. This domain shows similarity to the BAR domains of sorting nexins. Mammals contain at least two member types, FAM92A and FAM92B, which may exist in many variants. The Xenopus homolog of FAM92A1, xVAP019, is essential for embryo survival and cell differentiation. FAM92A1 may be involved in regulating cell proliferation and apoptosis. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 211 -153283 cd07599 BAR_Rvs167p The Bin/Amphiphysin/Rvs (BAR) domain of Saccharomyces cerevisiae Reduced viability upon starvation protein 167 and similar proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of fungal proteins with similarity to Saccharomyces cerevisiae Reduced viability upon starvation protein 167 (Rvs167p) and Schizosaccharomyces pombe Hob1 (homolog of Bin1). S. cerevisiae Rvs167p plays a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. It forms a heterodimer with another BAR domain protein Rvs161p. Rvs161p and Rvs167p share common functions but are not interchangeable. Their BAR domains cannot be replaced with each other and the overexpression of one cannot suppress the mutant phenotypes of the other. Rvs167p also interacts with the GTPase activating protein (GAP) Gyp5p, which is involved in ER to Golgi vesicle trafficking. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 216 -153284 cd07600 BAR_Gvp36 The Bin/Amphiphysin/Rvs (BAR) domain of Saccharomyces cerevisiae Golgi vesicle protein of 36 kDa and similar proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. Proteomic analysis shows that Golgi vesicle protein of 36 kDa (Gvp36) may be involved in vesicular trafficking and nutritional adaptation. A Saccharomyces cerevisiae strain deficient in Gvp36 shows defects in growth, in actin cytoskeleton polarization, in endocytosis, in vacuolar biogenesis, and in the cell cycle. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 242 -153285 cd07601 BAR_APPL The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains, and are localized to cytoplasmic membranes. Vertebrates contain two APPL proteins, APPL1 and APPL2. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 215 -153286 cd07602 BAR_RhoGAP_OPHN1-like The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin1-like Rho GTPase Activating Proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of Rho and Rac GTPase activating proteins (GAPs) with similarity to oligophrenin1 (OPHN1). Members contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and a Rho GAP domain. Some members contain a C-terminal SH3 domain. Vertebrates harbor at least three Rho GAPs in this subfamily including OPHN1, GTPase Regulator Associated with Focal adhesion kinase (GRAF), GRAF2, and an uncharacterized protein called GAP10-like. OPHN1, GRAF and GRAF2 show GAP activity towards RhoA and Cdc42. In addition, OPHN1 is active towards Rac. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domains of OPHN1 and GRAF directly interact with their Rho GAP domains and inhibit their activity. The autoinhibited proteins are able to bind membranes and tubulate liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domains can occur simultaneously. 207 -153287 cd07603 BAR_ACAPs The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of ACAPs (ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins), which are Arf GTPase activating proteins (GAPs) containing an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. Vertebrates contain at least three members, ACAP1, ACAP2, and ACAP3. ACAP1 and ACAP2 are Arf6-specific GAPs, involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration, by mediating Arf6 signaling. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 200 -153288 cd07604 BAR_ASAPs The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of ASAPs (ArfGAP with SH3 domain, ANK repeat and PH domain containing proteins), which are Arf GTPase activating proteins (GAPs) with similarity to ACAPs (ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins) in that they contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and ankyrin (ANK) repeats. However, ASAPs contain an additional C-terminal SH3 domain. ASAPs function in regulating cell growth, migration, and invasion. Vertebrates contain at least three members, ASAP1, ASAP2, and ASAP3. ASAP1 and ASAP2 shows GTPase activating protein (GAP) activity towards Arf1 and Arf5. They do not show GAP activity towards Arf6, but is able to mediate Arf6 signaling by binding stably to GTP-Arf6. ASAP3 is an Arf6-specific GAP. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains. 215 -153289 cd07605 I-BAR_IMD Inverse (I)-BAR, also known as the IRSp53/MIM homology Domain (IMD), a dimerization module that binds and bends membranes. Inverse (I)-BAR (or IMD) is a member of the Bin/Amphiphysin/Rvs (BAR) domain family. It is a dimerization and lipid-binding module that bends membranes and induces membrane protrusions in the opposite direction compared to classical BAR and F-BAR domains, which produce membrane invaginations. IMD domains are found in Insulin Receptor tyrosine kinase Substrate p53 (IRSp53), Missing in Metastasis (MIM), and Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-like (BAIAP2L) proteins. These are multi-domain proteins that act as scaffolding proteins and transducers of a variety of signaling pathways that link membrane dynamics and the underlying actin cytoskeleton. Most members contain an N-terminal IMD, an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus, exccept for MIM which does not carry an SH3 domain. Some members contain additional domains and motifs. The IMD domain binds and bundles actin filaments, binds membranes and produces membrane protrusions, and interacts with the small GTPase Rac. 223 -153290 cd07606 BAR_SFC_plant The Bin/Amphiphysin/Rvs (BAR) domain of the plant protein SCARFACE (SFC). BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. The plant protein SCARFACE (SFC), also called VAscular Network 3 (VAN3), is a plant ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein), an Arf GTPase Activating Protein (GAP) that plays a role in the trafficking of auxin efflux regulators from the plasma membrane to the endosome. It is required for the normal vein patterning in leaves. SCF contains an N-terminal BAR domain, followed by a Pleckstrin Homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 202 -153291 cd07607 BAR_SH3P_plant The Bin/Amphiphysin/Rvs (BAR) domain of the plant SH3 domain-containing proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. This group is composed of proteins with similarity to Arabidopsis thaliana SH3 domain-containing proteins 1 (SH3P1) and 2 (SH3P2). SH3P1 is involved in the trafficking of clathrin-coated vesicles. It is localized at the plasma membrane and is associated with vesicles of the trans-Golgi network. Yeast complementation studies reveal that SH3P1 has similar functions to the Saccharomyces cerevisiae Rvs167p, which is involved in endocytosis and actin cytoskeletal arrangement. Members of this group contain an N-terminal BAR domain and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 209 -153292 cd07608 BAR_ArfGAP_fungi The Bin/Amphiphysin/Rvs (BAR) domain of uncharacterized fungal Arf GAP proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. This group is composed of uncharacterized fungal proteins containing an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and an Arf GTPase Activating Protein (GAP) domain. These proteins may play roles in Arf-mediated functions involving membrane dynamics. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 192 -153293 cd07609 BAR_SIP3_fungi The Bin/Amphiphysin/Rvs (BAR) domain of fungal Snf1p-interacting protein 3. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. This group is composed of mostly uncharacterized fungal proteins with similarity to Saccharomyces cerevisiae Snf1p-interacting protein 3 (SIP3). These proteins contain an N-terminal BAR domain followed by a Pleckstrin Homology (PH) domain. SIP3 interacts with SNF1 protein kinase and activates transcription when anchored to DNA. It may function in the SNF1 pathway. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 214 -153294 cd07610 FCH_F-BAR The Extended FES-CIP4 Homology (FCH) or F-BAR (FCH and Bin/Amphiphysin/Rvs) domain, a dimerization module that binds and bends membranes. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. F-BAR domain containing proteins, also known as Pombe Cdc15 homology (PCH) family proteins, include Fes and Fer tyrosine kinases, PACSINs/Syndapins, FCHO, PSTPIP, CIP4-like proteins and srGAPs. Many members also contain an SH3 domain and play roles in endocytosis. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. These tubules have diameters larger than those observed with N-BARs. The F-BAR domains of some members such as NOSTRIN and Rgd1 are important for the subcellular localization of the protein. 191 -153295 cd07611 BAR_Amphiphysin_I_II The Bin/Amphiphysin/Rvs (BAR) domain of Amphiphysin I and II. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Amphiphysins function primarily in endocytosis and other membrane remodeling events. They contain an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR), a variable central domain, and a C-terminal SH3 domain. Amphiphysin I proteins, enriched in the brain and nervous system, contain domains that bind clathrin, Adaptor Protein complex 2 (AP2), dynamin and synaptojanin. They function in synaptic vesicle endocytosis. Some amphiphysin II isoforms, also called Bridging integrator 1 (Bin1), are localized in many different tissues and may function in intracellular vesicle trafficking. In skeletal muscle, Bin1 plays a role in the organization and maintenance of the T-tubule network. The N-BAR domain of amphiphysin forms a curved dimer with a positively-charged concave face that can drive membrane bending and curvature. Human autoantibodies to amphiphysin-1 hinder GABAergic signaling and contribute to the pathogenesis of paraneoplastic stiff-person syndrome. Mutations in amphiphysin-2 (BIN1) are associated with autosomal recessive centronuclear myopathy. 211 -153296 cd07612 BAR_Bin2 The Bin/Amphiphysin/Rvs (BAR) domain of Bridging integrator 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Bridging integrator 2 (Bin2) is a BAR domain containing protein that is mainly expressed in hematopoietic cells. It is upregulated during granulocyte differentiation and is thought to function primarily in this lineage. The BAR domain of Bin2 is closely related to the BAR domains of amphiphysins, which function primarily in endocytosis and other membrane remodeling events. Amphiphysins contain an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR), a variable central domain, and a C-terminal SH3 domain. Unlike amphiphysins, Bin2 does not appear to contain a C-terminal SH3 domain. Amphiphysin I proteins, enriched in the brain and nervous system, function in synaptic vesicle endocytosis. Some amphiphysin II isoforms, also called Bridging integrator 1 (Bin1), function in intracellular vessicle trafficking. Bin2 can form a stable complex with Bin1 in cells but cannot replace the function of Bin1, and thus, appears to harbor a nonredundant function. The N-BAR domain of amphiphysin forms a curved dimer with a positively-charged concave face that can drive membrane bending and curvature. 211 -153297 cd07613 BAR_Endophilin_A1 The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-A1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Vertebrates contain three endophilin-A isoforms. Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. Endophilin-A1 (or endophilin-1) is also referred to as SH3P4 (SH3 domain containing protein 4) or SH3GL2 (SH3 domain containing Grb2-like protein 2). It is localized in presynaptic nerve terminals. It plays many roles in clathrin-dependent endocytosis of synaptic vesicles including early vesicle formation, ubiquitin-dependent sorting of plasma membrane proteins, and regulation of calcium influx into neurons. The BAR domain of endophilin-A1 forms crescent-shaped dimers that can detect membrane curvature and drive membrane bending, while its SH3 domain binds the endocytic proteins, dynamin 1, synaptojanin 1, and amphiphysins. 223 -153298 cd07614 BAR_Endophilin_A2 The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-A2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins are accessory proteins, localized at synapses, which interact with the endocytic proteins, dynamin and synaptojanin. They are essential for synaptic vesicle formation from the plasma membrane. They interact with voltage-gated calcium channels, thus linking vesicle endocytosis to calcium regulation. They also play roles in virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. Endophilin-A2 (or endophilin-2) is also referred to as SH3P8 (SH3 domain containing protein 8) or SH3GL1 (SH3 domain containing Grb2-like protein 1). It localizes to presynaptic nerve terminals and forms heterodimers with endophilin-A1 through their BAR domains. Endophilin-A2 binds dynamin 1, synaptojanin 1, and the beta1-adrenergic receptor cytoplasmic tail through its SH3 domain. 223 -153299 cd07615 BAR_Endophilin_A3 The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-A3. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins are accessory proteins localized at synapses that interacts with the endocytic proteins, dynamin and synaptojanin. They are essential for synaptic vesicle formation from the plasma membrane. They interact with voltage-gated calcium channels, thus linking vesicle endocytosis to calcium regulation. They also play roles in virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. Endophilin-A3 (or endophilin-3) is also referred to as SH3P13 (SH3 domain containing protein 13) or SH3GL3 (SH3 domain containing Grb2-like protein 3). It regulates Arp2/3-dependent actin filament assembly during endocytosis. It binds N-WASP through its SH3 domain and enhances the ability of N-WASP to activate the Arp2/3 complex. Endophilin-A3 co-localizes with the vesicular glutamate transporter 1 (VGLUT1), and may play an important role in the synaptic release of glutamate. 223 -153300 cd07616 BAR_Endophilin_B1 The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-B1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Endophilin-B proteins are cytoplasmic proteins expressed mainly in the heart, placenta, and skeletal muscle. Endophilin-B1, also called Bax-interacting factor 1 (Bif-1) or SH3GLB1 (SH3-domain GRB2-like endophilin B1), is localized mainly to the Golgi apparatus. It is involved in the regulation of many biological events including autophagy, tumorigenesis, nerve growth factor (NGF) trafficking, neurite outgrowth, mitochondrial outer membrane dynamics, and cell death. Endophilin-B1 forms homo- and heterodimers (with endophilin-B2) through its BAR domain, which can bind and bend membranes. It interacts with amphiphysin 1 and dynamin 1 through its SH3 domain. 229 -153301 cd07617 BAR_Endophilin_B2 The Bin/Amphiphysin/Rvs (BAR) domain of Endophilin-B2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. They are classified into two types, A and B. Vertebrates contain two endophilin-B isoforms. Endophilin-B proteins are cytoplasmic proteins expressed mainly in the heart, placenta, and skeletal muscle. Endophilin-B2, also called SH3GLB2 (SH3-domain GRB2-like endophilin B2), is a cytoplasmic protein that interacts with the apoptosis inducer Bax. It is overexpressed in prostate cancer metastasis and has been identified as a cancer antigen with potential utility in immunotherapy. Endophilin-B2 forms homo- and heterodimers (with endophilin-B1) through its BAR domain, which can bind and bend membranes. 220 -153302 cd07618 BAR_Rich1 The Bin/Amphiphysin/Rvs (BAR) domain of RhoGAP interacting with CIP4 homologs protein 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. RhoGAP interacting with CIP4 homologs protein 1 (Rich1) is also called Neuron-associated developmentally-regulated protein (Nadrin) or Rho GTPase activating protein 17 (ARHGAP17). It is a Cdc42- and Rac-specific GAP that binds to polarity proteins through the scaffold protein angiomotin and plays a role in maintaining the integrity of tight junctions. It may be a component of a sorting mechanism in the recycling of tight junction transmembrane proteins. Rich1 contains an N-terminal BAR domain followed by a Rho GAP domain and a C-terminal proline-rich domain. It interacts with the BAR domain proteins endophilin and amphiphysin through its proline-rich region. The BAR domain of Rich1 forms oligomers and can bind membranes and induce membrane tubulation. 246 -153303 cd07619 BAR_Rich2 The Bin/Amphiphysin/Rvs (BAR) domain of RhoGAP interacting with CIP4 homologs protein 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. RhoGAP interacting with CIP4 homologs protein 2 (Rich2) is a Rho GTPase activating protein that interacts with CD317, a lipid raft-associated integral membrane protein. It plays a role in actin cytoskeleton organization and the maintenance of microvilli in polarized epithelial cells. Rich2 contains an N-terminal BAR domain followed by a GAP domain for Rho and Rac GTPases and a C-terminal proline-rich domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 248 -153304 cd07620 BAR_SH3BP1 The Bin/Amphiphysin/Rvs (BAR) domain of SH3-domain Binding Protein 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. SH3-domain binding protein 1 (SH3BP1 or 3BP-1) is a Rac GTPase activating protein that inhibits Rac-mediated platelet-derived growth factor (PDGF)-induced membrane ruffling. SH3BP1 contains an N-terminal BAR domain followed by a GAP domain for Rho and Rac GTPases and a C-terminal proline-rich domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 257 -153305 cd07621 BAR_SNX5_6 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins 5 and 6. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. Members of this subfamily include SNX5, SNX6, the mammalian SNX32, and similar proteins. SNX5 and SNX6 may be components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. The function of SNX32 is still unknown. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 219 -153306 cd07622 BAR_SNX4 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 4. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX4 is involved in recycling traffic from the sorting endosome (post-Golgi endosome) back to the late Golgi. It is also implicated in the regulation of plasma membrane receptor trafficking and interacts with receptors for EGF, insulin, platelet-derived growth factor and leptin. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 201 -153307 cd07623 BAR_SNX1_2 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins 1 and 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. This subfamily consists of SNX1, SNX2, and similar proteins. SNX1 and SNX2 are components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 224 -153308 cd07624 BAR_SNX7_30 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins 7 and 30. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. This subfamily consists of SNX7, SNX30, and similar proteins. The specific functions of SNX7 and SNX30 have not been elucidated. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 200 -153309 cd07625 BAR_Vps17p The Bin/Amphiphysin/Rvs (BAR) domain of yeast Sorting Nexin Vps17p. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. Vsp17p forms a dimer with Vps5p, the yeast counterpart of human SNX1, and is part of the retromer complex that mediates the transport of the carboxypeptidase Y receptor Vps10p from endosomes to Golgi. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 230 -153310 cd07626 BAR_SNX9_like The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 9 and Similar Proteins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. This subfamily consists of SNX9, SNX18, SNX33, and similar proteins. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 199 -153311 cd07627 BAR_Vps5p The Bin/Amphiphysin/Rvs (BAR) domain of yeast Sorting Nexin Vps5p. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. Vsp5p is the yeast counterpart of human SNX1 and is part of the retromer complex, which functions in the endosome-to-Golgi retrieval of vacuolar protein sorting receptor Vps10p, the Golgi-resident membrane protein A-ALP, and endopeptidase Kex2. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 216 -153312 cd07628 BAR_Atg24p The Bin/Amphiphysin/Rvs (BAR) domain of yeast Sorting Nexin Atg24p. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. Atg24p is involved in membrane fusion events at the vacuolar surface during pexophagy. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 185 -153313 cd07629 BAR_Atg20p The Bin/Amphiphysin/Rvs (BAR) domain of yeast Sorting Nexin Atg20p. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. The function of Atg20p is unknown but it has been shown to interact with Atg11p, which plays a role in linking cargo molecules with vesicle-forming components. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 187 -153314 cd07630 BAR_SNX_like The Bin/Amphiphysin/Rvs (BAR) domain of uncharacterized Sorting Nexins. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of uncharacterized proteins with similarity to sorting nexins (SNXs), which are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 198 -153315 cd07631 BAR_APPL1 The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. APPL1 interacts with diverse receptors (e.g. NGF receptor TrkA, FSHR, adiponectin receptors) and signaling proteins (e.g. Akt, PI3K), and may function as an adaptor linked to many distinct signaling pathways. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 215 -153316 cd07632 BAR_APPL2 The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. Both APPL proteins interact with the transcriptional repressor Reptin, acting as activators of beta-catenin/TCF-mediated trancription. APPL2 is essential for cell proliferation. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 215 -153317 cd07633 BAR_OPHN1 The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin-1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Oligophrenin-1 (OPHN1) is a GTPase activating protein (GAP) with activity towards RhoA, Rac, and Cdc42, that is expressed in developing spinal cord and in adult brain areas with high plasticity. It plays a role in regulating the actin cystoskeleton as well as morphology changes in axons and dendrites, and may also function in modulating neuronal connectivity. Mutations in the OPHN1 gene causes X-linked mental retardation associated with cerebellar hypoplasia, lateral ventricle enlargement and epilepsy. OPHN1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and a Rho GAP domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 207 -153318 cd07634 BAR_GAP10-like The Bin/Amphiphysin/Rvs (BAR) domain of Rho GTPase activating protein 10-like. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This group is composed of uncharacterized proteins called Rho GTPase activating protein (GAP) 10-like. GAP10-like may be a GAP with activity towards RhoA and Cdc42. Similar to GRAF and GRAF2, it contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domains of the related proteins GRAF and OPHN1, directly interact with their Rho GAP domains and inhibit theiractivity. The autoinhibited proteins are capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously. 207 -153319 cd07635 BAR_GRAF2 The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. GTPase Regulator Associated with Focal adhesion kinase 2 (GRAF2), also called Rho GTPase activating protein 10 (ARHGAP10) or PS-GAP, is a GAP with activity towards Cdc42 and RhoA which regulates caspase-activated p21-activated protein kinase-2 (PAK-2p34). GRAF2 interacts with PAK-2p34, leading to its stabilization and decrease of cell death. It is highly expressed in skeletal muscle and also interacts with PKNbeta, which is a target of Rho. GRAF2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of the related protein GRAF directly interacts with its Rho GAP domain and inhibits its activity. Autoinhibited GRAF is capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously. 207 -153320 cd07636 BAR_GRAF The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion kinase. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. GTPase Regulator Associated with Focal adhesion kinase (GRAF), also called Rho GTPase activating protein 26 (ARHGAP26), is a GAP with activity towards RhoA and Cdc42 and is only weakly active towards Rac1. It influences Rho-mediated cytoskeletal rearrangements and binds focal adhesion kinase (FAK), which is a critical component of integrin signaling. GRAF contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of GRAF directly interacts with its Rho GAP domain and inhibits its activity. Autoinhibited GRAF is capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously. 207 -153321 cd07637 BAR_ACAP3 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3), also called centaurin beta-5, is presumed to be an Arf GTPase activating protein (GAP) based on its similarity to the Arf6-specific GAPs ACAP1 and ACAP2. The specific function of ACAP3 is still unknown. ACAP3 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 200 -153322 cd07638 BAR_ACAP2 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2), also called centaurin beta-2, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 200 -153323 cd07639 BAR_ACAP1 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 1), also called centaurin beta-1, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP1 also participates in the cargo sorting and recycling of the transferrin receptor and integrin beta1. It may also play a role in innate immune responses. ACAP1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 200 -153324 cd07640 BAR_ASAP3 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 3. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ASAP3 (ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 3) is also known as ACAP4 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 4), DDEFL1 (Development and Differentiation Enhancing Factor-Like 1), or centaurin beta-6. It is an Arf6-specific GTPase activating protein (GAP) and is co-localized with Arf6 in ruffling membranes upon EGF stimulation. ASAP3 is implicated in the pathogenesis of hepatocellular carcinoma and plays a role in regulating cell migration and invasion. ASAP3 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of the related protein ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains. 213 -153325 cd07641 BAR_ASAP1 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 1) is also known as DDEF1 (Development and Differentiation Enhancing Factor 1), AMAP1, centaurin beta-4, or PAG2. ASAP1 is an Arf GTPase activating protein (GAP) with activity towards Arf1 and Arf5 but not Arf6 However, it has been shown to bind GTP-Arf6 stably without GAP activity. It has been implicated in cell growth, migration, and survival, as well as in tumor invasion and malignancy. It binds paxillin and cortactin, two components of invadopodia which are essential for tumor invasiveness. It also binds focal adhesion kinase (FAK) and the SH2/SH3 adaptor CrkL. ASAP1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains. 215 -153326 cd07642 BAR_ASAP2 The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ASAP2 (ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 2) is also known as DDEF2 (Development and Differentiation Enhancing Factor 2), AMAP2, centaurin beta-3, or PAG3. ASAP2 mediates the functions of Arf GTPases vial dual mechanisms: it exhibits GTPase activating protein (GAP) activity towards class I (Arf1) and II (Arf5) Arfs; and binds class III Arfs (GTP-Arf6) stably without GAP activity. It binds paxillin and is implicated in Fcgamma receptor-mediated phagocytosis in macrophages and in cell migration. ASAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of the related protein ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains. 215 -153327 cd07643 I-BAR_IMD_MIM Inverse (I)-BAR, also known as the IRSp53/MIM homology Domain (IMD), of Missing In Metastasis. The IMD domain, also called Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, is a dimerization and lipid-binding module that bends membranes and induces membrane protrusions. Members of this subfamily include missing in metastasis (MIM) or metastasis suppressor 1 (MTSS1), metastasis suppressor 1-like (MTSSL) or ABBA (Actin-Bundling protein with BAIAP2 homology), and similar proteins. They contain an N-terminal IMD and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. MIM was originally identified as a missing transcript from metastatic bladder and prostate cancer cells. It is a scaffold protein that functions in a signaling pathway between the PDGF receptor, Src kinases, and actin assembly. It may also function as a cofactor of the Sonic hedgehog (Shh) transcriptional pathway and may participate in tumor development and progression via this pathway. ABBA regulates actin and plasma membrane dynamics to promote the extension of radial glia, which is important in neuronal migration, axon guidance and neurogenesis. The IMD domain of MIM binds and bundles actin filaments, binds membranes, and interacts with the small GTPase Rac. 231 -153328 cd07644 I-BAR_IMD_BAIAP2L2 Inverse (I)-BAR, also known as the IRSp53/MIM homology Domain (IMD), of Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 2. The IMD domain, also called Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, is a dimerization and lipid-binding module that bends membranes and induces membrane protrusions. This group is composed of uncharacterized proteins known as BAIAP2L2 (Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 2). They contain an N-terminal IMD, an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. The related proteins, BAIAP2L1 and IRSp53, function as regulators of membrane dynamics and the actin cytoskeleton. The IMD domain binds and bundles actin filaments, binds membranes and produces membrane protrusions, and interacts with the small GTPase Rac. 215 -153329 cd07645 I-BAR_IMD_BAIAP2L1 Inverse (I)-BAR, also known as the IRSp53/MIM homology Domain (IMD), of Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 1. The IMD domain, also called Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, is a dimerization and lipid-binding module that bends membranes and induces membrane protrusions. BAIAP2L1 (Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 1) is also known as IRTKS (Insulin Receptor Tyrosine Kinase Substrate). It is widely expressed, serves as a substrate for the insulin receptor, and binds the small GTPase Rac. It plays a role in regulating the actin cytoskeleton and colocalizes with F-actin, cortactin, VASP, and vinculin. BAIAP2L1 expression leads to the formation of short actin bundles, distinct from filopodia-like protrusions induced by the expression of the related protein IRSp53. It contains an N-terminal IMD, an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. The IMD domain of BAIAP2L1 binds and bundles actin filaments, and binds the small GTPase Rac. 226 -153330 cd07646 I-BAR_IMD_IRSp53 Inverse (I)-BAR, also known as the IRSp53/MIM homology Domain (IMD), of Insulin Receptor tyrosine kinase Substrate p53. The IMD domain, also called Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, is a dimerization and lipid-binding module that bends membranes and induces membrane protrusions. IRSp53 (Insulin Receptor tyrosine kinase Substrate p53) is also known as BAIAP2 (Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2). It is a scaffolding protein that takes part in many signaling pathways including Cdc42-induced filopodia formation, Rac-mediated lamellipodia extension, and spine morphogenesis. IRSp53 exists as multiple splicing variants that differ mainly at the C-termini. One variant (T-form) is expressed exclusively in human breast cancer cells. The gene encoding IRSp53 is a putative susceptibility gene for Gilles de la Tourette syndrome. IRSp53 contains an N-terminal IMD, a CRIB (Cdc42 and Rac interactive binding motif), an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. Its IMD domain binds and bundles actin filaments, binds membranes, and interacts with the small GTPase Rac. 232 -153331 cd07647 F-BAR_PSTPIP The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Proline-Serine-Threonine Phosphatase-Interacting Proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Vetebrates contain two Proline-Serine-Threonine Phosphatase-Interacting Proteins (PSTPIPs), PSTPIP1 and PSTPIP2. PSTPIPs are mainly expressed in hematopoietic cells and are involved in the regulation of cell adhesion and motility. Mutations in PSTPIPs have been shown to cause autoinflammatory disorders. PSTPIP1 contains an N-terminal F-BAR domain, PEST motifs, and a C-terminal SH3 domain, while PSTPIP2 contains only the N-terminal F-BAR domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 239 -153332 cd07648 F-BAR_FCHO The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH domain Only proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Proteins in this group have been named FCH domain Only (FCHO) proteins. Vertebrates have two members, FCHO1 and FCHO2. These proteins contain an F-BAR domain and a C-terminal domain of unknown function named SAFF which is also present in endophilin interacting protein 1. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 261 -153333 cd07649 F-BAR_GAS7 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Growth Arrest Specific protein 7. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Growth Arrest Specific protein 7 (GAS7) is mainly expressed in the brain and is required for neurite outgrowth. It may also play a role in the protection and migration of embryonic stem cells. Treatment-related acute myeloid leukemia (AML) has been reported resulting from mixed-lineage leukemia (MLL)-GAS7 translocations as a complication of primary cancer treatment. GAS7 contains an N-terminal SH3 domain, followed by a WW domain, and a central F-BAR domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 233 -153334 cd07650 F-BAR_Syp1p_like The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of yeast Syp1 protein. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Syp1p is associated with septins, a family of GTP-binding proteins that serve as elements of septin filaments, which are required for cell morphogenesis and division. Syp1p regulates cell-cycle dependent septin cytoskeletal dynamics in yeast. It contains an N-terminal F-BAR domain and a C-terminal domain of unknown function named SAFF which is also present in FCH domain Only (FCHO) proteins and endophilin interacting protein 1. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 228 -153335 cd07651 F-BAR_PombeCdc15_like The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Schizosaccharomyces pombe Cdc15, and similar proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. This subfamily is composed of Schizosaccharomyces pombe Cdc15 and Imp2, and similar proteins. These proteins contain an N-terminal F-BAR domain and a C-terminal SH3 domain. S. pombe Cdc15 and Imp2 play both distinct and overlapping roles in the maintenance and strengthening of the contractile ring at the division site, which is required in cell division. Cdc15 is a component of the actomyosin ring and is required in normal cytokinesis. Imp2 colocalizes with the medial ring during septation and is required for normal septation. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 236 -153336 cd07652 F-BAR_Rgd1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Saccharomyces cerevisiae Rho GTPase activating protein Rgd1 and similar proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Saccharomyces cerevisiae Rgd1 is a GTPase activating protein (GAP) with activity towards Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. At low pH, S. cerevisiae Rgd1 is required for cell survival and the activation of the protein kinase C pathway, which is important in cell integrity and the maintenance of cell shape. It contains an N-terminal F-BAR domain and a C-terminal Rho GAP domain. The F-BAR domain of S. cerevisiae Rgd1 binds to phosphoinositides and plays an important role in the localization of the protein to the bud tip/neck during the cell cycle. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 234 -153337 cd07653 F-BAR_CIP4-like The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Cdc42-Interacting Protein 4 and similar proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. This subfamily is composed of Cdc42-Interacting Protein 4 (CIP4), Formin Binding Protein 17 (FBP17), FormiN Binding Protein 1-Like (FNBP1L), and similar proteins. CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. CIP4 and FBP17 bind to the Fas ligand and may be implicated in the inflammatory response. CIP4 may also play a role in phagocytosis. Members of this subfamily typically contain an N-terminal F-BAR domain and a C-terminal SH3 domain. In addition, some members such as FNBP1L contain a central Cdc42-binding HR1 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 251 -153338 cd07654 F-BAR_FCHSD The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH and double SH3 domains proteins (FCHSD). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. This subfamily is composed of FCH and double SH3 domain (FCHSD) proteins, so named as they contain an N-terminal F-BAR domain and two SH3 domains at the C-terminus. Vertebrates harbor two subfamily members, FCHSD1 and FCHSD2, which have been characterized only in silico. Their biological function is still unknown. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 264 -153339 cd07655 F-BAR_PACSIN The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. They bind both dynamin and Wiskott-Aldrich syndrome protein (WASP), and may provide direct links between the actin cytoskeletal machinery through WASP and dynamin-dependent endocytosis. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 258 -153340 cd07656 F-BAR_srGAP The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Slit-Robo GTPase Activating Proteins. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Slit-Robo GTPase Activating Proteins (srGAPs) are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. Vertebrates contain three isoforms of srGAPs, all of which are expressed during embryonic and early development in the nervous system but with different localization and timing. srGAPs contain an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 241 -153341 cd07657 F-BAR_Fes_Fer The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Fes (feline sarcoma) and Fer (Fes related) tyrosine kinases. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Fes (feline sarcoma), also called Fps (Fujinami poultry sarcoma), and Fer (Fes related) are cytoplasmic (or nonreceptor) tyrosine kinases that play roles in haematopoiesis, inflammation and immunity, growth factor signaling, cytoskeletal regulation, cell migration and adhesion, and the regulation of cell-cell interactions. Although Fes and Fer show redundancy in their biological functions, they show differences in their expression patterns. Fer is ubiquitously expressed while Fes is expressed predominantly in myeloid and endothelial cells. Fes and Fer contain an N-terminal F-BAR domain, an SH2 domain, and a C-terminal catalytic kinase domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. The F-BAR domain of Fes is critical in its role in microtubule nucleation and bundling. 237 -153342 cd07658 F-BAR_NOSTRIN The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Nitric Oxide Synthase TRaffic INducer (NOSTRIN). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Nitric Oxide Synthase TRaffic INducer (NOSTRIN) is expressed in endothelial and epithelial cells and is involved in the regulation, trafficking and targeting of endothelial NOS (eNOS). NOSTRIN facilitates the endocytosis of eNOS by coordinating the functions of dynamin and the Wiskott-Aldrich syndrome protein (WASP). Increased expression of NOSTRIN may be correlated to preeclampsia. NOSTRIN contains an N-terminal F-BAR domain and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. The F-BAR domain of NOSTRIN is necessary and sufficient for its membrane association and is responsible for its subcellular localization. 239 -153343 cd07659 BAR_PICK1 The Bin/Amphiphysin/Rvs (BAR) domain of Protein Interacting with C Kinase 1. The BAR domain of Arfaptin-like proteins, also called the Arfaptin domain, is a dimerization and lipid binding module that can detect and drive membrane curvature. Protein Interacting with C Kinase 1 (PICK1), also called Protein kinase C-alpha-binding protein, is highly expressed in brain and testes. PICK1 plays a key role in the trafficking of AMPA receptors, which are critical for regulating synaptic strength and may be important in cellular processes involved in learning and memory. PICK1 is also critical in the early stages of spermiogenesis. Mice deficient in PICK1 are infertile and show characteristics of the human disease globozoospermia such as round-headed sperm, reduced sperm count, and severely impaired sperm motility. PICK1 may also be involved in the neuropathogenesis of schizophrenia. PICK1 contains an N-terminal PDZ domain and a C-terminal BAR domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of PICK1 is necessary for its membrane localization and activation. 215 -153344 cd07660 BAR_Arfaptin The Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin. The BAR domain of Arfaptin-like proteins, also called the Arfaptin domain, is a dimerization and lipid binding module that can detect and drive membrane curvature. Arfaptins are ubiquitously expressed proteins implicated in mediating cross-talk between Rac, a member of the Rho family GTPases, and Arf (ADP-ribosylation factor) small GTPases. Arfaptins bind to GTP-bound Arf1, Arf5, and Arf6, with strongest binding to GTP-Arf1. Arfaptins also bind to Rac-GTP and Rac-GDP with similar affinities. The Arfs are thought to bind to the same surface as Rac, and their binding is mutually exclusive. Mammals contain at least two isoforms of Arfaptin. Arfaptin 1 has been shown to inhibit the activation of Arf-dependent phospholipase D (PLD) and the secretion of matrix metalloproteinase-9 (MMP-9), an enzyme implicated in cancer invasiveness and metastasis. Arfaptin 2 regulates the aggregation of the protein huntingtin, which is implicated in Huntington disease. Arfaptins are single-domain proteins with a BAR-like structure. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 201 -153345 cd07661 BAR_ICA69 The Bin/Amphiphysin/Rvs (BAR) domain of Islet Cell Autoantigen 69-kDa. The BAR domain of Arfaptin-like proteins, also called the Arfaptin domain, is a dimerization and lipid binding module that can detect and drive membrane curvature. Islet cell autoantigen 69-kDa (ICA69) is a diabetes-associated autoantigen that is highly expressed in brain and beta cells. It is involved in membrane trafficking at the Golgi complex in neurosecretory cells. It is coexpressed with Protein Interacting with C Kinase 1 (PICK1), also a the BAR domain containing protein, in many tissues at different developmental stages. In neurons, ICA69 colocalizes with PICK1 in cell bodies and dendrites but is absent in synapses where PICK1 is enriched. ICA69 contains an N-terminal BAR domain and a conserved C-terminal domain of unknown function. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. ICA69 associates with PICK1 through their BAR domains to form a heterodimer which is involved in regulating the synaptic targeting and surface expression of AMPA receptors. Autoantibodies against ICA69 have been identified in patients with insulin-dependent diabetes mellitus, rheumatoid arthritis, and primary Sjogren's syndrome. ICA69 has also been shown to be released by pancreatic cancer cells. 204 -153346 cd07662 BAR_SNX6 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 6. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX6 forms a stable complex with SNX1 and may be a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. It interacts with the receptor serine/threonine kinases from the transforming growth factor-beta family. It also plays roles in enhancing the degradation of EGFR and in regulating the activity of Na,K-ATPase through its interaction with Translationally Controlled Tumor Protein (TCTP). BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 218 -153347 cd07663 BAR_SNX5 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 5. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX5, abundantly expressed in macrophages, regulates macropinocytosis, a process that enables cells to internalize large amounts of external solutes. It may also be a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, acting as a mammalian equivalent of yeast Vsp17p. It also binds the Fanconi anaemia complementation group A protein (FANCA). SNX5 is localized to a subdomain of early endosome and is recruited to the plasma membrane following EGF stimulation and elevation of PI(3,4)P2 levels. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 218 -153348 cd07664 BAR_SNX2 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 2. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX2 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 234 -153349 cd07665 BAR_SNX1 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 1. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX1 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. SNX1 is localized to a microdomain in early endosomes where it regulates cation-independent mannose-6-phosphate receptor retrieval to the trans Golgi network. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 234 -153350 cd07666 BAR_SNX7 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 7. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. The specific function of SNX7 is still unknown. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 243 -153351 cd07667 BAR_SNX30 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 30. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. The specific function of SNX30 is still unknown. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 240 -153352 cd07668 BAR_SNX9 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 9. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX9, also known as SH3PX1, is a cytosolic protein that interacts with proteins associated with clathrin-coated pits such as Cdc-42-associated tyrosine kinase 2 (ACK2). It binds class I polyproline sequences found in dynamin 1/2 and the WASP/N-WASP actin regulators. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis. Its array of interacting partners suggests that SNX9 functions at the interface between endocytosis and actin cytoskeletal organization. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 210 -153353 cd07669 BAR_SNX33 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 33. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX33 interacts with Wiskott-Aldrich syndrome protein (WASP) and plays a role in the maintenance of cell shape and cell cycle progression. It modulates the shedding and endocytosis of cellular prion protein (PrP(c)) and amyloid precursor protein (APP). BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 207 -153354 cd07670 BAR_SNX18 The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexin 18. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. 207 -153355 cd07671 F-BAR_PSTPIP1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Proline-Serine-Threonine Phosphatase-Interacting Protein 1. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Proline-Serine-Threonine Phosphatase-Interacting Protein 1 (PSTPIP1), also known as CD2 Binding Protein 1 (CD2BP1), is mainly expressed in hematopoietic cells. It is a binding partner of the cell surface receptor CD2 and PTP-PEST, a tyrosine phosphatase which functions in cell motility and Rac1 regulation. It also plays a role in the activation of the Wiskott-Aldrich syndrome protein (WASP), which couples actin rearrangement and T cell activation. Mutations in the gene encoding PSTPIP1 cause the autoinflammatory disorder known as PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne) syndrome. PSTPIP1 contains an N-terminal F-BAR domain, PEST motifs, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 242 -153356 cd07672 F-BAR_PSTPIP2 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Proline-Serine-Threonine Phosphatase-Interacting Protein 2. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Proline-Serine-Threonine Phosphatase-Interacting Protein 2 (PSTPIP2), also known as Macrophage Actin-associated tYrosine Phosphorylated protein (MAYP), is mostly expressed in hematopoietic cells but is also expressed in the brain. It is involved in regulating cell adhesion and motility. Mutations in the gene encoding murine PSTPIP2 can cause autoinflammatory disorders such as chronic multifocal osteomyelitis and macrophage autoinflammatory disease. PSTPIP2 contains an N-terminal F-BAR domain and lacks the PEST motifs and SH3 domain that are found in PSTPIP1. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 240 -153357 cd07673 F-BAR_FCHO2 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH domain Only 2 protein. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. The specific function of FCH domain Only 2 (FCHO2) is still unknown. It contains an N-terminal F-BAR domain and a C-terminal domain of unknown function named SAFF which is also present in FCHO1 and endophilin interacting protein 1. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 269 -153358 cd07674 F-BAR_FCHO1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH domain Only 1 protein. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. FCH domain Only 1 (FCHO1) may be involved in clathrin-coated vesicle formation. It contains an N-terminal F-BAR domain and a C-terminal domain of unknown function named SAFF which is also present in FCHO2 and endophilin interacting protein 1. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 261 -153359 cd07675 F-BAR_FNBP1L The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Formin Binding Protein 1-Like. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. FormiN Binding Protein 1-Like (FNBP1L), also known as Toca-1 (Transducer of Cdc42-dependent actin assembly), forms a complex with neural Wiskott-Aldrich syndrome protein (N-WASP). The FNBP1L/N-WASP complex induces the formation of filopodia and endocytic vesicles. FNBP1L is required for Cdc42-induced actin assembly and is essential for autophagy of intracellular pathogens. It contains an N-terminal F-BAR domain, a central Cdc42-binding HR1 domain, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 252 -153360 cd07676 F-BAR_FBP17 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Formin Binding Protein 17. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Formin Binding Protein 17 (FBP17), also called FormiN Binding Protein 1 (FNBP1), is involved in dynamin-mediated endocytosis. It is recruited to clathrin-coated pits late in the endocytosis process and may play a role in the invagination and scission steps. FBP17 binds in vivo to tankyrase, a protein involved in telomere maintenance and mitogen activated protein kinase (MAPK) signaling. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 253 -153361 cd07677 F-BAR_FCHSD2 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH and double SH3 domains 2 (FCHSD2). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. FCH and double SH3 domains 2 (FCHSD2) contains an N-terminal F-BAR domain and two SH3 domains at the C-terminus. It has been characterized only in silico, and its biological function is still unknown. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 260 -153362 cd07678 F-BAR_FCHSD1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of FCH and double SH3 domains 1 (FCHSD1). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. FCH and double SH3 domains 1 (FCHSD1) contains an N-terminal F-BAR domain and two SH3 domains at the C-terminus. It has been characterized only in silico, and its biological function is still unknown. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 263 -153363 cd07679 F-BAR_PACSIN2 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Protein kinase C and Casein kinase Substrate in Neurons 2 (PACSIN2). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSIN 2 or Syndapin II is expressed ubiquitously and is involved in the regulation of tubulin polymerization. It associates with Golgi membranes and forms a complex with dynamin II which is crucial in promoting vesicle formation from the trans-Golgi network. PACSIN 2 contains an N-terminal F-BAR domain and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 258 -153364 cd07680 F-BAR_PACSIN1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Protein kinase C and Casein kinase Substrate in Neurons 1 (PACSIN1). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSIN 1 or Syndapin I is expressed specifically in the brain and is localized in neurites and synaptic boutons. It binds the brain-specific proteins dynamin I, synaptojanin, synapsin I, and neural Wiskott-Aldrich syndrome protein (nWASP), and functions as a link between the cytoskeletal machinery and synaptic vesicle endocytosis. PACSIN 1 interacts with huntingtin and may be implicated in the neuropathology of Huntington's disease. It contains an N-terminal F-BAR domain and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 258 -153365 cd07681 F-BAR_PACSIN3 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Protein kinase C and Casein kinase Substrate in Neurons 3 (PACSIN3). F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSIN 3 or Syndapin III is expressed ubiquitously and regulates glucose uptake in adipocytes through its role in GLUT1 trafficking. It also modulates the subcellular localization and stimulus-specific function of the cation channel TRPV4. PACSIN 3 contains an N-terminal F-BAR domain and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 258 -153366 cd07682 F-BAR_srGAP2 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Slit-Robo GTPase Activating Protein 2. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Slit-Robo GTPase Activating Proteins (srGAPs) are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. Vertebrates contain three isoforms of srGAPs. srGAP2 is expressed in zones of neuronal differentiation. It plays a role in the regeneration of neurons and axons. srGAP2 contains an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 263 -153367 cd07683 F-BAR_srGAP1 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Slit-Robo GTPase Activating Protein 1. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Slit-Robo GTPase Activating Proteins (srGAPs) are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. Vertebrates contain three isoforms of srGAPs. srGAP1, also called Rho GTPase-Activating Protein 13 (ARHGAP13), is a Cdc42- and RhoA-specific GAP and is expressed later in the development of CNS (central nervous system) tissues. It is an important downstream signaling molecule of Robo1. srGAP1 contains an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 253 -153368 cd07684 F-BAR_srGAP3 The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Slit-Robo GTPase Activating Protein 3. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Slit-Robo GTPase Activating Proteins (srGAPs) are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. Vertebrates contain three isoforms of srGAPs. srGAP3, also called MEGAP (MEntal disorder associated GTPase-Activating Protein), is a Rho GAP with activity towards Rac1 and Cdc42. It impacts cell migration by regulating actin and microtubule cytoskeletal dynamics. The association between srGAP3 haploinsufficiency and mental retardation is under debate. srGAP3 contains an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 253 -153369 cd07685 F-BAR_Fes The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Fes (feline sarcoma) tyrosine kinase. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Fes (feline sarcoma), also called Fps (Fujinami poultry sarcoma), is a cytoplasmic (or nonreceptor) tyrosine kinase whose gene was first isolated from tumor-causing retroviruses. It is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells, and plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. Fes kinase has also been implicated as a tumor suppressor in colorectal cancer. It contains an N-terminal F-BAR domain, an SH2 domain, and a C-terminal catalytic kinase domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. The F-BAR domain of Fes is critical in its role in microtubule nucleation and bundling. 237 -153370 cd07686 F-BAR_Fer The F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain of Fer (Fes related) tyrosine kinase. F-BAR domains are dimerization modules that bind and bend membranes and are found in proteins involved in membrane dynamics and actin reorganization. Fer (Fes related) is a cytoplasmic (or nonreceptor) tyrosine kinase expressed in a wide variety of tissues, and is found to reside in both the cytoplasm and the nucleus. It plays important roles in neuronal polarization and neurite development, cytoskeletal reorganization, cell migration, growth factor signaling, and the regulation of cell-cell interactions mediated by adherens junctions and focal adhesions. Fer kinase also regulates cell cycle progression in malignant cells. It contains an N-terminal F-BAR domain, an SH2 domain, and a C-terminal catalytic kinase domain. F-BAR domains form banana-shaped dimers with a positively-charged concave surface that binds to negatively-charged lipid membranes. They can induce membrane deformation in the form of long tubules. 234 -319321 cd07687 IgC_TCR_delta Immunoglobulin Constant domain. IgC_TCR_delta: Constant domain of the delta chain of delta/gamma T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. The majority of T cells contain alpha-beta TCRs but a small subset contain gamma-delta TCRs. Alpha-beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma-delta TCRs recognize intact protein antigens; they recognize protein antigens directly and without antigen processing, and MHC independently of the bound peptide. Gamma-delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. 80 -319322 cd07688 IgC_TCR_alpha T cell receptor (TCR) alpha chain immunoglobulin domain. IgC_TCR_alpha: Constant domain of the alpha chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. This group includes the variable domain of the alpha chain. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The antigen binding site is formed by the variable domains of the alpha and beta chains, located at the N-terminus of each chain. Alpha/beta TCRs recognize antigens differently from gamma/delta TCRs. 81 -143313 cd07689 Ig_VCAM-1 Immunoglobulin (Ig)-like domain of vascular endothelial cell adhesion molecule-1 (VCAM-1, CD106) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and similar domains. Ig_ VCAM-1_like: immunoglobulin (Ig)-like domain of vascular endothelial cell adhesion molecule-1 (VCAM-1, CD106) and similar domains. During the inflammation process, these molecules recruit leukocytes onto the vascular endothelium before extravasation to the injured tissues. The interaction of VCAM-1 binding to the beta1 integrin very late antigen (VLA-4) expressed by lymphocytes and monocytes mediates the adhesion of leucocytes to blood vessel walls, and regulates migration across the endothelium. During metastasis, some circulating cancer cells extravasate to a secondary site by a similar process. VCAM-1 may be involved in organ targeted tumor metastasis and may also act as host receptors for viruses and parasites. VCAM-1 contains seven Ig domains. 99 -143314 cd07690 Ig1_CD4 First immunoglobulin (Ig) domain of CD4. Ig1_CD4; first immunoglobulin (Ig) domain of CD4. CD4 and CD8 are the two primary co-receptor proteins found on the surface of T cells, and the presence of either CD4 or CD8 determines the function of the T cell. CD4 is found on helper T cells, where it is required for the binding of MHC (major histocompatibility complex) class II molecules, while CD8 is found on cytotoxic T cells, where it is required for the binding of MHC class I molecules. CD4 contains four immunoglobulin domains, with the first three included in this hierarchy. The fourth domain has a general Ig architecture, but has slight topological changes in the arrangement of beta strands relative to the other structures in this family and is not specifically included in the hierarchy. 94 -143315 cd07691 Ig_CD3_gamma_delta Immunoglobulin (Ig)-like domain of CD3 gamma and delta chains. Ig_CD3_gamma_delta; immunoglobulin (Ig)-like domain of CD3 gamma and delta chains. CD3 is a T cell surface receptor that is associated with alpha/beta T cell receptors (TCRs). The CD3 complex consists of one gamma, one delta, two epsilon, and two zeta chains. The CD3 subunits form heterodimers as gamma/epsilon, delta/epsilon, and zeta/zeta. The gamma, delta, and epsilon chains each contain an extracellular Ig domain, whereas the extracellular domains of the zeta chains are very small and have unknown structure. The CD3 domain participates in intracellular signalling once the TCR has bound an MHC/antigen complex. 69 -143316 cd07692 Ig_CD3_epsilon Immunoglobulin (Ig)-like domain of CD3 epsilon chain. Ig_CD3_epsilon; immunoglobulin (Ig)-like domain of CD3 epsilon chain. CD3 is a T cell surface receptor that is associated with alpha/beta T cell receptors (TCRs). The CD3 complex consists of one gamma, one delta, two epsilon, and two zeta chains. The CD3 subunits form heterodimers as gamma/epsilon, delta/epsilon, and zeta/zeta. The gamma, delta, and epsilon chains each contain an extracellular Ig domain, whereas the extracellular domains of the zeta chains are very small and have unknown structure. The CD3 domain participates in intracellular signalling once the TCR has bound an MHC/antigen complex. 65 -143317 cd07693 Ig1_Robo First immunoglobulin (Ig)-like domain in Robo (roundabout) receptors and similar proteins. Ig1_Robo: domain similar to the first immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. 100 -143318 cd07694 Ig2_CD4 Second immunoglobulin (Ig) domain of CD4. Ig2_CD4; second immunoglobulin (Ig) domain of CD4. CD4 and CD8 are the two primary co-receptor proteins found on the surface of T cells, and the presence of either CD4 or CD8 determines the function of the T cell. CD4 is found on helper T cells, where it is required for the binding of MHC (major histocompatibility complex) class II molecules, while CD8 is found on cytotoxic T cells, where it is required for the binding of MHC class I molecules. CD4 contains four immunoglobulin domains, with the first three included in this hierarchy. The fourth domain has a general Ig architecture, but has slight topological changes in the arrangement of beta strands relative to the other structures in this family and is not specifically included in the hierarchy. 88 -143319 cd07695 Ig3_CD4 Third immunoglobulin (Ig) domain of CD4. Ig3_CD4; third immunoglobulin (Ig) domain of CD4. CD4 and CD8 are the two primary co-receptor proteins found on the surface of T cells, and the presence of either CD4 or CD8 determines the function of the T cell. CD4 is found on helper T cells, where it is required for the binding of MHC (major histocompatibility complex) class II molecules, while CD8 is found on cytotoxic T cells, where it is required for the binding of MHC class I molecules. CD4 contains four immunoglobulin domains, with the first three included in this hierarchy. The fourth domain has a general Ig architecture, but has slight topological changes in the arrangement of beta strands relative to the other structures in this family and is not specifically included in the hierarchy. 109 -319323 cd07696 IgC_CH3_IgAEM_CH2_IgG CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH3_IgAEM_CH2_IgG: Contains the third and second immunoglobulin constant domain (IgC) of alpha, epsilon, and mu heavy chains and of gamma heavy chains, respectively. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 95 -319324 cd07697 IgC_TCR_gamma T cell receptor (TCR) gamma chain constant immunoglobulin domain. IgC_TCR_gamma; immunoglobulin (Ig) constant (C) domain of the gamma chain of gamma-delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha-beta TCRs but a small subset contain gamma-delta TCRs. Alpha-beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma-delta TCRs recognize intact protein antigens; they recognize protein antigens directly and without antigen processing, and MHC independently of the bound peptide. Gamma-delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. 97 -143322 cd07698 IgC_MHC_I_alpha3 Class I major histocompatibility complex (MHC) alpha chain immunoglobulin domain. IgC_MHC_I_alpha3; Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta2 microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. 93 -319325 cd07699 IgC_L Immunoglobulin Constant domain. IgC_L: Immunoglobulin (Ig) light chain constant (C) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. 99 -319326 cd07700 IgV_CD8_beta Immunoglobulin (Ig) like domain of CD8 beta chain. IgV_CD8_beta: immunoglobulin (Ig)-like domain in CD8 beta. The CD8 glycoprotein plays an essential role in the control of T-cell selection, maturation and the T-cell receptor (TCR)-mediated response to peptide antigen. CD8 is comprised of alpha and beta subunits and is expressed as either an alpha/alpha or alpha/beta dimer. Both dimeric isoforms can serve as a coreceptor for T cell activation and differentiation, however they have distinct physiological roles, different cellular distributions, unique binding partners etc. Each CD8 subunit is comprised of an extracellular domain containing a V-type Ig-like domain, a single pass transmembrane portion and a short intracellular domain. 108 -319327 cd07701 Ig1_Necl-3 First (N-terminal) immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3, also known as cell adhesion molecule 2 (CADM2)). Ig1_Necl-3: domain similar to the N-terminal immunoglobulin (Ig)-like domain of nectin-like molecule-3, Necl-3 (also known as cell adhesion molecule 2 (CADM2), SynCAM2, IGSF4D). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). They all have an extracellular region containing three Ig-like domains, a transmembrane region, and a cytoplasmic region. The N-terminal Ig-like domain of the extracellular region, belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-3 accumulates in central and peripheral nervous system tissue, and has been shown to selectively interact with oligodendrocytes. 95 -143326 cd07702 Ig_VEGFR-1 Immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 1 (VEGFR-1). Ig_VEGFR-1: immunoglobulin (Ig)-like domain of vascular endothelial growth factor receptor 1 (VEGFR-1). VEGFRs have an extracellular component with seven Ig-like domains, a transmembrane segment, and an intracellular tyrosine kinase domain interrupted by a kinase-insert domain. VEGFRs bind VEGFs with high affinity at the Ig-like domains. VEGFR-1 binds VEGF-A strongly; VEGF-A is important to the growth and maintenance of vascular endothelial cells and to the development of new blood- and lymphatic-vessels in physiological and pathological states. VEGFR-1 may play an inhibitory rolet in the function of VEGFR-2 by binding VEGF-A and interfering with its interaction with VEGFR-2. VEGFR-1 has a signaling role in mediating monocyte chemotaxis and may mediate a chemotactic and a survival signal in hematopoietic stem cells or leukemia cells. 72 -319328 cd07703 Ig2_Nectin-2_like Second immunoglobulin (Ig) domain of nectin-2 (also known as poliovirus receptor related protein 2 or CD112) and similar proteins. Ig2_Nectin-2_like: domain similar to the second immunoglobulin (Ig) domain of nectin-2 (also known as poliovirus receptor related protein 2 or CD112). Nectin-2 belongs to the nectin family comprised of four transmembrane glycoproteins (nectins-1 through 4). Nectins are synaptic cell adhesion molecules (CAMs) which facilitate adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. Nectin-2 and nectin-3 localize at Sertoli-spermatid junctions where they form heterophilic trans-interactions between the cells that are essential for the formation and maintenance of the junctions and for spermatid development. 95 -319329 cd07704 Ig2_Nectin-3-4_like Second immunoglobulin (Ig) domain of nectin-3 (also known as poliovirus receptor related protein 3), nectin-4 (poliovirus receptor related protein 4) and similar proteins. Ig2_Nectin-3-4_like: domain similar to the second immunoglobulin (Ig) domain of nectin-3 (also known as poliovirus receptor related protein 3) and nectin-4 (poliovirus receptor related protein 4). Nectin-3 and nectin-4 belong to the nectin family comprised of four transmembrane glycoproteins (nectins-1 through 4). Nectins are synaptic cell adhesion molecules (CAMs) which facilitate adhesion and signaling at various intracellular junctions. Nectins form homophilic cis-dimers, followed by homophilic and heterophilic trans-dimers involved in cell-cell adhesion. Nectin-2 and nectin-3 localize at Sertoli-spermatid junctions where they form heterophilic trans-interactions between the cells that are essential for the formation and maintenance of the junctions and for spermatid development. Nectin-3 has also been shown to form a heterophilic trans-interaction with nectin-1 in ciliary epithelia, establishing the apex-apex adhesion between the pigment and non-pigment cell layers. Nectin-4 has recently been identified in several types of breast carcinoma and can be used as a histological and serological marker for breast cancer. 97 -143329 cd07705 Ig2_Necl-1 Second immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1, also known as cell adhesion molecule3 (CADM3)). Ig2_Necl-1: second immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1, also known as cell adhesion molecule3 (CADM3)). These nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 - Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 and Necl-2 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Ig domains are likely to participate in ligand binding and recognition. 83 -319330 cd07706 IgV_TCR_delta Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) delta chain. IgV_TCR_delta: immunoglobulin (Ig) variable (V) domain of the delta chain of gamma/delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha/beta TCRs but a small subset contain gamma/delta TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma/delta TCRs recognize intact protein antigens; they recognize protein antigens directly and without antigen processing, and MHC independently of the bound peptide. Gamma/delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. The variable domain of gamma/delta TCRs is responsible for antigen recognition and is located at the N-terminus of the receptor. 112 -293793 cd07707 MBL-B1-B2-like metallo-beta-lactamases; subclasses B1 and B2 and related proteins; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. Subclass B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. B1 MBls include chromosomally-encoded MBLs such as Bacillus cereus BcII, Bacteroides fragilis CcrA, and Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) BlaB and acquired MBLs including IMP-1, VIM-1, VIM-2, GIM-1, NDM-1 and FIM-1. B2 MBLs have a narrow substrate profile that includes carbapenems, and they are active with one zinc ion bound in the Asp-Cys-His site, binding of a second zinc ion in the modified 3H site (Asn-His-His) inhibits catalysis. B2 MBLs include Aeromonas hydrophyla CphA, Aeromonas veronii ImiS, and Serratia fonticola Sfh-I. 219 -293794 cd07708 MBL-B3-like metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. B3 MBLs include Fluoribacter gormanii FEZ-1, Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) GOB-1, Stenotrophomonas Maltophilia L1, and Bradyrhizobium diazoefficiens BJP-1, Serratia marcescens SMB-1, and Pseudomonas Aeruginosa AIM-1. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 248 -293795 cd07709 flavodiiron_proteins_MBL-fold catalytic domain of flavodiiron proteins (FDPs) and related proteins; MBL-fold metallo-hydrolase domain. FDPs catalyze the reduction of oxygen and/or nitric oxide to water or nitrous oxide respectively. In addition to this N-terminal catalytic domain they contain a C-terminal flavin mononucleotide-binding flavodoxin-like domain. Although some FDPs are able to reduce NO or O2 with similar catalytic efficiencies others are selective for either NO or O2, such as Escherichia coli flavorubredoxin which is selective toward NO and G. intestinalis FDP which is selective toward O2. These enzymes belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. Some members of this subgroup are single domain. 238 -293796 cd07710 arylsulfatase_Sdsa1-like_MBL-fold Pseudomonas aeruginosa arylsulfatase SdsA1, Pseudomonas sp. DSM6611 arylsulfatase Pisa1, and related proteins; MBL-fold metallo-hydrolase domain. Arylsulfatase (also known as aryl-sulfate sulfohydrolase, EC 3.1.6.1). Pseudomonas aeruginosa SdsA1 is a secreted SDS hydrolase that allows the bacterium to use primary sulfates such as the detergent SDS common in commercial personal hygiene products as a sole carbon or sulfur source. Pseudomonas inverting secondary alkylsulfatase 1 (Pisa1) is specific for secondary alkyl sulfates. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 239 -293797 cd07711 MBLAC1-like_MBL-fold uncharacterized human metallo-beta-lactamase domain-containing protein 1 and related proteins; MBL-fold metallo hydrolase domain. Includes the MBL-fold metallo hydrolase domain of uncharacterized human MBLAC1 and related proteins. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 190 -293798 cd07712 MBLAC2-like_MBL-fold uncharacterized human metallo-beta-lactamase domain-containing protein 2 and related proteins; MBL-fold metallo hydrolase domain. Includes the MBL-fold metallo hydrolase domain of uncharacterized human MBLAC2 and related proteins. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 182 -293799 cd07713 DHPS-like_MBL-fold Methanocaldococcus jannaschii dihydropteroate synthase, Thermoanaerobacter tengcongensis Tflp, and related proteins; MBL-fold metallo hydrolase domain. This subgroup includes Methanocaldococcus jannaschii 7,8-dihydropterin-6-methyl-4-(beta-D-ribofuranosyl)-aminobenzene-5'-phosphate synthase (EC 2.5.1.15), a folate biosynthetic enzyme also known as dihydropteroate synthase and 7,8 dihydropteroate synthase. Thermoanaerobacter tengcongensis Tflp is a ferredoxin-like member. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 269 -293800 cd07714 RNaseJ_MBL-fold RNAaseJ, MBL-fold metallo-hydrolase domain. RNase J, also called Ribonuclease J, is a prokaryotic ribonuclease which plays a key part in RNA processing and in RNA degradation. It can act as an endonuclease which is specific for single-stranded regions of RNA irrespective of their sequence or location, and as a processive 5' exonuclease which only acts on substrates having a single phosphate or a hydroxyl at the 5' end. Many bacterial species have only one RNase J, but some, such as Bacillus subtilis, have two. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 248 -293801 cd07715 TaR3-like_MBL-fold MBL-fold metallo-hydrolase domain of Myxococcus xanthus TaR3 and related proteins; MBL-fold metallo-hydrolase domain. Myxococcus xanthus Tar3 may function as an ammonium regulator/effector protein involved in biosynthesis of the antibiotic TA. Some are members of this subgroup are annotated as ribonucleases. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 212 -293802 cd07716 RNaseZ_short-form-like_MBL-fold uncharacterized bacterial subgroup of Ribonuclease Z, short form; MBL-fold metallo-hydrolase domain. The tRNA maturase RNase Z (also known as tRNase Z or 3' tRNase) catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Two forms of RNase Z exist in eukaryotes, one long (ELAC2) and one short form (ELAC1), the former may have resulted from a duplication of the shorter enzyme. Only the short form exists in bacteria. Members of this bacterial subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 175 -293803 cd07717 RNaseZ_ZiPD-like_MBL-fold Ribonuclease Z, E. coli 3' tRNA-processing endonuclease ZiPD and related proteins; MBL-fold metallo-hydrolase domain. The tRNA maturase RNase Z (also known as tRNase Z or 3' tRNase) catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Escherichia coli zinc phosphodiesterase (ZiPD, also known as ecoZ, tRNase Z, or RNase BN) is a 3' tRNA-processing endonuclease, encoded by the elaC gene. Two forms of RNase Z exist in eukaryotes, one long (ELAC2) and one short form (ELAC1), the former may have resulted from a duplication of the shorter enzyme; this subgroup includes the short form (ELAC1). Only the short form exists in bacteria. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 247 -293804 cd07718 RNaseZ_ELAC1_ELAC2-C-term-like_MBL-fold Ribonuclease Z ELAC1, C-terminus of ELAC2, and related proteins; MBL-fold metallo-hydrolase domain. The tRNA maturase RNase Z (also known as tRNase Z or 3' tRNase) catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Two forms of RNase Z exist in eukaryotes, one long (ELAC2) and one short form (ELAC1), the former may have resulted from a duplication of the shorter enzyme; this eukaryotic subgroup includes short forms (ELAC1) and the C-terminus of long forms including human ELAC2. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 204 -293805 cd07719 arylsulfatase_AtsA-like_MBL-fold Pseudoalteromonas carrageenovora arylsulfatase AtsA and related proteins; MBL-fold metallo-hydrolase domain. Arylsulfatase (also known as aryl-sulfate sulfohydrolase, EC 3.1.6.1). Pseudoalteromonas carrageenovora arylsulfatase AtsA may function as a glycosulfohydrolase involved with desulfation of sulfated polysaccharides, which catalyzes hydrolysis of the arylsulfate ester bond, producing the aryl compounds and inorganic sulfate. CD also includes some sequences annotated as ribonucleases. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily. 193 -293806 cd07720 OPHC2-like_MBL-fold Pseudomonas pseudoalcaligenes organophosphorus hydrolase C2, and related proteins; MBL-fold metallo hydrolase domain. Pseudomonas pseudoalcaligenes OPHC2 is a thermostable organophosphorus hydrolase which a broad substrate activity spectrum: it hydrolyzes various phosphotriesters, esters, and a lactone. This subgroup also includes Pseudomonas oleovorans PoOPH which exhibits high lactonase and esterase activities, and latent PTE activity. However, double mutations His250Ile/Ile263Trp switch PoOPH into an efficient and thermostable PTE. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 251 -293807 cd07721 yflN-like_MBL-fold uncharacterized subgroup which includes Bacillus subtilis yflN; MBL-fold metallo hydrolase domain. This subgroup includes the uncharacterized Bacillus subtilis yflN protein. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 202 -293808 cd07722 LACTB2-like_MBL-fold uncharacterized subgroup which includes human lactamase beta 2 and related proteins; MBL-fold metallo hydrolase domain. Includes functionally uncharacterized human lactamase beta 2. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 188 -293809 cd07723 hydroxyacylglutathione_hydrolase_MBL-fold hydroxyacylglutathione hydrolase, MBL-fold metallo-hydrolase domain. hydroxyacylglutathione hydrolase (EC 3.1.2.6, also known as, glyoxalase II; S-2-hydroxylacylglutathione hydrolase; hydroxyacylglutathione hydrolase; acetoacetylglutathione hydrolase). In the second step of the glycoxlase system this enzyme hydrolyzes S-d-lactoylglutathione to d-lactate and regenerates glutathione in the process. It has broad substrate specificity for glutathione thiol esters, hydrolyzing a number of these species to their corresponding carboxylic acids and reduced glutathione. It appears to hydrolyze 2-hydroxy thiol esters with greatest efficiency. It belongs to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 165 -293810 cd07724 POD-like_MBL-fold ETHE1 (PDO type I), persulfide dioxygenase A (PDOA, PDO type II) and related proteins; MBL-fold metallo-hydrolase domain. Persulfide dioxygenase (PDO, also known as sulfur dioxygenase, SDO, EC 1.13.11.18) is a non-heme iron-dependent oxygenase which catalyzes the oxidation of glutathione persulfide to glutathione and persulfite in the mitochondria. Mutations in ethe1 (the human PDO gene) are responsible for a rare autosomal recessive metabolic disorder called ethylmalonic encephalopathy. Arabidopsis thaliana ETHE1 is essential for embryo and endosperm development. Bacterial ETHE1-type PDOs are also called Type 1 PDOs. Type II PDOs (also called PDOAs), are mainly proteobacterial. These enzymes belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 177 -293811 cd07725 TTHA1429-like_MBL-fold uncharacterized Thermus thermophilus TTHA1429 and related proteins; MBL-fold metallo hydrolase domain. Includes the MBL-fold metallo hydrolase domain of uncharacterized Thermus thermophilus TTHA1429 and related proteins. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 184 -293812 cd07726 ST1585-like_MBL-fold uncharacterized subgroup which includes Sulfolobus tokodaii ST1585 protein; MBL-fold metallo hydrolase domain. This subgroup includes the uncharacterized Sulfolobus tokodaii ST1585 protein. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 215 -293813 cd07727 YmaE-like_MBL-fold uncharacterized subgroup which includes Bacillus subtilis YmaE and related proteins; MBL-fold metallo hydrolase domain. Includes the uncharacterized Bacillus subtilis YmaE and Nostoc all1228 proteins.Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 181 -293814 cd07728 YtnP-like_MBL-fold Bacillus subtilis YtnP and related proteins; MBL-fold metallo hydrolase domain. Bacillus subtilis YtnP inhibits the signaling pathway required for the streptomycin production and development of aerial mycelium in Streptomyces griseus. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 249 -293815 cd07729 AHL_lactonase_MBL-fold quorum-quenching N-acyl-homoserine lactonase, MBL-fold metallo-hydrolase domain. Acyl Homoserine Lactones (also known as AHLs) are signal molecules which coordinate gene expression in quorum sensing, in many Gram-negative bacteria. Quorum-quenching N-acyl-homoserine lactonase (also known as AHL lactonase, N-acyl-L-homoserine lactone hydrolase, EC 3.1.1.81) catalyzes the hydrolysis and opening of the homoserine lactone rings of AHLs, a reaction that can block quorum sensing. These enzymes belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 238 -293816 cd07730 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. Some members of this subgroup are annotated as GumP protein. 250 -293817 cd07731 ComA-like_MBL-fold Competence protein ComA, ComEC and related proteins; MBL-fold metallo hydrolase domain. This subgroup includes proteins required for natural transformation competence including Neisseria gonorrhoeae ComA, Pseudomonas stutzeri ComA, Bacillus subtilis ComEC (also known as ComE operon protein 3) and Haemophilus influenza ORF2 encoded by the rec-2 gene, as well as Escherichia coli YcaI which does not mediate spontaneous plasmid transformation on nutrient-containing agar plates. It also includes the phosphorylcholine esterase (Pce) domain of choline-binding protein e from streptococcus pneumonia. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 179 -293818 cd07732 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Includes functionally uncharacterized Enterococcus faecalis EF2904. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 202 -293819 cd07733 YycJ-like_MBL-fold uncharacterized subgroup which includes Bacillus subtilis YycJ and related proteins; MBL-fold metallo hydrolase domain. Includes the uncharacterized Bacillus subtilis YycJ protein. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 151 -293820 cd07734 Int9-11_CPSF2-3-like_MBL-fold Int9, Int11, CPSF2, CPSF3 and related cleavage and polyadenylation specificity factors; MBL-fold metallo-hydrolase domain. CPSF3 (cleavage and polyadenylation specificity factor subunit 3; also known as cleavage and polyadenylation specificity factor 73 kDa subunit, CPSF-73) and CPSF2 (also known as cleavage and polyadenylation specificity factor 100 kDa subunit /CPSF-100) are components of the CPSF complex, which plays a role in 3' end processing of pre-mRNAs during cleavage/polyadenylation, and during processing of metazoan histone pre-mRNAs. CPSF3 functions as a 3' endonuclease. Int11 (also known as cleavage and polyadenylation-specific factor (CPSF) 3-like protein, and protein related to CPSF subunits of 68 kDa (RC-68)), and Int9, also known as protein related to CPSF subunits of 74 kDa (RC-74) are subunits of Integrator, a metazoan-specific multifunctional protein complex composed of 14 subunits. Integrator has been implicated in a variety of Pol II transcription events including 3' end processing of snRNA, transcription initiation, promoter-proximal pausing, termination of protein-coding transcripts, and in HVS pre-miRNA 3' end processing. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 193 -293821 cd07735 class_II_PDE_MBL-fold class II cyclic nucleotide phosphodiesterases Saccharomyces cerevisiae PDE1, Dictyostelium discoideum PDE1 and PDE7, and related proteins; MBL-fold metallo-hydrolase domain. Cyclic nucleotide phosphodiesterases (PDEs) decompose the second messengers cyclic adenosine and guanosine 3',5'-monophosphate (cAMP and cGMP, respectively). Saccharomyces cerevisiae PDE1 and Dictyostelium discoideum PDE1 and PDE7, have dual cAMP/cGMP specificity. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 259 -293822 cd07736 PhnP-like_MBL-fold phosphodiesterase Escherichia coli PhnP and related proteins; MBL-fold metallo hydrolase domain. Escherichia coli PhnP catalyzes the hydrolysis of 5-phospho-D-ribose-1,2-cyclic phosphate to D-ribose-1,5-bisphosphate, a step in the C-P lyase pathway. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 186 -293823 cd07737 YcbL-like_MBL-fold Salmonella enterica serovar typhimurium YcbL and related proteins; MBL-fold metallo hydrolase domain. This subgroup includes Salmonella enterica serovar typhimurium YcbL which has type II hydroxyacylglutathione hydrolase (EC 3.1.2.6, also known as glyoxalase II) activity, and has a single metal ion binding site, and Thermus thermophilus TTHA1623 which does not have GLX2 activity and has two metal ion binding sites with a glyoxalase II-type metal coordination. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 190 -293824 cd07738 DdPDE5-like_MBL-fold Dictyostelium discoideum phosphodiesterase 5 and related proteins; MBL-fold metallo hydrolase domain. Includes Dictyostelium discoideum cAMP/cGMP-dependent 3',5'-cAMP/cGMP phosphodiesterase A (also known as cyclic GMP-binding protein A, phosphodiesterase 5, phosphodiesterase D, and PDE5) and cAMP/cGMP-dependent 3',5'-cAMP/cGMP phosphodiesterase B (also known as cyclic GMP-binding protein B, phosphodiesterase 6, phosphodiesterase E, and PDE6. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 189 -293825 cd07739 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 201 -293826 cd07740 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 194 -293827 cd07741 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 212 -293828 cd07742 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 249 -293829 cd07743 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 197 -143394 cd07749 NT_Pol-beta-like_1 Nucleotidyltransferase (NT) domain of an uncharacterized subgroup of the Pol beta-like NT superfamily. The Pol beta-like NT superfamily includes DNA polymerase beta and other family X DNA Polymerases, as well as Class I and Class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly(A) polymerases, terminal uridylyl transferases, Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. Proteins belonging to this subgroup are uncharacterized. In the majority of the Pol beta-like superfamily NTs, two carboxylates, Dx[D/E], together with a third more distal carboxylate, coordinate two divalent metal cations essential for catalysis. These divalent metal ions are involved in a two-metal ion mechanism of nucleotide addition. These carboxylate residues are conserved in this subgroup. 156 -143622 cd07750 PolyPPase_VTC_like Polyphosphate(polyP) polymerase domain of yeast vacuolar transport chaperone (VTC) proteins VTC-2, -3 and- 4, and similar proteins. Saccharomyces cerevisiae VTC-1, -2, -3, and -4 comprise the membrane-integral VTC complex. VTC-2, -3, and -4 contain polyP polymerase domains. For S. cerevisiae VTC4 it has been shown that this domain generates polyP from ATP by a phosphotransfer reaction releasing ADP. This activity is metal ion-dependent. The ATP gamma phosphate may be cleaved and then transferred to an acceptor phosphate to form polyP. PolyP is ubiquitous. In prokaryotes, it is a store of phosphate and energy. In eukaryotes, polyPs have roles in bone calcification, and osmoregulation, and in phosphate transport in the symbiosis of mycorrhizal fungi and plants. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. 214 -143623 cd07751 PolyPPase_VTC4_like Polyphosphate(polyP) polymerase domain of yeast vacuolar transport chaperone (VTC) protein VTC4, and similar proteins. Saccharomyces cerevisiae VTC-1, -2, -3, and -4 comprise the membrane-integral VTC complex. VTC-2,-3, and -4 contain polyP polymerase domains. S. cerevisiae VTC4 belongs to this subgroup. For VTC4 it has been shown that this domain generates polyP from ATP by a phosphotransfer reaction releasing ADP. This activity is metal ion-dependent. The ATP gamma phosphate may be cleaved and then transferred to an acceptor phosphate to form polyP. PolyP is ubiquitous. In prokaryotes, it is a store of phosphate and energy. In eukaryotes, polyPs have roles in bone calcification, and osmoregulation, and in phosphate transport in the symbiosis of mycorrhizal fungi and plants. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. 290 -143624 cd07756 CYTH-like_Pase_CHAD Uncharacterized subgroup of the CYTH-like superfamily having an associated CHAD domain. This subgroup belongs to the CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) superfamily. Members of this superfamily hydrolyze triphosphate-containing substrates, require metal cations as cofactors, and have a unique active site located at the center of an eight-stranded antiparallel beta barrel tunnel (the triphosphate tunnel). A number of proteins in this subgroup also contain a C-terminal CHAD (Conserved Histidine Alpha-helical Domain) domain which may participate in metal chelation or act as a phosphor-acceptor. The name CYTH originated from the gene designation for bacterial class IV adenylyl cyclases (CyaB) and from thiamine triphosphatase. Class IV adenylate cyclases catalyze the conversion of ATP to 3',5'-cyclic AMP (cAMP) and PPi. Thiamine triphosphatase is a soluble cytosolic enzyme which converts thiamine triphosphate to thiamine diphosphate. This domain superfamily also contains RNA triphosphatases, membrane-associated polyphosphate polymerases, tripolyphosphatases, nucleoside triphosphatases, nucleoside tetraphosphatases and other proteins with unknown functions. Proteins of this subgroup have not been characterized. 197 -143625 cd07758 ThTPase Thiamine Triphosphatase. ThTPase is a soluble cytosolic enzyme which converts thiamine triphosphate (ThTP) to thiamine diphosphate. This catalytic activity depends on a divalent metal cofactor, for example Mg++. ThTPase regulates the intracellular concentration of ThTP, maintaining it at a low concentration in vivo. ThTP acts as a messenger in cell signaling in response to cellular stress, and in addition, can phosphorylate proteins in certain tissues. There is another class of membrane-associated enzymes in animal tissues which also convert ThTP to thiamine diphosphate, however they do not belong to this subgroup. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. 196 -143626 cd07761 CYTH-like_CthTTM-like Clostridium thermocellum (Cth)TTM and similar proteins, a subgroup of the CYTH-like superfamily. CthTTM is a metal dependent tripolyphosphatase, nucleoside triphosphatase, and nucleoside tetraphosphatase. It hydrolyzes the beta-gamma phosphoanhydride linkage of triphosphate-containing substrates including tripolyphosphate, nucleoside triphosphates and nucleoside tetraphosphates. These substrates are hydrolyzed, releasing Pi. Mg++ or Mn++ are required for the enzyme's activity. CthTTM appears to have no adenylate cyclase activity. This subgroup consists chiefly of bacterial sequences. Members of the CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) superfamily have a unique active site located within an eight-stranded beta barrel. 146 -143627 cd07762 CYTH-like_Pase_1 Uncharacterized subgroup 1 of the CYTH-like superfamily. Enzymes belonging to the CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) superfamily hydrolyze triphosphate-containing substrates, require metal cations as cofactors, and have a unique active site located at the center of an eight-stranded antiparallel beta barrel tunnel (the triphosphate tunnel). The name CYTH originated from the gene designation for bacterial class IV adenylyl cyclases (CyaB) and from thiamine triphosphatase. Class IV adenylate cyclases catalyze the conversion of ATP to 3',5'-cyclic AMP (cAMP) and PPi. Thiamine triphosphatase is a soluble cytosolic enzyme which converts thiamine triphosphate to thiamine diphosphate. This domain superfamily also contains RNA triphosphatases, membrane-associated polyphosphate polymerases, tripolyphosphatases, nucleoside triphosphatases, nucleoside tetraphosphatases and other proteins with unknown functions. Proteins of this subgroup are of bacterial origin and have not been characterized. 180 -143639 cd07765 KRAB_A-box KRAB (Kruppel-associated box) domain -A box. The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation. 40 -341447 cd07766 DHQ_Fe-ADH Dehydroquinate synthase-like (DHQ-like) and iron-containing alcohol dehydrogenases (Fe-ADH). This superfamily consists of two subgroups: the dehydroquinate synthase (DHQS)-like, and a large metal-containing alcohol dehydrogenases (ADH), known as iron-containing alcohol dehydrogenases. Dehydroquinate synthase (DHQS) catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate (DHQ) in the second step of the shikimate pathway. This pathway involves seven sequential enzymatic steps in the conversion of erythrose 4-phosphate and phosphoenolpyruvate into chorismate for subsequent synthesis of aromatic compounds. Dehydroquinate synthase-like group includes dehydroquinate synthase, 2-deoxy-scyllo-inosose synthase, and 2-epi-5-epi-valiolone synthase. The alcohol dehydrogenases (ADHs) in this superfamily contain a dehydroquinate synthase-like protein structural fold and mostly contain iron. They are distinct from other alcohol dehydrogenases which contains different protein domains. There are several distinct families of alcohol dehydrogenases: Zinc-containing long-chain alcohol dehydrogenases; insect-type, or short-chain alcohol dehydrogenases; iron-containing alcohol dehydrogenases, and others. The iron-containing family has a Rossmann fold-like topology that resembles the fold of the zinc-dependent alcohol dehydrogenases, but lacks sequence homology, and differs in strand arrangement. ADH catalyzes the reversible oxidation of alcohol to acetaldehyde with the simultaneous reduction of NAD(P)+ to NAD(P)H. 271 -163686 cd07767 MPN Mpr1p, Pad1p N-terminal (MPN) domains. MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+) domains are found in the N-terminal termini of proteins with a variety of functions; they are components of the proteasome regulatory subunits, the signalosome (CSN), eukaryotic translation initiation factor 3 (eIF3) complexes, and regulators of transcription factors. These domains are isopeptidases that release ubiquitin from ubiquitinated proteins (thus having deubiquitinating (DUB) activity) that are tagged for degradation. Catalytically active MPN domains contain a metalloprotease signature known as the JAB1/MPN/Mov34 metalloenzyme (JAMM) motif. For example, Rpn11 (also known as POH1 or PSMD14), a subunit of the 19S proteasome lid is involved in the ATP-dependent degradation of ubiquitinated proteins, contains the conserved JAMM motif involved in zinc ion coordination. Poh1 is a regulator of c-Jun, an important regulator of cell proliferation, differentiation, survival and death. JAB1 is a component of the COP9 signalosome (CSN), a regulatory particle of the ubiquitin (Ub)/26S proteasome system occurring in all eukaryotic cells; it cleaves the ubiquitin-like protein NEDD8 from the cullin subunit of the SCF (Skp1, Cullins, F-box proteins) family of E3 ubiquitin ligases. AMSH (associated molecule with the SH3 domain of STAM, also known as STAMBP), a member of JAMM/MPN+ deubiquitinases (DUBs), specifically cleaves Lys 63-linked polyubiquitin (poly-Ub) chains, thus facilitating the recycling and subsequent trafficking of receptors to the cell surface. Similarly, BRCC36, part of the nuclear complex that includes BRCA1 protein and is targeted to DNA damage foci after irradiation, specifically disassembles K63-linked polyUb. BRCC36 is aberrantly expressed in sporadic breast tumors, indicative of a potential role in the pathogenesis of the disease. Some variants of the JAB1/MPN domains lack key residues in their JAMM motif and are unable to coordinate a metal ion. Comparisons of key catalytic and metal binding residues explain why the MPN-containing proteins Mov34/PSMD7, Rpn8, CSN6, Prp8p, and the translation initiation factor 3 subunits f (p47) and h (p40) do not show catalytic isopeptidase activity. It has been proposed that the MPN domain in these proteins has a primarily structural function. 116 -198346 cd07768 FGGY_RBK_like Ribulokinase-like carbohydrate kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of ribulokinases (RBKs) and similar proteins from bacteria and eukaryota. RBKs catalyze the MgATP-dependent phosphorylation of a variety of sugar substrates including L- and/or D-ribulose. Members of this subfamily contain two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Members of this subfamily belong to the FGGY family of carbohydrate kinases 465 -198347 cd07769 FGGY_GK Glycerol kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily includes glycerol kinases (GK; EC 2.7.1.30) and glycerol kinase-like proteins from all three kingdoms of living organisms. Glycerol is an important intermediate of energy metabolism and it plays fundamental roles in several vital physiological processes. GKs are involved in the entry of external glycerol into cellular metabolism. They catalyze the rate-limiting step in glycerol metabolism by transferring a phosphate from ATP to glycerol thus producing glycerol 3-phosphate (G3P) in the cytoplasm. Human GK deficiency, called hyperglycerolemia, is an X-linked recessive trait associated with psychomotor retardation, osteoporosis, spasticity, esotropia, and bone fractures. Under different conditions, GKs from different species may exist in different oligomeric states. The monomer of GKs is composed of two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The high affinity ATP binding site of GKs is created only by a substrate-induced conformational change. Based on sequence similarity, some GK-like proteins from metazoa, which have lost their GK enzymatic activity, are also included in this CD. Members in this subfamily belong to the FGGY family of carbohydrate kinases. 484 -212659 cd07770 FGGY_GntK Gluconate kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of a group of gluconate kinases (GntK, also known as gluconokinase; EC 2.7.1.12) encoded by the gntK gene, which catalyzes the ATP-dependent phosphorylation of D-gluconate and produce 6-phospho-D-gluconate and ADP. The presence of Mg2+ might be required for catalytic activity. The prototypical member of this subfamily is GntK from Lactobacillus acidophilus. Unlike Escherichia coli GntK, which belongs to the superfamily of P-loop containing nucleoside triphosphate hydrolases, members in this subfamily are homologous to glycerol kinase, xylulose kinase, and rhamnulokinase from Escherichia coli. They have been classified as members of the FGGY family of carbohydrate kinases, which contain two large domains separated by a deep cleft that forms the active site. This model spans both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Some uncharacterized homologous sequences are also included in this subfamily. The Lactobacillus gnt operon contains a single gntK gene. The gnt operons of some bacteria, such as Corynebacterium glutamicum, have two gntK genes. For example, the C. glutamicum gnt operon has both a gluconate kinase gntV gene (also known as gntK) and a second hypothetical gntK gene (also known as gntK2). Both gluconate kinases encoded by these genes belong to this family, however the protein encoded by C. glutamicum gntV is not included in this model as it is truncated in the C-terminal domain. 440 -198349 cd07771 FGGY_RhuK L-rhamnulose kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is predominantly composed of bacterial L-rhamnulose kinases (RhuK, also known as rhamnulokinase; EC 2.7.1.5), which are encoded by the rhaB gene and catalyze the ATP-dependent phosphorylation of L-rhamnulose to produce L-rhamnulose-1-phosphate and ADP. Some uncharacterized homologous sequences are also included in this subfamily. The prototypical member of this subfamily is Escherichia coli RhuK, which exists as a monomer composed of two large domains. The ATP binding site is located in the cleft between the two domains. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of divalent Mg2+ or Mn2+ is required for catalysis. Although an intramolecular disulfide bridge is present in Rhuk, disulfide formation is not important to the regulation of RhuK enzymatic activity. Members of this subfamily belong to the FGGY family of carbohydrate kinases. 440 -198350 cd07772 FGGY_NaCK_like Novosphingobium aromaticivorans carbohydrate kinase-like proteins; belongs to the FGGY family of carbohydrate kinases. This subfamily is predominantly composed of uncharacterized bacterial proteins with similarity to carbohydrate kinase from Novosphingobium aromaticivorans (NaCK). These proteins may catalyze the transfer of a phosphate group from ATP to their carbohydrate substrates. They belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 419 -198351 cd07773 FGGY_FK L-fuculose kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of bacterial L-fuculose kinases (FK, also known as fuculokinase, EC 2.7.1.51), which catalyze the ATP-dependent phosphorylation of L-fuculose to produce L-fuculose-1-phosphate and ADP. The presence of Mg2+ or Mn2+ is required for enzymatic activity. FKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 448 -198352 cd07774 FGGY_1 uncharacterized subgroup; belongs to the FGGY family of carbohydrate kinases. This subfamily is composed of uncharacterized carbohydrate kinases. They are sequence homologous to bacterial glycerol kinase and have been classified as members of the FGGY family of carbohydrate kinases. The monomers of FGGY proteins contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 430 -198353 cd07775 FGGY_AI-2K Autoinducer-2 kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of bacterial autoinducer-2 (AI-2) kinases and similar proteins. AI-2 is a small chemical quorum-sensing signal involved in interspecies communication in bacteria. Cytoplasmic autoinducer-2 kinase, encoded by the lsrK gene from Salmonella enterica serovar Typhimurium lsr (luxS regulated) operon, is the prototypical member of this subfamily. AI-2 kinase catalyzes the phosphorylation of intracellular AI-2 to phospho-AI-2, which leads to the inactivation of lsrR, the repressor of the lsr operon. Members of this family are homologs of glycerol kinase-like proteins and belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 452 -212660 cd07776 FGGY_D-XK_euk eukaryotic D-xylulose kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of eukaryotic D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17), which catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. They belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Members of this subfamily are similar to bacterial D-XKs, which exist as dimers with active sites that lie at the interface between two large domains. The presence of Mg2+ or Mn2+ is required for catalytic activity. 480 -212661 cd07777 FGGY_SHK_like sedoheptulokinase-like proteins; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is predominantly composed of uncharacterized bacterial and eukaryotic proteins with similarity to human sedoheptulokinase (SHK, also known as D-altro-heptulose or heptulokinase, EC 2.7.1.14) encoded by the carbohydrate kinase-like (CARKL/SHPK) gene. SHK catalyzes the ATP-dependent phosphorylation of sedoheptulose to produce sedoheptulose 7-phosphate and ADP. The presence of Mg2+ or Mn2+ might be required for catalytic activity. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 448 -198356 cd07778 FGGY_L-RBK_like L-ribulokinase-like proteins; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of a group of putative bacterial L-ribulokinases (RBK; EC 2.7.1.16) and similar proteins. L-RBK catalyzes the MgATP-dependent phosphorylation of a variety of sugar substrates. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 466 -212662 cd07779 FGGY_ygcE_like uncharacterized ygcE-like proteins. This subfamily consists of uncharacterized hypothetical bacterial proteins with similarity to Escherichia coli sugar kinase ygcE , whose functional roles are not yet clear. Escherichia coli ygcE is recognized by this model, but is not present in the alignment as it contains a deletion relative to other members of the group. These proteins belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 488 -198358 cd07781 FGGY_RBK Ribulokinases; belongs to the FGGY family of carbohydrate kinases. This subgroup is predominantly composed of bacterial ribulokinases (RBK) which catalyze the MgATP-dependent phosphorylation of L(or D)-ribulose to produce L(or D)-ribulose 5-phosphate and ADP. RBK also phosphorylates a variety of other sugar substrates including ribitol and arabitol. The reason why L-RBK can phosphorylate so many different substrates is not yet clear. The presence of Mg2+ is required for catalytic activity. This group belongs to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 498 -212663 cd07782 FGGY_YpCarbK_like Yersinia Pseudotuberculosis carbohydrate kinase-like subgroup; belongs to the FGGY family of carbohydrate kinases. This subgroup is composed of the uncharacterized Yersinia Pseudotuberculosis carbohydrate kinase that has been named glyerol/xylulose kinase and similar uncharacterized proteins from bacteria and eukaryota. Carbohydrate kinases catalyze the ATP-dependent phosphorylation of their carbohydrate substrate to produce phosphorylated sugar and ADP. The presence of Mg2+ is required for catalytic activity. This subgroup shows high homology to characterized ribulokinases and belongs to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 536 -198360 cd07783 FGGY_CarbK-RPE_like Carbohydrate kinase and ribulose-phosphate 3-epimerase fusion proteins-like; belongs to the FGGY family of carbohydrate kinases. This subgroup is composed of uncharacterized proteins with similarity to carbohydrate kinases. Some members are carbohydrate kinase and ribulose-phosphate 3-epimerase fusion proteins. Carbohydrate kinases catalyze the ATP-dependent phosphorylation of their carbohydrate substrate to produce phosphorylated sugar and ADP. The presence of Mg2+ is required for catalytic activity. This subgroup shows high homology to characterized ribulokinases and belongs to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 484 -198361 cd07786 FGGY_EcGK_like Escherichia coli glycerol kinase-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup is composed of mostly bacterial and archaeal glycerol kinases (GK), including the well characterized proteins from Escherichia coli (EcGK), Thermococcus kodakaraensis (TkGK), and Enterococcus casseliflavus (EnGK). GKs contain two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The high affinity ATP binding site of EcGK is created only by a substrate-induced conformational change, which is initiated by protein-protein interactions through complex formation with enzyme IIAGlc (also known as IIIGlc), the glucose-specific phosphocarrier protein of the phosphotransferase system (PTS). EcGK exists in a dimer-tetramer equilibrium. IIAGlc binds to both EcGK dimer and tetramer, and inhibits the uptake and subsequent metabolism of glycerol and maltose. Another well-known allosteric regulator of EcGK is fructose 1,6-bisphosphate (FBP), which binds to the EcGK tetramer and plays an essential role in the stabilization of the inactive tetrameric form. EcGK requires Mg2+ for its enzymatic activity. Members in this subgroup belong to the FGGY family of carbohydrate kinases 486 -198362 cd07789 FGGY_CsGK_like Cellulomonas sp. glycerol kinase-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a small group of bacterial glycerol kinases (GK) with similarity to Cellulomonas sp. glycerol kinase (CsGK). CsGK might exist as a dimer. Its monomer is composed of two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The regulation of the catalytic activity of this group has not yet been examined. Members in this subgroup belong to the FGGY family of carbohydrate kinases 495 -198363 cd07791 FGGY_GK2_bacteria bacterial glycerol kinase 2-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a group of putative bacterial glycerol kinases (GK), which may be coded by the GK-like gene, GK2. Sequence comparison shows members in this CD are homologs of Escherichia coli GK. They retain all functionally important residues, and may catalyze the Mg-ATP dependent phosphorylation of glycerol to yield glycerol 3-phosphate (G3P). GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 484 -212664 cd07792 FGGY_GK1-3_metazoa Metazoan glycerol kinase 1 and 3-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a group of metazoan glycerol kinases (GKs), coded by X chromosome-linked GK genes, and glycerol kinase (GK)-like proteins, coded by autosomal testis-specific GK-like genes (GK-like genes, GK1 and GK3). Sequence comparison shows that metazoan GKs and GK-like proteins in this family are closely related to the bacterial GKs, which catalyze the Mg-ATP dependent phosphorylation of glycerol to yield glycerol 3-phosphate (G3P). The metazoan GKs do have GK enzymatic activity. However, the GK-like metazoan proteins do not exhibit GK activity and their biological functions are not yet clear. Some of them lack important functional residues involved in the binding of ADP and Mg2+, which may result in the loss of GK catalytic function. Others that have conserved catalytic residues have lost their GK activity as well; the reason remains unclear. It has been suggested the conserved catalytic residues might facilitate them performing a distinct function. GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 504 -212665 cd07793 FGGY_GK5_metazoa metazoan glycerol kinase 5-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a group of metazoan putative glycerol kinases (GK), which may be coded by the GK-like gene, GK5. Sequence comparison shows members of this group are homologs of bacterial GKs, and they retain all functionally important residues. However, GK-like proteins in this family do not have detectable GK activity. The reason remains unclear. It has been suggested tha the conserved catalytic residues might facilitate them performing a distinct function. GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 504 -198366 cd07794 FGGY_GK_like_proteobact Proteobacterial glycerol kinase-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a small group of proteobacterial glycerol kinase (GK)-like proteins, including the glycerol kinase from Pseudomonas aeruginosa. Most bacteria, such as Escherichia coli, take up glycerol passively by facilitated diffusion. In contrast, P. aeruginosa may also utilize a binding protein-dependent active transport system to mediate glycerol transportation. The glycerol kinase subsequently phosphorylates the intracellular glycerol to glycerol 3-phosphate (G3P). GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 470 -198367 cd07795 FGGY_ScGut1p_like Saccharomyces cerevisiae Gut1p and related proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup corresponds to a small group of fungal glycerol kinases (GK), including Saccharomyces cerevisiae Gut1p/YHL032Cp, which phosphorylates glycerol to glycerol-3-phosphate in the cytosol. Glycerol utilization has been considered as the sole source of carbon and energy in S. cerevisiae, and is mediated by glycerol kinase and glycerol 3-phosphate dehydrogenase, which is encoded by the GUT2 gene. Members in this family show high similarity to their prokaryotic and eukaryotic homologs. GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 496 -198368 cd07796 FGGY_NHO1_plant Arabidopsis NHO1 and related proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup includes Arabidopsis NHO1 (also known as NONHOST1, or noh-host resistant 1) and other putative plant glycerol kinases, which share strong homology with glycerol kinases from bacteria, fungi, and animals. Nonhost resistance of plants refers to the phenomenon observed when all members of a plant species are typically resistant to a specific parasite. NHO1 is required for nonspecific resistance to nonhost Pseudomonas bacteria, it is also required for resistance to the fungal pathogen Botrytis cinerea. This subgroup belongs to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 503 -198369 cd07798 FGGY_AI-2K_like Autoinducer-2 kinase-like proteins; belongs to the FGGY family of carbohydrate kinases. This subgroup consists of uncharacterized hypothetical bacterial proteins with similarity to bacterial autoinducer-2 (AI-2) kinases, which catalyzes the phosphorylation of intracellular AI-2 to phospho-AI-2, leading to the inactivation of lsrR, the repressor of the lsr operon. Members of this subgroup belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 437 -212666 cd07802 FGGY_L-XK L-xylulose kinases; a subfamily of the FGGY family of carbohydrate kinases. This subfamily is composed of bacterial L-xylulose kinases (L-XK, also known as L-xylulokinase; EC 2.7.1.53), which catalyze the ATP-dependent phosphorylation of L-xylulose to produce L-xylulose 5-phosphate and ADP. The presence of Mg2+ might be required for catalytic activity. Some uncharacterized sequences are also included in this subfamily. L-XKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 447 -198371 cd07803 FGGY_D-XK D-xylulose kinases; a subgroup of the FGGY family of carbohydrate kinases. This subfamily is predominantly composed of bacterial D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17), which catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. Some uncharacterized sequences are also included in this subfamily. The prototypical member of this subfamily is Escherichia coli xylulokinase (EcXK), which exists as a dimer. Each monomer consists of two large domains separated by an open cleft that forms an active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. XKs do not have any known allosteric regulators, and they may have weak but significant activity in the absence of substrate. The presence of Mg2+ or Mn2+ is required for catalytic activity. Members of this subfamily belong to the FGGY family of carbohydrate kinases. 482 -198372 cd07804 FGGY_XK_like_1 uncharacterized xylulose kinase-like proteins; a subgroup of the FGGY family of carbohydrate kinases. This subgroup is composed of uncharacterized bacterial and archaeal xylulose kinases-like proteins with similarity to bacterial D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17), which catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. The presence of Mg2+ or Mn2+ is required for catalytic activity. D-XK exists as a dimer with an active site that lies at the interface between the N- and C-terminal domains. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Members of this subgroup belong to the FGGY family of carbohydrate kinases 492 -198373 cd07805 FGGY_XK_like_2 uncharacterized xylulose kinase-like proteins; a subgroup of the FGGY family of carbohydrate kinases. This subgroup is composed of uncharacterized proteins with similarity to bacterial D-Xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17), which catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. The presence of Mg2+ or Mn2+ is required for catalytic activity. D-XK exists as a dimer with an active site that lies at the interface between the N- and C-terminal domains. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Members of this subgroup belong to the FGGY family of carbohydrate kinases. 514 -198374 cd07808 FGGY_D-XK_EcXK-like Escherichia coli xylulokinase-like D-xylulose kinases; a subgroup of the FGGY family of carbohydrate kinases. This subgroup is predominantly composed of bacterial D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17), which catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. D-xylulose has been used as a source of carbon and energy by a variety of microorganisms. Some uncharacterized sequences are also included in this subgroup. The prototypical member of this CD is Escherichia coli xylulokinase (EcXK), which exists as a dimer. Each monomer consists of two large domains separated by an open cleft that forms an active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of Mg2+ or Mn2+ is required for catalytic activity. Members of this subgroup belong to the FGGY family of carbohydrate kinases. 482 -198375 cd07809 FGGY_D-XK_1 D-xylulose kinases, subgroup 1; members of the FGGY family of carbohydrate kinases. This subgroup is composed of D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17) from bacteria and eukaryota. They share high sequence similarity with Escherichia coli xylulokinase (EcXK), which catalyzes the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. Some uncharacterized sequences are also included in this subfamily. EcXK exists as a dimer. Each monomer consists of two large domains separated by an open cleft that forms an active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of Mg2+ or Mn2+ might be required for catalytic activity. Members of this subgroup belong to the FGGY family of carbohydrate kinases. 487 -198376 cd07810 FGGY_D-XK_2 D-xylulose kinases, subgroup 2; members of the FGGY family of carbohydrate kinases. This subgroup is predominantly composed of bacterial D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17). They share high sequence similarity with Escherichia coli xylulokinase (EcXK), which catalyzes the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. EcXK exists as a dimer. Each monomer consists of two large domains separated by an open cleft that forms an active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of Mg2+ or Mn2+ might be required for catalytic activity. Members of this subgroup belong to the FGGY family of carbohydrate kinases. 490 -198377 cd07811 FGGY_D-XK_3 D-xylulose kinases, subgroup 3; members of the FGGY family of carbohydrate kinases. This subgroup is composed of proteobacterial D-xylulose kinases (XK, also known as xylulokinase; EC 2.7.1.17). They share high sequence similarity with Escherichia coli xylulokinase (EcXK), which catalyzes the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P) and ADP. Some uncharacterized sequences are also included in this subfamily. EcXK exists as a dimer. Each monomer consists of two large domains separated by an open cleft that forms an active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of Mg2+ or Mn2+ might be required for catalytic activity. Members of this subgroup belong to the FGGY family of carbohydrate kinases. 493 -176854 cd07812 SRPBCC START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket; they bind diverse ligands. Included in this superfamily are the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, and the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), as well as the SRPBCC domains of phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of this superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 141 -176855 cd07813 COQ10p_like Coenzyme Q-binding protein COQ10p and similar proteins. Coenzyme Q-binding protein COQ10p and similar proteins. COQ10p is a hydrophobic protein located in the inner membrane of mitochondria that binds coenzyme Q (CoQ), also called ubiquinone, which is an essential electron carrier of the respiratory chain. Deletion of the gene encoding COQ10p (COQ10 or YOL008W) in Saccharomyces cerevisiae results in respiratory defect because of the inability to oxidize NADH and succinate. COQ10p may function in the delivery of CoQ (Q6 in budding yeast) to its proper location for electron transport. The human homolog, called Q-binding protein COQ10 homolog A (COQ10A), is able to fully complement for the absence of COQ10p in fission yeast. Human COQ10A also has a splice variant COQ10B. COQ10p belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 138 -176856 cd07814 SRPBCC_CalC_Aha1-like Putative hydrophobic ligand-binding SRPBCC domain of Micromonospora echinospora CalC, human Aha1, and related proteins. This family includes the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of Micromonospora echinospora CalC, human Aha1, and related proteins. Proteins in this group belong to the SRPBCC domain superfamily of proteins, which bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. MeCalC confers resistance to the enediyne, calicheamicin gamma 1 (CLM), by a self sacrificing mechanism which results in inactivation of both CalC and the highly reactive diradical enediyne species. MeCalC can also inactivate two other enediynes, shishijimicin and namenamicin. A crucial Gly of the MeCalC CLM resistance mechanism is not conserved in this subgroup. This family also includes the C-terminal, Bet v1-like domain of Aha1, one of several co-chaperones, which regulate the dimeric chaperone Hsp90. Aha1 promotes dimerization of the N-terminal domains of Hsp90, and stimulates its low intrinsic ATPase activity, and may regulate the dwell time of Hsp90 with client proteins. Aha1 can act as either a positive or negative regulator of chaperone-dependent activation, depending on the client protein, but the mechanisms by which these opposing functions are achieved are unclear. Aha1 is upregulated in a number of tumor lines co-incident with the activation of several signaling kinases. 139 -176857 cd07815 SRPBCC_PITP Lipid-binding SRPBCC domain of Class I and Class II Phosphatidylinositol Transfer Proteins. This family includes the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of the phosphatidylinositol transfer protein (PITP) family of lipid transfer proteins. This family of proteins includes Class 1 PITPs (PITPNA/PITPalpha and PITPNB/PITPbeta, Drosophila vibrator and related proteins), Class IIA PITPs (PITPNM1/PITPalphaI/Nir2, PITPNM2/PITPalphaII/Nir3, Drosophila RdgB, and related proteins), and Class IIB PITPs (PITPNC1/RdgBbeta and related proteins). The PITP family belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. In vitro, PITPs bind phosphatidylinositol (PtdIns), as well as phosphatidylcholine (PtdCho) but with a lower affinity. They transfer these lipids from one membrane compartment to another. The cellular roles of PITPs include inositol lipid signaling, PtdIns metabolism, and membrane trafficking. Class III PITPs, exemplified by the Sec14p family, are found in yeast and plants but are unrelated in sequence and structure to Class I and II PITPs and belong to a different superfamily. 251 -176858 cd07816 Bet_v1-like Ligand-binding bet_v_1 domain of major pollen allergen of white birch (Betula verrucosa), Bet v 1, and related proteins. This family includes the ligand binding domain of Bet v 1 (the major pollen allergen of white birch, Betula verrucosa) and related proteins. In addition to birch Bet v 1, this family includes other plant intracellular pathogenesis-related class 10 (PR-10) proteins, norcoclaurine synthases (NCSs), cytokinin binding proteins (CSBPs), major latex proteins (MLPs), and ripening-related proteins. It belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Members of this family binds a diverse range of ligands. Bet v 1 can bind brassinosteroids, cytokinins, flavonoids and fatty acids. Hyp-1, a PR-10 from Hypericum perforatum/St. John's wort, catalyzes the condensation of two molecules of emodin to the bioactive naphthodianthrone hypericin. NCSs catalyze the condensation of dopamine and 4-hydroxyphenylacetaldehyde to (S)-norcoclaurine, the first committed step in the biosynthesis of benzylisoquinoline alkaloids such as morphine. The role of MLPs is unclear; however, they are associated with fruit and flower development and in pathogen defense responses. A number of PR-10 proteins in this subgroup, including Bet v 1, have in vitro RNase activity, the biological significance of which is unclear. Bet v 1 family proteins have a conserved glycine-rich P (phosphate-binding)-loop proximal to the entrance of the ligand-binding pocket. However, its conformation differs from that of the canonical P-loop structure found in nucleotide-binding proteins. Several PR-10 members including Bet v1 are allergenic. Cross-reactivity of Bet v 1 with homologs from plant foods results in birch-fruit syndrome. 148 -176859 cd07817 SRPBCC_8 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 139 -176860 cd07818 SRPBCC_1 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 150 -176861 cd07819 SRPBCC_2 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 140 -176862 cd07820 SRPBCC_3 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 137 -176863 cd07821 PYR_PYL_RCAR_like Pyrabactin resistance 1 (PYR1), PYR1-like (PYL), regulatory component of abscisic acid receptors (RCARs), and related proteins. The PYR/PYL/RCAR-like family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. PYR/PYL/RCAR plant proteins are receptors involved in signal transduction. They bind abscisic acid (ABA) and mediate its signaling. ABA is a vital plant hormone, which regulates plant growth, development, and response to environmental stresses. Upon binding ABA, these plant proteins interact with a type 2C protein phosphatase (PP2C), such as ABI1 and ABI2, and inhibit their activity. When ABA is bound, a loop (designated the gate/CL2 loop) closes over the ligand binding pocket, resulting in the weakening of the inactive PYL dimer and facilitating type 2C protein phosphatase binding. In the ABA:PYL1:ABI1 complex, the gate blocks substrate access to the phosphatase active site. A conserved Trp from PP2C inserts into PYL to lock the receptor in a closed formation. This group also contains Methylobacterium extorquens AM1 MxaD. The mxaD gene is located within the mxaFJGIR(S)ACKLDEHB cluster which encodes proteins involved in methanol oxidation. MxaD may participate in the periplasmic electron transport chain for oxidation of methanol. Mutants lacking MxaD exhibit a reduced growth on methanol, and a lower rate of respiration with methanol. 140 -176864 cd07822 SRPBCC_4 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 141 -176865 cd07823 SRPBCC_5 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 146 -176866 cd07824 SRPBCC_6 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 146 -176867 cd07825 SRPBCC_7 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 144 -176868 cd07826 SRPBCC_CalC_Aha1-like_9 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 142 -143640 cd07827 RHD-n N-terminal sub-domain of the Rel homology domain (RHD). Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal sub-domain, which may be distantly related to the DNA-binding domain found in P53. The C-terminal sub-domain has an immunoglobulin-like fold and serves as a dimerization module that also binds DNA (see cd00102). The RHD is found in NF-kappa B, nuclear factor of activated T-cells (NFAT), the tonicity-responsive enhancer binding protein (TonEBP), and the arthropod proteins Dorsal and Relish (Rel). 174 -143652 cd07828 nitrobindin nitrobindin heme-binding domain. Nitrobindin is a heme-containing lipocalin that may reversibly bind nitric oxide. This heme-binding domain forms a beta barrel structure, and in a small family of proteins from tetrapods, it is found C-terminal to a THAP zinc finger domain (a sequence-specific DNA binding domain). Members of this group are putatively related to fatty acid-binding proteins (FABPs). 148 -270823 cd07829 STKc_CDK_like Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 282 -270824 cd07830 STKc_MAK_like Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of human MAK and MAK-related kinase (MRK), Saccharomyces cerevisiae Ime2p, Schizosaccharomyces pombe Mei4-dependent protein 3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5, Arabidopsis thaliana MHK, and similar proteins. These proteins play important roles during meiosis. MAK is highly expressed in testicular cells specifically in the meiotic phase, but is not essential for spermatogenesis and fertility. It functions as a coactivator of the androgen receptor in prostate cells. MRK, also called Intestinal Cell Kinase (ICK), is expressed ubiquitously, with highest expression in the ovary and uterus. A missense mutation in MRK causes endocrine-cerebro-osteodysplasia, suggesting that this protein plays an important role in the development of many organs. MAK and MRK may be involved in regulating cell cycle and cell fate. Ime2p is a meiosis-specific kinase that is important during meiotic initiation and during the later stages of meiosis. Mde3 functions downstream of the transcription factor Mei-4 which is essential for meiotic prophase I. The MAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -270825 cd07831 STKc_MOK Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MOK, also called Renal tumor antigen 1 (RAGE-1), is widely expressed and is enriched in testis, kidney, lung, and brain. It is expressed in approximately 50% of renal cell carcinomas (RCC) and is a potential target for immunotherapy. MOK is stabilized by its association with the HSP90 molecular chaperone. It is induced by the transcription factor Cdx2 and may be involved in regulating intestinal epithelial development and differentiation. The MOK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 282 -270826 cd07832 STKc_CCRK Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CCRK was previously called p42. It is a Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) which is essential for the activation of CDK2. It is indispensable for cell growth and has been implicated in the progression of glioblastoma multiforme. In the heart, a splice variant of CCRK with a different C-terminal half is expressed; this variant promotes cardiac cell growth and survival and is significantly down-regulated during the development of heart failure. The CCRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -270827 cd07833 STKc_CDKL Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -270828 cd07834 STKc_MAPK Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Typical MAPK pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPK kinase (MAP2K or MKK), which itself is phosphorylated and activated by a MAPK kinase kinase (MAP3K or MKKK). Each cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. There are three typical MAPK subfamilies: Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38. Some MAPKs are atypical in that they are not regulated by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7. The MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 329 -270829 cd07835 STKc_CDK1_CdkB_like Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of Plant B-type Cyclin-Dependent protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK, CDK2, and CDK3. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression while the CDK1/cyclin B complex is critical for G2 to M phase transition. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. Studies in knockout mice revealed that CDK1 can compensate for the loss of the cdk2 gene as it can also bind cyclin E and drive G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -143341 cd07836 STKc_Pho85 Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase Pho85. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Pho85 is a multifunctional CDK in yeast. It is regulated by 10 different cyclins (Pcls) and plays a role in G1 progression, cell polarity, phosphate and glycogen metabolism, gene expression, and in signaling changes in the environment. It is not essential for yeast viability and is the functional homolog of mammalian CDK5, which plays a role in central nervous system development. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The Pho85 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270830 cd07837 STKc_CdkB_plant Catalytic domain of the Serine/Threonine Kinase, Plant B-type Cyclin-Dependent protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CdkB subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 294 -270831 cd07838 STKc_CDK4_6_like Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -143344 cd07839 STKc_CDK5 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK5 is unusual in that it is regulated by non-cyclin proteins, p35 and p39. It is highly expressed in the nervous system and is critical in normal neural development and function. It plays a role in neuronal migration and differentiation, and is also important in synaptic plasticity and learning. CDK5 also participates in protecting against cell death and promoting angiogenesis. Impaired CDK5 activity is implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270832 cd07840 STKc_CDK9_like Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK9 and CDK12 from higher eukaryotes, yeast BUR1, C-type plant CDKs (CdkC), and similar proteins. CDK9, BUR1, and CdkC are functionally equivalent. They act as a kinase for the C-terminal domain of RNA polymerase II and participate in regulating mutliple steps of gene expression including transcription elongation and RNA processing. CDK9 and CdkC associate with T-type cyclins while BUR1 associates with the cyclin BUR2. CDK12 is a unique CDK that contains an arginine/serine-rich (RS) domain, which is predominantly found in splicing factors. CDK12 interacts with cyclins L1 and L2, and participates in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -270833 cd07841 STKc_CDK7 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK7 plays essential roles in the cell cycle and in transcription. It associates with cyclin H and MAT1 and acts as a CDK-Activating Kinase (CAK) by phosphorylating and activating cell cycle CDKs (CDK1/2/4/6). In the brain, it activates CDK5. CDK7 is also a component of the general transcription factor TFIIH, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II when it is bound with unphosphorylated DNA, as present in the pre-initiation complex. Following phosphorylation, the CTD dissociates from the DNA which allows transcription initiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 298 -270834 cd07842 STKc_CDK8_like Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK8, CDC2L6, and similar proteins. CDK8 functions as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II-dependent transcription. CDC2L6 also associates with Mediator in complexes lacking CDK8. In VP16-dependent transcriptional activation, CDK8 and CDC2L6 exerts opposing effects by positive and negative regulation, respectively, in similar conditions. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 316 -173741 cd07843 STKc_CDC2L1 Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L1, also called PITSLRE, exists in different isoforms which are named using the alias CDK11(p). The CDC2L1 gene produces two protein products, CDK11(p110) and CDK11(p58). CDC2L1 is also represented by the caspase-processed CDK11(p46). CDK11(p110), the major isoform, associates with cyclin L and is expressed throughout the cell cycle. It is involved in RNA processing and the regulation of transcription. CDK11(p58) associates with cyclin D3 and is expressed during the G2/M phase of the cell cycle. It plays roles in spindle morphogenesis, centrosome maturation, sister chromatid cohesion, and the completion of mitosis. CDK11(p46) is formed from the larger isoforms by caspases during TNFalpha- and Fas-induced apoptosis. It functions as a downstream effector kinase in apoptotic signaling pathways and interacts with eukaryotic initiation factor 3f (eIF3f), p21-activated kinase (PAK1), and Ran-binding protein (RanBPM). CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 293 -270835 cd07844 STKc_PCTAIRE_like Catalytic domain of PCTAIRE-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-like proteins show unusual expression patterns with high levels in post-mitotic tissues, suggesting that they may be involved in regulating post-mitotic cellular events. They share sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The association of PCTAIRE-like proteins with cyclins has not been widely studied, although PFTAIRE-1 has been shown to function as a CDK which is regulated by cyclin D3 as well as the membrane-associated cyclin Y. The PCTAIRE-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -173742 cd07845 STKc_CDK10 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 10. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK10, also called PISSLRE, is essential for cell growth and proliferation, and acts through the G2/M phase of the cell cycle. CDK10 has also been identified as an important factor in endocrine therapy resistance in breast cancer. CDK10 silencing increases the transcription of c-RAF and the activation of the p42/p44 MAPK pathway, which leads to antiestrogen resistance. Patients who express low levels of CDK10 relapse early on tamoxifen. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK10 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 309 -270836 cd07846 STKc_CDKL2_3 Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL2, also called p56 KKIAMRE, is expressed in testis, kidney, lung, and brain. It functions mainly in mature neurons and plays an important role in learning and memory. Inactivation of CDKL3, also called NKIAMRE (NKIATRE in rat), by translocation is associated with mild mental retardation. It has been reported that CDKL3 is lost in leukemic cells having a chromosome arm 5q deletion, and may contribute to the transformed phenotype. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270837 cd07847 STKc_CDKL1_4 Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL1, also called p42 KKIALRE, is a glial protein that is upregulated in gliosis. It is present in neuroblastoma and A431 human carcinoma cells, and may be implicated in neoplastic transformation. The function of CDKL4 is unknown. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270838 cd07848 STKc_CDKL5 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mutations in the gene encoding CDKL5, previously called STK9, are associated with early onset epilepsy and severe mental retardation [X-linked infantile spasm syndrome (ISSX) or West syndrome]. In addition, CDKL5 mutations also sometimes cause a phenotype similar to Rett syndrome (RTT), a progressive neurodevelopmental disorder. These pathogenic mutations are located in the N-terminal portion of the protein within the kinase domain. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -270839 cd07849 STKc_ERK1_2_like Catalytic domain of Extracellular signal-Regulated Kinase 1 and 2-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the mitogen-activated protein kinases (MAPKs) ERK1, ERK2, baker's yeast Fus3, and similar proteins. MAPK pathways are important mediators of cellular responses to extracellular signals. ERK1/2 activation is preferentially by mitogenic factors, differentiation stimuli, and cytokines, through a kinase cascade involving the MAPK kinases MEK1/2 and a MAPK kinase kinase from the Raf family. ERK1/2 have numerous substrates, many of which are nuclear and participate in transcriptional regulation of many cellular processes. They regulate cell growth, cell proliferation, and cell cycle progression from G1 to S phase. Although the distinct roles of ERK1 and ERK2 have not been fully determined, it is known that ERK2 can maintain most functions in the absence of ERK1, and that the deletion of ERK2 is embryonically lethal. The MAPK, Fus3, regulates yeast mating processes including mating-specific gene expression, G1 arrest, mating projection, and cell fusion. This ERK1/2-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 336 -270840 cd07850 STKc_JNK Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. They are also essential regulators of physiological and pathological processes and are involved in the pathogenesis of several diseases such as diabetes, atherosclerosis, stroke, Parkinson's and Alzheimer's. Vetebrates harbor three different JNK genes (Jnk1, Jnk2, and Jnk3) that are alternatively spliced to produce at least 10 isoforms. JNKs are specifically activated by the MAPK kinases MKK4 and MKK7, which are in turn activated by upstream MAPK kinase kinases as a result of different stimuli including stresses such as ultraviolet (UV) irradiation, hyperosmolarity, heat shock, or cytokines. JNKs activate a large number of different substrates based on specific stimulus, cell type, and cellular condition, and may be implicated in seemingly contradictory functions. The JNK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 337 -143356 cd07851 STKc_p38 Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They function in the regulation of the cell cycle, cell development, cell differentiation, senescence, tumorigenesis, apoptosis, pain development and pain progression, and immune responses. p38 kinases are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. p38 substrates include other protein kinases and factors that regulate transcription, nuclear export, mRNA stability and translation. p38 kinases are drug targets for the inflammatory diseases psoriasis, rheumatoid arthritis, and chronic pulmonary disease. Vertebrates contain four isoforms of p38, named alpha, beta, gamma, and delta, which show varying substrate specificity and expression patterns. p38alpha and p38beta are ubiquitously expressed, p38gamma is predominantly found in skeletal muscle, and p38delta is found in the heart, lung, testis, pancreas, and small intestine. The p38 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 343 -270841 cd07852 STKc_MAPK15-like Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and similar MAPKs. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human MAPK15 is also called Extracellular signal Regulated Kinase 8 (ERK8) while the rat protein is called ERK7. ERK7 and ERK8 display both similar and different biochemical properties. They autophosphorylate and activate themselves and do not require upstream activating kinases. ERK7 is constitutively active and is not affected by extracellular stimuli whereas ERK8 shows low basal activity and is activated by DNA-damaging agents. ERK7 and ERK8 also have different substrate profiles. Genome analysis shows that they are orthologs with similar gene structures. ERK7 and ERK 8 may be involved in the signaling of some nuclear receptor transcription factors. ERK7 regulates hormone-dependent degradation of estrogen receptor alpha while ERK8 down-regulates the transcriptional co-activation androgen and glucocorticoid receptors. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK15 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 337 -173748 cd07853 STKc_NLK Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NLK is an atypical mitogen-activated protein kinase (MAPK) that is not regulated by a MAPK kinase. It functions downstream of the MAPK kinase kinase Tak1, which also plays a role in activating the JNK and p38 MAPKs. The Tak1/NLK pathways are regulated by Wnts, a family of secreted proteins that is critical in the control of asymmetric division and cell polarity. NLK can phosphorylate transcription factors from the TCF/LEF family, inhibiting their ability to activate the transcription of target genes. In prostate cancer cells, NLK is involved in regulating androgen receptor-mediated transcription and its expression is altered during cancer progression. MAPKs are important mediators of cellular responses to extracellular signals. The NLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 372 -143359 cd07854 STKc_MAPK4_6 Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also called ERK4) and 6 (also called ERK3). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK4 (also called ERK4 or p63MAPK) and MAPK6 (also called ERK3 or p97MAPK) are atypical MAPKs that are not regulated by MAPK kinases. MAPK6 is expressed ubiquitously with highest amounts in brain and skeletal muscle. It may be involved in the control of cell differentiation by negatively regulating cell cycle progression in certain conditions. It may also play a role in glucose-induced insulin secretion. MAPK6 and MAPK4 cooperate to regulate the activity of MAPK-activated protein kinase 5 (MK5), leading to its relocation to the cytoplasm and exclusion from the nucleus. The MAPK6/MK5 and MAPK4/MK5 pathways may play critical roles in embryonic and post-natal development. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 342 -270842 cd07855 STKc_ERK5 Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ERK5 (also called Big MAPK1 (BMK1) or MAPK7) has a unique C-terminal extension, making it approximately twice as big as other MAPKs. This extension contains transcriptional activation capability which is inhibited by the N-terminal half. ERK5 is activated in response to growth factors and stress by a cascade that leads to its phosphorylation by the MAP2K MEK5, which in turn is regulated by the MAP3Ks MEKK2 and MEKK3. Activated ERK5 phosphorylates its targets including myocyte enhancer factor 2 (MEF2), Sap1a, c-Myc, and RSK. It plays a role in EGF-induced cell proliferation during the G1/S phase transition. Studies on knockout mice revealed that ERK5 is essential for cardiovascular development and plays an important role in angiogenesis. It is also critical for neural differentiation and survival. The ERK5 pathway has been implicated in the pathogenesis of many diseases including cancer, cardiac hypertrophy, and atherosclerosis. MAPKs are important mediators of cellular responses to extracellular signals. The ERK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 336 -270843 cd07856 STKc_Sty1_Hog1 Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases Sty1 and Hog1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs Sty1 from Schizosaccharomyces pombe, Hog1 from Saccharomyces cerevisiae, and similar proteins. Sty1 and Hog1 are stress-activated MAPKs that partipate in transcriptional regulation in response to stress. Sty1 is activated in response to oxidative stress, osmotic stress, and UV radiation. It is regulated by the MAP2K Wis1, which is activated by the MAP3Ks Wis4 and Win1, which receive signals of the stress condition from membrane-spanning histidine kinases Mak1-3. Activated Sty1 stabilizes the Atf1 transcription factor and induces transcription of Atf1-dependent genes of the core environmetal stress response. Hog1 is the key element in the high osmolarity glycerol (HOG) pathway and is activated upon hyperosmotic stress. Activated Hog1 accumulates in the nucleus and regulates stress-induced transcription. The HOG pathway is mediated by two transmembrane osmosensors, Sln1 and Sho1. MAPKs are important mediators of cellular responses to extracellular signals. The Sty1/Hog1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 328 -173750 cd07857 STKc_MPK1 Catalytic domain of the Serine/Threonine Kinase, Fungal Mitogen-Activated Protein Kinase MPK1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs MPK1 from Saccharomyces cerevisiae, Pmk1 from Schizosaccharomyces pombe, and similar proteins. MPK1 (also called Slt2) and Pmk1 (also called Spm1) are stress-activated MAPKs that regulate the cell wall integrity pathway, and are therefore important in the maintainance of cell shape, cell wall construction, morphogenesis, and ion homeostasis. MPK1 is activated in response to cell wall stress including heat stimulation, osmotic shock, UV irradiation, and any agents that interfere with cell wall biogenesis such as chitin antagonists, caffeine, or zymolase. MPK1 is regulated by the MAP2Ks Mkk1/2, which are regulated by the MAP3K Bck1. Pmk1 is also activated by multiple stresses including elevated temperatures, hyper- or hypotonic stress, glucose deprivation, exposure to cell-wall damaging compounds, and oxidative stress. It is regulated by the MAP2K Pek1, which is regulated by the MAP3K Mkh1. MAPKs are important mediators of cellular responses to extracellular signals. The MPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 332 -143363 cd07858 STKc_TEY_MAPK Catalytic domain of the Serine/Threonine Kinases, Plant TEY Mitogen-Activated Protein Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TEY subtype of plant MAPKs and is further subdivided into three groups (A, B, and C). Group A is represented by AtMPK3, AtMPK6, Nicotiana tabacum BTF4 (NtNTF4), among others. They are mostly involved in environmental and hormonal responses. AtMPK3 and AtMPK6 are also key regulators for stomatal development and patterning. Group B is represented by AtMPK4, AtMPK13, and NtNTF6, among others. They may be involved in both cell division and environmental stress response. AtMPK4 also participates in regulating innate immunity. Group C is represented by AtMPK1, AtMPK2, NtNTF3, Oryza sativa MAPK4 (OsMAPK4), among others. They may also be involved in stress responses. AtMPK1 and AtMPK2 are activated following mechanical injury and in the presence of stress chemicals such as jasmonic acid, hydrogen peroxide and abscisic acid. OsMAPK4 is also called OsMSRMK3 for Multiple Stress-Responsive MAPK3. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20. The TEY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 337 -143364 cd07859 STKc_TDY_MAPK Catalytic domain of the Serine/Threonine Kinases, Plant TDY Mitogen-Activated Protein Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Plant MAPKs are typed based on the conserved phosphorylation motif present in the activation loop, TEY and TDY. This subfamily represents the TDY subtype and is composed of Group D plant MAPKs including Arabidopsis thaliana MPK18 (AtMPK18), Oryza sativa Blast- and Wound-induced MAPK1 (OsBWMK1), OsWJUMK1 (Wound- and JA-Uninducible MAPK1), Zea mays MPK6, and the Medicago sativa TDY1 gene product. OsBWMK1 enhances resistance to pathogenic infections. It mediates stress-activated defense responses by activating a transcription factor that affects the expression of stress-related genes. AtMPK18 is involved in microtubule-related functions. In plants, MAPKs are associated with physiological, developmental, hormonal, and stress responses. Some plants show numerous gene duplications of MAPKs; Arabidopsis thaliana harbors at least 20 MAPKs, named AtMPK1-20 while Oryza sativa contains at least 17 MAPKs. Arabidopsis thaliana contains more TEY-type MAPKs than TDY-type, whereas the reverse is true for Oryza sativa. The TDY MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 338 -270844 cd07860 STKc_CDK2_3 Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase 2 and 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. CDK2, together with CDK4, also regulates embryonic cell proliferation. Despite these important roles, mice deleted for the cdk2 gene are viable and normal except for being sterile. This may be due to compensation provided by CDK1 (also called Cdc2), which can also bind cyclin E and drive the G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270845 cd07861 STKc_CDK1_euk Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher eukaryotes. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression. CDK1/cyclin A2 has also been implicated as an important regulator of S phase events. The CDK1/cyclin B complex is critical for G2 to M phase transition. It induces mitosis by activating nuclear enzymes that regulate chromatin condensation, nuclear membrane degradation, mitosis-specific microtubule and cytoskeletal reorganization. CDK1 also associates with cyclin E and plays a role in the entry into S phase. CDK1 transcription is stable throughout the cell cycle but is modulated in some pathological conditions. It may play a role in regulating apoptosis under these conditions. In breast cancer cells, HER2 can mediate apoptosis by inactivating CDK1. Activation of CDK1 may contribute to HIV-1 induced apoptosis as well as neuronal apoptosis in neurodegenerative diseases. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -270846 cd07862 STKc_CDK6 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK6 is regulated by D-type cyclins and INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein, implicating it to function in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the cytoplasm. It is also present in the ruffling edge of spreading fibroblasts and may play a role in cell spreading. It binds to the p21 inhibitor without any effect on its own activity and it is overexpressed in squamous cell carcinomas and neuroblastomas. CDK6 has also been shown to inhibit cell differentiation in many cell types. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -143368 cd07863 STKc_CDK4 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 partners with all three D-type cyclins (D1, D2, and D3) and is also regulated by INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein and plays a role in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the nucleus. CDK4 also shows kinase activity towards Smad3, a signal transducer of TGF-beta signaling which modulates transcription and plays a role in cell proliferation and apoptosis. CDK4 is inhibited by the p21 inhibitor and is specifically mutated in human melanoma. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -270847 cd07864 STKc_CDK12 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 12. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK12 is also called Cdc2-related protein kinase 7 (CRK7) or Cdc2-related kinase arginine/serine-rich (CrkRS). It is a unique CDK that contains an RS domain, which is predominantly found in splicing factors. CDK12 is widely expressed in tissues. It interacts with cyclins L1 and L2, and plays roles in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK12 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 302 -270848 cd07865 STKc_CDK9 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK9, together with a cyclin partner (cyclin T1, T2a, T2b, or K), is the main component of distinct positive transcription elongation factors (P-TEFb), which function as Ser2 C-terminal domain kinases of RNA polymerase II. P-TEFb participates in multiple steps of gene expression including transcription elongation, mRNA synthesis, processing, export, and translation. It also plays a role in mediating cytokine induced transcription networks such as IL6-induced STAT3 signaling. In addition, the CDK9/cyclin T2a complex promotes muscle differentiation and enhances the function of some myogenic regulatory factors. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 310 -270849 cd07866 STKc_BUR1 Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), Bypass UAS Requirement 1, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BUR1, also called SGV1, is a yeast CDK that is functionally equivalent to mammalian CDK9. It associates with the cyclin BUR2. BUR genes were orginally identified in a genetic screen as factors involved in general transcription. The BUR1/BUR2 complex phosphorylates the C-terminal domain of RNA polymerase II. In addition, this complex regulates histone modification by phosporylating Rad6 and mediating the association of the Paf1 complex with chromatin. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The BUR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 311 -270850 cd07867 STKc_CDC2L6 Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L6 is also called CDK8-like and was previously referred to as CDK11. However, this is a confusing nomenclature as CDC2L6 is distinct from CDC2L1, which is represented by the two protein products from its gene, called CDK11(p110) and CDK11(p58), as well as the caspase-processed CDK11(p46). CDK11(p110), CDK11(p58), and CDK11(p46)do not belong to this subfamily. CDC2L6 is an associated protein of Mediator, a multiprotein complex that provides a platform to connect transcriptional and chromatin regulators and cofactors, in order to activate and mediate RNA polymerase II transcription. CDC2L6 is localized mainly in the nucleus amd exerts an opposing effect to CDK8 in VP16-dependent transcriptional activation by being a negative regulator. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 318 -270851 cd07868 STKc_CDK8 Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 8. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK8 can act as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II (RNAP II)-dependent transcription. CDK8 phosphorylates cyclin H, a subunit of the general transcription factor TFIIH, which results in the inhibition of TFIIH-dependent phosphorylation of the C-terminal domain of RNAP II, facilitating the inhibition of transcription. It has also been shown to promote transcription by a mechanism that is likely to involve RNAP II phosphorylation. CDK8 also functions as a stimulus-specific positive coregulator of p53 transcriptional responses. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 333 -143374 cd07869 STKc_PFTAIRE1 Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-1 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-1 is widely expressed except in the spleen and thymus. It is highly expressed in the brain, heart, pancreas, testis, and ovary, and is localized in the cytoplasm. It is regulated by cyclin D3 and is inhibited by the p21 cell cycle inhibitor. It has also been shown to interact with the membrane-associated cyclin Y, which recruits the protein to the plasma membrane. PFTAIRE-1 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 303 -270852 cd07870 STKc_PFTAIRE2 Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-2 is also referred to as ALS2CR7 (amyotrophic lateral sclerosis 2 (juvenile) chromosome region candidate 7). It may be associated with amyotrophic lateral sclerosis 2 (ALS2), an autosomal recessive form of juvenile ALS. The function of PFTAIRE-2 is not yet known. It shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -270853 cd07871 STKc_PCTAIRE3 Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-3 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-3 shows a restricted pattern of expression and is present in brain, kidney, and intestine. It is elevated in Alzheimer's disease (AD) and has been shown to associate with paired helical filaments (PHFs) and stimulate Tau phosphorylation. As AD progresses, phosphorylated Tau aggregates and forms PHFs, which leads to the formation of neurofibrillary tangles. In human glioma cells, PCTAIRE-3 induces cell cycle arrest and cell death. PCTAIRE-3 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -143377 cd07872 STKc_PCTAIRE2 Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-2 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-2 is specifically expressed in neurons in the central nervous system, mainly in terminally differentiated neurons. It associates with Trap (Tudor repeat associator with PCTAIRE-2) and could play a role in regulating mitochondrial function in neurons. PCTAIRE-2 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 309 -270854 cd07873 STKc_PCTAIRE1 Catalytic domain of the Serine/Threonine Kinase, PCTAIRE-1 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-1 is expressed ubiquitously and is localized in the cytoplasm. Its kinase activity is cell cycle dependent and peaks at the S and G2 phases. PCTAIRE-1 is highly expressed in the brain and may play a role in regulating neurite outgrowth. It can also associate with Trap (Tudor repeat associator with PCTAIRE-2), a physiological partner of PCTAIRE-2; with p11, a small dimeric protein with similarity to S100; and with 14-3-3 proteins, mediators of phosphorylation-dependent interactions in many different proteins. PCTAIRE-1 shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PCTAIRE-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 297 -143379 cd07874 STKc_JNK3 Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK3 is expressed primarily in the brain, and to a lesser extent in the heart and testis. Mice deficient in JNK3 are protected against kainic acid-induced seizures, stroke, sciatic axotomy neural death, and neuronal death due to NGF deprivation, oxidative stress, or exposure to beta-amyloid peptide. This suggests that JNK3 may play roles in the pathogenesis of these diseases. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 355 -143380 cd07875 STKc_JNK1 Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK1 is expressed in every cell and tissue type. It specifically binds with JAMP (JNK1-associated membrane protein), which regulates the duration of JNK1 activity in response to stimuli. Specific JNK1 substrates include Itch and SG10, which are implicated in Th2 responses and airway inflammation, and microtubule dynamics and axodendritic length, respectively. Mice deficient in JNK1 are protected against arthritis, obesity, type 2 diabetes, cardiac cell death, and non-alcoholic liver disease, suggesting that JNK1 may play roles in the pathogenesis of these diseases. Initially, it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 364 -143381 cd07876 STKc_JNK2 Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK2 is expressed in every cell and tissue type. It is specifically translocated to the mitochondria during dopaminergic cell death. Specific substrates include the microtubule-associated proteins DCX and Tau, as well as TIF-IA which is involved in ribosomal RNA synthesis regulation. Mice deficient in Jnk2 show protection against arthritis, type 1 diabetes, atherosclerosis, abdominal aortic aneurysm, cardiac cell death, TNF-induced liver damage, and tumor growth, indicating that JNK2 may play roles in the pathogenesis of these diseases. Initially it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 359 -143382 cd07877 STKc_p38alpha Catalytic domain of the Serine/Threonine Kinase, p38alpha Mitogen-Activated Protein Kinase (also called MAPK14). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38alpha/MAPK14 is expressed in most tissues and is the major isoform involved in the immune and inflammatory response. It is the central p38 MAPK involved in myogenesis. It plays a role in regulating cell cycle check-point transition and promoting cell differentiation. p38alpha also regulates cell proliferation and death through crosstalk with the JNK pathway. Its substrates include MAPK activated protein kinase 2 (MK2), MK5, and the transcription factors ATF2 and Mitf. p38 kinases MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38alpha subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 345 -143383 cd07878 STKc_p38beta Catalytic domain of the Serine/Threonine Kinase, p38beta Mitogen-Activated Protein Kinase (also called MAPK11). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38beta/MAPK11 is widely expressed in tissues and shows more similarity with p38alpha than with the other isoforms. Both are sensitive to pyridinylimidazoles and share some common substrates such as MAPK activated protein kinase 2 (MK2) and the transcription factors ATF2, c-Fos and, ELK-1. p38beta is involved in regulating the activation of the cyclooxygenase-2 promoter and the expression of TGFbeta-induced alpha-smooth muscle cell actin. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38beta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 343 -143384 cd07879 STKc_p38delta Catalytic domain of the Serine/Threonine Kinase, p38delta Mitogen-Activated Protein Kinase (also called MAPK13). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38delta/MAPK13 is found in skeletal muscle, heart, lung, testis, pancreas, and small intestine. It regulates microtubule function by phosphorylating Tau. It activates the c-jun promoter and plays a role in G2 cell cycle arrest. It also controls the degration of c-Myb, which is associated with myeloid leukemia and poor prognosis in colorectal cancer. p38delta is the main isoform involved in regulating the differentiation and apoptosis of keratinocytes. p38 kinases are MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 342 -143385 cd07880 STKc_p38gamma Catalytic domain of the Serine/Threonine Kinase, p38gamma Mitogen-Activated Protein Kinase (also called MAPK12). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38gamma/MAPK12 is predominantly expressed in skeletal muscle. Unlike p38alpha and p38beta, p38gamma is insensitive to pyridinylimidazoles. It displays an antagonizing function compared to p38alpha. p38gamma inhibits, while p38alpha stimulates, c-Jun phosphorylation and AP-1 mediated transcription. p38gamma also plays a role in the signaling between Ras and the estrogen receptor and has been implicated to increase cell invasion and breast cancer progression. In Xenopus, p38gamma is critical in the meiotic maturation of oocytes. p38 kinases are MAPKs, serving as important mediators of cellular responses to extracellular signals. They are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. The p38gamma subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 343 -143641 cd07881 RHD-n_NFAT N-terminal sub-domain of the Rel homology domain (RHD) of nuclear factor of activated T-cells (NFAT) proteins. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the NFAT family of transcription factors. NFAT transcription complexes are a target of calcineurin, a calcium dependent phosphatase, and activate genes that are mainly involved in cell-cell interaction. Upon de-phosphorylation of the nuclear localization signal, NFAT enters the nucleus and acts as a transcription factor; its export from the nucleus is triggered by phosphorylation via export kinases. NFATs play important roles in mediating the immune response, and are found in T cells, B Cells, NK cells, mast cells, and monocytes. NFATs are also found in various non-hematopoietic cell types, where they play roles in development. 175 -143642 cd07882 RHD-n_TonEBP N-terminal sub-domain of the Rel homology domain (RHD) of tonicity-responsive enhancer binding protein (TonEBP). Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the tonicity-responsive enhancer binding protein (TonEBP), also called NFAT5. Mammalian TonEBP regulates the expression of genes in response to tonicity. It plays a pivotal role in urinary concentrating mechanisms in kidney medulla, by triggering the accumulation of osmolytes that enable renal medullary cells to tolerate high levels of urea and salt. 161 -143643 cd07883 RHD-n_NFkB N-terminal sub-domain of the Rel homology domain (RHD) of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-kappa B). Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the NF-kappa B1 and B2 families of transcription factors, also referred to as class I members of the NF-kappa B family. In class I NF-kappa Bs, the RHD domain co-occurs with C-terminal ankyrin repeats. Family members include NF-kappa B1 and NF-kappa B2. NF-kappa B1 is commonly referred to as p105 or p50 (proteolytically processed form), while NF-kappa B2 is called p100 or p52 (proteolytically processed form). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and REL). p105 and p100 may also act as I-kappa Bs due to their C-terminal ankyrin repeats. 197 -143644 cd07884 RHD-n_Relish N-terminal sub-domain of the Rel homology domain (RHD) of the arthropod protein Relish. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the arthropod Relish protein, in which the RHD domain co-occurs with C-terminal ankyrin repeats. Family members are sometimes referred to as p110 or p68 (proteolytically processed form). Relish is an NF-kappa B-like transcription factor, which plays a role in mediating innate immunity in Drosophila. It is activated via the Imd (immune deficiency) pathway, which triggers phosphorylation of Relish. IKK-dependent proteolytic cleavage of Relish (which involves Dredd) results in a smaller active form (without the C-terminal ankyrin repeats), which is transported into the nucleus and functions as a transactivator. 159 -143645 cd07885 RHD-n_RelA N-terminal sub-domain of the Rel homology domain (RHD) of RelA. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD domain of the RelA family of transcription factors, categorized as a class II member of the NF-kappa B family. In class II NF-kappa Bs, the RHD domain co-occurs with a C-terminal transactivation domain (TAD). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and Rel). RelA (also called p65) forms heterodimers with NF-kappa B1 (p50) and B2 (p52). RelA also forms homodimers. 169 -143646 cd07886 RHD-n_RelB N-terminal sub-domain of the Rel homology domain (RHD) of the reticuloendotheliosis viral oncogene homolog B (RelB) protein. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the RelB family of transcription factors, categorized as class II NF-kappa B family members. In class II NF-kappa Bs, the RHD domain co-occurs with a C-terminal transactivation domain (TAD). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and Rel). RelB, is unable to homodimerize but is a potent transactivator in a heterodimer with NF-kappa B1 (p50) or B2 (p52). It is involved in the regulation of genes that play roles in inflammatory processes and the immune response. 172 -143647 cd07887 RHD-n_Dorsal_Dif N-terminal sub-domain of the Rel homology domain (RHD) of the arthropod protein Dorsal. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the arthropod Dorsal and Dif (Dorsal-related immunity factor), and similar proteins. Dorsal and Dif are Rel-like transcription factors, which play roles in mediating innate immunity in Drosophila. They are activated via the Toll pathway. Cytoplasmic Dorsal/Dif are inactivated via forming a complex with Cactus, the Drosophila homologue of mammalian I-kappa B proteins. In response to signals, Cactus is degraded and Dorsal/Dif can be transported into the nucleus, where they act as transcription factors. Dorsal is also an essential gene in establishing the proper dorsal/ventral polarity in the developing embryo. 173 -143579 cd07888 CRD_corin_2 One of two cysteine-rich domains of the corin protein, a type II transmembrane serine protease . The cysteine-rich domain (CRD) is an essential component of corin, a type II transmembrane serine protease which functions as the convertase of the pro-atrial natriuretic peptide (pro-ANP) in the heart. Corin contains two CRDs in its extracellular region, which play an important role in recognition of the physiological substrate, pro-ANP. This model characterizes the second (C-terminal) CRD. 122 -143628 cd07890 CYTH-like_AC_IV-like Adenylyl cyclase (AC) class IV-like, a subgroup of the CYTH-like superfamily. This subgroup contains class IV ACs and similar proteins. AC catalyzes the conversion of ATP to 3',5'-cyclic AMP (cAMP) and PPi. cAMP is a key signaling molecule which conveys a variety of signals in different cell types. In prokaryotes, cAMP is a catabolite derepression signal which triggers the expression of metabolic pathways including the lactose operon. Six non-homologous classes of ACs have been identified (I-VI). Class IV ACs are found in this group. In bacteria, the gene encoding Class IV AC has been designated cyaB and the protein as AC2. AC-IV occurs in addition to AC-I in bacterial pathogens such as Yersinia pestis (plague disease). The role of AC-IV is unknown but it has been speculated that it may be a factor in pathogenesis, perhaps providing cAMP for a secondary internal signaling function, or for secretion and uptake into host cells, where it may disrupt normal cellular processes. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. 169 -143629 cd07891 CYTH-like_CthTTM-like_1 CYTH-like Clostridium thermocellum TTM-like subgroup 1. This subgroup contains the triphosphate tunnel metalloenzyme (TTM) from Clostridium thermocellum (CthTTM) and similar proteins. These are found primarily in bacteria. CthTTM is a metal dependent tripolyphosphatase, nucleoside triphosphatase, and nucleoside tetraphosphatase. It hydrolyzes the beta-gamma phosphoanhydride linkage of triphosphate-containing substrates including tripolyphosphate, nucleoside triphosphates and nucleoside tetraphosphates. These substrates are hydrolyzed, releasing Pi. Mg++ or Mn++ are required for the enzyme's activity. CthTTM appears to have no adenylate cyclase activity. This subgroup consists chiefly of bacterial sequences. These enzymes are members of the CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) superfamily, which have a unique active site located within an eight-stranded beta barrel. 148 -143630 cd07892 PolyPPase_VTC2-3_like Polyphosphate(polyP) polymerase domain of yeast vacuolar transport chaperone (VTC) proteins VTC-2, and -3 , and similar proteins. Saccharomyces cerevisiae VTC-1, -2, -3, and -4 comprise the membrane-integral VTC complex. VTC-2, -3, and -4 contain polyP polymerase domains. S. cerevisiae VTC-2,and -3 belong to this subgroup. For VTC4 it has been shown that this domain generates polyP from ATP by a phosphotransfer reaction releasing ADP. This activity is metal ion-dependent. The ATP gamma phosphate may be cleaved and then transferred to an acceptor phosphate to form polyP. PolyP is ubiquitous. In prokaryotes, it is a store of phosphate and energy. In eukaryotes, polyPs have roles in bone calcification, and osmoregulation, and in phosphate transport in the symbiosis of mycorrhizal fungi and plants. This subgroup belongs to the CYTH/triphosphate tunnel metalloenzyme (TTM)-like superfamily, whose enzymes have a unique active site located within an eight-stranded beta barrel. 303 -153435 cd07893 OBF_DNA_ligase The Oligonucleotide/oligosaccharide binding (OB)-fold domain is a DNA-binding module that is part of the catalytic core unit of ATP dependent DNA ligases. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 129 -185705 cd07894 Adenylation_RNA_ligase Adenylation domain of RNA circularization proteins. RNA circularization proteins are capable of circularizing RNA molecules in an ATP-dependent reaction. RNA circularization may protect RNA from exonuclease activity. This model comprises the adenylation domain, the minimal catalytic unit that is common to all members of the ATP-dependent DNA ligase family, and the carboxy-terminal extension of RNA circularization protein that serves as a dimerization module. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation of nicked nucleic acid substrates using the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. The adenylation domain binds ATP and contains many active site residues. 342 -185706 cd07895 Adenylation_mRNA_capping Adenylation domain of GTP-dependent mRNA capping enzymes. RNA capping enzymes transfer GMP from GTP to the 5'-diphosphate end of nascent mRNAs to form a G(5')ppp(5')RNA cap structure. The RNA cap is found only in eukarya. RNA capping is chemically analogous to the first two steps of polynucleotide ligation. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation of nicked nucleic acid substrates using the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. Structural studies reveal a shared structure for DNA ligases and capping enzymes, with a common catalytic core composed of an adenylation or nucleotidyltransferase domain and a C-terminal OB-fold domain containing conserved sequence motifs. The adenylation domain binds ATP and contains many active site residues. 215 -185707 cd07896 Adenylation_kDNA_ligase_like Adenylation domain of kDNA ligases and similar proteins. The mitochondrial DNA of parasitic protozoans is highly unusual. It is termed the kinetoplast DNA (kDNA) and consists of circular DNA molecules (maxicircles) and several thousand smaller circular molecules (minicircles). This group is composed of kDNA ligase, Chlorella virus DNA ligase, and similar proteins. kDNA ligase and Chlorella virus DNA ligase are the smallest known ATP-dependent ligases. They are involved in DNA replication or repair. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. They have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and the C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family, including this group. The adenylation domain binds ATP and contains many of the active-site residues. 174 -185708 cd07897 Adenylation_DNA_ligase_Bac1 Adenylation domain of putative bacterial ATP-dependent DNA ligases. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of predicted bacterial ATP-dependent DNA ligases. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three-step reaction mechanism. The adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family, including this group. The adenylation domain binds ATP and contains many of the active site residues. 207 -185709 cd07898 Adenylation_DNA_ligase Adenylation domain of ATP-dependent DNA Ligases. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. Some organisms express a variety of different ligases which appear to be targeted to specific functions. ATP-dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation domain binds ATP and contains many of the active-site residues. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 201 -185710 cd07900 Adenylation_DNA_ligase_I_Euk Adenylation domain of eukaryotic DNA Ligase I. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. Some organisms express a variety of different ligases which appear to be targeted to specific functions. There are three classes of ATP-dependent DNA ligases in eukaryotic cells (I, III and IV). DNA ligase I is required for the ligation of Okazaki fragments during lagging-strand DNA synthesis and for base excision repair (BER). DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. DNA ligase I is the main replicative ligase in eukaryotes. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 219 -185711 cd07901 Adenylation_DNA_ligase_Arch_LigB Adenylation domain of archaeal and bacterial LigB-like DNA ligases. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of archaeal DNA ligases and bacterial proteins similar to Mycobacterium tuberculosis LigB. Members of this group contain adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains, comprising a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 207 -185712 cd07902 Adenylation_DNA_ligase_III Adenylation domain of DNA Ligase III. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three-step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligases in eukaryotic cells (I, III and IV). DNA ligase III is not found in lower eukaryotes and is present both in the nucleus and mitochondria. It has several isoforms; two splice forms, III-alpha and III-beta, differ in their carboxy-terminal sequences. DNA ligase III-beta is believed to play a role in homologous recombination during meiotic prophase. DNA ligase III-alpha interacts with X-ray Cross Complementing factor 1 (XRCC1) and functions in single nucleotide Base Excision Repair (BER). The mitochondrial form of DNA ligase III originates from the nucleolus and is involved in the mitochondrial DNA repair pathway. This isoform is expressed by a second start site on the DNA ligase III gene. DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many active site residues. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 213 -185713 cd07903 Adenylation_DNA_ligase_IV Adenylation domain of DNA Ligase IV. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligase in eukaryotic cells (I, III and IV). DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV is stabilized by forming a complex with XRCC4, a nuclear phosphoprotein, which is phosphorylated by DNA-dependent protein kinase. DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to all members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 225 -185714 cd07905 Adenylation_DNA_ligase_LigC Adenylation domain of Mycobacterium tuberculosis LigC-like ATP-dependent DNA ligases. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of ATP-dependent DNA ligases similar to Mycobacterium tuberculosis LigC. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Members of this group contain adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains, comprising a catalytic core unit that is common to all members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. 194 -185715 cd07906 Adenylation_DNA_ligase_LigD_LigC Adenylation domain of Mycobacterium tuberculosis LigD and LigC-like ATP-dependent DNA ligases. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of ATP-dependent DNA ligases similar to Mycobacterium tuberculosis LigC. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Members of this group contain adenylation and C-terminal oligonucleotide/oligosaccharide binding (OB)-fold domains, comprising a catalytic core unit that is common to all members of the ATP-dependent DNA ligase family. The adenylation domain binds ATP and contains many of the active-site residues. The common catalytic core unit comprises six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. LigD consists of a central ATP-dependent DNA ligase catalytic core unit fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. LigD catalyzes the end-healing and end-sealing steps during non-homologous end joining. 190 -153117 cd07908 Mn_catalase_like Manganese catalase-like protein, ferritin-like diiron-binding domain. This uncharacterized bacterial protein family has a ferritin-like domain similar to that of the manganese catalase protein of Lactobacillus plantarum and the bll3758 protein of Bradyrhizobium japonicum. Ferritin-like, diiron-carboxylate proteins participate in a range of functions including iron regulation, mono-oxygenation, and reactive radical production. These proteins are characterized by the fact that they catalyze dioxygen-dependent oxidation-hydroxylation reactions within diiron centers; one exception is manganese catalase, which catalyzes peroxide-dependent oxidation-reduction within a dimanganese center. Diiron-carboxylate proteins are further characterized by the presence of duplicate metal ligands, glutamates and histidines (ExxH) and two additional glutamates within a four-helix bundle. Outside of these conserved residues there is little obvious homology. Members include bacterioferritin, ferritin, rubrerythrin, aromatic and alkene monooxygenase hydroxylases (AAMH), ribonucleotide reductase R2 (RNRR2), acyl-ACP-desaturases (Acyl_ACP_Desat), manganese (Mn) catalases, demethoxyubiquinone hydroxylases (DMQH), DNA protecting proteins (DPS), and ubiquinol oxidases (AOX), and the aerobic cyclase system, Fe-containing subunit (ACSF). 154 -153118 cd07909 YciF YciF bacterial stress response protein, ferritin-like iron-binding domain. YciF is a bacterial protein of unknown function that is up-regulated when bacteria experience stress conditions, and is highly conserved in a broad range of bacterial species. YciF has a ferritin-like domain. Ferritin-like, diiron-carboxylate proteins participate in a range of functions including iron regulation, mono-oxygenation, and reactive radical production. These proteins are characterized by the fact that they catalyze dioxygen-dependent oxidation-hydroxylation reactions within diiron centers; one exception is manganese catalase, which catalyzes peroxide-dependent oxidation-reduction within a dimanganese center. Diiron-carboxylate proteins are further characterized by the presence of duplicate metal ligands, glutamates and histidines (ExxH) and two additional glutamates within a four-helix bundle. Outside of these conserved residues there is little obvious homology. Members include bacterioferritin, ferritin, rubrerythrin, aromatic and alkene monooxygenase hydroxylases (AAMH), ribonucleotide reductase R2 (RNRR2), acyl-ACP-desaturases (Acyl_ACP_Desat), manganese (Mn) catalases, demethoxyubiquinone hydroxylases (DMQH), DNA protecting proteins (DPS), and ubiquinol oxidases (AOX), and the aerobic cyclase system, Fe-containing subunit (ACSF). 147 -153119 cd07910 MiaE MiaE tRNA-modifying nonheme diiron monooxygenase, ferritin-like diiron-binding domain. MiaE is a nonheme diiron monooxygenase that catalyzes the posttranscriptional allylic hydroxylation of a modified nucleoside in tRNA called 2-methylthio-N-6-isopentenyl adenosine (ms2i6A). ms2i6A is found at position 37, next to the anticodon at the 3' position in almost all eukaryotic and bacterial tRNA's that read codons beginning with uridine. The miaE gene is absent in Escherichia coli, a finding consistent with the absence of the hydroxylated derivative of ms2i6A in this species. 180 -153120 cd07911 RNRR2_Rv0233_like Ribonucleotide Reductase R2-like protein, Mn/Fe-binding domain. Rv0233 is a Mycobacterium tuberculosis ribonucleotide reductase R2 protein with a heterodinuclear manganese/iron-carboxylate cofactor located in its metal center. The Rv0233-like family may represent a structural/functional counterpart of the evolutionary ancestor of the RNRR2's (Ribonucleotide Reductase, R2/beta subunit) and the bacterial multicomponent monooxygenases. RNRR2s belong to a broad superfamily of ferritin-like diiron-carboxylate proteins. The RNR protein catalyzes the conversion of ribonucleotides to deoxyribonucleotides and is found in prokaryotes and archaea. The catalytically active form of RNR is a proposed alpha2-beta2 tetramer. The homodimeric alpha subunit (R1) contains the active site and redox active cysteines as well as the allosteric binding sites. 280 -143653 cd07912 Tweety_N N-terminal domain of the protein encoded by the Drosophila tweety gene and related proteins, a family of chloride ion channels. The protein product of the Drosophila tweety (tty) gene is thought to form a trans-membrane protein with five membrane-spanning regions and a cytoplasmic C-terminus. This N-terminal domain contains the putative transmembrane spanning regions. Tweety has been suggested as a candidate for a large conductance chloride channel, both in vertebrate and insect cells. Three human homologs have been identified and designated TTYH1-3. TTYH2 has been associated with the progression of cancer, and Drosophila melanogaster tweety has been assumed to play a role in development. TTYH2, and TTYH3 bind to and are ubiquinated by Nedd4-2, a HECT type E3 ubiquitin ligase, which most likely plays a role in controlling the cellular levels of tweety family proteins. 418 -153419 cd07914 IGPD Imidazoleglycerol-phosphate dehydratase. Imidazoleglycerol-phosphate dehydratase (IGPD; EC 4.2.1.19) catalyzes the dehydration of imidazole glycerol phosphate to imidazole acetol phosphate, the sixth step of histidine biosynthesis in plants and microorganisms where the histidine is synthesized de novo. There is an internal repeat in the protein domain that is related by pseudo-dyad symmetry, perhaps as a result of an ancient gene duplication. The apo-form of IGPD exists as a catalytically inactive trimer which, in the presence of specific divalent metal cations such as manganese (Mn2+), cobalt (Co2+), cadmium (Cd2+), nickel (Ni2+), iron (Fe2+) and zinc (Zn2+), assembles to form a biologically active high molecular weight metalloenzyme; a 24-mer with 4-3-2 symmetry. Each 24-mer has 24 active sites, and contains around 1.5 metal ions per monomer, each monomer contributing residues to three separate active sites. IGPD enzymes are monofunctional in fungi, plants, archaea and some eubacteria while they are encoded as bifunctional enzymes in other eubacteria, such that the enzyme is fused to histidinol-phosphate phosphatase, the penultimate enzyme of the histidine biosynthesis pathway. The histidine biosynthesis pathway is a potential target for development of herbicides, and IGPD is a target for the triazole phosphonate herbicides. 190 -153420 cd07920 Pumilio Pumilio-family RNA binding domain. Puf repeats (also labelled PUM-HD or Pumilio homology domain) mediate sequence specific RNA binding in fly Pumilio, worm FBF-1 and FBF-2, and many other proteins such as vertebrate Pumilio. These proteins function as translational repressors in early embryonic development by binding to sequences in the 3' UTR of target mRNAs, such as the nanos response element (NRE) in fly Hunchback mRNA, or the point mutation element (PME) in worm fem-3 mRNA. Other proteins that contain Puf domains are also plausible RNA binding proteins. Yeast PUF1 (JSN1), for instance, appears to contain a single RNA-recognition motif (RRM) domain. Puf repeat proteins have been observed to function asymmetrically and may be responsible for creating protein gradients involved in the specification of cell fate and differentiation. Puf domains usually occur as a tandem repeat of 8 domains. This model encompasses all 8 tandem repeats. Some proteins may have fewer (canonical) repeats. 322 -153391 cd07921 PCA_45_Doxase_A_like Subunit A of the Class III Extradiol dioxygenase, Protocatechuate 4,5-dioxygenase, and similar enzymes. This subfamily includes the A subunit of protocatechuate (PCA) 4,5-dioxygenase (LigAB) and two subfamilies of unknown function. The A subunit is the smaller, non-catalytic subunit of LigAB. PCA 4,5-dioxygenase catalyzes the oxidization and subsequent ring-opening of PCA (or 3,4-dihydroxybenzoic acid), which is an intermediate in the breakdown of lignin and other compounds. PCA 4,5-dioxygenase is one of the aromatic ring opening dioxygenases which play key roles in the degradation of aromatic compounds. As members of the Class III extradiol dioxygenase family, the enzymes use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. LigAB-like class III enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. 106 -153392 cd07922 CarBa CarBa is the A subunit of 2-aminophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-aminophenyl-2,3-diol. CarBa is the A subunit of 2-aminophenol 1,6-dioxygenase, which catalyzes the oxidization and subsequent ring-opening of 2-aminophenyl-2,3-diol. 2-aminophenol 1,6-dioxygenase is a key enzyme in the carbazole degradation pathway isolated from bacterial strains with carbazole degradation ability. The enzyme is a heterotetramer composed of two A and two B subunits. CarB belongs to the class III extradiol dioxygenase family, composed of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Although the enzyme was originally isolated as a meta-cleavage enzyme for 2'-aminobiphenyl-2,3-diol involved in carbazole degradation, the enzyme has also shown high specificity for 2,3-dihydroxybiphenyl. 81 -153393 cd07923 Gallate_dioxygenase_C The C-terminal domain of Gallate Dioxygenase, which catalyzes the oxidization and subsequent ring-opening of gallate. Gallate Dioxygenase catalyzes the oxidization and subsequent ring-opening of gallate, an intermediate in the degradation of the aromatic compound, syringate. The reaction product of gallate dioxygenase is 4-oxalomesaconate. The amino acid sequence of the N-terminal and C-terminal regions of gallate dioxygenase exhibits homology with the sequence of the PCA 4,5-dioxygenase B (catalytic) and A subunits, respectively. This model represents the C-terminal domain, which is similar to the A subunit of PCA 4,5-dioxygenase (or LigAB). The enzyme is estimated to be a homodimer according to the Escherichia coli enzyme. Since enzymes in this subfamily have fused A and B subunits, the dimer interface may resemble the tetramer interface of classical LigAB enzymes. This enzyme belongs to the class III extradiol dioxygenase family, composed of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 94 -153394 cd07924 PCA_45_Doxase_A The A subunit of Protocatechuate 4,5-dioxygenase (LigAB) is the smaller, non-catalytic subunit. The A subunit is the non-catalytic subunit of Protocatechuate (PCA) 4,5-dioxygenase (LigAB), which is composed of A and B subunits that form a tetramer. PCA 4,5-dioxygenase catalyzes the oxidization and subsequent ring-opening of PCA (or 3,4-dihydroxybenzoic acid), which is an intermediate in the breakdown of lignin and other compounds. PCA 4,5-dioxygenase is one of the aromatic ring opening dioxygenases which play key roles in the degradation of aromatic compounds. As a member of the Class III extradiol dioxygenase family, LigAB uses a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 121 -153395 cd07925 LigA_like_1 The A subunit of Uncharacterized proteins with similarity to Protocatechuate 4,5-dioxygenase (LigAB). The proteins of unknown function in this subfamily are similar to the A subunit of the Protocatechuate (PCA) 4,5-dioxygenase (LigAB). LigAB belongs to the class III extradiol dioxygenase family, composed of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Dioxygenases play key roles in the degradation of aromatic compounds. PCA 4,5-dioxygenase catalyzes the oxidization and subsequent ring-opening of PCA (or 3,4-dihydroxybenzoic acid), which is an intermediate in the breakdown of lignin and other compounds. 106 -143648 cd07927 RHD-n_NFAT_like N-terminal sub-domain of the Rel homology domain (RHD) of nuclear factor of activated T-cells (NFAT) proteins and similar proteins. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the NFAT family of transcription factors. NFAT transcription complexes are a target of calcineurin, a calcium dependent phosphatase, and activate genes that are mainly involved in cell-cell interaction. Upon de-phosphorylation of the nuclear localization signal, NFAT enters the nucleus and acts as a transcription factor; its export from the nucleus is triggered by phosphorylation via export kinases. NFATs play important roles in mediating the immune response, and are found in T cells, B Cells, NK cells, mast cells, and monocytes. NFATs are also found in various non-hematopoietic cell types, where they play roles in development. This group also contains the N-terminal RHD sub-domain of the non-calcium regulated tonicity-responsive enhancer binding protein (TonEBP), also called NFAT5. Mammalian TonEBP regulates the expression of genes in response to tonicity. It plays a pivotal role in urinary concentrating mechanisms in kidney medulla, by triggering the accumulation of osmolytes that enable renal medullary cells to tolerate high levels of urea and salt. 161 -153077 cd07930 bacterial_phosphagen_kinase Phosphagen (guanidino) kinases found in bacteria. Phosphagen (guanidino) kinases are enzymes that transphosphorylate a high energy phosphoguanidino compound, such as phosphocreatine (PCr) or phosphoarginine, which is used as an energy-storage and -transport metabolite, to ADP, thereby creating ATP. This subfamily is specific to bacteria and lacks an N-terminal domain, which otherwise forms part of the substrate binding site. Most of the catalytic residues are found in the larger C-terminal domain, however, which appears conserved in these bacterial proteins. Their functions have not been characterized. 232 -153078 cd07931 eukaryotic_phosphagen_kinases Phosphagen (guanidino) kinases mostly found in eukaryotes. Phosphagen (guanidino) kinases are enzymes that transphosphorylate a high energy phosphoguanidino compound, like phosphocreatine (PCr) in the case of creatine kinase (CK) or phosphoarginine in the case of arginine kinase, which is used as an energy-storage and -transport metabolite, to ADP, thereby creating ATP. The substrate binding site is located in the cleft between the N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. In higher eukaryotes, CK exists in tissue-specific (muscle, brain), as well as compartment-specific (mitochondrial and cytosolic) isoforms. They are either coupled to glycolysis (cytosolic form) or oxidative phosphorylation (mitochondrial form). Besides CK and AK, the most studied members of this family are also other phosphagen kinases with different substrate specificities, like glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and hypotaurocyamine kinase (HTK). 338 -153079 cd07932 arginine_kinase_like Phosphagen (guanidino) kinases such as arginine kinase and similar enzymes. Eukaryotic arginine kinase-like phosphagen (guanidino) kinases are enzymes that transphosphorylate a high energy phosphoguanidino compound, like phosphoarginine in the case of arginine kinase (AK), which is used as an energy-storage and -transport metabolite, to ADP, thereby creating ATP. The substrate binding site is located in the cleft between the N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. Besides AK, one of the most studied members of this family, this model also represents a phosphagen kinase with different substrate specificity, hypotaurocyamine kinase (HTK). 350 -143649 cd07933 RHD-n_c-Rel N-terminal sub-domain of the Rel homology domain (RHD) of c-Rel. Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the c-Rel family of transcription factors, categorized as a class II member of the NF-kappa B family. In class II NF-kappa Bs, the RHD domain co-occurs with a C-terminal transactivation domain (TAD). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and Rel). c-Rel plays an important role in B cell proliferation and survival. 172 -143650 cd07934 RHD-n_NFkB2 N-terminal sub-domain of the Rel homology domain (RHD) of nuclear factor kappa B2 (NF-kappa B2). Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the NF-kappa B2 family of transcription factors, a class I member of the NF-kappa B family. In class I NF-kappa Bs, the RHD domain co-occurs with C-terminal ankyrin repeats. NF-kappa B2 is commonly referred to as p100 or p52 (proteolytically processed form). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and REL). NF-kappa B2 is involved in the alternative NF-kappa B signaling pathway which is activated by few agonists and plays an important role in secondary lymphoid organogenesis, maturation of B-cells, and adaptive humoral immunity. p100 may also act as an I-kappa B due to its C-terminal ankyrin repeats. 185 -143651 cd07935 RHD-n_NFkB1 N-terminal sub-domain of the Rel homology domain (RHD) of nuclear factor of kappa B1 (NF-kappa B1). Proteins containing the Rel homology domain (RHD) are metazoan transcription factors. The RHD is composed of two structural sub-domains; this model characterizes the N-terminal RHD sub-domain of the NF-kappa B1 family of transcription factors, a class I member of the NF-kappa B family. In class I NF-kappa Bs, the RHD domain co-occurs with C-terminal ankyrin repeats. NF-kappa B1 is commonly referred to as p105 or p50 (proteolytically processed form). NF-kappa B proteins are part of a protein complex that acts as a transcription factor, which is responsible for regulating a host of cellular responses to a variety of stimuli. This complex tightly regulates the expression of a large number of genes, and is involved in processes such as adaptive and innate immunity, stress response, inflammation, cell adhesion, proliferation and apoptosis. The cytosolic NF-kappa B complex is activated via phosphorylation of the ankyrin-repeat containing inhibitory protein I-kappa B, which dissociates from the complex and exposes the nuclear localization signal of the heterodimer (NF-kappa B and REL). NF-kappa B1 is involved in the canonical NF-kappa B signaling pathway which is activated by many agonists and is essential in immune and inflammatory responses, as well as cell survival. p105 is involved in its own specific NF-kappa B signaling pathway which is also implicated in immune and inflammatory responses. p105 may also act as an I-kappa B due to its C-terminal ankyrin repeats. It is also involved in mitogen-activated protein kinase (MAPK) signaling as its degradation leads to the activation of TPL-2, a MAPK kinase kinase which activates ERK pathways. 202 -153421 cd07936 SCAN SCAN oligomerization domain. The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several vertebrate proteins that contain C2H2 zinc finger motifs, many of which may be transcription factors playing roles in cell survival and differentiation. This protein-interaction domain is able to mediate homo- and hetero-oligomerization of SCAN-containing proteins. Some SCAN-containing proteins, including those of lower vertebrates, do not contain zinc finger motifs. It has been noted that the SCAN domain resembles a domain-swapped version of the C-terminal domain of the HIV capsid protein. This domain model features elements common to the three general groups of SCAN domains (SCAN-A1, SCAN-A2, and SCAN-B). The SCAND1 protein is truncated at the C-terminus with respect to this model, the SCAND2 protein appears to have a truncated central helix. 85 -163675 cd07937 DRE_TIM_PC_TC_5S Pyruvate carboxylase and Transcarboxylase 5S, carboxyltransferase domain. This family includes the carboxyltransferase domains of pyruvate carboxylase (PC) and the transcarboxylase (TC) 5S subunit. Transcarboxylase 5S is a cobalt-dependent metalloenzyme subunit of the biotin-dependent transcarboxylase multienzyme complex. Transcarboxylase 5S transfers carbon dioxide from the 1.3S biotin to pyruvate in the second of two carboxylation reactions catalyzed by TC. The first reaction involves the transfer of carbon dioxide from methylmalonyl-CoA to the 1.3S biotin, and is catalyzed by the 12S subunit. These two steps allow a carboxylate group to be transferred from oxaloacetate to propionyl-CoA to yield pyruvate and methylmalonyl-CoA. The catalytic domain of transcarboxylase 5S has a canonical TIM-barrel fold with a large C-terminal extension that forms a funnel leading to the active site. Transcarboxylase 5S forms a homodimer and there are six dimers per complex. In addition to the catalytic domain, transcarboxylase 5S has several other domains including a carbamoyl-phosphate synthase domain, a biotin carboxylase domain, a carboxyltransferase domain, and an ATP-grasp domain. Pyruvate carboxylase, like TC, is a biotin-dependent enzyme that catalyzes the carboxylation of pyruvate to produce oxaloacetate. In mammals, PC has critical roles in gluconeogenesis, lipogenesis, glyceroneogenesis, and insulin secretion. Inherited PC deficiencies are linked to serious diseases in humans such as lactic acidemia, hypoglycemia, psychomotor retardation, and death. PC is a single-chain enzyme and is active only in its homotetrameric form. PC has three domains, an N-terminal biotin carboxylase domain, a carboxyltransferase domain (this alignment model), and a C-terminal biotin-carboxyl carrier protein domain. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 275 -163676 cd07938 DRE_TIM_HMGL 3-hydroxy-3-methylglutaryl-CoA lyase, catalytic TIM barrel domain. 3-hydroxy-3-methylglutaryl-CoA lyase (HMGL) catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate, one of the terminal steps in ketone body generation and leucine degradation, and is a key enzyme in the pathway that supplies metabolic fuel to extrahepatic tissues. Mutations in HMGL cause a human autosomal recessive disorder called primary metabolic aciduria that affects ketogenesis and leucine catabolism and can be fatal due to an inability to tolerate hypoglycemia. HMGL has a TIM barrel domain with a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. The cleavage of HMG-CoA requires the presence of a divalent cation like Mg2+ or Mn2+, and the reaction is thought to involve general acid/base catalysis. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 274 -163677 cd07939 DRE_TIM_NifV Streptomyces rubellomurinus FrbC and related proteins, catalytic TIM barrel domain. FrbC (NifV) of Streptomyces rubellomurinus catalyzes the condensation of acetyl-CoA and alpha-ketoglutarate to form homocitrate and CoA, a reaction similar to one catalyzed by homocitrate synthase. The gene encoding FrbC is one of several genes required for the biosynthesis of FR900098, a potent antimalarial antibiotic. This protein is also required for assembly of the nitrogenase MoFe complex but its exact role is unknown. This family also includes the NifV proteins of Heliobacterium chlorum and Gluconacetobacter diazotrophicus, which appear to be orthologous to FrbC. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 259 -163678 cd07940 DRE_TIM_IPMS 2-isopropylmalate synthase (IPMS), N-terminal catalytic TIM barrel domain. 2-isopropylmalate synthase (IPMS) catalyzes an aldol-type condensation of acetyl-CoA and 2-oxoisovalerate yielding 2-isopropylmalate and CoA, the first committed step in leucine biosynthesis. This family includes the Arabidopsis thaliana IPMS1 and IPMS2 proteins, the Glycine max GmN56 protein, and the Brassica insularis BatIMS protein. This family also includes a group of archeal IPMS-like proteins represented by the Methanocaldococcus jannaschii AksA protein. AksA catalyzes the condensation of alpha-ketoglutarate and acetyl-CoA to form trans-homoaconitate, one of 13 steps in the conversion of alpha-ketoglutarate and acetylCoA to alpha-ketosuberate, a precursor to coenzyme B and biotin. AksA also catalyzes the condensation of alpha-ketoadipate or alpha-ketopimelate with acetylCoA to form, respectively, the (R)-homocitrate homologs (R)-2-hydroxy-1,2,5-pentanetricarboxylic acid and (R)-2-hydroxy-1,2,6- hexanetricarboxylic acid. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 268 -163679 cd07941 DRE_TIM_LeuA3 Desulfobacterium autotrophicum LeuA3 and related proteins, N-terminal catalytic TIM barrel domain. Desulfobacterium autotrophicum LeuA3 is sequence-similar to alpha-isopropylmalate synthase (LeuA) but its exact function is unknown. Members of this family have an N-terminal TIM barrel domain that belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 273 -163680 cd07942 DRE_TIM_LeuA Mycobacterium tuberculosis LeuA3 and related proteins, N-terminal catalytic TIM barrel domain. Alpha-isopropylmalate synthase (LeuA), a key enzyme in leucine biosynthesis, catalyzes the first committed step in the pathway, converting acetyl-CoA and alpha-ketoisovalerate to alpha-isopropyl malate and CoA. Although the reaction catalyzed by LeuA is similar to that of the Arabidopsis thaliana IPMS1 protein, the two fall into phylogenetically distinct families within the same superfamily. LeuA has and N-terminal TIM barrel catalytic domain, a helical linker domain, and a C-terminal regulatory domain. LeuA forms a homodimer in which the linker domain of one monomer sits over the catalytic domain of the other, inserting residues into the active site that may be important for catalysis. Homologs of LeuA are found in bacteria as well as fungi. This family includes alpha-isopropylmalate synthases I (LEU4) and II (LEU9) from Saccharomyces cerevisiae. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 284 -163681 cd07943 DRE_TIM_HOA 4-hydroxy-2-oxovalerate aldolase, N-terminal catalytic TIM barrel domain. 4-hydroxy 2-ketovalerate aldolase (Also known as 4-hydroxy-2-ketovalerate aldolase and 4-hydroxy-2-oxopentanoate aldolase (HOA)) converts 4-hydroxy-2-oxopentanoate to acetaldehyde and pyruvate, the penultimate step in the meta-cleavage pathway for the degradation of phenols, cresols and catechol. This family includes the Escherichia coli MhpE aldolase, the Pseudomonas DmpG aldolase, and the Burkholderia xenovorans BphI pyruvate aldolase. In Pseudomonas, the DmpG aldolase tightly associates with a dehydrogenase (DmpF ) and is inactive without it. HOA has a canonical TIM-barrel fold with a C-terminal extension that forms a funnel leading to the active site. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 263 -163682 cd07944 DRE_TIM_HOA_like 4-hydroxy-2-oxovalerate aldolase-like, N-terminal catalytic TIM barrel domain. This family of bacterial enzymes is sequence-similar to 4-hydroxy-2-oxovalerate aldolase (HOA) but its exact function is unknown. This family includes the Bacteroides vulgatus Bvu_2661 protein and belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 266 -163683 cd07945 DRE_TIM_CMS Leptospira interrogans citramalate synthase (CMS) and related proteins, N-terminal catalytic TIM barrel domain. Citramalate synthase (CMS) catalyzes the conversion of pyruvate and acetyl-CoA to (R)-citramalate in the first dedicated step of the citramalate pathway. Citramalate is only found in Leptospira interrogans and a few other microorganisms. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 280 -163684 cd07947 DRE_TIM_Re_CS Clostridium kluyveri Re-citrate synthase and related proteins, catalytic TIM barrel domain. Re-citrate synthase (Re-CS) is a Clostridium kluyveri enzyme that converts acetyl-CoA and oxaloacetate to citrate. In most organisms, this reaction is catalyzed by Si-citrate synthase which is Si-face stereospecific with respect to C-2 of oxaloacetate, and phylogenetically unrelated to Re-citrate synthase. Re-citrate synthase is also found in a few other strictly anaerobic organisms. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 279 -163685 cd07948 DRE_TIM_HCS Saccharomyces cerevisiae homocitrate synthase and related proteins, catalytic TIM barrel domain. Homocitrate synthase (HCS) catalyzes the condensation of acetyl-CoA and alpha-ketoglutarate to form homocitrate, the first step in the lysine biosynthesis pathway. This family includes the Yarrowia lipolytica LYS1 protein as well as the Saccharomyces cerevisiae LYS20 and LYS21 proteins. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM". 262 -153386 cd07949 PCA_45_Doxase_B_like_1 The B subunit of unknown Class III extradiol dioxygenases with similarity to Protocatechuate 4,5-dioxygenase. This subfamily is composed of proteins of unknown function with similarity to the B subunit of Protocatechuate 4,5-dioxygenase (LigAB). LigAB belongs to the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. Dioxygenases play key roles in the degradation of aromatic compounds. LigAB-like enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. This model represents the catalytic subunit, B. 276 -153387 cd07950 Gallate_Doxase_N The N-terminal domain of the Class III extradiol dioxygenase, Gallate Dioxygenase, which catalyzes the oxidization and subsequent ring-opening of gallate. Gallate Dioxygenase catalyzes the oxidization and subsequent ring-opening of gallate, an intermediate in the degradation of the aromatic compound, syringate. The reaction product of gallate dioxygenase is 4-oxalomesaconate. The amino acid sequence of the N-terminal and C-terminal regions of gallate dioxygenase exhibits homology with the sequence of PCA 4,5-dioxygenase B (catalytic) and A subunits, respectively. The enzyme is estimated to be a homodimer according to the Escherichia coli enzyme. LigAB-like enzymes are usually composed of two subunits, designated A and B, which form a tetramer composed of two copies of each subunit. In this subfamily, the subunits A and B are fused to make a single polypeptide chain. The dimer interface for this subfamily may resemble the tetramer interface of classical LigAB enzymes. Gallate Dioxygenase belongs to the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. 277 -153388 cd07951 ED_3B_N_AMMECR1 The N-terminal domain, an extradiol dioxygenase class III subunit B-like domain, of unknown proteins containing a C-terminal AMMECR1 domain. This subfamily is composed of uncharacterized proteins containing an N-terminal domain with similarity to the catalytic B subunit of class III extradiol dioxygenases and a C-terminal AMMECR1-like domain. This model represents the N-terminal domain. Class III extradiol dioxygenases use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon, however, proteins in this subfamily do not contain a potential metal binding site and may not exhibit class III extradiol dioxygenase-like activity. The AMMECR1 protein was proposed to be a regulatory factor that is potentially involved in the development of AMME contiguous gene deletion syndrome. 256 -153389 cd07952 ED_3B_like Uncharacterized class III extradiol dioxygenases. This subfamily is composed of proteins of unknown function with similarity to the catalytic B subunit of class III extradiol dioxygenases. Class III extradiol dioxygenases use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon. They play key roles in the degradation of aromatic compounds. 256 -271157 cd07954 AP_MHD_Cterm C-terminal domain of adaptor protein (AP) complexes medium mu subunits and its homologs (MHD). This family corresponds to the C-terminal domain of heterotetrameric AP complexes medium mu subunits and its homologs existing in monomeric stonins, delta-subunit of the heteroheptameric coat protein I (delta-COPI), a protein encoded by a pro-death gene referred as MuD (also known as MUDENG, mu-2 related death-inducing gene), an endocytic adaptor syp1, the mammalian FCH domain only proteins (FCHo1/2), SH3-containing GRB2-like protein 3-interacting protein 1 (SGIP1), and related proteins. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. Stonins have been characterized as clathrin-dependent AP-2 mu chain related factors and may act as cargo-specific sorting adaptors in endocytosis. Coat protein complex I (COPI)-coated vesicles function in the early secretory pathway. They mediate the retrograde transport from the Golgi to the ER, and intra-Golgi transport. MuD is distantly related to the C-terminal domain of mu2 subunit of AP-2. It is able to induce cell death by itself and plays an important role in cell death in various tissues. Syp1 represents a novel type of endocytic adaptor protein that participates in endocytosis, promotes vesicle tabulation, and contributes to cell polarity and stress responses. It shares the same domain architecture with its two ubiquitously expressed mammalian counterparts, FCHo1/2, which represent key initial proteins ultimately controlling cellular nutrient uptake, receptor regulation, and synaptic vesicle retrieval. They bind specifically to the plasma membrane and recruit the scaffold proteins eps15 and intersectin, which subsequently engage the adaptor complex AP2 and clathrin, leading to coated vesicle formation. Another mammalian neuronal-specific protein SGIP1 does have a C-terminal MHD and has been classified into this family as well. It is an endophilin-interacting protein that plays an obligatory role in the regulation of energy homeostasis. It is also involved in clathrin-mediated endocytosis by interacting with phospholipids and eps15. 245 -153409 cd07955 Anticodon_Ia_Cys_like Anticodon-binding domain of cysteinyl tRNA synthetases and domain found in MshC. This domain is found in cysteinyl tRNA synthetases (CysRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. CysRS catalyzes the transfer of cysteine to the 3'-end of its tRNA. The family also includes a domain of MshC, the rate-determining enzyme in the mycothiol biosynthetic pathway, which is specific to actinomycetes. The anticodon-binding site of CysRS lies C-terminal to this model's footprint and is not shared by MshC. 81 -153410 cd07956 Anticodon_Ia_Arg Anticodon-binding domain of arginyl tRNA synthetases. This domain is found in arginyl tRNA synthetases (ArgRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. ArgRS catalyzes the transfer of arginine to the 3'-end of its tRNA. 156 -153411 cd07957 Anticodon_Ia_Met Anticodon-binding domain of methionyl tRNA synthetases. This domain is found in methionyl tRNA synthetases (MetRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon (CAU). MetRS catalyzes the transfer of methionine to the 3'-end of its tRNA. 129 -153412 cd07958 Anticodon_Ia_Leu_BEm Anticodon-binding domain of bacterial and eukaryotic mitochondrial leucyl tRNA synthetases. This domain is found in leucyl tRNA synthetases (LeuRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain. In contrast to other class Ia enzymes, the anticodon is not used as an identity element in LeuRS (with exceptions such as Saccharomyces cerevisiae and some other eukaryotes). No anticodon-binding site can be defined for this family, which includes bacterial and eukaryotic mitochondrial members, as well as LeuRS from the archaeal Halobacteria. LeuRS catalyzes the transfer of leucine to the 3'-end of its tRNA. 117 -153413 cd07959 Anticodon_Ia_Leu_AEc Anticodon-binding domain of archaeal and eukaryotic cytoplasmic leucyl tRNA synthetases. This domain is found in leucyl tRNA synthetases (LeuRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain. In contrast to other class Ia enzymes, the anticodon is not used as an identity element in LeuRS (with exceptions such as Saccharomyces cerevisiae and some other eukaryotes). No anticodon-binding site can be defined for this family, which includes archaeal and eukaryotic cytoplasmic members. LeuRS catalyzes the transfer of leucine to the 3'-end of its tRNA. 117 -153414 cd07960 Anticodon_Ia_Ile_BEm Anticodon-binding domain of bacterial and eukaryotic mitochondrial isoleucyl tRNA synthetases. This domain is found in isoleucyl tRNA synthetases (IleRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. This family includes bacterial and eukaryotic mitochondrial members. IleRS catalyzes the transfer of isoleucine to the 3'-end of its tRNA. 180 -153415 cd07961 Anticodon_Ia_Ile_ABEc Anticodon-binding domain of archaeal, bacterial, and eukaryotic cytoplasmic isoleucyl tRNA synthetases. This domain is found in isoleucyl tRNA synthetases (IleRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. This family includes bacterial, archaeal, and eukaryotic cytoplasmic members. IleRS catalyzes the transfer of isoleucine to the 3'-end of its tRNA. 183 -153416 cd07962 Anticodon_Ia_Val Anticodon-binding domain of valyl tRNA synthetases. This domain is found in valyl tRNA synthetases (ValRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. ValRS catalyzes the transfer of valine to the 3'-end of its tRNA. 135 -153417 cd07963 Anticodon_Ia_Cys Anticodon-binding domain of cysteinyl tRNA synthetases. This domain is found in cysteinyl tRNA synthetases (CysRS), which belong to the class Ia aminoacyl tRNA synthetases. It lies C-terminal to the catalytic core domain, and recognizes and specifically binds to the tRNA anticodon. CysRS catalyzes the transfer of cysteine to the 3'-end of its tRNA. 156 -176481 cd07964 RBP-H Head domain of virus receptor-binding proteins (RBP). Virus receptor-binding proteins (RBPs) are found in lactococcal bacteriophages, as well as in adenoviruses and reoviruses, which invade mammalian cells. Lactococcus lactis is widely used in dairy fermentations and infection of L. lactis by phages greatly impairs the fermentation process. Adenovirus typically infects respiratory tracts with symptoms ranging from the common cold to pneumonia. Onset of viral infections begin with the recognition of host cells through the receptor-binding protein complex located at the distal part of the virion. The RBP has three domains: the N- terminal shoulders domain, the interlaced neck domain, and the C-terminal head domain. Phages recognize their host through an interaction between the RBP head (RBP-H) domain and saccharidic receptors at the host cell surface. Adenovirus recognizes the membrane cofactor protein, CD46, as a cellular receptor. 103 -153436 cd07967 OBF_DNA_ligase_III The Oligonucleotide/oligosaccharide binding (OB)-fold domain of ATP-dependent DNA ligase III is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligases in eukaryotic cells (I, III and IV). DNA ligase III is not found in lower eukaryotes and is present both in the nucleus and mitochondria. It has several isoforms; two splice forms, III-alpha and III-beta, differ in their carboxy-terminal sequences. DNA ligase III-beta is believed to play a role in homologous recombination during meiotic prophase. DNA ligase III-alpha interacts with X-ray Cross Complementing factor 1 (XRCC1) and functions in single nucleotide Base Excision Repair (BER). The mitochondrial form of DNA ligase III originates from the nucleolus and is involved in the mitochondrial DNA repair pathway. This isoform is expressed by a second start site on the DNA ligase III gene. DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligouncleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 139 -153437 cd07968 OBF_DNA_ligase_IV The Oligonucleotide/oligosaccharide binding (OB)-fold domain of ATP-dependent DNA ligase IV is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligases in eukaryotic cells (I, III and IV). DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV is stabilized by forming a complex with XRCC4, a nuclear phosphoprotein, which is phosphorylated by DNA-dependent protein kinase. DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and C-terminal oligouncleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 140 -153438 cd07969 OBF_DNA_ligase_I The Oligonucleotide/oligosaccharide binding (OB)-fold domain of ATP-dependent DNA ligase I is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. There are three classes of ATP-dependent DNA ligases in eukaryotic cells (I, III and IV). This group is composed of eukaryotic DNA ligase I, Sulfolobus solfataricus DNA ligase and similar proteins. DNA ligase I is required for the ligation of Okazaki fragments during lagging-strand DNA synthesis and for base excision repair (BER). ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 144 -153439 cd07970 OBF_DNA_ligase_LigC The Oligonucleotide/oligosaccharide binding (OB)-fold domain of ATP-dependent DNA ligase LigC is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of Mycobacterium tuberculosis LigC and similar bacterial proteins. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 122 -153440 cd07971 OBF_DNA_ligase_LigD The Oligonucleotide/oligosaccharide binding (OB)-fold domain of ATP-dependent DNA ligase LigD is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of Mycobacterium tuberculosis LigD and similar bacterial proteins. LigD, or DNA ligase D, catalyzes the end-healing and end-sealing steps during nonhomologous end joining. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 115 -153441 cd07972 OBF_DNA_ligase_Arch_LigB The Oligonucleotide/oligosaccharide binding (OB)-fold domain of archaeal and bacterial ATP-dependent DNA ligases is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. Bacterial DNA ligases are divided into two broad classes: NAD-dependent and ATP-dependent. All bacterial species have a NAD-dependent DNA ligase (LigA). Some bacterial genomes contain multiple genes for DNA ligases that are predicted to use ATP as their cofactor, including Mycobacterium tuberculosis LigB, LigC, and LigD. This group is composed of Pyrococcus furiosus DNA ligase, Mycobacterium tuberculosis LigB, and similar archaeal and bacterial proteins. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 122 -153422 cd07973 Spt4 Transcription elongation factor Spt4. Spt4 is a transcription elongation factor. Three transcription-elongation factors Spt4, Spt5, and Spt6, are conserved among eukaryotes and are essential for transcription via the modulation of chromatin structure. It is known that Spt4, Spt5, and Spt6 are general transcription-elongation factors, controlling transcription both positively and negatively in important regulatory and developmental roles. Spt4 functions entirely in the context of the Spt4-Spt5 heterodimer and it has been found only as a complex to Spt5 in Yeast and Human. Spt4 is a small protein that has zinc finger at the N-terminus. Spt5 is a large protein that has several interesting structural features of an acidic N-terminus, a single NGN domain, five or six KOW domains, and a set of simple C-termianl repeats. Spt4 binds to Spt5 NGN domain. Unlike Spt5, Spt4 is not essential for viability in yeast, however Spt4 is critical for normal function of the Spt4-Spt5 complex. Spt4 homolog is not found in bacteria. 98 -199899 cd07976 TFIIA_alpha_beta_like Precursor of TFIIA alpha and beta subunits and similar proteins. Transcription factor II A (TFIIA) is one of the general transcription factors for RNA polymerase II. TFIIA increases the affinity of TATA-binding protein (TBP) for DNA in order to assemble the initiation complex. TFIIA also functions as an activator during development and differentiation, and is involved in transcription from TATA-less promoters. TFIIA is composed of more than one subunit in various organisms. Mammalian TFIIA large subunits (TFIIA alpha and beta) and the smaller subunit (TFIIA gamma) form a heterotrimer. TFIIA alpha and beta are encoded by a single gene (TFIIA_alpha_beta), its protein product is post-translationally processed and cleaved. TOA1 and TOA2 are the two subunits of Yeast TFIIA which correspond to Mammalian TFIIA_alpha_beta and TFIIA gamma, respectively. TOA1 and TOA2 form a heterodimeric protein complex. TFIIA_alpha_beta alone is sufficient for transcription in early embryogenesis, but the cleaved forms, TFIIA alpha and TFIIA beta, represent the vast majority of TFIIA in most differentiated cells. The exact functional differences between cleaved and uncleaved forms are not yet clear. This model also contains paralogs of the canonical TFIIA_alpha_beta, such as the human ALF, which may be involved in gametogenesis and early embryogenesis (and is also subject to proteolytic cleavage). 102 -153423 cd07977 TFIIE_beta_winged_helix TFIIE_beta_winged_helix domain, located at the central core region of TFIIE beta, with double-stranded DNA binding activity. Transcription Factor IIE (TFIIE) beta winged-helix (or forkhead) domain is located at the central core region of TFIIE beta. The winged-helix is a form of helix-turn-helix (HTH) domain which typically binds DNA with the 3rd helix. The winged-helix domain is distinguished by the presence of a C-terminal beta-strand hairpin unit (the wing) that packs against the cleft of the tri-helical core. Although most winged-helix domains are multi-member families, TFIIE beta winged-helix domain is typically found as a single orthologous group. TFIIE is one of the six eukaryotic general transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH) that are required for transcription initiation of protein-coding genes. TFIIE is a heterotetramer consisting of two copies each of alpha and beta subunits. TFIIE beta contains several functional domains, an N-terminal serine-rich region, a central core domain exhibiting a winged-helix structure capable of binding double-stranded DNA, a leucine repeat, a sigma3 region, and a C-terminal domain containing two basic regions. The assembly of transcription preinitiation complex (PIC) includes the general transcription factors and RNA polymerase II (pol II) initiated by the binding of the TBP subunit of TFIID to the TATA box, followed by either the sequential assembly of other general transcription factors and pol II or a preassembled pol II holoenzyme pathway. TFIIE interacts directly with TFIIF, TFIIB, pol II, and promoter DNA. TFIIE recruits TFIIH and regulates its activities. TFIIE and TFIIH are also important for the transition from initiation to elongation. 75 -173962 cd07978 TAF13 The TATA Binding Protein (TBP) Associated Factor 13 (TAF13) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 13 (TAF13) is one of several TAFs that bind TBP and is involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAFs orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. Each TAF, with the help of a specific activator, is required only for expression of subset of genes and is not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; the HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and are found in core histones, TAFs and many other transcription factors. TFIID has a histone octamer-like substructure. TAF13 interacts with TAF11 and makes a histone-like heterodimer similar to H3/H4-like proteins. The dimer may be structurally and functionally similar to the spt3 protein within the SAGA histone acetyltransferase complex. 92 -173963 cd07979 TAF9 TATA Binding Protein (TBP) Associated Factor 9 (TAF9) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 9 (TAF9) is one of several TAFs that bind TBP and are involved in forming the TFIID complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. The TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAFs orthologs and paralogs. Human TAF9 has a paralogue gene (TAF9L) which has a redundant function. Several hypotheses are proposed for TAF function such as serving as activator-binding sites, in core-promoter recognition or a role in essential catalytic activity. It has been shown that TAF9 interacts directly with different transcription factors such as p53, herpes simplex virus activator vp16 and the basal transcription factor TFIIB. Each TAF, with the help of a specific activator, is required only for expression of subset of genes and are not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF9 is a component of TFIID in multiple organisms as well as different TBP-free TAF complexes containing the GCN5-type histone acetyltransferase. Several TAFs interact via histone-fold (HFD) motifs; HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFS and many other transcription factors. TFIID has a histone octamer-like substructure. TFIID has a histone octamer-like substructure. TAF9 is a shared subunit of both, histone acetyltransferase complex (SAGA) and TFIID complexes. TAF9 domain interacts with TAF6 to form a novel histone-like heterodimer that is structurally related to the histone H3 and H4 oligomer. 117 -259828 cd07980 TFIIF_beta Transcription initiation factor IIF, beta subunit. The TFIIF-beta subunit, also called RNA Polymerase II-associating Protein 30 (RAP30), forms a heteromeric complex of RAP30/74 (TFIIF, beta/gamma) that is involved in both initiation and elongation of RNA chains by RNA polymerase II. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. TFIIF-beta binds directly to RNA polymerase II and helps bring polymerase into a pre-initiation complex. 123 -173964 cd07981 TAF12 TATA Binding Protein (TBP) Associated Factor 12 (TAF12) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 12 (TAF12) is one of several TAFs that bind TBP and are involved in forming the TFIID complex. TFIID is one of the seven General Transcription Factors (GTFs) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. A new, unified nomenclature has been suggested for the pol II TAFs to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs function such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. These TAFs, with the help of specific activators, are required only for expression of a subset of genes and are not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; the HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFs and many other transcription factors. TFIID has a histone octamer-like substructure. TAF12 domain interacts with TAF4 and makes a novel histone-like heterodimer that binds DNA and has a core promoter function of a subset of genes. 72 -187739 cd07982 TAF10 The TATA Binding Protein (TBP) Associated Factor 10. The TATA Binding Protein (TBP) Associated Factor 10 (TAF 10) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of the seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and the assembly of the preinitiation complex. The TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. Several hypotheses are proposed for TAF functions, such as serving as activator-binding sites, being involved in core-promoter recognition, or to perform an essential catalytic activity. Each TAF - with the help of a specific activator - is required only for the expression of a subset of genes, and TAFs are not universally involved in transcription such as the GTFs. TAF10 regulates genes that are important for cell cycle progression and cell morphology. A lack of TAF10 leads to cell cycle arrest and cell death by apoptosis in mouse. In both yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF10 is part of other transcription regulatory multiprotein complexes (e.g., SAGA, TBP-free TAF-containing complex [TFTC], STAGA, and PCAF/GCN5). Several TAFs interact via histone-fold motifs. The histone fold (HFD) is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamer. The minimal HFD contains three alpha-helices linked by two loops. The HFD is found in core histones, TAFs and many other transcription factors. Five HF-containing TAF pairs have been described in TFIID: TAF6-TAF9, TAF4-TAF12, TAF11-TAF13, TAF8-TAF10 and TAF3-TAF10. 108 -153245 cd07983 LPLAT_DUF374-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: DUF374. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are the uncharacterized DUF374 phospholipid/glycerol acyltransferases and similar proteins. 189 -153246 cd07984 LPLAT_LABLAT-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: LABLAT-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are such LPLATs as lipid A biosynthesis lauroyl/myristoyl (LABLAT, HtrB) acyltransferases and similar proteins. 192 -153247 cd07985 LPLAT_GPAT Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: GPAT. Lysophospholipid acyltransferase (LPLAT) superfamily member: glycerol-3-phosphate 1-acyltransferase (GPAT, PlsB). LPLATs are acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. This subgroup includes glycerol-3-phosphate 1-acyltransferase (GPAT, PlsB). 235 -153248 cd07986 LPLAT_ACT14924-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: Unknown ACT14924. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are uncharacterized phospholipid/glycerol acyltransferases such as the Pectobacterium carotovorum subsp. carotovorum PC1 locus ACT14924 putative acyltransferase, and similar proteins. 210 -153249 cd07987 LPLAT_MGAT-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: MGAT-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this suubgroup are such LPLATs as 2-acylglycerol O-acyltransferase (MGAT), and similar proteins. 212 -153250 cd07988 LPLAT_ABO13168-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: Unknown ABO13168. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are uncharacterized phospholipid/glycerol acyltransferases such as the Acinetobacter baumannii ATCC 17978 locus ABO13168 putative acyltransferase, and similar proteins. 163 -153251 cd07989 LPLAT_AGPAT-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: AGPAT-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are such LPLATs as 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT, PlsC), Tafazzin (product of Barth syndrome gene), and similar proteins. 184 -153252 cd07990 LPLAT_LCLAT1-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: LCLAT1-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are such LPLATs as Lysocardiolipin acyltransferase 1 (LCLAT1) or 1-acyl-sn-glycerol-3-phosphate acyltransferase and similar proteins. 193 -153253 cd07991 LPLAT_LPCAT1-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: LPCAT1-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are such LPLATs as lysophosphatidylcholine acyltransferase 1 (LPCAT-1), glycerol-3-phosphate acyltransferase 3 (GPAT3), and similar sequences. 211 -153254 cd07992 LPLAT_AAK14816-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: Unknown AAK14816-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are uncharacterized glycerol-3-phosphate acyltransferases such as the Plasmodium falciparum locus AAK14816 putative acyltransferase, and similar proteins. 203 -153255 cd07993 LPLAT_DHAPAT-like Lysophospholipid Acyltransferases (LPLATs) of Glycerophospholipid Biosynthesis: GPAT-like. Lysophospholipid acyltransferase (LPLAT) superfamily member: acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis which catalyze the incorporation of an acyl group from either acylCoAs or acyl-acyl carrier proteins (acylACPs) into acceptors such as glycerol 3-phosphate, dihydroxyacetone phosphate or lyso-phosphatidic acid. Included in this subgroup are such LPLATs as dihydroxyacetone phosphate acyltransferase (DHAPAT, also known as 1 glycerol-3-phosphate O-acyltransferase 1) and similar proteins. 205 -153424 cd07994 WGR WGR domain. The WGR domain is found in a variety of eukaryotic poly(ADP-ribose) polymerases (PARPs) as well as the putative Escherichia coli molybdate metabolism regulator and related bacterial proteins, a small family of bacterial DNA ligases, and various other bacterial proteins of unknown function. It has been called WGR after the most conserved central motif of the domain. The domain occurs in single-domain proteins and in a variety of domain architectures, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. 73 -153431 cd07995 TPK Thiamine pyrophosphokinase. Thiamine pyrophosphokinase (TPK, EC:2.7.6.2, also spelled thiamin pyrophosphokinase) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamine) to form the coenzyme thiamine pyrophosphate (TPP). TPP is required for central metabolic functions, and thiamine deficiency is associated with potentially fatal human diseases. The structure of thiamine pyrophosphokinase suggests that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 208 -153425 cd07996 WGR_MMR_like WGR domain of molybdate metabolism regulator and related proteins. The WGR domain is found in the putative Escherichia coli molybdate metabolism regulator and related bacterial proteins, as well as in various other bacterial proteins of unknown function. It has been called WGR after the most conserved central motif of the domain. The domain appears to occur in single-domain proteins and in a variety of domain architectures, together with ATP-dependent DNA ligase domains, WD40 repeats, leucine-rich repeats, and other domains. It has been proposed to function as a nucleic acid binding domain. 74 -153426 cd07997 WGR_PARP WGR domain of poly(ADP-ribose) polymerases. The WGR domain is found in a variety of eukaryotic poly(ADP-ribose) polymerases (PARPs). It has been called WGR after the most conserved central motif of the domain. The domain typically occurs together with a catalytic PARP domain, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. PARPs catalyze the NAD(+)-dependent synthesis of ADP-ribose polymers and their addition to various nuclear proteins and histones. Higher eukaryotes contain several PARPs and there may be up to 17 human PARP-like proteins, with three of them (PARP-1, PARP-2, and PARP-3) containing a WGR domain. The synthesis of poly-ADP-ribose requires multiple enzymatic activities for initiation, trans-ADP-ribosylation, elongation, branching, and release of the polymer from the enzyme. Poly-ADP-ribosylation was thought to be a reversible post-translational covalent modification that serves as a regulatory mechanism for protein substrates. However, it is now known that it plays important roles in many cellular processes including maintenance of genomic stability, transcriptional regulation, energy metabolism, cell death and survival, among others. 102 -153427 cd07998 WGR_DNA_ligase WGR domain of bacterial DNA ligases. The WGR domain is found in a small family of predicted bacterial DNA ligases. It has been called WGR after the most conserved central motif of the domain. The domain typically occurs in together with an ATP-dependent DNA ligase domain, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. 77 -153432 cd07999 GH7_CBH_EG Glycosyl hydrolase family 7. Glycosyl hydrolase family 7 contains eukaryotic endoglucanases (EGs) and cellobiohydrolases (CBHs) that hydrolyze glycosidic bonds using a double-displacement mechanism. This leads to a net retention of the conformation at the anomeric carbon. Both enzymes work synergistically in the degradation of cellulose,which is the main component of plant cell wall, and is composed of beta-1,4 linked glycosyl units. EG cleaves the beta-1,4 linkages of cellulose and CBH cleaves off cellobiose disaccharide units from the reducing end of the chain. In general, the O-glycosyl hydrolases are a widespread group of enzymes that hydrolyze the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A glycosyl hydrolase classification system based on sequence similarity has led to the definition of more than 95 different families inlcuding glycoside hydrolase family 7. 386 -193574 cd08000 NGN N-Utilization Substance G (NusG) N-terminal (NGN) domain Superfamily. The N-Utilization Substance G (NusG) and its eukaryotic homolog Spt5 are involved in transcription elongation and termination. NusG contains an NGN domain at its N-terminus and Kyrpides Ouzounis and Woese (KOW) repeats at its C-terminus in bacteria and archaea. The eukaryotic ortholog, Spt5, is a large protein composed of an acidic N-terminus, an NGN domain, and multiple KOW motifs at its C-terminus. Spt5 forms a Spt4-Spt5 complex that is an essential RNA Polymerase II elongation factor. NusG was originally discovered as an N-dependent antitermination enhancing activity in Escherichia coli and has a variety of functions, such as being involved in RNA polymerase elongation and Rho-termination in bacteria. Orthologs of the NusG gene exist in all bacteria, but its functions and requirements are different. The diverse activities suggest that, after diverging from a common ancestor, NusG proteins became specialized in different bacteria. 99 -153428 cd08001 WGR_PARP1_like WGR domain of poly(ADP-ribose) polymerase 1 and similar proteins. The WGR domain is found in a variety of eukaryotic poly(ADP-ribose) polymerases (PARPs). It has been called WGR after the most conserved central motif of the domain. The domain typically occurs together with a catalytic PARP domain, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. PARPs catalyze the NAD(+)-dependent synthesis of ADP-ribose polymers and their addition to various nuclear proteins. Higher eukaryotes contain several PARPs and and there may be up to 17 human PARP-like proteins, with three of them (PARP-1, PARP-2, and PARP-3) containing a WGR domain. The synthesis of poly-ADP-ribose requires multiple enzymatic activities for initiation, trans-ADP-ribosylation, elongation, branching, and release of the polymer from the enzyme. This subfamily is composed of vertebrate PARP-1 and similar proteins, including Arabidopsis thaliana PARP-1 and PARP-3. PARP-1 is the best-studied among the PARPs. It is a widely expressed nuclear chromatin-associated enzyme that possesses auto-mono-ADP-ribosylation (initiation), elongation, and branching activities. PARP-1 is implicated in DNA damage and cell death pathways and is important in maintaining genomic stability and regulating cell proliferation, differentiation, neuronal function, inflammation, and aging. 104 -153429 cd08002 WGR_PARP3_like WGR domain of poly(ADP-ribose) polymerase 3 and similar proteins. The WGR domain is found in a variety of eukaryotic poly(ADP-ribose) polymerases (PARPs). It has been called WGR after the most conserved central motif of the domain. The domain typically occurs together with a catalytic PARP domain, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. PARPs catalyze the NAD(+)-dependent synthesis of ADP-ribose polymers and their addition to various nuclear proteins. Higher eukaryotes contain several PARPs and and there may be up to 17 human PARP-like proteins, with three of them (PARP-1, PARP-2, and PARP-3) containing a WGR domain. The synthesis of poly-ADP-ribose requires multiple enzymatic activities for initiation, trans-ADP-ribosylation, elongation, branching, and release of the polymer from the enzyme. This subfamily is composed of human PARP-3 and similar proteins, including Arabidopsis thaliana PARP-2. PARP-3 displays a tissue-specific expression, with highest amounts found in the nuclei of epithelial cells of prostate ducts, salivary glands, liver, pancreas, and in the neurons of terminal ganglia. Unlike PARP-1 and PARP-2, PARP-3 activity is not induced by DNA strand breaks. However, it co-localizes with Polycomb group bodies and is part of complexes making up DNA-PKcs, DNA ligases III and IV, Ku70, and Ku80. PARP-3 is a nuclear protein that may be involved in transcriptional control and responses to DNA damage. 100 -153430 cd08003 WGR_PARP2_like WGR domain of poly(ADP-ribose) polymerases. The WGR domain is found in a variety of eukaryotic poly(ADP-ribose) polymerases (PARPs). It has been called WGR after the most conserved central motif of the domain. The domain typically occurs together with a catalytic PARP domain, and is between 70 and 80 residues in length. It has been proposed to function as a nucleic acid binding domain. PARPs catalyze the NAD(+)-dependent synthesis of ADP-ribose polymers and their addition to various nuclear proteins. Higher eukaryotes contain several PARPs and and there may be up to 17 human PARP-like proteins, with three of them (PARP-1, PARP-2, and PARP-3) containing a WGR domain. The synthesis of poly-ADP-ribose requires multiple enzymatic activities for initiation, trans-ADP-ribosylation, elongation, branching, and release of the polymer from the enzyme. This subfamily is composed of human PARP-2 and similar proteins. Similar to PARP-1, PARP-2 is ubiquitously expressed and its activity is induced by DNA strand breaks. It also plays a role in cell differentiation, cell death, and maintaining genomic stability. Studies on mice deficient with PARP-2 shows that it is important in fat storage, T cell maturation, and spermatogenesis. 103 -153433 cd08010 yceG_like proteins similar to Escherichia coli yceG. The gene product of Escherichia coli yceG has been erroneously annotated as an aminodeoxychorismate lyase. Its overexpression has been reported to cause abnormal biofilm architecture, and it has been reported to be part of a putative five-gene operon. It might function as a periplasmic solute-binding protein. The family also includes Streptomyces caeruleus NovB, an uncharacterized member of the novobiocin biosynthetic gene cluster. 245 -349933 cd08011 M20_ArgE_DapE-like M20 Peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. This group includes the hypothetical protein ygeY from Escherichia coli, a putative deacetylase, but many in this subfamily are classified as unassigned peptidases. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly archaeal, and have been inferred by homology as being related to both ArgE and DapE. 355 -349934 cd08012 M20_ArgE-related M20 Peptidases with similarity to acetylornithine deacetylases. Peptidase M20 family, acetylornithine deacetylase (ArgE, Acetylornithinase, AO, N2-acetyl-L-ornithine amidohydrolase, EC 3.5.1.16)-related subfamily. Proteins in this subfamily have not yet been characterized, but have been predicted to have deacetylase activity. ArgE catalyzes the conversion of N-acetylornithine to ornithine, which can then be incorporated into the urea cycle for the final stage of arginine synthesis. The substrate specificity of ArgE is quite broad; several alpha-N-acyl-L-amino acids can be hydrolyzed, including alpha-N-acetylmethionine and alpha-N-formylmethionine. ArgE shares significant sequence homology and biochemical features, and possibly a common origin, with glutamate carboxypeptidase (CPG2) and succinyl-diaminopimelate desuccinylase (DapE), and aminoacylase I (ACY1), having all metal ligand binding residues conserved. 423 -349935 cd08013 M20_ArgE_DapE-like M20 peptidases with similarity to acetylornithine deacetylases and succinyl-diaminopimelate desuccinylases. Peptidase M20 family, uncharacterized protein subfamily with similarity to acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) subfamily. This group includes the hypothetical protein ygeY from Escherichia coli, a putative deacetylase, but many in this subfamily are classified as unassigned peptidases. ArgE/DapE enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this subfamily are mostly fungal and bacterial, and have been inferred by homology as being related to both ArgE and DapE. 379 -349936 cd08014 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, uncharacterized subfamily of uncharacterized bacterial proteins predicted as putative amidohydrolases. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 371 -349937 cd08015 M28_like M28 Zn-peptidase-like; uncharacterized subfamily. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. 218 -349938 cd08017 M20_IAA_Hyd M20 Peptidase Indole-3-acetic acid amino acid hydrolase. Peptidase M20 family, plant aminoacyclase-1 indole-3-acetic-L-aspartic acid hydrolase (IAA-Asp hydrolase; IAAspH; IAAH; IAA amidohydrolase; EC 3.5.1.-) subfamily. IAAspH hydrolyzes indole-3-acetyl-N-aspartic acid (IAA or auxin) to indole-3-acetic acid. Genes encoding IAA-amidohydrolases were first cloned from Arabidopsis; ILR1, IAR3, ILL1 and ILL2 encode active IAA- amino acid hydrolases, and three additional amidohydrolase-like genes (ILL3, ILL5, ILL6) have been isolated. In higher plants, the growth regulator indole-3-acetic acid (IAA or auxin) is found both free and conjugated via amide bonding to a variety of amino acids and peptides, and via an ester linkage to carbohydrates. IAA-Asp conjugates are involved in homeostatic control, protection, storing and subsequent use of free IAA. IAA-Asp is also found in some plants as a unique intermediate for entering into IAA non-decarboxylative oxidative pathway. IAA amidohydrolase cleaves the amide bond between the auxin and the conjugated amino acid. Enterobacter agglomerans IAAspH has very strong enzyme activity and substrate specificity towards IAA-Asp, although its substrate affinity is weaker compared to Arabidopsis enzymes of the ILR1 gene family. Enhanced IAA-hydrolase activity has been observed during clubroot disease in Chinese cabbage. 376 -349939 cd08018 M20_Acy1_amhX-like M20 Peptidase aminoacylase 1 amhX-like subfamily. Peptidase M20 family, uncharacterized subfamily of proteins predicted as putative amidohydrolases, including the amhX gene product from Bacillus subtilis. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 365 -349940 cd08019 M20_Acy1-like M20 Peptidase aminoacylase 1 subfamily. Peptidase M20 family, uncharacterized subfamily of bacterial proteins predicted as putative amidohydrolases. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 372 -349941 cd08021 M20_Acy1_YhaA-like M20 Peptidase aminoacylase 1 subfamily, includes Bacillus subtilis YhaA and Staphylococcus aureus amidohydrolase, SACOL0085. Peptidase M20 family, uncharacterized subfamily of bacterial proteins predicted as putative amidohydrolases or hippurate hydrolases. These are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. Aminoacylase 1 (ACY1) breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). This family includes Staphylococcus aureus amidohydrolase, SACOL0085, which contains two manganese ions in the active site, and forms a homotetramer with variations in interdomain orientation which possibly plays a role in the regulation of catalytic activity. 384 -349942 cd08022 M28_PSMA_like M28 Zn-peptidase prostate-specific membrane antigen. Peptidase M28 family; prostate-specific membrane antigen (PSMA, also called glutamate carboxypeptidase II or GCP-II)-like subfamily. PSMA is a homodimeric type II transmembrane protein containing three distinct domains: protease-like, apical or protease-associated (PA) and helical domains. The protease-like domain is a large extracellular portion (ectodomain). PSMA is over-expressed predominantly in prostate cancer (PCa) as well as in the neovasculature of most solid tumors, but not in the vasculature of the normal tissues. PSMA is considered a biomarker for PCa and possibly for use as an imaging and therapeutic target. The extracellular domain of PSMA possesses two unique enzymatic functions: N-acetylated, alpha-linked acidic dipeptidase (NAALADase) which cleaves terminal glutamate from the neurodipeptide N-acetyl-aspartyl-glutamate (NAAG), and folate hydrolase (FOLH) which cleaves the terminal glutamates from gamma-linked polyglutamates (carboxypeptidase). A mutation in this gene may be associated with impaired intestinal absorption of dietary folates, resulting in low blood folate levels and consequent hyperhomocysteinemia. Expression of this protein in the brain may be involved in a number of pathological conditions associated with glutamate excitotoxicity. Inhibition of GCP-II has been shown to be effective in preclinical models of neurological disorders associated with excessive activation of glutamatergic systems. This gene likely arose from a duplication event of a nearby chromosomal region. Alternative splicing gives rise to multiple transcript variants. 287 -185693 cd08023 GH16_laminarinase_like Laminarinase, member of the glycosyl hydrolase family 16. Laminarinase, also known as glucan endo-1,3-beta-D-glucosidase, is a glycosyl hydrolase family 16 member that hydrolyzes 1,3-beta-D-glucosidic linkages in 1,3-beta-D-glucans such as laminarins, curdlans, paramylons, and pachymans, with very limited action on mixed-link (1,3-1,4-)-beta-D-glucans. 235 -185694 cd08024 GH16_CCF Coelomic cytolytic factor, member of glycosyl hydrolase family 16. Subgroup of glucanases of unknown function that are related to beta-GRP (beta-1,3-glucan recognition protein), but contain active site residues. Beta-GRPs are one group of pattern recognition receptors (PRRs), also referred to as biosensor proteins, that complexes with pathogen-associated beta-1,3-glucans and then transduces signals necessary for activation of an appropriate innate immune response. Beta-GRPs are present in insects and lack all catalytic residues. This subgroup contains related proteins that still contain the active site and are widely distributed in eukaryotes. Their structures adopt a jelly roll fold with a deep active site channel harboring the catalytic residues, like those of other glycosyl hydrolase family 16 members. 330 -153090 cd08025 RNR_PFL_like_DUF711 Uncharacterized proteins with similarity to Ribonucleotide reductase and Pyruvate formate lyase. This subfamily contains Streptococcus pneumoniae Sp0239 and similar uncharacterized proteins. Sp0239 is structurally similar to ribonucleotide reductase (RNR) and pyruvate formate lyase (PFL), which are believed to have diverged from a common ancestor. RNR and PFL possess a ten-stranded alpha-beta barrel domain that hosts the active site, and are radical enzymes. RNRs are found in all organisms and provide the only mechanism by which nucleotides are converted to deoxynucleotides. PFL is an essential enzyme in anaerobic bacteria that catalyzes the conversion of pyruvate and CoA to acteylCoA and formate. 400 -153434 cd08026 DUF326 Cysteine-rich 4 helical bundle widely conserved in bacteria. This functionally uncharacterized protein forms a 4-helical bundle with a bromodomain-like topology. It is present in major bacterial lineages and contains highly conserved cysteines in a repeated pattern, whose sidechains appear buried. Some family members have been (mis)annotated as putative ferredoxins. 102 -153397 cd08028 LARP_3 La RNA-binding domain of La-related protein 3. This domain is found at the N-terminus of the La autoantigen and similar proteins, and co-occurs with an RNA-recognition motif (RRM). Together these domains function to bind primary transcripts of RNA polymerase III at their 3' terminus and protect them from exonucleolytic degradation. Binding is specific for the 3'-terminal UUU-OH motif. The La autoantigen is also called Lupus La protein, LARP3, or Sjoegren syndrome type B antigen (SS-B). 82 -153398 cd08029 LA_like_fungal La-motif domain of fungal proteins similar to the La autoantigen. This domain is found in fungal proteins related to the La autoantigen. A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 76 -153399 cd08030 LA_like_plant La-motif domain of plant proteins similar to the La autoantigen. This domain is found in plant proteins related to the La autoantigen. A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 90 -153400 cd08031 LARP_4_5_like La RNA-binding domain of proteins similar to La-related proteins 4 and 5. This domain is found in proteins similar to La-related proteins 4 and 5 (LARP4, LARP5). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 75 -153401 cd08032 LARP_7 La RNA-binding domain of La-related protein 7. LARP7 is a component of the 7SK snRNP, a key factor in the regulation of RNA polymerase II transcription. 7SK functionality is dependent on the presence of LARP7, which is thought to stabilize the 7SK RNA by interacting with its 3' end. The release of 7SK RNA from P-TEFb/HEXIM/7SK complexes activates the cyclin-dependent kinase P-TEFb, which in turn phosphorylates the C-terminal domain of RNA pol II and mediates a transition into productive transcription elongation. 82 -153402 cd08033 LARP_6 La RNA-binding domain of La-related protein 6. This domain is found in animal and plant proteins related to the La autoantigen. A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 77 -153403 cd08034 LARP_1_2 La RNA-binding domain proteins similar to La-related proteins 1 and 2. This domain is found in proteins similar to vertebrate La-related proteins 1 and 2 (LARP1, LARP2). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 73 -153404 cd08035 LARP_4 La RNA-binding domain of La-related protein 4. This domain is found in vertebrate La-related protein 4 (LARP4), also known as c-MPL binding protein. La-type domains often co-occur with RNA-recognition motifs (RRMs). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 75 -153405 cd08036 LARP_5 La RNA-binding domain of La-related protein 5. This domain is found in vertebrate La-related protein 5 (LARP5). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 75 -153406 cd08037 LARP_1 La RNA-binding domain of La-related protein 1. This domain is found in vertebrate La-related protein 1 (LARP1). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 73 -153407 cd08038 LARP_2 La RNA-binding domain of La-related protein 2. This domain is found in vertebrate La-related protein 2 (LARP2). A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. 73 -185716 cd08039 Adenylation_DNA_ligase_Fungal Adenylation domain of uncharacterized fungal ATP-dependent DNA ligase-like proteins. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriophages, eukarya, archaea and bacteria. This group is composed of uncharacterized fungal proteins with similarity to ATP-dependent DNA ligases. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation domain binds ATP and contains many of the active-site residues. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. This model characterizes the adenylation domain of this group of uncharacterized fungal proteins. It is not known whether these proteins also contain an OB-fold domain. 235 -153442 cd08040 OBF_DNA_ligase_family The Oligonucleotide/oligosaccharide binding (OB)-fold domain is a DNA-binding module that is part of the catalytic core unit of ATP dependent DNA ligases. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains including a DNA-binding domain, an adenylation (nucleotidyltransferase (NTase)) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The adenylation and C-terminal OB-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 108 -153443 cd08041 OBF_kDNA_ligase_like The Oligonucleotide/oligosaccharide binding (OB)-fold domain of kDNA ligase-like ATP-dependent DNA ligases is a DNA-binding module that is part of the catalytic core unit. ATP-dependent polynucleotide ligases catalyze phosphodiester bond formation using nicked nucleic acid substrates with the high energy nucleotide of ATP as a cofactor in a three step reaction mechanism. DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. ATP-dependent ligases are present in many organisms such as viruses, bacteriohages, eukarya, archaea and bacteria. The mitochondrial DNA of parasitic protozoan is highly unusual. It is termed the kinetoplast DNA (kDNA) and consists of circular DNA molecules (maxicircles) and several thousand smaller circular molecules (minicircles). This group is composed of kDNA ligase, Chlorella virus DNA ligase, and similar proteins. kDNA ligase and Chlorella virus DNA ligase are the smallest known ATP-dependent ligases. They are involved in DNA replication or repair. ATP dependent DNA ligases have a highly modular architecture consisting of a unique arrangement of two or more discrete domains. The adenylation and oligonucleotide/oligosaccharide binding (OB)-fold domains comprise a catalytic core unit that is common to most members of the ATP-dependent DNA ligase family. The catalytic core unit contains six conserved sequence motifs (I, III, IIIa, IV, V and VI) that define this family of related nucleotidyltransferases. The OB-fold domain contacts the nicked DNA substrate and is required for the ATP-dependent DNA ligase nucleotidylation step. The RxDK motif (motif VI), which is essential for ATP hydrolysis, is located in the OB-fold domain. 77 -176269 cd08044 TAF5_NTD2 TAF5_NTD2 is the second conserved N-terminal region of TATA Binding Protein (TBP) Associated Factor 5 (TAF5), involved in forming Transcription Factor IID (TFIID). The TATA Binding Protein (TBP) Associated Factor 5 (TAF5) is one of several TAFs that bind TBP and are involved in forming Transcription Factor IID (TFIID) complex. TAF5 contains three domains, two conserved sequence motifs at the N-terminal and one at the C-terminal region. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the preinitiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF5 may play a major role in forming TFIID and its related complexes. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAF orthologs and paralogs. TAF5 has a paralog gene (TAF5L) which has a redundant function. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. C-terminus of TAF5 contains six WD40 repeats that likely form a closed beta propeller structure and may be involved in protein-protein interaction. The first part of the TAF5 N-terminal (TAF5_NTD1) homodimerizes in the absence of other TAFs. The second conserved N-terminal part of TAF5 (TAF5_NTD2) has an alpha-helical domain. One study has shown that TAF5_NTD2 homodimerizes only at high concentration of calcium but not any other metals. No dimerization was observed in other structural studies of TAF_NTD2. Several TAFs interact via histone-fold (HFD) motifs; HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamer. However, TAF5 does not have a HFD motif. 133 -173965 cd08045 TAF4 TATA Binding Protein (TBP) Associated Factor 4 (TAF4) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 4 (TAF4) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryote. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. Each TAF, with the help of a specific activator, is required only for the expression of subset of genes and is not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFS and many other transcription factors. TFIID has a histone octamer-like substructure. TAF4 domain interacts with TAF12 and makes a novel histone-like heterodimer that binds DNA and has a core promoter function of a subset of genes. 212 -173966 cd08047 TAF7 TATA Binding Protein (TBP) Associated Factor 7 (TAF7) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 7 (TAF7) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the preinitiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. A new, unified nomenclature has been suggested for the pol II TAFs to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. Each TAF, with the help of a specific activator, is required only for expression of subset of genes and is not universally involved for transcription as are GTFs. TAF7 is involved in the regulation of the transition from PIC assembly to initiation and elongation. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; the HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. 162 -173967 cd08048 TAF11 TATA Binding Protein (TBP) Associated Factor 11 (TAF11) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 11 (TAF11) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. TAF11 interacts with the ligand binding domains of the nuclear receptors for vitamin D3 and thyroid hormone. TAF11 also directly interacts with TFIIA, acting as a bridging factor that stabilizes the TFIIA-TBP-DNA complex. Each TAF, with the help of a specific activator, is required only for the expression of subset of genes and is not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFS and many other transcription factors. TFIID has a histone octamer-like substructure. The TAF11 domain is structurally analogous to histone H3 and interacts with TAF13, making a novel histone-like heterodimer. The dimer may be structurally and functionally similar to the spt3 protein within the SAGA histone acetyltransferase complex. 85 -176263 cd08049 TAF8 TATA Binding Protein (TBP) Associated Factor 8. The TATA Binding Protein (TBP) Associated Factor 8 (TAF8) is one of several TAFs that bind TBP, and is involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and the assembly of the preinitiation complex. The TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs' functions, such as serving as activator-binding sites, involvement in the core-promoter recognition, or a role in the essential catalytic activity of the complex. The mouse ortholog of TAF8 is called taube nuss protein (TBN), and is required for early embryonic development. TBN mutant mice exhibit disturbances in the balance between cell death and cell survival in the early embryo. TAF8 plays a role in the differentiation of preadipocyte fibroblasts to adipocytes; it is also required for the integration of TAF10 into the TAF complex. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF8 is also a component of a small TAF complex (SMAT), which contains TAF8, TAF10 and SUPT7L. Several TAFs interact via histone-fold motifs. The histone fold (HFD) is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamer. TAF8 contains an H4 related histone fold motif, and interacts with several subunits of TFIID, including TBP and the histone-fold protein TAF10. Currently, five HF-containing TAF pairs have been described or suggested to exist in TFIID: TAF6-TAF9, TAF4-TAF12, TAF11-TAF13, TAF8-TAF10 and TAF3-TAF10. 54 -173968 cd08050 TAF6 TATA Binding Protein (TBP) Associated Factor 6 (TAF6) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 6 (TAF6) is one of several TAFs that bind TBP and are involved in forming Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTFs) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. A new, unified nomenclature has been suggested for the pol II TAFs to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. These TAFs, with the help of specific activators, are required only for expression of a subset of genes and are not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; the HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFs and many other transcription factors. TFIID has a histone octamer-like substructure. TAF6 is a shared subunit of histone acetyltransferase complex SAGA and TFIID complexes. TAF6 domain interacts with TAF9 and makes a novel histone-like heterodimer that is structurally related to histones H4 and H3. TAF6 may also interact with the downstream core promoter element (DPE). 343 -153444 cd08051 gp6_gp15_like Head-Tail Connector Proteins gp6 and gp15, and similar proteins. Members of this family include the proteins gp6 and gp15 from bacteriophage HK97 and SPP1, respectively. They are critical in the assembly of the connector, a specialized structure that serves as an interface for head and tail attachment, as well as a point at which DNA exits the head during infection by the bacteriophage. They form dodecameric ring structures that comprise the middle ring of the connector, located between the portal protein (attached to the head) and the gp7/gp16 ring (attached to the tail). They are components of the mature phage and the absence or mutation of HK97 gp6 or SPP1 gp15, respectively, result in defective head-tail joining and the absence of mature phage particles. The genome maps of HK97 and SPP1 show that genes encoding gp6 and gp15 are in the same relative position on the genome, located adjacent to the major capsid protein (MCP) gene and in between head and tail genes. Also included in this family is the uncharacterized Bacillus subtilis Yqbg protein, whose gene is part of the unusual genetic element called skin. The Yqbg gene is surrounded with genes similar to genes in the Bacillus subtilis prophage-like element PBSX, which encode for proteins comprising contractile-tailed phage-like particles that are produced upon mitomycin C treatment. Yqbg likely acts as a head-tail connector protein, similar to gp6 and gp15, of the PBSX-like prophage encoded in the skin element. 94 -153445 cd08053 Yqbg Putative Head-Tail Connector Protein Yqbg from Bacillus subtilis and similar proteins. The uncharacterized Bacillus subtilis Yqbg protein, whose gene is part of the unusual genetic element called skin, shows a similar structure to the connector proteins gp6 and gp15 from bacteriophage HK97 and SPP1, respectively. gp6 and gp15 are critical in the assembly of the connector, a specialized structure that serves as an interface for head and tail attachment, as well as a point at which DNA exits the head during infection by the bacteriophage. They form dodecameric ring structures that comprise the middle ring of the connector, located between the portal protein (attached to the head) and the gp7/gp16 ring (attached to the tail). The Yqbg gene is surrounded with genes similar to genes in the Bacillus subtilis prophage-like element PBSX, which encode for proteins comprising contractile-tailed phage-like particles that are produced upon mitomycin C treatment. Yqbg likely acts as a head-tail connector protein, similar to gp6 and gp15, of the PBSX-like prophage encoded in the skin element. 121 -153446 cd08054 gp6 Head-Tail Connector Protein gp6 of Bacteriophage HK97 and similar proteins. The bacteriophage HK97 gp6 protein is critical in the assembly of the connector, a specialized structure that serves as an interface for head and tail attachment, as well as a point at which DNA exits the head during infection by the bacteriophage. It forms a dodecameric ring structure that comprises the middle ring of the connector, located between the portal protein (attached to the head) and the gp7 ring (attached to the tail). It is a component of the mature phage and the absence of HK97 gp6 results in defective head-tail joining and the absence of mature phage particles. Although the crystal structure of HK97 gp6 shows an unexpected 13-mer ring, the biological form present in the mature phage is believed to be a dodecamer. 91 -153447 cd08055 gp15 Head-Tail Connector Protein gp15 of Bacteriophage SPP1 and similar proteins. The bacteriophage SPP1 gp15 protein is critical in the assembly of the connector, a specialized structure that serves as an interface for head and tail attachment, as well as a point at which DNA exits the head during infection by the bacteriophage. It forms a dodecameric ring structure that comprises the middle ring of the connector, located between the portal protein (attached to the head) and the gp16 ring (attached to the tail). Binding of the gp15 and gp16 rings to the portal protein is essential to prevent leakage of packaged DNA. gp15 is a component of the mature phage and its mutation results in defective head-tail joining. 95 -163687 cd08056 MPN_PRP8 Mpr1p, Pad1p N-terminal (MPN) domains without isopeptidase activity found in splicing factor Prp8. Members of this family are found in pre-mRNA-processing factor 8 (Prp8) which is a critical splicing factor, interacting with several other spliceosomal proteins, snRNAs, and the pre-mRNA, thus organizing and stabilizing the spliceosome catalytic core. Prp8 is one of the largest and most highly conserved of nuclear proteins, occupying a central position in the catalytic core of the spliceosome. Its C-terminal domain exhibits a JAB1/MPN-like core similar to deubiquitinating enzymes, but does not show catalytic isopeptidase activity, possibly because the putative isopeptidase center is covered by insertions and terminal appendices that are grafted onto this core, thus impairing the metal binding site. It is proposed that this domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. The DEAD-box protein Brr2 and the GTPase Snu114 bind to the Prp8 C-terminus, a region where mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13, which leads to progressive photoreceptor degeneration in the retina and eventual blindness. At the N-terminus of Prp8, there are several domains, including a highly variable nuclear localization signal (NLS) motif rich in prolines, a conserved RNA recognition motif (RRM), and U5 and U6 snRNA binding sites. 252 -163688 cd08057 MPN_euk_non_mb Mpr1p, Pad1p N-terminal (MPN) domains without catalytic isopeptidase activity (non metal-binding); eukaryotic. This family contains MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+) domains variants lacking key residues in the JAB1/MPN/Mov34 metalloenzyme (JAMM) motif and are unable to coordinate a metal ion. Comparisons of key catalytic and metal binding residues explain why the MPN-containing proteins Rpn7/PSMD7, Rpn8/PSMD8, CSN6, Prp8p, and the translation initiation factor 3 subunits f and h do not show catalytic isopeptidase activity. It has been proposed that the MPN domain in these proteins has a primarily structural function. Rpn7 is known to be critical for the integrity of the 26S proteasome complex by establishing a correct lid structure. It is necessary for the incorporation/anchoring of Rpn3 and Rpn12 to the lid and essential for viability and normal mitosis. CSN6 is a highly conserved protein complex with diverse functions, including several important intracellular pathways such as the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. It cleaves ubiquitin-like protein Nedd8 (neural precursor cell expressed, developmentally downregulated 8)) in the cullin 1 in cells. EIF3f s a potent inhibitor of HIV-1 replication as well as an important negative regulator of cell growth and proliferation. EIF3h regulates cell growth and viability, and that over-expression of the gene may provide growth advantage to prostate, breast, and liver cancer cells. 157 -163689 cd08058 MPN_euk_mb Mpr1p, Pad1p N-terminal (MPN) domains with catalytic isopeptidase activity (metal-binding); eukaryotic. This family contains eukaryotic MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+) domains found in proteins with a variety of functions, including AMSH (associated molecule with the Src homology 3 domain (SH3) of STAM), H2A-DUB (histone H2A deubiquitinase), BRCC36 (BRCA1/BRCA2-containing complex subunit 36), as well as Rpn11 (regulatory particle number 11) and CSN5 (COP9 signalosome complex subunit 5). These domains contain the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity. Rpn11 is responsible for substrate deubiquitination during proteasomal degradation. It is essential for maintaining a correct cell cycle and normal mitochondrial morphology and physiology. CSN5 is critical for nuclear export and the degradation of several tumor suppressor proteins, including p53, p27, and Smad4. Over-expression of CSN5 has been implicated in cancer initiation and progression. AMSH specifically cleaves Lys 63 and not Lys48-linked polyubiquitin (poly-Ub) chains, thus facilitating the recycling and subsequent trafficking of receptors to the cell surface. It is involved in the degradation of EGF receptor (EGFR) and possibly other ubiquitinated endocytosed proteins. BRCC36 is part of the BRCA1/BRCA2/BARD1-containing nuclear complex that displays an E3 ubiquitin ligase activity; it is targeted to DNA damage foci after irradiation. 2A-DUB is specific for monoubiquitinated H2A (uH2A), regulating transcription by coordinating histone acetylation and deubiquitination, and destabilizing the association of linker histone H1 with nucleosomes. It is a positive regulator of androgen receptor (AR) transactivation activity on a reporter gene and serves as a marker in prostate tumors. 119 -163690 cd08059 MPN_prok_mb Mpr1p, Pad1p N-terminal (MPN) domains with catalytic isopeptidase activity (metal-binding); prokaryotic. This family contains bacterial and archaeal MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+)-like domains. These catalytically active domains contain the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity for the release of ubiquitin from ubiquitinated proteins (thus having deubiquitinating (DUB) activity) that are tagged for degradation. The JAMM proteins likely hydrolyze ubiquitin conjugates in a manner similar to thermolysin, in which the zinc-polarized aqua ligand serves as the nucleophile, compared with the classical DUBs that do so with a cysteine residue in the active site. 101 -163691 cd08060 MPN_UPF0172 Mov34/MPN/PAD-1 family: UPF0172 family of unknown function includes neighbor of COX4 (Noc4p). This family includes Noc4p (neighbor of COX4; neighbor of Cytochrome c Oxidase 4; nucleolar complex associated 4 homolog) which belongs to the family of unknown function, UPF0172, with MPN/JAMM-like domains. Proteins in this family are homologs of the NOC4 gene which is conserved in eukaryotic members including human, dog, mouse, rat, chicken, zebrafish, fruit fly, mosquito, S.pombe, K.lactis, E.gossypii, M.grisea, N.crassa, A.thaliana, and rice. NOC4 highly expressed in the pancreas and moderately in liver, heart, lung, kidney, brain, skeletal muscle, and placenta. This nucleolar protein forms a complex with Nop14p that mediates maturation and nuclear export of 40S ribosomal subunits. This family of eukaryotic MPN-like domains lacks the key residues that coordinate a metal ion and therefore does not show catalytic isopeptidase activity. 182 -163692 cd08061 MPN_NPL4 Mov34/MPN/PAD-1 family: nuclear protein localization-4 (Npl4) domain. Npl4p (nuclear protein localization-4) is identical to Hmg-CoA reductase degradation 4 (HRD4) protein and contains a domain that is part of the pfam clan MPN/Mov34-like. Npl4 plays an intermediate role between endoplasmic reticulum-associated degradation (ERAD) substrate ubiquitylation and proteasomal degradation. Npl4p associates with Cdc48p (Cdc48 in yeast and p97 or valosin-containing protein (VCP) in higher eukaryotes), the highly conserved ATPase of the AAA family, via ubiquitin fusion degradation-1 protein (Ufd1p) to form a Cdc48p-Ufd1p-Npl4p complex which then functions in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for processive degradation. This family of eukaryotic MPN-like domains lacks the key residues that coordinate a metal ion and therefore does not show catalytic isopeptidase activity. 274 -163693 cd08062 MPN_RPN7_8 Mpr1p, Pad1p N-terminal (MPN) domains without catalytic isopeptidase activity, found in 19S proteasomal subunits Rpn7 and Rpn8. This family includes lid subunits of the 26 S proteasome regulatory particles, Rpn7 (PSMD7; proteasome 26S non-ATPase subunit 7; p44), and Rpn8 (PSMD8; proteasome 26S non-ATPase subunit 8; p40; Mov34). Rpn7 is known to be critical for the integrity of the 26 S proteasome complex by establishing a correct lid structure. It is necessary for the incorporation/anchoring of Rpn3 and Rpn12 to the lid and essential for viability and normal mitosis. Rpn7 and Rpn8 are ATP-independent components of the 19S regulator subunit, and contain the MPN structural motif on its N-terminal region. However, while they show a typical MPN metalloprotease fold, they lack the canonical JAMM motif, and therefore do not show catalytic isopeptidase activity. It is suggested that Rpn7 function is primarily structural. 280 -163694 cd08063 MPN_CSN6 Mpr1p, Pad1p N-terminal (MPN) domains without catalytic isopeptidase activity, found in COP9 signalosome complex subunit 6. CSN6 (COP9 signalosome subunit 6; COP9 subunit 6; MOV34 homolog, 34 kD) is one of the eight subunits of COP9 signalosome, a highly conserved protein complex with diverse functions, including several important intracellular pathways such as the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. CSN6 is an MPN-domain protein that directly interacts with the MPN+-domain subunit CSN5. It is cleaved during apoptosis by activated caspases. CSN6 processing occurs in CSN/CRL (cullin-RING Ub ligase) complexes and is followed by the cleavage of Rbx1, the direct interaction partner of CSN6. CSN6 cleavage enhances CSN-mediated deneddylating activity (i.e. cleavage of ubiquitin-like protein Nedd8 (neural precursor cell expressed, developmentally downregulated 8)) in the cullin 1 in cells. The cleavage of Rbx1 and increased deneddylation of cullins inactivate CRLs and presumably stabilize pro-apoptotic factors for final apoptotic steps. While CSN6 shows a typical MPN metalloprotease fold, it lacks the canonical JAMM motif, and therefore does not show catalytic isopeptidase activity. 288 -163695 cd08064 MPN_eIF3f Mpr1p, Pad1p N-terminal (MPN) domains without catalytic isopeptidase activity, found in eIF3f. Eukaryotic translation initiation factor 3 (eIF3) subunit F (eIF3F; EIF3S5; eIF3-p47; eukaryotic translation initiation factor 3, subunit 5 epsilon, 47kDa; Mov34/MPN/PAD-1 family protein) is an evolutionarily non-conserved subunit of the functional core that comprises eIF3a, eIF3b, eIF3c, eIF3e, eIF3f, and eIF3h, and contains the MPN domain. However, it lacks the canonical JAMM motif, and therefore does not show catalytic isopeptidase activity. It has been shown that eIF3f mRNA expression is significantly decreased in many human tumors including pancreatic cancer and melanoma. EIF3f is a potent inhibitor of HIV-1 replication; it mediates restriction of HIV-1 expression through several factors including the serine/arginine-rich (SR) protein 9G8, and cyclin-dependent kinase 11 (CDK11). EIF3f phosphorylation by CDK11 is important in regulating its function in translation and apoptosis. It enhances its association with the core eIF3 subunits during apoptosis, suggesting that eIF3f may inhibit translation by increasing the binding to the eIF3 complex during apoptosis. Thus, eIF3f may be an important negative regulator of cell growth and proliferation. 265 -163696 cd08065 MPN_eIF3h Mpr1p, Pad1p N-terminal (MPN) domains without catalytic isopeptidase activity, found in eIF2h. Eukaryotic translation initiation factor 3 (eIF3) subunit h (eIF3h; eIF3 subunit 3; eIF3S3; eIF3-gamma; eIF3-p40) is an evolutionarily non-conserved subunit of the functional core that comprises eIF3a, eIF3b, eIF3c, eIF3e, eIF3f, and eIF3h, and contains the MPN domain. However, it lacks the canonical JAMM motif, and therefore does not show catalytic isopeptidase activity.Together with eIF3e and eIF3f, eIF3h stabilizes the eIF3 complex. Results suggest that eIF3h regulates cell growth and viability, and that over-expression of the gene may provide growth advantage to prostate, breast, and liver cancer cells. For example, EIF3h gene amplification is common in late-stage prostate cancer suggesting that it may be functionally involved in the progression of the disease. It has been shown that coamplification of MYC, a well characterized oncogene involved in cell growth, differentiation, and apoptosis, and EIF3h in patients with non-small cell lung cancer (NSCLC) improves survival if treated with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), Gefitinib. Plant eIF3h is implicated in translation of specific mRNAs. 266 -163697 cd08066 MPN_AMSH_like Mov34/MPN/PAD-1 family. AMSH (associated molecule with the Src homology 3 domain (SH3) of STAM (signal-transducing adapter molecule, also known as STAMBP)) and AMSH-like proteins (AMSH-LP) are members of JAMM/MPN+ deubiquitinases (DUBs), with Zn2+-dependent ubiquitin isopeptidase activity. AMSH specifically cleaves Lys 63 and not Lys48-linked polyubiquitin (poly-Ub) chains, thus facilitating the recycling and subsequent trafficking of receptors to the cell surface. AMSH and AMSH-LP are anchored on the early endosomal membrane via interaction with the clathrin coat. AMSH shares a common SH3-binding site with another endosomal DUB, UBPY (ubiquitin-specific protease Y; also known as USP8), the latter being a cysteine protease that does not discriminate between Lys48 and Lys63-linked ubiquitin. AMSH is involved in the degradation of EGF receptor (EGFR) and possibly other ubiquitinated endocytosed proteins. AMSH also interacts with CHMP1, CHMP2, and CHMP3 proteins, all of which are components of ESCRT-III, suggested to be required for EGFR down-regulation. The function of AMSH-LP has not been elucidated; however, it exhibits two fundamentally distinct features from AMSH: first, there is a substitution in the critical amino acid residue in the SH3-binding motif (SBM) in the human AMSH-LP, but not in its mouse ortholog, and lacks STAM-binding ability; second, AMSH-LP lacks the ability to interact with CHMP proteins. It is therefore likely that AMSH and AMSH-LP play different roles on early endosomes. 173 -163698 cd08067 MPN_2A_DUB Mov34/MPN/PAD-1 family: Histone H2A deubiquitinase. This family includes histone H2A deubiquitinase (Histone H2A DUB;MYSM1; myb-like, SWIRM and MPN domains 1; 2ADUB; 2A-DUB; KIAA19152ADUB, or KIAA1915/MYSM1), a member of JAMM/MPN+ deubiquitinases (DUBs), with possible Zn2+-dependent ubiquitin isopeptidase activity. It contains the SWIRM (Swi3p, Rsc8p and Moira), and SANT (SWI-SNF, ADA N-CoR, TFIIIB)/Myb domains; the SANT, but not the SWIRM, domain can bind directly to DNA. 2A-DUB is specific for monoubiquitinated H2A (uH2A), regulating transcription by coordinating histone acetylation and deubiquitination, and destabilizing the association of linker histone H1 with nucleosomes. 2A-DUB interacts with p/CAF (p300/CBP-associated factor) in a co-regulatory protein complex, where the status of acetylation of nucleosomal histones modulates its deubiquitinase activity. 2A-DUB is a positive regulator of androgen receptor (AR) transactivation activity on a reporter gene; it participates in transcriptional regulation events in androgen receptor-dependent gene activation. In prostate tumors, the levels of uH2A are dramatically decreased, thus 2A-DUB serving as a cancer-related marker. 187 -163699 cd08068 MPN_BRCC36 Mov34/MPN/PAD-1 family: BRCC36, a subunit of BRCA1-A complex. BRCC36 (BRCA1-A complex subunit BRCC36; BRCA1/BRCA2-containing complex subunit 36; BRCA1/BRCA2-containing complex subunit 3; BRCC3; BRISC complex subunit BRCC36; BRCC36 isopeptidase complex; Lys-63-specific deubiquitinase BRCC36) and BRCC36-like domains are members of JAMM/MPN+ deubiquitinases (DUBs), possibly with Zn2+-dependent ubiquitin isopeptidase activity. BRCC36 is part of the BRCA1/BRCA2/BARD1-containing nuclear complex that displays an E3 ubiquitin ligase activity. It is targeted to DNA damage foci after irradiation; RAP80 recruits the Abraxas-BRCC36-BRCA1-BARD1 complex to DNA double strand breaks (DSBs) for DNA repair through specific recognition of Lys 63-linked polyubiquitinated proteins by its tandem ubiquitin-interacting motifs. A new protein, MERIT40 (mediator of RAP80 interactions and targeting 40 kDa), also named NBA1 (new component of the BRCA1 A complex), exists in the same BRCA1-containing complex and is essential for the integrity of the complex. There are studies suggesting that MERIT40/NBA1 ties BRCA1 complex integrity, DSB recognition, and ubiquitin chain activities to the DNA damage response. It has also been shown that BRCA1-containing complex resembles the lid complex of the 26S proteasome. 244 -163700 cd08069 MPN_RPN11_CSN5 Mov34/MPN/PAD-1 family: proteasomal regulatory protein Rpn11 and signalosome complex subunit CSN5. This family contains proteasomal regulatory protein Rpn11 (26S proteasome regulatory subunit rpn11; PAD1; POH1; RPN11; PSMD14; Rpn11 subunit of the 19S-proteasome; regulatory particle number 11) and signalosomal CSN5 (COP9 signalosome complex subunit 5; COP9 complex homolog subunit 5; c-Jun activation domain-binding protein-1; CSN5/JAB1; JAB1). COP9 signalosome (CSN) and the proteasome lid are paralogous complexes and their respective subunits CSN5 and Rpn11 are most closely related between the two complexes, both containing the conserved JAMM (JAB1/MPN/Mov34 metalloenzyme) motif involved in zinc ion coordination and providing the active site for isopeptidase activity. Rpn11 is responsible for substrate deubiquitination during proteasomal degradation. It is essential for maintaining a correct cell cycle and normal mitochondrial morphology and physiology; mutations in Rpn11 cause cell cycle and mitochondrial defects, temperature sensitivity and sensitivity to DNA damaging reagents such as UV. It has been shown that the C-terminal region of Rpn11 is involved in the regulation of the mitochondrial fission and tubulation processes. CSN5, one of the eight subunits of CSN, is critical for nuclear export and the degradation of several tumor suppressor proteins, including p53, p27, and Smad4. Its MPN+ domain is critical for the physical interaction of RUNX3 and Jab1. It has been suggested that the direct interaction of CSN5/JAB1 with p27 provides p27 with a leucine-rich nuclear export signal (NES), which is required for binding to chromosomal region maintenance 1 (CRM1), and facilitates nuclear export. The over-expression of CSN5/JAB1 also has been implicated in cancer initiation and progression, including cancer of the lung, pancreas, mouth, thyroid, and breast, suggesting that the oncogenic activity of CSN5 is associated with the down-regulation of RUNX3. 268 -163701 cd08070 MPN_like Mpr1p, Pad1p N-terminal (MPN) domains with catalytic isopeptidase activity (metal-binding). This family contains archaeal and bacterial MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+)-like domains. These domains contain the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity for the release of ubiquitin from ubiquitinated proteins (thus having deubiquitinating (DUB) activity) that are tagged for degradation. The JAMM proteins likely hydrolyze ubiquitin conjugates in a manner similar to thermolysin, in which the zinc-polarized aqua ligand serves as the nucleophile, compared with the classical DUBs that do so with a cysteine residue in the active site. 128 -163702 cd08071 MPN_DUF2466 Mov34/MPN/PAD-1 family. Mov34 DUF2466 (also known as DNA repair protein RadC) domain of unknown function contains the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity. However, to date, the name RadC has been misleading and no function has been determined. 113 -163703 cd08072 MPN_archaeal Mov34/MPN/PAD-1 family: archaeal JAB1/MPN/Mov34 metalloenzyme. This family contains only archaeal MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+)-like domains. These domains contain the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity for the release of ubiquitin from ubiquitinated proteins (thus having deubiquitinating (DUB) activity) that are tagged for degradation. The JAMM proteins likely hydrolyze ubiquitin conjugates in a manner similar to thermolysin, in which the zinc-polarized aqua ligand serves as the nucleophile, compared with the classical DUBs that do so with a cysteine residue in the active site. 117 -163704 cd08073 MPN_NLPC_P60 Mpr1p, Pad1p N-terminal (MPN) domains with catalytic isopeptidase activity (metal-binding) found in proteins also containing NlpC/P60 domains. This family contains bacterial MPN (also known as Mov34, PAD-1, JAMM, JAB, MPN+)-like domains at the N-terminus of NlpC/P60 phage tail protein domains. These domains contain the signature JAB1/MPN/Mov34 metalloenzyme (JAMM) motif, EXnHS/THX7SXXD, which is involved in zinc ion coordination and provides the active site for isopeptidase activity for the release of ubiquitin from ubiquitinated proteins (thus having deubiquitinating (DUB) activity) that are tagged for degradation. The JAMM proteins likely hydrolyze ubiquitin conjugates in a manner similar to thermolysin, in which the zinc-polarized aqua ligand serves as the nucleophile, compared with the classical DUBs that do so with a cysteine residue in the active site. 108 -173969 cd08148 RuBisCO_large Ribulose bisphosphate carboxylase large chain. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV, which differ in their taxonomic distribution and subunit composition. Form I-III have Rubisco activity, while Form IV, also called Rubisco-like proteins (RLP), are missing critical active site residues and therefore do not catalyze CO2 fixation. They are believed to utilize a related enzymatic mechanism, but have divergent functions. 366 -163706 cd08150 catalase_like Catalase-like heme-binding proteins and protein domains. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes involved in the protection of cells from the toxic effects of peroxides. It catalyses the conversion of hydrogen peroxide to water and molecular oxygen. Several other related protein families share the catalase fold and bind to heme, but do not necessarily have catalase activity. 283 -163707 cd08151 AOS Allene oxide synthase. Allene oxide synthase converts a fatty acid hydroperoxide to an allene oxide, which is an unstable epoxide. In corals, the enzyme is part of a eiconaosid synthesis pathway that is initiated by a lipoxygenase, which generates the fatty acid hydroperoxides in the first step. The structure of allene oxide synthase closely resembles that of catalase, but allene oxide synthase does not have catalase activity. 328 -163708 cd08152 y4iL_like Catalase-like heme-binding proteins similar to the uncharacterized y4iL. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes involved in the protection of cells from the toxic effects of peroxides. It catalyses the conversion of hydrogen peroxide to water and molecular oxygen. Several other related protein families share the catalase fold and bind to heme, but do not necessarily have catalase activity. This family contains uncharacterized proteins similar to Rhizobium sp. NGR234 y4iL, of mostly bacterial origin. 305 -163709 cd08153 srpA_like Catalase-like heme-binding proteins similar to the uncharacterized srpA. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes involved in the protection of cells from the toxic effects of peroxides. It catalyses the conversion of hydrogen peroxide to water and molecular oxygen. Several other related protein families share the catalase fold and bind to heme, but do not necessarily have catalase activity. This family contains uncharacterized proteins similar to the Synechococcus elongatus PCC 7942 periplasmic protein srpA, of mostly bacterial origin. The plasmid-encoded srpA is regulated by sulfate, but does not seem to function in its uptake or metabolism. 295 -163710 cd08154 catalase_clade_1 Clade 1 of the heme-binding enzyme catalase. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. Clade 1 catalases are found in bacteria, algae, and plants; they have a relatively small subunit size of 55 to 69 kDa, and bind a protoheme IX (heme b) group buried deep inside the structure. They appear to form tetramers. In eukaryotic cells, catalases are located in peroxisomes. 469 -163711 cd08155 catalase_clade_2 Clade 2 of the heme-binding enzyme catalase. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. Clade 2 catalases are mostly found in bacteria and fungi; they have a large subunit size of 75 to 84 kDa, and bind a heme d group buried deep inside the structure. They appear to form tetramers. In eukaryotic cells, catalases are located in peroxisomes. 443 -163712 cd08156 catalase_clade_3 Clade 3 of the heme-binding enzyme catalase. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. Clade 3 catalases are the most abundant subfamily and are found in all three kingdoms of life; they have a relatively small subunit size of 43 to 75 kDa, and bind a protoheme IX (heme b) group buried deep inside the structure. Clade 3 catalases also bind NADPH as a second redox-active cofactor. They form tetramers, and in eukaryotic cells, catalases are located in peroxisomes. 429 -163713 cd08157 catalase_fungal Fungal catalases similar to yeast catalases A and T. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. This family of fungal catalases has a relatively small subunit size, and binds a protoheme IX (heme b) group buried deep inside the structure. Fungal catalases also bind NADPH as a second redox-active cofactor. They form tetramers; in eukaryotic cells, catalases are typically located in peroxisomes. Saccharomyces cerevisiae catalase T is found in the cytoplasm, though. 451 -176482 cd08159 APC10-like APC10-like DOC1 domains in E3 ubiquitin ligases that mediate substrate ubiquitination. This family contains the single domain protein, APC10, a subunit of the anaphase-promoting complex (APC), as well as the DOC1 domain of multi-domain proteins present in E3 ubiquitin ligases. E3 ubiquitin ligases mediate substrate ubiquitination (or ubiquitylation), a component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. The APC, a multi-protein complex (or cyclosome), is a cell cycle-regulated, E3 ubiquitin ligase that controls important transitions in mitosis and the G1 phase by ubiquitinating regulatory proteins, thereby targeting them for degradation. APC10-like DOC1 domains such as those present in HECT (Homologous to the E6-AP Carboxyl Terminus) and Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligase proteins, HECTD3, and CUL7, respectively, are also included in this hierarchy. CUL7 is a member of the Cullin-RING ligase family and functions as a molecular scaffold assembling a SCF-ROC1-like E3 ubiquitin ligase complex consisting of Skp1, CUL7, Fbx29 F-box protein, and ROC1 (RING-box protein 1) and promotes ubiquitination. CUL7 is a multi-domain protein with a C-terminal cullin domain that binds ROC1 and a centrally positioned APC10/DOC1 domain. HECTD3 contains a C-terminal HECT domain which contains the active site for ubiquitin transfer onto substrates, and an N-terminal APC10 domain which is responsible for substrate recognition and binding. An APC10/DOC1 domain homolog is also present in HERC2 (HECT domain and RLD2), a large multi-domain protein with three RCC1-like domains (RLDs), additional internal domains including zinc finger ZZ-type and Cyt-b5 (Cytochrome b5-like Heme/Steroid binding) domains, and a C-terminal HECT domain. Recent studies have shown that the protein complex HERC2-RNF8 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Also included in this hierarchy is an uncharacterized APC10/DOC1-like domain found in a multi-domain protein, which also contains CUB, zinc finger ZZ-type, and EF-hand domains. The APC10/DOC1 domain forms a beta-sandwich structure that is related in architecture to the galactose-binding domain-like fold; their sequences are quite dissimilar, however, and are not included here. 129 -277369 cd08162 MPP_PhoA_N Synechococcus sp. strain PCC 7942 PhoA and related proteins, N-terminal metallophosphatase domain. Synechococcus sp. strain PCC 7942 PhoA is a large atypical alkaline phosphatase. It is known to be transported across the inner cytoplasmic membrane and into the periplasmic space. In vivo inactivation of the gene encoding PhoA leads to a loss of extracellular, phosphate-regulated phosphatase activity, but does not appear to affect the cells capacity for phosphate uptake. PhoA may play a role in scavenging phosphate during growth of Synechococcus sp. strain PCC 7942 in its natural environment. PhoA belongs to a domain family which includes the bacterial enzyme UshA and several other related enzymes including SoxB, CpdB, YhcR, and CD73. All members have a similar domain architecture which includes an N-terminal metallophosphatase domain and a C-terminal nucleotidase domain. The N-terminal metallophosphatase domain belongs to a large superfamily of distantly related metallophosphatases (MPPs) that includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 325 -277370 cd08163 MPP_Cdc1 Saccharomyces cerevisiae CDC1 and related proteins, metallophosphatase domain. Cdc1 (also known as XlCdc1 in Xenopus laevis) is an endoplasmic reticulum-localized transmembrane lipid phosphatase with a metallophosphatase domain facing the ER lumen. In budding yeast, the gene encoding CDC1 is essential while nonlethal mutations cause defects in Golgi inheritance and actin polarization. Cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1 is a lipid phosphatase. Cdc1 mutant cells also have highly elevated intracellular calcium levels suggesting a possible role for Cdc1 in calcium regulation. The 5' flanking region of Cdc1 is a regulatory region with conserved binding site motifs for AP1, AP2, Sp1, NF-1 and CREB. DNA polymerase delta consists of at least four subunits - Pol3, Cdc1, Cdc27, and Cdm1. Cdc1 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 257 -277371 cd08164 MPP_Ted1 Saccharomyces cerevisiae Ted1 and related proteins, metallophosphatase domain. Saccharomyces cerevisiae Ted1 (trafficking of Emp24p/Erv25p-dependent cargo disrupted 1) is a metallophosphatase domain-containing protein which acts together with Emp24p and Erv25p in cargo exit from the ER. Ted1 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 193 -277372 cd08165 MPP_MPPE1 human MPPE1 and related proteins, metallophosphatase domain. MPPE1 is a functionally uncharacterized metallophosphatase domain-containing protein. The MPPE1 gene is located on chromosome 18 and is a candidate susceptibility gene for Bipolar disorder. MPPE1 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 156 -277373 cd08166 MPP_Cdc1_like_1 uncharacterized subgroup related to Saccharomyces cerevisiae CDC1, metallophosphatase domain. A functionally uncharacterized subgroup related to the metallophosphatase domain of Saccharomyces cerevisiae Cdc1, S. cerevisiae Ted1 and human MPPE1. Cdc1 is an endoplasmic reticulum-localized transmembrane lipid phosphatase and is a subunit of DNA polymerase delta. TED1 (trafficking of Emp24p/Erv25p-dependent cargo disrupted 1), acts together with Emp24p and Erv25p in cargo exit from the ER. The MPPE1 gene is a candidate susceptibility gene for Bipolar disorder. Proteins in this uncharacterized subgroup belong to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination. 195 -173979 cd08168 Cytochrom_C3 Heme-binding domain of the class III cytochrome C family and related proteins. This alignment models heme binding core motifs as encountered in the cytochrome C3 family and related proteins. Cytochrome C3 is a tetraheme protein found in sulfate-reducing bacteria which use either thiosulfate or sulfate as the ultimate electron acceptors. C3 is an integral part of a complex electron transfer chain. The model also contains triheme cytochromes C7 which function in electron transfer during Fe(III) respiration by Geobacter sulfurreducens (PpcA, PpcB, PpcC, PpcD, and PpcE) and four repeated core motifs as found in the 16-heme cytochrome C HmcA of Desulfovibrio vulgaris Hildenborough which plays a role in electron transfer through the membrane following periplasmic oxidation of hydrogen (resulting in sulfate reduction in the cytoplasm). 85 -341448 cd08169 DHQ-like Dehydroquinate synthase-like which includes dehydroquinate synthase, 2-deoxy-scyllo-inosose synthase, and 2-epi-5-epi-valiolone synthase. This group contains dehydroquinate synthase, 2-deoxy-scyllo-inosose synthase, and 2-epi-5-epi-valiolone synthase. These proteins exhibit the dehydroquinate synthase structural fold. Dehydroquinate synthase (DHQS) catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate (DHQ) in the second step of the shikimate pathway. This pathway involves seven sequential enzymatic steps in the conversion of erythrose 4-phosphate and phosphoenolpyruvate into chorismate for subsequent synthesis of aromatic compounds. 2-deoxy-scyllo-inosose synthase (DOIS) catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose through a multi-step reaction in the biosynthesis of aminoglycoside antibiotics. 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotics includes neomycin, kanamycin, gentamicin, and ribostamycin. 2-epi-5-epi-valiolone synthases catalyze the cyclization of sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in the biosynthesis of C(7)N-aminocyclitol-containing products. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety. The valienamine unit is responsible for their biological activities as various glycosidic hydrolases inhibitors. Two important microbial secondary metabolites, validamycin and acarbose, are used in agricultural and biomedical applications. 328 -341449 cd08170 GlyDH Glycerol dehydrogenases (GlyDH) catalyzes oxidation of glycerol to dihydroxyacetone in glycerol dissmilation. Glycerol dehydrogenases (GlyDH) is a key enzyme in the glycerol dissimilation pathway. In anaerobic conditions, many microorganisms utilize glycerol as a source of carbon through coupled oxidative and reductive pathways. One of the pathways involves the oxidation of glycerol to dihydroxyacetone with the reduction of NAD+ to NADH catalyzed by glycerol dehydrogenases. Dihydroxyacetone is then phosphorylated by dihydroxyacetone kinase and enters the glycolytic pathway for further degradation. The activity of GlyDH is zinc-dependent; the zinc ion plays a role in stabilizing an alkoxide intermediate at the active site. 351 -341450 cd08171 GlyDH-like Glycerol dehydrogenase-like. This family contains glycerol dehydrogenase (GlyDH)-like proteins that have yet to be characterized, but show sequence homology with glycerol dehydrogenase. Glycerol dehydrogenases (GlyDH) is a key enzyme in the glycerol dissimilation pathway. In anaerobic conditions, many microorganisms utilize glycerol as a source of carbon through coupled oxidative and reductive pathways. One of the pathways involves the oxidation of glycerol to dihydroxyacetone with the reduction of NAD+ to NADH catalyzed by glycerol dehydrogenases. Dihydroxyacetone is then phosphorylated by dihydroxyacetone kinase and enters the glycolytic pathway for further degradation. The activity of GlyDH is zinc-dependent; the zinc ion plays a role in stabilizing an alkoxide intermediate at the active site. 345 -341451 cd08172 GlyDH-like Glycerol_dehydrogenase-like. This family contains glycerol dehydrogenase (GlyDH)-like proteins that have yet to be characterized, but show sequence homology with glycerol dehydrogenase. Glycerol dehydrogenases (GlyDH) is a key enzyme in the glycerol dissimilation pathway. In anaerobic conditions, many microorganisms utilize glycerol as a source of carbon through coupled oxidative and reductive pathways. One of the pathways involves the oxidation of glycerol to dihydroxyacetone with the reduction of NAD+ to NADH catalyzed by glycerol dehydrogenases. Dihydroxyacetone is then phosphorylated by dihydroxyacetone kinase and enters the glycolytic pathway for further degradation. The activity of GlyDH is zinc-dependent; the zinc ion plays a role in stabilizing an alkoxide intermediate at the active site. 346 -341452 cd08173 Gro1PDH Sn-glycerol-1-phosphate dehydrogenase (Gro1PDH) catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate using either NADH or NADPH as a coenzyme. Sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261) plays an important role in the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate) of archaeal ether lipids. It catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate using either NADH or NADPH as a coenzyme. The activity is zinc-dependent. One characteristic feature of archaea is that their cellular membrane has an ether linkage between the glycerol backbone and the hydrocarbon residues. The polar lipids of the members of Archaea consist of di- and tetra-ethers of glycerol with isoprenoid alcohols bound at the sn-2 and sn-3 positions of the glycerol moiety. The archaeal polar lipids have the enantiomeric configuration of a glycerophosphate backbone [sn-glycerol-1-phosphate (G-1-P)] that is the mirror image structure of the bacterial or eukaryal counterpart [sn-glycerol- 3-phosphate (G-3-P)]. The absolute stereochemistry of the glycerol moiety in all archaeal polar lipids is opposite to that of glycerol ester lipids in bacteria and eukarya. 343 -341453 cd08174 G1PDH-like Glycerol-1-phosphate dehydrogenase-like. These glycerol-1-phosphate dehydrogenase-like proteins have not been characterized. The protein sequences have high similarity with that of glycerol-1-phosphate dehydrogenase (G1PDH) which plays a role in the synthesis of phosphoglycerolipids in Gram-positive bacterial species. It catalyzes the reversibly reduction of dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in a NADH-dependent manner. Its activity requires Ni++ ion. 332 -341454 cd08175 G1PDH Glycerol-1-phosphate dehydrogenase (G1PDH) catalyzes the reversible reduction of dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in an NADH-dependent manner. Glycerol-1-phosphate dehydrogenase (G1PDH) plays a role in the synthesis of phosphoglycerolipids in Gram-positive bacterial species. It catalyzes the reversibly reduction of dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in a NADH-dependent manner. Its activity requires a Ni++ ion. In Bacillus subtilis, it has been described as AraM gene in L-arabinose (ara) operon. AraM protein forms homodimer. 340 -341455 cd08176 LPO Lactadehyde:propanediol oxidoreductase (LPO) catalyzes the interconversion between L-lactaldehyde and L-1,2-propanediol in Escherichia coli and other enterobacteria. Lactadehyde:propanediol oxidoreductase (LPO) is a member of the group III iron-activated dehydrogenases which catalyze the interconversion between L-lactaldehyde and L-1,2-propanediol in Escherichia coli and other enterobacteria. L-fucose and L-rhamnose are used by Escherichia coli through an inducible pathway mediated by the fucose regulon comprising four linked operons fucO, fucA, fucPIK, and fucR. The fucA-encoded aldolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Under anaerobic conditions, with NADH as a cofactor, lactaldehyde is converted by a fucO-encoded lactadehyde:propanediol oxidoreductase (LPO) to L-1,2-propanediol, which is excreted as a fermentation product. In mutant strains, E. coli adapted to grow on L-1,2-propanediol, FucO catalyzes the oxidation of the polyol to L-lactaldehyde. FucO is induced regardless of the respiratory conditions of the culture, remains fully active in the absence of oxygen. In the presence of oxygen, this enzyme becomes oxidatively inactivated by a metal-catalyzed oxidation mechanism. FucO is an iron-dependent metalloenzyme that is inactivated by other metals, such as zinc, copper, or cadmium. This enzyme can also reduce glycol aldehyde with similar efficiency. Beside L-1,2-propanediol, the enzyme is also able to oxidize methanol as an alternative substrate. 378 -341456 cd08177 MAR Maleylacetate reductase is involved in many aromatic compounds degradation pathways of aerobic microbes. Maleylacetate reductase (MAR) plays an important role in the degradation of aromatic compounds in aerobic microbes. In fungi and yeasts, the enzyme is involved in the catabolism of compounds such as phenol, tyrosine, benzoate, 4-hydroxybenzoate and resorcinol. In bacteria, the enzyme contributes to the degradation of resorcinol, 2,4-dihydroxybenzoate ([beta]-resorcylate) and 2,6-dihydroxybenzoate ([gamma]-resorcylate) via hydroxyquinol and maleylacetate. Maleylacetate reductase catalyzes NADH- or NADPH-dependent reduction, at the carbon-carbon double bond, of maleylacetate or 2-chloromaleylacetate to 3-oxoadipate. In the case of 2-chloromaleylacetate, MAR initially catalyzes the NAD(P)H-dependent dechlorination to maleylacetate, which is then reduced to 3-oxoadipate. This enzyme is a homodimer and is inhibited by thiol-blocking reagents such as p-chloromercuribenzoate and Hg++, indicating that the cysteine residue is probably necessary for the catalytic activity of maleylacetate reductase. 337 -341457 cd08178 AAD_C C-terminal alcohol dehydrogenase domain of the acetaldehyde dehydrogenase-alcohol dehydrogenase bifunctional two-domain protein (AAD). This alcohol dehydrogenase domain is located on the C-terminal of a bifunctional two-domain protein. The N-terminal of the protein contains an acetaldehyde-CoA dehydrogenase domain. This protein is involved in pyruvate metabolism whereby pyruvate is converted to acetyl-CoA and formate by pyruvate formate-lysase (PFL). Under anaerobic condition, acetyl-CoA is reduced to acetaldehyde and ethanol by this two-domain protein. Acetyl-CoA is first converted into an enzyme-bound thiohemiacetal by the N-terminal acetaldehyde dehydrogenase domain. The enzyme-bound thiohemiacetal is subsequently reduced by the C-terminal NAD+-dependent alcohol dehydrogenase domain. In E. coli, this protein is called AdhE and has been shown to have pyruvate formate-lyase (PFL) deactivase activity, which leads to the inactivation of PFL, a key enzyme in anaerobic metabolism. In Escherichia coli and Entamoeba histolytica, this enzyme forms homopolymeric peptides composed of more than 20 protomers associated in a helical rod-like structure. 400 -341458 cd08179 NADPH_BDH NADPH-dependent butanol dehydrogenase involved in the butanol and ethanol formation pathway in bacteria. NADPH-dependent butanol dehydrogenase (BDH) is involved in the butanol and ethanol formation pathway of some bacteria. The fermentation process is characterized by an acid producing growth phase, followed by a solvent producing phase. The latter phase is associated with the induction of solventogenic enzymes such as butanol dehydrogenase. The activity of the enzyme requires NADPH as cofactor, as well as divalent ions zinc or iron. This family is a member of the iron-containing alcohol dehydrogenase superfamily. Protein structure has a dehydroquinate synthase-like fold. 379 -341459 cd08180 PDD 1,3-propanediol dehydrogenase (PPD) catalyzes the reduction of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol in glycerol metabolism. 1,3-propanediol dehydrogenase (PPD) plays a role in glycerol metabolism of some bacteria in anaerobic conditions. In this degradation pathway, glycerol is converted in a two-step process to 1,3-propanediol (1,3-PD) which is then excreted into the extracellular medium. The first reaction involves the transformation of glycerol into 3-hydroxypropionaldehyde (3-HPA) by a coenzyme B-12-dependent dehydratase. The second reaction involves the dismutation of the 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol by the NADH-linked 1,3-propanediol dehydrogenase (PPD). The enzyme requires iron ion for its function. Because many genes in this pathway are present in the propanediol utilization (pdu) operon, they are also named pdu genes. PPD is a member of the iron-containing alcohol dehydrogenase superfamily. The PPD structure has a dehydroquinate synthase-like fold. 333 -341460 cd08181 PPD-like 1,3-propanediol dehydrogenase-like (PPD). This family contains proteins similar to 1,3-propanediol dehydrogenase (PPD) which is a member of the iron-containing alcohol dehydrogenase superfamily, and exhibits a dehydroquinate synthase-like fold. Protein sequence similarity search and other biochemical evidences suggest that they are close to the iron-containing 1,3-propanediol dehydrogenase (EC 1.1.1.202). 1,3-propanediol dehydrogenase catalyzes the oxidation of propane-1,3-diol to 3-hydroxypropanal with the simultaneous reduction of NADP+ to NADPH. The protein structure of Thermotoga maritima TM0920 gene contains one NADP+ and one iron ion. 358 -341461 cd08182 HEPD Hydroxyethylphosphoate dehydrogenase (HEPD) catalyzes the reduction of phosphonoacetaldehyde (PnAA) to hydroxyethylphosphoate (HEP). Hydroxyethylphosphoate dehydrogenase (HEPD) catalyzes the reduction of phosphonoacetaldehyde (PnAA) to hydroxyethylphosphoate (HEP) with either NADH or NADPH as a cofactor, although NADH is the preferred cofactor. PnAA is a biosynthetic intermediate for several phosphonates such as the antibiotic fosfomycin, phosphinothricin tripeptide (PTT), and 2-aminoethylphosphonate (AEP). This enzyme is named PhpC in PTT biosynthesis pathway in Streptomyces hygroscopicus and S. viridochromogenes. 370 -341462 cd08183 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contain different protein domains. Proteins of this family have not been characterized. 377 -341463 cd08184 Fe-ADH_KdnB-like Iron-containing alcohol dehydrogenase similar to Shewanella oneidensis KdnB required for Kdo8N biosynthesis. This family contains iron-containing alcohol dehydrogenase-like proteins, many of which have not been characterized. Their specific function is unknown. The protein structure represents a dehydroquinate synthase-like fold and belongs to the iron-containing alcohol dehydrogenase-like superfamily. It is distinct from other alcohol dehydrogenases which contain different protein domains. Alcohol dehydrogenase catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron or zinc ions. This family also includes Shewanella oneidensis KdnB which is required for biosynthesis of 8-Amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N), a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella, and thought to be important for the integrity of the bacterial cell outer membrane. KdnB requires NAD(P) and zinc ion for activity. 348 -341464 cd08185 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains iron-containing alcohol dehydrogenase-like (ADH) proteins. Alcohol dehydrogenase catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase fold and is a member of the iron-containing alcohol dehydrogenase-like family. They are distinct from other alcohol dehydrogenases which contain different protein domains. Proteins of this family have not been characterized. 379 -341465 cd08186 Fe-ADH-like Iron-containing alcohol dehydrogenase. This family contains iron-containing alcohol dehydrogenase (ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. The ADH of hyperthermophilic archaeon Thermococcus hydrothermalis oxidizes a series of primary aliphatic and aromatic alcohols, preferentially from C2 to C8, but is also active towards methanol and glycerol, and is stereospecific for monoterpenes. It has been suggested that the type III ADHs in microorganisms are involved in acetaldehyde detoxication rather than in alcohol turnover. 380 -341466 cd08187 BDH Butanol dehydrogenase catalyzes the conversion of butyraldehyde to butanol with the cofactor NAD(P)H being oxidized in the process. The butanol dehydrogenase (BDH) is involved in the final step of the butanol formation pathway in anaerobic micro-organism. Butanol dehydrogenase catalyzes the conversion of butyraldehyde to butanol with the cofactor NAD(P)H being oxidized in the process. Activity in the reverse direction is 50-fold lower than that in the forward direction. The NADH-BDH has higher activity with longer chained aldehydes and is inhibited by metabolites containing an adenine moiety. This protein family belongs to the so-called iron-containing alcohol dehydrogenase superfamily. Since members of this superfamily use different divalent ions, preferentially iron or zinc, it has been suggested to be renamed to family III metal-dependent polyol dehydrogenases. This family also includes E. coli YqhD enzyme, an NADP-dependent dehydrogenase whose activity measurements with several alcohols demonstrate preference for alcohols longer than C3. The active site of YqhD contains a Zn metal, and a modified NADPH cofactor bearing OH groups on the saturated C5 and C6 atoms, possibly due to oxygen stress on the enzyme, which would functionally work under anaerobic conditions. 382 -341467 cd08188 PDDH 1,3-Propanediol (1,3-PD) dehydrogenase. This family includes 1,3-propanediol (1,3-PD) dehydrogenase, a key enzyme in the microbial production of 1,3-PD that has been previously characterized as the product of dhaT gene in Klebsiella pneumoniae. 1,3-PD dehydrogenase is a member of the family III metal-dependent polyol dehydrogenases, which are shown to require a divalent metal ion for catalysis. However, some members of this family showed a dependence on Fe(2+) or Zn(2+) for activity. 377 -341468 cd08189 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and belongs to the alcohol dehydrogenase-like superfamily. It is distinct from other alcohol dehydrogenases which contain different protein domain. Proteins of this family have not been characterized. 378 -341469 cd08190 HOT Hydroxyacid-oxoacid transhydrogenase (HOT) involved in gamma-hydroxybutyrate metabolism. This family contains hydroxyacid-oxoacid transhydrogenase (HOT), also known as D-2-hydroxyglutarate transhydrogenase. It catalyzes the conversion of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA), coupled to the stoichiometric conversion of alpha-ketoglutarate to D-2-hydroxyglutarate in gamma-Hydroxybutyrate catabolism. Unlike many other alcohols, which are oxidized by NAD-linked dehydrogenases, gamma-hydroxybutyrate is metabolized to succinate semialdehyde by hydroxyacid-oxoacid transhydrogenase which does not require free NAD or NADP; instead, it uses alpha-ketoglutarate as an acceptor, converting it to d-2-hydroxyglutarate. Alpha-ketoglutarate serves as an intermediate acceptor to regenerate NAD(P) required for the oxidation of GHB. HOT also catalyzes the reversible oxidation of a hydroxyacid obligatorily coupled to the reduction of an oxoacid, and requires no cofactor. In mammals, the HOT enzyme is located in mitochondria, and is expressed with an N-terminal mitochondrial targeting sequence. HOT enzyme is member of the metal-containing alcohol dehydrogenase family. It typically contains an iron although other metal ions may be used. 412 -341470 cd08191 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contain different protein domain. Proteins of this family have not been characterized. 392 -341471 cd08192 MAR-like Maleylacetate reductase is involved in many aromatic compounds degradation pathways of aerobic microbes. Maleylacetate reductase (MAR) plays an important role in the degradation of aromatic compounds in aerobic microbes. In fungi and yeasts, the enzyme is involved in the catabolism of compounds such as phenol, tyrosine, benzoate, 4-hydroxybenzoate and resorcinol. In bacteria, the enzyme contributes to the degradation of resorcinol, 2,4-dihydroxybenzoate ([beta]-resorcylate) and 2,6-dihydroxybenzoate ([gamma]-resorcylate) via hydroxyquinol and maleylacetate. Maleylacetate reductase (MAR) catalyzes NADH- or NADPH-dependent reduction, at the carbon-carbon double bond, of maleylacetate or 2-chloromaleylacetate to 3-oxoadipate. In the case of 2-chloromaleylacetate, MAR initially catalyzes the NAD(P)H-dependent dechlorination to maleylacetate, which is then reduced to 3-oxoadipate. This enzyme is a homodimer. It is inhibited by thiol-blocking reagents such as p-chloromercuribenzoate and Hg++, indicating that the cysteine residue is probably necessary for the catalytic activity of maleylacetate reductase. 380 -341472 cd08193 HVD 5-hydroxyvalerate dehydrogenase (HVD) catalyzes the oxidation of 5-hydroxyvalerate to 5-oxovalerate with NAD+ as cofactor. 5-hydroxyvalerate dehydrogenase (HVD) is an iron-containing (type III) NAD-dependent alcohol dehydrogenase. It plays a role in the cyclopentanol metabolism biochemical pathway. It catalyzes the oxidation of 5-hydroxyvalerate to 5-oxovalerate with NAD+ as cofactor. This cyclopentanol (cpn) degradation pathway is present in some bacteria which can use cyclopentanol as sole carbon source. In Comamonas sp. strain NCIMB 9872, this enzyme is encoded by the CpnD gene. 379 -341473 cd08194 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) most of which have not been characterized. Their specific function is unknown. The protein structure represents a dehydroquinate synthase-like fold and belongs to the alcohol dehydrogenase-like superfamily. It is distinct from other alcohol dehydrogenases which contain different protein domains. Alcohol dehydrogenase catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. 378 -341474 cd08195 DHQS Dehydroquinate synthase (DHQS) catalyzes the conversion of DAHP to DHQ in shikimate pathway for aromatic compounds synthesis. Dehydroquinate synthase (DHQS) catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate (DHQ) in the second step of the shikimate pathway. This pathway, which involves seven sequential enzymatic steps in the conversion of erythrose 4-phosphate and phosphoenolpyruvate into chorismate for subsequent synthesis of aromatic compounds, is found in bacteria, microbial eukaryotes, and plants, but not in mammals. Therefore, enzymes of this pathway are attractive targets for the development of non-toxic antimicrobial compounds, herbicides and anti-parasitic agents. The activity of DHQS requires nicotinamide adenine dinucleotide (NAD) as cofactor. A single active site in DHQS catalyzes five sequential reactions involving alcohol oxidation, phosphate elimination, carbonyl reduction, ring opening, and intramolecular aldol condensation. The binding of substrates and ligands induces domain conformational changes. In some fungi and protozoa, this domain is fused with the other four domains in shikimate pathway and forms a penta-domain AROM protein, which catalyzes steps 2-6 in the shikimate pathway. 343 -341475 cd08196 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 367 -341476 cd08197 DOIS 2-deoxy-scyllo-inosose synthase (DOIS) catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose. 2-deoxy-scyllo-inosose synthase (DOIS) catalyzes carbocycle formation from D-glucose-6-phosphate to 2-deoxy-scyllo-inosose through a multistep reaction in the biosynthesis of aminoglycoside antibiotics. 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotics includes neomycin, kanamycin, gentamicin, and ribostamycin. They are important antibacterial agents. DOIS is a homolog of the dehydroquinate synthase which catalyzes the cyclization of 3-deoxy-D-arabino-heputulosonate-7-phosphate to dehydroquinate (DHQ) in the shikimate pathway. 355 -341477 cd08198 DHQS-like Dehydroquinate synthase (DHQS) catalyzes the conversion of DAHP to DHQ in shikimate pathway for aromatic compounds synthesis. This family contains dehydroquinate synthase-like proteins. Dehydroquinate synthase (DHQS) catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate (DHQ) in the second step of the shikimate pathway. This pathway involves seven sequential enzymatic steps in the conversion of erythrose 4-phosphate and phosphoenolpyruvate into chorismate for subsequent synthesis of aromatic compounds. The activity of DHQS requires NAD as cofactor. Proteins of this family share sequence similarity and functional motifs with that of dehydroquinate synthase, but the specific function has not been characterized. 366 -341478 cd08199 EEVS 2-epi-5-epi-valiolone synthase (EEVS). 2-epi-5-epi-valiolone synthase catalyzes the cyclization of sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in the biosynthesis of C(7)N-aminocyclitol-containing products. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety. The valienamine unit is responsible for their biological activities as various glycosidic hydrolases inhibitors. Two important microbial secondary metabolites, validamycin and acarbose, are used in agricultural and biomedical applications. Validamycin A is an antifungal antibiotic which has a strong trehalase inhibitory activity and has been used to control sheath blight disease in rice caused by Rhizoctonia solani. Acarbose is an alpha-glucosidase inhibitor used for the treatment of type II insulin-independent diabetes. Salbostatin produced by Streptomyces albus also belongs to this family. It exhibits strong trehalase inhibitory activity. 349 -173828 cd08200 catalase_peroxidase_2 C-terminal non-catalytic domain of catalase-peroxidases. This is a subgroup of heme-dependent peroxidases of the plant superfamily that share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Catalase-peroxidases can exhibit both catalase and broad-spectrum peroxidase activities depending on the steady-state concentration of hydrogen peroxide. These enzymes are found in many archaeal and bacterial organisms where they neutralize potentially lethal hydrogen peroxide molecules generated during photosynthesis or stationary phase. Along with related intracellular fungal and plant peroxidases, catalase-peroxidases belong to plant peroxidase superfamily. Unlike the eukaryotic enzymes, they are typically comprised of two homologous domains that probably arose via a single gene duplication event. The heme binding motif is present only in the N-terminal domain; the function of the C-terminal domain is not clear. 297 -173829 cd08201 plant_peroxidase_like_1 Uncharacterized family of plant peroxidase-like proteins. This is a subgroup of heme-dependent peroxidases similar to plant peroxidases. Along with animal peroxidases, these enzymes belong to a group of peroxidases containing a heme prosthetic group (ferriprotoporphyrin IX) which catalyzes a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. The plant peroxidase-like superfamily is found in all three kingdoms of life and carries out a variety of biosynthetic and degradative functions. 264 -188876 cd08203 SAM_PNT Sterile alpha motif (SAM)/Pointed domain. Sterile alpha motif (SAM)/Pointed domain is found in about 40% of transcriptional regulators of ETS family (initially named for Erythroblastosis virus, E26-E Twenty Six). SAM Pointed domain containing proteins of this family additionally have a C-terminal ETS DNA-binding domain. In a few cases, SAM Pointed domain appears as a single domain protein. Members of this group are mostly involved in regulation of embryonic development and growth control in eukaryotes. SAM Pointed domains mediate protein-protein interactions. Depending on the subgroup, they can interact with other SAM Pointed domains forming homo or hetero dimers/oligomers and/or they can recruit a protein kinase to its target which can be a SAM Pointed domain containing protein itself or another protein that has no kinase docking site. Thus, SAM Pointed domains participate in transcriptional regulation and signal transduction. Some genes coding ETS family transcriptional regulators are proto-oncogenes. They are prone to chromosomal translocations resulting in gene fusions. Chimeric proteins with SAM Pointed domains were found in a number of different human tumors including myeloid leukemia, lymphoblastic leukemia, Ewing's sarcoma and primitive neuroectodermal tumor. Members of this family are potential targets for cancer therapy. 67 -350058 cd08204 ArfGap GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs). ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains. 106 -173970 cd08205 RuBisCO_IV_RLP Ribulose bisphosphate carboxylase like proteins, Rubisco-Form IV. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV, which differ in their taxonomic distribution and subunit composition. Form I-III have Rubisco activity, while Form IV, also called Rubisco-like proteins (RLP), are missing critical active site residues and therefore do not catalyze CO2 fixation. They are believed to utilize a related enzymatic mechanism, but have divergent functions, like for example 2,3-diketo-5-methylthiopentyl-1-phosphate enolase or 5-methylthio-d-ribulose 1-phosphate isomerase. 367 -173971 cd08206 RuBisCO_large_I_II_III Ribulose bisphosphate carboxylase large chain, Form I,II,III. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV, which differ in their taxonomic distribution and subunit composition. Form I-III have Rubisco activity, while Form IV, also called Rubico-like proteins (RLP), are missing critical active site residues. 414 -173972 cd08207 RLP_NonPhot Ribulose bisphosphate carboxylase like proteins from nonphototrophic bacteria. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV, which differ in their taxonomic distribution and subunit composition. Form I-III have Rubisco activity, while Form IV, also called Rubisco-like proteins (RLP), are missing critical active site residues and therefore do not catalyze CO2 fixation. They are believed to utilize a related enzymatic mechanism, but have divergent functions. The specific function of this subgroup is unknown. 406 -173973 cd08208 RLP_Photo Ribulose bisphosphate carboxylase like proteins from phototrophic bacteria. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV, which differ in their taxonomic distribution and subunit composition. Form I-III have Rubisco activity, while Form IV, also called Rubisco-like proteins (RLP), are missing critical active site residues and therefore do not catalyze CO2 fixation. They are believed to utilize a related enzymatic mechanism, but have divergent functions. The specific function of this subgroup is unknown. 424 -173974 cd08209 RLP_DK-MTP-1-P-enolase 2,3-diketo-5-methylthiopentyl-1-phosphate enolase. Ribulose bisphosphate carboxylase like proteins (RLPs) similar to B. subtilis YkrW protein, have been identified as 2,3-diketo-5-methylthiopentyl-1-phosphate enolases. They catalyze the tautomerization of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P). This is an important step in the methionine salvage pathway in which 5-methylthio-D-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine. 391 -173975 cd08210 RLP_RrRLP Ribulose bisphosphate carboxylase like proteins (RLPs) similar to R.rubrum RLP. RLP from Rhodospirillum rubrum plays a role in an uncharacterized sulfur salvage pathway and has been shown to catalyze a novel isomerization reaction that converts 5-methylthio-d-ribulose 1-phosphate to a 3:1 mixture of 1-methylthioxylulose 5-phosphate and 1-methylthioribulose 5-phosphate. 364 -173976 cd08211 RuBisCO_large_II Ribulose bisphosphate carboxylase large chain, Form II. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV , which differ in their taxonomic distribution and subunit composition. Form II is mainly found in bacteria, and forms large subunit oligomers (dimers, tetramers, etc.) that do not include small subunits. 439 -173977 cd08212 RuBisCO_large_I Ribulose bisphosphate carboxylase large chain, Form I. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV , which differ in their taxonomic distribution and subunit composition. Form I is the most abundant class, present in plants, algae, and bacteria, and forms large complexes composed of 8 large and 8 small subunits. 450 -173978 cd08213 RuBisCO_large_III Ribulose bisphosphate carboxylase large chain, Form III. Ribulose bisphosphate carboxylase (Rubisco) plays an important role in the Calvin reductive pentose phosphate pathway. It catalyzes the primary CO2 fixation step. Rubisco is activated by carbamylation of an active site lysine, stabilized by a divalent cation, which then catalyzes the proton abstraction from the substrate ribulose 1,5 bisphosphate (RuBP) and leads to the formation of two molecules of 3-phosphoglycerate. Members of the Rubisco family can be divided into 4 subgroups, Form I-IV , which differ in their taxonomic distribution and subunit composition. Form III is only found in archaea and forms large subunit oligomers (dimers or decamers) that do not include small subunits. 412 -270855 cd08215 STKc_Nek Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270856 cd08216 PK_STRAD Pseudokinase domain of STE20-related kinase adapter protein. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. LKB1 is a tumor suppressor linked to the rare inherited disease, Peutz-Jeghers syndrome, which is characterized by a predisposition to benign polyps and hyperpigmentation of the buccal mucosa. There are two forms of STRAD, alpha and beta, that complex with LKB1 and MO25. The structure of STRAD-alpha is available and shows that this protein binds ATP, has an ordered activation loop, and adopts a closed conformation typical of fully active protein kinases. It does not possess activity due to nonconservative substitutions of essential catalytic residues. ATP binding enhances the affinity of STRAD for MO25. The conformation of STRAD-alpha stabilized through ATP and MO25 may be needed to activate LKB1. The STRAD subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 315 -270857 cd08217 STKc_Nek2 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270858 cd08218 STKc_Nek1 Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek1 is associated with centrosomes throughout the cell cycle. It is involved in the formation of primary cilium and in the maintenance of centrosomes. It cycles through the nucleus and may be capable of relaying signals between the cilium and the nucleus. Nek1 is implicated in the development of polycystic kidney disease, which is characterized by benign polycystic tumors formed by abnormal overgrowth of renal epithelial cells. It appears also to be involved in DNA damage response, and may be important for both correct DNA damage checkpoint activation and DNA repair. Nek1 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -173759 cd08219 STKc_Nek3 Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek3 is primarily localized in the cytoplasm and shows no cell cycle-dependent changes in its activity. It is present in the axons of neurons and affects morphogenesis and polarity through its regulation of microtubule acetylation. Nek3 modulates the signaling of the prolactin receptor through its activation of Vav2 and contributes to prolactin-mediated motility of breast cancer cells. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -270859 cd08220 STKc_Nek8 Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 8. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek8 contains an N-terminal kinase catalytic domain and a C-terminal RCC1 (regulator of chromosome condensation) domain. A double point mutation in Nek8 causes cystic kidney disease in mice that genetically resembles human autosomal recessive polycystic kidney disease (ARPKD). Nek8 is also associated with a rare form of juvenile renal cystic disease, nephronophthisis type 9. It has been suggested that a defect in the ciliary localization of Nek8 contributes to the development of cysts manifested by these diseases. Nek8 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270860 cd08221 STKc_Nek9 Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 9. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek9, also called Nercc1, is primarily a cytoplasmic protein but can also localize in the nucleus. It is involved in modulating chromosome alignment and splitting during mitosis. It interacts with the gamma-tubulin ring complex and the Ran GTPase, and is implicated in microtubule organization. Nek9 associates with FACT (FAcilitates Chromatin Transcription) and modulates interphase progression. It also interacts with Nek6, and Nek7, during mitosis, resulting in their activation. Nek9 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270861 cd08222 STKc_Nek11 Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 11. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek11 is involved, through direct phosphorylation, in regulating the degradation of Cdc25A (Cell Division Cycle 25 homolog A), which plays a role in cell cycle progression and in activating cyclin dependent kinases. Nek11 is activated by CHK1 (CHeckpoint Kinase 1) and may be involved in the G2/M checkpoint. Nek11 may also play a role in the S-phase checkpoint as well as in DNA replication and genotoxic stress responses. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -270862 cd08223 STKc_Nek4 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek4 is highly abundant in the testis. Its specific function is unknown. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. Nek4 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270863 cd08224 STKc_Nek6_7 Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related kinase 6 and 7. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 and Nek7 are the shortest Neks, consisting only of the catalytic domain and a very short N-terminal extension. They show distinct expression patterns and both appear to be downstream substrates of Nek9. They are required for mitotic spindle formation and cytokinesis. They may also be regulators of the p70 ribosomal S6 kinase. Nek6/7 is part of a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -173765 cd08225 STKc_Nek5 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The specific function of Nek5 is unknown. Nek5 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270864 cd08226 PK_STRAD_beta Pseudokinase domain of STE20-related kinase adapter protein beta. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity.STRAD-beta is also referred to as ALS2CR2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 2 protein), since the human gene encoding it is located within the juvenile ALS2 critical region on chromosome 2q33-q34. It is not linked to the development of ALS2. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. LKB1 is a tumor suppressor linked to the rare inherited disease, Peutz-Jeghers syndrome, which is characterized by a predisposition to benign polyps and hyperpigmentation of the buccal mucosa. The STRAD-beta subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 328 -173767 cd08227 PK_STRAD_alpha Pseudokinase domain of STE20-related kinase adapter protein alpha. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. The structure of STRAD-alpha is available and shows that this protein binds ATP, has an ordered activation loop, and adopts a closed conformation typical of fully active protein kinases. It does not possess activity due to nonconservative substitutions of essential catalytic residues. ATP binding enhances the affinity of STRAD for MO25. The conformation of STRAD-alpha, stabilized through ATP and MO25, may be needed to activate LKB1. A mutation which results in a truncation of a C-terminal part of the human STRAD-alpha pseudokinase domain and disrupts its association with LKB1, leads to PMSE (polyhydramnios, megalencephaly, symptomatic epilepsy) syndrome. Several splice variants of STRAD-alpha exist which exhibit different effects on the localization and activation of LKB1. STRAD forms a complex with the scaffolding protein MO25, and the serine/threonine kinase (STK), LKB1, resulting in the activation of the kinase. In the complex, LKB1 phosphorylates and activates adenosine monophosphate-activated protein kinases (AMPKs), which regulate cell energy metabolism and cell polarity. The STRAD alpha subfamily is part of a larger superfamily that includes the catalytic domains of STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 327 -270865 cd08228 STKc_Nek6 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 6. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 is required for the transition from metaphase to anaphase. It also plays important roles in mitotic spindle formation and cytokinesis. Activated by Nek9 during mitosis, Nek6 phosphorylates Eg5, a kinesin that is important for spindle bipolarity. Nek6 localizes to spindle microtubules during metaphase and anaphase, and to the midbody during cytokinesis. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270866 cd08229 STKc_Nek7 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 7. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek7 is required for mitotic spindle formation and cytokinesis. It is enriched in the centrosome and is critical for microtubule nucleation. Nek7 is activated by Nek9 during mitosis, and may regulate the p70 ribosomal S6 kinase. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -176192 cd08230 glucose_DH Glucose dehydrogenase. Glucose dehydrogenase (GlcDH), a member of the medium chain dehydrogenase/zinc-dependent alcohol dehydrogenase-like family, catalyzes the NADP(+)-dependent oxidation of glucose to gluconate, the first step in the Entner-Doudoroff pathway, an alternative to or substitute for glycolysis or the pentose phosphate pathway. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossman fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 355 -176193 cd08231 MDR_TM0436_like Hypothetical enzyme TM0436 resembles the zinc-dependent alcohol dehydrogenases (ADH). This group contains the hypothetical TM0436 alcohol dehydrogenase from Thermotoga maritima, proteins annotated as 5-exo-alcohol dehydrogenase, and other members of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. MDR, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 361 -176194 cd08232 idonate-5-DH L-idonate 5-dehydrogenase. L-idonate 5-dehydrogenase (L-ido 5-DH ) catalyzes the conversion of L-lodonate to 5-ketogluconate in the metabolism of L-Idonate to 6-P-gluconate. In E. coli, this GntII pathway is a subsidiary pathway to the canonical GntI system, which also phosphorylates and transports gluconate. L-ido 5-DH is found in an operon with a regulator indR, transporter idnT, 5-keto-D-gluconate 5-reductase, and Gnt kinase. L-ido 5-DH is a zinc-dependent alcohol dehydrogenase-like protein. The alcohol dehydrogenase ADH-like family of proteins is a diverse group of proteins related to the first identified member, class I mammalian ADH. This group is also called the medium chain dehydrogenases/reductase family (MDR) which displays a broad range of activities and are distinguished from the smaller short chain dehydrogenases(~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal GroES-like catalytic domain. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 339 -176195 cd08233 butanediol_DH_like (2R,3R)-2,3-butanediol dehydrogenase. (2R,3R)-2,3-butanediol dehydrogenase, a zinc-dependent medium chain alcohol dehydrogenase, catalyzes the NAD(+)-dependent oxidation of (2R,3R)-2,3-butanediol and meso-butanediol to acetoin. BDH functions as a homodimer. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. 351 -176196 cd08234 threonine_DH_like L-threonine dehydrogenase. L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine, via NAD(H)-dependent oxidation. THD is a member of the zinc-requiring, medium chain NAD(H)-dependent alcohol dehydrogenase family (MDR). MDRs have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. 334 -176197 cd08235 iditol_2_DH_like L-iditol 2-dehydrogenase. Putative L-iditol 2-dehydrogenase based on annotation of some members in this subgroup. L-iditol 2-dehydrogenase catalyzes the NAD+-dependent conversion of L-iditol to L-sorbose in fructose and mannose metabolism. This enzyme is related to sorbitol dehydrogenase, alcohol dehydrogenase, and other medium chain dehydrogenase/reductases. The zinc-dependent alcohol dehydrogenase (ADH-Zn)-like family of proteins is a diverse group of proteins related to the first identified member, class I mammalian ADH. This group is also called the medium chain dehydrogenases/reductase family (MDR) to highlight its broad range of activities and to distinguish from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal GroES-like catalytic domain. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 343 -176198 cd08236 sugar_DH NAD(P)-dependent sugar dehydrogenases. This group contains proteins identified as sorbitol dehydrogenases and other sugar dehydrogenases of the medium-chain dehydrogenase/reductase family (MDR), which includes zinc-dependent alcohol dehydrogenase and related proteins. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Related proteins include threonine dehydrogenase, formaldehyde dehydrogenase, and butanediol dehydrogenase. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Horse liver alcohol dehydrogenase is a dimeric enzyme and each subunit has two domains. The NAD binding domain is in a Rossmann fold and the catalytic domain contains a zinc ion to which substrates bind. There is a cleft between the domains that closes upon formation of the ternary complex. 343 -176199 cd08237 ribitol-5-phosphate_DH ribitol-5-phosphate dehydrogenase. NAD-linked ribitol-5-phosphate dehydrogenase, a member of the MDR/zinc-dependent alcohol dehydrogenase-like family, oxidizes the phosphate ester of ribitol-5-phosphate to xylulose-5-phosphate of the pentose phosphate pathway. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 341 -176200 cd08238 sorbose_phosphate_red L-sorbose-1-phosphate reductase. L-sorbose-1-phosphate reductase, a member of the MDR family, catalyzes the NADPH-dependent conversion of l-sorbose 1-phosphate to d-glucitol 6-phosphate in the metabolism of L-sorbose to (also converts d-fructose 1-phosphate to d-mannitol 6-phosphate). The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 410 -176201 cd08239 THR_DH_like L-threonine dehydrogenase (TDH)-like. MDR/AHD-like proteins, including a protein annotated as a threonine dehydrogenase. L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Zinc-dependent ADHs are medium chain dehydrogenase/reductase type proteins (MDRs) and have a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. In addition to alcohol dehydrogenases, this group includes quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 339 -176202 cd08240 6_hydroxyhexanoate_dh_like 6-hydroxyhexanoate dehydrogenase. 6-hydroxyhexanoate dehydrogenase, an enzyme of the zinc-dependent alcohol dehydrogenase-like family of medium chain dehydrogenases/reductases catalyzes the conversion of 6-hydroxyhexanoate and NAD(+) to 6-oxohexanoate + NADH and H+. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 350 -176203 cd08241 QOR1 Quinone oxidoreductase (QOR). QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 323 -176204 cd08242 MDR_like Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group contains members identified as related to zinc-dependent alcohol dehydrogenase and other members of the MDR family, including threonine dehydrogenase. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group includes various activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 319 -176205 cd08243 quinone_oxidoreductase_like_1 Quinone oxidoreductase (QOR). NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 320 -176206 cd08244 MDR_enoyl_red Possible enoyl reductase. Member identified as possible enoyl reductase of the MDR family. 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 324 -176207 cd08245 CAD Cinnamyl alcohol dehydrogenases (CAD) and related proteins. Cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family, reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes, or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 330 -176208 cd08246 crotonyl_coA_red crotonyl-CoA reductase. Crotonyl-CoA reductase, a member of the medium chain dehydrogenase/reductase family, catalyzes the NADPH-dependent conversion of crotonyl-CoA to butyryl-CoA, a step in (2S)-methylmalonyl-CoA production for straight-chain fatty acid biosynthesis. Like enoyl reductase, another enzyme in fatty acid synthesis, crotonyl-CoA reductase is a member of the zinc-dependent alcohol dehydrogenase-like medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 393 -176209 cd08247 AST1_like AST1 is a cytoplasmic protein associated with the periplasmic membrane in yeast. This group contains members identified in targeting of yeast membrane proteins ATPase. AST1 is a cytoplasmic protein associated with the periplasmic membrane in yeast, identified as a multicopy suppressor of pma1 mutants which cause temperature sensitive growth arrest due to the inability of ATPase to target to the cell surface. This family is homologous to the medium chain family of dehydrogenases and reductases. Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 352 -176210 cd08248 RTN4I1 Human Reticulon 4 Interacting Protein 1. Human Reticulon 4 Interacting Protein 1 is a member of the medium chain dehydrogenase/ reductase (MDR) family. Riticulons are endoplasmic reticulum associated proteins involved in membrane trafficking and neuroendocrine secretion. The MDR/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 350 -176211 cd08249 enoyl_reductase_like enoyl_reductase_like. Member identified as possible enoyl reductase of the MDR family. 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 339 -176212 cd08250 Mgc45594_like Mgc45594 gene product and other MDR family members. Includes Human Mgc45594 gene product of undetermined function. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 329 -176213 cd08251 polyketide_synthase polyketide synthase. Polyketide synthases produce polyketides in step by step mechanism that is similar to fatty acid synthesis. Enoyl reductase reduces a double to single bond. Erythromycin is one example of a polyketide generated by 3 complex enzymes (megasynthases). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 303 -176214 cd08252 AL_MDR Arginate lyase and other MDR family members. This group contains a structure identified as an arginate lyase. Other members are identified quinone reductases, alginate lyases, and other proteins related to the zinc-dependent dehydrogenases/reductases. QOR catalyzes the conversion of a quinone and NAD(P)H to a hydroquinone and NAD(P+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 336 -176215 cd08253 zeta_crystallin Zeta-crystallin with NADP-dependent quinone reductase activity (QOR). Zeta-crystallin is a eye lens protein with NADP-dependent quinone reductase activity (QOR). It has been cited as a structural component in mammalian eyes, but also has homology to quinone reductases in unrelated species. QOR catalyzes the conversion of a quinone and NAD(P)H to a hydroquinone and NAD(P+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 325 -176216 cd08254 hydroxyacyl_CoA_DH 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase, N-benzyl-3-pyrrolidinol dehydrogenase, and other MDR family members. This group contains enzymes of the zinc-dependent alcohol dehydrogenase family, including members (aka MDR) identified as 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase and N-benzyl-3-pyrrolidinol dehydrogenase. 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase catalyzes the conversion of 6-Hydroxycyclohex-1-enecarbonyl-CoA and NAD+ to 6-Ketoxycyclohex-1-ene-1-carboxyl-CoA,NADH, and H+. This group displays the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 338 -176217 cd08255 2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_like 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members. This subgroup of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family has members identified as 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase and alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 277 -176218 cd08256 Zn_ADH2 Alcohol dehydrogenases of the MDR family. This group has the characteristic catalytic and structural zinc-binding sites of the zinc-dependent alcohol dehydrogenases of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 350 -176219 cd08258 Zn_ADH4 Alcohol dehydrogenases of the MDR family. This group shares the zinc coordination sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 306 -176220 cd08259 Zn_ADH5 Alcohol dehydrogenases of the MDR family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. This group contains proteins that share the characteristic catalytic and structural zinc-binding sites of the zinc-dependent alcohol dehydrogenase family. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48), then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 332 -176221 cd08260 Zn_ADH6 Alcohol dehydrogenases of the MDR family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. This group has the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 345 -176222 cd08261 Zn_ADH7 Alcohol dehydrogenases of the MDR family. This group contains members identified as related to zinc-dependent alcohol dehydrogenase and other members of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group includes various activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 337 -176223 cd08262 Zn_ADH8 Alcohol dehydrogenases of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 341 -176224 cd08263 Zn_ADH10 Alcohol dehydrogenases of the MDR family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 367 -176225 cd08264 Zn_ADH_like2 Alcohol dehydrogenases of the MDR family. This group resembles the zinc-dependent alcohol dehydrogenases of the medium chain dehydrogenase family. However, this subgroup does not contain the characteristic catalytic zinc site. Also, it contains an atypical structural zinc-binding pattern: DxxCxxCxxxxxxxC. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 325 -176226 cd08265 Zn_ADH3 Alcohol dehydrogenases of the MDR family. This group resembles the zinc-dependent alcohol dehydrogenase and has the catalytic and structural zinc-binding sites characteristic of this group. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. 384 -176227 cd08266 Zn_ADH_like1 Alcohol dehydrogenases of the MDR family. This group contains proteins related to the zinc-dependent alcohol dehydrogenases. However, while the group has structural zinc site characteristic of these enzymes, it lacks the consensus site for a catalytic zinc. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 342 -176228 cd08267 MDR1 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 319 -176229 cd08268 MDR2 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 328 -176230 cd08269 Zn_ADH9 Alcohol dehydrogenases of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. 312 -176231 cd08270 MDR4 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 305 -176232 cd08271 MDR5 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 325 -176233 cd08272 MDR6 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 326 -176234 cd08273 MDR8 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 331 -176235 cd08274 MDR9 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 350 -176236 cd08275 MDR3 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 337 -176237 cd08276 MDR7 Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 336 -176238 cd08277 liver_alcohol_DH_like Liver alcohol dehydrogenase. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. There are 7 vertebrate ADH 7 classes, 6 of which have been identified in humans. Class III, glutathione-dependent formaldehyde dehydrogenase, has been identified as the primordial form and exists in diverse species, including plants, micro-organisms, vertebrates, and invertebrates. Class I, typified by liver dehydrogenase, is an evolving form. Gene duplication and functional specialization of ADH into ADH classes and subclasses created numerous forms in vertebrates. For example, the A, B and C (formerly alpha, beta, gamma) human class I subunits have high overall structural similarity, but differ in the substrate binding pocket and therefore in substrate specificity. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48) , then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 365 -176239 cd08278 benzyl_alcohol_DH Benzyl alcohol dehydrogenase. Benzyl alcohol dehydrogenase is similar to liver alcohol dehydrogenase, but has some amino acid substitutions near the active site, which may determine the enzyme's specificity of oxidizing aromatic substrates. Also known as aryl-alcohol dehydrogenases, they catalyze the conversion of an aromatic alcohol + NAD+ to an aromatic aldehyde + NADH + H+. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 365 -176240 cd08279 Zn_ADH_class_III Class III alcohol dehydrogenase. Glutathione-dependent formaldehyde dehydrogenases (FDHs, Class III ADH) are members of the zinc-dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. Class III ADH are also known as glutathione-dependent formaldehyde dehydrogenase (FDH), which convert aldehydes to corresponding carboxylic acid and alcohol. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 363 -176241 cd08281 liver_ADH_like1 Zinc-dependent alcohol dehydrogenases (ADH) and class III ADG (AKA formaldehyde dehydrogenase). NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. This group contains members identified as zinc dependent alcohol dehydrogenases (ADH), and class III ADG (aka formaldehyde dehydrogenase, FDH). Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. Class III ADH are also know as glutathione-dependent formaldehyde dehydrogenase (FDH), which convert aldehydes to the corresponding carboxylic acid and alcohol. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 371 -176242 cd08282 PFDH_like Pseudomonas putida aldehyde-dismutating formaldehyde dehydrogenase (PFDH). Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. Unlike typical FDH, Pseudomonas putida aldehyde-dismutating FDH (PFDH) is glutathione-independent. PFDH converts 2 molecules of aldehydes to corresponding carboxylic acid and alcohol. MDH family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Like the zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), these tetrameric FDHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains and a structural zinc in a lobe of the catalytic domain. Unlike ADH, where NAD(P)(H) acts as a cofactor, NADH in FDH is a tightly bound redox cofactor (similar to nicotinamide proteins). The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 375 -176243 cd08283 FDH_like_1 Glutathione-dependent formaldehyde dehydrogenase related proteins, child 1. Members identified as glutathione-dependent formaldehyde dehydrogenase(FDH), a member of the zinc-dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. MDH family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Like many zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), these FDHs form dimers, with 4 zinc ions per dimer. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 386 -176244 cd08284 FDH_like_2 Glutathione-dependent formaldehyde dehydrogenase related proteins, child 2. Glutathione-dependent formaldehyde dehydrogenases (FDHs) are members of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD to formate and NADH. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. These tetrameric FDHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains and a structural zinc in a lobe of the catalytic domain. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 344 -176245 cd08285 NADP_ADH NADP(H)-dependent alcohol dehydrogenases. This group is predominated by atypical alcohol dehydrogenases; they exist as tetramers and exhibit specificity for NADP(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Like other zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), tetrameric ADHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains; however, they do not have and a structural zinc in a lobe of the catalytic domain. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 351 -176246 cd08286 FDH_like_ADH2 formaldehyde dehydrogenase (FDH)-like. This group is related to formaldehyde dehydrogenase (FDH), which is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. This family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Another member is identified as a dihydroxyacetone reductase. Like the zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), tetrameric FDHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains and a structural zinc in a lobe of the catalytic domain. Unlike ADH, where NAD(P)(H) acts as a cofactor, NADH in FDH is a tightly bound redox cofactor (similar to nicotinamide proteins). The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 345 -176247 cd08287 FDH_like_ADH3 formaldehyde dehydrogenase (FDH)-like. This group contains proteins identified as alcohol dehydrogenases and glutathione-dependant formaldehyde dehydrogenases (FDH) of the zinc-dependent/medium chain alcohol dehydrogenase family. The MDR family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. FDH converts formaldehyde and NAD to formate and NADH. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. 345 -176248 cd08288 MDR_yhdh Yhdh putative quinone oxidoreductases. Yhdh putative quinone oxidoreductases (QOR). QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 324 -176249 cd08289 MDR_yhfp_like Yhfp putative quinone oxidoreductases. yhfp putative quinone oxidoreductases (QOR). QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 326 -176250 cd08290 ETR 2-enoyl thioester reductase (ETR). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 341 -176251 cd08291 ETR_like_1 2-enoyl thioester reductase (ETR) like proteins, child 1. 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 324 -176252 cd08292 ETR_like_2 2-enoyl thioester reductase (ETR) like proteins, child 2. 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. 324 -176253 cd08293 PTGR2 Prostaglandin reductase. Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 345 -176254 cd08294 leukotriene_B4_DH_like 13-PGR is a bifunctional enzyme with delta-13 15-prostaglandin reductase and leukotriene B4 12 hydroxydehydrogenase activity. Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto- 13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 329 -176255 cd08295 double_bond_reductase_like Arabidopsis alkenal double bond reductase and leukotriene B4 12-hydroxydehydrogenase. This group includes proteins identified as the Arabidopsis alkenal double bond reductase and leukotriene B4 12-hydroxydehydrogenase. The Arabidopsis enzyme, a member of the medium chain dehydrogenase/reductase family, catalyzes the reduction of 7-8-double bond of phenylpropanal substrates as a plant defense mechanism. Prostaglandins and related eicosanoids (lipid mediators involved in host defense and inflamation) are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. Leukotriene B4 (LTB4) can be metabolized by LTB4 20-hydroxylase in inflamatory cells, and in other cells by bifunctional LTB4 12-HD/PGR. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. 338 -176256 cd08296 CAD_like Cinnamyl alcohol dehydrogenases (CAD). Cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family, reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADHs), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 333 -176257 cd08297 CAD3 Cinnamyl alcohol dehydrogenases (CAD). These alcohol dehydrogenases are related to the cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Cinnamyl alcohol dehydrogenases (CAD) reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 341 -176258 cd08298 CAD2 Cinnamyl alcohol dehydrogenases (CAD). These alcohol dehydrogenases are related to the cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Cinnamyl alcohol dehydrogenases (CAD) reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. 329 -176259 cd08299 alcohol_DH_class_I_II_IV class I, II, IV alcohol dehydrogenases. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. This group includes alcohol dehydrogenases corresponding to mammalian classes I, II, IV. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48) , then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. 373 -176260 cd08300 alcohol_DH_class_III class III alcohol dehydrogenases. Members identified as glutathione-dependent formaldehyde dehydrogenase(FDH), a member of the zinc dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. MDH family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes or ketones. Like many zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), these FDHs form dimers, with 4 zinc ions per dimer. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 368 -176261 cd08301 alcohol_DH_plants Plant alcohol dehydrogenase. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. There are 7 vertebrate ADH 7 classes, 6 of which have been identified in humans. Class III, glutathione-dependent formaldehyde dehydrogenase, has been identified as the primordial form and exists in diverse species, including plants, micro-organisms, vertebrates, and invertebrates. Class I, typified by liver dehydrogenase, is an evolving form. Gene duplication and functional specialization of ADH into ADH classes and subclasses created numerous forms in vertebrates. For example, the A, B and C (formerly alpha, beta, gamma) human class I subunits have high overall structural similarity, but differ in the substrate binding pocket and therefore in substrate specificity. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48) , then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. 369 -176720 cd08304 DD Death Domain Superfamily of protein-protein interaction domains. The Death Domain (DD) superfamily includes the DD, Pyrin, CARD (Caspase activation and recruitment domain) and DED (Death Effector Domain) families. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. They are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways including those that impact innate immunity, inflammation, differentiation, and cancer. 69 -260019 cd08305 Pyrin Pyrin: a protein-protein interaction domain. The Pyrin domain (or PYD), also called DAPIN or PAAD, is a subfamily of the Death Domain (DD) superfamily and it functions in several signaling pathways. The Pyrin domain is found at the N-terminus of a variety of proteins and serves as a linker that recruits other domains into signaling complexes. Pyrin-containing proteins include NALPs, ASC (Apoptosis-associated speck-like protein containing a CARD), and the interferon-inducible p200 (IFI-200) family of proteins which includes the human IFI-16, myeloid cell nuclear differentiation antigen (MNDA) and absent in melanoma (AIM) 2. NALPs are members of the NBS-LRR family of proteins possessing a tripartite domain structure including a C-terminal LRR (leucine-rich repeats), a central nucleotide-binding site (NBS) domain or NACHT (for neuronal apoptosis inhibitor protein, CIITA, HET-E and TP1), and an N-terminal protein-protein interaction domain, which is a Pyrin domain in the case of NALPs. ASC and NALPs are involved in the regulation of inflammation. ASC, NALP1 and NALP3 are involved in the assembly of the 'inflammasome', a multiprotein platform which is formed in response to infection or injury and is responsible for caspase-1 activation and regulation of IL-1beta maturation. NALP12 functions as a negative regulator of inflammation. The p200 proteins are involved in the regulation of cell cycle and differentiation. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including Caspase activation and recruitment domain (CARD) and Death Effector Domain (DED). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 73 -260020 cd08306 Death_FADD Fas-associated Death Domain protein-protein interaction domain. Death domain (DD) found in FAS-associated via death domain (FADD). FADD is a component of the death-inducing signaling complex (DISC) and serves as an adaptor in the signaling pathway of death receptor proteins. It modulates apoptosis as well as non-apoptotic processes such as cell cycle progression, survival, innate immune signaling, and hematopoiesis. FADD contains an N-terminal DED and a C-terminal DD. Its DD interacts with the DD of the activated death receptor, FAS, and its DED recruits the initiator caspases, caspase-8 and -10, to the DISC complex via a homotypic interaction with the N-terminal DED of the caspase. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. 85 -260021 cd08307 Death_Pelle Death domain of the protein kinase Pelle. Death domain (DD) of the protein kinase Pelle from Drosophila melanogaster and similar proteins. In Drosophila, interaction between the DDs of Tube and Pelle is an important component of the Toll pathway, which functions in establishing dorsoventral polarity in embryos and in mediating innate immune responses to pathogens. Tube and Pelle transmit the signal from the Toll receptor to the Dorsal/Cactus complex. Pelle also functions in photoreceptor axon targeting. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 97 -260022 cd08308 Death_Tube Death domain of Tube. Death domains (DDs) similar to the DD in the protein Tube from Drosophila melanogaster. In Drosophila, interaction between the DDs of Tube and Pelle is an important component of the Toll pathway, which functions in establishing dorsoventral polarity in embryos and also in mediating innate immune response to pathogens. Tube and Pelle transmit the signal from the Toll receptor to the Dorsal/Cactus complex. Some members of this subfamily contain a C-terminal kinase domain, like Pelle, in addition to the DD. Tube has no counterpart in vertebrates. It contains an N-terminal DD and a C-terminal region with five copies of the Tube repeat, an 8-amino acid motif. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 128 -260023 cd08309 Death_IRAK Death domain of Interleukin-1 Receptor-Associated Kinases. Death Domains (DDs) found in Interleukin-1 (IL-1) Receptor-Associated Kinases (IRAK1-4) and similar proteins. IRAKs are essential components of innate immunity and inflammation in mammals and other vertebrates. All four types are involved in signal transduction involving IL-1 and IL-18 receptors, Toll-like receptors, nuclear factor-kappaB, and mitogen-activated protein kinase pathways. IRAK1 and IRAK4 are active kinases while IRAK2 and IRAK-M (also called IRAK3) are inactive. In general, IRAKs are expressed ubiquitously, except for IRAK-M which is detected only in macrophages. The insect homologs, Pelle and Tube, are important components of the Toll pathway, which functions in establishing dorsoventral polarity in embryos and also in the innate immune response. Most members have an N-terminal DD followed by a kinase domain. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 88 -260024 cd08310 Death_NFkB-like Death domain of Nuclear Factor-KappaB precursor proteins. Death Domain (DD) of Nuclear Factor-KappaB (NF-kB) precursor proteins. The NF-kB family of transcription factors play a central role in cardiovascular growth, stress response, and inflammation by controlling the expression of a network of different genes. There are five NF-kB proteins, all containing an N-terminal REL Homology Domain (RHD). Two of these, NF-kB1 and NF-kB2 are produced from the processing of the precursor proteins p105 and p100, respectively. In addition to RHD, p105 and p100 contain ANK repeats and a C-terminal DD. NF-kBs are regulated by the Inhibitor of NF-kB (IkB) Kinase (IKK) complex through classical and non-canonical pathways, which differ in the IKK subunits involved and downstream targets. IKKs facilitate the release of NF-kB dimers from an inactive state, allowing them to migrate to the nucleus where they regulate gene transcription. The precursor proteins p105 and p100 function as IkBs and as NF-kB proteins after being processed by the proteasome. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 72 -260025 cd08311 Death_p75NR Death domain of p75 Neurotrophin Receptor. Death Domain (DD) found in p75 neurotrophin receptor (p75NTR, NGFR, TNFRSF16). p75NTR binds members of the neurotrophin (NT) family including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and NT3, among others. It contains an NT-binding extracellular region that bears four cysteine-rich repeats, a transmembrane domain, and an intracellular DD. p75NTR plays roles in the immune, vascular, and nervous systems, and has been shown to promote cell death or survival, and to induce neurite outgrowth or collapse depending on its ligands and co-receptors. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 80 -260026 cd08312 Death_MyD88 Death domain of Myeloid Differentation primary response protein MyD88. Death Domain (DD) of Myeloid Differentiation primary response protein 88 (MyD88). MyD88 is an adaptor protein involved in interleukin-1 receptor (IL-1R)- and Toll-like receptor (TLR)-induced activation of nuclear factor-kappaB (NF-kB) and mitogen activated protein kinase pathways that lead to the induction of proinflammatory cytokines. It is a key component in the signaling pathway of pathogen recognition in the innate immune system. MyD88 contains an N-terminal DD and a C-terminal Toll/IL-1 Receptor (TIR) homology domain that mediates interaction with TLRs and IL-1R. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 79 -176729 cd08313 Death_TNFR1 Death domain of Tumor Necrosis Factor Receptor 1. Death Domain (DD) found in tumor necrosis factor receptor-1 (TNFR-1). TNFR-1 has many names including TNFRSF1A, CD120a, p55, p60, and TNFR60. It activates two major intracellular signaling pathways that lead to the activation of the transcription factor NF-kB and the induction of cell death. Upon binding of its ligand TNF, TNFR-1 trimerizes which leads to the recruitment of an adaptor protein named TNFR-associated death domain protein (TRADD) through a DD/DD interaction. Mutations in the TNFRSF1A gene causes TNFR-associated periodic syndrome (TRAPS), a rare disorder characterized recurrent fever, myalgia, abdominal pain, conjunctivitis and skin eruptions. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 80 -260027 cd08315 Death_TRAILR_DR4_DR5 Death domain of Tumor necrosis factor-Related Apoptosis-Inducing Ligand Receptors. Death Domain (DD) found in Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) Receptors. In mammals, this family includes TRAILR1 (also called DR4 or TNFRSF10A) and TRAILR2 (also called DR5, TNFRSF10B, or KILLER). They function as receptors for the cytokine TRAIL and are involved in apoptosis signaling pathways. TRAIL preferentially induces apoptosis in cancer cells while exhibiting little toxicity in normal cells. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 88 -260028 cd08316 Death_FAS_TNFRSF6 Death domain of FAS or TNF receptor superfamily member 6. Death Domain (DD) found in the FS7-associated cell surface antigen (FAS). FAS, also known as TNFRSF6 (TNF receptor superfamily member 6), APT1, CD95, FAS1, or APO-1, together with FADD (Fas-associating via Death Domain) and caspase 8, is an integral part of the death inducing signalling complex (DISC), which plays an important role in the induction of apoptosis and is activated by binding of the ligand FasL to FAS. FAS also plays a critical role in self-tolerance by eliminating cell types (autoreactive T and B cells) that contribute to autoimmunity. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 94 -260029 cd08317 Death_ank Death domain associated with Ankyrins. Death Domain (DD) associated with Ankyrins. Ankyrins are modular proteins comprising three conserved domains, an N-terminal membrane-binding domain containing ANK repeats, a spectrin-binding domain and a C-terminal DD. Ankyrins function as adaptor proteins and they interact, through ANK repeats, with structurally diverse membrane proteins, including ion channels/pumps, calcium release channels, and cell adhesion molecules. They play critical roles in the proper expression and membrane localization of these proteins. In mammals, this family includes ankyrin-R for restricted (or ANK1), ankyrin-B for broadly expressed (or ANK2) and ankyrin-G for general or giant (or ANK3). They are expressed in different combinations in many tissues and play non-overlapping functions. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260030 cd08318 Death_NMPP84 Death domain of Nuclear Matrix Protein P84. Death domain (DD) found in the Nuclear Matrix Protein P84 (also known as HPR1 or THOC1). HPR1/p84 resides in the nuclear matrix and is part of the THO complex, also called TREX (transcription/export) complex, which functions in mRNP biogenesis at the interface between transcription and export of mRNA from the nucleus. Mice lacking THOC1 have abnormal testis development and are sterile. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260031 cd08319 Death_RAIDD Death domain of RIP-associated ICH-1 homologous protein with a death domain. Death domain (DD) of RAIDD (RIP-associated ICH-1 homologous protein with a death domain), also known as CRADD (Caspase and RIP adaptor). RAIDD is an adaptor protein that together with the p53-inducible protein PIDD and caspase-2, forms the PIDDosome complex, which is required for caspase-2 activation and plays a role in mediating stress-induced apoptosis. RAIDD contains an N-terminal Caspase Activation and Recruitment Domain (CARD), which interacts with the caspase-2 CARD, and a C-terminal DD, which interacts with the DD of PIDD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD, DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -260032 cd08320 Pyrin_NALPs Pyrin death domain found in NALP proteins. Pyrin Death Domain found in NALP (NACHT, LRR and PYD domains) proteins including NALP1 (CARD7, NLRP1), NALP3 (NLRP3, Cryopyrin, CIAS1), and NALP12 (NLRP12, Monarch-1), among others. Mammals contains at least 14 NALP proteins, named NALP1-14 (or NLRP1-14). NALPs are members of the NBS-LRR family of proteins possessing a tripartite domain structure including a C-terminal LRR (leucine-rich repeats), a central nucleotide-binding site (NBS) domain or NACHT (for neuronal apoptosis inhibitor protein, CIITA, HET-E and TP1), and an N-terminal protein-protein interaction domain, which is a Pyrin domain in the case of NALPs. The NBS-LRR family is also referred to as the NLR (Nod-like Receptor) or CATERPILLAR (for CARD, transcription enhancer, R-(purine)-binding, pyrin, lots of LRRs) family. NALP1 contains an additional Caspase activation and recruitment domain (CARD) at the C-terminus. NALP1 and NALP3 are both involved in the assembly of the 'inflammasome', a multiprotein platform which is formed in response to infection or injury and is responsible for caspase-1 activation and regulation of IL-1beta maturation. NALP1-inflammasomes recognize specific substances while NALP3-inflammasomes responds to many diverse triggers. Mutations in the NALP3 gene are associated with a broad spectrum of autoinflammatory disorders including Muckle-Wells Syndrome (MWS), familial cold autoinflammatory syndrome (FCAS), and chronic neurologic cutaneous and articular syndrome (CINCA). NALP12 functions as a negative regulator of inflammation. In general, Pyrin is a subfamily of the Death Domain (DD) superfamily and functions in several signaling pathways. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260033 cd08321 Pyrin_ASC-like Pyrin Death Domain found in ASC. Pyrin Death Domain found in ASC (Apoptosis-associated speck-like protein containing a CARD) and similar proteins. ASC is an adaptor molecule that functions in the assembly of the 'inflammasome', a multiprotein platform, which is responsible for caspase-1 activation and regulation of IL-1beta maturation. ASC contains two domains from the Death Domain (DD) superfamily, an N-terminal pyrin-like domain and a C-terminal Caspase activation and recruitment domain (CARD). Through these 2 domains, ASC serves as an adaptor for inflammasome integrity and oligomerizes to form supramolecular assemblies. Included in this family is human PYNOD (also known as NLRP10 or NOD8) which via its Pyrin domain suppresses oligomerization of ASC, and ASC-mediated NF-kappaB activation. Other members of this subfamily are associated with ATPase domains and their function remains unknown. In general, Pyrin is a subfamily of the DD superfamily and functions in several signaling pathways. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD and Death Effector Domain (DED). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 82 -260034 cd08323 CARD_APAF1 Caspase activation and recruitment domain similar to that found in Apoptotic Protease-Activating Factor 1. Caspase activation and recruitment domain (CARD) similar to that found in apoptotic protease-activating factor 1 (APAF-1), which is an activator of caspase-9. APAF-1 contains WD-40 repeats, a CARD, and an ATPase domain. Upon stimulation, APAF-1, together with caspase-9, forms the heptameric 'apoptosome', which leads to the processing and activation of caspase-9, starting a caspase cascade which leads to apoptosis. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260035 cd08324 CARD_NOD1_CARD4 Caspase activation and recruitment domain similar to that found in NOD1. Caspase activation and recruitment domain (CARD) found in human NOD1 (CARD4) and similar proteins. NOD1 is a member of the Nod-like receptor (NLR) family, which plays a central role in the innate immune response. NLRs typically contain an N-terminal effector domain, a central nucleotide-binding domain and a C-terminal ligand-binding region of several leucine-rich repeats (LRRs). In NOD1, as well as NOD2, the N-terminal effector domain is a CARD. Nod1-CARD has been shown to interact with the CARD domain of the downstream effector RICK (RIP2, CARDIAK), a serine/threonine kinase. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 85 -260036 cd08325 CARD_CASP1-like Caspase activation and recruitment domain found in Caspase-1 and related proteins. Caspase activation and recruitment domain (CARD) similar to those found in Caspase-1 (CASP1, ICE) and related proteins, including CARD-only proteins such as ICEBERG or CARD18, INCA (CARD17), CARD16 (COP1, PSEUDO-ICE), CARD8 (DACAR, NDPP1, TUCAN), and CARD12 (NLRC4), as well as ICE-like caspases such as CASP12, CASP5 (ICH-3) and CASP4 (TX, ICH-2). Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. CASP1 plays a central role in the cellular response to a wide variety of microbial and non-microbial stimuli, being activated by the inflammasome or the pyroptosome. CARD8 binds itself and the initiator caspase-9, interfering with the binding of APAF-1 and suppressing caspase-9 activation. CARD12 is a Nod-like receptor (NLR) that plays an important role in the innate immune response to Gram-negative bacteria. Caspase-4 (CASP4), -5 (CASP5), and -12 (CASP12) are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -176740 cd08326 CARD_CASP9 Caspase activation and recruitment domain of Caspase-9. Caspase activation and recruitment domain (CARD) similar to that found in caspase-9 (CASP9, MCH6, APAF3), which interacts with the CARD of apoptotic protease-activating factor 1 (APAF-1). Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-9 is the initiator caspase associated with the intrinsic or mitochondrial pathway of apoptosis, induced by many pro-apoptotic signals. Together with APAF-1, it forms the heptameric 'apoptosome' in response to the release of cytochrome c from mitochondria. Activated caspase-9 cleaves and activates downstream effector caspases, like caspase-3, caspase-6, and caspase-7, resulting in apoptosis. In general, CARDs are death domains (DDs) associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260037 cd08327 CARD_RAIDD Caspase activation and recruitment domain of RIP-associated ICH-1 homologous protein with a death domain. Caspase activation and recruitment domain (CARD) of RAIDD (RIP-associated ICH-1 homologous protein with a death domain), also known as CRADD (Caspase and RIP adaptor). RAIDD is an adaptor protein that together with the p53-inducible protein PIDD and caspase-2, forms the PIDDosome complex, which is required for caspase-2 activation and plays a role in mediating stress-induced apoptosis. RAIDD contains an N-terminal CARD, which interacts with the caspase-2 CARD, and a C-terminal Death domain (DD), which interacts with the DD of PIDD. In general, CARDs are DDs associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 94 -260038 cd08329 CARD_BIRC2_BIRC3 Caspase activation and recruitment domain found in Baculoviral IAP repeat-containing proteins, BIRC2 (c-IAP1) and BIRC3 (c-IAP2). Caspase activation and recruitment domain (CARD) similar to those found in Baculoviral IAP repeat (BIR)-containing protein 2 (BIRC2) or cellular Inhibitor of Apoptosis Protein 1 (c-IAP1), and BIRC3 (or c-IAP2). IAPs are anti-apoptotic proteins that contain at least one BIR domain. Most IAPs also contain a C-terminal RING domain. In addition, both BIRC2 and BIRC3 contain a CARD. BIRC2 and BIRC3, through their binding with TRAF (TNF receptor-associated factor) 2, are recruited to TNFR-1/2 signaling complexes, where they regulate caspase-8 activity. They also play important roles in pro-survival NF-kB signaling pathways. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 94 -260039 cd08330 CARD_ASC_NALP1 Caspase activation and recruitment domain found in Human ASC, NALP1, and similar proteins. Caspase activation and recruitment domain (CARD) similar to those found in human ASC (Apoptosis-associated speck-like protein containing a CARD) and NALP1 (CARD7, NLRP1). ASC, an adaptor molecule, and NALP1, a member of the Nod-like receptor (NLR) family, are involved in the assembly of the 'inflammasome', a multiprotein platform, which is responsible for caspase-1 activation and regulation of IL-1beta maturation. In general, CARDs are death domains (DDs) associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 81 -260040 cd08332 CARD_CASP2 Caspase activation and recruitment domain of Caspase-2. Caspase activation and recruitment domain (CARD) similar to that found in caspase-2. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Caspase-2 (also known as ICH1, NEDD2, or CASP2) is one of the most evolutionarily conserved caspases, and plays a role in apoptosis, DNA damage response, cell cycle regulation, and tumor suppression. It is localized in the nucleus and exhibits properties of both an initiator and an effector caspase. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 87 -260041 cd08333 DED_Caspase_8_r1 Death effector domain, repeat 1, of Caspase-8. Death effector domain (DED) found in caspase-8 (CASP8, FLICE), repeat 1. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 is an initiator of death receptor mediated apoptosis. Together with FADD, caspase-10, and the pseudo-caspase c-FLIP, it forms the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 also plays many important non-apoptotic functions including roles in embryonic development, cell adhesion and motility, immune cell proliferation and differentiation, T-cell activation, and NFkappaB signaling. It contains two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 82 -260042 cd08334 DED_Caspase_8_10_r2 Death effector domain, repeat 2, of initator caspases 8 and 10. Death Effector Domain (DED) found in caspase-8 and caspase-10, repeat 2. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 and -10 are the initiators of death receptor mediated apoptosis, and they play partially redundant roles. Together with FADD and the pseudo-caspase c-FLIP, they form the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 and -10 also play important functions in cell adhesion and motility. They contain two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -260043 cd08336 DED_FADD Death Effector Domain found in Fas-Associated via Death Domain. Death Effector Domain (DED) found in Fas-Associated via Death Domain (FADD). DEDs comprise a subfamily of the Death Domain (DD) superfamily. FADD is a component of the death-inducing signaling complex (DISC) and serves as an adaptor in the signaling pathway of death receptor proteins. It modulates apoptosis as well as non-apoptotic processes such as cell cycle progression, survival, innate immune signaling, and hematopoiesis. FADD contains an N-terminal DED and a C-terminal DD. Its DD interacts with the DD of the activated death receptor and its DED recruits the initiator caspases 8 and 10 to the DISC complex via a homotypic interaction with the N-terminal DED of the caspase. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. 82 -260044 cd08337 DED_c-FLIP_r1 Death Effector Domain, repeat 1, of cellular FLICE-Inhibitory Protein. Death Effector Domain (DED), repeat 1, similar to that found in FLICE-inhibitory protein (c-FLIP/CASH, also known as Casper/iFLICE/FLAME-1/CLARP/MRIT/usurpin). c-FLIP is a catalytically inactive homolog of the initator procaspases-8 and -10. It negatively influences apoptotic signaling by interfering with the efficient formation of the Death Inducing Signalling Complex (DISC). At low levels, c-FLIP has been shown to enhance apoptotic signaling by allosterically activating caspase-8. As a modulator of the initiator caspases, c-FLIP regulates life and death in various types of cells and tissues. All members contain two N-terminal DEDs and a C-terminal pseudo-caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 80 -260045 cd08338 DED_PEA15 Death Effector Domain of Astrocyte phosphoprotein PEA-15. Death Effector Domain (DED) similar to that found in PEA-15 (Astrocyte phosphoprotein PEA-15). PEA-15 is a multifunctional phosphoprotein that modulates signaling pathways, like the ERK MAP kinase cascade by binding to ERK and changing its subcellular localization. It has been implicated in apoptosis, cell proliferation, and glucose metabolism. It does not possess enzymatic activity and mainly acts as an adaptor protein. PEA-15 contains an N-terminal DED domain and a C-terminal disordered region. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. 84 -176750 cd08339 DED_DEDD-like Death Effector Domain of DEDD and DEDD2. Death Effector Domain (DED) found in DEDD and DEDD2. Both proteins have a single N-terminal DED and a long C-terminal portion with no known domains. DEDD has been shown to block mitotic progression by inhibiting Cdk1 and to be involved in regulating the insulin signaling cascade. DEDD and DEDD2 can bind to themselves, to each other, and to the two tandem DED-containing caspases, caspase-8 and -10. In general, DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. 97 -260046 cd08340 DED_c-FLIP_r2 Death Effector Domain, repeat 2, of cellular FLICE-Inhibitory Protein. Death Effector Domain (DED), repeat 2, similar to that found in cellular FLICE-inhibitory protein (c-FLIP/CASH, also known as Casper/iFLICE/FLAME-1/CLARP/MRIT/usurpin). c-FLIP is a catalytically inactive homolog of the initator procaspases-8 and -10. It negatively influences apoptotic signaling by interfering with the efficient formation of the Death Inducing Signalling Complex (DISC). At low levels, c-FLIP has been shown to enhance apoptotic signaling by allosterically activating caspase-8. As a modulator of the initiator caspases, c-FLIP regulates life and death in various types of cells and tissues. All members contain two N-terminal DEDs and a C-terminal pseudo-caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 81 -260047 cd08341 DED_Caspase_10_r1 Death effector domain, repeat 1, of Caspase-10. Death effector domain (DED) found in caspase-10, repeat 1. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-10 is an initiator of death receptor mediated apoptosis. Together with FADD, caspase-8 and the pseudo-caspase c-FLIP, it forms the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. It contains two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 82 -319930 cd08342 HPPD_N_like N-terminal domain of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate Synthase (HmaS). HppD and HmaS are non-heme iron-dependent dioxygenases, which modify a common substrate, 4-hydroxyphenylpyruvate (HPP), but yield different products. HPPD catalyzes the second reaction in tyrosine catabolism, the conversion of HPP to homogentisate (2,5-dihydroxyphenylacetic acid, HG). HmaS converts HPP to 4-hydroxymandelate, a committed step in the formation of hydroxyphenylglycerine, a structural component of nonproteinogenic macrocyclic peptide antibiotics, such as vancomycin. If the emphasis is on catalytic chemistry, HPPD and HmaS are classified as members of a large family of alpha-keto acid dependent mononuclear non-heme iron oxygenases most of which require Fe(II), molecular oxygen, and an alpha-keto acid (typically alpha-ketoglutarate) to either oxygenate or oxidize a third substrate. Both enzymes are exceptions in that they require two, instead of three, substrates, do not use alpha-ketoglutarate, and incorporate both atoms of dioxygen into the aromatic product. Both HPPD and HmaS exhibit duplicate beta barrel topology in their N- and C-terminal domains which share sequence similarity, suggestive of a gene duplication. Each protein has only one catalytic site located in at the C-terminal domain. This HPPD_N_like domain represents the N-terminal domain. 141 -319931 cd08343 ED_TypeI_classII_C C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain. This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. 132 -319932 cd08344 MhqB_like_N N-terminal domain of MhqB, a type I extradiol dioxygenase, and similar proteins. This subfamily contains the N-terminal, non-catalytic, domain of Burkholderia sp. NF100 MhqB and similar proteins. MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. The purified enzyme has shown extradiol ring cleavage activity toward 3-methylcatechol. Fe2+ was suggested as a cofactor, the same as most other enzymes in the family. Burkholderia sp. NF100 MhqB is encoded on the plasmid pNF1. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. 112 -319933 cd08345 Fosfomycin_RP Fosfomycin resistant protein. This family contains three types of fosfomycin resistant protein. Fosfomycin inhibits the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. The three types of fosfomycin resistance proteins, employ different mechanisms to render fosfomycin [(1R,2S)-epoxypropylphosphonic acid] inactive. FosB catalyzes the addition of L-cysteine to the epoxide ring of fosfomycin. FosX catalyzes the addition of a water molecule to the C1 position of the antibiotic with inversion of configuration at C1. FosA catalyzes the addition of glutathione to the antibiotic fosfomycin, making it inactive. Catalytic activities of both FosX and FosA are Mn(II)-dependent, but FosB is activated by Mg(II). Fosfomycin resistant proteins are evolutionarily related to glyoxalase I and type I extradiol dioxygenases. 118 -319934 cd08346 PcpA_N_like N-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. The N-terminal domain of Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) 2,6-dichloro-p-hydroquinone1,2-dioxygenase (PcpA), and similar proteins. PcpA is a key enzyme in the pentachlorophenol (PCP) degradation pathway, catalyzing the conversion of 2,6-dichloro-p-hydroquinone to 2-chloromaleylacetate. This domain belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. 124 -319935 cd08347 PcpA_C_like C-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. The C-terminal domain of Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. PcpA is a key enzyme in the pentachlorophenol (PCP) degradation pathway, catalyzing the conversion of 2,6-dichloro-p-hydroquinone to 2-chloromaleylacetate. This domain belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. 157 -319936 cd08348 BphC2-C3-RGP6_C_like The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases. This subfamily contains Rhodococcus globerulus P6 BphC2-RGP6 and BphC3-RGP6, and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, yielding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. This is the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Most type I extradiol dioxygenases are activated by Fe(II). Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, which form hexamers. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, its two domains do not belong to this subfamily. 137 -319937 cd08349 BLMA_like Bleomycin binding protein (BLMA) and similar proteins. BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the larger superfamily, this family contains members with or without domain swapping. 114 -319938 cd08350 BLMT_like BLMT, a bleomycin resistance protein encoded on the transposon Tn5, and similar proteins. BLMT is a bleomycin (Bm) resistance protein, encoded by the ble gene on the transposon Tn5. This protein confers a survival advantage to Escherichia coli host cells. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMT has strong binding affinity to Bm and it protects against this lethal compound through drug sequestering. BLMT has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMT is a dimer with two Bm-binding pockets formed at the dimer interface. 118 -319939 cd08351 ChaP_like ChaP, an enzyme involved in the biosynthesis of the antitumor agent chartreusin (cha), and similar proteins. ChaP is an enzyme involved in the biosynthesis of the potent antitumor agent chartreusin (cha). Cha is an aromatic polyketide glycoside produced by Streptomyces chartreusis. ChaP may play a role as a meta-cleavage dioxygenase in the oxidative rearrangement of the anthracyclic polyketide. ChaP belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. 118 -319940 cd08352 VOC_Bs_YwkD_like vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins. uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Bacillus subtilis YwkD and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 123 -319941 cd08353 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 142 -319942 cd08354 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 122 -319943 cd08355 TioX_like Micromonospora sp. TioX and similar proteins. Micromonospora sp. TioX is encoded by a gene of the thiocoraline biosynthetic gene cluster. Thiocoraline is a thiodepsipeptide with potent antitumor activity. TioX may be involved in thiocoraline resistance or secretion. TioX belongs to vicinal oxygen chelate (VOC) superfamily that is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 123 -319944 cd08356 VOC_CChe_VCA0619_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Vibrio cholerae VCA0619 and similar proteins. The VOC superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 113 -319945 cd08357 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) familyprotein, glyoxalase I, and type I ring-cleaving dioxygenases. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 124 -319946 cd08358 GLOD4_N N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins. Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 127 -319947 cd08359 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 119 -319948 cd08360 MhqB_like_C C-terminal domain of Burkholderia sp. NF100 MhqB and similar proteins. This subfamily contains the C-terminal, catalytic, domain of Burkholderia sp. NF100 MhqB and similar proteins. MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. The purified enzyme has shown extradiol ring cleavage activity toward 3-methylcatechol. Fe2+ was suggested as a cofactor, the same as most other enzymes in the family. Burkholderia sp. NF100 MhqB is encoded on the plasmid pNF1. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. 134 -319949 cd08361 PpCmtC_N N-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC). This subfamily contains the N-terminal, non-catalytic, domain of PpCmtC. 2,3-dihydroxy-p-cumate-3,4-dioxygenase (CmtC of Pseudomonas putida F1) is a dioxygenase involved in the eight-step catabolism pathway of p-cymene. CmtC acts upon the reaction intermediate 2,3-dihydroxy-p-cumate, yielding 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate. The CmtC belongs to the type I family of extradiol dioxygenases. Fe2+ was suggested as a cofactor, same as other enzymes in the family. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. 124 -319950 cd08362 BphC5-RrK37_N_like N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Rhodococcus rhodochrous K37, and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the N-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxygenases are activated by Fe(II). 120 -319951 cd08363 FosB fosfomycin resistant protein subfamily FosB. This subfamily family contains FosB, a fosfomycin resistant protein. FosB is a Mg(2+)-dependent L-cysteine thiol transferase. Fosfomycin inhibits the enzyme UDP-nacetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosB catalyzes the Mg(II) dependent addition of L-cysteine to the epoxide ring of fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering it inactive. FosB is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. 131 -319952 cd08364 FosX fosfomycin resistant protein subfamily FosX. This subfamily family contains FosX, a fosfomycin resistant protein. FosX is a Mn(II)-dependent fosfomycin-specific epoxide hydrolase. Fosfomycin inhibits the enzyme UDP-Nacetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosX catalyzes the addition of a water molecule to the C1 position of the antibiotic with inversion of the configuration at C1 in the presence of Mn(II). The hydrated fosfomycin loses the inhibition activity. FosX is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. 130 -176483 cd08365 APC10-like1 APC10-like DOC1 domains of E3 ubiquitin ligases that mediate substrate ubiquitination. This model represens the APC10-like DOC1 domain of multi-domain proteins present in E3 ubiquitin ligases. E3 ubiquitin ligases mediate substrate ubiquitination (or ubiquitylation), a component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. APC10/DOC1 domains such as those present in HECT (Homologous to the E6-AP Carboxyl Terminus) and Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligase proteins, HECTD3, and CUL7, respectively, are also included here. CUL7 is a member of the Cullin-RING ligase family and functions as a molecular scaffold assembling a SCF-ROC1-like E3 ubiquitin ligase complex consisting of Skp1, CUL7, Fbx29 F-box protein, and ROC1 (RING-box protein 1) and promotes ubiquitination. CUL7 is a multi-domain protein with a C-terminal cullin domain that binds ROC1 and a centrally positioned APC10/DOC1 domain. HECTD3 contains a C-terminal HECT domain which contains the active site for ubiquitin transfer onto substrates, and an N-terminal APC10/DOC1 domain which is responsible for substrate recognition and binding. An APC10/DOC1 domain homolog is also present in HERC2 (HECT domain and RLD2), a large multi-domain protein with three RCC1-like domains (RLDs), additional internal domains including zinc finger ZZ-type and Cyt-b5 (Cytochrome b5-like Heme/Steroid binding) domains, and a C-terminal HECT domain. Recent studies have shown that the protein complex HERC2-RNF8 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Also included in this hierarchy is an uncharacterized APC10/DOC1-like domain found in a multi-domain protein, which also contains CUB, zinc finger ZZ-type, and EF-hand domains. The APC10/DOC1 domain forms a beta-sandwich structure that is related in architecture to the galactose-binding domain-like fold; their sequences are quite dissimilar, however, and are not included here. 131 -176484 cd08366 APC10 APC10 subunit of the anaphase-promoting complex (APC) that mediates substrate ubiquitination. This model represents the single domain protein APC10, a subunit of the anaphase-promoting complex (APC), which is a multi-subunit E3 ubiquitin ligase. E3 ubiquitin ligases mediate substrate ubiquitination (or ubiquitylation), a vital component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. The APC (also known as the cyclosome), is a cell cycle-regulated E3 ubiquitin ligase that controls important transitions in mitosis and the G1 phase by ubiquitinating regulatory proteins, thereby targeting them for degradation. In mitosis, the APC initiates sister chromatid separation by ubiquitinating the anaphase inhibitor securin and triggers exit from mitosis by ubiquitinating cyclin B. The C-terminus of APC10 binds to CDC27/APC3, an APC subunit that contains multiple tetratrico peptide repeats. APC10 domains are homologous to the DOC1 domains present in the HECT (Homologous to the E6-AP Carboxyl Terminus) E3 ubiquitin ligase protein, and the Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligase complex. The APC10/DOC1 domain forms a beta-sandwich structure that is related in architecture to the galactose-binding domain-like fold; their sequences are quite dissimilar, however, and are not included here. 139 -176262 cd08367 P53 P53 DNA-binding domain. P53 is a tumor suppressor gene product; mutations in p53 or lack of expression are found associated with a large fraction of all human cancers. P53 is activated by DNA damage and acts as a regulator of gene expression that ultimatively blocks progression through the cell cycle. P53 binds to DNA as a tetrameric transcription factor. In its inactive form, p53 is bound to the ring finger protein Mdm2, which promotes its ubiquitinylation and subsequent proteosomal degradation. Phosphorylation of p53 disrupts the Mdm2-p53 complex, while the stable and active p53 binds to regulatory regions of its target genes, such as the cyclin-kinase inhibitor p21, which complexes and inactivates cdk2 and other cyclin complexes. 179 -259829 cd08368 LIM LIM is a small protein-protein interaction domain, containing two zinc fingers. LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). 53 -187712 cd08369 FMT_core Formyltransferase, catalytic core domain. Formyltransferase, catalytic core domain. The proteins of this superfamily contain a formyltransferase domain that hydrolyzes the removal of a formyl group from its substrate as part of a multistep transfer mechanism, and this alignment model represents the catalytic core of the formyltransferase domain. This family includes the following known members; Glycinamide Ribonucleotide Transformylase (GART), Formyl-FH4 Hydrolase, Methionyl-tRNA Formyltransferase, ArnA, and 10-Formyltetrahydrofolate Dehydrogenase (FDH). Glycinamide Ribonucleotide Transformylase (GART) catalyzes the third step in de novo purine biosynthesis, the transfer of a formyl group to 5'-phosphoribosylglycinamide. Formyl-FH4 Hydrolase catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Methionyl-tRNA Formyltransferase transfers a formyl group onto the amino terminus of the acyl moiety of the methionyl aminoacyl-tRNA, which plays important role in translation initiation. ArnA is required for the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes the conversion of 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. Members of this family are multidomain proteins. The formyltransferase domain is located at the N-terminus of FDH, Methionyl-tRNA Formyltransferase and ArnA, and at the C-terminus of Formyl-FH4 Hydrolase. Prokaryotic Glycinamide Ribonucleotide Transformylase (GART) is a single domain protein while eukaryotic GART is a trifunctional protein that catalyzes the second, third and fifth steps in de novo purine biosynthesis. 173 -187727 cd08370 FMT_C_like Carboxy-terminal domain of Formyltransferase and similar domains. This family represents the C-terminal domain of formyltransferase and similar proteins. This domain is found in a variety of enzymes with formyl transferase and alkyladenine DNA glycosylase activities. The proteins with formyltransferase function include methionyl-tRNA formyltransferase, ArnA, 10-formyltetrahydrofolate dehydrogenase and HypX proteins. Although most proteins with formyl transferase activity contain this C-terminal domain, prokaryotic glycinamide ribonucleotide transformylase (GART), a single domain protein, only contains the core catalytic domain. Thus, the C-terminal domain is not required for formyl transferase catalytic activity and may be involved in substrate binding. Some members of this family have shown nucleic acid binding capacity. The C-terminal domain of methionyl-tRNA formyltransferase is involved in tRNA binding. Alkyladenine DNA glycosylase is a distant member of this family with very low sequence similarity to other members. It catalyzes the first step in base excision repair (BER) by cleaving damaged DNA bases within double-stranded DNA to produce an abasic site and shows ability to bind to DNA. 73 -187740 cd08371 Lumazine_synthase-like lumazine synthase and riboflavin synthase; involved in the riboflavin (vitamin B2) biosynthetic pathway. This superfamily contains lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, LS) and riboflavin synthase (RS). Both enzymes play important roles in the riboflavin biosynthetic pathway. Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which are essential cofactors for the catalysis of a wide range of redox reactions. These cofactors are also involved in many other processes involving DNA repair, circadian time-keeping, light sensing, and bioluminescence. Riboflavin is biosynthesized in plants, fungi and certain microorganisms; as animals lack the necessary enzymes to produce this vitamin, they acquire it from dietary sources. In the final steps of the riboflavin biosynthetic pathway, LS catalyzes the condensation of the 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy- 2-butanone-4-phosphate to release water, inorganic phosphate and 6,7-dimethyl-8-ribityllumazine (DMRL), and RS catalyzes a dismutation of DMRL which yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. In the latter reaction, a four-carbon moiety is transferred between two DMRL molecules serving as donor and acceptor, respectively. Both the LS and RS catalyzed reactions are thermodynamically irreversible and can proceed in the absence of a catalyst. In bacteria and eukaryotes, there are two types of LS: type-I LS forms homo-pentamers or icosahedrally arranged dodecamers of pentamers, type-II LS forms decamers (dimers of pentamers). In archaea LSs and RSs appear to have diverged early in the evolution of archaea from a common ancestor. 129 -197306 cd08372 EEP Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily. This large superfamily includes the catalytic domain (exonuclease/endonuclease/phosphatase or EEP domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds; their substrates range from nucleic acids to phospholipids and perhaps proteins. 241 -176019 cd08373 C2A_Ferlin C2 domain first repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 127 -176020 cd08374 C2F_Ferlin C2 domain sixth repeat in Ferlin. Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the sixth C2 repeat, C2E, and has a type-II topology. 133 -176021 cd08375 C2_Intersectin C2 domain present in Intersectin. A single instance of the C2 domain is located C terminally in the intersectin protein. Intersectin functions as a scaffolding protein, providing a link between the actin cytoskeleton and the components of endocytosis and plays a role in signal transduction. In addition to C2, intersectin contains several additional domains including: Eps15 homology domains, SH3 domains, a RhoGEF domain, and a PH domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. The members here have topology I. 136 -176022 cd08376 C2B_MCTP_PRT C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP). MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 116 -176023 cd08377 C2C_MCTP_PRT C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP). MCTPs are involved in Ca2+ signaling at the membrane. The cds in this family contain multiple C2 domains as well as a C-terminal PRT domain. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 119 -176024 cd08378 C2B_MCTP_PRT_plant C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset. MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 121 -176025 cd08379 C2D_MCTP_PRT_plant C2 domain fourth repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset. MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. 126 -176026 cd08380 C2_PI3K_like C2 domain present in phosphatidylinositol 3-kinases (PI3Ks). C2 domain present in all classes of PI3Ks. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a C2 domain, a PIK domain, and a kinase catalytic domain. In addition some PI3Ks contain a Ras-binding domain and/or a p85-binding domain. Class II PI3Ks contain both of these as well as a PX domain, and a C-terminal C2 domain containing a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains members with the first C2 repeat, C2A, and a type-I topology, as well as some with a single C2 repeat. 156 -176027 cd08381 C2B_PI3K_class_II C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks). There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 122 -176028 cd08382 C2_Smurf-like C2 domain present in Smad ubiquitination-related factor (Smurf)-like proteins. A single C2 domain is found in Smurf proteins, C2-WW-HECT-domain E3s, which play an important role in the downregulation of the TGF-beta signaling pathway. Smurf proteins also regulate cell shape, motility, and polarity by degrading small guanosine triphosphatases (GTPases). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have type-II topology. 123 -176029 cd08383 C2A_RasGAP C2 domain (first repeat) of Ras GTPase activating proteins (GAPs). RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain either a single C2 domain or two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. 117 -176030 cd08384 C2B_Rabphilin_Doc2 C2 domain second repeat present in Rabphilin and Double C2 domain. Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 133 -176031 cd08385 C2A_Synaptotagmin-1-5-6-9-10 C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis as do synaptotagmins 5, 6, and 10. It is distinguished from the other synaptotagmins by having an N-glycosylated N-terminus. Synaptotagmins 5, 6, and 10, members of class 3 synaptotagmins, are located primarily in the brain and localized to the active zone and plasma membrane. They is distinguished from the other synaptotagmins by having disulfide bonds at its N-terminus. Synaptotagmin 6 also regulates the acrosome reaction, a unique Ca2+-regulated exocytosis, in sperm. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 124 -176032 cd08386 C2A_Synaptotagmin-7 C2A domain first repeat present in Synaptotagmin 7. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 125 -176033 cd08387 C2A_Synaptotagmin-8 C2A domain first repeat present in Synaptotagmin 8. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 124 -176034 cd08388 C2A_Synaptotagmin-4-11 C2A domain first repeat present in Synaptotagmins 4 and 11. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmins 4 and 11, class 4 synaptotagmins, are located in the brain. Their functions are unknown. They are distinguished from the other synaptotagmins by having and Asp to Ser substitution in their C2A domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 128 -176035 cd08389 C2A_Synaptotagmin-14_16 C2A domain first repeat present in Synaptotagmins 14 and 16. Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 124 -176036 cd08390 C2A_Synaptotagmin-15-17 C2A domain first repeat present in Synaptotagmins 15 and 17. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 123 -176037 cd08391 C2A_C2C_Synaptotagmin_like C2 domain first and third repeat in Synaptotagmin-like proteins. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains either the first or third repeat in Synaptotagmin-like proteins with a type-I topology. 121 -176038 cd08392 C2A_SLP-3 C2 domain first repeat present in Synaptotagmin-like protein 3. All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. Little is known about the expression or localization of Slp3. The C2A domain of Slp3 is Ca2+ dependent. It has been demonstrated that Slp3 promotes dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 128 -176039 cd08393 C2A_SLP-1_2 C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2. All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike Slp3 and Slp4/granuphilin which are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 125 -176040 cd08394 C2A_Munc13 C2 domain first repeat in Munc13 (mammalian uncoordinated) proteins. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 127 -176041 cd08395 C2C_Munc13 C2 domain third repeat in Munc13 (mammalian uncoordinated) proteins. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins.C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. 120 -176042 cd08397 C2_PI3K_class_III C2 domain present in class III phosphatidylinositol 3-kinases (PI3Ks). PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a C2 domain, a PIK domain, and a kinase catalytic domain. These are the only domains identified in the class III PI3Ks present in this cd. In addition some PI3Ks contain a Ras-binding domain and/or a p85-binding domain. Class II PI3Ks contain both of these as well as a PX domain, and a C-terminal C2 domain containing a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 159 -176043 cd08398 C2_PI3K_class_I_alpha C2 domain present in class I alpha phosphatidylinositol 3-kinases (PI3Ks). PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a C2 domain, a PIK domain, and a kinase catalytic domain. The members here are class I, alpha isoform PI3Ks and contain both a Ras-binding domain and a p85-binding domain. Class II PI3Ks contain both of these as well as a PX domain, and a C-terminal C2 domain containing a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members have a type-I topology. 158 -176044 cd08399 C2_PI3K_class_I_gamma C2 domain present in class I gamma phosphatidylinositol 3-kinases (PI3Ks). PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a C2 domain, a PIK domain, and a kinase catalytic domain. The members here are class I, gamma isoform PI3Ks and contain both a Ras-binding domain and a p85-binding domain. Class II PI3Ks contain both of these as well as a PX domain, and a C-terminal C2 domain containing a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members have a type-I topology. 178 -176045 cd08400 C2_Ras_p21A1 C2 domain present in RAS p21 protein activator 1 (RasA1). RasA1 is a GAP1 (GTPase activating protein 1), a Ras-specific GAP member, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA1 contains a C2 domain, a Ras-GAP domain, a pleckstrin homology (PH)-like domain, a SH3 domain, and 2 SH2 domains. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. 126 -176046 cd08401 C2A_RasA2_RasA3 C2 domain first repeat present in RasA2 and RasA3. RasA2 and RasA3 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA2 and RasA3 are both inositol 1,3,4,5-tetrakisphosphate-binding proteins and contain an N-terminal C2 domain, a Ras-GAP domain, a pleckstrin-homology (PH) domain which localizes it to the plasma membrane, and Bruton's Tyrosine Kinase (BTK) a zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 121 -176047 cd08402 C2B_Synaptotagmin-1 C2 domain second repeat present in Synaptotagmin 1. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of the class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis. It, like synaptotagmin-2, has an N-glycosylated N-terminus. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 136 -176048 cd08403 C2B_Synaptotagmin-3-5-6-9-10 C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 3, a member of class 3 synaptotagmins, is located in the brain and localized to the active zone and plasma membrane. It functions as a Ca2+ sensor for fast exocytosis. It, along with synaptotagmins 5,6, and 10, has disulfide bonds at its N-terminus. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 134 -176049 cd08404 C2B_Synaptotagmin-4 C2 domain second repeat present in Synaptotagmin 4. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 136 -176050 cd08405 C2B_Synaptotagmin-7 C2 domain second repeat present in Synaptotagmin 7. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 136 -176051 cd08406 C2B_Synaptotagmin-12 C2 domain second repeat present in Synaptotagmin 12. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 12, a member of class 6 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmins 8 and 13, do not have any consensus Ca2+ binding sites. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 136 -176052 cd08407 C2B_Synaptotagmin-13 C2 domain second repeat present in Synaptotagmin 13. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 13, a member of class 6 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmins 8 and 12, does not have any consensus Ca2+ binding sites. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 138 -176053 cd08408 C2B_Synaptotagmin-14_16 C2 domain second repeat present in Synaptotagmins 14 and 16. Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 138 -176054 cd08409 C2B_Synaptotagmin-15 C2 domain second repeat present in Synaptotagmin 15. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 137 -176055 cd08410 C2B_Synaptotagmin-17 C2 domain second repeat present in Synaptotagmin 17. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. 135 -176103 cd08411 PBP2_OxyR The C-terminal substrate-binding domain of the LysR-type transcriptional regulator OxyR, a member of the type 2 periplasmic binding fold protein superfamily. OxyR senses hydrogen peroxide and is activated through the formation of an intramolecular disulfide bond. The OxyR activation induces the transcription of genes necessary for the bacterial defense against oxidative stress. The OxyR of LysR-type transcriptional regulator family is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The C-terminal domain also contains the redox-active cysteines that mediate the redox-dependent conformational switch. Thus, the interaction between the OxyR-tetramer and DNA is notably different between the oxidized and reduced forms. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176104 cd08412 PBP2_PAO1_like The C-terminal substrate-binding domain of putative LysR-type transcriptional regulator PAO1-like, a member of the type 2 periplasmic binding fold protein superfamily. This family includes the C-terminal substrate domain of a putative LysR-type transcriptional regulator from the plant pathogen Pseudomonas aeruginosa PAO1and its closely related homologs. The LysR-type transcriptional regulators (LTTRs) are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of N2 fixing bacteria, and synthesis of virulence factors, to a name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 198 -176105 cd08413 PBP2_CysB_like The C-terminal substrate domain of LysR-type transcriptional regulators CysB-like contains type 2 periplasmic binding fold. CysB is a transcriptional activator of genes involved in sulfate and thiosulfate transport, sulfate reduction, and cysteine synthesis. In Escherichia coli, the regulation of transcription in response to sulfur source is attributed to two transcriptional regulators, CysB and Cbl. CysB, in association with Cbl, downregulates the expression of ssuEADCB operon which is required for the utilization of sulfur from aliphatic sulfonates, in the presence of cysteine. Also, Cbl and CysB together directly function as transcriptional activators of tauABCD genes, which are required for utilization of taurine as sulfur source for growth. Like many other members of the LTTR family, CysB is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 198 -176106 cd08414 PBP2_LTTR_aromatics_like The C-terminal substrate binding domain of LysR-type transcriptional regulators involved in the catabolism of aromatic compounds and that of other related regulators, contains type 2 periplasmic binding fold. This CD includes the C-terminal substrate binding domain of LTTRs involved in degradation of aromatic compounds, such as CbnR, BenM, CatM, ClcR and TfdR, as well as that of other transcriptional regulators clustered together in phylogenetic trees, including XapR, HcaR, MprR, IlvR, BudR, AlsR, LysR, and OccR. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 197 -176107 cd08415 PBP2_LysR_opines_like The C-terminal substrate-domain of LysR-type transcriptional regulators involved in the catabolism of opines and that of related regulators, contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate-domain of LysR-type transcriptional regulators, OccR and NocR, involved in the catabolism of opines and that of LysR for lysine biosynthesis which clustered together in phylogenetic trees. Opines, such as octopine and nopaline, are low molecular weight compounds found in plant crown gall tumors that are produced by the parasitic bacterium Agrobacterium. There are at least 30 different opines identified so far. Opines are utilized by tumor-colonizing bacteria as a source of carbon, nitrogen, and energy. NocR and OccR belong to the family of LysR-type transcriptional regulators that positively regulates the catabolism of nopaline and octopine, respectively. Both nopaline and octopalin are arginine derivatives. In Agrobacterium tumefaciens, NocR regulates expression of the divergently transcribed nocB and nocR genes of the nopaline catabolism (noc) region. OccR protein activates the occQ operon of the Ti plasmid in response to octopine. This operon encodes proteins required for the uptake and catabolism of octopine. The occ operon also encodes the TraR protein, which is a quorum-sensing transcriptional regulator of the Ti plasmid tra regulon. LysR is the transcriptional activator of lysA gene encoding diaminopimelate decarboxylase, an enzyme that catalyses the decarboxylation of diaminopimelate to produce lysine. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 196 -176108 cd08416 PBP2_MdcR The C-terminal substrate-binding domian of LysR-type transcriptional regulator MdcR, which involved in the malonate catabolism contains the type 2 periplasmic binding fold. This family includes the C-terminal substrate binding domain of LysR-type transcriptional regulator (LTTR) MdcR that controls the expression of the malonate decarboxylase (mdc) genes. Like other members of the LTTRs, MdcR is a positive regulatory protein for its target promoter and composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins (PBP2). The PBP2 are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate- binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 199 -176109 cd08417 PBP2_Nitroaromatics_like The C-terminal substrate binding domain of LysR-type transcriptional regulators that involved in the catabolism of nitroaromatic/naphthalene compounds and that of related regulators; contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate binding domain of LysR-type transcriptional regulators involved in the catabolism of dinitrotoluene and similar compounds, such as DntR, NahR, and LinR. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. Also included are related LysR-type regulators clustered together in phylogenetic trees, including NodD, ToxR, LeuO, SyrM, TdcA, and PnbR. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176110 cd08418 PBP2_TdcA The C-terminal substrate binding domain of LysR-type transcriptional regulator TdcA, which is involved in the degradation of L-serine and L-threonine, contains the type 2 periplasmic binding fold. TdcA, a member of the LysR family, activates the expression of the anaerobically-regulated tdcABCDEFG operon which is involved in the degradation of L-serine and L-threonine to acetate and propionate, respectively. The tdc operon is comprised of one regulatory gene tdcA and six structural genes, tdcB to tdcG. The expression of the tdc operon is affected by several transcription factors including the cAMP receptor protein (CRP), integration host factor (IHF), histone-like protein (HU), and the operon specific regulators TdcA and TcdR. TcdR is divergently transcribed from the operon and encodes a small protein that is required for efficient expression of the Escherichia coli tdc operon. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 201 -176111 cd08419 PBP2_CbbR_RubisCO_like The C-terminal substrate binding of LysR-type transcriptional regulator (CbbR) of RubisCO operon, which is involved in the carbon dioxide fixation, contains the type 2 periplasmic binding fold. CbbR, a LysR-type transcriptional regulator, is required to activate expression of RubisCO, one of two unique enzymes in the Calvin-Benson-Bassham (CBB) cycle pathway. All plants, cyanobacteria, and many autotrophic bacteria use the CBB cycle to fix carbon dioxide. Thus, this cycle plays an essential role in assimilating CO2 into organic carbon on earth. The key CBB cycle enzyme is ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), which catalyzes the actual CO2 fixation reaction. The CO2 concentration affects the expression of RubisCO genes. It has also shown that NADPH enhances the DNA-binding ability of the CbbR. RubisCO is composed of eight large (CbbL) and eight small subunits (CbbS). The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176112 cd08420 PBP2_CysL_like C-terminal substrate binding domain of LysR-type transcriptional regulator CysL, which activates the transcription of the cysJI operon encoding sulfite reductase, contains the type 2 periplasmic binding fold. CysL, also known as YwfK, is a regular of sulfur metabolism in Bacillus subtilis. Sulfur is required for the synthesis of proteins and essential cofactors in all living organism. Sulfur can be assimilated either from inorganic sources (sulfate and thiosulfate), or from organic sources (sulfate esters, sulfamates, and sulfonates). CysL activates the transcription of the cysJI operon encoding sulfite reductase, which reduces sulfite to sulfide. Both cysL mutant and cysJI mutant are unable to grow using sulfate or sulfite as the sulfur source. Like other LysR-type regulators, CysL also negatively regulates its own transcription. In Escherichia coli, three LysR-type activators are involved in the regulation of sulfur metabolism: CysB, Cbl and MetR. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 201 -176113 cd08421 PBP2_LTTR_like_1 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176114 cd08422 PBP2_CrgA_like The C-terminal substrate binding domain of LysR-type transcriptional regulator CrgA and its related homologs, contains the type 2 periplasmic binding domain. This CD includes the substrate binding domain of LysR-type transcriptional regulator (LTTR) CrgA and its related homologs. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis further showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176115 cd08423 PBP2_LTTR_like_6 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176116 cd08425 PBP2_CynR The C-terminal substrate-binding domain of the LysR-type transcriptional regulator CynR, contains the type 2 periplasmic binding fold. CynR is a LysR-like transcriptional regulator of the cyn operon, which encodes genes that allow cyanate to be used as a sole source of nitrogen. The operon includes three genes in the following order: cynT (cyanate permease), cynS (cyanase), and cynX (a protein of unknown function). CynR negatively regulates its own expression independently of cyanate. CynR binds to DNA and induces bending of DNA in the presence or absence of cyanate, but the amount of bending is decreased by cyanate. The CynR of LysR-type transcriptional regulator family is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins (PBP2). The PBP2 are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176117 cd08426 PBP2_LTTR_like_5 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 199 -176118 cd08427 PBP2_LTTR_like_2 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 195 -176119 cd08428 PBP2_IciA_ArgP The C-terminal substrate binding domain of LysR-type transcriptional regulator, ArgP (IciA), for arginine exporter (ArgO); contains the type 2 periplasmic binding fold. The inhibitor of chromosomal replication (iciA) protein encoded by Mycobacterium tuberculosis, which is implicated in chromosome replication initiation in vitro, has been identified as arginine permease (ArgP), a LysR-type transcriptional regulator for arginine outward transport, based on the same amino sequence and similar DNA binding targets. Arp has been shown to regulate various targets including DnaA (replication), ArgO (arginine export), dapB (lysine biosynthesis), and gdhA (glutamate biosynthesis). With abundant nutrition, ArgP activates the DnaA gene (to increase replication) and the ArgO (to export redundant molecules). However, when nutrition supply is limited, it is suggested that ArgP might function as an inhibitor of chromosome replication in order to slow replication. This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 195 -176120 cd08429 PBP2_NhaR The C-terminal substrate binding domain of LysR-type transcriptional activator of the nhaA gene, encoding Na+/H+ antiporter, contains the type 2 periplasmic binding fold. NhaR is a positive regulator of the LysR family and is known to be an activator of the nhaA gene encoding a Na(+)/H(+) antiporter. In Escherichia coli, NhaA is the vital antiporter that protects against high sodium stress, and it is essential for growth in high sodium levels, while NhaB becomes essential only if NhaA is not available. The nhaA gene of nhaAR operon is induced by monovalent cations. The nhaR of the operon activates nhaAR, as well as the osmC transcription which is induced at elevated osmolarity. OsmC is transcribed from the two overlapping promoters (osmCp1 and osmP2) and that NhaR is shown to activate only the expression of osmCp1. NhaR also activates the transcription of the pgaABCD operon which is required for production of the biofilm adhesion, poly-beta-1,6-N-acetyl-d-glucosamine (PGA) .Thus, it is suggested that NhaR has an extended role in promoting bacterial survival. This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 204 -176121 cd08430 PBP2_IlvY The C-terminal substrate binding of LysR-type transcriptional regulator IlvY, which activates the expression of ilvC gene that encoding acetohydroxy acid isomeroreductase for the biosynthesis of branched amino acids; contains the type 2 periplasmic binding fold. In Escherichia coli, IlvY is required for the regulation of ilvC gene expression that encodes acetohydroxy acid isomeroreductase (AHIR), a key enzyme in the biosynthesis of branched-chain amino acids (isoleucine, valine, and leucine). The ilvGMEDA operon genes encode remaining enzyme activities required for the biosynthesis of these amino acids. Activation of ilvC transcription by IlvY requires the additional binding of a co-inducer molecule (either alpha-acetolactate or alpha-acetohydoxybutyrate, the substrates for AHIR) to a preformed complex of IlvY protein-DNA. Like many other LysR-family members, IlvY negatively auto-regulates the transcription of its own divergently transcribed ilvY gene in an inducer-independent manner. This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 199 -176122 cd08431 PBP2_HupR The C-terminal substrate binding domain of LysR-type transcriptional regulator, HupR, which regulates expression of the heme uptake receptor HupA; contains the type 2 periplasmic binding fold. HupR, a member of the LysR family, activates hupA transcription under low-iron conditions in the presence of hemin. The expression of many iron-uptake genes, such as hupA, is regulated at the transcriptional level by iron and an iron-binding repressor protein called Fur (ferric uptake regulation). Under iron-abundant conditions with heme, the active Fur repressor protein represses transcription of the iron-uptake gene hupA, and prevents transcriptional activation via HupR. Under low-iron conditions with heme, the Fur repressor is inactive and transcription of the hupA is allowed. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 195 -176123 cd08432 PBP2_GcdR_TrpI_HvrB_AmpR_like The C-terminal substrate domain of LysR-type GcdR, TrPI, HvR and beta-lactamase regulators, and that of other closely related homologs; contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate domain of LysR-type transcriptional regulators involved in controlling the expression of glutaryl-CoA dehydrogenase (GcdH), S-adenosyl-L-homocysteine hydrolase, cell division protein FtsW, tryptophan synthase, and beta-lactamase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 194 -176124 cd08433 PBP2_Nac The C-teminal substrate binding domain of LysR-like nitrogen assimilation control (NAC) protein, contains the type 2 periplasmic binding fold. The NAC is a LysR-type transcription regulator that activates expression of operons such as hut (histidine utilization) and ure (urea utilization), allowing use of non-preferred (poor) nitrogen sources, and represses expression of operons, such as glutamate dehydrogenase (gdh), allowing assimilation of the preferred nitrogen source. The expression of the nac gene is fully dependent on the nitrogen regulatory system (NTR) and the sigma54-containing RNA polymerase (sigma54-RNAP). In response to nitrogen starvation, NTR system activates the expression of nac, and NAC activates the expression of hut, ure, and put (proline utilization). NAC is not involved in the transcription of Sigma70-RNAP operons such as glnA, which directly respond by the NTR system, but activates the transcription of sigma70-RNAP dependent operons such as hut. Hence, NAC allows the coupling of sigma70-RNAP dependent operons to the sigma54-RNAP dependent NTR system. This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176125 cd08434 PBP2_GltC_like The substrate binding domain of LysR-type transcriptional regulator GltC, which activates gltA expression of glutamate synthase operon, contains type 2 periplasmic binding fold. GltC, a member of the LysR family of bacterial transcriptional factors, activates the expression of gltA gene of glutamate synthase operon and is essential for cell growth in the absence of glutamate. Glutamate synthase is a heterodimeric protein that encoded by gltA and gltB, whose expression is subject to nutritional regulation. GltC also negatively auto-regulates its own expression. This substrate-binding domain has strong homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 195 -176126 cd08435 PBP2_GbpR The C-terminal substrate binding domain of galactose-binding protein regulator contains the type 2 periplasmic binding fold. Galactose-binding protein regulator (GbpR), a member of the LysR family of bacterial transcriptional regulators, regulates the expression of chromosomal virulence gene chvE. The chvE gene is involved in the uptake of specific sugars, in chemotaxis to these sugars, and in the VirA-VirG two-component signal transduction system. In the presence of an inducing sugar such as L-arabinose, D-fucose, or D-galactose, GbpR activates chvE expression, while in the absence of an inducing sugar, GbpR represses expression. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 201 -176127 cd08436 PBP2_LTTR_like_3 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 194 -176128 cd08437 PBP2_MleR The substrate binding domain of LysR-type transcriptional regulator MleR which required for malolactic fermentation, contains type 2 periplasmic binidning fold. MleR, a transcription activator of malolactic fermentation system, is found in gram-positive bacteria and belongs to the lysR family of bacterial transcriptional regulators. The mleR gene is required for the expression and induction of malolactic fermentation. This substrate binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176129 cd08438 PBP2_CidR The C-terminal substrate binding domain of LysR-like transcriptional regulator CidR, contains the type 2 periplasmic binding fold. This CD includes the substrate binding domain of CidR which positively up-regulates the expression of cidABC operon in the presence of acetic acid produced by the metabolism of excess glucose. The CidR affects the control of murein hydrolase activity by enhancing cidABC expression in the presence of acetic acid. Thus, up-regulation of cidABC expression results in increased murein hydrolase activity. This substrate binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176130 cd08439 PBP2_LrhA_like The C-terminal substrate domain of LysR-like regulator LrhA (LysR homologue A) and that of closely related homologs, contains the type 2 periplasmic binding fold. This CD represents the LrhA subfamily of LysR-like bacterial transcriptional regulators, including LrhA, HexA, PecT, and DgdR. LrhA is involved in control of the transcription of flagellar, motility, and chemotaxis genes by regulating the synthesis and concentration of FlhD(2)C(2), the master regulator for the expression of flagellar and chemotaxis genes. The LrhA protein has strong homology to HexA and PecT from plant pathogenic bacteria, in which HexA and PecT act as repressors of motility and of virulence factors, such as exoenzymes required for lytic reactions. DgdR also shares similar characteristics to those of LrhA, HexA and PecT. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 185 -176131 cd08440 PBP2_LTTR_like_4 TThe C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold. LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176132 cd08441 PBP2_MetR The C-terminal substrate binding domain of LysR-type transcriptional regulator metR, which regulates the expression of methionine biosynthetic genes, contains type 2 periplasmic binding fold. MetR, a member of the LysR family, is a positive regulator for the metA, metE, metF, and metH genes. The sulfur-containing amino acid methionine is the universal initiator of protein synthesis in all known organisms and its derivative S-adenosylmethionine (SAM) and autoinducer-2 (AI-2) are involved in various cellular processes. SAM plays a central role as methyl donor in methylation reactions, which are essential for the biosynthesis of phospholipids, proteins, DNA and RNA. The interspecies signaling molecule AI-2 is involved in cell-cell communication process (quorum sensing) and gene regulation in bacteria. Although methionine biosynthetic enzymes and metabolic pathways are well conserved in bacteria, the regulation of methionine biosynthesis involves various regulatory mechanisms. In Escherichia coli and Salmonella enterica serovar Typhimurium, MetJ and MetR regulate the expression of methionine biosynthetic genes. The MetJ repressor negatively regulates the E. coli met genes, except for metH. Several of these genes are also under the positive control of MetR with homocysteine as a co-inducer. In Bacillus subtilis, the met genes are controlled by S-box termination-antitermination system. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176133 cd08442 PBP2_YofA_SoxR_like The C-terminal substrate binding domain of LysR-type transcriptional regulators, YofA and SoxR, contains the type 2 periplasmic binding fold. YofA is a LysR-like transcriptional regulator of cell growth in Bacillus subtillis. YofA controls cell viability and the formation of constrictions during cell division. YofaA positively regulates expression of the cell division gene ftsW, and thus is essential for cell viability during stationary-phase growth of Bacillus substilis. YofA shows significant homology to SoxR from Arthrobacter sp. TE1826. SoxR is a negative regulator for the sarcosine oxidase gene soxA. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine, which is involved in the metabolism of creatine and choline. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 193 -176134 cd08443 PBP2_CysB The C-terminal substrate domain of LysR-type transcriptional regulator CysB contains type 2 periplasmic binding fold. CysB is a transcriptional activator of genes involved in sulfate and thiosulfate transport, sulfate reduction, and cysteine synthesis. In Escherichia coli, the regulation of transcription in response to sulfur source is attributed to two transcriptional regulators, CysB and Cbl. CysB, in association with Cbl, downregulates the expression of ssuEADCB operon which is required for the utilization of sulfur from aliphatic sulfonates, in the presence of cysteine. Also, Cbl and CysB together directly function as transcriptional activators of tauABCD genes, which are required for utilization of taurine as sulfur source for growth. Like many other members of the LTTR family, CysB is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176135 cd08444 PBP2_Cbl The C-terminal substrate binding domain of LysR-type transcriptional regulator Cbl, which is required for expression of sulfate starvation-inducible (ssi) genes, contains the type 2 periplasmic binding fold. Cbl is a member of the LysR transcriptional regulators that comprise the largest family of prokaryotic transcription factor. Cbl shows high sequence similarity to CysB, the LysR-type transcriptional activator of genes involved in sulfate and thiosulfate transport, sulfate reduction, and cysteine synthesis. In Escherichia coli, the function of Cbl is required for expression of sulfate starvation-inducible (ssi) genes, coupled with the biosynthesis of cysteine from the organic sulfur sources (sulfonates). The ssi genes include the ssuEADCB and tauABCD operons encoding uptake systems for organosulfur compounds, aliphatic sulfonates, and taurine. The genes in these operons encode an ABC-type transport system required for uptake of aliphatic sulfonates and a desulfonation enzyme. Both Cbl and CysB require expression of the tau and ssu genes. Like many other members of the LTTR family, the Cbl is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176136 cd08445 PBP2_BenM_CatM_CatR The C-terminal substrate binding domain of LysR-type transcriptional regulators involved in benzoate catabolism; contains the type 2 periplasmic binding fold. This CD includes the C-terminal of LysR-type transcription regulators, BenM, CatM, and CatR, which are involved in the benzoate catabolism. The BenM and CatM are paralogs with overlapping functions. BenM responds synergistically to two effectors, benzoate and cis,cis-muconate, to activate expression of the benABCDE operon which is involved in benzoate catabolism, while CatM responses only to muconate. BenM and CatM share high protein sequence identity and bind to the operator-promoter regions that have similar DNA sequences. In Pseudomonas species, phenolic compounds are converted by different enzymes to central intermediates, such as protocatechuate and catechols. Generally, unsubstituted compounds, such as benzoate, are metabolized by an ortho-cleavage pathway. The catBCA operon encodes three enzymes of the ortho-pathway required for benzoate catabolism: muconate lactonizing enzyme I, muconolactone isomerase, and catechol 1,2-dioxygenase. CatR normally responds to benzoate and cis,cis-muconate, an inducer molecule, to activate transcription of the catBCA operon, whose gene products convert benzoate to catechol. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 203 -176137 cd08446 PBP2_Chlorocatechol The C-terminal substrate binding domain of LysR-type transcriptional regulators involved in the chlorocatechol catabolism, contains the type 2 periplasmic binding fold. This CD includes the substrate binding domain of LysR-type regulators CbnR, ClcR and TfdR, which are involved in the regulation of chlorocatechol breakdown. The chlorocatechol-degradative pathway is often found in bacteria that can use chlorinated aromatic compounds as carbon and energy sources. CbnR is found in the 3-chlorobenzoate degradative bacterium Ralstonia eutropha NH9 and forms a tetramer. CbnR activates the expression of the cbnABCD genes, which are responsible for the degradation of chlorocatechol converted from 3-chlorobenzoate and are transcribed divergently from cbnR. In soil bacterium Pseudomonas putida, the 3-chlorocatechol-degradative pathway is encoded by clcABD operon, which requires the divergently transcribed clcR for activation. TfdR is involved in the activation of tfdA and tfdB gene expression. These genes encode enzymes for the conversion of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176138 cd08447 PBP2_LTTR_aromatics_like_1 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to regulators involved in the catabolism of aromatic compounds, contains type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type regulator similar to CbnR which is involved in the regulation of chlorocatechol breakdown. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176139 cd08448 PBP2_LTTR_aromatics_like_2 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to regulators involved in the catabolism of aromatic compounds, contains type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type regulator similar to CbnR which is involved in the regulation of chlorocatechol breakdown. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176140 cd08449 PBP2_XapR The C-terminal substrate binding domain of LysR-type transcriptional regulator XapR involved in xanthosine catabolism, contains the type 2 periplasmic binding fold. In Escherichia coli, XapR is a positive regulator for the expression of xapA gene, encoding xanthosine phosphorylase, and xapB gene, encoding a polypeptide similar to the nucleotide transport protein NupG. As an operon, the expression of both xapA and xapB is fully dependent on the presence of both XapR and the inducer xanthosine. Expression of the xapR is constitutive but not auto-regulated, unlike many other LysR family proteins. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176141 cd08450 PBP2_HcaR The C-terminal substrate binding domain of LysR-type transcriptional regulator HcaR in involved in 3-phenylpropionic acid catabolism, contains the type2 periplasmic binding fold. HcaR, a member of the LysR family of transcriptional regulators, controls the expression of the hcA1, A2, B, C, and D operon, encoding for the 3-phenylpropionate dioxygenase complex and 3-phenylpropionate-2',3'-dihydrodiol dehydrogenase, that oxidizes 3-phenylpropionate to 3-(2,3-dihydroxyphenyl) propionate. Dioxygenases play an important role in protecting the cell against the toxic effects of dioxygen. The expression of hcaR is negatively auto-regulated, as for other members of the LysR family, and is strongly repressed in the presence of glucose. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 196 -176142 cd08451 PBP2_BudR The C-terminal substrate binding domain of LysR-type transcrptional regulator BudR, which is responsible for activation of the expression of the butanediol operon genes; contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of BudR regulator, which is responsible for induction of the butanediol formation pathway under fermentative growth conditions. Three enzymes are involved in the production of 1 mol of 2,3 butanediol from the condensation of 2 mol of pyruvate with acetolactate and acetoin as intermediates: acetolactate synthetase, acetolactate decarboxylase, and acetoin reductase. In Klebsiella terrigena, BudR regulates the expression of the budABC operon genes, encoding these three enzymes of the butanediol pathway. In many bacterial species, the use of this pathway can prevent intracellular acidification by diverting metabolism from acid production to the formation of neutral compounds (acetoin and butanediol). This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 199 -176143 cd08452 PBP2_AlsR The C-terminal substrate binding domain of LysR-type trnascriptional regulator AlsR, which regulates acetoin formation under stationary phase growth conditions; contains the type 2 periplasmic binding fold. AlsR is responsible for activating the expression of the acetoin operon (alsSD) in response to inducing signals such as glucose and acetate. Like many other LysR family proteins, AlsR is transcribed divergently from the alsSD operon. The alsS gene encodes acetolactate synthase, an enzyme involved in the production of acetoin in cells of stationary-phase. AlsS catalyzes the conversion of two pyruvate molecules to acetolactate and carbon dioxide. Acetolactate is then converted to acetoin at low pH by acetolactate decarboxylase which encoded by the alsD gene. Acetoin is an important physiological metabolite excreted by many microorganisms grown on glucose or other fermentable carbon sources. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176144 cd08453 PBP2_IlvR The C-terminal substrate binding domain of LysR-type transcriptional regulator, IlvR, involved in the biosynthesis of isoleucine, leucine and valine; contains type 2 periplasmic binding fold. The IlvR is an activator of the upstream and divergently transcribed ilvD gene, which encodes dihydroxy acid dehydratase that participates in isoleucine, leucine, and valine biosynthesis. As in the case of other members of the LysR family, the expression of ilvR gene is repressed in the presence of its own gene product. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176145 cd08456 PBP2_LysR The C-terminal substrate binding domain of LysR, transcriptional regulator for lysine biosynthesis, contains the type 2 periplasmic binding fold. LysR, the transcriptional activator of lysA encoding diaminopimelate decarboxylase, catalyses the decarboxylation of diaminopimelate to produce lysine. The LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 196 -176146 cd08457 PBP2_OccR The C-terminal substrate-domain of LysR-type transcriptional regulator, OccR, involved in the catabolism of octopine, contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate-domain of LysR-type transcriptional regulator OccR, which is involved in the catabolism of octopine. Opines are low molecular weight compounds found in plant crown gall tumors produced by the parasitic bacterium Agrobacterium. There are at least 30 different opines identified so far. Opines are utilized by tumor-colonizing bacteria as a source of carbon, nitrogen, and energy. In Agrobacterium tumefaciens, OccR protein activates the occQ operon of the Ti plasmid in response to octopine. This operon encodes proteins required for the uptake and catabolism of octopine, an arginine derivative. The occ operon also encodes the TraR protein, which is a quorum-sensing transcriptional regulator of the Ti plasmid tra regulon. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 196 -176147 cd08458 PBP2_NocR The C-terminal substrate-domain of LysR-type transcriptional regulator, NocR, involved in the catabolism of nopaline, contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate-domain of LysR-type transcriptional regulator NocR, which is involved in the catabolism of nopaline. Opines are low molecular weight compounds found in plant crown gall tumors produced by the parasitic bacterium Agrobacterium. There are at least 30 different opines identified so far. Opines are utilized by tumor-colonizing bacteria as a source of carbon, nitrogen, and energy. In Agrobacterium tumefaciens, NocR regulates expression of the divergently transcribed nocB and nocR genes of the nopaline catabolism (noc) region. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 196 -176148 cd08459 PBP2_DntR_NahR_LinR_like The C-terminal substrate binding domain of LysR-type transcriptional regulators that are involved in the catabolism of dinitrotoluene, naphthalene and gamma-hexachlorohexane; contains the type 2 periplasmic binding fold. This CD includes LysR-like bacterial transcriptional regulators, DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. DntR from Burkholderia species controls genes encoding enzymes for oxidative degradation of the nitro-aromatic compound 2,4-dinitrotoluene. The active form of DntR is homotetrameric, consisting of a dimer of dimers. NahR is a salicylate-dependent transcription activator of the nah and sal operons for naphthalene degradation. Salicylic acid is an intermediate of the oxidative degradation of the aromatic ring in soil bacteria. LinR positively regulates expression of the genes (linD and linE) encoding enzymes for gamma-hexachlorocyclohexane (a haloorganic insecticide) degradation. Expression of linD and linE are induced by their substrates, 2,5-dichlorohydroquinone (2,5-DCHQ) and chlorohydroquinone (CHQ). The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 201 -176149 cd08460 PBP2_DntR_like_1 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to DntR, which is involved in the catabolism of dinitrotoluene; contains the type 2 periplasmic binding fold. This CD includes an uncharacterized LysR-type transcriptional regulator similar to DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176150 cd08461 PBP2_DntR_like_3 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to DntR, which is involved in the catabolism of dinitrotoluene; contains the type 2 periplasmic binding fold. This CD includes an uncharacterized LysR-type transcriptional regulator similar to DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176151 cd08462 PBP2_NodD The C-terminal substsrate binding domain of NodD family of LysR-type transcriptional regulators that regulates the expression of nodulation (nod) genes; contains the type 2 periplasmic binding fold. The nodulation (nod) genes in soil bacteria play important roles in the development of nodules. nod genes are involved in synthesis of Nod factors that are required for bacterial entry into root hairs. Thirteen nod genes have been identified and are classified into five transcription units: nodD, nodABCIJ, nodFEL, nodMNT, and nodO. NodD is negatively auto-regulates its own expression of nodD gene, while other nod genes are inducible and positively regulated by NodD in the presence of flavonoids released by plant roots. This substrate-binding domain has significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176152 cd08463 PBP2_DntR_like_4 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to DntR, which is involved in the catabolism of dinitrotoluene; contains the type 2 periplasmic binding fold. This CD includes an uncharacterized LysR-type transcriptional regulator similar to DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 203 -176153 cd08464 PBP2_DntR_like_2 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator similar to DntR, which is involved in the catabolism of dinitrotoluene; contains the type 2 periplasmic binding fold. This CD includes an uncharacterized LysR-type transcriptional regulator similar to DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176154 cd08465 PBP2_ToxR The C-terminal substrate binding domain of LysR-type transcriptional regulator ToxR regulates the expression of the toxoflavin biosynthesis genes; contains the type 2 periplasmic bindinig fold. In soil bacterium Burkholderia glumae, ToxR regulates the toxABCDE and toxFGHI operons in the presence of toxoflavin as a coinducer. Additionally, the expression of both operons requires a transcriptional activator, ToxJ, whose expression is regulated by the TofI or TofR quorum-sensing system. The biosynthesis of toxoflavin is suggested to be synthesized in a pathway common to the synthesis of riboflavin. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176155 cd08466 PBP2_LeuO The C-terminal substrate binding domain of LysR-type transcriptional regulator LeuO, an activator of leucine synthesis operon, contains the type 2 periplasmic binding fold. LeuO, a LysR-type transcriptional regulator, was originally identified as an activator of the leucine synthesis operon (leuABCD). Subsequently, LeuO was found to be not a specific regulator of the leu gene but a global regulator of unrelated various genes. LeuO activates bglGFB (utilization of beta-D-glucoside) and represses cadCBA (lysine decarboxylation) and dsrA (encoding a regulatory small RNA for translational control of rpoS and hns). LeuO also regulates the yjjQ-bglJ operon which coding for a LuxR-type transcription factor. In Salmonella enterica serovar Typhi, LeuO is a positive regulator of ompS1 (encoding an outer membrane), ompS2 (encoding a pathogenicity determinant), and assT, while LeuO represses the expression of OmpX and Tpx. Both osmS1 and osmS2 influence virulence in the mouse model of Salmonella. In Vibrio cholerae, LeuO is involved in control of biofilm formation and in the stringent response. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176156 cd08467 PBP2_SyrM The C-terminal substrate binding of LysR-type symbiotic regulator SyrM, which activates expression of nodulation gene NodD3, contains the type 2 periplasmic binding fold. Rhizobium is a nitrogen fixing bacteria present in the roots of leguminous plants, which fixes atmospheric nitrogen to the soil. Most Rhizobium species possess multiple nodulation (nod) genes for the development of nodules. For example, Rhizobium meliloti possesses three copies of nodD genes. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to inducers synthesized by the host plant, while NodD3 acts independent of plant inducers and requires the symbiotic regulator SyrM for nod gene expression. SyrM activates the expression of the regulatory nodulation gene nodD3. In turn, NodD3 activates expression of syrM. In addition, SyrM is involved in exopolysaccharide synthesis. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 200 -176157 cd08468 PBP2_Pa0477 The C-terminal substrate biniding domain of an uncharacterized LysR-like transcriptional regulator Pa0477 related to DntR, contains the type 2 periplasmic binding fold. LysR-type transcriptional regulator Pa0477 is related to DntR, which controls genes encoding enzymes for oxidative degradation of the nitro-aromatic compound 2,4-dinitrotoluene. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 202 -176158 cd08469 PBP2_PnbR The C-terminal substrate binding domain of LysR-type transcriptional regulator PnbR, which is involved in regulating the pnb genes encoding enzymes for 4-nitrobenzoate catabolism, contains the type 2 periplasmic binding fold. PnbR is the regulator of one or both of the two pnb genes that encoding enzymes for 4-nitrobenzoate catabolism. In Pseudomonas putida strain, pnbA encodes a 4-nitrobenzoate reductase, which is responsible for catalyzing the direct reduction of 4-nitrobenzoate to 4-hydroxylaminobenzoate, and pnbB encodes a 4-hydroxylaminobenzoate lyase, which catalyzes the conversion of 4-hydroxylaminobenzoate to 3, 4-dihydroxybenzoic acid and ammonium. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 221 -176159 cd08470 PBP2_CrgA_like_1 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding domain. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 1. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176160 cd08471 PBP2_CrgA_like_2 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 2. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 201 -176161 cd08472 PBP2_CrgA_like_3 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 3. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 202 -176162 cd08473 PBP2_CrgA_like_4 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 4. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 202 -176163 cd08474 PBP2_CrgA_like_5 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 5. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 202 -176164 cd08475 PBP2_CrgA_like_6 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 6. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 199 -176165 cd08476 PBP2_CrgA_like_7 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 7. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176166 cd08477 PBP2_CrgA_like_8 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 8. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 197 -176167 cd08478 PBP2_CrgA The C-terminal substrate binding domain of LysR-type transcriptional regulator CrgA, contains the type 2 periplasmic binding domain. This CD represents the substrate binding domain of LysR-type transcriptional regulator (LTTR) CrgA. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis further showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 199 -176168 cd08479 PBP2_CrgA_like_9 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 9. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176169 cd08480 PBP2_CrgA_like_10 The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 10. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176170 cd08481 PBP2_GcdR_like The C-terminal substrate binding domain of LysR-type transcriptional regulators GcdR-like, contains the type 2 periplasmic binding fold. GcdR is involved in the glutaconate/glutarate-specific activation of the Pg promoter driving expression of a glutaryl-CoA dehydrogenase-encoding gene (gcdH). The GcdH protein is essential for the anaerobic catabolism of many aromatic compounds and some alicyclic and dicarboxylic acids. The structural topology of this substrate-binding domain is most similar to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 194 -176171 cd08482 PBP2_TrpI The C-terminal substrate binding domain of LysR-type transcriptional regulator TrpI, which is involved in control of tryptophan synthesis, contains type 2 periplasmic binding fold. TrpI and indoleglycerol phosphate (InGP), are required to activate transcription of the trpBA, the genes for tryptophan synthase. The trpBA is induced by the InGp substrate, rather than by tryptophan, but the exact mechanism of the activation event is not known. This substrate-binding domain of TrpI shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 195 -176172 cd08483 PBP2_HvrB The C-terminal substrate-binding domain of LysR-type transcriptional regulator HvrB, an activator of S-adenosyl-L-homocysteine hydrolase expression, contains the type 2 periplasmic binding fold. The transcriptional regulator HvrB of the LysR family is required for the light-dependent activation of both ahcY, which encoding the enzyme S-adenosyl-L-homocysteine hydrolase (AdoHcyase) that responsible for the reversible hydrolysis of AdoHcy to adenosine and homocysteine, and orf5, a gene of unknown. The topology of this C-terminal domain of HvrB is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 190 -176173 cd08484 PBP2_LTTR_beta_lactamase The C-terminal substrate-domain of LysR-type transcriptional regulators for beta-lactamase genes, contains the type 2 periplasmic binding fold. This CD includes the C-terminal substrate binding domain of LysR-type transcriptional regulators, BlaA and AmpR, that are involved in control of the expression of beta-lactamase genes. Beta-lactamases are responsible for bacterial resistance to beta-lactam antibiotics such as penicillins. BlaA (a constitutive class A penicillinase) belongs to the LysR family of transcriptional regulators, while BlaB (an inducible class C cephalosporinase or AmpC) can be referred to as a penicillin-binding protein, but it does not act as a beta-lactamase. AmpR regulates the expression of beta-lactamases in many enterobacterial strains and many other gram-negative bacilli. In contrast to BlaA, AmpR acts an activator only in the presence of the beta-lactam inducer. In the absence of the inducer, AmpR acts as a repressor. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 189 -176174 cd08485 PBP2_ClcR The C-terminal substrate binding domain of LysR-type transcriptional regulator ClcR involved in the chlorocatechol catabolism, contains type 2 periplasmic binding fold. In soil bacterium Pseudomonas putida, the ortho-pathways of catechol and 3-chlorocatechol are central catabolic pathways that convert aromatic and chloroaromaric compounds to tricarboxylic acid (TCA) cycle intermediates. The 3-chlorocatechol-degradative pathway is encoded by clcABD operon, which requires the divergently transcribed clcR and an intermediate of the pathway, 2-chloromuconate, as an inducer for activation. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176175 cd08486 PBP2_CbnR The C-terminal substrate binding domain of LysR-type transcriptional regulator, CbnR, involved in the chlorocatechol catabolism, contains the type 2 periplasmic binding fold. This CD represents the substrate binding domain of LysR-type regulator CbnR which is involved in the regulation of chlorocatechol breakdown. The chlorocatechol-degradative pathway is often found in bacteria that can use chlorinated aromatic compounds as carbon and energy sources. CbnR is found in the 3-chlorobenzoate degradative bacterium Ralstonia eutropha NH9 and forms a tetramer. CbnR activates the expression of the cbnABCD genes, which are responsible for the degradation of chlorocatechol converted from 3-chlorobenzoate and are transcribed divergently from cbnR. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 198 -176176 cd08487 PBP2_BlaA The C-terminal substrate-binding domain of LysR-type trnascriptional regulator BlaA which involved in control of the beta-lactamase gene expression; contains the type 2 periplasmic binding fold. This CD represents the C-terminal substrate binding domain of LysR-type transcriptional regulator, BlaA, that involved in control of the expression of beta-lactamase genes, blaA and blaB. Beta-lactamases are responsible for bacterial resistance to beta-lactam antibiotics such as penicillins. The blaA gene is located just upstream of blaB in the opposite direction and regulates the expression of the blaB. BlaA also negatively auto-regulates the expression of its own gene, blaA. BlaA (a constitutive class A penicllinase) belongs to the LysR family of transcriptional regulators, whereas BlaB (an inducible class C cephalosporinase or AmpC) can be referred to as a penicillin binding protein but it does not act as a beta-lactamase. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 189 -176177 cd08488 PBP2_AmpR The C-terminal substrate domain of LysR-type transcriptional regulator AmpR that involved in control of the expression of beta-lactamase gene ampC, contains the type 2 periplasmic binding fold. AmpR acts as a transcriptional activator by binding to a DNA region immediately upstream of the ampC promoter. In the absence of a beta-lactam inducer, AmpR represses the synthesis of beta-lactamase, whereas expression is induced in the presence of a beta-lactam inducer. The AmpD, AmpG, and AmpR proteins are involved in the induction of AmpC-type beta-lactamase (class C) which produced by enterobacterial strains and many other gram-negative bacilli. The activation of ampC by AmpR requires ampG for induction or high-level expression of AmpC. It is probable that the AmpD and AmpG work together to modulate the ability of AmpR to activate ampC expression. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 191 -173854 cd08489 PBP2_NikA The substrate-binding component of an ABC-type nickel import system contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding domain of nickel transport system, which functions in the import of nickel and in the control of chemotactic response away from nickel. The ATP-binding cassette (ABC) type nickel transport system is comprised of five subunits NikABCDE: the two pore-forming integral inner membrane proteins NikB and NikC; the two inner membrane-associated proteins with ATPase activity NikD and NikE; and the periplasmic nickel binding NikA, the initial nickel receptor. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 488 -173855 cd08490 PBP2_NikA_DppA_OppA_like_3 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 470 -173856 cd08491 PBP2_NikA_DppA_OppA_like_12 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 473 -173857 cd08492 PBP2_NikA_DppA_OppA_like_15 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 484 -173858 cd08493 PBP2_DppA_like The substrate-binding component of an ABC-type dipeptide import system contains the type 2 periplasmic binding fold. This family represents the substrate-binding domain of an ATP-binding cassette (ABC)-type dipeptide import system. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 482 -173859 cd08494 PBP2_NikA_DppA_OppA_like_6 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 448 -173860 cd08495 PBP2_NikA_DppA_OppA_like_8 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 482 -173861 cd08496 PBP2_NikA_DppA_OppA_like_9 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA can bind peptides of a wide range of lengths (2-35 amino-acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 454 -173862 cd08497 PBP2_NikA_DppA_OppA_like_14 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 491 -173863 cd08498 PBP2_NikA_DppA_OppA_like_2 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 481 -173864 cd08499 PBP2_Ylib_like The substrate-binding component of an uncharacterized ABC-type peptide import system Ylib contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding component of an uncharacterized ATP-binding cassette (ABC)-type peptide transport system YliB. Although the ligand specificity of Ylib protein is not known, it shares significant sequence similarity to the ABC-type dipeptide and oligopeptide binding proteins. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 474 -173865 cd08500 PBP2_NikA_DppA_OppA_like_4 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 499 -173866 cd08501 PBP2_Lpqw The substrate-binding domain of mycobacterial lipoprotein Lpqw contains type 2 periplasmic binding fold. LpqW is one of key players in synthesis and transport of the unique components of the mycobacterial cell wall which is a complex structure rich in two related lipoglycans, the phosphatidylinositol mannosides (PIMs) and lipoarabinomannans (LAMs). Lpqw is a highly conserved lipoprotein that transport intermediates from a pathway for mature PIMs production into a pathway for LAMs biosynthesis, thus controlling the relative abundance of these two essential components of cell wall. LpqW is thought to have been adapted by the cell-wall biosynthesis machinery of mycobacteria and other closely related pathogens, evolving to play an important role in PIMs/LAMs biosynthesis. Most of periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the LpqW protein. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 486 -173867 cd08502 PBP2_NikA_DppA_OppA_like_16 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 472 -173868 cd08503 PBP2_NikA_DppA_OppA_like_17 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 460 -173869 cd08504 PBP2_OppA The substrate-binding component of an ABC-type oligopetide import system contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding component of an ATP-binding cassette (ABC)-type oligopeptide transport system comprised of 5 subunits. The transport system OppABCDEF contains two homologous integral membrane proteins OppB and OppF that form the translocation pore; two homologous nucleotide-binding domains OppD and OppF that drive the transport process through binding and hydrolysis of ATP; and the substrate-binding protein or receptor OppA that determines the substrate specificity of the transport system. The dipeptide (DppA) and oligopeptide (OppA) binding proteins differ in several ways. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 498 -173870 cd08505 PBP2_NikA_DppA_OppA_like_18 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 528 -173871 cd08506 PBP2_clavulanate_OppA2 The substrate-binding domain of an oligopeptide binding protein (OppA2) from the biosynthesis pathway of the beta-lactamase inhibitor clavulanic acid contains the type 2 periplasmic binding fold. Clavulanic acid (CA), a clinically important beta-lactamase inhibitor, is one of a family of clavams produced as secondary metabolites by fermentation of Streptomyces clavuligeru. The biosynthesis of CA proceeds via multiple steps from the precursors, glyceraldehyde-3-phosphate and arginine. CA possesses a characteristic (3R,5R) stereochemistry essential for reaction with penicillin-binding proteins and beta-lactamases. Two genes (oppA1 and oppA2) in the clavulanic acid gene cluster encode oligopeptide-binding proteins that are required for CA biosynthesis. OppA1/2 is involved in the binding and transport of peptides across the cell membrane of Streptomyces clavuligerus. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 466 -173872 cd08507 PBP2_SgrR_like The C-terminal solute-binding domain of DNA-binding transcriptional regulator SgrR is related to the ABC-type oligopeptide-binding proteins and contains the type 2 periplasmic-binding fold. A novel family of SgrR transcriptional regulator contains a two-domain structure with an N terminal DNA-binding domain of the winged helix family and a C-terminal solute-binding domain. The C-terminal domain shows strong homology with the ABC-type oligopeptide-binding protein family, a member of the type 2 periplasmic-binding fold protein (PBP2) superfamily that also includes the C-terminal substrate-binding domain of LysR-type transcriptional regulators. SgrR (SugaR transport-related Regulator) is negatively autoregulated and activates transcription of divergent operon SgrS, which encodes a small RNA required for recovery from glucose-phosphate stress. Hence, the small RNA SgrS and SgrR, the transcription factor that controls sgrS expression, are both required for recovery from glucose-phosphate stress. Most of periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 448 -173873 cd08508 PBP2_NikA_DppA_OppA_like_1 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 470 -173874 cd08509 PBP2_TmCBP_oligosaccharides_like The substrate binding domain of a cellulose-binding protein from Thermotoga maritima contains the type 2 periplasmic binding fold. This family represents the substrate-binding domain of a cellulose-binding protein from the hyperthermophilic bacterium Thermotoga maritima (TmCBP) and its closest related proteins. TmCBP binds a variety of lengths of beta-1,4-linked glucose oligomers, ranging from two sugar rings (cellobiose) to five (cellopentose). TmCBP is structurally homologous to domains I and III of the ATP-binding cassette (ABC)-type oligopeptide-binding proteins and thus belongs to the type 2 periplasmic binding fold protein (PBP2) superfamily. The type 2 periplasmic binding proteins are soluble ligand-binding components of ABC or tripartite ATP-independent transporters and chemotaxis systems. Members of the PBP2 superfamily function in uptake of a variety of metabolites in bacteria such as amino acids, carbohydrate, ions, and polyamines. Ligands are then transported across the cytoplasmic membrane energized by ATP hydrolysis or electrochemical ion gradient. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 509 -173875 cd08510 PBP2_Lactococcal_OppA_like The substrate binding component of an ABC-type lactococcal OppA-like transport system contains. This family represents the substrate binding domain of an ATP-binding cassette (ABC)-type oligopeptide import system from Lactococcus lactis and other gram-positive bacteria, as well as its closet homologs from gram-negative bacteria. Oligopeptide-binding protein (OppA) from Lactococcus lactis can bind peptides of length from 4 to at least 35 residues without sequence preference. The oligopeptide import system OppABCDEF is consisting of five subunits: two homologous integral membrane proteins OppB and OppF that form the translocation pore; two homologous nucleotide-binding domains OppD and OppF that drive the transport process through binding and hydrolysis of ATP; and the substrate-binding protein or receptor OppA that determines the substrate specificity of the transport system. The dipeptide (DppA) and oligopeptide (OppA) binding proteins differ in several ways. The DppA binds dipeptides and some tripeptides and also is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 516 -173876 cd08511 PBP2_NikA_DppA_OppA_like_5 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This family represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 467 -173877 cd08512 PBP2_NikA_DppA_OppA_like_7 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 476 -173878 cd08513 PBP2_thermophilic_Hb8_like The substrate-binding component of ABC-type thermophilic oligopeptide-binding protein Hb8-like import systems, contains the type 2 periplasmic binding fold. This family includes the substrate-binding domain of an ABC-type oligopeptide-binding protein Hb8 from Thermus thermophilius and its closest homologs from other bacteria. The structural topology of this substrate-binding domain is similar to those of DppA from Escherichia coli and OppA from Salmonella typhimurium, and thus belongs to the type 2 periplasmic binding fold protein (PBP2) superfamily. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. The type 2 periplasmic binding proteins are soluble ligand-binding components of ABC or tripartite ATP-independent transporters and chemotaxis systems. Members of the PBP2 superfamily function in uptake of a variety of metabolites in bacteria such as amino acids, carbohydrate, ions, and polyamines. Ligands are then transported across the cytoplasmic membrane energized by ATP hydrolysis or electrochemical ion gradient. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 482 -173879 cd08514 PBP2_AppA_like The substrate-binding component of the oligopeptide-binding protein, AppA, from Bacillus subtilis contains the type 2 periplasmic-binding fold. This family represents the substrate-binding domain of the oligopeptide-binding protein, AppA, from Bacillus subtilis and its closest homologs from other bacteria and archaea. Bacillus subtilis has three ABC-type peptide transport systems, a dipeptide-binding protein (DppA) and two oligopeptide-binding proteins (OppA and AppA) with overlapping specificity. The dipeptide (DppA) and oligopeptide (OppA) binding proteins differ in several ways. The DppA binds dipeptides and some tripeptides and also is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 483 -173880 cd08515 PBP2_NikA_DppA_OppA_like_10 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 460 -173881 cd08516 PBP2_NikA_DppA_OppA_like_11 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 457 -173882 cd08517 PBP2_NikA_DppA_OppA_like_13 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 480 -173883 cd08518 PBP2_NikA_DppA_OppA_like_19 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 464 -173884 cd08519 PBP2_NikA_DppA_OppA_like_20 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 469 -173885 cd08520 PBP2_NikA_DppA_OppA_like_21 The substrate-binding component of an uncharacterized ABC-type nickel/dipeptide/oligopeptide-like import system contains the type 2 periplasmic binding fold. This CD represents the substrate-binding domain of an uncharacterized ATP-binding cassette (ABC) type nickel/dipeptide/oligopeptide-like transporter. The oligopeptide-binding protein OppA and the dipeptide-binding protein DppA show significant sequence similarity to NikA, the initial nickel receptor. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. 468 -176056 cd08521 C2A_SLP C2 domain first repeat present in Synaptotagmin-like proteins. All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. 123 -260080 cd08523 Reeler_cohesin_like Domains similar to the eukaryotic reeler domain and bacterial cohesins. This diverse family summarizes a set of distantly related domains, as revealed by structural similarity 128 -197341 cd08524 Reelin_subrepeat_like Tandem repeat subunit of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the subrepeats, which directly contact each other in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). Genetic deficiency of reelin, or ApoER2 and VLDLR, or Dab1, all exhibit the same phenotypes, including ataxia, cortical layer inversion and abnormal positioning patterns. 144 -197342 cd08525 Reelin_subrepeat_1 N-terminal subrepeat in the tandem repeat unit of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 161 -197343 cd08526 Reelin_subrepeat_2 C-terminal subrepeat in the tandem repeat unit of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 152 -270867 cd08528 STKc_Nek10 Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 10. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. No function has yet been ascribed to Nek10. The gene encoding Nek10 is a putative causative gene for breast cancer; it is located within a breast cancer susceptibility loci on chromosome 3p24. Nek10 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -270868 cd08529 STKc_FA2-like Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii FA2 was discovered in a genetic screen for deflagellation-defective mutants. It is essential for basal-body/centriole-associated microtubule severing, and plays a role in cell cycle progression. No cellular function has yet been ascribed to CNK4. The Chlamydomonas reinhardtii FA2-like subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily contains FA2 and CNK4. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270869 cd08530 STKc_CNK2-like Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -188877 cd08531 SAM_PNT-ERG_FLI-1 Sterile alpha motif (SAM)/Pointed domain of ERG (Ets related gene) and FLI-1 (Friend leukemia integration 1) transcription factors. SAM Pointed domain of ERG/FLI-1 subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. The ERG and FLI regulators are involved in endothelial cell differentiation, bone morphogenesis and neural crest development. They are proto-oncogenes implicated in cancer development such as myeloid leukemia, Ewing's sarcoma and erythroleukemia. Members of this subfamily are potential targets for cancer therapy. 75 -188878 cd08532 SAM_PNT-PDEF-like Sterile alpha motif (SAM)/Pointed domain of prostate-derived ETS factor. SAM Pointed domain of PDEF-like (Prostate-Derived ETS Factor) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. In human males this activator is highly expressed in the prostate gland and enhances androgen-mediated activation of the PSA promoter though interaction with the DNA binding domain of androgen receptor. PDEF may play a role in prostate cancer development as well as in goblet cell formation and mucus production in the epithelial lining of respiratory and intestinal tracts. 81 -188879 cd08533 SAM_PNT-ETS-1,2 Sterile alpha motif (SAM)/Pointed domain of ETS-1,2 family. SAM Pointed domain of ETS-1,2 family of transcriptional activators is a protein-protein interaction domain. It carries a kinase docking site and mediates interaction between ETS transcriptional activators and protein kinases. This group of transcriptional factors is involved in the Ras/MAP kinase signaling pathway. MAP kinases phosphorylate the transcription factors. Phosphorylated factors then recruit coactivators and enhance transactivation. Members of this group play a role in regulation of different embryonic developmental processes. ETS-1,2 transcriptional activators are proto-oncogenes involved in malignant transformation and tumor progression. They are potential molecular targets for selective cancer therapy. 71 -176084 cd08534 SAM_PNT-GABP-alpha Sterile alpha motif (SAM)/Pointed domain of GA-binding protein (GABP) alpha chain. SAM Pointed domain of GA-binding protein (GABP) alpha subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. This type of transcriptional regulators forms heterotetramers containing two alpha and two beta subunits. It interacts with GA repeats (purine rich repeats). GABP transcriptional factors control gene expression in cell cycle control, apoptosis, and cellular respiration. GABP participates in regulation of transmembrane receptors and key hormones especially in myeloid cells and at the neuromuscular junction. 89 -176085 cd08535 SAM_PNT-Tel_Yan Sterile alpha motif (SAM)/Pointed domain of Tel/Yan protein. SAM Pointed domain of Tel (Translocation, Ets, Leukemia)/Yan subfamily of ETS transcriptional repressors is a protein-protein interaction domain. SAM Pointed domains of this type of regulators can interact with each other, forming head-to-tail homodimers or homooligomers, and/or interact with SAM Pointed domains of another subfamily of ETS factors forming heterodimers. The oligomeric form is able to block transcription of target genes and is involved in MAPK signaling. They participate in regulation of different processes during embryoniv development including hematopoietic differentiation and eye development. Tel/Yan transcriptional factors are frequent targets of chromosomal translocations resulting in fusions of SAM domain with new neighboring genes. Such chimeric proteins were found in different tumors. Members of this subfamily are potential targets for cancer therapy. 68 -176086 cd08536 SAM_PNT-Mae Sterile alpha motif (SAM)/Pointed domain of Mae protein homolog. Mae (Modulator of the Activity of ETS) subfamily represents a group of SAM Pointed monodomain proteins. SAM Pointed domain is a protein-protein interaction domain. It can interact with other SAM pointed domains forming head-to-tail heterodimers and also provides a kinase docking site. For example, in Drosophila Mae is required for facilitating phosphorylation of the Yan factor and for blocking phosphorylation of the ETS-2 regulator. Mae interacts with the SAM Pointed domains of Yan and ETS-2. Binding enhances access of the kinase to the Yan phosphorylation site by providing a kinase docking site, or inhibits phosphorylation of ETS-2 by blocking its docking site. This type of factors participates in regulation of kinase signaling particularly during embryogenesis. 66 -188880 cd08537 SAM_PNT-ESE-1-like Sterile alpha motif (SAM)/Pointed domain of ESE-1 like ETS transcriptional regulators. SAM Pointed domain of ESE-1-like (Epithelium-Specific ETS) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. SAM Pointed domain of ESE-1 provides a potential docking site for signaling kinase Pak1 in humans. ESE-1 factors are involved in regulation of gene expression in different types of epithelial cells. ESE-1 is expressed in many different organs including intestine, stomach, pancreas, lungs, kidneys, and prostate. The DNA binding consensus motif for ESE-1 consists of a purine-rich GGA[AT] core sequence. The expression profile of these factors is altered in epithelial cancers if compared to normal tissues. Members of this subfamily are potential targets for cancer therapy. 81 -188881 cd08538 SAM_PNT-ESE-2-like Sterile alpha motif (SAM)/Pointed domain of ESE-2 like ETS transcriptional regulators. SAM Pointed domain of ESE-2-like (Epithelium-Specific ETS) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. It can act as a major transactivator by providing a potential docking site for co-activators. ESE-2 factors are involved in regulation of gene expression in a variety of epithelial (glandular and secretory) cells. ESE-2 mRNA was found in skin keratinocytes, salivary gland, mammary gland, stomach, prostate, and kidneys. The DNA binding consensus motif for ESE-2 consists of a GGA core and AT-rich flanks. The expression profiles of these factors are altered in epithelial cancers. Members of this subfamily are potential targets for cancer therapy. 84 -188882 cd08539 SAM_PNT-ESE-3-like Sterile alpha motif (SAM)/Pointed domain of ESE-3 like ETS transcriptional regulators. SAM Pointed domain of ESE-3-like (Epithelium-Specific ETS) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. It can act as a major transactivator by providing a potential docking site for co-activators. The ESE-3 transcriptional activator is involved in regulation of glandular epithelium differentiation through the MAP kinase signaling cascade. It is found to be expressed in glandular epithelium of prostate, pancreas, salivary gland, and trachea. Additionally, ESE-3 is differentially expressed during monocyte-derived dendritic cells development. DNA binding consensus motif for ESE-3 consists of purine-rich GGAA/T core sequence. The expression profiles of these factors are altered in epithelial cancers. Members of this subfamily are potential targets for cancer therapy. 78 -176090 cd08540 SAM_PNT-ERG Sterile alpha motif (SAM)/Pointed domain of ERG transcription factor. SAM Pointed domain of ERG subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. It may participate in formation of homodimers or heterodimers with ETS-2, Fli-1, ER81, and Pu-1. However, dimeric forms are inactive and SAM Pointed domain is not essential for dimerization, since ER81 and Pu-1 do not have it. In mouse, a regulator of this type binds the ESET histone H3-specific methyltransferase (human homolog is SETDB1), which leads to modification of the local chromatin structure through histone methylation. ERG regulators are involved in endothelial cell differentiation, bone morphogenesis and neural crest development. The Erg gene is a proto-oncogene. It is a target of chromosomal translocations resulting in fusions with other neighboring genes. Chimeric proteins were found in solid tumors such as myeloid leukemia or Ewing's sarcoma. Members of this subfamily are potential targets for cancer therapy. 75 -188883 cd08541 SAM_PNT-FLI-1 Sterile alpha motif (SAM)/Pointed domain of friend leukemia integration 1 transcription activator. SAM Pointed domain of FLI-1 (Friend Leukemia Integration) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. The FLI-1 protein participates in regulation of cellular differentiation, proliferation, and survival. The Fli-1 gene was initially described in Friend virus-induced erythroleukemias as a site for virus integration. It is highly expressed in hematopoietic tissues and at lower level in lungs, heart, and ovaries. Fli-1 is a proto-oncogene implicated in Ewing's sarcoma and erythroleukemia. Members of this subfamily are potential targets for cancer therapy. 91 -176092 cd08542 SAM_PNT-ETS-1 Sterile alpha motif (SAM)/Pointed domain of ETS-1. SAM Pointed domain of ETS-1 subfamily of ETS transcriptional activators is a protein-protein interaction domain. The ETS-1 activator is regulated by phosphorylation. It contains a docking site for the ERK2 MAP (Mitogen Activated Protein) kinase, while the ERK2 phosphorylation site is located in the N-terminal disordered region upstream of the SAM Pointed domain. Mutations of the kinase docking site residues inhibit phosphorylation. ETS-1 activators play a role in a number of different physiological processes, and they are expressed during embryonic development, including blood vessel formation, hematopoietic, lymphoid, neuronal and osteogenic differentiation. The Ets-1 gene is a proto-oncogene involved in progression of different tumors (including breast cancer, meningioma, and prostate cancer). Members of this subfamily are potential molecular targets for selective cancer therapy. 88 -188884 cd08543 SAM_PNT-ETS-2 Sterile alpha motif (SAM)/Pointed domain of ETS-2. SAM Pointed domain of ETS-2 subfamily of ETS transcriptional regulators is a protein-protein interaction domain. It contains a docking site for Cdk10 (cyclin-dependent kinase 10), a member of the Cdc2 kinase family. The interaction between ETS-2 and Cdk10 kinase inhibits ETS-2 transactivation activity in mammals. ETS-2 is also regulated by ERK2 MAP kinase. ETS-2, which is phosphorylated by ERK2, can interact with coactivators and enhance transactivation. ETS-2 transcriptional activators are involved in embryonic development and cell cycle control. The Ets-2 gene is a proto-oncogene. It is overexpressed in breast and prostate cancer cells and its overexpression is necessary for transformation of such cells. Members of ETS-2 subfamily are potential molecular targets for selective cancer therapy. 89 -260081 cd08544 Reeler Reeler, the N-terminal domain of reelin, F-spondin, and a variety of other proteins. This domain is found at the N-terminus of F-spondin, a protein attached to the extracellular matrix, which plays roles in neuronal development and vascular remodelling. The F-spondin reeler domain has been reported to bind heparin. The reeler domain is also found at the N-terminus of reelin, an extracellular glycoprotein involved in the development of the brain cortex, and in a variety of other eukaryotic proteins with different domain architectures, including the animal ferric-chelate reductase 1 or stromal cell-derived receptor 2, a member of the cytochrome B561 family, which reduces ferric iron before its transport from the endosome to the cytoplasm. Also included is the insect putative defense protein 1, which is expressed upon bacterial infection and appears to contain a single reeler domain. 135 -260082 cd08545 YcnI_like Reeler-like domain of YcnI and similar proteins. YcnI is a copper-responsive gene of Bacillus subtilis. It is homologous to an uncharacterized protein from Nocardia farcinica, which shares a conserved three-dimensional structure with cohesins and the reeler domain. Some members in this YcnI_like family have C-terminal domains (DUF461) that may bind copper. 152 -260083 cd08546 cohesin_like Cohesin domain, interaction parter of dockerin. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. Cohesin modules are phylogenetically distributed into three groups: type I cohesin-dockerin interactions mediate assembly of a range of dockerin-borne enzymes to the complex, while type-II interactions mediate attachment of the cellulosome complex to the bacterial cell wall. Recently discovered type-III cohesins, such as found in the anchoring scaffoldin ScaE, appears to contribute to increased stability of the elaborate cellulosome complex. While the presence of cohesin and dockerin domains in a genome can be indicative of cellulolytic activity, cohesin domains may occur in a wider range of domain architectures, biological systems, and taxonomic lineages. 144 -260084 cd08547 Type_II_cohesin Type II cohesin domain, interaction partner of dockerin. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. This subfamily represents type II cohesins; their interactions with dockerin mediate attachment of the cellulosome complex to the bacterial cell wall. 136 -260085 cd08548 Type_I_cohesin_like Type I cohesin domain, interaction partner of dockerin. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. This subfamily represents type I cohesins; their interactions with dockerin mediate assembly of a range of dockerin-borne enzymes to the complex. 135 -341479 cd08549 G1PDH_related Glycerol-1-phosphate dehydrogenase and related proteins. This family contains bacterial and archeal glycerol-1-phosphate dehydrogenase-like oxidoreductases. These proteins have similarity with glycerol-1-phosphate dehydrogenase (G1PDH) which plays a role in the synthesis of phosphoglycerolipids in gram-positive bacterial species. It catalyzes the reversibly reduction of dihydroxyacetone phosphate (DHAP) to glycerol-1-phosphate (G1P) in a NADH-dependent manner. Its activity requires Ni++ ion. It also contains archaeal Sn-glycerol-1-phosphate dehydrogenase (Gro1PDH) that plays an important role in the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate) of archaeal ether lipids. 331 -341480 cd08550 GlyDH-like Glycerol_dehydrogenase-like. This family contains glycerol dehydrogenase (GlyDH)-like proteins. Glycerol dehydrogenases (GlyDH) is a key enzyme in the glycerol dissimilation pathway. In anaerobic conditions, many microorganisms utilize glycerol as a source of carbon through coupled oxidative and reductive pathways. One of the pathways involves the oxidation of glycerol to dihydroxyacetone with the reduction of NAD+ to NADH catalyzed by glycerol dehydrogenases. Dihydroxyacetone is then phosphorylated by dihydroxyacetone kinase and enters the glycolytic pathway for further degradation. The activity of GlyDH is zinc-dependent; the zinc ion plays a role in stabilizing an alkoxide intermediate at the active site. Some subfamilies have yet to be characterized. 347 -341481 cd08551 Fe-ADH iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains large metal-containing alcohol dehydrogenases (ADH), known as iron-containing alcohol dehydrogenases. They contain a dehydroquinate synthase-like protein structural fold and mostly contain iron. They are distinct from other alcohol dehydrogenases which contains different protein domains. There are several distinct families of alcohol dehydrogenases: Zinc-containing long-chain alcohol dehydrogenases, insect-type, or short-chain alcohol dehydrogenases, iron-containing alcohol dehydrogenases, among others. The iron-containing family has a Rossmann fold-like topology that resembles the fold of the zinc-dependent alcohol dehydrogenases, but lacks sequence homology, and differs in strand arrangement. ADH catalyzes the reversible oxidation of alcohol to acetaldehyde with the simultaneous reduction of NAD(P)+ to NAD(P)H. 372 -350202 cd08553 PIN_Fcf1-like VapC-like PIN domain of rRNA-processing proteins, Fcf1 (Utp24, YDR339C), Utp23 (YOR004W), and other eukaryotic homologs. Fcf1 (FAF1-copurifying factor 1, also known as Utp24) and Utp23 (U three-associated protein 23) are essential proteins involved in pre-rRNA processing and 40S ribosomal subunit assembly. Components of the small subunit (SSU) processome, Fcf1 and Utp23 are essential nucleolar proteins that are required for processing of the 18S pre-rRNA at sites A0-A2. The Fcf1 protein was reported to interact with Pmc1p (vacuolar Ca2+ ATPase) and Cor1p (core subunit of the ubiquinol-cytochrome c reductase complex). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. The subfamily of Fcf1- and Utp23-like homologs have three of the four conserved residues found in S. cerevisiae Fcf1. Some members of the superfamily, including S. cerevisiae Utp23, lack several of these key catalytic residues. Mutation of the remaining conserved putative active site residues seen in Utp23 did not interfere with rRNA maturation and cell viability. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 123 -176489 cd08554 Cyt_b561 Eukaryotic cytochrome b(561). Cytochrome b(561) is a family of endosomal or secretory vesicle-specific electron transport proteins. They are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. This is an exclusively eukaryotic family. Members of the prokaryotic cytochrome b561 family are not deemed homologous. 131 -176498 cd08555 PI-PLCc_GDPD_SF Catalytic domain of phosphoinositide-specific phospholipase C-like phosphodiesterases superfamily. The PI-PLC-like phosphodiesterases superfamily represents the catalytic domains of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11), glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46), sphingomyelinases D (SMases D) (sphingomyelin phosphodiesterase D, EC 3.1.4.41) from spider venom, SMases D-like proteins, and phospholipase D (PLD) from several pathogenic bacteria, as well as their uncharacterized homologs found in organisms ranging from bacteria and archaea to metazoans, plants, and fungi. PI-PLCs are ubiquitous enzymes hydrolyzing the membrane lipid phosphoinositides to yield two important second messengers, inositol phosphates and diacylglycerol (DAG). GP-GDEs play essential roles in glycerol metabolism and catalyze the hydrolysis of glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols that are major sources of carbon and phosphate. Both, PI-PLCs and GP-GDEs, can hydrolyze the 3'-5' phosphodiester bonds in different substrates, and utilize a similar mechanism of general base and acid catalysis with conserved histidine residues, which consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This superfamily also includes Neurospora crassa ankyrin repeat protein NUC-2 and its Saccharomyces cerevisiae counterpart, Phosphate system positive regulatory protein PHO81, glycerophosphodiester phosphodiesterase (GP-GDE)-like protein SHV3 and SHV3-like proteins (SVLs). The residues essential for enzyme activities and metal binding are not conserved in these sequence homologs, which might suggest that the function of catalytic domains in these proteins might be distinct from those in typical PLC-like phosphodiesterases. 179 -176499 cd08556 GDPD Glycerophosphodiester phosphodiesterase domain as found in prokaryota and eukaryota, and similar proteins. The typical glycerophosphodiester phosphodiesterase domain (GDPD) consists of a TIM barrel and a small insertion domain named the GDPD-insertion (GDPD-I) domain, which is specific for GDPD proteins. This family corresponds to both typical GDPD domain and GDPD-like domain which lacks the GDPD-I region. Members in this family mainly consist of a large family of prokaryotic and eukaryotic glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46), and a number of uncharacterized homologs. Sphingomyelinases D (SMases D) (sphingomyelin phosphodiesterase D, EC 3.1.4.41) from spider venom, SMases D-like proteins, and phospholipase D (PLD) from several pathogenic bacteria are also included in this family. GDPD plays an essential role in glycerol metabolism and catalyzes the hydrolysis of glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols are major sources of carbon and phosphate. Its catalytic mechanism is based on the metal ion-dependent acid-base reaction, which is similar to that of phosphoinositide-specific phospholipases C (PI-PLCs, EC 3.1.4.11). Both, GDPD related proteins and PI-PLCs, belong to the superfamily of PI-PLC-like phosphodiesterases. 189 -176500 cd08557 PI-PLCc_bacteria_like Catalytic domain of bacterial phosphatidylinositol-specific phospholipase C and similar proteins. This subfamily corresponds to the catalytic domain present in bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) and their sequence homologs found in eukaryota. Bacterial PI-PLCs participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs contain a single TIM-barrel type catalytic domain. Its catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. Eukaryotic homologs in this family are named as phosphatidylinositol-specific phospholipase C X domain containing proteins (PI-PLCXD). They are distinct from the typical eukaryotic phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11), which have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, which is closely related to that of bacterial PI-PLCs. Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may be distinct from that of typical eukaryotic PI-PLCs. This family also includes a distinctly different type of eukaryotic PLC, glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), an integral membrane protein characterized in the protozoan parasite Trypanosoma brucei. T. brucei GPI-PLC hydrolyzes the GPI-anchor on the variant specific glycoprotein (VSG), releasing dimyristyl glycerol (DMG), which may facilitate the evasion of the protozoan to the host's immune system. It does not require Ca2+ for its activity and is more closely related to bacterial PI-PLCs, but not mammalian PI-PLCs. 271 -176501 cd08558 PI-PLCc_eukaryota Catalytic domain of eukaryotic phosphoinositide-specific phospholipase C and similar proteins. This family corresponds to the catalytic domain present in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) and similar proteins. The higher eukaryotic PI-PLCs play a critical role in most signal transduction pathways, controlling numerous cellular events such as cell growth, proliferation, excitation and secretion. They strictly require Ca2+ for the catalytic activity. They display a clear preference towards the hydrolysis of the more highly phosphorylated membrane phospholipids PI-analogues, phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP), to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. The eukaryotic PI-PLCs have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains, such as the pleckstrin homology (PH) domain, EF-hand motif, and C2 domain. The catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a linker region. The catalytic mechanism of eukaryotic PI-PLCs is based on general base and acid catalysis utilizing two well conserved histidines and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. The mammalian PI-PLCs consist of 13 isozymes, which are classified into six-subfamilies, PI-PLC-delta (1,3 and 4), -beta(1-4), -gamma(1,2), -epsilon, -zeta, and -eta (1,2). Ca2+ is required for the activation of all forms of mammalian PI-PLCs, and the concentration of calcium influences substrate specificity. This family also includes metazoan phospholipase C related but catalytically inactive proteins (PRIP), which belong to a group of novel inositol trisphosphate binding proteins. Due to the replacement of critical catalytic residues, PRIP does not have PLC enzymatic activity. 226 -176502 cd08559 GDPD_periplasmic_GlpQ_like Periplasmic glycerophosphodiester phosphodiesterase domain (GlpQ) and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in bacterial and eukaryotic glycerophosphodiester phosphodiesterase (GP-GDE, EC 3.1.4.46) similar to Escherichia coli periplasmic phosphodiesterase GlpQ. GP-GDEs are involved in glycerol metabolism and catalyze the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols, which are major sources of carbon and phosphate. In E. coli, there are two major G3P uptake systems: Glp and Ugp, which contain genes coding for two different GP-GDEs. GlpQ gene from the glp operon codes for a periplasmic phosphodiesterase GlpQ. GlpQ is a dimeric enzyme that hydrolyzes periplasmic glycerophosphodiesters, such as glycerophosphocholine (GPC), glycerophosphoethanolanmine (GPE), glycerophosphoglycerol (GPG), glycerophosphoinositol (GPI), and glycerophosphoserine (GPS), to the corresponding alcohols and G3P, which is subsequently transported into the cell through the GlpT transport system. Ca2+ is required for GlpQ enzymatic activity. This subfamily also includes some GP-GDEs in higher plants and their eukaryotic homologs, which show very high sequence similarities with bacterial periplasmic GP-GDEs. 296 -176503 cd08560 GDPD_EcGlpQ_like_1 Glycerophosphodiester phosphodiesterase domain similar to Escherichia coli periplasmic phosphodiesterase (GlpQ) include uncharacterized proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46) and their hypothetical homologs. Members in this subfamily show high sequence similarity to Escherichia coli periplasmic phosphodiesterase GlpQ, which catalyzes the Ca2+-dependent degradation of periplasmic glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 356 -176504 cd08561 GDPD_cytoplasmic_ScUgpQ2_like Glycerophosphodiester phosphodiesterase domain of Streptomyces coelicolor cytoplasmic phosphodiesterases UgpQ2 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized cytoplasmic phosphodiesterases which predominantly exist in bacteria. The prototype of this family is a putative cytoplasmic phosphodiesterase encoded by gene ulpQ2 (SCO1419) in the Streptomyces coelicolor genome. It is distantly related to the Escherichia coli cytoplasmic phosphodiesterases UgpQ that catalyzes the hydrolysis of glycerophosphodiesters at the inner side of the cytoplasmic membrane to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 249 -176505 cd08562 GDPD_EcUgpQ_like Glycerophosphodiester phosphodiesterase domain in Escherichia coli cytosolic glycerophosphodiester phosphodiesterase UgpQ and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Escherichia coli cytosolic glycerophosphodiester phosphodiesterase (GP-GDE, EC 3.1.4.46), UgpQ, and similar proteins. GP-GDE plays an essential role in the metabolic pathway of E. coli. It catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols, which are major sources of carbon and phosphate. E. coli possesses two major G3P uptake systems: Glp and Ugp, which contain genes coding for two distinct GP-GDEs. UgpQ gene from the E. coli ugp operon codes for a cytosolic phosphodiesterase GlpQ, which is the prototype of this family. Various glycerophosphodiesters, such as glycerophosphocholine (GPC), glycerophosphoethanolanmine (GPE), glycerophosphoglycerol (GPG), glycerophosphoinositol (GPI), and glycerophosphoserine (GPS), can only be hydrolyzed by UgpQ during transport at the inner side of the cytoplasmic membrane to alcohols and G3P, which is a source of phosphate. In contrast to Ca2+-dependent periplasmic phosphodiesterase GlpQ, cytosolic phosphodiesterase UgpQ requires divalent cations, such as Mg2+, Co2+, or Mn2+, for its enzyme activity. 229 -176506 cd08563 GDPD_TtGDE_like Glycerophosphodiester phosphodiesterase domain of Thermoanaerobacter tengcongensis and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Thermoanaerobacter tengcongensis glycerophosphodiester phosphodiesterase (TtGDE, EC 3.1.4.46) and its uncharacterized homologs. Members in this family show high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Despite the fact that most of GDPD family members exist as the monomer, TtGDE can function as a dimeric unit. Its catalytic mechanism is based on the general base-acid catalysis, which is similar to that of phosphoinositide-specific phospholipases C (PI-PLCs, EC 3.1.4.11). A divalent metal cation is required for the enzyme activity of TtGDE. 230 -176507 cd08564 GDPD_GsGDE_like Glycerophosphodiester phosphodiesterase domain of putative Galdieria sulphuraria glycerophosphodiester phosphodiesterase and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in putative Galdieria sulphuraria glycerophosphodiester phosphodiesterase (GsGDE, EC 3.1.4.46) and its uncharacterized eukaryotic homologs. Members in this family show high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 265 -176508 cd08565 GDPD_pAtGDE_like Glycerophosphodiester phosphodiesterase domain of putative Agrobacterium tumefaciens glycerophosphodiester phosphodiesterase and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in putative Agrobacterium tumefaciens glycerophosphodiester phosphodiesterase (pAtGDE, EC 3.1.4.46) and its uncharacterized homologs. Members in this family show high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 235 -176509 cd08566 GDPD_AtGDE_like Glycerophosphodiester phosphodiesterase domain of Agrobacterium tumefaciens and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Agrobacterium tumefaciens glycerophosphodiester phosphodiesterase (AtGDE, EC 3.1.4.46) and its uncharacterized eukaryotic homolgoues. Members in this family shows high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. AtGDE exists as a hexamer that is a trimer of dimers, which is unique among current known GDPD family members. However, it remains unclear if the hexamer plays a physiological role in AtGDE enzymatic function. 240 -176510 cd08567 GDPD_SpGDE_like Glycerophosphodiester phosphodiesterase domain of putative Silicibacter pomeroyi glycerophosphodiester phosphodiesterase and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized bacterial glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46) and similar proteins. The prototype of this CD is a putative GP-GDE from Silicibacter pomeroyi (SpGDE). It shows high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 263 -176511 cd08568 GDPD_TmGDE_like Glycerophosphodiester phosphodiesterase domain of Thermotoga maritime and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Thermotoga maritime glycerophosphodiester phosphodiesterase (TmGDE, EC 3.1.4.46) and its uncharacterized homologs. Members in this family show high sequence similarity to Escherichia coli GP-GDE, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. TmGDE exists as a monomer that might be the biologically relevant form. 226 -176512 cd08570 GDPD_YPL206cp_fungi Glycerophosphodiester phosphodiesterase domain of Saccharomyces cerevisiae YPL206cp and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Saccharomyces cerevisiae YPL206cp and uncharacterized hypothetical homologs existing in fungi. The product of S. cerevisiae ORF YPL206c (PGC1), YPL206cp (Pgc1p), displays homology to bacterial and mammalian glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46), which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. S. cerevisiae YPL206cp is an integral membrane protein with a single GDPD domain following by a short hydrophobic C-terminal tail that may function as a membrane anchor. This protein plays an essential role in the regulation of the cardiolipin (CL) biosynthetic pathway in yeast by removing the excess phosphatidylglycerol (PG) content of membranes via a phospholipase C-type degradation mechanism. YPL206cp has been characterized as a PG-specific phospholipase C that selectively catalyzes the cleavage of PG, not glycerophosphoinositol (GPI) or glycerophosphocholine (GPC), to diacylglycerol (DAG) and glycerophosphate. Members in this family are distantly related to S. cerevisiae YPL110cp, which selectively hydrolyzes glycerophosphocholine (GPC), not glycerophosphoinositol (GPI), to generate choline and glycerolphosphate, and has been characterized as a cytoplasmic GPC-specific phosphodiesterase. 234 -176513 cd08571 GDPD_SHV3_plant Glycerophosphodiester phosphodiesterase domain of glycerophosphodiester phosphodiesterase-like protein SHV3 and SHV3-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase (GDPD) domain present in glycerophosphodiester phosphodiesterase (GP-GDE)-like protein SHV3 and SHV3-like proteins (SVLs), which may play an important role in cell wall organization. The prototype of this family is a glycosylphosphatidylinositol (GPI) anchored protein SHV3 encoded by shaven3 (shv3) gene from Arabidopsis thaliana. Members in this family show sequence homology to bacterial GP-GDEs (EC 3.1.4.46) that catalyze the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Both, SHV3 and SVLs, have two tandemly repeated GDPD domains whose biochemical functions remain unclear. The residues essential for interactions with the substrates and calcium ions in bacterial GP-GDEs are not conserved in SHV3 and SVLs, which suggests that the function of GDPD domains in these proteins might be distinct from those in typical bacterial GP-GDEs. In addition, the two tandem repeats show low sequence similarity to each other, suggesting they have different biochemical function. Most members of this family are Arabidopsis-specific gene products. To date, SHV3 orthologues are only found in Physcomitrella patens. 302 -176514 cd08572 GDPD_GDE5_like Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE5-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian glycerophosphodiester phosphodiesterase GDE5-like proteins. GDE5 is widely expressed in mammalian tissues, with highest expression in spinal chord. Although its biological function remains unclear, mammalian GDE5 shows higher sequence homology to fungal and plant glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46) than to other bacterial and mammalian GP-GDEs. It may also hydrolyze glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 293 -176515 cd08573 GDPD_GDE1 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE1 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE1 (also known as MIR16, membrane interacting protein of RGS16) and their metazoan homologs. GDE1 is widely expressed in mammalian tissues, including the heart, brain, liver, and kidney. It shows sequence homology to bacterial glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46), which catalyzes the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. GDE1 has been characterized as GPI-GDE (EC 3.1.4.44) that selectively hydrolyzes extracellular glycerophosphoinositol (GPI) to generate glycerol phosphate and inositol. It functions as an integral membrane-bound glycoprotein interacting with regulator of G protein signaling protein RGS16, and is modulated by G protein-coupled receptor (GPCR) signaling. In addition, GDE1 may interact with PRA1 domain family, member 2 (PRAF2, also known as JM4), which is an interacting protein of the G protein-coupled chemokine receptor CCR5. The catalytic activity, which is dependent on the integrity of the GDPD domain, is required for GDE1 cellular function. 258 -176516 cd08574 GDPD_GDE_2_3_6 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE2, GDE3, GDE6-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian glycerophosphodiester phosphodiesterase domain-containing protein subtype 5 (GDE2), subtype 2 (GDE3), subtype 1 (GDE6), and their eukaryotic homologs. Mammalian GDE2, GDE3, and GDE6 show very high sequence similarity to each other and have been classified into the same family. Although they are all transmembrane proteins, based on different pattern of tissue distribution, these enzymes might display diverse cellular functions. Mammalian GDE2 is primarily expressed in mature neurons. It selectively hydrolyzes glycerophosphocholine (GPC) and mainly functions in a complex with an antioxidant scavenger peroxiredoxin1 (Prdx1) to control motor neuron differentiation in the spinal cord. Mammalian GDE3 is specifically expressed in bone tissues and spleen. It selectively hydrolyzes extracellular glycerophosphoinositol (GPI) to generate inositol 1-phosphate (Ins1P) and glycerol and functions as an inducer of osteoblast differentiation. Mammalian GDE6 is predominantly expressed in the spermatocytes of testis, and its specific physiological function has not been elucidated yet. 252 -176517 cd08575 GDPD_GDE4_like Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE4-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE4 (also known as glycerophosphodiester phosphodiesterase domain-containing protein 1 (GDPD1)) and similar proteins. Mammalian GDE4 is a transmembrane protein whose cellular function is not elucidated. It is expressed widely, including in placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocytes. It is also expressed in the growth cones in neuroblastoma Neuro2a cells, which suggests mammalian GDE4 may play some distinct role from other members of mammalian GDEs family. Also included in this subfamily are uncharacterized mammalian glycerophosphodiester phosphodiesterase domain-containing protein 3 (GDPD3) and similar proteins which display very high sequence homology to mammalian GDE4. 264 -176518 cd08576 GDPD_like_SMaseD_PLD Glycerophosphodiester phosphodiesterase-like domain of spider venom sphingomyelinases D, bacterial phospholipase D, and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase-like domain (GDPD-like) present in sphingomyelinases D (SMases D) (sphingomyelin phosphodiesterase D, EC 3.1.4.4) from spider venom, the Corynebacterium pseudotuberculosis Phospholipase D (PLD)-like protein from pathogenic bacteria, and the Ajellomyces capsulatus H143 PLD-like protein from ascomycetes. Spider SMases D and bacterial PLD proteins catalyze the Mg2+-dependent hydrolysis of sphingomyelin producing choline and ceramide 1-phosphate (C1P), which possess a number of biological functions, such as regulating cell proliferation and apoptosis, participating in inflammatory responses, and playing a key role in phagocytosis. In the presence of Mg2+, SMases D can function as lysophospholipase D and hydrolyze lysophosphatidylcholine (LPC) to choline and lysophosphatidic acid (LPA), which is a multifunctional phospholipid involved in platelet aggregation, endothelial hyperpermeability, and pro-inflammatory responses. Loxosceles spider venoms' SMases D are the principal toxins responsible for dermonecrosis and complement dependent haemolysis induced by spider venom. Due to amino acid substitutions at the entrance to the active-site pocket, some members lack activity. The typical GDPD domain consists of a TIM barrel and a small insertion domain named as the GDPD-insertion (GDPD-I) domain, which is specific for GDPD proteins. Although proteins in this family contain a non-typical GDPD domain which lacks the GDPD-I, their catalytic mechanisms are based on Mg2+-dependent acid-base reactions similar to GDPD proteins. They might be divergent members of the GDPD family. Moreover, this family does not belong to phospholipase D (PLD) superfamily, since it lacks the conserved HKD sequence motif that characterizes the catalytic center of the PLD superfamily. It belongs to the superfamily of PLC-like phosphodiesterases. 265 -176519 cd08577 PI-PLCc_GDPD_SF_unchar3 Uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipaseand Glycerophosphodiester phosphodiesterases. This subfamily corresponds to a group of uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipase C (PI-PLC), and glycerophosphodiester phosphodiesterases (GP-GDE), and also sphingomyelinases D (SMases D) and similar proteins. They hydrolyze the 3'-5' phosphodiester bonds in different substrates, utilizing a similar mechanism of general base and acid catalysis involving two conserved histidine residues. 228 -176520 cd08578 GDPD_NUC-2_fungi Putative glycerophosphodiester phosphodiesterase domain of ankyrin repeat protein NUC-2 and similar proteins. This subfamily corresponds to a putative glycerophosphodiester phosphodiesterase domain (GDPD) present in Neurospora crassa ankyrin repeat protein NUC-2 and its Saccharomyces cerevisiae counterpart, Phosphate system positive regulatory protein PHO81. Some uncharacterized NUC-2 sequence homologs are also included in this family. NUC-2 plays an important role in the phosphate-regulated signal transduction pathway in Neurospora crassa. It shows high similarity to a cyclin-dependent kinase inhibitory protein PHO81, which is part of the phosphate regulatory cascade in S. cerevisiae. Both NUC-2 and PHO81 have multi-domain architecture, including an SPX N-terminal domain following by several ankyrin repeats and a putative C-terminal GDPD domain with unknown function. Although the putative GDPD domain displays sequence homology to that of bacterial glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46), the residues essential for interactions with the substrates and calcium ions in bacterial GP-GDEs are not conserved in members of this family, which suggests the function of putative GDPD domains in these proteins might be distinct from those in typical bacterial GP-GDEs. 300 -176521 cd08579 GDPD_memb_like Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial glycerophosphodiester phosphodiesterases. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in uncharacterized bacterial glycerophosphodiester phosphodiesterases. In addition to a C-terminal GDPD domain, most members in this family have an N-terminus that functions as a membrane anchor. 220 -176522 cd08580 GDPD_Rv2277c_like Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial protein Rv2277c and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in uncharacterized bacterial protein Rv2277c and similar proteins. Members in this subfamily are bacterial homologous of mammalian GDE4, a transmembrane protein whose cellular function has not yet been elucidated. 263 -176523 cd08581 GDPD_like_1 Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial glycerophosphodiester phosphodiesterases. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized bacterial glycerophosphodiester phosphodiesterase and similar proteins. They show high sequence similarity to Escherichia coli glycerophosphodiester phosphodiesterase, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 229 -176524 cd08582 GDPD_like_2 Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial glycerophosphodiester phosphodiesterases. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized bacterial glycerophosphodiester phosphodiesterase and similar proteins. They show high sequence similarity to Escherichia coli glycerophosphodiester phosphodiesterase, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 233 -176525 cd08583 PI-PLCc_GDPD_SF_unchar1 Uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipaseand Glycerophosphodiester phosphodiesterases. This subfamily corresponds to a group of uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipase C (PI-PLC), and glycerophosphodiester phosphodiesterases (GP-GDE), and also sphingomyelinases D (SMases D) and similar proteins. They hydrolyze the 3'-5' phosphodiester bonds in different substrates, utilizing a similar mechanism of general base and acid catalysis involving two conserved histidine residues. 237 -176526 cd08584 PI-PLCc_GDPD_SF_unchar2 Uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipaseand Glycerophosphodiester phosphodiesterases. This subfamily corresponds to a group of uncharacterized hypothetical proteins similar to the catalytic domains of Phosphoinositide-specific phospholipase C (PI-PLC), and glycerophosphodiester phosphodiesterases (GP-GDE), and also sphingomyelinases D (SMases D) and similar proteins. They hydrolyze the 3'-5' phosphodiester bonds in different substrates, utilizing a similar mechanism of general base and acid catalysis involving two conserved histidine residues. 192 -176527 cd08585 GDPD_like_3 Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial glycerophosphodiester phosphodiesterases. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized bacterial glycerophosphodiester phosphodiesterase and similar proteins. They show high sequence similarity with Escherichia coli glycerophosphodiester phosphodiesterase, which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 237 -176528 cd08586 PI-PLCc_BcPLC_like Catalytic domain of Bacillus cereus phosphatidylinositol-specific phospholipases C and similar proteins. This subfamily corresponds to the catalytic domain present in Bacillus cereus phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) and its sequence homologs found in bacteria and eukaryota. Bacterial PI-PLCs participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs contain a single TIM-barrel type catalytic domain. Their catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This family also includes some uncharacterized eukaryotic homologs, which contains a single TIM-barrel type catalytic domain, X domain. They are similar to bacterial PI-PLCs, and distinct from typical eukaryotic PI-PLCs, which have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains, and strictly require Ca2+ for their catalytic activities. The prototype of this family is Bacillus cereus PI-PLC, which has a moderate thermal stability and is active as a monomer. 279 -176529 cd08587 PI-PLCXDc_like Catalytic domain of phosphatidylinositol-specific phospholipase C X domain containing and similar proteins. This family corresponds to the catalytic domain present in phosphatidylinositol-specific phospholipase C X domain containing proteins (PI-PLCXD) which are bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) sequence homologs mainly found in eukaryota. The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs and their bacterial homologs contain a single TIM-barrel type catalytic domain, X domain, which is more closely related to that of bacterial PI-PLCs. Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may be distinct from that of typical eukaryotic PI-PLCs. 288 -176530 cd08588 PI-PLCc_At5g67130_like Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs. This subfamily corresponds to the catalytic domain present in Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs. Members in this family show high sequence similarity to bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participates in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). 270 -176531 cd08589 PI-PLCc_SaPLC1_like Catalytic domain of Streptomyces antibioticus phosphatidylinositol-specific phospholipase C1-like proteins. This subfamily corresponds to the catalytic domain present in Streptomyces antibioticus phosphatidylinositol-specific phospholipase C1 (SaPLC1) and similar proteins. The typical bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) catalyzes Ca2+-independent hydrolysis of the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). The catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. In contrast, SaPLC1 is the first known natural Ca2+-dependent bacterial PI-PLC. It is more closely related to the eukaryotic PI-PLCs rather than the typical bacterial PI-PLCs. It participates in PI metabolism to generate myo-inositol-1-phosphate and myo-inositol-1:2-cyclic phosphate simultaneously. SaPLC1 and other members in this subfamily have two Ca2+-chelating amino acid substitutions which convert them from metal-independent enzymes to metal-dependent bacterial PI-PLC. Additionally, SaPLC1 active site utilizes a mechanism of amino acid juxtaposition, swapping amino acid positions, to adapt a calcium binding pocket and maintain more ideal active site geometry to support efficient catalysis. 324 -176532 cd08590 PI-PLCc_Rv2075c_like Catalytic domain of uncharacterized Mycobacterium tuberculosis Rv2075c-like proteins. This subfamily corresponds to the catalytic domain present in uncharacterized Mycobacterium tuberculosis Rv2075c and its homologs. Members in this family are more closely related to the Streptomyces antibioticus phosphatidylinositol-specific phospholipase C1(SaPLC1)-like proteins rather than the typical bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). In contrast, SaPLC1-like proteins have two Ca2+-chelating amino acid substitutions which convert them to metal-dependent bacterial PI-PLC. Rv2075c and its homologs have the same amino acid substitutions as well, which might suggest they have metal-dependent PI-PLC activity. 267 -176533 cd08591 PI-PLCc_beta Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are four PLC-beta isozymes (1-4). They are activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. The beta-gamma subunits of heterotrimeric G proteins are known to activate the PLC-beta2 and -beta3 isozymes only. Aside from four PLC-beta isozymes identified in mammals, some eukaryotic PLC-beta homologs have been classified into this subfamily, such as NorpA and PLC-21 from Drosophila and PLC-beta from turkey, Xenopus, sponge, and hydra. 257 -176534 cd08592 PI-PLCc_gamma Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma. This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain.The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. There are two PI-PLC-gamma isozymes (1-2). They are activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. Aside from the two PI-PLC-gamma isozymes identified in mammals, some eukaryotic PI-PLC-gamma homologs have been classified with this subfamily. 229 -176535 cd08593 PI-PLCc_delta Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This CD corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Different PI-PLC-delta isozymes have different tissue distribution and different subcellular locations. PI-PLC-delta1 is mostly a cytoplasmic protein, PI-PLC-delta3 is located in the membrane, and PI-PLC-delta4 is predominantly detected in the cell nucleus. Aside from three PI-PLC-delta isozymes identified in mammals, some eukaryotic PI-PLC-delta homologs have been classified to this CD. 257 -176536 cd08594 PI-PLCc_eta Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta. This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are two PI-PLC-eta isozymes (1-2), both neuron-specific enzymes. They function as calcium sensors that are activated by small increases in intracellular calcium concentrations. The PI-PLC-eta isozymes are also activated through GPCR stimulation. Aside from the PI-PLC-eta isozymes identified in mammals, their eukaryotic homologs are also present in this family. 227 -176537 cd08595 PI-PLCc_zeta Catalytic domain of metazoan phosphoinositide-specific phospholipase C-zeta. This family corresponds to the catalytic domain presenting in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-zeta isozyme. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-zeta represents a class of sperm-specific PI-PLC that has an N-terminal EF-hand domain, a PLC catalytic core domain, and a C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There is one PLC-zeta isozyme (1). PLC-zeta plays a fundamental role in vertebrate fertilization by initiating intracellular calcium oscillations that trigger the embryo development. However, the mechanism of its activation still remains unclear. Aside from PI-PLC-zeta identified in mammals, its eukaryotic homologs have been classified with this family. 257 -176538 cd08596 PI-PLCc_epsilon Catalytic domain of metazoan phosphoinositide-specific phospholipase C-epsilon. This family corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-epsilon isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-epsilon represents a class of mammalian PI-PLC that has an N-terminal CDC25 homology domain with a guanyl-nucleotide exchange factor (GFF) activity, a pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and two predicted RA (Ras association) domains that are implicated in the binding of small GTPases, such as Ras or Rap, from the Ras family. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There is one PI-PLC-epsilon isozyme (1). PI-PLC-epsilon is activated by G alpha(12/13), G beta gamma, and activated members of Ras and Rho small GTPases. Aside from PI-PLC-epsilon identified in mammals, its eukaryotic homologs have been classified with this family. 254 -176539 cd08597 PI-PLCc_PRIP_metazoa Catalytic domain of metazoan phospholipase C related, but catalytically inactive protein. This family corresponds to the catalytic domain present in metazoan phospholipase C related, but catalytically inactive proteins (PRIP), which belong to a group of novel Inositol 1,4,5-trisphosphate (InsP3) binding protein. PRIP has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP do not have PLC enzymatic activity. PRIP consists of two subfamilies, PRIP-1(previously known as p130 or PLC-1), which is predominantly expressed in the brain, and PRIP-2 (previously known as PLC-2), which exhibits a relatively ubiquitous expression. Experiments show both, PRIP-1 and PRIP-2, are involved in InsP3-mediated calcium signaling pathway and GABA(A)receptor-mediated signaling pathway. In addition, PRIP-2 acts as a negative regulator of B-cell receptor signaling and immune responses. 260 -176540 cd08598 PI-PLC1c_yeast Catalytic domain of putative yeast phosphatidylinositide-specific phospholipases C. This family corresponds to the catalytic domain present in a group of putative phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) encoded by PLC1 genes from yeasts, which are homologs of the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The prototype of this CD is protein Plc1p encoded by PLC1 genes from Saccharomyces cerevisiae. Plc1p contains both highly conserved X- and Y- regions of PLC catalytic core domain, as well as a presumptive EF-hand like calcium binding motif. Experiments show that Plc1p displays calcium dependent catalytic properties with high similarity to those of the mammalian PLCs, and plays multiple roles in modulating the membrane/protein interactions in filamentation control. CaPlc1p encoded by CAPLC1 from the closely related yeast Candida albicans, an orthologue of S. cerevisiae Plc1p, is also included in this group. Like Plc1p, CaPlc1p has conserved presumptive catalytic domain, shows PLC activity when expressed in E. coli, and is involved in multiple cellular processes. There are two other gene copies of CAPLC1 in C. albicans, CAPLC2 (also named as PIPLC) and CAPLC3. Experiments show CaPlc1p is the only enzyme in C. albicans which functions as PLC. The biological functions of CAPLC2 and CAPLC3 gene products must be clearly different from CaPlc1p, but their exact roles remain unclear. Moreover, CAPLC2 and CAPLC3 gene products are more similar to extracellular bacterial PI-PLC than to the eukaryotic PI-PLC, and they are not included in this subfamily. 231 -176541 cd08599 PI-PLCc_plant Catalytic domain of plant phosphatidylinositide-specific phospholipases C. This family corresponds to the catalytic domain present in a group of phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11) encoded by PLC genes from higher plants, which are homologs of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The domain arrangement of plant PI-PLCs is structurally similar to the mammalian PLC-zeta isoform, which lacks the N-terminal pleckstrin homology (PH) domain, but contains EF-hand like motifs (which are absent in a few plant PLCs), a PLC catalytic core domain with X- and Y- highly conserved regions split by a linker sequence, and a C2 domain. However, at the sequence level, the plant PI-PLCs are closely related to the mammalian PLC-delta isoform. Experiments show that plant PLCs display calcium dependent PLC catalytic properties, although they lack some of the N-terminal motifs found in their mammalian counterparts. A putative calcium binding site may be located at the region spanning the X- and Y- domains. 228 -176542 cd08600 GDPD_EcGlpQ_like Glycerophosphodiester phosphodiesterase domain of Escherichia coli (GlpQ) and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Escherichia coli periplasmic glycerophosphodiester phosphodiesterase (GP-GDE, EC 3.1.4.46), GlpQ, and similar proteins. GP-GDE plays an essential role in the metabolic pathway of E. coli. It catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols, which are major sources of carbon and phosphate. E. coli possesses two major G3P uptake systems: Glp and Ugp, which contain genes coding for two different GP-GDEs. GlpQ gene from the E. coli glp operon codes for a periplasmic phosphodiesterase GlpQ, which is the prototype of this family. GlpQ is a dimeric enzyme that hydrolyzes periplasmic glycerophosphodiesters, such as glycerophosphocholine (GPC), glycerophosphoethanolanmine (GPE), glycerophosphoglycerol (GPG), glycerophosphoinositol (GPI), and glycerophosphoserine (GPS), to the corresponding alcohols and G3P, which is subsequently transported into the cell through the GlpT transport system. Ca2+ is required for the enzymatic activity of GlpQ. This family also includes a surface-exposed lipoprotein, protein D (HPD), from Haemophilus influenza Type b and nontypeable strains, which shows very high sequence similarity with E. coli GlpQ. HPD has been characterized as a human immunoglobulin D-binding protein with glycerophosphodiester phosphodiesterase activity. It can hydrolyze phosphatidylcholine from host membranes to produce free choline on the lipopolysaccharides on the surface of pathogenic bacteria. 318 -176543 cd08601 GDPD_SaGlpQ_like Glycerophosphodiester phosphodiesterase domain of Staphylococcus aureus and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in uncharacterized glycerophosphodiester phosphodiesterase (GP-GDE, EC 3.1.4.46) from Staphylococcus aureus, Bacillus subtilis and similar proteins. Members in this family show very high sequence similarity to Escherichia coli periplasmic phosphodiesterase GlpQ, which catalyzes the Ca2+-dependent degradation of periplasmic glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. 256 -176544 cd08602 GDPD_ScGlpQ1_like Glycerophosphodiester phosphodiesterase domain of Streptomycin coelicolor (GlpQ1) and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of putative bacterial and eukaryotic glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46) similar to Escherichia coli periplasmic phosphodiesterase GlpQ, as well as plant glycerophosphodiester phosphodiesterases (GP-PDEs), all of which catalyzes the Ca2+-dependent degradation of periplasmic glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. The prototypes of this family include putative secreted phosphodiesterase encoded by gene glpQ1 (SCO1565) from the pho regulon in Streptomyces coelicolor genome, and in plants, two distinct Arabidopsis thaliana genes, AT5G08030 and AT1G74210, coding putative GP-PDEs from the cell walls and vacuoles, respectively. 309 -176545 cd08603 GDPD_SHV3_repeat_1 Glycerophosphodiester phosphodiesterase domain repeat 1 of glycerophosphodiester phosphodiesterase-like protein SHV3 and SHV3-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) repeat 1 present in glycerophosphodiester phosphodiesterase (GP-GDE)-like protein SHV3 and SHV3-like proteins (SVLs), which may play an important role in cell wall organization. The prototype of this family is a glycosylphosphatidylinositol (GPI) anchored protein SHV3 encoded by shaven3 (shv3) gene from Arabidopsis thaliana. Members in this family show sequence homology to bacterial GP-GDEs (EC 3.1.4.46) that catalyze the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Both, SHV3 and SVLs, have two tandemly repeated GDPD domains whose biochemical functions remain unclear. The residues essential for interactions with the substrates and calcium ions in bacterial GP-GDEs are not conserved in SHV3 and SVLs, which suggests that the function of GDPD domains in these proteins might be distinct from those in typical bacterial GP-GDEs. In addition, the two tandem repeats show low sequence similarity to each other, suggesting they have different biochemical function. Most of the members of this family are Arabidopsis-specific gene products. To date, SHV3 orthologues are only found in Physcomitrella patens. This family includes domain I, the first GDPD domain of SHV3 and SVLs. 299 -176546 cd08604 GDPD_SHV3_repeat_2 Glycerophosphodiester phosphodiesterase domain repeat 2 of glycerophosphodiester phosphodiesterase-like protein SHV3 and SHV3-like proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) repeat 2 present in glycerophosphodiester phosphodiesterase (GP-GDE)-like protein SHV3 and SHV3-like proteins (SVLs), which may play important an role in cell wall organization. The prototype of this family is a glycosylphosphatidylinositol (GPI) anchored protein SHV3 encoded by shaven3 (shv3) gene from Arabidopsis thaliana. Members in this family show sequence homology to bacterial GP-GDEs (EC 3.1.4.46) that catalyze the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Both, SHV3 and SVLs, have two tandemly repeated GDPD domains whose biochemical functions remain unclear. The residues essential for interactions with the substrates and calcium ions in bacterial GP-GDEs are not conserved in SHV3 and SVLs, which suggests that the function of GDPD domains in these proteins might be distinct from those in typical bacterial GP-GDEs. In addition, the two tandem repeats show low sequence similarity to each other, suggesting they have different biochemical function. Most of the members of this family are Arabidopsis-specific gene products. To date, SHV3 orthologues are only found in Physcomitrella patens. This CD includes domain II (the second GDPD domain of SHV3 and SVLs), which is necessary for SHV3 function. 300 -176547 cd08605 GDPD_GDE5_like_1_plant Glycerophosphodiester phosphodiesterase domain of uncharacterized plant glycerophosphodiester phosphodiesterase-like proteins similar to mammalian GDE5. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of uncharacterized plant glycerophosphodiester phosphodiesterase (GP-PDE)-like proteins. Members in this family show very high sequence homology to mammalian glycerophosphodiester phosphodiesterase GDE5 and are distantly related to plant GP-PDEs. 282 -176548 cd08606 GDPD_YPL110cp_fungi Glycerophosphodiester phosphodiesterase domain of Saccharomyces cerevisiae YPL110cp and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in Saccharomyces cerevisiae YPL110cp and other uncharacterized fungal homologs. The product of S. cerevisiae ORF YPL110c (GDE1), YPL110cp (Gde1p), displays homology to bacterial and mammalian glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46), which catalyzes the degradation of glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. S. cerevisiae YPL110cp has been characterized as a cytoplasmic glycerophosphocholine (GPC)-specific phosphodiesterase that selectively hydrolyzes GPC, not glycerophosphoinositol (GPI), to generate choline and glycerolphosphate. YPL110cp has multi-domain architecture, including not only C-terminal GDPD, but also an SPX N-terminal domain along with several ankyrin repeats, which implies that YPL110cp may mediate protein-protein interactions in a variety of proteins and play a role in maintaining cellular phosphate levels. Members in this family are distantly related to S. cerevisiae YPL206cp, which selectively catalyzes the cleavage of phosphatidylglycerol (PG), not glycerophosphoinositol (GPI) or glycerophosphocholine (GPC), to diacylglycerol (DAG) and glycerophosphate, and has been characterized as a PG-specific phospholipase C. 286 -176549 cd08607 GDPD_GDE5 Glycerophosphodiester phosphodiesterase domain of putative mammalian glycerophosphodiester phosphodiesterase GDE5 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in putative mammalian GDE5 and similar proteins. Mammalian GDE5 is widely expressed in mammalian tissues, with highest expression in the spinal chord. Although its biological function remains unclear, mammalian GDE5 shows higher sequence homology to fungal and plant glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46) than to other bacterial and mammalian GP-GDEs. It may also hydrolyze glycerophosphodiesters to sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. In addition to C-terminal GDPD domain, all members in this subfamily have a starch binding domain (CBM20) in the N-terminus, which suggests these proteins may play a distinct role in glycerol metabolism. 290 -176550 cd08608 GDPD_GDE2 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE2 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE2 (also known as glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5)) and their metazoan homologs. Mammalian GDE2 is transmembrane protein primarily expressed in mature neurons. It is a mammalian homolog of bacterial glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46), which catalyze the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Mammalian GDE2 selectively hydrolyzes glycerophosphocholine (GPC) and has been characterized as GPC-GDE (EC 3.1.4.2) that contributes to osmotic regulation of cellular GPC. Mammalian GDE2 functions in a complex with an antioxidant scavenger peroxiredoxin1 (Prdx1) to control motor neuron differentiation in the spinal cord. Mammalian GDE2 also plays a critical role for retinoid-induced neuronal outgrowth. The catalytic activity of GDPD domain is essential for mammalian GDE2 cellular function. 351 -176551 cd08609 GDPD_GDE3 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE3 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE3 (also known as glycerophosphodiester phosphodiesterase domain-containing protein 2 (GDPD2), Osteoblast differentiation promoting factor) and their metazoan homologs. Mammalian GDE3 is a transmembrane protein specifically expressed in bone tissues and spleen. It is a mammalian homolog of bacterial glycerophosphodiester phosphodiesterases (GP-GDEs, EC 3.1.4.46), which catalyzes the hydrolysis of various glycerophosphodiesters, and produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. Mammalian GDE3 has been characterized as glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) that selectively hydrolyzes extracellular glycerophosphoinositol (GPI) to generate inositol 1-phosphate (Ins1P) and glycerol. Mammalian GDE3 functions as an inducer of osteoblast differentiation. It also plays a critical role for actin cytoskeletal modulation. The catalytic activity of GDPD domain is essential for mammalian GDE3 cellular function. 315 -176552 cd08610 GDPD_GDE6 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE6 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE6 (also known as glycerophosphodiester phosphodiesterase domain-containing protein 4 (GDPD4)) and their metazoan homologs. Mammalian GDE6 is a transmembrane protein predominantly expressed in the spermatocytes of testis. Although the specific physiological function of mammalian GDE6 has not been elucidated, its different pattern of tissue distribution suggests it might play a critical role in the completion of meiosis during male germ cell differentiation. 316 -176553 cd08612 GDPD_GDE4 Glycerophosphodiester phosphodiesterase domain of mammalian glycerophosphodiester phosphodiesterase GDE4 and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in mammalian GDE4 (also known as glycerophosphodiester phosphodiesterase domain-containing protein 1 (GDPD1)) and similar proteins. Mammalian GDE4 is a transmembrane protein whose cellular function has not yet been elucidated. It is expressed widely, including in placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocytes. It is also expressed in the growth cones in neuroblastoma Neuro2a cells, which suggests GDE4 may play some distinct role from other members of the GDE family. 300 -176554 cd08613 GDPD_GDE4_like_1 Glycerophosphodiester phosphodiesterase domain of uncharacterized bacterial homologs of mammalian glycerophosphodiester phosphodiesterase GDE4. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in uncharacterized bacterial homologs of mammalian GDE4, a transmembrane protein whose cellular function has not been elucidated yet. 309 -176555 cd08616 PI-PLCXD1c Catalytic domain of phosphatidylinositol-specific phospholipase C, X domain containing 1. This subfamily corresponds to the catalytic domain present in a group of phosphatidylinositol-specific phospholipase C X domain containing 1 (PI-PLCXD1), 2 (PI-PLCXD2) and 3 (PI-PLCXD3), which are bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) sequence homologs found in vertebrates. The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, members in this group contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. 290 -176556 cd08619 PI-PLCXDc_plant Catalytic domain of phosphatidylinositol-specific phospholipase C, X domain containing proteins found in plants. The CD corresponds to the catalytic domain present in uncharacterized plant phosphatidylinositol-specific phospholipase C, X domain containing proteins (PI-PLCXD). The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, plant PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of plant PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. 285 -176557 cd08620 PI-PLCXDc_like_1 Catalytic domain of uncharacterized hypothetical proteins similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins. This subfamily corresponds to the catalytic domain present in a group of uncharacterized hypothetical proteins found in bacteria and fungi, which are similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins (PI-PLCXD). The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. 281 -176558 cd08621 PI-PLCXDc_like_2 Catalytic domain of uncharacterized hypothetical proteins similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins. This subfamily corresponds to the catalytic domain present in a group of uncharacterized hypothetical proteins found in bacteria and fungi, which are similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins (PI-PLCXD). The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. 300 -176559 cd08622 PI-PLCXDc_CG14945_like Catalytic domain of Drosophila melanogaster CG14945-like proteins similar to phosphatidylinositol-specific phospholipase C, X domain containing. This subfamily corresponds to the catalytic domain present in uncharacterized metazoan Drosophila melanogaster CG14945-like proteins, which are similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins (PI-PLCXD). The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. 276 -176560 cd08623 PI-PLCc_beta1 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta1. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta1 is expressed at highest levels in specific regions of the brain. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. 258 -176561 cd08624 PI-PLCc_beta2 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta2. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta2 is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. 261 -176562 cd08625 PI-PLCc_beta3 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta3. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 3. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta3 is widely expressed at highest levels in brain, liver, and parotid gland. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. 258 -176563 cd08626 PI-PLCc_beta4 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-beta4. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-beta isozyme 4. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-beta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-beta4 is expressed in high concentrations in cerebellar Purkinje and granule cells, the median geniculate body, and the lateral geniculate nucleus. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. 257 -176564 cd08627 PI-PLCc_gamma1 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma1. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma1, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. PI-PLC-gamma1 is ubiquitously expressed. It is activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. 229 -176565 cd08628 PI-PLCc_gamma2 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-gamma2. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-gamma isozyme 2. PI-PLC is a signaling enzyme that hydrolyze the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-gamma represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma2, a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region is present within this linker region. PI-PLC-gamma2 is highly expressed in cells of hematopoietic origin. It is activated by receptor and non-receptor tyrosine kinases due to the presence of two SH2 and a single SH3 domain within the linker region. Unlike PI-PLC-gamma1, the activation of PI-PLC-gamma2 may require concurrent stimulation of PI 3-kinase. 254 -176566 cd08629 PI-PLCc_delta1 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta1. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta1 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This subfamily corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Unlike PI-PLC-delta 4, PI-PLC-delta1 and 3 possess a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1and 3 from the cell nucleus. Experiments show PI-PLC-delta1 is essential for normal hair formation. 258 -176567 cd08630 PI-PLCc_delta3 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta3. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta3 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This family corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). Unlike PI-PLC-delta 4, PI-PLC-delta1 and 3 possess a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus. 258 -176568 cd08631 PI-PLCc_delta4 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-delta4. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-delta4 isozymes. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PLC-delta represents a class of mammalian PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C-terminal C2 domain. This CD corresponds to the catalytic domain which is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1,3 and 4). Unlike PI-PLC-delta 1 and 3, a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus, is not present in PI-PLC-delta4. Experiments show PI-PLC-delta4 is required for the acrosome reaction in fertilization. 258 -176569 cd08632 PI-PLCc_eta1 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta1. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozyme 1. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-eta1 is a neuron-specific enzyme and expressed in only nerve tissues such as the brain and spinal cord. It may perform a fundamental role in the brain. 253 -176570 cd08633 PI-PLCc_eta2 Catalytic domain of metazoan phosphoinositide-specific phospholipase C-eta2. This subfamily corresponds to the catalytic domain present in metazoan phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11)-eta isozyme 2. PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. PI-PLC-eta represents a class of neuron-speific PI-PLC that has an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-eta2 is a neuron-specific enzyme and expressed in the brain. It may in part function downstream of G-protein-coupled receptors and play an important role in the formation and maintenance of the neuronal network in the postnatal brain. 254 -176474 cd08637 DNA_pol_A_pol_I_C Polymerase I functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. Family A polymerase (polymerase I) functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I (pol I) ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. A combination of phylogenomic and signature sequence-based (or phonetic) approaches is used to understand the evolutionary relationships among bacteria. DNA polymerase I is one of the conserved proteins that is used to search for protein signatures. The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 377 -176475 cd08638 DNA_pol_A_theta DNA polymerase theta is a low-fidelity family A enzyme implicated in translesion synthesis and in somatic hypermutation. DNA polymerase theta is a low-fidelity family A enzyme implicated in translesion synthesis (TLS) and in somatic hypermutation (SHM). DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. Pol theta is an exception among family A polymerases and generates processive single base substitutions. Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I (pol I) ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. Polymerase theta mostly has amino-terminal helicase domain, a carboxy-terminal polymerase domain and an intervening space region. 373 -176476 cd08639 DNA_pol_A_Aquificae_like Phylum Aquificae Pol A is different from Escherichia coli Pol A by three signature sequences. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. A combination of phylogenomic and signature sequence-based (or phonetic) approaches is used to understand the evolutionary relationships among bacteria. DNA polymerase I is one of the conserved proteins that is used for phylogenetic anaylsis of bacteria. Species of the phylum Aquificae grow in extreme thermophilic environments. The Aquificae are non-spore-forming, Gram-negative rods and strictly thermophilic. Phylum Aquificae Pol A is different from E. coli Pol I by three signature sequences consisting of a 2 amino acids (aa) insert, a 5-6 aa insert and a 6 aa deletion. These signature sequences may provide a molecular marker for the family Aquificaceae and related species. 324 -176477 cd08640 DNA_pol_A_plastid_like DNA polymerase A type from plastids of higher plants possibly involve in DNA replication or in the repair of errors occurring during replication. DNA polymerase A type from plastids of higher plants possibly involve in DNA replication or in the repair of errors occurring during replication. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). The three-dimensional structure of plastid DNA polymerase has substantial similarity to Pol I. The structure of Pol I resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 371 -176478 cd08641 DNA_pol_gammaA Pol gammaA is a family A polymerase that is responsible for DNA replication and repair in mitochondria. DNA polymerase gamma (Pol gamma), 5'-3' polymerase domain (Pol gammaA). Pol gammaA is a family A polymerase that is responsible for DNA replication and repair in mitochondria. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified into six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaeota polymerase II (class D), human polymerase beta (class X), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerases are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I, mitochondrial polymerase gammaA, and several bacteriophage polymerases including those from odd-numbered phage (T3, T5, and T7). The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. Pol gammaA has also the right hand configuration. Pol gammaA has both polymerase and proofreading exonuclease activities separated by a spacer. Pol gamma holoenzyme is a heterotrimer containing one Pol gammaA subunit and a dimeric Pol gammaB subunit. Pol gamma is important for mitochondria DNA maintenance and mutation of the catalytic subunit of Pol gamma is implicated in more than 30 human diseases. 425 -176479 cd08642 DNA_pol_A_pol_I_A Polymerase I functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. Family A polymerase (polymerase I) functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. A combination of phylogenomic and signature sequence-based (or phonetic) approaches is used to understand the evolutionary relationships among bacteria. DNA polymerase I is one of the conserved proteins that is used to search for protein signatures. The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 378 -176480 cd08643 DNA_pol_A_pol_I_B Polymerase I functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. A combination of phylogenomic and signature sequence-based (or phonetic) approaches is used to understand the evolutionary relationships among bacteria. DNA polymerase I is one of the conserved proteins that is used to search for protein signatures. The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 429 -187713 cd08644 FMT_core_ArnA_N ArnA, N-terminal formyltransferase domain. ArnA_N: ArnA is a bifunctional enzyme required for the modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. The C-terminal dehydrogenase domain of ArnA catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto-arabinose (UDP-Ara4O), while the N-terminal formyltransferase domain of ArnA catalyzes the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido-arabinose (UDP-L-Ara4FN). This domain family represents the catalytic core of the N-terminal formyltransferase domain. The formyltransferase also contains a smaller C-terminal domain the may be involved in substrate binding. ArnA forms a hexameric structure, in which the dehydrogenase domains are arranged at the center of the particle with the transformylase domains on the outside of the particle. 203 -187714 cd08645 FMT_core_GART Phosphoribosylglycinamide formyltransferase (GAR transformylase, GART). Phosphoribosylglycinamide formyltransferase, also known as GAR transformylase or GART, is an essential enzyme that catalyzes the third step in de novo purine biosynthesis. This enzyme uses formyl tetrahydrofolate as a formyl group donor to produce 5'-phosphoribosyl-N-formylglycinamide. In prokaryotes, GART is a single domain protein but in most eukaryotes it is the C-terminal portion of a large multifunctional protein which also contains GAR synthetase and aminoimidazole ribonucleotide synthetase activities. 183 -187715 cd08646 FMT_core_Met-tRNA-FMT_N Methionyl-tRNA formyltransferase, N-terminal hydrolase domain. Methionyl-tRNA formyltransferase (Met-tRNA-FMT), N-terminal formyltransferase domain. Met-tRNA-FMT transfers a formyl group from N-10 formyltetrahydrofolate to the amino terminal end of a methionyl-aminoacyl-tRNA acyl moiety, yielding formyl-Met-tRNA. Formyl-Met-tRNA plays essential role in protein translation initiation by forming complex with IF2. The formyl group plays a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and by impairing its binding to EFTU-GTP. The N-terminal domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 204 -187716 cd08647 FMT_core_FDH_N 10-formyltetrahydrofolate dehydrogenase (FDH), N-terminal hydrolase domain. This family represents the N-terminal hydrolase domain of the bifunctional protein 10-formyltetrahydrofolate dehydrogenase (FDH). This domain contains a 10-formyl-tetrahydrofolate (10-formyl-THF) binding site and shares sequence homology and structural topology with other enzymes utilizing this substrate. This domain functions as a hydrolase, catalyzing the conversion of 10-formyl-THF, a precursor for nucleotide biosynthesis, to tetrahydrofolate (THF). The overall FDH reaction mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. The N-terminal hydrolase domain removes the formyl group from 10-formyl-THF and the C-terminal NADP-dependent dehydrogenase domain then reduces the formyl group to carbon dioxide. The two catalytic domains are connected by a third intermediate linker domain that transfers the formyl group, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. 203 -187717 cd08648 FMT_core_Formyl-FH4-Hydrolase_C Formyltetrahydrofolate deformylase (Formyl-FH4 hydrolase), C-terminal hydrolase domain. Formyl-FH4 Hydrolase catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formate is the substrate of phosphoribosylglycinamide transformylase for step three of de novo purine nucleotide synthesis. Formyl-FH4 hydrolase has been proposed to regulate the balance of FH4 and C1-FH4 in the cell. The enzyme uses methionine and glycine to sense the pools of C1-FH4 and FH4, respectively. This domain belongs to the formyltransferase (FMT) domain superfamily. Members of this family have an N-terminal ACT domain, which is commonly involved in specifically bind an amino acid or other small ligand leading to regulation of the enzyme. The N-terminal of this protein family may be responsible for the binding of the regulators methionine and glycine. 196 -187718 cd08649 FMT_core_NRPS_like N-terminal formyl transferase catalytic core domain of NRPS_like proteins, one of the proteins involved in the synthesis of Oxazolomycin. This family represents the N-terminal formyl transferase catalytic core domain present in a subgroup of non-ribosomal peptide synthetases. In Streptomyces albus a member of this family has been shown to be involved in the synthesis of oxazolomycin (OZM). OZM is a hybrid peptide-polyketide antibiotic and exhibits potent antitumor and antiviral activities. It is a multi-domain protein consisting of a formyl transferase domain, a Flavin-utilizing monoxygenase domain, a LuxE domain functioning as an acyl protein synthetase and a pp-binding domain, which may function as an acyl carrier. It shows sequence similarity with other peptide-polyketide biosynthesis proteins. 166 -187719 cd08650 FMT_core_HypX_N HypX protein, N-terminal hydrolase domain. The family represents the N-terminal hydrolase domain of HypX protein. HypX is involved in the maturation process of active [NiFe] hydrogenase. [NiFe] hydrogenases function in H2 metabolism in a variety of microorganisms, enabling them to use H2 as a source of reducing equivalent under aerobic and anaerobic conditions. [NiFe] hydrogenases consist of a large and a small subunit. The large subunit contains [NiFe] active site, which is synthesized as a precursor without the [NiFe] active site. This precursor then undergoes a complex post-translational maturation process that requires the presence of a number of accessory proteins. HypX has been shown to be involved in this maturation process and have been proposed to participate in the generation and transport of the CO and CN ligands. However, HypX is not present in all hydrogen-metabolizing bacteria. Furthermore, hypX deletion mutants have a reduced but detectable level of hydrogenase activity. Thus, HypX might not be a determining factor in the matur ation process. Members of this group have an N-terminal formyl transferase domain and a C-terminal enoyl-CoA hydratase/isomerase domain. 151 -187720 cd08651 FMT_core_like_4 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 180 -187721 cd08653 FMT_core_like_3 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 152 -349943 cd08656 M28_like M28 Zn-peptidase; uncharacterized subfamily. Peptidase family M28 (also called aminopeptidase Y family), uncharacterized subfamily. The M28 family contains aminopeptidases as well as carboxypeptidases. They have co-catalytic zinc ions; each zinc ion is tetrahedrally co-ordinated, with three amino acid ligands plus activated water; one aspartate residue binds both metal ions. 287 -349944 cd08659 M20_ArgE_DapE-like Peptidase M20 acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE)-like. Peptidase M20 acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase (ArgE/DapE) like family of enzymes catalyze analogous reactions and share a common activator, the metal ion (usually Co2+ or Zn2+). ArgE catalyzes a broad range of substrates, including N-acetylornithine, alpha-N-acetylmethionine and alpha-N-formylmethionine, while DapE catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelate (L,L-SDAP) to L,L-diaminopimelate and succinate. Proteins in this family are mostly bacterial and have been inferred by homology as being related to both ArgE and DapE. This family also includes N-acetyl-L-citrulline deacetylase (ACDase; acetylcitrulline deacetylase), a unique, novel enzyme found in Xanthomonas campestris, a plant pathogen, in which N-acetyl-L-ornithine is the substrate for transcarbamoylation reaction, and the product is N-acetyl-L-citrulline. Thus, in the arginine biosynthesis pathway, ACDase subsequently catalyzes the hydrolysis of N-acetyl-L-citrulline to acetate and L-citrulline. 361 -349945 cd08660 M20_Acy1-like M20 Peptidase Aminoacylase 1-like family. This family includes aminoacylase 1 (ACY1) and Aminoacylase 1-like protein 2 (ACY1L2). Aminoacylase 1 proteins are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. ACY1 (acyl-L-amino-acid amidohydrolase; EC 3.5.1.14) is the most abundant of the aminoacylases, a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. It is encoded by the aminoacylase 1 gene (Acy1) on chromosome 3p21 that comprises 15 exons. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity; substrates include indoleacetic acid (IAA) N-conjugates of amino acids, N-acetyl-L-amino acids and aminobenzoylglutamate. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1L2 family contains many uncharacterized proteins predicted as amidohydrolases, including gene products of abgA and abgB that catalyze the cleavage of p-aminobenzoyl-glutamate, a folate catabolite in E. coli, to p-aminobenzoate and glutamate. p-Aminobenzoyl-glutamate utilization is catalyzed by the abg region gene product, AbgT. Defects in ACY1 are the cause of aminoacylase-1 deficiency (ACY1D) resulting in a metabolic disorder manifesting with encephalopathy and psychomotor delay. 366 -341056 cd08662 M13 Peptidase family M13 includes neprilysin and endothelin-converting enzyme I. The M13 family of metallopeptidases includes neprilysin (neutral endopeptidase, NEP, enkephalinase, CD10, CALLA, EC 3.4.24.11), endothelin-converting enzyme I (ECE-1, EC 3.4.24.71), erythrocyte surface antigen KELL (ECE-3), phosphate-regulating gene on the X chromosome (PHEX), soluble secreted endopeptidase (SEP), and damage-induced neuronal endopeptidase (DINE)/X-converting enzyme (XCE). Proteins in this family fulfill a broad range of physiological roles due to the greater variation in the active site's S2' subsite allowing substrate specificity. NEP is expressed in a variety of tissues including kidney and brain, and is involved in many physiological and pathological processes, including blood pressure and inflammatory response. It degrades a wide array of substrates such as substance P, enkephalins, cholecystokinin, neurotensin and somatostatin. It is an important enzyme in the regulation of amyloid-beta (Abeta) protein that forms amyloid plaques that are associated with Alzeimers disease (AD). ECE-1 catalyzes the final rate-limiting step in the biosynthesis of endothelins via post-translational conversion of the biologically inactive big endothelins. Like NEP, it also hydrolyzes bradykinin, substance P, neurotensin, and Abeta. Endothelin-1 overproduction has been implicated in various diseases including stroke, asthma, hypertension, and cardiac and renal failure. Kell is a homolog of NEP and constitutes a major antigen on human erythrocytes; it preferentially cleaves big endothelin-3 to produce bioactive endothelin-3, but is also known to cleave substance P and neurokinin A. PHEX forms a complex interaction with fibroblast growth factor 23 (FGF23) and matrix extracellular phosphoglycoprotein, causing bone mineralization. A loss-of-function mutation in PHEX disrupts this interaction leading to hypophosphatemic rickets; X-linked hypophosphatemic (XLH) rickets is the most common form of metabolic rickets. ECEL1 is a brain metalloprotease which plays a critical role in the nervous regulation of the respiratory system, while DINE is abundantly expressed in the hypothalamus and its expression responds to nerve injury. A majority of these M13 proteases are prime therapeutic targets for selective inhibition. 642 -176450 cd08663 DAP_dppA_1 Peptidase M55, D-aminopeptidase dipeptide-binding protein family. M55 Peptidase, D-Aminopeptidase dipeptide-binding protein (dppA; DAP dppA; EC 3.4.11.-) domain: Peptide transport systems are found in many bacterial species and generally function to accumulate intact peptides in the cell, where they are hydrolyzed. The dipeptide-binding protein (dppA) of Bacillus subtilis belongs to the dipeptide ABC transport (dpp) operon expressed early during sporulation. It is a binuclear zinc-dependent, D-specific aminopeptidase. The biologically active enzyme is a homodecamer with active sites buried in its channel. These self-compartmentalizing proteases are characterized by a SXDXEG motif. D-Ala-D-Ala and D-Ala-Gly-Gly are the preferred substrates. Bacillus subtilis dppA is thought to function as an adaptation to nutrient deficiency; hydrolysis of its substrate releases D-Ala which can be used subsequently as metabolic fuel. This family also contains a number of uncharacterized putative peptidases. 266 -176485 cd08664 APC10-HERC2 APC10-like DOC1 domain present in HERC2 (HECT domain and RLD2). This model represents the APC10/DOC1 domain present in HERC2 (HECT domain and RLD2), a large multi-domain protein with three RCC1-like domains (RLDs), additional internal domains including a zinc finger ZZ-type and Cyt-b5 (Cytochrome b5-like Heme/Steroid binding) domains, and a C-terminal HECT (Homologous to the E6-AP Carboxyl Terminus) domain. The APC10/DOC1 domain of HERC2 is a homolog of the APC10 subunit and the DOC1 domain present in E3 ubiquitin ligases which mediate substrate ubiquitination (or ubiquitylation), a component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. As suggested by structural relationships between HERC2 and other proteins such as HERC1, the proposed role for HERC2 in protein trafficking and degradation pathways is consistent with observations that mutations in HERC2 lead to neuromuscular secretory vesicle and sperm acrosome defects, other developmental abnormalities, and juvenile lethality of jdf2 mice. Recent studies have shown that the protein complex, HERC2-RNF8, coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. 152 -176486 cd08665 APC10-CUL7 APC10-like DOC1 domain of CUL7, subunit of the SCF-ROC1-like E3 ubiquitin ligase complex that mediates substrate ubiquitination. This model represents the APC10/DOC1 domain present in CUL7, a subunit of the SCF-ROC1-like E3 Ubiquitin (Ub) ligase complex, which mediates substrate ubiquitination (or ubiquitylation), and is a component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. CUL7 is a member of the Cullin-RING ligase family and functions as a molecular scaffold assembling the SCF-ROC1-like E3 Ub ligase complex consisting of the adapter protein Skp1, CUL7, the WD40 repeat-containing F-box Fbw8 (also known as Fbx29), and ROC1 (RING-box protein 1). CUL7 is a large protein with a C-terminal cullin domain that binds ROC1 and additional domains, including an APC10/DOC1 domain. While the Fbw8 protein is responsible for substrate protein recognition, the ROC1 RING domain recruits an Ub-charged E2 Ub-conjugating enzyme for substrate ubiquitination. It remains to be determined how CUL7 binds to the Skp1-Fbw8 heterodimer. The CUL7 E3 Ub ligase has been implicated in the proteasomal degradation of the cellular proteins, cyclin D1, an important regulator of the G1 to S-phase cell cycle progression, and insulin receptor substrate 1, a critical component of the signaling pathways downstream of the insulin and insulin-like growth factor 1 receptor. CUL7 appears to be an important regulator of placental development. Germ line mutations of CUL7 are linked to 3-M syndrome and Yakuts short stature syndrome. 131 -176487 cd08666 APC10-HECTD3 APC10-like DOC1 domain of HECTD3, a HECT E3 ubiquitin ligase protein that mediates substrate ubiquitination. This model represents the APC10/DOC1 domain present in HECTD3, a HECT (Homologous to the E6-AP Carboxyl Terminus) E3 ubiquitin ligase protein. HECT E3 ubiquitin ligases mediate substrate ubiquitination (or ubiquitylation), and are a component of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. They also regulate the trafficking of many receptors, channels, transporters and viral proteins. HECTD3 (HECT domain-containing protein3) contains a C-terminal HECT domain with the active site for ubiquitin transfer onto substrates, and an N-terminal APC10/DOC1 domain, which is responsible for substrate recognition and binding. HECTD3 specifically recognizes the Trio-binding protein, Tara (Trio-associated repeat on actin), implicated in regulating actin cytoskeletal, cell motility and cell growth. Tara also binds to TRF1 and may participate in telomere maintenance and/or mitotic regulation through interacting with TRF1. HECTD3 interacts with and promotes the ubiquitination of Syntaxin 8, an endosomal syntaxin proposed to mediate distinct steps of endosomal protein trafficking. HECTD3-mediated Syntaxin 8 degradation has been suggested to contribute to the pathophysiology of neurodegenerative diseases. 134 -176488 cd08667 APC10-ZZEF1 APC10/DOC1-like domain of uncharacterized Zinc finger ZZ-type and EF-hand domain-containing protein 1 (ZZEF1) and homologs. This model represents the APC10/DOC1-like domain present in the uncharacterized Zinc finger ZZ-type and EF-hand domain-containing protein 1 (ZZEF1) of Mus musculus. Members of this family contain EF-hand, APC10, CUB, and zinc finger ZZ-type domains. ZZEF1-like APC10 domains are homologous to the APC10 subunit/DOC1 domains present in E3 ubiquitin ligases, which mediate substrate ubiquitination (or ubiquitylation), and are components of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. 131 -176571 cd08674 Cdt1_m The middle winged helix fold of replication licensing factor Cdt1 binds geminin to inhibit binding of the MCM complex to origins of replication and DNA. Cdt1 is a replication licensing factor in eukaryotes that recruits the Minichromosome Maintenance Complex (MCM2-7) to the origin recognition complex (ORC). The Cdt1 protein is divided into three regions based on sequence comparison and biochemical analyses: the N-terminal region (Cdt1_n) binds DNA in a sequence-, strand-, and conformation-independent manner; the middle winged helix fold (Cdt1_m) binds geminin to inhibit both binding of the MCM complex to origins of replication and DNA; and the C-terminal region (Cdt1_c) is essential for Cdt1 activity and directly interacts with the MCM2-7 helicase. Precise duplication of chromosomal DNA is required for genomic stability during replication. Assembly of replication factors to start DNA replication in eukaryotes must occur only once per cell cycle. To form a pre-replicative complex on replication origins in the G phase, ORC first binds origin DNA and triggers the binding of Cdc6 and Cdt1. These two factors recruit a putative replicative helicase and the MCM2-7. The MCM2-7 complex promotes the unwinding of DNA origins, and the binding of additional factors to initiate the DNA replication in S-phase. Cdt1 is present during G1 and early S phase of the cell cycle and degraded during the late S, G2, and M phases. The winged helix fold structure of Cdt1_m is similar to the structures of Cdt1_c and other archaeal homologues of the eukaryotic replication initiator, without apparent sequence similarity. 185 -176057 cd08675 C2B_RasGAP C2 domain second repeat of Ras GTPase activating proteins (GAPs). RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. 137 -176058 cd08676 C2A_Munc13-like C2 domain first repeat in Munc13 (mammalian uncoordinated)-like proteins. C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. 153 -176059 cd08677 C2A_Synaptotagmin-13 C2 domain. Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 13, a member of class 6 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmins 8 and 12, does not have any consensus Ca2+ binding sites. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This CD contains the first C2 repeat, C2A, and has a type-I topology. 118 -176060 cd08678 C2_C21orf25-like C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein. The members in this cd are named after the Human C21orf25 which contains a single C2 domain. Several other members contain a C1 domain downstream of the C2 domain. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 126 -176061 cd08679 C2_DOCK180_related C2 domains found in Dedicator Of CytoKinesis 1 (DOCK 180) and related proteins. Dock180 was first identified as an 180kd proto-oncogene product c-Crk-interacting protein involved in actin cytoskeletal changes. It is now known that it has Rac-specific GEF activity, but lacks the conventional Dbl homology (DH) domain. There are 10 additional related proteins that can be divided into four classes based on sequence similarity and domain organization: Dock-A which includes Dock180/Dock1, Dock2, and Dock5; Dock-B which includes Dock3/MOCA (modifier of cell adhesion) and Dock4; Dock-C which includes Dock6/Zir1, Dock7/Zir2, and Dock8/Zir3; and Dock-D, which includes Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2/ACG (activated Cdc42-associated GEF). Most of members of classes Dock-A and Dock-B are the GEFs specific for Rac. Those of Dock-D are Cdc42-specific GEFs while those of Dock-C are the GEFs for both. All Dock180-related proteins have two common homology domains: the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker). DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 178 -176062 cd08680 C2_Kibra C2 domain found in Human protein Kibra. Kibra is thought to be a regulator of the Salvador (Sav)/Warts (Wts)/Hippo (Hpo) (SWH) signaling network, which limits tissue growth by inhibiting cell proliferation and promoting apoptosis. The core of the pathway consists of a MST and LATS family kinase cascade that ultimately phosphorylates and inactivates the YAP/Yorkie (Yki) transcription coactivator. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are part of the upstream regulation controlling pathway mechanism. Kibra colocalizes and associates with Mer and Ex and is thought to transduce an extracellular signal via the SWH network. The apical scaffold machinery that contains Hpo, Wts, and Ex recruits Yki to the apical membrane facilitating its inhibitory phosphorlyation by Wts. Since Kibra associates with Ex and is apically located it is hypothesized that KIBRA is part of the scaffold, helps in the Hpo/Wts complex, and helps recruit Yki for inactivation that promotes SWH pathway activity. Kibra contains two amino-terminal WW domains, an internal C2-like domain, and a carboxy-terminal glutamic acid-rich stretch. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 124 -176063 cd08681 C2_fungal_Inn1p-like C2 domain found in fungal Ingression 1 (Inn1) proteins. Saccharomyces cerevisiae Inn1 associates with the contractile actomyosin ring at the end of mitosis and is needed for cytokinesis. The C2 domain of Inn1, located at the N-terminus, is required for ingression of the plasma membrane. The C-terminus is relatively unstructured and contains eight PXXP motifs that are thought to mediate interaction of Inn1 with other proteins with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore primary septum formation in Inn1Delta cells) as well as recruiting Inn1 to the bud-neck by binding to Cyk3. Inn1 and Cyk3 appear to cooperate in activating chitin synthase Chs2 for primary septum formation, which allows coordination of actomyosin ring contraction with ingression of the cleavage furrow. It is thought that the C2 domain of Inn1 helps to preserve the link between the actomyosin ring and the plasma membrane, contributing both to membrane ingression, as well as to stability of the contracting ring. Additionally, Inn1 might induce curvature of the plasma membrane adjacent to the contracting ring, thereby promoting ingression of the membrane. It has been shown that the C2 domain of human synaptotagmin induces curvature in target membranes and thereby contributes to fusion of these membranes with synaptic vesicles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 118 -176064 cd08682 C2_Rab11-FIP_classI C2 domain found in Rab11-family interacting proteins (FIP) class I. Rab GTPases recruit various effector proteins to organelles and vesicles. Rab11-family interacting proteins (FIPs) are involved in mediating the role of Rab11. FIPs can be divided into three classes: class I FIPs (Rip11a, Rip11b, RCP, and FIP2) which contain a C2 domain after N-terminus of the protein, class II FIPs (FIP3 and FIP4) which contain two EF-hands and a proline rich region, and class III FIPs (FIP1) which exhibits no homology to known protein domains. All FIP proteins contain a highly conserved, 20-amino acid motif at the C-terminus of the protein, known as Rab11/25 binding domain (RBD). Class I FIPs are thought to bind to endocytic membranes via their C2 domain, which interacts directly with phospholipids. Class II FIPs do not have any membrane binding domains leaving much to speculate about the mechanism involving FIP3 and FIP4 interactions with endocytic membranes. The members in this CD are class I FIPs. The exact function of the Rab11 and FIP interaction is unknown, but there is speculation that it involves the role of forming a targeting complex that recruits a group of proteins involved in membrane transport to organelles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 126 -176065 cd08683 C2_C2cd3 C2 domain found in C2 calcium-dependent domain containing 3 (C2cd3) proteins. C2cd3 is a novel C2 domain-containing protein specific to vertebrates. C2cd3 functions in regulator of cilia formation, Hedgehog signaling, and mouse embryonic development. Mutations in C2cd3 mice resulted in lethality in some cases and exencephaly, a twisted body axis, and pericardial edema in others. The presence of calcium-dependent lipid-binding domains in C2cd3 suggests a potential role in vesicular transport. C2cd3 is also an interesting candidate for ciliopathy because of its orthology to certain cilia-related genetic disease loci on chromosome. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 143 -176066 cd08684 C2A_Tac2-N C2 domain first repeat found in Tac2-N (Tandem C2 protein in Nucleus). Tac2-N contains two C2 domains and a short C-terminus including a WHXL motif, which are key in stabilizing transport vesicles to the plasma membrane by binding to a plasma membrane. However unlike the usual carboxyl-terminal-type (C-type) tandem C2 proteins, it lacks a transmembrane domain, a Slp-homology domain, and a Munc13-1-interacting domain. Homology search analysis indicate that no known protein motifs are located in its N-terminus, making Tac2-N a novel class of Ca2+-independent, C-type tandem C2 proteins. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 103 -176067 cd08685 C2_RGS-like C2 domain of the Regulator Of G-Protein Signaling (RGS) family. This CD contains members of the regulator of G-protein signaling (RGS) family. RGS is a GTPase activating protein which inhibits G-protein mediated signal transduction. The protein is largely cytosolic, but G-protein activation leads to translocation of this protein to the plasma membrane. A nuclear form of this protein has also been described, but its sequence has not been identified. There are multiple alternatively spliced transcript variants in this family with some members having additional domains (ex. PDZ and RGS) downstream of the C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 119 -176068 cd08686 C2_ABR C2 domain in the Active BCR (Breakpoint cluster region) Related protein. The ABR protein is similar to the breakpoint cluster region protein. It has homology to guanine nucleotide exchange proteins and GTPase-activating proteins (GAPs). ABR is expressed primarily in the brain, but also includes non-neuronal tissues such as the heart. It has been associated with human diseases such as Miller-Dieker syndrome in which mental retardation and malformations of the heart are present. ABR contains a RhoGEF domain and a PH-like domain upstream of its C2 domain and a RhoGAP domain downstream of this domain. A few members also contain a Bcr-Abl oncoprotein oligomerization domain at the very N-terminal end. Splice variants of ABR have been identified. ABR is found in a wide variety of organisms including chimpanzee, dog, mouse, rat, fruit fly, and mosquito. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 118 -176069 cd08687 C2_PKN-like C2 domain in Protein kinase C-like (PKN) proteins. PKN is a lipid-activated serine/threonine kinase. It is a member of the protein kinase C (PKC) superfamily, but lacks a C1 domain. There are at least 3 different isoforms of PKN (PRK1/PKNalpha/PAK1; PKNbeta, and PRK2/PAK2/PKNgamma). The C-terminal region contains the Ser/Thr type protein kinase domain, while the N-terminal region of PKN contains three antiparallel coiled-coil (ACC) finger domains which are relatively rich in charged residues and contain a leucine zipper-like sequence. These domains binds to the small GTPase RhoA. Following these domains is a C2-like domain. Its C-terminal part functions as an auto-inhibitory region. PKNs are not activated by classical PKC activators such as diacylglycerol, phorbol ester or Ca2+, but instead are activated by phospholipids and unsaturated fatty acids. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 98 -176070 cd08688 C2_KIAA0528-like C2 domain found in the Human KIAA0528 cDNA clone. The members of this CD are named after the Human KIAA0528 cDNA clone. All members here contain a single C2 repeat. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 110 -176071 cd08689 C2_fungal_Pkc1p C2 domain found in protein kinase C (Pkc1p) in Saccharomyces cerevisiae. This family is named after the protein kinase C in Saccharomyces cerevisiae, Pkc1p. Protein kinase C is a member of a family of Ser/Thr phosphotransferases that are involved in many cellular signaling pathways. PKC has two antiparallel coiled-coiled regions (ACC finger domain) (AKA PKC homology region 1 (HR1)/ Rho binding domain) upstream of the C2 domain and two C1 domains downstream. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains, like those of PKC, are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 109 -176072 cd08690 C2_Freud-1 C2 domain found in 5' repressor element under dual repression binding protein-1 (Freud-1). Freud-1 is a novel calcium-regulated repressor that negatively regulates basal 5-HT1A receptor expression in neurons. It may also play a role in the altered regulation of 5-HT1A receptors associated with anxiety or major depression. Freud-1 contains two DM-14 basic repeats, a helix-loop-helix DNA binding domain, and a C2 domain. The Freud-1 C2 domain is thought to be calcium insensitive and it lacks several acidic residues that mediate calcium binding of the PKC C2 domain. In addition, it contains a poly-basic insert that is not present in calcium-dependent C2 domains and may function as a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. 155 -176073 cd08691 C2_NEDL1-like C2 domain present in NEDL1 (NEDD4-like ubiquitin protein ligase-1). NEDL1 (AKA HECW1(HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1)) is a newly identified HECT-type E3 ubiquitin protein ligase highly expressed in favorable neuroblastomas. In vertebrates it is found primarily in neuronal tissues, including the spinal cord. NEDL1 is thought to normally function in the quality control of cellular proteins by eliminating misfolded proteins. This is thought to be accomplished via a mechanism analogous to that of ER-associated degradation by forming tight complexes and aggregating misfolded proteins that have escaped ubiquitin-mediated degradation. NEDL1, is composed of a C2 domain, two WW domains, and a ubiquitin ligase Hect domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 137 -176074 cd08692 C2B_Tac2-N C2 domain second repeat found in Tac2-N (Tandem C2 protein in Nucleus). Tac2-N contains two C2 domains and a short C-terminus including a WHXL motif, which are key in stabilizing transport vesicles to the plasma membrane by binding to a plasma membrane. However unlike the usual carboxyl-terminal-type (C-type) tandem C2 proteins, it lacks a transmembrane domain, a Slp-homology domain, and a Munc13-1-interacting domain. Homology search analysis indicate that no known protein motifs are located in its N-terminus, making Tac2-N a novel class of Ca2+-independent, C-type tandem C2 proteins. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 135 -176075 cd08693 C2_PI3K_class_I_beta_delta C2 domain present in class I beta and delta phosphatidylinositol 3-kinases (PI3Ks). PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a C2 domain, a PIK domain, and a kinase catalytic domain. The members here are class I, beta and delta isoforms of PI3Ks and contain both a Ras-binding domain and a p85-binding domain. Class II PI3Ks contain both of these as well as a PX domain, and a C-terminal C2 domain containing a nuclear localization signal. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members have a type-I topology. 173 -176076 cd08694 C2_Dock-A C2 domains found in Dedicator Of CytoKinesis (Dock) class A proteins. Dock-A is one of 4 classes of Dock family proteins. The members here include: Dock180/Dock1, Dock2, and Dock5. Most of these members have been shown to be GEFs specific for Rac. Dock5 has not been well characterized to date, but most likely also is a GEF specific for Rac. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-A members contain a proline-rich region and a SH3 domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 196 -176077 cd08695 C2_Dock-B C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins. Dock-B is one of 4 classes of Dock family proteins. The members here include: Dock3/MOCA (modifier of cell adhesion) and Dock4. Most of these members have been shown to be GEFs specific for Rac, although Dock4 has also been shown to interact indirectly with the Ras family GTPase Rap1, probably through Rap regulatory proteins. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-B members contain a SH3 domain upstream of the C2 domain and a proline-rich region downstream. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 189 -176078 cd08696 C2_Dock-C C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins. Dock-C is one of 4 classes of Dock family proteins. The members here include: Dock6/Zir1, Dock7/Zir2, and Dock8/Zir3. Dock-C members are GEFs for both Rac and Cdc42. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-C members contain a functionally uncharacterized domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 179 -176079 cd08697 C2_Dock-D C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins. Dock-D is one of 4 classes of Dock family proteins. The members here include: Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2/ACG (activated Cdc42-associated GEF). Dock-D are Cdc42-specific GEFs. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-D members contain a functionally uncharacterized domain and a PH domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The PH domain broadly binds to phospholipids and is thought to be involved in targeting the plasma membrane. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. 185 -187728 cd08700 FMT_C_OzmH_like C-terminal subdomain of the Formyltransferase-like domain found in OzmH-like proteins. Domain found in OzmH-like proteins with similarity to the C-terminal domain of Formyltransferase. OzmH is one of the proteins involved in the synthesis of Oxazolomycin (OZM), which is a hybrid peptide-polyketide antibiotic that exhibits potent antitumor and antiviral activities. OzmH is a multi-domain protein consisting of a formyl transferase domain, a flavin-utilizing monoxygenase domain, a LuxE domain functioning as an acyl protein synthetase and a phosphopantetheine (PP)-binding domain, which may function as an acyl carrier. It shows sequence similarity with other peptide-polyketide biosynthesis proteins. 100 -187729 cd08701 FMT_C_HypX C-terminal subdomain of the Formyltransferase-like domain found in HypX-like proteins. Domain found in HypX-like proteins with similarity to the C-terminal domain of Formyltransferase. HypX is involved in the maturation process of active [NiFe] hydrogenase. [NiFe] hydrogenases function in H2 metabolism in a variety of microorganisms, enabling them to use H2 as a source of reducing equivalents under aerobic and anaerobic conditions. [NiFe] hydrogenases consist of a large and a small subunit. The large subunit contains the [NiFe] active site but is synthesized as a precursor without the [NiFe] active site. This precursor undergoes a complex post-translational maturation process that requires the presence of a number of accessory proteins. HypX has been shown to be involved in this maturation process and have been proposed to participate in the generation and transport of the CO and CN ligands. However, HypX is not present in all hydrogen-metabolizing bacteria. Furthermore, hypX deletion mutants have a reduced but detectable level of hydrogenase activity. Thus, HypX might not be the determining factor in the maturation process. Members of this group have an N-terminal formyl transferase domain and a C-terminal enoyl-CoA hydratase/isomerase domain. 96 -187730 cd08702 Arna_FMT_C C-terminal subdomain of the formyltransferase domain on ArnA, which modifies lipid A with 4-amino-4-deoxy-l-arabinose. Domain found in ArnA with similarity to the C-terminal domain of Formyltransferase. ArnA is a bifunctional enzyme required for the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. The C-terminal domain of ArnA is a dehydrogenase domain that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto-arabinose (UDP-Ara4O) and the N-terminal domain is a formyltransferase domain that catalyzes the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido-arabinose (UDP-L-Ara4FN). This domain family represents the C-terminal subdomain of the formyltransferase domain, downstream of the N-terminal subdomain containing the catalytic center. ArnA forms a hexameric structure (a dimer of trimers), in which the dehydrogenase domains are arranged at the center with the transformylase domains on the outside of the complex. 92 -187731 cd08703 FDH_Hydrolase_C The C-terminal subdomain of the hydrolase domain on the bi-functional protein 10-formyltetrahydrofolate dehydrogenase. The family represents the C-terminal subdomain of the hydrolase domain on the bi-functional protein, 10-formyltetrahydrofolate dehydrogenase (FDH). FDH catalyzes the conversion of 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. The protein comprises two functional domains: the N-terminal hydrolase domain that removes a formyl group from 10-formyltetrahydrofolate and the C-terminal NADP-dependent dehydrogenase domain that reduces the formyl group to carbon dioxide. The hydrolase domain contains an N-terminal formyl transferase catalytic core subdomain and this C-terminal subdomain, which may be involved in substrate binding. 100 -187732 cd08704 Met_tRNA_FMT_C C-terminal domain of Formyltransferase and other enzymes. C-terminal domain of formyl transferase and other proteins with diverse enzymatic activities. Proteins found in this family include methionyl-tRNA formyltransferase, ArnA, and 10-formyltetrahydrofolate dehydrogenase. Methionyl-tRNA formyltransferases constitute the majority of the family and also demonstrate greater sequence diversity. Although most proteins with formyltransferase activity contain the C-terminal domain, some formyltransferases ( for example, prokaryotic glycinamide ribonucleotide transformylase (GART)) only have the core catalytic domain, indicating that the C-terminal domain is not a requirement for catalytic activity and may be involved in substrate binding. For example, the C-terminal domain of methionyl-tRNA formyltransferase is involved in the tRNA binding. 87 -188660 cd08705 RGS_R7-like Regulator of G protein signaling (RGS) domain found in the R7 subfamily of proteins. The RGS (Regulator of G-protein Signaling) domain is an essential part of the R7 (Neuronal RGS) protein subfamily of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. The R7 subfamily includes RGS6, RGS7, RGS9, and RGS11, all of which, in humans, are expressed predominantly in the nervous system, form an obligatory complex with G-beta-5, and play important roles in the regulation of crucial neuronal processes. In addition, R7 proteins were found to bind many other proteins outside of the G protein signaling pathways including: m-opioid receptor, beta-arrestin, alpha-actinin-2, NMDAR, polycystin, spinophilin, guanylyl cyclase, among others. 121 -188661 cd08706 RGS_R12-like Regulator of G protein signaling (RGS) domain found in the R12 subfamily of proteins. The RGS (Regulator of G-protein Signaling) domain is an essential part of the R12 (Neuronal RGS) protein subfamily of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play a critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of G-protein signaling, controlled by RGS domain, accelerates GTPase activity of the alpha subunit by hydrolysis of GTP to GDP that results in reassociation of the alpha-subunit with the beta-gamma-dimer and thereby inhibition of downstream activity. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. The R12 RGS subfamily includes RGS10, RGS12 and RGS14 all of which are highly selective for G-alpha-i1 over G-alpha-q. 113 -188662 cd08707 RGS_Axin Regulator of G protein signaling (RGS) domain found in the Axin protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the Axin protein. Axin is a member of the RA/RGS subfamily of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, and skeletal and muscle development. The RGS domain of Axin is specifically interacts with the heterotrimeric G-alpha12 protein, but not with closely related G-alpha13, and provides a unique tool to regulate G-alpha12-mediated signaling processes. The RGS domain of Axin also interacts with the tumor suppressor protein APC (Adenomatous Polyposis Coli) in order to control the cytoplasmic level of the proto-oncogene, beta-catenin. 117 -188663 cd08708 RGS_FLBA Regulator of G protein signaling (RGS) domain found in the FLBA (Fluffy Low BrlA) protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the FLBA (Fluffy Low BrlA) protein. FLBA is a member of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins play a critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of the G-protein signaling controlled by the RGS domain accelerates the GTPase activity of the alpha subunit by hydrolysis of GTP to GDP which results in reassociation of the alpha-subunit with the beta-gamma-dimer and thereby inhibition of downstream activity. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes. The RGS domain of the FLBA protein antagonizes G protein signaling to block proliferation and allow development. It is required for control of mycelial proliferation and activation of asexual sporulation in yeast. 148 -188664 cd08709 RGS_RGS2 Regulator of G protein signaling (RGS) domain found in the RGS2 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS2 protein. RGS2 is a member of R4/RGS subfamily of RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G- alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS2 plays important roles in the regulation of blood pressure and the pathogenesis of human hypertension, as well as in bone formation in osteoblasts. Outside of the GPCR pathway RGS2 interacts with calmodulin, beta- COP, tubulin, PKG1-alpha, and TRPV6. 114 -188665 cd08710 RGS_RGS16 Regulator of G protein signaling (RGS) domain found in the RGS16 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS16 protein. RGS16 is a member of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS16 is a member of the R4/RGS subfamily and interacts with neuronal G-alpha0. RGS16 expression is upregulated by IL-17 of the NF-kappaB signaling pathway in autoimmune B cells. 114 -188666 cd08711 RGS_RGS8 Regulator of G protein signaling (RGS) domain found in the RGS8 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS8 protein. RGS8 is a member of R4/RGS subfamily of RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS8 is involved in G-protein-gated potassium channels regulation and predominantly expressed in the brain. RGS8 also is selectively expressed in the hematopoietic system (NK cells). 125 -188667 cd08712 RGS_RGS18 Regulator of G protein signaling (RGS) domain found in the RGS18 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS18 protein. RGS18 is a member of the RGS protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS18 is a member of the R4/RGS subfamily and is expressed predominantly in osteoclasts where it acts as a negative regulator of the acidosis-induced osteoclastogenic OGR1/NFAT signaling pathway. RANKL (receptor activator of nuclear factor B ligand) stimulates osteoclastogenesis by inhibiting expression of RGS18. 114 -188668 cd08713 RGS_RGS3 Regulator of G protein signaling (RGS) domain found in the RGS3 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS3 protein. RGS3 is a member of the R4/RGS subfamily of the RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes. RGS3 induces apoptosis when overexpressed and is involved in cell migration through interaction with the Ephrin receptor. RGS3 exits as several splice isoforms and interacts with neuroligin, estrogen receptor-alpha, and 14-3-3 outside of the GPCR pathways. 114 -188669 cd08714 RGS_RGS4 Regulator of G protein signaling (RGS) domain found in the RGS4 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS4 protein. RGS4 is a member of the R4/RGS subfamily of the RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. RGS4 is expressed widely in brain including prefrontal cortex, striatum, locus coeruleus (LC), and hippocampus and has been implicated in regulation of opioid, cholinergic, and serotonergic signaling. Dysfunctions in RGS4 proteins are involved in etiology of Parkinson's disease, addiction, and schizophrenia. RGS4 also is up-regulated in the failing human heart. RGS4 interacts with many binding partners outside of GPCR pathways, including calmodulin, COP, Kir3, PIP, calcium/CaM, PA, ErbB3, and 14-3-3. 114 -188670 cd08715 RGS_RGS1 Regulator of G protein signaling (RGS) domain found in the RGS1 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS1 protein. RGS1 is a member of the R4/RGS subfamily of the RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS 1 is expressed predominantly in hematopoietic compartments, including T and B lymphocytes, and may play a major role in chemokine-mediated homing of lymphocytes to secondary lymphoid organs. In addition, RGS1 interacts with calmodulin and 14-3-3 protein outside of the GPCR pathway. 114 -188671 cd08716 RGS_RGS13 Regulator of G protein signaling (RGS) domain found in the RGS13 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS13 protein. RGS13 is member of the R4/RGS subfamily of the RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS13 is predominantly expressed in T and B lymphocytes and in mast cells, and plays a role in adaptive immune responses. RGS13 also found in Rgs13, which is also expressed in dendritic cells and in neuroendocrine cells of the thymus, gastrointestinal, and respiratory tracts. Outside of the GPCR pathway, RGS5 interacts with the PIP3 protein. 114 -188672 cd08717 RGS_RGS5 Regulator of G protein signaling (RGS) domain found in the RGS5 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS5 protein. RGS5 is member of the R4/RGS subfamily of the RGS family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha subunits. The RGS domain controls G-protein signaling by accelerating the GTPase activity of the G-alpha subunit which leads to G protein deactivation and promotes desensitization. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. Two splice isoforms of RGS5 has been found: RGS5L (long) which is expressed in smooth muscle cells (pericytes) and heart and RGS5S (short) which is highly expressed in the ciliary body of the eye, kidney, brain, spleen, skeletal muscle, and small intestine. Outside of the GPCR pathway, RGS5 interacts with the 14-3-3 protein. 114 -188673 cd08718 RGS_RZ-like Regulator of G protein signaling (RGS) domain found in the RZ protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RZ subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of G-protein signaling is controlled by RGS domains, which accelerate GTPase activity of the alpha subunit by hydrolysis of GTP to GDP, which results in reassociation of the alpha-subunit with the beta-gamma-dimer and inhibition of downstream activity. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. The RZ subfamily of RGS proteins includes RGS17, RGS19 (former GAIP), RGS20, and its splice variant Ret-RGS. 118 -188674 cd08719 RGS_SNX13 Regulator of G protein signaling (RGS) domain found in the Sorting Nexin 13 (SNX13) protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the SNX13 (Sorting Nexin 13) protein, a member of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. The RGS-domain of SNX13 plays a major role through attenuation of Galphas-mediated signaling and regulates endocytic trafficking and degradation of the epidermal growth factor receptor. Snx13-null mice were embryonic lethal around midgestation which supports an essential role for SNX13 in mouse development and regulation of endocytosis dynamics. 135 -188675 cd08720 RGS_SNX25 Regulator of G protein signaling (RGS) domain found in the Sorting Nexin 25 (SNX25) protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the SNX25 (Sorting Nexin 25) protein, a member of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. SNX25 is a member of the Dopamine receptors (DAR) signalplex and regulates the trafficking of D1 and D2 DARs. 110 -188676 cd08721 RGS_AKAP2_2 Regulator of G protein signaling (RGS) domain 2 found in the A-kinase anchoring protein, D-AKAP2. The RGS (Regulator of G-protein Signaling) domain is an essential part of the D-AKAP2 (A-kinase anchoring protein), a member of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. D-AKAP2 contains two RGS domains which play an important role in spatiotemporal localization of cAMP-dependent PKA (cyclic AMP-dependent protein kinase) that regulates many different signaling pathways by phosphorylation of target proteins. This cd contains the second RGS domain. 121 -188677 cd08722 RGS_SNX14 Regulator of G protein signaling (RGS) domain found in the Sorting Nexin14 (SNX14) protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the SNX14 (Sorting Nexin14) protein, a member of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. SNX14 is believed to regulates membrane trafficking in motor neurons. 127 -188678 cd08723 RGS_RGS21 Regulator of G protein signaling (RGS) domain found in the RGS21 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part RGS21 protein, a member of RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, apoptosis, and cell proliferation, as well as modulation of cardiac development. RGS21 is a member of the R4/RGS subfamily and its mRNA was detected only in sensory taste cells that express sweet taste receptors and the taste G-alpha subunit, gustducin, suggesting a potential role in regulating taste transduction. 111 -188679 cd08724 RGS_GRK-like Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase (GRK). The RGS domain is found in G protein-coupled receptor kinases (GRKs). These proteins play a key role in phosphorylation-dependent desensitization/resensitization of GPCRs (G protein-coupled receptors), intracellular trafficking, endocytosis, as well as in the modulation of important intracellular signaling cascades by GPCR. GRKs also modulate cellular response in phosphorylation-independent manner using their ability to interact with multiple signaling proteins involved in many essential cellular pathways. The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. Based on sequence homology the GRK family consists of three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 114 -188680 cd08725 RGS_RGS22_4 Regulator of G protein signaling domain RGS_RGS22_4. The RGS (Regulator of G-protein Signaling) domain found in the RGS22 protein, a member of the RA/RGS subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. RGS22 contains at least 3 copies of the RGS domain in vertebrata and exists in multiple splicing variants. RGS22 is predominantly expressed in testis and believed to play an important role in spermatogenesis. 123 -188681 cd08726 RGS_RGS22_3 Regulator of G protein signaling domain RGS_RGS22_3. The RGS (Regulator of G-protein Signaling) domain found in the RGS22 protein, a member of the RA/RGS subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. RGS22 contains at least 3 copies of the RGS domain in vertebrata and exists in multiple splicing variants. RGS22 is predominantly expressed in testis and believed to play an important role in spermatogenesis. 130 -188682 cd08727 RGS_RGS22_2 Regulator of G protein signaling domain RGS_RGS22_2. The RGS (Regulator of G-protein Signaling) domain found in the RGS22 protein, a member of the RA/RGS subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. RGS22 contains at least 3 copies of the RGS domain in vertebrata and exists in multiple splicing variants. RGS22 is predominantly expressed in testis and believed to play an important role in spermatogenesis. 116 -188683 cd08728 RGS-like_2 Uncharacterized Regulator of G protein Signaling (RGS) domain subfamily, child 2. These uncharacterized RGS-like domains consists largely of hypothetical proteins. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play an important role in neuronal signal modulation. Some RGS proteins are the principal elements needed for proper vision. 179 -188684 cd08729 RGS_PX Regulator of G protein signaling domain. These uncharacterized RGS-like domains are found in proteins that also contain one or more PX domains. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. As a major G-protein regulator, the RGS domain containing proteins that are involves in many crucial cellular processes. RGS proteins regulate intracellular trafficking and provide vital support for signal transduction. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Several RGS proteins can fine-tune immune responses, others RGS proteins play important role in neuronal signals modulation. Some RGS proteins are the principal elements needed for proper vision. 136 -188685 cd08730 RGS-like_3 Uncharacterized Regulator of G protein Signaling (RGS) domain subfamily, child 3. These uncharacterized RGS-like domains consists largely of hypothetical proteins. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. As a major G-protein regulator, the RGS domain containing proteins that are involved in many crucial cellular processes. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play an important role in neuronal signal modulation. Some RGS proteins are the principal elements needed for proper vision. 165 -188686 cd08731 RGS_RGS22_1 Regulator of G protein signaling domain RGS_RGS22_1. The RGS (Regulator of G-protein Signaling) domain found in the RGS22 protein, a member of the RA/RGS subfamily of the RGS protein family, which is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. RGS22 contains at least 3 copies of the RGS domain in vertebrata and exists in multiple splicing variants. RGS22 is predominantly expressed in testis and believed to play an important role in spermatogenesis. 125 -188687 cd08732 RGS-like_4 Uncharacterized Regulator of G protein Signaling (RGS) domain subfamily, child 4. These uncharacterized RGS-like domains consists largely of hypothetical proteins. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play an important role in neuronal signal modulation. Some RGS proteins are the principal elements needed for proper vision. 139 -188688 cd08734 RGS-like_1 Uncharacterized Regulator of G protein Signaling (RGS) domain subfamily, child 1. These uncharacterized RGS-like domains consists largely of hypothetical proteins. The RGS domain is an essential part of the Regulator of G-protein Signaling (RGS) protein family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. As a major G-protein regulator, the RGS domain containing proteins that are involved in many crucial cellular processes. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. Several RGS proteins can fine-tune immune responses, while others play an important role in neuronal signal modulation. Some RGS proteins are the principal elements needed for proper vision. 109 -188689 cd08735 RGS_AKAP2_1 Regulator of G protein signaling (RGS) domain 1 found in the A-kinase anchoring protein, D-AKAP2. The RGS (Regulator of G-protein Signaling) domain is an essential part of the D-AKAP2 (A-kinase anchoring protein), a member of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. D-AKAP2 contains two RGS domains which play an important role in spatiotemporal localization of cAMP-dependent PKA (cyclic AMP-dependent protein kinase) that regulates many different signaling pathways by phosphorylation of target proteins. This cd contains the first RGS domain. 171 -188690 cd08736 RGS_RhoGEF-like Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein. The RGS domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein subfamily of the RGS domain containing protein family, which is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RhoGEFs link signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RGS domain of the RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. The RGS-GEFs subfamily includes the leukemia-associated RhoGEF (LARG), p115RhoGEF, and PDZ-RhoGEF. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 120 -188691 cd08737 RGS_RGS6 Regulator of G protein signaling (RGS) domain found in the RGS6 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS6 protein, a member of R7 subfamily of the RGS protein family. RGS is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). Other members of the R7 subfamily (Neuronal RGS) include: RGS7, RGS9, and RGS11, all of which are expressed predominantly in the nervous system, form an obligatory complex with G-beta-5, and play important roles in the regulation of crucial neuronal processes such as vision and motor control. Additionally they have been implicated in many neurological conditions such as anxiety, schizophrenia, and drug dependence. RGS6 exists in multiple splice isoforms with identical RGS domains, but possess complete or incomplete GGL domains and distinct N- and C-terminal domains. RGS6 interacts with SCG10, a neuronal growth-associated protein and therefore regulates neuronal differentiation. Another RGS6-binding protein is DMAP1, a component of the Dnmt1 complex involved in repression of newly replicated genes. Mutations of a critical residue required for interaction of RGS6 protein with G proteins did not affect the ability of RGS6 to interact with both SCG10 and DMAP1. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. 125 -188692 cd08738 RGS_RGS7 Regulator of G protein signaling (RGS) domain found in the RGS7 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS7 protein, a member of R7 subfamily of the RGS protein family. RGS is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. Other members of the R7 subfamily (Neuronal RGS) include: RGS6, RGS9, and RGS11, all of which are expressed predominantly in the nervous system, form an obligatory complex with G-beta-5, and play important roles in the regulation of crucial neuronal processes such as vision and motor control. Additionally they have been implicated in many neurological conditions such as anxiety, schizophrenia, and drug dependence. R7 RGS proteins are key modulators of the pharmacological effects of drugs involved in the development of tolerance and addiction. In addition, RGS7 was found to bind a component of the synaptic fusion complex, snapin, and some other proteins outside of G protein signaling pathways. 121 -188693 cd08739 RGS_RGS9 Regulator of G protein signaling (RGS) domain found in the RGS9 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS9 protein, a member of R7 subfamily of the RGS protein family. RGS is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. Other members of the R7 subfamily (Neuronal RGS) include: RGS6, RGS7, and RGS11, all of which are expressed predominantly in the nervous system, form an obligatory complex with G-beta-5, and play important roles in the regulation of crucial neuronal processes such as vision and motor control. Additionally they have been implicated in many neurological conditions such as anxiety, schizophrenia, and drug dependence. RGS9 forms constitutive complexes with G-beta-5 subunit and controls such fundamental functions as vision and behavior. RGS9 exists in two splice isoforms: RGS9-1 which regulates phototransduction in rods and cones and RGS9-2 which regulates dopamine and opioid signaling in the basal ganglia. In addition, RGS9 was found to bind many other proteins outside of G protein signaling pathways including: mu-opioid receptor, beta-arrestin, alpha-actinin-2, NMDAR, polycystin, spinophilin, and guanylyl cyclase, among others. 121 -188694 cd08740 RGS_RGS11 Regulator of G protein signaling (RGS) domain found in the RGS11 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS11 protein, a member of R7 subfamily of the RGS protein family. RGS is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. Other members of the R7 subfamily (Neuronal RGS) include: RGS6, RGS7, and RGS9, all of which are expressed predominantly in the nervous system, form an obligatory complex with G-beta-5, and play important roles in the regulation of crucial neuronal processes such as vision and motor control. Additionally they have been implicated in many neurological conditions such as anxiety, schizophrenia, and drug dependence. RGS11 is expressed exclusively in retinal ON-bipolar neurons in which it forms complexes with G-beta-5 and R7AP (RGS7 anchor protein ) and plays crucial roles in processing the light responses of retinal neurons. 126 -188695 cd08741 RGS_RGS10 Regulator of G protein signaling (RGS) domain found in the RGS10 protein. RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS10 protein. RGS10 is a member of the RA/RGS subfamily of RGS proteins family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS10 belong to the R12 RGS subfamily, which includes RGS12 and RGS14, all of which are highly selective for G-alpha-i1 over G-alpha-q. RGS10 exists in 2 splice isoforms. RGS10A is specifically expressed in osteoclasts and is a key component in the RANKL signaling mechanism for osteoclast differentiation, whereas RGS10B expressed in brain and in immune tissues and has been implicated in diverse processes including: promoting of dopaminergic neuron survival via regulation of the microglial inflammatory response, modulation of presynaptic and postsynaptic G-protein signalling, as well as a possible role in regulation of gene expression. 113 -188696 cd08742 RGS_RGS12 Regulator of G protein signaling (RGS) domain found in the RGS12 protein. RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS12 protein. RGS12 is a member of the RA/RGS subfamily of RGS proteins family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS12 belong to the R12 RGS subfamily, which includes RGS10 and RGS14, all of which are highly selective for G-alpha-i1 over G-alpha-q. RGS12 exist in multiple splice variants: RGS12s (short) contains the core RGS/RBD/GoLoco domains, while RGS12L (long) has additional N-terminal PDZ and PTB domains. RGS12 splice variants show distinct expression patterns, suggesting that they have discrete functions during mouse embryogenesis. RGS12 also may play a critical role in coordinating Ras-dependent signals that are required for promoting and maintaining neuronal differentiation. 115 -188697 cd08743 RGS_RGS14 Regulator of G protein signaling (RGS) domain found in the RGS14 protein. RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS14 protein. RGS14 is a member of the RA/RGS subfamily of RGS proteins family, a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS14 belong to the R12 RGS subfamily, which includes RGS10 and RGS12, all of which are highly selective for G-alpha-i1 over G-alpha-q. RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells and thereby integrates G protein and Ras/Raf signaling pathways. 129 -188698 cd08744 RGS_RGS17 Regulator of G protein signaling (RGS) domain found in the RGS17 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS17 protein, a member of the RZ subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). As a major G-protein regulator, the RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of the G-protein signaling controlled by the RGS domain, which accelerates GTPase activity of the alpha subunit by hydrolysis of GTP to GDP, results in reassociation of the alpha-subunit with the beta-gamma-dimer and inhibition of downstream activity. The RZ subfamily of RGS proteins includes RGS19 (former GAIP), RGS20, and its splice variant Ret-RGS. RGS17 is a relatively non-selective GAP for G-alpha-z and other G-alpha-i/o proteins. RGS17 blocks dopamine receptor-mediated inhibition of cAMP accumulation; it also blocks thyrotropin releasing hormone-stimulated Ca++ mobilization. RGS17, like other members of RZ subfamily, can act either as a GAP or as G-protein effector antogonist. 118 -188699 cd08745 RGS_RGS19 Regulator of G protein signaling (RGS) domain found in the RGS19 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS19 protein (also known as GAIP), a member of the RZ subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of G-protein signaling is controlled by RGS domains, which accelerate GTPase activity of the alpha subunit by hydrolysis of GTP to GDP, resulting in a reassociation of the alpha-subunit with the beta-gamma-dimer and an inhibition of downstream activity. As a major G-protein regulator, the RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. The RZ subfamily of RGS proteins includes RGS17, RGS20, and its splice variant Ret-RGS. RGS19 participates in regulation of dopamine receptor D2R and D3R, as well as beta-adrenergic receptors . 118 -188700 cd08746 RGS_RGS20 Regulator of G protein signaling (RGS) domain found in the RGS20 protein. The RGS (Regulator of G-protein Signaling) domain is an essential part of the RGS20 protein (also known as RGSZ1), a member of the RZ subfamily of the RGS protein family. They are a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). RGS proteins play critical regulatory roles as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. Deactivation of G-protein signaling is controlled by the RGS domain, which accelerates GTPase activity of the alpha subunit by hydrolysis of GTP to GDP resulting in reassociation of the alpha-subunit with the beta-gamma-dimer and inhibition of downstream activity. As a major G-protein regulator, the RGS domain containing proteins are involved in many crucial cellular processes such as regulation of intracellular trafficking, glial differentiation, embryonic axis formation, skeletal and muscle development, and cell migration during early embryogenesis. The RZ subfamily of RGS proteins include RGS17, RGS19 (former GAIP), and the splice variant of RGS20, Ret-RGS. RGS20 is expressed exclusively in brain, with the highest concentrations in the temporal lobe and the caudate nucleus and may play a role in signaling regulation in these brain regions. RGS20 acts as a GAP of both G-alpha-z and G-alpha-I and controls signaling in the mu opioid receptor pathway. 167 -188701 cd08747 RGS_GRK2_GRK3 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 2 (GRK2) and G protein-coupled receptor kinase 3 (GRK3). The RGS domain is an essential part of the GRK2 (G protein-coupled receptor kinases 2) and the GRK3 proteins, which are members of the beta-adrenergic receptor kinases subfamily. GRK2 and GRK3 are ubiquitously expressed and can phosphorylate many different GPCR. The C-terminus of GRK2 and 3 contains a plekstrin homology domain (PH) with binding sites for the membrane phospholipid PIP2 and free G#? subunits. These specific interactions could help to maintain a membrane-bound population of GRK2 prior to the agonist-dependent overt GRK2 translocation. GRK2 and GRK3 are members of the GRK kinase family which includes three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 157 -188702 cd08748 RGS_GRK1 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 1 (GRK1). The RGS domain is found in G protein-coupled receptor kinases 1 (GRK1, also refered to as Rhodopsin kinase) which play a key role in phosphorylation of rhodopsin (Rho), a G protein-coupled receptor responsible for visual signal transduction in rod cell. GRK1 is a member of the GRK kinase family which includes three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. A few inactivation mutations in GRK1 have been found in patients with Oguchi disease, a stationary form of night blindness. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 138 -188703 cd08749 RGS_GRK7 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 7 (GRK7). The RGS domain is an essential part of the GRK7 (G protein-coupled receptor kinases 7) proteins which together with GRK1 (Rhodopsin kinase) have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. GRK7 is a member of the GRK kinase family which includes three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. GRK7 is expressed in all vertebrate cones except that of mice and rats, which do not have the gene for GRK7. Lack of either GRK7 or both GRK1 and GRK7 in human leads to a vision defect called Enhanced S Cone syndrome. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 139 -188704 cd08750 RGS_GRK4 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 4 (GRK4). The RGS domain is an essential part of the GRK4 (G protein-coupled receptor kinase4) proteins, which are membrane-associated serine/threonine protein kinases that phosphorylate G protein-coupled receptors (GPCRs) upon agonist stimulation. This phosphorylation initiates beta-arrestin-mediated receptor desensitization, internalization, and signaling events. GRK4 is a member of the GRK kinase family which includes three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. GRK4 plays a key role in regulating dopaminergic-mediated natriuresis and is associated with essential hypertension and/or salt-sensitive hypertension. GRK4 exists in four splice variants involved in hyperphosphorylation, desensitization, and internalization of two dopamine receptors (D1R and D3R). GRK4 also increases the expression of a key receptor of the renin-angiotensin system, the AT1R (angiotensin type 1 receptor). RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 132 -188705 cd08751 RGS_GRK6 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 6 (GRK6). The RGS domain is an essential part of the GRK6 (G protein-coupled receptor kinase 6) protein which plays an important role in the regulating of dopamine, opioids, M3 muscarinic, and chemokine receptor signaling. GRK6 is a member of the GRK kinase family which includes three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. The RH domain of GRK6 does not have structural determinants that are required for binding G-alpha subunit, in contrast to GRK2 and many other RGS proteins. GRK6 is an important target for treatment of addiction and Parkinson disease. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 145 -188706 cd08752 RGS_GRK5 Regulator of G protein signaling domain (RGS) found in G protein-coupled receptor kinase 5 (GRK5). The RGS domain is an essential part of the GRK5 (G protein-coupled receptor kinase 5) protein, a membrane-associated serine/threonine protein kinases which phosphorylates G protein-coupled receptors (GPCRs) upon agonist stimulation. This phosphorylation initiates beta-arrestin-mediated receptor desensitization, internalization, and signaling events. GRK5 is a member of the GRK kinase family which include three major subfamilies: the GRK4 subfamily (GRK4, GRK5 and GRK6), the rhodopsin kinase or visual GRK subfamily (GRK1 and GRK7), and the beta-adrenergic receptor kinases subfamily (GRK2/GRK3). The RGS domain of the GRKs has very little sequence similarity with the canonical RGS domain of the RGS proteins and therefore is often refered to as the RH (RGS Homology) domain. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 123 -188707 cd08753 RGS_PDZRhoGEF Regulator of G protein signaling (RGS) domain found in the PDZ-Rho guanine nucleotide exchange factor (RhoGEF) protein. The RGS domain is an essential part of the PDZ-RhoGEF (PDZ:Postsynaptic density 95, Disk large, Zona occludens-1; RhoGEF: Rho guanine nucleotide exchange factor; alias PRG) protein, a member of RhoGEFs subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, and cell cycle progression, as well as gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. RhoGEFs subfamily includes leukemia-associated RhoGEF protein (LARG), p115RhoGEF, PDZ-RhoGEF and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In contrast to p115RhoGEF and LARG, PDZ-RhoGEF cannot serve as a GTPase-activating protein (GAP), due to the mutation of sites in the RGS domain region that are crucial for GAP activity. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 145 -188708 cd08754 RGS_LARG Regulator of G protein signaling (RGS) domain found in the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) protein (LARG). The RGS domain is an essential part of the leukemia-associated RhoGEF protein (LARG), a member of the RhoGEF (Rho guanine nucleotide exchange factor) subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, cell cycle progression of cells, and gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes p115RhoGEF, LARG, PDZ-RhoGEF, and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In addition to being a G-alpha13 effector, the LARG protein also functions as a GTPase-activating protein (GAP) for G-alpha13. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 222 -188709 cd08755 RGS_p115RhoGEF Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (GEF), p115 RhoGEF. The RGS (Regulator of G-protein Signaling) domain is an essential part of the p115RhoGEF protein, a member of the RhoGEF (Rho guanine nucleotide exchange factor) subfamily of the RGS protein family. The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration, cell cycle progression of cells, and gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes p115RhoGEF, LARG, PDZ-RhoGEF and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. In addition to being a G-alpha13/12 effector, the p115RhoGEF protein also functions as a GTPase-activating protein (GAP) for G-alpha13. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 193 -188710 cd08756 RGS_GEF_like Regulator of G protein signaling (RGS) domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein. The RGS domain found in the Rho guanine nucleotide exchange factor (RhoGEF) protein subfamily of the RGS domain containing protein family, which is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). The RhoGEFs are peripheral membrane proteins that regulate essential cellular processes, including cell shape, cell migration and cell cycle progression as well as gene transcription by linking signals from heterotrimeric G-alpha12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The RhoGEF subfamily includes the leukemia-associated RhoGEF protein (LARG), p115RhoGEF, PDZ-RhoGEF, and its rat specific splice variant GTRAP48. The RGS domain of RhoGEFs has very little sequence similarity with the canonical RGS domain of the RGS proteins and is often refered to as RH (RGS Homology) domain. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins play critical regulatory role as GTPase activating proteins (GAPs) of the heterotrimeric G-protein G-alpha-subunits. RGS proteins regulate many aspects of embryonic development such as glial differentiation, embryonic axis formation, skeletal and muscle development, cell migration during early embryogenesis, as well as apoptosis, cell proliferation, and modulation of cardiac development. 122 -188885 cd08757 SAM_PNT_ESE Sterile alpha motif (SAM)/Pointed domain of ESE-like ETS transcriptional regulators. SAM Pointed domain of ESE-like (Epithelium-Specific ETS) subfamily of ETS transcriptional regulators is a putative protein-protein interaction domain. It can act as a major transactivator by providing a potential docking site for co-activators. ETS factors are important for cell differentiation. They can be involved in regulation of gene expression in different types of epithelial cells. They are expressed in salivary gland, intestine, stomach, pancreas, lungs, kidneys, colon, mammary gland, and prostate. Members of this group are proto-oncogenes. Expression profiles of these factors are altered in epithelial cancers, which makes them potential targets for cancer therapy. 69 -260086 cd08759 Type_III_cohesin_like Cohesin domain, interaction partner of dockerin. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. Two specific calcium-dependent interactions between cohesin and dockerin appear to be essential for cellulosome assembly, type I and type II. This subfamily represents type III cohesins and closely related domains. 167 -176490 cd08760 Cyt_b561_FRRS1_like Eukaryotic cytochrome b(561), including the FRRS1 gene product. Cytochrome b(561), as found in eukaryotes, similar to and including the human FRRS1 gene product (ferric-chelate reductase 1), also called SDR-2 (stromal cell-derived receptor 2). This family comprises a variety of domain architectures, many of which contain dopamine beta-monooxygenase (DOMON) domains. The protein might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 191 -176491 cd08761 Cyt_b561_CYB561D2_like Eukaryotic cytochrome b(561), including the CYB561D2 gene product. Cytochrome b(561), as found in eukaryotes, similar to and including the human CYB561D2 gene product. CYB561D2 is a candidate tumor suppressor. The protein might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 183 -176492 cd08762 Cyt_b561_CYBASC3 Vertebrate cytochrome b(561), CYBASC3 gene product. Cytochrome b ascorbate-dependent 3, as found in vertebrates, which might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 179 -176493 cd08763 Cyt_b561_CYB561 Vertebrate cytochrome b(561), CYB561 gene product. Cytochrome b(561), as found in vertebrates, which might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 143 -176494 cd08764 Cyt_b561_CG1275_like Non-vertebrate eumetazoan cytochrome b(561). Cytochrome b(561), as found in non-vertebrate eumetazoans, similar to the Drosophila melanogaster CG1275 gene product. This protein might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 214 -176495 cd08765 Cyt_b561_CYBRD1 Vertebrate cytochrome b(561), CYBRD1 gene product. Duodenal cytochrome b or ferric-chelate reductase 3, a cytochrome b(561), as found in vertebrates, which might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), such as associated with the transport of iron from the endosome to the cytoplasm. It is assumed that this protein uses ascorbate as the electron donor. This protein is expressed at the brush border of duodenal enterocytes and may play a role in the uptake of dietary Fe(3+), facilitating its transport into the mucosal cells. It may also be involved in the recycling of extracellular ascorbate in erythrocyte membranes, and act as a ferrireductase in epithelial cells of the respiratory system. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 153 -176496 cd08766 Cyt_b561_ACYB-1_like Plant cytochrome b(561), including the carbon monoxide oxygenase ACYB-1. Cytochrome b(561), as found in plants, similar to the Arabidopsis thaliana ACYB-1 gene product, a cytochrome b561 isoform localized to the tonoplast. This protein might act as a ferric-chelate reductase, catalyzing the reduction of Fe(3+) to Fe(2+), and might be capable of trans-membrane electron transport from intracellular ascorbate to extracellular ferric chelates. It is assumed that this protein uses ascorbate as the electron donor. Belongs to the cytochrome b(561) family, which are secretory vesicle-specific electron transport proteins. Cytochromes b(561) are integral membrane proteins that bind two heme groups non-covalently, and may have six alpha-helical trans-membrane segments. 144 -176572 cd08767 Cdt1_c The C-terminal fold of replication licensing factor Cdt1 is essential for Cdt1 activity and directly interacts with MCM2-7 helicase. Cdt1 is a replication licensing factor in eukaryotes that recruits the Minichromosome Maintenance Complex (MCM2-7) to the Origin Recognition Complex (ORC). The Cdt1 protein is divided into three regions based on sequence comparison and biochemical analyses: the N-terminal region (Cdt1_n) binds DNA in a sequence-, strand-, and conformation-independent manner; the middle winged helix fold (Cdt1_m) binds geminin to inhibit both binding of the MCM complex to origins of replication and DNA; and the C-terminal region (Cdt1_c) is essential for Cdt1 activity and directly interacts with the MCM2-7 helicase. Precise duplication of chromosomal DNA is required for genomic stability during replication. Assembly of replication factors to start DNA replication in eukaryotes must occur only once per cell cycle. To form a pre-replicative complex on replication origins in the G phase, ORC first binds origin DNA and triggers the binding of Cdc6 and Cdt1. These two factors recruit a putative replicative helicase and the MCM2-7. The MCM2-7 complex promotes the unwinding of DNA origins, and the binding of additional factors to initiate the DNA replication in S-phase. Cdt1 is present during G1 and early S phase of the cell cycle and is degraded during the late S, G2, and M phases. The winged helix fold structure of Cdt1_m is similar to the structures of Cdt1_c and archaeal homologues of the eukaryotic replication initiator, without apparent sequence similarity. 126 -176573 cd08768 Cdc6_C Winged-helix domain of essential DNA replication protein Cell division control protein (Cdc6), which mediates DNA binding. This model characterizes the winged-helix, C-terminal domain of the Cell division control protein (Cdc6_C). Cdc6 (also known as Cell division cycle 6 or Cdc18) functions as a regulator at the early stages of DNA replication, by helping to recruit and load the Minichromosome Maintenance Complex (MCM) onto DNA and may have additional roles in the control of mitotic entry. Precise duplication of chromosomal DNA is required for genomic stability during replication. Cdc6 has an essential role in DNA replication and irregular expression of Cdc6 may lead to genomic instability. Cdc6 over-expression is observed in many cancerous lesions. DNA replication begins when an origin recognition complex (ORC) binds to a replication origin site on the chromatin. Studies indicate that Cdc6 interacts with ORC through the Orc1 subunit, and that this association increases the specificity of the ORC-origins interaction. Further studies suggest that hydrolysis of Cdc6-bound ATP promotes the association of the replication licensing factor Cdt1 with origins through an interaction with Orc6 and this in turn promotes the loading of MCM2-7 helicase onto chromatin. The MCM2-7 complex promotes the unwinding of DNA origins, and the binding of additional factors to initiate the DNA replication. S-Cdk (S-phase cyclin and cyclin-dependent kinase complex) prevents rereplication by causing the Cdc6 protein to dissociate from ORC and prevents the Cdc6 and MCM proteins from reassembling at any origin. By phosphorylating Cdc6, S-Cdk also triggers Cdc6's ubiquitination. The Cdc6 protein is composed of three domains, an N-terminal AAA+ domain with Walker A and B, and Sensor-1 and -2 motifs. The central region contains a conserved nucleotide binding/ATPase domain and is a member of the ATPase superfamily. The C-terminal domain (Cdc6_C) is a conserved winged-helix domain that possibly mediates protein-protein interactions or direct DNA interactions. Cdc6 is conserved in eukaryotes, and related genes are found in Archaea. The winged helix fold structure of Cdc6_C is similar to the structures of other eukaryotic replication initiators without apparent sequence similarity. 87 -176451 cd08769 DAP_dppA_2 Peptidase M55, D-aminopeptidase dipeptide-binding protein family. M55 Peptidase, D-Aminopeptidase dipeptide-binding protein (dppA; DAP dppA; EC 3.4.11.-) domain: Peptide transport systems are found in many bacterial species and generally function to accumulate intact peptides in the cell, where they are hydrolyzed. The dipeptide-binding protein (dppA) of Bacillus subtilis belongs to the dipeptide ABC transport (dpp) operon expressed early during sporulation. It is a binuclear zinc-dependent, D-specific aminopeptidase. The biologically active enzyme is a homodecamer with active sites buried in its channel. These self-compartmentalizing proteases are characterized by a SXDXEG motif. D-Ala-D-Ala and D-Ala-Gly-Gly are the preferred substrates. Bacillus subtilis dppA is thought to function as an adaptation to nutrient deficiency; hydrolysis of its substrate releases D-Ala which can be used subsequently as metabolic fuel. This family also contains a number of uncharacterized putative peptidases. 270 -176452 cd08770 DAP_dppA_3 Peptidase M55, D-aminopeptidase dipeptide-binding protein family. M55 Peptidase, D-Aminopeptidase dipeptide-binding protein (dppA; DAP dppA; EC 3.4.11.-) domain: Peptide transport systems are found in many bacterial species and generally function to accumulate intact peptides in the cell, where they are hydrolyzed. The dipeptide-binding protein (dppA) of Bacillus subtilis belongs to the dipeptide ABC transport (dpp) operon expressed early during sporulation. It is a binuclear zinc-dependent, D-specific aminopeptidase. The biologically active enzyme is a homodecamer with active sites buried in its channel. These self-compartmentalizing proteases are characterized by a SXDXEG motif. D-Ala-D-Ala and D-Ala-Gly-Gly are the preferred substrates. Bacillus subtilis dppA is thought to function as an adaptation to nutrient deficiency; hydrolysis of its substrate releases D-Ala which can be used subsequently as metabolic fuel. This family also contains a number of uncharacterized putative peptidases. 263 -206738 cd08771 DLP_1 Dynamin_like protein family includes dynamins and Mx proteins. The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes interferon-induced Mx proteins that inhibit a wide range of viruses by blocking an early stage of the replication cycle. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. 278 -350091 cd08772 GH43_62_32_68_117_130 Glycosyl hydrolase families: GH43, GH62, GH32, GH68, GH117, CH130. Members of the glycosyl hydrolase families 32, 43, 62, 68, 117 and 130 (GH32, GH43, GH62, GH68, GH117, GH130) all possess 5-bladed beta-propeller domains and comprise clans F and J, as classified by the carbohydrate-active enzymes database (CAZY). Clan F consists of families GH43 and GH62. GH43 includes beta-xylosidases (EC 3.2.1.37), beta-xylanases (EC 3.2.1.8), alpha-L-arabinases (EC 3.2.1.99), and alpha-L-arabinofuranosidases (EC 3.2.1.55), using aryl-glycosides as substrates, while family GH62 contains alpha-L-arabinofuranosidases (EC 3.2.1.55) that specifically cleave either alpha-1,2 or alpha-1,3-L-arabinofuranose sidechains from xylans. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Clan J consists of families GH32 and GH68. GH32 comprises sucrose-6-phosphate hydrolases, invertases (EC 3.2.1.26), inulinases (EC 3.2.1.7), levanases (EC 3.2.1.65), eukaryotic fructosyltransferases, and bacterial fructanotransferases while GH68 consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10); beta-fructofuranosidase (EC 3.2.1.26); inulosucrase (EC 2.4.1.9), while GH68 consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10); beta-fructofuranosidase (EC 3.2.1.26); inulosucrase (EC 2.4.1.9), all of which use sucrose as their preferential donor substrate. Members of this clan are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) that catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Structures of all families in the two clans manifest a funnel-shaped active site that comprises two subsites with a single route for access by ligands. Also included in this superfamily are GH117 enzymes that have exo-alpha-1,3-(3,6-anhydro)-l-galactosidase activity, removing terminal non-reducing alpha-1,3-linked 3,6-anhydro-l-galactose residues from their neoagarose substrate, and GH130 that are phosphorylases and hydrolases for beta-mannosides, involved in the bacterial utilization of mannans or N-linked glycans. 257 -176798 cd08773 FpgNei_N N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. These enzymes initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycolsylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. The FpgNei DNA glycosylases represent one of the two structural superfamilies of DNA glycosylases that recognize oxidized bases (the other is the HTH-GPD superfamily exemplified by Escherichia coli Nth). Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. One exception is mouse Nei-like glycosylase 3 (Neil3) which forms a Schiff base intermediate via its N-terminal valine. In addition to this FpgNei_N domain, FpgNei proteins have a helix-two-turn-helix (H2TH) domain and a zinc (or zincless)-finger motif which also contribute residues to the active site. FpgNei DNA glycosylases have a broad substrate specificity. They are bifunctional, in addition to the glycosylase (recognition) activity, they have a lyase (cleaving) activity on the phosphodiester backbone of the DNA at the AP site. This superfamily includes eukaryotic, bacterial, and viral proteins. 117 -206755 cd08774 14-3-3 14-3-3 domain. 14-3-3 domain is an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 14-3-3 proteins play important roles in many biological processes that are regulated by phosphorylation, including cell cycle regulation, cell proliferation, protein trafficking, metabolic regulation and apoptosis. More than 300 binding partners of the 14-3-3 domain have been identified in all subcellular compartments and include transcription factors, signaling molecules, tumor suppressors, biosynthetic enzymes, cytoskeletal proteins and apoptosis factors. 14-3-3 binding can alter the conformation, localization, stability, phosphorylation state, activity as well as molecular interactions of a target protein. They function only as dimers, some preferring strictly homodimeric interaction, while others form heterodimers. Binding of the 14-3-3 domain to its target occurs in a phosphospecific manner where it binds to one of two consensus sequences of their target proteins; RSXpSXP (mode-1) and RXXXpSXP (mode-2). In some instances, 14-3-3 domain containing proteins are involved in regulation and signaling of a number of cellular processes in phosphorylation-independent manner. Many organisms express multiple isoforms: there are seven mammalian 14-3-3 family members (beta, gamma, eta, theta, epsilon, sigma, zeta), each encoded by a distinct gene, while plants contain up to 13 isoforms. The flexible C-terminal segment of 14-3-3 isoforms shows the highest sequence variability and may significantly contribute to individual isoform uniqueness by playing an important regulatory role by occupying the ligand binding groove and blocking the binding of inappropriate ligands in a distinct manner. Elevated amounts of 14-3-3 proteins are found in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. In protozoa, like Plasmodium or Cryptosporidium parvum 14-3-3 proteins play an important role in key steps of parasite development. 225 -176753 cd08775 DED_Caspase-like_r2 Death effector domain, repeat 2, of initator caspase-like proteins. Death Effector Domain (DED), second repeat, found in initator caspase-like proteins like caspase-8, -10 and c-FLIP. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 and -10 are the initiators of death receptor mediated apoptosis. Together with FADD and the pseudo-caspase c-FLIP, they form the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 and -10 also play important functions in cell adhesion and motility. c-FLIP is a catalytically inactive homolog of the initator procaspases-8 and -10. It negatively influences apoptotic signaling by interfering with the efficient formation of DISC. All members contain two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 81 -176754 cd08776 DED_Caspase-like_r1 Death effector domain, repeat 1, of initator caspase-like proteins. Death Effector Domain (DED), first repeat, found in initator caspase-like proteins, like caspase-8 and -10 and c-FLIP. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 and -10 are the initiators of death receptor mediated apoptosis. Together with FADD and the pseudo-caspase c-FLIP, they form the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 and -10 also play important functions in cell adhesion and motility. c-FLIP is a catalytically inactive homolog of the initator procaspases-8 and -10. It negatively influences apoptotic signaling by interfering with the efficient formation of DISC. All members contain two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 71 -260048 cd08777 Death_RIP1 Death Domain of Receptor-Interacting Protein 1. Death domain (DD) found in Receptor-Interacting Protein 1 (RIP1) and related proteins. RIP kinases serve as essential sensors of cellular stress. Vertebrates contain several types containing a homologous N-terminal kinase domain and varying C-terminal domains. RIP1 harbors a C-terminal DD, which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accumulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -176756 cd08778 Death_TNFRSF21 Death domain of tumor necrosis factor receptor superfamily member 21. Death domain (DD) found in tumor necrosis factor receptor superfamily member 21 (TNFRSF21), also called death receptor-6, DR6. DR6 is an orphan receptor that is expressed ubiquitously, but shows high expression in lymphoid organs, heart, brain and pancreas. Results from DR6(-/-) mice indicate that DR6 plays an important regulatory role for the generation of adaptive immunity. It may also be involved in tumor cell survival and immune evasion. In neuronal cells, it binds beta-amyloid precursor protein (APP) and activates caspase-dependent cell death. It may contribute to the pathogenesis of Alzheimer's disease. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260049 cd08779 Death_PIDD Death Domain of p53-induced protein with a death domain. Death domain (DD) found in PIDD (p53-induced protein with a death domain) and similar proteins. PIDD is a component of the PIDDosome complex, which is an oligomeric caspase-activating complex involved in caspase-2 activation and plays a role in mediating stress-induced apoptosis. The PIDDosome complex is composed of three components, PIDD, RAIDD and caspase-2, which interact through their DDs and DD-like domains. The DD of PIDD interacts with the DD of RAIDD, which also contains a Caspase Activation and Recruitment Domain (CARD) that interacts with the caspase-2 CARD. Autoproteolysis of PIDD determines the downstream signaling event, between pro-survival NF-kB or pro-death caspase-2 activation. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD, DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260050 cd08780 Death_TRADD Death Domain of Tumor Necrosis Factor Receptor 1-Associated Death Domain protein. Death domain (DD) of TRADD (TNF Receptor 1-Associated Death Domain or TNFRSF1A-associated via death domain) protein. TRADD is a central signaling adaptor for TNF-receptor 1 (TNFR1), mediating activation of Nuclear Factor -kappaB (NF-kB) and c-Jun N-terminal kinase (JNK), as well as caspase-dependent apoptosis. It also carries important immunological roles including germinal center formation, DR3-mediated T-cell stimulation, and TNFalpha-mediated inflammatory responses. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 90 -260051 cd08781 Death_UNC5-like Death domain found in Uncoordinated-5 homolog family. Death Domain (DD) found in Uncoordinated-5 (UNC-5) homolog family, which includes Unc5A, B, C and D in vertebrates. UNC5 proteins are receptors for secreted netrins (netrin-1, -3 and -4) that are involved in diverse processes like axonal guidance, neuronal migration, blood vessel patterning, and apoptosis. They are transmembrane proteins with an extracellular domain consisting of two immunoglobulin repeats, two thrombospondin type-I modules and an intracellular region containing a ZU-5 domain, UPA domain and a DD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -260052 cd08782 Death_DAPK1 Death domain found in death-associated protein kinase 1. Death domain (DD) found in death-associated protein kinase 1 (DAPK1). DAPK1 is composed of several functional domains, including a kinase domain, a CaM regulatory domain, ankyrin repeats, a cytoskeletal-binding domain and a C-terminal DD. It plays important roles in a diverse range of signal transduction pathways including apoptosis, growth factor signalling, and autophagy. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 82 -260053 cd08783 Death_MALT1 Death domain similar to that found in Mucosa-associated lymphoid tissue-lymphoma-translocation gene 1. Death domain (DD) similar to that found in Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1). Malt1, together with Bcl10 (B-cell lymphoma 10), are the integral components of the CBM signalosome. They associate with CARD9 to form M-CBM (CBM complex in myeloid immune cells) and with CARMA1 to form L-CBM (CBM complex in lymphoid immune cells), to mediate activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 96 -260054 cd08784 Death_DRs Death Domain of Death Receptors. Death domain (DD) found in death receptor proteins. Death receptors are members of the tumor necrosis factor (TNF) receptor superfamily, characterized by having a cytoplasmic DD. Known members of the family are Fas (CD95/APO-1), TNF-receptor 1 (TNFR1/TNFRSF1A/p55/CD120a), TNF-related apoptosis-inducing ligand receptor 1 (TRAIL-R1 /DR4), and receptor 2 (TRAIL-R2/DR5/APO-2/KILLER), as well as Death Receptor 3 (DR3/APO-3/TRAMP/WSL-1/LARD). They are involved in apoptosis signaling pathways. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 80 -260055 cd08785 CARD_CARD9-like Caspase activation and recruitment domain of CARD9 and related proteins. Caspase activation and recruitment domain (CARD) found in CARD9, CARD14 (CARMA2), CARD10 (CARMA3), CARD11 (CARMA1) and BCL10. BCL10 (B-cell lymphoma 10), together with Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1), are integral components of the CBM signalosome. They associate with CARD9 to form M-CBM (CBM complex in myeloid immune cells), and with CARD11 to form L-CBM (CBM complex in lymphoid immune cells), which mediates activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. BCL10/Malt1 also associates with CARD10, which is more widely expressed and is not restricted to hematopoietic cells, to play a role in GPCR-induced NF-kB activation. CARD14 has also been shown to associate with BCL10. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -176764 cd08786 CARD_RIP2_CARD3 Caspase activation and recruitment domain of Receptor Interacting Protein 2. Caspase activation and recruitment domain (CARD) of Receptor Interacting Protein 2 (RIP2/RIPK2/RICK/CARDIAK/CARD3). RIP kinases serve as essential sensors of cellular stress. Vertebrates contain several types containing a homologous N-terminal kinase domain and varying C-terminal domains. RIP2 harbors a C-terminal CARD domain and functions as an effector kinase downstream of the pattern recognition receptors from the Nod-like (NLR)-family, NOD1 and NOD2, which recognizes bacterial peptidoglycans released upon infection. This cascade is implicated in inflammatory immune responses and the clearance of intracellular pathogens. RIP2 associates with NOD1 and NOD2 via CARD-CARD interactions. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 87 -176765 cd08787 CARD_NOD2_1_CARD15 Caspase activation and recruitment domain of NOD2, repeat 1. Caspase activation and recruitment domain (CARD) similar to that found in human NOD2 (CARD15), repeat 1. NOD2 is a member of the Nod-like receptor (NLR) family, which plays a central role in the innate immune response. NLRs typically contain an N-terminal effector domain, a central nucleotide-binding domain and a C-terminal ligand-binding region of several leucine-rich repeats (LRRs). In NOD2, as well as NOD1, the N-terminal effector domain is a CARD. NOD2 contains two N-terminal CARD repeats. Mutations in NOD2 have been associated with Crohns disease and Blau syndrome. Nod2-CARDs have been shown to interact with the CARD domain of the downstream effector RICK (RIP2, CARDIAK), a serine/threonine kinase. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 87 -260056 cd08788 CARD_NOD2_2_CARD15 Caspase activation and recruitment domain of NOD2, repeat 2. Caspase activation and recruitment domain (CARD) similar to that found in human NOD2 (CARD15), repeat 2. NOD2 is a member of the Nod-like receptor (NLR) family, which plays a central role in the innate immune response. NLRs typically contain an N-terminal effector domain, a central nucleotide-binding domain and a C-terminal ligand-binding region of several leucine-rich repeats (LRRs). In NOD2, as well as NOD1, the N-terminal effector domain is a CARD. NOD2 contains two N-terminal CARD repeats. Mutations in NOD2 have been associated with Crohns disease and Blau syndrome. Nod2-CARDs have been shown to interact with the CARD domain of the downstream effector RICK (RIP2, CARDIAK), a serine/threonine kinase. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 81 -260057 cd08789 CARD_IPS-1_RIG-I Caspase activation and recruitment domains (CARDs) found in IPS-1 and RIG-I-like RNA helicases. Caspase activation and recruitment domains (CARDs) found in IPS-1 (Interferon beta promoter stimulator protein 1) and Retinoic acid Inducible Gene I (RIG-I)-like DEAD box helicases. RIG-I-like helicases and IPS-1 play important roles in the induction of interferons in response to viral infection. They are crucial in triggering innate immunity and in developing adaptive immunity against viral pathogens. RIG-I-like helicases, including MDA5 and RIG-I, contain two N-terminal CARD domains and a C-terminal DEAD box RNA helicase domain. They are cytoplasmic RNA helicases that play an important role in host antiviral response by sensing incoming viral RNA. Upon activation, the signal is transferred to downstream pathways via the adaptor molecule IPS-1 (MAVS, VISA, CARDIF), leading to the induction of type I interferons. MDA5 and RIG-I associate with IPS-1 through a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 91 -260058 cd08790 DED_DEDD Death Effector Domain of DEDD. Death Effector Domain (DED) found in DEDD. DEDD has been shown to block mitotic progression by inhibiting Cdk1 and to be involved in regulating the insulin signaling cascade. DEDD can bind to itself, to DEDD2, and to the two tandem DED-containing caspases, caspase-8 and -10. In general, DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 97 -176769 cd08791 DED_DEDD2 Death Effector Domain of DEDD2. Death Effector Domain (DED) found in DEDD2. DEDD2 has been shown to bind to itself, DEDD, and to the two tandem DED-containing caspases, caspase-8 and -10. It may play a role in apoptosis. In general, DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. In mammals, they are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways. 106 -260059 cd08792 DED_Caspase_8_10_r1 Death effector domain, repeat 1, of initator caspases 8 and 10. Death Effector Domain (DED) found in caspase-8 and caspase-10, repeat 1. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 and -10 are the initiators of death receptor mediated apoptosis, and they play partially redundant roles. Together with FADD and the pseudo-caspase c-FLIP, they form the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 and -10 also play important functions in cell adhesion and motility. They contain two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 77 -260060 cd08793 Death_IRAK4 Death domain of Interleukin-1 Receptor-Associated Kinase 4. Death Domain (DD) of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). IRAKs are essential components of innate immunity and inflammation in mammals and other vertebrates. They are involved in signal transduction pathways involving IL-1 and IL-18 receptors, Toll-like receptors, nuclear factor-kappaB, and mitogen-activated protein kinases. IRAKs contain an N-terminal DD domain and a C-terminal kinase domain. IRAK4 is an active kinase that is also involved in T-cell receptor signaling pathways, implying that it may function in acquired immunity and not just in innate immunity. It is known as the master IRAK member because its absence strongly impairs TLR- and IL-1-mediated signaling and innate immune defenses, while the absence of other IRAK proteins only shows slight effects. IRAK4-deficient patients have impaired inflammatory responses and recurrent life-threatening infections. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 100 -260061 cd08794 Death_IRAK1 Death domain of Interleukin 1 Receptor Associated Kinase-1. Death Domain (DD) of Interleukin-1 Receptor-Associated Kinase 1 (IRAK1). IRAKs are essential components of innate immunity and inflammation in mammals and other vertebrates. They are involved in signal transduction pathways involving IL-1 and IL-18 receptors, Toll-like receptors, nuclear factor-kappaB (NF-kB), and mitogen-activated protein kinases (MAPKs). IRAKs contain an N-terminal DD domain and a C-terminal kinase domain. IRAK1 is an active kinase and also plays adaptor functions. It binds to the MyD88-IRAK4 complex via its DD, which facilitates its phosphorylation by IRAK4, activating it for further auto-phosphorylation. Hyper-phosphorylated IRAK1 forms a cytosolic complex with TRAF6, leading to the activation of NF-kB and MAPK pathways. IRAK1 is involved in autoimmunity and may be associated with lupus pathogenesis. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -176773 cd08795 Death_IRAK2 Death domain of Interleukin 1 Receptor Associated Kinase-2. Death Domain (DD) of Interleukin-1 Receptor-Associated Kinase 1 (IRAK1). IRAKs are essential components of innate immunity and inflammation in mammals and other vertebrates. They are involved in signal transduction pathways involving IL-1 and IL-18 receptors, Toll-like receptors (TLRs), nuclear factor-kappaB (NF-kB), and mitogen-activated protein kinases (MAPKs). IRAKs contain an N-terminal DD domain and a C-terminal kinase domain. IRAK2 is an essential component of several signaling pathways, including NF-kappaB and the IL-1 signaling pathways. It is an inactive kinase that participates in septic shock mediated by TLR4 and TLR9. It plays a redundant role with IRAK1 in early NF-kB and MAPK responses, and remains present at later stages whereas IRAK1 disappears. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 88 -260062 cd08796 Death_IRAK-M Death domain of Interleukin 1 Receptor Associated Kinase-M. Death Domain (DD) of Interleukin-1 Receptor-Associated Kinase M (IRAK-M). IRAKs are essential components of innate immunity and inflammation in mammals and other vertebrates. They are involved in signal transduction pathways involving IL-1 and IL-18 receptors, Toll-like receptors(TLRs), nuclear factor-kappaB (NF-kB), and mitogen-activated protein kinases (MAPKs). IRAKs contain an N-terminal DD domain and a C-terminal kinase domain. IRAK-M, also called IRAK-3, is an inactive kinase present only in macrophages in an inducible manner. It is a negative regulator of TLR signaling and it contributes to the attenuation of NF-kB activation. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 89 -260063 cd08797 Death_NFkB1_p105 Death domain of the Nuclear Factor-KappaB1 precursor protein p105. Death Domain (DD) of the Nuclear Factor-KappaB1 (NF-kB1) precursor protein p105. The NF-kB family of transcription factors play a central role in cardiovascular growth, stress response, and inflammation by controlling the expression of a network of different genes. There are five NF-kB proteins, all containing an N-terminal REL Homology Domain (RHD). NF-kB1 (or p50) is produced from the processing of the precursor protein p105, which contains ANK repeats and a C-terminal DD in addition to the RHD. It is regulated by the classical (or canonical) NF-kB pathway. In the cytosol, p50 forms an inactive complex with RelA (or p65) and the Inhibitor of NF-kB (IkB). Activation is triggered by the phosphorylation and degradation of IkB, resulting in the active DNA-binding p50-RelA dimer to migrate to the nucleus. The classical pathway regulates the majority of genes activated by NF-kB including those encoding cytokines, chemokines, leukocyte adhesion molecules, and anti-apoptotic factors. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 76 -176776 cd08798 Death_NFkB2_p100 Death domain of the Nuclear Factor-KappaB2 precursor protein p100. Death Domain (DD) of the Nuclear Factor-KappaB2 (NF-kB2) precursor protein p100. The NF-kB family of transcription factors play a central role in cardiovascular growth, stress response, and inflammation by controlling the expression of a network of different genes. There are five NF-kB proteins, all containing an N-terminal REL Homology Domain (RHD). NF-kB2 (or p52) is produced from the processing of the precursor protein p100, which contains ANK repeats and a C-terminal DD in addition to the RHD. It is regulated by the non-canonical NF-kB pathway. The p100 precursor is cytosolic and interacts with RelB. Upon phosphorylation by IKKalpha, p100 is processed to its 52kDa active, DNA-binding form and the p52/RelB complex is translocated into the nucleus. The non-canonical pathway plays a role in adaptive immunity and lymphorganogenesis. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 76 -260064 cd08799 Death_UNC5C Death domain found in Uncoordinated-5C. Death Domain (DD) found in Uncoordinated-5C (UNC5C). UNC5C is part of the UNC-5 homolog family. It is a receptor for the secreted netrin-1 and plays a role in axonal guidance, angiogenesis, and apoptosis. UNC5C plays a critical role in the development of spinal accessory motor neurons. Methylation of the UNC5C gene is associated with early stages of colorectal carcinogenesis. UNC5 proteins are transmembrane proteins with an extracellular domain consisting of two immunoglobulin repeats, two thrombospondin type-I modules and an intracellular region containing a ZU-5 domain, UPA domain and a DD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -260065 cd08800 Death_UNC5A Death domain found in Uncoordinated-5A. Death Domain (DD) found in Uncoordinated-5A (UNC5A). UNC5A is part of the UNC-5 homolog family. It is a receptor for the secreted netrin-1 and plays a critical role in neuronal development and differentiation, as well as axon-guidance. It also plays a role in regulating apoptosis in non-neuronal cells as a downstream target of p53. UNC5 proteins are transmembrane proteins with an extracellular domain consisting of two immunoglobulin repeats, two thrombospondin type-I modules and an intracellular region containing a ZU-5 domain, UPA domain and a DD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -176779 cd08801 Death_UNC5D Death domain found in Uncoordinated-5D. Death Domain (DD) found in Uncoordinated-5D (UNC5D). UNC5D is part of the UNC-5 homolog family. It is a receptor for the secreted netrin-1 and plays a role in axonal guidance, angiogenesis, and apoptosis. UNC5 proteins are transmembrane proteins with an extracellular domain consisting of two immunoglobulin repeats, two thrombospondin type-I modules and an intracellular region containing a ZU-5 domain, UPA domain and a DD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 98 -176780 cd08802 Death_UNC5B Death domain found in Uncoordinated-5B. Death Domain (DD) found in Uncoordinated-5B (UNC5B). UNC5B is part of the UNC-5 homolog family. It is a receptor for the secreted netrin-1 and plays a role in axonal guidance, angiogenesis, and apoptosis. UNC5B signaling is involved in the netrin-1-induced proliferation and migration of renal proximal tubular cells. It is also required for vascular patterning during embryonic development, and its activation inhibits sprouting angiogenesis. UNC5 proteins are transmembrane proteins with an extracellular domain consisting of two immunoglobulin repeats, two thrombospondin type-I modules and an intracellular region containing a ZU-5 domain, UPA domain and a DD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -176781 cd08803 Death_ank3 Death domain of Ankyrin-3. Death Domain (DD) of the human protein ankyrin-3 (ANK-3) and related proteins. Ankyrins are modular proteins comprising three conserved domains, an N-terminal membrane-binding domain containing ANK repeats, a spectrin-binding domain and a C-terminal DD. ANK-3, also called anykyrin-G (for general or giant), is found in neurons and at least one splice variant has been shown to be essential for propagation of action potentials as a binding partner to neurofascin and voltage-gated sodium channels. It is required for maintaining axo-dendritic polarity, and may be a genetic risk factor associated with bipolar disorder. ANK-3 may also play roles in other cell types. Mutations affecting ANK-3 pathways for Na channel localization are associated with Brugada syndrome, a potentially fatal arrythmia. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260066 cd08804 Death_ank2 Death domain of Ankyrin-2. Death Domain (DD) of Ankyrin-2 (ANK-2) and related proteins. Ankyrins are modular proteins comprising three conserved domains, an N-terminal membrane-binding domain containing ANK repeats, a spectrin-binding domain and a C-terminal DD. ANK-2, also called ankyrin-B (for broadly expressed), is required for proper function of the Na/Ca ion exchanger-1 in cardiomyocytes, and is thought to function in linking integral membrane proteins to the underlying cytoskeleton. Human ANK-2 is associated with "Ankyrin-B syndrome", an atypical arrythmia disorder with risk of sudden cardiac death. It also plays key roles in the brain and striated muscle. Loss of ANK-2 is associated with significant nervous system defects and sarcomere disorganization. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260067 cd08805 Death_ank1 Death domain of Ankyrin-1. Death Domain (DD) of the human protein ankyrin-1 (ANK-1) and related proteins. Ankyrins are modular proteins comprising three conserved domains, an N-terminal membrane-binding domain containing ANK repeats, a spectrin-binding domain and a C-terminal DD. ANK-1, also called ankyrin-R (for restricted), is found in brain, muscle, and erythrocytes and is thought to function in linking integral membrane proteins to the underlying cytoskeleton. It plays a critical nonredundant role in erythroid development and is associated with hereditary spherocytosis (HS), a common disorder of the red cell membrane. The small alternatively-spliced variant, sANK-1, found in striated muscle and concentrated in the sarcoplasmic reticulum (SR) binds obscurin and titin, which facilitates the anchoring of the network SR to the contractile apparatus. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 84 -260068 cd08806 CARD_CARD14_CARMA2 Caspase activation and recruitment domain of CARD14-like proteins. Caspase activation and recruitment domain (CARD) similar to that found in CARD14, also known as BIMP2 or CARMA2 (caspase recruitment domain-containing membrane-associated guanylate kinase protein 2). CARD14 has been identified as a novel member of the MAGUK (membrane-associated guanylate kinase) family that functions as upstream activators of BCL10 (B-cell lymphoma 10) and NF-kB signaling. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260069 cd08807 CARD_CARD10_CARMA3 Caspase activation and recruitment domain of CARD10-like proteins. Caspase activation and recruitment domain (CARD) similar to that found in CARD10, also known as CARMA3 (caspase recruitment domain-containing membrane-associated guanylate kinase protein 3) or BIMP1. The CARMA3-BCL10-MALT1 signalosome plays a role in the GPCR-induced NF-kB activation. CARMA3 is more widely expressed than CARMA1, which is found only in hematopoietic cells. In endothelial and smooth muscle cells, CARMA3-mediated NF-kB activation induces pro-inflammatory signals within the vasculature and is a key factor in atherogenesis. In bronchial epithelial cells, CARMA3-mediated NF-kB signaling is important for the development of allergic airway inflammation. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260070 cd08808 CARD_CARD11_CARMA1 Caspase activation and recruitment domain of CARD11-like proteins. Caspase activation and recruitment domain (CARD) similar to that found in CARD11, also known as caspase recruitment domain-containing membrane-associated guanylate kinase protein 1 (CARMA1). CARMA1, together with BCL10 (B-cell lymphoma 10) and Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1), form the L-CBM signalosome (CBM complex in lymphoid immune cells) which mediates activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. CARMA1 associates with BCL10 via a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260071 cd08809 CARD_CARD9 Caspase activation and recruitment domain of CARD9-like proteins. Caspase activation and recruitment domain (CARD) similar to that found in CARD9. CARD9 is a central regulator of innate immunity and is highly expressed in dendritic cells and macrophages. Together with BCL10 (B-cell lymphoma 10) and Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1), it forms the M-CBM signalosome (the CBM complex in myeloid immune cells), which mediates activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. CARD9 associates with BCL10 via a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -260072 cd08810 CARD_BCL10 Caspase activation and recruitment domain of B-cell lymphoma 10. Caspase activation and recruitment domain (CARD) similar to that found in BCL10 (B-cell lymphoma 10). BCL10 and Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1) are the integral components of CBM signalosomes. They associate with CARD9 to form M-CBM (CBM complex in myeloid immune cells) and with CARMA1 to form L-CBM (CBM complex in lymphoid immune cells), to mediate activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. Both CARMA1 and CARD9 associate with BCL10 via a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 85 -260073 cd08811 CARD_IPS1 Caspase activation and recruitment domain (CARD) found in IPS-1. Caspase activation and recruitment domain (CARD) found in IPS-1 (Interferon beta promoter stimulator protein 1), also known as CARDIF, VISA or MAVS. IPS-1 is an adaptor protein that plays an important role in interferon induction in response to viral infection. It is crucial in triggering innate immunity and in developing adaptive immunity against viral pathogens. The CARD of IPS-1 associates with the CARDs of two RNA helicases, RIG-I and MDA5, which bind viral DNA in the cytoplasm during the initial stage of intracellular antiviral response, leading to the induction of type I interferons. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 92 -176791 cd08813 DED_Caspase_8_r2 Death Effector Domain, repeat 2, of Caspase-8. Death effector domain (DED) found in caspase-8 (CASP8, FLICE), repeat 2. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-8 is an initiator of death receptor mediated apoptosis. Together with FADD, caspase-10, and the pseudo-caspase c-FLIP, it forms the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. Caspase-8 also plays many important non-apoptotic functions including roles in embryonic development, cell adhesion and motility, immune cell proliferation and differentiation, T-cell activation, and NFkappaB signaling. It contains two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 83 -260074 cd08814 DED_Caspase_10_r2 Death Effector Domain, repeat 2, of Caspase-10. Death effector domain (DED) found in Caspase-10, repeat 2. Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-10 is an initiator of death receptor mediated apoptosis. Together with FADD, caspase-8 and the pseudo-caspase c-FLIP, it forms the death-inducing signaling complex (DISC), whose formation is triggered by the activation of type 1 tumor necrosis factor (TNF) receptors such as Fas, TNF receptor 1, and TRAIL receptor. It contains two N-terminal DED domains and a C-terminal caspase domain. DEDs comprise a subfamily of the Death Domain (DD) superfamily. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and CARD (Caspase activation and recruitment domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 79 -176793 cd08815 Death_TNFRSF25_DR3 Death domain of Tumor Necrosis Factor Receptor superfamily 25. Death Domain (DD) found in Tumor Necrosis Factor (TNF) receptor superfamily 25 (TNFRSF25), also known as TRAMP (TNF receptor-related apoptosis-mediating protein), LARD, APO-3, WSL-1, or DR3 (Death Receptor-3). TNFRSF25 is primarily expressed in T cells, is activated by binding to its ligand TL1A, and plays an important role in T-cell function. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 77 -260075 cd08816 CARD_RIG-I_r1 Caspase activation and recruitment domain found in RIG-I, first repeat. Caspase activation and recruitment domain (CARD) found in RIG-I (Retinoic acid Inducible Gene I, also known as Ddx58), first repeat. RIG-I is a cytoplasmic RNA helicase that plays an important role in host antiviral response by sensing incoming viral RNA. RIG-I contains two N-terminal CARD domains and a C-terminal RNA helicase. Upon activation, the signal is transferred to downstream pathways via the adaptor molecule IPS-1 (MAVS, VISA, CARDIF), leading to the induction of type I interferons. Although very similar in sequence, RIG-I recognizes different sets of viruses compared to MDA5, a related RNA helicase. RIG-I associates with IPS-1 through a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 90 -260076 cd08817 CARD_RIG-I_r2 Caspase activation and recruitment domain found in RIG-I, second repeat. Caspase activation and recruitment domain (CARD) found in RIG-I (Retinoic acid Inducible Gene I, also known as Ddx58), second repeat. RIG-I is a cytoplasmic RNA helicase that plays an important role in host antiviral response by sensing incoming viral RNA. RIG-I contains two N-terminal CARD domains and a C-terminal RNA helicase. Upon activation, the signal is transferred to downstream pathways via the adaptor molecule IPS-1 (MAVS, VISA, CARDIF), leading to the induction of type I interferons. Although very similar in sequence, RIG-I recognizes different sets of viruses compared to MDA5, a related RNA helicase. RIG-I associates with IPS-1 through a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 91 -260077 cd08818 CARD_MDA5_r1 Caspase activation and recruitment domain found in MDA5, first repeat. Caspase activation and recruitment domain (CARD) found in MDA5 (melanoma-differentiation-associated gene 5), first repeat. MDA5, also known as IFIH1, contains two N-terminal CARD domains and a C-terminal RNA helicase domain. MDA5 is a cytoplasmic DEAD box RNA helicase that plays an important role in host antiviral response by sensing incoming viral RNA. Upon activation, the signal is transferred to downstream pathways via the adaptor molecule IPS-1 (MAVS, VISA, CARDIF), leading to the induction of type I interferons. Although very similar in sequence, MDA5 recognizes different sets of viruses compared to RIG-I, a related RNA helicase. MDA5 associates with IPS-1 through a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 92 -260078 cd08819 CARD_MDA5_r2 Caspase activation and recruitment domain found in MDA5, second repeat. Caspase activation and recruitment domain (CARD) found in MDA5 (melanoma-differentiation-associated gene 5), second repeat. MDA5, also known as IFIH1, contains two N-terminal CARD domains and a C-terminal RNA helicase domain. MDA5 is a cytoplasmic DEAD box RNA helicase that plays an important role in host antiviral response by sensing incoming viral RNA. Upon activation, the signal is transferred to downstream pathways via the adaptor molecule IPS-1 (MAVS, VISA, CARDIF), leading to the induction of type I interferons. Although very similar in sequence, MDA5 recognizes different sets of viruses compared to RIG-I, a related RNA helicase. MDA5 associates with IPS-1 through a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 92 -187722 cd08820 FMT_core_like_6 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 173 -187723 cd08821 FMT_core_like_1 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 211 -187724 cd08822 FMT_core_like_2 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 192 -187725 cd08823 FMT_core_like_5 Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. 177 -193585 cd08824 LOTUS LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. LOTUS is an uncharacterized small globular domain found in Limkain b1, Oskar and Tudor-containing proteins 5 and 7. The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation. Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 70 -259807 cd08825 MVP_shoulder Shoulder domain of the major vault protein. The major vault protein is the major polypeptide component of a large cellular ribonuclear protein complex found in the cytoplasm of eukaryotic cells. Its shoulder domain appears to be a homolog of the SPFH core domain. Vault proteins may be involved in detoxification processes, and have been associated with the multi-drug resistance (MDR) phenotype in malignancies. Presumably they play a role in transport processes. 151 -259808 cd08826 SPFH_eoslipins_u1 Uncharacterized prokaryotic subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in bacteria and archaebacteria. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Bacterial and archaebacterial SLPs remain uncharacterized. This subgroup contains PH1511 from the hyperthermophilic archaeon Pyrococcus horikoshi. 178 -259809 cd08827 SPFH_podocin Podocin, a subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in vertebrates. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Podocin is expressed in the kidney and mutations in the gene have been linked to familial idiopathic nephrotic syndrome. Podocin interacts with the TRP ion channel TRPV-6 and may function as a scaffolding protein in the organization of lipid-protein domains. 223 -259810 cd08828 SPFH_SLP-3 Slipin-3 (SLP-3), an uncharacterized subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in vertebrates. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Members of this slipin subgroup remain uncharacterized, except for Caenorhabditis elegans UNC-1. Mutations in the unc-1 gene result in abnormal motion and altered patterns of sensitivity to volatile anesthetics. 154 -259811 cd08829 SPFH_paraslipin Paraslipin or slipin-2 (SLP-2, a subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in all three kingdoms of life. The conserved domain common to these families has also been referred to as the Band 7 domain. Individual proteins of the SPFH family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. This subgroup of the SLPs remains largely uncharacterized. It includes human SLP-2 which is upregulated and involved in the progression and development in several types of cancer, including esophageal squamous cell carcinoma, endometrial adenocarcinoma, breast cancer, and glioma. 111 -350059 cd08830 ArfGap_ArfGap1 Arf1 GTPase-activating protein 1. ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif. 115 -350060 cd08831 ArfGap_ArfGap2_3_like Arf1 GTPase-activating protein 2/3-like. ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif. 116 -350061 cd08832 ArfGap_ADAP ArfGap with dual PH domains. The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions. 113 -350062 cd08833 ArfGap_GIT The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins. The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration. 109 -350063 cd08834 ArfGap_ASAP ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins. The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma. 117 -350064 cd08835 ArfGap_ACAP ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins. ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. 116 -350065 cd08836 ArfGap_AGAP ArfGAP with GTPase domain, ANK repeat and PH domains. The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. 108 -350066 cd08837 ArfGap_ARAP ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins. The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. 116 -350067 cd08838 ArfGap_AGFG ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins). The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication. 113 -350068 cd08839 ArfGap_SMAP Stromal membrane-associated proteins; a subfamily of the ArfGAP family. The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not. 103 -350069 cd08843 ArfGap_ADAP1 ADAP1 GTPase activating protein for Arf, with dual PH domains. The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions. 112 -350070 cd08844 ArfGap_ADAP2 ADAP2 GTPase activating protein for Arf, with dual PH domains. The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions. 112 -350071 cd08846 ArfGap_GIT1 GIT1 GTPase activating protein for Arf. The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration. 111 -350072 cd08847 ArfGap_GIT2 GIT2 GTPase activating protein for Arf. The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration. 111 -350073 cd08848 ArfGap_ASAP1 ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1). The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma. 122 -350074 cd08849 ArfGap_ASAP2 ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2). The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. 123 -350075 cd08850 ArfGap_ACAP3 ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3). ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. 116 -350076 cd08851 ArfGap_ACAP2 ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2). ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. 116 -350077 cd08852 ArfGap_ACAP1 ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1). ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. 120 -350078 cd08853 ArfGap_AGAP2 ArfGAP with GTPase domain, ANK repeat and PH domain 2. The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. 109 -350079 cd08854 ArfGap_AGAP1 ArfGAP with GTPase domain, ANK repeat and PH domain 1. The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. 109 -350080 cd08855 ArfGap_AGAP3 ArfGAP with GTPase domain, ANK repeat and PH domain 3. The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. 110 -350081 cd08856 ArfGap_ARAP2 ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2. The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. 121 -350082 cd08857 ArfGap_AGFG1 ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1). The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication. 116 -350083 cd08859 ArfGap_SMAP2 Stromal membrane-associated protein 2; a subfamily of the ArfGAP family. The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not. 107 -176869 cd08860 TcmN_ARO-CYC_like N-terminal aromatase/cyclase domain of the multifunctional protein tetracenomycin (TcmN) and related domains. This family includes the N-terminal aromatase/cyclase (ARO/CYC) domain of Streptomyces glaucescens TcmN, and related domains. It belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. ARO/CYC domains participate in the diversification of aromatic polyketides by promoting polyketide cyclization. They occur in two architectural forms, monodomain and didomain. Monodomain aromatase/cyclases have a single ARO/CYC domain. For some, such as TcmN, this single domain is linked to a second domain of unrelated function. TcmN is a multifunctional cyclase-dehydratase-O-methyl transferase. Its N-terminal ARO/CYC domain participates in polyketide binding and catalysis; it promotes C9-C14 first-ring (and C7-C16 second-ring) cyclizations. Its C-terminal domain has O-methyltransferase activity. Didomain aromatase/cyclases contain two ARO/CYC domains, and they biosynthesize C7-C12 first ring cyclized polyketides. These latter domains belong to a different subfamily in the SRPBCC superfamily. 146 -176870 cd08861 OtcD1_ARO-CYC_like N-terminal and C-terminal aromatase/cyclase domains of Streptomyces rimosus OtcD1 and related domains. This family includes the N- and C- terminal aromatase/cyclase (ARO/CYC) domains of Streptomyces rimosus OtcD1 and related domains. It belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. ARO/CYC domains participate in the diversification of aromatic polyketides by promoting polyketide cyclization. They occur in two architectural forms, didomain and monodomain. Didomain aromatase/cyclases (ARO/CYCs), contain two ARO/CYC domains, and are associated with C7-C12 first ring cyclized polyketides. Streptomyces rimosus OtcD1 is a didomain ARO/CYC. The polyketide Oxytetracycline (OTC) is a broad spectrum antibiotic made by Streptomyces rimosus. The gene encoding OtcD1 is part of oxytetracycline (OTC) gene cluster. Disruption of this gene results in the production of novel polyketides having shorter chain lengths (by up to 10 carbons) than OTC. Monodomain ARO/CYCs have a single ARO/CYC domain, and are often associated with C9-C14 first ring cyclizations, these latter domains belong to a different subfamily in the SRPBCC superfamily. 142 -176871 cd08862 SRPBCC_Smu440-like Ligand-binding SRPBCC domain of Streptococcus mutans Smu.440 and related proteins. This family includes the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of Streptococcus mutans Smu.440 and related proteins. This domain belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Streptococcus mutans is a dental pathogen, and the leading cause of dental caries. In this pathogen, the gene encoding Smu.440 is in the same operon as the gene encoding SMU.441, a member of the MarR protein family of transcriptional regulators involved in multiple antibiotic resistance. It has been suggested that SMU.440 is involved in polyketide-like antibiotic resistance. 138 -176872 cd08863 SRPBCC_DUF1857 DUF1857, an uncharacterized ligand-binding domain of the SRPBCC domain superfamily. Uncharacterized family of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 141 -176873 cd08864 SRPBCC_DUF3074 DUF3074, an uncharacterized ligand-binding domain of the SRPBCC domain superfamily. Uncharacterized family of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 208 -176874 cd08865 SRPBCC_10 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 140 -176875 cd08866 SRPBCC_11 Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. 144 -176876 cd08867 START_STARD4_5_6-like Lipid-binding START domain of mammalian STARD4, -5, -6, and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD4, -5, and -6. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD4 plays an important role in steroidogenesis, trafficking cholesterol into mitochondria. It specifically binds cholesterol, and demonstrates limited binding to another sterol, 7a-hydroxycholesterol. STARD4 and STARD5 are ubiquitously expressed, with highest levels in liver and kidney. STRAD5 functions in the kidney within the proximal tubule cells where it is associated with the Endoplasmic Reticulum (ER), and may participate in ER-associated cholesterol transport. It binds cholesterol and 25-hydroxycholesterol. Expression of the gene encoding STARD5 is increased by ER stress, and its mRNA and protein levels are elevated in a type I diabetic mouse model of human diabetic nephropathy. STARD6 is expressed in male germ cells of normal rats, and in the steroidogenic Leydig cells of perinatal hypothyroid testes. It may play a pivotal role in the steroidogenesis as well as in the spermatogenesis of normal rats. STARD6 has also been detected in the rat nervous system, and may participate in neurosteroid synthesis. 206 -176877 cd08868 START_STARD1_3_like Cholesterol-binding START domain of mammalian STARD1, -3 and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD1 (also known as StAR) and STARD3 (also known as metastatic lymph node 64/MLN64). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. This STARD1-like subfamily has a high affinity for cholesterol. STARD1/StAR can reduce macrophage lipid content and inflammatory status. It plays an essential role in steroidogenic tissues: transferring the steroid precursor, cholesterol, from the outer to the inner mitochondrial membrane, across the aqueous space. Mutations in the gene encoding STARD1/StAR can cause lipid congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by a steroid synthesis deficiency and an accumulation of cholesterol in the adrenal glands and the gonads. STARD3 may function in trafficking endosomal cholesterol to a cytosolic acceptor or membrane. In addition to having a cytoplasmic START cholesterol-binding domain, STARD3 also contains an N-terminal MENTAL cholesterol-binding and protein-protein interaction domain. The MENTAL domain contains transmembrane helices and anchors MLN64 to endosome membranes. The gene encoding STARD3 is overexpressed in about 25% of breast cancers. 208 -176878 cd08869 START_RhoGAP C-terminal lipid-binding START domain of mammalian STARD8, -12, -13 and related proteins, which also have an N-terminal Rho GTPase-activating protein (RhoGAP) domain. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD8 (also known as deleted in liver cancer 3/DLC3, and Arhgap38), STARD12 (also known as DLC-1, Arhgap7, and p122-RhoGAP), and STARD13 (also known as DLC-2, Arhgap37, and SDCCAG13). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Proteins belonging to this subfamily also have a RhoGAP domain. Some, including STARD12, -and -13, also have an N-terminal SAM (sterile alpha motif) domain; these have a SAM-RhoGAP-START domain organization. This subfamily is involved in cancer development. A large spectrum of cancers have dysregulated genes encoding these proteins. The precise function of the START domain in this subfamily is unclear. 197 -176879 cd08870 START_STARD2_7-like Lipid-binding START domain of mammalian STARD2, -7, and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD2 (also known as phosphatidylcholine transfer protein/PC-TP), and STARD7 (also known as gestational trophoblastic tumor 1/GTT1). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD2 is a cytosolic phosphatidycholine (PtdCho) transfer protein, which traffics PtdCho, the most common class of phospholipids in eukaryotes, between membranes. It represents a minimal START domain structure. STARD2 plays roles in hepatic cholesterol metabolism, in the development of atherosclerosis, and may also have a mitochondrial function. The gene encoding STARD7 is overexpressed in choriocarcinoma. STARD7 appears to be involved in the intracellular trafficking of PtdCho to mitochondria. STARD7 was shown to be surface active and to interact differentially with phospholipid monolayers. It showed a preference for phosphatidylserine, cholesterol, and phosphatidylglycerol. 209 -176880 cd08871 START_STARD10-like Lipid-binding START domain of mammalian STARD10 and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD10 (also known as CGI-52, PTCP-like, and SDCCAG28). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD10 binds phophatidylcholine and phosphatidylethanolamine. This protein is widely expressed and is synthesized constitutively in many organs. It may function in the liver in the export of phospholipids into bile. It is concentrated in the sperm flagellum, and may play a role in energy metabolism. In the mammary gland it may participate in the enrichment of lipids in milk, and be a potential marker of differentiation. Its expression is induced in this gland during gestation and lactation. It is overexpressed in mammary tumors from Neu/ErbB2 transgenic mice, in several breast carcinoma cell lines, and in 35% of primary human breast cancers, and may cooperate with c-erbB receptor signaling in breast oncogenesis. It is a potential marker of disease outcome in breast cancer; loss of STARD10 expression in breast cancer strongly predicts an aggressive disease course. The lipid transfer activity of STRAD10 is downregulated by phosphorylation of its Ser284 by CK2 (casein kinase 2). 222 -176881 cd08872 START_STARD11-like Ceramide-binding START domain of mammalian STARD11 and related domains. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD11 and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD11 can mediate transfer of the natural ceramide isomers, dihydroceramide and phytoceramide, as well as ceramides having C14, C16, C18, and C20 chains. They can also transfer diacylglycerol, but with a lower efficiency. STARD11 is synthesized from two major transcripts: a larger one encoding Goodpasture antigen-binding protein (GPBP)/ceramide transporter long form (CERTL); and a smaller one encoding GPBPdelta26/CERT, which is deleted for 26 amino acids. Both splicing variants mediate ceramide transfer from the ER to the Golgi, in a non-vesicular manner. It is likely that these two carry out different functions in specific sub-cellular locations. These proteins have roles in brain homeostasis and disease processes. GPBP/CERTL exists in multiple isoforms originating from alternative translation initiation sites and post-translational modifications. Goodpasture syndrome is a human disorder caused by antibodies directed against the a3-chain of collagen type IV. GPBP/CERTL binds and phosphorylates this antigen. The human gene encoding STARD11 is referred to as COL4A3BP referring to its collagen binding function. It is unknown whether the ceramide-transfer function of GPBP/CERTL is related to this collagen interaction. The expression of GPBP/CERTL is elevated in these and other spontaneous autoimmune disorders including cutaneous lupus erythematosus, pemphigoid, and lichen planus. GPBL/CERTL contains an N-terminal pleckstrin homology domain (PH), which targets the protein to the Golgi, a middle region containing two serine-rich domains (SR1, SR2), a FFAT (two phenylalanine amino acids in an acidic tract) motif which is involved in endoplasmic reticulum targeting, and this C-terminal SMART domain. The shorter splicing variant, CERT, lacks the SR2 domain. 235 -176882 cd08873 START_STARD14_15-like Lipid-binding START domain of mammalian STARDT14, -15, and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian brown fat-inducible STARD14 (also known as Acyl-Coenzyme A Thioesterase 11 or ACOT11, BFIT, THEA, THEM1, KIAA0707, and MGC25974), STARD15/ACOT12 (also known as cytoplasmic acetyl-CoA hydrolase/CACH, THEAL, and MGC105114), and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD14/ACOT11 and STARD15/ACOT12 are type II acetyl-CoA thioesterases; they catalyze the hydrolysis of acyl-CoAs to free fatty acid and CoASH. Human STARD14 displays acetyl-CoA thioesterase activity towards medium(C12)- and long(C16)-chain fatty acyl-CoA substrates. Rat CACH hydrolyzes acetyl-CoA to acetate and CoA. In addition to having a START domain, STARD14 and STARD15 each have two tandem copies of the hotdog domain. There are two splice variants of human STARD14, named BFIT1 and BFIT2, which differ in their C-termini. Human BFIT2 is equivalent to mouse mBFIT/Acot11, whose transcription is increased two fold in obesity-resistant mice compared with obesity-prone mice. Human STARD15 may have roles in cholesterol metabolism and in beta-oxidation. 235 -176883 cd08874 START_STARD9-like C-terminal START domain of mammalian STARD9, and related domains; lipid binding. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD9 (also known as KIAA1300), and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C /PITP /Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Some members of this subfamily have N-terminal kinesin motor domains. STARD9 interacts with supervillin, a protein important for efficient cytokinesis, perhaps playing a role in coordinating microtubule motors with actin and myosin II functions at membranes. The human gene encoding STARD9 lies within a target region for LGMD2A, an autosomal recessive form of limb-girdle muscular dystrophy. 205 -176884 cd08875 START_ArGLABRA2_like C-terminal lipid-binding START domain of the Arabidopsis homeobox protein GLABRA 2 and related proteins. This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of the Arabidopsis homeobox protein GLABRA 2 and related proteins. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Most proteins in this subgroup contain an N-terminal homeobox DNA-binding domain, some contain a leucine zipper. ArGLABRA2 plays a role in the differentiation of hairless epidermal cells of the Arabidopsis root. It acts in a cell-position-dependent manner to suppress root hair formation in those cells. 229 -176885 cd08876 START_1 Uncharacterized subgroup of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain family. Functionally uncharacterized subgroup of the START domain family. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. For some mammalian members of the START family (STARDs), it is known which lipids bind in this pocket; these include cholesterol (STARD1, -3, -4, and -5), 25-hydroxycholesterol (STARD5), phosphatidylcholine (STARD2, -7, and -10), phosphatidylethanolamine (STARD10) and ceramides (STARD11). Mammalian STARDs participate in the control of various cellular processes, including lipid trafficking between intracellular compartments, lipid metabolism, and modulation of signaling events. Mutation or altered expression of STARDs is linked to diseases such as cancer, genetic disorders, and autoimmune disease. 195 -176886 cd08877 START_2 Uncharacterized subgroup of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain family. Functionally uncharacterized subgroup of the START domain family. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. For some mammalian members of the START family (STARDs), it is known which lipids bind in this pocket; these include cholesterol (STARD1, -3, -4, and -5), 25-hydroxycholesterol (STARD5), phosphatidylcholine (STARD2, -7, and -10), phosphatidylethanolamine (STARD10) and ceramides (STARD11). Mammalian STARDs participate in the control of various cellular processes, including lipid trafficking between intracellular compartments, lipid metabolism, and modulation of signaling events. Mutation or altered expression of STARDs is linked to diseases such as cancer, genetic disorders, and autoimmune disease. 215 -176887 cd08878 RHO_alpha_C_DMO-like C-terminal catalytic domain of the oxygenase alpha subunit of dicamba O-demethylase and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of Stenotrophomonas maltophilia dicamba O-demethylase (DMO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and the C-terminal catalytic domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this subgroup include the alpha subunits of carbazole 1,9a-dioxygenase, phthalate dioxygenase, vanillate O-demethylase, Pseudomonas putida 2-oxoquinoline 8-monooxygenase, and Comamonas testosteroni T-2 p-toluenesulfonate dioxygenase. It also includes the C-terminal domain of the lignin biphenyl-specific O-demethylase (LigX) of the 5,5'-dehydrodivanillic acid O- demethylation system of Sphingomonas paucimobilis SYK-6. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 196 -176888 cd08879 RHO_alpha_C_AntDO-like C-terminal catalytic domain of the oxygenase alpha subunit of Pseudomonas resinovorans strain CA10 anthranilate 1,2-dioxygenase and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of anthranilate 1,2-dioxygenase (AntDO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and the C-terminal catalytic domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this subgroup include the alpha subunits of AntDO, aniline dioxygenase, Acinetobacter calcoaceticus benzoate 1,2-dioxygenase, 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS, 2,4,5-trichlorophenoxyacetic acid oxygenase from Pseudomonas cepacia AC1100, 2,4-dichlorophenoxyacetic acid oxygenase from Bradyrhizobium sp. strain HW13, p-cumate 2,3-dioxygenase, 2-halobenzoate 1,2-dioxygenase form Pseudomonas cepacia 2CBS, and Pseudomonas putida IacC, which may be involved in the catabolism of the plant hormone indole 3-acetic acid. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 237 -176889 cd08880 RHO_alpha_C_ahdA1c-like C-terminal catalytic domain of the large/alpha subunit (ahdA1c) of a ring-hydroxylating dioxygenase from Sphingomonas sp. strain P2 and related proteins. C-terminal catalytic domain of the large subunit (ahdA1c) of the AhdA3A4A2cA1c salicylate 1-hydroxylase complex from Sphingomonas sp. strain P2, and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). AhdA3A4A2cA1c is one of three known isofunctional salicylate 1-hydroxylase complexes in strain P2, involved in phenanthrene degradation, which catalyze the monooxygenation of salicylate, the metabolite of phenanthene degradation, to produce catechol. This complex prefers salicylate over other substituted salicylates; the other two salicylate 1-hydroxylases have different substrate preferences. RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Other oxygenases belonging to this subgroup include the alpha subunits of anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1, a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5 (PhnA dioxygenase), salicylate-5-hydroxylase from Ralstonia sp. U2, ortho-halobenzoate 1,2-dioxygenase from Pseudomonas aeruginosa strain JB2, and the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 222 -176890 cd08881 RHO_alpha_C_NDO-like C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). This domain binds non-heme Fe(II). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents form the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Proteins belonging to this subgroup include the terminal oxygenase alpha subunits of biphenyl dioxygenase, cumene dioxygenase from Pseudomonas fluorescens IP01, ethylbenzene dioxygenase, naphthalene 1,2-dioxygenase, nitrobenzene dioxygenase from Comamonas sp. strain JS765, toluene 2,3-dioxygenase from Pseudomonas putida F1, dioxin dioxygenase of Sphingomonas sp. Strain RW1, and the polycyclic aromatic hydrocarbons (PAHs)degrading ring-hydroxylating dioxygenase from Sphingomonas CHY-1. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 206 -176891 cd08882 RHO_alpha_C_MupW-like C-terminal catalytic domain of Pseudomonas fluorescens MupW and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of Pseudomonas fluorescens MupW and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. MupW is part of the mupirocin biosynthetic gene cluster in Pseudomonas fluorescens, and may catalyze the oxidation of the 16-methyl group during biosynthesis of this polyketide antibiotic. Mupirocin is a mixture of pseudomonic acids which targets isoleucyl-tRNA synthase and is a strong inhibitor of Gram positive bacterial and mycoplasmal pathogens. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 243 -176892 cd08883 RHO_alpha_C_CMO-like C-terminal catalytic domain of plant choline monooxygenase (CMO) and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of plant choline monooxygenase and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Plant choline monooxygenase catalyzes the first step in a two-step oxidation of choline to the osmoprotectant glycine betaine. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 175 -176893 cd08884 RHO_alpha_C_GbcA-like C-terminal catalytic domain of GbcA (glycine betaine catabolism A) from Pseudomonas aeruginosa PAO1 and related aromatic ring hydroxylating dioxygenases. C-terminal catalytic domain of GbcA (glycine betaine catabolism A) from Pseudomonas aeruginosa PAO1 and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. GbcA is involved in glycine betaine (GB) catabolism in Pseudomonas aeruginosa; it may remove a methyl group from GB via a dioxygenase mechanism, producing dimethylglycine and formaldehyde. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 205 -176894 cd08885 RHO_alpha_C_1 C-terminal catalytic domain of the oxygenase alpha subunit of an uncharacterized subgroup of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of a functionally uncharacterized subgroup of the Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. This group contains two putative Parvibaculum lavamentivorans (T) DS-1 oxygenases; this organism catabolizes commercial linear alkylbenzenesulfonate surfactant (LAS) and other surfactants, by a pathway involving an undefined 'omega-oxygenation' and beta-oxidation of the LAS side chain. The nature of the LAS-oxygenase is unknown but is likely a multicomponent system. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 190 -176895 cd08886 RHO_alpha_C_2 C-terminal catalytic domain of the oxygenase alpha subunit of an uncharacterized subgroup of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of a functionally uncharacterized subgroup of the Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 182 -176896 cd08887 RHO_alpha_C_3 C-terminal catalytic domain of the oxygenase alpha subunit of an uncharacterized subgroup of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases. C-terminal catalytic domain of the oxygenase alpha subunit of a functionally uncharacterized subgroup of the Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. This group contains a putative Parvibaculum lavamentivorans (T) DS-1 oxygenase; this organism catabolizes commercial linear alkylbenzenesulfonate surfactant (LAS) and other surfactants, by a pathway involving an undefined 'omega-oxygenation' and beta-oxidation of the LAS side chain. The nature of the LAS-oxygenase is unknown but is likely a multicomponent system. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. 185 -176897 cd08888 SRPBCC_PITPNA-B_like Lipid-binding SRPBCC domain of mammalian PITPNA, -B, and related proteins (Class I PITPs). This subgroup includes the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of mammalian Class 1 phosphatidylinositol transfer proteins (PITPs), PITPNA/PITPalpha and PITPNB/PITPbeta, Drosophila vibrator, and related proteins. These are single domain proteins belonging to the PITP family of lipid transfer proteins, and to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. In vitro, PITPs bind phosphatidylinositol (PtdIns), as well as phosphatidylcholine (PtdCho) but with a lower affinity. They transfer these lipids from one membrane compartment to another. The cellular roles of PITPs include inositol lipid signaling, PtdIns metabolism, and membrane trafficking. In addition, PITPNB transfers sphingomyelin in vitro, with a low affinity. PITPNA is found chiefly in the nucleus and cytoplasm; it is enriched in the brain and predominantly localized in the axons. A reduced expression of PITPNA contributes to the neurodegenerative phenotype of the mouse vibrator mutation. The role of PITPNA in vivo may be to provide PtdIns for localized PI3K-dependent signaling, thereby controlling the polarized extension of axonal processes. PITPNA homozygous null mice die soon after birth from complicated organ failure, including intestinal and hepatic steatosis, hypoglycemia, and spinocerebellar disease. PITPNB is associated with the Golgi and ER, and is highly expressed in the liver. Deletion of the PITPNB gene results in embryonic lethality. The PtdIns and PtdCho exchange activity of PITPNB is required for COPI-mediated retrograde transport from the Golgi to the ER. Drosophila vibrator localizes to the ER, and has an essential role in cytokinesis during mitosis and meiosis. 258 -176898 cd08889 SRPBCC_PITPNM1-2_like Lipid-binding SRPBCC domain of mammalian PITPNM1-2 and related proteins (Class IIA PITPs). This subgroup includes an N-terminal SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of mammalian Class II phosphatidylinositol transfer protein (PITPs), PITPNM1/PITPalphaI/Nir2 (PYK2 N-terminal domain-interacting receptor2) and PITPNM2/PITPalphaII/Nir3), Drosophila RdgB, and related proteins. These are membrane associated multidomain proteins belonging to the PITP family of lipid transfer proteins, and to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. In vitro, PITPs bind phosphatidylinositol (PtdIns), as well as phosphatidylcholine (PtdCho) but with a lower affinity. They transfer these lipids from one membrane compartment to another. The cellular roles of PITPs include inositol lipid signaling, PtdIns metabolism, and membrane trafficking. Ablation of the mouse gene encoding PITPNM1 results in early embryonic death. PITPNM1 is localized chiefly to the Golgi apparatus, and under certain conditions translocates to the lipid droplets. Targeting to the latter is dependent on a specific threonine residue within the SRPBCC domain. PITPNM1 plays a part in Golgi-mediated transport. It regulates diacylglycerol (DAG) production at the trans-Golgi network (TGN) via the CDP-choline pathway. Drosophila RdgB, the founding member of the PITP family, is implicated in the visual and olfactory transduction. RdgB is required for maintenance of ultra structure in photoreceptors and for sensory transduction. The mouse PITPNM1 gene rescues the phenotype of Drosophila rdgB mutant flies. In addition to the SRPBCC domain, PITPNM1 and -2 contain a Rho-inhibitory domain (Rid), six hydrophobic stretches, a DDHD calcium binding region, and a C-terminal tyrosine kinase Pyk2-binding / HAD-like phosphohydrolase domain. PITPNM1 has a role in regulating cell morphogenesis through its Rho inhibitory domain (Rid). This SRPBCC_PITPNM1-2_like domain model includes the first 52 residues of the 224 residues Rid (Rho-inhibitory domain). 260 -176899 cd08890 SRPBCC_PITPNC1_like Lipid-binding SRPBCC domain of mammalian PITPNC1,and related proteins (Class IIB PITPs). This subgroup includes the N-terminal SRPBCC (START/RHO_alpha_C /PITP /Bet_v1/CoxG/CalC) domain of mammalian Class IIB phosphatidylinositol transfer protein (PITP), PITPNC1/RdgBbeta, and related proteins. These are metazoan proteins belonging to the PITP family of lipid transfer proteins, and to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. In vitro, PITPs bind phosphatidylinositol (PtdIns), as well as phosphatidylcholine (PtdCho) but with a lower affinity. They transfer these lipids from one membrane compartment to another. The cellular roles of PITPs include inositol lipid signaling, PtdIns metabolism, and membrane trafficking. Mammalian PITPNC1 contains an amino-terminal SRPBCC PITP-like domain and a short carboxyl-terminal domain. It is a cytoplasmic protein, and is ubiquitously expressed. It can transfer phosphatidylinositol (PtdIns) in vitro with a similar ability to other PITPs. 250 -176900 cd08891 SRPBCC_CalC Ligand-binding SRPBCC domain of Micromonospora echinospora CalC and related proteins. This subfamily includes Micromonospora echinospora CalC (MeCalC) and related proteins. These proteins belong to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins which bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. MeCalC confers resistance to the enediyne, calicheamicin gamma 1 (CLM). Enediyne antibiotics are antitumor agents. Enediynes have an in vitro and in vivo role as DNA damaging agents; they consist of a DNA recognition unit (e.g., aryltetrasaccharide of CLM), an activating component (e.g., methyl trisulfide of CLM), which promotes cycloaromatization, and the enediyne warhead which cycloaromatizes to a reactive diradical species, resulting in oxidative strand cleavage of the targeted DNA sequence. MeCalC confers resistance to CLM by a self sacrificing mechanism: the transient enediyne diradical species abstracts a CalC Gly Calpha-hydrogen, thereby quenching the reactive enediyne moiety, and generating a CalC Gly Calpha radical. This radical then reacts with oxygen, leading to oxidative site-specific proteolysis of CalC. This antibiotic-induced proteolysis of CalC results in inactivation of both CalC and the highly reactive diradical species. CalC has also been shown to inactivate two other enediynes, shishijimicin and namenamicin. The crucial Gly of the MeCalC CLM resistance mechanism is contained in a loop (L1) which is displaced when CLM is bound, this Gly is not conserved in this subgroup. 149 -176901 cd08892 SRPBCC_Aha1 Putative hydrophobic ligand-binding SRPBCC domain of the Hsp90 co-chaperone Aha1 and related proteins. This subfamily includes the C-terminal SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of Aha1, and related domains. Proteins in this group belong to the SRPBCC domain superfamily of proteins which bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Aha1 is one of several co-chaperones, which regulate the dimeric chaperone Hsp90. Hsp90, Aha1, and other accessory proteins interact in a chaperone cycle driven by ATP binding and hydrolysis. Aha1 promotes dimerization of the N-terminal domains of Hsp90, and stimulates its low intrinsic ATPase activity. One Aha1 molecule binds per Hsp90 dimer. The N- and C- terminal domains of Aha1 cooperatively bind across the dimer interface of Hsp90. The C-terminal domain of Aha1 binds the N-terminal Hsp90 ATPase domain. Aha1 may regulate the dwell time of Hsp90 with client proteins. Aha1 may act as either a negative or positive regulator of chaperone-dependent activation, depending on the client protein; for example, it acts as a negative regulator in the case of Saccharomyces cerevisiae MAL63 MAL-activator, and acts as a positive regulator in the case of glucocorticoid receptor and v-Src kinase. The mechanisms by which these opposing functions are achieved are unclear. Aha1 is upregulated in a number of tumor lines co-incident with the activation of several signaling kinases. 126 -176902 cd08893 SRPBCC_CalC_Aha1-like_GntR-HTH Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins; some contain an N-terminal GntR family winged HTH DNA-binding domain. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. Some proteins in this subgroup contain an N-terminal winged helix-turn-helix DNA-binding domain found in the GntR family of proteins which include bacterial transcriptional regulators and their putative homologs from eukaryota and archaea. 136 -176903 cd08894 SRPBCC_CalC_Aha1-like_1 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 139 -176904 cd08895 SRPBCC_CalC_Aha1-like_2 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 146 -176905 cd08896 SRPBCC_CalC_Aha1-like_3 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 146 -176906 cd08897 SRPBCC_CalC_Aha1-like_4 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 133 -176907 cd08898 SRPBCC_CalC_Aha1-like_5 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 145 -176908 cd08899 SRPBCC_CalC_Aha1-like_6 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 157 -176909 cd08900 SRPBCC_CalC_Aha1-like_7 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 143 -176910 cd08901 SRPBCC_CalC_Aha1-like_8 Putative hydrophobic ligand-binding SRPBCC domain of an uncharacterized subgroup of CalC- and Aha1-like proteins. SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain of a functionally uncharacterized subgroup of CalC- and Aha1-like proteins. This group shows similarity to the SRPBCC domains of Micromonospora echinospora CalC (a protein which confers resistance to enediynes) and human Aha1 (one of several co-chaperones which regulate the dimeric chaperone Hsp90), and belongs to the SRPBCC domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. 136 -176911 cd08902 START_STARD4-like Lipid-binding START domain of mammalian STARD4 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD4 and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD4 plays an important role in steroidogenesis, trafficking cholesterol into mitochondria. It specifically binds cholesterol, and demonstrates limited binding to another sterol, 7alpha-hydroxycholesterol. STARD4 is ubiquitously expressed, with highest levels in liver and kidney. 202 -176912 cd08903 START_STARD5-like Lipid-binding START domain of mammalian STARD5 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD5, and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD5 is ubiquitously expressed, with highest levels in liver and kidney. STARD5 functions in the kidney within the proximal tubule cells where it is associated with the Endoplasmic Reticulum (ER), and may participate in ER-associated cholesterol transport. It binds cholesterol and 25-hydroxycholesterol. Expression of the gene encoding STARD5 is increased by ER stress, and its mRNA and protein levels are elevated in a type I diabetic mouse model of human diabetic nephropathy. 208 -176913 cd08904 START_STARD6-like Lipid-binding START domain of mammalian STARD6 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD6 and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD6 is expressed in male germ cells of normal rats, and in the steroidogenic Leydig cells of perinatal hypothyroid testes. It may play a pivotal role in the steroidogenesis as well as in the spermatogenesis of normal rats. STARD6 has also been detected in the rat nervous system, and may participate in neurosteroid synthesis. 204 -176914 cd08905 START_STARD1-like Cholesterol-binding START domain of mammalian STARD1 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD1 (also known as StAR) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD1 has a high affinity for cholesterol. It can reduce macrophage lipid content and inflammatory status. It plays an essential role in steroidogenic tissues: transferring the steroid precursor, cholesterol, from the outer to the inner mitochondrial membrane, across the aqueous space. Mutations in the gene encoding STARD1/StAR can cause lipid congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by a steroid synthesis deficiency and an accumulation of cholesterol in the adrenal glands and the gonads. 209 -176915 cd08906 START_STARD3-like Cholesterol-binding START domain of mammalian STARD3 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD3 (also known as metastatic lymph node 64/MLN64) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD3 has a high affinity for cholesterol. It may function in trafficking endosomal cholesterol to a cytosolic acceptor or membrane. In addition to having a cytoplasmic START cholesterol-binding domain, STARD3 also contains an N-terminal MENTAL cholesterol-binding and protein-protein interaction domain. The MENTAL domain contains transmembrane helices and anchors MLN64 to endosome membranes. The gene encoding STARD3 is overexpressed in about 25% of breast cancers. 209 -176916 cd08907 START_STARD8-like C-terminal lipid-binding START domain of mammalian STARD8 and related proteins, which also have an N-terminal Rho GTPase-activating protein (RhoGAP) domain. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD8 (also known as deleted in liver cancer 3/DLC3, and Arhgap38) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Proteins belonging to this subfamily also have a RhoGAP domain. The precise function of the START domain in this subgroup is unclear. 205 -176917 cd08908 START_STARD12-like C-terminal lipid-binding START domain of mammalian STARD12 and related proteins, which also have an N-terminal Rho GTPase-activating protein (RhoGAP) domain. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD12 (also known as DLC-1, Arhgap7, and p122-RhoGAP) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Proteins belonging to this subgroup also have an N-terminal SAM (sterile alpha motif) domain and a RhoGAP domain, and have a SAM-RhoGAP-START domain organization. The precise function of the START domain in this subgroup is unclear. 204 -176918 cd08909 START_STARD13-like C-terminal lipid-binding START domain of mammalian STARD13 and related proteins, which also have an N-terminal Rho GTPase-activating protein (RhoGAP) domain. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD13 (also known as DLC-2, Arhgap37, and SDCCAG13) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Proteins belonging to this subfamily also have a RhoGAP domain. The precise function of the START domain in this subgroup is unclear. 205 -176919 cd08910 START_STARD2-like Lipid-binding START domain of mammalian STARD2 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD2 (also known as phosphatidylcholine transfer protein/PC-TP) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD2 is a cytosolic phosphatidycholine (PtdCho) transfer protein, which traffics PtdCho, the most common class of phospholipids in eukaryotes, between membranes. It represents a minimal START domain structure. STARD2 plays roles in hepatic cholesterol metabolism, in the development of atherosclerosis, and may have a mitochondrial function. 207 -176920 cd08911 START_STARD7-like Lipid-binding START domain of mammalian STARD7 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD7 (also known as gestational trophoblastic tumor 1/GTT1). It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. The gene encoding STARD7 is overexpressed in choriocarcinoma. STARD7 appears to be involved in the intracellular trafficking of phosphatidycholine (PtdCho) to mitochondria. STARD7 was shown to be surface active and to interact differentially with phospholipid monolayers, it showed a preference for phosphatidylserine, cholesterol, and phosphatidylglycerol. 207 -176921 cd08913 START_STARD14-like Lipid-binding START domain of mammalian STARDT14 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian brown fat-inducible STARD14 (also known as Acyl-Coenzyme A Thioesterase 11 or ACOT11, BFIT, THEA, THEM1, KIAA0707, and MGC25974) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD14/ACOT11 is a type II acetyl-CoA thioesterase; it catalyzes the hydrolysis of acyl-CoAs to free fatty acid and CoASH. Human STARD14 displays acetyl-CoA thioesterase activity towards medium(C12)- and long(C16)-chain fatty acyl-CoA substrates. In addition to having a START domain, most proteins in this subgroup have two tandem copies of the hotdog domain. There are two splice variants of human STARD14, named BFIT1 and BFIT2, which differ in their C-termini. Human BFIT2 is equivalent to mouse mBFIT/Acot11, whose transcription is increased two fold in obesity-resistant mice compared with obesity-prone mice. 240 -176922 cd08914 START_STARD15-like Lipid-binding START domain of mammalian STARD15 and related proteins. This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD15/ACOT12 (also known as cytoplasmic acetyl-CoA hydrolase/CACH, THEAL, and MGC105114) and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD15/ACOT12 is a type II acetyl-CoA thioesterase; it catalyzes the hydrolysis of acyl-CoAs to free fatty acid and CoASH. Rat CACH hydrolyzes acetyl-CoA to acetate and CoA. In addition to having a START domain, most proteins in this subgroup have two tandem copies of the hotdog domain. Human STARD15/ACOT12 may have roles in cholesterol metabolism and in beta-oxidation. 236 -185746 cd08915 V_Alix_like Protein-interacting V-domain of mammalian Alix and related domains. This superfamily contains the V-shaped (V) domain of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, and related domains. Alix, HD-PTP, Bro1, and Rim20 all interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP functions in cell migration and endosomal trafficking, Bro1 in endosomal trafficking, and Rim20 in the response to the external pH via the Rim101 pathway. The Alix V-domain contains a binding site, partially conserved in this superfamily, for the retroviral late assembly (L) domain YPXnL motif. The Alix V-domain is also a dimerization domain. Members of this superfamily have an N-terminal Bro1-like domain, which binds components of the ESCRT-III complex. The Bro1-like domains of Alix and HD-PTP can also bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Many members, including Alix, HD-PTP, and Bro1, also have a proline-rich region (PRR), which binds multiple partners in Alix, including Tsg101 (tumor susceptibility gene 101, a component of ESCRT-1) and the apoptotic protein ALG-2. The C-terminal portion (V-domain and PRR) of Bro1 interacts with Doa4, a ubiquitin thiolesterase needed to remove ubiquitin from MVB cargoes; it interacts with a YPxL motif in Doa4s catalytic domain to stimulate its deubiquitination activity. Rim20 may bind the ESCRT-III subunit Snf7, bringing the protease Rim13 (a YPxL-containing transcription factor) into proximity with Rim101, and promoting the proteolytic activation of Rim101. HD-PTP is encoded by the PTPN23 gene, a tumor suppressor gene candidate often absent in human kidney, breast, lung, and cervical tumors. HD-PTP has a C-terminal catalytically inactive tyrosine phosphatase domain. 342 -271269 cd08916 TrHb3_P Truncated hemoglobins (TrHbs, 2/2Hb, 2/2 globins); group 3 (P). The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. They are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). TrHb3s include Campylobacter jejuni Ctb, encoded by Cj0465c, which may play a role in moderating O2 flux within C. jejuni. 116 -271270 cd08917 TrHb2_O Truncated hemoglobins (TrHbs, 2/2Hb, 2/2 globins); group 2 (O). The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). TrHb2s include the dimeric Arabidopsis thaliana TrHb2 AtGLB3. GLB3 is likely to have a function distinct from other plant globins: it exhibits a low O2 affinity, an unusual concentration-independent binding of O2 and CO, and does not respond to any of the treatments that induce plant 3-on-3 globins. Other TrHb2's include Bacillus subtilis trHb (Bs-trHb) which exhibits an extremely high oxygen affinity, and Pseudoalteromonas haloplanktis PhHbO (encoded by the PSHAa0030 gene) which appears to be involved in oxidative and nitrosative stress resistance. 118 -271271 cd08919 PBP_like Phycobiliproteins (PBPs) and related proteins. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). This family also contains allophycocyanin-like (Apl) proteins, which conserve the residues critical for chromophore interactions, but may not maintain the proper alpha-beta subunit interactions and tertiary structure of PBPs. The genes encoding the Apl proteins cluster with light-responsive regulatory components, so these may have photoresponsive regulatory role(s). Included in this family is the PBP-like domain of the core-membrane linker polypeptide (LCM). The LCM serves both as a terminal energy acceptor and as a linker polypeptide. Its single phycocyanobilin (PCB) chromophore is one of two terminal energy transmitters, and transfers excitations from the hundreds of chromophores of the PBS to the RCs. This family also includes some proteins which have glutathione-S-transferases (GST) domains N-terminal to this PBP-like domain. 155 -271272 cd08920 Ngb Neuroglobins. The Ngb described in this subfamily is a hexacoordinate heme globin chiefly expressed in neurons of the brain and retina. In the human brain, it is highly expressed in the hypothalamus, amygdala, and in the pontine tegmental nuclei. It affords protection of brain neurons from ischemia and hypoxia. In rats, it plays a role in the neuroprotection of limb ischemic preconditioning (LIP). It plays roles as: a sensor of oxygen levels; a store or reservoir for oxygen; a facilitator for oxygen transport; a regulator of ROS; and a scavenger of nitric oxide. It also functions in the protection against apoptosis and in sleep regulation. This subgroup contains Ngb from mammalian and non-mammalian vertebrates, including fish, amphibians and reptiles; the functionally pentacoordinated acoelomorph Symsagittifera roscoffensis Ngb does not belong to this subgroup. 148 -271273 cd08922 FHb-globin Globin domain of flavohemoglobins (flavoHbs). FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb attenuates the expression of the nitrosative stress response, affects the swarming behavior of Escherichia coli, and maintains squid-Vibrio fischeri and Medicago truncatula-Sinorhizobium meliloti symbioses. FlavoHb expression affects Aspergillus nidulans sexual development and mycotoxin production, and Dictyostelium discoideum development. This family also includes some single-domain goblins (SDgbs). 140 -271274 cd08923 class1-2_nsHbs_Lbs Class1 nonsymbiotic hemoglobins (nsHbs), class II nsHbs, leghemoglobins (Lbs,) and related proteins. Class1 nsHbs include the dimeric hexacoordinate Trema tomentosa nsHb and the dimeric hexacoordinate nsHb from monocot barley. Also belonging to this family is ParaHb, a dimeric pentacoordinate Hb from the root nodules of Parasponia andersonii, a non-legume capable of symbiotic nitrogen fixation. ParaHb is unusual in that it has different heme redox potentials for each subunit; it may have evolved from class1 nsHbs. Lbs are pentacoordinate, and facilitate the diffusion of O2 to the respiring Rhizobium bacteroids within root nodules. They may have evolved from class 2 nonsymbiotic hemoglobins (class2 nsHb). 147 -271275 cd08924 Cygb Cytoglobin and related globins. Cygb is a hexacoordinated heme-containing protein, able to bind O2, NO and carbon monoxide. It has both nitric oxide dioxygenase and lipid peroxidase activities, and potentially participates in the maintenance of normal phenotype by implementing a homeostatic effect, to counteract stress conditions imposed on a cell. Cygb is implicated in multiple human pathologies: it is up-regulated in fibrosis and neurodegenerative disorders, and down-regulated in multiple cancer types, and may have a tumor suppressor role. It is expressed ubiquitously across a broad range of vertebrate organs including liver, heart, brain, lung, retina, and gut. In the human brain, it was detected at high levels in the habenula, hypothalamus, thalamus, hippocampus and pontine tegmental nuclei, detected at a low level in the cerebral cortex, and undetected in the cerebellar cortex. 153 -271276 cd08925 Hb-beta_like Hemoglobin beta, gamma, delta, epsilon, and related Hb subunits. Hb is the oxygen transport protein of erythrocytes. It is an allosterically modulated heterotetramer. Hemoglobin A (HbA) is the most common Hb in adult humans, and is formed from two alpha-chains and two beta-chains (alpha2beta2). An equilibrium exists between deoxygenated/unliganded/T(tense state) Hb having low oxygen affinity, and oxygenated /liganded/R(relaxed state) Hb having a high oxygen affinity. Various endogenous heterotropic effectors bind Hb to modulate its oxygen affinity and cooperative behavior, e.g. hydrogen ions, chloride ions, carbon dioxide and 2,3-bisphosphoglycerate. Hb is also an allosterically regulated nitrite reductase; the plasma nitrite anion may be activated by hemoglobin in areas of hypoxia to bring about vasodilation. Other Hb types are: HbA2 (alpha2delta2) which in normal individuals, is naturally expressed at a low level; Hb Portland-1 (zeta2gamma2), Hb Gower-1 (zeta2epsilon2), and Hb Gower-2 (alpha2epsilon2), which are Hbs present during the embryonic period; and fetal hemoglobin (HbF, alpha2gamma2), the primary hemoglobin throughout most of gestation. These Hbs types have differences in O2 affinity and in their interactions with allosteric effectors. 140 -271277 cd08926 Mb Animal Myoglobins. Myoglobin (Mb) is a monomeric pentacoordinate heme-bound globin protein whose expression has long been considered limited to cardiomyocytes and striated skeletal muscle cell, however it has recently been found localized in a wide variety of tissues including smooth muscle cells. As a physiological catalyst, it can modulate reactive oxygen species levels, facilitate oxygen diffusion within the cell, and scavenge or generate NO depending on oxygen tensions within the cell. Through its NO dioxygenase and nitrite reductase activities, Mb regulates mitochondrial function in energy-demanding tissues. 148 -271278 cd08927 Hb-alpha_like Hemoglobin alpha, zeta, mu, theta, and related Hb subunits. Hb is the oxygen transport protein of erythrocytes. It is an allosterically modulated heterotetramer. Hemoglobin A (HbA) is the most common Hb in adult humans, and is formed from two alpha-chains and two beta-chains (alpha2beta2). An equilibrium exists between deoxygenated/unliganded/T(tense state) Hb having low oxygen affinity, and oxygenated /liganded/R(relaxed state) Hb having a high oxygen affinity. Various endogenous heterotropic effectors bind Hb to modulate its oxygen affinity and cooperative behavior, e.g. hydrogen ions, chloride ions, carbon dioxide and 2,3-bisphosphoglycerate. Hb is also an allosterically regulated nitrite reductase; the plasma nitrite anion may be activated by hemoglobin in areas of hypoxia to bring about vasodilation. Other Hb types are: HbA2 (alpha2delta2) which in normal individuals, is naturally expressed at a low level; Hb Portland-1 (zeta2gamma2), Hb Gower-1 (zeta2epsilon2), and Hb Gower-2 (alpha2epsilon2), which are Hbs present during the embryonic period; and fetal hemoglobin (HbF, alpha2gamma2), the primary hemoglobin throughout most of gestation. These Hbs types have differences in O2 affinity and in their interactions with allosteric effectors. 140 -187633 cd08928 KR_fFAS_like_SDR_c_like ketoacyl reductase (KR) domain of fungal-type fatty acid synthase (fFAS)-like, classical (c)-like SDRs. KR domain of FAS, including the fungal-type multidomain FAS alpha chain, and the single domain daunorubicin C-13 ketoreductase. Fungal-type FAS is a heterododecameric FAS composed of alpha and beta multifunctional polypeptide chains. The KR, an SDR family member is located centrally in the alpha chain. KR catalyzes the NADP-dependent reduction of ketoacyl-ACP to hydroxyacyl-ACP. KR shares the critical active site Tyr of the classical SDR and has partial identity of the active site tetrad, but the upstream Asn is replaced in KR by Met. As in other SDRs, there is a glycine rich NAD(P)-binding motif, but the pattern found in KR does not match the classical SDRs, and is not strictly conserved within this group. Daunorubicin is a clinically important therapeutic compound used in some cancer treatments. Single domain daunorubicin C-13 ketoreductase is member of the classical SDR family with a canonical glycine-rich NAD(P)-binding motif, but lacking a complete match to the active site tetrad characteristic of this group. The critical Tyr, plus the Lys and upstream Asn are present, but the catalytic Ser is replaced, generally by Gln. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 248 -187634 cd08929 SDR_c4 classical (c) SDR, subgroup 4. This subgroup has a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 226 -187635 cd08930 SDR_c8 classical (c) SDR, subgroup 8. This subgroup has a fairly well conserved active site tetrad and domain size of the classical SDRs, but has an atypical NAD-binding motif ([ST]G[GA]XGXXG). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187636 cd08931 SDR_c9 classical (c) SDR, subgroup 9. This subgroup has the canonical active site tetrad and NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 227 -212493 cd08932 HetN_like_SDR_c HetN oxidoreductase-like, classical (c) SDR. This subgroup includes Anabaena sp. strain PCC 7120 HetN, a putative oxidoreductase involved in heterocyst differentiation, and related proteins. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 223 -187638 cd08933 RDH_SDR_c retinal dehydrogenase-like, classical (c) SDR. These classical SDRs includes members identified as retinol dehydrogenases, which convert retinol to retinal, a property that overlaps with 17betaHSD activity. 17beta-dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens, and include members of the short-chain dehydrogenases/reductase family. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 261 -187639 cd08934 CAD_SDR_c clavulanic acid dehydrogenase (CAD), classical (c) SDR. CAD catalyzes the NADP-dependent reduction of clavulanate-9-aldehyde to clavulanic acid, a beta-lactamase inhibitor. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 243 -187640 cd08935 mannonate_red_SDR_c putative D-mannonate oxidoreductase, classical (c) SDR. D-mannonate oxidoreductase catalyzes the NAD-dependent interconversion of D-mannonate and D-fructuronate. This subgroup includes Bacillus subtitils UxuB/YjmF, a putative D-mannonate oxidoreductase; the B. subtilis UxuB gene is part of a putative ten-gene operon (the Yjm operon) involved in hexuronate catabolism. Escherichia coli UxuB does not belong to this subgroup. This subgroup has a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 271 -187641 cd08936 CR_SDR_c Porcine peroxisomal carbonyl reductase like, classical (c) SDR. This subgroup contains porcine peroxisomal carbonyl reductase and similar proteins. The porcine enzyme efficiently reduces retinals. This subgroup also includes human dehydrogenase/reductase (SDR family) member 4 (DHRS4), and human DHRS4L1. DHRS4 is a peroxisomal enzyme with 3beta-hydroxysteroid dehydrogenase activity; it catalyzes the reduction of 3-keto-C19/C21-steroids into 3beta-hydroxysteroids more efficiently than it does the retinal reduction. The human DHRS4 gene cluster contains DHRS4, DHRS4L2 and DHRS4L1. DHRS4L2 and DHRS4L1 are paralogs of DHRS4, DHRS4L2 being the most recent member. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 256 -187642 cd08937 DHB_DH-like_SDR_c 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (DHB DH)-like, classical (c) SDR. DHB DH (aka 1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase) catalyzes the NAD-dependent conversion of 1,2-dihydroxycyclohexa-3,4-diene carboxylate to a catechol. This subgroup also contains Pseudomonas putida F1 CmtB, 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase, the second enzyme in the pathway for catabolism of p-cumate catabolism. This subgroup shares the glycine-rich NAD-binding motif of the classical SDRs and shares the same catalytic triad; however, the upstream Asn implicated in cofactor binding or catalysis in other SDRs is generally substituted by a Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 256 -187643 cd08939 KDSR-like_SDR_c 3-ketodihydrosphingosine reductase (KDSR) and related proteins, classical (c) SDR. These proteins include members identified as KDSR, ribitol type dehydrogenase, and others. The group shows strong conservation of the active site tetrad and glycine rich NAD-binding motif of the classical SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 239 -187644 cd08940 HBDH_SDR_c d-3-hydroxybutyrate dehydrogenase (HBDH), classical (c) SDRs. DHBDH, an NAD+ -dependent enzyme, catalyzes the interconversion of D-3-hydroxybutyrate and acetoacetate. It is a classical SDR, with the canonical NAD-binding motif and active site tetrad. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 258 -187645 cd08941 3KS_SDR_c 3-keto steroid reductase, classical (c) SDRs. 3-keto steroid reductase (in concert with other enzymes) catalyzes NADP-dependent sterol C-4 demethylation, as part of steroid biosynthesis. 3-keto reductase is a classical SDR, with a well conserved canonical active site tetrad and fairly well conserved characteristic NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 290 -187646 cd08942 RhlG_SDR_c RhlG and related beta-ketoacyl reductases, classical (c) SDRs. Pseudomonas aeruginosa RhlG is an SDR-family beta-ketoacyl reductase involved in Rhamnolipid biosynthesis. RhlG is similar to but distinct from the FabG family of beta-ketoacyl-acyl carrier protein (ACP) of type II fatty acid synthesis. RhlG and related proteins are classical SDRs, with a canonical active site tetrad and glycine-rich NAD(P)-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187647 cd08943 R1PA_ADH_SDR_c rhamnulose-1-phosphate aldolase/alcohol dehydrogenase, classical (c) SDRs. This family has bifunctional proteins with an N-terminal aldolase and a C-terminal classical SDR domain. One member is identified as a rhamnulose-1-phosphate aldolase/alcohol dehydrogenase. The SDR domain has a canonical SDR glycine-rich NAD(P) binding motif and a match to the characteristic active site triad. However, it lacks an upstream active site Asn typical of SDRs. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 250 -187648 cd08944 SDR_c12 classical (c) SDR, subgroup 12. These are classical SDRs, with the canonical active site tetrad and glycine-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 246 -187649 cd08945 PKR_SDR_c Polyketide ketoreductase, classical (c) SDR. Polyketide ketoreductase (KR) is a classical SDR with a characteristic NAD-binding pattern and active site tetrad. Aromatic polyketides include various aromatic compounds of pharmaceutical interest. Polyketide KR, part of the type II polyketide synthase (PKS) complex, is comprised of stand-alone domains that resemble the domains found in fatty acid synthase and multidomain type I PKS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 258 -212494 cd08946 SDR_e extended (e) SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 200 -187651 cd08947 NmrA_TMR_like_SDR_a NmrA (a transcriptional regulator), HSCARG (an NADPH sensor), and triphenylmethane reductase (TMR) like proteins, atypical (a) SDRs. Atypical SDRs belonging to this subgroup include NmrA, HSCARG, and TMR, these proteins bind NAD(P) but they lack the usual catalytic residues of the SDRs. Atypical SDRs are distinct from classical SDRs. NmrA is a negative transcriptional regulator of various fungi, involved in the post-translational modulation of the GATA-type transcription factor AreA. NmrA lacks the canonical GXXGXXG NAD-binding motif and has altered residues at the catalytic triad, including a Met instead of the critical Tyr residue. NmrA may bind nucleotides but appears to lack any dehydrogenase activity. HSCARG has been identified as a putative NADP-sensing molecule, and redistributes and restructures in response to NADPH/NADP ratios. Like NmrA, it lacks most of the active site residues of the SDR family, but has an NAD(P)-binding motif similar to the extended SDR family, GXXGXXG. TMR, an NADP-binding protein, lacks the active site residues of the SDRs but has a glycine rich NAD(P)-binding motif that matches the extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 224 -187652 cd08948 5beta-POR_like_SDR_a progesterone 5-beta-reductase-like proteins (5beta-POR), atypical (a) SDRs. 5beta-POR catalyzes the reduction of progesterone to 5beta-pregnane-3,20-dione in Digitalis plants. This subgroup of atypical-extended SDRs, shares the structure of an extended SDR, but has a different glycine-rich nucleotide binding motif (GXXGXXG) and lacks the YXXXK active site motif of classical and extended SDRs. Tyr-179 and Lys 147 are present in the active site, but not in the usual SDR configuration. Given these differences, it has been proposed that this subfamily represents a new SDR class. Other atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 308 -187653 cd08950 KR_fFAS_SDR_c_like ketoacyl reductase (KR) domain of fungal-type fatty acid synthase (fFAS), classical (c)-like SDRs. KR domain of fungal-type fatty acid synthase (FAS), type I. Fungal-type FAS is a heterododecameric FAS composed of alpha and beta multifunctional polypeptide chains. The KR, an SDR family member, is located centrally in the alpha chain. KR catalyzes the NADP-dependent reduction of ketoacyl-ACP to hydroxyacyl-ACP. KR shares the critical active site Tyr of the Classical SDR and has partial identity of the active site tetrad, but the upstream Asn is replaced in KR by Met. As in other SDRs, there is a glycine rich NAD-binding motif, but the pattern found in KR does not match the classical SDRs, and is not strictly conserved within this group. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 259 -187654 cd08951 DR_C-13_KR_SDR_c_like daunorubicin C-13 ketoreductase (KR), classical (c)-like SDRs. Daunorubicin is a clinically important therapeutic compound used in some cancer treatments. Daunorubicin C-13 ketoreductase is member of the classical SDR family with a canonical glycine-rich NAD(P)-binding motif, but lacking a complete match to the active site tetrad characteristic of this group. The critical Tyr, plus the Lys and upstream Asn are present, but the catalytic Ser is replaced, generally by Gln. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 260 -187655 cd08952 KR_1_SDR_x ketoreductase (KR), subgroup 1, complex (x) SDRs. Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the single KR domain of SpiF, the first KR domains of SpiE,-G,H,-I,and #J, the third KR domain of SpiG, and the second KR domain of SpiH. The second KR domains of SpiE,-G, I, and #J, and the KR domains of SpiD, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 480 -187656 cd08953 KR_2_SDR_x ketoreductase (KR), subgroup 2, complex (x) SDRs. Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 436 -187657 cd08954 KR_1_FAS_SDR_x beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 1, complex (x) SDRs. NADP-dependent KR domain of the multidomain type I FAS, a complex SDR family. This subfamily also includes proteins identified as polyketide synthase (PKS), a protein with related modular protein architecture and similar function. It includes the KR domains of mammalian and chicken FAS, and Dictyostelium discoideum putative polyketide synthases (PKSs). These KR domains contain two subdomains, each of which is related to SDR Rossmann fold domains. However, while the C-terminal subdomain has an active site similar to the other SDRs and a NADP-binding capability, the N-terminal SDR-like subdomain is truncated and lacks these functions, serving a supportive structural role. In some instances, such as porcine FAS, an enoyl reductase (a Rossman fold NAD-binding domain of the medium-chain dehydrogenase/reductase, MDR family) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER); this KR and ER are members of the SDR family. This KR subfamily has an active site tetrad with a similar 3D orientation compared to archetypical SDRs, but the active site Lys and Asn residue positions are swapped. The characteristic NADP-binding is typical of the multidomain complex SDRs, with a GGXGXXG NADP binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 452 -187658 cd08955 KR_2_FAS_SDR_x beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 2, complex (x). Ketoreductase, a module of the multidomain polyketide synthase, has 2 subdomains, each corresponding to a short-chain dehydrogenases/reductase (SDR) family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerizes but is composed of 2 subdomains, each resembling an SDR monomer. In some instances, as in porcine FAS, an enoyl reductase (a Rossman fold NAD binding domain of the MDR family) module is inserted between the sub-domains. The active site resembles that of typical SDRs, except that the usual positions of the catalytic asparagine and tyrosine are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular polyketide synthases are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) fatty acid synthase. In some instances, such as porcine FAS , an enoyl reductase module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-ketoacyl reductase (KR), forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta-enoyl reductase (ER). Polyketide syntheses also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes the KR domain of the Lyngbya majuscule Jam J, -K, and #L which are encoded on the jam gene cluster and are involved in the synthesis of the Jamaicamides (neurotoxins); Lyngbya majuscule Jam P belongs to a different KR_FAS_SDR_x subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 376 -187659 cd08956 KR_3_FAS_SDR_x beta-ketoacyl reductase (KR) domain of fatty acid synthase (FAS), subgroup 3, complex (x). Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. In some instances, such as porcine FAS, an enoyl reductase (ER) module is inserted between the sub-domains. Fatty acid synthesis occurs via the stepwise elongation of a chain (which is attached to acyl carrier protein, ACP) with 2-carbon units. Eukaryotic systems consists of large, multifunctional synthases (type I) while bacterial, type II systems, use single function proteins. Fungal fatty acid synthesis uses a dodecamer of 6 alpha and 6 beta subunits. In mammalian type FAS cycles, ketoacyl synthase forms acetoacetyl-ACP which is reduced by the NADP-dependent beta-KR, forming beta-hydroxyacyl-ACP, which is in turn dehydrated by dehydratase to a beta-enoyl intermediate, which is reduced by NADP-dependent beta- ER. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes KR domains found in many multidomain PKSs, including six of seven Sorangium cellulosum PKSs (encoded by spiDEFGHIJ) which participate in the synthesis of the polyketide scaffold of the cytotoxic spiroketal polyketide spirangien. These seven PKSs have either a single PKS module (SpiF), two PKR modules (SpiD,-E,-I,-J), or three PKS modules (SpiG,-H). This subfamily includes the second KR domains of SpiE,-G, I, and -J, both KR domains of SpiD, and the third KR domain of SpiH. The single KR domain of SpiF, the first and second KR domains of SpiH, the first KR domains of SpiE,-G,- I, and -J, and the third KR domain of SpiG, belong to a different KR_FAS_SDR subfamily. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 448 -187660 cd08957 WbmH_like_SDR_e Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs. Bordetella bronchiseptica enzymes WbmH and WbmG, and related proteins. This subgroup exhibits the active site tetrad and NAD-binding motif of the extended SDR family. It has been proposed that the active site in Bordetella WbmG and WbmH cannot function as an epimerase, and that it plays a role in O-antigen synthesis pathway from UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 307 -187661 cd08958 FR_SDR_e flavonoid reductase (FR), extended (e) SDRs. This subgroup contains FRs of the extended SDR-type and related proteins. These FRs act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites; they have the characteristic active site triad of the SDRs (though not the upstream active site Asn) and a NADP-binding motif that is very similar to the typical extended SDR motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 293 -350084 cd08959 ArfGap_ArfGap1_like ARF1 GTPase-activating protein 1-like. ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif. 115 -185752 cd08961 GH64-TLP-SF glycoside hydrolase family 64 (beta-1,3-glucanases which produce specific pentasaccharide oligomers) and thaumatin-like proteins. This superfamily includes glycoside hydrolases of family 64 (GH64), these are mostly bacterial beta-1,3-glucanases which cleave long-chain polysaccharide beta-1,3-glucans, into specific pentasaccharide oligomers and are implicated in fungal cell wall degradation. Also included in this superfamily are thaumatin, the sweet-tasting protein from the African berry Thaumatococcus daniellii, and thaumatin-like proteins (TLPs) which are involved in host defense and a wide range of developmental processes in fungi, plants, and animals. Like GH64s, some TLPs also hydrolyze the beta-1,3-glucans of the type commonly found in fungal walls. Plant TLPs are classified as pathogenesis-related (PR) protein family 5 (PR5), their expression is induced by environmental stresses such as pathogen/pest attack, drought and cold. Several members of the plant TLP family have been reported as food allergens from fruits, and pollen allergens from conifers. Streptomyces matensis laminaripentaose-producing, beta-1,3-glucanase (GH64-LPHase), and TLPs have in common, a core N-terminal barrel domain (domain I) composed of 10 beta-strands, two coming from the C-terminal region of the protein. In TLPs, this core domain is flanked by two shorter domains (domains II and III). Small TLPs, such as Triticum aestivum thaumatin-like xylanase inhibitor, have a deletion in the third domain (domain II). GH64-LPHase has a second C-terminal domain which corresponds positional to, but is much larger than, domain III of TLP. GH64-LPHase and TLPs are described as crescent-fold structures. Critical functional residues, common to GH64-LPHase and TLPs are a Glu and an Asp residue. LPHase has an electronegative, substrate-binding cleft and the afore mentioned conserved Glu and Asp residues are the catalytic residues essential for beta-1,3-glucan cleavage. In TLPs, these residues are two of the four conserved residues which contribute to the strong electronegative character of the cleft which is associated with the antifungal activity of TLPs. 153 -199206 cd08962 GatD GatD subunit of archaeal Glu-tRNA amidotransferase. GatD is involved in the alternative synthesis of Gln-tRNA(Gln) in archaea via the transamidation of incorrectly charged Glu-tRNA(Gln). GatD is active as a dimer, and it provides the amino group required for this reaction. GatD is related to bacterial L-asparaginases (amidohydrolases), which catalyze the hydrolysis of asparagine to aspartic acid and ammonia. This CD spans both the L-asparaginase_like domain and an N-terminal supplementary domain. 402 -199207 cd08963 L-asparaginase_I Type I (cytosolic) bacterial L-asparaginase. Asparaginases (amidohydrolases, E.C. 3.5.1.1) are enzymes that catalyze the hydrolysis of asparagine to aspartic acid and ammonia. In bacteria, there are two classes of amidohydrolases. This model represents type I L-asparaginases, which are highly specific for asparagine and localized in the cytosol. Type I L-asparaginase acts as a dimer. A conserved threonine residue is thought to supply the nucleophile hydroxy-group that attacks the amide bond. Many bacterial L-asparaginases have both L-asparagine and L-glutamine hydrolysis activities, to a different degree, and some of them are annotated as asparaginase/glutaminase. One example of an enzyme with no L-glutaminase activity is the type I L-asparaginase from Wolinella succinogenes. 316 199208 cd08964 L-asparaginase_II Type II (periplasmic) bacterial L-asparaginase. Asparaginases (amidohydrolases, E.C. 3.5.1.1) are enzymes that catalyze the hydrolysis of asparagine to aspartic acid and ammonia. In bacteria, there are two classes of amidohydrolases. This model represents type II L-asparaginases, which tend to be highly specific for asparagine and localized to the periplasm. They are potent antileukemic agents and have been used in the treatment of acute lymphoblastic leukemia (ALL), but not without severe side effects. Tumor cells appear to have a heightened dependence on exogenous L-aspartate, and depleting their surroundings of L-aspartate may starve cancerous ALL cells. Type II L-asparaginase acts as a tetramer, which is actually a dimer of two tightly bound dimers. A conserved threonine residue is thought to supply the nucleophile hydroxy-group that attacks the amide bond. Many bacterial L-asparaginases have both L-asparagine and L-glutamine hydrolysis activities, to a different degree, and some of them are annotated as asparaginase/glutaminase. 319 -176799 cd08965 EcNei-like_N N-terminal domain of Escherichia coli Nei/endonuclease VIII and related DNA glycosylases. This family contains the N-terminal domain of proteobacteria Nei and related DNA glycosylases. It includes Escherichia coli Nei, and belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. Escherichia coli Nei has been well studied, it is a DNA glycosylase/AP lyase that excises damaged pyrimidines, including 5-hydroxycytosine, 5-hydroxyuracil, and uracil glycol. In addition to this EcNei-like_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a canonical zinc-finger motif. 115 -176800 cd08966 EcFpg-like_N N-terminal domain of Escherichia coli Fpg1/MutM and related bacterial DNA glycosylases. This family contains the N-terminal domain of Escherichia coli Fpg1/MutM and related bacterial DNA glycosylases. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. Escherichia coli Fpg mainly recognizes and excises damaged purines such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). It is bifunctional, having both a DNA glycosylase (recognition activity) and a AP lyase activity. In addition to this EcFpg-like_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif, which also contribute residues to the active site. 120 -176801 cd08967 MeNeil1_N N-terminal domain of metazoan Nei-like glycosylase 1 (NEIL1). This family contains the N-terminal domain of metazoan NEIL1. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. NEIL1 recognizes the oxidized pyrimidines 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), thymine glycol (Tg) and 5-hydroxyuracil (5-OHU). However, even though it has weak activity on 8-oxo-7,8-dihydroguanine (8-oxoG), it does show strong preference for the products of its further oxidation: spiroiminodihydantoin and guanidinohydantoin. In addition to this MeNeil1_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zincless finger motif. This characteristic "zincless finger" motif, is a structural equivalent of the zinc finger common to other members of the Fpg/Nei family. Neil1 is one of three homologs found in eukaryotes and its lineage extends back as far as early metazoans. 131 -176802 cd08968 MeNeil2_N N-terminal domain of metazoan Nei-like glycosylase 2 (NEIL2). This family contains the N-terminal domain of the metazoan protein Neil2. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. NEIL2 repairs 5-hydroxyuracil (5-OHU) and other oxidized derivatives of cytosine, but it shows preference for DNA bubble structures. In addition to this MeNeil2_N domain, NEIL2 contains a helix-two turn-helix (H2TH) domain and a characteristic CHCC zinc finger motif. Neil2 is one of three homologs found in eukaryotes. 126 -176803 cd08969 MeNeil3_N N-terminal domain of metazoan Nei-like glycosylase 3 (NEIL3). This family contains the N-terminal domain of the Metazoan Neil3. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. In contrast, mouse NEIL3 (MmuNEIL3) forms a Schiff base intermediate via its N-terminal valine. The latter is a functional DNA glycosylase in vitro and in vivo. MmuNEIL3 prefers lesions in single-stranded DNA and in bubble structures. In duplex DNA, it recognizes the oxidized purines spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Since the expression of the MmuNeil3 glycosylase domain (MmuNeil3delta324) reduces both the high spontaneous mutation frequency and the FapyG level in a Escherichia coli mutant lacking Fpg, Nei and MutY glycosylase activites, NEIL3 may play a role in repairing FapyG in vivo. In addition to this MeNeil3_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc finger motif, plus a characteristic C-terminal extension that contains additional zinc fingers. Neil3 is one of three homologs found in eukaryotes. 140 -176804 cd08970 AcNei1_N N-terminal domain of the actinomycetal Nei1 and related DNA glycosylases. This family contains the N-terminal domain of the actinomycetal Nei1 and related DNA glycosylases. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. This family contains mostly actinomycetes and includes Mycobacterium tuberculosis Nei1 (MtuNei1). MtuNei1 recognizes oxidized pyrimidines such as thymine glycol (Tg) and 5,6-dihydrouracil on both double stranded and single stranded DNA, it has a strong preference for the 5R isomer of Tg. In addition to this domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif. 110 -176805 cd08971 AcNei2_N N-terminal domain of the actinomycetal Nei2 and related DNA glycosylases. This family contains the N-terminal domain of the actinomycetal Nei2 and related DNA glycosylases. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. This family contains mostly actinomycetes and includes Mycobacterium tuberculosis Nei2 (MtuNei2). Complementation experiments in repair-deficient Escherichia coli (fpg mutY nei triple and nei nth double mutants), support that MtuNei2 is functionally active in vivo and recognizes both guanine and cytosine oxidation products. In addition to this AcNei2_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif. 114 -176806 cd08972 PF_Nei_N N-terminal domain of the plant and fungal Nei and related proteins. This family contains the N-terminal domain of plant and Fungi Nei and related proteins. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. The plant and fungal FpgNei glycosylases prefer the oxidized pyrimidines spiroiminodihydantoin (Sp), guanidinohydantoin (Gh) over 8-oxoguanine in double stranded oligonucleotides and also show weak activity on single stranded DNA. In addition to this domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a characteristic zincless finger motif. They share a common ancestor not shared with other eukaryotic members of the FpgNei family. 137 -176807 cd08973 BaFpgNei_N_1 Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. This N-terminal proline is conserved in this family. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_1 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif. 122 -176808 cd08974 BaFpgNei_N_2 Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. This N-terminal proline is conserved in this family. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines, and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_2 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain. Most also contain a zinc-finger motif. 98 -176809 cd08975 BaFpgNei_N_3 Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. One exception is mouse Nei-like glycosylase 3 (Neil3) which forms a Schiff base intermediate via its N-terminal valine. In this family the N-terminal proline is replaced by an isoleucine or valine. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_3 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif. 117 -176810 cd08976 BaFpgNei_N_4 Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. This N-terminal proline is conserved in this family. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_4 domain, most enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif. 117 -185760 cd08977 SusD starch binding outer membrane protein SusD. SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large variety of dietary polysaccharides, for which humans lack the necessary glycosyl hydrolases. 359 -350092 cd08978 GH_F Glycosyl hydrolase families 43 and 62 form CAZY clan GH-F. This glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) includes family 43 (GH43) and 62 (GH62). GH43 includes enzymes with beta-xylosidase (EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanases (beta-xylanases) and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. GH62 includes enzymes characterized as arabinofuranosidases (alpha-L-arabinofuranosidases; EC 3.2.1.55) that specifically cleave either alpha-1,2 or alpha-1,3-L-arabinofuranose side chains from xylans. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many of the enzymes in this family display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. GH62 are also predicted to be inverting enzymes. A common structural feature of both, GH43 and GH62 enzymes, is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 251 -350093 cd08979 GH_J Glycosyl hydrolase families 32 and 68, which form the clan GH-J. This glycosyl hydrolase family clan J (according to carbohydrate-active enzymes database (CAZY)) includes family 32 (GH32) and 68 (GH68). GH32 enzymes include invertase (EC 3.2.1.26) and other other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). The GH68 family consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10, also known as beta-D-fructofuranosyl transferase), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9). GH32 and GH68 family enzymes are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) and catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 292 -350094 cd08980 GH43_LbAraf43-like Glycosyl hydrolase family 43 proteins such as Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans GbtXyl43B. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55) and possibly bifunctional xylosidase/arabinofuranosidase activities. In addition to Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans IT-08 beta-xylosidase / exo-xylanase (GbtXyl43B). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) familiesGH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 276 -350095 cd08981 GH43_Bt1873-like Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron BT_1873. This glycosyl hydrolase family 43 (GH43) subfamily includes Bacteroides thetaiotaomicron VPI-5482 endo-arabinase (Bt1873;BT_1873), as well as uncharacterized enzymes similar to those with beta-1,4-xylosidase (xylan 1,4-beta-xylosidase; EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanase and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many of the GH43 enzymes in this family may display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 289 -350096 cd08982 GH43-like Glycosyl hydrolase family 43 protein; uncharacterized. This glycosyl hydrolase family 43 (GH43)-like subfamily includes uncharacterized enzymes similar to those with beta-1,4-xylosidase (xylan 1,4-beta-xylosidase; EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanase and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many of the enzymes in this family display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 308 -350097 cd08983 GH43_Bt3655-like Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron VPI-5482 arabinofuranosidase Bt3655. This glycosyl hydrolase family 43 (GH43)-like family includes the characterized arabinofuranosidases (EC 3.2.1.55): Bacteroides thetaiotaomicron VPI-5482 (Bt3655;BT_3655) and Penicillium chrysogenum 31B Abf43B, as well as Bifidobacterium adolescentis ATCC 15703 beta-xylosidase (EC 3.2.1.37) BAD_1527. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 includes enzymes with beta-xylosidase (EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanases (beta-xylanases) and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 262 -350098 cd08984 GH43-like Glycosyl hydrolase family 43. This glycosyl hydrolase family 43 (GH43)-like subfamily includes uncharacterized enzymes similar to those with beta-1,4-xylosidase (xylan 1,4-beta-xylosidase; EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanase and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many of the enzymes in this family display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 291 -350099 cd08985 GH43_CtGH43-like Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 273 -350100 cd08986 GH43-like Glycosyl hydrolase family 43 protein; uncharacterized. This glycosyl hydrolase family 43 (GH43)-like subfamily includes uncharacterized enzymes similar to those with beta-1,4-xylosidase (xylan 1,4-beta-xylosidase; EC 3.2.1.37), beta-1,3-xylosidase (EC 3.2.1.-), alpha-L-arabinofuranosidase (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8), endo-alpha-L-arabinanase and galactan 1,3-beta-galactosidase (EC 3.2.1.145) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many of the enzymes in this family display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 257 -350101 cd08987 GH62 Glycosyl hydrolase family 62, characterized arabinofuranosidases. The glycosyl hydrolase family 62 (GH62) includes eukaryotic (mostly fungal) and prokaryotic enzymes which are characterized arabinofuranosidases (alpha-L-arabinofuranosidases; EC 3.2.1.55) that specifically cleave either alpha-1,2 or alpha-1,3-L-arabinofuranose side chains from xylans. These enzymes show significantly different substrate preference with rather low specific activity towards natural substrates and differ in catalytic efficiency. They do not act on xylose moieties in xylan that are adorned with an arabinose side chain at both O2 and O3 positions, nor do they display any non-specific arabinofuranosidase activity. The synergistic action in biomass degradation makes GH62 promising candidates for biotechnological improvements of biofuel production and in various biorefinery applications. These enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. 304 -350102 cd08988 GH43_ABN Glycosyl hydrolase family 43. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 277 -350103 cd08989 GH43_XYL-like Glycosyl hydrolase family 43, beta-D-xylosidases and arabinofuranosidases. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes that have been annotated as having beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity, including Selenomonas ruminantium beta-D-xylosidase SXA. These are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. It also includes various GH43 family GH43 arabinofuranosidases (EC 3.2.1.55) including Humicola insolens alpha-L-arabinofuranosidase AXHd3, Bacteroides ovatus alpha-L-arabinofuranosidase (BoGH43, XynB), and the bifunctional Phanerochaete chrysosporium xylosidase/arabinofuranosidase (Xyl;PcXyl). GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 272 -350104 cd08990 GH43_AXH_like Glycosyl hydrolase family 43 protein, includes arabinoxylan arabinofuranohydrolase, beta-xylosidase, endo-1,4-beta-xylanase, and alpha-L-arabinofuranosidase. This subgroup includes Bacillus subtilis arabinoxylan arabinofuranohydrolase (XynD;BsAXH-m23;BSU18160), Butyrivibrio proteoclasticus alpha-L-arabinofuranosidase (Xsa43E;bpr_I2319), Clostridium stercorarium alpha-L-arabinofuranosidase XylA, and metagenomic beta-xylosidase (EC 3.2.1.37) / alpha-L-arabinofuranosidase (EC 3.2.1.55) CoXyl43. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_AXH-like subgroup includes enzymes that have been characterized with beta-xylosidase, alpha-L-arabinofuranosidase, endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Metagenomic beta-xylosidase/alpha-L-arabinofuranosidase CoXyl43 shows synergy with Trichoderma reesei cellulases and promotes plant biomass saccharification by degrading xylo-oligosaccharides, such as xylobiose and xylotriose, into the monosaccharide xylose. Studies show that the hydrolytic activity of CoXyl43 is stimulated in the presence of calcium. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 269 -350105 cd08991 GH43_HoAraf43-like Glycosyl hydrolase family 43 protein such as Halothermothrix orenii H 168 alpha-L-arabinofuranosidase (HoAraf43;Hore_20580). This glycosyl hydrolase family 43 (GH43) subgroup includes Halothermothrix orenii H 168 alpha-L-arabinofuranosidase (EC 3.2.1.55) (HoAraf43;Hore_20580). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. This GH43_ HoAraf43-like subgroup includes enzymes that have been annotated as having xylan-digesting beta-xylosidase (EC 3.2.1.37) and xylanase (endo-alpha-L-arabinanase, EC 3.2.1.8) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 283 -350106 cd08992 GH117 Glycosyl hydrolase family 117 (GH117). This glycoside hydrolase 117 (GH117) family includes alpha-1,3-L-neoagarooligosaccharide hydrolase (EC 3.2.1.-); alpha-1,3-L-neoagarobiase/neoagarobiose hydrolase (NABH, EC 3.2.1.-). In the agarolytic pathway, in order to metabolize agar, NABH is an essential enzyme because it converts alpha-neoagarobiose (O-3,6-anhydro-alpha-l-galactopyranosyl-(1,3)-d-galactose) into fermentable monosaccharides (d-galactose and 3,6-anhydro-l-galactose). Thus, these enzymes have exo-alpha-1,3-(3,6-anhydro)-l-galactosidase activity, removing terminal non-reducing alpha-1,3-linked 3,6-anhydro-l-galactose residues from their neoagarose substrate. This family includes Zobellia galactanivorans enzymes, Zg4663 and Zg3615 (also known as ZgAhgA and ZgAhgB, respectively) that have been shown to have similar activity on unsubstituted agarose oligosaccharides while Zg3597 has been shown to be inactive, possibly due to differences in dimerization conformation, active-site structure and function. GH117 shares distant sequence similarity with families GH43 and GH32. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 314 -350107 cd08993 GH130 Glycosyl hydrolase family 130. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), among others that have yet to be characterized. They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. This family includes Ruminococcus albus 4-O-beta-D-mannosyl-D-glucose phosphorylase (RaMP1) and beta-(1,4)-mannooligosaccharide phosphorylase (RaMP2), enzymes that phosphorolyze beta-mannosidic linkages at the non-reducing ends of their substrates, and have substantially diverse substrate specificity that are determined by three loop regions. 279 -350108 cd08994 GH43_62_32_68_117_130-like Glycosyl hydrolase families: GH43, GH62, GH32, GH68, GH117, CH130. Members of the glycosyl hydrolase families 32, 43, 62, 68, 117 and 130 (GH32, GH43, GH62, GH68, GH117, GH130) all possess 5-bladed beta-propeller domains and comprise clans F and J, as classified by the carbohydrate-active enzymes database (CAZY). Clan F consists of families GH43 and GH62. GH43 includes beta-xylosidases (EC 3.2.1.37), beta-xylanases (EC 3.2.1.8), alpha-L-arabinases (EC 3.2.1.99), and alpha-L-arabinofuranosidases (EC 3.2.1.55), using aryl-glycosides as substrates, while family GH62 contains alpha-L-arabinofuranosidases (EC 3.2.1.55) that specifically cleave either alpha-1,2 or alpha-1,3-L-arabinofuranose sidechains from xylans. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Clan J consists of families GH32 and GH68. GH32 comprises sucrose-6-phosphate hydrolases, invertases (EC 3.2.1.26), inulinases (EC 3.2.1.7), levanases (EC 3.2.1.65), eukaryotic fructosyltransferases, and bacterial fructanotransferases while GH68 consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10); beta-fructofuranosidase (EC 3.2.1.26); inulosucrase (EC 2.4.1.9), while GH68 consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10); beta-fructofuranosidase (EC 3.2.1.26); inulosucrase (EC 2.4.1.9), all of which use sucrose as their preferential donor substrate. Members of this clan are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) that catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Structures of all families in the two clans manifest a funnel-shaped active site that comprises two subsites with a single route for access by ligands. Also included in this superfamily are GH117 enzymes that have exo-alpha-1,3-(3,6-anhydro)-l-galactosidase activity, removing terminal non-reducing alpha-1,3-linked 3,6-anhydro-l-galactose residues from their neoagarose substrate, and GH130 that are phosphorylases and hydrolases for beta-mannosides, involved in the bacterial utilization of mannans or N-linked glycans. 294 -350109 cd08995 GH32_EcAec43-like Glycosyl hydrolase family 32, such as the putative glycoside hydrolase Escherichia coli Aec43 (FosGH2). This glycosyl hydrolase family 32 (GH32) subgroup includes Escherichia coli strain BEN2908 putative glycoside hydrolase Aec43 (FosGH2). GH32 enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). GH32 family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. 281 -350110 cd08996 GH32_FFase Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 281 -350111 cd08997 GH68 Glycosyl hydrolase family 68, includes levansucrase, beta-fructofuranosidase and inulosucrase. Glycosyl hydrolase family 68 (GH68) consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9), all of which use sucrose as their preferential donor substrate. Levansucrase, also known as beta-D-fructofuranosyl transferase, catalyzes the transfer of the sucrose fructosyl moiety to a growing levan chain. Similarly, inulosucrase catalyzes long inulin-type of fructans, and beta-fructofuranosidases create fructooligosaccharides (FOS). However, in the absence of high fructan/sucrose ratio, some GH68 enzymes can also use fructan as donor substrate. GH68 retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. Biotechnological applications of these enzymes include use of inulin in inexpensive production of rich fructose syrups as well as use of FOS as health-promoting pre-biotics. 354 -350112 cd08998 GH43_Arb43a-like Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 278 -350113 cd08999 GH43_ABN-like Glycosyl hydrolase family 43 protein such as endo-alpha-L-arabinanase. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 284 -350114 cd09000 GH43_SXA-like Glycosyl hydrolase family 43, such as Selenomonas ruminantium beta-D-xylosidase SXA. This glycosyl hydrolase family 43 (GH43) includes enzymes that have been characterized to mainly have beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity, including Selenomonas ruminantium (Xsa;Sxa;SXA), Bifidobacterium adolescentis ATCC 15703 (XylC;XynB;BAD_0428) and Bacillus sp. KK-1 XylB. They are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. These enzymes possess an additional C-terminal beta-sandwich domain that restricts access for substrates to a portion of the active site to form a pocket. The active-site pockets comprise of two subsites, with binding capacity for two monosaccharide moieties and a single route of access for small molecules such as substrate. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 292 -350115 cd09001 GH43_FsAxh1-like Glycosyl hydrolase family 43 such as Fibrobacter succinogenes subsp. succinogenes S85 arabinoxylan alpha-L-arabinofuranosidase. This glycosyl hydrolase family 43 (GH43) includes mostly enzymes that have been annotated as having beta-1,4-xylosidase (beta-D-xylosidase; xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity. They are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. This subfamily includes the characterized Clostridium stercorarium F-9 beta-xylosidase Xyl43B. It also includes Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase (EC 3.2.1.55) that hydrolyzes O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. It possesses an additional C-terminal beta-sandwich domain such that the interface between the domains comprises a xylan binding cleft that houses the active site pocket. The HiAXHd3 active site is tuned to hydrolyze arabinofuranosyl or xylosyl linkages, and the topology of the distal regions of the substrate binding surface confers specificity. It also includes Fibrobacter succinogenes subsp. succinogenes S85 arabinoxylan alpha-L-arabinofuranosidase (Axh1;Fisuc_1769;FSU_2269), Paenibacillus sp. E18 alpha-L-arabinofuranosidase (Abf43A), Bifidobacterium adolescentis ATCC 15703 double substituted xylan alpha-1,3-L-specific arabinofuranosidase d3 (AXHd3;AXH-d3;BaAXH-d3;BAD_0301;E-AFAM2), and Chrysosporium lucknowense C1 arabinoxylan hydrolase / double substituted xylan alpha-1,3-L-arabinofuranosidase (Abn7;AXHd). A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 270 -350116 cd09002 GH43_XYL-like Glycosyl hydrolase family 43, beta-D-xylosidase (uncharacterized). This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been annotated as having beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activity. They are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 271 -350117 cd09003 GH43_XynD-like Glycosyl hydrolase family 43 protein such as Bacillus subtilis arabinoxylan arabinofuranohydrolase (XynD;BsAXH-m23;BSU18160). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized Bacillus subtilis arabinoxylan arabinofuranohydrolase (AXH), Caldicellulosiruptor sp. Tok7B.1 beta-1,4-xylanase (EC 3.2.1.8) / alpha-L-arabinosidase (EC 3.2.1.55) XynA, Caldicellulosiruptor sp. Rt69B.1 xylanase C (EC 3.2.1.8) XynC, and Caldicellulosiruptor saccharolyticus beta-xylosidase (EC 3.2.1.37)/ alpha-L-arabinofuranosidase (EC 3.2.1.55) XynF. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. It belongs to the GH43_AXH-like subgroup which includes enzymes that have been annotated as having beta-xylosidase, alpha-L-arabinofuranosidase and arabinoxylan alpha-L-1,3-arabinofuranohydrolase, xylanase (endo-alpha-L-arabinanase) as well as AXH activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis AXH (BsAXH-m2,3) has been shown to cleave arabinose units from O-2- or O-3-mono-substituted xylose residues and superposition of its structure with known structures of the GH43 exo-acting enzymes, beta-xylosidase and alpha-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 315 -350118 cd09004 GH43_bXyl-like Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (BT3675;BT_3675) and (BT3662;BT_3662); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidase (EC 3.2.1.37) and xylanase (endo-alpha-L-arabinanase, EC 3.2.1.8) activities, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 266 -350156 cd09005 NP-I nucleoside phosphorylase-I family. The nucleoside phosphorylase-I family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases such as purine nucleoside phosphorylase (PNP, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases such as AMP nucleosidase (AMN, EC 3.2.2.4) and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Members of this family display different physiologically relevant quaternary structures: hexameric (trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP); homotrimeric (human PNP and Escherichia coli PNPII or XapA); hexameric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD); or homodimeric such as human and Trypanosoma brucei UP. The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 216 -350157 cd09006 PNP_EcPNPI-like purine nucleoside phosphorylases similar to Escherichia coli PNP-I (DeoD) and Trichomonas vaginalis PNP. Escherichia coli purine nucleoside phosphorylase (PNP)-I (or DeoD) accepts both 6-oxo and 6-amino purine nucleosides as substrates. Trichomonas vaginalis PNP has broad substrate specificity, having phosphorolytic catalytic activity with adenosine, inosine, and guanosine (with adenosine as the preferred substrate). This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 228 -350158 cd09007 NP-I_spr0068 uncharacterized subfamily of the nucleoside phosphorylase-I family. This subfamily is composed of uncharacterized members including Streptococcus pneumoniae hypothetical protein spr0068. The nucleoside phosphorylase-I (NP-I) family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases such as purine nucleoside phosphorylase (PNP, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases such as AMP nucleosidase (AMN, EC 3.2.2.4) and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Members of the NP-I family display different physiologically relevant quaternary structures: hexameric (trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP); homotrimeric (human PNP and Escherichia coli PNPII or XapA); hexameric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD); or homodimeric such as human and Trypanosoma brucei UP. The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 221 -350159 cd09008 MTAN 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases. This subfamily includes both bacterial and plant 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTANs): bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while plant enzymes are highly specific for MTA and are unable to metabolize SAH or show significantly reduced activity towards SAH. MTAN is involved in methionine and S-adenosyl-methionine recycling, polyamine biosynthesis, and bacterial quorum sensing. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 222 -350160 cd09009 PNP-EcPNPII_like purine nucleoside phosphorylases similar to human PNP and Escherichia coli PNP-II (XapA). Human PNP catalyzes the reversible phosphorolysis of the purine nucleosides and deoxynucleosides inosine, guanosine, deoxyinosine, and deoxyguanosine. Patients with PNP deficiency typically present with severe immunodeficiency, neurological dysfunction, and autoimmunity. Escherichia coli PNPII, product of the xapA/pndA gene, catalyzes the phosphorolysis of xanthosine, inosine and guanosine with equal efficiency and has been referred to as xanthosine phosphorylase and inosine-guanosine phosphorylase. E. coli PNPII is also capable of converting nicotinamide to nicotinamide riboside, and may be involved in the NAD+ salvage pathway. It is one of two purine nucleoside phosphorylases found in E. coli, which also contains PNPI, which displays a different substrate specificity and belongs to a different subgroup of the nucleoside phosphorylase-I (NP-I) family than PNPII. NP-I family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 265 -350161 cd09010 MTAP_SsMTAPII_like_MTIP 5'-deoxy-5'-methylthioadenosine phosphorylases (MTAP) similar to Sulfolobus solfataricus MTAPII and Pseudomonas aeruginosa PAO1 5'-methylthioinosine phosphorylase (MTIP). MTAP catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MTA) to adenine and 5-methylthio-D-ribose-1-phosphate. This subfamily includes human MTAP which is highly specific for MTA, and Sulfolobus solfataricus MTAPII which accepts adenosine in addition to MTA. Two MTAPs have been isolated from S. solfataricus: SsMTAP1 and SsMTAPII, SsMTAP1 belongs to a different subfamily of the nucleoside phosphorylase-I (NP-I) family. This group also includes Pseudomonas aeruginosa PAO1 MTI phosphorylase (MTIP) which uses 5'-methylthioinosine (MTI) as a preferred substrate, and does not use MTA. NP-I family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 238 -319953 cd09011 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 122 -319954 cd09012 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 127 -319955 cd09013 BphC-JF8_N_like N-terminal, non-catalytic, domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Bacillus sp. JF8, and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C. The enzymes in this family have an internal duplication. This family represents the N-terminal repeat. 121 -319956 cd09014 BphC-JF8_C_like C-terminal, catalytic domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase). 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C. The enzymes in this family have an internal duplication. This family represents the C-terminal repeat. 167 -212511 cd09015 Ureohydrolase Ureohydrolase superfamily includes arginase, formiminoglutamase, agmatinase and proclavaminate amidinohydrolase (PAH). This family, also known as arginase-like amidino hydrolase family, includes Mn-dependent enzymes: arginase (Arg, EC 3.5.3.1), formimidoylglutamase (HutG, EC 3.5.3.8 ), agmatinase (SpeB, EC 3.5.3.11), guanidinobutyrase (Gbh, EC=3.5.3.7), proclavaminate amidinohydrolase (PAH, EC 3.5.3.22) and related proteins. These enzymes catalyze hydrolysis of amide bond. They are involved in control of cellular levels of arginine and ornithine (both involved in protein biosynthesis, and production of creatine, polyamines, proline and nitric acid), in histidine and arginine degradation, and in clavulanic acid biosynthesis. 270 -176656 cd09018 DEDDy_polA_RNaseD_like_exo DEDDy 3'-5' exonuclease domain of family-A DNA polymerases, RNase D, WRN, and similar proteins. DEDDy exonucleases, part of the DnaQ-like (or DEDD) exonuclease superfamily, catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. They contain four invariant acidic residues in three conserved sequence motifs termed ExoI, ExoII and ExoIII. DEDDy exonucleases are classified as such because of the presence of a specific YX(3)D pattern at ExoIII. The four conserved acidic residues serve as ligands for the two metal ions required for catalysis. This family of DEDDy exonucleases includes the proofreading domains of family A DNA polymerases, as well as RNases such as RNase D and yeast Rrp6p. The Egalitarian (Egl) and Bacillus-like DNA Polymerase I subfamilies do not possess a completely conserved YX(3)D pattern at the ExoIII motif. In addition, the Bacillus-like DNA polymerase I subfamily has inactive 3'-5' exonuclease domains which do not possess the metal-binding residues necessary for activity. 150 -185696 cd09019 galactose_mutarotase_like galactose mutarotase_like. Galactose mutarotase catalyzes the conversion of beta-D-galactose to alpha-D-galactose. Beta-D-galactose is produced by the degradation of lactose, a disaccharide composed of beta-D-glucose and beta-D-galactose. This epimerization reaction is the first step in the four-step Leloir pathway, which converts galactose into metabolically important glucose. This epimerization step is followed by the phosophorylation of alpha-D-galactose by galactokinase, an enzyme which can only act on the alpha anomer. A glutamate and a histidine residue of the galactose mutarotase have been shown to be critical for catalysis, the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. Galactose mutarotase is a member of the aldose-1-epimerase superfamily. 326 -185697 cd09020 D-hex-6-P-epi_like D-hexose-6-phosphate epimerase-like. D-Hexose-6-phosphate epimerase Ymr099c from Saccharomyces cerevisiae belongs to the large superfamily of aldose-1-epimerases. Its active site is very similar to the catalytic site of galactose mutarotase, the best studied member of the superfamily. It also contains the conserved glutamate and histidine residues that have been shown in galactose mutarotase to be critical for catalysis, the glutamate serving as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. In addition Ymr099c contains 2 conserved arginine residues which are involved in phosphate binding, and exhibits hexose-6-phosphate mutarotase activity on glucose-6-P, galactose-6-P and mannose-6-P. 269 -185698 cd09021 Aldose_epim_Ec_YphB aldose 1-epimerase, similar to Escherichia coli YphB. Proteins similar to Escherichia coli YphB are uncharacterized members of the aldose-1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. 273 -185699 cd09022 Aldose_epim_Ec_YihR Aldose 1-epimerase, similar to Escherichia coli YihR. Proteins similar to Escherichia coli YihR are uncharacterized members of aldose-1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. 284 -185700 cd09023 Aldose_epim_Ec_c4013 Aldose 1-epimerase, similar to Escherichia coli c4013. Proteins, similar to Escherichia coli c4013, are uncharacterized members of aldose-1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. 284 -185701 cd09024 Aldose_epim_lacX Aldose 1-epimerase, similar to Lactococcus lactis lacX. Proteins similar to Lactococcus lactis lacX are uncharacterized members of aldose-1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. 288 -185702 cd09025 Aldose_epim_Slr1438 Aldose 1-epimerase, similar to Synechocystis Slr1438. Proteins similar to Synechocystis Slr1438 are uncharacterized members of aldose-1-epimerase superfamily. Aldose 1-epimerases or mutarotases are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. 271 -193601 cd09027 PET PET ((Prickle Espinas Testin) domain is involved in protein-protein interactions. PET domain is involved in protein-protein interactions and is usually found in conjunction with LIM domain, which is also a protein-protein interaction domain. The PET containing proteins serve as adaptors or scaffolds to support the assembly of multimeric protein complexes. The PET domain has been found at the N-terminal of four known groups of proteins: prickle, testin, LIMPETin/LIM-9 and overexpressed breast tumor protein (OEBT). Prickle has been implicated in regulation of cell movement through its association with the Dishevelled (Dsh) protein in the planar cell polarity (PCP) pathway. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell contact areas, and at focal adhesion plaques. It interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin, and is involved in cell motility and adhesion events. Knockout mice experiments reveal tumor repressor function of Testin. LIMPETin/LIM-9 contains an N-terminal PET domain and 6 LIM domains at the C-terminal. In Schistosoma mansoni, where LIMPETin was first identified, it is down regulated in sexually mature adult females compared to sexually immature adult females and adult males. Its differential expression indicates that it is a transcription regulator. In C. elegans, LIM-9 may play a role in regulating the assembly and maintenance of the muscle A-band by forming a protein complex with SCPL-1 and UNC-89 and other proteins. OEBT displays a PET domain with two LIM domains, and is predicted to be localized in the nucleus with a possible role in cancer differentiation. 82 -350085 cd09028 ArfGap_ArfGap3 Arf1 GTPase-activating protein 3. ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif. 120 -350086 cd09029 ArfGap_ArfGap2 Arf1 GTPase-activating protein 2. ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif. 120 -176923 cd09030 DUF1425 Putative periplasmic lipoprotein. This bacterial family of proteins contains members described as putative lipoproteins, some are also known as YcfL. The function of this family is unknown. Family members have also been annotated as predicted periplasmic lipoproteins (COG5633), and appear to contain an N-terminal membrane lipoprotein lipid attachment side (pfam08139), which is not included in this alignment model. 101 -185761 cd09034 BRO1_Alix_like Protein-interacting Bro1-like domain of mammalian Alix and related domains. This superfamily includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and Rhophilin-2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, and related domains. Alix, HD-PTP, Brox, Bro1 and Rim20 interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP functions in cell migration and endosomal trafficking, Bro1 in endosomal trafficking, and Rim20 in the response to the external pH via the Rim101 pathway. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: CHMP4 (in the case of Alix, HD-PTP, and Brox) and Snf7 (in the case of yeast Bro1, and Rim20). The single domain protein human Brox, and the isolated Bro1-like domains of Alix, HD-PTP and Rhophilin can bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Alix, HD-PTP, Bro1, and Rim20 also have a V-shaped (V) domain, which in the case of Alix, has been shown to be a dimerization domain and to contain a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in this superfamily. Alix, HD-PTP and Bro1 also have a proline-rich region (PRR); the Alix PRR binds multiple partners. Rhophilin-1, and -2, in addition to this Bro1-like domain, have an N-terminal Rho-binding domain and a C-terminal PDZ (PS.D.-95, Disc-large, ZO-1) domain. HD-PTP is encoded by the PTPN23 gene, a tumor suppressor gene candidate frequently absent in human kidney, breast, lung, and cervical tumors. This protein has a C-terminal, catalytically inactive tyrosine phosphatase domain. 345 -176924 cd09071 FAR_C C-terminal domain of fatty acyl CoA reductases. C-terminal domain of fatty acyl CoA reductases, a family of SDR-like proteins. SDRs or short-chain dehydrogenases/reductases are Rossmann-fold NAD(P)H-binding proteins. Many proteins in this FAR_C family may function as fatty acyl-CoA reductases (FARs), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as the biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. The function of this C-terminal domain is unclear. 92 -197307 cd09073 ExoIII_AP-endo Escherichia coli exonuclease III (ExoIII)-like apurinic/apyrimidinic (AP) endonucleases. The ExoIII family AP endonucleases belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, which is then followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, which have both mutagenic and cytotoxic effects. AP endonucleases can carry out a wide range of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Many organisms have two functional AP endonucleases, for example, APE1/Ref-1 and Ape2 in humans, Apn1 and Apn2 in bakers yeast, Nape and NExo in Neisseria meningitides, and exonuclease III (ExoIII) and endonuclease IV (EndoIV) in Escherichia coli. Usually, one of the two is the dominant AP endonuclease, the other has weak AP endonuclease activity, but exhibits strong 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, and 3'-phosphatase activities. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes. This family contains the ExoIII family; the EndoIV family belongs to a different superfamily. 251 -197308 cd09074 INPP5c Catalytic domain of inositol polyphosphate 5-phosphatases. Inositol polyphosphate 5-phosphatases (5-phosphatases) are signal-modifying enzymes, which hydrolyze the 5-phosphate from the inositol ring of specific 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), such as PI(4,5)P2, PI(3,4,5)P3, PI(3,5)P2, I(1,4,5)P3, and I(1,3,4,5)P4. These enzymes are Mg2+-dependent, and belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. In addition to this INPP5c domain, 5-phosphatases often contain additional domains and motifs, such as the SH2 domain, the Sac-1 domain, the proline-rich domain (PRD), CAAX, RhoGAP (RhoGTPase-activating protein), and SKICH [SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) carboxyl homology] domains, that are important for protein-protein interactions and/or for the subcellular localization of these enzymes. 5-phosphatases incorporate into large signaling complexes, and regulate diverse cellular processes including postsynaptic vesicular trafficking, insulin signaling, cell growth and survival, and endocytosis. Loss or gain of function of 5-phosphatases is implicated in certain human diseases. This family also contains a functionally unrelated nitric oxide transport protein, Cimex lectularius (bedbug) nitrophorin, which catalyzes a heme-assisted S-nitrosation of a proximal thiolate; the heme however binds at a site distinct from the active site of the 5-phosphatases. 299 -197309 cd09075 DNase1-like Deoxyribonuclease 1 and related proteins. This family includes Deoxyribonuclease 1 (DNase1, EC 3.1.21.1) and related proteins. DNase1, also known as DNase I, is a Ca2+, Mg2+/Mn2+-dependent secretory endonuclease, first isolated from bovine pancreas extracts. It cleaves DNA preferentially at phosphodiester linkages next to a pyrimidine nucleotide, producing 5'-phosphate terminated polynucleotides with a free hydroxyl group on position 3'. It generally produces tetranucleotides. DNase1 substrates include single-stranded DNA, double-stranded DNA, and chromatin. This enzyme may be responsible for apoptotic DNA fragmentation. Other deoxyribonucleases in this subfamily include human DNL1L (human DNase I lysosomal-like, also known as DNASE1L1, Xib and DNase X ), human DNASE1L2 (also known as DNAS1L2), and DNASE1L3 (also known as DNAS1L3, nhDNase, LS-DNase, DNase Y, and DNase gamma). DNASE1L3 is also implicated in apoptotic DNA fragmentation. DNase1 is also a cytoskeletal protein which binds actin. A recombinant form of human DNase1 is used as a mucoactive therapy in patients with cystic fibrosis; it hydrolyzes the extracellular DNA in sputum and reduces its viscosity. Mutations in the gene encoding DNase1 have been associated with Systemic Lupus Erythematosus, a multifactorial autoimmune disease. This family also includes a subfamily of mostly uncharacterized proteins, which includes Mycoplasma pulmonis MnuA, a membrane-associated nuclease. The in vivo role of MnuA is as yet undetermined. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 258 -197310 cd09076 L1-EN Endonuclease domain (L1-EN) of the non-LTR retrotransposon LINE-1 (L1), and related domains. This family contains the endonuclease domain (L1-EN) of the non-LTR retrotransposon LINE-1 (L1), and related domains, including the endonuclease of Xenopus laevis Tx1. These retrotranspons belong to the subtype 2, L1-clade. LINES can be classified into two subtypes. Subtype 2 has two ORFs: the second (ORF2) encodes a modular protein consisting of an N-terminal apurine/apyrimidine endonuclease domain (EN), a central reverse transcriptase, and a zinc-finger-like domain at the C-terminus. LINE-1/L1 elements (full length and truncated) comprise about 17% of the human genome. This endonuclease nicks the genomic DNA at the consensus target sequence 5'TTTT-AA3' producing a ribose 3'-hydroxyl end as a primer for reverse transcription of associated template RNA. This subgroup also includes the endonuclease of Xenopus laevis Tx1, another member of the L1-clade. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 236 -197311 cd09077 R1-I-EN Endonuclease domain encoded by various R1- and I-clade non-long terminal repeat retrotransposons. This family contains the endonuclease (EN) domain of various non-long terminal repeat (non-LTR) retrotransposons, long interspersed nuclear elements (LINEs) which belong to the subtype 2, R1- and I-clade. LINES can be classified into two subtypes. Subtype 2 has two ORFs: the second (ORF2) encodes a modular protein consisting of an N-terminal apurine/apyrimidine endonuclease domain (EN), a central reverse transcriptase, and a zinc-finger-like domain at the C-terminus. Most non-LTR retrotransposons are inserted throughout the host genome; however, many retrotransposons of the R1 clade exhibit target-specific retrotransposition. This family includes the endonucleases of SART1 and R1bm, from the silkworm Bombyx mori, which belong to the R1-clade. It also includes the endonuclease of snail (Biomphalaria glabrata) Nimbus/Bgl and mosquito Aedes aegypti (MosquI), both which belong to the I-clade. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 205 -197312 cd09078 nSMase Neutral sphingomyelinases (nSMase) catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine. Sphingomyelinases (SMase) are phosphodiesterases that catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Eukaryotic SMases have been classified according to their pH optima and are known as acid SMase, alkaline SMase, and neutral SMase (nSMase). Eukaryotic proteins in this family are nSMases, and are activated by a variety of stress-inducing agents such as cytokines or UV radiation. Ceramides and other metabolic derivatives, including sphingosine, are lipid "second messenger" molecules that participate in the regulation of stress-induced cellular responses, including cell death, adhesion, differentiation, and proliferation. Bacterial neutral SMases, which also belong to this domain family, are secreted proteins that act as membrane-damaging virulence factors. They promote colonization of the host tissue. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 280 -197313 cd09079 RgfB-like Streptococcus agalactiae RgfB, part of a putative two component signal transduction system, and related proteins. This family includes Streptococcus agalactiae RgfB (for regulator of fibrinogen binding) and related proteins. The function of RgfB is unknown. It is part of a putative two component signal transduction system designated rgfBDAC (the rgf locus was identified in a screen for mutants of Streptococcus agalactiae with altered binding to fibrinogen). RgfA,-C,and -D do not belong to this superfamily: rgfA encodes a putative response regulator, and rgfC, a putative histidine kinase. All four genes are co-transcribed, and may be involved in regulating expression of bacterial cell surface components. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 259 -197314 cd09080 TDP2 Phosphodiesterase domain of human TDP2, a 5'-tyrosyl DNA phosphodiesterase, and related domains. Human TDP2, also known as TTRAP (TRAF/TNFR-associated factors, and tumor necrosis factor receptor/TNFR-associated protein), is a 5'-tyrosyl DNA phosphodiesterase. It is required for the efficient repair of topoisomerase II-induced DNA double strand breaks. The topoisomerase is covalently linked by a phosphotyrosyl bond to the 5'-terminus of the break. TDP2 cleaves the DNA 5'-phosphodiester bond and restores 5'-phosphate termini, needed for subsequent DNA ligation, and hence repair of the break. TDP2 and 3'-tyrosyl DNA phosphodiesterase (TDP1) are complementary activities; together, they allow cells to remove trapped topoisomerase from both 3'- and 5'-DNA termini. TTRAP has been reported as being involved in apoptosis, embryonic development, and transcriptional regulation, and it may inhibit the activation of nuclear factor-kB. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 248 -197315 cd09081 CdtB CdtB, the catalytic DNase I-like subunit of cytolethal distending toxin (CDT) protein. CDT is a secreted protein toxin produced by a number of Gram-negative disease-causing bacteria. CDT causes cell cycle arrest and eventual cell death in eukaryotic cells, as a result of chromosomal DNA damage caused by the catalytic, DNase I-like, CdtB subunit. Bacterial CDTs are generally comprised of three subunits, CdtA, -B and -C. CdtB is translocated into the host cell, where it acts as a genotoxin. CdtA and CdtC are needed for cell surface binding and cellular entry, and it is likely that they remain associated with the membrane, when CdtB is internalized. CdtB enters the target nucleus via nuclear translocation signal domain(s). This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 247 -197316 cd09082 Deadenylase C-terminal deadenylase domain of CCR4, nocturnin, and related domains. This family contains the C-terminal catalytic domains of the deadenylases, CCR4 and nocturnin, and related domains. Nocturnin is a poly(A)-specific 3' exonuclease that specifically degrades the 3' poly(A) tail of RNA in a process known as deadenylation. This nuclease activity is manganese dependent. Nocturnin is expressed in the cytoplasm of the Xenopus laevis retinal photoreceptor cells in a rhythmic fashion, and it has been proposed that it participates in posttranscriptional regulation of the circadian clock or its outputs, and that the mRNA target(s) of this deadenylase are circadian clock-related. Saccharomyces cerevisiae CCR4p is a 3'-5' poly(A) RNA and ssDNA exonuclease. It is the catalytic subunit of the yeast mRNA deadenylase (Ccr4p/Pop2p/Not complex). This complex participates in various ways in mRNA metabolism, including transcription initiation and elongation, and mRNA degradation. The deadenylase activities of Ccr4p and nocturnin differ: nocturnin degrades poly(A), Ccr4p degrades both poly(A) and single-stranded DNA, and in contrast to Ccr4p, nocturnin appears to function in a highly processive manner. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 348 -197317 cd09083 EEP-1 Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1. This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds. Their substrates range from nucleic acids to phospholipids and perhaps, proteins. 252 -197318 cd09084 EEP-2 Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; uncharacterized family 2. This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds; their substrates range from nucleic acids to phospholipids and perhaps, proteins. 246 -197319 cd09085 Mth212-like_AP-endo Methanothermobacter thermautotrophicus Mth212-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes the thermophilic archaeon Methanothermobacter thermautotrophicus Mth212and related proteins. These are Escherichia coli exonuclease III (ExoIII)-like AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Mth212 is an AP endonuclease, and a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5'-side of a 2'-d-uridine residue. After incision at the 5'-side of a 2'-d-uridine residue by Mth212, DNA polymerase B takes over the 3'-OH terminus and carries out repair synthesis, generating a 5'-flap structure that is resolved by a 5'-flap endonuclease. Finally, DNA ligase seals the resulting nick. This U-endo activity shares the same catalytic center as its AP-endo activity, and is absent from other AP endonuclease homologues. 252 -197320 cd09086 ExoIII-like_AP-endo Escherichia coli exonuclease III (ExoIII) and Neisseria meningitides NExo-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes Escherichia coli ExoIII, Neisseria meningitides NExo,and related proteins. These are ExoIII family AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiencies. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity. For example, Neisseria meningitides Nape and NExo, and exonuclease III (ExoIII) and endonuclease IV (EndoIV) in Escherichia coli. NExo and ExoIII are found in this subfamily. NExo is the non-dominant AP endonuclease. It exhibits strong 3'-5' exonuclease and 3'-deoxyribose phosphodiesterase activities. Escherichia coli ExoIII is an active AP endonuclease, and in addition, it exhibits double strand (ds)-specific 3'-5' exonuclease, exonucleolytic RNase H, 3'-phosphomonoesterase and 3'-phosphodiesterase activities, all catalyzed by a single active site. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes ExoIII and endonuclease IV (EndoIV). This subfamily belongs to the ExoIII family; the EndoIV family belongs to a different superfamily. 254 -197321 cd09087 Ape1-like_AP-endo Human Ape1-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes human Ape1 (also known as Apex, Hap1, or Ref-1) and related proteins. These are Escherichia coli exonuclease III (ExoIII)-like AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity; for example, Ape1 and Ape2 in humans. Ape1 is found in this subfamily, it exhibits strong AP-endonuclease activity but shows weak 3'-5' exonuclease and 3'-phosphodiesterase activities. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes exonuclease III (ExoIII) and endonuclease IV (EndoIV). This subfamily belongs to the ExoIII family; the EndoIV family belongs to a different superfamily. 253 -197322 cd09088 Ape2-like_AP-endo Human Ape2-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes human APE2, Saccharomyces cerevisiae Apn2/Eth1, and related proteins. These are Escherichia coli exonuclease III (ExoIII)-like AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity. For examples, Ape1 and Ape2 in humans, and Apn1 and Apn2 in bakers yeast. Ape2 and Apn2/Eth1 are both found in this subfamily, and have the weaker AP endonuclease activity. Ape2 shows strong 3'-5' exonuclease and 3'-phosphodiesterase activities; it can reduce the mutagenic consequences of attack by reactive oxygen species by removing 3'-end adenine opposite from 8-oxoG, in addition to repairing 3'-damaged termini. Apn2/Eth1 exhibits AP endonuclease activity, but has 30-40 fold more active 3'-phosphodiesterase and 3'-5' exonuclease activities. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes exonuclease III (ExoIII) and endonuclease IV (EndoIV). This subfamily belongs to the ExoIII family; the EndoIV family belongs to a different superfamily. 309 -197323 cd09089 INPP5c_Synj Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of synaptojanins. This subfamily contains the INPP5c domains of two human synaptojanins, synaptojanin 1 (Synj1) and synaptojanin 2 (Synj2), and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs). They belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Synj1 occurs as two main isoforms: a brain enriched 145 KDa protein (Synj1-145) and a ubiquitously expressed 170KDa protein (Synj1-170). Synj1-145 participates in clathrin-mediated endocytosis. The primary substrate of the Synj1-145 INPP5c domain is PI(4,5)P2, which it converts to PI4P. Synj1-145 may work with membrane curvature sensors/generators (such as endophilin) to remove PI(4,5)P2 from curved membranes. The recruitment of the INPP5c domain of Synj1-145 to endophilin-induced membranes leads to a fragmentation and condensation of these structures. The PI(4,5)P2 to PI4P conversion may cooperate with dynamin to produce membrane fission. In addition to this INPP5c domain, Synjs contain an N-terminal Sac1-like domain; the Sac1 domain can dephosphorylate a variety of phosphoinositides in vitro. Synj2 can hydrolyze phosphatidylinositol diphosphate (PIP2) to phosphatidylinositol phosphate (PIP). Synj2 occurs as multiple alternative splice variants in various tissues. These variants share the INPP5c domain and the Sac1 domain. Synj2A is recruited to the mitochondria via its interaction with OMP25 (a mitochondrial outer membrane protein). Synj2B is found at nerve terminals in the brain and at the spermatid manchette in testis. Synj2B undergoes further alternative splicing to give 2B1 and 2B2. In clathrin-mediated endocytosis, Synj2 participates in the formation of clathrin-coated pits, and perhaps also in vesicle decoating. Rac1 GTPase regulates the intracellular localization of Synj2 forms, but not Synj1. Synj2 may contribute to the role of Rac1 in cell migration and invasion, and is a potential target for therapeutic intervention in malignant tumors. 328 -197324 cd09090 INPP5c_ScInp51p-like Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of Saccharomyces cerevisiae Inp51p, Inp52p, and Inp53p, and related proteins. This subfamily contains the INPP5c domain of three Saccharomyces cerevisiae synaptojanin-like inositol polyphosphate 5-phosphatases (INP51, INP52, and INP53), Schizosaccharomyces pombe synaptojanin (SPsynaptojanin), and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. In addition to this INPP5c domain, these proteins have an N-terminal catalytic Sac1-like domain (found in other proteins including the phophoinositide phosphatase Sac1p), and a C-terminal proline-rich domain (PRD). The Sac1 domain allows Inp52p and Inp53p to recognize and dephosphorylate a wider range of substrates including PI3P, PI4P, and PI(3,5)P2. The Sac1 domain of Inp51p is non-functional. Disruption of any two of INP51, INP52, and INP53, in S. cerevisiae leads to abnormal vacuolar and plasma membrane morphology. During hyperosmotic stress, Inp52p and Inp53p localize at actin patches, where they may facilitate the hydrolysis of PI(4,5)P2, and consequently promote actin rearrangement to regulate cell growth. SPsynaptojanin is also active against a range of soluble and lipid inositol phosphates, including I(1,4,5)P3, I(1,3,4,5)P4, I(1,4,5,6)P4, PI(4,5)P2, and PIP3. Transformation of S. cerevisiae with a plasmid expressing the SPsynaptojanin 5-phosphatase domain rescues inp51/inp52/inp53 triple-mutant strains. 291 -197325 cd09091 INPP5c_SHIP Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of SH2 domain containing inositol polyphosphate 5-phosphatase-1 and -2, and related proteins. This subfamily contains the INPP5c domain of SHIP1 (SH2 domain containing inositol polyphosphate 5-phosphatase-1, also known as SHIP/INPP5D), and SHIP2 (also known as INPPL1). It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Both SHIP1 and -2 catalyze the dephosphorylation of the PI, phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. SHIP1 also converts inositol-1,3,4,5- polyphosphate [I(1,3,4,5)P4] to inositol-1,3,4-polyphosphate [I(1,3,4)P3]. SHIP1 and SHIP2 have little overlap in their in vivo functions. SHIP1 is a negative regulator of cell growth and plays a major part in mediating the inhibitory signaling in B cells; it is predominantly expressed in hematopoietic cells. SHIP2 is as an inhibitor of the insulin signaling pathway, and is implicated in actin structure remodeling, cell adhesion and cell spreading, receptor endocytosis and degradation, and in the JIP1-mediated JNK pathway. SHIP2 is widely expressed, most prominently in brain, heart and in skeletal muscle. In addition to this INPP5c domain, SHIP1 has an N-terminal SH2 domain, two NPXY motifs, and a C-terminal proline-rich region (PRD), while SHIP2 has an N-terminal SH2 domain, a C-terminal proline-rich domain (PRD), which includes a WW-domain binding motif (PPLP), an NPXY motif, and a sterile alpha motif (SAM) domain. The gene encoding SHIP2 is a candidate gene for conferring a predisposition for type 2 diabetes. 307 -197326 cd09092 INPP5A Type I inositol polyphosphate 5-phosphatase I. Type I inositol polyphosphate 5-phosphatase I (INPP5A) hydrolyzes the 5-phosphate from inositol 1,3,4,5-tetrakisphosphate [I(1,3,4,5)P4] and inositol 1,4,5-trisphosphate [I(1,4,5)P3]. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. As the substrates of INPP5A mobilize intracellular calcium ions, INPP5A is a calcium signal-terminating enzyme. In platelets, phosphorylated pleckstrin binds and activates INPP5A in a 1:1 complex, and accelerates the degradation of the calcium ion-mobilizing I(1,4,5)P3. 383 -197327 cd09093 INPP5c_INPP5B Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of Type II inositol polyphosphate 5-phosphatase I, Oculocerebrorenal syndrome of Lowe 1, and related proteins. This subfamily contains the INPP5c domain of type II inositol polyphosphate 5-phosphatase I (INPP5B), Oculocerebrorenal syndrome of Lowe 1 (OCRL-1), and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. INPP5B and OCRL1 preferentially hydrolyze the 5-phosphate of phosphatidylinositol (4,5)- bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5)- trisphosphate [PI(3,4,5)P3]. INPP5B can also hydrolyze soluble inositol (1,4,5)-trisphosphate [I(1,4,5)P3] and inositol (1,3,4,5)-tetrakisphosphate [I(1,3,4,5)P4]. INPP5B participates in the endocytic pathway and in the early secretory pathway. In the latter, it may function in retrograde ERGIC (ER-to-Golgi intermediate compartment)-to-ER transport; it binds specific RAB proteins within the secretory pathway. In the endocytic pathway, it binds RAB5 and during endocytosis, may function in a RAB5-controlled cascade for converting PI(3,4,5)P3 to phosphatidylinositol 3-phosphate (PI3P). This cascade may link growth factor signaling and membrane dynamics. Mutation in OCRL1 is implicated in Lowe syndrome, an X-linked recessive multisystem disorder, which includes defects in eye, brain, and kidney function, and in Type 2 Dent's disease, a disorder with only the renal symptoms. OCRL-1 may have a role in membrane trafficking within the endocytic pathway and at the trans-Golgi network, and may participate in actin dynamics or signaling from endomembranes. OCRL1 and INPP5B have overlapping functions: deletion of both 5-phosphatases in mice is embryonic lethal, deletion of OCRL1 alone has no phenotype, and deletion of Inpp5b alone has only a mild phenotype (male sterility). Several of the proteins that interact with OCRL1 also bind INPP5B, for examples, inositol polyphosphate phosphatase interacting protein of 27kDa (IPIP27)A and B (also known as Ses1 and 2), and endocytic signaling adaptor APPL1. OCRL1, but not INPP5B, binds clathrin heavy chain, the plasma membrane AP2 adaptor subunit alpha-adaptin. In addition to this INPP5c domain, most proteins in this subfamily have a C-terminal RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain. 292 -197328 cd09094 INPP5c_INPP5J-like Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of inositol polyphosphate 5-phosphatase J and related proteins. INPP5c domain of Inositol polyphosphate-5-phosphatase J (INPP5J), also known as PIB5PA or PIPP, and related proteins. This subfamily belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. INPP5J hydrolyzes PI(4,5)P2, I(1,4,5)P3, and I(1,3,4,5)P4 at ruffling membranes. These proteins contain a C-terminal, SKIP carboxyl homology domain (SKICH), which may direct plasma membrane ruffle localization. 300 -197329 cd09095 INPP5c_INPP5E-like Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of Inositol polyphosphate-5-phosphatase E and related proteins. INPP5c domain of Inositol polyphosphate-5-phosphatase E (also called type IV or 72 kDa 5-phosphatase), rat pharbin, and related proteins. This subfamily belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. INPP5E hydrolyzes the 5-phosphate from PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3, forming PI3P, PI4P, and PI(3,4)P2, respectively. It is a very potent PI(3,4,5)P3 5-phosphatase. Its intracellular localization is chiefly cytosolic, with pronounced perinuclear/Golgi localization. INPP5E also has an N-terminal proline rich domain (PRD) and a C-terminal CAAX motif. This protein is expressed in a variety of tissues, including the breast, brain, testis, and haemopoietic cells. It is differentially expressed in several cancers, for example, it is up-regulated in cervical cancer and down-regulated in stomach cancer. It is a candidate target for therapeutics of obesity and related disorders, as it is expressed in the hypothalamus, and following insulin stimulation, it undergoes tyrosine phosphorylation, associates with insulin receptor substrate-1, -2, and PI3-kinase, and become active as a 5-phosphatase. INPP5E may play a role, along with other 5-phosphatases SHIP2 and SKIP, in regulating glucose homoeostasis and energy metabolism. Mice deficient in INPPE5 develop a multi-organ disorder associated with structural defects of the primary cilium. 298 -197330 cd09096 Deadenylase_nocturnin C-terminal deadenylase domain of nocturnin and related domains. This subfamily contains the C-terminal catalytic domain of the deadenylase, nocturnin, and related domains. Nocturnin is a poly(A)-specific 3' exonuclease that specifically degrades the 3' poly(A) tail of RNA in a process known as deadenylation. This nuclease activity is manganese dependent. Nocturnin is expressed in the cytoplasm of Xenopus laevis retinal photoreceptor cells in a rhythmic fashion, and it has been proposed that it participates in posttranscriptional regulation of the circadian clock or its outputs, and that the mRNA target(s) of this deadenylase are circadian clock-related. In mouse, the nocturnin gene, mNoc, is expressed in a circadian pattern in a range of tissues including retina, spleen, heart, kidney, and liver. It is highly expressed in bone-marrow stromal cells, adipocytes and hepatocytes. In mammals, nocturnin plays a role in regulating mesenchymal stem-cell lineage allocation, perhaps through regulating PPAR-gamma (peroxisome proliferator-activated receptor-gamma) nuclear translocation. This subfamily belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 280 -197331 cd09097 Deadenylase_CCR4 C-terminal deadenylase domain of CCR4 and related domains. This subfamily contains the C-terminal catalytic domain of the deadenylases, Saccharomyces cerevisiae Ccr4p and two vertebrate homologs (CCR4a and CCR4b), and related domains. CCR4 belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. CCR4 is the major deadenylase subunit of the CCR4-NOT transcription complex, which contains two deadenylase subunits and several noncatalytic subunits. The other deadenylase subunit, Caf1 (called Pop2 in yeast), is a DEDD-type protein and does not belong in this superfamily. Saccharomyces cerevisiae CCR4 (or Ccr4p) is a 3'-5' poly(A) RNA and ssDNA exonuclease. It is the catalytic subunit of the yeast mRNA deadenylase (Ccr4p/Pop2p/Not complex). This complex participates in various ways in mRNA metabolism, including transcription initiation and elongation, and mRNA degradation. Ccr4p degrades both poly(A) and single-stranded DNA. There are two vertebrate homologs of Ccr4p, CCR4a (also called CCR4-NOT transcription complex subunit 6 or CNOT6) and CCR4b (also called CNOT6-like or CNOT6L), which independently associate with other components to form distinct CCR4-NOT multisubunit complexes. The nuclease domain of CNOT6 and CNOT6L exhibits Mg2+-dependent deadenylase activity, with specificity for poly (A) RNA as substrate. CCR4a is a component of P-bodies and is necessary for foci formation. CCR4b regulates p27/Kip1 mRNA levels, thereby influencing cell cycle progression. They both contribute to the prevention of cell death by regulating insulin-like growth factor-binding protein 5. 329 -197332 cd09098 INPP5c_Synj1 Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of synaptojanin 1. This subfamily contains the INPP5c domains of human synaptojanin 1 (Synj1) and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Synj1 occurs as two main isoforms: a brain enriched 145 KDa protein (Synj1-145) and a ubiquitously expressed 170KDa protein (Synj1-170). Synj1-145 participates in clathrin-mediated endocytosis. The primary substrate of the Synj1-145 INPP5c domain is PI(4,5)P2, which it converts to PI4P. Synj1-145 may work with membrane curvature sensors/generators (such as endophilin) to remove PI(4,5)P2 from curved membranes. The recruitment of the INPP5c domain of Synj1-145 to endophilin-induced membranes leads to a fragmentation and condensation of these structures. The PI(4,5)P2 to PI4P conversion may cooperate with dynamin to produce membrane fission. In addition to this INPP5c domain, these proteins contain an N-terminal Sac1-like domain; the Sac1 domain can dephosphorylate a variety of phosphoinositides in vitro. 336 -197333 cd09099 INPP5c_Synj2 Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of synaptojanin 2. This subfamily contains the INPP5c domains of human synaptojanin 2 (Synj2) and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Synj2 can hydrolyze phosphatidylinositol diphosphate (PIP2) to phosphatidylinositol phosphate (PIP). In addition to this INPP5c domain, these proteins contain an N-terminal Sac1-like domain; the Sac1 domain can dephosphorylate a variety of phosphoinositides in vitro. Synj2 occurs as multiple alternative splice variants in various tissues. These variants share the INPP5c domain and the Sac1 domain. Synj2A is recruited to the mitochondria via its interaction with OMP25, a mitochondrial outer membrane protein. Synj2B is found at nerve terminals in the brain and at the spermatid manchette in testis. Synj2B undergoes further alternative splicing to give 2B1 and 2B2. In clathrin-mediated endocytosis, Synj2 participates in the formation of clathrin-coated pits, and perhaps also in vesicle decoating. Rac1 GTPase regulates the intracellular localization of Synj2 forms, but not Synj1. Synj2 may contribute to the role of Rac1 in cell migration and invasion, and is a potential target for therapeutic intervention in malignant tumors. 336 -197334 cd09100 INPP5c_SHIP1-INPP5D Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of SH2 domain containing inositol polyphosphate 5-phosphatase-1 and related proteins. This subfamily contains the INPP5c domain of SHIP1 (SH2 domain containing inositol polyphosphate 5-phosphatase-1, also known as SHIP/INPP5D) and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. SHIP1's enzymic activity is restricted to phosphatidylinositol 3,4,5-trisphosphate [PI (3,4,5)P3] and inositol-1,3,4,5- polyphosphate [I(1,3,4,5)P4]. It converts these two phosphoinositides to phosphatidylinositol 3,4-bisphosphate [PI (3,4)P2] and inositol-1,3,4-polyphosphate [I(1,3,4)P3], respectively. SHIP1 is a negative regulator of cell growth and plays a major part in mediating the inhibitory signaling in B cells; it is predominantly expressed in hematopoietic cells. In addition to this INPP5c domain, SHIP1 has an N-terminal SH2 domain, two NPXY motifs, and a C-terminal proline-rich region (PRD). SHIP1's phosphorylated NPXY motifs interact with proteins with phosphotyrosine binding (PTB) domains, and facilitate the translocation of SHIP1 to the plasma membrane to hydrolyze PI(3,4,5)P3. SHIP1 generally acts to oppose the activity of phosphatidylinositol 3-kinase (PI3K). It acts as a negative signaling molecule, reducing the levels of PI(3,4,5)P3, thereby removing the latter as a membrane-targeting signal for PH domain-containing effector molecules. SHIP1 may also, in certain contexts, amplify PI3K signals. SHIP1 and SHIP2 have little overlap in their in vivo functions. 307 -197335 cd09101 INPP5c_SHIP2-INPPL1 Catalytic inositol polyphosphate 5-phosphatase (INPP5c) domain of SH2 domain containing inositol 5-phosphatase-2 and related proteins. This subfamily contains the INPP5c domain of SHIP2 (SH2 domain containing inositol 5-phosphatase-2, also called INPPL1) and related proteins. It belongs to a family of Mg2+-dependent inositol polyphosphate 5-phosphatases, which hydrolyze the 5-phosphate from the inositol ring of various 5-position phosphorylated phosphoinositides (PIs) and inositol phosphates (IPs), and to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. SHIP2 catalyzes the dephosphorylation of the PI, phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. SHIP2 is widely expressed, most prominently in brain, heart and in skeletal muscle. SHIP2 is an inhibitor of the insulin signaling pathway. It is implicated in actin structure remodeling, cell adhesion and cell spreading, receptor endocytosis and degradation, and in the JIP1-mediated JNK pathway. Its interacting partners include filamin/actin, p130Cas, Shc, Vinexin, Interesectin 1, and c-Jun NH2-terminal kinase (JNK)-interacting protein 1 (JIP1). A large variety of extracellular stimuli appear to lead to the tyrosine phosphorylation of SHIP2, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin, macrophage colony-stimulating factor (M-CSF) and hepatocyte growth factor (HGF). SHIP2 is localized to the cytosol in quiescent cells; following growth factor stimulation and /or cell adhesion, it relocalizes to membrane ruffles. In addition to this INPP5c domain, SHIP2 has an N-terminal SH2 domain, a C-terminal proline-rich domain (PRD), which includes a WW-domain binding motif (PPLP), an NPXY motif and a sterile alpha motif (SAM) domain. The gene encoding SHIP2 is a candidate for conferring a predisposition for type 2 diabetes; it has been suggested that suppression of SHIP2 may be of benefit in the treatment of obesity and thereby prevent type 2 diabetes. SHIP2 and SHIP1 have little overlap in their in vivo functions. 304 -197201 cd09102 PLDc_CDP-OH_P_transf_II_1 Catalytic domain, repeat 1, of CDP-alcohol phosphatidyltransferase class-II family members. Catalytic domain, repeat 1, of CDP-alcohol phosphatidyltransferase class-II family members, which mainly include gram-negative bacterial phosphatidylserine synthases (PSS; CDP-diacylglycerol--serine O-phosphatidyltransferase, EC 2.7.8.8), yeast phosphatidylglycerophosphate synthase (PGP synthase; CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, EC 2.7.8.5), and metazoan PGP synthase 1. All members in this subfamily have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterize the phospholipase D (PLD) superfamily. They may utilize a common two-step ping-pong catalytic mechanism, involving a substrate-enzyme intermediate, to cleave phosphodiester bonds. The two motifs are suggested to constitute the active site involving phosphatidyl group transfer. Phosphatidylserine synthases from gram-positive bacteria and eukaryotes, and prokaryotic phosphatidylglycerophosphate synthases are not members of this subfamily. 168 -197202 cd09103 PLDc_CDP-OH_P_transf_II_2 Catalytic domain, repeat 2, of CDP-alcohol phosphatidyltransferase class-II family members. Catalytic domain, repeat 2, of CDP-alcohol phosphatidyltransferase class-II family members, which mainly include gram-negative bacterial phosphatidylserine synthases (PSS; CDP-diacylglycerol--serine O-phosphatidyltransferase, EC 2.7.8.8), yeast phosphatidylglycerophosphate synthase (PGP synthase; CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, EC 2.7.8.5), and metazoan PGP synthase 1. All members in this subfamily have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterize the phospholipase D (PLD) superfamily. They may utilize a common two-step ping-pong catalytic mechanism, involving a substrate-enzyme intermediate, to cleave phosphodiester bonds. The two motifs are suggested to constitute the active site involving phosphatidyl group transfer. Phosphatidylserine synthases from gram-positive bacteria and eukaryotes, and prokaryotic phosphatidylglycerophosphate synthases are not members of this subfamily. 184 -197203 cd09104 PLDc_vPLD1_2_like_1 Catalytic domain, repeat 1, of vertebrate phospholipases, PLD1 and PLD2, and similar proteins. Catalytic domain, repeat 1, of phospholipase D (PLD, EC 3.1.4.4) found in yeast, plants, and vertebrates, and their bacterial homologs. PLDs are involved in signal transduction, vesicle formation, protein transport, and mitosis by participating in phospholipid metabolism. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Both prokaryotic and eukaryotic PLDs have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. PLDs are active as bi-lobed monomers. Each monomer contains two domains, each of which carries one copy of the HKD motif. Two HKD motifs from two domains form a single active site. PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 147 -197204 cd09105 PLDc_vPLD1_2_like_2 Catalytic domain, repeat 2, of vertebrate phospholipases, PLD1 and PLD2, and similar proteins. Catalytic domain, repeat 2, of phospholipase D (PLD, EC 3.1.4.4) found in yeast, plants, and vertebrates, and their bacterial homologs. PLDs are involved in signal transduction, vesicle formation, protein transport, and mitosis by participating in phospholipid metabolism. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Both prokaryotic and eukaryotic PLDs have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. PLDs are active as bi-lobed monomers. Each monomer contains two domains, each of which carries one copy of the HKD motif. Two HKD motifs from two domains form a single active site. PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 146 -197205 cd09106 PLDc_vPLD3_4_5_like_1 Putative catalytic domain, repeat 1, of vertebrate phospholipases, PLD3, PLD4 and PLD5, viral envelope proteins K4 and p37, and similar proteins. Putative catalytic domain, repeat 1, of vertebrate phospholipases D, PLD3, PLD4, and PLD5 (EC 3.1.4.4), viral envelope proteins (vaccinia virus proteins K4 and p37), and similar proteins. Most family members contain two copies of the HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue), and have been classified into the phospholipase D (PLD) superfamily. Proteins in this subfamily are associated with Golgi membranes, altering their lipid content by the conversion of phospholipids into phosphatidic acid, which is thought to be involved in the regulation of lipid movement. ADP ribosylation factor (ARF), a small guanosine triphosphate binding protein, might be required activity. The vaccinia virus p37 protein, encoded by the F13L gene, is also associated with Golgi membranes and is required for the envelopment and spread of the extracellular enveloped virus (EEV). The vaccinia virus protein K4, encoded by the HindIII K4L gene, remains to be characterized. Sequence analysis indicates that the vaccinia virus proteins K4 and p37 might have evolved from one or more captured eukaryotic genes involved in cellular lipid metabolism. Up to date, no catalytic activity of PLD3 has been shown. Furthermore, due to the lack of functional important histidine and lysine residues in the HKD motif, mammalian PLD5 has been characterized as an inactive PLD. The poxvirus p37 proteins may also lack PLD enzymatic activity, since they contain only one partially conserved HKD motif (N-x-K-x(4)-D). 153 -197206 cd09107 PLDc_vPLD3_4_5_like_2 Putative catalytic domain, repeat 2, of vertebrate phospholipases, PLD3, PLD4 and PLD5, viral envelope proteins K4 and p37, and similar proteins. Putative catalytic domain, repeat 2, of vertebrate phospholipases D, PLD3, PLD4, and PLD5 (EC 3.1.4.4), viral envelope proteins (vaccinia virus proteins K4 and p37), and similar proteins. Most family members contain two copies of the HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue), and have been classified into the phospholipase D (PLD) superfamily. Proteins in this subfamily are associated with Golgi membranes, altering their lipid content by the conversion of phospholipids into phosphatidic acid, which is thought to be involved in the regulation of lipid movement. ADP ribosylation factor (ARF), a small guanosine triphosphate binding protein, might be required activity. The vaccinia virus p37 protein, encoded by the F13L gene, is also associated with Golgi membranes and is required for the envelopment and spread of the extracellular enveloped virus (EEV). The vaccinia virus protein K4, encoded by the HindIII K4L gene, remains to be characterized. Sequence analysis indicates that the vaccinia virus proteins K4 and p37 might have evolved from one or more captured eukaryotic genes involved in cellular lipid metabolism. Up to date, no catalytic activity of PLD3 has been shown. Furthermore, due to the lack of functional important histidine and lysine residues in the HKD motif, mammalian PLD5 has been characterized as an inactive PLD. The poxvirus p37 proteins may also lack PLD enzymatic activity, since they contain only one partially conserved HKD motif (N-x-K-x(4)-D). 175 -197207 cd09108 PLDc_PMFPLD_like_1 Catalytic domain, repeat 1, of phospholipase D from Streptomyces Sp. Strain PMF and similar proteins. Catalytic domain, repeat 1, of phospholipases D (PLD, EC 3.1.4.4) from Streptomyces Sp. Strain PMF (PMFPLD) and similar proteins, which are generally extracellular and bear N-terminal signal sequences. PMFPLD hydrolyzes the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. It also catalyzes a transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. In contrast to eukaryotic PLDs, PMFPLD has a compact structure, which consists of two catalytic domains, but lacks the regulatory domains. Each catalytic domain contains one copy of the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. Two HKD motifs from two domains form a single active site. Like other PLD enzymes, PMFPLD may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. A calcium-dependent PLD from Streptomyce chromofuscus is excluded from this family, since it displays very little sequence homology with other Streptomyces PLDs. Moreover, it does not contain the conserved HKD motif and hydrolyzes the phospholipids via a different mechanism. 210 -197208 cd09109 PLDc_PMFPLD_like_2 Catalytic domain, repeat 2, of phospholipase D from Streptomyces Sp. Strain PMF and similar proteins. Catalytic domain, repeat 2, of phospholipases D (PLD, EC 3.1.4.4) from Streptomyces Sp. Strain PMF (PMFPLD) and similar proteins, which are generally extracellular and bear N-terminal signal sequences. PMFPLD hydrolyzes the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. It also catalyzes a transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. In contrast to eukaryotic PLDs, PMFPLD has a compact structure, which consists of two catalytic domains, but lacks the regulatory domains. Each catalytic domain contains one copy of the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. Two HKD motifs from two domains form a single active site. Like other PLD enzymes, PMFPLD may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. A calcium-dependent PLD from Streptomyce chromofuscus is excluded from this family, since it displays very little sequence homology with other Streptomyces PLDs. Moreover, it does not contain the conserved HKD motif and hydrolyzes the phospholipids via a different mechanism. 212 -197209 cd09110 PLDc_CLS_1 Catalytic domain, repeat 1, of bacterial cardiolipin synthase and similar proteins. Catalytic domain, repeat 1, of bacterial cardiolipin (CL) synthase and a few homologs found in eukaryotes and archaea. Bacterial CL synthases catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. The monomer of bacterial CL synthase consists of two catalytic domains. Each catalytic domain contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. Two HKD motifs from two domains form a single active site involved in phosphatidyl group transfer. Bacterial CL synthases can be stimulated by phosphate and inhibited by CL, the product of the reaction, and by phosphatidate. Phosphate stimulation may be unique to enzymes with CL synthase activity belonging to the PLD superfamily. Like other PLD enzymes, bacterial CL synthases utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 154 -197210 cd09111 PLDc_ymdC_like_1 Putative catalytic domain, repeat 1, of Escherichia coli uncharacterized protein ymdC and similar proteins. Putative catalytic domain, repeat 1, of Escherichia coli uncharacterized protein ymdC and similar proteins. In Escherichia coli, there are two genes, f413 (ybhO) and o493 (ymdC), which are homologous to gene cls that encodes the Escherichia coli cardiolipin (CL) synthase. The prototype of this subfamily is an uncharacterized protein ymdC specified by the o493 (ymdC) gene. Although the functional characterization of ymdC and similar proteins remains unknown, members of this subfamily show high sequence homology to bacterial CL synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Moreover, ymdC and its similar proteins contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characteriszes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 162 -197211 cd09112 PLDc_CLS_2 catalytic domain repeat 2 of bacterial cardiolipin synthase and similar proteins. This CD corresponds to the catalytic domain repeat 2 of bacterial cardiolipin synthase (CL synthase, EC 2.7.8.-) and a few homologs found in eukaryotes and archea. Bacterial CL synthases catalyze reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form cardiolipin (CL) and glycerol. The monomer of bacterial CL synthase consists of two catalytic domains. Each catalytic domain contains one copy of conserved HKD motifs (H-X-K-X(4)-D, X represents any amino acid residue) that are the characteristic of the phospholipase D (PLD) superfamily. Two HKD motifs from two domains together form a single active site involving in phosphatidyl group transfer. Bacterial CL synthases can be stimulated by phosphate and inhibited by CL, the product of the reaction, and by phosphatidate. Phosphate stimulation may be unique to enzymes with CL synthase activity in PLD superfamily. Like other PLD enzymes, bacterial CL synthase utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid stabilizing the leaving group. 174 -197212 cd09113 PLDc_ymdC_like_2 Putative catalytic domain, repeat 2, of Escherichia coli uncharacterized protein ymdC and similar proteins. Putative catalytic domain, repeat 2, of Escherichia coli uncharacterized protein ymdC and similar proteins. In Escherichia coli, there are two genes, f413 (ybhO) and o493 (ymdC), which are homologous to gene cls that encodes the Escherichia coli cardiolipin (CL) synthase. The prototype of this subfamily is an uncharacterized protein ymdC specified by the o493 (ymdC) gene. Although the functional characterization of ymdC and similar proteins remains unknown, members of this subfamily show high sequence homology to bacterial CL synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Moreover, ymdC and its similar proteins contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characteriszes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 218 -197213 cd09114 PLDc_PPK1_C1 Catalytic C-terminal domain, first repeat, of prokaryotic polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, first repeat (C1 domain), of bacterial polyphosphate kinases 1 (Poly P kinase 1 or PPK1, EC 2.7.4.1) and similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. Each PPK1 monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of PPK1 are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. There is a second bacterial-type enzyme, PPK2, which is involved in the synthesis of poly P from GTP or ATP. PPK2 shows no sequence similarity to PPK1 and belongs to different superfamily. 162 -197214 cd09115 PLDc_PPK1_C2 Catalytic C-terminal domain, second repeat, of prokaryotic polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, second repeat (C2 domain), of bacterial polyphosphate kinases 1 (Poly P kinase 1 or PPK1, EC 2.7.4.1) and similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. Each PPK1 monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of PPK1 are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. There is a second bacterial-type enzyme, PPK2, which is involved in the synthesis of poly P from GTP or ATP. PPK2 shows no sequence similarity to PPK1 and belongs to different superfamily. 162 -197215 cd09116 PLDc_Nuc_like Catalytic domain of EDTA-resistant nuclease Nuc, vertebrate phospholipase D6, and similar proteins. Catalytic domain of EDTA-resistant nuclease Nuc, vertebrate phospholipase D6 (PLD6, EC 3.1.4.4), and similar proteins. Nuc is an endonuclease from Salmonella typhimurium and the smallest known member of the PLD superfamily. It cleaves both single- and double-stranded DNA. PLD6 selectively hydrolyzes the terminal phosphodiester bond of phosphatidylcholine (PC), with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLD6 also catalyzes the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Both Nuc and PLD6 belong to the phospholipase D (PLD) superfamily. They contain a short conserved sequence motif, the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which is essential for catalysis. PLDs utilize a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. This subfamily also includes some uncharacterized hypothetical proteins, which have two HKD motifs in a single polypeptide chain. 138 -197216 cd09117 PLDc_Bfil_DEXD_like Catalytic domain of type II restriction endonucleases BfiI and NgoFVII, and uncharacterized proteins with a DEAD domain. Catalytic domain of type II restriction endonucleases BfiI and NgoFVII, uncharacterized type III restriction endonuclease Res subunit, and uncharacterized DNA/RNA helicase superfamily II members. Proteins in this family are found mainly in prokaryotes. They contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in a single polypeptide chain, and have been classified as members of the phospholipase D (PLD, EC 3.1.4.4) superfamily. BfiI consists of two discrete domains with distinct functions: an N-terminal catalytic domain with non-specific nuclease activity and dimerization function that is more closely related to Nuc, an EDTA-resistant nuclease from the phospholipase D (PLD) superfamily; and a C-terminal domain that specifically recognizes its target sequences, 5'-ACTGGG-3'. BfiI forms a functionally active homodimer which has two DNA-binding surfaces located at the C-terminal domains but only one active site, located at the dimer interface between the two N-terminal catalytic domains that contain the two HKD motifs from both subunits. BfiI utilizes a single active site to cut both DNA strands, which represents a novel mechanism for the scission of double-stranded DNA. It uses a histidine residue from the HKD motif in one subunit as the nucleophile for the cleavage of the target phosphodiester bond in both of the anti-parallel DNA strands, while the symmetrically-related histidine residue from the HKD motif of the opposite subunit acts as the proton donor/acceptor during both strand-scission events. 117 -197217 cd09118 PLDc_yjhR_C_like C-terminal domain of Escherichia coli uncharacterized protein yjhR and similar proteins. C-terminal domain of Escherichia coli uncharacterized protein yjhR, encoded by the o338 gene, and similar proteins. Although the biological function of yjhR remains unknown, it shows sequence similarity to the C-terminal portions of superfamily I DNA and RNA helicases, which are ubiquitous enzymes mediating ATP-dependent unwinding of DNA and RNA duplexes, and play essential roles in gene replication and expression. Moreover, The C-termini of yjhR and similar proteins contain one HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The PLDc-like domain of yjhR is similar to bacterial endonucleases, Nuc and BfiI, both of which have only one copy of the HKD motif per chain. They function as homodimers, with a single active site at the dimer interface containing the HKD motifs from both subunits. They utilize a two-step mechanism to cleave phosphodiester bonds. Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. 144 -197218 cd09119 PLDc_FAM83_N N-terminal phospholipase D-like domain of proteins from the Family with sequence similarity 83. N-terminal phospholipase D (PLD)-like domain of vetebrate proteins from the Family with sequence similarity 83 (FAM83), which is comprised of 8 members, designated FAM83A through FAM83H. Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, the FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are unlikely to carry PLD activity. Members of the FAM83 are mostly uncharacterized proteins. FAM83A, also known as tumor antigen BJ-TSA-9, is a novel tumor-specific gene highly expressed in human lung adenocarcinoma. FAM83D, also known as spindle protein CHICA, is a cell-cycle-regulated spindle component which localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. The gene encoding protein FAM83H is the first gene involved in the etiology of amelogenesis imperfecta (AI), that encodes a non-secreted protein due to the absence of a signal peptide. Defects in gene FAM83H cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI). FAM83B, FAM83C, FAM83F, and FAM83G are uncharacterized proteins present across vertebrates while FAM83E is an uncharacterized protein found only in mammals. 269 -197219 cd09120 PLDc_DNaseII_1 Catalytic domain, repeat 1, of Deoxyribonuclease II and similar proteins. Catalytic domain, repeat 1, of Deoxyribonuclease II (DNase II, EC 3.1.22.1), an endodeoxyribonuclease with ubiquitous tissue distribution. It is essential for accessory apoptotic DNA fragmentation and DNA clearance during development, as well as in tissue regeneration in higher eukaryotes. Unlike the majority of nucleases, DNase II functions optimally at acidic pH in the absence of divalent metal ion cofactors. It hydrolyzes the phosphodiester backbone of DNA by a single strand cleavage mechanism to generate 3'-phosphate termini. The majority of family members contain an N-terminal signal-peptide leader sequence, which is critical for N-glycosylation and DNase II activity. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta (also known as DNase II-like acid DNase, DLAD) subtypes. A few homologs are found in non-metazoan species, but none are found in fungi, plants or prokaryotes, with the sole exception of Burkholderia pseudomallei. Among those homologs, the Caenorhabditis elegans C07B5.5 ORF encoding NUC-1 apoptotic nuclease, the uncharacterized C. elegans crn-6 (cell death related nuclease) gene encoding protein, and the putative gene CG7780 encoding Drosophila DNase II (dDNase II) have similar cleavage activity and specificity to mammalian DNase II enzymes. They may function like an acid DNase implicated in degrading DNA from apoptotic cells engulfed by macrophages. Plancitoxin I, the major lethal factor from the Acanthaster planci venom, is a unique homolog of mammalian DNase II. It has potent hepatotoxicity and the optimum pH for its activity is 7.2, unlike the optimum acidic PH for mammalian DNase II. Some members of this family contain substitutions of conserved residues found in the putative active site, which suggest that these proteins may have diverged from a canonical DNase II activity and may perform other functions. 141 -197220 cd09121 PLDc_DNaseII_2 Catalytic domain, repeat 2, of Deoxyribonuclease II and similar proteins. Catalytic domain, repeat 2, of Deoxyribonuclease II (DNase II, EC 3.1.22.1), an endodeoxyribonuclease with ubiquitous tissue distribution. It is essential for accessory apoptotic DNA fragmentation and DNA clearance during development, as well as in tissue regeneration in higher eukaryotes. Unlike the majority of nucleases, DNase II functions optimally at acidic pH in the absence of divalent metal ion cofactors. It hydrolyzes the phosphodiester backbone of DNA by a single strand cleavage mechanism to generate 3'-phosphate termini. The majority of family members contain an N-terminal signal-peptide leader sequence, which is critical for N-glycosylation and DNase II activity. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta (also known as DNase II-like acid DNase, DLAD) subtypes. A few homologs are found in non-metazoan species, but none are found in fungi, plants or prokaryotes, with the sole exception of Burkholderia pseudomallei. Among those homologs, the Caenorhabditis elegans C07B5.5 ORF encoding NUC-1 apoptotic nuclease, the uncharacterized C. elegans crn-6 (cell death related nuclease) gene encoding protein, and the putative gene CG7780 encoding Drosophila DNase II (dDNase II) have similar cleavage activity and specificity to mammalian DNase II enzymes. They may function like an acid DNase implicated in degrading DNA from apoptotic cells engulfed by macrophages. Plancitoxin I, the major lethal factor from the Acanthaster planci venom, is a unique homolog of mammalian DNase II. It has potent hepatotoxicity and the optimum pH for its activity is 7.2, unlike the optimum acidic PH for mammalian DNase II. Some members of this family contain substitutions of conserved residues found in the putative active site, which suggest that these proteins may have diverged from the canonical DNase II activity and may perform other functions. 139 -197221 cd09122 PLDc_Tdp1_1 Catalytic domain, repeat 1, of Tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 1, of Tyrosyl-DNA phosphodiesterase (Tdp1, EC 3.1.4.-), which exists in eukaryotes but not in prokaryotes. Tdp1 acts as an important DNA repair enzyme that removes stalled topoisomerase I-DNA complexes by catalyzing the hydrolysis of a phosphodiester bond between a tyrosine side chain and a DNA 3'-phosphate. It is a monomeric protein that contains two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Thus, this family represents a distinct class within the PLD superfamily. Like other PLD enzymes, Tdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 145 -197222 cd09123 PLDc_Tdp1_2 Catalytic domain, repeat 2, of tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 2, of Tyrosyl-DNA phosphodiesterase (Tdp1, EC 3.1.4.-), which exists in eukaryotes but not in prokaryotes. Tdp1 acts as an important DNA repair enzyme that removes stalled topoisomerase I-DNA complexes by catalyzing the hydrolysis of a phosphodiester bond between a tyrosine side chain and a DNA 3'-phosphate. It is a monomeric protein that contains two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Thus, this family represents a distinct class within the PLD superfamily. Like other PLD enzymes, Tdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 182 -197223 cd09124 PLDc_like_TrmB_middle Middle phospholipase D-like domain of the transcriptional regulator TrmB and similar proteins. Middle phospholipase D (PLD)-like domain of the transcriptional regulator TrmB and similar proteins. TrmB acts as a bifunctional sugar-sensing transcriptional regulator which controls two operons encoding maltose/trehalose and maltodextrin ABC transporters of Pyrococcus fruiosus. It functions as a dimer. Full length TrmB includes an N-terminal DNA-binding domain, a C-terminal sugar-binding domain and middle region that has been named as a PLD-like domain. The middle domain displays homology to PLD enzymes, which contain one or two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) per chain. The HKD motif characterizes the PLD superfamily. Due to the lack of key residues related to PLD activity in the PLD-like domain, members of this subfamily are unlikely to carry PLD activity. 126 -197224 cd09126 PLDc_C_DEXD_like C-terminal putative phospholipase D-like domain of uncharacterized prokaryotic HKD family nucleases fused to DEAD/DEAH box helicases. C-terminal putative phospholipase D (PLD)-like domain of uncharacterized prokaryotic HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. In addition to the helicase-like region, members of this family also contain a PLD-like domain in the C-terminal region, which is characterized by a variant HKD (H-x-K-x(4)-D motif, where x represents any amino acid residue) motif. Due to the lack of key residues related to PLD activity in the variant HKD motif, members of this subfamily are most unlikely to carry PLD activity. 126 -197225 cd09127 PLDc_unchar1_1 Putative catalytic domain, repeat 1, of uncharacterized phospholipase D-like proteins. Putative catalytic domain, repeat 1, of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 141 -197226 cd09128 PLDc_unchar1_2 Putative catalytic domain, repeat 2, of uncharacterized phospholipase D-like proteins. Putative catalytic domain, repeat 2, of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 142 -197227 cd09129 PLDc_unchar2_1 Putative catalytic domain, repeat 1, of uncharacterized phospholipase D-like proteins. Putative catalytic domain, repeat 1, of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 196 -197228 cd09130 PLDc_unchar2_2 Putative catalytic domain, repeat 2, of uncharacterized phospholipase D-like proteins. Putative catalytic domain, repeat 2, of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 157 -197229 cd09131 PLDc_unchar3 Putative catalytic domain of uncharacterized phospholipase D-like proteins. Putative catalytic domain of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. Members of this subfamily contain one copy of HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. 143 -197230 cd09132 PLDc_unchar4 Putative catalytic domain of uncharacterized phospholipase D-like proteins. Putative catalytic domain of uncharacterized phospholipase D (PLD, EC 3.1.4.4)-like proteins. Members of this subfamily contain one copy of HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. 122 -197231 cd09133 PLDc_unchar5 Putative catalytic domain of uncharacterized hypothetical proteins with one or two copies of the HKD motif. Putative catalytic domain of uncharacterized hypothetical proteins with similarity to phospholipase D (PLD, EC 3.1.4.4). PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain one or two copies of the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. 127 -197232 cd09134 PLDc_PSS_G_neg_1 Catalytic domain, repeat 1, of phosphatidylserine synthases from gram-negative bacteria. Catalytic domain, repeat 1, of phosphatidylserine synthases (PSSs) from gram-negative bacteria. There are two subclasses of PSS enzymes in bacteria: subclass I of gram-negative bacteria and subclass II of gram-positive bacteria. It is common that PSSs in gram-positive bacteria and yeast are tight membrane-associated enzymes. By contrast, the gram-negative bacterial PSSs, such as Escherichia coli PSS, are commonly bound to the ribosomes. They are peripheral membrane proteins that can interact with the surface of the inner membrane by binding to the lipid substrate (CDP-diacylglycerol) and the lipid product (phosphatidylserine). The prototypical member of this subfamily is Escherichia coli PSS (also called CDP-diacylglycerol-L-serine O-phosphatidyltransferase, EC 2.7.8.8), which catalyzes the exchange reactions between CMP and CDP-diacylglycerol, and between serine and phosphatidylserine. The phosphatidylserine is then decarboxylated by phosphatidylserine decarboxylase to yield phosphatidylethanolamine, the major phospholipid in Escherichia coli. It also catalyzes the hydrolysis of CDP-diacylglycerol to form phosphatidic acid with the release of CMP. PSS may utilize a ping-pong mechanism involving a phosphatidyl-enzyme intermediate, which is distinct from those of gram-positive bacterial phosphatidylserine synthases. Moreover, all members in this subfamily have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs constitute an active site for the formation of a covalent substrate-enzyme intermediate. 173 -197233 cd09135 PLDc_PGS1_euk_1 Catalytic domain, repeat 1, of eukaryotic PhosphatidylGlycerophosphate Synthases. Catalytic domain, repeat 1, of eukaryotic phosphatidylglycerophosphate (PGP) synthases, also called CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5). Eukaryotic PGP synthases are different and unrelated to prokaryotic PGP synthases and yeast phosphatidylserine synthase. They catalyze the synthesis of PGP from CDP-diacylglycerol and sn-glycerol 3-phosphate, the committed and rate-limiting step in the biosynthesis of cardiolipin (CL), which is an essential component of many mitochondrial functions in eukaryotes. Members in this subfamily all have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. They may utilize a common two-step ping-pong catalytic mechanism involving a substrate-enzyme intermediate to cleave phosphodiester bonds. The two motifs are suggested to constitute the active site involved in the phosphatidyl group transfer. 170 -197234 cd09136 PLDc_PSS_G_neg_2 Catalytic domain, repeat 2, of phosphatidylserine synthases from gram-negative bacteria. Catalytic domain, repeat 2, of phosphatidylserine synthases (PSSs) from gram-negative bacteria. There are two subclasses of PSS enzymes in bacteria: subclass I of gram-negative bacteria and subclass II of gram-positive bacteria. It is common that PSSs in gram-positive bacteria and yeast are tight membrane-associated enzymes. By contrast, the gram-negative bacterial PSSs, such as Escherichia coli PSS, are commonly bound to the ribosomes. They are peripheral membrane proteins that can interact with the surface of the inner membrane by binding to the lipid substrate (CDP-diacylglycerol) and the lipid product (phosphatidylserine). The prototypical member of this subfamily is Escherichia coli PSS (also called CDP-diacylglycerol-L-serine O-phosphatidyltransferase, EC 2.7.8.8), which catalyzes the exchange reactions between CMP and CDP-diacylglycerol, and between serine and phosphatidylserine. The phosphatidylserine is then decarboxylated by phosphatidylserine decarboxylase to yield phosphatidylethanolamine, the major phospholipid in Escherichia coli. It also catalyzes the hydrolysis of CDP-diacylglycerol to form phosphatidic acid with the release of CMP. PSS may utilize a ping-pong mechanism involving a phosphatidyl-enzyme intermediate, which is distinct from those of gram-positive bacterial phosphatidylserine synthases. Moreover, all members in this subfamily have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs constitute an active site for the formation of a covalent substrate-enzyme intermediate. 215 -197235 cd09137 PLDc_PGS1_euk_2 Catalytic domain, repeat 2, of eukaryotic phosphatidylglycerophosphate synthases. Catalytic domain, repeat 2, of eukaryotic phosphatidylglycerophosphate (PGP) synthases, also called CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5). Eukaryotic PGP synthases are different and unrelated to prokaryotic PGP synthases and yeast phosphatidylserine synthase. They catalyze the synthesis of PGP from CDP-diacylglycerol and sn-glycerol 3-phosphate, the committed and rate-limiting step in the biosynthesis of cardiolipin (CL), which is an essential component of many mitochondrial functions in eukaryotes. Members in this subfamily all have two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. They may utilize a common two-step ping-pong catalytic mechanism involving a substrate-enzyme intermediate to cleave phosphodiester bonds. The two motifs are suggested to constitute the active site involved in the phosphatidyl group transfer. 186 -197236 cd09138 PLDc_vPLD1_2_yPLD_like_1 Catalytic domain, repeat 1, of vertebrate phospholipases, PLD1 and PLD2, yeast PLDs, and similar proteins. Catalytic domain, repeat 1, of vertebrate phospholipases D (PLD1 and PLD2), yeast phospholipase D (PLD SPO14/PLD1), and other similar eukaryotic proteins. These PLD enzymes play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. The vertebrate PLD1 and PLD2 are membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzymes that selectively hydrolyze phosphatidylcholine (PC). Protein cofactors and calcium may be required for their activation. Yeast SPO14/PLD1 is a calcium-independent PLD, which needs PIP2 for its activity. Instead of the regulatory calcium-dependent phospholipid-binding C2 domain in plants, most mammalian and yeast PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at the N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. The PX and PH domains are also present in zeta-type PLD from Arabidopsis, which is more closely related to vertebrate PLDs than to other plant PLD types. In addition, this subfamily also includes some related proteins which have either PX-like or PH domains in their N-termini. Like other members of the PLD superfamily, the monomer of mammalian and yeast PLDs consists of two catalytic domains, each containing one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from the two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 146 -197237 cd09139 PLDc_pPLD_like_1 Catalytic domain, repeat 1, of plant phospholipase D and similar proteins. Catalytic domain, repeat 1, of plant phospholipase D (PLD, EC 3.1.4.4) and similar proteins. Plant PLDs have broad substrate specificity and can hydrolyze the terminal phosphodiester bond of several common membrane phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Most plant PLDs possess a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and require calcium for activity, which is unique to plant PLDs and is not present in animal or fungal PLDs. Like other PLD enzymes, the monomer of plant PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDs may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. This subfamily includes two types of plant PLDs, alpha-type and beta-type PLDs, which are derived from different gene products and distinctly regulated. The zeta-type PLD from Arabidopsis is not included in this subfamily. 176 -197238 cd09140 PLDc_vPLD1_2_like_bac_1 Catalytic domain, repeat 1, of uncharacterized bacterial proteins with similarity to vertebrate phospholipases, PLD1 and PLD2. Catalytic domain, repeat 1, of uncharacterized bacterial counterparts of vertebrate, yeast and plant phospholipase D (PLD, EC 3.1.4.4). PLDs hydrolyze the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. They also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Instead of the regulatory C2 (calcium-activated lipid binding) domain in plants and the adjacent Phox (PX) and the Pleckstrin homology (PH) N-terminal domains in most mammalian and yeast PLDs, many members in this subfamily contain a SNARE associated C-terminal domain, whose functional role is unclear. Like other PLD enzymes, members in this subfamily contain two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), that may play an important role in the catalysis. 146 -197239 cd09141 PLDc_vPLD1_2_yPLD_like_2 Catalytic domain, repeat 2, of vertebrate phospholipases, PLD1 and PLD2, yeast PLDs, and similar proteins. Catalytic domain, repeat 2, of vertebrate phospholipases D (PLD1 and PLD2), yeast phospholipase D (PLD SPO14/PLD1), and other similar eukaryotic proteins. These PLD enzymes play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. The vertebrate PLD1 and PLD2 are membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzymes that selectively hydrolyze phosphatidylcholine (PC). Protein cofactors and calcium may be required for their activation. Yeast SPO14/PLD1 is a calcium-independent PLD, which needs PIP2 for its activity. Instead of the regulatory calcium-dependent phospholipid-binding C2 domain in plants, most mammalian and yeast PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at the N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. The PX and PH domains are also present in zeta-type PLD from Arabidopsis, which is more closely related to vertebrate PLDs than to other plant PLD types. In addition, this subfamily also includes some related proteins which have either PX-like or PH domains in their N-termini. Like other members of the PLD superfamily, the monomer of mammalian and yeast PLDs consists of two catalytic domains, each containing one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from the two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 183 -197240 cd09142 PLDc_pPLD_like_2 Catalytic domain, repeat 2, of plant phospholipase D and similar proteins. Catalytic domain, repeat 2, of plant phospholipase D (PLD, EC 3.1.4.4) and similar proteins. Plant PLDs have broad substrate specificity and can hydrolyze the terminal phosphodiester bond of several common membrane phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Most plant PLDs possess a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and require calcium for activity, which is unique to plant PLDs and is not present in animal or fungal PLDs. Like other PLD enzymes, the monomer of plant PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDs may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. This subfamily includes two types of plant PLDs, alpha-type and beta-type PLDs, which are derived from different gene products and distinctly regulated. The zeta-type PLD from Arabidopsis is not included in this subfamily. 208 -197241 cd09143 PLDc_vPLD1_2_like_bac_2 Catalytic domain, repeat 2, of uncharacterized bacterial proteins with similarity to vertebrate phospholipases, PLD1 and PLD2. Catalytic domain, repeat 2, of uncharacterized bacterial counterparts of vertebrate, yeast and plant phospholipase D (PLD, EC 3.1.4.4). PLDs hydrolyze the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. They also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Instead of the regulatory C2 (calcium-activated lipid binding) domain in plants and the adjacent Phox (PX) and the Pleckstrin homology (PH) N-terminal domains in most mammalian and yeast PLDs, many members in this subfamily contain a SNARE associated C-terminal domain, whose functional role is unclear. Like other PLD enzymes, members in this subfamily contain two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), that may play an important role in the catalysis. 142 -197242 cd09144 PLDc_vPLD3_1 Putative catalytic domain, repeat 1, of vertebrate phospholipase PLD3. Putative catalytic domain, repeat 1, of phospholipase D3 (PLD3, EC 3.1.4.4). The human protein is also known as Hu-K4 or HUK4 and it was identified as a human homolog of the vaccinia virus protein K4, which is encoded by the HindIII K4L gene. PLD3 is found in many human organs with highest expression levels found in the central nervous system. Due to the presence of two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), PLD3 has been assigned to the PLD superfamily although no catalytic activity has been detected experimentally. PLD3 is a membrane-bound protein that colocalizes with protein disulfide isomerase, an endoplasmic reticulum (ER) protein. Like other homologs of protein K4, PLD3 might alter the lipid content of associated membranes by selectively hydrolyzing phosphatidylcholine (PC) into the corresponding phosphatidic acid, which is thought to be involved in the regulation of lipid movement. 172 -197243 cd09145 PLDc_vPLD4_1 Putative catalytic domain, repeat 1, of vertebrate phospholipase PLD4. Putative catalytic domain, repeat 1, of vertebrate phospholipases D4 (PLD4, EC 3.1.4.4), homologs of the vaccinia virus protein K4 which is encoded by the HindIII K4L gene. Due to the presence of two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), PLD4 has been assigned to PLD superfamily although no catalytic activity has been detected to date. Unlike PLD1 and PLD2, PLD4 does not contain Phox (PX) and Pleckstrin homology (PH) domains but has a putative transmembrane domain. Like other vertebrate homologs of protein K4, PLD4 might be associated with Golgi membranes and alter their lipid content by selectively hydrolyze phosphatidylcholine (PC) into corresponding phosphatidic acid, which is thought to be involved in the regulation of lipid movement. 170 -197244 cd09146 PLDc_vPLD5_1 Putative catalytic domain, repeat 1, of inactive veterbrate phospholipase PLD5. Putative catalytic domain, repeat 1, of inactive veterbrate phospholipases D5 (PLD5, EC 3.1.4.4), homologs of the vaccinia virus protein K4 encoded by the HindIII K4L gene. Vertebrate PLD5 has been assigned to the PLD superfamily, since it shows high sequence similarity to other human homologs of protein K4, which contain two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). However, due to the lack of functionally important histidine and lysine residues in the HKD motif, vetebrate PLD5 has been characterized as an inactive PLD. 163 -197245 cd09147 PLDc_vPLD3_2 Putative catalytic domain, repeat 2, of vertebrate phospholipase PLD3. Putative catalytic domain, repeat 2, of phospholipase D3 (PLD3, EC 3.1.4.4). The human protein is also known as Hu-K4 or HUK4 and it was identified as a human homolog of the vaccinia virus protein K4, which is encoded by the HindIII K4L gene. PLD3 is found in many human organs with highest expression levels found in the central nervous system. Due to the presence of two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), PLD3 has been assigned to the PLD superfamily although no catalytic activity has been detected experimentally. PLD3 is a membrane-bound protein that colocalizes with protein disulfide isomerase, an endoplasmic reticulum (ER) protein. Like other homologs of protein K4, PLD3 might alter the lipid content of associated membranes by selectively hydrolyzing phosphatidylcholine (PC) into the corresponding phosphatidic acid, which is thought to be involved in the regulation of lipid movement. 186 -197246 cd09148 PLDc_vPLD4_2 Putative catalytic domain, repeat 2, of vertebrate phospholipase PLD4. Putative catalytic domain, repeat 2, of vertebrate phospholipases D4 (PLD4, EC 3.1.4.4), homologs of the vaccinia virus protein K4 which is encoded by the HindIII K4L gene. Due to the presence of two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), PLD4 has been assigned to PLD superfamily although no catalytic activity has been detected to date. Unlike PLD1 and PLD2, PLD4 does not contain Phox (PX) and Pleckstrin homology (PH) domains but has a putative transmembrane domain. Like other vertebrate homologs of protein K4, PLD4 might be associated with Golgi membranes and alter their lipid content by selectively hydrolyze phosphatidylcholine (PC) into corresponding phosphatidic acid, which is thought to be involved in the regulation of lipid movement. 187 -197247 cd09149 PLDc_vPLD5_2 Putative catalytic domain, repeat 2, of inactive veterbrate phospholipase PLD5. Putative catalytic domain, repeat 2, of inactive veterbrate phospholipases D5 (PLD5, EC 3.1.4.4), homologs of the vaccinia virus protein K4 encoded by the HindIII K4L gene. Vertebrate PLD5 has been assigned to the PLD superfamily, since it shows high sequence similarity to other human homologs of protein K4, which contain two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). However, due to the lack of functionally important histidine and lysine residues in the HKD motif, vetebrate PLD5 has been characterized as an inactive PLD. 188 -197248 cd09150 PLDc_Ymt_1 Putative catalytic domain, repeat 1, of Yersinia pestis murine toxin-like proteins. Putative catalytic domain, repeat 1, of Yersinia pestis murine toxin (Ymt), a plasmid-encoded phospholipase D (PLD, EC 3.1.4.4), and similar proteins. Ymt is important in order for Yersinia pestis to survive and spread. It is toxic to mice and rats but not to other animals. It is not a conventional secreted exotoxin, but a cytoplasmic protein that is released upon bacterial lysis. Ymt may be active as a dimer. The monomeric Ymt consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Ymt has PLD-like activity and has been classified into the PLD superfamily. It hydrolyzes the terminal phosphodiester bond in several phospholipids, with preference for phosphatidylethanolamine (PE) over phosphatidylcholine (PC) and phosphatidylserine (PS). Like other PLD enzymes, Ymt may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. In terms of sequence similarity, Ymt is closely related to Streptomyces PLDs. 215 -197249 cd09151 PLDc_Ymt_2 Putative catalytic domain, repeat 2, of Yersinia pestis murine toxin-like proteins. Putative catalytic domain, repeat 2, of Yersinia pestis murine toxin (Ymt), a plasmid-encoded phospholipase D (PLD, EC 3.1.4.4), and similar proteins. Ymt is important in order for Yersinia pestis to survive and spread. It is toxic to mice and rats but not to other animals. It is not a conventional secreted exotoxin, but a cytoplasmic protein that is released upon bacterial lysis. Ymt may be active as a dimer. The monomeric Ymt consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Ymt has PLD-like activity and has been classified into the PLD superfamily. It hydrolyzes the terminal phosphodiester bond in several phospholipids, with preference for phosphatidylethanolamine (PE) over phosphatidylcholine (PC) and phosphatidylserine (PS). Like other PLD enzymes, Ymt may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. In terms of sequence similarity, Ymt is closely related to Streptomyces PLDs. 264 -197250 cd09152 PLDc_EcCLS_like_1 Catalytic domain, repeat 1, of Escherichia coli cardiolipin synthase and similar proteins. Catalytic domain, repeat 1, of Escherichia coli cardiolipin (CL) synthase and similar proteins. Escherichia coli CL synthase (EcCLS), specified by the cls gene, is the prototype of this family. EcCLS is a multi-pass membrane protein that catalyzes reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form cardiolipin (CL) and glycerol. The monomer of EcCLS consists of two catalytic domains. Each catalytic domain contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. Two HKD motifs from two domains form a single active site involved in phosphatidyl group transfer. EcCLS can be stimulated by phosphate and inhibited by CL, the product of the reaction, and by phosphatidate. Phosphate stimulation may be unique to enzymes with CL synthase activity belonging to the PLD superfamily. Like other PLD enzymes, EcCLS utilizes a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 163 -197251 cd09154 PLDc_SMU_988_like_1 Putative catalytic domain, repeat 1, of Streptococcus mutans uncharacterized protein SMU_988 and similar proteins. Putative catalytic domain, repeat 1, of Streptococcus mutans uncharacterized protein SMU_988 and similar proteins. Although SMU_988 and similar proteins have not been functionally characterized, members in this subfamily show high sequence homology to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 155 -197252 cd09155 PLDc_PaCLS_like_1 Putative catalytic domain, repeat 1, of Pseudomonas aeruginosa cardiolipin synthase and similar proteins. Putative catalytic domain, repeat 1, of Pseudomonas aeruginosa cardiolipin (CL) synthase (PaCLS) and similar proteins. Although PaCLS and similar proteins have not been functionally characterized, members in this subfamily show high sequence homology to bacterial CL synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Moreover, PaCLS and other members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 156 -197253 cd09156 PLDc_CLS_unchar1_1 Putative catalytic domain, repeat 1, of uncharacterized proteins similar to bacterial cardiolipin synthase. Putative catalytic domain, repeat 1, of uncharacterized proteins similar to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 154 -197254 cd09157 PLDc_CLS_unchar2_1 Putative catalytic domain, repeat 1, of uncharacterized proteins similar to bacterial cardiolipin synthase. Putative catalytic domain, repeat 1, of uncharacterized proteins similar to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 155 -197255 cd09158 PLDc_EcCLS_like_2 Catalytic domain, repeat 2, of Escherichia coli cardiolipin synthase and similar proteins. Catalytic domain, repeat 2, of Escherichia coli cardiolipin (CL) synthase and similar proteins. Escherichia coli CL synthase (EcCLS), specified by the cls gene, is the prototype of this family. EcCLS is a multi-pass membrane protein that catalyzes reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form cardiolipin (CL) and glycerol. The monomer of EcCLS consists of two catalytic domains. Each catalytic domain contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. Two HKD motifs from two domains form a single active site involved in phosphatidyl group transfer. EcCLS can be stimulated by phosphate and inhibited by CL, the product of the reaction, and by phosphatidate. Phosphate stimulation may be unique to enzymes with CL synthase activity belonging to the PLD superfamily. Like other PLD enzymes, EcCLS utilizes a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 174 -197256 cd09159 PLDc_ybhO_like_2 Catalytic domain, repeat 2, of Escherichia coli cardiolipin synthase ybhO and similar proteins. Catalytic domain, repeat 2, of Escherichia coli cardiolipin (CL) synthase ybhO and similar proteins. In Escherichia coli, there are two genes, f413 (ybhO) and o493 (ymdC), which are homologous to gene cls that encodes the Escherichia coli CL synthase. The prototype of this subfamily is Escherichia coli CL synthase ybhO specified by the f413 (ybhO) gene. ybhO is a membrane-bound protein that catalyzes the formation of cardiolipin (CL) by transferring phosphatidyl group between two phosphatidylglycerol molecules. It can also catalyze phosphatidyl group transfer to water to form phosphatidate. In contrast to the Escherichia coli CL synthase encoded by the cls gene (EcCLS), ybhO does not hydrolyze CL. Moreover, ybhO lacks an N-terminal segment encoded by Escherichia coli cls, which makes ybhO easy to denature. The monomer of ybhO consists of two catalytic domains. Each catalytic domain contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. Two HKD motifs from two domains form a single active site involved in phosphatidyl group transfer. ybhO can be stimulated by phosphate and inhibited by CL, the product of the reaction, and by phosphatidate. Phosphate stimulation may be unique to enzymes with CL synthase activity belonging to the PLD superfamily. 170 -197257 cd09160 PLDc_SMU_988_like_2 Putative catalytic domain, repeat 2, of Streptococcus mutans uncharacterized protein SMU_988 and similar proteins. Putative catalytic domain, repeat 2, of Streptococcus mutans uncharacterized protein SMU_988 and similar proteins. Although SMU_988 and similar proteins have not been functionally characterized, members in this subfamily show high sequence homology to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 176 -197258 cd09161 PLDc_PaCLS_like_2 Putative catalytic domain, repeat 2, of Pseudomonas aeruginosa cardiolipin synthase and similar proteins. Putative catalytic domain, repeat 2, of Pseudomonas aeruginosa cardiolipin (CL) synthase (PaCLS) and similar proteins. Although PaCLS and similar proteins have not been functionally characterized, members in this subfamily show high sequence homology to bacterial CL synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Moreover, PaCLS and other members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 176 -197259 cd09162 PLDc_CLS_unchar1_2 Putative catalytic domain, repeat 2, of uncharacterized proteins similar to bacterial cardiolipin synthase. Putative catalytic domain, repeat 2, of uncharacterized proteins similar to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 172 -197260 cd09163 PLDc_CLS_unchar2_2 Putative catalytic domain, repeat 2, of uncharacterized proteins similar to bacterial cardiolipin synthase. Putative catalytic domain, repeat 2, of uncharacterized proteins similar to bacterial cardiolipin (CL) synthases, which catalyze the reversible phosphatidyl group transfer between two phosphatidylglycerol molecules to form CL and glycerol. Members of this subfamily contain two HKD motifs (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the phospholipase D (PLD) superfamily. The two motifs may be part of the active site and may be involved in phosphatidyl group transfer. 176 -197261 cd09164 PLDc_EcPPK1_C1_like Catalytic C-terminal domain, first repeat, of Escherichia coli polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, first repeat (C1 domain), of Escherichia coli polyphosphate kinase 1 (Poly P kinase 1 or PPK1, EC 2.7.4.1) and similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. The prototype of this subfamily is Escherichia coli polyphosphate kinase (EcPPK), which forms a homotetramer in solution, and becomes a homodimer upon the binding of AMPPNP, a non-hydrolysable ATP analogue. Each EcPPK monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2)domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of EcPPK are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of EcPPK. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. 162 -197262 cd09165 PLDc_PaPPK1_C1_like Catalytic C-terminal domain, first repeat, of Pseudomonas aeruginosa polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, first repeat (C1 domain), of polyphosphate kinase (Poly P kinase 1 or PPK1, EC 2.7.4.1) from Pseudomonas aeruginosa (PaPPK1), Dictyostelium discoideum (DdPPK1), and other similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PaPPK1 is the key enzyme responsible for the synthesis of Poly P in Pseudomonas aeruginosa. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. PaPPK1 shows high sequence homolog to Escherichia coli polyphosphate kinase (EcPPK), which contains four structural domains per chain: the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. The polyphosphate kinase from Dictyostelium discoideum (DdPPK1) shares similar structural features with EcPPK1 in the ATP-binding pocket and poly P tunnel, but has a unique N-terminal extension that may be responsible for its enzymatic activity, cellular localization, and physiological functions. In spite of the lack of sequence homology, the C1 and C2 domains of the family members are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. In some bacteria, such as Pseudomonas aeruginosa, a second enzyme, PPK2, which is involved in the alternative pathway of polyphosphate synthesis, has been found. It can catalyze the synthesis of poly P from GTP or ATP, with a preference for Mn2+ over Mg2+. PPK2 shows no sequence similarity to PPK1 and belongs to a different superfamily. 164 -197263 cd09166 PLDc_PPK1_C1_unchar Catalytic C-terminal domain, first repeat, of uncharacterized prokaryotic polyphosphate kinases. Catalytic C-terminal domain, first repeat (C1 domain), of a group of uncharacterized prokaryotic polyphosphate kinases (Poly P kinase 1 or PPK1, EC 2.7.4.1). Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. Each PPK1 monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of PPK1 are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. 162 -197264 cd09167 PLDc_EcPPK1_C2_like Catalytic C-terminal domain, second repeat, of Escherichia coli polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, second repeat (C2 domain), of Escherichia coli polyphosphate kinase 1 (Poly P kinase 1 or PPK1, EC 2.7.4.1) and similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. The prototype of this subfamily is Escherichia coli polyphosphate kinase (EcPPK), which forms a homotetramer in solution, and becomes a homodimer upon the binding of AMPPNP, a non-hydrolysable ATP analogue. Each EcPPK monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2)domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of EcPPK are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of EcPPK. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. 165 -197265 cd09168 PLDc_PaPPK1_C2_like Catalytic C-terminal domain, second repeat, of Pseudomonas aeruginosa polyphosphate kinase 1 and similar proteins. Catalytic C-terminal domain, second repeat (C2 domain), of polyphosphate kinase (Poly P kinase 1 or PPK1, EC 2.7.4.1) from Pseudomonas aeruginosa (PaPPK1), Dictyostelium discoideum (DdPPK1), and other similar proteins. Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PaPPK1 is the key enzyme responsible for the synthesis of Poly P in Pseudomonas aeruginosa. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. PaPPK1 shows high sequence homolog to Escherichia coli polyphosphate kinase (EcPPK), which contains four structural domains per chain: the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. The polyphosphate kinase from Dictyostelium discoideum (DdPPK1) shares similar structural features with EcPPK1 in the ATP-binding pocket and poly P tunnel, but has a unique N-terminal extension that may be responsible for its enzymatic activity, cellular localization, and physiological functions. In spite of the lack of sequence homology, the C1 and C2 domains of the family members are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. In some bacteria, such as Pseudomonas aeruginosa, a second enzyme, PPK2, which is involved in the alternative pathway of polyphosphate synthesis, has been found. It can catalyze the synthesis of poly P from GTP or ATP, with a preference for Mn2+ over Mg2+. PPK2 shows no sequence similarity to PPK1 and belongs to a different superfamily. 163 -197266 cd09169 PLDc_PPK1_C2_unchar Catalytic C-terminal domain, second repeat, of uncharacterized prokaryotic polyphosphate kinases. Catalytic C-terminal domain, second repeat (C2 domain), of a group of uncharacterized prokaryotic polyphosphate kinases (Poly P kinase 1 or PPK1, EC 2.7.4.1). Inorganic polyphosphate (Poly P) plays an important role in bacterial stress responses and stationary-phase survival. PPK1 is the key enzyme responsible for the synthesis of Poly P in bacteria. It can catalyze the reversible conversion of the terminal-phosphate of ATP to Poly P. Therefore, PPK1 is essential for bacterial motility, quorum sensing, biofilm formation, and the production of virulence factors and may serve as an attractive antimicrobial drug target. Dimerization is crucial for the enzymatic activity of PPK1. Each PPK1 monomer includes four structural domains, the N-terminal (N) domain, the head (H) domain, and two closely related C-terminal (C1 and C2) domains. The N domain provides the upper binding interface for the adenine ring of the ATP. The H domain is involved in dimerization, while both the C1 and C2 domains contain residues crucial for catalytic activity. The intersection of the N, C1, and C2 domains forms a structural tunnel in which the PPK catalytic reactions are carried out. In spite of the lack of sequence homology, the C1 and C2 domains of PPK1 are structurally similar to the two repetitive catalytic domains of phospholipase D (PLD). Moreover, some residues in the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) of the PLD superfamily are spatially conserved in the active site of PPK1. It is possible that the bacterial PPK1 family and the PLD family have a common ancestor and diverged early in evolution. 162 -197267 cd09170 PLDc_Nuc Catalytic domain of EDTA-resistant nuclease Nuc from Salmonella typhimurium and similar proteins. Catalytic domain of an EDTA-resistant nuclease Nuc from Salmonella typhimurium and similar proteins. Nuc is an endonuclease cleaving both single- and double-stranded DNA. It is the smallest known member of the phospholipase D (PLD, EC 3.1.4.4) superfamily that includes a diverse group of proteins with various catalytic functions. Most members of this superfamily have two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in a single polypeptide chain and both are required for catalytic activity. However, Nuc only has one copy of the HKD motif per subunit but form a functionally active homodimer (it is most likely also active in solution as a multimeric protein), which has a single active site at the dimer interface containing the HKD motifs from both subunits. Due to the lack of a distinct domain for DNA binding, Nuc cuts DNA non-specifically. It utilizes a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. 142 -197268 cd09171 PLDc_vPLD6_like Catalytic domain of vertebrate phospholipase D6 and similar proteins. Catalytic domain of vertebrate phospholipase D6 (PLD6, EC 3.1.4.4), a homolog of the EDTA-resistant nuclease Nuc from Salmonella typhimurium, and similar proteins. PLD6 can selectively hydrolyze the terminal phosphodiester bond of phosphatidylcholine (PC) with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. It also catalyzes the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. PLD6 belongs to the phospholipase D (PLD) superfamily. Its monomer contains a short conserved sequence motif, H-x-K-x(4)-D (where x represents any amino acid residue), termed the HKD motif, which is essential in catalysis. PLD6 is more closely related to the nuclease Nuc than to other vertebrate phospholipases, which have two copies of the HKD motif in a single polypeptide chain. Like Nuc, PLD6 may utilize a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from the HKD motif of one subunit to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. 136 -197269 cd09172 PLDc_Nuc_like_unchar1_1 Putative catalytic domain, repeat 1, of uncharacterized hypothetical proteins similar to Nuc, an endonuclease from Salmonella typhimurium. Putative catalytic domain, repeat 1, of uncharacterized hypothetical proteins, which show high sequence homology to the endonuclease from Salmonella typhimurium and vertebrate phospholipase D6. Nuc and PLD6 belong to the phospholipase D (PLD) superfamily. They contain a short conserved sequence motif, the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which characterizes the PLD superfamily and is essential for catalysis. Nuc and PLD6 utilize a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. However, proteins in this subfamily have two HKD motifs in a single polypeptide chain. 144 -197270 cd09173 PLDc_Nuc_like_unchar1_2 Putative catalytic domain, repeat 2, of uncharacterized hypothetical proteins similar to Nuc, an endonuclease from Salmonella typhimurium. Putative catalytic domain, repeat 2, of uncharacterized hypothetical proteins, which show high sequence homology to the endonuclease from Salmonella typhimurium and vertebrate phospholipase D6. Nuc and PLD6 belong to the phospholipase D (PLD) superfamily. They contain a short conserved sequence motif, the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which characterizes the PLD superfamily and is essential for catalysis. Nuc and PLD6 utilize a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. However, proteins in this subfamily have two HKD motifs in a single polypeptide chain. 159 -197271 cd09174 PLDc_Nuc_like_unchar2 Putative catalytic domain of uncharacterized hypothetical proteins closely related to Nuc, , an endonuclease from Salmonella typhimurium. Putative catalytic domain of uncharacterized hypothetical proteins, which show high sequence homology to the endonuclease from Salmonella typhimurium and vertebrate phospholipase D6. Nuc and PLD6 belong to the phospholipase D (PLD) superfamily. They contain a short conserved sequence motif, the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which characterizes the PLD superfamily and is essential for catalysis. Nuc and PLD6 utilize a two-step mechanism to cleave phosphodiester bonds: Upon substrate binding, the bond is first attacked by a histidine residue from one HKD motif to form a covalent phosphohistidine intermediate, which is then hydrolyzed by water with the aid of a second histidine residue from the other HKD motif in the opposite subunit. However, proteins in this subfamily have two HKD motifs in a single polypeptide chain. 136 -197272 cd09175 PLDc_Bfil Catalytic domain of type IIs restriction endonuclease BfiI and similar proteins. Catalytic domain of a novel type IIs restriction endonuclease BfiI and similar proteins. Type II restriction endonucleases are components of restriction modification (RM) systems that protect bacteria and archaea against invading foreign DNA. They usually function as homodimers or homotetramers that cleave DNA at defined sites of 4 to 8 bp in length, and they require Mg2+, not ATP or GTP, for catalysis. Unlike all other restriction enzymes known to date, BfiI is unique in cleaving DNA at fixed positions downstream of an asymmetric sequence in the absence of Mg2+. BfiI consists of two discrete domains with distinct functions: an N-terminal catalytic domain with non-specific nuclease activity and dimerization function that is more closely related to Nuc, an EDTA-resistant nuclease from the phospholipase D (PLD) superfamily; and a C-terminal domain that specifically recognizes its target sequences, 5'-ACTGGG-3'. BfiI presumably evolved through domain fusion of a DNA recognition domain to the catalytic Nuc-like domain from the PLD superfamily. Most PLD enzymes have two copies of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in a single polypeptide chain and both are required for catalytic activity. However, BfiI contains only one HKD motif per protein chain and forms a functionally active homodimer which has two DNA-binding surfaces located at the C-terminal domains but only one active site, located at the dimer interface between the two N-terminal catalytic domains that contain the two HKD motifs from both subunits. BfiI utilizes a single active site to cut both DNA strands, which represents a novel mechanism for the scission of double-stranded DNA. It uses a histidine residue from the HKD motif in one subunit as the nucleophile for the cleavage of the target phosphodiester bond in both of the anti-parallel DNA strands, while the symmetrically-related histidine residue from the HKD motif of the opposite subunit acts as the proton donor/acceptor during both strand-scission events. 161 -197273 cd09176 PLDc_unchar6 Putative catalytic domain of uncharacterized hypothetical proteins with one or two copies of the HKD motif. Putative catalytic domain of uncharacterized hypothetical proteins with similarity to phospholipase D (PLD, EC 3.1.4.4). PLD enzymes hydrolyze phospholipid phosphodiester bonds to yield phosphatidic acid and a free polar head group. They can also catalyze transphosphatidylation of phospholipids to acceptor alcohols. Members of this subfamily contain one or two copies of the HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) that characterizes the PLD superfamily. 114 -197274 cd09177 PLDc_RE_NgoFVII Putative catalytic domain of type II restriction enzyme NgoFVII and similar proteins. Putative catalytic domain of type II restriction enzyme NgoFVII (EC 3.1.21.4), which shows high sequence similarity to type IIs restriction endonuclease BfiI. Type II restriction endonucleases are components of restriction modification (RM) systems that protect bacteria and archaea against invading foreign DNA. They usually function as homodimers or homotetramers that cleave DNA at defined sites of 4 to 8 bp in length, and they require Mg2+, not ATP or GTP, for catalysis. The prototype of this subfamily is the NgoFVII restriction endonuclease from Neisseria gonorrhoeae. It plays an essential role in the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. It recognizes the double-stranded sequence GCSGC and cleaves after G-4. Members of this subfamily contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) per protein chain and have been classified into the phospholipase D (PLD, EC 3.1.4.4) superfamily. 143 -197275 cd09178 PLDc_N_Snf2_like N-terminal putative catalytic domain of uncharacterized HKD family nucleases fused to putative helicases from the Snf2-like family. N-terminal putative catalytic domain of uncharacterized archaeal and prokaryotic HKD family nucleases fused to putative helicases from the Snf2-like family, which belong to the DNA/RNA helicase superfamily II (SF2). Although Snf2-like family enzymes do not possess helicase activity, they contain a helicase-like region, where seven helicase-related sequence motifs are found, similar to those in DEAD/DEAH box helicases, which represent the biggest family within the SF2 superfamily. In addition to the helicase-like region, members of this family also contain an N-terminal putative catalytic domain with one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), and have been classified as members of the phospholipase D (PLD, EC 3.1.4.4) superfamily. 134 -197276 cd09179 PLDc_N_DEXD_a N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. 190 -197277 cd09180 PLDc_N_DEXD_b N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. A few family members contain additional domains, like a C-terminal peptidase S24-like domain. 142 -197278 cd09181 PLDc_FAM83A_N N-terminal phospholipase D-like domain of the uncharacterized protein, Family with sequence similarity 83A. N-terminal phospholipase D (PLD)-like domain of the uncharacterized protein, Family with sequence similarity 83A (FAM83A), also known as tumor antigen BJ-TSA-9. FAM83A or BJ-TSA-9 is a novel tumor-specific gene highly expressed in human lung adenocarcinoma. Due to this specific expression pattern, it may serve as a biomarker for lung cancer, especially in the early detection of micrometastasis for lung adenocarcinoma patients. Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are most unlikely to carry PLD activity. 276 -197279 cd09182 PLDc_FAM83B_N N-terminal phospholipase D-like domain of the uncharacterized protein, Family with sequence similarity 83B. N-terminal phospholipase D (PLD)-like domain of the uncharacterized protein, Family with sequence similarity 83B (FAM83B). Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are most unlikely to carry PLD activity. The N-terminus of FAM83B shows high homology to other FAM83 family members, indicating that FAM83B might have arisen early in vertebrate evolution by duplication of a gene in the FAM83 family. 266 -197280 cd09183 PLDc_FAM83C_N N-terminal phospholipase D-like domain of the uncharacterized protein, Family with sequence similarity 83C. N-terminal phospholipase D (PLD)-like domain of the uncharacterized protein, Family with sequence similarity 83C (FAM83C). Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are most unlikely to carry PLD activity. The N-terminus of FAM83C shows high homology to other FAM83 family members, indicating that FAM83C might have arisen early in vertebrate evolution by duplication of a gene in the FAM83 family. 274 -197281 cd09184 PLDc_FAM83D_N N-terminal phospholipase D-like domain of the protein, Family with sequence similarity 83D. N-terminal phospholipase D (PLD)-like domain of the protein Family with sequence similarity 83D (FAM83D), also known as spindle protein CHICA. CHICA is a cell-cycle-regulated spindle component, which localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA is required to localize the chromokinesin Kid to the mitotic spindle and serves as a novel interaction partner of Kid, which is required for the generation of polar ejection forces and chromosome congression. Since the N-terminal PLD-like domain of FAM83D shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83D may share a similar three-dimensional fold with PLD enzymes, but is unlikely to carry PLD activity. 271 -197282 cd09186 PLDc_FAM83F_N N-terminal phospholipase D-like domain of the uncharacterized protein, Family with sequence similarity 83F. N-terminal phospholipase D (PLD)-like domain of the uncharacterized protein, Family with sequence similarity 83F (FAM83F). Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are most unlikely to carry PLD activity. The N-terminus of FAM83F shows high homology to other FAM83 family members, indicating that FAM83F might have arisen early in vertebrate evolution by duplication of a gene in the FAM83 family. 268 -197283 cd09187 PLDc_FAM83G_N N-terminal phospholipase D-like domain of the uncharacterized protein Family with sequence similarity 83G. N-terminal phospholipase D (PLD)-like domain of the uncharacterized protein, Family with sequence similarity 83G (FAM83G). Since the N-terminal PLD-like domain of FAM83 proteins shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83 proteins may share a similar three-dimensional fold with PLD enzymes, but are most unlikely to carry PLD activity. The N-terminus of FAM83G shows high homology to other FAM83 family members, indicating that FAM83G might have arisen early in vertebrate evolution by duplication of a gene in the FAM83 family. 275 -197284 cd09188 PLDc_FAM83H_N N-terminal phospholipase D-like domain of the uncharacterized protein, Family with sequence similarity 83H. N-terminal phospholipase D (PLD)-like domain of the protein, Family with sequence similarity 83H (FAM83H) on chromosome 8q24.3, which localizes in the intracellular environment and is associated with vesicles, can be regulated by kinases, and plays important roles during ameloblast differentiation and enamel matrix calcification. The gene encoding protein FAM83H is the first gene involved in the etiology of amelogenesis imperfecta (AI), that encodes a non-secreted protein due to the absence of a signal peptide. Defects in gene FAM83H cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI). Since the N-terminal PLD-like domain of FAM83H shows only trace similarity to the PLD catalytic domain and lacks the functionally important histidine residue, FAM83H may share a similar three-dimensional fold with PLD enzymes, but is most unlikely to carry PLD activity. 265 -197285 cd09189 PLDc_DNaseII_alpha_1 Catalytic domain, repeat 1, of Deoxyribonuclease II alpha and similar proteins. Catalytic domain, repeat 1, of Deoxyribonuclease II alpha (DNase II alpha, EC 3.1.22.1) and similar proteins. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta. DNase II alpha is an acidic endonuclease found in lysosomes, nuclei, and various secretions. It plays a critical role in the degradation of nuclear DNA expelled from erythroid precursor cells, as well as in the degradation of the apoptotic DNA after macrophages engulf them. It cleaves double-stranded DNA to short 3'-phosphoryl oligonucleotides, rather than 3'-hydroxyl groups, and functions optimally at acidic pH in the absence of divalent metal ion cofactors. 162 -197286 cd09190 PLDc_DNaseII_beta_1 Catalytic domain, repeat 1, of Deoxyribonuclease II beta and similar proteins. Catalytic domain, repeat 1, of Deoxyribonuclease II beta (DNase II beta, EC 3.1.22.1), also known as DNase II-like acid DNase (DLAD), and similar proteins. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta. DNase II beta, or DLAD, is a novel mammalian divalent cation-independent endonuclease with homology to DNase II alpha. It is highly expressed in the eye lens and in salivary glands and is responsible for the degradation of nuclear DNA during lens cell differentiation. DLAD mainly exists as a cytoplasmic protein and cleaves DNA to produce 3'-phosphoryl/5'-hydroxyl ends. Like DNase II alpha, DLAD is active under acidic conditions with maximum activity at pH 5.2. Aurintricarboxylic acid and Zn2+ are effective inhibitors of DLAD activity. Mice deficient in DLAD develop cataracts as they are unable to degrade DNA during differentiation of the lens cells. 165 -197287 cd09191 PLDc_DNaseII_alpha_2 Catalytic domain, repeat 2, of Deoxyribonuclease II alpha and similar proteins. Catalytic domain, repeat 2, of Deoxyribonuclease II alpha (DNase II alpha, EC 3.1.22.1) and similar proteins. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta. DNase II alpha is an acidic endonuclease found in lysosomes, nuclei, and various secretions. It plays a critical role in the degradation of nuclear DNA expelled from erythroid precursor cells, as well as in the degradation of the apoptotic DNA after macrophages engulf them. It cleaves double-stranded DNA to short 3'-phosphoryl oligonucleotides, rather than 3'-hydroxyl groups, and functions optimally at acidic pH in the absence of divalent metal ion cofactors. 137 -197288 cd09192 PLDc_DNaseII_beta_2 Catalytic domain, repeat 2, of Deoxyribonuclease II beta and similar proteins. Catalytic domain, repeat 2, of Deoxyribonuclease II beta (DNase II beta, EC 3.1.22.1), also known as DNase II-like acid DNase (DLAD), and similar proteins. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif, where the aspartic acid residue is not conserved. The HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. The catalytic center of DNase II is formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. Members of this family are mainly found in metazoans, and vertebrate proteins have been further classified into DNase II alpha and beta. DNase II beta, or DLAD, is a novel mammalian divalent cation-independent endonuclease with homology to DNase II alpha. It is highly expressed in the eye lens and in salivary glands and is responsible for the degradation of nuclear DNA during lens cell differentiation. DLAD mainly exists as a cytoplasmic protein and cleaves DNA to produce 3'-phosphoryl/5'-hydroxyl ends. Like DNase II alpha, DLAD is active under acidic conditions with maximum activity at pH 5.2. Aurintricarboxylic acid and Zn2+ are effective inhibitors of DLAD activity. Mice deficient in DLAD develop cataracts as they are unable to degrade DNA during differentiation of the lens cells. 139 -197289 cd09193 PLDc_mTdp1_1 Catalytic domain, repeat 1, of metazoan tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 1, of metazoan tyrosyl-DNA phosphodiesterase (Tdp1, EC 3.1.4.-). Human Tdp1 (hTdp1) acts as an important DNA repair enzyme with a preference for single-stranded or blunt-ended duplex oligonucleotides. It can remove stalled topoisomerase I-DNA complexes by catalyzing the hydrolysis of a phosphodiester bond between a tyrosine side chain and a DNA 3'-phosphate. It is therefore a potential molecular target for new anti-cancer drugs. hTdp1 has been shown to associate with additional proteins, such as XRCC1, to form a multi-enzyme complex. These additional proteins may be involved in recognizing 3'-phoshotyrosyl DNA in vivo. hTdp1 is a monomeric protein containing two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Like other PLD enzymes, hTdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 169 -197290 cd09194 PLDc_yTdp1_1 Catalytic domain, repeat 1, of yeast tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 1, of yeast tyrosyl-DNA phosphodiesterase (yTdp1, EC 3.1.4.-). yTdp1 is involved in the repair of topoisomerase I DNA lesions by hydrolyzing the topoisomerase from the 3'-end of the DNA during double-strand break repair. Unlike human Tdp1 whose substrate-binding pocket can accommodate a fairly large topoisomerase I peptide fragment, yTdp1 has a preference for substrates containing one to four amino acid residues. The monomeric yTdp1 contains two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Like other PLD enzymes, yTdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 166 -197291 cd09195 PLDc_mTdp1_2 Catalytic domain, repeat 2, of metazoan tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 2, of metazoan tyrosyl-DNA phosphodiesterase (Tdp1, EC 3.1.4.-). Human Tdp1 (hTdp1) acts as an important DNA repair enzyme with a preference for single-stranded or blunt-ended duplex oligonucleotides. It can remove stalled topoisomerase I-DNA complexes by catalyzing the hydrolysis of a phosphodiester bond between a tyrosine side chain and a DNA 3'-phosphate. It is therefore a potential molecular target for new anti-cancer drugs. hTdp1 has been shown to associate with additional proteins, such as XRCC1, to form a multi-enzyme complex. These additional proteins may be involved in recognizing 3'-phoshotyrosyl DNA in vivo. hTdp1 is a monomeric protein containing two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Like other PLD enzymes, hTdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 191 -197292 cd09196 PLDc_yTdp1_2 Catalytic domain, repeat 2, of yeast tyrosyl-DNA phosphodiesterase. Catalytic domain, repeat 2, of yeast tyrosyl-DNA phosphodiesterase (yTdp1, EC 3.1.4.-). yTdp1 is involved in the repair of topoisomerase I DNA lesions by hydrolyzing the topoisomerase from the 3'-end of the DNA during double-strand break repair. Unlike human Tdp1 whose substrate-binding pocket can accommodate a fairly large topoisomerase I peptide fragment, yTdp1 has a preference for substrates containing one to four amino acid residues. The monomeric yTdp1 contains two copies of a variant HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue), which consists of the highly conserved histidine and lysine residues, but lacks the aspartate residue that is well conserved in other phospholipase D (PLD, EC 3.1.4.4) enzymes. Like other PLD enzymes, yTdp1 may utilize a common two-step general acid/base catalytic mechanism, involving a DNA-enzyme intermediate to cleave phosphodiester bonds. A single active site involved in phosphatidyl group transfer would be formed by the two variant HKD motifs from the N- and C-terminal domains in a pseudodimeric way. 200 -197293 cd09197 PLDc_pPLDalpha_1 Catalytic domain, repeat 1, of plant alpha-type phospholipase D. Catalytic domain, repeat 1, of plant alpha-type phospholipase D (PLDalpha, EC 3.1.4.4). Plant PLDalpha is a phosphatidylinositol 4,5-bisphosphate (PIP2)-independent PLD that possesses a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and require millimolar calcium for optimal activity. The C2 domain is unique to plant PLDs and is not present in animal or fungal PLDs. Like other PLD enzymes, the monomer of plant PLDalpha consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDalpha may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 178 -197294 cd09198 PLDc_pPLDbeta_1 Catalytic domain, repeat 1, of plant beta-type phospholipase D. Catalytic domain, repeat 1, of plant beta-type phospholipase D (PLDbeta, EC 3.1.4.4). Plant PLDbeta is a phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent PLD that possesses a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and requires nanomolar calcium and cytosolic factors for optimal activity. The C2 domain is unique to plant PLDs and is not present in animal or fungal PLDs. Sequence analysis shows that plant PLDbeta is evolutionarily divergent from alpha-type plant PLD, and plant PLDbeta is more closely related to mammalian and yeast PLDs than to plant PLDalpha. Like other PLD enzymes, the monomer of plant PLDbeta consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDbeta may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 180 -197295 cd09199 PLDc_pPLDalpha_2 Catalytic domain, repeat 2, of plant alpha-type phospholipase D. Catalytic domain, repeat 2, of plant alpha-type phospholipase D (PLDalpha, EC 3.1.4.4). Plant PLDalpha is a phosphatidylinositol 4,5-bisphosphate (PIP2)-independent PLD that possesses a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and require millimolar calcium for optimal activity. The C2 domain is unique to plant PLDs and is not present in animal or fungal PLDs. Like other PLD enzymes, the monomer of plant PLDalpha consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDalpha may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 211 -197296 cd09200 PLDc_pPLDbeta_2 Catalytic domain, repeat 2, of plant beta-type phospholipase D. Catalytic domain, repeat 2, of plant beta-type phospholipase D (PLDbeta, EC 3.1.4.4). Plant PLDbeta is a phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent PLD that possesses a regulatory calcium-dependent phospholipid-binding C2 domain in the N-terminus and requires nanomolar calcium and cytosolic factors for optimal activity. The C2 domain is unique to plant PLDs and is not present in animal or fungal PLDs. Sequence analysis shows that plant PLDbeta is evolutionarily divergent from alpha-type plant PLD, and plant PLDbeta is more closely related to mammalian and yeast PLDs than to plant PLDalpha. Like other PLD enzymes, the monomer of plant PLDbeta consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. Plant PLDbeta may utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 211 -197297 cd09203 PLDc_N_DEXD_b1 N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. 143 -197298 cd09204 PLDc_N_DEXD_b2 N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. 139 -197299 cd09205 PLDc_N_DEXD_b3 N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. A few family members contain additional domains, like a C-terminal peptidase S24-like domain. 143 -187741 cd09208 Lumazine_synthase-II lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, LS), catalyzes the penultimate step in the biosynthesis of riboflavin (vitamin B2); type-II. Type-II LS also known as RibH2, catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. LS catalyses the formation of 6,7-dimethyl-8-ribityllumazine by the condensation of 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy- 2-butanone-4-phosphate. Subsequently, the lumazine intermediate dismutates yielding riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione, in a reaction catalyzed by riboflavin synthase (RS); RS belongs to a different family of the Lumazine-synthase-like superfamily. Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which are essential cofactors for the catalysis of a wide range of redox reactions. These cofactors are also involved in many other processes involving DNA repair, circadian time-keeping, light sensing, and bioluminescence. Riboflavin is biosynthesized in plants, fungi and certain microorganisms; as animals lack the necessary enzymes to produce this vitamin, they acquire it from dietary sources. Type II LSs are distinct from type-I LS not only in protein sequence, but in that they exhibit different quaternary assemblies; type-II LSs form decamers (dimers of pentamers). The pathogen Brucella spp. have both a type-I LS and a type-II LS called RibH1 and RibH2, respectively. RibH1/type-I LS appears to be a functional LS in Brucella spp., whereas RibH2/type-II LS has much lower catalytic activity as LS and may be regulated by a riboswitch that senses FMN, suggesting that the type-II LSs may have evolved into very poor catalysts or, that they may harbor a new, as-yet-unknown function. 137 -187742 cd09209 Lumazine_synthase-I lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, LS), catalyzes the penultimate step in the biosynthesis of riboflavin (vitamin B2); type-I. Type-I LS, also known as RibH1, catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. LS catalyse the formation of 6,7-dimethyl-8-ribityllumazine by the condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy- 2-butanone-4-phosphate. Subsequently, the lumazine intermediate dismutates to yield riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione, in a reaction catalyzed by riboflavin synthase synthase (RS); RS belongs to a different family of the Lumazine-synthase-like superfamily. Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which are essential cofactors for the catalysis of a wide range of redox reactions. These cofactors are also involved in many other processes involving DNA repair, circadian time-keeping, light sensing, and bioluminescence. Riboflavin is biosynthesized in plants, fungi and certain microorganisms; as animals lack the necessary enzymes to produce this vitamin, they acquire it from dietary sources. Type II LSs are distinct from type-I LS not only in protein sequence, but in that they exhibit different quaternary assemblies; type-I LSs form pentamers. The pathogen Brucella spp. encode both a Type-I LS and a Type-II LS called RibH1 and RibH2, respectively. RibH1/type-I LS appears to be the functional LS in Brucella spp., whereas RibH2/type-II LS has much lower catalytic activity as LS. The pathogen Brucella spp. have both a type-I LS and a type-II LS called RibH1 and RibH2, respectively. RibH1/type-I LS appears to be a functional LS in Brucella spp., whereas RibH2/type-II LS has much lower catalytic activity as LS. 133 -187743 cd09210 Riboflavin_synthase_archaeal archaeal riboflavin synthase (RS); involved in the biosynthesis pathway of riboflavin (vitamin B2). Archaeal RSs are homopentamers catalyzing the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine in riboflavin biosynthesis. Divalent metal ions, preferably manganese or magnesium, are needed for maximum activity. Riboflavin serves as the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential cofactors for several oxidoreductases that are indispensable in most living cells. In the final steps of the riboflavin biosynthetic pathway, lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, LS) catalyzes the condensation of the 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy- 2-butanone-4-phosphate to release water, inorganic phosphate and 6,7-dimethyl-8-ribityllumazine (DMRL), followed by RS which catalyzes a dismutation of DMRL yielding riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. In the latter reaction, a four-carbon moiety is transferred between two DMRL molecules serving as donor and acceptor, respectively. Both the LS and RS catalyzed reactions are thermodynamically irreversible and can proceed in the absence of a catalyst. Archaeal RSs share sequence similarity with LSs, both appear to have diverged early in the evolution of archaea from a common ancestor. 143 -187744 cd09211 Lumazine_synthase_archaeal lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, LS); catalyzes the penultimate step in the biosynthesis of riboflavin (vitamin B2). Archaeal LS is an important enzyme in the riboflavin biosynthetic pathway. Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which are essential cofactors for the catalysis of a wide range of redox reactions. These cofactors are also involved in many other processes involving DNA repair, circadian time-keeping, light sensing, and bioluminescence. In the final steps of the riboflavin biosynthetic pathway LS catalyzes the condensation of the 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy- 2-butanone-4-phosphate to release water, inorganic phosphate and 6,7-dimethyl-8-ribityllumazine (DMRL), and riboflavin synthase (RS) catalyzes a dismutation of DMRL which yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. In the latter reaction, a four-carbon moiety is transferred between two DMRL molecules serving as donor and acceptor, respectively. Both the LS and RS catalyzed reactions are thermodynamically irreversible and can proceed in the absence of a catalyst. LS from Methanococcus jannaschii forms capsids with icosahedral 532 symmetry consisting of 60 subunits. Archaeal LSs share sequence similarity with archaeal RSs, both appear to have diverged early in the evolution of archaea from a common ancestor. 131 -198416 cd09212 PUB PNGase/UBA or UBX (PUB) domain of p97 adaptor proteins. The PUB domain is found in p97 adaptor proteins such as PNGase, UBXD1 (UBX domain-containing protein 1), and RNF31 (RING finger protein 31). It functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The p97, a type II AAA+ ATPase, is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. The PUB domain in UBX-domain protein 1 (UBXD1), which is widely expressed in higher eukaryotes (except for fungi) and which is involved in substrate recruitment to p97, interacts strongly with the C-terminus of p97. Peptide:N-glycanase (PNGase), a deglycosylating enzyme that functions in proteasome-dependent degradation of misfolded glycoproteins which are translocated from the endoplasmic reticulum (ER) to the cytosol during ERAD, associates with the ubiquitin-proteasome system proteins mediated by the N-terminal PUB domain. PNGase is present in all eukaryotic organisms; however, the yeast PNGase ortholog does not contain the PUB domain. The RNF31 protein, also known as HOIP or Zibra, contains an N-terminal PUB domain similar to those in PNGase and UBXD1, suggesting its association with p97. 96 -188873 cd09213 Luminal_IRE1_like The Luminal domain, a dimerization domain, of Inositol-requiring protein 1-like proteins. The Luminal domain is a dimerization domain present in Inositol-requiring protein 1 (IRE1), eukaryotic translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3), and similar proteins. IRE1 and EIF2AK3 are serine/threonine protein kinases (STKs) and are type I transmembrane proteins that are localized in the endoplasmic reticulum (ER). They are kinase receptors that are activated through the release of BiP, a chaperone bound to their luminal domains under unstressed conditions. This results in dimerization through their luminal domains, allowing trans-autophosphorylation of their kinase domains and activation. They play roles in the signaling of the unfolded protein response (UPR), which is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), contains an endoribonuclease domain in its cytoplasmic side and acts as an ER stress sensor. It is the oldest and most conserved component of the UPR in eukaryotes. Its activation results in the cleavage of its mRNA substrate, HAC1 in yeast and Xbp1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. EIF2AK3, also called PKR-like Endoplasmic Reticulum Kinase (PERK), phosphorylates the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. It functions as the central regulator of translational control during the UPR pathway. In addition to the eIF-2 alpha subunit, EIF2AK3 also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. 312 -185753 cd09214 GH64-like glycosyl hydrolase 64 family. This family is represented by the laminaripentaose-producing, beta-1,3-glucanase (LPHase) of Streptomyces matensis and related bacterial and ascomycete proteins. LPHase is a member of glycoside hydrolase family 64 (GH64), it is an inverting enzyme involved in the cleavage of long-chain polysaccharide beta-1,3-glucans, into specific pentasaccharide oligomers. LPHase is a two-domain crescent fold structure: one domain is composed of 10 beta-strands, eight coming from the N-terminus of the protein and two from the C-terminal region, and the protein has a second inserted domain; this cd includes both domains. This protein has an electronegative, substrate-binding cleft, and conserved Glu and Asp residues involved in the cleavage of the beta-1,3-glucan, laminarin, a plant and fungal cell wall component. Among bacteria, many beta-1,3-glucanases are implicated in fungal cell wall degradation. Also included in this family is GluB , the beta-1,3-glucanase B from Lysobacter enzymogenes Strain N4-7. Recombinant GluB demonstrated higher relative activity toward the branched-chain beta-1,3 glucan substrate zymosan A than toward linear beta-1,3 glucan substrates. Sometimes these two domains are found associated with other domains such as in the Catenulispora acidiphila DSM 44928 carbohydrate binding family 6 protein in which they are positioned N-terminal of a carbohydrate binding module, family 6 (CBM_6) domain. In the Cellulosimicrobium cellulans, glucan endo-1,3-beta-glucosidase, they are positioned N-terminal of a RICIN, carbohydrate-binding domain, and in the Salinispora tropica CNB-440, coagulation factor 5/8 C-terminal domain (FA58C) protein, they are positioned C-terminal of two FA58C domains which are proposed to function as cell surface-attached, carbohydrate-binding domain. This FA58C-containing protein has an internal peptide deletion (of approx. 44 residues) in the LPHase domain II. 319 -185754 cd09215 Thaumatin-like the sweet-tasting protein, thaumatin, and thaumatin-like proteins involved in host defense. This family is represented by the sweet-tasting protein thaumatin from the African berry Thaumatococcus daniellii and thaumatin-like proteins (TLPs) involved in host defense and a wide range of developmental processes in fungi, plants, and animals. Plant TLPs are classified as pathogenesis-related (PR) protein family 5 (PR5), their expression is induced by environmental stresses such as pathogen/pest attack, drought and cold. TLPs included in this family are such proteins as zeamatin, found in high concentrations in cereal seeds; osmotin, a salt-induced protein in osmotically stressed plants; and PpAZ44, a propylene-induced TLP in abscission of young fruit. Several members of the plant TLP family have been reported as food allergens from fruits (i.e., cherry, Pru av 2; bell pepper, Cap a1; tomatoes, Lyc e NP24) and pollen allergens from conifers (i.e., mountain cedar, Jun a 3; Arizona cypress, Cup a3; Japanese cedar, Cry j3). Thaumatin and TLPs are three-domain, crescent-fold structures with either an electronegative, electropositive, or neutral cleft occurring between domains I and II. It has been proposed that the antifungal activity of plant PR5 proteins relies on the strong electronegative character of this cleft. Some TLPs hydrolyze the beta-1,3-glucans of the type commonly found in fungal walls. Most TLPs contain 16 conserved Cys residues. A deletion within the third domain (domain II) of the Triticum aestivum thaumatin-like xylanase inhibitor is observed, thus, only 10 conserved Cys residues are present within this smaller TLP and similar homologs. 157 -185755 cd09216 GH64-LPHase-like glycoside hydrolase family 64: laminaripentaose-producing, beta-1,3-glucanase (LPHase)-like. This subfamily is represented by the laminaripentaose-producing, beta-1,3-glucanase (LPHase) of Streptomyces matensis and related bacterial and ascomycete proteins. LPHase is a member of glycoside hydrolase family 64 (GH64), it is an inverting enzyme involved in the cleavage of long-chain polysaccharide beta-1,3-glucans, into specific pentasaccharide oligomers. LPHase is a two-domain crescent fold structure: one domain is composed of 10 beta-strands, eight coming from the N-terminus of the protein and two from the C-terminal region, and the protein has a second inserted domain; this cd includes both domains. This protein has an electronegative, substrate-binding cleft, and conserved Glu and Asp residues involved in the cleavage of the beta-1,3-glucan, laminarin, a plant and fungal cell wall component. Among bacteria, many beta-1,3-glucanases are implicated in fungal cell wall degradation. Also included in this family is GluB , the beta-1,3-glucanase B from Lysobacter enzymogenes Strain N4-7. Recombinant GluB demonstrated higher relative activity toward the branched-chain beta-1,3 glucan substrate zymosan A than toward linear beta-1,3 glucan substrates. Sometimes these two domains are found associated with other domains such as in the Catenulispora acidiphila DSM 44928 carbohydrate binding family 6 protein in which they are positioned N-terminal of a carbohydrate binding module, family 6 (CBM_6) domain. In the Cellulosimicrobium cellulans, glucan endo-1,3-beta-glucosidase, they are positioned N-terminal of a RICIN, carbohydrate-binding domain. 353 -185756 cd09217 TLP-P thaumatin and allergenic/antifungal thaumatin-like proteins: plant homologs. This subfamily is represented by the sweet-tasting protein thaumatin from the African berry Thaumatococcus daniellii, allergenic/antifungal Thaumatin-like proteins (TLPs), and related plant proteins. TLPs are involved in host defense and a wide range of developmental processes in fungi, plants, and animals. Plant TLPs are classified as pathogenesis-related (PR) protein family 5 (PR5), their expression is induced by environmental stresses such as pathogen/pest attack, drought and cold. TLPs in this subfamily include such proteins as zeamatin, found in high concentrations in cereal seeds, and osmotin, a salt-induced protein in osmotically stressed plants. Several members of the plant TLP family have been reported as food allergens from fruits (i.e., cherry, Pru av 2; bell pepper, Cap a1; tomatoes, Lyc e NP24) and pollen allergens from conifers (i.e., mountain cedar, Jun a 3; Arizona cypress, Cup a3; Japanese cedar, Cry j3). Thaumatin and TLPs are three-domain, crescent-fold structures with either an electronegative, electropositive, or neutral cleft occurring between domains I and II. It has been proposed that the antifungal activity of plant PR5 proteins relies on the strong electronegative character of this cleft. IgE-binding epitopes of mountain Cedar (Juniperus ashei) allergen Jun a 3, which interact with pooled IgE from patients suffering allergenic response to this allergen, were mainly located on the helical domain II; the best-conserved IgE-binding epitope predicted for TLPs corresponds to this region. Some TLPs hydrolyze the beta-1,3-glucans of the type commonly found in fungal walls. Most TLPs contain 16 conserved Cys residues. A deletion within the third domain (domain II) of the Triticum aestivum thaumatin-like xylanase inhibitor is observed, thus, only 10 conserved Cys residues are present within this smaller TLP and similar homologs. 151 -185757 cd09218 TLP-PA allergenic/antifungal thaumatin-like proteins: plant and animal homologs. This subfamily is represented by the thaumatin-like proteins (TLPs), Cherry Allergen Pru Av 2 TLP, Peach PpAZ44 TLP (a propylene-induced TLP in abscission), the Caenorhabditis elegans thaumatin family member (thn-6), and other plant and animal homologs. TLPs are involved in host defense and a wide range of developmental processes in fungi, plants, and animals. Due to their inducible expression by environmental stresses such as pathogen/pest attack, drought and cold, plant TLPs are classified as the pathogenesis-related (PR) protein family 5 (PR5). Several members of the plant TLP family have been reported as food allergens from fruits (i.e., cherry, Pru av 2; bell pepper, Cap a1; tomatoes, Lyc e NP24) and pollen allergens from conifers (i.e., mountain cedar, Jun a 3; Arizona cypress, Cup a3; Japanese cedar, Cry j3). TLPs are three-domain, crescent-fold structures with either an electronegative, electropositive, or neutral cleft occurring between domains I and II. It has been proposed that the antifungal activity of plant PR5 proteins relies on the strong electronegative character of this cleft. Some TLPs hydrolyze the beta-1,3-glucans of the type commonly found in fungal walls. TLPs within this subfamily contain 16 conserved Cys residues. 219 -185758 cd09219 TLP-F thaumatin-like proteins: basidiomycete homologs. This subfamily is represented by Lentinula edodes TLG1, a thaumatin-like protein (TLP), as well as, other basidiomycete homologs. In general, TLPs are involved in host defense and a wide range of developmental processes in fungi, plants, and animals. TLG1 TLP is involved in lentinan degradation and fruiting body senescence. TLG1 expressed in Escherichia coli and Aspergillus oryzae exhibited beta-1,3-glucanase activity and demonstrated lentinan degrading activity. TLG1 is proposed to be involved in lentinan and cell wall degradation during senescence following harvest and spore diffusion. TLPs are three-domain, crescent-fold structures with either an electronegative, electropositive, or neutral cleft occurring between domains I and II. TLG1 from Lentinula edodes contains the required acidic amino acids conserved in the appropriate positions to possess an electronegative cleft. TLPs within this subfamily contain 13 conserved Cys residues; the number of total Cys residues in these TLPs varies from 16 in L. edodes TLG1 to 18 in other basidiomycete homologs. 229 -185759 cd09220 GH64-GluB-like glycoside hydrolase family 64: beta-1,3-glucanase B (GluB)-like. This subfamily is represented by GluB, beta-1,3-glucanase B , from Lysobacter enzymogenes Strain N4-7 and related bacterial and ascomycete proteins. GluB is a member of the glycoside hydrolase family 64 (GH64) involved in the cleavage of long-chain polysaccharide beta-1,3-glucans, into specific pentasaccharide oligomers. Among bacteria, many beta-1,3-glucanases are implicated in fungal cell wall degradation. GluB possesses the conserved Glu and Asp residues required to cleave substrate beta-1,3-glucans. Recombinant GluB demonstrated higher relative activity toward the branched-chain beta-1,3 glucan substrate zymosan A than toward linear beta-1,3 glucan substrates. Based on the structure of laminaripentaose-producing, beta-1,3-glucanase (LPHase) of Streptomyces matensis, which belongs to the same family as GluB but to a different subfamily, this cd is a two-domain model. Sometimes these two domains are found associated with other domains such as in the Catenulispora acidiphila DSM 44928 carbohydrate binding family 6 protein in which they are positioned N-terminal of a carbohydrate binding module, family 6 (CBM_6) domain. 369 -187745 cd09223 Photo_RC D1, D2 subunits of photosystem II (PSII); M, L subunits of bacterial photosynthetic reaction center. This protein superfamily contains the D1, D2 subunits of the photosystem II (PS II) and the M, L subunits of the bacterial photosynthetic reaction center (RC). These four proteins are highly homologous and share a common fold. PS II is a multi-subunit protein found in the photosynthetic membranes of plants, algae, and cyanobacteria. It utilizes light-induced electron transfer and water-splitting reactions to produce protons, electrons, and molecular oxygen. The protons generated are instrumental in ATP formation. Bacterial photosynthetic reaction center (RC) complex is found in photosynthetic bacteria, such as purple bacteria and other proteobacteria species. It couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule (QB) that binds two electrons and two protons at the active site. Protons are translocated from the bacterial cytoplasm to the periplasmic space, generating an electrochemical gradient of protons (the protonmotive force) that can be used to power reactions such as the synthesis of ATP. 199 -198423 cd09224 CytoC_RC Cytochrome C subunit of the bacterial photosynthetic reaction center. Photosynthesis in purple bacteria is dependent on light-induced electron transfer in the reaction center (RC), coupled to the uptake of protons from the cytoplasm. The RC contains a cytochrome molecule which re-reduces the oxidized electron donor. The electron transfer reactions of photosynthesis are performed by the following three components: the photosynthetic reaction center (RC), the cytochrome, and the soluble electron carrier protein. Firstly, the RC promotes the light-induced charge separation across the plasma membrane, which results in the oxidation of a pair of light-harvesting complexes, LH1 and LH2, and the reduction of quinone to quinol. The quinol then leaves the RC and moves to the cytochrome complex through the quinone pool of the plasma membrane. Secondly, the cytochrome complex reoxidizes the quinol to quinone, and the released electrons are transferred to soluble electron carriers. Third, the soluble electron carriers transport the electrons to the RC through the periplasmic space. Finally, the photo-oxidized light-harvesting complex is reduced by the soluble electron carriers, and the RC comes back to the initial state. In the course of the oxidation and reduction of the quinones, a transmembrane electrochemical gradient of protons is formed, and its energy is used to produce ATP by the ATP synthase complex. 300 -185717 cd09232 Snurportin-1_C C-terminal m3G cap-binding domain of nuclear import adaptor snurportin-1. Snurportin-1 (SPN1 or SNUPN) is a nuclear import adaptor for m3G-capped spliceosomal U small nucleoproteins (snRNPs), which are assembled in the cytoplasm. After capping and assembly, the U snRNPs are transported into the nucleus by SPN1 and importin beta; SPN1 is then returned to the cytoplasm by exportin 1 (CRM1), which also transports the non-capped U snRNPs. The U snRNPs are essential elements of the spliceosome, which catalyzes the excision of introns and the ligation of exons to form a mature mRNA. SPN1 contains two domains, an N-terminal importin beta-binding (IBB) domain and a C-terminal m3G cap-binding domain. 186 -187750 cd09233 ACE1-Sec16-like Ancestral coatomer element 1 (ACE1) of COPII coat complex assembly protein Sec16. COPII coat complex plays an important role in vesicular traffic of newly synthezised proteins from the endoplasmatic reticulum (ER) to the Golgi apparatus by mediating the formation of transport vesicles. COPII consists of an outer coat, made up of the scaffold proteins Sec31 and Sec13, and the cargo adaptor complex, Sec23 and Sec24, which are recruited by the small GTPase Sar1. Sec16 is involved in the early steps of the assembly process. Sec16 forms elongated heterotetramers with Sec13, Sec13-(Sec16)2-Sec13. It interacts with Sec13 by insertion of a single beta-blade to close the six-bladded beta propeller of Sec13. In the same way Sec13 interacts with Sec31 and Nup145C, a nuclear pore protein, all of these contain a structurally related ancestral coatomer element 1 (ACE1). Sec16 is believed to be a key component in maintaining the integrity of the ER exit site. 314 -185747 cd09234 V_HD-PTP_like Protein-interacting V-domain of mammalian His-Domain type N23 protein tyrosine phosphatase and related domains. This family contains the V-shaped (V) domain of mammalian His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23) and related domains. It belongs to the V_Alix_like superfamily which includes the V domains of Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, mammalian Alix (apoptosis-linked gene-2 interacting protein X/ also known as apoptosis-linked gene-2 interacting protein 1, AIP1), and related domains. HD_PTP interacts with the ESCRT (Endosomal Sorting Complexes Required for Transport) system, and participates in cell migration and endosomal trafficking. The related Alix V-domain (belonging to a different family in this superfamily) contains a binding site, partially conserved in the superfamily, for the retroviral late assembly (L) domain YPXnL motif. The Alix V-domain is also a dimerization domain. In addition to the V-domain, HD_PTP also has an N-terminal Bro1-like domain, a proline-rich region (PRR), a catalytically inactive tyrosine phosphatase domain, and a region containing a PEST motif. Bro1-like domains bind components of the ESCRT-III complex, specifically to CHMP4 in the case of HD-PTP. The Bro1-like domain of HD-PTP can also bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. HD-PTP is encoded by the PTPN23 gene, a tumor suppressor gene candidate frequently absent in human kidney, breast, lung, and cervical tumors. This family also contains Drosophila Myopic, which promotes epidermal growth factor receptor (EGFR) signaling, and Caenorhabditis elegans (enhancer of glp-1) EGO-2 which promotes Notch signaling. 337 -185748 cd09235 V_Alix Middle V-domain of mammalian Alix and related domains are dimerization and protein interaction modules. This family contains the middle V-shaped (V) domain of mammalian Alix (apoptosis-linked gene-2 interacting protein X) and related domains. It belongs to the V_Alix_like superfamily which includes the V-domains of Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, mammalian His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), and related domains. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), is part of the ESCRT (Endosomal Sorting Complexes Required for Transport) system, and participates in membrane remodeling processes, including the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), the abscission reactions of mammalian cell division, and in apoptosis. The Alix V-domain is a dimerization domain, and contains a binding site, partially conserved in the V_Alix_like superfamily, for the retroviral late assembly (L) domain YPXnL motif. In addition to the V-domain, Alix also has an N-terminal Bro1-like domain, which binds components of the ESCRT-III complex, in particular CHMP4. The Bro1-like domain of Alix can also bind to human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Alix also has a C-terminal proline-rich region (PRR) that binds multiple partners including Tsg101 (tumor susceptibility gene 101, a component of ESCRT-1), and the apoptotic protein ALG-2. 339 -185749 cd09236 V_AnPalA_UmRIM20_like Protein-interacting V-domains of Aspergillus nidulans PalA/RIM20, Ustilago maydis RIM20, and related proteins. This family belongs to the V_Alix_like superfamily which includes the V-shaped (V) domains of Bro1 and Rim20 from Saccharomyces cerevisiae, mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), and related domains. Aspergillus nidulas PalA/RIM20 and Ustilago maydis RIM20, like Saccharomyces cerevisiae Rim20, participate in the response to the external pH via the Pal/Rim101 pathway; however, Saccharomyces cerevisiae Rim20 does not belong to this family. This pathway is a signaling cascade resulting in the activation of the transcription factor PacC/Rim101. The mammalian Alix V-domain (belonging to a different family) contains a binding site, partially conserved in the superfamily, for the retroviral late assembly (L) domain YPXnL motif. Aspergillus nidulas PalA binds a nonviral YPXnL motif (tandem YPXL/I motifs within PacC). The Alix V-domain is also a dimerization domain. In addition to this V-domain, members of the V_Alix_like superfamily also have an N-terminal Bro1-like domain, which has been shown to bind CHMP4/Snf7, a component of the ESCRT-III complex. 353 -185750 cd09237 V_ScBro1_like Protein-interacting V-domain of Saccharomyces cerevisiae Bro1 and related domains. This family contains the V-shaped (V) domain of Saccharomyces cerevisiae Bro1, and related domains. It belongs to the V_Alix_like superfamily which also includes the V-domain of Saccharomyces cerevisiae Rim20 (also known as PalA), mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), and related domains. Bro1 interacts with the ESCRT (Endosomal Sorting Complexes Required for Transport) system, and participates in endosomal trafficking. The mammalian Alix V-domain (belonging to a different family) contains a binding site, partially conserved in the superfamily, for the retroviral late assembly (L) domain YPXnL motif. The Alix V-domain is also a dimerization domain. Bro1 also has an N-terminal Bro1-like domain, which binds Snf7, a component of the ESCRT-III complex, and a C-terminal proline-rich region (PRR). The C-terminal portion (V-domain and PRR) of S. cerevisiae Bro1 interacts with Doa4, a ubiquitin thiolesterase needed to remove ubiquitin from MVB cargoes. It interacts with a YPxL motif in the Doa4s catalytic domain to stimulate its deubiquitination activity. 356 -185751 cd09238 V_Alix_like_1 Protein-interacting V-domain of an uncharacterized family of the V_Alix_like superfamily. This domain family is comprised of uncharacterized plant proteins. It belongs to the V_Alix_like superfamily which includes the V-shaped (V) domains of Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, mammalian Alix (apoptosis-linked gene-2 interacting protein X), (His-Domain) type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), and related domains. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP functions in cell migration and endosomal trafficking, Bro1 in endosomal trafficking, and Rim20 in the response to the external pH via the Rim101 pathway. Alix, HD-PTP, Bro1, and Rim20 all interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. The mammalian Alix V-domain (belonging to a different family) contains a binding site, partially conserved in the superfamily, for the retroviral late assembly (L) domain YPXnL motif. The Alix V-domain is also a dimerization domain. In addition to this V-domain, members of the V_Alix_Rim20_Bro1_like superfamily also have an N-terminal Bro1-like domain, which binds components of the ESCRT-III complex. The Bro1-like domains of Alix and HD-PTP can also bind to human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Many members of the V_Alix_like superfamily also have a proline-rich region (PRR). 339 -185762 cd09239 BRO1_HD-PTP_like Protein-interacting, N-terminal, Bro1-like domain of mammalian His-Domain type N23 protein tyrosine phosphatase and related domains. This family contains the N-terminal, Bro1-like domain of mammalian His-Domain type N23 protein tyrosine phosphatase (HD-PTP) and related domains. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), RhoA-binding proteins Rhophilin-1 and -2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), HD-PTP, Brox, Bro1, Rim20, and Rim23, interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. HD-PTP participates in cell migration and endosomal trafficking. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: CHMP4 in the case of HD-PTP. The Bro1-like domain of HD-PTP can also bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. HD-PTP, and some other members of the BRO1_Alix_like superfamily including Alix, also have a V-shaped (V) domain. In the case of Alix, the V-domain contains a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in the V-domain superfamily. HD-PTP is encoded by the PTPN23 gene, a tumor suppressor gene candidate frequently absent in human kidney, breast, lung, and cervical tumors. This family also contains Drosophila Myopic which promotes epidermal growth factor receptor (EGFR) signaling, and Caenorhabditis elegans (enhancer of glp-1) EGO-2 which promotes Notch signaling. 361 -185763 cd09240 BRO1_Alix Protein-interacting, N-terminal, Bro1-like domain of mammalian Alix and related domains. This family contains the N-terminal, Bro1-like domain of mammalian Alix (apoptosis-linked gene-2 interacting protein X), also called apoptosis-linked gene-2 interacting protein 1 (AIP1). It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20, and Rim23, interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Alix participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: CHMP4, in the case of Alix. The Alix Bro1-like domain can also bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid and Rab5-specfic GAP (RabGAP5, also known as Rab-GAPLP). In addition to this Bro1-like domain, Alix has a middle V-shaped (V) domain. The Alix V-domain is a dimerization domain, and carries a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in the superfamily. Alix also has a C-terminal proline-rich region (PRR) that binds multiple partners including Tsg101 (tumor susceptibility gene 101, a component of ESCRT-1) and the apoptotic protein ALG-2. 346 -185764 cd09241 BRO1_ScRim20-like Protein-interacting, N-terminal, Bro1-like domain of Saccharomyces cerevisiae Rim20 and related proteins. This family contains the N-terminal, Bro1-like domain of Saccharomyces cerevisiae Rim20 (also known as PalA) and related proteins. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Saccharomyces cerevisiae Bro1, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20, and Rim23, interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Rim20 and Rim23 participate in the response to the external pH via the Rim101 pathway. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: Snf7 in the case of Rim20. RIM20, and some other members of the BRO1_Alix_like superfamily including Alix, also have a V-shaped (V) domain. In the case of Alix, the V-domain is a dimerization domain that also contains a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in the V-domain superfamily. Rim20 localizes to endosomes under alkaline pH conditions. By binding Snf7, it may bring the protease Rim13 (a YPxL-containing transcription factor) into proximity with Rim101, and thus aid in the proteolytic activation of the latter. Rim20 and other intermediates in the Rim101 pathway play roles in the pathogenesis of fungal corneal infection during Candida albicans keratitis. 355 -185765 cd09242 BRO1_ScBro1_like Protein-interacting, N-terminal, Bro1-like domain of Saccharomyces cerevisiae Bro1 and related proteins. This family contains the N-terminal, Bro1-like domain of Saccharomyces cerevisiae Bro1 and related proteins. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Saccharomyces cerevisiae Rim20 (also known as PalA), Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20, and Rim23, interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Bro1 participates in endosomal trafficking. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: Snf7 in the case of Bro1. Snf7 binds to a conserved hydrophobic patch on the middle of the concave side of the Bro1 domain. RIM20, and some other members of the BRO1_Alix_like superfamily including Alix, also have a V-shaped (V) domain. In the case of Alix, the V-domain contains a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in the superfamily. The Alix V-domain is also a dimerization domain. The C-terminal portion (V-domain and proline rich-region) of Bro1 interacts with Doa4, a protease that deubiquitinates integral membrane proteins sorted into the lumenal vesicles of late-endosomal multivesicular bodies. It interacts with a YPxL motif in the Doa4 catalytic domain to stimulate its deubiquitination activity. 348 -185766 cd09243 BRO1_Brox_like Protein-interacting Bro1-like domain of human Brox1 and related proteins. This family contains the Bro1-like domain of a single-domain protein, human Brox, and related domains. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20, and Rim23, interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: CHMP4 in the case of Brox. Human Brox can bind to human immunodeficiency virus type 1 (HIV-1) nucleocapsid. In addition to a Bro1-like domain, Brox also has a C-terminal thioester-linkage site for isoprenoid lipids (CaaX motif). This family lacks the V-shaped (V) domain found in many members of the BRO1_Alix_like superfamily. 353 -185767 cd09244 BRO1_Rhophilin Protein-interacting Bro1-like domain of RhoA-binding protein Rhophilin and related domains. This family contains the Bro1-like domain of RhoA-binding proteins, Rhophilin-1 and -2, and related domains. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Rhophilin-1 and -2 bind both GDP- and GTP-bound RhoA. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. In addition to this Bro1-like domain, Rhophilin-1 and -2, contain an N-terminal Rho-binding domain and a C-terminal PDZ (PS.D.-95, Disc-large, ZO-1) domain. Their PDZ domains have limited homology. Rhophilin-1 and -2 have different activities. The Drosophila knockout of Rhophilin-1 is embryonic lethal, suggesting an essential role in embryonic development. Roles of Rhophilin-2 may include limiting stress fiber formation or increasing the turnover of F-actin in the absence of high levels of RhoA signaling activity. The isolated Bro1-like domain of Rhophilin-1 binds human immunodeficiency virus type 1 (HIV-1) nucleocapsid. This family lacks the V-shaped (V) domain found in many members of the BRO1_Alix _like superfamily. 350 -185768 cd09245 BRO1_UmRIM23-like Protein-interacting, Bro1-like domain of Ustilago maydis Rim23 (PalC), and related domains. This family contains the Bro1-like domain of Ustilago maydis Rim23 (also known as PalC), and related proteins. It belongs to the BRO1_Alix_like superfamily which includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, and related domains. Alix, HD-PTP, Brox, Bro1, Rim20, and Rim23 interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Rim20 and Rim23 participate in the response to the external pH via the Rim101 pathway. Through its Bro1-like domain, Rim23 allows the interaction between the endosomal and plasma membrane complexes. Bro1-like domains are boomerang-shape, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Intermediates in the Rim101 pathway may play roles in the pathogenesis of fungal corneal infection during Candida albicans keratitis. This family lacks the V-shaped (V) domain found in many members of the BRO1_Alix_like superfamily. 413 -185769 cd09246 BRO1_Alix_like_1 Protein-interacting, N-terminal, Bro1-like domain of an Uncharacterized family of the BRO1_Alix_like superfamily. This domain family is comprised of uncharacterized proteins. It belongs to the BRO1_Alix_like superfamily which includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20 and Rim23 interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Alix participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP and Bro1 function in endosomal trafficking, with HD-PTP having additional functions in cell migration. Rim20 and Rim23 play roles in the response to the external pH via the Rim101 pathway. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. Bro1-like domains bind components of the ESCRT-III complex: CHMP4 (in the case of Alix, Brox and HD-PTP) and Snf7 (in the case of yeast Bro1 and Rim20). The Bro1-like domains of Alix, HD-PTP, Brox, and Rhophilin can bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. In addition to this Bro1-like domain, Alix, Bro1, Rim20, HD_PTP, and proteins belonging to this uncharacterized family, also have a V-shaped (V) domain. The Alix V-domain is a dimerization domain, and contains a binding site for the retroviral late assembly (L) domain YPXnL motif, which is partially conserved in the BRO1_Alix_like superfamily. Many members of this superfamily also have a proline-rich region (PRR), a protein interaction domain. 353 -185770 cd09247 BRO1_Alix_like_2 Protein-interacting Bro1-like domain of an Uncharacterized family of the BRO1_Alix_like superfamily. This domain family is comprised of uncharacterized proteins. It belongs to the BRO1_Alix_like superfamily which includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding proteins Rhophilin-1 and -2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Alix, HD-PTP, Brox, Bro1, Rim20 and Rim23 interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. Alix participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP and Bro1 function in endosomal trafficking, with HD-PTP having additional functions in cell migration. Rim20 and Rim23 play roles in the response to the external pH via the Rim101 pathway. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. These domains bind components of the ESCRT-III complex: CHMP4 (in the case of Alix, Brox and HD-PTP) and Snf7 (in the case of yeast Bro1 and Rim20). The Bro1-like domains of Alix, HD-PTP, Brox, and Rhophilin can bind human immunodeficiency virus type 1 (HIV-1) nucleocapsid. This family lacks the V-shaped (V) domain found in many members of the BRO1_Alix_like superfamily. 346 -185771 cd09248 BRO1_Rhophilin_1 Protein-interacting Bro1-like domain of RhoA-binding protein Rhophilin-1. This subfamily contains the Bro1-like domain of the RhoA-binding protein, Rhophilin-1. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domains of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding protein Rhophilin-2, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Rhophilin-1 binds both GDP- and GTP-bound RhoA. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. In addition to this Bro1-like domain, Rhophilin-1 contains an N-terminal Rho-binding domain and a C-terminal PDZ (PS.D.-95, Disc-large, ZO-1) domain. The Drosophila knockout of the Rhophilin-1 is embryonic lethal, suggesting an essential role in embryonic development. The isolated Bro1-like domain of Rhophilin-1 binds human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Rhophilin-1 lacks the V-shaped (V) domain found in many members of the BRO1_Alix_ like superfamily. 384 -185772 cd09249 BRO1_Rhophilin_2 Protein-interacting Bro1-like domain of RhoA-binding protein Rhophilin-2. This subfamily contains the Bro1-like domain of RhoA-binding protein, Rhophilin-2. It belongs to the BRO1_Alix_like superfamily which also includes the Bro1-like domain of mammalian Alix (apoptosis-linked gene-2 interacting protein X), His-Domain type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), RhoA-binding protein Rhophilin-1, Brox, Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, Ustilago maydis Rim23 (also known as PalC), and related domains. Rhophilin-2, binds both GDP- and GTP-bound RhoA. Bro1-like domains are boomerang-shaped, and part of the domain is a tetratricopeptide repeat (TPR)-like structure. In addition to this Bro1-like domain, Rhophilin-2 contains an N-terminal Rho-binding domain and a C-terminal PDZ (PS.D.-95, Disc-large, ZO-1) domain. Roles for Rhophilin-2 may include limiting stress fiber formation or increasing the turnover of F-actin in the absence of high levels of RhoA signaling activity. Rhophilin-2 lacks the V-shaped (V) domain found in many members of the BRO1_Alix_like superfamily. 385 -271158 cd09250 AP-1_Mu1_Cterm C-terminal domain of medium Mu1 subunit in clathrin-associated adaptor protein (AP) complex AP-1. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This family corresponds to the C-terminal domain of heterotetrameric clathrin-associated adaptor protein complex 1 (AP-1) medium mu1 subunit, which includes two closely related homologs, mu1A (encoded by ap1m1) and mu1B (encoded by ap1m2). Mu1A is ubiquitously expressed, but mu1B is expressed exclusively in polarized epithelial cells. AP-1 has been implicated in bi-directional transport between the trans-Golgi network (TGN) and endosomes. It plays an essential role in the formation of clathrin-coated vesicles (CCVs) from the trans-Golgi network (TGN). Epithelial cell-specific AP-1 is also involved in sorting to the basolateral surface of polarized epithelial cells. Recruitment of AP-1 to the TGN membrane is regulated by a small GTPase, ADP-ribosylation factor 1 (ARF1). Phosphorylation/dephosphorylation events can also regulate the function of AP-1. The membrane-anchored cargo molecules can be linked to the outer lattice of CCVs by AP-1. Those cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-1 mu1 subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. 272 -271159 cd09251 AP-2_Mu2_Cterm C-terminal domain of medium Mu2 subunit in ubiquitously expressed clathrin-associated adaptor protein (AP) complex AP-2. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, -2, -3, and -4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This family corresponds to the C-terminal domain of heterotetrameric clathrin-associated adaptor protein complex 2 (AP-2) medium mu2 subunit. Mu2 is ubiquitously expressed in mammals. In higher eukaryotes, AP-2 plays a critical role in clathrin-mediated endocytosis from the plasma membrane in different cells. The membrane-anchored cargo molecules can be linked to the outer lattice of CCVs by AP-2. Those cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-2 mu2 subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. Since the Y-X-X-Phi binding site is buried in the core structure of AP-2, a phosphorylation induced conformational change is required when the cargo molecules binds to AP-2. In addition, the C-terminal domain of mu2 subunit has been shown to bind other molecules. For instance, it can bind phosphoinositides, in particular PI[4,5]P2, which might be involved in the recognition process of the tyrosine-based signals. It can also interact with synaptotagmins, a family of important modulators of calcium-dependent neurosecretion within the synaptic vesicle (SV) membrane. Since many of the other endocytic adaptors responsible for biogenesis of synaptic vesicles exist, in the absence of AP-2, clathrin-mediated endocytosis can still occur. However, the cells may not survive in the complete absence of clathrin as well as AP-2. 263 -271160 cd09252 AP-3_Mu3_Cterm C-terminal domain of medium Mu3 subunit in adaptor protein (AP) complex AP-3. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This family corresponds to the C-terminal domain of heterotetrameric adaptor protein complex 3 (AP-3) medium mu3 subunit, which includes two closely related homologs, mu3A (P47A, encoded by ap3m1) and mu1B (P47B, encoded by ap3m2). Mu3A is ubiquitously expressed, but mu3B is specifically expressed in neurons and neuroendocrine cells. AP-3 is particularly important for targeting integral membrane proteins to lysosomes and lysome-related organelles at trans-Golgi network (TGN) and/or endosomes, such as the yeast vacuole, fly pigment granules and mammalian melanosomes, platelet dense bodies and the secretory lysosomes of cytotoxic T lymphocytes. Unlike AP-1 and AP-2, which function in conjunction with clathrin which is a scaffolding protein participating in the formation of coated vesicles, the nature of the outer shell of AP-3 containing coats remains to be elucidated. Membrane-anchored cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-3 mu3 subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. 251 -271161 cd09253 AP-4_Mu4_Cterm C-terminal domain of medium Mu4 subunit in adaptor protein (AP) complex AP-4. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This family corresponds to the C-terminal domain of heterotetrameric adaptor protein complex 4 (AP-4) medium mu4 subunit. AP-4 plays a role in signal-mediated trafficking of integral membrane proteins in mammalian cells. Unlike other AP complexes, AP-4 is found only in mammals and plants. It is believed to be part of a nonclathrin coat, since it might function independently of clathrin, a scaffolding protein participating in the formation of coated vesicles. Recruitment of AP-4 to the trans-Golgi network (TGN) membrane is regulated by a small GTPase, ADP-ribosylation factor 1 (ARF1) or a related protein. Membrane-anchored cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. One of the most important sorting signals binding to mu subunits of AP complexes are tyrosine-based endocytotic signals, which are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. However, AP-4 does not bind most canonical tyrosine-based signals except for two naturally occurring ones from the lysosomal membrane proteins CD63 and LAMP-2a. It binds YX [FYL][FL]E motif, where X can be any residue, from the cytosolic tails of amyloid precursor protein (APP) family members in a distinct way. 271 -271162 cd09254 AP_delta-COPI_MHD Mu homology domain (MHD) of adaptor protein (AP) coat protein I (COPI) delta subunit. COPI complex-coated vesicles function in the early secretory pathway. They mediate the retrograde transport from the Golgi to the ER, and intra-Golgi transport. COPI complex-coated vesicles consist of a small GTPase, ADP-ribosylation factor 1 (ARF1) and a heteroheptameric coatomer composed of two subcomplexes, F-COPI and B-COPI. ARF1 regulates COPI vesicle formation by recruiting the coatomer onto Golgi membranes to initiate its coat function. Coatomer complexes then bind cargo molecules and self-assemble to form spherical cages that yield COPI-coated vesicles. The heterotetrameric F-COPI subcomplex contains beta-, gamma-, delta-, and zeta-COP subunits, where beta- and gamma-COP subunits are related to the large AP subunits, and delta- and zeta-COP subunits are related to the medium and small AP subunits, respectively. Due to the sequence similarity to the AP complexes, the F-COPI subcomplex might play a role in the cargo-binding. The heterotrimeric B-COPI contains alpha-, beta-, and epsilon-COP subunits, which are not related to the adaptins. This subcomplex is thought to participate in the cage-forming and might serve a function similar to that of clathrin. This family corresponds to the mu homology domain of delta-subunit of COPI complex (delta-COP), which is distantly related to the C-terminal domain of mu chains among AP complexes. The delta-COP subunit appears tightly associated with the beta-COP subunit to confer its interaction with ARF1. In addition, both delta- and beta-COP subunits contribute to a common binding site for arginine (R)-based signals, which are sorting motifs conferring transient endoplasmic reticulum (ER) localization to unassembled subunits of multimeric membrane proteins. 237 -271163 cd09255 AP-like_stonins_MHD Mu homology domain (MHD) of adaptor-like proteins (AP-like), stonins. A small family of proteins named stonins has been characterized as clathrin-dependent AP-2 mu2 chain related factors, which may act as cargo-specific sorting adaptors in endocytosis. Stonins include stonin 1 and stonin 2, which are only mammalian homologs of Drosophila stoned B, a presynaptic protein implicated in neurotransmission and synaptic vesicle (SV) recycling. They are conserved from C. elegans to humans, but are not found in prokaryotes or yeasts. This family corresponds to the mu homology domain of stonins, which is distantly related to the C-terminal domain of mu chains among AP complexes. Due to the low degree of sequence conservation of the corresponding binding site, the mu homology domain of stonins is unable to recognize tyrosine-based endocytic sorting signals. To data, little is known about the localization and function of stonin 1. Stonin 2, also known as stoned B, acts as an AP-2-dependent synaptotagmin-specific sorting adaptors for SV endocytosis. Stoned A is not a stonin. It is structurally unrelated to the adaptins and does not appear to have mammalian homologs. It is not included in this family. 315 -271164 cd09256 AP_MuD_MHD Mu-homology domain (MHD) of a adaptor protein (AP) encoded by mu-2 related death-inducing gene, MuD (also known as MUDENG). This family corresponds to the MHD found in a protein encoded by MuD (also known as Adapter-related protein complex 5 subunit mu-1), which is distantly related to the C-terminal domain of the mu2 subunit of AP complexes that participates in clathrin-mediated endocytosis. MuD is evolutionary conserved from mammals to amphibians. It is able to induce cell death by itself and plays an important role in cell death in various tissues. 276 -271165 cd09257 AP_muniscins_like_MHD Mu-homology domain (MHD) of muniscins adaptor proteins (AP) and similar proteins. This family corresponds to the MHD found in muniscins, a novel family of endocytic adaptor proteins. The term, muniscins, has been assigned to name the MHD of proteins with both EFC/F-BAR domain and MHD. These two domains are responsible for the membrane-tubulation activity associated with transmembrane cargo proteins. Members in this family include an endocytic adaptor Syp1, the mammalian FCH domain only proteins (FCHo1/2), SH3-containing GRB2-like protein 3-interacting protein 1 (SGIP1), and related uncharacterized proteins. Syp1 is a poorly characterized yeast protein with multiple biological functions. Syp1 contains an N-terminal EFC/F-BAR domain that induces membrane tabulation, a proline-rich domain (PRD) in the middle region, and a C-terminal MHD that can directly binds to the endocytic adaptor/scaffold protein Ede1 or a transmembrane stress sensor cargo protein Mid2. Thus, Syp1 represents a novel type of endocytic adaptor protein that participates in endocytosis, promotes vesicle tabulation, and contributes to cell polarity and stress response. Syp1 shares the same domain architecture with its two ubiquitously expressed mammalian counterparts, the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2). FCHo1/2 represent key initial proteins ultimately controlling cellular nutrient uptake, receptor regulation, and synaptic vesicle retrieval. They are required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. They bind specifically to the plasma membrane and recruit the scaffold proteins eps15 and intersectin, which subsequently engage the adaptor complex AP2 and clathrin, leading to coated vesicle formation. Another mammalian neuronal-specific protein, neuronal-specific transcript Scr homology 3 (SH3)-domain growth factor receptor-bound 2 (GRB2)-like (endophilin) interacting protein 1 [SGIP1] does not contain EFC/F-BAR domain, but does have a PRD and a C-terminal MHD and has been classified into this family as well. SGIP1 is an endophilin-interacting protein that plays an obligatory role in the regulation of energy homeostasis. It is also involved in clathrin-mediated endocytosis by interacting with phospholipids and eps15. 244 -271166 cd09258 AP-1_Mu1A_Cterm C-terminal domain of medium Mu1A subunit in ubiquitously expressed clathrin-associated adaptor protein (AP) complex AP-1. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This subfamily corresponds to the C-terminal domain of heterotetrameric clathrin-associated adaptor protein complex 1 (AP-1) medium mu1A subunit encoded by ap1m1 gene, which is ubiquitously expressed in all mammalian tissues and cells. AP-1 has been implicated in bidirectional transport between the trans-Golgi network (TGN) and endosomes. It is involved in the formation of clathrin-coated vesicles (CCVs) from the trans-Golgi network (TGN). The ubiquitous AP-1 is recruited to the TGN membrane, as well as to immature secretory granules. Recruitment of AP-1 to the TGN membrane is regulated by a small GTPase, ADP-ribosylation factor 1 (ARF1). Phosphorylation/dephosphorylation events can also regulate the function of AP-1. The membrane-anchored cargo molecules can be linked to the outer lattice of CCVs by AP-1. Those cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-1 mu1A subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. 270 -271167 cd09259 AP-1_Mu1B_Cterm C-terminal domain of medium Mu1B subunit in epithelial cell-specific clathrin-associated adaptor protein (AP) complex AP-1. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from different AP complexes exhibits similarity with each other. This subfamily corresponds to the C-terminal domain of heterotetrameric clathrin-associated adaptor protein complex 1 (AP-1) medium mu1B subunit encoded by ap1m2 gene exclusively expressed in polarized epithelial cells. Epithelial cell-specific AP-1 is used to sort proteins to the basolateral plasma membrane, which involves the formation of clathrin-coated vesicles (CCVs) from the trans-Golgi network (TGN). Recruitment of AP-1 to the TGN membrane is regulated by a small GTPase, ADP-ribosylation factor 1 (ARF1). The phosphorylation/dephosphorylation events can also regulate the function of AP-1. The membrane-anchored cargo molecules can be linked to the outer lattice of CCVs by AP-1. Those cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-1 mu1B subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic reside-binding. Besides, AP-1 mu1B subunit mediates the basolateral recycling of low-density lipoprotein receptor (LDLR) and transferrin receptor (TfR) from the sorting endosomes, where the basolateral sorting signal does not belong to the tyrosine-based signals. Thus, the binding site in mu1B subunit of AP-1 for the signals of LDLR and TfR might be distinct from that for YXXPhi signals. 268 -211371 cd09260 AP-3_Mu3A_Cterm C-terminal domain of medium Mu3A subunit in ubiquitously expressed adaptor protein (AP) complex AP-3. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This subfamily corresponds to the C-terminal domain of heterotetrameric adaptor protein complex 3 (AP-3) medium mu3A subunit encoded by ap3m1gene. Mu3A is ubiquitously expressed in all mammalian tissues and cells. It appears to be localized to the trans-Golgi network (TGN) and/or endosomes and participates in trafficking to the vacuole/lysosome in yeast, flies, and mammals. Unlike AP-1 and AP-2, which function in conjunction with clathrin which is a scaffolding protein participating in the formation of coated vesicles, the nature of the outer shell of ubiquitous AP-3 containing coats remains to be elucidated. Membrane-anchored cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-3 mu3A subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. 254 -211372 cd09261 AP-3_Mu3B_Cterm C-terminal domain of medium Mu3B subunit in neuron-specific adaptor protein (AP) complex AP-3. AP complexes participate in the formation of intracellular coated transport vesicles and select cargo molecules for incorporation into the coated vesicles in the late secretory and endocytic pathways. There are four AP complexes, AP-1, AP-2, AP-3, and AP-4, described in various eukaryotic organisms. Each AP complex consists of four subunits: two large chains (one each of gamma/alpha/delta/epsilon and beta1-4, respectively), a medium mu chain (mu1-4), and a small sigma chain (sigma1-4). Each of the four subunits from the different AP complexes exhibits similarity with each other. This subfamily corresponds to the C-terminal domain of heterotetrameric adaptor protein complex 3 (AP-3) medium mu3B subunit encoded by ap3m2 gene. Mu3B is specifically expressed in neurons and neuroendocrine cells. Neuron-specific AP-3 appears to be involved in synaptic vesicle biogenesis from endosomes in neurons and plays an important role in synaptic transmission in the central nervous system. Unlike AP-1 and AP-2, which function in conjunction with clathrin which is a scaffolding protein participating in the formation of coated vesicles, the nature of the outer shell of neuron-specific AP-3 containing coats remains to be elucidated. Membrane-anchored cargo molecules interact with adaptors through short sorting signals in their cytosolic segments. Tyrosine-based endocytotic signals are one of the most important sorting signals. They are of the form Y-X-X-Phi, where Y is tyrosine, X is any amino acid and Phi is a bulky hydrophobic residue that can be Leu, Ile, Met, Phe, or Val. These kinds of sorting signals can be recognized by the C-terminal domain of AP-3 mu3B subunit, also known as Y-X-X-Phi signal-binding domain that contains two hydrophobic pockets, one for the tyrosine-binding and one for the bulky hydrophobic residue-binding. 254 -271168 cd09262 AP_stonin-1_MHD Mu homology domain (MHD) of adaptor-like protein (AP-like), stonin-1 (also called Stoned B-like factor). A small family of proteins named stonins has been characterized as clathrin-dependent AP-2 mu2 chain related factors, which may act as cargo-specific sorting adaptors in endocytosis. Stonins include stonin 1 and stonin 2, which are the only mammalian homologs of Drosophila stoned B, a presynaptic protein implicated in neurotransmission and synaptic vesicle (SV) recycling. They are conserved from C. elegans to humans, but are not found in prokaryotes or yeasts. This family corresponds to the mu homology domain of stonin 1, which is distantly related to the C-terminal domain of mu chains among AP complexes. Due to the low degree of sequence conservation of the corresponding binding site, the mu homology domain of stonin-1 is unable to recognize tyrosine-based endocytic sorting signals. To data, little is known about the localization and function of stonin-1. 314 -271169 cd09263 AP_stonin-2_MHD Mu homology domain (MHD) of adaptor-like protein (AP-like), stonin-2. A small family of proteins named stonins has been characterized as clathrin-dependent AP-2 mu2 chain related factors, which may act as cargo-specific sorting adaptors in endocytosis. Stonins include stonin 1 and stonin 2, which are the only mammalian homologs of Drosophila stoned B, a presynaptic protein implicated in neurotransmission and synaptic vesicle (SV) recycling. They are conserved from C. elegans to humans, but are not found in prokaryotes or yeasts. This family corresponds to the mu homology domain of stonin 2, which is distantly related to the C-terminal domain of mu chains among AP complexes. Due to the low degree of sequence conservation of the corresponding binding site, the mu homology domain of stonin-2 is unable to recognize tyrosine-based endocytic sorting signals. It acts as an AP-2-dependent synaptotagmin-specific sorting adaptor for SV endocytosis. 318 -271170 cd09264 AP_Syp1_MHD mu-homology domain (MHD) of adaptor protein (AP), Syp1, and related proteins. This family corresponds to the MHD found in a novel endocytic adaptor Syp1 and related proteins. Syp1 is a poorly characterized yeast protein with multiple biological functions. It was originally identified as a suppressor of a yeast profiling deletion and later as a suppressor of arf3delta (Arf3 is the yeast homologue of Arf6, a mammalian regulator of endocytosis). Syp1 can bind to septins and physically link with cell polarity factors. It also directly binds to the endocytic adaptor/scaffold protein Ede1, and plays a role in endocytosis. Further studies show that Syp1 is itself an endocytic adaptor protein contributing to stress responses. Its mu-homology domain at the C-terminus binds to the cargo protein Mid2, a transmembrane stress sensor protein, and mediates Mid2 internalization. In addition, Syp1 contains an EFC/F-BAR domain which can induce membrane tabulation. 257 -271171 cd09265 AP_Syp1_like_MHD Mu-homology domain (MHD) of endocytic adaptor protein (AP), Syp1. This family corresponds to the MHD found in the metazoan counterparts of yeast Syp1, which includes two ubiquitously expressed membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCH domain only 1 and 2, or FCHo1/FCHo2), neuronal-specific SH3-containing GRB2-like protein 3-interacting protein 1 (SGIP1), and related uncharacterized proteins. FCHo1/FCHo2 represent key initial proteins ultimately controlling cellular nutrient uptake, receptor regulation, and synaptic vesicle retrieval. They are required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. They bind specifically to the plasma membrane and recruit the scaffold proteins eps15 and intersectin, which subsequently engage the adaptor complex AP2 and clathrin, leading to coated vesicle formation. Both FCHo1/FCHo2 contain an N-terminal EFC/F-BAR domain that induces membrane tabulation, a proline-rich domain (PRD) in the middle region, and a C-terminal MHD responsible for the binding of eps15 and intersectin. Another mammalian neuronal-specific protein, neuronal-specific transcript Scr homology 3 (SH3)-domain growth factor receptor-bound 2 (GRB2)-like (endophilin) interacting protein 1 [SGIP1] does not contain EFC/F-BAR domain, but does have a PRD and a C-terminal MHD and has been classified into this family as well. SGIP1 is an endophilin-interacting protein that plays an obligatory role in the regulation of energy homeostasis. It is also involved in clathrin-mediated endocytosis by interacting with phospholipids and eps15. 266 -271172 cd09266 SGIP1_MHD mu-homology domain (MHD) of Scr homology 3 (SH3)-domain growth factor receptor-bound 2 (GRB2)-like (endophilin) interacting protein 1 (also known as endophilin-3-interacting protein, SGIP1) and similar proteins. This family corresponds to the MHD found in mammalian neuronal-specific transcript SGIP1 and similar proteins. Unlike other members in this family, SGIP1 does not contain EFC/F-BAR domain, but does have a proline-rich domain (PRD) and a C-terminal MHD. It is an endophilin-interacting protein that plays an obligatory role in the regulation of energy homeostasis, and is also involved in clathrin-mediated endocytosis by interacting with phospholipids and eps15. 267 -211378 cd09267 FCHo2_MHD mu-homology domain (MHD) of F-BAR domain-containing Fer/Cip4 homology domain-only protein 2 (FCH domain only 2 or FCHo2) and similar proteins. This family corresponds to the MHD found in the ubiquitously expressed mammalian membrane-sculpting FCHo2 and similar proteins. FCHo2 represents a key initial protein that ultimately controls cellular nutrient uptake, receptor regulation, and synaptic vesicle retrieval. It is required for plasma membrane clathrin-coated vesicle (CCV) budding and marks sites of CCV formation. It binds specifically to the plasma membrane and recruits the scaffold proteins eps15 and intersectin, which subsequently engages the adaptor complex AP2 and clathrin, leading to coated vesicle formation. FCHo2 contains an N-terminal EFC/F-BAR domain, a proline-rich domain (PRD) in the middle region, and a C-terminal MHD. The crescent-shaped EFC/F-BAR domain can form an antiparallel dimer structure that binds PtdIns(4,5)P2-enriched membranes and can polymerize into rings to generate membrane tubules. The MHD is structurally related to the cargo-binding mu2 subunit of adaptor complex 2 (AP-2) and is responsible for the binding of eps15 and intersectin. 267 -271173 cd09268 FCHo1_MHD mu-homology domain (MHD) of F-BAR domain-containing Fer/Cip4 homology domain-only protein 1 (FCH domain only 1 or FCHo1, also known as KIAA0290) and similar proteins. This family corresponds to the MHD found in ubiquitously expressed mammalian membrane-sculpting FCHo1 and similar proteins. FCHo1 represents a key initial protein that ultimately controls cellular nutrient uptake, receptor regulation, and synaptic vesicle retrieval. It is required for plasma membrane clathrin-coated vesicle (CCV) budding and marks sites of CCV formation. It binds specifically to the plasma membrane and recruits the scaffold proteins eps15 and intersectin, which subsequently engage the adaptor complex AP2 and clathrin, leading to coated vesicle formation. FCHo1 contains an N-terminal EFC/F-BAR domain, a proline-rich domain (PRD) in the middle region, and a C-terminal MHD. The crescent-shaped EFC/F-BAR domain can form an antiparallel dimer structure that binds PtdIns(4,5)P2-enriched membranes and can polymerize into rings to generate membrane tubules. The MHD is structurally related to the cargo-binding mu2 subunit of adaptor complex 2 (AP-2) and is responsible for the binding of eps15 and intersectin. Unlike other F-BAR domain containing proteins, FCHo1 has neither the Src homology 3 (SH3) domain nor any other known domain for interaction with dynamin and actin cytoskeleton. However, it can periodically accumulate at the budding site of clathrin. FCHo1 may utilize a unique action mode for vesicle formation as compared with other F-BAR proteins. 265 -185703 cd09269 deoxyribose_mutarotase deoxyribose mutarotase_like. Salmonella enterica serovar Typhi DeoM (earlier named as DeoX) is a mutarotase with high specificity for deoxyribose. It is encoded by one of four genes beonging to the deoK operon. This operon has also been found in Escherichia coli where it is more common in pathogenic than in commensal strains and is associated with pathogenicity. It has been found on a pathogenicity island from a human blood isolate AL863 and confers the ability to use deoxyribose as a carbon source; deoxyribose is not fermented by non-pathogenic E.coli K-12. Proteins in this family are members of the aldose-1-epimerase superfamily. Aldose 1-epimerases, or mutarotases, are key enzymes of carbohydrate metabolism, catalyzing the interconversion of the alpha- and beta-anomers of hexose sugars such as glucose and galactose. This interconversion is an important step that allows anomer specific metabolic conversion of sugars. Studies of the catalytic mechanism of the best known member of the family, galactose mutarotase, have shown a glutamate and a histidine residue to be critical for catalysis; the glutamate serves as the active site base to initiate the reaction by removing the proton from the C-1 hydroxyl group of the sugar substrate, and the histidine as the active site acid to protonate the C-5 ring oxygen. Site directed mutagenesis of this latter histidine residue renders Salmonella enterica DeoM inactive. 293 -187751 cd09270 RNase_H2-B Ribonuclease H2-B is a subunit of the eukaryotic RNase H complex which cleaves RNA-DNA hybrids. Ribonuclease H2B is one of the three proteins of eukaryotic RNase H2 complex that is required for nucleic acid binding and hydrolysis. RNase H is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication and repair. The enzyme can be found in bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. Eukaryotic RNase HII is active during replication and is believed to play a role in removal of Okazaki fragment primers and single ribonucleotides in DNA-DNA duplexes. Eukaryotic RNase HII is functional when it forms a complex with RNase H2B and RNase H2C proteins. It is speculated that the two accessory subunits are required for correct folding of the catalytic subunit of RNase HII. Mutations in the three subunits of human RNase HII cause neurological disorder. 211 -187752 cd09271 RNase_H2-C Ribonuclease H2-C is a subunit of the eukaryotic RNase H complex which cleaves RNA-DNA hybrids. Ribonuclease H2C is one of the three protein of eukaryotic RNase H2 complex that is required for nucleic acid binding and hydrolysis. RNase H is classified into two families, type I (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type II (prokaryotic RNase HII and HIII, and eukaryotic RNase H2/HII). RNase H endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, in DNA replication and repair. The enzyme can be found in bacteria, archaea, and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite a lack of evidence for homology from sequence comparisons, type I and type II RNase H share a common fold and similar steric configurations of the four acidic active-site residues, suggesting identical or very similar catalytic mechanisms. Eukaryotic RNase HII is active during replication and is believed to play a role in removal of Okazaki fragment primers and single ribonucleotides in DNA-DNA duplexes. Eukaryotic RNase HII is functional when it forms a complex with RNase H2B and RNase H2C proteins. It is speculated that the two accessory subunits are required for correct folding of the catalytic subunit of RNase HII. Mutations in the three subunits of human RNase HII cause neurological disorder. 93 -260004 cd09272 RNase_HI_RT_Ty1 Ty1/Copia family of RNase HI in long-term repeat retroelements. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is widely present in various organisms including bacteria, archaea, and eukaryotes. RNase HI has also been observed as adjunct domains to the reverse transcriptase gene in retroviruses, in long-term repeat (LTR)-bearing and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD) are unvaried across all RNase H domains. Phylogenetic patterns of RNase HI of LTR retroelements is classified into five major families, Ty3/Gypsy, Ty1/Copia, Bel/Pao, DIRS1, and the vertebrate retroviruses. The Ty1/Copia family is widely distributed among the genomes of plants, fungi, and animals. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 140 -260005 cd09273 RNase_HI_RT_Bel Bel/Pao family of RNase HI in long-term repeat retroelements. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is widely present in various organisms, including bacteria, archaea and eukaryote. RNase HI has also been observed as adjunct domains to the reverse transcriptase gene in retroviruses, in long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. Phylogenetic patterns of RNase HI of LTR retroelements is classified into five major families, Ty3/Gypsy, Ty1/Copia, Bel/Pao, DIRS1 and the vertebrate retroviruses. Bel/Pao family has been described only in metazoan genomes. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 131 -260006 cd09274 RNase_HI_RT_Ty3 Ty3/Gypsy family of RNase HI in long-term repeat retroelements. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as adjunct domains to the reverse transcriptase gene in retroviruses, in long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. Phylogenetic patterns of RNase HI of LTR retroelements is classified into five major families, Ty3/Gypsy, Ty1/Copia, Bel/Pao, DIRS1 and the vertebrate retroviruses. Ty3/Gypsy family widely distributed among the genomes of plants, fungi and animals. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 121 -260007 cd09275 RNase_HI_RT_DIRS1 DIRS1 family of RNase HI in long-term repeat retroelements. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as adjunct domains to the reverse transcriptase gene in retroviruses, in long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. Phylogenetic patterns of RNase HI of LTR retroelements is classified into five major families, Ty3/Gypsy, Ty1/Copia, Bel/Pao, DIRS1 and the vertebrate retroviruses. The structural features of DIRS1-group elements are different from typical LTR elements. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 120 -260008 cd09276 Rnase_HI_RT_non_LTR non-LTR RNase HI domain of reverse transcriptases. Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). Ribonuclease HI (RNase HI) is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as an adjunct domain to the reverse transcriptase gene in retroviruses, long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. The position of the RNase domain of non-LTR and LTR transposons is at the carboxyl terminal of the reverse transcriptase (RT) domain and their RNase domains group together, indicating a common evolutionary origin. Many non-LTR transposons have lost the RNase domain because their activity is at the nucleus and cellular RNase may suffice; however LTR retrotransposons always encode their own RNase domain because it requires RNase activity in RNA-protein particles in the cytoplasm. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 131 -260009 cd09277 RNase_HI_bacteria_like Bacterial RNase HI containing a hybrid binding domain (HBD) at the N-terminus. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is involved in DNA replication, repair and transcription. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes and most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, Type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site (DEDD) residues and have the same catalytic mechanism and functions in cells. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. Prokaryotic RNase H varies greatly in domain structures and substrate specificities. Prokaryotes and some single-cell eukaryotes do not require RNase H for viability. Some bacteria distinguished from other bacterial RNase HI in the presence of a hybrid binding domain (HBD) at the N-terminus which is commonly present at the N-termini of eukaryotic RNase HI. It has been reported that this domain is required for dimerization and processivity of RNase HI upon binding to RNA-DNA hybrids. 133 -260010 cd09278 RNase_HI_prokaryote_like RNase HI family found mainly in prokaryotes. Ribonuclease H (RNase H) is classified into two evolutionarily unrelated families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is involved in DNA replication, repair and transcription. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes and most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site (DEDD), residues and have the same catalytic mechanism and functions in cells. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. Prokaryotic RNase H varies greatly in domain structures and substrate specificities. Prokaryotes and some single-cell eukaryotes do not require RNase H for viability. 139 -260011 cd09279 RNase_HI_like RNAse HI family that includes archaeal, some bacterial as well as plant RNase HI. Ribonuclease H (RNase H) is classified into two evolutionarily unrelated families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is involved in DNA replication, repair and transcription. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes and most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site (DEDD) residues and have the same catalytic mechanism and functions in cells. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. Most archaeal genomes contain only type 2 RNase H (RNase HII); however, a few contain RNase HI as well. Although archaeal RNase HI sequences conserve the DEDD active-site motif, they lack other common features important for catalytic function, such as the basic protrusion region. Archaeal RNase HI homologs are more closely related to retroviral RNase HI than bacterial and eukaryotic type I RNase H in enzymatic properties. 128 -260012 cd09280 RNase_HI_eukaryote_like Eukaryotic RNase H is essential and is longer and more complex than their prokaryotic counterparts. Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is involved in DNA replication, repair and transcription. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. RNase H is widely present in various organisms, including bacteria, archaea and eukaryote and most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site (DEDD) residues and have the same catalytic mechanism and functions in cells. Eukaryotic RNase H is longer and more complex than in prokaryotes. Almost all eukaryotic RNase HI have highly conserved regions at their N-termini called hybrid binding domain (HBD). It is speculated that the HBD contributes to binding the RNA/DNA hybrid. Prokaryotes and some single-cell eukaryotes do not require RNase H for viability, but RNase H is essential in higher eukaryotes. RNase H knockout mice lack mitochondrial DNA replication and die as embryos. 145 -187753 cd09281 UPF0066 Escherichia coli YaeB and related proteins. Uncharacterized protein family UPF0066. This domain includes Escherichia coli YeaB, Archeoglobus fulgidus AF0241, and Agrobacterium tumefaciens VirR. Proteins with this domain are probable S-adenosylmethionine-dependent methyltransferases but they have not been functionally characterized and the substrate is unknown. 124 -185681 cd09286 NMNAT_Eukarya Nicotinamide/nicotinate mononucleotide adenylyltransferase, Eukaryotic. Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT). NMNAT represents the primary bacterial and eukaryotic adenylyltransferases for nicotinamide-nucleotide and for the deamido form, nicotinate nucleotide. It is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Nicotinamide-nucleotide adenylyltransferase synthesizes NAD via the salvage pathway, while nicotinate-nucleotide adenylyltransferase synthesizes the immediate precursor of NAD via the de novo pathway. Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, and can participate in both de novo and salvage pathways of NAD synthesis. This subfamily consists strictly of eukaryotic members and includes secondary structural elements not found in all NMNATs. 225 -185682 cd09287 GluRS_non_core catalytic core domain of non-discriminating glutamyl-tRNA synthetase. Non-discriminating Glutamyl-tRNA synthetase (GluRS) cataytic core domain. These enzymes attach Glu to the appropriate tRNA. Like other class I tRNA synthetases, they aminoacylate the 2'-OH of the nucleotide at the 3' end of the tRNA. The core domain is based on the Rossman fold and is responsible for the ATP-dependent formation of the enzyme bound aminoacyl-adenylate. It contains the characteristic class I HIGH and KMSKS motifs, which are involved in ATP binding. These enzymes function as monomers. Archaea and most bacteria lack GlnRS. In these organisms, the "non-discriminating" form of GluRS aminoacylates both tRNA(Glu) and tRNA(Gln) with Glu, which is converted to Gln when appropriate by a transamidation enzyme. 240 -187746 cd09288 Photosystem-II_D2 D2 subunit of photosystem II (PS II). Photosystem II (PS II), D2 subunit. PS II is a multi-subunit protein found in the photosynthetic membranes of plants, algae, and cyanobacteria. It utilizes light-induced electron transfer and water-splitting reactions to produce protons, electrons, and molecular oxygen. The protons generated are instrumental in ATP formation. Molecular dioxygen is released as a by-product. PS II can be described as containing two parts: the photochemical part and the catalytic part. The photochemical portion promotes the fast, efficient light-induced charge separation and stabilization that occur when light is absorbed by chlorophyll. The catalytic portion, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. The Mn cluster and its ligands form a functional unit called the oxygen-evolving complex (OEC) or the water-oxidizing complex (WOC). The D1 and D2 subunits are a pair of intertwined polypeptides. They contain all the cofactors involved directly in water oxidation and plastoquinone reduction. D1 and D2 are highly homologous and are also similar to the L and M proteins in bacterial photosynthetic reaction centers. 339 -187747 cd09289 Photosystem-II_D1 D1 subunit of photosystem II (PS II). Photosystem II (PS II), D2 subunit. PS II is a multi-subunit protein found in the photosynthetic membranes of plants, algae, and cyanobacteria. It utilizes light-induced electron transfer and water-splitting reactions to produce protons, electrons, and molecular oxygen. The protons generated are instrumental in ATP formation. Molecular dioxygen is released as a by-product. PS II can be described as containing two parts: the photochemical part and the catalytic part. The photochemical portion promotes the fast, efficient light-induced charge separation and stabilization that occur when light is absorbed by chlorophyll. The catalytic portion, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. The Mn cluster and its ligands form a functional unit called the oxygen-evolving complex (OEC) or the water-oxidizing complex (WOC). The D1 and D2 subunits are a pair of interwined polypeptides. They contain all the cofactors involved directly in water oxidation and plastoquinone reduction. The D1 subunit contains the Mn cluster that constitutes the site of water oxidation. D1 and D2 are highly homologous and are also similar to the L and M proteins in bacterial photosynthetic reaction centers. 338 -187748 cd09290 Photo-RC_L Subunit L of bacterial photosynthetic reaction center. Bacterial photosynthetic reaction center (RC) complex, subunit L. The bacterial photosynthetic reaction center couples light-induced electron transfer with pumping protons across the membrane using reactions involving a quinone molecule (QB) that binds two electrons and two protons at the active site. The reaction center consists of three membrane-bound subunits, designated L, M, and H, plus an additional extracellular cytochrome subunit. The L and M subunits are arranged around an axis of 2-fold rotational symmetry perpendicular to the membrane, forming a scaffold that maintains the cofactors in a precise configuration. The L and M subunits have both sequence and structural similarity, suggesting a common evolutionary origin. The L and M subunits bind noncovalently to the nine cofactors in 2-fold symmetric branches: four bacteriochlorophylls (Bchl), two bacteriopheophytins (Bphe), two ubiquinone molecules (QA and QB), and a non-heme iron. Two Bchls on the periplasmic side of the membrane form the 'special pair' or dimer which is the primary electron donor for the photosynthetic reactions. The electron transfer reaction proceeds from the dimer to an intermediate acceptor (PA), a primary quinone (QA), and a secondary quinone (QB). Protons are translocated from the bacterial cytoplasm to the periplasmic space, generating an electrochemical gradient of protons (the protonmotive force) that can be used to power reactions such as ATP synthesis. The RC complex is found in photosynthetic bacteria, such as purple bacteria and other proteobacteria species. 273 -187749 cd09291 Photo-RC_M Subunit M of bacterial photosynthetic reaction center. Bacterial photosynthetic reaction center (RC) complex, subunit M. The bacterial photosynthetic reaction center couples light-induced electron transfer with pumping protons across the membrane using reactions involving a quinone molecule (QB) that binds two electrons and two protons at the active site. The reaction center consists of three membrane-bound subunits, designated L, M, and H, plus an additional extracellular cytochrome subunit. The L and M subunits are arranged around an axis of 2-fold rotational symmetry perpendicular to the membrane, forming a scaffold that maintains the cofactors in a precise configuration. The L and M subunits have both sequence and structural similarity, suggesting a common evolutionary origin. The L and M subunits bind noncovalently to the nine cofactors in 2-fold symmetric branches: four bacteriochlorophylls (Bchl), two bacteriopheophytins (Bphe), two ubiquinone molecules (QA and QB), and a non-heme iron. Two Bchls on the periplasmic side of the membrane form the 'special pair' or dimer which is the primary electron donor for the photosynthetic reactions. The electron transfer reaction proceeds from the dimer to an intermediate acceptor (PA), a primary quinone (QA), and a secondary quinone (QB). Protons are translocated from the bacterial cytoplasm to the periplasmic space, generating an electrochemical gradient of protons (the protonmotive force) that can be used to power reactions such as ATP synthesis. The RC complex is found in photosynthetic bacteria, such as purple bacteria and other proteobacteria species. 297 -187754 cd09293 AMN1 Antagonist of mitotic exit network protein 1. Amn1 has been functionally characterized in Saccharomyces cerevisiae as a component of the Antagonist of MEN pathway (AMEN). The AMEN network is activated by MEN (mitotic exit network) via an active Cdc14, and in turn switches off MEN. Amn1 constitutes one of the alternative mechanisms by which MEN may be disrupted. Specifically, Amn1 binds Tem1 (Termination of M-phase, a GTPase that belongs to the RAS superfamily), and disrupts its association with Cdc15, the primary downstream target. Amn1 is a leucine-rich repeat (LRR) protein, with 12 repeats in the S. cerevisiae ortholog. As a negative regulator of the signal transduction pathway MEN, overexpression of AMN1 slows the growth of wild type cells. The function of the vertebrate members of this family has not been determined experimentally, they have fewer LRRs that determine the extent of this model. 226 -187755 cd09294 SmpB Small protein B (SmpB) is a component of the trans-translation system in prokaryotes for releasing stalled ribosome from damaged messenger RNAs. Small protein B (SmpB) is a component of the trans-translation system in prokaryotes for releasing stalled ribosome from damaged messenger RNAs and targeting incompletely synthesized protein fragments for degradation. Trans-translation system is composed of a ribonucleoprotein complex of tmRNA, a specialized RNA with properties of both tRNA and mRNA, and SmpB. SmpB is highly conserved and present in all bacterial kingdoms and is also found in some chloroplasts and mitochondria. This is suggesting Trans-translation arose early in bacterial evolution and its mechanism is a quality control for protein synthesis in spite of challenges such as transcription errors, mRNA damage, and translation frame shifting. SmpB deletion results in phage development defects phenotype and absence of tagged proteins translated from defective mRNAs. 116 -200495 cd09295 Sema The Sema domain, a protein interacting module, of semaphorins and plexins. Both semaphorins and plexins have a Sema domain on their N-termini. Plexins function as receptors for the semaphorins. Evolutionarily, plexins may be the ancestor of semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems, and cancer. Semaphorins can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. Plexins are a large family of transmembrane proteins, which are divided into four types (A-D) according to sequence similarity. In vertebrates, type A plexins serve as co-receptors for neuropilins to mediate the signalling of class 3 semaphorins. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B plexins. This family also includes the MET and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves to recognize and bind receptors. 392 -187756 cd09299 TDT The Tellurite-resistance/Dicarboxylate Transporter (TDT) family. The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes members from all three kingdoms, but only three members of the family have been functionally characterized: the TehA protein of E. coli functioning as a tellurite-resistance uptake permease, the Mae1 protein of S. pombe functioning in the uptake of malate and other dicarboxylates, and the sulfite efflux pump (SSU1) of Saccharomyces cerevisiae. In plants, the plasma membrane protein SLAC1 (Slow Anion Channel-Associated 1), which is preferentially expressed in guard cells, encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. SLAC1 is essential in mediating stomatal responses to physiological and stress stimuli. Members of the TDT family exhibit 10 putative transmembrane alpha-helical spanners (TMSs). 326 -350171 cd09300 DEAD-like_helicase_C C-terminal helicase domain of the DEAD-like helicases. This hierarchy of DEAD-like helicases is composed of two superfamilies, SF1 and SF2, that share almost identical folds and extensive structural similarity in their catalytic core. Helicases are involved in ATP-dependent RNA or DNA unwinding. Two distinct types of helicases exist, those forming toroidal, predominantly hexameric structures, and those that do not. SF1 and SF2 helicases do not form toroidal structures, while SF3-6 helicases do. Their conserved helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 59 -212512 cd09301 HDAC Histone deacetylase (HDAC) classes I, II, IV and related proteins. The HDAC/HDAC-like family includes Zn-dependent histone deacetylase classes I, II and IV (class III HDACs, also called sirtuins, are NAD-dependent and structurally unrelated, and therefore not part of this family). Histone deacetylases catalyze hydrolysis of N(6)-acetyl-lysine residues in histone amino termini to yield a deacetylated histone (EC 3.5.1.98), as opposed to the acetylation reaction by some histone acetyltransferases (EC 2.3.1.48). Deacetylases of this family are involved in signal transduction through histone and other protein modification, and can repress/activate transcription of a number of different genes. They usually act via the formation of large multiprotein complexes. They are involved in various cellular processes, including cell cycle regulation, DNA damage response, embryonic development, cytokine signaling important for immune response and post-translational control of the acetyl coenzyme A synthetase. In mammals, they are known to be involved in progression of different tumors. Specific inhibitors of mammalian histone deacetylases are an emerging class of promising novel anticancer drugs. 279 -187706 cd09302 Jacalin_like Jacalin-like lectin domain. Jacalin-like lectins are sugar-binding protein domains mostly found in plants. They adopt a beta-prism topology consistent with a circularly permuted three-fold repeat of a structural motif. Proteins containing this domain may bind mono- or oligosaccharides with high specificity. The domain can occur in tandem-repeat arrangements with up to six copies, and in architectures combined with a variety of other functional domains. Taxonomic distribution is not restricted to plants, the domain is also found in various mammalian proteins, for example. 128 -187757 cd09317 TDT_Mae1_like C4-dicarboxylate transporter/malic acid transport protein family includes Mae1. This family contains eukaryotic homologs of C4-dicarboxylate transporter/malic acid transport proteins which are part of the Tellurite-resistance/Dicarboxylate Transporter (TDT) family. This includes the MAE1 gene in Schizosaccharomyces pombe gene that encodes malate permease, Mae1, which functions by proton symport and transports C4-dicarboxylates (malate, fumarate, succinate, oxaloacetate, etc.), but not K-ketoglutarate. 330 -187758 cd09318 TDT_SSU1 Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes sulfite sensitivity protein (sulfite efflux pump; SSU1). This family contains the sulfite sensitivity protein (sulfite efflux pump; SSU1) and belongs to the tellurite-resistance/dicarboxylate transporter (TDT) family. The SSU1 gene encodes the sulfite pump required for efficient sulfite efflux. Mutations in the SSU1 gene cause sensitivity to sulfite while overexpression confers heightened resistance to sulfite toxicity. In dematophytes and other filamentous fungi, sulfite is excreted as a reducing agent during keratin degradation; thus sulfite transporters in keratinolytic fungi could be a new target for antifungal drugs in dermatology. The number of genes encoding sulfite efflux pumps in fungal genomes varies from species to species. 341 -187759 cd09319 TDT_like_1 The Tellurite-resistance/Dicarboxylate Transporter (TDT) family. The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes members from all three kingdoms, but only three members of the family have been functionally characterized: the TehA protein of E. coli functioning as a tellurite-resistance uptake permease, the Mae1 protein of S. pombe functioning in the uptake of malate and other dicarboxylates, and the sulfite efflux pump (SSU1) of Saccharomyces cerevisiae. In plants, the plasma membrane protein SLAC1 (Slow Anion Channel-Associated 1), which is preferentially expressed in guard cells, encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. SLAC1 is essential in mediating stomatal responses to physiological and stress stimuli. Members of the TDT family exhibit 10 putative transmembrane alpha-helical spanners (TMSs). 317 -187760 cd09320 TDT_like_2 The Tellurite-resistance/Dicarboxylate Transporter (TDT) family. The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes members from all three kingdoms, but only three members of the family have been functionally characterized: the TehA protein of E. coli functioning as a tellurite-resistance uptake permease, the Mae1 protein of S. pombe functioning in the uptake of malate and other dicarboxylates, and the sulfite efflux pump (SSU1) of Saccharomyces cerevisiae. In plants, the plasma membrane protein SLAC1 (Slow Anion Channel-Associated 1), which is preferentially expressed in guard cells, encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. SLAC1 is essential in mediating stomatal responses to physiological and stress stimuli. Members of the TDT family exhibit 10 putative transmembrane alpha-helical spanners (TMSs). 327 -187761 cd09321 TDT_like_3 The Tellurite-resistance/Dicarboxylate Transporter (TDT) family. The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes members from all three kingdoms, but only three members of the family have been functionally characterized: the TehA protein of E. coli functioning as a tellurite-resistance uptake permease, the Mae1 protein of S. pombe functioning in the uptake of malate and other dicarboxylates, and the sulfite efflux pump (SSU1) of Saccharomyces cerevisiae. In plants, the plasma membrane protein SLAC1 (Slow Anion Channel-Associated 1), which is preferentially expressed in guard cells, encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. SLAC1 is essential in mediating stomatal responses to physiological and stress stimuli. Members of the TDT family exhibit 10 putative transmembrane a-helical spanners (TMSs). 327 -187762 cd09322 TDT_TehA_like The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes TehA proteins. The Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes members from all three kingdoms, but only three members of the family have been functionally characterized: the TehA protein of E. coli functioning as a tellurite-resistance uptake permease, the Mae1 protein of S. pombe functioning in the uptake of malate and other dicarboxylates, and the sulfite efflux pump (SSU1) of Saccharomyces cerevisiae. In plants, the plasma membrane protein SLAC1 (Slow Anion Channel-Associated 1), which is preferentially expressed in guard cells, encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. SLAC1 is essential in mediating stomatal responses to physiological and stress stimuli. Members of the TDT family exhibit 10 putative transmembrane a-helical spanners (TMSs). 289 -187763 cd09323 TDT_SLAC1_like Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes SLAC1 (Slow Anion Channel-Associated 1). SLAC1 (Slow Anion Channel-Associated 1) is a plasma membrane protein, preferentially expressed in guard cells, which encodes a distant homolog of fungal and bacterial dicarboxylate/malic acid transport proteins. It is essential for stomatal closure in response to carbon dioxide, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. In the Arabidopsis genome, SLAC1 is part of a gene family with five members and encodes a membrane protein that has ten putative transmembrane domains flanked by large N- and C-terminal domains. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic calcium ions and abscisic acid, but do not affect rapid (R-type) anion channel currents or calcium ion channel function. 297 -187764 cd09324 TDT_TehA Tellurite-resistance/Dicarboxylate Transporter (TDT) family includes TehA protein. This subfamily includes Tellurite resistance protein TehA that belongs to the C4-dicarboxylate transporter/malic acid transport (TDT) protein family and is a homolog of plant Slow Anion Channel-Associated 1 (SLAC1). The tehA gene encodes an integral membrane protein that has been shown to have efflux activity of quaternary ammonium compounds. TehA protein of Escherichia coli functions as a tellurite-resistance uptake permease. 301 -187765 cd09325 TDT_C4-dicarb_trans C4-dicarboxylate transporters of the Tellurite-resistance/Dicarboxylate Transporter (TDT) family. This subfamily contains bacterial C4-dicarboxylate transporters, which is part of the Tellurite-resistance/Dicarboxylate Transporter (TDT) family. It includes Tellurite resistance protein tehA; the tehA gene encodes an integral membrane protein that has been shown to have efflux activity of quaternary ammonium compounds. TehA protein of Escherichia coli functions as a tellurite-resistance uptake permease. 293 -188712 cd09326 LIM_CRP_like The LIM domains of Cysteine Rich Protein (CRP) family. The LIM domains of Cysteine Rich Protein (CRP) family: Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The known CRP family members include CRP1, CRP2, and CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188713 cd09327 LIM1_abLIM The first LIM domain of actin binding LIM (abLIM) proteins. The first LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188714 cd09328 LIM2_abLIM The second LIM domain on actin binding LIM (abLIM) proteins. The second LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188715 cd09329 LIM3_abLIM The third LIM domain of actin binding LIM (abLIM) proteins. The third LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188716 cd09330 LIM4_abLIM The fourth LIM domain of actin binding LIM (abLIM) proteins. The fourth LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188717 cd09331 LIM1_PINCH The first LIM domain of protein PINCH. The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188718 cd09332 LIM2_PINCH The second LIM domain of protein PINCH. The second LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188719 cd09333 LIM3_PINCH The third LIM domain of protein PINCH. The third LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 51 -188720 cd09334 LIM4_PINCH The fourth LIM domain of protein PINCH. The fourth LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. The PINCH LIM4 domain recognizes the third SH3 domain of another adaptor protein, Nck2. This step is an important component of integrin signaling event. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assem bly of multimeric protein complexes. 54 -188721 cd09335 LIM5_PINCH The fifth LIM domain of protein PINCH. The fifth LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -259830 cd09336 LIM1_Paxillin_like The first LIM domain of the paxillin like protein family. The first LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188723 cd09337 LIM2_Paxillin_like The second LIM domain of the paxillin like protein family. The second LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188724 cd09338 LIM3_Paxillin_like The third LIM domain of the paxillin like protein family. The third LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188725 cd09339 LIM4_Paxillin_like The fourth LIM domain of the Paxillin-like protein family. The fourth LIM domain of the Paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188726 cd09340 LIM1_Testin_like The first LIM domain of Testin-like family. The first LIM domain of Testin_like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 58 -188727 cd09341 LIM2_Testin_like The second LIM domain of Testin-like family. The second LIM domain of Testin-like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188728 cd09342 LIM3_Testin_like The third LIM domain of Testin-like family. The third LIM domain of Testin_like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 57 -188729 cd09343 LIM1_FHL The first LIM domain of Four and a half LIM domains protein (FHL). The first LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188730 cd09344 LIM1_FHL1 The first LIM domain of Four and a half LIM domains protein 1. The first LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188731 cd09345 LIM2_FHL The second LIM domain of Four and a half LIM domains protein (FHL). The second LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188732 cd09346 LIM3_FHL The third LIM domain of Four and a half LIM domains protein (FHL). The third LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188733 cd09347 LIM4_FHL The fourth LIM domain of Four and a half LIM domains protein (FHL). The fourth LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188734 cd09348 LIM4_FHL1 The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1). The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 64 -188735 cd09349 LIM1_Zyxin The first LIM domain of Zyxin. The first LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cell substratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 87 -188736 cd09350 LIM1_TRIP6 The first LIM domain of Thyroid receptor-interacting protein 6 (TRIP6). The first LIM domain of Thyroid receptor-interacting protein 6 (TRIP6): TRIP6 is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal. TRIP6 protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner. TRIP6 recruits a number of molecules involved in actin assembly, cell motility, survival and transcriptional control. The function of TRIP6 in cell motility is regulated by Src-dependent phosphorylation at a Tyr residue. The phosphorylation activates the coupling to the Crk SH2 domain, which is required for the function of TRIP6 in promoting lysophosphatidic acid (LPA)-induced cell migration. TRIP6 can shuttle to the nucleus to serve as a coactivator of AP-1 and NF-kappaB transcriptional factors. Moreover, TRIP6 can form a ternary complex with the NHERF2 PDZ protein and LPA2 receptor to regulate LPA-induced activation of ERK and AKT, rendering cells resistant to chemotherapy. Recent evidence shows that TRIP6 antagonizes Fas-Induced apoptosis by enhancing the antiapoptotic effect of LPA in cells. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188737 cd09351 LIM1_LPP The first LIM domain of lipoma preferred partner (LPP). The first LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP),Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188738 cd09352 LIM1_Ajuba_like The first LIM domain of Ajuba-like proteins. The first LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188739 cd09353 LIM2_Zyxin The second LIM domain of Zyxin. The second LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cellsubstratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors o r scaffolds to support the assembly of multimeric protein. 60 -188740 cd09354 LIM2_LPP The second LIM domain of lipoma preferred partner (LPP). The second LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP),Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 60 -188741 cd09355 LIM2_Ajuba_like The second LIM domain of Ajuba-like proteins. The second LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188742 cd09356 LIM2_TRIP6 The second LIM domain of Thyroid receptor-interacting protein 6 (TRIP6). The second LIM domain of Thyroid receptor-interacting protein 6 (TRIP6): TRIP6 is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal. TRIP6 protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner. TRIP6 recruits a number of molecules involved in actin assembly, cell motility, survival and transcriptional control. The function of TRIP6 in cell motility is regulated by Src-dependent phosphorylation at a Tyr residue. The phosphorylation activates the coupling to the Crk SH2 domain, which is required for the function of TRIP6 in promoting lysophosphatidic acid (LPA)-induced cell migration. TRIP6 can shuttle to the nucleus to serve as a coactivator of AP-1 and NF-kappaB transcriptional factors. Moreover, TRIP6 can form a ternary complex with the NHERF2 PDZ protein and LPA2 receptor to regulate LPA-induced activation of ERK and AKT, rendering cells resistant to chemotherapy. Recent evidence shows that TRIP6 antagonizes Fas-Induced apoptosis by enhancing the antiapoptotic effect of LPA in cells. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188743 cd09357 LIM3_Zyxin_like The third LIM domain of Zyxin-like family. The third LIM domain of Zyxin like family: This family includes Ajuba, Limd1, WTIP, Zyxin, LPP, and Trip6 LIM proteins. Members of Zyxin family contain three tandem C-terminal LIM domains, and a proline-rich N-terminal region. Zyxin proteins are detected primarily in focal adhesion plaques. They function as scaffolds, participating in the assembly of multiple interactions and signal transduction networks, which regulate cell adhesion, spreading, and motility. They can also shuffle into nucleus. In nucleus, zyxin proteins affect gene transcription by interaction with a variety of nuclear proteins, including several transcription factors, playing regulating roles in cell proliferation, differentiation and apoptosis. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 63 -188744 cd09358 LIM_Mical_like The LIM domain of Mical (molecule interacting with CasL) like family. The LIM domain of Mical (molecule interacting with CasL) like family: Known members of this family includes LIM domain containing proteins; Mical (molecule interacting with CasL), pollen specific protein SF3, Eplin, xin actin-binding repeat-containing protein 2 (XIRP2) and Ltd-1. The members of this family function mainly at the cytoskeleton and focal adhesions. They interact with transcription factors or other signaling molecules to play roles in muscle development, neuronal differentiation, cell growth and mobility. Eplin has also found to be tumor suppressor. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs.. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188745 cd09359 LIM_LASP_like The LIM domain of LIM and SH3 Protein (LASP)-like proteins. The LIM domain of LIM and SH3 Protein (LASP) like proteins: This family contains two types of LIM containing proteins; LASP and N-RAP. LASP family contains two highly homologous members, LASP-1 and LASP-2. LASP contains a LIM motif at its amino terminus, a src homology 3 (SH3) domains at its C-terminal part, and a nebulin-like region in the middle. LASP-1 and -2 are highly conserved in their LIM, nebulin-like, and SH3 domains, but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The expression of LASP-1 in breast tumors is increased significantly. N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188746 cd09360 LIM_ALP_like The LIM domain of ALP (actinin-associated LIM protein) family. This family represents the LIM domain of ALP (actinin-associated LIM protein) family. Four proteins: ALP, CLP36, RIL, and Mystique have been classified into the ALP subfamily of LIM domain proteins. Each member of the subfamily contains an N-terminal PDZ domain and a C-terminal LIM domain. Functionally, these proteins bind to alpha-actinin through their PDZ domains and bind or other signaling molecules through their LIM domains. ALP proteins have been implicated in cardiac and skeletal muscle structure, function and disease, platelet, and epithelial cell motility. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188747 cd09361 LIM1_Enigma_like The first LIM domain of Enigma-like family. The first LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188748 cd09362 LIM2_Enigma_like The second LIM domain of Enigma-like family. The second LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188749 cd09363 LIM3_Enigma_like The third LIM domain of Enigma-like family. The third LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188750 cd09364 LIM1_LIMK The first LIM domain of LIMK (LIM domain Kinase ). The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188751 cd09365 LIM2_LIMK The second LIM domain of LIMK (LIM domain Kinase ). The second LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188752 cd09366 LIM1_Isl The first LIM domain of Isl, a member of LHX protein family. The first LIM domain of Isl: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Isl1 and Isl2 are the two conserved members of this family. Proteins in this group are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl-1 is one of the LHX proteins isolated originally by virtue of its ability to bind DNA sequences from the 5'-flanking region of the rat insulin gene in pancreatic insulin-producing cells. Mice deficient in Isl-1 fail to form the dorsal exocrine pancreas and islet cells fail to differentiate. On the other hand, Isl-1 takes part in the pituitary development by activating the gonadotropin-releasing hormone receptor gene together with LHX3 and steroidogenic factor 1. Mouse Is l2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Same as Isl1, Isl2 may also be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188753 cd09367 LIM1_Lhx1_Lhx5 The first LIM domain of Lhx1 (also known as Lim1) and Lhx5. The first LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188754 cd09368 LIM1_Lhx3_Lhx4 The first LIM domain of Lhx3 and Lhx4 family. The first LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription. Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 52 -188755 cd09369 LIM1_Lhx2_Lhx9 The first LIM domain of Lhx2 and Lhx9 family. The first LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain , the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188756 cd09370 LIM1_Lmx1a The first LIM domain of Lmx1a. The first LIM domain of Lmx1a: Lmx1a belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. Human Lmx1a can be found in pancreas, skeletal muscle, adipose tissue, developing brain, mammary glands, and pituitary. The functions of Lmx1a in the developing nervous system were revealed by studies of mutant mouse. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp 6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility; skeletal defects; and behavioral abnormalities. Within pancreatic cells, the Lmx1a protein interacts synergistically with the bHLH transcription factor E47 to activate the insulin gene enhancer/promoter. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 52 -188757 cd09371 LIM1_Lmx1b The first LIM domain of Lmx1b. The first LIM domain of Lmx1b: Lmx1b belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188758 cd09372 LIM2_FBLP-1 The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1). The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1): Fblp-1 contains a proline-rich domain near its N terminus and two LIM domains at its C terminus. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. FBLP-1 binds to Filamins. The association between filamin B and FBLP-1 may play an unknown role in cytoskeletal function, cell adhesion, and cell motility. As in other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188759 cd09373 LIM1_AWH The first LIM domain of Arrowhead (AWH). The first LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188760 cd09374 LIM2_Isl The second LIM domain of Isl, a member of LHX protein family. The second LIM domain of Isl: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Isl1 and Isl2 are the two conserved members of this family. Proteins in this group are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl-1 is one of the LHX proteins isolated originally by virtue of its ability to bind DNA sequences from the 5'-flanking region of the rat insulin gene in pancreatic insulin-producing cells. Mice deficient in Isl-1 fail to form the dorsal exocrine pancreas and islet cells fail to differentiate. On the other hand, Isl-1 takes part in the pituitary development by activating the gonadotropin-releasing hormone receptor gene together with LHX3 and steroidogenic factor 1. Mouse Isl2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Same as Isl1, Isl2 may also be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188761 cd09375 LIM2_Lhx1_Lhx5 The second LIM domain of Lhx1 (also known as Lim1) and Lhx5. The second LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188762 cd09376 LIM2_Lhx3_Lhx4 The second LIM domain of Lhx3-Lhx4 family. The second LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription.Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 56 -188763 cd09377 LIM2_Lhx2_Lhx9 The second LIM domain of Lhx2 and Lhx9 family. The second LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 59 -188764 cd09378 LIM2_Lmx1a_Lmx1b The second LIM domain of Lmx1a and Lmx1b. The second LIM domain of Lmx1a and Lmx1b: Lmx1a and Lmx1b belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility, skeletal defects, and behavioral abnormalities. In the mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188765 cd09379 LIM2_AWH The second LIM domain of Arrowhead (AWH). The second LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188766 cd09380 LIM1_Lhx6 The first LIM domain of Lhx6. The first LIM domain of Lhx6. Lhx6 is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Lhx6 functions in the brain and nervous system. It is expressed at high levels in several regions of the embryonic mouse CNS, including the telencephalon and hypothalamus, and the first branchial arch. Lhx6 is proposed to have a role in patterning of the mandible and maxilla, and in signaling during odontogenesis. In brain sections, knockdown of Lhx6 gene blocks the normal migration of neurons to the cortex. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188767 cd09381 LIM1_Lhx7_Lhx8 The first LIM domain of Lhx7 and Lhx8. The first LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Studies using mutant mice have revealed roles for Lhx7 and Lhx8 in the development of cholinergic neurons in the telencephalon and in basal forebrain development. Mice lacking alleles of the LIM-homeobox gene Lhx7 or Lhx8 display dramatically reduced number of forebrain cholinergic neurons. In addition, Lhx7 mutation affects male and female mice differently, with females appearing more affected than males. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 56 -188768 cd09382 LIM2_Lhx6 The second LIM domain of Lhx6. The second LIM domain of Lhx6. Lhx6 is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Lhx6 functions in brain and nervous system. It is expressed at high levels in several regions of the embryonic mouse CNS, including the telencephalon and hypothalamus, and the first branchial arch. Lhx6 is proposed to have a role in patterning of the mandible and maxilla, and in signaling during odontogenesis. In brain sections, knockdown of Lhx6 gene blocks the normal migration of neurons to the cortex. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188769 cd09383 LIM2_Lhx7_Lhx8 The second LIM domain of Lhx7 and Lhx8. The second LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Studies using mutant mice have revealed roles for Lhx7 and Lhx8 in the development of cholinergic neurons in the telencephalon and in basal forebrain development. Mice lacking alleles of the LIM-homeobox gene Lhx7 or Lhx8 display dramatically reduced number of forebrain cholinergic neurons. In addition, Lhx7 mutation affects male and female mice differently, with females appearing more affected than males. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188770 cd09384 LIM1_LMO2 The first LIM domain of LMO2 (LIM domain only protein 2). The first LIM domain of LMO2 (LIM domain only protein 2): LMO2 is a nuclear protein that plays important roles in transcriptional regulation and development. The two tandem LIM domains of LMO2 support the assembly of a crucial cell-regulatory complex by interacting with both the TAL1-E47 and GATA1 transcription factors to form a DNA-binding complex that is capable of transcriptional activation. LMOs have also been shown to be involved in oncogenesis. LMO1 and LMO2 are activated in T-cell acute lymphoblastic leukemia by distinct chromosomal translocations. LMO2 was also shown to be involved in erythropoiesis and is required for the hematopoiesis in the adult animals. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188771 cd09385 LIM2_LMO2 The second LIM domain of LMO2 (LIM domain only protein 2). The second LIM domain of LMO2 (LIM domain only protein 2): LMO2 is a nuclear protein that plays important roles in transcriptional regulation and development. The two tandem LIM domains of LMO2 support the assembly of a crucial cell-regulatory complex by interacting with both the TAL1-E47 and GATA1 transcription factors to form a DNA-binding complex that is capable of transcriptional activation. LMOs have also been shown to be involved in oncogenesis. LMO1 and LMO2 are activated in T-cell acute lymphoblastic leukemia by distinct chromosomal translocations. LMO2 was also shown to be involved in erythropoiesis and is required for the hematopoiesis in the adult animals. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188772 cd09386 LIM1_LMO4 The first LIM domain of LMO4 (LIM domain only protein 4). The first LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188773 cd09387 LIM2_LMO4 The second LIM domain of LMO4 (LIM domain only protein 4). The second LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188774 cd09388 LIM1_LMO1_LMO3 The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3). The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3): LMO1 and LMO3 are highly homologous and belong to the LMO protein family. LMO1 and LMO3 are nuclear protein that plays important roles in transcriptional regulation and development. As LIM domains lack intrinsic DNA-binding activity, nuclear LMOs are involved in transcriptional regulation by forming complexes with other transcription factors or cofactors. For example, LMO1 interacts with the the bHLH domain of bHLH transcription factor, TAL1 (T-cell acute leukemia1)/SCL (stem cell leukemia) . LMO1 inhibits the expression of TAL1/SCL target genes. LMO3 facilitates p53 binding to its response elements, which suggests that LMO3 acts as a co-repressor of p53, suppressing p53-dependent transcriptional regulation. In addition, LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Another binding partner of LMO3 is calcium- and integrin-binding protein CIB, which binds via the second LIM domain (LIM2) of LMO3. One role of the CIB/LMO3 complex is to inhibit cell proliferation. Although LMO1 and LMO3 are highly homologous proteins, they play different roles in the regulation of the pituitary glycoprotein hormone alpha-subunit (alpha GSU) gene. Alpha GSU promoter activity was markedly repressed by LMO1 but activated by LMO3. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188775 cd09389 LIM2_LMO1_LMO3 The second LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3). The second LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3): LMO1 and LMO3 are highly homologous and belong to the LMO protein family. LMO1 and LMO3 are nuclear protein that plays important roles in transcriptional regulation and development. As LIM domains lack intrinsic DNA-binding activity, nuclear LMOs are involved in transcriptional regulation by forming complexes with other transcription factors or cofactors. For example, LMO1 interacts with the the bHLH domain of bHLH transcription factor, TAL1 (T-cell acute leukemia1)/SCL (stem cell leukemia) . LMO1 inhibits the expression of TAL1/SCL target genes. LMO3 facilitates p53 binding to its response elements, which suggests that LMO3 acts as a co-repressor of p53, suppressing p53-dependent transcriptional regulation. In addition, LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Another binding partner of LMO3 is calcium- and integrin-binding protein CIB, which binds via the second LIM domain (LIM2) of LMO3. One role of the CIB/LMO3 complex is to inhibit cell proliferation. Although LMO1 and LMO3 are highly homologous proteins, they play different roles in the regulation of the pituitary glycoprotein hormone alpha-subunit (alpha GSU) gene. Alpha GSU promoter activity was markedly repressed by LMO1 but activated by LMO3. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188776 cd09390 LIM2_dLMO The second LIM domain of dLMO (Beaderx). The second LIM domain of dLMO (Beaderx): dLMO is a nuclear protein that plays important roles in transcriptional regulation and development. In Drosophila dLMO modulates the activity of LIM-homeodomain protein Apterous (Ap), which regulates the formation of the dorsal-ventral axis of the Drosophila wing. Biochemical analysis shows that dLMO protein influences the activity of Apterous by binding of its cofactor Chip. Further studies shown that dLMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188777 cd09391 LIM1_Lrg1p_like The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein. The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 57 -188778 cd09392 LIM2_Lrg1p_like The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein. The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188779 cd09393 LIM3_Lrg1p_like The third LIM domain of Lrg1p, a LIM and RhoGap domain containing protein. The third LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 56 -188780 cd09394 LIM1_Rga The first LIM domain of Rga GTPase-Activating Proteins. The first LIM domain of Rga GTPase-Activating Proteins: The members of this family contain two tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Rga activates GTPases during polarized morphogenesis. In yeast, a known regulating target of Rga is CDC42p, a small GTPase. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188781 cd09395 LIM2_Rga The second LIM domain of Rga GTPase-Activating Proteins. The second LIM domain of Rga GTPase-Activating Proteins: The members of this family contain two tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Rga activates GTPases during polarized morphogenesis. In yeast, a known regulating target of Rga is CDC42p, a small GTPase. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188782 cd09396 LIM_DA1 The Lim domain of DA1. The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain of unknown function. DA1 is predicted as an ubiquitin receptor, which sets final seed and organ size by restricting the period of cell proliferation. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188783 cd09397 LIM1_UF1 LIM domain in proteins of unknown function. The first Lim domain of a LIM domain containing protein: The functions of the proteins are unknown. The members of this family contain two copies of LIM domain. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 58 -188784 cd09400 LIM_like_1 LIM domain in proteins of unknown function. LIM domain in proteins of unknown function: LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation, and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. The LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). 61 -188785 cd09401 LIM_TLP_like The LIM domains of thymus LIM protein (TLP). The LIM domain of thymus LIM protein (TLP) like proteins: This family includes the LIM domains of TLP and CRIP (Cysteine-Rich Intestinal Protein). TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. CRIP is a short LIM protein with only one LIM domain. CRIP gene is developmentally regulated and can be induced by glucocorticoid hormones during the first three postnatal weeks. The domain shows close sequence homology to LIM domain of thymus LIM protein. However, unlike the TLP proteins which have two LIM domains, the members of this family have only one LIM domain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188786 cd09402 LIM1_CRP The first LIM domain of Cysteine Rich Protein (CRP). The first LIM domain of Cysteine Rich Protein (CRP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. It is evident that CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. Although members of the CRP family share common binding partners, they are also capable of recognizing different and specific targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188787 cd09403 LIM2_CRP The second LIM domain of Cysteine Rich Protein (CRP). The second LIM domain of Cysteine Rich Protein (CRP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. It is evident that CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. Although members of the CRP family share common binding partners, they are also capable of recognizing different and specific targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residu es, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188788 cd09404 LIM1_MLP84B_like The LIM domain of Mlp84B and Mlp60A. The LIM domain of Mlp84B and Mlp60A: Mlp84B and Mlp60A belong to the CRP LIM domain protein family. The Mlp84B protein contains five copies of the LIM domains, each followed by a Glycin Rich Region (GRR). However, only the first LIM domain of Mlp84B is in this family. Mlp60A exhibits only one LIM domain linked to a glycin-rich region. Mlp84B and Mlp60A are muscle specific proteins and have been implicated in muscle differentiation. While Mlp84B transcripts are enriched at the terminal ends of muscle fibers, Mlp60A transcripts are found throughout the muscle fibers. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188789 cd09405 LIM1_Paxillin The first LIM domain of paxillin. The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight cons erved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188790 cd09406 LIM1_Leupaxin The first LIM domain of Leupaxin. The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188791 cd09407 LIM2_Paxillin The second LIM domain of paxillin. The second LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188792 cd09408 LIM2_Leupaxin The second LIM domain of Leupaxin. The second LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188793 cd09409 LIM3_Paxillin The third LIM domain of paxillin. The third LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188794 cd09410 LIM3_Leupaxin The third LIM domain of Leupaxin. The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188795 cd09411 LIM4_Paxillin The fourth LIM domain of Paxillin. The fourth LIM domain of Paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188796 cd09412 LIM4_Leupaxin The fourth LIM domain of Leupaxin. The fourth LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188797 cd09413 LIM1_Testin The first LIM domain of Testin. The first LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of Testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 58 -188798 cd09414 LIM1_LIMPETin The first LIM domain of protein LIMPETin. The first LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 58 -188799 cd09415 LIM1_Prickle The first LIM domain of Prickle. The first LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188800 cd09416 LIM2_Testin The second LIM domain of Testin. The second LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188801 cd09417 LIM2_LIMPETin_like The second LIM domain of protein LIMPETin and related proteins. The second LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188802 cd09418 LIM2_Prickle The second LIM domain of Prickle. The second LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Two forms of prickles have been identified; namely prickle 1 and prickle 2. Prickle 1 and prickle 2 are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188803 cd09419 LIM3_Testin The third LIM domain of Testin. The third LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers at cell-cell-contact areas and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of Testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188804 cd09420 LIM3_Prickle The third LIM domain of Prickle. The third LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Two forms of prickles have been identified; namely prickle 1 and prickle 2. Prickle 1 and prickle 2 are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188805 cd09421 LIM3_LIMPETin The third LIM domain of protein LIMPETin. The third LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188806 cd09422 LIM1_FHL2 The first LIM domain of Four and a half LIM domains protein 2 (FHL2). The first LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung at lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 62 -188807 cd09423 LIM1_FHL3 The first LIM domain of Four and a half LIM domains protein 3 (FHL3). The first LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188808 cd09424 LIM2_FHL1 The second LIM domain of Four and a half LIM domains protein 1 (FHL1). The second LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 58 -188809 cd09425 LIM4_LIMPETin The fourth LIM domain of protein LIMPETin. The fourth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188810 cd09426 LIM2_FHL2 The second LIM domain of Four and a half LIM domains protein 2 (FHL2). The second LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes. 57 -188811 cd09427 LIM2_FHL3 The second LIM domain of Four and a half LIM domains protein 3 (FHL3). The second LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 58 -188812 cd09428 LIM2_FHL5 The second LIM domain of Four and a half LIM domains protein 5 (FHL5). The second LIM domain of Four and a half LIM domains protein 5 (FHL5): FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors , which are highly expressed in male germ cells and is required for post-meiotic gene expression. FHL5 associates with CREM and confers a powerful transcriptional activation function. Activation by CREB has known to occur upon phosphorylation at an essential regulatory site and the subsequent interaction with the ubiquitous coactivator CREB-binding protein (CBP). However, the activation by FHL5 is independent of phosphorylation and CBP association. It represents a new route for transcriptional activation by CREM and CREB. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188813 cd09429 LIM3_FHL1 The third LIM domain of Four and a half LIM domains protein 1 (FHL1). The third LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188814 cd09430 LIM5_LIMPETin The fifth LIM domain of protein LIMPETin. The fifth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188815 cd09431 LIM3_Fhl2 The third LIM domain of Four and a half LIM domains protein 2 (FHL2). The third LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes. 57 -188816 cd09432 LIM6_LIMPETin The sixth LIM domain of protein LIMPETin. The sixth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188817 cd09433 LIM4_FHL2 The fourth LIM domain of Four and a half LIM domains protein 2 (FHL2). The fourth LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes. 58 -188818 cd09434 LIM4_FHL3 The fourth LIM domain of Four and a half LIM domains protein 3 (FHL3). The fourth LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188819 cd09435 LIM3_Zyxin The third LIM domain of Zyxin. The third LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cellsubstratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 67 -188820 cd09436 LIM3_TRIP6 The third LIM domain of Thyroid receptor-interacting protein 6 (TRIP6). The third LIM domain of Thyroid receptor-interacting protein 6 (TRIP6): TRIP6 is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal. TRIP6 protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner. TRIP6 recruits a number of molecules involved in actin assembly, cell motility, survival and transcriptional control. The function of TRIP6 in cell motility is regulated by Src-dependent phosphorylation at a Tyr residue. The phosphorylation activates the coupling to the Crk SH2 domain, which is required for the function of TRIP6 in promoting lysophosphatidic acid (LPA)-induced cell migration. TRIP6 can shuttle to the nucleus to serve as a coactivator of AP-1 and NF-kappaB transcriptional factors. Moreover, TRIP6 can form a ternary complex with the NHERF2 PDZ protein and LPA2 receptor to regulate LPA-induced activation of ERK and AKT, rendering cells resistant to chemotherapy. Recent evidence shows that TRIP6 antagonizes Fas-Induced apoptosis by enhancing the antiapoptotic effect of LPA in cells. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 66 -188821 cd09437 LIM3_LPP The third LIM domain of lipoma preferred partner (LPP). The third LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP), Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 68 -188822 cd09438 LIM3_Ajuba_like The third LIM domain of Ajuba-like proteins. The third LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 62 -188823 cd09439 LIM_Mical The LIM domain of Mical (molecule interacting with CasL). The LIM domain of Mical (molecule interacting with CasL): MICAL is a large, multidomain, cytosolic protein with a single LIM domain, a calponin homology (CH) domain and a flavoprotein monooxygenase domain. In Drosophila, MICAL is expressed in axons, interacts with the neuronal A (PlexA) receptor and is required for Semapho-rin 1a (Sema-1a)-PlexA-mediated repulsive axon guidance. The LIM domain and calporin homology domain are known for interactions with the cytoskeleton, cytoskeletal adaptor proteins, and other signaling proteins. The flavoprotein monooxygenase (MO) is required for semaphorin-plexin repulsive axon guidance during axonal pathfinding in the Drosophila neuromuscular system. In addition, MICAL was characterized to interact with Rab13 and Rab8 to coordinate the assembly of tight junctions and adherens junctions in epithelial cells. Thus, MICAL was also named junctional Rab13-binding protein (JRAB). As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188824 cd09440 LIM1_SF3 The first Lim domain of pollen specific protein SF3. The first Lim domain of pollen specific protein SF3: SF3 is a Lim protein that is found exclusively in mature plant pollen grains. It contains two LIM domains. The exact function of SF3 is unknown. It may be a transcription factor required for the expression of late pollen genes. It is possible that SF3 protein is involved in controlling pollen-specific processes such as male gamete maturation, pollen tube formation, or even fertilization. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 63 -188825 cd09441 LIM2_SF3 The second Lim domain of pollen specific protein SF3. The second Lim domain of pollen specific protein SF3: SF3 is a Lim protein that is found exclusively in mature plant pollen grains. It contains two LIM domains. The exact function of SF3 is unknown. It may be a transcription factor required for the expression of late pollen genes. It is possible that SF3 protein is involved in controlling pollen-specific processes such as male gamete maturation, pollen tube formation, or even fertilization. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 61 -188826 cd09442 LIM_Eplin_like The Lim domain of Epithelial Protein Lost in Neoplasm (Eplin) like proteins. The Lim domain of Epithelial Protein Lost in Neoplasm (Eplin) like proteins: This family contains Epithelial Protein Lost in Neoplasm in Neoplasm (Eplin), xin actin-binding repeat-containing protein 2 (XIRP2) and a group of protein with unknown function. The members of this family all contain a single LIM domain. Epithelial Protein Lost in Neoplasm is a cytoskeleton-associated tumor suppressor whose expression inversely correlates with cell growth, motility, invasion and cancer mortality. Eplin interacts and stabilizes F-actin filaments and stress fibers, which correlates with its ability to suppress anchorage independent growth. In epithelial cells, Eplin is required for formation of the F-actin adhesion belt by binding to the E-cadherin-catenin complex through alpha-catenin. Eplin is expressed in two isoforms, a longer Eplin-beta and a shorter Eplin-alpha. Eplin-alpha mRNA is detected in various tissues and cell lines, but is absent or down regulated in cancer cells. Xirp2 contains a LIM domain and Xin re peats for binding to and stabilising F-actin. Xirp2 is expressed in muscles and is significantly induced in the heart in response to systemic administration of angiotensin II. Xirp2 is an important effector of the Ang II signaling pathway in the heart. The expression of Xirp2 is activated by myocyte enhancer factor (MEF)2A, whose transcriptional activity is stimulated by angiotersin II. Thus, Xirp2 plays important pathological roles in the angiotensin II induced hypertension. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188827 cd09443 LIM_Ltd-1 The LIM domain of LIM and transglutaminase domains protein (Ltd-1). The LIM domain of LIM and transglutaminase domains protein (Ltd-1): This family includes mouse Ky protein and Caenorhabditis elegans Ltd-1 protein. The members of this family consists a N-terminal Lim domain and a C-terminal transglutaminase domain. The mouse Ky protein has putative function in muscle development. The mouse with ky mutant exhibits combined posterior and lateral curvature of the spine. The Ltd-1 gene in C. elegans is expressed in developing hypodermal cells from the twofold stage embryo through adulthood. These data define the ltd-1 gene as a novel marker for C. elegans epithelial cell development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188828 cd09444 LIM_Mical_like_1 This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL) like proteins. The LIM domain on proteins of unknown function: This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL) like proteins. Known members of the Mical-like family includes single LIM domain containing proteins, Mical (molecule interacting with CasL), pollen specific protein SF3, Eplin, xin actin-binding repeat-containing protein 2 (XIRP2), and Ltd-1. The members of this family function mainly at the cytoskeleton and focal adhesions. They interact with transcription factors or other signaling molecules to play roles in muscle development, neuronal differentiation, cell growth, and mobility. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188829 cd09445 LIM_Mical_like_2 This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL) like proteins. The LIM domain on proteins of unknown function: This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL)-like proteins. Known members of the Mical-like family includes single LIM domain containing proteins, Mical (molecule interacting with CasL), pollen specific protein SF3, Eplin, xin actin-binding repeat-containing protein 2 (XIRP2), and Ltd-1. The members of this family function mainly at the cytoskeleton and focal adhesions. They interact with transcription factors or other signaling molecules to play roles in muscle development, neuronal differentiation, cell growth, and mobility. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188830 cd09446 LIM_N_RAP The LIM domain of N-RAP. The LIM domain of N-RAP: N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188831 cd09447 LIM_LASP The LIM domain of LIM and SH3 Protein (LASP). The LIM domain of LIM and SH3 Protein (LASP): LASP family contains two highly homologous members, LASP-1 and LASP-2. LASP contains a LIM motif at its amino terminus, a src homology 3 (SH3) domains at its C-terminal part, and a nebulin-like region in the middle. LASP-1 and -2 are highly conserved in their LIM, nebulin-like, and SH3 domains ,but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The expression of LASP-1 in breast tumors is increased significantly. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188832 cd09448 LIM_CLP36 This family represents the LIM domain of CLP36. This family represents the LIM domain of CLP36. CLP36 has also been named as CLIM1, Elfin, or PDLIM1. CLP36 contains a C-terminal LIM domain and an N-terminal PDZ domain. CLP36 is highly expressed in heart and is present in many other tissues including lung, liver, spleen, and blood. CLP36 has been implicated in many processes including hypoxia and regulation of actin stress fibers. CLP36 co-localizes with alpha-actinin-2 at the Z-lines in myocardium. In addition, CLP36 binds to alpha-actinin-1 and alpha-actinin-4, and associates with F-actin filaments and stress fibers. CLP36 might be involved in not only the function of sarcomeres in muscle cells, but also in actin stress fiber-mediated cellular processes, such as cell shape, migration, polarit, and cytokinesis in non-muscle cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188833 cd09449 LIM_Mystique The LIM domain of Mystique, a subfamily of ALP LIM domain proteins. The LIM domain of Mystique, a subfamily of ALP LIM domain proteins: Mystique is the most recently identified member of the ALP protein family. It also interacts with alpha-actinin, as other ALP proteins do. Mystique promotes cell attachment and migration and suppresses anchorage-independent growth. The LIM domain of Mystique is required for the suppression function. Moreover, Mystique functions as an ubiquitin E3 ligase acting on STAT proteins to cause their proteosome mediated degradation. As in all LIM domains, this domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188834 cd09450 LIM_ALP This family represents the LIM domain of ALP, actinin-associated LIM protein. This family represents the LIM domain of ALP, actinin-associated LIM protein. ALP contains an N-terminal PDZ domain, a C-terminal LIM domain and an ALP-subfamily-specific 34-amino-acid motif termed ALP-like motif (AM), which contains a putative consensus protein kinase C (PKC) phosphorylation site and two alpha-helices. ALP proteins are found in heart and in skeletal muscle. ALP may act as a signaling molecule which is regulated by PKC-dependent signaling. ALP plays an essential role in the development of RV (right ventricle) chamber. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188835 cd09451 LIM_RIL The LIM domain of RIL. The LIM domain of RIL: RIL contains an N-terminal PDZ domain, a LIM domain, and a short consensus C-terminal region. It is the smallest molecule in the ALP LIM domain containing protein family. RIL was identified in rat fibroblasts and in human lymphocytes. The LIM domain interacts with the AMPA glutamate receptor in dendritic spines. The consensus C-terminus interacts with PTP-BL, a submembranous protein tyrosine phosphatase and the PDZ domain is responsible to interact with alpha-actinin molecules. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188836 cd09452 LIM1_Enigma The first LIM domain of Enigma. The first LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188837 cd09453 LIM1_ENH The first LIM domain of the Enigma Homolog (ENH) family. The first LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188838 cd09454 LIM1_ZASP_Cypher The first LIM domain of ZASP/Cypher family. The first LIM domain of ZASP/Cypher family: ZASP was identified in human heart and skeletal muscle and Cypher is a mice ortholog of ZASP. ZASP/Cyppher contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188839 cd09455 LIM1_Enigma_like_1 The first LIM domain of an Enigma subfamily with unknown function. The first LIM domain of an Enigma subfamily with unknown function: The Enigma LIM domain family is comprised of three characterized members: Enigma, ENH and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. They serve as adaptor proteins, where the PDZ domain tethers the protein to the cytoskeleton and the LIM domains, recruit signaling proteins to implement corresponding functions. The members of the Enigma family have been implicated in regulating or organizing cytoskeletal structure, as well as involving multiple signaling pathways. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188840 cd09456 LIM2_Enigma The second LIM domain of Enigma. The second LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188841 cd09457 LIM2_ENH The second LIM domain of the Enigma Homolog (ENH) family. The second LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 52 -188842 cd09458 LIM3_Enigma The third LIM domain of Enigma. The third LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188843 cd09459 LIM3_ENH The third LIM domain of the Enigma Homolog (ENH) family. The third LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188844 cd09460 LIM3_ZASP_Cypher The third LIM domain of ZASP/Cypher family. The third LIM domain of ZASP/Cypher family: ZASP was identified in human heart and skeletal muscle and Cypher is a mice ortholog of ZASP. ZASP/Cyppher contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188845 cd09461 LIM3_Enigma_like_1 The third LIM domain of an Enigma subfamily with unknown function. The third LIM domain of an Enigma subfamily with unknown function: The Enigma LIM domain family is comprised of three characterized members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. They serve as adaptor proteins, where the PDZ domain tethers the protein to the cytoskeleton and the LIM domains, recruit signaling proteins to implement corresponding functions. The members of the enigma family have been implicated in regulating or organizing cytoskeletal structure, as well as involving multiple signaling pathways. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188846 cd09462 LIM1_LIMK1 The first LIM domain of LIMK1 (LIM domain Kinase 1). The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 74 -188847 cd09463 LIM1_LIMK2 The first LIM domain of LIMK2 (LIM domain Kinase 2). The first LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerization. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 53 -188848 cd09464 LIM2_LIMK1 The second LIM domain of LIMK1 (LIM domain Kinase 1). The second LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188849 cd09465 LIM2_LIMK2 The second LIM domain of LIMK2 (LIM domain Kinase 2). The second LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerisation. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188850 cd09466 LIM1_Lhx3a The first LIM domain of Lhx3a. The first LIM domain of Lhx3a: Lhx3a is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3a is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 56 -188851 cd09467 LIM1_Lhx3b The first LIM domain of Lhx3b. The first LIM domain of Lhx3b. Lhx3b is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3b is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 55 -188852 cd09468 LIM1_Lhx4 The first LIM domain of Lhx4. The first LIM domain of Lhx4. Lhx4 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 52 -188853 cd09469 LIM1_Lhx2 The first LIM domain of Lhx2. The first LIM domain of Lhx2: Lhx2 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. The Lhx2 protein has been shown to bind to the mouse M71 olfactory receptor promoter. Similar to other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 64 -188854 cd09470 LIM1_Lhx9 The first LIM domain of Lhx9. The first LIM domain of Lhx9: Lhx9 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx9 is highly homologous to Lhx2. It is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice have reduced levels of the Sf1 nuclear receptor that is required for gonadogenesis, and recent studies have shown that Lhx9 is able to activate the Sf1/FtzF1 gene. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 54 -188855 cd09471 LIM2_Isl2 The second LIM domain of Isl2. The second LIM domain of Isl2: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl proteins are found in the nucleus and act as transcription factors or cofactors. Isl1 and Isl2 are the two conserved members of this family. Mouse Isl2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Isl2 may be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188856 cd09472 LIM2_Lhx3b The second LIM domain of Lhx3b. The second LIM domain of Lhx3b. Lhx3b is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3b is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein 57 -188857 cd09473 LIM2_Lhx4 The second LIM domain of Lhx4. The second LIM domain of Lhx4. Lhx4 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 56 -188858 cd09474 LIM2_Lhx2 The second LIM domain of Lhx2. The second LIM domain of Lhx2: Lhx2 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. The Lhx2 protein has been shown to bind to the mouse M71 olfactory receptor promoter. Similar to other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 59 -188859 cd09475 LIM2_Lhx9 The second LIM domain of Lhx9. The second LIM domain of Lhx9: Lhx9 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx9 is highly homologous to Lhx2. It is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice have reduced levels of the Sf1 nuclear receptor that is required for gonadogenesis, and recent studies have shown that Lhx9 is able to activate the Sf1/FtzF1 gene. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 59 -188860 cd09476 LIM1_TLP The first LIM domain of thymus LIM protein (TLP). The first LIM domain of thymus LIM protein (TLP): TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188861 cd09477 LIM2_TLP The second LIM domain of thymus LIM protein (TLP). The second LIM domain of thymus LIM protein (TLP): TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188862 cd09478 LIM_CRIP The LIM domain of Cysteine-Rich Intestinal Protein (CRIP). The LIM domain of Cysteine-Rich Intestinal Protein (CRIP): CRIP is a short protein with only one LIM domain. CRIP gene is developmentally regulated and can be induced by glucocorticoid hormones during the first three postnatal weeks. The domain shows close sequence homology to LIM domain of thymus LIM protein. However, unlike the TLP proteins which have two LIM domains, the members of this family have only one LIM domain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188863 cd09479 LIM1_CRP1 The first LIM domain of Cysteine Rich Protein 1 (CRP1). The first LIM domain of Cysteine Rich Protein 1 (CRP1): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP1 can associate with the actin cytoskeleton and are capable of interacting with alpha-actinin and zyxin. CRP1 was shown to regulate actin filament bundling by interaction with alpha-actinin and direct binding to actin filaments. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 56 -188864 cd09480 LIM1_CRP2 The first LIM domain of Cysteine Rich Protein 2 (CRP2). The first LIM domain of Cysteine Rich Protein 2 (CRP2): The CRP family members include CRP1, CRP2, CRP3/MLP and TLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP2 specifically binds to protein inhibitor of activated STAT-1 (PIAS1) and a novel human protein designed CRP2BP (for CRP2 binding partner). PIAS1 specifically inhibits the STAT-1 pathway and CRP2BP is homologous to members of the histone acetyltransferase family raising the possibility that CRP2 is a modulator of cytokine-controlled pathways or is functionally active in the transcriptional regulatory network. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 55 -188865 cd09481 LIM1_CRP3 The first LIM domain of Cysteine Rich Protein 3 (CRP3/MLP). The first LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcriptio n factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188866 cd09482 LIM2_CRP3 The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP). The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188867 cd09483 LIM1_Prickle_1 The first LIM domain of Prickle 1. The first LIM domain of Prickle 1. Prickle contains three C-terminal LIM domains and a N-terminal PET domain Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in mainly expressed in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. In addition, Prickle 1 regulates cell movements during gastrulation and neuronal migration through interaction with the noncanonical Wnt11/Wnt5 pathway in zebrafish. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188868 cd09484 LIM1_Prickle_2 The first LIM domain of Prickle 2. The first LIM domain of Prickle 2: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -188869 cd09485 LIM_Eplin_alpha_beta The Lim domain of Epithelial Protein Lost in Neoplasm (Eplin). The Lim domain of Epithelial Protein Lost in Neoplasm (Eplin): Epithelial Protein Lost in Neoplasm is a cytoskeleton-associated tumor suppressor whose expression inversely correlates with cell growth, motility, invasion and cancer mortality. Eplin interacts and stabilizes F-actin filaments and stress fibers, which correlates with its ability to suppress anchorage independent growth. In epithelial cells, Eplin is required for formation of the F-actin adhesion belt by binding to the E-cadherin-catenin complex through alpha-catenin. Eplin is expressed in two isoforms, a longer Eplin-beta and a shorter Eplin-alpha. Eplin-alpha mRNA is detected in various tissues and cell lines, but is absent or down regulated in cancer cells. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188870 cd09486 LIM_Eplin_like_1 a LIM domain subfamily on a group of proteins with unknown function. This model represents a LIM domain subfamily of Eplin-like family. This family shows highest homology to the LIM domains on Eplin and XIRP2 protein families. Epithelial Protein Lost in Neoplasm is a cytoskeleton-associated tumor suppressor whose expression inversely correlates with cell growth, motility, invasion and cancer mortality. Xirp2 is expressed in muscles and is an important effector of the Ang II signaling pathway in the heart. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. 53 -188886 cd09487 SAM_superfamily SAM (Sterile alpha motif ). SAM (Sterile Alpha Motif) domain is a module consisting of approximately 70 amino acids. This domain is found in the Fungi/Metazoa group and in a restricted number of bacteria. Proteins with SAM domains are represented by a wide variety of domain architectures and have different intracellular localization, including nucleus, cytoplasm and membranes. SAM domains have diverse functions. They can interact with proteins, RNAs and membrane lipids, contain site of phosphorylation and/or kinase docking site, and play a role in protein homo and hetero dimerization/oligomerization in processes ranging from signal transduction to regulation of transcription. Mutations in SAM domains have been linked to several diseases. 56 -188887 cd09488 SAM_EPH-R SAM domain of EPH family of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH (erythropoietin-producing hepatocyte) family of receptor tyrosine kinases is a C-terminal signal transduction module located in the cytoplasmic region of these receptors. SAM appears to mediate cell-cell initiated signal transduction via binding proteins to a conserved tyrosine that is phosphorylated. In some cases the SAM domain mediates homodimerization/oligomerization and plays a role in the clustering process necessary for signaling. EPH kinases are the largest family of receptor tyrosine kinases. They are classified into two groups based on their abilities to bind ephrin-A and ephrin-B ligands. The EPH receptors are involved in regulation of cell movement, shape, and attachment during embryonic development; they control cell-cell interactions in the vascular, nervous, epithelial, and immune systems, and in many tumors. They are potential molecular markers for cancer diagnostics and potential targets for cancer therapy. 61 -188888 cd09489 SAM_Smaug-like SAM (Sterile alpha motif ). SAM (sterile alpha motif) domain of Smaug-like subfamily proteins is an RNA binding domain. SAM interacts with stem-loop structures in target mRNAs. Proteins of this subfamily are post-transcriptional regulators involved in mRNA silencing and deadenylation; they can be implicated in transcript stability regulation and vacuolar protein transport as well. SAM_Smaug-like domain-containing proteins are found in metazoa from yeast to human. In animals they are active during early embryogenesis. 57 -188889 cd09490 SAM_Arap1,2,3 SAM domain of Arap1,2,3 (angiotensin receptor-associated protein). SAM (sterile alpha motif) domain of Arap1,2,3 subfamily proteins (angiotensin receptor-associated) is a protein-protein interaction domain. Arap1,2,3 proteins are phosphatidylinositol-3,4,5-trisphosphate-dependent GTPase-activating proteins. They are involved in phosphatidylinositol-3 kinase (PI3K) signaling pathways. In addition to SAM domain, Arap1,2,3 proteins contain ArfGap, PH-like, RhoGAP and UBQ domains. SAM domain of Arap3 protein was shown to interact with SAM domain of Ship2 phosphatidylinositol-trisphosphate phosphatase proteins. Such interaction apparently plays a role in inhibition of PI3K regulated pathways since Ship2 converts PI(3,4,5)P3 into PI(3,4)P2. Proteins of this subfamily participate in regulation of signaling and trafficking associated with a number of different receptors (including EGFR, TRAIL-R1/DR4, TRAIL-R2/DR5) in normal and cancer cells; they are involved in regulation of actin cytoskeleton remodeling, cell spreading and formation of lamellipodia. 63 -188890 cd09491 SAM_Ship2 SAM domain of Ship2 lipid phosphatase proteins. SAM (sterile alpha motif) domain of Ship2 subfamily is a protein-protein interaction domain. Ship2 proteins are lipid phosphatases (Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2) containing an N-terminal SH2 domain, a central phosphatase domain and a C-terminal SAM domain. Ship2 is involved in a number of PI3K signaling pathways. For example, it plays a role in regulation of the actin cytoskeleton remodeling, in insulin signaling pathways, and in EphA2 receptor endocytosis. SAM domain of Ship2 can interact with SAM domain of other proteins in these pathways, thus participating in signal transduction. In particular, SAM of Ship2 is known to form heterodimers with SAM domain of Eph-A2 receptor tyrosine kinase during receptor endocytosis as well as with SAM domain of PI3K effector protein Arap3 in the actin cytoskeleton signaling network. Since Ship2 plays a role in negatively regulating insulin signaling, it has been suggested that inhibition of its expression or function may contribute in treating type 2 diabetes and obesity-induced insulin resistance. 63 -188891 cd09492 SAM_SASH1_repeat2 SAM domain of SASH1 proteins, repeat 2. SAM (sterile alpha motif) repeat 2 of SASH1 proteins is a protein-protein interaction domain. Members of this subfamily are putative adaptor proteins. They appear to mediate signal transduction. SASH1 can bind 14-3-3 proteins in response to IGF1/phosphatidylinositol 3-kinase signaling. SASH1 was found upregulated in different tissues including thymus, placenta, lungs and downregulated in some breast tumors, liver metastases and colon cancers if compare to corresponding normal tissues. SASH1 is a potential candidate for a tumor suppressor gene in breast cancers. At the same time, downregulation of SASH1 in colon cancer is associated with metastasis and a poor prognosis. 70 -188892 cd09493 SAM_SASH-like SAM (Sterile alpha motif ), SASH1-like. SAM (sterile alpha motif) domain of SASH1-like proteins is a protein-protein interaction domain. Members of this subfamily are putative adaptor proteins. They appear to mediate signal transduction. Proteins of this subfamily are known to be involved in preventing DN thymocytes from premature initiation of programmed cell death and in B cells activation and differentiation. They have been found downregulated in some breast tumors, liver metastases and colon cancers if compare to corresponding normal tissues. 60 -188893 cd09494 SAM_liprin-kazrin_repeat1 SAM domain of liprin/kazrin proteins repeat 1. SAM (sterile alpha motif) domain repeat 1 of liprin/kazrin proteins is a protein-protein interaction domain. The long form of liprin/kazrin proteins contains three copies (repeats) of the SAM domain. Liprin-alpha may form heterodimers with liprin-beta through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development and in axon guidance. In particular, liprin-alpha is involved in formation of the presynaptic active zone; liprin-beta is involved in the maintenance of lymphatic vessel integrity. Kazrins are involved in interplay between desmosomes and adherens junctions; additionally they play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 58 -188894 cd09495 SAM_liprin-kazrin_repeat2 SAM domain of liprin/kazrin proteins repeat 2. SAM (sterile alpha motif) domain repeat 2 of liprin/kazrin proteins is a protein-protein interaction domain. The long form of liprin/kazrin proteins contains three copies (repeats) of SAM domain. Liprin-alpha may form heterodimers with liprin-beta through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development and in axon guidance. In particular, liprin-alpha is involved in formation of the presynaptic active zone; liprin-beta is involved in the maintenance of lymphatic vessel integrity. Kazrins are involved in interplay between desmosomes and in adheren junctions; additionally they play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 60 -188895 cd09496 SAM_liprin-kazrin_repeat3 SAM domain of liprin/kazrin proteins repeat 3. SAM (sterile alpha motif) domain repeat 3 of liprin/kazrin proteins is a protein-protein interaction domain. The long form of liprin/kazrin proteins contains three copies (repeats) of SAM domain. Liprin-alpha may form heterodimers with liprin-beta through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development and in axon guidance. In particular, liprin-alpha is involved in formation of the presynaptic active zone; liprin-beta is involved in the maintenance of lymphatic vessel integrity. Kazrins are involved in interplay between desmosomes and in adherens junctions; additionally they play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 62 -188896 cd09497 SAM_caskin1,2_repeat1 SAM domain of caskin protein repeat 1. SAM (sterile alpha motif) domain repeat 1 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and apparently may play a role in neural development, synaptic protein targeting, and regulation of gene expression. 66 -188897 cd09498 SAM_caskin1,2_repeat2 SAM domain of caskin protein repeat 2. SAM (sterile alpha motif) domain repeat 2 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and may play a role in neural development, synaptic protein targeting, and regulation of gene expression. 71 -188898 cd09499 SAM_AIDA1AB-like_repeat1 SAM domain of AIDA1AB-like proteins, repeat 1. SAM (sterile alpha motif) domain repeat 1 of AIDA1AB-like proteins is a protein-protein interaction domain. AIDA1AB-like proteins have two tandem SAM domains. They may form an intramolecular head-to-tail homodimer. One of two basic motifs of the nuclear localization signal (NLS) is located within helix 5 of SAM2 (motif HKRK). This signal plays a role in decoupling of SAM2 from SAM1, thus facilitating translocation of this type proteins into the nucleus. SAM1 domain has a potential phosphorylation site for CMGC group of serine/threonine kinases. SAM domains of the AIDA1-like subfamily can directly bind ubiquitin and participate in regulating the degradation of ubiquitinated EphA receptors, particularly EPH-A8 receptor. Additionally AIDA1AB-like proteins may participate in the regulation of nucleoplasmic coilin protein interactions. 67 -188899 cd09500 SAM_AIDA1AB-like_repeat2 SAM domain of AIDA1AB-like proteins, repeat 2. SAM (sterile alpha motif) domain repeat 2 of AIDA1AB-like proteins is a protein-protein interaction domain. AIDA1AB-like proteins have two tandem SAM domains. They may form an intramolecular head-to-tail homodimer. One of two basic motifs of the nuclear localization signal (NLS) is located within helix 5 of the SAM2 (motif HKRK). This signal plays a role in decoupling of SAM2 from SAM1, thus facilitating translocation of this type proteins into the nucleus. SAM domains of the AIDA1AB-like subfamily can directly bind ubiquitin and participate in regulating the degradation of ubiquitinated EphA receptors, particularly EPH-A8 receptor. Additionally AIDA1AB-like proteins may participate in the regulation of nucleoplasmic coilin protein interactions. 65 -188900 cd09501 SAM_SARM1-like_repeat1 SAM domain ot SARM1-like proteins, repeat 1. SAM (sterile alpha motif) domain repeat 1 of SARM1-like adaptor proteins is a protein-protein interaction domain. SARM1-like proteins contain two tandem SAM domains. SARM1-like proteins are involved in TLR (Toll-like receptor) signaling. They are responsible for targeted localization of the whole protein to post-synaptic regions of axons. In humans SARM1 expression is detected in kidney and liver. 69 -188901 cd09502 SAM_SARM1-like_repeat2 SAM domain of SARM1-like, repeat 2. SAM (sterile alpha motif) domain repeat 2 of SARM1-like adaptor proteins is a protein-protein interaction domain. SARM1-like proteins contain two tandem SAM domains. SARM1-like proteins are involved in TLR (Toll-like receptor) signaling. They are responsible for targeted localization of the whole protein to post-synaptic regions of axons. In humans SARM1 expression is detected in kidney and liver. 70 -188902 cd09503 SAM_tumor-p63,p73 SAM domain of tumor-p63,p73 proteins. SAM (sterile alpha motif) domain of p63, p73 transcriptional factors is a putative protein-protein interaction domain and lipid-binding domain. p63 and p73 are homologs to the tumor suppressor p53. They have a C-terminal SAM domain in their longest spliced alpha forms, while p53 doesn't have it. p63 or p73 knockout mice show significant developmental abnormalities but no increased cancer susceptibility, suggesting that p63 and p73 play a role in regulation of normal development. It was shown that SAM domain of p73 is able to bind some membrane lipids. The structural rearrangements in SAM are necessary to accomplish the binding. No evidence for homooligomerization through SAM domains was found for p63/p73 subfamily. It was suggested that the partner proteins should be either more distantly related SAM-containing domain proteins or proteins without the SAM domain. 65 -188903 cd09504 SAM_STIM-1,2-like SAM domain of STIM-1,2-like proteins. SAM (sterile alpha motif) domain of STIM-1,2-like (Stromal interaction molecule) proteins is a putative protein-protein interaction domain. STIM1 and STIM2 human proteins are type I transmembrane proteins. The N-terminal part of them includes "hidden" EF-hand and SAM domains. This region is responsible for sensing changes in store-operated and basal cytoplasmic Ca2+ levels and initiates oligomerization. "Hidden" EF hand and SAM domains have a stable intramolecular association, and the SAM domain is a component that regulates stability within STIM proteins. Destabilization of the EF-SAM association during Ca2+ depletion leads to partial unfolding and aggregation (homooligomerization), thus activating the store-operated Ca2+ entry. Immunoprecipitation analysis indicates that STIM1 and STIM2 can form co-precipitable oligomeric associations in vivo. It was suggested that STIM1 and STIM2 are involved in opposite regulation of store operated channels in plasma membrane. 74 -188904 cd09505 SAM_WDSUB1 SAM domain of WDSUB1 proteins. SAM (sterile alpha motif) domain of WDSUB1 subfamily proteins is a putative protein-protein interaction domain. Proteins of this group contain multiple domains: SAM, one or more WD40 repeats and U-box (derived version of the RING-finger domain). Apparently the WDSUB1 subfamily proteins participate in protein degradation through ubiquitination, since U-box domain are known as a member of E3 ubiquitin ligase family, while SAM and WD40 domains most probably are responsible for an E2 ubiquitin-conjugating enzyme binding and a target protein binding. 72 -188905 cd09506 SAM_Shank1,2,3 SAM domain of Shank1,2,3 family proteins. SAM (sterile alpha motif) domain of Shank1,2,3 family proteins is a protein-protein interaction domain. Shank1,2,3 proteins are scaffold proteins that are known to interact with a variety of cytoplasmic and membrane proteins. SAM domains of the Shank1,2,3 family are prone to homooligomerization. They are highly enriched in the postsynaptic density, acting as scaffolds to organize assembly of postsynaptic proteins. SAM domains of Shank3 proteins can form large sheets of helical fibers. Shank genes show distinct patterns of expression, in rat Shank1 mRNA is found almost exclusively in brain, Shank2 in brain, kidney and liver, and Shank3 in heart, brain and spleen. 66 -188906 cd09507 SAM_DGK-delta-eta SAM domain of diacylglycerol kinase delta and eta subunits. SAM (sterile alpha motif) domain of DGK-eta-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DGK proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers between the SAM domains of DGK delta and eta proteins. The oligomerization plays a role in the regulation of DGK intracellular localization. 65 -188907 cd09508 SAM_HD SAM domain of HD-phosphohydrolase. SAM (sterile alpha motif) domain of SAM_HD subfamily proteins is a putative protein-protein interaction domain. Proteins of this group, additionally to the SAM domain, contain a HD hydrolase domain. Human SAM-HD1 is a nuclear protein involved in innate immune response and may act as a negative regulator of the cell-intrinsic antiviral response. Mutations in this gene lead to Aicardi-Goutieres syndrome (symptoms include cerebral atrophy, leukoencephalopathy, hepatosplenomegaly, and increased production of alpha-interferon). 70 -188908 cd09509 SAM_Polycomb SAM domain of Polycomb group. SAM (sterile alpha motif) domain of Polycomb group is a protein-protein interaction domain. The Polycomb group includes transcriptional repressors which are involved in the regulation of some key regulatory genes during development in many organisms. They are best known for silencing Hox (Homeobox) genes. Polycomb proteins work together in large multimeric and chromatin-associated complexes. They organize chromatin of the target genes and maintain repressed states during many cell divisions. Polycomb proteins are classified based on their common function, but not on conserved domains and/or motifs; however many Polycomb proteins (members of PRC1 class complex) contain SAM domains which are more similar to each other inside of the Polycomb group than to SAM domains outside of it. Most information about structure and function of Polycomb SAM domains comes from studies of Ph (Polyhomeotic) and Scm (Sex comb on midleg) proteins. Polycomb SAM domains usually can be found at the C-terminus of the proteins. Some members of this group contain, in addition to the SAM domain, MTB repeats, Zn finger, and/or DUF3588 domains. Polycomb SAM domains can form homo- and/or heterooligomers through ML and EH surfaces. SAM/SAM oligomers apparently play a role in transcriptional repression through polymerization along the chromosome. Polycomb proteins are known to be highly expressed in some cells years before their cancer pathology; thus they are attractive markers for early cancer therapy. 64 -188909 cd09510 SAM_aveugle-like SAM domain of aveugle-like subfamily. SAM (sterile alpha motif) domain of SAM_aveugle-like subfamily is a protein-protein interaction domain. In Drosophila, the aveugle (AVE) protein (also known as HYP (Hyphen)) is involved in normal photoreceptor differentiation, and required for epidermal growth factor receptor (EGFR) signaling between ras and raf genes during eye development and wing vein formation. SAM domain of the HYP(AVE) protein interacts with SAM domain of CNK, the multidomain scaffold protein connector enhancer of kinase suppressor of ras. CNK/HYP(AVE) complex interacts with KSR (kinase suppressor of Ras) protein. This interaction leads to stimulation of Ras-dependent Raf activation. This subfamily also includes vertebrate AVE homologs - Samd10 and Samd12 proteins. Their exact function is unknown, but they may play a role in signal transduction during embryogenesis. 75 -188910 cd09511 SAM_CNK1,2,3-suppressor SAM domain of CNK1,2,3-suppressor subfamily. SAM (sterile alpha motif) domain of CNK (connector enhancer of kinase suppressor of ras (Ksr)) subfamily is a protein-protein interaction domain. CNK proteins are multidomain scaffold proteins containing a few protein-protein interaction domains and are required for connecting Rho and Ras signaling pathways. In Drosophila, the SAM domain of CNK is known to interact with the SAM domain of the aveugle protein, forming a heterodimer. Mutation of the SAM domain in human CNK1 abolishes the ability to cooperate with the Ras effector, supporting the idea that this interaction is necessary for proper Ras signal transduction. 69 -188911 cd09512 SAM_Neurabin-like SAM domain of SAM_Neurabin-like subfamily. SAM (sterile alpha motif) domain of Neurabin-like (Neural actin-binding) subfamily is a putative protein-protein interaction domain. This group currently includes the SAM domains of neurobin-I, SAMD14 and neurobin-I/SAMD14-like proteins. Most are multidomain proteins and in addition to SAM domain they contain other protein-binding domains such as PDZ and actin-binding domains. Members of this subfamily participate in signal transduction. Neurabin-I is involved in the regulation of Ca signaling intensity in alpha-adrenergic receptors; it forms a functional pair of opposing regulators with neurabin-II. Neurabins are expressed almost exclusively in neuronal cells. They are known to interact with protein phosphatase 1 and inhibit its activity; they also can bind actin filaments; however, the exact role of the SAM domain is unclear, since SAM doesn't participate in these interactions. 70 -188912 cd09513 SAM_BAR SAM domain of BAR subfamily. SAM (sterile alpha motif) domain of BAR (Bifunctional Apoptosis Regulator) subfamily is a protein-protein interaction domain. In addition to the SAM domain, this type of regulator has a RING finger domain. Proteins of this subfamily are involved in the apoptosis signal network. Their overexpression in human neuronal cells significantly protects cells from a broad range of cell death stimuli. SAM domain can interact with Caspase8, Bcl-2 and Bcl-X resulting in suppression of Bax-induced cell death. 71 -188913 cd09514 SAM_SGMS1 SAM domain of sphingomyelin synthase. SAM (sterile alpha motif) domain of SGMS-1 (sphingomyelin synthase) subfamily is a potential protein-protein interaction domain. Sphingomyelin synthase 1 is a transmembrane protein with a SAM domain at the N-terminus and a catalytic domain at the C-terminus. Sphingomyelin synthase 1 is a Golgi-associated enzyme, and depending on the concentration of diacylglycerol and ceramide, can catalyze synthesis phosphocholine or sphingomyelin, respectively. It plays a central role in sphingolipid and glycerophospholipid metabolism. 72 -188914 cd09515 SAM_SGMS1-like SAM domain of sphingomyelin synthase related subfamily. SAM (sterile alpha motif) domain of SGMS-like (sphingomyelin synthase) subfamily is a potential protein-protein interaction domain. This group of proteins is related to sphingomyelin synthase 1, and contains an N-terminal SAM domain. The function of SGMS1-like proteins is unknown; they may play a role in sphingolipid metabolism. 70 -188915 cd09516 SAM_sec23ip-like SAM domain of sec23ip-like subfamily. SAM (sterile alpha motif) domain of Sec23ip-like (Sec23 interacting protein) subfamily is a potential protein-protein interaction domain. This group of proteins includes Sec23ip and DDHD2 proteins. All of them contain at least two domains: a SAM domain and a predicted metal-binding domain. For mammalian DDHD2 members of this group, phospholipase activity has been demonstrated. Sec23ip proteins of this group interact with Sec23 proteins via an N-terminal proline-rich region. Members of this subfamily are involved in organization of ER/Golgi intermediate compartment. 69 -188916 cd09517 SAM_USH1G_HARP SAM domain of USH1G_HARP family. SAM (sterile alpha motif) domain of USH1G/HARP (Usher syndrome type-1G/ Harmonin-interacting Ankyrin Repeat-containing protein) family is a protein-protein interaction domain. Members of this family have an N-terminal ankyrin repeat region and a C-terminal SAM domain. In mammals these proteins can interact via the SAM domain with the PDZ domain of harmonin to form a scaffolding complex that facilitates signal transduction in epithelial and inner ear sensory cells. It was suggested that USH1G and HARP can be tissue specific partners of harmonin. Mutations in ush1g genes lead to Usher syndrome type 1G. This syndrome is the cause of deaf-blindness in humans. 66 -188917 cd09518 SAM_ANKS6 SAM domain of ANKS6 (or SamCystin) subfamily. SAM (sterile alpha motif) domain of ANKS6 (or SamCystin) subfamily is a potential protein-protein interaction domain. Proteins of this subfamily have N-terminal ankyrin repeats and a C-terminal SAM domain. They are able to form self-associated complexes and both (SAM and ANK) domains play a role in such interactions. Mutations in Anks6 gene are associated with polycystic kidney disease. They cause formation of renal cysts in rodent models. It was suggested that the ANKS6 protein can interact indirectly (through RNA and protein intermediates) with BICC1, another polycystic kidney disease-associated protein. 65 -188918 cd09519 SAM_ANKS3 SAM domain of ANKS3 subfamily. SAM (sterile alpha motif) domain of ANKS3 subfamily is a potential protein-protein interaction domain. Proteins of this subfamily have N-terminal ankyrin repeats and a C-terminal SAM domain. SAM is a widespread domain in signaling proteins. In many cases it mediates homo-dimerization/oligomerization. 64 -188919 cd09520 SAM_BICC1 SAM domain of BICC1 (bicaudal) subfamily. SAM (sterile alpha motif) domain of BICC1 (bicaudal) subfamily is a protein-protein interaction domain. Proteins of this group have N-terminal K homology RNA-binding vigilin-like repeats and a C-terminal SAM domain. BICC1 is involved in the regulation of embryonic differentiation. It plays a role in the regulation of Dvl (Dishevelled) signaling, particularly in the correct cilia orientation and nodal flow generation. In Drosophila, disruption of BICC1 can disturb the normal migration direction of the anterior follicle cell of oocytes; the specific function of SAM is to recruit whole protein to the periphery of P-bodies. In mammals, mutations in this gene are associated with polycystic kidney disease and it was suggested that the BICC1 protein can indirectly interact with ANKS6 protein (ANKS6 is also associated with polycystic kidney disease) through some protein and RNA intermediates. 65 -188920 cd09521 SAM_ASZ1 SAM domain of ASZ1 subfamily. SAM (sterile alpha motif) domain of ASZ1 (Ankyrin, SAM, leucine Zipper) also known as GASZ (Germ cell-specific Ankyrin, SAM, leucine Zipper) subfamily is a potential protein-protein interaction domain. Proteins of this group are involved in the repression of transposable elements during spermatogenesis, oogenesis, and preimplantation embryogenesis. They support synthesis of PIWI-interacting RNA via association with some PIWI proteins, such as MILI and MIWI. This association is required for initiation and maintenance of retrotransposon repression during the meiosis. In mice lacking ASZ1, DNA damage and delayed germ cell maturation was observed due to retrotransposons releasing from their repressed state. 64 -188921 cd09522 SAM_SLP76 SAM domain of SLP76 subfamily. SAM (sterile alpha motif) domain of SLP76 (SH2 domain-containing leukocyte protein 76), also known as LCP2 (Lymphocyte cytosolic protein), subfamily is a protein-protein interaction domain. Proteins of this group have an N-terminal SAM domain, 3 phosphotyrosine motifs, a proline-rich region and a C-terminal SH2 domain. They are scaffold proteins involved in protein complex formation. The complexes play a role in T-cell receptor mediated signaling pathways such as integrin activation, cytoskeletal organization, MARK activation, and calcium flux. SAM domain deleted SLP76 knockin mice show a number of defects, including partially blocked thymocyte development, impaired positive and negative thymic selection and changes in T-cell receptor mediated signaling. 69 -188922 cd09523 SAM_TAL SAM domain of TAL subfamily. SAM (sterile alpha motif) domain of TAL (Tsg101-associated ligase) proteins, also known as LRSAM1 (Leucine-rich repeat and sterile alpha motif-containing) proteins, is a putative protein-protein interaction domain. Proteins of this subfamily participate in the regulation of retrovirus budding and receptor endocytosis. They show E3 ubiquitin ligase activity. Human TAL protein interacts with Tsg101 and TAL's C-terminal ring finger domain is essential for the multiple monoubiquitylation of Tsg101. 65 -188923 cd09524 SAM_tankyrase1,2 SAM domain of tankyrase1,2 subfamily. SAM (sterile alpha motif) domain of Tankyrase1,2 subfamily is a protein-protein interaction domain. In addition to the SAM domain, proteins of this group have ankyrin repeats and a ADP- ribosyltransferase (poly-(ADP-ribose) synthase) domain. Tankyrases can polymerize through their SAM domains forming homoligomers and these complexes are disrupted by autoribosylation. Tankyrases apparently act as master scaffolding proteins and thus may interact simultaneously with multiple proteins, in particular with TRF1, NuMA, IRAP and Grb14 (ankyrin repeats are involved in these interactions). Tankyrases participate in a variety of cell signaling pathways as effector molecules. Their functions are different depending on the intracellular location: at telomeres they play a role in the regulation of telomere length via control of telomerase access to telomeres, at centrosomes they promote spindle assembly/disassembly, in Golgi vesicles they participate in the regulation of vesicle trafficking and Golgi dynamics. Tankyrase 1 may be of interest as new potential target for telomerase-directed cancer therapy. 66 -188924 cd09525 SAM_GAREM SAM domain of GAREM subfamily. SAM (sterile alpha motif) domain of GAREM (Grb2-associated and regulator of Erk/MARK) protein subfamily (also known as FAM59A) is a putative protein-protein interaction domain. SAM domain is a widespread domain in signaling proteins. Proteins of this group have SAM at the C-terminus. Human GAREM protein is known to play a role in regulation of the EGF (Epidermal Growth Factor) receptor and of Gab or insulin preceptor substrate-1 family proteins. Grb2 (Growth factor receptor-bound) protein was identified as a binding partner of human GAREM. Proline-rich motifs and phosphorylation of two conserved tyrosines in GAREM are important for the interaction with the SH3 domains of Grb2 protein; however these motifs and residues do not belong to the SAM domain. 67 -188925 cd09526 SAM_Samd3 SAM domain of Samd3 subfamily. SAM (sterile alpha motif) domain of the Samd3 subfamily is a putative protein-protein interaction domain. Proteins of this subfamily have a SAM domain at the N-terminus. SAM is a widespread domain in signaling and regulatory proteins. In many cases SAM mediates dimerization/oligomerization. Exact function of proteins belonging to this subfamily is unknown. 66 -188926 cd09527 SAM_Samd5 SAM domain of Samd5 subfamily. SAM (sterile alpha motif) domain of Samd5 subfamily is a putative protein-protein interaction domain. Proteins of this subfamily have a SAM domain at the N-terminus. SAM is a widespread domain in signaling and regulatory proteins. In many cases SAM mediates dimerization/oligomerization. The exact function of proteins belonging to this subfamily is unknown. 63 -188927 cd09528 SAM_Samd9_Samd9L SAM domain of Samd9/Samd9L subfamily. SAM (sterile alpha motif) domain of Samd9/Samd9L subfamily is a putative protein-protein interaction domain. SAM is a widespread domain in signaling proteins. Samd9 is a tumor suppressor gene. It is involved in death signaling of malignant glioblastoma. Samd9 suppression blocks cancer cell death induced by HVJ-E or IFN-beta treatment. Deleterious mutations in Samd9 lead to normophosphatemic familial tumoral calcinosis, a cutaneous disorder characterized by cutaneous calcification or ossification. 64 -188928 cd09529 SAM_MLTK SAM domain of MLTK subfamily. SAM (sterile alpha motif) domain of MLTK subfamily is a protein-protein interaction domain. Besides SAM domain, these proteins have N-terminal protein tyrosine kinase domain and leucine-zipper motif. Proteins of this group act as mitogen-activated protein triple kinase in a number of MAPK cascades. They can be activated by autophosphorylation in response to stress signals. MLTK-alpha is known to phosphorylate histone H3. In mammals, MLTKs participate in the activation of the JNK/SAPK, p38, ERK5 pathways, the transcriptional factor NF-kB, in the regulation of the cell cycle checkpoint, and in the induction of apoptosis in a hepatoma cell line. Some members of this subfamily are proto-oncogenes, thus MLTK-alpha is involved in neoplasmic cell transformation and/or skin cancer development in athymic nude mice. Based on in vivo coprecipitation experiments in mammalian cells, it has been demonstrated that MLTK proteins might form homodimers/oligomers via their SAM domains. 71 -188929 cd09530 SAM_Samd14 SAM domain of Samd14 subfamily. SAM (sterile alpha motif) domain of SamD14 (or FAM15A) subfamily is a putative protein-protein interaction domain. SAM is widespread domain in proteins involved in signal transduction and regulation. In many cases SAM mediates homodimerization/oligomerization. The exact function of proteins belonging to this subfamily is unknown. 67 -188930 cd09531 SAM_CS047 SAM domain of CS047 subfamily. SAM (sterile alpha motif) domain of CS047 subfamily is a putative protein-protein interaction domain. Proteins of this subfamily have a SAM domain at the N-terminus. SAM is a widespread domain in signaling and regulatory proteins. In many cases SAM mediates homodimerization/oligomerization. The exact function of proteins belonging to this group is unknown. 65 -188931 cd09532 SAM_SLA1_fungal SAM domain of SLA1 subfamily. SAM (sterile alpha motif) domain of fungal SLA1 proteins is a protein-protein interaction domain. Proteins of this group consist of a few N-terminal SH3 domains followed by SHD1 domain, SAM domain (also known as SHD2) and multiple C-terminal repeats. The yeast SLA1 protein is an endocytic clathrin adaptor. It is associated with a variety of endocytic accessory factors and required for endocytic vesicle formation and for clathrin and actin-dependent cargo recognition. SLA1 binds clathrin through a variant clathrin-binding motif (vCB). The SAM domain negatively regulates this binding by blocking the vCB site. The SAM domains of SLA1 proteins can form oligomers via their mid-loop (ML) and end-helix (EH) regions. Such self-associations apparently are important for SLA1 function. A proposed regulatory model suggests that SAM can be considered a mediator of two aspects of clathrin adaptor function. It plays a role in negative regulation of clathrin binding via an intramolecular interaction with the vCB, and a role in positive regulation of vesicle coat assembly via self-oligomerization. 62 -188932 cd09533 SAM_Ste50-like_fungal SAM domain of Ste50_like (ubc2) subfamily. SAM (sterile alpha motif) domain of Ste50-like (or Ubc2 for Ustilago bypass of cyclase) subfamily is a putative protein-protein interaction domain. This group includes only fungal proteins. Basidiomycetes have an N-terminal SAM domain, central UBQ domain, and C-terminal SH3 domain, while Ascomycetes lack the SH3 domain. Ubc2 of Ustilago maydis is a major virulence and maize pathogenicity factor. It is required for filamentous growth (the budding haploid form of Ustilago maydis is a saprophyte, while filamentous dikaryotic form is a pathogen). Also the Ubc2 protein is involved in the pheromone-responsive morphogenesis via the MAP kinase cascade. The SAM domain is necessary for ubc2 function; deletion of SAM eliminates this function. A Lys-to-Glu mutation in the SAM domain of ubc2 gene induces temperature sensitivity. 58 -188933 cd09534 SAM_Ste11_fungal SAM domain of Ste11_fungal subfamily. SAM (sterile alpha motif) domain of Ste11 subfamily is a protein-protein interaction domain. Proteins of this subfamily have SAM domain at the N-terminus and protein kinase domain at the C-terminus. They participate in regulation of mating pheromone response, invasive growth and high osmolarity growth response. MAP triple kinase Ste11 from S.cerevisia is known to interact with Ste20 kinase and Ste50 regulator. These kinases are able to form homodimers interacting through their SAM domains as well as heterodimers or heterogenous complexes when either SAM domain of monomeric or homodimeric form of Ste11 interacts with Ste50 regulator. 62 -188934 cd09535 SAM_BOI-like_fungal SAM domain of BOI-like fungal subfamily. SAM (sterile alpha motif) domain of BOI-like fungal subfamily is a potential protein-protein interaction domain. Proteins of this subfamily are apparently scaffold proteins, since most contain SH3 and PH domains, which are also protein-protein interaction domains, in addition to SAM domain. BOI-like proteins participate in cell cycle regulation. In particular BOI1 and BOI2 proteins of budding yeast S.cerevisiae are involved in bud formation, and POB1 protein of fission yeast S.pombe plays a role in cell elongation and separation. Among binding partners of BOI-like fungal subfamily members are such proteins as Bem1 and Cdc42 (they are known to be involved in cell polarization and bud formation). 65 -188935 cd09536 SAM_Ste50_fungal SAM domain of Ste50 fungal subfamily. SAM (sterile alpha motif) domain of Ste50 fungal subfamily is a protein-protein interaction domain. Proteins of this subfamily have SAM domain at the N-terminus and Ras-associated UBQ superfamily domain at the C-terminus. They participate in regulation of mating pheromone response, invasive growth and high osmolarity growth response, and contribute to cell wall integrity in vegetative cells. Ste50 of S.cerevisiae acts as an adaptor protein between G protein and MAP triple kinase Ste11. Ste50 proteins are able to form homooligomers, binding each other via their SAM domains, as well as heterodimers and heterogeneous complexes with SAM domain or SAM homodimers of MAPKKK Ste11 protein kinase. 74 -188936 cd09537 SAM_CP2-like SAM domain of CP2-like transcription factors. SAM (sterile alpha motif) domain of CP2-like transcription factor is a putative protein-protein interaction domain. Proteins of this group have an N-terminal DNA-binding CP2 domain, a central predicted SAM domain and some also have a C-terminal dimerization domain. CP2-like family of transcriptional factors includes three subgroups: LBP1, TFCP2, and LBP9. Members of this family are involved in transcriptional regulation from early development to terminal differentiation. They play a role in regulation of expression of P450scc (the cholesterol side-chain cleavage enzyme, cytochrome) in placenta, and alpha-globin in erythroid cells. They are required for proper maturation of the dust (epithelial component of tubular organs) of kidney and salivary gland. Human LBP1 is known to be induced by HIV type I infection in lymphocytes; it represses HIV transcription by preventing the binding of TFIID to the virus promoter. Additionally, it has been suggested that UBP1 (LBP1) regulator might be a member of a blood pressure controlling network. LBP1 protein isoforms are able to form dimers apparently via SAM domain since SAM deletion or mutation resulted in a loss of this ability. 67 -188937 cd09538 SAM_DLC1,2-like SAM domain of DLC1,2-like subfamily. SAM (sterile alpha motif) domain of DLC-1,2-like (Deleted in liver cancer) subfamily is a protein-protein interaction domain located at the N-terminus of the protein. Members of this subfamily do not form dimers/oligomers through their SAM domains. They participate in regulation of cell migration and lipid transfer. SAM domain of human DLC1 protein contains the EF1A1 (eukaryotic elongation factor) binding motif, thus SAM facilitates recruitment of EF1A1 to the membrane periphery and suppresses cell migration. Human Dlc2 gene is known as a tumor suppressor gene. It was found underexpressed in hepatocellular carcinoma. 60 -188938 cd09539 SAM_TNK-like SAM domain of TNK(ACK)-like non-receptor tyrosine-protein kinases. SAM (sterile alpha motif) domain of TNK-like subfamily is a putative protein-protein interaction domain. This subfamily includes TNK1 and TNK2 (also known as ACK1) non-receptor tyrosine-protein kinases. They contain a SAM domain at the N-terminus followed by a catalytic domain and a few other domains. Members of this group are involved in the regulation of cell adhesion and growth, receptor degradation, and axonal guidance. Deletion of the SAM domain resulted in reduction of Ack1 ability to undergo autophosphorylation and dramatically reduces ubiquitination of Ack1 catalyzed by HECT E3 ubiquitin ligase (Nedd4-1) during EGF-induced Ack1 degradation. It has been suggested that the lysine-rich region in SAM domain might be a major ubiquitination site. Members of this group are also associated with some cancers. Amplification of the Ack1 gene correlates with prostate and lung cancer progression, and Ack1 overexpression increases invasiveness. Oncogenecity of Tnk1 gene apparently depends on cell context; it may play a role in tumor suppression since Tnk1 knockout mice can develop spontaneous tumors. 62 -188939 cd09540 SAM_EPS8-like SAM domain of EPS8-like subfamily. SAM (sterile alpha motif) domain of EPS8-like subfamily is a putative protein-protein interaction domain. This subfamily includes epidermal growth factor receptor kinase substrate 8 proteins (EPS8) and epidermal growth factor receptor kinase substrate 8-like (EPSL8) 1, 2, 3 proteins with the SAM domain located in the C-terminal effector region. This region is responsible for intracellular protein localization and is involved in small GTPases (such as Rac and Rab5) activation/inhibition. Proteins belonging to this group participate in coordination and integration of multiple signaling pathways; in particular, they play a role in the control of actin dynamics and in receptor endocytosis. They can form complexes with other proteins; for example, in the actin signaling network they interact with SOS1 and E3b1 (Abl1) proteins as well as with CRIB (via SH3 domains) during the actin filament formation, and in the receptor endocytosis their partner is RN-tre protein. 66 -188940 cd09541 SAM_KIF24-like SAM domain of KIF24-like subfamily. SAM (sterile alpha motif) domain of KIF24 subfamily is a putative protein-protein interaction domain. This subfamily includes proteins related to human kinesin-like protein KIF24. SAM domain is located at the N-terminus followed by kinesin motor domain. Kinesins are proteins involved in a number of different cell processes including microtubule dynamics and axonal transport. Kinesins of this group belong to N-type; they drive microtubule plus end-directed transport. SAM apparently plays the role of adaptor or scaffold domain. In many cases SAM is known as a mediator of dimerization/oligomerization. 60 -188941 cd09542 SAM_EPH-A1 SAM domain of EPH-A1 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A1 subfamily of the receptor tyrosine kinases is a C-terminal protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A1 receptors and appears to mediate cell-cell initiated signal transduction. Activation of these receptors leads to inhibition of cell spreading and migration in a RhoA-ROCK-dependent manner. EPH-A1 receptors are known to bind ILK (integrin-linked kinase) which is the mediator of interactions between integrin and the actin cytoskeleton. However SAM is not sufficient for this interaction; it rather plays an ancillary role. SAM domains of Eph-A1 receptors do not form homo/hetero dimers/oligomers. EphA1 gene was found expressed widely in differentiated epithelial cells. In a number of different malignant tumors EphA1 genes are downregulated. In breast carcinoma the downregulation is associated with invasive behavior of the cell. 63 -188942 cd09543 SAM_EPH-A2 SAM domain of EPH-A2 family of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A2 subfamily of receptor tyrosine kinases is a C-terminal protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A2 receptors and appears to mediate cell-cell initiated signal transduction. For example, SAM domain of EPH-A2 receptors interacts with SAM domain of Ship2 proteins (SH2 containing phosphoinositide 5-phosphotase-2) forming heterodimers; such recruitment of Ship2 by EPH-A2 attenuates the positive signal for receptor endocytosis. Eph-A2 is found overexpressed in many types of human cancer, including breast, prostate, lung and colon cancer. High level of expression could induce cancer progression by a variety of mechanisms and could be used as a novel tag for cancer immunotherapy. EPH-A2 receptors are attractive targets for drag design. 70 -188943 cd09544 SAM_EPH-A3 SAM domain of EPH-A3 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A3 subfamily of receptor tyrosine kinases is a C-terminal putative protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A3 receptors and appears to mediate cell-cell initiated signal transduction. EPH-A3 receptors bind SH2/SH3 containing adaptor protein Nck1 and this adaptor is a key factor in EPH-A3 mediated signaling. However SAM domain is not implemented in this interaction. Activation of EPH-A3 receptors inhibits outgrowth and cell migration. Mutations in SAM domain may play a role in development of hepatocellular carcinoma. Expression of EPH-A3 is associated with lymphocytic leukemia and defines the subset of rhabdomyosarcoma tumors. EPH-A3 receptors are attractive targets for drug design. 63 -188944 cd09545 SAM_EPH-A4 SAM domain of EPH-A4 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A4 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A4 receptors and appears to mediate cell-cell initiated signal transduction. SAM domains of EPH-A4 receptors can form homodimers. EPH-A4 receptors bind ligands such as erphirin A1, A4, A5. They are known to interact with a number of different proteins, including meltrin beta metalloprotease, Cdk5, and EFS2alpha, however SAM domain doesn't participate in these interactions. EPH-A4 receptors are involved in regulation of corticospinal tract formation, in pathway controlling voluntary movements, in formation of motor neurons, and in axon guidance (SAM domain is not required for axon guidance or for EPH-A4 kinase signaling). In Xenopus embryos EPH-A4 induces loss of cell adhesion, ventro-lateral protrusions, and severely expanded posterior structures. Mutations in SAM domain conserved tyrosine (Y928F) enhance the ability of EPH-A4 to induce these phenotypes, thus supporting the idea that the SAM domain may negatively regulate some aspects of EPH-A4 activity. EphA4 gene was found overexpressed in a number of different cancers including human gastric cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. It is likely to be a promising molecular target for the cancer therapy. 71 -188945 cd09546 SAM_EPH-A5 SAM domain of EPH-A5 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A5 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A5 receptors and appears to mediate cell-cell initiated signal transduction. Eph-A5 gene is almost exclusively expressed in the nervous system. Murine EPH-A5 receptors participate in axon guidance during embryogenesis and play a role in the adult synaptic plasticity, particularly in neuron-target interactions in multiple neural circuits. Additionally EPH-A5 receptors and its ligand ephrin A5 regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. EphA5 gene expression was found decreased in a few different breast cancer cell lines, thus it might be a potential molecular marker for breast cancer carcinogenesis and progression. 66 -188946 cd09547 SAM_EPH-A6 SAM domain of EPH-A6 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A6 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A6 receptors and appears to mediate cell-cell initiated signal transduction. Eph-A6 gene is preferentially expressed in the nervous system. EPH-A6 receptors are involved in primate retina vascular and axon guidance, and in neural circuits responsible for learning and memory. EphA6 gene was significantly down regulated in colorectal cancer and in malignant melanomas. It is a potential molecular marker for these cancers. 64 -188947 cd09548 SAM_EPH-A7 SAM domain of EPH-A7 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A7 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A7 receptors and appears to mediate cell-cell initiated signal transduction. EphA7 was found expressed in human embryonic stem (ES) cells, neural tissues, kidney vasculature. EphA7 knockout mice show decrease in cortical progenitor cell death at mid-neurogenesis and significant increase in cortical size. EphA7 may be involved in the pathogenesis and development of different cancers; in particular, EphA7 was found upregulated in glioblastoma and downregulated in colorectal cancer and gastric cancer. Thus, it is a potential molecular marker and/or therapy target for these types of cancers. 70 -188948 cd09549 SAM_EPH-A10 SAM domain of EPH-A10 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A10 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A10 receptors and appears to mediate cell-cell initiated signal transduction. It was found preferentially expressed in the testis. EphA10 may be involved in the pathogenesis and development of prostate carcinoma and lymphocytic leukemia. It is a potential molecular marker and/or therapy target for these types of cancers. 70 -188949 cd09550 SAM_EPH-A8 SAM domain of EPH-A8 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-A8 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A8 receptors and appears to mediate cell-cell initiated signal transduction. EPH-A8 receptors are involved in ligand dependent (ephirin A2, A3, A5) regulation of cell adhesion and migration, and in ligand independent regulation of neurite outgrowth in neuronal cells. They perform signaling in kinase dependent and kinase independent manner. EPH-A8 receptors are known to interact with a number of different proteins including PI 3-kinase and AIDA1-like subfamily SAM repeat domain containing proteins. However other domains (not SAM) of EPH-A8 receptors are involved in these interactions. 65 -188950 cd09551 SAM_EPH-B1 SAM domain of EPH-B1 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-B1 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH- B1 receptors. In human vascular endothelial cells it appears to mediate cell-cell initiated signal transduction via the binding of the adaptor protein GRB10 (growth factor) through its SH2 domain to a conserved tyrosine that is phosphorylated. EPH-B1 receptors play a role in neurogenesis, in particular in regulation of proliferation and migration of neural progenitors in the hippocampus and in corneal neovascularization; they are involved in converting the crossed retinal projection to ipsilateral retinal projection. They may be potential targets in angiogenesis-related disorders. 68 -188951 cd09552 SAM_EPH-B2 SAM domain of EPH-B2 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-B2 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B2 receptors and appears to mediate cell-cell initiated signal transduction. SAM domains of this subfamily form homodimers/oligomers (in head-to-head/tail-to-tail orientation); apparently such clustering is necessary for signaling. EPH-B2 receptor is involved in regulation of synaptic function; it is needed for normal vestibular function, proper formation of anterior commissure, control of cell positioning, and ordered migration in the intestinal epithelium. EPH-B2 plays a tumor suppressor role in colorectal cancer. It was found to be downregulated in gastric cancer and thus may be a negative biomarker for it. 71 -188952 cd09553 SAM_EPH-B3 SAM domain of EPH-B3 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-B3 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B3 receptors and appears to mediate cell-cell initiated signal transduction. EPH-B3 receptor protein kinase performs kinase-dependent and kinase-independent functions. It is known to be involved in thymus morphogenesis, in regulation of cell adhesion and migration. Also EphB3 controls cell positioning and ordered migration in the intestinal epithelium and plays a role in the regulation of adult retinal ganglion cell axon plasticity after optic nerve injury. In some experimental models overexpression of EphB3 enhances cell/cell contacts and suppresses colon tumor growth. 69 -188953 cd09554 SAM_EPH-B4 SAM domain of EPH-B4 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-B4 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B4 receptors and appears to mediate cell-cell initiated signal transduction. EPH-B4 protein kinase performs kinase-dependent and kinase-independent functions. These receptors play a role in the regular vascular system development during embryogenesis. They were found overexpressed in a variety of cancers, including carcinoma of the head and neck, ovarian cancer, bladder cancer, and downregulated in bone myeloma. Thus, EphB4 is a potential biomarker and a target for drug design. 67 -188954 cd09555 SAM_EPH-B6 SAM domain of EPH-B6 subfamily of tyrosine kinase receptors. SAM (sterile alpha motif) domain of EPH-B6 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B6 receptors and appears to mediate cell-cell initiated signal transduction. Receptors of this type are highly expressed in embryo and adult nervous system, in thymus and also in T-cells. They are involved in regulation of cell adhesion and migration. (EPH-B6 receptor is unusual; it fails to show catalytic activity due to alteration in kinase domain). EPH-B6 may be considered as a biomarker in some types of tumors; EPH-B6 activates MAP kinase signaling in lung adenocarcinoma, suppresses metastasis formation in non-small cell lung cancer, and slows invasiveness in some breast cancer cell lines. 69 -188955 cd09556 SAM_VTS1_fungal SAM domain of VTS1 RNA-binding proteins. SAM (sterile alpha motif) domain of VTS1 subfamily proteins is RNA binding domain located in the C-terminal region. SAM interacts with stem-loop structures of mRNA. Proteins of this subfamily participate in regulation of transcript stability and degradation, and also may be involved in vacuolar protein transport regulation. VTS1 protein of S.cerevisiae induces mRNA degradation via the major deadenylation-dependent mRNA decay pathway; VTS1 recruits CCR4/POP2/NOT deadenylase complex to target mRNA. The recruitment is the initial step resulting in poly(A) tail removal transcripts. Potentially SAM domain may be responsible not only for RNA binding but also for deadenylase binding. 69 -188956 cd09557 SAM_Smaug SAM domain of Smaug subfamily. SAM (sterile alpha motif) domain of Smaug proteins is an RNA recognition domain. It binds a specific RNA motif known as Smaug recognition element (SRE). Among members of this group are invertebrate Smaug (Smg) proteins and vertebrate Smaug1 and Smaug2 proteins. They are involved in post-transcriptional control during early embryogenesis in animals. In Drosophila, Smaug protein is a translational repressor of mRNA of Nanos (Nos) protein. Gradient of Nanos is required for proper abdominal segmentation. SAM domain interacts specifically with the Nanos mRNA regulatory regions. Moreover, Smaug protein is involved in regulation of specific maternal transcripts degradation in Drosophila early embryo via recruitment of the CCR4/POP2/NOT deadenylase. 63 -188957 cd09558 SAM_ZCCH14 SAM domain of ZCCH14 subfamily. SAM (sterile alpha motif) domain of ZCCH14 (Zinc finger CCHC domain 14) protein subfamily (also known as BDG-29 or KIAA0579) is a putative RNA binding domain. Members of this group are believed to be involved in post-translational regulation during early embryogenesis. 65 -188958 cd09559 SAM_SASH1_repeat1 SAM domain of SASH1 proteins, repeat 1. SAM (sterile alpha motif) repeat 1 of SASH1 proteins is a predicted protein-protein interaction domain. Members of this subfamily are putative adaptor proteins. They appear to mediate signal transduction. SASH1 can bind 14-3-3 proteins in response to IGF1/phosphatidylinositol 3-kinase signaling. SASH1 was found upregulated in different tissues including thymus, placenta, lungs and downregulated in some breast tumors, liver metastases and colon cancers, relative to corresponding normal tissues. SASH1 is a potential candidate for a tumor suppressor gene in breast cancers. At the same time, downregulation of SASH1 in colon cancer is associated with metastasis and a poor prognosis. 66 -188959 cd09560 SAM_SASH3 SAM domain of SASH3 subfamily. SAM (sterile alpha motif) domain of SAHS3 (also known as SLY) proteins is a predicted protein-protein interaction domain. Members of this subfamily are putative signaling/adaptor proteins. In addition to SAM, they contain SLY and SH3 domains. They appear to mediate signal transduction in lymphoid tissues. Murine SASH3 is involved in preventing DN thymocytes from premature initiation of programmed cell death and in mTOR (mammalian target of rapamycin) activation via signal integration of the Notch receptor and preTCR (T cell receptor) pathways. 68 -188960 cd09561 SAM_SAMSN1 SAM domain of SAMSN1 subfamily. SAM (sterile alpha motif) domain of SAMSN1 (also known as HACS1 or NASH1) proteins is a predicted protein-protein interaction domain. Members of this group are putative signaling/adaptor proteins. They appear to mediate signal transduction in lymphoid tissues. Murine HACS1 protein likely plays a role in B cell activation and differentiation. Potential binding partners of HACS1 are SLAM, DEC205 and PIR-B receptors and also some unidentified tyrosine-phosphorylated proteins. Proteins of this group were found preferentially expressed in normal hematopietic tissues and in some malignancies including lymphoma, myeloid leukemia and myeloma. 66 -188961 cd09562 SAM_liprin-alpha1,2,3,4_repeat1 SAM domain of liprin-alpha1,2,3,4 proteins repeat 1. SAM (sterile alpha motif) domain repeat 1 of liprin-alpha1,2,3,4 proteins is a protein-protein interaction domain. Liprin-alpha proteins contain three copies (repeats) of SAM domain. They may form heterodimers with liprin-beta proteins through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development and in axon guidance; in particular, liprin-alpha is involved in formation of the presynaptic active zone. 71 -188962 cd09563 SAM_liprin-beta1,2_repeat1 SAM domain of liprin-beta1,2 proteins repeat 1. SAM (sterile alpha motif) domain repeat 1 of liprin-beta1,2 proteins is a protein-protein interaction domain. Liprin-beta protein contain three copies (repeats) of SAM domain. They may form heterodimers with liprins-alpha through their SAM domains. It was suggested based on bioinformatic approaches that the second SAM domain of liprin-beta is potentially able to form polymers. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development, in axon guidance, and in the maintenance of lymphatic vessel integrity. 64 -188963 cd09564 SAM_kazrin_repeat1 SAM domain of kazrin proteins repeat 1. SAM (sterile alpha motif) domain repeat 1 of kazrin proteins is a protein-protein interaction domain. The long isoform of kazrin contains three copies (repeats) of SAM domain. Kazrin can interact with periplakin. It is involved into interplay between desmosomes and in adheren junctions. Additionally kazrins play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 70 -188964 cd09565 SAM_liprin-alpha1,2,3,4_repeat2 SAM domain of liprin-alpha1,2,3,4 proteins repeat 2. SAM (sterile alpha motif) domain repeat 2 of liprin-alpha1,2,3,4 proteins is a protein-protein interaction domain. Liprin-alpha proteins contain three copies (repeats) of SAM domain. They may form heterodimers with liprin-beta proteins through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development, and in axon guidance; in particular, liprin-alpha is involved in formation of the presynaptic active zone. 66 -188965 cd09566 SAM_liprin-beta1,2_repeat2 SAM domain of liprin-beta1,2 proteins repeat 2. SAM (sterile alpha motif) domain repeat 2 of liprin-beta1,2 proteins is a protein-protein interaction domain. Liprin-beta proteins contain three copies (repeats) of SAM domain. They may form heterodimers with liprin-alpha proteins through their SAM domains. It was suggested based on bioinformatic approaches that the second SAM domain of liprin-beta potentially is able to form polymers. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development, in axon guidance, and in the maintenance of lymphatic vessel integrity. 63 -188966 cd09567 SAM_kazrin_repeat2 SAM domain of kazrin proteins repeat 2. SAM (sterile alpha motif) domain repeat 2 of kazrin proteins is a protein-protein interaction domain. The long isoform of kazrins contains three copies (repeats) of SAM domain. Kazrin can interact with periplakin. It is involved in interplay between desmosomes and in adheren junctions. Additionally kazrins play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 65 -188967 cd09568 SAM_liprin-alpha1,2,3,4_repeat3 SAM domain of liprin-alpha1,2,3,4 proteins repeat 3. SAM (sterile alpha motif) domain repeat 3 of liprin-alpha1,2,3,4 proteins is a protein-protein interaction domain. Liprin-alpha proteins contain three copies (repeats) of SAM domain. They may form heterodimers with liprin-beta proteins through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development and in axon guidance; in particular, liprin-alpha is involved in formation of the presynaptic active zone. 72 -188968 cd09569 SAM_liprin-beta1,2_repeat3 SAM domain of liprin-beta proteins repeat 3. SAM (sterile alpha motif) domain repea t3 of liprin-beta1,2 proteins is a protein-protein interaction domain. Liprin-beta proteins contain three copies (repeats) of SAM domain. They may form heterodimers with liprin-alpha proteins through their SAM domains. Liprins were originally identified as LAR (leukocyte common antigen-related) transmembrane protein-tyrosine phosphatase-interacting proteins. They participate in mammary gland development, in axon guidance, and in the maintenance of lymphatic vessel integrity. 72 -188969 cd09570 SAM_kazrin_repeat3 SAM domain of kazrin proteins repeat 3. SAM (sterile alpha motif) domain repeat 3 of kazrin proteins is a protein-protein interaction domain. The long isoform of kazrins contains three copies (repeats) of SAM domain. Kazrin can interact with periplakin. It is involved in interplay between desmosomes and in adheren junctions. Additionally kazrins play a role in regulation of intercellular differentiation, junction assembly, and cytoskeletal organization. 72 -188970 cd09571 SAM_tumor-p73 SAM domain of tumor-p73 proteins. SAM (sterile alpha motif) domain of p73 proteins is a putative protein-protein interaction and lipid-binding domain. p73 is a homolog to the tumor suppressor p53. p73 has a C-terminal SAM domain in the longest spliced alpha form, while p53 doesn't have it. p73 knockout mouse shows significant developmental abnormalities but no increased cancer susceptibility, suggesting that p73 plays a role in regulation of normal development. It was shown that SAM domain of p73 is able to bind some membrane lipids. The structural rearrangements in SAM are necessary to accomplish the binding. No evidence for homooligomerization through SAM domains was found for the p73 subfamily. It was suggested that the partner proteins should be either more distantly related SAM-containing domain proteins or proteins without the SAM domain. 65 -188971 cd09572 SAM_tumor-p63 SAM domain of tumor-p63 proteins. SAM (sterile alpha motif) domain of p63 proteins is a putative protein-protein interaction domain. p63 is homolog to the tumor suppressor p53. p63 has a C-terminal SAM domain in the longest spliced alpha form, while p53 doesn't have it. p63 knockout mice show significant developmental abnormalities but no increased cancer susceptibility, suggesting that p63 plays a role in regulation of normal development. No evidence for homooligomerization through SAM domains was found for the p63 subfamily. It was suggested that the partner proteins should be either more distantly related SAM-containing domain proteins or proteins without the SAM domain. Mutations in the SAM domain of p63 are found in AEC syndrome patients. 65 -188972 cd09573 SAM_STIM1 SAM domain of STIM1 subfamily proteins. SAM (sterile alpha motif) domain of STIM1 (Stromal interaction molecule) subfamily proteins is a putative protein-protein interaction domain. STIM1 and STIM2 human proteins are type I transmembrane proteins. The N-terminal part of them includes "hidden" EF-hand and SAM domains. This region is responsible for sensing changes in store-operated and basal cytoplasmic Ca2+ levels and initiates oligomerization. "Hidden" EF hand and SAM domains have a stable intramolecular association, and the SAM domain is a component that regulates stability within STIM proteins. Destabilization of the EF-SAM association during Ca2+ depletion leads to partial unfolding and aggregation (homooligomerization), thus activating the store-operated Ca2+ entry. Immunoprecipitation analysis indicates that STIM1 and STIM2 can form co-precipitable oligomeric associations in vivo. It was suggested that STIM1 protein is an activator of store operated channels in plasma membrane. 74 -188973 cd09574 SAM_STIM2 SAM domain of STIM2 subfamily proteins. SAM (sterile alpha motif) domain of STIM2 (Stromal interaction molecule) subfamily proteins is a putative protein-protein interaction domain. STIM1 and STIM2 human proteins are type I transmembrane proteins. The N-terminal part of them includes "hidden" EF-hand and SAM domains. This region is responsible for sensing changes in store-operated and basal cytoplasmic Ca2+ levels and initiates oligomerization. "Hidden" EF hand and SAM domains have a stable intramolecular association, and the SAM domain is a component that regulates stability within STIM proteins. Destabilization of the EF-SAM association during Ca2+ depletion leads to partial unfolding and aggregation (homooligomerization), thus activating the store-operated Ca2+ entry. Immunoprecipitation analysis indicates that STIM1 and STIM2 can form co-precipitable oligomeric associations in vivo. It was suggested that STIM2 protein is an inhibitor of store operated channels in plasma membrane. 74 -188974 cd09575 SAM_DGK-delta SAM domain of diacylglycerol kinase delta. SAM (sterile alpha motif) domain of DGK-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK-delta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. In particular DGK-delta is involved in the regulation of clathrin-dependent endocytosis. The SAM domain of DGK-delta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-eta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it inhibits the translocation of the protein to the plasma membrane from the cytoplasm. The SAM domain also can bind Zn at multiple (not conserved) sites driving the formation of highly ordered large sheets of polymers, thus suggesting that Zn may play important role in the function of DCK-delta. 65 -188975 cd09576 SAM_DGK-eta SAM domain of diacylglycerol kinase eta. SAM (sterile alpha motif) domain of DGK-eta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases. The SAM domain is located at the C-terminus of two out of three isoforms of DGK-eta protein. DGK-eta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DCK-eta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-delta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it is responsible for sustained endosomal localization of the protein and resulted in negative regulation of DCK-eta catalytic activity. 65 -188976 cd09577 SAM_Ph1,2,3 SAM domain of Ph (polyhomeotic) proteins of Polycomb group. SAM (sterile alpha motif) domain of Ph (polyhomeotic) proteins of Polycomb group is a protein-protein interaction domain. Ph1,2,3 proteins are members of PRC1 complex. This complex is involved in transcriptional repression of Hox (Homeobox) cluster genes. It is recruited through methylated H3Lys27 and supports the repression state by mediating monoubiquitination of histone H2A. Proteins of the Ph1,2,3 subfamily contribute to anterior-posterior neural tissue specification during embryogenesis. Additionally, the P2 protein of zebrafish is known to be involved in epiboly and tailbud formation. SAM domains of Ph proteins may interact with each other, forming homooligomers, as well as with SAM domains of other proteins, in particular with the SAM domain of Scm (sex comb on midleg) proteins, forming heterooligomers. Homooligomers are similar to the ones formed by SAM Pointed domains of the TEL proteins. Such SAM/SAM oligomers apparently play a role in transcriptional repression through polymerization along the chromosome. 69 -188977 cd09578 SAM_Scm SAM domain of Scm proteins of Polycomb group. SAM (sterile alpha motif) domain of Scm (Sex comb on midleg) subfamily of Polycomb group is a protein-protein interaction domain. Proteins of this subfamily are transcriptional repressors associated with PRC1 complex. This group includes invertebrate Scm protein and chordate Scm homolog 1 and Scm-like 1, 2, 3 proteins. Most have a SAM domain, two MBT repeats, and a DUF3588 domain, except Scm-like 4 proteins which do not have MBT repeats. Originally the Scm protein was described in Drosophila as a regulator required for proper spatial expression of homeotic genes. It plays a major role during early embryogenesis. SAM domains of Scm proteins can interact with each other, forming homooligomers, as well as with SAM domains of other proteins, in particular with SAM domains of Ph (polyhomeotic) proteins, forming heterooligomers. Homooligomers are similar to the ones formed by SAM Pointed domains of the TEL proteins. Such SAM/SAM oligomers apparently play a role in transcriptional repression through polymerization along the chromosome. Mammalian Scmh1 protein is known be indispensible member of PRC1 complex; it plays a regulatory role for the complex during meiotic prophase of male sperm cells, and is particularly involved in regulation of chromatin modification at the XY chromatin domain of the pachytene spermatocytes. 72 -188978 cd09579 SAM_Samd7,11 SAM domain of Samd7,11 subfamily of Polycomb group. SAM (sterile alpha motif) domain is a protein-protein interaction domain. Phylogenetic analysis suggests that proteins of this subfamily are most closely related to SAM-Ph1,2,3 subfamily of Polycomb group. They are predicted transcriptional repressors in photoreceptor cells and pinealocytes of vertebrates. SAM domain containing protein 11 is also known as Mr-s (major retinal SAM) protein. In mouse, it is predominantly expressed in developing retinal photoreceptors and in adult pineal gland. The SAM domain is involved in homooligomerization of whole proteins (it was shown based on immunoprecipitation assay and mutagenesis), however its repression activity is not due to SAM/SAM interactions but to the C-terminal region. 68 -188979 cd09580 SAM_Scm-like-4MBT SAM domain of Scm-like-4MBT proteins of Polycomb group. SAM (sterile alpha motif) domain of Scm-like-4MBT (Sex comb on midleg like, Malignant Brain Tumor) subfamily proteins of the polycomb group is a putative protein-protein interaction domain. Additionally to the SAM domain, most of the proteins of this subfamily have 4 MBT repeats. In Drosophila SAM-Scm-like-4MBT protein (known as dSfmbt) is a member of Pho repressive complex (PhoRC). Additionally to dSfmbt, the PhoRC complex includes Pho or Pho-like proteins. This complex is responsible for HOX (Homeobox) gene silencing: Pho or Pho-like proteins bind DNA and dSmbt binds methylated histones. dSmbt can interact with mono- and di-methylated histones H3 and H4 (however this activity has been shown for the MBT repeats, while exact function of the SAM domain is unclear). Besides interaction with histones, dSmbt can interact with Scm (a member of PRC complex), but this interaction also seems to be SAM domain independent. 67 -188980 cd09581 SAM_Scm-like-4MBT1,2 SAM domain of Scm-like-4MBT1,2 proteins of Polycomb group. SAM (sterile alpha motif) domain of Scm-like-4MBT1,2 (Sex comb on midleg, Malignant Brain Tumor) subfamily proteins (also known as Sfmbt1,2 proteins) is a putative protein-protein interaction domain. Proteins of this subfamily are transcriptional regulators belonging to Polycomb group. The majority of them are multidomain proteins: in addition to the C-terminal SAM domain, they contain four MBT repeats and DUF5388 domain. The MBT repeats of the human sfmbt1 protein are responsible for association with the nuclear matrix and for selective binding of H3 histone N-terminal tails, while the exact function of the SAM domain is unclear. 85 -188981 cd09582 SAM_Scm-like-3MBT3,4 SAM domain of Scm-like-3MBT3,4 proteins of Polycomb group. SAM (sterile alpha motif) domain of Scm-like-3MBT3,4 (Sex comb on midleg, Malignant brain tumor) subfamily proteins (also known as L3mbtl3,4 proteins) is a putative protein-protein interaction domain. Proteins of this subfamily are predicted transcriptional regulators belonging to Polycomb group. The majority of them are multidomain proteins: in addition to the C-terminal SAM domain, they contain three MBT repeats and Zn finger domain. Murine L3mbtl3 protein of this subfamily is essential for maturation of myeloid progenitor cells during differentiation. Human L3mbtl4 is a potential tumor suppressor gene in breast cancer, while deregulation of L3MBTL3 is associated with neuroblastoma. 66 -188982 cd09583 SAM_Atherin-like SAM domain of Atherin/Atherin-like subfamily. SAM (sterile alpha motif) domain of SAM_Atherin and Atherin-like subfamily proteins is a putative protein-protein and/or protein-lipid interaction domain. In addition to the C-terminal SAM domain, the majority of proteins belonging to this group also have PHD (or Zn finger) domain. As potential members of the polycomb group, these proteins may be involved in regulation of some key regulatory genes during development. Atherin can be recruited by Ruk/CIN85 kinase-binding proteins via its SH3 domains thus participating in the signal transferring kinase cascades. Also, atherin was found associated with low density lipids (LDL) in atherosclerotic lesions in human. It was suggested that atherin plays an essential role in atherogenesis via immobilization of LDL in the arterial wall. SAM domains of atherins are predicted to form polymers. Inhibition of polymer formation could be a potential antiatherosclerotic therapy. 69 -188983 cd09584 SAM_sec23ip SAM domain of sec23ip. SAM (sterile alpha motif) domain of Sec23ip (Sec23 interacting protein) group is a potential protein-protein interaction domain. Sec23ip proteins (also known as p125) contain an N-terminal proline-rich region, a central region containing a SAM domain and a C-terminal region with a predicted metal-binding domain. Sec23ip interacts with Sec23p/Sec24p part of COPII-coated vesicles complex involved in protein transport from the ER to the Golgi apparatus. The proline-rich region plays an essential role in this interaction. Overexpression of Sec23ip leads to disorganization of ER/Golgi intermediate compartment. 69 -188984 cd09585 SAM_DDHD2 SAM domain of DDHD2. SAM (sterile alpha motif) domain of DDHD2 group is a potential protein-protein interaction domain. DDHD2 proteins contain at least two domains:a SAM domain and a predicted metal-binding domain. Phospholipase A1 activity was demonstrated for the mammalian DDHD2 protein. Mutation of the putative catalytic serine resulted in elimination of activity. Unlike SEC23IP, DDHD2 proteins do not have an N-terminal proline-rich region and correspondingly they are not able to interact with Sec23p/Sec24p complex. Overexpression of DDHD2 is the cause of dispersion of ER/Golgi intermediate compartment and dispersion of tethering proteins located in the Golgi region, leading to aggregation in the endoplasmic reticulum. 69 -188985 cd09586 SAM_USH1G SAM domain of USH1G. SAM (sterile alpha motif) domain of USH1G (Usher syndrome type-1G protein) proteins (also known as SANS) is a putative protein-protein interaction domain. Members of this group have an N-terminal ankyrin repeat region and C-terminal SAM domain. USH1G is expressed in the hair bundles of the inner ear sensory cells. It can form a functional network with USH1B (myosin VIIa), USH1C (harmonin b), USH1F (protocadherin-related 15), and USH1D (cadherin 23). The SAM domain of the USH1G protein is involved in synergetic interactions with the PDZ domain of harmonin. Such interactions contribute to the stability of harmonin. The network is required for the correct cohesion of the hair bundle. Mutations in the ush1g gene lead to Usher syndrome type 1G. This syndrome is the cause of deaf-blindness in humans. 66 -188986 cd09587 SAM_HARP SAM domain of HARP subfamily. SAM (sterile alpha motif) domain of HARP (Harmonin-interacting Ankyrin Repeat-containing) proteins, also known as ANKS4B, is a protein-protein interaction domain. Proteins of this subfamily have an N-terminal ankyrin repeat region and C-terminal SAM. In mouse epithelial tissues, HARP protein interacts with the PDZ domain of harmonin. This scaffolding complex facilitates signal transduction in epithelia. HARP was found co-expressed with harmonin in a number of epithelial cells including pancreatic ductal epithelium, embryonic epithelia of the lung, kidney, salivary glands, and cochlea. 67 -188987 cd09588 SAM_LBP1 SAM domain of LBP1 (UBP1) transcription factors. SAM (sterile alpha motif) domain of LBP1 (also known as UBP1) transcription factor is a putative protein-protein interaction domain. Proteins of this group have an N-terminal DNA-binding CP2 domain, a central predicted SAM domain and some also have a C-terminal dimerization domain. They are involved in transcriptional regulation from early development to terminal differentiation. In particular, they regulate alpha-globin in erythroid cells and P450scc (the cholesterol side-chain cleavage enzyme, cytochrome) in human placenta. Human LBP1 is known to be induced by HIV type I infection in lymphocytes; it represses HIV transcription by preventing the binding of TFIID to the virus promoter. Additionally, it has been suggested that UBP1 (LPB1) regulator might be a member of a blood pressure controlling network. LBP1 protein isoforms are able to form dimers, apparently via SAM domain since SAM deletion or mutation resulted in a loss of this ability. 67 -188988 cd09589 SAM_TFCP2 SAM domain of TFCP2 transcription factors. SAM (sterile alpha motif) domain of TFCP2 transcription factors is a putative protein-protein interaction domain. Proteins of this group have an N-terminal DNA-binding CP2 domain, a central predicted SAM domain and a C-terminal dimerization domain. They are involved in transcriptional regulation from early development to terminal differentiation. In particular, they regulate expression of erythroid cell-specific alpha-globin, fibrinogen, and sex-determining gene SRY as well as lens alpha-crystallin. TFCP2 regulators can interact with NF-E4 proteins forming heteromeric stage selector protein complex (SSP). This complex is able to bind stage selector element (SSE) and regulate embryonic globin expression in fetal-erythroid cells. 67 -188989 cd09590 SAM_LBP9 SAM domain of LBP9 transcriptional factors. SAM (sterile alpha motif) domain of LBP9 (also known as TFCP2L1 or CRTR-1 (CP2-Related Transcriptional Repressor-1)) transcription factor is a putative protein-protein interaction domain. Proteins of this group have an N-terminal DNA-binding CP2 domain, a central predicted SAM domain and a C-terminal dimerization domain. They are involved in transcriptional regulation from early development to terminal differentiation. In particular, they are required for proper maturation of the dust (epithelial component of tubular organs) of kidney and salivary gland as well as for regulation of P450scc (the cholesterol side-chain cleavage enzyme, cytochrome) in human placenta. 67 -188990 cd09591 SAM_DLC1 SAM domain of DLC1 subfamily. SAM (sterile alpha motif) domain of DLC1 (Deleted in liver cancer) protein is a protein-protein interaction domain located at the N-terminus. Proteins of this subfamily do not form dimers/oligomers through their SAM domains. They participate in regulation of cell migration. SAM domain of human DLC1 protein contains the EF1A1 (eukaryotic elongation factor) binding motif, thus SAM facilitates recruitment of EF1A1 to the membrane periphery and suppresses cell migration. 60 -188991 cd09592 SAM_DLC2 SAM domain of STARD13-like subfamily. SAM (sterile alpha motif) domain of DLC2 (Deleted in liver cancer) protein is a lipid-binding and putative protein-protein interaction domain located at the N-terminus of the protein. Members of this subfamily do not form dimers/oligomers through their SAM domains. They participate in lipid transfer. Human Dlc2 gene is known as a tumor suppressor gene. It was found underexpressed in hepatocellular carcinoma. 64 -198424 cd09593 UDG_like Uracil-DNA glycosylases (UDG) and related enzymes. Uracil-DNA glycosylases (UDG) catalyzes the removal of uracil from DNA, which initiates the DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or via deamination of cytosine. Uracil in DNA mispaired with guanine is one of the major pro-mutagenic events, causing G:C->A:T mutations. Thus, UDG is an essential enzyme for maintaining the integrity of genetic information. At least five UDG families have been characterized so far; these families share similar overall folds and common active site motifs. They demonstrate different substrate specificities, but often the function of one enzyme can be complemented by the other. Family 1 enzymes are active against uracil in both ssDNA and dsDNA, and recognize uracil explicitly in an extrahelical conformation via a combination of protein and bound-water interactions. Family 2 enzymes are mismatch specific and explicitly recognize the widowed guanine on the complementary strand, rather than the extrahelical scissile pyrimidine. This allows a broader specificity so that some Family 2 enzymes can excise uracil as well as 3, N(4)-ethenocytosine from mismatches with guanine. A Family 3 UDG from human was first characterized to remove Uracil from ssDNA, hence the name hSMUG (single-strand-selective monofunctional uracil-DNA glycosylase). However, subsequent research has shown that hSMUG1 and its rat ortholog can remove uracil and its oxidized pyrimidine derivatives from both, ssDNA and dsDNA. Enzymes in Families 4 and 5 are both thermostable. Family 4 enzymes specifically recognize uracil in a manner similar to human UDG (Family 1), rather than guanine in the complementary strand DNA, as does E. coli MUG (Family 2). These results suggest that the mechanism by which Family 4 UDGs remove uracils from DNA is similar to that of Family 1 enzyme. Although Family 5 enzymes are close relatives of Family 4, they show different substrate specificities. 125 -341057 cd09594 GluZincin Gluzincin Peptidase family (thermolysin-like proteinases, TLPs) which includes peptidases M1, M2, M3, M4, M13, M32 and M36 (fungalysins). The Gluzincin family (thermolysin-like peptidases or TLPs) includes several zinc-dependent metallopeptidases such as M1, M2, M3, M4, M13, M32, M36 peptidases (MEROPS classification), which contain the HEXXH motif as part of their active site. Peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. The M1 family includes aminopeptidase N (APN) and leukotriene A4 hydrolase (LTA4H). APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and is present in a variety of human tissues and cell types. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity such that the two activities occupy different, but overlapping sites. The M3_like peptidases include the M2_ACE, M3 or neurolysin-like family (subfamilies M3B_PepF and M3A) and M32_Taq peptidases. The M2 peptidase angiotensin converting enzyme (ACE, EC 3.4.15.1) catalyzes the conversion of decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II. ACE is a key component of the renin-angiotensin system that regulates blood pressure, thus ACE inhibitors are important for the treatment of hypertension. M3A includes thimet oligopeptidase (TOP; endopeptidase 3.4.24.15), neurolysin (3.4.24.16), and the mitochondrial intermediate peptidase; and M3B includes oligopeptidase F. The M32 family includes eukaryotic enzymes from protozoa Trypanosoma cruzi, a causative agent of Chagas' disease, and from Leishmania major, a parasite that causes leishmaniasis, making these enzymes attractive targets for drug development. The M4 family includes secreted protease thermolysin (EC 3.4.24.27), pseudolysin, aureolysin, and neutral protease as well as bacillolysin (EC 3.4.24.28) that degrade extracellular proteins and peptides for bacterial nutrition, especially prior to sporulation. Thermolysin is widely used as a nonspecific protease to obtain fragments for peptide sequencing as well as in production of the artificial sweetener aspartame. The M13 family includes neprilysin (EC 3.4.24.11) and endothelin-converting enzyme I (ECE-1, EC 3.4.24.71), which fulfill a broad range of physiological roles due to the greater variation in the S2' subsite allowing substrate specificity and are prime therapeutic targets for selective inhibition. The peptidase M36 fungalysin family includes endopeptidases from pathogenic fungi. Fungalysin hydrolyzes extracellular matrix proteins such as elastin and keratin. Aspergillus fumigatus causes the pulmonary disease aspergillosis by invading the lungs of immuno-compromised animals and secreting fungalysin that possibly breaks down proteinaceous structural barriers. 105 -341058 cd09595 M1 Peptidase M1 family includes the catalytic domains of aminopeptidase N and leukotriene A4 hydrolase. The model represents the catalytic domains of M1 peptidase family members including aminopeptidase N (APN) and leukotriene A4 hydrolase (LTA4H). All peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile upon activation during catalysis. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and is present in a variety of human tissues and cell types. APN expression is dysregulated in many inflammatory diseases and is enhanced in numerous tumor cells, making it a lead target in the development of anti-cancer and anti-inflammatory drugs. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity. The two activities occupy different, but overlapping sites. The activity and physiological relevance of the aminopeptidase in LTA4H is as yet unknown, while the epoxide hydrolase converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), a potent chemotaxin that is fundamental to the inflammatory response of mammals. 413 -341059 cd09596 M36 Peptidase M36 family, also known as fungalysin family. The M36 peptidase family, also known as fungalysin (elastinolytic metalloproteinase) family, includes endopeptidases from pathogenic fungi. Fungalysin can hydrolyze extracellular matrix proteins such as elastin and keratin, with a preference for cleavage on the amino side of hydrophobic residues with bulky side-chains. This family is similar to the M4 (thermolysin) family due to the presence of the HEXXH motif in the active site residues, as well as its fold prediction. Some of these enzymes also contain a protease-associated (PA) domain insert. The eukaryotic M36 and bacterial M4 families of metalloproteases also share a conserved domain in their propeptides called FTP (fungalysin/thermolysin propeptide). Aspergillus fumigatus causes the pulmonary disease aspergillosis by invading the lungs of immuno-compromised animals; it secretes fungalysin that possibly breaks down proteinaceous structural barriers. A solid lesion known as an aspergilloma can grow in a lung cavity, particularly following recovery from tuberculosis. Fungalysins are also found as multiple copies in the human and animal pathogenic fungi such as Microsporum canis, Trichophyton rubrum and T. mentagrophytes, which cause cutaneous infections. 317 -341060 cd09597 M4_TLP Peptidase M4 family including thermolysin, protealysin, aureolysin, and neutral protease. This peptidase M4 family includes several endopeptidases such as thermolysin (EC 3.4.24.27), aureolysin (the extracellular metalloproteinase from Staphylococcus aureus), neutral protease from Bacillus cereus, protealysin, and bacillolysin (EC 3.4.24.28). Typically, the M4 peptidases consist of a presequence (signal sequence), a propeptide sequence, and a peptidase unit. The presequence is cleaved off during export while the propeptide has inhibitory and chaperone functions and facilitates folding. The propeptide remains attached until the peptidase is secreted and can be safely activated. All peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. The active site is found between two sub-domains; the N-terminal domain contains the HEXXH zinc-binding motif while the helical C-terminal domain, which is unique for the family, carries the third zinc ligand. These peptidases are secreted eubacterial endopeptidases from Gram-positive or Gram-negative sources that degrade extracellular proteins and peptides for bacterial nutrition. They are selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI) as well as by phosphoramidon from Streptomyces tanashiensis. A large number of these enzymes are implicated as key factors in the pathogenesis of various diseases, including gastritis, peptic ulcer, gastric carcinoma, cholera and several types of bacterial infections, and are therefore important drug targets. Some enzymes of the family can function at extremes of temperatures, while some function in organic solvents, thus rendering them novel targets for biotechnological applications. Thermolysin is widely used as a nonspecific protease to obtain fragments for peptide sequencing. It has also been used in production of the artificial sweetener aspartame. 278 -341061 cd09598 M4_like Peptidase M4 family containing mostly uncharacterized proteins. This family of uncharacterized bacterial proteins are homologs of the M4 peptidase family that is also known as the thermolysin-like peptidase (TLP) family. Typically, the M4 peptidases consist of a presequence (signal sequence), a propeptide sequence and a peptidase unit. The presequence is cleaved off during export while the propeptide has inhibitory and chaperone functions and facilitates folding. The propeptide remains attached until the peptidase is secreted and can be safely activated. All peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. TLPs are secreted eubacterial endopeptidases from Gram-positive or Gram-negative sources that degrade extracellular proteins and peptides for bacterial nutrition. They contain the HEXXH motif as part of their active site and belong to the Gluzincins family and are selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI) as well as by phosphoramidon from Streptomyces tanashiensis. A large number of these enzymes are implicated as key factors in the pathogenesis of various diseases, including gastritis, peptic ulcer, gastric carcinoma, cholera and several types of bacterial infections, and are therefore important drug targets. Some enzymes of the family can function at extremes of temperatures, while some function in organic solvents, thus rendering them novel targets for biotechnological applications. 263 -341062 cd09599 M1_LTA4H Peptidase M1 family including Leukotriene A4 hydrolase catalytic domain. This model represents the N-terminal catalytic domain of leukotriene A4 hydrolase (LTA4H; E.C. 3.3.2.6) and the close homolog cold-active aminopeptidase (Colwellia psychrerythraea-type peptidase; ColAP), both members of the aminopeptidase M1 family. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity. The two activities occupy different, but overlapping sites. The activity and physiological relevance of the aminopeptidase is poorly understood while the epoxide hydrolase converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), a potent chemotaxin that is fundamental to the inflammatory response of mammals. It accepts a variety of substrates, including some opioid, di- and tripeptides, as well as chromogenic aminoacyl-p-nitroanilide derivatives. The aminopeptidase activity of LTA4H is possibly involved in the processing of peptides related to inflammation and host defense. Kinetic analysis shows that LTA4H hydrolyzes arginyl tripeptides with high efficiency and specificity, indicating its function as an arginyl aminopeptidase. Thermodynamic characterization using different biophysical methods shows that structurally distinct inhibitors of the LTA4H occupy different regions of the binding site; while some (RB202, ARM1 and SC57461A) bind to the hydrophobic hydrolase side, both bestatin and captopril are located at the hydrophilic peptidase side. LTB4H overexpression is associated with different pathological conditions and diseases such as cystic fibrosis, coronary heart disease, sepsis, shock, connective tissue disease, and chronic obstructive pulmonary disease. It is also overexpressed in certain human cancers, and has been identified as a functionally important target for mediating anticancer properties of resveratrol, a well-known red wine polyphenolic compound with cancer chemopreventive activity. 442 -341063 cd09600 M1_APN Peptidase M1 family, including aminopeptidase N catalytic domain. This model represents the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. It includes bacterial-type alanyl aminopeptidases as well as PfA-M1 aminopeptidase (Plasmodium falciparum-type). APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established. 434 -341064 cd09601 M1_APN-Q_like Peptidase M1 aminopeptidase N catalytic domain family which includes aminopeptidase N (APN), aminopeptidase Q (APQ), tricorn interacting factor F3, and endoplasmic reticulum aminopeptidase 1 (ERAP1). This M1 peptidase family includes eukaryotic and bacterial members: the catalytic domains of aminopeptidase N (APN), aminopeptidase Q (APQ, laeverin), endoplasmic reticulum aminopeptidase 1 (ERAP1) as well as tricorn interacting factor F3. Aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease, preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is considered a marker of differentiation since it is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. ERAP1, also known as endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP), adipocyte derived leucine aminopeptidase (A-LAP), or aminopeptidase regulating tumor necrosis factor receptor I (THFRI) shedding (ARTS-1), associates with the closely related ER aminopeptidase ERAP2, for the final trimming of peptides within the ER for presentation by MHC class I molecules. ERAP1 is associated with ankylosing spondylitis (AS), an inflammatory arthritis that predominantly affects the spine. ERAP1 also aids in the shedding of membrane-bound cytokine receptors. The tricorn interacting factor F3, together with factors F1 and F2, degrades the tricorn protease products, producing free amino acids, thus completing the proteasomal degradation pathway. F3 is homologous to F2, but not F1, and shows a strong preference for glutamate in the P1' position. APQ, also known as laeverin, is specifically expressed in human embryo-derived extravillous trophoblasts (EVTs) that invade the uterus during early placentation. It cleaves the N-terminal amino acid of various peptides such as angiotensin III, endokinin C, and kisspeptin-10, all expressed in the placenta in large quantities. APN is a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs are also putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established. 442 -341065 cd09602 M1_APN Peptidase M1 family including aminopeptidase N catalytic domain. This model represents the catalytic domain of bacterial and eukaryotic aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established. 440 -341066 cd09603 M1_APN_like Peptidase M1 family similar to aminopeptidase N catalytic domain. This family contains mostly bacterial and some archaeal M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established. 410 -341067 cd09604 M1_APN_like Peptidase M1 family similar to aminopeptidase N catalytic domain. This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established. 440 -341068 cd09605 M3A Peptidase M3A family includes thimet oligopeptidase, dipeptidyl carboxypeptidase and mitochondrial intermediate peptidase. The M3-like family also called neurolysin-like family, is part of the "zincins" metallopeptidases, and includes M3, M2 and M32 families of metallopeptidases. The M3 family is subdivided into two subfamilies: the widespread M3A, represented by this CD, which comprises a number of high-molecular mass endo- and exopeptidases from bacteria, archaea, protozoa, fungi, plants and animals, and the small M3B, whose members are enzymes primarily from bacteria. Well-known mammalian/eukaryotic M3A endopeptidases are the thimet oligopeptidase (TOP; endopeptidase 3.4.24.15), neurolysin (alias endopeptidase 3.4.24.16), and the mitochondrial intermediate peptidase. The first two are intracellular oligopeptidases, which act only on relatively short substrates of less than 20 amino acid residues, while the latter cleaves N-terminal octapeptides from proteins during their import into the mitochondria. The M3A subfamily also contains several bacterial endopeptidases, called oligopeptidases A, as well as a large number of bacterial carboxypeptidases, called dipeptidyl peptidases (Dcp; Dcp II; peptidyl dipeptidase; EC 3.4.15.5). The peptidases in the M3 family contain the HEXXH motif that forms part of the active site in conjunction with a C-terminally-located Glutamic acid (Glu) residue. A single zinc ion is ligated by the side-chains of the two Histidine (His) residues, and the more C-terminal Glu. Most of the peptidases are synthesized without signal peptides or propeptides, and function intracellularly. 587 -341069 cd09606 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3 oligopeptidase F (oligendopeptidase) is mostly bacterial and includes oligoendopeptidase F from Geobacillus stearothermophilus. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids and may cleave proteins at Leu-Gly. The PepF gene is duplicated in Lactococcus lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. 543 -341070 cd09607 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3B Oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. 580 -341071 cd09608 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. This PepF family includes Streptococcus agalactiae PepB, a group B streptococcal oligopeptidase which has been shown to degrade a variety of bioactive peptides as well as the synthetic collagen-like substrate N-(3-[2-furyl]acryloyl)-Leu-Gly- Pro-Ala in vitro. 560 -341072 cd09609 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. 586 -341073 cd09610 M3B_PepF Peptidase family M3B, oligopeptidase F (PepF). Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. 532 -187707 cd09611 Jacalin_ZG16_like Jacalin-like lectin domain of the zymogen granule protein 16 and related proteins. ZG16p is a conserved secreted vertebrate protein with tissue-specific expression profiles, which might play a role in glycoprotein secretion, perhaps as a linker protein that participates in the formation and/or transport of the zymogen granule. Its paralog ZG16b (PAUF) has been associated with roles in gene regulation and cancer. This domain family also contains mammalian proteins labelled as prostatic spermine-binding protein (SBP) and salivary-gland specific secreted proteins. 128 -187708 cd09612 Jacalin Jacalin-like plant lectin domain. Jacalin-like lectins are sugar-binding protein domains mostly found in plants. They adopt a beta-prism topology consistent with a circularly permuted three-fold repeat of a structural motif. Proteins containing this domain may bind mono- or oligosaccharides with high specificity. The domain can occur in tandem-repeat arrangements with up to six copies, and in architectures combined with a variety of other functional domains. The family was initially named after an abundant protein found in the jackfruit seed. Jacalin specifically binds to the alpha-O-glycoside of the disaccharide Gal-beta1-3-GalNAc, and has proven useful in the study of O-linked glycoproteins. Jacalin-like lectins in this family may occur in various oligomerization states. 130 -187709 cd09613 Jacalin_metallopeptidase_like Jacalin-like lectin domain of putative metalloproteases and similar proteins. Members of this family, which appears restricted to fungi, co-occur with protein domains that contain an HExxH motif characteristic of metallopeptidases. They have not been functionally characterized. 124 -187710 cd09614 griffithsin_like Jacalin-like lectin domain of griffithsin and related proteins. Griffithsin is a lectin isolated from a red alga, which has shown potential as an inhibitor of viral entry, exhibiting antiviral activity against HIV and SARS. The biological functions of griffithsin and griffithsin-like proteins with respect to their source organisms are not known. 128 -187711 cd09615 Jacalin_EEP Jacalin-like lectin domains of putative endonucleases/exonucleases/phosphatases and related proteins. Members of this taxonomically diverse family co-occur with metal-dependent endonucleases/exonucleases/phosphatases. They have not been functionally characterized. 134 -187737 cd09616 Peptidase_C12_UCH_L1_L3 Cysteine peptidase C12 containing ubiquitin carboxyl-terminal hydrolase (UCH) families L1 and L3. This ubiquitin C-terminal hydrolase (UCH) family includes UCH-L1 and UCH-L3, the two members sharing around 53% sequence identity as well as conserved catalytic residues. Both enzymes hydrolyze carboxyl terminal esters and amides of ubiquitin (Ub). UCH-L1, in dimeric form, has additional enzymatic activity as a ubiquitin ligase. It is highly abundant in the brain, constituting up to 2% of total protein, and is expressed exclusively in neurons and testes. Abnormal expression of UCH-L1 has been shown to correlate with several forms of cancer, including several primary lung tumors, lung tumor cell lines, and colorectal cancers. Mutations in the UCH-L1 gene have been linked to susceptibility to and protection from Parkinson's disease (PD); dysfunction of the hydrolase activity can lead to an accumulation of alpha-synuclein, which is linked to Parkinson's disease (PD), while accumulation of neurofibrillary tangles is linked to Alzheimer's disease (AD). UCH-L3 hydrolyzes isopeptide bonds at the C-terminal glycine of either Ub or Nedd8, a ubiquitin-like protein. It can also interact with Lys48-linked Ub dimers to protect them from degradation while inhibiting its hydrolase activity at the same time. Unlike UCH-L1, neither dimerization nor ligase activity have been observed for UCH-L3. It has been shown that levels of Nedd8 and the apoptotic protein p53 and Bax are elevated in UCH-L3 knockout mice upon cryptorchid injury, possibly contributing to profound germ cell loss via apoptosis. 222 -187738 cd09617 Peptidase_C12_UCH37_BAP1 Cysteine peptidase C12 containing ubiquitin carboxyl-terminal hydrolase (UCH) families UCH37 (UCH-L5) and BAP1. This ubiquitin C-terminal hydrolase (UCH) family includes UCH37 (also known as UCH-L5) and BRCA1-associated protein-1 (BAP1). They contain a UCH catalytic domain as well as an additional C-terminal extension which plays a role in protein-protein interactions. UCH37 is responsible for ubiquitin (Ub) isopeptidase activity in the 19S proteasome regulatory complex; it disassembles Lys48-linked poly-ubiquitin from the distal end of the chain. It is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated through transient association of hINO80 with hRpn13 that is bound to the 19S regulatory particle or the proteasome. UCH37 possibly plays a role in oncogenesis; it competes with Smad ubiquitination regulatory factor 2 (Smurf2, ubiquitin ligase) in binding concurrently to Smad7 in order to deubiquitinate the activated type I transforming growth factor beta (TGF-beta) receptor, thus rescuing it from proteasomal degradation. BAP1 binds to the wild-type BRCA1 RING finger domain, localized in the nucleus. In addition to the UCH catalytic domain, BAP1 contains a UCH37-like domain (ULD), binding domains for BRCA1 and BARD1, which form a tumor suppressor heterodimeric complex, and a binding domain for HCFC1, which interacts with histone-modifying complexes during cell division. The full-length human BRCA1 is a ubiquitin ligase. However, BAP1 does not appear to function in the deubiquitination of autoubiquitinated BRCA1. BAP1 exhibits tumor suppressor activity in cancer cells, and gene mutations have been reported in a small number of breast and lung cancer samples. In metastasis of uveal melanoma, the most common primary cancer of the eye, inactivating somatic mutations have been identified in the gene encoding BAP1 on chromosome 3p21.1. These mutations include several that cause premature protein termination as well as affect its UCH domain, thus implicating loss of BAP1 and suggesting that the BAP1 pathway may be a valuable therapeutic target. 219 -187676 cd09618 CBM9_like_2 DOMON-like type 9 carbohydrate binding module. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. CBM9 domains found in this uncharacterized subfamily are typically found at the N-terminus of longer proteins that lack additional annotation with domain footprints. 186 -187677 cd09619 CBM9_like_4 DOMON-like type 9 carbohydrate binding module. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. CBM9 domains found in this uncharacterized heterogeneous subfamily are often located at the C-terminus of longer proteins and may co-occur with various other domains. 187 -187678 cd09620 CBM9_like_3 DOMON-like type 9 carbohydrate binding module. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. CBM9 domains found in this uncharacterized heterogeneous subfamily may co-occur with various other domains. 200 -187679 cd09621 CBM9_like_5 DOMON-like type 9 carbohydrate binding module. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. CBM9 domains found in this uncharacterized heterogeneous subfamily are often located at the C-terminus of longer proteins and may co-occur with various other functional domains such as glycosyl hydrolases. The CBM9 module in these architectures may be involved in binding to carbohydrates. 188 -187680 cd09622 CBM9_like_HisKa DOMON-like type 9 carbohydrate binding module at the N-terminus of bacterial sensor histidine kinases. Family 9 carbohydrate-binding modules (CBM9) play a role in the microbial degradation of cellulose and hemicellulose (materials found in plants). The domain has previously been called cellulose-binding domain. The polysaccharide binding sites of CBMs with available 3D structure have been found to be either flat surfaces with interactions formed by predominantly aromatic residues (tryptophan and tyrosine), or extended shallow grooves. CBM9 domains found in this family are located at the N-terminus of bacterial sensor histidine kinases and may constitute or contribute to the ligand-binding moiety. 265 -187681 cd09623 DOMON_EBDH Heme-binding domain of bacterial ethylbenzene dehydrogenase. Ethylbenzene dehydrogenase (EBDH) is a bacterial molybdopterin enzyme. It catalyzes anaerobic hydroxylation of alkylaromatic compounds to secondary alcohols. The DOMON domain in EBDH and related proteins, typically called the gamma subunit, binds a heme; its function in the catalytic mechanism is unclear. It co-occurs with a molybdopterin-binding subunit and an iron-sulfur protein. This family also contains heme-binding domains of dimethylsulfide dehydrogenase, selenate reductases, and chlorate reductase. 224 -187682 cd09624 DOMON_b558_566 DOMON-like heme-binding domain of CbsA. This family, conserved in some lineages of the Crenarchaeota, represents a mono-heme cytochrome b558/566. CbsA is reported to be a subunit in a heterodimeric complex (CbsA-CbsB in Sulfolobus species), and appears to be glycosylated. 279 -187683 cd09625 DOMON_like_cytochrome DOMON-like domain of an uncharacterized protein family. This family of uncharacterized bacterial proteins contains a DOMON-like domain and an N-terminal B- or C-type cytochrome domain. DOMON-like domains can be found in all three kindgoms of life and are a diverse group of ligand binding domains that have been shown to interact with sugars and hemes. DOMON domains were initially thought to confer protein-protein interactions. They were subsequently found as a heme-binding motif in cellobiose dehydrogenase, an extracellular fungal oxidoreductase that degrades both lignin and cellulose, and in ethylbenzene dehydrogenase, an enzyme that aids in the anaerobic degradation of hydrocarbons. The domain interacts with sugars in the type 9 carbohydrate binding modules (CBM9), which are present in a variety of glycosyl hydrolases, and it can also be found at the N-terminus of sensor histidine kinases. 348 -187684 cd09626 DOMON_glucodextranase_like DOMON-like domain of various glycoside hydrolases. This DOMON-like domain is found at the C-terminus of various bacterial proteins that play roles in metabolizing carbohydrates, such as glucodextranase (hydrolyzes alpha-1,6-glucosidic linkages of dextran from the non-reducing end), glucan alpha-1,4-glucosidase, pullulanase (degrades pullulan, a polysaccharide built from maltotriose units), arabinogalactan endo-1,4-beta-galactosidase, and others. Consequently, the DOMON-like domains in this family co-occur with catalytic domains from various glycosyl hydrolase families. The precise function of the DOMON domains in these proteins is not clear, they may be involved in interactions with carbohydrates. 220 -187685 cd09627 DOMON_murB_like Domon-like domain of UDP-N-acetylenolpyruvoylglucosamine reductase. UDP-N-acetylenolpyruvoylglucosamine reductase (murB) catalyzes an essential step in peptidoglycan biosynthesis, the reduction of UDP-N-acetylglucosamine-enolpyruvate to UDP-N-acetylmuramate. A subset of these FAD-dependent enzymes contains a C-terminal DOMON-like domain. DOMON domains can be found in all three kindgoms of life and are a diverse group of ligand binding domains that have been shown to interact with sugars and hemes; initially DOMON domains were suspected to confer protein-protein interactions. The DOMON-like domain in murB may bind a heme. 179 -187686 cd09628 DOMON_SDR_2_like DOMON domain of stromal cell-derived receptor 2 (ferric chelate reductase 1) and related proteins. Stromal cell-derived receptor 2 (or ferric chelate reductase 1) reduces Fe(3+) to Fe(2+) ahead of iron transport from the endosome to the cytoplasm. This transmembrane protein is a member of the cytochrome b561 family and contains a DOMON domain which may bind to heme or another ligand. DOMON-like domains can be found in all three kindgoms of life and are a diverse group of ligand binding domains that have been shown to interact with sugars and hemes. DOMON domains were initially thought to confer protein-protein interactions. They were subsequently found as a heme-binding motif in cellobiose dehydrogenase, an extracellular fungal oxidoreductase that degrades both lignin and cellulose, and in ethylbenzene dehydrogenase, an enzyme that aids in the anaerobic degradation of hydrocarbons. The domain interacts with sugars in the type 9 carbohydrate binding modules (CBM9), which are present in a variety of glycosyl hydrolases, and it can also be found at the N-terminus of sensor histidine kinases. 169 -187687 cd09629 DOMON_CIL1_like DOMON-like domain of Brassica carinata CIL1 and similar proteins. Brassica carinata CIL1 has been described as involved in suppression of axillary meristem development. It contains a single DOMON domain, the function of which is unclear. Members in this diverse family of plant proteins may have a cytochrome b561 domain C-terminal to the DOMON domain, some members from Arabidopsis have been characterized as auxin-responsive or auxin-induced proteins. DOMON domains were initially thought to confer protein-protein interactions. They were subsequently found as a heme-binding motif in cellobiose dehydrogenase, an extracellular fungal oxidoreductase that degrades both lignin and cellulose, and in ethylbenzene dehydrogenase, an enzyme that aids in the anaerobic degradation of hydrocarbons. The domain interacts with sugars in the type 9 carbohydrate binding modules (CBM9), which are present in a variety of glycosyl hydrolases, and it can also be found at the N-terminus of sensor histidine kinases. 152 -187688 cd09630 CDH_like_cytochrome Heme-binding cytochrome domain of fungal cellobiose dehydrogenases. Cellobiose dehydrogenase (CellobioseDH or CDH) is an extracellular fungal oxidoreductase that degrades both lignin and cellulose. Specifically, CDHs oxidize cellobiose, cellodextrins, and lactose to corresponding lactones, utilizing a variety of electron acceptors. Class-II CDHs are monomeric hemoflavoenzymes that are comprised of a b-type cytochrome domain linked to a large flavodehydrogenase domain. The cytochrome domain of CDH and related enzymes, which this model describes, folds as a beta sandwich and complexes a heme molecule. It is found at the N-terminus of this family of enzymes, and belongs to the DOMON domain superfamily, a ligand-interacting motif found in all three kingdoms of life. 168 -187689 cd09631 DOMON_DOH DOMON-like domain of copper-dependent monooxygenases and related proteins. This diverse family characterizes DOMON domains found in dopamine beta-hydroxylase (DBH), monooxygenase X (MOX), and various other proteins, some of which contain DOMON domains exclusively; the family is not restricted to eukaryotes. DBH is a membrane-bound enzyme that converts dopamine to L-norepinephrine, and plays a central role in the metabolism of catecholamine neurotransmitters. DOMON domains were initially thought to confer protein-protein interactions. They were subsequently found as a heme-binding motif in cellobiose dehydrogenase, an extracellular fungal oxidoreductase that degrades both lignin and cellulose, and in ethylbenzene dehydrogenase, an enzyme that aids in the anaerobic degradation of hydrocarbons. The domain interacts with sugars in the type 9 carbohydrate binding modules (CBM9), which are present in a variety of glycosyl hydrolases, and it can also be found at the N-terminus of sensor histidine kinases. 138 -193606 cd09632 PliI_like Periplasmic lysozyme inhibitor, I-type (PliI) and similar proteins. Aeromonas hydrophila PliI is a dimeric periplasmic protein that enables bacteria to resist permeabilization of the outer membrane by the bactericidal action of lysozyme. PliI may be a direct inhibitor of lysozyme that inserts a conserved loop into the active site of type I (invertebrate) lysozymes. 109 -193607 cd09633 Deltex_C Domain found at the C-terminus of deltex-like. The deltex family of proteins is involved in the regulation of Notch signaling, and therefore may play roles in cell-to-cell communications that regulate mechanisms determining cell fate. They have a central RING-type zinc finger domain and contain a C-terminal domain, described here, that is also found in other domain architectures. Deltex-1 (DTX1) contains a RING finger and two WWE domains, indicating that it may be an E3 ubiquitin ligase. Human deltex 3-like, which contains an additional N-terminal domain (presumably with ubiquitin ligase activity) is also described as E3 ubiquitin-protein ligase DTX3L, B-lymphoma- and BAL-associated protein (BBAP), or rhysin-2. DTX3L mediates monoubiquitination of K91 of histone H4 in response to DNA damage. 131 -187766 cd09634 Cas1_I-II-III CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 317 -187767 cd09636 Cas1_I-II-III CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 260 -187768 cd09637 Cas4_I-A_I-B_I-C_I-D_II-B CRISPR/Cas system-associated protein Cas4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas4 is RecB-like nuclease with three-cysteine C-terminal cluster 178 -187769 cd09638 Cas2_I_II_III CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold 90 -187770 cd09639 Cas3_I CRISPR/Cas system-associated protein Cas3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; DEAD/DEAH box helicase DNA helicase cas3'; Often but not always is fused to HD nuclease domain; signature gene for Type I 353 -187771 cd09640 Cas7_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as CT1132 family 258 -193608 cd09641 Cas3''_I CRISPR/Cas system-associated protein Cas3''. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; HD-like nuclease, specifically digesting double-stranded oligonucleotides and preferably cleaving at G:C pairs; signature gene for Type I 200 -187773 cd09642 Cas8c_I-C CRISPR/Cas system-associated protein Cas8c. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-C subtype; also known as Csd1 family 574 -187774 cd09643 Csn1 CRISPR/Cas system-associated protein Cas9. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Very large protein containing McrA/HNH-nuclease related domain and a RuvC-like nuclease domain; signature gene for type II 799 -213407 cd09644 Csn2 CRISPR/Cas system-associated protein Csn2. Csn2 is a Nmeni subtype-specific Cas protein, which may function in the adaptation process which mediates the incorporation of foreign nucleic acids into the microbial host genome. Csn 2 may interact directly with double-stranded DNA. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Csn2 has been predicted to be a functional analog of Cas4 based on anti-correlated phyletic patterns; also known as SPy1049 family. 223 -187776 cd09645 Cas5_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 137 -187777 cd09646 Cas7_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as Cse4/CasC family 325 -187778 cd09647 Csm2_III-A CRISPR/Cas system-associated protein Csm2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small alpha-helical protein; signature gene for subtype III-A 95 -187779 cd09648 Cas2_I-E CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold 93 -187780 cd09649 Cas5_I-A CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 143 -187781 cd09650 Cas7_I CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as MJ0381 family 189 -187782 cd09651 Cas5_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex; in subtype I-C this protein might be the endoribonuclease that generates crRNAs; also known as DevS family 198 -187783 cd09652 Cas6-I-III CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex; RAMP superfamily protein; Possesses double RRM/ferredoxin fold 190 -187784 cd09653 Csa5_I-A CRISPR/Cas system-associated protein Csa5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Predicted transcriptional regulator of CRISPR/Cas system; contains DNA binding HTH domain; also known as Csa5 family 97 -187785 cd09654 Cmr5_III-B CRISPR/Cas system-associated protein Cmr5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small alpha-helical protein; signature gene for subtype III-B 127 -187786 cd09655 CasRa_I-A CRISPR/Cas system-associated transcriptional regulator CasRa. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Predicted transcriptional regulator of CRISPR/Cas system 198 -187787 cd09656 Cmr3_III-B CRISPR/Cas system-associated RAMP superfamily protein Cmr3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; This protein is a subunit of Cmr complex 318 -187788 cd09657 Cmr1_III-B CRISPR/Cas system-associated RAMP superfamily protein Cmr1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; This protein is a subunit of Cmr complex 132 -187789 cd09658 Cas5_I-B CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 181 -187790 cd09659 Cas4_I-A CRISPR/Cas system-associated protein Cas4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas4 is RecB-like nuclease with three-cysteine C-terminal cluster 270 -187791 cd09660 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as MJ1666 family 394 -187792 cd09661 Cmr6_III-B CRISPR/Cas system-associated RAMP superfamily protein Cmr6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; This protein is a subunit of Cmr complex 210 -187793 cd09662 Csm5_III-A CRISPR/Cas system-associated RAMP superfamily protein Csm5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein 365 -187794 cd09663 Csm4_III-A CRISPR/Cas system-associated RAMP superfamily protein Csm4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein 301 -187795 cd09664 Cas6_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas6e. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6e is an endoribonuclease that generates crRNA; This family is specific for CRISPR/Cas system I-E subtype; Homologous to Cas6 (RAMP superfamily protein); Possesses double RRM/ferredoxin fold; also known as Cse3 family 210 -187796 cd09665 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as CXXC_CXXC family 334 -187797 cd09666 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein, distant homologs of Cas8 proteins; signature gene for I-A subtype; also known as Csa4 family 352 -187798 cd09667 Csb2_I-U CRISPR/Cas system-associated protein Csb2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Duplicated RAMP domains; also known as GSU0054 family 418 -187799 cd09668 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as TM1812 family 214 -187800 cd09669 Cse1_I-E CRISPR/Cas system-associated protein Cse1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; subunit of the Cascade complex; signature gene for I-E subtype; also known as Cse1/CasA/YgcL family 477 -187801 cd09670 Cse2_I-E CRISPR/Cas system-associated protein Cse2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small alpha-helical protein; also known as Cse2/CasB/YgcK family; specific gene for I-E subtype; 152 -187802 cd09671 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as DxTHG family 346 -187803 cd09672 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as TM1802 family 545 -187804 cd09673 Cas3_Cas2_I-F CRISPR/Cas system-associated protein Cas3/Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas3/Cas2 fusion; This protein includes both DEAH and HD motifs for helicase and N-terminal domain corresponding to Cas2 RNAse; signature gene for Type I and subtype I-F 1106 -187805 cd09674 Cas6_I-F CRISPR/Cas system-associated RAMP superfamily protein Cas6f. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6f is an endoribonuclease that generates crRNA; This family is specific for CRISPR/Cas system I-F subtype; Possesses RRM fold; also known as Csy4 family 186 -187806 cd09675 Csy1_I-F CRISPR/Cas system-associated protein Csy1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins; Predicted subunit of the Cascade complex; signature gene for I-F subtype; also known as Csy1 family 384 -187807 cd09676 Csy2_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas5 ortholog 292 -187808 cd09677 Csy3_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas7 ortholog 339 -187809 cd09678 Csb1_I-U CRISPR/Cas system-associated protein Csb1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; Contains several motifs similar to Cas7 family; also known as GSU0053 family 174 -187810 cd09679 Cas10_III CRISPR/Cas system-associated protein Cas10. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Multidomain protein with permuted HD nuclease domain, palm domain and Zn-ribbon; MTH326-like has inactivated polymerase catalytic domain; alr1562 and slr7011 - predicted only on the basis of size, presence of HD domain, and location with RAMPs in one operon; signature gene for type III; also known as Crm2 family 475 -187811 cd09680 Cas10_III CRISPR/Cas system-associated protein Cas10. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Multidomain protein with permuted HD nuclease domain, palm domain and Zn-ribbon; signature gene for type III; also known as Csm1 family 650 -187812 cd09681 Csx3_III-U CRISPR/Cas system-associated protein Csx3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small protein in some cases fused to Csx1 (COG1517) family domains 83 -187813 cd09682 Cmr4_III-B CRISPR/Cas system-associated RAMP superfamily protein Cmr4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; This protein is a subunit of Cmr complex 242 -187814 cd09683 Csm3_III-A CRISPR/Cas system-associated RAMP superfamily protein Csm3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein 216 -187815 cd09684 Csm3_III-A CRISPR/Cas system-associated RAMP superfamily protein Csm3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein 215 -187816 cd09685 Cas7_I-A CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as DevR family 274 -187817 cd09686 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as NE0113 family 209 -187818 cd09687 Cas7_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as Cst2/DevR family 302 -187819 cd09688 Cas5_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex; in subtype I-C this protein might be the endoribonuclease that generates crRNAs; also known as DevS family 174 -187820 cd09689 Cas7_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as Csd2 family 278 -187821 cd09690 Cas7_I-B CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as Csh2 family 286 -187822 cd09691 Cas8b_I-B CRISPR/Cas system-associated protein Cas8b. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein, distant homologs of Cas8 proteins; signature gene for I-B subtype; also known as Csh1 family 381 -187823 cd09692 Cas5_I-B CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 189 -187824 cd09693 Cas5_I CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 202 -187825 cd09694 Csm6_III-A CRISPR/Cas system-associated protein Csm6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; loosely associated with CRISPR/Cas systems 181 -187826 cd09695 Csx16_III-U CRISPR/Cas system-associated protein Csx16. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small protein often seen in proximity to Csx1 (COG1517) family; also known as VVA1548 family 76 -187827 cd09696 Cas3_I CRISPR/Cas system-associated protein Cas3; Distinct Cas3 family with HD domain fused to C-termus of Helicase domain. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; DNA helicase Cas3; This protein includes both DEAH and HD motifs; signature gene for Type I 843 -187828 cd09697 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as Csx8 family 441 -187829 cd09698 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as Csx9 family 377 -187830 cd09699 Csm6_III-A CRISPR/Cas system-associated protein Csm6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; loosely associated with CRISPR/Cas systems 360 -187831 cd09700 Csx10 CRISPR/Cas system-associated RAMP superfamily protein Csx10. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Duplicated RAMP domains 386 -187832 cd09701 Cas10_III CRISPR/Cas system-associated protein Cas10. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Multidomain protein with permuted HD nuclease domain, inactivated palm domain and Zn-ribbon; signature gene for type III 909 -187833 cd09702 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as TIGR02710 family 378 -187834 cd09703 Cas6-I-III CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex; RAMP superfamily protein; Possesses double RRM/ferredoxin fold; also known as Cse3 family 188 -187835 cd09704 Csx12 CRISPR/Cas system-associated protein Cas9. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Very large protein containing McrA/HNH-nuclease related domain and a RuvC-like nuclease domain; signature gene for type II 804 -187836 cd09705 Csf1_U CRISPR/Cas system-associated protein Csf1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein; also known as Csf1 family 202 -187837 cd09706 Csf2_U CRISPR/Cas system-associated RAMP superfamily protein Csf2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; Contains several motifs similar to Cas7 family 328 -187838 cd09707 Csf3_U CRISPR/Cas system-associated RAMP superfamily protein Csf3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein 214 -187839 cd09708 Csf4_U CRISPR/Cas system-associated DinG family helicase Csf4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; DinG family DNA helicase 632 -187840 cd09709 Csc2_I-D CRISPR/Cas system-associated protein Csc2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas7 ortholog; also known as Cse1 family 274 -187841 cd09710 Cas3_I-D CRISPR/Cas system-associated protein Cas3; Distinct diverged subfamily of Cas3 helicase domain. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Diverged DNA helicase Cas3'; signature gene for Type I and subtype I-D 353 -187842 cd09711 Csc1_I-D CRISPR/Cas system-associated protein Csc1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas5 ortholog; also known as CasA/Cse1 family 210 -187843 cd09712 Cas10d_I-D CRISPR/Cas system-associated protein Cas10d. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain. Fused to N-terminal HD domain; signature gene for I-D subtype; also known as Csc3 family 900 -187844 cd09713 Cas8c_I-C CRISPR/Cas system-associated protein Cas8c. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-C subtype; also known as Csx13_N family 316 -187845 cd09714 Cas8c'_I-D CRISPR/Cas system-associated protein Cas8c'. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-C subtype; also known as Csx13_C family 152 -187846 cd09715 Csp2_I-U CRISPR/Cas system-associated protein Cas8c. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Predicted Cas8 ortholog 474 -187847 cd09716 Cas5_I CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 220 -187848 cd09717 Cas7_I CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas7 is a RAMP superfamily protein; Subunit of the Cascade complex; also known as Csp1 family 292 -187849 cd09718 Cas1_I-F CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 306 -187850 cd09719 Cas1_I-E CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 262 -187851 cd09720 Cas1_II CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer intergration. Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain. 275 -187852 cd09721 Cas1_I-C CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 338 -187853 cd09722 Cas1_I-B CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain 320 -187854 cd09723 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as csx13 family 132 -187855 cd09724 CsaX_III-U CRISPR/Cas system-associated protein CsaX. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; No prediction 296 -187856 cd09725 Cas2_I_II_III CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold 79 -187857 cd09726 RAMP_I_III CRISPR/Cas system-associated RAMP superfamily protein. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily proteins 177 -187858 cd09727 Cas6_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas6e. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6e is an endoribonuclease that generates crRNA; This family is specific for CRISPR/Cas system I-E subtype; Homologous to Cas6 (RAMP superfamily protein); Possesses double RRM/ferredoxin fold; also known as Cse3 family 210 -187859 cd09728 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as DxTHG family 400 -187860 cd09729 Cse1_I-E CRISPR/Cas system-associated protein Cse1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; subunit of the Cascade complex; signature gene for I-E subtype; also known as Cse1/CasA/YgcL family 465 -187861 cd09730 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as TM1802 family 579 -187862 cd09731 Cse2_I-E CRISPR/Cas system-associated protein Cse2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small alpha-helical protein; also known as Cse2/CasB/YgcK family; specific gene for I-E subtype; 141 -187863 cd09732 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as TM1812 family 221 -187864 cd09733 Cas6-I-III CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex; RAMP superfamily protein; Possesses double RRM/ferredoxin fold; also known as AF0072 family 193 -320705 cd09734 Csb2_I-U CRISPR/Cas system-associated protein Csb2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Duplicated RAMP domains; also known as GSU0054 family 496 -187866 cd09735 Csy1_I-F CRISPR/Cas system-associated protein Csy1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins; Predicted subunit of the Cascade complex; signature gene for I-F subtype; also known as Csy1 family 377 -187867 cd09736 Csy2_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas5 ortholog 289 -187868 cd09737 Csy3_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; predicted Cas7 ortholog 329 -187869 cd09738 Csb1_I-U CRISPR/Cas system-associated protein Csb1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; Contains several motifs similar to Cas7 family; also known as GSU0053 family 168 -187870 cd09739 Cas6_I-F CRISPR/Cas system-associated RAMP superfamily protein Cas6f. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6f is an endoribonuclease that generates crRNA; This family is specific for CRISPR/Cas system I-F subtype; Possesses RRM fold; also known as Csy4 family 185 -187871 cd09740 Csx3_III-U CRISPR/Cas system-associated protein Csx3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small protein in some cases fused to Csx1 (COG1517) family domains 84 -187872 cd09741 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as NE0113 family 219 -187873 cd09742 Csm6_III-A CRISPR/Cas system-associated protein Csm6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; loosely associated with CRISPR/Cas systems; also known as APE2256 family 183 -187874 cd09743 Csx16_III-U CRISPR/Cas system-associated protein Csx16. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small protein often seen in proximity to Csx1 (COG1517) family; also known as VVA1548 family 90 -187875 cd09744 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as Csx8 family 441 -187876 cd09745 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as Csx9 family 377 -187877 cd09746 Csm6_III-A CRISPR/Cas system-associated protein Csm6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; loosely associated with CRISPR/Cas systems 382 -187878 cd09747 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein of this family often fused to HTH domain; Some proteins could have an additional fusion with RecB-family nuclease domain; Core domain appears to have a Rossmann-like fold; loosely associated with CRISPR/Cas systems; also known as Cas02710 family 378 -187879 cd09748 Cmr3_III-B CRISPR/Cas system-associated RAMP superfamily protein Cmr3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; This protein is a subunit of Cmr complex 356 -187880 cd09749 Cmr5_III-B CRISPR/Cas system-associated protein Cmr5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small alpha-helical protein; signature gene for subtype III-B 119 -187881 cd09750 Csa5_I-A CRISPR/Cas system-associated protein Csa5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Predicted transcriptional regulator of CRISPR/Cas system; contains DNA binding HTH domain; also known as Csa5 family 101 -187882 cd09751 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein, distant homologs of Cas8 proteins; signature gene for I-A subtype; also known as Csa4 family 355 -187534 cd09752 Cas5_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex; in subtype I-C this protein might be the endoribonuclease that generates crRNAs; also known as DevS family 198 -187883 cd09753 Cas5_I-A CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 147 -187884 cd09754 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins, some contain Zn-finger domain; signature gene for I-A subtype; also known as CXXC_CXXC family 65 -187885 cd09755 Cas2_I-E CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold 62 -187886 cd09756 Cas5_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex 135 -187887 cd09757 Cas8c_I-C CRISPR/Cas system-associated protein Cas8c. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein, distant homologs of Cas8 proteins; signature gene for I-C subtype; also known as Csd1 family 569 -213408 cd09758 Csn2 CRISPR/Cas system-associated protein Csn2. Csn2 is a Nmeni subtype-specific Cas protein, which may function in the adaptation process which mediates the incorporation of foreign nucleic acids into the microbial host genome. Csn 2 may interact directly with double-stranded DNA. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA. Csn2 has been predicted to be a functional analog of Cas4 based on anti-correlated phyletic patterns; also known as SPy1049 family. 218 -187889 cd09759 Cas6_I-A CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex; RAMP superfamily protein; Possesses double RRM/ferredoxin fold 240 -187890 cd09760 Cas6_III CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex 289 -187662 cd09761 A3DFK9-like_SDR_c Clostridium thermocellum A3DFK9-like, a putative carbohydrate or polyalcohol metabolizing SDR, classical (c) SDRs. This subgroup includes a putative carbohydrate or polyalcohol metabolizing SDR (A3DFK9) from Clostridium thermocellum. Its members have a TGXXXGXG classical-SDR glycine-rich NAD-binding motif, and some have a canonical SDR active site tetrad (A3DFK9 lacks the upstream Asn). SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 242 -187663 cd09762 HSDL2_SDR_c human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs. This subgroup includes human HSDL2 and related protens. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. HSDL2 may play a part in fatty acid metabolism, as it is found in peroxisomes. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 243 -187664 cd09763 DHRS1-like_SDR_c human dehydrogenase/reductase (SDR family) member 1 (DHRS1) -like, classical (c) SDRs. This subgroup includes human DHRS1 and related proteins. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. DHRS1 mRNA has been detected in many tissues, liver, heart, skeletal muscle, kidney and pancreas; a longer transcript is predominantly expressed in the liver , a shorter one in the heart. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. 265 -187733 cd09764 Csb3_I-U CRISPR/Cas system-associated RAMP superfamily protein Csb3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; RAMP superfamily protein; Might be a catalytically active RNA endoribonuclease 341 -187734 cd09765 Csx14_I-U CRISPR/Cas system-associated protein Csx14. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Protein containing C-terminal alpha-helical domain resembling Cas8a2, also known as GSU0052 272 -187735 cd09766 Csx15_I-U CRISPR/Cas system-associated protein Csx15. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Small protein loosely associated with CRISPR/Cas systems; some are fused to AAA ATPase domain, also known as TTE2665 family 101 -187705 cd09767 Csx17_I-U CRISPR/Cas system-associated protein Csx17. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Large proteins; Predicted subunit of the Cascade complex; 652 -188874 cd09768 Luminal_EIF2AK3 The Luminal domain, a dimerization domain, of the Serine/Threonine protein kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 3. The Luminal domain is a dimerization domain present in eukaryotic translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3), also called PKR-like Endoplasmic Reticulum Kinase (PERK). EIF2AK3 is a serine/threonine protein kinase (STK) and a type I transmembrane protein that is localized in the endoplasmic reticulum (ER). As a EIF2AK, it phosphorylates the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis: General Control Non-derepressible-2 (GCN2), protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PERK. PERK contains a luminal domain bound with the chaperone BiP under unstressed conditions and a cytoplasmic catalytic kinase domain. In response to the accumulation of misfolded or unfolded proteins in the ER, PERK is activated through the release of BiP, allowing it to dimerize through its luminal domain and autophosphorylate. It functions as the central regulator of translational control during the Unfolded Protein Response (UPR) pathway. In addition to the eIF-2 alpha subunit, PERK also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. 301 -188875 cd09769 Luminal_IRE1 The Luminal domain, a dimerization domain, of the Serine/Threonine protein kinase, Inositol-requiring protein 1. The Luminal domain is a dimerization domain present in Inositol-requiring protein 1 (IRE1), a serine/threonine protein kinase (STK) and a type I transmembrane protein that is localized in the endoplasmic reticulum (ER). IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is a kinase receptor that also contains an endoribonuclease domain in the cytoplasmic side. It plays roles in the signaling of the unfolded protein response (UPR), which is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. IRE1 acts as an ER stress sensor and is the oldest and most conserved component of the UPR in eukaryotes. During ER stress, IRE1 dimerizes through its luminal domain and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and Xbp1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). IRE1alpha is expressed in all cells and tissues while IRE1beta is found only in intestinal epithelial cells. 295 -197361 cd09803 UBAN polyubiquitin binding domain of NEMO and related proteins. NEMO (NF-kappaB essential modulator) is a regulatory subunit of the kinase complex IKK, which is involved in the activation of NF-kappaB via phosporylation of inhibitory IkappaBs. This mechanism requires the binding of NEMO to ubiquinated substrates. Binding is achieved via the UBAN motif (ubiquitin binding in ABIN and NEMO), which is described in this model. This region of NEMO has also been named CoZi (for coiled-coil 2 and leucine zipper). ABINs (A20-binding inhibitors of NF-kappaB) are sensors for ubiquitin that are involved in regulation of apoptosis, ABIN-1 is presumed to inhibit signalling via the NF-kappaB route. The UBAN motif is also found in optineurin, the product of a gene associated with glaucoma, which has been characterized as a negative regulator of NF-kappaB as well. 87 -197362 cd09804 Dcp1 mRNA decapping enzyme 1 (Dcp1). mRNA decapping enzyme 1 (Dcp1), together with Dcp2, is part of the decapping complex which catalyzes the removal of the 5' cap structure of mRNA. This decapping reaction is an essential step in mRNA degradation, by exposing the 5' end for exonucleolytic digestion. Dcp1 binds to the N-terminal helical domain of catalytic subunit Dcp2 and enhances its function by promoting Dsp2's closed conformation which is catalytically more active. 121 -187665 cd09805 type2_17beta_HSD-like_SDR_c human 17beta-hydroxysteroid dehydrogenase type 2 (type 2 17beta-HSD)-like, classical (c) SDRs. 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. This classical-SDR subgroup includes the human proteins: type 2 17beta-HSD, type 6 17beta-HSD, type 2 11beta-HSD, dehydrogenase/reductase SDR family member 9, short-chain dehydrogenase/reductase family 9C member 7, 3-hydroxybutyrate dehydrogenase type 1, and retinol dehydrogenase 5. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 281 -187666 cd09806 type1_17beta-HSD-like_SDR_c human estrogenic 17beta-hydroxysteroid dehydrogenase type 1 (type 1 17beta-HSD)-like, classical (c) SDRs. 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. This classical SDR subgroup includes human type 1 17beta-HSD, human retinol dehydrogenase 8, zebrafish photoreceptor associated retinol dehydrogenase type 2, and a chicken ovary-specific 17beta-hydroxysteroid dehydrogenase. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 258 -212495 cd09807 retinol-DH_like_SDR_c retinol dehydrogenases (retinol-DHs), classical (c) SDRs. Classical SDR-like subgroup containing retinol-DHs and related proteins. Retinol is processed by a medium chain alcohol dehydrogenase followed by retinol-DHs. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. This subgroup includes the human proteins: retinol dehydrogenase -12, -13 ,and -14. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 274 -187668 cd09808 DHRS-12_like_SDR_c-like human dehydrogenase/reductase SDR family member (DHRS)-12/FLJ13639-like, classical (c)-like SDRs. Classical SDR-like subgroup containing human DHRS-12/FLJ13639, the 36K protein of zebrafish CNS myelin, and related proteins. DHRS-12/FLJ13639 is expressed in neurons and oligodendrocytes in the human cerebral cortex. Proteins in this subgroup share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 255 -187669 cd09809 human_WWOX_like_SDR_c-like human WWOX (WW domain-containing oxidoreductase)-like, classical (c)-like SDRs. Classical-like SDR domain of human WWOX and related proteins. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 284 -187670 cd09810 LPOR_like_SDR_c_like light-dependent protochlorophyllide reductase (LPOR)-like, classical (c)-like SDRs. Classical SDR-like subgroup containing LPOR and related proteins. Protochlorophyllide (Pchlide) reductases act in chlorophyll biosynthesis. There are distinct enzymes that catalyze Pchlide reduction in light or dark conditions. Light-dependent reduction is via an NADP-dependent SDR, LPOR. Proteins in this subfamily share the glycine-rich NAD-binding motif of the classical SDRs, have a partial match to the canonical active site tetrad, but lack the typical active site Ser. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 311 -187671 cd09811 3b-HSD_HSDB1_like_SDR_e human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs. This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 354 -187672 cd09812 3b-HSD_like_1_SDR_e 3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs. An uncharacterized subgroup of the 3b-HSD-like extended-SDR family. Proteins in this subgroup have the characteristic active site tetrad and NAD(P)-binding motif of extended-SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 339 -187673 cd09813 3b-HSD-NSDHL-like_SDR_e human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs. This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. 335 -212499 cd09815 TP_methylase S-AdoMet dependent tetrapyrrole methylases. This family uses S-AdoMet (S-adenosyl-L-methionine or SAM) in the methylation of diverse substrates. Most members catalyze various methylation steps in cobalamin (vitamin B12) biosynthesis. There are two distinct cobalamin biosynthetic pathways in bacteria. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not require oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. The enzymes involved in the aerobic pathway are prefixed Cob and those of the anaerobic pathway Cbi. Most of the enzymes are shared by both pathways and a few enzymes are pathway-specific. Diphthine synthase and Ribosomal RNA small subunit methyltransferase I (RsmI) are two superfamily members that are not involved in cobalamin biosynthesis. Diphthine synthase participates in the posttranslational modification of a specific histidine residue in elongation factor 2 (EF-2) of eukaryotes and archaea to diphthamide. RsmI catalyzes the 2-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA using S-adenosylmethionine (Ado-Met) as the methyl donor. 224 -188648 cd09816 prostaglandin_endoperoxide_synthase Animal prostaglandin endoperoxide synthase and related bacterial proteins. Animal prostaglandin endoperoxide synthases, including prostaglandin H2 synthase and a set of similar bacterial proteins which may function as cyclooxygenases. Prostaglandin H2 synthase catalyzes the synthesis of prostaglandin H2 from arachidonic acid. In two reaction steps, arachidonic acid is converted to Prostaglandin G2, a peroxide (cyclooxygenase activity) and subsequently converted to the end product via the enzyme's peroxidase activity. Prostaglandin H2 synthase is the target of aspirin and other non-steroid anti-inflammatory drugs such as ibuprofen, which block the substrate's access to the active site and may acetylate a conserved serine residue. In humans and other mammals, prostaglandin H2 synthase (PGHS), also called cyclooxygenase (COX) is present as at least two isozymes, PGHS-1 (or COX-1) and PGHS-2 (or COX-2), respectively. PGHS-1 is expressed constitutively in most mammalian cells, while the expression of PGHS-2 is induced via inflammation response in endothelial cells, activated macrophages, and others. COX-3 is a splice variant of COX-1. 490 -188649 cd09817 linoleate_diol_synthase_like Linoleate (8R)-dioxygenase and related enzymes. These fungal enzymes, related to animal heme peroxidases, catalyze the oxygenation of linoleate and similar targets. Linoleate (8R)-dioxygenase, also called linoleate:oxygen 7S,8S-oxidoreductase, generates (9Z,12Z)-(7S,8S)-dihydroxyoctadeca-9,12-dienoate as a product. Other members are 5,8-linoleate dioxygenase (LDS, ppoA) and linoleate 10R-dioxygenase (ppoC), involved in the biosynthesis of oxylipins. 550 -188650 cd09818 PIOX_like Animal heme oxidases similar to plant pathogen-inducible oxygenases. This is a diverse family of oxygenases related to the animal heme peroxidases, with members from plants, animals, and bacteria. The plant pathogen-inducible oxygenases (PIOX) oxygenate fatty acids into 2R-hydroperoxides. They may be involved in the hypersensitive reaction, rapid and localized cell death induced by infection with pathogens, and the rapidly induced expression of PIOX may be caused by the oxidative burst that occurs in the process of cell death. 484 -188651 cd09819 An_peroxidase_bacterial_1 Uncharacterized bacterial family of heme peroxidases. Animal heme peroxidases are diverse family of enzymes which are not restricted to metazoans; members are also found in fungi, and plants, and in bacteria - like this family of uncharacterized proteins. 465 -188652 cd09820 dual_peroxidase_like Dual oxidase and related animal heme peroxidases. Animal heme peroxidases of the dual-oxidase like subfamily play vital roles in the innate mucosal immunity of gut epithelia. They provide reactive oxygen species which help control infection. 558 -188653 cd09821 An_peroxidase_bacterial_2 Uncharacterized bacterial family of heme peroxidases. Animal heme peroxidases are diverse family of enzymes which are not restricted to metazoans; members are also found in fungi, and plants, and in bacteria - like this family of uncharacterized proteins. 570 -188654 cd09822 peroxinectin_like_bacterial Uncharacterized family of heme peroxidases, mostly bacterial. Animal heme peroxidases are diverse family of enzymes which are not restricted to animals. Members are also found in metazoans, fungi, and plants, and also in bacteria - like most members of this family of uncharacterized proteins. 420 -188655 cd09823 peroxinectin_like peroxinectin_like animal heme peroxidases. Peroxinectin is an arthropod protein that plays a role in invertebrate immunity mechanisms. Specifically, peroxinectins are secreted as cell-adhesive and opsonic peroxidases. The immunity mechanism appears to involve an interaction between peroxinectin and a transmembrane receptor of the integrin family. Human myeloperoxidase, which is included in this wider family, has also been reported to interact with integrins. 378 -188656 cd09824 myeloperoxidase_like Myeloperoxidases, eosinophil peroxidases, and lactoperoxidases. This well conserved family of animal heme peroxidases contains members with somewhat diverse functions. Myeloperoxidases are lysosomal proteins found in azurophilic granules of neutrophils and the lysosomes of monocytes. They are involved in the formation of microbicidal agents upon activation of activated neutrophils (neutrophils undergoing respiratory bursts as a result of phagocytosis), by catalyzing the conversion of hydrogen peroxide to hypochlorous acid. As a heme protein, myeloperoxidase is responsible for the greenish tint of pus, which is rich in neutrophils. Eosinophil peroxidases are haloperoxidases as well, preferring bromide over chloride. Expressed by eosinophil granulocytes, they are involved in attacking multicellular parasites and play roles in various inflammatory diseases such as asthma. The haloperoxidase lactoperoxidase is secreted from mucosal glands and provides antibacterial activity by oxidizing a variety of substrates such as bromide or chloride in the presence of hydrogen peroxide. 411 -188657 cd09825 thyroid_peroxidase Thyroid peroxidase (TPO). TPO is a member of the animal heme peroxidase family, which is expressed in the thyroid and involved in the processing of iodine and iodine compounds. Specifically, TPO oxidizes iodide via hydrogen peroxide to form active iodine, which is then, for example, incorporated into the tyrosine residues of thyroglobulin to yield mono- and di-iodotyrosines. 565 -188658 cd09826 peroxidasin_like Animal heme peroxidase domain of peroxidasin and related proteins. Peroxidasin is a secreted heme peroxidase which is involved in hydrogen peroxide metabolism and peroxidative reactions in the cardiovascular system. The domain co-occurs with extracellular matrix domains and may play a role in the formation of the extracellular matrix. 440 -193602 cd09827 PET_Prickle The PET domain of Prickle. The PET domain of Prickle: Prickle contains an N-terminal PET domain and three C-terminal LIM domains. Prickle has been implicated in regulation of cell movement in the planar cell polarity (PCP) pathway which requires the conserved Frizzled/Dishevelled (Dsh); Prickle interacts with Dishevelled, thereby modulating the activity of Frizzled/Dishevelled and the PCP signaling. Two forms of Prickle have been identified, namely Prickle 1 and Prickle 2. These are differentially expressed; Prickle 1 is found in fetal heart and hematological malignancies, while Prickle 2 is expressed in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. The PET domain is a protein-protein interaction domain, usually found in conjunction with the LIM domain, which is also involved in protein-protein interactions. The PET containing proteins serve as adaptors or scaffolds to support the assembly of multimeric protein complexes. 97 -193603 cd09828 PET_OEBT The PET domain of overexpressed breast tumor protein (OEBT). The PET domain of overexpressed breast tumor protein (OEBT): OEBT contains an N-terminal PET domain and two C-terminal LIM domains, and is predicted to be localized in the nucleus. The expression pattern of OEBT in malignant tissues indicates a possible role of OEBT in cancer differentiation. The PET domain is a protein-protein interaction domain and is usually found in conjunction with LIM domain, which is also involved in protein-protein interactions. PET containing proteins serve as adaptors or scaffolds to support the assembly of multimeric protein complexes. 116 -193604 cd09829 PET_testin The PET domain of Testin. The PET domain of Testin: Testin contains a PET domain at the N-terminus and three C-terminal LIM domains. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and is involved in cell motility and adhesion events. Knockout mice experiments reveal a tumor repressor function of Testin. The PET domain is a protein-protein interaction domain and is usually found in conjunction with LIM domain, which is also involved in protein-protein interactions. The PET containing proteins serve as adaptors or scaffolds to support the assembly of multimeric protein complexes. 88 -193605 cd09830 PET_LIMPETin_LIM-9 The PET domain of protein LIMPETin and LIM-9. The PET domain of protein LIMPETin and LIM-9: Members of this family contain an N-terminal PETdomain and five to six LIM domains at the C-terminus. Four of the six LIM domains are highly homologous to the four-and-half LIM (FHL) domain family while the other two show sequence similarity to LIM domains of the Testin family. Thus, proteins of this family may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Thus, proteins of this family may be the recombinant product of genes coding Testin and FHL proteins. SmLIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult males. Its differential expression indicates that it is a transcription regulator. In C. elegans, LIM-9 binds to UNC-97 and UNC-96, components of sarcomeric muscle M-lines. LIM-9 also forms a complex with SCPL-1 and UNC-89, whose function is to organize sarcomeric A-bands, especially the M-line of muscle. Thus, it might play a role in regulating the assembly and maintenance of muscle A-band. The PET domain is a protein-protein interaction domain and is usually found in conjunction with LIM domain, which is also involved in protein-protein interactions. The PET containing proteins serve as adaptors or scaffolds to support the assembly of multimeric protein complexes. 83 -341402 cd09831 CBS_pair_ABC_Gly_Pro_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found associated with the glycine betaine/L-proline ABC transporter. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in association with the ABC transporter OpuCA. OpuCA is the ATP binding component of a bacterial solute transporter that serves a protective role to cells growing in a hyperosmolar environment but the function of the CBS domains in OpuCA remains unknown. In the related ABC transporter, OpuA, the tandem CBS domains have been shown to function as sensors for ionic strength, whereby they control the transport activity through an electronic switching mechanism. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. They are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 116 -341403 cd09833 CBS_pair_GGDEF_PAS_repeat1 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors, repeat 1. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors. PAS domains have been found to bind ligands, and to act as sensors for light and oxygen in signal transduction. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 116 -341404 cd09834 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 118 -341405 cd09836 CBS_pair_arch Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 116 -341406 cd09837 CBS_pair_chlorobiales Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in chlorobiales. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 111 -341074 cd09839 M1_like_TAF2 TATA binding protein (TBP) associated factor 2. This family includes TATA binding protein (TBP) associated factor 2 (TAF2, TBP-associated factor TAFII150, transcription initiation factor TFIID subunit 2, RNA polymerase II TBP-associated factor subunit B), and has homology to the M1 gluzincin family. TAF2 is part of the TFIID multidomain subunit complex essential for transcription of most protein-encoded genes by RNA polymerase II. TAF2 is known to interact with the initiator element (Inr) found at the transcription start site of many genes, thus possibly playing a key role in promoter binding as well as start-site selection. Image analysis has shown TAF2 to form a complex with TAF1 and TBP, inferring its role in promoter recognition. Peptidases in the M1 family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. TAF2, however, lacks these active site residues. 531 -188871 cd09840 LIM2_CRP2 The second LIM domain of Cysteine Rich Protein 2 (CRP2). The second LIM domain of Cysteine Rich Protein 2 (CRP2): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 54 -188872 cd09841 LIM1_Prickle_3 The first LIM domain of Prickle 3. The first LIM domain of Prickle 3/LIM domain only 6 (LM06): Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. 59 -197300 cd09842 PLDc_vPLD1_1 Catalytic domain, repeat 1, of vertebrate phospholipase D1. Catalytic domain, repeat 1, of vertebrate phospholipase D1 (PLD1). PLDs play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Vertebrate PLD1 is a membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzyme that selectively hydrolyzes phosphatidylcholine (PC). Protein cofactors and calcium might be required for its activation. Most vertebrate PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at their N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. Like other members of the PLD superfamily, the monomer of vertebrate PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 151 -197301 cd09843 PLDc_vPLD2_1 Catalytic domain, repeat 1, of vertebrate phospholipase D2. Catalytic domain, repeat 1, of vertebrate phospholipase D2 (PLD2). PLDs play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. They also catalyze a transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Vertebrate PLD2 is a membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzyme that selectively hydrolyzes phosphatidylcholine (PC). Protein cofactors and calcium might be required for its activation. Most vertebrate PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at their N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. Like other members of the PLD superfamily, the monomer of vertebrate PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 145 -197302 cd09844 PLDc_vPLD1_2 Catalytic domain, repeat 2, of vertebrate phospholipase D1. Catalytic domain, repeat 2, of vertebrate phospholipase D1 (PLD1). PLDs play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids resulting in the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. PLDs also catalyze the transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Vertebrate PLD1 is a membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzyme that selectively hydrolyzes phosphatidylcholine (PC). Protein cofactors and calcium might be required for its activation. Most vertebrate PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at their N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. Like other members of the PLD superfamily, the monomer of vertebrate PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 182 -197303 cd09845 PLDc_vPLD2_2 Catalytic domain, repeat 2, of vertebrate phospholipase D2. Catalytic domain, repeat 2, of vertebrate phospholipase D2 (PLD2). PLDs play a pivotal role in transmembrane signaling and cellular regulation. They hydrolyze the terminal phosphodiester bond of phospholipids with the formation of phosphatidic acid and alcohols. Phosphatidic acid is an essential compound involved in signal transduction. They also catalyze a transphosphatidylation of phospholipids to acceptor alcohols, by which various phospholipids can be synthesized. Vertebrate PLD2 is a membrane associated phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent enzyme that selectively hydrolyzes phosphatidylcholine (PC). Protein cofactors and calcium might be required for its activation. Most vertebrate PLDs have adjacent Phox (PX) and the Pleckstrin homology (PH) domains at their N-terminus, which have been shown to mediate membrane targeting of the protein and are closely linked to polyphosphoinositide signaling. Like other members of the PLD superfamily, the monomer of vertebrate PLDs consists of two catalytic domains, each of which contains one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue). Two HKD motifs from two domains form a single active site. These PLDs utilize a common two-step ping-pong catalytic mechanism involving an enzyme-substrate intermediate to cleave phosphodiester bonds. The two histidine residues from the two HKD motifs play key roles in the catalysis. Upon substrate binding, a histidine residue from one HKD motif could function as the nucleophile, attacking the phosphodiester bond to create a covalent phosphohistidine intermediate, while the other histidine residue from the second HKD motif could serve as a general acid, stabilizing the leaving group. 182 -197363 cd09846 DUF1312 N-Utilization Substance G (NusG) N terminal (NGN) insert and Lin0431 are part of DUF1312. Domains of Unknown Function 1312 (DUF1312) are represented in at least 71 bacterial species with no functional annotation. Included in this family are N-Utilization Substance G (NusG) N terminal (NGN) insert and Lin0431, having similar structure and surface features that appear to be conserved across these domain families, suggesting similar function. NusG contains NGN at the N-terminus and Kyrpides Ouzounis and Woese (KOW) repeats at the C-terminus in bacteria and archaea, and this insert (often known as Domain II) is found in several bacteria. Lin0431 is similar to NGN-insert but does ot contain the disulphite bridge 81 -349946 cd09848 M28_TfR M28 Zn-peptidase Transferrin Receptor family. Peptidase M28 family; Transferrin Receptor (TfR) subfamily. TfRs are homodimeric type II transmembrane proteins containing three distinct domains: protease-like, apical or protease-associated (PA), and helical domains. The protease-like domain is a large extracellular portion (ectodomain). In TfR, it contains a binding site for the transferrin molecule and has 28% identity to membrane glutamate carboxypeptidase II (mGCP-II or PSMA). The PA domain is inserted between the first and second strands of the central beta sheet in the protease-like domain. TfR1 is widely expressed, and is a key player in the uptake of iron-loaded transferrin (Tf) into cells. The TfR1 homodimer binds two molecules of Tf and the complex is then internalized. TfR1 may also participate in cell growth and proliferation. TfR2 binds Tf but with a significantly lower affinity than TfR1. It is expressed chiefly in hepatocytes, hematopoietic cells, and duodenal crypt cells; its expression overlaps with that of hereditary hemochromatosis protein (HFE). TfR2 is involved in iron homeostasis; in humans, mutations in TfR2 are associated with a form of hemochromatosis (HFE3). While related in sequence to peptidase M28 glutamate carboxypeptidase II (also called prostate-specific membrane antigen or PSMA), TfR lacks the metal ion coordination centers and protease activity of that group. 285 -349947 cd09849 M20_Acy1L2-like M20 Peptidase aminoacylase 1-like protein 2, amidohydrolase family. Peptidase M20 family, aminoacylase 1-like protein 2 (ACY1L2; amidohydrolase)-like subfamily. This group contains many uncharacterized proteins predicted as amidohydrolases, including gene products of abgA and abgB that catalyze the cleavage of p-aminobenzoyl-glutamate, a folate catabolite in Escherichia coli , to p-aminobenzoate and glutamate. p-Aminobenzoyl-glutamate utilization is catalyzed by the abg region gene product, AbgT. Aminoacylase 1 (ACY1) proteins are a class of zinc binding homodimeric enzymes involved in hydrolysis of N-acetylated proteins. N-terminal acetylation of proteins is a widespread and highly conserved process that is involved in the protection and stability of proteins. Several types of aminoacylases can be distinguished on the basis of substrate specificity. ACY1 breaks down cytosolic aliphatic N-acyl-alpha-amino acids (except L-aspartate), especially N-acetyl-methionine and acetyl-glutamate into L-amino acids and an acyl group. However, ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. ACY1 may also play a role in xenobiotic bioactivation as well as the inter-organ processing of amino acid-conjugated xenobiotic derivatives (S-substituted-N-acetyl-L-cysteine). 389 -197367 cd09850 Ebola-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region of the transmembrane subunit of Filoviridae viruses, Ebola virus and Marburg virus, and related domains. This domain subfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus gp2, Marburg virus gp, and the envelope proteins of various ERVs, including human HERV-R_c7q21.2 (ERV-3). This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intrasubunit disulfide bond, and a C-terminal heptad repeat. N-terminal to HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1s helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some ERVs play specific roles in the host. However, it is unclear whether ERV-3 has a critical biological role: it is expressed in the placenta, but is not fusogenic, has an immunosuppressive domain, but lacks a fusion peptide. Filoviridae, the family of viruses including Ebola and Marburg, may have acquired this domain via horizontal transfer from retroviruses. 77 -197368 cd09851 HTLV-1-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of human T-cell leukemia virus type 1 (HTLV-1), and related domains. This domain subfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane(TM) subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including HTLV-1, HTLV -2, primate Mason-Pfizer monkey virus, Moloney murine leukemia virus, simian T-cell lymphotropic virus, feline leukemia virus (FeLV), bovine leukemia virus, and various human endogenous retroviruses (HERVs), including, HERV-H1_c2q24.3, HERV-H2_3q26, HERV-F(c)1_cXq21.33, HERV-T_19q13.11, Syncytin-1 (HERV-W_c7q21.2/ ERVWE1), Syncytin-2 (HERV-FRD_6p24.1), and related domains. This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intrasubunit disulfide bond, and a C-terminal heptad repeat. N-terminal to HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1s helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as FeLV. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Syncytin-1 and Syncytin-2 are expressed in the placenta, and are fusogenic, although they have a different cell specificity for fusion. Syncytin-2, but not Syncytin-1, is immunosuppressive; its immunosuppressive domain may protect the fetus from the mother's immune system. Syncytin-1 may participate in the formation of the placental trophoblast; it is also implicated in cell fusions between cancer and host cells and between cancer cell, and in human osteclast fusion. This subfamily also contains a mouse envelope protein encoded by the Fv-4 env gene, that blocks infection by exogenous MuLV. 78 -350203 cd09852 PIN_SF PIN (PilT N terminus) domain: Superfamily. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. The PIN domain superfamily includes: the FEN-like PIN domain family such as the PIN domains of Flap endonuclease-1 (FEN1), exonuclease-1 (EXO1), Mkt1, Gap Endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. It also includes the Mut7-C PIN domain family, which is not represented here as it is a shortened version of the PIN fold and lacks a core strand and helix (H3 and S3). The Mut7-C PIN domain family includes the C-terminus of Caenorhabditis elegans exonuclease Mut-7. 114 -350204 cd09853 PIN_FEN-like FEN-like PIN domains of structure-specific 5' nucleases (or Flap endonuclease-1-like) involved in DNA replication, repair, and recombination. Structure-specific 5' nucleases are capable of both 5'-3' exonucleolytic activity and cleaving bifurcated or branched DNA, in an endonucleolytic, structure-specific manner. The family includes the PIN (PilT N terminus) domains of Flap endonuclease-1 (FEN1), exonuclease-1 (EXO1), Mkt1, Gap Endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease. Also included are the PIN domains of the 5'-3' exonucleases of DNA polymerase I and single domain protein homologs, as well as, the bacteriophage T4- and T5-5' nucleases, and other homologs. Canonical members of this FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 174 -350205 cd09854 PIN_VapC-like VapC-like PIN domains of VapC and Smg6 ribonucleases, ribosome assembly factor NOB1, rRNA-processing protein Fcf1, Archaeoglobus fulgidus AF0591 protein, and homologs. PIN (PilT N terminus) domains of such ribonucleases as the toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1, are included in VapC-like this family. Also included are the PIN domains of the Pyrobaculum aerophilum Pea0151 and Archaeoglobus fulgidus AF0591 proteins and other similar archaeal homologs. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350206 cd09856 PIN_FEN1-like FEN-like PIN domains of Flap endonuclease-1 (FEN1)-like, structure-specific, divalent-metal-ion dependent, 5' nucleases. PIN (PilT N terminus) domain of Flap endonuclease-1 (FEN1)-like nucleases: FEN1, Gap endonuclease 1 (GEN1) and Xeroderma pigmentosum complementation group G (XPG) nuclease. Nucleases in this subfamily are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 235 -350207 cd09857 PIN_EXO1 FEN-like PIN domains of Exonuclease-1, a structure-specific, divalent-metal-ion dependent, 5' nuclease and homologs. exonuclease-1 (EXO1) is involved in multiple, eukaryotic DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity), DNA repair processes (DNA mismatch repair (MMR) and post-replication repair (PRR)), recombination, and telomere integrity. EXO1 functions in the MMS2 error-free branch of the PRR pathway in the maintenance and repair of stalled replication forks. Studies also suggest that EXO1 plays both structural and catalytic roles during MMR-mediated mutation avoidance. These nucleases are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. EXO1 nucleases also have C-terminal Mlh1- and Msh2-binding domains which allow interaction with MMR and PRR proteins, respectively. 202 -350208 cd09858 PIN_MKT1 FEN-like PIN domains of Mkt1, a global regulator of mRNAs encoding mitochondrial proteins and eukaryotic homologs. The Mkt1 gene product interacts with the Poly(A)-binding protein associated factor, Pbp1, and is present at the 3' end of RNA transcripts during translation. The Mkt1-Pbp1 complex is involved in the post-transcriptional regulation of HO endonuclease expression. Mkt1 and eukaryotic homologs are atypical members of the structure-specific, 5' nuclease family (FEN-like). Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. Although Mkt1 appears to possess both a PIN and H3TH domain, the Mkt1 PIN domain lacks several of the active site residues necessary to bind essential divalent metal ion cofactors (Mg2+/Mn2+) required for nuclease activity in this family. Also, Mkt1 lacks the glycine-rich loop in the H3TH domain which is proposed to facilitate duplex DNA binding. 206 -350209 cd09859 PIN_53EXO FEN-like PIN domains of PIN domain of the 5'-3' exonuclease of Thermus aquaticus DNA polymerase I (Taq) and homologs. The 5'-3' exonuclease (53EXO) PIN (PilT N terminus) domain of multi-domain DNA polymerase I and single domain protein homologs are included in this family. Taq contains a polymerase domain for synthesizing a new DNA strand and a 53EXO PIN domain for cleaving RNA primers or damaged DNA strands. Taq's 53EXO PIN domain recognizes and endonucleolytically cleaves a structure-specific DNA substrate that has a bifurcated downstream duplex and an upstream template-primer duplex that overlaps the downstream duplex by 1 bp. The 53EXO PIN domain cleaves the unpaired 5'-arm of the overlap flap DNA substrate. 5'-3' exonucleases are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 160 -350210 cd09860 PIN_T4-like FEN-like PIN domains of bacteriophage T3, T4 RNase H, T5-5'nuclease, and homologs. PIN (PilT N terminus) domain of bacteriophage T5-5'nuclease (5'-3' exonuclease or T5FEN), bacteriophage T4 RNase H (T4FEN), bacteriophage T3 (T3 phage exodeoxyribonuclease) and other similar 5' nucleases are included in this family. T5-5'nuclease is a 5'-3'exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'end). T4 RNase H, which removes the RNA primers that initiate lagging strand fragments, has 5'- 3'exonuclease activity on DNA/DNA and RNA/DNA duplexes and has endonuclease activity on flap or forked DNA structures. Bacteriophage T3 is believed to function in the removal of DNA-linked RNA primers and is essential for phage DNA replication and also necessary for host DNA degradation and phage genetic recombination. These nucleases are members of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. In the T5-5'nuclease, structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity, metal binding site 1, whereas exonuclease activity requires both, the high-affinity, metal binding site 1 and the low-affinity, metal binding site 2 to be occupied by a divalent cofactor. The T5-5'nuclease is reported to be able to bind several metal ions including, Mg2+, Mn2+, Zn2+ and Co2+, as co-factors. 158 -350211 cd09862 PIN_Rrp44-like VapC-like PIN domain of yeast exosome subunit Rrp44 endoribonuclease and other eukaryotic homologs. PIN (PilT N terminus) domain of the Saccharomyces cerevisiae exosome subunit Rrp44 (Ribosomal RNA-processing protein 44 or Protein Dis3 homolog) and other similar eukaryotic homologs are included in this family. The eukaryotic exosome is a conserved macromolecular complex responsible for many RNA-processing and RNA-degradation reactions. It is composed of nine core subunits that directly binds Rrp44. The Rrp44 nuclease is the catalytic subunit of the exosome and has endonuclease activity in the PIN domain and an exoribonuclease activity in its RNase II-like region. Rrp44 binding to the exosome is mediated mainly by the PIN domain and by subunits Rrp41-Rrp45, and binding predictions indicate that the PIN domain active site is positioned on the outer surface of the exosome. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. PIN domains within this subgroup contain four of these residues which cluster at the C-terminal end of the beta-sheet and form a negatively charged pocket near the center of the molecule. Recombinant Rrp44 was shown to possess manganese-dependent endonuclease activity in vitro that was abolished by point mutations in these putative metal binding residues of its PIN domain. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 178 -350212 cd09864 PIN_Fcf1-like VapC-like PIN domain of rRNA-processing protein, Fcf1 (Utp24, YDR339C), and other eukaryotic homologs. Fcf1/Utp24 (FAF1-copurifying factor 1/U three-associated protein 24) is an essential protein involved in pre-rRNA processing and 40S ribosomal subunit assembly. Component of the small subunit (SSU) processome, Fcf1 is an essential nucleolar protein that is required for processing of the 18S pre-rRNA at sites A0-A2. The Fcf1 protein was reported to interact with Pmc1p (vacuolar Ca2+ ATPase) and Cor1p (core subunit of the ubiquinol-cytochrome c reductase complex). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. Most members of the Fcf1 PIN domain subfamily have four of these conserved residues and the Fcf1-Utp23 homolog PIN domain subfamily has three. Point mutation studies of the conserved acidic residues in the putative active site of Saccharomyces cerevisiae Fcf1 determined they were essential for pre-rRNA processing at sites A1 and A2, whereas the presence of the Fcf1 protein itself is also required for cleavage at site A0. 131 -350213 cd09865 PIN_ScUtp23p-like VapC-like PIN domain of rRNA-processing protein, Utp23 (YOR004W), and other fungal homologs. Saccharomyces cerevisiae Utp23 (U three-associated protein 23), component of the small subunit (SSU) processome, is an essential protein involved in pre-rRNA processing and 40S ribosomal subunit assembly. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily, including S. cerevisiae Utp23, lack several of these key catalytic residues. Mutation of the remaining conserved putative active site residues seen in Utp23 did not interfere with rRNA maturation and cell viability. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 149 -350214 cd09866 PIN_Fcf1-Utp23-H VapC-like PIN domain of rRNA-processing protein Fcf1- and Utp23-like homologs found in eukaryotes except fungi; similar to human rRNA-processing protein UTP23. PIN domain homologs of Fcf1/Utp24 (FAF1-copurifying factor 1/U three-associated protein 24) and Utp23, essential proteins involved in pre-rRNA processing and 40S ribosomal subunit assembly, are included in this subfamily. It includes human UTP24 which hUTP24 plays a crucial role in human rRNA processing and is essential for accurate endonucleolytic cleavage at the 5'-end of 18S rRNA. Fcf1 is a component of the small subunit (SSU) processome and an essential nucleolar protein required for processing of the 18S pre-rRNA at sites A0-A2. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The Fcf1-Utp23 homolog PIN domain subfamily has three of these conserved acidic residues rather than the four seen in the Fcf1 PIN domain subfamily. 130 -350215 cd09867 PIN_FEN1 FEN-like PIN domains of Flap endonuclease-1, a structure-specific, divalent-metal-ion dependent, 5' nuclease and homologs. Flap endonuclease-1 (FEN1) is involved in multiple DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity) and DNA repair processes (long-patch base excision repair) in eukaryotes and archaea. Interaction between FEN1 and PCNA (Proliferating cell nuclear antigen) is an essential prerequisite to FEN1's DNA replication functionality and stimulates FEN1 nuclease activity by 10-50 fold. FEN1 belongs to the FEN1-EXO1-like subfamily of structure-specific, 5' nucleases (FEN-like family). Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. FEN1 has a C-terminal extension containing residues forming the consensus PIP-box - Qxx(M/L/I)xxF(Y/F) which serves to anchor FEN1 to PCNA. 251 -350216 cd09868 PIN_XPG_RAD2 FEN-like PIN domains of Xeroderma pigmentosum complementation group G (XPG) nuclease, a structure-specific, divalent-metal-ion dependent, 5' nuclease and homologs. The Xeroderma pigmentosum complementation group G (XPG) nuclease plays a central role in nucleotide excision repair (NER) in cleaving DNA bubble structures or loops. XPG is a member of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 209 -350217 cd09869 PIN_GEN1 FEN-like PIN domains of Gap Endonuclease 1, a structure-specific, divalent-metal-ion dependent, 5' nuclease and homologs. Gap Endonuclease 1 (GEN1) is a Holliday junction resolvase reported to symmetrically cleave Holliday junctions and allow religation without additional processing. GEN1 is a member of the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 227 -350218 cd09870 PIN_YEN1 FEN-like PIN domains of Saccharomyces cerevisiae endonuclease 1 (YEN1), Chaetomium thermophilum junction-resolving enzyme GEN1, and fungal homologs. Fungal Endonuclease 1 (YEN1 and GEN1, GEN1 is known as YEN1 in Saccharomyces cerevisiae) is a four-way (Holliday) junction resolvase. Members of this subgroup belong to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), and at the C-terminus of the PIN domain a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included in this model) and the helical arch/clamp region are involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 229 -350219 cd09871 PIN_MtVapC28-VapC30-like VapC-like PIN domain of Mycobacterium tuberculosis VapC28 and 30 and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC28 and VapC30 toxins. M. tuberculosis VapC28 and VapC30 both cleave tRNA25Ser-TGA and tRNA28Ser-CGA. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350220 cd09872 PIN_Sll0205-like VapC-like PIN domain of Sll0205 protein and homologs. Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of the Synechocystis sp. (strain PCC 6803) Sll0205 protein and other uncharacterized homologs are included in this subfamily. They are similar to the PIN domains of the Mycobacterium tuberculosis VapC and Neisseria gonorrhoeae FitB toxins of the prokaryotic toxin/antitoxin operons, VapBC and FitAB, respectively, which are believed to be involved in growth inhibition by regulating translation. These toxins are nearly always co-expressed with an antitoxin, a cognate protein inhibitor, forming an inert protein complex. Disassociation of the protein complex activates the ribonuclease activity of the toxin by an, as yet undefined mechanism. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 125 -350221 cd09873 PIN_Pae0151-like VapC-like PIN domain of the Pyrobaculum aerophilum Pae0151 and Pae2754 proteins and homologs. Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of the Pyrobaculum aerophilum proteins, Pae0151 and Pae2754, and homologs are included in this subfamily. They are similar to the PIN domains of the Mycobacterium tuberculosis VapC and Neisseria gonorrhoeae FitB toxins of the prokaryotic toxin/antitoxin operons, VapBC and FitAB, respectively, which are believed to be involved in growth inhibition by regulating translation. These toxins are nearly always co-expressed with an antitoxin, a cognate protein inhibitor, forming an inert protein complex. Disassociation of the protein complex activates the ribonuclease activity of the toxin by an, as yet undefined mechanism. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350222 cd09874 PIN_MT3492-like VapC-like PIN domain of the hypothetical protein MT3492 of Mycobacterium tuberculosis CDC1551 and other uncharacterized, annotated PilT protein domain proteins. Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis CDC1551, hypothetical protein MT3492, and similar bacterial and archaeal proteins are included in this subfamily. They are PIN domain homologs of the Mycobacterium tuberculosis VapC and Neisseria gonorrhoeae FitB toxins of the prokaryotic toxin/antitoxin operons, VapBC and FitAB, respectively, which are believed to be involved in growth inhibition by regulating translation. These toxins are nearly always co-expressed with an antitoxin, a cognate protein inhibitor, forming an inert protein complex. Disassociation of the protein complex activates the ribonuclease activity of the toxin by an, as yet undefined mechanism. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 134 -350223 cd09875 PIN_VapC-FitB-like VapC-like PIN domain of ribonucleases (toxins), VapC and FitB, of prokaryotic toxin/antitoxin operons, Pyrococcus horikoshii protein PH0500, and other similar bacterial and archaeal homologs. PIN (PilT N terminus) domain-containing proteins of prokaryotic toxin/antitoxin (TA) operons, such as, Mycobacterium tuberculosis VapC of the VapBC (virulence associated proteins) TA operon, and Neisseria gonorrhoeae FitB of the FitAB (fast intracellular trafficking) TA operon, as well as, the archaeal Pyrococcus horikoshii protein PH0500 are included in this family. Toxins of TA operons are believed to be involved in growth inhibition by regulating translation and are nearly always co-expressed with an antitoxin, a cognate protein inhibitor, forming an inert protein complex. Disassociation of the complex activates the ribonuclease activity of the toxin. In N. gonorrhoeae, FitA and FitB form a heterodimer: FitA is the DNA binding subunit and FitB contains a ribonuclease activity that is blocked by the presence of FitA. A tetramer of FitAB heterodimers binds DNA from the fitAB upstream promoter region with high affinity. This results in both sequestration of FitAB and repression of fitAB transcription. It is thought that FitAB release from the DNA and subsequent dissociation both slows N. gonorrhoeae replication and transcytosis by an as yet undefined mechanism. The toxin M. tuberculosis VapC is a structural homolog of N. gonorrhoeae FitB, but their antitoxin partners, VapB and FitA, respectively, differ structurally. The M. tuberculosis VapC-5 is proposed to be both an endoribonuclease and an exoribonuclease that can act on free RNA in a similar manner to the endo and exonuclease Flap endonuclease-1 (FEN1). VapC-like toxins are structural homologs of FEN1-like PIN domains, but lack the extensive arch/clamp region and the H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region, seen in FEN1-like PIN domains. PIN domains within this group typically contain three or four conserved acidic residues that cluster at the C-terminal end of the beta-sheet and form a negatively charged pocket near the center of the molecule. These putative active site residues are thought to bind Mg2+ and/or Mn2+ ions and be essential for single-stranded ribonuclease activity. VapC-like PIN domains are single domain proteins that form dimers and dimerization configures the active sites in a groove along the long-axis of the structure. 130 -350224 cd09876 PIN_Nob1-like VapC-like PIN domain of eukaryotic ribosome assembly factor Nob1 and archaeal UPF0129 protein Ta0041-like homologs. PIN (PilT N terminus) domain of the Saccharomyces cerevisiae ribosome assembly factor, Nob1 (Nin one binding) protein, the Thermoplasma acidophilum DSM 1728, UPF0129 protein Ta0041, and similar eukaryotic and archaeal homologs are included in this family. The Nob1 PIN domain binds the single-stranded cleavage site D at the 3-prime end of 18S rRNA. Recombinant Nob1 binds as a tetramer to pre-18S rRNA fragments containing cleavage site D and believed to cleave at this site. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_6. 112 -350225 cd09877 PIN_YacL-like VapC-like PIN domain of Thermus Thermophilus Hb8, uncharacterized Bacillus subtilis YacL, and other bacterial homologs. PIN (PilT N terminus) domain of the conserved membrane protein of unknown function of Thermus Thermophilus Hb8, Bacillus subtilis YacL and other similar homologs are included in this family. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Proteins in this group have a C-terminal TRAM domain whose function is unknown but predicted to be a RNA-binding domain common to tRNA uracil methylation and adenine thiolation enzymes. 127 -350226 cd09878 PIN_VapC_VirB11L-ATPase-like VapC-like PIN domain of an uncharacterized AAA+, VirB11-like ATPase-, KH- and PIN-domain containing protein MJ1533 from Methanocaldococcus jannaschii DSM 2661, and other similar archaeal homologs. PIN (PilT N terminus) domain present N-terminal of AAA+, VirB11-like ATPases. Several members of this subfamily possess an AAA+, VirB11-like ATPase domain, flanked by PIN and KH nucleic acid-binding domains. VirB11-ATPase is a type IV secretory pathway component required for T-pilus biogenesis and virulence. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. PIN domains within this subgroup contain four of these highly conserved residues which cluster at the C-terminal end of the beta-sheet and form a negatively charged pocket near the center of the molecule. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 125 -350227 cd09879 PIN_VapC_AF0591-like VapC-like PIN domain of Archaeoglobus fulgidus AF0591 protein and other similar archaeal homologs. PIN (PilT N terminus) domain of Archaeoglobus fulgidus AF0591 protein and other similar uncharacterized archaeal homologs are included in this family. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. PIN domains within this subgroup contain four of these highly conserved putative metal-binding, active site residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains and included distant subgroups, this subgroup includes some sequences belonging to one of these, PIN_14. 118 -350228 cd09880 PIN_Smg5-6-like VapC-like PIN domain of nonsense-mediated decay (NMD) factors, Smg5 and Smg6, and related proteins. PIN (PilT N terminus) domain of nonsense-mediated decay (NMD) factors, Smg5 and Smg6, and homologs are included in this family. Smg5 and Smg6 are essential factors in NMD, a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal-ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. Many of the bacterial homologs in this group have an N-terminal PIN domain and a C-terminal PhoH-like ATPase domain. 152 -350229 cd09881 PIN_VapC4-5_FitB-like VapC-like PIN domain of Mycobacterium tuberculosis VapC4 and VapC5, and Neisseria gonorrhoeae FitB and related proteins. This family includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This family belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350230 cd09882 PIN_MtVapC3-like_start VapC-like PIN domain of Mycobacterium tuberculosis VapC3 toxin and related proteins. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, and VapC21. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350231 cd09883 PIN_VapC_PhoHL-ATPase VapC-like PIN domain of bacterial Smg6-like proteins with C-terminal PhoH-like ATPase domains. PIN (PilT N terminus) domain of Smg6-like bacterial proteins with C-terminal PhoH-like ATPase domains and other similar homologs are included in this family. Eukaryotic Smg5 and Smg6 nucleases are essential factors in nonsense-mediated mRNA decay (NMD), a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. PIN domains within this subgroup contain four highly conserved acidic residues (putative metal-binding, active site residues). Many of the bacterial homologs in this group have an N-terminal PIN domain and a C-terminal PhoH-like ATPase domain and are predicted to be ATPases which are induced by phosphate starvation. 146 -350232 cd09884 PIN_Smg5-like VapC-like PIN domain of human nonsense-mediated decay factor Smg5, and other similar eukaryotic homologs. Nonsense-mediated decay (NMD) factors, Smg5 and Smg6 are essential to the post-transcriptional regulatory pathway, NMD, which recognizes and rapidly degrades mRNAs containing premature translation termination codons. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. 160 -350233 cd09885 PIN_Smg6-like VapC-like PIN domain of human telomerase-binding protein EST1, Smg6, and other similar eukaryotic homologs. Nonsense-mediated decay (NMD) factors, Smg5 and Smg6 are essential to the post-transcriptional regulatory pathway, NMD, which recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN (PilT N terminus) domain elicits degradation of bound mRNAs, as well as, metal ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. PIN domains within this subgroup contain four highly conserved acidic residues (putative metal-binding, active site residues) which cluster at the C-terminal end of the beta-sheet and form a negatively charged pocket near the center of the molecule. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. Eukaryotic Smg6 PIN domains are present at the C-terminal end of the telomerase activating proteins, EST1. 178 -193575 cd09886 NGN_SP N-Utilization Substance G (NusG) N-terminal domain in the NusG Specialized Paralog (SP). The N-Utilization Substance G (NusG) protein is involved in transcription elongation and termination. NusG is essential in Escherichia coli and is associated with RNA polymerase elongation and Rho-termination in bacteria. Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS biosynthesis genes. NusG SP family members are operon-specific transcriptional antitermination factors. The NusG N-terminal (NGN) domain is quite similar in all NusG orthologs, but its C-terminal domains and the linker that separate these two domains are different. The domain organization of NusG and its orthologs suggest that the common properties of NusG and its orthologs and paralogs are due to their similar NGN domains. 97 -193576 cd09887 NGN_Arch Archaeal N-Utilization Substance G (NusG) N-terminal (NGN) domain. The N-Utilization Substance G (NusG) protein and its eukaryotic homolog, Spt5, are involved in transcription elongation and termination. Transcription in archaea has a eukaryotic-type transcription apparatus, but contains bacterial-type transcription factors. NusG is one of the few archaeal transcription factors that has orthologs in both bacteria and eukaryotes. Archaeal NusG is similar to bacterial NusG, composed of an NGN domain and a Kyrpides Ouzounis and Woese (KOW) repeat. The eukaryotic ortholog, Spt5, is a large protein composed of an acidic N-terminus, an NGN domain, and multiple KOW motifs at its C-terminus. NusG was originally discovered as a N-dependent antitermination enhancing activity in Escherichia coli and has a variety of functions, such as being involved in RNA polymerase elongation and Rho-termination in bacteria. Archaeal NusG forms a complex with DNA-directed RNA polymerase subunit E (rpoE) that is similar to the Spt5-Spt4 complex in eukaryotes. 82 -193577 cd09888 NGN_Euk Eukaryotic N-Utilization Substance G (NusG) N-terminal (NGN) domain, including plant KTF1 (KOW domain-containing Transcription Factor 1). The N-Utilization Substance G (NusG) protein and its eukaryotic homolog, Spt5, are involved in transcription elongation and termination. NusG contains an NGN domain at its N-terminus and Kyrpides Ouzounis and Woese (KOW) repeats at its C-terminus. Spt5 forms an Spt4-Spt5 complex that is an essential RNA polymerase II elongation factor. NusG was originally discovered as an N-dependent antitermination enhancing activity in Escherichia coli, and has a variety of functions such as its involvement in RNA polymerase elongation and Rho-termination in bacteria. Orthologs of the NusG gene exist in all bacteria, but their functions and requirements are different. Spt5-like is homologous to the Spt5 proteins present in all eukaryotes, which is unique as it encodes a protein with an additional long carboxy-terminal extension that contains WG/GW motifs. Spt5-like, or KTF1 (KOW domain-containing Transcription Factor 1), is a RNA-directed DNA methylation (RdDM) pathway effector in plants. 86 -193578 cd09889 NGN_Bact_2 Bacterial N-Utilization Substance G (NusG) N-terminal (NGN) domain, subgroup 2. The N-Utilization Substance G (NusG) protein is involved in transcription elongation and termination. NusG is essential in Escherichia coli and associates with RNA polymerase elongation and Rho-termination. Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS biosynthesis genes. NusG SP family members are operon-specific transcriptional antitermination factors. The NusG N-terminal domain (NGN) is quite similar in all NusG orthologs, but its C-terminal domain and the linker that separates these two domains are different. The domain organization of NusG and its orthologs suggests that the common properties of NusG and its orthologs and paralogs are due to their similar NGN domains. 100 -193579 cd09890 NGN_plant Plant N-Utilization Substance G (NusG) N-terminal (NGN) domain. The N-Utilization Substance G (NusG) protein and its eukaryotic homolog, Spt5, are involved in transcription elongation and termination. NusG contains a NGN domain at its N-terminus and Kyrpides Ouzounis and Woese (KOW) repeats at its C-terminus in bacteria and archaea. The eukaryotic ortholog, Spt5, is a large protein comprising an acidic N-terminus, an NGN domain, and multiple KOW motifs at its C-terminus. Spt5 forms an Spt4-Spt5 complex that is an essential RNA polymerase II elongation factor. The bacterial infected plants contain bacterial DNA, such as NGN sequences, that can be used to clone the DNA of uncultured organisms. 113 -193580 cd09891 NGN_Bact_1 Bacterial N-Utilization Substance G (NusG) N-terminal (NGN) domain, subgroup 1. The N-Utilization Substance G (NusG) protein is involved in transcription elongation and termination in bacteria. NusG is essential in Escherichia coli and associates with RNA polymerase elongation and Rho-termination. Homologs of the NusG gene exist in all bacteria. The NusG N-terminal domain (NGN) is similar in all NusG homologs, but its C-terminal domain and the linker that separates these two domains are different. The domain organization of NusG suggests that the common properties of NusG and its homologs are due to their similar NGN domains. 107 -193581 cd09892 NGN_SP_RfaH N-Utilization Substance G (NusG) N-terminal domain in the NusG Specialized Paralog (SP), RfaH. RfaH is an operon-specific virulence regulator, thought to have arisen from an early duplication of N-Utilization Substance G (NusG). Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS biosynthesis genes. NusG SP family members are operon-specific transcriptional antitermination factors. NusG is essential in Escherichia coli and is associated with RNA polymerase elongation and Rho-termination in bacteria. In contrast, RfaH is a non-essential protein that controls expression of operons containing an ops (operon polarity suppressor) element in their transcribed DNA. RfaH and NusG are different in their response to Rho-dependent terminators and regulatory targets. The NusG N-terminal (NGN) domain is quite similar in all NusG orthologs, but its C-terminal domains and the linker that separate these two domains are different. The domain organization of NusG and its homologs suggest that the common properties of NusG and RfaH are due to their similar NGN domains. 96 -193582 cd09893 NGN_SP_TaA N-Utilization Substance G (NusG) N-terminal domain in the NusG Specialized Paralog (SP), TaA. The N-Utilization Substance G (NusG) protein is involved in transcription elongation and termination. NusG is essential in Escherichia coli and is associated with RNA polymerase elongation and Rho-termination in bacteria. Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS biosynthesis genes. NusG SP family members are operon-specific transcriptional antiterminationn factors. TaA is a NusG SP factor that is required for synthesis of a polyketide antibiotic TA in Myxococcus xanthus. Orthologs of the NusG gene exist in all bacteria, but its functions and requirements are different. The NusG N-terminal (NGN) domain is quite similar in all NusG orthologs, but its C-terminal domains and the linker that separate these two domains are different. The domain organization of NusG and its orthologs suggest that the common properties of NusG and its orthologs and paralogs are due to their similar NGN domains. 95 -193583 cd09894 NGN_SP_AnfA1 N-Utilization Substance G (NusG) N-terminal domain in the NusG Specialized Paralog (SP), AnFA1. Regulation of the afp, antifeeding prophage, gene cluster is mediated by AnFA1, a RfaH-like transcriptional antiterminator. RfaH is an operon-specific virulence regulator, thought to arisen from an early duplication of N-Utilization Substance G (NusG). NusG is essential in Escherichia coli and is associated with RNA polymerase elongation and Rho-termination in bacteria. Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS biosynthesis genes. NusG SP family members are operon-specific transcriptional antitermination factors. Orthologs of the NusG gene exist in all bacteria, but their functions and requirements are different. The NusG N-terminal domain (NGN) is similar in all NusG orthologs, but its C-terminal domain and the linker that separate these two domains are different. The domain organization of NusG and its orthologs suggests that the common properties of NusG and its orthologs and paralogs are due to their similar NGN domains. 99 -193584 cd09895 NGN_SP_UpxY N-Utilization Substance G (NusG) N-terminal domain in the NusG Specialized Paralog (SP), UpxY. The N-Utilization Substance G (NusG) proteins are involved in transcription elongation and termination. NusG is essential in Escherichia coli and is associated with RNA polymerase elongation and Rho-termination. Paralogs of eubacterial NusG, NusG SP (Specialized Paralog of NusG), are more diverse and often found as the first ORF in operons encoding secreted proteins and LPS (lipopolysaccharide) biosynthesis genes. NusG SP family members are operon-specific transcriptional antitermination factors. UpxY proteins, UpxY proteins, where the x is replaced by the letter designation of the specific polysaccharide (UpaY to UphY), are a family of NusG SP factors that act specifically in transcriptional antitermination of operons from which they are encoded. UpxYs are necessary and specific for transcription regulation of the polysaccharide biosynthesis operon. Orthologs of the NusG gene exist in all bacteria, but their functions and requirements are different. The NusG N-terminal (NGN) domain is similar in all NusG orthologs, but its C-terminal domain and the linker that separate these two domains are different. The domain organization of NusG and its orthologs suggests that the common properties of NusG and its orthologs and paralogs are due to their similar NGN domains. 95 -188617 cd09897 H3TH_FEN1-XPG-like H3TH domains of Flap endonuclease-1 (FEN1)-like structure specific 5' nucleases. The 5' nucleases within this family are capable of both 5'-3' exonucleolytic activity and cleaving bifurcated or branched DNA, in an endonucleolytic, structure-specific manner, and are involved in DNA replication, repair, and recombination. This family includes the H3TH (helix-3-turn-helix) domains of Flap Endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap Endonuclease 1 (GEN1), Xeroderma pigmentosum complementation group G (XPG) nuclease, and other eukaryotic and archaeal homologs. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. With the except of the Mkt1-like proteins, the nucleases within this family have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (i. e., Mg2+, Mn2+, Zn2+, or Co2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 68 -188618 cd09898 H3TH_53EXO H3TH domain of the 5'-3' exonuclease of Taq DNA polymerase I and homologs. H3TH (helix-3-turn-helix) domains of the 5'-3' exonuclease (53EXO) of mutli-domain DNA polymerase I and single domain protein homologs are included in this family. Taq DNA polymerase I contains a polymerase domain for synthesizing a new DNA strand and a 53EXO domain for cleaving RNA primers or damaged DNA strands. Taq's 53EXO recognizes and endonucleolytically cleaves a structure-specific DNA substrate that has a bifurcated downstream duplex and an upstream template-primer duplex that overlaps the downstream duplex by 1 bp. The 53EXO cleaves the unpaired 5'-arm of the overlap flap DNA substrate. 5'-3' exonucleases are members of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. The nucleases within this family have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (i. e., Mg2+ or Mn2+ or Zn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and two Asp residues from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 73 -188619 cd09899 H3TH_T4-like H3TH domain of bacteriophage T3, T4 RNase H, T5-5' nucleases, and homologs. H3TH (helix-3-turn-helix) domains of bacteriophage T5-5'nuclease (5'-3' exonuclease or T5FEN), bacteriophage T4 RNase H (T4FEN), bacteriophage T3 (T3 phage exodeoxyribonuclease) and other similar 5' nucleases are included in this family. The T5-5'nuclease is a 5'-3' exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'end). T4 RNase H, which removes the RNA primers that initiate lagging strand fragments, has 5'- 3' exonuclease activity on DNA/DNA and RNA/DNA duplexes and has endonuclease activity on flap or forked DNA structures. Bacteriophage T3 is believed to function in the removal of DNA-linked RNA primers and is essential for phage DNA replication and also necessary for host DNA degradation and phage genetic recombination. These nucleases are members of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. They contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. The nucleases within this family have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors required for nuclease activity. The first metal binding site (MBS-1) is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site (MBS-2) is composed generally of two Asp residues from the PIN domain and two Asp residues from the H3TH domain. In the T5-5'nuclease, structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity, MBS-1, whereas exonuclease activity requires both, the high-affinity, MBS-1 and the low-affinity, MBS-2 to be occupied by a divalent cofactor. The T5-5'nuclease is reported to be able to bind several metal ions including, Mg2+, Mn2+, Zn2+ and Co2+, as co-factors. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 74 -188620 cd09900 H3TH_XPG-like H3TH domains of Flap endonuclease-1 (FEN1)-like structure specific 5' nucleases: FEN1 (archaeal), GEN1, YEN1, and XPG. The 5' nucleases within this family are capable of both 5'-3' exonucleolytic activity and cleaving bifurcated or branched DNA, in an endonucleolytic, structure-specific manner, and are involved in DNA replication, repair, and recombination. This family includes the H3TH (helix-3-turn-helix) domains of archaeal Flap Endonuclease-1 (FEN1), Gap Endonuclease 1 (GEN1), Yeast Endonuclease 1 (YEN1), Xeroderma pigmentosum complementation group G (XPG) nuclease, and other eukaryotic and archaeal homologs. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. With the except of the Mkt1-like proteins, the nucleases within this family have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (i. e., Mg2+, Mn2+, Zn2+, or Co2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 52 -188621 cd09901 H3TH_FEN1-like H3TH domains of Flap endonuclease-1 (FEN1)-like structure specific 5' nucleases: FEN1 (eukaryotic) and EXO1. The 5' nucleases within this family are capable of both 5'-3' exonucleolytic activity and cleaving bifurcated or branched DNA, in an endonucleolytic, structure-specific manner, and are involved in DNA replication, repair, and recombination. This family includes the H3TH (helix-3-turn-helix) domains of eukaryotic Flap Endonuclease-1 (FEN1), Exonuclease-1 (EXO1), and other eukaryotic homologs. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. The nucleases within this family have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (i. e., Mg2+, Mn2+, Zn2+, or Co2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 73 -188622 cd09902 H3TH_MKT1 H3TH domain of Mkt1: A global regulator of mRNAs encoding mitochondrial proteins and eukaryotic homologs. The Mkt1 gene product interacts with the Poly(A)-binding protein associated factor, Pbp1, and is present at the 3' end of RNA transcripts during translation. The Mkt1-Pbp1 complex is involved in the post-transcriptional regulation of HO endonuclease expression. Mkt1 and eukaryotic homologs are atypical members of the structure-specific, 5' nuclease family. Conical members of this family possess a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH (helix-3-turn-helix) domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Although Mkt1 appears to possess both a PIN and H3TH domain, the Mkt1 PIN domain lacks several of the active site residues necessary to bind essential divalent metal ion cofactors (Mg2+/Mn2+) required for nuclease activity in this family. Also, Mkt1 lacks the glycine-rich loop in the H3TH domain which is proposed to facilitate duplex DNA binding. 81 -188623 cd09903 H3TH_FEN1-Arc H3TH domain of Flap Endonuclease-1, a structure-specific, divalent-metal-ion dependent, 5' nuclease: Archaeal homologs. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of archaeal Flap endonuclease-1 (FEN1), 5' nucleases. FEN1 is involved in multiple DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity) and DNA repair processes (long-patch base excision repair) in eukaryotes and archaea. Interaction between FEN1 and PCNA (Proliferating cell nuclear antigen) is an essential prerequisite to FEN1's DNA replication functionality and stimulates FEN1 nuclease activity by 10-50 fold. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. The nucleases within this subfamily have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. Also, FEN1 has a C-terminal extension containing residues forming the consensus PIP-box - Qxx(M/L/I)xxF(Y/F) which serves to anchor FEN1 to PCNA. 65 -188624 cd09904 H3TH_XPG H3TH domain of Xeroderma pigmentosum complementation group G (XPG) nuclease, a structure-specific, divalent-metal-ion dependent, 5' nuclease. The Xeroderma pigmentosum complementation group G (XPG) nuclease plays a central role in nucleotide excision repair (NER) in cleaving DNA bubble structures or loops. XPG is a member of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of XPG and other similar eukaryotic 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. These nucleases have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 97 -188625 cd09905 H3TH_GEN1 H3TH domain of Gap Endonuclease 1, a structure-specific, divalent-metal-ion dependent, 5' nuclease. Gap Endonuclease 1 (GEN1): Holliday junction resolvase reported to symmetrically cleave Holliday junctions and allow religation without additional processing. GEN1 is a member of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of GEN1 and other similar eukaryotic 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. These nucleases have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 108 -188626 cd09906 H3TH_YEN1 H3TH domain of Yeast Endonuclease 1, a structure-specific, divalent-metal-ion dependent, 5' nuclease. Yeast Endonuclease 1 (YEN1): Holliday junction resolvase which promotes reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. YEN1 is a member of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of YEN1 and other similar fungal 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. These nucleases have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. 105 -188627 cd09907 H3TH_FEN1-Euk H3TH domain of Flap Endonuclease-1, a structure-specific, divalent-metal-ion dependent, 5' nuclease: Eukaryotic homologs. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of eukaryotic Flap endonuclease-1 (FEN1), 5' nucleases. FEN1 is involved in multiple DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity) and DNA repair processes (long-patch base excision repair) in eukaryotes and archaea. Interaction between FEN1 and PCNA (Proliferating cell nuclear antigen) is an essential prerequisite to FEN1's DNA replication functionality and stimulates FEN1 nuclease activity by 10-50 fold. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. The nucleases within this subfamily have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. Also, FEN1 has a C-terminal extension containing residues forming the consensus PIP-box - Qxx(M/L/I)xxF(Y/F) which serves to anchor FEN1 to PCNA. 70 -188628 cd09908 H3TH_EXO1 H3TH domain of Exonuclease-1, a structure-specific, divalent-metal-ion dependent, 5' nuclease. Exonuclease-1 (EXO1) is involved in multiple, eukaryotic DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity), DNA repair processes (DNA mismatch repair (MMR) and post-replication repair (PRR), recombination, and telomere integrity. EXO1 functions in the MMS2 error-free branch of the PRR pathway in the maintenance and repair of stalled replication forks. Studies also suggest that EXO1 plays both structural and catalytic roles during MMR-mediated mutation avoidance. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of EXO1 and other similar eukaryotic 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. These nucleases have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. EXO1 nucleases also have C-terminal Mlh1- and Msh2-binding domains which allow interaction with MMR and PRR proteins, respectively. 73 -197369 cd09909 HIV-1-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the gp41 subunit of human immunodeficiency virus (HIV-1), and related domains. This domain family spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including human, simian, and feline immunodeficiency viruses (HIV, SIV, and FIV), bovine immunodeficiency-like virus (BIV), equine infectious anaemia virus (EIAV), and Jaagsiekte sheep retrovirus (JSRV), mouse mammary tumour virus (MMTV) and various ERVs including sheep enJSRV-26, and human ERVs (HERVs): HERV-K_c1q23.3 and HERV-K_c12q14.1. This domain belongs to a larger superfamily containing the HR1-HR2 domain of ERVs and infectious retroviruses, including Ebola virus, and Rous sarcoma virus. Proteins in this family lack the canonical CSK17-like immunosuppressive sequence, and the intrasubunit disulfide bond-forming CX6C motif found in linker region between HR1 and HR2 in the Ebola_RSV-like_HR1-HR2 family. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as JSRV. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Included in this subgroup are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep, for example enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development. HERV-K_c12q14.1 is potentially a complete envelope protein; however, it does not appear to be fusogenic. 128 -197364 cd09910 NGN-insert_like NGN-insert domain found between N-terminal domain (D1) and C-terminal KOW domain (DIII) repeats of some N-Utilization Substance G (NusG) N-terminal (NGN). This family contains a unique insert (domain II, DII) found between the highly conserved N-terminal domain (NGN, domain I, D1) and C-terminal Kyrpides Ouzounis and Woese domain (KOW, domain III, DIII) repeats of some N-Utilization Substance G (NusG) N-terminal (NGN) proteins in bacteria such as Aquifex aeolicus NusG (AaeNusG). NusG was originally discovered as having an N-dependent antitermination enhancing activity in Escherichia coli, and has since been shown to have a variety of functions such as being involved in RNA polymerase elongation and Rho-termination. Orthologs of NusG gene exist in bacteria, but their functions and requirements are diverse. The function of DII is as yet unknown, and belongs to Domains of Unknown Function 1312 (DUF1312). 80 -197365 cd09911 Lin0431_like Listerrria innocua Lin0431 is similar to the N-Utilization Substance G (NusG) N terminal (NGN) insert (DII). This family contains domains homologous to Listeria innocua Lin0431, a protein that is similar to the N-Utilization Substance G (NusG) N terminal (NGN) insert (domain II, DII). Lin0431 and Aquifex aeolicus NusG DII (AaeNusG DII ) have similar structure and similar basic charged surface distributions that may bind negatively charged nucleic acids and/or another anionic binding partner, suggesting a possible role in transcription/translation regulating functions. Despite these two domains having low sequence similarity, the NusG DII and DUF1312 domain families may have diverged from common evolutionary ancestral proteins, and may have similar biochemical functions. 82 -206739 cd09912 DLP_2 Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins. The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. This family also includes bacterial DLPs. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes mitofusins (MFN1 and MFN2 in mammals) that are involved in mitochondrial fusion. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. 180 -206740 cd09913 EHD Eps15 homology domain (EHD), C-terminal domain. Dynamin-like C-terminal Eps15 homology domain (EHD) proteins regulate endocytic events; they have been linked to a number of Rab proteins through their association with mutual effectors, suggesting a coordinate role in endocytic regulation. Eukaryotic EHDs comprise four members (EHD1-4) in mammals and single members in Caenorhabditis elegans (Rme-1), Drosophila melanogaster (Past1) as well as several eukaryotic parasites. EHD1 regulates trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane; EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity; EHD3 regulates endosome-to-Golgi transport, and preserves Golgi morphology; EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward the recycling compartment as well as late endocytic pathway. Rme-1, an ortholog of human EHD1, controls the recycling of internalized receptors from the endocytic recycling compartment to the plasma membrane. In D. melanogaster, deletion of the Past1 gene leads to infertility as well as premature death of adult flies. Arabidopsis thaliana also has homologs of EHD proteins (AtEHD1 and AtEHD2), possibly involved in regulating endocytosis and signaling. 241 -206741 cd09914 RocCOR Ras of complex proteins (Roc) C-terminal of Roc (COR) domain family. RocCOR (or Roco) protein family is characterized by a superdomain containing a Ras-like GTPase domain, called Roc (Ras of complex proteins), and a characteristic second domain called COR (C-terminal of Roc). A kinase domain and diverse regulatory domains are also often found in Roco proteins. Their functions are diverse; in Dictyostelium discoideum, which encodes 11 Roco proteins, they are involved in cell division, chemotaxis and development, while in human, where 4 Roco proteins (LRRK1, LRRK2, DAPK1, and MFHAS1) are encoded, these proteins are involved in epilepsy and cancer. Mutations in LRRK2 (leucine-rich repeat kinase 2) are known to cause familial Parkinson's disease. 161 -206742 cd09915 Rag Rag GTPase subfamily of Ras-related GTPases. Rag GTPases (ras-related GTP-binding proteins) constitute a unique subgroup of the Ras superfamily, playing an essential role in regulating amino acid-induced target of rapamycin complex 1 (TORC1) kinase signaling, exocytic cargo sorting at endosomes, and epigenetic control of gene expression. This subfamily consists of RagA and RagB as well as RagC and RagD that are closely related. Saccharomyces cerevisiae encodes single orthologs of metazoan RagA/B and RagC/D, Gtr1 and Gtr2, respectively. Dimer formation is important for their cellular function; these domains form heterodimers, as RagA or RagB dimerizes with RagC or RagD, and similarly, Gtr1 dimerizes with Gtr2. In response to amino acids, the Rag GTPases guide the TORC1 complex to activate the platform containing Rheb proto-oncogene by driving the relocalization of mTORC1 from discrete locations in the cytoplasm to a late endosomal and/or lysosomal compartment that is Rheb-enriched and contains Rab-7. 175 -197366 cd09916 CpxP_like CpxP component of the bacterial Cpx-two-component system and related proteins. This family summarizes bacterial proteins related to CpxP, a periplasmic protein that forms part of a two-component system which acts as a global modulator of cell-envelope stress in gram-negative bacteria. CpxP aids in combating extracytoplasmic protein-mediated toxicity, and may also be involved in the response to alkaline pH. Functioning as a dimer, it inhibits activation of the kinase CpxA, but also plays a vital role in the quality control system of P pili. It has been suggested that CpxP directly interacts with CpxA via its concave polar surface. Another member of this family, Spy, is also a periplasmic protein that may be involved in the response to stress. The homology between CpxP and Spy suggests similar functions. A characteristic 5-residue sequence motif LTXXQ is found repeated twice in many members of this family. 96 -198174 cd09918 SH2_Nterm_SPT6_like N-terminal Src homology 2 (SH2) domain found in Spt6. N-terminal SH2 domain in Spt6. Spt6 is an essential transcription elongation factor and histone chaperone that binds the C-terminal repeat domain (CTD) of RNA polymerase II. Spt6 contains a tandem SH2 domain with a novel structure and CTD-binding mode. The tandem SH2 domain binds to a serine 2-phosphorylated CTD peptide in vitro, whereas its N-terminal SH2 subdomain does not. CTD binding requires a positively charged crevice in the C-terminal SH2 subdomain, which lacks the canonical phospho-binding pocket of SH2 domains. The tandem SH2 domain is apparently required for transcription elongation in vivo as its deletion in cells is lethal in the presence of 6-azauracil. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 85 -198175 cd09919 SH2_STAT_family Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) family. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated by a receptor. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. The CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 115 -198176 cd09920 SH2_Cbl-b_TKB Src homology 2 (SH2) domain found in the Cbl-b TKB domain. SH2 found in the Cbl-b TKB domain. The Cbl (for Casitas B-lineage lymphoma) family of E3 ubiquitin ligases contains three members Cbl, Cbl-b and Cbl-c. The founding member Cbl was discovered first as the oncogenic protein v-Cbl, a Gag-fusion transforming protein of Cas NS-1 retrovirus, which causes pre- and pro-B lymphomas in mice. The N-terminus of the Cbl proteins is composed of a tyrosine kinase-binding (TKB) domain, also called phosphotyrosine binding (PTB) domain, a short linker region and the RING-type zinc finger. In addition, Cbl and Cbl-b contain a leucine zipper motif and a proline-rich domain in the C-terminus. The TKB domain consists of a four-helix bundle (4H), a calcium-binding EF hand and a divergent SH2 domain. Cbl-b plays a role in early hematopoietic development and is a negative regulator of T-cell receptor, B-cell receptor and high affinity immunoglobulin epsilon receptor signal transduction pathways. It also negatively regulates insulin-like growth factor 1 signaling during muscle atrophy caused by unloading and is involved in EGFR ubiquitination and internalization. Diseases associated with defects in Cbl-b include: multiple sclerosis, autoimmune diseases, including type 1 diabetes, and a craniofacial phenotype. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198177 cd09921 SH2_Jak_family Src homology 2 (SH2) domain in the Janus kinase (Jak) family. The Janus kinases (Jak) are a family of 4 non-receptor tyrosine kinases (Jak1, Jak2, Jak3, Tyk2) which respond to cytokine or growth factor receptor activation. To transduce cytokine signaling, a series of conformational changes occur in the receptor-Jak complex upon extracellular ligand binding. This results in trans-activation of the receptor-associated Jaks followed by phosphorylation of receptor tail tyrosine sites. The Signal Transducers and Activators of Transcription (STAT) are then recruited to the receptor tail, become phosphorylated and translocate to the nucleus to regulate transcription. Jaks have four domains: the pseudokinase domain, the catalytic tyrosine kinase domain, the FERM (band four-point-one, ezrin, radixin, and moesin) domain, and the SH2 (Src Homology-2) domain. The Jak kinases are regulated by several enzymatic and non-enzymatic mechanisms. First, the Jak kinase domain is regulated by phosphorylation of the activation loop which is associated with the catalytically competent kinase conformation and is distinct from the inactive kinase conformation. Second, the pseudokinase domain directly modulates Jak catalytic activity with the FERM domain maintaining an active state. Third, the suppressor of cytokine signaling (SOCS) family and tyrosine phosphatases directly regulate Jak activity. Dysregulation of Jak activity can manifest as either a reduction or an increase in kinase activity resulting in immunodeficiency, inflammatory diseases, hematological defects, autoimmune and myeloproliferative disorders, and susceptibility to infection. Altered Jak regulation occurs by many mechanisms, including: gene translocations, somatic or inherited point mutations, receptor mutations, and alterations in the activity of Jak regulators such as SOCS or phosphatases. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198178 cd09923 SH2_SOCS_family Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 81 -198179 cd09925 SH2_SHC Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC). SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198180 cd09926 SH2_CRK_like Src homology 2 domain found in cancer-related signaling adaptor protein CRK. SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 106 -198181 cd09927 SH2_Tensin_like Src homology 2 domain found in Tensin-like proteins. SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 116 -198182 cd09928 SH2_Cterm_SPT6_like C-terminal Src homology 2 (SH2) domain found in Spt6. Spt6 is an essential transcription elongation factor and histone chaperone that binds the C-terminal repeat domain (CTD) of RNA polymerase II. Spt6 contains a tandem SH2 domain with a novel structure and CTD-binding mode. The tandem SH2 domain binds to a serine 2-phosphorylated CTD peptide in vitro, whereas its N-terminal SH2 subdomain does not. CTD binding requires a positively charged crevice in the C-terminal SH2 subdomain, which lacks the canonical phospho-binding pocket of SH2 domains. The tandem SH2 domain is apparently required for transcription elongation in vivo as its deletion in cells is lethal in the presence of 6-azauracil. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 89 -198183 cd09929 SH2_BLNK_SLP-76 Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76). BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 121 -198184 cd09930 SH2_cSH2_p85_like C-terminal Src homology 2 (cSH2) domain found in p85. Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198185 cd09931 SH2_C-SH2_SHP_like C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins. The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 99 -198186 cd09932 SH2_C-SH2_PLC_gamma_like C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma. Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -199827 cd09933 SH2_Src_family Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases. The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198188 cd09934 SH2_Tec_family Src homology 2 (SH2) domain found in Tec-like proteins. The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198189 cd09935 SH2_ABL Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins. ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 94 -198190 cd09937 SH2_csk_like Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk). Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198191 cd09938 SH2_N-SH2_Zap70_Syk_like N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins. ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198192 cd09939 SH2_STAP_family Src homology 2 domain found in Signal-transducing adaptor protein (STAP) family. STAP1 and STAP2 are signal-transducing adaptor proteins. They are composed of a Pleckstrin homology (PH) and SH2 domains along with several tyrosine phosphorylation sites. STAP-1 is an ortholog of BRDG1 (BCR downstream signaling 1). STAP1 protein functions as a docking protein acting downstream of Tec tyrosine kinase in B cell antigen receptor signaling. The protein is phosphorylated by Tec and participates in a positive feedback loop, increasing Tec activity. STAP1 has been shown to interact with C19orf2, an unconventional prefoldin RPB5 interactor. The STAP2 protein is the substrate of breast tumor kinase, an Src-type non-receptor tyrosine kinase that mediates the interactions linking proteins involved in signal transduction pathways. STAP2 has alternative splicing variants. STAP2 has been shown to interact with tyrosine-protein kinase 6 (PTK6). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 94 -198193 cd09940 SH2_Vav_family Src homology 2 (SH2) domain found in the Vav family. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -199828 cd09941 SH2_Grb2_like Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins. The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 95 -198195 cd09942 SH2_nSH2_p85_like N-terminal Src homology 2 (nSH2) domain found in p85. Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 110 -198196 cd09943 SH2_Nck_family Src homology 2 (SH2) domain found in the Nck family. Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 93 -198197 cd09944 SH2_Grb7_family Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins. The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. There are 3 members of the Grb7 family of proteins: Grb7, Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR). Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 108 -198198 cd09945 SH2_SHB_SHD_SHE_SHF_like Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF). SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198199 cd09946 SH2_HSH2_like Src homology 2 domain found in hematopoietic SH2 (HSH2) protein. HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -197370 cd09947 Ebola_HIV-1-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus and human immunodeficiency virus type 1 (HIV-1). This domain superfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus gp2, Rous sarcoma virus gp37, human immunodeficiency virus type 1 (HIV-1) gp41, and the envelope proteins of various ERVs. In the HR1-HR2 region of Ebola virus and RSV, the linker region between the two repeats includes a CKS17-like immunosuppressive region and a CX6C motif that forms an intra-subunit disulfide bond; MMTV, HIV-1, HERV-K endogenous retroviruses and related sequences lack a canonical CSK17-like sequence, and CX6C motif. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as Jaagsiekte sheep retrovirus (JSRV), feline leukemia virus (FeLV), and avian leukemia virus (ALV). Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Human ERVs (HERVs) belonging to this superfamily include Syncytin-1 (HERV-W_c7q21.2/ ERVWE1), and Syncytin-2 (HERV-FRD_6p24.1) which are expressed in the placenta, and are fusogenic, although they have a different cell specificity for fusion. Syncytin-2, but not Syncytin-1, is immunosuppressive; its immunosuppressive domain may protect the fetus from the mother's immune system. Syncytin-1 may participate in the formation of the placental trophoblast; it is also implicated in cell fusions between cancer and host cells and between cancer cell, and in human osteclast fusion. This superfamily also contains human HERV-R_c7q21.2 (ERV-3), which is also expressed in the placenta, but is not fusogenic, and has an immunosuppressive domain, but lacks a fusion peptide. It is unclear whether ERV-3 has a critical biological role. Included in this superfamily are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep; for example, enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development. 73 -197371 cd09948 Ebola_RSV-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region of the transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus and Rous sarcoma virus. This domain family spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus gp2, Rous sarcoma virus gp37, and the envelope proteins of various ERVs. This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intra-subunit disulfide bond, and a C-terminal heptad repeat. N-terminal to HR1-HR2 region is a fusion peptide (FP), while C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1s helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as Jaagsiekte sheep retrovirus (JSRV), feline leukemia virus (FeLV), and avian leukemia virus (ALV). Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Human ERVs (HERVs) belonging to this family include Syncytin-1 (HERV-W_c7q21.2/ ERVWE1), and Syncytin-2 (HERV-FRD_6p24.1) which are expressed in the placenta, and are fusogenic, although they have a different cell specificity for fusion. Syncytin-2, but not Syncytin-1, is immunosuppressive. Its immunosuppressive domain may protect the fetus from the mother's immune system. Syncytin-1 may participate in the formation of the placental trophoblast. It is also implicated in cell fusions between cancer and host cells and between cancer cells, and in human osteclast fusion. This family also contains human HERV-R_c7q21.2 (ERV-3), which is also expressed in the placenta, but is not fusogenic, has an immunosuppressive domain, but lacks a fusion peptide. It is unclear whether ERV-3 has a critical biological role. 72 -197372 cd09949 RSV-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of Rous sarcoma virus (RSV), and related domains. This domain subfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Rous sarcoma virus gp37, Avian leukosis virus subgroup J (ALV-J) envelope protein, and the envelope proteins of various ERVs, including those belonging to the ev/J (or EAV-HP) family of chicken ERVs, such as ev/J 4.1 Rb. ALV-J is a recently emerged avian pathogen, the causative agent of myeloid leukosis in meat-type chicken. ERVs are likely to originate from ancient germ-line infections by active retroviruses. ALV-J may have emerged from a recombination event between an unknown ALV and an EAV-HP ERV. This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intrasubunit disulfide bond, and a C-terminal heptad repeat. N-terminal to HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1s helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. 72 -197373 cd09950 ENVV1-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of the human endogenous retrovirus ENVV1, and related domains. This domain subfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs), including chicken FET-1 (Female Expressed Transcript 1) protein, and the envelope proteins of the human ERVs (HERVs): ENVV1 (also known as HERV-V2_c19q13.41) and ENVV2 (also known as HERV-V1_c19q13.41 ). This domain belongs to a larger superfamily containing the HR1-HR2 domain of endogenous retroviruses (ERVs) and infectious retroviruses, such as Ebola virus, Rous sarcoma virus and human immunodeficiency virus type 1. This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intra-subunit disulfide bond, and a C-terminal heptad repeat. N-terminal to HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. FET-1 may have an ovary-determining role. The FET-1 gene is located on the female specific W chromosome in chickens. During the sex-determining period, the FET-1 transcript is up-regulated in the cortex of the left gonad (the only gonad which develops in female chickens); it is also expressed at a lower level, in neural tissue and waste collection ducts. The genes encoding ENVV1 and ENVV2 proteins are located in tandem on chromosome 19q13.41, and show placenta-specific expression in human and baboon. 72 -197374 cd09951 HERV-Rb-like_HR1-HR2 heptad repeat 1- heptad repeat 2 region (ectodomain) of the transmembrane subunit of the human endogenous retrovirus HERV-R(b)_c3p24.3 and related domains. This domain subfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) including the human ERVs (HERVs): HERV-R(b)_c3p24.3 and Syncytin-3 (also known as HERV-P(b)_c14q32.12). This domain belongs to a larger superfamily containing the HR1-HR2 domain of endogenous retroviruses (ERVs) and infectious retroviruses, such as Ebola virus, Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1). This domain includes an N-terminal heptad repeat, a CKS17-like immunosuppressive region, a CX6C motif that forms an intrasubunit disulfide bond, and a C-terminal, is a heptad repeat. In intact retroviruses, N-terminal to HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1s helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Syncytin-3 is fusogenic, HERV-R(b)_c3p24.3 appears not to have fusogenic activity. 81 -197375 cd09966 UP_III_II Uroplakin IIIb, IIIa and II. Uroplakins (UPs) are a family of proteins that associate with each other to form plaques on the apical surface of the urothelium, the pseudo-stratified epithelium lining the urinary tract from renal pelvis to the bladder outlet. UPs are classified into 3 types: UPIa and UPIb, UPII, and UPIIIa and IIIb. UPIs are tetraspanins that have four transmembrane domains separating one large and one small extracellular domain while UPII and UPIIIs are single-pass transmembrane proteins. UPIa and UPIb form specific heterodimers with UPII and UPIII, respectively, which allows them to exit the endoplasmatic rediculum. UPII/UPIa and UPIIIs/UPIb form heterotetramers; six of these tetramers form the 16nm particle, seen in the hexagonal array of the asymmetric unit membrane, which is believed to form a urinary tract barrier. Uroplakins are also believed to play a role during urinary tract morphogenesis. 181 -197376 cd09967 UP_II Uroplakin II. Uroplakin II, the dimerization partner of uroplakin Ia, is a member of the uroplakin family. Uroplakins (UPs) are a family of proteins that associate with each other to form plaques on the apical surface of the urothelium, the pseudo-stratified epithelium lining the urinary tract from renal pelvis to the bladder outlet. UPs are classified into 3 types: UPIa and UPIb, UPII, and UPIIIa and IIIb. UPIs are tetraspanins that have four transmembrane domains seperating one large and one small extracellular domain while UPII and UPIIIs are single-pass transmembrane proteins. UPIa and UPIb form specific heterodimers with UPII and UPIII, respectively, which allows them to exit the endoplasmatic rediculum. UPII/UPIa and UPIIIs/UPIb form heterotetramers and six of these tetramers form the 16nm particle, seen in the hexagonal array of the asymmetric unit membrane, which is believed to form a urinary tract barrier. Uroplakins are also believed to play a role during urinary tract morphogenesis. 165 -197377 cd09968 UP_III Uroplakin III. Uroplakin IIIa and IIIb, the dimerization partners of uroplakin Ib, are a members of the uroplakin family. Uroplakins (UPs) are a family of proteins that associate with each other to form plaques on the apical surface of the urothelium, the pseudo-stratified epithelium lining the urinary tract from renal pelvis to the bladder outlet. UPs are classified into 3 types: UPIa and UPIb, UPII, and UPIIIa and IIIb. UPIs are tetraspanins that have four transmembrane domains seperating one large and one small extracellular domain while UPII and UPIIIs are single-pass transmembrane proteins. UPIa and UPIb form specific heterodimers with UPII and UPIII, respectively, which allows them to exit the endoplasmatic rediculum. UPII/UPIa and UPIIIs/UPIb form heterotetramers and six of these tetramers form the 16nm particle, seen in the hexagonal array of the asymmetric unit membrane, which is believed to form a urinary tract barrier. Uroplakins are also believed to play a role during urinary tract morphogenesis. 187 -197378 cd09969 UP_IIIb Uroplakin IIIb. Uroplakin IIIb, minor isoform of the dimerization partner of uroplakin Ib, is a members of the uroplakin family. Uroplakins (UPs) are a family of proteins that associate with each other to form plaques on the apical surface of the urothelium, the pseudo-stratified epithelium lining the urinary tract from renal pelvis to the bladder outlet. UPs are classified into 3 types: UPIa and UPIb, UPII, and UPIIIa and IIIb. UPIs are tetraspanins that have four transmembrane domains seperating one large and one small extracellular domain while UPII and UPIIIs are single-pass transmembrane proteins. UPIa and UPIb form specific heterodimers with UPII and UPIII, respectively, which allows them to exit the endoplasmatic rediculum. UPII/UPIa and UPIIIs/UPIb form heterotetramers and six of these tetramers form the 16nm particle, seen in the hexagonal array of the asymmetric unit membrane, which is believed to form a urinary tract barrier. Uroplakins are also believed to play a role during urinary tract morphogenesis. 184 -197379 cd09970 UP_IIIa Uroplakin IIIa. Uroplakin IIIa, mayor isoform of the dimerization partner of uroplakin Ib, is a members of the uroplakin family. Uroplakins (UPs) are a family of proteins that associate with each other to form plaques on the apical surface of the urothelium, the pseudo-stratified epithelium lining the urinary tract from renal pelvis to the bladder outlet. UPs are classified into 3 types: UPIa and UPIb, UPII, and UPIIIa and IIIb. UPIs are tetraspanins that have four transmembrane domains seperating one large and one small extracellular domain while UPII and UPIIIs are single-pass transmembrane proteins. UPIa and UPIb form specific heterodimers with UPII and UPIII, respectively, which allows them to exit the endoplasmatic rediculum. UPII/UPIa and UPIIIs/UPIb form heterotetramers and six of these tetramers form the 16nm particle, seen in the hexagonal array of the asymmetric unit membrane, which is believed to form a urinary tract barrier. Uroplakins are also believed to play a role during urinary tract morphogenesis. 212 -197380 cd09971 SdiA-regulated SdiA-regulated. This model represents a bacterial family of proteins that may be regulated by SdiA, a member of the LuxR family of transcriptional regulators. The C-terminal domain included in the alignment forms a five-bladed beta-propeller structure. The X-ray structure of Escherichia coli yjiK (C-terminal domain) exhibits binding of calcium ions (Ca++) in what appears to be an evolutionarily conserved site. Sequence analysis suggests a distant relationship to proteins that are characterized as containing NHL-repeats. The latter also form beta-propeller structures, with several examples known to form six-bladed beta-propellers. Several of the six-bladed beta-propellers containing NHL repeats have been characterized functionally, including members with enzymatic functions that are dependent on metal ions. No functional characterization is available for this family of five-bladed propellers, though. 242 -193586 cd09972 LOTUS_TDRD_OSKAR The first LOTUS domain in Oskar and Tudor-containing proteins 5 and 7. The first LOTUS domain in Oskar and Tudor-containing proteins 5 and 7: The LOTUS containing proteins are germline-specific and are found in the nuage/polar granules of germ cells. Tudor-containing protein 5 and 7 belong to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 and TDRD7 are components of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Oskar protein is a critical component of the pole plasm in the Drosophila oocyte, which is required for germ cell formation.The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 87 -193587 cd09973 LOTUS_2_TDRD7 The second LOTUS domain on Tudor-containing protein 7 (TDRD7). The second LOTUS domain on Tudor-containing protein 7 (TDRD7): TDRD7 contains three N-terminal LOTUS domains and three Tudor domain repeats at the C-terminus. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD7 together with TDRD1/MTR-1, TDRD5 and TDRD6 forms a ribonucleoprotein complex in the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs) involving in RNA processing for spermatogenesis. TDRD7 is functionally essential for the differentiation of germ cells. The exact molecular function of LOTUS domain on TDRD7 remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 68 -193588 cd09974 LOTUS_3_TDRD7 The third LOTUS domain on Tudor-containing protein 7 (TDRD7). The third LOTUS domain on Tudor-containing protein 7 (TDRD7): TDRD7 contains three N-terminal LOTUS domains and three Tudor domain repeats at the C-terminus. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD7 together with TDRD1/MTR-1, TDRD5 and TDRD6 forms a ribonucleoprotein complex in the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs) involving in RNA processing for spermatogenesis. TDRD7 is functionally essential for the differentiation of germ cells. The exact molecular function of LOTUS domain on TDRD7 remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 67 -193589 cd09975 LOTUS_2_TDRD5 The second LOTUS domain on Tudor-containing protein 5 (TDRD5). The second LOTUS domain on Tudor-containing protein 5 (TDRD5): TDRD5 contains three N-terminal LOTUS domains and a C-terminal Tudor domain. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice TDRD5 is a component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. The exact molecular function of LOTUS domain on TDRD5 remains to be discovered. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 70 -193590 cd09976 LOTUS_3_TDRD5 The third LOTUS domain on Tudor-containing protein 5 (TDRD5). The third LOTUS domain on Tudor-containing protein 5 (TDRD5): TDRD5 contains three N-terminal LOTUS domains and a C-terminal Tudor domain. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice TDRD5 is a component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. The exact molecular function of LOTUS domain on TDRD5 remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 74 -193591 cd09977 LOTUS_1_Limkain_b1 The first LOTUS domain on Limkain b1(LKAP). The first LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 62 -193592 cd09978 LOTUS_2_Limkain_b1 The second LOTUS domain on Limkain b1(LKAP). The second LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization 71 -193593 cd09979 LOTUS_3_Limkain_b1 The third LOTUS domain on Limkain b1(LKAP). The third LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 72 -193594 cd09980 LOTUS_4_Limkain_b1 The fourth LOTUS domain on Limkain b1(LKAP). The fourth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 72 -193595 cd09981 LOTUS_5_Limkain_b1 The fifth LOTUS domain on Limkain b1(LKAP). The fifth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 71 -193596 cd09982 LOTUS_6_Limkain_b1 The sixth LOTUS domain on Limkain b1(LKAP). The sixth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 71 -193597 cd09983 LOTUS_7_Limkain_b1 The seventh LOTUS domain on Limkain b1(LKAP). The seventh LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 73 -193598 cd09984 LOTUS_8_Limkain_b1 The eighth LOTUS domain on Limkain b1(LKAP). The eighth LOTUS domain on Limkain b1(LKAP): Limkain b1 is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. The protein contains multiple copies of LOTUS domains and a conserved RNA recognition motif. The exact molecular function of LOTUS domain remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 76 -193599 cd09985 LOTUS_1_TDRD5 The first LOTUS domain on Tudor-containing protein 5 (TDRD5). The first LOTUS domain on Tudor-containing protein 5 (TDRD5): TDRD5 contains three N-terminal LOTUS domains and a C-terminal Tudor domain. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD5 is a component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. The exact molecular function of LOTUS domain on TDRD5 remains to be identified. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 95 -193600 cd09986 LOTUS_1_TDRD7 The first LOTUS domain on Tudor-containing protein 7 (TDRD7). The first LOTUS domain on Tudor-containing protein 7 (TDRD7): TDRD7 contains three N-terminal LOTUS domains and three Tudor domain repeats at the C-terminus. It belongs to the evolutionary conserved Tudor domain-containing protein (TDRD) family involved in germ cell development. In mice, TDRD7 together with TDRD1/MTR-1, TDRD5 and TDRD6 forms a ribonucleoprotein complex in the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs) involving in RNA processing for spermatogenesis. TDRD7 is functionally essential for the differentiation of germ cells. The exact molecular function of LOTUS domain on TDRD7 remains to be characterized. Its occurrence in proteins associated with RNA metabolism suggests that it might be involved in RNA binding function. The presence of several basic residues and RNA fold recognition motifs support this hypothesis. The RNA binding function might be the first step of regulating mRNA translation or localization. 88 -212513 cd09987 Arginase_HDAC Arginase-like and histone-like hydrolases. Arginase-like/histone-like hydrolase superfamily includes metal-dependent enzymes that belong to Arginase-like amidino hydrolase family and histone/histone-like deacetylase class I, II, IV family, respectively. These enzymes catalyze hydrolysis of amide bond. Arginases are known to be involved in control of cellular levels of arginine and ornithine, in histidine and arginine degradation and in clavulanic acid biosynthesis. Deacetylases play a role in signal transduction through histone and/or other protein modification and can repress/activate transcription of a number of different genes. They participate in different cellular processes including cell cycle regulation, DNA damage response, embryonic development, cytokine signaling important for immune response and post-translational control of the acetyl coenzyme A synthetase. Mammalian histone deacetyases are known to be involved in progression of different tumors. Specific inhibitors of mammalian histone deacetylases are an emerging class of promising novel anticancer drugs. 217 -212514 cd09988 Formimidoylglutamase Formimidoylglutamase or HutE. Formimidoylglutamase (N-formimidoyl-L-glutamate formimidoylhydrolase; formiminoglutamase; N-formiminoglutamate hydrolase; N-formimino-L-glutamate formiminohydrolase; HutE; EC 3.5.3.8) is a metalloenzyme that catalyzes hydrolysis of N-formimidoyl-L-glutamate to L-glutamate and formamide. This enzyme is involved in histidine degradation, requiring Mn as a cofactor while glutathione may be required for maximal activity. In Pseudomonas PAO1, mutation studies show that histidine degradation proceeds via a 'four-step' pathway if the 'five-step' route is absent and vice versa; in the four-step pathway, formiminoglutaminase (HutE, EC 3.5.3.8) directly converts formiminoglutamate (FIGLU) to L-glutamate and formamide in a single step. Formiminoglutamase has traditionally also been referred to as HutG; however, formiminoglutamase is structurally and mechanistically unrelated to N-formyl-glutamate deformylase (also called HutG). Phylogenetic analysis has suggested that HutE was acquired by horizontal gene transfer from a Ralstonia-like ancestor. 262 -212515 cd09989 Arginase Arginase family. This family includes arginase, also known as arginase-like amidino hydrolase family, and related proteins. Arginase is a binuclear Mn-dependent metalloenzyme and catalyzes hydrolysis of L-arginine to L-ornithine and urea (Arg, EC 3.5.3.1), the reaction being the fifth and final step in the urea cycle, providing the path for the disposal of nitrogenous compounds. Arginase controls cellular levels of arginine and ornithine which are involved in protein biosynthesis, and in production of creatine, polyamines, proline and nitric acid. In vertebrates, at least two isozymes have been identified: type I (ARG1) cytoplasmic or hepatic liver-type arginase and type II (ARG2) mitochondrial or non-hepatic arginase. Point mutations in human arginase ARG1 gene lead to hyperargininemia with consequent mental disorders, retarded development and early death. Hyperargininemia is associated with a several-fold increase in the activity of the mitochondrial arginase (ARG2), causing persistent ureagenesis in patients. ARG2 overexpression plays a critical role in the pathophysiology of cholesterol mediated endothelial dysfunction. Thus, arginase is a therapeutic target to treat asthma, erectile dysfunction, atherosclerosis and cancer. 290 -212516 cd09990 Agmatinase-like Agmatinase-like family. Agmatinase subfamily currently includes metalloenzymes such as agmatinase, guanidinobutyrase, guanidopropionase, formimidoylglutamase and proclavaminate amidinohydrolase. Agmatinase (agmatine ureohydrolase; SpeB; EC=3.5.3.11) is the key enzyme in the synthesis of polyamine putrescine; it catalyzes hydrolysis of agmatine to yield putrescine and urea. This enzyme has been found in bacteria, archaea and eukaryotes, requiring divalent Mn and sometimes Zn, Co or Ca for activity. In mammals, the highest level of agmatinase mRNA was found in liver and kidney. However, catabolism of agmatine via agmatinase apparently is a not major path; it is mostly catabolized via diamine oxidase. Agmatinase has been shown to be down-regulated in tumor renal cells. Guanidinobutyrase (Gbh, EC=3.5.3.7) catalyzes hydrolysis of 4-guanidinobutanoate to yield 4-aminobutanoate and urea in arginine degradation pathway. Activity has been shown for purified enzyme from Arthrobacter sp. KUJ 8602. Additionally, guanidinobutyrase is able to hydrolyze D-arginine, 3-guanidinopropionate, 5-guanidinovaleriate and L-arginine with much less affinity, having divalent Zn ions for catalysis. Proclavaminate amidinohydrolase (Pah, EC 3.5.3.22) hydrolyzes amidinoproclavaminate to yield proclavaminate and urea in clavulanic acid biosynthesis. Activity has been shown for purified enzyme from Streptomyces clavuligerus. Clavulanic acid is the effective inhibitor of beta-lactamases. This acid is used in combination with the penicillin amoxicillin to prevent antibiotic's beta-lactam rings from hydrolysis, thus keeping the antibiotics biologically active. 275 -212517 cd09991 HDAC_classI Class I histone deacetylases. Class I histone deacetylases (HDACs) are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues in histone amino termini to yield a deacetylated histone (EC 3.5.1.98). Enzymes belonging to this group participate in regulation of a number of processes through protein (mostly different histones) modification (deacetylation). Class I histone deacetylases in general act via the formation of large multiprotein complexes. This group includes animal HDAC1, HDAC2, HDAC3, HDAC8, fungal RPD3, HOS1 and HOS2, plant HDA9, protist, archaeal and bacterial (AcuC) deacetylases. Members of this class are involved in cell cycle regulation, DNA damage response, embryonic development, cytokine signaling important for immune response and in posttranslational control of the acetyl coenzyme A synthetase. In mammals, they are known to be involved in progression of various tumors. Specific inhibitors of mammalian histone deacetylases are an emerging class of promising novel anticancer drugs. 306 -212518 cd09992 HDAC_classII Histone deacetylases and histone-like deacetylases, classII. Class II histone deacetylases are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues of histones (EC 3.5.1.98) and possibly other proteins to yield deacetylated histones/other proteins. This group includes animal HDAC4,5,6,7,8,9,10, fungal HOS3 and HDA1, plant HDA5 and HDA15 as well as other eukaryotes, archaeal and bacterial histone-like deacetylases. Eukaryotic deacetylases mostly use histones (H2, H3, H4) as substrates for deacetylation; however, non-histone substrates are known (for example, tubulin). Substrates for prokaryotic histone-like deacetylases are not known. Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Interaction partners of class II deacetylases include 14-3-3 proteins, MEF2 family of transcriptional factors, CtBP, calmodulin (CaM), SMRT, N-CoR, BCL6, HP1alpha and SUMO. Histone deacetylases play a role in the regulation of cell cycle, cell differentiation and survival. Class II mammalian HDACs are differentially inhibited by structurally diverse compounds with known antitumor activities, thus presenting them as potential drug targets for human diseases resulting from aberrant acetylation. 291 -212519 cd09993 HDAC_classIV Histone deacetylase class IV also known as histone deacetylase 11. Class IV histone deacetylases (HDAC11; EC 3.5.1.98) are predicted Zn-dependent enzymes. This class includes animal HDAC11, plant HDA2 and related bacterial deacetylases. Enzymes in this subfamily participate in regulation of a number of different processes through protein modification (deacetylation). They catalyze hydrolysis of N(6)-acetyl-lysine of histones (or other proteins) to yield a deacetylated proteins. Histone deacetylases often act as members of large multi-protein complexes such as mSin3A or SMRT/N-CoR. Human HDAC11 does not associate with them but can interact with HDAC6 in vivo. It has been suggested that HDAC11 and HDAC6 may use non-histone proteins as their substrates and play a role other than to directly modulate chromatin structure. In normal tissues, expression of HDAC11 is limited to kidney, heart, brain, skeletal muscle and testis, suggesting that its function might be tissue-specific. In mammals, HDAC11 proteins are known to be involved in progression of various tumors. HDAC11 plays an essential role in regulating OX40 ligand (OX40L) expression in Hodgkin lymphoma (HL); selective inhibition of HDAC11 expression significantly up-regulates OX40L and induces apoptosis in HL cell lines. Thus, inhibition of HDAC11 could be a therapeutic drug option for antitumor immune response in HL patients. 275 -212520 cd09994 HDAC_AcuC_like Class I histone deacetylase AcuC (Acetoin utilization protein)-like enzymes. AcuC (Acetoin utilization protein) is a class I deacetylase found only in bacteria and is involved in post-translational control of the acetyl-coenzyme A synthetase (AcsA). Deacetylase AcuC works in coordination with deacetylase SrtN (class III), possibly to maintain AcsA in active (deacetylated) form and let the cell grow under low concentration of acetate. B. subtilis AcuC is a member of operon acuABC; this operon is repressed by the presence of glucose and does not show induction by acetoin; acetoin is a bacterial fermentation product that can be converted to acetate via the butanediol cycle in absence of other carbon sources. Inactivation of AcuC leads to slower growth and lower cell yield under low-acetate conditions in Bacillus subtilis. In general, Class I histone deacetylases (HDACs) are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues in histone amino termini to yield a deacetylated histone (EC 3.5.1.98). Enzymes belonging to this group participate in regulation of a number of processes through protein (mostly different histones) modification (deacetylation). Class I histone deacetylases in general act via the formation of large multiprotein complexes. Members of this class are involved in cell cycle regulation, DNA damage response, embryonic development, cytokine signaling important for immune response and in posttranslational control of the acetyl coenzyme A synthetase. 313 -212521 cd09996 HDAC_classII_1 Histone deacetylases and histone-like deacetylases, classII. This subfamily includes bacterial as well as eukaryotic Class II histone deacetylase (HDAC) and related proteins. Deacetylases of class II are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues of histones (EC 3.5.1.98) and possibly other proteins to yield deacetylated histones/other proteins. Included in this family is a bacterial HDAC-like amidohydrolase (Bordetella/Alcaligenes species FB18817, denoted as FB188 HDAH) shown to be most similar in sequence and function to class II HDAC6 domain 3 or b (HDAC6b). FB188 HDAH is able to remove the acetyl moiety from acetylated histones, and can be inhibited by common HDAC inhibitors such as SAHA (suberoylanilide hydroxamic acid) as well as class II-specific but not class I specific inhibitors. 359 -212522 cd09998 HDAC_Hos3 Class II histone deacetylases Hos3 and related proteins. Fungal histone deacetylase Hos3 from Saccharomyces cerevisiae is a Zn-dependent enzyme belonging to HDAC class II. It catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Hos3 deacetylase is homodimer, in vitro it shows specificity to H4, H3 and H2A. 353 -212523 cd09999 Arginase-like_1 Arginase-like amidino hydrolase family. This family includes arginase, also known as arginase-like amidino hydrolase family, as well as arginase-like proteins and are found in bacteria, archaea and eykaryotes, but does not include metazoan arginases. Arginase is a binuclear Mn-dependent metalloenzyme and catalyzes hydrolysis of L-arginine to L-ornithine and urea (Arg, EC 3.5.3.1), the reaction being the fifth and final step in the urea cycle, providing the path for the disposal of nitrogenous compounds. Arginase controls cellular levels of arginine and ornithine which are involved in protein biosynthesis, and in production of creatine, polyamines, proline and nitric acid. 272 -212524 cd10000 HDAC8 Histone deacetylase 8 (HDAC8). HDAC8 is a Zn-dependent class I histone deacetylase that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. HDAC8 is found in human cytoskeleton-bound protein fraction and insoluble cell pellets. It plays a crucial role in intramembraneous bone formation; germline deletion of HDAC8 is detrimental to skull bone formation. HDAC8 is possibly associated with the smooth muscle actin cytockeleton and may regulate the contractive capacity of smooth muscle cells. HDAC8 is also involved in the metabolic control of the estrogen receptor related receptor (ERR)-alpha/peroxisome proliferator activated receptor (PPAR) gamma coactivator 1 alpha (PGC1-alpha) transcriptional complex as well as in the development of neuroblastoma and T-cell lymphoma. HDAC8-selective small-molecule inhibitors could be a therapeutic drug option for these diseases. 364 -212525 cd10001 HDAC_classII_APAH Histone deacetylase class IIa. This subfamily includes bacterial acetylpolyamine amidohydrolase (APAH) as well as other Class II histone deacetylase (HDAC) and related proteins. Deacetylases of class II are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues of histones (EC 3.5.1.98) and possibly other proteins to yield deacetylated histones/other proteins. Mycoplana ramosa APAH exhibits broad substrate specificity and catalyzes the deacetylation of polyamines such as putrescine, spermidine, and spermine by cleavage of a non-peptide amide bond. 298 -212526 cd10002 HDAC10_HDAC6-dom1 Histone deacetylase 6, domain 1 and histone deacetylase 10. Histone deacetylases 6 and 10 are class IIb Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDACs usually act via association with DNA binding proteins to target specific chromatin regions. HDAC6 is the only histone deacetylase with internal duplication of two catalytic domains which appear to function independently of each other, and also has a C-terminal ubiquitin-binding domain. It is located in the cytoplasm and associates with microtubule motor complex, functioning as the tubulin deacetylase and regulating microtubule-dependent cell motility. HDAC10 has an N-terminal deacetylase domain and a C-terminal pseudo-repeat that shares significant similarity with its catalytic domain. It is located in the nucleus and cytoplasm, and is involved in regulation of melanogenesis. It transcriptionally down-regulates thioredoxin-interacting protein (TXNIP), leading to altered reactive oxygen species (ROS) signaling in human gastric cancer cells. Known interaction partners of HDAC6 are alpha tubulin (substrate) and ubiquitin-like modifier FAT10 (also known as Ubiquitin D or UBD) while interaction partners of HDAC10 are Pax3, KAP1, hsc70 and HDAC3 proteins. 336 -212527 cd10003 HDAC6-dom2 Histone deacetylase 6, domain 2. Histone deacetylase 6 is a class IIb Zn-dependent enzyme that catalyzes hydrolysis of N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDACs usually act via association with DNA binding proteins to target specific chromatin regions. HDAC6 is the only histone deacetylase with internal duplication of two catalytic domains which appear to function independently of each other, and also has a C-terminal ubiquitin-binding domain. It is located in the cytoplasm and associates with microtubule motor complex, functioning as the tubulin deacetylase and regulating microtubule-dependent cell motility. Known interaction partners of HDAC6 are alpha tubulin and ubiquitin-like modifier FAT10 (also known as Ubiquitin D or UBD). 350 -212528 cd10004 RPD3-like reduced potassium dependency-3 (RPD3)-like. Proteins of the Rpd3-like family are class I Zn-dependent Histone deacetylases that catalyze hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). RPD3 is the yeast homolog of class I HDACs. The main function of RPD3-like group members is regulation of a number of different processes through protein (mostly different histones) modification (deacetylation). This group includes fungal RPD3 and acts via the formation of large multiprotein complexes. Members of this group are involved in cell cycle regulation, DNA damage response, embryonic development and cytokine signaling important for immune response. Histone deacetylation by yeast RPD3 represses genes regulated by the Ash1 and Ume6 DNA-binding proteins. In mammals, they are known to be involved in progression of various tumors. Specific inhibitors of mammalian histone deacetylases could be a therapeutic drug option. 375 -212529 cd10005 HDAC3 Histone deacetylase 3 (HDAC3). HDAC3 is a Zn-dependent class I histone deacetylase that catalyzes hydrolysis of N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. In order to target specific chromatin regions, HDAC3 can interact with DNA-binding proteins (transcriptional factors) either directly or after forming complexes with a number of other proteins, as observed for the SMPT/N-CoR complex which recruits human HDAC3 to specific chromatin loci and activates deacetylation. Human HDAC3 is also involved in deacetylation of non-histone substrates such as RelA, SPY and p53 factors. This protein can also down-regulate p53 function and subsequently modulate cell growth and apoptosis. This gene is therefore regarded as a potential tumor suppressor gene. HDAC3 plays a role in various physiological processes, including subcellular protein localization, cell cycle progression, cell differentiation, apoptosis and survival. HDAC3 has been found to be overexpressed in some tumors including leukemia, lung carcinoma, colon cancer and maxillary carcinoma. Thus, inhibitors precisely targeting HDAC3 (in some cases together with retinoic acid or hyperthermia) could be a therapeutic drug option. 381 -212530 cd10006 HDAC4 Histone deacetylase 4. Histone deacetylase 4 is a class IIa Zn-dependent enzyme that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Class IIa histone deacetylases are signal-dependent co-repressors, having N-terminal regulatory domain with two or three conserved serine residues; phosphorylation of these residues is important for ability to shuttle between the nucleus and cytoplasm and act as transcriptional co-repressors. HDAC4 participates in regulation of chondrocyte hypertrophy and skeletogenesis. However, biological substrates for HDAC4 have not been identified; only low lysine deacetylation activity has been demonstrated and active site mutant has enhanced activity toward acetylated lysines. HDAC4 does not bind DNA directly, but through transcription factors MEF2C (myocyte enhancer factor-2C) and MEF2D. Other known interaction partners of the protein are 14-3-3 proteins, SMRT and N-CoR co-repressors, BCL6, HP1, SUMO-1 ubiquitin-like protein, and ANKRA2. It appears to interact in a multiprotein complex with RbAp48 and HDAC3. Furthermore, HDAC4 is required for TGFbeta1-induced myofibroblastic differentiation. 409 -212531 cd10007 HDAC5 Histone deacetylase 5. Histone deacetylase 5 is a class IIa Zn-dependent enzyme that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Class IIa histone deacetylases are signal-dependent co-repressors, having N-terminal regulatory domain with two or three conserved serine residues; phosphorylation of these residues is important for ability to shuttle between the nucleus and cytoplasm and act as transcriptional co-repressors. HDAC5 is involved in integration of chronic drug (cocaine) addiction and depression with changes in chromatin structure and gene expression; cocaine regulates HDAC5 function to antagonize the rewarding impact of cocaine, possibly by blocking drug-stimulated gene expression that supports drug-induced behavioral change. It is also involved in regulation of angiogenesis and cell cycle as well as immune system development. HDAC5 and HDAC9 have been found to be significantly up-regulated in high-risk medulloblastoma compared with low-risk and may potentially be novel drug targets. 420 -212532 cd10008 HDAC7 Histone deacetylase 7. Histone deacetylase 7 is a class IIa Zn-dependent enzyme that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Class IIa histone deacetylases are signal-dependent co-repressors, having N-terminal regulatory domain with two or three conserved serine residues; phosphorylation of these residues is important for ability to shuttle between the nucleus and cytoplasm and act as transcriptional co-repressors. HDAC7 is involved in regulation of myocyte migration and differentiation. Known interaction partners of class IIa HDAC7 are myocyte enhancer factors - MEF2A, -2C, and -2D, 14-3-3 proteins, SMRT and N-CoR co-repressors, HDAC3, ETA (endothelin receptor). This enzyme is also involved in the development of the immune system as well as brain and heart development. Multiple alternatively spliced transcript variants encoding several isoforms have been found for this gene. 378 -212533 cd10009 HDAC9 Histone deacetylase 9. Histone deacetylase 9 is a class IIa Zn-dependent enzyme that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Class IIa histone deacetylases are signal-dependent co-repressors, they have N-terminal regulatory domain with two or three conserved serine residues, phosphorylation of these residues is important for ability to shuttle between the nucleus and cytoplasm and act as transcriptional co-repressors. HDAC9 is involved in regulation of gene expression and dendritic growth in developing cortical neurons. It also plays a role in hematopoiesis. Its deregulated expression may be associated with some human cancers. HDAC5 and HDAC9 have been found to be significantly up-regulated in high-risk medulloblastoma compared with low-risk and may potentially be novel drug targets. 379 -212534 cd10010 HDAC1 Histone deacetylase 1 (HDAC1). Histone deacetylase 1 (HDAC1) is a Zn-dependent class I enzyme that catalyzes hydrolysis of N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDAC1 is involved in regulation through association with DNA binding proteins to target specific chromatin regions. In particular, HDAC1 appears to play a major role in pre-implantation embryogenesis in establishing a repressive chromatin state. Its interaction with retinoblastoma tumor-suppressor protein is essential in the control of cell proliferation and differentiation. Together with metastasis-associated protein-2 (MTA2), it deacetylates p53, thereby modulating its effect on cell growth and apoptosis. It participates in DNA-damage response, along with HDAC2; together, they promote DNA non-homologous end-joining. HDAC1 is also involved in tumorogenesis; its overexpression modulates cancer progression. Specific inhibitors of HDAC1 are currently used in cancer therapy. 371 -212535 cd10011 HDAC2 Histone deacetylase 2 (HDAC2). Histone deacetylase 2 (HDAC2) is a Zn-dependent class I enzyme that catalyzes hydrolysis of N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDAC2 is involved in regulation through association with DNA binding proteins to target specific chromatin regions. It forms transcriptional repressor complexes by associating with several proteins, including the mammalian zinc-finger transcription factor YY1, thus playing an important role in transcriptional regulation, cell cycle progression and developmental events. Additionally, a few non-histone HDAC2 substrates have been found. HDAC2 plays a role in embryonic development and cytokine signaling important for immune response, and is over-expressed in several solid tumors including oral, prostate, ovarian, endometrial and gastric cancer. It participates in DNA-damage response, along with HDAC1; together, they can promote DNA non-homologous end-joining. HDAC2 is considered an important cancer prognostic marker. Inhibitors specifically targeting HDAC2 could be a therapeutic drug option. 366 -193609 cd10013 Cas3''_I CRISPR/Cas system-associated protein Cas3''. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; HD-like nuclease, specifically digesting double-stranded oligonucleotides and preferably cleaving at G:C pairs; signature gene for Type I 188 -199900 cd10014 TFIIA_gamma_C Gamma subunit of transcription initiation factor IIA, C-terminal domain. Transcription factor II A (TFIIA) is one of the general transcription factors for RNA polymerase II. TFIIA increases the affinity of the TATA-binding protein (TBP) for DNA, in order to assemble the initiation complex. TFIIA also functions as an activator during development and differentiation, and is involved in transcription from TATA-less promoters. TFIIA is composed of more than one subunit in various organisms. Mammalian TFIIA large subunits (TFIIA alpha and beta), and the smaller subunit (TFIIA gamma) form a heterotrimer. TFIIA alpha and beta are encoded by a single TFIIA_alpha_beta gene and post-translationally processed and cleaved. TOA1 and TOA2 are the two subunits of Yeast TFIIA which correspond to Mammalian TFIIA_alpha_beta and TFIIA gamma, respectively. TOA1 and TOA2 form a heterodimeric protein complex. The TFIIA gamma subunit is highly conserved between humans, Drosophila and yeast and it is required for TFIIA function. The C-terminal domain of the gamma (TFIIA_gamma_C) subunit forms a beta-barrel structure together with TFIIA beta. 47 -197381 cd10015 BfiI_C_EcoRII_N_B3 DNA binding domains of BfiI, EcoRII and plant B3 proteins. This family contains the N-terminal DNA binding domain of type IIE restriction endonuclease EcoRII-like proteins, the C-terminal DNA binding domain of type IIS restriction endonuclease BfiI-like proteins and plant-specific B3 proteins. Type II restriction endonucleases are components of restriction modification (RM) systems that protect bacteria and archaea against invading foreign DNA. They usually function as homodimers or homotetramers that cleave DNA at defined sites of 4 to 8 bp in length, and they require Mg2+, not ATP or GTP, for catalysis. EcoRII is specific for the 5'-CCWGG sequence (W stands for A or T). EcoRII consists of 2 domains, the C-terminal catalytic/dimerization domain (EcoRII-C), and the N-terminal effector DNA binding domain (EcoRII-N). BfiI is unique in cleaving DNA at fixed positions downstream of an asymmetric sequence in the absence of Mg2+. BfiI consists of two discrete domains with distinct functions: an N-terminal catalytic domain with non-specific nuclease activity and dimerization function that is more closely related to Nuc, an EDTA-resistant nuclease from the phospholipase D (PLD) superfamily; and a C-terminal domain that specifically recognizes its target sequences, 5'-ACTGGG-3'. B3 proteins are a family of plant-specific transcription factors, involved in a great variety of processes, including seed development and auxin response. 109 -197382 cd10016 EcoRII_N N-terminal domain of type IIE restriction endonuclease EcoRII and similar proteins. N-terminal domain of type IIE restriction endonuclease EcoRII and similar proteins. Type II restriction endonucleases are components of restriction modification (RM) systems that protect bacteria and archaea against invading foreign DNA. They usually function as homodimers or homotetramers that cleave DNA at defined sites of 4 to 8 bp in length, and they require Mg2+, not ATP or GTP, for catalysis. EcoRII is specific for the 5'-CCWGG sequence (W stands for A or T). EcoRII consists of 2 domains, the C-terminal catalytic/dimerization domain (EcoRII-C), and the N-terminal effector DNA binding domain (EcoRII-N). To be catalytically active, EcoRII has to form a dimer. 142 -197383 cd10017 B3_DNA Plant-specific B3-DNA binding domain. The plant-specific B3 DNA binding domain superfamily includes the well-characterized auxin response factor (ARF) and the LAV (Leafy cotyledon2 [LEC2]-Abscisic acid insensitive3 [ABI3]-VAL) families, as well as the RAV (Related to ABI3 and VP1) and REM (REproductive Meristem) families. LEC2 and ABI3 have been shown to be involved in seed development, while other members of the LAV family seem to have a more general role, being expressed in many organs during plant development. Members of the ARF family bind to the auxin response element and depending on presence of an activation or repression domain, they activate or repress transcription. RAV and REM families are less studied B3 protein famillies. 98 -197384 cd10018 BfiI_C C-terminal domain of type IIs restriction endonuclease BfiI and similar proteins. C-terminal domain of a novel type IIs restriction endonuclease BfiI and similar proteins. Type II restriction endonucleases are components of restriction modification (RM) systems that protect bacteria and archaea against invading foreign DNA. They usually function as homodimers or homotetramers that cleave DNA at defined sites of 4 to 8 bp in length, and they require Mg2+, not ATP or GTP, for catalysis. Unlike all other restriction enzymes known to date, BfiI is unique in cleaving DNA at fixed positions downstream of an asymmetric sequence in the absence of Mg2+. BfiI consists of two discrete domains with distinct functions: an N-terminal catalytic domain with non-specific nuclease activity and dimerization function that is more closely related to Nuc, an EDTA-resistant nuclease from the phospholipase D (PLD) superfamily; and a C-terminal domain that specifically recognizes its target sequences, 5'-ACTGGG-3'. BfiI presumably evolved through domain fusion of a DNA recognition domain to the catalytic Nuc-like domain from the PLD superfamily. BfiI forms a functionally active homodimer which has two DNA-binding surfaces located at the C-terminal domains but only one active site, located at the dimer interface between the two N-terminal catalytic domains. 157 206756 cd10019 14-3-3_sigma 14-3-3 sigma, an isoform of 14-3-3 protein. 14-3-3 protein sigma isoform, also known as stratifin or human mammary epithelial marker (HME) 1, has been most directly linked to tumor development. In humans, it is expressed by the SFN gene, strictly in stratified squamous epithelial cells in response to DNA damage where it is transcriptionally induced in a p53-dependent manner, subsequently causing cell-cycle arrest at the G2/M checkpoint. Up-regulation and down-regulation of 14-3-3 sigma expression have both been described in tumors. For example, in human breast cancer, 14-3-3 sigma is predominantly down-regulated by CpG methylation, acting as both a tumor suppressor and a prognostic indicator, while in human scirrhous-type gastric carcinoma (SGC), it is up-regulated and may play an important role in SGC carcinogenesis and progression. Loss of 14-3-3 sigma expression sensitizes tumor cells to treatment with conventional cytostatic drugs, making this protein an attractive therapeutic target. 14-3-3 domains are an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 242 -206757 cd10020 14-3-3_epsilon 14-3-3 epsilon, an isoform of 14-3-3 protein. 14-3-3 protein epsilon isoform (isoform (also known as tyrosine 3-monooxygenase/ tryptophan 5-monooxygenase activation protein, epsilon polypeptide) is encoded by the YWHAE gene in humans and is involved in cancer cell survival and growth. It interacts with CDC25 phosphatases, RAF1 and IRS1 proteins, suggesting its role in diverse biochemical activities related to signal transduction, such as cell division and regulation of insulin sensitivity. Overexpression of 14-3-3 epsilon in primary hepatocellular carcinoma (HCC) tissues predicts a high risk of extrahepatic metastasis and worse survival, and is a potential therapeutic target. It has also been implicated in the pathogenesis of small cell lung cancer. 14-3-3 epsilon overexpression protects colorectal cancer and endothelial cells from oxidative stress-induced apoptosis, while its suppression by non-steroidal anti-inflammatory drugs induces cancer and endothelial cell death. Cellular levels of 14-3-3 epsilon could possibly serve as an important regulator of cell survival in response to oxidative stress and other death signals. 14-3-3 domains are an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 230 -206758 cd10022 14-3-3_beta_zeta 14-3-3 beta and zeta isoforms of 14-3-3 protein. 14-3-3 protein beta and zeta isoform (also known as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta and zeta polypeptide) are encoded by the YWHAB gene and YWHAZ gene in humans. They have been linked to mitogenic signaling and the cell cycle machinery, and to cancer initiation and progression, respectively. The beta isoform has been shown to interact with RAF1 and CDC25 phosphatases and its overexpression is associated with invasion, migration, metastasis and proliferation of tumor cells and its elevated levels are correlated with tumor size, the number of lymph node metastases and a reduced survival rate. It is significantly overexpressed in lung cancer tissues, mutated chronic lymphocytic leukemia (M-CLL), gastric cancer tissues, aflatoxin B1-induced rat hepatocellular carcinoma K1 and K2 cells, as well as renal cell carcinoma cysts, and can potentially be used as a diagnostic and prognostic biomarker in the cancer. Numerous proteins involved in anti-apoptosis and tumor progression were also found to be differentially expressed in gastric cancer cells where 14-3-3 beta is overexpressed. 14-3-3 beta also interacts with human Dapper1 (hDpr1), a key negative regulator of Wnt signaling, via hDpr1 phosphorylation by protein kinase A, thus attenuating the ability of hDpr1 to promote Dishevelled (Dvl) degradation, and subsequently enhancing Wnt signaling. The zeta isoform is ubiquitously expressed and localized to most subcellular regions, including the cytoplasm, plasma membrane, mitochondria, and nucleus. Its overexpression and gene amplification in multiple cancers are correlated with poor prognosis and chemoresistance in cancer patients. 14-3-3 zeta has been identified as a biomarker with high sensitivity and specificity for diagnosis and prognosis in multiple tumor types, including hepatocellular carcinoma, head and neck cancer, indicating a potential clinical application for using 14-3-3 zeta in selecting treatment options and predicting cancer outcome. It also interacts with IRS1 protein, suggesting a role in regulating insulin sensitivity. 14-3-3 domains are an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 229 -206759 cd10023 14-3-3_theta 14-3-3 theta/tau (theta in mice, tau in human), an isoform of 14-3-3 protein. 14-3-3 tau/theta (tau in humans, theta in mice) isoform (also known as tyrosine 3-monooxygenase/ tryptophan 5-monooxygenase activation protein, theta polypeptide) is encoded by the YWHAQ gene in humans and plays an important role in controlling apoptosis through interactions with ASK1, c-jun NH-terminal kinase, and p38 mitogen-activated protein kinase (MAPK). Its interaction with CDC25c regulates entry into the cell cycle and subsequent interaction with Bad prevents apoptosis. 14-3-3 theta protein expression is induced in patients with amyotrophic lateral sclerosis. 14-3-3 tau is often overexpressed in breast cancer, which is associated with the downregulation of p21, a p53 target gene, and thus leads to tamoxifen resistance in MCF7 breast cancer cells and shorter patient survival. Therefore, 14-3-3 tau may be a potential therapeutic target in breast cancer. Additionally, 14-3-3 theta mediates nucleocytoplasmic shuttling of the coronavirus nucleocapsid protein which causes severe acute respiratory syndrome. 14-3-3 domain is an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 234 -206760 cd10024 14-3-3_gamma 14-3-3 gamma, an isoform of 14-3-3 protein. 14-3-3 gamma isoform (also known as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) is encoded by the YWHAG gene in humans and is induced by growth factors in human vascular smooth muscle cells. It is also highly expressed in skeletal and heart muscles, suggesting an important role in muscle tissue. It has been shown to interact with RAF1 and protein kinase C, proteins involved in various signal transduction pathways. 14-3-3 gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. 14-3-3 gamma mediates the interaction between Chk1 and Cdc25A; this complex has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage. Increased expression of 14-3-3 gamma in lung cancer coincides with loss of functional p53, possibly in a cooperative manner promoting genomic instability. Also, during cell cycle, 14-3-3 gamma protects p21, a cyclin-dependent kinase inhibitor, from degradation mediated by the p53 suppressor MDMX, which may account for elevation of p21 levels independent of p53 and in response to DNA damage. Elevated expression of 14-3-3 gamma in human hepatocellular carcinoma predicts extrahepatic metastasis and worse survival, thus making this protein a candidate biomarker and a potential target for novel therapies against the disease. 246 -206761 cd10025 14-3-3_eta 14-3-3 eta, an isoform of 14-3-3 protein. 14-3-3 eta isoform (also known as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide) is expressed mainly in brain, and is involved in hypothalamic-pituitary-adrenocortical (HPA) axis regulation. In humans, it is encoded by the YWHAH gene, and is a positional and functional candidate for schizophrenia as well as bipolar disorder (BP). This gene contains a 7 bp repeat sequence in its 5' Untranslated Region (UTR), and early-onset schizophrenia has been associated with changes in the number of this repeat. 14-3-3 eta and gamma are found in the serum and synovial fluid of patients with joint inflammation. Specifically, 14-3-3 eta, which plays a regulatory role in chondrogenic differentiation, is significantly overexpressed in juvenile rheumatoid arthritis (JRA), a chronic inflammatory disease often associated with growth impairment. Overexpression of Gremlin 1, the bone morphogenetic protein antagonist, may play an oncogenic role in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma, since it functions by interaction with the 14-3-3 eta domain. Therefore, Gremlin 1 and its binding protein 14-3-3 eta could be appropriate targets for developing diagnostic and therapeutic strategies against human cancers. 14-3-3 domain is an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 239 -206762 cd10026 14-3-3_plant Plant 14-3-3 protein domain. Plant 14-3-3 isoforms, similar to their highly conserved homologs in mammals, bind to phosphorylated target proteins to modulate their function. They have been implicated in a variety of physiological functions; in particular, abiotic and biotic stress responses, primary metabolism, as well as various aspects of plant growth and development. They function through the regulation of a diverse range of proteins including transcription factors, kinases, structural proteins, ion channels as well as pathogen defense-related proteins. The 14-3-3 proteins are affected transcriptionally as well as functionally by the environment of the plant, both intracellular and extracellular, thus playing a key role in the response to environmental stress, pathogens and light conditions. Plant 14-3-3 proteins have been divided into epsilon-like groups and non-epsilon groups based on phylogenetic clustering. They have a varying number of isoforms (for example, Arabidopsis has thirteen known protein isoforms, cotton has six) with variation in their affinity for specific binding partners, suggesting specific roles in specific processes. 237 -198425 cd10027 UDG_F1 Family 1 of Uracil-DNA glycosylase (UDG) enzymes. Uracil-DNA glycosylases (UDGs) are DNA repair enzymes that catalyze the removal of mismatched uracil from DNA to initiate DNA base excision repair pathway. Family 1 enzymes are active against uracil in both ssDNA and dsDNA, and recognize uracil explicitly in an extrahelical conformation via a combination of protein and bound-water interactions. Family 1 enzymes are present in Eubacteria, Eukarya and in some eukaryotic viruses. Members of Family 1 are the most efficient Uracil-DNA glycosylases. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. Thus, UDG is an essential enzyme for maintaining the integrity of genetic information. More than five UDG families have been characterized so far; these families share similar overall folds, and common active site motifs. However, they may differ in substrate preferences. 201 -198426 cd10028 UDG_F2_MUG G:T/U mismatch specific DNA glcosylase (MUG). G:T/U mismatch specific DNA glycosylases (MUG) are classified as Family 2 of Uracil DNA glycosylase enzymes. MUG catalyzes the removal of thymine or uracil bases mispaired with guanine through the hydrolysis of their N-glycosidic bond, generating abasic sites in DNA to initiate the base excision repair pathway. G:U and G:T mismatched base pairs arise in DNA either by mis-incorporation during DNA replication or by hydrolytic deamination of cytosine and 5-methyl cytosine, respectively. MUGs are dsDNA specific base excision repair enzymes. They explicitly recognize the widowed guanine on the complementary strand rather than the extrahelical scissile pyrimidine. This allows a broader specificity so that some MUGs can excise uracil, thymine or 3, N(4)-ethenocytosine from mismatches with guanine. MUGs are found in Eubacteria and Eukarya, where they appear to have complementary functions of Family 1 UDGs. MUG is an essential enzyme for maintaining the integrity of genetic information. 162 -198427 cd10029 UDG_F3_SMUG SMUG: single-strand-selective monofunctional uracil-DNA glycosylase. SMUG (single-strand-selective monofunctional uracil-DNA glycosylase) is classified as Family 3 of Uracil-DNA glycosylase (UDG) enzymes. SMUG is a DNA repair enzyme that catalyzes the removal of mismatched uracil and its derivatives from DNA to initiate DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. Thus, DNA repair enzymes are essential for maintaining the integrity of genetic information. A Family 3 UDG from human was first characterized to remove Uracil from ssDNA, hence the name hSMUG (single-strand-selective monofunctional uracil-DNA glycosylase). However, subsequent research has shown that hSMUG1 and its rat ortholog can remove Uracil and its oxidized pyrimidine derivatives from both, ssDNA and dsDNA. The SMUG targeted mismatched uracil derivatives include 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU). SMUGs are found in Eubacteria and Eukarya. 233 -198428 cd10030 UDG_F4_TTUDGA_like Family 4 Uracil-DNA glycosylase (UDG), found exclusively in thermophilic organisms. The enzymes of Family 4 Uracil-DNA glycosylase (UDG), found only in thermophilic organisms, are thermostable enzymes. Uracil-DNA glycosylases (UDGs) are DNA repair enzymes that catalyze the removal of mismatched uracil from DNA to initiate DNA base excision repair pathway. The Thermus thermophilus enzyme TTUDGA removes uracil from both, ssDNA and dsDNA, but not thymine from a G:T mismatch. These details suggest that the mechanism by which Family 4 UDGs remove uracils from DNA is similar to that of Family 1 enzymes. The thermostability of the enzyme may be linked to the presence of an iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface as well as prolines on loops and turns, as commonly found in the Family 4 enzymes. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. 164 -198429 cd10031 UDG_F5_TTUDGB_like Family-5 Uracil-DNA glycosylases (UDG), found in thermophilic organisms. Family-5 Uracil-DNA glycosylases (UDG), found in thermophilic organisms, are DNA base excision repair enzymes. This family is represented by the enzyme TTUDGB from Thermus thermophilus HB8. Members of this family exhibit high structural and sequence similarity to Family 4 UDGs, which are also found in thermophilic organisms. However, Family 4 and Family 5 enzymes demonstrate differences in substrate specificity and catalytic mechanisms. Both TTUDGA (Family 4) and TTUDGB (Family 5) are capable of removing uracil from double stranded DNA. However, TTUDGA can also remove uracil from single-stranded DNA, while TTUDGB does not. TTUDGB also excises thymine from G:T mismatched DNA. In contrast, TTUDGA cannot remove thymine from a G:T mismatch. Furthermore, TTUDGB removes analogs of uracil from DNA, including 5-hydroxymethyluracil (hmU) and 5-fluorouracil (fU). 203 -198430 cd10032 UDG_MUG_like MUG-like Uracil-DNA glycosylase enzyme family. MUG-like subfamily of Uracil-DNA glycosylase superfamily: Uracil-DNA glycosylases (UDG) catalyze the removal of uracil from DNA to initiate DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. Thus, UDG is an essential enzyme for maintaining the integrity of genetic information. The members of this family show closest sequence homology to that of G:T/U mismatch specific DNA glcosylase (MUG, Family 2 UDG). MUG catalyzes the removal of thymine or uracil bases mispaired with guanine through the hydrolysis of their N-glycosidic bond, generating abasic sites in DNA to initiate base excision repair pathway. MUGs are dsDNA specific excision repair enzyme. They explicitly recognize the widowed guanine on the complementary strand rather than the extrahelical scissile pyrimidine. 140 -198431 cd10033 UDG_like_1 Uncharacterized subfamily of Uracil-DNA glycosylases. This is a subfamily of Uracil-DNA glycosylase superfamily. Uracil-DNA glycosylases (UDG) catalyze the removal of uracil from DNA to initiate DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. UDG is an essential enzyme for maintaining the integrity of genetic information. This ubiquitously found enzyme hydrolyzes the N-glycosidic bond of deoxyuridine in DNA. 172 -198432 cd10034 UDG_like_2 Uncharacterized subfamily of Uracil-DNA glycosylases. This is a subfamily of Uracil-DNA glycosylase superfamily. Uracil-DNA glycosylases (UDG) catalyze the removal of uracil from DNA to initiate DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. UDG is an essential enzyme for maintaining the integrity of genetic information. This ubiquitously found enzyme hydrolyzes the N-glycosidic bond of deoxyuridine in DNA. 141 -198433 cd10035 UDG_like_3 Uncharacterized subfamily of Uracil-DNA glycosylases. This is a subfamily of Uracil-DNA glycosylase superfamily. Uracil-DNA glycosylases (UDG) catalyze the removal of uracil from DNA to initiate DNA base excision repair pathway. Uracil in DNA can arise as a result of mis-incorporation of dUMP residues by DNA polymerase or deamination of cytosine. Uracil mispaired with guanine in DNA is one of the major pro-mutagenic events, causing G:C->A:T mutations. UDG is an essential enzyme for maintaining the integrity of genetic information. This ubiquitously found enzyme hydrolyzes the N-glycosidic bond of deoxyuridine in DNA. 133 -197344 cd10036 Reelin_subrepeat_Nt Additional N-terminal subrepeat of reelin. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. Some family members appear to have an additional subrepeat at the N-terminus as characterized in this model. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). Genetic deficiency of reelin, or ApoER2 and VLDLR, or Dab1, all exhibit the same phenotypes, including ataxia, cortical layer inversion and abnormal positioning patterns. 151 -197345 cd10037 Reelin_repeat_1_subrepeat_1 N-terminal subrepeat of tandem repeat unit 1 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 146 -197346 cd10038 Reelin_repeat_2_subrepeat_1 N-terminal subrepeat of tandem repeat unit 2 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 168 -197347 cd10039 Reelin_repeat_3_subrepeat_1 N-terminal subrepeat of tandem repeat unit 3 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 170 -197348 cd10040 Reelin_repeat_4_subrepeat_1 N-terminal subrepeat of tandem repeat unit 4 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 170 -197349 cd10041 Reelin_repeat_5_subrepeat_1 N-terminal subrepeat of tandem repeat unit 5 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 174 -197350 cd10042 Reelin_repeat_6_subrepeat_1 N-terminal subrepeat of tandem repeat unit 6 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 157 -197351 cd10043 Reelin_repeat_7_subrepeat_1 N-terminal subrepeat of tandem repeat unit 7 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 171 -197352 cd10044 Reelin_repeat_8_subrepeat_1 N-terminal subrepeat of tandem repeat unit 8 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the N-terminal subrepeat, which directly contacts the C-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 176 -197353 cd10045 Reelin_repeat_1_subrepeat_2 C-terminal subrepeat of tandem repeat unit 1 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 155 -197354 cd10046 Reelin_repeat_2_subrepeat_2 C-terminal subrepeat of tandem repeat unit 2 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 156 -197355 cd10047 Reelin_repeat_3_subrepeat_2 C-terminal subrepeat of tandem repeat unit 3 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 151 -197356 cd10048 Reelin_repeat_4_subrepeat_2 C-terminal subrepeat of tandem repeat unit 4 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 150 -197357 cd10049 Reelin_repeat_5_subrepeat_2 C-terminal subrepeat of tandem repeat unit 5 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 150 -197358 cd10050 Reelin_repeat_6_subrepeat_2 C-terminal subrepeat of tandem repeat unit 6 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 148 -197359 cd10051 Reelin_repeat_7_subrepeat_2 C-terminal subrepeat of tandem repeat unit 7 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 162 -197360 cd10052 Reelin_repeat_8_subrepeat_2 C-terminal subrepeat of tandem repeat unit 8 of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 161 -199901 cd10145 TFIIA_gamma_N Gamma subunit of transcription initiation factor IIA, N-terminal helical domain. Transcription factor II A (TFIIA) is one of the general transcription factors for RNA polymerase II. TFIIA increases the affinity of the TATA-binding protein (TBP) for DNA, in order to assemble the initiation complex. TFIIA also functions as an activator during development and differentiation, and is involved in transcription from TATA-less promoters. TFIIA is composed of more than one subunit in various organisms. Mammalian TFIIA large subunits (TFIIA alpha and beta), and the smaller subunit (TFIIA gamma) form a heterotrimer. TFIIA alpha and beta are encoded by a single TFIIA_alpha_beta gene and post-translationally processed and cleaved. TOA1 and TOA2 are the two subunits of Yeast TFIIA which correspond to Mammalian TFIIA_alpha_beta and TFIIA gamma, respectively. TOA1 and TOA2 form a heterodimeric protein complex. The TFIIA gamma subunit is highly conserved between humans, Drosophila and yeast and it is required for TFIIA function. The N-terminal domain of the gamma subunit forms a 4-helix bundle together with the alpha subunit. 49 -199214 cd10146 LabA_like_C C-terminal domain of LabA_like proteins. This C-terminal domain is found in a well conserved group of mainly bacterial proteins with no defined function, which contain an N-terminal LabA-like domain. LabA from Synechococcus elongatus PCC 7942, (which does not contain this C-terminal domain) has been shown to play a role in cyanobacterial circadian timing. LabA-like C-terminal domains described here may be related to the LOTUS domain family (which also co-occurs with LabA-like N-terminal domains). 69 -199902 cd10147 Wzt_C-like C-Terminal domain of O-antigenic polysaccharide transporter protein Wzt and related proteins. The Escherichia coli ABC protein Wzt consists of 2 domains, a conventional ABC domain that binds ATP and utilizes its energy to transport molecules across membranes, and a C terminal domain which is responsible for its target molecule specificity. Wzt is part of the ATP-binding-cassette (ABC) transporter complex, responsible for the transport of the O-antigenic polysaccharide (O-PS) portion of lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria. This CD includes Wzt proteins from two Escherichia coli serotypes O8 and O9a, WztO8 and WztO9a; these proteins are specific for their cognate polysaccharides (O8 or O9a O-PS). 144 -197385 cd10148 CsoR-like_DUF156 Transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this domain superfamily was previously known as DUF156. This superfamily includes various transcriptional regulators that respond to stressors including Cu(I), Ni(I), sulfite, and formaldehyde. It includes CsoR (copper-sensitive operon repressor) from Mycobacterium tuberculosis (MtCsoR), Bacillus subtilis (BsCsoR), Thermus thermophilus (TthCsoR), and Staphylococcus aureus (SaCsoR), Mycobacterium tuberculosis RicR (regulated in copper repressor, MtRicR), Escherichia coli RncR (formally known as YohL, nickel and cobalt-sensitive), Alcaligenes xylosoxidans NreA (nickel-sensitive), E. coli FrmR (formally known as YaiN, formaldehyde sensitive), and Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor, NWMN_0026.5, SaCstR). CsoR is Cu(I)-inducible, and regulates the expression of genes involved in copper homeostasis. For example, TthCsoR binds the promoter region of the copZ-csoR-copA operon, and represses expression of these genes, which encode the copper chaperone CopZ, CsoR, and the copper efflux P-type ATPase CopA, respectively. In the presence of excess Cu(I), TthCsoR binds this ion, and is released from the DNA, allowing expression of the downstream genes. TthCsoR also senses other metal ions such as Cu(II), Zn(II), Ag(I), Cd(II) and Ni(II). CsoRs form a homotetramer (dimer of dimers). In the case of MtCsoR, two Cys residues on opposite subunits within each dimer, along with a His residue, bind the Cu(I) ion. These residues are conserved in the majority of members of this superfamily. Exceptions include the functionally uncharacterized Bacillus subtilis YrkD where there is an Asn instead of His (C-N-C), E.coli RcnR where there is a Thr instead of the second Cys (C-H-T), or TthCsoR and E.coli FrmR where there is a His instead of the second Cys and which have an additional N-terminal His (not found in those family members having C-H-C) that may also be involved in metal binding (H-C-H-H). A conserved Tyr and a Glu residue facilitate allosteric regulation of DNA binding. SaCstR regulates genes predicted to function in sulfur metabolism; it is thought that oxidation of the intersubunit Cys pair to a mixture of disulphide and trisulphide linkages by sulfite, results in a reduced affinity of SaCstR for the operator DNA. SaCstR exists as a mixture of oligomeric states, including dimers, tetramers and octamers. The sequence of SaCstR was not available at the time this hierarchy was curated and therefore was not included. Escherichia coli RncR represses expression of the gene encoding the nickel and cobalt-efflux protein RcnA. The gene encoding Alcaligenes xylosoxidans NreA is part of the nre nickel resistance locus located on the pTOM9 plasmid from thisbacteria. Escherichia coli FrmR regulates the formaldehyde degradation frmRAB operon. 80 -197397 cd10149 ClassIIa_HDAC_Gln-rich-N Glutamine-rich N-terminal helical domain of various Class IIa histone deacetylases (HDAC4, HDAC5 and HDCA9). This superfamily consists of a glutamine-rich N-terminal helical extension to certain Class IIa histone deacetylases (HDACs), including HDAC4, HDAC5 and HDAC9; it is missing in HDAC7. It is referred to as the glutamine-rich domain, and confers responsiveness to calcium signals and mediates interactions with transcription factors and cofactors. This domain is able to repress transcription independently of the HDAC's C-terminal, zinc-dependent catalytic domain. It has many intra- and inter-helical interactions which are possibly involved in reversible assembly and disassembly of proteins. HDACs regulate diverse cellular processes through enzymatic deacetylation of histone as well as non-histone proteins, in particular deacetylating N(6)-acetyl-lysine residues. 90 -199903 cd10150 CobN_like CobN subunit of cobaltochelatase, bchH and chlH subunits of magnesium chelatases, and similar proteins. Cobaltochelatase is a complex enzyme that catalyzes the insertion of cobalt into hydrogenobyrinic acid a,c-diamide, resulting in cobyrinic acid, as demonstrated for Pseudomonas denitrificans. This is an essential step in the bacterial synthesis of cobalamine (B12). The insertion of cobalt requires a complex composed of three polypeptides, cobN, cobS, and cobT. Also included in this family are protoporphyrin IX magnesium chelatases involved in the synthesis of chlorophyll and bacteriochlorophyll, specifically the large (chlH or bchH) subunits.They are thought to bind both the protoporphyrin and the magnesium ion. Hydrolysis of ATP by the smaller subunits in the complex may trigger a conformational change that results in the insertion of the ion into the protoporphyrin scaffold. Cryo electron microscopy studies have suggested that a distinct bchH C-terminal domain may bind tightly to the N-terminal domain upon substrate binding, requiring a substantial conformational change of the bchH subunit. It has also been suggested that chlH of higher plants binds abscisic acid via a C-terminal domain and plays a role in abscisic acid signaling, and that the protein spans the chloroplast envelope, with the C-terminus exposed to the cytosol. 910 -197386 cd10151 TthCsoR-like_DUF156 Thermus thermophilus CsoR, a Cu(I)-sensing transcriptional regulator, and related domains; this domain family was previously known as part of DUF156. This domain family contains various Cu(I)-inducible transcriptional regulators including CsoR (copper-sensitive operon repressor) from Mycobacterium tuberculosis (MtCsoR), and Thermus thermophilus (TthCsoR). CsoR regulates the expression of genes involved in copper homeostasis. For example, TthCsoR binds the promoter region of the copZ-csoR-copA operon, and represses expression of these genes, which encode the copper chaperone CopZ, CsoR, and the copper efflux P-type ATPase CopA, respectively. In the presence of excess Cu(I), TthCsoR binds this ion, and is released from the DNA, allowing expression of the downstream genes. TthCsoR also senses other metal ions such as Cu(II), Zn(II), Ag(I), Cd(II) and Ni(II). MtCsoR regulates an operon that includes CsoR and a putative copper transporter gene, ctpV (cation transporter P-type ATPase). CsoRs form a homotetramer (dimer of dimers). In MtCsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in some but not all members of this family; for example, for TthCsoR, there is a His instead of the second Cys as well as an N-terminal His (not found in those family members having C-H-C) which may also be involved in metal binding (H-C-H-H). A conserved Tyr and a Glu residue facilitate allosteric regulation of DNA binding. 82 -197387 cd10152 SaCsoR-like_DUF156 Staphylococcus aureus copper-sensitive operon repressor (CsoR), and related domains; this family was previously known as part of DUF156. This domain family includes Staphylococcus aureus CsoR (SaCsoR). SaCsoR is Cu(I)-inducible, and regulates the expression of genes involved in copper homeostasis; it represses a genetically unlinked copA-copZ operon. copA encodes a copper efflux P-type ATPase, and copZ, a copper chaperone. This family belongs to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes Mycobacterium tuberculosis CsoR (MtCsoR), Bacillus subtilis CsoR, and Thermus thermophilus CsoR. The latter three proteins do not belong to this family. CsoRs form homotetramers (dimer of dimers). In MtCsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family, and a conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are also well conserved. 82 -197388 cd10153 RcnR-FrmR-like_DUF156 Transcriptional regulators RcnR and FrmR, and related domains; this domain family was previously known as part of DUF156. This domain family includes various transcriptional regulators that respond to different stressors. It includes Escherichia coli RncR (formally known as YohL, nickel and cobalt-sensitive), and E. coli FrmR (formally known as YaiN, formaldehyde sensitive). Escherichia coli RncR represses expression of the gene encoding the nickel and cobalt-efflux protein RcnA; RcnA may act through modulating NikR, to repress the NIkABCDE nickel transporter. In vitro, purified RncR binds to the rncA promoter DNA fragment in the absence of Ni2+ or Co2+, and the affinity of RncR for this promoter is reduced in the presence of excess nickel. Escherichia coli FrmR regulates the formaldehyde degradation frmRAB operon. This family belongs to a larger superfamily that includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily. In this family, however, not all these residues are conserved; in E.coli RcnR and FrmR there is a His or a Thr instead of the second Cys (C-H-H or C-H-T) respectively. For E. coli FrmR, an N-terminal His residue, not conserved in all members of this family, is also involved in metal binding (H-C-H-H). A conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are poorly conserved in this family. 88 -197389 cd10154 NreA-like_DUF156 Alcaligenes xylosoxidans NreA and related domains; this domain family was previously known as part of DUF156. This domain family includes Alcaligenes xylosoxidans NreA, Psudomonas putida MreA, and related domains. The gene encoding Alcaligenes xylosoxidans NreA is part of the nre nickel resistance locus located on the pTOM9 plasmid from this bacteria; it confers low-level nickel resistance on both Ralstonia and Escherichia coli strains. The Pseudomonas putida MreA gene is found in association with a gene encoding mrdH, a heavy metal efflux transporter of broad specificity. MreA may have a role in cadmium and nickel resistance. This family is part of a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including members of this family; however, a conserved Tyr and a Glu residue that facilitates allosteric regulation of DNA binding for CsoRs are poorly conserved. 86 -197390 cd10155 BsYrkD-like_DUF156 Uncharacterized protein YrkD from Bacillus subtilis and related domains; this domain superfamily was previously known as part of DUF156. This domain family contains an uncharacterized protein YrkD from Bacillus subtilis and related proteins. This family is part of a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily. In this family, however, not all these residues are conserved, there is an Asn instead of the His (C-N-C); also a conserved Tyr and a Glu residue that facilitates allosteric regulation of DNA binding for CsoRs are very poorly conserved. 82 -197391 cd10156 FpFrmR-Cterm-like_DUF156 C-terminal domain of Faecalibacterium prausnitzii A2-165 FrmR , and related domains; this domain family was previously known as part of DUF156. This domain family contains the C-terminal domain of the functionally uncharacterized protein Faecalibacterium prausnitzii A2-165 FrmR, and related domains. This family is part of a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family, and a conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are also conserved. 86 -197392 cd10157 BsCsoR-like_DUF156 Bacillus subtilis copper-sensitive operon repressor (BsCsoR), and related domains; this family was previously known as part of DUF156. This domain family includes Bacillus subtilis CsoR (BsCsoR). CsoRs are Cu(I)-inducible, and regulate the expression of genes involved in copper homeostasis. BsCsoR regulates the copZA operon which encodes the copper chaperone CopZ, and the copper efflux P-type ATPase CopA. This family belongs to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes Mycobacterium tuberculosis CsoR (MtCsoR), Thermus thermophilus CsoR, and Staphylococcus aureus CsoR. The latter three proteins do not belong to this family. CsoRs regulate the expression of genes involved in copper homeostasis. CsoRs form homotetramers (dimer of dimers). In MtCsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family, and the conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are also well conserved. 85 -197393 cd10158 CsoR-like_DUF156_1 Uncharacterized family 1; belongs to a superfamily containing the transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this family was previously known as part of DUF156. Uncharacterized family 1, belonging to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family; however, a conserved Tyr and a Glu residue that facilitates allosteric regulation of DNA binding for CsoRs are poorly conserved. 81 -197394 cd10159 CsoR-like_DUF156_2 Uncharacterized family 2; belongs to a superfamily containing transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this family was previously known as part of DUF156. Uncharacterized family 2, belonging to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family, and a conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are also conserved. 82 -197395 cd10160 CsoR-like_DUF156_3 Uncharacterized family 3; belongs to a superfamily containing the transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this family was previously known as part of DUF156. Uncharacterized family 3, belonging to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily, including this family; however, a conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are not conserved. 85 -197396 cd10161 CsoR-like_DUF156_4 Uncharacterized family 4; belongs to a superfamily containing the transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this family was previously known as part of DUF156. Uncharacterized family 4, belonging to a larger superfamily that contains various transcriptional regulators that respond to different stressors such as Cu(I), Ni(I), sulfite, and formaldehyde, and includes CsoRs (copper-sensitive operon repressors). CsoRs form homotetramers (dimer of dimers). In Mycobacterium tuberculosis CsoR, within each dimer, two Cys residues on opposite subunits, along with a His residue, bind the Cu(I) ion (forming a triagonal S2N coordination complex, C-H-C). These residues are conserved in the majority of members of this superfamily. In this family, however, only one of these residues is conserved (the first Cys); and a conserved Tyr and a Glu residue that facilitate allosteric regulation of DNA binding for CsoRs are also not conserved. 82 -197398 cd10162 ClassIIa_HDAC4_Gln-rich-N Glutamine-rich N-terminal helical domain of HDAC4, a Class IIa histone deacetylase. This family consists of the glutamine-rich domain of histone deacetylase 4 (HDAC4). It belongs to a superfamily that consists of the glutamine-rich N-terminal helical extension to certain Class IIa histone deacetylases (HDACs), including HDAC4, HDAC5 and HDCA9; it is missing from HDAC7. This domain confers responsiveness to calcium signals and mediates interactions with transcription factors and cofactors, and it is able to repress transcription independently of the HDAC C-terminal, zinc-dependent catalytic domain. It has many intra- and inter-helical interactions which are possibly involved in reversible assembly and disassembly of proteins. HDACs regulate diverse cellular processes through enzymatic deacetylation of histone as well as non-histone proteins, in particular deacetylating N(6)-acetyl-lysine residues. 90 -197399 cd10163 ClassIIa_HDAC9_Gln-rich-N Glutamine-rich N-terminal helical domain of HDAC9, a Class IIa histone deacetylase. This family consists of the glutamine-rich domain of histone deacetylase 9 (HDAC9). It belongs to a superfamily that consists of the glutamine-rich N-terminal helical extension to certain Class IIa histone deacetylases (HDACs), including HDAC4, HDAC5 and HDCA9; it is missing from HDAC7. This domain confers responsiveness to calcium signals and mediates interactions with transcription factors and cofactors, and it is able to repress transcription independently of the HDAC C-terminal, zinc-dependent catalytic domain. It has many intra- and inter-helical interactions which are possibly involved in reversible assembly and disassembly of proteins. HDACs regulate diverse cellular processes through enzymatic deacetylation of histone as well as non-histone proteins, in particular deacetylating N(6)-acetyl-lysine residues. 90 -197400 cd10164 ClassIIa_HDAC5_Gln-rich-N Glutamine-rich N-terminal helical domain of HDAC5, a Class IIa histone deacetylase. This family consists of the glutamine-rich domain of histone deacetylase 5 (HDAC5). It belongs to a superfamily that consists of the glutamine-rich N-terminal helical extension to certain Class IIa histone deacetylases (HDACs), including HDAC4, HDAC5 and HDCA9; it is missing from HDAC7. This domain confers responsiveness to calcium signals and mediates interactions with transcription factors and cofactors, and it is able to repress transcription independently of the HDAC C-terminal, zinc-dependent catalytic domain. It has many intra- and inter-helical interactions which are possibly involved in reversible assembly and disassembly of proteins. HDACs regulate diverse cellular processes through enzymatic deacetylation of histone as well as non-histone proteins, in particular deacetylating N(6)-acetyl-lysine residues. 97 -212667 cd10170 HSP70_NBD Nucleotide-binding domain of the HSP70 family. HSP70 (70-kDa heat shock protein) family chaperones assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some HSP70 family members are not chaperones but instead, function as NEFs to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle, some may function as both chaperones and NEFs. 369 -212668 cd10225 MreB_like MreB and similar proteins. MreB is a bacterial protein which assembles into filaments resembling those of eukaryotic F-actin. It is involved in determining the shape of rod-like bacterial cells, by assembling into large fibrous spirals beneath the cell membrane. MreB has also been implicated in chromosome segregation; specifically MreB is thought to bind to and segregate the replication origin of bacterial chromosomes. 320 -212669 cd10227 ParM_like Plasmid segregation protein ParM and similar proteins. ParM is a plasmid-encoded bacterial homolog of actin, which polymerizes into filaments similar to F-actin, and plays a vital role in plasmid segregation. ParM filaments segregate plasmids paired at midcell into the individual daughter cells. This subfamily also contains Thermoplasma acidophilum Ta0583, an active ATPase at physiological temperatures, which has a propensity to form filaments. 312 -212670 cd10228 HSPA4_like_NDB Nucleotide-binding domain of 105/110 kDa heat shock proteins including HSPA4 and similar proteins. This subgroup includes the human proteins, HSPA4 (also known as 70-kDa heat shock protein 4, APG-2, HS24/P52, hsp70 RY, and HSPH2; the human HSPA4 gene maps to 5q31.1), HSPA4L (also known as 70-kDa heat shock protein 4-like, APG-1, HSPH3, and OSP94; the human HSPA4L gene maps to 4q28), and HSPH1 (also known as heat shock 105kDa/110kDa protein 1, HSP105; HSP105A; HSP105B; NY-CO-25; the human HSPH1 gene maps to 13q12.3), Saccharomyces cerevisiae Sse1p and Sse2p, and a sea urchin sperm receptor. It belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. 381 -212671 cd10229 HSPA12_like_NBD Nucleotide-binding domain of HSPA12A, HSPA12B and similar proteins. Human HSPA12A (also known as 70-kDa heat shock protein-12A) and HSPA12B (also known as 70-kDa heat shock protein-12B, chromosome 20 open reading frame 60/C20orf60, dJ1009E24.2) belong to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A or HSPA12B. The gene encoding HSPA12A maps to 10q26.12, a cytogenetic region that might represent a common susceptibility locus for both schizophrenia and bipolar affective disorder; reduced expression of HSPA12A has been shown in the prefrontal cortex of subjects with schizophrenia. HSPA12A is also a candidate gene for forelimb-girdle muscular anomaly, an autosomal recessive disorder of Japanese black cattle. HSPA12A is predominantly expressed in neuronal cells. It may also play a role in the atherosclerotic process. The gene encoding HSPA12B maps to 20p13. HSPA12B is predominantly expressed in endothelial cells, is required for angiogenesis, and may interact with known angiogenesis mediators. It may be important for host defense in microglia-mediated immune response. HSPA12B expression is up-regulated in lipopolysaccharide (LPS)-induced inflammatory response in the spinal cord, and mostly located in active microglia; this induced expression may be regulated by activation of MAPK-p38, ERK1/2 and SAPK/JNK signaling pathways. Overexpression of HSPA12B also protects against LPS-induced cardiac dysfunction and involves the preserved activation of the PI3K/Akt signaling pathway. 404 -212672 cd10230 HYOU1-like_NBD Nucleotide-binding domain of human HYOU1 and similar proteins. This subgroup includes human HYOU1 (also known as human hypoxia up-regulated 1, GRP170; HSP12A; ORP150; GRP-170; ORP-150; the human HYOU1 gene maps to11q23.1-q23.3) and Saccharomyces cerevisiae Lhs1p (also known as Cer1p, SsI1). Mammalian HYOU1 functions as a nucleotide exchange factor (NEF) for HSPA5 (alos known as BiP, Grp78 or HspA5) and may also function as a HSPA5-independent chaperone. S. cerevisiae Lhs1p, does not have a detectable endogenous ATPase activity like canonical HSP70s, but functions as a NEF for Kar2p; it's interaction with Kar2p is stimulated by nucleotide-binding. In addition, Lhs1p has a nucleotide-independent holdase activity that prevents heat-induced aggregation of proteins in vitro. This subgroup belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as NEFs, to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. 388 -212673 cd10231 YegD_like Escherichia coli YegD, a putative chaperone protein, and related proteins. This bacterial subfamily includes the uncharacterized Escherichia coli YegD. It belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. YegD lacks the SBD. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some family members are not chaperones but instead, function as NEFs for their Hsp70 partners, other family members function as both chaperones and NEFs. 415 -212674 cd10232 ScSsz1p_like_NBD Nucleotide-binding domain of Saccharmomyces cerevisiae Ssz1pp and similar proteins. Saccharomyces cerevisiae Ssz1p (also known as /Pdr13p/YHR064C) belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Some family members are not chaperones but rather, function as NEFs for their Hsp70 partners, while other family members function as both chaperones and NEFs. Ssz1 does not function as a chaperone; it facilitates the interaction between the HSP70 Ssb protein and its partner J-domain protein Zuo1 (also known as zuotin) on the ribosome. Ssz1 is found in a stable heterodimer (called RAC, ribosome associated complex) with Zuo1. Zuo1 can only stimulate the ATPase activity of Ssb, when it is in complex with Ssz1. Ssz1 binds ATP but neither nucleotide-binding, hydrolysis, or its SBD, is needed for its in vivo function. 386 -212675 cd10233 HSPA1-2_6-8-like_NBD Nucleotide-binding domain of HSPA1-A, -B, -L, HSPA-2, -6, -7, -8, and similar proteins. This subfamily includes human HSPA1A (70-kDa heat shock protein 1A, also known as HSP72; HSPA1; HSP70I; HSPA1B; HSP70-1; HSP70-1A), HSPA1B (70-kDa heat shock protein 1B, also known as HSPA1A; HSP70-2; HSP70-1B), and HSPA1L (70-kDa heat shock protein 1-like, also known as HSP70T; hum70t; HSP70-1L; HSP70-HOM). The genes for these three HSPA1 proteins map in close proximity on the major histocompatibility complex (MHC) class III region on chromosome 6, 6p21.3. This subfamily also includes human HSPA8 (heat shock 70kDa protein 8, also known as LAP1; HSC54; HSC70; HSC71; HSP71; HSP73; NIP71; HSPA10; the HSPA8 gene maps to 11q24.1), human HSPA2 (70-kDa heat shock protein 2, also known as HSP70-2; HSP70-3, the HSPA2 gene maps to 14q24.1), human HSPA6 (also known as heat shock 70kDa protein 6 (HSP70B') gi 94717614, the HSPA6 gene maps to 1q23.3), human HSPA7 (heat shock 70kDa protein 7 , also known as HSP70B; the HSPA7 gene maps to 1q23.3) and Saccharmoyces cerevisiae Stress-Seventy subfamily B/Ssb1p. This subfamily belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Associations of polymorphisms within the MHC-III HSP70 gene locus with longevity, systemic lupus erythematosus, Meniere's disease, noise-induced hearing loss, high-altitude pulmonary edema, and coronary heart disease, have been found. HSPA2 is involved in cancer cell survival, is required for maturation of male gametophytes, and is linked to male infertility. The induction of HSPA6 is a biomarker of cellular stress. HSPA8 participates in the folding and trafficking of client proteins to different subcellular compartments, and in the signal transduction and apoptosis process; it has been shown to protect cardiomyocytes against oxidative stress partly through an interaction with alpha-enolase. S. cerevisiae Ssb1p, is part of the ribosome-associated complex (RAC), it acts as a chaperone for nascent polypeptides, and is important for translation fidelity; Ssb1p is also a [PSI+] prion-curing factor. 376 -212676 cd10234 HSPA9-Ssq1-like_NBD Nucleotide-binding domain of human HSPA9 and similar proteins. This subfamily includes human mitochondrial HSPA9 (also known as 70-kDa heat shock protein 9, CSA; MOT; MOT2; GRP75; PBP74; GRP-75; HSPA9B; MTHSP75; the gene encoding HSPA9 maps to 5q31.1), Escherichia coli DnaK, Saccharomyces cerevisiae Stress-seventy subfamily Q protein 1/Ssq1p (also called Ssc2p, Ssh1p, mtHSP70 homolog), and S. cerevisiae Stress-Seventy subfamily C/Ssc1p (also called mtHSP70, Endonuclease SceI 75 kDa subunit). It belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs); for Escherichia coli DnaK, these are the DnaJ and GrpE, respectively. 376 -212677 cd10235 HscC_like_NBD Nucleotide-binding domain of Escherichia coli HscC and similar proteins. This subfamily includes Escherichia coli HscC (also called heat shock cognate protein C, Hsc62, or YbeW) and the the putative DnaK-like protein Escherichia coli ECs0689. It belongs to the heat shock protein 70 (Hsp70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, Hsp70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Two genes in the vicinity of the HscC gene code for potential cochaperones: J-domain containing proteins, DjlB/YbeS and DjlC/YbeV. HscC and its co-chaperone partners may play a role in the SOS DNA damage response. HscC does not appear to require a NEF. 339 -212678 cd10236 HscA_like_NBD Nucleotide-binding domain of HscA and similar proteins. Escherichia coli HscA (heat shock cognate protein A, also called Hsc66), belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). HscA's partner J-domain protein is HscB; it does not appear to require a NEF, and has been shown to be induced by cold-shock. The HscA-HscB chaperone/co-chaperone pair is involved in [Fe-S] cluster assembly. 355 -212679 cd10237 HSPA13-like_NBD Nucleotide-binding domain of human HSPA13 and similar proteins. Human HSPA13 (also called 70-kDa heat shock protein 13, STCH, "stress 70 protein chaperone, microsome-associated, 60kD", "stress 70 protein chaperone, microsome-associated, 60kDa"; the gene encoding HSPA13 maps to 21q11.1) belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). STCH contains an NBD but lacks an SBD. STCH may function to regulate cell proliferation and survival, and modulate the TRAIL-mediated cell death pathway. The HSPA13 gene is a candidate stomach cancer susceptibility gene; a mutation in the NBD coding region of HSPA13 has been identified in stomach cancer cells. The NBD of HSPA13 interacts with the ubiquitin-like proteins Chap1 and Chap2, implicating HSPA13 in regulating cell cycle and cell death events. HSPA13 is induced by the Ca2+ ionophore A23187. 417 -212680 cd10238 HSPA14-like_NBD Nucleotide-binding domain of human HSPA14 and similar proteins. Human HSPA14 (also known as 70-kDa heat shock protein 14, HSP70L1, HSP70-4; the gene encoding HSPA14 maps to 10p13), is ribosome-associated and belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). HSPA14 interacts with the J-protein MPP11 to form the mammalian ribosome-associated complex (mRAC). HSPA14 participates in a pathway along with Nijmegen breakage syndrome 1 (NBS1, also known as p85 or nibrin), heat shock transcription factor 4b (HSF4b), and HSPA4 (belonging to a different subfamily), that induces tumor migration, invasion, and transformation. HSPA14 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. 375 -212681 cd10241 HSPA5-like_NBD Nucleotide-binding domain of human HSPA5 and similar proteins. This subfamily includes human HSPA5 (also known as 70-kDa heat shock protein 5, glucose-regulated protein 78/GRP78, and immunoglobulin heavy chain-binding protein/BIP, MIF2; the gene encoding HSPA5 maps to 9q33.3.), Sacchaormyces cerevisiae Kar2p (also known as Grp78p), and related proteins. This subfamily belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly and can direct incompetent "client" proteins towards degradation. HSPA5 and Kar2p are chaperones of the endoplasmic reticulum (ER). Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). Multiple ER DNAJ domain proteins have been identified and may exist in distinct complexes with HSPA5 in various locations in the ER, for example DNAJC3-p58IPK in the lumen. HSPA5-NEFs include SIL1 and an atypical HSP70 family protein HYOU1/ORP150. The ATPase activity of Kar2p is stimulated by the NEFs: Sil1p and Lhs1p. 374 -199834 cd10276 BamB_YfgL Beta-barrel assembly machinery (Bam) complex component B and related proteins. BamB (YflG) is a non-essential component of the beta-barrel assembly machinery (Bam), a multi-subunit complex that inserts proteins with beta-barrel topology into the outer membrane. BamB has been found to interact with BamA, which in turn binds and stabilizes pre-folded beta-barrel proteins; it has been suggested that BamB participates in the stabilization. 358 -199835 cd10277 PQQ_ADH_I Ethanol dehydrogenase, a bacterial quinoprotein (PQQ-dependent type I alcohol dehydrogenase). This bacterial family of homodimeric ethanol dehydrogenases utilize pyrroloquinoline quinone (PQQ) as a cofactor. It represents proteins whose expression may be induced by ethanol, and which are similar to quinoprotein methanol dehydrogenases, but have higher specificities for ethanol and other primary and secondary alcohols. Dehydrogenases with PQQ cofactors, such as ethanol, methanol, and membrane-bound glucose dehydrogenases, form an 8-bladed beta-propeller. 529 -199836 cd10278 PQQ_MDH Large subunit of methanol dehydrogenase (moxF). Methanol dehydrogenase is a key enzyme in the utilization of C1 compounds as a source of energy and carbon by bacteria. It catalyzes the oxidation of methanol to formaldehyde, transfering two electrons per methanol to cytochrome c(L) as the acceptor. Methanol dehydrogenase belongs to a family of dehydrogenases with pyrroloquinoline quinone (PQQ) as cofactor, which also includes dehydrogenases specific to other alcohols and membrane-bound glucose dehydrogenases. This alignment model for the large subunit contains an 8-bladed beta-propeller; the functional enzyme forms a heterotetramer composed of two large and two small subunits. 553 -199837 cd10279 PQQ_ADH_II PQQ_like domain of the quinohemoprotein alcohol dehydrogenase (type II). This family of monomeric and soluble type II alcohol dehydrogenases utilizes pyrroloquinoline quinone (PQQ) as a cofactor and is related to ethanol, methanol, and membrane-bound glucose dehydrogenases. The alignment model contains an 8-bladed beta-propeller. 549 -199838 cd10280 PQQ_mGDH Membrane-bound PQQ-dependent glucose dehydrogenase. This bacterial subfamily of enzymes belongs to the dehydrogenase family with pyrroloquinoline quinone (PQQ) as cofactor, and is the only subfamily that is bound to the membrane. Glucose dehydrogenase converts D-glucose to D-glucono-1,5-lactone in a reaction that is coupled with the respiratory chain in the periplasmic oxidation of sugars and alcohols in gram-negative bacteria. Ubiquinone functions as the electron acceptor. The alignment model contains an 8-bladed beta-propeller. 616 -197336 cd10281 Nape_like_AP-endo Neisseria meningitides Nape-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes Neisseria meningitides Nape and related proteins. These are Escherichia coli exonuclease III (ExoIII)-like AP endonucleases and belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity; for example, Neisseria meningitides Nape and NExo. Nape, found in this subfamily, is the dominant AP endonuclease. It exhibits strong AP endonuclease activity, and also exhibits 3'-5'exonuclease and 3'-deoxyribose phosphodiesterase activities. 253 -197337 cd10282 DNase1 Deoxyribonuclease 1. Deoxyribonuclease 1 (DNase1, EC 3.1.21.1), also known as DNase I, is a Ca2+, Mg2+/Mn2+-dependent secretory endonuclease, first isolated from bovine pancreas extracts. It cleaves DNA preferentially at phosphodiester linkages next to a pyrimidine nucleotide, producing 5'-phosphate terminated polynucleotides with a free hydroxyl group on position 3'. It generally produces tetranucleotides. DNase1 substrates include single-stranded DNA, double-stranded DNA, and chromatin. This enzyme may be responsible for apoptotic DNA fragmentation. Other deoxyribonucleases in this subfamily include human DNL1L (human DNase I lysosomal-like, also known as DNASE1L1, Xib, and DNase X ), human DNASE1L2 (also known as DNAS1L2), and DNASE1L3 (also known as DNAS1L3, nhDNase, LS-DNase, DNase Y, and DNase gamma) . DNASE1L3 is implicated in apoptotic DNA fragmentation. DNase I is also a cytoskeletal protein which binds actin. A recombinant form of human DNase1 is used as a mucoactive therapy in patients with cystic fibrosis; it hydrolyzes the extracellular DNA in sputum and reduces its viscosity. Mutations in the gene encoding DNase1 have been associated with Systemic Lupus Erythematosus, a multifactorial autoimmune disease. This subfamily belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 256 -197338 cd10283 MnuA_DNase1-like Mycoplasma pulmonis MnuA nuclease-like. This subfamily includes Mycoplasma pulmonis MnuA, a membrane-associated nuclease related to Deoxyribonuclease 1 (DNase1 or DNase I, EC 3.1.21.1). The in vivo role of MnuA is as yet undetermined. This subfamily belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. 266 -198434 cd10284 growth_hormone_like Somatotropin/prolactin hormone family. The somatotropin/prolactin hormone family includes growth hormones 1 and 2, prolactin, prolactin 2, and other members that play vital roles in a variety of processes, including growth control. They are long-chain class-I helical cytokines, most of which are secreted by the pituitary gland, and are active as monomers, binding to cellular receptors with EpoR-like ligand binding domains. 178 -198435 cd10285 somatotropin_like Somatotropin or growth hormone (GH), placental lactogen, and related pituitary gland hormones. Growth hormone (GH) or somatotropin is a peptide hormone synthesized by the pituitary gland, which mediates anabolic effects in development. GH is known to activate, via binding to specific cellular receptors, the MAPK/ERK and JAK-STAT signaling pathways. Via the latter, it triggers the secretion of insulin-like growth factor 1 (mostly in the liver). Besides increasing body height, GH has been shown to have a host of other effects. 180 -198436 cd10286 somatolactin Somatolactin (SL) and somatolactin-like proteins. This family of hormones specific to Actinopterygii is expressed in the pars intermedia bordering the neurohypophysis (posterior pituitary). Somatolactin appears to be involved in acid-base regulation, but much of its physiological role remains to be understood. 207 -198437 cd10287 prolactin_2 Vertebrate, non-mammalian prolactin 2 (PRL2). A functionally uncharacterized subfamily of the growth-hormone-like helical cytokines, which is found in vertebrata (except for mammals). The protein has been shown to be expressed in the zebrafish eye and brain, but not the pituitary gland, and might play a role in retina development. 184 -198438 cd10288 prolactin_like Prolactin (PRL or PRL1), chorionic somatomammotropin, and related pituitary gland hormones. Prolactin is primarily responsible for stimulating milk production and breast development in mammals. Aside from roles in reproduction, various functions have been attributed to prolactin, more than for other pituitary gland hormones combined. These are roles in growth and development, metamorphosis, metabolism of lipids, carbohydrates, and steroids, brain biochemistry and even immunoregulation, among others. Most of these roles are poorly understood, but it has become clear that many prolactin-like hormones are actually produced in the placenta and not the pituitary. 199 -198322 cd10289 GST_C_AaRS_like Glutathione S-transferase C-terminal-like, alpha helical domain of various Aminoacyl-tRNA synthetases and similar domains. Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl-tRNA synthetase (AaRS)-like subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of some eukaryotic AaRSs, as well as similar domains found in proteins involved in protein synthesis including Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein 2 (AIMP2), AIMP3, and eukaryotic translation Elongation Factor 1 beta (eEF1b). AaRSs comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. AaRSs in this subfamily include GluRS from lower eukaryotes, as well as GluProRS, MetRS, and CysRS from higher eukaryotes. AIMPs are non-enzymatic cofactors that play critical roles in the assembly and formation of a macromolecular multi-tRNA synthetase protein complex found in higher eukaryotes. The GST_C-like domain is involved in protein-protein interactions, mediating the formation of aaRS complexes such as the MetRS-Arc1p-GluRS ternary complex in lower eukaryotes and the multi-aaRS complex in higher eukaryotes, that act as molecular hubs for protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. 82 -198323 cd10290 GST_C_MetRS_N_fungi Glutathione S-transferase C-terminal-like, alpha helical domain of Saccharomycetales Methionyl-tRNA synthetase. Glutathione S-transferase (GST) C-terminal domain family, Saccharomycetales Methionyl-tRNA synthetase (MetRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of Saccharomycetales MetRS. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. MetRS is a class I aaRS, containing a Rossman fold catalytic core. It recognizes the initiator tRNA as well as the Met-tRNA for protein chain elongation. The GST_C-like domain of MetRS from Saccharomycetales is involved in protein-protein interactions, to mediate the formation of the the MetRS-Arc1p-GluRS ternary complex which is considered an evolutionary intermediate between prokaryotic aaRS and the multi-aaRS complex found in higher eukaryotes. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. 95 -198324 cd10291 GST_C_YfcG_like C-terminal, alpha helical domain of Escherichia coli YfcG Glutathione S-transferases and related uncharacterized proteins. Glutathione S-transferase (GST) C-terminal domain family, YfcG-like subfamily; composed of the Escherichia coli YfcG and related proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. YfcG is one of nine GST homologs in Escherichia coli. It is expressed predominantly during the late stationary phase where the predominant form of GSH is glutathionylspermidine (GspSH), suggesting that YfcG might interact with GspSH. It has very low or no GSH transferase or peroxidase activity, but displays a unique disulfide bond reductase activity that is comparable to thioredoxins (TRXs) and glutaredoxins (GRXs). However, unlike TRXs and GRXs, YfcG does not contain a redox active cysteine residue and may use a bound thiol disulfide couple such as 2GSH/GSSG for activity. The crystal structure of YcfG reveals a bound GSSG molecule in its active site. The actual physiological substrates for YfcG are yet to be identified. 110 -198325 cd10292 GST_C_YghU_like C-terminal, alpha helical domain of Escherichia coli Yghu Glutathione S-transferases and related uncharacterized proteins. Glutathione S-transferase (GST) C-terminal domain family, YghU-like subfamily; composed of the Escherichia coli YghU and related proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. YghU is one of nine GST homologs in the genome of Escherichia coli. It is similar to Escherichia coli YfcG in that it has poor GSH transferase activity towards typical substrates. It shows modest reductase activity towards some organic hydroperoxides. Like YfcG, YghU also shows good disulfide bond oxidoreductase activity comparable to the activities of glutaredoxins and thioredoxins. YghU does not contain a redox active cysteine residue, and may use a bound thiol disulfide couple such as 2GSH/GSSG for activity. The crystal structure of YghU reveals two GSH molecules bound in its active site. 118 -198326 cd10293 GST_C_Ure2p C-terminal, alpha helical domain of fungal Ure2p Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Ure2p subfamily; composed of the Saccharomyces cerevisiae Ure2p and related fungal proteins. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The N-terminal thioredoxin-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 117 -198327 cd10294 GST_C_ValRS_N Glutathione S-transferase C-terminal-like, alpha helical domain of vertebrate Valyl-tRNA synthetase. Glutathione S-transferase (GST) C-terminal domain family, Valyl-tRNA synthetase (ValRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of human ValRS and its homologs from other vertebrates such as frog and zebrafish. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. They typically form large stable complexes with other proteins. ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. The GST_C-like domain of ValRS from higher eukaryotes is likely involved in protein-protein interactions, to mediate the formation of the multi-aaRS complex that acts as a molecular hub to coordinate protein synthesis. ValRSs from prokaryotes and lower eukaryotes, such as fungi and plants, do not appear to contain this GST_C-like domain. 123 -198328 cd10295 GST_C_Sigma C-terminal, alpha helical domain of Class Sigma Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, Class Sigma; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation, and mediation of allergy and inflammation. 100 -198329 cd10296 GST_C_CLIC4 C-terminal, alpha helical domain of Chloride Intracellular Channel 4. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 4 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Structures of soluble CLICs reveal that they adopt a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. CLIC4, also known as p64H1, is expressed ubiquitously and its localization varies depending on the nature of the cells and tissues, from the plasma membrane to subcellular compartments including the nucleus, mitochondria, ER, and the trans-Golgi network, among others. In response to cellular stress such as DNA damage and senescence, cytoplasmic CLIC4 translocates to the nucleus, where it acts on the TGF-beta pathway. Studies on knockout mice suggest that CLIC4 also plays an important role in angiogenesis, specifically in network formation, capillary sprouting, and lumen formation. CLIC4 has been found to induce apoptosis in several cell types and to retard the growth of grafted tumors in vivo. 141 -198330 cd10297 GST_C_CLIC5 C-terminal, alpha helical domain of Chloride Intracellular Channel 5. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 5 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Structures of soluble CLICs reveal that they adopt a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. CLIC5 exists in two alternatively-spliced isoforms, CLIC5A or CLIC5B (also called p64). It is expressed at high levels in hair cell stereocilia and is associated with the actin cytoskeleton and ezrin. A recessive mutation in the CLIC5 gene in mice led to the lack of coordination and deafness, due to a defect in the basal region of the hair bundle causing stereocilia to degrade. CLIC5 is therefore essential for normal inner ear function. CLIC5 is also highly expressed in podocytes where it is colocalized with the ezrin/radixin/moesin (ERM) complex. It is essential for foot process integrity, and for podocyte morphology and function. 141 -198331 cd10298 GST_C_CLIC2 C-terminal, alpha helical domain of Chloride Intracellular Channel 2. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 2 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Structures of soluble CLICs reveal that they adopt a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. CLIC2 contains an intramolecular disulfide bond and exists as a monomer regardless of redox conditions, in contrast to CLIC1 which forms a dimer under oxidizing conditions. It is expressed in most tissues except the brain, and is highly expressed in the lung, spleen, and in cardiac and skeletal muscles. CLIC2 interacts with ryanodine receptors (cardiac RyR2 and skeletal RyR1) and modulates their activity, suggesting that CLIC2 may function in the regulation of calcium release and signaling in cardiac and skeletal muscles. 138 -198332 cd10299 GST_C_CLIC3 C-terminal, alpha helical domain of Chloride Intracellular Channel 3. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 3 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Structures of soluble CLICs reveal that they adopt a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. CLIC3 is highly expressed in placental tissues, and may play a role in fetal development. 133 -198333 cd10300 GST_C_CLIC1 C-terminal, alpha helical domain of Chloride Intracellular Channel 1. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 1 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Soluble CLIC1 is monomeric and adopts a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. The CLIC1 dimer bears no similarity to GST dimers. The redox-controlled structural rearrangement exposes a large hydrophobic surface, which is masked by dimerization in vitro. In vivo, this surface may represent the docking interface of CLIC1 in its membrane-bound state. The two cysteines in CLIC1 that form the disulfide bond in oxidizing conditions are essential for dimerization and chloride channel activity. CLIC1 is widely expressed in many tissues and its subcellular localization is dependent on cell type and cell cycle phase. It acts as a sensor of cell oxidation and appears to have a role in diseases that involve oxidative stress including tumorigenic and neurodegenerative diseases. 139 -198334 cd10301 GST_C_CLIC6 C-terminal, alpha helical domain of Chloride Intracellular Channel 6. Glutathione S-transferase (GST) C-terminal domain family, Chloride Intracellular Channel (CLIC) 6 subfamily; CLICs are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes, and they may play roles in the maintenance of these intracellular membranes. The membrane localization domain is present in the N-terminal part of the protein. Structures of soluble CLICs reveal that they adopt a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. CLIC6 is expressed predominantly in the stomach, pituitary, and brain. It interacts with D2-like dopamine receptors directly and through scaffolding proteins. CLIC6 may be involved in the regulation of secretion, possibly through chloride ion transport regulation. 140 -198335 cd10302 GST_C_GDAP1L1 C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1-like 1. Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1-like 1 (GDAP1L1) subfamily; GDAP1L1 is a paralogue of GDAP1 with about 56% sequence identity and 70% similarity. It's function is unknown. Like GDAP1, it does not exhibit GST activity using standard substrates. GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. 111 -198336 cd10303 GST_C_GDAP1 C-terminal, alpha helical domain of Ganglioside-induced differentiation-associated protein 1. Glutathione S-transferase (GST) C-terminal domain family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates. 111 -198337 cd10304 GST_C_Arc1p_N_like Glutathione S-transferase C-terminal-like, alpha helical domain of the Aminoacyl tRNA synthetase cofactor 1 and similar proteins. Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl tRNA synthetase cofactor 1 (Arc1p)-like subfamily; Arc1p, also called GU4 nucleic binding protein 1 (G4p1) or p42, is a tRNA-aminoacylation and nuclear-export cofactor. It contains a domain in the N-terminal region with similarity to the C-terminal alpha helical domain of GSTs. This domain mediates the association of the aminoacyl tRNA synthetases (aaRSs), MetRS and GluRS, in yeast to form a stable stoichiometric ternany complex. The GST_C-like domain of Arc1p is a protein-protein interaction domain containing two binding sites which enable it to bind the two aaRSs simultaneously and independently. The MetRS-Arc1p-GluRS complex selectively recruits and aminoacylates its cognate tRNAs without additional cofactors. Arc1p also plays a role in the transport of tRNA from the nucleus to the cytoplasm. It may also control the subcellular distribution of GluRS in the cytoplasm, nucleoplasm, and the mitochondrial matrix. 100 -198338 cd10305 GST_C_AIMP3 Glutathione S-transferase C-terminal-like, alpha helical domain of Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein 3. Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein (AIMP) 3 subfamily; AIMPs are non-enzymatic cofactors that play critical roles in the assembly and formation of a macromolecular multi-tRNA synthetase protein complex that functions as a molecular hub to coordinate protein synthesis. There are three AIMPs, named AIMP1-3, which play diverse regulatory roles. AIMP3, also called p18 or eukaryotic translation elongation factor 1 epsilon-1 (EEF1E1), contains a C-terminal domain with similarity to the C-terminal alpha helical domain of GSTs. It specifically interacts with methionyl-tRNA synthetase (MetRS) and is translocated to the nucleus during DNA synthesis or in response to DNA damage and oncogenic stress. In the nucleus, it interacts with ATM and ATR, which are upstream kinase regulators of p53. It appears to work against DNA damage in cooperation with AIMP2, and similar to AIMP2, AIMP3 is also a haploinsufficient tumor suppressor. AIMP3 transgenic mice have shorter lifespans than wild-type mice and they show characteristics of progeria, suggesting that AIMP3 may also be involved in cellular and organismal aging. 101 -198339 cd10306 GST_C_GluRS_N Glutathione S-transferase C-terminal-like, alpha helical domain of Glutamyl-tRNA synthetase. Glutathione S-transferase (GST) C-terminal domain family, Glutamyl-tRNA synthetase (GluRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of GluRS from lower eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. The GST_C-like domain of GluRS is involved in protein-protein interactions. This domain mediates the formation of the MetRS-Arc1p-GluRS ternary complex found in lower eukaryotes, which is considered an evolutionary intermediate between prokaryotic aaRS and the multi-aaRS complex found in higher eukaryotes. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. 87 -198340 cd10307 GST_C_MetRS_N Glutathione S-transferase C-terminal-like, alpha helical domain of Methionyl-tRNA synthetase from higher eukaryotes. Glutathione S-transferase (GST) C-terminal domain family, Methionyl-tRNA synthetase (MetRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of MetRS from higher eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. MetRS is a class I aaRS, containing a Rossman fold catalytic core. It recognizes the initiator tRNA as well as the Met-tRNA for protein chain elongation. The GST_C-like domain of MetRS from higher eukaryotes is likely involved in protein-protein interactions, to mediate the formation of the multi-aaRS complex that acts as a molecular hub to coordinate protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. 102 -198341 cd10308 GST_C_eEF1b_like Glutathione S-transferase C-terminal-like, alpha helical domain of eukaryotic translation Elongation Factor 1 beta. Glutathione S-transferase (GST) C-terminal domain family, eukaryotic translation Elongation Factor 1 beta (eEF1b) subfamily; eEF1b is a component of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. eEF1b contains a GST_C-like alpha helical domain at the N-terminal region and a C-terminal guanine nucleotide exchange domain. The GST_C-like domain likely functions as a protein-protein interaction domain, similar to the function of the GST_C-like domains of EF1Bgamma and various aminoacyl-tRNA synthetases (aaRSs) from higher eukaryotes. 82 -198342 cd10309 GST_C_GluProRS_N Glutathione S-transferase C-terminal-like, alpha helical domain of bifunctional Glutamyl-Prolyl-tRNA synthetase. Glutathione S-transferase (GST) C-terminal domain family, bifunctional GluRS-Prolyl-tRNA synthetase (GluProRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of GluProRS from higher eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. The GST_C-like domain of GluProRS may be involved in protein-protein interactions, mediating the formation of the multi-aaRS complex in higher eukaryotes. The multi-aaRS complex acts as a molecular hub for protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. 81 -198343 cd10310 GST_C_CysRS_N Glutathione S-transferase C-terminal-like, alpha helical domain of Cysteinyl-tRNA synthetase from higher eukaryotes. Glutathione S-transferase (GST) C-terminal domain family, Cysteinyl-tRNA synthetase (CysRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of CysRS from higher eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. The GST_C-like domain of CysRS from higher eukaryotes is likely involved in protein-protein interactions, to mediate the formation of the multi-aaRS complex that acts as a molecular hub to coordinate protein synthesis. CysRSs from prokaryotes and lower eukaryotes do not appear to contain this GST_C-like domain. 73 -197304 cd10311 PLDc_N_DEXD_c N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. N-terminal putative catalytic domain of uncharacterized prokaryotic and archeal HKD family nucleases fused to a DEAD/DEAH box helicase domain. All members of this subfamily are uncharacterized. Other characterized members of the superfamily that have a related domain architecture ( containing a DEAD/DEAH box helicase domain), include the DNA/RNA helicase superfamily II (SF2) and Res-subunit of type III restriction endonucleases. In addition to the helicase-like region, members of this subfamily also contain one copy of the conserved HKD motif (H-x-K-x(4)-D, where x represents any amino acid residue) in the N-terminal putative catalytic domain. The HKD motif characterizes the phospholipase D (PLD, EC 3.1.4.4) superfamily. 156 -197339 cd10312 Deadenylase_CCR4b C-terminal deadenylase domain of CCR4b, also known as CCR4-NOT transcription complex subunit 6-like. This subfamily contains the C-terminal catalytic domain of the deadenylase, CCR4b, also known as CCR4-NOT transcription complex subunit 6-like (CNOT6L). CCR4 belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. CCR4 is the major deadenylase subunit of the CCR4-NOT transcription complex, which contains two deadenylase subunits and several noncatalytic subunits. The other deadenylase subunit, Caf1, is a DEDD-type protein and does not belong in this superfamily. There are two vertebrate CCR4 proteins, CCR4a (also called CCR4-NOT transcription complex subunit 6 or CNOT6) and CCR4b. CCR4b associates with other components, such as CNOT1-3 and Caf1, to form a CCR4-NOT multisubunit complex, which regulates transcription and mRNA degradation. The nuclease domain of CCR4b exhibits Mg2+-dependent deadenylase activity with strict specificity for poly (A) RNA as substrate. CCR4b is mainly localized in the cytoplasm. It regulates cell growth and influences cell cycle progression by regulating p27/Kip1 mRNA levels. It contributes to the prevention of cell death by regulating insulin-like growth factor-binding protein 5. 348 -197340 cd10313 Deadenylase_CCR4a C-terminal deadenylase domain of CCR4a, also known as CCR4-NOT transcription complex subunit 6. This subfamily contains the C-terminal catalytic domain of the deadenylase, CCR4a, also known as CCR4-NOT transcription complex subunit 6 (CNOT6). CCR4 belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. CCR4 is the major deadenylase subunit of the CCR4-NOT transcription complex, which contains two deadenylase subunits and several noncatalytic subunits. The other deadenylase subunit, Caf1, is a DEDD-type protein and does not belong in this superfamily. There are two vertebrate CCR4 proteins, CCR4a and CCR4b (also called CNOT6-like or CNOT6L). CCR4a associates with other components, such as CNOT1-3 and Caf1, to form a CCR4-NOT multisubunit complex, which regulates transcription and mRNA degradation. The nuclease domain of CCR4a exhibits Mg2+-dependent deadenylase activity with specificity for poly (A) RNA as substrate. CCR4a is a component of P-bodies and is necessary for foci formation of various P-body components. It also plays a role in cellular responses to DNA damage, by regulating Chk2 activity. 350 -198457 cd10314 FAM20_C C-terminal putative kinase domain of FAM20 (family with sequence similarity 20) proteins. This family contains the C-terminal domain of FAM20A, -B, -C and related proteins. FAM20A may participate in enamel development and gingival homeostasis, FAM20B in proteoglycan production, and FAM20C in bone development. FAM20B is a xylose kinase that may regulate the number of glycosaminoglycan chains by phosphorylating the xylose residue in the glycosaminoglycan-protein linkage region of proteoglycans. FAM20C, also called Dentin Matrix Protein 4, is abundant in the dentin matrix, and may participate in the differentiation of mesenchymal precursor cells into functional odontoblast-like cells. Mutations in FAM20C are associated with lethal Osteosclerotic Bone Dysplasia (Raine Syndrome), and mutations in FAM20A with Amelogenesis imperfecta (AI) and Gingival Hyperplasia Syndrome. The C-terminal domains of members of this family are putative kinase domains, based on mutagenesis of the C-terminal domain of Drosophila Four-Jointed, a related Golgi kinase. This domain family is also known as DUF1193. 209 -199215 cd10315 CBM41_pullulanase Family 41 Carbohydrate-Binding Module from pullulanase-like enzymes. Pullulanases (EC 3.2.1.41) are a group of starch-debranching enzymes, catalyzing the hydrolysis of the alpha-1,6-glucosidic linkages of alpha-glucans, preferentially pullulan. Pullulan is a polysaccharide in which alpha-1,4 linked maltotriosyl units are combined via an alpha-1,6 linkage. These enzymes are of importance in the starch industry, where they are used to hydrolyze amylopectin starch. Pullulanases consist of multiple distinct domains, including a catalytic domain belonging to the glycoside hydrolase (GH) family 13 and carbohydrate-binding modules (CBM), including CBM41. 100 -199904 cd10316 RGL4_M Middle domain of rhamnogalacturonan lyase, a family 4 polysaccharide lyase. The rhamnogalacturonan lyase of the polysaccharide lyase family 4 (RGL4) is involved in the degradation of RG (rhamnogalacturonan) type-I, an important pectic plant cell wall polysaccharide, by cleaving the alpha-1,4 glycoside bond between L-rhamnose and D-galacturonic acids in the backbone of RG type-I through a beta-elimination reaction. RGL4 consists of three domains, an N-terminal catalytic domain, a middle domain with a FNIII type fold and a C-terminal domain with a jelly roll fold. Both the middle domain represented by this model and the C-terminal domain are putative carbohydrate binding modules. There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain (RG chain) through the beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11. 92 -199905 cd10317 RGL4_C C-terminal domain of rhamnogalacturonan lyase, a family 4 polysaccharide lyase. The rhamnogalacturonan lyase of the polysaccharide lyase family 4 (RGL4) is involved in the degradation of RG (rhamnogalacturonan) type-I, an important pectic plant cell wall polysaccharide, by cleaving the alpha-1,4 glycoside bond between L-rhamnose and D-galacturonic acids in the backbone of RG type-I through a beta-elimination reaction. RGL4 consists of three domains, an N-terminal catalytic domain, a middle domain with a FNIII type fold and a C-terminal domain with a jelly roll fold. Both the middle and the C-terminal domain are putative carbohydrate binding modules. There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain (RG chain) through the beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11. 161 -199906 cd10318 RGL11 Rhamnogalacturonan lyase of the polysaccharide lyase family 11. The rhamnogalacturonan lyase of the polysaccharide lyase family 11 (RGL11) cleaves glycoside bonds in polygalacturonan as well as RG (rhamnogalacturonan) type-I through a beta-elimination reaction. Functionally characterized members of this family, YesW and YesX from Bacillus subtilis, cleave glycoside bonds between rhamnose and galacturonic acid residues in the RG-I region of plant cell wall pectin. YesW and YesX work synergistically, with YesW cleaving the glycoside bond of the RG chain endolytically, and YesX converting the resultant oligosaccharides through an exotype reaction. This domain is sometimes found in architectures with non-catalytic carbohydrate-binding modules (CBMs). There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain through a beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11. 564 -198439 cd10319 EphR_LBD Ligand Binding Domain of Ephrin Receptors. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). They are subdivided into 2 groups, A and B type receptors, depending on their ligand ephrin-A or ephrin-B, respectively. In general, class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. One exception is EphB2, which also interacts with ephrin A5. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. 177 -199907 cd10320 RGL4_N N-terminal catalytic domain of rhamnogalacturonan lyase, a family 4 polysaccharide lyase. The rhamnogalacturonan lyase of the polysaccharide lyase family 4 (RGL4) is involved in the degradation of RG (rhamnogalacturonan) type-I, an important pectic plant cell wall polysaccharide, by cleaving the alpha-1,4 glycoside bond between L-rhamnose and D-galacturonic acids in the backbone of RG type-I through a beta-elimination reaction. RGL4 consists of three domains, an N-terminal catalytic domain, a middle domain with a FNIII type fold and a C-terminal domain with a jelly roll fold; the middle and C-terminal domains are both putative carbohydrate binding modules. There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain (RG chain) through the beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11. 265 -199216 cd10321 RNase_Ire1_like RNase domain (also known as the kinase extension nuclease domain) of Ire1 and RNase L. This RNase domain is found in the multi-functional protein Ire1; Ire1 also contains a type I transmembrane serine/threonine protein kinase (STK) domain, and a Luminal dimerization domain. Ire1 is essential for the endoplasmic reticulum (ER) unfolded protein response (UPR). The UPR is activated when protein misfolding is detected in the ER in order to reduce the synthesis of new proteins and increase the capacity of the ER to cope with the stress. IRE1 acts as an ER stress sensor; IRE1 dimerizes through its N-terminal luminal domain and forms oligomers, promoting trans-autophosphorylation by its cytosolic kinase domain which stimulates its endoribonuclease (RNase) activity and results in the cleavage of its mRNA substrate, Hac1 in yeast and Xbp1 in metazoans, thus promoting a splicing event that enables translation into a transcription factor which activates the UPR. This RNase domain is also found in Ribonuclease L (RNase L), sometimes referred to as the 2-5A-dependent RNase. RNase L is a highly regulated, latent endoribonuclease widely expressed in most mammalian tissues. It is involved in the mediation of the antiviral and pro-apoptotic activities of the interferon-inducible 2-5A system; the interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by certain types of viruses through cleavage of viral and cellular single-stranded RNA. RNase L has been shown to have an impact on the pathogenesis of prostate cancer; the RNase L gene, RNASEL, has been identified as a strong candidate for the hereditary prostate cancer 1 (HPC1) allele. 127 -271357 cd10322 SLC5sbd Solute carrier 5 family, sodium/glucose transporters and related proteins; solute-binding domain. This family represents the solute-binding domain of SLC5 proteins (also called the sodium/glucose cotransporter family or solute sodium symporter family) that co-transport Na+ with sugars, amino acids, inorganic ions or vitamins. Family members include: the human glucose (SGLT1, 2, 4, 5), chiro-inositol (SGLT5), myo-inositol (SMIT), choline (CHT), iodide (NIS), multivitamin (SMVT), and monocarboxylate (SMCT) cotransporters, as well as Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. Vibrio parahaemolyticus Na(+)/galactose cotransporter (vSGLT) has 13 transmembrane helices (TMs): TM-1, an inverted topology repeat: TMs1-5 and TMs6-10, and TMs 11-12 (TMs numbered to conform to the solute carrier 6 family Aquifex aeolicus LeuT). One member of this family, human SGLT3, has been characterized as a glucose sensor and not a transporter. Members of this family are important in human physiology and disease. 454 -271358 cd10323 SLC-NCS1sbd nucleobase-cation-symport-1 (NCS1) transporters; solute-binding domain. NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. This family includes Microbacterium liquefaciens Mhp1, a transporter that mediates the uptake of indolyl methyl- and benzyl-hydantoins as part of a metabolic salvage pathway for their conversion to amino acids. It also includes various Saccharomyces cerevisiae transporters: Fcy21p (Purine-cytosine permease), vitamin B6 transporter Tpn1, nicotinamide riboside transporter 1 (Nrt1p, also called Thi71p), Dal4p (allantoin permease), Fui1p (uridine permease), and Fur4p (uracil permease). Mhp1 has 12 transmembrane (TM) helices (an inverted topology repeat: TMs1-5 and TMs6-10, and TMs11-12; TMs numbered to conform to the solute carrier 6 family Aquifex aeolicus LeuT). NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters (SLC5s), and SLC6 neurotransmitter transporters. 414 -271359 cd10324 SLC6sbd Solute carrier 6 family, neurotransmitter transporters; solute-binding domain. This family represents the solute-binding domain of SLC6 proteins (also called the sodium- and chloride-dependent neurotransmitter transporter family or Na+/Cl--dependent transporter family). These use sodium and chloride electrochemical gradients to catalyze the thermodynamically uphill movement of a variety of substrates, and include neurotransmitter transporters (NTTs). The latter are Na+/Cl--dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. NTTs are widely expressed in the mammalian brain, and are involved in regulating neurotransmitter signaling and homeostasis, through facilitating the uptake of released neurotransmitters from the extracellular space into neurons and glial cells. NTTs are the target of a range of therapeutic drugs for the treatment of psychiatric diseases, such as major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. In addition, they are the primary targets of cocaine, amphetamines and other psychostimulants. This family also includes Drosophila Blot which is expressed primarily in epithelial tissues of ectodermal origin and in the nervous system of the embryo and larvae, but in addition found in the developing oocyte and the freshly laid egg. A lack or reduction of Blot function during oogenesis results in early arrest of embryonic development. 12 transmembrane helices (TMs) appears to be common for eukaryotic and some prokaryotic and archaeal SLC6s, (a core inverted topology repeat, TM1-5 and TM6-10, plus TMs11-12; TMs numbered to conform to the SLC6 Aquifex aeolicus LeuT), although a majority of bacterial, and some archaeal SLC6s lack TM12, for example the functional Fusobacterium nucleatum tyrosine transporter Tyt1. 415 -271360 cd10325 SLC5sbd_vSGLT Vibrio parahaemolyticus Na(+)/galactose cotransporter (vSGLT) and related proteins; solute binding domain. vSGLT transports D-galactose, D-glucose, and alpha-D-fucose, with a sugar specificity in the order of D-galactose >D-fucose >D-glucose. It transports one Na+ ion for each sugar molecule, and appears to function as a monomer. vSGLT has 13 transmembrane helices (TMs): TM-1, an inverted topology repeat: TMs1-5 and TMs6-10, and TMs 11-12 (TMs numbered to conform to the solute carrier 6 family Aquifex aeolicus LeuT). This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 523 -271361 cd10326 SLC5sbd_NIS-like Na(+)/iodide (NIS) and Na(+)/multivitamin (SMVT) cotransporters, and related proteins; solute binding domain. NIS (product of the SLC5A5 gene) transports I-, and other anions including ClO4-, SCN-, and Br-. SMVT (product of the SLC5A6 gene) transports biotin, pantothenic acid and lipoate. This subfamily also includes SMCT1 and 2. SMCT1(the product of the SLC5A8 gene) is a high-affinity transporter of various monocarboxylates including lactate and pyruvate, short-chain fatty acids, ketone bodies, nicotinate and its structural analogs, pyroglutamate, benzoate and its derivatives, and iodide. SMCT2 (product of the SLC5A12 gene) is a low-affinity transporter for short-chain fatty acids, lactate, pyruvate, and nicotinate. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 472 -212037 cd10327 SLC5sbd_PanF Na(+)/pantothenate cotransporters: PanF of Escherichia coli and related proteins; solute binding domain. PanF catalyzes the Na+-coupled uptake of extracellular pantothenate for coenzyme A biosynthesis in cells. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 472 -271362 cd10328 SLC5sbd_YidK uncharacterized SLC5 subfamily, Escherichia coli YidK-like; solute binding domain. Uncharacterized subfamily of the solute binding domain of the solute carrier 5 (SLC5) transporter family (also called the sodium/glucose cotransporter family or solute sodium symporter family) that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily includes the uncharacterized Escherichia coli YidK protein, and belongs to the solute carrier 5 (SLC5) transporter family. 472 -271363 cd10329 SLC5sbd_SGLT1-like Na(+)/glucose cotransporter SGLT1 and related proteins; solute binding domain. This subfamily includes the solute-binding domain of SGLT proteins that cotransport Na+ with various solutes. Its members include: the human glucose (SGLT1, -2, -4, -5 ), chiro-inositol (SGLT5), and myo-inositol (SMIT) cotransporters. It also includes human SGLT3 which has been characterized as a glucose sensor and not a transporter. It belongs to the solute carrier 5 (SLC5) transporter family. 538 -271364 cd10332 SLC6sbd-B0AT-like System B(0) neutral amino acid transporter AT1, 2 and 3, and related proteins; solute-binding domain. This subgroup includes the solute-binding domain of transmembrane transporters, which transport, i) neutral amino acids: NTT4 (also called XT1), SBAT1 (also called B0AT2, v7-3, NTT7-3), and B0AT1 (also called HND); the human genes encoding these are SLC6A17, SLC6A15, and SLC6A19 respectively, ii) glycine: B0AT3 (also called Xtrp2, XT2), iii) imino acids, such as proline, pipecolate, MeAIB, and sarcosine: SIT1 (also called XTRP3, XT3, IMINO). The human genes encoding B0AT3 and SIT1 are SLC6A18 and SLC6A20 respectively. Transporters in this subgroup may play a role in disorders including major depression, Hartnup disorder, increased susceptibility to myocardial infarction, and iminoglycinuria. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 531 -271365 cd10333 LeuT-like_sbd Aquifex aeolicus LeuT and related proteins; solute binding domain. LeuT is a bacterial amino acid transporter with specificity for the hydrophobic amino acids glycine, alanine, methionine, and leucine. This subgroup belongs to the solute carrier 6 (SLC6) transporter family; LeuT has been used as a structural template for understanding fundamental aspects of SLC6 function. It has an arrangement of 12 transmembrane helices (TMs), which appears to be a common motif for eukaryotic and some prokaryotic and archaeal SLC6s: an inverted topology repeat: TMs1-5 and TMs6-10, and TMs11-12. 496 -271366 cd10334 SLC6sbd_u1 uncharacterized bacterial and archaeal solute carrier 6 subfamily; solute-binding domain. SLC6 proteins (also called the sodium- and chloride-dependent neurotransmitter transporter family or Na+/Cl--dependent transporter family) include neurotransmitter transporters (NTTs): these are sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. These NTTs are widely expressed in the mammalian brain, involved in regulating neurotransmitter signaling and homeostasis, and the target of a range of therapeutic drugs for the treatment of psychiatric diseases. Bacterial members of the SLC6 family include the LeuT amino acid transporter. 480 -271367 cd10336 SLC6sbd_Tyt1-Like solute carrier 6 subfamily, Fusobacterium nucleatum Tyt1-like; solute-binding domain. SLC6 proteins (also called the sodium- and chloride-dependent neurotransmitter transporter family or Na+/Cl--dependent transporter family) include neurotransmitter transporters (NTTs): these are sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. These NTTs are widely expressed in the mammalian brain, involved in regulating neurotransmitter signaling and homeostasis, and the target of a range of therapeutic drugs for the treatment of psychiatric diseases. Bacterial members of the SLC6 family include the LeuT amino acid transporter. An arrangement of 12 transmembrane (TM) helices appears to be as a common topological motif for eukaryotic and some prokaryotic and archaeal NTTs. However, this subfamily which contains the majority of bacterial members and some archaeal members, appears to contain only 11 TMs; for example the functional Fusobacterium nucleatum tyrosine transporter Tyt1. 440 -198200 cd10337 SH2_BCAR3 Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3. BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 136 -198201 cd10338 SH2_SHA Src homology 2 (SH2) domain found in SH2 adaptor proteins A (SHA) Signal transducers. Signal transducing adaptor proteins are accessory to main proteins in a signal transduction pathway. These proteins lack intrinsic enzymatic activity, but mediate specific protein-protein interactions that drive the formation of protein complexes. Adaptor proteins usually contain several domains within their structure (e.g. SH2 and SH3 domains) which allow specific interactions with several other specific proteins. Not much is known about the SHA protein except that it is predicted to act as a transcription factor. Arabidopsis SHA pulled down a 120-kD tyrosine-phosphorylated protein in vitro. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 106 -198202 cd10339 SH2_RIN_family Src homology 2 (SH2) domain found in Ras and Rab interactor (RIN)-family. The RIN (AKA Ras interaction/interference) family is composed of RIN1, RIN2 and RIN3. These proteins have multifunctional domains including SH2 and proline-rich (PR) domains in the N-terminal region, and RIN-family homology (RH), VPS9 and Ras-association (RA) domains in the C-terminal region. RIN proteins function as Rab5-GEFs, and RIN3 specifically functions as a Rab31-GEF. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198203 cd10340 SH2_N-SH2_SHP_like N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins. The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [IVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 99 -199829 cd10341 SH2_N-SH2_PLC_gamma_like N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma. Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 99 -198205 cd10342 SH2_SAP1 Src homology 2 (SH2) domain found in SLAM-associated protein (SAP)1. The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX[VI], which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198206 cd10343 SH2_SHIP Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP). The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198207 cd10344 SH2_SLAP Src homology 2 domain found in Src-like adaptor proteins. SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198208 cd10345 SH2_C-SH2_Zap70_Syk_like C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins. ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 95 -198209 cd10346 SH2_SH2B_family Src homology 2 (SH2) domain found in SH2B adapter protein family. The SH2B adapter protein family has 3 members: SH2B1 (SH2-B, PSM), SH2B2 (APS), and SH2B3 (Lnk). SH2B family members contain a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. SH2B3 negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Sh2b3/Lnk also functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198210 cd10347 SH2_Nterm_shark_like N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins. These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 81 -198211 cd10348 SH2_Cterm_shark_like C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins. These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 86 -199830 cd10349 SH2_SH2D2A_SH2D7 Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7). SH2D2A and SH7 both contain a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 77 -198213 cd10350 SH2_SH2D4A Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A). SH2D4A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198214 cd10351 SH2_SH2D4B Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B). SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198215 cd10352 SH2_a2chimerin_b2chimerin Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins. Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 91 -198216 cd10353 SH2_Nterm_RasGAP N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP). RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general the longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the N-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198217 cd10354 SH2_Cterm_RasGAP C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP). RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 77 -198218 cd10355 SH2_DAPP1_BAM32_like Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins. DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 92 -198219 cd10356 SH2_ShkA_ShkC Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC). SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 113 -198220 cd10357 SH2_ShkD_ShkE Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE). SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 87 -198221 cd10358 SH2_PTK6_Brk Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast tumor kinase (Brk). Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. PTK6 (9). PTK6 contains a SH3 domain, a SH2 domain, and catalytic domains. For the case of the non-receptor protein-tyrosine kinases, the SH2 domain is typically involved in negative regulation of kinase activity by binding to a phosphorylated tyrosine residue near to the C terminus. The C-terminal sequence of PTK6 (PTSpYENPT where pY is phosphotyrosine) is thought to be a self-ligand for the SH2 domain. The structure of the SH2 domain resembles other SH2 domains except for a centrally located four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD). There are also differences in the loop length which might be responsible for PTK6 ligand specificity. There are two possible means of regulation of PTK6: autoinhibitory with the phosphorylation of Tyr playing a role in its negative regulation and autophosphorylation at this site, though it has been shown that PTK6 might phosphorylate signal transduction-associated proteins Sam68 and signal transducing adaptor family member 2 (STAP/BKS) in vivo. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 100 -198222 cd10359 SH2_SH3BP2 Src homology 2 domain found in c-Abl SH3 domain-binding protein-2 (SH3BP2). The adaptor protein 3BP2/SH3BP2 plays a regulatory role in signaling from immunoreceptors. The protein-tyrosine kinase Syk phosphorylates 3BP2 which results in the activation of Rac1 through the interaction with the SH2 domain of Vav1 and induces the binding to the SH2 domain of the upstream protein-tyrosine kinase Lyn and enhances its kinase activity. 3BP2 has a positive regulatory role in IgE-mediated mast cell activation. In lymphocytes, engagement of T cell or B cell receptors triggers tyrosine phosphorylation of 3BP2. Suppression of the 3BP2 expression by siRNA results in the inhibition of T cell or B cell receptor-mediated activation of NFAT. 3BP2 is required for the proliferation of B cells and B cell receptor signaling. Mutations in the 3BP2 gene are responsible for cherubism resulting in excessive bone resorption in the jaw. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198223 cd10360 SH2_Srm Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm). Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 79 -198224 cd10361 SH2_Fps_family Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins. The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 90 -198225 cd10362 SH2_Src_Lck Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck). Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198226 cd10363 SH2_Src_HCK Src homology 2 (SH2) domain found in HCK. HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 104 -198227 cd10364 SH2_Src_Lyn Src homology 2 (SH2) domain found in Lyn. Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198228 cd10365 SH2_Src_Src Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src). Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198229 cd10366 SH2_Src_Yes Src homology 2 (SH2) domain found in Yes. Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198230 cd10367 SH2_Src_Fgr Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr. Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198231 cd10368 SH2_Src_Fyn Src homology 2 (SH2) domain found in Fyn. Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -199831 cd10369 SH2_Src_Frk Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk). Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 96 -198233 cd10370 SH2_Src_Src42 Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42). Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 96 -198234 cd10371 SH2_Src_Blk Src homology 2 (SH2) domain found in B lymphoid kinase (Blk). Blk is a member of the Src non-receptor type tyrosine kinase family of proteins. Blk is expressed in the B-cells. Unlike most other Src members Blk lacks cysteine residues in the SH4 domain that undergo palmitylation. Blk is required for the development of IL-17-producing gamma-delta T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny. Blk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 100 -198235 cd10372 SH2_STAT1 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 1 proteins. STAT1 is a member of the STAT family of transcription factors. STAT1 is involved in upregulating genes due to a signal by interferons. STAT1 forms homodimers or heterodimers with STAT3 that bind to the Interferon-Gamma Activated Sequence (GAS) promoter element in response to IFN-gamma stimulation. STAT1 forms a heterodimer with STAT2 that can bind Interferon Stimulated Response Element (ISRE) promoter element in response to either IFN-alpha or IFN-beta stimulation. Binding in both cases leads to an increased expression of ISG (Interferon Stimulated Genes). STAT1 has been shown to interact with protein kinase R, Src, IRF1, STAT3, MCM5, STAT2, CD117, Fanconi anemia, complementation group C, CREB-binding protein, Interleukin 27 receptor, alpha subunit, PIAS1, BRCA1, Epidermal growth factor receptor, PTK2, Mammalian target of rapamycin, IFNAR2, PRKCD, TRADD, C-jun, Calcitriol receptor, ISGF3G, and GNB2L1. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 151 -198236 cd10373 SH2_STAT2 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 2 proteins. STAT2 is a member of the STAT protein family. In response to interferon, STAT2 forms a complex with STAT1 and IFN regulatory factor family protein p48 (ISGF3G), in which this protein acts as a transactivator, but lacks the ability to bind DNA directly. Transcription adaptor P300/CBP (EP300/CREBBP) has been shown to interact specifically with STAT2, which is thought to be involved in the process of blocking IFN-alpha response by adenovirus. STAT2 has been shown to interact with MED14, CREB-binding protein, SMARCA4, STAT1, IFNAR2, IFNAR1, and ISGF3G. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 151 -198237 cd10374 SH2_STAT3 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 3 proteins. STAT3 encoded by this gene is a member of the STAT protein family. STAT3 mediates the expression of a variety of genes in response to cell stimuli, and plays a key role in many cellular processes such as cell growth and apoptosis. The small GTPase Rac1 regulates the activity of STAT3 and PIAS3 inhibits it. Three alternatively spliced transcript variants encoding distinct isoforms have been described. STAT 3 activation is required for self-renewal of embryonic stem cells (ESCs) and is essential for the differentiation of the TH17 helper T cells. Mutations in the STAT3 gene result in Hyperimmunoglobulin E syndrome and human cancers. STAT3 has been shown to interact with Androgen receptor, C-jun, ELP2, EP300, Epidermal growth factor receptor, Glucocorticoid receptor, HIF1A, Janus kinase 1, KHDRBS1, Mammalian target of rapamycin, MyoD, NDUFA13, NFKB1, Nuclear receptor coactivator 1, Promyelocytic leukemia protein, RAC1, RELA, RET proto-oncogene, RPA2, Src, STAT1, and TRIP10. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 162 -198238 cd10375 SH2_STAT4 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 4proteins. STAT4 mediate signals from the IL-12 receptors. STAT4 is mainly phosphorylated by IL-12-mediated signaling pathway in T cells. STAT4 expression is restricted in myeloid cells, thymus and testis. L-12 is the major cytokine that can activate STAT4, resulting in its tyrosine phosphorylation. The IL-12 receptor has two chains, termed IL-12R 1 and IL-12R 2, and ligand binding results in heterodimer formation and activation of the receptor associated JAK kinases, Jak2 and Tyk2. Phosphorylated STAT4 homo-dimerizes via its SH2 domain, and translocates into nucleus where it can recognize traditional N3 STAT target sequences in IL-12 responsive genes. STAT4 can also be phosphorylated in response to IFN-gamma stimulation through activation of Jak1 and Tyk2 in human. IL-17 can also activate STAT4 in human monocytic leukemia cell lines and IL-2 can induce Jak2 and Stat4 activation in NK cells but not in T cells. T helper 1 (Th1) cells produce IL-2 and IFNgamma, whereas Th2 cells secrete IL-4, IL-5, IL-6 and IL-13. Th1 cells are responsible for cell-mediated/inflammatory immunity and can enhance defenses against infectious agents and cancer, while Th2 cells are essential for humoral immunity and the clearance of parasitic antigens. The most potent factors that can promote Th1 and Th2 differentiation are the cytokines IL-12 and IL-4 respectively Although STAT4 is expressed both in Th1 and Th2 cells, STAT4 can only be phosphorylated by IL-12 which suggests that STAT4 plays an important role in Th1 cell function or development. STAT4 activation leads to Th1 differentiation, including the target genes of STAT4 such as ERM, a transcription factor that belongs to the Ets family of transcription factors. The expression of ERM is specifically induced by IL-12 in wild-type Th1 cells, but not in STAT4-deficient T cells. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 148 -198239 cd10376 SH2_STAT5 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 5 proteins. STAT5 is a member of the STAT family of transcription factors. Two highly related proteins, STAT5a and STAT5b are encoded by separate genes, but are 90% identical at the amino acid level. Both STAT5a and STAT5b are ubiquitously expressed and functionally interchangeable. Mice lacking either STAT5a or STAT5b have mild defects in prolactin dependent mammary differentiation or sexually dimorphic growth hormone-dependent effects, respectively. Mice lacking both STAT5a and STAT5b exhibit a perinatal lethal phenotype and have multiple defects, including anemia and a virtual absence of B and T lymphocytes. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. 137 -198240 cd10377 SH2_STAT6 Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 6 proteins. STAT6 mediate signals from the IL-4 receptor. Unlike the other STAT proteins which bind an IFNgamma Activating Sequence (GAS), STAT6 stands out as having a unique binding site preference. This site consists of a palindromic sequence separated by a 3 bp spacer (TTCNNNG-AA)(N3 site). STAT6 is able to bind the GAS site but only at a low affinity. STAT6 may be an important regulator of mitogenesis when cells respond normally to IL-4. There is speculation that the inappropriate activation of STAT6 is involved in uncontrolled cell growth in an oncogenic state. IFNgamma is a negative regulator of STAT6 dependent transcription of target genes. Bcl-6 is another negative regulator of STAT6 activity. Bcl-6 is a transcriptional repressor normally expressed in germinal center B cells and some T cells. IL-4 signaling via STAT6 initially occurs unopposed, but is then dampened by a negative feedback mechanism through the IL-4/Stat6 dependent induction of SOCS1 expression. The IL-4 dependent aspect of Th2 differentiation requires the activation of STAT6. IL-4 signaling and STAT6 appear to play an important role in the immune response. Recently, it was shown that large scale chromatin remodeling of the IL-4 gene occurs as cells differentiate into Th2 effectors is STAT6 dependent. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 129 -198241 cd10378 SH2_Jak1 Src homology 2 (SH2) domain in the Janus kinase 1 (Jak1) proteins. Janus kinase 1 (JAK1), is a member of a class of protein-tyrosine kinases (PTK) characterized by the presence of a second phosphotransferase-related domain immediately N-terminal to the PTK domain. The second phosphotransferase domain bears all the hallmarks of a protein kinase, although its structure differs significantly from that of the PTK and threonine/serine kinase family members. JAK1 is a large, widely expressed membrane-associated phosphoprotein. JAK1 is involved in the interferon-alpha/beta and -gamma signal transduction pathways. The reciprocal interdependence between JAK1 and TYK2 activities in the interferon-alpha pathway, and between JAK1 and JAK2 in the interferon-gamma pathway, may reflect a requirement for these kinases in the correct assembly of interferon receptor complexes. These kinases couple cytokine ligand binding to tyrosine phosphorylation of various known signaling proteins and of a unique family of transcription factors termed the signal transducers and activators of transcription, or STATs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -198242 cd10379 SH2_Jak2 Src homology 2 (SH2) domain in the Janus kinase 2 (Jak2) proteins. Jak2 is a protein tyrosine kinase involved in a specific subset of cytokine receptor signaling pathways. It has been found to be constitutively associated with the prolactin receptor and is required for responses to gamma interferon. Mice that do not express an active protein for this gene exhibit embryonic lethality associated with the absence of definitive erythropoiesis. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198243 cd10380 SH2_Jak3 Src homology 2 (SH2) domain in the Janus kinase 3 (Jak3) proteins. Jak3 is a member of the Janus kinase (JAK) family of tyrosine kinases involved in cytokine receptor-mediated intracellular signal transduction. It is predominantly expressed in immune cells and transduces a signal in response to its activation via tyrosine phosphorylation by interleukin receptors. Mutations in this gene are associated with autosomal SCID (severe combined immunodeficiency disease). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 96 -198244 cd10381 SH2_Jak_Tyk2 Src homology 2 (SH2) domain in Tyrosine Kinase 2 (Tyk2), a member of the Janus kinases (JAK). Tyk2 is a member of the tyrosine kinase and, more specifically, the Janus kinases (JAKs) protein families. This protein associates with the cytoplasmic domain of type I and type II cytokine receptors and promulgate cytokine signals by phosphorylating receptor subunits. It is also component of both the type I and type III interferon signaling pathways. As such, it may play a role in anti-viral immunity. A mutation in this gene has been associated with hyperimmunoglobulin E syndrome (HIES) - a primary immunodeficiency characterized by elevated serum immunoglobulin E. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -198245 cd10382 SH2_SOCS1 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198246 cd10383 SH2_SOCS2 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198247 cd10384 SH2_SOCS3 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198248 cd10385 SH2_SOCS4 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198249 cd10386 SH2_SOCS5 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 81 -198250 cd10387 SH2_SOCS6 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 100 -198251 cd10388 SH2_SOCS7 Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins. SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198252 cd10389 SH2_SHB Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB). SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198253 cd10390 SH2_SHD Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD). The expression of SHD is restricted to the brain. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198254 cd10391 SH2_SHE Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE). SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198255 cd10392 SH2_SHF Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF). SHF is thought to play a role in PDGF-receptor signaling and regulation of apoptosis. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198256 cd10393 SH2_RIN1 Src homology 2 (SH2) domain found in Ras and Rab interactor 1 (RIN1)-like proteins. RIN1, a member of the RIN (AKA Ras interaction/interference) family, have multifunctional domains including SH2 and proline-rich (PR) domains in the N-terminal region, and RIN-family homology (RH), VPS9 and Ras-association (RA) domains in the C-terminal region. RIN proteins function as Rab5-GEFs. Previous studies showed that RIN1 interacts with EGF receptors via its SH2 domain and regulates trafficking and degradation of EGF receptors via its interaction with STAM, indicating a vital role for RIN1 in regulating endosomal trafficking of receptor tyrosine kinases (RTKs). RIN1 was first identified as a Ras-binding protein that suppresses the activated RAS2 allele in S. cerevisiae. RIN1 binds to the activated Ras through its carboxyl-terminal domain and this Ras-binding domain also binds to 14-3-3 proteins as Raf-1 does. The SH2 domain of RIN1 are thought to interact with the phosphotyrosine-containing proteins, but the physiological partners for this domain are unknown. The proline-rich domain in RIN1 is similar to the consensus SH3 binding regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198257 cd10394 SH2_RIN2 Src homology 2 (SH2) domain found in Ras and Rab interactor 2 (RIN2)-like proteins. RIN2, a member of the RIN (AKA Ras interaction/interference) family, have multifunctional domains including SH2 and proline-rich (PR) domains in the N-terminal region, and RIN-family homology (RH), VPS9 and Ras-association (RA) domains in the C-terminal region. RIN proteins function as Rab5-GEFs. Ras induces activation of Rab5 through RIN2, which is a direct downstream target of Ras and a direct upstream regulator of Rab5. In other words it is the binding of the GTP-bound form of Ras to the RA domain of RIN2 that enhances the GEF activity toward Rab5. It is thought that the RA domain negatively regulates the Rab5 GEF activity. In steady state, RIN2 is likely to form a closed conformation by an intramolecular interaction between the RA domain and the Vps9p-like (Rab5 GEF) domain, negatively regulating the Rab5 GEF activity. In the active state, the binding of Ras to the RA domain may reduce the intramolecular interaction and stabilize an open conformation of RIN2. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 100 -198258 cd10395 SH2_RIN3 Src homology 2 (SH2) domain found in Ras and Rab interactor 3 (RIN3)-like proteins. RIN3, a member of the RIN (AKA Ras interaction/interference) family, have multifunctional domains including SH2 and proline-rich (PR) domains in the N-terminal region, and RIN-family homology (RH), VPS9 and Ras-association (RA) domains in the C-terminal region. RIN proteins function as Rab5-GEFs. RIN3 stimulated the formation of GTP-bound Rab31, a Rab5-subfamily GTPase, and formed enlarged vesicles and tubular structures, where it colocalized with Rab31. Transferrin appeared to be transported partly through the RIN3-positive vesicles to early endosomes. RIN3 interacts via its Pro-rich domain with amphiphysin II, which contains SH3 domain and participates in receptor-mediated endocytosis. RIN3, a Rab5 and Rab31 GEF, plays an important role in the transport pathway from plasma membrane to early endosomes. Mutations in the region between the SH2 and RH domain of RIN3 specifically abolished its GEF action on Rab31, but not Rab5. RIN3 was also found to partially translocate the cation-dependent mannose 6-phosphate receptor from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These data indicate that RIN3 specifically acts as a GEF for Rab31. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198259 cd10396 SH2_Tec_Itk Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk). A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 108 -198260 cd10397 SH2_Tec_Btk Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk). A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 106 -198261 cd10398 SH2_Tec_Txk Src homology 2 (SH2) domain found in Tec protein, Txk. A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 106 -198262 cd10399 SH2_Tec_Bmx Src homology 2 (SH2) domain found in Tec protein, Bmx. A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 106 -198263 cd10400 SH2_SAP1a Src homology 2 (SH2) domain found in SLAM-associated protein (SAP) 1a. The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX[VI], which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198264 cd10401 SH2_C-SH2_Syk_like C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins. ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Syk. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 99 -198265 cd10402 SH2_C-SH2_Zap70 C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70). ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 105 -198266 cd10403 SH2_STAP1 Src homology 2 domain found in Signal-transducing adaptor protein 1 (STAP1). STAP1 is a signal-transducing adaptor protein. It is composed of a Pleckstrin homology (PH) and SH2 domains along with several tyrosine phosphorylation sites. STAP-1 is an ortholog of BRDG1 (BCR downstream signaling 1). STAP1 protein functions as a docking protein acting downstream of Tec tyrosine kinase in B cell antigen receptor signaling. The protein is phosphorylated by Tec and participates in a positive feedback loop, increasing Tec activity. STAP1 has been shown to interact with C19orf2, an unconventional prefoldin RPB5 interactor. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 94 -198267 cd10404 SH2_STAP2 Src homology 2 domain found in Signal-transducing adaptor protein 2 (STAP2). STAP2 is a signal-transducing adaptor protein. It is composed of a Pleckstrin homology (PH) and SH2 domains along with several tyrosine phosphorylation sites. The STAP2 protein is the substrate of breast tumor kinase, an Src-type non-receptor tyrosine kinase that mediates the interactions linking proteins involved in signal transduction pathways. STAP2 has alternative splicing variants. STAP2 has been shown to interact with tyrosine-protein kinase 6 (PTK6). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198268 cd10405 SH2_Vav1 Src homology 2 (SH2) domain found in the Vav1 proteins. Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198269 cd10406 SH2_Vav2 Src homology 2 (SH2) domain found in the Vav2 proteins. Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198270 cd10407 SH2_Vav3 Src homology 2 (SH2) domain found in the Vav3 proteins. Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 103 -198271 cd10408 SH2_Nck1 Src homology 2 (SH2) domain found in Nck. Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198272 cd10409 SH2_Nck2 Src homology 2 (SH2) domain found in Nck. Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 98 -198273 cd10410 SH2_SH2B1 Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3). SH2B1 (SH2-B, PSM), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198274 cd10411 SH2_SH2B2 Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3). SH2B2 (APS), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B1 and SH2B2 function in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. SH2B2beta, a new isoform of SH2B2, is an endogenous inhibitor of SH2B1 and/or SH2B2 (SH2B2alpha), negatively regulating insulin signaling and/or JAK2-mediated cellular responses. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198275 cd10412 SH2_SH2B3 Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3). SH2B3 (Lnk), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B3 negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Sh2b3/Lnk also functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 97 -198276 cd10413 SH2_Grb7 Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins. The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb7 is part of the Grb7 family of proteins which also includes Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 108 -198277 cd10414 SH2_Grb14 Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 14 (Grb14) proteins. The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb14 is part of the Grb7 family of proteins which also includes Grb7, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR) and weakly to the erbB2 receptor. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 108 -198278 cd10415 SH2_Grb10 Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 10 (Grb10) proteins. The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. Grb10 is part of the Grb7 family of proteins which also includes Grb7, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 108 -198279 cd10416 SH2_SH2D2A Src homology 2 domain found in the SH2 domain containing protein 2A (SH2D2A). SH2D2A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -199832 cd10417 SH2_SH2D7 Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7). SH2D7 contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 102 -198281 cd10418 SH2_Src_Fyn_isoform_a_like Src homology 2 (SH2) domain found in Fyn isoform a like proteins. Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198282 cd10419 SH2_Src_Fyn_isoform_b_like Src homology 2 (SH2) domain found in Fyn isoform b like proteins. Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform b type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 101 -198283 cd10420 SH2_STAT5b Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 5b proteins. STAT5 is a member of the STAT family of transcription factors. Two highly related proteins, STAT5a and STAT5b are encoded by separate genes, but are 90% identical at the amino acid level. Both STAT5a and STAT5b are ubiquitously expressed and functionally interchangeable. Mice lacking either STAT5a or STAT5b have mild defects in prolactin dependent mammary differentiation or sexually dimorphic growth hormone-dependent effects, respectively. Mice lacking both STAT5a and STAT5b exhibit a perinatal lethal phenotype and have multiple defects, including anemia and a virtual absence of B and T lymphocytes. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 145 -198284 cd10421 SH2_STAT5a Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 5a proteins. STAT5 is a member of the STAT family of transcription factors. Two highly related proteins, STAT5a and STAT5b are encoded by separate genes, but are 90% identical at the amino acid level. Both STAT5a and STAT5b are ubiquitously expressed and functionally interchangeable. Mice lacking either STAT5a or STAT5b have mild defects in prolactin dependent mammary differentiation or sexually dimorphic growth hormone-dependent effects, respectively. Mice lacking both STAT5a and STAT5b exhibit a perinatal lethal phenotype and have multiple defects, including anemia and a virtual absence of B and T lymphocytes. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 140 -199217 cd10422 RNase_Ire1 RNase domain (also known as the kinase extension nuclease domain) of Ire1. The model represents the C-terminal endoribonuclease domain of the multi-functional protein Ire1; Ire1 in addition contains a type I transmembrane serine/threonine protein kinase (STK) domain, and a Luminal dimerization domain. Ire1 is essential for the endoplasmic reticulum (ER) unfolded protein response (UPR), which acts as an ER stress sensor and is the oldest and most conserved component of the UPR in eukaryotes. During ER stress, IRE1 dimerizes through its N-terminal luminal domain and forms oligomers, promoting trans-autophosphorylation by its cytosolic kinase domain. This leads to a conformational change that stimulates its endoribonuclease (RNase) activity and results in the cleavage of its mRNA substrate, Hac1 in yeast and Xbp1 in metazoans, thus promoting a splicing event that enables translation into a transcription factor which activates the UPR. This RNase domain is homologous to the RNase domain of RNase L, and possesses a novel fold for a nuclease and appears to be rigid irrespective of the activation state of IRE1. Structural analysis and mutational studies have revealed that an early stage 'phosphoryl-transfer' competent conformation of IRE1 favors face-to-face dimerization of the kinase domains which precedes and is distinct from the RNase 'active' back-to-back conformation. Furthermore, in yeast IRE1, the flavonol quercetin activates the RNase and potentiates activation of the protein kinase by ADP, hinting at the possible existence of endogenous cytoplasmic ligands that may function along with stress signals from ER lumen in order to modulate IRE1 activity, thus identifying IRE1 as a target for development of ATP-competitive inhibitors to modulate the UPR with specific relevance for multiple myeloma. 129 -199218 cd10423 RNase_RNase-L RNase domain (also known as the kinase extension nuclease domain) of RNase L. Ribonuclease L (RNase L), sometimes referred to as the 2-5A-dependent RNase, is a highly regulated, latent endoribonuclease (thus the 'L' in RNase L) and is widely expressed in most mammalian tissues. It is involved in the mediation of the antiviral and pro-apoptotic activities of the interferon-inducible 2-5A system, which blocks infections by certain types of viruses through cleavage of viral and cellular single-stranded RNA. RNase L is unique in that it is composed of three major domains; N-terminus regulatory ankyrin repeat domain (ARD), followed by a linker, a protein kinase (PK)-like domain and a C-terminal ribonuclease (RNase) domain. The RNase domain has homology with IRE1, also containing both a kinase and an endoribonuclease, that functions in the unfolded protein response (UPR). RNase L has been shown to have an impact on the pathogenesis of prostate cancer; the RNase L gene, RNASEL, has been identified as a strong candidate for the hereditary prostate cancer 1 (HPC1) allele. The broad range of biological functions of RNase offers a possibility for RNase L as a therapeutic target. 119 -198344 cd10424 GST_C_9 C-terminal, alpha helical domain of an unknown subfamily 9 of Glutathione S-transferases. Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 9; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. 103 -259896 cd10425 Ephrin-A_Ectodomain Ectodomain of Ephrin A. Ephrins and their receptors EphR play an important role in cell communication in normal physiology, as well as in disease pathogenesis. Binding of the ephrin (Eph) ligand to EphR requires cell-cell contact, since both molecules are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling, depending on Eph kinase activity) and ephrin-expressing cells (reverse signaling). Eph signaling controls cell morphology, adhesion, migration and invasion. Ephrins can be subdivided into 2 groups, A and B, depending on their respective receptors EphA or EphB. The nine human EphA receptors bind to five GPI-linked ephrin-A ligands. Interactions are promiscuous within each class, and some Eph receptors can also bind to ephrins of the other class. All ephrin As contain a highly conserved receptor binding ectodomain described by this model. Although ephrin As do not have a cytoplasmic tail (in contrast to ephrin Bs), they are still capable of downstream activation of Src family kinases and phosphoinositide-3-kinases, most likely involving coreceptors such as neurotrophin receptors. 130 -259897 cd10426 Ephrin-B_Ectodomain Ectodomain of Ephrin B. Ephrin Bs have several conserved tyrosine phosphorylation sites in their cytoplasmic PDZ-like domain, which are important for signal transduction. Ephrins and their receptors EphR play an important role in cell communication in normal physiology, as well as in disease pathogenesis. Binding of the ephrin (Eph) ligand to EphR requires cell-cell contact, since both molecules are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling, depending on Eph kinase activity) and ephrin-expressing cells (reverse signaling). Eph signaling controls cell morphology, adhesion, migration and invasion. Ephrins can be subdivided into 2 groups, A and B, depending on their respective receptors EphA or EphB. The nine human EphA receptors bind to five GPI-linked ephrin-A ligands and the five EphB receptors bind to three transmembrane ephrin-B ligands. Interactions are promiscuous within each class, and some Eph receptors can also bind to ephrins of the other class. All ephrin Bs contain a highly conserved receptor binding ectodomain described in this model. 137 -198378 cd10427 FGGY_GK_1 Uncharacterized subgroup; belongs to the glycerol kinases subfamily of the FGGY family of carbohydrate kinases. This subgroup contains uncharacterized bacterial proteins belonging to the glycerol kinase subfamily of the FGGY family of carbohydrate kinases. The glycerol kinase subfamily includes glycerol kinases (GK; EC 2.7.1.30), and glycerol kinase-like proteins from all three kingdoms of living organisms. Glycerol is an important intermediate of energy metabolism and it plays fundamental roles in several vital physiological processes. GKs are involved in the entry of external glycerol into cellular metabolism. They catalyze the rate-limiting step in glycerol metabolism by transferring a phosphate from ATP to glycerol thus producing glycerol 3-phosphate (G3P) in the cytoplasm. Under different conditions, GKs from different species may exist in different oligomeric states. The monomer of GKs is composed of two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. 487 -198410 cd10428 LFG_like Proteins similar to and including lifeguard (LFG), a putative regulator of apoptosis. Lifeguard (LFG) inhibits Fas-mediated apoptosis and interacts with the death receptor FasR/CD95/Apo1. LFG has been shown to interact with Bax and is supposed to be integral to cellular membranes such as the ER. A close homolog, PP1201 or RECS1, appears located in the Golgi compartment and also interacts with the Fas receptor CD95/Apo1. PP1201 is expressed in response to shear stress. 217 -198411 cd10429 GAAP_like Golgi antiapoptotic protein. GAAP (or transmembrane BAX inhibitor motif containing 4) is a regulator of apoptosis that is related to the BAX inhibitor (BI)-1 like family of small transmembrane proteins, which have been shown to have an antiapoptotic effect either by stimulating the antiapoptotic function of Bcl-2, a well-characterized oncogene, or by inhibiting the proapoptotic effect of Bax, another member of the Bcl-2 family. Human GAAP has been linked to the modulation of intracellular fluxes of Ca(2+), by suppressing influx from the extracellular medium and reducing release from intracellular stores. A viral homolog (vaccinia virus vGAAP) acts similar to its human counterpart in inhibiting apoptosis. 233 -198412 cd10430 BI-1 BAX inhibitor (BI)-1. Mammalian members of the BAX inhibitor (BI)-1 like family of small transmembrane proteins have been shown to have an antiapoptotic effect either by stimulating the antiapoptotic function of Bcl-2, a well-characterized oncogene, or by inhibiting the proapoptotic effect of Bax, another member of the Bcl-2 family. Their broad tissue distribution and high degree of conservation suggests an important regulatory role. In plants, BI-1 like proteins play a role in pathogen resistance. 213 -198413 cd10431 GHITM Growth-hormone inducible transmembrane protein. GHITM appears to be ubiquitiously expressed in mammalian cells and expression has also been observed in various cancer cell lines. A cytoprotective function has been suggested. It is closely related to the BAX inhibitor (BI)-1 like family of small transmembrane proteins, which have been shown to have an antiapoptotic effect. 264 -198414 cd10432 BI-1-like_bacterial Bacterial BAX inhibitor (BI)-1/YccA-like proteins. This family is comprised of bacterial relatives of the mammalian members of the BAX inhibitor (BI)-1 like family of small transmembrane proteins, which have been shown to have an antiapoptotic effect either by stimulating the antiapoptotic function of Bcl-2, a well-characterized oncogene, or by inhibiting the proapoptotic effect of Bax, another member of the Bcl-2 family. In plants, BI-1 like proteins play a role in pathogen resistance. A characterized prokaryotic member, Escherichia coli YccA, has been shown to interact with ATP-dependent protease FtsH, which degrades abnormal membrane proteins as part of a quality control mechanism to keep the integrity of biological membranes. 211 -198415 cd10433 YccA_like YccA-like proteins. A prokaryotic member of the BAX inhibitor (BI)-1 like family of small transmembrane proteins, Escherichia coli YccA, has been shown to interact with ATP-dependent protease FtsH, which degrades abnormal membrane proteins as part of a quality control mechanism to keep the integrity of biological membranes. 205 -198381 cd10434 GIY-YIG_UvrC_Cho Catalytic GIY-YIG domain of nucleotide excision repair endonucleases UvrC, Cho, and similar proteins. UvrC is essential for nucleotide excision repair (NER). The N-terminal catalytic GIY-YIG domain of UvrC (also known as Uri domain) is responsible for the 3' incision reaction and the C-terminal half of UvrC, consisting of an UvrB-binding domain (UvrBb), EndoV-like nuclease domain and a helix-hairpin-helix (HhH) DNA-binding domain, contains the residues involved in 5' incision. The N- and C-terminal regions are joined by a common Cys-rich domain containing four conserved Cys residues. Besides UvrC, protein Cho (UvrC homolog) serves as a second endonuclease in E. coli NER. Cho contains GIY-YIG motif followed by a Cys-rich region and shares sequence homology with the N-terminal half of UvrC. It is capable of incising the DNA at the 3' side of a lesion in the presence of the UvrA and UvrB proteins during NER. The C-terminal half of Cho is a unique uncharacterized domain, which is distinct from that of UvrC. Moreover, unlike UvrC, Cho does not require the UvrC-binding domain of UvrB for the 3' incision reaction, which might cause the shift in incision position and the difference in incision efficiencies between Cho and UvrC on different damaged substrates. Due to this, the range of NER in E. coli can be broadened by combining action of Cho and UvrC. This family also includes many uncharacterized epsilon proofreading subunits of DNA polymerase III, which have an additional N-terminal ExoIII domain and a 3'-5' exonuclease domain homolog, fused to an UvrC-like region or a Cho-like region. The UvrC-like region includes a GIY-YIG motif, followed by a Cys-rich region, and an UvrB-binding domain (UvrBb), but lacks the EndoV-like nuclease domain and the helix-hairpin-helix (HhH) DNA-binding domain. The Cho-like region consists of a GIY-YIG motif, followed by the Cys-rich region, and the unique uncharacterized domain presenting in the C-terminal half of Cho. Some family members may not carry the Cys-rich region. This family also includes a specific Cho-like protein from G. violaceus, which possesses only UvrBb domain at the C-terminus, but lacks the additional N-terminal ExoIII domain. The oother two remote homologs of UvrC, Bacillus-I and -II, are included in this family as well. Both of them contain a GIY-YIG domain, but no Cys-rich region. Moreover, the whole C-terminal region of Bacillus-I is replaces by an unknown domain, and Bacillus-II possesses another unknown N-terminal extension. 81 -198382 cd10435 GIY-YIG_RE_Eco29kI_like Catalytic GIY-YIG domain of type II restriction endonucleases R.Eco29kI, R.Cfr42I, and similar proteins. This family corresponds to the catalytic GIY-YIG domain of a group of GGCGCC-specific type II restriction endonucleases R.Eco29kI, R.Cfr42I, and similar proteins. R.Eco29kI is encoded on plasmid pECO29 in the E. coli strain 29K. This enzyme recognizes the palindromic 5'-CCGC/GG-3' target and cuts between Cyt4 and Gua5 on each strand of the restriction site to generate 3'-staggered ends. R.Eco29kI forms a domain-swapped homodimeric catalytically active complex during DNA binding and cleavage. Each subunit contains one GIY-YIG catalytic motif. Restriction endonucleases R.Cfr42I is an isoschizomer of R.Eco29kI. Unlike R.Eco29kI, R.Cfr42I is functional as a homotetramer, binding and cleaving two cognate DNA molecules in a cooperative manner. Members in this family are single-domain proteins sharing sequence similarities with the catalytic domain of GIY-YIG endonucleases, such as homing endonuclease I-TevI. However, they utilize loop insertions and terminal extensions instead of the separate DNA-binding domain to interact with the target site 5'-CCGC/GG-3'. A divalent metal-ion cofactor is required for their catalysis, but not for substrate binding. This family also includes a hypothetical protein from Deinococcus radiodurans that corresponds to MraI, a type II restriction enzyme similar to GIY-YIG family of homing endonucleases. MraI is shown to be an isoschizomer of Eco29kI, Cfr42I recognizing the palindromic nucleotide sequence 5'-CCGC reduced GG-3'. The enzyme shows an absolute requirement of Mg2+, but is active in the absence of added 2-mercaptoethanol. MraI represents the first restriction enzyme from a bacterium whose DNA lacks modified methylated bases. 117 -198383 cd10436 GIY-YIG_EndoII_Hpy188I_like Catalytic GIY-YIG domain of coliphage T4 non-specific endonuclease II, type II restriction endonuclease R.Hpy188I, and similar proteins. This family includes two different GIY-YIG enzymes, coliphage T4 non-specific endonuclease II (EndoII), and type II restriction endonuclease R.Hpy188I. They display high sequence similarity to each other, and both of them contain an extra N-terminal hairpin that lacks counterparts in other GIY-YIG enzymes. EndoII encoded by gene denA catalyzes the initial step in degradation of host DNA, which permits scavenging of host-derived nucleotides for phage DNA synthesis. R.Hpy188I recognizes the unique sequence, 5'-TCNGA-3', and cleaves the DNA between nucleotides N and G in its recognition sequence to generate a single nucleotide 3'-overhang. EndoII binds to two DNA substrates as an X-shaped tetrameric structure composed as a dimer of dimers. In contrast, two subunits of R.Hpy188I form a dimer to embrace one bound DNA. Divalent metal-ion cofactors are required for their catalytic events, but not for the substrates binding. 97 -198384 cd10437 GIY-YIG_HE_I-TevI_like N-terminal catalytic domain of GIY-YIG intron endonuclease I-TevI, I-BmoI, I-BanI, I-BthII and similar proteins. I-TevI is a site-specific GIY-YIG homing endonuclease encoded within the group I intron of the thymidylate synthase gene (td) from Escherichia coli phage T4. It functions as an endonuclease that catalyzes the first step in intron homing by generating a double-strand break in the intronless td allele within a sequence designated the homing site. I-TevI recognizes its extensive 37 base pair DNA target in a site-specific, but sequence-tolerant manner. The cleavage site is located at 23 (upper strand) and 25 (lower strand) nucleotides upstream of the intron insertion site. A divalent cation, such as Mg2+, is required for the catalysis. I-TevI also acts as a repressor of its own transcription. It binds an operator that is located upstream of the I-TevI coding sequence and overlaps the T4 late promoter, which drives I-TevI expression from within the td intron. I-TevI binds the homing sites and the operator with the same affinity, but cleaves the homing site more efficiently than the operator. I-TevI consists of an N-terminal catalytic domain, containing the GIY-YIG motif, and a C-terminal DNA-binding domain that binds DNA as a monomer, joined by a flexible linker. The C-terminal domain includes three subdomains: a zinc finger, a minor-groove binding alpha-helix (NUMOD3, nuclease-associated modular domain 3), and a helix-turn-helix domain (HTH). The last two are responsible for DNA-binding. The zinc finger is part of the linker and not required for DNA-binding. It is implicated as a distance sensor to constrain the catalytic domain to cleave the homing site at a fixed position. None of other GIY-YIG endonucleases have been found to have the zinc finger motif. This family also includes a reduced activity isoschizomer of I-TevI, I-BmoI, which is encoded within the group I intron of the thymidylate synthase (TS) gene (thyA) from Bacillus mojavensis. I-BmoI catalyzes the first step in intron homing by generating a double-strand break in the intronless td allele within a sequence designated the homing site in the presence of a divalent cation cofactor, such as Mg2+. In the absence of Mg2+, I-Bmol only nicks one of the strands. Both I-BmoI and I-TevI bind a homologous stretch of TS-encoding DNA as monomers, but use different strategies to distinguish intronless from intron-containing substrates. I-TevI recognizes substrates at the level of DNA-binding. However, I-BmoI binds both intron-containing and intronless TS-encoding substrates, but efficiently cleaves only intronless substrate. Afterwards they cleave their respective intronless substrates in the same positions, and both require a critical G-C base pair adjacent to the top strand site for efficient cleavage. The C-terminal domain of I-BmoI has nuclease-associated modular DNA-binding domains (NUMODs), but lacks the zinc finger, which is different from that of I-TevI. Although the zinc finger implicated as a distance determination in I-TevI is absent, I-BmoI still possesses some cleavage distance discrimination. Besides I-TevI and I-BmoI, this family contains a putative GIY-YIG homing endonuclease, I-BanI, encoded within the self-splicing group I intron of nrdE gene from Bacillus anthracis. It contains two major domains, the N-terminal GIY-YIG domain and the C-terminal DNA-binding domain that consists of a minor-groove DNA binding alpha-helix motif and a helix-turn-helix (HTH) motif. I-BanI generates a double-strand break (DSB) in the intronless nrdE gene. The cleavage site is located at 5 and 7 nucleotides upstream of the intron insertion site, with 2-nucleotide 3' extensions. The recognition site is 35 to 40 base pairs and covers the cleavage site with a bias toward the downstream region including the (intervening sequence) IVS insertion site. Moreover, this family contains another putative GIY-YIG homing endonuclease, I-BthII, encoded within the self-splicing group I intron of nrdF gene from Bacillus thuringiensis ssp. pakistani. It contains a GIY-YIG motif that generates a double-strand break (DSB) in the intronless nrdF gene. The cleavage site is located at 7 and 9 nucleotides upstream of the intron insertion site, leaving 2-nucleotide 3' extensions. The recognition site is 27 to 29 base pairs with the DSB cleavage site at the 5'-end of the top strand, and with the intervening sequence (IVS) insertion site approximately in the middle of the recognition site. 90 -198385 cd10438 GIY-YIG_MSH Catalytic GIY-YIG domain of eukaryotic DNA mismatch repair protein MutS homologs. This family represents a putative GIY-YIG nuclease domain C-terminally fused to the DNA-repair ATPase on a small group of eukaryotic DNA mismatch repair protein mutS homologs (MSH). The MSH proteins in this family do not have the zinc finger domain, but have a predicted mitochondrial localization. They might play roles in the recognition and repair of errors made during the replication of DNA. The prototype of this family is the protein encoded by the chloroplast mutator (CHM) locus from Arabidopsis thaliana. It is suggested that this protein could be involved in the maintenance of mitochondrial genome stability. 72 -198386 cd10439 GIY-YIG_COG3410 GIY-YIG domain of uncharacterized bacterial protein structurally related to COG3410. This family contains a group of uncharacterized bacterial proteins. Although their function roles have not been recognized, these proteins contain a putative GIY-YIG domain in their N-terminus. Moreover, a conserved domain COG3410 with unknown function has been found in the C-terminus of most family members. 80 -198387 cd10440 GIY-YIG_COG3680 GIY-YIG domain of uncharacterized proteins from bacteria and their eukaryotic homologs. This family includes a group of functionally uncharacterized proteins from bacteria and their eukaryotic homologs which are present only in metazoa. These proteins might have nuclease activities and possibly be engaged in DNA repair or recombination, since they share sequence homology with the catalytic GIY-YIG domain of bacterial UvrC DNA repair proteins. Distinct from their prokaryotic relatives, the eukaryotic homologs contain an N-terminal extension that includes the region of approximately 3-4 ankyrin repeats, unique motifs mediating protein-protein interactions. Some of eukaryotic homologs do have an additional LEM domain located between ankyrin repeats region and GIY-YIG domain. The LEM domain, found in inner nuclear membrane proteins, may be involved in protein- or DNA-binding. The different domain composition of the eukaryotic homologs suggests that they might participate in interactions with multiple partners and implies important cellular function. 94 -198388 cd10441 GIY-YIG_COG1833 GIY-YIG domain of hypothetical proteins from archaea and their bacterial homologs. This family includes a group of functionally uncharacterized hypothetical proteins from archaea and their bacterial homologs. These proteins contain a putative GIY-YIG domain that shows sequence homology with bacterial UvrC DNA repair proteins. Meanwhile, all of them share a C-terminal extension with semi-conserved Cys and His residues, which suggests that the extended region may be a zinc-binding nucleic acid interaction domain. Although the majority of family members have a standalone GIY-YIG domain composition, some of them do have additional endonulcease III domain or sugar fermentation stimulation protein domain, both of which are N-terminally fused to the GIY-YIG domain. As a result, those proteins could perform some other role by cooperating with different domains, which remains to be determined in the future. 112 -198389 cd10442 GIY-YIG_PLEs Catalytic GIY-YIG endonuclease domain of penelope-like elements and similar proteins. This model corresponds to the EN domain of PLEs that contains catalytic module of the GIY-YIG endonucleases of group I bacterial/organellar introns, as well as bacterial UvrC DNA repair proteins. It can cleave DNA with low nucleotide sequence specificity. However, the PLEs EN domain is distinct from other GIY-YIG endonucleases by the presence of a well-conserved CCHH motif (CX(2-7)CX(33-39)HX(3-5)H, X can be any residue). The role of the CCHH motif has not yet been identified. Penelope-like elements (PLEs) represent a novel class of eukaryotic retroelements, which do not belong to either long terminal repeat (LTR) retrotransposons or non-LTR retrotransposons (often called LINEs), but instead form a sister clade to telomerase reverse transcriptases (TERTs), highly specialized non-mobile reverse transcriptases (RTs) which are responsible for the addition of telomeric repeats to the ends of eukaryotic chromosomes. The single open reading frame (ORF) encoded by PLE consists of two principal domains, RT domain and endonuclease (EN) domain, jointed by a linker region of variable length. Both of these two domains are functionally active. 92 -198390 cd10443 GIY-YIG_HE_Tlr8p_PBC-V_like GIY-YIG domain of uncharacterized hypothetical protein found in phycodnavirus PBCV-1 DNA virus, T. thermophila Tlr element eoncoding protein Tlr8p, and similar proteins found in bacteria. The family includes a group of diverse uncharacterized hypothetical proteins with a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI. Similar to I-TevI, family members from phycodnavirus PBCV-1 DNA virus have nuclease-associated modular DNA-binding domains (NUMODs) and a helix-turn-helix (HTH) domain C-terminally fused to the GIY-YIG domain, which suggests that these PBCV-1 acquired the I-TevI-like homing endonucleases from phages by horizontal gene transfer. This family also includes proteins that appear to connect homing endonucleases with Penelope elements, such as Tetrahymena thermophila Tlr element encoding protein Tlr8p that possess additional N-terminal and central structural regions, followed by a putative superfamily 1 helicase domain and I-TevI-like GIY-YIG domain, but lacks the NUMOD domains and HTH domain. It is suggested that the Tlr8p element could have acquired its GIY-YIG domain w ithin the nucleus of the ciliate cell infected by the Phycodnavirus. Some family members only contain a standalone GIY-YIG domain and their biological functions are unclear. 90 -198391 cd10444 GIY-YIG_SegABCDEFG N-terminal catalytic GIY-YIG domain of bacteriophage T4 segABCDEFG gene encoding proteins. The prototypes of Seg family are proteins SegA, B, C, D, E, F, and G encoded by five seg genes segA, B, C, D, E, F, and G in the bacteriophage T4 genome, respectively. SegA, B, C, D, E, F, and G are not encoded by introns, but free-standing homologs of the GIY-YIG family of endonucleases encoded by group I introns, which are thought to initiate the homing of their own intron by cleaving the intronless DNA at or near the site of insertion. Both phage T4 intron-encoded and free-standing GIY-YIG endonucleases contribute to the exclusion of T2 markers from the progeny of mixed infections. SegA, encoded by the bacteriophage T4 segA gene, is a double-strand DNA endonulcease with a hierarchy of site specificity. The cleavage site of SegA is located in the uvsX gene of T4. Its cleaving activity requires the presence of Mg2+ and can be stimulated by the presence of ATP or ATPgammaS. Bacteriophage T4 segB gene encoding protein SegB is a site-specific endonuclease that recognizes a 27-bp sequence, cleaves DNA by introdu cing double-strand breaks in the adjacent gene 56 of T2 during mixed infection in the presence of Mg2+, Mn2+, or Ca2+ cations, and produces mostly 3' 2-nt protruding ends at its DNA cleavage site. It functions as a homing endonuclease to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. Bacteriophage T4 segE gene encoding SegE is a site-specific endonuclease that preferentially cleaves DNA in a site located at the 5' end of the uvsW gene in the RB30 genome. It is responsible for a non-reciprocal genetic exchange between T-even-related phages. Bacteriophage T4 gene 69 encoding SegF is a site-specific double-strand DNA endonuclease that promotes marker exclusion. It preferentially introduces a double-strand break in the adjacent T2 gene 56 over T4 gene 56 both in vitro and in vivo during mixed infection, which results in the replacement of T2 gene 56 by T4 gene 56 in a process similar to group I intron homing. The cleavage site is located 210- and 212-bp upstream from its insertion site. Bacteriophage T4 segG gene (formerly gene 32.1) encoding SegG (also known as F-TevIV) is a double-strand DNA endonuclease adjacent to gene 32 of phage T4 that promotes marker exclusion. Although it is absent from phage T2, SegG preferentially introduces a double-strand break in T2 gene 32 during mixed infection, which results in replacement of T2 genetic markers by the corresponding T4 markers. The cleavage site is located 332- and 334-bp from its insertion site. 85 -198392 cd10445 GIY-YIG_bI1_like Catalytic GIY-YIG domain of putative intron-encoded endonuclease bI1 and similar proteins. The prototype of this family is a putative intron-encoded mitochondrial DNA endonuclease bI1 found in mitochondrion Ustilago maydis. This protein may arise from proteolytic cleavage of an in-frame translation of COB exon 1 plus intron 1, containing the bI1 open reading frame. It contains an N-terminal truncated non-functional cytochrome b region and a C-terminal intron-encoded endonuclease bI1 region. The bI1 region shows high sequence similarity to endonucleases of group I introns of fungi and phage and might be involved in intron homing. Many uncharacterized bI1 homologs existing in fungi and chlorophyta in this family do not contain the cytochrome b region, but have a standalone bI1-like region, which contains a GIY-YIG domain and a minor-groove binding alpha-helix nuclease-associated modular domain (NUMOD). This family also includes a Yarrowia lipolytica mobile group-II intron COX1-i1, also called intron alpha, encoding protein with reverse transcriptase activity. The group-II intron COX1-i1 may be involv ed both in the generation of the circular multimeric DNA molecules (senDNA alpha) which amplify during the senescence syndrome and in the generation of the site-specific deletion which accumulates in the premature-death syndrome. 88 -198393 cd10446 GIY-YIG_unchar_1 GIY-YIG domain of uncharacterized hypothetical protein found in bacteria. The family includes a group of uncharacterized bacterial hypothetical proteins with a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. 103 -198394 cd10447 GIY-YIG_unchar_2 GIY-YIG domain of uncharacterized hypothetical protein found in bacteria and archaea. The family includes a group of uncharacterized hypothetical proteins, mainly found in bacteria and a few found in archaea, with a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. 80 -198395 cd10448 GIY-YIG_unchar_3 GIY-YIG domain of uncharacterized hypothetical protein found in bacteria. The family includes a group of uncharacterized bacterial proteins with a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. 87 -198396 cd10449 GIY-YIG_SLX1_like Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its homologs. Structure-specific endonuclease subunit SLX1 is a highly conserved protein from yeast to human, with an N-terminal GIY-YIG endonuclease domain and a C-terminal PHD-type zinc finger postulated to mediate protein-protein or protein-DNA interaction. SLX1 forms active heterodimeric complexes with its SLX4 partner, which has additional roles in the DNA damage response that are distinct from the function of the heterodimeric SLX1-SLX4 nuclease. In yeast, the SLX1-SLX4 complex functions as a 5' flap endonuclease that maintains ribosomal DNA copy number, where SLX1 and SLX4 are shown to be catalytic and regulatory subunits, respectively. This endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. In addition to 5' flap endonuclease activity, human SLX1-SLX4 complex has been identified as a Holliday junction resolvase that promotes symmetrical cleavage of static and migrating Holliday junctions. SLX1 also associates with MUS81, EME1, C20orf94, PLK1, and ERCC1. Some eukaryotic SLX1 homologs lack the zinc finger domain, but possess intrinsically unstructured extensions of unknown function. These unstructured segments might be involved in interactions with other proteins. 67 -198397 cd10450 GIY-YIG_AtGrxS16_like GIY-YIG domain found in CAXIP1-like proteins, iron-sulfur cluster assembly proteins, and similar proteins. The family includes CAX-interacting protein-1 (CXIP1)-like proteins and iron-sulfur cluster assembly proteins, both of which contain a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. CAXIP1 is a novel PICOT (protein kinase C-interacting cousin of thioredoxin) domain-containing Arabidopsis protein that activates H+/Ca2+ exchanger CAX1, and its homolog CAX4, but not CAX2 or CAX3. Iron-sulfur cluster assembly proteins in this family also contain a C-terminal NifU-like domain that corresponds to a common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown. 70 -198398 cd10451 GIY-YIG_LuxR_like GIY-YIG domain of LuxR and ArsR family transcriptional regulators, and uncharacterized hypothetical proteins found in bacteria. The family includes some bacterial LuxR and ArsR family transcriptional regulators. The a C-terminal conserved domain shows sequence similarity to the N-terminal catalytic GIY-YIG domains of intron-encoded homing endonucleases. Besides, they have an N-terminally fused transcriptional regulators module, comprising the winged helix-turn-helix (wHTH) domain and uncharacterized domain DUF2087. At this point, they are distinct from GIY-YIG homing endonucleases, which typically contain a variety of C-terminally fused nuclease-associated modular DNA-binding domains (NUMODs). Moreover, some key residues relevant to catalysis in GIY-YIG endonucleases are mutanted or absent in this family, which suggests that members in this family might lose the catalytic function that GIY-YIG endonucleases possess. This family also includes many uncharacterized hypothetical proteins that consist of a standalone GIY-YIG like domain. 101 -198399 cd10452 GIY-YIG_RE_Eco29kI_NgoMIII Catalytic GIY-YIG domain of type II restriction enzyme R.Eco29kI, R.NgoMIII, and similar proteins. This family corresponds to the catalytic GIY-YIG domain of GGCGCC-specific type II restriction endonucleases R.Eco29kI, NgoMIII, and similar proteins. R.Eco29kI is encoded on plasmid pECO29 in the E. coli strain 29K. This enzyme recognizes the palindromic 5'-CCGC/GG-3' target and cuts between Cyt4 and Gua5 on each strand of the restriction site to generate 3'-staggered ends. R.Eco29kI forms a domain-swapped homodimeric catalytically active complex during DNA binding and cleavage. Each subunit contains one GIY-YIG catalytic motif. Restriction endonucleases R.NgoMIII is an isoschizomer of R.Eco29kI. Members in this family are single-domain proteins sharing sequence similarities with the catalytic domain of GIY-YIG endonucleases, such as homing endonuclease I-TevI. However, they utilize loop insertions and terminal extensions instead of the separate DNA-binding domain to interact with the target site 5'-CCGC/GG-3'. A divalent metal-ion cofactor is required for their catalysis, but not for their substrate binding. 204 -198400 cd10453 GIY-YIG_RE_Cfr42I Catalytic GIY-YIG domain of type II restriction enzyme R.Cfr42I and similar proteins. This family corresponds to the catalytic GIY-YIG domain of GGCGCC-specific type II restriction endonucleases R.Cfr42I and similar proteins. R.Cfr42I is encoded on plasmid pET21b(+) in the Citrobacter freundii RFL42 strain. This enzyme recognizes the palindromic 5'-CCGC/GG-3' target and cuts between Cyt4 and Gua5 on each strand of the restriction site to generate 3'-staggered ends. It is an isoschizomer of R.Eco29kI. Unlike R.Eco29kI, R.Cfr42I is functional as a homotetramer, binding and cleaving two cognate DNA molecules in a cooperative manner. Members in this family are single-domain proteins sharing sequence similarities with the catalytic domain of GIY-YIG endonucleases, such as homing endonuclease I-TevI. However, they utilize loop insertions and terminal extensions instead of the separate DNA-binding domain to interact with the target site 5'-CCGC/GG-3'. A divalent metal-ion cofactor is required for their catalysis. 156 -198401 cd10454 GIY-YIG_COG3680_Meta GIY-YIG domain of hypothetical proteins from Metazoa. Members of this family are functionally uncharacterized hypothetical proteins from Metazoa. They have bacterial homologs that display sequence homology with the catalytic GIY-YIG domain of bacterial UvrC DNA repair proteins. However, unlike their bacterial relatives, these Metazoan proteins contain an N-terminal extension that includes the region of approximately 3-4 ankyrin repeats, unique motifs mediating protein-protein interactions. Some of them do have an additional LEM domain located between ankyrin repeats region and GIY-YIG domain. The LEM domain, found in inner nuclear membrane proteins, may be involved in protein- or DNA-binding. The different domains composition suggests members in this subfamily might participate in interactions with multiple partners and imply some important cellular functions. 114 -198402 cd10455 GIY-YIG_SLX1 Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its eukaryotic homologs. Structure-specific endonuclease subunit SLX1 is a highly conserved protein from yeast to human, with an N-terminal GIY-YIG endonuclease domain and a C-terminal PHD-type zinc finger postulated to mediate protein-protein or protein-DNA interaction. SLX1 forms active heterodimeric complexes with its SLX4 partner, which has additional roles in the DNA damage response that are distinct from the function of the heterodimeric SLX1-SLX4 nuclease. In yeast, the SLX1-SLX4 complex functions as a 5' flap endonuclease that maintains ribosomal DNA copy number, where SLX1 and SLX4 are shown to be catalytic and regulatory subunits, respectively. This endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. In addition to 5' flap endonuclease activity, human SLX1-SLX4 complex has been identified as a Holliday junction resolvase that promotes symmetrical cleavage of static and migrating Holliday junctions. SLX1 also associates with MUS81, EME1, C20orf94, PLK1, and ERCC1. Some eukaryotic SLX1 homologs lack the zinc finger domain, but possess intrinsically unstructured extensions of unknown function. These unstructured segments might be involved in interactions with other proteins. 76 -198403 cd10456 GIY-YIG_UPF0213 The GIY-YIG domain of uncharacterized protein family UPF0213 related to structure-specific endonuclease SLX1. This family contains a group of uncharacterized proteins found mainly in bacteria and several in dsDNA viruses. Although their function roles have not been recognized, these proteins show significant sequence similarities with the N-terminal GIY-YIG endonuclease domain of structure-specific endonuclease subunit SLX1, which binds another structure-specific endonuclease subunit SLX4 to form an active heterodimeric SLX1-SLX4 complex. This complex functions as a 5' flap endonuclease in yeast, and has also been identified as a Holliday junction resolvase in human. 68 -198404 cd10457 GIY-YIG_AtGrxS16 GIY-YIG domain found in CAXIP1-like proteins. The family includes CAX-interacting protein-1 (CXIP1)-like proteins which contain a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. CAXIP1 is a novel PICOT (protein kinase C-interacting cousin of thioredoxin) domain-containing Arabidopsis protein that activates H+/Ca2+ exchanger CAX1, and its homolog CAX4, but not CAX2 or CAX3. 74 -198405 cd10458 GIY-YIG_NifU GIY-YIG domain found in iron-sulfur cluster assembly proteins. This family includes a group of uncharacterized iron-sulfur cluster assembly proteins that transiently bind the iron-sulfur cluster before transfer to target apoproteins. These iron-sulfur cluster assembly proteins contains a GIY-YIG domain that shows statistically significant similarity to the N-terminal catalytic domains of GIY-YIG family of intron-encoded homing endonuclease I-TevI and catalytic GIY-YIG domain of nucleotide excision repair endonuclease UvrC. They also contain a C-terminal NifU-like domain that corresponds to a common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown. 76 -198417 cd10459 PUB_PNGase PNGase/UBA or UBX (PUB) domain of the P97 adaptor protein Peptide:N-glycanase (PNGase). This PUB (PNGase/UBA or UBX) domain is found in the p97 adaptor protein PNGase (Peptide:N-glycanase). The PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. Peptide:N-glycanase (PNGase), a deglycosylating enzyme that functions in proteasome-dependent degradation of misfolded glycoproteins which are translocated from the endoplasmic reticulum (ER) to the cytosol during ERAD, associates with the ubiquitin-proteasome system proteins mediated by the N-terminal PUB domain. PNGase is present in all eukaryotic organisms; however, the yeast PNGase ortholog does not contain the PUB domain. The mammalian PNGase binds a considerable number of proteins via its PUB domain; these include ERAD E3 enzyme, the autocrine motility factor receptor (AMFR or gp78), SAKS and Derlin-1. 93 -198418 cd10460 PUB_UBXD1 PNGase/UBA or UBX (PUB) domain of UBXD1. This PUB domain is found in p97 adaptor protein UBXD1 (UBX domain-containing protein 1, also called UBXD6). It functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. The PUB domain in UBX-domain protein 1 (UBXD1), which is widely expressed in higher eukaryotes, except for fungi, and which is involved in substrate recruitment to p97, interacts strongly with the C-terminus of p97. UBXD1 also interacts with HRD1 and HERP, both components of the ERAD pathway, via p97. It is possibly involved in aggresome formation; aggresomes are perinuclear compartments that contain misfolded proteins colocalized with centrosome markers. 102 -198419 cd10461 PUB_UBA_plant PNGase/UBA or UBX (PUB) domain of plant Ubiquitin-associated (UBA) domain containing proteins. The PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. The UBA domain, along with UBL (ubiquitin-like) domain, has been implicated in proteasomal degradation by associating with substrates destined for degradation as well as with subunits of the proteasome, thus regulating protein turnover. This family contains only plant UBA domain-containing proteins. 107 -198420 cd10462 PUB_UBA PNGase/UBA or UBX (PUB) domain of Ubiquitin-associated (UBA) domain containing proteins. The PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. The UBA domain, along with UBL (ubiquitin-like) domain, has been implicated in proteasomal degradation by associating with substrates destined for degradation as well as with subunits of the proteasome, thus regulating protein turnover. 100 -198421 cd10463 PUB_WLM PNGase/UBA or UBX (PUB) domain of the Wss1p-like metalloprotease (WLM) family. The PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. WLM domains are found mostly in plant proteins, belonging to the Zincin-like superfamily of Zn-dependent peptidases that are linked to the ubiquitin signaling pathway through its fusion with the ubiquitin-binding PUB, ubiquitin-like, and Little Finger domains. More specifically, genetic evidence implicates the WLM family in de-SUMOylation. 96 -198422 cd10464 PUB_RNF31 PNGase/UBA or UBX (PUB) domain of the RNF31 (or HOIP) protein. This PUB domain is found in the p97 adaptor protein RNF31 (RING finger protein 31). The PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. The RNF31 protein, also known as HOIP or Zibra, contains an N-terminal PUB domain similar to those in PNGase and UBXD1, suggesting its association with p97. RNF31 functions in a complex with another RING-finger protein (HOIL-IL), displaying E3 ubiquitin-protein ligase activity, and forming linear ubiquitin chain assembly complex (LUBAC) through linkages between the N- and C-termini of ubiquitin. LUBAC has been shown to activate the NF-kappaB pathway. 111 -198456 cd10466 FimH_man-bind Mannose binding domain of FimH and related proteins. This family, restricted to gammaproteobacteria, includes FimH, a mannose-specific adhesin of uropathogenic Escherichia coli strains. The domain appears to bind specifically to D-mannose and mediates cellular adhesion to mannosylated proteins, a prerequisite to colonization and subsequent invasion of epithelial tissues. 160 -198458 cd10467 FAM20_C_like C-terminal putative kinase domain of FAM20 (family with sequence similarity 20), Drosophila Four-jointed (Fj), and related proteins. Drosophila Fj is a Golgi kinase that phosphorylates Ser or Thr residues within extracellular cadherin domains of a transmembrane receptor Fat and its ligand, Dachsous (Ds). The Fat signaling pathway regulates growth, gene expression, and planar cell polarity (PCP). Defects from mutation in the Drosophila fj gene include loss of the intermediate leg joint, and a PCP defect in the eye. Fjx1, the murine homologue of Fj, has been shown to be involved in both the Fat and Hippo signaling pathways, these two pathways intersect at multiple points. The Hippo pathway is important in organ size control and in cancer. FAM20B is a xylose kinase that may regulate the number of glycosaminoglycan chains by phosphorylating the xylose residue in the glycosaminoglycan-protein linkage region of proteoglycans. This domain has homology to a kinase-active site, mutation of three conserved Asp residues at the Drosophila Fj putative active site abolished its ability to phosphorylate Ft and Ds cadherin domains. FAM20A may participate in enamel development and gingival homeostasis, FAM20B in proteoglycan production, and FAM20C in bone development. FAM20C, also called Dentin Matrix Protein 4, is abundant in the dentin matrix, and may participate in the differentiation of mesenchymal precursor cells into functional odontoblast-like cells. Mutations in FAM20C are associated with lethal Osteosclerotic Bone Dysplasia (Raine Syndrome), and mutations in FAM20A with Amelogenesis imperfecta (AI) and Gingival Hyperplasia Syndrome. This model includes the FAM20_C domain family, previously known as DUF1193; FAM20_C appears to be homologous to the catalytic domain of the phosphoinositide 3-kinase (PI3K)-like family. 210 -198459 cd10468 Four-jointed-like_C C-terminal kinase domain of Drosophila Four-jointed (Fj), mouse Fjx1, and related proteins. Drosophila Fj is a Golgi type II transmembrane protein that is partially secreted, and is a kinase that phosphorylates Ser or Thr residues within extracellular cadherin domains of a transmembrane receptor Fat and its ligand, Dachsous (Ds). Mutation of three conserved Asp residues at the Drosophila Fj putative active site abolished its ability to phosphorylate Ft and Ds cadherin domains. The Fat signaling pathway regulates growth, gene expression, and planar cell polarity (PCP). Defects from mutation in Drosophila Fj include loss of the intermediate leg joint, and a PCP defect in the eye. The expression of the Drospophila fj gene is modulated by Notch, Unpaired (JAK/STAT), and Wingless signals. Mouse Fjx1, has been shown to be involved in both the Fat and Hippo signaling pathways; these two pathways intersect at multiple points. The Hippo pathway is important in organ size control and in cancer. The expression of the mouse fjx1 gene is also Notch dependent; fjx1 is expressed in the brain, the peripheral nervous system, in epithelial structures of different organs, and during limb development. 286 -198460 cd10469 FAM20A_C C-terminal putative kinase domain of FAM20A. Human FAM20A may play a fundamental role in enamel development and gingival homeostasis as mutations in FAM20A may underlie the pathogenesis of the autosomal recessive Amelogenesis imperfecta (AI) and Gingival Hyperplasia Syndrome. It is expressed in ameloblasts and gingivae. AI refers to a heterogeneous group of disorders of biomineralization caused by a lack of normal enamel formation. Mouse FAM20A is a secreted protein and the gene encoding it is differentially expressed in hematopoietic cells undergoing myeloid differentiation. This protein has also been associated with growth disorder in mice. The C-terminal domain of FAM20A is a putative kinase domain, based on mutagenesis of the C-terminal domain of Drosophila Four-Jointed, a related Golgi kinase. This subfamily belongs to the FAM20_C (also known as DUF1193) domain family. 217 -198461 cd10470 FAM20B_C C-terminal putative kinase domain of FAM20B xylose kinase. Experiments with human FAM20B suggest that it is a xylose kinase that participates in proteoglycan production. It may regulate the number of glycosaminoglycan chains by phosphorylating the xylose residue in the glycosaminoglycan-protein linkage region of proteoglycans. The C-terminal domain of FAM20B is a putative kinase domain, based on mutagenesis of the C-terminal domain of Drosophila Four-Jointed, a related Golgi kinase. This subfamily belongs to the FAM20_C (also known as DUF1193) domain family. 206 -198462 cd10471 FAM20C_C C-terminal putative kinase domain of FAM20C (also known as Dentin Matrix Protein 4, DMP4). Mouse DMP4 is abundant in the dentin matrix, and is expressed in high levels in odontoblasts. These latter cells synthesize various nucleators or inhibitors of mineralization. The in vivo role of DMP4 in dentinogenesis is unclear. However, gain- and loss-of-function experiments suggest that it participates in the differentiation of mesenchymal precursor cells into functional odontoblast-like cells. In addition to this domain, DMP4 contains a Greek key calcium-binding domain. Human FAM20C participates in bone development; mutations in FAM20C are associated with lethal Osteosclerotic Bone Dysplasia (Raine Syndrome), an autosomal recessive disorder in which affected individuals die within days or weeks of birth, usually due to thoratic malformation resulting in respiratory failure. The C-terminal domain of FAM20C is a putative kinase domain, based on mutagenesis of the C-terminal domain of Drosophila Four-Jointed, a related Golgi kinase. This subfamily belongs to the FAM20_C (also known as DUF1193) domain family. 212 -198440 cd10472 EphR_LBD_B Ligand Binding Domain of Ephrin type-B receptors. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. They play important roles in synapse formation and plasticity, spine morphogenesis, axon guidance, and angiogenesis. In the intestinal epithelium, EphB receptors are Wnt signaling target genes that control cell compartmentalization. They function as suppressors of colon cancer progression. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. One exception is EphB2, which also interacts with ephrin A5. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. 176 -198441 cd10473 EphR_LBD_A Ligand Binding Domain of Ephrin type-A Receptors. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. 173 -198442 cd10474 EphR_LBD_B4 Ligand Binding Domain of Ephrin type-B Receptor 4. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. EphB4 plays a role in osteoblast differentiation and has been linked to multiple myeloma. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 180 -198443 cd10475 EphR_LBD_B6 Ligand Binding Domain of Ephrin type-B Receptor 6. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. EphB6, a kinase-defective member of this family, is downregulated in MDA-MB-231-breast cancer cells and myeloid cancers and upregulated in neuroblasoma and glioblastoma. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 180 -198444 cd10476 EphR_LBD_B1 Ligand Binding Domain of Ephrin type-B Receptor 1. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. Using EphB1 knockout-mice, EphB1 has been shown to be essential to the development of long-term potentiation (LTP), a cellular model of synaptic plasticity, learning and memory formation. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 176 -198445 cd10477 EphR_LBD_B2 Ligand Binding Domain of Ephrin type-B Receptor 2. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. EphB2 plays a role in cell positioning in the gastrointestinal tract by being expressed in proliferating progenitor cells. It also has been implicated in colorectal cancer. A loss of EphB2, as well as EphA4, also precedes memory decline in a murine model of Alzheimers disease. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 178 -198446 cd10478 EphR_LBD_B3 Ligand Binding Domain of Ephrin type-B Receptor 3. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphB receptors bind to transmembrane ephrin-B ligands. There are six vertebrate EhpB receptors (EphB1-6), which display promiscuous interactions with three ephrin-B ligands. EphB3 plays a role in cell positioning in the gastrointestinal tract by being preferentially expressed in Paneth cells. It also has been implicated in early colorectal cancer and early stage squamous cell lung cancer. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 173 -198447 cd10479 EphR_LBD_A1 Ligand Binding Domain of Ephrin type-A Receptor 1. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA1 is downregulated in some advanced colorectal and myeloid cancers and upregulated in neuroblasoma and glioblastoma. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. 177 -198448 cd10480 EphR_LBD_A2 Ligand Binding Domain of Ephrin type-A Receptor 2. EphRs comprise the largest subfamily of receptor tyr kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA2 negatively regulates cell differentiation and has been shown to be overexpressed in tumor cells and tumor blood vessels in a variety of cancers including breast, prostate, lung, and colon. As a result, it is an attractive target for drug design since its inhibition could affect several aspects of tumor progression. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. 174 -198449 cd10481 EphR_LBD_A3 Ligand Binding Domain of Ephrin type-A Receptor 3. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA3 has been implicated in leukemia, lung and other cancers. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion. 173 -198450 cd10482 EphR_LBD_A4 Ligand Binding Domain of Ephrin type-A Receptor 4. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. A loss of EphA4, as well as EphB2, precedes memory decline in a murine model of Alzheimers disease. EphA4 has been shown to have a negative effect on axon regeneration and functional restoration in corticospinal lesions and is downregulated in some cervical cancers. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 174 -198451 cd10483 EphR_LBD_A5 Ligand Binding Domain of Ephrin type-A Receptor 5. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA5 is almost exclusively expressed in the nervous system. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 173 -198452 cd10484 EphR_LBD_A6 Ligand Binding Domain of Ephrin type-A Receptor 6. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA6, like other Eph receptors and their ephrin ligands, seems to play a role in neural development, underlying learning and memory. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 173 -198453 cd10485 EphR_LBD_A7 Ligand Binding Domain of Ephrin type-A Receptor 7. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA7 has been implicated in various cancers, including prostate, gastic and colorectal cancers. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 177 -198454 cd10486 EphR_LBD_A8 Ligand Binding Domain of Ephrin type-A Receptor 8. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA8 has been implicated in various cancers. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). 173 -198455 cd10487 EphR_LBD_A10 Ligand Binding Domain of Ephrin type-A Receptor 10. Ephrin receptors (EphRs) comprise the largest subfamily of receptor tyrosine kinases (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphA10, which contains an inactive tyr kinase domain, may function to attenuate signals of co-clustered active receptors. EphA10 is mainly expressed in the testis. EphRs contain a ligand binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyrosine kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction results in cell-cell repulsion or adhesion. 173 -199812 cd10488 MH1_R-SMAD N-terminal Mad Homology 1 (MH1) domain of receptor regulated SMADs. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. It binds to the major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 domain is found in all receptor regulated SMADs (R-SMADs) including SMAD1, SMAD2, SMAD3, SMAD5 and SMAD9. SMAD1 plays an essential role in bone development and postnatal bone formation through activation by bone morphogenetic protein (BMP) type 1 receptor kinase. SMAD2 regulates multiple cellular processes, such as cell proliferation, apoptosis and differentiation, while SMAD3 modulates signals of activin and TGF-beta. SMAD4, a common mediator SMAD (co-SMAD) binds R-SMADs, forming an oligomeric complex that binds to DNA and serves as a transcription factor. SMAD5 is involved in bone morphogenetic proteins (BMP) signal modulation, possibly playing a role in the pathway involving inhibition of hematopoietic progenitor cells by TGF-beta. SMAD9 (also known as SMAD8) can mediate the differentiation of mesenchymal stem cells (MSCs) into tendon-like cells by inhibiting the osteogenic pathway 123 -199813 cd10489 MH1_SMAD_6_7 N-terminal Mad Homology 1 (MH1) domain in SMAD6 and SMAD7. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 domain is found in SMAD6 and SMAD7, both inhibitory SMADs (I-SMADs) and negative regulators of signaling mediated by TGF-beta superfamily. SMAD6 specifically inhibits bone morphogenetic protein (BMP) type I receptor mediated signaling while SMAD7 enhances muscle differentiation and is often associated with cancer, tissue fibrosis and inflammatory diseases. 119 -199814 cd10490 MH1_SMAD_1_5_9 N-terminal Mad Homology 1 (MH1) domain in SMAD1, SMAD5 and SMAD9 (also known as SMAD8). The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 domain is found in SMAD1, SMAD5 and SMAD9, all closely related receptor regulated SMADs (R-SMADs). SMAD1 plays an essential role in bone development and postnatal bone formation through activation by bone morphogenetic protein (BMP) type 1 receptor kinase. SMAD5 is involved in bone morphogenetic proteins (BMP) signal modulation and may also play a role in the pathway involving inhibition of hematopoietic progenitor cells by TGF-beta. SMAD9 mediates the differentiation of mesenchymal stem cells (MSCs) into tendon-like cells by inhibiting the osteogenic pathway. 124 -199815 cd10491 MH1_SMAD_2_3 N-terminal Mad Homology 1 (MH1) domain in SMAD2 and SMAD3. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 is found in SMAD2 as well as SMAD3. SMAD2 mediates the signal of the transforming growth factor (TGF)-beta, and thereby regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. It plays a role in the transmission of extracellular signals from ligands of the TGF-beta superfamily growth factors into the cell nucleus. SMAD3 modulates signals of activin and TGF-beta. It binds SMAD4, enabling its transmigration into the nucleus where it forms complexes with other proteins and acts as a transcription factor. Increased SMAD3 activity has been implicated in the pathogenesis of scleroderma. 124 -199816 cd10492 MH1_SMAD_4 N-terminal Mad Homology 1 (MH1) domain in SMAD4. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 belongs to SMAD4, a common mediator SMAD (co-SMAD), which belongs to the Dwarfin family of proteins and is involved in many cell functions such as differentiation, apoptosis, gastrulation, embryonic development and cell cycle. SMAD4 binds receptor regulated SMADs (R-SMADs) such as SMAD1 or SMAD2, and forms an oligomeric complex that binds to DNA and serves as a transcription factor. SMAD4 is often mutated in several cancers, such as multiploid colorectal cancer and pancreatic carcinoma, as well as in juvenile polyposis syndrome (JPS). 125 -199817 cd10493 MH1_SMAD_6 N-terminal Mad Homology 1 (MH1) domain in SMAD6. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. MH1 binds to the DNA major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 belongs to SMAD6, an inhibitory SMAD (I-SMAD) or antagonistic SMAD, which acts as a negative regulator of signaling mediated by TGF-beta superfamily ligands, by competing with SMAD4 and preventing the transcription of SMAD4's gene products. SMAD6 specifically inhibits bone morphogenetic protein (BMP) type I receptor mediated signaling. 113 -199818 cd10494 MH1_SMAD_7 N-terminal Mad Homology 1 (MH1) domain in SMAD7. The MH1 is a small DNA-binding domain present in SMAD (small mothers against decapentaplegic) family of proteins. It binds to the major groove in an unusual manner via a beta hairpin structure. It negatively regulates the functions of the MH2 domain, the C-terminal domain of SMAD. This MH1 belongs to SMAD7, an inhibitory SMAD (I-SMAD) or antagonistic SMAD, which acts as a negative regulator of signaling mediated by TGF-beta superfamily ligands, by blocking TGF-beta type 1 and activin association with the receptor as well as access to SMAD2. SMAD7 enhances muscle differentiation, playing pivotal roles in embryonic development and adult homoeostasis. Altered expression of SMAD7 is often associated with cancer, tissue fibrosis and inflammatory diseases. 123 -199820 cd10495 MH2_R-SMAD C-terminal Mad Homology 2 (MH2) domain in receptor regulated SMADs. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain. Receptor regulated SMADs (R-SMADs) include SMAD1, SMAD2, SMAD3, SMAD5 and SMAD9. SMAD1 plays an essential role in bone development and postnatal bone formation through activation by bone morphogenetic protein (BMP) type 1 receptor kinase. SMAD2 regulates multiple cellular processes, such as cell proliferation, apoptosis and differentiation, while SMAD3 modulates signals of activin and TGF-beta. SMAD5 is involved in BMP signal modulation, possibly playing a role in the pathway involving inhibition of hematopoietic progenitor cells by TGF-beta. SMAD9 (also known as SMAD8) can mediate the differentiation of mesenchymal stem cells into tendon-like cells by inhibiting the osteogenic pathway. 182 -199821 cd10496 MH2_I-SMAD C-terminal Mad Homology 2 (MH2) domain in Inhibitory SMADs. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain, which prevents it from forming a complex with SMAD4. SMAD6 and SMAD7 are inhibitory SMADs (I-SMADs) that function as negative regulators of signaling mediated by the TGF-beta superfamily. SMAD6 specifically inhibits bone morphogenetic protein (BMP) type I receptor mediated signaling, while SMAD7 enhances muscle differentiation and is often associated with cancer, tissue fibrosis and inflammatory diseases. 165 -199822 cd10497 MH2_SMAD_1_5_9 C-terminal Mad Homology 2 (MH2) domain in SMAD1, SMAD5 and SMAD9. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain, which prevents it from forming a complex with SMAD4. SMAD1, SMAD5 and SMAD9 (also known as SMAD8), are receptor regulated SMADs (R-SMADs). SMAD1 plays an essential role in bone development and postnatal bone formation through activation by bone morphogenetic protein (BMP) type 1 receptor kinase. SMAD5 is involved in BMP signal modulation and may also play a role in the pathway involving inhibition of hematopoietic progenitor cells by TGF-beta. SMAD9 mediates the differentiation of mesenchymal stem cells (MSCs) into tendon-like cells by inhibiting the osteogenic pathway. 201 -199823 cd10498 MH2_SMAD_4 C-terminal Mad Homology 2 (MH2) domain in SMAD4. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain. SMAD4, which belongs to the Dwarfin family of proteins, is involved in many cell functions such as differentiation, apoptosis, gastrulation, embryonic development and the cell cycle. SMAD4 binds receptor regulated SMADs (R-SMADs) such as SMAD1 or SMAD2, and forms an oligomeric complex that binds to DNA and serves as a transcription factor. SMAD4 is often mutated in several cancers, such as multiploid colorectal cancer, cervical cancer and pancreatic carcinoma, as well as in juvenile polyposis syndrome. 222 -199824 cd10499 MH2_SMAD_6 C-terminal Mad Homology 2 (MH2) domain in SMAD6. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain, which prevents it from forming a complex with SMAD4. SMAD6, an inhibitory or antagonistic SMAD (I-SMAD), acts as a negative regulator of signaling mediated by the TGF-beta superfamily of ligands, by competing with SMAD4 and preventing the transcription of SMAD4's gene products. SMAD6 specifically inhibits bone morphogenetic protein (BMP) type I receptor mediated signaling. SMAD6 and SMAD7 act as critical mediators for effective TGF-beta I-mediated suppression of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through simultaneous binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1 (IRAK1), via their MH2 domains. 174 -199825 cd10500 MH2_SMAD_7 C-terminal Mad Homology 2 (MH2) domain in SMAD7. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain, which prevents it from forming a complex with SMAD4. SMAD7, an inhibitory or antagonistic SMAD (I-SMAD), acts as a negative regulator of signaling mediated by the TGF-beta superfamily of ligands, by blocking TGF-beta type 1 and activin association with the receptor as well as access to SMAD2. SMAD7 enhances muscle differentiation, playing pivotal roles in embryonic development and adult homoeostasis. SMAD7 and SMAD6 act as critical mediators for effective TGF-beta I-mediated suppression of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through simultaneous binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1(IRAK1), via their MH2 domains. Altered expression of SMAD7 is often associated with cancer, tissue fibrosis and inflammatory diseases. 171 -259849 cd10506 RNAP_IV_RPD1_N Largest subunit (NRPD1) of higher plant RNA polymerase IV, N-terminal domain. NRPD1 and NRPE1 are the largest subunits of plant DNA-dependent RNA polymerase IV and V that, together with second largest subunits (NRPD2 and NRPE2), form the active site region of the DNA entry and RNA exit channel. Higher plants have five multi-subunit nuclear RNA polymerases; RNAP I, RNAP II and RNAP III, which are essential for viability, plus the two isoforms of the non-essential polymerase RNAP IV and V, which specialize in small RNA-mediated gene silencing pathways. RNAP IV and/or V might be involved in RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. The subunit compositions of RNAP IV and V reveal that they evolved from RNAP II. 744 -259792 cd10507 Zn-ribbon_RPA12 C-terminal zinc ribbon domain of RPA12 subunit of RNA polymerase I. The C-terminal zinc ribbon domain (C_ribbon) of subunit A12 (C-ribbon_RPA12) in RNA polymerase (Pol) I is involved in intrinsic transcript cleavage. Eukaryote genomes are transcribed by three nuclear RNA polymerases (Pol I, II and III) that share some subunits. RPA12 in Pol I, RPB9 in Pol II, RPC11 in Pol III and TFS in archaea are distantly related to each other and to the TFIIS elongation factor of Pol II. RPA12 has two zinc-binding domains separated by a flexible linker. 47 -259793 cd10508 Zn-ribbon_RPB9 C-terminal zinc ribbon domain of RPB9 subunit of RNA polymerase II. The C-terminal zinc ribbon domain (C_ribbon) of subunit B9 (C-ribbon_RPB9) in RNA polymerase (Pol) II is involved in intrinsic transcript cleavage. Eukaryote genomes are transcribed by three nuclear RNA polymerases (Pol I, II and III) that share some subunits. RPB9 have strong homology to RPA12 of Pol I and RPC11 of Pol III subunits but its intrinsic cleavage activity is weaker for Pol II. C-ribbon_RPB9 is homologous to Pol II elongation factor TFIIS domain III. The very weak cleavage activity of Pol II is stimulated by TFIIS. RPB9 has two zinc-binding domains separated by a flexible linker. 49 -259794 cd10509 Zn-ribbon_RPC11 C-terminal zinc ribbon domain of RPC11 subunit of RNA polymerase III. The C-terminal zinc ribbon domain (C_ribbon) of subunit C11 (C-ribbon_RPC11) in RNA polymerase (Pol) III is required for intrinsic transcript cleavage. RPC11 is also involved in Pol III termination. Eukaryote genomes are transcribed by three nuclear RNA polymerases (Pol I, II and III) that share some subunits. RPC11 have strong homology to RPB9 of Pol II and RPA12 of Pol I. C-ribbon_RPC11 is homologous to Pol II elongation factor TFIIS domain III. C11 has two zinc-binding domains separated by a flexible linker. 46 -259795 cd10511 Zn-ribbon_TFS C-terminal zinc ribbon domain of archaeal Transcription Factor S (TFS). TFS is an archaeal protein that stimulates the intrinsic cleavage activity of archaeal RNA polymerase. TFS C-terminal domain shows sequence similarity to the homologous C-terminal zinc ribbon domain of subunits A12.2, Rpb9, and C11 in eukaryotic RNA Polymerases (Pol) I, II, and III, respectively and domain III of TFIIS. TFS is not a subunit of archaeal RNA polymerase even though its domains arrangement is similar to A12.2, Rpb9, and C1. TFS is a transcription factor with a similar function to eukaryotic TFIIS. TFS has external cleavage induction activity and improves the fidelity of transcription. TFS has two zinc-binding domains. 47 -240598 cd10546 VKOR Vitamin K epoxide reductase (VKOR) family. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. This family includes enzymes that are present in vertebrates, Drosophila, plants, bacteria, and archaea. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some plant and bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. Warfarin, a widely used oral anticoagulant used in medicine as well as rodenticides, inhibits the activity of VKOR, resulting in decreased levels of reduced vitamin K, which is required for the function of several clotting factors. However, anticoagulation effect of warfarin is significantly associated with polymorphism of certain genes, including VKORC1. Interestingly, in rodents, an adaptive trait appears to have evolved convergently by selection on new or standing genetic polymorphisms in VKORC1 as well as by adaptive introgressive hybridization between species, likely brought about by human-mediated dispersal. 126 -319871 cd10549 MtMvhB_like Uncharacterized polyferredoxin-like protein. This family contains uncharacterized polyferredoxin protein similar to Methanobacterium thermoautotrophicum MvhB. The mvhB is a gene of the methylviologen-reducing hydrogenase operon. It is predicted to contain 12 [4Fe-4S] clusters, and was therefore suggested to be a polyferredoxin. As a subfamily of the beta subunit of the DMSO Reductase (DMSOR) family, it is predicted to function as electron carrier in the reducing reaction. 128 -319872 cd10550 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 130 -319873 cd10551 PsrB polysulfide reductase beta (PsrB) subunit. This family includes the beta subunit of bacterial polysulfide reductase (PsrABC), an integral membrane-bound enzyme responsible for quinone-coupled reduction of polysulfides, a process important in extreme environments such as deep-sea vents and hot springs. Polysulfide reductase contains three subunits: a catalytic subunit PsrA, an electron transfer PsrB subunit and the hydrophobic transmembrane PsrC subunit. PsrB belongs to the DMSO reductase superfamily that contains [4Fe-4S] clusters which transfer the electrons from the A subunit to the hydrophobic integral membrane C subunit via the B subunit. In Shewanella oneidensis, which has highly diverse anaerobic respiratory pathways, PsrABC is responsible for H2S generation as well as its regulation via respiration of sulfur species. PsrB transfers electrons from PsrC (serving as quinol oxidase) to the catalytic subunit PsrA for reduction of corresponding electron acceptors. It has been shown that T. thermophilus polysulfide reductase could be a key energy-conserving enzyme of the respiratory chain, using polysulfide as the terminal electron acceptor and pumping protons across the membrane. 185 -319874 cd10552 TH_beta_N N-terminal FeS domain of pyrogallol-phloroglucinol transhydroxylase (TH), beta subunit. This family includes the beta subunit of pyrogallol-phloroglucinol transhydroxylase (TH), a cytoplasmic molybdenum (Mo) enzyme from anaerobic microorganisms like Pelobacter acidigallici and Desulfitobacterium hafniense which catalyzes the conversion of pyrogallol to phloroglucinol, an important building block of plant polymers. TH belongs to the DMSO reductase (DMSOR) family; it is a heterodimer consisting of a large alpha catalytic subunit and a small beta FeS subunit. The beta subunit has two domains with the N-terminal domain containing three [4Fe-4S] centers and a seven-stranded, mainly antiparallel beta-barrel domain. In the anaerobic bacterium Pelobacter acidigallici, gallic acid, pyrogallol, phloroglucinol, or phloroglucinol carboxylic acid are fermented to three molecules of acetate (plus CO2), and TH is the key enzyme in the fermentation pathway, which converts pyrogallol to phloroglucinol in the absence of O2. 186 -319875 cd10553 PhsB_like uncharacterized beta subfamily of DMSO Reductase similar to Desulfonauticus sp PhsB. This family includes beta FeS subunits of anaerobic DMSO reductase (DMSOR) superfamily that have yet to be characterized. DMSOR consists of a large, periplasmic molybdenum-containing alpha subunit as well as a small beta FeS subunit, and may also have a small gamma subunit. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and the tungsten-containing formate dehydrogenase (FDH-T). Examples of heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 146 -319876 cd10554 HycB_like HycB, HydN and similar proteins. This family includes HycB, the FeS subunit of a membrane-associated formate hydrogenlyase system (FHL-1) in Escherichia coli that breaks down formate, produced during anaerobic fermentation, to H2 and CO2. FHL-1 consists of formate dehydrogenase H (FDH-H) and the hydrogenase 3 complex (Hyd-3). HycB is thought to code for the [4Fe-4S] ferredoxin subunit of hydrogenase 3, which functions as an intermediate electron carrier protein between hydrogenase 3 and formate dehydrogenase. HydN codes for the [4Fe-4S] ferredoxin subunit of FDH-H; a hydN in-frame deletion mutation causes only weak reduction in hydrogenase activity, but loss of more than 60% of FDH-H activity. This pathway is only active at low pH and high formate concentrations, and is thought to provide a detoxification/de-acidification system countering the buildup of formate during fermentation. 149 -319877 cd10555 EBDH_beta beta subunit of ethylbenzene-dehydrogenase (EBDH). This subfamily includes ethylbenzene dehydrogenase (EBDH, EC 1.17.99.2), a member of the DMSO reductase family. EBDH oxidizes the hydrocarbon ethylbenzene to (S)-1-phenylethanol. It is a heterotrimer, with the alpha subunit containing the catalytic center with a molybdenum held by two molybdopterin-guanine dinucleotides, the beta subunit containing four iron-sulfur clusters (the electron transfer subunit) and the gamma subunit containing a methionine and a lysine as axial heme ligands. During catalysis, electrons produced by substrate oxidation are transferred to a heme in the gamma subunit and then presumably to a separate cytochrome involved in nitrate respiration. 316 -319878 cd10556 SER_beta Beta subunit of selenate reductase. This subfamily includes beta FeS subunit of selenate reductase (SER), a member of the DMSO reductase family. SER catalyzes the reduction of selenate to selenite in bacterial species that can obtain energy by respiring anaerobically with selenate as the terminal electron acceptor. The enzyme comprises three subunits SerABC, forming a heterotrimer, with the catalytic component (alpha-subunit), iron-sulfur protein (beta-subunit) and monomeric b-type heme-containing gamma subunit. Beta subunit contains coordinating one [3Fe-4S] cluster and three [4Fe-4S] clusters and functions as electron carrier. 287 -319879 cd10557 NarH_beta-like beta subunit of nitrate reductase A (NarH) and similar proteins. This subfamily includes nitrate reductase A, a member of the DMSO reductase family. The respiratory nitrate reductase complex (NarGHI) from E. coli is a heterotrimer, with the catalytic subunit (NarG) with a molybdo-bis (molybdopterin guanine dinucleotide) cofactor and an [Fe-S] cluster, the electron transfer subunit (NarH) with four [Fe-S] clusters, and the integral membrane subunit (NarI) with two b-type hemes. Nitrate reductase A often forms a respiratory chain with the formate dehydrogenase via the lipid soluble quinol pool. Electron transfer from formate to nitrate is coupled to proton translocation across the cytoplasmic membrane generating proton motive force by a redox loop mechanism. Demethylmenaquinol (DMKH2) has been shown to be a good substrate for NarGHI in nitrate respiration in E. coli. 363 -319880 cd10558 FDH-N The beta FeS subunit of formate dehydrogenase-N (FDH-N). This subfamily contains beta FeS subunit of formate dehydrogenase-N (FDH-N), a member of the DMSO reductase family. FDH-N is involved in the major anaerobic respiratory pathway in the presence of nitrate, catalyzing the oxidation of formate to carbon dioxide at the expense of nitrate reduction to nitrite. Thus, FDH-N is a major component of nitrate respiration of Escherichia coli. This integral membrane enzyme forms a heterotrimer; the alpha-subunit (FDH-G) is the catalytic site of formate oxidation and membrane-associated, incorporating a selenocysteine (SeCys) residue and a [4Fe/4S] cluster in addition to two bis-MGD cofactors, the beta subunit (FDH-H) contains four [4Fe/4S] clusters which transfer the electrons from the alpha subunit to the gamma-subunit (FDH-I), a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. 208 -319881 cd10559 W-FDH tungsten-containing formate dehydrogenase, small subunit. This subfamily contains beta subunit of Tungsten-containing formate dehydrogenase (W-FDH), a member of the DMSO reductase family. W-FDH contains a tungsten instead of molybdenum at the catalytic center. This enzyme seems to be exclusively found in organisms such as hyperthermophilic archaea that live in extreme environments. It is a heterodimer of a large and a small subunit; the large subunit harbors the W site and one [4Fe-4S] center and the small subunit, containing three [4Fe-4S] clusters, functions to transfer electrons. 200 -319882 cd10560 FDH-O_like beta subunit of formate dehydrogenase O (FDH-O) and similar proteins. This subfamily includes beta subunit of formate dehydrogenase family O (FDH-O), which is highly homologous to formate dehydrogenase N (FDH-N), a member of the DMSO reductase family. In E. coli three formate dehydrogenases are synthesized that are capable of oxidizing formate; Fdh-H, couples formate disproportionation to hydrogen and CO2, and is part of the cytoplasmically oriented formate hydrogenlyase complex, while FDH-N and FDH-O indicate their respective induction after growth with nitrate and oxygen. Little is known about FDH-O, although it shows formate oxidase activity during aerobic growth and is also synthesized during nitrate respiration, similar to FDH-N. 225 -319883 cd10561 HybA_like the FeS subunit of hydrogenase 2. This subfamily includes the beta-subunit of hydrogenase 2 (Hyd-2), an enzyme that catalyzes the reversible oxidation of H2 to protons and electrons. Hyd-2 is membrane-associated and forms an unusual heterotetrameric [NiFe]-hydrogenase in that it lacks the typical cytochrome b membrane anchor subunit that transfers electrons to the quinone pool. The electron transfer subunit of Hyd-2 (HybA) which is predicted to contain four iron-sulfur clusters, is essential for electron transfer from Hyd-2 to menaquinone/demethylmenaquinone (MQ/DMQ) to couple hydrogen oxidation to fumarate reduction. 196 -319884 cd10562 FDH_b_like uncharacterized subfamily of beta subunit of formate dehydrogenase. This subfamily includes the beta-subunit of formate dehydrogenases that are as yet uncharacterized. Members of the DMSO reductase family include formate dehydrogenase N and O (FDH-N, FDH-O) and tungsten-containing formate dehydrogenase (W-FDH) and other similar proteins. FDH-N, a major component of nitrate respiration of Escherichia coli, is involved in the major anaerobic respiratory pathway in the presence of nitrate, catalyzing the oxidation of formate to carbon dioxide at the expense of nitrate reduction to nitrite. It forms a heterotrimer; the alpha-subunit (FDH-G) is the catalytic site of formate oxidation and membrane-associated, incorporating a selenocysteine (SeCys) residue and a [4Fe/4S] cluster in addition to two bis-MGD cofactors, the beta subunit (FDH-H) contains four [4Fe/4S] clusters which transfer the electrons from the alpha subunit to the gamma-subunit (FDH-I), a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. W-FDH contains a tungsten instead of molybdenum at the catalytic center. This enzyme seems to be exclusively found in organisms such as hyperthermophilic archaea that live in extreme environments. It is a heterodimer of a large and a small subunit; the large subunit harbors the W site and one [4Fe-4S] center and the small subunit, containing three [4Fe-4S] clusters, functions to transfer electrons. 161 -319885 cd10563 CooF_like CooF, iron-sulfur subunit of carbon monoxide dehydrogenase. This family includes CooF, the iron-sulfur subunit of carbon monoxide dehydrogenase (CODH), found in anaerobic bacteria and archaea. Carbon monoxide dehydrogenase is a key enzyme for carbon monoxide (CO) metabolism, where CooF is the proposed mediator of electron transfer between CODH and the CO-induced hydrogenase, catalyzing the reaction that uses CO as a single carbon and energy source, and producing only H2 and CO2. The ion-sulfur subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons in the protein complex during reaction. 140 -319886 cd10564 NapF_like NapF, iron-sulfur subunit of periplasmic nitrate reductase. This family contains NapF protein, the iron-sulfur subunit of periplasmic nitrate reductase. The periplasmic nitrate reductase NapABC of Escherichia coli likely functions during anaerobic growth in low-nitrate environments; napF operon expression is activated by cyclic AMP receptor protein (Crp). NapF is a subfamily of the beta subunit of DMSO reductase (DMSOR) family. DMSOR family members have a large, periplasmic molybdenum-containing alpha subunit as well as a small beta FeS subunit, and may also have a small gamma subunit. The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 139 -349488 cd10566 MDM2_like p53-binding domain found in E3 ubiquitin-protein ligase MDM2, MDM4, and similar proteins. MDM2 (also termed HDM2) and MDM4 (also termed MDMX or HDMX) are the primary negative regulators of p53 tumor suppressor. They have non-redundant roles in the regulation of p53. MDM2 mainly functions to control p53 stability, while MDM4 controls p53 transcriptional activity. Both MDM2 and MDM4 contain an N-terminal p53-binding domain, a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region, and a C-terminal RING domain. Mdm2 can form homo-oligomers through its RING domain and display E3 ubiquitin ligase activity that catalyzes the attachment of ubiquitin to p53 as an essential step in the regulation of its level in cells. Despite its RING domain and structural similarity with MDM2, MDM4 does not homo-oligomerize and lacks ubiquitin-ligase function, but inhibits the transcriptional activity of p53. In addition, both their RING domains are responsible for the hetero-oligomerization, which is crucial for the suppression of p53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. Moreover, MDM2 and MDM4 can be phosphorylated and destabilized in response to DNA damage stress. In response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through the interaction with ribosomal proteins L5, L11 and L23. However, MDM4 is not bound to ribosomal proteins, suggesting its different response to regulation by small basic proteins such as ribosomal proteins and ARF. 75 -349489 cd10567 SWIB-MDM2_like SWIB/MDM2 domain found in SWIB/MDM2 homologous proteins. This family includes Schizosaccharomyces pombe upstream activation factor subunit spp27, Saccharomyces cerevisiae upstream activation factor subunit UAF30, Chlamydiae DNA topoisomerase/SWIB domain fusion protein, Arabidopsis thaliana zinc finger CCCH domain-containing proteins, AtC3H19 and AtC3H44, and similar proteins. S. pombe spp27, also termed upstream activation factor 27 KDa subunit (p27), or upstream activation factor 30 KDa subunit (p30), or upstream activation factor subunit uaf30, is a component of the UAF (upstream activation factor) complex which interacts with the upstream element of the RNA polymerase I promoter and forms a stable preinitiation complex. S. cerevisiae UAF30, also termed upstream activation factor 30 KDa subunit (p30), is a non-essential component of the UAF. It seems to play a role in silencing transcription by RNA polymerase II. The SWIB domain found in Chlamydiae DNA topoisomerase may play a role in chromatin condensation-decondensation, which is characteristic of the chlamydial developmental cycle and not found in any other types of bacteria. AtC3H19, also termed protein needed for RDR2-independent DNA methylation (NERD), is a plant-specific GW repeat- and PHD finger-containing protein that plays a central role in integrating RNA silencing and chromatin signals in 21 nt small-interfering RNA (siRNA)-dependent DNA methylation on the cytosine pathway, leading to transcriptional gene silencing of specific sequences. This family also includes many uncharacterized proteins containing two copies of SWIB/MDM2 domain. 71 -349490 cd10568 SWIB_like SWIB domain found in the 60 kda subunit of the ATP-dependent SWI/SNF chromatin-remodeling complexes and similar proteins. SWIB domain is a conserved region found within proteins in the SWI/SNF family of complexes. SWI/SNF complex proteins display helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The mammalian complexes are made up of 9-12 proteins called BAFs (BRG1-associated factors), among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit have at least three members: BAF60a, which is ubiquitous, BAF60b and BAF60c, which are expressed in muscle and pancreatic tissues, respectively. The family also includes Saccharomyces cerevisiae transcription regulatory protein SNF12 and remodel the structure of chromatin complex subunit 6 (RSC6), and Schizosaccharomyces pombe SWI/SNF and RSC complexes subunit SSR3. SNF12, also termed 73-kDa subunit of the SWI/SNF transcriptional regulatory complex, or SWI/SNF complex component SWP73, is involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). RSC6 and SSR3 are components of the RSC, which is involved in transcription regulation and nucleosome positioning. RSC6 is essential for mitotic growth and suppresses formamide sensitivity of the RSC8 mutants. 69 -269973 cd10569 FERM_C_Talin FERM domain C-lobe/F3 of Talin. Talin (also called filopodin) plays an important role in initiating actin filament growth in motile cell protrusions. It is responsible for linking the cytoplasmic domains of integrins to the actin-based cytoskeleton, and is involved in vinculin, integrin and actin interactions. At the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in transient adhesions, some of which become more stable focal adhesions (FA). During this maturation process, layilin is replaced with integrins, where localized production of PI(4,5)P(2) by type 1 phosphatidyl inositol phosphate kinase type 1gamma (PIPK1gamma) is thought to play a role in FA assembly. Talins are composed of a N-terminal region FERM domain which us made up of 3 subdomains (N, alpha-, and C-lobe; or- A-lobe, B-lobe, and C-lobe; or F1, F2, and F3) connected by short linkers, a talin rod which binds vinculin, and a conserved C-terminal region with actin- and integrin-binding sites. There are 2 additional actin-binding domains, one in the talin rod and the other in the FERM domain. Both the F2 and F3 FERM subdomains contribute to F-actin binding. Subdomain F3 of the FERM domain contains overlapping binding sites for integrin cytoplasmic domains and for the type 1 gamma isoform of PIP-kinase (phosphatidylinositol 4-phosphate 5-kinase). The FERM domain has a cloverleaf tripart structure . F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 92 -275393 cd10570 PH-GRAM Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. 94 -269975 cd10571 PH_beta_spectrin Beta-spectrin pleckstrin homology (PH) domain. Beta spectrin binds actin and functions as a major component of the cytoskeleton underlying cellular membranes. Beta spectrin consists of multiple spectrin repeats followed by a PH domain, which binds to inositol-1,4,5-trisphosphate. The PH domain of beta-spectrin is thought to play a role in the association of spectrin with the plasma membrane of cells. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -269976 cd10572 PH_RhoGEF3_XPLN Rho guanine nucleotide exchange factor 3 Pleckstrin homology (PH) domain. RhoGEF3/XPLN, a Rho family GEF, preferentially stimulates guanine nucleotide exchange on RhoA and RhoB, but not RhoC, RhoG, Rac1, or Cdc42 in vitro. It also possesses transforming activity. RhoGEF3/XPLN contains a tandem Dbl homology and PH domain, but lacks homology with other known functional domains or motifs. It is expressed in the brain, skeletal muscle, heart, kidney, platelets, and macrophage and neuronal cell lines. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 133 -269977 cd10573 PH_DAPP1 Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain. DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 96 -269978 cd10574 EVH1_SPRED-like Sprouty-related EVH1 domain-containing-like proteins EVH1 domain. The Spred family has the following domains: an N-terminal EVH1 domain, a unique KBD (c-Kit kinase binding) domain which that is phosphorylated by the stem cell factor receptor c-Kit, and a C-terminal cysteine-rich SPR (Sprouty-related) domain which is involved in membrane localization. There are 3 Spred proteins: Spred1 which interacts with both Ras and Raf through its SPR domain; Spred2 which is the most abundant isoform; and Spred3 which has a non-functional KBD and maintains the inhibitory action on Raf. Legius syndrome is caused by heterozygous mutations in Spred1. Both EVH1 and SPR domains are involved in the inhibition of the MAP kinase pathway by Spred proteins. The specific function of the Spred2 EVH1 domain is unknown and there are no known interacting proteins to date. It is thought that its EVH1 domain will have a fourth distinct peptide binding mechanism within the EVH1 family. The EVH1 domains are part of the PH domain superamily. There are 5 EVH1 subfamilies: Enables/VASP, Homer/Vesl, WASP, Dcp1, and Spred. Ligands are known for three of the EVH1 subfamilies, all of which bind proline-rich sequences: the Enabled/VASP family binds to FPPPP peptides, the Homer/Vesl family binds PPxxF peptides, and the WASP family binds LPPPEP peptides. EVH1 has a PH-like fold, despite having minimal sequence similarity to PH or PTB domains. 113 -276901 cd10575 TNFRSF6B Tumor necrosis factor receptor superfamily member 6B (TNFRSF6B), also known as decoy receptor 3 (DcR3). The subfamily TNFRSF6B is also known as decoy receptor 3 (DcR3), M68, or TR6. This protein is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells. It acts as a decoy receptor that competes with death receptors for ligand binding. It is a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases, and cancer. Over-expression of this gene has been noted in several cancers, including pancreatic carcinoma, and gastrointestinal tract tumors. It can neutralize the biological effects of three tumor necrosis factor superfamily (TNFSF) members: TNFSF6 (Fas ligand/FasL/CD95L) and TNFSF14 (LIGHT) which are both involved in apoptosis and inflammation, and TNFSF15 (TNF-like molecule 1A/TL1A), which is a T cell co-stimulator and involved in gut inflammation. DcR3 is a novel inflammatory marker; higher DcR3 levels strongly correlate with inflammation and independently predict cardiovascular and all-cause mortality in chronic kidney disease (CKD) patients on hemodialysis. Increased synovial inflammatory cells infiltration in rheumatoid arthritis and ankylosing spondylitis is also associated with the elevated DcR3 expression. In cartilaginous fish, mRNA expression of DcR3 in the thymus and leydig, which are the representative lymphoid tissues of elasmobranchs, suggests that DcR3 may act as a modulator in the immune system. Interestingly, in banded dogfish (Triakis scyllia), DcR3 mRNA is strongly expressed in the gill, compared with human expression in the normal lung; both are respiratory organs, suggesting potential relevance of DcR3 to respiratory function. 163 -276902 cd10576 TNFRSF1A Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), also known as TNFR1. TNFRSF1A (also known as type I TNFR, TNFR1, DR1, TNFRSF1A, CD120a, p55) binds TNF-alpha, through the death domain (DD), and activates NF-kappaB, mediates apoptosis and activates signaling pathways controlling inflammatory, immune, and stress responses. It mediates signal transduction by interacting with antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRAF2 and TRADD that play regulatory roles. The human genetic disorder called tumor necrosis factor associated periodic syndrome (TRAPS), or periodic fever syndrome, is associated with germline mutations of the extracellular domains of this receptor, possibly due to impaired receptor clearance. TNFRSF1A polymorphisms rs1800693 and rs4149584 are associated with elevated risk of multiple sclerosis. Serum levels of TNFRSF1A are elevated in schizophrenia and bipolar disorder, and high levels are also associated with cognitive impairment and dementia. Patients with idiopathic recurrent acute pericarditis (IRAP), presumed to be an autoimmune process, have also been shown to carry rare mutations (R104Q and D12E) in the TNFRSF1A gene. 130 -276903 cd10577 TNFRSF1B Tumor necrosis factor receptor superfamily member 1B (TNFRSF1B), also known as TNFR2. TNFRSF1B (also known as TNFR2, type 2 TNFR, TNFBR, TNFR80, TNF-R75, TNF-R-II, p75, CD120b) binds TNF-alpha, but lacks the death domain (DD) that is associated with the cytoplasmic domain of TNFRSF1A (TNFR1). It is inducible and expressed exclusively by oligodendrocytes, astrocytes, T cells, thymocytes, myocytes, endothelial cells, and in human mesenchymal stem cells. TNFRSF1B protects oligodendrocyte progenitor cells (OLGs) against oxidative stress, and induces the up-regulation of cell survival genes. While pro-inflammatory and pathogen-clearing activities of TNF are mediated mainly through activation of TNFRSF1A, a strong activator of NF-kappaB, TNFRSF1B is more responsible for suppression of inflammation. Although the affinities of both receptors for soluble TNF are similar, TNFRSF1B is sometimes more abundantly expressed and thought to associate with TNF, thereby increasing its concentration near TNFRSF1A receptors, and making TNF available to activate TNFRSF1A (a ligand-passing mechanism). 163 -276904 cd10578 TNFRSF3 Tumor necrosis factor receptor superfamily member 3 (TNFRSF3), also known as lymphotoxin beta receptor (LTBR). TNFRSF3 (also known as lymphotoxin beta receptor, LTbetaR, CD18, TNFCR, TNFR3, D12S370, TNFR-RP, TNFR2-RP, LT-BETA-R, TNF-R-III) plays a role in signaling during development of lymphoid and other organs, lipid metabolism, immune response, and programmed cell death. Its ligands include lymphotoxin (LT) alpha/beta membrane form (heterotrimer) and tumor necrosis factor ligand superfamily member 14 (also known as LIGHT). TNFRSF3 agonism by these ligands initiates canonical, as well as non-canonical nuclear factor-kappaB (NF-kappaB) signaling, and preferentially results in the translocation of p52-RELB complexes into the nucleus. While these ligands are often expressed by T and B cells, TNFRSF3 is conspicuous absence on T and B lymphocytes and NK cells, suggesting that signaling may be unidirectional for TNFRSF3. Activity of this receptor has also been linked to carcinogenesis; it helps trigger apoptosis and can also lead to release of the interleukin 8 (IL8). Alternatively spliced transcript variants encoding multiple isoforms have been observed. 158 -276905 cd10579 TNFRSF6 Tumor necrosis factor receptor superfamily member 6 (TNFRSF6), also known as fas cell surface death receptor (Fas). TNFRSF6 (also known as fas cell surface death receptor (FasR) or Fas, APT1, CD95, FAS1, APO-1, FASTM, ALPS1A) contains a death domain and plays a central role in the physiological regulation of programmed cell death. It has been implicated in the pathogenesis of various malignancies and diseases of the immune system. The receptor interactions with the Fas ligand (FasL), allowing the formation of a death-inducing signaling complex that includes Fas-associated death domain protein (FADD), caspase 8, and caspase 10; autoproteolytic processing of the caspases in the complex triggers a downstream caspase cascade, leading to apoptosis. This receptor has also been shown to activate NF-kappaB, MAPK3/ERK1, and MAPK8/JNK, and is involved in transducing the proliferating signals in normal diploid fibroblast and T cells. Of the several alternatively spliced transcript variants, some are candidates for nonsense-mediated mRNA decay (NMD). Isoforms lacking the transmembrane domain may negatively regulate the apoptosis mediated by the full length isoform. 129 -276906 cd10580 TNFRSF10 Tumor necrosis factor receptor superfamily member 10 (TNFRSF10), includes TNFRSF10A (DR4), TNFRSF10B (DR5), TNFRSF10C (DcR1) and TNFRSF10D (DcR2). TNFRSF10 family contains TNFRSF10A (also known as DR4, Apo2, TRAIL-R1, CD261), TNFRSF10B (also known as DR5, KILLER, TRICK2A, TRAIL-R2, TRICKB, CD262), TNFRSF10C (also known as DcR1, TRAIL-R3, LIT, TRID, CD263), and TNFRSF10D (also known as DcR2, TRUNDD, TRAIL-R4, CD264). Tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL) binds to all 4 receptors. DR4 (TRAIL-R1) and DR5 (TRAIL-R2) are membrane-bound and contain a death domain in their intracellular portion, which is able to transmit an apoptotic signal, thus often called death receptors. In contrast, DcR1 (TRAIL-R3), which lacks the complete intracellular portion and DcR2 (TRAIL-R4), which has a truncated cytoplasmic death domain, do not transmit an apoptotic signal, thus known as decoy receptors. Apoptosis mediated by DR4 and DR5 requires Fas (TNFRSF6)-associated via death domain (FADD), a death domain containing adaptor protein. Two transcript variants encoding different isoforms and one non-coding transcript have been found for TNFRSF10B/DR5. DcR1 appears to function as an antagonistic receptor that protects cells from TRAIL-induced apoptosis; it has been found to be a p53-regulated DNA damage-inducible gene. The expression of this gene is detected in many normal tissues but not in most cancer cell lines, which may explain the specific sensitivity of cancer cells to the apoptosis-inducing activity of TRAIL. DcR2 has been shown to play an inhibitory role in TRAIL-induced cell apoptosis. The membrane expression of all of these receptors (DR4, DR5, DcR1, and DcR2) is greater in normal endometrium (NE) than in endometrioid adenocarcinoma (EAC). In EAC patients, membrane expression of these receptors are not independent predictors of survival. DcR1 and DcR2 expression is critical in cell growth and apoptosis in cutaneous or uveal melanoma; DcR1 and DcR2 are frequently methylated in both, leading to loss of gene expression and melanomagenesis. On the other hand, DR4 and DR5 methylation is rare in cutaneous melanoma and frequent in uveal melanoma; their expression is wholly independent of the promoter methylation status. DcR1 and DcR2 genes are also reported to be hyper-methylated in prostate cancer. The TRAIL ligand, a potent and specific inducer of apoptosis in cancer cells, has been explored as a therapeutic drug; experimental data has shown that DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer. 103 -276907 cd10581 TNFRSF11B Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B), also known as Osteoprotegerin (OPG). TNFRSF11B (also known as Osteoprotegerin, OPG, TR1, OCIF) is a secreted glycoprotein that regulates bone resorption. It binds to two ligands, RANKL (receptor activator of nuclear factor kappaB ligand, also known as osteoprotegerin ligand, OPGL, TRANCE, TNF-related activation induced cytokine), a critical cytokine for osteoclast differentiation, and TRAIL (TNF-related apoptosis-inducing ligand), involved in immune surveillance. Therefore, acting as a decoy receptor for RANKL and TRAIL, OPG inhibits the regulatory effects of nuclear factor-kappaB on inflammation, skeletal, and vascular systems, and prevents TRAIL-induced apoptosis. Studies in mice counterparts suggest that this protein and its ligand also play a role in lymph-node organogenesis and vascular calcification. Circulating OPG levels have emerged as independent biomarkers of cardiovascular disease (CVD) in patients with acute or chronic heart disease. OPG has also been implicated in various inflammations and linked to diabetes and poor glycemic control. Alternatively spliced transcript variants of this gene have been reported, although their full length nature has not been determined. 147 -276908 cd10582 TNFRSF14 Tumor necrosis factor receptor superfamily member 14 (TNFRSF14), also known as herpes virus entry mediator (HVEM). TNFRSF14 (also known as herpes virus entry mediator or HVEM, ATAR, CD270, HVEA, LIGHTR, TR2) regulates T-cell immune responses by activating inflammatory, as well as inhibitory signaling pathways. HVEM acts as a receptor for the canonical TNF-related ligand LIGHT (lymphotoxin-like), which exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM. It also acts as a ligand for the immunoglobulin superfamily proteins BTLA (B and T lymphocyte attenuator) and CD160, a feature distinguishing HVEM from other immune regulatory molecules, thus, creating a functionally diverse set of intrinsic and bidirectional signaling pathways. HVEM is highly expressed in the gut epithelium. Genome-wide association studies have shown that Hvem is an inflammatory bowel disease (IBD) risk gene, suggesting that HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense, and the microbiota. Mouse models have revealed that HVEM is involved in colitis pathogenesis, mucosal host defense, and epithelial immunity, thus acting as a mucosal gatekeeper with multiple regulatory functions in the mucosa. HVEM plays a critical role in both tumor progression and resistance to antitumor immune responses, possibly through direct and indirect mechanisms. It is known to be expressed in several human malignancies, including esophageal squamous cell carcinoma, follicular lymphoma and melanoma. HVEM network may therefore be an attractive target for drug intervention. 101 -276909 cd10583 TNFRSF21 Tumor necrosis factor receptor superfamily member 21 (TNFRSF21), also known as death receptor (DR6). TNFRSF21 (also known as death receptor 6 (DR6), CD358, BM-018) is highly expressed in differentiating neurons as well as in the adult brain, and is upregulated in injured neurons. DR6 negatively regulates neurondendrocyte, axondendrocyte, and oligodendrocyte survival, hinders axondendrocyte and oligodendrocyte regeneration and its inhibition has a neuro-protective effect in nerve injury. It activates nuclear factor kappa-B (NFkB) and mitogen-activated protein kinase 8 (MAPK8, also called c-Jun N-terminal kinase 1), and induces cell apoptosis by associating with TNFRSF1A-associated via death domain (TRADD), which is known to mediate signal transduction of tumor necrosis factor receptors. TNFRSF21 plays a role in T-helper cell activation, and may be involved in inflammation and immune regulation. Its possible ligand is alpha-amyloid precursor protein (APP), hence probably involved in the development of Alzheimer's disease; when released, APP binds in an autocrine/paracrine manner to activate a caspase-dependent self-destruction program that removes unnecessary or connectionless axons. Increasing beta-catenin levels in brain endothelium upregulates TNFRSF21 and TNFRSF19, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for blood-brain barrier development. DR6 is up-regulated in numerous solid tumors as well as in tumor vascular cells, including ovarian cancer and may be a clinically useful diagnostic and predictive serum biomarker for some adult sarcoma subtypes. 159 -213020 cd10585 CE4_SF Catalytic NodB homology domain of the carbohydrate esterase 4 superfamily. The carbohydrate esterase 4 (CE4) superfamily mainly includes chitin deacetylases (EC 3.5.1.41), bacterial peptidoglycan N-acetylglucosamine deacetylases (EC 3.5.1.-), and acetylxylan esterases (EC 3.1.1.72), which catalyze the N- or O-deacetylation of substrates such as acetylated chitin, peptidoglycan, and acetylated xylan, respectively. Members in this superfamily contain a NodB homology domain that adopts a deformed (beta/alpha)8 barrel fold, which encompasses a mononuclear metalloenzyme employing a conserved His-His-Asp zinc-binding triad, closely associated with the conserved catalytic base (aspartic acid) and acid (histidine) to carry out acid/base catalysis. The NodB homology domain of CE4 superfamily is remotely related to the 7-stranded beta/alpha barrel catalytic domain of the superfamily consisting of family 38 glycoside hydrolases (GH38), family 57 heat stable retaining glycoside hydrolases (GH57), lactam utilization protein LamB/YcsF family proteins, and YdjC-family proteins. 142 -198285 cd10718 SH2_CIS Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS). CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. 88 -199908 cd10719 DnaJ_zf Zinc finger domain of DnaJ and HSP40. Central/middle or CxxCxGxG-motif containing domain of DnaJ/Hsp40 (heat shock protein 40). DnaJ proteins are highly conserved and play crucial roles in protein translation, folding, unfolding, translocation, and degradation. They act primarily by stimulating the ATPase activity of Hsp70s, an important chaperonin family. Hsp40 proteins are characterized by the presence of an N-terminal J domain, which mediates the interaction with Hsp70. This central domain contains four repeats of a CxxCxGxG motif and binds to two Zinc ions. It has been implicated in substrate binding. 65 -199909 cd10747 DnaJ_C C-terminal substrate binding domain of DnaJ and HSP40. The C-terminal region of the DnaJ/Hsp40 protein mediates oligomerization and binding to denatured polypeptide substrate. DnaJ/Hsp40 is a widely conserved heat-shock protein. It prevents the aggregation of unfolded substrate and forms a ternary complex with both substrate and DnaK/Hsp70; the N-terminal J-domain of DnaJ/Hsp40 stimulates the ATPase activity of DnaK/Hsp70. 158 -199910 cd10748 anti-TRAP anti-TRAP (AT) protein specific to Bacilli. In Bacillus subtilis and related bacteria, AT binds to the TRAP protein, (tryptophan-activated trp RNA-binding attenuation protein), effectively disrupting interaction of TRAP with mRNAs. Upon binding of tryptophan, TRAP (which forms a complex of 11 identical subunits) interacts with a specific location in the leader RNA and blocks translation of the tryptophan biosynthetic operon. AT, in turn, recognizes the tryptophan-activated TRAP complex and prevents RNA binding. AT is expressed in response to high levels of uncharged tryptophan tRNA. AT contains a zinc-binding motif that closely resembles the zinc-binding motifs in the zinc-finger region of DnaJ/Hsp40. AT has been shown to form homo-dodecameric assemblies, and can actually do that in two different relative orientations, resulting in two different dodecamers. Recent data suggest that the trimeric form of AT may be the biologically relevant active complex. 52 -212097 cd10785 GH38-57_N_LamB_YdjC_SF Catalytic domain of glycoside hydrolase (GH) families 38 and 57, lactam utilization protein LamB/YcsF family proteins, YdjC-family proteins, and similar proteins. The superfamily possesses strong sequence similarities across a wide range of all three kingdoms of life. It mainly includes four families, glycoside hydrolases family 38 (GH38), heat stable retaining glycoside hydrolases family 57 (GH57), lactam utilization protein LamB/YcsF family, and YdjC-family. The GH38 family corresponds to class II alpha-mannosidases (alphaMII, EC 3.2.1.24), which contain intermediate Golgi alpha-mannosidases II, acidic lysosomal alpha-mannosidases, animal sperm and epididymal alpha -mannosidases, neutral ER/cytosolic alpha-mannosidases, and some putative prokaryotic alpha-mannosidases. AlphaMII possess a-1,3, a-1,6, and a-1,2 hydrolytic activity, and catalyzes the degradation of N-linked oligosaccharides by employing a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. GH57 is a purely prokaryotic family with the majority of thermostable enzymes from extremophiles (many of them are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). This family also includes many hypothetical proteins with uncharacterized activity and specificity. GH57 cleaves alpha-glycosidic bond by employing a retaining mechanism, which involves a glycosyl-enzyme intermediate, allowing transglycosylation. Although the exact molecular function of LamB/YcsF family and YdjC-family remains unclear, they show high sequence and structure homology to the members of GH38 and GH57. Their catalytic domains adopt a similar parallel 7-stranded beta/alpha barrel, which is remotely related to catalytic NodB homology domain of the carbohydrate esterase 4 superfamily. 203 -212098 cd10786 GH38N_AMII_like N-terminal catalytic domain of class II alpha-mannosidases and similar proteins; glycoside hydrolase family 38 (GH38). Alpha-mannosidases (EC 3.2.1.24) are extensively found in eukaryotes and play important roles in the processing of newly formed N-glycans and in degradation of mature glycoproteins. A deficiency of this enzyme causes the lysosomal storage disease alpha-mannosidosis. Many bacterial and archaeal species also possess putative alpha-mannosidases, but their activity and specificity is largely unknown. Based on different functional characteristics and sequence homology, alpha-mannosidases have been organized into two classes (class I, belonging to glycoside hydrolase family 47, and class II, belonging to glycoside hydrolase family 38). Members of this family corresponds to class II alpha-mannosidases (alphaMII), which contain intermediate Golgi alpha-mannosidases II, acidic lysosomal alpha-mannosidases, animal sperm and epididymal alpha -mannosidases, neutral ER/cytosolic alpha-mannosidases, and some putative prokaryotic alpha-mannosidases. AlphaMII possess a-1,3, a-1,6, and a-1,2 hydrolytic activity, and catalyzes the degradation of N-linked oligosaccharides. The N-terminal catalytic domain of alphaMII adopts a structure consisting of parallel 7-stranded beta/alpha barrel. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. 251 -212099 cd10787 LamB_YcsF_like LamB/YcsF family of lactam utilization protein. The LamB/YbgL family includes the Aspergillus nidulans protein LamB, and its homologs from all three kingdoms of life. The lamb gene locates at the lam locus of Aspergillus nidulans, consisting of two divergently transcribed genes, lamA and lamB, needed for the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. Although the exact molecular function of LamB is unknown, it might be required for conversion of exogenous 2-pyrrolidinone to endogenous GABA 238 -212100 cd10788 YdjC_like YdjC-family proteins. YdjC-family proteins are widely distributed, from human to bacteria. It is represented by an uncharacterised protein YdjC (also known as ChbG), encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon in Escherichia coli, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. This subfamily also includes hopanoid biosynthesis associated proteins HpnK and many uncharacterized YdjC homologs. Although the exact molecular function of the YdjC-family proteins remains unclear, it has been suggested that they play a role in the cleavage of cellobiosephosphate. 243 -212101 cd10789 GH38N_AMII_ER_cytosolic N-terminal catalytic domain of endoplasmic reticulum(ER)/cytosolic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). The subfamily is represented by Saccharomyces cerevisiae vacuolar alpha-mannosidase Ams1, rat ER/cytosolic alpha-mannosidase Man2C1, and similar proteins. Members in this family share high sequence similarity. None of them have any classical signal sequence or membrane spanning domains, which are typical of sorting or targeting signals. Ams1 functions as a second resident vacuolar hydrolase in S. cerevisiae. It aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing alpha-d-mannose residues. Ams1 utilizes both the cytoplasm to vacuole targeting (Cvt, nutrient-rich conditions) and autophagic (starvation conditions) pathways for biosynthetic delivery to the vacuole. Man2C1is involved in oligosaccharide catabolism in both the ER and cytosol. It can catalyze the cobalt-dependent cleavage of alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannose residues. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl-enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. 252 -212102 cd10790 GH38N_AMII_1 N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase. 273 -212103 cd10791 GH38N_AMII_like_1 N-terminal catalytic domain of mainly uncharacterized eukaryotic proteins similar to alpha-mannosidases; glycoside hydrolase family 38 (GH38). The subfamily of mainly uncharacterized eukaryotic proteins shows sequence homology with class II alpha-mannosidases (AlphaAMIIs). AlphaAMIIs possess a-1,3, a-1,6, and a-1,2 hydrolytic activity, and catalyze the degradation of N-linked oligosaccharides. The N-terminal catalytic domain of alphaMII adopts a structure consisting of parallel 7-stranded beta/alpha barrel. This subfamily belongs to the GH38 family of retaining glycosyl hydrolases, which employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. 254 -212104 cd10792 GH57N_AmyC_like N-terminal catalytic domain of alpha-amylase ( AmyC ) and similar proteins. Alpha-amylases (alpha-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) play essential roles in alpha-glucan metabolism by catalyzing the hydrolysis of polysaccharides such as amylose starch, and beta-limit dextrin. This subfamily is represented by a novel alpha-amylase (AmyC) encoded by hyperthermophilic organism Thermotoga maritime ORF tm1438, and its prokaryotic homologs. AmyC functions as a homotetramer and shows thermostable amylolytic activity. It is strongly inhibited by acarbose. AmyC is composed of a N-terminal catalytic domain, containing a distorted TIM-barrel structure with a characteristic (beta/alpha)7 fold motif, and two additional less conserved domains. There are other two canonical alpha-amylases encoded from T. maritime that lack the sequence similarity to AmyC, and belong to a different superfamily. 412 -212105 cd10793 GH57N_TLGT_like N-terminal catalytic domain of 4-alpha-glucanotransferase; glycoside hydrolase family 57 (GH57). 4-alpha-glucanotransferase (TLGT, EC 2.4.1.25) plays a key role in the maltose metabolism. It catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. TLGT functions as a homodimer. Each monomer is composed of two domains, an N-terminal catalytic domain with a (beta/alpha)7 barrel fold and a C-terminal domain with a twisted beta-sandwich fold. Some family members have been designated as alpha-amylases, such as the heat-stable eubacterial amylase from Dictyoglomus thermophilum (DtAmyA) and the extremely thermostable archaeal amylase from Pyrococcus furiosus(PfAmyA). However, both of these proteins are 4-alpha-glucanotransferases. DtAmyA was shown to have transglycosylating activity and PfAmyA exhibits 4-alpha-glucanotransferase activity. 279 -212106 cd10794 GH57N_PfGalA_like N-terminal catalytic domain of alpha-galactosidase; glycoside hydrolase family 57 (GH57). Alpha-galactosidases (GalA, EC 3.2.1.22) catalyze the hydrolysis of alpha-1,6-linked galactose residues from oligosaccharides and polymeric galactomannans. Based on sequence similarity, the majority of eukaryotic and bacterial GalAs have been classified into glycoside hydrolase family GH27, GH36, and GH4, respectively. This subfamily is represented by a novel type of GalA from Pyrococcus furiosus (PfGalA), which belongs to the GH57 family. PfGalA is an extremely thermo-active and thermostable GalA that functions as a bacterial-like GalA, however, without the capacity to hydrolyze polysaccharides. It specifically catalyzes the hydrolysis of para-nitrophenyl-alpha-galactopyranoside, and to some extent that of melibiose and raffinose. PfGalA has a pH optimum between 5.0-5.5. 305 -212107 cd10795 GH57N_MJA1_like N-terminal catalytic domain of a thermoactive alpha-amylase from Methanococcus jannaschii and similar proteins; glycoside hydrolase family 57 (GH57). The subfamily is represented by a thermostable alpha-amylase (MJA1, EC 3.2.1.1) encoded from the hyperthermophilic archaeon Methanococcus jannaschii locus, M J1611. MJA1 has a broad pH optimum 5.0-8.0. It exhibits extremely thermophilic alpha-amylase activity that catalyzes the hydrolysis of large sugar polymers with alpha-l,6 and alpha-l,4 linkages, and yields products including glucose polymers of 1-7 units. MJ1611 also encodes another alpha-amylase with catalytic features distinct from MJA1, which belongs to glycoside hydrolase family 13 (GH-13), and is not included here. This subfamily also includes many uncharacterized proteins found in bacteria and archaea. 306 -212108 cd10796 GH57N_APU N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57). Pullulanases (EC 3.2.1.41) are capable of hydrolyzing the alpha-1,6 glucosidic bonds of pullulan, producing maltotriose. Amylopullulanases (APU, E.C 3.2.1.1/41) are type II pullulanases which can also degrade both the alpha-1,6 and alpha-1,4 glucosidic bonds of starch, producing oligosaccharides. This subfamily includes GH57 archaeal thermoactive APUs, which show both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity. Besides GH57 thermoactive APUs, all mesophilic and some thermoactive APUs belong to glycoside hydrolase family 13 with catalytic features distinct from GH57. This subfamily also includes many uncharacterized proteins found in bacteria and archaea. 313 -212109 cd10797 GH57N_APU_like_1 N-terminal putative catalytic domain of mainly uncharacterized prokaryotic proteins similar to archaeal thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57). This subfamily of mainly uncharacterized bacterial proteins, shows high sequence homology to GH57 archaeal thermoactive amylopullulanases (APU, E.C 3.2.1.1/41). Thermoactive APUs are type II pullulanases with both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity. 327 -212110 cd10798 GH57N_like_1 Uncharacterized subfamily of glycoside hydrolase family 57 (GH57). This subfamily of uncharacterized bacterial proteins, shows high sequence homology to glycoside hydrolase family 57 (GH57). Glycoside hydrolase family 57(GH57) is a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). 330 -212111 cd10800 LamB_YcsF_YbgL_like Escherichia coli putative lactam utilization protein YbgL and similar proteins. This subfamily of the LamB/YbgL family is represented by the Escherichia coli putative lactam utilization protein YbgL. Although their molecular function of member of this subfamily is unknown, they show high sequence similarity to the Aspergillus nidulans lactam utilization protein LamB, which might be required for conversion of exogenous 2-pyrrolidinone to endogenous GABA. 240 -212112 cd10801 LamB_YcsF_like_1 uncharacterized proteins similar to the Aspergillus nidulans lactam utilization protein LamB. This mainly bacterial subfamily of the LamB/YbgL family, contains many well conserved uncharacterized proteins. Although their molecular function remains unknown, those proteins show high sequence similarity to the Aspergillus nidulans lactam utilization protein LamB, which might be required for conversion of exogenous 2-pyrrolidinone to endogenous GABA. 233 -212113 cd10802 YdjC_TTHB029_like Thermus thermophiles TTHB029 and similar proteins. This subfamily is represented by an YdjC-family protein TTHB029 from Thermus thermophilus HB8; it is similar to Escherichia coli YdjC, a hypothetical protein encoded by the celG gene. TTHB029 functions as a homodimer. Each of monomer consists of (beta/alpha)-barrel fold. The molecular function of TTHB029 is unclear. 251 -212114 cd10803 YdjC_EF3048_like Enterococcus faecalis EF3048 and similar proteins. This subfamily is represented by a putative cellobiose-phosphate cleavage protein EF3048 from Enterococcus faecalis v583. It is similar to Escherichia coli YdjC, a hypothetical protein encoded by the celG gene. EF3048 might function as a homodimer. Each of the monomers consists of a (beta/alpha)-barrel fold that forms an active homodimer. The molecular function of the EF3048 is unclear. 228 -212115 cd10804 YdjC_HpnK_like hopanoid biosynthesis associated protein HpnK and similar proteins. The subfamily includes some uncharacterized proteins annotated as hopanoid biosynthesis associated proteins, HpnK. They show high sequence similarity to proteins from the YdjC-family, the latter is represented by an uncharacterised protein YdjC (also known as ChbG) encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon in Escherichia coli, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. 261 -212116 cd10805 YdjC_like_1 uncharacterized YdjC-like family proteins from bacteria. The subfamily contains many hypothetical proteins, and belongs to the YdjC-like family of uncharacterized proteins from bacteria. The YdjC-family is represented by an uncharacterised protein YdjC (also known as ChbG) encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon in Escherichia coli, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. The molecular function of this subfamily is unclear. 251 -212117 cd10806 YdjC_like_2 uncharacterized YdjC-like family proteins from eukaryotes. This eukaryotic subfamily contains hypothetical and uncharacterized proteins, and belongs to the YdjC-like family of uncharacterized proteins. The YdjC-family is represented by an uncharacterised protein YdjC (also known as ChbG) encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon in Escherichia coli, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. The molecular function of this subfamily is unclear. 280 -212118 cd10807 YdjC_like_3 uncharacterized YdjC-like family proteins from bacteria. This subfamily contains many hypothetical proteins, and belongs to the YdjC-like family of uncharacterized proteins from bacteria. The YdjC-family is represented by an uncharacterised protein YdjC (also known as ChbG) encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon in Escherichia coli, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. The molecular function of this subfamily is unclear. 251 -212119 cd10808 YdjC Escherichia coli YdjC-like family of proteins. Uncharacterized subfamily of YdjC-like family of proteins. Included in this subfamily is the uncharacterized Escherichia coli protein YdjC (also known as ChbG), encoded by the chb (N,N'-diacetylchitobiose, also called [GlcNAc]2) or cel operon, which encodes enzymes involved in growth on an N,N'-diacetylchitobiose carbon source. The molecular function of this subfamily is unclear. 259 -212120 cd10809 GH38N_AMII_GMII_SfManIII_like N-terminal catalytic domain of Golgi alpha-mannosidase II, Spodoptera frugiperda Sf9 alpha-mannosidase III, and similar proteins; glycoside hydrolase family 38 (GH38). This subfamily is represented by Golgi alpha-mannosidase II (GMII, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A1), a monomeric, membrane-anchored class II alpha-mannosidase existing in the Golgi apparatus of eukaryotes. GMII plays a key role in the N-glycosylation pathway. It catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2(GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. GMII is activated by zinc or cobalt ions and is strongly inhibited by swainsonine. Inhibition of GMII provides a route to block cancer-induced changes in cell surface oligosaccharide structures. GMII has a pH optimum of 5.5-6.0, which is intermediate between those of acidic (lysosomal alpha-mannosidase) and neutral (ER/cytosolic alpha-mannosidase) enzymes. GMII is a retaining glycosyl hydrolase of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. This subfamily also includes human alpha-mannosidase 2x (MX, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A2). MX is enzymatically and functionally very similar to GMII, and is thought to also function in the N-glycosylation pathway. Also found in this subfamily is class II alpha-mannosidase encoded by Spodoptera frugiperda Sf9 cell. This alpha-mannosidase is an integral membrane glycoprotein localized in the Golgi apparatus. It shows high sequence homology with mammalian Golgi alpha-mannosidase II(GMII). It can hydrolyze p-nitrophenyl alpha-D-mannopyranoside (pNP-alpha-Man), and it is inhibited by swainsonine. However, the Sf9 enzyme is stimulated by cobalt and can hydrolyze (Man)5(GlcNAc)2 to (Man)3(GlcNAc)2, but it cannot hydrolyze GlcNAc(Man)5(GlcNAc)2, which is distinct from that of GMII. Thus, this enzyme has been designated as Sf9 alpha-mannosidase III (SfManIII). It probably functions in an alternate N-glycan processing pathway in Sf9 cells. 340 -212121 cd10810 GH38N_AMII_LAM_like N-terminal catalytic domain of lysosomal alpha-mannosidase and similar proteins; glycoside hydrolase family 38 (GH38). The subfamily is represented by lysosomal alpha-mannosidase (LAM, Man2B1, EC 3.2.1.114), which is a broad specificity exoglycosidase hydrolyzing all known alpha 1,2-, alpha 1,3-, and alpha 1,6-mannosidic linkages from numerous high mannose type oligosaccharides. LAM is expressed in all tissues and in many species. In mammals, the absence of LAM can cause the autosomal recessive disease alpha-mannosidosis. LAM has an acidic pH optimum at 4.0-4.5. It is stimulated by zinc ion and is inhibited by cobalt ion and plant alkaloids, such as swainsonine (SW). LAM catalyzes hydrolysis by a double displacement mechanism in which a glycosyl-enzyme intermediate is formed and hydrolyzed via oxacarbenium ion-like transition states. A carboxylic acid in the active site acts as the catalytic nucleophile in the formation of the covalent intermediate while a second carboxylic acid acts as a general acid catalyst. The same residue is thought to assist in the hydrolysis (deglycosylation) step, this time acting as a general base. 278 -212122 cd10811 GH38N_AMII_Epman_like N-terminal catalytic domain of mammalian core-specific lysosomal alpha 1,6-mannosidase and similar proteins; glycoside hydrolase family 38 (GH38). The subfamily is represented by a novel human core-specific lysosomal alpha 1,6-mannosidase (Epman, Man2B2) and similar proteins. Although it was previously named as epididymal alpha-mannosidase, Epman has a broadly distributed transcript expression profile. Different from the major broad specificity lysosomal alpha-mannosidases (LAM, MAN2B1), Epman is not associated with genetic alpha-mannosidosis that is caused by the absence of LAM. Furthermore, Epman has unique substrate specificity. It can efficiently cleave only the alpha 1,6-linked mannose residue from (Man)3GlcNAc, but not (Man)3(GlcNAc)2 or other larger high mannose oligosaccharides, in the core of N-linked glycans. In contrast, the major LAM can cleave all of the alpha-linked mannose residues from high mannose oligosaccharides except the core alpha 1,6-linked mannose residue. Moreover, it is suggested that the catalytic activity of Epman is dependent on prior action by di-N-acetyl-chitobiase (chitobiase), which indicates there is a functional cooperation between these two enzymes for the full and efficient catabolism of mammalian lysosomal N-glycan core structures. Epman has an acidic pH optimum. It is strongly stimulated by cobalt or zinc ions and strongly inhibited by furanose analogues swainsonine (SW) and 1,4-dideoxy-1,4-imino-d-mannitol (DIM). 326 -212123 cd10812 GH38N_AMII_ScAms1_like N-terminal catalytic domain of yeast vacuolar alpha-mannosidases and similar proteins; glycoside hydrolase family 38 (GH38). The family is represented by Saccharomyces cerevisiae alpha-mannosidase (Ams1) and its eukaryotic homologs. Ams1 functions as a second resident vacuolar hydrolase in S. cerevisiae. It aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing alpha-d-mannose residues. Ams1 forms an oligomer in the cytoplasm and retains its oligomeric form during the import process. It utilizes both the Cvt (nutrient-rich conditions) and autophagic (starvation conditions) pathways for biosynthetic delivery to the vacuole. Mutants in either pathway are defective in Ams1 import. Members in this family show high sequence similarity with rat ER/cytosolic alpha-mannosidase Man2C1. 258 -212124 cd10813 GH38N_AMII_Man2C1 N-terminal catalytic domain of mammalian cytosolic alpha-mannosidase Man2C1 and similar proteins; glycoside hydrolase family 38 (GH38). The subfamily corresponds to cytosolic alpha-mannosidase Man2C1 (also known as ER-mannosidase II or neutral/cytosolic mannosidase), mainly found in various vertebrates, and similar proteins. Man2C1 plays an essential role in the catabolism of cytosolic free oligomannosides derived from dolichol intermediates and the degradation of newly synthesized glycoproteins in ER or cytosol. It can catalyze the cleavage of alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannose residues. Man2C1 is a cobalt-dependent enzyme belonging to alpha-mannosidase class II. It has a neutral pH optimum and is strongly inhitibed by furanose analogs swainsonine (SW) and 1,4-dideoxy-1,4-imino-D-mannitol (DIM), moderately by deoxymannojirimycin (DMM), but not by kifunensine (KIF). DMM and KIF, both pyranose analogs, are normally known to inhibit class I alpha-mannosidase. 252 -212125 cd10814 GH38N_AMII_SpGH38_like N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular. 271 -212126 cd10815 GH38N_AMII_EcMngB_like N-terminal catalytic domain of Escherichia coli alpha-mannosidase MngB and its bacterial homologs; glycoside hydrolase family 38 (GH38). The bacterial subfamily is represented by Escherichia coli alpha-mannosidase MngB, which is encoded by the mngB gene (previously called ybgG). MngB exhibits alpha-mannosidase activity that converts 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. A divalent metal ion is required for its activity. 270 -212127 cd10816 GH57N_BE_TK1436_like N-terminal catalytic domain of Gh57 branching enzyme TK 1436 and similar proteins. The subfamily is represented by a novel branching-enzyme TK1436 of hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Branching enzymes (BEs, EC 2.4.1.18) play a key role in synthesis of alpha-glucans and they generally are classified into glycoside hydrolase family 13 (GH13). However, TK1436 belongs to the GH57 family. It functions as a monomer and possesses BE activity. TK1436 is composed of a distorted N-terminal (beta/alpha)7-barrel domain and a C-terminal five alpha-helical domain, both of which participate in the formation of the active-site cleft. 423 -211315 cd10909 ChtBD1_GH18_2 Hevein or type 1 chitin binding domain (ChtBD1) subfamily; in some members co-occurs with family 18 glycosyl hydrolases. This subfamily includes a Toxoplasma gondii ME49 protein annotated as a putative mannosyl-oligosaccharide glucosidase. ChtBD1 is a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins such as hevein, a major IgE-binding allergen in natural rubber latex, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 51 -350234 cd10910 PIN_limkain_b1_N_like N-terminal LabA-like PIN domain of limkain b1 and similar proteins. Limkain b1 is a human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. Limkain b1 contains multiple copies of LOTUS domains and a conserved RNA recognition motif, this and similar domain architectures are shared by several members of this family, and a function of these architectures in RNA binding or RNA metabolism has been suggested. The function of the N-terminal domain is unknown. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350235 cd10911 PIN_LabA PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. This subfamily contains Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing, it is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system, and appears to be necessary for KaiC-dependent repression of gene expression. This subfamily belongs to the LabA-like domain family which includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes. Also included in the LabA-like domain family are human ZNF451, uncharacterized Bacillus subtilis YqxD, uncharacterized Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously Pseudomonas putida S16 NicB , which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 154 -350236 cd10912 PIN_YacP-like PIN_domain of Bacillus subtilis YacP/Rae1 and related proteins. Bacillus subtilis YacP, also known as Rae1, is an endoribonuclease involved in ribosome-dependent mRNA decay. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. PIN domains were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 142 -199211 cd10913 Peptidase_C25_N_gingipain gingipain subgroup of the Peptidase C25 family N-terminal domain. Gingipain, produced by Porphyromonas gingivalis, exemplifies the Peptidase family C25, a unique class of cysteine proteases. P. gingivalis is one of the primary gram-negative pathogens that causes periodontitis, a disease also associated with other diseases such as diabetes and cardiovascular disease. The gingipain subgroup contains extracellular Arg- and Lys-specific proteinases called Arg-gingipain (Rgp) and Lys-gingipain (Kgp); RgpA and RgpB are homologous Arg-specific gingipains encoded by two closely related genes, rgpA and rgpB, while Lys-specific gingipain is encoded by the single kgp gene. Mutant studies have shown that, among the large quantities of proteolytic enzymes produced by P. gingivalis, these three proteases are major virulence factors of this bacterium. All three genes encode an N-terminal pre-pro fragment, followed by the protease domain; however, rgpA and kgp also encode additional C-terminal HA (hemaglutinin/adhesion) subunits which consist of several sequence-related adhesion domains. Although unique, their cysteine protease active site residues (His and Cys) forming the catalytic dyad, are well-conserved, cleaving the C-terminal peptide bond with Arg or Lys residues. Gingipains are evolutionarily related to other highly specific proteases including caspases, clostripain, legumains, and separase. Gingipains function by dysregulating host defense and inflammatory responses, and degrading host proteins, e.g. tissue, cells, matrix, plasma and immunological proteins. It has been suggested that they enhance gingival crevicular fluid (GCF) production through activation of the kallikrein/kinin pathways, thus increasing vascular permeability and causing gingival inflammation, a distinctive feature of periodontitis. RgpA and RgpB are also able to cleave and activate coagulation factors IX and X in order to activate prothrombin to produce thrombin, which in turn increases production of GCF. The gingipains also play a pivotal role in the survival of P. gingivalis in the host by attacking the host defense system through cleavage of several immunological molecules, while at the same time evading the host-immune response by dysregulating the cytokine network. 348 -199212 cd10914 Peptidase_C25_N_1 uncharacterized subgroup of the Peptidase C25 family N-terminal domain. Domains in this subgroup are uncharacterized members of the Peptidase family C25 N-terminal domain family. Peptidase family C25 is a unique class of cysteine proteases, exemplified by gingipain, which is produced by Porphyromonas gingivalis. P. gingivalis is one of the primary gram-negative pathogens that causes periodontitis, a disease that is also associated with other diseases such as diabetes and cardiovascular disease. Gingipains are a group of extracellular Arg- and Lys-specific proteinases called Arg-gingipain (Rgp) and Lys-gingipain (Kgp); RgpA and RgpB are homologous Arg-specific gingipains encoded by two closely related genes, rgpA and rgpB, while Lys-specific gingipain is encoded by the single kgp gene (also called prtK, prkP). Mutant studies have shown that, among the large quantities of proteolytic enzymes produced by P. gingivalis, these three proteases are major virulence factors of this bacterium. All three genes encode an N-terminal pre-pro fragment, followed by the protease domain; however, rgpA and kgp also encode additional C-terminal HA (hemaglutinin/adhesion) subunits which consist of several sequence-related adhesion domains. Although unique, their cysteine protease active site residues (His and Cys) forming the catalytic dyad are well-conserved, cleaving the C-terminal peptide bond with Arg or Lys residues. Gingipains are evolutionarily related to other highly specific proteases including caspases, clostripain, legumains, and separase. Gingipains function by dysregulating host defense and inflammatory responses, and degrading host proteins, e.g. tissue, cells, matrix, plasma and immunological proteins. They are proposed to enhance gingival crevicular fluid (GCF) production through activation of the kallikrein/kinin pathways, thus increasing vascular permeability and causing gingival inflammation, a distinctive feature of periodontitis. RgpA and RgpB are also able to cleave and activate coagulation factors IX and X in order to activate prothrombin to produce thrombin, which in turn increases production of GCF. The gingipains also play a pivotal role in the survival of P. gingivalis in the host by attacking the host defense system through cleavage of several immunological molecules, while at the same time evading the host-immune response by dysregulating the cytokine network. 365 -199213 cd10915 Peptidase_C25_N_2 uncharacterized subgroup of the Peptidase C25 family N-terminal domain. Domains in this subgroup are uncharacterized members of the Peptidase family C25 N-terminal domain family. Peptidases family C25 are a unique class of cysteine proteases, exemplified by gingipain, which is produced by Porphyromonas gingivalis. P. gingivalis is one of the primary gram-negative pathogens that causes periodontitis, a disease that is also associated with other diseases such as diabetes and cardiovascular disease. Gingipains are a group of extracellular Arg- and Lys-specific proteinases called Arg-gingipain (Rgp) and Lys-gingipain (Kgp); RgpA and RgpB are homologous Arg-specific gingipains encoded by two closely related genes, rgpA and rgpB, while Lys-specific gingipain is encoded by the single kgp gene. Mutant studies have shown that, among the large quantities of proteolytic enzymes produced by P. gingivalis, these three proteases are major virulence factors of this bacterium. All three genes encode an N-terminal pre-pro fragment, followed by the protease domain; however, rgpA and kgp also encode additional C-terminal HA (hemaglutinin/adhesion) subunits which consist of several sequence-related adhesion domains. Although unique, their cysteine protease active site residues (His and Cys) forming the catalytic dyad are well-conserved, cleaving the C-terminal peptide bond with Arg or Lys residues. Gingipains are evolutionarily related to other highly specific proteases including caspases, clostripain, legumains, and separase. Gingipains function by dysregulating host defense and inflammatory responses, and degrading host proteins, e.g. tissue, cells, matrix, plasma and immunological proteins. They are proposed to enhance gingival crevicular fluid (GCF) production through activation of the kallikrein/kinin pathways, thus increasing vascular permeability and causing gingival inflammation, a distinctive feature of periodontitis. RgpA and RgpB are also able to cleave and activate coagulation factors IX and X in order to activate prothrombin to produce thrombin, which in turn increases production of GCF. The gingipains also play a pivotal role in the survival of P. gingivalis in the host by attacking the host defense system through cleavage of several immunological molecules, while at the same time evading the host-immune response by dysregulating the cytokine network. 403 -213021 cd10916 CE4_PuuE_HpPgdA_like Catalytic domain of bacterial PuuE allantoinases, Helicobacter pylori peptidoglycan deacetylase (HpPgdA), and similar proteins. This family is a member of the very large and functionally diverse carbohydrate esterase 4 (CE4) superfamily. It contains bacterial PuuE (purine utilization E) allantoinases, a peptidoglycan deacetylase from Helicobacter pylori (HpPgdA), Escherichia coli ArnD, and many uncharacterized homologs from all three kingdoms of life. PuuE allantoinase appears to be metal-independent and specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. Different from PuuE allantoinase, HpPgdA has the ability to bind a metal ion at the active site and is responsible for a peptidoglycan modification that counteracts the host immune response. Both PuuE allantoinase and HpPgdA function as a homotetramer. The monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of polysaccharide deacetylase (DCA)-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. However, in contrast with the typical DCAs, PuuE allantoinase and HpPgdA might not exhibit a solvent-accessible polysaccharide binding groove and only recognize a small substrate molecule. ArnD catalyzes the deformylation of 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol. 247 -213022 cd10917 CE4_NodB_like_6s_7s Catalytic NodB homology domain of rhizobial NodB-like proteins. This family belongs to the large and functionally diverse carbohydrate esterase 4 (CE4) superfamily, whose members show strong sequence similarity with some variability due to their distinct carbohydrate substrates. It includes many rhizobial NodB chitooligosaccharide N-deacetylase (EC 3.5.1.-)-like proteins, mainly from bacteria and eukaryotes, such as chitin deacetylases (EC 3.5.1.41), bacterial peptidoglycan N-acetylglucosamine deacetylases (EC 3.5.1.-), and acetylxylan esterases (EC 3.1.1.72), which catalyze the N- or O-deacetylation of substrates such as acetylated chitin, peptidoglycan, and acetylated xylan. All members of this family contain a catalytic NodB homology domain with the same overall topology and a deformed (beta/alpha)8 barrel fold with 6- or 7 strands. Their catalytic activity is dependent on the presence of a divalent cation, preferably cobalt or zinc, and they employ a conserved His-His-Asp zinc-binding triad closely associated with the conserved catalytic base (aspartic acid) and acid (histidine) to carry out acid/base catalysis. Several family members show diversity both in metal ion specificities and in the residues that coordinate the metal. 171 -213023 cd10918 CE4_NodB_like_5s_6s Putative catalytic NodB homology domain of PgaB, IcaB, and similar proteins which consist of a deformed (beta/alpha)8 barrel fold with 5- or 6-strands. This family belongs to the large and functionally diverse carbohydrate esterase 4 (CE4) superfamily, whose members show strong sequence similarity with some variability due to their distinct carbohydrate substrates. It includes bacterial poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase PgaB, hemin storage system HmsF protein in gram-negative species, intercellular adhesion proteins IcaB, and many uncharacterized prokaryotic polysaccharide deacetylases. It also includes a putative polysaccharide deacetylase YxkH encoded by the Bacillus subtilis yxkH gene, which is one of six polysaccharide deacetylase gene homologs present in the Bacillus subtilis genome. Sequence comparison shows all family members contain a conserved domain similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, which consists of a deformed (beta/alpha)8 barrel fold with 6 or 7 strands. However, in this family, most proteins have 5 strands and some have 6 strands. Moreover, long insertions are found in many family members, whose function remains unknown. 157 -200545 cd10919 CE4_CDA_like Putative catalytic domain of chitin deacetylase-like proteins from insects and similar proteins. Chitin deacetylases (CDAs, EC 3.5.1.41) are secreted metalloproteins belonging to a family of extracellular chitin-modifying enzymes that catalyze the N-deacetylation of chitin, a beta-1,4-linked N-acetylglucosamine polymer, to form chitosan, a polymer of beta-(1,4)-linked d-glucosamine residues. CDAs have been isolated and characterized from various bacterial and fungal species and belong to the larger carbohydrate esterase family 4 (CE4). This family includes many CDA-like proteins, mainly from insects, which contain a putative CDA-like catalytic domain similar to the catalytic NodB homology domain of CE4 esterases. Some family members have an additional chitin binding domain (ChBD), or an additional low-density lipoprotein receptor class A domain (LDLa), or both. Due to the lack of some catalytically relevant residues, several insect CDA-like proteins are devoid of enzymatic activity and may simply bind to chitin and thus influence the mechanical or permeability properties of chitin-containing structures such as the cuticle or the peritrophic membrane. This family also includes many uncharacterized hypothetical proteins from bacteria, exhibiting high sequence similarity to insect CDA-like proteins. 273 -200546 cd10920 CE4_WbmS Catalytic domain of a putative polysaccharide deacetylase WbmS from Bordetella bronchiseptica and similar proteins. This family is represented by a putative polysaccharide deacetylase encoded by the O-antigen-related gene wbmS in Bordetella bronchiseptica. Although its precise function remains unknown, it has been suggested that WbmS might be involved in the biosynthesis of O-antigen, an important component of the gram-negative bacterial outer membrane, and may also play a role in sugar phosphate transfer. Structural superposition and sequence comparison show that WbmS consists of a conserved domain similar to the 7-stranded barrel catalytic domain of polysaccharide deacetylases (DACs) from the carbohydrate esterase 4 (CE4) superfamily, which removes N-linked acetyl groups from cell wall polysaccharides. 233 -200547 cd10921 CE4_MJ0505_like Putative catalytic domain of uncharacterized protein MJ0505 from Methanocaldococcus jannaschii and similar proteins. This family contains an uncharacterized protein MJ0505 from Methanocaldococcus jannaschii and its prokaryotic homologs. Although their biochemical properties remain to be determined, members in this family is composed of a seven-stranded barrel with a detectable sequence similarity to the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups of cell wall polysaccharides and belong to a larger carbohydrate esterase 4 (CE4) superfamily. 206 -200548 cd10922 CE4_PelA_like_C C-terminal Putative NodB-like catalytic domain of PelA-like uncharacterized hypothetical proteins found in bacteria. This family is represented by a protein PelA of unknown function that is encoded by a gene in the pelA-G gene cluster for pellicle production and biofilm formation in Pseudomonas aeruginosa. PelA and most of the family members contain a domain of unknown function, DUF297, in the N-terminus and a C-terminal domain that shows high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 266 -200549 cd10923 CE4_COG5298 Putative NodB-like catalytic domain of uncharacterized proteins found in bacteria. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. Some family members contain an additional copper amine oxidase N-terminal domain. 250 -200550 cd10924 CE4_COG4878 Putative NodB-like catalytic domain of uncharacterized proteins found in bacteria. The family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 273 -200551 cd10925 CE4_u1 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 216 -200552 cd10926 CE4_u2 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 253 -200553 cd10927 CE4_u3 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 227 -200554 cd10928 CE4_u4 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 222 -200555 cd10929 CE4_u5 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 263 -200556 cd10930 CE4_u6 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 240 -200557 cd10931 CE4_u7 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 224 -200558 cd10932 CE4_u8 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 324 -200559 cd10933 CE4_u9 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 266 -200560 cd10934 CE4_cadherin_MopE_like_N N-terminal Putative NodB-like catalytic domain of hypothetical proteins containing C-terminal cadherin or MopE copper binding domains. The family includes several cadherin or MopE copper binding domain containing hypothetical proteins found in bacteria. Cadherins are glycoproteins involved in Ca2+-mediated cell-cell adhesion. The cadherin domains occur as repeats in the extracellular regions which are thought to mediate cell-cell contact when bound to calcium. They play a role in cell fate, signalling, proliferation, differentiation, and migration. The copper binding domain involves a tryptophan metabolite, kynurenine, in the protein MopE. Members of this family contain an additional conserved domain, which is N-terminally fused to the cadherin domain or the MopE copper binding domain. Although its function remains unclear, the conserved domain exhibits a seven-stranded barrel with a detectable sequence similarity to the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 267 -200561 cd10935 CE4_WalW Putative catalytic domain of lipopolysaccharide biosynthesis protein WalW and its bacterial homologs. This family corresponds to a group of uncharacterized lipopolysaccharide biosynthesis protein WalW found in bacteria. Although their biochemical properties remain to be determined, members of this family is composed of a seven-stranded barrel with detectable sequence similarity to the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 295 -200562 cd10936 CE4_DAC2 Putative catalytic domain of family 2 polysaccharide deacetylases (DACs) from bacteria. This family contains an uncharacterized protein BH1492 from Bacillus halodurans, an uncharacterized protein ATU2773 from Agrobacterium tumefaciens C58, and other bacterial hypothetical proteins. Although their functions are still unknown, structural superposition and sequence comparison suggest that BH1492 and ATU2773 might be divergently related to the 7-stranded barrel catalytic domain of polysaccharide deacetylases (DACs) from the carbohydrate esterase 4 (CE4) superfamily, which remove N-linked acetyl groups from cell wall polysaccharides. This family is designated as DAC family 2, a divergent DAC family. 215 -200563 cd10938 CE4_HpPgdA_like Catalytic domain of Helicobacter pylori peptidoglycan deacetylase (HpPgdA) and similar proteins. This family is represented by a peptidoglycan deacetylase (HP0310, HpPgdA) from the gram-negative pathogen Helicobacter pylori. HpPgdA has the ability to bind a metal ion at the active site and is responsible for a peptidoglycan modification that counteracts the host immune response. It functions as a homotetramer. The monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of polysaccharide deacetylase (DCA)-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. In contrast to typical NodB-like DCAs, HpPgdA does not exhibit a solvent-accessible polysaccharide binding groove, suggesting that the enzyme binds a small molecule at the active site. 258 -200564 cd10939 CE4_ArnD Catalytic domain of Escherichia coli 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol deformylase ArnD and other bacterial homologs. This family is represented by Escherichia coli 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol deformylase ArnD (EC 3.5.1.n3). ArnD plays an important role in the biosynthesis of undecaprenyl phosphate alpha-4-amino-4-deoxy-L-arabinose (alpha-L-Ara4N). It catalyzes the deformylation of 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol. The ArnD-dependent deformylation likely occurs on the inner leaflet of the inner membrane. This family also includes many uncharacterized bacterial polysaccharide deacetylases. All family members show high sequence homology to the catalytic domain of bacterial PuuE (purine utilization E) allantoinases and Helicobacter pylori peptidoglycan deacetylase (HpPgdA), and are classified within the larger carbohydrate esterase 4 (CE4) superfamily. 290 -200565 cd10940 CE4_PuuE_HpPgdA_like_1 Putative catalytic domain of uncharacterized bacterial polysaccharide deacetylases similar to bacterial PuuE allantoinases and Helicobacter pylori peptidoglycan deacetylase (HpPgdA). This family contains many uncharacterized bacterial polysaccharide deacetylases (DCAs) that show high sequence similarity to the catalytic domain of bacterial PuuE allantoinases and Helicobacter pylori peptidoglycan deacetylase (HpPgdA). PuuE allantoinase appears to be metal-independent and specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. Different from PuuE allantoinase, HpPgdA has the ability to bind a metal ion at the active site and is responsible for a peptidoglycan modification that counteracts the host immune response. Both PuuE allantoinase and HpPgdA function as homotetramers. The monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of DCA-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. In contrast to typical NodB-like DCAs, PuuE allantoinase and HpPgdA do not exhibit a solvent-accessible polysaccharide binding groove and might only bind a small molecule at the active site. 306 -200566 cd10941 CE4_PuuE_HpPgdA_like_2 Putative catalytic domain of uncharacterized prokaryotic polysaccharide deacetylases similar to bacterial PuuE allantoinases and Helicobacter pylori peptidoglycan deacetylase (HpPgdA). This family contains many uncharacterized prokaryotic polysaccharide deacetylases (DCAs) that show high sequence similarity to the catalytic domain of bacterial PuuE allantoinases and Helicobacter pylori peptidoglycan deacetylase (HpPgdA). PuuE allantoinase appears to be metal-independent and specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. Different from PuuE allantoinase, HpPgdA has the ability to bind a metal ion at the active site and is responsible for a peptidoglycan modification that counteracts the host immune response. Both PuuE allantoinase and HpPgdA function as homotetramers. The monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of DCA-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. In contrast to typical NodB-like DCAs, PuuE allantoinase and HpPgdA do not exhibit a solvent-accessible polysaccharide binding groove and might only bind a small molecule at the active site. 258 -200567 cd10942 CE4_u11 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. This family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 252 -200568 cd10943 CE4_NodB Putative catalytic domain of rhizobial NodB chitooligosaccharide N-deacetylase and its bacterial homologs. This family corresponds to rhizobial NodB chitooligosaccharide N-deacetylase (EC 3.5.1.-), encoded by nodB gene from the nodulation (nod) gene cluster that is responsible for the biosynthesis of bacterial nodulation signals, termed Nod factors. NodB is involved in de-N-acetylating the nonreducing N-acetylglucosamine residue of chitooligosaccharides to allow for the attachment of the fatty acyl group by the acyltransferase NodA. The monosaccharide N-acetylglucosamine cannot be deacetylated by NodB. NodB is composed of a 6-stranded barrel catalytic domain with detectable sequence similarity to the 7-stranded barrel homology domain of polysaccharide deacetylase (DCA)-like proteins in the larger carbohydrate esterase 4 (CE4) superfamily. 193 -200569 cd10944 CE4_SmPgdA_like Catalytic NodB homology domain of Streptococcus mutans polysaccharide deacetylase PgdA, Bacillus subtilis YheN, and similar proteins. This family is represented by a putative polysaccharide deacetylase PgdA from the oral pathogen Streptococcus mutans (SmPgdA) and Bacillus subtilis YheN (BsYheN), which are members of the carbohydrate esterase 4 (CE4) superfamily. SmPgdA is an extracellular metal-dependent polysaccharide deacetylase with a typical CE4 fold, with metal bound to a His-His-Asp triad. It possesses de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. SmPgdA plays a role in tuning cell surface properties and in interactions with (salivary) agglutinin, an essential component of the innate immune system, most likely through deacetylation of an as-yet-unidentified polysaccharide. SmPgdA shows significant homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae (SpPgdA) and Listeria monocytogenes (LmPgdA), both of which are involved in the bacterial defense mechanism against human mucosal lysozyme. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. The biological function of BsYheN is still unknown. This family also includes many uncharacterized polysaccharide deacetylases mainly found in bacteria. 189 -200570 cd10946 CE4_Mll8295_like Putative catalytic NodB homology domain of uncharacterized Mll8295 protein encoded from Rhizobium loti and its bacterial homologs. This family is represented by a putative polysaccharide deacetylase Mll8295 encoded from Rhizobium loti. Although its biological function still remains unknown, Mll8295 shows high sequence homology to the catalytic domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), which is an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Both Mll8295 and SpPgdA belong to the carbohydrate esterase 4 (CE4) superfamily. This family also includes many uncharacterized bacterial polysaccharide deacetylases. 217 -200571 cd10947 CE4_SpPgdA_BsYjeA_like Catalytic NodB homology domain of Streptococcus pneumoniae peptidoglycan deacetylase PgdA, Bacillus subtilis BsYjeA protein, and their bacterial homologs. This family is represented by Streptococcus pneumoniae peptidoglycan GlcNAc deacetylase (SpPgdA), a member of the carbohydrate esterase 4 (CE4) superfamily. SpPgdA protects gram-positive bacterial cell wall from host lysozymes by deacetylating peptidoglycan N-acetylglucosamine (GlcNAc) residues. It consists of three separate domains: N-terminal, middle and C-terminal (catalytic) domains. The catalytic NodB homology domain is similar to the deformed (beta/alpha)8 barrel fold adopted by other CE4 esterases, which harbors a mononuclear metalloenzyme employing a conserved His-His-Asp zinc-binding triad closely associated with conserved catalytic base (aspartic acid) and acid (histidine) to carry out acid/base catalysis. The enzyme is able to accept GlcNAc3 as a substrate, with the N-acetyl of the middle sugar being removed by the enzyme. This family also includes Bacillus subtilis BsYjeA protein encoded by the yjeA gene, which is one of the six polysaccharide deacetylase gene homologs (pdaA, pdaB/ybaN, yheN, yjeA, yxkH and ylxY) in the Bacillus subtilis genome. Although homology comparison shows that the BsYjeA protein contains a polysaccharide deacetylase domain, and was predicted to be a membrane-bound xylanase or a membrane-bound chitooligosaccharide deacetylase, more recent research indicates BsYjeA might be a novel non-specific secretory endonuclease which creates random nicks progressively on the two strands of dsDNA, resulting in highly distinguishable intermediates/products very different in chemical and physical compositions over time. In addition, BsYjeA shares several enzymatic properties with the well-understood DNase I endonuclease. Both enzymes are active on ssDNA and dsDNA, both generate random nicks, and both require Mg2+ or Mn2+ for hydrolytic activity. 177 -200572 cd10948 CE4_BsPdaA_like Catalytic NodB homology domain of Bacillus subtilis polysaccharide deacetylase PdaA, and its bacterial homologs. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. This family is represented by Bacillus subtilis pdaA gene encoding polysaccharide deacetylase BsPdaA, which is a member of the carbohydrate esterase 4 (CE4) superfamily. BsPdaA deacetylates peptidoglycan N-acetylmuramic acid (MurNAc) residues to facilitate the formation of muramic delta-lactam, which is required for recognition of germination lytic enzymes. BsPdaA deficiency leads to the absence of muramic delta-lactam residues in the spore cortex. Like other CE4 esterases, BsPdaA consists of a single catalytic NodB homology domain that appears to adopt a deformed (beta/alpha)8 barrel fold with a putative substrate binding groove harboring the majority of the conserved residues. It utilizes a general acid/base catalytic mechanism involving a tetrahedral transition intermediate, where a water molecule functions as the nucleophile tightly associated to the zinc cofactor. 223 -200573 cd10949 CE4_BsPdaB_like Putative catalytic NodB homology domain of Bacillus subtilis putative polysaccharide deacetylase PdaB, and its bacterial homologs. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. This family is represented by the putative polysaccharide deacetylase PdaB encoded by the pdaB gene on sporulation of Bacillus subtilis. Although its biochemical properties remain to be determined, the PdaB (YbaN) protein is essential for maintaining spores after the late stage of sporulation and is highly conserved in spore-forming bacteria. The glycans of the spore cortex may be candidate PdaB substrates. Based on sequence similarity, the family members are classified as carbohydrate esterase 4 (CE4) superfamily members. However, the classical His-His-Asp zinc-binding motif of CE4 esterases is missing in this family. 192 -200574 cd10950 CE4_BsYlxY_like Putative catalytic NodB homology domain of uncharacterized protein YlxY from Bacillus subtilis and its bacterial homologs. The Bacillus subtilis genome contains six polysaccharide deacetylase gene homologs: pdaA, pdaB (previously known as ybaN), yheN, yjeA, yxkH and ylxY. This family is represented by Bacillus subtilis putative polysaccharide deacetylase BsYlxY, encoded by the ylxY gene, which is a member of the carbohydrate esterase 4 (CE4) superfamily. Although its biological function still remains unknown, BsYlxY shows high sequence homology to the catalytic domain of Bacillus subtilis pdaB gene encoding a putative polysaccharide deacetylase (BsPdaB), which is essential for the maintenance of spores after the late stage of sporulation and is highly conserved in spore-forming bacteria. However, disruption of the ylxY gene in B. subtilis did not cause any sporulation defect. Moreover, the Asp residue in the classical His-His-Asp zinc-binding motif of CE4 esterases is mutated to a Val residue in this family. Other catalytically relevant residues of CE4 esterases are also not conserved, which suggest that members of this family may be inactive. 188 -200575 cd10951 CE4_ClCDA_like Catalytic NodB homology domain of Colletotrichum lindemuthianum chitin deacetylase and similar proteins. This family is represented by the chitin deacetylase (endo-chitin de-N-acetylase, ClCDA, EC 3.5.1.41) from Colletotrichum lindemuthianum (also known as Glomerella lindemuthiana), which is a member of the carbohydrate esterase 4 (CE4) superfamily. ClCDA catalyzes the hydrolysis of N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, converting it to chitosan in fungal cell walls. It consists of a single catalytic domain similar to the deformed (alpha/beta)8 barrel fold adopted by other CE4 esterases, which encompasses a mononuclear metalloenzyme employing a conserved His-His-Asp zinc-binding triad closely associated with the conserved catalytic base (aspartic acid) and acid (histidine), to carry out acid/base catalysis. It possesses a highly conserved substrate-binding groove, with subtle alterations that influence substrate specificity and subsite affinity. Unlike its bacterial homologs, ClCDA contains two intramolecular disulfide bonds that may add stability to this secreted protein. The family also includes many uncharacterized deacetylases and hypothetical proteins mainly from eukaryotes, which show high sequence similarity to ClCDA. 197 -200576 cd10952 CE4_MrCDA_like Catalytic NodB homology domain of Mucor rouxii chitin deacetylase and similar proteins. This family is represented by the chitin deacetylase (MrCDA, EC 3.5.1.41) encoded from the fungus Mucor rouxii (also known as Amylomyces rouxii). MrCDA is an acidic glycoprotein with a very stringent specificity for beta1-4-linked N-acetylglucosamine homopolymers. It requires at least four residues (chitotetraose) for catalysis, and can achieve extensive deacetylation on chitin polymers. MrCDA shows high sequence similarity to Colletotrichum lindemuthianum chitin deacetylase (endo-chitin de-N-acetylase, ClCDA), which consists of a single catalytic domain similar to the deformed (beta/alpha)8 barrel fold adopted by the carbohydrate esterase 4 (CE4) superfamily, which encompasses a mononuclear metalloenzyme employing a conserved His-His-Asp zinc-binding triad closely associated with the conserved catalytic base (aspartic acid) and acid (histidine) to carry out acid/base catalysis. The family also includes some uncharacterized eukaryotic and bacterial homologs of MrCDA. 178 -200577 cd10953 CE4_SlAXE_like Catalytic NodB homology domain of Streptomyces lividans acetylxylan esterase and its bacterial homologs. This family is represented by Streptomyces lividans acetylxylan esterase (SlAXE, EC 3.1.1.72), a member of the carbohydrate esterase 4 (CE4) superfamily. SlAXE deacetylates O-acetylated xylan, a key component of plant cell walls. It shows no detectable activity on generic esterase substrates including para-nitrophenyl acetate. It is specific for sugar-based substrates and will precipitate acetylxylan as a result of deacetylation. SlAXE also functions as a chitin and chitooligosaccharide de-N-acetylase with equal efficiency to its activity on xylan. SlAXE forms a dimer. Each monomer contains a catalytic NodB homology domain with the same overall topology and a deformed (beta/alpha)8 barrel fold as other CE4 esterases, which encompasses a mononuclear metalloenzyme employing a conserved His-His-Asp zinc-binding triad closely associated with the conserved catalytic base (aspartic acid) and acid (histidine), to carry out acid/base catalysis. SlAXE possess a single metal center with a chemical preference for Co2+. 179 -200578 cd10954 CE4_CtAXE_like Catalytic NodB homology domain of Clostridium thermocellum acetylxylan esterase and its bacterial homologs. This family is represented by Clostridium thermocellum acetylxylan esterase (CtAXE, EC 3.1.1.72), a member of the carbohydrate esterase 4 (CE4) superfamily. CtAXE deacetylates O-acetylated xylan, a key component of plant cell walls. It shows no detectable activity on generic esterase substrates including para-nitrophenyl acetate. It is specific for sugar-based substrates and will precipitate acetylxylan, as a consequence of deacetylation. CtAXE is a monomeric protein containing a catalytic NodB homology domain with the same overall topology and a deformed (beta/alpha)8 barrel fold as other CE4 esterases. However, due to differences in the topography of the substrate-binding groove, the chemistry of the active center, and metal ion coordination, CtAXE has different metal ion preference and lacks activity on N-acetyl substrates. It is significantly activated by Co2+. Moreover, CtAXE displays distinctly different ligand coordination to the metal ion, utilizing an aspartate, a histidine, and four water molecules, as opposed to the conserved His-His-Asp zinc-binding triad of other CE4 esterases. 180 -200579 cd10955 CE4_BH0857_like Putative catalytic NodB homology domain of uncharacterized BH0857 protein from Bacillus halodurans and its bacterial homologs. This family is represented by a putative polysaccharide deacetylase BH0857 from Bacillus halodurans. Although its biological function still remains unknown, BH0857 shows high sequence homology to the catalytic NodB homology domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), which is an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Both BH0857 and SpPgdA belong to the carbohydrate esterase 4 (CE4) superfamily. This family also includes many uncharacterized bacterial polysaccharide deacetylases. 195 -200580 cd10956 CE4_BH1302_like Putative catalytic NodB homology domain of uncharacterized BH1302 protein from Bacillus halodurans and its bacterial homologs. This family is represented by a putative polysaccharide deacetylase BH1302 from Bacillus halodurans. Although its biological function is unknown, BH1302 shows high sequence homology to the catalytic NodB homology domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), which is an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Both BH1302 and SpPgdA belong to the carbohydrate esterase 4 (CE4) superfamily. This family also includes many uncharacterized bacterial polysaccharide deacetylases. 194 -200581 cd10958 CE4_NodB_like_2 Catalytic NodB homology domain of uncharacterized chitin deacetylases and hypothetical proteins. This family includes some uncharacterized chitin deacetylases and hypothetical proteins, mainly from eukaryotes. Although their biological function is unknown, members in this family show high sequence homology to the catalytic NodB homology domain of Colletotrichum lindemuthianum chitin deacetylase (endo-chitin de-N-acetylase, ClCDA, EC 3.5.1.41), which catalyzes the hydrolysis of N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, converting it to chitosan in fungal cell walls. Like ClCDA, this family is a member the carbohydrate esterase 4 (CE4) superfamily. 190 -200582 cd10959 CE4_NodB_like_3 Catalytic NodB homology domain of uncharacterized bacterial polysaccharide deacetylases. This family includes many uncharacterized bacterial polysaccharide deacetylases. Although their biological function still remains unknown, members in this family show high sequence homology to the catalytic NodB homology domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), which is an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Like SpPgdA, this family is a member of the carbohydrate esterase 4 (CE4) superfamily. 187 -200583 cd10960 CE4_NodB_like_1 Catalytic NodB homology domain of uncharacterized bacterial polysaccharide deacetylases. This family includes many uncharacterized bacterial polysaccharide deacetylases. Although their biological function still remains unknown, members in this family show high sequence homology to the catalytic NodB homology domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), which is an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Like SpPgdA, this family is a member of the carbohydrate esterase 4 (CE4) superfamily. 238 -200584 cd10962 CE4_GT2-like Catalytic NodB homology domain of uncharacterized bacterial glycosyl transferase, group 2-like family proteins. This family includes many uncharacterized bacterial proteins containing an N-terminal GH18 (glycosyl hydrolase, family 18) domain, a middle NodB-like homology domain, and a C-terminal GT2-like (glycosyl transferase group 2) domain. Although their biological function is unknown, members in this family contain a middle NodB homology domain that is similar to the catalytic domain of Streptococcus pneumoniae polysaccharide deacetylase PgdA (SpPgdA), an extracellular metal-dependent polysaccharide deacetylase with de-N-acetylase activity toward a hexamer of chitooligosaccharide N-acetylglucosamine, but not shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. Like SpPgdA, this family is a member of the carbohydrate esterase 4 (CE4) superfamily. The presence of three domains suggests that members of this family may be multifunctional. 196 -200585 cd10963 CE4_RC0012_like Putative catalytic NodB homology domain of uncharacterized protein RC0012 from Rickettsia conorii and its bacterial homologs. This family contains an uncharacterized protein RC0012 from Rickettsia conorii and its bacterial homologs. Although their biochemical properties remain to be determined, members in this family seems to be composed of a seven-stranded barrel with detectable sequence similarity to the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups from cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 182 -200586 cd10964 CE4_PgaB_5s N-terminal putative catalytic polysaccharide deacetylase domain of bacterial poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase PgaB, and similar proteins. This family is represented by an outer membrane lipoprotein, poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase (PgaB, EC 3.5.1.-), encoded by Escherichia coli pgaB gene from the pgaABCD (formerly ycdSRQP) operon, which affects biofilm development by promoting abiotic surface binding and intercellular adhesion. PgaB catalyzes the N-deacetylation of poly-beta-1,6-N-acetyl-D-glucosamine (PGA), a biofilm adhesin polysaccharide that stabilizes biofilms of E. coli and other bacteria. PgaB contains an N-terminal NodB homology domain with a 5-stranded beta/alpha barrel, and a C-terminal carbohydrate binding domain required for PGA N-deacetylation, which may be involved in binding to unmodified poly-beta-1,6-GlcNAc and assisting catalysis by the deacetylase domain. This family also includes several orthologs of PgaB, such as the hemin storage system HmsF protein, encoded by Yersinia pestis hmsF gene from the hmsHFRS operon, which is essential for Y. pestis biofilm formation. Like PgaB, HmsF is an outer membrane protein with an N-terminal NodB homology domain, which is likely involved in the modification of the exopolysaccharide (EPS) component of the biofilm. HmsF also has a conserved but uncharacterized C-terminal domain that is present in other HmsF-like proteins in Gram-negative bacteria. This alignment model corresponds to the N-terminal NodB homology domain. 193 -200587 cd10965 CE4_IcaB_5s Putative catalytic polysaccharide deacetylase domain of bacterial intercellular adhesion protein IcaB and similar proteins. The family is represented by the surface-attached protein intercellular adhesion protein IcaB (Poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase, EC 3.5.1.-), encoded by Staphylococcus epidermidis icaB gene from the icaABC gene cluster that is involved in the synthesis of polysaccharide intercellular adhesin (PIA), which is located mainly on the cell surface. IcaB is a secreted, cell wall-associated protein that plays a crucial role in exopolysaccharide modification in bacterial biofilm formation. It catalyzes the N-deacetylation of poly-beta-1,6-N-acetyl-D-glucosamine (PNAG, also referred to as PIA), a biofilm adhesin polysaccharide. IcaB shows high homology to the N-terminal NodB homology domain of Escherichia coli PgaB. At this point, they are classified in the same family. 172 -213024 cd10966 CE4_yadE_5s Putative catalytic polysaccharide deacetylase domain of uncharacterized protein yadE and similar proteins. This family contains an uncharacterized protein yadE from Escherichia coli and its bacterial homologs. Although its molecular function remains unknown, yadE shows high sequence similarity with the catalytic NodB homology domain of outer membrane lipoprotein PgaB and the surface-attached protein intercellular adhesion protein IcaB. Both PgaB and IcaB are essential in bacterial biofilm formation. 164 -200589 cd10967 CE4_GLA_like_6s Putative catalytic NodB homology domain of gellan lyase and similar proteins. This family is represented by the extracellular polysaccharide-degrading enzyme, gellan lyase (gellanase, EC 4.2.2.-), from Bacillus sp. The enzyme acts on gellan exolytically and releases a tetrasaccharide of glucuronyl-glucosyl-rhamnosyl-glucose with unsaturated glucuronic acid at the nonreducing terminus. The family also includes many uncharacterized prokaryotic polysaccharide deacetylases, which show high sequence similarity to Bacillus sp. gellan lyase. Although their biological functions remain unknown, all members of the family contain a conserved domain with a 6-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 202 -213025 cd10968 CE4_Mlr8448_like_5s Putative catalytic NodB homology domain of Mesorhizobium loti Mlr8448 protein and its bacterial homologs. This family contains Mesorhizobium loti Mlr8448 protein and its bacterial homologs. Although their biochemical properties are yet to be determined, members in this subfamily contain a conserved domain with a 5-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 161 -213026 cd10969 CE4_Ecf1_like_5s Putative catalytic NodB homology domain of a hypothetical protein Ecf1 from Escherichia coli and similar proteins. This family contains a hypothetical protein Ecf1 from Escherichia coli and its prokaryotic homologs. Although their biochemical properties remain to be determined, members in this family contain a conserved domain with a 5-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 218 -213027 cd10970 CE4_DAC_u1_6s Putative catalytic NodB homology domain of uncharacterized prokaryotic polysaccharide deacetylases which consist of a 6-stranded beta/alpha barrel. This family contains uncharacterized prokaryotic polysaccharide deacetylases. Although their biological functions remain unknown, all members of the family contain a conserved domain with a 6-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 194 -200593 cd10971 CE4_DAC_u2_5s Putative catalytic NodB homology domain of uncharacterized prokaryotic polysaccharide deacetylases which consist of a 5-stranded beta/alpha barrel. This family contains many uncharacterized prokaryotic polysaccharide deacetylases. Although their biological functions remain unknown, all members of this family are predicted to contain a conserved domain with a 5-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 198 -200594 cd10972 CE4_DAC_u3_5s Putative catalytic NodB homology domain of uncharacterized bacterial polysaccharide deacetylases which consist of a 5-stranded beta/alpha barrel. This family contains uncharacterized bacterial polysaccharide deacetylases. Although their biological functions remain unknown, all members of the family are predicted to contain a conserved domain with a 5-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 216 -213028 cd10973 CE4_DAC_u4_5s Putative catalytic NodB homology domain of uncharacterized bacterial polysaccharide deacetylases which consist of a 5-stranded beta/alpha barrel. This family contains many uncharacterized bacterial polysaccharide deacetylases. Although their biological functions remain unknown, all members of the family are predicted to contain a conserved domain with a 5-stranded beta/alpha barrel, which is similar to the catalytic NodB homology domain of rhizobial NodB-like proteins, belonging to the larger carbohydrate esterase 4 (CE4) superfamily. 157 -200596 cd10974 CE4_CDA_like_1 Putative catalytic domain of chitin deacetylase-like proteins with additional chitin-binding peritrophin-A domain (ChBD) and/or a low-density lipoprotein receptor class A domain (LDLa). Chitin deacetylases (CDAs, EC 3.5.1.41) are secreted metalloproteins belonging to a family of extracellular chitin-modifying enzymes that catalyze the N-deacetylation of chitin, a beta-1,4-linked N-acetylglucosamine polymer, to form chitosan, a polymer of beta-(1,4)-linked d-glucosamine residues. CDAs have been isolated and characterized from various bacterial and fungal species and belong to the larger carbohydrate esterase 4 (CE4) superfamily. This family includes many CDA-like proteins mainly from insects, which contain a putative CDA-like catalytic domain similar to the catalytic NodB homology domain of CE4 esterases. In addition to the CDA-like domain, family members contain two additional domains, a chitin-binding peritrophin-A domain (ChBD) and a low-density lipoprotein receptor class A domain (LDLa), or have the ChBD domain but do not have the LDLa domain. 269 -200597 cd10975 CE4_CDA_like_2 Putative catalytic domain of chitin deacetylase-like proteins. Chitin deacetylases (CDAs, EC 3.5.1.41) are secreted metalloproteins belonging to a family of extracellular chitin-modifying enzymes that catalyze the N-deacetylation of chitin, a beta-1,4-linked N-acetylglucosamine polymer, to form chitosan, a polymer of beta-(1,4)-linked d-glucosamine residues. CDAs have been isolated and characterized from various bacterial and fungal species and belong to the larger carbohydrate esterase 4 (CE4) superfamily. This family includes many midgut-specific CDA-like proteins mainly from insects, such as Tribolium castaneum CDAs (TcCDA6-9). These proteins contain a putative CDA-like catalytic domain similar to the catalytic NodB homology domain of CE4 esterases. In addition to the CDA-like domain, some family members have an additional chitin-binding peritrophin-A domain (ChBD). 268 -200598 cd10976 CE4_CDA_like_3 Putative catalytic domain of uncharacterized bacterial hypothetical proteins similar to insect chitin deacetylase-like proteins. The family includes many uncharacterized bacterial hypothetical proteins that show high sequence similarity to insect chitin deacetylase-like proteins. Chitin deacetylases (CDAs, EC 3.5.1.41) are secreted metalloproteins belonging to a family of extracellular chitin-modifying enzymes that catalyze the N-deacetylation of chitin, a beta-1,4-linked N-acetylglucosamine polymer, to form chitosan, a polymer of beta-(1,4)-linked d-glucosamine residues. 299 -200599 cd10977 CE4_PuuE_SpCDA1 Catalytic domain of bacterial PuuE allantoinases, Schizosaccharomyces pombe chitin deacetylase 1 (SpCDA1), and similar proteins. Allantoinase (EC 3.5.2.5) can hydrolyze allantoin((2,5-dioxoimidazolidin-4-yl)urea), one of the most important nitrogen carrier for some plants, soil animals, and microorganisms, to allantoate. DAL1 gene from Saccharomyces cerevisiae encodes an allantoinase. However, some organisms possess allantoinase activity but lack DAL1 allantoinase. In those organisms, a defective allantoinase gene, named puuE (purine utilization E), encodes an allantoinase that specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. PuuE allantoinase is related to polysaccharide deacetylase (DCA), one member of the carbohydrate esterase 4 (CE4) superfamily, that removes N-linked or O-linked acetyl groups of cell wall polysaccharides, and lacks sequence similarity with the known DAL1 allantoinase that belongs to the amidohydrolase superfamily. PuuE allantoinase functions as a homotetramer. Its monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of DCAs. It appears to be metal-independent and acts on a small substrate molecule, which is distinct from the common features of DCAs that are normally metal ion dependent and recognize multimeric substrates. This family also includes a chitin deacetylase 1 (SpCDA1) encoded by the Schizosaccharomyces pombe cda1 gene. Although the general function of chitin deacetylase (CDA) is the synthesis of chitosan from chitin, a polymer of N-acetyl glucosamine, to build up the proper ascospore wall, the actual function of SpCDA1 might involve allantoin hydrolysis. It is likely orthologous to PuuE allantoinase, whereas it is more distantly related to the CDAs found in other fungi, such as Saccharomyces cerevisiae and Mucor rouxii. Those CDAs are similar with rizobial NodB protein and are not included in this family. 273 -200600 cd10978 CE4_Sll1306_like Putative catalytic domain of Synechocystis sp. Sll1306 protein and other bacterial homologs. The family contains Synechocystis sp. Sll1306 protein and uncharacterized bacterial polysaccharide deacetylases. Although their biological function remains unknown, they show very high sequence homology to the catalytic domain of bacterial PuuE (purine utilization E) allantoinases. PuuE allantoinase specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. It functions as a homotetramer. Its monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of polysaccharide deacetylase-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. PuuE allantoinase appears to be metal-independent and acts on a small substrate molecule, which is distinct from the common feature of polysaccharide deacetylases that are normally metal ion dependent and recognize multimeric substrates. 271 -200601 cd10979 CE4_PuuE_like Putative catalytic domain of uncharacterized prokaryotic polysaccharide deacetylases similar to bacterial PuuE allantoinases. The family includes a group of uncharacterized prokaryotic polysaccharide deacetylases (DCAs) that show high sequence similarity to the catalytic domain of bacterial PuuE (purine utilization E) allantoinases. PuuE allantoinase specifically catalyzes the hydrolysis of (S)-allantoin into allantoic acid. It functions as a homotetramer. Its monomer is composed of a 7-stranded barrel with detectable sequence similarity to the 6-stranded barrel NodB homology domain of DCA-like proteins in the CE4 superfamily, which removes N-linked or O-linked acetyl groups from cell wall polysaccharides. PuuE allantoinase appears to be metal-independent and acts on a small substrate molecule, which is distinct from the common feature of DCAs which are normally metal ion dependent and recognize multimeric substrates. 281 -200602 cd10980 CE4_SpCDA1 Putative catalytic domain of Schizosaccharomyces pombe chitin deacetylase 1 (SpCDA1), and similar proteins. This family is represented by Schizosaccharomyces pombe chitin deacetylase 1 (SpCDA1), encoded by the cda1 gene. The general function of chitin deacetylase (CDA) is the synthesis of chitosan from chitin, a polymer of N-acetyl glucosamine, to build up the proper ascospore wall. The actual function of SpCDA1 might be involved in allantoin hydrolysis. It is likely an ortholog to bacterial PuuE allantoinase, whereas it is more distantly related to the CDAs found in other fungi, such as Saccharomyces cerevisiae and Mucor rouxii. Those CDAs are similar with rizobial NodB protein and are not included in this family. 297 -211380 cd10981 ZnPC_S1P1 Zinc dependent phospholipase C/S1-P1 nuclease. This model describes both the bacterial and archeal zinc-dependent phospholipase C, a domain found in the alpha toxin of Clostridium perfringens, as well as S1/P1 nucleases, which predominantly act on single-stranded DNA and RNA. 238 -199826 cd10985 MH2_SMAD_2_3 C-terminal Mad Homology 2 (MH2) domain in SMAD2 and SMAD3. The MH2 domain is located at the C-terminus of the SMAD (small mothers against decapentaplegic) family of proteins, which are signal transducers and transcriptional modulators that mediate multiple signaling pathways. The MH2 domain is responsible for type I receptor interaction, phosphorylation-triggered homo- and hetero-oligomerization, and transactivation. It is negatively regulated by the N-terminal MH1 domain. SMAD2 and SMAD3 are receptor regulated SMADs (R-SMADs). SMAD2 regulates multiple cellular processes, such as cell proliferation, apoptosis and differentiation, while SMAD3 modulates signals of activin and TGF-beta. 191 -199911 cd11005 M35_like Peptidase M35 family. Family M35 Zn2+-metallopeptidase domain, also known as the deuterolysin family, contains fungal as well as bacterial metalloendopeptidases that include deuterolysin (EC2.4.24.39), peptidyl-Lys metalloendopeptidase (MEP), penicillolysin, as well as uncharacterized sequences. Typically, members of this family of extracellular peptidases contain a unique zinc-binding motif (the aspzincin motif), defined by the HExxH + D motif where an aspartic acid is the third zinc ligand and is found in a GTXDXXYG motif C-terminal to the His zinc ligands. Deuterolysins are highly active towards basic nuclear proteins such as histones and protamines, with a preference for a Lys or Arg residue in the P1' subsite. MEPs specifically cleave peptidyl-lysine bonds (-X-Lys-) in proteins and peptides. Penicillolysin, a thermolabile protease from Penicillium citrinum, strongly hydrolyzes nuclear proteins such as clupeine, salmine and histone. Many members of the M35 peptidases display unusual thermostabilities. 167 -199912 cd11006 M35_peptidyl-Lys_like Peptidase M35 domain of peptidyl-Lys metalloendopeptidases and related proteins. This family M35 Zn2+-metallopeptidase extracellular domain is mostly found in proteins characterized as peptidyl-Lys metalloendopeptidases (MEP; peptidyllysine metalloproteinase; EC 3.4.24.20), including some well-characterized domains in Aeromonas salmonicida subsp. Achromogenes (AsaP1) and Grifola frondosa (GfMEP). These proteins specifically cleave peptidyl-lysine bonds (-X-Lys- where X may even be Pro) in proteins and peptides. AsaP1 peptidase has been shown to be important in the virulence of A. salmonicida subsp. achromogenes, having a major role in the fish innate immune response. Members of this family contain a unique zinc-binding motif (the aspzincin motif), defined by the HExxH + D motif where an aspartic acid is the third zinc ligand and is found in a GTXDXXYG or similar motif C-terminal to the His zinc ligands. 163 -199913 cd11007 M35_like_1 Peptidase M35-like domain of uncharacterized proteins. This family contains proteins similar to the M35 Zn2+-metallopeptidases, also known as the deuterolysin family, presumably these are bacterial metalloendopeptidases that have yet to be characterized. Typically, members of this family of extracellular peptidases contain a unique zinc-binding motif (the aspzincin motif), defined by the HExxH + D motif where an aspartic acid is the third zinc ligand; however, members of this family do not contain the GTXDXXYG motif C-terminal to the His zinc ligands that is typical for the M35 proteases. Deuterolysins are highly active towards basic nuclear proteins such as histones and protamines, with a preference for a Lys or Arg residue in the P1' subsite. MEPs specifically cleave peptidyl-lysine bonds (-X-Lys-) in proteins and peptides. Many members of the M35 peptidases display unusual thermostabilities. 183 -199914 cd11008 M35_deuterolysin_like Peptidase M35 domain of deuterolysins and related proteins. This family M35 Zn2+-metallopeptidase extracellular domain is found in fungal deutrolysins (acid metalloproteinase, neutral proteinase II), including some well-characterized metallopeptidase domains in Aspergillus oryzae (NpII), Aspergillus fumigatus (MEP20), Penicillium roqueforti (protease II) and Emericella nidulans (PepJ peptidase). The neutral proteinase II from Aspergillus oryzae (NpII) unfolds reversibly upon incubation at higher temperatures, and loss in activity is mainly due to autoproteolysis. MEP20 is encoded by the mepB gene, which appears to be associated with the cytoplasmic degradation of small peptides. PepJ peptidase is a thermostable enzyme released under carbon starvation. Most members of this family contain a unique zinc-binding motif (the aspzincin motif), defined by the HExxH + D motif where an aspartic acid is the third zinc ligand and is found in a GTXDXXYG or similar motif C-terminal to the His zinc ligands. The aspzincin motif is poorly conserved in one subgroup, that includes Asp f2, a major allergen from Aspergillus fumigatus. This subgroup in addition lacks the key conserved Tyr residue which acts as a proton donor during catalysis, and no protease activity has been detected to date for Asp f2. 167 -211381 cd11009 Zn_dep_PLPC Zinc dependent phospholipase C (alpha toxin). This domain conveys a zinc dependent phospholipase C activity (EC 3.1.4.3). It is found in a monomeric phospholipase C of Bacillus cereus as well as in the alpha toxin of Clostridium perfringens and Clostridium bifermentans, which is involved in haemolysis and cell rupture. It is also found in a lecithinase of Listeria monocytogenes, which is involved in breaking the 2-membrane vacuoles that surround the bacterium. 218 -211382 cd11010 S1-P1_nuclease S1/P1 nucleases and related enzymes. This family summarizes both S1 and P1 nucleases (EC:3.1.30.1) which cleave RNA and single stranded DNA with no base specificity. S1 nuclease is more active on DNA than RNA. Its reaction products are oligonucleotides or single nucleotides with 5' phosphoryl groups. Although its primary substrate is single-stranded, it may also introduce single-stranded breaks in double-stranded DNA or RNA, or DNA-RNA hybrids. It is used as a reagent in nuclease protection assays and in removing single stranded tails from DNA molecules to create blunt ended molecules and opening hairpin loops generated during synthesis of double stranded cDNA. P1 nuclease cleaves its substrate at every position yielding nucleoside 5' monophosphates, and it does not recognize or act on double-stranded DNA. It is useful at removing single stranded strands hanging off the end of double stranded DNA and at completely cleaving melted DNA for simple DNA composition analysis. 249 -259898 cd11012 CuRO_6_ceruloplasmin The sixth cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the sixth cupredoxin domain of ceruloplasmin. 145 -259899 cd11013 Plantacyanin Plantacyanin is a subclass of phytocyanins, plant type I copper proteins. Plantacyanins belong to the phytocyanin family of blue copper proteins, a ubiquitous family of plant cupredoxins. Plantacyanin is involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. The exact function of plantacyanin is unknown. However plantacyanin is shown to play a role in reproduction in Arabidopsis. Plantacyanins may also be stress-related proteins and be involved in plant defense responses. 95 -259900 cd11014 Mavicyanin Mavicyanin is a subclass of phytocyanins, a plant blue copper protein. Mavicyanin is a glycosylated protein isolated from Cucurbita pepo medullosa (zucchini) peelings. It belongs to the phytocyanin family of blue copper proteins, a ubiquitous family of plant cupredoxins. Mavicyanin is involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. The copper is tetrahedrally coordinated by a cysteine, 2 histidines, and a glutamine residue, like in the case of stellacyanin. The biological roles of mavicyanin have not been elucidated yet. 101 -259901 cd11015 CuRO_2_FVIII_like The second cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 2 of unprocessed Factor VIII or the heavy chain of circulating Factor VIII, and similar proteins. 134 -259902 cd11016 CuRO_4_FVIII_like The fourth cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 4 of unprocessed Factor VIII or the heavy chain of circulating Factor VIII, and similar proteins. 143 -259903 cd11017 Phytocyanin_like_1 A subclass of phytocyanins, plant blue or type I copper proteins. Phytocyanins are plant blue or type I copper proteins. They are involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. Phytocyanins are classified into four groups: stellacyanin, plantacyanin, uclacyanin and early nodulin groups. Members of this unknown subgroup appear to have lost the T1 copper binding site. 99 -259904 cd11018 CuRO_6_FVIII_like The sixth cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 6 of unprocessed Factor VIII or the second cupredoxin domain the light chain of circulating Factor VIII, and similar proteins. 144 -259905 cd11019 OsENODL1_like Early nodulin-like protein (OsENODL1) and similar proteins. This family includes early nodulin-like protein (OsENODL1) from Oryza sativa and similar proteins. It belongs to the phytocyanin family of blue copper proteins, a ubiquitous family of plant cupredoxins. Phytocyanin is involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. OsENODL1 expression occurs specifically at the late developmental stage of the seeds. Members of this subgroup appear to have lost the T1 copper binding site. 103 -259906 cd11020 CuRO_1_CuNIR Cupredoxin domain 1 of Copper-containing nitrite reductase. Copper-containing nitrite reductase (CuNIR), which catalyzes the reduction of NO2- to NO, is the key enzyme in the denitrification process in denitrifying bacteria. CuNIR contains at least one type 1 copper center and a type 2 copper center, which serves as the active site of the enzyme. A histidine, bound to the Type 2 Cu center, is responsible for binding and reducing nitrite. A Cys-His bridge plays an important role in facilitating rapid electron transfer from the type 1 center to the type 2 center. A reduced type I blue copper protein (pseudoazurin) was found to be a specific electron transfer donor for the copper-containing NIR in bacteria Alcaligenes faecalis. 119 -259907 cd11021 CuRO_2_ceruloplasmin The second cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the second cupredoxin domain of ceruloplasmin. 141 -259908 cd11022 CuRO_4_ceruloplasmin The fourth cupredoxin domain of Ceruloplasmin. Ceruloplasmin is a multicopper oxidase essential for normal iron homeostasis and copper transport in blood. It also functions in amine oxidation and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains with six copper centers; three mononuclear sites in domain 2, 4 and 6 and three in the form of trinuclear clusters at the interface of domains 1 and 6. Ceruloplasmin exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the fourth cupredoxin domain of ceruloplasmin. 144 -259909 cd11023 CuRO_2_ceruloplasmin_like_2 cupredoxin domain of ceruloplasmin homologs. Uncharacterized subfamily of ceruloplasmin homologous proteins. Ceruloplasmin (ferroxidase) is a multicopper oxidase essential for normal iron homeostasis. Ceruloplasmin also functions in copper transport, amine oxidase and as an antioxidant preventing free radicals in serum. The protein has 6 cupredoxin domains and exhibits internal sequence homology that appears to have evolved from the triplication of a sequence unit composed of two tandem cupredoxin domains. This model represents the first domain of the triplicated units. 118 -259910 cd11024 CuRO_1_2DMCO_NIR_like The cupredoxin domain 1 of a two-domain laccase related to nitrite reductase. The two-domain laccase (small laccase) in this family differs significantly from all laccases. It resembles the two domain nitrite reductase in both sequence and structure. It consists of two cupredoxin domains and forms trimers and hence resembles the quaternary structure of nitrite reductases more than that of large laccases. There are three trinuclear copper clusters in the enzyme localized between domains 1 and 2 of each pair of neighbor chains. Three copper ions of type 1 lie close to one another near the surface of the central part of the trimer, and, effectively, a trimeric substrate binding site is formed in their vicinity. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety of organic substrates coupled to the reduction of molecular oxygen to water. It displays broad substrate specificity, catalyzing the oxidation of a wide variety of aromatic, notably phenolic, and inorganic substances. Laccase has been implicated in a wide spectrum of biological activities. 119 -199893 cd11234 E_set_GDE_N N-terminal Early set domain associated with the catalytic domain of Glycogen debranching enzyme. E or "early" set domains are associated with the catalytic domain of the glycogen debranching enzyme at the N-terminal end. Glycogen debranching enzymes have both 4-alpha-glucanotransferase and amylo-1,6-glucosidase activities. As a transferase, it transfers a segment of a 1,4-alpha-D-glucan to a new 4-position in an acceptor, which may be glucose or another 1,4-alpha-D-glucan. As a glucosidase, it catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. The N-terminal domain of the glycogen debranching enzyme may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase. 101 -200496 cd11235 Sema_semaphorin The Sema domain, a protein interacting module, of semaphorins. Semaphorins are regulator molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. They can be divided into 7 classes. Vertebrates have members in classes 3-7, whereas classes 1 and 2 are known only in invertebrates. Class 2 and 3 semaphorins are secreted proteins; classes 1 and 4 through 6 are transmembrane proteins; and class 7 is membrane associated via glycosylphosphatidylinositol (GPI) linkage. The semaphorins exert their function through their receptors, the neuropilin and plexin families. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 437 -200497 cd11236 Sema_plexin_like The Sema domain, a protein interacting module, of Plexins and MET-like receptor tyrosine kinases. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestor of semaphorins. Ligand binding activates signal transduction pathways controlling axon guidance in the nervous system and other developmental processes including cell migration and morphogenesis, immune function, and tumor progression. Plexins are divided into four types (A-D) according to sequence similarity. In vertebrates, type A Plexins serve as the co-receptors for neuropilins to mediate the signalling of class 3 semaphorins except Sema3E, which signals through Plexin D1. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B. Plexin C1 serves as the receptor of Sema7A and plays regulation roles in both immune and nervous systems. This family also includes the Met and RON receptor tyrosine kinases. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 401 -200498 cd11237 Sema_1A The Sema domain, a protein interacting module, of semaphorin 1A (Sema1A). Sema1A is a transmembrane protein. It has been shown to mediate the defasciculation of motor axon bundles at specific choice points. Sema1A binds to its receptor plexin A (PlexA), which in turn triggers downstream signaling events involving the receptor tyrosine kinase Otk, the evolutionarily conserved flavoprotein monooxygenase molecule interacting with CasL (MICAL), and the A kinase anchoring protein Nervy, leading to repulsive growth-cone response. Sema1A has also been shown to be involved in synaptic formation. It is a member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 446 -200499 cd11238 Sema_2A The Sema domain, a protein interacting module, of semaphorin 2A (Sema2A). Sema2A, a secreted semaphorin, signals through its receptor plexin B (PlexB) to regulate central and peripheral axon pathfinding. In the Drosophila embryo, Sema2A secreted by oenocytes interacts with PlexB to guide sensory axons. Sema2A is a member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 452 -200500 cd11239 Sema_3 The Sema domain, a protein interacting module, of class 3 semaphorins. Class 3 semaphorins (Sema3s) are secreted regulator molecules involved in the development of the nervous system, vasculogenesis, angiogenesis,and tumorigenesis. There are 7 distinct subfamilies named Sema3A to 3G. Sema3s function as repellent signals during axon guidance by repelling neurons away from the source of Sema3s. However, Sema3s that are secreted by tumor cells play an inhibitory role in tumor growth and angiogenesis (specifically Sema3B and Sema3F). Sema3s functions by forming complexes with neuropilins and A-type plexins, where neuropilins serve as the ligand binding moiety and the plexins function as signal transduction component. Sema3s primarily inhibit the cell motility and migration of tumor and endothelial cells by inducing collapse of the actin cytoskeleton via neuropilins and plexins. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 471 -200501 cd11240 Sema_4 The Sema domain, a protein interacting module, of class 4 semaphorins (Sema4). Class 4 semaphorins (Sema4s) are transmembrane regulator molecules involved in the development of the nervous system, immune response, cytoskeletal organization, angiogenesis, and cell-cell interactions. There are 7 distinct subfamilies in class 4 semaphorins, named 4A to 4G. Several class 4 subfamilies play important roles in the immune system and are called "immune semaphorins". Sema4A plays critical roles in T cell-DC interactions in the immune response. Sema4D/CD100, expressed by lymphocytes, promotes the aggregation and survival of B lymphocytes and inhibits cytokine-induced migration of immune cells in vitro. It is required for normal activation of B and T lymphocytes. Sema4B negatively regulates basophil functions through T cell-basophil contacts and significantly inhibits IL-4 and IL-6 production from basophils in response to various stimuli, including IL-3 and papain. Sema4s not only influence the activation state of cells but also modulate their migration and survival. The effects of Sema4s on nonlymphoid cells are mediated by plexin D1 and plexin Bs. The Sema4G and Sema4C genes are expressed in the developing cerebellar cortex and are involved in neural tube closure and development of cerebellar granules cells through receptor plexin B2. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 456 -200502 cd11241 Sema_5 The Sema domain, a protein interacting module, of semaphorin 5 (Sema5). Class 5 semaphorins are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. There are three subfamilies in class 5 semaphorins, namely 5A, 5B and 5C. Sema5A and Sema5B function as guidance cues for optic and corticofugal nerve development, respectively. Sema5A-induced cell migration requires Met signaling. Sema5C is an early development gene and may play a role in odor-guided behavior. Sema5A is also implicated in cancer. In a screening model for metastasis, the Drosophila Sema5A ortholog, Dsema-5C, has been found to be required in tumorigenicity and metastasis. Sema5A is highly expressed in human pancreatic cancer cells and is associated with tumor growth, invasion and metastasis. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 438 -200503 cd11242 Sema_6 The Sema domain, a protein interacting module, of class 6 semaphorins (Sema6). Class 6 semaphorins (Sema6s) are membrane associated semaphorins. There are 6 subfamilies named 6A to 6D. Sema6s bind to plexin As in a neuropilin independent fashion. Sema6-plexin A signaling plays important roles in lamina-specific axon projections. Interactions between plexin A2, plexin A4, and Sema6A control lamina-restricted projection of hippocampal mossy fibers. Interactions between Sema6C, Sema6D and plexin A1 shape the stereotypic trajectories of sensory axons in the spinal cord. In addition to axon targeting, Sema6D-plexin A1 interactions influence a wide range of other biological processes. During cardiac development, Sema6D attracts or repels endothelial cells in the cardiac tube depending on the expression patterns of specific coreceptors in addition to plexin A1. Furthermore, Sema6D binds a receptor complex comprising of plexin A1, Trem2 (triggering receptor expressed on myeloid cells 2), and DAP12 on dendritic cells and osteoclasts to mediate T-cell-DC interactions and to control bone development, respectively. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 465 -200504 cd11243 Sema_7A The Sema domain, a protein interacting module, of semaphorin 7A (Sema7A, also called CD108). Sema7A plays regulatory roles in both immune and nervous systems. Unlike other semaphorins, which act as repulsive guidance cues, Sema7A enhances central and peripheral axon growth and is required for proper axon tract formation during embryonic development. Sema7A also plays a critical role in the negative regulation of T cell activation and function. Sema7A is a membrane-anchored member of the semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 414 -200505 cd11244 Sema_plexin_A The Sema domain, a protein interacting module, of Plexin A. Plexins serve as receptors of semaphorins and may be the ancestor of semaphorins. Members of the Plexin A subfamily are receptors for Sema1s, Sema3s, and Sema6s, and they mediate diverse biological functions including axon guidance, cardiovascular development, and immune function. Guanylyl cyclase Gyc76C and Off-track kinase (OTK), a putative receptor tyrosine kinase, modulate Sema1a-Plexin A mediated axon repulsion. Sema3s do not interact directly with plexin A receptors, but instead bind Neuropilin-1 or Neuropilin-2 toactivate neuropilin-plexin A holoreceptor complexes. In contrast to Sema3s, Sema6s do not require neuropilins for plexin A binding. In the complex, plexin As serve as signal-transducing subunits. An increasing number of molecules that interact with the intracellular region of Plexin A have been identified; among them are IgCAMs (in axon guidance events) and Trem2-DAP12 (in immune responses). The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 470 -200506 cd11245 Sema_plexin_B The Sema domain, a protein interacting module, of Plexin B. Plexins, which contain semaphorin domains, function as receptors of semaphorins and may be the ancestors of semaphorins. There are three members of the Plexin B subfamily, namely B1, B2 and B3. Plexins B1, B2 and B3 are receptors for Sema4D, Sema4C and Sema4G, and Sema5A, respectively. The activation of plexin B1 by Sema4D produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth and promotes branching and complexity. By signaling the effect of Sema4C and Sema4G, the plexin B2 receptor is critically involved in neural tube closure and cerebellar granule cell development. Plexin B3, the receptor of Sema5A, is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin B3 has been linked to verbal performance and white matter volume in human brain. Small GTPases play important roles in plexin B signaling. Plexin B1 activates Rho through Rho-specific guanine nucleotide exchange factors, leading to neurite retraction. Plexin B1 possesses an intrinsic GTPase-activating protein activity for R-Ras and induces growth cone collapse through R-Ras inactivation. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 440 -200507 cd11246 Sema_plexin_C1 The Sema domain, a protein interacting module, of Plexin C1. Plexins serve as semaphorin receptors. Plexin C1 has been identified as the receptor of semaphorin 7A, which plays regulation roles in both the immune and nervous systems. Unlike other semaphorins which act as repulsive guidance cues, Sema7A enhances central and peripheral axon growth and is required for proper axon tract formation during embryonic development. Plexin C1 is a potential tumor suppressor for melanoma progression. The expression of Plexin C1 is diminished or absent in human melanoma cell lines. Cofilin, an actin-binding protein involved in cell migration, is a downstream target of Sema7A-Plexin C1 signaling. Cofilin is not phosphorylated when Plexin C1 expression is silenced. Thus, melanoma invasion and metastasis may be promoted through the loss of Plexin C1 inhibitory signaling on cofilin activation. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 401 -200508 cd11247 Sema_plexin_D1 The Sema domain, a protein interacting module, of Plexin D1. Plexins are known as semaphorin receptors and Plexin D1 has been identified as the receptor of Sema3E. It binds to Sema3E directly with high affinity. Sema3E is implicated in axonal path finding and inhibition of developmental and post-ischemic angiogenesis. Plexin D1 is broadly expressed on tumor vessels and tumor cells in a number of different types of human tumors. Plexin D1-Sema3E interaction inhibits tumor growth but promotes invasiveness and metastasis. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 483 -200509 cd11248 Sema_MET_like The Sema domain, a protein interacting module, of MET and RON receptor tyrosine kinases. This family includes MET and RON receptor tyrosine kinases. MET is encoded by the c-met protooncogene. MET is the receptor for hepatocyte growth factor/scatter factor (HGF/SF). HGF/SF and MET regulates multiple cellular events and are essential for the development of several tissues and organs, including the placenta, liver, and several groups of skeletal muscles. RON receptor tyrosine kinase is a Macrophage-stimulating protein (MSP) receptor. Upon binding of MSP, RON is activated via autophosphorylation within its kinase catalytic domain, resulting in a variety of effects including proliferation, tubular morphogenesis, angiogenesis, cellular motility and invasiveness. By interacting with downstream signaling molecules, it regulates macrophage migration, phagocytosis, and nitric oxide production. MET and RON receptors have been implicated in cancer development and migration. They are composed of alpha-beta heterodimers. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a Sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic tyrosine kinase domain. The Sema domain is necessary for receptor dimerization and activation. 467 -200510 cd11249 Sema_3A The Sema domain, a protein interacting module, of semaphorin 3A (Sema3A). Sema3A has been reported to inhibit the growth of certain experimental tumors and to regulate endothelial cell migration and apoptosis in vitro, as well as arteriogenesis in the muscle, skin vessel permeability, and tumor angiogenesis in vivo. The function of Sema3A is mediated through receptors neuropilin-1 (NP1) and plexins, although little is known about the requirement of specific plexins in its receptor complex. It is known however that Plexin-A4 is the receptor for Sema3A in the Toll-like receptor- and sepsis-induced cytokine storm during immune response. Sema3A is a member of the Class 3 semaphorin family of secreted proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 493 -200511 cd11250 Sema_3B The Sema domain, a protein interacting module, of semaphorin 3B (Sema3B). Sema3B is coexpressed with semaphorin 3F and both proteins are candidate tumor suppressors. Both Sema3B and Sema3F show high levels of expression in normal tissues and low-grade tumors but are down-regulated in highly metastatic tumors in the lung, melanoma cells, bladder carcinoma cells and prostate carcinoma. They are upregulated by estrogen and inhibit cell motility and invasiveness through decreased FAK phosphorylation and inhibition of MMP-2 and MMP-9 expression. Two receptor families, the neuropilins (NP) and plexins, have been implicated in mediating the actions of semaphorins 3B and 3F. Sema3B is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 471 -200512 cd11251 Sema_3C The Sema domain, a protein interacting module, of semaphorin 3C (Sema3C). Sema3C is a secreted semaphorin expressed in and adjacent to cardiac neural crest cells, and causes impaired migration of neural crest cells to the developing cardiac outflow tract, resulting in the interruption of the aortic arch and persistent truncus arteriosus. It has been proposed that Sema3C acts as a guidance molecule, regulating migration of neural crest cells that express semaphorin receptors such as plexin A2. Sema3C may also participate in tumor progression. The cleavage of Sema3C induced by ADAMTS1 promotes the migration of breast cancer cells. Sema3C is a member of the class 3 semaphorin family of secreted proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 470 -200513 cd11252 Sema_3D The Sema domain, a protein interacting module, of semaphorin 3D (Sema3D). Sema3D is a secreted semaphorin expressed during the development of the nervous system. In zebrafish, Sema3D is expressed in the ventral tectum. It guides retinal axons along the dorsoventral axis of the tectum and guides the laterality of retinal ganglion cell (RGC) projections. Both Sema3D knockdown or its ubiquitous overexpression induced aberrant ipsilateral projections. Proper balance of Sema3D is needed at the midline for the progression of RGC axons from the chiasm midline into the contralateral optic tract. Sema3D is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 474 -200514 cd11253 Sema_3E The Sema domain, a protein interacting module, of semaphorin 3E (Sema3E). Sema3E is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. It is also highly expressed in metastatic cancer cells. Sema3E signaling, through its high affinity functional receptor Plexin D1, drives cancer cell invasiveness and metastatic spreading. Sema3E is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 471 -200515 cd11254 Sema_3F The Sema domain, a protein interacting module, of semaphorin 3F (Sema3F). Sema3F is coexpressed with semaphorin3B. Both Sema3B and Sema3F proteins are candidate tumor suppressors that are down-regulated in highly metastatic tumors. Two receptor families, the neuropilins and plexins, have been implicated in mediating the actions of semaphorins 3B and 3F. Sema3F is a member of the class 3 semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 470 -200516 cd11255 Sema_3G The Sema domain, a protein interacting module, of semaphorin 3G (Sema3G). Semaphorin 3G is identified as a primarily endothelial cell- expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively. It is mainly expressed in the lung and kidney, and a little in the brain. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 474 -200517 cd11256 Sema_4A The Sema domain, a protein interacting module, of semaphorin 4A (Sema4A). Sema4A is expressed in immune cells and is thus termed an "immune semaphorin". It plays critical roles in T cell-DC interactions in the immune response. It has been reported to enhance activation and differentiation of T cells in vitro and generation of antigen-specific T cells in vivo. The function of Sema4A in the immune response implicates its role in infectious and noninfectious diseases. Sema4A exerts its function through three receptors, namely Plexin B, Plexin D1, and Tim-2. Sema4A belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. TThe Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 447 -200518 cd11257 Sema_4B The Sema domain, a protein interacting module, of semaphorin 4B (Sema4B). Sema4B, expressed in T and B cells, is an immune semaphorin. It functions as a negative regulatory of basophils through T cell-basophil contacts and it significantly inhibits IL-4 and IL-6 production from basophils in response to various stimuli, including IL-3 and papain. In addition, T cell-derived Sema4B suppresses basophil-mediated Th2 skewing and humoral memory responses. Sema4B may be also involved in lung cancer cell mobility by inducing the degradation of CLCP1 (CUB, LCCL-homology, coagulation factor V/VIII homology domains protein). Sema4B is characterized by a PDZ-binding motif at the carboxy-terminus, which mediates interaction with the post-synaptic density protein PSD-95/SAP90, which is thought to play a central role during synaptogenesis and in the structure and function of post-synaptic specializations of excitatory synapses. Sema4B belongs to class 4 transmembrane semaphorin family proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 464 -200519 cd11258 Sema_4C The Sema domain, a protein interacting module, of semaphorin 4C (Sema4C). Sema4C acts as a Plexin B2 ligand to regulate the development of cerebellar granule cells and to modulate ureteric branching in the developing kidney. The binding of Sema4C to Plexin B2 results the phosphorylation of downstream regulator ErbB-2 and the plexin protein itself. The cytoplasmic region of Sema4C binds a neurite-outgrowth-related protein SFAP75, suggesting that Sema4C may also play a role in neural function. Sema4C belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 458 -200520 cd11259 Sema_4D The Sema domain, a protein interacting module, of semaphorin 4D (Sema4D, also known as CD100). Sema4D/CD100 is expressed in immune cells and plays critical roles in immune response; it is thus termed an "immune semaphorin". It is expressed by lymphocytes and promotes the aggregation and survival of B lymphocytes and inhibits cytokine-induced migration of immune cells in vitro. Sema4D/CD100 knock-out mice demonstrate that Sema4D is required for normal activation of B and T lymphocytes. Sema4D increases B-cell and DC function using either Plexin B1 or CD72 as receptors. The function of Sema4D in immune response implicates its role in infectious and noninfectious diseases. Sema4D belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 471 -200521 cd11260 Sema_4E The Sema domain, a protein interacting module, of semaphorin 4E (Sema4E). Sema4E is expressed in the epithelial cells that line the pharyngeal arches in zebrafish. It may act as a guidance molecule to restrict the branchiomotor axons to the mesenchymal cells. Gain-of-function and loss-of-function studies demonstrate that Sema4E is essential for the guidance of facial axons from the hindbrain into their pharyngeal arch targets and is sufficient for guidance of gill motor axons. Sema4E guides facial motor axons by a repulsive action. Sema4E belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 456 -200522 cd11261 Sema_4F The Sema domain, a protein interacting module, of semaphorin 4F (Sema4F). Sema4F plays role in heterotypic cell-cell contacts and controls cell proliferation and suppresses tumorigenesis. In neurofibromatosis type 1 (NF1) patients, reduced Sema4F level disrupts Schwann cell/axonal interactions. Experiments using a yeast two-hybrid system show that the extreme C-terminus of Sema4F interacts with the PDZ domains of post-synaptic density protein SAP90/PSD-95, indicating possible functional involvement of Semas4F at glutamatergic synapses. Recent work also suggests a role for Sema4F in the injury response of intramedullary axotomized motoneuron. Sema4F belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulator molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 460 -200523 cd11262 Sema_4G The Sema domain, a protein interacting module, of semaphorin 4G (Sema4G). The Sema4G and Sema4C genes are expressed in the developing cerebellar cortex. Sema4G and Sema4C proteins specifically bind to Plexin B2 expressed in the cerebellar granule cells. Sema4G and Sema4C are involved in neural tube closure and cerebellar granule cell development through Plexin B2.Sema4G belongs to the class 4 transmembrane semaphorin family of proteins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 457 -200524 cd11263 Sema_5A The Sema domain, a protein interacting module, of semaphorin 5A (Sema5A). Originally, mouse Sema5A was identified as a protein that induces inhibitory responses during optic nerve development. Recent studies show that Sema5A controls innate immunity in mice. It also has been identified as a candidate gene for causing idiopathic autism in humans. Plexin B3 functions as a binding partner and receptor for Sema5A. Furthermore, Sema5A is also implicated in cancer. The role of the Drosophila Sema5A ortholog, Dsema-5C, in tumorigenicity and metastasis has been reported. Sema5A is highly expressed in human pancreatic cancer cells and is associated with tumor growth, invasion and metastasis. Sema5A belongs to class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 436 -200525 cd11264 Sema_5B The Sema domain, a protein interacting module, of semaphorin 5B (Sema5B). Sema5B is expressed in regions of the basal telencephalon in rat. Sema5B is an inhibitory cue for corticofugal axons and acts as a source of repulsion for the appropriate guidance of cortical axons away from structures such as the ventricular zone as they navigate toward and within subcortical regions. In addition to its role as a guidance cue, Sema5B regulates the development and maintenance of synapse size and number in hippocampal neurons. In addition, the sema domain of Sema5B can be cleaved of the whole protein and exerts its function in regulation of synapse morphology. Sema5B belongs to the class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 437 -200526 cd11265 Sema_5C The Sema domain, a protein interacting module, of semaphorin 5C (sema5C). In Drosophila, Sema5C was identified as an early development gene, which is expressed in stage 2 embryos with a striped pattern emerging at later stages. Sema5c may play a role in odor-guided behavior and in tumorigenesis. Sema5C belongs to class 5 semaphorin family of proteins, which are transmembrane glycoproteins characterized by unique thrombospondin specific repeats in the extracellular region of the protein. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 433 -200527 cd11266 Sema_6A The Sema domain, a protein interacting module, of semaphorins 6A (Sema6A). In the cerebellum, Sema6A-plexin A2 signaling modulates granule cell migration by controlling centrosome positioning. Besides plexin A2, plexin A4 is also found to be a receptor of Sema6A. Interactions between plexin A2, plexin A4, and Sema6A control lamina-restricted projection of hippocampal mossy fibers. It is required for the clustering of boundary cap cells at the PNS/CNS interface and thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site, it organizes the segregation of dorsal roots. Sema6A may also be involved in axonal pathfinding processes in the periinfarct and homotopic contralateral cortex. Sema6A is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 466 -200528 cd11267 Sema_6B The Sema domain, a protein interacting module, of semaphorin 6B (Sema6B). Sema6B functions as repellents for axon growth; this repulsive activity is mediated by its receptor Plexin A4. Sema6B is expressed in CA3, and repels mossy fibers in a Plexin A4 dependent manner. In human, it was shown that peroxisome proliferator-activated receptors (PPARs) and 9-cis-retinoic acid receptor (RXR) regulate human semaphorin 6B (Sema6B) gene expression. Sema6B is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 466 -200529 cd11268 Sema_6C The Sema domain, a protein interacting module, of semaphorin 6C (Sema6C, also called semaphorin Y). Sema6C is highly expressed in adult brain and skeletal muscle and it shows growth cone collapsing activity. It may play a role in the maintenance and remodelling of neuronal connections. In adult skeletal muscle, this role includes prevention of motor neuron sprouting and uncontrolled motor neuron growth. The expression of Sema6C in adult skeletal muscle is down-regulated following denervation. Sema6C is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 465 -200530 cd11269 Sema_6D The Sema domain, a protein interacting module, of semaphorin 6D (Sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis and it uses Plexin-A1 as a receptor. It displays repellent activity for dorsal root ganglion axons. Sema6D also acts as a regulator of late phase primary immune responses. In addition, Sema6D is overexpressed in gastric carcinoma, indicating that it may have an important role in the occurrence and development of the cancer. Sema6D is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules involved in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 465 -200531 cd11270 Sema_6E The Sema domain, a protein interacting module, semaphorin 6E (sema6E). Sema6E is expressed predominantly in the nervous system during embryogenesis. It binds Plexin A1 and might utilize it as a receptor to repel axons of specific types during development. Sema6E acts as a repellent to dorsal root ganglion axons as well as sympathetic axons. Sema6E is a member of the class 6 semaphorin family of proteins, which are membrane associated semaphorins. Semaphorins are regulatory molecules in the development of the nervous system and in axonal guidance. They also play important roles in other biological processes, such as angiogenesis, immune regulation, respiration systems and cancer. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a receptor-recognition and -binding module. 462 -200532 cd11271 Sema_plexin_A1 The Sema domain, a protein interacting module, of Plexin A1. Plexin A1 is found in both the nervous and immune systems. Its external Sema domain is also shared by semaphorin proteins. In the nervous system, Plexin A1 mediates Sema3A axon guidance function by interacting with the Sema3A coreceptor neuropilin, resulting in actin depolarization and cell repulsion. In the immune system, Plexin A1 mediates Sema6D signaling by binding to the Sema6D-Trem2-DAP12 complex on immune cells and osteoclasts to promote Rac activation and DAP12 phosphorylation. In gene profiling experiments, Plexin A1 was identified as a CIITA (class II transactivator) regulated gene in primary dendritic cells (DCs). The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 474 -200533 cd11272 Sema_plexin_A2 The Sema domain, a protein interacting module, of Plexin A2. Plexin A2 serves as a receptor for class 6 semaphorins. Interactions between Plexin A2, A4 and semaphorins 6A and 6B control the lamina-restricted projection of hippocampal mossy fibers. Sema6B also repels the growth of mossy fibers in a Plexin A4 dependent manner. Plexin A2 does not suppress Sema6B function. In addition, studies have shown that Plexin A2 may be related to anxiety and other psychiatric disorders. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 515 -200534 cd11273 Sema_plexin_A3 The Sema domain, a protein interacting module, of Plexin A3. Plexin-A3 forms a receptor complex with neuropilin-2 and transduces signals for class 3 semaphorins in the nervous system. Both plexins A3 and A4 are essential for normal sympathetic neuron development. They function cooperatively to regulate the migration of sympathetic neurons, and differentially to guide sympathetic axons. Both plexins A3 and A4 are not required for guiding neural crest precursors prior to reaching the sympathetic anlagen. Plexin A3 is a major driving force for intraspinal motor growth cone guidance. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 469 -200535 cd11274 Sema_plexin_A4 The Sema domain, a protein interacting module, of Plexin A4. Plexin A4 forms a receptor complex with neuropilins (NRPs) and transduces signals for class 3 semaphorins in the nervous system. It regulates facial nerve development by functioning as a receptor for Sema3A/NRP1. Both plexins A3 and A4 are essential for normal sympathetic development. They function both cooperatively, to regulate the migration of sympathetic neurons, and differentially, to guide sympathetic axons. Plexin A4 is also expressed in lymphoid tissues and functions in the immune system. It negatively regulates T lymphocyte responses. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 473 -200536 cd11275 Sema_plexin_B1 The Sema domain, a protein interacting module, of Plexin B1. Plexin B1 serves as the Semaphorin 4D receptor and functions as a regulator of developing neurons and a tumor suppressor protein for melanoma. The Sema4D-plexin B signaling complex regulates dendritic and axonal complexity. The activation of Plexin B1 by Sema4D produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth and promotes branching and complexity. As a tumor suppressor, plexin B1 abrogates activation of the oncogenic receptor, c-Met, by its ligand, hepatocyte growth factor (HGF), in melanoma. Furthermore, plexin B1 suppresses integrin-dependent migration and activation of pp125FAK and inhibits Rho activity. Plexin B1 is highly expressed in endothelial cells and its activation by Sema4D elicits a potent proangiogenic response. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 461 -200537 cd11276 Sema_plexin_B2 The Sema domain, a protein interacting module, of Plexin B2. Plexin B2 serves as the receptor of Sema4C and Sema4G. By signaling the effect of Sema4C and Sema4G, the plexin B2 receptor plays important roles in neural tube closure and cerebellar granule cell development. Mice lacking Plexin B2 demonstrated defects in closure of the neural tube and disorganization of the embryonic brain. In developing kidney, Sema4C-Plexin B2 signaling modulates ureteric branching. Plexin B2 is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney. Deletion of Plexin B2 results in renal hypoplasia and occasional double ureters. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 449 -200538 cd11277 Sema_plexin_B3 The Sema domain, a protein interacting module, of Plexin B3. Plexin B3 is the receptor of semaphorin 5A. It is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin B3 has been linked to verbal performance and white matter volume in human brain. Furthermore, Sema5A and plexin B3 have been implicated in the progression of various types of cancer. They play an important role in the invasion and metastasis of gastric carcinoma. The stimulation of plexin B3 by Sema5A binding in human glioma cells results in the inhibition of cell migration and invasion. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as a ligand-recognition and -binding module. 434 -200539 cd11278 Sema_MET The Sema domain, a protein interacting module, of MET (also called hepatocyte growth factor receptor, HGFR). MET is encoded by the c-met protooncogene. MET is a receptor tyrosine kinase that binds its ligand, hepatocyte growth factor/scatter factor (HGF/SF). HGF/SF and MET are essential for the development of several tissues and organs, including the placenta, liver, and several groups of skeletal muscles. It also plays a major role in the abnormal migration of cancer cells as a result of overexpression or MET mutations. MET is composed of an alpha-beta heterodimer. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a Sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic tyrosine kinase domain. The cytoplasmic C-terminal region acts as a docking site for multiple protein substrates, including Grb2, Gab1, STAT3, Shc, SHIP-1 and Src. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. The Sema domain of Met is necessary for receptor dimerization and activation. 492 -200540 cd11279 Sema_RON The Sema domain, a protein interacting module, of RON Receptor Tyrosine Kinase. RON receptor tyrosine kinase is a Macrophage-stimulating protein (MSP) receptor. Upon binding of MSP, RON is activated via autophosphorylation within its kinase catalytic domain, resulting in a wide range of effects, including proliferation, tubular morphogenesis, angiogenesis, cellular motility and invasiveness. By interacting with downstream signaling molecules, it regulates macrophage migration, phagocytosis, and nitric oxide production. RON has been implicated in cancers of the breast, colon, pancreas and ovaries because both splice variants and receptor overexpression have been identified in these tumors. The Sema domain is located at the N-terminus and contains four disulfide bonds formed by eight conserved cysteine residues. It serves as ligand recognition and binding model. RON is composed of an alpha-beta heterodimer. The extracellular alpha chain is disulfide linked to the beta chain, which contains an extracellular ligand-binding region with a Sema domain, a PSI domain and four IPT repeats, a transmembrane segment, and an intracellular catalytic tyrosine kinase domain. The Sema domain of RON may be necessary for receptor dimerization and activation. 493 -200436 cd11280 gelsolin_like Tandemly repeated domains found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 88 -200437 cd11281 ADF_drebrin_like ADF homology domain of drebrin and actin-binding protein 1 (abp1). Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. Many of these proteins enhance the turnover rate of actin and interact with actin monomers as well as actin filaments. Abp1 and drebrin (developmentally regulated brain protein) are multidomain proteins with an N-terminal ADF homology domain and one or more C-terminal SH3 domains. They have been shown to interact with polymeric F-actin, but not with monomeric G-actin, and do not appear to promote the disassembly of actin filaments. Drebrin rather stabilizes actin filaments by inducing changes in the helical twist and may promote or interfere with the interactions of other proteins with actin filaments. 136 -200438 cd11282 ADF_coactosin_like Coactosin-like members of the ADF homology domain family. Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. Many of these proteins enhance the turnover rate of actin and interact with actin monomers as well as actin filaments. The function of coactosins is not well understood. They appear to interfere with the capping of actin filaments in Dictyostelium, and may not be able to bind monomeric globular actin. A role for coactosins as chaperones stabilizing 5-lipoxygenase (5LO) has been suggested; 5LO plays a crucial role in leukotriene synthesis. 114 -200439 cd11283 ADF_GMF-beta_like ADF-homology domain of glia maturation factor beta and related proteins. Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. Most of these proteins enhance the turnover rate of actin and interact with actin monomers as well as actin filaments. The glia maturation factor (GMF), however, does not bind actin but interacts with the Arp2/3 complex (which contains actin-related proteins, amongst others) and suppresses Arp2/3 activity, inducing the dissociation of branched daughter filaments from their mother filaments. This family includes both mammalian GMF isoforms, GMF-beta and GMF-gamma. GMF-beta regulates cellular growth, fission, differentiation and apoptosis. GMF-gamma is important in myeloid cell development and is an important regulator for cell migration and polarity in neutrophils. 122 -200440 cd11284 ADF_Twf-C_like C-terminal ADF domain of twinfilin and related proteins. Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. Twinfilin contains two ADF domains, and inhibits the assembly of actin filaments by strongly interacting with monomeric ADP-actin (ADP-G-actin) in a 1:1 stochiometry (with it's C-terminal ADF domain, Twf-C) and inhibiting the actin monomer's nucleotide exchange. Mammalian twinfilin may also cap the barbed ends of F-actin filaments and prevent further assembly (or disassembly), in a process which requires both ADF domains. The N-terminal ADF domain (Twf-N) binds G-actin with a lower affinity than Twf-C; Twf-C can also bind F-actin. During capping, Twf-N may interact with the terminal actin subunit, and Twf-C may bind between two adjacent subunits at the side of the filament. 132 -200441 cd11285 ADF_Twf-N_like N-terminal ADF domain of twinfilin and related proteins. Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. Twinfilin contains two ADF domains, and inhibits the assembly of actin filaments by strongly interacting with monomeric ADP-actin (ADP-G-actin) in a 1:1 stochiometry (with it's C-terminal ADF domain, Twf-C) and inhibiting the actin monomer's nucleotide exchange. Mammalian twinfilin may also cap the barbed ends of F-actin filaments and prevent further assembly (or disassembly), in a process which requires both ADF domains. The N-terminal ADF domain (Twf-N) binds G-actin with a lower affinity than Twf-C; Twf-C can also bind F-actin. During capping, Twf-N may interact with the terminal actin subunit, and Twf-C may bind between two adjacent subunits at the side of the filament. 139 -200442 cd11286 ADF_cofilin_like Cofilin, Destrin, and related actin depolymerizing factors. Actin depolymerization factor/cofilin-like domains (ADF domains) are present in a family of essential eukaryotic actin regulatory proteins. These proteins enhance the turnover rate of actin, and interact with actin monomers (G-actin) as well as actin filaments (F-actin), typically with a preference for ADP-G-actin subunits. The basic function of cofilin is to promote disassembly of aged actin filaments. Vertebrates have three isoforms of cofilin: cofilin-1 (Cfl1, non-muscle cofilin), cofilin-2 (muscle cofilin), and ADF (destrin). When bound to actin monomers, cofilins inhibit their spontaneous exchange of nucleotides. The cooperative binding to (aged) ADP-F-actin induces a local change in the actin filament structure and further promotes aging. 133 -200443 cd11287 Sec23_C C-terminal Actin depolymerization factor-homology domain of Sec23. The C-terminal domain of the Sec23 subunit of the coat protein complex II (COPII) is distantly related to gelsolin-like repeats and the actin depolymerizing domains found in cofilin and similar proteins. Sec23 forms a tight complex with Sec24. The cytoplasmic Sec23/24 complex is recruited together with Sar1-GTP and Sec13/31 to induce coat polymerization and membrane deformation in the forming of COPII-coated endoplasmic reticulum vesicles. The function of the Sec23 C-terminal domain is unclear. 121 -200444 cd11288 gelsolin_S5_like Gelsolin sub-domain 5-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 92 -200445 cd11289 gelsolin_S2_like Gelsolin sub-domain 2-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 92 -200446 cd11290 gelsolin_S1_like Gelsolin sub-domain 1-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin_like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 113 -200447 cd11291 gelsolin_S6_like Gelsolin sub-domain 6-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 99 -200448 cd11292 gelsolin_S3_like Gelsolin sub-domain 3-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 98 -200449 cd11293 gelsolin_S4_like Gelsolin sub-domain 4-like domain found in gelsolin, severin, villin, and related proteins. Gelsolin repeats occur in gelsolin, severin, villin, advillin, villidin, supervillin, flightless, quail, fragmin, and other proteins, usually in several copies. They co-occur with villin headpiece domains, leucine-rich repeats, and several other domains. These gelsolin-related actin binding proteins (GRABPs) play regulatory roles in the assembly and disassembly of actin filaments; they are involved in F-actin capping, uncapping, severing, or the nucleation of actin filaments. Severing of actin filaments is Ca2+ dependent. Villins are also linked to generating bundles of F-actin with uniform filament polarity, which is most likely mediated by their extra villin headpiece domain. Many family members have also adopted functions in the nucleus, including the regulation of transcription. Supervillin, gelsolin, and flightless I are involved in intracellular signaling via nuclear hormone receptors. The gelsolin-like domain is distantly related to the actin depolymerizing domains found in cofilin and similar proteins. 101 -199894 cd11294 E_set_Esterase_like_N N-terminal Early set domain associated with the catalytic domain of putative esterases. E or "early" set domains are associated with the catalytic domain of esterase at the N-terminal end. Esterases catalyze the hydrolysis of organic esters to release an alcohol or thiol and acid. The term esterase can be applied to enzymes that hydrolyze carboxylate, phosphate and sulphate esters, but is more often restricted to the first class of substrate. The N-terminal domain of esterase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others. 83 -199917 cd11295 Mago_nashi Mago nashi proteins, integral members of the exon junction complex. Members of this family, which was originally identified in Drosophila and called mago nashi, are integral members of the exon junction complex (EJC). The EJC is a multiprotein complex that is deposited on spliced mRNAs after intron removal at a conserved position upstream of the exon-exon junction, and transported to the cytoplasm where it has been shown to influence translation, surveillance, and localization of the spliced mRNA. It consists of four core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP and is supposed to be a binding platform for more peripherally and transiently associated factors along mRNA travel. Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity. In humans, but not Drosophila, EJC is involved in nonsense-mediated mRNA decay (NMD) via binding to Upf3b, a central NMD effector. EJC is stripped off the mRNA during the first round of translation and then the complex components are transported back into the nucleus and recycled. The Mago-Y14 heterodimer has been shown to interact with the cytoplasmic protein PYM, an EJC disassembly factor, and specifically binds to the karyopherin nuclear receptor importin 13. 143 -211383 cd11296 O-FucT_like GDP-fucose protein O-fucosyltransferase and related proteins. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 206 -350237 cd11297 PIN_LabA-like_N_1 uncharacterized subfamily of N-terminal LabA-like PIN domains. This N-terminal LabA-like PIN domain is found in a well conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. LabA from Synechococcus elongatus PCC 7942, (which does not contain this C-terminal domain), has been shown to play a role in cyanobacterial circadian timing. The LabA-like C-terminal domains characteristic of this subfamily may be related to the LOTUS domain family (which also co-occurs with LabA-like N-terminal domains). The function of the N-terminal domain is unknown. The LabA-like PIN domain family also includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes. Other members are the LabA-like PIN domains of human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 117 -211384 cd11298 O-FucT-2 GDP-fucose protein O-fucosyltransferase 2. O-FucT-2 adds O-fucose to thrombospondin type 1 repeats (TSRs), and appears conserved in bilateria. The O-fucosylation of TSRs appears to play a role in regulating secretion of metalloproteases of the ADAMTS superfamily. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 374 -211385 cd11299 O-FucT_plant GDP-fucose protein O-fucosyltransferase, plant specific subfamily. Some members of this plant-specific family of O-fucosyltransferases have been annotated as auxin-independent growth promotors. The function of the protein seems unclear. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 290 -211386 cd11300 Fut8_like Alpha 1-6-fucosyltransferase. Alpha 1,6-fucosyltransferase (Fut8) transfers a fucose moiety from GDP-fucose to the reducing terminal N-acetylglucosamine of the core structure of Asn-linked oligosaccharides, in a process termed core fucosylation. Core fucosylation is essential for the function of growth factor receptors. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 328 -211387 cd11301 Fut1_Fut2_like Alpha-1,2-fucosyltransferase. Alpha-1,2-fucosyltransferases (Fut1, Fut2) catalyze the transfer of alpha-L-fucose to the terminal beta-D-galactose residue of glycoconjugates via an alpha-1,2-linkage, generating carbohydrate structures that exhibit H-antigenicity for blood-group carbohydrates. These structures also act as ligands for morphogenesis, the adhesion of microbes, and metastasizing cancer cells. Fut1 is responsible for producing the H antigen on red blood cells. Fut2 is expressed in epithelia of secretory tissues, and individuals termed "secretors" have at least one functional copy of the gene; they secrete H antigen which is further processed into A and/or B antigens depending on the ABO genotype. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 265 -211388 cd11302 O-FucT-1 GDP-fucose protein O-fucosyltransferase 1. The protein O-fucosyltransferase 1 (Ofut1 or O-FucT-1) adds O-fucose to EGF (epidermal growth factor-like) repeats. The O-fucsosylation of the Notch receptor signaling protein is dependent on this enzyme, which requires GDP-fucose as a substrate. O-fucose residues added to the target of O-FucT-1 may be further elongated by other glycosyltransferases. On top of O-fucosylation, O-FucT-1 may have other functions such as the regulation of the Notch receptor exit from the ER. Six highly conserved cysteines are present in O-FucT-1, which is a soluble ER protein, as well as a DXD-like motif (ERD), conserved in mammals, Drosophila, and C. elegans. Both features are characteristic of several glycosyltransferase families. The membrane-bound pre-protein is released by proteolysis and, as for most glycosyltransferases, is strongly activated by manganese. O-FucT-1 is similar to family 1 glycosyltransferases (GT1). 347 -206636 cd11303 Dystroglycan_repeat Cadherin-like repeat domain of alpha dystroglycan. Dystroglycan is a glycoprotein widely distributed in skeletal muscle and other tissues; the pre-protein is cleaved into two subunits (alpha and beta) that form a complex which links the extracellular matrix to the cytoskeleton. Cadherin-like dystroglycan repeats are present in the extracellular alpha-dystroglycan subunit, which binds to the alpha-2-laminin G-domain in the basement membrane as part of the dystrophin-dystroglycan-complex (DGC). DGC has been shown to interact with other etxtracellular matrix components as well, such as perlecan and m-agrin, suggesting that the complex may play various different roles depending on the extracellular ligand. 99 -206637 cd11304 Cadherin_repeat Cadherin tandem repeat domain. Cadherins are glycoproteins involved in Ca2+-mediated cell-cell adhesion. The cadherin repeat domains occur as tandem repeats in the extracellular regions, which are thought to mediate cell-cell contact when bound to calcium. They play numerous roles in cell fate, signalling, proliferation, differentiation, and migration; members include E-, N-, P-, T-, VE-, CNR-, proto-, and FAT-family cadherin, desmocollin, and desmoglein, a large variety of domain architectures with varying repeat copy numbers. Cadherin-repeat containing proteins exist as monomers, homodimers, or heterodimers. 98 -206765 cd11305 alpha_DG_C C-terminal domain of alpha dystroglycan. Dystroglycan is a glycoprotein widely distributed in skeletal muscle and other tissues; the pre-protein is cleaved into two subunits (alpha and beta) that form a complex which links the extracellular matrix to the cytoskeleton. This C-terminal domain of the alpha-subunit appears to contact neighboring cadherin-like repeats of alpha dystroglycan, and may also be involved in interactions with other components of the dystrophin-dystroglycan-complex (DGC). DGC has been shown to interact with extracellular matrix components such as laminin, perlecan and m-agrin, suggesting that the complex may play various different roles depending on the extracellular ligand. 124 -199915 cd11306 M35_peptidyl-Lys Peptidase M35 domain of peptidyl-Lys metalloendopeptidases. This family M35 Zn2+-metallopeptidase extracellular domain is mostly found in proteins characterized as peptidyl-Lys metalloendopeptidases (MEP; peptidyllysine metalloproteinase; EC 3.4.24.20), including some well-characterized domains in Aeromonas salmonicida subsp. Achromogenes (AsaP1) and Grifola frondosa (GfMEP). These proteins specifically cleave peptidyl-lysine bonds (-X-Lys- where X may even be Pro) in proteins and peptides. AsaP1 peptidase has been shown to be important in the virulence of A. salmonicida subsp. achromogenes, having a major role in the fish innate immune response. Members of this family contain a unique zinc-binding motif (the aspzincin motif), defined by the HExxH + D motif where an aspartic acid is the third zinc ligand and is found in a GTXDXXYG or similar motif C-terminal to the His zinc ligands. 160 -199916 cd11307 M35_Asp_f2_like Peptidase M35 domain of Asp f2, a major allergen from Aspergillus fumigatus, and related proteins; non catalytic. In this domain subgroup the unique zinc-binding motif (the aspzincin motif, characteristic of the M35 deuterolysin family, and defined as the "HEXXH + D" motif: two His ligands and Asp as third ligand), is poorly conserved and may not bind Zinc. Members of this subgroup also lack a key conserved Tyr residue which acts as a proton donor during metallopeptidase catalysis. These include Asp f2, a major allergen from Aspergillus fumigatus, which reacts with serum from patients with ABPA (allergic bronchopulmonary aspergillosis), and pH-regulated antigen 1 (PRA1) from Candida albicans, which has a role in fungal morphogenesis and perhaps in the host-parasite interaction during candidal infection. No protease activity has been detected for Asp f2 to date. This subgroup also includes Saccharomyces cerevisiae Zps1p. The expression of the Zsp1 gene is increased in response to zinc deficiency; it is a target of the Zap1p transcription factor. 179 -200604 cd11308 Peptidase_M14NE-CP-C_like Peptidase associated domain: C-terminal domain of M14 N/E carboxypeptidase; putative folding, regulation, or interaction domain. This domain is found C-terminal to the M14 carboxypeptidase (CP) N/E subfamily containing zinc-binding enzymes that hydrolyze single C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. The N/E subfamily includes enzymatically active members (carboxypeptidase N, E, M, D, and Z), as well as non-active members (carboxypeptidase-like protein 1, -2, aortic CP-like protein, and adipocyte enhancer binding protein-1) which lack the critical active site and substrate-binding residues considered necessary for activity. The active N/E enzymes fulfill a variety of cellular functions, including prohormone processing, regulation of peptide hormone activity, alteration of protein-protein or protein-cell interactions and transcriptional regulation. For M14 CPs, it has been suggested that this domain may assist in folding of the CP domain, regulate enzyme activity, or be involved in interactions with other proteins or with membranes; for carboxypeptidase M, it may interact with the bradykinin 1 receptor at the cell surface. This domain may also be found in other peptidase families. 76 -206763 cd11309 14-3-3_fungi Fungal 14-3-3 protein domain. This family containing fungal 14-3-3 domains includes the yeasts Saccharomyces cerevisiae (BMH1 and BMH2) and Schizosaccharomyces pombe (rad24 and rad25) isoforms. They possess distinctively variant C-terminal segments that differentiate them from the mammalian isoforms; the C-terminus is longer and BMH1/2 isoforms contain polyglutamine (polyQ) sequences of unknown function. The C-terminal segments of yeast 14-3-3 isoforms may thus behave in a different manner compared to the higher eukaryote isoforms. Yeast 14-3-3 proteins bind to numerous proteins involved in a variety of yeast cellular processes making them excellent model organisms for elucidating the function of the 14-3-3 protein family. BMH1 and BMH2 are positive regulators of rapamycin-sensitive signaling via TOR kinases while they play an inhibitory role in Rtg3p-dependent transcription involved in retrograde signaling. 14-3-3 domains are an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 231 -206764 cd11310 14-3-3_1 14-3-3 protein domain. This 14-3-3 domain family includes proteins in Caenorhabditis elegans, the silkworm (Bombyx mori) as well as barley (Hordeum vulgare). In C. elegans, 14-3-3 proteins are SIR-2.1 binding partners which induce transcriptional activation of DAF-16 during stress and are required for the life-span extension conferred by extra copies of sir-2.1. In B. mori, the 14-3-3 proteins are expressed widely in larval and adult tissues, including the brain, fat body, Malpighian tube, silk gland, midgut, testis, ovary, antenna, and pheromone gland, and interact with the N-terminal fragment of Hsp60, suggesting that 14-3-3 (a molecular adaptor) and Hsp60 (a molecular chaperone) work together to achieve a wide range of cellular functions in B. mori. In barley aleurone cells, 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the gibberellic acid (GA) pathway since the balance of GA and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. 14-3-3 is an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 230 -200452 cd11313 AmyAc_arch_bac_AmyA Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 336 -200453 cd11314 AmyAc_arch_bac_plant_AmyA Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 302 -200454 cd11315 AmyAc_bac1_AmyA Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 352 -200455 cd11316 AmyAc_bac2_AmyA Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 403 -200456 cd11317 AmyAc_bac_euk_AmyA Alpha amylase catalytic domain found in bacterial and eukaryotic Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA proteins from bacteria, fungi, mammals, insects, mollusks, and nematodes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 329 -200457 cd11318 AmyAc_bac_fung_AmyA Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 391 -200458 cd11319 AmyAc_euk_AmyA Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 375 -200459 cd11320 AmyAc_AmyMalt_CGTase_like Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 389 -200460 cd11321 AmyAc_bac_euk_BE Alpha amylase catalytic domain found in bacterial and eukaryotic branching enzymes. Branching enzymes (BEs) catalyze the formation of alpha-1,6 branch points in either glycogen or starch by cleavage of the alpha-1,4 glucosidic linkage yielding a non-reducing end oligosaccharide chain, and subsequent attachment to the alpha-1,6 position. By increasing the number of non-reducing ends, glycogen is more reactive to synthesis and digestion as well as being more soluble. This group includes bacterial and eukaryotic proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 406 -200461 cd11322 AmyAc_Glg_BE Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 402 -200462 cd11323 AmyAc_AGS Alpha amylase catalytic domain found in Alpha 1,3-glucan synthase (also called uridine diphosphoglucose-1,3-alpha-glucan glucosyltransferase and 1,3-alpha-D-glucan synthase). Alpha 1,3-glucan synthase (AGS, EC 2.4.1.183) is an enzyme that catalyzes the reversible chemical reaction of UDP-glucose and [alpha-D-glucosyl-(1-3)]n to form UDP and [alpha-D-glucosyl-(1-3)]n+1. AGS is a component of fungal cell walls. The cell wall of filamentous fungi is composed of 10-15% chitin and 10-35% alpha-1,3-glucan. AGS is triggered in fungi as a response to cell wall stress and elongates the glucan chains in cell wall synthesis. This group includes proteins from Ascomycetes and Basidomycetes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 569 -200463 cd11324 AmyAc_Amylosucrase Alpha amylase catalytic domain found in Amylosucrase. Amylosucrase is a glucosyltransferase that catalyzes the transfer of a D-glucopyranosyl moiety from sucrose onto an acceptor molecule. When the acceptor is another saccharide, only alpha-1,4 linkages are produced. Unlike most amylopolysaccharide synthases, it does not require any alpha-D-glucosyl nucleoside diphosphate substrate. In the presence of glycogen it catalyzes the transfer of a D-glucose moiety onto a glycogen branch, but in its absence, it hydrolyzes sucrose and synthesizes polymers, smaller maltosaccharides, and sucrose isoforms. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 536 -200464 cd11325 AmyAc_GTHase Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called Maltooligosyl trehalose Trehalohydrolase). Glycosyltrehalose trehalohydrolase (GTHase) was discovered as part of a coupled system for the production of trehalose from soluble starch. In the first half of the reaction, glycosyltrehalose synthase (GTSase), an intramolecular glycosyl transferase, converts the glycosidic bond between the last two glucose residues of amylose from an alpha-1,4 bond to an alpha-1,1 bond, making a non-reducing glycosyl trehaloside. In the second half of the reaction, GTHase cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and malto-oligosaccharide. Like isoamylase and other glycosidases that recognize branched oligosaccharides, GTHase contains an N-terminal extension and does not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Glycosyltrehalose Trehalohydrolase Maltooligosyltrehalose Trehalohydrolase 436 -200465 cd11326 AmyAc_Glg_debranch Alpha amylase catalytic domain found in glycogen debranching enzymes. Debranching enzymes facilitate the breakdown of glycogen through glucosyltransferase and glucosidase activity. These activities are performed by a single enzyme in mammals, yeast, and some bacteria, but by two distinct enzymes in Escherichia coli and other bacteria. Debranching enzymes perform two activities: 4-alpha-D-glucanotransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33). 4-alpha-D-glucanotransferase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. Amylo-alpha-1,6-glucosidase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. In Escherichia coli, GlgX is the debranching enzyme and malQ is the 4-alpha-glucanotransferase. TreX, an archaeal glycogen-debranching enzyme has dual activities like mammals and yeast, but is structurally similar to GlgX. TreX exists in two oligomeric states, a dimer and tetramer. Isoamylase (EC 3.2.1.68) is one of the starch-debranching enzymes that catalyzes the hydrolysis of alpha-1,6-glucosidic linkages specific in alpha-glucans such as amylopectin or glycogen and their beta-limit dextrins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 433 -200466 cd11327 AmyAc_Glg_debranch_2 Alpha amylase catalytic domain found in glycogen debranching enzymes. Debranching enzymes facilitate the breakdown of glycogen through glucosyltransferase and glucosidase activity. These activities are performed by a single enzyme in mammals, yeast, and some bacteria, but by two distinct enzymes in Escherichia coli and other bacteria. Debranching enzymes perform two activities, 4-alpha-D-glucanotransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33). 4-alpha-D-glucanotransferase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. Amylo-alpha-1,6-glucosidase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. The catalytic triad (DED), which is highly conserved in other debranching enzymes, is not present in this group. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 478 -200467 cd11328 AmyAc_maltase Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related proteins. Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. In most cases, maltase is equivalent to alpha-glucosidase, but the term "maltase" emphasizes the disaccharide nature of the substrate from which glucose is cleaved, and the term "alpha-glucosidase" emphasizes the bond, whether the substrate is a disaccharide or polysaccharide. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 470 -200468 cd11329 AmyAc_maltase-like Alpha amylase catalytic domain family found in maltase. Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. The catalytic triad (DED) which is highly conserved in the other maltase group is not present in this subfamily. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 477 -200469 cd11330 AmyAc_OligoGlu Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 472 -200470 cd11331 AmyAc_OligoGlu_like Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 450 -200471 cd11332 AmyAc_OligoGlu_TS Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 481 -200472 cd11333 AmyAc_SI_OligoGlu_DGase Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 428 -200473 cd11334 AmyAc_TreS Alpha amylase catalytic domain found in Trehalose synthetase. Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 447 -200474 cd11335 AmyAc_MTase_N Alpha amylase catalytic domain found in maltosyltransferase. Maltosyltransferase (MTase), a maltodextrin glycosyltransferase, acts on starch and maltooligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or maltooligosaccharides to other alpha-1,4-linked glucans, maltooligosaccharides or glucose. MTase is a homodimer. The catalytic core domain has the (beta/alpha) 8 barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites: one lies in the active-site cleft and the other is located in a pocket adjacent to the active-site cleft. It is a member of the alpha-amylase family, but unlike typical alpha-amylases, MTase does not require calcium for activity and lacks two histidine residues which are predicted to be critical for binding the glucose residue adjacent to the scissile bond in the substrates. The common reaction chemistry of the alpha-amylase family of enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 538 -200475 cd11336 AmyAc_MTSase Alpha amylase catalytic domain found in maltooligosyl trehalose synthase (MTSase). Maltooligosyl trehalose synthase (MTSase) domain. MTSase and maltooligosyl trehalose trehalohydrolase (MTHase) work together to produce trehalose. MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 660 -200476 cd11337 AmyAc_CMD_like Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is mainly bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 328 -200477 cd11338 AmyAc_CMD Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 389 -200478 cd11339 AmyAc_bac_CMD_like_2 Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 344 -200479 cd11340 AmyAc_bac_CMD_like_3 Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 407 -200480 cd11341 AmyAc_Pullulanase_LD-like Alpha amylase catalytic domain found in Pullulanase (also called dextrinase; alpha-dextrin endo-1,6-alpha glucosidase), limit dextrinase, and related proteins. Pullulanase is an enzyme with action similar to that of isoamylase; it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. Pullulanases are very similar to limit dextrinases, although they differ in their action on glycogen and the rate of hydrolysis of limit dextrins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 406 -200481 cd11343 AmyAc_Sucrose_phosphorylase-like Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 445 -200482 cd11344 AmyAc_GlgE_like Alpha amylase catalytic domain found in GlgE-like proteins. GlgE is a (1,4)-a-D-glucan:phosphate a-D-maltosyltransferase, involved in a-glucan biosynthesis in bacteria. It is also an anti-tuberculosis drug target. GlgE isoform I from Streptomyces coelicolor has the same catalytic and very similar kinetic properties to GlgE from Mycobacterium tuberculosis. GlgE from Streptomyces coelicolor forms a homodimer with each subunit comprising five domains (A, B, C, N, and S) and 2 inserts. Domain A is a catalytic alpha-amylase-type domain that along with domain N, which has a beta-sandwich fold and forms the core of the dimer interface, binds cyclodextrins. Domain A, B, and the 2 inserts define a well conserved donor pocket that binds maltose. Cyclodextrins competitively inhibit the binding of maltooligosaccharides to the S. coelicolor enzyme, indicating that the hydrophobic patch overlaps with the acceptor binding site. This is not the case in M. tuberculosis GlgE because cyclodextrins do not inhibit this enzyme, despite acceptor length specificity being conserved. Domain C is hypothesized to help stabilize domain A and could be involved in substrate binding. Domain S is a helix bundle that is inserted within the N domain and it plays a role in the dimer interface and interacts directly with domain B. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 355 -200483 cd11345 AmyAc_SLC3A2 Alpha amylase catalytic domain found in solute carrier family 3 member 2 proteins. 4F2 cell-surface antigen heavy chain (hc) is a protein that in humans is encoded by the SLC3A2 gene. 4F2hc is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. It is related to bacterial alpha-glycosidases, but lacks alpha-glycosidase activity. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 326 -200484 cd11346 AmyAc_plant_IsoA Alpha amylase catalytic domain family found in plant isoamylases. Two types of debranching enzymes exist in plants: isoamylase-type (EC 3.2.1.68) and a pullulanase-type (EC 3.2.1.41, also known as limit-dextrinase). These efficiently hydrolyze alpha-(1,6)-linkages in amylopectin and pullulan. This group does not contain the conserved catalytic triad present in other alpha-amylase-like proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 347 -200485 cd11347 AmyAc_1 Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 391 -200486 cd11348 AmyAc_2 Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The catalytic triad (DED) is not present here. The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 429 -200487 cd11349 AmyAc_3 Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 456 -200488 cd11350 AmyAc_4 Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 390 -200489 cd11352 AmyAc_5 Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 443 -200490 cd11353 AmyAc_euk_bac_CMD_like Alpha amylase catalytic domain found in eukaryotic and bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is mainly bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 366 -200491 cd11354 AmyAc_bac_CMD_like Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 357 -200492 cd11355 AmyAc_Sucrose_phosphorylase Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 433 -200493 cd11356 AmyAc_Sucrose_phosphorylase-like_1 Alpha amylase catalytic domain found in sucrose phosphorylase-like proteins (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 458 -206766 cd11358 RNase_PH RNase PH-like 3'-5' exoribonucleases. RNase PH-like 3'-5' exoribonucleases are enzymes that catalyze the 3' to 5' processing and decay of RNA substrates. Evolutionarily related members can be fond in prokaryotes, archaea, and eukaryotes. Bacterial ribonuclease PH contains a single copy of this domain, and removes nucleotide residues following the -CCA terminus of tRNA. Polyribonucleotide nucleotidyltransferase (PNPase) contains two tandem copies of the domain and is involved in mRNA degradation in a 3'-5' direction. Archaeal exosomes contain two individually encoded RNase PH-like 3'-5' exoribonucleases and are required for 3' processing of the 5.8S rRNA. The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits, but it is not a phosphorolytic enzyme per se; it directly associates with Rrp44 and Rrp6, which are hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. All members of the RNase PH-like family form ring structures by oligomerization of six domains or subunits, except for a total of 3 subunits with tandem repeats in the case of PNPase, with a central channel through which the RNA substrate must pass to gain access to the phosphorolytic active sites. 218 -200494 cd11359 AmyAc_SLC3A1 Alpha amylase catalytic domain found in Solute Carrier family 3 member 1 proteins. SLC3A1, also called Neutral and basic amino acid transport protein rBAT or NBAT, plays a role in amino acid and cystine absorption. Mutations in the gene encoding SLC3A1 causes cystinuria, an autosomal recessive disorder characterized by the failure of proximal tubules to reabsorb filtered cystine and dibasic amino acids. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 456 -206767 cd11362 RNase_PH_bact Ribonuclease PH. Ribonuclease PH (RNase PH)-like 3'-5' exoribonucleases are enzymes that catalyze the 3' to 5' processing and decay of RNA substrates. Structurally all members of this family form hexameric rings (trimers of dimers). Bacterial RNase PH forms a homohexameric ring, and removes nucleotide residues following the -CCA terminus of tRNA. 227 -206768 cd11363 RNase_PH_PNPase_1 Polyribonucleotide nucleotidyltransferase, repeat 1. Polyribonucleotide nucleotidyltransferase (PNPase) is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally, all members of this family form hexameric rings. In the case of PNPase the complex is a trimer, since each monomer contains two tandem copies of the domain. PNPase is involved in mRNA degradation in a 3'-5' direction and in quality control of ribosomal RNA precursors. It is part of the RNA degradosome complex and binds to the scaffolding domain of the endoribonuclease RNase E. 229 -206769 cd11364 RNase_PH_PNPase_2 Polyribonucleotide nucleotidyltransferase, repeat 2. Polyribonucleotide nucleotidyltransferase (PNPase) is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally, all members of this family form hexameric rings. In the case of PNPase the complex is a trimer, since each monomer contains two tandem copies of the domain. PNPase is involved in mRNA degradation in a 3'-5' direction and in quality control of ribosomal RNA precursors, with the second repeat containing the active site. PNPase is part of the RNA degradosome complex and binds to the scaffolding domain of the endoribonuclease RNase E. 223 -206770 cd11365 RNase_PH_archRRP42 RRP42 subunit of archaeal exosome. The RRP42 subunit of the archaeal exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of dimers). In archaea, the ring is formed by three Rrp41:Rrp42 dimers. The central chamber within the ring contains three phosphorolytic active sites located in an Rrp41 pocket at the interface between Rrp42 and Rrp41. The ring is capped by three copies of Rrp4 and/or Csl4 which contain putative RNA interaction domains. The archaeal exosome degrades single-stranded RNA (ssRNA) in the 3'-5' direction, but also can catalyze the reverse reaction of adding nucleoside diphosphates to the 3'-end of RNA which has been shown to lead to the formation of poly-A-rich tails on RNA. It is required for 3' processing of the 5.8S rRNA. 256 -206771 cd11366 RNase_PH_archRRP41 RRP41 subunit of archaeal exosome. The RRP41 subunit of the archaeal exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of dimers). In archaea, the ring is formed by three Rrp41:Rrp42 dimers. The central chamber within the ring contains three phosphorolytic active sites located in an Rrp41 pocket at the interface between Rrp42 and Rrp41. The ring is capped by three copies of Rrp4 and/or Csl4 which contain putative RNA interaction domains. The archaeal exosome degrades single-stranded RNA (ssRNA) in the 3'-5' direction, but also can catalyze the reverse reaction of adding nucleoside diphosphates to the 3'-end of RNA which has been shown to lead to the formation of poly-A-rich tails on RNA. 214 -206772 cd11367 RNase_PH_RRP42 RRP42 subunit of eukaryotic exosome. The RRP42 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 272 -206773 cd11368 RNase_PH_RRP45 RRP45 subunit of eukaryotic exosome. The RRP45 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 259 -206774 cd11369 RNase_PH_RRP43 RRP43 subunit of eukaryotic exosome. The RRP43 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 261 -206775 cd11370 RNase_PH_RRP41 RRP41 subunit of eukaryotic exosome. The RRP41 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 226 -206776 cd11371 RNase_PH_MTR3 MTR3 subunit of eukaryotic exosome. The MTR3 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 210 -206777 cd11372 RNase_PH_RRP46 RRP46 subunit of eukaryotic exosome. The RRP46 subunit of eukaryotic exosome is a member of the RNase_PH family, named after the bacterial Ribonuclease PH, a 3'-5' exoribonuclease. Structurally all members of this family form hexameric rings (trimers of Rrp41-Rrp45, Rrp46-Rrp43, and Mtr3-Rrp42 dimers). The eukaryotic exosome core is composed of six individually encoded RNase PH-like subunits and three additional proteins (Rrp4, Csl4 and Rrp40) that form a stable cap and contain RNA-binding domains. The RNase PH-like subunits are no longer phosphorolytic enzymes, the exosome directly associates with Rrp44 and Rrp6, hydrolytic exoribonucleases related to bacterial RNase II/R and RNase D. The exosome plays an important role in RNA turnover. It plays a crucial role in the maturation of stable RNA species such as rRNA, snRNA and snoRNA, quality control of mRNA, and the degradation of RNA processing by-products and non-coding transcripts. 199 -200603 cd11374 CE4_u10 Putative catalytic domain of uncharacterized bacterial proteins from the carbohydrate esterase 4 superfamily. The family corresponds to a group of uncharacterized bacterial proteins with high sequence similarity to the catalytic domain of the six-stranded barrel rhizobial NodB-like proteins, which remove N-linked or O-linked acetyl groups of cell wall polysaccharides and belong to the larger carbohydrate esterase 4 (CE4) superfamily. 226 -213029 cd11375 Peptidase_M54 Peptidase family M54, also called archaemetzincins or archaelysins. Peptidase M54 (archaemetzincin or archaelysin) is a zinc-dependent aminopeptidase that contains the consensus zinc-binding sequence HEXXHXXGXXH/D and a conserved Met residue at the active site, and is thus classified as a metzincin. Archaemetzincins, first identified in archaea, are also found in bacteria and eukaryotes, including two human members, archaemetzincin-1 and -2 (AMZ1 and AMZ2). AMZ1 is mainly found in the liver and heart while AMZ2 is primarily expressed in testis and heart; both have been reported to degrade synthetic substrates and peptides. The Peptidase M54 family contains an extended metzincin concensus sequence of HEXXHXXGX3CX4CXMX17CXXC such that a second zinc ion is bound to four cysteines, thus resembling a zinc finger. Phylogenetic analysis of this family reveals a complex evolutionary process involving a series of lateral gene transfer, gene loss and genetic duplication events. 173 -271138 cd11376 Imelysin-like imelysin also called Peptidase M75. This family includes insulin-cleaving membrane protease (imelysin, ICMP), imelysin-like protein (IPPA from Psychrobacter arcticus), iron-regulated protein A (IrpA) and iron-transporter EfeO-like alginate-binding protein (Algp7). Imelysin is a membrane protein with the active site outside the cell envelope. It is also called the peptidase M75 since the HxxE sequence motif characteristic of the M14 peptidase is completely conserved. However, the overall structure and the GxHxxE motif region differ from the known HxxE metallopeptidases, suggesting that imelysin-like proteins may not be peptidases. Imelysin's cleavage of the oxidized insulin B chain shows a preference for aromatic hydrophobic amino acids at P1'. Imelysin was first identified in Pseudomonas aeruginosa and has also been shown to cleave fibrinogen. The tertiary structure shows a fold consisting of two domains, each consisting of a bundle of four helices that are similar to each other, implying an ancient gene duplication and fusion event. In addition to an imelysin-like domain, Algp7 typically contains an N-terminal cupredoxin (CUP) domain and has a deep cleft between the 4-helix bundles sufficiently large to accommodate macromolecules such as alginate polysaccharide. 253 -206778 cd11377 Pro-peptidase_S53 Activation domain of S53 peptidases. Members of this family are found in various subtilase propeptides, such as pro-kumamolysin and tripeptidyl peptidase I, and adopt a ferredoxin-like fold, with an alpha+beta sandwich. Cleavage of the domain results in activation of the peptidase. 139 -211390 cd11378 DUF296 Domain of unknown function found in archaea, bacteria, and plants. This domain is found in proteins that contain AT-hook motifs, which suggests a role in DNA-binding for the proteins as a whole. Three conserved histidine residues appear to form a zinc-binding site, and the domain has been observed to form homotrimers. It co-occurs with a thioredoxin-like domain in uncharacterized cyanobacterial proteins. 113 -211391 cd11379 DUF4425 Uncharacterized protein conserved in Bacteroidetes. This family appears to form homodimers, the 3D structure has been determined by both NMR and X-ray crystallography. 119 -211392 cd11380 Ribosomal_S8e_like Eukaryotic/archaeal ribosomal protein S8e and similar proteins. This family contains the eukaryotic/archaeal ribosomal protein S8, a component of the small ribosomal subunits, as well as the NSA2 gene product. 138 -211393 cd11381 NSA2 pre-ribosomal protein NSA2 (Nop seven-associated 2). NSA2 appears to be a protein required for the maturation of 27S pre-rRNA in yeast; it has been characterized in mammalian cells as a nucleolar protein that might play a role in the regulation of the cell cycle and in cell proliferation. 257 -211394 cd11382 Ribosomal_S8e Eukaryotic/archaeal ribosomal protein S8e (RPS8). The eukaryotic/archaeal ribosomal protein S8 is a component of the small (40S in eukaryotes, 30S in archaea) ribosomal subunits and interacts tightly with 18S rRNA (16S rRNA in archaea, presumably). 122 -206743 cd11383 YfjP YfjP GTPase. The Era (E. coli Ras-like protein)-like YfjP subfamily includes several uncharacterized bacterial GTPases that are similar to Era. They generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. 140 -206744 cd11384 RagA_like Rag GTPase, subfamily of Ras-related GTPases, includes Ras-related GTP-binding proteins A and B. RagA and RagB are closely related Rag GTPases (ras-related GTP-binding protein A and B) that constitute a unique subgroup of the Ras superfamily, and are functional homologs of Saccharomyces cerevisiae Gtr1. These domains function by forming heterodimers with RagC or RagD, and similarly, Gtr1 dimerizes with Gtr2, through the carboxy-terminal segments. They play an essential role in regulating amino acid-induced target of rapamycin complex 1 (TORC1) kinase signaling, exocytic cargo sorting at endosomes, and epigenetic control of gene expression. In response to amino acids, the Rag GTPases guide the TORC1 complex to activate the platform containing Rheb proto-oncogene by driving the relocalization of mTORC1 from discrete locations in the cytoplasm to a late endosomal and/or lysosomal compartment that is Rheb-enriched and contains Rab-7. 286 -206745 cd11385 RagC_like Rag GTPase, subfamily of Ras-related GTPases, includes Ras-related GTP-binding proteins C and D. RagC and RagD are closely related Rag GTPases (ras-related GTP-binding protein C and D) that constitute a unique subgroup of the Ras superfamily, and are functional homologs of Saccharomyces cerevisiae Gtr2. These domains form heterodimers with RagA or RagB, and similarly, Gtr2 dimerizes with Gtr1 in order to function. They play an essential role in regulating amino acid-induced target of rapamycin complex 1 (TORC1) kinase signaling, exocytic cargo sorting at endosomes, and epigenetic control of gene expression. In response to amino acids, the Rag GTPases guide the TORC1 complex to activate the platform containing Rheb proto-oncogene by driving the relocalization of mTORC1 from discrete locations in the cytoplasm to a late endosomal and/or lysosomal compartment that is Rheb-enriched and contains Rab-7. 175 -206779 cd11386 MCP_signal Methyl-accepting chemotaxis protein (MCP), signaling domain. Methyl-accepting chemotaxis proteins (MCPs or chemotaxis receptors) are an integral part of the transmembrane protein complex that controls bacterial chemotaxis, together with the histidine kinase CheA, the receptor-coupling protein CheW, receptor-modification enzymes, and localized phosphatases. MCPs contain a four helix trans membrane region, an N-terminal periplasmic ligand binding domain, and a C-terminal HAMP domain followed by a cytoplasmic signaling domain. This C-terminal signaling domain dimerizes into a four-helix bundle and interacts with CheA through the adaptor protein CheW. 200 -211395 cd11473 W2 C-terminal domain of eIF4-gamma/eIF5/eIF2b-epsilon. This domain is found at the C-terminus of several translation initiation factors, including the epsilon chain of eIF2b, where it has been found to catalyze the conversion of eIF2.GDP to its active eIF2.GTP form. The structure of the domain resembles that of a set of concatenated HEAT repeats. 135 -271368 cd11474 SLC5sbd_CHT Na(+)- and Cl(-)-dependent choline cotransporter CHT and related proteins; solute-binding domain. Na+/choline co-transport by CHT is Cl- dependent. Human CHT (also called CHT1) is encoded by the SLC5A7 gene, and is expressed in the central nervous system. hCHT1-mediated choline uptake may be the rate-limiting step in acetylcholine synthesis, and essential for cholinergic transmission. Changes in this choline uptake in cortical neurons may contribute to Alzheimer's dementia. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 464 -271369 cd11475 SLC5sbd_PutP Na(+)/proline cotransporter PutP and related proteins; solute binding domain. Escherichia coli PutP catalyzes the Na+-coupled uptake of proline with a stoichiometry of 1:1. The putP gene is part of the put operon; this operon in addition encodes a proline dehydrogenase, allowing the use of proline as a source of nitrogen and/or carbon. This subfamily also includes the Bacillus subtilis Na+/proline cotransporter (OpuE) which has an osmoprotective instead of catabolic role. Expression of the opuE gene is under osmotic control and different sigma factors contribute to its regulation; it is also a putative CcpA-activated gene. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 464 -271370 cd11476 SLC5sbd_DUR3 Na(+)/urea-polyamine cotransporter DUR3, and related proteins; solute-binding domain. Dur3 is the yeast plasma membrane urea transporter. Saccharomyces cerevisiae DUR3 also transports polyamine. The polyamine uptake of S. cerevisiae DUR3 is activated upon its phosphorylation by polyamine transport protein kinase 2 (PTK2). S. cerevisiae DUR3 also appears to play a role in regulating the cellular boron concentration. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 493 -271371 cd11477 SLC5sbd_u1 Uncharacterized bacterial solute carrier 5 subfamily; putative solute-binding domain. SLC5 (also called the sodium/glucose cotransporter family or solute sodium symporter family) is a family of proteins that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. Prokaryotic members of this family include Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 493 -271372 cd11478 SLC5sbd_u2 Uncharacterized bacterial solute carrier 5 subfamily; putative solute-binding domain. SLC5 (also called the sodium/glucose cotransporter family or solute sodium symporter family) is a family of proteins that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. Prokaryotic members of this family include Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 496 -271373 cd11479 SLC5sbd_u3 Uncharacterized bacterial solute carrier 5 subfamily; putative solute-binding domain. SLC5 (also called the sodium/glucose cotransporter family or solute sodium symporter family) is a family of proteins that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. Prokaryotic members of this family include Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 454 -271374 cd11480 SLC5sbd_u4 Uncharacterized bacterial solute carrier 5 subfamily; putative solute-binding domain. SLC5 (also called the sodium/glucose cotransporter family or solute sodium symporter family) is a family of proteins that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. Prokaryotic members of this family include Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily belongs to the solute carrier 5 (SLC5) transporter family. 488 -271375 cd11482 SLC-NCS1sbd_NRT1-like nucleobase-cation-symport-1 (NCS1) transporter NRT1-like; solute-binding domain. This fungal NCS1 subfamily includes various Saccharomyces cerevisiae transporters: nicotinamide riboside transporter 1 (Nrt1p, also called Thi71p), Dal4p (allantoin permease), Fui1p (uridine permease), Fur4p (uracil permease), and Thi7p (thiamine transporter). NCS1s are essential components of salvage pathways for nucleobases and related metabolites. NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters, and solute carrier 6 family neurotransmitter transporters. 480 -271376 cd11483 SLC-NCS1sbd_Mhp1-like nucleobase-cation-symport-1 (NCS1) transporter Mhp1-like; solute-binding domain. This NCS1 subfamily includes Microbacterium liquefaciens Mhp1, and various uncharacterized NCS1s. Mhp1 mediates the uptake of indolyl methyl- and benzyl-hydantoins as part of a metabolic salvage pathway for their conversion to amino acids. Mhp1 has 12 transmembrane (TM) helices (an inverted topology repeat: TMs1-5 and TMs6-10, and TMs11-12; TMs numbered to conform to the Solute carrier 6 (SLC6) family Aquifex aeolicus LeuT). NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their other known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters (SLC5s), and SLC6 neurotransmitter transporters. 451 -271377 cd11484 SLC-NCS1sbd_CobB-like nucleobase-cation-symport-1 (NCS1) transporter CobB-like; solute-binding domain. This NCS1 subfamily includes Escherichia coli CodB (cytosine permease), and the Saccharomyces cerevisiae transporters: Fcy21p (Purine-cytosine permease), and vitamin B6 transporter Tpn1. NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters (SLC5s), and solute carrier 6 family neurotransmitter transporters (SLC6s). 406 -271378 cd11485 SLC-NCS1sbd_YbbW-like uncharacterized nucleobase-cation-symport-1 (NCS1) transporter subfamily, YbbW-like; solute-binding domain. NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. This subfamily includes the putative allantoin transporter Escherichia coli YbbW (also known as GlxB2). NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters (SLC5s), and solute carrier 6 family neurotransmitter transporters (SLC6s). 456 -271379 cd11486 SLC5sbd_SGLT1 Na(+)/glucose cotransporter SGLT1;solute binding domain. Human SGLT1 (hSGLT1) is a high-affinity/low-capacity glucose transporter, which can also transport galactose. In the transport mechanism, two Na+ ions first bind to the extracellular side of the transporter and induce a conformational change in the glucose binding site. This results in an increased affinity for glucose. A second conformational change in the transporter follows, bringing the Na+ and glucose binding sites to the inner surface of the membrane. Glucose is then released, followed by the Na+ ions. In the process, hSGLT1 is also able to transport water and urea and may be a major pathway for transport of these across the intestinal brush-border membrane. hSGLT1 is encoded by the SLC5A1 gene and expressed mostly in the intestine, but also in the trachea, kidney, heart, brain, testis, and prostate. The WHO/UNICEF oral rehydration solution (ORS) for the treatment of secretory diarrhea contains salt and glucose. The glucose, along with sodium ions, is transported by hSGLT1 and water is either co-transported along with these or follows by osmosis. Mutations in SGLT1 are associated with intestinal glucose galactose malabsorption (GGM). Up-regulation of intestinal SGLT1 may protect against enteric infections. SGLT1 is expressed in colorectal, head and neck, and prostate tumors. Epidermal growth factor receptor (EGFR) functions in cell survival by stabilizing SGLT1, and thereby maintaining intracellular glucose levels. SGLT1 is predicted to have 14 membrane-spanning regions. This subgroup belongs to the solute carrier 5 (SLC5)transporter family. 636 -212056 cd11487 SLC5sbd_SGLT2 Na(+)/glucose cotransporter SGLT2 and related proteins; solute-binding domain. Human SGLT2 (hSGLT2) is a high-capacity, low-affinity glucose transporter, that plays an important role in renal glucose reabsorption. It is encoded by the SLC5A2 gene and expressed almost exclusively in renal proximal tubule cells. Mutations in hSGLT2 cause Familial Renal Glucosuria (FRG), a rare autosomal defect in glucose transport. hSGLT2 is a major drug target for regulating blood glucose levels in diabetes. hSGLT2 is predicted to have 14 membrane-spanning regions. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 583 -271380 cd11488 SLC5sbd_SGLT4 Na(+)/glucose cotransporter SGLT4 and related proteins; solute-binding domain. Human SGLT4 (hSGLT4) has been reported to be a low-affinity glucose transporter with unusual sugar selectivity: it transports D-mannose but not galactose or 3-O-methyl-D-glucoside. It is encoded by the SLC5A9 gene and is expressed in intestine, kidney, liver, brain, lung, trachea, uterus, and pancreas. hSLGT4 is predicted to contain 14 membrane-spanning regions. This subgroup belongs to the solute carrier 5 (SLC5 )transporter family. 605 -212058 cd11489 SLC5sbd_SGLT5 Na(+)/glucose cotransporter SGLT5 and related proteins; solute-binding domain. Human SGLT5 is a glucose transporter, which also transports galactose. It is encoded by the SLC5A10 gene, and is exclusively expressed in the renal cortex. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 604 -271381 cd11490 SLC5sbd_SGLT6 Na(+)/chiro-inositol cotransporter SGLT6 and related proteins; solute-binding domain. Human SGLT6 (also called KST1, SMIT2) is a chiro-inositol transporter, which also transports myo-inositol. It is encoded by the SLC5A11 gene. Xenopus Na1-glucose cotransporter type 1 (SGLT-1)-like protein is predicted to contain 14 membrane-spanning regions. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 602 -271382 cd11491 SLC5sbd_SMIT Na(+)/myo-inositol cotransporter SMIT and related proteins; solute-binding domain. Human SMIT is a high-affinity myo-inositol transporter, and is expressed in brain, heart, kidney, and lung. Inhibition of myo-inositol uptake, through down-regulation of SMIT, may be a common mechanism of action of mood stabilizers, including lithium, carbamazepine, and valproate. SMIT is encoded by the SLC5A3 gene, which is a candidate gene for pathogenesis of nervous system dysfunction in Down syndrome (DS). The SNP, 21q22 near SLC5A3-MRPS6-KCNE2, has been associated with coronary heart disease, cardiovascular disease, and myocardial infarction. SMIT may also be involved in the pathogeneisis of congenital cataract. SMIT also plays roles in osteogenesis, bone formation, and bone mineral density determination. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 609 -271383 cd11492 SLC5sbd_NIS-SMVT Na(+)/iodide (NIS) and Na(+)/multivitamin (SMVT) cotransporters, and related proteins; solute binding domain. NIS (encoded by the SLC5A5 gene) transports I-, and other anions including ClO4-, SCN-, and Br-. SMVT (encoded by the SLC5A6 gene) transports biotin, pantothenic acid and lipoate. This subfamily also includes SMCT1 and -2. SMCT1(encoded by the SLC5A8 gene) is a high-affinity transporter of various monocarboxylates including lactate and pyruvate, short-chain fatty acids, ketone bodies, nicotinate and its structural analogs, pyroglutamate, benzoate and its derivatives, and iodide. SMCT2 (encoded by the SLC5A12 gene) is a low-affinity transporter for short-chain fatty acids, lactate, pyruvate, and nicotinate. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 522 -271384 cd11493 SLC5sbd_NIS-like_u1 uncharacterized subgroup of the Na(+)/iodide (NIS) cotransporter subfamily; putative solute-binding domain. Proteins belonging to the same subfamily as this uncharacterized subgroup include i) NIS, which transports I-, and other anions including ClO4-, SCN-, and Br-, ii) SMVT, which transports biotin, pantothenic acid and lipoate, and iii) the Na(+)/monocarboxylate cotransporters SMCT1 and 2. SMCT1 is a high-affinity transporter while SMCT2 is a low-affinity transporter. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 479 -271385 cd11494 SLC5sbd_NIS-like_u2 uncharacterized subgroup of the Na(+)/iodide (NIS) cotransporter subfamily; putative solute-binding domain. Proteins belonging to the same subfamily as this uncharacterized subgroup include i) NIS, which transports I-, and other anions including ClO4-, SCN-, and Br-, ii) SMVT, which transports biotin, pantothenic acid and lipoate, and iii) the Na(+)/monocarboxylate cotransporters, SMCT1 and 2. SMCT1 is a high-affinity transporter while SMCT2 is a low-affinity transporter. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 473 -271386 cd11495 SLC5sbd_NIS-like_u3 uncharacterized subgroup of the Na(+)/iodide (NIS) cotransporter subfamily; putative solute-binding domain. Proteins belonging to the same subfamily as this uncharacterized subgroup include i) NIS, which transports I-, and other anions including ClO4-, SCN-, and Br-, ii) SMVT, which transports biotin, pantothenic acid and lipoate, and iii) the Na(+)/monocarboxylate cotransporters SMCT1 and 2. SMCT1 is a high-affinity transporter while SMCT2 is a low-affinity transporter. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 473 -271387 cd11496 SLC6sbd-TauT-like Na(+)- and Cl(-)-dependent taurine transporter TauT, and related proteins; solute-binding domain. This subgroup represents the solute-binding domain of TauT-like Na(+)- and Cl(-)-dependent transporters. Family members include: human TauT which transports taurine, human GAT1, GAT2, and GAT3, and BGT1, which transport gamma-aminobutyric acid (GABA), and human CT1 which transports creatine. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 543 -271388 cd11497 SLC6sbd_SERT-like Na(+)- and Cl(-)-dependent monoamine transporters, SERT, NET, DAT1 and related proteins; solute binding domain. This subgroup represents the solute-binding domain of transmembrane transporters that transport monoamine neurotransmitters from synaptic spaces into presynaptic neurons. Members include: NET which transports norepinephrine, SERT which transports serotonin, and DAT1 which transports dopamine. These transporters may play a role in diseases including depression, anxiety disorders, attention-deficit hyperactivity disorder, and in the control of human behavior and emotional states. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 537 -212067 cd11498 SLC6sbd_GlyT1 Na(+)- and Cl(-)-dependent glycine transporter GlyT1; solute-binding domain. GlyT1 is a membrane-bound transporter that re-uptakes glycine from the synaptic cleft. Human GlyT1 is encoded by the SLC6A9 gene. GlyT1 is expressed in brain, pancreas, uterus, stomach, spleen, liver, and retina. GlyT1 may play a role in schizophrenia. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 585 -271389 cd11499 SLC6sbd_GlyT2 Na(+)- and Cl(-)-dependent glycine transporter GlyT2; solute-binding domain. GlyT2 (also called NET1) is a membrane-bound transporter that re-uptakes glycine from the synaptic cleft. Human GlyT2 is encoded by the SLC6A5 gene. GlyT2 is expressed in brain and spinal cord. GlyT2 may play a role in pain, and in spasticity. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 597 -271390 cd11500 SLC6sbd_PROT Na(+)- and Cl(-)-dependent L-proline transporter PROT; solute-binding domain. PROT is a high-affinity L-proline transporter that transports L-proline, and may have a role in excitatory neurotransmission. Human PROT is encoded by the SLC6A7 gene, a potential susceptible gene for asthma. PROT is expressed in the brain. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 541 -271391 cd11501 SLC6sbd_ATB0 Na(+)- and Cl(-)-dependent beta-alanine transporter ATB0+; solute-binding domain. ATB0+ (also known as the beta-alanine carrier) is a transmembrane transporter with a broad substrate specificity; it can transport non-alpha-amino acids such as beta-alanine with low affinity, and can transport dipolar and cationic amino acids such as leucine and lysine, with a higher affinity. It may have a role in the absorption of essential nutrients and drugs in the distal regions of the human gastrointestinal tract. Human ATB0+ is encoded by the SLC6A14 gene. ATB0+ is expressed in the lung, trachea, salivary gland, mammary gland, stomach, and pituitary gland. ATB0+ may play a role in obesity, and its upregulation may have a pathogenic role in colorectal cancer. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 602 -271392 cd11502 SLC6sbd_NTT5 Neurotransmitter transporter 5; solute-binding domain. Human NTT5 is encoded by the SLC6A16 gene. NTT5 is expressed in testis, pancreas, and prostate; its expression is predominantly intracellular, indicative of a vesicular location. Its substrates are unknown. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 535 -271393 cd11503 SLC5sbd_NIS Na(+)/iodide cotransporter NIS and related proteins; solute-binding domain. NIS (product of the SLC5A5 gene) transports I-, and other anions including ClO4-, SCN-, and Br-. NIS is expressed in the thyroid, colon, ovary, and in human breast cancers. It mediates the active transport and the concentration of iodide from the blood into thyroid follicular cells, a fundamental step in thyroid hormone biosynthesis, and is the basis of radioiodine therapy for thyroid cancer. Mutation in the SLC5A5 gene can result in a form of thyroid hormone dysgenesis. Human NIS exists mainly as a dimer stabilized by a disulfide bridge. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 535 -271394 cd11504 SLC5sbd_SMVT Na(+)/multivitamin cotransporter SMVT and related proteins; solute-binding domain. This multivitamin transporter SMVT (product of the SLC5A6 gene) transports biotin, pantothenic acid and lipoate, and is essential for mediating biotin uptake into mammalian cells. SMVT is expressed in the placenta, intestine, heart, brain, lung, liver, kidney and pancreas. Biotin may regulate its own cellular uptake through participation in holocarboxylase synthetase-dependent chromatin remodeling events at SMVT promoter loci. The cis regulatory elements, Kruppel-like factor 4 and activator protein-2, regulate the activity of the human SMVT promoter in the intestine. Glycosylation of the hSMVT is important for its transport function. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 527 -271395 cd11505 SLC5sbd_SMCT Na(+)/monocarboxylate cotransporters SMCT1 and 2 and related proteins; solute-binding domain. SMCT1 is a high-affinity transporter of various monocarboxylates including lactate and pyruvate, short-chain fatty acids, ketone bodies, nicotinate and its structural analogs, pyroglutamate, benzoate and its derivatives, and iodide. Human SMCT1 (hSMCT1, also called AIT) is encoded by the tumor suppressor gene SLC5A8. SMCT1 is expressed in the colon, small intestine, kidney, thyroid gland, retina, and brain. SMCT1 may contribute to the intestinal/colonic and oral absorption of monocarboxylate drugs. It also mediates iodide transport from thyrocyte into the colloid lumen in thyroid gland and, through transporting L-lactate and ketone bodies, helps maintain the energy status and the function of neurons. SMCT2 is a low-affinity transporter for short-chain fatty acids, lactate, pyruvate, and nicotinate. hSMCT2 is encoded by the SLC5A12 gene. SMCT2 is expressed in the kidney, small intestine, skeletal muscle, and retina. In the kidney, SMCT2 may initiate lactate absorption in the early parts of the tubule, SMCT1 in the latter parts of the tubule. In the retina, SMCT1 and SMCT2 may play a differential role in monocarboxylate transport in a cell type-specific manner. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 538 -212075 cd11506 SLC6sbd_GAT1 Na(+)- and Cl(-)-dependent GABA transporter 1; solute-binding domain. GAT1 transports gamma-aminobutyric acid (GABA). GABA is the main inhibitory neurotransmitter within the mammalian CNS. Human GAT1 is encoded by the SLC6A1 gene. GAT1 is expressed in brain and peripheral nervous system. The antiepileptic drug, Tiagabine, inhibits GAT1. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 598 -271396 cd11507 SLC6sbd_GAT2 Na(+)- and Cl(-)-dependent GABA transporter 2; solute-binding domain. This family includes human GAT2 (hGAT2) which transports gamma-aminobutyric acid (GABA). GABA is the main inhibitory neurotransmitter within the mammalian CNS. hGAT2 is encoded by the SLC6A13 gene, and is similar to mouse GAT-3, and rat GAT2. hGAT2 is expressed in brain, kidney, lung, and testis. hGAT2 is a potential drug target for treatment of epilepsy. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 544 -212077 cd11508 SLC6sbd_GAT3 Na(+)- and Cl(-)-dependent GABA transporter 3; solute-binding domain. This family includes human GAT3 (hGAT3) a high-affinity transporter of gamma-aminobutyric acid (GABA). GABA is the main inhibitory neurotransmitter within the mammalian CNS. hGAT3 is encoded by the SLC6A11 gene, and is similar to mouse GAT4, and rat GAT3/GATB. GAT3 is expressed primarily in the glia of the brain, and is a potential drug target for antiepileptic drugs. This subgroup belongs to the solute carrier 6 (SLC6) transporter family 542 -271397 cd11509 SLC6sbd_CT1 Na(+)- and Cl(-)-dependent creatine transporter 1; solute-binding domain. CT1 (also called CRTR, CRT) transports creatine. Human CT1 is encoded by the SLC6A8 gene. CT1 is ubiquitously expressed, with highest levels found in skeletal muscle and kidney. Creatine is absorbed from food or synthesized from arginine and plays an important role in energy metabolism. Deficiency in human CT1 leads to X-linked cerebral creatine transporter deficiency. In males, this disorder is characterized by language and speech delays, autistic-like behavior, seizures in about 50% of cases, and can also involve midfacial hypoplasia, and short stature. In females, it is characterized by mild cognitive impairment with behavior and learning problems. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 589 -271398 cd11510 SLC6sbd_TauT Na(+)- and Cl(-)-dependent taurine transporter; solute-binding domain. TauT is a Na(+)- and Cl(-)-dependent, high-affinity, low-capacity transporter of taurine and beta-alanine. Human TauT is encoded by the SLC6A6 gene. TauT is expressed in brain, retina, liver, kidney, heart, spleen, and pancreas. It may play a part in the supply of taurine to the intestinal epithelium and in the between-meal-capture of taurine. It may also participate in re-absorbing taurine that has been deconjugated from bile acids in the distal lumen. Functional TauT protects kidney cells from nephrotoxicity caused by the chemotherapeutic agent cisplatin; cisplatin down-regulates TauT in a p53-dependent manner. In mice, TauT has been shown to be important for the maintenance of skeletal muscle function and total exercise capacity. TauT-/- mice develop additional clinically important diseases, some of which are characterized by apoptosis, including vision loss, olfactory dysfunction, and chronic liver disease. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 542 -212080 cd11511 SLC6sbd_BGT1 Na(+)- and Cl(-)-dependent betaine/GABA transporter-1, and related proteins; solute-binding domain. BGT1 is a relatively low-affinity transporter of gamma-aminobutyric acid (GABA), and can also transport betaine. GABA is the main inhibitory neurotransmitter within the mammalian CNS. Human BGT1 is encoded by the SLC6A12 gene, and is similar to mouse GAT2. Mouse GAT2 plays a role in transporting GABA across the blood-brain barrier. In addition to being expressed in cells of the central nervous system, BGT1 is expressed in peripheral tissues, including kidney, liver, and heart. An association has been shown between the SLC6A12 gene and the occurrence of aspirin-intolerant asthma, and BGT1 is a drug target for antiepileptic drugs. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 541 -212081 cd11512 SLC6sbd_NET Na(+)- and Cl(-)-dependent norepinephrine transporter NET; solute-binding domain. NET (also called NAT1, NET1), is a transmembrane transporter that transports the neurotransmitter norepinephrine from synaptic spaces into presynaptic neurons. Human NET is encoded by the SLC6A2 gene. NET is expressed in brain, peripheral nervous system, adrenal gland, and placenta. NET may play a role in diseases or disorders including depression, orthostatic intolerance, anorexia nervosa, cardiovascular diseases, alcoholism, and attention-deficit hyperactivity disorder. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 560 -271399 cd11513 SLC6sbd_SERT Na(+)- and Cl(-)-dependent serotonin transporter SERT; solute-binding domain. SERT (also called 5-HTT), is a transmembrane transporter that transports the neurotransmitter serotonin from synaptic spaces into presynaptic neurons. The antiport of a K+ ion is believed to follow the transport of serotonin and promote the reorientation of SERT for another transport cycle. Human SERT is encoded by the SLC6A4 gene. SERT is expressed in brain, peripheral nervous system, placenta, epithelium, and platelets. SERT may play a role in diseases or disorders including anxiety, depression, autism, gastrointestinal disorders, premature ejaculation, and obesity. It may also have a role in social cognition. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 537 -212083 cd11514 SLC6sbd_DAT1 Na(+)- and Cl(-)-dependent dopamine transporter 1; solute-binding domain. DAT1 (also called DAT), is a plasma membrane transport protein that functions at the dopaminergic synapses to transport dopamine from the extracellular space back into the presynaptic nerve terminal. Human DAT1 is encoded by the SLC6A3 gene, and is expressed in the brain. DAT1 may play a role in diseases or disorders related to dopaminergic neurons, including attention-deficit hyperactivity disorder (ADHD), Tourette syndrome, Parkinson's disease, alcoholism, drug abuse, schizophrenia, extraversion, and risky behavior. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 555 -271400 cd11515 SLC6sbd_NTT4-like Na(+)-dependent neurotransmitter transporter 4, and related proteins; solute-binding domain. This subgroup includes the solute-binding domain of NTT4 (also called XT1) and SBAT1 (also called B0AT2, v7-3, NTT7-3); both these proteins can transport neutral amino acids. Human SBAT1 is encoded by the SLC6A15 gene, a susceptibility gene for major depression. SBAT1 is expressed in brain, and may have a role in transporting neurotransmitter precursors into neurons. Human NTT4 is encoded by the SLC6A17 gene. NTT4 is specifically expressed in the nervous system, in synaptic vesicles of glutamatergic and GABAergic neurons, and may play an important role in synaptic transmission. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 530 -212085 cd11516 SLC6sbd_B0AT1 Na(+)-dependent neutral amino acids transporter, B0AT1; solute-binding domain. B0AT1 (also called HND) transports neutral amino acids. Human B0AT1 is encoded by the SLC6A19 gene. B0AT1 is expressed primarily in the kidney and intestine; it requires collectrin for expression in the kidney, and angiotensin-converting enzyme 2 for expression in the intestine. Interaction with these two proteins implicates B0AT1 in more complex processes such as glomerular structure, exocytosis, and blood pressure control. The autosomal recessive disorder, Hartnup disorder, is caused by mutations in B0AT1. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 581 -212086 cd11517 SLC6sbd_B0AT3 glycine transporter, B0AT3; solute-binding domain. B0AT3 (also called Xtrp2, XT2) transports glycine. Human B0AT3 is encoded by the SLC6A18 gene. B0AT3 is expressed in the kidney. Mutations in the SLC6A18 gene may contribute to the autosomal recessive disorder iminoglycinuria and its related disorder hyperglycinuria. SLC6A18 or its neighboring genes are associated with increased susceptibility to myocardial infarction. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 576 -271401 cd11518 SLC6sbd_SIT1 Na(+)- and Cl(-)-dependent imino acid transporter SIT1; solute-binding domain. SIT1 (also called XTRP3, XT3, IMINO) transports imino acids, such as proline, pipecolate, MeAIB, and sarcosine. It has weak affinity for neutral amino acids such as phenylalanine. Human SIT1 is encoded by the SLC6A20 gene. SIT1 is expressed in brain, kidney, small intestine, thymus, spleen, ovary, and lung. SLC6A20 is a candidate gene for the rare disorder iminoglycinuria. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 576 -271402 cd11519 SLC5sbd_SMCT1 Na(+)/monocarboxylate cotransporter SMCT1 and related proteins; solute-binding domain. SMCT1 is a high-affinity transporter of various monocarboxylates including lactate and pyruvate, short-chain fatty acids, ketone bodies, nicotinate and its structural analogs, pyroglutamate, benzoate and its derivatives, and iodide. Human SMCT1 (hSMCT1, also called AIT) is encoded by the tumor suppressor gene SLC5A8. Its expression is under the control of the C/EBP transcription factor. Its tumor-suppressive role is related to uptake of butyrate, propionate, and pyruvate, these latter are inhibitors of histone deacetylases. SMCT1 is expressed in the colon, small intestine, kidney, thyroid gland, retina, and brain. SMCT1 may contribute to the intestinal/colonic and oral absorption of monocarboxylate drugs. SMCT1 also mediates iodide transport from thyrocyte into the colloid lumen in thyroid gland and through transporting l-lactate and ketone bodies helps maintain the energy status and the function of neurons. In the kidney its expression is limited to the S3 segment of the proximal convoluted tubule (in contrast to the low-affinity monocarboxylate transporter SMCT2, belonging to a different family, which is expressed along the entire length of the tubule). In the retina, SMCT1 and SMCT2 may play a differential role in monocarboxylate transport in a cell type-specific manner, SMCT1 is expressed predominantly in retinal neurons and in retinal pigmented epithelial (RPE) cells. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 542 -212089 cd11520 SLC5sbd_SMCT2 Na(+)/monocarboxylate cotransporter SMCT2 and related proteins; solute-binding domain. SMCT2 is a low-affinity transporter for short-chain fatty acids, lactate, pyruvate, and nicotinate. Human SMCT2 (hSMCT2) is encoded by the SLC5A12 gene. SMCT2 is expressed in the kidney, small intestine, skeletal muscle, and retina. In the kidney, it is expressed in the apical membrane of the proximal convoluted tubule, along the entire length of the tubule (in contrast to the high-affinity monocarboxylate transporter SMCT1, belonging to a different family, which is limited to the S3 segment of the tubule). SMCT2 may initiate lactate absorption in the early parts of the tubule. In the retina, SMCT1 and SMCT2 may play a differential role in monocarboxylate transport in a cell type-specific manner, SMCT2 is expressed exclusively in Muller cells. Nicotine transport by hSMCT2 is inhibited by several non-steroidal anti-inflammatory drugs. This subgroup belongs to the solute carrier 5 (SLC5) transporter family. 529 -271403 cd11521 SLC6sbd_NTT4 Na(+)-dependent neurotransmitter transporter 4; solute-binding domain. NTT4 (also called XT1) transports the neutral amino acids, proline, glycine, leucine, and alanine, and may play an important role in synaptic transmission. Human NTT4 is encoded by the SLC6A17 gene. NTT4 is specifically expressed in the nervous system, in synaptic vesicles of glutamatergic and GABAergic neurons. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 589 -212091 cd11522 SLC6sbd_SBAT1 Sodium-coupled branched-chain amino-acid transporter 1; solute-binding domain. SBAT1 (also called B0AT2, v7-3, NTT7-3) is a high-affinity Na(+)-dependent transporter for large neutral amino acids, including leucine, isoleucine, valine, proline and methionine. Human SBAT1 is encoded by the SLC6A15 gene, a susceptibility gene for major depression. SBAT1 is expressed in brain, and may have a role in transporting neurotransmitter precursors into neurons. This subgroup belongs to the solute carrier 6 (SLC6) transporter family. 580 -212133 cd11523 NTP-PPase Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain superfamily. This superfamily contains enzymes that hydrolyze the alpha-beta phosphodiester bond of all canonical NTPs into monophosphate derivatives and pyrophosphate (PPi). Divalent ions, such as Mg2+ ion(s), are essential to activate a proposed water nucleophile and stabilize the charged intermediates to facilitate catalysis. These enzymes share a conserved divalent ion-binding motif EXX[E/D] in their active sites. They also share a highly conserved four-helix bundle, where one face forms the active site, while the other participates in oligomer assembly. The four-helix bundle consists of two central antiparallel alpha-helices that can be contained within a single protomer or form upon dimerization. The superfamily members include dimeric dUTP pyrophosphatases (dUTPases; EC 3.6.1.23), the nonspecific NTP-PPase MazG proteins, HisE-encoded phosphoribosyl ATP pyrophosphohydolase (PRA-PH), fungal histidine biosynthesis trifunctional proteins, and several uncharacterized protein families. 72 -211400 cd11524 SYLF The SYLF domain (also called DUF500), a novel lipid-binding module. The SYLF domain is named after SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE, which are proteins that contain it. It is also called DUF500 and is highly conserved from bacteria to mammals. Some members, such as SH3YL1, Ysc84p, and Lsb3p, which represent the best characterized members of the family, also contain an SH3 domain, while family members from plants and stramenopiles also contain a FYVE zinc finger domain. Other members only contain a stand-alone SYLF domain. The SYLF domain of SH3YL1 binds phosphoinositides with high affinity, while the N-terminal SYLF domains of both Ysc84p and Lsb3p have been shown to bind and bundle actin filaments, as well as bind liposomes with high affinity. 194 -211401 cd11525 SYLF_SH3YL1_like The SYLF domain (also called DUF500), a novel lipid-binding module, of SH3 domain containing Ysc84-like 1 (SH3YL1) and similar proteins. This subfamily is composed of yeast Ysc84 (also called LAS17-binding protein 4, Lsb4p) and Lsb3p proteins, vertebrate SH3YL1 (SH3 domain containing Ysc84-like 1), and similar proteins. They contain an N-terminal SYLF domain (also called DUF500) and a C-terminal SH3 domain. SH3YL1 localizes to the plasma membrane and is required for dorsal ruffle formation. Ysc84p localizes to actin patches and plays an important role in actin polymerization during endocytosis. A study of the yeast SH3 domain interactome predicts that Lsb3p and Lsb4p may function as molecular hubs for the assembly of endocytic complexes. The SYLF domain of SH3YL1 binds phosphoinositides with high affinity, while the N-terminal SYLF domains of both Ysc84p and Lsb3p have been shown to bind and bundle actin filaments, as well as bind liposomes with high affinity. 199 -211402 cd11526 SYLF_FYVE The SYLF domain (also called DUF500), a novel lipid-binding module, of FYVE zinc finger domain containing proteins. This subfamily is composed of uncharacterized proteins from plants and stramenopiles containing a FYVE zinc finger domain followed by a SYLF domain (also called DUF500). The SYLF domain of the related protein, SH3YL1, binds phosphoinositides with high affinity, while the N-terminal SYLF domains of both Ysc84p and Lsb3p have been shown to bind and bundle actin filaments, as well as bind liposomes with high affinity. 201 -212134 cd11527 NTP-PPase_dUTPase Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in dimeric 2-Deoxyuridine 5'-triphosphate nucleotidohydrolase and similar proteins. dUTPase (dUTP pyrophosphatase; EC 3.6.1.23) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate. It acts to ensure chromosomal integrity by reducing the effective ratio of dUTP/dTTP. Members in this family are dimeric dUTPases, such as those from Leishmania major, Trypanosoma cruzi, and Campylobacter jejuni, which differ from the monomeric and trimeric forms and adopt an all-alpha topology. A central four-helix bundle, consisting of two alpha-helices from the rigid domain and two helices from the mobile domain and connecting loops, form the active site in dimeric dUTPase-like proteins, requiring the presence of metal ion cofactors to hydrolyze both dUTP and dUDP. 94 -212135 cd11528 NTP-PPase_MazG_Nterm Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) N-terminal tandem-domain of MazG proteins from Escherichia coli and bacterial homologs. MazG is a NTP-PPase that hydrolyzes all canonical NTPs into their corresponding nucleoside monophosphates and pyrophosphate. The prototype of this family is MazG proteins from Escherichia coli (EcMazG) that represents the most abundant form consisting two sequence-related domains in tandem, this family corresponding to the N-terminal MazG-like domain. EcMazG functions as a regulator of cellular response to starvation by lowering the cellular concentration of guanosine 3',5'-bispyrophosphate (ppGpp). EcMazG exists as a dimer; each monomer contains two tandem MazG-like domains with similarly folded globular structures. However, only the C-terminal domain has well-ordered active site and exhibits an NTPase activity responsible for the regulation of bacterial cell survival under nutritional stress. Divalent ions, such as Mg2+ or Mn2+, are required for activity; however, this domain does not exhibit an NTPase activity despite containing structural features such as the EEXX(E/D) motif and key basic catalytic residues responsible for nucleotide pyrophosphohydrolysis activity. It is suggested that the N-terminal domain of EcMazG might have a house-cleaning function by hydrolyzing noncanonical NTPs whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. 114 -212136 cd11529 NTP-PPase_MazG_Cterm Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) C-terminal tandem-domain of MazG proteins from Escherichia coli and bacterial homologs'. MazG is a NTP-PPase that hydrolyzes all canonical NTPs into their corresponding nucleoside monophosphates and pyrophosphate. The prototype of this family is MazG proteins from Escherichia coli (EcMazG) that represents the most abundant form consisting two sequence-related domains in tandem, this family corresponding to the C-terminal MazG-like domain. EcMazG functions as a regulator of cellular response to starvation by lowering the cellular concentration of guanosine 3',5'-bispyrophosphate (ppGpp). EcMazG exists as a dimer. Each monomer contains two tandem MazG-like domains with similarly folded globular structures. However, only the C-terminal domain has well-ordered active sites and exhibits an NTPase activity responsible for the regulation of bacterial cell survival under nutritional stress. Divalent ions, such as Mg2+ or Mn2+, are required for activity, along with structural features such as EEXX(E/D) motifs and key basic catalytic residues. It has been shown that the C-terminus NTPase activity is responsible for regulation of bacterial cell survival under nutritional stress. 116 -212137 cd11530 NTP-PPase_DR2231_like Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Deinococcus radiodurans DR2231 protein and its bacterial homologs. This family includes a MazG-like NTP-PPase from Deinococcus radiodurans (DR2231), a putative NTP-PPase YP_001813558.1 from Exiguobacterium sibiricum and their bacterial homologs. DR2231 shows significant structural resemblance to MazG proteins, but is functionally related to the dimeric dUTPases. It can hydrolyze dUTP into dUMP. DR2231-like proteins contain a well conserved divalent ion binding motif, EXXEX(12-28)EXXD, which is the identity signature for the all-alpha-helical NTP-PPase superfamily. Unlike normal dimeric dUTPase-like proteins with a central four-helix bundle forming the active site, YP_001813558.1 displays a very unusual interlaced segment-swapped dimer. It potentially prefers to hydrolyze dCTPs or its derivatives. YP_001813558.1-like proteins contain a variant divalent ion binding motif, EXXEX(12-28)AXXD. 88 -212138 cd11531 NTP-PPase_BsYpjD Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain putative pyrophosphatase YpjD from Bacillus subtilis and its bacterial homologs. This family includes a putative pyrophosphatase Ypjd from Bacillus subtilis (BsYpjD) and its homologs. Although its biological role has not been described in detail, BsYpjD shows significant sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, BsYpjD contains a single MazG-like domain. 93 -212139 cd11532 NTP-PPase_COG4997 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from archaea and bacteria. The family includes some uncharacterized hypothetical proteins from archaea and bacteria. Although their biological roles remain unclear, the family members show significant sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, the family contains a single MazG-like domain. 95 -212140 cd11533 NTP-PPase_Af0060_like Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in uncharacterized protein from Archaeoglobus fulgidus (Af0060) and its bacterial homologs. This family includes an uncharacterized protein from Archaeoglobus fulgidus (Af0060) and its homologs from bacteria. Although its biological role remains unclear, Af0060 shows high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 75 -212141 cd11534 NTP-PPase_HisIE_like Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Escherichia coli phosphoribosyl-ATP pyrophosphohydrolase (HisIE or PRATP-PH) and its homologs. This family includes Escherichia coli phosphoribosyl-ATP pyrophosphohydrolase, HisIE, and its homologs from all three kingdoms of life. E. coli HisIE is encoded by the hisIE gene, which is formed by hisE gene fused to hisl. HisIE is a bifunctional enzyme responsible for the second and third steps of the histidine-biosynthesis pathway. Its N-terminal and C-terminal domains have phosphoribosyl-AMP cyclohydrolase (HisI) and phosphoribosyl-ATP pyrophosphohydrolase (HisE or PRATP-PH) activity, respectively. This family corresponds to the C-terminal domain of HisIE and includes many hisE gene encoding proteins, all of which show significant sequence similarity to Mycobacterium tuberculosis phosphoribosyl-ATP pyrophosphohydrolase (HisE or PRATP-PH). These proteins may be responsible for only the second step in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP (PRATP) to phosphoribosyl-AMP (PRAMP) and pyrophosphate. 84 -212142 cd11535 NTP-PPase_SsMazG Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Sulfolobus solfataricus (Ss) and its homologs from archaea and bacteria. This family includes a MazG-like protein from Sulfolobus solfataricus (SsMazG) and its homologs from archaea and bacteria. Although its biological roles remain still unclear, SsMazG shows significant sequence similarity to the NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, SsMazG contains a single MazG-like domain. It is predicted that SsMazG might participate in house-cleaning by preventing incorporation of the oxidation product 2-oxo-(d)ATP (iso-dGTP), a mutagenic derivative of ATP, into DNA. 76 -212143 cd11536 NTP-PPase_iMazG Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in integron-associated MazG (iMazG) proteins. This family corresponds to the iMazG proteins representing a new subfamily of MazG NTP-PPases. iMazG is likely to act as a house-cleaning enzyme capable of removing aberrant dNTPs, preventing the incorporation of damaging non-canonical nucleotides into host-cell DNA. It can convert dNTP to dNMP and pyrophosphate by cleaving between the alpha- and beta-phosphates of its dNTP substrates, with a marked preference for dCTP and dATP. Unlike typical tandem-domain MazG proteins, iMazG contains a single MazG-like domain and functions as a tetramer (a dimer of dimers) with a typical four-helical bundle. The divalent ions, such as Mg2+, are required for its pyrophosphatase activity. 90 -212144 cd11537 NTP-PPase_RS21-C6_like Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in mouse RS21-C6 protein and its homologs. RS21-C6 proteins, highly expressed in all vertebrate genomes and green plants, act as house-cleaning enzymes, removing 5-methyl dCTP (m5dCTP) in order to prevent gene silencing. They show significant sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, RS21-C6 contains a single MazG-like domain and functions as a tetramer (a dimer of dimers) with a typical four-helical bundle. Divalent ions, such as Mg2+, are required for its pyrophosphatase activity. This family also includes a pyrophosphatase from Archaeoglobus fulgidus (Af1178). Although its biological role remains unclear, Af1178 shows significant sequence similarity to the mouse RS21-C6 protein. 90 -212145 cd11538 NTP-PPase_u1 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria. This family corresponds to a group of uncharacterized hypothetical proteins from bacteria, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 97 -212146 cd11539 NTP-PPase_u2 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea. The family corresponds to a group of uncharacterized hypothetical proteins from bacteria and archaea, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 85 -212147 cd11540 NTP-PPase_u3 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea. This family corresponds to a group of uncharacterized hypothetical proteins from bacteria and archaea, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 76 -212148 cd11541 NTP-PPase_u4 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea. This family corresponds to a group of uncharacterized hypothetical proteins from bacteria, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 91 -212149 cd11542 NTP-PPase_u5 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea. This family corresponds to a group of uncharacterized hypothetical proteins from bacteria, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain that contains a well conserved divalent ion-binding motif EXX[E/D]. 99 -212150 cd11543 NTP-PPase_u6 Nucleoside Triphosphate Pyrophosphohydrolase EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea. This family corresponds to a group of uncharacterized hypothetical proteins from bacteria, showing a high sequence similarity to the dimeric 2-deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTP pyrophosphatase or dUTPase) and NTP-PPase MazG proteins. However, unlike typical tandem-domain MazG proteins, members in this family consist of a single MazG-like domain. 87 -212151 cd11544 NTP-PPase_DR2231 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Deinococcus radiodurans DR2231 protein and its bacterial homologs. This family corresponds to the DR2231 protein, a MazG-like NTP-PPase from Deinococcus radiodurans, and its bacterial homologs. All family members contain a well-conserved divalent ion binding motif, EXXEX(12-28)EXXD, which is the identity signature for all-alpha-helical NTP-PPase superfamily. DR2231 shows significant structural resemblance to MazG proteins, but is functionally related to the dimeric dUTPases. It might be an evolutionary precursor of dimeric dUTPases with very high specificity in hydrolyzing dUTP into dUMP, but an inability to hydrolyze dTTP, a typical feature of dUTPases. Moreover, unlike the dUPase monomer containing a single active site, the DR2231 protein dimer holds two putative active sites. 116 -212152 cd11545 NTP-PPase_YP_001813558 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Exiguobacterium sibiricum YP_001813558.1 protein and its bacterial homologs. This family contains a putative NTP_PPase (YP_001813558.1) from Exiguobacterium sibiricum and its bacterial homologs. Unlike normal dimeric dUTPase-like proteins with a central four-helix bundle forming the active site, YP_001813558.1 displays a very unusual interlaced segment-swapped dimer that might be important for it to adapt to an extremely cold environment. Moreover, structural analysis and comparisons indicate that YP_001813558.1 potentially prefers to hydrolyze dCTPs or its derivatives. 115 -212153 cd11546 NTP-PPase_His4 Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in His4-like fungal histidine biosynthesis trifunctional proteins and their homologs. This family includes fungal histidine biosynthesis trifunctional proteins and their homologs from eukaryotes and bacteria. Some family members contain three domains responsible for phosphoribosyl-AMP cyclohydrolase (PRAMP-CH), phosphoribosyl-ATP pyrophosphohydrolase (PRATP-PH), and histidinol dehydrogenase (Histidinol-DH) activity, respectively. Some others do not have Histidinol-DH domain, but have an additional N-terminal TIM phosphate binding domain. This family corresponds to the domain for PRATP-PH activity, which shows significant sequence similarity to Mycobacterium tuberculosis PRATP-PH that catalyzes the second step in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP (PRATP) to phosphoribosyl-AMP (PRAMP) and pyrophosphate. 84 -212154 cd11547 NTP-PPase_HisE Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in Mycobacterium tuberculosis phosphoribosyl-ATP pyrophosphohydrolase (HisE or PRATP-PH) and its bacterial homologs. This family includes M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase (HisE or PRATP-PH) and its bacterial homologs. M. tuberculosis HisE is encoded by the hisE gene, which is a separate gene presenting in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. HisE is responsible for the second step in the histidine-biosynthetic pathway. It can irreversibly hydrolyze phosphoribosyl-ATP (PRATP) to phosphoribosyl-AMP (PRAMP) and pyrophosphate. HisE dimerizes into a four alpha-helix bundle, forming two inferred PRATP active sites on the outer faces. M. tuberculosis HisE has been found to be essential for growth in vitro, thus making it a potential drug target for tuberculosis. 86 -211389 cd11548 NodZ_like Alpha 1,6-fucosyltransferase similar to Bradyrhizobium NodZ. Bradyrhizobium NodZ is an alpha 1,6-fucosyltransferase involved in the biosynthesis of the nodulation factor, a lipo-chitooligosaccharide formed by three-to-six beta-1,4-linked N-acetyl-d-glucosamine (GlcNAc) residues and a fatty acid acyl group attached to the nitrogen atom at the non-reducing end. NodZ transfers L-fucose from the GDP-beta-L-fucose donor to the reducing residue of the chitin oligosaccharide backbone, before the attachment of a fatty acid group. O-fucosyltransferase-like proteins are GDP-fucose dependent enzymes with similarities to the family 1 glycosyltransferases (GT1). They are soluble ER proteins that may be proteolytically cleaved from a membrane-associated preprotein, and are involved in the O-fucosylation of protein substrates, the core fucosylation of growth factor receptors, and other processes. 287 -211403 cd11549 Serine_rich_CAS Serine rich Four helix bundle domain of CAS (Crk-Associated Substrate) scaffolding proteins; a protein interaction module. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes including migration, chemotaxis, apoptosis, differentiation, and progenitor cell function. They mediate the signaling of integrins at focal adhesions where they localize, and thus, regulate cell invasion and survival. Over-expression of these proteins is implicated in poor prognosis, increased metastasis, and resistance to chemotherapeutics in many cancers such as breast, lung, melanoma, and glioblastoma. CAS proteins have also been linked to the pathogenesis of inflammatory disorders, Alzheimer's, Parkinson's, and developmental defects. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. Vertebrates contain four CAS proteins: BCAR1 (or p130Cas), NEDD9 (or HEF1), EFS (or SIN), and CASS4 (or HEPL). CAS proteins associate with the 14-3-3 family; this interaction is regulated by integrin-mediated cell adhesion. The serine rich four helix bundle domain of BCAR1 has been shown to bind 14-3-3 in a phosphorylation-dependent manner. This domain is structurally similar to other helical bundles found in cell adhesion components such as alpha-catenin, vinculin, and FAK, and may bind other proteins in addition to the 14-3-3 family. 159 -211404 cd11550 Serine_rich_NEDD9 Serine rich Four helix bundle domain of CAS (Crk-Associated Substrate) scaffolding protein, Neural precursor cell Expressed, Developmentally Down-regulated 9; a protein interaction module. NEDD9 is also called human enhancer of filamentation 1 (HEF1) or CAS-L (Crk-associated substrate in lymphocyte). It was first described as a gene predominantly expressed in early embryonic brain, and was also isolated from a screen of human proteins that regulate filamentous budding in yeast, and as a tyrosine phosphorylated protein in lymphocytes. It promotes metastasis in different solid tumors. NEDD9 localizes in focal adhesions and associates with FAK and Abl kinase. It also interacts with SMAD3 and the proteasomal machinery which allows its rapid turnover; these interactions are not shared by other CAS proteins. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. CAS proteins associate with the 14-3-3 family; this interaction is regulated by integrin-mediated cell adhesion. The serine rich four helix bundle domain of BCAR1, another CAS protein, has been shown to bind 14-3-3 in a phosphorylation-dependent manner. This domain is structurally similar to other helical bundles found in cell adhesion components such as alpha-catenin, vinculin, and FAK, and may bind other proteins in addition to the 14-3-3 family. 162 -211405 cd11551 Serine_rich_CASS4 Serine rich Four helix bundle domain of CAS (Crk-Associated Substrate) scaffolding protein family member 4; a protein interaction module. CASS4, also called HEPL (HEF1-EFS-p130Cas-like), localizes to focal adhesions and plays a role in regulating FAK activity, focal adhesion integrity, and cell spreading. It is most abundant in blood cells and lung tissue, and is also found in high levels in leukemia and ovarian cell lines. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. CAS proteins associate with the 14-3-3 family; this interaction is regulated by integrin-mediated cell adhesion. The serine rich four helix bundle domain of BCAR1, another CAS protein, has been shown to bind 14-3-3 in a phosphorylation-dependent manner. This domain is structurally similar to other helical bundles found in cell adhesion components such as alpha-catenin, vinculin, and FAK, and may bind other proteins in addition to the 14-3-3 family. 159 -211406 cd11552 Serine_rich_BCAR1 Serine rich Four helix bundle domain of CAS (Crk-Associated Substrate) scaffolding protein, Breast Cancer Anti-estrogen Resistance 1; a protein interaction module. BCAR1, also called p130cas or CASS1, is the founding member of the CAS family of scaffolding proteins and was originally identified through its ability to associate with Crk. The name BCAR1 was designated because the human gene was identified in a screen for genes that promote resistance to tamoxifen. It is widely expressed and its deletion is lethal in mice. It plays a role in regulating cell motility, survival, proliferation, transformation, cancer progression, and bacterial pathogenesis. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. CAS proteins associate with the 14-3-3 family; this interaction is regulated by integrin-mediated cell adhesion. The serine rich four helix bundle domain of BCAR1 has been shown to bind 14-3-3 in a phosphorylation-dependent manner. This domain is structurally similar to other helical bundles found in cell adhesion components such as alpha-catenin, vinculin, and FAK, and may bind other proteins in addition to the 14-3-3 family. 157 -212092 cd11554 SLC6sbd_u2 uncharacterized eukaryotic solute carrier 6 subfamily; solute-binding domain. SLC6 proteins (also called the sodium- and chloride-dependent neurotransmitter transporter family or Na+/Cl--dependent transporter family) include neurotransmitter transporters (NTTs): these are sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. These NTTs are widely expressed in the mammalian brain, and are involved in regulating neurotransmitter signaling and homeostasis, and are the target of a range of therapeutic drugs for the treatment of psychiatric diseases. Bacterial members of the SLC6 family include the LeuT amino acid transporter. 406 -271404 cd11555 SLC-NCS1sbd_u1 uncharacterized nucleobase-cation-symport-1 (NCS1) transporter subfamily; solute-binding domain. NCS1s are essential components of salvage pathways for nucleobases and related metabolites; their known substrates include allantoin, uracil, thiamine, and nicotinamide riboside. NCS1s belong to a superfamily which also contains the solute carrier 5 family sodium/glucose transporters (SLC5s), and solute carrier 6 family neurotransmitter transporters (SLC6s). 461 -271405 cd11556 SLC6sbd_SERT-like_u1 uncharacterized subgroup of the SERT-like Na(+)- and Cl(-)-dependent monoamine transporter subfamily; solute binding domain. SERT-like Na(+)- and Cl(-)-dependent monoamine transporters, transport monoamine neurotransmitters from synaptic spaces into presynaptic neurons. Members include: the norepinephrine transporter NET, the serotonin transporter SERT , and the dopamine transporter DAT1. These latter may play a role in diseases or disorders including depression, anxiety disorders, and attention-deficit hyperactivity disorder, and in the control of human behavior and emotional states. They belongs to the solute carrier 6 (SLC6) transporter family. Members of this subgroup are uncharacterized. 552 -211407 cd11557 ST7 Suppression of tumorigenicity 7. ST7 is a metazoan protein that behaves as a tumor suppressor in human cancer cells. It appears to localize to the cytoplasm and plasma membrane, and may mediate tumor suppression by regulating genes that are involved in oncogenic pathways and/or maintain cellular structure. It has been suggested that the suppression of tumorigenicity is associated with a function in mediating the remodeling of the extracellular matrix. However, somatic mutations of ST7 have not been observed as being commonly associated with molecular pathogenesis in various human neoplasias. 458 -211396 cd11558 W2_eIF2B_epsilon C-terminal W2 domain of eukaryotic translation initiation factor 2B epsilon. eIF2B is a heteropentameric complex which functions as a guanine nucleotide exchange factor in the recycling of eIF-2 during the initiation of translation in eukaryotes. The epsilon and gamma subunits are sequence similar and both are essential in yeast. Epsilon appears to be the catalytically active subunit, with gamma enhancing its activity. The C-terminal domain of the eIF2B epsilon subunit contains bipartite motifs rich in acidic and aromatic residues, which are responsible for the interaction with eIF2. The structure of the domain resembles that of a set of concatenated HEAT repeats. 169 -211397 cd11559 W2_eIF4G1_like C-terminal W2 domain of eukaryotic translation initiation factor 4 gamma 1 and similar proteins. eIF4G1 is a component of the multi-subunit eukaryotic translation initiation factor 4F, which facilitates recruitment of the mRNA to the ribosome, a rate-limiting step during translation initiation. This C-terminal domain, whose structure resembles that of a set of concatenated HEAT repeats, has been associated with binding to/recruiting the kinase Mnk1, which phosphorylates eIF4E. 134 -211398 cd11560 W2_eIF5C_like C-terminal W2 domain of the eukaryotic translation initiation factor 5C and similar proteins. eIF5C appears to be essential for the initiation of protein translation; its actual function, and specifically that of the C-terminal W2 domain, are not well understood. The Drosophila ortholog, kra (krasavietz) or exba (extra bases), may be involved in translational inhibition in neural development. The structure of this C-terminal domain resembles that of a set of concatenated HEAT repeats. 194 -211399 cd11561 W2_eIF5 C-terminal W2 domain of eukaryotic translation initiation factor 5. eIF5 functions as a GTPase acceleration protein (GAP), as well as a GDP dissociation inhibitor (GDI) during translational initiation in eukaryotes. The structure of this C-terminal domain resembles that of a set of concatenated HEAT repeats. 157 -211408 cd11564 FAT-like_CAS_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding proteins; a protein interaction module. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes including migration, chemotaxis, apoptosis, differentiation, and progenitor cell function. They mediate the signaling of integrins at focal adhesions where they localize, and thus, regulate cell invasion and survival. Over-expression of these proteins is implicated in poor prognosis, increased metastasis, and resistance to chemotherapeutics in many cancers such as breast, lung, melanoma, and glioblastoma. CAS proteins have also been linked to the pathogenesis of inflammatory disorders, Alzheimer's, Parkinson's, and developmental defects. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. Vertebrates contain four CAS proteins: BCAR1 (or p130Cas), NEDD9 (or HEF1), EFS (or SIN), and CASS4 (or HEPL). The FAT-like C-terminal domain of CAS proteins binds to the C-terminal domain of NSPs (novel SH2-containing proteins) to form multidomain signaling modules that mediate cell migration and invasion. 126 -211318 cd11566 eIF1_SUI1 Eukaryotic initiation factor 1. eIF1/SUI1 (eukaryotic initiation factor 1) plays an important role in accurate initiator codon recognition during translation initiation. eIF1 interacts with 18S rRNA in the 40S ribosomal subunit during eukaryotic translation initiation. Point mutations in the yeast eIF1 implicate the protein in maintaining accurate start-site selection but its mechanism of action is unknown. 84 -211319 cd11567 YciH_like Homologs of eIF1/SUI1 including Escherichia coli YciH. Members of the eIF1/SUI1 (eukaryotic initiation factor 1) family are found in eukaryotes, archaea, and some bacteria; eukaryotic members are understood to play an important role in accurate initiator codon recognition during translation initiation. The function of non-eukaryotic family members is unclear. Escherichia coli YciH is a non-essential protein and was reported to be able to perform some of the functions of IF3 in prokaryotic initiation. 76 -211409 cd11568 FAT-like_CASS4_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding protein family member 4; a protein interaction module. CASS4, also called HEPL (HEF1-EFS-p130Cas-like), localizes to focal adhesions and plays a role in regulating FAK activity, focal adhesion integrity, and cell spreading. It is most abundant in blood cells and lung tissue, and is also found in high levels in leukemia and ovarian cell lines. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain, which binds to the C-terminal domain of NSPs (novel SH2-containing proteins) to form multidomain signaling modules that mediate cell migration and invasion. 123 -211410 cd11569 FAT-like_BCAR1_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding protein, Breast Cancer Anti-estrogen Resistance 1; a protein interaction module. BCAR1, also called p130cas or CASS1, is the founding member of the CAS family of scaffolding proteins and was originally identified through its ability to associate with Crk. The name BCAR1 was designated because the human gene was identified in a screen for genes that promote resistance to tamoxifen. It is widely expressed and its deletion is lethal in mice. It plays a role in regulating cell motility, survival, proliferation, transformation, cancer progression, and bacterial pathogenesis. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain, which binds to the C-terminal domain of NSPs (novel SH2-containing proteins) to form multidomain signaling modules that mediate cell migration and invasion. 133 -211411 cd11570 FAT-like_NEDD9_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding protein, Neural precursor cell Expressed, Developmentally Down-regulated 9; a protein interaction module. NEDD9 is also called human enhancer of filamentation 1 (HEF1) or CAS-L (Crk-associated substrate in lymphocyte). It was first described as a gene predominantly expressed in early embryonic brain, and was also isolated from a screen of human proteins that regulate filamentous budding in yeast, and as a tyrosine phosphorylated protein in lymphocytes. It promotes metastasis in different solid tumors. NEDD9 localizes in focal adhesions and associates with FAK and Abl kinase. It also interacts with SMAD3 and the proteasomal machinery which allows its rapid turnover; these interactions are not shared by other CAS proteins. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain, which binds to the C-terminal domain of NSPs (novel SH2-containing proteins) to form multidomain signaling modules that mediate cell migration and invasion. 128 -211412 cd11571 FAT-like_EFS_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding protein, Embryonal Fyn-associated Substrate; a protein interaction module. EFS is also called HEFS, CASS3 (CAS scaffolding protein family member 3) or SIN (Src-interacting protein). It was identified based on interactions with the Src kinases, Fyn and Yes. It plays a role in thymocyte development and acts as a negative regulator of T cell proliferation. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure containing protein interaction modules that enable their scaffolding function, including an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain, which binds to the C-terminal domain of NSPs (novel SH2-containing proteins) to form multidomain signaling modules that mediate cell migration and invasion. 130 -211413 cd11572 RlmI_M_like Middle domain of the SAM-dependent methyltransferase RlmI and related proteins. This middle or central domain is typically found between an N-terminal PUA domain and a C-terminal SAM-dependent methyltransferase domain, such as in the Escherichia coli ribosomal RNA large subunit methyltransferase RlmI (YccW). It may be involved in binding to the RNA substrate. 99 -211414 cd11573 GH99_GH71_like Glycoside hydrolase families 71, 99, and related domains. This superfamily of glycoside hydrolases contains families GH71 and GH99 (following the CAZY nomenclature), as well as other members with undefined function and specificity. 284 -211415 cd11574 GH99 Glycoside hydrolase family 99, an endo-alpha-1,2-mannosidase. This family of glycoside hydrolases 99 (following the CAZY nomenclature) includes endo-alpha-1,2-mannosidase (EC 3.2.1.130), which is an important membrane-associated eukaryotic enzyme involved in the maturation of N-linked glycans. Specifically, it cleaves mannoside linkages internal to N-linked glycan chains by hydrolyzing an alpha-1,2-mannosidic bond between a glucose-substituted mannose and the remainder of the chain. The biological function and significance of the soluble bacterial orthologs, which may have obtained the genes via horizontal transfer, is not clear. 338 -211416 cd11575 GH99_GH71_like_3 Uncharacterized glycoside hydrolase family 99-like domain. This family of putative glycoside hydrolases resembles glycosyl hydrolase families 71 and 99 (following the CAZY nomenclature) and may share a similar catalytic site and mechanism. 376 -211417 cd11576 GH99_GH71_like_2 Uncharacterized glycoside hydrolase family 99-like domain. This family of putative glycoside hydrolases resembles glycosyl hydrolase families 71 and 99 (following the CAZY nomenclature) and may share a similar catalytic site and mechanism. The domain may co-occur with other domains involved in the binding/processing of glycans. 378 -211418 cd11577 GH71 Glycoside hydrolase family 71. This family of glycoside hydrolases 71 (following the CAZY nomenclature) function as alpha-1,3-glucanases (mutanases, EC 3.2.1.59). They appear to have an endo-hydrolytic mode of enzymatic activity and bacterial members are investigated as candidates for the development of dental caries treatments.The member from fission yeast, endo-alpha-1,3-glucanase Agn1p, plays a vital role in daughter cell separation, while Agn2p has been associated with endolysis of the ascus wall. 283 -211419 cd11578 GH99_GH71_like_1 Uncharacterized glycoside hydrolase family 99-like domain. This family of putative glycoside hydrolases resembles glycosyl hydrolase families 71 and 99 (following the CAZY nomenclature) and may share a similar catalytic site and mechanism. 313 -211420 cd11579 Glyco_tran_WbsX Glycosyl hydrolase family 99-like domain of WbsX-like glycosyltransferases. Members of this domain family are found in proteins within O-antigen biosynthesis clusters in Gram negative bacteria, where they may function as glycosyl hydrolases and typically co-occur with glycosyltransferase domains. They bear resemblance to GH71 and the GH99 family of alpha-1,2-mannosidases and may share a similar cataltyic site and mechanism. The O-antigens are essential lipopolysaccharides in gram-negative bacteria's outer membrane and have been linked to pathogenicity. 347 -211421 cd11580 eIF2D_N_like N-terminal domain of eIF2D, malignant T cell-amplified sequence 1 and related proteins. This N-terminal domain of various proteins co-occurs with a PUA domain. Members of this family are: (1) MCTS-1 (malignant T cell-amplified sequence 1) or MCT-1 (multiple copies T cell malignancies), which may play roles in the regulation of the cell cycle, (2) the eukayotic translation initiation factor 2D, and (3) an uncharacterized archaeal family. 72 -212547 cd11581 GINS_A Alpha-helical domain of GINS complex proteins; Sld5, Psf1, Psf2 and Psf3. The GINS complex is involved in both initiation and elongation stages of eukaryotic chromosome replication, with GINS being the component that most likely serves as the replicative helicase that unwinds duplex DNA ahead of the moving replication fork. In eukaryotes, GINS is a tetrameric arrangement of four subunits Sld5, Psf1, Psf2 and Psf3. The GINS complex has been found in eukaryotes and archaea, but not in bacteria. The four subunits of the complex are homologous and consist of two domains each, termed the alpha-helical (A) and beta-strand (B) domains. The A and B domains of Sld5/Psf1 are permuted with respect to Psf1/Psf3. 103 -211424 cd11582 Axin_TNKS_binding Tankyrase binding N-terminal segment of axin. This N-terminal region of axin mediates interactions with the ankyrin-repeat clusters 2 and 3 of tankyrase, which controls the turnover of axin via poly-ADP-ribosylation. Axin functions as a negative regulator of the WNT signaling pathway. 69 -211425 cd11583 Orc6_mid Middle domain of the origin recognition complex subunit 6. Orc6 is a subunit of the origin recognition complex in eukaryotes, and it may be involved in binding to DNA. This model describes the central or middle domain of Orc6, whose structure resembles that of TFIIB, a DNA-binding transcription factor. Orc6 appears to form distinct complexes with DNA, and a putative DNA-binding site has been identified. 94 -211426 cd11585 SATB1_N N-terminal domain of SATB1 and similar proteins. SATB1, the special AT-rich sequence-binding protein 1, is involved in organizing chromosomal loci into distinct loops, creating a "loopscape" that has a direct bearing on gene expression. This N-terminal domain, which may be involved in various interactions with chromatin proteins, resembles a ubiquitin domain and has been shown to form tetramers, a function critical to SATB1-DNA interactions. The related Drosophila homeobox gene defective proventriculus (dve) plays a key role in the functional specification during endoderm development. 100 -212155 cd11586 VbhA_like VbhA antitoxin and related proteins. VbhA is the antitoxin to VbhT. The VbhT toxin of the mammalian pathogen Bartonella schoenbuchensis is responsible for the disruptive adenylation of host proteins. VbhT also induces FIC-domain-mediated growth arrest in bacteria; it is inhibited by this antitoxin which binds to block the ATP binding site of the VbhT FIC domain. 54 -212536 cd11587 Arginase-like Arginase types I and II and arginase-like family. This family includes arginase, also known as arginase-like amidino hydrolase family, and related proteins, found in bacteria, archaea and eykaryotes. Arginase is a binuclear Mn-dependent metalloenzyme and catalyzes hydrolysis of L-arginine to L-ornithine and urea (Arg, EC 3.5.3.1), the reaction being the fifth and final step in the urea cycle, providing the path for the disposal of nitrogenous compounds. Arginase controls cellular levels of arginine and ornithine which are involved in protein biosynthesis, and in production of creatine, polyamines, proline and nitric acid. In vertebrates, at least two isozymes have been identified: type I cytoplasmic or hepatic liver-type arginase and type II mitochondrial or non-hepatic arginase. Point mutations in human arginase gene lead to hyperargininemia with consequent mental disorders, retarded development and early death. Arginase is a therapeutic target to treat asthma, erectile dysfunction, atherosclerosis and cancer. 294 -212537 cd11589 Agmatinase_like_1 Agmatinase and related proteins. This family includes known and predicted bacterial agmatinase (agmatine ureohydrolase; AUH; SpeB; EC=3.5.3.11), a binuclear manganese metalloenzyme, belonging to the ureohydrolase superfamily. It is a key enzyme in the synthesis of polyamine putrescine; it catalyzes hydrolysis of agmatine to yield urea and putrescine, the precursor for biosynthesis of higher polyamines, spermidine, and spermine. Agmatinase from Deinococcus radiodurans shows approximately 33% of sequence identity to human mitochondrial agmatinase. An analysis of the evolutionary relationship among ureohydrolase superfamily enzymes indicates the pathway involving arginine decarboxylase and agmatinase evolved earlier than the arginase pathway of polyamine. 274 -212538 cd11592 Agmatinase_PAH Agmatinase-like family includes proclavaminic acid amidinohydrolase. This agmatinase subfamily contains bacterial and fungal/metazoan enzymes, including proclavaminic acid amidinohydrolase (PAH, EC 3.5.3.22) and Pseudomonas aeruginosa guanidinobutyrase (GbuA) and guanidinopropionase (GpuA). PAH hydrolyzes amidinoproclavaminate to yield proclavaminate and urea in clavulanic acid biosynthesis. Clavulanic acid is an effective inhibitor of beta-lactamases and is used in combination with amoxicillin to prevent the beta-lactam rings of the antibiotic from hydrolysis and, thus keeping the antibiotic biologically active. GbuA hydrolyzes 4-guanidinobutyrate (4-GB) into 4-aminobutyrate and urea while GpuA hydrolyzes 3-guanidinopropionate (3-GP) into beta-alanine and urea. Mutation studies show that significant variations in two active site loops in these two enzymes may be important for substrate specificity. This subfamily belongs to the ureohydrolase superfamily, which includes arginase, agmatinase, proclavaminate amidinohydrolase, and formiminoglutamase. 289 -212539 cd11593 Agmatinase-like_2 Agmatinase and related proteins. This family includes known and predicted bacterial and archaeal agmatinase (agmatine ureohydrolase; AUH; SpeB; EC=3.5.3.11), a binuclear manganese metalloenzyme that belongs to the ureohydrolase superfamily. It is a key enzyme in the synthesis of polyamine putrescine; it catalyzes hydrolysis of agmatine to yield urea and putrescine, the precursor for biosynthesis of higher polyamines, spermidine, and spermine. As compared to E. coli where two paths to putrescine exist, via decarboxylation of an amino acid, ornithine or arginine, a single path is found in Bacillus subtilis, where polyamine synthesis starts with agmatine; the speE and speB encode spermidine synthase and agmatinase, respectively. The level of agmatinase synthesis is very low, allowing strict control on the synthesis of putrescine and therefore, of all polyamines, consistent with polyamine levels in the cell. This subfamily belongs to the ureohydrolase superfamily, which includes arginase, agmatinase, proclavaminate amidinohydrolase, and formiminoglutamase. 263 -212540 cd11598 HDAC_Hos2 Class I histone deacetylases including ScHos2 and SpPhd1. This subfamily includes Class I histone deacetylase (HDAC) Hos2 from Saccharomyces cerevisiae as well as a histone deacetylase Phd1 from Schizosaccharomyces pombe. Hos2 binds to the coding regions of genes during gene activation, specifically it deacetylates the lysines in H3 and H4 histone tails. It is preferentially associated with genes of high activity genome-wide and is shown to be necessary for efficient transcription. Thus, Hos2 is directly required for gene activation in contrast to other class I histone deacetylases. Protein encoded by phd1 is inhibited by trichostatin A (TSA), a specific inhibitor of histone deacetylase, and is involved in the meiotic cell cycle in S. pombe. Class 1 HDACs are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues in histone amino termini to yield a deacetylated histone (EC 3.5.1.98). 311 -212541 cd11599 HDAC_classII_2 Histone deacetylases and histone-like deacetylases, classII. This subfamily includes eukaryotic as well as bacterial Class II histone deacetylase (HDAC) and related proteins. Deacetylases of class II are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues of histones (EC 3.5.1.98) and possibly other proteins to yield deacetylated histones/other proteins. In D. discoideum, where four homologs (HdaA, HdaB, HdaC, HdaD) have been identified, HDAC activity is important for regulating the timing of gene expression during development. Also, inhibition of HDAC activity by trichostatin A is shown to cause hyperacetylation of the histone and a delay in cell aggregation and differentiation. 288 -212542 cd11600 HDAC_Clr3 Class II Histone deacetylase Clr3 and similar proteins. Clr3 is a class II Histone deacetylase Zn-dependent enzyme that catalyzes hydrolysis of an N(6)-acetyl-lysine residue of a histone to yield a deacetylated histone (EC 3.5.1.98). Clr3 is the homolog of the class-II HDAC HdaI in S. cerevisiae, and is essential for silencing in heterochromatin regions, such as centromeric regions, ribosomal DNA, the mating-type region and telomeric loci. Clr3 has also been implicated in the regulation of stress-related genes; the histone acetyltransferase, Gcn5, in S. cerevisiae, preferentially acetylates global histone H3K14 while Clr3 preferentially deacetylates H3K14ac, and therefore, interplay between Gcn5 and Clr3 is crucial for the regulation of many stress-response genes. 313 -211427 cd11602 Ndc10 Ndc10 component of the yeast centromere-binding factor 3. Ndc10 is a multidomain protein conserved in Saccharomycotina that interacts with kinetochore components. This model characterizes the majority of the protein; some family members may have an additional C-terminal domain that is homologous to transcriptional activators (GCR1_C). Ndc10 is part of the centromere-binding factor 3 (CBF3) complex in budding yeast. The CBF3 complex contains four essential proteins, Ndc10, Cep3, Ctf13, and Skp1. CBF3/Ndc10 is essential for the recruitment of the centromeric nucleosome and formation of the kinetochore. The Kinetochore is the large, multiprotein assembly that serves to connect condensed sister chromatids to the mitotic spindle. Ndc10 forms a dimer and it has non-sequence-specific DNA binding activity via the DNA backbone. Ndc10 also plays an important role in the coordination of cell division. It has been noted that the protein bears resemblance to the tyrosine recombinases (type IB topoisomerase/lambda-integrase). 413 -211428 cd11603 ThermoDBP Thermoproteales single-stranded DNA-binding (SSB) domain. ThermoDBP is a SSB protein of the Thermoproteales. SSB proteins are essential for the genome maintenance of all known cellular organisms. Many SSBs contain an OB fold domain, albeit with low sequence conservation and OB fold-containing SSB proteins have been detected in all three domains of life. However, one group of Crenarchaea, the Thermoproteales, lack SSB encoding genes. The Thermoproteales SSB protein, ThermoDBP, lacks the OB fold and binds specifically to ssDNA with low sequence specificity. Its three-dimensional structure resembles that of the Hut operon positive regulatory protein HutP. 141 -211429 cd11604 RTT106_N histone chaperone RTT106, regulator of Ty1 transposition protein 106; N-terminal homodimerization domain. This cd includes the N-terminal homodimerization domain of Saccharomyces cerevisiae Rtt106, a histone chaperone. In addition to this domain, Rtt106 contains two C-terminal pleckstrin-homology (PH) domains. The acetylation of lysine 56 in histone H3 (H3K56ac) is implicated in regulating nucleosome disassembly during gene transcription, and nucleosome assembly during DNA replication and repair. Rtt106 has been shown to aid in the efficient deposition of newly synthesized H3K56ac onto replicating DNA. The interaction of Rtt106 with (H3-H4)2, most likely in the form of a (H3-H4)2 tetramer, is important for gene silencing and for the DNA damage response. Data supports a combinatorial interaction: this N-terminal domain homodimerizes and intercalates between the two H3-H4 components of the (H3-H4)2 tetramer, independent of acetylation, and the two double PH domains bind the K56-containing region of H3. Acetylation of K56 increases the affinity of the interaction. Rtt106 also interacts with both the SWI/SNF and RSC chromatin remodeling complexes and is involved in their cell-cycle dependent recruitment to histone gene pairs regulated by the HIR co-repressor complex (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2). Saccharomyces cerevisiae Rtt106 also plays a role in a role in regulating Ty1 transposition. 54 -212156 cd11606 COE_DBD Colier/Olf/Early B-cell factor (EBF) DNA Binding Domain. COE_DBD is the amino-terminal DNA binding domain of the COE protein family. The COE transcription factor is a regulator of development in several organs and tissues that contain the DBD domain as well as IPT/TIG (immunoglobulin-like, Plexins, transcription factors/transcription factor immunoglobulin) and basic helix-loop-helix (bHLH) domains. COE has four members in mammals (COE1-4) with high sequence similarity at the amino-terminal region. COE_DBD requires a zinc ion to bind DNA and contains a zinc finger motif (H-X(3)-C-X(2)-C-X(5)-C) termed the zinc knuckle. COE is homo- or heterodimerized through the bHLH domain to bind DNA. COE1-4 each has a variant due to alternative splicing. However, this alternative splicing does not occur at the DBD domain. 212 -211320 cd11607 DENR_C C-terminal domain of DENR and related proteins. DENR (density regulated protein), together with MCT-1 (multiple copies T cell malignancies), has been shown to have similar function as eIF2D translation initiation factor (also known as ligatin), which is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site of the eukaryotic ribosome in a GTP-independent manner. 86 -211321 cd11608 eIF2D_C C-terminal domain of eIF2D and related proteins. eIF2D translation initiation factor (also known as ligatin) is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site of the eukaryotic ribosome in a GTP-independent manner. 85 -211422 cd11609 MCT1_N N-terminal domain of multiple copies T cell malignancies 1 and related proteins. This N-terminal domain of MCT-1 (multiple copies T cell malignancies 1), also known as MCTS-1 (malignant T cell-amplified sequence 1), co-occurs with a PUA domain. MCT-1, together with DENR (density regulated protein), has been shown to have similar function as eIF2D translation initiation factor (also known as ligatin), which is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site of the eukaryotic ribosome in a GTP-independent manner. 77 -211423 cd11610 eIF2D_N N-terminal domain of eIF2D and related proteins. This N-terminal domain of eIF2D co-occurs with a PUA domain. eIF2D translation initiation factor (also known as ligatin) is involved in the recruitment and delivery of aminoacyl-tRNAs to the P-site of the eukaryotic ribosome in a GTP-independent manner. 76 -212157 cd11611 SAF Domains similar to fish antifreeze type III protein. SAF domains are found in a wide variety of proteins with quite different functions. They are components of enzymes, such as D-altronate-dehydratases or sialic acid synthetases, of antifreeze proteins conserved in fish (where they bind to nascent ice crystals), and may act as periplasmic chaperones in bacterial flagella basal body P-ring formation. 56 -212158 cd11613 SAF_AH_GD Domains similar to fish antifreeze type III protein. Altronate dehydratase (EC 4.2.1.7) converts D-altronate into 2-dehydro-3-deoxy-D-gluconate and is part of a bacterial pathway for the degradation of D-galacturonate. D-galactarate dehydratase (EC 4.2.1.42) eliminates water from D-galactarate to yield 5-dehydro-4-deoxy-D-glucarate, initializing the degradation of D-galactarate. The function of the SAF domain in these enzymes is not clear. It may participate in dimerization. 80 -212159 cd11614 SAF_CpaB_FlgA_like SAF domains of the flagella basal body P-ring formation protein FlgA and the flp pilus assembly CpaB. FlgA is a putative periplasmic chaperone that assists in the formation of the flagellar P ring; CpaB is a protein invoved in the assembly of the flp pili, which are bacterial virulence factors mediating non-specific adherence to surfaces; these proteins appear to contain a single SAF domain. This intermediate family also contains the SAF domains of sialic acid synthetases and type III antifreeze proteins, which also share the same extensive core structure. 61 -212160 cd11615 SAF_NeuB_like C-terminal SAF domain of sialic acid synthetase. Sialic acid synthetase (N-acetylneuraminate synthase or N-acetylneuraminate-9-phosphate synthase) catalyzes the condensation of phosphoenolpyruvate with N-acetylmannosamine (ManNAc, in bacteria) or N-acetylmannosamine-6-phosphate (ManNAc-6P, in mammals), to yield N-acetylneuramic acid (NeuNAc) or N-acetylneuramic acid-9-phosphate (NeuNAc-9P), respectively. The N-terminal NeuB domain, a TIM-barrel-like structure, contains the catalytic site, the function of the SAF domain is not as clear. It may participate in domain-swapped dimerization and play a role in binding the substrate, in either domain-swapped dimers or by directly interacting with the N-terminal domain. Also included in the family are PEP-sugar pyruvyltransferases known as spore coat polysaccharide biosynthesis proteins (SpsE). 58 -212161 cd11616 SAF_DH_OX_like SAF domain of putative dehydrogenases or oxidoreductases. C-terminal SAF domain of an uncharacterized family of putative dehydrogenases or oxidoreductases, which are otherwise members of the NAD(P)-dependent Rossmann-fold superfamily. 80 -212162 cd11617 Antifreeze_III Type III antifreeze protein, may be specific to the Zoarcoidei. Antifreeze protein III inhibits the growth of ice crystals and protects fish from cold damage in sub-freezing temperatures. 62 -211316 cd11618 ChtBD1_1 Hevein or type 1 chitin binding domain; filamentous ascomycete subfamily. Hevein or type 1 chitin binding domain (ChtBD1), a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins such as hevein, a major IgE-binding allergen in natural rubber latex, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 44 -212009 cd11619 HR1_CIP4-like Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Cdc42-Interacting Protein 4 and similar proteins. This subfamily is composed of Cdc42-Interacting Protein 4 (CIP4), Formin Binding Protein 17 (FBP17), FormiN Binding Protein 1-Like (FNBP1L), and similar proteins. CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. CIP4 and FBP17 bind to the Fas ligand and may be implicated in the inflammatory response. CIP4 may also play a role in phagocytosis. It functions downstream of Cdc42 in PDGF-dependent actin reorganization and cell migration, and also regulates the activity of PDGFRbeta. It uses Src as a substrate in regulating the invasiveness of breast tumor cells. CIP4 may also play a role in the pathogenesis of Huntington's disease. Members of this subfamily typically contain an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain, central HR1 domain, and a C-terminal SH3 domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; the HR1 domain of CIP4 binds Cdc42 and TC10. Translocation of CIP4 is facilitated by its binding to TC10 at the plasma membrane. 77 -212010 cd11620 HR1_PKC-like_2_fungi Second Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of fungal Protein Kinase C-like proteins. This subfamily is composed of fungal PKC-like proteins including Pkc1p from Saccharomyces cerevisiae, and Pck1p and Pck2p from Schizosaccharomyces pombe. The yeast PKC-like proteins play a critical role in regulating cell wall biosynthesis and maintaining cell wall integrity. They contain two HR1 domains, C2 and C1 domains, and a kinase domain. This model characterizes the second HR1 domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. The HR1 domains of Pck1p and Pck2p interact with GTP-bound Rho1p and Rho2p. 72 -212011 cd11621 HR1_PKC-like_1_fungi First Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of fungal Protein Kinase C-like proteins. This subfamily is composed of fungal PKC-like proteins including Pkc1p from Saccharomyces cerevisiae, and Pck1p and Pck2p from Schizosaccharomyces pombe. The yeast PKC-like proteins play a critical role in regulating cell wall biosynthesis and maintaining cell wall integrity. They contain two HR1 domains, C2 and C1 domains, and a kinase domain. This model characterizes the first HR1 domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. The HR1 domains of Pck1p and Pck2p interact with GTP-bound Rho1p and Rho2p. 72 -212012 cd11622 HR1_PKN_1 First Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N. PKN, also called Protein-kinase C-related kinase (PRK), is a serine/threonine protein kinase that can be activated by the small GTPase Rho, and by fatty acids such as arachidonic and linoleic acids. It is involved in many biological processes including cytoskeletal regulation, cell adhesion, vesicle transport, glucose transport, regulation of meiotic maturation and embryonic cell cycles, signaling to the nucleus, and tumorigenesis. In some vertebrates, there are three PKN isoforms from different genes (designated PKN1, PKN2, and PKN3), which show different enzymatic properties, tissue distribution, and varied functions. PKN proteins contain three HR1 domains, a C2 domain, and a kinase domain. This model characterizes the first HR1 domain of PKN. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 66 -212013 cd11623 HR1_PKN_2 Second Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N. PKN, also called Protein-kinase C-related kinase (PRK), is a serine/threonine protein kinase that can be activated by the small GTPase Rho, and by fatty acids such as arachidonic and linoleic acids. It is involved in many biological processes including cytoskeletal regulation, cell adhesion, vesicle transport, glucose transport, regulation of meiotic maturation and embryonic cell cycles, signaling to the nucleus, and tumorigenesis. In some vertebrates, there are three PKN isoforms from different genes (designated PKN1, PKN2, and PKN3), which show different enzymatic properties, tissue distribution, and varied functions. PKN proteins contain three HR1 domains, a C2 domain, and a kinase domain. This model characterizes the second HR1 domain of PKN. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 71 -212014 cd11624 HR1_Rhophilin Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rhophilin. Rhophilins are scaffolding proteins that function as effectors of the Rho family of small GTPases. Vertebrates harbor two proteins, Rhophilin-1 and Rhophilin-2, whose exact functions are yet to be determined. Rhophilin-1 has been implicated in sperm motility. Rhophilin-2 regulates the organization of the actin cytoskeleton. Rhophilins contain N-terminal HR1, central Bro1-like, and C-terminal PDZ domains; all are protein-interacting domains. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; both Rhophilin-1 and Rhophilin-2 bind RhoA, and Rhophilin-2 has also been shown to bind RhoB. 76 -212015 cd11625 HR1_PKN_3 Third Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N. PKN, also called Protein-kinase C-related kinase (PRK), is a serine/threonine protein kinase that can be activated by the small GTPase Rho, and by fatty acids such as arachidonic and linoleic acids. It is involved in many biological processes including cytoskeletal regulation, cell adhesion, vesicle transport, glucose transport, regulation of meiotic maturation and embryonic cell cycles, signaling to the nucleus, and tumorigenesis. In some vertebrates, there are three PKN isoforms from different genes (designated PKN1, PKN2, and PKN3), which show different enzymatic properties, tissue distribution, and varied functions. PKN proteins contain three HR1 domains, a C2 domain, and a kinase domain. This model characterizes the third HR1 domain of PKN. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 74 -212016 cd11626 HR1_ROCK Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rho-associated coiled-coil containing protein kinase. ROCK is also referred to as Rho-associated kinase or simply as Rho kinase. It is a serine/threonine protein kinase that is activated via interaction with Rho GTPases and is involved in many cellular functions including contraction, adhesion, migration, motility, proliferation, and apoptosis. ROCKs are the best-described effectors of RhoA. There are two isoforms, ROCK1 and ROCK2, which may be functionally redundant in some systems, but exhibit different tissue distributions. Both isoforms are ubiquitously expressed in most tissues, but ROCK2 is more prominent in brain and skeletal muscle while ROCK1 is more pronounced in the liver, testes, and kidney. Studies in knockout mice result in different phenotypes, suggesting that the two isoforms do not compensate for each other during embryonic development. ROCK contains an N-terminal extension, a catalytic kinase domain, and a long C-terminal extension, which contains a Rho-binding HR1 domain and a pleckstrin homology (PH) domain. ROCK is auto-inhibited by HR1 and PH domains interacting with the catalytic domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 66 -212017 cd11627 HR1_Ste20-like Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Schizosaccharomyces pombe Ste20-like proteins. This group is composed of predominantly uncharacterized fungal proteins, which contain two known domains: HR1 at the N-terminal region and REM (Ras exchanger motif) at the C-terminal region. One member protein from Schizosaccharomyces pombe is named Ste16 while its gene is called ste20 (a target of rapamycin complex 2 subunit). It is a subunit in the protein kinase TOR complexes in fission yeast. The REM domain is usually found in nucleotide exchange factors for Ras-like small GTPases. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 71 -212018 cd11628 HR1_CIP4_FNBP1L Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of vertebrate Cdc42-Interacting Protein 4 and FormiN Binding Protein 1-Like. CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. FNBP1L, also called Toca-1 (Transducer of Cdc42-dependent actin assembly 1), forms a complex with neural WASP; the complex induces the formation of filopodia and endocytic vesicles. FNBP1L is required for Cdc42-induced actin assembly and is essential for autophagy of intracellular pathogens. CIP4 may also play a role in phagocytosis. It functions downstream of Cdc42 in PDGF-dependent actin reorganization and cell migration, and also regulates the activity of PDGFRbeta. It uses Src as a substrate in regulating the invasiveness of breast tumor cells. CIP4 may also play a role in the pathogenesis of Huntington's disease. CIP4 and FNBP1L contain an N-terminal F-BAR domain, a central HR1 domain, and a C-terminal SH3 domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; the HR1 domain of CIP4 binds Cdc42 and TC10. Translocation of CIP4 is facilitated by its binding to TC10 at the plasma membrane. 81 -212019 cd11629 HR1_FBP17 Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Formin Binding Protein 17. FBP17, also called FormiN Binding Protein 1 (FNBP1), is involved in dynamin-mediated endocytosis. It is recruited to clathrin-coated pits late in the endocytosis process and may play a role in the invagination and scission steps. FBP17 binds in vivo to tankyrase, a protein involved in telomere maintenance and mitogen activated protein kinase (MAPK) signaling. It also binds to the Fas ligand and may be implicated in the inflammatory response. FBP17 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain, central HR1 domain, and a C-terminal SH3 domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; the HR1 domain of the related protein, CIP4, binds Cdc42 and TC10. Translocation of CIP4 is facilitated by its binding to TC10 at the plasma membrane. 77 -212020 cd11630 HR1_PKN1_2 Second Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N1. PKN1, also called PKNalpha or Protein-kinase C-related kinase 1 (PRK1), is a serine/threonine protein kinase that is activated by the Rho family of small GTPases, and by fatty acids such as arachidonic and linoleic acids. It is expressed ubiquitously and is the most abundant PKN isoform in neurons. PKN1 is implicated in a variety of functions including cytoskeletal reorganization, cardiac cell survival, cell adhesion, and glucose transport, among others. PKN1 contains three HR1 domains, a C2 domain, and a kinase domain. This model characterizes the second HR1 domain of PKN1. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN1 binds the GTPases RhoA, RhoB, and RhoC, and can also interact weakly with Rac. 78 -212021 cd11631 HR1_PKN2_2 Second Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N2. PKN2, also called PKNgamma or Protein-kinase C-related kinase 2 (PRK2), is a serine/threonine protein kinase and an effector of the small GTPase Rho/Rac. It regulates G2/M cell cycle progression and the exit from cytokinesis. It also phosphorylates hepatitis C virus (HCV) RNA polymerase and thus, plays a role in HCV RNA replication. PKN2 shares a common domain architecture with other PKNs, containing three HR1 domains, a C2 domain, and a kinase domain. In addition, PKN2 contains a proline-rich region in between its C2 and kinase domains and has been shown to associate with SH3 domain containing proteins like NCK and Grb4. This model characterizes the second HR1 domain of PKN2. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN2 specifically binds to RhoA GTPase in a GTP-dependent manner. The HR1 domains of PKN2, together with its C2 domain, also facilitate the recruitment of PKN2 to primordial junctions at nascent cell-cell contacts, where it promotes junctional maturation. 74 -212022 cd11632 HR1_PKN3_2 Second Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N3. PKN3, also called PKNbeta, is a serine/threonine protein kinase that is activated by the Rho family of small GTPases, preferentially by RhoC. Both PKN1 and RhoC show limited and barely detectable expression in normal tissues, but are both upregulated in cancer cells, particularly in late-stage malignancies. PKN3 has been implicated to play a role in the metastatic growth and invasiveness of cancer cells, downstream of the oncogenic phosphoinositide 3-kinase signaling network. PKN3 shares a common domain architecture with other PKNs, containing three HR1 domains, a C2 domain, and a kinase domain. In addition, PKN3 contains two proline-rich regions between its C2 and kinase domains, and has been shown to associate with SH3 domain containing proteins like GRAFs, GAP for RhoA, and Cdc42Hs. This model characterizes the second HR1 domain of PKN3. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN3 binds Rho family GTPases, preferentially RhoC. 74 -212023 cd11633 HR1_Rhophilin-1 Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rhophilin-1. Rhophilin-1 is a scaffolding protein that functions as an effector of the Rho family of small GTPases. It has been implicated in sperm motility. Rhophilin-1 contains an N-terminal HR1, a central Bro1-like, and a C-terminal PDZ domain; all are protein-interacting domains. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; Rhophilin-1 binds RhoA was isolated initially as a RhoA-binding protein. 85 -212024 cd11634 HR1_Rhophilin-2 Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rhophilin-2. Rhophilin-2 is a scaffolding protein that functions as an effector of the Rho family of small GTPases. It plays a role in regulating the organization of the actin cytoskeleton. Rhophilin-2 contains an N-terminal HR1, a central Bro1-like, and a C-terminal PDZ domain; all are protein-interacting domains. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; Rhophilin-2 has been shown to bind both RhoA and RhoB. 82 -212025 cd11635 HR1_PKN2_3 Third Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N2. PKN2, also called PKNgamma or Protein-kinase C-related kinase 2 (PRK2), is a serine/threonine protein kinase and an effector of the small GTPase Rho/Rac. It regulates G2/M cell cycle progression and the exit from cytokinesis. It also phosphorylates hepatitis C virus (HCV) RNA polymerase and thus, plays a role in HCV RNA replication. PKN2 shares a common domain architecture with other PKNs, containing three HR1 domains, a C2 domain, and a kinase domain. In addition, PKN2 contains a proline-rich region in between its C2 and kinase domains and has been shown to associate with SH3 domain containing proteins like NCK and Grb4. This model characterizes the third HR1 domain of PKN2. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN2 specifically binds to RhoA GTPase in a GTP-dependent manner. The HR1 domains of PKN2, together with its C2 domain, also facilitate the recruitment of PKN2 to primordial junctions at nascent cell-cell contacts, where it promotes junctional maturation. 74 -212026 cd11636 HR1_PKN1_3 Third Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N1. PKN1, also called PKNalpha or Protein-kinase C-related kinase 1 (PRK1), is a serine/threonine protein kinase that is activated by the Rho family of small GTPases, and by fatty acids such as arachidonic and linoleic acids. It is expressed ubiquitously and is the most abundant PKN isoform in neurons. PKN1 is implicated in a variety of functions including cytoskeletal reorganization, cardiac cell survival, cell adhesion, and glucose transport, among others. PKN1 contains three HR1 domains, a C2 domain, and a kinase domain. This model characterizes the third HR1 domain of PKN1. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN1 binds the GTPases RhoA, RhoB, and RhoC, and can also interact weakly with Rac. 74 -212027 cd11637 HR1_PKN3_3 Third Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Protein Kinase N3. PKN3, also called PKNbeta, is a serine/threonine protein kinase that is activated by the Rho family of small GTPases, preferentially by RhoC. Both PKN1 and RhoC show limited and barely detectable expression in normal tissues, but are both upregulated in cancer cells, particularly in late-stage malignancies. PKN3 has been implicated to play a role in the metastatic growth and invasiveness of cancer cells, downstream of the oncogenic phosphoinositide 3-kinase signaling network. PKN3 shares a common domain architecture with other PKNs, containing three HR1 domains, a C2 domain, and a kinase domain. In addition, PKN3 contains two proline-rich regions between its C2 and kinase domains, and has been shown to associate with SH3 domain containing proteins like GRAFs, GAP for RhoA, and Cdc42Hs. This model characterizes the third HR1 domain of PKN3. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family; PKN3 binds Rho family GTPases, preferentially RhoC. 74 -212028 cd11638 HR1_ROCK2 Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rho-associated coiled-coil containing protein kinase 2. ROCK2 is a serine/threonine protein kinase and was the first identified target of activated RhoA. It plays a role in stress fiber and focal adhesion formation, and is prominently expressed in the brain, heart, and skeletal muscles. It is implicated in vascular and neurological disorders, such as hypertension and vasospasm of the coronary and cerebral arteries. ROCK2 is also activated by caspase-2 cleavage, resulting in thrombin-induced microparticle generation in response to cell activation. Mice deficient in ROCK2 show intrauterine growth retardation and embryonic lethality because of placental dysfunction. ROCK2 contains an N-terminal extension, a catalytic kinase domain, and a long C-terminal extension, which contains a Rho-binding HR1 domain and a pleckstrin homology (PH) domain. ROCK2 is auto-inhibited by HR1 and PH domains interacting with the catalytic domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 67 -212029 cd11639 HR1_ROCK1 Protein kinase C-related kinase homology region 1 (HR1) Rho-binding domain of Rho-associated coiled-coil containing protein kinase 1. ROCK1 is a serine/threonine kinase and is preferentially expressed in the liver, lung, spleen, testes, and kidney. It mediates signaling from Rho to the actin cytoskeleton. It is implicated in the development of cardiac fibrosis, cardiomyocyte apoptosis, and hyperglycemia. Mice deficient with ROCK1 display eyelids open at birth (EOB) and omphalocele phenotypes due to the disorganization of actin filaments in the eyelids and the umbilical ring. ROCK1 contains an N-terminal extension, a catalytic kinase domain, and a long C-terminal extension, which contains a Rho-binding HR1 domain and a pleckstrin homology (PH) domain. It is auto-inhibited by HR1 and PH domains interacting with the catalytic domain. HR1 domains are anti-parallel coiled-coil (ACC) domains that bind small GTPases from the Rho family. 66 -212163 cd11640 HutP Histidine Utilizing Protein, the hut operon positive regulatory protein. The HutP protein family regulates the expression of 'hut' structural genes in Bacillus and other bacteria. It forms an anti-termination complex, which recognizes three UAG triplet units, separated by four non-conserved nucleotides on the RNA terminator region. In an L-histidine and Mg2+ dependent manner, HutP binds to the nascent hut mRNA leader transcript, and the ensuing anti-termination complex inhibits formation of a stem-loop terminator, clearing the way for transcription of the hut structural genes. 134 -212500 cd11641 Precorrin-4_C11-MT Precorrin-4 C11-methyltransferase (CbiF/CobM). Precorrin-4 C11-methyltransferase participates in the pathway toward the biosynthesis of cobalamin (vitamin B12). There are two distinct cobalamin biosynthetic pathways in bacteria. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not require oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. In the aerobic pathway, CobM catalyzes the methylation of precorrin-4 at C-11 to yield precorrin-5. In the anaerobic pathway, CibF catalyzes the methylation of cobalt-precorrin-4 to cobalt-precorrin-5. Both CibF and CobM, which are homologous, are included in this model. There are about 30 enzymes involved in vitamin B12 synthetic pathway. The enzymes involved in the aerobic pathway are prefixed Cob and those of the anaerobic pathway Cbi. Most of the enzymes are shared in both pathways and several of these enzymes are pathway-specific. 228 -212501 cd11642 SUMT Uroporphyrin-III C-methyltransferase (S-Adenosyl-L-methionine:uroporphyrinogen III methyltransferase, SUMT). SUMT, an enzyme of the cobalamin and siroheme biosynthetic pathway, catalyzes the transformation of uroporphyrinogen III into precorrin-2. It transfers two methyl groups from S-adenosyl-L-methionine to the C-2 and C-7 atoms of uroporphyrinogen III to yield precorrin-2 via the intermediate formation of precorrin-1. SUMT is the first enzyme committed to the biosynthesis of siroheme or cobalamin (vitamin B12), and precorrin-2 is a common intermediate in the biosynthesis of corrinoids such as vitamin B12, siroheme and coenzyme F430. In some organisms, the SUMT domain is fused to the precorrin-2 oxidase/ferrochelatase domain to form siroheme synthase or to uroporphyrinogen-III synthase to form bifunctional uroporphyrinogen-III methylase/uroporphyrinogen-III synthase. 233 -212502 cd11643 Precorrin-6A-synthase Precorrin-6A synthase, the cobalamin biosynthesis enzyme CobF. Precorrin-6A synthase participates in the pathway toward the biosynthesis of cobalamin (vitamin B12). There are two distinct cobalamin biosynthetic pathways in bacteria. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not require oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. This model represents CobF, the precorrin-6A synthase, an enzyme specific to the aerobic pathway. After precorrin-4 is methylated at C-11 by CobM to produce precorrin-5, CobF catalyzes the removal of the extruded acyl group in the subsequent step, and the addition of a methyl group at C-1. The product of this reaction is precorrin-6A, which gets reduced by an NADH-dependent reductase to yield precorrin-6B. This family includes enzymes in GC-rich Gram-positive bacteria, alpha proteobacteria and Pseudomonas-related species. 247 -212503 cd11644 Precorrin-6Y-methylase Precorrin-6Y methyltransferase, the cobalamin biosynthesis enzyme CbiE. Precorrin-6Y methyltransferase participates in the pathway toward the biosynthesis of cobalamin (vitamin B12). There are two distinct cobalamin biosynthetic pathways in bacteria. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not requires oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. This model represents the CbiE subunit of precorrin-6Y C5,15-methyltransferase from the anaerobic pathway, a bifunctional enzyme that catalyzes two methylations (at C-5 and C-15) in precorrin-6Y, as well as the decarboxylation of the acetate side chain located in ring C, in order to generate precorrin-8X. In the anaerobic pathway, two enzymes are required to produce precorrin-8X: CbiE and CbiT, which can be fused as CbiET (sometimes called CobL). In the aerobic pathway, the bifunctional enzyme is called CobL. 201 -212504 cd11645 Precorrin_2_C20_MT Precorrin-2 C20-methyltransferase, also named CobI or CbiL. Precorrin-2 C20-methyltransferase participates in the pathway toward the biosynthesis of cobalamin (vitamin B12). There are two distinct cobalamin biosynthetic pathways in bacteria. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not require oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. Precorrin-2 C20-methyltransferase catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring of precorrin-2 using S-adenosylmethionine as a methyl group source to produce precorrin-3A. In the anaerobic pathway, cobalt is inserted into precorrin-2 by CbiK to generate cobalt-precorrin-2, which is the substrate for CbiL, a C20 methyltransferase. In Clostridium difficile, CbiK and CbiL are fused into a bifunctional enzyme. In the aerobic pathway, the precorrin-2 C20-methyltransferase is named CobI. This family includes CbiL and CobI precorrin-2 C20-methyltransferases, both as stand-alone enzymes and when CbiL forms part of a bifunctional enzyme. 226 -212505 cd11646 Precorrin_3B_C17_MT Precorrin-3B C(17)-methyltransferase (CobJ/CbiH). Precorrin-3B C(17)-methyltransferase participates in the pathway toward the biosynthesis of cobalamin (vitamin B12). There are two distinct cobalamin biosynthetic pathways. The aerobic pathway requires oxygen, and cobalt is inserted late in the pathway; the anaerobic pathway does not require oxygen, and cobalt insertion is the first committed step towards cobalamin synthesis. This model includes CobJ of the aerobic pathway and CbiH of the anaerobic pathway, both as stand-alone enzymes and when CobJ forms part of a bifunctional enzyme. In the aerobic pathway, once CobG has generated precorrin-3b, CobJ catalyzes the methylation of precorrin-3b at C-17 to form precorrin-4 (the extruded methylated C-20 fragment is left attached as an acyl group at C-1). In the corresponding anaerobic pathway, CbiH carries out this ring contraction, using cobalt-precorrin-3b as a substrate to generate a tetramethylated delta-lactone. 240 -212506 cd11647 Diphthine_synthase Diphthine synthase, also known as DPH5. Diphthine synthase, also known as diphthamide biosynthesis S-adenosylmethionine-dependent methyltransferase, participates in the posttranslational modification of a specific histidine residue in elongation factor 2 (EF-2) of eukaryotes and archaea to diphthamide. It catalyzes the trimethylation step in diphthamide biosynthesis. Diphthamide is the target of diphtheria toxin, which ADP-ribosylates diphthamide and inhibits protein synthesis, leading to host cell death. 241 -212507 cd11648 RsmI Ribosomal RNA small subunit methyltransferase I, also known as rRNA (cytidine-2'-O-)-methyltransferase RsmI. Proteins in this family catalyze the 2-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA using S-adenosyl-L-methionine (SAM or Ado-Met) as the methyl donor. RsmI proteins employ the 30S subunit (not the 16S rRNA) as a substrate, suggesting that the methylation reaction occurs at a late step during 30S assembly in the cell. 218 -212508 cd11649 RsmI_like Uncharacterized subfamily of the tetrapyrrole methylase family similar to ribosomal RNA small subunit methyltransferase I (RsmI). Tetrapyrrole methylase uses S-AdoMet (S-adenosyl-L-methionine or SAM) in the methylation of diverse substrates. This uncharacterized subfamily exhibits sequence similarity to the ribosomal RNA small subunit methyltransferase I (RsmI), which catalyzes the 2-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. 229 -212164 cd11650 AT4G37440_like Uncharacterized protein domain conserved in plants. This domain contains an extensive protein sequence fragment that appears conserved in a number of plant proteins, including the gene product of Arabidopsis thaliana locus AT4G37440, which has been identified in transcriptional profiling as expressed at different levels in white cabbage cultivars. 253 -212165 cd11651 YPK1_N_like Fungal protein kinase domain similar to the N-terminus of YPK1. This fungal domain family includes the N-terminal region of the Saccharomyces cerevisiae AGC kinases YPK1 and YPK2, which were found to be essential for the proliferation of yeast. YPK1 is required for cell growth and acts as a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. It also plays a role in efficient endocytosis and in the maintenance of cell wall integrity. 174 -212166 cd11652 SSH-N N-terminal domain conserved in slingshot (SSH) phosphatases. This domain or region conserved in Bilateria is found N-terminal to the DEK_C-like and catalytic domains of slingshot phosphatases. Slingshot is a cofilin-specific phosphatase. Dephosphorylation reactivates cofilin, which in turn depolymerizes actin and is thus required for actin filament reorganization. Slingshot is a member of the dual-specificity protein phosphatase family. This N-terminal SSH region may be involved in P-cofilin binding (the model C-terminus plus the DEK_C-like domain, which are characterized as the "B" domain in some of the literature), and may be required for the F-actin mediated activation of slingshot (the N-terminal region of this model, sometimes referred to as the "A" domain). 233 -212167 cd11653 rap1_RCT C-terminal domain of RAP1 recruits proteins to telomeres. The RAP1 (repressor activator protein 1) C-terminal domain (RCT) mediates interactions with other proteins such as TRF2 (human), Rif1, Rif2, Sir3, Sir4 (Saccharomyces cerevisiae), and Taz1 (Schizosaccharomyces pombe) at telomeres and other loci. RAP1, identified in budding yeast as repressor/activator protein 1, is a well-conserved telomere binding protein, also found in fission yeast and mammals. In Saccharomyces cerevisiae, RAP1 directly binds DNA and is involved in transcriptional activation, gene silencing, as well as binding at numerous sites at each telemore, where it functions in telomere length regulation, telomeric position effect gene silencing and telomere end protection. Human RAP1 apparently does not bind telomeric DNA directly, but binds telomere repeat binding factor 2 (TRF2) via the RCT. RAP1 might act by suppressing nonhomologous end-joining. Yeast RAP1 has two myb-type DNA binding modules, and an RCT domain that recruits Sir proteins 3 and 4 (Sir3, Sir4) for gene silencing, and Rif1 and Rif2 for telomere length maintenance. Schizosaccharomyces pombe RAP1 (spRap1), like human RAP1, lacks direct DNA-binding activity and is localized to telomeres via Taz1, an ortholog of TRF1 and TRF2. The S. pompe RCT resembles the first 3-helix bundle of the yeast and human RCT forms, but is not included in this larger model. 100 -212553 cd11654 TRF2_RBM RAP1 binding motif of telomere repeat binding factor. TRF2 (Telomere repeat binding factor 2) functions as part of the 6-component shelterin complex. TRF2 binds DNA and recruits RAP1 (via binding to the RAP1 protein c-terminus (RCT)) and TIN2 in the protection of telomeres from DNA repair machinery. Metazoan shelterin consists of 3 DNA-binding proteins (TRF2, TRF1 and POT1) and 3 recruited proteins that bind to one or more of these DNA-binding proteins (RAP1, TIN2, TPP1). Human TRF1 and TRF2 bind double-stranded DNA. hTRF2 consists of a basic N-terminus, a TRF homology domain, the RAP1 binding motif (RBM) described by this model, the TIN2 binding motif (TBM), and a myb-like DNA binding domain. 42 -212554 cd11655 rap1_myb-like DNA-binding modules of yeast Rap1 and related proteins. Yeast Rap1 DNA-binding activity is mediated by a pair of DNA-binding modules comprised of 2 3-helix bundles with an N-terminal arm, closely matching the structure of homeodomain and myb-type proteins. Human Rap1 has a single myb-like module, and may not bind DNA directly. Rap1, identified in budding yeast as repressor-activator protein 1, is a conserved telomere binding protein, also identified in fission yeast and mammals. In Saccharomyces cerevisiae, Rap1 directly binds DNA and is involved in transcriptional activation, gene silencing, as well as binding at numerous binding sites at each telomere, where it functions in telomere length regulation, telomeric position effect gene silencing and telomere end protection. Human Rap1 apparently does not bind telomeric DNA directly, but binds telomere repeat binding factor 2 (TRF2) via the Rap C-terminal domain (RCT). Rap1 may act by suppressing non-homologous end-joining. Yeast Rap1 has 2 myb-type DNA binding modules, a BRCT domain, and a RCT domain that recruits Sir3 and Sir4 proteins for gene silencing and Rif1 and Rif2 for telomere length maintenance. Human Rap1 has a similar domain architecture but has a single myb-like domain. 57 -212555 cd11656 FBX4_GTPase_like C-terminal GTPase-like domain of F-Box Only Protein 4. F-box proteins are involved in substrate recognition as part of SCF (Skp1-Cul1-Rbx1-F-box protein) ubiquitin ligase complexes. Fbx4 (or Fbxo4) binds to the telomere repeat binding factor 1 (TRF1), whose activity at telomeres is regulated in part by selective ubiquitination and degradation. This ubiquitination of TRF1 is mediated by Fbx4, which binds to the TRFH domain of TRF1, via the C-terminal domain characterized by this model, a module resembling a small GTPase domain that lacks the GTP-binding site. When bound to telomeres, TIN2 acts to protect TRF1 from SCF-Fbx4 mediated ubiquitination. Tankyrase-mediated ADP-ribosylation releases TRF1 from telomeres, rendering them susceptible to ubiquitination and degradation, which in turn promotes telomere elongation. Fbx4 has also been reported to target cyclin D1 for degradation by the proteasome, a mechanism ensuring the fidelity of DNA replication. More recently, these findings have been disputed. 223 -240667 cd11657 TIN2_N N-terminal domain of TRF-interacting nuclear factor 2; shelterin complex protein of telomeres. TIN2 is one of the six proteins of shelterin complex, which acts to protect telomeres from DNA damage repair machinery. TIN2 binds directly to TRF1 and TRF2 and stabilizes TRF2 complex-telomere binding by tethering it to the TRF1 complex. TIN2 binding to TRF2 is primarily via the TRF binding motif (TBM) region and the N-terminus, while the far C-terminal region has lower affinity. The TIN2 TBM, but not the N-terminal region, is involved in TIN2 binding to TRF1. Truncation of the TIN2 N-terminus in mouse results in telomere elongation, suggesting a negative regulatory function of this region. Three shelterin components (TRF1, TRF2, POT1) bind DNA and 3 components (TIN2, RAP1, TPP1) are recruited by these DNA binding factors. TRF1 activity at telomeres is regulated in part by selective ubiquitination and degradation. Ubiquitination of TRF1 is mediated by Fbx4, which binds TRF1 in the TRFH domain, via a small GTPase module. When bound to telomeres, TIN2 acts to protect TRF1 from SCF-Fbx4 mediated ubiquitination. F-box proteins act in substrate recognition as part of Skp1-Cul1-Rbx1-F- box (SCF) protein complexes. Tankyrase-mediated ADP-ribosylation releases TRF1 from telomeres, rendering them susceptible to ubiquitination and degradation, promoting telomere elongation. TIN2 also binds PIP1, which recruits POT1 to telomeres. 188 -212556 cd11658 SANT_DMAP1_like SANT/myb-like domain of Human Dna Methyltransferase 1 Associated Protein 1-like. These proteins are members of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of the DNA-binding Myb domains and is found in a diverse set of proteins. 46 -212557 cd11659 SANT_CDC5_II SANT/myb-like DNA-binding domain of Cell Division Cycle 5-Like Protein repeat II. In humans, cell division cycle 5-like protein (CDC5) functions in pre-mRNA splicing in cell cycle control. The DNA-binding, myb-like domain of CDC5 is a member of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of DNA-binding Myb domains and is found in a diverse set of proteins. 53 -212558 cd11660 SANT_TRF Telomere repeat binding factor-like DNA-binding domains of the SANT/myb-like family. Human telomere repeat binding factors, TRF1 and TRF2, function as part of the 6 component shelterin complex. TRF2 binds DNA and recruits RAP1 (via binding to the RAP1 protein c-terminal (RCT)) and TIN2 in the protection of telomeres from DNA repair machinery. Metazoan shelterin consists of 3 DNA binding proteins (TRF2, TRF1, and POT1) and 3 recruited proteins that bind to one or more of these DNA-binding proteins (RAP1, TIN2, TPP1). Schizosaccharomyces pombe TAZ1 is an orthlog and binds RAP1. Human TRF1 and TRF2 bind double-stranded DNA. hTRF2 consists of a basic N-terminus, a TRF homology domain, the RAP1 binding motif (RBM), the TIN2 binding motif (TBM) and a myb-like DNA binding domain, SANT, named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. Tandem copies of the domain bind telomeric DNA tandem repeats as part of the capping complex. The single myb-like domain of TRF-type proteins is similar to the tandem myb_like domains found in yeast RAP1. 50 -212559 cd11661 SANT_MTA3_like Myb-Like Dna-Binding Domain of MTA3 and related proteins. Members in this SANT/myb family include domains found in mouse metastasis-associated protein 3 (MTA3) proteins and arginine-glutamic dipeptide (RERE) repeats proteins. SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domains are a diverse set of proteins that share a common 3 alpha-helix bundle. MTA3 has been shown to interact with nucleosome remodeling and deacetylase (NuRD) proteins CHD4 and HDAC1, and the core cohesin complex protein RAD21 in the ovary, and regulate G2/M progression in proliferating granulosa cells. RERE belongs to the atrophin family and has been identified as a nuclear receptor corepressor; altered expression levels of RERE are associated with cancer in humans while mutations of Rere in mice cause failure in closing the anterior neural tube and fusion of the telencephalic and optic vesicles during embryogenesis. 46 -212560 cd11662 apollo_TRF2_binding TRF2-binding region of apollo and similar proteins. Apollo protein, a DNA repair nuclease, is recruited to telomeres by TRF2 where it is associated with the principle components of the shelterin complex. Apollo is a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase; its 5' exonuclease activity is regulated by binding to TRF2. Apollo and TRF2 also suppress damage to engineered interstitial telomere repeat tracts at the chromosome ends. TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of DNA topoisomerases (TOP1, TOP2-alpha, and TOP2-beta) at telomeres since they also act in the same pathway of telomere protection. The shelterin complex protein identified in mammals is principally comprised of 6 factors that act to protect telomeres from DNA damage repair machinery. 3 components (TRF1, TRF2, POT1) bind DNA and 3 components are recruited by these factors (TIN2, RAP1, TPP1). 34 -212128 cd11663 GH119_BcIgtZ-like putative catalytic domain of glycoside hydrolase family 119 (GH119). The prokaryotic subgroup is represented by IgtZ, an alpha-amylase from a Bacillus circulans strain. The GH119 family is related to GH57, a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). GH57s cleave alpha-glycosidic bonds by employing a retaining mechanism, which involves a glycosyl-enzyme intermediate, allowing transglycosylation. 363 -212129 cd11664 LamB_YcsF_like_2 uncharacterized proteins similar to the Aspergillus nidulans lactam utilization protein LamB. This bacterial subfamily of the LamB/YbgL family, contains many well conserved uncharacterized proteins. Although their molecular function is unknown, those proteins show high sequence similarity to the Aspergillus nidulans lactam utilization protein LamB, which might be required for conversion of exogenous 2-pyrrolidinone to endogenous GABA. 238 -212130 cd11665 LamB_like Aspergillus nidulans lactam utilization protein LamB and similar proteins. This eukaryotic and bacterial subfamily of the LamB/YbgL family, includes Aspergillus nidulans protein LamB. The lamb gene locates at the lam locus of Aspergillus nidulans, consisting of two divergently transcribed genes, lamA and lamB, needed for the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. Although the exact molecular function of lamb encoding protein LamB is unknown, it might be required for conversion of exogenous 2-pyrrolidinone to endogenous GABA. 238 -212131 cd11666 GH38N_Man2A1 N-terminal catalytic domain of Golgi alpha-mannosidase II and similar proteins; glycoside hydrolase family 38 (GH38). This subfamily is represented by Golgi alpha-mannosidase II (GMII, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A1), a monomeric, membrane-anchored class II alpha-mannosidase existing in the Golgi apparatus of eukaryotes. GMII plays a key role in the N-glycosylation pathway. It catalyzes the hydrolysis of the terminal of both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2(GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. GMII is activated by zinc or cobalt ions and is strongly inhibited by swainsonine. Inhibition of GMII provides a route to block cancer-induced changes in cell surface oligosaccharide structures. GMII has a pH optimum of 5.5-6.0, which is intermediate between those of acidic (lysosomal alpha-mannosidase) and neutral (ER/cytosolic alpha-mannosidase) enzymes. GMII is a retaining glycosyl hydrolase of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. 344 -212132 cd11667 GH38N_Man2A2 N-terminal catalytic domain of Golgi alpha-mannosidase IIx, and similar proteins; glycoside hydrolase family 38 (GH38). This subfamily is represented by human alpha-mannosidase 2x (MX, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A2). MX is enzymatically and functionally very similar to GMII (found in another subfamily), and as an isoenzyme of GMII. It is thought to also function in the N-glycosylation pathway. MX specifically hydrolyzes the same oligosaccharide substrate as does MII. It specifically removes two mannosyl residues from GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2(GlcNAc, N-acetylglucosmine). 344 -212168 cd11669 TTHB210-like Hypothetical protein TTHB210, a sigma(E)-regulated gene product found in Thermus thermophilus, and similar proteins. TTHB210 is an uncharacterized protein found in Thermus thermophilus, and is controlled by the sigma(E) /anti-sigma(E) regulatory system. It is one of the five proteins of the extracytoplasmic function (ECF) sigma factor sigma(E)-regulated gene products whose physiological function have not been determined. Its crystallographic structure reveals a novel homodecamer although it is a dimer in solution. 115 -212561 cd11670 Sp_RAP1_RCT C-terminal domain of S. pombe RAP1 protein. The Schizosaccharomyces pombe RAP1 (repressor activator protein 1) protein C-terminal (RCT) domain structurally resembles the first 3-helix bundle found in yeast and human RAP1 RCT. S. pombe RAP1 (spRap1), like human RAP1, lacks direct DNA-binding activity and is localized to telomeres via Taz1, an ortholog of TRF1 and TRF2. The RAP1 RCT domain interacts with RAP1 binding motif (RBM) of TAZ1. RAP1, identified in budding yeast as repressor/activator protein 1 is a well-conserved telomere binding protein, found in budding yeast, fission yeast and mammals. In Saccharomyces cerevisiae, RAP1 directly binds DNA and is involved in transcriptional activation and mating type information gene silencing, as well as binding at numerous sites at each telomere, where it functions in telomere length regulation, telomeric position effect gene silencing and telomere end protection. Human RAP1 does not bind telomeric DNA directly, but binds telomere repeat binding factor 2 (TRF2) via the RAP C-terminal domain (RCT). Yeast RAP1 has 2 myb-type DNA binding modules, a BRCT domain, and a RCT domain that recruits Sir3 and Sir4 for gene silencing and Rif1 and Rif2 for telomere length maintenance. S. pombe RAP1 has a BRCT domain, 2 myb like domains, and the RCT. 52 -212562 cd11671 TAZ1_RBM RAP1 binding motif of Schizosaccharomyces pombe TAZ1. S. pombe TAZ1 recruits the spRAP1 protein to telomeres. The TAZ1 RAP1-binding motif (RBM) binds the RAP1 C-terminal domain (RCT), which structurally resembles the first 3-helix bundle found in yeast and human RAP1 RCT. TAZ1, an ortholog of TRF1 and TRF2, has a TRF homology (TRFH) domain, the RBM domain, a dimerization domain, and a myb-like C-terminus. RAP1, identified in budding yeast as repressor/activator protein 1, is a well-conserved telomere binding protein and is also found in fission yeast and mammals. In Saccharomyces cerevisiae, RAP1 directly binds DNA and is involved in transcriptional activation and mating type information gene silencing, as well as in binding to numerous binding sites at each telomere, where it functions in telomere length regulation, telomeric position effect gene silencing, and telomere end protection. Like S. pombe RAP1, human RAP1 does not bind telomeric DNA directly, but binds telomere repeat binding factor 2 (TRF2) through the RAP C-terminal domain (RCT). 49 -277250 cd11672 ADDz ATRX, Dnmt3 and Dnmt3l PHD-like zinc finger domain (ADDz). The ADDz zinc finger domain is present in the chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3) and ATRX, a SNF2 type transcription factor protein. The Dnmt3 family includes two active DNA methyltransferases, Dnmt3a and -3b, and one regulatory factor Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. 99 -212563 cd11673 hemoglobin_linker_C Globular domain of extracellular hemoglobin linker. This family of hemoglobin linker chains is restricted to annelid worms, and participates in the formation of the large erythrocruorin respiratory complex. Via its N-terminal coiled-coil segment (not included in this model), the molecule forms trimers, which are part of a scaffold organizing the overall complex architecture; the latter encompasses 36 linkers and 144 hemoglobins in total. This C-terminal globular domain is involved in trimerization, and also interacts with globins and other C-terminal globular linker domains of neighboring trimers. The structure resembles that of nitrophorins and lipocalins. 120 -212564 cd11674 lambda-1 inner capsid protein lambda-1 or VP3. The reovirus inner capsid protein lambda-1 displays nucleoside triphosphate phosphohydrolase (NTPase), RNA-5'-triphosphatase (RTPase), and RNA helicase activity and may play a role in the transcription of the virus genome, the unwinding or reannealing of double-stranded RNA during RNA synthesis. The RTPase activity constitutes the first step in the capping of RNA, resulting in a 5'-diphosphorylated RNA plus-strand. lambda1 is an Orthoreovirus core protein, VP3 is the homologous core protein in Aquareoviruses. 1166 -212565 cd11675 SCAB1_middle middle domain of the stomatal closure-related actin binding protein1. SCAB1 is a dimeric actin crosslinker conserved in plants. The three-dimensional structure of this domain resembles that of fibronectin type III repeat units and immunoglobulins. It is situated between a coiled-coil dimerization domain and a C-terminal pleckstrin homology-like module. SCAB1 appears to be required for normal actin dynamics in guard cells stomatal movement. The function of the middle domain is not clear. 85 -212487 cd11676 Gemin6 Gemin 6. Gemins 6, together with the survival motor neuron (SMN) protein, other Gemins, and Unr-interacting protein (UNRIP) form the SMN complex, which plays an important role in the Sm core assembly reaction, by binding directly to the Sm proteins, as well as UsnRNAs. Gemin 6 forms a heterodimer with Gemin 7, which serve as a surrogate for the SmB-SmD3 dimer during the formation of the heptameric Sm ring. 63 -212488 cd11677 Gemin7 Gemin 7. Gemins 7, together with the survival motor neuron (SMN) protein, other Gemins, and Unr-interacting protein (UNRIP) form the SMN complex, which plays an important role in the Sm core assembly reaction, by binding directly to the Sm proteins, as well as UsnRNAs. Gemin 7 forms a heterodimer with Gemin 6, which serve as a surrogate for the SmB-SmD3 dimer during the formation of the heptameric Sm ring. 77 -212489 cd11678 archaeal_LSm archaeal Like-Sm protein. The archaeal Sm-like (LSm): The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. They function to mediate RNA-RNA interactions and RNA biogenesis. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Eukaryotic Sm proteins form part of specific small nuclear ribonucleoproteins (snRNPs) that are involved in the processing of pre-mRNAs to mature mRNAs, and are a major component of the eukaryotic spliceosome. Most snRNPs consist of seven Sm proteins (B/B', D1, D2, D3, E, F and G) arranged in a ring on a uridine-rich sequence (Sm site), plus a small nuclear RNA (snRNA) (either U1, U2, U5 or U4/6). Since archaebacteria do not have any splicing apparatus, their Sm proteins may play a more general role. Archaeal LSm proteins are likely to represent the ancestral Sm domain. Members of this family share a highly conserved Sm fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta-sheet. Sm-like proteins exist in archaea as well as prokaryotes that form heptameric and hexameric ring structures similar to those found in eukaryotes. 69 -212490 cd11679 archaeal_Sm_like archaeal Sm-related protein. Archaeal Sm-related proteins: The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. They function to mediate RNA-RNA interactions and RNA biogenesis. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Eukaryotic Sm proteins form part of specific small nuclear ribonucleoproteins (snRNPs) that are involved in the processing of pre-mRNAs to mature mRNAs, and are a major component of the eukaryotic spliceosome. Most snRNPs consist of seven Sm proteins (B/B', D1, D2, D3, E, F and G) arranged in a ring on a uridine-rich sequence (Sm site), plus a small nuclear RNA (snRNA) (either U1, U2, U5 or U4/6). Since archaebacteria do not have any splicing apparatus, their Sm proteins may play a more general role. Archaeal Lsm proteins are likely to represent the ancestral Sm domain. 65 -212543 cd11680 HDAC_Hos1 Class I histone deacetylases Hos1 and related proteins. Saccharomyces cerevisiae Hos1 is responsible for Smc3 deacetylation. Smc3 is an important player during the establishment of sister chromatid cohesion. Hos1 belongs to the class I histone deacetylases (HDACs). HDACs are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues in histone amino termini to yield a deacetylated histone (EC 3.5.1.98). Enzymes belonging to this group participate in regulation of a number of processes through protein (mostly different histones) modification (deacetylation). Class I histone deacetylases in general act via the formation of large multiprotein complexes. Other class I HDACs are animal HDAC1, HDAC2, HDAC3, HDAC8, fungal RPD3 and HOS2, plant HDA9, protist, archaeal and bacterial (AcuC) deacetylases. Members of this class are involved in cell cycle regulation, DNA damage response, embryonic development, cytokine signaling important for immune response and in posttranslational control of the acetyl coenzyme A synthetase. 294 -212544 cd11681 HDAC_classIIa Histone deacetylases, class IIa. Class IIa histone deacetylases are Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine residues of histones (EC 3.5.1.98) to yield deacetylated histones. This subclass includes animal HDAC4, HDAC5, HDAC7, and HDCA9. Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. Histone deacetylases usually act via association with DNA binding proteins to target specific chromatin regions. Class IIa histone deacetylases are signal-dependent co-repressors, they have N-terminal regulatory domain with two or three conserved serine residues, phosphorylation of these residues is important for ability to shuttle between the nucleus and cytoplasm and act as transcriptional co-repressors. HDAC9 is involved in regulation of gene expression and dendritic growth in developing cortical neurons. It also plays a role in hematopoiesis. HDAC7 is involved in regulation of myocyte migration and differentiation. HDAC5 is involved in integration of chronic drug (cocaine) addiction and depression with changes in chromatin structure and gene expression. HDAC4 participates in regulation of chondrocyte hypertrophy and skeletogenesis. 377 -212545 cd11682 HDAC6-dom1 Histone deacetylase 6, domain 1. Histone deacetylases 6 are class IIb Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDACs usually act via association with DNA binding proteins to target specific chromatin regions. HDAC6 is the only histone deacetylase with internal duplication of two catalytic domains which appear to function independently of each other, and also has a C-terminal ubiquitin-binding domain. It is located in the cytoplasm and associates with microtubule motor complex, functioning as the tubulin deacetylase and regulating microtubule-dependent cell motility. Known interaction partners of HDAC6 are alpha tubulin (substrate) and ubiquitin-like modifier FAT10 (also known as Ubiquitin D or UBD). 337 -212546 cd11683 HDAC10 Histone deacetylase 10. Histone deacetylases 10 are class IIb Zn-dependent enzymes that catalyze hydrolysis of N(6)-acetyl-lysine of a histone to yield a deacetylated histone (EC 3.5.1.98). Histone acetylation/deacetylation process is important for mediation of transcriptional regulation of many genes. HDACs usually act via association with DNA binding proteins to target specific chromatin regions. HDAC10 has an N-terminal deacetylase domain and a C-terminal pseudo-repeat that shares significant similarity with its catalytic domain. It is located in the nucleus and cytoplasm, and is involved in regulation of melanogenesis. It transcriptionally down-regulates thioredoxin-interacting protein (TXNIP), leading to altered reactive oxygen species (ROS) signaling in human gastric cancer cells. Known interaction partners of HDAC10 are Pax3, KAP1, hsc70 and HDAC3 proteins. 337 -212566 cd11684 DHR2_DOCK Dock Homology Region 2, a GEF domain, of Dedicator of Cytokinesis proteins. DOCK proteins comprise a family of atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate the small GTPases Rac and Cdc42 by exchanging bound GDP for free GTP. They are also called the CZH (CED-5, Dock180, and MBC-zizimin homology) family, after the first family members identified. Dock180 was first isolated as a binding partner for the adaptor protein Crk. The Caenorhabditis elegans protein, Ced-5, is essential for cell migration and phagocytosis, while the Drosophila ortholog, Myoblast city (MBC), is necessary for myoblast fusion and dorsal closure. DOCKs are divided into four classes (A-D) based on sequence similarity and domain architecture: class A includes Dock1 (or Dock180), 2 and 5; class B includes Dock3 and 4; class C includes Dock6, 7, and 8; and class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1, and DHR-2 (also called CZH2 or Docker). This alignment model represents the DHR-2 domain of DOCK proteins, which contains the catalytic GEF activity for Rac and/or Cdc42. 392 -212582 cd11687 PpPFK_gamma Pichia pastoris 6-phosphofructokinase, gamma subunit. Pichia pastoris 6-phosphofructokinase (PpPfk) is the most complex and probably largest (1 MDa) eukaryotic Pfk. It forms a dodecamer of four alpha-beta-gamma trimers. The gamma unit is unique, in contrast to other eukaryotic ATP-dependent 6-phosphofructokinases, and participates in oligomerization of the alpha and beta chains. It is not essential for enzymatic activity, but it modulates the allosteric behavior of the enzyme. 346 -212583 cd11688 THUMP THUMP domain, predicted to bind RNA. The THUMP domain is named after THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases. It is predicted to be an RNA-binding domain and probably functions by delivering a variety of RNA modification enzymes to their targets. 148 -212588 cd11689 SidM_DrrA_GEF guanine nucleotide-exchange factor domain of Legionella SidM/DrrA. Effector protein DrrA of Legionella pneumophila, an intracellular pathogen, is a potent guanine nucleotide-exchange factor (GEF) specific for the host Rab1 GTPase. It competes with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelle, therefore effectively hijacking the host's vesicle trafficking to avoid phagosome-lysosome fusion. 187 -212589 cd11690 Tsi2_like Tse2 immunity protein Tsi2 and similar proteins. Tsi2 is an essential protein in Pseudomonas aeruginosa, providing protection from the activity of Tse2, most likely by directly interacting with Tse2. Tse2 is a toxin transported via the type VI secretion system and is targeted towards other bacteria in the environment. 72 -212590 cd11691 HRI1_like Tandem repeat domain of HRI1 and related proteins. Saccharomyces cerevisiae Hri1p (Hrr25-interacting protein 1, YLR301w) is a non-essential gene product named for its interaction with the yeast protein kinase Hrr25p. It has also been characterized as an interaction partner for Sec72p, but does not seem to be required for protein translocation into the ER. It may be a cytosolic protein. Hri1p contains a tandem repeat of a structural unit that forms a beta-barrel with structural similarity to nitrobindin. The two repeats are sequence dissimilar, and the second (c-terminal) repeat is missing several strands, forming an incomplete barrel. 101 -212591 cd11692 HRI1_N_like N-terminal domain of HRI1 and related proteins. Saccharomyces cerevisiae Hri1p (Hrr25-interacting protein 1, YLR301w) is a non-essential gene product named for its interaction with the yeast protein kinase Hrr25p. It has also been characterized as an interaction partner for Sec72p, but does not seem to be required for protein translocation into the ER. It may be a cytosolic protein. Hri1p contains a tandem repeat of a structural unit that forms a beta-barrel with structural similarity to nitrobindin. This N-terminal repeat is involved in homodimerization and may contain a ligand binding site. 134 -212592 cd11693 HRI1_C_like C-terminal domain of HRI1 and related proteins. Saccharomyces cerevisiae Hri1p (Hrr25-interacting protein 1, YLR301w) is a non-essential gene product named for its interaction with the yeast protein kinase Hrr25p. It has also been characterized as an interaction partner for Sec72p, but does not seem to be required for protein translocation into the ER. It may be a cytosolic protein. Hri1p contains a tandem repeat of a structural unit that forms a beta-barrel with structural similarity to nitrobindin. This C-terminal repeat is missing several strands and forms an incomplete barrel. 90 -212567 cd11694 DHR2_DOCK_D Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis proteins. DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class D, also called the Zizimin subfamily, includes Dock9, 10 and 11. Class D Docks are specific GEFs for Cdc42. Dock9 plays important roles in spine formation and dendritic growth. Dock10 and Dock11 are preferentially expressed in lymphocytes. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class D DOCKs, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. 376 -212568 cd11695 DHR2_DOCK_C Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis proteins. DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class C, also called the Zizimin-related (Zir) subfamily, includes Dock6, 7 and 8. Class C DOCKs have been shown to have GEF activity for both Rac and Cdc42. Dock6 regulates neurite outgrowth. Dock7 plays a critical roles in the early stages of axon formation, neuronal polarity, and myelination. Dock8 regulates T and B cell numbers and functions, and plays essential roles in humoral immune responses and the proper formation of B cell immunological synapses. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Class C Docks, which contains the catalytic GEF activity for Rac and Cdc42. 368 -212569 cd11696 DHR2_DOCK_B Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis proteins. DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. Dock3 is a specific GEF for Rac and it regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class B DOCKs, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 391 -212570 cd11697 DHR2_DOCK_A Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis proteins. DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. Class A DOCKs are specific GEFs for Rac. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. Dock2 plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. Dock5 functions upstream of Rac1 to regulate osteoclast function. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class A DOCKs, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 400 -212571 cd11698 DHR2_DOCK9 Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 9. Dock9, also called Zizimin1, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. It plays important roles in spine formation and dendritic growth. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock9, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. 415 -212572 cd11699 DHR2_DOCK10 Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 10. Dock10, also called Zizimin3, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. Dock10 is preferentially expressed in lymphocytes and may play a role in interleukin-4 induced activation of B cells. It may also play a role in the invasion of tumor cells. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock10, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. 446 -212573 cd11700 DHR2_DOCK11 Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 11. Dock11, also called Zizimin2 or activated Cdc42-associated GEF (ACG), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. Dock11 is predominantly expressed in lymphocytes and is found in high levels in germinal center B lymphocytes after T cell dependent antigen immunization. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock11, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. 413 -212574 cd11701 DHR2_DOCK8 Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 8. Dock8, also called Zizimin-related 3 (Zir3), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac1 and Cdc42 by exchanging bound GDP for free GTP. Dock8 is highly expressed in the immune system and it regulates T and B cell numbers and functions. It plays essential roles in humoral immune responses and the proper formation of B cell immunological synapses. Dock8 deficiency is a primary immune deficiency that results in extreme susceptibility to cutaneous viral infections, elevated IgE levels, and eosinophilia. It was originally described as an autosomal recessive form of hyper IgE syndrome (AR-HIES). DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock8, which contains the catalytic GEF activity for Rac and/or Cdc42. 422 -212575 cd11702 DHR2_DOCK6 Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 6. Dock6, also called Zizimin-related 1 (Zir1), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac and Cdc42 by exchanging bound GDP for free GTP. It is widely expressed and shows highest expression in the dorsal root ganglion and the brain. It regulates neurite outgrowth. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock6, which contains the catalytic GEF activity for Rac and/or Cdc42. 423 -212576 cd11703 DHR2_DOCK7 Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 7. Dock7, also called Zizimin-related 2 (Zir2), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac1 and Cdc42 by exchanging bound GDP for free GTP. It plays a critical role in the initial specification of axon formation in hippocampal neurons. It affects neuronal polarity by regulating microtubule dynamics. Dock7 also plays a role in controlling myelination by Schwann cells. It may also play important roles in the function and distribution of dermal and follicular melanocytes. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock7, which contains the catalytic GEF activity for Rac and/or Cdc42. 473 -212577 cd11704 DHR2_DOCK3 Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3. Dock3, also called modifier of cell adhesion (MOCA), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock3 is a specific GEF for Rac. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock3, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 392 -212578 cd11705 DHR2_DOCK4 Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 4. Dock4 is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. It may also regulate spine morphology and synapse formation. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock4, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 391 -212579 cd11706 DHR2_DOCK2 Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 2. Dock2 is a hematopoietic cell-specific, class A DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock2, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock2, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 421 -212580 cd11707 DHR2_DOCK1 Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 1. Dock1, also called Dock180, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. In the nervous system, it mediates attractive responses to netrin-1 and thus, plays a role in axon outgrowth and pathfinding. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock1, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock1, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 400 -212581 cd11708 DHR2_DOCK5 Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 5. Dock5 is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It functions upstream of Rac1 to regulate osteoclast function. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock5, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock5, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. 400 -293931 cd11709 SPRY SPRY domain. SPRY domains, first identified in the SP1A kinase of Dictyostelium and rabbit Ryanodine receptor (hence the name), are homologous to B30.2. SPRY domains have been identified in at least 11 protein families, covering a wide range of functions, including regulation of cytokine signaling (SOCS), RNA metabolism (DDX1 and hnRNP), immunity to retroviruses (TRIM5alpha), intracellular calcium release (ryanodine receptors or RyR) and regulatory and developmental processes (HERC1 and Ash2L). B30.2 also contains residues in the N-terminus that form a distinct PRY domain structure; i.e. B30.2 domain consists of PRY and SPRY subdomains. B30.2 domains comprise the C-terminus of three protein families: BTNs (receptor glycoproteins of immunoglobulin superfamily); several TRIM proteins (composed of RING/B-box/coiled-coil or RBCC core); Stonutoxin (secreted poisonous protein of the stonefish Synanceia horrida). TRIM/RBCC proteins are involved in a variety of processes, including apoptosis, cell cycle regulation, cell growth, senescence, viral response, meiosis, cell differentiation, and vesicular transport. Genes belonging to this family are implicated in several human diseases that vary from cancer to rare genetic syndromes. The PRY-SPRY domain in these TRIM families is suggested to serve as the target binding site. While SPRY domains are evolutionarily ancient, B30.2 domains are a more recent adaptation where the SPRY/PRY combination is a possible component of immune defense. Mutations found in the SPRY-containing proteins have shown to cause Mediterranean fever and Opitz syndrome. 118 -212548 cd11710 GINS_A_psf1 Alpha-helical domain of GINS complex protein Psf1. Psf1 is a component of the GINS tetrameric protein complex. Psf1 is mainly expressed in highly proliferative tissues, such as blastocysts, adult bone marrow, and testis, in which the stem cell system is active. Loss of Psf1 causes embryonic lethality. GINS is a complex of four subunits (Sld5, Psf1, Psf2 and Psf3) that is involved in both initiation and elongation stages of eukaryotic chromosome replication. Besides being essential for the maintenance of genomic integrity, GINS plays a central role in coordinating DNA replication with cell cycle checkpoints and is involved in cell growth. The eukaryotic GINS subunits are homologous and homologs are also found in the archaea; the complex is not found in bacteria. The four subunits of the complex consist of two domains each, termed the alpha-helical (A) and beta-strand (B) domains. The A and B domains of Sld5/Psf1 are permuted with respect to Psf1/Psf3. 129 -212549 cd11711 GINS_A_Sld5 Alpha-helical domain of GINS complex protein Sld5. Sld5 is a component of GINS tetrameric protein complex, and within the complex Sld5 interacts with Psf1 via its N-terminal A-domain, and with Psf2 through a combination of the A and B domains. Sld5 in Drosophila is required for normal cell cycle progression and the maintenance of genomic integrity. GINS is a complex of four subunits (Sld5, Psf1, Psf2 and Psf3) that is involved in both initiation and elongation stages of eukaryotic chromosome replication. Besides being essential for the maintenance of genomic integrity, GINS plays a central role in coordinating DNA replication with cell cycle checkpoints and is involved in cell growth. The eukaryotic GINS subunits are homologous and homologs are also found in the archaea; the complex is not found in bacteria. The four subunits of the complex consist of two domains each, termed the alpha-helical (A) and beta-strand (B) domains. The A and B domains of Sld5/Psf1 are permuted with respect to Psf1/Psf3. 119 -212550 cd11712 GINS_A_psf2 Alpha-helical domain of GINS complex protein Psf2 (partner of Sld5 2). Psf2 is a component of GINS tetrameric protein complex and has been found to play important roles in normal eye development in Xenopus laevis. GINS is a complex of four subunits (Sld5, Psf1, Psf2 and Psf3) that is involved in both initiation and elongation stages of eukaryotic chromosome replication. Besides being essential for the maintenance of genomic integrity, GINS plays a central role in coordinating DNA replication with cell cycle checkpoints and is involved in cell growth. The eukaryotic GINS subunits are homologous and homologs are also found in the archaea; the complex is not found in bacteria. The four subunits of the complex consist of two domains each, termed the alpha-helical (A) and beta-strand (B) domains. The A and B domains of Sld5/Psf1 are permuted with respect to Psf1/Psf3. 119 -212551 cd11713 GINS_A_psf3 Alpha-helical domain of GINS complex protein Psf3 (partner of Sld5 3). Psf3 is a component of GINS, a tetrameric protein complex. Psf3 expression is up regulated in malignant colon cancer and it might be involved in cancer cell proliferation. GINS is a complex of four subunits (Sld5, Psf1, Psf2 and Psf3) that is involved in both initiation and elongation stages of eukaryotic chromosome replication. Besides being essential for the maintenance of genomic integrity, GINS plays a central role in coordinating DNA replication with cell cycle checkpoints and is involved in cell growth. The eukaryotic GINS subunits are homologous and homologs are also found in the archaea; the complex is not found in bacteria. The four subunits of the complex consist of two domains each, termed the alpha-helical (A) and beta-strand (B) domains. The A and B domains of Sld5/Psf1 are permuted with respect to Psf1/Psf3. 109 -212552 cd11714 GINS_A_archaea Alpha-helical domain of archaeal GINS complex proteins. The GINS complex is involved in replication of archaeal and eukayotic genomes. The archaeal DNA replication system is a simplified version of that of the eukaryotes. Like its eukaryotic counterpart, the archaeal GINS complex is tetrameric, but instead of four different subunits (Sld5, Psf1, Psf2 and Psf3) it consists of two different proteins named Gins51 and Gins23. All GINS subunits are homologs and they can be classified into two groups. One group (the eukayotic Sld5 and Psf1, as well as the archaeal Gins51) has the alpha-helical (A) domain at the N-terminus and the beta-strand domain (B) at the C-terminus (this arrangement is called ABtype). The arrangement of the A and B domains is reversed in the second group (eukaryotic Psf2 and Psf3 and archaeal Gins23, also referred to as BAtype). The overall fold of each archaeal subunit and the overall tetrameric assembly of GINS are similar, but the relative locations of the C-terminal small domains are different with respect to the alpha helical domain characterized by this model, resulting in different subunit contacts in the archaeal GINS complex.Some archaea may have a homotetrameric GINS complex (4 copies of an AB-type module). 105 -212584 cd11715 THUMP_AdoMetMT THUMP domain associated with S-adenosylmethionine-dependent methyltransferases. Proteins of this family contain an N-terminal THUMP domain and a C-terminal S-adenosylmethionine-dependent methyltransferase domain. Members have been implicated in the modification of 23S RNA m2G2445, a highly conserved modification in bacteria and in the m2G6 modification of tRNA. The THUMP domain is named after thiouridine synthases, methylases and PSUSs. The domain consists of about 110 amino acid residues. It is predicted to be an RNA-binding domain and probably functions by delivering a variety of RNA modification enzymes to their targets. 152 -212585 cd11716 THUMP_ThiI THUMP domain of thiamine biosynthesis protein ThiI. ThiI is an enzyme responsible for the formation of the modified base S(4)U (4-thiouridine) found at position 8 in some prokaryotic tRNAs. This modification acts as a signal for UV exposure, triggering a response that provides protection against its damaging effects. ThiI consists of an N-terminal THUMP domain, followed by an NFLD domain, and a C-terminal PP-loop pyrophosphatase domain. The N-terminal THUMP domain has been implicated in the recognition of the acceptor-stem region. The THUMP domain is named after thiouridine synthases, methylases and PSUSs. The domain consists of about 110 amino acid residues. It is predicted to be an RNA-binding domain and probably functions by delivering a variety of RNA modification enzymes to their targets. 166 -212586 cd11717 THUMP_THUMPD1_like THUMP domain-containing protein 1-like. This family contains THUMP domain-only proteins including THUMP domain-containing protein 1 and Saccharomyces cerevisiae Tan1. Tan1 is non essential and has been shown to be required for the formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. To date, there is no functional information available about THUMPD1. The THUMP domain is named after thiouridine synthases, methylases and PSUSs. The domain consists of about 110 amino acid residues. It is predicted to be an RNA-binding domain and probably functions by delivering a variety of RNA modification enzymes to their targets. 158 -212587 cd11718 THUMP_SPOUT THUMP domain associated with SPOUT RNA Methylases. Members of this archaeal protein family are characterized by containing an N-terminal THUMP domain and a C-terminal SPOUT RNA methyltransferase domain. No functional information is available The THUMP domain is named after thiouridine synthases, methylases and PSUSs. The domain consists of about 110 amino acid residues. It is predicted to be an RNA-binding domain and probably functions by delivering a variety of RNA modification enzymes to their targets. 145 -212593 cd11719 FANC Fanconi anemia ID complex proteins FANCI and FANCD2. The Fanconi anemia ID complex consists of two subunits, Fanconi anemia I and Fanconi anemia D2 (FANCI-FANCD2) and plays a central role in the repair of DNA interstrand cross-links (ICLs). The complex is activated via DNA damage-induced phosphorylation by ATR (ataxia telangiectasia and Rad3-related) and monoubiquitination by the FA core complex ubiquitin ligase, and it binds to DNA at the ICL site, recognizing branched DNA structures. Defects in the complex cause Fanconi anemia, a cancer predisposition syndrome. 977 -212594 cd11720 FANCI Fanconi anemia I protein. The Fanconi anemia ID complex consists of two subunits, Fanconi anemia I and Fanconi anemia D2 (FANCI-FANCD2) and plays a central role in the repair of DNA interstrand cross-links (ICLs). The complex is activated via DNA damage-induced phosphorylation by ATR (ataxia telangiectasia and Rad3-related) and monoubiquitination by the FA core complex ubiquitin ligase, and it binds to DNA at the ICL site, recognizing branched DNA structures. Defects in the complex cause Fanconi anemia, a cancer predisposition syndrome. The phosphorylation of FANCI may function as a molecular switch to turn on the FA pathway. 1202 -212595 cd11721 FANCD2 Fanconi anemia D2 protein. The Fanconi anemia ID complex consists of two subunits, Fanconi anemia I and Fanconi anemia D2 (FANCI-FANCD2) and plays a central role in the repair of DNA interstrand cross-links (ICLs). The complex is activated via DNA damage-induced phosphorylation by ATR (ataxia telangiectasia and Rad3-related) and monoubiquitination by the FA core complex ubiquitin ligase, and it binds to DNA at the ICL site, recognizing branched DNA structures. Defects in the complex cause Fanconi anemia, a cancer predisposition syndrome. The phosphorylation of FANCD2 is required for DNA damage-induced intra-S phase checkpoint and for cellular resistance to DNA crosslinking agents. 1161 -212596 cd11722 SOAR STIM1 Orai1-activating region. STIM1 (stromal interaction module 1) is a metazoan transmembrane protein located in the endoplasmic reticulum (ER) membrane, which functions as a sensor for ER calcium ion levels and activates store-operated Ca2+ influx channels (SOCs), such as the Orai1 Ca2+ channel located in the plasma membrane. STIM1 has an N-terminal Ca-binding EF-hand domain, which is located in the ER lumen. Responding to the release of Ca2+ from the ER, STIM1 was found to aggregate near the plasma membrane and contact Orai1. This model describes a region near the C-terminus of STIM1, which has been shown to mediate the interaction with Orai1 and has been labeled SOAR (STIM1 Orai1-activating region). STIM1 has also been linked to sensing oxidative and temperature-variation stress and may play a rather general role in mediating calcium signaling in response to stress. Dimerization of STIM1 via the SOAR domain appears required for the activation of the Orai1 calcium channel. A model for STIM1 activation has been proposed, in which an inhibitory helix N-terminal to the SOAR domain prevents STIM1 clustering or aggregation, and in which conformational changes triggered by depletion of the calcium stores allow the clustering and activation of Orai1. 92 -212509 cd11723 YabN_N N-terminal S-AdoMet dependent methylase domain of Bacillus subtilis YabN and related proteins. This family contains proteins similar to Bacillus subtilis YabN, which is a fusion of an N-terminal TP-methylase and a C-terminal MazG-type nucleotide pyrophosphohydrolase domain. MazG-like NTP-PPases have been implicated in house-cleaning functions such as degrading abnormal (d)NTPs. TP-methylases use S-AdoMet (S-adenosyl-L-methionine or SAM) in the methylation of diverse substrates. Most members catalyze various methylation steps in cobalamin (vitamin B12) biosynthesis, other members like Diphthine synthase and Ribosomal RNA small subunit methyltransferase I (RsmI) act on other substrates. The specific function of YabN's TP-methylase domain is not known. 220 -212510 cd11724 TP_methylase_like Uncharacterized subfamily of S-AdoMet dependent tetrapyrrole methylases. TP-methylases use S-AdoMet (S-adenosyl-L-methionine or SAM) in the methylation of diverse substrates. Most members catalyze various methylation steps in cobalamin (vitamin B12) biosynthesis, other members like Diphthine synthase and Ribosomal RNA small subunit methyltransferase I (RsmI) act on other substrates. The function of this subfamily is not known. 255 -277251 cd11725 ADDz_Dnmt3 ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 (Dnmt3). Dnmt3 is a de novo DNA methyltransferase family that includes two active enzymes Dnmt3a and -3b and one regulatory factor Dnmt3l. The ADDz domain of Dnmt3 is located in the C-terminal region of Dnmt3, which is an active catalytic domain in Dnmt3a and -b, but lacks some residues for enzymatic activity in Dnmt3l. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. 108 -277252 cd11726 ADDz_ATRX ADDz domain found in ATRX (alpha-thalassemia/mental retardation, X-linked). ADDz_ATRX is a PHD-like zinc finger domain of ATRX, which belongs to the SNF2 family of chromatin remodeling proteins. ATRX is a large chromatin-associated nuclear protein with two domains, ADDz_ATRX at the N-terminus, followed by a C-terminal ATPase/helicase domain. The ADDz_ATRX domain recognizes a specific methylated histone, and this interaction is required for heterochromatin localization of the ATRX protein. Missense mutations in either of the two ATRX domains lead to the X-linked alpha-thalassemia and mental retardation syndrome; however the mutations in the ADDz_ATRX domain produce a more severe disease phenotype that may also relate to disturbing unknown functions or interaction sites of this domain. The ADDz domain is also present in chromatin-associated proteins cytosine-5-methyltransferase 3 (Dnmt3); it is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. 102 -277253 cd11727 ADDz_Dnmt3l ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3 like (Dnmt3l). Dnmt3l is a regulator of DNA methylation, which acts by recognizing unmethylated histone H3 tails and interacting with Dnmt3a to stimulate its de novo DNA methylation activity. The ADDz_Dnmt3l domain is located in the C-terminal region of Dnmt3l that otherwise lacks some residues required for DNA methyltransferase activity. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. Dnmt3l is also associating with HDAC1 and acts as a transcriptional repressor. The ADDz_Dnmt3l domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. 123 -277254 cd11728 ADDz_Dnmt3b ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3b (Dnmt3b). ADDz_Dnmt3b is an active catalytic domain of Dnmt3b. Dnmt3b is a member of the Dnmt3 family and is a de novo DNA methyltransferases that has an N-terminal variable region followed by a conserved PWWP region and the cysteine-rich ADDz domain. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The methyltransferase activity of Dnmt3a is not only responsible for the establishment of DNA methylation pattern, but is also essential for the inheritance of these patterns during mitosis. Dnmt3b is ubiquitously expressed in most adult tissues. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. A knockout of Dnmt3b has been shown to be lethal in the mouse model. 120 -277255 cd11729 ADDz_Dnmt3a ADDz domain found in DNA (cytosine-5) methyltransferases (C5-MTases) 3a (Dnmt3a). Dnmt3a is a member of the Dnmt3 family and is a protein with de novo DNA methyltransferase activity. Dnmt3 family members are Dnmt3a, Dnmt3b, and Dnmt3l the non-enzymatic regulatory factor. Dnmt3a is recruited by Dnmt3l to unmethylated histone H3 and methylates the target. Dnmt3a has a variable region at the N-terminus, followed by a conserved PWWP region and the cysteine-rich ADDz domain. ADDz_Dnmt3a is an active catalytic domain of Dnmt3a. DNA methylation is an important epigenetic mechanism involved in diverse biological processes such as embryonic development, gene expression, and genomic imprinting. The methyltransferase activity of Dnmt3a is not only responsible for the establishment of DNA methylation pattern, but is also essential for the inheritance of these patterns during mitosis. The ADDz_Dnmt3 domain is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. PHD zinc finger domains have been identified in more than 40 proteins that are mainly involved in chromatin mediated transcriptional control; the classical PHD zinc finger has a C4-H-C3 motif that spans about 50-80 amino acids. In ADDz, the conserved histidine residue of the PHD finger is replaced by a cysteine, and an additional zinc finger C2-C2 like motif is located about twenty residues upstream of the C4-C-C3 motif. A knockout of Dnmt3a has been shown to be lethal in the mouse model. 128 -212496 cd11730 Tthb094_like_SDR_c Tthb094 and related proteins, classical (c) SDRs. Tthb094 from Thermus Thermophilus is a classical SDR which binds NADP. Members of this subgroup contain the YXXXK active site characteristic of SDRs. Also, an upstream Asn residue of the canonical catalytic tetrad is partially conserved in this subgroup of proteins of undetermined function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 206 -212497 cd11731 Lin1944_like_SDR_c Lin1944 and related proteins, classical (c) SDRs. Lin1944 protein from Listeria Innocua is a classical SDR, it contains a glycine-rich motif similar to the canonical motif of the SDR NAD(P)-binding site. However, the typical SDR active site residues are absent in this subgroup of proteins of undetermined function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 198 -212682 cd11732 HSP105-110_like_NBD Nucleotide-binding domain of 105/110 kDa heat shock proteins including HSPA4, HYOU1, and similar proteins. This subfamily include the human proteins, HSPA4 (also known as 70-kDa heat shock protein 4, APG-2, HS24/P52, hsp70 RY, and HSPH2; the human HSPA4 gene maps to 5q31.1), HSPA4L (also known as 70-kDa heat shock protein 4-like, APG-1, HSPH3, and OSP94; the human HSPA4L gene maps to 4q28), and HSPH1 (also known as heat shock 105kDa/110kDa protein 1, HSP105; HSP105A; HSP105B; NY-CO-25; the human HSPH1 gene maps to 13q12.3), HYOU1 (also known as human hypoxia up-regulated 1, GRP170; HSP12A; ORP150; GRP-170; ORP-150; the human HYOU1 gene maps to11q23.1-q23.3), Saccharomyces cerevisiae Sse1p, Sse2p, and Lhs1p, and a sea urchin sperm receptor. It belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family, and includes proteins believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is also regulated by J-domain proteins. 377 -212683 cd11733 HSPA9-like_NBD Nucleotide-binding domain of human HSPA9, Escherichia coli DnaK, and similar proteins. This subgroup includes human mitochondrial HSPA9 (also known as 70-kDa heat shock protein 9, CSA; MOT; MOT2; GRP75; PBP74; GRP-75; HSPA9B; MTHSP75; the gene encoding HSPA9 maps to 5q31.1), Escherichia coli DnaK, and Saccharomyces cerevisiae Stress-Seventy subfamily C/Ssc1p (also called mtHSP70, Endonuclease SceI 75 kDa subunit). It belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs); for Escherichia coli DnaK, these are the DnaJ and GrpE, respectively. HSPA9 is involved in multiple processses including mitochondrial import, antigen processing, control of cellular proliferation and differentiation, and regulation of glucose responses. During glucose deprivation-induced cellular stress, HSPA9 plays an important role in the suppression of apoptosis by inhibiting a conformational change in Bax that allow the release of cytochrome c. DnaK modulates the heat shock response in Escherichia coli. It protects E. coli from protein carbonylation, an irreversible oxidative modification that increases during organism aging and bacterial growth arrest. Under severe thermal stress, it functions as part of a bi-chaperone system: the DnaK system and the ring-forming AAA+ chaperone ClpB (Hsp104) system, to promote cell survival. DnaK has also been shown to cooperate with GroEL and the ribosome-associated Escherichia coli Trigger Factor in the proper folding of cytosolic proteins. S. cerevisiae Ssc1p is the major HSP70 chaperone of the mitochondrial matrix, promoting translocation of proteins from the cytosol, across the inner membrane, to the matrix, and their subsequent folding. Ssc1p interacts with Tim44, a peripheral inner membrane protein associated with the TIM23 protein translocase. It is also a subunit of the endoSceI site-specific endoDNase and is required for full endoSceI activity. Ssc1p plays roles in the import of Yfh1p, a nucleus-encoded mitochondrial protein involved in iron homeostasis (and a homolog of human frataxin, implicated in the neurodegenerative disease, Friedreich's ataxia). Ssc1 also participates in translational regulation of cytochrome c oxidase (COX) biogenesis by interacting with Mss51 and Mss51-containing complexes. 377 -212684 cd11734 Ssq1_like_NBD Nucleotide-binding domain of Saccharomyces cerevisiae Ssq1 and similar proteins. Ssq1p (also called Stress-seventy subfamily Q protein 1, Ssc2p, Ssh1p, mtHSP70 homolog) belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). S. cerevisiae Ssq1p is a mitochondrial chaperone that is involved in iron-sulfur (Fe/S) center biogenesis. Ssq1p plays a role in the maturation of Yfh1p, a nucleus-encoded mitochondrial protein involved in iron homeostasis (and a homolog of human frataxin, implicated in the neurodegenerative disease, Friedreich's ataxia). 373 -212685 cd11735 HSPA12A_like_NBD Nucleotide-binding domain of HSPA12A and similar proteins. HSPA12A (also known as 70-kDa heat shock protein-12A) belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12A. The gene encoding HSPA12A maps to 10q26.12, a cytogenetic region that might represent a common susceptibility locus for both schizophrenia and bipolar affective disorder; reduced expression of HSPA12A has been shown in the prefrontal cortex of subjects with schizophrenia. HSPA12A is also a candidate gene for forelimb-girdle muscular anomaly, an autosomal recessive disorder of Japanese black cattle. HSPA12A is predominantly expressed in neuronal cells. It may play a role in the atherosclerotic process. 467 -212686 cd11736 HSPA12B_like_NBD Nucleotide-binding domain of HSPA12B and similar proteins. Human HSPA12B (also known as 70-kDa heat shock protein-12B, chromosome 20 open reading frame 60/C20orf60, dJ1009E24.2; the gene encoding HSPA12B maps to 20p13) belongs to the heat shock protein 70 (HSP70) family of chaperones that assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Typically, HSP70s have a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). The nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. HSP70 chaperone activity is regulated by various co-chaperones: J-domain proteins and nucleotide exchange factors (NEFs). No co-chaperones have yet been identified for HSPA12B. HSPA12B is predominantly expressed in endothelial cells, is required for angiogenesis, and may interact with known angiogenesis mediators. HSPA12B may be important for host defense in microglia-mediated immune response. HSPA12B expression is up-regulated in lipopolysaccharide (LPS)-induced inflammatory response in the spinal cord, and mostly located in active microglia; this induced expression may be regulated by activation of MAPK-p38, ERK1/2 and SAPK/JNK signaling pathways. Overexpression of HSPA12B also protects against LPS-induced cardiac dysfunction and involves the preserved activation of the PI3K/Akt signaling pathway. 468 -212687 cd11737 HSPA4_NBD Nucleotide-binding domain of HSPA4. Human HSPA4 (also known as 70-kDa heat shock protein 4, APG-2, HS24/P52, hsp70 RY, and HSPH2; the human HSPA4 gene maps to 5q31.1) responds to acidic pH stress, is involved in the radioadaptive response, is required for normal spermatogenesis and is overexpressed in hepatocellular carcinoma. It participates in a pathway along with NBS1 (Nijmegen breakage syndrome 1, also known as p85 or nibrin), heat shock transcription factor 4b (HDF4b), and HSPA14 (belonging to a different HSP70 subfamily) that induces tumor migration, invasion, and transformation. HSPA4 expression in sperm was increased in men with oligozoospermia, especially in those with varicocele. HSPA4 belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. 383 -212688 cd11738 HSPA4L_NBD Nucleotide-binding domain of HSPA4L. Human HSPA4L (also known as 70-kDa heat shock protein 4-like, APG-1, HSPH3, and OSP94; the human HSPA4L gene maps to 4q28) is expressed ubiquitously and predominantly in the testis. It is required for normal spermatogenesis and plays a role in osmotolerance. HSPA4L belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. 383 -212689 cd11739 HSPH1_NBD Nucleotide-binding domain of HSPH1. Human HSPH1 (also known as heat shock 105kDa/110kDa protein 1, HSP105; HSP105A; HSP105B; NY-CO-25; the human HSPH1 gene maps to 13q12.3) suppresses the aggregation of denatured proteins caused by heat shock in vitro, and may substitute for HSP70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress. It reduces the protein aggregation and cytotoxicity associated with Polyglutamine (PolyQ) diseases, including Huntington's disease, which are a group of inherited neurodegenerative disorders sharing the characteristic feature of having insoluble protein aggregates in neurons. The expression of HSPH1 is elevated in various malignant tumors, including malignant melanoma, and there is a direct correlation between HSPH1 expression and B-cell non-Hodgkin lymphomas (B-NHLs) aggressiveness and proliferation. HSPH1 belongs to the 105/110 kDa heat shock protein (HSP105/110) subfamily of the HSP70-like family. HSP105/110s are believed to function generally as co-chaperones of HSP70 chaperones, acting as nucleotide exchange factors (NEFs), to remove ADP from their HSP70 chaperone partners during the ATP hydrolysis cycle. HSP70 chaperones assist in protein folding and assembly, and can direct incompetent "client" proteins towards degradation. Like HSP70 chaperones, HSP105/110s have an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD). For HSP70 chaperones, the nucleotide sits in a deep cleft formed between the two lobes of the NBD. The two subdomains of each lobe change conformation between ATP-bound, ADP-bound, and nucleotide-free states. ATP binding opens up the substrate-binding site; substrate-binding increases the rate of ATP hydrolysis. Hsp70 chaperone activity is also regulated by J-domain proteins. 383 -213038 cd11740 YajQ_like Proteins similar to Escherichia coli YajQ. In Pseudomonas syringae, YajQ functions as a host protein involved in the temporal control of bacteriophage Phi6 gene transcription. It has been shown to bind to the phage's major structural core protein P1, most likely activating transcription by acting indirectly on the RNA polymerase. YajQ may remain bound to the phage particles throughout the infection period. Earlier, YajQ was characterized as a putative nucleic acid-binding protein based on the similarity of its (ferredoxin-like) three-dimensional topology with that of RNP-like RNA-binding domains. 159 -240666 cd11741 TIN2_TBM TRF-binding motif region of TRF-Interacting Nuclear factor 2. The C-terminal region of TIN2 contains the TRF-binding motif (TBM), while the TIN2 N-terminal region acts in the modulation of TRF1 activity via the inhibition of tankyrase 1. TIN2 binding to TRF2 is primarily via the TRF binding motif (TBM) and the N-terminus, while the far C-terminal region interacts with lower affinity. The TIN2 TBM, but not the N-terminal region, is involved in TIN2 binding to TRF1. Truncation of the TIN2 N-terminus in mouse results in telomere elongation, suggesting a a negative regulatory function of this region. TIN2 is a shelterin complex protein identified in mammals, one of 6 factors that act to protect telomeres from DNA damage repair machinery. Three shelterin components (TRF1, TRF2, POT1) bind DNA and 3 components (TIN2, RAP1, TPP1) are recruited by these DNA binding factors. TIN2 binds directly to TRF1 and TRF2 and stabilizes TRF2 complex-telomere binding by tethering it to the TRF1 complex. TRF1 activity at telomeres is regulated in part by selective ubiquitination and degradation. Ubiquitination of TRF1 is mediated by Fbx4, which binds TRF1 in the TRFH domain, via a small GTPase module. When bound to telomeres, TIN2 acts to protect TRF1 from SCF-Fbx4 mediated ubiquitination. F-box proteins act in substrate recognition as part of SCF complexes (SCF: Skp1-Cul1-Rbx1-F- box protein). Tankyrase-mediated ADP-ribosylation releases TRF1 from telomeres, rendering them susceptible to ubiquitination and degradation, promoting telomere elongation. TIN2 also binds TPP1, which recruits POT1 to telomeres. 108 -213039 cd11743 Cthe_2751_like Uncharacterized protein domain similar to Clostridium thermocellum 2751. Cthe_2751 has been found to form homodimers. Based on structural similarity to other families, a role in processing nucleic acids was suggested, though interactions with DNA could not be demonstrated. 122 -213354 cd11744 MIT_CorA-like metal ion transporter CorA-like divalent cation transporter superfamily. This superfamily of essential membrane proteins is involved in transporting divalent cations (uptake or efflux) across membranes. They are found in most bacteria and archaea, and in some eukaryotes. It is a functionally diverse group which includes the Mg2+ transporters of Escherichia coli and Salmonella typhimurium CorAs (which can also transport Co2+, and Ni2+ ), the CorA Co2+ transporter from the hyperthermophilic Thermotoga maritima, and the Zn2+ transporter Salmonella typhimurium ZntB, which mediates the efflux of Zn2+ (and Cd2+). It includes five Saccharomyces cerevisiae members: i) two plasma membrane proteins, the Mg2+ transporter Alr1p/Swc3p and the putative Mg2+ transporter, Alr2p, ii) two mitochondrial inner membrane Mg2+ transporters: Mfm1p/Lpe10p, and Mrs2p, and iii) and the vacuole membrane protein Mnr2p, a putative Mg2+ transporter. It also includes a family of Arabidopsis thaliana members (AtMGTs), some of which are localized to distinct tissues, and not all of which can transport Mg2+. Thermotoga maritima CorA and Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, Mrs2p, and Alr1p. Natural variants such as GVN and GIN, as in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 286 -213372 cd11745 Yos9_DD C-terminal dimerization domain (DD) of Saccharomyces cerevisiae Yos9 and related proteins. Yos9 participates in the ER-associated protein degradation pathway that targets misfolded proteins for proteolysis. Yos9 is a component of the reductase degradation (HRD) ubiquitin-ligase complex, specifically part of the luminal submodule of the ligase. Yos9 scans proteins for specific oligosaccharide modifications, which are critical determinants of degradation signal. It has been shown to be involved in the degradation of glycosylated proteins and various nonglycosylated proteins. Yos9 functions as a homodimer where this domain is responsible for the self-association; it has an alphabeta-roll domain architecture, and is found at the C-terminus of the protein. The N-terminal portion of Yos9 which includes an MRH domain is required for binding to Hrd3p, another component of the HRD complex. The DD domain does not appear to be directly binding Hrd3p. 124 -213062 cd11746 GH94N_like N-terminal domain of glycoside hydrolase family 94 and related domains. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-), amongst other members. Their N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. This GH64N domain also occurs in tandem repeat arrangements (not at the N-terminus) in cyclic beta 1-2 glucan synthetase and related proteins, and as a standalone domain in distantly related proteins of unknown function. 179 -213063 cd11747 GH94N_like_1 Glycoside hydrolase family 94 N-terminal-like domain of uncharacterized function. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase and many other members. Their N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain. This GH64N domain also occurs as a standalone domain in distantly related proteins of unknown function, as represented by this model, which also includes N-terminal GH94N-like domains of bacterial rhamnosidases and as found at the C-terminus of polygalacturonases. 204 -213064 cd11748 GH94N_NdvB_like Glycoside hydrolase family 94 N-terminal-like domain of NdvB-like proteins. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-), amongst other members. Their N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel)]. The GH64N domain, as represented by this model, is found at the N-terminus of largely uncharacterized proteins, some members from Xanthomonas campestris and related organisms are annotated as NdvB (nodule development B) gene products, glycosyltransferases required for the synthesis of cyclic beta-(1,2)-glucans, which play a role in interactions between bacteria and plants. 294 -213065 cd11749 GH94N_LBP_like N-terminal-like domain of Paenibacillus sp. YM-1 Laminaribiose Phosphorylase and similar proteins. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes bacterial laminaribiose phosphorylase. This N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. Bacterial laminaribiose phosphorylase phosphorolyzes laminaribiose into alpha-glucose 1-phosphate and glucose, but does not phosphorolyze other glucobioses; it slightly phosphorolyzed laminaritriose and higher laminarioligosaccharides. The GH64N domain, as represented by this model, is also found at the N-terminus of GH94 members with uncharacterized specificities. 229 -213066 cd11750 GH94N_like_3 Glycoside hydrolase family 94 N-terminal-like domain of uncharacterized function. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-), amongst other members. Their N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. The GH64N domain, as represented by this model, is found at the N-terminus of GH94 members with uncharacterized specificities. 282 -213067 cd11751 GH94N_like_4 Glycoside hydrolase family 94 N-terminal-like domain of uncharacterized function. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-), amongst other members. Their N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. The GH64N domain, as represented by this model, is found near the N-terminus of GH94 members and related proteins with uncharacterized specificities. 223 -213068 cd11752 GH94N_CDP_like N-terminal domain of cellodextrin phosphorylase (CDP) and similar proteins. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellodextrin phosphorylase (EC:2.4.1.49), also known as 1,4-beta-D-oligo-D-glucan:phosphate alpha-D-glucosyltransferase or CepB. This N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. Cellodextrin phosphorylase catalyzes the reversible and phosphate dependent removal of a single alpha-D-glucose-1-phosphate unit from a (1,4-beta-D-glucosyl) oligomer. 214 -213069 cd11753 GH94N_ChvB_NdvB_2_like Second GH94N domain of cyclic beta 1-2 glucan synthetase and similar domains. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cyclic beta 1-2 glucan synthetase (EC:2.4.1.20) or ChvB (encoded by the chromosomal chvB virulence gene). This second of two tandemly repeated GH94-N-terminal-like domains has not been characterized functionally. Some beta 1-2 glucan synthetases are annotated as NdvB (nodule development B) gene products, glycosyltransferases required for the synthesis of cyclic beta-(1,2)-glucans, which play a role in interactions between bacteria and plants. 336 -213070 cd11754 GH94N_CBP_like N-terminal domain of cellobiose phosphorylase (CBP) and similar proteins. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cellobiose phosphorylase (EC:2.4.1.20) or cellobiose:phosphate alpha-D-glucosyltransferase, or CepA. This N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. Cellobiose phosphorylase participates in the degradation of cellulose, it catalyzes the phosphate dependent hydrolysis of cellobiose into alpha-D-glucose-1-phosphate and D-glucose, a reversible reaction. 303 -213071 cd11755 GH94N_ChBP_like N-terminal domain of chitobiose phosphorylase (ChBP) and similar proteins. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes chitobiose phosphorylase (EC:2.4.1.-). This N-terminal domain is involved in oligomerization and may play a role in catalysis, but it is separate from the catalytic domain [an (alpha/alpha)(6) barrel]. Chitobiose phosphorylase catalyzes the reversible phosphate dependent hydrolysis of chitobiose [(GlcNAc)2] into alpha-GlcNAc-1-phosphate and GlcNAc. In some organisms, ChBP may be involved in the production of GlcNac-6-phosphate in intracellular pathways. 300 -213072 cd11756 GH94N_ChvB_NdvB_1_like First GH94N domain of cyclic beta 1-2 glucan synthetase and similar domains. The glycoside hydrolase family 94 (previously known as glycosyltransferase family 36) includes cyclic beta 1-2 glucan synthetase (EC:2.4.1.20) or ChvB (encoded by the chromosomal chvB virulence gene). This first of two tandemly repeated GH94-N-terminal-like domains has not been characterized functionally. Some beta 1-2 glucan synthetases are annotated as NdvB (nodule development B) gene products, glycosyltransferases required for the synthesis of cyclic beta-(1,2)-glucans, which play a role in interactions between bacteria and plants. 284 -212691 cd11757 SH3_SH3BP4 Src Homology 3 domain of SH3 domain-binding protein 4. SH3 domain-binding protein 4 (SH3BP4) is also called transferrin receptor trafficking protein (TTP). SH3BP4 is an endocytic accessory protein that interacts with endocytic proteins including clathrin and dynamin, and regulates the internalization of the transferrin receptor (TfR). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212692 cd11758 SH3_CRK_N N-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins. CRK adaptor proteins consists of SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and proline-rich motifs, respectively. They function downstream of protein tyrosine kinases in many signaling pathways started by various extracellular signals, including growth and differentiation factors. Cellular CRK (c-CRK) contains a single SH2 domain, followed by N-terminal and C-terminal SH3 domains. It is involved in the regulation of many cellular processes including cell growth, motility, adhesion, and apoptosis. CRK has been implicated in the malignancy of various human cancers. The N-terminal SH3 domain of CRK binds a number of target proteins including DOCK180, C3G, SOS, and cABL. The CRK family includes two alternatively spliced protein forms, CRKI and CRKII, that are expressed by the CRK gene, and the CRK-like (CRKL) protein, which is expressed by a distinct gene (CRKL). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212693 cd11759 SH3_CRK_C C-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins. CRK adaptor proteins consists of SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and proline-rich motifs, respectively. They function downstream of protein tyrosine kinases in many signaling pathways started by various extracellular signals, including growth and differentiation factors. Cellular CRK (c-CRK) contains a single SH2 domain, followed by N-terminal and C-terminal SH3 domains. It is involved in the regulation of many cellular processes including cell growth, motility, adhesion, and apoptosis. CRK has been implicated in the malignancy of various human cancers. The C-terminal SH3 domain of CRK has not been shown to bind any target protein; it acts as a negative regulator of CRK function by stabilizing a structure that inhibits the access by target proteins to the N-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212694 cd11760 SH3_MIA_like Src Homology 3 domain of Melanoma Inhibitory Activity protein and similar proteins. MIA is a single domain protein that adopts a SH3 domain-like fold; it contains an additional antiparallel beta sheet and two disulfide bonds compared to classical SH3 domains. MIA is secreted from malignant melanoma cells and it plays an important role in melanoma development and invasion. MIA is expressed by chondrocytes in normal tissues and may be important in the cartilage cell phenotype. Unlike classical SH3 domains, MIA does not bind proline-rich ligands. MIA is a member of the recently identified family that also includes MIA-like (MIAL), MIA2, and MIA3 (also called TANGO); the biological functions of this family are not yet fully understood. 76 -212695 cd11761 SH3_FCHSD_1 First Src Homology 3 domain of FCH and double SH3 domains proteins. This group is composed of FCH and double SH3 domains protein 1 (FCHSD1) and FCHSD2. These proteins have a common domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. They have only been characterized in silico and their functions remain unknown. This group also includes the insect protein, nervous wreck, which acts as a regulator of synaptic growth signaling. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212696 cd11762 SH3_FCHSD_2 Second Src Homology 3 domain of FCH and double SH3 domains proteins. This group is composed of FCH and double SH3 domains protein 1 (FCHSD1) and FCHSD2. These proteins have a common domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. They have only been characterized in silico and their functions remain unknown. This group also includes the insect protein, nervous wreck, which acts as a regulator of synaptic growth signaling. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212697 cd11763 SH3_SNX9_like Src Homology 3 domain of Sorting Nexin 9 and similar proteins. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. This subfamily consists of SH3 domain containing SNXs including SNX9, SNX18, SNX33, and similar proteins. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212698 cd11764 SH3_Eps8 Src Homology 3 domain of Epidermal growth factor receptor kinase substrate 8 and similar proteins. This group is composed of Eps8 and Eps8-like proteins including Eps8-like 1-3, among others. These proteins contain N-terminal Phosphotyrosine-binding (PTB), central SH3, and C-terminal effector domains. Eps8 binds either Abi1 (also called E3b1) or Rab5 GTPase activating protein RN-tre through its SH3 domain. With Abi1 and Sos1, it becomes part of a trimeric complex that is required to activate Rac. Together with RN-tre, it inhibits the internalization of EGFR. The SH3 domains of Eps8 and similar proteins recognize peptides containing a PxxDY motif, instead of the classical PxxP motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212699 cd11765 SH3_Nck_1 First Src Homology 3 domain of Nck adaptor proteins. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4), which show partly overlapping functions but also bind distinct targets. Their SH3 domains are involved in recruiting downstream effector molecules, such as the N-WASP/Arp2/3 complex, which when activated induces actin polymerization that results in the production of pedestals, or protrusions of the plasma membrane. The first SH3 domain of Nck proteins preferentially binds the PxxDY sequence, which is present in the CD3e cytoplasmic tail. This binding inhibits phosphorylation by Src kinases, resulting in the downregulation of TCR surface expression. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212700 cd11766 SH3_Nck_2 Second Src Homology 3 domain of Nck adaptor proteins. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4), which show partly overlapping functions but also bind distinct targets. Their SH3 domains are involved in recruiting downstream effector molecules, such as the N-WASP/Arp2/3 complex, which when activated induces actin polymerization that results in the production of pedestals, or protrusions of the plasma membrane. The second SH3 domain of Nck appears to prefer ligands containing the APxxPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212701 cd11767 SH3_Nck_3 Third Src Homology 3 domain of Nck adaptor proteins. This group contains the third SH3 domain of Nck, the first SH3 domain of Caenorhabditis elegans Ced-2 (Cell death abnormality protein 2), and similar domains. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4), which show partly overlapping functions but also bind distinct targets. Their SH3 domains are involved in recruiting downstream effector molecules, such as the N-WASP/Arp2/3 complex, which when activated induces actin polymerization that results in the production of pedestals, or protrusions of the plasma membrane. The third SH3 domain of Nck appears to prefer ligands with a PxAPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. Ced-2 is a cell corpse engulfment protein that interacts with Ced-5 in a pathway that regulates the activation of Ced-10, a Rac small GTPase. 56 -212702 cd11768 SH3_Tec_like Src Homology 3 domain of Tec-like Protein Tyrosine Kinases. The Tec (Tyrosine kinase expressed in hepatocellular carcinoma) subfamily is composed of Tec, Btk, Bmx (Etk), Itk (Tsk, Emt), Rlk (Txk), and similar proteins. They are cytoplasmic (or nonreceptor) tyr kinases containing Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. Most Tec subfamily members (except Rlk) also contain an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation. In addition, some members contain the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. Tec kinases are expressed mainly by haematopoietic cells, although Tec and Bmx are also found in endothelial cells. B-cells express Btk and Tec, while T-cells express Itk, Txk, and Tec. Collectively, Tec kinases are expressed in a variety of myeloid cells such as mast cells, platelets, macrophages, and dendritic cells. Each Tec kinase shows a distinct cell-type pattern of expression. The function of Tec kinases in lymphoid cells have been studied extensively. They play important roles in the development, differentiation, maturation, regulation, survival, and function of B-cells and T-cells. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212703 cd11769 SH3_CSK Src Homology 3 domain of C-terminal Src kinase. CSK is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. They negatively regulate the activity of Src kinases that are anchored to the plasma membrane. To inhibit Src kinases, CSK is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. CSK catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. It is expressed in a wide variety of tissues and plays a role, as a regulator of Src, in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. In addition, CSK also shows Src-independent functions. It is a critical component in G-protein signaling, and plays a role in cytoskeletal reorganization and cell migration. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212704 cd11770 SH3_Nephrocystin Src Homology 3 domain of Nephrocystin (or Nephrocystin-1). Nephrocystin contains an SH3 domain involved in signaling pathways that regulate cell adhesion and cytoskeletal organization. It is a protein that in humans is associated with juvenile nephronophthisis, an inherited kidney disease characterized by renal fibrosis that lead to chronic renal failure in children. It is localized in cell-cell junctions in renal duct cells, and is known to interact with Ack1, an activated Cdc42-associated kinase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212705 cd11771 SH3_Pex13p_fungal Src Homology 3 domain of fungal peroxisomal membrane protein Pex13p. Pex13p, located in the peroxisomal membrane, contains two transmembrane regions and a C-terminal SH3 domain. It binds to the peroxisomal targeting type I (PTS1) receptor Pex5p and the docking factor Pex14p through its SH3 domain. It is essential for both PTS1 and PTS2 protein import pathways into the peroxisomal matrix. Pex13p binds Pex14p, which contains a PxxP motif, in a classical fashion to the proline-rich ligand binding site of its SH3 domain. It binds the WxxxF/Y motif of Pex5p in a novel site that does not compete with Pex14p binding. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 60 -212706 cd11772 SH3_OSTF1 Src Homology 3 domain of metazoan osteoclast stimulating factor 1. OSTF1, also named OSF or SH3P2, is a signaling protein containing SH3 and ankyrin-repeat domains. It acts through a Src-related pathway to enhance the formation of osteoclasts and bone resorption. It also acts as a negative regulator of cell motility. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212707 cd11773 SH3_Sla1p_1 First Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p. Sla1p facilitates endocytosis by playing a role as an adaptor protein in coupling components of the actin cytoskeleton to the endocytic machinery. It interacts with Abp1p, Las17p and Pan1p, which are activator proteins of actin-related protein 2/3 (Arp2/3). Sla1p contains multiple domains including three SH3 domains, a SAM (sterile alpha motif) domain, and a Sla1 homology domain 1 (SHD1), which binds to the NPFXD motif that is found in many integral membrane proteins such as the Golgi-localized Arf-binding protein Lsb5p and the P4-ATPases, Drs2p and Dnf1p. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212708 cd11774 SH3_Sla1p_2 Second Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p. Sla1p facilitates endocytosis by playing a role as an adaptor protein in coupling components of the actin cytoskeleton to the endocytic machinery. It interacts with Abp1p, Las17p and Pan1p, which are activator proteins of actin-related protein 2/3 (Arp2/3). Sla1p contains multiple domains including three SH3 domains, a SAM (sterile alpha motif) domain, and a Sla1 homology domain 1 (SHD1), which binds to the NPFXD motif that is found in many integral membrane proteins such as the Golgi-localized Arf-binding protein Lsb5p and the P4-ATPases, Drs2p and Dnf1p. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212709 cd11775 SH3_Sla1p_3 Third Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p. Sla1p facilitates endocytosis by playing a role as an adaptor protein in coupling components of the actin cytoskeleton to the endocytic machinery. It interacts with Abp1p, Las17p and Pan1p, which are activator proteins of actin-related protein 2/3 (Arp2/3). Sla1p contains multiple domains including three SH3 domains, a SAM (sterile alpha motif) domain, and a Sla1 homology domain 1 (SHD1), which binds to the NPFXD motif that is found in many integral membrane proteins such as the Golgi-localized Arf-binding protein Lsb5p and the P4-ATPases, Drs2p and Dnf1p. The third SH3 domain of Sla1p can bind ubiquitin while retaining the ability to bind proline-rich ligands; monoubiquitination of target proteins signals internalization and sorting through the endocytic pathway. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212710 cd11776 SH3_PI3K_p85 Src Homology 3 domain of the p85 regulatory subunit of Class IA Phosphatidylinositol 3-kinases. Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 72 -212711 cd11777 SH3_CIP4_Bzz1_like Src Homology 3 domain of Cdc42-Interacting Protein 4, Bzz1 and similar domains. This subfamily is composed of Cdc42-Interacting Protein 4 (CIP4) and similar proteins such as Formin Binding Protein 17 (FBP17) and FormiN Binding Protein 1-Like (FNBP1L), as well as yeast Bzz1 (or Bzz1p). CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. CIP4 and FBP17 bind to the Fas ligand and may be implicated in the inflammatory response. CIP4 may also play a role in phagocytosis. Bzz1 is also a WASP/Las17-interacting protein involved in endocytosis and trafficking to the vacuole. It physically interacts with type I myosins and functions in the early steps of endocytosis. Members of this subfamily contain an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain as well as at least one C-terminal SH3 domain. Bzz1 contains a second SH3 domain at the C-terminus. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212712 cd11778 SH3_Bzz1_2 Second Src Homology 3 domain of Bzz1 and similar domains. Bzz1 (or Bzz1p) is a WASP/Las17-interacting protein involved in endocytosis and trafficking to the vacuole. It physically interacts with type I myosins and functions in the early steps of endocytosis. Together with other proteins, it induces membrane scission in yeast. Bzz1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. This model represents the second C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212713 cd11779 SH3_Irsp53_BAIAP2L Src Homology 3 domain of Insulin Receptor tyrosine kinase Substrate p53, Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2 (BAIAP2)-Like proteins, and similar proteins. Proteins in this family include IRSp53, BAIAP2L1, BAIAP2L2, and similar proteins. They all contain an Inverse-Bin/Amphiphysin/Rvs (I-BAR) or IMD domain in addition to the SH3 domain. IRSp53, also known as BAIAP2, is a scaffolding protein that takes part in many signaling pathways including Cdc42-induced filopodia formation, Rac-mediated lamellipodia extension, and spine morphogenesis. IRSp53 exists as multiple splicing variants that differ mainly at the C-termini. BAIAP2L1, also called IRTKS (Insulin Receptor Tyrosine Kinase Substrate), serves as a substrate for the insulin receptor and binds the small GTPase Rac. It plays a role in regulating the actin cytoskeleton and colocalizes with F-actin, cortactin, VASP, and vinculin. IRSp53 and IRTKS also mediate the recruitment of effector proteins Tir and EspFu, which regulate host cell actin reorganization, to bacterial attachment sites. BAIAP2L2 co-localizes with clathrin plaques but its function has not been determined. The SH3 domains of IRSp53 and IRTKS have been shown to bind the proline-rich C-terminus of EspFu. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212714 cd11780 SH3_Sorbs_3 Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar domains. This family, also called the vinexin family, is composed predominantly of adaptor proteins containing one sorbin homology (SoHo) and three SH3 domains. Members include the third SH3 domains of Sorbs1 (or ponsin), Sorbs2 (or ArgBP2), Vinexin (or Sorbs3), and similar domains. They are involved in the regulation of cytoskeletal organization, cell adhesion, and growth factor signaling. Members of this family bind multiple partners including signaling molecules like c-Abl, c-Arg, Sos, and c-Cbl, as well as cytoskeletal molecules such as vinculin and afadin. They may have overlapping functions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212715 cd11781 SH3_Sorbs_1 First Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar domains. This family, also called the vinexin family, is composed predominantly of adaptor proteins containing one sorbin homology (SoHo) and three SH3 domains. Members include the first SH3 domains of Sorbs1 (or ponsin), Sorbs2 (or ArgBP2), Vinexin (or Sorbs3), and similar domains. They are involved in the regulation of cytoskeletal organization, cell adhesion, and growth factor signaling. Members of this family bind multiple partners including signaling molecules like c-Abl, c-Arg, Sos, and c-Cbl, as well as cytoskeletal molecules such as vinculin and afadin. They may have overlapping functions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212716 cd11782 SH3_Sorbs_2 Second Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar domains. This family, also called the vinexin family, is composed predominantly of adaptor proteins containing one sorbin homology (SoHo) and three SH3 domains. Members include the second SH3 domains of Sorbs1 (or ponsin), Sorbs2 (or ArgBP2), Vinexin (or Sorbs3), and similar domains. They are involved in the regulation of cytoskeletal organization, cell adhesion, and growth factor signaling. Members of this family bind multiple partners including signaling molecules like c-Abl, c-Arg, Sos, and c-Cbl, as well as cytoskeletal molecules such as vinculin and afadin. They may have overlapping functions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212717 cd11783 SH3_SH3RF_3 Third Src Homology 3 domain of SH3 domain containing ring finger 1 (SH3RF1), SH3RF3, and similar domains. SH3RF1 (or POSH) and SH3RF3 (or POSH2) are scaffold proteins that function as E3 ubiquitin-protein ligases. They contain an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle of SH3RF1 and SH3RF3, and similar domains. SH3RF1 plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF3 interacts with p21-activated kinase 2 (PAK2) and GTP-loaded Rac1. It may play a role in regulating JNK mediated apoptosis in certain conditions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212718 cd11784 SH3_SH3RF2_3 Third Src Homology 3 domain of SH3 domain containing ring finger 2. SH3RF2 is also called POSHER (POSH-eliminating RING protein) or HEPP1 (heart protein phosphatase 1-binding protein). It acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. It may also play a role in cardiac functions together with protein phosphatase 1. SH3RF2 contains an N-terminal RING finger domain and three SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212719 cd11785 SH3_SH3RF_C C-terminal (Fourth) Src Homology 3 domain of SH3 domain containing ring finger 1 (SH3RF1), SH3RF3, and similar domains. SH3RF1 (or POSH) and SH3RF3 (or POSH2) are scaffold proteins that function as E3 ubiquitin-protein ligases. They contain an N-terminal RING finger domain and four SH3 domains. This model represents the fourth SH3 domain, located at the C-terminus of SH3RF1 and SH3RF3, and similar domains. SH3RF1 plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF3 interacts with p21-activated kinase 2 (PAK2) and GTP-loaded Rac1. It may play a role in regulating JNK mediated apoptosis in certain conditions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212720 cd11786 SH3_SH3RF_1 First Src Homology 3 domain of SH3 domain containing ring finger proteins. This model represents the first SH3 domain of SH3RF1 (or POSH), SH3RF2 (or POSHER), SH3RF3 (POSH2), and similar domains. Members of this family are scaffold proteins that function as E3 ubiquitin-protein ligases. They all contain an N-terminal RING finger domain and multiple SH3 domains; SH3RF1 and SH3RF3 have four SH3 domains while SH3RF2 has three. SH3RF1 plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF3 interacts with p21-activated kinase 2 (PAK2) and GTP-loaded Rac1. It may play a role in regulating JNK mediated apoptosis in certain conditions. SH3RF2 acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212721 cd11787 SH3_SH3RF_2 Second Src Homology 3 domain of SH3 domain containing ring finger proteins. This model represents the second SH3 domain of SH3RF1 (or POSH), SH3RF2 (or POSHER), SH3RF3 (POSH2), and similar domains. Members of this family are scaffold proteins that function as E3 ubiquitin-protein ligases. They all contain an N-terminal RING finger domain and multiple SH3 domains; SH3RF1 and SH3RF3 have four SH3 domains while SH3RF2 has three. SH3RF1 plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF3 interacts with p21-activated kinase 2 (PAK2) and GTP-loaded Rac1. It may play a role in regulating JNK mediated apoptosis in certain conditions. SH3RF2 acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212722 cd11788 SH3_RasGAP Src Homology 3 domain of Ras GTPase-Activating Protein 1. RasGAP, also called Ras p21 protein activator, RASA1, or p120RasGAP, is part of the GAP1 family of GTPase-activating proteins. It is a 120kD cytosolic protein containing an SH3 domain flanked by two SH2 domains at the N-terminal end, a pleckstrin homology (PH) domain, a calcium dependent phospholipid binding domain (CaLB/C2), and a C-terminal catalytic GAP domain. It stimulates the GTPase activity of normal RAS p21. It acts as a positive effector of Ras in tumor cells. It also functions as a regulator downstream of tyrosine receptors such as those of PDGF, EGF, ephrin, and insulin, among others. The SH3 domain of RasGAP is unable to bind proline-rich sequences but have been shown to interact with protein partners such as the G3BP protein, Aurora kinases, and the Calpain small subunit 1. The RasGAP SH3 domain is necessary for the downstream signaling of Ras and it also influences Rho-mediated cytoskeletal reorganization. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212723 cd11789 SH3_Nebulin_family_C C-terminal Src Homology 3 domain of the Nebulin family of proteins. Nebulin family proteins contain multiple nebulin repeats, and may contain an N-terminal LIM domain and/or a C-terminal SH3 domain. They have molecular weights ranging from 34 to 900 kD, depending on the number of nebulin repeats, and they all bind actin. They are involved in the regulation of actin filament architecture and function as stabilizers and scaffolds for cytoskeletal structures with which they associate, such as long actin filaments or focal adhesions. Nebulin family proteins that contain a C-terminal SH3 domain include the giant filamentous protein nebulin, nebulette, Lasp1, and Lasp2. Lasp2, also called LIM-nebulette, is an alternatively spliced variant of nebulette. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212724 cd11790 SH3_Amphiphysin Src Homology 3 domain of Amphiphysin and related domains. Amphiphysins function primarily in endocytosis and other membrane remodeling events. They exist in several isoforms and mammals possess two amphiphysin proteins from distinct genes. Amphiphysin I proteins, enriched in the brain and nervous system, contain domains that bind clathrin, Adaptor Protein complex 2 (AP2), dynamin, and synaptojanin. They function in synaptic vesicle endocytosis. Human autoantibodies to amphiphysin I hinder GABAergic signaling and contribute to the pathogenesis of paraneoplastic stiff-person syndrome. Some amphiphysin II isoforms, also called Bridging integrator 1 (Bin1), are localized in many different tissues and may function in intracellular vesicle trafficking. In skeletal muscle, Bin1 plays a role in the organization and maintenance of the T-tubule network. Mutations in Bin1 are associated with autosomal recessive centronuclear myopathy. Amphiphysins contain an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR), a variable central domain, and a C-terminal SH3 domain. The SH3 domain of amphiphysins bind proline-rich motifs present in binding partners such as dynamin, synaptojanin, and nsP3. It also belongs to a subset of SH3 domains that bind ubiquitin in a site that overlaps with the peptide binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 64 -212725 cd11791 SH3_UBASH3 Src homology 3 domain of Ubiquitin-associated and SH3 domain-containing proteins, also called TULA (T cell Ubiquitin LigAnd) family of proteins. UBASH3 or TULA proteins are also referred to as Suppressor of T cell receptor Signaling (STS) proteins. They contain an N-terminal UBA domain, a central SH3 domain, and a C-terminal histidine phosphatase domain. They bind c-Cbl through the SH3 domain and to ubiquitin via UBA. In some vertebrates, there are two TULA family proteins, called UBASH3A (also called TULA or STS-2) and UBASH3B (also called TULA-2 or STS-1), which show partly overlapping as well as distinct functions. UBASH3B is widely expressed while UBASH3A is only found in lymphoid cells. UBASH3A facilitates apoptosis induced in T cells through its interaction with the apoptosis-inducing factor AIF. UBASH3B is an active phosphatase while UBASH3A is not. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212726 cd11792 SH3_Fut8 Src homology 3 domain of Alpha1,6-fucosyltransferase (Fut8). Fut8 catalyzes the alpha1,6-linkage of a fucose residue from a donor substrate to N-linked oligosaccharides on glycoproteins in a process called core fucosylation, which is crucial for growth factor receptor-mediated biological functions. Fut8-deficient mice show severe growth retardation, early death, and a pulmonary emphysema-like phenotype. Fut8 is also implicated to play roles in aging and cancer metastasis. It contains an N-terminal coiled-coil domain, a catalytic domain, and a C-terminal SH3 domain. The SH3 domain of Fut8 is located in the lumen and its role in glycosyl transfer is unclear. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212727 cd11793 SH3_ephexin1_like Src homology 3 domain of ephexin-1-like SH3 domain containing Rho guanine nucleotide exchange factors. Members of this family contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and C-terminal SH3 domains. They include the Rho guanine nucleotide exchange factors ARHGEF5, ARHGEF16, ARHGEF19, ARHGEF26, ARHGEF27 (also called ephexin-1), and similar proteins, and are also called ephexins because they interact directly with ephrin A receptors. GEFs interact with Rho GTPases via their DH domains to catalyze nucleotide exchange by stabilizing the nucleotide-free GTPase intermediate. They play important roles in neuronal development. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212728 cd11794 SH3_DNMBP_N1 First N-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin and key regulatory proteins of the actin cytoskeleton. It plays an important role in regulating cell junction configuration. The four N-terminal SH3 domains of DNMBP binds the GTPase dynamin, which plays an important role in the fission of endocytic vesicles. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212729 cd11795 SH3_DNMBP_N2 Second N-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin and key regulatory proteins of the actin cytoskeleton. It plays an important role in regulating cell junction configuration. The four N-terminal SH3 domains of DNMBP binds the GTPase dynamin, which plays an important role in the fission of endocytic vesicles. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212730 cd11796 SH3_DNMBP_N3 Third N-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin and key regulatory proteins of the actin cytoskeleton. It plays an important role in regulating cell junction configuration. The four N-terminal SH3 domains of DNMBP binds the GTPase dynamin, which plays an important role in the fission of endocytic vesicles. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212731 cd11797 SH3_DNMBP_N4 Fourth N-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin and key regulatory proteins of the actin cytoskeleton. It plays an important role in regulating cell junction configuration. The four N-terminal SH3 domains of DNMBP bind the GTPase dynamin, which plays an important role in the fission of endocytic vesicles. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212732 cd11798 SH3_DNMBP_C1 First C-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics. It plays an important role in regulating cell junction configuration. The C-terminal SH3 domains of DNMBP bind to N-WASP and Ena/VASP proteins, which are key regulatory proteins of the actin cytoskeleton. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212733 cd11799 SH3_ARHGEF37_C1 First C-terminal Src homology 3 domain of Rho guanine nucleotide exchange factor 37. ARHGEF37 contains a RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. Its specific function is unknown. Its domain architecture is similar to the C-terminal half of DNMBP or Tuba, a cdc42-specific GEF that provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics, and plays an important role in regulating cell junction configuration. GEFs activate small GTPases by exchanging bound GDP for free GTP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212734 cd11800 SH3_DNMBP_C2_like Second C-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba, and similar domains. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics. It plays an important role in regulating cell junction configuration. The C-terminal SH3 domains of DNMBP bind to N-WASP and Ena/VASP proteins, which are key regulatory proteins of the actin cytoskeleton. Also included in this subfamily is the second C-terminal SH3 domain of Rho guanine nucleotide exchange factor 37 (ARHGEF37), whose function is still unknown. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212735 cd11801 SH3_JIP1_like Src homology 3 domain of JNK-interacting proteins 1 and 2, and similar domains. JNK-interacting proteins (JIPs) function as scaffolding proteins for c-Jun N-terminal kinase (JNK) signaling pathways. They bind to components of Mitogen-activated protein kinase (MAPK) pathways such as JNK, MKK, and several MAP3Ks such as MLK and DLK. There are four JIPs (JIP1-4); all contain a JNK binding domain. JIP1 and JIP2 also contain SH3 and Phosphotyrosine-binding (PTB) domains. Both are highly expressed in the brain and pancreatic beta-cells. JIP1 functions as an adaptor linking motor to cargo during axonal transport and also is involved in regulating insulin secretion. JIP2 form complexes with fibroblast growth factor homologous factors (FHFs), which facilitates activation of the p38delta MAPK. The SH3 domain of JIP1 homodimerizes at the interface usually involved in proline-rich ligand recognition, despite the lack of this motif in the domain itself. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212736 cd11802 SH3_Endophilin_B Src homology 3 domain of Endophilin-B. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. They are classified into two types, A and B. Vertebrates contain two endophilin-B isoforms. Endophilin-B proteins are cytoplasmic proteins expressed mainly in the heart, placenta, and skeletal muscle. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212737 cd11803 SH3_Endophilin_A Src homology 3 domain of Endophilin-A. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. They are classified into two types, A and B. Vertebrates contain three endophilin-A isoforms (A1, A2, and A3). Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. They tubulate membranes and regulate calcium influx into neurons to trigger the activation of the endocytic machinery. They are also involved in the sorting of plasma membrane proteins, actin filament assembly, and the uncoating of clathrin-coated vesicles for fusion with endosomes. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212738 cd11804 SH3_GRB2_like_N N-terminal Src homology 3 domain of Growth factor receptor-bound protein 2 (GRB2) and related proteins. This family includes the adaptor protein GRB2 and related proteins including Drosophila melanogaster Downstream of receptor kinase (DRK), Caenorhabditis elegans Sex muscle abnormal protein 5 (Sem-5), GRB2-related adaptor protein (GRAP), GRAP2, and similar proteins. Family members contain an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. GRB2/Sem-5/DRK is a critical signaling molecule that regulates the Ras pathway by linking tyrosine kinases to the Ras guanine nucleotide releasing protein Sos (son of sevenless), which converts Ras to the active GTP-bound state. GRAP2 plays an important role in T cell receptor (TCR) signaling by promoting the formation of the SLP-76:LAT complex, which couples the TCR to the Ras pathway. GRAP acts as a negative regulator of T cell receptor (TCR)-induced lymphocyte proliferation by downregulating the signaling to the Ras/ERK pathway. The N-terminal SH3 domain of GRB2 binds to Sos and Sos-derived proline-rich peptides. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212739 cd11805 SH3_GRB2_like_C C-terminal Src homology 3 domain of Growth factor receptor-bound protein 2 (GRB2) and related proteins. This family includes the adaptor protein GRB2 and related proteins including Drosophila melanogaster Downstream of receptor kinase (DRK), Caenorhabditis elegans Sex muscle abnormal protein 5 (Sem-5), GRB2-related adaptor protein (GRAP), GRAP2, and similar proteins. Family members contain an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. GRB2/Sem-5/DRK is a critical signaling molecule that regulates the Ras pathway by linking tyrosine kinases to the Ras guanine nucleotide releasing protein Sos (son of sevenless), which converts Ras to the active GTP-bound state. GRAP2 plays an important role in T cell receptor (TCR) signaling by promoting the formation of the SLP-76:LAT complex, which couples the TCR to the Ras pathway. GRAP acts as a negative regulator of T cell receptor (TCR)-induced lymphocyte proliferation by downregulating the signaling to the Ras/ERK pathway. The C-terminal SH3 domains (SH3c) of GRB2 and GRAP2 have been shown to bind to classical PxxP motif ligands, as well as to non-classical motifs. GRB2 SH3c binds Gab2 (Grb2-associated binder 2) through epitopes containing RxxK motifs, while the SH3c of GRAP2 binds to the phosphatase-like protein HD-PTP via a RxxxxK motif. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212740 cd11806 SH3_PRMT2 Src homology 3 domain of Protein arginine N-methyltransferase 2. PRMT2, also called HRMT1L1, belongs to the arginine methyltransferase protein family. It functions as a coactivator to both estrogen receptor alpha (ER-alpha) and androgen receptor (AR), presumably through arginine methylation. The ER-alpha transcription factor is involved in cell proliferation, differentiation, morphogenesis, and apoptosis, and is also implicated in the development and progression of breast cancer. PRMT2 and its variants are upregulated in breast cancer cells and may be involved in modulating the ER-alpha signaling pathway during formation of breast cancer. PRMT2 also plays a role in regulating the function of E2F transcription factors, which are critical cell cycle regulators, by binding to the retinoblastoma gene product (RB). It contains an N-terminal SH3 domain and an AdoMet binding domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212741 cd11807 SH3_ASPP Src homology 3 domain of Apoptosis Stimulating of p53 proteins (ASPP). The ASPP family of proteins bind to important regulators of apoptosis (p53, Bcl-2, and RelA) and cell growth (APCL, PP1). They share similarity at their C-termini, where they harbor a proline-rich region, four ankyrin (ANK) repeats, and an SH3 domain. Vertebrates contain three members of the family: ASPP1, ASPP2, and iASPP. ASPP1 and ASPP2 activate the apoptotic function of the p53 family of tumor suppressors (p53, p63, and p73), while iASPP is an oncoprotein that specifically inhibits p53-induced apoptosis. The expression of ASPP proteins is altered in tumors; ASPP1 and ASPP2 are downregulated whereas iASPP is upregulated is some cancer types. ASPP proteins also bind and regulate protein phosphatase 1 (PP1), and this binding is competitive with p53 binding. The SH3 domain and the ANK repeats of ASPP contribute to the p53 binding site; they bind to the DNA binding domain of p53. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212742 cd11808 SH3_Alpha_Spectrin Src homology 3 domain of Alpha Spectrin. Spectrin is a major structural component of the red blood cell membrane skeleton and is important in erythropoiesis and membrane biogenesis. It is a flexible, rope-like molecule composed of two subunits, alpha and beta, which consist of many spectrin-type repeats. Alpha and beta spectrin associate to form heterodimers and tetramers; spectrin tetramer formation is critical for red cell shape and deformability. Defects in alpha spectrin have been associated with inherited hemolytic anemias including hereditary spherocytosis (HSp), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP). Alpha spectrin contains a middle SH3 domain and a C-terminal EF-hand binding motif in addition to multiple spectrin repeats. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212743 cd11809 SH3_srGAP Src homology 3 domain of Slit-Robo GTPase Activating Proteins. Slit-Robo GTPase Activating Proteins (srGAPs) are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. Vertebrates contain three isoforms of srGAPs (srGAP1-3), all of which are expressed during embryonic and early development in the nervous system but with different localization and timing. A fourth member has also been reported (srGAP4, also called ARHGAP4). srGAPs contain an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212744 cd11810 SH3_RUSC1_like Src homology 3 domain of RUN and SH3 domain-containing proteins 1 and 2. RUSC1 and RUSC2, that were originally characterized in silico. They are adaptor proteins consisting of RUN, leucine zipper, and SH3 domains. RUSC1, also called NESCA (New molecule containing SH3 at the carboxy-terminus), is highly expressed in the brain and is translocated to the nuclear membrane from the cytoplasm upon stimulation with neurotrophin. It plays a role in facilitating neurotrophin-dependent neurite outgrowth. It also interacts with NEMO (or IKKgamma) and may function in NEMO-mediated activation of NF-kB. RUSC2, also called Iporin, is expressed ubiquitously with highest amounts in the brain and testis. It interacts with the small GTPase Rab1 and the Golgi matrix protein GM130, and may function in linking GTPases to certain intracellular signaling pathways. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212745 cd11811 SH3_CHK Src Homology 3 domain of CSK homologous kinase. CHK is also referred to as megakaryocyte-associated tyrosine kinase (Matk). It inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. To inhibit Src kinases that are anchored to the plasma membrane, CHK is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. CHK also plays a role in neural differentiation in a manner independent of Src by enhancing MAPK activation via Ras-mediated signaling. It is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212746 cd11812 SH3_AHI-1 Src Homology 3 domain of Abelson helper integration site-1 (AHI-1). AHI-1, also called Jouberin, is expressed in high levels in the brain, gonad tissues, and skeletal muscle. It is an adaptor protein that interacts with the small GTPase Rab8a and regulates it distribution and function, affecting cilium formation and vesicle transport. Mutations in the AHI-1 gene can cause Joubert syndrome, a disorder characterized by brainstem malformations, cerebellar aplasia/hypoplasia, and retinal dystrophy. AHI-1 variation is also associated with susceptibility to schizophrenia and type 2 diabetes mellitus progression. AHI-1 contains WD40 and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212747 cd11813 SH3_SGSM3 Src Homology 3 domain of Small G protein Signaling Modulator 3. SGSM3 is also called Merlin-associated protein (MAP), RUN and SH3 domain-containing protein (RUSC3), RUN and TBC1 domain-containing protein 3 (RUTBC3), Rab GTPase-activating protein 5 (RabGAP5), or Rab GAP-like protein (RabGAPLP). It is expressed ubiquitously and functions as a regulator of small G protein RAP- and RAB-mediated neuronal signaling. It is involved in modulating NGF-mediated neurite outgrowth and differentiation. It also interacts with the tumor suppressor merlin and may play a role in the merlin-associated suppression of cell growth. SGSM3 contains TBC, SH3, and RUN domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212748 cd11814 SH3_Eve1_1 First Src homology 3 domain of ADAM-binding protein Eve-1. Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212749 cd11815 SH3_Eve1_2 Second Src homology 3 domain of ADAM-binding protein Eve-1. Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212750 cd11816 SH3_Eve1_3 Third Src homology 3 domain of ADAM-binding protein Eve-1. Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212751 cd11817 SH3_Eve1_4 Fourth Src homology 3 domain of ADAM-binding protein Eve-1. Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212752 cd11818 SH3_Eve1_5 Fifth Src homology 3 domain of ADAM-binding protein Eve-1. Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212753 cd11819 SH3_Cortactin_like Src homology 3 domain of Cortactin and related proteins. This subfamily includes cortactin, Abp1 (actin-binding protein 1), hematopoietic lineage cell-specific protein 1 (HS1), and similar proteins. These proteins are involved in regulating actin dynamics through direct or indirect interaction with the Arp2/3 complex, which is required to initiate actin polymerization. They all contain at least one C-terminal SH3 domain. Cortactin and HS1 bind Arp2/3 and actin through an N-terminal region that contains an acidic domain and several copies of a repeat domain found in cortactin and HS1. Abp1 binds actin via an N-terminal actin-depolymerizing factor (ADF) homology domain. Yeast Abp1 binds Arp2/3 directly through two acidic domains. Mammalian Abp1 does not directly interact with Arp2/3; instead, it regulates actin dynamics indirectly by interacting with dynamin and WASP family proteins. The C-terminal region of these proteins acts as an adaptor or scaffold that can connect membrane trafficking and signaling proteins that bind the SH3 domain within the actin network. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212754 cd11820 SH3_STAM Src homology 3 domain of Signal Transducing Adaptor Molecules. STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. There are two vertebrate STAMs, STAM1 and STAM2, which may be functionally redundant; vertebrate STAMs contain ITAM motifs. They are part of the endosomal sorting complex required for transport (ESCRT-0). STAM2 deficiency in mice did not cause any obvious abnormality, while STAM1 deficiency resulted in growth retardation. Loss of both STAM1 and STAM2 in mice proved lethal, indicating that STAMs are important for embryonic development. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212755 cd11821 SH3_ASAP Src homology 3 domain of ArfGAP with SH3 domain, ankyrin repeat and PH domain containing proteins. ASAPs are Arf GTPase activating proteins (GAPs) and they function in regulating cell growth, migration, and invasion. They contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. Vertebrates contain at least three members, ASAP1, ASAP2, and ASAP3, but some ASAP3 proteins do not seem to harbor a C-terminal SH3 domain. ASAP1 and ASAP2 show GTPase activating protein (GAP) activity towards Arf1 and Arf5. They do not show GAP activity towards Arf6, but are able to mediate Arf6 signaling by binding stably to GTP-Arf6. ASAP3 is an Arf6-specific GAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212756 cd11822 SH3_SASH_like Src homology 3 domain of SAM And SH3 Domain Containing Proteins. This subfamily, also called the SLY family, is composed of SAM And SH3 Domain Containing Protein 1 (SASH1), SASH2, SASH3, and similar proteins. These are adaptor proteins containing a central conserved region with a bipartite nuclear localization signal (NLS) as wells as SAM (sterile alpha motif) and SH3 domains. SASH1 is a potential tumor suppressor in breast and colon cancer. It is widely expressed in normal tissues (except lymphocytes and dendritic cells) and is localized in the nucleus and the cytoplasm. SASH1 interacts with the oncoprotein cortactin and is important in cell migration and adhesion. SASH2 (also called SAMSN-1, SLY2, HACS1 or NASH1) and SASH3 (also called SLY/SLY1) are expressed mainly in hematopoietic cells, although SASH2 is also found in endothelial cells as well as myeloid leukemias and myeloma. SASH2 was found to be differentially expressed in malignant haematopoietic cells and in colorectal tumors, and is a potential tumor suppressor in lung cancer. SASH3 is essential in the full activation of adaptive immunity and is involved in the signaling of T cell receptors. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212757 cd11823 SH3_Nostrin Src homology 3 domain of Nitric Oxide Synthase TRaffic INducer. Nostrin is expressed in endothelial and epithelial cells and is involved in the regulation, trafficking and targeting of endothelial NOS (eNOS). It facilitates the endocytosis of eNOS by coordinating the functions of dynamin and the Wiskott-Aldrich syndrome protein (WASP). Increased expression of Nostrin may be correlated to preeclampsia. Nostrin contains an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212758 cd11824 SH3_PSTPIP1 Src homology 3 domain of Proline-Serine-Threonine Phosphatase-Interacting Protein 1. PSTPIP1, also called CD2 Binding Protein 1 (CD2BP1), is mainly expressed in hematopoietic cells. It is a binding partner of the cell surface receptor CD2 and PTP-PEST, a tyrosine phosphatase which functions in cell motility and Rac1 regulation. It also plays a role in the activation of the Wiskott-Aldrich syndrome protein (WASP), which couples actin rearrangement and T cell activation. Mutations in the gene encoding PSTPIP1 cause the autoinflammatory disorder known as PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne) syndrome. PSTPIP1 contains an N-terminal F-BAR domain, PEST motifs, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212759 cd11825 SH3_PLCgamma Src homology 3 domain of Phospholipase C (PLC) gamma. PLC catalyzes the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG) in response to various receptors. Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma catalyzes this reaction in tyrosine kinase-dependent signaling pathways. It is activated and recruited to its substrate at the membrane. Vertebrates contain two forms of PLCgamma, PLCgamma1, which is widely expressed, and PLCgamma2, which is primarily found in haematopoietic cells. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. The SH3 domain of PLCgamma1 directly interacts with dynamin-1 and can serve as a guanine nucleotide exchange factor (GEF). It also interacts with Cbl, inhibiting its phosphorylation and activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212760 cd11826 SH3_Abi Src homology 3 domain of Abl Interactor proteins. Abl interactor (Abi) proteins are adaptor proteins serving as binding partners and substrates of Abl tyrosine kinases. They are involved in regulating actin cytoskeletal reorganization and play important roles in membrane-ruffling, endocytosis, cell motility, and cell migration. They localize to sites of actin polymerization in epithelial adherens junction and immune synapses, as well as to the leading edge of lamellipodia. Vertebrates contain two Abi proteins, Abi1 and Abi2. Abi1 displays a wide expression pattern while Abi2 is highly expressed in the eye and brain. Abi proteins contain a homeobox homology domain, a proline-rich region, and a SH3 domain. The SH3 domain of Abi binds to a PxxP motif in Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212761 cd11827 SH3_MyoIe_If_like Src homology 3 domain of Myosins Ie, If, and similar proteins. Myosins Ie (MyoIe) and If (MyoIf) are nonmuscle, unconventional, long tailed, class I myosins containing an N-terminal motor domain and a myosin tail with TH1, TH2, and SH3 domains. MyoIe interacts with the endocytic proteins, dynamin and synaptojanin-1, through its SH3 domain; it may play a role in clathrin-dependent endocytosis. In the kidney, MyoIe is critical for podocyte function and normal glomerular filtration. Mutations in MyoIe is associated with focal segmental glomerulosclerosis, a disease characterized by massive proteinuria and progression to end-stage kidney disease. MyoIf is predominantly expressed in the immune system; it plays a role in immune cell motility and innate immunity. Mutations in MyoIf may be associated with the loss of hearing. The MyoIf gene has also been found to be fused to the MLL (Mixed lineage leukemia) gene in infant acute myeloid leukemias (AML). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212762 cd11828 SH3_ARHGEF9_like Src homology 3 domain of ARHGEF9-like Rho guanine nucleotide exchange factors. Members of this family contain a SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains. They include the Rho guanine nucleotide exchange factors ARHGEF9, ASEF (also called ARHGEF4), ASEF2, and similar proteins. GEFs activate small GTPases by exchanging bound GDP for free GTP. ARHGEF9 specifically activates Cdc42, while both ASEF and ASEF2 can activate Rac1 and Cdc42. ARHGEF9 is highly expressed in the brain and it interacts with gephyrin, a postsynaptic protein associated with GABA and glycine receptors. ASEF plays a role in angiogenesis and cell migration. ASEF2 is important in cell migration and adhesion dynamics. ASEF exists in an autoinhibited form and is activated upon binding of the tumor suppressor APC (adenomatous polyposis coli), leading to the activation of Rac1 or Cdc42. In its autoinhibited form, the SH3 domain of ASEF forms an extensive interface with the DH and PH domains, blocking the Rac binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212763 cd11829 SH3_GAS7 Src homology 3 domain of Growth Arrest Specific protein 7. GAS7 is mainly expressed in the brain and is required for neurite outgrowth. It may also play a role in the protection and migration of embryonic stem cells. Treatment-related acute myeloid leukemia (AML) has been reported resulting from mixed-lineage leukemia (MLL)-GAS7 translocations as a complication of primary cancer treatment. GAS7 contains an N-terminal SH3 domain, followed by a WW domain, and a central F-BAR domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212764 cd11830 SH3_VAV_2 C-terminal (or second) Src homology 3 domain of VAV proteins. VAV proteins function both as cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho GTPases and scaffold proteins and they play important roles in cell signaling by coupling cell surface receptors to various effector functions. They play key roles in processes that require cytoskeletal reorganization including immune synapse formation, phagocytosis, cell spreading, and platelet aggregation, among others. Vertebrates have three VAV proteins (VAV1, VAV2, and VAV3). VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212765 cd11831 SH3_VAV_1 First Src homology 3 domain of VAV proteins. VAV proteins function both as cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho GTPases and scaffold proteins and they play important roles in cell signaling by coupling cell surface receptors to various effector functions. They play key roles in processes that require cytoskeletal reorganization including immune synapse formation, phagocytosis, cell spreading, and platelet aggregation, among others. Vertebrates have three VAV proteins (VAV1, VAV2, and VAV3). VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212766 cd11832 SH3_Shank Src homology 3 domain of SH3 and multiple ankyrin repeat domains (Shank) proteins. Shank proteins carry scaffolding functions through multiple sites of protein-protein interaction in its domain architecture, including ankyrin (ANK) repeats, a long proline rich region, as well as SH3, PDZ, and SAM domains. They bind a variety of membrane and cytosolic proteins, and exist in alternatively spliced isoforms. They are highly enriched in postsynaptic density (PSD) where they interact with the cytoskeleton and with postsynaptic membrane receptors including NMDA and glutamate receptors. They are crucial in the construction and organization of the PSD and dendritic spines of excitatory synapses. There are three members of this family (Shank1, Shank2, Shank3) which show distinct and cell-type specific patterns of expression. Shank1 is brain-specific; Shank2 is found in neurons, glia, endocrine cells, liver, and kidney; Shank3 is widely expressed. The SH3 domain of Shank binds GRIP, a scaffold protein that binds AMPA receptors and Eph receptors/ligands. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 50 -212767 cd11833 SH3_Stac_1 First C-terminal Src homology 3 domain of SH3 and cysteine-rich domain-containing (Stac) proteins. Stac proteins are putative adaptor proteins that contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. There are three mammalian members (Stac1, Stac2, and Stac3) of this family. Stac1 and Stac3 contain two SH3 domains while Stac2 contains a single SH3 domain at the C-terminus. This model represents the first C-terminal SH3 domain of Stac1 and Stac3, and the single C-terminal SH3 domain of Stac2. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212768 cd11834 SH3_Stac_2 Second C-terminal Src homology 3 domain of SH3 and cysteine-rich domain-containing proteins 1 and 3. This model represents the second C-terminal SH3 domain of Stac1 and Stac3. Stac proteins are putative adaptor proteins that contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. There are three mammalian members (Stac1, Stac2, and Stac3) of this family. Stac1 and Stac3 contain two SH3 domains while Stac2 contains a single SH3 domain at the C-terminus. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212769 cd11835 SH3_ARHGAP32_33 Src homology 3 domain of Rho GTPase-activating proteins 32 and 33, and similar proteins. Members of this family contain N-terminal PX and Src Homology 3 (SH3) domains, a central Rho GAP domain, and C-terminal extensions. RhoGAPs (or ARHGAPs) bind to Rho proteins and enhance the hydrolysis rates of bound GTP. ARHGAP32 is also called RICS, PX-RICS, p250GAP, or p200RhoGAP. It is a Rho GTPase-activating protein for Cdc42 and Rac1, and is implicated in the regulation of postsynaptic signaling and neurite outgrowth. PX-RICS, a variant of RICS that contain PX and SH3 domains, is the main isoform expressed during neural development. It is involved in neural functions including axon and dendrite extension, postnatal remodeling, and fine-tuning of neural circuits during early brain development. ARHGAP33, also called sorting nexin 26 or TCGAP (Tc10/CDC42 GTPase-activating protein), is widely expressed in the brain where it is involved in regulating the outgrowth of axons and dendrites and is regulated by the protein tyrosine kinase Fyn. It is translocated to the plasma membrane in adipocytes in response to insulin and may be involved in the regulation of insulin-stimulated glucose transport. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212770 cd11836 SH3_Intersectin_1 First Src homology 3 domain (or SH3A) of Intersectin. Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The first SH3 domain (or SH3A) of ITSN1 has been shown to bind many proteins including Sos1, dynamin1/2, CIN85, c-Cbl, PI3K-C2, SHIP2, N-WASP, and CdGAP, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212771 cd11837 SH3_Intersectin_2 Second Src homology 3 domain (or SH3B) of Intersectin. Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The second SH3 domain (or SH3B) of ITSN1 has been shown to bind WNK and CdGAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212772 cd11838 SH3_Intersectin_3 Third Src homology 3 domain (or SH3C) of Intersectin. Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The third SH3 domain (or SH3C) of ITSN1 has been shown to bind many proteins including dynamin1/2, CIN85, c-Cbl, SHIP2, Reps1, synaptojanin-1, and WNK, among others. The SH3C of ITSN2 has been shown to bind the K15 protein of Kaposi's sarcoma-associated herpesvirus. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212773 cd11839 SH3_Intersectin_4 Fourth Src homology 3 domain (or SH3D) of Intersectin. Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The fourth SH3 domain (or SH3D) of ITSN1 has been shown to bind SHIP2, Numb, CdGAP, and N-WASP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212774 cd11840 SH3_Intersectin_5 Fifth Src homology 3 domain (or SH3E) of Intersectin. Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The fifth SH3 domain (or SH3E) of ITSN1 has been shown to bind many protein partners including SGIP1, Sos1, dynamin1/2, CIN85, c-Cbl, SHIP2, N-WASP, and synaptojanin-1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212775 cd11841 SH3_SH3YL1_like Src homology 3 domain of SH3 domain containing Ysc84-like 1 (SH3YL1) protein. SH3YL1 localizes to the plasma membrane and is required for dorsal ruffle formation. It binds phosphoinositides (PIs) with high affinity through its N-terminal SYLF domain (also called DUF500). In addition, SH3YL1 contains a C-terminal SH3 domain which has been reported to bind to N-WASP, dynamin 2, and SHIP2 (a PI 5-phosphatase). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212776 cd11842 SH3_Ysc84p_like Src homology 3 domain of Ysc84p and similar fungal proteins. This family is composed of the Saccharomyces cerevisiae proteins, Ysc84p (also called LAS17-binding protein 4, Lsb4p) and Lsb3p, and similar fungal proteins. They contain an N-terminal SYLF domain (also called DUF500) and a C-terminal SH3 domain. Ysc84p localizes to actin patches and plays an important in actin polymerization during endocytosis. The N-terminal domain of both Ysc84p and Lsb3p can bind and bundle actin filaments. A study of the yeast SH3 domain interactome predicts that the SH3 domains of Lsb3p and Lsb4p may function as molecular hubs for the assembly of endocytic complexes. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212777 cd11843 SH3_PACSIN Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins. PACSINs, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. They bind both dynamin and Wiskott-Aldrich syndrome protein (WASP), and may provide direct links between the actin cytoskeletal machinery through WASP and dynamin-dependent endocytosis. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212778 cd11844 SH3_CAS Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding proteins. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes including migration, chemotaxis, apoptosis, differentiation, and progenitor cell function. They mediate the signaling of integrins at focal adhesions where they localize, and thus, regulate cell invasion and survival. Over-expression of these proteins is implicated in poor prognosis, increased metastasis, and resistance to chemotherapeutics in many cancers such as breast, lung, melanoma, and glioblastoma. CAS proteins have also been linked to the pathogenesis of inflammatory disorders, Alzheimer's, Parkinson's, and developmental defects. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. Vertebrates contain four CAS proteins: BCAR1 (or p130Cas), NEDD9 (or HEF1), EFS (or SIN), and CASS4 (or HEPL). The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212779 cd11845 SH3_Src_like Src homology 3 domain of Src kinase-like Protein Tyrosine Kinases. Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, Yes, and Brk. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Brk lacks the N-terminal myristoylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells, and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, Lyn, and Brk show a limited expression pattern. This subfamily also includes Drosophila Src42A, Src oncogene at 42A (also known as Dsrc41) which accumulates at sites of cell-cell or cell-matrix adhesion, and participates in Drosphila development and wound healing. It has been shown to promote tube elongation in the tracheal system, is essential for proper cell-cell matching during dorsal closure, and regulates cell-cell contacts in developing Drosophila eyes. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212780 cd11846 SH3_Srms Src homology 3 domain of Srms Protein Tyrosine Kinase. Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (Srms) is a cytoplasmic (or non-receptor) PTK with limited homology to Src kinases. Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Srms lacks the N-terminal myristoylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212781 cd11847 SH3_Brk Src homology 3 domain of Brk (Breast tumor kinase) Protein Tyrosine Kinase (PTK), also called PTK6. Brk is a cytoplasmic (or non-receptor) PTK with limited homology to Src kinases. It has been found to be overexpressed in a majority of breast tumors. It plays roles in normal cell differentiation, proliferation, survival, migration, and cell cycle progression. Brk substrates include RNA-binding proteins (SLM-1/2, Sam68), transcription factors (STAT3/5), and signaling molecules (Akt, paxillin, IRS-4). Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Brk lacks the N-terminal myristoylation site. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212782 cd11848 SH3_SLAP-like Src homology 3 domain of Src-Like Adaptor Proteins. SLAPs are adaptor proteins with limited similarity to Src family tyrosine kinases. They contain an N-terminal SH3 domain followed by an SH2 domain, and a unique C-terminal sequence. They function in regulating the signaling, ubiquitination, and trafficking of T-cell receptor (TCR) and B-cell receptor (BCR) components. Vertebrates contain two SLAPs, named SLAP (or SLA1) and SLAP2 (or SLA2). SLAP has been shown to interact with the EphA receptor, EpoR, Lck, PDGFR, Syk, CD79a, among others, while SLAP2 interacts with CSF1R. Both SLAPs interact with c-Cbl, LAT, CD247, and Zap70. SLAP modulates TCR surface expression levels as well as surface and total BCR levels. As an adaptor to c-Cbl, SLAP increases the ubiquitination, intracellular retention, and targeted degradation of the BCR complex components. SLAP2 plays a role in c-Cbl-dependent regulation of CSF1R, a tyrosine kinase important for myeloid cell growth and differentiation. The SH3 domain of SLAP forms a complex with v-Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212783 cd11849 SH3_SPIN90 Src homology 3 domain of SH3 protein interacting with Nck, 90 kDa (SPIN90). SPIN90 is also called NCK interacting protein with SH3 domain (NCKIPSD), Dia-interacting protein (DIP), 54 kDa vimentin-interacting protein (VIP54), or WASP-interacting SH3-domain protein (WISH). It is an F-actin binding protein that regulates actin polymerization and endocytosis. It associates with the Arp2/3 complex near actin filaments and determines filament localization at the leading edge of lamellipodia. SPIN90 is expressed in the early stages of neuronal differentiation and plays a role in regulating growth cone dynamics and neurite outgrowth. It also interacts with IRSp53 and regulates cell motility by playing a role in the formation of membrane protrusions. SPIN90 contains an N-terminal SH3 domain, a proline-rich domain, and a C-terminal VCA (verprolin-homology and cofilin-like acidic) domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212784 cd11850 SH3_Abl Src homology 3 domain of the Protein Tyrosine Kinase, Abelson kinase. Abl (or c-Abl) is a ubiquitously-expressed cytoplasmic (or nonreceptor) PTK that contains SH3, SH2, and tyr kinase domains in its N-terminal region, as well as nuclear localization motifs, a putative DNA-binding domain, and F- and G-actin binding domains in its C-terminal tail. It also contains a short autoinhibitory cap region in its N-terminus. Abl function depends on its subcellular localization. In the cytoplasm, Abl plays a role in cell proliferation and survival. In response to DNA damage or oxidative stress, Abl is transported to the nucleus where it induces apoptosis. In chronic myelogenous leukemia (CML) patients, an aberrant translocation results in the replacement of the first exon of Abl with the BCR (breakpoint cluster region) gene. The resulting BCR-Abl fusion protein is constitutively active and associates into tetramers, resulting in a hyperactive kinase sending a continuous signal. This leads to uncontrolled proliferation, morphological transformation and anti-apoptotic effects. BCR-Abl is the target of selective inhibitors, such as imatinib (Gleevec), used in the treatment of CML. Abl2, also known as ARG (Abelson-related gene), is thought to play a cooperative role with Abl in the proper development of the nervous system. The Tel-ARG fusion protein, resulting from reciprocal translocation between chromosomes 1 and 12, is associated with acute myeloid leukemia (AML). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212785 cd11851 SH3_RIM-BP Src homology 3 domains of Rab3-interacting molecules (RIMs) binding proteins. RIMs binding proteins (RBPs, RIM-BPs) associate with calcium channels present in photoreceptors, neurons, and hair cells; they interact simultaneously with specific calcium channel subunits, and active zone proteins, RIM1 and RIM2. RIMs are part of the matrix at the presynaptic active zone and are associated with synaptic vesicles through their interaction with the small GTPase Rab3. RIM-BPs play a role in regulating synaptic transmission by serving as adaptors and linking calcium channels with the synaptic vesicle release machinery. RIM-BPs contain three SH3 domains and two to three fibronectin III repeats. Invertebrates contain one, while vertebrates contain at least two RIM-BPs, RIM-BP1 and RIM-BP2. RIM-BP1 is also called peripheral-type benzodiazapine receptor associated protein 1 (PRAX-1). Mammals contain a third protein, RIM-BP3. RIM-BP1 and RIM-BP2 are predominantly expressed in the brain where they display overlapping but distinct expression patterns, while RIM-BP3 is almost exclusively expressed in the testis and is essential in spermiogenesis. The SH3 domains of RIM-BPs bind to the PxxP motifs of RIM1, RIM2, and L-type (alpha1D) and N-type (alpha1B) calcium channel subunits. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212786 cd11852 SH3_Kalirin_1 First Src homology 3 domain of the RhoGEF kinase, Kalirin. Kalirin, also called Duo, Duet, or TRAD, is a large neuronal dual Rho guanine nucleotide exchange factor (RhoGEF) that activates Rac1, RhoA, and RhoG using two RhoGEF domains. Kalirin exists in many isoforms generated by alternative splicing and the use of multiple promoters; the major isoforms are kalirin-7, -9, and -12, which differ at their C-terminal ends. Kalirin-12, the longest isoform, contains an N-terminal Sec14p domain, spectrin-like repeats, two RhoGEF domains, two SH3 domains, as well as Ig, FNIII, and kinase domains at the C-terminal end. Kalirin-7 contains only a single RhoGEF domain and does not contain an SH3 domain. Kalirin, through its many isoforms, interacts with many different proteins and is able to localize to different locations within the cell. It influences neurite initiation, axon growth, dendritic morphogenesis, vesicle trafficking, neuronal maintenance, and neurodegeneration. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212787 cd11853 SH3_Kalirin_2 Second Src homology 3 domain of the RhoGEF kinase, Kalirin. Kalirin, also called Duo, Duet, or TRAD, is a large neuronal dual Rho guanine nucleotide exchange factor (RhoGEF) that activates Rac1, RhoA, and RhoG using two RhoGEF domains. Kalirin exists in many isoforms generated by alternative splicing and the use of multiple promoters; the major isoforms are kalirin-7, -9, and -12, which differ at their C-terminal ends. Kalirin-12, the longest isoform, contains an N-terminal Sec14p domain, spectrin-like repeats, two RhoGEF domains, two SH3 domains, as well as Ig, FNIII, and kinase domains at the C-terminal end. Kalirin-7 contains only a single RhoGEF domain and does not contain an SH3 domain. Kalirin, through its many isoforms, interacts with many different proteins and is able to localize to different locations within the cell. It influences neurite initiation, axon growth, dendritic morphogenesis, vesicle trafficking, neuronal maintenance, and neurodegeneration. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212788 cd11854 SH3_Fus1p Src homology 3 domain of yeast cell fusion protein Fus1p. Fus1p is required at the cell surface for cell fusion during the mating response in yeast. It requires Bch1p and Bud7p, which are Chs5p-Arf1p binding proteins, for localization to the plasma membrane. It acts as a scaffold protein to assemble a cell surface complex which is involved in septum degradation and inhibition of the NOG pathway to promote cell fusion. The SH3 domain of Fus1p interacts with Bin1p, a formin that controls the assembly of actin cables in response to Cdc42 signaling. It has been shown to bind the motif, R(S/T)(S/T)SL, instead of PxxP motifs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212789 cd11855 SH3_Sho1p Src homology 3 domain of High osmolarity signaling protein Sho1p. Sho1p (or Sho1), also called SSU81 (Suppressor of SUA8-1 mutation), is a yeast membrane protein that regulates adaptation to high salt conditions by activating the HOG (high-osmolarity glycerol) pathway. High salt concentrations lead to the localization to the membrane of the MAPKK Pbs2, which is then activated by the MAPKK Ste11 and in turn, activates the MAPK Hog1. Pbs2 is localized to the membrane though the interaction of its PxxP motif with the SH3 domain of Sho1p. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212790 cd11856 SH3_p47phox_like Src homology 3 domains of the p47phox subunit of NADPH oxidase and similar domains. This family is composed of the tandem SH3 domains of p47phox subunit of NADPH oxidase and Nox Organizing protein 1 (NoxO1), the four SH3 domains of Tks4 (Tyr kinase substrate with four SH3 domains), the five SH3 domains of Tks5, the SH3 domain of obscurin, Myosin-I, and similar domains. Most members of this group also contain Phox homology (PX) domains, except for obscurin and Myosin-I. p47phox and NoxO1 are regulators of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) and nonphagocytic NADPH oxidase Nox1, respectively. They play roles in the activation of their respective NADPH oxidase, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Obscurin is a giant muscle protein that plays important roles in the organization and assembly of the myofibril and the sarcoplasmic reticulum. Type I myosins (Myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212791 cd11857 SH3_DBS Src homology 3 domain of DBL's Big Sister (DBS), a guanine nucleotide exchange factor. DBS, also called MCF2L (MCF2-transforming sequence-like protein) or OST, is a Rho GTPase guanine nucleotide exchange factor (RhoGEF), facilitating the exchange of GDP and GTP. It was originally isolated from a cDNA screen for sequences that cause malignant growth. It plays roles in regulating clathrin-mediated endocytosis and cell migration through its activation of Rac1 and Cdc42. Depending on cell type, DBS can also activate RhoA and RhoG. DBS contains a Sec14-like domain, spectrin-like repeats, a RhoGEF [or Dbl homology (DH)] domain, a Pleckstrin homology (PH) domain, and an SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212792 cd11858 SH3_Myosin-I_fungi Src homology 3 domain of Type I fungal Myosins. Type I myosins (myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Saccharomyces cerevisiae has two myosins-I, Myo3 and Myo5, which are involved in endocytosis and the polarization of the actin cytoskeleton. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212793 cd11859 SH3_ZO Src homology 3 domain of the Tight junction proteins, Zonula occludens (ZO) proteins. ZO proteins are scaffolding proteins that associate with each other and with other proteins of the tight junction, zonula adherens, and gap junctions. They play roles in regulating cytoskeletal dynamics at these cell junctions. They are considered members of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. Vertebrates contain three ZO proteins (ZO-1, ZO-2, and ZO-3) with redundant and non-redundant roles. They contain three PDZ domains, followed by SH3 and GuK domains; in addition, ZO-1 and ZO-2 contains a proline-rich (PR) actin binding domain at the C-terminus while ZO-3 contains this PR domain between the second and third PDZ domains. The C-terminal regions of the three ZO proteins are unique. The SH3 domain of ZO-1 has been shown to bind ZONAB, ZAK, afadin, and Galpha12. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212794 cd11860 SH3_DLG5 Src homology 3 domain of Disks Large homolog 5. DLG5 is a multifunctional scaffold protein that is located at sites of cell-cell contact and is involved in the maintenance of cell shape and polarity. Mutations in the DLG5 gene are associated with Crohn's disease (CD) and inflammatory bowel disease (IBD). DLG5 is a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG5 contains 4 PDZ domains as well as an N-terminal domain of unknown function. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 63 -212795 cd11861 SH3_DLG-like Src Homology 3 domain of Disks large homolog proteins. The DLG-like proteins are scaffolding proteins that cluster at synapses and are also called PSD (postsynaptic density)-95 proteins or SAPs (synapse-associated proteins). They play important roles in synaptic development and plasticity, cell polarity, migration and proliferation. They are members of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG-like proteins contain three PDZ domains and varying N-terminal regions. All DLG proteins exist as alternatively-spliced isoforms. Vertebrates contain four DLG proteins from different genes, called DLG1-4. DLG4 and DLG2 are found predominantly at postsynaptic sites and they mediate surface ion channel and receptor clustering. DLG3 is found axons and some presynaptic terminals. DLG1 interacts with AMPA-type glutamate receptors and is critical in their maturation and delivery to synapses. The SH3 domain of DLG4 binds and clusters the kainate subgroup of glutamate receptors via two proline-rich sequences in their C-terminal tail. It also binds AKAP79/150 (A-kinase anchoring protein). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212796 cd11862 SH3_MPP Src Homology 3 domain of Membrane Protein, Palmitoylated (or MAGUK p55 subfamily member) proteins. The MPP/p55 subfamily of MAGUK (membrane-associated guanylate kinase) proteins includes at least eight vertebrate members (MPP1-7 and CASK), four Drosophila proteins (Stardust, Varicose, CASK and Skiff), and other similar proteins; they all contain one each of the core of three domains characteristic of MAGUK proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, most members except for MPP1 contain N-terminal L27 domains and some also contain a Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. CASK has an additional calmodulin-dependent kinase (CaMK)-like domain at the N-terminus. Members of this subfamily are scaffolding proteins that play important roles in regulating and establishing cell polarity, cell adhesion, and synaptic targeting and transmission, among others. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212797 cd11863 SH3_CACNB Src Homology 3 domain of Voltage-dependent L-type calcium channel subunit beta. Voltage-dependent calcium channels (Ca(V)s) are multi-protein complexes that regulate the entry of calcium into cells. They impact muscle contraction, neuronal migration, hormone and neurotransmitter release, and the activation of calcium-dependent signaling pathways. They are composed of four subunits: alpha1, alpha2delta, beta, and gamma. The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212798 cd11864 SH3_PEX13_eumet Src Homology 3 domain of eumetazoan Peroxisomal biogenesis factor 13. PEX13 is a peroxin and is required for protein import into the peroxisomal matrix and membrane. It is an integral membrane protein that is essential for the localization of PEX14 and the import of proteins containing the peroxisome matrix targeting signals, PTS1 and PTS2. Mutations of the PEX13 gene in humans lead to a wide range of peroxisome biogenesis disorders (PBDs), the most severe of which is known as Zellweger syndrome (ZS), a severe multisystem disorder characterized by hypotonia, psychomotor retardation, and neuronal migration defects. PEX13 contains two transmembrane regions and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212799 cd11865 SH3_Nbp2-like Src Homology 3 domain of Saccharomyces cerevisiae Nap1-binding protein 2 and similar fungal proteins. This subfamily includes Saccharomyces cerevisiae Nbp2 (Nucleosome assembly protein 1 (Nap1)-binding protein 2), Schizosaccharomyces pombe Skb5, and similar proteins. Nbp2 interacts with Nap1, which is essential for maintaining proper nucleosome structures in transcription and replication. It is also the binding partner of the yeast type II protein phosphatase Ptc1p and serves as a scaffolding protein that brings seven kinases in close contact to Ptc1p. Nbp2 plays a role many cell processes including organelle inheritance, mating hormone response, cell wall stress, mitotic cell growth at elevated temperatures, and high osmolarity. Skb5 interacts with the p21-activated kinase (PAK) homolog Shk1, which is critical for fission yeast cell viability. Skb5 activates Shk1 and plays a role in regulating cell morphology and growth under hypertonic conditions. Nbp2 and Skb5 contain an SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212800 cd11866 SH3_SKAP1-like Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1 and similar proteins. This subfamily is composed of SKAP1, SKAP2, and similar proteins. SKAP1 and SKAP2 are immune cell-specific adaptor proteins that play roles in T- and B-cell adhesion, respectively, and are thus important in the migration of T- and B-cells to sites of inflammation and for movement during T-cell conjugation with antigen-presenting cells. Both SKAP1 and SKAP2 bind to ADAP (adhesion and degranulation-promoting adaptor protein), among many other binding partners. They contain a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. The SH3 domain of SKAP1 is necessary for its ability to regulate T-cell conjugation with antigen-presenting cells and the formation of LFA-1 clusters. SKAP1 binds primarily to a proline-rich region of ADAP through its SH3 domain; its degradation is regulated by ADAP. A secondary interaction occurs via the ADAP SH3 domain and the RKxxYxxY motif in SKAP1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212801 cd11867 hSH3_ADAP Helically extended Src Homology 3 domain of Adhesion and Degranulation-promoting Adaptor Protein. ADAP, also called Fyn T-binding protein (FYB) or SLP-76-associated protein (SLAP), is expressed mainly in hematopoietic cells but not in B cells. It is required for the proliferation of mature T-cells and plays an important role in T-cell activation, TCR-induced integrin clustering, and T-cell adhesion. ADAP has been shown to bind many partners including SLP-76, Fyn, Src, SKAP1, SKAP2, dynein, Ena/VASP, Carma1, among others. It is connected to cytoskeleton via its binding to Ena and VASP, which impacts actin cytoskeletal remodeling upon TCR ligation. The SH3 domain of ADAP adopts an altered fold referred to as a helically extended SH3 (hSH3) domain characterized by clusters of positive charges. The hSH3 domain can no longer bind conventional proline-rich peptides, instead, it functions as a novel lipid interaction domain and can bind acidic lipids such as phosphatidylserine, phosphatidylinositol, phosphatidic acid, and polyphosphoinositides. 77 -212802 cd11869 SH3_p40phox Src Homology 3 domain of the p40phox subunit of NADPH oxidase. p40phox, also called Neutrophil cytosol factor 4 (NCF-4), is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) which plays a crucial role in the cellular response to bacterial infection. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p40phox positively regulates NADPH oxidase in both phosphatidylinositol-3-phosphate (PI3P)-dependent and PI3P-independent manner. It contains an N-terminal PX domain, a central SH3 domain, and a C-terminal PB1 domain that interacts with p67phox. The SH3 domain of p40phox binds to canonical polyproline and noncanonical motifs at the C-terminus of p47phox. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212803 cd11870 SH3_p67phox-like_C C-terminal Src Homology 3 domain of the p67phox subunit of NADPH oxidase and similar proteins. This subfamily is composed of p67phox, NADPH oxidase activator 1 (Noxa1), and similar proteins. p67phox, also called Neutrophil cytosol factor 2 (NCF-2), and Noxa1 are homologs and are the cytosolic subunits of the phagocytic (Nox2) and nonphagocytic (Nox1) NADPH oxidase complexes, respectively. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p67phox and Noxa1 play regulatory roles. p67phox contains N-terminal TPR, first SH3 (or N-terminal or central SH3), PB1, and C-terminal SH3 domains. Noxa1 has a similar domain architecture except it is lacking the N-terminal SH3 domain. The TPR domain of both binds activated GTP-bound Rac, while the C-terminal SH3 domain of p67phox and Noxa1 binds the polyproline motif found at the C-terminus of p47phox and Noxo1, respectively. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212804 cd11871 SH3_p67phox_N N-terminal (or first) Src Homology 3 domain of the p67phox subunit of NADPH oxidase. p67phox, also called Neutrophil cytosol factor 2 (NCF-2), is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) which plays a crucial role in the cellular response to bacterial infection. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p67phox plays a regulatory role and contains N-terminal TPR, first SH3 (or N-terminal or central SH3), PB1, and C-terminal SH3 domains. It binds, via its C-terminal SH3 domain, to a proline-rich region of p47phox and upon activation, this complex assembles with flavocytochrome b558, the Nox2-p22phox heterodimer. Concurrently, RacGTP translocates to the membrane and interacts with the TPR domain of p67phox, which leads to the activation of NADPH oxidase. The PB1 domain of p67phox binds to its partner PB1 domain in p40phox, and this facilitates the assembly of p47phox-p67phox at the membrane. The N-terminal SH3 domain increases the affinity of p67phox for the oxidase complex. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212805 cd11872 SH3_DOCK_AB Src Homology 3 domain of Class A and B Dedicator of Cytokinesis proteins. DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. They are divided into four classes (A-D) based on sequence similarity and domain architecture: class A includes Dock1, 2 and 5; class B includes Dock3 and 4; class C includes Dock6, 7, and 8; and class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. This subfamily includes only Class A and B DOCKs, which also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Class A/B DOCKs are mostly specific GEFs for Rac, except Dock4 which activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. The SH3 domain of class A/B DOCKs have been shown to bind Elmo, a scaffold protein that promotes GEF activity of DOCKs by releasing DHR-2 autoinhibition by the intramolecular SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212806 cd11873 SH3_CD2AP-like_1 First Src Homology 3 domain (SH3A) of CD2-associated protein and similar proteins. This subfamily is composed of the first SH3 domain (SH3A) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3A of both proteins bind to an atypical PXXXPR motif at the C-terminus of Cbl and the cytoplasmic domain of the cell adhesion protein CD2. CIN85 SH3A binds to internal proline-rich motifs within the proline-rich region; this intramolecular interaction serves as a regulatory mechanism to keep CIN85 in a closed conformation, preventing the recruitment of other proteins. CIN85 SH3A has also been shown to bind ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212807 cd11874 SH3_CD2AP-like_2 Second Src Homology 3 domain (SH3B) of CD2-associated protein and similar proteins. This subfamily is composed of the second SH3 domain (SH3B) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3B of both proteins have been shown to bind to Cbl. In the case of CD2AP, its SH3B binds to Cbl at a site distinct from the c-Cbl/SH3A binding site. The CIN85 SH3B also binds ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212808 cd11875 SH3_CD2AP-like_3 Third Src Homology 3 domain (SH3C) of CD2-associated protein and similar proteins. This subfamily is composed of the third SH3 domain (SH3C) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3C of both proteins have been shown to bind to ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212809 cd11876 SH3_MLK Src Homology 3 domain of Mixed Lineage Kinases. MLKs are Serine/Threonine Kinases (STKs), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. Mammals have four MLKs (MLK1-4), mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212810 cd11877 SH3_PIX Src Homology 3 domain of Pak Interactive eXchange factors. PIX proteins are Rho guanine nucleotide exchange factors (GEFs), which activate small GTPases by exchanging bound GDP for free GTP. They act as GEFs for both Cdc42 and Rac 1, and have been implicated in cell motility, adhesion, neurite outgrowth, and cell polarity. Vertebrates contain two proteins from the PIX subfamily, alpha-PIX and beta-PIX. Alpha-PIX, also called ARHGEF6, is localized in dendritic spines where it regulates spine morphogenesis. Mutations in the ARHGEF6 gene cause X-linked intellectual disability in humans. Beta-PIX play roles in regulating neuroendocrine exocytosis, focal adhesion maturation, cell migration, synaptic vesicle localization, and insulin secretion. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212811 cd11878 SH3_Bem1p_1 First Src Homology 3 domain of Bud emergence protein 1 and similar domains. Members of this subfamily bear similarity to Saccharomyces cerevisiae Bem1p, containing two Src Homology 3 (SH3) domains at the N-terminus, a central PX domain, and a C-terminal PB1 domain. Bem1p is a scaffolding protein that is critical for proper Cdc42p activation during bud formation in yeast. During budding and mating, Bem1p migrates to the plasma membrane where it can serve as an adaptor for Cdc42p and some other proteins. Bem1p also functions as an effector of the G1 cyclin Cln3p and the cyclin-dependent kinase Cdc28p in promoting vacuolar fusion. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 54 -212812 cd11879 SH3_Bem1p_2 Second Src Homology 3 domain of Bud emergence protein 1 and similar domains. Members of this subfamily bear similarity to Saccharomyces cerevisiae Bem1p, containing two Src Homology 3 (SH3) domains at the N-terminus, a central PX domain, and a C-terminal PB1 domain. Bem1p is a scaffolding protein that is critical for proper Cdc42p activation during bud formation in yeast. During budding and mating, Bem1p migrates to the plasma membrane where it can serve as an adaptor for Cdc42p and some other proteins. Bem1p also functions as an effector of the G1 cyclin Cln3p and the cyclin-dependent kinase Cdc28p in promoting vacuolar fusion. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 56 -212813 cd11880 SH3_Caskin Src Homology 3 domain of CASK interacting protein. Caskin proteins are multidomain adaptor proteins that contain six ankyrin repeats, a single SH3 domain, tandem sterile alpha motif (SAM) domains, and a long disordered proline-rich region. There are two Caskin proteins called Caskin1 and Caskin2. Caskin1 binds to the multidomain scaffolding protein CASK through the CaM domain in competition with Munc-interacting protein 1 (Mint1). CASK participates in one of two evolutionarily conserved tripartite complexes containing either Mint1 and Velis or Caskin1 and Velis. Caskin1 may play a role in infantile myoclonic epilepsy. There is not much known about Caskin2; despite sharing a domain architecture with Caskin1, Caskin2 does not bind CASK. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 61 -212814 cd11881 SH3_MYO7A Src Homology 3 domain of Myosin VIIa and similar proteins. Myo7A is an uncoventional myosin that is involved in organelle transport. It is required for sensory function in both Drosophila and mammals. Mutations in the Myo7A gene cause both syndromic deaf-blindness [Usher syndrome I (USH1)] and nonsyndromic (DFNB2 and DFNA11) deafness in humans. It contains an N-terminal motor domain, light chain-binding IQ motifs, a coiled-coil region for heavy chain dimerization, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 64 -212815 cd11882 SH3_GRAF-like Src Homology 3 domain of GTPase Regulator Associated with Focal adhesion kinase and similar proteins. This subfamily is composed of Rho GTPase activating proteins (GAPs) with similarity to GRAF. Members contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. Although vertebrates harbor four Rho GAPs in the GRAF subfamily including GRAF, GRAF2, GRAF3, and Oligophrenin-1 (OPHN1), only three are included in this model. OPHN1 contains the BAR, PH and GAP domains, but not the C-terminal SH3 domain. GRAF and GRAF2 show GAP activity towards RhoA and Cdc42. GRAF influences Rho-mediated cytoskeletal rearrangements and binds focal adhesion kinase. GRAF2 regulates caspase-activated p21-activated protein kinase-2. The SH3 domain of GRAF and GRAF2 binds PKNbeta, a target of the small GTPase Rho. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 54 -212816 cd11883 SH3_Sdc25 Src Homology 3 domain of Sdc25/Cdc25 guanine nucleotide exchange factors. This subfamily is composed of the Saccharomyces cerevisiae guanine nucleotide exchange factors (GEFs) Sdc25 and Cdc25, and similar proteins. These GEFs regulate Ras by stimulating the GDP/GTP exchange on Ras. Cdc25 is involved in the Ras/PKA pathway that plays an important role in the regulation of metabolism, stress responses, and proliferation, depending on available nutrients and conditions. Proteins in this subfamily contain an N-terminal SH3 domain as well as REM (Ras exchanger motif) and RasGEF domains at the C-terminus. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 55 -212817 cd11884 SH3_MYO15 Src Homology 3 domain of Myosin XV. This subfamily is composed of proteins with similarity to Myosin XVa. Myosin XVa is an unconventional myosin that is critical for the normal growth of mechanosensory stereocilia of inner ear hair cells. Mutations in the myosin XVa gene are associated with nonsyndromic hearing loss. Myosin XVa contains a unique N-terminal extension followed by a motor domain, light chain-binding IQ motifs, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain, and a PDZ domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 56 -212818 cd11885 SH3_SH3TC Src Homology 3 domain of SH3 domain and tetratricopeptide repeat-containing (SH3TC) proteins and similar domains. This subfamily is composed of vertebrate SH3TC proteins and hypothetical fungal proteins containing BAR and SH3 domains. Mammals contain two SH3TC proteins, SH3TC1 and SH3TC2. The function of SH3TC1 is unknown. SH3TC2 is localized in Schwann cells in the peripheral nervous system, where it interacts with Rab11 and plays a role in peripheral nerve myelination. Mutations in SH3TC2 are associated with Charcot-Marie-Tooth disease type 4C, a severe hereditary peripheral neuropathy with symptoms that include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 55 -212819 cd11886 SH3_BOI Src Homology 3 domain of fungal BOI-like proteins. This subfamily includes the Saccharomyces cerevisiae proteins BOI1 and BOI2, and similar proteins. They contain an N-terminal SH3 domain, a Sterile alpha motif (SAM), and a Pleckstrin homology (PH) domain at the C-terminus. BOI1 and BOI2 interact with the SH3 domain of Bem1p, a protein involved in bud formation. They promote polarized cell growth and participates in the NoCut signaling pathway, which is involved in the control of cytokinesis. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 55 -212820 cd11887 SH3_Bbc1 Src Homology 3 domain of Bbc1 and similar domains. This subfamily is composed of Saccharomyces cerevisiae Bbc1p, also called Mti1p (Myosin tail region-interacting protein), and similar proteins. Bbc1p interacts with and regulates type I myosins in yeast, Myo3p and Myo5p, which are involved in actin cytoskeletal reorganization. It also binds and inhibits Las17, a WASp family protein that functions as an activator of the Arp2/3 complex. Bbc1p contains an N-terminal SH3 domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 60 -212821 cd11888 SH3_ARHGAP9_like Src Homology 3 domain of Rho GTPase-activating protein 9 and similar proteins. This subfamily is composed of Rho GTPase-activating proteins including mammalian ARHGAP9, and vertebrate ARHGAPs 12 and 27. RhoGAPs (or ARHGAPs) bind to Rho proteins and enhance the hydrolysis rates of bound GTP. ARHGAP9 functions as a GAP for Rac and Cdc42, but not for RhoA. It negatively regulates cell migration and adhesion. It also acts as a docking protein for the MAP kinases Erk2 and p38alpha, and may facilitate cross-talk between the Rho GTPase and MAPK pathways to control actin remodeling. ARHGAP27, also called CAMGAP1, shows GAP activity towards Rac1 and Cdc42. It binds the adaptor protein CIN85 and may play a role in clathrin-mediated endocytosis. ARHGAP12 has been shown to display GAP activity towards Rac1. It plays a role in regulating HFG-driven cell growth and invasiveness. ARHGAPs in this subfamily contain SH3, WW, Pleckstin homology (PH), and RhoGAP domains. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 54 -212822 cd11889 SH3_Cyk3p-like Src Homology 3 domain of Cytokinesis protein 3 and similar proteins. Cytokinesis protein 3 (Cyk3 or Cyk3p) is a component of the actomyosin ring independent cytokinesis pathway in yeast. It interacts with Inn1 and facilitates its recruitment to the bud neck, thereby promoting cytokinesis. Cyk3p contains an N-terminal SH3 domain and a C-terminal transglutaminase-like domain. The Cyk3p SH3 domain binds to the C-terminal proline-rich region of Inn1. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 53 -212823 cd11890 MIA Melanoma Inhibitory Activity protein. MIA is a single domain protein that adopts a Src Homology 3 (SH3) domain-like fold; it contains an additional antiparallel beta sheet and two disulfide bonds compared to classical SH3 domains. MIA is secreted from malignant melanoma cells and it plays an important role in melanoma development and invasion. MIA is expressed by chondrocytes in normal tissues and may be important in the cartilage cell phenotype. Unlike classical SH3 domains, MIA does not bind proline-rich ligands. It binds peptide ligands with sequence similarity to type III human fibronectin repeats. 98 -212824 cd11891 MIAL Melanoma Inhibitory Activity-Like protein. MIAL is specifically expressed in the cochlea and the vestibule of the inner ear and may contribute to inner ear dysfunction in humans. MIAL is a member of the recently identified family that also includes MIA, MIA2, and MIA3 (also called TANGO); MIA is the most studied member of the family. MIA is a single domain protein that adopts a Src Homology 3 (SH3) domain-like fold; it contains an additional antiparallel beta sheet and two disulfide bonds compared to classical SH3 domains. MIA is secreted from malignant melanoma cells and it plays an important role in melanoma development and invasion. MIA is expressed by chondrocytes in normal tissues and may be important in the cartilage cell phenotype. Unlike classical SH3 domains, MIA does not bind proline-rich ligands. 83 -212825 cd11892 SH3_MIA2 Src Homology 3 domain of Melanoma Inhibitory Activity 2 protein. MIA2 is expressed specifically in hepatocytes and its expression is controlled by hepatocyte nuclear factor 1 binding sites in the MIA2 promoter. It inhibits the growth and invasion of hepatocellular carcinomas (HCC) and may act as a tumor suppressor. A mutation in MIA2 in mice resulted in reduced cholesterol and triglycerides. Since MIA2 localizes to ER exit sites, it may function as an ER-to-Golgi trafficking protein that regulates lipid metabolism. MIA2 contains an N-terminal SH3-like domain, similar to MIA. It is a member of the recently identified family that also includes MIA, MIAL, and MIA3 (also called TANGO). MIA is a single domain protein that adopts a SH3 domain-like fold; it contains an additional antiparallel beta sheet and two disulfide bonds compared to classical SH3 domains. Unlike classical SH3 domains, MIA does not bind proline-rich ligands. 73 -212826 cd11893 SH3_MIA3 Src Homology 3 domain of Melanoma Inhibitory Activity 3 protein. MIA3, also called TANGO or TANGO1, acts as a tumor suppressor of malignant melanoma. It is downregulated or lost in melanoma cells lines. Unlike other MIA family members, MIA3 is widely expressed except in hematopoietic cells. MIA3 is an ER resident transmembrane protein that is required for the loading of collagen VII into transport vesicles. SNPs in the MIA3 gene have been associated with coronary arterial disease and myocardial infarction. MIA3 contains an N-terminal SH3-like domain, similar to MIA. It is a member of the recently identified family that also includes MIA, MIAL, and MIA2. MIA is a single domain protein that adopts a SH3 domain-like fold; it contains an additional antiparallel beta sheet and two disulfide bonds compared to classical SH3 domains. Unlike classical SH3 domains, MIA does not bind proline-rich ligands. 73 -212827 cd11894 SH3_FCHSD2_2 Second Src Homology 3 domain of FCH and double SH3 domains protein 2. FCHSD2 has a domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. It has only been characterized in silico and its function is unknown. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212828 cd11895 SH3_FCHSD1_2 Second Src Homology 3 domain of FCH and double SH3 domains protein 1. FCHSD1 has a domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. It has only been characterized in silico and its function is unknown. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212829 cd11896 SH3_SNX33 Src Homology 3 domain of Sorting Nexin 33. SNX33 interacts with Wiskott-Aldrich syndrome protein (WASP) and plays a role in the maintenance of cell shape and cell cycle progression. It modulates the shedding and endocytosis of cellular prion protein (PrP(c)) and amyloid precursor protein (APP). SNXs are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNX33 also contains BAR and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212830 cd11897 SH3_SNX18 Src Homology 3 domain of Sorting nexin 18. SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. It binds FIP5 and is required for apical lumen formation. It may also play a role in axonal elongation. SNXs are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNX18 also contains BAR and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212831 cd11898 SH3_SNX9 Src Homology 3 domain of Sorting nexin 9. Sorting nexin 9 (SNX9), also known as SH3PX1, is a cytosolic protein that interacts with proteins associated with clathrin-coated pits such as Cdc-42-associated tyrosine kinase 2 (ACK2). It binds class I polyproline sequences found in dynamin 1/2 and the WASP/N-WASP actin regulators. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis. Its array of interacting partners suggests that SNX9 functions at the interface between endocytosis and actin cytoskeletal organization. SNXs are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNX9 also contains BAR and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212832 cd11899 SH3_Nck2_1 First Src Homology 3 domain of Nck2 adaptor protein. Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds neuronal signaling proteins such as ephrinB and Disabled-1 (Dab-1) exclusively. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The first SH3 domain of Nck2 binds the PxxDY sequence in the CD3e cytoplasmic tail; this binding inhibits phosphorylation by Src kinases, resulting in the downregulation of TCR surface expression. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212833 cd11900 SH3_Nck1_1 First Src Homology 3 domain of Nck1 adaptor protein. Nck1 (also called Nckalpha) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds and activates RasGAP, resulting in the downregulation of Ras. It is also involved in the signaling of endothilin-mediated inhibition of cell migration. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The first SH3 domain of Nck1 binds the PxxDY sequence in the CD3e cytoplasmic tail; this binding inhibits phosphorylation by Src kinases, resulting in the downregulation of TCR surface expression. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212834 cd11901 SH3_Nck1_2 Second Src Homology 3 domain of Nck1 adaptor protein. Nck1 (also called Nckalpha) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds and activates RasGAP, resulting in the downregulation of Ras. It is also involved in the signaling of endothilin-mediated inhibition of cell migration. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The second SH3 domain of Nck appears to prefer ligands containing the APxxPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212835 cd11902 SH3_Nck2_2 Second Src Homology 3 domain of Nck2 adaptor protein. Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds neuronal signaling proteins such as ephrinB and Disabled-1 (Dab-1) exclusively. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The second SH3 domain of Nck appears to prefer ligands containing the APxxPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212836 cd11903 SH3_Nck2_3 Third Src Homology 3 domain of Nck2 adaptor protein. Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds neuronal signaling proteins such as ephrinB and Disabled-1 (Dab-1) exclusively. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The third SH3 domain of Nck appears to prefer ligands with a PxAPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212837 cd11904 SH3_Nck1_3 Third Src Homology 3 domain of Nck1 adaptor protein. Nck1 (also called Nckalpha) plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling. It binds and activates RasGAP, resulting in the downregulation of Ras. It is also involved in the signaling of endothilin-mediated inhibition of cell migration. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2, which show partly overlapping functions but also bind distinct targets. The third SH3 domain of Nck appears to prefer ligands with a PxAPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212838 cd11905 SH3_Tec Src Homology 3 domain of Tec (Tyrosine kinase expressed in hepatocellular carcinoma). Tec is a cytoplasmic (or nonreceptor) tyr kinase containing Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. It also contains an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation, and the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. It is more widely-expressed than other Tec subfamily kinases. Tec is found in endothelial cells, both B- and T-cells, and a variety of myeloid cells including mast cells, erythroid cells, platelets, macrophages and neutrophils. Tec is a key component of T-cell receptor (TCR) signaling, and is important in TCR-stimulated proliferation, IL-2 production and phospholipase C-gamma1 activation. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212839 cd11906 SH3_BTK Src Homology 3 domain of Bruton's tyrosine kinase. BTK is a cytoplasmic (or nonreceptor) tyr kinase containing Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. It also contains an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation, and the Tec homology (TH) domain with proline-rich and zinc-binding regions. Btk is expressed in B-cells, and a variety of myeloid cells including mast cells, platelets, neutrophils, and dendrictic cells. It interacts with a variety of partners, from cytosolic proteins to nuclear transcription factors, suggesting a diversity of functions. Stimulation of a diverse array of cell surface receptors, including antigen engagement of the B-cell receptor (BCR), leads to PH-mediated membrane translocation of Btk and subsequent phosphorylation by Src kinase and activation. Btk plays an important role in the life cycle of B-cells including their development, differentiation, proliferation, survival, and apoptosis. Mutations in Btk cause the primary immunodeficiency disease, X-linked agammaglobulinaemia (XLA) in humans. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212840 cd11907 SH3_TXK Src Homology 3 domain of TXK, also called Resting lymphocyte kinase (Rlk). TXK is a cytoplasmic (or nonreceptor) tyr kinase containing Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. It also contains an N-terminal cysteine-rich region. Rlk is expressed in T-cells and mast cell lines, and is a key component of T-cell receptor (TCR) signaling. It is important in TCR-stimulated proliferation, IL-2 production and phospholipase C-gamma1 activation. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212841 cd11908 SH3_ITK Src Homology 3 domain of Interleukin-2-inducible T-cell Kinase. ITK (also known as Tsk or Emt) is a cytoplasmic (or nonreceptor) tyr kinase containing Src homology protein interaction domains (SH3, SH2) N-terminal to the catalytic tyr kinase domain. It also contains an N-terminal pleckstrin homology (PH) domain, which binds the products of PI3K and allows membrane recruitment and activation, and the Tec homology (TH) domain, which contains proline-rich and zinc-binding regions. ITK is expressed in T-cells and mast cells, and is important in their development and differentiation. Of the three Tec kinases expressed in T-cells, ITK plays the predominant role in T-cell receptor (TCR) signaling. It is activated by phosphorylation upon TCR crosslinking and is involved in the pathway resulting in phospholipase C-gamma1 activation and actin polymerization. It also plays a role in the downstream signaling of the T-cell costimulatory receptor CD28, the T-cell surface receptor CD2, and the chemokine receptor CXCR4. In addition, ITK is crucial for the development of T-helper(Th)2 effector responses. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212842 cd11909 SH3_PI3K_p85beta Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol 3-kinases. Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85beta binds CD28 and may be involved in the activation and differentiation of antigen-stimulated T cells. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 74 -212843 cd11910 SH3_PI3K_p85alpha Src Homology 3 domain of the p85alpha regulatory subunit of Class IA Phosphatidylinositol 3-kinases. Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85alpha interacts with activated FGFR3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 75 -212844 cd11911 SH3_CIP4-like Src Homology 3 domain of Cdc42-Interacting Protein 4. This subfamily is composed of Cdc42-Interacting Protein 4 (CIP4), Formin Binding Protein 17 (FBP17), FormiN Binding Protein 1-Like (FNBP1L), and similar proteins. CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. CIP4 and FBP17 bind to the Fas ligand and may be implicated in the inflammatory response. CIP4 may also play a role in phagocytosis. It functions downstream of Cdc42 in PDGF-dependent actin reorganization and cell migration, and also regulates the activity of PDGFRbeta. It uses Src as a substrate in regulating the invasiveness of breast tumor cells. CIP4 may also play a role in the pathogenesis of Huntington's disease. Members of this subfamily typically contain an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain, a central Cdc42-binding HR1 domain, and a C-terminal SH3 domain. The SH3 domain of CIP4 associates with Gapex-5, a Rab31 GEF. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212845 cd11912 SH3_Bzz1_1 First Src Homology 3 domain of Bzz1 and similar domains. Bzz1 (or Bzz1p) is a WASP/Las17-interacting protein involved in endocytosis and trafficking to the vacuole. It physically interacts with type I myosins and functions in the early steps of endocytosis. Together with other proteins, it induces membrane scission in yeast. Bzz1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. This model represents the first C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212846 cd11913 SH3_BAIAP2L1 Src Homology 3 domain of Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 1, also called Insulin Receptor Tyrosine Kinase Substrate (IRTKS). BAIAP2L1 or IRTKS is widely expressed, serves as a substrate for the insulin receptor, and binds the small GTPase Rac. It plays a role in regulating the actin cytoskeleton and colocalizes with F-actin, cortactin, VASP, and vinculin. BAIAP2L1 expression leads to the formation of short actin bundles, distinct from filopodia-like protrusions induced by the expression of the related protein IRSp53. IRTKS mediates the recruitment of effector proteins Tir and EspFu, which regulate host cell actin reorganization, to bacterial attachment sites. It contains an N-terminal IMD or Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. The SH3 domain of IRTKS has been shown to bind the proline-rich C-terminus of EspFu. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212847 cd11914 SH3_BAIAP2L2 Src Homology 3 domain of Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2-Like 2. BAIAP2L2 co-localizes with clathrin plaques but its function has not been determined. It contains an N-terminal IMD or Inverse-Bin/Amphiphysin/Rvs (I-BAR) domain, an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. The related proteins, BAIAP2L1 and IRSp53, function as regulators of membrane dynamics and the actin cytoskeleton. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212848 cd11915 SH3_Irsp53 Src Homology 3 domain of Insulin Receptor tyrosine kinase Substrate p53. IRSp53 is also known as BAIAP2 (Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2). It is a scaffolding protein that takes part in many signaling pathways including Cdc42-induced filopodia formation, Rac-mediated lamellipodia extension, and spine morphogenesis. IRSp53 exists as multiple splicing variants that differ mainly at the C-termini. One variant (T-form) is expressed exclusively in human breast cancer cells. The gene encoding IRSp53 is a putative susceptibility gene for Gilles de la Tourette syndrome. IRSp53 can also mediate the recruitment of effector proteins Tir and EspFu, which regulate host cell actin reorganization, to bacterial attachment sites. It contains an N-terminal IMD, a CRIB (Cdc42 and Rac interactive binding motif), an SH3 domain, and a WASP homology 2 (WH2) actin-binding motif at the C-terminus. The SH3 domain of IRSp53 has been shown to bind the proline-rich C-terminus of EspFu. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212849 cd11916 SH3_Sorbs1_3 Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 1 (Sorbs1), also called ponsin. Sorbs1 is also called ponsin, SH3P12, or CAP (c-Cbl associated protein). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It binds Cbl and plays a major role in regulating the insulin signaling pathway by enhancing insulin-induced phosphorylation of Cbl. Sorbs1, like vinexin, localizes at cell-ECM and cell-cell adhesion sites where it binds vinculin, paxillin, and afadin. It may function in the control of cell motility. Other interaction partners of Sorbs1 include c-Abl, Sos, flotillin, Grb4, ataxin-7, filamin C, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212850 cd11917 SH3_Sorbs2_3 Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 2 (Sorbs2), also called Arg-binding protein 2 (ArgBP2). Sorbs2 or ArgBP2 is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It regulates actin-dependent processes including cell adhesion, morphology, and migration. It is expressed in many tissues and is abundant in the heart. Like vinexin, it is found in focal adhesion where it interacts with vinculin and afadin. It also localizes in epithelial cell stress fibers and in cardiac muscle cell Z-discs. Sorbs2 has been implicated to play roles in the signaling of c-Arg, Akt, and Pyk2. Other interaction partners of Sorbs2 include c-Abl, flotillin, spectrin, dynamin 1/2, synaptojanin, PTP-PEST, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212851 cd11918 SH3_Vinexin_3 Third (or C-terminal) Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain containing 3 (Sorbs3). Vinexin is also called Sorbs3, SH3P3, and SH3-containing adapter molecule 1 (SCAM-1). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. Vinexin was first identified as a vinculin binding protein; it is co-localized with vinculin at cell-ECM and cell-cell adhesion sites. There are several splice variants of vinexin: alpha, which contains the SoHo and three SH3 domains and displays tissue-specific expression; and beta, which contains only the three SH3 domains and is widely expressed. Vinexin alpha stimulates the accumulation of F-actin at focal contact sites. Vinexin also promotes keratinocyte migration and wound healing. The SH3 domains of vinexin have been reported to bind a number of ligands including vinculin, WAVE2, DLG5, Abl, and Cbl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212852 cd11919 SH3_Sorbs1_1 First Src Homology 3 domain of Sorbin and SH3 domain containing 1 (Sorbs1), also called ponsin. Sorbs1 is also called ponsin, SH3P12, or CAP (c-Cbl associated protein). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It binds Cbl and plays a major role in regulating the insulin signaling pathway by enhancing insulin-induced phosphorylation of Cbl. Sorbs1, like vinexin, localizes at cell-ECM and cell-cell adhesion sites where it binds vinculin, paxillin, and afadin. It may function in the control of cell motility. Other interaction partners of Sorbs1 include c-Abl, Sos, flotillin, Grb4, ataxin-7, filamin C, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212853 cd11920 SH3_Sorbs2_1 First Src Homology 3 domain of Sorbin and SH3 domain containing 2 (Sorbs2), also called Arg-binding protein 2 (ArgBP2). Sorbs2 or ArgBP2 is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It regulates actin-dependent processes including cell adhesion, morphology, and migration. It is expressed in many tissues and is abundant in the heart. Like vinexin, it is found in focal adhesion where it interacts with vinculin and afadin. It also localizes in epithelial cell stress fibers and in cardiac muscle cell Z-discs. Sorbs2 has been implicated to play roles in the signaling of c-Arg, Akt, and Pyk2. Other interaction partners of Sorbs2 include c-Abl, flotillin, spectrin, dynamin 1/2, synaptojanin, PTP-PEST, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212854 cd11921 SH3_Vinexin_1 First Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain containing 3 (Sorbs3). Vinexin is also called Sorbs3, SH3P3, and SH3-containing adapter molecule 1 (SCAM-1). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. Vinexin was first identified as a vinculin binding protein; it is co-localized with vinculin at cell-ECM and cell-cell adhesion sites. There are several splice variants of vinexin: alpha, which contains the SoHo and three SH3 domains and displays tissue-specific expression; and beta, which contains only the three SH3 domains and is widely expressed. Vinexin alpha stimulates the accumulation of F-actin at focal contact sites. Vinexin also promotes keratinocyte migration and wound healing. The SH3 domains of vinexin have been reported to bind a number of ligands including vinculin, WAVE2, DLG5, Abl, and Cbl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212855 cd11922 SH3_Sorbs1_2 Second Src Homology 3 domain of Sorbin and SH3 domain containing 1 (Sorbs1), also called ponsin. Sorbs1 is also called ponsin, SH3P12, or CAP (c-Cbl associated protein). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It binds Cbl and plays a major role in regulating the insulin signaling pathway by enhancing insulin-induced phosphorylation of Cbl. Sorbs1, like vinexin, localizes at cell-ECM and cell-cell adhesion sites where it binds vinculin, paxillin, and afadin. It may function in the control of cell motility. Other interaction partners of Sorbs1 include c-Abl, Sos, flotillin, Grb4, ataxin-7, filamin C, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212856 cd11923 SH3_Sorbs2_2 Second Src Homology 3 domain of Sorbin and SH3 domain containing 2 (Sorbs2), also called Arg-binding protein 2 (ArgBP2). Sorbs2 or ArgBP2 is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It regulates actin-dependent processes including cell adhesion, morphology, and migration. It is expressed in many tissues and is abundant in the heart. Like vinexin, it is found in focal adhesion where it interacts with vinculin and afadin. It also localizes in epithelial cell stress fibers and in cardiac muscle cell Z-discs. Sorbs2 has been implicated to play roles in the signaling of c-Arg, Akt, and Pyk2. Other interaction partners of Sorbs2 include c-Abl, flotillin, spectrin, dynamin 1/2, synaptojanin, PTP-PEST, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212857 cd11924 SH3_Vinexin_2 Second Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain containing 3 (Sorbs3). Vinexin is also called Sorbs3, SH3P3, and SH3-containing adapter molecule 1 (SCAM-1). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. Vinexin was first identified as a vinculin binding protein; it is co-localized with vinculin at cell-ECM and cell-cell adhesion sites. There are several splice variants of vinexin: alpha, which contains the SoHo and three SH3 domains and displays tissue-specific expression; and beta, which contains only the three SH3 domains and is widely expressed. Vinexin alpha stimulates the accumulation of F-actin at focal contact sites. Vinexin also promotes keratinocyte migration and wound healing. The SH3 domains of vinexin have been reported to bind a number of ligands including vinculin, WAVE2, DLG5, Abl, and Cbl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212858 cd11925 SH3_SH3RF3_3 Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase. SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212859 cd11926 SH3_SH3RF1_3 Third Src Homology 3 domain of SH3 domain containing ring finger 1, an E3 ubiquitin-protein ligase. SH3RF1 is also called POSH (Plenty of SH3s) or SH3MD2 (SH3 multiple domains protein 2). It is a scaffold protein that acts as an E3 ubiquitin-protein ligase. It plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF1 also enhances the ubiquitination of ROMK1 potassium channel resulting in its increased endocytosis. It contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212860 cd11927 SH3_SH3RF1_1 First Src Homology 3 domain of SH3 domain containing ring finger protein 1, an E3 ubiquitin-protein ligase. SH3RF1 is also called POSH (Plenty of SH3s) or SH3MD2 (SH3 multiple domains protein 2). It is a scaffold protein that acts as an E3 ubiquitin-protein ligase. It plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF1 also enhances the ubiquitination of ROMK1 potassium channel resulting in its increased endocytosis. It contains an N-terminal RING finger domain and four SH3 domains. This model represents the first SH3 domain, located at the N-terminal half, of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212861 cd11928 SH3_SH3RF3_1 First Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase. SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the first SH3 domain, located at the N-terminal half, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212862 cd11929 SH3_SH3RF2_1 First Src Homology 3 domain of SH3 domain containing ring finger 2. SH3RF2 is also called POSHER (POSH-eliminating RING protein) or HEPP1 (heart protein phosphatase 1-binding protein). It acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. It may also play a role in cardiac functions together with protein phosphatase 1. SH3RF2 contains an N-terminal RING finger domain and three SH3 domains. This model represents the first SH3 domain, located at the N-terminal half, of SH3RF2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212863 cd11930 SH3_SH3RF1_2 Second Src Homology 3 domain of SH3 domain containing ring finger protein 1, an E3 ubiquitin-protein ligase. SH3RF1 is also called POSH (Plenty of SH3s) or SH3MD2 (SH3 multiple domains protein 2). It is a scaffold protein that acts as an E3 ubiquitin-protein ligase. It plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF1 also enhances the ubiquitination of ROMK1 potassium channel resulting in its increased endocytosis. It contains an N-terminal RING finger domain and four SH3 domains. This model represents the second SH3 domain, located C-terminal of the first SH3 domain at the N-terminal half, of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212864 cd11931 SH3_SH3RF3_2 Second Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase. SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the second SH3 domain, located C-terminal of the first SH3 domain at the N-terminal half, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212865 cd11932 SH3_SH3RF2_2 Second Src Homology 3 domain of SH3 domain containing ring finger 2. SH3RF2 is also called POSHER (POSH-eliminating RING protein) or HEPP1 (heart protein phosphatase 1-binding protein). It acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. It may also play a role in cardiac functions together with protein phosphatase 1. SH3RF2 contains an N-terminal RING finger domain and three SH3 domains. This model represents the second SH3 domain, located C-terminal of the first SH3 domain at the N-terminal half, of SH3RF2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212866 cd11933 SH3_Nebulin_C C-terminal Src Homology 3 domain of Nebulin. Nebulin is a giant filamentous protein (600-900 kD) that is expressed abundantly in skeletal muscle. It binds to actin thin filaments and regulates its assembly and function. Nebulin was thought to be part of a molecular ruler complex that is critical in determining the lengths of actin thin filaments in skeletal muscle since its length, which varies due to alternative splicing, correlates with the length of thin filaments in various muscle types. Recent studies indicate that nebulin regulates thin filament length by stabilizing the filaments and preventing depolymerization. Mutations in nebulin can cause nemaline myopathy, characterized by muscle weakness which can be severe and can lead to neonatal lethality. Nebulin contains an N-terminal LIM domain, many nebulin repeats/super repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212867 cd11934 SH3_Lasp1_C C-terminal Src Homology 3 domain of LIM and SH3 domain protein 1. Lasp1 is a cytoplasmic protein that binds focal adhesion proteins and is involved in cell signaling, migration, and proliferation. It is overexpressed in several cancer cells including breast, ovarian, bladder, and liver. In cancer cells, it can be found in the nucleus; its degree of nuclear localization correlates with tumor size and poor prognosis. Lasp1 is a 36kD protein containing an N-terminal LIM domain, two nebulin repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212868 cd11935 SH3_Nebulette_C C-terminal Src Homology 3 domain of Nebulette and LIM-nebulette (or Lasp2). Nebulette is a cardiac-specific protein that localizes to the Z-disc. It interacts with tropomyosin and is important in stabilizing actin thin filaments in cardiac muscles. Polymorphisms in the nebulette gene are associated with dilated cardiomyopathy, with some mutations resulting in severe heart failure. Nebulette is a 107kD protein that contains an N-terminal acidic region, multiple nebulin repeats, and a C-terminal SH3 domain. LIM-nebulette, also called Lasp2 (LIM and SH3 domain protein 2), is an alternatively spliced variant of nebulette. Although it shares a gene with nebulette, Lasp2 is not transcribed from a muscle-specific promoter, giving rise to its multiple tissue expression pattern with highest amounts in the brain. It can crosslink actin filaments and it affects cell spreading. Lasp2 is a 34kD protein containing an N-terminal LIM domain, three nebulin repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212869 cd11936 SH3_UBASH3B Src homology 3 domain of Ubiquitin-associated and SH3 domain-containing protein B. UBASH3B, also called Suppressor of T cell receptor Signaling (STS)-1 or T cell Ubiquitin LigAnd (TULA)-2 is an active phosphatase that is expressed ubiquitously. The phosphatase activity of UBASH3B is essential for its roles in the suppression of TCR signaling and the regulation of EGFR. It also interacts with Syk and functions as a negative regulator of platelet glycoprotein VI signaling. TULA proteins contain an N-terminal UBA domain, a central SH3 domain, and a C-terminal histidine phosphatase domain. They bind c-Cbl through the SH3 domain and to ubiquitin via UBA. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212870 cd11937 SH3_UBASH3A Src homology 3 domain of Ubiquitin-associated and SH3 domain-containing protein A. UBASH3A is also called Cbl-Interacting Protein 4 (CLIP4), T cell Ubiquitin LigAnd (TULA), or T cell receptor Signaling (STS)-2. It is only found in lymphoid cells and exhibits weak phosphatase activity. UBASH3A facilitates T cell-induced apoptosis through interaction with the apoptosis-inducing factor AIF. It is involved in regulating the level of phosphorylation of the zeta-associated protein (ZAP)-70 tyrosine kinase. TULA proteins contain an N-terminal UBA domain, a central SH3 domain, and a C-terminal histidine phosphatase domain. They bind c-Cbl through the SH3 domain and to ubiquitin via UBA. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 60 -212871 cd11938 SH3_ARHGEF16_26 Src homology 3 domain of the Rho guanine nucleotide exchange factors ARHGEF16 and ARHGEF26. ARHGEF16, also called ephexin-4, acts as a GEF for RhoG, activating it by exchanging bound GDP for free GTP. RhoG is a small GTPase that is a crucial regulator of Rac in migrating cells. ARHGEF16 interacts directly with the ephrin receptor EphA2 and mediates cell migration and invasion in breast cancer cells by activating RhoG. ARHGEF26, also called SGEF (SH3 domain-containing guanine exchange factor), also activates RhoG. It is highly expressed in liver and may play a role in regulating membrane dynamics. ARHGEF16 and ARHGEF26 contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and SH3 domains. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212872 cd11939 SH3_ephexin1 Src homology 3 domain of the Rho guanine nucleotide exchange factor, ephexin-1 (also called NGEF or ARHGEF27). Ephexin-1, also called NGEF (neuronal GEF) or ARHGEF27, activates RhoA, Tac1, and Cdc42 by exchanging bound GDP for free GTP. It is expressed mainly in the brain in a region associated with movement control. It regulates the stability of postsynaptic acetylcholine receptor (AChR) clusters and thus, plays a critical role in the maturation and neurotransmission of neuromuscular junctions. Ephexin-1 directly interacts with the ephrin receptor EphA4 and their coexpression enhances the ability of ephexin-1 to activate RhoA. It is required for normal axon growth and EphA-induced growth cone collapse. Ephexin-1 contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and SH3 domains. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212873 cd11940 SH3_ARHGEF5_19 Src homology 3 domain of the Rho guanine nucleotide exchange factors ARHGEF5 and ARHGEF19. ARHGEF5, also called ephexin-3 or TIM (Transforming immortalized mammary oncogene), is a potent activator of RhoA and it plays roles in regulating cell shape, adhesion, and migration. It binds to the SH3 domain of Src and is involved in regulating Src-induced podosome formation. ARHGEF19, also called ephexin-2 or WGEF (weak-similarity GEF), is highly expressed in the intestine, liver, heart and kidney. It activates RhoA, Cdc42, and Rac 1, and has been shown to activate RhoA in the Wnt-PCP (planar cell polarity) pathway. It is involved in the regulation of cell polarity and cytoskeletal reorganization. ARHGEF5 and ARHGEF19 contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and SH3 domains. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212874 cd11941 SH3_ARHGEF37_C2 Second C-terminal Src homology 3 domain of Rho guanine nucleotide exchange factor 37. ARHGEF37 contains a RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. Its specific function is unknown. Its domain architecture is similar to the C-terminal half of DNMBP or Tuba, a cdc42-specific GEF that provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics, and plays an important role in regulating cell junction configuration. GEFs activate small GTPases by exchanging bound GDP for free GTP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212875 cd11942 SH3_JIP2 Src homology 3 domain of JNK-interacting protein 2. JNK-interacting protein 2 (JIP2) is also called Mitogen-activated protein kinase 8-interacting protein 2 (MAPK8IP2) or Islet-brain-2 (IB2). It is widely expressed in the brain, where it forms complexes with fibroblast growth factor homologous factors (FHFs), which facilitates activation of the p38delta MAPK. JIP2 is enriched in postsynaptic densities and may play a role in motor and cognitive function. In addition to a JNK binding domain, JIP2 also contains SH3 and Phosphotyrosine-binding (PTB) domains. The SH3 domain of the related protein JIP1 homodimerizes at the interface usually involved in proline-rich ligand recognition, despite the lack of this motif in the domain itself. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212876 cd11943 SH3_JIP1 Src homology 3 domain of JNK-interacting protein 1. JNK-interacting protein 1 (JIP1) is also called Islet-brain 1 (IB1) or Mitogen-activated protein kinase 8-interacting protein 1 (MAPK8IP1). It is highly expressed in neurons, where it functions as an adaptor linking motor to cargo during axonal transport. It also affects microtubule dynamics in neurons. JIP1 is also found in pancreatic beta-cells, where it is involved in regulating insulin secretion. In addition to a JNK binding domain, JIP1 also contains SH3 and Phosphotyrosine-binding (PTB) domains. Its SH3 domain homodimerizes at the interface usually involved in proline-rich ligand recognition, despite the lack of this motif in the domain itself. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212877 cd11944 SH3_Endophilin_B2 Src homology 3 domain of Endophilin-B2. Endophilin-B2, also called SH3GLB2 (SH3-domain GRB2-like endophilin B2), is a cytoplasmic protein that interacts with the apoptosis inducer Bax. It is overexpressed in prostate cancer metastasis and has been identified as a cancer antigen with potential utility in immunotherapy. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. They contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. Endophilin-B2 forms homo- and heterodimers (with endophilin-B1) through its BAR domain. The related protein endophilin-B1 interacts with amphiphysin 1 and dynamin 1 through its SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212878 cd11945 SH3_Endophilin_B1 Src homology 3 domain of Endophilin-B1. Endophilin-B1, also called Bax-interacting factor 1 (Bif-1) or SH3GLB1 (SH3-domain GRB2-like endophilin B1), is localized mainly to the Golgi apparatus. It is involved in the regulation of many biological events including autophagy, tumorigenesis, nerve growth factor (NGF) trafficking, neurite outgrowth, mitochondrial outer membrane dynamics, and cell death. Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. They contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. Endophilin-B1 forms homo- and heterodimers (with endophilin-B2) through its BAR domain. It interacts with amphiphysin 1 and dynamin 1 through its SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212879 cd11946 SH3_GRB2_N N-terminal Src homology 3 domain of Growth factor receptor-bound protein 2. GRB2 is a critical signaling molecule that regulates the Ras pathway by linking tyrosine kinases to the Ras guanine nucleotide releasing protein Sos (son of sevenless), which converts Ras to the active GTP-bound state. It is ubiquitously expressed in all tissues throughout development and is important in cell cycle progression, motility, morphogenesis, and angiogenesis. In lymphocytes, GRB2 is associated with antigen receptor signaling components. GRB2 contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. Its N-terminal SH3 domain binds to Sos and Sos-derived proline-rich peptides. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212880 cd11947 SH3_GRAP2_N N-terminal Src homology 3 domain of GRB2-related adaptor protein 2. GRAP2 is also called GADS (GRB2-related adapter downstream of Shc), GrpL, GRB2L, Mona, or GRID (Grb2-related protein with insert domain). It is expressed specifically in the hematopoietic system. It plays an important role in T cell receptor (TCR) signaling by promoting the formation of the SLP-76:LAT complex, which couples the TCR to the Ras pathway. It also have roles in antigen-receptor and tyrosine kinase mediated signaling. GRAP2 is unique from other GRB2-like adaptor proteins in that it can be regulated by caspase cleavage. It contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The N-terminal SH3 domain of the related protein GRB2 binds to Sos and Sos-derived proline-rich peptides. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212881 cd11948 SH3_GRAP_N N-terminal Src homology 3 domain of GRB2-related adaptor protein. GRAP is a GRB-2 like adaptor protein that is highly expressed in lymphoid tissues. It acts as a negative regulator of T cell receptor (TCR)-induced lymphocyte proliferation by downregulating the signaling to the Ras/ERK pathway. It has been identified as a regulator of TGFbeta signaling in diabetic kidney tubules and may have a role in the pathogenesis of the disease. GRAP contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The N-terminal SH3 domain of the related protein GRB2 binds to Sos and Sos-derived proline-rich peptides. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212882 cd11949 SH3_GRB2_C C-terminal Src homology 3 domain of Growth factor receptor-bound protein 2. GRB2 is a critical signaling molecule that regulates the Ras pathway by linking tyrosine kinases to the Ras guanine nucleotide releasing protein Sos (son of sevenless), which converts Ras to the active GTP-bound state. It is ubiquitously expressed in all tissues throughout development and is important in cell cycle progression, motility, morphogenesis, and angiogenesis. In lymphocytes, GRB2 is associated with antigen receptor signaling components. GRB2 contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The C-terminal SH3 domain of GRB2 binds to Gab2 (Grb2-associated binder 2) through epitopes containing RxxK motifs, as well as to the proline-rich C-terminus of FGRF2. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212883 cd11950 SH3_GRAP2_C C-terminal Src homology 3 domain of GRB2-related adaptor protein 2. GRAP2 is also called GADS (GRB2-related adapter downstream of Shc), GrpL, GRB2L, Mona, or GRID (Grb2-related protein with insert domain). It is expressed specifically in the hematopoietic system. It plays an important role in T cell receptor (TCR) signaling by promoting the formation of the SLP-76:LAT complex, which couples the TCR to the Ras pathway. It also has roles in antigen-receptor and tyrosine kinase mediated signaling. GRAP2 is unique from other GRB2-like adaptor proteins in that it can be regulated by caspase cleavage. It contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The C-terminal SH3 domain of GRAP2 binds to different motifs found in substrate peptides including the typical PxxP motif in hematopoietic progenitor kinase 1 (HPK1), the RxxK motif in SLP-76 and HPK1, and the RxxxxK motif in phosphatase-like protein HD-PTP. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212884 cd11951 SH3_GRAP_C C-terminal Src homology 3 domain of GRB2-related adaptor protein. GRAP is a GRB-2 like adaptor protein that is highly expressed in lymphoid tissues. It acts as a negative regulator of T cell receptor (TCR)-induced lymphocyte proliferation by downregulating the signaling to the Ras/ERK pathway. It has been identified as a regulator of TGFbeta signaling in diabetic kidney tubules and may have a role in the pathogenesis of the disease. GRAP contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The C-terminal SH3 domains (SH3c) of the related proteins, GRB2 and GRAP2, have been shown to bind to classical PxxP motif ligands, as well as to non-classical motifs. GRB2 SH3c binds Gab2 (Grb2-associated binder 2) through epitopes containing RxxK motifs, while the SH3c of GRAP2 binds to the phosphatase-like protein HD-PTP via a RxxxxK motif. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212885 cd11952 SH3_iASPP Src Homology 3 (SH3) domain of Inhibitor of ASPP protein (iASPP). iASPP, also called RelA-associated inhibitor (RAI), is an oncoprotein that inhibits the apoptotic transactivation potential of p53. It is upregulated in human breast cancers expressing wild-type p53, in acute leukemias regardless of the p53 mutation status, as well as in ovarian cancer where it is associated with poor patient outcome and chemoresistance. iASPP is also a binding partner and negative regulator of p65RelA, which promotes cell proliferation and inhibits apoptosis; p65RelA has the opposite effect on cell growth compared to the p53 family. It contains a proline-rich region, four ankyrin (ANK) repeats, and an SH3 domain at its C-terminal half. The SH3 domain and the ANK repeats of iASPP contribute to the p53 binding site; they bind to the DNA binding domain of p53. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212886 cd11953 SH3_ASPP2 Src Homology 3 (SH3) domain of Apoptosis Stimulating of p53 protein 2. ASPP2 is the full length form of the previously-identified tumor supressor, p53-binding protein 2 (p53BP2). ASPP2 activates the apoptotic function of the p53 family of tumor suppressors (p53, p63, and p73). It plays a central role in regulating apoptosis and cell growth; ASPP2-deficient mice show postnatal death. Downregulated expression of ASPP2 is frequently found in breast tumors, lung cancer, and diffuse large B-cell lymphoma where it is correlated with a poor clinical outcome. ASPP2 contains a proline-rich region, four ankyrin (ANK) repeats, and an SH3 domain at its C-terminal half. The SH3 domain and the ANK repeats of ASPP2 contribute to the p53 binding site; they bind to the DNA binding domain of p53. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212887 cd11954 SH3_ASPP1 Src Homology 3 domain of Apoptosis Stimulating of p53 protein 1. ASPP1, like ASPP2, activates the apoptotic function of the p53 family of tumor suppressors (p53, p63, and p73). In addition, it functions in the cytoplasm to regulate the nuclear localization of the transcriptional cofactors YAP and TAZ by inihibiting their phosphorylation; YAP and TAZ are important regulators of cell expansion, differentiation, migration, and invasion. ASPP1 is downregulated in breast tumors expressing wild-type p53. It contains a proline-rich region, four ankyrin (ANK) repeats, and an SH3 domain at its C-terminal half. The SH3 domain and the ANK repeats of ASPP1 contribute to the p53 binding site; they bind to the DNA binding domain of p53. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212888 cd11955 SH3_srGAP1-3 Src homology 3 domain of Slit-Robo GTPase Activating Proteins 1, 2, and 3. srGAP1, also called Rho GTPase-Activating Protein 13 (ARHGAP13), is a Cdc42- and RhoA-specific GAP and is expressed later in the development of central nervous system tissues. srGAP2 is expressed in zones of neuronal differentiation. It plays a role in the regeneration of neurons and axons. srGAP3, also called MEGAP (MEntal disorder associated GTPase-Activating Protein), is a Rho GAP with activity towards Rac1 and Cdc42. It impacts cell migration by regulating actin and microtubule cytoskeletal dynamics. The association between srGAP3 haploinsufficiency and mental retardation is under debate. srGAPs are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. srGAPs contain an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212889 cd11956 SH3_srGAP4 Src homology 3 domain of Slit-Robo GTPase Activating Protein 4. srGAP4, also called ARHGAP4, is highly expressed in hematopoietic cells and may play a role in lymphocyte differentiation. It is able to stimulate the GTPase activity of Rac1, Cdc42, and RhoA. In the nervous system, srGAP4 has been detected in differentiating neurites and may be involved in axon and dendritic growth. srGAPs are Rho GAPs that interact with Robo1, the transmembrane receptor of Slit proteins. Slit proteins are secreted proteins that control axon guidance and the migration of neurons and leukocytes. srGAPs contain an N-terminal F-BAR domain, a Rho GAP domain, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212890 cd11957 SH3_RUSC2 Src homology 3 domain of RUN and SH3 domain-containing protein 2. RUSC2, also called Iporin or Interacting protein of Rab1, is expressed ubiquitously with highest amounts in the brain and testis. It interacts with the small GTPase Rab1 and the Golgi matrix protein GM130, and may function in linking GTPases to certain intracellular signaling pathways. RUSC proteins are adaptor proteins consisting of RUN, leucine zipper, and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212891 cd11958 SH3_RUSC1 Src homology 3 domain of RUN and SH3 domain-containing protein 1. RUSC1, also called NESCA (New molecule containing SH3 at the carboxy-terminus), is highly expressed in the brain and is translocated to the nuclear membrane from the cytoplasm upon stimulation with neurotrophin. It plays a role in facilitating neurotrophin-dependent neurite outgrowth. It also interacts with NEMO (or IKKgamma) and may function in NEMO-mediated activation of NF-kB. RUSC proteins are adaptor proteins consisting of RUN, leucine zipper, and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 51 -212892 cd11959 SH3_Cortactin Src homology 3 domain of Cortactin. Cortactin was originally identified as a substrate of Src kinase. It is an actin regulatory protein that binds to the Arp2/3 complex and stabilizes branched actin filaments. It is involved in cellular processes that affect cell motility, adhesion, migration, endocytosis, and invasion. It is expressed ubiquitously except in hematopoietic cells, where the homolog hematopoietic lineage cell-specific 1 (HS1) is expressed instead. Cortactin contains an N-terminal acidic domain, several copies of a repeat domain found in cortactin and HS1, a proline-rich region, and a C-terminal SH3 domain. The N-terminal region interacts with the Arp2/3 complex and F-actin, and is crucial in regulating branched actin assembly. Cortactin also serves as a scaffold and provides a bridge to the actin cytoskeleton for membrane trafficking and signaling proteins that bind to its SH3 domain. Binding partners for the SH3 domain of cortactin include dynamin2, N-WASp, MIM, FGD1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212893 cd11960 SH3_Abp1_eu Src homology 3 domain of eumetazoan Actin-binding protein 1. Abp1, also called drebrin-like protein, is an adaptor protein that functions in receptor-mediated endocytosis and vesicle trafficking. It contains an N-terminal actin-binding module, the actin-depolymerizing factor (ADF) homology domain, a helical domain, and a C-terminal SH3 domain. Mammalian Abp1, unlike yeast Abp1, does not contain an acidic domain that interacts with the Arp2/3 complex. It regulates actin dynamics indirectly by interacting with dynamin and WASP family proteins. Abp1 deficiency causes abnormal organ structure and function of the spleen, heart, and lung of mice. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212894 cd11961 SH3_Abp1_fungi_C2 Second C-terminal Src homology 3 domain of Fungal Actin-binding protein 1. Abp1 is an adaptor protein that functions in receptor-mediated endocytosis and vesicle trafficking. It contains an N-terminal actin-binding module, the actin-depolymerizing factor (ADF) homology domain, a central proline-rich region, and a C-terminal SH3 domain (many yeast Abp1 proteins contain two C-terminal SH3 domains). Yeast Abp1 also contains two acidic domains that bind directly to the Arp2/3 complex, which is required to initiate actin polymerization. The SH3 domain of yeast Abp1 binds and localizes the kinases, Ark1p and Prk1p, which facilitate actin patch disassembly following vesicle internalization. It also mediates the localization to the actin patch of the synaptojanin-like protein, Sjl2p, which plays a key role in endocytosis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212895 cd11962 SH3_Abp1_fungi_C1 First C-terminal Src homology 3 domain of Fungal Actin-binding protein 1. Abp1 is an adaptor protein that functions in receptor-mediated endocytosis and vesicle trafficking. It contains an N-terminal actin-binding module, the actin-depolymerizing factor (ADF) homology domain, a central proline-rich region, and a C-terminal SH3 domain (many yeast Abp1 proteins contain two C-terminal SH3 domains). Yeast Abp1 also contains two acidic domains that bind directly to the Arp2/3 complex, which is required to initiate actin polymerization. The SH3 domain of yeast Abp1 binds and localizes the kinases, Ark1p and Prk1p, which facilitate actin patch disassembly following vesicle internalization. It also mediates the localization to the actin patch of the synaptojanin-like protein, Sjl2p, which plays a key role in endocytosis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212896 cd11963 SH3_STAM2 Src homology 3 domain of Signal Transducing Adaptor Molecule 2. STAM2, also called EAST (Epidermal growth factor receptor-associated protein with SH3 and TAM domain) or Hbp (Hrs binding protein), is part of the endosomal sorting complex required for transport (ESCRT-0). It plays a role in sorting mono-ubiquinated endosomal cargo for trafficking to the lysosome for degradation. It is also involved in the regulation of exocytosis. STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212897 cd11964 SH3_STAM1 Src homology 3 domain of Signal Transducing Adaptor Molecule 1. STAM1 is part of the endosomal sorting complex required for transport (ESCRT-0) and is involved in sorting ubiquitinated cargo proteins from the endosome. It may also be involved in the regulation of IL2 and GM-CSF mediated signaling, and has been implicated in neural cell survival. STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212898 cd11965 SH3_ASAP1 Src homology 3 domain of ArfGAP with SH3 domain, ankyrin repeat and PH domain containing protein 1. ASAP1 is also called DDEF1 (Development and Differentiation Enhancing Factor 1), AMAP1, centaurin beta-4, or PAG2. an Arf GTPase activating protein (GAP) with activity towards Arf1 and Arf5 but not Arf6. However, it has been shown to bind GTP-Arf6 stably without GAP activity. It has been implicated in cell growth, migration, and survival, as well as in tumor invasion and malignancy. It binds paxillin and cortactin, two components of invadopodia which are essential for tumor invasiveness. It also binds focal adhesion kinase (FAK) and the SH2/SH3 adaptor CrkL. ASAP1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212899 cd11966 SH3_ASAP2 Src homology 3 domain of ArfGAP with SH3 domain, ankyrin repeat and PH domain containing protein 2. ASAP2 is also called DDEF2 (Development and Differentiation Enhancing Factor 2), AMAP2, centaurin beta-3, or PAG3. It mediates the functions of Arf GTPases vial dual mechanisms: it exhibits GTPase activating protein (GAP) activity towards class I (Arf1) and II (Arf5) Arfs; and it binds class III Arfs (GTP-Arf6) stably without GAP activity. It binds paxillin and is implicated in Fcgamma receptor-mediated phagocytosis in macrophages and in cell migration. ASAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212900 cd11967 SH3_SASH1 Src homology 3 domain of SAM And SH3 Domain Containing Protein 1. SASH1 is a potential tumor suppressor in breast and colon cancer. Its decreased expression is associated with aggressive tumor growth, metastasis, and poor prognosis. It is widely expressed in normal tissues (except lymphocytes and dendritic cells) and is localized in the nucleus and the cytoplasm. SASH1 interacts with the oncoprotein cortactin and is important in cell migration and adhesion. It is a member of the SLY family of proteins, which are adaptor proteins containing a central conserved region with a bipartite nuclear localization signal (NLS) as well as SAM (sterile alpha motif) and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212901 cd11968 SH3_SASH3 Src homology 3 domain of Sam And SH3 Domain Containing Protein 3. SASH3, also called SLY/SLY1 (SH3-domain containing protein expressed in lymphocytes), is expressed exclusively in lymhocytes and is essential in the full activation of adaptive immunity. It is involved in the signaling of T cell receptors. It was the first described member of the SLY family of proteins, which are adaptor proteins containing a central conserved region with a bipartite nuclear localization signal (NLS) as well as SAM (sterile alpha motif) and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212902 cd11969 SH3_PLCgamma2 Src homology 3 domain of Phospholipase C (PLC) gamma 2. PLCgamma2 is primarily expressed in haematopoietic cells, specifically in B cells. It is activated by tyrosine phosphorylation by B cell receptor (BCR) kinases and is recruited to the plasma membrane where its substrate is located. It is required in pre-BCR signaling and in the maturation of B cells. PLCs catalyze the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG). Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212903 cd11970 SH3_PLCgamma1 Src homology 3 domain of Phospholipase C (PLC) gamma 1. PLCgamma1 is widely expressed and is essential in growth and development. It is activated by the TrkA receptor tyrosine kinase and functions as a key regulator of cell differentiation. It is also the predominant PLCgamma in T cells and is required for T cell and NK cell function. PLCs catalyze the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG). Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. The SH3 domain of PLCgamma1 directly interacts with dynamin-1 and can serve as a guanine nucleotide exchange factor (GEF). It also interacts with Cbl, inhibiting its phosphorylation and activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 60 -212904 cd11971 SH3_Abi1 Src homology 3 domain of Abl Interactor 1. Abi1, also called e3B1, is a central regulator of actin cytoskeletal reorganization through interactions with many protein complexes. It is part of WAVE, a nucleation-promoting factor complex, that links Rac 1 activation to actin polymerization causing lamellipodia protrusion at the plasma membrane. Abi1 interact with formins to promote protrusions at the leading edge of motile cells. It also is a target of alpha4 integrin, regulating membrane protrusions at sites of integrin engagement. Abi proteins are adaptor proteins serving as binding partners and substrates of Abl tyrosine kinases. They are involved in regulating actin cytoskeletal reorganization and play important roles in membrane-ruffling, endocytosis, cell motility, and cell migration. Abi proteins contain a homeobox homology domain, a proline-rich region, and a SH3 domain. The SH3 domain of Abi binds to a PxxP motif in Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212905 cd11972 SH3_Abi2 Src homology 3 domain of Abl Interactor 2. Abi2 is highly expressed in the brain and eye. It regulates actin cytoskeletal reorganization at adherens junctions and dendritic spines, which is important in cell morphogenesis, migration, and cognitive function. Mice deficient with Abi2 show defects in orientation and migration of lens fibers, neuronal migration, dendritic spine morphology, as well as deficits in learning and memory. Abi proteins are adaptor proteins serving as binding partners and substrates of Abl tyrosine kinases. They are involved in regulating actin cytoskeletal reorganization and play important roles in membrane-ruffling, endocytosis, cell motility, and cell migration. Abi proteins contain a homeobox homology domain, a proline-rich region, and a SH3 domain. The SH3 domain of Abi binds to a PxxP motif in Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212906 cd11973 SH3_ASEF Src homology 3 domain of APC-Stimulated guanine nucleotide Exchange Factor. ASEF, also called ARHGEF4, exists in an autoinhibited form and is activated upon binding of the tumor suppressor APC (adenomatous polyposis coli). GEFs activate small GTPases by exchanging bound GDP for free GTP. ASEF can activate Rac1 or Cdc42. Truncated ASEF, which is found in colorectal cancers, is constitutively active and has been shown to promote angiogenesis and cancer cell migration. ASEF contains a SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains. In its autoinhibited form, the SH3 domain of ASEF forms an extensive interface with the DH and PH domains, blocking the Rac binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 73 -212907 cd11974 SH3_ASEF2 Src homology 3 domain of APC-Stimulated guanine nucleotide Exchange Factor 2. ASEF2, also called Spermatogenesis-associated protein 13 (SPATA13), is a GEF that localizes with actin at the leading edge of cells and is important in cell migration and adhesion dynamics. GEFs activate small GTPases by exchanging bound GDP for free GTP. ASEF2 can activate both Rac 1 and Cdc42, but only Rac1 activation is necessary for increased cell migration and adhesion turnover. Together with APC (adenomatous polyposis coli) and Neurabin2, a scaffold protein that binds F-actin, it is involved in regulating HGF-induced cell migration. ASEF2 contains a SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212908 cd11975 SH3_ARHGEF9 Src homology 3 domain of the Rho guanine nucleotide exchange factor ARHGEF9. ARHGEF9, also called PEM2 or collybistin, selectively activates Cdc42 by exchanging bound GDP for free GTP. It is highly expressed in the brain and it interacts with gephyrin, a postsynaptic protein associated with GABA and glycine receptors. Mutations in the ARHGEF9 gene cause X-linked mental retardation with associated features like seizures, hyper-anxiety, aggressive behavior, and sensory hyperarousal. ARHGEF9 contains a SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212909 cd11976 SH3_VAV1_2 C-terminal (or second) Src homology 3 domain of VAV1 protein. VAV1 is expressed predominantly in the hematopoietic system and it plays an important role in the development and activation of B and T cells. It is activated by tyrosine phosphorylation to function as a guanine nucleotide exchange factor (GEF) for Rho GTPases following cell surface receptor activation, triggering various effects such as cytoskeletal reorganization, transcription regulation, cell cycle progression, and calcium mobilization. It also serves as a scaffold protein and has been shown to interact with Ku70, Socs1, Janus kinase 2, SIAH2, S100B, Abl gene, ZAP-70, SLP76, and Syk, among others. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The C-terminal SH3 domain of Vav1 interacts with a wide variety of proteins including cytoskeletal regulators (zyxin), RNA-binding proteins (Sam68), transcriptional regulators, viral proteins, and dynamin 2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212910 cd11977 SH3_VAV2_2 C-terminal (or second) Src homology 3 domain of VAV2 protein. VAV2 is widely expressed and functions as a guanine nucleotide exchange factor (GEF) for RhoA, RhoB and RhoG and also activates Rac1 and Cdc42. It is implicated in many cellular and physiological functions including blood pressure control, eye development, neurite outgrowth and branching, EGFR endocytosis and degradation, and cell cluster morphology, among others. It has been reported to associate with Nek3. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212911 cd11978 SH3_VAV3_2 C-terminal (or second) Src homology 3 domain of VAV3 protein. VAV3 is ubiquitously expressed and functions as a phosphorylation-dependent guanine nucleotide exchange factor (GEF) for RhoA, RhoG, and Rac1. It has been implicated to function in the hematopoietic, bone, cerebellar, and cardiovascular systems. VAV3 is essential in axon guidance in neurons that control blood pressure and respiration. It is overexpressed in prostate cancer cells and it plays a role in regulating androgen receptor transcriptional activity. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212912 cd11979 SH3_VAV1_1 First Src homology 3 domain of VAV1 protein. VAV1 is expressed predominantly in the hematopoietic system and it plays an important role in the development and activation of B and T cells. It is activated by tyrosine phosphorylation to function as a guanine nucleotide exchange factor (GEF) for Rho GTPases following cell surface receptor activation, triggering various effects such as cytoskeletal reorganization, transcription regulation, cell cycle progression, and calcium mobilization. It also serves as a scaffold protein and has been shown to interact with Ku70, Socs1, Janus kinase 2, SIAH2, S100B, Abl gene, ZAP-70, SLP76, and Syk, among others. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The first SH3 domain of Vav1 has been shown to bind the adaptor protein Grb2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 63 -212913 cd11980 SH3_VAV2_1 First Src homology 3 domain of VAV2 protein. VAV2 is widely expressed and functions as a guanine nucleotide exchange factor (GEF) for RhoA, RhoB and RhoG and also activates Rac1 and Cdc42. It is implicated in many cellular and physiological functions including blood pressure control, eye development, neurite outgrowth and branching, EGFR endocytosis and degradation, and cell cluster morphology, among others. It has been reported to associate with Nek3. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 60 -212914 cd11981 SH3_VAV3_1 First Src homology 3 domain of VAV3 protein. VAV3 is ubiquitously expressed and functions as a phosphorylation-dependent guanine nucleotide exchange factor (GEF) for RhoA, RhoG, and Rac1. It has been implicated to function in the hematopoietic, bone, cerebellar, and cardiovascular systems. VAV3 is essential in axon guidance in neurons that control blood pressure and respiration. It is overexpressed in prostate cancer cells and it plays a role in regulating androgen receptor transcriptional activity. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212915 cd11982 SH3_Shank1 Src homology 3 domain of SH3 and multiple ankyrin repeat domains protein 1. Shank1, also called SSTRIP (Somatostatin receptor-interacting protein), is a brain-specific protein that plays a role in the construction of postsynaptic density (PSD) and the maturation of dendritic spines. Mice deficient in Shank1 show altered PSD composition, thinner PSDs, smaller dendritic spines, and weaker basal synaptic transmission, although synaptic plasticity is normal. They show increased anxiety and impaired fear memory, but also show better spatial learning. Shank proteins carry scaffolding functions through multiple sites of protein-protein interaction in its domain architecture, including ankyrin (ANK) repeats, a long proline rich region, as well as SH3, PDZ, and SAM domains. The SH3 domain of Shank binds GRIP, a scaffold protein that binds AMPA receptors and Eph receptors/ligands. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212916 cd11983 SH3_Shank2 Src homology 3 domain of SH3 and multiple ankyrin repeat domains protein 2. Shank2, also called ProSAP1 (Proline-rich synapse-associated protein 1) or CortBP1 (Cortactin-binding protein 1), is found in neurons, glia, endocrine cells, liver, and kidney. It plays a role in regulating dendritic spine volume and branching and postsynaptic clustering. Mutations in the Shank2 gene are associated with autism spectrum disorder and mental retardation. Shank proteins carry scaffolding functions through multiple sites of protein-protein interaction in its domain architecture, including ankyrin (ANK) repeats, a long proline rich region, as well as SH3, PDZ, and SAM domains. The SH3 domain of Shank binds GRIP, a scaffold protein that binds AMPA receptors and Eph receptors/ligands. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212917 cd11984 SH3_Shank3 Src homology 3 domain of SH3 and multiple ankyrin repeat domains protein 3. Shank3, also called ProSAP2 (Proline-rich synapse-associated protein 2), is widely expressed. It plays a role in the formation of dendritic spines and synapses. Haploinsufficiency of the Shank3 gene causes the 22q13 deletion/Phelan-McDermid syndrome, and variants of Shank3 have been implicated in autism spectrum disorder, schizophrenia, and intellectual disability. Shank proteins carry scaffolding functions through multiple sites of protein-protein interaction in its domain architecture, including ankyrin (ANK) repeats, a long proline rich region, as well as SH3, PDZ, and SAM domains. The SH3 domain of Shank binds GRIP, a scaffold protein that binds AMPA receptors and Eph receptors/ligands. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212918 cd11985 SH3_Stac2_C C-terminal Src homology 3 domain of SH3 and cysteine-rich domain-containing protein 2 (Stac2). Stac proteins are putative adaptor proteins that contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. There are three mammalian members (Stac1, Stac2, and Stac3) of this family. Stac2 contains a single SH3 domain at the C-terminus unlike Stac1 and Stac3, which contain two C-terminal SH3 domains. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212919 cd11986 SH3_Stac3_1 First C-terminal Src homology 3 domain of SH3 and cysteine-rich domain-containing protein 3 (Stac3). Stac proteins are putative adaptor proteins that contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. There are three mammalian members (Stac1, Stac2, and Stac3) of this family. Stac1 and Stac3 contain two SH3 domains while Stac2 contains a single SH3 domain at the C-terminus. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212920 cd11987 SH3_Intersectin1_1 First Src homology 3 domain (or SH3A) of Intersectin-1. Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The first SH3 domain (or SH3A) of ITSN1 has been shown to bind many proteins including Sos1, dynamin1/2, CIN85, c-Cbl, PI3K-C2, SHIP2, N-WASP, and CdGAP, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212921 cd11988 SH3_Intersectin2_1 First Src homology 3 domain (or SH3A) of Intersectin-2. Intersectin-2 (ITSN2) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN2 also functions as a specific GEF for Cdc42 activation in epithelial morphogenesis, and is required in mitotic spindle orientation. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The first SH3 domain (or SH3A) of ITSN2 is expected to bind many protein partners, similar to ITSN1 which has been shown to bind Sos1, dynamin1/2, CIN85, c-Cbl, PI3K-C2, SHIP2, N-WASP, and CdGAP, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212922 cd11989 SH3_Intersectin1_2 Second Src homology 3 domain (or SH3B) of Intersectin-1. Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The second SH3 domain (or SH3B) of ITSN1 has been shown to bind WNK and CdGAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212923 cd11990 SH3_Intersectin2_2 Second Src homology 3 domain (or SH3B) of Intersectin-2. Intersectin-2 (ITSN2) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN2 also functions as a specific GEF for Cdc42 activation in epithelial morphogenesis, and is required in mitotic spindle orientation. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The second SH3 domain (or SH3B) of ITSN2 is expected to bind protein partners, similar to ITSN1 which has been shown to bind WNK and CdGAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212924 cd11991 SH3_Intersectin1_3 Third Src homology 3 domain (or SH3C) of Intersectin-1. Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The third SH3 domain (or SH3C) of ITSN1 has been shown to bind many proteins including dynamin1/2, CIN85, c-Cbl, SHIP2, Reps1, synaptojanin-1, and WNK, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212925 cd11992 SH3_Intersectin2_3 Third Src homology 3 domain (or SH3C) of Intersectin-2. Intersectin-2 (ITSN2) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN2 also functions as a specific GEF for Cdc42 activation in epithelial morphogenesis, and is required in mitotic spindle orientation. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The third SH3 domain (SH3C) of ITSN2 has been shown to bind the K15 protein of Kaposi's sarcoma-associated herpesvirus. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 52 -212926 cd11993 SH3_Intersectin1_4 Fourth Src homology 3 domain (or SH3D) of Intersectin-1. Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The fourth SH3 domain (or SH3D) of ITSN1 has been shown to bind SHIP2, Numb, CdGAP, and N-WASP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 65 -212927 cd11994 SH3_Intersectin2_4 Fourth Src homology 3 domain (or SH3D) of Intersectin-2. Intersectin-2 (ITSN2) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN2 also functions as a specific GEF for Cdc42 activation in epithelial morphogenesis, and is required in mitotic spindle orientation. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The fourth SH3 domain (or SH3D) of ITSN2 is expected to bind protein partners, similar to ITSN1 which has been shown to bind SHIP2, Numb, CdGAP, and N-WASP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212928 cd11995 SH3_Intersectin1_5 Fifth Src homology 3 domain (or SH3E) of Intersectin-1. Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The fifth SH3 domain (or SH3E) of ITSN1 has been shown to bind many protein partners including SGIP1, Sos1, dynamin1/2, CIN85, c-Cbl, SHIP2, N-WASP, and synaptojanin-1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212929 cd11996 SH3_Intersectin2_5 Fifth Src homology 3 domain (or SH3E) of Intersectin-2. Intersectin-2 (ITSN2) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN2 also functions as a specific GEF for Cdc42 activation in epithelial morphogenesis, and is required in mitotic spindle orientation. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The fifth SH3 domain (or SH3E) of ITSN2 is expected to bind protein partners, similar to ITSN1 which has been shown to bind many protein partners including SGIP1, Sos1, dynamin1/2, CIN85, c-Cbl, SHIP2, N-WASP, and synaptojanin-1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212930 cd11997 SH3_PACSIN3 Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 3 (PACSIN3). PACSIN 3 or Syndapin III (Synaptic dynamin-associated protein III) is expressed ubiquitously and regulates glucose uptake in adipocytes through its role in GLUT1 trafficking. It also modulates the subcellular localization and stimulus-specific function of the cation channel TRPV4. PACSINs act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212931 cd11998 SH3_PACSIN1-2 Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 1 (PACSIN1) and PACSIN 2. PACSIN 1 or Syndapin I (Synaptic dynamin-associated protein I) is expressed specifically in the brain and is localized in neurites and synaptic boutons. It binds the brain-specific proteins dynamin I, synaptojanin, synapsin I, and neural Wiskott-Aldrich syndrome protein (nWASP), and functions as a link between the cytoskeletal machinery and synaptic vesicle endocytosis. PACSIN 1 interacts with huntingtin and may be implicated in the neuropathology of Huntington's disease. PACSIN 2 or Syndapin II is expressed ubiquitously and is involved in the regulation of tubulin polymerization. It associates with Golgi membranes and forms a complex with dynamin II which is crucial in promoting vesicle formation from the trans-Golgi network. PACSINs act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212932 cd11999 SH3_PACSIN_like Src homology 3 domain of an unknown subfamily of proteins with similarity to Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins. PACSINs, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. They bind both dynamin and Wiskott-Aldrich syndrome protein (WASP), and may provide direct links between the actin cytoskeletal machinery through WASP and dynamin-dependent endocytosis. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212933 cd12000 SH3_CASS4 Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding protein family member 4. CASS4, also called HEPL (HEF1-EFS-p130Cas-like), localizes to focal adhesions and plays a role in regulating FAK activity, focal adhesion integrity, and cell spreading. It is most abundant in blood cells and lung tissue, and is also found in high levels in leukemia and ovarian cell lines. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212934 cd12001 SH3_BCAR1 Src homology 3 domain of the CAS (Crk-Associated Substrate) scaffolding protein family member, Breast Cancer Anti-estrogen Resistance 1. BCAR1, also called p130cas or CASS1, is the founding member of the CAS family of scaffolding proteins and was originally identified through its ability to associate with Crk. The name BCAR1 was designated because the human gene was identified in a screen for genes that promote resistance to tamoxifen. It is widely expressed and its deletion is lethal in mice. It plays a role in regulating cell motility, survival, proliferation, transformation, cancer progression, and bacterial pathogenesis. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 68 -212935 cd12002 SH3_NEDD9 Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding protein family member, Neural precursor cell Expressed, Developmentally Down-regulated 9. NEDD9 is also called human enhancer of filamentation 1 (HEF1) or CAS-L (Crk-associated substrate in lymphocyte). It was first described as a gene predominantly expressed in early embryonic brain, and was also isolated from a screen of human proteins that regulate filamentous budding in yeast, and as a tyrosine phosphorylated protein in lymphocytes. It promotes metastasis in different solid tumors. NEDD9 localizes in focal adhesions and associates with FAK and Abl kinase. It also interacts with SMAD3 and the proteasomal machinery which allows its rapid turnover; these interactions are not shared by other CAS proteins. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212936 cd12003 SH3_EFS Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding protein family member, Embryonal Fyn-associated Substrate. EFS is also called HEFS, CASS3 (Cas scaffolding protein family member 3) or SIN (Src-interacting protein). It was identified based on interactions with the Src kinases, Fyn and Yes. It plays a role in thymocyte development and acts as a negative regulator of T cell proliferation. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212937 cd12004 SH3_Lyn Src homology 3 domain of Lyn Protein Tyrosine Kinase. Lyn is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lyn is expressed in B lymphocytes and myeloid cells. It exhibits both positive and negative regulatory roles in B cell receptor (BCR) signaling. Lyn, as well as Fyn and Blk, promotes B cell activation by phosphorylating ITAMs (immunoreceptor tyr activation motifs) in CD19 and in Ig components of BCR. It negatively regulates signaling by its unique ability to phosphorylate ITIMs (immunoreceptor tyr inhibition motifs) in cell surface receptors like CD22 and CD5. Lyn also plays an important role in G-CSF receptor signaling by phosphorylating a variety of adaptor molecules. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212938 cd12005 SH3_Lck Src homology 3 domain of Lck Protein Tyrosine Kinase. Lck is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lck is expressed in T-cells and natural killer cells. It plays a critical role in T-cell maturation, activation, and T-cell receptor (TCR) signaling. Lck phosphorylates ITAM (immunoreceptor tyr activation motif) sequences on several subunits of TCRs, leading to the activation of different second messenger cascades. Phosphorylated ITAMs serve as binding sites for other signaling factor such as Syk and ZAP-70, leading to their activation and propagation of downstream events. In addition, Lck regulates drug-induced apoptosis by interfering with the mitochondrial death pathway. The apototic role of Lck is independent of its primary function in T-cell signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212939 cd12006 SH3_Fyn_Yrk Src homology 3 domain of Fyn and Yrk Protein Tyrosine Kinases. Fyn and Yrk (Yes-related kinase) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Fyn, together with Lck, plays a critical role in T-cell signal transduction by phosphorylating ITAM (immunoreceptor tyr activation motif) sequences on T-cell receptors, ultimately leading to the proliferation and differentiation of T-cells. In addition, Fyn is involved in the myelination of neurons, and is implicated in Alzheimer's and Parkinson's diseases. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212940 cd12007 SH3_Yes Src homology 3 domain of Yes Protein Tyrosine Kinase. Yes (or c-Yes) is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. c-Yes kinase is the cellular homolog of the oncogenic protein (v-Yes) encoded by the Yamaguchi 73 and Esh sarcoma viruses. It displays functional overlap with other Src subfamily members, particularly Src. It also shows some unique functions such as binding to occludins, transmembrane proteins that regulate extracellular interactions in tight junctions. Yes also associates with a number of proteins in different cell types that Src does not interact with, like JAK2 and gp130 in pre-adipocytes, and Pyk2 in treated pulmonary vein endothelial cells. Although the biological function of Yes remains unclear, it appears to have a role in regulating cell-cell interactions and vesicle trafficking in polarized cells. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212941 cd12008 SH3_Src Src homology 3 domain of Src Protein Tyrosine Kinase. Src (or c-Src) is a cytoplasmic (or non-receptor) PTK and is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells, and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212942 cd12009 SH3_Blk Src homology 3 domain of Blk Protein Tyrosine Kinase. Blk is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. It is expressed specifically in B-cells and is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212943 cd12010 SH3_SLAP Src homology 3 domain of Src-Like Adaptor Protein. SLAP (or SLA1) modulates TCR surface expression levels as well as surface and total BCR levels. As an adaptor to c-Cbl, SLAP increases the ubiquitination, intracellular retention, and targeted degradation of the BCR complex components. SLAP has been shown to interact with the EphA receptor, EpoR, Lck, PDGFR, Syk, CD79a, c-Cbl, LAT, CD247, and Zap70, among others. SLAPs are adaptor proteins with limited similarity to Src family tyrosine kinases. They contain an N-terminal SH3 domain followed by an SH2 domain, and a unique C-terminal sequence. The SH3 domain of SLAP forms a complex with v-Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212944 cd12011 SH3_SLAP2 Src homology 3 domain of Src-Like Adaptor Protein 2. SLAP2 plays a role in c-Cbl-dependent regulation of CSF1R, a tyrosine kinase important for myeloid cell growth and differentiation. It has been shown to interact with CSF1R, c-Cbl, LAT, CD247, and Zap70. SLAPs are adaptor proteins with limited similarity to Src family tyrosine kinases. They contain an N-terminal SH3 domain followed by an SH2 domain, and a unique C-terminal sequence. They function in regulating the signaling, ubiquitination, and trafficking of T-cell receptor (TCR) and B-cell receptor (BCR) components. The SH3 domain of SLAP forms a complex with v-Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212945 cd12012 SH3_RIM-BP_2 Second Src homology 3 domain of Rab3-interacting molecules (RIMs) binding proteins. RIMs binding proteins (RBPs, RIM-BPs) associate with calcium channels present in photoreceptors, neurons, and hair cells; they interact simultaneously with specific calcium channel subunits, and active zone proteins, RIM1 and RIM2. RIMs are part of the matrix at the presynaptic active zone and are associated with synaptic vesicles through their interaction with the small GTPase Rab3. RIM-BPs play a role in regulating synaptic transmission by serving as adaptors and linking calcium channels with the synaptic vesicle release machinery. RIM-BPs contain three SH3 domains and two to three fibronectin III repeats. Invertebrates contain one, while vertebrates contain at least two RIM-BPs, RIM-BP1 and RIM-BP2. RIM-BP1 is also called peripheral-type benzodiazapine receptor associated protein 1 (PRAX-1). Mammals contain a third protein, RIM-BP3. RIM-BP1 and RIM-BP2 are predominantly expressed in the brain where they display overlapping but distinct expression patterns, while RIM-BP3 is almost exclusively expressed in the testis and is essential in spermiogenesis. The SH3 domains of RIM-BPs bind to the PxxP motifs of RIM1, RIM2, and L-type (alpha1D) and N-type (alpha1B) calcium channel subunits. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212946 cd12013 SH3_RIM-BP_3 Third Src homology 3 domain of Rab3-interacting molecules (RIMs) binding proteins. RIMs binding proteins (RBPs, RIM-BPs) associate with calcium channels present in photoreceptors, neurons, and hair cells; they interact simultaneously with specific calcium channel subunits, and active zone proteins, RIM1 and RIM2. RIMs are part of the matrix at the presynaptic active zone and are associated with synaptic vesicles through their interaction with the small GTPase Rab3. RIM-BPs play a role in regulating synaptic transmission by serving as adaptors and linking calcium channels with the synaptic vesicle release machinery. RIM-BPs contain three SH3 domains and two to three fibronectin III repeats. Invertebrates contain one, while vertebrates contain at least two RIM-BPs, RIM-BP1 and RIM-BP2. RIM-BP1 is also called peripheral-type benzodiazapine receptor associated protein 1 (PRAX-1). Mammals contain a third protein, RIM-BP3. RIM-BP1 and RIM-BP2 are predominantly expressed in the brain where they display overlapping but distinct expression patterns, while RIM-BP3 is almost exclusively expressed in the testis and is essential in spermiogenesis. The SH3 domains of RIM-BPs bind to the PxxP motifs of RIM1, RIM2, and L-type (alpha1D) and N-type (alpha1B) calcium channel subunits. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212947 cd12014 SH3_RIM-BP_1 First Src homology 3 domain of Rab3-interacting molecules (RIMs) binding proteins. RIMs binding proteins (RBPs, RIM-BPs) associate with calcium channels present in photoreceptors, neurons, and hair cells; they interact simultaneously with specific calcium channel subunits, and active zone proteins, RIM1 and RIM2. RIMs are part of the matrix at the presynaptic active zone and are associated with synaptic vesicles through their interaction with the small GTPase Rab3. RIM-BPs play a role in regulating synaptic transmission by serving as adaptors and linking calcium channels with the synaptic vesicle release machinery. RIM-BPs contain three SH3 domains and two to three fibronectin III repeats. Invertebrates contain one, while vertebrates contain at least two RIM-BPs, RIM-BP1 and RIM-BP2. RIM-BP1 is also called peripheral-type benzodiazapine receptor associated protein 1 (PRAX-1). Mammals contain a third protein, RIM-BP3. RIM-BP1 and RIM-BP2 are predominantly expressed in the brain where they display overlapping but distinct expression patterns, while RIM-BP3 is almost exclusively expressed in the testis and is essential in spermiogenesis. The SH3 domains of RIM-BPs bind to the PxxP motifs of RIM1, RIM2, and L-type (alpha1D) and N-type (alpha1B) calcium channel subunits. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212948 cd12015 SH3_Tks_1 First Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the first SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212949 cd12016 SH3_Tks_2 Second Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the second SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212950 cd12017 SH3_Tks_3 Third Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the third SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212951 cd12018 SH3_Tks4_4 Fourth (C-terminal) Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains. Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the fourth (C-terminal) SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212952 cd12019 SH3_Tks5_4 Fourth Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains. Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the fourth SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212953 cd12020 SH3_Tks5_5 Fifth (C-terminal) Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains. Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the fifth (C-terminal) SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212954 cd12021 SH3_p47phox_1 First or N-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also called Neutrophil Cytosolic Factor 1. p47phox, or NCF1, is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox), which plays a key role in the ability of phagocytes to defend against bacterial infections. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p47phox is required for activation of NADH oxidase and plays a role in translocation. It contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), a polybasic/autoinhibitory region, and a C-terminal proline-rich region (PRR). This model characterizes the first SH3 domain (or N-SH3) of p47phox. In its inactive state, the tandem SH3 domains interact intramolecularly with the autoinhibitory region; upon activation, the tandem SH3 domains are exposed through a conformational change, resulting in their binding to the PRR of p22phox and the activation of NADPH oxidase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212955 cd12022 SH3_p47phox_2 Second or C-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also called Neutrophil Cytosolic Factor 1. p47phox, or NCF1, is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox), which plays a key role in the ability of phagocytes to defend against bacterial infections. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p47phox is required for activation of NADH oxidase and plays a role in translocation. It contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), a polybasic/autoinhibitory region, and a C-terminal proline-rich region (PRR). This model characterizes the second SH3 domain (or C-SH3) of p47phox. In its inactive state, the tandem SH3 domains interact intramolecularly with the autoinhibitory region; upon activation, the tandem SH3 domains are exposed through a conformational change, resulting in their binding to the PRR of p22phox and the activation of NADPH oxidase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212956 cd12023 SH3_NoxO1_1 First or N-terminal Src homology 3 domain of Nox Organizing protein 1. Nox Organizing protein 1 (NoxO1) is a critical regulator of enzyme kinetics of the nonphagocytic NADPH oxidase Nox1, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Nox1 is expressed in colon, stomach, uterus, prostate, and vascular smooth muscle cells. NoxO1 is involved in targeting activator subunits (such as NoxA1) to Nox1. It is co-localized with Nox1 in the membranes of resting cells and directs the subcellular localization of Nox1. NoxO1 contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), and a C-terminal proline-rich region (PRR). This model characterizes the first SH3 domain (or N-SH3) of NoxO1. The tandem SH3 domains of NoxO1 interact with the PRR of p22phox, which also complexes with Nox1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212957 cd12024 SH3_NoxO1_2 Second or C-terminal Src homology 3 domain of NADPH oxidase (Nox) Organizing protein 1. Nox Organizing protein 1 (NoxO1) is a critical regulator of enzyme kinetics of the nonphagocytic NADPH oxidase Nox1, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Nox1 is expressed in colon, stomach, uterus, prostate, and vascular smooth muscle cells. NoxO1 is involved in targeting activator subunits (such as NoxA1) to Nox1. It is co-localized with Nox1 in the membranes of resting cells and directs the subcellular localization of Nox1. NoxO1 contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), and a C-terminal proline-rich region (PRR). This model characterizes the second SH3 domain (or C-SH3) of NoxO1. The tandem SH3 domains of NoxO1 interact with the PRR of p22phox, which also complexes with Nox1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212958 cd12025 SH3_Obscurin_like Src homology 3 domain of Obscurin and similar proteins. Obscurin is a giant muscle protein that is concentrated at the peripheries of Z-disks and M-lines. It binds small ankyrin I, a component of the sarcoplasmic reticulum (SR) membrane. It is associated with the contractile apparatus through binding with titin and sarcomeric myosin. It plays important roles in the organization and assembly of the myofibril and the SR. Obscurin has been observed as alternatively-spliced isoforms. The major isoform in sleletal muscle, approximately 800 kDa in size, is composed of many adhesion modules and signaling domains. It harbors 49 Ig and 2 FNIII repeats at the N-terminues, a complex middle region with additional Ig domains, an IQ motif, and a conserved SH3 domain near RhoGEF and PH domains, and a non-modular C-terminus with phosphorylation motifs. The obscurin gene also encodes two kinase domains, which are not part of the 800 kDa form of the protein, but is part of smaller spliced products that present in heart muscle. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 63 -212959 cd12026 SH3_ZO-1 Src homology 3 domain of the Tight junction protein, Zonula occludens protein 1. ZO-1 is a scaffolding protein that associates with other ZO proteins and other proteins of the tight junction, zonula adherens, and gap junctions. ZO proteins play roles in regulating cytoskeletal dynamics at these cell junctions. ZO-1 plays an essential role in embryonic development. It regulates the assembly and dynamics of the cortical cytoskeleton at cell-cell junctions. It is considered a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. The C-terminal region of ZO-1 is the largest of the three ZO proteins and contains an actin-binding region and domains of unknown function designated alpha and ZU5. The SH3 domain of ZO-1 has been shown to bind ZONAB, ZAK, afadin, and Galpha12. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 65 -212960 cd12027 SH3_ZO-2 Src homology 3 domain of the Tight junction protein, Zonula occludens protein 2. ZO-2 is a scaffolding protein that associates with other ZO proteins and other proteins of the tight junction, zonula adherens, and gap junctions. ZO proteins play roles in regulating cytoskeletal dynamics at these cell junctions. ZO-2 plays an essential role in embryonic development. It is critical for the blood-testis barrier integrity and male fertility. It also regulates the expression of cyclin D1 and cell proliferation. It is considered a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. The C-terminal region of ZO-2 contains an actin-binding region and a domain of unknown function designated beta. The SH3 domain of the related protein ZO-1 has been shown to bind ZONAB, ZAK, afadin, and Galpha12. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 63 -212961 cd12028 SH3_ZO-3 Src homology 3 domain of the Tight junction protein, Zonula occludens protein 3. ZO-3 is a scaffolding protein that associates with other ZO proteins and other proteins of the tight junction, zonula adherens, and gap junctions. ZO proteins play roles in regulating cytoskeletal dynamics at these cell junctions. ZO-3 is critical for epidermal barrier function. It regulates cyclin D1-dependent cell proliferation. It is considered a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. The C-terminal region of ZO-3 is the smallest of the three ZO proteins. The SH3 domain of the related protein ZO-1 has been shown to bind ZONAB, ZAK, afadin, and Galpha12. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 65 -212962 cd12029 SH3_DLG3 Src Homology 3 domain of Disks Large homolog 3. DLG3, also called synapse-associated protein 102 (SAP102), is a scaffolding protein that clusters at synapses and plays an important role in synaptic development and plasticity. Mutations in DLG3 cause midgestational embryonic lethality in mice and may be associated with nonsyndromic X-linked mental retardation in humans. It interacts with the NEDD4 (neural precursor cell-expressed developmentally downregulated 4) family of ubiquitin ligases and promotes apical tight junction formation. DLG3 is a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG3 contains three PDZ domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 67 -212963 cd12030 SH3_DLG4 Src Homology 3 domain of Disks Large homolog 4. DLG4, also called postsynaptic density-95 (PSD95) or synapse-associated protein 90 (SAP90), is a scaffolding protein that clusters at synapses and plays an important role in synaptic development and plasticity. It is responsible for the membrane clustering and retention of many transporters and receptors such as potassium channels and PMCA4b, a P-type ion transport ATPase, among others. DLG4 is a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG4 contains three PDZ domains. The SH3 domain of DLG4 binds and clusters the kainate subgroup of glutamate receptors via two proline-rich sequences in their C-terminal tail. It also binds AKAP79/150 (A-kinase anchoring protein). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 66 -212964 cd12031 SH3_DLG1 Src Homology 3 domain of Disks Large homolog 1. DLG1, also called synapse-associated protein 97 (SAP97), is a scaffolding protein that clusters at synapses and plays an important role in synaptic development and plasticity. DLG1 plays roles in regulating cell polarity, proliferation, migration, and cycle progression. It interacts with AMPA-type glutamate receptors and is critical in their maturation and delivery to synapses. It also interacts with PKCalpha and promotes wound healing. DLG1 is a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG1 contains three PDZ domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 67 -212965 cd12032 SH3_DLG2 Src Homology 3 domain of Disks Large homolog 2. DLG2, also called postsynaptic density-93 (PSD93) or Channel-associated protein of synapse-110 (chapsyn 110), is a scaffolding protein that clusters at synapses and plays an important role in synaptic development and plasticity. The DLG2 delta isoform binds inwardly rectifying potassium Kir2 channels, which determine resting membrane potential in neurons. It regulates the spatial and temporal distribution of Kir2 channels within neuronal membranes. DLG2 is a member of the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. DLG2 contains three PDZ domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 74 -212966 cd12033 SH3_MPP7 Src Homology 3 domain of Membrane Protein, Palmitoylated 7 (or MAGUK p55 subfamily member 7). MPP7 is a scaffolding protein that binds to DLG1 and promotes tight junction formation and epithelial cell polarity. Mutations in the MPP7 gene may be associated with the pathogenesis of diabetes and extreme bone mineral density. It is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212967 cd12034 SH3_MPP4 Src Homology 3 domain of Membrane Protein, Palmitoylated 4 (or MAGUK p55 subfamily member 4). MPP4, also called Disks Large homolog 6 (DLG6) or Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 5 protein (ALS2CR5), is a retina-specific scaffolding protein that plays a role in organizing presynaptic protein complexes in the photoreceptor synapse, where it localizes to the plasma membrane. It is required in the proper localization of calcium ATPases and for maintenance of calcium homeostasis. MPP4 is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212968 cd12035 SH3_MPP1-like Src Homology 3 domain of Membrane Protein, Palmitoylated 1 (or MAGUK p55 subfamily member 1)-like proteins. This subfamily includes MPP1, CASK (Calcium/calmodulin-dependent Serine protein Kinase), Caenorhabditis elegans lin-2, and similar proteins. MPP1 and CASK are scaffolding proteins from the MAGUK (membrane-associated guanylate kinase) protein family, which is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). In addition, they also have the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. CASK and lin-2 also contain an N-terminal calmodulin-dependent kinase (CaMK)-like domain and two L27 domains. MPP1 is ubiquitously-expressed and plays roles in regulating neutrophil polarity, cell shape, hair cell development, and neural development and patterning of the retina. CASK is highly expressed in the mammalian nervous system and plays roles in synaptic protein targeting, neural development, and gene expression regulation. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212969 cd12036 SH3_MPP5 Src Homology 3 domain of Membrane Protein, Palmitoylated 5 (or MAGUK p55 subfamily member 5). MPP5, also called PALS1 (Protein associated with Lin7) or Nagie oko protein in zebrafish or Stardust in Drosophila, is a scaffolding protein which associates with Crumbs homolog 1 (CRB1), CRB2, or CRB3 through its PDZ domain and with PALS1-associated tight junction protein (PATJ) or multi-PDZ domain protein 1 (MUPP1) through its L27 domain. The resulting tri-protein complexes are core proteins of the Crumb complex, which localizes at tight junctions or subapical regions, and is involved in the maintenance of apical-basal polarity in epithelial cells and the morphogenesis and function of photoreceptor cells. MPP5 is critical for the proper stratification of the retina and is also expressed in T lymphocytes where it is important for TCR-mediated activation of NFkB. Drosophila Stardust exists in several isoforms, some of which show opposing functions in photoreceptor cells, which suggests that the relative ratio of different Crumbs complexes regulates photoreceptor homeostasis. MPP5 contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, it also contains the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 63 -212970 cd12037 SH3_MPP2 Src Homology 3 domain of Membrane Protein, Palmitoylated 2 (or MAGUK p55 subfamily member 2). MPP2 is a scaffolding protein that interacts with the non-receptor tyrosine kinase c-Src in epithelial cells to negatively regulate its activity and morphological function. It is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, it also contains the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 59 -212971 cd12038 SH3_MPP6 Src Homology 3 domain of Membrane Protein, Palmitoylated 6 (or MAGUK p55 subfamily member 6). MPP6, also called Veli-associated MAGUK 1 (VAM-1) or PALS2, is a scaffolding protein that binds to Veli-1, a homolog of Caenorhabditis Lin-7. It is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, it also contains the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 61 -212972 cd12039 SH3_MPP3 Src Homology 3 domain of Membrane Protein, Palmitoylated 3 (or MAGUK p55 subfamily member 3). MPP3 is a scaffolding protein that colocalizes with MPP5 and CRB1 at the subdpical region adjacent to adherens junctions and may function in photoreceptor polarity. It interacts with some nectins and regulates their trafficking and processing. Nectins are cell-cell adhesion proteins involved in the establishment apical-basal polarity at cell adhesion sites. It is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains two L27 domains followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -212973 cd12040 SH3_CACNB2 Src Homology 3 domain of Voltage-dependent L-type calcium channel subunit beta2. The beta2 subunit of voltage-dependent calcium channels (Ca(V)s) is one of four beta subunits present in vertebrates. It is expressed in the heart and is present in specific neuronal cells including cerebellar Purkinje cells, hippocampal pyramidal neurons, and photoreceptors. Knockout of the beta2 gene in mice results in embryonic lethality, demonstrating its importance in development. Ca(V)s are multi-protein complexes that regulate the entry of calcium into cells. They impact muscle contraction, neuronal migration, hormone and neurotransmitter release, and the activation of calcium-dependent signaling pathways. They are composed of four subunits: alpha1, alpha2delta, beta, and gamma. The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 69 -212974 cd12041 SH3_CACNB1 Src Homology 3 domain of Voltage-dependent L-type calcium channel subunit beta-1. The beta1 subunit of voltage-dependent calcium channels (Ca(V)s) is one of four beta subunits present in vertebrates. It is the only beta subunit, as the beta1a variant, expressed in skeletal muscle; the beta1b variant is also widely expressed in other tissues including the heart and brain. Knockout of the beta1 gene in mice results in embryonic lethality, demonstrating its importance in development. Ca(V)s are multi-protein complexes that regulate the entry of calcium into cells. They impact muscle contraction, neuronal migration, hormone and neurotransmitter release, and the activation of calcium-dependent signaling pathways. They are composed of four subunits: alpha1, alpha2delta, beta, and gamma. The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 68 -212975 cd12042 SH3_CACNB3 Src Homology 3 domain of Voltage-dependent L-type calcium channel subunit beta3. The beta3 subunit of voltage-dependent calcium channels (Ca(V)s) is one of four beta subunits present in vertebrates. It is the main beta subunit present in smooth muscles and is strongly expressed in the brain; it is predominant in the olfactory bulb, cortex, and hippocampus. It may play a role in regulating the NMDAR (N-methyl-d-aspartate receptor) activity in the hippocampus and thus, activity-dependent synaptic plasticity and cognitive behaviors. Ca(V)s are multi-protein complexes that regulate the entry of calcium into cells. They impact muscle contraction, neuronal migration, hormone and neurotransmitter release, and the activation of calcium-dependent signaling pathways. They are composed of four subunits: alpha1, alpha2delta, beta, and gamma. The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 68 -212976 cd12043 SH3_CACNB4 Src Homology 3 domain of Voltage-dependent L-type calcium channel subunit beta4. The beta4 subunit of voltage-dependent calcium channels (Ca(V)s) is one of four beta subunits present in vertebrates. It is the only beta subunit expressed in the cochlea and is highly expressed in the brain, predominantly in the cerebellum. Ca(V)s are multi-protein complexes that regulate the entry of calcium into cells. They impact muscle contraction, neuronal migration, hormone and neurotransmitter release, and the activation of calcium-dependent signaling pathways. They are composed of four subunits: alpha1, alpha2delta, beta, and gamma. The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 68 -212977 cd12044 SH3_SKAP1 Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1. SKAP1, also called SKAP55 (Src kinase-associated protein of 55kDa), is an immune cell-specific adaptor protein that plays an important role in T-cell adhesion, migration, and integrin clustering. It is expressed exclusively in T-lymphocytes, mast cells, and macrophages. Binding partners include ADAP (adhesion and degranulation-promoting adaptor protein), Fyn, Riam, RapL, and RasGRP. It contains a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. The SH3 domain of SKAP1 is necessary for its ability to regulate T-cell conjugation with antigen-presenting cells and the formation of LFA-1 clusters. SKAP1 binds primarily to a proline-rich region of ADAP through its SH3 domain; its degradation is regulated by ADAP. A secondary interaction occurs via the ADAP SH3 domain and the RKxxYxxY motif in SKAP1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212978 cd12045 SH3_SKAP2 Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 2. SKAP2, also called SKAP55-Related (SKAP55R) or SKAP55 homolog (SKAP-HOM or SKAP55-HOM), is an immune cell-specific adaptor protein that plays an important role in adhesion and migration of B-cells and macrophages. Binding partners include ADAP (adhesion and degranulation-promoting adaptor protein), YopH, SHPS1, and HPK1. SKAP2 has also been identified as a substrate for lymphoid-specific tyrosine phosphatase (Lyp), which has been implicated in a wide variety of autoimmune diseases. It contains a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. Like SKAP1, SKAP2 is expected to bind primarily to a proline-rich region of ADAP through its SH3 domain; its degradation may be regulated by ADAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212979 cd12046 SH3_p67phox_C C-terminal (or second) Src Homology 3 domain of the p67phox subunit of NADPH oxidase. p67phox, also called Neutrophil cytosol factor 2 (NCF-2), is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) which plays a crucial role in the cellular response to bacterial infection. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p67phox plays a regulatory role and contains N-terminal TPR, first SH3 (or N-terminal or central SH3), PB1, and C-terminal SH3 domains. It binds, via its C-terminal SH3 domain, to a proline-rich region of p47phox and upon activation, this complex assembles with flavocytochrome b558, the Nox2-p22phox heterodimer. Concurrently, RacGTP translocates to the membrane and interacts with the TPR domain of p67phox, which leads to the activation of NADPH oxidase. The PB1 domain of p67phox binds to its partner PB1 domain in p40phox, and this facilitates the assembly of p47phox-p67phox at the membrane. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212980 cd12047 SH3_Noxa1_C C-terminal Src Homology 3 domain of NADPH oxidase activator 1. Noxa1 is a homolog of p67phox and is a cytosolic subunit of the nonphagocytic NADPH oxidase complex Nox1, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Noxa1 is co-expressed with Nox1 in colon, stomach, uterus, prostate, and vascular smooth muscle cells, consistent with its regulatory role. It does not interact with p40phox, unlike p67phox, making Nox1 activity independent of p40phox, unlike Nox2. Noxa1 contains TPR, PB1, and C-terminal SH3 domains, but lacks the central SH3 domain that is present in p67phox. The TPR domain binds activated GTP-bound Rac. The C-terminal SH3 domain binds the polyproline motif found at the C-terminus of Noxo1, a homolog of p47phox. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212981 cd12048 SH3_DOCK3_B Src Homology 3 domain of Class B Dedicator of Cytokinesis 3. Dock3, also called modifier of cell adhesion (MOCA), and presenilin binding protein (PBP), is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; Dock3 is a specific GEFs for Rac. The SH3 domain of Dock3 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock3 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212982 cd12049 SH3_DOCK4_B Src Homology 3 domain of Class B Dedicator of Cytokinesis 4. Dock4 is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. It may also regulate spine morphology and synapse formation. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. The SH3 domain of Dock4 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock4 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212983 cd12050 SH3_DOCK2_A Src Homology 3 domain of Class A Dedicator of Cytokinesis protein 2. Dock2 is a hematopoietic cell-specific, class A DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; they are specific GEFs for Rac. The SH3 domain of Dock2 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock2 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212984 cd12051 SH3_DOCK1_5_A Src Homology 3 domain of Class A Dedicator of Cytokinesis proteins 1 and 5. Dock1, also called Dock180, and Dock5 are class A DOCKs and are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. Dock5 functions upstream of Rac1 to regulate osteoclast function. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; they are specific GEFs for Rac. The SH3 domain of Dock1 binds to DHR-2 in an autoinhibitory manner; binding of Elmo to the SH3 domain of Dock1 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212985 cd12052 SH3_CIN85_1 First Src Homology 3 domain (SH3A) of Cbl-interacting protein of 85 kDa. CIN85, also called SH3 domain-containing kinase-binding protein 1 (SH3KBP1) or CD2-binding protein 3 (CD2BP3) or Ruk, is an adaptor protein that is involved in the downregulation of receptor tyrosine kinases by facilitating endocytosis through interaction with endophilin-associated ubiquitin ligase Cbl proteins. It is also important in many other cellular processes including vesicle-mediated transport, cytoskeletal remodelling, apoptosis, cell adhesion and migration, and viral infection, among others. CIN85 exists as multiple variants from alternative splicing; the main variant contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the first SH3 domain (SH3A) of CIN85; SH3A binds to internal proline-rich motifs within the proline-rich region. This intramolecular interaction serves as a regulatory mechanism to keep CIN85 in a closed conformation, preventing the recruitment of other proteins. SH3A has also been shown to bind ubiquitin and to an atypical PXXXPR motif at the C-terminus of Cbl and the cytoplasmic end of the cell adhesion protein CD2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212986 cd12053 SH3_CD2AP_1 First Src Homology 3 domain (SH3A) of CD2-associated protein. CD2AP, also called CMS (Cas ligand with Multiple SH3 domains) or METS1 (Mesenchyme-to-Epithelium Transition protein with SH3 domains), is a cytosolic adaptor protein that plays a role in regulating the cytoskeleton. It is critical in cell-to-cell union necessary for kidney function. It also stabilizes the contact between a T cell and antigen-presenting cells. It is primarily expressed in podocytes at the cytoplasmic face of the slit diaphragm and serves as a linker anchoring podocin and nephrin to the actin cytoskeleton. CD2AP contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the first SH3 domain (SH3A) of CD2AP. SH3A binds to the PXXXPR motif present in c-Cbl and the cytoplasmic domain of cell adhesion protein CD2. Its interaction with CD2 anchors CD2 at sites of cell contact. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212987 cd12054 SH3_CD2AP_2 Second Src Homology 3 domain (SH3B) of CD2-associated protein. CD2AP, also called CMS (Cas ligand with Multiple SH3 domains) or METS1 (Mesenchyme-to-Epithelium Transition protein with SH3 domains), is a cytosolic adaptor protein that plays a role in regulating the cytoskeleton. It is critical in cell-to-cell union necessary for kidney function. It also stabilizes the contact between a T cell and antigen-presenting cells. It is primarily expressed in podocytes at the cytoplasmic face of the slit diaphragm and serves as a linker anchoring podocin and nephrin to the actin cytoskeleton. CD2AP contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the second SH3 domain (SH3B) of CD2AP. SH3B binds to c-Cbl in a site (TPSSRPLR is the core binding motif) distinct from the c-Cbl/SH3A binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -212988 cd12055 SH3_CIN85_2 Second Src Homology 3 domain (SH3B) of Cbl-interacting protein of 85 kDa. CIN85, also called SH3 domain-containing kinase-binding protein 1 (SH3KBP1) or CD2-binding protein 3 (CD2BP3) or Ruk, is an adaptor protein that is involved in the downregulation of receptor tyrosine kinases by facilitating endocytosis through interaction with endophilin-associated ubiquitin ligase Cbl proteins. It is also important in many other cellular processes including vesicle-mediated transport, cytoskeletal remodelling, apoptosis, cell adhesion and migration, and viral infection, among others. CIN85 exists as multiple variants from alternative splicing; the main variant contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the second SH3 domain (SH3B) of CIN85. SH3B has been shown to bind Cbl proline-rich peptides and ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -212989 cd12056 SH3_CD2AP_3 Third Src Homology 3 domain (SH3C) of CD2-associated protein. CD2AP, also called CMS (Cas ligand with Multiple SH3 domains) or METS1 (Mesenchyme-to-Epithelium Transition protein with SH3 domains), is a cytosolic adaptor protein that plays a role in regulating the cytoskeleton. It is critical in cell-to-cell union necessary for kidney function. It also stabilizes the contact between a T cell and antigen-presenting cells. It is primarily expressed in podocytes at the cytoplasmic face of the slit diaphragm and serves as a linker anchoring podocin and nephrin to the actin cytoskeleton. CD2AP contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the third SH3 domain (SH3C) of CD2AP. SH3C has been shown to bind ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -212990 cd12057 SH3_CIN85_3 Third Src Homology 3 domain (SH3C) of Cbl-interacting protein of 85 kDa. CIN85, also called SH3 domain-containing kinase-binding protein 1 (SH3KBP1) or CD2-binding protein 3 (CD2BP3) or Ruk, is an adaptor protein that is involved in the downregulation of receptor tyrosine kinases by facilitating endocytosis through interaction with endophilin-associated ubiquitin ligase Cbl proteins. It is also important in many other cellular processes including vesicle-mediated transport, cytoskeletal remodelling, apoptosis, cell adhesion and migration, and viral infection, among others. CIN85 exists as multiple variants from alternative splicing; the main variant contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the third SH3 domain (SH3C) of CIN85. SH3C has been shown to bind ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 56 -212991 cd12058 SH3_MLK4 Src Homology 3 domain of Mixed Lineage Kinase 4. MLK4 is a Serine/Threonine Kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. MLK4 contains an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212992 cd12059 SH3_MLK1-3 Src Homology 3 domain of Mixed Lineage Kinases 1, 2, and 3. MLKs 1, 2, and 3 are Serine/Threonine Kinases (STKs), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. Little is known about the specific function of MLK1, also called MAP3K9. It is capable of activating the c-Jun N-terminal kinase pathway. Mice lacking both MLK1 and MLK2 are viable, fertile, and have normal life spans. MLK2, also called MAP3K10, is abundant in brain, skeletal muscle, and testis. It functions upstream of the MAPK, c-Jun N-terminal kinase. It binds hippocalcin, a calcium-sensor protein that protects neurons against calcium-induced cell death. Both MLK2 and hippocalcin may be associated with the pathogenesis of Parkinson's disease. MLK3, also called MAP3K11, is highly expressed in breast cancer cells and its signaling through c-Jun N-terminal kinase has been implicated in the migration, invasion, and malignancy of cancer cells. It also functions as a negative regulator of Inhibitor of Nuclear Factor-KappaB Kinase (IKK) and thus, impacts inflammation and immunity. MLKs contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212993 cd12060 SH3_alphaPIX Src Homology 3 domain of alpha-Pak Interactive eXchange factor. Alpha-PIX, also called Rho guanine nucleotide exchange factor 6 (ARHGEF6) or Cool (Cloned out of Library)-2, activates small GTPases by exchanging bound GDP for free GTP. It acts as a GEF for both Cdc42 and Rac 1, and is localized in dendritic spines where it regulates spine morphogenesis. It controls dendritic length and spine density in the hippocampus. Mutations in the ARHGEF6 gene cause X-linked intellectual disability in humans. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 58 -212994 cd12061 SH3_betaPIX Src Homology 3 domain of beta-Pak Interactive eXchange factor. Beta-PIX, also called Rho guanine nucleotide exchange factor 7 (ARHGEF7) or Cool (Cloned out of Library)-1, activates small GTPases by exchanging bound GDP for free GTP. It acts as a GEF for both Cdc42 and Rac 1, and plays important roles in regulating neuroendocrine exocytosis, focal adhesion maturation, cell migration, synaptic vesicle localization, and insulin secretion. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -212995 cd12062 SH3_Caskin1 Src Homology 3 domain of CASK interacting protein 1. Caskin1 is a multidomain adaptor protein that contains six ankyrin repeats, a single SH3 domain, tandem sterile alpha motif (SAM) domains, and a long disordered proline-rich region. It is expressed at high levels in the brain and is localized in presynaptic regions. It binds to the multidomain scaffolding protein CASK through the CaMK domain in competition with Munc-interacting protein 1 (Mint1). CASK participates in one of two evolutionarily conserved tripartite complexes containing either Mint1 and Velis or Caskin1 and Velis. Caskin1 may play a role in infantile myoclonic epilepsy. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 62 -212996 cd12063 SH3_Caskin2 Src Homology 3 domain of CASK interacting protein 2. Caskin2 is a multidomain adaptor protein that contains six ankyrin repeats, a single SH3 domain, tandem sterile alpha motif (SAM) domains, and a long disordered proline-rich region. It shares a domain architecture with Caskin1, but does not bind CASK. The function of Caskin2 is still unknown. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 62 -212997 cd12064 SH3_GRAF Src Homology 3 domain of GTPase Regulator Associated with Focal adhesion kinase. GRAF, also called Rho GTPase activating protein 26 (ARHGAP26), Oligophrenin-1-like (OPHN1L) or GRAF1, is a GAP with activity towards RhoA and Cdc42 and is only weakly active towards Rac1. It influences Rho-mediated cytoskeletal rearrangements and binds focal adhesion kinase (FAK), which is a critical component of integrin signaling. It is essential for the major clathrin-independent endocytic pathway mediated by pleiomorphic membranes. GRAF contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. The SH3 domain of GRAF binds PKNbeta, a target of the small GTPase Rho. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 56 -212998 cd12065 SH3_GRAF2 Src Homology 3 domain of GTPase Regulator Associated with Focal adhesion kinase 2. GRAF2, also called Rho GTPase activating protein 10 (ARHGAP10) or PS-GAP, is a GAP with activity towards Cdc42 and RhoA. It regulates caspase-activated p21-activated protein kinase-2 (PAK-2p34). GRAF2 interacts with PAK-2p34, leading to its stabilization and decrease of cell death. It is highly expressed in skeletal muscle, and is involved in alpha-catenin recruitment at cell-cell junctions. GRAF2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. The SH3 domain of GRAF binds PKNbeta, a target of the small GTPase Rho. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 54 -212999 cd12066 SH3_GRAF3 Src Homology 3 domain of GTPase Regulator Associated with Focal adhesion kinase 3. GRAF3 is also called Rho GTPase activating protein 42 (ARHGAP42) or ARHGAP10-like. Though its function has not been characterized, it may be a GAP with activity towards RhoA and Cdc42, based on its similarity to GRAF and GRAF2. It contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. The SH3 domain of GRAF and GRAF2 binds PKNbeta, a target of the small GTPase Rho. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 55 -213000 cd12067 SH3_MYO15A Src Homology 3 domain of Myosin XVa. Myosin XVa is an unconventional myosin that is critical for the normal growth of mechanosensory stereocilia of inner ear hair cells. Mutations in the myosin XVa gene are associated with nonsyndromic hearing loss. Myosin XVa contains a unique N-terminal extension followed by a motor domain, light chain-binding IQ motifs, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain, and a PDZ domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 80 -213001 cd12068 SH3_MYO15B Src Homology 3 domain of Myosin XVb. Myosin XVb, also called KIAA1783, was named based on its similarity with myosin XVa. It is a transcribed and unprocessed pseudogene whose predicted amino acid sequence contains mutated or deleted amino acid residues that are normally conserved and important for myosin function. The related myosin XVa is important for normal growth of mechanosensory stereocilia of inner ear hair cells. Myosin XVa contains a unique N-terminal extension followed by a motor domain, light chain-binding IQ motifs, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain, and a PDZ domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 55 -213002 cd12069 SH3_ARHGAP27 Src Homology 3 domain of Rho GTPase-activating protein 27. Rho GTPase-activating proteins (RhoGAPs or ARHGAPs) bind to Rho proteins and enhance the hydrolysis rates of bound GTP. ARHGAP27, also called CAMGAP1, shows GAP activity towards Rac1 and Cdc42. It binds the adaptor protein CIN85 and may play a role in clathrin-mediated endocytosis. It contains SH3, WW, Pleckstin homology (PH), and RhoGAP domains. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 57 -213003 cd12070 SH3_ARHGAP12 Src Homology 3 domain of Rho GTPase-activating protein 12. Rho GTPase-activating proteins (RhoGAPs or ARHGAPs) bind to Rho proteins and enhance the hydrolysis rates of bound GTP. ARHGAP12 has been shown to display GAP activity towards Rac1. It plays a role in regulating hepatocyte growth factor (HGF)-driven cell growth and invasiveness. It contains SH3, WW, Pleckstin homology (PH), and RhoGAP domains. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 60 -213004 cd12071 SH3_FBP17 Src Homology 3 domain of Formin Binding Protein 17. Formin Binding Protein 17 (FBP17), also called FormiN Binding Protein 1 (FNBP1), is involved in dynamin-mediated endocytosis. It is recruited to clathrin-coated pits late in the endocytosis process and may play a role in the invagination and scission steps. FBP17 binds in vivo to tankyrase, a protein involved in telomere maintenance and mitogen activated protein kinase (MAPK) signaling. It contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain, a Cdc42-binding HR1 domain, and a C-terminal SH3 domain. The SH3 domain of the related protein, CIP4, associates with Gapex-5, a Rab31 GEF. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -213005 cd12072 SH3_FNBP1L Src Homology 3 domain of Formin Binding Protein 1-Like. FormiN Binding Protein 1-Like (FNBP1L), also known as Toca-1 (Transducer of Cdc42-dependent actin assembly), forms a complex with neural Wiskott-Aldrich syndrome protein (N-WASP). The FNBP1L/N-WASP complex induces the formation of filopodia and endocytic vesicles. FNBP1L is required for Cdc42-induced actin assembly and is essential for autophagy of intracellular pathogens. It contains an N-terminal F-BAR domain, a central Cdc42-binding HR1 domain, and a C-terminal SH3 domain. The SH3 domain of the related protein, CIP4, associates with Gapex-5, a Rab31 GEF. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -213006 cd12073 SH3_HS1 Src homology 3 domain of Hematopoietic lineage cell-specific protein 1. HS1, also called HCLS1 (hematopoietic cell-specific Lyn substrate 1), is a cortactin homolog expressed specifically in hematopoietic cells. It is an actin regulatory protein that binds the Arp2/3 complex and stabilizes branched actin filaments. It is required for cell spreading and signaling in lymphocytes. It regulates cytoskeletal remodeling that controls lymphocyte trafficking, and it also affects tissue invasion and infiltration of leukemic B cells. Like cortactin, HS1 contains an N-terminal acidic domain, several copies of a repeat domain found in cortactin and HS1, a proline-rich region, and a C-terminal SH3 domain. The N-terminal region binds the Arp2/3 complex and F-actin, while the C-terminal region acts as an adaptor or scaffold that can connect varied proteins that bind the SH3 domain within the actin network. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -213007 cd12074 SH3_Tks5_1 First Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains. Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the first SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -213008 cd12075 SH3_Tks4_1 First Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains. Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the first SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -213009 cd12076 SH3_Tks4_2 Second Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains. Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the second SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -213010 cd12077 SH3_Tks5_2 Second Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains. Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the second SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -213011 cd12078 SH3_Tks4_3 Third Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains. Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the third SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 53 -213012 cd12079 SH3_Tks5_3 Third Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains. Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the third SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 54 -213013 cd12080 SH3_MPP1 Src Homology 3 domain of Membrane Protein, Palmitoylated 1 (or MAGUK p55 subfamily member 1). MPP1, also called 55 kDa erythrocyte membrane protein (p55), is a ubiquitously-expressed scaffolding protein that plays roles in regulating neutrophil polarity, cell shape, hair cell development, and neural development and patterning of the retina. It was originally identified as an erythrocyte protein that stabilizes the actin cytoskeleton to the plasma membrane by forming a complex with 4.1R protein and glycophorin C. MPP1 is one of seven vertebrate homologs of the Drosophila Stardust protein, which is required in establishing cell polarity, and it contains the three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, it also contains the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -213014 cd12081 SH3_CASK Src Homology 3 domain of Calcium/calmodulin-dependent Serine protein Kinase. CASK is a scaffolding protein that is highly expressed in the mammalian nervous system and plays roles in synaptic protein targeting, neural development, and gene expression regulation. CASK interacts with many different binding partners including parkin, neurexin, syndecans, calcium channel proteins, caskin, among others, to perform specific functions in different subcellular locations. Disruption of the CASK gene in mice results in neonatal lethality while mutations in the human gene have been associated with X-linked mental retardation. Drosophila CASK is associated with both pre- and postsynaptic membranes and is crucial in synaptic transmission and vesicle cycling. CASK contains an N-terminal calmodulin-dependent kinase (CaMK)-like domain, two L27 domains, followed by the core of three domains characteristic of MAGUK (membrane-associated guanylate kinase) proteins: PDZ, SH3, and guanylate kinase (GuK). In addition, it also contains the Hook (Protein 4.1 Binding) motif in between the SH3 and GuK domains. The GuK domain in MAGUK proteins is enzymatically inactive; instead, the domain mediates protein-protein interactions and associates intramolecularly with the SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 62 -240527 cd12082 MATE_like Multidrug and toxic compound extrusion family and similar proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. MATE has also been identified as a large multigene family in plants, where the proteins are linked to disease resistance. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 420 -213373 cd12083 DD_cGKI Dimerization/Docking domain of Cyclic GMP-dependent Protein Kinase I. Cyclic GMP-dependent Protein Kinase I (PKG1 or cGKI) is a Serine/Threonine Kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. They contain an N-terminal regulatory domain containing a dimerization/docking region and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is also expressed at lower concentrations in other tissues. It is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. The dimerization/docking (D/D) domain is a leucine/isoleucine zipper that mediates both homodimerization and interaction with isotype-specific G-kinase-anchoring proteins (GKAPs). The D/D domain of the two variants (alpha and beta) differ, allowing their targeting to different subcellular compartments and intracellular substrates. 48 -213043 cd12084 DD_R_PKA Dimerization/Docking domain of the Regulatory subunit of cAMP-dependent protein kinase and similar domains. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence (IS), and two c-AMP binding domains. RI and RII subunits are distinguished by their IS; RII subunits contain a phosphorylation site and are both substrates and inhibitors while RI subunits are pseudo-substrates. RI subunits require ATP and Mg ions to form a stable holoenzyme while RII subunits do not. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 37 -213374 cd12085 DD_cGKI-alpha Dimerization/Docking domain of Cyclic GMP-dependent Protein Kinase I alpha. Cyclic GMP-dependent Protein Kinase I (PKG1 or cGKI) is a Serine/Threonine Kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. They contain an N-terminal regulatory domain containing a dimerization/docking region and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. The dimerization/docking (D/D) domain is a leucine/isoleucine zipper that mediates both homodimerization and interaction with isotype-specific G-kinase-anchoring proteins (GKAPs). The D/D domain of the two variants (alpha and beta) differ, allowing for their targeting to different subcellular compartments and intracellular substrates. cGKI-alpha specifically binds to myosin light chain phosphatase targeting subunit (MYPT1) and the regulator of G-protein signaling-2 (RGS-2). cGKI-alpha activates the phosphatase activity of MYPT1, resulting in vasorelaxation. It increases the activity of RGS-2 toward G proteins, with implications in the downstream signaling for vasoconstrictive agents. 48 -213375 cd12086 DD_cGKI-beta Dimerization/Docking domain of Cyclic GMP-dependent Protein Kinase I beta. Cyclic GMP-dependent Protein Kinase I (PKG1 or cGKI) is a Serine/Threonine Kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. They contain an N-terminal regulatory domain containing a dimerization/docking region and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. The dimerization/docking (D/D) domain is a leucine/isoleucine zipper that mediates both homodimerization and interaction with isotype-specific G-kinase-anchoring proteins (GKAPs). The D/D domain of the two variants (alpha and beta) differ, allowing for their targeting to different subcellular compartments and intracellular substrates. cGKI-beta binds specifically to inositol triphosphate receptor-associated PKG substrate (IRAG) and the transcriptional regulator TFII-I. Phosphorylation of IRAG by cGKI-beta contributes to smooth muscle relaxation while phosphorylation of TFII-I modulates its co-activator functions for serum response factor and Smad transcription factors. 52 -213052 cd12087 TM_EGFR-like Transmembrane domain of the Epidermal Growth Factor Receptor family of Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER, ErbB) subfamily members include EGFR (HER1, ErbB1), HER2 (ErbB2), HER3 (ErbB3), HER4 (ErbB4), and similar proteins. They are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. They are activated by ligand-induced dimerization, resulting in the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Collectively, they can recognize a variety of ligands including EGF, TGFalpha, and neuregulins, among others. All four subfamily members can form homo- or heterodimers. HER3 contains an impaired kinase domain and depends on its heterodimerization partner for activation. EGFR subfamily members are involved in signaling pathways leading to a broad range of cellular responses including cell proliferation, differentiation, migration, growth inhibition, and apoptosis. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of EGFR family RTKs have been associated with increased breast cancer risk. 38 -277187 cd12088 helicase_insert_domain helicase_insert_domain. helicase_insert_domain; This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases, like archaeal Hef helicase, MDA5-like helicases and FancM-like helicases. The exact function of this domain is unknown, but seems to play a role in interaction with nucleotides and/or the stabilization of the nucleotide complex. 82 -277188 cd12089 Hef_ID insert domain of Archaeal Hef helicase/nuclease. Archaeal Hef helicase/nuclease, originally identified in the hyperthermophilic archaeon Pyrococcus furiosus, contains an N-terminal SF2 helicase domain and a C-terminal XPF/Mus81-type nuclease domain. Hef has been shown to process flap- or fork-DNA structures, and that both helicase and nuclease domain independently recognize branched DNA, with a strong preference for the forked DNA. The SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. This domain which is not present in all SF2 helicases, has been shown to play an important role in branched structure processing. 119 -277189 cd12090 MDA5_ID Insert domain of MDA5. MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), as well as RIG-I (Retinoic acid Inducible Gene I, also known as DDX58) and LPG2 (also known as DHX58), contain two N-terminal CARD domains and a C-terminal SF2 helicase domain. They are cytoplasmic DEAD box RNA helicases acting as key innate immune pattern-recognition receptor (PRRs) that play an important role in host antiviral response by sensing incoming viral RNA. Their SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. The inserted domain is involved in conformational changes upon ligand binding. 120 -277190 cd12091 FANCM_ID Insert domain of FANCM and related proteins. FANCM and related proteins, like Mph1 and Fml1, are DNA junction-specific helicases/translocases that bind to and process perturbed replication forks and intermediates of homologous recombination. FANCM contains an N-terminal superfamily 2 helicase (SF2) domain, although FANCM, in contrast to other members of this family, does not exhibit DNA helicase activity. The SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. FANCM is a component of the Fanconi anaemia (FA) core complex. FA is a rare genetic disease in humans that is associated with progressive bone marrow failure, a variety of developmental abnormalities, and a high incidence of cancer. A key role of this complex is to monoubiquitination of FANCD2 and FANCI during S-phase and in response to DNA damage. The role of FANCM during this process seems to be the recruitment of the complex to chromatin. 116 -213053 cd12092 TM_ErbB4 Transmembrane domain of ErbB4, a Protein Tyrosine Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. ErbB4 (HER4) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. It is activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands that bind ErbB4 fall into two groups, the neuregulins (or heregulins) and some EGFR (HER1, ErbB1) ligands including betacellulin, HBEGF, and epiregulin. All four neuregulins (NRG1-4) interact with ErbB4. Upon ligand binding, ErbB4 forms homo- or heterodimers with other ErbB proteins. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of ErbB4 have been associated with increased breast cancer risk. ErbB4 is essential in embryonic development. It is implicated in mammary gland, cardiac, and neural development. As a postsynaptic receptor of NRG1, ErbB4 plays an important role in synaptic plasticity and maturation. The impairment of NRG1/ErbB4 signaling may contribute to schizophrenia. 44 -213054 cd12093 TM_ErbB1 Transmembrane domain of Epidermal Growth Factor Receptor or ErbB1, a Protein Tyrosine Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. EGFR (HER1, ErbB1) is a receptor PTK (RTK) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. It is activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. Ligands for ErbB1 include EGF, heparin binding EGF-like growth factor (HBEGF), epiregulin, amphiregulin, TGFalpha, and betacellulin. Upon ligand binding, ErbB1 can form homo- or heterodimers with other EGFR/ErbB subfamily members. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of ErbB1 have been associated with increased breast cancer risk. The ErbB1 signaling pathway is one of the most important pathways regulating cell proliferation, differentiation, survival, and growth. A number of monoclonal antibodies and small molecule inhibitors have been developed that target ErbB1, including the antibodies Cetuximab and Panitumumab, which are used in combination with other therapies for the treatment of colorectal cancer and non-small cell lung carcinoma (NSCLC). The small molecule inhibitors Gefitinib (Iressa) and Erlotinib (Tarceva), already used for NSCLC, are undergoing clinical trials for other types of cancer including gastrointestinal, breast, head and neck, and bladder. 44 -213055 cd12094 TM_ErbB2 Transmembrane domain of ErbB2, a Protein Tyrosine Kinase. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. ErbB2 (HER2, HER2/neu) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. It is activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. ErbB2 does not bind to any known EGFR subfamily ligands, but contributes to the kinase activity of all possible heterodimers. It acts as the preferred partner of other ligand-bound EGFR proteins and functions as a signal amplifier, with the ErbB2-ErbB3 heterodimer being the most potent pair in mitogenic signaling. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of ErbB2 have been associated with increased breast cancer risk. ErbB2 plays an important role in cell development, proliferation, survival and motility. Overexpression of ErbB2 results in its activation and downstream signaling, even in the absence of ligand. ErbB2 overexpression, mainly due to gene amplification, has been shown in a variety of human cancers. Its role in breast cancer is especially well-documented. ErbB2 is up-regulated in about 25% of breast tumors and is associated with increases in tumor aggressiveness, recurrence and mortality. ErbB2 is a target for monoclonal antibodies and small molecule inhibitors, which are being developed as treatments for cancer. The first humanized antibody approved for clinical use is Trastuzumab (Herceptin), which is being used in combination with other therapies to improve the survival rates of patients with HER2-overexpressing breast cancer. 44 -213056 cd12095 TM_ErbB3 Transmembrane domain of ErbB3, a Protein Tyrosine Kinase. ErbB3 (HER3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. ErbB receptors are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. ErbB3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. ErbB3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The ErbB2-ErbB3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of ErbB receptors have been associated with increased breast cancer risk. ErbB3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. 39 -213044 cd12097 DD_RI_PKA Dimerization/Docking domain of the Type I Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RI subunits are pseudo-substrates as they do not contain a phosphorylation site in their inhibitory site unlike RII subunits. RIalpha function is required for normal development as its deletion is embryonically lethal. RIbeta is expressed highly in the brain and is associated with hippocampal function. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 44 -213045 cd12098 DD_R_PKA_fungi Dimerization/Docking domain of the Regulatory subunit of fungal cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. The R subunit of fungal PKA is encoded by a single gene, which is called by various names in different organisms (for example: Yarrowia lipolytica RKA1, Saccharomyces cerevisiae Bcy1, and Schizosaccharomyces pombe Cgs1). Although most characterized PKA holoenzymes are tetramers, Y. lipolytica PKA has been reported to be a dimer of RKA1 and the catalytic subunit TPK1. RKA1 is essential and promotes hyphal growth. Cgs1 is essential for sexual differentiation of S. pombe; mutants with defective Cgs1 are partially sterile. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain of metazoan R subunits dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs). The D/D domain of fungal R subunits may also serve as a dimerization domain, in the case of heterotetrameric PKAs. Fungal PKA plays a major role in controlling cell growth and metabolism in response to nutrients and stress conditions. 38 -213046 cd12099 DD_RII_PKA Dimerization/Docking domain of the Type II Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RII subunits contain a phosphorylation site in their inhibitory site and are both substrates and inhibitors. RIIalpha plays a role in the association and dissociation of PKA with the centrosome during interphase and mitosis, respectively. RIIbeta plays an important role in adipocytes and neuronal tissues. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 39 -213047 cd12100 DD_CABYR_SP17 Dimerization/Docking domain of the sperm fibrous sheath proteins, Calcium-Binding tYrosine-phosphorylation Regulated protein and Sperm Protein 17. CABYR and SP17 are naturally located in human sperm fibrous sheath (FS). CABYR was originally isolated from spermatoza and was thought to be testis-specific, but has been recently been observed in lung and brain tumors. It is a polymorphic calcium binding protein that is phosphorylated during capacitation. SP17 plays an important role in the interaction of sperm with the zona pellucida during fertilization. It also promotes cell-cell adhesion. SP17 is found in various human tumors of unrelated histological origin including metastatic squamous cell carcinoma, multiple myeloma, ovarian cancer, primary nervous system tumors, among others. Both CABYR and SP17 contain an N-terminal dimerization/docking (D/D) domain with similarity to the D/D domain of the R subunit of cAMP-dependent protein kinase (PKA). The D/D domain of the R subunit dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. The D/D domain of CABYR and SP17 have been shown to bind to AKAP3, a protein that is also associated to the FS of mammalian spermatozoa. 39 -213048 cd12101 DD_RIalpha_PKA Dimerization/Docking domain of the Type I alpha Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RI subunits are pseudo-substrates as they do not contain a phosphorylation site in their inhibitory site unlike RII subunits. RIalpha is the key regulatory subunit responsible for maintaining cAMP control of the catalytic subunit. RIalpha function is required for normal development as its deletion is embryonically lethal due to failed cardiac morphogenesis. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 50 -213049 cd12102 DD_RIbeta_PKA Dimerization/Docking domain of the Type I beta Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RI subunits are pseudo-substrates as they do not contain a phosphorylation site in their inhibitory site unlike RII subunits. RIbeta is expressed highly in the brain and is associated with hippocampal function. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 54 -213050 cd12103 DD_RIIalpha_PKA Dimerization/Docking domain of the Type II alpha Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RII subunits contain a phosphorylation site in their inhibitory site and are both substrates and inhibitors. RIIalpha plays a role in the association and dissociation of PKA with the centrosome during interphase and mitosis, respectively. It is also involved in endosome-to-Golgi and Golgi-to-ER transport. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 41 -213051 cd12104 DD_RIIbeta_PKA Dimerization/Docking domain of the Type II beta Regulatory subunit of cAMP-dependent protein kinase. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RII subunits contain a phosphorylation site in their inhibitory site and are both substrates and inhibitors. RIIbeta plays an important role in adipocytes and neuronal tissues. Mice deficient with RIIbeta have small fat cells, and are resistant to obesity, diet-induced diabetes, and alcohol-induced motor defects. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 41 -213031 cd12105 HmuY Bacterial proteins similar to Porphyromonas gingivalis HmuY. HmuY is a hemophore that scavenges heme from infected hosts and delivers it to the outer membrane receptor HmuR. Related but uncharacterized proteins do not appear to share the specific heme-binding site. 121 -213061 cd12106 PARMER_03128_N N-terminal domain of PARMER_03128. PARMER_03128 is an uncharacterized protein from Parabacteroides merdae. This model characterizes its N-terminal domain plus that of related proteins from Bacteroidetes. Structurally, they resemble domains found in streptococcal surface proteins such as SpaP. 137 -213982 cd12107 Hemerythrin Hemerythrin. Hemerythrin (Hr) is a non-heme diiron oxygen transport protein found in four marine invertebrate phyla including priapulida, brachiopoda, sipunculida, and annelida, as well as in protozoa. Myohemerythrin (Mhr), a hemerythrin homolog, is found in the muscle tissue of sipunculids as well as in polycheate and oligocheate annelids. In addition to oxygen transport, Mhr proteins are involved in cadmium fixation and host anti-bacterial defense. Hr and Mhr proteins have the same "four alpha helix bundle" motif and active site structure. Hr forms oligomers, the octameric form being most prevalent, while Mhr is monomeric. 113 -213983 cd12108 Hr-like Hemerythrin-like domain. Hemerythrin (Hr) like domains have the same four alpha helix bundle and a similar, but slightly different active site structure than hemerythrin. They are non-heme diiron binding proteins mainly found in bacteria and eukaryotes. Like Hr, they may be involved in oxygen transport or like human FBXL5 (F-box and leucine-rich repeat protein 5), a member of this group, play a role in cellular iron homeostasis. 130 -213984 cd12109 Hr_FBXL5 Hemerythrin-like domain of FBXL5-like proteins. Human FBXL5 (F-box and leucine-rich repeat protein 5) protein plays a role in cellular iron homeostasis. It is part of an E3 ubiquitin ligase complex that targets the iron regulatory protein IRP2 for proteasomal degradation. The FBXL5's stability is regulated by iron concentration, with its iron- and oxygen-binding hemerythrin domain acting as a ligand-dependent regulatory switch. 158 -213994 cd12110 PHP_HisPPase_Hisj_like Polymerase and Histidinol Phosphatase domain of Histidinol phosphate phosphatase of Hisj like. Bacillus subtilis YtvP HisJ has strong histidinol phosphate phosphatase (HisPPase) activity. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to produce histidinol. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. The PHP domain of HisPPase is structurally homologous to other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 244 -213995 cd12111 PHP_HisPPase_Thermotoga_like Polymerase and Histidinol Phosphatase domain of Thermotoga like. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. Thermotoga PHP is an uncharacterized protein. HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to give histidinol. The HisPPase can be classified into two types: the bifunctional HisPPase found in proteobacteria that belongs to the DDDD superfamily and the monofunctional Bacillus subtilis type that is a member of the PHP family. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. The PHP domain of HisPPase is structurally homologous to other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 226 -213996 cd12112 PHP_HisPPase_Chlorobi_like Polymerase and Histidinol Phosphatase domain of Chlorobi like. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. Chlorobi PHP is uncharacterized protein. HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to produce histidinol. The HisPPase can be classified into two types: the bifunctional Hisppase found in proteobacteria that belongs to the DDDD superfamily and the monofunctional Bacillus subtilis type that is a member of the PHP family. The PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination. The PHP domain of HisPPase is structurally homologous to other members of the PHP family that have a distorted (beta/alpha)7 barrel fold with a trinuclear metal site on the C-terminal side of the barrel. 235 -213997 cd12113 PHP_PolIIIA_DnaE3 Polymerase and Histidinol Phosphatase domain of alpha-subunit of bacterial polymerase III DnaE3. PolIIIAs that contain an N-terminal PHP domain have been classified into four basic groups based on genome composition, phylogenetic, and domain structural analysis: polC, dnaE1, dnaE2, and dnaE3. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases (HisPPases), and a number of uncharacterized protein families. DNA polymerase III holoenzyme is one of the five eubacterial DNA polymerases that is responsible for the replication of the DNA duplex. The alpha subunit of DNA polymerase III core enzyme catalyzes the reaction for polymerizing both DNA strands. The PolIIIA PHP domain has four conserved sequence motifs and contains an invariant histidine that is involved in metal ion coordination, and like other PHP structures, the PolIIIA PHP exhibits a distorted (beta/alpha) 7 barrel and coordinates up to 3 metals. Initially, it was proposed that PHP region might be involved in pyrophosphate hydrolysis, but such an activity has not been found. It has been shown that the PHP of PolIIIA has a trinuclear metal complex and is capable of proofreading activity. Bacterial genome replication and DNA repair mechanisms is related to the GC content of its genomes. There is a correlation between GC content variations and the dimeric combinations of PolIIIA subunits. Eubacteria can be grouped into different GC variable groups: the full-spectrum or dnaE1 group, the high-GC or dnaE2-dnaE1 group, and the low GC or polC-dnaE3 group. 283 -341279 cd12114 A_NRPS_TlmIV_like The adenylation domain of nonribosomal peptide synthetases (NRPS), including Streptoalloteichus tallysomycin biosynthesis genes. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the TLM biosynthetic gene cluster from Streptoalloteichus that consists of nine NRPS genes; the N-terminal module of TlmVI (NRPS-5) and the starter module of BlmVI (NRPS-5) are comprised of the acyl CoA ligase (AL) and acyl carrier protein (ACP)-like domains, which are thought to be involved in the biosynthesis of the beta-aminoalaninamide moiety. 477 -341280 cd12115 A_NRPS_Sfm_like The adenylation domain of nonribosomal peptide synthetases (NRPS), including Saframycin A gene cluster from Streptomyces lavendulae. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the saframycin A gene cluster from Streptomyces lavendulae which implicates the NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. It also includes saframycin Mx1 produced by Myxococcus xanthus NRPS. 447 -341281 cd12116 A_NRPS_Ta1_like The adenylation domain of nonribosomal peptide synthetases (NRPS), including salinosporamide A polyketide synthase. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the myxovirescin (TA) antibiotic biosynthetic gene in Myxococcus xanthus; TA production plays a role in predation. It also includes the salinosporamide A polyketide synthase which is involved in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity. 470 -341282 cd12117 A_NRPS_Srf_like The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis termination module Surfactin (SrfA-C). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the adenylation domain of the Bacillus subtilis termination module (Surfactin domain, SrfA-C) which recognizes a specific amino acid building block, which is then activated and transferred to the terminal thiol of the 4'-phosphopantetheine (Ppan) arm of the downstream peptidyl carrier protein (PCP) domain. 483 -341283 cd12118 ttLC_FACS_AEE21_like Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles and Arabidopsis. This family includes fatty acyl-CoA synthetases that can activate medium to long-chain fatty acids. These enzymes catalyze the ATP-dependent acylation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. Fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. The fatty acyl-CoA synthetase from Thermus thermophiles in this family has been shown to catalyze the long-chain fatty acid, myristoyl acid. Also included in this family are acyl activating enzymes from Arabidopsis, which contains a large number of proteins from this family with up to 63 different genes, many of which are uncharacterized. 486 -341284 cd12119 ttLC_FACS_AlkK_like Fatty acyl-CoA synthetases similar to LC-FACS from Thermus thermophiles. This family includes fatty acyl-CoA synthetases that can activate medium-chain to long-chain fatty acids. They catalyze the ATP-dependent acylation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. The fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of fatty acyl-CoA esters. The fatty acyl-CoA synthetase from Thermus thermophiles in this family catalyzes the long-chain fatty acid, myristoyl acid, while another member in this family, the AlkK protein identified from Pseudomonas oleovorans, targets medium chain fatty acids. This family also includes uncharacterized FACS proteins. 518 -213376 cd12120 AMPKA_C_like C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK) alpha subunit and similar domains. This family is composed of AMPKs, microtubule-associated protein/microtubule affinity regulating kinases (MARKs), yeast Kcc4p-like proteins, plant calcineurin B-Like (CBL)-interacting protein kinases (CIPKs), and similar proteins. They are serine/threonine protein kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. AMPKs act as sensors for the energy status of the cell and are activated by cellular stresses that lead to ATP depletion such as hypoxia, heat shock, and glucose deprivation, among others. MARKs phosphorylate the tau protein and related microtubule-associated proteins (MAPs) on tubulin binding sites to induce detachment from microtubules, and are involved in the regulation of cell shape and polarity, cell cycle control, transport, and the cytoskeleton. Kcc4p and related proteins are septin-associated proteins that are involved in septin organization and in the yeast morphogenesis checkpoint coordinating the cell cycle with bud formation. CIPKs interact with the calcineurin B-like (CBL) calcium sensors to form a signaling network that decode specific calcium signals triggered by a variety of environmental stimuli including salinity, drought, cold, light, and mechanical perturbation, among others. All members of this family contain an N-terminal catalytic kinase domain and a C-terminal regulatory domain which is also called kinase associated domain 1 (KA1) in some cases. The C-terminal regulatory domain serves as a protein interaction domain in AMPKs and CIPKs. In MARKs and Kcc4p-like proteins, this domain binds phospholipids and may be involved in membrane localization. 95 -213377 cd12121 MARK_C_like C-terminal kinase associated domain 1 (KA1), a phospholipid binding domain, of microtubule affinity-regulating kinases, and similar domains. Microtubule-associated protein/microtubule affinity regulating kinases (MARKs), also called partition-defective (Par-1) kinases, are serine/threonine protein kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. They phosphorylate the tau protein and related microtubule-associated proteins (MAPs) on tubulin binding sites to induce detachment from microtubules, and are involved in the regulation of cell shape and polarity, cell cycle control, transport, and the cytoskeleton. Mammals contain four proteins, MARK1-4, encoded by distinct genes belonging to this subfamily, with additional isoforms arising from alternative splicing. In yeast, MARK/Par-1 homologs are called Kin1/2 kinases. Kin1 is a membrane-associated kinase that is involved in regulating cytokinesis and the cell surface. MARKs contain an N-terminal catalytic kinase domain, a ubiquitin-associated domain (UBA), and a C-terminal kinase associated domain (KA1). The KA1 domain binds anionic phospholipids and may be involved in membrane localization as well as in auto-inhibition of the kinase domain. 96 -213378 cd12122 AMPKA_C C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK) alpha catalytic subunit. AMPK, a serine/threonine protein kinase (STK), catalyzes the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. It acts as a sensor for the energy status of the cell and is activated by cellular stresses that lead to ATP depletion such as hypoxia, heat shock, and glucose deprivation, among others. AMPK is a heterotrimer of three subunits: alpha, beta, and gamma. Co-expression of the three subunits is required for kinase activity; in the absence of one, the other two subunits get degraded. The AMPK alpha subunit is the catalytic subunit and it contains an N-terminal kinase domain and a C-terminal regulatory domain (RD). Vertebrates contain two isoforms of the alpha subunit, alpha1 and alpha2, which are encoded by different genes, PRKAA1 and PRKAA2, respectively. The C-terminal RD of the AMPK alpha subunit is involved in AMPK heterotrimer formation. It mainly interacts with the C-terminal region of the beta subunit to form a tight alpha-beta complex that is associated with the gamma subunit. The AMPK alpha subunit RD also contains an auto-inhibitory region that interacts with the kinase domain; this inhibition is negated by the interaction with the AMPK gamma subunit. AMPK is conserved throughout evolution; the AMPK alpha subunit homologs in yeast and plants are called Snf1 and SnRK1 (Snf1 related kinase), respectively. 132 -271279 cd12124 Pgbs Protoglobins (Pgbs). Pgbs are single-domain globins of yet unknown biological function. Included in this subfamily are Pgbs from the strictly anaerobic methanogen Methanosarcina acetivorans (MaPgb) and from the obligate aerobic hyperthermophile Aeropyrum pernix (ApPgb). MaPgb is a dimeric globin which in addition to the 3-on-3 helical sandwich contains an N-terminal extension. This extension, along with other Pgb-specific loops buries the heme within the protein; two orthogonal apolar tunnels grant access of small ligand molecules to the heme. Like other globins, MaPgb can bind O2, CO and NO reversibly in vitro, however it has as unusually low O2 dissociation rate, along with a large structural distortion of the heme moiety. CO binding to and dissociation from the heme occurs through biphasic kinetics. ApPgb also contains heme, and can bind O2, CO and NO. This subfamily belongs to a family which includes the globin-coupled-sensors (GCSs) and single-domain sensor globins. It has been demonstrated that Pgbs and other single-domain globins can function as sensors, when coupled to an appropriate regulator domain. 185 -271280 cd12125 APC_alpha Allophycocyanin alpha subunit of the phycobiliosome core. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 159 -271281 cd12126 APC_beta Allophycocyanin beta subunit of the phycobiliosome core. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 163 -271282 cd12127 PE-PC-PEC_beta Beta subunits of phycocyanin, phycoerythrin and phycoerythrocyanin; phycobiliosome rod components. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). This family also includes the beta subunits of Cryptophyte phycobiliproteins which represent another type of biliprotein antenna with different structure and organization. The beta subunits of cryptophyte PBPs share a high degree of sequence identity with both the alpha and beta subunits of the cyanobacterial and red algal PBPs, however the alpha cryptophyte subunits are shorter, and unrelated. There is only one type of PBP present in a single species, either phycocyanin or phycoerythrin, but not allophycocyanin. Structurally, phycoerythrin in cryptophytes is an alpha1alpha2betabeta dimer and not a trimer as in the PBS. 171 -271283 cd12128 PBP_PBS-LCM Phycobiliprotein-like domain of the phycobiliosome core-membrane linker polypeptide. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae, they consist of a central core and radiating rods and function to harvest and channel light energy toward the photosynthetic reaction centers (RCs) within the membrane. They are comprised of phycobiliproteins or chromophorylated proteins (PBPs) maintained together by linker polypeptides. LCM is a chromophore-bearing PBS linker protein; it facilitates PBS assembly and functionally connects the PBS to the chlorophyll-containing core-complexes in the photosynthetic membrane. In addition to being a linker polypeptide that stabilizes the PBS architecture, the LCM also serves as a terminal energy acceptor. The single phycocyanobilin (PCB) chromophore of LCM are one of two terminal energy transmitters that transfer excitations from the hundreds of chromophores of the PBS to the RCs within the membrane. 170 -271284 cd12129 PE-PC-PEC_alpha Alpha subunits of phycoerythrin, phycocyanin and phycoerythrocyanin; phycobiliosome rod components. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 161 -271285 cd12130 Apl Allophycocyanin-like globins. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). This subfamily contains allophycocyanin-like proteins (Apls), which have conserved the residues critical for chromophore interactions, but may not maintain the proper alpha-beta subunit interactions and tertiary structure of phycobiliproteins. Indeed AplA isolated from Fremyella diplosiphon was not detected in phycobilisomes. As the genes encoding Apls cluster with light-responsive regulatory components, Apls may have photoresponsive regulatory role(s). 154 -271286 cd12131 HGbI_like Hell's gate globin I (HGbI) from Methylacidophilum infernorum and related proteins. HGbI is a single-domain heme-containing protein isolated from Methylacidiphilum infernorum, an aerobic acidophilic and thermophlic methanotroph. M. infernorum grows optimally at pH 2.0 and 60C and its home is New Zealands Hell's Gate geothermal park. The physiological role of HGbI has yet to be determined. It has an extremely strong resistance to auto-oxidation, and has fast oxygen-binding/slow release characteristics. Its CO on-rate is comparable to the O2 on-rate, and it is able to bind acetate with high affinity in the ferric state. The coordination of the heme iron changes in the ferrous form from pentacoordinate at low pH to predominantly hexacoordinate at high pH; in the ferric form, it is predominantly hexacoordinate at all pH. 128 -271287 cd12137 GbX Globin_X (GbX). Zebrafish globin X (GbX) is expressed at low levels in neurons of the central nervous system, and appears to be associated with the sensory system. GbX is likely to be attached to the cell membrane via S-palmitoylation and N-myristoylation. It's unlikely to have a true respiratory function as it is membrane-associated. It has been suggested that it may protect the lipids in the cell membrane from oxidation or act as a redox-sensing or signaling protein. Zebrafish GbX is hexacoordinate, and displays cooperative O2 binding. 145 -213015 cd12139 SH3_Bin1 Src Homology 3 domain of Bridging integrator 1 (Bin1), also called Amphiphysin-2. Bin1 isoforms are localized in many different tissues and may function in intracellular vesicle trafficking. It plays a role in the organization and maintenance of the T-tubule network in skeletal muscle. Mutations in Bin1 are associated with autosomal recessive centronuclear myopathy. Bin1 contains an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR) and a C-terminal SH3 domain. The SH3 domain of Bin1 forms transient complexes with actin, myosin filaments, and CDK5, to facilitate sarcomere organization and myofiber maturation. It also binds dynamin and prevents its self-assembly. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 72 -213016 cd12140 SH3_Amphiphysin_I Src Homology 3 domain of Amphiphysin I. Amphiphysins function primarily in endocytosis and other membrane remodeling events. They exist in several isoforms and mammals possess two amphiphysin proteins from distinct genes. Amphiphysin I proteins, enriched in the brain and nervous system, contain domains that bind clathrin, Adaptor Protein complex 2 (AP2), dynamin, and synaptojanin. They function in synaptic vesicle endocytosis. Human autoantibodies to amphiphysin I hinder GABAergic signaling and contribute to the pathogenesis of paraneoplastic stiff-person syndrome. Amphiphysins contain an N-terminal BAR domain with an additional N-terminal amphipathic helix (an N-BAR), a variable central domain, and a C-terminal SH3 domain. The SH3 domain of amphiphysins bind proline-rich motifs present in binding partners such as dynamin, synaptojanin, and nsP3. It also belongs to a subset of SH3 domains that bind ubiquitin in a site that overlaps with the peptide binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 72 -213017 cd12141 SH3_DNMBP_C2 Second C-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba, and similar domains. DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics. It plays an important role in regulating cell junction configuration. The C-terminal SH3 domains of DNMBP bind to N-WASP and Ena/VASP proteins, which are key regulatory proteins of the actin cytoskeleton. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 57 -213018 cd12142 SH3_D21-like Src Homology 3 domain of SH3 domain-containing protein 21 (SH3D21) and similar proteins. N-terminal SH3 domain of the uncharacterized protein SH3 domain-containing protein 21, and similar uncharacterized domains, it belongs to the CD2AP-like_3 subfamily of proteins. The CD2AP-like_3 subfamily is composed of the third SH3 domain (SH3C) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3C of both proteins have been shown to bind to ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. 55 -213019 cd12143 SH3_ARHGAP9 Src Homology 3 domain of Rho GTPase-activating protein 9 and similar proteins. Rho GTPase-activating proteins (RhoGAPs or ARHGAPs) bind to Rho proteins and enhance the hydrolysis rates of bound GTP. ARHGAP9 functions as a GAP for Rac and Cdc42, but not for RhoA. It negatively regulates cell migration and adhesion. It also acts as a docking protein for the MAP kinases Erk2 and p38alpha, and may facilitate cross-talk between the Rho GTPase and MAPK pathways to control actin remodeling. It contains SH3, WW, Pleckstin homology (PH), and RhoGAP domains. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. 57 -213387 cd12144 SDH_N_domain Saccharopine dehydrogenase N-terminal domain. SDH N-terminal domain is named due to its appearance at the N-terminal of SDH in eukaryotes, but can be found C-terminal of the SDH-like domain in other enzymes, such as the bifunctional lysine ketoglutarate reductase/saccharopine dehydrogenase enzyme. SDH catalyzes the final step in the reversible NAD-dependent oxidative deamination of saccharopine to alpha-ketoglutarate and lysine, in the alpha-aminoadipate pathway of L-lysine biosynthesis. SHD is structurally related to formate dehydrogenase and similar enzymes, having a 2-domain structure in which a Rossmann-fold NAD(P)-binding domain is inserted within the linear sequence of a catalytic domain of a related structure. 114 -213388 cd12145 Rev1_C C-terminal domain of the Y-family polymerase Rev1. Rev1 is a eukaryotic translesion synthesis (TLS) polymerase; TLS is a process that allows the bypass of a variety of DNA lesions. TLS polymerases lack proofreading activity and have low fidelity and low processivity. They use damaged DNA as templates and insert nucleotides opposite the lesions. Rev1 has both structural and enzymatic roles. Structurally, it is believed to interact with other nonclassical polymerases and replication machinery to act as a scaffold. The C-terminal domain modeled here is essential for TLS and has been shown to mediate interactions with the Rev7 subunit of the B-family TLS polymerase Pol zeta (Rev3/Rev7), as well as with the RIRs (Rev1-interacting regions) of polymerases kappa, iota, and eta. Rev1 is known to actively promote the introduction of mutations, potentially making it a significant target for cancer treatment. 94 -213389 cd12146 STING_C C-terminal domain of STING. STING (stimulator of interferon genes, also known as MITA, ERIS, MPYS and TMEM173) is a master regulator that mediates cytokine production in response to microbial invasion by directly sensing bacterial secondary messengers such as the cyclic dinucleotide bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) and leading to the activation of IFN regulatory factor 3 (IRF3) through TANK-binding kinase 1 (TBK1) stimulation. STING is also a signaling adaptor in the IFN response to cytosolic DNA. This detection of foreign materials is the first step to a successful immune responses. STING is localized in the ER and comprised of an predicted N-terminal transmembrane region and a C-terminal c-di-GMP binding domain. 181 -213390 cd12147 Cep3_C C-terminal domain of the Cep3, a subunit of the yeast centromere-binding factor 3. Cep3, together with Skp1, Ctf13, and Ndc10, forms the yeast centromere-binding factor 3 (CBF3) which initiates kinetochore assembly by binding to the CDEIII locus of centromeric DNA. Cep3 is comprised of two domains, the N-terminal DNA-binding module, a Zn2Cys6-cluster, C-terminal domain, which dimerizes and is believed to be involved in the recruitment of the Skp1-Ctf1 heterodimer. 552 -213391 cd12148 fungal_TF_MHR fungal transcription factor regulatory middle homology region. This domain is present in the large family of fungal zinc cluster transcription factors that contain an N-terminal GAL4-like C6 zinc binuclear cluster DNA-binding domain. Examples of members of this large fungal group are the following Saccharomyces cerevisiae transcription factors, GAL4, STB5, DAL81, CAT8, RDR1, HAL9, PUT3, PPR1, ASG1, RSF2, PIP2, as well as the C-terminal domain of the Cep3, a subunit of the yeast centromere-binding factor 3. It has been suggested that this region plays a regulatory role. 410 -213392 cd12149 Flavi_E_C Immunoglobulin-like domain III (C-terminal domain) of Flavivirus envelope glycoprotein E. The C-terminal domain (domain III) of Flavivirus glycoprotein E appears to be involved in low-affinity interactions with negatively charged glycoaminoglycans on the host cell surface. Domain III may also play a role in interactions with alpha-v-beta-3 integrins in West Nile virus, Japanese encephalitis virus, and Dengue virus. The interface between domain I and domain III appears to be destabilized by the low-pH environment of the endosome, and domain III may play a vital role in the conformational changes of envelope glycoprotein E that follow the clathrin-mediated endocytosis of viral particles and are a prerequisite to membrane fusion. 91 -213393 cd12150 talin-RS rod-segment of the talin C-terminal domain. The talin rod-segment characterize by this model interacts with its N-terminal FERM domain to mask its integrin-binding site and interferes with interactions between the FERM domain and the cellular membrane. Talin is a large and ubiquitous cytoskeletal protein concentrated at focal adhesion sites. It is involved in linking integrins to the actin cytoskeleton. 172 -213394 cd12151 F1-ATPase_gamma mitochondrial ATP synthase gamma subunit. The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain of F-ATPases is composed of alpha, beta, gamma, delta, and epsilon (not present in bacteria) subunits with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain. 282 -213395 cd12152 F1-ATPase_delta mitochondrial ATP synthase delta subunit. The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain. In bacteria, which is lacking a eukaryotic epsilon subunit homolog, this subunit is called the epsilon subunit. 123 -213396 cd12153 F1-ATPase_epsilon eukaryotic mitochondrial ATP synthase epsilon subunit. The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes, and in chloroplast thylakoid membranes. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinsic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits (only found in eukaryotes, lacking in bacteria) with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain.The epsilon subunit is thought to be involved in the regulation of ATP synthase, since a null mutation increased oligomycin sensitivity and decreased inhibition by inhibitor protein IF1. 45 -240631 cd12154 FDH_GDH_like Formate/glycerate dehydrogenases, D-specific 2-hydroxy acid dehydrogenases and related dehydrogenases. The formate/glycerate dehydrogenase like family contains a diverse group of enzymes such as formate dehydrogenase (FDH), glycerate dehydrogenase (GDH), D-lactate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine hydrolase, that share a common 2-domain structure. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar domains of the alpha/beta Rossmann fold NAD+ binding form. The NAD(P) binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD(P) is bound, primarily to the C-terminal portion of the 2nd (internal) domain. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of a hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. 310 -240632 cd12155 PGDH_1 Phosphoglycerate Dehydrogenase, 2-hydroxyacid dehydrogenase family. Phosphoglycerate Dehydrogenase (PGDH) catalyzes the NAD-dependent conversion of 3-phosphoglycerate into 3-phosphohydroxypyruvate, which is the first step in serine biosynthesis. Over-expression of PGDH has been implicated as supporting proliferation of certain breast cancers, while PGDH deficiency is linked to defects in mammalian central nervous system development. PGDH is a member of the 2-hydroxyacid dehydrogenase family, enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 314 -240633 cd12156 HPPR Hydroxy(phenyl)pyruvate Reductase, D-isomer-specific 2-hydroxyacid-related dehydrogenase. Hydroxy(phenyl)pyruvate reductase (HPPR) catalyzes the NADP-dependent reduction of hydroxyphenylpyruvates, hydroxypyruvate, or pyruvate to its respective lactate. HPPR acts as a dimer and is related to D-isomer-specific 2-hydroxyacid dehydrogenases, a superfamily that includes groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 301 -240634 cd12157 PTDH Thermostable Phosphite Dehydrogenase. Phosphite dehydrogenase (PTDH), a member of the D-specific 2-hydroxyacid dehydrogenase family, catalyzes the NAD-dependent formation of phosphate from phosphite (hydrogen phosphonate). PTDH has been suggested as a potential enzyme for cofactor regeneration systems. The D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD-binding domain. 318 -240635 cd12158 ErythrP_dh D-Erythronate-4-Phosphate Dehydrogenase NAD-binding and catalytic domains. D-Erythronate-4-phosphate Dehydrogenase (E. coli gene PdxB), a D-specific 2-hydroxyacid dehydrogenase family member, catalyzes the NAD-dependent oxidation of erythronate-4-phosphate, which is followed by transamination to form 4-hydroxy-L-threonine-4-phosphate within the de novo biosynthesis pathway of vitamin B6. D-Erythronate-4-phosphate dehydrogenase has the common architecture shared with D-isomer specific 2-hydroxyacid dehydrogenases but contains an additional C-terminal dimerization domain in addition to an NAD-binding domain and the "lid" domain. The lid domain corresponds to the catalytic domain of phosphoglycerate dehydrogenase and other proteins of the D-isomer specific 2-hydroxyacid dehydrogenase family, which include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. 343 -240636 cd12159 2-Hacid_dh_2 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 303 -240637 cd12160 2-Hacid_dh_3 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 310 -240638 cd12161 GDH_like_1 Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy dehydrogenase family. This group contains a variety of proteins variously identified as glycerate dehydrogenase (GDH, aka Hydroxypyruvate Reductase) and other enzymes of the 2-hydroxyacid dehydrogenase family. GDH catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 315 -240639 cd12162 2-Hacid_dh_4 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 307 -240640 cd12163 2-Hacid_dh_5 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 334 -240641 cd12164 GDH_like_2 Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy dehydrogenase family. This group contains a variety of proteins variously identified as glycerate dehydrogenase (GDH, also known as hydroxypyruvate reductase) and other enzymes of the 2-hydroxyacid dehydrogenase family. GDH catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 306 -240642 cd12165 2-Hacid_dh_6 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 314 -240643 cd12166 2-Hacid_dh_7 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 300 -240644 cd12167 2-Hacid_dh_8 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 330 -240645 cd12168 Mand_dh_like D-Mandelate Dehydrogenase-like dehydrogenases. D-Mandelate dehydrogenase (D-ManDH), identified as an enzyme that interconverts benzoylformate and D-mandelate, is a D-2-hydroxyacid dehydrogenase family member that catalyzes the conversion of c3-branched 2-ketoacids. D-ManDH exhibits broad substrate specificities for 2-ketoacids with large hydrophobic side chains, particularly those with C3-branched side chains. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Glycerate dehydrogenase catalyzes the reaction (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 321 -240646 cd12169 PGDH_like_1 Putative D-3-Phosphoglycerate Dehydrogenases. Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric. 308 -240647 cd12170 2-Hacid_dh_9 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 294 -240648 cd12171 2-Hacid_dh_10 Putative D-isomer specific 2-hydroxyacid dehydrogenases. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 310 -240649 cd12172 PGDH_like_2 Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains. Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric. 306 -240650 cd12173 PGDH_4 Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains. Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. 304 -240651 cd12174 PGDH_like_3 Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains. Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric. 305 -240652 cd12175 2-Hacid_dh_11 Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 311 -240653 cd12176 PGDH_3 Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains. Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. 304 -240654 cd12177 2-Hacid_dh_12 Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 321 -240655 cd12178 2-Hacid_dh_13 Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 317 -240656 cd12179 2-Hacid_dh_14 Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 306 -240657 cd12180 2-Hacid_dh_15 Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains. 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 308 -240658 cd12181 ceo_syn N(5)-(carboxyethyl)ornithine synthase. N(5)-(carboxyethyl)ornithine synthase (ceo_syn) catalyzes the NADP-dependent conversion of N5-(L-1-carboxyethyl)-L-ornithine to L-ornithine + pyruvate. Ornithine plays a key role in the urea cycle, which in mammals is used in arginine biosynthesis, and is a precursor in polyamine synthesis. ceo_syn is related to the NAD-dependent L-alanine dehydrogenases. Like formate dehydrogenase and related enzymes, ceo_syn is comprised of 2 domains connected by a long alpha helical stretch, each resembling a Rossmann fold NAD-binding domain. The NAD-binding domain is inserted within the linear sequence of the more divergent catalytic domain. These ceo_syn proteins have a partially conserved NAD-binding motif and active site residues that are characteristic of related enzymes such as Saccharopine Dehydrogenase. 295 -240659 cd12183 LDH_like_2 D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains. D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-hydroxyisocaproic acid dehydrogenase (D-HicDH) and shares the 2-domain structure of formate dehydrogenase. D-2-hydroxyisocaproate dehydrogenase-like (HicDH) proteins are NAD-dependent members of the hydroxycarboxylate dehydrogenase family, and share the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 328 -240660 cd12184 HGDH_like (R)-2-Hydroxyglutarate Dehydrogenase and related dehydrogenases, NAD-binding and catalytic domains. (R)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. HGDH is a member of the D-2-hydroxyacid NAD(+)-dependent dehydrogenase family; these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 330 -240661 cd12185 HGDH_LDH_like Putative Lactate dehydrogenase and (R)-2-Hydroxyglutarate Dehydrogenase-like proteins, NAD-binding and catalytic domains. This group contains various putative dehydrogenases related to D-lactate dehydrogenase (LDH), (R)-2-hydroxyglutarate dehydrogenase (HGDH), and related enzymes, members of the 2-hydroxyacid dehydrogenases family. LDH catalyzes the interconversion of pyruvate and lactate, and HGDH catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. Despite often low sequence identity within this 2-hydroxyacid dehydrogenase family, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 322 -240662 cd12186 LDH D-Lactate dehydrogenase and D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH), NAD-binding and catalytic domains. D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenases family. LDH is homologous to D-2-hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-HicDH is a NAD-dependent member of the hydroxycarboxylate dehydrogenase family, and shares the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 329 -240663 cd12187 LDH_like_1 D-Lactate and related Dehydrogenase like proteins, NAD-binding and catalytic domains. D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-Hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-2-hydroxyisocaproate dehydrogenase-like (HicDH) proteins are NAD-dependent members of the hydroxycarboxylate dehydrogenase family, and share the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. 329 -240664 cd12188 SDH Saccharopine Dehydrogenase NAD-binding and catalytic domains. Saccharopine Dehydrogenase (SDH) catalyzes the final step in the reversible NAD-dependent oxidative deamination of saccharopine to alpha-ketoglutarate and lysine, in the alpha-aminoadipate pathway of L-lysine biosynthesis. SHD is structurally related to formate dehydrogenase and similar enzymes, having a 2-domain structure in which a Rossmann-fold NAD(P)-binding domain is inserted within the linear sequence of a catalytic domain of related structure. 351 -240665 cd12189 LKR_SDH_like bifunctional lysine ketoglutarate reductase /saccharopine dehydrogenase enzyme. Bifunctional lysine ketoglutarate reductase /saccharopine dehydrogenase protein is a pair of enzymes linked on a single polypeptide chain that catalyze the initial, consecutive steps of lysine degradation. These proteins are related to the 2-domain saccharopine dehydrogenases. Along with formate dehydrogenase and similar enzymes, SDH consists paired domains resembling Rossmann folds in which the NAD-binding domain is inserted within the linear sequence of the catalytic domain. In this bifunctional enzyme, the LKR domain is N-terminal of the SDH domain. These proteins have a close match to the active site motif of SDHs, and an NAD-binding site motif that is a partial match to that found in SDH and other FDH-related proteins. 433 -213397 cd12190 Bacova_04320_like Uncharacterized proteins similar to Bacteroides ovatus 4320. This model characterized a family of proteins conserved in Bacteroidetes, similar to B. ovatus ATCC 8483 reading frame 04320. Structurally, the protein resembles members of the SRPBCC domain superfamily (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC). 159 -213398 cd12191 gal11_coact gall11 coactivator domain. Gall11/MED15 acts in the general regulation of GAL structural genes and is required for full expression for several genes in this pathway, including GALs 1,7, and 10 in Saccharomyces cerevisiae. GAL11 function is dependent on GCN4 functionality and binds GCN4 in a degenerate manner with multiple orientations found at the GCN4-Gal11 interface. 90 -213399 cd12192 GCN4_cent GCN4 central activation domain-like acidic activation domain. GCN4 was identified in Saccharomyces cerevisiae from mutations in a deficiency in activation with the general amino acid control pathway. GCN4 encodes a trans-activator of amino acid biosynthetic genes containing 2 acidic activation domains and a C-terminal bZIP domain, comprised of a basic alpha-helical DNA-binding region and a coiled-coil dimerization region. 40 -269833 cd12193 bZIP_GCN4 Basic leucine zipper (bZIP) domain of General control protein GCN4: a DNA-binding and dimerization domain. GCN4 was identified in Saccharomyces cerevisiae from mutations in a deficiency in activation with the general amino acid control pathway. GCN4 encodes a trans-activator of amino acid biosynthetic genes containing 2 acidic activation domains and a C-terminal bZIP domain. In amino acid-deprived cells, GCN4 is up-regulated leading to transcriptional activation of genes encoding amino acid biosynthetic enzymes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 54 -213379 cd12194 Kcc4p_like_C C-terminal kinase associated domain 1 (KA1), a phospholipid binding domain, of Kcc4p and similar proteins. This subfamily is composed of three Saccharomyces cerevisiae proteins, Kcc4p, Gin4p, and Hsl1p, as well as similar serine/threonine protein kinases (STKs). They catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. Kcc4p, Gin4p, and Hsl1p are septin-associated proteins that are involved in septin organization and in the yeast morphogenesis checkpoint coordinating the cell cycle with bud formation. They negatively regulate the Wee1-related kinase Swe1, which phosphorylates the cyclin-dependent kinase Cdc28, and is involved in regulating the entry of cells into mitosis. Kcc4p, Gin4p, and Hsl1p localize in the bud neck in a septin-dependent manner and display distinct but partially overlapping functions. They contain an N-terminal catalytic kinase domain and a C-terminal KA1 domain. The KA1 domain of Kcc4p, Gin4p, and Hsl1p binds acidic phospholipids including phosphatidylserine (PtdSer) and is required for bud neck localization. 122 -213380 cd12195 CIPK_C C-terminal regulatory domain of Calcineurin B-Like (CBL)-interacting protein kinases. CIPKs are serine/threonine protein kinases (STKs), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. They comprise a unique family in higher plants of proteins that interact with the calcineurin B-like (CBL) calcium sensors to form a signaling network that decode specific calcium signals triggered by a variety of environmental stimuli including salinity, drought, cold, light, and mechanical perturbation, among others. The specificity of the response relies on differences in expression and localization of both CBLs and CIPKs, as well as on the interaction specificity of CBL-CIPK combinations. There are 25, 30, and 43 CIPK genes identified in the Arabidopsis thaliana, Oryza sativa, and Zea mays genomes, respectively. The founding member of the CIPK family is Arabidopsis thaliana CIPK24, also called SOS2 (Salt Overlay Sensitive 2). CIPKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory domain that contains the FISL (also called NAF for Asn-Ala-Phe) and PPI-binding motifs, which are involved in the interaction with CBLs and PP2C-type protein phosphatases, respectively. Studies using SOS2, SOS3, and ABI2 phosphatase show that the binding of CBL and PP2C-type protein phosphatase to CIPK is mutually exclusive. The binding of CBL to CIPK is inhibitory to kinase activity. 116 -213381 cd12196 MARK1-3_C C-terminal, kinase associated domain 1 (KA1), a phospholipid binding domain, of microtubule affinity-regulating kinases 1-3. Microtubule-associated protein/microtubule affinity regulating kinases (MARKs), also called partition-defective (Par-1) kinases, are serine/threonine protein kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. They phosphorylate the tau protein and related microtubule-associated proteins (MAPs) on tubulin binding sites to induce detachment from microtubules, and are involved in the regulation of cell shape and polarity, cell cycle control, transport, and the cytoskeleton. Mammals contain four proteins, MARK1-4, encoded by distinct genes belonging to this subfamily, with additional isoforms arising from alternative splicing. MARK1/2, through their activation by death-associated protein kinase (DAPK), modulates polarized neurite outgrowth. MARK1, also called Par-1c, is also involved in axon-dendrite specification, and SNPs on the MARK1 gene is associated with autism spectrum disorders. MARK2, also called Par-1b, is implicated in many physiological processes including fertility, immune system homeostasis, learning and memory, growth, and metabolism. MARK3, also called Par-1a, is implicated in gluconeogenesis and adiposity; mice deficient with MARK3 display reduced adiposity, resistance to hepatic steatosis, and defective gluconeogensis. MARKs contain an N-terminal catalytic kinase domain, a ubiquitin-associated domain (UBA), and a C-terminal kinase associated domain (KA1). The KA1 domain binds anionic phospholipids and may be involved in membrane localization as well as in auto-inhibition of the kinase domain. 98 -213382 cd12197 MARK4_C C-terminal, kinase associated domain 1 (KA1), a phospholipid binding domain, of microtubule affinity-regulating kinase 4. Microtubule-associated protein/microtubule affinity regulating kinases (MARKs), also called partition-defective (Par-1) kinases, are serine/threonine protein kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. They phosphorylate the tau protein and related microtubule-associated proteins (MAPs) on tubulin binding sites to induce detachment from microtubules, and are involved in the regulation of cell shape and polarity, cell cycle control, transport, and the cytoskeleton. Mammals contain four proteins, MARK1-4, encoded by distinct genes belonging to this subfamily, with additional isoforms arising from alternative splicing. MARK4 has two splicing isoforms: MARK4S, predominantly expressed in the brain; and MARK4L, expressed in all tissues. Unlike MARK1-3 that show cytoplasmic localization, MARK4 colocalizes with the centrosome and with microtubules. Decreased MARK4 expression in the brain may be involved in the pathogenesis of Prion diseases and may be correlated to PrP(Sc) deposits. MARK4 is also a component of the ectoplasmic specialization, a testis-specific adherens junction. MARKs contain an N-terminal catalytic kinase domain, a ubiquitin-associated domain (UBA), and a C-terminal kinase associated domain (KA1). The KA1 domain binds anionic phospholipids and may be involved in membrane localization as well as in auto-inhibition of the kinase domain. 99 -213383 cd12198 MELK_C C-terminal kinase associated domain 1 (KA1) of Maternal embryonic leucine zipper kinase. MELK, also called protein kinase 38 (PK38) or pEg3 kinase, is a cell cycle-regulated serine/threonine protein kinase (STK) that catalyzes the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. It is phosphorylated and maximally active during mitosis and is involved in regulating cell cycle progression, division, proliferation, tumor growth, and mRNA splicing. MELK shows a broad substrate specificity, including the zinc finger-like protein ZPR9, the transcription and splicing factor NIPP1, and the protein-tyrosine phosphatase Cdc25B, among others. MELK contains an N-terminal catalytic domain followed by a ubiquitin-associated (UBA) domain, a TP dipeptide-rich region, and a C-terminal KA1 domain. The KA1 domain of MELK, together with its TP dipeptide-rich region, functions as an autoinhibitory domain. The KA1 domain of the related microtubule affinity-regulating kinases (MARKs) has been shown to bind anionic phospholipids and may be involved in membrane localization. 96 -213384 cd12199 AMPKA1_C C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK) alpha 1 catalytic subunit. AMPK, a serine/threonine protein kinase (STK), catalyzes the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. It acts as a sensor for the energy status of the cell and is activated by cellular stresses that lead to ATP depletion such as hypoxia, heat shock, and glucose deprivation, among others. AMPK is a heterotrimer of three subunits: alpha, beta, and gamma. Co-expression of the three subunits is required for kinase activity; in the absence of one, the other two subunits get degraded. The AMPK alpha subunit is the catalytic subunit and it contains an N-terminal kinase domain and a C-terminal regulatory domain (RD). Vertebrates contain two isoforms of the alpha subunit, alpha1 and alpha2, which are encoded by different genes, PRKAA1 and PRKAA2, respectively, and show varying expression patterns. AMPKalpha1 is the predominant isoform expressed in bone; it plays a role in bone remodeling in response to hormonal regulation. It is selectively regulated by nucleoside diphosphate kinase (NDPK)-A in an AMP-independent manner. AMPKalpha1 impacts the regulation of fat metabolism through its in vivo target, acetyl coenzyme A carboxylase (ACC). It also mediates the vasoprotective effects of estrogen through phosphorylation of another in vivo substrate, RhoA. The C-terminal RD of the AMPK alpha 1 subunit is involved in AMPK heterotrimer formation. It mainly interacts with the C-terminal region of the beta subunit to form a tight alpha-beta complex that is associated with the gamma subunit. The AMPK alpha subunit RD also contains an auto-inhibitory region that interacts with the kinase domain; this inhibition is negated by the interaction with the AMPK gamma subunit. 96 -213385 cd12200 AMPKA2_C C-terminal regulatory domain of 5'-AMP-activated serine/threonine kinase, subunit alpha. AMPK, a serine/threonine protein kinase (STK), catalyzes the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. It acts as a sensor for the energy status of the cell and is activated by cellular stresses that lead to ATP depletion such as hypoxia, heat shock, and glucose deprivation, among others. AMPK is a heterotrimer of three subunits: alpha, beta, and gamma. Co-expression of the three subunits is required for kinase activity; in the absence of one, the other two subunits get degraded. The AMPK alpha subunit is the catalytic subunit and it contains an N-terminal kinase domain and a C-terminal regulatory domain (RD). Vertebrates contain two isoforms of the alpha subunit, alpha1 and alpha2, which are encoded by different genes, PRKAA1 and PRKAA2, respectively, and show varying expression patterns. AMPKalpha2 shows cytoplasmic and nuclear localization, whereas AMPKalpha1 is localized only in the cytoplasm. The C-terminal RD of the AMPK alpha 1 subunit is involved in AMPK heterotrimer formation. It mainly interacts with the C-terminal region of the beta subunit to form a tight alpha-beta complex that is associated with the gamma subunit. The AMPK alpha subunit RD also contains an auto-inhibitory region that interacts with the kinase domain; this inhibition is negated by the interaction with the AMPK gamma subunit. 102 -213386 cd12201 MARK2_C C-terminal, kinase associated domain 1 (KA1), a phospholipid binding domain, of microtubule affinity-regulating kinase 2. Microtubule-associated protein/microtubule affinity regulating kinases (MARKs), also called partition-defective (Par-1) kinases, are serine/threonine protein kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. They phosphorylate the tau protein and related microtubule-associated proteins (MAPs) on tubulin binding sites to induce detachment from microtubules, and are involved in the regulation of cell shape and polarity, cell cycle control, transport, and the cytoskeleton. Mammals contain four proteins, MARK1-4, encoded by distinct genes belonging to this subfamily, with additional isoforms arising from alternative splicing. MARK2, also called Par-1b or ELKL motif kinase 1 (EMK-1), is implicated in many physiological processes including fertility, immune system homeostasis, learning and memory, growth, and metabolism. It also regulates axon formation and has been implicated in neurodegeneration. MARKs contain an N-terminal catalytic kinase domain, a ubiquitin-associated domain (UBA), and a C-terminal kinase associated domain (KA1). The KA1 domain binds anionic phospholipids and may be involved in membrane localization as well as in auto-inhibition of the kinase domain. 99 -213401 cd12202 CASP8AP2 Caspase 8-associated protein 2 myb-like domain. This domain is the SANT/myb-like domain of Caspase 8-associated protein 2 (CASP8AP2) / GON-4 like proteins. CASP8AP2 (aka Flice-Associated Huge Protein (FLASH)) is implicated in numerous gene regulatory roles including roles in embryogenesis, oncogenesis, down-regulation of replication-dependent histone genes, regulation of Caspase 8 activity at the death-inducing signaling complex (DISC), and as a useful marker in leukemia prognosis. Gon-4 is critical in Caenorhabditis elegans gonadogenesis. Danio rerio GON4 is a regulator of gene expression in hematopoietic development, possibly by repressing expression. These proteins are members of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of the DNA-binding Myb domains and is found in a diverse set of proteins. 66 -213402 cd12203 GT1 GT1, myb-like, SANT family. GT-1, a myb-like protein, is one of the GT trihelix transcription factors. GT-1 binds the GT cis-element of rbcS-3A, a light-induced gene, as a dimer. Arabidopsis GT-1 is a trans-activator and acts in the stabilization of components of the transcrtiption pre-initiation complex comprised of TFIIA-TBP-TATA. The isolated GT-1 DNA-binding domain is sufficient to bind DNA. This region closely resemble the myb domain, but with longer helices. It has been proposed that GT-1 may respond to light signals via calcium-dependent phosphorylation to create a light-modulated molecular switch. These proteins are members of the SANT/myb group. SANT is named after 'SWI3, ADA2, N-CoR and TFIIIB', several factors that share this domain. The SANT domain resembles the 3 alpha-helix bundle of the DNA-binding Myb domains and is found in a diverse set of proteins. 66 -213176 cd12204 CBD_like Cellulose-binding domain, chitinase and related proteins. This group contains proteins related to the cellulose-binding domain of Erwinia chrysanthemi endoglucanase Z (EGZ) and Serratia marcescens chitinase B (ChiB). Gram negative plant parasite Erwinia chrysanthemi produces a variety of depolymerizing enzymes to metabolize pectin and cellulose on the host plant. Cellulase EGZ has a modular structure, with N-terminal catalytic domain linked to a C-terminal cellulose-binding domain (CBD). CBD mediates the secretion activity of EGZ. Chitinases allow certain bacteria to utilize chitin as a energy source. Typically, non-plant chitinases are of the glycosidase family 18. 48 -213344 cd12205 RasGAP_plexin Ras-GTPase Activating Domain of plexins. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Ligand binding activates signal transduction pathways controlling axon guidance in the nervous system and other developmental processes, including cell migration and morphogenesis, immune function, and tumor progression. Plexins are divided into four types (A-D) according to sequence similarity. In vertebrates, type A Plexins serve as the co-receptors for neuropilins to mediate the signaling of class 3 semaphorins except Sema3E, which signals through Plexin D1. Plexins serve as direct receptors for several other members of the semaphorin family: class 6 semaphorins signal through type A plexins and class 4 semaphorins through type B. Plexin C1 serves as the receptor of Sema7A and plays regulation roles in both immune and nervous systems. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Other proteins having a RasGAP domain include p120GAP, IQGAP, Rab5-activating protein 6, and Neurofibromin. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 382 -213345 cd12206 RasGAP_IQGAP_related Ras-GTPase Activating Domain of proteins related to IQGAPs. RasGAP: Ras-GTPase Activating Domain. RasGAP functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Proteins having a RasGAP domain include p120GAP, IQGAP, Rab5-activating protein 6, and Neurofibromin. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a myriad of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGap domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 359 -213346 cd12207 RasGAP_IQGAP3 Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 3. This family represents the IQ motif containing GTPase activating protein 3 (IQGAP3), which associates with Ras GTP-binding proteins. A primary function of IQGAP proteins is to modulate cytoskeletal architecture. There are three known IQGAP family members: IQGAP1, IQGAP2 and IQGAP3. Human IQGAP1 and IQGAP2 share 62% identity. IQGAPs are multi-domain molecules having a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeats, a single WW domain, four IQ motifs that mediate interactions with calmodulin, and a RasGAP related domain that binds active Rho family GTPases. IQGAP is an essential regulator of cytoskeletal function. IQGAP1 negatively regulates Ras family GTPases by stimulating their intrinsic GTPase activity, the protein actually lacks GAP activity. Both IQGAP1 and IQGAP2 specifically bind to Cdc42 and Rac1, but not to RhoA. Despite of their similarities to part of the sequence of RasGAP, neither IQGAP1 nor IQGAP2 interacts with Ras. IQGAP3, only present in mammals, regulates the organization of the cytoskeleton under the regulation of Rac1 and Cdc42 in neuronal cells. The depletion of IQGAP3 is shown to impair neurite or axon outgrowth in neuronal cells with disorganized cytoskeleton. 350 -213403 cd12208 septicolysin_like putative septicolysin, cholesterol-dependent cytolysin family and related proteins. This group contains some members identified as septicolysin. While septolysin is poorly characterized, it has been identified as a a cholesterol-dependent cytolysin, and acts to facilitate the infection of certain pathogenic bacteria to cells. Cholesterol-dependent cytolysins are pore-forming toxins that aid in bacterial pathogenesis of various gram positive species. Pores are formed by oligomerization into ring-like structures. Related proteins in eukaryotic immune systems use this pore-forming mechanism. 150 -213404 cd12211 Bc2l-C_N N-Terminal Domain Of Bc2l-C Lectin. Lectin BC2L-C of Burkholderia cenocepacia is one of several lectins produced by this pathogen. BC2L-C has been shown to bind fucosylated human histo-blood group epitopes H-type 1, Lewis B, and Lewis Y. The C-terminal domain resembles BC2L-A, a calcium dependent mannose-binding protein. The N-terminal domain trimerizes and binds alpha-MeSeFuc in pockets between the monomeric units. The N-terminal domain has a similar structure to tumor necrosis factor (TNF). 131 -276936 cd12212 Fis1 Mitochondrial Fission Protein Fis1, cytosolic domain. Fis1, along with Dnm1 and Mdv1, is an essential protein in mediating mitochondrial fission. Dnm1 and Fis1 are highly conserved, with a common mechanism in disparate species. In mutants of these proteins, mitochondrial fission is impaired, resulting in networks of undivided mitochondria. The Fis1 N-terminus is cytosolic and tethered to the mitochondrial outer membrane via a C-terminal transmembrane domain. Fis1 appears to act via the recruitment of division complexes to the mitochondrial outer membrane, via interactions with Mdv1 or Caf4. Fis1 has tandem Tetratricopeptide repeat (TPR) motifs which are known to mediate protein-protein interactions. 115 -213406 cd12213 ABD Alpha-Mannosidase Binding Domain of Atg19/34. These proteins are related to the Alpha-mannosidase (Ams1) Binding Domain of Atg19/Atg34, a key component in the targeting pathway that directs alpha-mannosidase and aminopeptidase I to the vacuole, either through cytoplasm-to-vacuole trafficking or via autophagy in starvation conditions. Autophagy in a eukaryotic mechanism in which cytoplasm is enclosed in double-membraned autophagosomes which fuse with a vacuole for transport into the lumen. In Saccharomyces cerevisiae, alpha-mannosidase is selectively directed to the vacuole via the direct interaction with Atg19 (and paralog Atg34) in the Cvt pathway. Ams1 binding domains (ABD) Atg19/34 have a immunoglobulin fold with eight beta-strands. The ABD is responsible for Ams1 recognition, but its deletion does not affect the fusion of Atg19 with prApe1, and the transport of prApe1 to the vacuole. The Atg19 N-terminal region is a distinct coiled-coil domain. 112 -213177 cd12214 ChiA1_BD chitin-binding domain of Chi A1-like proteins. This group contains proteins related to the chitin binding domain of chitinase A1 (ChiA1) of Bacillus circulans WL-12. Glycosidase ChiA1 hydrolyzes chitin and is comprised of several domains: the C-terminal chitin binding domain, an N-terminal and catalytic domain, and 2 fibronectin type III-like domains. Chitinases function in invertebrates in the degradation of old exoskeletons, in fungi to utilize chitin in cell walls, and in bacteria which use chitin as an energy source. Bacillus circulans WL-12 ChiA1 facilitates invasion of fungal cell walls. The ChiAi chitin binding domain is required for the specific recognition of insoluble chitin. although topologically and structurally related, ChiA1 lacks the characteristic aromatic residues of Erwinia chrysanthemi endoglucanase Z (CBD(EGZ)). 45 -213178 cd12215 ChiC_BD Chitin-binding domain of chitinase C. Chitin-binding domain of chitinase C (ChiC) of Streptomyces griseus and related proteins. Chitinase C is a family 19 chitinase, and consists of a N-terminal chitin binding domain and a C-terminal chitin-catalytic domain that effects degradation. Chitinases function in invertebrates in the degradation of old exoskeletons, in fungi to utilize chitin in cell walls, and in bacteria which use chitin as an energy source. ChiC contains the characteristic chitin-binding aromatic residues. 42 -213409 cd12216 Csn2_like CRISPR/Cas system-associated protein Csn2. Csn2 is a Nmeni subtype-specific Cas protein, which may function in the adaptation process which mediates the incorporation of foreign nucleic acids into the microbial host genome. Csn 2 may interact directly with double-stranded DNA. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA. Csn2 has been predicted to be a functional analog of Cas4 based on anti-correlated phyletic patterns; also known as SPy1049 family. 217 -213410 cd12217 Stu0660_Csn2 Stu0660-like CRISPR/Cas system-associated protein Csn2. Csn2 is a Nmeni subtype-specific Cas protein, which may function in the adaptation process which mediates the incorporation of foreign nucleic acids into the microbial host genome. Csn 2 may interact directly with double-stranded DNA. This family of Csn2 proteins includes Stu0660, the proteins are larger than other (canonical) Csn2 proteins as they have an additional alpha-helical C-terminal domain. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA. Csn2 has been predicted to be a functional analog of Cas4 based on anti-correlated phyletic patterns; also known as SPy1049 family. 343 -213411 cd12218 Csn2 CRISPR/Cas system-associated protein Csn2. Csn2 is a Nmeni subtype-specific Cas protein, which may function in the adaptation process which mediates the incorporation of foreign nucleic acids into the microbial host genome. Csn 2 may interact directly with double-stranded DNA. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA. Csn2 has been predicted to be a functional analog of Cas4 based on anti-correlated phyletic patterns; also known as SPy1049 family. 219 -340518 cd12219 Ubl_TBK1_like ubiquitin-like (Ubl) domain found in non-canonical Inhibitor of kappa B kinases IKKepsilon and TBK1, and similar proteins. IKKepsilon and TBK1 (TRAF family member-associated NF-kappaB activator-binding kinase 1) are non-canonical members of IKK family. They have been characterized as activators of nuclear factor-kappaB (NF-kappaB), but they are not essential for NF-kappaB activation. They play critical roles in antiviral response via phosphorylation and activation of transcription factors IRF3, IRF7, STAT1 and STAT3. They are also involved in the survival, tumorigenesis and development of various cancers. Both IKKepsilon and TBK1 contain an N-terminal protein kinase domain followed a ubiquitin-like (Ubl) domain. The Ubl domain acts as a protein-protein interaction domain, and has been implicated in regulating kinase activity, which modulates interactions in the interferon pathway. 77 -240617 cd12220 Pesticin_RB Pesticin Translocation And Receptor Binding Domain. Pesticin (Pst) is a anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. The N-terminal domain is further divided into the TonB box (which binds TonB) , the T (translocation domain) and the R (receptor binding domain). Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacteria stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. 166 -240616 cd12221 Cin1 Cellophane induced protein repeats of fungus Venturia inaequalis. Cin1 (cellulose induced protein 1) repeat protein of Venturia inaequalis, the fungus responsible for scab disease of apple, encodes 8 cysteine-rich repeats and is greatly upregulated within the plant and on cellophane membranes. The crystal structure reveals a pair of disulfide bridges in each repeat. The repeats have been described as adopting a beads-on-a-string organization. Cin1 function is undetermined, however the alpha-helical structure may be involved in protein-protein or protein-carbohydrate interactions in the extracellular matrix. 114 -240615 cd12222 Caa3-IV Caa3-Type Cytochrome Oxidase subunit 4 interacts with cyt c subunits I/III. Cytochrome c oxidase, a haem copper oxidase superfamily member, is the final step in the electron-transport chain, linking O2 reduction to transmembrane pumping in mitochondria and aerobic prokaryotes. Cytochrome c oxidase (aka Complex IV) catalyzes the reduction of O2 to 2H2O, and acts downstream of Complexes I-III: NADH-Q oxidoreductase, succinate-Q reductase, and Q-cytochrome c oxidoreductase. In Thermus thermophilus caa3-oxidase is comprised of subunit (SU) I/III, a fusion of classical SU I and SUIII, and IIc as well SU IV, which is composed of 2 connected transmembrane helices that interface with SU I/III. 63 -240669 cd12223 RRM_SR140 RNA recognition motif (RRM) in U2-associated protein SR140 and similar proteins. This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain). 84 -240670 cd12224 RRM_RBM22 RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins. This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines. 74 -240671 cd12225 RRM1_2_CID8_like RNA recognition motif 1 and 2 (RRM1, RRM2) in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins. This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear. 77 -240672 cd12226 RRM_NOL8 RNA recognition motif in nucleolar protein 8 (NOL8) and similar proteins. This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. 78 -240673 cd12227 RRM_SCAF4_SCAF8 RNA recognition motif in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins. This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs. 77 -240674 cd12228 RRM_ENOX RNA recognition motif (RRM) in the cell surface Ecto-NOX disulfide-thiol exchanger (ECTO-NOX or ENOX) proteins. This subgroup corresponds to the conserved RNA recognition motif (RRM) in ECTO-NOX proteins (also termed ENOX), comprising a family of plant and animal NAD(P)H oxidases exhibiting both, oxidative and protein disulfide isomerase-like, activities. They are growth-related and drive cell enlargement, and may play roles in aging and neurodegenerative diseases. ENOX proteins function as terminal oxidases of plasma membrane electron transport (PMET) through catalyzing electron transport from plasma membrane quinones to extracellular oxygen, forming water as a product. They are also hydroquinone oxidases that oxidize externally supplied NADH, hence NOX. ENOX proteins harbor a di-copper center that lack flavin. ENOX proteins display protein disulfide interchange activity that is also possessed by protein disulfide isomerase. In contrast to the classic protein disulfide isomerases, ENOX proteins lack the double CXXC motif. This family includes two ENOX proteins, ENOX1 and ENOX2. ENOX1, also termed candidate growth-related and time keeping constitutive hydroquinone [NADH] oxidase (cCNOX), or cell proliferation-inducing gene 38 protein, or Constitutive Ecto-NOX (cNOX), is the constitutively expressed cell surface NADH (ubiquinone) oxidase that is ubiquitous and refractory to drugs. ENOX2, also termed APK1 antigen, or cytosolic ovarian carcinoma antigen 1, or tumor-associated hydroquinone oxidase (tNOX), is a cancer-specific variant of ENOX1 and plays a key role in cell proliferation and tumor progression. In contrast to ENOX1, ENOX2 is drug-responsive and harbors a drug binding site to which the cancer-specific S-peptide tagged pan-ENOX2 recombinant (scFv) is directed. Moreover, ENOX2 is specifically inhibited by a variety of quinone site inhibitors that have anticancer activity and is unique to the surface of cancer cells. ENOX proteins contain many functional motifs. 84 -240675 cd12229 RRM_G3BP RNA recognition motif (RRM) in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins. This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif). 81 -240676 cd12230 RRM1_U2AF65 RNA recognition motif 1 found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins. The subfamily corresponds to the RRM1 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs. 82 -240677 cd12231 RRM2_U2AF65 RNA recognition motif 2 found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins. This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs. 77 -240678 cd12232 RRM3_U2AF65 RNA recognition motif 3 found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins. This subfamily corresponds to the RRM3 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs. 89 -240679 cd12233 RRM_Srp1p_AtRSp31_like RNA recognition motif found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins. This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus. 70 -240680 cd12234 RRM1_AtRSp31_like RNA recognition motif in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants. This subfamily corresponds to the RRM1in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus. 72 -240681 cd12235 RRM_PPIL4 RNA recognition motif in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins. This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus. 83 -240682 cd12236 RRM_snRNP70 RNA recognition motif in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins. This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function. 91 -240683 cd12237 RRM_snRNP35 RNA recognition motif found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins. This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain. 93 -240684 cd12238 RRM1_RBM40_like RNA recognition motif 1 in RNA-binding protein 40 (RBM40) and similar proteins. This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. 73 -240685 cd12239 RRM2_RBM40_like RNA recognition motif 2 in RNA-binding protein 40 (RBM40) and similar proteins. This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear. 82 -240686 cd12240 RRM_NCBP2 RNA recognition motif found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins. This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC. 78 -240687 cd12241 RRM_SF3B14 RNA recognition motif found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins. This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 77 -240688 cd12242 RRM_SLIRP RNA recognition motif found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins. This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities. 73 -240689 cd12243 RRM1_MSSP RNA recognition motif 1 in the c-myc gene single-strand binding proteins (MSSP) family. This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot. 71 -240690 cd12244 RRM2_MSSP RNA recognition motif 2 in the c-myc gene single-strand binding proteins (MSSP) family. This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot. 79 -240691 cd12245 RRM_scw1_like RNA recognition motif in yeast cell wall integrity protein scw1 and similar proteins. This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins. 79 -240692 cd12246 RRM1_U1A_like RNA recognition motif 1 in the U1A/U2B"/SNF protein family. This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding. 78 -240693 cd12247 RRM2_U1A_like RNA recognition motif 2 in the U1A/U2B"/SNF protein family. This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding. 72 -240694 cd12248 RRM_RBM44 RNA recognition motif in RNA-binding protein 44 (RBM44) and similar proteins. This subgroup corresponds to the RRM of RBM44, a novel germ cell intercellular bridge protein that is localized in the cytoplasm and intercellular bridges from pachytene to secondary spermatocyte stages. RBM44 interacts with itself and testis-expressed gene 14 (TEX14). Unlike TEX14, RBM44 does not function in the formation of stable intercellular bridges. It carries an RNA recognition motif (RRM) that could potentially bind a multitude of RNA sequences in the cytoplasm and help to shuttle them through the intercellular bridge, facilitating their dispersion into the interconnected neighboring cells. 74 -240695 cd12249 RRM1_hnRNPR_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins. This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs. 78 -240696 cd12250 RRM2_hnRNPR_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins. This subfamily corresponds to the RRM2 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains); DND1 harbors only two RRMs. 82 -240697 cd12251 RRM3_hnRNPR_like RNA recognition motif 3 in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins. This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 72 -240698 cd12252 RRM_DbpA RNA recognition motif in the DbpA subfamily of prokaryotic DEAD-box rRNA helicases. This subfamily corresponds to the C-terminal RRM homology domain of dbpA proteins implicated in ribosome biogenesis. They bind with high affinity and specificity to RNA substrates containing hairpin 92 of 23S rRNA (HP92), which is part of the ribosomal A-site. The majority of dbpA proteins contain two N-terminal ATPase catalytic domains and a C-terminal RNA binding domain, an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain). The catalytic domains bind to nearby regions of RNA to stimulate ATP hydrolysis and disrupt RNA structures. The C-terminal domain is responsible for the high-affinity RNA binding. Several members of this family lack specificity for 23S rRNA. These proteins can generally be distinguished by a basic region that extends beyond the C-terminal domain. 71 -240699 cd12253 RRM_PIN4_like RNA recognition motif in yeast RNA-binding protein PIN4, fission yeast RNA-binding post-transcriptional regulators cip1, cip2 and similar proteins. This subfamily corresponds to the RRM in PIN4, also termed psi inducibility protein 4 or modifier of damage tolerance Mdt1, a novel phosphothreonine (pThr)-containing protein that specifically interacts with the pThr-binding site of the Rad53 FHA1 domain. It is encoded by gene MDT1 (YBL051C) from yeast Saccharomyces cerevisiae. PIN4 is involved in normal G2/M cell cycle progression in the absence of DNA damage and functions as a novel target of checkpoint-dependent cell cycle arrest pathways. It contains an N-terminal RRM, a nuclear localization signal, a coiled coil, and a total of 15 SQ/TQ motifs. cip1 (Csx1-interacting protein 1) and cip2 (Csx1-interacting protein 2) are novel cytoplasmic RRM-containing proteins that counteract Csx1 function during oxidative stress. They are not essential for viability in fission yeast Schizosaccharomyces pombe. Both cip1 and cip2 contain one RRM. Like PIN4, Cip2 also possesses an R3H motif that may function in sequence-specific binding to single-stranded nucleic acids. 79 -240700 cd12254 RRM_hnRNPH_ESRPs_RBM12_like RNA recognition motif found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins. The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 73 -240701 cd12255 RRM1_LKAP RNA recognition motif 1 in Limkain-b1 (LKAP) and similar proteins. This subfamily corresponds to the RRM1 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes. 73 -240702 cd12256 RRM2_LKAP RNA recognition motif 2 in Limkain-b1 (LKAP) and similar proteins. This subfamily corresponds to the RRM2 of LKAP, a novel peroxisomal autoantigen that co-localizes with a subset of cytoplasmic microbodies marked by ABCD3 (ATP-binding cassette subfamily D member 3, known previously as PMP-70) and/or PXF (peroxisomal farnesylated protein, known previously as PEX19). It associates with LIM kinase 2 (LIMK2) and may serve as a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. LKAP contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). However, whether those RRMs are bona fide RNA binding sites remains unclear. Moreover, there is no evidence of LAKP localization in the nucleus. Therefore, if the RRMs are functional, their interaction with RNA species would be restricted to the cytoplasm and peroxisomes. 89 -240703 cd12257 RRM1_RBM26_like RNA recognition motif 1 in vertebrate RNA-binding protein 26 (RBM26) and similar proteins. This subfamily corresponds to the RRM1 of RBM26, and the RRM of RBM27. RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, represents a cutaneous lymphoma (CL)-associated antigen. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. RBM27 contains only one RRM; its biological function remains unclear. 72 -240704 cd12258 RRM2_RBM26_like RNA recognition motif 2 of vertebrate RNA-binding protein 26 (RBM26) and similar proteins. This subfamily corresponds to the RRM2 of RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, which represents a cutaneous lymphoma (CL)-associated antigen. RBM26 contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. 72 -240705 cd12259 RRM_SRSF11_SREK1 RNA recognition motif in serine/arginine-rich splicing factor 11 (SRSF11), splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins. This subfamily corresponds to the RRM domain of SRSF11 (SRp54 or p54), SREK1 ( SFRS12 or SRrp86) and similar proteins, a group of proteins containing regions rich in serine-arginine dipeptides (SR protein family). These are involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. SR proteins have been identified as crucial regulators of alternative splicing. Different SR proteins display different substrate specificity, have distinct functions in alternative splicing of different pre-mRNAs, and can even negatively regulate splicing. All SR family members are characterized by the presence of one or two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and the C-terminal regions rich in serine and arginine dipeptides (SR domains). The RRM domain is responsible for RNA binding and specificity in both alternative and constitutive splicing. In contrast, SR domains are thought to be protein-protein interaction domains that are often interchangeable. 76 -240706 cd12260 RRM2_SREK1 RNA recognition motif 2 in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins. This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site. 85 -240707 cd12261 RRM1_3_MRN1 RNA recognition motif 1 and 3 in RNA-binding protein MRN1 and similar proteins. This subfamily corresponds to the RRM1 and RRM3 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 73 -240708 cd12262 RRM2_4_MRN1 RNA recognition motif 2 and 4 in RNA-binding protein MRN1 and similar proteins. This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 82 -240709 cd12263 RRM_ABT1_like RNA recognition motif found in activator of basal transcription 1 (ABT1) and similar proteins. This subfamily corresponds to the RRM of novel nuclear proteins termed ABT1 and its homologous counterpart, pre-rRNA-processing protein ESF2 (eighteen S factor 2), from yeast. ABT1 associates with the TATA-binding protein (TBP) and enhances basal transcription activity of class II promoters. Meanwhile, ABT1 could be a transcription cofactor that can bind to DNA in a sequence-independent manner. The yeast ABT1 homolog, ESF2, is a component of 90S preribosomes and 5' ETS-based RNPs. It is previously identified as a putative partner of the TATA-element binding protein. However, it is primarily localized to the nucleolus and physically associates with pre-rRNA processing factors. ESF2 may play a role in ribosome biogenesis. It is required for normal pre-rRNA processing, as well as for SSU processome assembly and function. Both ABT1 and ESF2 contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 98 -240710 cd12264 RRM_AKAP17A RNA recognition motif found in A-kinase anchor protein 17A (AKAP-17A) and similar proteins. This subfamily corresponds to the RRM domain of AKAP-17A, also termed 721P, or splicing factor, arginine/serine-rich 17A (SFRS17A). It was originally reported as the pseudoautosomal or X inactivation escape gene 7 (XE7) and as B-lymphocyte antigen precursor. It has been suggested that AKAP-17A is an alternative splicing factor and an SR-related splicing protein that interacts with the classical SR protein ASF/SF2 and the SR-related factor ZNF265. Additional studies have indicated that AKAP-17A is a dual-specific protein kinase A anchoring protein (AKAP) that can bind both type I and type II protein kinase A (PKA) with high affinity and co-localizes with the catalytic subunit of PKA in nuclear speckles as well as the splicing factor SC35 in splicing factor compartments. It is involved in regulation of pre-mRNA splicing possibly by docking a pool of PKA in splicing factor compartments. AKAP-17A contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 121 -240711 cd12265 RRM_SLT11 RNA recognition motif of pre-mRNA-splicing factor SLT11 and similar proteins. This subfamily corresponds to the RRM of SLT11, also known as extracellular mutant protein 2, or synthetic lethality with U2 protein 11, and is a splicing factor required for spliceosome assembly in yeast. It contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). SLT11 can facilitate the cooperative formation of U2/U6 helix II in association with stem II in the yeast spliceosome by utilizing its RNA-annealing and -binding activities. 86 -240712 cd12266 RRM_like_XS RNA recognition motif-like XS domain found in plants. This XS (named after rice gene X and SGS3) domain is a single-stranded RNA-binding domain (RBD) and possesses a unique version of a RNA recognition motif (RRM) fold. It is conserved in a family of plant proteins including gene X and SGS3. Although its function is still unknown, the plant SGS3 proteins are thought to be involved in post-transcriptional gene silencing (PTGS) pathways. In addition, they contain a conserved aspartate residue that may be functionally important. 107 -240713 cd12267 RRM_YRA1_MLO3 RNA recognition motif in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins. This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p. 77 -240714 cd12268 RRM_Vip1 RNA recognition motif in fission yeast protein Vip1 and similar proteins. This subfamily corresponds to Vip1, an RNA-binding protein encoded by gene vip1 from fission yeast Schizosaccharomyces pombe. Its biological role remains unclear. Vip1 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 68 -240715 cd12269 RRM_Vip1_like RNA recognition motif in a group of uncharacterized plant proteins similar to fission yeast Vip1. This subfamily corresponds to the Vip1-like, uncharacterized proteins found in plants. Although their biological roles remain unclear, these proteins show high sequence similarity to the fission yeast Vip1. Like Vip1 protein, members in this family contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 69 -240716 cd12270 RRM_MTHFSD RNA recognition motif in vertebrate methenyltetrahydrofolate synthetase domain-containing proteins. This subfamily corresponds to methenyltetrahydrofolate synthetase domain (MTHFSD), a putative RNA-binding protein found in various vertebrate species. It contains an N-terminal 5-formyltetrahydrofolate cyclo-ligase domain and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of MTHFSD remains unclear. 74 -240717 cd12271 RRM1_PHIP1 RNA recognition motif 1 in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins. This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA. 72 -240718 cd12272 RRM2_PHIP1 RNA recognition motif 2 in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins. The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA. 72 -240719 cd12273 RRM1_NEFsp RNA recognition motif 1 in vertebrate putative RNA exonuclease NEF-sp. This subfamily corresponds to the RRM1 of NEF-sp., including uncharacterized putative RNA exonuclease NEF-sp found in vertebrates. Although its cellular functions remains unclear, NEF-sp contains an exonuclease domain and two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), suggesting it may possess both exonuclease and RNA-binding activities. 71 -240720 cd12274 RRM2_NEFsp RNA recognition motif 2 in vertebrate putative RNA exonuclease NEF-sp. This subfamily corresponds to the RRM2 of NEF-sp., including uncharacterized putative RNA exonuclease NEF-sp found in vertebrates. Although its cellular functions remains unclear, NEF-sp contains an exonuclease domain and two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), suggesting it may possess both exonuclease and RNA-binding activities. 71 -240721 cd12275 RRM1_MEI2_EAR1_like RNA recognition motif 1 in Mei2-like proteins and terminal EAR1-like proteins. This subfamily corresponds to the RRM1 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding protein family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins. 71 -240722 cd12276 RRM2_MEI2_EAR1_like RNA recognition motif 2 in Mei2-like proteins and terminal EAR1-like proteins. This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins. 71 -240723 cd12277 RRM3_MEI2_EAR1_like RNA recognition motif 3 in Mei2-like proteins and terminal EAR1-like proteins. This subfamily corresponds to the RRM3 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins. 86 -240724 cd12278 RRM_eIF3B RNA recognition motif in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins. This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain. 84 -240725 cd12279 RRM_TUT1 RNA recognition motif in speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) and similar proteins. This subfamily corresponds to the RRM of Star-PAP, also termed RNA-binding motif protein 21 (RBM21), which is a ubiquitously expressed U6 snRNA-specific terminal uridylyltransferase (U6-TUTase) essential for cell proliferation. Although it belongs to the well-characterized poly(A) polymerase protein superfamily, Star-PAP is highly divergent from both, the poly(A) polymerase (PAP) and the terminal uridylyl transferase (TUTase), identified within the editing complexes of trypanosomes. Star-PAP predominantly localizes at nuclear speckles and catalyzes RNA-modifying nucleotidyl transferase reactions. It functions in mRNA biosynthesis and may be regulated by phosphoinositides. It binds to glutathione S-transferase (GST)-PIPKIalpha. Star-PAP preferentially uses ATP as a nucleotide substrate and possesses PAP activity that is stimulated by PtdIns4,5P2. It contains an N-terminal C2H2-type zinc finger motif followed by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a split PAP domain linked by a proline-rich region, a PAP catalytic and core domain, a PAP-associated domain, an RS repeat, and a nuclear localization signal (NLS). 74 -240726 cd12280 RRM_FET RNA recognition motif in the FET family of RNA-binding proteins. This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15. 81 -240727 cd12281 RRM1_TatSF1_like RNA recognition motif 1 in HIV Tat-specific factor 1 (Tat-SF1) and similar proteins. This subfamily corresponds to the RRM1 of Tat-SF1 and CUS2. Tat-SF1 is the cofactor for stimulation of transcriptional elongation by human immunodeficiency virus-type 1 (HIV-1) Tat. It is a substrate of an associated cellular kinase. Tat-SF1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a highly acidic carboxyl-terminal half. The family also includes CUS2, a yeast homolog of human Tat-SF1. CUS2 interacts with U2 RNA in splicing extracts and functions as a splicing factor that aids assembly of the splicing-competent U2 snRNP in vivo. CUS2 also associates with PRP11 that is a subunit of the conserved splicing factor SF3a. Like Tat-SF1, CUS2 contains two RRMs as well. 92 -240728 cd12282 RRM2_TatSF1_like RNA recognition motif 2 in HIV Tat-specific factor 1 (Tat-SF1) and similar proteins. This subfamily corresponds to the RRM2 of Tat-SF1 and CUS2. Tat-SF1 is the cofactor for stimulation of transcriptional elongation by human immunodeficiency virus-type 1 (HIV-1) Tat. It is a substrate of an associated cellular kinase. Tat-SF1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a highly acidic carboxyl-terminal half. The family also includes CUS2, a yeast homolog of human Tat-SF1. CUS2 interacts with U2 RNA in splicing extracts and functions as a splicing factor that aids assembly of the splicing-competent U2 snRNP in vivo. CUS2 also associates with PRP11 that is a subunit of the conserved splicing factor SF3a. Like Tat-SF1, CUS2 contains two RRMs as well. 91 -240729 cd12283 RRM1_RBM39_like RNA recognition motif 1 in vertebrate RNA-binding protein 39 (RBM39) and similar proteins. This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor. 73 -240730 cd12284 RRM2_RBM23_RBM39 RNA recognition motif 2 in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins. This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor. 73 -240731 cd12285 RRM3_RBM39_like RNA recognition motif 3 in vertebrate RNA-binding protein 39 (RBM39) and similar proteins. This subfamily corresponds to the RRM3 of RBM39, also termed hepatocellular carcinoma protein 1, or RNA-binding region-containing protein 2, or splicing factor HCC1, ia nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Based on the specific domain composition, RBM39 has been classified into a family of non-snRNP (small nuclear ribonucleoprotein) splicing factors that are usually not complexed to snRNAs. 85 -240732 cd12286 RRM_Man1 RNA recognition motif in inner nuclear membrane protein Man1 (Man1) and similar proteins. This subfamily corresponds to the RRM of Man1, also termed LEM domain-containing protein 3 (LEMD3), an integral protein of the inner nuclear membrane that binds to nuclear lamins and emerin, thus playing a role in nuclear organization. It is part of a protein complex essential for chromatin organization and cell division. It also functions as an important negative regulator for the transforming growth factor (TGF) beta/activin/Nodal signaling pathway by directly interacting with chromatin-associated proteins and transcriptional regulators, including the R-Smads, Smad1, Smad2, and Smad3. Moreover, Man1 is a unique type of left-right (LR) signaling regulator that acts on the inner nuclear membrane. Man1 plays a crucial role in angiogenesis. The vascular remodeling can be regulated at the inner nuclear membrane through the interaction between Man1 and Smads. Man1 contains an N-terminal LEM domain, two putative transmembrane domains, a MAN1-Src1p C-terminal (MSC) domain, and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The LEM domain interacts with the DNA and chromatin-binding protein Barrier-to-Autointegration Factor, and is also necessary for efficient localization of MAN1 in the inner nuclear membrane. Research has indicated that C-terminal nucleoplasmic region of Man1 exhibits a DNA binding winged helix domain and is responsible for both DNA- and Smad-binding. 92 -240733 cd12287 RRM_U2AF35_like RNA recognition motif in U2 small nuclear ribonucleoprotein auxiliary factor U2AF 35 kDa subunit (U2AF35) and similar proteins. This subfamily corresponds to the RRM in U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) which has been implicated in the recruitment of U2 snRNP to pre-mRNAs. It is a highly conserved heterodimer composed of large and small subunits; this family includes the small subunit of U2AF (U2AF35 or U2AF1) and U2AF 35 kDa subunit B (U2AF35B or C3H60). U2AF35 directly binds to the 3' splice site of the conserved AG dinucleotide and performs multiple functions in the splicing process in a substrate-specific manner. It promotes U2 snRNP binding to the branch-point sequences of introns through association with the large subunit of U2AF (U2AF65 or U2AF2). Although the biological role of U2AF35B remains unclear, it shows high sequence homolgy to U2AF35, which contains two N-terminal zinc fingers, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal arginine/serine (SR) -rich segment interrupted by glycines. In contrast to U2AF35, U2AF35B has a plant-specific conserved C-terminal region containing SERE motif(s), which may have an important function specific to higher plants. 102 -240734 cd12288 RRM_La_like_plant RNA recognition motif in plant proteins related to the La autoantigen. This subfamily corresponds to the RRM of plant La-like proteins related to the La autoantigen. A variety of La-related proteins (LARPs or La ribonucleoproteins), with differing domain architecture, appear to function as RNA-binding proteins in eukaryotic cellular processes. Members in this family contain an LAM domain followed by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 93 -240735 cd12289 RRM_LARP6 RNA recognition motif in La-related protein 6 (LARP6) and similar proteins. This subfamily corresponds to the RRM of LARP6, also termed Acheron (Achn), a novel member of the lupus antigen (La) family. It is expressed predominantly in neurons and muscle in vertebrates. LARP6 functions as a key regulatory protein that may play a role in mediating a variety of developmental and homeostatic processes in animals, including myogenesis, neurogenesis and possibly metastasis. LARP6 binds to Ca2+/calmodulin-dependent serine protein kinase (CASK), and forms a complex with inhibitor of differentiation transcription factors. It is structurally related to the La autoantigen and contains a La motif (LAM), nuclear localization and export (NLS and NES) signals, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 93 -240736 cd12290 RRM1_LARP7 RNA recognition motif 1 in La-related protein 7 (LARP7) and similar proteins. This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus. 80 -240737 cd12291 RRM1_La RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins. This subfamily corresponds to the RRM1 of La autoantigen, also termed Lupus La protein, or La ribonucleoprotein, or Sjoegren syndrome type B antigen (SS-B), a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. La contains an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also possesses a short basic motif (SBM) and a nuclear localization signal (NLS) at the C-terminus. 72 -240738 cd12292 RRM2_La_like RNA recognition motif 2 in La autoantigen (La or SS-B or LARP3), La-related protein 7 (LARP7 or PIP7S) and similar proteins. This subfamily corresponds to the RRM2 of La and LARP7. La is a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. LARP7 is an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. It is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP), intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. LARP7 plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. Both La and LARP7 contain an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 75 -240739 cd12293 RRM_Rrp7p RNA recognition motif in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins. This subfamily corresponds to the RRM of Rrp7p which is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. 96 -240740 cd12294 RRM_Rrp7A RNA recognition motif in ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins. This subfamily corresponds to the RRM of Rrp7A, also termed gastric cancer antigen Zg14, a homolog of yeast ribosomal RNA-processing protein 7 (Rrp7p), and mainly found in Metazoa. Rrp7p is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. In contrast, the cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal Rrp7 domain. 102 -240741 cd12295 RRM_YRA2 RNA recognition motif in yeast RNA annealing protein YRA2 (Yra2p) and similar proteins. This subfamily corresponds to the RRM of Yra2p, a nonessential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA2 gene. It may share some overlapping functions with Yra1p, and is able to complement an YRA1 deletion when overexpressed in yeast. Yra2p belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. It is a major component of endogenous Yra1p complexes. It interacts with Yra1p and functions as a negative regulator of Yra1p. Yra2p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -240742 cd12296 RRM1_Prp24 RNA recognition motif 1 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins. This subfamily corresponds to the RRM1 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. 71 -240743 cd12297 RRM2_Prp24 RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins. This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. 78 -240744 cd12298 RRM3_Prp24 RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins. This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. 78 -240745 cd12299 RRM4_Prp24 RNA recognition motif 4 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins. This subfamily corresponds to the RRM4 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation. 71 -240746 cd12300 RRM1_PAR14 RNA recognition motif 1 in vertebrate poly [ADP-ribose] polymerase 14 (PARP-14). This subfamily corresponds to the RRM1 of PARP-14, also termed aggressive lymphoma protein 2, a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs. It is expressed in B lymphocytes and interacts with the IL-4-induced transcription factor Stat6. It plays a fundamental role in the regulation of IL-4-induced B-cell protection against apoptosis after irradiation or growth factor withdrawal. It mediates IL-4 effects on the levels of gene products that regulate cell survival, proliferation, and lymphomagenesis. PARP-14 acts as a transcriptional switch for Stat6-dependent gene activation. In the presence of IL-4, PARP-14 activates transcription by facilitating the binding of Stat6 to the promoter and release of HDACs from the promoter with an IL-4 signal. In contrast, in the absence of a signal, PARP-14 acts as a transcriptional repressor by recruiting HDACs. Moreover, the absence of PARP-14 protects against Myc-induced developmental block and lymphoma. Thus, PARP-14 may play an important role in Myc-induced oncogenesis. Research indicates that PARP-14 is also a binding partner with phosphoglucose isomerase (PGI)/ autocrine motility factor (AMF). It can inhibit PGI/AMF ubiquitination, thus contributing to its stabilization and secretion. PARP-14 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), three tandem macro domains, and C-terminal region with sequence homology to PARP catalytic domain. 82 -240747 cd12301 RRM1_2_PAR10_like RNA recognition motif 1 and 2 in poly [ADP-ribose] polymerase PARP-10, RNA recognition motif 2 in PARP-14, RNA recognition motif in N-myc-interactor (Nmi), interferon-induced 35 kDa protein (IFP 35), RNA-binding protein 43 (RBM43) and similar proteins. This subfamily corresponds to the RRM1 and RRM2 of PARP-10, RRM2 of PARP-14, RRM of N-myc-interactor (Nmi), interferon-induced 35 kDa protein (IFP 35) and RNA-binding protein 43 (RBM43). PARP-10 is a novel oncoprotein c-Myc-interacting protein with poly(ADP-ribose) polymerase activity. It is localized to the nuclear and cytoplasmic compartments. In addition to PARP activity, PARP-10 is also involved in the control of cell proliferation by inhibiting c-Myc- and E1A-mediated cotransformation of primary cells. PARP-10 may also play a role in nuclear processes including the regulation of chromatin, gene transcription, and nuclear/cytoplasmic transport. PARP-10 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two overlapping C-terminal domains composed of a glycine-rich region and a region with homology to catalytic domains of PARP enzymes (PARP domain). In addition, PARP-10 contains two ubiquitin-interacting motifs (UIM). PARP-14, also termed aggressive lymphoma protein 2, is a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs. Like PARP-10, PARP-14 also includes two RRMs at the N-terminus. Nmi, also termed N-myc and STAT interactor, is an interferon inducible protein that interacts with c-Myc, N-Myc, Max and c-Fos, and other transcription factors containing bHLH-ZIP, bHLH or ZIP domains. Besides binding Myc proteins, Nmi also associates with all the Stat family of transcription factors except Stat2. In response to cytokine (e.g. IL-2 and IFN-gamma) stimulation, Nmi can enhance Stat-mediated transcriptional activity through recruiting the Stat1 and Stat5 transcriptional coactivators, CREB-binding protein (CBP) and p300. IFP 35 is an interferon-induced leucine zipper protein that can specifically form homodimers. Distinct from known bZIP proteins, IFP 35 lacks a basic domain critical for DNA binding. In addition, IFP 35 may negatively regulate other bZIP transcription factors by protein-protein interaction. For instance, it can form heterodimers with B-ATF, a member of the AP1 transcription factor family. Both Nmi and IFP35 harbor one RRM. RBM43 is a putative RNA-binding protein containing one RRM, but its biological function remains unclear. 74 -240748 cd12302 RRM_scSet1p_like RNA recognition motif in budding yeast Saccharomyces cerevisiae SET domain-containing protein 1 (scSet1p) and similar proteins. This subfamily corresponds to the RRM of scSet1p, also termed H3 lysine-4 specific histone-lysine N-methyltransferase, or COMPASS component SET1, or lysine N-methyltransferase 2, which is encoded by SET1 from the yeast S. cerevisiae. It is a nuclear protein that may play a role in both silencing and activating transcription. scSet1p is closely related to the SET domain proteins of multicellular organisms, which are implicated in diverse aspects of cell morphology, growth control, and chromatin-mediated transcriptional silencing. scSet1p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a conserved SET domain that may play a role in DNA repair and telomere function. 110 -240749 cd12303 RRM_spSet1p_like RNA recognition motif in fission yeast Schizosaccharomyces pombe SET domain-containing protein 1 (spSet1p) and similar proteins. This subfamily corresponds to the RRM of spSet1p, also termed H3 lysine-4 specific histone-lysine N-methyltransferase, or COMPASS component SET1, or lysine N-methyltransferase 2, or Set1 complex component, is encoded by SET1 from the fission yeast S. pombe. It is essential for the H3 lysine-4 methylation. in vivo, and plays an important role in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. spSet1p is the homology counterpart of Saccharomyces cerevisiae Set1p (scSet1p). However, it is more closely related to Set1 found in mammalian. Moreover, unlike scSet1p, spSet1p is not required for heterochromatin assembly in fission yeast. spSet1p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a conserved SET domain that may play a role in DNA repair and telomere function. 86 -240750 cd12304 RRM_Set1 RNA recognition motif in the Set1-like family of histone-lysine N-methyltransferases. This subfamily corresponds to the RRM of the Set1-like family of histone-lysine N-methyltransferases which includes Set1A and Set1B that are ubiquitously expressed vertebrates histone methyltransferases exhibiting high homology to yeast Set1. Set1A and Set1B proteins exhibit a largely non-overlapping subnuclear distribution in euchromatic nuclear speckles, strongly suggesting that they bind to a unique set of target genes and thus make non-redundant contributions to the epigenetic control of chromatin structure and gene expression. With the exception of the catalytic component, the subunit composition of the Set1A and Set1B histone methyltransferase complexes are identical. Each complex contains six human homologs of the yeast Set1/COMPASS complex, including Set1A or Set1B, Ash2 (homologous to yeast Bre2), CXXC finger protein 1 (CFP1; homologous to yeast Spp1), Rbbp5 (homologous to yeast Swd1), Wdr5 (homologous to yeast Swd3), and Wdr82 (homologous to yeast Swd2). The genomic targeting of these complexes is determined by the identity of the catalytic subunit present in each histone methyltransferase complex. Thus, the Set1A and Set1B complexes may exhibit both overlapping and non-redundant properties. Both Set1A and Set1B contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), an N- SET domain, and a C-terminal catalytic SET domain followed by a post-SET domain. In contrast to Set1B, Set1A additionally contains an HCF-1 binding motif that interacts with HCF-1 in vivo. 93 -240751 cd12305 RRM_NELFE RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins. This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif. 75 -240752 cd12306 RRM_II_PABPs RNA recognition motif in type II polyadenylate-binding proteins. This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only. 73 -240753 cd12307 RRM_NIFK_like RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins. This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -240754 cd12308 RRM1_Spen RNA recognition motif 1 in the Spen (split end) protein family. This subfamily corresponds to the RRM1 domain in the Spen (split end) family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also known as one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong- to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 79 -240755 cd12309 RRM2_Spen RNA recognition motif 2 in the Spen (split end) protein family. This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 79 -240756 cd12310 RRM3_Spen RNA recognition motif 3 in the Spen (split end) protein family. This subfamily corresponds to the RRM3 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B) and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and is a novel component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 72 -240757 cd12311 RRM_SRSF2_SRSF8 RNA recognition motif in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins. This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain. 73 -240758 cd12312 RRM_SRSF10_SRSF12 RNA recognition motif in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins. This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. 84 -240759 cd12313 RRM1_RRM2_RBM5_like RNA recognition motif 1 and 2 in RNA-binding protein 5 (RBM5) and similar proteins. This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain. 84 -240760 cd12314 RRM1_RBM6 RNA recognition motif 1 in vertebrate RNA-binding protein 6 (RBM6). This subfamily corresponds to the RRM1 of RBM6, also termed lung cancer antigen NY-LU-12, or protein G16, or RNA-binding protein DEF-3, which has been predicted to be a nuclear factor based on its nuclear localization signal. It shows high sequence similarity to RNA-binding protein 5 (RBM5 or LUCA15 or NY-REN-9). Both, RBM6 and RBM5, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. In contrast to RBM5, RBM6 has two additional unique domains: the decamer repeat occurring more than 20 times, and the POZ (poxvirus and zinc finger) domain. The POZ domain may be involved in protein-protein interactions and inhibit binding of target sequences by zinc fingers. 78 -240761 cd12315 RRM1_RBM19_MRD1 RNA recognition motif 1 in RNA-binding protein 19 (RBM19), yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subfamily corresponds to the RRM1 of RBM19 and MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events. 77 -240762 cd12316 RRM3_RBM19_RRM2_MRD1 RNA recognition motif 3 in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1). This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events. 74 -240763 cd12317 RRM4_RBM19_RRM3_MRD1 RNA recognition motif 4 in RNA-binding protein 19 (RBM19) and RNA recognition motif 3 in multiple RNA-binding domain-containing protein 1 (MRD1). This subfamily corresponds to the RRM4 of RBM19 and the RRM3 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologues exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events. 72 -240764 cd12318 RRM5_RBM19_like RNA recognition motif 5 in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins. This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 82 -240765 cd12319 RRM4_MRD1 RNA recognition motif 4 in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events. 84 -240766 cd12320 RRM6_RBM19_RRM5_MRD1 RNA recognition motif 6 in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 in multiple RNA-binding domain-containing protein 1 (MRD1). This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events. 76 -240767 cd12321 RRM1_TDP43 RNA recognition motif 1 in TAR DNA-binding protein 43 (TDP-43) and similar proteins. This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity. 77 -240768 cd12322 RRM2_TDP43 RNA recognition motif 2 in TAR DNA-binding protein 43 (TDP-43) and similar proteins. This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity. 71 -240769 cd12323 RRM2_MSI RNA recognition motif 2 in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins. This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 74 -240770 cd12324 RRM_RBM8 RNA recognition motif in RNA-binding protein RBM8A, RBM8B nd similar proteins. This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain). 88 -240771 cd12325 RRM1_hnRNPA_hnRNPD_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins. This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs. 72 -240772 cd12326 RRM1_hnRNPA0 RNA recognition motif 1 found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins. This subfamily corresponds to the RRM1 of hnRNP A0 which is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 79 -240773 cd12327 RRM2_DAZAP1 RNA recognition motif 2 in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins. This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain. 80 -240774 cd12328 RRM2_hnRNPA_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A subfamily. This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 73 -240775 cd12329 RRM2_hnRNPD_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus. 75 -240776 cd12330 RRM2_Hrp1p RNA recognition motif 2 in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins. This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y. 75 -240777 cd12331 RRM_NRD1_SEB1_like RNA recognition motif in Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein seb1 and similar proteins. This subfamily corresponds to the RRM of Nrd1 and Seb1. Nrd1 is a novel heterogeneous nuclear ribonucleoprotein (hnRNP)-like RNA-binding protein encoded by gene NRD1 (for nuclear pre-mRNA down-regulation) from yeast S. cerevisiae. It is implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by polymerase II, and plays a critical role in pre-mRNA metabolism. Nrd1 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a short arginine-, serine-, and glutamate-rich segment similar to the regions rich in RE and RS dipeptides (RE/RS domains) in many metazoan splicing factors, and a proline- and glutamine-rich C-terminal domain (P+Q domain) similar to domains found in several yeast hnRNPs. Disruption of NRD1 gene is lethal to yeast cells. Its N-terminal domain is sufficient for viability, which may facilitate interactions with RNA polymerase II where Nrd1 may function as an auxiliary factor. By contrast, the RRM, RE/RS domains, and P+Q domain are dispensable. Seb1 is an RNA-binding protein encoded by gene seb1 (for seven binding) from fission yeast S. pombe. It is essential for cell viability and bound directly to Rpb7 subunit of RNA polymerase II. Seb1 is involved in processing of polymerase II transcripts. It also contains one RRM motif and a region rich in arginine-serine dipeptides (RS domain). 79 -240778 cd12332 RRM1_p54nrb_like RNA recognition motif 1 in the p54nrb/PSF/PSP1 family. This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members. 71 -240779 cd12333 RRM2_p54nrb_like RNA recognition motif 2 in the p54nrb/PSF/PSP1 family. This subfamily corresponds to the RRM2 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. The family also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members. 80 -240780 cd12334 RRM1_SF3B4 RNA recognition motif 1 in splicing factor 3B subunit 4 (SF3B4) and similar proteins. This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145. 74 -240781 cd12335 RRM2_SF3B4 RNA recognition motif 2 in splicing factor 3B subunit 4 (SF3B4) and similar proteins. This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145. 83 -240782 cd12336 RRM_RBM7_like RNA recognition motif in RNA-binding protein 7 (RBM7) and similar proteins. This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization. 75 -240783 cd12337 RRM1_SRSF4_like RNA recognition motif 1 in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins. This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. 70 -240784 cd12338 RRM1_SRSF1_like RNA recognition motif 1 in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins. This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues. 72 -240785 cd12339 RRM2_SRSF1_4_like RNA recognition motif 2 in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins. This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues. 71 -240786 cd12340 RBD_RRM1_NPL3 RNA recognition motif 1 in yeast nucleolar protein 3 (Npl3p) and similar proteins. This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues. 67 -240787 cd12341 RRM_hnRNPC_like RNA recognition motif in heterogeneous nuclear ribonucleoprotein C (hnRNP C)-related proteins. This subfamily corresponds to the RRM in the hnRNP C-related protein family, including hnRNP C proteins, Raly, and Raly-like protein (RALYL). hnRNP C proteins, C1 and C2, are produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex; they are involved in the packaging of the hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. Raly, also termed autoantigen p542, is an RNA-binding protein that may play a critical role in embryonic development. The biological role of RALYL remains unclear. It shows high sequence homology with hnRNP C proteins and Raly. Members of this family are characterized by an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. The Raly proteins contain a glycine/serine-rich stretch within the C-terminal regions, which is absent in the hnRNP C proteins. Thus, the Raly proteins represent a newly identified class of evolutionarily conserved autoepitopes. 68 -240788 cd12342 RRM_Nab3p RNA recognition motif in yeast nuclear polyadenylated RNA-binding protein 3 (Nab3p) and similar proteins. This subfamily corresponds to the RRM of Nab3p, an acidic nuclear polyadenylated RNA-binding protein encoded by Saccharomyces cerevisiae NAB3 gene that is essential for cell viability. Nab3p is predominantly localized within the nucleoplasm and essential for growth in yeast. It may play an important role in packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing. Nab3p contains an N-terminal aspartic/glutamic acid-rich region, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal region rich in glutamine and proline residues. 71 -240789 cd12343 RRM1_2_CoAA_like RNA recognition motif 1 and 2 in RRM-containing coactivator activator/modulator (CoAA) and similar proteins. This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region. 66 -240790 cd12344 RRM1_SECp43_like RNA recognition motif 1 in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins. This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs. 81 -240791 cd12345 RRM2_SECp43_like RNA recognition motif 2 in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins. This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs. 80 -240792 cd12346 RRM3_NGR1_NAM8_like RNA recognition motif 3 in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins. This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs. 72 -240793 cd12347 RRM_PPIE RNA recognition motif in cyclophilin-33 (Cyp33) and similar proteins. This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A. 73 -240794 cd12348 RRM1_SHARP RNA recognition motif 1 in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins. This subfamily corresponds to the RRM1 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins. 75 -240795 cd12349 RRM2_SHARP RNA recognition motif 2 in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins. This subfamily corresponds to the RRM2 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins. 74 -240796 cd12350 RRM3_SHARP RNA recognition motif 3 in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins. This subfamily corresponds to the RRM3 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins. 74 -240797 cd12351 RRM4_SHARP RNA recognition motif 4 in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins. This subfamily corresponds to the RRM of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, is an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins. 77 -240798 cd12352 RRM1_TIA1_like RNA recognition motif 1 in granule-associated RNA binding proteins p40-TIA-1 and TIAR. This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. 72 -240799 cd12353 RRM2_TIA1_like RNA recognition motif 2 in granule-associated RNA binding proteins p40-TIA-1 and TIAR. This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. 75 -240800 cd12354 RRM3_TIA1_like RNA recognition motif 2 in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1. This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3. 73 -240801 cd12355 RRM_RBM18 RNA recognition motif in eukaryotic RNA-binding protein 18 and similar proteins. This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear. 80 -240802 cd12356 RRM_PPARGC1B RNA recognition motif in peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) and similar proteins. This subfamily corresponds to the RRM of PGC-1beta, also termed PPAR-gamma coactivator 1-beta, or PPARGC-1-beta, or PGC-1-related estrogen receptor alpha coactivator, which is one of the members of PGC-1 transcriptional coactivators family, including PGC-1alpha and PGC-1-related coactivator (PRC). PGC-1beta plays a nonredundant role in controlling mitochondrial oxidative energy metabolism and affects both, insulin sensitivity and mitochondrial biogenesis, and functions in a number of oxidative tissues. It is involved in maintaining baseline mitochondrial function and cardiac contractile function following pressure overload hypertrophy by preserving glucose metabolism and preventing oxidative stress. PGC-1beta induces hypertriglyceridemia in response to dietary fats through activating hepatic lipogenesis and lipoprotein secretion. It can stimulate apolipoprotein C3 (APOC3) expression, further mediating hypolipidemic effect of nicotinic acid. PGC-1beta also drives nuclear respiratory factor 1 (NRF-1) target gene expression and NRF-1 and estrogen related receptor alpha (ERRalpha)-dependent mitochondrial biogenesis. The modulation of the expression of PGC-1beta can trigger ERRalpha-induced adipogenesis. PGC-1beta is also a potent regulator inducing angiogenesis in skeletal muscle. The transcriptional activity of PGC-1beta can be increased through binding to host cell factor (HCF), a cellular protein involved in herpes simplex virus (HSV) infection and cell cycle regulation. PGC-1beta is a multi-domain protein containing an N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, two glutamic/aspartic acid-rich acidic domains, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha, PGC-1beta lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing. 79 -240803 cd12357 RRM_PPARGC1A_like RNA recognition motif in the peroxisome proliferator-activated receptor gamma coactivator 1A (PGC-1alpha) family of regulated coactivators. This subfamily corresponds to the RRM of PGC-1alpha, PGC-1beta, and PGC-1-related coactivator (PRC), which serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. They play an important integrative role in the control of respiratory gene expression through interacting with a number of transcription factors, such as NRF-1, NRF-2, ERR, CREB and YY1. All family members are multi-domain proteins containing the N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha and PRC, PGC-1beta possesses two glutamic/aspartic acid-rich acidic domains, but lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing. 89 -240804 cd12358 RRM1_VICKZ RNA recognition motif 1 in the VICKZ family proteins. Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains. 73 -240805 cd12359 RRM2_VICKZ RNA recognition motif 2 in the VICKZ family proteins. This subfamily corresponds to the RRM2 of IGF-II mRNA-binding proteins (IGF2BPs or IMPs) in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains. 76 -240806 cd12360 RRM_cwf2 RNA recognition motif in yeast pre-mRNA-splicing factor Cwc2 and similar proteins. This subfamily corresponds to the RRM of yeast protein Cwc2, also termed Complexed with CEF1 protein 2, or PRP19-associated complex protein 40 (Ntc40), or synthetic lethal with CLF1 protein 3, one of the components of the Prp19-associated complex [nineteen complex (NTC)] that can bind to RNA. NTC is composed of the scaffold protein Prp19 and a number of associated splicing factors, and plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Cwc2 functions as an RNA-binding protein that can bind both small nuclear RNAs (snRNAs) and pre-mRNA in vitro. It interacts directly with the U6 snRNA to link the NTC to the spliceosome during pre-mRNA splicing. In the N-terminal half, Cwc2 contains a CCCH-type zinc finger (ZnF domain), a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an intervening loop, also termed RNA-binding loop or RB loop, between ZnF and RRM, all of which are necessary and sufficient for RNA binding. The ZnF is also responsible for mediating protein-protein interaction. The C-terminal flexible region of Cwc2 interacts with the WD40 domain of Prp19. 78 -240807 cd12361 RRM1_2_CELF1-6_like RNA recognition motif 1 and 2 in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA. This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain. 77 -240808 cd12362 RRM3_CELF1-6 RNA recognition motif 3 in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins. This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. 73 -240809 cd12363 RRM_TRA2 RNA recognition motif in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins. This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. 78 -240810 cd12364 RRM_RDM1 RNA recognition motif of RAD52 motif-containing protein 1 (RDM1) and similar proteins. This subfamily corresponds to the RRM of RDM1, also termed RAD52 homolog B, a novel factor involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. RDM1 contains a small RD motif that shares with the recombination and repair protein RAD52, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RD motif is responsible for the acidic pH-dependent DNA-binding properties of RDM1. It interacts with ss- and dsDNA, and may act as a DNA-damage recognition factor by recognizing the distortions of the double helix caused by cisplatin-DNA adducts in vitro. In addition, due to the presence of RRM, RDM1 can bind to RNA as well as DNA. 81 -240811 cd12365 RRM_RNPS1 RNA recognition motif in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins. This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain. 73 -240812 cd12366 RRM1_RBM45 RNA recognition motif 1 in RNA-binding protein 45 (RBM45) and similar proteins. This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 81 -240813 cd12367 RRM2_RBM45 RNA recognition motif 2 in RNA-binding protein 45 (RBM45) and similar proteins. This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 74 -240814 cd12368 RRM3_RBM45 RNA recognition motif 3 in RNA-binding protein 45 (RBM45) and similar proteins. This subfamily corresponds to the RRM3 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 75 -240815 cd12369 RRM4_RBM45 RNA recognition motif 4 in RNA-binding protein 45 (RBM45) and similar proteins. This subfamily corresponds to the RRM4 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 68 -240816 cd12370 RRM1_PUF60 RNA recognition motif 1 in (U)-binding-splicing factor PUF60 and similar proteins. This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition. 76 -240817 cd12371 RRM2_PUF60 RNA recognition motif 2 in (U)-binding-splicing factor PUF60 and similar proteins. This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition. 77 -240818 cd12372 RRM_CFIm68_CFIm59 RNA recognition motif of pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6), pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7), and similar proteins. This subfamily corresponds to the RRM of cleavage factor Im (CFIm) subunits. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. Structurally related CFIm68 and CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59), are functionally redundant. Both contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. Their N-terminal RRM mediates the interaction with CFIm25, and also serves to enhance RNA binding and facilitate RNA looping. 76 -240819 cd12373 RRM_SRSF3_like RNA recognition motif in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins. This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions. 73 -240820 cd12374 RRM_UHM_SPF45_PUF60 RNA recognition motif in UHM domain of 45 kDa-splicing factor (SPF45) and similar proteins. This subfamily corresponds to the RRM found in UHM domain of 45 kDa-splicing factor (SPF45 or RBM17), poly(U)-binding-splicing factor PUF60 (FIR or Hfp or RoBP1 or Siah-BP1), and similar proteins. SPF45 is an RNA-binding protein consisting of an unstructured N-terminal region, followed by a G-patch motif and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and an Arg-Xaa-Phe sequence motif. SPF45 regulates alternative splicing of the apoptosis regulatory gene FAS (also known as CD95). It induces exon 6 skipping in FAS pre-mRNA through the UHM domain that binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) present in the 3' splice site-recognizing factors U2AF65, SF1 and SF3b155. PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RRMs and a C-terminal UHM domain. 85 -240821 cd12375 RRM1_Hu_like RNA recognition motif 1 in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins. This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts. 77 -240822 cd12376 RRM2_Hu_like RNA recognition motif 2 in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins. This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts. 79 -240823 cd12377 RRM3_Hu RNA recognition motif 3 in the Hu proteins family. This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 78 -240824 cd12378 RRM1_I_PABPs RNA recognition motif 1 in type I polyadenylate-binding proteins. This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions. 80 -240825 cd12379 RRM2_I_PABPs RNA recognition motif 2 found in type I polyadenylate-binding proteins. This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions. 77 -240826 cd12380 RRM3_I_PABPs RNA recognition motif 3 found in type I polyadenylate-binding proteins. This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions. 80 -240827 cd12381 RRM4_I_PABPs RNA recognition motif 4 in type I polyadenylate-binding proteins. This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions. 79 -240828 cd12382 RRM_RBMX_like RNA recognition motif in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins. This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G. 80 -240829 cd12383 RRM_RBM42 RNA recognition motif in RNA-binding protein 42 (RBM42) and similar proteins. This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 83 -240830 cd12384 RRM_RBM24_RBM38_like RNA recognition motif in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins. This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -240831 cd12385 RRM1_hnRNPM_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins. This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity. 76 -240832 cd12386 RRM2_hnRNPM_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins. This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity. 74 -240833 cd12387 RRM3_hnRNPM_like RNA recognition motif 3 in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins. This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity. 72 -240834 cd12388 RRM1_RAVER RNA recognition motif 1 in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins. This subfamily corresponds to the RRM1 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only. 70 -240835 cd12389 RRM2_RAVER RNA recognition motif 2 in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins. This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only. 77 -240836 cd12390 RRM3_RAVER RNA recognition motif 3 in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins. This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only. 92 -240837 cd12391 RRM1_SART3 RNA recognition motif 1 in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins. This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 72 -240838 cd12392 RRM2_SART3 RNA recognition motif 2 in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins. This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 81 -240839 cd12393 RRM_ZCRB1 RNA recognition motif in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins. This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains. 78 -240840 cd12394 RRM1_RBM34 RNA recognition motif 1 in RNA-binding protein 34 (RBM34) and similar proteins. This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein. 91 -240841 cd12395 RRM2_RBM34 RNA recognition motif 2 in RNA-binding protein 34 (RBM34) and similar proteins. This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein. 73 -240842 cd12396 RRM1_Nop13p_fungi RNA recognition motif 1 in yeast nucleolar protein 13 (Nop13p) and similar proteins. This subfamily corresponds to the RRM1 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both, Nop12p and Nop13p, are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 85 -240843 cd12397 RRM2_Nop13p_fungi RNA recognition motif 2 in yeast nucleolar protein 13 (Nop13p) and similar proteins. This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 73 -240844 cd12398 RRM_CSTF2_RNA15_like RNA recognition motif in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs. 75 -240845 cd12399 RRM_HP0827_like RNA recognition motif in Helicobacter pylori HP0827 protein and similar proteins. This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827. 78 -240846 cd12400 RRM_Nop6 RNA recognition motif in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins. This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing. 74 -240847 cd12401 RRM_eIF4H RNA recognition motif in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins. This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation. 76 -240848 cd12402 RRM_eIF4B RNA recognition motif in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins. This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation. 77 -240849 cd12403 RRM1_NCL RNA recognition motif 1 in vertebrate nucleolin. This subfamily corresponds to the RRM1 of ubiquitously expressed protein nucleolin, also termed protein C23. Nucleolin is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. RRM1, together with RRM2, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop. 75 -240850 cd12404 RRM2_NCL RNA recognition motif 2 in vertebrate nucleolin. This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop. 77 -240851 cd12405 RRM3_NCL RNA recognition motif 3 in vertebrate nucleolin. This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. 72 -240852 cd12406 RRM4_NCL RNA recognition motif 4 in vertebrate nucleolin. This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. 78 -240853 cd12407 RRM_FOX1_like RNA recognition motif in vertebrate RNA binding protein fox-1 homologs and similar proteins. This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 76 -240854 cd12408 RRM_eIF3G_like RNA recognition motif in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins. This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus. 77 -240855 cd12409 RRM1_RRT5 RNA recognition motif 1 in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins. This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 84 -240856 cd12410 RRM2_RRT5 RNA recognition motif 2 in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins. This subfamily corresponds to the RRM2 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 93 -240857 cd12411 RRM_ist3_like RNA recognition motif in ist3 family. This subfamily corresponds to the RRM of the ist3 family that includes fungal U2 small nuclear ribonucleoprotein (snRNP) component increased sodium tolerance protein 3 (ist3), X-linked 2 RNA-binding motif proteins (RBMX2) found in Metazoa and plants, and similar proteins. Gene IST3 encoding ist3, also termed U2 snRNP protein SNU17 (Snu17p), is a novel yeast Saccharomyces cerevisiae protein required for the first catalytic step of splicing and for progression of spliceosome assembly. It binds specifically to the U2 snRNP and is an intrinsic component of prespliceosomes and spliceosomes. Yeast ist3 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In the yeast pre-mRNA retention and splicing complex, the atypical RRM of ist3 functions as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). Fission yeast Schizosaccharomyces pombe gene cwf29 encoding ist3, also termed cell cycle control protein cwf29, is an RNA-binding protein complexed with cdc5 protein 29. It also contains one RRM. The biological function of RBMX2 remains unclear. It shows high sequence similarity to yeast ist3 protein and harbors one RRM as well. 89 -240858 cd12412 RRM_DAZL_BOULE RNA recognition motif in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis. 80 -240859 cd12413 RRM1_RBM28_like RNA recognition motif 1 in RNA-binding protein 28 (RBM28) and similar proteins. This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs. 79 -240860 cd12414 RRM2_RBM28_like RNA recognition motif 2 in RNA-binding protein 28 (RBM28) and similar proteins. This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs. 76 -240861 cd12415 RRM3_RBM28_like RNA recognition motif 3 in RNA-binding protein 28 (RBM28) and similar proteins. This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs. 82 -240862 cd12416 RRM4_RBM28_like RNA recognition motif 4 in RNA-binding protein 28 (RBM28) and similar proteins. This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs. 98 -240863 cd12417 RRM_SAFB_like RNA recognition motif in the scaffold attachment factor (SAFB) family. This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM. 74 -240864 cd12418 RRM_Aly_REF_like RNA recognition motif in the Aly/REF family. This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. 75 -240865 cd12419 RRM_Ssp2_like RNA recognition motif in yeast sporulation-specific protein 2 (Ssp2) and similar protein. This subfamily corresponds to the RRM of the lineage specific yeast sporulation-specific protein 2 (Ssp2) and similar proteins. Ssp2 is encoded by a sporulation-specific gene necessary for outer spore wall assembly in the yeast Saccharomyces cerevisiae. It localizes to the spore wall and may play an important role after meiosis II and during spore wall formation. Ssp2 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 80 -240866 cd12420 RRM_RBPMS_like RNA recognition motif in RNA-binding protein with multiple splicing (RBP-MS)-like proteins. This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4. 79 -240867 cd12421 RRM1_PTBP1_hnRNPL_like RNA recognition motif in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins. This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM. 74 -240868 cd12422 RRM2_PTBP1_hnRNPL_like RNA recognition motif in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins. This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. 85 -240869 cd12423 RRM3_PTBP1_like RNA recognition motif 3 in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins. This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -240870 cd12424 RRM3_hnRNPL_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins. This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RRMs. 71 -240871 cd12425 RRM4_PTBP1_like RNA recognition motif 4 in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins. This subfamily corresponds to the RRM4 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -240872 cd12426 RRM4_PTBPH3 RNA recognition motif 4 in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3). This subfamily corresponds to the RRM4 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 79 -240873 cd12427 RRM4_hnRNPL_like RNA recognition motif 4 in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins. This subfamily corresponds to the RRM4 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 84 -240874 cd12428 RRM_PARN RNA recognition motif in poly(A)-specific ribonuclease PARN and similar proteins. The subfamily corresponds to the RRM of PARN, also termed deadenylating nuclease, or deadenylation nuclease, or polyadenylate-specific ribonuclease, a processive poly(A)-specific 3'-exoribonuclease involved in the decay of eukaryotic mRNAs. It specifically binds both, the poly(A) tail at the 3' end and the 7-methylguanosine (m7G) cap located at the 5' end of eukaryotic mRNAs, and catalyzes the 3'- to 5'-end deadenylation of single-stranded mRNA with a free 3' hydroxyl group both in the nucleus and in the cytoplasm. PARN belongs to the DEDD superfamily of exonucleases. It contains a nuclease domain, an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an R3H domain. PARN exists as a homodimer. The nuclease domain is involved in the dimerization. RRM and R3H domains are essential for the RNA-binding. 65 -240875 cd12429 RRM_DNAJC17 RNA recognition motif in the DnaJ homolog subfamily C member 17. The CD corresponds to the RRM of some eukaryotic DnaJ homolog subfamily C member 17 and similar proteins. DnaJ/Hsp40 (heat shock protein 40) proteins are highly conserved and play crucial roles in protein translation, folding, unfolding, translocation, and degradation. They act primarily by stimulating the ATPase activity of Hsp70s, an important chaperonine family. Members in this family contains an N-terminal DnaJ domain or J-domain, which mediates the interaction with Hsp70. They also contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the C-terminus, which may play an essential role in RNA binding. 74 -240876 cd12430 RRM_LARP4_5_like RNA recognition motif in La-related protein 4 (LARP4), La-related protein 5 (LARP5 or LARP4B) and similar proteins. This subfamily corresponds to the RRM of LARP4 and LARP5. LARP4 is a cytoplasmic factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). It may play a role in promoting translation by stabilizing mRNA. LARP5 is a cytosolic protein that co-sediments with polysomes and accumulates upon stress induction in cellular stress granules. It can interact with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. LARP5 may function as a stimulatory factor of translation through bridging mRNA factors of the 3' end with initiating ribosomes. Both, LARP4 and LARP5, are structurally related to the La autoantigen. Like other La-related proteins (LARPs) family members, LARP4 and LARP5 contain a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -240877 cd12431 RRM_ALKBH8 RNA recognition motif in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins. This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain. 80 -240878 cd12432 RRM_ACINU RNA recognition motif in apoptotic chromatin condensation inducer in the nucleus (acinus) and similar proteins. This subfamily corresponds to the RRM of Acinus, a caspase-3-activated nuclear factor that induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. It is essential for apoptotic chromatin condensation and may also participate in nuclear structural changes occurring in normal cells. Acinus contains a P-loop motif and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which indicates Acinus might have ATPase and DNA/RNA-binding activity. 90 -240879 cd12433 RRM_Yme2p_like RNA recognition motif in yeast mitochondrial escape protein 2 (Yme2p) and similar proteins. This subfamily corresponds to the RRM of Yme2p, also termed protein RNA12, an inner mitochondrial membrane protein that plays a critical role in mitochondrial DNA transactions. It may serve as a mediator of nucleoid structure and number in mitochondria of the yeast Saccharomyces cerevisiae. Yme2p contains an exonuclease domain, an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal domain. 86 -240880 cd12434 RRM_RCAN_like RNA recognition motif in regulators of calcineurin (RCANs) and similar proteins. This subfamily corresponds to the RRM of RCANs, a novel family of calcineurin regulators that are key factors contributing to Down syndrome in humans. They can stimulate and inhibit the Ca2+/calmodulin-dependent phosphatase calcineurin (also termed PP2B or PP3C) signaling in vivo through direct interactions with its catalytic subunit. Overexpressed RCANs may bind and inhibit calcineurin. In contrast, low levels of phosphorylated RCANs may stimulate the calcineurin signaling. RCANs are characterized by harboring a central short, unique serine-proline motif containing FLIISPPxSPP box, which is strongly conserved from yeast to human but is absent in bacteria. They consist of an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a highly conserved SP repeat domain containing the phosphorylation site by GSK-3, a well-known PxIxIT motif responsible for docking many substrates to calcineurin, and an unrecognized C-terminal TxxP motif of unknown function. 75 -240881 cd12435 RRM_GW182_like RNA recognition motif in the GW182 family proteins. This subfamily corresponds to the RRM of the GW182 family which includes three paralogs of TNRC6 (GW182-related) proteins comprising GW182/TNGW1, TNRC6B (containing three isoforms) and TNRC6C in mammal, a single Drosophila ortholog (dGW182, also called Gawky) and two Caenorhabditis elegans orthologs AIN-1 and AIN-2, which contain multiple miRNA-binding sites and have important functions in miRNA-mediated translational repression, as well as mRNA degradation in Metazoa. The GW182 family proteins directly interact with Argonaute (Ago) proteins, and thus function as downstream effectors in the miRNA pathway, responsible for inhibition of translation and acceleration of mRNA decay. Members in this family are characterized by an abnormally high content of glycine/tryptophan (G/W) repeats, one or more glutamine (Q)-rich motifs, and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The only exception is the worm protein that does not contain a recognizable RRM domain. The GW182 family proteins are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein. Then they promote translational repression and/or degradation of miRNA targets through their C-terminal silencing domain. 71 -240882 cd12436 RRM1_2_MATR3_like RNA recognition motif 1 and 2 in the matrin 3 family of nuclear proteins. This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region. 76 -240883 cd12437 RRM_BRAP2_like RNA recognition motif in BRCA1-associated protein (BRAP2) and similar proteins. This subfamily corresponds to the RRM domain of BRAP2, also termed impedes mitogenic signal propagation (IMP), or ring finger protein 52, or renal carcinoma antigen NY-REN-63, a novel cytoplasmic protein interacting with the two functional nuclear localisation signal (NLS) motifs of BRCA1, a nuclear protein linked to breast cancer. It also binds to the SV40 large T antigen NLS motif and the bipartite NLS motif found in mitosin. BRAP2 may serve as a cytoplasmic retention protein and play a role in the regulation of nuclear protein transport. The family also includes RING finger protein ETP1 and its homologs found in fungi. ETP1, also termed BRAP2 homolog, or ethanol tolerance protein 1, is the yeast homolog of BRCA1-associated protein (BRAP2) found in vertebrates. It may be involved in ethanol and salt-induced transcriptional activation of the NHA1 promoter and heat shock protein genes (HSP12 and HSP26), and participate in ethanol-induced turnover of the low-affinity hexose transporter Hxt3p. Members in this family contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C3HC4-type ring finger domain and a UBP-type zinc finger. 82 -240884 cd12438 RRM_CNOT4 RNA recognition motif in Eukaryotic CCR4-NOT transcription complex subunit 4 (NOT4) and similar proteins. This subfamily corresponds to the RRM of NOT4, also termed CCR4-associated factor 4, or E3 ubiquitin-protein ligase CNOT4, or potential transcriptional repressor NOT4Hp, a component of the CCR4-NOT complex, a global negative regulator of RNA polymerase II transcription. NOT4 functions as an ubiquitin-protein ligase (E3). It contains an N-terminal C4C4 type RING finger motif, followed by a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RING fingers may interact with a subset of ubiquitin-conjugating enzymes (E2s), including UbcH5B, and mediate protein-protein interactions. T 98 -240885 cd12439 RRM_TRMT2A RNA recognition motif in tRNA (uracil-5-)-methyltransferase homolog A (TRMT2A) and similar proteins. This subfamily corresponds to the RRM of TRMT2A, also known as HpaII tiny fragments locus 9c protein (HTF9C), a novel cell cycle regulated protein. It is an independent biologic factor expressed in tumors associated with clinical outcome in HER2 expressing breast cancer. The function of TRMT2A remains unclear although by sequence homology it has a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), related to RNA methyltransferases. 79 -240886 cd12440 RRM_SYNJ RNA recognition motif in synaptojanin-1, synaptojanin-2 and similar proteins. This subfamily corresponds to the RRM of two active phosphatidylinositol phosphate phosphatases, synaptojanin-1 and synaptojanin-2. They have different interaction partners and are likely to have different biological functions. Synaptojanin-1 was originally identified as one of the major Grb2-binding proteins that may participate in synaptic vesicle endocytosis. It also acts as a Src homology 3 (SH3) domain-binding brain-specific inositol 5-phosphatase with a putative role in clathrin-mediated endocytosis. Synaptojanin-2 is a ubiquitously expressed homolog of synaptojanin-1. It is a novel Rac1 effector regulating the early step of clathrin-mediated endocytosis. Synaptojanin-2 directly and specifically interacts with Rac1 in a GTP-dependent manner. It mediates the inhibitory effect of Rac1 on endocytosis and plays an important role in the Rac1-mediated control of cell growth. Both, synaptojanin-1 and synaptojanin-2, have two tissue-specific alternative splicing isoforms, a shorter isoform expressed in brain and a longer isoform in peripheral tissues. Synaptojanin-1 contains an N-terminal domain homologous to the cytoplasmic portion of the yeast protein Sac1p, a central inositol 5-phosphatase domain followed by a putative RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal proline-rich region mediating the binding of synaptojanin-1 to various SH3 domain-containing proteins including amphiphysin, SH3p4, SH3p8, SH3p13, and Grb2. Synaptojanin-2 shows high sequence homology to the N-terminal Sac1p homology domain, the central inositol 5-phosphatase domain, the putative RNA recognition motif (RRM) of synaptojanin-1, but differs in the proline-rich region. 78 -240887 cd12441 RRM_Nup53_like RNA recognition motif in nucleoporin Nup53 and similar proteins. This subfamily corresponds to the RRM domain of nucleoporin Nup53, also termed mitotic phosphoprotein 44 (MP-44), or nuclear pore complex protein Nup53, required for normal cell growth and nuclear morphology in vertebrate. It tightly associates with the nuclear envelope membrane and the nuclear lamina where it interacts with lamin B. It may also interact with a group of nucleoporins including Nup93, Nup155, and Nup205 and play a role in the association of the mitotic checkpoint protein Mad1 with the nuclear pore complex (NPC). The family also includes Saccharomyces cerevisiae Nup53p, an ortholog of vertebrate nucleoporin Nup53. A unique property of yeast Nup53p is that it contains an additional Kap121p-binding domain and interacts specifically with the karyopherin Kap121p, which is involved in the assembly of Nup53p into NPCs. Both, vertebrate Nup35 and yeast Nup53p, contain an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a C-terminal amphipathic alpha-helix and several FG repeats. This family corresponds to the RRM domain which lacks the conserved residues that typically bind RNA in canonical RRM domains. 73 -240888 cd12442 RRM_RBM48 RNA recognition motif in RNA-binding protein 48 (RBM48) and similar proteins. This subfamily corresponds to the RRM of RBM48, a putative RNA-binding protein of unknown function. It contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 100 -240889 cd12443 RRM_MCM3A_like RNA recognition motif in 80 kDa MCM3-associated protein (Map80) and similar proteins. This subfamily corresponds to the RRM of Map80, also termed germinal center-associated nuclear protein (GANP), involved in the nuclear localization pathway of MCM3, a protein necessary for the initiation of DNA replication and also involves in controls that ensure DNA replication is initiated once per cell cycle. Map80 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 73 -240890 cd12444 RRM1_CPEBs RNA recognition motif 1 in cytoplasmic polyadenylation element-binding protein CPEB-1, CPEB-2, CPEB-3, CPEB-4 and similar protiens. This subfamily corresponds to the RRM1 of the CPEB family of proteins that bind to defined groups of mRNAs and act as either translational repressors or activators to regulate their translation. CPEB proteins are well conserved in both, vertebrates and invertebrates. Based on sequence similarity, RNA-binding specificity, and functional regulation of translation, the CPEB proteins have been classified into two subfamilies. The first subfamily includes CPEB-1 and related proteins. CPEB-1 is an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bind to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. The second subfamily includes CPEB-2, CPEB-3, CPEB-4, and related protiens. Due to high sequence similarity, members in this subfamily may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All CPEB proteins are nucleus-cytoplasm shuttling proteins. They contain an N-terminal unstructured region, followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. CPEB-2, -3, and -4 have conserved nuclear export signals that are not present in CPEB-1. 112 -240891 cd12445 RRM2_CPEBs RNA recognition motif 2 in cytoplasmic polyadenylation element-binding protein CPEB-1, CPEB-2, CPEB-3, CPEB-4 and similar protiens. This subfamily corresponds to the RRM2 of CPEB family of proteins that bind to defined groups of mRNAs and act as either translational repressors or activators to regulate their translation. CPEB proteins are well conserved in both, vertebrates and invertebrates. Based on sequence similarity, RNA-binding specificity, and functional regulation of translation, the CPEB proteins has been classified into two subfamilies. The first subfamily includes CPEB-1 and related proteins. CPEB-1 is an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bound to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. The second subfamily includes CPEB-2, CPEB-3, CPEB-4, and related protiens. Due to the high sequence similarity, members in this subfamily may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. Moreover, CPEB-2 impedes target RNA translation at elongation. It directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All CPEB proteins are nucleus-cytoplasm shuttling proteins. They contain an N-terminal unstructured region, followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. CPEB-2, -3, and -4 have conserved nuclear export signals that are not present in CPEB-1. 81 -240892 cd12446 RRM_RBM25 RNA recognition motif in eukaryotic RNA-binding protein 25 and similar proteins. This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor. 84 -240893 cd12447 RRM1_gar2 RNA recognition motif 1 in yeast protein gar2 and similar proteins. This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues. 76 -240894 cd12448 RRM2_gar2 RNA recognition motif 2 in yeast protein gar2 and similar proteins. This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues. 73 -240895 cd12449 RRM_CIRBP_RBM3 RNA recognition motif in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins. This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain. 80 -240896 cd12450 RRM1_NUCLs RNA recognition motif 1 found in nucleolin-like proteins mainly from plants. This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 77 -240897 cd12451 RRM2_NUCLs RNA recognition motif 2 in nucleolin-like proteins mainly from plants. This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 79 -240898 cd12452 RRM_ARP_like RNA recognition motif in yeast asparagine-rich protein (ARP) and similar proteins. This subfamily corresponds to the RRM of ARP, also termed NRP1, encoded by Saccharomyces cerevisiae YDL167C. Although its exact biological function remains unclear, ARP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), two Ran-binding protein zinc fingers (zf-RanBP), and an asparagine-rich region. It may possess RNA-binding and zinc ion binding activities. Additional research had indicated that ARP may function as a factor involved in the stress response. 88 -240899 cd12453 RRM1_RIM4_like RNA recognition motif 1 in yeast meiotic activator RIM4 and similar proteins. This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1. 86 -240900 cd12454 RRM2_RIM4_like RNA recognition motif 2 in yeast meiotic activator RIM4 and similar proteins. This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1. 80 -240901 cd12455 RRM_like_Smg4_UPF3 RNA recognition motif-like Smg4_UPF3 domain in yeast up-frameshift suppressor 3 (Upf3p), Caenorhabditis elegans SMG-4, their human orthologs Upf3A and Upf3B, and similar proteins. This subfamily corresponds to the RRM-like Smg4_UPF3 domain found in yeast up-frameshift suppressor 3 (Upf3p), Caenorhabditis elegans SMG-4, their human orthologs Upf3A and Upf3B, and similar proteins. Upf3p, also termed nonsense-mediated mRNA decay protein 3, or Sua6p, a surveillance factor encoded by UPF3 gene from Saccharomyces cerevisiae. It is required for nonsense-mediated mRNA decay (NMD) in yeast. Upf3p is primarily cytoplasmic but accumulates inside the nucleus. Its nuclear import is mediated by the Srp1p (importin-alpha)/beta heterodimer while its nuclear export is mediated by a leucine-rich nuclear export sequence (NES-A), but not the Crm1p exportin. C. elegans SMG-4 is a nuclear shuttling protein that shuttles between the cytoplasm and nucleus through nuclear import and export signals similar to that of the yeast Upf3p. It is regulated by phosphorylation. Human orthologs of yeast Upf3p and C. elegans SMG-4 include Upf3A and Upf3B, which derive from two genes, UPF3A and X-linked UPF3B, respectively. Both, Upf3A (Up-frameshift suppressor 3 homolog A, also termed regulator of nonsense transcripts 3A, or nonsense mRNA reducing factor 3A) and Upf3B (Up-frameshift suppressor 3 homolog B on chromosome X, also termed regulator of nonsense transcripts 3B, or nonsense mRNA reducing factor 3B), are nucleocytoplasmic shuttling proteins. They associate selectively with spliced beta-globin mRNA in vivo, and tethering of any human Upf protein to the 3'UTR of beta-globin mRNA prevents NMD. The function of the Upf proteins in identifying and targeting nonsense mRNAs for rapid decay is conserved among eukaryotes. Besides, all Upf proteins in this family contain a conserved Smg4_UPF3 domain with some similarity to an RNA recognition motif (RRM), indicating that they may be RNA binding proteins. 88 -240902 cd12456 RRM_p65 RNA recognition motif in the holoenzyme La family protein p65. This subfamily corresponds to the RRM of a lineage specific family containing the essential La family protein p65 found in Tetrahymena thermophila. It is a telomerase holoenzyme protein necessary for telomerase RNA (TER) accumulation in vivo. p65, together with TER and telomerase reverse transcriptase (TERT), comprise a ternary catalytic core complex of Tetrahymena telomerase, which is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. p65 harbors a cryptic, atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which displays high structural homology to the RRM in genuine La and LARP7 proteins. 76 -240903 cd12457 RRM_XMAS2 RNA recognition motif in X-linked male sterile 2 (Xmas-2) and similar proteins. This subfamily corresponds to the RRM in Xmas-2, the Drosophila homolog of yeast Sac3p protein, together with E(y)2, the Drosophila homologue of yeast Sus1p protein, forming an endogenous complex that is required in the regulation of mRNA transport and also involved in the efficient transcription regulation of the heat-shock protein 70 (hsp70) loci. All family members are found in insects and contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a PCI domain. 71 -240904 cd12458 RRM_AtC3H46_like RNA recognition motif in Arabidopsis thaliana zinc finger CCCH domain-containing protein 46 (AtC3H46) and similar proteins. This subfamily corresponds to the RRM domain in AtC3H46, a putative RNA-binding protein that contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCCH class of zinc finger, typically C-X8-C-X5-C-X3-H. It may possess ribonuclease activity. 70 -240905 cd12459 RRM1_CID8_like RNA recognition motif 1 in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins. This subgroup corresponds to the RRM1 domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear. 80 -240906 cd12460 RRM2_CID8_like RNA recognition motif 2 in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins. This subgroup corresponds to the RRM2 domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear. 82 -240907 cd12461 RRM_SCAF4 RNA recognition motif found in SR-related and CTD-associated factor 4 (SCAF4) and similar proteins. The CD corresponds to the RRM of SCAF4 (also termed splicing factor, arginine/serine-rich 15 or SFR15, or CTD-binding SR-like protein RA4) that belongs to a new class of SCAFs (SR-like CTD-associated factors). Although its biological function remains unclear, SCAF4 shows high sequence similarity to SCAF8 that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) and may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF4 and SCAF8 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and serine/arginine-rich motifs. 81 -240908 cd12462 RRM_SCAF8 RNA recognition motif in SR-related and CTD-associated factor 8 (SCAF8) and similar proteins. This subgroup corresponds to the RRM of SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8), a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8, together with SCAF4, represents a new class of SCAFs (SR-like CTD-associated factors). They contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and serine/arginine-rich motifs. 79 -240909 cd12463 RRM_G3BP1 RNA recognition motif found in ras GTPase-activating protein-binding protein 1 (G3BP1) and similar proteins. This subgroup corresponds to the RRM of G3BP1, also termed ATP-dependent DNA helicase VIII (DH VIII), or GAP SH3 domain-binding protein 1, which has been identified as a phosphorylation-dependent endoribonuclease that interacts with the SH3 domain of RasGAP, a multi-functional protein controlling Ras activity. The acidic RasGAP binding domain of G3BP1 harbors an arsenite-regulated phosphorylation site and dominantly inhibits stress granule (SG) formation. G3BP1 also contains an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an RNA recognition motif (RRM domain), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif). The RRM domain and RGG-rich region are canonically associated with RNA binding. G3BP1 co-immunoprecipitates with mRNAs. It binds to and cleaves the 3'-untranslated region (3'-UTR) of the c-myc mRNA in a phosphorylation-dependent manner. Thus, G3BP1 may play a role in coupling extra-cellular stimuli to mRNA stability. It has been shown that G3BP1 is a novel Dishevelled-associated protein that is methylated upon Wnt3a stimulation and that arginine methylation of G3BP1 regulates both Ctnnb1 mRNA and canonical Wnt/beta-catenin signaling. Furthermore, G3BP1 can be associated with the 3'-UTR of beta-F1 mRNA in cytoplasmic RNA-granules, demonstrating that G3BP1 may specifically repress the translation of the transcript. 80 -240910 cd12464 RRM_G3BP2 RNA recognition motif in ras GTPase-activating protein-binding protein 2 (G3BP2) and similar proteins. This subgroup corresponds to the RRM of G3BP2, also termed GAP SH3 domain-binding protein 2, a cytoplasmic protein that interacts with both IkappaBalpha and IkappaBalpha/NF-kappaB complexes, indicating that G3BP2 may play a role in the control of nucleocytoplasmic distribution of IkappaBalpha and cytoplasmic anchoring of the IkappaBalpha/NF-kappaB complex. G3BP2 contains an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing five PXXP motifs, an RNA recognition motif (RRM domain), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif). It binds to the SH3 domain of RasGAP, a multi-functional protein controlling Ras activity, through its N-terminal NTF2-like domain. The acidic domain is sufficient for the interaction of G3BP2 with the IkappaBalpha cytoplasmic retention sequence. Furthermore, G3BP2 might influence stability or translational efficiency of particular mRNAs by binding to RNA-containing structures within the cytoplasm through its RNA-binding domain. 83 -240911 cd12465 RRM_UHMK1 RNA recognition motif found in U2AF homology motif kinase 1 (UHMK1) and similar proteins. This subgroup corresponds to the RRM of UHMK1. UHMK1, also termed kinase interacting with stathmin (KIS) or P-CIP2, is a serine/threonine protein kinase functionally related to RNA metabolism and neurite outgrowth. It contains an N-terminal kinase domain and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), with high homology to the corresponding motif of the mammalian U2 small nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65 or U2AF2). UHMK1 targets two key regulators of cell proliferation and migration, the cyclin-dependent kinase (CDK) inhibitor p27Kip1 and the microtubule-destabilizing protein stathmin. It plays a critical role during vascular wound repair by preventing excessive vascular smooth muscle cell (VSMC) migration into the vascular lesion. Moreover, UHMK1 may control cell migration and neurite outgrowth by interacting with and phosphorylating the splicing factor SF1, thereby probably contributing to the control of protein expression. Furthermore, UHMK1 may be functionally related to microtubule dynamics and axon development. It localizes to RNA granules, interacts with three proteins found in RNA granules (KIF3A, NonO, and eEF1A), and further enhances the local translation. UHMK1 is highly expressed in regions of the brain implicated in schizophrenia and may play a role in susceptibility to schizophrenia. 88 -240912 cd12466 RRM2_AtRSp31_like RNA recognition motif 2 in Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins from plants. This subgroup corresponds to the RRM2 in a family that represents a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at their N-terminus, and an RS domain at their C-terminus. 70 -240913 cd12467 RRM_Srp1p_like RNA recognition motif 1 in fission yeast pre-mRNA-splicing factor Srp1p and similar proteins. This subgroup corresponds to the RRM domain in Srp1p encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but not essential for growth. Srp1p is closely related to the SR protein family found in metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. Some family members also contain another RRM domain. 78 -240914 cd12470 RRM1_MSSP1 RNA recognition motif 1 in vertebrate single-stranded DNA-binding protein MSSP-1. This subgroup corresponds to the RRM1 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis. 86 -240915 cd12471 RRM1_MSSP2 RNA recognition motif 1 in vertebrate single-stranded DNA-binding protein MSSP-2. This subgroup corresponds to the RRM1 of MSSP-2, also termed RNA-binding motif, single-stranded-interacting protein 2 (RBMS2), or suppressor of CDC2 with RNA-binding motif 3 (SCR3), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence T(C/A)TT, and stimulates DNA replication in the system using SV40 DNA. MSSP-2 is identical with Scr3, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-2 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis. 75 -240916 cd12472 RRM1_RBMS3 RNA recognition motif 1 found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3). This subgroup corresponds to the RRM1 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines. 80 -240917 cd12473 RRM2_MSSP1 RNA recognition motif 2 found in vertebrate single-stranded DNA-binding protein MSSP-1. This subgroup corresponds to the RRM2 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2). MSSP-1 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis. 85 -240918 cd12474 RRM2_MSSP2 RNA recognition motif 2 found in vertebrate single-stranded DNA-binding protein MSSP-2. This subgroup corresponds to the RRM2 of MSSP-2, also termed RNA-binding motif, single-stranded-interacting protein 2 (RBMS2), or suppressor of CDC2 with RNA-binding motif 3 (SCR3). MSSP-2 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence T(C/A)TT, and stimulates DNA replication in the system using SV40 DNA. MSSP-2 is identical with Scr3, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-2 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis. 86 -240919 cd12475 RRM2_RBMS3 RNA recognition motif 2 found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3). This subgroup corresponds to the RRM2 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines. 88 -240920 cd12476 RRM1_SNF RNA recognition motif 1 found in Drosophila melanogaster sex determination protein SNF and similar proteins. This subgroup corresponds to the RRM1 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently. 78 -240921 cd12477 RRM1_U1A RNA recognition motif 1 found in vertebrate U1 small nuclear ribonucleoprotein A (U1A). This subgroup corresponds to the RRM1 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein and it also shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). It also binds to a flavivirus NS5 protein and plays an important role in virus replication. U1A contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and may be free to bind other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import. 89 -240922 cd12478 RRM1_U2B RNA recognition motif 1 in U2 small nuclear ribonucleoprotein B" (U2B") and similar proteins. This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B") a unique protein that comprises the U2 snRNP. It was initially identified as binding to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA. In addition, the nuclear transport of U2B" is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus. 91 -240923 cd12479 RRM2_SNF RNA recognition motif 2 found in Drosophila melanogaster sex determination protein SNF and similar proteins. This subgroup corresponds to the RRM2 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently. 80 -240924 cd12480 RRM2_U1A RNA recognition motif 2 found in vertebrate U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A). This subgroup corresponds to the RRM2 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). U1A also binds to a flavivirus NS5 protein and plays an important role in virus replication. It contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and it may be free for binding other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import. 80 -240925 cd12481 RRM2_U2B RNA recognition motif 2 found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B"). This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B"), a unique protein that comprises the U2 snRNP. It was initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus. 80 -240926 cd12482 RRM1_hnRNPR RNA recognition motif 1 in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R). This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains. 79 -240927 cd12483 RRM1_hnRNPQ RNA recognition motif 1 in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains. 79 -240928 cd12484 RRM1_RBM46 RNA recognition motif 1 found in vertebrate RNA-binding protein 46 (RBM46). This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 78 -240929 cd12485 RRM1_RBM47 RNA recognition motif 1 found in vertebrate RNA-binding protein 47 (RBM47). This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 78 -240930 cd12486 RRM1_ACF RNA recognition motif 1 found in vertebrate APOBEC-1 complementation factor (ACF). This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1. 78 -240931 cd12487 RRM1_DND1 RNA recognition motif 1 found in vertebrate dead end protein homolog 1 (DND1). This subgroup corresponds to the RRM1 of DND1, also termed RNA-binding motif, single-stranded-interacting protein 4, an RNA-binding protein that is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. For instance, DND1 binds cell cycle inhibitor, P27 (p27Kip1, CDKN1B), and cell cycle regulator and tumor suppressor, LATS2 (large tumor suppressor, homolog 2 of Drosophila). It helps maintain their protein expression through blocking the inhibitory function of microRNAs (miRNA) from these transcripts. DND1 may also impose another level of translational regulation to modulate expression of critical factors in embryonic stem (ES) cells. DND1 interacts specifically with apolipoprotein B editing complex 3 (APOBEC3), a multi-functional protein inhibiting retroviral replication. The DND1-APOBEC3 interaction may play a role in maintaining viability of germ cells and for preventing germ cell tumor development. DND1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 78 -240932 cd12488 RRM2_hnRNPR RNA recognition motif 2 in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R). This subgroup corresponds to the RRM2 of hnRNP R, a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. It contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif. hnRNP R binds RNA through its RRM domains. 85 -240933 cd12489 RRM2_hnRNPQ RNA recognition motif 2 in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains. 85 -240934 cd12490 RRM2_ACF RNA recognition motif 2 in vertebrate APOBEC-1 complementation factor (ACF). This subgroup corresponds to the RRM2 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1. 85 -240935 cd12491 RRM2_RBM47 RNA recognition motif 2 in vertebrate RNA-binding protein 47 (RBM47). This subgroup corresponds to the RRM2 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 89 -240936 cd12492 RRM2_RBM46 RNA recognition motif 2 found in vertebrate RNA-binding protein 46 (RBM46). This subgroup corresponds to the RRM2 of RBM46, also termed cancer/testis antigen 68 (CT68). It is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 85 -240937 cd12493 RRM2_DND1 RNA recognition motif 2 found in vertebrate dead end protein homolog 1 (DND1). This subgroup corresponds to the RRM2 of DND1, also termed RNA-binding motif, single-stranded-interacting protein 4. It is an RNA-binding protein that is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. For instance, DND1 binds cell cycle inhibitor, P27 (p27Kip1, CDKN1B), and cell cycle regulator and tumor suppressor, LATS2 (large tumor suppressor, homolog 2 of Drosophila). It helps maintain their protein expression through blocking the inhibitory function of microRNAs (miRNA) from these transcripts. DND1 may also impose another level of translational regulation to modulate expression of critical factors in embryonic stem (ES) cells. Moreover, DND1 interacts specifically with apolipoprotein B editing complex 3 (APOBEC3), a multi-functional protein inhibiting retroviral replication. The DND1-APOBEC3 interaction may play a role in maintaining viability of germ cells and for preventing germ cell tumor development. DND1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 83 -240938 cd12494 RRM3_hnRNPR RNA recognition motif 3 in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R). This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains. 72 -240939 cd12495 RRM3_hnRNPQ RNA recognition motif 3 in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains. 72 -240940 cd12496 RRM3_RBM46 RNA recognition motif 3 in vertebrate RNA-binding protein 46 (RBM46). This subgroup corresponds to the RRM3 of RBM46, also termed cancer/testis antigen 68 (CT68), is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 74 -240941 cd12497 RRM3_RBM47 RNA recognition motif 3 in vertebrate RNA-binding protein 47 (RBM47). This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 74 -240942 cd12498 RRM3_ACF RNA recognition motif 3 in vertebrate APOBEC-1 complementation factor (ACF). This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1. 83 -240943 cd12499 RRM_EcCsdA_like RNA recognition motif in Escherichia coli cold-shock DEAD box protein A (CsdA) and similar proteins. This subgroup corresponds to the C-terminal RRM homology domain of E. coli CsdA, also termed ATP-dependent RNA helicase deaD, or translation factor W2, a member of the DbpA subfamily of prokaryotic DEAD-box rRNA helicases that have been implicated in ribosome biogenesis. CsdA may be involved in translation initiation, gene regulation after cold-shock, mRNA decay and biogenesis of the large or small ribosomal subunit. It contains two N-terminal ATPase catalytic domains and a C-terminal RNA binding domain, an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain). The catalytic domains bind to nearby regions of RNA to stimulate ATP hydrolysis and disrupt RNA structures. The C-terminal domain is responsible for the high-affinity RNA binding. 73 -240944 cd12500 RRM_BsYxiN_like RNA recognition motif in Bacillus subtilis ATP-dependent RNA helicase YxiN and similar proteins. This subgroup corresponds to the C-terminal RRM homology domain of YxiN. B. subtilis YxiN is a member of the DbpA subfamily of prokaryotic DEAD-box rRNA helicases that have been implicated in ribosome biogenesis. It binds with high affinity and specificity to RNA substrates containing hairpin 92 of 23S rRNA (HP92) with either 3' or 5' extensions in an ATP-dependent manner. YxiN contains two N-terminal ATPase catalytic domains and a C-terminal RNA binding domain, an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain). The catalytic domains bind to nearby regions of RNA to stimulate ATP hydrolysis and disrupt RNA structures. The C-terminal domain is responsible for the high-affinity RNA binding. 73 -240945 cd12501 RRM_EcDbpA_like RNA recognition motif in Escherichia coli RNA helicase dbpA and similar proteins. This subgroup corresponds to the C-terminal RRM homology domain of dbpA. E. coli dbpA is a member of the DbpA subfamily of prokaryotic DEAD-box rRNA helicases that have been implicated in ribosome biogenesis. It binds with high affinity and specificity for RNA substrates containing hairpin 92 of 23S rRNA (HP92) with either 3' or 5' extensions. As a non-processive ATP-dependent helicase, DbpA destabilizes and unwinds short <9bp (base pairs) RNA duplexes as well as long duplex RNA stretches. It disrupts RNA helices exclusively in a 3'- 5' direction and requires a single-stranded loading site 3' of the substrate helix. dbpA contains two N-terminal ATPase catalytic domains and a C-terminal RNA binding domain, an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain). The catalytic domains bind to nearby regions of RNA to stimulate ATP hydrolysis and disrupt RNA structures. The C-terminal domain binds specifically to hairpin 92. 73 -240946 cd12502 RRM2_RMB19 RNA recognition motif 2 in RNA-binding protein 19 (RBM19) and similar proteins. This subfamily corresponds to the RRM2 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is also essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 72 -240947 cd12503 RRM1_hnRNPH_GRSF1_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins. This subfamily corresponds to the RRM1 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. Members in this family have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. They also include a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. They may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity. 77 -240948 cd12504 RRM2_hnRNPH_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family. This subfamily corresponds to the RRM2 of hnRNP H protein family which includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9). They represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing, having similar RNA binding affinities and specifically recognizing the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. 77 -240949 cd12505 RRM2_GRSF1 RNA recognition motif 2 in G-rich sequence factor 1 (GRSF-1) and similar proteins. This subfamily corresponds to the RRM2 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity. 75 -240950 cd12506 RRM3_hnRNPH_CRSF1_like RNA recognition motif 3 in heterogeneous nuclear ribonucleoprotein hnRNP H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins. This subfamily corresponds to the RRM3 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. For instance, members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity. 75 -240951 cd12507 RRM1_ESRPs_Fusilli RNA recognition motif 1 in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins. This subfamily corresponds to the RRM1 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 75 -240952 cd12508 RRM2_ESRPs_Fusilli RNA recognition motif 2 in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins. This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 80 -240953 cd12509 RRM3_ESRPs_Fusilli RNA recognition motif 3 in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins. This subfamily corresponds to the RRM3 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli. Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. Fusilli shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 81 -240954 cd12510 RRM1_RBM12_like RNA recognition motif 1 in RNA-binding protein RBM12, RBM12B and similar proteins. This subfamily corresponds to the RRM1 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear. 74 -240955 cd12511 RRM2_RBM12_like RNA recognition motif 2 in RNA-binding protein RBM12, RBM12B and similar proteins. This subfamily corresponds to the RRM2 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B shows high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear. 73 -240956 cd12512 RRM3_RBM12 RNA recognition motif 3 in RNA-binding protein 12 (RBM12) and similar proteins. This subfamily corresponds to the RRM3 of RBM12. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear. 101 -240957 cd12513 RRM3_RBM12B RNA recognition motif 3 in RNA-binding protein 12B (RBM12B) and similar proteins. This subgroup corresponds to the RRM3 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear. 81 -240958 cd12514 RRM4_RBM12_like RNA recognition motif 4 in RNA-binding protein RBM12, RBM12B and similar proteins. This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear. 73 -240959 cd12515 RRM5_RBM12_like RNA recognition motif 5 in RNA-binding protein RBM12, RBM12B and similar proteins. This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear. 75 -240960 cd12516 RRM1_RBM26 RNA recognition motif 1 of vertebrate RNA-binding protein 26 (RBM26). This subgroup corresponds to the RRM1 of RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, which represents a cutaneous lymphoma (CL)-associated antigen. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. 76 -240961 cd12517 RRM_RBM27 RNA recognition motif of vertebrate RNA-binding protein 27 (RBM27). This subgroup corresponds to the RRM of RBM27 which contains a single RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although the specific function of the RRM in RBM27 remains unclear, it shows high sequence similarity with RRM1of RBM26, which functions as a cutaneous lymphoma (CL)-associated antigen. 76 -240962 cd12518 RRM_SRSF11 RNA recognition motif in serine/arginine-rich splicing factor 11 (SRSF11) and similar proteins. This subgroup corresponds to the RRM of SRSF11, also termed arginine-rich 54 kDa nuclear protein (SRp54 or p54), which belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family). It is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. SRSF11 has been identified as a tau exon 10 splicing repressor. It interacts with a purine-rich element in exon 10, and suppresses exon 10 inclusion by antagonizing Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. SRSF11 is a unique SR family member and may regulate the alternative splicing in a tissue- and substrate-dependent manner. It can directly interact with the U2 auxiliary factor 65-kDa subunit (U2AF65), a protein associated with the 3' splice site. In addition, unlike the typical SR proteins, SRSF11 associates with other SR proteins but not with the U1 small nuclear ribonucleoprotein U1-70K or the U2 auxiliary factor 35-kDa subunit (U2AF35). SREK1 has unique properties in regulating alternative splicing of different pre-mRNAs; it promotes the use of the distal 5' splice site in E1A pre-mRNA alternative splicing. It also inhibits cryptic splice site selection on the beta-globin pre-mRNA containing competing 5' splice sites. SREK1 contains an RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and one serine-arginine (SR)-rich domains (SR domains). 80 -240963 cd12519 RRM1_SREK1 RNA recognition motif 1 in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins. This subgroup corresponds to the RRM1 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), and is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 generally contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1; plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site. 80 -240964 cd12520 RRM1_MRN1 RNA recognition motif 1 of RNA-binding protein MRN1 and similar proteins. This subgroup corresponds to the RRM1 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa,which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -240965 cd12521 RRM3_MRN1 RNA recognition motif 3 of RNA-binding protein MRN1 and similar proteins. This subgroup corresponds to the RRM3 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -240966 cd12522 RRM4_MRN1 RNA recognition motif 4 of RNA-binding protein MRN1 and similar proteins. This subgroup corresponds to the RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 79 -240967 cd12523 RRM2_MRN1 RNA recognition motif 2 of RNA-binding protein MRN1 and similar proteins. This subgroup corresponds to the RRM2 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 78 -240968 cd12524 RRM1_MEI2_like RNA recognition motif 1 in plant Mei2-like proteins. This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear. 77 -240969 cd12525 RRM1_MEI2_fungi RNA recognition motif 1 in fungal Mei2-like proteins. This subgroup corresponds to the RRM1 of fungal Mei2-like proteins. The Mei2 protein is an essential component of the switch from mitotic to meiotic growth in the fission yeast Schizosaccharomyces pombe. It is an RNA-binding protein that contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In the nucleus, S. pombe Mei2 stimulates meiosis upon binding a specific non-coding RNA through its C-terminal RRM motif. 72 -240970 cd12526 RRM1_EAR1_like RNA recognition motif 1 in terminal EAR1-like proteins. This subgroup corresponds to the RRM1 of terminal EAR1-like proteins, including terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) found in land plants. They may play a role in the regulation of leaf initiation. The terminal EAR1-like proteins are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and TEL characteristic motifs that allow sequence and putative functional discrimination between the terminal EAR1-like proteins and Mei2-like proteins. 71 -240971 cd12527 RRM2_EAR1_like RNA recognition motif 2 in terminal EAR1-like proteins. This subgroup corresponds to the RRM2 of terminal EAR1-like proteins, including terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) found in land plants. They may play a role in the regulation of leaf initiation. The terminal EAR1-like proteins are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and TEL characteristic motifs that allow sequence and putative functional discrimination between the terminal EAR1-like proteins and Mei2-like proteins. 71 -240972 cd12528 RRM2_MEI2_fungi RNA recognition motif 2 in fungal Mei2-like proteins. This subgroup corresponds to the RRM2 of fungal Mei2-like proteins.The Mei2 protein is an essential component of the switch from mitotic to meiotic growth in the fission yeast Schizosaccharomyces pombe. It is an RNA-binding protein that contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In the nucleus, S. pombe Mei2 stimulates meiosis upon binding a specific non-coding RNA through its C-terminal RRM motif. 81 -240973 cd12529 RRM2_MEI2_like RNA recognition motif 2 in plant Mei2-like proteins. This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear. 71 -240974 cd12530 RRM3_EAR1_like RNA recognition motif 3 in terminal EAR1-like proteins. This subgroup corresponds to the RRM3 of terminal EAR1-like proteins, including terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) found in land plants. They may play a role in the regulation of leaf initiation. The terminal EAR1-like proteins are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and TEL characteristic motifs that allow sequence and putative functional discrimination between the terminal EAR1-like proteins and Mei2-like proteins. 101 -240975 cd12531 RRM3_MEI2_like RNA recognition motif 3 in plant Mei2-like proteins. This subgroup corresponds to the RRM3 of Mei2-like proteins, representing an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear. 86 -240976 cd12532 RRM3_MEI2_fungi RNA recognition motif 3 in fungal Mei2-like proteins. This subgroup corresponds to the RRM3 of fungal Mei2-like proteins. The Mei2 protein is an essential component of the switch from mitotic to meiotic growth in the fission yeast Schizosaccharomyces pombe. It is an RNA-binding protein that contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In the nucleus, S. pombe Mei2 stimulates meiosis upon binding a specific non-coding RNA through its C-terminal RRM motif. 90 -240977 cd12533 RRM_EWS RNA recognition motif in vertebrate Ewing Sarcoma Protein (EWS). This subgroup corresponds to the RRM of EWS, also termed Ewing sarcoma breakpoint region 1 protein, a member of the FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA- and DNA-binding proteins whose expression is altered in cancer. It is a multifunctional protein and may play roles in transcription and RNA processing. EWS is involved in transcriptional regulation by interacting with the preinitiation complex TFIID and the RNA polymerase II (RNAPII) complexes. It is also associated with splicing factors, such as the U1 snRNP protein U1C, suggesting its implication in pre-mRNA splicing. Additionally, EWS has been shown to regulate DNA damage-induced alternative splicing (AS). Like other members in the FET family, EWS contains an N-terminal Ser, Gly, Gln and Tyr-rich region composed of multiple copies of a degenerate hexapeptide repeat motif. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a C2/C2 zinc-finger motif, a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and at least 1 arginine-glycine-glycine (RGG)-repeat region. EWS specifically binds to poly G and poly U RNA. It also binds to the proximal-element DNA of the macrophage-specific promoter of the CSF-1 receptor gene. 84 -240978 cd12534 RRM_SARFH RNA recognition motif in Drosophila melanogaster RNA-binding protein cabeza and similar proteins. This subgroup corresponds to the RRM in cabeza, also termed P19, or sarcoma-associated RNA-binding fly homolog (SARFH). It is a putative homolog of human RNA-binding proteins FUS (also termed TLS or Pigpen or hnRNP P2), EWS (also termed EWSR1), TAF15 (also termed hTAFII68 or TAF2N or RPB56), and belongs to the of the FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA- and DNA-binding proteins whose expression is altered in cancer. It is a nuclear RNA binding protein that may play an important role in the regulation of RNA metabolism during fly development. Cabeza contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 83 -240979 cd12535 RRM_FUS_TAF15 RNA recognition motif in vertebrate fused in Ewing's sarcoma protein (FUS), TATA-binding protein-associated factor 15 (TAF15) and similar proteins. This subgroup corresponds to the RRM of FUS and TAF15. FUS (TLS or Pigpen or hnRNP P2), also termed 75 kDa DNA-pairing protein (POMp75), or oncoprotein TLS (Translocated in liposarcoma), is a member of the FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA- and DNA-binding proteins whose expression is altered in cancer. It is a multi-functional protein and has been implicated in pre-mRNA splicing, chromosome stability, cell spreading, and transcription. FUS was originally identified in human myxoid and round cell liposarcomas as an oncogenic fusion with the stress-induced DNA-binding transcription factor CHOP (CCAAT enhancer-binding homologous protein) and later as hnRNP P2, a component of hnRNP H complex assembled on pre-mRNA. It can form ternary complexes with hnRNP A1 and hnRNP C1/C2. Additional research indicates that FUS binds preferentially to GGUG-containing RNAs. In the presence of Mg2+, it can bind both single- and double-stranded DNA (ssDNA/dsDNA) and promote ATP-independent annealing of complementary ssDNA and D-loop formation in superhelical dsDNA. FUS has been shown to be recruited by single stranded noncoding RNAs to the regulatory regions of target genes such as cyclin D1, where it represses transcription by disrupting complex formation. TAF15 (TAFII68), also termed TATA-binding protein-associated factor 2N (TAF2N), or RNA-binding protein 56 (RBP56), originally identified as a TAF in the general transcription initiation TFIID complex, is a novel RNA/ssDNA-binding protein with homology to the proto-oncoproteins FUS and EWS (also termed EWSR1), belonging to the FET family as well. TAF15 likely functions in RNA polymerase II (RNAP II) transcription by interacting with TFIID and subunits of RNAP II itself. TAF15 is also associated with U1 snRNA, chromatin and RNA, in a complex distinct from the Sm-containing U1 snRNP that functions in splicing. Like other members in the FET family, both FUS and TAF15 contain an N-terminal Ser, Gly, Gln and Tyr-rich region composed of multiple copies of a degenerate hexapeptide repeat motif. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a C2/C2 zinc-finger motif, a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and at least 1 arginine-glycine-glycine (RGG)-repeat region. 86 -240980 cd12536 RRM1_RBM39 RNA recognition motif 1 in vertebrate RNA-binding protein 39 (RBM39). This subgroup corresponds to the RRM1 of RBM39, also termed hepatocellular carcinoma protein 1, or RNA-binding region-containing protein 2, or splicing factor HCC1, a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Based on the specific domain composition, RBM39 has been classified into a family of non-snRNP (small nuclear ribonucleoprotein) splicing factors that are usually not complexed to snRNAs. 85 -240981 cd12537 RRM1_RBM23 RNA recognition motif 1 in vertebrate probable RNA-binding protein 23 (RBM23). This subgroup corresponds to the RRM1 of RBM23, also termed RNA-binding region-containing protein 4, or splicing factor SF2, which may function as a pre-mRNA splicing factor. It shows high sequence homology to RNA-binding protein 39 (RBM39 or HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In contrast to RBM39, RBM23 contains only two RRMs. 85 -240982 cd12538 RRM_U2AF35 RNA recognition motif in U2 small nuclear ribonucleoprotein auxiliary factor U2AF 35 kDa subunit (U2AF35). This subgroup corresponds to the RRM of U2AF35, also termed U2AF1, which is one of the small subunits of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF). It has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF35 directly binds to the 3' splice site of the conserved AG dinucleotide and performs multiple functions in the splicing process in a substrate-specific manner. It promotes U2 snRNP binding to the branch-point sequences of introns through association with the large subunit of U2AF, U2AF65 (also termed U2AF2). U2AF35 contains two N-terminal zinc fingers, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal arginine/serine (SR)-rich segment interrupted by glycines. U2AF35 binds both U2AF65 and the pre-mRNA through its RRM domain. 104 -240983 cd12539 RRM_U2AF35B RNA recognition motif in splicing factor U2AF 35 kDa subunit B (U2AF35B). This subgroup corresponds to the RRM of U2AF35B, also termed zinc finger CCCH domain-containing protein 60 (C3H60), which is one of the small subunits of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF). It has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. Members in this family are mainly found in plant. They show high sequence homology to vertebrates U2AF35 that directly binds to the 3' splice site of the conserved AG dinucleotide and performs multiple functions in the splicing process in a substrate-specific manner. U2AF35B contains two N-terminal zinc fingers, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal arginine/serine (SR)-rich domain. In contrast to U2AF35, U2AF35B has a plant-specific conserved C-terminal region containing SERE motif(s), which may have an important function specific to higher plants. 103 -240984 cd12540 RRM_U2AFBPL RNA recognition motif in U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 1 (U2AFBPL) and similar proteins. This subgroup corresponds to the RRM of U2AFBPL, a human homolog of the imprinted mouse gene U2afbp-rs, which encodes a U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 1 (U2AFBPL), also termed CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 1 (U2AF1RS1), or U2 small nuclear RNA auxiliary factor 1-like 1 (U2AF1L1). Although the biological role of U2AFBPL remains unclear, it shows high sequence homology to splicing factor U2AF 35 kDa subunit (U2AF35 or U2AF1) that directly binds to the 3' splice site of the conserved AG dinucleotide and performs multiple functions in the splicing process in a substrate-specific manner. Like U2AF35, U2AFBPL contains two N-terminal zinc fingers, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal arginine/serine (SR)-rich domain. 105 -240985 cd12541 RRM2_La RNA recognition motif 2 in La autoantigen (La or LARP3) and similar proteins. This subgroup corresponds to the RRM2 of La autoantigen, also termed Lupus La protein, or La ribonucleoprotein, or Sjoegren syndrome type B antigen (SS-B), a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. La contains an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition, it possesses a short basic motif (SBM) and a nuclear localization signal (NLS) at the C-terminus. 76 -240986 cd12542 RRM2_LARP7 RNA recognition motif 2 in La-related protein 7 (LARP7) and similar proteins. This subgroup corresponds to the RRM2 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. LARP7 plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus. 78 -240987 cd12543 RRM2_PAR14 RNA recognition motif 2 in vertebrate poly [ADP-ribose] polymerase 14 (PARP-14). This subgroup corresponds to the RRM2 of PARP-14, also termed aggressive lymphoma protein 2, a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs. It is expressed in B lymphocytes and interacts with the IL-4-induced transcription factor Stat6. It plays a fundamental role in the regulation of IL-4-induced B-cell protection against apoptosis after irradiation or growth factor withdrawal. It mediates IL-4 effects on the levels of gene products that regulate cell survival, proliferation, and lymphomagenesis. PARP-14 acts as a transcriptional switch for Stat6-dependent gene activation. In the presence of IL-4, PARP-14 activates transcription by facilitating the binding of Stat6 to the promoter and release of HDACs from the promoter with an IL-4 signal. In contrast, in the absence of a signal, PARP-14 acts as a transcriptional repressor by recruiting HDACs. Absence of PARP-14 protects against Myc-induced developmental block and lymphoma. Thus, PARP-14 may play an important role in Myc-induced oncogenesis. Additional research indicates that PARP-14 is also a binding partner with phosphoglucose isomerase (PGI)/ autocrine motility factor (AMF). It can inhibit PGI/AMF ubiquitination, thus contributing to its stabilization and secretion. PARP-14 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), three tandem macro domains, and C-terminal region with sequence homology to PARP catalytic domain. 74 -240988 cd12544 RRM_NMI RNA recognition motif in N-myc-interactor (Nmi) and similar proteins. This subgroup corresponds to the RRM.in Nmi, also termed N-myc and STAT interactor, an interferon inducible protein that interacts with c-Myc, N-Myc, Max and c-Fos, and other transcription factors containing bHLH-ZIP, bHLH or ZIP domains. In addition to binding Myc proteins, Nmi also associates with all the Stat family of transcription factors except Stat2. In response to cytokines (e.g. IL-2 and IFN-gamma) stimulation, Nmi can enhance Stat-mediated transcriptional activity through recruiting the Stat1 and Stat5 transcriptional coactivators, CREB-binding protein (CBP) and p300. Nmi contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 81 -240989 cd12545 RRM_IN35 RNA recognition motif in interferon-induced 35 kDa protein (IFP 35) and similar proteins. This subgroup corresponds to the RRM in IFP 35, an interferon-induced leucine zipper protein that can specifically form homodimers. Distinct from known bZIP proteins, IFP 35 lacks a basic domain critical for DNA binding. IFP 35 may negatively regulate other bZIP transcription factors by protein-protein interaction. For instance, it can form heterodimers with B-ATF, a member of the AP1 transcription factor family. IFP 35 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 79 -240990 cd12546 RRM_RBM43 RNA recognition motif in vertebrate RNA-binding protein 43 (RBM43). This subgroup corresponds to the RRM of RBM43, a putative RNA-binding protein containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although its biological function remains unclear, RBM43 shows high sequence homology to poly [ADP-ribose] polymerase 10 (PARP-10), which is a novel oncoprotein c-Myc-interacting protein with poly(ADP-ribose) polymerase activity. 77 -240991 cd12547 RRM1_2_PAR10 RNA recognition motif 1 and 2 in poly [ADP-ribose] polymerase 10 (PARP-10) and similar proteins. This subgroup corresponds to the RRM1 and RRM2 of PARP-10, a novel oncoprotein c-Myc-interacting protein with poly(ADP-ribose) polymerase activity. It is localized to the nuclear and cytoplasmic compartments. In addition to the PARP activity, PARP-10 is also involved in the control of cell proliferation by inhibiting c-Myc- and E1A-mediated cotransformation of primary cells. PARP-10 may play a role in nuclear processes including the regulation of chromatin, gene transcription, and nuclear/cytoplasmic transport. It contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two overlapping C-terminal domains composed of a glycine-rich region and a region with homology to catalytic domains of PARP enzymes (PARP domain). In addition, PARP-10 contains two ubiquitin-interacting motifs (UIM). 71 -240992 cd12548 RRM_Set1A RNA recognition motif in vertebrate histone-lysine N-methyltransferase Setd1A (Set1A). This subgroup corresponds to the RRM of Setd1A, also termed SET domain-containing protein 1A (Set1A), or lysine N-methyltransferase 2F, or Set1/Ash2 histone methyltransferase complex subunit Set1, a ubiquitously expressed vertebrates histone methyltransferase that exhibits high homology to yeast Set1. Set1A is localized to euchromatic nuclear speckles and associates with a complex containing six human homologs of the yeast Set1/COMPASS complex, including CXXC finger protein 1 (CFP1; homologous to yeast Spp1), Rbbp5 (homologous to yeast Swd1), Ash2 (homologous to yeast Bre2), Wdr5 (homologous to yeast Swd3), and Wdr82 (homologous to yeast Swd2). Set1A contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), an N- SET domain, and a C-terminal catalytic SET domain followed by a post-SET domain. In contrast to Set1B, Set1A additionally contains an HCF-1 binding motif that interacts with HCF-1 in vivo. 95 -240993 cd12549 RRM_Set1B RNA recognition motif in vertebrate histone-lysine N-methyltransferase Setd1B (Set1B). This subgroup corresponds to the RRM of Setd1B, also termed SET domain-containing protein 1B (Set1B), or lysine N-methyltransferase 2G, a ubiquitously expressed vertebrates histone methyltransferase that exhibits high homology to yeast Set1. Set1B is localized to euchromatic nuclear speckles and associates with a complex containing six human homologs of the yeast Set1/COMPASS complex, including CXXC finger protein 1 (CFP1; homologous to yeast Spp1), Rbbp5 (homologous to yeast Swd1), Ash2 (homologous to yeast Bre2), Wdr5 (homologous to yeast Swd3), and Wdr82 (homologous to yeast Swd2). Set1B complex is a histone methyltransferase that produces trimethylated histone H3 at Lys4. Set1B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), an N- SET domain, and a C-terminal catalytic SET domain followed by a post-SET domain. 93 -240994 cd12550 RRM_II_PABPN1 RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins. This subgroup corresponds to the RRM of PABP-2, also termed poly(A)-binding protein 2, or nuclear poly(A)-binding protein 1 (PABPN1), or poly(A)-binding protein II (PABII), which is a ubiquitously expressed type II nuclear poly(A)-binding protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. Although PABP-2 binds poly(A) with high affinity and specificity as type I poly(A)-binding proteins, it contains only one highly conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, PABP-2 possesses an acidic N-terminal domain that is essential for the stimulation of PAP, and an arginine-rich C-terminal domain. 76 -240995 cd12551 RRM_II_PABPN1L RNA recognition motif in vertebrate type II embryonic polyadenylate-binding protein 2 (ePABP-2). This subgroup corresponds to the RRM of ePABP-2, also termed embryonic poly(A)-binding protein 2, or poly(A)-binding protein nuclear-like 1 (PABPN1L). ePABP-2 is a novel embryonic-specific cytoplasmic type II poly(A)-binding protein that is expressed during the early stages of vertebrate development and in adult ovarian tissue. It may play an important role in the poly(A) metabolism of stored mRNAs during early vertebrate development. ePABP-2 shows significant sequence similarity to the ubiquitously expressed nuclear polyadenylate-binding protein 2 (PABP-2 or PABPN1). Like PABP-2, ePABP-2 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, it possesses an acidic N-terminal domain predicted to form a coiled-coil and an arginine-rich C-terminal domain. 77 -240996 cd12552 RRM_Nop15p RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins. This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 77 -240997 cd12553 RRM1_RBM15 RNA recognition motif 1 in vertebrate RNA binding motif protein 15 (RBM15). This subgroup corresponds to the RRM1 of RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RBM15 belongs to the Spen (split end) protein family, which contains three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. This family also includes a RBM15-MKL1 (OTT-MAL) fusion protein that RBM15 is N-terminally fused to megakaryoblastic leukemia 1 protein (MKL1) at the C-terminus in a translocation involving chromosome 1 and 22, resulting in acute megakaryoblastic leukemia. The fusion protein could interact with the mRNA export machinery. Although it maintains the specific transactivator function of MKL1, the fusion protein cannot activate RTE-mediated mRNA expression and has lost the post-transcriptional activator function of RBM15. However, it has transdominant suppressor function contributing to its oncogenic properties. 78 -240998 cd12554 RRM1_RBM15B RNA recognition motif 1 in putative RNA binding motif protein 15B (RBM15B) from vertebrate. This subfamily corresponds to the RRM1 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 81 -240999 cd12555 RRM2_RBM15 RNA recognition motif 2 in vertebrate RNA binding motif protein 15 (RBM15). This subgroup corresponds to the RRM2 of RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RBM15 belongs to the Spen (split end) protein family, which contain three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. This family also includes a RBM15-MKL1 (OTT-MAL) fusion protein that RBM15 is N-terminally fused to megakaryoblastic leukemia 1 protein (MKL1) at the C-terminus in a translocation involving chromosome 1 and 22, resulting in acute megakaryoblastic leukemia. The fusion protein could interact with the mRNA export machinery. Although it maintains the specific transactivator function of MKL1, the fusion protein cannot activate RTE-mediated mRNA expression and has lost the post-transcriptional activator function of RBM15. However, it has transdominant suppressor function contributing to its oncogenic properties. 87 -241000 cd12556 RRM2_RBM15B RNA recognition motif 2 in putative RNA binding motif protein 15B (RBM15B) from vertebrate. This subgroup corresponds to the RRM2 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 85 -241001 cd12557 RRM3_RBM15 RNA recognition motif 3 in vertebrate RNA binding motif protein 15 (RBM15). This subgroup corresponds to the RRM3 of RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, a novel mRNA export factor component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RBM15 belongs to the Spen (split end) protein family, which contains three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralogue and ortholog C-terminal) domain. This family also includes a RBM15-MKL1 (OTT-MAL) fusion protein that RBM15 is N-terminally fused to megakaryoblastic leukemia 1 protein (MKL1) at the C-terminus in a translocation involving chromosome 1 and 22, resulting in acute megakaryoblastic leukemia. The fusion protein could interact with the mRNA export machinery. Although it maintains the specific transactivator function of MKL1, the fusion protein cannot activate RTE-mediated mRNA expression and has lost the post-transcriptional activator function of RBM15. However, it has transdominant suppressor function contributing to its oncogenic properties. 73 -241002 cd12558 RRM3_RBM15B RNA recognition motif 3 in putative RNA-binding protein 15B (RBM15B) from vertebrate. This subgroup corresponds to the RRM3 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. 76 -241003 cd12559 RRM_SRSF10 RNA recognition motif in serine/arginine-rich splicing factor 10 (SRSF10) and similar proteins. This subgroup corresponds to the RRM of SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). SRSF10 is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. 84 -241004 cd12560 RRM_SRSF12 RNA recognition motif in serine/arginine-rich splicing factor 12 (SRSF12) and similar proteins. This subgroup corresponds to the RRM of SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19). SRSF12 is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. SRSF12 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. 84 -241005 cd12561 RRM1_RBM5_like RNA recognition motif 1 in RNA-binding protein 5 (RBM5) and similar proteins. This subgroup corresponds to the RRM1 of RNA-binding protein 5 (RBM5 or LUCA15 or H37), RNA-binding protein 10 (RBM10 or S1-1) and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both, RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain. 81 -241006 cd12562 RRM2_RBM5_like RNA recognition motif 2 in RNA-binding protein 5 (RBM5) and similar proteins. This subgroup corresponds to the RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37), RNA-binding protein 10 (RBM10 or S1-1) and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both, RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain. 86 -241007 cd12563 RRM2_RBM6 RNA recognition motif 2 in vertebrate RNA-binding protein 6 (RBM6). This subgroup corresponds to the RRM2 of RBM6, also termed lung cancer antigen NY-LU-12, or protein G16, or RNA-binding protein DEF-3, which has been predicted to be a nuclear factor based on its nuclear localization signal. It shows high sequence similarity to RNA-binding protein 5 (RBM5 or LUCA15 or NY-REN-9). Both, RBM6 and RBM5, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. In contrast to RBM5, RBM6 has two additional unique domains: the decamer repeat occurring more than 20 times, and the POZ (poxvirus and zinc finger) domain. The POZ domain may be involved in protein-protein interactions and inhibit binding of target sequences by zinc fingers. 87 -241008 cd12564 RRM1_RBM19 RNA recognition motif 1 in RNA-binding protein 19 (RBM19) and similar proteins. This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 76 -241009 cd12565 RRM1_MRD1 RNA recognition motif 1 in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events. 76 -241010 cd12566 RRM2_MRD1 RNA recognition motif 2 in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events. 79 -241011 cd12567 RRM3_RBM19 RNA recognition motif 3 in RNA-binding protein 19 (RBM19) and similar proteins. This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 79 -241012 cd12568 RRM3_MRD1 RNA recognition motif 3 in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subgroup corresponds to the RRM3 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events. 72 -241013 cd12569 RRM4_RBM19 RNA recognition motif 4 in RNA-binding protein 19 (RBM19) and similar proteins. This subgroup corresponds to the RRM4 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 72 -241014 cd12570 RRM5_MRD1 RNA recognition motif 5 in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins. This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events. 76 -241015 cd12571 RRM6_RBM19 RNA recognition motif 6 in RNA-binding protein 19 (RBM19) and similar proteins. This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 79 -241016 cd12572 RRM2_MSI1 RNA recognition motif 2 in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins. This subgroup corresponds to the RRM2 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1) and has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. It represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 74 -241017 cd12573 RRM2_MSI2 RNA recognition motif 2 in RNA-binding protein Musashi homolog 2 (Musashi-2) and similar proteins. This subgroup corresponds to the RRM2 of Musashi-2 (also termed Msi2) which has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Musashi-2 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 79 -241018 cd12574 RRM1_DAZAP1 RNA recognition motif 1 in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins. This subfamily corresponds to the RRM1 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated form is predominantly nuclear and the nonacetylated form is in cytoplasm. It also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain. 82 -241019 cd12575 RRM1_hnRNPD_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. This subfamily corresponds to the RRM1 in hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus. 74 -241020 cd12576 RRM1_MSI RNA recognition motif 1 in RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. This subfamily corresponds to the RRM1 in Musashi-1 and Musashi-2. Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 75 -241021 cd12577 RRM1_Hrp1p RNA recognition motif 1 in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins. This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition, steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway. It binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y. 76 -241022 cd12578 RRM1_hnRNPA_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein A subfamily. This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 78 -241023 cd12579 RRM2_hnRNPA0 RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 80 -241024 cd12580 RRM2_hnRNPA1 RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions. 77 -241025 cd12581 RRM2_hnRNPA2B1 RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP A2/B1, an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 80 -241026 cd12582 RRM2_hnRNPA3 RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 80 -241027 cd12583 RRM2_hnRNPD RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically. 75 -241028 cd12584 RRM2_hnRNPAB RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop. 80 -241029 cd12585 RRM2_hnRPDL RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus. 75 -241030 cd12586 RRM1_PSP1 RNA recognition motif 1 in vertebrate paraspeckle protein 1 (PSP1). This subgroup corresponds to the RRM1 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Its cellular function remains unknown currently, however, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus. 71 -241031 cd12587 RRM1_PSF RNA recognition motif 1 in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF). This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules. 71 -241032 cd12588 RRM1_p54nrb RNA recognition motif 1 in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb). This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus. 71 -241033 cd12589 RRM2_PSP1 RNA recognition motif 2 in vertebrate paraspeckle protein 1 (PSP1 or PSPC1). This subgroup corresponds to the RRM2 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Although its cellular function remains unknown currently, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus. 80 -241034 cd12590 RRM2_PSF RNA recognition motif 2 in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF). This subgroup corresponds to the RRM2 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. It promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). Moreover, PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules. 80 -241035 cd12591 RRM2_p54nrb RNA recognition motif 2 in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb). This subgroup corresponds to the RRM2 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. It binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. p54nrb forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manner. It also forms a heterodimer with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus. 80 -241036 cd12592 RRM_RBM7 RNA recognition motif in vertebrate RNA-binding protein 7 (RBM7). This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. 75 -241037 cd12593 RRM_RBM11 RNA recognition motif in vertebrate RNA-binding protein 11 (RBM11). This subfamily corresponds to the RRM or RBM11, a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. RBM11 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM of RBM11 is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization. 75 -241038 cd12594 RRM1_SRSF4 RNA recognition motif 1 in vertebrate serine/arginine-rich splicing factor 4 (SRSF4). This subgroup corresponds to the RRM1 of SRSF4, also termed pre-mRNA-splicing factor SRp75, or SRP001LB, or splicing factor, arginine/serine-rich 4 (SFRS4). SRSF4 is a splicing regulatory serine/arginine (SR) protein that plays an important role in both constitutive splicing and alternative splicing of many pre-mRNAs. For instance, it interacts with heterogeneous nuclear ribonucleoproteins, hnRNP G and hnRNP E2, and further regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia. SFSF4 also induces production of HIV-1 vpr mRNA through the inhibition of the 5'-splice site of exon 3. In addition, it activates splicing of the cardiac troponin T (cTNT) alternative exon by direct interactions with the cTNT exon 5 enhancer RNA. SRSF4 can shuttle between the nucleus and cytoplasm. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine-rich region, an internal region homologous to the RRM, and a very long, highly phosphorylated C-terminal SR domains rich in serine-arginine dipeptides. 74 -241039 cd12595 RRM1_SRSF5 RNA recognition motif 1 in vertebrate serine/arginine-rich splicing factor 5 (SRSF5). This subgroup corresponds to the RRM1 of SRSF5, also termed delayed-early protein HRS, or pre-mRNA-splicing factor SRp40, or splicing factor, arginine/serine-rich 5 (SFRS5). SFSF5 is an essential splicing regulatory serine/arginine (SR) protein that regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and it is necessary for enhancer activation. SRSF5 also functions as a factor required for insulin-regulated splice site selection for protein kinase C (PKC) betaII mRNA. It is involved in the regulation of PKCbetaII exon inclusion by insulin via its increased phosphorylation by a phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway. Moreover, SRSF5 can regulate alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA in a dose-dependent manner. SRSF5 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. The specific RNA binding by SRSF5 requires the phosphorylation of its SR domain. 70 -241040 cd12596 RRM1_SRSF6 RNA recognition motif 1 in vertebrate serine/arginine-rich splicing factor 6 (SRSF6). This subfamily corresponds to the RRM1 of SRSF6, also termed pre-mRNA-splicing factor SRp55, which is an essential splicing regulatory serine/arginine (SR) protein that preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. For instance, it does not bind to the purine-rich sequence in the calcitonin-specific ESE, but binds to a region adjacent to the purine tract. Moreover, cellular levels of SRSF6 may control tissue-specific alternative splicing of the calcitonin/ calcitonin gene-related peptide (CGRP) pre-mRNA. SRSF6 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal SR domains rich in serine-arginine dipeptides. 70 -241041 cd12597 RRM1_SRSF1 RNA recognition motif 1 in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins. This subgroup corresponds to the RRM1 of SRSF1, also termed alternative-splicing factor 1 (ASF-1), or pre-mRNA-splicing factor SF2, P33 subunit. SRSF1 is a splicing regulatory serine/arginine (SR) protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF1 is a shuttling SR protein and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a long glycine-rich spacer, and a C-terminal RS domains rich in serine-arginine dipeptides. 73 -241042 cd12598 RRM1_SRSF9 RNA recognition motif 1 in vertebrate serine/arginine-rich splicing factor 9 (SRSF9). This subgroup corresponds to the RRM1 of SRSF9, also termed pre-mRNA-splicing factor SRp30C. SRSF9 is an essential splicing regulatory serine/arginine (SR) protein that has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. SRSF9 can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. SRSF9 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by an unusually short C-terminal RS domains rich in serine-arginine dipeptides. 72 -241043 cd12599 RRM1_SF2_plant_like RNA recognition motif 1 in plant pre-mRNA-splicing factor SF2 and similar proteins. This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2. 72 -241044 cd12600 RRM2_SRSF4_like RNA recognition motif 2 in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins. This subfamily corresponds to the RRM2 of three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and is essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. 72 -241045 cd12601 RRM2_SRSF1_like RNA recognition motif 2 in serine/arginine-rich splicing factor SRSF1, SRSF9 and similar proteins. This subfamily corresponds to the RRM2 of serine/arginine-rich splicing factor SRSF1, SRSF9 and similar proteins. SRSF1, also termed ASF-1, is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9, also termed SRp30C, has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. SRSF9 can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. 74 -241046 cd12602 RRM2_SF2_plant_like RNA recognition motif 2 in plant pre-mRNA-splicing factor SF2 and similar proteins. This subfamily corresponds to the RRM2 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2. 76 -241047 cd12603 RRM_hnRNPC RNA recognition motif in vertebrate heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C1/C2). This subgroup corresponds to the RRM of heterogeneous nuclear ribonucleoprotein C (hnRNP) proteins C1 and C2, produced by a single coding sequence. They are the major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. They bind hnRNA tightly, suggesting a central role in the formation of the ubiquitous hnRNP complex. They are involved in the packaging of hnRNA in the nucleus and in processing of pre-mRNA such as splicing and 3'-end formation. hnRNP C proteins contain two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes the variable region, the basic region and the KSG box rich in repeated Lys-Ser-Gly sequences, the leucine zipper, and the acidic region. The RRM is capable of binding poly(U). The KSG box may bind to RNA. The leucine zipper may be involved in dimer formation. The acidic and hydrophilic C-teminus harbors a putative nucleoside triphosphate (NTP)-binding fold and a protein kinase phosphorylation site. 71 -241048 cd12604 RRM_RALY RNA recognition motif in vertebrate RNA-binding protein Raly. This subgroup corresponds to the RRM of Raly, also termed autoantigen p542, or heterogeneous nuclear ribonucleoprotein C-like 2, or hnRNP core protein C-like 2, or hnRNP associated with lethal yellow protein homolog, an RNA-binding protein that may play a critical role in embryonic development. It is encoded by Raly, a ubiquitously expressed gene of unknown function. Raly shows a high degree of identity with the 5' sequences of p542 gene encoding autoantigen, which can cross-react with EBNA-1 of the Epstein Barr virus. Raly contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain that includes a unique glycine/serine-rich stretch. 76 -241049 cd12605 RRM_RALYL RNA recognition motif in vertebrate RNA-binding Raly-like protein (RALYL). This subgroup corresponds to the RRM of RALYL, also termed heterogeneous nuclear ribonucleoprotein C-like 3, or hnRNP core protein C-like 3, a putative RNA-binding protein that shows high sequence homology with Raly, an RNA-binding protein playing a critical role in embryonic development. The biological role of RALYL remains unclear. Like Raly, RALYL contains two distinct domains, an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal auxiliary domain. 69 -241050 cd12606 RRM1_RBM4 RNA recognition motif 1 in vertebrate RNA-binding protein 4 (RBM4). This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4. 67 -241051 cd12607 RRM2_RBM4 RNA recognition motif 2 in vertebrate RNA-binding protein 4 (RBM4). This subgroup corresponds to the RRM2 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4. 67 -241052 cd12608 RRM1_CoAA RNA recognition motif 1 in vertebrate RRM-containing coactivator activator/modulator (CoAA). This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs. 69 -241053 cd12609 RRM2_CoAA RNA recognition motif 2 in vertebrate RRM-containing coactivator activator/modulator (CoAA). This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs. 68 -241054 cd12610 RRM1_SECp43 RNA recognition motif 1 in tRNA selenocysteine-associated protein 1 (SECp43). This subgroup corresponds to the RRM1 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. 84 -241055 cd12611 RRM1_NGR1_NAM8_like RNA recognition motif 1 in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins. This subgroup corresponds to the RRM1 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The subgroup also includes NAM8, a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs. 81 -241056 cd12612 RRM2_SECp43 RNA recognition motif 2 in tRNA selenocysteine-associated protein 1 (SECp43). This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. 82 -241057 cd12613 RRM2_NGR1_NAM8_like RNA recognition motif 2 in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins. This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs. 80 -241058 cd12614 RRM1_PUB1 RNA recognition motif 1 in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins. This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3. 74 -241059 cd12615 RRM1_TIA1 RNA recognition motif 1 in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins. This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 74 -241060 cd12616 RRM1_TIAR RNA recognition motif 1 in nucleolysin TIAR and similar proteins. This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 81 -241061 cd12617 RRM2_TIAR RNA recognition motif 2 in nucleolysin TIAR and similar proteins. This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 80 -241062 cd12618 RRM2_TIA1 RNA recognition motif 2 in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins. This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 80 -241063 cd12619 RRM2_PUB1 RNA recognition motif 2 in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins. This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3. 75 -241064 cd12620 RRM3_TIAR RNA recognition motif 3 in nucleolysin TIAR and similar proteins. This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 73 -241065 cd12621 RRM3_TIA1 RNA recognition motif 3 in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins. This subgroup corresponds to the RRM3 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs. 74 -241066 cd12622 RRM3_PUB1 RNA recognition motif 3 in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins. This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3. 74 -241067 cd12623 RRM_PPARGC1A RNA recognition motif in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha, or PPARGC-1-alpha) and similar proteins. This subgroup corresponds to the RRM of PGC-1alpha, also termed PPARGC-1-alpha, or ligand effect modulator 6, a member of a family of transcription coactivators that plays a central role in the regulation of cellular energy metabolism. As an inducible transcription coactivator, PGC-1alpha can interact with a broad range of transcription factors involved in a wide variety of biological responses, such as adaptive thermogenesis, skeletal muscle fiber type switching, glucose/fatty acid metabolism, and heart development. PGC-1alpha stimulates mitochondrial biogenesis and promotes oxidative metabolism. It participates in the regulation of both carbohydrate and lipid metabolism and plays a role in disorders such as obesity, diabetes, and cardiomyopathy. PGC-1alpha is a multi-domain protein containing an N-terminal activation domain region, a central region involved in the interaction with at least a nuclear receptor, and a C-terminal domain region. The N-terminal domain region consists of three leucine-rich motifs (L1, NR box 2 and 3), among which the two last are required for interaction with nuclear receptors, potential nuclear localization signals (NLS), and a proline-rich region overlapping a putative repression domain. The C-terminus of PGC-1alpha is composed of two arginine/serine-rich regions (SR domains), a putative dimerization domain, and an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). PGC-1alpha could interact favorably with single-stranded RNA. 91 -241068 cd12624 RRM_PRC RNA recognition motif in peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PRC) and similar proteins. This subgroup corresponds to the RRM of PRC, also termed PGC-1-related coactivator, one of the members of PGC-1 transcriptional coactivators family, including peroxisome proliferator-activated receptor gamma coactivators PGC-1alpha and PGC-1beta. Unlike PGC-1alpha and PGC-1beta, PRC is ubiquitous and more abundantly expressed in proliferating cells than in growth-arrested cells. PRC has been implicated in the regulation of several metabolic pathways, mitochondrial biogenesis, and cell growth. It functions as a growth-regulated transcriptional cofactor activating many nuclear genes specifying mitochondrial respiratory function. PRC directly interacts with nuclear transcriptional factors implicated in respiratory chain expression including nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), CREB (cAMP-response element-binding protein), and estrogen-related receptor alpha (ERRalpha). It interacts indirectly with the NRF-2beta subunit through host cell factor (HCF), a cellular protein involved in herpes simplex virus (HSV) infection and cell cycle regulation. Furthermore, like PGC-1alpha and PGC-1beta, PRC can transactivate a number of NRF-dependent nuclear genes required for mitochondrial respiratory function, including those encoding cytochrome c, 5-aminolevulinate synthase, Tfam, and TFB1M, and TFB2M. Further research indicates that PRC may also act as a sensor of metabolic stress that orchestrates a redox-sensitive program of inflammatory gene expression. PRC is a multi-domain protein containing an N-terminal activation domain, an LXXLL coactivator signature, a central proline-rich region, a tetrapeptide motif (DHDY) responsible for HCF binding, a C-terminal arginine/serine-rich (SR) domain, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 91 -241069 cd12625 RRM1_IGF2BP1 RNA recognition motif 1 in vertebrate insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). This subgroup corresponds to the RRM1 of IGF2BP1 (IGF2 mRNA-binding protein 1 or IMP-1), also termed coding region determinant-binding protein (CRD-BP), or VICKZ family member 1, or zipcode-binding protein 1 (ZBP-1). IGF2BP1 is a multi-functional regulator of RNA metabolism that has been implicated in the control of aspects of localization, stability, and translation for many mRNAs. It is predominantly located in cytoplasm and was initially identified as a trans-acting factor that interacts with the zipcode in the 3'- untranslated region (UTR) of the beta-actin mRNA, which is important for its localization and translational regulation. It inhibits IGF-II mRNA translation through binding to the 5'-UTR of the transcript. IGF2BP1 also acts as human immunodeficiency virus type 1 (HIV-1) Gag-binding factor that interacts with HIV-1 Gag protein and blocks the formation of infectious HIV-1 particles. IGF2BP1 promotes mRNA stabilization; it functions as a coding region determinant (CRD)-binding protein that binds to the coding region of betaTrCP1 mRNA and prevents miR-183-mediated degradation of betaTrCP1 mRNA. It also promotes c-myc mRNA stability by associating with the CRD and stabilizes CD44 mRNA via interaction with the 3'-UTR of the transcript. In addition, IGF2BP1 specifically interacts with both Hepatitis C virus (HCV) 5'-UTR and 3'-UTR, further recruiting eIF3 and enhancing HCV internal ribosome entry site (IRES)-mediated translation initiation via the 3'-UTR. IGF2BP1 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. It also contains two putative nuclear export signals (NESs) and a putative nuclear localization signal (NLS). 77 -241070 cd12626 RRM1_IGF2BP2 RNA recognition motif 1 in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). This subgroup corresponds to the RRM1 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, which is a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. 77 -241071 cd12627 RRM1_IGF2BP3 RNA recognition motif 1 in vertebrate insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). This subgroup corresponds to the RRM1 of IGF2BP3 (IGF2 mRNA-binding protein 3 or IMP-3), also termed KH domain-containing protein overexpressed in cancer (KOC), or VICKZ family member 3, an RNA-binding protein that plays an important role in the differentiation process during early embryogenesis. It is known to bind to and repress the translation of IGF2 leader 3 mRNA. IGF2BP3 also acts as a Glioblastoma-specific proproliferative and proinvasive marker acting through IGF2 resulting in the activation of oncogenic phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways. IGF2BP3 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. 77 -241072 cd12628 RRM2_IGF2BP1 RNA recognition motif 2 in vertebrate insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). This subgroup corresponds to the RRM2 of IGF2BP1 (IGF2 mRNA-binding protein 1 or IMP-1), also termed coding region determinant-binding protein (CRD-BP), or VICKZ family member 1, or zipcode-binding protein 1 (ZBP-1). IGF2BP1 is a multi-functional regulator of RNA metabolism that has been implicated in the control of aspects of localization, stability, and translation for many mRNAs. It is predominantly located in cytoplasm and was initially identified as a trans-acting factor that interacts with the zipcode in the 3'- untranslated region (UTR) of the beta-actin mRNA, which is important for its localization and translational regulation. It inhibits IGF-II mRNA translation through binding to the 5'-UTR of the transcript. IGF2BP1 also acts as human immunodeficiency virus type 1 (HIV-1) Gag-binding factor that interacts with HIV-1 Gag protein and blocks the formation of infectious HIV-1 particles. It promotes mRNA stabilization and functions as a coding region determinant (CRD)-binding protein that binds to the coding region of betaTrCP1 mRNA and prevents miR-183-mediated degradation of betaTrCP1 mRNA. It also promotes c-myc mRNA stability by associating with the CRD. It stabilizes CD44 mRNA via interaction with the 3'-UTR of the transcript. In addition, IGF2BP1 specifically interacts with both Hepatitis C virus (HCV) 5'-UTR and 3'-UTR, further recruiting eIF3 and enhancing HCV internal ribosome entry site (IRES)-mediated translation initiation via the 3'-UTR. IGF2BP1 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. It also contains two putative nuclear export signals (NESs) and a putative nuclear localization signal (NLS). 76 -241073 cd12629 RRM2_IGF2BP2 RNA recognition motif 2 in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). This subgroup corresponds to the RRM2 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. In addition, IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. 76 -241074 cd12630 RRM2_IGF2BP3 RNA recognition motif 2 in vertebrate insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). This subgroup corresponds to the RRM2 of IGF2BP3 (IGF2 mRNA-binding protein 3 or IMP-3), also termed KH domain-containing protein overexpressed in cancer (KOC), or VICKZ family member 3, an RNA-binding protein that plays an important role in the differentiation process during early embryogenesis. It is known to bind to and repress the translation of IGF2 leader 3 mRNA. IGF2BP3 also acts as a Glioblastoma-specific proproliferative and proinvasive marker acting through IGF2 resulting in the activation of oncogenic phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways. IGF2BP3 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. 76 -241075 cd12631 RRM1_CELF1_2_Bruno RNA recognition motif 1 in CUGBP Elav-like family member CELF-1, CELF-2, Drosophila melanogaster Bruno protein and similar proteins. This subgroup corresponds to the RRM1 of CELF-1, CELF-2 and Bruno protein. CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR) belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in regulation of pre-mRNA splicing, and control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. The human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. This subgroup also includes Drosophila melanogaster Bruno protein, which plays a central role in regulation of Oskar (Osk) expression in flies. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region. 84 -241076 cd12632 RRM1_CELF3_4_5_6 RNA recognition motif 1 in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins. This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region. 87 -241077 cd12633 RRM1_FCA RNA recognition motif 1 in plant flowering time control protein FCA and similar proteins. This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain. 80 -241078 cd12634 RRM2_CELF1_2 RNA recognition motif 2 in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins. This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. 81 -241079 cd12635 RRM2_CELF3_4_5_6 RNA recognition motif 2 in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins. This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region. 81 -241080 cd12636 RRM2_Bruno_like RNA recognition motif 2 in Drosophila melanogaster Bruno protein and similar proteins. This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region. 81 -241081 cd12637 RRM2_FCA RNA recognition motif 2 in plant flowering time control protein FCA and similar proteins. This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain. 80 -241082 cd12638 RRM3_CELF1_2 RNA recognition motif 3 in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins. This subgroup corresponds to the RRM3 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It specifically binds to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contain three highly conserved RRMs. It binds to RNA via the first two RRMs, which are important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. 92 -241083 cd12639 RRM3_CELF3_4_5_6 RNA recognition motif 2 in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins. This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region. 79 -241084 cd12640 RRM3_Bruno_like RNA recognition motif 3 in Drosophila melanogaster Bruno protein and similar proteins. This subgroup corresponds to the RRM3 of Bruno protein, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region. 79 -241085 cd12641 RRM_TRA2B RNA recognition motif in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins. This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes. 89 -241086 cd12642 RRM_TRA2A RNA recognition motif in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins. This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. 79 -241087 cd12643 RRM_CFIm68 RNA recognition motif of pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6) and similar proteins. This subgroup corresponds to the RRM of CFIm68. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm68, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF6), or cleavage and polyadenylation specificity factor 68 kDa subunit (CPSF68), or protein HPBRII-4/7. CFIm68 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm68 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping. 77 -241088 cd12644 RRM_CFIm59 RNA recognition motif of pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7) and similar proteins. This subgroup corresponds to the RRM of CFIm59. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. The two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. The family includes CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59). CFIm59 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. The N-terminal RRM of CFIm59 mediates the interaction with CFIm25. It also serves to enhance RNA binding and facilitate RNA looping. 90 -241089 cd12645 RRM_SRSF3 RNA recognition motif in vertebrate serine/arginine-rich splicing factor 3 (SRSF3). This subgroup corresponds to the RRM of SRSF3, also termed pre-mRNA-splicing factor SRp20, a splicing regulatory serine/arginine (SR) protein that modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation and tumor induction and maintenance. SRSF3 can shuttle between the nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions. 81 -241090 cd12646 RRM_SRSF7 RNA recognition motif in vertebrate serine/arginine-rich splicing factor 7 (SRSF7). This subgroup corresponds to the RRM of SRSF7, also termed splicing factor 9G8, is a splicing regulatory serine/arginine (SR) protein that plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. SRSF7 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a CCHC-type zinc knuckle motif in its median region, and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions. 77 -241091 cd12647 RRM_UHM_SPF45 RNA recognition motif in UHM domain of 45 kDa-splicing factor (SPF45) and similar proteins. This subgroup corresponds to the RRM of SPF45, also termed RNA-binding motif protein 17 (RBM17), an RNA-binding protein consisting of an unstructured N-terminal region, followed by a G-patch motif and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and an Arg-Xaa-Phe sequence motif. SPF45 regulates alternative splicing of the apoptosis regulatory gene FAS (also known as CD95). It induces exon 6 skipping in FAS pre-mRNA through the UHM domain that binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) present in the 3' splice site-recognizing factors U2AF65, SF1 and SF3b155. 96 -241092 cd12648 RRM3_UHM_PUF60 RNA recognition motif 3 in UHM domain of poly(U)-binding-splicing factor PUF60 and similar proteins. This subgroup corresponds to the RRM3 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1), an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. The research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition. 98 -241093 cd12649 RRM1_SXL RNA recognition motif 1 in Drosophila sex-lethal (SXL) and similar proteins. This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts. 81 -241094 cd12650 RRM1_Hu RNA recognition motif 1 in the Hu proteins family. This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 78 -241095 cd12651 RRM2_SXL RNA recognition motif 2 in Drosophila sex-lethal (SXL) and similar proteins. This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts. 79 -241096 cd12652 RRM2_Hu RNA recognition motif 2 in the Hu proteins family. This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 79 -241097 cd12653 RRM3_HuR RNA recognition motif 3 in vertebrate Hu-antigen R (HuR). This subgroup corresponds to the RRM3 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 84 -241098 cd12654 RRM3_HuB RNA recognition motif 3 in vertebrate Hu-antigen B (HuB). This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 86 -241099 cd12655 RRM3_HuC RNA recognition motif 3 in vertebrate Hu-antigen C (HuC). This subgroup corresponds to the RRM3 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 85 -241100 cd12656 RRM3_HuD RNA recognition motif 3 in vertebrate Hu-antigen D (HuD). This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 86 -241101 cd12657 RRM1_hnRNPM RNA recognition motif 1 in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M). This subgroup corresponds to the RRM1 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). 76 -241102 cd12658 RRM1_MYEF2 RNA recognition motif 1 in vertebrate myelin expression factor 2 (MEF-2). This subgroup corresponds to the RRM1 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity. 76 -241103 cd12659 RRM2_hnRNPM RNA recognition motif 2 in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M). This subgroup corresponds to the RRM2 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). 76 -241104 cd12660 RRM2_MYEF2 RNA recognition motif 2 in vertebrate myelin expression factor 2 (MEF-2). This subgroup corresponds to the RRM2 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity. 76 -241105 cd12661 RRM3_hnRNPM RNA recognition motif 3 in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M). This subgroup corresponds to the RRM3 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). 77 -241106 cd12662 RRM3_MYEF2 RNA recognition motif 3 in vertebrate myelin expression factor 2 (MEF-2). This subgroup corresponds to the RRM3 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity. 77 -241107 cd12663 RRM1_RAVER1 RNA recognition motif 1 in vertebrate ribonucleoprotein PTB-binding 1 (raver-1). This subgroup corresponds to the RRM1 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin. 71 -241108 cd12664 RRM1_RAVER2 RNA recognition motif 1 in vertebrate ribonucleoprotein PTB-binding 2 (raver-2). This subgroup corresponds to the RRM1 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs. 70 -241109 cd12665 RRM2_RAVER1 RNA recognition motif 2 found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1). This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin. 77 -241110 cd12666 RRM2_RAVER2 RNA recognition motif 2 in vertebrate ribonucleoprotein PTB-binding 2 (raver-2). This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs. 77 -241111 cd12667 RRM3_RAVER1 RNA recognition motif 3 in vertebrate ribonucleoprotein PTB-binding 1 (raver-1). This subgroup corresponds to the RRM3 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin. 92 -241112 cd12668 RRM3_RAVER2 RNA recognition motif 3 found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2). This subgroup corresponds to the RRM3 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs. 98 -241113 cd12669 RRM1_Nop12p_like RNA recognition motif 1 in yeast nucleolar protein 12 (Nop12p) and similar proteins. This subgroup corresponds to the RRM1 of Nop12p which is encoded by YOL041C from Saccharomyces cerevisiae. It is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures. Nop12p shares high sequence similarity with nucleolar protein 13 (Nop13p). Both, Nop12p and Nop13p, are not essential for growth. However, unlike Nop13p that localizes primarily to the nucleolus but also present in the nucleoplasm to a lesser extent, Nop12p is localized to the nucleolus. Nop12p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 105 -241114 cd12670 RRM2_Nop12p_like RNA recognition motif 2 in yeast nucleolar protein 12 (Nop12p) and similar proteins. This subgroup corresponds to the RRM2 of Nop12p, which is encoded by YOL041C from Saccharomyces cerevisiae. It is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures. Nop12p shares high sequence similarity with nucleolar protein 13 (Nop13p). Both, Nop12p and Nop13p, are not essential for growth. However, unlike Nop13p that localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent, Nop12p is localized to the nucleolus. Nop12p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 79 -241115 cd12671 RRM_CSTF2_CSTF2T RNA recognition motif in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins. This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. 75 -241116 cd12672 RRM_DAZL RNA recognition motif in vertebrate deleted in azoospermia-like (DAZL) proteins. This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis. 82 -241117 cd12673 RRM_BOULE RNA recognition motif in protein BOULE. This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis. 81 -241118 cd12674 RRM1_Nop4p RNA recognition motif 1 in yeast nucleolar protein 4 (Nop4p) and similar proteins. This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 79 -241119 cd12675 RRM2_Nop4p RNA recognition motif 2 in yeast nucleolar protein 4 (Nop4p) and similar proteins. This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 83 -241120 cd12676 RRM3_Nop4p RNA recognition motif 3 in yeast nucleolar protein 4 (Nop4p) and similar proteins. This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 107 -241121 cd12677 RRM4_Nop4p RNA recognition motif 4 in yeast nucleolar protein 4 (Nop4p) and similar proteins. This subgroup corresponds to the RRM4 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 156 -241122 cd12678 RRM_SLTM RNA recognition motif in Scaffold attachment factor (SAF)-like transcription modulator (SLTM) and similar proteins. This subgroup corresponds to the RRM domain of SLTM, also termed modulator of estrogen-induced transcription, which shares high sequence similarity with scaffold attachment factor B1 (SAFB1). It contains a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. To a large extent, SLTM co-localizes with SAFB1 in the nucleus, which suggests that they share similar functions, such as the inhibition of an oestrogen reporter gene. However, rather than mediating a specific inhibitory effect on oestrogen action, SLTM is shown to exert a generalized inhibitory effect on gene expression associated with induction of apoptosis in a wide range of cell lines. 74 -241123 cd12679 RRM_SAFB1_SAFB2 RNA recognition motif in scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), and similar proteins. This subgroup corresponds to RRM of SAFB1, also termed scaffold attachment factor B (SAF-B), heat-shock protein 27 estrogen response element ERE and TATA-box-binding protein (HET), or heterogeneous nuclear ribonucleoprotein hnRNP A1- associated protein (HAP), a large multi-domain protein with well-described functions in transcriptional repression, RNA splicing and metabolism, and a proposed role in chromatin organization. Based on the numerous functions, SAFB1 has been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. SAFB1 specifically binds to AT-rich scaffold or matrix attachment region DNA elements (S/MAR DNA) by using its N-terminal scaffold attachment factor-box (SAF-box, also known as SAP domain), a homeodomain-like DNA binding motif. The central region of SAFB1 is composed of an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a nuclear localization signal (NLS). The C-terminus of SAFB1 contains Glu/Arg- and Gly-rich regions that might be involved in protein-protein interaction. Additional studies indicate that the C-terminal region contains a potent and transferable transcriptional repression domain. Another family member is SAFB2, a homolog of SAFB1. Both SAFB1 and SAFB2 are ubiquitously coexpressed and share very high sequence similarity, suggesting that they might function in a similar manner. However, unlike SAFB1, exclusively existing in the nucleus, SAFB2 is also present in the cytoplasm. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1. 76 -241124 cd12680 RRM_THOC4 RNA recognition motif in THO complex subunit 4 (THOC4) and similar proteins. This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes. 75 -241125 cd12681 RRM_SKAR RNA recognition motif in S6K1 Aly/REF-like target (SKAR) and similar proteins. This subgroup corresponds to the RRM of SKAR, also termed polymerase delta-interacting protein 3 (PDIP3), 46 kDa DNA polymerase delta interaction protein (PDIP46), belonging to the Aly/REF family of RNA binding proteins that have been implicated in coupling transcription with pre-mRNA splicing and nucleo-cytoplasmic mRNA transport. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. SKAR contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 69 -241126 cd12682 RRM_RBPMS RNA recognition motif in vertebrate RNA-binding protein with multiple splicing (RBP-MS). This subfamily corresponds to the RRM of RBP-MS, also termed heart and RRM expressed sequence (hermes), an RNA-binding proteins found in various vertebrate species. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RBP-MS physically interacts with Smad2, Smad3 and Smad4 and plays a role in regulation of Smad-mediated transcriptional activity. In addition, RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. 76 -241127 cd12683 RRM_RBPMS2 RNA recognition motif in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2). This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -241128 cd12684 RRM_cpo RNA recognition motif in Drosophila couch potato (cpo) coding RNA-binding protein and similar proteins. This subfamily corresponds to the RRM of Cpo, an RNA-binding protein encoded by Drosophila couch potato (cpo) gene. Cpo contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It may control the processing of RNA molecules required for the proper functioning of the peripheral nervous system (PNS). 83 -241129 cd12685 RRM_RBM20 RNA recognition motif of vertebrate RNA-binding protein 20 (RBM20). This subfamily corresponds to the RRM of RBM20, an alternative splicing regulator associated with dilated cardiomyopathy (DCM). It contains only one copy of RNA-recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -241130 cd12686 RRM1_PTBPH1_PTBPH2 RNA recognition motif 1 in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2). This subfamily corresponds to the RRM1 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 81 -241131 cd12687 RRM1_PTBPH3 RNA recognition motif 1 in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3). This subfamily corresponds to the RRM1 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 75 -241132 cd12688 RRM1_PTBP1_like RNA recognition motif 1 in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins. This subfamily corresponds to the RRM1 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and functions at several aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 81 -241133 cd12689 RRM1_hnRNPL_like RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins. This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 80 -241134 cd12690 RRM3_PTBPH1_PTBPH2 RNA recognition motif 3 in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2). This subfamily corresponds to the RRM3 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 97 -241135 cd12691 RRM2_PTBPH1_PTBPH2 RNA recognition motif 2 in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2). This subfamily corresponds to the RRM2 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 95 -241136 cd12692 RRM2_PTBPH3 RNA recognition motif 2 in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3). This subfamily corresponds to the RRM2 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 88 -241137 cd12693 RRM2_PTBP1_like RNA recognition motif 2 in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins. This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 96 -241138 cd12694 RRM2_hnRNPL_like RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins. This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both nuclear and cytoplasmic roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 86 -241139 cd12695 RRM3_PTBP1 RNA recognition motif 3 in vertebrate polypyrimidine tract-binding protein 1 (PTB). This subgroup corresponds to the RRM3 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence show that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution. 93 -241140 cd12696 RRM3_PTBP2 RNA recognition motif 3 in vertebrate polypyrimidine tract-binding protein 2 (PTBP2). This subgroup corresponds to the RRM3 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 107 -241141 cd12697 RRM3_ROD1 RNA recognition motif 3 in vertebrate regulator of differentiation 1 (Rod1). This subgroup corresponds to the RRM3 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities. 76 -241142 cd12698 RRM3_PTBPH3 RNA recognition motif 3 in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3). This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 76 -241143 cd12699 RRM3_hnRNPL RNA recognition motif 3 in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L). This subgroup corresponds to the RRM3 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 74 -241144 cd12700 RRM3_hnRPLL RNA recognition motif 3 in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL). The subgroup corresponds to the RRM3 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 71 -241145 cd12701 RRM4_PTBP1 RNA recognition motif 4 in vertebrate polypyrimidine tract-binding protein 1 (PTB). This subgroup corresponds to the RRM4 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution. 76 -241146 cd12702 RRM4_PTBP2 RNA recognition motif 4 in vertebrate polypyrimidine tract-binding protein 2 (PTBP2). This subgroup corresponds to the RRM4 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 80 -241147 cd12703 RRM4_ROD1 RNA recognition motif 4 in vertebrate regulator of differentiation 1 (Rod1). This subgroup corresponds to the RRM4 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein that negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities. 81 -241148 cd12704 RRM4_hnRNPL RNA recognition motif 4 in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L). This subgroup corresponds to the RRM4 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 84 -241149 cd12705 RRM4_hnRPLL RNA recognition motif 4 in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL). The subgroup corresponds to the RRM4 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 85 -241150 cd12706 RRM_LARP5 RNA recognition motif in vertebrate La-related protein 5 (LARP5 or LARP4B). This subgroup corresponds to the RRM of LARP5, a cytosolic protein that co-sediments with polysomes and accumulates upon stress induction in cellular stress granules. It can interact with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. LARP5 may function as a stimulatory factor of translation through bridging mRNA factors of the 3' end with initiating ribosomes. Like other La-related proteins (LARPs) family members, LARP5 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 77 -241151 cd12707 RRM_LARP4 RNA recognition motif in vertebrate La-related protein 4 (LARP4). This subgroup corresponds to the RRM of LARP4, a cytoplasmic factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). It may play a role in promoting translation by stabilizing mRNA. LARP4 is structurally related to the La autoantigen. Like other La-related proteins (LARPs) family members, LARP4 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 77 -241152 cd12708 RRM_RCAN1 RNA recognition motif in vertebrate regulator of calcineurin 1 (RCAN1). This subgroup corresponds to the RRM of RCAN1, also termed calcipressin-1, or Adapt78, or Down syndrome critical region protein 1, or myocyte-enriched calcineurin-interacting protein 1 (MCIP1), encoded by the Down syndrome critical region 1 (DSCR1) gene that is abundantly expressed in human brain, heart and muscles. Overexpressed RCAN1 functions as an inhibitor of the Ca2+/calmodulin-dependent phosphatase calcineurin (also termed PP2B or PP3C), and is associated with Alzheimer's disease (AD) and Down syndrome (DS). RCAN1 can be phosphorylated by several kinases such as big MAP kinase 1 (BMK1), glycogen synthase kinase-3 (GSK-3), NF-kappaB inducing kinase (NIK), and protein kinase A (PKA). The phosphorylation of RCAN1 can positively or negatively regulate calcineurin-mediated gene transcription, and also affect its protein stability in the ubiquitin-proteasome pathway. RCAN1 consists of an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a highly conserved SP repeat domain containing the phosphorylation site by GSK-3, a well-known PxIxIT motif responsible for docking many substrates to calcineurin, and an unrecognized C-terminal TxxP motif of unknown function. 93 -241153 cd12709 RRM_RCAN2 RNA recognition motif in vertebrate regulator of calcineurin 2 (RCAN2). This subgroup corresponds to the RRM of RCAN2, also termed calcipressin-2, or Down syndrome candidate region 1-like 1 (DSCR1L1), or myocyte-enriched calcineurin-interacting protein 2 (MCIP2), or thyroid hormone-responsive protein ZAKI-4, encoded by a novel thyroid hormone-responsive gene ZAKI-4 that is abundantly expressed in human brain, heart and muscles. RCAN2 binds to the catalytic subunit of Ca2+/calmodulin-dependent phosphatase calcineurin (also termed PP2B or PP3C), calcineurin A, and inhibits its phosphatase activity through its C-terminal region. RCAN2 consists of an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a highly conserved SP repeat domain containing the phosphorylation site by GSK-3, a well-known PxIxIT motif responsible for docking many substrates to calcineurin, and an unrecognized C-terminal TxxP motif of unknown function. 77 -241154 cd12710 RRM_RCAN3 RNA recognition motif in vertebrate regulator of calcineurin 3 (RCAN3). This subgroup corresponds to the RRM of RCAN3, also termed calcipressin-3, or Down syndrome candidate region 1-like protein 2 (DSCR1L2), or myocyte-enriched calcineurin-interacting protein 3 (MCIP3), encoded by a ubiquitously expressed DSCR1L2 gene. Overexpressed RCAN3 binds and inhibits the Ca2+/calmodulin-dependent phosphatase calcineurin (also termed PP2B or PP3C), and further down-regulates nuclear factor of activated T cells (NFAT)-dependent cytokine gene expression in activated human Jurkat T cells. Moreover, RCAN3 interacts with cardiac troponin I (TNNI3), a heart-specific inhibitory subunit of the troponin complex, and may play a role in cardiac contraction. RCAN3 consists of an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a highly conserved SP repeat domain containing the phosphorylation site by GSK-3, a well-known PxIxIT motif responsible for docking many substrates to calcineurin, and an unrecognized C-terminal TxxP motif of unknown function. 77 -241155 cd12711 RRM_TNRC6A RNA recognition motif in vertebrate GW182 autoantigen. This subgroup corresponds to the RRM of the GW182 autoantigen, also termed trinucleotide repeat-containing gene 6A protein (TNRC6A), or CAG repeat protein 26, or EMSY interactor protein, or protein GW1, or glycine-tryptophan protein of 182 kDa, a phosphorylated cytoplasmic autoantigen involved in stabilizing and/or regulating translation and/or storing several different mRNAs. GW182 is characterized by multiple glycine/tryptophan (G/W) repeats and is a critical component of GW bodies (GWBs, also called mammalian processing bodies, or P bodies). The mRNAs associated with GW182 are presumed to reside within GWBs. GW182 has been shown to bind multiple Ago-miRNA complexes, and thus plays a key role in miRNA-mediated translational repression and mRNA degradation. In the absence of Ago2, GW182 may induce translational silencing effect. GW182 is composed of an N-terminal G/W-rich region containing an Ago hook responsible for Ago protein-binding; a ubiquitin-associated (UBA) domain and a glutamine (Q)-rich region in the middle region; a middle G/W-rich region, a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal G/W-rich region, at the C-terminus. A bipartite C-terminal region including the middle and C-terminal G/W-rich regions is referred to as silencing domain that triggers silencing of bound transcripts by inhibiting protein expression and promoting mRNA decay via deadenylation. 83 -241156 cd12712 RRM_TNRC6B RNA recognition motif in vertebrate trinucleotide repeat-containing gene 6B protein (TNRC6B). This subgroup corresponds to the RRM of TNRC6B, one of three GW182 paralogs in mammalian genomes. It is involved in miRNA-mediated mRNA degradation. TNRC6B is composed of an N-terminal glycine/tryptophan (G/W)-rich region; a ubiquitin-associated (UBA) domain and a glutamine (Q)-rich region in the middle region; a middle G/W-rich region, a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal G/W-rich region, at the C-terminus. TNRC6B directly interacts with Argonaute (Ago) proteins through its N-terminal glycine/tryptophan (G/W)-rich region that is called Ago protein-binding domain. TNRC6B is enriched in P-bodies and its Q-rich domain is responsible for P-body localization. A bipartite C-terminal region including the middle and C-terminal G/W-rich regions is referred as silencing domain that triggers silencing of bound transcripts by inhibiting protein expression and promoting mRNA decay via deadenylation. The C-terminal half of TNRC6B comprising an RRM domain exerts a strong translation inhibition potential, which does not require either association with Agos or localization to P-bodies. 83 -241157 cd12713 RRM_TNRC6C RNA recognition motif in vertebrate trinucleotide repeat-containing gene 6C protein (TNRC6C). This subgroup corresponds to the RRM of TNRC6C, one of three GW182 paralogs in mammalian genomes. It is enriched in P-bodies and important for efficient miRNA-mediated repression. TNRC6C is composed of an N-terminal glycine/tryptophan (G/W)-rich region containing an Ago hook responsible for Ago protein-binding; a ubiquitin-associated (UBA) domain and a glutamine (Q)-rich region in the middle region; a middle G/W-rich region, a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal G/W-rich region, at the C-terminus. A bipartite C-terminal region including the middle and C-terminal G/W-rich regions is referred as silencing domain that triggers silencing of bound transcripts by inhibiting protein expression and promoting mRNA decay via deadenylation. The C-terminal half containing the RRM domain functions as a key effector domain mediating protein synthesis repression by TNRC6C. 83 -241158 cd12714 RRM1_MATR3 RNA recognition motif 1 in vertebrate matrin-3. This subgroup corresponds to the RRM1 of Matrin 3 (MATR3 or P130), a highly conserved inner nuclear matrix protein with a bipartite nuclear localization signal (NLS), two zinc finger domains predicted to bind DNA, and two RNA recognition motifs (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that are known to interact with RNA. MATR3 has been implicated in various biological processes. It is involved in RNA processing by interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix. It plays a role in mRNA stabilization through maintaining the stability of certain mRNA species. Besides, it modulates the activity of proximal promoters by binding to highly repetitive sequences of matrix/scaffold attachment region (MAR/SAR). The phosphorylation of MATR3 is assumed to cause neuronal death. It is phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Its phosphorylation by protein kinase A (PKA) is responsible for the activation of the N-methyl-d-aspartic acid (NMDA) receptor. Furthermore, MATR3 has been identified as both a Ca2+-dependent CaM-binding protein and a downstream substrate of caspases. Additional research indicates that matrin 3 also binds Rev/Rev responsive element (RRE)-containing viral RNA and functions as a cofactor that mediates the post-transcriptional regulation of HIV-1. 76 -241159 cd12715 RRM2_MATR3 RNA recognition motif 2 in vertebrate matrin-3. This subgroup corresponds to the RRM2 of Matrin 3 (MATR3 or P130), a highly conserved inner nuclear matrix protein with a bipartite nuclear localization signal (NLS), two zinc finger domains predicted to bind DNA, and two RNA recognition motifs (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that are known to interact with RNA. MATR3 has been implicated in various biological processes. It is involved in RNA processing by interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix. It plays a role in mRNA stabilization through maintaining the stability of certain mRNA species. Besides, it modulates the activity of proximal promoters by binding to highly repetitive sequences of matrix/scaffold attachment region (MAR/SAR). The phosphorylation of MATR3 is assumed to cause neuronal death. It is phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Its phosphorylation by protein kinase A (PKA) is responsible for the activation of the N-methyl-d-aspartic acid (NMDA) receptor. Furthermore, MATR3 has been identified as both a Ca2+-dependent CaM-binding protein and a downstream substrate of caspases. Additional research indicates that matrin 3 also binds Rev/Rev responsive element (RRE)-containing viral RNA and functions as a cofactor that mediates the post-transcriptional regulation of HIV-1. 80 -241160 cd12716 RRM1_2_NP220 RNA recognition motif 1 and 2 in vertebrate nuclear protein 220 (NP220). This subgroup corresponds to RRM1 and RRM2 of NP220, also termed zinc finger protein 638 (ZN638), or cutaneous T-cell lymphoma-associated antigen se33-1, or zinc finger matrin-like protein, a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). NP220 contains multiple domains, including MH1, MH2, and MH3, domains homologous to the acidic nuclear protein matrin 3; RS, an arginine/serine-rich domain commonly found in pre-mRNA splicing factors; PstI-HindIII, a domain essential for DNA binding; acidic repeat, a domain with nine repeats of the sequence LVTVDEVIEEEDL; and a Cys2-His2 zinc finger-like motif that is also present in matrin 3. It may be involved in packaging, transferring, or processing transcripts. This subgroup corresponds to the domain of MH2 that contains two tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 76 -241161 cd12717 RRM_ETP1 RNA recognition motif in yeast RING finger protein ETP1 and similar proteins. This subgroup corresponds to the RRM of ETP1, also termed BRAP2 homolog, or ethanol tolerance protein 1, the yeast homolog of BRCA1-associated protein (BRAP2) found in vertebrates. It may be involved in ethanol and salt-induced transcriptional activation of the NHA1 promoter and heat shock protein genes (HSP12 and HSP26), and participate in ethanol-induced turnover of the low-affinity hexose transporter Hxt3p. ETP1 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C3HC4-type ring finger domain and a UBP-type zinc finger. 82 -241162 cd12718 RRM_BRAP2 RNA recognition motif in BRCA1-associated protein (BRAP2). This subgroup corresponds to the RRM of BRAP2, also termed impedes mitogenic signal propagation (IMP), or ring finger protein 52, or renal carcinoma antigen NY-REN-63, a novel cytoplasmic protein interacting with the two functional nuclear localisation signal (NLS) motifs of BRCA1, a nuclear protein linked to breast cancer. It also binds to the SV40 large T antigen NLS motif and the bipartite NLS motif found in mitosin. BRAP2 may serve as a cytoplasmic retention protein and play a role in the regulation of nuclear protein transport. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C3HC4-type ring finger domain and a UBP-type zinc finger. 84 -241163 cd12719 RRM_SYNJ1 RNA recognition motif in synaptojanin-1 and similar proteins. This subgroup corresponds to the RRM of synaptojanin-1, also termed synaptojanin, or synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1, originally identified as one of the major Grb2-binding proteins that may participate in synaptic vesicle endocytosis. It also acts as a Src homology 3 (SH3) domain-binding brain-specific inositol 5-phosphatase with a putative role in clathrin-mediated endocytosis. Synaptojanin-1 contains an N-terminal domain homologous to the cytoplasmic portion of the yeast protein Sac1p, a central inositol 5-phosphatase domain followed by a putative RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal proline-rich region mediating the binding of synaptojanin-1 to various SH3 domain-containing proteins including amphiphysin, SH3p4, SH3p8, SH3p13, and Grb2. Synaptojanin-1 has two tissue-specific alternative splicing isoforms, synaptojanin-145 expressed in brain and synaptojanin-170 expressed in peripheral tissues. Synaptojanin-145 is very abundant in nerve terminals and may play an essential role in the clathrin-mediated endocytosis of synaptic vesicles. In contrast to synaptojanin-145, synaptojanin-170 contains three unique asparagine-proline-phenylalanine (NPF) motifs in the C-terminal region and may functions as a potential binding partner for Eps15, a clathrin coat-associated protein acting as a major substrate for the tyrosine kinase activity of the epidermal growth factor receptor. 77 -241164 cd12720 RRM_SYNJ2 RNA recognition motif in synaptojanin-2 and similar proteins. This subgroup corresponds to the RRM of synaptojanin-2, also termed synaptic inositol-1,4,5-trisphosphate 5-phosphatase 2, an ubiquitously expressed central regulatory enzyme in the phosphoinositide-signaling cascade. As a novel Rac1 effector regulating the early step of clathrin-mediated endocytosis, synaptojanin-2 acts as a polyphosphoinositide phosphatase directly and specifically interacting with Rac1 in a GTP-dependent manner. It mediates the inhibitory effect of Rac1 on endocytosis and plays an important role in the Rac1-mediated control of cell growth. Synaptojanin-2 shows high sequence homology to the N-terminal Sac1p homology domain, the central inositol 5-phosphatase domain, the putative RNA recognition motif (RRM) of synaptojanin-1, but differs in the proline-rich region. 78 -241165 cd12721 RRM_Nup53p_fungi RNA recognition motif in yeast nucleoporin Nup53p and similar proteins. This subgroup corresponds to the RRM of Saccharomyces cerevisiae Nup53p, the ortholog of vertebrate nucleoporin Nup53. A unique property of yeast Nup53p is that it contains an additional Kap121p-binding domain and interacts specifically with the karyopherin Kap121p, which is involved in the assembly of Nup53p into NPCs. Like vertebrate Nup35, yeast Nup53p contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a C-terminal amphipathic alpha-helix and several FG repeats. The RRM domain lacks the conserved residues that typically bind RNA in canonical RRM domains. 86 -241166 cd12722 RRM_Nup53 RNA recognition motif in nucleoporin Nup53. This subgroup corresponds to the RRM of nucleoporin Nup53, also termed mitotic phosphoprotein 44 (MP-44), or nuclear pore complex protein Nup53, required for normal cell growth and nuclear morphology in vertebrate. It tightly associates with the nuclear envelope membrane and the nuclear lamina where it interacts with lamin B. It may also interact with a group of nucleoporins including Nup93, Nup155, and Nup205 and play a role in the association of the mitotic checkpoint protein Mad1 with the nuclear pore complex (NPC). Nup35 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a C-terminal amphipathic alpha-helix and several FG repeats. This RRM lacks the conserved residues that typically bind RNA in canonical RRM domains. 74 -241167 cd12723 RRM1_CPEB1 RNA recognition motif 1 in cytoplasmic polyadenylation element-binding protein 1 (CPEB-1) and similar proteins. This subgroup corresponds to the RRM2 of CPEB-1 (also termed CPE-BP1 or CEBP), an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bound to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. CPEB-1 contains an N-terminal unstructured region, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. Both of the RRMs and the Zn finger are required for CPEB-1 to bind CPE. The N-terminal regulatory region may be responsible for CPEB-1 interacting with other proteins. 100 -241168 cd12724 RRM1_CPEB2_like RNA recognition motif 1 in cytoplasmic polyadenylation element-binding protein CPEB-2, CPEB-3, CPEB-4 and similar protiens. This subgroup corresponds to the RRM1 of the paralog proteins CPEB-2, CPEB-3 and CPEB-4, all well-conserved in both, vertebrates and invertebrates. Due to the high sequence similarity, members in this family may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. Moreover, CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All family members contain an N-terminal unstructured region, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. In addition, they do have conserved nuclear export signals that are not present in CPEB-1. 92 -241169 cd12725 RRM2_CPEB1 RNA recognition motif 2 in cytoplasmic polyadenylation element-binding protein 1 (CPEB-1) and similar proteins. This subgroup corresponds to the RRM2 of CPEB-1 (also termed CPE-BP1 or CEBP), an RNA-binding protein that interacts with the cytoplasmic polyadenylation element (CPE), a short U-rich motif in the 3' untranslated regions (UTRs) of certain mRNAs. It functions as a translational regulator that plays a major role in the control of maternal CPE-containing mRNA in oocytes, as well as of subsynaptic CPE-containing mRNA in neurons. Once phosphorylated and recruiting the polyadenylation complex, CPEB-1 may function as a translational activator stimulating polyadenylation and translation. Otherwise, it may function as a translational inhibitor when dephosphorylated and bound to a protein such as maskin or neuroguidin, which blocks translation initiation through interfering with the assembly of eIF-4E and eIF-4G. Although CPEB-1 is mainly located in cytoplasm, it can shuttle between nucleus and cytoplasm. CPEB-1 contains an N-terminal unstructured region, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. Both of the RRMs and the Zn finger are required for CPEB-1 to bind CPE. The N-terminal regulatory region may be responsible for CPEB-1 interacting with other proteins. 86 -241170 cd12726 RRM2_CPEB2_like RNA recognition motif 2 found in cytoplasmic polyadenylation element-binding protein CPEB-2, CPEB-3, CPEB-4 and similar protiens. This subgroup corresponds to the RRM2 of the paralog proteins CPEB-2, CPEB-3 and CPEB-4, all well conserved in both, vertebrates and invertebrates. Due to the high sequence similarity, members in this family may share similar expression patterns and functions. CPEB-2 is an RNA-binding protein that is abundantly expressed in testis and localized in cytoplasm in transfected HeLa cells. It preferentially binds to poly(U) RNA oligomers and may regulate the translation of stored mRNAs during spermiogenesis. Moreover, CPEB-2 impedes target RNA translation at elongation; it directly interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-activated GTP hydrolysis in vitro and inhibit peptide elongation of CPEB2-bound RNA in vivo. CPEB-3 is a sequence-specific translational regulatory protein that regulates translation in a polyadenylation-independent manner. It functions as a translational repressor that governs the synthesis of the AMPA receptor GluR2 through binding GluR2 mRNA. It also represses translation of a reporter RNA in transfected neurons and stimulates translation in response to NMDA. CPEB-4 is an RNA-binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation. It is essential for neuron survival and present on the endoplasmic reticulum (ER). It is accumulated in the nucleus upon ischemia or the depletion of ER calcium. CPEB-4 is overexpressed in a large variety of tumors and is associated with many mRNAs in cancer cells. All family members contain an N-terminal unstructured region, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Zn-finger motif. In addition, they do have conserved nuclear export signals that are not present in CPEB-1. 81 -241171 cd12727 RRM_like_Smg4_UPF3A RNA recognition motif-like Smg4_UPF3 domain in up-frameshift suppressor 3 homolog A (Upf3A). This subgroup corresponds to the RRM-like Smg4_UPF3 domain in Upf3A, also termed regulator of nonsense transcripts 3A, or nonsense mRNA reducing factor 3A, a human ortholog of yeast Upf3p and Caenorhabditis elegans SMG-4. It derives from gene UPF3A and is required for nonsense-mediated mRNA decay (NMD) in human. Upf3A is a nucleocytoplasmic shuttling protein that associates selectively with spliced beta-globin mRNA in vivo. Like other Upf3 proteins, Upf3A contains nuclear import and export signals, and a conserved Smg4_UPF3 domain with some similarity to an RNA recognition motif (RRM), indicating that it may be an RNA binding protein. 87 -241172 cd12728 RRM_like_Smg4_UPF3B RNA recognition motif-like Smg4_UPF3 domain in up-frameshift suppressor 3 homolog B on chromosome X (Upf3B). This subgroup corresponds to the RRM-like Smg4_UPF3 domain in Upf3B, also termed regulator of nonsense transcripts 3B, or nonsense mRNA reducing factor 3B, a human ortholog of yeast Upf3p and Caenorhabditis elegans SMG-4. It derives from X-linked gene UPF3B and is required for nonsense-mediated mRNA decay (NMD) in human. Upf3B is a nucleocytoplasmic shuttling protein that associates selectively with spliced beta-globin mRNA in vivo. Like other Upf3 proteins, Upf3B contains nuclear import and export signals, and a conserved Smg4_UPF3 domain with some similarity to an RNA recognition motif (RRM), indicating that it may be an RNA binding protein. 89 -241173 cd12729 RRM1_hnRNPH_hnRNPH2_hnRNPF RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins. This subgroup corresponds to the RRM1 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical. Both of them have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. 79 -241174 cd12730 RRM1_GRSF1 RNA recognition motif 1 in G-rich sequence factor 1 (GRSF-1) and similar proteins. This subgroup corresponds to the RRM1 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity. 79 -241175 cd12731 RRM2_hnRNPH_hnRNPH2_hnRNPF RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein hnRNP H, hnRNP H2, hnRNP F and similar proteins. This subgroup corresponds to the RRM2 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. These represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. 83 -241176 cd12732 RRM2_hnRNPH3 RNA recognition motif 2 in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins. This subgroup corresponds to the RRM2 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize. 96 -241177 cd12733 RRM3_GRSF1 RNA recognition motif 3 in G-rich sequence factor 1 (GRSF-1) and similar proteins. This subgroup corresponds to the RRM3 of G-rich sequence factor 1 (GRSF-1), a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity. 75 -241178 cd12734 RRM3_hnRNPH_hnRNPH2_hnRNPF RNA recognition motif 3 in heterogeneous nuclear ribonucleoprotein hnRNP H , hnRNP H2, hnRNP F and similar proteins. This subgroup corresponds to the RRM3 of hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H') and hnRNP F, which represent a group of nuclear RNA binding proteins that play important roles in the regulation of alternative splicing decisions. hnRNP H and hnRNP F are two closely related proteins, both of which bind to the RNA sequence DGGGD. They are present in a complex with the tissue-specific splicing factor Fox2, and regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts. The presence of Fox 2 can allows hnRNP H and hnRNP F to better compete with the SR protein ASF/SF2 for binding to FGFR2 exon IIIc. Thus, hnRNP H and hnRNP F can function as potent silencers of FGFR2 exon IIIc inclusion through an interaction with the exonic GGG motifs. Furthermore, hnRNP H and hnRNP H2 are almost identical; bothe have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. 76 -241179 cd12735 RRM3_hnRNPH3 RNA recognition motif 3 in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins. This subgroup corresponds to the RRM3 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize. 75 -241180 cd12736 RRM1_ESRP1 RNA recognition motif 1 in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins. This subgroup corresponds to the RRM1 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (p120-Catenin) and ENAH (hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 85 -241181 cd12737 RRM1_ESRP2 RNA recognition motif 1 in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins. This subgroup corresponds to the RRM1 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 80 -241182 cd12738 RRM1_Fusilli RNA recognition motif 1 in Drosophila RNA-binding protein Fusilli and similar proteins. This subgroup corresponds to the RRM1 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 80 -241183 cd12739 RRM2_ESRP1 RNA recognition motif 2 in epithelial splicing regulatory protein 1 (ESRP1) and similar proteins. This subgroup corresponds to the RRM2 of ESRP1, also termed RNA-binding motif protein 35A (RBM35A), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. Additional research indicated that ESRP1 functions as a tumor suppressor in colon cancer cells. It may be involved in posttranscriptional regulation of various genes by exerting a differential effect on protein translation via 5' untranslated regions (UTRs) of mRNAs. ESRP1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 109 -241184 cd12740 RRM2_ESRP2 RNA recognition motif 2 in epithelial splicing regulatory protein 2 (ESRP2) and similar proteins. This subgroup corresponds to the RRM2 of ESRP2, also termed RNA-binding motif protein 35B (RBM35B), which has been identified as an epithelial cell type-specific regulator of fibroblast growth factor receptor 2 (FGFR2) splicing. It is required for expression of epithelial FGFR2-IIIb and the regulation of CD44, CTNND1 (also termed p120-Catenin) and ENAH (also termed hMena) splicing. It enhances epithelial-specific exons of CD44 and ENAH, silences mesenchymal exons of CTNND1, or both within FGFR2. ESRP2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 107 -241185 cd12741 RRM2_Fusilli RNA recognition motif 2 in Drosophila RNA-binding protein Fusilli and similar proteins. This subgroup corresponds to the RRM2 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 100 -241186 cd12742 RRM3_ESRP1_ESRP2 RNA recognition motif in epithelial splicing regulatory protein ESRP1, ESRP2 and similar proteins. This subgroup corresponds to the RRM3 of ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B). These are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). 81 -241187 cd12743 RRM3_Fusilli RNA recognition motif 3 in Drosophila RNA-binding protein Fusilli and similar proteins. This subgroup corresponds to the RRM3 of RNA-binding protein Fusilli which is encoded by Drosophila fusilli (fus) gene. Loss of Fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous fibroblast growth factor receptor 2 (FGFR2) splicing and functions as a splicing factor. Fusilli contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine. 85 -241188 cd12744 RRM1_RBM12B RNA recognition motif 1 in RNA-binding protein 12B (RBM12B) and similar proteins. This subgroup corresponds to the RRM1 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear. 79 -241189 cd12745 RRM1_RBM12 RNA recognition motif 1 in RNA-binding protein 12 (RBM12) and similar proteins. This subgrup corresponds to the RRM1 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear. 92 -241190 cd12746 RRM2_RBM12B RNA recognition motif 2 in RNA-binding protein 12B (RBM12B) and similar proteins. This subgroup corresponds to the RRM2 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear. 78 -241191 cd12747 RRM2_RBM12 RNA recognition motif 2 in RNA-binding protein 12 (RBM12) and similar proteins. This subgroup corresponds to the RRM2 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear. 75 -241192 cd12748 RRM4_RBM12B RNA recognition motif 4 in RNA-binding protein 12B (RBM12B) and similar proteins. This subgroup corresponds to the RRM4 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear. 76 -241193 cd12749 RRM4_RBM12 RNA recognition motif 4 in RNA-binding protein 12 (RBM12) and similar proteins. This subgroup corresponds to the RRM4 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear. 88 -241194 cd12750 RRM5_RBM12B RNA recognition motif 5 in RNA-binding protein 12B (RBM12B) and similar proteins. This subgroup corresponds to the RRM5 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear. 77 -241195 cd12751 RRM5_RBM12 RNA recognition motif 5 in RNA-binding protein 12 (RBM12) and similar proteins. This subgroup corresponds to the RRM5 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RBMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear. 76 -241196 cd12752 RRM1_RBM5 RNA recognition motif 1 in vertebrate RNA-binding protein 5 (RBM5). This subgroup corresponds to the RRM1 of RBM5, also termed protein G15, or putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9, a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both, RBM5 and RBM6, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. 87 -241197 cd12753 RRM1_RBM10 RNA recognition motif 1 in vertebrate RNA-binding protein 10 (RBM10). This subgroup corresponds to the RRM1 of RBM10, also termed G patch domain-containing protein 9, or RNA-binding protein S1-1 (S1-1), a paralog of putative tumor suppressor RNA-binding protein 5 (RBM5 or LUCA15 or H37). It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. RBM10 is structurally related to RBM5 and RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain. 85 -241198 cd12754 RRM2_RBM10 RNA recognition motif 2 in vertebrate RNA-binding protein 10 (RBM10). This subgroup corresponds to the RRM2 of RBM10, also termed G patch domain-containing protein 9, or RNA-binding protein S1-1 (S1-1), a paralog of putative tumor suppressor RNA-binding protein 5 (RBM5 or LUCA15 or H37). It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. RBM10 is structurally related to RBM5 and RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain. 87 -241199 cd12755 RRM2_RBM5 RNA recognition motif 2 in vertebrate RNA-binding protein 5 (RBM5). This subgroup corresponds to the RRM2 of RBM5, also termed protein G15, or putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9, a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both, RBM5 and RBM6, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. 86 -241200 cd12756 RRM1_hnRNPD RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, which is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically. 74 -241201 cd12757 RRM1_hnRNPAB RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), which is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop. 75 -241202 cd12758 RRM1_hnRPDL RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like or hnRNP DL) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), which is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus. 76 -241203 cd12759 RRM1_MSI1 RNA recognition motif 1 in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins. This subgroup corresponds to the RRM1 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). Musashi-1 has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, it represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 77 -241204 cd12760 RRM1_MSI2 RNA recognition motif 1 in RNA-binding protein Musashi homolog 2 (Musashi-2 ) and similar proteins. This subgroup corresponds to the RRM2 of Musashi-2 (also termed Msi2) which has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Musashi-2 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function. 76 -241205 cd12761 RRM1_hnRNPA1 RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, and is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. hnRNP A1, together with the scaffold protein septin 6, serves as host protein to form a complex with NS5b and viral RNA, and further plays important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions. 81 -241206 cd12762 RRM1_hnRNPA2B1 RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP A2/B1 which is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Moreover, the overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 81 -241207 cd12763 RRM1_hnRNPA3 RNA recognition motif 1 in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins. This subgroup corresponds to the RRM1 of hnRNP A3 which is a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. 81 -241208 cd12764 RRM2_SRSF4 RNA recognition motif 2 in vertebrate serine/arginine-rich splicing factor 4 (SRSF4). This subgroup corresponds to the RRM2 of SRSF4, also termed pre-mRNA-splicing factor SRp75, or SRP001LB, or splicing factor, arginine/serine-rich 4 (SFRS4), a splicing regulatory serine/arginine (SR) protein that plays an important role in both constitutive splicing and alternative splicing of many pre-mRNAs. For instance, it interacts with heterogeneous nuclear ribonucleoproteins, hnRNP G and hnRNP E2, and further regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia. SFRS4 also induces production of HIV-1 vpr mRNA through the inhibition of the 5'-splice site of exon 3. In addition, SRSF4 activates splicing of the cardiac troponin T (cTNT) alternative exon by direct interactions with the cTNT exon 5 enhancer RNA. SRSF4 can shuttle between the nucleus and cytoplasm. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine-rich region, an internal region homologous to the RRM, and a very long, highly phosphorylated C-terminal RS domains rich in serine-arginine dipeptides. 72 -241209 cd12765 RRM2_SRSF5 RNA recognition motif 2 in vertebrate serine/arginine-rich splicing factor 5 (SRSF5). This subgroup corresponds to the RRM2 of SRSF5, also termed delayed-early protein HRS, or pre-mRNA-splicing factor SRp40, or splicing factor, arginine/serine-rich 5 (SFRS5), is an essential splicing regulatory serine/arginine (SR) protein that regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and it is necessary for enhancer activation. SRSF5 also functions as a factor required for insulin-regulated splice site selection for protein kinase C (PKC) betaII mRNA. It is involved in the regulation of PKCbetaII exon inclusion by insulin via its increased phosphorylation by a phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway. Moreover, SRSF5 can regulate alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA in a dose-dependent manner. SRSF5 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. The specific RNA binding by SRSF5 requires the phosphorylation of its SR domain. 75 -241210 cd12766 RRM2_SRSF6 RNA recognition motif 2 found in vertebrate serine/arginine-rich splicing factor 6 (SRSF6). This subgroup corresponds to the RRM2 of SRSF6, also termed pre-mRNA-splicing factor SRp55, an essential splicing regulatory serine/arginine (SR) protein that preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. For instance, it does not bind to the purine-rich sequence in the calcitonin-specific ESE, but binds to a region adjacent to the purine tract. Moreover, cellular levels of SRSF6 may control tissue-specific alternative splicing of the calcitonin/ calcitonin gene-related peptide (CGRP) pre-mRNA. SRSF6 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. 73 -241211 cd12767 RRM2_SRSF1 RNA recognition motif 2 in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins. This subgroup corresponds to the RRM2 of SRSF1, also termed alternative-splicing factor 1 (ASF-1), or pre-mRNA-splicing factor SF2, P33 subunit, a splicing regulatory serine/arginine (SR) protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF1 is a shuttling SR protein and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a long glycine-rich spacer, and a C-terminal SR domains rich in serine-arginine dipeptides. 76 -241212 cd12768 RRM2_SRSF9 RNA recognition motif 2 in vertebrate serine/arginine-rich splicing factor 9 (SRSF9). This subgroup corresponds to the RRM2 of SRSF9, also termed pre-mRNA-splicing factor SRp30C, an essential splicing regulatory serine/arginine (SR) protein that has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. SRSF9 can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. SRSF9 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by an unusually short C-terminal RS domains rich in serine-arginine dipeptides. 76 -241213 cd12769 RRM1_HuR RNA recognition motif 1 in vertebrate Hu-antigen R (HuR). This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 81 -241214 cd12770 RRM1_HuD RNA recognition motif 1 in vertebrate Hu-antigen D (HuD). This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 83 -241215 cd12771 RRM1_HuB RNA recognition motif 1 in vertebrate Hu-antigen B (HuB). This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 83 -241216 cd12772 RRM1_HuC RNA recognition motif 1 in vertebrate Hu-antigen C (HuC). This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 84 -241217 cd12773 RRM2_HuR RNA recognition motif 2 in vertebrate Hu-antigen R (HuR). This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 84 -241218 cd12774 RRM2_HuD RNA recognition motif 2 in vertebrate Hu-antigen D (HuD). This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 81 -241219 cd12775 RRM2_HuB RNA recognition motif 2 in vertebrate Hu-antigen B (HuB). This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 90 -241220 cd12776 RRM2_HuC RNA recognition motif 2 in vertebrate Hu-antigen C (HuC). This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. 81 -241221 cd12777 RRM1_PTBP1 RNA recognition motif 1 in vertebrate polypyrimidine tract-binding protein 1 (PTB). This subgroup corresponds to the RRM1 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution. 81 -241222 cd12778 RRM1_PTBP2 RNA recognition motif 1 in vertebrate polypyrimidine tract-binding protein 2 (PTBP2). This subgroup corresponds to the RRM1 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 82 -241223 cd12779 RRM1_ROD1 RNA recognition motif 1 in vertebrate regulator of differentiation 1 (Rod1). This subgroup corresponds to the RRM1 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein that negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities. 90 -241224 cd12780 RRM1_hnRNPL RNA recognition motif 1 in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L). This subgroup corresponds to the RRM1 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 80 -241225 cd12781 RRM1_hnRPLL RNA recognition motif 1 in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL). This subgroup corresponds to the RRM1 of hnRNP-LL, which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 84 -241226 cd12782 RRM2_PTBP1 RNA recognition motif 2 in vertebrate polypyrimidine tract-binding protein 1 (PTB). This subgroup corresponds to the RRM2 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution. 100 -241227 cd12783 RRM2_PTBP2 RNA recognition motif 2 in vertebrate polypyrimidine tract-binding protein 2 (PTBP2). This subgroup corresponds to the RRM2 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 101 -241228 cd12784 RRM2_ROD1 RNA recognition motif 2 in vertebrate regulator of differentiation 1 (Rod1). This subgroup corresponds to the RRM2 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities. 103 -241229 cd12785 RRM2_hnRNPL RNA recognition motif 2 in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L). This subgroup corresponds to the RRM2 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 100 -241230 cd12786 RRM2_hnRPLL RNA recognition motif 2 in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL). The subgroup corresponds to the RRM2 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). 96 -213347 cd12787 RasGAP_plexin_B Ras-GTPase Activating Domain of type B plexins. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity.There are three members of the Plexin-B subfamily, namely B1, B2 and B3. Plexins-B1, B2 and B3 are receptors for Sema4D, Sema4C and Sema4G, and Sema5A, respectively. The activation of plexin-B1 by Sema4D produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth and promotes branching and complexity. By signaling the effect of Sema4C and Sema4G, the plexin-B2 receptor is critically involved in neural tube closure and cerebellar granule cell development. Plexin-B3, the receptor of Sema5A, is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin-B3 has been linked to verbal performance and white matter volume in human brain. Small GTPases play important roles in plexin-B signaling. Plexin-B1 activates Rho through Rho-specific guanine nucleotide exchange factors, leading to neurite retraction. Plexin-B1 possesses an intrinsic GTPase-activating protein activity for R-Ras and induces growth cone collapse through R-Ras inactivation. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 391 -213348 cd12788 RasGAP_plexin_D1 Ras-GTPase Activating Domain of plexin-D1. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity. Plexin-D1 has been identified as the receptor of Sema3E. It binds to Sema3E directly with high affinity. Sema3E is implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. Plexin-D1 is broadly expressed on tumor vessels and tumor cells in a number of different types of human tumors. The Plexin-D1 and Sema3E interaction inhibits tumor growth but promotes invasiveness and metastasis. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 419 -213349 cd12789 RasGAP_plexin_C1 Ras-GTPase Activating Domain of plexin-C1. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity. Plexin-C1 has been identified as the receptor of semaphorin 7A, which plays regulatory roles in both the immune and nervous systems. Unlike other semaphorins which act as repulsive guidance cues, Sema7A enhances central and peripheral axon growth and is required for proper axon tract formation during embryonic development. Plexin-C1 is a potential tumor suppressor for melanoma progression. The expression of Plexin-C1 is diminished or absent in human melanoma cell lines. Cofilin, an actin-binding protein involved in cell migration, is a downstream target of Sema7A and Plexin-C1 signaling. Melanoma invasion and metastasis may be promoted through the loss of Plexin-C1 inhibitory signaling on cofilin activation. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 393 -213350 cd12790 RasGAP_plexin_A Ras-GTPase Activating Domain of type A plexins. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. They are divided into four types (A-D) according to sequence similarity. In vertebrates, there are four type A plexins (A1-A4) that serve as the co-receptors for neuropilins to mediate the signaling of class 3 semaphorins except Sema3E, which signals through Plexin-D1. Plexins serve as direct receptors for several other members of the semaphorin family: class 1 and class 6 semaphorins signal through type A plexins, which mediate diverse biological functions including axon guidance, cardiovascular development, and immune function. Guanylyl cyclase Gyc76C and Off-track kinase (OTK), a putative receptor tyrosine kinase, modulate Sema1a and Plexin-A mediated axon repulsion. In their complex with Sema6s, type A plexins serve as signal-transducing subunits. An increasing number of molecules that interact with the intracellular region of Plexin-A have been identified; among them are IgCAMs (in axon guidance events) and Trem2-DAP12 (in immune responses). Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 385 -213351 cd12791 RasGAP_plexin_B3 Ras-GTPase Activating Domain of plexin-B3. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity. Plexin-B3 is the receptor of semaphorin 5A. It is a highly potent stimulator of neurite outgrowth of primary murine cerebellar neurons. Plexin-B3 has been linked to verbal performance and white matter volume in human brain. Furthermore, Sema5A and plexin-B3 have been implicated in the progression of various types of cancer. They play an important role in the invasion and metastasis of gastric carcinoma. The protein and mRNA expression of Sema5A and its receptor plexin-B3 increased gradually in non-neoplastic mucosa, primary gastric carcinoma, and lymph node metastasis, and their expression is correlated. The stimulation of plexin-B3 by Sema5A binding in human glioma cells results in the inhibition of cell migration and invasion. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 397 -213352 cd12792 RasGAP_plexin_B2 Ras-GTPase Activating Domain of plexin-B2. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity. Plexin-B2 serves as the receptor of Sema4C and Sema4G. By signaling the effect of Sema4C and Sema4G, the plexin-B2 receptor is critically involved in neural tube closure and cerebellar granule cell development. Mice lacking Plexin-B2 demonstrated defects in closure of the neural tube and disorganization of the embryonic brain. In developing kidney, Sema4C and Plexin-B2 signaling modulates ureteric branching. Plexin-B2 is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney. Deletion of Plexin-B2 results in renal hypoplasia and occasional double ureters. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 400 -213353 cd12793 RasGAP_plexin_B1 Ras-GTPase Activating Domain of plexin-B1. Plexins form a conserved family of transmembrane receptors for semaphorins and may be the ancestors of semaphorins. Plexins are divided into four types (A-D) according to sequence similarity. Plexin-B1 serves as the Semaphorin 4D receptor and functions as a regulator of developing neurons and a tumor suppressor protein for melanoma. The Sema4D and plexin-B1 signaling complex regulates dendritic and axonal complexity. The activation of Plexin-B1 by Sema4D produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth and promotes branching and complexity. As a tumor suppressor, plexin-B1 abrogates activation of the oncogenic receptor, c-Met, by its ligand, hepatocyte growth factor (HGF), in melanoma. Furthermore, plexin-B1 suppresses integrin-dependent migration and activation of pp125FAK and inhibits Rho activity. Plexin-B1 is highly expressed in endothelial cells and its activation by Sema4D elicits a potent proangiogenic response. Plexins contain a C-terminal RasGAP domain, which functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Plexins display GAP activity towards the Ras homolog Rap. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP show no sequence homology at their amino acid level. RasGTPases function as molecular switches in a large number of of signaling pathways. When bound to GTP they are in the on state and when bound to GDP they are in the off state. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. 394 -240614 cd12794 Hsm3_like Hsm3 is a yeast Proteasome chaperone of the 19S regulatory particle and related proteins. This group contains proteins related to the Hsm3 protein (Yeast Proteasome Interacting Protein) of Saccharomyces cerevisiae. S. cerevisiae Hsm3 is a chaperone of regulatory particles involved in proteasome assembly. The 26S Proteasome is a large, 2.5 MDa complex comprised of at least 33 subunits, and relies on chaperones to facilitate correct assembly. The proteasome contains a cylindrical 20S core particle and 1-2 19S regulatory particles, comprised of AAA-ATPase and non-ATPase subunits. The proteasome acts in ubiquitin-dependent proteolysis. The 19S RP targets and opens the the ubiquitin-tagged substrate and releases ubiquitin. Hsm3 acts as a 19S chaperone, binding to the C-terminal domain of Rpt1 (the 6 ATPase subunits of the 19 S regulatory particle(s). Hsm3 has a C-shape composed of 11 HEAT repeats. Mutations in the Hsm3-Rpt interface disrupt formation of the 26 S Proteasome complex. 455 -240613 cd12795 FILIA_N_like FILIA-N KH-like domain. This group contains the N-terminal atypical KH domain of FILIA and related domains. FILIA is expressed in oocytes and embryo, and contains an atypical KH domain at the N-terminus with an N-terminal extension that interacts with RNA. RNA-binding may mediate RNA transcript regulation in oogenesis and embryogenesis. FILIA-N differs from typical KH domains by forming a stable dimer in solution and crystal structure. 114 -240609 cd12796 LbR_Ice_bind Ice-binding protein, left-handed beta-roll. The ice-binding protein of the grass Lolium perenne (LpIBP) discourages the recrystallization of ice. Ice-binding proteins produced by organisms to prevent the growing of ice are termed to anti-freeze proteins. LpIBP consists of an unusual left-handed beta roll. Ice-binding is mediated by a flat beta-sheet on one side of the helix. 114 -213998 cd12798 Alt_A1 Alternaria alternata allergen Alt a 1. Alt a 1 defines a new homologous protein family with unknown function exclusively found in fungi. The unique structure of Alt a 1 contains intramolecular disulfide bonds that are conserved among the Alt a 1 homologs. Residues reported to be IgE antibody-binding epitopes are exposed through dimerization via a conserved disulfide bond and hydrophobic and polar interactions. Further mechanistic structure/function studies will give insight into immunologic studies directed toward new forms of immunotherapy for Alternaria species-sensitive allergic patients. 132 -340366 cd12799 pesticin_lyz_like lysozyme-like C-terminal domain of pesticin and related proteins. Pesticin (Pst) is an anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacterial stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. The pesticin C-terminal domain resembles the lysozyme-like family, which includes soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, and chitosanases. All the members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 129 -213999 cd12800 Sol_i_2 Sol i 2, a major allergen from fire ant venom. Sol i 2, one of four known potent allergens from the venom of red imported fire ant, is a powerful trigger of anaphylaxis. It causes production of IgE antibody in many individuals stung by fire ants. The closest structure homolog of Sol I 2 is the sequence-unrelated odorant binding protein and pheromone binding protein LUSH of the fruit fly Drosophila, suggesting a possible similar biological function. 118 -214000 cd12801 HopAB_KID Kinase-interacting domains of the HopAB family of Type III Effector proteins. HopAB family members are type III effector proteins that are secreted by the plant pathogen Pseudomonas syringae into the host plant to inhibit its immune system and facilitate the spread of the pathogen. AvrPtoB, also called HopAB3, is the best studied member of the family. It suppresses host basal defenses by interfering with PAMP (pathogen-associated molecular signature)-triggered immunity (PTI) through binding and inhibiting BAK1, a kinase which serves to activate defense signaling. It also recognizes the kinase Pto to activate effector-triggered immunity (ETI). AvrPtoB contains an N-terminal region that contains two kinase-interacting domains (KID) and a C-terminal E3 ligase domain. The first KID recognizes the PTI-associated kinase Bti9 as well as Pto, and is referred to as the Pto-binding domain (PID). The second KID interacts with BAK1 and FLS2, which are leucine-rich repeat-containing receptor-like kinases, and is called the BAK1-interacting domain (BID). This family also contains a unique member, HopPmaL, which is shorter and lacks the C-terminal E3 ligase domain. 77 -214001 cd12802 HopAB_PID Pto-interacting domain of the HopAB family of Type III Effector proteins. HopAB family members are type III effector proteins that are secreted by the plant pathogen Pseudomonas syringae into the host plant to inhibit its immune system and facilitate the spread of the pathogen. AvrPtoB, also called HopAB3, is the best studied member of the family. It suppresses host basal defenses by interfering with PAMP (pathogen-associated molecular signature)-triggered immunity (PTI) through binding and inhibiting BAK1, a kinase which serves to activate defense signaling. It also recognizes the kinase Pto to activate effector-triggered immunity (ETI). AvrPtoB contains an N-terminal region that contains two kinase-interacting domains (KID) and a C-terminal E3 ligase domain. The first KID recognizes the PTI-associated kinase Bti9 as well as Pto, and is referred to as the Pto-binding domain (PID). The second KID interacts with BAK1 and FLS2, which are leucine-rich repeat-containing receptor-like kinases, and is called the BAK1-interacting domain (BID). This family also contains a unique member, HopPmaL, which is shorter and lacks the C-terminal E3 ligase domain. 79 -214002 cd12803 HopAB_BID BAK1-interacting domain of the HopAB family of Type III Effector proteins. HopAB family members are type III effector proteins that are secreted by the plant pathogen Pseudomonas syringae into the host plant to inhibit its immune system and facilitate the spread of the pathogen. AvrPtoB, also called HopAB3, is the best studied member of the family. It suppresses host basal defenses by interfering with PAMP (pathogen-associated molecular signature)-triggered immunity (PTI) through binding and inhibiting BAK1, a kinase which serves to activate defense signaling. It also recognizes the kinase Pto to activate effector-triggered immunity (ETI). AvrPtoB contains an N-terminal region that contains two kinase-interacting domains (KID) and a C-terminal E3 ligase domain. The first KID recognizes the PTI-associated kinase Bti9 as well as Pto, and is referred to as the Pto-binding domain (PID). The second KID interacts with BAK1 and FLS2, which are leucine-rich repeat-containing receptor-like kinases, and is called the BAK1-interacting domain (BID). This family also contains a unique member, HopPmaL, which is shorter and lacks the C-terminal E3 ligase domain. 80 -214003 cd12804 AKAP10_AKB PKA-binding (AKB) domain of A Kinase Anchor Protein 10. AKAPs coordinate the specificity of PKA signaling by facilitating the localization of the kinase to subcellular sites through their binding to regulatory (R) subunits of PKA. AKAP-10, also called PRKA10 or Dual-specific AKAP 2 (D-AKAP2), is a multisubunit protein containing two regulator of G protein signaling (RGS)-like domains and a PKA-binding (AKB) domain. The AKB domain of AKAP10 can bind to the dimerization/docking (D/D) domains of both RI and RII regulatory subunits of PKA. This model also includes a C-terminal PDZ-binding motif that binds to PDZK1 and NHERF-1, allowing AKAP10 to link indirectly to membrane proteins. Mutations in AKAP10 can alter its binding to R subunits, which may alter the targeting of PKA; some AKAP10 mutations are associated with abnormalities including hypertension, increased risk of severe arrhythmias during kidney transplantation, and familial breast cancer. 45 -214004 cd12805 Allergen_V_VI Group V, VI major allergens from grass, including Phlp 5, Phlp 6, Pha a 5 and Lol p 5. This family contains major allergens from various grass pollen, including Phl p 5 and Phl p 6 (timothy grass), Lol p 5 (rye grass) and Pha a 5 (canary grass). They induce allergic rhinitis and bronchial asthma in millions of allergic patients worldwide. These group V and group VI grass-pollen allergens belong to a new class of protease-resistant four-helix-bundle domains, which also have internal helix-turn-helix homology pointing to a special type of four-helix bundle topology, defined as twinned two-helix bundle. IgE binding experiments with recombinant Phl p 6 fragments indicated that the N terminus of the allergen is required for IgE recognition. Immunotherapy treatment for these allergies generally involves administration of grass pollen extracts which induce an initial rise in specific immunoglobulin E (sIgE) production followed by a progressive decline during the treatment. 85 -214005 cd12806 Esterase_713_like Novel bacterial esterase that cleaves esters on halogenated cyclic compounds. This family contains proteins similar to a novel bacterial esterase (Alcaligenes esterase 713) with the alpha/beta hydrolase fold but does not contain the GXSXXG pentapeptide around the active site serine residue as commonly seen in other enzymes of this class. Esterase 713 shows negligible sequence homology to other esterase and lipase enzymes. It is active as a dimer and cleaves esters on halogenated cyclic compounds though its natural substrate is unknown. This enzyme is possibly exported from the cytosol to the periplasmic space. A large majority of sequences in this family have yet to be characterized. 261 -214006 cd12807 Esterase_713 Novel bacterial esterase 713 that cleaves esters on halogenated cyclic compounds. This family contains proteins similar to a novel bacterial esterase (esterase 713) with the alpha/beta hydrolase fold that cleaves esters on halogenated cyclic compounds. This Alcaligenes esterase, however, does not contain the GXSXXG pentapeptide around the active site serine residue as seen in other esterase families. This enzyme is active as a dimer though its natural substrate is unknown. It has two distinct disulfide bridges; one formed between adjacent cysteines appears to facilitate the correct formation of the oxyanion cleft in the catalytic site. Esterase 713 also resembles human pancreatic lipase in its location of the acidic residue of the catalytic triad. It is possibly exported from the cytosol to the periplasmic space. A large majority of sequences in this family have yet to be characterized. 315 -214007 cd12808 Esterase_713_like-1 Uncharacterized enzymes similar to novel bacterial esterase that cleaves esters on halogenated cyclic compounds. This family contains uncharacterized proteins similar to a novel bacterial esterase (Alcaligenes esterase 713) with the alpha/beta hydrolase fold but does not contain the GXSXXG pentapeptide around the active site serine residue as commonly seen in other enzymes of this class. Esterase 713 shows negligible sequence homology to other esterase and lipase enzymes. It is active as a dimer and cleaves esters on halogenated cyclic compounds though its natural substrate is unknown. 309 -214008 cd12809 Esterase_713_like-2 Uncharacterized enzymes similar to novel bacterial esterase that cleaves esters on halogenated cyclic compounds. This family contains uncharacterized proteins similar to a novel bacterial esterase (Alcaligenes esterase 713) with the alpha/beta hydrolase fold but does not contain the GXSXXG pentapeptide around the active site serine residue as commonly seen in other enzymes of this class. Esterase 713 shows negligible sequence homology to other esterase and lipase enzymes. It is active as a dimer and cleaves esters on halogenated cyclic compounds though its natural substrate is unknown. 280 -214009 cd12810 Esterase_713_like-3 Uncharacterized enzymes similar to novel bacterial esterase that cleaves esters on halogenated cyclic compounds. This family contains uncharacterized proteins similar to a novel bacterial esterase (Alcaligenes esterase 713) with the alpha/beta hydrolase fold but does not contain the GXSXXG pentapeptide around the active site serine residue as commonly seen in other enzymes of this class. Esterase 713 shows negligible sequence homology to other esterase and lipase enzymes. It is active as a dimer and cleaves esters on halogenated cyclic compounds though its natural substrate is unknown. 328 -214010 cd12812 BPSL1549 Burkholderia Lethal Factor 1. BPSL1549, also suggested to be called Burkholderia lethal factor 1, is a protein of unknown function from Burkholderia pseudomallei, a causative agent of melioidosis (also called Whitmore's disease). This protein shows similarity to Escherichia coli cytotoxic necrotizing factor 1 which has been found to act as a potent cytotoxin against eukaryotic cells and is lethal when administered to mice. BPSL1549 expression levels correlate with suppression or promotion of pathogenic conditions. BPSL1549 inhibits helicase activity of translation initiation factor eIF4A. As yet, there is no vaccine and the organism is multidrug resistant. 203 -240610 cd12813 LbR-like Left-handed beta-roll, including virulence factors and various other proteins. This family contains a variety of protein domains with a left-handed beta-roll structure including cell surface adhesion proteins, bacterial virulence factors, and ice-binding proteins, and other activities. UspA1 Head And Neck Domain and YadA of Yersinia are part of a class of pathogenicity factors that act as cell surface adhesion molecules, in which N-terminal head and neck domains extend from the bacterial outer membrane. The UspA1 head domain of Moraxella catarrhalis, is formed from trimeric beta-rolls of 14-16 amino acid repeats. The UspA1 head domain connects to a neck region of large extended, charged loops that maybe be ligand binding, which is in turn connected to an extended coiled coil domain that tethers the head and neck region to the cell surface via a transmembrane region. The collagen-binding domain virulence factor YadA an adhesion proteins of several Yersinia species, and related cell surface proteins. The collagen-binding portion is found in the hydrophobic N-terminal region. YadA forms a matrix on the bacterial outer membrane, which mediates binding to collagen and epithelial cells. YadA inhibits the complement-activating pathway with the coating of the cell surface with factor H, which impedes C3b molecules. The ice-binding protein of the grass Lolium perenne (LpIBP) discourages the recrystallization of ice. Ice-binding proteins produced by organisms to prevent the growing of ice are termed to anti-freeze proteins. LpIBP consists of an unusual left-handed beta roll. Ice-binding is mediated by a flat beta-sheet on one side of the helix. These domains form a left handed beta roll made up of a series of short repeated elements. 99 -240611 cd12819 LbR_vir_like Cell adhesion-like domain, left-handed beta-roll. This group contains proteins of unknown function related to characterized cell surface adhesion proteins with a left-handed beta-roll, like the UspA1 Head And Neck Domain and YadA of Yersinia. UspA1 and UspA2 are part of a class of pathogenicity factors that act as cell surface adhesion molecules, in which N-terminal head and neck domains extend from the bacterial outer membrane. The UspA1 head domain of Moraxella catarrhalis, is formed from trimeric beta-helices of 14-16 amino acid repeats. The UspA1 head domain connects to a neck region of large extended, charged loops that maybe be ligand binding, which is in turn connected to an extended coiled coil domain that tethers the head and neck region to the cell surface via a transmembrane region. The collagen-binding domain virulence factor YadA an adhesion proteins of several Yersinia species, and related cell surface proteins. The collagen-binding portion is found in the hydrophobic N-terminal region. YadA forms a matrix on the bacterial outer membrane, which mediates binding to collagen and epithelial cells. YadA inhibits the complement-activating pathway with the coating of the cell surface with factor H, which impedes C3b molecules. These domains form a left handed beta roll made up of a series of short repeated elements. 111 -240612 cd12820 LbR_YadA-like YadA-like, left-handed beta-roll. This group contains the collagen-binding domain virulence factor YadA an adhesion proteins of several Yersinia species, and related cell surface proteins, including Moraxella catarrhalis UspA-like proteins. The collagen-binding portion is found in the hydrophobic N-terminal region. YadA forms a matrix on the bacterial outer membrane, which mediates binding to collagen and epithelial cells. YadA inhibits the complement-activating pathway with the coating of the cell surface with factor H, which impedes C3b molecules. These domains form a left handed beta roll made up of a series of short repeated elements. UspA1 and UspA2 are part of a class of pathogenicity factors that act as cell surface adhesion molecules, in which N-terminal head and neck domains extend from the bacterial outer membrane. The UspA1 head domain of Moraxella catarrhalis, is formed from trimeric left-handed parallel beta-helices of 14-16 amino acid repeats. The UspA1 head domain connects to a neck region of large extended, charged loops that maybe be ligand binding, which is in turn connected to an extended coiled coil domain that tethers the head and neck region to the cell surface via a transmembrane region. 126 -213355 cd12821 EcCorA_ZntB-like Escherichia coli CorA-Salmonella typhimurium ZntB_like family. A family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. Members of this family are found in all three kingdoms of life. It is a functionally diverse family, including the Mg2+ transporters Escherichia coli and Salmonella typhimurium CorAs (which can also transport Co2+, and Ni2+ ), and the Zn2+ transporter Salmonella typhimurium ZntB which mediates the efflux of Zn2+ (and Cd2+). It also includes two Saccharomyces cerevisiae members: the inner membrane Mg2+ transporters Mfm1p/Lpe10p, and Mrs2p, and a family of Arabidopsis thaliana members (AtMGTs) some of which are localized to distinct tissues, and not all of which can transport Mg2+. Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 285 -213356 cd12822 TmCorA-like Thermotoga maritima CorA-like family. This family belongs to the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. Members of the Thermotoga maritima CorA_like family are found in all three kingdoms of life. It is a functionally diverse family, in addition to the CorA Co2+ transporter from the hyperthermophilic Thermotoga maritima, it includes three Saccharomyces cerevisiae members: two plasma membrane proteins, the Mg2+ transporter Alr1p/Swc3p and the putative Mg2+ transporter, Alr2p, and the vacuole membrane protein Mnr2p, a putative Mg2+ transporter. Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 289 -213357 cd12823 Mrs2_Mfm1p-like Saccharomyces cerevisiae inner mitochondrial membrane Mg2+ transporters Mfm1p and Mrs2p-like family. A eukaryotic subfamily belonging to the Escherichia coli CorA-Salmonella typhimurium ZntB_like family (EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This functionally diverse subfamily includes the inner mitochondrial membrane Mg2+ transporters Saccharomyces cerevisiae Mfm1p/Lpe10p, Mrs2p, and human MRS2/ MRS2L. It also includes a family of Arabidopsis thaliana proteins (AtMGTs) some of which are localized to distinct tissues, and not all of which can transport Mg2+. Structures of the intracellular domain of two EcCorA_ZntB-like family transporters: Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, as in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 323 -213358 cd12824 ZntB-like Salmonella typhimurium Zn2+ transporter ZntB-like subfamily. A bacterial subfamily belonging to the Escherichia coli CorA-Salmonella typhimurium ZntB_like family (EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subfamily includes the Zn2+ transporter Salmonella typhimurium ZntB which mediates the efflux of Zn2+ (and Cd2+). Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, which occur in proteins belonging to this subfamily, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 290 -213359 cd12825 EcCorA-like Escherichia coli Mg2+ transporter CorA_like subfamily. A bacterial subfamily of the Escherichia coli CorA-Salmonella typhimurium ZntB_like(EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subfamily includes the Mg2+ transporters Escherichia coli, Salmonella typhimurium, and Helicobacter pylori CorAs (which can also transport Co2+, and Ni2+). Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 287 -213360 cd12826 EcCorA_ZntB-like_u1 uncharacterized bacterial subfamily of the Escherichia coli CorA-Salmonella typhimurium ZntB family. A uncharacterized subfamily of the Escherichia coli CorA-Salmonella typhimurium ZntB (EcCorA-ZntB_like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. The EcCorA-ZntB_like family includes the Mg2+ transporters Escherichia coli and Salmonella typhimurium CorAs, which can also transport Co2+, and Ni2+. Structures of the intracellular domain of EcCorA-ZntB_like family members, Vibrio parahaemolyticus and Salmonella typhimurium ZntB, form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA. Natural variants such as GVN and GIN, as in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 281 -213361 cd12827 EcCorA_ZntB-like_u2 uncharacterized bacterial subfamily of the Escherichia coli CorA-Salmonella typhimurium ZntB family. A uncharacterized subfamily of the Escherichia coli CorA-Salmonella typhimurium ZntB (EcCorA-ZntB_like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes.The EcCorA-ZntB-like family includes the Mg2+ transporters Escherichia coli and Salmonella typhimurium CorAs, which can also transport Co2+, and Ni2+. Structures of the intracellular domain of EcCorA-ZntB-like family members, Vibrio parahaemolyticus and Salmonella typhimurium ZntB, form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 289 -213362 cd12828 TmCorA-like_1 Thermotoga maritima CorA_like subfamily. This subfamily belongs to the Thermotoga maritima CorA (TmCorA)-family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. Members of this subfamily are found in all three kingdoms of life. It is functionally diverse subfamily, in addition to the CorA Co2+ transporter from the hyperthermophilic Thermotoga maritima, it includes Methanosarcina mazei CorA which may be involved in transport of copper and/or other divalent metal ions. Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by a related protein, Saccharomyces cerevisiae Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 294 -213363 cd12829 Alr1p-like Saccharomyces cerevisiae Alr1p-like subfamily. This eukaryotic subfamily belongs to the Thermotoga maritima CorA (TmCorA)-family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subfamily includes three Saccharomyces cerevisiae members: two plasma membrane proteins, the Mg2+ transporter Alr1p/Swc3p and the putative Mg2+ transporter, Alr2p, and the vacuole membrane protein Mnr2p, a putative Mg2+ transporter. Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 305 -213364 cd12830 MtCorA-like Mycobacterium tuberculosis CorA-like subfamily. This bacterial subfamily belongs to the Thermotoga maritima CorA (TmCorA)-like family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subfamily includes the Mg2+ transporter Mycobacterium tuberculosis CorA (which also transports Co2+). Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by a related protein, Saccharomyces cerevisiae Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 292 -213365 cd12831 TmCorA-like_u2 Uncharacterized bacterial subfamily of the Thermotoga maritima CorA-like family. This subfamily belongs to the Thermotoga maritima CorA (TmCorA)-like family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. Members of the TmCorA-like family are found in all three kingdoms of life. It is a functionally diverse family which includes the CorA Co2+ transporter from the hyperthermophilic Thermotoga maritima, and three Saccharomyces cerevisiae proteins: two located in the plasma membrane: the Mg2+ transporter Alr1p/Swc3p and the putative Mg2+ transporter, Alr2p, and the vacuole membrane protein Mnr2p, a putative Mg2+ transporter. Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by a related protein, Saccharomyces cerevisiae Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 287 -213366 cd12832 TmCorA-like_u3 Uncharacterized subfamily of the Thermotoga maritima CorA-like family. This subfamily belongs to the Thermotoga maritima CorA (TmCorA)-like family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. Members of the TmCorA-like family are found in all three kingdoms of life. It is a functionally diverse family which includes the CorA Co2+ transporter from the hyperthermophilic Thermotoga maritima, and three Saccharomyces cerevisiae proteins: two located in the plasma membrane: the Mg2+ transporter Alr1p/Swc3p and the putative Mg2+ transporter, Alr2p, and the vacuole membrane protein Mnr2p, a putative Mg2+ transporter. Thermotoga maritima CorA forms funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport by a related protein, Saccharomyces cerevisiae Alr1p. Natural variants in this signature sequence may be associated with the transport of different divalent cations. The functional diversity of the MIT superfamily may also be due to minor structural differences regulating gating, substrate selection, and transport. 287 -213367 cd12833 ZntB-like_1 Salmonella typhimurium Zn2+ transporter ZntB-like subgroup. A bacterial subgroup belonging to the Escherichia coli CorA-Salmonella typhimurium ZntB_like family (EcCorA_ZntB-like) of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subgroup includes the Zn2+ transporter Salmonella typhimurium ZntB which mediates the efflux of Zn2+ (and Cd2+). Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, which occur in proteins belonging to this subfamily, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 290 -213368 cd12834 ZntB_u1 Uncharacterized bacterial subgroup of the Salmonella typhimurium Zn2+ transporter ZntB-like subfamily. The MIT superfamily of essential membrane proteins is involved in transporting divalent cations (uptake or efflux) across membranes. The ZntB-like subfamily includes the Zn2+ transporter Salmonella typhimurium ZntB which mediates the efflux of Zn2+ (and Cd2+). Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN which occur in proteins belonging to this subfamily, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 290 -213369 cd12835 EcCorA-like_1 Escherichia coli Mg2+ transporter CorA_like subgroup. A bacterial subgroup of the Escherichia coli CorA-Salmonella typhimurium ZntB_like (EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subgroup includes the Mg2+ transporters Escherichia coli CorA and Salmonella typhimurium CorA (which can also transport Co2+, and Ni2+). Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 287 -213370 cd12836 HpCorA-like Mg2+ transporter Helicobacter pylori CorA-like subgroup. A bacterial subgroup of the Escherichia coli CorA-Salmonella typhimurium ZntB_like (EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. This subgroup includes the Mg2+ transporter Helicobacter pylori CorAs (which can also transport Co2+, and Ni2+); CorA plays an important role in the viability of this pathogen. Structures of the intracellular domain of Vibrio parahaemolyticus and Salmonella typhimurium ZntB (members of the EcCorA_ZntB-like family) form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA, and Mrs2p. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 288 -213371 cd12837 EcCorA-like_u1 uncharacterized subgroup of the Escherichia coli Mg2+ transporter CorA_like subfamily. A uncharacterized subgroup of the Escherichia coli CorA-Salmonella typhimurium ZntB_like family (EcCorA_ZntB-like) family of the MIT superfamily of essential membrane proteins involved in transporting divalent cations (uptake or efflux) across membranes. The EcCorA_ZntB-like family includes the Mg2+ transporters Escherichia coli and Salmonella typhimurium CorAs, which can also transport Co2+, and Ni2+. Structures of the intracellular domain of EcCorA_ZntB-like family members, Vibrio parahaemolyticus and Salmonella typhimurium ZntB, form funnel-shaped homopentamers, the tip of the funnel is formed from two C-terminal transmembrane (TM) helices from each monomer, and the large opening of the funnel from the N-terminal cytoplasmic domains. The GMN signature motif of the MIT superfamily occurs just after TM1, mutation within this motif is known to abolish Mg2+ transport through Salmonella typhimurium CorA. Natural variants such as GVN and GIN, such as occur in some ZntB family proteins, may be associated with the transport of different divalent cations, such as zinc and cadmium. The functional diversity of MIT transporters may also be due to minor structural differences regulating gating, substrate selection, and transport. 298 -214011 cd12838 Killer_toxin_alpha Alpha subunit of killer toxin from halotolerant yeast. This family contains the alpha subunit of killer toxins that are secreted by several strains of yeasts and fungi. These toxins are proteinous substances that kill sensitive strains. The halotolerant yeast Pichia farinosa KK1 strain produces the SMK toxin, with maximum killer activity under acidic pH and high salt concentration. This toxin is composed of alpha and beta subunits that interact tightly with each other under acidic conditions but easily dissociated and lose activity under neutral conditions. It shares topology to that of the fungal killer toxin, KP4, which contains a rare structural motif, suggesting that these toxins may be evolutionally and/or functionally related. 62 -214012 cd12839 Killer_toxin_beta Beta subunit of killer toxin from halotolerant yeast. This family contains the beta subunit of killer toxins that are secreted by several strains of yeasts and fungi. These toxins are proteinous substances that kill sensitive strains. The halotolerant yeast Pichia farinosa KK1 strain produces the SMK toxin, with maximum killer activity under acidic pH and high salt concentration. This toxin is composed of alpha and beta subunits that interact tightly with each other under acidic conditions but easily dissociated and loose activity under neutral conditions. It shares topology to that of the fungal killer toxin, KP4, which contains a rare structural motif, suggesting that these toxins may be evolutionally and/or functionally related. 74 -214013 cd12840 CarS Antirepressor CarS. CarS, an antirepressor present in Cystobacterineae, recognizes repressors to turn on the photo-inducible promoter P(B). In the dark, access to the P(B) promoter is blocked by the repressor CarA. Blue light causes expression of CarS, leading the way to the CarA-CarS interaction which dismantles the CarA-operator complex, resulting in the derepression of the P(B) promoter. A parallel pathway for regulating P(B) involves the interaction of CarS with the repressor CarH, which shares the domain architecture of CarA. CarH and CarA contain an N-terminal, MerR-type winged-helix DNA-binding domain that recognizes CarS. CarS adopts an SH3-like fold with loop length variations and acts as an operator DNA mimic. 80 -214014 cd12841 TM_EphA1 Transmembrane domain of Ephrin Receptor A1 Protein Tyrosine Kinase. Ephrin receptors (EphRs) comprise the largest subfamily of receptor PTKs, and are classified into two classes (EphA and EphB), corresponding to binding preferences for either GPI-anchored ephrin-A ligands or transmembrane ephrin-B ligands. Vertebrates have ten EphA and six EphB receptors, which display promiscuous ligand interactions within each class. EphA1 has been associated with late-onset Alzheimer's disease and certain cancers such as colorectal and gastric carcinomas. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a single-span transmembrane (TM) domain, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. This allows ephrin/EphR dimers to form, leading to the activation of the intracellular tyr kinase domain. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). The main effect of ephrin/EphR interaction is cell-cell repulsion or adhesion. Ephrin/EphR signaling is important in neural development and plasticity, cell morphogenesis and proliferation, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The TM domain mediates dimerization. 38 -240608 cd12843 Bvu_2165_C_like The C-terminal domain of uncharacterized bacterial proteins. This family contains the C-terminal domain of uncharacterized hypothetical proteins from bacteria, including Bacteroides vulgatus Bvu_2165. The structure of Bvu_2165 is dimeric, with an extensive binding interface. 105 -240607 cd12869 MqsR Motility quorum-sensing regulator (MqsR). This family includes domains similar to the motility quorum-sensing regulator MqsR, a toxin that is highly upregulated in persisters (dormant cells found in biofilms that are a source of antibiotic resistance). MqsR pairs with its antitoxin MqsA, forming a unique family of toxin:antitoxin (TA) systems. MqsR has been found to be structurally homologous to the bacterial ribonuclease (RelE) toxins; however, its sequence is not similar to any other known toxins and therefore its molecular function is as yet unknown. 98 -240606 cd12870 MqsA antitoxin MqsA for MqsR toxin. This family includes domains similar to the antitoxin MqsA that binds motility quorum-sensing regulator MqsR, a toxin that is highly upregulated in persisters (dormant cells found in biofilms that are a source of antibiotic resistance), thus forming a unique toxin:antitoxin (TA) pair. MqsA neutralizes MsqR toxicity. It binds its own promoter as well as those of genes important for E. coli physiology, such as mcbR and spy. It also binds zinc and has been shown to coordinate DNA via its C-terminal domain. This family also includes the B. subtilis YokU protein, which is functionally uncharacterized. 66 -214015 cd12871 Bacuni_01323_like Uncharacterized protein conserved in Bacteroidetes. A well-conserved family of 16-stranded beta barrels resembling outer membrane porins. The interior of the barrels is mostly occupied by an insert with partially helical structure. 231 -293932 cd12872 SPRY_Ash2 SPRY domain in Ash2. This SPRY domain is found at the C-terminus of Ash2 (absent, small, or homeotic discs 2) -like proteins, core components of all mixed-lineage leukemia (MLL) family histone methyltransferases. Ash2 is a member of the trithorax group of transcriptional regulators of the Hox genes. Recent studies show that the SPRY domain of Ash2 mediates the interaction with RbBP5 and has an important role in regulating the methyltransferase activity of MLL complexes. In yeast, Ash2 is involved in histone methylation and is required for the earliest stages of embryogenesis. 150 -293933 cd12873 SPRY_DDX1 SPRY domain associated with DEAD box gene DDX1. This SPRY domain is associated with the DEAD box gene, DDX1, an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. It is suggested that DDX1 acts as a cellular cofactor by promoting oligomerization of Rev on the Rev response element (RRE). DDX1 RNA is overexpressed in breast cancer, data showing a strong and independent association between poor prognosis and deregulation of the DEAD box protein DDX1, thus potentially serving as an effective prognostic biomarker for early recurrence in primary breast cancer. DDX1 also interacts with RelA and enhances nuclear factor kappaB-mediated transcription. DEAD-box proteins are associated with all levels of RNA metabolism and function, and have been implicated in translation initiation, transcription, RNA splicing, ribosome assembly, RNA transport, and RNA decay. 155 -293934 cd12874 SPRY_PRY PRY/SPRY domain, also known as B30.2. This domain contains residues in the N-terminus that form a distinct PRY domain structure such that the B30.2 domain consists of PRY and SPRY subdomains. B30.2 domains comprise the C-terminus of three protein families: BTNs (receptor glycoproteins of immunoglobulin superfamily); several TRIM proteins (composed of RING/B-box/coiled-coil core); Stonutoxin (secreted poisonous protein of the stonefish Synanceia horrida). While SPRY domains are evolutionarily ancient, B30.2 domains are a more recent adaptation where the SPRY/PRY combination is a possible component of immune defense. Among the TRIM proteins, also known as the N-terminal RING finger/B-box/coiled coil (RBCC) family, only Classes I and II contain the B30.2 domain that has evolved under positive selection. Class I TRIM proteins include multiple members involved in antiviral immunity at various levels of interferon signaling cascade. Among the 75 human TRIMs, roughly half enhance immune response, which they do at multiple levels in signaling pathways. The PRY-SPRY domain in these TRIM families is suggested to serve as the target binding site. 168 -293935 cd12875 SPRY_SOCS_Fbox SPRY domain in Fbxo45 and suppressors of cytokine signaling (SOCS) proteins. This family consists of the SPRY domain-containing SOCS box protein family (SPSB1-4, also known as SSB-1 to -4) as well as F-box protein 45 (Fbxo45), a novel synaptic E3 and ubiquitin ligase. The SPSB protein is composed of a central SPRY protein interaction domain and a C-terminal SOCS box. SPSB1, SPSB2, and SPSB4 interact with prostate apoptosis response protein 4 (Par-4) and are negative regulators that recruit the ECS E3 ubiquitin ligase complex to polyubiquitinate inducible nitric-oxide synthase (iNOS), resulting in its proteasomal degradation. Fbxo45 is related to this family; it is located N-terminal to the SPRY domain, and known to induce the degradation of a synaptic vesicle-priming factor, Munc13-1, via the SPRY domain, thus playing an important role in the regulation of neurotransmission by modulating Munc13-1 at the synapse. Suppressor of cytokine signaling (SOCS) proteins negatively regulate signaling from JAK-associated cytokine receptor complexes, and play key roles in the regulation of immune homeostasis. 169 -293936 cd12876 SPRY_SOCS3 SPRY domain in the suppressor of cytokine signaling 3 (SOCS3) family. The SPRY domain-containing SOCS box protein family (SPSB1-4, also known as SSB-1 to -4) is composed of a central SPRY protein interaction domain and a C-terminal SOCS box. All four SPSB proteins interact with c-Met, the hepatocyte growth factor receptor, but SOCS3 regulates cellular response to a variety of cytokines such as leukemia inhibitory factor (LIF) and interleukin 6. SOCS3, along with SOCS1, are expressed by immune cells and cells of the central nervous system (CNS) and have the potential to impact immune processes within the CNS. In non-small cell lung cancer (NSCLC), SOCS3 is silenced and proline-rich tyrosine kinase 2 (Pyk2) is over-expressed; it has been suggested that SOCS3 could be an effective way to prevent the progression of NSCLC due to its role in regulating Pyk2 expression. 185 -240457 cd12877 SPRY1_RyR SPRY domain 1 (SPRY1) of ryanodine receptor (RyR). This SPRY domain is the first of three structural repeats in all three isoforms of the ryanodine receptor (RyR), which are the major Ca2+ release channels in the membranes of sarcoplasmic reticulum (SR). There are three RyR genes in mammals; the skeletal RyR1, the cardiac RyR2 and the brain RyR3. The three SPRY domains are located in the N-terminal part of the cytoplasmic region of the RyRs, but no specific function has been found for this first SPRY domain of the RyRs. 151 -240458 cd12878 SPRY2_RyR SPRY domain 2 (SPRY2) of ryanodine receptor (RyR). This SPRY domain (SPRY2) is the second of three structural repeats in all three isoforms of the ryanodine receptor (RyR), which are the major Ca2+ release channels in the membranes of sarcoplasmic reticulum (SR). There are three RyR genes in mammals; the skeletal RyR1, the cardiac RyR2 and the brain RyR3. The three SPRY domains are located in the N-terminal part of the cytoplasmic region of the RyRs, The SPRY2 domain has been shown to bind to the dihydropryidine receptor (DHPR) II-III loop and the ASI region of RyR1 133 -293937 cd12879 SPRY3_RyR SPRY domain 3 (SPRY3) of ryanodine receptor (RyR). This SPRY domain (SPRY3) is the third of three structural repeats in all three isoforms of the ryanodine receptor (RyR), which are the major Ca2+ release channels in the membranes of sarcoplasmic reticulum (SR). There are three RyR genes in mammals; the skeletal RyR1, the cardiac RyR2 and the brain RyR3. The three SPRY domains are located in the N-terminal part of the cytoplasmic region of the RyRs, but no specific function has been found for this third SPRY domain of the RyRs. 151 -293938 cd12880 SPRYD7 SPRY domain-containing protein 7. This family contains SPRY domain-containing protein 7 (also known as SPRY domain-containing protein 7 or CLL deletion region gene 6 protein homolog or CLLD6 or chronic lymphocytic leukemia deletion region gene 6 protein homolog). In humans, CLLD6 is highly expressed in heart, skeletal muscle, and testis as well as cancer cell lines. It also has cross-species conservation, suggesting that it is likely to carry out important cellular processes. 160 -293939 cd12881 SPRY_HERC1 SPRY domain in HERC1. This SPRY domain is found in the HERC1, a large protein related to chromosome condensation regulator RCC1. It is widely expressed in many tissues, playing an important role in intracellular membrane trafficking in the cytoplasm as well as Golgi apparatus. HERC1 also interacts with tuberous sclerosis 2 (TSC2, tuberin), which suppresses cell growth, and results in the destabilization of TSC2. However, the biological function of HERC1 has yet to be defined. 162 -293940 cd12882 SPRY_RNF123 SPRY domain at N-terminus of ring finger protein 123. This SPRY domain is found at the N-terminus of RING finger protein 123 domain (also known as E3 ubiquitin-protein ligase RNF123). The ring finger domain motif is present in a variety of functionally distinct proteins and known to be involved in protein-protein and protein-DNA interactions. RNF123 displays E3 ubiquitin ligase activity toward the cyclin-dependent kinase inhibitor p27 (Kip1). 128 -293941 cd12883 SPRY_RING SPRY domain at N-terminus of Really Interesting New Gene (RING) finger domain. This SPRY domain is found at the N-terminus of RING finger domains which are present in a variety of functionally distinct proteins and known to be involved in protein-protein and protein-DNA interactions. RING-finger domain is a type of Zn-finger that binds two Zn atoms and is identified in proteins with a wide range of functions such as viral replication, signal transduction, and development. 121 -293942 cd12884 SPRY_hnRNP SPRY domain in heterogeneous nuclear ribonucleoprotein U-like (hnRNP) protein 1. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of heterogeneous nuclear ribonucleoprotein U-like (hnRNP) protein 1 (also known as HNRPUL1 ) which is a major constituent of nuclear matrix or scaffold and binds directly to DNA sequences through the N-terminal acidic region named serum amyloid P (SAP). Its function is specifically modulated by E1B-55kDa in adenovirus-infected cells. HNRPUL1 also participates in ATR protein kinase signaling pathways during adenovirus infection. Two transcript variants encoding different isoforms have been found for this gene. When associated with bromodomain-containing protein 7 (BRD7), it activates transcription of glucocorticoid-responsive promoter in the absence of ligand-stimulation. 177 -293943 cd12885 SPRY_RanBP_like SPRY domain in Ran binding proteins, SSH4, HECT E3 and SPRYD3. This family includes SPRY domains found in Ran binding proteins (RBP or RanBPM) 9 and 10, SSH4 (suppressor of SHR3 null mutation protein 4), SPRY domain-containing protein 3 (SPRYD3) as well as HECT, a C-terminal catalytic domain of a subclass of ubiquitin-protein ligase (E3). RanBP9 and RanBP10 act as androgen receptor (AR) coactivators. Both consist of the N-terminal proline- and glutamine-rich regions, the SPRY domain, and LisH-CTLH and CRA motifs. The SPRY domain in SSH4 may be involved in cargo recognition, either directly or by combination with other adaptors, possibly leading to a higher selectivity. SPRYD3 is highly expressed in most tissues in humans, possibly involved in important cellular processes. HECT E3 mediates the direct transfer of ubiquitin from E2 to substrate. 132 -293944 cd12886 SPRY_like SPRY domain-like in bacteria. This family contains SPRY-like domains that are found only in bacterial and are mostly uncharacterized. SPRY domains, first identified in the SP1A kinase of Dictyostelium and rabbit Ryanodine receptor (hence the name), are homologous to B30.2. SPRY domains have been identified in at least 11 eukaryotic protein families, covering a wide range of functions, including regulation of cytokine signaling (SOCS), RNA metabolism (DDX1 and hnRNP), immunity to retroviruses (TRIM5alpha), intracellular calcium release (ryanodine receptors or RyR) and regulatory and developmental processes (HERC1 and Ash2L). 129 -293945 cd12887 SPRY_NHR_like SPRY domain in neuralized homology repeat. This family contains the neuralized homology repeat 1 (NHR1) domain similar to the SPRY domain (known to mediate specific protein-protein interactions) at the C-terminus of a conserved region within eukaryotic neuralized and neuralized-like proteins. In Drosophila, the neuralized protein (Neur) belongs to a group of ubiquitin ligases and is required in a subset of Notch pathway-mediated cell fate decisions during development of the nervous system. Neur binds to the Notch receptor ligand Delta through its first NHR1 domain and mediates its ubiquitination for endocytosis. Multiple copies of this region are found in some members of the family. 161 -293946 cd12888 SPRY_PRY_TRIM7_like PRY/SPRY domain in tripartite motif-binding protein 7 (TRIM7)-like, including TRIM7, TRIM10, TRIM15, TRIM26, TRIM39, TRIM41. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of several tripartite motif-containing (TRIM) proteins, including TRIM7 (also referred to as glycogenin-interacting protein, RING finger protein 90 or RNF90), TRIM10, TRIM15, TRIM26, TRIM39 and TRIM41. TRIM7 or GNIP interacts with glycogenin and stimulates its self-glucosylating activity via its SPRY domain. TRIM10 (also known as hematopoietic RING finger 1 (HERF1) or TRIM10/HERF1) plays a key role in definitive erythroid development; downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival. Antiviral activity of TRIM15 is dependent on the ability of its B-box to interact with the MLV Gag precursor protein; downregulation of TRIM15, along with TRIM11, enhances virus release suggesting that these proteins contribute to the endogenous restriction of retroviruses in cells. Tripartite motif-containing 26 (TRIM26) function is as yet unknown; however, since it is localized in the human histocompatibility complex (MHC) class I region, TRIM26 may play a role in immune response although studies show no association between TRIM26 polymorphisms and the risk of aspirin-exacerbated respiratory disease. TRIM39 is a MOAP-1 (Modulator of Apoptosis)-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. TRIM41 (also known as RING finger-interacting protein with C kinase or RINCK) functions as an E3 ligase that catalyzes the ubiquitin-mediated degradation of protein kinase C. 169 -293947 cd12889 SPRY_PRY_TRIM67_9 PRY/SPRY domain in tripartite motif-containing proteins, TRIM9 and TRIM67. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM9 proteins. TRIM9 protein is expressed mainly in the cerebral cortex, and functions as an E3 ubiquitin ligase. It has been shown that TRIM9 is localized to the neurons in the normal human brain and its immunoreactivity in affected brain areas in Parkinson's disease and dementia with Lewy bodies is severely decreased, possibly playing an important role in the regulation of neuronal function and participating in pathological process of Lewy body disease through its ligase. TRIM67 negatively regulates Ras activity via degradation of 80K-H, leading to neural differentiation, including neuritogenesis. 172 -293948 cd12890 SPRY_PRY_TRIM16 PRY/SPRY domain in tripartite motif-containing protein 16 (TRIM16). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM16 and TRIM-like proteins. TRIM16 (also known as estrogen-responsive B box protein or EBBP) does not possess a RING domain like the other TRIM proteins, but contains two B-box domains and can heterodimerize with other TRIM proteins such as TRIM24, Promyelocytic leukemia (PML) protein and Midline-1 (MID1 or TRIM18). It is a regulator of keratinocyte differentiation and a tumor suppressor in retinoid-sensitive neuroblastoma. It has been shown that loss of TRIM16 expression plays an important role in the development of cutaneous squamous cell carcinoma (SCC) and is a determinant of retinoid sensitivity. TRIM16 also has E3 ubiquitin ligase activity. 182 -293949 cd12891 SPRY_PRY_C-I_2 PRY/SPRY domain in tripartite motif-containing (TRIM) proteins, including TRIM14-like, TRIM16-like, TRIM25-like, TRIM47-like, TRIM65 and RNF135, and stonustoxin. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of several Class I TRIM proteins, including TRIM14, TRIM16 and TRIM25, TRIM47 as well as RING finger protein RNF135 and stonustoxin, a secreted poisonous protein of the stonefish Synanceja horrida. TRIM16 (also known as estrogen-responsive B box protein or EBBP) has E3 ubiquitin ligase activity. It is a regulator of keratinocyte differentiation and a tumor suppressor in retinoid-sensitive neuroblastoma. TRIM25 (also called Efp) ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I) in response to viral infection, leading to activation of the RIG-I signaling pathway, thus resulting in type I interferon production to limit viral replication. It has been shown that the influenza A virus targets TRIM25 and disables its antiviral function. TRIM47, also known as GOA (Gene overexpressed in astrocytoma protein) or RNF100 (RING finger protein 100), is highly expressed in kidney tubular cells, but low expressed in most tissue. It is overexpressed in astrocytoma tumor cells and plays an important role in the process of dedifferentiation that is associated with astrocytoma tumorigenesis. RNF135 ubiquitinates RIG-I (retinoic acid-inducible gene-I) to promote interferon-beta induction during the early phase of viral infection. Stonustoxin (STNX) is a hypotensive and lethal protein factor that also possesses other biological activities such as species-specific hemolysis (due to its ability to form pores in the cell membrane) and platelet aggregation, edema-induction, and endothelium-dependent vasorelaxation (mediated by the nitric oxide pathway and activation of potassium channels). The PRY-SPRY domain in these TRIM families is suggested to serve as the target binding site. 167 -240472 cd12892 SPRY_PRY_TRIM18 PRY/SPRY domain of TRIM18/MID1, also known as FXY or RNF59. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is at the C-terminus of the overall domain architecture of MID1 (also known as FXY, RNF59, TRIM18) gene represented by a RING finger domain (RING), two B-box motifs (BBOX), coiled-coil C-terminal to Bbox domain (BBC) and fibronectin type 3 domain (FN3). Mutations in the human MID1 gene result in X-linked Opitz G/BBB syndrome (OS), a disorder affecting development of midline structures, causing craniofacial, urogenital, gastrointestinal and cardiovascular abnormalities. A unique MID1 gene mutation located in a variable loop in the SPRY domain alters conformation of the binding pocket and may affect the binding affinity to the PRY/SPRY domain. 177 -293950 cd12893 SPRY_PRY_TRIM35 PRY/SPRY domain in tripartite motif-containing protein 35 (TRIM35). This PRY/SPRY domain is found at the C-terminus of the overall domain architecture of tripartite motif 35, TRIM35 (also known as hemopoietic lineage switch protein), which includes a RING finger domain (RING) and a B-box motif (BBOX). TRIM35 may play a role as a tumor suppressor and is implicated in the cell death mechanism. 171 -293951 cd12894 SPRY_PRY_TRIM36 PRY/SPRY domain in tripartite motif-containing protein 36 (TRIM36). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM36, a Class I TRIM protein. TRIM36 (also known as Haprin or RNF98) has a ubiquitin ligase activity and interacts with centromere protein-H, one of the kinetochore proteins. It has been shown that TRIM36 is potentially associated with chromosome segregation and that an excess of TRIM36 may cause chromosomal instability. In Xenopus laevis, TRIM36 is expressed during early embryogenesis and plays an important role in the arrangement of somites during their formation. 204 -293952 cd12895 SPRY_PRY_TRIM46 PRY/SPRY domain in tripartite motif-containing protein 46 (TRIM46). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM46 proteins (composed of RING/B-box/coiled-coil core and also known as RBCC proteins). The SPRY/PRY combination is a possible component of immune defense. This protein family has not yet been characterized. 209 -293953 cd12896 SPRY_PRY_TRIM65 PRY/SPRY domain in tripartite motif-containing domain 65 (TRIM65). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM65 proteins (composed of RING/B-box/coiled-coil core and also known as RBCC proteins). The SPRY/PRY combination is a possible component of immune defense. This protein family has not been characterized. 182 -293954 cd12897 SPRY_PRY_TRIM50_72 PRY/SPRY domain in tripartite motif-binding (TRIM) proteins TRIM50 and TRIM72. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of several TRIM proteins, including TRIM72 and TRIM50. TRIM72 (also known as MG53) has been shown to perform a critical function in membrane repair following acute muscle injury by nucleating the assembly of the repair machinery at injury sites. It is expressed specifically in skeletal muscle and heart, and tethered to the plasma membrane and cytoplasmic vesicles via its interaction with phosphatidylserine. TRIM50, an E3 ubiquitin ligase, is deleted in Williams-Beuren (WBS) syndrome, a multi-system neurodevelopmental disorder caused by the deletion of contiguous genes at chromosome region 7q11.23. 191 -293955 cd12898 SPRY_PRY_TRIM76 PRY/SPRY domain in tripartite motif-containing protein 76 (TRIM76), also called cardiomyopathy-associated protein 5. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM76, a Class I TRIM protein. TRIM76 (also known as cardiomyopathy-associated protein 5 or CMYA5 or myospryn or SPRYD2) is a muscle-specific member of the TRIM superfamily, but lacks the RING domain. It has been suggested that TRIM76 is involved in two distinct processes, protein kinase A signaling and vesicular trafficking. It has also been implicated in Duchenne muscular dystrophy and cardiac disease; gene polymorphism of TRIM76 is associated with left ventricular wall thickness in patients with hypertension while its interactions with M-band titin and calpain 3 link it to tibial and limb-girdle muscular dystrophies. 171 -293956 cd12899 SPRY_PRY_TRIM76_like PRY/SPRY domain in tripartite motif-containing protein 76 (TRIM76)-like. This domain is similar to the distinct PRY/SPRY subdomain found at the C-terminus of TRIM76, a Class I TRIM protein. TRIM76 (also known as cardiomyopathy-associated protein 5 or CMYA5 or myospryn or SPRYD2) is a muscle-specific member of the TRIM superfamily, but lacks the RING domain. It has been suggested that TRIM76 is involved in two distinct processes, protein kinase A signaling and vesicular trafficking. 176 -293957 cd12900 SPRY_PRY_TRIM21 PRY/SPRY domain in tripartite motif-binding protein 21 (TRIM21) also known as 52kD Ribonucleoprotein Autoantigen (Ro52). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM21, which is also known as Sjogren Syndrome Antigen A (SSA), SSA1, 52kD Ribonucleoprotein Autoantigen (Ro52, Ro/SSA, SS-A/Ro) or RING finger protein 81 (RNF81). TRIM21 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. As an E3 ligase, TRIM21 mediates target specificity in ubiquitination; it regulates type 1 interferon and proinflammatory cytokines via ubiquitination of interferon regulatory factors (IRFs). It is up-regulated at the site of autoimmune inflammation, such as cutaneous lupus lesions, indicating a central role in the tissue destructive inflammatory process. It interacts with auto-antigens in patients with Sjogren syndrome and systemic lupus erythematosus, a chronic systemic autoimmune disease characterized by the presence of autoantibodies against the protein component of the human intracellular ribonucleoprotein-RNA complexes and more specifically TRIM21, Ro60/TROVE2 and La/SSB proteins. It binds the Fc part of IgG molecules via its PRY-SPRY domain with unexpectedly high affinity. 180 -293958 cd12901 SPRY_PRY_FSD1 Fibronectin type III and SPRY containing 1 (FSD1) domain includes PRY at the N-terminus. This domain is part of the fibronectin type III and SPRY domain containing 1 (FSD1) and FSD1-like (FSD1L) proteins. These are centrosome-associated proteins that are characterized by an N-terminal coiled-coil region downstream of B-box (BBC) domain, a central fibronectin type III (FN3) domain, and C-terminal repeats in PRY/SPRY domain. The FSD1 protein associates with a subset of microtubules and may be involved in the stability and organization of microtubules during cytokinesis. 207 -293959 cd12902 SPRY_PRY_RNF135 PRY/SPRY domain in RING finger protein RNF135. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of the RING finger protein RNF135 (also known as Riplet/RNF135), which ubiquitinates RIG-I (retinoic acid-inducible gene-I) to promote interferon-beta induction during the early phase of viral infection. Normally, RIG-I is activated by TRIM25 in response to viral infection, leading to activation of the RIG-I signaling pathway, thus resulting in type I interferon production to limit viral replication. However, RNF135, consisting of an N-terminal RING finger domain, C-terminal SPRY and PRY motifs and showing sequence similarity to TRIM25, acts as an alternative factor that promotes RIG-I activation independent of TRIM25. 168 -293960 cd12903 SPRY_PRY_SPRYD4 PRY/SPRY domain containing protein 4 (SPRYD4). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain and is encoded by the SPRYD4 gene. SPRYD4 (SPRY containing domain 4) is ubiquitously expressed in many human tissues, most strongly in kidney, bladder, brain, thymus and stomach. Subcellular localization demonstrates that SPRYD4 protein is localized in the nucleus when overexpressed in COS-7 green monkey cell. It has remained uncharacterized thus far. 169 -293961 cd12904 SPRY_BSPRY SPRY domain in Ro-Ret family. This domain, named BSPRY, has been identified in the Ro-Ret family, since the protein is composed of a B-box, an alpha-helical coiled coil and a SPRY domain. The gene for BSPRY resides on human chromosome 9 and is specifically expressed in testis. The function of BSPRY is not known, but several related proteins of the RING-Box-coiled-coil (RBCC) family have been implicated in cell transformation. 171 -293962 cd12905 SPRY_PRY_A33L zinc-binding protein A33-like. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM69 and TRIM proteins NF7 and bloodthirsty (bty). TRIM69 is a novel testis E3 ubiquitin ligase that may function to ubiquitinate its particular substrates during spermatogenesis. In humans, TRIM69 localizes in the cytoplasm and nucleus, and requires an intact RING finger domain to function. TRIM protein NF7, which also contains a chromodomain (CHD) at the N-terminus and an RFP (Ret finger protein)-like domain at the C-terminus, is required for its association with transcriptional units of RNA polymerase II which is mediated by a trimeric B box. In Xenopus oocyte, xNF7 has been identified as a nuclear microtubule-associated protein (MAP) whose microtubule-bundling activity, but not E3-ligase activity, contributes to microtubule organization and spindle integrity. Bloodthirsty (bty) is a novel gene identified in zebrafish and has been shown to likely play a role in in regulation of the terminal steps of erythropoiesis. 178 -293963 cd12906 SPRY_SOCS1-2-4 SPRY domain in the suppressor of cytokine signaling 1, 2, 4 families (SOCS1, SOCS2, SOCS4). The SPRY domain-containing SOCS box protein family (SPSB1-4, also known as SSB-1 to -4) is composed of a central SPRY protein interaction domain and a C-terminal SOCS box. All four SPSB proteins interact with c-Met, the hepatocyte growth factor receptor, but only SPSB1, SPSB2, and SPSB4 interact with prostate apoptosis response protein 4 (Par-4). They are negative regulators that recruit the ECS E3 ubiquitin ligase complex to polyubiquitinate inducible nitric-oxide synthase (iNOS), resulting in its proteasomal degradation, thus contributing to protection against the cytotoxic effect of iNOS in activated macrophages. It has been shown that SPSB1 and SPSB4 induce the degradation of iNOS more strongly than SPSB2. The Drosophila melanogaster SPSB1 homolog, GUSTAVUS, interacts with the DEAD box RNA helicase Vasa. Suppressor of cytokine signaling (SOCS) proteins negatively regulate signaling from JAK-associated cytokine receptor complexes, and play key roles in the regulation of immune homeostasis. 174 -293964 cd12907 SPRY_Fbox SPRY domain in the F-box family Fbxo45. Fbxo45 is a novel synaptic E3 and ubiquitin ligase, related to the suppressor of cytokine signaling (SOCS) proteins and located N-terminal to a SPRY (SPla and the ryanodine receptor) domain. Fbxo45 induces the degradation of a synaptic vesicle-priming factor, Munc13-1, via the SPRY domain, thus playing an important role in the regulation of neurotransmission by modulating Munc13-1 at the synapse. F-box motifs are found in proteins that function as the substrate recognition component of SCF E3 complexes. 175 -293965 cd12908 SPRYD3 SPRY domain-containing protein 3. This family contains SPRY domain-containing protein 3 (SPRYD3). In humans, it is highly expressed in most tissues, including brain, kidney, heart, intestine, skeletal muscle, and testis. It also has cross-species conservation, suggesting that it is likely to carry out important cellular processes. 171 -293966 cd12909 SPRY_RanBP9_10 SPRY domain in Ran binding proteins 9 and 10. This family includes SPRY domain in Ran binding protein (RBP or RanBPM) 9 and 10, and similar proteins. RanBP9 (also known as RanBPM), a binding partner of Ran, is a small Ras-like GTPase that exerts multiple functions via interactions with various proteins. RanBP9 and RanBP10 also act as androgen receptor (AR) coactivators. Both consist of the N-terminal proline- and glutamine-rich regions, the SPRY domain, and LisH-CTLH and CRA motifs. SPRY domain of RanBPM forms a complex with CD39, a prototypic member of the NTPDase family, thus down-regulating activity substantially. RanBP10 enhances the transcriptional activity of AR in a ligand-dependent manner and exhibits a protein expression pattern different from RanBPM in various cell lines. RanBP10 is highly expressed in AR-positive prostate cancer LNCaP cells, while RanBPM is abundant in WI-38 and MCF-7 cells. 144 -293967 cd12910 SPRY_SSH4_like SPRY domain in SSH4 and similar proteins. This family includes SPRY domain in SSH4 (suppressor of SHR3 null mutation protein 4) and similar proteins. SSH4 is a component of the endosome-vacuole trafficking pathway that regulates nutrient transport and may be involved in processes determining whether plasma membrane proteins are degraded or routed to the plasma membrane. The SPRY domain in SSH4 may be involved in cargo recognition, either directly or by combination with other adaptors, possibly leading to a higher selectivity. In yeast, SSH4 and the homologous protein EAR1 (endosomal adapter of RSP5) recruit Rsp5p, an essential ubiquitin ligase of the Nedd4 family, and assist it in its function at multivesicular bodies by directing the ubiquitylation of specific cargoes. 192 -350336 cd12911 HK_sensor Sensor domains of Histidine Kinase receptors. Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. 100 -350337 cd12912 PDC2_MCP_like second PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains. Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the second PDC domain of Methyl-accepting chemotaxis proteins (MCPs), Histidine kinases (HKs), and other similar domains. Many members contain both HAMP (HK, Adenylyl cyclase, MCP, and Phosphatase) and MCP domains, which are signalling domains that interact with protein partners to relay a signal. MCPs are part of a transmembrane protein complex that controls bacterial chemotaxis. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. 92 -350338 cd12913 PDC1_MCP_like first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains. Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the first PDC domain of Methyl-accepting chemotaxis proteins (MCPs), Histidine kinases (HKs), and other similar domains. Many members contain both HAMP (HK, Adenylyl cyclase, MCP, and Phosphatase) and MCP domains, which are signalling domains that interact with protein partners to relay a signal. MCPs are part of a transmembrane protein complex that controls bacterial chemotaxis. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. 139 -350339 cd12914 PDC1_DGC_like first PDC (PhoQ/DcuS/CitA) domain of diguanylate-cyclase and similar domains. Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the first PDC domain of Diguanylate-cyclases (DGCs), Histidine kinases (HKs), and other similar domains. Many members of this subfamily contain a C-terminal DGC (also called GGDEF) domain. DGCs regulate the turnover of cyclic diguanosine monophosphate. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. 123 -350340 cd12915 PDC2_DGC_like second PDC (PhoQ/DcuS/CitA) domain of diguanylate-cyclase and similar domains. Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the second PDC domain of Diguanylate-cyclases (DGCs), Histidine kinases (HKs), and other similar domains. Many members of this subfamily contain a C-terminal DGC (also called GGDEF) domain. DGCs regulate the turnover of cyclic diguanosine monophosphate. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. 96 -240599 cd12916 VKOR_1 Vitamin K epoxide reductase family in bacteria and plants. This family includes vitamin K epoxide reductase (VKOR) present in bacteria and plant. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some plant and bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. 133 -240600 cd12917 VKOR_euk Vitamin K epoxide reductase family in eukaryotes, excluding plants. This family includes vitamin K epoxide reductase (VKOR) present in bacteria and plant. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. Warfarin, a widely used oral anticoagulant used in medicine as well as rodenticides, inhibits the activity of VKOR, resulting in decreased levels of reduced vitamin K, which is required for the function of several clotting factors. However, anticoagulation effect of warfarin is significantly associated with polymorphism of certain genes, including VKORC1. Interestingly, in rodents, an adaptive trait appears to have evolved convergently by selection on new or standing genetic polymorphisms in VKORC1 as well as by adaptive introgressive hybridization between species, likely brought about by human-mediated dispersal. 140 -240601 cd12918 VKOR_arc Vitamin K epoxide reductase family in archaea and some bacteria. This family includes vitamin K epoxide reductase (VKOR) mostly present in archaea and some bacteria. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. 126 -240602 cd12919 VKOR_2 Vitamin K epoxide reductase family in bacteria. This family includes vitamin K epoxide reductase (VKOR) present only in bacteria. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. 169 -240603 cd12920 VKOR_3 Vitamin K epoxide reductase family in bacteria. This family includes vitamin K epoxide reductase (VKOR) present in proteobacteria and spirochetes. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. 134 -240604 cd12921 VKOR_4 Vitamin K epoxide reductase (VKOR) family in bacteria. This family includes vitamin K epoxide reductase (VKOR) present only in bacteria. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. This family also has a cysteine peptidase domain present at the N-terminus of the VKOR domain. 128 -240605 cd12922 VKOR_5 Vitamin K epoxide reductase family in bacteria. This family includes vitamin K epoxide reductase (VKOR) mostly present in actinobacteria. VKOR (also named VKORC1) is an integral membrane protein that catalyzes the reduction of vitamin K 2,3-epoxide and vitamin K to vitamin K hydroquinone, an essential co-factor subsequently used in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. All homologs of VKOR contain an active site CXXC motif, which is switched between reduced and disulfide-bonded states during the reaction cycle. In some bacterial homologs, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases which may function as redox partners in initiating the reduction cascade. 133 -214016 cd12923 iSH2_PI3K_IA_R Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunits. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In vertebrates, there are three genes (PIK3R1, PIK3R2, and PIK3R3) that encode for different Class IA PI3K R subunits. 152 -214017 cd12924 iSH2_PIK3R1 Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 1, PIK3R1, also called p85alpha. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In addition, p85alpha, also called PIK3R1, contains N-terminal SH3 and GAP domains. p85alpha carry functions independent of its PI3K regulatory role. It can independently stimulate signaling pathways involved in cytoskeletal rearrangements. Insulin-sensitive tissues express splice variants of the PIK3R1 gene, p50alpha and p55alpha, which may play important roles in insulin signaling during lipid and glucose metabolism. Mice deficient with PIK3R1 die perinatally, indicating its importance in development. 161 -214018 cd12925 iSH2_PIK3R3 Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 3, PIK3R3, also called p55gamma. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p55gamma, also called PIK3R3 or p55PIK, also contains a unique N-terminal 24-amino acid residue (N24) that interacts with cell cycle modulators to promote cell cycle progression. 161 -214019 cd12926 iSH2_PIK3R2 Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 2, PIK3R2, also called p85beta. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects. 161 -240571 cd12927 MMP_TTHA0227_like Minimal MMP-like domain found in Thermus thermophilus TTHA0227, Acidothermus cellulolyticus ACEL2062 and similar proteins. The family includes hypothetical proteins from bacteria that contain a minimal metalloprotease (MMP)-like domain consisting of 3-stranded mixed 2-beta sheets.These proteins may belong to a superfamily of bacterial zinc metallo-peptidases, which is characterized by a conserved HExxHxxGxxD (x could be any amino acid) motif. However, some family members carry a shorter HExxHxxG motif or HExxH motif. Some others do not have such a motif, but still share very high sequence similarity. 97 -240592 cd12929 GUCT RNA-binding GUCT domain found in the RNA helicase II/Gu protein family. This family includes vertebrate RNA helicase II/Gualpha (RH-II/Gualpha) and RNA helicase II/Gubeta (RH-II/Gubeta), both of which consist of a DEAD box helicase domain (DEAD), a helicase conserved C-terminal domain, and a Gu C-terminal (GUCT) domain. They localize to nucleoli, suggesting roles in ribosomal RNA production, but RH-II/Gubeta also localizes to nuclear speckles containing the splicing factor SC35, suggesting its possible involvement in pre-mRNA splicing. In contrast to RH-II/Gualpha, RH-II/Gubeta has RNA-unwinding activity, but no RNA-folding activity. The family also contains plant DEAD-box ATP-dependent RNA helicase 7 (RH7 or PRH75), Thermus thermophilus heat resistant RNA-dependent ATPase (Hera) and similar proteins. RH7 is a new nucleus-localized member of the DEAD-box protein family from higher plants. It displays a weak ATPase activity which is barely stimulated by RNA ligands. RH7 contains an N-terminal KDES domain rich in lysine, glutamic acid, aspartic acid, and serine residues, seven highly conserved helicase motifs in the central region, a GUCT domain, and a C-terminal GYR domain harboring a large number of glycine residues interrupted by either arginines or tyrosines. Thermus thermophilus Hera is a DEAD box helicase that binds fragments of 23S rRNA and RNase P RNA via its C-terminal domain. It contains a helicase core that harbors two RecA-like domains termed RecA_N and RecA_C, a dimerization domain (DD), and a C-terminal RNA-binding domain (RBD) that reveals a compact, RRM-like fold and shows sequence similarity with the typical GUCT domain found in the RNA helicase II/Gu protein family. 72 -260087 cd12930 GAT_SF GAT domain found in eukaryotic ADP-ribosylation factor (Arf)-binding proteins (GGAs), metazoan myb protein 1 (Tom1)-like proteins, and similar proteins. The GAT (GGA and Tom1) domain superfamily includes GGAs found in eukaryotes, Tom1-like proteins from metazoa, and LAS seventeen-binding protein 5 (Lsb5p)-like proteins from fungi. GGAs, also termed Golgi-localized gamma-ear-containing Arf-binding proteins, belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. GGAs play important roles in ubiquitin-dependent sorting of cargo proteins both in biosynthetic and endocytic pathways. Tom1 and its related proteins, Tom1L1 and Tom1L2, form a protein family sharing an N-terminal VHS-domain followed by a GAT domain. The Tom1 family proteins bind to ubiquitin, ubiquitinated proteins, and Toll-interacting protein (Tollip) through its GAT domain. They do not associate with either Arf GTPases through its GAT domain nor with acidic cluster-dileucine sequences through its VHS domain. In addition, the Tom1 family proteins recruit clathrin onto endosomes through their C-terminal region. However, in the C-terminal clathrin-binding region, Tom1 and Tom1L2 are similar to each other, but distinguishable from Tom1L1. The yeast S. cerevisiae does not contain homologous proteins of the Tom1 family. 81 -240579 cd12931 eNOPS_SF NOPS domain, including C-terminal helical extension region, in the p54nrb/PSF/PSP1 family. All members in this family contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRM1 and RRM2), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction NOPS (NONA and PSP1) domain with a long helical C-terminal extension. The NOPS domain specifically binds to RRM2 domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for localization of these proteins to subnuclear bodies. PSF has an additional large N-terminal domain that differentiates it from other family members. The p54nrb/PSF/PSP1 family includes 54 kDa nuclear RNA- and DNA-binding protein (p54nrb), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF) and paraspeckle protein 1 (PSP1), which are ubiquitously expressed and are well conserved in vertebrates. p54nrb, also termed NONO or NMT55, is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF, also termed POMp100, is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1, also termed PSPC1, is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. The family also includes some p54nrb/PSF/PSP1 homologs from invertebrate species. For instance, the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. 90 -240576 cd12932 RRP7_like RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p), ribosomal RNA-processing protein 7 homolog A (Rrp7A), and similar proteins. This CD corresponds to the RRP7 domain of Rrp7p and Rrp7A. Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7A, also termed gastric cancer antigen Zg14, is the Rrp7p homolog mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Both Rrp7p and Rrp7A harbor an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. 118 -240597 cd12933 eIF3G eIF3G domain found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3. eIF3 is a large multi-subunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. Besides, eIF-3G is one of the cytosolic targets; it interacts with mature apoptosis-inducing factor (AIF). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G; it plays an important role in the initiation phase of protein synthesis in yeast. It binds both mRNA and rRNA fragments due to an RNA recognition motif near its C-terminus. 114 -240585 cd12934 LEM LEM (Lap2/Emerin/Man1) domain found in emerin, lamina-associated polypeptide 2 (LAP2), inner nuclear membrane protein Man1 and similar proteins. The family corresponds to a group of inner nuclear membrane proteins containing LEM domain. Emerin occurs in four phosphorylated forms and plays a role in cell cycle-dependent events. It is absent from the inner nuclear membrane in most patients with X-linked muscular dystrophy. Emerin interacts with A-type and B-type lamins. Man1, also termed LEM domain-containing protein 3 (LEMD3) is an integral protein of the inner nuclear membrane that binds to nuclear lamins and emerin, thus playing a role in nuclear organization. LAP2, also termed thymopoietin (TP), or thymopoietin-related peptide (TPRP), is composed of isoform alpha and isoforms beta/gamma and may be involved in chromatin organization and post-mitotic reassembly. Some LAP2 isoforms are inner nuclear membrane proteins that can bind to nuclear lamins and chromatin, while others are non-membrane nuclear polypeptides. This family also contains LEM domain-containing protein LEMP-1 and LEM2. LEMP-1, also termed cancer/testis antigen 50 (CT50), is encoded by LEMD1, a novel testis-specific gene expressed in colorectal cancers. LEMP-1 may function as a cancer-testis antigen for immunotherapy of colorectal carcinoma (CRC). LEM2, also termed LEMD2, is a novel Man1-related ubiquitously expressed inner nuclear membrane protein required for normal nuclear envelope morphology. Association with lamin A is required for its proper nuclear envelope localization while its binding to lamin C plays an important role in the organization of lamin A/C complexes. Some uncharacterized LEM domain-containing proteins are also included in this family. Unlike other family members, these harbor an ankyrin repeat region that may mediate protein-protein interactions. 37 -240596 cd12935 LEM_like LEM-like domain of lamina-associated polypeptide 2 (LAP2) and similar proteins. LAP2, also termed thymopoietin (TP), or thymopoietin-related peptide (TPRP), is composed of isoform alpha and isoforms beta/gamma and may be involved in chromatin organization and postmitotic reassembly. Some of the LAP2 isoforms are inner nuclear membrane proteins that can bind to nuclear lamins and chromatin, while others are nonmembrane nuclear polypeptides. All LAP2 isoforms contain an N-terminal lamina-associated polypeptide-Emerin-MAN1 (LEM)-domain that is connected to a highly divergent LEM-like domain by an unstructured linker. Both LEM and LEM-like domains share the same structural fold, mainly composed of two large parallel alpha helices. However, their biochemical nature of the solvent-accessible residues is completely different, which indicates the two domains may target different protein surfaces. The LEM domain is responsible for the interaction with the nonspecific DNA binding protein barrier-to-autointegration factor (BAF), and the LEM-like domain is involved in chromosome binding. The family also includes the yeast helix-extension-helix domain-containing proteins, Heh1p (formerly called Src1p) and Heh2p, and their uncharacterized homologs found mainly in fungi and several in bacteria. Heh1p and Heh2p are inner nuclear membrane proteins that might interact with nuclear pore complexes (NPCs). Heh1p is involved in mitosis. It functions at the interface between subtelomeric gene expression and transcription export (TREX)-dependent messenger RNA export through NPCs. The function of Heh2p remains ill-defined. Both Heh1p and Heh2p contain a LEM-like domain (also termed HeH domain), but lack a LEM domain. 36 -240593 cd12936 GUCT_RHII_Gualpha_beta RNA-binding GUCT domain found in vertebrate RNA helicase II/Gualpha (RH-II/Gualpha), RNA helicase II/Gubeta (RH-II/Gubeta) and similar proteins. This subfamily corresponds to the Gu C-terminal (GUCT) domain of RH-II/Gualpha and RH-II/Gubeta, two paralogues found in vertebrates. RH-II/Gualpha, also termed nucleolar RNA helicase 2, or DEAD box protein 21, or nucleolar RNA helicase Gu, is a bifunctional enzyme that displays independent RNA-unwinding and RNA-folding activities. It unwinds double-stranded RNA in the 5' to 3' direction in the presence of Mg2+ through the domains in its N-terminal region. In contrast, it folds single-stranded RNA in an ATP-dependent manner and its C-terminal region is responsible for the Mg2+ independent RNA-foldase activity. RH-II/Gualpha consists of a DEAD box helicase domain (DEAD), a helicase conserved C-terminal domain (helicase_C), and a GUCT followed by three FRGQR repeats and one PRGQR sequence. The DEAD and helicase_C domains may play critical roles in the RNA-helicase activity of RH-II/Gualpha. The function of GUCT domain remains unclear. The C-terminal region responsible for the RNA-foldase activity does not overlap with the GUCT domain. RH-II/Gubeta, also termed ATP-dependent RNA helicase DDX50, or DEAD box protein 50, or nucleolar protein Gu2, shows significant sequence homology with RH-II/Gualpha. It contains a DEAD domain, a helicase_C domain, and a GUCT domain followed by an arginine-serine-rich sequence but not (F/P)RGQR repeats in RH-II/Gualpha. Both RH-II/Gualpha and RH-II/Gubeta localize to nucleoli, suggesting roles in ribosomal RNA production, but RH-II/Gubeta also localizes to nuclear speckles containing the splicing factor SC35, suggesting its possible involvement in pre-mRNA splicing. In contrast to RH-II/Gualpha, RH-II/Gubeta has RNA-unwinding activity, but no RNA-folding activity. 93 -240594 cd12937 GUCT_RH7_like RNA-binding GUCT domain found in plant DEAD-box ATP-dependent RNA helicase 7 (RH7) and similar proteins. This subfamily corresponds to the Gu C-terminal (GUCT) domain of RH7 and similar proteins. RH7, also termed plant RNA helicase 75 (PRH75), is a new nucleus-localized member of the DEAD-box protein family from higher plants. It displays a weak ATPase activity which is barely stimulated by RNA ligands. RH7 contains an N-terminal KDES domain rich in lysine, glutamic acid, aspartic acid, and serine residues, seven highly conserved helicase motifs in the central region, a GUCT domain, and a C-terminal GYR domain harboring a large number of glycine residues interrupted by either arginines or tyrosines. RH7 is RNA specific and harbors two possible RNA-binding motifs, the helicase motif VI (HRIGRTGR) and the C-terminal glycine-rich GYR domain. 86 -240595 cd12938 GUCT_Hera RNA-binding GUCT-like domain found in Thermus thermophilus heat resistant RNA-dependent ATPase (Hera) and similar proteins. This subfamily corresponds to the Gu C-terminal (GUCT)-like domain of Hera and similar proteins. Thermus thermophilus Hera is a DEAD box helicase that binds fragments of 23S rRNA and RNase P RNA via its C-terminal domain. It contains a helicase core that harbors two RecA-like domains termed RecA_N and RecA_C, a dimerization domain (DD), and a C-terminal RNA-binding domain (RBD) that reveals a compact, RRM-like fold and shows sequence similarity with GUCT domain found in vertebrate RNA helicase II/Gualpha (RH-II/Gualpha), RNA helicase II/Gubeta (RH-II/Gubeta) and plant DEAD-box ATP-dependent RNA helicase 7 (RH7 or PRH75). 74 -240586 cd12939 LEM_emerin LEM (Lap2/Emerin/Man1) domain found in emerin. This CD corresponds to the LEM domain that is critical for binding to lamin A/C and is also involved in interaction with the DNA binding protein barrier-to-autointegration factor (BAF). Emerin is an inner nuclear membrane protein that occurs in four differently phosphorylated forms and plays a role in cell cycle-dependent events. It is absent from the inner nuclear membrane in most patients with X-linked muscular dystrophy. Emerin interacts with A-type and B-type lamins. It contains an N-terminal LEM domain followed by a poly-serine segment, a region rich in hydrophobic amino acids comprising the nuclear localization signal (NLS) followed by another poly-serine segment, and a C-terminal transmembrane region. 43 -240587 cd12940 LEM_LAP2_LEMD1 LEM (Lap2/Emerin/Man1) domain found in lamina-associated polypeptide 2 (LAP2), LEM domain-containing protein 1 (LEMP-1) and similar proteins. This CD corresponds to the LEM domain of LAP2, LEMP-1 and similar proteins. LAP2, also termed thymopoietin (TP), or thymopoietin-related peptide (TPRP), is composed of isoform alpha and isoforms beta/gamma and may be involved in chromatin organization and post-mitotic reassembly. Some of LAP2 isoforms are inner nuclear membrane proteins that can bind to nuclear lamins and chromatin, while others are non-membrane nuclear polypeptides. All LAP2 isoforms contain an N-terminal LEM domain that is connected to a highly divergent LEM-like domain by an unstructured linker. Although LEM and LEM-like domains share the same structural fold composed of two large parallel alpha helices, the biochemical nature of the solvent-accessible residues is completely different, indicating that the two domains may target different protein surfaces. The LEM domain interacts with the nonspecific DNA binding protein barrier-to-autointegration factor (BAF) while the LEM-like domain is involved in chromosome binding. LEMP-1, also termed cancer/testis antigen 50 (CT50), is encoded by LEMD1, a novel testis-specific gene expressed in colorectal cancers. It may function as a cancer-testis antigen for immunotherapy of colorectal carcinoma (CRC). LEMP-1 contains an N-terminal LEM domain. 42 -240588 cd12941 LEM_LEMD2 LEM (Lap2/Emerin/Man1) domain found in LEM domain-containing protein 2 (LEM2). This CD corresponds to the LEM domain that is responsible for the interaction with chromatin protein barrier-to-autointegration factor (BAF). LEM2, also termed LEMD2, is a novel Man1-related ubiquitously expressed inner nuclear membrane protein required for normal nuclear envelope morphology. Association with lamin A is required for its proper nuclear envelope localization. It also binds to lamin C and plays an important role in the organization of lamin A/C complexes. LEM2 contains an N-terminal LEM domain, two putative transmembrane domains and a MAN1-Src1p C-terminal (MSC) domain, but lacks the Man1-specific C-terminal RNA recognition motif (RRM). 38 -240589 cd12942 LEM_Man1 LEM (Lap2/Emerin/Man1) domain found in inner nuclear membrane protein Man1. This CD corresponds to the LEM domain of Man1 and similar proteins. Man1, also termed LEM domain-containing protein 3 (LEMD3), is an integral protein of the inner nuclear membrane that binds to nuclear lamins and emerin, thus playing a role in nuclear organization. It is part of a protein complex essential for chromatin organization and cell division. It also functions as an important negative regulator for the transforming growth factor beta (TGF-beta) /activin/Nodal signaling pathway and bone morphogenetic protein (BMP) signaling pathway by directly interacting with chromatin-associated proteins and transcriptional regulators, including the R-Smads, Smad1, Smad2, and Smad3. Man1 is a unique type of left/right (LR) signaling regulator that acts on the inner nuclear membrane. Furthermore, Man1 plays a crucial role in angiogenesis. The vascular remodeling can be regulated at the inner nuclear membrane through interactions between Man1 and Smads. Man1 contains an N-terminal LEM domain, two putative transmembrane domains, a Man1-Src1p C-terminal (MSC) domain, and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The LEM domain interacts with DNA and chromatin-binding protein Barrier-to-Autointegration Factor, and is also necessary for efficient localization of Man1 in the inner nuclear membrane. It has been shown that the C-terminal nucleoplasmic region of Man1 exhibits a DNA binding winged helix domain and is responsible for both, DNA- and Smad-binding. 44 -240590 cd12943 LEM_ANKL1 LEM (Lap2/Emerin/Man1) domain found in ankyrin repeat and LEM domain-containing protein 1 (ANKL1). The family includes ANKL1, also termed ankyrin repeat domain-containing protein 41 (ANKRD41), or LEM-domain containing protein 3 (LEM3), and similar proteins. Although their biological roles remain unclear, the family members contain an N-terminal ankyrin repeat region, LEM domain and C-terminal GIY-YIG nuclease domain. The ankyrin repeats are unique motifs mediating protein-protein interactions. The LEM domain, mainly found in inner nuclear membrane proteins, may be involved in protein- or DNA-binding. 38 -240591 cd12944 LEM_ANKL2 LEM (Lap2/Emerin/Man1) domain found in ankyrin repeat and LEM domain-containing protein 2 (ANKL2). The family includes ANKL2 and similar proteins. Although their biological roles remain unclear, the family members share an N-terminal LEM domain and an ankyrin repeat region. The LEM domain, mainly found in inner nuclear membrane proteins, may be involved in protein- or DNA-binding. The ankyrin repeats are unique motifs mediating protein-protein interactions. 43 -240580 cd12945 NOPS_NONA_like NOPS domain, including C-terminal coiled-coil region, in p54nrb/PSF/PSP1 homologs from invertebrate species. The family contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction NOPS (NONA and PSP1) domain. This model corresponds to the NOPS domain, with a long helical C-terminal extension , found in Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA), Chironomus tentans hrp65 gene encoding protein Hrp65 and similar proteins. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. The NOPS domain specifically binds to the second RNA recognition motif (RRM2) domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for localization of these proteins to subnuclear bodies. 100 -240581 cd12946 NOPS_p54nrb_PSF_PSPC1 NOPS domain, including C-terminal coiled-coil region, in p54nrb/PSF/PSPC1 family proteins. The family contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction NOPS (NONA and PSP1) domain. This model corresponds to the NOPS domain, with a long helical C-terminal extension, found in the p54nrb/PSF/PSPC1 proteins. The NOPS domain specifically binds to the second RNA recognition motif (RRM2) domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for localization of these proteins to subnuclear bodies. Members in the family include 54 kDa nuclear RNA- and DNA-binding protein (p54nrb), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF) and paraspeckle protein component 1 (PSPC1 or PSP1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb, also termed NONO or NMT55, is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF, also termed POMp100, is a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSPC1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSPC1 remains unknown currently. PSF has an additional large N-terminal domain that differentiates it from other family members. 93 -240582 cd12947 NOPS_p54nrb NOPS domain, including C-terminal coiled-coil region, in 54 kDa nuclear RNA- and DNA-binding protein (p54nrb) and similar proteins. The family contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction NOPS (NONA and PSP1) domain. This model corresponds to the NOPS domain, with a long helical C-terminal extension, found in p54nrb, also termed non-POU domain-containing octamer-binding protein (NONO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. It is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. p54nrb is ubiquitously expressed and highly conserved in vertebrates. It binds both single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. p54nrb forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manner. It also forms a heterodimer with polypyrimidine tract-binding protein-associated-splicing factor (PSF). The NOPS domain specifically binds to the second RNA recognition motif (RRM2) domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for paraspeckle localization to subnuclear bodies. 94 -240583 cd12948 NOPS_PSF NOPS domain, including C-terminal coiled-coil region, in polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF) and similar proteins. This model contains the NOPS (NONA and PSP1) domain PSF (also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex), with a long helical C-terminal extension. PSF is a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Additionally, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). Moreover, PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. As an RNA-binding component of spliceosomes, PSF binds to the insulin-like growth factor response element (IGFRE), and acts as an independent negative regulator of the transcriptional activity of the porcine P-450 cholesterol side-chain cleavage enzyme gene (P450scc) IGFRE. PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. In addition, PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NONO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules. The NOPS domain specifically binds to the second RNA recognition motif (RRM2) domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for localization of these proteins to subnuclear bodies. 97 -240584 cd12949 NOPS_PSPC1 NOPS domain, including C-terminal coiled-coil region, in paraspeckle protein component 1 (PSPC1) and similar proteins. The family contains a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction NOPS (NONA and PSP1) domain. This model corresponds to the NOPS domain, with a long helical C-terminal extension, of paraspeckle component 1 (PSPC1, also termed PSP1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Although its cellular function remains unknown currently, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NONO), which localizes to paraspeckles in an RNA-dependent manner. The NOPS domain specifically binds to the second RNA recognition motif (RRM2) domain of the partner DBHS protein via a substantial interaction surface. Its highly conserved C-terminal residues are critical for functional DBHS dimerization while the highly conserved C-terminal helical extension, forming a right-handed antiparallel heterodimeric coiled-coil, is essential for localization of these proteins to subnuclear bodies. 94 -240577 cd12950 RRP7_Rrp7p RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins. This CD corresponds to the RRP7 domain of Rrp7p. Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Rrp7p contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. 128 -240578 cd12951 RRP7_Rrp7A RRP7 domain ribosomal RNA-processing protein 7 homolog A (Rrp7A) and similar proteins. The family corresponds to the RRP7 domain of Rrp7A, also termed gastric cancer antigen Zg14, and similar proteins which are yeast ribosomal RNA-processing protein 7 (Rrp7p) homologs mainly found in Metazoans. The cellular function of Rrp7A remains unclear currently. Rrp7A harbors an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RRP7 domain. 129 -240572 cd12952 MMP_ACEL2062 Minimal MMP-like domain found in Acidothermus cellulolyticus hypothetical protein ACEL2062 and similar protein. The subfamily includes an uncharacterized protein from Acidothermus cellulolyticus (ACEL2062) and its homologs from bacteria. Although its biological role remains unclear, ACEL2062 contains a minimal metalloprotease (MMP)-like domain consisting of 3-stranded mixed 2-beta sheets and a HExxHxxGxxD/S (x could be any amino acid) motif. It may belong to a superfamily of bacterial zinc metallo-peptidases, which is characterized by a conserved HExxHxxGxxD motif. 117 -240573 cd12953 MMP_TTHA0227 Minimal MMP-like domain found in Thermus thermophilus hypothetical protein TTHA0227 and similar proteins. The subfamily includes an uncharacterized protein from Thermus thermophilus (TTHA0227) and its homologs from bacteria. Although its biological role remains unclear, TTHA0227 contains a minimal metalloprotease (MMP)-like domain consisting of 3-stranded mixed 2-beta sheets and a HExxH (x could be any amino acid) motif. It may belong to a superfamily of bacterial zinc metallo-peptidases, which is characterized by a conserved HExxHxxGxxD motif. 112 -240574 cd12954 MMP_TTHA0227_like_1 Minimal MMP-like domain found in a group of hypothetical proteins from alphaproteobacteria and actinobacteria. The subfamily includes some uncharacterized bacterial proteins which show high sequence similarity with Thermus thermophilus hypothetical protein TTHA0227. However, they do not contain the conserved HExxH (x could be any amino acid) motif. They may not have any zinc metallo-peptidase activity. 99 -214020 cd12955 SKA2 Spindle and kinetochore-associated protein 2. SKA2, also called FAM33A, is a component of the SKA complex, which is formed by the association of three subunits (SKA1, SKA2, annd SKA3). The SKA complex is essential for accurate cell division. It functions with the Ndc80 network to establish stable kinetochore-microtubule interactions, which are crucial for the highly orchestrated chromosome movements during mitosis. The biological unit is a W-shaped homodimer of the three-subunit complex. SKA2 has also been identified as a glucocorticoid receptor-interacting protein and may be involved in regulating cancer cell proliferation. 116 -240562 cd12956 CBM_SusE-F_like carbohydrate-binding modules from Bacteroides thetaiotaomicron SusE, SusF and similar proteins. This group includes five starch-specific CBMs (carbohydrate-binding modules) of SusE and SusF, two cell surface lipoproteins within the Sus (Starch-utilization system) system of the human gut symbiont Bacteroides thetaiotaomicron. These CBMs have no enzymatic activity. The precise mechanistic roles of SusE and SusF in starch metabolism are unclear. Both proteins contain an N-terminal domain which may belong to the immunoglobulin superfamily (IgSF), followed by two or three tandem starch-binding CBMs. SusF has three CBMs (CBM-Fa, -Fb, and -Fc; F denotes SusF, and they are labeled alphabetically from the N- to C- terminus). SusE has two CBMs (CBM-Eb and -Ec, corresponding to CBM-Fb and -Fc). Each starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. These five CBMs show differences in their affinity for various different starch oligosaccharides, and they also contribute differently to binding insoluble starch. CBM-Fa (the CBM unique to SusF), does not bind insoluble starch; CBM-Fb and CBM-Fc both do, deletion of one or the other results in a decrease in the overall affinity of SusF for starch. Both CBM-Eb and CBM-Ec are needed for SusE to bind tightly to starch. CBM-Ec has an additional starch-binding loop that may mediate interactions with partially unwound single helical forms of starch or small starch-breakdown products. Proteins in this group are present in the species of the Gram-negative Bacteroidetes phylum. 93 -240570 cd12957 SKA3_N Spindle and kinetochore-associated protein 3, N-terminal domain. SKA3, also called RAMA1 or C13orf3, is a component of the SKA complex, which is formed by the association of three subunits (SKA1, SKA2, and SKA3). The SKA complex is essential for accurate cell division. It functions with the Ndc80 network to establish stable kinetochore-microtubule interactions, which are crucial for the highly orchestrated chromosome movements during mitosis. The biological unit is a W-shaped homodimer of the three-subunit complex. SKA3 contributes to SAC (spindle-assembly checkpoint) signaling through its interaction with Bub3. This model represents the N-terminal domain of SKA3, which is involved in interactions with SKA1 and SKA2 to form the SKA complex. The C-terminal portion of SKA3 is involved in creating a microtubule-binding surface. 100 -214021 cd12958 SKA1_N Spindle and kinetochore-associated protein 1, N-terminal domain. SKA1 is a component of the SKA complex, which is formed by the association of three subunits (SKA1, SKA2, annd SKA3). The SKA complex is essential for accurate cell division. It functions with the Ndc80 network to establish stable kinetochore-microtubule interactions, which are crucial for the highly orchestrated chromosome movements during mitosis. The biological unit is a W-shaped homodimer of the three-subunit complex. This model represents the N-terminal domain of SKA1, which is involved in interactions with SKA2 and SKA3 to form the SKA complex. The C-terminal portion of SKA1 is involved in creating a microtubule-binding surface. 89 -214022 cd12959 MMACHC-like Methylmalonic aciduria and homocystinuria type C protein and similar proteins. MMACHC, also called CblC, is involved in the intracellular processing of vitamin B12 by catalyzing two reactions: the reductive decyanation of cyanocobalamin in the presence of a flavoprotein oxidoreductase and the dealkylation of alkylcobalamins through the nucleophilic displacement of the alkyl group by glutathione. Mutations in MMACHC cause combined methylmalonic acidemia/aciduria and homocystinuria (CblC type), the most common inherited disorder of cobalamin metabolism. The structure of MMACHC reveals it to be the most divergent member of the NADPH-dependent flavin reductase family that can use FMN or FAD to catalyze reductive decyanation; it is also the first enzyme with glutathione transferase (GST) activity that is unrelated to the GST superfamily in structure and sequence. 226 -240575 cd12960 Spider_toxin Spider neurotoxins including agatoxin, purotoxin and ctenitoxin. This domain family contains spider toxins that include the omega-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta, as well as purotoxin-1 (PT1), a spider peptide venom of the Central Asian spider Geolycosa sp., which specifically exerts inhibitory action on P2X3 purinoreceptors at nanomolar concentrations. These spider toxins, which are ion channel blockers, share a common structural motif composed of a triple-stranded antiparallel beta-sheet, stabilized by internal disulfide bonds known as cystine knots. 36 -240569 cd12961 CBM58_SusG Carbohydrate-binding module 58 from Bacteroides thetaiotaomicron SusG and similar CBMs. This group includes the starch-specific CBM (carbohydrate-binding module) of SusG, a cell surface lipoprotein within the Sus (Starch-utilization system) system of the Human gut symbiont Bacteroides thetaiotaomicron. It represents the CBM58 class of CBMs in the carbohydrate active enzymes (CAZy) database. SusG is an alpha-amylase, and is essential for growth on high molecular weight starch. SusG-CBM58 binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site; it is one of two starch-binding sites in SusG, the other being adjacent to the active site. SusG-CBM58 is required for efficient degradation of insoluble starch by the purified enzyme. Its starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. It may play a role in product exchange with other Sus components. 110 -240568 cd12962 X25_BaPul_like X25 domain of Bacillus acidopullulyticus pullulanase and similar proteins. Pullulanase (EC 3.2.1.41) cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. BaPul is used industrially in the production of high fructose corn syrup, high maltose content syrups and low calorie and ''light'' beers. Pullulanases, in addition to the catalytic domain, include several carbohydrate-binding domains (CBMs) as well as domains of unknown function (termed ''X'' modules). X25 was identified in Bacillus acidopullulyticus pullulanase, and splits another domain of unknown function (X45). X25 is present in multiple copy in some pullulanases. It has been suggested that X25 and X45 are CBMs which target mixed alpha-1,6/alpha-1,4 linked D-glucan polysaccharides. 95 -240567 cd12963 X45_BaPul_like X45 domain of Bacillus acidopullulyticus pullulanase and similar proteins. Pullulanase (EC 3.2.1.41) cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. BaPul is used industrially in the production of high fructose corn syrup, high maltose content syrups and low calorie and ''light'' beers. Pullulanases, in addition to the catalytic domain, include several carbohydrate-binding domains (CBMs) as well as domains of unknown function (termed ''X'' modules). X45 was identified in Bacillus acidopullulyticus pullulanase, it is interupted by another domain of unknown function (X25). It has been suggested that X25 and X45 are CBMs which target mixed alpha-1,6/alpha-1,4 linked D-glucan polysaccharides. 89 -240563 cd12964 CBM-Fa carbohydrate-binding module Fa from Bacteroides thetaiotaomicron SusE, and similar CBMs. CBM-Fa is the first of three starch-specific CBM (carbohydrate-binding modules) of SusF, a cell surface lipoproteins within the Sus (Starch-utilization system) system of the human gut symbiont Bacteroides thetaiotaomicron. The precise mechanistic role of SusF in starch metabolism is unclear. SusF has an N-terminal domain which may belong to the immunoglobulin superfamily (IgSF), followed by three tandem starch-binding CBMs: CBM-Fa, -Fb, and -Fc; F denotes SusF, and they are labeled alphabetically from the N- to C- terminus. These CBMs have no enzymatic activity. Each starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. These three CBMs show differences in their affinity for various different starch oligosaccharides, and they contribute differently to binding insoluble starch. CBM-Fa does not bind insoluble starch, and can bind smaller maltooligosaccharides. Proteins in this subgroup are present in the species of the Gram-negative Bacteroidetes phylum. 110 -240564 cd12965 CBM-Eb_CBM-Fb carbohydrate-binding modules Eb and Fb from SusE and SusF, respectively, and similar CBMs. Included in this subgroup are CBM-Eb and CBM-Fb, starch-specific carbohydrate-binding modules of SusE and SusF, cell surface lipoproteins within the Sus (Starch-utilization system)system of the human gut symbiont Bacteroides thetaiotaomicron. These CBMs have no enzymatic activity. The precise mechanistic roles of SusE and SusF in starch metabolism are unclear. Both proteins have an N-terminal domain which may belong to the immunoglobulin superfamily (IgSF), followed by two or three tandem starch-binding CBMs. SusF has three CBMs (CBM-Fa, -Fb, and -Fc; F denotes SusF, and they are labeled alphabetically from the N- to C- terminus). SusE has two CBMs (CBM-Eb and -Ec, corresponding to CBM-Fb and -Fc). Each starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. These five CBMs show differences in their affinity for various different starch oligosaccharides, and they contribute differently to binding insoluble starch. CBM-Fb and CBM-Fc both bind insoluble starch, deletion of one or the other results in a decrease in the overall affinity of SusF for starch. Both CBM-Eb and CBM-Ec are needed for SusE to bind tightly to starch. Proteins in this group are present in the species of the Gram-negative Bacteroidetes phylum. 98 -240565 cd12966 CBM-Ec_CBM-Fc carbohydrate-binding modules Ec and Fc from SusE and SusF, respectively, and similar CBMs. Included in this subgroup are CBM-Ec and CBM-Fc, starch-specific carbohydrate-binding modules of SusE and SusF, cell surface lipoproteins within the Sus (Starch-utilization system) system of the human gut symbiont Bacteroides thetaiotaomicron. These CBMs have no enzymatic activity. The precise mechanistic roles of SusE and SusF in starch metabolism are unclear. Both proteins have an N-terminal domain which may belong to the immunoglobulin superfamily (IgSF), followed by two or three tandem starch-binding CBMs. SusF has three CBMs (CBM-Fa, -Fb, and -Fc; F denotes SusF, and they are labeled alphabetically from the N- to C- terminus). SusE has two CBMs (CBM-Eb and -Ec, corresponding to CBM-Fb and -Fc). Each starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. These five CBMs show differences in their affinity for various different starch oligosaccharides, and they contribute differently to binding insoluble starch. CBM-Fb and CBM-Fc both bind insoluble starch, deletion of one or the other results in a decrease in the overall affinity of SusF for starch. Both CBM-Eb and CBM-Ec are needed for SusE to bind tightly to starch. Proteins in this group are present in the species of the Gram-negative Bacteroidetes phylum. 98 -240566 cd12967 CBM_SusE-F_like_u1 Uncharacterized subgroup of the CBM-SusE-F_like superfamily. The CBM SusE-F_like superfamily includes starch-specific CBMs (carbohydrate-binding modules) of SusE and SusF, two cell surface lipoproteins within the Sus (Starch-utilization system) system of the human gut symbiont Bacteroides thetaiotaomicron. These CBMs have no enzymatic activity. The precise mechanistic roles of SusE and SusF in starch metabolism are unclear. Both proteins have an N-terminal domain which may belong to the immunoglobulin superfamily (IgSF), followed by two or three tandem starch-binding CBMs. SusF has three CBMs (CBM-Fa, -Fb, and -Fc; F denotes SusF, and they are labeled alphabetically from the N- to C- terminus). SusE has two CBMs (CBM-Eb and -Ec, corresponding to CBM-Fb and -Fc). Each starch-binding site contains an arc of aromatic amino acids for hydrophobic stacking with glucose, and hydrogen-bonding acceptors and donors for interacting with the O-2 and O-3 of glucose. These five CBMs show differences in their affinity for various different starch oligosaccharides, and they also contribute differently to binding insoluble starch. Proteins in this group are present in the species of the Gram-negative Bacteroidetes phylum. 91 -240556 cd13112 POLO_box Polo-box domain (PBD), a C-terminal tandemly repeated region of polo-like kinases. The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 76 -240557 cd13114 POLO_box_Plk4_1 First (cryptic) polo-box domain (PBD) of polo-like kinase 4 (Plk4/Sak). The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 112 -240558 cd13115 POLO_box_Plk4_2 Second (cryptic) polo-box domain (PBD) of polo-like kinase 4 (Plk4/Sak). The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 108 -240559 cd13116 POLO_box_Plk4_3 C-terminal (third) polo-box domain (PBD) of polo-like kinase 4 (Plk4/Sak). The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 81 -240560 cd13117 POLO_box_2 Second polo-box domain (PBD) of polo-like kinases Plk1, Plk2, Plk3, and Plk5. The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 81 -240561 cd13118 POLO_box_1 First polo-box domain (PBD) of polo-like kinases Plk1, Plk2, Plk3, and Plk5. The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 91 -240524 cd13119 BF2867_like Tandemly repeated domain found in Bacteroides fragilis Nctc 9343 BF2867 and related proteins. Two structurally similar domains with low sequence similarity form a protein that may have a role in cell adhesion. This family also includes BF1858 and overlaps with DUF3988. 115 -240525 cd13120 BF2867_like_N N-terminal domain found in Bacteroides fragilis Nctc 9343 BF2867 and related proteins. Two structurally similar domains with low sequence similarity in a tandem repeat arrangement form a protein that may have a role in cell adhesion. This family overlaps with DUF3988. 156 -240526 cd13121 BF2867_like_C C-terminal domain found in Bacteroides fragilisNctc 9343 BF2867 and related proteins. Two structurally similar domains with low sequence similarity in a tandem repeat arrangement form a protein that may have a role in cell adhesion. This family overlaps with DUF3988. 138 -240555 cd13122 MSL2_CXC DNA-binding cysteine-rich domain of male-specific lethal 2 and related proteins. The CXC domain of Drosophila melanogaster MSL2 forms a Zn(3)Cys(9) cluster and is involved in recruiting members of the dosage compensation complex (DCC) to sites on the X chromosome. 50 -240528 cd13123 MATE_MurJ_like MurJ/MviN, a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins. Escherichia coli MurJ (MviN) has been identified as essential for murein biosynthesis. It has been suggested that MurJ functions as the peptidoglycan lipid II flippase which is involved in translocation of lipid-anchored peptidoglycan precursors across the cytoplasmic membrane, though results obtained in Bacillus subtilis seem to indicate that its MurJ homologs are not essential for growth. Some MviN family members (e.g. in Mycobacterium tuberculosis) possess an extended C-terminal region that contains an intracellular pseudo-kinase domain and an extracellular domain resembling carbohydrate-binding proteins. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR). 420 -240529 cd13124 MATE_SpoVB_like Stage V sporulation protein B, also known as Stage III sporulation protein F, and related proteins. The integral membrane protein SpoVB has been implicated in the biosynthesis of the peptidoglycan component of the spore cortex in Bacillus subtilis. This model represents a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR). 434 -240530 cd13125 MATE_like_10 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. This family might function as a translocase for lipopolysaccharides, such as O-antigen. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 409 -240531 cd13126 MATE_like_11 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. This family might function as a translocase for lipopolysaccharides, such as O-antigen. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 396 -240532 cd13127 MATE_tuaB_like Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. This family might function as a translocase for lipopolysaccharides and participate in the biosynthesis of cell wall components such as teichuronic acid. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 406 -240533 cd13128 MATE_Wzx_like Wzx, a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins. Escherichia coli Wzx and related proteins from other gram-negative bacteria are thought to act as flippases, assisting in the membrane translocation of lipopolysaccharides including those containing O-antigens. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR). 402 -240534 cd13129 MATE_epsE_like Multidrug and toxic compound extrusion family and similar proteins. This model represents a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins, including Ralstonia solanaceraum GMI1000 epsE, which may be involved in exporting exopolysaccharide EPS I, a virulence factor. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR). 411 -240535 cd13130 MATE_rft1 Rft1-like subfamily of the multidrug and toxic compound extrusion family (MATE). This eukaryotic family may function as a transporter, shuttling phospholipids, lipopolysaccharides or oligosaccharides from cytoplasmic to the lumenal side of the endoplasmic reticulum. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. MATE has also been identified as a large multigene family in plants, where the proteins are linked to disease resistance. 441 -240536 cd13131 MATE_NorM_like Subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins similar to Vibrio cholerae NorM. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. This subfamily includes Vibrio cholerae NorM and functions most likely as a multidrug efflux pump, removing xenobiotics from the interior of the cell. The pump utilizes a cation gradient across the membrane to facilitate the export process. NorM appears to bind monovalent cations in an outward-facing conformation and may subsequently cycle through an inward-facing and outward-facing conformation to capture and release its substrate. 435 -240537 cd13132 MATE_eukaryotic Eukaryotic members of the multidrug and toxic compound extrusion (MATE) family. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. MATE has also been identified as a large multigene family in plants, where the proteins are linked to disease resistance. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. This subfamily, which is restricted to eukaryotes, contains vertebrate solute transporters responsible for secretion of cationic drugs across the brush border membranes, yeast proteins located in the vacuole membrane, and plant proteins involved in disease resistance and iron homeostatis under osmotic stress. 436 -240538 cd13133 MATE_like_7 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 438 -240539 cd13134 MATE_like_8 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 438 -240540 cd13135 MATE_like_9 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 429 -240541 cd13136 MATE_DinF_like DinF and similar proteins, a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins. Escherichia coli DinF is a membrane protein that has been found to protect cells against oxidative stress and bile salts. The expression of DinF is regulated as part of the SOS system. It may act by detoxifying oxidizing molecules that have the potential to damage DNA. Some member of this family have been reported to enhance the virulence of plant pathogenic bacteria by enhancing their ability to grow in the presence of toxic compounds. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR). 424 -240542 cd13137 MATE_NorM_like Subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins similar to Thermotoga marina NorM. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 432 -240543 cd13138 MATE_yoeA_like Subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins similar to Bacillus subtilis yoeA. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 431 -240544 cd13139 MATE_like_14 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 448 -240545 cd13140 MATE_like_1 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. MATE has also been identified as a large multigene family in plants, where the proteins are linked to disease resistance. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 435 -240546 cd13141 MATE_like_13 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 443 -240547 cd13142 MATE_like_12 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 444 -240548 cd13143 MATE_MepA_like Subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins similar to Streptococcus aureus MepA. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. This subfamily includes Streptococcus aureus MepA and Vibrio vulnificus VmrA and functions most likely as a multidrug efflux pump. 426 -240549 cd13144 MATE_like_4 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 434 -240550 cd13145 MATE_like_5 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 440 -240551 cd13146 MATE_like_6 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 433 -240552 cd13147 MATE_MJ0709_like Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins, similar to Methanocaldococcus jannaschii MJ0709. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 441 -240553 cd13148 MATE_like_3 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 441 -240554 cd13149 MATE_like_2 Uncharacterized subfamily of the multidrug and toxic compound extrusion (MATE) proteins. The integral membrane proteins from the MATE family are involved in exporting metabolites across the cell membrane and are responsible for multidrug resistance (MDR) in many bacteria and animals. A number of family members are involved in the synthesis of peptidoglycan components in bacteria. 434 -240523 cd13150 DAXX_histone_binding Histone binding domain of the death-domain associated protein (DAXX). DAXX is a nuclear protein that modulates transcription of various genes and is involved in cell death and/or the suppression of growth. DAXX is also a histone chaperone conserved in Metazoa that acts specifically on histone H3.3. This alignment models a functional domain of DAXX that interacts with the histone H3.3-H4 dimer, and in doing so competes with DNA binding and interactions between the histone chaperone ASF1/CIA and the H3-H4 dimer. 198 -240522 cd13151 DAXX_helical_bundle Helical bundle domain of the death-domain associated protein (DAXX). DAXX is a nuclear protein that modulates transcription of various genes and is involved in cell death and/or the suppression of growth. DAXX is also a histone chaperone conserved in Metazoa that acts specifically on histone H3.3. This alignment models the N-terminal helical bundle domain of DAXX, which was shown to interact with the tumor suppressor Ras-association domain family 1C (RASSF1C). 88 -240516 cd13152 KOW_GPKOW_A KOW motif of the "G-patch domain and KOW motifs-containing protein" (GPKOW) repeat A. GPKOW contains one G-patch domain and two KOW motifs. GPKOW is a nuclear protein that regulated by catalytic (C) subunit of Protein Kinase A (PKA) and bind RNA in vivo. PKA may be involved in regulating multiple steps in post-transcriptional processing of pre-mRNAs. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. GPKOW is also known as T54 protein or MOS2 homolog. 57 -240517 cd13153 KOW_GPKOW_B KOW motif of the "G-patch domain and KOW motifs-containing protein" (GPKOW) repeat B. GPKOW contains one G-patch domain and two KOW motifs. GPKOW is a nuclear protein that regulated by catalytic (C) subunit of Protein Kinase A (PKA) and bind RNA in vivo. PKA may be involved in regulating multiple steps in post-transcriptional processing of pre-mRNAs. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. GPKOW is also known as the T54 protein or MOS2 homolog. 51 -240518 cd13154 KOW_Mtr4 KOW_Mtr4 is an inserted domain in Mtr4 globular domain. Mtr4 is a conserved helicase with a core DExH region that cooperates with the eukaryotic nuclear exosome in RNA processing and degradation. KOW_Mtr4 motif might be involved in presenting RNA substrates to the helicase core. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KOW motif is located at the extended insertion of Mtr4 protein. 129 -240519 cd13155 KOW_KIN17 KOW_Kin17 is a RNA-binding motif. KOW domain of the KIN17protein contributes to the RNA-binding properties of the whole protein. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. KIN17 is conserved from yeast to human that ubiquitously expressed at low levels in mammals tissue and have functions in DNA replication, DNA repair and cell cycle control. 54 -240520 cd13156 KOW_RPL6 KOW motif of Ribosomal Protein L6. RPL6 contains KOW motif that has an extra ribosomal role as an oncogenic. KOW domain is known as an RNA-binding motif that is shared so far among some families of ribosomal proteins, the essential bacterial transcriptional elongation factor NusG, the eukaryotic chromatin elongation factor Spt5, the higher eukaryotic KIN17 proteins and Mtr4. 152 -269979 cd13157 PTB_tensin-related Tensin-related Phosphotyrosine-binding (PTB) domain. Tensin plays critical roles in renal function, muscle regeneration, and cell migration. It binds to actin filaments and interacts with the cytoplasmic tails of beta-integrin via its PTB domain, allowing tensin to link actin filaments to integrin receptors. Tensin functions as a platform for assembly and disassembly of signaling complexes at focal adhesions by recruiting tyrosine-phosphorylated signaling molecules, and also by providing interaction sites for other proteins. In addition to its PTB domain, it contains a C-terminal SH2 domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. 129 -269980 cd13158 PTB_APPL Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called DCC-interacting protein (DIP)-13alpha) Phosphotyrosine-binding (PTB) domain. APPL interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. 135 -269981 cd13159 PTB_LDLRAP-mammal-like Low Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) in mammals and similar proteins Phosphotyrosine-binding (PTB) PH-like fold. The null mutations in the LDL receptor adaptor protein 1 (LDLRAP1) gene, which serves as an adaptor for LDLR endocytosis in the liver, causes autosomal recessive hypercholesterolemia (ARH). LDLRAP1 contains a single PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd contains mammals, insects, and sponges. 123 -269982 cd13160 PTB_LDLRAP_insect-like Low Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) in insects and similar proteins Phosphotyrosine-binding (PTB) PH-like fold. The null mutations in the LDL receptor adaptor protein 1 (LDLRAP1) gene, which serves as an adaptor for LDLR endocytosis in the liver, causes autosomal recessive hypercholesterolemia (ARH). LDLRAP1 contains a single PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd contains insects, ticks, sea urchins, and nematodes. 125 -269983 cd13161 PTB_TK_HMTK Tyrosine-specific kinase/HM-motif TK (TM/HMTK) Phosphotyrosine-binding (PTB) PH-like fold. TK kinases catalyzes the transfer of the terminal phosphate of ATP to a specific tyrosine residue on its target protein. TK kinases play significant roles in development and cell division. Tyrosine-protein kinases can be divided into two subfamilies: receptor tyrosine kinases, which have an intracellular tyrosine kinase domain, a transmembrane domain and an extracellular ligand-binding domain; and non-receptor (cytoplasmic) tyrosine kinases, which are soluble, cytoplasmic kinases. In HMTK the conserved His-Arg-Asp sequence within the catalytic loop is replaced by a His-Met sequence. TM/HMTK have are 2-3 N-terminal PTB domains. PTB domains in TKs are thought to function analogously to the membrane targeting (PH, myristoylation) and pTyr binding (SH2) domains of Src subgroup kinases. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 120 -269984 cd13162 PTB_RGS12 Regulator of G-protein signaling 12 Phosphotyrosine-binding (PTB) PH-like fold. RGS12 functions as a GTPase-activating protein and a transcriptional repressor. It is thought to play a role in tumorigenesis. RGS12 specifically interacts with guanine nucleotide-binding protein G(i), alpha-1 subunit and guanine nucleotide-binding protein G(k) subunit alpha. RGS proteins are multi-functional, GTPase-accelerating proteins that promote GTP hydrolysis by the alpha subunit of heterotrimeric G proteins, thereby inactivating the G protein and rapidly switching off G protein-coupled receptor signalling pathways. Upon activation by GPCRs, heterotrimeric G proteins exchange GDP for GTP, are released from the receptor, and dissociate into free, active GTP-bound alpha subunit and beta-gamma dimer, both of which activate downstream effectors. The response is terminated upon GTP hydrolysis by the alpha subunit, which can then bind the beta-gamma dimer and the receptor. RGS proteins markedly reduce the lifespan of GTP-bound alpha subunits by stabilizing the G protein transition state. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 131 -269985 cd13163 PTB_ICAP1 Integrin beta-1-binding protein 1 Phosphotyrosine-binding (PTB) PH-like fold. ICAP1 (also called Integrin cytoplasmic domain-associated protein 1) binds specifically to the beta1 integrin subunit cytoplasmic domain and the cerebral cavernous malformation (CCM) protein CCM1. It regulates beta1 integrin-dependent cell migration by affecting the pattern of focal adhesion formation. ICAP1 recruits CCM1 to the cell membrane and activates CCM1 by changing its conformation. Since CCM1 plays role in cardiovascular development, it is hypothesized ICAP1 is involved in vascular differentiation. ICAP-1 has an N-terminal domain that rich in serine and threonine and a C-terminal PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 129 -241318 cd13164 PTB_DOK4_DOK5_DOK6 Downstream of tyrosine kinase 4, 5, and 6 proteins phosphotyrosine-binding domain (PTBi). The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. 103 -269986 cd13165 PTB_DOK7 Downstream of tyrosine kinase 7 phosphotyrosine-binding domain (PTBi). The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. 101 -269987 cd13166 PTB_CCM2 Cerebral cavernous malformation 2 FERM domain C-lobe. CCM2 (also called malcavernin; C7orf22/chromosome 7 open reading frame 22; OSM) along with CCM1 and CCM3 constitutes a set of proteins which when mutated are responsible for cerebral cavernous malformations, an autosomal dominant neurovascular disease characterized by cerebral hemorrhages and vascular malformations in the central nervous system. CCM2 plays many functional roles. CCM2 functions as a scaffold involved in small GTPase Rac-dependent p38 mitogen-activated protein kinase (MAPK) activation when the cell is under hyperosmotic stress. It associates with CCM1 in the signalling cascades that regulate vascular integrity and participates in HEG1 (the transmembrane receptor heart of glass 1) mediated endothelial cell junctions. CCM proteins also inhibit the activation of small GTPase RhoA and its downstream effector Rho kinase (ROCK) to limit vascular permeability. CCM2 mediates TrkA-dependent cell death via its N-terminal PTB domain in pediatric neuroblastic tumours. CCM2 possesses an N-terminal PTB domain and a C-terminal Karet domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 193 -269988 cd13167 PTB_P-CLI1 PTB-containing, cubilin and LRP1-interacting protein Phosphotyrosine-binding (PTB) PH-like fold. P-CLI1 (also called Phosphotyrosine interaction domain-containing protein 1) increases proliferation of preadipocytes without affecting adipocytic differentiation. It forms a complex with PID1/PCLI1, LRP1 and CUBNI. It is found in subcutaneous fat, heart, skeletal muscle, brain, colon, thymus, spleen, kidney, liver, small intestine, placenta, lung and peripheral blood leukocyte. P-CLI1 contains a single PTB domain. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. 139 -269989 cd13168 PTB_LOC417372 uncharacterized protein LOC417372 Phosphotyrosine-binding (PTB) PH-like fold. The function of LOC417372 and its related proteins are unknown to date. Members here contain a N-terminal RUN domain, followed by a PDZ domain, and a C-terminal PTB domain. The RUN domain is involved in Ras-like GTPase signaling. The PDZ domain (also called DHR/Dlg homologous region or GLGF after its conserved sequence motif) binds C-terminal polypeptides, internal (non-C-terminal) polypeptides, and lipids. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup. 125 -269990 cd13169 RanBD_NUP50_plant Ran-binding protein 2, repeat 1. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP#importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The first RanBD2 is present in this hierarchy. 117 -269991 cd13170 RanBD_NUP50 Nucleoporin 50 Ran-binding domain. NUP50 acts as a cofactor for the importin-alpha:importin-beta heterodimer, which allows for transportation of many nuclear-targeted proteins through nuclear pore complexes. It is thought to function primarily at the terminal stages of nuclear protein import to coordinate import complex disassembly and importin recycling. NUP50 is composed of a N-terminal NUP50 domain which binds the C-terminus of importin-beta, a central domain which binds importin-beta, and a C-terminal RanBD which binds importin-beta through Ran-GTP. NUP50:importin-alpha then binds cargo and can stimulate nuclear import. The N-terminal domain of NUP50 is also able to displace nuclear localization signals from importin-alpha. NUP50 interacts with cyclin-dependent kinase inhibitor 1B which binds to cyclin E-CDK2 or cyclin D-CDK4 complexes and prevents its activation, thereby controling the cell cycle progression at G1. Fungal Nup2 transiently associates with nuclear pore complexes (NPCs) and when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity (BA). Nup2 and the Ran guanylyl-nucleotide exchange factor, Prp20, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization. Nup60p, the nup responsible for anchoring Nup2 and the Mlp proteins to the NPC is required for Nup2-dependent BA. Nup2 contains an N-terminal Nup50 family domain and a C-terminal RanBD. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. 111 -269992 cd13171 RanBD1_RanBP2_insect-like Ran-binding protein 2, Ran binding domain repeat 1. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include insects and nematodes. RanBD repeat 1 is present in this hierarchy. 117 -269993 cd13172 RanBD2_RanBP2_insect-like Ran-binding protein 2, Ran binding domain repeat 2. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include insects and nematodes. RanBD repeat 2 is present in this hierarchy. 118 -269994 cd13173 RanBD3_RanBP2_insect-like Ran-binding protein 2, Ran binding domain repeat 3. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include insects and nematodes. RanBD repeat 3 is present in this hierarchy. 115 -269995 cd13174 RanBD4_RanBP2_insect-like Ran-binding protein 2, Ran binding domain repeat 4. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include insects and nematodes. RanBD repeat 4 is present in this hierarchy. 118 -269996 cd13175 RanBD5_RanBP2_insect-like Ran-binding protein 2, Ran binding domain repeat 5. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include insects and nematodes. RanBD repeat 5 is present in this hierarchy. 114 -269997 cd13176 RanBD_RanBP2-like Ran-binding protein 2, Ran binding domains. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include human, chicken, frog, tunicates, sea urchins, ticks, sea anemones, and sponges. RanBD repeats 1 and 3 are present in this hierarchy. 117 -269998 cd13177 RanBD2_RanBP2-like Ran-binding protein 2, Ran binding domain repeat 2. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include human, chicken, frog, tunicates, sea urchins, ticks, sea anemones, and sponges. RanBD repeat 2 is present in this hierarchy. 117 -269999 cd13178 RanBD4_RanBP2-like Ran-binding protein 2, Ran binding domain repeat 4. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include human, chicken, frog, tunicates, sea urchins, ticks, sea anemones, and sponges. RanBD repeat 4 is present in this hierarchy. 117 -270000 cd13179 RanBD_RanBP1 Ran-binding domain. RanBP1 interacts specifically with GTP-charged Ran. RanBP1 does not activate GTPase activity of Ran, but does markedly increase GTP hydrolysis by the RanGTPase-activating protein (RanGAP1). In both mammalian cells and in yeast, RanBP1 acts as a negative regulator of Regulator of chromosome condensation 1 (RCC1) by inhibiting RCC1-stimulated guanine nucleotide release from Ran. In addition to Ran, RanBP1 has been shown to interact with Exportin-1 and Importin subunit beta-1 which docks the NPC at the cytoplasmic side of the nuclear pore complex. RabBP1 contains a single RanBD. The RanBD is present in RanBD1, RanBD2, RanBD3, Nuc2, and Nuc50. Most of these proteins have a single RanBD, with the exception of RanBD2 which has 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. The Ran-binding domain is found in multiple copies in Nuclear pore complex proteins. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. 136 -270001 cd13180 RanBD_RanBP3 Ran-binding protein 3 Ran-binding domain. RanBP3, a Ran-interacting nuclear protein, unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, acts as a CRM1 cofactor, enhancing nuclear export signal (NES) export by stabilizing the export complex in the nucleus. CRM1/Exportin1 is responsible for exporting many proteins and ribonucleoproteins from the nucleus to the cytosol. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. RanBP3 contains a N-terminal nuclear localization signal (NLS), 2 FxFG motifs, and a single RanBD. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. 113 -270002 cd13181 RanBD_NUP2 Nucleoporin 2 Ran-binding domain. Yeast protein Nup2 transiently associates with Nuclear pore complexes (NPCs) and when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity (BA). Nup2 and the Ran guanylyl-nucleotide exchange factor, Prp20, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization. Nup60p, the nup responsible for anchoring Nup2 and the Mlp proteins to the NPC is required for Nup2-dependent BA. Nup2 contains an N-terminal Nup50 family domain and a C-terminal RanBD. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. 115 -270003 cd13182 EVH1-like_Dcp1 Decapping enzyme EVH1-like domain. Dcp1 is a small protein containing an EVH1 domain. The Dcp1-Dcp2 complex plays a critical step in mRNA degradation with the removal of the 50 cap structure. Dcp1 stimulates the activity of Dcp2 by promoting and/or stabilizing the closed complex. The interface of Dcp1 and Dcp2 is not fully conserved and in higher eukaryotes it requires an additional factor. The proline-rich sequence (PRS)-binding sites in Dcp1p indicates that it belongs to a novel class of EVH1 domains. Dcp1 has 2 prominent sites,one required for the function of the Dcp1p-Dcp2p complex, and the other, the PRS-binding site of EVH1 domains, a binding site for decapping regulatory proteins. It also has a conserved hydrophobic patch is shown to be critical for decapping. The EVH1 domains are part of the PH domain superamily. 116 -270004 cd13183 FERM_C_FRMPD1_FRMPD3_FRMPD4 FERM domain C-lobe of FERM and PDZ domain containing proteins 1, 3, and 4 (FRMPD1, 3, 4). The function of FRMPD1, FRMPD3, and FRMPD4 is unknown at present. These proteins contain an N-terminal PDZ (post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) domain and a C-terminal FERM domain. PDZ (also known as DHR (Dlg homologous region) or GLGF (glycine-leucine-glycine-phenylalanine) domains) help anchor transmembrane proteins to the cytoskeleton and hold together signaling complexes. PDZ domains bind to a short region of the C-terminus of other specific proteins. The FERM domain is composed of three subdomains: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3), which form a clover leaf fold. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 105 -270005 cd13184 FERM_C_4_1_family FERM domain C-lobe of Protein 4.1 family. The protein 4.1 family includes four well-defined members: erythroid protein 4.1 (4.1R), the best known and characterized member, 4.1G (general), 4.1N (neuronal), and 4.1 B (brain). The less well understood 4.1O/FRMD3 is not a true member of this family and is not included in this hierarchy. Besides three highly conserved domains, FERM, SAB (spectrin and actin binding domain) and CTD (C-terminal domain), the proteins from this family contain several unique domains: U1, U2 and U3. FERM domains like other members of the FERM domain superfamily have a cloverleaf architecture with three distinct lobes: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The brain is a particularly rich source of protein 4.1 isoforms. The various 4.1R, 4.1G, 4.1N, and 4.1B mRNAs are all expressed in distinct patterns within the brain. It is likely that 4.1 proteins play important functional roles in the brain including motor coordination and spatial learning, postmitotic differentiation, and synaptic architecture and function. In addition they are found in nonerythroid, nonneuronal cells where they may play a general structural role in nuclear architecture and/or may interact with splicing factors. The FERM C domain is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 94 -270006 cd13185 FERM_C_FRMD1_FRMD6 FERM domain C-lobe of FERM domain containing 1 and 6 proteins. FRMD6 (also called willin and hEx/human expanded) is localized throughout the cytoplasm or along the plasma membrane. The Drosophilla protein Ex is a regulator of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway, a signaling pathway that plays a pivotal role in organ size control and is tumor suppression by restricting proliferation and promoting apoptosis. Surprisingly, hEx is thought to function independently of the Hippo pathway. Instead it is hypothesized that hEx inhibits progression through the S phase of the cell cycle by upregulating p21(Cip1) and downregulating Cyclin A. It is also implicated in the progression of Alzheimer disease. Not much is known about FRMD1 to date. Both FRMD1 and FRMD6 contains a single FERM domain which has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe is a member of the PH superfamily. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 107 -270007 cd13186 FERM_C_NBL4_NBL5 FERM domain C-lobe of Novel band 4.1-like protein 4 and 5 (NBL4 and 5). NBL4 (also called Erythrocyte protein band 4.1-like 4; Epb4 1l4) plays a role the beta-catenin/Tcf signaling pathway and is thought to be involved in establishing the cell polarity or proliferation. NBL4 may be also involved in adhesion, in cell motility and/or in cell-to-cell communication. No role for NBL5 has been proposed to date. Both NBL4 and NBL5 contain a N-terminal FERM domain which has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe is a member of the PH superfamily. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 92 -270008 cd13187 FERM_C_PTPH13 FERM domain C-lobe of Protein tyrosine phosphatase non-receptor 13 (PTPH13). There are many functions of PTPN13 (also called PTPL1, PTP-BAS, hPTP1E, FAP1, or PTPL1). Mice lacking PTPN13 activity have abnormal regulation of signal transducer and activator of transcription signaling in their T cells, mild impairment of motor nerve repair, and a significant reduction in the growth of retinal glia cultures. It also plays a role in adipocyte differentiation. PTPN13 contains a kinase non-catalytic C-lobe domain (KIND), a FERM domain with two potential phosphatidylinositol 4,5-biphosphate [PtdIns(4,5)P2]-binding motifs, 5 PDZ domains, and a carboxy-terminal catalytic domain. There is an nteraction between the FERM domain of PTPL1 and PtdIns(4,5)P2 which is thought to regulate the membrane localization of PTPN13. PDZ are protein/protein interaction domains so there is the potential for numerous partners that can actively participate in the regulation of its phosphatase activity or can permit direct or indirect recruitment of tyrosine phosphorylated PTPL1 substrates. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 103 -270009 cd13188 FERM_C_PTPN14_PTPN21 FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 14 and 21 (PTPN14 and 21). This CD contains PTP members: pez/PTPN14 and PTPN21. A number of mutations in Pez have been shown to be associated with breast and colorectal cancer. The PTPN protein family belong to larger family of PTPs. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. The members are composed of a N-terminal FERM domain and a C-terminal PTP catalytic domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. Like most other ERM members they have a phosphoinositide-binding site in their FERM domain. The FERM C domain is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 91 -270010 cd13189 FERM_C_PTPN4_PTPN3_like FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 3 and 4 (PTPN4 and PTPN3). PTPN4 (also called PTPMEG, protein tyrosine phosphatase, megakaryocyte) is a cytoplasmic protein-tyrosine phosphatase (PTP) thought to play a role in cerebellar function. PTPMEG-knockout mice have impaired memory formation and cerebellar long-term depression. PTPN3/PTPH1 is a membrane-associated PTP that is implicated in regulating tyrosine phosphorylation of growth factor receptors, p97 VCP (valosin-containing protein, or Cdc48 in Saccharomyces cerevisiae), and HBV (Hepatitis B Virus) gene expression; it is mutated in a subset of colon cancers. PTPMEG and PTPN3/PTPH1 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. PTP1/Tyrosine-protein phosphatase 1 from nematodes and a FERM_C repeat 1 from Tetraodon nigroviridis are also included in this cd. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 95 -270011 cd13190 FERM_C_FAK1 FERM domain C-lobe of Focal Adhesion Kinase 1 and 2. FAK1 (also called FRNK/Focal adhesion kinase-related nonkinase; p125FAK/pp125FAK;PTK2/Protein-tyrosine kinase 2 protein tyrosine kinase 2 (PTK2) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. It has been implicated in diverse cellular roles including cell locomotion, mitogen response and cell survival. The N-terminal region of FAK1 contains a FERM domain, a linker, a kinase domain, and a C-terminal FRNK (FAK-related-non-kinase) domain. Three subdomains of FERM: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3), form a cloverleaf fold, similar to those of known FERM structures despite the low sequence conservation. The C-lobe/F3 within the FERM domain is part of the PH domain family. The phosphoinositide-binding site found in ERM family proteins is not present in the FERM domain of FAK1. The adjacent Src SH3 and SH2 binding sites in the linker of FAK1 associates with the F3 and F1 lobes and are thought to be involved in regulation. The FERM domain of FAK1 can inhibit enzymatic activity and repress FAK signaling. In an inactive state of FAK1, the FERM domain is thought to interact with the catalytic domain of FAK1 to repress its activity. Upon activation this interaction is disrupted and its kinase activity restored. The FRNK domain is thought to function as a negative regulator of kinase activity. The C-lobe/F3 is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 111 -270012 cd13191 FERM_C_FRMD4A_FRMD4B FERM domain C-lobe of FERM domain-containing protein 4A and 4B (FRMD4A and 4B). FRMD4A is part of the Par-3/FRMD4A/cytohesin-1 complex that activates Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization. The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables. When primordial AJs are formed, Par-3 recruits scaffolding protein FRMD4A which connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. FRMD4B (also called GRP1-binding protein, GRSP1) is a novel member of GRP1 signaling complexes that are recruited to plasma membrane ruffles in response to insulin receptor signaling. The GRSP1/FRMD4B protein contains a FERM protein domain as well as two coiled coil domains and may function as a scaffolding protein. GRP1 and GRSP1 interact through the coiled coil domains in the two proteins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 113 -270013 cd13192 FERM_C_FRMD3_FRMD5 FERM domain C-lobe of FERM domain-containing protein 3 and 5 (FRMD3 and 5). FRMD3 (also called Band 4.1-like protein 4O/4.1O though it is not a true member of that family) is a novel putative tumor suppressor gene that is implicated in the origin and progression of lung cancer. In humans there are 5 isoforms that are produced by alternative splicing. Less is known about FRMD5, though there are 2 isoforms of the human protein are produced by alternative splicing. Both FRMD3 and FRMD5 contain a N-terminal FERM domain, followed by a FERM adjacent (FA) domain, and 4.1 protein C-terminal domain (CTD). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 105 -270014 cd13193 FERM_C_FARP1-like FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins. Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FRMD7(FERM domain containing 7). FARP1 and FARP2 are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. These members are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. Other members in this family do not contain the DH domains such as the Human FERM domain containing protein 7 and Caenorhabditis elegans CFRM3, both of which have unknown functions. They contain an N-terminal FERM domain, a PH domain, followed by a FA (FERM adjacent) domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 122 -270015 cd13194 FERM_C_ERM FERM domain C-lobe/F3 of the ERM family. The ERM family includes ezrin, radixin, moesin and merlin. They are composed of a N-terminal FERM (ERM) domain (also called N-ERMAD (N-terminal ERM association domain)), a coiled coil region (CRR), and a C-terminal domain CERMAD (C-terminal ERM association domain) which has an F-actin-binding site (ABD). Two actin-binding sites have been identified in the middle and N-terminal domains. Merlin is structurally similar to the ERM proteins, but instead of an actin-binding domain (ABD), it contains a C-terminal domain (CTD), just like the proteins from the 4.1 family. Activated ezrin, radixin and moesin are thought to be involved in the linking of actin filaments to CD43, CD44, ICAM1-3 cell adhesion molecules, various membrane channels and receptors, such as the Na+/H+ exchanger-3 (NHE3), cystic fibrosis transmembrane conductance regulator (CFTR), and the beta2-adrenergic receptor. The ERM proteins exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain of ERM is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 97 -270016 cd13195 FERM_C_MYLIP_IDOL FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP; also called inducible degrader of the LDL receptor, IDOL). MYLIP/IDOL is a regulator of the LDL receptor (LDLR) pathway via the nuclear receptor liver X receptor (LXR). In response to cellular cholesterol loading, the activation of LXR leads to the induction of MYLIP expression. MYLIP stimulates ubiquitination of the LDLR on its cytoplasmic tail, directing its degradation. The LXR-MYLIP-LDLR pathway provides a complementary pathway to sterol regulatory element-binding proteins for the feedback inhibition of cholesterol uptake. MYLIP has an N-terminal FERM domain and in some cases a C-terminal RING domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 111 -275394 cd13196 FERM_C_JAK FERM domain C-lobe of Janus kinase (JAK). JAK (also called Just Another Kinase) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. The JAK family in mammals consists of 4 members: JAK1, JAK2, JAK3 and TYK2. JAKs are composed of seven JAK homology (JH) domains (JH1-JH7) . The C-terminal JH1 domain is the main catalytic domain, followed by JH2, which is often referred to as a pseudokinase domain, followed by JH3-JH4 which is homologous to the SH2 domain, and lastly JH5-JH7 which is a FERM domain. Named after Janus, the two-faced Roman god of doorways, JAKs possess two near-identical phosphate-transferring domains; one which displays the kinase activity (JH1), while the other negatively regulates the kinase activity of the first (JH2). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 109 -270018 cd13197 FERM_C_CCM1 FERM domain C-lobe of Cerebral cavernous malformation 1. CCM1 (also called KRIT-1/Krev interaction trapped 1;ankyrin repeat-containing protein Krit1; CAM), a Rap1-binding protein, is expressed in endothelial cells where it is present in cell-cell junctions and associated with junctional proteins. Together with CCM2/MGC4607 and CCM3/PDCD10, KRIT1 constitutes a set of proteins, mutations of which are found in cerebral cavernous malformations which are characterized by cerebral hemorrhages and vascular malformations in the central nervous system. KRIT-1 possesses four ankyrin repeats, a FERM domain, and multiple NPXY sequences, one of which is essential for integrin cytoplasmic domain-associated protein-1alpha (ICAP1alpha) binding and all of which mediate binding of CCM2. KRIT-1 localization is mediated by its FERM domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 100 -270019 cd13198 FERM_C1_MyoVII FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7). MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 99 -270020 cd13199 FERM_C2_MyoVII FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7). MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 96 -270021 cd13200 FERM_C_KCBP FERM domain C-lobe of Kinesin-like calmodulin binding protein. KCBPs (also called KIPK/Kinesin-like Calmodulin-Binding Protein-Interacting Protein Kinase), a member of the Kinesin-14 family, is a C-terminal microtubule motor with three unique domains including a myosin tail homology region 4 (MyTH4), a talin-like domain, and a calmodulin-binding domain (CBD). Binding of the Ca2+-activated calmodulin to KCBP causes the motor to dissociate from microtubules. The microtubule binding of KCBP is controlled by the calcium binding protein KIC containing a single EF-hand motif. KCBPs are unique to land plants and green algae. The MyTH4 and talin-like domains are not found in other kinesins, while the CBD domain is also only found in Strongylocentrotus purpuratus kinesin-C (SpKinC). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 109 -270022 cd13201 FERM_C_MyoXV FERM domain C-lobe of Myosin XV (MyoXV/Myo15). MyoXV, a MyTH-FERM myosin, are actin-based motor proteins essential for a variety of biological processes in actin cytoskeleton function. Specifically MyoXV functions in the actin organization in hair cells of the organ of Corti. Mutations in Human MyoXVa causes non-syndromic deafness, DFNB3 and the mouse shaker-2 mutation. MyoXV consists of a N-terminal motor/head region, a neck made of 1-3 IQ motifs, and a tail that consists of either a myosin tail homology 4 (MyTH4) domains, followed by an SH3 domain, and a MyTH-FERM domains as in rat Myo15 or two MyTH-FERM domains separated by a SH3 domain as in human Myo15A. The MyTH-FERM domains are thought to mediate dimerization and binding to other proteins or cargo. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 101 -270023 cd13202 FERM_C_MyoX FERM domain C-lobe of Myosin X (MyoX, Myo10). MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The MyoX FERM domain binds to the NPXY motif of several beta-integrins, a key family of cell surface receptors that are involved in cell adhesion and migration. In addition the FERM domain binds to the cytoplasmic domains of the netrin receptors DCC (deleted in colorectal cancer) and neogenin. The FERM domain also forms a supramodule with its MyTH4 domain which binds to the negatively charged E-hook region in the tails of alpha- and beta-tubulin forming a proposed motorized link between actin filaments and microtubules. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 90 -270024 cd13203 FERM_C1_myosin_like FERM domain C-lobe, repeat 1, of Myosin-like proteins. These myosin-like proteins are unidentified though they are sequence similar to myosin 1/myo1, myosin 7/myoVII, and myosin 10/myoX. These myosin-like proteins contain an N-terminal motor/head region and a C-terminal tail consisting of two myosin tail homology 4 (MyTH4) and twos FERM domains. In myoX the FERM domain forms a supramodule with its MyTH4 domain which binds to the negatively charged E-hook region in the tails of alpha- and beta-tubulin forming a proposed motorized link between actin filaments and microtubules and a similar thing might happen in these myosins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The first FERM_N repeat is present in this hierarchy. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 97 -270025 cd13204 FERM_C2_myosin_like FERM domain C-lobe, repeat 2, of Myosin-like proteins. These myosin-like proteins are unidentified though they are sequence similar to myosin 1/myo1, myosin 7/myoVII, and myosin 10/myoX. These myosin-like proteins contain an N-terminal motor/head region and a C-terminal tail consisting of two myosin tail homology 4 (MyTH4) and twos FERM domains. In myoX the FERM domain forms a supramodule with its MyTH4 domain which binds to the negatively charged E-hook region in the tails of alpha- and beta-tubulin forming a proposed motorized link between actin filaments and microtubules and a similar thing might happen in these myosins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The second FERM_N repeat is present in this hierarchy. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 93 -270026 cd13205 FERM_C_fermitin FERM domain C-lobe of the Fermitin family. Fermitin functions as a mediator of integrin inside-out signalling. The recruitment of Fermitin proteins and Talin to the membrane mediates the terminal event of integrin signalling, via interaction with integrin beta subunits. Fermatin has FERM domain interrupted with a pleckstrin homology (PH) domain. Fermitin family homologs (Fermt1, 2, and 3, also known as Kindlins) are each encoded by a different gene. In mammalian studies, Fermt1 is generally expressed in epithelial cells, Fermt2 is expressed inmuscle tissues, and Fermt3 is expressed in hematopoietic lineages. Specifically Fermt2 is expressed in smooth and striated muscle tissues in mice and in the somites (a trunk muscle precursor) and neural crest in Xenopus embryos. As such it has been proposed that Fermt2 plays a role in cardiomyocyte and neural crest differentiation. Expression of mammalian Fermt3 is associated with hematopoietic lineages: the anterior ventral blood islands, vitelline veins, and early myeloid cells. In Xenopus embryos this expression, also include the notochord and cement gland. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). This cd is not included in the C-lobe hierarchy based on its position in the tree. One thing to note is that unlike the other members of the C-lobe hierarchy it contains 2 FERM M domains which might also reflect a difference in its evolutionary history. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 91 -241360 cd13206 FERM_C-lobe_PLEKHH1_PLEKHH2 FERM domain C-lobe of Pleckstrin homology domain-containing family H. PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 100 -275395 cd13207 FERM-like_C_SNX Atypical FERM-like domain C-lobe of Sorting nexin family. Sorting nexins function in regulating recycling from endosomes to the cell surface. SNX17, SNX27, and SNX31 contain a N-terminal PX domain, a FERM-like domain, and a unique C-terminal region. All three proteins are able to bind the Ras GTPase through their FERM-like domains. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. These proteins participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades. The typical FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. FERM domains are found in cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 116 -275396 cd13208 PH-GRAM_MTMR5_MTMR13 Myotubularian (MTM) related 5 and 13 proteins (MTMR5 and MTMR13) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR5 is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It lacks several amino acids in the dsPTPase catalytic pocket which renders it catalytically inactive as a phosphatase. MTMR5 is the most well-studied inactive member of this family and has been implicated in cellular growth control and oncogenic transformation. MTMR13 is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It contains a Leu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. MTMR13 has high sequence similarity to MTMR5 and has recently been shown to be a second gene mutated in type 4B Charcot-Marie-Tooth syndrome. Both MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Although the majority of the sequences are MTMR 5 and 13, this cd also contains MTM5 nematode sequences. 120 -275397 cd13209 PH-GRAM_MTMR3_MTMR4 Myotubularian (MTM) related 3 and 4 proteins (MTMR3 and MTMR4) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR3 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR3 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein can self-associate and also form heteromers with MTMR4. MTMR4, a member of the myotubularin dual specificity protein phosphatase gene family. MTMR4 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein form heteromers with MTMR3. Both MTMR3 and MTMR4 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal lipid-binding FYVE domain which binds phosphotidylinositol-3-phosphate. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 94 -270030 cd13210 PH-GRAM_MTMR6-like Myotubularian (MTM) related (MTMR) 7 and 8 proteins Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR6, MTMR7, and MRMR8 are all member of the myotubularin dual specificity protein phosphatase gene family. They bind to phosphoinositide lipids through its PH-GRAM domain. These proteins also interact with each other as well as MTMR9. They contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The lipid-binding FYVE domain has been shown to bind phosphotidylinositol-3-phosphate. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 98 -275398 cd13211 PH-GRAM_MTMR9 Myotubularian (MTM) related 9 protein (MTMR9) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR9 is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It contains a Gly residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. MTMR9 contains an N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an inactive PTP domain, a SET interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 99 -275399 cd13212 PH-GRAM_MTMR10-like Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR10, MTMR11, and MTMR12 are catalytically inactive phosphatases that play a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. They contains a Glu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. They contains an N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an inactive PTP domain, a SET interaction domain, and a C-terminal coiled-coil domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. 125 -275400 cd13213 PH-GRAM_MTMR14 Myotubularian (MTM) related 14 protein (MTMR14) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR14 is a member of the myotubularin protein phosphatase gene family. MTMR14 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. MTMR14 plays a role in the regulation of autophagy and mutations in MTMR14 result in autosomal dominant centronuclear myopathy. MTMR14 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain (SID), a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain (SID), and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 116 -275401 cd13214 PH-GRAM_WBP2 WW binding protein 2 (WB2) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. WBP2 plays a number of roles including: acting as a tyrosine kinase substrate, activation of estrogen receptor alpha (ERalpha)/progesterone receptor (PR) transcription, and playing a role in breast cancer. WBP2 contain a N-terminal PH-GRAM domain and a C-terminal WWbp domain. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The WWbp domain is characterized by several short PY and PT-like motifs of the PPPPY form and binds to WW domains. WW domains contain two highly conserved tryptophans that are spaced 20-23 residues apart. They bind proline-rich peptide motifs [AP]-P-P-[AP]-Y, and/or phosphoserine- phosphothreonine-containing motifs. 103 -275402 cd13215 PH-GRAM1_AGT26 Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1. ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 116 -275403 cd13216 PH-GRAM2_AGT26 Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 2. ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 93 -275404 cd13217 PH-GRAM1_TCB1D8_TCB1D9_family TCB1D8 and TCB1D9 family Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 1. TBC1D8, TBC1D8B, TBC1D9 and TBC1D9B may act as a GTPase-activating proteins for Rab family protein(s). They all contain an N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the first repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 99 -275405 cd13218 PH-GRAM2_TCB1D8_TCB1D9_family TCB1D8 and TCB1D9 family Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 2. TBC1D8, TBC1D8B, TBC1D9 and TBC1D9B may act as a GTPase-activating proteins for Rab family protein(s). They all contain an N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the second repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 96 -270039 cd13219 PH-GRAM_C2-GRAM C2 and GRAM domain-containing protein Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. C2GRAM contains two N-terminal C2 domains followed by a single PH-GRAM domain. Since it contains both of these domains it is assumed that this gene cross-links both calcium and phosphoinositide signaling pathways. In general he C2 domain is involved in binding phospholipids in a calcium dependent manner or calcium independent manner. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 111 -275406 cd13220 PH-GRAM_GRAMDC GRAM domain-containing protein (GRAMDC) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. The GRAMDC proteins are membrane proteins. Nothing is known about its function. Members include: GRAMDC1A, GRAMDC1B, GRAMDC1C, GRAMDC2, GRAMDC3, GRAMDC4, and GRAMDC-like proteins. All of the members, except for GRAMDC4 are included in this hierarchy. Each contains a single PH-GRAM domain at their N-terminus. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 94 -270041 cd13221 PH-GRAM_GRAMDC4 GRAM domain-containing protein 4 (GRAMDC4) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. GRAMDC4 is a membrane protein. Nothing is known about its function. Paralogs include: GRAMDC1A, GRAMDC1B, GRAMDC1C, GRAMDC2, GRAMDC3, and GRAMDC-like proteins. It contains a single PH-GRAM domain at its N-terminus. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 104 -270042 cd13222 PH-GRAM_GEM GLABRA 2 expression modulator (GEM) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. GEM interacts with CDT1, a pre-replication complex component that is involved in DNA replication, and with TTG1 (Transparent Testa GLABRA 1), a transcriptional regulator of epidermal cell fate. GEM controls the level of histone H3K9 methylation at the promoters of the GLABRA 2 and CAPRICE (CPC) genes, which are essential for epidermis patterning. GEM also regulates cell division in different root cell types. GEM regulates proliferation-differentiation decisions by integrating DNA replication, cell division and transcriptional controls. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 109 -275407 cd13223 PH-GRAM_MTM-like Myotubularian 1 and related proteins Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase. MTM1, MTMR1, and MTMR2 are members of the myotubularin protein phosphatase gene family. They contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. In addition MTMR1 (Myotubularian related 1 protein) and MTMR2 (Myotubularian related 2 protein) contain a C-terminal PDZ domain. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 100 -270044 cd13224 PH_Net1 Neuroepithelial cell transforming 1 Pleckstrin homology (PH) domain. Net1 (also called ArhGEF8) is part of the family of Rho guanine nucleotide exchange factors. Members of this family activate Rho proteins by catalyzing the exchange of GDP for GTP. The protein encoded by this gene interacts with RhoA within the cell nucleus and may play a role in repairing DNA damage after ionizing radiation. Net1 binds to caspase activation and recruitment domain (CARD)- and membrane-associated guanylate kinase-like domain-containing (CARMA) proteins and regulates nuclear factor kB activation. Net1 contains a RhoGEF domain N-terminal to a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 135 -270045 cd13225 PH-like_bacteria Pleckstrin homology (PH)-like domains in bacteria (PHb). Pleckstrin homology (PH) domains were first identified in eukaryotic proteins. Recently PH-like domains have been identified in bacteria as well. These PHb form dome-shaped oligomeric rings with a conserved hydrophilic surface at the intersection of the beta-strands of adjacent protomers that likely mediates protein-protein interactions. It is now thought that the PH domain superfamily is more widespread than previous thought and appears to have existed before prokaryotes and eukaryotes diverged. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 95 -275408 cd13226 PH-GRAM-like_Eap45 Pleckstrin homology-like domain or GLUE (GRAM-like ubiquitin-binding in Eap45) domain of Eap45. ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Human/yeast ESCRT-I consists of Tsg101/Vps23, Vps28/Vps28, and a Vps37 homolog/Vps37. Human/yeast ESCRT-II is composed of EAP20/Vps25, EAP30/Vps22, and EAP45/Vps36. Yeast ESCRT-III consists Vps2, Vps20, Vps24, and Snf7 subunits. In contrast, there are three Human paralogs of Snf7 (hSnf7-1/CHMP4A, hSnf7-2/CHMP4B, and hSnf7-3/CHMP4C) and two paralogs of Vps2 (CHMP2A and CHMP2B). Yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36. The Vps36 subunit (ESCRT-II) binds ubiquitin using one of its two NZF zinc fingers in its N-terminal region. Human Vps36, EAP45, also binds ubiquitin despite having no NZF domain. Instead, mammalian ESCRT-II interacts with Ub through the Eap45 GLUE domain directly. While yeast Vps36 GLUE shows a preference for the singly phosphorylated PI(3)P, while Eap45 GLUE preferentially binds the triply phosphorylated phosphatidylinositol PI(3,4,5)P3. Structurally, Eap45 GLUE only has a PH-like fold since it lacks the secondary structure element corresponding to the 4 strand, unlike that of yeast Vps36 GLUE. ESCRT-II also interacts with ESCRT-III via a EAP20(Vps25)/CHMP6(Vps20) interaction. The interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 129 -275409 cd13227 PH-GRAM-like_Vps36 Pleckstrin homology-like domain or GLUE (GRAM-like ubiquitin-binding in Eap45) domain of Vps36. ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Yeast/human ESCRT-I consists of Vps23/Tsg101, Vps28/Vps28, and Vps37/Vps37 homolog. Yeast/human ESCRT-II is composed of Vps25/EAP20, Vps22/EAP30, and Vps36/EAP45. Yeast ESCRT-III consists Vps2, Vps20, Vps24, and Snf7 subunits. In contrast, there are three human paralogs of Snf7 (hSnf7-1/CHMP4A, hSnf7-2/CHMP4B, and hSnf7-3/CHMP4C) and two paralogs of Vps2 (CHMP2A and CHMP2B). Yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36. The Vps36 subunit (ESCRT-II) binds ubiquitin using one of its two NZF zinc fingers in its N-terminal region. Human Vps36, EAP45, also binds ubiquitin despite having no NZF domain. Instead, mammalian ESCRT-II interacts with Ub through the Eap45 GLUE domain itself. The yeast Vps36 GLUE has a complete PH domain, wherease Eap45 GLUE only has a PH-like fold since it lacks the secondary structure element corresponding to the 4 strand. ESCRT-II also interacts with ESCRT-III via a Vps25(EAP20)/Vps20(CHMP6) interaction. Structure 2CAY is missing this insertion that contains 2 NZF zinc fingers. It is a split PH domain, with a noncanonical lipid binding pocket that binds PI(3)P. The interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 119 -270048 cd13228 PHear_NECAP NECAP (adaptin-ear-binding coat-associated protein) Plextrin Homology (PH) fold with ear-like function (PHear) domain. NECAPs are alpha-ear-binding proteins that enrich on clathrin-coated vesicles (CCVs). NECAP 1 is expressed in brain and non-neuronal tissues and cells while NECAP 2 is ubiquitously expressed. The PH-like domain of NECAPs is a protein-binding interface that mimics the FxDxF motif binding properties of the alpha-ear and is called PHear (PH fold with ear-like function) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 120 -270049 cd13229 PH_TFIIH Transcription Factor II H (TFIIH) Pleckstrin homology (PH) domain. The transcription factor II H (TFIIH) is one of the general transcription factors (GTFs) known to be a target of the transactivation domain (TAD) of p53. Human TFIIH and its homologous yeast counterpart (factor b) are composed of ten subunits that can be divided into two groups, the core TFIIH (XPB/Ssl2, p62/Tfb1, p52/Tfb2, p44/Ssl1, p34/Tfb4, and TTDA/Tfb5 in human/yeast) and the CAK complex (cdk7/Kin28, cyclin H/Ccl1, and MAT1/Tfb3). These two complexes are linked by the XPD/Rad3 subunit. The helicase activities of XPB and XPD are essential to the formation of the open complex during transcription initiation and the kinase activity of cdk7 phosphorylates the C-terminal domain (CTD) of the RNA Pol II largest subunit, enabling RNA Pol II to progress from the initiation phase to the elongation phase of transcription. The PH domain of p62/Tfb1 has been shown to interact with herpes simplex virus protein 16 (VP16) TAD and the binding of p53 TAD is mediated by the TAD2 subdomain. TFIIE recruits TFIIH to complete the preinitiation complex (PIC) formation and regulates enzymatic activities of TFIIH. The PH domain of the human TFIIH p62 subunit binds to the C-terminal acidic (AC) domain of the human TFIIEalpha subunit. This interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 93 -270050 cd13230 PH1_SSRP1-like Structure Specific Recognition protein 1 (SSRP1) Pleckstrin homology (PH) domain, repeat 1. SSRP1 is a component of FACT (facilitator of chromatin transcription), an essential chromatin reorganizing factor. In yeast FACT (yFACT) is composed of three proteins: Spt16/Cdc68, Pob3, and Nhp6. In metazoans the Pob3 and Nhp6 orthologs are fused to form SSRP1/T160 in human and mouse, respectively. The middle domain of the Pob3 subunit (Pob3-M) has an unusual double pleckstrin homology (PH) architecture. yFACT interacts in a physiologically important way with the central single-strand DNA binding factor RPA to promote a step in DNA Replication. Coordinated function by yFACT and RPA is important during nucleosome deposition. These results support the model that the FACT family has an essential role in constructing nucleosomes during DNA replication, and suggest that RPA contributes to this process. Members of this cd are composed of the first PH-like repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 137 -270051 cd13231 PH2_SSRP1-like Structure Specific Recognition protein 1 (SSRP1) Pleckstrin homology (PH) domain, repeat 2. SSRP1 is a component of FACT (facilitator of chromatin transcription), an essential chromatin reorganizing factor. In yeast FACT (yFACT) is composed of three proteins: Spt16/Cdc68, Pob3, and Nhp6. In metazoans the Pob3 and Nhp6 orthologs are fused to form SSRP1/T160 in human and mouse, respectively.The middle domain of the Pob3 subunit (Pob3-M) has an unusual double pleckstrin homology (PH) architecture. yFACT interacts in a physiologically important way with the central single-strand DNA binding factor RPA to promote a step in DNA Replication. Coordinated function by yFACT and RPA is important during nucleosome deposition. These results support the model that the FACT family has an essential role in constructing nucleosomes during DNA replication, and suggest that RPA contributes to this process. Members of this cd are composed of the second PH-like repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -270052 cd13232 Ig-PH_SCAB1 Stomatal Closure Related Actin-Binding Protein 1 Pleckstrin homology-like domain. SCAB1 is an actin-binding protein that interacts with actin filaments and regulates stomatal movement. SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin (Ig) and PH (Ig-PH) domain. SCAB1 homologs are widely present, often in multiple copies (three in Arabidopsis), in plants including eudicots, monocots, ferns and mosses, but are not found in algae and non-plant species. The C-terminal PH domain binds weakly with inositol phosphates via an atypical basic surface patch. SCAB1 forms a dimeric structure via its coiled-coil domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 119 -270053 cd13233 PH_ARHGAP9-like Beta-spectrin pleckstrin homology (PH) domain. ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with RhoGAP domain. The ARHGAP members here all have a PH domain upstream of their C-terminal RhoGAP domain. Some have additional N-terminal SH3 and WW domains. The members here include: ARHGAP9, ARHGAP12, ARHGAP15, and ARHGAP27. ARHGAP27 and ARHGAP12 shared the common-domain structure, consisting of SH3, WW, PH, and RhoGAP domains. The PH domain of ArhGAP9 employs a non-canonical phosphoinositide binding mechanism, a variation of the spectrin- Ins(4,5)P2-binding mode, that gives rise to a unique PI binding profile, namely a preference for both PI(4,5)P2 and the PI 3-kinase products PI(3,4,5)P3 and PI(3,4)P2. This lipid binding mechanism is also employed by the PH domain of Tiam1 and Slm1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270054 cd13234 PHsplit_PLC_gamma Phospholipase C-gamma Split pleckstrin homology (PH) domain. PLC-gamma (PLCgamma) is activated by receptor and non-receptor tyrosine kinases due to the presence of its SH2 and SH3 domains. There are two main isoforms of PLC-gamma expressed in human specimens, PLC-gamma1 and PLC-gamma2. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. The split PH domain is present in this hierarchy. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270055 cd13235 PH2_FARP1-like FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2. Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 98 -270056 cd13236 PH2_FGD1-4 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270057 cd13237 PH2_FGD5_FGD6 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus. FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 91 -270058 cd13238 PH2_FGD4_insect-like FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 97 -270059 cd13239 PH_Obscurin Obscurin pleckstrin homology (PH) domain. Obscurin (also called Obscurin-RhoGEF; Obscurin-myosin light chain kinase/Obscurin-MLCK) is a giant muscle protein that is concentrated at the peripheries of Z-disks and M-lines. It binds small ankyrin I, a component of the sarcoplasmic reticulum (SR) membrane. It is associated with the contractile apparatus through binding with titin and sarcomeric myosin. It plays important roles in the organization and assembly of the myofibril and the SR. Obscurin has been observed as alternatively-spliced isoforms. The major isoform in sleletal muscle, approximately 800 kDa in size, is composed of many adhesion modules and signaling domains. It harbors 49 Ig and 2 FNIII repeats at the N-terminues, a complex middle region with additional Ig domains, an IQ motif, and a conserved SH3 domain near RhoGEF and PH domains, and a non-modular C-terminus with phosphorylation motifs. The obscurin gene also encodes two kinase domains, which are not part of the 800 kDa form of the protein, but is part of smaller spliced products that present in heart muscle. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -270060 cd13240 PH1_Kalirin_Trio_like Triple functional domain pleckstrin homology pleckstrin homology (PH) domain, repeat 1. RhoGEFs, Kalirin and Trio, the mammalian homologs of Drosophila Trio and Caenorhabditis elegans UNC-73 regulate a novel step in secretory granule maturation. Their signaling modulates the extent to which regulated cargo enter and remain in the regulated secretory pathway. This allows for fine tuning of peptides released by a single secretory cell type with impaired signaling leading to pathological states. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Kalirin and Trio are encoded by separate genes in mammals and by a single one in invertebrates. Kalirin and Trio share the same complex multidomain structure and display several splice variants. The longest Kalirin and Trio proteins have a Sec14 domain, a stretch of spectrin repeats, a RhoGEF(DH)/PH cassette (also called GEF1), an SH3 domain, a second RhoGEF(DH)/PH cassette (also called GEF2), a second SH3 domain, Ig/FNIII domains, and a kinase domain. The first RhoGEF(DH)/PH cassette catalyzes exchange on Rac1 and RhoG while the second RhoGEF(DH)/PH cassette is specific for RhoA. Kalirin and Trio are closely related to p63RhoGEF and have PH domains of similar function. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. 123 -270061 cd13241 PH2_Kalirin_Trio_p63RhoGEF p63RhoGEF pleckstrin homology (PH) domain, repeat 2. The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric G protein, Galphaq and linking Galphaq-coupled receptors (GPCRs) to the activation of RhoA. The Dbl(DH) and PH domains of p63RhoGEF interact with the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. Dbs is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a rhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Trio is a multidomain signaling protein that contains two RhoGEF(DH)-PH domains in tandem. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 140 -270062 cd13242 PH_puratrophin-1 Puratrophin-1 pleckstrin homology (PH) domain. Puratrophin-1 (also called Purkinje cell atrophy-associated protein 1 or PLEKHG4/Pleckstrin homology domain-containing family G member 4) contains a spectrin repeat, a RhoGEF (DH) domain, and a PH domain. It is thought to function in intracellular signaling and cytoskeleton dynamics at the Golgi. Puratrophin-1 is expressed in kidney, Leydig cells in the testis, epithelial cells in the prostate gland and Langerhans islet in the pancreas. A single nucleotide substitution in the puratrophin-1 gene were once thought to result in autosomal dominant cerebellar ataxia (ADCA), but now it has been demonstrated that this ataxia is a result of defects in the BEAN gene. Puratrophin contains a domain architecture similar to that of Dbl family members Dbs and Trio. Dbs is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a RhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Trio is a multidomain signaling protein that contains two RhoGEF(DH)-PH domains in tandem. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 136 -270063 cd13243 PH_PLEKHG1_G2_G3 Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain. PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 147 -270064 cd13244 PH_PLEKHG5_G6 Pleckstrin homology domain-containing family G member 5 and 6 pleckstrin homology (PH) domain. PLEKHG5 has a RhoGEF DH/double-homology domain in tandem with a PH domain which is involved in phospholipid binding. PLEKHG5 activates the nuclear factor kappa B (NFKB1) signaling pathway. Mutations in PLEKHG5 are associated with autosomal recessive distal spinal muscular atrophy. PLEKHG6 (also called MyoGEF) has no known function to date. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -270065 cd13245 PH_PLEKHG7 Pleckstrin homology domain-containing family G member 7 pleckstrin homology (PH) domain. PLEKHG7 has a RhoGEF DH/double-homology domain in tandem with a PH domain which is involved in phospholipid binding. PLEKHG7 is proposed to functions as a guanine nucleotide exchange factor (GEF) and is involved in the regulation of Rho protein signal transduction. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 128 -270066 cd13246 PH_Scd1 Shape and Conjugation Deficiency 1 Pleckstrin homology (PH) domain. Fission yeast Scd1 is an exchange factor for Cdc42 and an effector of Ras1, the homolog of the human H-Ras. Scd2/Bem1 mediates Cdc42 activation by binding to Scd1/Cdc24 and to Cdc42. Ras1 regulates Scd1/Cdc24/Ral1, which is a putative guanine nucleotide exchange factor for Cdc42, a member of the Rho family of Ras-like proteins. Cdc42 then activates the Shk1/Orb2 protein kinase. Scd1 interacts with Klp5 and Klp6 kinesins to mediate cytokinesis. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 148 -270067 cd13247 BAR-PH_APPL Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain. APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -270068 cd13248 PH_PEPP1_2_3 Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain. PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 104 -270069 cd13249 PH_rhotekin2 Anillin Pleckstrin homology (PH) domain. Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 111 -270070 cd13250 PH_ACAP ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain. ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 98 -270071 cd13251 PH_ASAP ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain. ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -270072 cd13252 PH1_ADAP ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1. ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 109 -270073 cd13253 PH1_ARAP ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1. ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 94 -270074 cd13254 PH2_ARAP ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2. ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 90 -270075 cd13255 PH_TAAP2-like Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain. The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270076 cd13256 PH3_ARAP ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3. ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270077 cd13257 PH4_ARAP ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4. ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 91 -270078 cd13258 PH_PLEKHJ1 Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain. PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -270079 cd13259 PH5_ARAP ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5. ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 121 -270080 cd13260 PH_RASA1 RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain. RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -270081 cd13261 PH_RasGRF1_2 Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain. RasGRF1 (also called GRF1; CDC25Mm/Ras-specific nucleotide exchange factor CDC25; GNRP/Guanine nucleotide-releasing protein) and RasGRF2 (also called GRF2; Ras guanine nucleotide exchange factor 2) are a family of guanine nucleotide exchange factors (GEFs). They both promote the exchange of Ras-bound GDP by GTP, thereby regulating the RAS signaling pathway. RasGRF1 and RasGRF2 form homooligomers and heterooligomers. GRF1 has 3 isoforms and GRF2 has 2 isoforms. The longest isoforms of RasGRF1 and RasGRF2 contain the following domains: a Rho-GEF domain sandwiched between 2 PH domains, IQ domains, a REM (Ras exchanger motif) domain, and a Ras-GEF domainwhich gives them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. Their IQ domains allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. GRF1 also mediates the action of dopamine receptors that signal through cAMP. GRF1 and GRF2 play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 136 -270082 cd13262 PH_RasSynGAP-like Synaptic Ras-GTPase activating protein family Pleckstrin homology (PH) domain. The RasSynGAP family is composed of members: DAB2IP, nGAP, and SynGAP. Neuronal growth-associated proteins (nGAPs) are growth cone markers found in multiple types of neurons. There are many nGAPs including Cap1 (Adenylate cyclase-associated protein 1), Capzb (Capping protein (actin filament) muscle Z-line, beta), Clptm1 (Cleft lip and palate associated transmembrane protein 1), Cotl1 (Coactosin-like 1), Crmp1 (Collapsin response mediator protein 1), Cyfip1 (Cytoplasmic FMR1 interacting protein 1), Fabp7 (Fatty acid binding protein 7, brain), Farp2 (FERM, RhoGEF and pleckstrin domain protein 2), Gap43 (Growth associated protein 43), Gnao1 (Guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O), Gnai2 (Guanine nucleotide binding protein (G protein), alpha inhibiting 2), Pacs1 (Phosphofurin acidic cluster sorting protein 1), Rtn1 (Reticulon 1), Sept2 (Septin 2), Snap25 (Synaptosomal-associated protein 25), Strap (Serine/threonine kinase receptor associated protein), Stx7 (Syntaxin 7), and Tmod2 (Tropomodulin 2). SynGAP, a neuronal Ras-GAP, has been shown display both Ras-GAP activity and Ras-related protein (Rap)-GAP activity. Saccharomyces cerevisiae Bud2 and GAP1 members CAPRI (Ca2+-promoted Ras inactivator) and RASAL (Ras-GTPase-activating-like protein) also possess this dual activity. Human DOC-2/DAB2-interacting protein (DAB2IP) is encoded by a tumor suppressor gene and a newly recognized member of the Ras-GTPase-activating family. DAB2IP is a critical component of many signal transduction pathways mediated by Ras and tumor necrosis factors including apoptosis pathways, and it is involved in the formation of many types of tumors. DAB2IP participates in regulation of gene expression and pluripotency of cells. It has been reported that DAB2IP was expressed in different tumor tissues. Little information is available concerning the expression levels of DAB2IP in normal tissues and cells, however, and no studies of its expression patterns during the development of human embryos have been reported. DAB2IP was expressed primarily in cell cytoplasm throughout the fetal development. The expression levels varied among tissues and different gestational ages. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -270083 cd13263 PH_RhoGap25-like Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain. RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -270084 cd13264 PH_ITSN Intersectin Pleckstrin homology (PH) domain. ITSNs, an adaptor protein family, play a role in endo- and exocytosis, actin cytoskeleton rearrangement and signal transduction. There are two human ITSN genes: ITSN1 and ITSN2. They share significant sequence identity and a similar domain structure having both short and long isoforms produced by alternative splicing. The short isoform (ITSN-S) consists of two Eps15 homology domains (EH1 and EH2), a coiled-coil region (CCR) and five Src homology 3 domains (SH3A-E). The EH domains bind to Asn-Pro-Phe motifs and are implicated in endocytosis and vesicle transport. The SH3 domains bind to proline-rich sequences and are commonly found in proteins implicated in cell signalling pathways, cytoskeletal organization and membrane traffic. The long isoform (ITSN-L) contains three additional C-terminal domains, a Dbl homology domain (DH), a Pleckstrin homology domain (PH) and a C2 domain. The tandem DH-PH domains are present in all Dbl family of GEFs. ITSN acts specifically on Cdc42 through its DH domain with no portion of the PH domain making contact with Cdc42. This is in contrast to Dbs which requires the PH domain for full catalytic activity. The ITSN PH domain binds phosphoinositides. C2 domains are usually involved in Ca2+-dependent and Ca2+-independent phospholipid binding. There are more than 30 proteins that interact with ITSNs. ITSN-S is present in mammals, frogs, flies and nematodes, while ITSN-L is present only in vertebrates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 132 -270085 cd13265 PH_evt Evectin Pleckstrin homology (PH) domain. There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -270086 cd13266 PH_Skap_family Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270087 cd13267 PH_DOCK-D Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain. DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 126 -270088 cd13268 PH_Brdg1 BCR downstream signaling 1 Pleckstrin homology (PH) domain. Brdg1 is thought to function as a docking protein acting downstream of Tec, a protein tyrosine kinases (PTK), in B-cell antigen receptor (BCR) signaling. BRDG1 contains a proline-rich (PR) motif which is thought to bind SH3 or WW domains, a PH domain, and multiple tyrosine residues which are potential target sites for SH2 domains. Since PH domains bind phospholipids it is thought to be involved in the tethering of Tec and BRDG1 to the cell membrane.Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induces phosphorylation of BRDG1 on tyrosine residues. Efficient phosphorylation requires both the PH and SH2 domains of BRDG1 and the kinase domain of Tec. The overexpression of BRDG1 increases theBCR-mediated activation of cAMP-response element binding protein (CREB). Phosphorylated BRDG1 is hypothesized to recruit CREB either directly or through its recruitment of downstream effectors which then recruit CREB. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 127 -241423 cd13269 PH_alsin Alsin Pleckstrin homology (PH) domain. The ALS2 gene encodes alsin, a GEF, that has dual specificity for Rac1 and Rab5 GTPases. Alsin mutations in the form of truncated proteins are responsible for motor function disorders including juvenile-onset amyotrophic lateral sclerosis, familial juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic paralysis. The alsin protein is widely expressed in the developing CNS including neurons of the cerebral cortex, brain stem, spinal cord, and cerebellum. Alsin contains a regulator of chromosome condensation 1 (RCC1) domain, a Rho guanine nucleotide exchanging factor (RhoGEF) domain, a PH domain, a Membrane Occupation and Recognition Nexus (MORN), a vacuolar protein sorting 9 (Vps9) domain, and a Dbl homology (DH) domain. Alsin interacts with Rab5 through its Vps9 domain and through this interaction modulates early endosome fusion and trafficking. The GEF activity of alsin towards Rab5 is regulated by Rac1 function. The GEF activity of alsin for Rac1 occurs via its DH domain and this interaction plays a role in promoting spinal motor neuron survival via multiple Rac-dependent signaling pathways. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270089 cd13270 PH1_TAPP1_2 Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat. The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 118 -270090 cd13271 PH2_TAPP1_2 Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat. The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -270091 cd13272 PH_INPP4A_INPP4B Type I inositol 3,4-bisphosphate 4-phosphatase and Type II inositol 3,4-bisphosphate 4-phosphatase Pleckstrin homology (PH) domain. INPP4A (also called Inositol polyphosphate 4-phosphatase type I) and INPP4B (also called Inositol polyphosphate 4-phosphatase type II) both catalyze the hydrolysis of the 4-position phosphate of phosphatidylinositol 3,4-bisphosphate and inositol 1,3,4-trisphosphate. They differ in that INPP4A additionally catalyzes the hydrolysis of the 4-position phosphate of inositol 3,4-bisphosphate, while INPP4B catalyzes the hydrolysis of the 4-position phosphate of inositol 1,4-bisphosphate. They both have a single PH domain followed by a C2 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 144 -270092 cd13273 PH_SWAP-70 Switch-associated protein-70 Pleckstrin homology (PH) domain. SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270093 cd13274 PH_DGK_type2 Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain. DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 97 -270094 cd13275 PH_M-RIP Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain. M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 104 -270095 cd13276 PH_AtPH1 Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain. AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270096 cd13277 PH_Bem3 Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain. Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 111 -241432 cd13278 PH_Bud4 Bud4 Pleckstrin homology (PH) domain. Bud4 is an anillin-like yeast protein involved in the formation and the disassembly of the double ring structure formed by the septins during cytokinesis. Bud4 acts with Bud3 and and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. Bud4 contains an anillin-like domain followed by a PH domain. In addition there are two consensus Cdk phosphorylation sites: one at the N-terminus and one right before the C-terminal PH domain. Anillins also have C-terminal PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 139 -270097 cd13279 PH_Cla4_Ste20 Pleckstrin homology (PH) domain. Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 92 -270098 cd13280 PH_SIP3 Snf1p-interacting protein 3 Pleckstrin homology (PH) domain. SIP3 interacts with SNF1 protein kinase and activates transcription when anchored to DNA. It may function in the SNF1 pathway. SIP3 contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain followed by a PH domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270099 cd13281 PH_PLEKHD1 Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain. Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 139 -241436 cd13282 PH1_PLEKHH1_PLEKHH2 Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1. PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 96 -270100 cd13283 PH_GPBP Goodpasture antigen binding protein Pleckstrin homology (PH) domain. The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -270101 cd13284 PH_OSBP_ORP4 Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain. Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 99 -270102 cd13285 PH_ORP1 Human Oxysterol binding protein related protein 1 Pleckstrin homology (PH) domain. Human ORP1 has 2 forms, a long (ORP1L) and a short (ORP1S). ORP1L contains 3 N-terminal ankyrin repeats, followed by a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains only an OSBP-related domain. ORP1L is proposed to function in motility and distribution of late endosomes, autophagy, and macrophage lipid metabolism. ORP1S is proposed to function in vesicle transport from Golgi. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -270103 cd13286 PH_OPR5_ORP8 Human Oxysterol binding protein related proteins 5 and 8 Pleckstrin homology (PH) domain. Human ORP5 is proposed to function in efficient nonvesicular transfer of low-density lipoproteins-derived cholesterol (LDL-C) from late endosomes/lysosomes to the endoplasmic reticulum (ER). Human ORP8 is proposed to modulate lipid homeostasis and sterol regulatory element binding proteins (SREBP) activity. Both ORP5 and ORP8 contain a N-terminal PH domain, a C-terminal OSBP-related domain, followed by a transmembrane domain that localizes ORP5 to the ER. Unlike all the other human OSBP/ORPs they lack a FFAT motif (two phenylalanines in an acidic tract). Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 130 -270104 cd13287 PH_ORP3_ORP6_ORP7 Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain. Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -270105 cd13288 PH_Ses Sesquipedalian family Pleckstrin homology (PH) domain. The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 120 -241443 cd13289 PH_Osh3p_yeast Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain. Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 90 -241444 cd13290 PH_ORP9 Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain. Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -270106 cd13291 PH_ORP10_ORP11 Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin homology (PH) domain. Human ORP10 is involvedt in intracellular transport or organelle positioning and is proposed to function as a regulator of cellular lipid metabolism. Human ORP11 localizes at the Golgi-late endosome interface and is thought to form a dimer with ORP9 functioning as an intracellular lipid sensor or transporter. Both ORP10 and ORP11 contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -241446 cd13292 PH_Osh1p_Osh2p_yeast Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain. Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -241447 cd13293 PH_CpORP2-like Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain. There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 88 -241448 cd13294 PH_ORP_plant Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain. Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 100 -270107 cd13295 PH_EFA6 Exchange Factor for ARF6 Pleckstrin homology (PH) domain. EFA6 (also called PSD/pleckstrin and Sec7 domain containing) is an guanine nucleotide exchange factor for ADP ribosylation factor 6 (ARF6), which is involved in membrane recycling. EFA6 has four structurally related polypeptides: EFA6A, EFA6B, EFA6C and EFA6D. It consists of a N-terminal proline rich region (PR), a SEC7 domain, a PH domain, a PR, a coiled-coil region, and a C-terminal PR. The EFA6 PH domain regulates its association with the plasma membrane. EFA6 activates Arf6 through its Sec7 catalytic domain and modulates this activity through its C-terminal domain, which rearranges the actin cytoskeleton in fibroblastic cell lines. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 126 -270108 cd13296 PH2_MyoX Myosin X Pleckstrin homology (PH) domain, repeat 2. MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -270109 cd13297 PH3_MyoX-like Myosin X-like Pleckstrin homology (PH) domain, repeat 3. MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 126 -270110 cd13298 PH1_PH_fungal Fungal proteins Pleckstrin homology (PH) domain, repeat 1. The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270111 cd13299 PH2_PH_fungal Fungal proteins Pleckstrin homology (PH) domain, repeat 2. The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -270112 cd13300 PH1_TECPR1 Tectonin beta-propeller repeat-containing protein 1 Pleckstrin homology (PH) domain, repeat 1. TECPR1 is a tethering factor involved in autophagy. It promotes the autophagosome fusion with lysosomes by associating with both the ATG5-ATG12 conjugate and phosphatidylinositol-3-phosphate (PtdIns3P) present at the surface of autophagosomes. TECPR1 is also involved in selective autophagy against bacterial pathogens, by being required for phagophore/preautophagosomal structure biogenesis and maturation. It contains 2 DysFN (Dysferlin domains of unknown function, N-terminal), 2 Hyd_WA domains that is a probably beta-propeller, a PH-like domain, a TECPR domain, and a DysFC (C-terminal). The PH domain mediates the binding to phosphatidylinositol-3-phosphate (PtdIns3P). Binding to the ATG5-ATG12 conjugate exposes the PH domain, allowing the association with PtdIns3P. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 122 -270113 cd13301 PH1_Pleckstrin_2 Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1. Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -270114 cd13302 PH2_Pleckstrin_2 Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2. Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 109 -241457 cd13303 PH1-like_Rtt106 Pleckstrin homology-like domain, repeat 1, of Histone chaperone RTT106 (regulator of Ty1 transposition protein 106). Rtt106 is a histone chaperone. The binding of Rtt106 to H3K56-acetylated (H3-H4)2 tetramers contributes to nucleosome assembly in terms of DNA replication, gene silencing and maintenance of genomic stability. Rtt106 contains an N-terminal homodimerization domain and two C-terminal pleckstrin-homology (PH) domains (PH1 and PH2). The N-terminal domain homodimerizes homodimerizes and interacts with H3-H4 independently of acetylation while the double PH domain binds the K56-containing region of H3. Rtt106 also interacts with both the SWI/SNF and RSC chromatin remodeling complexes and is involved in their cell-cycle dependent recruitment to histone gene pairs regulated by the HIR co-repressor complex (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2). This model contains the first PH-like domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 139 -241458 cd13304 PH2-like_Rtt106 Pleckstrin homology-like domain, repeat 2, of Histone chaperone RTT106 (regulator of Ty1 transposition protein 106). Rtt106 is a histone chaperone. Rtt106 contains an N-terminal homodimerization domain and two C-terminal pleckstrin-homology (PH) domains (PH1 and PH2). The binding of Rtt106 to H3K56-acetylated (H3-H4)2 tetramers contributes to nucleosome assembly in terms of DNA replication, gene silencing and maintenance of genomic stability. The N-terminal domain homodimerizes homodimerizes and interacts with H3-H4 independently of acetylation while the double PH domain binds the K56-containing region of H3. Rtt106 also interacts with both the SWI/SNF and RSC chromatin remodeling complexes and is involved in their cell-cycle dependent recruitment to histone gene pairs regulated by the HIR co-repressor complex (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2). This model contains the second PH-like domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 89 -270115 cd13305 PH_SHARPIN SHANK-associated RH domain interacting protein Pleckstrin homology (PH) domain. SHARPIN has a variety of roles including: a role as a scaffolding partner of anchoring/scaffold proteins Shank1, a role in carcinogenesis through the interaction with FYN binding protein (FYB), which binds to oncogene FYN, a role in apoptosis by interacting with AIFM1, a mitochondrial regulator of cell death, CAPN13, and NSD1, as well as a role in immune disease and inflammation. SHARPIN has at its N-terminus a PH domain, followed by a E3 ubiquitin ligase domain, and a C-terminal RanBP-type and C3HC4-type zinc finger containing 1 domain (RBCK1, also known as HOIP which functions as a protein kinase C (PKC) binding protein as well as a transcriptional activator. SHARPIN's PH domain functions as a dimerization module, rather than a ligand recognition domain. Instead it acts as a dimerization module extending the functional applications of this superfold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -270116 cd13306 PH1_AFAP Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1. There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -270117 cd13307 PH2_AFAP Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 2. There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. This cd is the second PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 101 -270118 cd13308 PH_3BP2 SH3 domain-binding protein 2 Pleckstrin homology (PH) domain. SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 113 -270119 cd13309 PH_SKIP SifA and kinesin-interacting protein Pleckstrin homology (PH) domain. SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -270120 cd13310 PH_RalGPS1_2 Ral GEF with PH domain and SH3 binding motif 1 and 2 Pleckstrin homology (PH) domain. RalGPS1 (also called Ral GEF with PH domain and SH3 binding motif 1;RALGEF2/ Ral guanine nucleotide exchange factor 2; RalA exchange factor RalGPS1; Ral guanine nucleotide exchange factor RalGPS1A2; ras-specific guanine nucleotide-releasing factor RalGPS1) and RalGPS2 (also called Ral GEF with PH domain and SH3 binding motif 2; Ral-A exchange factor RalGPS2; ras-specific guanine nucleotide-releasing factor RalGPS22). They activate small GTPase Ral proteins such as RalA and RalB by stimulating the exchange of Ral bound GDP to GTP, thereby regulating various downstream cellular processes. Structurally they contain an N-terminal Cdc25-like catalytic domain, followed by a PXXP motif and a C-terminal PH domain. The Cdc25-like catalytic domain interacts with Ral and its PH domain ensures the correct membrane localization. Its PXXP motif is thought to interact with the SH3 domain of Grb2. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 116 -270121 cd13311 PH_Slm1 Slm1 Pleckstrin homology (PH) domain. Slm1 is a component of the target of rapamycin complex 2 (TORC2) signaling pathway. It plays a role in the regulation of actin organization and is a target of sphingolipid signaling during the heat shock response. Slm1 contains a single PH domain that binds PtdIns(4,5)P2, PtdIns(4)P, and dihydrosphingosine 1-phosphate (DHS-1P). Slm1 possesses two binding sites for anionic lipids. The non-canonical binding site of the PH domain of Slm1 is used for ligand binding, and it is proposed that beta-spectrin, Tiam1 and ArhGAP9 also have this type of phosphoinositide binding site. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270122 cd13312 PH_USP37_like Pleckstrin homology-like domain of Ubiquitin carboxyl-terminal hydrolase 37. Members here include USP37, USP29, and USP26. All of these contain a single PH-like domain. USP37 (also called ubiquitin carboxyl-terminal hydrolase 37, ubiquitin thiolesterase 37, deubiquitinating enzyme 37, and tmp_locus_50) is a deubiquitinase that antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), resulting in promoting S phase entry. USP37 mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex and 'Lys-48'-linked polyubiquitin chains in vitro. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2). USP29 (also called ubiquitin carboxyl-terminal hydrolase 29, ubiquitin thiolesterase 29, deubiquitinating enzyme 29, and HOM-TES-84/86) plays a role in apoptosis and oxidative stress. In response to oxidative stress, JTV1 dissociates from the ARS complex, translocates to the nucleus, associates with far upstream element binding protein (FBP) and co-activates the transcription of USP29 which binds to, cleaves poly-ubiquitin chains from, and stabilizes p53 leading to apoptosis. The X-linked deubiquitination enzyme USP26 (also called ubiquitin carboxyl-terminal hydrolase 26, ubiquitin thiolesterase 26, and deubiquitinating enzyme 26) is a regulator of androgen receptor (AR) signaling. It binds to AR using three nuclear receptor interaction motifs (LXXLL, FXXLF and FXXFF) and modulates AR ubiquitination. Polymorphism of Usp26 correlates with idiopathic male infertility. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -270123 cd13313 PH_NF1 Neurofibromin-1 Pleckstrin homology-like domain. Neurofibromin (NF1) contains a N-terminal RasGAP domain, followed by a Sec14-like domain, and a PH domain. Surprisingly, in neurofibromin the PH domain alone is not sufficient for phospholipid binding and instead requires the presence of the Sec-14 domain. The Sec-14 domain has been shown to bind 1-(3-sn-phosphatidyl)-sn-glycerol (PtdGro), (3-sn-phosphatidyl)-ethanolamine (PtdEtn) and -choline (PtdCho) and to a minor extent to (3-sn-phosphatidyl)-l-serine (PtdSer) and 1-(3-sn-phosphatidyl)-d-myo-inositol (PtdIns). Neurofibromatosis type 1 (also known as von Recklinghausen neurofibromatosis or NF1) is a genetic disorder caused by alterations in the tumor suppressor gene NF1. Hallmark symptoms include neural crest derived tumors, pigmentation anomalies, bone deformations, and learning disabilities. Mutations of the tumour suppressor gene NF1 are responsible for disease pathogenesis, with 90% of the alterations being nonsense codons. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 110 -270124 cd13314 PH_Rpn13 Pleckstrin homology-like domain of Regulatory Particle Non-ATPase 13. Targeted protein degradation is performed to a great extent by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. Rpn13(also called ADRM1/ARM1) is one of the two major ubiquitin receptors of the proteasome, the other being S5a/Rpn10 which is not essential for ubiquitin-mediated protein degradation in budding yeast2. S5a has two ubiquitin interacting motifs (UIMs) that bind simultaneously to ubiquitin moieties to increase affinity while Rpn13 binds ubiquitin with a single, high affinity surface within its N-terminal PH domain. Rpn13 also binds and activates deubiquitinating enzyme Uch37, one of the proteasome's three deubiquitinating enzymes. Recently it was discovered that the ubiquitin-binding domain (BD) and Uch37 BD of human (h) Rpn13 pack against each other when it is not incorporated into the proteasome reducing hRpn13's affinity for ubiquitin. However when hRpn13 binds to hRpn2/S1 this abrogates its interdomain interactions, thus activating hRpn13 for ubiquitin binding. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270125 cd13315 PH_Sec3 Sec 3 Pleckstrin homology-like domain. The Sec3 subunit of the exocyst, a complex involved in polarized exocytosis, bind phospholipids and GTPase Cdc42 and therefore functions as a coincidence detector at the plasma membrane. Unlike most PH domains, Sec3 contains an additional alpha-helix at its N-terminus and two beta-strands at its C-terminus that mediate dimerization through domain swapping. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 141 -270126 cd13316 PH_Boi Boi family Pleckstrin homology domain. Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 97 -270127 cd13317 PH_PLEKHO1_PLEKHO2 Pleckstrin homology domain-containing family O Pleckstrin homology domain. The PLEKHO family members are PLEKHO1 (also called CKIP-1/Casein kinase 2-interacting protein 1/CK2-interacting protein 1) and PLEKHO2 (PLEKHQ1/PH domain-containing family Q member 1). They both contain a single PH domain. PLEKHO1 acts as a scaffold protein that functions in plasma membrane recruitment, transcriptional activity modulation, and posttranscriptional modification regulation. As an adaptor protein it is involved in signaling pathways, apoptosis, differentiation, cytoskeleton, and bone formation. Not much is know about PLEKHO2. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -270128 cd13318 PH_IQSEC IQ motif and SEC7 domain-containing protein family Pleckstrin homology domain. The IQSEC (also called BRAG/Brefeldin A-resistant Arf-gunanine nucleotide exchange factor) family are a subset of Arf GEFs that have been shown to activate Arf6, which acts in the endocytic pathway to control the trafficking of a subset of cargo proteins including integrins and have key roles in the function and organization of distinct excitatory and inhibitory synapses in the retina. The family consists of 3 members: IQSEC1 (also called BRAG2/GEP100), IQSEC2 (also called BRAG1), and IQSEC3 (also called SynArfGEF, BRAG3, or KIAA1110). IQSEC1 interacts with clathrin and modulates cell adhesion by regulating integrin surface expression and in addition to Arf6, it also activates the class II Arfs, Arf4 and Arf5. Mutations in IQSEC2 cause non-syndromic X-linked intellectual disability as well as reduced activation of Arf substrates (Arf1, Arf6). IQSEC3 regulates Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM. These members contains a IQ domain that may bind calmodulin, a PH domain that is thought to mediate membrane localization by binding of phosphoinositides, and a SEC7 domain that can promote GEF activity on ARF. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 128 -270129 cd13319 PH_RARhoGAP RA and RhoGAP domain-containing protein Pleckstrin homology PH domain. RARhoGAP (also called Rho GTPase-activating protein 20 and ARHGAP20 ) is thought to function in rearrangements of the cytoskeleton and cell signaling events that occur during spermatogenesis. RARhoGAP was also shown to be activated by Rap1 and to induce inactivation of Rho, resulting in the neurite outgrowth. Recent findings show that ARHGAP20, even although it is located in the middle of the MDR on 11q22-23, is expressed at higher levels in chronic lymphocytic leukemia patients with 11q22-23 and/or 13q14 deletions and its expression pattern suggests a functional link between cases with 11q22-23 and 13q14 deletions. The mechanism needs to be further studied. RARhoGAP contains a PH domain, a Ras-associating domain, a Rho-GAP domain, and ANXL repeats. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 97 -270130 cd13320 PH_OCRL-like oculocerebrorenal syndrome of Lowe family Pleckstrin homology-like domain. The OCRL family has two members: OCRL1 (also called INPP5F, LOCR, NPHL2, or phosphatidylinositol polyphosphate 5-phosphatase) and OCRL2 ( also called IPNNB5, inositol polyphosphate-5-phosphatase, phosphoinositide 5-phosphatase, 5PTase, or type II inositol-1,4,5-trisphosphate 5-phosphatase). The OCRL proteins hydrolyze phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events. They interact with APPL1, FAM109A and FAM109B and several Rab GTPases which might both target them to the specific membranes and as well as stimulating the phosphatase activity. All OCRL family members contain a PH domain and a Rho-GAP domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -241475 cd13321 PH_PLEKHM1 Pleckstrin homology domain-containing family M member 1 Pleckstrin homology (PH) domain. PLEKHM1 is thought to function in vesicular transport in osteoclasts. Mutations in the PLEKHM1 gene are associated with osteopetrosis OPTB6. PLEKHM1 contains an N-terminal RUN domain (RPIP8/RaP2 interacting protein 8, UNC-14 and NESCA/new molecule containing SH3 at the carboxyl-terminus), followed by a PH domain, and either a C1 domain or a DUF4206 domain at its C-terminus. The RUN domain is thought to be involved in Rab-mediated membrane trafficking, possibly as a Rab-binding site. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 132 -270131 cd13322 PH_PHLPP-like PH domain leucine-rich repeat protein phosphatase family Pleckstrin homology-like domain. The PHLPP family has members PHLPP1 (also called hSCOP/Suprachiasmatic nucleus circadian oscillatory protein; PLEKHE1/Pleckstrin homology domain-containing family E member 1) and PHLPP2 (PHLPP-like/PHLPPL). The PHLPP family of novel Ser/Thr phosphatases serve as important regulators of cell survival and apoptosis. PHLPP isozymes catalyze the dephosphorylation of a conserved regulatory motif, the hydrophobic motif, on the AGC kinases Akt, PKC, and S6 kinase, as well as an inhibitory site on the kinase Mst1, to inhibit cellular proliferation and induce apoptosis and negatively regulates ERK1/2 activation. Reductions in their expression have been detected in several cancers and linked to cancer progression. PHLPP1 and PHLPP2 both contain an N-terminal PH domain, followed by 21 LRR (leucine-rich) repeats, and a C-terminal PP2C-like domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 95 -270132 cd13323 PH_PLEKHN1 Pleckstrin homology domain containing family N member 1Pleckstrin homology-like domain. Not much is known about PLEKHN1. It is found in a wide range of animals including humans, green anole, frog, and zebrafish. It contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 121 -270133 cd13324 PH_Gab-like Grb2-associated binding protein family Pleckstrin homology (PH) domain. Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 112 -270134 cd13325 PH_unc89 unc89 pleckstrin homology (PH) domain. unc89 is a myofibrillar protein. unc89-B the largest isoform is composed of 53 immunoglobulin (Ig) domains, 2 Fn3 domains, a triplet of SH3, DH and PH domains at its N-terminus, and 2 protein kinase domains (PK1 and PK2) at its C-terminus. unc-89 mutants display disorganization of muscle A-bands, and usually lack M-lines. The COOH-terminal region of obscurin, the human homolog of unc89, interacts via two specific Ig-like domains with the NH(2)-terminal Z-disk region of titin, a protein that connects the Z line to the M line in the sarcomere and contributes to the contraction of striated muscle. obscurin is also thought to be involved in Ca2+/calmodulin via its IQ domains, as well as G protein-coupled signal transduction in the sarcomere via its RhoGEF/DH domain. The DH-PH region of OBSCN and unc89, the C. elegans homolog, has exchange activity for RhoA and Rho-1 respectively, but not for the small GTPases homologous to Cdc42 or Rac. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -270135 cd13326 PH_CNK_insect-like Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain. CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 91 -270136 cd13327 PH_PLEKHM3_2 Pleckstrin homology domain-containing family M member 3 Pleckstrin homology domain 2. PLEKHM3 (also called differentiation associated protein/DAPR)(also called differentiation associated protein/DAPR) exists as three alternatively spliced isoforms that participate in metal ion binding. It contains 2 PH domains and 1 phorbol-ester/DAG-type zinc finger domain. PLEKHM3 is found in Humans, canines, bovine, mouse, rat, chicken and zebrafish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 88 -275410 cd13328 PH1_FDG_family FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 92 -275411 cd13329 PH_RhoGEF Rho guanine nucleotide exchange factor Pleckstrin homology domain. RhoGEFs belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. The members here all contain Dbl homology (DH)-PH domains. In addition some members contain N-terminal C1 (Protein kinase C conserved region 1) domains, PDZ (also called DHR/Dlg homologous regions) domains, ANK (ankyrin) domains, and RGS (Regulator of G-protein signalling) domains or C-terminal ATP-synthase B subunit. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. RhoGEF2/Rho guanine nucleotide exchange factor 2, p114RhoGEF/p114 Rho guanine nucleotide exchange factor, p115RhoGEF, p190RhoGEF, PRG/PDZ Rho guanine nucleotide exchange factor, RhoGEF 11, RhoGEF 12, RhoGEF 18, AKAP13/A-kinase anchoring protein 13, and LARG/Leukemia-associated Rho guanine nucleotide exchange factor are included in this CD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 109 -241484 cd13330 PH_CARM1 Coactivator-Associated Methyltransferase 1 Pleckstrin homology (PH) domain. CARM1 (also known as protein arginine methyltransferase 4/PRMT4) is a protein arginine methyltransferase recruited by several transcription factors. It methylates a variety of proteins and plays a role in gene expression. The N-terminal domain of CARM1 contains a N-terminal PH domain, a catalytic core module composed of two parts (a Rossmann fold topology (RF) and a beta-barrel), and a C-terminal domain. The N-terminal and the C-terminal end of CARM1 catalytic module contain molecular switches that may explain how CARM1 regulates its biological activities by protein-protein interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 107 -270139 cd13331 PH_Avo1 Avo1 Pleckstrin homology (PH) domain. Target of rapamycin (TOR) is a highly conserved serine/threonine protein kinase and a central controller of the growth, metabolism and ageing of eukaryotic cells. TOR assembles into two protein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2) which function as central nodes in a complex network of signal transduction pathways that are involved in normal physiological as well as pathogenic events. TORC1 mediates the rapamycin-sensitive signalling branch, which positively regulates anabolic processes and negatively regulates catabolic processes. TORC2 signalling is rapamycinin insensitive and is involved in the spatial aspects of cell growth by controlling the actin cytoskeleton and cell polarity. In Saccharomyces cerevisiae, TORC2 is involved in the regulation of ceramide metabolism. In S. cerevisiae, TORC1 consists of the proteins Kog1, Lst8, Tco89 and either Tor1 or Tor2, while TORC2 consists of the proteins Avo1, Avo2, Avo3, Bit61, Lst8 and Tor2. The C-terminal domain of the Saccharomyces cerevisiae TORC2 component Avo1 is required for plasma-membrane localization of TORC2 and is essential for yeast viability. The C-termini of Avo1 and Sin1, its Human ortholog, both have the pleckstrin homology (PH) domain fold. Comparison with known PH-domain structures suggests a putative binding site for phosphoinositides. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -275412 cd13332 FERM_C_JAK1 FERM domain C-lobe of Janus kinase 1. JAK1 is a tyrosine kinase protein essential in signaling type I and type II cytokines. It interacts with the gamma chain of type I cytokine receptors to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family, ciliary neurotrophic factor receptor (CNTF-R), neurotrophin-1 receptor (NNT-1R) and Leptin-R). It also is involved in transducing a signal by type I (IFN-alpha/beta) and type II (IFN-gamma) interferons, and members of the IL-10 family via type II cytokine receptors. JAK (also called Just Another Kinase) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. The JAK family in mammals consists of 4 members: JAK1, JAK2, JAK3 and TYK2. JAKs are composed of seven JAK homology (JH) domains (JH1-JH7) . The C-terminal JH1 domain is the main catalytic domain, followed by JH2, which is often referred to as a pseudokinase domain, followed by JH3-JH4 which is homologous to the SH2 domain, and lastly JH5-JH7 which is a FERM domain. Named after Janus, the two-faced Roman god of doorways, JAKs possess two near-identical phosphate-transferring domains; one which displays the kinase activity (JH1), while the other negatively regulates the kinase activity of the first (JH2). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 144 -270141 cd13333 FERM_C_JAK2 FERM domain C-lobe of Janus kinase (JAK) 2. JAK2 has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors. JAK2 orthologs have been identified in all mammals. Mutations in JAK2 have been implicated in polycythemia vera, essential thrombocythemia, myelofibrosis as well as other myeloproliferative disorders. JAK2 gene fusions with the PCM1 and TEL(ETV6) (TEL-JAK2) genes have been found in leukemia patients. Researcher are targetting JAK2 inhibitors in the treatment of patients with prostate cancer. JAK2 has been shown to interact with a variety of proteins including growth hormone receptor, STAT5A, STAT5B, interleukin 5 receptor alpha subunit, interleukin 12 receptor, SOCS3, PTPN6,PTPN11, Grb2, VAV1, and YES1. JAK (also called Just Another Kinase) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. The JAK family in mammals consists of 4 members: JAK1, JAK2, JAK3 and TYK2. JAKs are composed of seven JAK homology (JH) domains (JH1-JH7) . The C-terminal JH1 domain is the main catalytic domain, followed by JH2, which is often referred to as a pseudokinase domain, followed by JH3-JH4 which is homologous to the SH2 domain, and lastly JH5-JH7 which is a FERM domain. Named after Janus, the two-faced Roman god of doorways, JAKs possess two near-identical phosphate-transferring domains; one which displays the kinase activity (JH1), while the other negatively regulates the kinase activity of the first (JH2). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 113 -275413 cd13334 FERM_C_JAK3 FERM domain C-lobe of Janus kinase (JAK) 3. JAK3 functions in signal transduction and interacts with members of the STAT (signal transduction and activators of transcription) family. It is required for signaling of the type I receptors that use the common gamma chain: IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Cytokine binding induces the association of separate cytokine receptor subunits and the activation of the receptor-associated JAKs. In the absence of cytokine, JAKs lack protein tyrosine kinase activity. Once activated, the JAKs create docking sites for the STAT transcription factors by phosphorylation of specific tyrosine residues on the cytokine receptor subunits. Unlike the ubiquitous expression of JAK1, JAK2 and Tyk2, JAK3 is predominantly expressed in hematopoietic cells, such as NK cells, T cells and B cells. Mutations of JAK3 result in severe combined immunodeficiency (SCID). In addition to its well-known roles in T cells and NK cells, JAK3 has recently been found to inhibits IL-8-mediated chemotaxis. JAK3 interacts with CD247, TIAF1, and IL2RG. JAK (also called Just Another Kinase) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. The JAK family in mammals consists of 4 members: JAK1, JAK2, JAK3 and TYK2. JAKs are composed of seven JAK homology (JH) domains (JH1-JH7) . The C-terminal JH1 domain is the main catalytic domain, followed by JH2, which is often referred to as a pseudokinase domain, followed by JH3-JH4 which is homologous to the SH2 domain, and lastly JH5-JH7 which is a FERM domain. Named after Janus, the two-faced Roman god of doorways, JAKs possess two near-identical phosphate-transferring domains; one which displays the kinase activity (JH1), while the other negatively regulates the kinase activity of the first (JH2). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 110 -275414 cd13335 FERM_C_TYK2 FERM domain C-lobe of Non-receptor tyrosine-protein kinase TYK2. Tyk2 functions primarily in IL-12 and type I-IFN signaling as well as transduction of IL-23, IL-10, and IL-6 signals. A mutation in the Tyk2 gene has been associated with hyperimmunoglobulin E syndrome (HIES), a primary immunodeficiency characterized by elevated serum immunoglobulin E. Tyk2 has been shown to interact with FYN, PTPN6, IFNAR1, Ku80 and GNB2L1. JAK (also called Just Another Kinase) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. The JAK family in mammals consists of 4 members: JAK1, JAK2, JAK3 and TYK2. JAKs are composed of seven JAK homology (JH) domains (JH1-JH7) . The C-terminal JH1 domain is the main catalytic domain, followed by JH2, which is often referred to as a pseudokinase domain, followed by JH3-JH4 which is homologous to the SH2 domain, and lastly JH5-JH7 which is a FERM domain. Named after Janus, the two-faced Roman god of doorways, JAKs possess two near-identical phosphate-transferring domains; one which displays the kinase activity (JH1), while the other negatively regulates the kinase activity of the first (JH2). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 158 -275415 cd13336 FERM-like_C_SNX31 Atypical FERM-like domain C-lobe of Sorting nexin 31. SNX31 functions in regulating recycling from endosomes to the cell surface. SNX31 contains a N-terminal PX domain, a FERM-like domain, and a unique C-terminal region. It bind Ras GTPase through its FERM-like domains. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. These proteins participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades. The typical FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. FERM domains are found in cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 113 -270145 cd13337 FERM-like_C_SNX17 Atypical FERM-like domain C-lobe of Sorting nexin 17. SNX17 is a beta1-integrin-tail-binding protein that interacts with the free kindlin-binding site in endosomes to stabilize beta1 integrins, resulting in their recycling to the cell surface where they can be reused. SNX17 contains a N-terminal PX domain, a FERM-like domain, and a unique C-terminal region. SNX17 binds Ras GTPase through its FERM-like domains. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. These proteins participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades. The typical FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. FERM domains are found in cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 113 -270146 cd13338 FERM-like_C_SNX27 Atypical FERM-like domain C-lobe of Sorting nexin 27. SNX27 is localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. SNX27 contain a N-terminal PDZ domain, a PX domain, and a FERM-like domain. SNX27 regulates trafficking of a PAK interacting exchange factor-G protein-coupled receptor kinase interacting protein complex via its PDZ domain interaction. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4). SNX27 binds Ras GTPase through its FERM-like domains. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. These proteins participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades. The typical FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. FERM domains are found in cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. 102 -275416 cd13339 PH-GRAM_MTMR13 Myotubularian (MTM) related 13 protein Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR13 (also called SBF2/SET binding factor 2) is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It contains a Leu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. MTMR13 has high sequence similarity to MTMR5 and has recently been shown to be a second gene mutated in type 4B Charcot-Marie-Tooth syndrome. Both MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 119 -275417 cd13340 PH-GRAM_MTMR5 Myotubularian (MTM) related 5 protein (MTMR5) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR5 (also called SBF1/SET binding factor 1) is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It lacks several amino acids in the dsPTPase catalytic pocket which renders it catalytically inactive as a phosphatase. MTMR5 is the most well-studied inactive member of this family and has been implicated in cellular growth control and oncogenic transformation. MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 119 -270149 cd13341 PH-GRAM_MTMR3 Myotubularian (MTM) related 3 protein (MTMR3) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR3 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR3 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein can self-associate and also form heteromers with MTMR4. Both MTMR3 and MTMR4 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal lipid-binding FYVE domain which binds phosphotidylinositol-3-phosphate. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 94 -270150 cd13342 PH-GRAM_MTMR4 Myotubularian (MTM) related 4 protein (MTMR4) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR4 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR4 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein form heteromers with MTMR3. Both MTMR3 and MTMR4 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal lipid-binding FYVE domain which binds phosphotidylinositol-3-phosphate. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 114 -270151 cd13343 PH-GRAM_MTMR6 Myotubularian (MTM) related (MTMR) 6 protein Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR6 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR6 binds to phosphoinositide lipids through its PH-GRAM domain. It acts as a negative regulator of KCNN4/KCa3.1 channel activity in CD4+ T-cells possibly by decreasing intracellular levels of phosphatidylinositol-3 phosphatase and negatively regulates proliferation of reactivated CD4+ T-cells MTMR6 interacts with MTMR7, MTMR8 and MTMR9. MTMR6 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 101 -270152 cd13344 PH-GRAM_MTMR7 Myotubularian (MTM) related 7 protein (MTMR7) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR7 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR6 binds to phosphoinositide lipids through its PH-GRAM domain and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate. MTMR7 interacts with MTMR6, MTMR8 and MTMR9. MTMR7 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 103 -270153 cd13345 PH-GRAM_MTMR8 Myotubularian (MTM) related 8 protein (MTMR8) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR8 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR8 binds to phosphoinositide lipids through its PH-GRAM domain. MTMR8 can self associate and interacts with MTMR6, MTMR7 and MTMR9. MTMR8 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 103 -270154 cd13346 PH-GRAM_MTMR10 Myotubularian (MTM) related 10 protein (MTMR10) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR10 is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It contains a Glu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. MTMR10 contains an N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an inactive PTP domain, and a SET interaction domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 177 -275418 cd13348 PH-GRAM_MTMR12 Myotubularian (MTM) related 12 protein (MTMR12) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR12 is a catalytically inactive phosphatase that plays a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. It contains a Glu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. MTMR12 contains an N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an inactive PTP domain, a SET interaction domain, and a C-terminal a coiled-coil domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 178 -270156 cd13349 PH-GRAM1_TBC1D8 TBC1 domain family member 8 (TBC1D8; also called Vascular Rab-GAP/TBC-containing protein) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 1. TBC1D8 may act as a GTPase-activating protein for Rab family protein(s). TBC1D8 contains an N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the first repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 99 -275419 cd13350 PH-GRAM1_TBC1D8B TBC1 domain family member 8B (TBC1D8B) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 1. TBC1D8B may act as a GTPase-activating protein for Rab family protein(s). TBC1D8B contains an N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the first repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 99 -275420 cd13351 PH-GRAM1_TCB1D9_TCB1D9B TBC1 domain family members 9 and 9B (TBC1D9 and TBC1D9B) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 1. TBC1D9 and TCB1D9B may act as a GTPase-activating proteins for Rab family protein(s). TBC1D9 and TCB1D9B contain two N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the first repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 99 -270159 cd13352 PH-GRAM2_TBC1D8B TBC1 domain family member 8B (TBC1D8B) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 2. TBC1D8B may act as a GTPase-activating protein for Rab family protein(s). TBC1D8B contains an N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the second repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 93 -270160 cd13353 PH-GRAM2_TBC1D8 TBC1 domain family member 8 (TBC1D8; also called Vascular Rab-GAP/TBC-containing protein) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 2. TBC1D8 may act as a GTPase-activating protein for Rab family protein(s). TBC1D8 contains two N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the second repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 96 -270161 cd13354 PH-GRAM2_TCB1D9_TCB1D9B TBC1 domain family members 9 and 9B (TBC1D9 and TBC1D9B) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain, repeat 2. TBC1D9 and TCB1D9B may act as a GTPase-activating proteins for Rab family protein(s). TBC1D9 and TCB1D9B contain two N-terminal PH-GRAM domain and a C-terminal Rab-GTPase-TBC (Tre-2, BUB2p, and Cdc16p) domain. This cd contains the second repeat of the PH-GRAM domain. The GRAM domain is found in glucosyltransferases, myotubularins and other putative membrane-associated proteins. The GRAM domain is part of a larger motif with a pleckstrin homology (PH) domain fold. 97 -270162 cd13355 PH-GRAM_MTM1 Myotubularian 1 protein (MTM1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTM1 is a member of the myotubularin protein phosphatase gene family. It is required for muscle cell differentiation and mutations in this gene have been identified as being responsible for X-linked myotubular myopathy, a severe congenital muscle disorder characterized by defective muscle cell development. Since its initial discovery, there have been an additional 14 myotubularin-related proteins identified. MTM1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein can self-associate and form heteromers with MTMR12. MTM1 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. All MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE and PH domains C-terminal to the coiled-coil region. 100 -270163 cd13356 PH-GRAM_MTMR2_mammal-like Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR2 is a member of the myotubularin protein phosphatase gene family. MTMR2 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. MTMR2 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date.Members in this cd include mammals, chickens, anoles, human body lice, and aphids. 115 -270164 cd13357 PH-GRAM_MTMR2_insect-like Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR2 is a member of the myotubularin protein phosphatase gene family. MTMR2 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. MTMR2 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Members in this cd include Drosophila, sea urchins, mosquitos, bees, ticks, and anemones. 100 -270165 cd13358 PH-GRAM_MTMR1 Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR1 is a member of the myotubularin protein phosphatase gene family. MTMR1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. MTMR1 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. 100 -270166 cd13359 PH_ELMO1_CED-12 Engulfment and cell motility protein 1 pleckstrin homology (PH) domain. DOCK2 (Dedicator of cytokinesis 2), a hematopoietic cell-specific, atypical GEF, controls lymphocyte migration through Rac activation. A DOCK2-ELMO1 complex s necessary for DOCK2-mediated Rac signaling. DOCK2 contains a SH3 domain at its N-terminus, followed by a lipid binding DHR1 domain, and a Rac-binding DHR2 domain at its C-terminus. ELMO1, a mammalian homolog of C. elegans CED-12, contains the N-terminal RhoG-binding region, the ELMO domain, the PH domain, and the C-terminal sequence with three PxxP motifs. The C-terminal region of ELMO1, including the Pro-rich sequence, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle along with the PH domain of ELMO1. Autoinhibition of ELMO1 and DOCK2 is accomplished by the interactions of the EID and EAD domains and SH3 and DHR2 domains, respectively. The interaction of DOCK2 and ELMO1 mutually relieve their autoinhibition and results in the activation of Rac1. The PH domain of ELMO1 does not bind phosphoinositides due to the absence of key binding residues. It more closely resembles the FERM domain rather than other PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 126 -241514 cd13360 PH_PLC_fungal Fungal Phospholipase C (PLC) pleckstrin homology (PH) domain. Fungal PLC have mostly been characterized in the yeast Saccharomyces cerevisiae via deletion studies which resulted in a pleiotropic phenotype, with defects in growth, carbon source utilization, and sensitivity to osmotic stress and high temperature. Unlike Saccharomyces several other fungi including Neurospora crassa, Cryphonectria parasitica , and Magnaporthe oryzae (Mo) have several PLC proteins, some of which lack a PH domain, with varied functions. MoPLC1-mediated regulation of Ca2+ level is important for conidiogenesis and appressorium formation while both MoPLC2 and MoPLC3 are required for asexual reproduction, cell wall integrity, appressorium development, and pathogenicity. The fungal PLCs in this hierarchy contain an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, and a C-terminal C2 domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 118 -270167 cd13361 PH_PLC_beta Phospholipase C-beta (PLC-beta) pleckstrin homology (PH) domain. PLC-beta (PLCbeta) is regulated by heterotrimeric G protein-coupled receptors through their C2 domain and long C-terminal extension which forms an autoinhibitory helix. There are four isoforms: PLC-beta1-4. The PH domain of PLC-beta2 and PLC-beta3 plays a dual role, much like PLC-delta1, by binding to the plasma membrane, as well as the interaction site for the catalytic activator. However, PLC-beta binds to the lipid surface independent of PIP2. PLC-beta1 seems to play unspecified roles in cellular proliferation and differentiation. PLC-beta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, a C2 domain and a C-terminal PDZ. Members of the Rho GTPase family (e.g., Rac1, Rac2, Rac3, and cdc42) have been implicated in their activation by binding to an alternate site on the N-terminal PH domain. A basic amino acid region within the enzyme's long C-terminal tail appears to function as a Nuclear Localization Signal for import into the nucleus. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. 127 -270168 cd13362 PH_PLC_gamma Phospholipase C-gamma (PLC-gamma) pleckstrin homology (PH) domain. PLC-gamma (PLCgamma) is activated by receptor and non-receptor tyrosine kinases due to the presence of its SH2 and SH3 domains. There are two main isoforms of PLC-gamma expressed in human specimens, PLC-gamma1 and PLC-gamma2. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. Only the first PH domain is present in this hierarchy. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 121 -270169 cd13363 PH_PLC_delta Phospholipase C-delta (PLC-delta) pleckstrin homology (PH) domain. The PLC-delta (PLCdelta) consists of three family members, delta 1, 2, and 3. PLC-delta1 is the most well studied. PLC-delta is activated by high calcium levels generated by other PLC family members, and functions as a calcium amplifier within the cell. PLC-delta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves, and a C-terminal C2 domain. The PH domain binds PIP2 and promotes activation of the catalytic core as well as tethering the enzyme to the plasma membrane. The C2 domain has been shown to mediate calcium-dependent phospholipid binding as well. The PH and C2 domains operate in concert as a "tether and fix" apparatus necessary for processive catalysis by the enzyme. Its leucine-rich nuclear export signal (NES) in its EF hand motif, as well as a Nuclear localization signal within its linker region allow PLC-delta 1 to actively translocate into and out of the nucleus. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 117 -270170 cd13364 PH_PLC_eta Phospholipase C-eta (PLC-eta) pleckstrin homology (PH) domain. PLC-eta (PLCeta) consists of two enzymes, PLCeta1 and PLCeta2. They hydrolyze phosphatidylinositol 4,5-bisphosphate, are more sensitive to Ca2+ than other PLC isozymes, and involved in PKC activation in the brain and neuroendocrine systems. PLC-eta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves by a variable linker, a C2 domain, and a C-terminal PDZ domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.involved in targeting proteins to the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. 109 -270171 cd13365 PH_PLC_plant-like Plant-like Phospholipase C (PLC) pleckstrin homology (PH) domain. PLC-gamma (PLCgamma) was the second class of PLC discovered. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). This cd contains PLC members from fungi and plants. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 115 -270172 cd13366 PH_ABR Active breakpoint cluster region-related protein pleckstrin homology (PH) domain. The ABR protein contains multiple domains including a RhoGEF domain, a PH domain, a C1 domain, a C2 domain, and a C-terminal RhoGAP domain. It is related to a slightly larger protein, BCR, which is structurally similar, but has an additional N-terminal kinase domain. ABR has GAP activity for both Rac and Cdc42. It promotes the exchange of RAC or CDC42-bound GDP by GTP, thereby activating them. It is highly enriched in the brain and found to a lesser extent in heart, lung and muscle. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 185 -270173 cd13367 PH_BCR_vertebrate Breakpoint Cluster Region-related pleckstrin homology (PH) domain. The BCR gene is one of the two genes in the BCR-ABL complex, which is associated with the Philadelphia chromosome, a product of a reciprocal translocation between chromosomes 22 and 9. BCR is a GTPase-activating protein (GAP) for RAC1 (primarily) and CDC42. The Dbl region of BCR has the most RhoGEF activity for Cdc42, and less activity towards Rac and Rho. Since BCR possesses both GAP and GEF activities, it may function to temporally regulate the activity of these GTPases. It also displays serine/threonine kinase activity. The BCR protein contains multiple domains including an N-terminal kinase domain, a RhoGEF domain, a PH domain, a C1 domain, a C2 domain, and a C-terminal RhoGAP domain. This hierarchy is composed of vertebrate BCRs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 194 -270174 cd13368 PH_BCR_arthropod Breakpoint Cluster Region-related pleckstrin homology (PH) domain. The BCR gene is one of the two genes in the BCR-ABL complex, which is associated with the Philadelphia chromosome, a product of a reciprocal translocation between chromosomes 22 and 9. BCR is a GTPase-activating protein (GAP) for RAC1 (primarily) and CDC42. The Dbl region of BCR has the most RhoGEF activity for Cdc42, and less activity towards Rac and Rho. Since BCR possesses both GAP and GEF activities, it may function to temporally regulate the activity of these GTPases. It also displays serine/threonine kinase activity. The BCR protein contains multiple domains including an N-terminal kinase domain, a RhoGEF domain, a PH domain, a C1 domain, a C2 domain, and a C-terminal RhoGAP domain. This hierarchy is composed of arthropod BCRs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 180 -270175 cd13369 PH_RASAL1 Ras-GTPase-activating-like protein pleckstrin homology (PH) domain. RASAL1 is a member of the GAP1 family of GTPase-activating proteins, along with GAP1(m), GAP1(IP4BP) and CAPRI. RASAL1 contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. RASAL1 contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL1 are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL1 differ in that CAPRI is an amplitude sensor while RASAL1 senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 138 -241521 cd13370 PH_GAP1m_mammal-like GTPase activating protein 1 m pleckstrin homology (PH) domain. GAP1(m) (also called RASA2/RAS p21 protein activator (GTPase activating protein) 2) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(IP4BP), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(m) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1IP4BP, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(m) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(m) binds inositol tetrakisphosphate (IP4). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 133 -241522 cd13371 PH_GAP1_mammal-like GAP1(IP4BP) pleckstrin homology (PH) domain. GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -241523 cd13372 PH_CAPRI Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain. CAPRI (also called RASA4/RAS p21 protein activator (GTPase activating protein) 4/GAPL/FLJ59070/KIAA0538/MGC131890) is a member of the GAP1 family of GTPase-activating proteins. CAPRI contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 140 -270176 cd13373 PH_nGAP Neuronal growth-associated proteins Pleckstrin homology (PH) domain. nGAP (also called RASAL2/RAS protein activator like-3) is a member of the RasSynGAP family along with DOC-2/DAB2-interacting protein (DAB2IP) and synaptic RasGAP (SynGAP). nGAPs are growth cone markers found in multiple types of neurons. There are many nGAPs including Cap1 (Adenylate cyclase-associated protein 1), Capzb (Capping protein (actin filament) muscle Z-line, beta), Clptm1 (Cleft lip and palate associated transmembrane protein 1), Cotl1 (Coactosin-like 1), Crmp1 (Collapsin response mediator protein 1), Cyfip1 (Cytoplasmic FMR1 interacting protein 1), Fabp7 (Fatty acid binding protein 7, brain), Farp2 (FERM, RhoGEF and pleckstrin domain protein 2), Gap43 (Growth associated protein 43), Gnao1 (Guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O), Gnai2 (Guanine nucleotide binding protein (G protein), alpha inhibiting 2), Pacs1 (Phosphofurin acidic cluster sorting protein 1), Rtn1 (Reticulon 1), Sept2 (Septin 2), Snap25 (Synaptosomal-associated protein 25), Strap (Serine/threonine kinase receptor associated protein), Stx7 (Syntaxin 7), and Tmod2 (Tropomodulin 2). PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 138 -270177 cd13374 PH_RASAL3 RAS protein activator like-3 Pleckstrin homology (PH) domain. RASAL3 is thought to be a Ras GTPase-activating protein. It is involved in positive regulation of Ras GTPase activity and of small GTPase mediated signal transduction as well as negative regulation of Ras protein signal transduction. It contains a PH domain, a C2 domain, and a Ras-GAP domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 146 -270178 cd13375 PH_SynGAP Synaptic Ras-GTPase activating protein Pleckstrin homology (PH) domain. SynGAP is a member of the RasSynGAP family along with DOC-2/DAB2-interacting protein (DAB2IP) and neuronal growth-associated protein (nGAP/RASAL2). SynGAP, a neuronal Ras-GAP, has been shown display both Ras-GAP activity and Ras-related protein (Rap)-GAP activity. Saccharomyces cerevisiae Bud2 and GAP1 members CAPRI (Ca2+-promoted Ras inactivator) and RASAL (Ras-GTPase-activating-like protein) also possess this dual activity. Human DOC-2/DAB2-interacting protein (DAB2IP) is encoded by a tumor suppressor gene and a newly recognized member of the Ras-GTPase-activating family. Members here include mammals, amphibians, and bony fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 189 -270179 cd13376 PH_DAB2IP DOC-2/Disabled homolog 2-interacting protein Pleckstrin homology (PH) domain. DAB2IP (also called AIP1/ASK1-interacting protein-1 and DIP1/2) is a member of the RasSynGAP family along with Synaptic Ras-GTPase activating protein (SynGAP) and neuronal growth-associated protein (nGAP/RASAL2). DAB2IP is a critical component of many signal transduction pathways mediated by Ras and tumor necrosis factors including apoptosis pathways, and it is involved in the formation of many types of tumors. DAB2IP participates in regulation of gene expression and pluripotency of cells. Human DAB2IP is expressed in the adrenal gland, pancreas, endocardium, stomach, kidney, testis, small intestine, liver, trachea, skin, ovary, endometrium, lung, esophagus and bladder. No expression was observed in the cerebrum, parotid gland, thymus, thyroid gland and spleen. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 182 -241529 cd13378 PH_RhoGAP2 Rho GTPase activating protein 2 Pleckstrin homology (PH) domain. RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 116 -241530 cd13379 PH_RhoGap24 Rho GTPase activating protein 24 Pleckstrin homology (PH) domain. RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 114 -270180 cd13380 PH_Skap1 Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain. Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270181 cd13381 PH_Skap-hom_Skap2 Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain. Adaptor protein Skap-hom, a homolog of Skap55, which interacts with actin and with ADAP (adhesion and degranulation promoting adapter protein) undergoes tyrosine phosphorylation in response to plating of bone marrow-derived macrophages on fibronectin. Skap-hom has an N-terminal coiled-coil conformation that is involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap-hom PH domain regulates intracellular targeting; its interaction with the DM domain inhibits Skap-hom actin-based ruffles in macrophages and its binding to 3'-phosphoinositides reverses this autoinhibition. The Skap-hom PH domain binds PI[3,4]P2 and PI[3,4,5]P3, but not to PI[3]P, PI[5]P, or PI[4,5]P2. Skap2 is a downstream target of Heat shock transcription factor 4 (HSF4) and functions in the regulation of actin reorganization during lens differentiation. It is thought that SKAP2 anchors the complex of tyrosine kinase adaptor protein 2 (NCK20/focal adhesion to fibroblast growth factor receptors at the lamellipodium in lens epithelial cells. Skap2 has an N-terminal coiled-coil conformation which interacts with the SH2 domain of NCK2, a central PH domain and a C-terminal SH3 domain that associates with ADAP (adhesion and degranulation promoting adapter protein)/FYB (the Fyn binding protein). Skap2 PH domain binds to membrane lipids. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-hom have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 106 -270182 cd13382 PH_OCRL1 oculocerebrorenal syndrome of Lowe 1 Pleckstrin homology-like domain. OCRL1 (also called INPP5F, LOCR, NPHL2, or phosphatidylinositol polyphosphate 5-phosphatase) hydrolyzes phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events. It interact with APPL1, FAM109A and FAM109B and several Rab GTPases which might both target them to the specific membranes and as well as stimulating the phosphatase activity. OCRL1 contains a PH domain and a Rho-GAP domain. Patients with Lowe syndrome suffer primarily from congenital cataracts, neonatal hypotonia, intellectual disability and Fanconi syndrome. Mutations in OCRL are also found in a subset of patients with type 2 Dent disease, who selectively suffer from renal proximal tubular dysfunction. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270183 cd13383 PH_OCRL2 oculocerebrorenal syndrome of Lowe 2 Pleckstrin homology-like domain. OCRL2 ( also called IPNNB5, inositol polyphosphate-5-phosphatase, phosphoinositide 5-phosphatase, 5PTase, or type II inositol-1,4,5-trisphosphate 5-phosphatase) hydrolyzes phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events. It interact with APPL1, FAM109A and FAM109B and several Rab GTPases which might both target them to the specific membranes and as well as stimulating the phosphatase activity. OCRL2 contains a PH domain and a Rho-GAP domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -241535 cd13384 PH_Gab2_2 Grb2-associated binding protein family pleckstrin homology (PH) domain. The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 115 -270184 cd13385 PH_Gab3 Grb2-associated binding protein 3 pleckstrin homology (PH) domain. The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -275421 cd13386 PH1_FGD2 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 2, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -275422 cd13387 PH1_FGD3 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 3, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 108 -275423 cd13388 PH1_FGD1-4_like FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. They play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 94 -275424 cd13389 PH1_FGD5_FGD6 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain. FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 124 -275425 cd13390 PH_LARG Leukemia-associated Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain. LARG (also called RhoGEF12) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. RhoGEFs activate Rho GTPases regulating cytoskeletal structure, gene transcription, and cell migration. LARG contains a N-terminal extension, followed by Dbl homology (DH)-PH domains which bind and catalyze the exchange of GDP for GTP on RhoA in addition to a RGS domain. The active site of RhoA adopts two distinct GDP-excluding conformations among the four unique complexes in the asymmetric unit. The LARG PH domain also contains a potential protein-docking site. LARG forms a homotetramer via its DH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 138 -275426 cd13391 PH_PRG PDZ Rho guanine nucleotide exchange factor Pleckstrin homology (PH) domain. PRG (also called RhoGEF11) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. RhoGEFs activate Rho GTPases regulating cytoskeletal structure, gene transcription, and cell migration. PRG contains an N-terminal PDZ domain, a regulators of G-protein signaling-like (RGSL) domain, a linker region, and a C-terminal Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. As is the case in p115-RhoGEF, it is thought that the PRG activated by relieving autoinhibition caused by the linker region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 142 -275427 cd13392 PH_AKAP13 A-kinase anchoring protein 13 Pleckstrin homology (PH) domain. The Rho-specific GEF activity of AKAP13 (also called Brx-1, AKAP-Lbc, and proto-Lbc) mediates signaling downstream of G-protein coupled receptors and Toll-like receptor 2. It plays a role in cell growth, cell development and actin fiber formation. Protein kinase A (PKA) binds and phosphorylates AKAP13, regulating its Rho-GEF activity. Alternative splicing of this gene in humans has at least 3 transcript variants encoding different isoforms (i.e. proto-/onco-Lymphoid blast crisis, Lbc and breast cancer nuclear receptor-binding auxiliary protein, Brx) containing a dbl oncogene homology (DH) domain and PH domain which are required for full transforming activity. The DH domain is associated with guanine nucleotide exchange activation while the PH domain has multiple functions including determine protein sub-cellular localisation via phosphoinositide interactions, while others bind protein partners. Other ligands include protein kinase C which is bound by the PH domain of AKAP13, serving to activate protein kinase D and mobilize a cardiac hypertrophy signaling pathway. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 103 -275428 cd13393 PH_ARHGEF2 Rho guanine nucleotide exchange factor 2 Pleckstrin homology (PH) domain. ARHGEF2, also called GEF-H1, acts as guanine nucleotide exchange factor (GEF) for RhoA GTPases. It is thought to play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. ARHGEF2 contains a C1 domain followed by Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 116 -240521 cd13394 Syo1_like Fungal symportin 1 (syo1) and similar proteins. This family of eukaryotic proteins includes Saccharomyces cerevisiae Ydl063c and Chaetomium thermophilum Syo1, which mediate the co-import of two ribosomal proteins, Rpl5 and Rpl11 (which both interact with 5S rRNA) into the nucleus. Import precedes their association with rRNA and subsequent ribosome assembly in the nucleolus. The primary structure of syo1 is a mixture of Armadillo- (ARM, N-terminal part of syo1) and HEAT-repeats (C-terminal part of syo1). 597 -340367 cd13399 Slt35_like Slt35-like lytic transglycosylase. Lytic transglycosylase similar to Escherichia coli lytic transglycosylase Slt35 and Pseudomonas aeruginosa Sltb1. Lytic transglycosylase (LT) catalyzes the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Members of this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 102 -340368 cd13400 LT_IagB_like IagB-like protein. Lytic transglycosylase-like protein, similar to Escherichia coli invasion protein IagB. IagB is encoded within a pathogenicity island in Salmonella enterica and has been shown to degrade polymeric peptidoglycan. IagB-like invasion proteins are implicated in the invasion of eukaryotic host cells by bacteria. Lytic transglycosylase (LT) catalyzes the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Members of this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 109 -340369 cd13401 Slt70_like 70kDa soluble lytic transglycosylase (Slt70) and similar proteins. Catalytic domain of the 70kda soluble lytic transglycosylase (LT)-like proteins, which also have an N-terminal U-shaped U-domain and a linker L-domain. LTs catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 152 -340370 cd13402 LT_TF_like lytic transglycosylase-like domain of tail fiber-like proteins and similar domains. These tail fiber-like proteins are multi-domain proteins that include a lytic transglycosylase (LT) domain. Members of the LT family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, and the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). LTs catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. 117 -340371 cd13403 MLTF_like Membrane-bound lytic murein transglycosylase F (MLTF) and similar proteins. This subfamily includes membrane-bound lytic murein transglycosylase F (MltF, murein lyase F) that degrades murein glycan strands. It is responsible for catalyzing the release of 1,6-anhydromuropeptides from peptidoglycan. Lytic transglycosylase catalyzes the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do goose-type lysozymes. However, in addition, it also makes a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. 161 -259831 cd13404 UreI_AmiS_like UreI/AmiS family, proton-gated urea channel and putative amide transporters. This family includes UreI proton-gated urea channels as well as putative amide transporters (AmiS of the amidase gene cluster). Helicobacter pylori UreI (HpUreI), a proton-gated inner membrane urea channel opens in acidic pH to allow urea influx to the cytoplasm. There urea is metabolized, producing NH3 and CO2, leading to buffering of the periplasm. This action is essential for the survival of H. pylori in the stomach, and has been identified as a mechanism that could be clinically targeted to prevent various illnesses associated with infection by H. pylori. UreI and the related amide channels (AmiS) appear to function as hexamers, and have 6 predicted transmembrane segments. UreI has also been shown have a lipid "plug" in the center of the hexamer. Urea enters at the periplasmic opening of UreI and must pass 2 constriction sites, one on each side of a conserved Glu (Glu 177, H. pylori numbering), to reach the cytoplasm. Urea/thiourea selectivity is diminished by mutation of a conserved Trp to Ala or Phe in constriction site 2 (cytoplasmic). Channel functionality is greatly diminished by mutation of a conserved Trp in constriction site 1 (periplasmic) and a conserved Tyr in constriction site 2, and to a lesser extent a conserved Phe in site 1. In the cytoplasm, urease hydrolyzes urea to form ammonia and carbamate, which decomposes to carbonic acid. UreI is fully open at pH 5.0 to facilitate urea influx, but closes at neutral pH, preventing over-alkalization. Glu 177 (H. pylori numbering) is present in urea channel proteins, but absent in the related amide channels, suggesting that it plays a role in urea specificity. 167 -276910 cd13405 TNFRSF14_teleost Tumor necrosis factor receptor superfamily member 14 (TNFRSF14) in teleost; also known as herpes virus entry mediator (HVEM). This subfamily of TNFRSF14 (also known as herpes virus entry mediator or HVEM, ATAR, CD270, HVEA, LIGHTR, TR2) is found in teleosts, many of which are as yet uncharacterized. It regulates T-cell immune responses by activating inflammatory as well as inhibitory signaling pathways. HVEM acts as a receptor for the canonical TNF-related ligand LIGHT (lymphotoxin-like), which exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM. It also acts as a ligand for the immunoglobulin superfamily proteins BTLA (B and T lymphocyte attenuator) and CD160, a feature distinguishing HVEM from other immune regulatory molecules, thus, creating a functionally diverse set of intrinsic and bidirectional signaling pathways. HVEM is highly expressed in the gut epithelium. Genome-wide association studies have shown that HVEM is an inflammatory bowel disease (IBD) risk gene, suggesting that HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense, and the microbiota. Mouse models have revealed that HVEM is involved in colitis pathogenesis, mucosal host defense, and epithelial immunity, thus acting as a mucosal gatekeeper with multiple regulatory functions in the mucosa. HVEM plays a critical role in both tumor progression and resistance to antitumor immune responses, possibly through direct and indirect mechanisms. It is known to be expressed in several human malignancies, including esophageal squamous cell carcinoma, follicular lymphoma, and melanoma. HVEM network may therefore be an attractive target for drug intervention. In Asian seabass, the up-regulation of differentially expressed TNFRSF14 gene has been observed. 111 -276911 cd13406 TNFRSF4 Tumor necrosis factor receptor superfamily member 4 (TNFRSF4), also known as CD134 or OXO40. TNFRSF4 (also known as OX40, ACT35, CD134, IMD16, TXGP1L) activates NF-kappaB through its interaction with adaptor proteins TRAF2 and TRAF5. It also promotes the expression of apoptosis inhibitors BCL2 and BCL2lL1/BCL2-XL, and thus suppresses apoptosis. It is primarily expressed on activated CD4+ and CD8+ T cells, where it is transiently expressed and upregulated on the most recently antigen-activated T cells within inflammatory lesions. This makes it an attractive target to modulate immune responses, i.e. TNFRSF4 (OX40) blocking agents to inhibit adverse inflammation or agonists to enhance immune responses. An artificially created biologic fusion protein, OX40-immunoglobulin (OX40-Ig), prevents OX40 from reaching the T-cell receptors, thus reducing the T-cell response. Some single nucleotide polymorphisms (SNPs) of its natural ligand OX40 ligand (OX40L, CD252), which is also found on activated T cells, have been associated with systemic lupus erythematosus. 142 -276912 cd13407 TNFRSF5 Tumor necrosis factor receptor superfamily member 5 (TNFRSF5), also known as CD40. TNFRSF5 (commonly known as CD40 and also as CDW40, p50, Bp50) is widely expressed in diverse cell types including B lymphocytes, dendritic cells, platelets, monocytes, endothelial cells, and fibroblasts. It is essential in mediating a wide variety of immune and inflammatory responses, including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. Its natural immunomodulating ligand is CD40L, and a primary defect in the CD40/CD40L system is associated with X-linked hyper-IgM (XHIM) syndrome. It is also involved in tumorigenesis; CD40 expression is significantly higher in gastric carcinomas and it is associated with the lymphatic metastasis of cancer cells and their tumor node metastasis (TNM) classification. Upregulated levels of CD40/CD40L on B cells and T cells may play an important role in the immune pathogenesis of breast cancer. Consequently, the CD40/CD40L system serves as a link between tumorigenesis, atherosclerosis, and the immune system, and offers a potential target for drug therapy for related diseases, such as cancer, atherosclerosis, diabetes mellitus, and immunological rejection. 161 -276913 cd13408 TNFRSF7 Tumor necrosis factor receptor superfamily member 7 (TNFRSF7), also known as CD27. TNFRSF7 (also known as CD27, T14, S152, Tp55, S152, LPFS2) has a key role in the generation of immunological memory via effects on T-cell expansion and survival, and B cell development. It binds to ligand CD70, and plays a key role in regulating B-cell activation and immunoglobulin synthesis. CD27 transduces signals that lead to the activation of NF-kappaB and MAPK8/JNK, and mediates the signaling process through adaptor proteins TRAF2 and TRAF5. CD27-binding protein (SIVA), a pro-apoptotic protein, can bind to CD27 and may play an important role in the apoptosis induced by this receptor. The potential role of the CD27/CD70 pathway in the course of inflammatory diseases, such as arthritis, and inflammatory bowel disease, suggests that CD70 may be a target for immune intervention. The expression of CD27 and CD44 molecules correlates with the differentiation stage of B cell precursors and has been shown to have a biological significance in acute lymphoblastic leukemia. 121 -276914 cd13409 TNFRSF8 Tumor necrosis factor receptor superfamily member 8 (TNFRSF8), also known as CD30. TNFRSF8 (also known as CD30, Ki-1, D1S166E) is expressed by activated T and B cells. It transduces signals that lead to the activation of NF-kappaB, mediated by the adaptor proteins TRAF2 and TRAF5. This receptor is a positive regulator of apoptosis, and has been shown to limit the proliferative potential of auto-reactive CD8 effector T cells and protect the body against autoimmunity. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. CD30 is expressed in malignant Hodgkin and Reed-Sternberg cells on the surface of extracellular vesicles, facilitating CD30-CD30L interaction between cell types. This receptor is also associated with anaplastic large cell lymphoma. It is expressed in embryonal carcinoma, but not in seminoma, making it a useful marker in distinguishing between these germ cell tumors. Since CD30 has restricted expression in normal tissues, it is an optimal target for selectively eliminating CD30-expressing neoplastic cells by specific toxin-conjugated monoclonal antibodies (mAbs). 130 -276915 cd13410 TNFRSF9 Tumor necrosis factor receptor superfamily member 9 (TNFRSF9), also known as CD137. TNFRSF9 (also known as CD137, ILA, 4-1BB) plays a role in the immunobiology of human cancer where it is preferentially expressed on tumor-reactive subset of tumor-infiltrating lymphocytes. It can be expressed by activated T cells, but to a larger extent on CD8 than on CD4 T cells. In addition, CD137 expression is found on dendritic cells, follicular dendritic cells, natural killer cells, granulocytes and cells of blood vessel walls at sites of inflammation. It transduces signals that lead to the activation of NF-kappaB, mediated by the TRAF adaptor proteins. CD137 contributes to the clonal expansion, survival, and development of T cells. It can also induce proliferation in peripheral monocytes, enhance T cell apoptosis induced by TCR/CD3 triggered activation, and regulate CD28 co-stimulation to promote Th1 cell responses. CD137 is modulated by SAHA treatment in breast cancer cells, suggesting that the combination of SAHA with this receptor could be a new therapeutic approach for the treatment of tumors. 138 -276916 cd13411 TNFRSF11A Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A), also known as receptor activator of nuclear factor-kappaB (RANK). TNFRSF11A (also known as RANK, FEO, OFE, ODFR, OSTS, PDB2, CD26, OPTB7, TRANCER, LOH18CR1) induces the activation of NF-kappa B and MAPK8/JNK through interactions with various TRAF adaptor proteins. This receptor and its ligand are important regulators of the interaction between T cells and dendritic cells. The receptor is also an essential mediator for osteoclast and lymph node development. Mutations at this locus have been associated with familial expansile osteolysis, autosomal recessive osteopetrosis, and Juvenile Paget's disease (JPD) of bone. Alternatively spliced transcript variants have been described for this locus. Mutation analysis may improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. 163 -276917 cd13412 TNFRSF11B_teleost Tumor necrosis factor receptor superfamily 11B (TNFRSF11B) in teleost; also known as Osteoprotegerin (OPG). This subfamily of TNFRSF11B (also known as Osteoprotegerin, OPG, TR1, OCIF) is found in teleosts. It is a secreted glycoprotein that regulates bone resorption. It binds to two ligands, RANKL (receptor activator of nuclear factor kappaB ligand, also known as osteoprotegerin ligand, OPGL, TRANCE, TNF-related activation induced cytokine), a critical cytokine for osteoclast differentiation, and TRAIL (TNF-related apoptosis-inducing ligand), involved in immune surveillance. Therefore, acting as a decoy receptor for RANKL and TRAIL, OPG inhibits the regulatory effects of nuclear factor-kappaB on inflammation, skeletal, and vascular systems, and prevents TRAIL-induced apoptosis. Studies in mice counterparts suggest that this protein and its ligand also play a role in lymph-node organogenesis and vascular calcification. Circulating OPG levels have emerged as independent biomarkers of cardiovascular disease (CVD) in patients with acute or chronic heart disease. OPG has also been implicated in various inflammations and linked to diabetes and poor glycemic control. Alternatively spliced transcript variants of this gene have been reported, although their full length nature has not been determined. Genetic analysis of the Japanese rice fish medaka (Oryzias latipes) has shown that entire networks for bone formation are conserved between teleosts and mammals; enabling medaka to be used as a genetic model to monitor bone homeostasis in vivo. 129 -276918 cd13413 TNFRSF12A Tumor necrosis factor receptor superfamily member 12A (TNFRSFA), also known as receptor fibroblast growth factor inducible 14 (FN14). TNFRSF12A (also known as receptor fibroblast growth factor inducible 14, FN14, CD266, TWEAKR) is induced by a large variety of growth factors including Fibroblast Growth Factor 1 (FGF1), FGF2, Platelet-Derived Growth Factor (PDGF), Epidermal Growth Factor (EGF) and Vascular Endothelial Growth Factor (VEGF), as well as cytokines such as tumor necrosis factor alpha (TNFalpha), Interleukin-1beta (IL-1beta), Interferon gamma (IFNgamma), and transforming growth factor-beta (TGF-beta). FN14 is expressed on a wide variety of different cell types and binds the ligand TWEAK (tumor necrosis factor-like weak inducer of apoptosis) to activate several signaling cascades through activation of NF-kappaB signaling mediated by adaptor TRAF proteins. The FN14/TWEAK pathway controls a range of cellular activities such as proliferation, differentiation, and apoptosis, and has diverse biological functions in pathological mechanisms like inflammation and fibrosis that are associated with cardiovascular diseases (CVDs). The complex is a positive regulator of cardiac hypertrophy and it has been shown that deletion of FN14 receptor protects from right heart fibrosis and dysfunction; the TWEAK/Fn14 axis could be a potential new therapeutic target for achieving cardiac protection in patients with CVDs. FN14 expression is also stimulated under specific atrophic conditions, such as denervation, immobilization, and starvation, leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. FN14 is also a factor that promotes prostate cancer bone metastasis. 117 -276919 cd13414 TNFRSF17 Tumor necrosis factor receptor superfamily member 17 (TNFRSF17), also known as B cell maturation antigen (BCMA), as well as TNFRSF13A. TNFRSF17 (also known as TNFRSF13A, B cell maturation antigen or BCMA, CD269) is predominantly expressed on terminally differentiated B cells, including multiple myeloma cells, and is important for B cell development and autoimmune response. Upon binding to its ligands, B cell activator of the TNF family (BAFF, also known as TNSF13B, TALL-1, BLyS, zTNF4), and a proliferation inducing ligand (APRIL), BCMA activates NF-kappaB and MAPK8/JNK; it has a higher affinity for APRIL than for BAFF. This receptor may transduce signals for cell survival and proliferation by binding to TRAF1, TRAF2, and TRAF3. BCMA expression has also been linked to a number of cancers, autoimmune disorders, and infectious diseases. It has been shown that although BCMA does not play a role in normal B cell homeostasis, it is critical for the long-term survival of bone marrow plasma cells. BCMA is expressed in a number of hematologic malignancies, including both Hodgkin's and non-Hodgkin's lymphomas, as well as primary tumor cells and cell lines of multiple myeloma, playing a critical role in protecting myeloma cells from apoptosis. BCMA has been identified as a promising chimeric antigen receptor (CAR) target for multiple myeloma; CARs are synthetic transmembrane proteins used to redirect autologous T cells with a new specificity for antigens on the surface of cancer cells. BCMA may also be implicated in the context of both viral and fungal infections; peripheral blood B cells isolated from HIV+ viremic patients have increased expression levels of BCMA, and significant decreased levels are found during fungal infection with C. neoformans. BCMA has been linked to mucosal immunity; its signaling in B cells and non-B cells is important for driving protective IgA responses. Also, abnormal expression or signaling of BCMA in the gut may be relevant to diseases, such as irritable bowel disease and ulcerative colitis. 165 -276920 cd13415 TNFRSF13B Tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), also known as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI). TNFRSF13B (also known as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), CVID, RYZN, CD267, CVID2, TNFRSF14B) is mainly expressed on B cells and binds strongly to B cell activating factor (BAFF) and weakly to a proliferation-inducing ligand (APRIL). TACI-APRIL interactions induce B-cell differentiation, whereas TACI-BAFF ligation negatively regulates B-cell functions. In humans, TACI is expressed on memory B cells and TACI mutations are detected in 8-10% of common variable immunodeficiency (CVID) patients, making it the most frequently mutated gene for the disease. Coexisting morbidities in CVID include bronchiectasis, autoimmunity, and malignancies. However, TNFRSF13B/TACI defects alone do not result in CVID but may also be found frequently in distinct clinical phenotypes, including benign lymphoproliferation and IgG subclass deficiencies. Over-expression of TACI has been detected in multiple myeloma and thyroid carcinoma; correlative analyses suggest that TACI expression is a useful prognostic marker for lymphoma. 212 -276921 cd13416 TNFRSF16 Tumor necrosis factor receptor superfamily member 16 (TNFRSF16), also known as p75 neurotrophin receptor (p75NTR) or CD271. TNFRSF16 (also known as nerve growth factor receptor (NGFR) or p75 neurotrophin receptor (p75NTR or p75(NTR)), CD271, Gp80-LNGFR) is a common receptor for both neurotrophins and proneurotrophins, and plays a diverse role in many tissues, including the nervous system. It has been shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. p75NTR owes its signaling to the recruitment of intracellular binding proteins, leading to the activation of different signaling pathways. It binds nerve growth factor (NGF) and the complex can initiate a signaling cascade which has been associated with both neuronal apoptosis and neuronal survival of discrete populations of neurons, depending on the presence or absence of intracellular signaling molecules downstream of p75NTR (e.g. NF-kB, JNK, or p75NTR intracellular death domain). p75NTR can also bind NGF in concert with the neurotrophic tyrosine kinase receptor type 1 (TrkA) protein where it is thought to modulate the formation of the high-affinity neurotrophin binding complex. On melanoma cell, p75NTR is an immunosuppressive factor, induced by interferon (IFN)-gamma, and mediates down-regulation of melanoma antigens. It can interact with the aggregated form of amyloid beta (Abeta) peptides, and plays an important role in etiopathogenesis of Alzheimer's disease by influencing protein tau hyper-phosphorylation. p75(NTR) is involved in the formation and progression of retina diseases; its expression is induced in retinal pigment epithelium (RPE) cells and its knockdown rescues RPE cell proliferation activity and inhibits RPE apoptosis induced by hypoxia. It can therefore be a potential therapeutic target for RPE hypoxia or oxidative stress diseases. 159 -276922 cd13417 TNFRSF18 Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR). TNFRSF18 (also known as activation-inducible TNF receptor (AITR), glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), CD357, GITR-D) has increased expression upon T-cell activation, and is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. In inflammatory cells, GITR expression indicates a possible molecular link between steroid use and complicated acute sigmoid diverticulitis; increased MMP-9 expression by GITR signaling might explain morphological changes in the colonic wall in diverticulitis. Its ligand, GITRL, activates GITR which could then influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases, including autoimmune thyroid disease and rheumatoid arthritis. In systemic lupus erythematosus (SLE) patients, serum GITRL levels are increased compared with healthy controls. GITR and its ligand, GITRL, are possibly involved in the pathogenesis of primary Sjogren's syndrome (pSS). GITR is inactivated during tumor progression in Multiple Myeloma (MM); restoration of GITR expression in GITR deficient MM cells leads to inhibition of MM proliferation and induction of apoptosis, thus playing a pivotal role in MM pathogenesis and disease progression. Regulatory T-cells (Tregs) in liver tumor up-regulate the expression of GITR compared with Tregs in tumor-free liver tissue and blood. Regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the TNFRSF18 gene have been identified in a group of male Gabonese individuals exposed to a wide array of parasitic diseases such as malaria, filariasis and schistosomiasis, and may serve as a basis to study parasite susceptibility in association studies. 130 -276923 cd13418 TNFRSF19 Tumor necrosis factor receptor superfamily member 19 (TNFRSF19), also known as TROY. TNFRSF19 (also known as TAJ; TROY; TRADE; TAJ-alpha) is expressed in progenitor cells of the hippocampus, thalamus, and cerebral cortex and highly expressed during embryonic development. It has been shown to interact with TRAF family members, and to activate JNK signaling pathway when overexpressed in cells. It is frequently overexpressed in colorectal cancer cell lines and primary colorectal carcinomas. TNFRSF19 is a beta-catenin target gene, in mesenchymal stem cells, and also activates NF-kappaB signaling, showing that beta-catenin regulates NF-kappaB activity via TNFRSF19. Since Wnt/beta-catenin signaling plays a crucial role in the regulation of colon tissue regeneration and the development of colon tumors, TNFRSF19 may contribute to the development of colorectal tumors. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. TNFRSF19 has been shown to promote glioblastoma (GBM) survival signaling and therefore targeting it may increase tumor vulnerability and improve therapeutic response in glioblastoma. It may play an important role in myelin-associated inhibitory factors (MAIFs)-induced inhibition of neurite outgrowth in the postnatal central nervous system (CNS) or on axon regeneration following CNS injury. 117 -276924 cd13419 TNFRSF19L tumor necrosis factor receptor superfamily member 19-like (TNFRSF19L), also known as receptor expressed in lymphoid tissues (RELT). TNFRSF19L (also known as receptor expressed in lymphoid tissues (RELT)) is especially abundant in hematologic tissues and can stimulate the proliferation of T-cells. It serves as a substrate for the closely related kinases, odd-skipped related transcription factor 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK); RELT binds SPAK and uses it to mediate p38 and JNK activation, rather than rely on the canonical TRAF pathways for its function. RELT is capable of stimulating T-cell proliferation in the presence of CD3 signaling, which suggests its regulatory role in immune response. It interacts with phospholipid scramblase 1 (PLSCR1), an interferon-inducible protein that mediates antiviral activity against DNA and RNA viruses; PLSCR1 is a regulator of hepatitis B virus X (HBV X) protein. RELT and PLSCR1 co-localize in intracellular regions of human embryonic kidney-293 cells, with RELT over-expression appearing to alter the localization of PLSCR1. 91 -276925 cd13420 TNFRSF25 tumor necrosis factor receptor superfamily member 25 (TNFRSF25), also known as death receptor 3 (DR3). TNFRSF25 (also known as death receptor 3 (DR3), death domain receptor 3 (DDR3), apoptosis-mediating receptor, lymphocyte associated receptor of death (LARD), apoptosis inducing receptor (AIR), APO-3, translocating chain-association membrane protein (TRAMP), WSL-1, WSL-LR or TNFRSF12) is preferentially expressed in thymocytes and lymphocytes, and may play a role in regulating lymphocyte homeostasis. It has been detected in lymphocyte-rich tissues such as colon, intestine, thymus and spleen, as well as in the prostate. Various death domain containing adaptor proteins mediate the signal transduction of this receptor; it activates nuclear factor kappa-B (NFkB) and induces cell apoptosis by associating with TNFRSF1A-associated via death domain (TRADD), which is known to mediate signal transduction of tumor necrosis factor receptors. DR3 associates with tumor necrosis factor (TNF)-like cytokine 1A (TL1A also known as TNFSF15) on activated lymphocytes and induces pro-inflammatory signals; TL1A also binds decoy receptor DcR3 (also known as TNFRSF6B). DR3/DcR3/TL1A expression is increased in both serum and inflamed tissues in autoimmune diseases such as in several autoimmune diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), allergic asthma, experimental autoimmune encephalomyelitis, type 1 diabetes, ankylosing spondylitis (AS), and primary biliary cirrhosis (PBC), making modulation of TL1A-DR3 interaction a potential therapeutic target. 114 -276926 cd13421 TNFRSF_EDAR Tumor necrosis factor receptor superfamily member ectodysplasin A receptor (EDAR). Ectodysplasin A receptor (EDAR, also known as DL, ED3, ED5, ED1R, EDA3, HRM1, EDA1R, ECTD10A, ECTD10B, EDA-A1R) binds the soluble ligand ectodysplasin A and can activate the nuclear factor-kappaB, JNK, and caspase-independent cell death pathways. It is required for the development of hair, teeth, and other ectodermal derivatives. Mutations in this gene result in autosomal dominant and recessive forms of hypohidrotic ectodermal dysplasia. Patients present defects in the development of ectoderm-derived structures resulting in sparse hair, too few teeth (oligodontia), the absence or reduction in the ability to sweat as well as problems with mucous and saliva and the production and formation of pigment cells. 136 -276927 cd13422 TNFRSF5_teleost Tumor necrosis factor receptor superfamily member 5 (TNFRSF5) in teleosts; also known as CD40. TNFRSF5 (commonly known as CD40 and also as CDW40, p50, Bp50) is widely expressed in diverse cell types including B lymphocytes, dendritic cells, platelets, monocytes, endothelial cells, and fibroblasts. It is essential in mediating a wide variety of immune and inflammatory responses, including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. Its natural immunomodulating ligand is CD40L, and a primary defect in the CD40/CD40L system is associated with X-linked hyper-IgM (XHIM) syndrome. It is also involved in tumorigenesis; CD40 expression is significantly higher in gastric carcinomas and it is associated with the lymphatic metastasis of cancer cells and their tumor node metastasis (TNM) classification. Upregulated levels of CD40/CD40L on B cells and T cells may play an important role in the immune pathogenesis of breast cancer. Consequently, the CD40/CD40L system serves as a link between tumorigenesis, atherosclerosis, and the immune system, and offers a potential target for drug therapy for related diseases, such as cancer, atherosclerosis, diabetes mellitus, and immunological rejection. Salmon CD40 and CD40L are widely expressed, particularly in immune tissues, and their importance for the immune response is indicated by their relatively high expression in salmon lymphoid organs and gills. 161 -276928 cd13423 TNFRSF6_teleost Tumor necrosis factor receptor superfamily member 6 (TNFRSF6) in teleosts; also known as fas cell surface death receptor (FasR). This subfamily of TNFRSF6 (also known as fas cell surface death receptor (FasR) or Fas; APT1; CD95; FAS1; APO-1; FASTM; ALPS1A) is found in teleosts. It contains a death domain and plays a central role in the physiological regulation of programmed cell death. In humans, it has been implicated in the pathogenesis of various malignancies and diseases of the immune system. The receptor interactions with the Fas ligand (FasL), allowing the formation of a death-inducing signaling complex that includes Fas-associated death domain protein (FADD), caspase 8, and caspase 10; autoproteolytic processing of the caspases in the complex triggers a downstream caspase cascade, leading to apoptosis. This receptor has also been shown to activate NF-kappaB, MAPK3/ERK1, and MAPK8/JNK, and is involved in transducing the proliferating signals in normal diploid fibroblast and T cells. In channel catfish and the Japanese rice fish, medaka, homologs of Fas receptor (FasR), as well as FADD and caspase 8, have been identified and characterized, and likely constitute the teleost equivalent of the death-inducing signaling complex (DISC). FasL/FasR are involved in the initiation of apoptosis and suggest that mechanisms of cell-mediated cytotoxicity in teleosts are similar to those used by mammals; presumably, the mechanism of apoptosis induction via death receptors was evolutionarily established during the appearance of vertebrates. 103 -276929 cd13424 TNFRSF9_teleost Tumor necrosis factor receptor superfamily member 9 (TNFRSF9) in teleosts; also known as CD137. This subfamily of TNFRSF9 (also known as CD137, ILA, 4-1BB) is found in teleosts. CD137 plays a role in the immunobiology of human cancer where it is preferentially expressed on tumor-reactive subset of tumor-infiltrating lymphocytes. It can be expressed by activated T cells, but to a larger extent on CD8 than on CD4 T cells. In addition, CD137 expression is found on dendritic cells, follicular dendritic cells, natural killer cells, granulocytes and cells of blood vessel walls at sites of inflammation. It transduces signals that lead to the activation of NF-kappaB, mediated by the TRAF adaptor proteins. CD137 contributes to the clonal expansion, survival, and development of T cells. It can also induce proliferation in peripheral monocytes, enhance T cell apoptosis induced by TCR/CD3 triggered activation, and regulate CD28 co-stimulation to promote Th1 cell responses. CD137 is modulated by SAHA treatment in breast cancer cells, suggesting that the combination of SAHA with this receptor could be a new therapeutic approach for the treatment of tumors. Mostly, CD137 in teleosts have not been characterized. 150 -240448 cd13425 Peptidase_G1_like Peptidases of the G1 family and homologs that might lack peptidase activity. Some members of this family had been classified earlier as carboxyl peptidases insensitive to pepstatin, and the family has also been called the eqolisin family, due to the fact that the conserved catalytic dyad of the family consists of a glutamate (E) and glutamine (Q) residue. The family is found in fungi and bacteria. This family also includes homologous uncharacterized proteins that might lack peptidase activity. 195 -240449 cd13426 Peptidase_G1 Peptidases of the G1 family, including scytalidoglutamic peptidase and aspergillopepsin. Some members of this family had been classified earlier as carboxyl peptidases insensitive to pepstatin, and the family has also been called the eqolisin family, due to the fact that the conserved catalytic dyad of the family consists of a glutamate (E) and glutamine (Q) residue. The family is found in fungi and bacteria. 206 -240450 cd13427 YncM_like Uncharacterized proteins similar to Bacillus subtilis YncM. Members of this family share close structural similarity with peptidases of the Peptidase_G1 family and may be homologous. They do not appear to share the peptidases' active site, though a bound sulfate ion in the single available structure suggests a functional site at a matching location. 204 -259832 cd13428 UreI_AmiS UreI/Amis family, proton-gated urea channel and putative amide transporters. This subfamily includes UreI proton-gated urea channels as well as putative amide transporters (AmiS of the amidase gene cluster). Helicobacter pylori UreI (HpUreI), a proton-gated inner membrane urea channel opens in acidic pH to allow urea influx to the cytoplasm. There urea is metabolized, producing NH3 and Co2, leading to buffering of the periplasm. This action is essential for the survival of H. pylori in the stomach, and has been identified as a mechanism that could be clinically targeted to prevent various illnesses associated with infection by H. pylori. UreI and the related amide channels (AmiS) appear to function as hexamers, and have 6 predicted transmembrane segments. UreI has also been shown have a lipid "plug" in the center of the hexamer. Urea enters at the periplasmic opening of UreI and must pass 2 constriction sites, one on each side of a conserved Glu (Glu 177, H. pylori numbering), to reach the cytoplasm. Urea/thiourea selectivity is diminished by mutation of a conserved Trp to Ala or Phe in constriction site 2 (cytoplasmic). Channel functionality is greatly diminished by mutation of a conserved Trp in constriction site 1 (periplasmic) and a conserved Tyr in constriction site 2, and to a lesser extent a conserved Phe in site 1. In the cytoplasm, urease hydrolyzes urea to form ammonia and carbamate, which decomposes to carbonic acid. UreI is fully open at pH 5.0 to facilitate urea influx, but closes at neutral pH, preventing over-alkalization. Glu 177 (H. pylori numbering) is present in urea channel proteins, but absent in the related amide channels, suggesting that it plays a role in urea specificity. 162 -259833 cd13429 UreI_AmiS_like_2 UreI/AmiS family, subgroup 2. Putative transporters related to proton-gated urea channel and putative amide transporters. This subfamily includes putative UreI proton-gated urea channels and putative amide transporters (AmiS of the amidase gene cluster). Helicobacter pylori UreI (HpUreI), a proton-gated inner membrane urea channel opens in acidic pH to allow urea influx to the cytoplasm. There urea is metabolized, producing NH3 and Co2, leading to buffering of the periplasm. This action is essential for the survival of H. pylori in the stomach, and has been identified as a mechanism that could be clinically targeted to prevent various illnesses associated with infection by H. pylori. UreI and the related amide channels (AmiS) appear to function as hexamers, and have 6 predicted transmembrane segments. UreI has also been shown have a lipid "plug" in the center of the hexamer. Urea enters at the periplasmic opening of UreI and must pass 2 constriction sites, one on each side of a conserved Glu (Glu 177, H. pylori numbering), to reach the cytoplasm. Urea/thiourea selectivity is diminished by mutation of a conserved Trp to Ala or Phe in constriction site 2 (cytoplasmic). Channel functionality is greatly diminished by mutation of a conserved Trp in constriction site 1 (periplasmic) and a conserved Tyr in constriction site 2, and to a lesser extent a conserved Phe in site 1. In the cytoplasm, urease hydrolyzes urea to form ammonia and carbamate, which decomposes to carbonic acid. UreI is fully open at pH 5.0 to facilitate urea influx, but closes at neutral pH, preventing over-alkalization. Glu 177 (H. pylori numbering) is present in urea channel proteins, but absent in the related amide channels, suggesting that it plays a role in urea specificity. 165 -240445 cd13430 LDT_IgD_like IgD-like repeat domain of mycobacterial L,D-transpeptidases. Immunoglobulin-like domain found in actinobacterial L,D-transpeptidases, including Mycobacterium tuberculosis LdtMt2, which is a non-classical transpeptidase that generates 3->3 transpeptide linkages. LdtMt2 is associated with virulence and resistance to amoxicillin. This domain may occur in a tandem-repeat arrangement and is found N-terminal to the catalytic L,D-transpeptidase domain. 98 -240446 cd13431 LDT_IgD_like_1 IgD-like repeat domain of mycobacterial L,D-transpeptidases. Immunoglobulin-like domain found in actinobacterial L,D-transpeptidases, including Mycobacterium tuberculosis LdtMt2, which is a non-classical transpeptidase that generates 3->3 transpeptide linkages. LdtMt2 is associated with virulence and resistance to amoxicillin. This domain may occur in a tandem-repeat arrangement and is found N-terminal to the catalytic L,D-transpeptidase domain; this model represents the first (N-terminal) repeat in LdtMt2 and related proteins. 95 -240447 cd13432 LDT_IgD_like_2 IgD-like repeat domain of mycobacterial L,D-transpeptidases. Immunoglobulin-like domain found in actinobacterial L,D-transpeptidases, including Mycobacterium tuberculosis LdtMt2, which is a non-classical transpeptidase that generates 3->3 transpeptide linkages. LdtMt2 is associated with virulence and resistance to amoxicillin. This domain may occur in a tandem-repeat arrangement and is found N-terminal to the catalytic L,D-transpeptidase domain; this model represents the repeat adjacent to the catalytic domain. 99 -240441 cd13433 Na_channel_gate Inactivation gate of the voltage-gated sodium channel alpha subunits. This region is part of the intracellular linker between domains III and IV of the alpha subunits of voltage-gated sodium channels. It is responsible for fast inactivation of the channel and essential for proper physiological function. 54 -259812 cd13434 SPFH_SLPs Stomatin-like proteins (slipins) family; SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes proteins similar to stomatin, podocin, and other members of the stomatin-like protein family (SLPs or slipins). The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Mutations in the podocin gene give rise to autosomal recessive steroid resistant nephritic syndrome. Bacterial and archaebacterial SLPs and many of the eukaryotic family members remain uncharacterized. 108 -259813 cd13435 SPFH_SLP-4 Slipin-4 (SLP-4), an uncharacterized subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in arthropods. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Members of this divergent slipin subgroup remain largely uncharacterized. It contains Drosophila Mec2, the gene for which was identified in a screen for genes required for nephrocyte function; it may function together with Sns in maintaining nephrocyte diaphragm. 208 -259814 cd13436 SPFH_SLP-1 Stomatin-like protein 1 (SLP-1), a subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in animals. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. The family contains human SLP-1, which has been found to be expressed in the brain, and Caenorhabditis elegans UNC-24, which is a lipid raft-associated protein required for normal locomotion. It may mediate the correct localization of UNC-1. Mutations in the unc-24 gene result in abnormal motion and altered patterns of sensitivity to volatile anesthetics. 131 -259815 cd13437 SPFH_alloslipin Alloslipin, a subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in some eukaryotes and viruses. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. This diverse subgroup of the SLPs remains largely uncharacterized. 222 -259816 cd13438 SPFH_eoslipins_u2 Uncharacterized prokaryotic subgroup of the stomatin-like proteins (slipins) family; belonging to the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in bacteria. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Bacterial SLPs remain uncharacterized. 215 -240442 cd13439 CamS_repeat Repeat domain of CamS sex pheromone cAM373 precursor and related proteins. This family includes CamS, from which Staphylococcus aureus sex pheromone staph-cAM373 is processed. The protein contains two structurally similar repeats in a tandem arrangement. The heptapeptide cAM373 is a Streptococcus faecalis pheromone, secreted by recipient cells, which induces a mating response in donor cells that contain particular conjugative plasmids. cAM373 is also excreted by Staphylococcus aureus. The family also contains sex hormone precursors from other bacteria and an uncharacterized protein with a single repeat from Desulfovibrio piger, which is structurally similar and might be homologous. 106 -240443 cd13440 CamS_repeat_2 C-terminal repeat domain of CamS sex pheromone cAM373 precursor. This family includes CamS, from which Staphylococcus aureus sex pheromone staph-cAM373 is processed. The protein contains two structurally similar repeats in a tandem arrangement. The heptapeptide cAM373 is a Streptococcus faecalis pheromone, secreted by recipient cells, which induces a mating response in donor cells that contain particular conjugative plasmids. cAM373 is also excreted by Staphylococcus aureus. The family also contains sex hormone precursors from other bacteria. 115 -240444 cd13441 CamS_repeat_1 N-terminal repeat domain of CamS sex pheromone cAM373 precursor. This family includes CamS, from which Staphylococcus aureus sex pheromone staph-cAM373 is processed. The protein contains two structurally similar repeats in a tandem arrangement. The heptapeptide cAM373 is a Streptococcus faecalis pheromone, secreted by recipient cells, which induces a mating response in donor cells that contain particular conjugative plasmids. cAM373 is also excreted by Staphylococcus aureus. The family also contains sex hormone precursors from other bacteria. 204 -259835 cd13442 CDI_toxin_Bp1026b_like Mg-dependent tRNAse of the contact-dependent growth inhibition (CDI) system of Burkholderia pseudomallei 1026b, and related proteins. CDI toxins are expressed by gram-negative bacteria as part of a mechanism to inhibit the growth of neighboring cells. This model represents the C-terminal toxin domain of CdiA effector proteins. CdiA secretion is dependent on the outer membrane protein CdiB. Upon binding to a receptor on the surface of target bacteria, the CDI toxin is delivered. A wide variety of C-terminal toxin domains appear to exist; this particular example from Burkholderia pseudomallei 1026b and other bacteria appears to function as a Mg2+-dependent RNAse cleaving tRNA, most likely in the aminoacyl acceptor stem. 129 -259836 cd13443 CDI_inhibitor_Bp1026b_like Inhibitor of the contact-dependent growth inhibition (CDI) system of Burkholderia pseudomallei 1026b, and related proteins. CDI toxins are expressed by gram-negative bacteria as part of a mechanism to inhibit the growth of neighboring cells. This model represents the inhibitor of the CdiA effector protein from Burkholderia pseudomallei 1026b (which is a tRNAse). CdiA secretion is dependent on the outer membrane protein CdiB. Upon binding to a receptor on the surface of target bacteria, the CDI toxin is delivered. The inhibitors are intracellular proteins that inactivate the toxin/effector protein. 100 -259837 cd13444 CDI_toxin_EC869_like Zn-dependent DNAse of the contact-dependent growth inhibition (CDI) system of Escherichia coli EC869, and related proteins. CDI toxins are expressed by gram-negative bacteria as part of a mechanism to inhibit the growth of neighboring bacteria. This model represents the C-terminal toxin domain of CdiA effector proteins. CdiA secretion is dependent on the outer membrane protein CdiB. Upon binding to a receptor on the surface of target bacteria, the CDI toxin is delivered. A wide variety of C-terminal toxin domains appear to exist; this particular example from Escherichia coli EC869 and other bacteria appears to function as a Zn2+-dependent DNAse degrading the genome of target cells. 143 -259838 cd13445 CDI_inhibitor_EC869_like Inhibitor of the contact-dependent growth inhibition (CDI) system of Escherichia coli EC869, and related proteins. CDI toxins are expressed by gram-negative bacteria as part of a mechanism to inhibit the growth of neighboring bacteria. This model represents the inhibitor of the CdiA effector protein from Escherichia coli EC869 (which is a DNAse). CdiA secretion is dependent on the outer membrane protein CdiB. Upon binding to a receptor on the surface of target bacteria, the CDI toxin is delivered. The inhibitors are intracellular proteins that inactivate the toxin/effector protein. This domain is also known as DUF1436. 157 -259825 cd13516 HHD_CCM2 harmonin-homology domain (harmonin_N_like domain) of malcavernin (CCM2). CCM2 (also called malcavernin; C7orf22/chromosome 7 open reading frame 22; OSM) along with CCM1 and CCM3 constitutes a set of proteins which when mutated are responsible for cerebral cavernous malformations, an autosomal dominant neurovascular disease characterized by cerebral hemorrhages and vascular malformations in the central nervous system. CCM2 plays many functional roles. CCM2 functions as a scaffold involved in small GTPase Rac-dependent p38 mitogen-activated protein kinase (MAPK) activation when the cell is under hyperosmotic stress. It associates with CCM1 in the signaling cascades that regulate vascular integrity and participates in HEG1 (the transmembrane receptor heart of glass 1) mediated endothelial cell junctions. CCM proteins also inhibit the activation of small GTPase RhoA and its downstream effector Rho kinase (ROCK) to limit vascular permeability. CCM2 mediates TrkA-dependent cell death via its N-terminal PTB domain in pediatric neuroblastic tumours. CCM2 possesses an N-terminal PTB domain. The C-terminal domain of malcavernin, which is represented here, appears similar to the N-terminal domain of the scaffolding protein harmonin. It has also been referred to as the Karet domain. 97 -270235 cd13517 PBP2_ModA3_like Substrate binding domain of molybdate binding protein-like (ModA3), a member of the type 2 periplasmic binding fold superfamily. This subfamily contains molybdate binding protein-like (ModA3) domain of an ABC-type transporter. Molybdate transport system is comprised of a periplasmic binding protein, an integral membrane protein, and an energizer protein. These three proteins are coded by modA, modB, and modC genes, respectively. ModA proteins serve as initial receptors in the ABC transport of molybdate mostly in eubacteria and archaea. ModA transporters import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. In contrast to the structure of the two ModA homologs from Escherichia coli and Azotobacter vinelandii, where the oxygen atoms are tetrahedrally arrangted around the metal center, the structure of Pyrococcus furiosus ModA/WtpA (PfModA) has shown that a binding site for molybdate and tungstate where the central metal atom is in a hexacoordinate configuration. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 223 -270236 cd13518 PBP2_Fe3_thiamine_like Substrate binding domain of iron and thiamine transporters-like, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. On the other hand, thiamin is an essential cofactor in all living systems. Thiamin diphosphate (ThDP)-dependent enzymes play an important role in carbohydrate and branched-chain amino acid metabolism. Most prokaryotes, plants, and fungi can synthesize thiamin, but it is not synthesized in vertebrates. These periplasmic domains have high affinities for their respective substrates and serve as the primary receptor for transport. After binding iron and thiamine with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The iron- and thiamine-binding proteins belong to the PBPI2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 260 -270237 cd13519 PBP2_PEB3_AcfC Ligand-binding domain of a glycoprotein adhesion and an accessory colonization factor, a member of the type 2 periplasmic binding fold superfamily. PEB3 is a glycoprotein adhesion from Campylobacter jejuni whose structure suggests a functional role in transport, and resembles PEB1a, an Asp/Glu transporter and an adhesin. The overall structure of PEB3 is a dimer and is similar to that of other type 2 periplasmic transport proteins such as the molybdate/tungstate, sulfate, and ferric iron transporters. PEB3 has high sequence identity to Paa, an Escherichia coli adhesin, and to AcfC, an accessory colonization factor from Vibrio cholera. 227 -270238 cd13520 PBP2_TAXI_TRAP Substrate binding domain of TAXI proteins of the tripartite ATP-independent periplasmic transporters; the type 2 periplasmic binding protein fold. This group includes Thermus thermophilus GluBP (TtGluBP) of TAXI-TRAP family and closely related proteins. TRAP transporters are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP (substrate-binding protein) of the DctP or TAXI families and two unequally sized integral membrane components. Although TtGluBP is predicted to be an L-glutamate and/or an L-glutamine-binding protein, the substrate spectrum of TAXI proteins remains to be defined. A sequence-homology search also shows that TtGluBP shares low sequence homology with putative immunogenic proteins of uncharacterized function. The substrate-binding domain of TAXI proteins belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and tworeceptor cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 285 -270239 cd13521 PBP2_AlgQ_like Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold. This family represents the periplasmic-binding component of high molecular weight (HMW) alginate uptake system found in gram-negative soil bacteria and related proteins. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. In Sphingomonas sp. A1, the transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 483 -270240 cd13522 PBP2_ABC_oligosaccharides The periplasmic-binding component of ABC transport systems specific for maltose and related oligosaccharides; possess type 2 periplasmic binding fold. This family represents the periplasmic binding component of ABC transport systems involved in uptake of oligosaccharides including maltose, trehalose, maltodextrin, and cyclodextrin. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 368 -270241 cd13523 PBP2_polyamines The periplasmic-binding component of ABC transporters involved in uptake of polyamines; possess the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding proteins that function as the primary high-affinity receptors of ABC-type polyamine transport systems. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, as well as plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 268 -270242 cd13524 PBP2_Thiaminase_I Thiaminase-I has high structural homology to the type 2 periplasmic binding proteins of active transport systems. Thiaminase-I, a thiamin-(vitamin B1) degrading enzyme, is a monomer in its biologically active form, with two distinct globular domains (N- and C-domains) separated by a deep groove. It has a structural topology similar to the periplasmic substrate-domains of ABC-type transport systems, such as thiamin-binding protein (TbpA), that possess the type 2 periplasmic binding protein fold. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 363 -270243 cd13525 PBP2_ATP-Prtase_HisG The catalytic domain of ATP phosphoribosyltransferase contains the type 2 periplasmic substrate-binding fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 208 -270244 cd13526 PBP2_lipoprotein_MetQ_like The periplasmic-binding component of ABC-type methionine uptake transporter system and its related lipoproteins; the type 2 periplasmic-binding protein fold. This family represents the periplasmic substrate-binding domain of ATP-binding cassette (ABC) transporter involved in uptake of methionine (MetQ) and its related homologs. Members of the MetQ-like family include the 32-kilodalton lipoprotein (Tp32) from Treponema pallidum, the membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus, and Toll-like receptor 2-activating lipoprotein IlpA from Vibrio vulnificus. They all function as a receptor for methionine. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 228 -270245 cd13527 PBP2_TRAP Substrate-binding component of Tripartite ATP-independent Periplasmic transporters and related proteins; contains the type 2 periplasmic-binding protein fold. This family represents the TRAP Transporters that are specific to various ligands, including sialic acid (N-acetyl neuraminic acid), glutamate, ectoine, xylulose, C4-dicarboxylates such as succinate, malate and fumarate, and keto acids such as pyruvate and alpha-ketobutyrate. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. This family also includes some eukaryotic homologs that have not been functionally characterized. TRAP transporters are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 301 -270246 cd13528 PBP2_osmoprotectants Substrate-binding domain of osmoregulatory ABC-type transporters; the type 2 periplasmic-binding protein fold. This family represents the periplasmic substrate-binding component of ABC transport systems that are involved in uptake of osmoprotectants (also termed compatible solutes) such as betaine, choline, proline betaine, carnitine, and L-proline. To counteract the efflux of water, bacteria and archaea accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 264 -270247 cd13529 PBP2_transferrin Transferrin family of the type 2 periplasmic-binding protein superfamily. Transferrins are iron-binding blood plasma glycoproteins that regulate the level of free iron in biological fluids. Vertebrate transferrins are made of a single polypeptide chain with a molecular weight of about 80 kDa. The polypeptide is folded into two homologous lobes (the N-lobe and C-lobe), and each lobe is further subdivided into two similar alpha helical and beta sheet domains separated by a deep cleft that forms the binding site for ferric iron. Thus, the transferrin protein contains two homologous metal-binding sites with high affinities for ferric iron. The modern transferrin proteins are thought to be evolved from an ancestral gene coding for a protein of 40 kDa containing a single binding site by means of a gene duplication event. Vertebrate transferrins are found in a variety of bodily fluids, including serum transferrins, ovotransferrins, lactoferrins, and melanotransferrins. Transferrin-like proteins are also found in the circulatory fluid of certain invertebrates. The transferrins have the same structural fold as the type 2 periplasmic-binding proteins, many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 298 -270248 cd13530 PBP2_peptides_like Peptide-binding protein and related homologs; type 2 periplasmic binding protein fold. This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1, but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. 217 -270249 cd13531 PBP2_MxaJ Methanol oxidation system protein MoxJ; the type 2 periplasmic binding fold. This predicted periplasmic protein, called MoxJ or MxaJ, is required for methanol oxidation in Methylobacterium extorquens. Homology suggests it is the substrate-binding protein of an ABC transporter associated with methanol oxidation. Other evidence also suggests that MoxJ is an accessory factor or additional subunit of methanol dehydrogenase itself. Mutational studies show a dependence on this protein for expression of the PQQ-dependent, two-subunit methanol dehydrogenase (MxaF and MxaI) in Methylobacterium extorquens, as if it is a chaperone for enzyme assembly or a third subunit. A homologous N-terminal sequence was found in Paracoccus denitrificans as a 32Kd third subunit. MoxJ may be both, a component of a periplasmic enzyme that converts methanol to formaldehyde and a component of an ABC transporter that delivers the resulting formaldehyde to the cell's interior. 242 -270250 cd13532 PBP2_PDT_like Catalytic domain of prephenate dehydratase and similar proteins; the type 2 periplasmic binding protein fold. Prephenate dehydratase (PDT, EC:4.2.1.51) converts prephenate to phenylpyruvate through dehydration and decarboxylation reactions. PDT plays a key role in the biosynthesis of L-Phe in organisms that utilize the shikimate pathway. PDT is allosterically regulated by L-Phe and other amino acids. The catalytic PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In gram-postive bacteria and archaea, PDT is a monofunctional enzyme, consisting of a catalytic domain (PDT domain) and a regulatory domain (ACT) (aspartokinase, chorismate mustase domain). In gram-negative bacteria, PDT exists as fusion protein with chorismate mutase (CM), forming a bifunctional enzyme, P-protein (PheA). The CM in the P-protein catalyzes the pericycle isomerization of chorismate to prephenate that serves as a substrate for PDT. The CM and PDT are essentail enzymes for the biosynthesis of aromatic amino acids in microorganisms but are not found in humans. Thus, both CM and PDT can potentially serve as drug targets against microbial pathogens. The PDT domain has the same structural fold as the type 2 periplasmic binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 184 -270251 cd13533 PBP2_Yhfz Substrate-binding domain of uncharacterized protein Yhfz from Shigella Flexneri; the type 2 periplasmic-binding protein fold. This subfamily contains periplasmic binding protein type II (BPBII). This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBPII proteins share the same architecture as periplasmic binding proteins type I (PBPI), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBPII proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. 222 -270252 cd13534 PBP2_MqnD_like Menaquinone biosynthetic enzyme and related hypothetical proteins; the type 2 periplasmic-binding protein fold. This family represents MqnD, an enzyme within the alternative menaquinone biosynthetic pathway, and related conserved hypothetical proteins. Menaquinone (MK; vitamin K) is an essential lipid-soluble carrier that shuttles electrons between membrane-bound protein complexes in the electron transport chain. The members include Ttha1568, MqnD from Thermus thermophiles HB8, and the conserved hypothetical proteins SCO4506 from Streptomyces coelicolor, Af1704 from Archaeoglobus DSM 4304, Dr0370 from Deinococcus radiodurans, and Ca3427 from candida albicans. They all have significant structural homology with the members of type 2 periplasmic-binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 261 -270253 cd13535 PBP2_Osm_BCP_like Substrate binding domain of osmoregulatory ABC-type glycine betaine/choline/L-proline transport system and related proteins; the type 2 periplasmic binding protein fold. This family is part of a high affinity multicomponent binding-protein-dependent ATP-binding cassette transport system specific to certain quaternary ammonium compounds for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as betaines, choline, and L-proline. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. This domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 277 -270254 cd13536 PBP2_EcModA Substrate binding domain of ModA from Escherichia coli and its closest homologs;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins that serve as initial receptors in the ABC transport of molybdate in eubacteria and archaea. After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ModA proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 227 -270255 cd13537 PBP2_YvgL_like Substrate binding domain of putative molybdate-binding protein YvgL and similar proteins;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins of putative ABC-type transporter. ModA proteins serve as initial receptors in the ABC transport of molybdate in eubacteria and archaea. Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate and tungstate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 225 -270256 cd13538 PBP2_ModA_like_1 Substrate binding domain of putative molybdate-binding protein;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins of putative ABC-type transporter. Molybdate transport system is comprised of a periplasmic binding protein, an integral membrane protein, and an energizer protein. These three proteins are coded by modA, modB, and modC genes, respectively. ModA proteins serve as initial receptors in the ABC transport of molybdate mostly in eubacteria and archaea. After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 230 -270257 cd13539 PBP2_AvModA Substrate binding domain of ModA/WtpA from Azotobacter vinelandii and its closest homologs;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins that serve as initial receptors in the ABC transport of molybdate in eubacteria and archaea. Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. In contrast to the structure of the two ModA homologs from Escherichia coli and Azotobacter vinelandii, where the oxygen atoms are tetrahedrally arranged around the metal center, the structure of Pyrococcus furiosus ModA/WtpA (PfModA) has shown that a binding site for molybdate and tungstate is where the central metal atom is in a hexacoordinate configuration. This octahedral geometry was rather unexpected. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 226 -270258 cd13540 PBP2_ModA_WtpA Substrate binding domain of ModA/WtpA from Pyrococcus furiosus and its closest homologs;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins that serve as initial receptors in the ABC transport of molybdate in eubacteria and archaea. Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. In contrast to the structure of the two ModA homologs from Escherichia coli and Azotobacter vinelandii, where the oxygen atoms are tetrahedrally arranged around the metal center, the structure of Pyrococcus furiosus ModA/WtpA (PfModA) has shown that a binding site for molybdate and tungstate where the central metal atom is in a hexacoordinate configuration. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 263 -270259 cd13541 PBP2_ModA_like_2 Substrate binding domain of molybdate-binding proteins;the type 2 periplasmic binding protein fold. This subfamily contains domains found in ModA proteins of putative ABC-type transporter. ModA proteins serve as initial receptors in the ABC transport of molybdate in eubacteria and archaea. Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). After binding molybdate and tungstate with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ModA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 238 -270260 cd13542 PBP2_FutA1_ilke Substrate binding domain of ferric iron-binding protein, a member of the type 2 periplasmic binding fold superfamily. FutA1 is the periplasmic component of an ABC-type iron transporter and serves as the primary receptor in Synerchosystis species. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria and is critical for survival of these pathogens within the host. After binding iron with high affinity, FutA1 interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The iron- and thiamine-binding proteins belong to the PBPI2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 314 -270261 cd13543 PBP2_Fbp Substrate binding domain of ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic protein (Fbp) has high affinities for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 306 -270262 cd13544 PBP2_Fbp_like_1 Substrate binding domain of a putative ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The substrate domain of this group shows a high homology to the periplasmic component of ferric iron transporter (Fbp), but its biochemical characterization has not been performed. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 292 -270263 cd13545 PBP2_TbpA Substrate binding domain of thiamin transporter, a member of the type 2 periplasmic binding fold superfamily. Thiamin-binding protein TbpA is the periplasmic component of ABC-type transporter in E. coli, while the transmembrane permease and ATPase are ThiP and ThiQ, respectively. Thiamin (vitamin B1) is an essential confactor in all living systems that most prokaryotes, plants, and fungi can synthesized thiamin. However, in vertebrates, thiamine cannot be synthesized and must therefore be obtained through dietary absorption. In addition to thiamin biosynthesis, most organisms can import thiamin using specific transporters. After binding thiamine with high affinity, TbpA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The thiamine-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 269 -270264 cd13546 PBP2_BitB Substrate binding domain of a putative iron transporter BitB, a member of the type 2 periplasmic binding fold superfamily. The substrate domain of this group shows a high homology to the periplasmic component of ferric iron transporter (Fbp), but its biochemical characterization has not been performed. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 258 -270265 cd13547 PBP2_Fbp_like_2 Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 259 -270266 cd13548 PBP2_AEPn_like Substrate binding domain of a putative 2-amnioethylphosphonate-bindinig transporter, a member of the type 2 periplasmic binding fold superfamily. The substrate domain of this group shows a high homology to the periplasmic component of ferric iron transporter (Fbp), but its biochemical characterization has not been performed. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 310 -270267 cd13549 PBP2_Fbp_like_3 Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 263 -270268 cd13550 PBP2_Fbp_like_4 Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 265 -270269 cd13551 PBP2_Fbp_like_5 Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 267 -270270 cd13552 PBP2_Fbp_like_6 Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily. The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 266 -270271 cd13553 PBP2_NrtA_CpmA_like Substrate binding domain of ABC-type nitrate/bicarbonate transporters, a member of the type 2 periplasmic binding fold superfamily. This subfamily includes nitrate (NrtA) and bicarbonate (CmpA) receptors. These domains are found in eubacterial perisplamic-binding proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding their ligand with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. These binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 212 -270272 cd13554 PBP2_DszB Substrate binding domain of 2'-hydroxybiphenyl-2-sulfinate desulfinase, a member of the type 2 periplasmic binding fold superfamily. This subfamily includes DszB, which converts 2'-hydroxybiphenyl-2-sulfinate to 2-hydroxybiphenyl and sulfinate at the rate-limiting step of the microbial dibenzothiophene desulfurization pathway. The overall fold of DszB is highly similar to those of periplasmic substrate-binding proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates. After binding their ligand with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The DszB protein belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 246 -270273 cd13555 PBP2_sulfate_ester_like Sulfate ester binding protein-like, the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 268 -270274 cd13556 PBP2_SsuA_like_1 Substrate binding domain of putative sulfonate binding protein, a member of the type 2 periplasmic binding fold superfamily. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 265 -270275 cd13557 PBP2_SsuA Substrate binding domain of sulfonate binding protein, a member of the type 2 periplasmic binding fold superfamily. This subfamily includes the sulfonate binding domains SsuA found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 275 -270276 cd13558 PBP2_SsuA_like_2 Putative substrate binding domain of sulfonate binding protein, the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 267 -270277 cd13559 PBP2_SsuA_like_3 Putative substrate binding domain of sulfonate binding protein-like, the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 258 -270278 cd13560 PBP2_taurine Taurine-binding periplasmic protein; the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 218 -270279 cd13561 PBP2_SsuA_like_4 Putative substrate binding domain of sulfonate binding protein-like, the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 212 -270280 cd13562 PBP2_SsuA_like_5 Putative substrate binding domain of sulfonate binding protein-like, the type 2 periplasmic binding protein fold. This subfamily includes sulfonate binding domains found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 215 -270281 cd13563 PBP2_SsuA_like_6 Putative substrate binding domain of sulfonate binding protein-like, a member of the type 2 periplasmic binding protein fold. This subfamily includes the periplasmic component of putative ABC-type sulfonate transport system similar to SsuA. These domains are found in eubacterial SsuA proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates, while other closest homologs are involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB). After binding the ligand, SsuA interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The SsuA proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 208 -270282 cd13564 PBP2_ThiY_THI5_like Substrate binding domain of ABC-type transporter for thiamin biosynthetic pathway intermediates and similar proteins; the type 2 periplasmic binding protein fold. ThiY is the periplasmic N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP) binding component of the ABC transport system (ThiXYZ). FAMP is imported into cell by the transporter, where it is then incorporated into the thiamin biosynthetic pathway. The closest structural homologs of ThiY are THI5, which is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate (HMP-P) in the thiamin biosynthetic pathway of eukaryotes, and periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. After binding the ligand, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ThiY/THI5 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 214 -270283 cd13565 PBP2_PstS Substrate binding domain of ABC-type phosphate transporter, a member of the type 2 periplasmic-binding fold superfamily. This subfamily contians phosphate binding domain found in PstS proteins that serve as initial receptors in the ABC transport of phosphate in eubacteria and archaea. After binding the ligand, PstS interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The PstS proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 254 -270284 cd13566 PBP2_phosphate Substrate binding domain of putative ABC-type phosphate transporter, a member of the type 2 periplasmic binding fold superfamily. This subfamily contains uncharacterized phosphate binding domains found in PstS proteins that serve as initial receptors in the ABC transport of phosphate in eubacteria and archaea. After binding the ligand, PstS interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The PstS proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 245 -270285 cd13567 PBP2_TtGluBP Substrate binding domain of Thermus thermophilus GluBP (TtGluBP) of TAXI family of the tripartite ATP-independent periplasmic transporters; contains the type 2 periplasmic binding protein fold. This subgroup includes TtGluBP of TAXI-TRAP family and closely related proteins. TRAP transporters are comprised of an SBP (substrate-binding protein) and two unequally sized integral membrane components. Although TtGluBP is predicted to be an L-glutamate and/or an L-glutamine-binding protein, the substrate spectrum of TAXI proteins remains to be defined. A sequence-homology search also shows that TtGluBP shares low sequence homology with putative immunogenic proteins of uncharacterized function. 284 -270286 cd13568 PBP2_TAXI_TRAP_like_3 Substrate binding domain of putative TAXI proteins of the tripartite ATP-independent periplasmic transporters; the type 2 periplasmic binding protein fold. This subgroup includes uncharacterized periplasmic binding proteins that are related to Thermus thermophilus GluBP (TtGluBP) of TAXI-TRAP family. TRAP transporters are comprised of an SBP (substrate-binding protein) and two unequally sized integral membrane components. Although TtGluBP is predicted to be an L-glutamate and/or an L-glutamine-binding protein, the substrate spectrum of TAXI proteins remains to be defined. A sequence-homology search also shows that TtGluBP shares low sequence homology with putative immunogenic proteins of uncharacterized function. 289 -270287 cd13569 PBP2_TAXI_TRAP_like_1 Substrate binding domain of putative TAXI proteins of the tripartite ATP-independent periplasmic transporters; the type 2 periplasmic binding protein fold. This subgroup includes uncharacterized periplasmic binding proteins that are related to Thermus thermophilus GluBP (TtGluBP) of TAXI-TRAP family. TRAP transporters are comprised of an SBP (substrate-binding protein) and two unequally sized integral membrane components. Although TtGluBP is predicted to be an L-glutamate and/or an L-glutamine-binding protein, the substrate spectrum of TAXI proteins remains to be defined. A sequence-homology search also shows that TtGluBP shares low sequence homology with putative immunogenic proteins of uncharacterized function. 283 -270288 cd13570 PBP2_TAXI_TRAP_like_2 Substrate binding domain of putative TAXI proteins of the tripartite ATP-independent periplasmic transporters; the type 2 periplasmic binding protein fold. This subgroup includes uncharacterized periplasmic binding proteins that are related to Thermus thermophilus GluBP (TtGluBP) of TAXI-TRAP family. TRAP transporters are comprised of an SBP (substrate-binding protein) and two unequally sized integral membrane components. Although TtGluBP is predicted to be an L-glutamate and/or an L-glutamine-binding protein, the substrate spectrum of TAXI proteins remains to be defined. A sequence-homology search also shows that TtGluBP shares low sequence homology with putative immunogenic proteins of uncharacterized function. 281 -270289 cd13571 PBP2_PnhD_1 Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold. This subfamily includes putative periplasmic binding components of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 253 -270290 cd13572 PBP2_PnhD_2 Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold. This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 249 -270291 cd13573 PBP2_PnhD_3 Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold. This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 253 -270292 cd13574 PBP2_PnhD_4 Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold. This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 250 -270293 cd13575 PBP2_PnhD Substrate binding domain of ABC-type phosphonate uptake system; contains the type 2 periplasmic binding fold. This subfamily includes the Escherichia coli PhnD (EcPhnD) which exhibits high affinity for the environmentally abundant 2-aminoethylphosphonate (2-AEP), a precursor in the biosynthesis of phosphonolipids, phosphonoproteins, and phosphonoglycans. The Escherichia coli phn operon encodes 14 genes involved in binding, uptake and metabolism of phosphonate, and is activated under phophophate-limiting conditions. PhnD belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. The PBP2 have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. PhnD is the periplasmic binding component of an ABC-type phosphonate uptake system (PhnCDE) that recognizes and binds phosphonate. 259 -270294 cd13576 PBP2_BugD_Asp Aspartic acid transporter of Bug (Bordetella uptake gene) protein family; contains the type 2 periplasmic binding fold. The Bug (Bordetella uptake gene) protein family is a large family of periplasmic solute-binding (PBP) receptors present in a number of bacterial species, but mainly in proteobacteria. Bug proteins are the PBP components of the tripartite carboxylate transporters (TTT). Their expansive expansion in proteobacteria indicates a large functional diversity. The best studied examples are Bordetella pertussis BugD, which is an aspartic acid transporter, and BugE, which is glutamate transporter. 294 -270295 cd13577 PBP2_BugE_Glu Glutamate transporter of Bug (Bordetella uptake gene) protein family; contains the type 2 periplasmic binding fold. The Bug (Bordetella uptake gene) protein family is a large family of periplasmic solute-binding (PBP) receptors present in a number of bacterial species, but mainly in proteobacteria. Bug proteins are the PBP components of the tripartite carboxylate transporters (TTT). Their expansive expansion in proteobacteria indicates a large functional diversity. The best studied examples are Bordetella pertussis BugD, which is an aspartic acid transporter, and BugE, which is glutamate transporter. 292 -270296 cd13578 PBP2_Bug27 Aromatic solutes transporter of Bug (Bordetella uptake gene) protein family; contains the type 2 periplasmic binding fold. Bug27 binds non-carboxylated solute nicotinamide, in contrast to BugD (aspartic acid transporter) and BugE (glutamate transporter) which both bind aliphatic carboxylated ligands. The Bug (Bordetella uptake gene) protein family is a large family of periplasmic solute-binding (PBP) receptors present in a number of bacterial species, but mainly in proteobacteria. Bug proteins are the PBP components of the tripartite carboxylate transporters (TTT). Their expansive expansion in proteobacteria indicates a large functional diversity. 291 -270297 cd13579 PBP2_Bug_NagM Uncharacterized NagM-like protein of Bug (Bordetella uptake gene) protein family; contains the type 2 periplasmic binding fold. The Bug (Bordetella uptake gene) protein family is a large family of periplasmic solute-binding (PBP) receptors present in a number of bacterial species, but mainly in proteobacteria. Bug proteins are the PBP components of the tripartite carboxylate transporters (TTT). Their expansive expansion in proteobacteria indicates a large functional diversity. The best studied examples are Bordetella pertussis BugD, which is an aspartic acid transporter, and BugE, which is glutamate transporter. 292 -270298 cd13580 PBP2_AlgQ_like_1 Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold. This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 471 -270299 cd13581 PBP2_AlgQ_like_2 Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold. This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 490 -270300 cd13582 PBP2_AlgQ_like_3 Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold. This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 504 -270301 cd13583 PBP2_AlgQ_like_4 Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold. This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 478 -270302 cd13584 PBP2_AlgQ1_2 Periplasmic-binding component of alginate-specific ABC uptake system; contains the type 2 periplasmic binding fold. This group represents the periplasmic-binding component of high molecular weight (HMW) alginate uptake system found in gram-negative soil bacteria such as Sphingomonas sp. A1. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that includes alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. 481 -270303 cd13585 PBP2_TMBP_like The periplasmic-binding component of ABC transport systems specific for trehalose/maltose and similar oligosaccharides; possess type 2 periplasmic binding fold. This family includes the periplasmic trehalose/maltose-binding component of an ABC transport system and related proteins from archaea and bacteria. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 383 -270304 cd13586 PBP2_Maltose_binding_like The periplasmic-binding component of ABC transport systems specific for maltose and related polysaccharides; possess type 2 periplasmic binding fold. This subfamily represents the periplasmic binding component of ABC transport systems involved in uptake of polysaccharides including maltose, maltodextrin, and cyclodextrin. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 367 -270305 cd13587 PBP2_polyamine_2 The periplasmic-binding component of an uncharacterized ABC transporter involved in uptake of polyamines; contains the type 2 periplasmic binding fold. This family represents the periplasmic binding domain that functions as the primary polyamine receptor of an uncharacterized ABC-type transport system. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 292 -270306 cd13588 PBP2_polyamine_1 The periplasmic-binding component of an uncharacterized ABC transporter involved in uptake of polyamines; contains the type 2 periplasmic binding fold. This group represents the periplasmic binding domain that functions as the primary high-affinity receptor of an uncharactertized ABC-type polyamine transport system. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 279 -270307 cd13589 PBP2_polyamine_RpCGA009 The periplasmic-binding component of an uncharacterized ABC transport system from Rhodopseudomonas palustris CGA009 and related proteins; contains the type 2 periplasmic-binding fold. This group represents the periplasmic binding domain that serves as the primary high-affinity receptor of an uncharacterized ABC-type polyamine transporter from Rhodopseudomonas palustris Cga009 and related proteins from other bacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 268 -270308 cd13590 PBP2_PotD_PotF_like The periplasmic-binding component of ABC transporters involved in uptake of polyamines; possess the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding domain that functions as the primary high-affinity receptors of ABC-type polyamine transport systems. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 315 -270309 cd13591 PBP2_HisGL1 The catalytic domain of hexameric long form HisGL1; contains the type 2 periplasmic binding protein fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 204 -270310 cd13592 PBP2_HisGL2 The catalytic domain of hexameric long form HisGL2; contains the type 2 periplasmic binding protein fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 208 -270311 cd13593 PBP2_HisGL3 The catalytic domain of hexameric long form HisGL3; contains the type 2 periplasmic binding protein fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 220 -270312 cd13594 PBP2_HisGL4 The catalytic domain of hexameric long form HisGL4; contains the type 2 periplasmic binding fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 207 -270313 cd13595 PBP2_HisGs The catalytic domain of hetero-octomeric short form HisGs; contains the type 2 periplasmic binding protein fold. Encoded by the hisG gene, the ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17) is the first enzyme in histidine biosynthetic pathway that catalyzes the condensation of ATP and PRPP (5'-phosphoribosyl 1'-pyrophosphate), and is regulated by a feedback inhibition from the product histidine. ATP-PRT has two distinct forms: a hexameric long form, HisGL, containing two catalytic domains and a C-terminal regulatory domain; and a hetero-octomeric short form, HisGs, without the regulatory domain. HisGL is catalytically competent, but the hetero-octameric HisGs requires the second subunit HisZ, a paralog to the catalytic domain of functional histidyl-tRNA synthetases (HisRSs), for the enzyme activity. This catalytic domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 205 -270314 cd13596 PBP2_lipoprotein_GmpC The periplasmic substrate-binding domain of the membrane-associated lipoprotein-9 GmpC; contains the type 2 periplasmic-binding protein fold. This group includes the membrane-associated lipoprotein-9 from Staphylococcus aureus that binds the dipeptide glycylmethionine (GlyMet). The lipoprotein-9 has both structural and sequential homology to the MetQ family of substrate-binding protein. The GlyMet binding protein belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 230 -270315 cd13597 PBP2_lipoprotein_Tp32 The substrate-binding domain of the 32-kilodalton lipoprotein (Tp32) from Treponema pallidum binds L-methionine; the type 2 periplasmic-binding protein fold. This group includes the lipoprotein Tp32, a periplasmic component of a methionine uptake transporter system, and its closely related homologs. The Tp32 has both structural and sequential homology to the MetQ family of substrate-binding protein, and thus it belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 236 -270316 cd13598 PBP2_lipoprotein_IlpA_like Toll-like receptor 2-activating lipoprotein IlpA from Vibrio vulnificus and similar lipoproteins; the type 2 periplasmic binding protein fold. This group includes the IlpA protein which has both structural and sequential homology to the MetQ family of substrate-binding protein, and thus belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 227 -270317 cd13599 PBP2_lipoprotein_Gna1946 The membrane-associated lipoprotein Gna1946 from Neisseria meningitidis; the type 2 periplasmic binding protein fold. Gna1946 shares significant structural and sequence homology with the periplasmic substrate-binding domain of ATP-binding cassette (ABC) transporter involved in uptake of methionine (MetQ). The members of the MetQ-like family include the 32-kilodalton lipoprotein (Tp32) from Treponema pallidum, the membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus, and Toll-like receptor 2-activating lipoprotein IlpA from Vibrio vulnificus. They all function as a receptor for methionine. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 228 -270318 cd13600 PBP2_lipoprotein_like_1 Putative periplasmic-binding component of ABC-type methionine uptake transporter system-like; the type 2 periplasmic binding protein fold. This subgroup shares significant sequence homology with the periplasmic substrate-binding domain of ATP-binding cassette (ABC) transporter involved in uptake of methionine (MetQ). The members of the MetQ-like family include the 32-kilodalton lipoprotein (Tp32) from Treponema pallidum, the membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus, and Toll-like receptor 2-activating lipoprotein IlpA from Vibrio vulnificus. They all function as a receptor for methionine. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. 228 -270319 cd13601 PBP2_TRAP_DctP1_3_4_like Periplasmic substrate-binding component of uncharacterized TRAP-type C4-dicarboxylate transporter subfamilies; the type 2 periplasmic-binding protein fold. This model includes uncharacterized DctP subfamilies of the TRAP Transporters. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 302 -270320 cd13602 PBP2_TRAP_BpDctp6_7 Substrate-binding domain of a pyroglutamic acid binding DctP subfamily of the tripartite ATP-independent periplasmic transporters; contains the type 2 periplasmic binding protein fold. DctP6 and DctP7 groups of the TRAP transporters that involved in pyroglutamic acid transport. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 300 -270321 cd13603 PBP2_TRAP_Siap_TeaA_like Substrate-binding domain of a sialic acid binding Tripartite ATP-independent Periplasmic transport system (SiaP) and related proteins; the type 2 periplasmic-binding protein fold. This subfamily includes the periplasmic-binding component of TRAP transport systems such as SiaP (a sialic acid binding virulence factor), TeaA (an ectoine binding protein), and an uncharacterized TM0322 from hyperthermophilic bacterium Thermotoga maritima. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 297 -270322 cd13604 PBP2_TRAP_ketoacid_lactate_like Substrate-binding domain of an alpha-keto acid binding Tripartite ATP-independent Periplasmic transporter and related proteins; the type 2 periplasmic-binding protein fold. This family constitutes TRAP transporters that bind to ketoacids such as pyruvate and alpha-ketobutyrate, xylulose, and other unknown ligands. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 306 -270323 cd13605 PBP2_TRAP_DctP_like_2 Substrate-binding component of uncharacterized Tripartite ATP-independent Periplasmic transporter; the type 2 periplasmic-binding protein fold. This family represents the TRAP Transporters that are specific to various ligands, including sialic acid (N-acetyl neuraminic acid), glutamate, ectoine, xylulose, C4-dicarboxylates such as succinate, malate and fumarate, and keto acids such as pyruvate and alpha-ketobutyrate. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. This CD also included some eukaryotic homologs that have not been functionally characterized. TRAP transporters are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 303 -270324 cd13606 PBP2_ProX_like Bacterial substrate-binding protein ProX of ABC-type osmoregulated transporter and its related proteins; the type 2 periplasmic-binding protein fold. This group includes periplasmic substrate-binding component of ABC transport systems from gram-negative and -positive bacteria that are involved in uptake of osmoprotectants (also termed compatible solutes) such as betaine, choline, proline betaine, carnitine, and L-proline. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 260 -270325 cd13607 PBP2_AfProX_like Substrate-binding protein ProX of ABC-type osmoregulatory transporter from Archaeoglobus fulgidus and its related proteins; the type 2 periplasmic-binding protein fold. This subfamily includes the periplasmic substrate-binding protein ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus and its related proteins. AfProX is involved in uptake of compatible solutes such as the trimethylammonium compound glycine betaine and the dimethylammonium compound proline betaine, but the relative substrate preference is not known. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. AfProX belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 261 -270326 cd13608 PBP2_OpuCC_like Substrate-binding protein OpuCC of ABC-type osmoregulatory transporter and related proteins; the type 2 periplasmic-binding protein fold. This subfamily includes the periplasmic substrate-binding protein OpuCC of the ABC transporter OpuC (where Opu is osmoprotectant uptake), which can recognize a broad spectrum of compatible solutes, and its paralog OpuBC that can solely bind choline. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 265 -270327 cd13609 PBP2_Opu_like_1 Substrate-binding domain of putative ABC-type osmoprotectant uptake system; the type 2 periplasmic-binding protein fold. This group includes the periplasmic substrate-binding component of a putative ABC transport system that is predicted to be involved in uptake of osmoprotectants (also termed compatible solutes) such as betaine, choline, proline betaine, carnitine, and L-proline. The relative substrate preference of this group is not known. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 263 -270328 cd13610 PBP2_ChoS Substrate-binding domain ChoS of an osmoregulated ABC-type transporter and related proteins; type 2 periplasmic-binding protein fold. Osmoprotectant binding lipoprotein ChoS of Lactococcus lactis is predicted to be involved in uptake of compatible solutes such as choline and glycine betaine, but the relative substrate preference is not known. To counteract the efflux of water, microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. ChoS belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 264 -270329 cd13611 PBP2_YehZ Substrate-binding domain YehZ of an osmoregulated ABC-type transporter; the type 2 periplasmic-binding protein fold. Osmoprotectant binding lipoprotein YehZ of Clostridium sticklandii is predicted to be involved in uptake of compatible solutes such as choline, L-proline and glycine betaine, but the relative substrate preference is not known. To counteract the efflux of water, microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. YehZ belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 267 -270330 cd13612 PBP2_ProWX Substrate-binding protein ProWX of ABC-type osmoregulated transporter and its related proteins; the type 2 periplasmic-binding protein fold. Osmoprotectant binding lipoprotein ProWX of Helicobacter pylori is predicted to be involved in uptake of compatible solutes such as choline, L-proline and glycine betaine, but the relative substrate preference is not known. To counteract the efflux of water, microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. ProWX belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 267 -270331 cd13613 PBP2_Opu_like_2 Substrate-binding domain of putative ABC-type osmoprotectant uptake system; the type 2 periplasmic-binding protein fold. This group includes the periplasmic substrate-binding component of a putative ABC transport system that is predicted to be involved in uptake of osmoprotectants (also termed compatible solutes) such as betaine, choline, proline betaine, carnitine, and L-proline. The relative substrate preference of this group is not known. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 264 -270332 cd13614 PBP2_QAT_like Substrate-binding domain of quaternary amine ABC-type transporter; the type 2 periplasmic-binding protein fold. This group includes the periplasmic substrate-binding component of a putative quaternary amine ABC transport system that is predicted to be involved in uptake of osmoprotectants (also termed compatible solutes) such as betaine, choline, proline betaine, carnitine, and L-proline. The relative substrate preference of this group is not known. To counteract the efflux of water, many microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 264 -270333 cd13615 PBP2_ProWY Substrate-binding domain of ABC-type osmoregulated transporter; the type 2 periplasmic-binding protein fold. Osmoprotectant binding lipoprotein ProWY of Streptococcus thermophilus is predicted to be involved in uptake of compatible solutes such as choline, L-proline and glycine betaine, but the relative substrate preference is not known. To counteract the efflux of water, microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. ProWY belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 262 -270334 cd13616 PBP2_OsmF Substrate-binding domain OsmF of an osmoregulated ABC-type transporter; the type 2 periplasmic-binding protein fold. Osmoprotectant binding lipoprotein OsmF of an ABC transporter (YehZYXW) from Escherichia coli is predicted to be involved in uptake of compatible solutes such as choline, L-proline and glycine betaine, but the relative substrate preference is not known. To counteract the efflux of water, microorganisms accumulate the compatible solutes for a sustained adjustment to high osmolarity surroundings. OsmF belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 274 -270335 cd13617 PBP2_transferrin_C The C-lobe of transferrin, a member of the type 2 periplasmic binding protein fold superfamily. Transferrins are iron-binding blood plasma glycoproteins that regulate the level of free iron in biological fluids. Vertebrate transferrins are made of a single polypeptide chain with a molecular weight of about 80 kDa. The polypeptide is folded into two homologous lobes (the N-lobe and C-lobe), and each lobe is further subdivided into two similar alpha helices and beta sheets domains separated by a deep cleft that forms the binding site for ferric iron. Thus, the transferrin protein contains two homologous metal-binding sites with high affinities for ferric iron. The modern transferrin proteins are thought to be evolved from an ancestral gene coding for a protein of 40 kDa containing a single binding site by means of a gene duplication event. Vertebrate transferrins are found in a variety of bodily fluids, including serum transferrins, ovotransferrins, lactoferrins, and melanotransferrins. Transferrin-like proteins are also found in the circulatory fluid of certain invertebrates. The transferrins have the same structural fold as the type 2 periplasmic-binding proteins, many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 331 -270336 cd13618 PBP2_transferrin_N The N-lobe of transferrin, a member of the type 2 periplasmic binding protein fold superfamily. Transferrins are iron-binding blood plasma glycoproteins that regulate the level of free iron in biological fluids. Vertebrate transferrins are made of a single polypeptide chain with a molecular weight of about 80 kDa. The polypeptide is folded into two homologous lobes (the N-lobe and C-lobe), and each lobe is further subdivided into two similar alpha helices and beta sheets domains separated by a deep cleft that forms the binding site for ferric iron. Thus, the transferrin protein contains two homologous metal-binding sites with high affinities for ferric iron. The modern transferrin proteins are thought to be evolved from an ancestral gene coding for a protein of 40 kDa containing a single binding site by means of a gene duplication event. Vertebrate transferrins are found in a variety of bodily fluids, including serum transferrins, ovotransferrins, lactoferrins, and melanotransferrins. Transferrin-like proteins are also found in the circulatory fluid of certain invertebrates. The transferrins have the same structural fold as the type 2 periplasmic-binding proteins, many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 324 -270337 cd13619 PBP2_GlnP Glutamine-binding domain of ABC transporter, a member of the type 2 periplasmic binding fold protein superfamily. Periplasmic glutamine binding domain GlnP serves as an initial receptor in the ABC transport of glutamine in eubacteria. GlnP belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 220 -270338 cd13620 PBP2_GltS Substrate binding domain of glutamate or arginine ABC transporter, a member of the type 2 periplasmic binding fold protein superfamily. This family comprises of the periplasmic-binding protein component (GltS) of an ABC transporter specific for glutamate or arginine from Lactococcus lactis, as well as its closely related proteins. The GltS domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis 227 -270339 cd13621 PBP2_AA_binding_like_3 Substrate-binding domain of putative amino acid-binding protein; the type 2 periplasmic-binding protein fold. This putative amino acid-binding protein belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 229 -270340 cd13622 PBP2_Arg_3 Substrate binding domain of an arginine 3rd transport system; the type 2 periplasmic binding fold. This subgroup is similar to the HisJ-like family that comprises the periplasmic substrate-binding proteins, including the lysine-, arginine-, ornithine-binding protein (LAO) and the histidine-binding protein (HisJ), which serve as initial receptors for active transport. HisJ and LAO proteins belong to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 222 -270341 cd13623 PBP2_AA_hypothetical Substrate-binding domain of putative amino-acid transport system; the type 2 periplasmic binding protein fold. This putative amino acid-binding protein belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 220 -270342 cd13624 PBP2_Arg_Lys_His Substrate binding domain of the arginine-, lysine-, histidine-binding protein ArtJ; the type 2 periplasmic binding protein fold. This group includes the periplasmic substrate-binding protein ArtJ of the ATP-binding cassette (ABC) transport system from the thermophilic bacterium Geobacillus stearothermophilus, which is specific for arginine, lysine, and histidine. ArtJ belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 219 -270343 cd13625 PBP2_AA_binding_like_1 Substrate-binding domain of putative amino acid-binding protein; the type 2 periplasmic-binding protein fold. This putative amino acid-binding protein belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 230 -270344 cd13626 PBP2_Cystine_like Substrate binding domain of cystine ABC transporters; the type 2 periplasmic binding protein fold. Cystine-binding domain of periplasmic receptor-dependent ATP-binding cassette (ABC) transporters. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Also, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 219 -270345 cd13627 PBP2_AA_binding_like_2 Substrate-binding domain of putative amino acid-binding protein; the type 2 periplasmic-binding protein fold. This putative amino acid-binding protein belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 243 -270346 cd13628 PBP2_Ala Periplasmic substrate binding domain of ABC-type transporter specific to alanine; the type 2 periplasmic binding protein. This periplasmic substrate component serves as an initial receptor in the ABC transport of glutamine in eubacteria and archaea. After binding the alanine with high affinity, this domain Interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. This alanine specific domain belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 219 -270347 cd13629 PBP2_Dsm1740 Amino acid-binding domain of the type 2 periplasmic binding fold superfamily. This subfamily includes the periplasmic binding protein type II (BPBII). This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBPII proteins share the same architecture as periplasmic binding proteins type I (PBPI), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBPII proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. 221 -270348 cd13630 PBP2_PDT_1 Catalytic domain of prephenate dehydratase and similar proteins, subgroup 1; the type 2 periplasmic binding protein fold. Prephenate dehydratase (PDT, EC:4.2.1.51) converts prephenate to phenylpyruvate through dehydration and decarboxylation reactions. PDT plays a key role in the biosynthesis of L-Phe in organisms that utilize the shikimate pathway. PDT is allosterically regulated by L-Phe and other amino acids. The catalytic PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In gram-postive bacteria and archaea, PDT is a monofunctional enzyme, consisting of a catalytic domain (PDT domain) and a regulatory domain (ACT) (aspartokinase, chorismate mustase domain). In gram-negative bacteria, PDT exists as fusion protein with chorismate mutase (CM), forming a bifunctional enzyme, P-protein (PheA). The CM in the P-protein catalyzes the pericycle isomerization of chorismate to prephenate that serves as a substrate for PDT. The CM and PDT are essentail enzymes for the biosynthesis of aromatic amino acids in microorganisms but are not found in humans. Thus, both CM and PDT can potentially serve as drug targets against microbial pathogens. The PDT domain has the same structural fold as the type 2 periplasmic binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 180 -270349 cd13631 PBP2_Ct-PDT_like Catalytic domain of prephenate dehydratase from Chlorobium tepidum and similar proteins, subgroup 2; the type 2 periplasmic binding protein fold. Prephenate dehydratase (PDT, EC:4.2.1.51) converts prephenate to phenylpyruvate through dehydration and decarboxylation reactions. PDT plays a key role in the biosynthesis of L-Phe in organisms that utilize the shikimate pathway. PDT is allosterically regulated by L-Phe and other amino acids. The catalytic PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In gram-postive bacteria and archaea, PDT is a monofunctional enzyme, consisting of a catalytic domain (PDT domain) and a regulatory domain (ACT) (aspartokinase, chorismate mustase domain). In gram-negative bacteria, PDT exists as fusion protein with chorismate mutase (CM), forming a bifunctional enzyme, P-protein (PheA). The CM in the P-protein catalyzes the pericycle isomerization of chorismate to prephenate that serves as a substrate for PDT. The CM and PDT are essentail enzymes for the biosynthesis of aromatic amino acids in microorganisms but are not found in humans. Thus, both CM and PDT can potentially serve as drug targets against microbial pathogens. The PDT domain has the same structural fold as the type 2 periplasmic binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 182 -270350 cd13632 PBP2_Aa-PDT_like Catalytic domain of prephenate dehydratase from Arthrobacter aurescens and similar proteins, subgroup 3; the type 2 periplasmic binding protein fold. Prephenate dehydratase (PDT, EC:4.2.1.51) converts prephenate to phenylpyruvate through dehydration and decarboxylation reactions. PDT plays a key role in the biosynthesis of L-Phe in organisms that utilize the shikimate pathway. PDT is allosterically regulated by L-Phe and other amino acids. The catalytic PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In gram-postive bacteria and archaea, PDT is a monofunctional enzyme, consisting of a catalytic domain (PDT domain) and a regulatory domain (ACT) (aspartokinase, chorismate mustase domain). In gram-negative bacteria, PDT exists as fusion protein with chorismate mutase (CM), forming a bifunctional enzyme, P-protein (PheA). The CM in the P-protein catalyzes the pericycle isomerization of chorismate to prephenate that serves as a substrate for PDT. The CM and PDT are essentail enzymes for the biosynthesis of aromatic amino acids in microorganisms but are not found in humans. Thus, both CM and PDT can potentially serve as drug targets against microbial pathogens. The PDT domain has the same structural fold as the type 2 periplasmic binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 183 -270351 cd13633 PBP2_Sa-PDT_like Catalytic domain of prephenate dehydratase from Staphylococcus aureus and similar proteins, subgroup 4; the type 2 periplasmic binding protein fold. Prephenate dehydratase (PDT, EC:4.2.1.51) converts prephenate to phenylpyruvate through dehydration and decarboxylation reactions. PDT plays a key role in the biosynthesis of L-Phe in organisms that utilize the shikimate pathway. PDT is allosterically regulated by L-Phe and other amino acids. The catalytic PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In gram-postive bacteria and archaea, PDT is a monofunctional enzyme, consisting of a catalytic domain (PDT domain) and a regulatory domain (ACT) (aspartokinase, chorismate mustase domain). In gram-negative bacteria, PDT exists as fusion protein with chorismate mutase (CM), forming a bifunctional enzyme, P-protein (PheA). The CM in the P-protein catalyzes the pericycle isomerization of chorismate to prephenate that serves as a substrate for PDT. The CM and PDT are essentail enzymes for the biosynthesis of aromatic amino acids in microorganisms but are not found in humans. Thus, both CM and PDT can potentially serve as drug targets against microbial pathogens. The PDT domain has the same structural fold as the type 2 periplasmic binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 184 -270352 cd13634 PBP2_Sco4506 The conserved hypothetical protein SCO4506 exhibits the type 2 periplasmic-binidng protein fold. This group includes the SCO4506 protein from Streptomyces coelicolor and related hypothetical proteins. SCO4506 is an ortholog of Ttha1568 (MqnD) from Thermus thermophilies HB8. MqnD is an enzyme within an alternative menaquinone biosynthetic pathway that catalyzes the conversion of cyclic de-hypoxanthine futalosine to 1,4-dihydroxy-6-naphthoate. Menaquinone (MK; vitamin K) is an essential lipid-soluble carrier that shuttles electrons between membrane-bound protein complexes in the electron transport chain. SCO4506 has significant structural homology with the members of type 2 periplasmic-binding fold protein superfamily. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 256 -270353 cd13635 PBP2_Ttha1568_Mqnd A menaquinone biosynthetic enzyme exhibits the type 2 periplasmic-binding protein fold. This group includes Ttha1568 (MqnD) from Thermus thermophilies HB8, an enzyme within an alternative menaquinone biosynthetic pathway that catalyzes the conversion of cyclic de-hypoxanthine futalosine to 1,4-dihydroxy-6-naphthoate. Menaquinone (MK; vitamin K) is an essential lipid-soluble carrier that shuttles electrons between membrane-bound protein complexes in the electron transport chain. Ttha1568 has significant structural homology with the members of type 2 periplasmic-binding fold protein superfamily. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 260 -270354 cd13636 PBP2_Af1704 The conserved hypothetical protein Af1704 exhibits the type 2 periplasmic-binding protein fold. This group includes the Af1704 protein from from Archaeoglobus fulgidus DSM 4304, which is an ortholog of Ttha1568 (MqnD) from Thermus thermophilies HB8. MqnD is an enzyme within an alternative menaquinone biosynthetic pathway that catalyzes the conversion of cyclic de-hypoxanthine futalosine to 1,4-dihydroxy-6-naphthoate. Menaquinone (MK; vitamin K) is an essential lipid-soluble carrier that shuttles electrons between membrane-bound protein complexes in the electron transport chain. Af1704 has significant structural homology with the members of type 2 periplasmic-binding fold protein superfamily. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 259 -270355 cd13637 PBP2_Ca3427_like The conserved hypothetical protein Ca3427 exhibits the type 2 periplasmic-binding protein fold. This group includes the Ca3427 protein from candida albicans, which is an ortholog of Ttha1568 (MqnD) from Thermus thermophilies HB8, and other related hypothetical proteins. MqnD is an enzyme within an alternative menaquinone biosynthetic pathway that catalyzes the conversion of cyclic de-hypoxanthine futalosine to 1,4-dihydroxy-6-naphthoate. Menaquinone (MK; vitamin K) is an essential lipid-soluble carrier that shuttles electrons between membrane-bound protein complexes in the electron transport chain. Ca3427 has significant structural homology with the members of type 2 periplasmic-binding fold protein superfamily. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 273 -270356 cd13638 PBP2_EcProx_like Substrate binding domain of Escherichia coli betaine transport system-like; the type 2 periplasmic binding protein fold. This group includes the periplasmic substrate-binding protein ProX. ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. The ProX belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 299 -270357 cd13639 PBP2_OpuAC_like Substrate binding domain of Lactococcus lactis ABC-type transporter OpuA and related proteins; the type 2 periplasmic binding protein fold. This subfamily is part of a high affinity multicomponent binding-protein-dependent transport system specific to betaine compounds for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as glycine betaine and proline betaine. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. This domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 254 -270358 cd13640 PBP2_ChoX Substrate binding domain of ABC-type choline transport system; the type 2 periplasmic binding protein fold. This subfamily is part of a high affinity multicomponent binding-protein-dependent transport system specific to choline and acetylcholine for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as choline and betaines. Choline is necessary for the biosynthesis of glycine betaine. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. In the case of the Sinorhizobium meliloti choline uptake system ChoVWX, ChoV is the nucleotide-binding domain that provides energy for the transport process via ATP hydrolysis, ChoW is the integral transmembrane protein that forms the substrate translaocation pathway, and ChoX is the substrate-binding domain. ChoX belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 266 -270359 cd13641 PBP2_HisX_like Substrate-binding domain of ABC-type histidine transporter involves in betaine and proline uptake; the type 2 periplasmic-binding protein fold. This subfamily is part of a high affinity multicomponent binding-protein-dependent transport system specific to certain quaternary ammonium compounds for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as glycine betaine, proline betaine, choline, and carnitine. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. This domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 261 -270360 cd13642 PBP2_BCP_1 Substrate-binding domain of osmoregulatory ABC-type glycine betaine/choline/L-proline transport system-like; the type 2 periplasmic-binding protein fold. This subfamily is part of a high affinity multicomponent binding-protein-dependent transport system specific to certain quaternary ammonium compounds for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as glycine betaine, proline betaine, choline, and carnitine. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. This domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 292 -270361 cd13643 PBP2_BCP_2 Substrate-binding domain of osmoregulatory ABC-type glycine betaine/choline/L-proline transport system-like; the type 2 periplasmic-binding protein fold. This subfamily is part of a high affinity multicomponent binding-protein-dependent transport system specific to certain quaternary ammonium compounds for osmoregulation. The periplasmic substrate-binding domain, which is often fused to the permease component of the ATP-binding cassette transporter complex, is involved in uptake of osmoprotectants (also termed compatible solutes) such as glycine betaine, proline betaine, choline, and carnitine. Many microorganisms accumulate these compatible solutes in response to high osmolarity to offset the loss of cell water. This domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 283 -270362 cd13644 PBP2_HemC_archaea Archaeal HemC of hydroxymethylbilane synthase family; the type 2 periplasmic binding protein fold. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, and vitamin B12. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This subfamily includes the three domains of HMBS. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 273 -270363 cd13645 PBP2_HuPBGD_like Human porphobilinogen deaminase possess type 2 periplasmic binding protein fold. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, and vitamin B12. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This subfamily includes the three domains of human PBGD and its closely related proteins. Mutations in human PBGD cause AIP (acute intermittent porphyria), an inherited autosomal dominant disorder. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 282 -270364 cd13646 PBP2_EcHMBS_like cd00494. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, and vitamin B12. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This subfamily includes the three domains of Escherichia coli HMBS and its closely related proteins. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 274 -270365 cd13647 PBP2_PBGD_2 An uncharacterized subgroup of the PBGD family; the type 2 periplasmic binding protein fold. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, and vitamin B12. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This subfamily includes the three domains of HMBS. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 282 -270366 cd13648 PBP2_PBGD_1 An uncharacterized subgroup of the PBGD family; the type 2 periplasmic binding protein fold. Hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase (PBGD), is an intermediate enzyme in the biosynthetic pathway of tetrapyrrolic ring systems, such as heme, chlorophyll, and vitamin B12. HMBS catalyzes the conversion of porphobilinogen (PBG) into hydroxymethylbilane (HMB). This subfamily includes the three domains of HMBS. The enzyme is believed to bind substrate through a hinge-bending motion of domains 1 and 2. The C-terminal domain 3 contains an invariant cysteine that forms the covalent attachment site for the DPM (dipyrromethane) cofactor. HMBS is found in all organisms except viruses. The domains 1 and 2 have the same overall topology as found in the type 2 periplasmic-binding proteins (PBP2), many of which are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. 278 -270367 cd13649 PBP2_Cae31940 Substrate binding domain of an uncharacterized protein similar to ABC-type transporter for thiamin biosynthetic pathway intermediates; a member of the type 2 periplasmic binding fold superfamily. This subfamily includes the periplamic-binding protein Cae31940 which is phylogenetically similar to the ThiY/THI5 family. ThiY is the periplasmic N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP) binding component of the ABC transport system (ThiXYZ). FAMP is imported into cell by the transporter, where it is then incorporated into the thiamin biosynthetic pathway. The closest structural homologs of ThiY are THI5, which is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate (HMP-P) in the thiamin biosynthetic pathway of eukaryotes, and periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. After binding the ligand, They interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ThiY/THI5 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 223 -270368 cd13650 PBP2_THI5 Substrate binding domain of ABC-type transporters for thiamin biosynthetic pathway intermediates; a member of the type 2 periplasmic binding fold superfamily. ThiY is the periplasmic N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP) binding component of the ABC transport system (ThiXYZ). FAMP is imported into cell by the transporter, where it is then incorporated into the thiamin biosynthetic pathway. The closest structural homologs of ThiY are periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport , as well as THI5 which is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate (HMP-P) in the thiamin biosynthetic pathway of eukaryotes. After binding the ligand, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ThiY/THI5 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 251 -270369 cd13651 PBP2_ThiY Substrate binding domain of ABC-type transporters for thiamin biosynthetic pathway intermediates; a member of the type 2 periplasmic binding fold superfamily. ThiY is the periplasmic N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP) binding component of the ABC transport system (ThiXYZ). FAMP is imported into cell by the transporter, where it is then incorporated into the thiamin biosynthetic pathway. The closest structural homologs of ThiY are periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport , as well as THI5 which is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate (HMP-P) in the thiamin biosynthetic pathway of eukaryotes. After binding the ligand, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ThiY/THI5 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 214 -270370 cd13652 PBP2_ThiY_THI5_like_1 Putative substrate binding domain of an ABC-type transporter similar to ThiY/THI5; the type 2 periplasmic binding protein fold. This subfamily is phylogenetically similar to ThiY, which is the periplasmic N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP) binding component of the ABC transport system (ThiXYZ). FAMP is imported into cell by the transporter, where it is then incorporated into the thiamin biosynthetic pathway. The closest structural homologs of ThiY are THI5, which is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate (HMP-P) in the thiamin biosynthetic pathway of eukaryotes, and periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. After binding the ligand, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ThiY/THI5 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 217 -270371 cd13653 PBP2_phosphate_like_1 Substrate binding domain of putative ABC-type phosphate transporter, a member of the type 2 periplasmic binding fold superfamily. This subfamily contains uncharacterized phosphate binding domains found in PstS proteins that serve as initial receptors in the ABC transport of phosphate in eubacteria and archaea. After binding the ligand, PstS interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The PstS proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 240 -270372 cd13654 PBP2_phosphate_like_2 Substrate binding domain of putative ABC-type phosphate transporter, a member of the type 2 periplasmic binding fold superfamily. This subfamily contains uncharacterized phosphate binding domains found in PstS proteins that serve as initial receptors in the ABC transport of phosphate in eubacteria and archaea. After binding the ligand, PstS interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The PstS proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 259 -270373 cd13655 PBP2_oligosaccharide_1 The periplasmic binding component of ABC tansport system specific for an unknown oligosaccharide; possess the type 2 periplasmic binidng fold. This group represents an uncharacterized periplasmic-binding protein of an ATP-binding cassette transporter predicted to be involved in uptake of an unknown oligosaccharide molecule. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 363 -270374 cd13656 PBP2_MBP The periplasmic binding component of ABC tansport system specific for maltose; possess the type 2 periplasmic binidng fold. This group includes the periplasmic maltose-binding protein of an ATP-binding cassette transporter. Maltose is a disaccharide formed from two units of glucose. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 364 -270375 cd13657 PBP2_Maltodextrin The periplasmic binding component of ABC transport system specific for maltodextrin. This group includes the periplasmic maltodextrin-binding protein of a binding protein-dependent ATP-binding cassette transporter. Maltodextrin is a polysaccharide that is used as a food addtive and can be enzymatically produced from any starch . Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 368 -270376 cd13658 PBP2_CMBP The periplasmic binding component of ABC transport systems specific for cyclo/maltodextrin; possess the type 2 periplasmic binding fold. This group includes the periplasmic cyclo/maltodextrin-binding protein of Thermoactinomyces vulgaris ATP-binding cassette transporter and related proteins. Cyclodextrins are a family of compounds composed of glucose units connected by 1, 4 glycosidic linkages to form a series of oligosaccharide rings, and their cavity is hydrophibic which allows cyclodextrins to accomodate hydrophobic molecules/moieties in the cavity. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 372 -270377 cd13659 PBP2_PotF The periplasmic substrate-binding component of an ABC putrescine transport system and related proteins; contains the type 2 periplasmic-binding fold. This group represents the periplasmic substrate-binding domain that serves as the primary polyamine receptor of ABC-type putrescine-preferential transporter from gram-negative bacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 331 -270378 cd13660 PBP2_PotD The periplasmic substrate-binding component of an active spermidine-preferential transport system; contains the type 2 periplasmic binding fold. This group represents the periplasmic binding domain that serves as the primary polyamine receptor of ABC-type spermindine-preferential transport system from gram-negative bacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 315 -270379 cd13661 PBP2_PotD_PotF_like_1 The periplasmic substrate-binding component of an uncharacterized active transport system closely related to spermidine and putrescine transporters; contains the type 2 periplasmic binding fold. This group represents the periplasmic binding domain that serves as a primary polyamine receptor of an uncharacterized ABC-type transport system from plants and plant-symbiotic cyanobacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, as well as plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 319 -270380 cd13662 PBP2_TpPotD_like The periplasmic substrate-binding component of an ABC-type polyamine transport system from Treponema pallidum and related proteins; contains the type 2 periplasmic binding fold. This group includes the polyamine-binding component of an ABC-type polyamine transport system from Treponema pallidum and closely related proteins, which is homologous to the spermidine-preferring periplasmic substrate-binding protein component (PotD)of ABC transport system. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, as well as plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 312 -270381 cd13663 PBP2_PotD_PotF_like_2 The periplasmic substrate-binding component of an uncharacterized active transport system closely related to spermidine and putrescine transporters; contains the type 2 periplasmic binding fold. This group represents the periplasmic substrate-binding domain that serves as a primary polyamine receptor of an uncharacterized ABC-type transport system from gram-negative bacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, as well as plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 323 -270382 cd13664 PBP2_PotD_PotF_like_3 TThe periplasmic substrate-binding component of an uncharacterized active transport system closely related to spermidine and putrescine transporters; contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding domain that functions as the primary high-affinity receptors of ABC-type polyamine transport systems. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, and plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 315 -270383 cd13665 PBP2_TRAP_Dctp3_4 Periplasmic substrate-binding component of TRAP-type C4-dicarboxylate transport system DctP3 and DctP4; the type 2 periplasmic-binding protein fold. This group includes uncharacterized DctP3 and DctP 4 subfamilies of TRAP Transporters specific to C4-dicarboxylates such as succinate, malate and fumarate. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. This CD also included some eukaryotic homologs that have not been functionally characterized. TRAP transporters are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 302 -270384 cd13666 PBP2_TRAP_DctP_like_1 Substrate-binding component of an uncharacterized TRAP-type C4-dicarboxylate transport system; the type 2 periplasmic-binding protein fold. This group includes a DctP subfamily of TRAP Transporters specific to C4-dicarboxylates such as succinate, malate and fumarate. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. This CD also included some eukaryotic homologs that have not been functionally characterized. TRAP transporters are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 303 -270385 cd13667 PBP2_TRAP_DctP1 Periplasmic substrate-binding component of an uncharacterized TRAP-type C4-dicarboxylate transport system DctP1; contains the type 2 periplasmic-binding protein fold. This group includes an uncharacterized DctP1 subfamily of the TRAP Transporters. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 295 -270386 cd13668 PBP2_TRAP_UehA_TeaA Periplasmic substrate-binding component of osmoregulatory TRAP transporters TeaA and UehA; the type 2 periplasmic-binding protein fold. This subfamily includes the periplasmic-binding component of the ectoine-specific TRAP transporters TeaA from Halomonas elongata and UehA from Ruegeria pomeroyi. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 305 -270387 cd13669 PBP2_TRAP_TM0322_like Periplasmic component of TRAP-type C4-dicarboxylate transport system TM0322 from Thermotoga maritima and similar proteins; the type 2 periplasmic binding protein fold. This subgroup includes the hyperthermophilic bacterium Thermotoga maritima TRAP-type C4-dicarboxylate transport system TM0322 and its closely related proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 296 -270388 cd13670 PBP2_TRAP_Tp0957_like Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes the putative periplasmic substrate-binding protein Tp0957 from Treponema pallidum, which is similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 298 -270389 cd13671 PBP2_TRAP_SBP_like_3 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 296 -270390 cd13672 PBP2_TRAP_Siap Substrate-binding domain of a sialic acid binding Tripartite ATP-independent Periplasmic transport system (SiaP); the type 2 periplasmic-binding protein fold. This subfamily represents the periplasmic-binding component of TRAP transport system SiaP, a sialic acid binding virulence factor. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 295 -270391 cd13673 PBP2_TRAP_SBP_like_2 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 301 -270392 cd13674 PBP2_TRAP_SBP_like_1 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 299 -270393 cd13675 PBP2_TRAP_SBP_like_5 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 296 -270394 cd13676 PBP2_TRAP_DctP2_like Substrate-binding component of Tripartite ATP-independent Periplasmic transporter DctP2 and related proteins; the type 2 periplasmic-binding protein fold. This subgroup includes TRAP transporter DctP2 and its similar proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 297 -270395 cd13677 PBP2_TRAP_SBP_like_6 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 304 -270396 cd13678 PBP2_TRAP_DctP10 Substrate-binding component of Tripartite ATP-independent Periplasmic transporter DctP10; the type 2 periplasmic-binding protein fold. This subgroup includes TRAP transporter DctP10 and its similar proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 300 -270397 cd13679 PBP2_TRAP_YiaO_like Substrate-binding domain of 2,3-diketo-L-gulonate-binding Tripartite ATP-independent Periplasmic transport system and related proteins; the type 2 periplasmic-binding protein fold. This subfamily includes the solute receptor protein YiaO of TRAP transport system. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 298 -270398 cd13680 PBP2_TRAP_SBP_like_4 Uncharacterized substrate-binding protein of the Tripartite ATP-independent Periplasmic transporter family; the type 2 periplasmic-binding protein fold. This subfamily includes uncharacterized periplasmic substrate-binding proteins similar to TRAP transport systems such as SiaP (a sialic acid binding virulence factor) and TeaA (an ectoine binding protein). TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 300 -270399 cd13681 PBP2_TRAP_lactate Substrate-binding component of a lactate binding Tripartite ATP-independent Periplasmic transporter and related proteins; the type 2 periplasmic-binding protein fold. This subgroup includes a lactate binding TRAP transporter and its similar proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 311 -270400 cd13682 PBP2_TRAP_alpha-ketoacid Substrate-binding component of an alpha-keto acid binding Tripartite ATP-independent Periplasmic transporter and related proteins; contains the type 2 periplasmic-binding protein fold. This subgroup includes TRAP transporters that bind to ketoacids such as pyruvate and alpha-ketobutyrate, xylulose, and other unknown ligands. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 323 -270401 cd13683 PBP2_TRAP_DctP6_7 Substrate-binding domain of Tripartite ATP-independent Periplasmic transporter DctP6 and DctP7; type 2 periplasmic-binding protein fold. This subgroup includes TRAP-type mannitol/chloroaromatic compound transport system (Dctp6) and similar proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process and a smaller membrane of unknown function. The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the PBP2 superfamily. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 304 -270402 cd13684 PBP2_TRAP_Dctp5_like Substrate-binding component of Tripartite ATP-independent Periplasmic transporter DctP5 and related proteins; the type 2 periplasmic-binding protein fold. This subgroup includes TRAP transporter DctP5 and its similar proteins. TRAP transporters are a large family of solute transporters ubiquitously found in bacteria and archaea. They are comprised of a periplasmic substrate-binding protein (SBP; often called the P subunit) and two unequally sized integral membrane components: a large transmembrane subunit involved in the translocation process (the M subunit) and a smaller membrane of unknown function (the Q subunit). The driving force of TRAP transporters is provided by electrochemical ion gradients (either protons or sodium ions) across the cytoplasmic membrane, rather than ATP hydrolysis. This substrate-binding domain belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 314 -270403 cd13685 PBP2_iGluR_non_NMDA_like The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily. This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. 252 -270404 cd13686 GluR_Plant Plant glutamate receptor domain; the type 2 periplasmic binding protein fold. This subfamily contains the glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 232 -270405 cd13687 PBP2_iGluR_NMDA The ligand-binding domain of the NMDA (N-methyl-D-aspartate) subtype of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. The ligand-binding domain of the ionotropic NMDA subtype is structurally homologous to the periplasmic-binding fold type II superfamily, while the N-terminal domain belongs to the periplasmic-binding fold type I. The function of the NMDA subtype receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 (A, B, C, and D) or NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 239 -270406 cd13688 PBP2_GltI_DEBP Substrate-binding domain of ABC aspartate-glutamate transporter; the type 2 periplasmic binding protein fold. This subfamily represents the periplasmic-binding protein component of ABC transporter specific for carboxylic amino acids, including GtlI from Escherichia coli. The aspartate-glutamate binding domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 238 -270407 cd13689 PBP2_BsGlnH Substrate binding domain of ABC glutamine transporter from Bacillus subtilis; the type 2 periplasmic-bindig protein fold. This group includes periplasmic glutamine-binding domain GlnP from Bacillus subtilis and its related proteins. The GlnP domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 229 -270408 cd13690 PBP2_GluB Substrate binding domain of ABC glutamate transporter; the type 2 periplasmic binding protein fold. This group includes periplasmic glutamate-binding domain GluB from Corynebacterium efficiens and its related proteins. The GluB domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 231 -270409 cd13691 PBP2_Peb1a_like Substrate binding domain of an ABC aspartate/glutamate transporter; the type 2 periplasmic-binding protein fold. This group includes periplasmic aspartate/glutamate binding domain Peb1a and its closely related protein. The Peb1a is an important virulence factor in the food-borne human pathogen Campylobacter jejuni, which has a major role in adherence and host colonization. The Peb1a domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 228 -270410 cd13692 PBP2_BztA Substrate bindng domain of ABC glutamate/glutamine/aspartate/asparagine transporter; the type 2 periplasmic binding protein fold. BztA is the periplamic-binding protein component of ABC transporter specific for carboxylic amino acids, glutamine and asparagine. The BZtA domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 236 -270411 cd13693 PBP2_polar_AA Substrate binding domain of polar amino-acid uptake ABC transporter; the type 2 periplasmic binding protein fold. This group includes the periplamic-binding protein component of putative polar amino acid ABC transporter. The polar amino-acid binding domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 228 -270412 cd13694 PBP2_Cysteine Substrate binding domain of ABC cysteine transporter; the type 2 periplasmic binding protein fold. This subfamily comprises of the periplasmic-binding protein component of ABC transporter specific for cysteine and its closely related proteins. The cysteine-binding domains belong to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 229 -270413 cd13695 PBP2_Mlr3796_like The substrate-binding domain of putative amino aicd transporter; the type 2 periplasmic binding protein fold. This group includes the periplamic-binding protein component of a putative amino acid ABC transporter from Mesorhizobium loti and its related proteins. The putative Mlr3796-like domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 232 -270414 cd13696 PBP2_Atu4678_like The substrate binding domain of putative amino acid transporter; the type 2 periplasmic binding protein fold. This group includes the periplamic-binding protein component of a putative amino acid ABC transporter from Agrobacterium tumefaciens and its related proteins. The putative Atu4678-like domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 227 -270415 cd13697 PBP2_ArtJ_like Putative substrate-binding domain of ABC arginine transporter; the type 2 periplasmic-binding protein fold. The ArtJ domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 228 -270416 cd13698 PBP2_HisGluGlnArgOpine Substrate binding domain of ABC-type histidine/glutamate/glutamine/arginine/opine transporter; the type 2 periplasmic-binding protein fold. This group includes periplasmic-binding component of His/Glu/Gln/Arg/Opine ATP-binding cassette transport system. This substrate-binding domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 214 -270417 cd13699 PBP2_OccT_like Substrate binding domain of ABC-type octopine transporter-like; the type 2 periplasmic-binding protein fold. This group includes periplasmic octopine-binding protein and related proteins. This group belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 211 -270418 cd13700 PBP2_Arg_STM4351 Substrate binding domain of arginine-specific ABC transporter; type 2 periplasmic-binding protein fold. This group includes domains similar to Escherichia coli arginine third transport system. STM4351 is the high arginine specific periplasmic-binding protein of ABC transport system. STM4351 belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 222 -270419 cd13701 PBP2_ml15202_like Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the type 2 periplasmic-binding protein fold. This group includes uncharacterized periplasmic substrate-binding protein similar to HisJ and LAO proteins which are involved in the ABC transport of histidine-, arginine, and lysine-arginine-ornithine amino acids. This group belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 227 -270420 cd13702 PBP2_mlr5654_like Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the type 2 periplasmic-binding protein fold. This group includes uncharacterized periplasmic substrate-binding protein similar to HisJ and LAO proteins which serve as initial receptors in the ABC transport of histidine-, arginine, and lysine-arginine-ornithine amino acids. This group belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 223 -270421 cd13703 PBP2_HisJ_LAO Substrate binding domain of ABC-type histidine- and lysine/arginine/ornithine transporters; the type 2 periplasmic-binding protein fold. This subgroup includes the periplasmic-binding proteins, HisJ and LAO, that serve as initial receptors in the ABC transport of histidine and lysine-arginine-ornithine amino acids. They are belong to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 229 -270422 cd13704 PBP2_HisK The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding fold protein. This subfamily includes the periplasmic sensor domain of the histidine kinase receptors (HisK) which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes. Typically, the two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. The two-component systems serve as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. Extracellular stimuli such as small molecule ligands and ions are detected by the N-terminal periplasmic sensing domain of the sensor kinase receptor, which regulate the catalytic activity of the cytoplasmic kinase domain and promote ATP-dependent autophosphorylation of a conserved histidine residue. The phosphate is then transferred to a conserved aspartate in the response regulator through a phospho-transfer mechanism, and the activity of the response regulator is in turn regulated. The sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space through their function as an initial high-affinity binding component. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 220 -270423 cd13705 PBP2_BvgS_D1 The first of the two tandem periplasmic domains of sensor-kinase BvgS; the type 2 peripasmic-binding fold protein. This group contains the first domain of the periplasmic solute-binding domains of BvgS and related proteins. BvgS is composed of two periplasmic domains homologous to bacterial periplasmic-binding proteins (PBPs), a transmembrane region followed successively by a cytoplasmic PAS (Per/ARNT/SIM), a histidine-kinase (HK), a receiver and a histidine phosphotransfer (Hpt) domains. The sensor protein BvgS can autophosphorylate and phosphorylate the response regulator BvgA. The BvgAS phosphorelay controls the expression of virulence factors in response to certain environmental stimuli in Bordetella pertussis. Its close homologs, Escherichia coli EvgS and Klebsiella pneumoniae KvgS, appear to be involved in the transcriptional regulation of drug efflux pumps and in countering free radical stresses and sensing iron limiting conditions, respectively. The periplasmic sensor domain of BvgS belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 221 -270424 cd13706 PBP2_HisK_like_1 Putative sensor domain similar to HisK; the type 2 periplasmic binding fold protein. This group includes periplasmic sensor domain of the histidine kinase receptors (HisK) which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes. Typically, the two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. The two-component systems serve as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. Extracellular stimuli such as small molecule ligands and ions are detected by the N-terminal periplasmic sensing domain of the sensor kinase receptor, which regulate the catalytic activity of the cytoplasmic kinase domain and promote ATP-dependent autophosphorylation of a conserved histidine residue. The phosphate is then transferred to a conserved aspartate in the response regulator through a phospho-transfer mechanism, and the activity of the response regulator is in turn regulated. The sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space through their function as an initial high-affinity binding component. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 219 -270425 cd13707 PBP2_BvgS_D2 The second of the two tandem periplasmic domains of sensor-kinase BvgS; the type 2 peripasmic-binding fold protein. This group contains the second domain of the periplasmic solute-binding domains of BvgS and related proteins. BvgS is composed of two periplasmic domains homologous to bacterial periplasmic-binding proteins (PBPs), a transmembrane region followed successively by a cytoplasmic PAS (Per/ARNT/SIM), a Histidine-kinase (HK), a receiver and a Histidine phosphotransfer (Hpt) domains. The sensor protein BvgS can autophosphorylate and phosphorylate the response regulator BvgA. The BvgAS phosphorelay controls the expression of virulence factors in response to certain environmental stimuli in Bordetella pertussis. Its close homologs, Escherichia coli EvgS and Klebsiella pneumoniae KvgS, appear to be involved in the transcriptional regulation of drug efflux pumps and in countering free radical stresses and sensing iron limiting conditions, respectively. The periplasmic sensor domain of BvgS belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 221 -270426 cd13708 PBP2_BvgS_like_1 Putative sensor domain similar to BvgS; the type 2 periplasmic binding protein domain. BvgS is composed of two periplasmic domains homologous to bacterial periplasmic-binding proteins (PBPs), a transmembrane region followed successively by a cytoplasmic PAS (Per/ARNT/SIM), a Histidine-kinase (HK), a receiver and a Histidine phosphotransfer (Hpt) domains. The sensor protein BvgS can autophosphorylate and phosphorylate the response regulator BvgA. The BvgAS phosphorelay controls the expression of virulence factors in response to certain environmental stimuli in Bordetella pertussis. Its close homologs, Escherichia coli EvgS and Klebsiella pneumoniae KvgS, appear to be involved in the transcriptional regulation of drug efflux pumps and in countering free radical stresses and sensing iron limiting conditions, respectively. The periplasmic sensor domain of BvgS belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 220 -270427 cd13709 PBP2_YxeM Substrate binding domain of an ABC transporter YxeMNO; the type 2 periplasmic binding protein fold. This group contains cystine-binding domain (YxeM) of a periplasmic receptor-dependent ATP-binding cassette transporter and its closely related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 227 -270428 cd13710 PBP2_TcyK Substrate binding domain of an ABC transporter TcyJKLMN; the type 2 periplasmic binding protein fold. This group contains periplasmic cystine-binding domain (TcyK) of an ATP-binding cassette transporter from Bacillus subtilus and its closely related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 233 -270429 cd13711 PBP2_Ngo0372_TcyA Substrate binding domain of ABC transporters involved in cystine import; the type 2 periplasmic binding protein fold. This subgroup includes cystine-binding domain of periplasmic receptor-dependent ATP-binding cassette transporters from Neisseria gonorrhoeae and Bacillus subtilis and their related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 222 -270430 cd13712 PBP2_FliY Substrate binding domain of an Escherichia coli ABC transporter; the type 2 periplasmic binding protein fold. This group contains cystine binding domain FliY and its related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 219 -270431 cd13713 PBP2_Cystine_like_1 Substrate binding domain of putative ABC transporters involved in cystine import; the type 2 periplasmic binding protein fold. This group contains uncharacterized periplasmic cystine-binding domain of ATP-binding cassette (ABC) transporters. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 218 -270432 cd13714 PBP2_iGluR_Kainate Kainate receptor of the type 2 periplasmic-binding fold superfamily. This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 251 -270433 cd13715 PBP2_iGluR_AMPA The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtypes of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This family represents the ligand-binding domain of the AMPA receptor subunits, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. 261 -270434 cd13716 PBP2_iGluR_delta_like The ligand-binding domain of the delta family of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily. This subfamily represents the ligand-binding domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of iGluRs belongs to the periplasmic-binding fold type I. Although the delta receptors are members of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. 257 -270435 cd13717 PBP2_iGluR_putative The ligand-binding domain of putative ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 360 -270436 cd13718 PBP2_iGluR_NMDA_Nr2 The ligand-binding domain of the NR2 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the NR2 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 283 -270437 cd13719 PBP2_iGluR_NMDA_Nr1 The ligand-binding domain of the NR1 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand binding domain of the NR1, an essential channel-forming subunit of the NMDA receptor. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer ccomposed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. When co-expressed with NR1, the NR3 subunits form receptors that are activated by glycine alone and therefore can be classified as excitatory glycine receptors. NR1/NR3 receptors are calcium-impermeable and unaffected by ligands acting at the NR2 glutamate-binding site. 277 -270438 cd13720 PBP2_iGluR_NMDA_Nr3 The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. 283 -270439 cd13721 PBP2_iGluR_Kainate_GluR6 GluR6 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily. This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 251 -270440 cd13722 PBP2_iGluR_Kainate_GluR5 GluR5 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily. This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 250 -270441 cd13723 PBP2_iGluR_Kainate_GluR7 GluR7 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily. This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. 369 -270442 cd13724 PBP2_iGluR_kainate_KA1 The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily. This group contains the ligand-binding domain of the KA1 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. 333 -270443 cd13725 PBP2_iGluR_kainate_KA2 The ligand-binding domain of the kainate subtype KA2 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily. This group contains the ligand-binding domain of the KA2 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. 250 -270444 cd13726 PBP2_iGluR_AMPA_GluR2 The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR2 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the AMPA receptor subunit GluR2, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. 259 -270445 cd13727 PBP2_iGluR_AMPA_GluR4 The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR4 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the AMPA receptor subunit GluR4, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I.The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. 259 -270446 cd13728 PBP2_iGluR_AMPA_GluR3 The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR3 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the AMPA receptor subunit GluR3, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current 259 -270447 cd13729 PBP2_iGluR_AMPA_GluR1 The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR1 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily. This group contains the ligand-binding domain of the AMPA receptor subunit GluR1, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. 260 -270448 cd13730 PBP2_iGluR_delta_1 The ligand-binding domain of an orphan ionotropic glutamate receptor delta-1, a member of the type 2 periplasmic-binding fold protein superfamily. This group contains the ligand-binding domain of the delta1 receptor of an orphan glutamate receptor family. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of delta receptors belongs to the periplasmic-binding fold type I. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRdelta2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. 257 -270449 cd13731 PBP2_iGluR_delta_2 The ligand-binding domain of an orphan ionotropic glutamate receptor delta-2, a member of the type 2 periplasmic-binding fold protein superfamily. This group contains the ligand-binding domain of the delta-2 receptor of an orphan glutamate receptor family. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of delta receptors belongs to the periplasmic-binding fold type I. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. 257 -293968 cd13733 SPRY_PRY_C-I_1 PRY/SPRY domain in tripartite motif-containing (TRIM) proteins, including TRIM5, TRIM6, TRIM7, TRIM10, TRIM11, TRIM17, TRIM20, TRIM21, TRIM27, TRIM35, TRIM38, TRIM41, TRIM50, TRIM58, TRIM60, TRIM62, TRIM69, TRIM72, NF7 and bloodthirsty. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of several Class IV TRIM proteins, including TRIM7, TRIM35, TRIM41, TRIM50, TRIM62, TRIM69, TRIM72, TRIM protein NF7 and bloodthirsty (bty). TRIM7 interacts with glycogenin and stimulates its self-glucosylating activity via its SPRY domain. TRIM35 may play a role as a tumor suppressor and is implicated in the cell death mechanism. TRIM41 is localized to speckles in the cytoplasm and nucleus, and functions as an E3 ligase that catalyzes the ubiquitin-mediated degradation of protein kinase C. TRIM50, an E3 ubiquitin ligase, is deleted in Williams-Beuren (WBS) syndrome, a multi-system neurodevelopmental disorder caused by the deletion of contiguous genes at chromosome region 7q11.23. TRIM62 is involved in the morphogenesis of the mammary gland; loss of TRIM62 gene expression in breast is associated with increased risk of recurrence in early-onset breast cancer. TRIM69 is a novel testis E3 ubiquitin ligase that may function to ubiquitinate its particular substrates during spermatogenesis. In humans, TRIM69 localizes in the cytoplasm and nucleus, and requires an intact RING finger domain to function. TRIM protein NF7, which also contains a chromodomain (CHD) at the N-terminus and an RFP (Ret finger protein)-like domain at the C-terminus, is required for its association with transcriptional units of RNA polymerase II which is mediated by a trimeric B box. In Xenopus oocyte, xNF7 has been identified as a nuclear microtubule-associated protein (MAP) whose microtubule-bundling activity, but not E3-ligase activity, contributes to microtubule organization and spindle integrity. Bloodthirsty (bty) is a novel gene identified in zebrafish and has been shown to likely play a role in in regulation of the terminal steps of erythropoiesis. TRIM72 has been shown to perform a critical function in membrane repair following acute muscle injury by nucleating the assembly of the repair machinery at injury sites. The PRY-SPRY domain in these TRIM families is suggested to serve as the target binding site. 174 -293969 cd13734 SPRY_PRY_C-II PRY/SPRY domain in tripartite motif-containing proteins 1, 9, 18, 36, 46, 67,76 (TRIM1, TRIM9, TRIM18, TRIM36, TRIM46, TRIM67, TRIM76). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of several Class I TRIM proteins, including TRIM1, TRIM9, TRIM18, TRIM36, TRIM46, TRIM67 and TRIM76. TRIM1 (also known as MID2) and its close homolog, TRIM18 (also known as MID1), both contain a B30.2-like domain at their C-terminus and a single fibronectin type III (FN3) motif between it and their N-terminal RBCC domain. Their coiled-coil motifs mediate both homo- and heterodimerization, a prerequisite for association of the rapamycin-sensitive PP2A regulatory subunit Alpha 4 with microtubules. Mutations in TRIM18 have shown to cause Opitz syndrome, a disorder causing congenital anomalies such as cleft lip and palate as well as heart defects. TRIM9 is expressed mainly in the cerebral cortex, and functions as an E3 ubiquitin ligase. Its immunoreactivity is severely decreased in affected brain areas in Parkinson's disease and dementia with Lewy bodies, possibly playing an important role in the regulation of neuronal function and participating in pathological process of Lewy body disease through its ligase. TRIM36 interacts with centromere protein-H, one of the kinetochore proteins and possibly associates with chromosome segregation; an excess of TRIM36 may cause chromosomal instability. TRIM46 has not yet been characterized. TRIM67 negatively regulates Ras activity via degradation of 80K-H, leading to neural differentiation, including neuritogenesis. TRIM76 (also known as cardiomyopathy-associated protein 5 or CMYA5) is a muscle-specific member of the TRIM superfamily, but lacks the RING domain. It is possibly involved in protein kinase A signaling as well as vesicular trafficking. It has also been implicated in Duchenne muscular dystrophy and cardiac disease. The PRY-SPRY domain in these TRIM families is suggested to serve as the target binding site. 166 -293970 cd13735 SPRY_HECT_like SPRY domain in HECT E3. This domain consists of the SPRY subdomain similar to those found at the N-terminus of the HECT (homologous to the E6AP carboxyl terminus) protein, a C-terminal catalytic domain of a subclass of ubiquitin-protein ligase (E3). HECT E3 binds specific ubiquitin-conjugating enzymes (E2), accepts ubiquitin from E2, transfers ubiquitin to substrate lysine side chains, and transfers additional ubiquitin molecules to the end of growing ubiquitin chains. It has a prominent role in protein trafficking and immune response, and is involved in crucial signaling pathways implicated in tumorigenesis. 150 -293971 cd13736 SPRY_PRY_TRIM25 PRY/SPRY domain in tripartite motif-containing domain 25 (TRIM25). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM25 proteins (composed of RING/B-box/coiled-coil core and also known as RBCC proteins). TRIM25 (also called Efp) ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I) in response to viral infection, leading to activation of the RIG-I signaling pathway, thus resulting in type I interferon production to limit viral replication. It has been shown that the influenza A virus targets TRIM25 and disables its antiviral function. 169 -293972 cd13737 SPRY_PRY_TRIM25-like PRY/SPRY domain in tripartite motif-containing domain 25 (TRIM25)-like. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of proteins similar to TRIM25 (composed of RING/B-box/coiled-coil core and also known as RBCC proteins). TRIM25 (also called Efp) ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I) in response to viral infection, leading to activation of the RIG-I signaling pathway, thus resulting in type I interferon production to limit viral replication. It has been shown that the influenza A virus targets TRIM25 and disables its antiviral function. 172 -293973 cd13738 SPRY_PRY_TRIM14 PRY/SPRY domain of tripartite motif-binding protein 14 (TRIM14). This is a TRIM14 domain family contains residues in the N-terminus that form a distinct PRY domain structure such that the B30.2 domain consists of PRY and SPRY subdomains. TRIM14 domains have yet to be characterized. These B30.2 domains are a more recent adaptation where the SPRY/PRY combination is a possible component of immune defense. It belongs to Class IV TRIM protein family which has members involved in antiviral immunity at various levels of interferon signaling cascade. 173 -293974 cd13739 SPRY_PRY_TRIM1 PRY/SPRY domain of tripartite motif-binding protein 1 (TRIM1) or MID2. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM1 (also known as MID2 or midline 2). MID2 and its close homolog, TRIM18 (also known as MID1), both contain a B30.2-like domain at their C-terminus and a single fibronectin type III (FN3) motif between it and their N-terminal RBCC domain. MID2 and MID1 coiled-coil motifs mediate both homo- and heterodimerization, a prerequisite for association of the rapamycin-sensitive PP2A regulatory subunit Alpha 4 with microtubules. Mutations in MID1 have shown to cause Opitz syndrome, a disorder causing congenital anomalies such as cleft lip and palate as well as heart defects. 170 -293975 cd13740 SPRY_PRY_TRIM7 PRY/SPRY domain in tripartite motif-binding protein 7 (TRIM7). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of tripartite motif-containing protein 7 (TRIM7), also referred to as glycogenin-interacting protein (GNIP) or RING finger protein 90 (RNF90). TRIM7 or GNIP interacts with glycogenin and stimulates its self-glucosylating activity via its SPRY domain. The GNIP gene encodes at least four distinct isoforms of GNIP, of which three (GNIP1, GNIP2, and GNIP3) have the B30.2 domain. 169 -240499 cd13741 SPRY_PRY_TRIM41 PRY/SPRY domain in tripartite motif-binding protein 41 (TRIM41). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of tripartite motif-containing protein 41 (TRIM41). TRIM41 (also known as RING finger-interacting protein with C kinase or RINCK) is localized to speckles in the cytoplasm and nucleus, and functions as an E3 ligase that catalyzes the ubiquitin-mediated degradation of protein kinase C. 199 -293976 cd13742 SPRY_PRY_TRIM72 PRY/SPRY domain in tripartite motif-binding protein 72 (TRIM72). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM72. Muscle-specific TRIM72 (also known as Mitsugumin 53 or MG53) has been shown to perform a critical function in membrane repair following acute muscle injury by nucleating the assembly of the repair machinery at injury sites. It is expressed specifically in skeletal muscle and heart, and tethered to the plasma membrane and cytoplasmic vesicles via its interaction with phosphatidylserine. TRIM72 interacts with dysferlin, a sarcolemmal protein whose deficiency causes Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B); this coordination plays an important role in the repair of sarcolemma damage. 192 -293977 cd13743 SPRY_PRY_TRIM50 PRY/SPRY domain in tripartite motif-binding protein 50 (TRIM50). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM50. TRIM50, an E3 ubiquitin ligase, is deleted in Williams-Beuren (WBS) syndrome, a multi-system neurodevelopmental disorder caused by the deletion of contiguous genes at chromosome region 7q11.23. It is specifically expressed in gastric parietal cells and may play an essential role in tubulovesicular dynamics. It also interacts with and increases the level of p62, a multifunctional adaptor protein that is implicated in various cellular processes such as the autophagy clearance of polyubiquitinated protein aggregates. 189 -293978 cd13744 SPRY_PRY_TRIM62 PRY/SPRY domain in tripartite motif-binding protein 62 (TRIM62). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM62. It is also called DEAR1 ductal epithelium (associated RING chromosome 1) and is involved in the morphogenesis of the mammary gland; loss of TRIM62 gene expression in breast is associated with increased risk of recurrence in early-onset breast cancer and thus, making TRIM62 a predictive biomarker. Non-small cell lung cancer lesions show a step-wise loss of TRIM62 levels during disease progression, indicating that it may play a role in the evolution of lung cancer. Decreased levels of TRIM62 also represent an independent adverse prognostic factor in AML. 188 -293979 cd13745 SPRY_PRY_TRIM39 PRY/SPRY domain in tripartite motif-binding protein 39 (TRIM39) and TRIM39-like. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of pyrin, several tripartite motif-containing proteins (TRIMs), including E3 ubiquitin-protein ligase (TRIM21), RET finger protein (RFP)/tripartite motif protein 27 (TRIM27), as well as butyrophilin (Btns) and butyrophilin-like (Btnl) family members, with the exception of Btnl2. Btn and Btnl family members are novel regulators of immune responses, with many of the genes located within the MHC. They are implicated in T-cell inhibition and modulation of epithelial cell-T cell interactions. TRIM21 (also known as RO52, SSA1 or RNF81) is a major autoantigen in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjorgen's syndrome. TRIM27 (also known as Ret finger protein, RFP or RNF76) negatively regulates CD4 T-cells by ubiquitinating and inhibiting the class II phosphatidylinositol 3 kinase C2beta (PI3K-C2beta), a kinase critical for KCa3.1 channel activation. The PRY/SPRY domain of Pyrin, which is mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. 177 -259839 cd13746 Sir4p-SID_like The SID domain of Saccharomyces cerevisiae silent information regulator 4, a Sir2p interaction domain; and related domains. Saccharomyces cerevisiae Sir2p, Sir3p, and Sir4p form a heterotrimeric complex which binds chromatin and represses transcription at the homothallic mating type (HM) loci and at subtelomeric regions. This domain model spans residues 742-893 of Sir4p. Sir4p forms a stable heterodimer with Sir2p, mediated by Sir4p residues included in this domain, and a pocket between Sir2p's catalytic domain and its non-conserved N-terminus. Sir4p also interacts with an array of additional factors, including Yku80p, a subunit of the telomeric Ku complex (Yku70p-Yku80p), which binds two sites within Sir4p, one at the N-terminus and one in the C-terminal residues, 731-1358. Other interaction factors include Esc1p (Establishes silent chromatin 1) which binds the Sir4p PAD domain (partitioning and anchoring domain, residues 950-1262), and Sir3p, Yku70p, and Rap1p (Repressor Activator Protein) which bind in its C-terminal coiled-coil (residues 1257-1358). Other Sir4p interacting factors include the Ty5 retrotransposon. Additional roles for Sir4p include roles in DNA repair, and in aging. A SIR4 mutant having a truncated Sir4p lacking a C-terminal coiled-coil domain, has an extended mean life span; deletion of the SIR4 gene leads to a decreased mean life span. 115 -259834 cd13747 UreI_AmiS_like_1 UreI/Amis family, subgroup 1. Putative proton-gated urea channel and putative amide transporters. This subfamily includes putative UreI proton-gated urea channels and putative amide transporters (AmiS of the amidase gene cluster). Helicobacter pylori UreI (HpUreI), a proton-gated inner membrane urea channel opens in acidic pH to allow urea influx to the cytoplasm. There urea is metabolized, producing NH3 and Co2, leading to buffering of the periplasm. This action is essential for the survival of H. pylori in the stomach, and has been identified as a mechanism that could be clinically targeted to prevent various illnesses associated with infection by H. pylori. UreI and the related amide channels (AmiS) appear to function as hexamers, and have 6 predicted transmembrane segments. UreI has also been shown have a lipid "plug" in the center of the hexamer. Urea enters at the periplasmic opening of UreI and must pass 2 constriction sites, one on each side of a conserved Glu (Glu 177, H. pylori numbering), to reach the cytoplasm. Urea/thiourea selectivity is diminished by mutation of a conserved Trp to Ala or Phe in constriction site 2 (cytoplasmic). Channel functionality is greatly diminished by mutation of a conserved Trp in constriction site 1 (periplasmic) and a conserved Tyr in constriction site 2, and to a lesser extent a conserved Phe in site 1. In the cytoplasm, urease hydrolyzes urea to form ammonia and carbamate, which decomposes to carbonic acid. UreI is fully open at pH 5.0 to facilitate urea influx, but closes at neutral pH, preventing over-alkalization. Glu 177 (H. pylori numbering) is present in urea channel proteins, but absent in the related amide channels, suggesting that it plays a role in urea specificity. 167 -259840 cd13748 CBM29_CBM65 family 29 and family 65 carbohydrate binding modules. Members of this family bind to polysaccharides that are components of plant cell walls. CBM29 is present in cell-wall degrading multi-enzyme complexes from the anaerobic fungus Piromyces equi, CBM65 can be found in endoglucanases expressed by Eubacterium cellulosolvens and has a preference for xyloglucans. 106 -259796 cd13749 Zn-ribbon_TFIIS domain III/zinc ribbon domain of Transcription Factor IIS. TFIIS is a zinc-containing transcription factor. It has been shown in vitro to have distinct biochemical activities, including binding to RNA polymerases, stimulation of transcript elongation, and activation of a nascent RNA cleavage activity in the RNA polymerase II (Pol II) elongation complex. TFIIS consists of three domains. Domain II and III are sufficient for all known TFIIS activities. Domain III is a zinc ribbon that separated from domain II by a long linker and is indispensable for TFIIS function. The TFIIS homologs, subunits A12.2, B9, and C11, of Pol I, II, and III respectively, are required for RNA cleavage by the polymerases. In a single organism, there are tissue-specific TFIIS related proteins. 47 -259841 cd13768 DSS1_Sem1 proteasome complex subunit DSS1/Sem1. The evolutionarily conserved deleted in split hand/split foot protein 1 (DSS1)/Sem1 is a subunit of the regulatory particle (RP) of the proteasome. It is implicated in ubiquitin-mediated proteolysis, is required for the maintenance of genomic stability, and functions in DNA damage response. DSS1/Sem1 also displays RP-independent functions; it serves as a functional component of the nuclear pore associated TREX-2 transcription-export complex and is required for proper nuclear export of mRNA. In mammalian cells, DSS1 binds and stabilizes the tumor suppressor BRCA2, and contributes to its function in mediating homologous recombinational repair. In yeast, Sem1 also complexes with the COP9 signalosome, which is involved in de-neddylation. DSS1/Sem1 may be a versatile protein which contributes to the functional integrity of multiple protein complexes involved in various biological processes. 61 -259842 cd13769 ApoLp-III_like Apolipophorin-III and similar insect proteins. Exchangeable apolipoproteins play vital roles in the transport of lipids and lipoprotein metabolism. Apolipophorin III (apoLp-III) assists in the loading of diacylglycerol, generated from triacylglycerol stores in the fat body through the action of adipokinetic hormone, into lipophorin, the hemolymph lipoprotein. ApoLp-III increases the lipid carrying capacity of lipophorin by covering the expanding hydrophobic surface resulting from diacylglycerol uptake. It plays a critical role in the transport of lipids during insect flight, and may also play a role in defense mechanisms and innate immunity. 158 -259817 cd13775 SPFH_eoslipins_u3 Uncharacterized prokaryotic subfamily of the stomatin-like proteins (slipins), a subgroup of the SPFH family (stomatin, prohibitin, flotillin, and HflK/C). This model summarizes a subgroup of the stomatin-like protein family (SLPs or slipins) that is found in bacteria and archaebacteria. The conserved domain common to the SPFH superfamily has also been referred to as the Band 7 domain. Individual proteins of the SPFH superfamily may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Bacterial and archaebacterial SLPs remain uncharacterized. 177 -260099 cd13777 Aar2_N N-terminal domain of Aar2, a U5 small nuclear ribonucleoprotein particle assembly factor. This family consists of the N-terminal domain of eukaryotic Aar2 and Aar2-like proteins. Aar2 is a U5 small nuclear ribonucleoprotein (snRNP) particle assembly factor and part of Prp8, which forms a large complex containing U5 snRNA, Snu114, and seven Sm proteins (B, D1, D2, D3, E, F and G). Upon import of the complex into the nucleus, Aar2 phosphorylation leads to its release from Prp8 and replacement by Brr2p, thus playing an important role in Brr2p regulation and possibly safeguarding against non-specific RNA binding to Prp8. Aar2p binds directly with the RNaseH-like domain in the C-terminal region of Prp8p. In yeast, Aar2 protein is involved in splicing pre-mRNA of the a1 cistron and other genes important for cell growth. 126 -260100 cd13778 Aar2_C C-terminal domain of Aar2, a U5 small nuclear ribonucleoprotein particle assembly factor. This family consists of the C-terminal domain of eukaryotic Aar2 and Aar2-like proteins. Aar2 is a U5 small nuclear ribonucleoprotein (snRNP) particle assembly factor and part of Prp8, which forms a large complex containing U5 snRNA, Snu114, and seven Sm proteins (B, D1, D2, D3, E, F and G). Upon import of the complex into the nucleus, Aar2 phosphorylation leads to its release from Prp8 and replacement by Brr2p, thus playing an important role in Brr2p regulation and possibly safeguarding against non-specific RNA binding to Prp8. Aar2p binds directly with the RNaseH-like domain in the C-terminal region of Prp8p. In yeast, Aar2 protein is involved in splicing pre-mRNA of the a1 cistron and other genes important for cell growth. 155 -260101 cd13783 SPACA1 Sperm acrosome membrane-associated protein 1. SPACA1 (aka SAMP32, due to its 32kDa M.W.) is localized to the acrosome of spermatozoa. The acrosome is an organelle transformed from the Golgi apparatus to form a cap over the anterior portion of the spermatozoa head, which contains the sperm nucleus. Mammalian acrosomes contain digestive enzymes that degrade the ovum outer membrane (zona pellucida) to allow fusion of the sperm and ovum nuclei via the acrosomal reaction. In mammals, the acrosome releases hyaluronidase and acrosin. Antibodies generated against recombinant SPACA1 have been shown to inhibit human sperm binding and membrane fusion in vitro vs. zona-free hamster ova. Male mice lacking SPACA1 are infertile, and exhibit globozoospermia-like misformed sperm heads. SPACA1 content has been reported to be diminished in a comparison of round-headed vs normal spermatozoa. 248 -260102 cd13784 SP_1775_like Uncharacterized protein conserved in Streptococci. Streptococcus pneumoniae SP_1775 and related proteins from other Streptococci; may form homooctamers that may bind hydrophobic ligands. 67 -260079 cd13785 CARD_BinCARD_like BinCARD (Bcl10-interacting protein with CARD). BinCARD was ubiquitously expressed CRAD (Caspase activation and recruitment domain) protein in all tissues. CARD proteins play important role in apoptosis by functioning as direct regulators of death-inducing caspases. BinCARD interacts with apoptosis inducer CARD protein Bcl10 through CARD. It inhibits Bcl10-mediated activation of NF-kappa B and to suppress Bcl10 phosphorylation. Caspase activation and recruitment domains (CARDs) are death domains (DDs) found associated with caspases. In general, DDs domains are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. 86 -259853 cd13831 HU histone-like DNA-binding protein HU. This subfamily includes HU and HU-like domains. HU is a conserved nucleoid-associated protein (NAP) which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. It is highly basic and contributes to chromosomal compaction and maintenance of negative supercoiling, thus often referred to as histone-like protein. HU can induce DNA bends, condense DNA in a fiber and also interact with single stranded DNA. It contains two homologous subunits, alpha and beta, typically forming homodimers (alpha-alpha and beta-beta), except in E. coli and other enterobacteria, which form heterodimers (alpha-beta). In E. coli, HU binds uniformly to the chromosome, with a preference for damaged or distorted DNA structures and can introduce negative supercoils into closed circular DNA in the presence of topoisomerase I. Anabaena HU (AHU) shows preference for A/T-rich region in the center of its DNA binding site. 86 -259854 cd13832 IHF Integration host factor (IHF) and similar proteins. This subfamily includes integration host factor (IHF) and IHF-like domains. IHF is a nucleoid-associated protein (NAP) that binds and sharply bends many DNA targets in a sequence specific manner. It is a heterodimeric protein composed of two highly homologous subunits IHFA (IHF-alpha) and IHFB (IHF-beta). It is known to act as a transcription factor at many gene regulatory regions in E. coli. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). IHF is also involved in formation as well as maintenance of bacterial biofilms since it is found in complex with extracellular DNA (eDNA) within the extracellular polymeric substances (EPS) matrix of many biofilms. This subfamily also includes the protein Hbb from tick-borne spirochete Borrelia burgdorferi, responsible for causing Lyme disease in humans. Hbb, a homodimer, shows DNA sequence preferences that are related, yet distinct from those of IHF. 85 -259855 cd13833 HU_IHF_like Uncharacterized proteins similar to DNA sequence specific (IHF) and non-specific (HU) domains. This subfamily consists of uncharacterized proteins similar to integration host factor (IHF) and HU domains, including hypothetical protein Bvu_2165 from Bacteroides vulgatus. IHF is a nucleoid-associated protein (NAP) that binds and sharply bends many DNA targets in a sequence specific manner. It is a heterodimeric protein composed of two highly homologous subunits IHFA (IHF-alpha) and IHFB (IHF-beta). It is known to act as a transcription factor at many gene regulatory regions in E. coli. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). IHF is also involved in formation as well as maintenance of bacterial biofilms since it is found in complex with extracellular DNA (eDNA) within the extracellular polymeric substances (EPS) matrix of many biofilms. 97 -259856 cd13834 HU_like DNA-binding proteins similar to HU domains. This subfamily consists of DNA-binding proteins similar to HU domains. HU is a conserved nucleoid-associated protein (NAP) which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. It is highly basic and contributes to chromosomal compaction and maintenance of negative supercoiling, thus often referred to as histone-like protein. HU can induce DNA bends, condense DNA in a fiber and also interact with single stranded DNA. It contains two homologous subunits, alpha and beta, typically forming homodimers (alpha-alpha and beta-beta), except in E. coli and other enterobacteria, which form heterodimers (alpha-beta). 94 -259857 cd13835 IHF_A Alpha subunit of integration host factor (IHFA). This subfamily consists of the alpha subunit of integration host factor (IHF) and IHF-like domains. IHF is a nucleoid-associated protein (NAP) that binds and sharply bends many DNA targets in a sequence specific manner. It is a heterodimeric protein composed of two highly homologous subunits IHFA (IHF-alpha) and IHFB (IHF-beta). It is known to act as a transcription factor at many gene regulatory regions in E. coli. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). IHF is also involved in formation as well as maintenance of bacterial biofilms since it is found in complex with extracellular DNA (eDNA) within the extracellular polymeric substances (EPS) matrix of many biofilms. 88 -259858 cd13836 IHF_B Beta subunit of integration host factor (IHFB). This subfamily consists of the beta subunit of integration host factor (IHF) and IHF-like domains. IHF is a nucleoid-associated protein (NAP) that binds and sharply bends many DNA targets in a sequence specific manner. It is a heterodimeric protein composed of two highly homologous subunits IHFA (IHF-alpha) and IHFB (IHF-beta). It is known to act as a transcription factor at many gene regulatory regions in E. coli. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). IHF is also involved in formation as well as maintenance of bacterial biofilms since it is found in complex with extracellular DNA (eDNA) within the extracellular polymeric substances (EPS) matrix of many biofilms. 89 -260013 cd13838 RNase_H_like_Prp8_IV Ribonuclease-like Prp8 domain IV core. This family contains Prp8 domain IV, which adopts a RNase H like fold within its core structure but with little sequence similarity. Prp8, a spliceosome protein, interacts directly with the splice sites and branch regions of precursor-mRNAs and spliceosomal RNAs associated with catalysis of the two steps of splicing. Catalysis of RNA cleavage by RNase H-like proteins involves a two-metal mechanism in which adjacently-bound divalent magnesium ions promote hydrolysis by activation of a water nucleophile and stabilization of the transition-state. However, the Prp8 domain IV contains only one of the canonical metal-binding sites and the coordinating side chains are spatially conserved with respect to Mg2+-coordinating residues within the RNase H fold. 251 -260103 cd13839 MEF2_binding Mycocyte enhancer factor-2 (MEF2) binding domain of the calcineurin-binding protein cabin-1. The myocyte enhancer factor-2 (MEF2) binding domain, as found in the calcineurin-binding protein cabin-1, adopts an amphipathic alpha-helical structure, which allows it to bind to a hydrophobic groove on the MEF2S domain, forming a triple-helical interaction. Interaction of this domain with MEF2 causes repression of transcription. Cabin-1 inhibits calcineurin-mediated signal transduction in T-cell receptor-mediated signalling pathways, by binding to the activated form of calcineurin. Cabin-1 acts as a co-repressor of MEF2, the mycocyte enhancer factor-2, which regulates transcription in a calcium-dependent manner and plays vital roles in T-cell development and function. 35 -260104 cd13840 SMBP_like Small metal-binding protein conserved in proteobacteria. This periplasmic protein appears capable of binding multiple equivalents of a variety of divalent and trivalent metals, including Cu(2+) and Fe(3+) but also Mn(2+), Ni(2+), Mg(2+), and Zn(2+). It has been suggested that SMBP is a metal scavenging protein that plays a role in cellular copper management in Nitrosomonas europaea. 89 -260105 cd13841 ABBA-PTs ABBA-type aromatic prenyltransferases (PTases). ABBA-type aromatic prenyltransferases (PTases) are a subgroup of prenyltransferases that are characterized by an unusual type of beta/alpha fold with antiparallel beta strands. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases. Generally, aromatic prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto aromatic substrates, forming C-C bonds between C-1 or C-3 of the isoprenoid substrate and one of the aromatic carbons of the acceptor substrate by an electrophilic alkylation, or Friedel-Crafts alkylation mechanism. 294 -259911 cd13842 CuRO_HCO_II_like Cupredoxin domain of Heme-copper oxidase subunit II. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 95 -259912 cd13843 Azurin_like Azurin and similar redox proteins. Azurin is a bacterial blue copper-binding protein. It serves as a redox partner to enzymes such as nitrite reductase or arsenite oxidase. The copper of Azurin is tetrahedrally coordinated by a cysteine, 2 histidines, and a methionine residue. The electron transfer reactions are carried out with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. Azurin can function as tumor suppressor; it forms a complex with p53 that triggers apoptosis in various human cancer cells. Auracyanins A and B are from photosynthetic bacteria. They are very similar blue copper proteins with 38% sequence identity and they are homologous to the bacterial redox protein Azurin. However, auracyanin A is expressed only when C. aurantiacus cells are grown in light, whereas auracyanin B is expressed under dark and in light. Thus, auracyanin A may function as a redox partner in photosynthesis, while auracyanin B may function in aerobic respiration. 124 -259913 cd13844 CuRO_1_BOD_CotA_like The first Cupredoxin domain of Bilirubin oxidase (BOD), the bacterial endospore coat component CotA, and similar proteins. Bilirubin oxidase (BOD) catalyzes the oxidation of bilirubin to biliverdin and the four-electron reduction of molecular oxygen to water. CotA protein is an abundant component of the outer coat layer in bacterial endospore coat and it is required for spore resistance against hydrogen peroxide and UV light. Also included in this subfamily are phenoxazinone synthase (PHS), which catalyzes the oxidative coupling of substituted o-aminophenols to produce phenoxazinones. PHS has been shown to participate in diverse biological functions such as spore pigmentation and biosynthesis of the antibiotic grixazone. These are Laccase-like multicopper oxidases (MCOs) that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 162 -259914 cd13845 CuRO_1_AAO The first cupredoxin domain of plant Ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. This multicopper oxidase (MCO) is found in cucurbitaceous plants such as pumpkin, cucumber, and melon. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to MCO family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 120 -259915 cd13846 CuRO_1_AAO_like_1 The first cupredoxin domain of plant Ascorbate oxidase homologs. This subfamily is composed of plant pollen multicopper oxidase homologous to ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. This multicopper oxidase (MCO) is found in cucurbitaceous plants such as pumpkin, cucumber, and melon. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to MCO family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. This subfamily does not harbor trinuclear copper binding histidines. 118 -259916 cd13847 CuRO_1_AAO_like_2 The first cupredoxin domain of Ascorbate oxidase homologs. This family includes fungal proteins with similarity to ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to multicopper oxidase (MCO) family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 117 -259917 cd13848 CuRO_1_CopA The first cupredoxin domain of CopA copper resistance protein family. CopA is a multicopper oxidase (MCO) related to laccase and L-ascorbate oxidase, both copper-containing enzymes. It is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CopA is a copper efflux P-type ATPase that is located in the inner cell membrane and is involved in copper resistance in bacteria. CopA mutant causes a loss of function including copper tolerance and oxidase activity, and copA transcription is inducible in the presence of copper. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 116 -259918 cd13849 CuRO_1_LCC_plant The first cupredoxin domain of plant laccases. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Plants usually express multiple laccase genes, but their precise physiological/biochemical roles remain largely unclear. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 117 -259919 cd13850 CuRO_1_Abr2_like The first cupredoxin domain of a group of fungal Laccases similar to Abr2 from Aspergillus fumigatus. Abr2 is involved in conidial pigment biosynthesis in Aspergillus fumigatus. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Like other related multicopper oxidases (MCOs), laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 117 -259920 cd13851 CuRO_1_Fet3p The first Cupredoxin domain of multicopper oxidase Fet3P. Fet3p catalyzes the ferroxidase reaction, which couples the oxidation of Fe(II) to Fe(III) and a four-electron reduction of molecular oxygen to water. Fet3p is a type I membrane protein with the amino-terminal oxidase domain in the exocellular space and the carboxyl terminus in the cytoplasm. The periplamic produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The four copper ions are inserted post-translationally and are essential for catalytic activity, thus linking copper and iron homeostasis. Like other related multicopper oxidases (MCOs), Fet3p is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 121 -259921 cd13852 CuRO_1_McoP_like The first cupredoxin domain of multicopper oxidase McoP and similar proteins. This family includes archaeal and bacterial multicopper oxidases (MCOs), represented by the extremely thermostable McoP from the hyperthermophilic archaeon Pyrobaculum aerophilum. McoP is an efficient metallo-oxidase that catalyzes the oxidation of cuprous and ferrous ions. It is noteworthy that McoP has three-fold higher catalytic efficiency when using nitrous oxide as the electron acceptor than when using dioxygen, the typical oxidizing substrate of MCOs. McoP may function as a novel archaeal nitrous oxide reductase that is probably involved in the denitrification pathway in archaea. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 114 -259922 cd13853 CuRO_1_Tth-MCO_like The first cupredoxin domain of the bacterial laccases similar to Tth-MCO from Thermus Thermophilus. The subfamily of bacterial laccases includes Tth-MCO and similar proteins. Tth-MCO is a hyperthermophilic multicopper oxidase (MCO) from thermus thermophilus HB27. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 139 -259923 cd13854 CuRO_1_MaLCC_like The first cupredoxin domain of the fungal laccases similar to Ma-LCC from Melanocarpus albomyces. The subfamily of fungal laccases includes Ma-LCC and similar proteins. Ma-LCC is a multicopper oxidase (MCO) from Melanocarpus albomyces. Its crystal structure contains all four coppers at the mono- and trinuclear copper centers. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 122 -259924 cd13855 CuRO_1_McoC_like The first cupredoxin domain of a multicopper oxidase McoC and similar proteins. This family includes bacteria multicopper oxidases (MCOs) represented by McoC from pathogenic bacterium Campylobacter jejuni. McoC is a periplasmic multicopper oxidase, which has been characterized to be associated with copper homeostasis. McoC may also function to protect against oxidative stress as it may convert metallic ions into their less toxic form. MCOs are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. They are capable of oxidizing a vast range of substrates, varying from aromatic compunds to inorganic compounds such as metals. Most MCOs have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 121 -259925 cd13856 CuRO_1_Tv-LCC_like The first cupredoxin domain of fungal laccases similar to Tv-LCC from Trametes versicolor. This subfamily of fungal laccases includes Tv-LCC from Trametes versicolor and Rs-LCC2 from plant pathogenic fungus Rhizoctonia solani. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 125 -259926 cd13857 CuRO_1_Diphenol_Ox The first cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 119 -259927 cd13858 CuRO_1_tcLCC2_insect_like The first cupredoxin domain of insect laccases similar to laccase 2 in Tribolium castaneum. This multicopper oxidase (MCO) family includes the majority of insect laccases. One member of the family is laccase 2 from Tribolium castaneum. Laccase 2 is required for beetle cuticle tanning. Laccase (polyphenol oxidase EC 1.10.3.2) is a blue multi-copper enzyme that catalyzes the oxidation of a variety of organic substrates coupled to the reduction of molecular oxygen to water. It displays broad substrate specificity, catalyzing the oxidation of a wide variety of aromatic - notably phenolic and inorganic substances. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi, plants and insects. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 105 -259928 cd13859 CuRO_D1_2dMcoN_like The first cupredoxin domain of bacterial two domain multicopper oxidase McoN and similar proteins. This family includes bacterial two domain multicopper oxidases (2dMCOs) represented by the McoN from Nitrosomonas europaea. McoN is a trimeric type C blue copper oxidase. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The 2dMCO is proposed to be a key intermediate in the evolution of three domain MCOs. Its biological function has not been characterized. Multicopper oxidases couple oxidation of substrates with reduction of dioxygen to water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. 122 -259929 cd13860 CuRO_1_2dMco_1 The first cupredoxin domain of bacteria two domain multicopper oxidase. This subfamily includes bacterial two domain multicopper oxidases (2dMCOs) with similarity to McoN from Nitrosomonas europaea. 2dMCO is a trimeric type C blue copper oxidase. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The 2dMCO is proposed to be a key intermediate in the evolution of three domain MCOs. Multicopper oxidases couple oxidation of substrates with reduction of dioxygen to water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. 119 -259930 cd13861 CuRO_1_CumA_like The first cupredoxin domain of CumA like multicopper oxidase. This multicopper oxidase (MCO) subfamily includes CumA from Pseudomonas putida, which is involved in the oxidation of Mn(II). However, the cumA gene has been identified in a variety of bacterial species, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. Thus, the proteins in this family may catalyze the oxidation of other substrates. MCO catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water and has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 119 -259931 cd13862 CuRO_1_MCO_like_1 The first cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 123 -259932 cd13864 CuRO_1_MCO_like_2 The second cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 139 -259933 cd13865 CuRO_1_LCC_like_3 The second cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 115 -259934 cd13866 CuRO_2_BOD The second cupredoxin domain of Bilirubin oxidase (BOD). Bilirubin oxidase (BOD) catalyzes the oxidation of bilirubin to biliverdin and the four-electron reduction of molecular oxygen to water. It is used in diagnosing jaundice through the determination of bilirubin in serum. BOD is a member of the multicopper oxidase (MCO) family that also includes laccase, ascorbate oxidase and ceruloplasmin. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 152 -259935 cd13867 CuRO_2_CueO_FtsP The second Cupredoxin domain of the multicopper oxidase CueO, the cell division protein FtsP, and similar proteins. CueO is a multicopper oxidase (MCO) that is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CueO is a periplasmic multicopper oxidase that is stimulated by exogenous copper(II). FtsP (also named SufI) is a component of the cell division apparatus. It is involved in protecting or stabilizing the assembly of divisomes under stress conditions. FtsP belongs to the multicopper oxidase superfamily but lacks metal cofactors. The protein is localized at septal rings and may serve as a scaffolding function. Members of this subfamily contain three cupredoxin domains and this model represents the second domain. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 146 -259936 cd13868 CuRO_2_CotA_like The second Cupredoxin domain of bacterial laccases including CotA, a bacterial endospore coat component. CotA protein is an abundant component of the outer coat layer in bacterial endospore coat and it is required for spore resistance against hydrogen peroxide and UV light. Laccase is composed of three cupredoxin-like domains and includes one mononuclear and one trinuclear copper center. It is a member of the multicopper oxidase (MCO) family, which couples the oxidation of a substrate with a four-electron reduction of molecular oxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 155 -259937 cd13869 CuRO_2_PHS The second Cupredoxin domain of phenoxazinone synthase (PHS). Phenoxazinone synthase (PHS, 2-aminophenol:oxygen oxidoreductase) catalyzes the oxidative coupling of substituted o-aminophenols to produce phenoxazinones. PHS participates in diverse biological functions such as spore pigmentation and biosynthesis of the antibiotic grixazone. It is a member of the multicopper oxidase (MCO) family, which couples the oxidation of a substrate with a four-electron reduction of molecular oxygen to water. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 166 -259938 cd13870 CuRO_2_CopA_like_1 The second cupredoxin domain of CopA copper resistance protein like family. The members of this family are copper resistance protein (CopA) homologs. CopA is multicopper oxidase (MCO) related to laccase and L-ascorbate oxidase, both copper-containing enzymes. CopA is involved in copper resistance in bacteria. CopA mutant causes a loss of function, including copper tolerance and oxidase activity, and copA transcription is inducible in the presence of copper. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 117 -259939 cd13871 CuRO_2_AAO The second cupredoxin domain of plant Ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. This multicopper oxidase (MCO) is found in cucurbitaceous plants such as pumpkin, cucumber, and melon. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. MCOs couple oxidation of substrates with reduction of dioxygen to water. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 166 -259940 cd13872 CuRO_2_AAO_like_1 The second cupredoxin domain of plant pollen multicopper oxidase homologous to ascorbate oxidase. The proteins in this subfamily are expressed in plant pollen. They share homology to ascorbate oxidase and other members of the blue copper oxidase family. The expression of the protein is detected during germination and pollen tube growth. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. It is a member of the multicopper oxidase (MCO) family that couples oxidation of substrates with reduction of dioxygen to water. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 141 -259941 cd13873 CuRO_2_AAO_like_2 The second cupredoxin domain of plant Ascorbate oxidase homologs. This family includes plant laccases similar to ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to multicopper oxidase (MCO) family which couples oxidation of substrates with reduction of dioxygen to water. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 161 -259942 cd13874 CuRO_2_CopA The second cupredoxin domain of CopA copper resistance protein family. CopA is a multicopper oxidase (MCO) related to laccase and L-ascorbate oxidase, both copper-containing enzymes. It is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CopA is a copper efflux P-type ATPase that is located in the inner cell membrane and is is involved in copper resistance in bacteria. CopA mutant causes a loss of function including copper tolerance and oxidase activity and copA transcription is inducible in the presence of copper. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 112 -259943 cd13875 CuRO_2_LCC_plant The second cupredoxin domain of the plant laccases. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Plants usually express multiple laccase genes, but their precise physiological/biochemical roles remain largely unclear. Like other related multicopper oxidases (MCOs), laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 148 -259944 cd13876 CuRO_2_Abr2_like The second cupredoxin domain of a group of fungal Laccases similar to Abr2 from Aspergillus fumigatus. Abr2 is involved in conidial pigment biosynthesis in Aspergillus fumigatus. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Like other related multicopper oxidases (MCOs), laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 138 -259945 cd13877 CuRO_2_Fet3p_like The second Cupredoxin domain of multicopper oxidase Fet3P. Fet3p catalyzes the ferroxidase reaction, which couples the oxidation of Fe(II) to Fe(III) with the four-electron reduction of molecular oxygen to water. Fet3p is a type I membrane protein with the amino-terminal oxidase domain in the extracellular space and the carboxyl terminus in the cytoplasm. The periplasmic produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The four copper ions are inserted post-translationally and are essential for catalytic activity, thus linking copper and iron homeostasis. Like other related multicopper oxidases (MCOs), Fet3p is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 148 -259946 cd13879 CuRO_2_McoP_like The second cupredoxin domain of multicopper oxidase McoP and similar proteins. This family includes archaeal and bacterial multicopper oxidases (MCOs), represented by the extremely thermostable McoP from the hyperthermophilic archaeon Pyrobaculum aerophilum. McoP is an efficient metallo-oxidase that catalyzes the oxidation of cuprous and ferrous ions. It is noteworthy that McoP has three-fold higher catalytic efficiency when using nitrous oxide as electron acceptor than when using dioxygen, the typical oxidizing substrate of multicopper oxidases. McoP may function as a novel archaeal nitrous oxide reductase that is probably involved in the denitrification pathway in archaea. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 162 -259947 cd13880 CuRO_2_MaLCC_like The second cupredoxin domain of the fungal laccases similar to Ma-LCC from Melanocarpus albomyces. The subfamily of fungal laccases includes Ma-LCC and similar proteins. Ma-LCC is a multicopper oxidase (MCO) from Melanocarpus albomyces. Its crystal structure contains all four coppers at the mono- and trinuclear copper centers. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 167 -259948 cd13881 CuRO_2_McoC_like The second cupredoxin domain of a multicopper oxidase McoC and similar proteins. This family includes bacterial multicopper oxidases (MCOs) represented by McoC from the pathogenic bacterium Campylobacter jejuni. McoC is a periplasmic MCO, which has been characterized to be associated with copper homeostasis. McoC may also function to protect against oxidative stress as it may convert metallic ions into their less toxic form. MCOs are multi-domain enzymes that are able to couple oxidation of substrates with the reduction of dioxygen to water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. They are composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 142 -259949 cd13882 CuRO_2_Tv-LCC_like The second cupredoxin domain of the fungal laccases similar to Tv-LCC from Trametes versicolor. This subfamily of fungal laccases includes Tv-LCC from Trametes versicolor and Rs-LCC2 from plant pathogenic fungus Rhizoctonia solani. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Laccase is a multicopper oxidase (MCO) composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 159 -259950 cd13883 CuRO_2_Diphenol_Ox The second cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Laccase is a multicopper oxidase (MCO) composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 164 -259951 cd13884 CuRO_2_tcLCC_insect_like The second cupredoxin domain of the insect laccases similar to laccase 2 in Tribolium castaneum. This multicopper oxidase (MCO) subfamily includes the majority of insect laccases. One member is laccase 2 from Tribolium castaneum, which is required for beetle cuticle tanning. Laccase (polyphenol oxidase EC 1.10.3.2) is a blue multi-copper enzyme that catalyzes the oxidation of a variety of organic substrates coupled to the reduction of molecular oxygen to water. It displays broad substrate specificity, catalyzing the oxidation of a wide variety of aromatic - notably phenolic and inorganic substances. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi, plants and insects. Laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 150 -259952 cd13885 CuRO_2_CumA_like The second cupredoxin domain of CumA like multicopper oxidase. This multicopper oxidase (MCO) subfamily includes CumA from Pseudomonas putida. CumA is involved in the oxidation of Mn(II) in Pseudomonas putida; however, the cumA gene has been identified in a variety of bacterial species, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. Thus, the proteins in this family may catalyze the oxidation of other substrates. MCOs catalyze the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water and has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. The MCOs in this subfamily are composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 132 -259953 cd13886 CuRO_2_MCO_like_1 The second cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidise their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This family of MCOs is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 163 -259954 cd13887 CuRO_2_MCO_like_2 The second cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidise their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This family of MCOs is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 114 -259955 cd13888 CuRO_3_McoP_like The third cupredoxin domain of multicopper oxidase McoP and similar proteins. This subfamily includes archaeal and bacterial multicopper oxidases (MCOs), represented by the extremely thermostable McoP from the hyperthermophilic archaeon Pyrobaculum aerophilum. McoP is an efficient metallo-oxidase that catalyzes the oxidation of cuprous and ferrous ions. It is noteworthy that McoP has three-fold higher catalytic efficiency when using nitrous oxide as electron acceptor than when using dioxygen, the typical oxidizing substrate of multicopper oxidases. McoP may function as a novel archaeal nitrous oxide reductase that is probably involved in the denitrification pathway in archaea. Members of this subfamily contain three cupredoxin domain repeats. The copper ions are bound in several sites; Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 139 -259956 cd13889 CuRO_3_BOD The third cupredoxin domain of Bilirubin oxidase (BOD). Bilirubin oxidase (BOD) catalyzes the oxidation of bilirubin to biliverdin and the four-electron reduction of molecular oxygen to water. It is used in diagnosing jaundice through the determination of bilirubin in serum. BOD is a member of the multicopper oxidase (MCO) family that also includes laccase, ascorbate oxidase and ceruloplasmin. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 124 -259957 cd13890 CuRO_3_CueO_FtsP The third Cupredoxin domain of the multicopper oxidase CueO, the cell division protein FtsP, and similar proteins. CueO is a multicopper oxidase (MCO) that is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CueO is a periplasmic multicopper oxidase that is stimulated by exogenous copper(II). FtsP (also named SufI) is a component of the cell division apparatus. It is involved in protecting or stabilizing the assembly of divisomes under stress conditions. FtsP belongs to the multicopper oxidase superfamily but lacks metal cofactors. The protein is localized at septal rings and may serve as a scaffolding function. Members of this subfamily contain three cupredoxin domains and this model represents the first domain. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. FtsP does not contain any copper binding sites. 124 -259958 cd13891 CuRO_3_CotA_like The third Cupredoxin domain of bacterial laccases including CotA, a bacterial endospore coat component. CotA protein is an abundant component of the outer coat layer in bacterial endospore coat and is required for spore resistance against hydrogen peroxide and UV light. CotA belongs to the laccase-like multicopper oxidase (MCO) family, which are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 143 -259959 cd13892 CuRO_3_PHS The third Cupredoxin domain of phenoxazinone synthase (PHS). Phenoxazinone synthase (PHS, 2-aminophenol:oxygen oxidoreductase) catalyzes the oxidative coupling of substituted o-aminophenols to produce phenoxazinones. PHS has been shown to participate in diverse biological functions such as spore pigmentation and biosynthesis of the antibiotic grixazone. PHS is a member of the laccase-like multicopper oxidase (MCO) family, which are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 184 -259960 cd13893 CuRO_3_AAO The third cupredoxin domain of plant Ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. This multicopper oxidase (MCO) is found in cucurbitaceous plants such as pumpkin, cucumber, and melon. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to MCO family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 155 -259961 cd13894 CuRO_3_AAO_like_1 The third cupredoxin domain of plant Ascorbate oxidase homologs. This subfamily is composed of plant pollen multicopper oxidase homologous to ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. This multicopper oxidase (MCO) is found in cucurbitaceous plants such as pumpkin, cucumber, and melon. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to MCO family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. This subfamily does not harbor T1 copper or trinuclear copper binding sites. 123 -259962 cd13895 CuRO_3_AAO_like_2 The third cupredoxin domain of Ascorbate oxidase homologs. This family includes fungal proteins with similarity to ascorbate oxidase. Ascorbate oxidase catalyzes the oxidation of ascorbic acid to dehydroascorbic acid. It can detect levels of ascorbic acid and eliminate it. The biological function of ascorbate oxidase is still not clear. Ascorbate oxidase belongs to multicopper oxidase (MCO) family which couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 188 -259963 cd13896 CuRO_3_CopA The third cupredoxin domain of CopA copper resistance protein family. CopA is a multicopper oxidase (MCO) related to laccase and L-ascorbate oxidase, both copper-containing enzymes. It is part of the copper-regulatory cue operon, which employs a cytosolic metalloregulatory protein CueR that induces expression of CopA and CueO under copper stress conditions. CopA is a copper efflux P-type ATPase that is located in the inner cell membrane and is is involved in copper resistance in bacteria. CopA mutant causes a loss of function including copper tolerance and oxidase activity and copA transcription is inducible in the presence of copper. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 115 -259964 cd13897 CuRO_3_LCC_plant The third cupredoxin domain of the plant laccases. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Plants usually express multiple laccase genes, but their precise physiological/biochemical roles remain largely unclear. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 139 -259965 cd13898 CuRO_3_Abr2_like The third cupredoxin domain of a group of fungal Laccases similar to Abr2 from Aspergillus fumigatus. Abr2 is involved in conidial pigment biosynthesis in Aspergillus fumigatus. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Like other related multicopper oxidases (MCOs), laccase is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 164 -259966 cd13899 CuRO_3_Fet3p The third Cupredoxin domain of multicopper oxidase Fet3p. Fet3p catalyzes the ferroxidase reaction, which couples the oxidation of Fe(II) to Fe(III) with the four-electron reduction of molecular oxygen to water. Fet3p is a type I membrane protein with the amino-terminal oxidase domain in the extracellular space and the carboxyl terminus in the cytoplasm. The periplasmic produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The four copper ions are inserted post-translationally and are essential for catalytic activity, thus linking copper and iron homeostasis. Like other related multicopper oxidases (MCOs), Fet3p is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 160 -259967 cd13900 CuRO_3_Tth-MCO_like The third cupredoxin domain of the bacterial laccases similar to Tth-MCO from Thermus Thermophilus. The subfamily of bacterial laccases includes Tth-MCO and similar proteins. Tth-MCO is a hyperthermophilic multicopper oxidase (MCO) from thermus thermophilus HB27. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 123 -259968 cd13901 CuRO_3_MaLCC_like The third cupredoxin domain of the fungal laccases similar to Ma-LCC from Melanocarpus albomyces. The subfamily of fungal laccases includes Ma-LCC and similar proteins. Ma-LCC is a multicopper oxidase (MCO) from Melanocarpus albomyces. Its crystal structure contains all four coppers at the mono- and trinuclear copper centers. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 157 -259969 cd13902 CuRO_3_McoC_like The third cupredoxin domain of a multicopper oxidase McoC and similar proteins. This family includes bacteria multicopper oxidases (MCOs) represented by McoC from pathogenic bacterium Campylobacter jejuni. McoC is a periplasmic multicopper oxidase, which has been characterized to be associated with copper homeostasis. McoC may also function to protect against oxidative stress as it may convert metallic ions into their less toxic form. MCOs are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. They are capable of oxidizing a vast range of substrates, varying from aromatic compunds to inorganic compounds such as metals. Most MCOs have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 125 -259970 cd13903 CuRO_3_Tv-LCC_like The third cupredoxin domain of the fungal laccases similar to Tv-LCC from Trametes Versicolor. This subfamily of fungal laccases includes Tv-LCC from Trametes versicolor and Rs-LCC2 from plant pathogenic fungus Rhizoctonia solani. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 147 -259971 cd13904 CuRO_3_Diphenol_Ox The third cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 158 -259972 cd13905 CuRO_3_tcLLC2_insect_like The third cupredoxin domain of the insect laccases similar to laccase 2 in Tribolium castaneum. This multicopper oxidase (MCO) family includes the majority of insect laccases. One member of the family is laccase 2 from Tribolium castaneum. Laccase 2 is required for beetle cuticle tanning. Laccase (polyphenol oxidase EC 1.10.3.2) is a blue multi-copper enzyme that catalyzes the oxidation of a variety of organic substrates coupled to the reduction of molecular oxygen to water. It displays broad substrate specificity, catalyzing the oxidation of a wide variety of aromatic - notably phenolic and inorganic substances. Laccase has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi, plants and insects. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 174 -259973 cd13906 CuRO_3_CumA_like The third cupredoxin domain of CumA like multicopper oxidase. This multicopper oxidase (MCO) subfamily includes CumA from Pseudomonas putida, which is involved in the oxidation of Mn(II). However, the cumA gene has been identified in a variety of bacterial species, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. Thus, the proteins in this family may catalyze the oxidation of other substrates. MCO catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water and has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 138 -259974 cd13907 CuRO_3_MCO_like_1 The third cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 154 -259975 cd13908 CuRO_3_MCO_like_2 The third cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 122 -259976 cd13909 CuRO_3_MCO_like_3 The third cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 137 -259977 cd13910 CuRO_3_MCO_like_4 The third cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 166 -259978 cd13911 CuRO_3_MCO_like_5 The third cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidize their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This subfamily of MCOs is composed of three cupredoxin domains. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3. 119 -259979 cd13912 CcO_II_C C-terminal domain of Cytochrome c Oxidase subunit II. Cytochrome c Oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Only subunits I and II are essential for function. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunit II contains a copper-copper binuclear site called CuA, which is believed to be involved in electron transfer from cytochrome c to the binuclear center (active site) in subunit I. 130 -259980 cd13913 ba3_CcO_II_C C-terminal cupredoxin domain of Ba3-like heme-copper oxidase subunit II. The ba3 family of heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and some archaea, which catalyze the reduction of O2 and simultaneously pump protons across the membrane. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. The ba3 family contains oxidases that lack the conserved residues that form the D- and K-pathways in CcO and ubiquinol oxidase. Instead, they contain a potential alternative K-pathway. Additional proton channels have been proposed for this family of oxidases but none have been identified definitively. 99 -259981 cd13914 CuRO_HCO_II_like_3 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 108 -259982 cd13915 CuRO_HCO_II_like_2 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 98 -259983 cd13916 CuRO_HCO_II_like_1 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 93 -259984 cd13917 CuRO_HCO_II_like_4 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 88 -259985 cd13918 CuRO_HCO_II_like_6 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 139 -259986 cd13919 CuRO_HCO_II_like_5 Uncharacterized subfamily with similarity to Heme-copper oxidase subunit II cupredoxin domain. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. The superfamily is diverse in terms of electron donors, subunit composition, and heme types. The number of subunits varies from two to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian cytochrome c oxidase (CcO) are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. It has been proposed that archaea acquired heme-copper oxidases through gene transfer from gram-positive bacteria. Subunit II is found in CcO, ubiquinol oxidase, and the ba3-like oxidases, while the cbb3 oxidases contain alternative additional subunits. Additionally, nitrous oxide reductase contains the globular portion of subunit II as a domain within its structure. In some families, subunit II contains a copper-copper binuclear center that is involved in the transfer of electrons from the substrate to the binuclear center (active site) in subunit I. 107 -259987 cd13920 Stellacyanin Stellacyanin is a subclass of phytocyanins, a plant type I copper protein. Stellacyanin is a subclass of the phytocyanins, a ubiquitous family of plant cupredoxins. Stellacyanin is involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. The copper is tetrahedrally coordinated by a cysteine, 2 histidines, and a glutamine residue. The glutamine residue substitutes for a methione ligand typically found in other blue copper proteins. The exact function of stellacyanin is unknown. However, stellacyanin appears to be associated with the plant cell wall; it may be involved in oxidative reactions to build polymeric material making up the cell wall. 101 -259988 cd13921 Amicyanin Amicyanin is a type I blue copper protein that plays an essential role in electron transfer. In Paracoccus denitrificans bacteria, amicyanin acts as an intermediary of a three-member redox complex along with methylamine dehydrogenase (MADH) and cytochrome c-551i. The electron is transferred from the active site of MADH via the amicyanin copper ion to the cytochrome heme iron. The electron transfer from MADH to cytochrome c-551i does not involve a ternary complex but occurs via a ping-pong mechanism in which amicyanin uses the same interface for the reactions with MADH and cytochrome c-551i. 81 -259989 cd13922 Azurin Azurin is a redox partner for enzymes such as nitrite reductase or arsenite oxidase. Azurin is a bacterial blue copper-binding protein. It serves as a redox partner to enzymes such as nitrite reductase or arsenite oxidase. The copper of Azurin is tetrahedrally coordinated by a cysteine, 2 histidines, and a methionine residue. The electron transfer reactions are carried out with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. Azurin can function as a tumor suppressor; it forms a complex with p53 that triggers apoptosis in various human cancer cells. 125 -340372 cd13925 RPF Core lysozyme-like domain of resuscitation-promoting factor proteins. Resuscitation-promoting factor (RPF) proteins, found in various (G+C)-rich Gram-positive bacteria, act to reactivate cultures from stationary phase. This protein shares elements of the structural core of lysozyme and related proteins. Furthermore, it shares a conserved active site glutamate which is required for activity, and has a polysaccharide binding cleft that corresponds to the peptidoglycan binding cleft of lysozyme. Muralytic activity of Rpf in Micrococcus luteus correlates with resuscitation, supporting a mechanism dependent on cleavage of peptidoglycan by RPF. 72 -340373 cd13926 N-acetylmuramidase_GH108 N-acetylmuramidase domain of the glycosyl hydrolase 108 family. This domain acts as a lysozyme (N-acetylmuramidase), EC:3.2.1.17. It contains a conserved EGGY motif near the N-terminus, the glutamic acid within this motif is essential for catalytic activity. In bacteria, it may activate the secretion of large proteins via the breaking and rearrangement of the peptidoglycan layer during secretion. It is frequently found at the N-terminus of proteins containing a peptidoglycan binding domain. 87 -260106 cd13929 PT-DMATS_CymD aromatic prenyltransferases (PTases) of the DMATS/CymD familiy. Members of the DMATS/CymD family of ABBA prenyltransferases prenylate indole, tyrosine, and xanthone derivatives. This family of fungal proteins includes cyclic dipeptide N-prenyltransferase (CdpNPT), Brevianamide F prenyltransferase (ftmPT1), fumigaclavine C synthase (FgaPT1), dimethylallyltryptophan synthase (DMATS) and related proteins. CdpNPT accepts a variety of tryptophan-containing cyclic dipeptides, including L-tryptophan itself, and prenylates these substrates inverse at the N-1 position of the indole group. FtmPT1 catalyzes the prenylation of brevianamide F in the biosynthesis of fumitremorgin-type alkaloids. FgaPT1 catalyses the prenylation of fumigaclavine A. Dimethylallyltryptophan synthases (DMATS) catalyzes the prenylation of L-tryptophan at C-4 of the indole ring during the biosynthesis of ergot alkaloids. 392 -260107 cd13930 PT-Tnase Aromatic Prenyltransferases (PTases) associated with tryptophanase. This group of bacterial and fungal proteins shows homology to the DMATS/CymD family of ABBA prenyltransferases, which prenylates indole, tyrosine, and xanthone derivatives. Some of the members, mostly fungal proteins, are associated with tryptophanase-like domains (Tnase) which catalyzes the degradation of L-tryptophan to yield indole, pyruvate and ammonia, or the degradation of L-tyrosine to yield phenol, pyruvate and ammonia. This suggest that these otherwise uncharacterized proteins may exhibit multiple functions. 348 -260108 cd13931 PT-CloQ_NphB Aromatic Prenyltransferases (PTases) of the CloQ/NphB family. Members of the CloQ/NphB family of ABBA prenyltransferases catalyze the prenylation of phenols, naphthalenes, and phenazines. This family of fungal and bacterial proteins includes dihydrophenazine-1-carboxylate dimethylallyltransferase PpzP, the aromatic prenyltransferase from the clorobiocin biosynthetic pathway CloQ, and related proteins. CloQ catalyzes the attachment of a dimethylallyl moiety to 4-hydroxyphenylpyruvate, part of the biosynthetic pathway of the Streptomyces roseochromogenes antibiotic clorobiocin. PpzP, as well as EpzP, are important for the biosynthesis of endophenazines; they catalyze the prenylation of 5,10-dihydrophenazine-1-carboxylic acid (dhPCA). Streptomyces NphB catalyzes the addition of a 10-carbon geranyl group to small organic aromatic substrates and is involved in the biosynthesis of the antioxidant naphterpin. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto aromatic substrates in biosynthetic pathways of microbial secondary metabolites. 274 -259826 cd13932 HN_RTEL1 harmonin_N_like domain of regulator of telomere elongation helicase 1 (also known as RTEL). Mouse Rtel is an essential protein required for the maintenance of both telomeric and genomic stability. RTEL1 appears to maintain genome stability by suppressing homologous recombination (HR). In vitro, purified human and insect RTEL1 have been shown to promote the disassembly of D loop recombination intermediates, in a reaction dependent upon ATP hydrolysis. Human RTEL1 is implicated in the etiology of Dyskeratosis congenital (DC, is an inherited bone marrow failure and cancer predisposition syndrome). Point mutations in its helicase domains, and truncations which result in loss of its C-terminus have been discovered in DC families. RTEL1 is also a candidate gene influencing glioma susceptibility. The C-terminal domain of RTEL1, represented here, appears similar to the N-terminal domain of the scaffolding protein harmonin. 99 -259827 cd13933 harmonin_N_like_u1 domain similar to the N-terminal protein-binding module of harmonin; uncharacterized subgroup. This domain is a putative protein-binding module based on its sequence similarity to the N-terminal domain of harmonin. Harmonin (not belonging to this group) is a postsynaptic density-95/discs-large/ZO-1 (PDZ) domain-containing scaffold protein, which organizes the Usher protein network of the inner ear and the retina. This domain is also related to domains found in several other scaffold proteins which organize supramolecular complexes. 78 -260014 cd13934 RNase_H_Dikarya_like Fungal (dikarya) Ribonuclease H, uncharacterized. This family contains dikarya RNase H, many of which are uncharacterized. Ribonuclease H (RNase H) enzymes are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. It is widely present in various organisms, including bacteria, archaea and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site residues and have the same catalytic mechanism and functions in cells. RNase H is involved in DNA replication, repair and transcription. An important RNase H function is to remove Okazaki fragments during DNA replication. 153 -260015 cd13935 RNase_H_bacteria_like RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. This family includes bacterial ribonuclease H (RNase H) enzymes. RNases are divided into two major families, Type 1 and Type 2, based on amino acid sequence similarities and biochemical properties. RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner in the presence of divalent cations. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. Most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site residues and have the same catalytic mechanism and functions in cells. RNase H is involved in DNA replication, repair and transcription. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. 133 -260110 cd13936 PANDER_like Domains similar to the Pancreatic-derived factor. FAM3B or PANDER (PANcreatic DERived factor) has been identifed as a regulator of glucose homeostasis and beta cell function. The protein is expressed in the endocrine pancreas and co-secreted with insulin in response to glucose, particularly under conditions of insulin resistance. The protein had initially been predicted to be a member of the four-helical cytokine family, hence the FAM3B designation. This wider family contains FAM3B and FAM4C, N-terminal domains of N-acetylglucosaminyltransferases, and domains in poorly characterized proteins that have been associated with deafness and the progression of cancer. 149 -260111 cd13937 PANDER_GnT-1_2_like PANDER-like domain of N-acetylglucosaminyltransferases. O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 participates in O-mannosyl glycosylation and may be responsible for creating GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moieties on alpha dystroglycan and other O-mannosylated proteins. The domain characterized by this model lies N-terminal to the catalytic domain. Its function has not been determined. 148 -260112 cd13938 PANDER_like_TMEM2 PANDER-like domain of the transmembrane protein TMEM2. TMEM2 has been characterized as a transmembrane protein that maps to the DFNB7-DFNB11 deafness locus on human chromosome 9. It contains a domain similar to the Pancreatic-derived factor PANDER, C-terminal to a glycine rich G8-domain. The function of the PANDER-like domain in TMEM2 has not been characterized. 168 -260113 cd13939 PANDER_FAM3B Pancreatic derived factor. FAM3B or PANDER (PANcreatic DERived factor) has been identifed as a regulator of glucose homeostasis and beta cell function. The protein is expressed in the endocrine pancreas and co-secreted with insulin in response to glucose, particularly under conditions of insulin resistance. The protein had initially been predicted to be a member of the four-helical cytokine family, hence the FAM3B designation. PANDER induces apoptosis of insulin-secreting beta-cells when over-expressed in vitro. It has been associated with the progression of type 2 diabetes by downregulating beta cell function as well as insulin sensitivity in the liver. 175 -260114 cd13940 ILEI_FAM3C Interleukin-like EMT inducer. The secreted factor FAM3C or ILEI (InterLeukin-like Emt Inducer) has been identifed as a protein involved in the epithelial-mesenchymal transition (EMT) and in processes associated with metastasis formation and the progression of cancer. The protein had initially been predicted to be a member of the four-helical cytokine family, hence the FAM3C designation. ILEI has been found to be widely expressed, and to be involved in retinal development. 171 -260115 cd13941 PANDER_like_KIAA1199 PANDER-like domain of KIAA1199 and similar proteins. KIAA1199 has been characterized as a protein associated with poor survival when upregulated in human cancer, as well as with nonsyndromic loss of hearing when mutated. It contains a C-terminal domain similar to the Pancreatic-derived factor PANDER; the function of this PANDER-like domain has not been characterized. 157 -260116 cd13944 lytB_ispH 4-hydroxy-3-methylbut-2-enyl diphosphate reductase. The 4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) reductase (called lytB or ispH) is the terminal enzyme of the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, one of the two metabolic routes for isoprenoid biosynthesis. The MEP pathway is essential in many eubacteria, plants, and the malaria parasite. LytB converts HMBPP into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). 275 -260117 cd13945 Chs5_N N-terminal dimerization domain of Chs5 and similar proteins. Chs5/6 is a multi-protein complex conserved in fungi that interacts with chitin synthase III (Chs3p) and is involved in its transport to the cell surface from the trans-Golgi network, functioning as an exomer cargo adapter. Chs5p appears to form a complex with Chs6p and its paralogs Bch1p, Bud7p, and Bch2p. In this complex, Chs5p may act as a central scaffold. The N-terminal domain characterized by this model forms a homodimer and has been shown to interact with Chs6p and Bch1p. It may function as a flexible hinge domain that allows the exomer to interact with both proteins and the Golgi membrane as the latter undergoes changes in curvature during the formation of transport vesicles. The dimerization domain sits N-terminally to a conserved FBE (FN3-BRCT) unit, which binds Arf1 an is involved in the recruitment of the exomer to the membrane. 73 -260118 cd13946 LysW Lysine biosynthesis protein LysW. LysW functions as a carrier protein in the biosynthesis pathway of lysine. The C-terminal glutamate sidechain of LysW attaches to the amino group of alpha-aminoadipate (AAA); this peptide bond formation is catalyzed by the ligase LysX. AAA remains associated with LysW throughout its biosynthetic conversion to lysine. LysW also acts to protect the amino group of glutamate in arginine biosynthesis. 54 -320087 cd13949 7tm_V1R_pheromone vomeronasal organ pheromone receptor type-1 family, member of the seven-transmembrane G protein-coupled receptor superfamily. This family represents vomeronasal type-1 receptors (V1Rs) that are specifically expressed in the vomeronasal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes and monkeys. The VNO detects pheromones, chemicals released from animals that can influence social and reproductive behaviors, such as male-male aggression or sexual mating, in other members of the same species. On the other hand, the olfactory epithelium, which contains olfactory receptor neurons inside the nasal cavity, is responsible for detecting odor molecules (smells). There are two types of vertebrate pheromones: (1) small volatile molecules such as 2-heptanone, a substance in the urine of both male and female that extends estrous cycle length in female mice; and (2) water-soluble molecules such as the major histocompatibility complex (HMC) class-I peptide, which can induce the pregnancy block effect, the tendency for female rodents to abort their pregnancies upon exposure to the scent of an unknown male. While V1Rs and G-alpha(i2) protein are co-expressed in the apical neurons of the VNO, V2Rs (type-2 vomeronasal receptors) and G-alpha(o) protein are coexpressed in the basal layer of the VNO. Activation of V1R or V2R causes stimulation of phospholipase pathway, generating diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). V1Rs have a short N-terminal extracellular domain, whereas V2Rs contain a long N-terminal extracellular domain, which is believed to bind pheromones. Although V1Rs share the seven-transmembrane domain structure with V1Rs and olfactory receptors, they share little sequence similarity with each other. 295 -320088 cd13950 7tm_TAS2R mammalian taste receptors type 2, member of the seven-transmembrane G protein-coupled receptor superfamily. This group represents a family of mammalian taste receptors (TAS2Rs), which function as bitter taste receptors. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 288 -320089 cd13951 7tmF_Frizzled_SMO class F frizzled/smoothened family, member of the 7-transmembrane G protein-coupled receptor superfamily. The class F G protein-coupled receptors includes the frizzled (FZD) family of seven-transmembrane proteins consisting of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. Also included in the class F family is the closely related smoothened (SMO), which is a transmembrane G protein-coupled receptor that acts as the transducer of the hedgehog (HH) signaling pathway. SMO is activated by the hedgehog (HH) family of proteins acting on the 12-transmembrane domain receptor patched (PTCH), which constitutively inhibits SMO. Thus, in the absence of HH proteins, PTCH inhibits SMO signaling. On the other hand, binding of HH to the PTCH receptor activates its internalization and degradation, thereby releasing the PTCH inhibition of SMO. This allows SMO to trigger intracellular signaling and the subsequent activation of the Gli family of zinc finger transcriptional factors and induction of HH target gene expression (PTCH, Gli1, cyclin, Bcl-2, etc). The WNT and HH signaling pathways play critical roles in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 314 -341314 cd13952 7tm_classB class B family of seven-transmembrane G protein-coupled receptors. The class B of seven-transmembrane GPCRs is classified into three major subfamilies: subfamily B1 (secretin-like receptor family), B2 (adhesion family), and B3 (Methuselah-like family). The class B receptors have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi or prokaryotes. The B1 subfamily comprises receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the subfamily B1 receptors preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The subfamily B2 consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Furthermore, the subfamily B3 includes Methuselah (Mth) protein, which was originally identified in Drosophila as a GPCR affecting stress resistance and aging, and its closely related proteins. 260 -320091 cd13953 7tm_classC_mGluR-like metabotropic glutamate receptor-like class C family of seven-transmembrane G protein-coupled receptors superfamily. The class C GPCRs consist of glutamate receptors (mGluR1-8), the extracellular calcium-sensing receptors (caSR), the gamma-amino-butyric acid type B receptors (GABA-B), the vomeronasal type-2 pheromone receptors (V2R), the type 1 taste receptors (TAS1R), and the promiscuous L-alpha-amino acid receptor (GPRC6A), as well as several orphan receptors. Structurally, these receptors are typically composed of a large extracellular domain containing a Venus flytrap module which possesses the orthosteric agonist-binding site, a cysteine-rich domain (CRD) with the exception of GABA-B receptors, and the seven-transmembrane domains responsible for G protein activation. Moreover, the Venus flytrap module shows high structural homology with bacterial periplasmic amino acid-binding proteins, which serve as primary receptors in transport of a variety of soluble substrates such as amino acids and polysaccharides, among many others. The class C GPCRs exist as either homo- or heterodimers, which are essential for their function. The GABA-B1 and GABA-B2 receptors form a heterodimer via interactions between the N-terminal Venus flytrap modules and the C-terminal coiled-coiled domains. On the other hand, heterodimeric CaSRs and Tas1Rs and homodimeric mGluRs utilize Venus flytrap interactions and intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD), which can also acts as a molecular link to mediate the signal between the Venus flytrap and the 7TMs. Furthermore, members of the class C GPCRs bind a variety of endogenous ligands, ranging from amino acids, ions, to pheromones and sugar molecules, and play important roles in many physiological processes such as synaptic transmission, calcium homeostasis, and the sensation of sweet and umami tastes. 251 -320092 cd13954 7tmA_OR olfactory receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -260119 cd13956 PT_UbiA UbiA family of prenyltransferases (PTases). Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 271 -260120 cd13957 PT_UbiA_Cox10 Protoheme IX farnesyltransferase. Protoheme IX farnesyltransferase (also called heme O synthase, heme A:farnesyltransferase, cytochrome c oxidase subunit X [Cox10]) converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of the heme B porphyrin ring with a hydroxyethyl farnesyl side group. It is localized at the mitochondrial inner membrane. Eukaryotic Cox10 is important for the maturation of the heme A prosthetic group of cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, that catalyzes the electron transfer from reduced cytochrome c to oxygen. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 271 -260121 cd13958 PT_UbiA_chlorophyll Bacteriochlorophyll/chlorophyll synthetase. Chlorophyll synthase catalyzes the last step of chlorophyll (Chl) biosynthesis, the addition of the tetraprenyl (phytyl or geranylgeranyl) side chain. In plant chloroplast, the chlorophyll synthase is located in thylakoid membrane and has been shown to also have a regulatory or channeling function. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 277 -260122 cd13959 PT_UbiA_COQ2 4-Hydroxybenzoate polyprenyltransferase. 4-Hydroxybenzoate polyprenyltransferase, also known as Coq2, catalyzes the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group, an important step in ubiquinone (CoQ) biosynthesis. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 272 -260123 cd13960 PT_UbiA_HPT1 Tocopherol phytyltransferase. Tocopherol polyprenyltransferase (TPT1), also known as homogentisate phytyltransferase 1 (HPT1), tocopherol phytyltransferase, or VTE2, catalyzes the first step in the biosynthesis of the tocopherol forms of vitamin E, which involves the prenylation of homogentisate using phytyl diphosphate (PDP) as the prenyl donor. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 289 -260124 cd13961 PT_UbiA_DGGGPS Geranylgeranylglycerol-phosphate geranylgeranyltransferase. Digeranylgeranylglyceryl phosphate synthase (DGGGPS) transfers a geranylgeranyl group from geranylgeranyl diphosphate to (S)-3-O-geranylgeranylglyceryl phosphate to form (S)-2,3-di-O-geranylgeranylglyceryl phosphate, as part of the isoprenoid ether lipid biosynthesis. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 270 -260125 cd13962 PT_UbiA_UBIAD1 1,4-Dihydroxy-2-naphthoate octaprenyltransferase. Human UBIAD1 is an enzyme involved in the synthesis of MK-4. Menaquinones (MKs, also called bacterial forms) are one of the two forms of natural vitamin K, the other being the plant form, phylloquinone (PK). All forms of vitamin K have a 2-methyl-1,4-naphthoquinone (menadione; K3) ring structure in common. At the 3-position of the ring, PK has a phytyl side chain while MKs have several repeating prenyl units. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. 283 -260126 cd13963 PT_UbiA_2 UbiA family of prenyltransferases (PTases), Unknown subgroup. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. The function of this subgroup is unknown. 278 -260127 cd13964 PT_UbiA_1 UbiA family of prenyltransferases (PTases), Unknown subgroup. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. The function of this subgroup is unknown. 282 -260128 cd13965 PT_UbiA_3 UbiA family of prenyltransferases (PTases), Unknown subgroup. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. The function of this subgroup is unknown. 273 -260129 cd13966 PT_UbiA_4 UbiA family of prenyltransferases (PTases), Unknown subgroup. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. The function of this subgroup is unknown. 272 -260130 cd13967 PT_UbiA_5 UbiA family of prenyltransferases (PTases), Unknown subgroup. Many characterized members of the UbiA prenyltransferase family are aromatic prenyltransferases and play an important role in the biosynthesis of heme, chlorophyll, vitamin E, and vitamin K. They contain two copies of a motif similar to the active site DxxD motif of trans-prenyltransferases and are potentially related. Prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto a wide variety of substrates and play an important role in many biosynthetic pathways. The function of this subgroup is unknown. 277 -270870 cd13968 PKc_like Catalytic domain of the Protein Kinase superfamily. The PK superfamily contains the large family of typical PKs that includes serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins, as well as pseudokinases that lack crucial residues for catalytic activity and/or ATP binding. It also includes phosphoinositide 3-kinases (PI3Ks), aminoglycoside 3'-phosphotransferases (APHs), choline kinase (ChoK), Actin-Fragmin Kinase (AFK), and the atypical RIO and Abc1p-like protein kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to their target substrates; these include serine/threonine/tyrosine residues in proteins for typical or atypical PKs, the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives for PI3Ks, the 4-hydroxyl of PtdIns for PI4Ks, and other small molecule substrates for APH/ChoK and similar proteins such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. 136 -270871 cd13969 ADCK1-like aarF domain containing kinase 1 and similar proteins. This subfamily is composed of uncharacterized ABC1 kinase-like proteins including the human protein called aarF domain containing kinase 1 (ADCK1). Eukaryotes contain at least three ABC1-like proteins: in humans, these are ADCK3 and the putative protein kinases named ADCK1 and ADCK2. Yeast Abc1p and its human homolog ADCK3 are atypical protein kinases required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Plant subfamilies 14 and 15 (ABC1K14-15) belong to the same group of ABC1 kinases as human ADCK1. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. 253 -270872 cd13970 ABC1_ADCK3 Activator of bc1 complex (ABC1) kinases, also called aarF domain containing kinase 3. This subfamily is composed of the atypical yeast protein kinase Abc1p, its human homolog ADCK3 (also called CABC1), and similar proteins. Abc1p (also called Coq8p) is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is necessary for the formation of a multi-subunit Q-biosynthetic complex and may also function in the regulation of Q synthesis. Human ADCK3 is able to rescue defects in Q synthesis and the phosphorylation state of Coq proteins in yeast Abc1 (or Coq8) mutants. Mutations in ADCK3 cause progressive cerebellar ataxia and atrophy due to Q10 deficiency. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Subfamily 13 (ABC1K13) of plant ABC1 kinases belongs in this subfamily with yeast Abc1p and human ADCK3. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. 251 -270873 cd13971 ADCK2-like aarF domain containing kinase 2 and similar proteins. This subfamily is composed of uncharacterized ABC1 kinase-like proteins including the human protein called aarF domain containing kinase 2 (ADCK2). Eukaryotes contain at least three ABC1-like proteins; in humans, these are ADCK3 and the putative protein kinases named ADCK1 and ADCK2. Yeast Abc1p and its human homolog ADCK3 are atypical protein kinases required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Plant subfamily 10 (ABC1K10) belong to the same group of ABC1 kinases as human ADCK2. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. 298 -270874 cd13972 UbiB Ubiquinone biosynthetic protein UbiB. UbiB is the prokaryotic homolog of yeast Abc1p and human ADCK3 (aarF domain containing kinase 3). It is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is required in the first monooxygenase step in Q biosynthesis. Mutant strains with disrupted ubiB genes lack Q and accumulate octaprenylphenol, a Q biosynthetic intermediate. 247 -270875 cd13973 PK_MviN-like Pseudokinase domain of the peptidoglycan biosynthetic protein MviN. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. This family is composed of the mycobacterial protein MviN and similar proteins. MviN is an integral membrane protein that is essential for growth and is required for cell wall integrity and peptidogylcan (PG) biosynthesis. It comprises of 14 predicted transmembrane (TM) helices at the N-terminus, followed by an intracellular pseudokinase domain linked through a single TM helix to a carbohydrate binding extracellular domain. Phosphorylation of the MviN pseudokinase domain by the PG-sensitive serine/threonine protein kinase PknB recruits a forkhead associated (FHA) domain protein FhaA, which modulates local PG synthesis at cell poles and the septum. The MviN pseudokinase forms a canonical receptor kinase dimer. 236 -270876 cd13974 STKc_SHIK Catalytic domain of the Serine/Threonine kinase, SINK-homologous inhibitory kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SHIK, also referred to as STK40 or LYK4, is a cytoplasmic and nuclear protein that is involved in the negative regulation of NF-kappaB- and p53-mediated transcription. It was identified as a protein related to SINK, a p65-interacting protein that inhibits p65 phosphorylation by the catalytic subunit of PKA, thereby inhibiting transcriptional competence of NF-kappaB. The SHIK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270877 cd13975 PKc_Dusty Catalytic domain of the Dual-specificity Protein Kinase, Dusty. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Dusty protein kinase is also called Receptor-interacting protein kinase 5 (RIPK5 or RIP5) or RIP-homologous kinase. It is widely distributed in the central nervous system, and may be involved in inducing both caspase-dependent and caspase-independent cell death. The Dusty subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -270878 cd13976 PK_TRB Pseudokinase domain of Tribbles Homolog proteins. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Tribbles Homolog (TRB) proteins interact with many proteins involved in signaling pathways. They play scaffold-like regulatory functions and affect many cellular processes such as mitosis, apoptosis, differentiation, and gene expression. TRB proteins bind to the middle kinase in mitogen activated protein kinase (MAPK) signaling cascades, MAPK kinases. They regulate the activity of MAPK kinases, and thus, affect MAPK signaling. In Drosophila, Tribbles regulates String, the ortholog of mammalian Cdc25, during morphogenesis. String is implicated in the progression of mitosis during embryonic development. Vertebrates contain three TRB proteins encoded by three separate genes: Tribbles-1 (TRB1 or TRIB1), Tribbles-2 (TRB2 or TRIB2), and Tribbles-3 (TRB3 or TRIB3). The TRB subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 242 -270879 cd13977 STKc_PDIK1L Catalytic domain of the Serine/Threonine kinase, PDLIM1 interacting kinase 1 like. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDIK1L is also called STK35 or CLIK-1. It is predominantly a nuclear protein which is capable of autophosphorylation. Through its interaction with the PDZ-LIM protein CLP-36, it is localized to actin stress fibers. The PDIK1L subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 322 -270880 cd13978 STKc_RIP Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP kinases serve as essential sensors of cellular stress. They are involved in regulating NF-kappaB and MAPK signaling, and are implicated in mediating cellular processes such as apoptosis, necroptosis, differentiation, and survival. RIP kinases contain a homologous N-terminal kinase domain and varying C-terminal domains. Higher vertebrates contain multiple RIP kinases, with mammals harboring at least five members. RIP1 and RIP2 harbor C-terminal domains from the Death domain (DD) superfamily while RIP4 contains ankyrin (ANK) repeats. RIP3 contain a RIP homotypic interaction motif (RHIM) that facilitates binding to RIP1. RIP1 and RIP3 are important in apoptosis and necroptosis, while RIP2 and RIP4 play roles in keratinocyte differentiation and inflammatory immune responses. The RIP subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270881 cd13979 STKc_Mos Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270882 cd13980 STKc_Vps15 Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein 15. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Vps15 is a large protein consisting of an N-terminal kinase domain, a C-terminal WD-repeat containing domain, and an intermediate bridge domain that contain HEAT repeats. The kinase domain is necessary for the signaling functions of Vps15. Human Vps15 was previously called p150. It associates and regulates Vps34, also called Class III phosphoinositide 3-kinase (PI3K), which catalyzes the phosphorylation of D-myo-phosphatidylinositol (PtdIns). Vps34 is the only PI3K present in yeast. It plays an important role in the regulation of protein and vesicular trafficking and sorting, autophagy, trimeric G-protein signaling, and phagocytosis. The Vps15 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. 278 -270883 cd13981 STKc_Bub1_BubR1 Catalytic domain of the Serine/Threonine kinases, Spindle assembly checkpoint proteins Bub1 and BubR1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Bub1 (Budding uninhibited by benzimidazoles 1), BubR1, and similar proteins. They contain an N-terminal Bub1/Mad3 homology domain essential for Cdc20 binding and a C-terminal kinase domain. Bub1 and BubR1 are involved in SAC, a surveillance system that delays metaphase to anaphase transition by blocking the activity of APC/C (the anaphase promoting complex) until all chromosomes achieve proper attachments to the mitotic spindle, to avoid chromosome missegregation. Impaired SAC leads to genomic instabilities and tumor development. Bub1 and BubR1 facilitate the localization of SAC proteins to kinetochores and regulate kinetochore-microtubule (K-MT) attachments. Repression studies of Bub1 and BubR1 show that they exert an additive effect in misalignment phenotypes and may function cooperatively or in parallel pathways in regulating K-MT attachments. The Bub1/BubR1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 298 -270884 cd13982 STKc_IRE1 Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is an ER-localized type I transmembrane protein with kinase and endoribonuclease domains in the cytoplasmic side. It acts as an ER stress sensor and is the oldest and most conserved component of the unfolded protein response (UPR) in eukaryotes. The UPR is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. During ER stress, IRE1 dimerizes and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and XBP1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). The Ire1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -270885 cd13983 STKc_WNK Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNKs comprise a subfamily of STKs with an unusual placement of a catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. They are also involved in cell signaling, survival, proliferation, and organ development. WNKs are activated by hyperosmotic or low-chloride hypotonic stress and they function upstream of SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. There are four vertebrate WNKs which show varying expression patterns. WNK1 and WNK2 are widely expressed while WNK3 and WNK4 show a more restricted expression pattern. Because mutations in human WNK1 and WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension (due to increased sodium reabsorption) and hyperkalemia (due to impaired renal potassium secretion), there are more studies conducted on these two proteins, compared to WNK2 and WNK3. The WNK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270886 cd13984 PK_NRBP1_like Pseudokinase domain of Nuclear Receptor Binding Protein 1 and similar proteins. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. This subfamily is composed of NRBP1, also called MLF1-adaptor molecule (MADM), and MADML. NRBP1 was originally named based on the presence of nuclear binding and localization motifs prior to functional analyses. It is expressed ubiquitously and is found to localize in the cytoplasm, not the nucleus. NRBP1 is an adaptor protein that interacts with myeloid leukemia factor 1 (MLF1), an oncogene that enhances myeloid development of hematopoietic cells. It also interacts with the small GTPase Rac3. NRBP1 may also be involved in Golgi to ER trafficking. MADML (for MADM-Like) has been shown to be expressed throughout development in Xenopus laevis with highest expression found in the developing lens and retina. The NRBP1-like subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270887 cd13985 STKc_GAK_like Catalytic domain of cyclin G-Associated Kinase-like proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270888 cd13986 STKc_16 Catalytic domain of Serine/Threonine Kinase 16. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK16 is associated with many names including Myristylated and Palmitylated Serine/threonine Kinase 1 (MPSK1), Kinase related to cerevisiae and thaliana (Krct), and Protein Kinase expressed in day 12 fetal liver (PKL12). It is widely expressed in mammals with highest levels found in liver, testis, and kidney. It is localized in the Golgi but is translocated to the nucleus upon disorganization of the Golgi. STK16 is constitutively active and is capable of phosphorylating itself and other substrates. It may be involved in regulating stromal-epithelial interactions during mammary gland ductal morphogenesis. It may also function as a transcriptional co-activator of type-C natriuretic peptide and VEGF. The STK16 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 282 -270889 cd13987 STKc_SBK1 Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SBK1, also called BSK146, is predominantly expressed in the brain. Its expression is increased in the developing brain during the late embryonic stage, coinciding with dramatic neuronal proliferation, migration, and maturation. SBK1 may play an important role in regulating brain development. The SBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270890 cd13988 STKc_TBK1 Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TBK1 is also called T2K and NF-kB-activating kinase. It is widely expressed in most cell types and acts as an IkappaB kinase (IKK)-activating kinase responsible for NF-kB activation in response to growth factors. It plays a role in modulating inflammatory responses through the NF-kB pathway. TKB1 is also a major player in innate immune responses since it functions as a virus-activated kinase necessary for establishing an antiviral state. It phosphorylates IRF-3 and IRF-7, which are important transcription factors for inducing type I interferon during viral infection. In addition, TBK1 may also play roles in cell transformation and oncogenesis. The TBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 316 -270891 cd13989 STKc_IKK Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The IKK complex functions as a master regulator of Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. It is composed of two kinases, IKKalpha and IKKbeta, and the regulatory subunit IKKgamma or NEMO (NF-kB Essential MOdulator). IKKs facilitate the release of NF-kB dimers from an inactive state, allowing them to migrate to the nucleus where they regulate gene transcription. There are two IKK pathways that regulate NF-kB signaling, called the classical (involving IKKbeta and NEMO) and non-canonical (involving IKKalpha) pathways. The classical pathway regulates the majority of genes activated by NF-kB. The IKK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 289 -270892 cd13990 STKc_TLK Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. They phosphorylate and regulate Anti-silencing function 1 protein (Asf1), a histone H3/H4 chaperone that helps facilitate the assembly of chromatin following DNA replication during S phase. TLKs also phosphorylate the H3 histone tail and are essential in transcription. Vertebrates contain two subfamily members, TLK1 and TLK2. The TLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270893 cd13991 STKc_NIK Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIK, also called mitogen activated protein kinase kinase kinase 14 (MAP3K14), phosphorylates and activates Inhibitor of NF-KappaB Kinase (IKK) alpha, which is a regulator of NF-kB proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. NIK is essential in the IKKalpha-mediated non-canonical NF-kB signaling pathway, in which IKKalpha processes the IkB-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus where it regulates gene transcription. NIK also plays an important role in Toll-like receptor 7/9 signaling cascades. The NIK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270894 cd13992 PK_GC Pseudokinase domain of membrane Guanylate Cyclase receptors. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs lack a critical aspartate involved in ATP binding and does not exhibit kinase activity. It functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -270895 cd13993 STKc_Pat1_like Catalytic domain of Fungal Pat1-like Serine/Threonine kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270896 cd13994 STKc_HAL4_like Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270897 cd13995 STKc_MAP3K8 Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase 8. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K8 is also called Tumor progression locus 2 (Tpl2) or Cancer Osaka thyroid (Cot), and was first identified as a proto-oncogene in T-cell lymphoma induced by MoMuL virus and in breast carcinoma induced by MMTV. Activated MAP3K8 induces various MAPK pathways including Extracellular Regulated Kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. It plays a pivotal role in innate immunity, linking Toll-like receptors to the production of TNF and the activation of ERK in macrophages. It is also required in interleukin-1beta production and is critical in host defense against Gram-positive bacteria. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K8 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270898 cd13996 STKc_EIF2AK Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: General Control Non-derepressible-2 (GCN2) which is activated during amino acid or serum starvation; protein kinase regulated by RNA (PKR) which is activated by double stranded RNA; heme-regulated inhibitor kinase (HRI) which is activated under heme-deficient conditions; and PKR-like endoplasmic reticulum kinase (PERK) which is activated when misfolded proteins accumulate in the ER. The EIF2AK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 273 -270899 cd13997 PKc_Wee1_like Catalytic domain of the Wee1-like Protein Kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity kinase Myt1, the protein tyrosine kinase Wee1, and similar proteins. These proteins are cell cycle checkpoint kinases that are involved in the regulation of cyclin-dependent kinase CDK1, the master engine for mitosis. CDK1 is kept inactivated through phosphorylation of N-terminal thr (T14 by Myt1) and tyr (Y15 by Myt1 and Wee1) residues. Mitosis progression is ensured through activation of CDK1 by dephoshorylation and inactivation of Myt1/Wee1. The Wee1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270900 cd13998 STKc_TGFbR-like Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. There are two types of TGFbeta receptors included in this subfamily, I and II, that play different roles in signaling. For signaling to occur, the ligand first binds to the high-affinity type II receptor, which is followed by the recruitment of the low-affinity type I receptor to the complex and its activation through trans-phosphorylation by the type II receptor. The active type I receptor kinase starts intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. Different ligands interact with various combinations of types I and II receptors to elicit a specific signaling pathway. Activins primarily signal through combinations of ACVR1b/ALK7 and ACVR2a/b; myostatin and GDF11 through TGFbR1/ALK4 and ACVR2a/b; BMPs through ACVR1/ALK1 and BMPR2; and TGFbeta through TGFbR1 and TGFbR2. The TGFbR-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -270901 cd13999 STKc_MAP3K-like Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine/Threonine kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed mainly of MAP3Ks and similar proteins, including TGF-beta Activated Kinase-1 (TAK1, also called MAP3K7), MAP3K12, MAP3K13, Mixed lineage kinase (MLK), MLK-Like mitogen-activated protein Triple Kinase (MLTK), and Raf (Rapidly Accelerated Fibrosarcoma) kinases. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Also included in this subfamily is the pseudokinase Kinase Suppressor of Ras (KSR), which is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway. 245 -270902 cd14000 STKc_LRRK Catalytic domain of the Serine/Threonine kinase, Leucine-Rich Repeat Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. Vertebrates contain two members, LRRK1 and LRRK2, which show complementary expression in the brain. Mutations in LRRK2 are linked to both familial and sporadic forms of Parkinson's disease. The normal roles of LRRKs are not clearly defined. They may be involved in mitogen-activated protein kinase (MAPK) pathways, protein translation control, programmed cell death pathways, and cytoskeletal dynamics. The LRRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270903 cd14001 PKc_TOPK Catalytic domain of the Dual-specificity protein kinase, Lymphokine-activated killer T-cell-originated protein kinase. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TOPK, also called PDZ-binding kinase (PBK), is activated at the early stage of mitosis and plays a critical role in cytokinesis. It partly functions as a mitogen-activated protein kinase (MAPK) kinase and is capable of phosphorylating p38, JNK1, and ERK2. TOPK also plays a role in DNA damage sensing and repair through its phosphorylation of histone H2AX. It contributes to cancer development and progression by downregulating the function of tumor suppressor p53 and reducing cell-cycle regulatory proteins. TOPK is found highly expressed in breast and skin cancer cells. The TOPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -270904 cd14002 STKc_STK36 Catalytic domain of Serine/Threonine Kinase 36. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK36, also called Fused (or Fu) kinase, is involved in the Hedgehog signaling pathway. It is activated by the Smoothened (SMO) signal transducer, resulting in the stabilization of GLI transcription factors and the phosphorylation of SUFU to facilitate the nuclear accumulation of GLI. In Drosophila, Fused kinase is maternally required for proper segmentation during embryonic development and for the development of legs and wings during the larval stage. In mice, STK36 is not necessary for embryonic development, although mice deficient in STK36 display growth retardation postnatally. The STK36 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270905 cd14003 STKc_AMPK-like Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270906 cd14004 STKc_PASK Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PASK (or PASKIN) is a nutrient and energy sensor and thus, plays an important role in maintaining cellular energy homeostasis. It coordinates the utilization of glucose in response to metabolic demand. It contains an N-terminal PAS domain which directly interacts and inhibits a C-terminal catalytic kinase domain. The PAS domain serves as a sensory module for different environmental signals such as light, redox state, and various metabolites. Binding of ligands to the PAS domain causes structural changes which leads to kinase activation and the phosphorylation of substrates to trigger the appropriate cellular response. The PASK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270907 cd14005 STKc_PIM Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 and three PIM2 isoforms as a result of alternative translation initiation sites, while there is only one PIM3 protein. Compound knockout mice deficient of all three PIM kinases that survive the perinatal period show a profound reduction in body size, indicating that PIMs are important for body growth. The PIM subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -270908 cd14006 STKc_MLCK-like Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This family is composed of MLCKs and related MLCK-like kinase domains from giant STKs such as titin, obscurin, SPEG, Unc-89, Trio, kalirin, and Twitchin. Also included in this family are Death-Associated Protein Kinases (DAPKs) and Death-associated protein kinase-Related Apoptosis-inducing protein Kinase (DRAKs). MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. Titin, obscurin, Twitchin, and SPEG are muscle proteins involved in the contractile apparatus. The giant STKs are multidomain proteins containing immunoglobulin (Ig), fibronectin type III (FN3), SH3, RhoGEF, PH and kinase domains. Titin, obscurin, Twitchin, and SPEG contain many Ig domain repeats at the N-terminus, while Trio and Kalirin contain spectrin-like repeats. The MLCK-like family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 247 -270909 cd14007 STKc_Aurora Catalytic domain of the Serine/Threonine kinase, Aurora kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270910 cd14008 STKc_LKB1_CaMKK Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270911 cd14009 STKc_ATG1_ULK_like Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes yeast ATG1 and metazoan homologs including vertebrate ULK1-3. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. It is involved in nutrient sensing and signaling, the assembly of autophagy factors and the execution of autophagy. In metazoans, ATG1 homologs display additional functions. Unc-51 and ULKs have been implicated in neuronal and axonal development. The ATG1/ULK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 251 -270912 cd14010 STKc_ULK4 Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ULK4 is a functionally uncharacterized kinase that shows similarity to ATG1/ULKs. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. The ULK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -270913 cd14011 PK_SCY1_like Pseudokinase domain of Scy1-like proteins. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. This subfamily is composed of the catalytically inactive kinases with similarity to yeast Scy1. It includes four mammalian proteins called SCY1-like protein 1 (SCYL1), SCYL2, SCYL3, as well as Testis-EXpressed protein 14 (TEX14). SCYL1 binds to and co-localizes with the membrane trafficking coatomer I (COPI) complex, and regulates COPI-mediated vesicle trafficking. Null mutations in the SCYL1 gene are responsible for the pathology in mdf (muscle-deficient) mice which display progressive motor neuropathy. SCYL2, also called coated vesicle-associated kinase of 104 kDa (CVAK104), is involved in the trafficking of clathrin-coated vesicles. It also binds the HIV-1 accessory protein Vpu and acts as a regulatory factor that promotes the dephosphorylation of Vpu, facilitating the restriction of HIV-1 release. SCYL3, also called ezrin-binding protein PACE-1, may be involved in regulating cell adhesion and migration. TEX14 is required for spermatogenesis and male fertility. It localizes to kinetochores (KT) during mitosis and is a target of the mitotic kinase PLK1. It regulates the maturation of the outer KT and the KT-microtubule attachment. The SCY1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -270914 cd14012 PK_eIF2AK_GCN2_rpt1 Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270915 cd14013 STKc_SNT7_plant Catalytic domain of the Serine/Threonine kinase, Plant SNT7. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SNT7 is a plant thylakoid-associated kinase that is essential in short- and long-term acclimation responses to cope with various light conditions in order to maintain photosynthetic redox poise for optimal photosynthetic performance. Short-term response involves state transitions over periods of minutes while the long-term response (LTR) occurs over hours to days and involves changing the relative amounts of photosystems I and II. SNT7 acts as a redox sensor and a signal transducer for both responses, which are triggered by the redox state of the plastoquinone (PQ) pool. It is positioned at the top of a phosphorylation cascade that induces state transitions by phosphorylating light-harvesting complex II (LHCII), and triggers the LTR through the phosphorylation of chloroplast proteins. The SNT7 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 318 -270916 cd14014 STKc_PknB_like Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -270917 cd14015 STKc_VRK Catalytic domain of the Serine/Threonine protein kinase, Vaccinia Related Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. VRKs were initially discovered due to its similarity to vaccinia virus B1R STK, which is important for viral replication. They play important roles in cell signaling, nuclear envelope dynamics, apoptosis, and stress responses. Vertebrates contain three VRK proteins (VRK1, VRK2, and VRK3) while invertebrates, specifically fruit flies and nematodes, seem to carry only a single ortholog. Mutations of VRK in Drosophila and Caenorhabditis elegans showed varying phenotypes ranging from embryonic lethality to mitotic and meiotic defects resulting in sterility. In vertebrates, VRK1 is implicated in cell cycle progression and proliferation, nuclear envelope assembly, and chromatin condensation. VRK2 is involved in modulating JNK signaling. VRK3 is an inactive pseudokinase that inhibits ERK signaling. The VRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 300 -270918 cd14016 STKc_CK1 Catalytic domain of the Serine/Threonine protein kinase, Casein Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. Some isoforms have several splice variants such as the long (L) and short (S) variants of CK1alpha. CK1 proteins are involved in the regulation of many cellular processes including membrane transport processes, circadian rhythm, cell division, apoptosis, and the development of cancer and neurodegenerative diseases. The CK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -270919 cd14017 STKc_TTBK Catalytic domain of the Serine/Threonine protein kinase, Tau-Tubulin Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TTBK is a neuron-specific kinase that phosphorylates the microtubule-associated protein tau and promotes its aggregation. Higher vertebrates contain two TTBK proteins, TTBK1 and TTBK2, both of which have been implicated in neurodegeneration. TTBK1 has been linked to Alzheimer's disease (AD) while TTBK2 is associated with spinocerebellar ataxia type 11 (SCA11). Both AD and SCA11 patients show the presence of neurofibrillary tangles in the brain. The Drosophila TTBK homolog, Asator, is an essential protein that localizes to the mitotic spindle during mitosis and may be involved in regulating microtubule dynamics and function. The TTBK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270920 cd14018 STKc_PINK1 Catalytic domain of the Serine/Threonine protein kinase, Pten INduced Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PINK1 contains an N-terminal mitochondrial targeting sequence, a catalytic domain, and a C-terminal regulatory region. It plays an important role in maintaining mitochondrial homeostasis. It protects cells against oxidative stress-induced apoptosis by phosphorylating the chaperone TNFR-associated protein 1 (TRAP1), also called Hsp75. Phosphorylated TRAP1 prevents cytochrome c release and peroxide-induced apoptosis. PINK1 interacts with Omi/HtrA2, a serine protease, and Parkin, an E3 ubiquitin ligase, in different pathways to promote mitochondrial health. The parkin gene is the most commonly mutated gene in autosomal recessive familial parkinsonism. Mutations within the catalytic domain of PINK1 are also associated with Parkinson's disease. The PINK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 313 -270921 cd14019 STKc_Cdc7 Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 7 kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Cdc7 kinase (or Hsk1 in fission yeast) is a critical regulator in the initiation of DNA replication. It forms a complex with a Dbf4-related regulatory subunit, a cyclin-like molecule that activates the kinase in late G1 phase, and is also referred to as Dbf4-dependent kinase (DDK). Its main targets are mini-chromosome maintenance (MCM) proteins. Cdc7 kinase may also have additional roles in meiosis, checkpoint responses, the maintenance and repair of chromosome structures, and cancer progression. The Cdc7 kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270922 cd14020 STKc_KIS Catalytic domain of the Serine/Threonine Kinase, Kinase Interacting with Stathmin (also called U2AF homology motif (UHM) kinase 1). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. KIS (or UHMK1) contains an N-terminal kinase domain and a C-terminal domain with a UHM motif, a protein interaction motif initially found in the pre-mRNA splicing factor U2AF. It phosphorylates the splicing factor SF1, which enhances binding to the splice site to promote spliceosome assembly. KIS was first identified as a kinase that interacts with stathmin, a phosphoprotein that plays a role in axon development and microtubule dynamics. It localizes in RNA granules in neurons and is important in neurite outgrowth. The KIS/UHMK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -270923 cd14021 ChoK-like_euk Euykaryotic Choline Kinase and similar proteins. This group is composed of eukaryotic choline kinase, ethanolamine kinase, and similar proteins. ChoK catalyzes the transfer of the gamma-phosphoryl group from ATP (or CTP) to its substrate, choline, producing phosphorylcholine (PCho), a precursor to the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC), and sphingomyelin (SM). Although choline is the preferred substrate, ChoK also shows substantial activity towards ethanolamine and its N-methylated derivatives. ETNK catalyzes the transfer of the gamma-phosphoryl group from CTP to ethanolamine (Etn), the first step in the CDP-Etn pathway for the formation of the major phospholipid, phosphatidylethanolamine (PtdEtn). Unlike ChoK, ETNK shows specific activity for its substrate and displays negligible activity towards N-methylated derivatives of Etn. ChoK plays an important role in cell signaling pathways and the regulation of cell growth. The ChoK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). 229 -270924 cd14022 PK_TRB2 Pseudokinase domain of Tribbles Homolog 2. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. TRB2 binds and negatively regulates the mitogen activated protein kinase (MAPK) kinases, MKK7 and MEK1, which are activators of the MAPKs, ERK and JNK. It controls the activation of inflammatory monocytes, which is essential in innate immune responses and the pathogenesis of inflammatory diseases such as atherosclerosis. TRB2 expression is down-regulated in human acute myeloid leukaemia (AML), which may lead to enhanced cell survival and pathogenesis of the disease. TRB2 is one of three Tribbles Homolog (TRB) proteins present in vertebrates that are encoded by three separate genes. TRB proteins interact with many proteins involved in signalling pathways. They play scaffold-like regulatory functions and affect many cellular processes such as mitosis, apoptosis, and gene expression. The TRB2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 242 -270925 cd14023 PK_TRB1 Pseudokinase domain of Tribbles Homolog 1. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. TRB1 interacts directly with the mitogen activated protein kinase (MAPK) kinase MKK4, an activator of JNK. It regulates vascular smooth muscle cell proliferation and chemotaxis through the JNK signaling pathway. It is found to be down-regulated in human acute myeloid leukaemia (AML) and may play a role in the pathogenesis of the disease. It has also been identified as a potential biomarker for antibody-mediated allograft failure. TRB1 is one of three Tribbles Homolog (TRB) proteins present in vertebrates that are encoded by three separate genes. TRB proteins interact with many proteins involved in signalling pathways. They play scaffold-like regulatory functions and affect many cellular processes such as mitosis, apoptosis, and gene expression. The TRB1 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 242 -270926 cd14024 PK_TRB3 Pseudokinase domain of Tribbles Homolog 3. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. TRB3 binds and regulates ATF4, p65/RelA, and PKB (or Akt). It negatively regulates ATF4-mediated gene expression including that of CHOP (C/EBP homologous protein) and HO-1, which are both involved in modulating apoptosis. It also inhibits insulin-mediated phosphorylation of PKB and is a possible determinant of insulin resistance and related disorders. In osteoarthritic chondrocytes where it inhibits insulin-like growth factor 1-mediated cell survival, TRB3 is overexpressed, resulting in increased cell death. TRB3 is one of three Tribbles Homolog (TRB) proteins present in vertebrates that are encoded by three separate genes. TRB proteins interact with many proteins involved in signalling pathways. They play scaffold-like regulatory functions and affect many cellular processes such as mitosis, apoptosis, and gene expression. The TRB3 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 242 -270927 cd14025 STKc_RIP4_like Catalytic domain of the Serine/Threonine kinases, Receptor Interacting Protein 4 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of RIP4, ankyrin (ANK) repeat and kinase domain containing 1 (ANKK1), and similar proteins, all of which harbor C-terminal ANK repeats. RIP4, also called Protein Kinase C-associated kinase (PKK), regulates keratinocyte differentiation and cutaneous inflammation. It activates NF-kappaB and is important in the survival of diffuse large B-cell lymphoma cells. The ANKK1 protein, also called PKK2, has not been studied extensively. The ANKK1 gene, located less than 10kb downstream of the D2 dopamine receptor (DRD2) locus, is altered in the Taq1 A1 polymorphism, which is related to a reduced DRD2 binding affinity and consequently, to mental disorders. The RIP4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270928 cd14026 STKc_RIP2 Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP2, also called RICK or CARDIAK, harbors a C-terminal Caspase Activation and Recruitment domain (CARD) belonging to the Death domain (DD) superfamily. It functions as an effector kinase downstream of the pattern recognition receptors from the Nod-like (NLR) family, Nod1 and Nod2, which recognizes bacterial peptidoglycans released upon infection. RIP2 may also be involved in regulating wound healing and keratinocyte proliferation. RIP kinases serve as essential sensors of cellular stress. The RIP2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270929 cd14027 STKc_RIP1 Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP1 harbors a C-terminal Death domain (DD), which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 can also recruit other kinases including MEKK1, MEKK3, and RIP3 through an intermediate domain (ID) that bears a RIP homotypic interaction motif (RHIM). RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accummulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. RIP kinases serve as essential sensors of cellular stress. The RIP1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270930 cd14028 STKc_Bub1_vert Catalytic domain of the Serine/Threonine kinase, Vertebrate Spindle assembly checkpoint protein Bub1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Bub1 (Budding uninhibited by benzimidazoles 1) contains an N-terminal Bub1/Mad3 homology domain essential for Cdc20 binding, a GLEBS motif for Bub3/kinetochore binding, and a C-terminal kinase domain. It is involved in SAC, a surveillance system that delays metaphase to anaphase transition by blocking the activity of APC/C (the anaphase promoting complex) until all chromosomes achieve proper attachments to the mitotic spindle, to avoid chromosome missegregation. Bub1 contributes to the inhibition of APC/C by phosphorylating its crucial cofactor, Cdc20, rendering it unable to activate APC/C. In addition, Bub1 facilitates the localization to kinetochores of other SAC and motor proteins including Mad1, Mad2, BubR1, and Plk1. It acts as the master organizer of the functional inner centromere. Bub1 also play roles in protecting sister chromatid cohesion and normal metaphase congression. The Bub1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270931 cd14029 STKc_BubR1_vert Catalytic domain of the Serine/Threonine kinase, Vertebrate Spindle assembly checkpoint protein BubR1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BubR1 (Budding uninhibited by benzimidazoles R1) is also called Bub1 beta (Bub1b). It contains an N-terminal Bub1/Mad3 homology domain essential for Cdc20 binding and a C-terminal kinase domain. It is involved in SAC, a surveillance system that delays metaphase to anaphase transition by blocking the activity of APC/C (the anaphase promoting complex) until all chromosomes achieve proper attachments to the mitotic spindle, to avoid chromosome missegregation. BubR1 inhibits APC/C through direct binding. It also plays an important role in stabilizing kinetochore-microtubule attachments. Mutant mice expressing only 10% normal BubR1 protein are viable and develop into adult mice, but display many early aging-associated phenotypes including reduced lifespan, muscle atrophy, cataracts, impaired wound healing, and infertility. The BubR1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 304 -270932 cd14030 STKc_WNK1 Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK1 is widely expressed and is most abundant in the testis. In hyperosmotic or hypotonic low-chloride stress conditions, WNK1 is activated and it phosphorylates its substrates including SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. Mutations in WNK1 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK1 negates WNK4-mediated inhibition of the sodium-chloride cotransporter NCC and activates the epithelial sodium channel ENaC by activating SGK1. WNK1 also decreases the surface expression of renal outer medullary potassium channel (ROMK) by stimulating their endocytosis. Hypertension and hyperkalemia in PHAII patients with WNK1 mutations may be due partly to increased activity of NCC and ENaC, and impaired renal potassium secretion by ROMK, respectively. In addition, WNK1 interacts with MEKK2/3 and acts as an activator of extracellular signal-regulated kinase (ERK) 5. It also negatively regulates TGFbeta signaling. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -270933 cd14031 STKc_WNK3 Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK3 shows a restricted expression pattern; it is found at high levels in the pituary glands and is also expressed in the kidney and brain. It has been shown to regulate many ion transporters including members of the SLC12A family of cation-chloride cotransporters such as NCC and NKCC2, the renal potassium channel ROMK, and the epithelial calcium channels TRPV5 and TRPV6. WNK3 appears to sense low-chloride hypotonic stress and under these conditions, it activates SPAK, which directly interacts and phosphorylates cation-chloride cotransporters. WNK3 has also been shown to promote cell survival, possibly through interaction with procaspase-3 and HSP70. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270934 cd14032 STKc_WNK2_like Catalytic domain of With No Lysine (WNK) 2-like Serine/Threonine kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK2 is widely expressed and has been shown to be epigenetically silenced in gliomas. It inhibits cell growth by acting as a negative regulator of MEK1-ERK1/2 signaling. WNK2 modulates growth factor-induced cancer cell proliferation, suggesting that it may be a tumor suppressor gene. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. The WNK2-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -270935 cd14033 STKc_WNK4 Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK4 shows a restricted expression pattern and is usually found in epithelial cells. It is expressed in nephrons and in extrarenal tissues including intestine, eye, mammary glands, and prostate. WNK4 regulates a variety of ion transport proteins including apical or basolateral ion transporters, ion channels in the transcellular pathway, and claudins in the paracellular pathway. Mutations in WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK4 inhibits the activity of the thiazide-sensitive Na-Cl cotransporter (NCC), which is responsible for about 15% of NaCl reabsorption in the kidney. It also inhibits the renal outer medullary potassium channel (ROMK) and decreases its surface expression. Hypertension and hyperkalemia in PHAII patients with WNK4 mutations may be partly due to increased NaCl reabsorption through NCC and impaired renal potassium secretion by ROMK, respectively. The WNK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -270936 cd14034 PK_NRBP1 Pseudokinase domain of Nuclear Receptor Binding Protein 1. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. NRBP1, also called MLF1-adaptor molecule (MADM), was originally named based on the presence of nuclear binding and localization motifs prior to functional analyses. It is expressed ubiquitously and is found to localize in the cytoplasm, not the nucleus. NRBP1 is an adaptor protein that interacts with myeloid leukemia factor 1 (MLF1), an oncogene that enhances myeloid development of hematopoietic cells. It also interacts with the small GTPase Rac3. NRBP1 may also be involved in Golgi to ER trafficking and actin dynamics. The NRBP1-like subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270937 cd14035 PK_MADML Pseudokinase domain of MLF1-ADaptor Molecule-Like. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. MADML has been shown to be expressed throughout development in Xenopus laevis with highest expression found in the developing lens and retina. It may play an important role in embryonic eye development. The MADML subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270938 cd14036 STKc_GAK Catalytic domain of the Serine/Threonine protein kinase, cyclin G-Associated Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GAK, also called auxilin-2, contains an N-terminal kinase domain that phosphorylates the mu subunits of adaptor protein (AP) 1 and AP2. In addition, it contains an auxilin-1-like domain structure consisting of PTEN-like, clathrin-binding, and J domains. Like auxilin-1, GAK facilitates Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles. GAK is expressed ubiquitously and is enriched in the Golgi, unlike auxilin-1 which is nerve-specific. GAK also plays regulatory roles outside of clathrin-mediated membrane traffic including the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses through interaction with the interleukin 12 receptor. It also interacts with the androgen receptor, acting as a transcriptional coactivator, and its expression is significantly increased with the progression of prostate cancer. The GAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 282 -270939 cd14037 STKc_NAK_like Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -270940 cd14038 STKc_IKK_beta Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) beta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKbeta is involved in the classical pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The classical pathway regulates the majority of genes activated by NF-kB including those encoding cytokines, chemokines, leukocyte adhesion molecules, and anti-apoptotic factors. It involves NEMO (NF-kB Essential MOdulator)- and IKKbeta-dependent phosphorylation and degradation of the Inhibitor of NF-kB (IkB), which liberates NF-kB dimers (typified by the p50-p65 heterodimer) from an inactive IkB/dimeric NF-kB complex, enabling them to migrate to the nucleus where they regulate gene transcription. The IKKbeta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270941 cd14039 STKc_IKK_alpha Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) alpha. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKalpha is involved in the non-canonical or alternative pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The non-canonical pathway functions in cells lacking NEMO (NF-kB Essential MOdulator) and IKKbeta. It is induced by a subset of TNFR family members including CD40, RANK, and B cell-activating factor receptor. IKKalpha processes the Inhibitor of NF-kB (IkB)-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus. This pathway is dependent on NIK (NF-kB Inducing Kinase) which phosphorylates and activates IKKalpha. The IKKalpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -270942 cd14040 STKc_TLK1 Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A splice variant of TLK1, called TLK1B, is expressed in the presence of double strand breaks (DSBs). It lacks the N-terminal part of TLK1, but is expected to phosphorylate the same substrates. TLK1/1B interacts with Rad9, which is critical in DNA damage-activated checkpoint response, and plays a role in the repair of linearized DNA with incompatible ends. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. The TLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 299 -270943 cd14041 STKc_TLK2 Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. They phosphorylate and regulate Anti-silencing function 1 protein (Asf1), a histone H3/H4 chaperone that helps facilitate the assembly of chromatin following DNA replication during S phase. TLKs also phosphorylate the H3 histone tail and are essential in transcription. Vertebrates contain two subfamily members, TLK1 and TLK2. The TLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 309 -270944 cd14042 PK_GC-A_B Pseudokinase domain of the membrane Guanylate Cyclase receptors, GC-A and GC-B. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. GC-A binds and is activated by the atrial and B-type natriuretic peptides, ANP and BNP, which are important in blood pressure regulation and cardiac pathophysiology. GC-B binds the C-type natriuretic peptide, CNP, which is a potent vasorelaxant and functions in vascular remodeling and bone growth regulation. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC-A/B subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -270945 cd14043 PK_GC-2D Pseudokinase domain of the membrane Guanylate Cyclase receptor, GC-2D. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. GC-2D is allso called Retinal Guanylyl Cyclase 1 (RETGC-1) or Rod Outer Segment membrane Guanylate Cyclase (ROS-GC). It is found in the photoreceptors of the retina where it anchors the reciprocal feedback loop between calcium and cGMP, which regulates the dark, light, and recovery phases in phototransduction. It is also found in other sensory neurons and may be a universal transduction component that plays a role in the perception of all senses. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC-2D subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270946 cd14044 PK_GC-C Pseudokinase domain of the membrane Guanylate Cyclase receptor, GC-C. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. GC-C binds and is activated by the intestinal hormones, guanylin (GN) and uroguanylin (UGN), which are secreted after salty meals to inhibit sodium absorption and induce the secretion of chloride, bicarbonate, and water. GN and UGN are also present in the kidney, where they induce increased salt and water secretion. This prevents the development of hypernatremia and hypervolemia after ingestion of high amounts of salt. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC-C subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -270947 cd14045 PK_GC_unk Pseudokinase domain of the unknown subfamily of membrane Guanylate Cyclase receptors. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs lack a critical aspartate involved in ATP binding and does not exhibit kinase activity. It functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -270948 cd14046 STKc_EIF2AK4_GCN2_rpt2 Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GCN2 (or EIF2AK4) is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. Its kinase domain is activated via conformational changes as a result of the binding of uncharged tRNA to the HisRS-like domain. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 278 -270949 cd14047 STKc_EIF2AK2_PKR Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Protein Kinase regulated by RNA. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKR (or EIF2AK2) contains an N-terminal double-stranded RNA (dsRNA) binding domain and a C-terminal catalytic kinase domain. It is activated by dsRNA, which is produced as a replication intermediate in virally infected cells. It plays a key role in mediating innate immune responses to viral infection. PKR is also directly activated by PACT (protein activator of PKR) and heparin, and is inhibited by viral proteins and RNAs. PKR also regulates transcription and signal transduction in diseased cells, playing roles in tumorigenesis and neurodegenerative diseases. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PKR subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270950 cd14048 STKc_EIF2AK3_PERK Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 3 or PKR-like Endoplasmic Reticulum Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PERK (or EIF2AK3) is a type-I ER transmembrane protein containing a luminal domain bound with the chaperone BiP under unstressed conditions and a cytoplasmic catalytic kinase domain. In response to the accumulation of misfolded or unfolded proteins in the ER, PERK is activated through the release of BiP, allowing it to dimerize and autophosphorylate. It functions as the central regulator of translational control during the Unfolded Protein Response (UPR) pathway. In addition to the eIF-2 alpha subunit, PERK also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PERK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 281 -270951 cd14049 STKc_EIF2AK1_HRI Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Heme-Regulated Inhibitor kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HRI (or EIF2AK1) contains an N-terminal regulatory heme-binding domain and a C-terminal catalytic kinase domain. It is suppressed under normal conditions by binding of the heme iron, and is activated during heme deficiency. It functions as a critical regulator that ensures balanced synthesis of globins and heme, in order to form stable hemoglobin during erythroid differentiation and maturation. HRI also protects cells and enhances survival under iron-deficient conditions. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The HRI subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -270952 cd14050 PKc_Myt1 Catalytic domain of the Dual-specificity protein kinase, Myt1. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Myt1 is a cytoplasmic cell cycle checkpoint kinase that can keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of N-terminal thr (T14) and tyr (Y15) residues, leading to the delay of meiosis I entry. Meiotic progression is ensured by a two-step inhibition and downregulation of Myt1 by CDK1/XRINGO and p90Rsk during oocyte maturation. In addition, Myt1 targets cyclin B1/B2 and is essential for Golgi and ER assembly during telophase. In Drosophila, Myt1 may be a downstream target of Notch during eye development. The Myt1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 249 -270953 cd14051 PTKc_Wee1 Catalytic domain of the Protein Tyrosine Kinase, Wee1. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Wee1 is a nuclear cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. There are two distinct Wee1 proteins in vertebrates showing different expression patterns, called Wee1a and Wee1b. They are functionally dstinct and are implicated in different steps of egg maturation and embryo development. The Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270954 cd14052 PTKc_Wee1_fungi Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of fungal Wee1 proteins, also called Swe1 in budding yeast and Mik1 in fission yeast. Yeast Wee1 is required to control cell size. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The fungal Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 278 -270955 cd14053 STKc_ACVR2 Catalytic domain of the Serine/Threonine Kinase, Activin Type II Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors, such as ACVR2, are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. Vertebrates contain two ACVR2 proteins, ACVR2a (or ActRIIA) and ACVR2b (or ActRIIB). The ACVR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -270956 cd14054 STKc_BMPR2_AMHR2 Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and Anti-Muellerian Hormone Type II Receptors. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR2 and AMHR2 belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors (GDFs), and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. BMPR2 and AMHR2 act primarily as a receptor for BMPs and AMH, respectively. BMPs induce bone and cartilage formation, as well as regulate tooth, kidney, skin, hair, haematopoietic, and neuronal development. Mutations in BMPR2A is associated with familial pulmonary arterial hypertension. AMH is mainly responsible for the regression of Mullerian ducts during male sex differentiation. It is expressed exclusively by somatic cells of the gonads. Mutations in either AMH or AMHR2 cause persistent Mullerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism characterized by the presence of Mullerian derivatives (ovary and tubes) in otherwise normally masculine males. The BMPR2/AMHR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 300 -270957 cd14055 STKc_TGFbR2_like Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Type II Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TGFbR2 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors, such as TGFbR2, are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. TGFbR2 acts as the receptor for TGFbeta, which is crucial in growth control and homeostasis in many different tissues. It plays roles in regulating apoptosis and in maintaining the balance between self renewal and cell loss. It also plays a key role in maintaining vascular integrity and in regulating responses to genotoxic stress. Mutations in TGFbR2 can cause aortic aneurysm disorders such as Loeys-Dietz and Marfan syndromes. The TGFbR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 295 -270958 cd14056 STKc_TGFbR_I Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type I Receptors. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of type I receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation through trans-phosphorylation by type II receptors, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. They are inhibited by the immunophilin FKBP12, which is thought to control leaky signaling caused by receptor oligomerization in the absence of ligand. The TGFbR-I subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -270959 cd14057 PK_ILK Pseudokinase domain of Integrin Linked Kinase. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. ILK contains N-terminal ankyrin repeats, a Pleckstrin Homology (PH) domain, and a C-terminal pseudokinase domain. It is a component of the IPP (ILK/PINCH/Parvin) complex that couples beta integrins to the actin cytoskeleton, and plays important roles in cell adhesion, spreading, invasion, and migration. ILK was initially thought to be an active kinase despite the lack of key conserved residues because of in vitro studies showing that it can phosphorylate certain protein substrates. However, in vivo experiments in Caenorhabditis elegans, Drosophila melanogaster, and mice (ILK-null and knock-in) proved that ILK is not an active kinase. In addition to actin cytoskeleton regulation, ILK also influences the microtubule network and mitotic spindle orientation. The pseudokinase domain of ILK binds several adaptor proteins including the parvins and paxillin. The ILK subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 251 -270960 cd14058 STKc_TAK1 Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Activated Kinase-1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAK1 is also known as mitogen-activated protein kinase kinase kinase 7 (MAPKKK7 or MAP3K7), TAK, or MEKK7. As a MAPKKK, it is an important mediator of cellular responses to extracellular signals. It regulates both the c-Jun N-terminal kinase and p38 MAPK cascades by activating the MAPK kinases, MKK4 and MKK3/6. In addition, TAK1 plays diverse roles in immunity and development, in different biological contexts, through many signaling pathways including TGFbeta/BMP, Wnt/Fz, and NF-kB. It is also implicated in the activation of the tumor suppressor kinase, LKB1. The TAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270961 cd14059 STKc_MAP3K12_13 Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinases 12 and 13. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K12 is also called MAPK upstream kinase (MUK), dual leucine zipper-bearing kinase (DLK) or leucine-zipper protein kinase (ZPK). It is involved in the c-Jun N-terminal kinase (JNK) pathway that directly regulates axonal regulation through the phosphorylation of microtubule-associated protein 1B (MAP1B). It also regulates the differentiation of many cell types including adipocytes and may play a role in adipogenesis. MAP3K13, also called leucine zipper-bearing kinase (LZK), directly phosphorylates and activates MKK7, which in turn activates the JNK pathway. It also activates NF-kB through IKK activation and this activity is enhanced by antioxidant protein-1 (AOP-1). MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAP2Ks (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K12/13 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 237 -270962 cd14060 STKc_MLTK Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated protein Triple Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLTK, also called zipper sterile-alpha-motif kinase (ZAK), contains a catalytic kinase domain and a leucine zipper. There are two alternatively-spliced variants, MLTK-alpha and MLTK-beta. MLTK-alpha contains a sterile-alpha-motif (SAM) at the C-terminus. MLTK regulates the c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 MAPK, and NF-kB pathways. ZAK is the MAP3K involved in the signaling cascade that leads to the ribotoxic stress response initiated by cellular damage due to Shiga toxins and ricin. It may also play a role in cell transformation and cancer development. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals.The MLTK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 242 -270963 cd14061 STKc_MLK Catalytic domain of the Serine/Threonine Kinases, Mixed Lineage Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Mammals have four MLKs (MLK1-4), mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270964 cd14062 STKc_Raf Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Raf kinases act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain, and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. The Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270965 cd14063 PK_KSR Pseudokinase domain of Kinase Suppressor of Ras. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. The KSR subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -270966 cd14064 PKc_TNNI3K Catalytic domain of the Dual-specificity protein kinase, TNNI3-interacting kinase. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TNNI3K, also called cardiac ankyrin repeat kinase (CARK), is a cardiac-specific troponin I-interacting kinase that promotes cardiac myogenesis, improves cardiac performance, and protects the myocardium from ischemic injury. It contains N-terminal ankyrin repeats, a catalytic kinase domain, and a C-terminal serine-rich domain. TNNI3K exerts a disease-accelerating effect on cardiac dysfunction and reduced survival in mouse models of cardiomyopathy. The TNNI3K subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270967 cd14065 PKc_LIMK_like Catalytic domain of the LIM domain kinase-like protein kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. Members of this subfamily include LIMK, Testicular or testis-specific protein kinase (TESK), and similar proteins. LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270968 cd14066 STKc_IRAK Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270969 cd14067 STKc_LRRK1 Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK1 is one of two vertebrate LRRKs which show complementary expression in the brain. It can form heterodimers with LRRK2, and may influence the age of onset of LRRK2-associated Parkinson's disease. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 276 -270970 cd14068 STKc_LRRK2 Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK2 is one of two vertebrate LRRKs which show complementary expression in the brain. Mutations in LRRK2, found in the kinase, ROC-COR, and WD40 domains, are linked to both familial and sporadic forms of Parkinson's disease. The most prevalent mutation, G2019S located in the activation loop of the kinase domain, increases kinase activity. The R1441C/G mutations in the GTPase domain have also been reported to influence kinase activity. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -270971 cd14069 STKc_Chk1 Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chk1 is implicated in many major checkpoints of the cell cycle, providing a link between upstream sensors and the cell cycle engine. It plays an important role in DNA damage response and maintaining genomic stability. Chk1 acts as an effector of the sensor kinase, ATR (ATM and Rad3-related), a member of the PI3K family, which is activated upon DNA replication stress. Chk1 delays mitotic entry in response to replication blocks by inhibiting cyclin dependent kinase (Cdk) activity. In addition, Chk1 contributes to the function of centrosome and spindle-based checkpoints, inhibits firing of origins of DNA replication (Ori), and represses transcription of cell cycle proteins including cyclin B and Cdk1. The Chk1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -270972 cd14070 STKc_HUNK Catalytic domain of the Serine/Threonine Kinase, Hormonally up-regulated Neu-associated kinase (also called MAK-V). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HUNK/MAK-V was identified from a mammary tumor in an MMTV-neu transgenic mouse. It is required for the metastasis of c-myc-induced mammary tumors, but is not necessary for c-myc-induced primary tumor formation or normal development. It is required for HER2/neu-induced tumor formation and maintenance of the cells' tumorigenic phenotype. It is over-expressed in aggressive subsets of ovary, colon, and breast carcinomas. HUNK interacts with synaptopodin, and may also play a role in synaptic plasticity. The HUNK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -270973 cd14071 STKc_SIK Catalytic domain of the Serine/Threonine Kinases, Salt-Inducible kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SIKs are part of a complex network that regulates Na,K-ATPase to maintain sodium homeostasis and blood pressure. Vertebrates contain three forms of SIKs (SIK1-3) from three distinct genes, which display tissue-specific effects. SIK1, also called SNF1LK, controls steroidogenic enzyme production in adrenocortical cells. In the brain, both SIK1 and SIK2 regulate energy metabolism. SIK2, also called QIK or SNF1LK2, is involved in the regulation of gluconeogenesis in the liver and lipogenesis in adipose tissues, where it phosphorylates the insulin receptor substrate-1. In the liver, SIK3 (also called QSK) regulates cholesterol and bile acid metabolism. In addition, SIK2 plays an important role in the initiation of mitosis and regulates the localization of C-Nap1, a centrosome linker protein. The SIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270974 cd14072 STKc_MARK Catalytic domain of the Serine/Threonine Kinases, MAP/microtubule affinity-regulating kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MARKs, also called Partitioning-defective 1 (Par1) proteins, function as regulators of diverse cellular processes in nematodes, Drosophila, yeast, and vertebrates. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. Vertebrates contain four isoforms, namely MARK1 (or Par1c), MARK2 (or Par1b), MARK3 (Par1a), and MARK4 (or MARKL1). Known substrates of MARKs include the cell cycle-regulating phosphatase Cdc25, tyrosine phosphatase PTPH1, MAPK scaffolding protein KSR1, class IIa histone deacetylases, and plakophilin 2. The MARK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -270975 cd14073 STKc_NUAK Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -270976 cd14074 STKc_SNRK Catalytic domain of the Serine/Threonine Kinase, SNF1-related kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SNRK is a kinase highly expressed in testis and brain that is found inactive in cells that lack the LKB1 tumour suppressor protein kinase. The regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. The SNRK mRNA is increased 3-fold when granule neurons are cultured in low potassium, and may thus play a role in the survival responses in these cells. In some vertebrates, a second SNRK gene (snrkb or snrk-1) has been sequenced and/or identified. Snrk-1 is expressed specifically in embryonic zebrafish vasculature; it plays an essential role in angioblast differentiation, maintenance, and migration. The SNRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270977 cd14075 STKc_NIM1 Catalytic domain of the Serine/Threonine Kinase, NIM1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIM1 is a widely-expressed kinase belonging to the AMP-activated protein kinase (AMPK) subfamily. Although present in most tissues, NIM1 kinase activity is only observed in the brain and testis. NIM1 is capable of autophosphorylating and activating itself, but may be present in other tissues in the inactive form. The physiological function of NIM1 has yet to be elucidated. The NIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -270978 cd14076 STKc_Kin4 Catalytic domain of the yeast Serine/Threonine Kinase, Kin4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Kin4 is a central component of the spindle position checkpoint (SPOC), which monitors spindle position and regulates the mitotic exit network (MEN). Kin4 associates with spindle pole bodies in mother cells to inhibit MEN signaling and delay mitosis until the anaphase nucleus is properly positioned along the mother-bud axis. Kin4 activity is regulated by both the bud neck-associated kinase Elm1 and protein phosphatase 2A. The Kin4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -270979 cd14077 STKc_Kin1_2 Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -270980 cd14078 STKc_MELK Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MELK is a cell cycle dependent protein which functions in cytokinesis, cell cycle, apoptosis, cell proliferation, and mRNA processing. It is found upregulated in many types of cancer cells, playing an indispensable role in cancer cell survival. It makes an attractive target in the design of inhibitors for use in the treatment of a wide range of human cancer. The MELK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270981 cd14079 STKc_AMPK_alpha Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. In response to decreased ATP levels, it enhances energy-producing processes and inhibits energy-consuming pathways. Once activated, AMPK phosphorylates a broad range of downstream targets, with effects in carbohydrate metabolism and uptake, lipid and fatty acid biosynthesis, carbon energy storage, and inflammation, among others. Defects in energy homeostasis underlie many human diseases including Type 2 diabetes, obesity, heart disease, and cancer. As a result, AMPK has emerged as a therapeutic target in the treatment of these diseases. The AMPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -270982 cd14080 STKc_TSSK-like Catalytic domain of testis-specific serine/threonine kinases and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -270983 cd14081 STKc_BRSK1_2 Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BRSK1, also called SAD-B or SAD1 (Synapses of Amphids Defective homolog 1), and BRSK2, also called SAD-A, are highly expressed in mammalian forebrain. They play important roles in establishing neuronal polarity. BRSK1/2 double knock-out mice die soon after birth, showing thin cerebral cortices due to disordered subplate layers and neurons that lack distinct axons and dendrites. BRSK1 regulates presynaptic neurotransmitter release. Its activity fluctuates during cell cysle progression and it acts as a regulator of centrosome duplication. BRSK2 is also abundant in pancreatic islets, where it is involved in the regulation of glucose-stimulated insulin secretion. The BRSK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -270984 cd14082 STKc_PKD Catalytic domain of the Serine/Threonine kinase, Protein Kinase D. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They contain N-terminal cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. The PKD subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -270985 cd14083 STKc_CaMKI Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270986 cd14084 STKc_Chk2 Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -270987 cd14085 STKc_CaMKIV Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type IV. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKIV is found predominantly in neurons and immune cells. It is activated by the binding of calcium/CaM and phosphorylation by CaMKK (alpha or beta). The CaMKK-CaMKIV cascade participates in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors. It also is implicated in T-cell development and signaling, cytokine secretion, and signaling through Toll-like receptors, and is thus, pivotal in immune response and inflammation. The CaMKIV subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 294 -270988 cd14086 STKc_CaMKII Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type II. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. In addition, CaMKII contains a C-terminal association domain that facilitates oligomerization. There are four CaMKII proteins (alpha, beta, gamma, delta) encoded by different genes; each gene undergoes alternative splicing to produce more than 30 isoforms. CaMKII-alpha and -beta are enriched in neurons while CaMKII-gamma and -delta are predominant in myocardium. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. It is a major component of the postsynaptic density and is critical in regulating synaptic plasticity including long-term potentiation. It is critical in regulating ion channels and proteins involved in myocardial excitation-contraction and excitation-transcription coupling. Excessive CaMKII activity promotes processes that contribute to heart failure and arrhythmias. The CaMKII subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 292 -270989 cd14087 STKc_PSKH1 Catalytic domain of the Protein Serine/Threonine kinase H1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PSKH1 is an autophosphorylating STK that is expressed ubiquitously and exhibits multiple intracellular localizations including the centrosome, Golgi apparatus, and splice factor compartments. It contains a catalytic kinase domain and an N-terminal SH4-like motif that is acylated to facilitate membrane attachment. PSKH1 plays a rile in the maintenance of the Golgi apparatus, an important organelle within the secretory pathway. It may also function as a novel splice factor and a regulator of prostate cancer cell growth. The PSKH1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -270990 cd14088 STKc_CaMK_like Catalytic domain of an Uncharacterized group of Serine/Threonine kinases with similarity to Calcium/calmodulin-dependent protein kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized STKs with similarity to CaMKs, which are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. This uncharacterized subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -270991 cd14089 STKc_MAPKAPK Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase-activated protein kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPK-activated protein kinases MK2, MK3, MK5 (also called PRAK for p38-regulated/activated protein kinase), and related proteins. These proteins contain a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. In addition, MK2 and MK3 contain an N-terminal proline-rich region that can bind to SH3 domains. MK2 and MK3 are bonafide substrates for the MAPK p38, while MK5 plays a functional role in the p38 MAPK pathway although their direct interaction has been difficult to detect. MK2 and MK3 are closely related and show, thus far, indistinguishable substrate specificity, while MK5 shows a distinct spectrum of substrates. MK2 and MK3 are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. MK5 is a ubiquitous protein that is implicated in neuronal morphogenesis, cell migration, and tumor angiogenesis. It interacts with PKA, which induces cytoplasmic translocation of MK5. Its substrates includes p53, ERK3/4, Hsp27, and cytosolic phospholipase A2 (cPLA2). The MAPKAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -270992 cd14090 STKc_Mnk Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase signal-integrating kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK signal-integrating kinases (Mnks) are MAPK-activated protein kinases and is comprised by a group of four proteins, produced by alternative splicing from two genes (Mnk1 and Mnk2). The isoforms of Mnk1 (1a/1b) and Mnk2 (2a/2b) differ at their C-termini, with the a-form having a longer C-terminus containing a MAPK-binding region. All Mnks contain a catalytic kinase domain and a polybasic region at the N-terminus which binds importin and the eukaryotic initiation factor eIF4G. The best characterized Mnk substrate is eIF4G, whose phosphorylation may promote the export of certain mRNAs from the nucleus. Mnk also phosphorylate substrates that bind to AU-rich elements that regulate mRNA stability and translation. Mnks have also been implicated in tyrosine kinase receptor signaling, inflammation, and cell prolieration or survival. The Mnk subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -270993 cd14091 STKc_RSK_C C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), 90 kDa ribosomal protein S6 kinases (p90-RSKs), or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -270994 cd14092 STKc_MSK_C C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 311 -270995 cd14093 STKc_PhKG Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). Each subunit has tissue-specific isoforms or splice variants. Vertebrates contain two isoforms of the gamma subunit (gamma 1 and gamma 2). The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -270996 cd14094 STKc_CASK Catalytic domain of the Serine/Threonine Kinase, Calcium/calmodulin-dependent serine protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CASK belongs to the MAGUK (membrane-associated guanylate kinase) protein family, which functions as multiple domain adaptor proteins and is characterized by the presence of a core of three domains: PDZ, SH3, and guanylate kinase (GuK). The enzymatically inactive GuK domain in MAGUK proteins mediates protein-protein interactions and associates intramolecularly with the SH3 domain. In addition, CASK contains a catalytic kinase and two L27 domains. It is highly expressed in the nervous system and plays roles in synaptic protein targeting, neural development, and regulation of gene expression. Binding partners include parkin (a Parkinson's disease molecule), neurexin (adhesion molecule), syndecans, calcium channel proteins, CINAP (nucleosome assembly protein), transcription factor Tbr-1, and the cytoplasmic adaptor proteins Mint1, Veli/mLIN-7/MALS, SAP97, caskin, and CIP98. Deletion or mutations in the CASK gene have been implicated in X-linked mental retardation. The CASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 300 -270997 cd14095 STKc_DCKL Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called Doublecortin-like and CAM kinase-like). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL (or DCAMKL) proteins belong to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL proteins contain a C-terminal kinase domain with similarity to CAMKs. They are involved in the regulation of cAMP signaling. Vertebrates contain three DCKL proteins (DCKL1-3); DCKL1 and 2 also contain a serine, threonine, and proline rich domain (SP), while DCKL3 contains only a single DCX domain instead of tandem domains. The DCKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -270998 cd14096 STKc_RCK1-like Catalytic domain of RCK1-like Serine/Threonine Kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal STKs including Saccharomyces cerevisiae RCK1 and RCK2, Schizosaccharomyces pombe Sty1-regulated kinase 1 (Srk1), and similar proteins. RCK1, RCK2 (or Rck2p), and Srk1 are MAPK-activated protein kinases. RCK1 and RCK2 are involved in oxidative and metal stress resistance in budding yeast. RCK2 also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. Srk1 is activated by Sty1/Spc1 and is involved in negatively regulating cell cycle progression by inhibiting Cdc25. The RCK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 295 -270999 cd14097 STKc_STK33 Catalytic domain of Serine/Threonine Kinase 33. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK33 is highly expressed in the testis and is present in low levels in most tissues. It may be involved in spermatogenesis and organ ontogenesis. It interacts with and phosphorylates vimentin and may be involved in regulating intermediate filament cytoskeletal dynamics. Its role in promoting the cell viability of KRAS-dependent cancer cells is under debate; some studies have found STK33 to promote cancer cell viability, while other studies have found it to be non-essential. KRAS is the most commonly mutated human oncogene, thus, studies on the role of STK33 in KRAS mutant cancer cells are important. The STK33 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -271000 cd14098 STKc_Rad53_Cds1 Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -271001 cd14099 STKc_PLK Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. PLKs derive their names from homology to polo, a kinase first identified in Drosophila. There are five mammalian PLKs (PLK1-5) from distinct genes. There is good evidence that PLK1 may function as an oncogene while PLK2-5 have tumor suppressive properties. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. PLK2 functions in G1 progression, S-phase arrest, and centriole duplication. PLK3 regulates angiogenesis and responses to DNA damage. PLK4 is required for late mitotic progression, cell survival, and embryonic development. PLK5 was first identified as a pseudogene containing a stop codon within the kinase domain, however, both murine and human genes encode expressed proteins. PLK5 functions in cell cycle arrest. 258 -271002 cd14100 STKc_PIM1 Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 isoforms resulting from alternative translation initiation sites. PIM1 is the founding member of the PIM subfamily. It is involved in regulating cell growth, differentiation, and apoptosis. It promotes cancer development when overexpressed by inhibiting apoptosis, promoting cell proliferation, and promoting genomic instability. The PIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 254 -271003 cd14101 STKc_PIM2 Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are three PIM2 isoforms resulting from alternative translation initiation sites. PIM2 is highly expressed in leukemia and lymphomas and has been shown to promote the survival and proliferation of tumor cells. The PIM2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271004 cd14102 STKc_PIM3 Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3). PIM3 can inhibit apoptosis and promote cell survival and protein translation, therefore, it can enhance the proliferation of normal and cancer cells. Mice deficient with PIM3 show minimal effects, suggesting that PIM3 msy not be essential. Since its expression is enhanced in several cancers, it may make a good molecular target for cancer drugs. The PIM3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -271005 cd14103 STKc_MLCK Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module. MLCK2, MLCK3, and MLCK4 share a simpler domain architecture of a single kinase domain near the C-terminus and the absence of Ig-like or FN3 domains. The MLCK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 250 -271006 cd14104 STKc_Titin Catalytic domain of the Giant Serine/Threonine Kinase Titin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Titin, also called connectin, is a muscle-specific elastic protein and is the largest known protein to date. It contains multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains, and a single kinase domain near the C-terminus. It spans half of the sarcomere, the repeating contractile unit of striated muscle, and performs mechanical and catalytic functions. Titin contributes to the passive force generated when muscle is stretched during relaxation. Its kinase domain phosphorylates and regulates the muscle protein telethonin, which is required for sarcomere formation in differentiating myocytes. In addition, titin binds many sarcomere proteins and acts as a molecular scaffold for filament formation during myofibrillogenesis. The Titin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -271007 cd14105 STKc_DAPK Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. DAPK2 is also called DAPK-related protein 1 (DRP-1), while DAPK3 has also been named DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk). These proteins are ubiquitously expressed in adult tissues, are capable of cross talk with each other, and may act synergistically in regulating cell death. The DAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -271008 cd14106 STKc_DRAK Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs, also called STK17, were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. They may play a role in apoptotic signaling. The DRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -271009 cd14107 STKc_obscurin_rpt1 Catalytic kinase domain, first repeat, of the Giant Serine/Threonine Kinase Obscurin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271010 cd14108 STKc_SPEG_rpt1 Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271011 cd14109 PK_Unc-89_rpt1 Pseudokinase domain, first repeat, of the Giant Serine/Threonine Kinase Uncoordinated protein 89. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. The nematode Unc-89 gene, through alternative promoter use and splicing, encodes at least six major isoforms (Unc-89A to Unc-89F) of giant muscle proteins that are homologs for the vetebrate obscurin. In flies, five isoforms of Unc-89 have been detected: four in the muscles of adult flies (two in the indirect flight muscle and two in other muscles) and another isoform in the larva. Unc-89 in nematodes is required for normal muscle cell architecture. In flies, it is necessary for the development of a symmetrical sarcomere in the flight muscles. Unc-89 proteins contain several adhesion and signaling domains including multiple copies of the immunoglobulin (Ig) domain, as well as fibronectin type III (FN3), SH3, RhoGEF, and PH domains. The nematode Unc-89 isoforms D, C, D, and F contain two kinase domain with B and F having two complete kinase domains while the first repeat of C and D are partial domains. Homology modeling suggests that the first kinase repeat of Unc-89 may be catalytically inactive, a pseudokinase, while the second kinase repeat may be active. The pseudokinase domain may function as a regulatory domain or a protein interaction domain. The Unc-89 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271012 cd14110 STKc_obscurin_rpt2 Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271013 cd14111 STKc_SPEG_rpt2 Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271014 cd14112 STKc_Unc-89_rpt2 Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Uncoordinated protein 89. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The nematode Unc-89 gene, through alternative promoter use and splicing, encodes at least six major isoforms (Unc-89A to Unc-89F) of giant muscle proteins that are homologs for the vetebrate obscurin. In flies, five isoforms of Unc-89 have been detected: four in the muscles of adult flies (two in the indirect flight muscle and two in other muscles) and another isoform in the larva. Unc-89 in nematodes is required for normal muscle cell architecture. In flies, it is necessary for the development of a symmetrical sarcomere in the flight muscles. Unc-89 proteins contain several adhesion and signaling domains including multiple copies of the immunoglobulin (Ig) domain, as well as fibronectin type III (FN3), SH3, RhoGEF, and PH domains. The nematode Unc-89 isoforms D, C, D, and F contain two kinase domain with B and F having two complete kinase domains while the first repeat of C and D are partial domains. Homology modeling suggests that the first kinase repeat of Unc-89 may be catalytically inactive, a pseudokinase, while the second kinase repeat may be active. The Unc-89 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -271015 cd14113 STKc_Trio_C C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Triple functional domain protein. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Triple functional domain protein (Trio), also called PTPRF-interacting protein, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. Trio plays important roles in neuronal cell migration and axon guidance. It was originally identified as an interacting partner of the of the receptor-like tyrosine phosphatase (RPTP) LAR (leukocyte-antigen-related protein), a family of receptors that function in the signaling to the actin cytoskeleton during development. Trio functions as a GEF for Rac1, RhoG, and RhoA, and is involved in the regulation of lamellipodia formation, mediating Rac1-dependent cell spreading and migration. The Trio subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -271016 cd14114 STKc_Twitchin_like The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. Twitchin and Projectin are both associated with thick filaments. Twitchin is localized in the outer parts of A-bands and is involved in regulating muscle contraction. It interacts with the myofibrillar proteins myosin and actin in a phosphorylation-dependent manner, and may be involved in regulating the myosin cross-bridge cycle. The kinase activity of Twitchen is activated by Ca2+ and the Ca2+ binding protein S100A1. Projectin is associated with the end of thick filaments and is a component of flight muscle connecting filaments. The kinase domain of Projectin may play roles in autophosphorylation and transphosphorylation, which impact the formation of myosin filaments. The Twitchin-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -271017 cd14115 STKc_Kalirin_C C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Kalirin. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Kalirin, also called Duo or Duet, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. As a GEF, it activates Rac1, RhoA, and RhoG. It is highly expressed in neurons and is required for spine formation. The kalirin gene produces at least 10 isoforms from alternative promoter use and splicing. Of the major isoforms (Kalirin-7, -9, and -12), only kalirin-12 contains the C-terminal kinase domain. Kalirin-12 is highly expressed during embryonic development and it plays an important role in axon outgrowth. The Kalirin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 248 -271018 cd14116 STKc_Aurora-A Catalytic domain of the Serine/Threonine kinase, Aurora-A kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2, which also localizes the kinase to spindle microtubules. Aurora-A is overexpressed in many cancer types such as prostate, ovarian, breast, bladder, gastric, and pancreatic. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -271019 cd14117 STKc_Aurora-B_like Catalytic domain of the Serine/Threonine kinase, Aurora-B kinase and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). This subfamily includes Aurora-B and Aurora-C. Aurora-B is most active at the transition during metaphase to the end of mitosis. It associates with centromeres, relocates to the midzone of the central spindle, and concentrates at the midbody during cell division. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. INCENP participates in the activation of Aurora-B in a two-step process: first by binding to form an intermediate state of activation and the phosphorylation of its C-terminal TSS motif to generate the fully active kinase. The Aurora-B subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -271020 cd14118 STKc_CAMKK Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -271021 cd14119 STKc_LKB1 Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LKB1, also called STK11, was first identified as a tumor suppressor responsible for Peutz-Jeghers syndrome, a disorder that leads to an increased risk of spontaneous epithelial cancer. It serves as a master upstream kinase that activates AMP-activated protein kinase (AMPK) and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. To be activated, LKB1 requires the adaptor proteins STe20-Related ADaptor (STRAD) and mouse protein 25 (MO25). The LKB1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271022 cd14120 STKc_ULK1_2-like Catalytic domain of the Serine/Threonine kinases, Unc-51-like kinases 1 and 2, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. ULK2 is ubiquitously expressed and is essential in autophagy induction. ULK1 and ULK2 have unique and cell-type specific roles, but also display partially redundant roles in starvation-induced autophagy. They both display neuron-specific functions: ULK1 is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, and axon branching; ULK2 plays a role in axon development. The ULK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -271023 cd14121 STKc_ULK3 Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK3 mRNA is up-regulated in fibroblasts after Ras-induced senescence, and its overexpression induces both autophagy and senescence in a fibroblast cell line. ULK3, through its kinase activity, positively regulates Gli proteins, mediators of the Sonic hedgehog (Shh) signaling pathway that is implicated in tissue homeostasis maintenance and neurogenesis. It is inhibited by binding to Suppressor of Fused (Sufu). The ULK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 252 -271024 cd14122 STKc_VRK1 Catalytic domain of the Serine/Threonine protein kinase, Vaccinia Related Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. VRKs were initially discovered due to its similarity to vaccinia virus B1R STK, which is important for viral replication. Vertebrates contain three VRK proteins. Human VRK1 is implicated in the regulation of many cellular processes including cell cycle progression and proliferation, stress responses, nuclear envelope assembly and chromatin condensation. It regulates cell cycle progression during the DNA replication period by inducing cyclin D1 expression. VRK1 also phosphorylates and regulates some transcription factors including p53, c-Jun, ATF2, and nuclear factor BAF. VRK1 stabilizes p53 by interfering with its mdm2-mediated degradation. Accumulation of p53, which blocks cell growth and division, is modulated by an autoregulatory loop between p53 and VRK1 (accumulated p53 downregulates VRK1). This autoregulatory loop has been found to be nonfunctional in some lung carcinomas. The VRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 301 -271025 cd14123 STKc_VRK2 Catalytic domain of the Serine/Threonine protein kinase, Vaccinia Related Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. VRKs were initially discovered due to its similarity to vaccinia virus B1R STK, which is important for viral replication. They play important roles in cell signaling, nuclear envelope dynamics, apoptosis, and stress responses. Vertebrates contain three VRK proteins. VRK2 exists as two alternative splice forms, A and B, which differ in their C-terminal regions. VRK2A, the predominant isoform, contains a hydrophobic tail and is anchored to the ER and mitochondria. It is expressed in all cell types. VRK2B lacks a membrane-anchor tail and is detected in the cytosol and the nucleus. Like VRK1, it can stabilize p53. VRK2B functionally replaces VRK1 in the nucleus of cell types where VRK1 is absent. VRK2 modulates hypoxia-induced stress responses by interacting with TAK1, an atypical MAPK kinase kinase which triggers cascades that activate JNK following oxidative stress. VRK2 also interacts with JIP1, a scaffold protein that assembles three consecutive members of a MAPK pathway. This interaction prevents the association of JNK with the signaling complex, leading to reduced phosphorylation and AP1-dependent transcription. The VRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 302 -271026 cd14124 PK_VRK3 Pseudokinase domain of Vaccinia Related Kinase 3. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. VRKs were initially discovered due to its similarity to vaccinia virus B1R STK, which is important for viral replication. They play important roles in cell signaling, nuclear envelope dynamics, apoptosis, and stress responses. Vertebrates contain three VRK proteins. VRK3 is an inactive pseudokinase that is unable to bind ATP. It achieves its regulatory function through protein-protein interactions. It negatively regulates ERK signaling by binding directly and enhancing the activity of the MAPK phosphatase VHR (vaccinia H1-related), which dephosphorylates and inactivates ERK. The VRK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 298 -271027 cd14125 STKc_CK1_delta_epsilon Catalytic domain of the Serine/Threonine protein kinases, Casein Kinase 1 delta and epsilon. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. The delta and epsilon isoforms of CK1 play important roles in circadian rhythm and cell growth. They phosphorylate PERIOD proteins (PER1-3), which are circadian clock proteins that fulfill negative regulatory functions. PER phosphorylation leads to its degradation. However, CRY proteins form a complex with PER and CK1delta/epsilon that protects PER from degradation and leads to nuclear accummulation of the complex, which inhibits BMAL1-CLOCK dependent transcription activation. CK1delta/epsilon also phosphorylate the tumor suppressor p53 and the cellular oncogene Mdm2, which are key regulators of cell growth, genome integrity, and the development of cancer. This subfamily also includes the CK1 fungal proteins Saccharomyces cerevisiae HRR25 and Schizosaccharomyces pombe HHP1. These fungal proteins are involved in DNA repair. The CK1 delta/epsilon subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 275 -271028 cd14126 STKc_CK1_gamma Catalytic domain of the Serine/Threonine protein kinase, Casein Kinase 1 gamma. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. CK1gamma proteins are unique within the CK1 subfamily in that they are palmitoylated at the C-termini and are anchored to the plasma membrane. CK1gamma is involved in transducing the signaling of LDL-receptor-related protein 6 (LRP6) through direct phosphorylation following Wnt stimulation, resulting in the recruitment of the scaffold protein Axin. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning. In higher vertebrates, three CK1gamma (gamma1-3) isoforms exist. In mammalian cells, CK1gamma2 has been implicated in regulating the synthesis of sphingomyelin, a phospholipid that is found in the outer leaflet of the plasma membrane, by hyperphosphorylating and inactivating the ceramide transfer protein CERT. CK1gamma2 also phosphorylates the transcription factor Smad-3 resulting in its ubiquitination and degradation. It inhibits Smad-3 mediated responses of Transforming Growth Factor-beta (TGF-beta) including cell growth arrest. The CK1 gamma subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -271029 cd14127 STKc_CK1_fungal Catalytic domain of the Serine/Threonine protein kinase, Fungal Casein Kinase 1 homolog 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. This subfamily is composed of fungal CK1 homolog 1 proteins, also called Yck1 in Saccharomyces cerevisiae and Cki1 in Schizosaccharomyces pombe. Yck1 (or Yck1p) and Cki1 are plasma membrane-anchored proteins. Yck1 phosphorylates and regulates Khd1p, a RNA-binding protein that represses translation of bud-localized mRNA. Cki1 phosphorylates and regulates phosphatidylinositol (PI)-(4)P-5-kinase, which catalyzes the last step in the sythesis of PI(4,5)P2, which is involved in actin cytoskeleton remodeling and membrane traffic. The fungal CK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -271030 cd14128 STKc_CK1_alpha Catalytic domain of the Serine/Threonine protein kinases, Casein Kinase 1 alpha. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK1 phosphorylates a variety of substrates including enzymes, transcription and splice factors, cytoskeletal proteins, viral oncogenes, receptors, and membrane-associated proteins. There are mutliple isoforms of CK1 and in mammals, seven isoforms (alpha, beta, gamma1-3, delta, and epsilon) have been characterized. These isoforms differ mainly in the length and structure of their C-terminal non-catalytic region. CK1alpha plays a role in cell cycle progression, spindle dynamics, and chromosome segregation. It is also involved in regulating apoptosis mediated by Fas or the retinoid X receptor (RXR), and is a positive regulator of Wnt signaling. CK1alpha phosphorylates the NS5A protein of flaviviruses such as the Hepatitis C virus (HCV) and yellow fever virus (YFV), and influences flaviviral replication. The CK1 alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 266 -271031 cd14129 STKc_TTBK2 Catalytic domain of the Serine/Threonine protein kinase, Tau-Tubulin Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TTBK is a neuron-specific kinase that phosphorylates the microtubule-associated protein tau and promotes its aggregation. Higher vertebrates contain two TTBK proteins, TTBK1 and TTBK2, both of which have been implicated in neurodegeneration. Mutations in TTBK2 is associated with the development of spinocerebellar ataxia type 11, belonging to a group of neurodegenerative disorders characterized by progressive incoordination, dysarthria and impairment of eye movements. Brain tissues of SCA11 patients show the presence of neurofibrillary tangles and tau deposition in the brain, similar to Alzheimer's disease (AD) patients. The TTBK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -271032 cd14130 STKc_TTBK1 Catalytic domain of the Serine/Threonine protein kinase, Tau-Tubulin Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TTBK is a neuron-specific kinase that phosphorylates the microtubule-associated protein tau and promotes its aggregation. Higher vertebrates contain two TTBK proteins, TTBK1 and TTBK2, both of which have been implicated in neurodegeneration. Genetic variations in TTBK1 are linked to Alzheimer's disease (AD). Hyperphosphorylated tau is a major component of paired helical filaments that accumulate in the brain of AD patients. Studies in transgenic mice show that TTBK1 is involved in the phosphorylation-dependent pathogenic aggregation of tau. The TTBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -271033 cd14131 PKc_Mps1 Catalytic domain of the Dual-specificity Mitotic checkpoint protein kinase, Monopolar spindle 1 (also called TTK). Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TTK/Mps1 is a spindle checkpoint kinase that was first discovered due to its necessity in centrosome duplication in budding yeast. It was later found to function in the spindle assembly checkpoint, which monitors the proper attachment of chromosomes to the mitotic spindle. In yeast, substrates of Mps1 include the spindle pole body components Spc98p, Spc110p, and Spc42p. The TTK/Mps1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -271034 cd14132 STKc_CK2_alpha Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 306 -271035 cd14133 PKc_DYRK_like Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 262 -271036 cd14134 PKc_CLK Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on S/T residues. In Drosophila, the CLK homolog DOA (Darkener of apricot) is essential for embryogenesis and its mutation leads to defects in sexual differentiation, eye formation, and neuronal development. In fission yeast, the CLK homolog Lkh1 is a negative regulator of filamentous growth and asexual flocculation, and is also involved in oxidative stress response. Vertebrates contain mutliple CLK proteins and mammals have four (CLK1-4). The CLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 332 -271037 cd14135 STKc_PRP4 Catalytic domain of the Serine/Threonine Kinase, Pre-mRNA-Processing factor 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PRP4 phosphorylates a number of factors involved in the formation of active spliceosomes, which catalyze pre-mRNA splicing. It phosphorylates PRP6 and PRP31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), during spliceosomal complex formation. In fission yeast, PRP4 phosphorylates the splicing factor PRP1 (U5-102 kD in mammals). Thus, PRP4 plays a key role in regulating spliceosome assembly and pre-mRNA splicing. It also plays an important role in mitosis by acting as a spindle assembly checkpoint kinase that is required for chromosome alignment and the recruitment of the checkpoint proteins MPS1, MAD1, and MAD2 at kinetochores. The PRP4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 318 -271038 cd14136 STKc_SRPK Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. They play important roles in mediating pre-mRNA processing and mRNA maturation, as well as other cellular functions such as chromatin reorganization, cell cycle and p53 regulation, and metabolic signaling. Vertebrates contain three distinct SRPKs, called SRPK1-3. The SRPK homolog in budding yeast, Sky1p, recognizes and phosphorylates its substrate Npl3p, which lacks a classic RS domain but contains a single RS dipeptide at the C-terminus of its RGG domain. Npl3p is a shuttling heterogeneous nuclear ribonucleoprotein (hnRNP) that exports a distinct class of mRNA from the nucleus to the cytoplasm. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 320 -271039 cd14137 STKc_GSK3 The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 293 -271040 cd14138 PTKc_Wee1a Catalytic domain of the Protein Tyrosine Kinase, Wee1a. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1a, Xenopus laevis Wee1b (XeWee1b) and similar vertebrate proteins. Members of this subfamily show a wide expression pattern. XeWee1b functions after the first zygotic cell divisions. It is expressed in all tissues and is also present after the gastrulation stage of embryos. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1a subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 276 -271041 cd14139 PTKc_Wee1b Catalytic domain of the Protein Tyrosine Kinase, Wee1b. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1b (also called Wee2), Xenopus laevis Wee1a (XeWee1a) and similar vertebrate proteins. XeWee1a accumulates after exiting the metaphase II stage in oocytes and in early mitotic cells. It functions during the first zygotic cell division and not during subsequent divisions. Mammalian Wee2/Wee1b is an oocyte-specific inhibitor of meiosis that functions downstream of cAMP. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1b subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 274 -271042 cd14140 STKc_ACVR2b Catalytic domain of the Serine/Threonine Kinase, Activin Type IIB Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2b (or ActRIIB) belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. ACVR2b is one of two ACVR2 receptors found in vertebrates. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. The ACVR2b subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -271043 cd14141 STKc_ACVR2a Catalytic domain of the Serine/Threonine Kinase, Activin Type IIA Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2a (or ActRIIA) belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. ACVR2b is one of two ACVR2 receptors found in vertebrates. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. The ACVR2a subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -271044 cd14142 STKc_ACVR1_ALK1 Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin receptor-Like Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR1, also called Activin receptor-Like Kinase 2 (ALK2), and ALK1 act as receptors for bone morphogenetic proteins (BMPs) and they activate SMAD1/5/8. ACVR1 is widely expressed while ALK1 is limited mainly to endothelial cells. The specificity of BMP binding to type I receptors is affected by type II receptors. ACVR1 binds BMP6/7/9/10 and can also bind anti-Mullerian hormone (AMH) in the presence of AMHR2. ALK1 binds BMP9/10 as well as TGFbeta in endothelial cells. A missense mutation in the GS domain of ACVR1 causes fibrodysplasia ossificans progressiva, a complex and disabling disease characterized by congenital skeletal malformations and extraskeletal bone formation. ACVR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like ACVR1 and ALK1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The ACVR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 298 -271045 cd14143 STKc_TGFbR1_ACVR1b_ACVR1c Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta Type I Receptor and Activin Type IB/IC Receptors. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TGFbR1, also called Activin receptor-Like Kinase 5 (ALK5), functions as a receptor for TGFbeta and phoshorylates SMAD2/3. TGFbeta proteins are cytokines that regulate cell growth, differentiation, and survival, and are critical in the development and progression of many human cancers. Mutations in TGFbR1 (and TGFbR2) can cause aortic aneurysm disorders such as Loeys-Dietz and Marfan syndromes. ACVR1b (also called ALK4) and ACVR1c (also called ALK7) act as receptors for activin A and B, respectively. TGFbR1, ACVR1b, and ACVR1c belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like TGFbR1, ACVR1b, and ACVR1c, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The TGFbR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -271046 cd14144 STKc_BMPR1 Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type I Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1 functions as a receptor for morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Vertebrates contain two type I BMP receptors, BMPR1a and BMPR1b. BMPR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that also includes TGFbeta, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -271047 cd14145 STKc_MLK1 Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK1 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K9. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Little is known about the specific function of MLK1. It is capable of activating the c-Jun N-terminal kinase pathway. Mice lacking both MLK1 and MLK2 are viable, fertile, and have normal life spans. There could be redundancy in the function of MLKs. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -271048 cd14146 STKc_MLK4 Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK4 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -271049 cd14147 STKc_MLK3 Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK3 is a mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK3 activates multiple MAPK pathways and plays a role in apoptosis, proliferation, migration, and differentiation, depending on the cellular context. It is highly expressed in breast cancer cells and its signaling through c-Jun N-terminal kinase has been implicated in the migration, invasion, and malignancy of cancer cells. MLK3 also functions as a negative regulator of Inhibitor of Nuclear Factor-KappaB Kinase (IKK) and consequently, it also impacts inflammation and immunity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -271050 cd14148 STKc_MLK2 Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK2 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K10. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK2 is abundant in brain, skeletal muscle, and testis. It functions upstream of the MAPK, c-Jun N-terminal kinase. It binds hippocalcin, a calcium-sensor protein that protects neurons against calcium-induced cell death. Both MLK2 and hippocalcin may be associated with the pathogenesis of Parkinson's disease. MLK2 also binds to normal huntingtin (Htt), which is important in neuronal transcription, development, and survival. MLK2 does not bind to the polyglutamine-expanded Htt, which is implicated in the pathogeneis of Huntington's disease, leading to neuronal toxicity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 258 -271051 cd14149 STKc_C-Raf Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. C-Raf, also known as Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around midgestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. C-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The C-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 283 -271052 cd14150 STKc_A-Raf Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A-Raf cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. A-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The A-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -271053 cd14151 STKc_B-Raf Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. B-Raf activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The B-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 274 -271054 cd14152 STKc_KSR1 Catalytic domain of the Serine/Threonine Kinase, Kinase Suppressor of Ras 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. KSR1 functions as a transducer of TNFalpha-stimulated C-Raf activation of ERK1/2 and NF-kB. Detected activity of KSR1 is cell type specific and context dependent. It is inactive in normal colon epithelial cells and becomes activated at the onset of inflammatory bowel disease (IBD). Similarly, KSR1 activity is undetectable prior to stimulation by EGF or ceramide in COS-7 or YAMC cells, respectively. KSR proteins are widely regarded as pseudokinases, however, this matter is up for debate as catalytic activity has been detected for KSR1 in some systems. The KSR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -271055 cd14153 PK_KSR2 Pseudokinase domain of Kinase Suppressor of Ras 2. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR2 interacts with the protein phosphatase calcineurin and functions in calcium-mediated ERK signaling. It also functions in energy metabolism by regulating AMP kinase and AMPK-dependent processes such as glucose uptake and fatty acid oxidation. KSR proteins act as scaffold proteins that function downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases. The KSR2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -271056 cd14154 STKc_LIMK Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. Vertebrate have two members, LIMK1 and LIMK2. The LIMK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -271057 cd14155 PKc_TESK Catalytic domain of the Dual-specificity protein kinase, Testicular protein kinase. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TESK proteins phosphorylate cofilin and induce actin cytoskeletal reorganization. In the Drosphila eye, TESK is required for epithelial cell organization. Mammals contain two TESK proteins, TESK1 and TESK2, which are highly expressed in testis and play roles in spermatogenesis. TESK1 is found in testicular germ cells while TESK2 is expressed mainly in nongerminal Sertoli cells. TESK1 is stimulated by integrin-mediated signaling pathways. It regulates cell spreading and focal adhesion formation. The TESK subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 253 -271058 cd14156 PKc_LIMK_like_unk Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases. PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This group is composed of uncharacterized proteins with similarity to LIMK and Testicular or testis-specific protein kinase (TESK). LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -271059 cd14157 STKc_IRAK2 Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK2 plays a role in mediating NFkB activation by TLR3, TLR4, and TLR8. It is specifically targeted by the viral protein A52, which is important for virulence, to inhibit all IL-1/TLR pathways, indicating that IRAK2 has a predominant role in NFkB activation. It is redundant with IRAK1 in early signaling but is critical for late and sustained activation. The IRAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -271060 cd14158 STKc_IRAK4 Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK4 plays a critical role in NFkB activation by its interaction with MyD88, which acts as a scaffold that enables IRAK4 to phosphorylate and activate IRAK1 and/or IRAK2. It also plays an important role in type I IFN production induced by TLR7/8/9. The IRAK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -271061 cd14159 STKc_IRAK1 Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK1 plays a role in the activation of IRF3/7, STAT, and NFkB. It mediates IL-6 and IFN-gamma responses following IL-1 and IL-18 stimulation, respectively. It also plays an essential role in IFN-alpha induction downstream of TLR7 and TLR9. The IRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 296 -271062 cd14160 PK_IRAK3 Pseudokinase domain of Interleukin-1 Receptor Associated Kinase 3. The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK3 (or IRAK-M) is the only IRAK that does not show kinase activity. It is found only in monocytes and macrophages in humans, and functions as a negative regulator of TLR signaling including TLR-2 induced p38 activation. It also negatively regulates the alternative NFkB pathway in a TLR-2 specific manner. IRAK3 is downregulated in the monocytes of obese people, and is associated with high SOD2, a marker of mitochondrial oxidative stress. It is an important inhibitor of inflammation in association with obesity and metabolic syndrome. The IRAK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 276 -271063 cd14161 STKc_NUAK2 Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. NUAK2 is implicated in regulating actin stress fiber assembly through its association with myosin phosphatase Rho-interacting protein (MRIP), which leads to an increase in myosin regulatory light chain (MLC) phosphorylation. It is also associated with tumor growth, migration, and oncogenicity of melanoma cells. The NUAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271064 cd14162 STKc_TSSK4-like Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -271065 cd14163 STKc_TSSK3-like Catalytic domain of testis-specific serine/threonine kinase 3 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. Its mRNA levels is low at birth, increases at puberty, and remains high throughout adulthood. The TSSK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271066 cd14164 STKc_TSSK6-like Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK6, also called SSTK, is expressed at the head of elongated sperm. It can phosphorylate histones and associate with heat shock protens HSP90 and HSC70. Male mice deficient in TSSK6 are infertile, showing spermatogenic impairment including reduced sperm counts, impaired DNA condensation, abnormal morphology and decreased motility rates. The TSSK6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -271067 cd14165 STKc_TSSK1_2-like Catalytic domain of testis-specific serine/threonine kinase 1, TSSK2, and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK2 is localized in the sperm neck, equatorial segment, and mid-piece of the sperm tail. Both TSSK1 and TSSK2 phosphorylate their common substrate TSKS (testis-specific-kinase-substrate). TSSK1/TSSK2 double knock-out mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK1/2-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -271068 cd14166 STKc_CaMKI_gamma Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I gamma. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-gamma subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 285 -271069 cd14167 STKc_CaMKI_alpha Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I alpha. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 263 -271070 cd14168 STKc_CaMKI_delta Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I delta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-delta subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 301 -271071 cd14169 STKc_CaMKI_beta Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I beta. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 277 -271072 cd14170 STKc_MAPKAPK2 Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 2 (MAPKAP2 or MK2) contains an N-terminal proline-rich region that can bind to SH3 domains, a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK2 is a bonafide substrate for the MAPK p38. It is closely related to MK3 and thus far, MK2/3 show indistinguishable substrate specificity. They are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. The MK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 303 -271073 cd14171 STKc_MAPKAPK5 Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 5. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 5 (MAPKAP5 or MK5) is also called PRAK (p38-regulated/activated protein kinase). It contains a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK5 is a ubiquitous protein that is implicated in neuronal morphogenesis, cell migration, and tumor angiogenesis. It interacts with PKA, which induces cytoplasmic translocation of MK5. Its substrates includes p53, ERK3/4, Hsp27, and cytosolic phospholipase A2 (cPLA2). The MAPKAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -271074 cd14172 STKc_MAPKAPK3 Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 3 (MAPKAP3 or MK3) contains an N-terminal proline-rich region that can bind to SH3 domains, a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK3 is a bonafide substrate for the MAPK p38. It is closely related to MK2 and thus far, MK2/3 show indistinguishable substrate specificity. They are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. MK3 activity is only significant when MK2 is absent. The MK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -271075 cd14173 STKc_Mnk2 Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase signal-integrating kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK signal-integrating kinases (Mnks) are MAPK-activated protein kinases and is comprised by a group of four proteins, produced by alternative splicing from two genes (Mnk1 and Mnk2). The isoforms of Mnk1 (1a/1b) and Mnk2 (2a/2b) differ at their C-termini, with the a-form having a longer C-terminus containing a MAPK-binding region. All Mnks contain a catalytic kinase domain and a polybasic region at the N-terminus which binds importin and the eukaryotic initiation factor eIF4G. The best characterized Mnk substrate is eIF4G, whose phosphorylation may promote the export of certain mRNAs from the nucleus. Mnk also phosphorylate substrates that bind to AU-rich elements that regulate mRNA stability and translation. Mnks have also been implicated in tyrosine kinase receptor signaling, inflammation, and cell prolieration or survival. The Mnk subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 288 -271076 cd14174 STKc_Mnk1 Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase signal-integrating kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK signal-integrating kinases (Mnks) are MAPK-activated protein kinases and is comprised by a group of four proteins, produced by alternative splicing from two genes (Mnk1 and Mnk2). The isoforms of Mnk1 (1a/1b) and Mnk2 (2a/2b) differ at their C-termini, with the a-form having a longer C-terminus containing a MAPK-binding region. All Mnks contain a catalytic kinase domain and a polybasic region at the N-terminus which binds importin and the eukaryotic initiation factor eIF4G. The best characterized Mnk substrate is eIF4G, whose phosphorylation may promote the export of certain mRNAs from the nucleus. Mnk also phosphorylate substrates that bind to AU-rich elements that regulate mRNA stability and translation. Mnks have also been implicated in tyrosine kinase receptor signaling, inflammation, and cell prolieration or survival. The Mnk subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 289 -271077 cd14175 STKc_RSK1_C C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called Ribosomal protein S6 kinase alpha-1 or 90kDa ribosomal protein S6 kinase 1). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK1 is also called S6K-alpha-1, RPS6KA1, p90RSK1 or MAPK-activated protein kinase 1a (MAPKAPK-1a). It is a component of the insulin transduction pathway, regulating the function of IRS1. It also interacts with PKA and promotes its inactivation. RSK1 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 291 -271078 cd14176 STKc_RSK2_C C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 2 (also called 90kDa ribosomal protein S6 kinase 3 or Ribosomal protein S6 kinase alpha-3). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK2 is also called p90RSK3, RPS6KA3, S6K-alpha-3, or MAPK-activated protein kinase 1b (MAPKAPK-1b). RSK2 is expressed highly in the regions of the brain with high synaptic activity. It plays a role in the maintenance and consolidation of excitatory synapses. It is a specific modulator of phospholipase D in calcium-regulated exocytosis. Mutations in the RSK2 gene, RPS6KA3, cause Coffin-Lowry syndrome (CLS), a rare syndromic form of X-linked mental retardation characterized by growth and psychomotor retardation and skeletal abnormalities. RSK2 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 339 -271079 cd14177 STKc_RSK4_C C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 4 (also called Ribosomal protein S6 kinase alpha-6 or 90kDa ribosomal protein S6 kinase 6). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK4 is also called S6K-alpha-6, RPS6KA6, p90RSK6 or pp90RSK4. RSK4 is a substrate of ERK and is a modulator of p53-dependent proliferation arrest in human cells. Deletion of the RSK4 gene, RPS6KA6, frequently occurs in patients of X-linked deafness type 3, mental retardation and choroideremia. Studies of RSK4 in cancer cells and tissues suggest that it may be oncogenic or tumor suppressive depending on many factors. RSK4 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 295 -271080 cd14178 STKc_RSK3_C C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 3 (also called Ribosomal protein S6 kinase alpha-2 or 90kDa ribosomal protein S6 kinase 2). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK3 is also called S6K-alpha-2, RPS6KA2, p90RSK2 or MAPK-activated protein kinase 1c (MAPKAPK-1c). RSK3 binds muscle A-kinase anchoring protein (mAKAP)-b directly and regulates concentric cardiac myocyte growth. The RSK3 gene, RPS6KA2, is a putative tumor suppressor gene in sporadic epithelial ovarian cancer and variations to the gene may be associated with rectal cancer risk. RSK3 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 293 -271081 cd14179 STKc_MSK1_C C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK1 plays a role in the regulation of translational control and transcriptional activation. It phosphorylates the transcription factors, CREB and NFkB. It also phosphorylates the nucleosomal proteins H3 and HMG-14. Increased phosphorylation of MSK1 is associated with the development of cerebral ischemic/hypoxic preconditioning. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 310 -271082 cd14180 STKc_MSK2_C C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 309 -271083 cd14181 STKc_PhKG2 Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 2 subunit. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 2 subunit (PhKG2) is also referred to as the testis/liver gamma isoform. Mutations in its gene cause autosomal-recessive glycogenosis of the liver. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 279 -271084 cd14182 STKc_PhKG1 Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 1 subunit. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 1 subunit (PhKG1) is also referred to as the muscle gamma isoform. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 276 -271085 cd14183 STKc_DCKL1 Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 1 (also called Doublecortin-like and CAM kinase-like 1). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL1 (or DCAMKL1) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL1 contains a serine, threonine, and proline rich domain (SP) and a C-terminal kinase domain with similarity to CAMKs. DCKL1 interacts with tubulin, glucocorticoid receptor, dynein, JIP1/2, caspases (3 and 8), and calpain, among others. It plays roles in neurogenesis, neuronal migration, retrograde transport, and neuronal apoptosis. The DCKL1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 268 -271086 cd14184 STKc_DCKL2 Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 2 (also called Doublecortin-like and CAM kinase-like 2). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL2 (or DCAMKL2) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL2 contains a serine, threonine, and proline rich domain (SP) and a C-terminal kinase domain with similarity to CAMKs. DCKL2 has been shown to interact with tubulin, JIP1/2, JNK, neurabin 2, and actin. It is associated with the terminal segments of axons and dendrites, and may function as a phosphorylation-dependent switch to control microtubule dynamics in neuronal growth cones. The DCKL2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -271087 cd14185 STKc_DCKL3 Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3). STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 258 -271088 cd14186 STKc_PLK4 Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK4, also called SAK or STK18, is structurally different from other PLKs in that it contains only one polo box that can form two adjacent polo boxes and a functional PDB by homodimerization. It is required for late mitotic progression, cell survival, and embryonic development. It localizes to centrosomes and is required for centriole duplication and chromosomal stability. Overexpression of PLK4 may be associated with colon tumors. The PLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -271089 cd14187 STKc_PLK1 Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. Its localization changes during mitotic progression; associating first with centrosomes in prophase, with kinetochores in prometaphase and metaphase, at the central spindle in anaphase, and in the midbody during telophase. It carries multiple functions throughout the cell cycle through interactions with differrent substrates at these specific subcellular locations. PLK1 is overexpressed in many human cancers and is associated with poor prognosis. The PLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 265 -271090 cd14188 STKc_PLK2 Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK2, also called Snk (serum-inducible kinase), functions in G1 progression, S-phase arrest, and centriole duplication. Its gene is responsive to both growth factors and cellular stress, is a transcriptional target of p53, and activates a G2-M checkpoint. The PLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271091 cd14189 STKc_PLK3 Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK3, also called Prk or Fnk (FGF-inducible kinase), regulates angiogenesis and responses to DNA damage. Activated PLK3 mediates Chk2 phosphorylation by ATM and the resulting checkpoint activation. PLK3 phosphorylates DNA polymerase delta and may be involved in DNA repair. It also inhibits Cdc25c, thereby regulating the onset of mitosis. The PLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 255 -271092 cd14190 STKc_MLCK2 Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK2 (or MYLK2) phosphorylates myosin regulatory light chain and controls the contraction of skeletal muscles. MLCK2 contains a single kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site. The MLCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -271093 cd14191 STKc_MLCK1 Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK1 (or MYLK1) phosphorylates myosin regulatory light chain and controls the contraction of smooth muscles. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module which results in the expression of telokin in phasic smooth muscles, leading to Ca2+ desensitization by cyclic nucleotides of smooth muscle force. MLCK1 is also responsible for myosin regulatory light chain phosphorylation in nonmuscle cells and may play a role in regulating myosin II ATPase activity. The MLCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 259 -271094 cd14192 STKc_MLCK3 Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK3 (or MYLK3) phosphorylates myosin regulatory light chain 2 and controls the contraction of cardiac muscles. It is expressed specifically in both the atrium and ventricle of the heart and its expression is regulated by the cardiac protein Nkx2-5. MLCK3 plays an important role in cardiogenesis by regulating the assembly of cardiac sarcomeres, the repeating contractile unit of striated muscle. MLCK3 contains a single kinase domain near the C-terminus and a unique N-terminal half, and unlike MLCK1/2, it does not appear to be regulated by Ca2+/calmodulin. The MLCK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -271095 cd14193 STKc_MLCK4 Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. MLCK4 (or MYLK4 or SgK085) contains a single kinase domain near the C-terminus. The MLCK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 261 -271096 cd14194 STKc_DAPK1 Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. It is Ca2+/calmodulin (CaM)-regulated and actin-associated protein that contains an N-terminal kinase domain followed by an autoinhibitory CaM binding region and a large C-terminal extension with multiple functional domains including ankyrin (ANK) repeats, a cytoskeletal binding domain, a Death domain, and a serine-rich tail. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. The DAPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -271097 cd14195 STKc_DAPK3 Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK3, also called DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk), contains an N-terminal kinase domain and a C-terminal region with nuclear localization signals (NLS) and a leucine zipper motif that mediates homodimerization and interaction with other leucine zipper proteins. It interacts with Par-4, a protein that contains a death domain and interacts with actin filaments. DAPK3 is present in both the cytoplasm and nucleus. Its co-expression with Par-4 results in the co-localization of the two proteins to actin filaments. In addition to cell death, DAPK3 is also implicated in mediating cell motility and the contraction of smooth muscles. The DAPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -271098 cd14196 STKc_DAPK2 Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK2, also called DAPK-related protein 1 (DRP-1), is a Ca2+/calmodulin (CaM)-regulated protein containing an N-terminal kinase domain, a CaM autoinhibitory site and a dimerization module. It lacks the cytoskeletal binding regions of DAPK1 and the exogenous protein has been shown to be soluble and cytoplasmic. FLAG-tagged DAPK2, however, accumulated within membrane-enclosed autophagic vesicles. It is unclear where endogenous DAPK2 is localized. DAPK2 participates in TNF-alpha and FAS-receptor induced cell death and enhances neutrophilic maturation in myeloid leukemic cells. It contributes to the induction of anoikis and its down-regulation is implicated in the beta-catenin induced resistance of malignant epithelial cells to anoikis. The DAPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 269 -271099 cd14197 STKc_DRAK1 Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 (also called STK17A) and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. Rabbit DRAK1 has been shown to induce apoptosis in osteoclasts and overexpressio of human DRAK1 induces apoptosis in cultured fibroblast cells. DRAK1 may be involved in apoptotic signaling. The DRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -271100 cd14198 STKc_DRAK2 The catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2 (also called STK17B). Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. DRAK2 has been implicated in inducing or enhancing apoptosis in beta cells, fibroblasts, and lymphoid cells, where it is highly expressed. It is involved in regulating many immune processes including the germinal center (GC) reaction, responses to thymus-dependent antigens, activated T cell survival, memory T cell responses. It may be involved in the development of autoimmunity. The DRAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -271101 cd14199 STKc_CaMKK2 Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK2, also called CaMKK beta, is one of the most versatile CaMKs. It is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. CaMKK2 contains unique N- and C-terminal domains and a central catalytic kinase domain that is followed by a regulatory domain that bears overlapping autoinhibitory and CaM-binding regions. It can be activated by signaling through G-coupled receptors, IP3 receptors, plasma membrane ion channels, and Toll-like receptors. Thus, CaMKK2 acts as a molecular hub that is capable of receiving and decoding signals from diverse pathways. The CaMKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 286 -271102 cd14200 STKc_CaMKK1 Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK1, also called CaMKK alpha, is involved in the regulation of glucose uptake in skeletal muscles, independently of AMPK and PKB activation. It also play roles in learning and memory. Studies on CaMKK1 knockout mice reveal deficits in fear conditioning. The CaMKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -271103 cd14201 STKc_ULK2 Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK2 is ubiquitously expressed and is essential in autophagy induction. It displays partially redundant functions with ULK1 and is able to compensate for the loss of ULK1 in non-selective autophagy. It also displays neuron-specific functions and is important in axon development. The ULK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 271 -271104 cd14202 STKc_ULK1 Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. It associates with three autophagy-related proteins (Atg13, FIP200 amd Atg101) to form the ULK1 complex. All fours proteins are essential for autophagosome formation. ULK1 is regulated by both mammalian target-of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). mTORC1 negatively regulates the ULK1 complex in a nutrient-dependent manner while AMPK stimulates autophagy by inhibiting mTORC1. ULK1 also plays neuron-specific roles and is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, neurite extension, and axon branching. The ULK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -271105 cd14203 PTKc_Src_Fyn_like Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes a subset of Src-like PTKs including Src, Fyn, Yrk, and Yes, which are all widely expressed. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. They are also implicated in acute inflammatory responses and osteoclast function. The Src/Fyn-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 248 -271106 cd14204 PTKc_Mer Catalytic Domain of the Protein Tyrosine Kinase, Mer. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Mer (or Mertk) is named after its original reported expression pattern (monocytes, epithelial, and reproductive tissues). It is required for the ingestion of apoptotic cells by phagocytes such as macrophages, retinal pigment epithelial cells, and dendritic cells. Mer is also important in maintaining immune homeostasis. Mer is a member of the TAM subfamily, composed of receptor PTKs (RTKs) containing an extracellular ligand-binding region with two immunoglobulin-like domains followed by two fibronectin type III repeats, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, Gas6 and protein S, leads to receptor dimerization, autophosphorylation, activation, and intracellular signaling. The Mer subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -271107 cd14205 PTKc_Jak2_rpt2 Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Janus kinase 2. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Jak2 is widely expressed in many tissues and is essential for the signaling of hormone-like cytokines such as growth hormone, erythropoietin, thrombopoietin, and prolactin, as well as some IFNs and cytokines that signal through the IL-3 and gp130 receptors. Disruption of Jak2 in mice results in an embryonic lethal phenotype with multiple defects including erythropoietic and cardiac abnormalities. It is the only Jak gene that results in a lethal phenotype when disrupted in mice. A mutation in the pseudokinase domain of Jak2, V617F, is present in many myeloproliferative diseases, including almost all patients with polycythemia vera, and 50% of patients with essential thrombocytosis and myelofibrosis. Jak2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 284 -271108 cd14206 PTKc_Aatyk3 Catalytic domain of the Protein Tyrosine Kinases, Apoptosis-associated tyrosine kinase 3. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Aatyk3, also called lemur tyrosine kinase 3 (Lmtk3) is a receptor kinase containing a transmembrane segment and a long C-terminal cytoplasmic tail with a catalytic domain. The function of Aatyk3 is still unknown. The Aatyk3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). 276 -271109 cd14207 PTKc_VEGFR1 Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors. PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR1 (or Flt1) binds VEGFA, VEGFB, and placenta growth factor (PLGF). It regulates monocyte and macrophage migration, vascular permeability, haematopoiesis, and the recruitment of haematopietic progenitor cells from the bone marrow. VEGFR1 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 340 -271110 cd14208 PTK_Jak3_rpt1 Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 3. Jak3 is expressed only in hematopoietic cells. It binds the shared receptor subunit, common gamma chain and thus, is essential in the signaling of cytokines that use it such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is important in lymphoid development and myeloid cell differentiation. Inactivating mutations in Jak3 have been reported in humans with severe combined immunodeficiency (SCID). Jak3 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. Jaks are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Jak3 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 260 -271111 cd14209 STKc_PKA Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. The PKA subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 290 -271112 cd14210 PKc_DYRK Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase. Protein Kinases (PKs), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK) subfamily, catalytic (c) domain. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. The DYRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein S/T PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. Vertebrates contain multiple DYRKs (DYRK1-4) and mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A is involved in neuronal differentiation and is implicated in the pathogenesis of DS (Down syndrome). DYRK1B plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRK2 promotes apoptosis in response to DNA damage by phosphorylating the tumor suppressor p53, while DYRK3 promotes cell survival by phosphorylating SIRT1 and promoting p53 deacetylation. DYRK4 is a testis-specific kinase that may function during spermiogenesis. 311 -271113 cd14211 STKc_HIPK Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). They show speckled localization in the nucleus, apart from the nucleoles. They play roles in the regulation of many nuclear pathways including gene transcription, cell survival, proliferation, differentiation, development, and DNA damage response. Vertebrates contain three HIPKs (HIPK1-3) and mammals harbor an additional family member HIPK4, which does not contain a homeobox-interacting domain and is localized in the cytoplasm. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors and it regulates gene transcription during development and in DNA damage response. The HIPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 329 -271114 cd14212 PKc_YAK1 Catalytic domain of the Dual-specificity protein kinase, YAK1. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of proteins with similarity to Saccharomyces cerevisiae YAK1 (or Yak1p), a dual-specificity kinase that autophosphorylates at tyrosine residues and phosphorylates substrates on S/T residues. YAK1 phosphorylates and activates the transcription factors Hsf1 and Msn2, which play important roles in cellular homeostasis during stress conditions including heat shock, oxidative stress, and nutrient deficiency. It also phosphorylates the protein POP2, a component of a complex that regulates transcription, under glucose-deprived conditions. It functions as a part of a glucose-sensing system that is involved in controlling growth in yeast. The YAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 330 -271115 cd14213 PKc_CLK1_4 Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases 1 and 4. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK1 plays a role in neuronal differentiation. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 330 -271116 cd14214 PKc_CLK3 Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 3. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK3 is predominantly expressed in mature spermatozoa, and might play a role in the fertilization process. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 331 -271117 cd14215 PKc_CLK2 Catalytic domain of the Dual-specificity protein kinase, CDC-like kinase 2. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. CLK2 plays a role in hepatic insulin signaling and glucose metabolism. It is induced by the insulin/Akt pathway as part of the hepatic refeeding reponse, and it directly phosphorylates the SR domain of PGC-1alpha, which results in decreased gluconeogenic gene expression and glucose output. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on serine/threonine residues. The CLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 330 -271118 cd14216 STKc_SRPK1 Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPK1 binds with high affinity the alternative splicing factor, SRSF1 (serine/arginine-rich splicing factor 1), and regiospecifically phosphorylates 10-12 serines in its RS domain. It plays a role in the regulation of pre-mRNA splicing, chromatin structure, and germ cell development. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 349 -271119 cd14217 STKc_SRPK2 Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPK2 mediates neuronal cell cycle and cell death through regulation of nuclear cyclin D1. It has also been found to promote leukemia cell proliferation by regulating cyclin A1. SRPK2 also plays a role in regulating pre-mRNA splicing and is required for spliceosomal B complex formation. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 366 -271120 cd14218 STKc_SRPK3 Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPK3 is highly expressed in the heart and skeletal muscles, and is controlled by a muscle-specific enhancer that is regulated by MEF2. It may play an important role in muscle development. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 365 -271121 cd14219 STKc_BMPR1b Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IB. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1b, also called Activin receptor-Like Kinase 6 (ALK6), functions as a receptor for bone morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Mutations in BMPR1b that led to inhibition of chondrogenesis can cause Brachydactyly (BD) type A2, a dominant hand malformation characterized by shortening and lateral deviation of the index fingers. A point mutation in the BMPR1b kinase domain is also associated with the Booroola phenotype, characterized by precocious differentiation of ovarian follicles. BMPR1b belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1b, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1b subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 305 -271122 cd14220 STKc_BMPR1a Catalytic domain of the Serine/Threonine Kinase, Bone Morphogenetic Protein Type IA Receptor. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR1a, also called Activin receptor-Like Kinase 3 (ALK3), functions as a receptor for bone morphogenetic proteins (BMPs), which are involved in the regulation of cell proliferation, survival, differentiation, and apoptosis. BMPs are able to induce bone, cartilage, ligament, and tendon formation, and may play roles in bone diseases and tumors. Germline mutations in BMPR1a are associated with an increased risk to Juvenile Polyposis Syndrome, a hamartomatous disorder that may lead to gastrointestinal cancer. BMPR1a may also play an indirect role in the development of hematopoietic stem cells (HSCs) as osteoblasts are a major component of the HSC niche within the bone marrow. BMPR1a belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like BMPR1a, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The BMPR1a subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 287 -271123 cd14221 STKc_LIMK1 Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK1 activation is induced by bone morphogenic protein, vascular endothelial growth factor, and thrombin. It plays roles in microtubule disassembly and cell cycle progression, and is critical in the regulation of neurite outgrowth. LIMK1 knockout mice show abnormalities in dendritic spine morphology and synaptic function. LIMK1 is one of the genes deleted in patients with Williams Syndrome, which is characterized by distinct craniofacial features, cardiovascular problems, as well as behavioral and neurological abnormalities. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 267 -271124 cd14222 STKc_LIMK2 Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK2 activation is induced by transforming growth factor-beta l (TGFb-l) and shares the same subcellular location as the cofilin family member twinfilin, which may be its biological substrate. LIMK2 plays a role in spermatogenesis, and may contribute to tumor progression and metastasis formation in some cancer cells. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 272 -271125 cd14223 STKc_GRK2 Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK2, also called beta-adrenergic receptor kinase (beta-ARK) or beta-ARK1, is important in regulating several cardiac receptor responses. It plays a role in cardiac development and in hypertension. Deletion of GRK2 in mice results in embryonic lethality, caused by hypoplasia of the ventricular myocardium. GRK2 also plays important roles in the liver (as a regulator of portal blood pressure), in immune cells, and in the nervous system. Altered GRK2 expression has been reported in several disorders including major depression, schizophrenia, bipolar disorder, and Parkinsonism. GRK2 contains an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. TheGRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 321 -271126 cd14224 PKc_DYRK2_3 Catalytic domain of the protein kinases, Dual-specificity tYrosine-phosphorylated and -Regulated Kinases 2 and 3. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of DYRK2 and DYRK3, and similar proteins. Drosophila DYRK2 interacts and phosphorylates the chromatin remodelling factor, SNR1 (Snf5-related 1), and also interacts with the essential chromatin component, trithorax. It may play a role in chromatin remodelling. Vertebrate DYRK2 phosphorylates and regulates the tumor suppressor p53 to induce apoptosis in response to DNA damage. It can also phosphorylate the transcription factor, nuclear factor of activated T cells (NFAT). DYRK2 is overexpressed in lung adenocarcinoma and esophageal carcinomas, and is a predictor for favorable prognosis in lung adenocarcinoma. DYRK3, also called regulatory erythroid kinase (REDK), is highly expressed in erythroid cells and the testis, and is also present in adult kidney and liver. It promotes cell survival by phosphorylating and activating SIRT1, an NAD(+)-dependent protein deacetylase, which promotes p53 deacetylation, resulting in the inhibition of apoptosis. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. The DYRK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other S/T kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 380 -271127 cd14225 PKc_DYRK4 Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase 4. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. DYRK4 is a testis-specific kinase with restricted expression to postmeiotic spermatids. It may function during spermiogenesis, however, it is not required for male fertility. DYRK4 has also been detected in a human teratocarcinoma cell line induced to produce postmitotic neurons. It may have a role in neuronal differentiation. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. The DYRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 341 -271128 cd14226 PKc_DYRK1 Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase 1. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. Mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A was previously called minibrain kinase homolog (MNBH) or dual-specificity YAK1-related kinase. It phosphorylates various substrates and is involved in many cellular events. It phosphorylates and inhibits the transcription factors, nuclear factor of activated T cells (NFAT) and forkhead in rhabdomyosarcoma (FKHR). It regulates neuronal differentiation by targetting CREB (cAMP response element-binding protein). It also targets many endocytic proteins including dynamin and amphiphysin and may play a role in the endocytic pathway. The gene encoding DYRK1A is located in the DSCR (Down syndrome critical region) of human chromosome 21 and DYRK1A has been implicated in the pathogenesis of DS. DYRK1B, also called minibrain-related kinase (MIRK), is highly expressed in muscle and plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. The DYRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 339 -271129 cd14227 STKc_HIPK2 Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors including homeodomain proteins (Nkx and HOX families), Smad1-4, Pax6, c-Myb, AML1, the histone acetyltransferase p300, and the tumor repressor p53, among others. It regulates gene transcription during development and in DNA damage response (DDR), and mediates cell processes such as apoptosis, survival, differentiation, and proliferation. HIPK2 mediates apoptosis by phosphorylating and activating p53 during DDR, resulting in the activation of apoptotic genes. In the absence of p53, HIPK2 targets the anti-apoptotic corepressor C-terminal binding protein (CtBP), leading to CtBP's degradation and the promotion of apoptosis. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 355 -271130 cd14228 STKc_HIPK1 Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 1. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK1 has been implicated in regulating eye size, lens formation, and retinal morphogenesis during late embryogenesis. It also contributes to the regulation of haematopoiesis and leukaemogenesis by phosphorylating and repressing the transcription factor c-Myb, which is crucial in T- and B-cell development. In glucose-deprived conditions, HIPK1 phosphorylates Daxx, leading to its relocalization from the nucleus to the cytoplasm, where it binds and stabilizes ASK1 (apoptosis signal-regulating kinase 1), a mitogen-activated protein kinase (MAPK) kinase kinase that activates the JNK and p38 MAPK pathways. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 355 -271131 cd14229 STKc_HIPK3 Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK3 is a Fas-interacting protein that induces FADD (Fas-associated death domain) phosphorylation and mediates FasL-induced JNK activation. Overexpression of HIPK3 does not affect cell death, however its expression in prostate cancer cells contributes to increased resistance to Fas receptor-mediated apoptosis. HIPK3 also plays a role in regulating steroidogenic gene expression. In response to cAMP, HIPK3 activates the phosphorylation of JNK and c-Jun, leading to increased activity of the transcription factor SF-1 (Steroidogenic factor 1), a key regulator for steroid biosynthesis in the gonad and adrenal gland. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). 330 -260088 cd14230 GAT_GGA GAT domain found in metazoan and fungal ADP-ribosylation factor (Arf)-binding proteins (GGAs). GGAs, also termed Golgi-localized gamma-ear-containing Arf-binding proteins, belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. Moreover, GGAs play important roles in ubiquitin-dependent sorting of cargo proteins both in biosynthetic and endocytic pathways. The family includes three GGAs (GGA1, GGA2, and GGA3) identified in mammals and two GGAs (Gga1p and Gga2p) identified in the budding yeast Saccharomyces cerevisiae. All these GGAs have a multidomain structure consisting of: an N-terminal VHS (Vps27/Hrs/Stam) domain that binds acidic-cluster dileucine (DxxLL)-type sorting signals (where x is any amino acid) found in the cytoplasmic tail of TGN sorting receptors; a GAT (GGA and TOM) domain that interacts with class I GTP-bound form of Arf proteins, Rabaptin-5, ubiquitin, and the tumor susceptibility gene 101 product (TSG101); a largely unstructured hinge region that contains clathrin-binding motifs; and a C-terminal GAE (gamma-adaptin ear homology) domain that binds accessory proteins. In contrast to other GGAs-like proteins, members in this family contain a GAT N-terminal region, a helix-loop-helix in the complex with Arf1-GTP. 80 -260089 cd14231 GAT_GGA_like_plant GAT domain found in uncharacterized Golgi-localized gamma ear-containing Arf-binding protein (GGA)-like proteins mainly found in plants. The family includes a group of uncharacterized plant proteins containing an N-terminal VHS (Vps27p/Hrs/STAM)-domain and a GAT (GGA and TOM1) domain. Both domains are also present in Golgi-localized gamma ear-containing Arf-binding proteins (GGAs), which belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. In contrast to GGA proteins, members in this family do not have either a GAE (gamma-adaptin ear homology) domain or a clathrin-binding motif. 78 -260090 cd14232 GAT_LSB5 GAT domain found in yeast LAS seventeen-binding protein 5 (Lsb5p) and similar proteins. Lsb5p, also termed LAS17-binding protein 5, is a Golgi-localized gamma ear-containing Arf-binding protein (GGA)-like protein located to the plasma membrane in an actin-independent manner. It plays important roles in membrane-trafficking events through association with the actin regulators, the yeast Wiskott-Aldrich syndrome protein (WASP) homologue Las17p and the cortical protein Sla1p, the yeast Arf3p (orthologous with mammalian Arf6), and ubiquitin. Lsb5p contains an N-terminal VHS (Vps27p/Hrs/STAM)-domain and a GAT (GGA and TOM1) domain. In contrast to GGA proteins, Lsb5p harbors a C-terminal NPF (Asn-Pro-Phe) motif, but does not have either a GAE (gamma-adaptin ear homology) domain or a clathrin-binding motif. 78 -260091 cd14233 GAT_TOM1_like GAT domain found in target of myb protein 1 (Tom1) protein family. Tom1 and its related proteins, Tom1L1 and Tom1L2, form a protein family sharing an N-terminal VHS (Vps27p/Hrs/STAM)-domain followed by a GAT (GGA and TOM1) domain, both of which are also conserved in Golgi-localized gamma ear-containing Arf-binding proteins (GGAs). In contrast to GGAs, the Tom1 family proteins bind to ubiquitin, ubiquitinated proteins, and Toll-interacting protein (Tollip) through its GAT domain, but do not associate with Arf GTPases through its GAT domain nor with acidic cluster-dileucine sequences through its VHS domain. In addition, the Tom1 family proteins recruit clathrin onto endosomes through their C-terminal region. However, in the C-terminal clathrin-binding region, Tom1 and Tom1L2 are similar to each other, but distinguishable from Tom1L1. The yeast S. cerevisiae does not contain homologous proteins of the Tom1 family. 87 -260092 cd14234 GAT_GGA_meta GAT domain found in metazoan ADP-ribosylation factor (Arf)-binding proteins (GGAs). GGAs, also termed Golgi-localized gamma-ear-containing Arf-binding proteins, belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. Moreover, GGAs play important roles in ubiquitin-dependent sorting of cargo proteins both in biosynthetic and endocytic pathways. Three GGAs (GGA1, GGA2, and GGA3) have been identified in mammals. They may appear to behave similarly, since all of them have a multidomain structure consisting of: an N-terminal VHS (Vps27/Hrs/Stam) domain that binds the acidic-cluster dileucine (DxxLL)-type sorting signals (where x is any amino acid) found in the cytoplasmic tail of TGN sorting receptors; a GAT (GGA and TOM) domain that interacts with class I GTP-bound form of Arf proteins, Rabaptin-5, ubiquitin, and the tumor susceptibility gene 101 product (TSG101); a largely unstructured hinge region that contains clathrin-binding motifs; and a C-terminal GAE (gamma-adaptin ear homology) domain that binds accessory proteins. However, the three GGAs have some differences, which suggest they may possess their own distinct roles. For instance, both GGA1 and GGA3, but not GGA2, contains an internal DxxLL motif that binds to it own VHS domain. Only a portion of the VHS domain of GGA2 possesses distant structural homology to that of GGA1 or GGA3. Moreover, the binding affinity of GGA2 to ubiquitin is quite lower than that of GGA1 or GGA3. In addition, GGA3 has a short splicing variant that is predominantly expressed in human cell lines and tissues except the brain. It does have a VHS domain, but it is unable to bind to the DxxLL motif. GGA2 and GGA3 undergo epidermal growth factor (EGF)-induced phosphorylation. 84 -260093 cd14235 GAT_GGA_fungi GAT domain found in fungal ADP-ribosylation factor (Arf)-binding proteins (GGAs). GGAs, also termed Golgi-localized gamma-ear-containing Arf-binding proteins, belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. Two GGAs (Gga1p and Gga2p) have been identified in the budding yeast Saccharomyces cerevisiae. Yeast GGAs play important roles in the carboxypeptidase Y (CPY) pathway, vacuole biogenesis, alpha-factor maturation, and interactions with clathrin. They have a multidomain structure consisting of VHS (Vps27/Hrs/ STAM), GAT (GGA and TOM), hinge, and GAE (gamma-adaptin ear) domains. Both Gga1p and Gga2p function as effectors of Arf in yeast. They interact with Arf1p and Arf2p in a GTP-dependent manner. Moreover, Gga2p mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1, a ferrichrome transporter in S. cerevisiae, from the TGN to the vacuole. It also acts as a phosphatidylinositol 4-phosphate effector at the Golgi exit, which binds directly to the TGN PtdIns(4)-kinase Pik1p and contributes to Pik1p recruitment. In addition, Gga2p is required for sorting of the yeast siderophore iron transporter1 (Sit1) to the vacuolar pathway. 92 -260094 cd14236 GAT_TOM1 GAT domain found in target of Myb protein 1 (Tom1). Tom1 was originally identified by its induced expression by the v-Myb oncogene. It is predominantly present in the cytosol and can interact with clathrin, endofin, Toll-interacting protein (Tollip), and ubiquitinated proteins. It acts as a linker protein to regulate the ability of endofin to recruit clathrin onto the sorting endosome. Moreover, Tom1 functions as a negative regulator of IL-1beta and tumor necrosis factor (TNF)-alpha-induced signaling pathways. It also plays a role in the TLR2/4 signaling pathways. Tom1 contains an N-terminal VHS (Vps27p/Hrs/STAM)-domain, a GAT (GGA and TOM1) domain and a C-terminal clathrin-binding region, both of which are conserved in Golgi-localized gamma ear-containing Arf-binding proteins (GGAs). In contrast to GGAs, Tom1 binds to ubiquitin, ubiquitinated proteins, and Tollip through its GAT domain, but does not associate with Arf GTPases through its GAT domain nor with acidic cluster-dileucine sequences through its VHS domain. 95 -260095 cd14237 GAT_TM1L1 GAT domain found in target of Myb-like protein 1 (Tom1L1). Tom1L1, also termed Src-activating and signaling molecule protein (Srcasm), was identified as a substrate of the Src family of protein kinases. It is tyrosine-phosphorylated by Src family kinases and modulates growth factor and Src-mediated signaling pathways. It also plays a potential role in endosomal sorting and ligand-stimulated endocytosis of EGF receptors (EGFR). Tom1L1 is predominantly present in the cytosol and can interact with Toll-interacting protein (Tollip), Hrs or TSG101, clathrin, and ubiquitinated proteins. It contains an N-terminal VHS (Vps27p/Hrs/STAM)-domain, a GAT (GGA and TOM1) domain, and a C-terminal clathrin-binding region, both of which are conserved in Golgi-localized gamma ear-containing Arf-binding proteins (GGAs). It interacts with Tollip through their GAT domain and recuits clathrin onto endosomes through their C-terminal region. However, in the C-terminal clathrin-binding region, Tom1 and Tom1L2 are similar to each other, but distinguishable from Tom1L1. 92 -260096 cd14238 GAT_TM1L2 GAT domain found in target of Myb-like protein 2 (Tom1L2). Tom1L2, together with Myb protein 1 (Tom1) and target of Myb-like protein 1 (Tom1L1), constitute the Tom1 family. Tom1L2 can interact with Toll-interacting protein (Tollip), clathrin, and ubiquitin. It may play a potential role in endosomal sorting, as well as in the regulation of membrane trafficking that is linked to immunity and cell proliferation. Tom1L2 contains an N-terminal VHS (Vps27p/Hrs/STAM)-domain, a GAT (GGA and TOM1) domain, and a C-terminal clathrin-binding region, both of which are conserved in Golgi-localized gamma ear-containing Arf-binding proteins (GGAs). It interacts with Tollip through their GAT domain and recuits clathrin onto endosomes through their C-terminal region. However, in the C-terminal clathrin-binding region, Tom1 and Tom1L2 are similar to each other, but distinguishable from Tom1L1. 92 -260097 cd14239 GAT_GGA1_GGA2 GAT domain found in ADP-ribosylation factor (Arf)-binding proteins GGA1 and GGA2. This subfamily includes GGA1 and GGA2, both of which belong to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. GGA1, also termed gamma-adaptin-related protein 1, or Golgi-localized gamma ear-containing Arf-binding protein 1, regulates the low-density lipoprotein and sorting receptor LR11/SorLA endocytic traffic and further alters amyloid-beta precursor protein (APP) intracellular distribution and amyloid-beta production. It is also critical for the effects of beta-site APP-cleaving enzyme-1 (BACE1) on amyloid-beta generation. It interacts with BACE1 and promotes its traffic from early endosomes to late endocytic compartments or the TGN. Moreover, GGA1 acts as a clathrin assembly protein with the ability to polymerize clathrin into tubules. GGA2, also termed gamma-adaptin-related protein 2, or Golgi-localized gamma ear-containing Arf-binding protein 2, or VHS domain and ear domain of gamma-adaptin (Vear), interacts with the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR) and further plays a major role in the sorting of lysosomal enzymes. It also mediates a vital function that cannot be compensated for by GGA1 and/or GGA3. Both GGA1 and GGA2 have a multidomain structure consisting of an N-terminal VHS (Vps27/Hrs/Stam) domain, a GAT (GGA and TOM) domain, a largely unstructured hinge region that contains clathrin-binding motifs, and a C-terminal GAE (gamma-adaptin ear homology) domain. 89 -260098 cd14240 GAT_GGA3 GAT domain found in ADP-ribosylation factor-binding protein GGA3. GGA3, also termed Golgi-localized gamma ear-containing Arf-binding protein 3, belongs to a family of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins that regulate clathrin-mediated trafficking of cargo proteins from the trans-Golgi network (TGN) to endosomes. GGA3 interacts selectively with the Met/Hepatocyte Growth Factor receptor tyrosine kinase (RTK) when stimulated. It functions as a specific cargo adaptor to target the Met RTK into recycling tubules, and further coordinates the recycling, signaling and degradative fates of the Met RTK. Moreover, GGA3, together with PACS-1 and the protein kinase CK2, forms a complex that regulates cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking. Furthermore, GGA3 has been identified as an interacting protein of the beta-site APP-cleaving enzyme-1 (BACE1), a stress-related protease that is involved in Alzheimer's disease (AD) pathology. GGA3 has a multidomain structure consisting of an N-terminal VHS (Vps27/Hrs/Stam) domain, a GAT (GGA and TOM) domain, a largely unstructured hinge region that contains clathrin-binding motifs, and a C-terminal GAE (gamma-adaptin ear homology) domain. 87 -260131 cd14241 PAD Phenolic Acid Decarboxylase. This family of bacterial and fungal phenolic acid decarboxylases catalyzes the non-oxidative decarboxylation of phenolic acids to produce 4-vinyl derivates. Phenolic acid, like ferulic, p-coumaric, and caffeic acids, are important lignin-related aromatic acids and are natural constituents of plant cell walls. They act as crosslinkers between lignin polymers and hemicellulose/cellulose in plants. Their degradation is important from a biotechnological viewpoint. 144 -260109 cd14243 PT-AcyF_like Putative ABBA-type prenyltransferases acting on cyanobactins. Members of this family are found in gene clusters responsible for the production and posttranslational modification of cyanobactins, small ribosomal cyclic peptides produced by cyanobacteria. The AcyF_like proteins are structurally similar to the ABBA-type aromatic prenyltransferases, and may be responsible for the reverse- and forward-O-prenylation of tyrosine, serine, and theronine in cyanobactins. ABBA-type aromatic prenyltransferases (PTases) are a subgroup of prenyltransferases that are characterized by an unusual type of beta/alpha fold with antiparallel beta strands. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases. 294 -271203 cd14244 GH_101_like Endo-a-N-acetylgalactosaminidase and related glcyosyl hydrolases. This family contains the enzymatically active domain of cell surface proteins that specifically cleave Gal-beta-1,3-GalNAc-alpha-Ser/Thr (T-antigen, galacto-N-biose), the core 1 type O-linked glycan common to mucin glycoproteins (EC:3.2.1.97). It has been classified as glycosyl hydrolase family 101 in the Cazy resource. Virulence of pathogenic organisms such as the Gram-positive Streptococcus pneumoniae and other commensal human bacteria is largely determined by their ability to degrade host glycoproteins and to metabolize the resultant carbohydrates. 298 -271204 cd14245 DMP12 Putative DNA mimic protein DMP12. The Neisseria sp. protein DMP12 has been shown to interact with the bacterial histone-like protein HU and may do so by acting as a DNA mimic. It is likely to play a regulatory role, but not via direct competition for binding of HU, which is involved in maintenance of the bacterial nucleoid structure. 114 -271205 cd14246 ADAM17_MPD Membrane-proximal domain of a disintegrin and metalloprotease 17 (ADAM17). ADAM17 is a multi-domain protein that acts as a sheddase; is involved in the cleavage and release of the soluble ectodomain of tumor necrosis factor alpha from the cell surface and in the trans-Golgi network, as well as in the release of various other targets such as cytokines and cell adhesion molecules. This links ADAM17 to a variety of biological processes, including cellular differentiation and the progression of cancer. It was shown that the enzymatic activity of ADAM17 is regulated via a protein-disulfide isomerase (PDI). Specifically, the disulfide bridges within a CxxC motif of the membrane-proximal domain (MPD) are isomerized by PDI; the conversion triggers a conformational change between a closed and an opened form of the MPD, which may constitute a molecular switch that triggers the shedding activity of ADAM17. 60 -271206 cd14247 Lmo2686_like Uncharacterized hexameric protein conserved in Bacilli. This family conserved in bacilli contains proteins that form an unusual hexameric arrangement via circular domain-swapping of a beta-hairpin-beta unit. 138 -271207 cd14248 ESP Exocrine gland-secreting peptide 1 (ESP1) and similar pheromones. ESP1 is a peptide pheromone found in male mouse tear fluid, which is recognized by a specific G-protein-coupled receptor in the vomeronasal sensory neurons and affects female mouse sexual receptive behaviour. This small family appears restricted to rodents. ESP36 is expressed only in the female mouse extraorbital lacrimal gland. The juvenile pheromone ESP22 is secreted from the lacrimal gland and released into the tears of 2-3 week old mice; it activates the vomeronasal response pathway, and inhibits male sexual behavior. Information regarding other members of this family is not yet available. 52 -271208 cd14249 ESP1_like Exocrine gland-secreting peptide 1 (ESP1) and similar pheromones. ESP1 is a peptide pheromone found in male mouse tear fluid, which is recognized by a specific G-protein-coupled receptor in the vomeronasal sensory neurons and affects female mouse sexual receptive behaviour. This small family appears restricted to rodents; the functions of members other than mouse ESP1 have not yet been determined. 46 -271209 cd14250 ESP36_like Exocrine gland-secreting peptide 36 (ESP36) and similar pheromones. ESP36 is a peptide pheromone expressed only in the female mouse extraorbital lacrimal gland. This family also includes the juvenile pheromone ESP22 which is secreted from the lacrimal gland and released into the tears of 2-3 week old mice. ESP22 activates the vomeronasal response pathway, and inhibits male sexual behavior. This small family appears restricted to rodents; the functions of other members have not yet been determined. 55 -271210 cd14251 PL-6 Polysaccharide Lyase Family 6. Polysaccharide Lyase Family 6 is a family of beta-helical polysaccharide lyases. Members include alginate lyase (EC 4.2.2.3) and chondroitinase B (EC 4.2.2.19). Chondroitinase B is an enzyme that only cleaves the beta-(1,4)-linkage of dermatan sulfate (DS), leading to 4,5-unsaturated dermatan sulfate disaccharides as the product. DS is a highly sulfated, unbranched polysaccharide belonging to a family of glycosaminoglycans (GAGs) composed of alternating hexosamine (gluco- or galactosamine) and uronic acid (D-glucuronic or L-iduronic acid) moieties. DS contains alternating 1,4-beta-D-galactosamine (GalNac) and 1,3-alpha-L-iduronic acid units. The related chondroitin sulfate (CS) contains alternating GalNac and 1,3-beta-D-glucuronic acid units. Alginate lyases (known as either mannuronate (EC 4.2.2.3) or guluronate lyases (EC 4.2.2.11) catalyze the degradation of alginate, a copolymer of alpha-L-guluronate and its C5 epimer beta-D-mannuronate. 369 -271211 cd14252 Dockerin_like Dockerin repeat domains and domains resembling dockerin repeats. Dockerins are modules in the cellulosome complex that often anchor catalytic subunits by binding to cohesin domains of scaffolding proteins. Three types of dockerins and their corresponding cohesin have been described in the literature. This alignment models two consecutive dockerin repeats, the functional unit. 57 -271212 cd14253 Dockerin Dockerin repeat domain. Dockerins are modules in the cellulosome complex that often anchor catalytic subunits by binding to cohesin domains of scaffolding proteins. Three types of dockerins and their corresponding cohesin have been described in the literature. This alignment models two consecutive dockerin repeats, the functional unit. 56 -271213 cd14254 Dockerin_II Type II dockerin repeat domain. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. This subfamily represents type II dockerins, which are responsible for mediating attachment of the cellulosome complex to the bacterial cell wall. 54 -271214 cd14255 Dockerin_III Type III dockerin repeat domain. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. Two specific calcium-dependent interactions between cohesin and dockerin appear to be essential for cellulosome assembly, type I and type II. This subfamily represents the atypical type III dockerins and related domains. 65 -271215 cd14256 Dockerin_I Type I dockerin repeat domain. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. This subfamily represents type I dockerins, which are responsible for anchoring a variety of enzymatic domains to the complex. 57 -271221 cd14257 CttA_X X module of the carbohydrate-binding protein CttA and similar proteins. This model represents a putative carbohydrate-binding domain conserved in Ruminococcus, which sits N-terminal to a dockerin repeat; the protein may be a component of the Ruminococcus cellulosome system. This X module does not share similarities with other known X modules from cellulolytic bacteria and may have a structural role. 116 -271222 cd14259 PUFD_like PCGF Ub-like fold discriminator and related domains. The PUFD domain binds the RAWUL (RING finger and WD40-associated ubiquitin-like) domain of the polycomb-group RING finger homologs PCGF1 and PCGF3. PUFD was characterized as a domain of the BCL6 corepressor BCOR. It does not appear to bind to PCGF2 and PCGF4. PCGF1 is a component of the Polycomb group (PcG) multi-protein BCOR complex, which is involved in repressing the transcription of BCL6 and CDKN1A. The BCL-6 corepressor (BCOR) is a transcriptional repressor required for germinal center formation and is possibly involved in apoptosis. 106 -271223 cd14260 PUFD_like_1 PCGF Ub-like fold discriminator of BCOR-like 1. The PUFD domain binds the RAWUL (RING finger and WD40-associated ubiquitin-like) domain of the polycomb-group RING finger homologs PCGF1 and PCGF3. PUFD was characterized as a domain of the BCL6 corepressor BCOR. It does not appear to bind to PCGF2 and PCGF4. PCGF1 is a component of the Polycomb group (PcG) multi-protein BCOR complex, which is involved in repressing the transcription of BCL6 and CDKN1A. The BCL-6 corepressor-like protein 1 (BCoR-L1) is largely uncharacterized; it contains ankyrin repeats. 115 -271224 cd14261 PUFD PCGF Ub-like fold discriminator of BCOR. The PUFD domain binds the RAWUL (RING finger and WD40-associated ubiquitin-like) domain of the polycomb-group RING finger homologs PCGF1 and PCGF3. PUFD was characterized as a domain of the BCL6 corepressor BCOR. It does not appear to bind to PCGF2 and PCGF4. PCGF1 is a component of the Polycomb group (PcG) multi-protein BCOR complex, which is involved in repressing the transcription of BCL6 and CDKN1A. The BCL-6 corepressor (BCOR) is a transcriptional repressor required for germinal center formation and is possibly involved in apoptosis. 117 -271354 cd14262 VirB5_like VirB5 protein family. This family contains VirB5 domains, including TraC, a VirB5 homolog encoded by the pKM101 plasmid, and similar proteins. VirB5 is one of 11 conserved proteins (VirB1-VirB11) in Agrobacterium tumefaciens, the causative agent of crown gall disease, that span the inner and the outer membrane, and is involved in type IV DNA secretion systems (T4SS) which mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. VirB5 assembles extracellular pili by interacting with several essential proteins. VirB2-VirB5 complex formation precedes incorporation into pili; it depends on the inner membrane protein VirB4 to interact directly with and stabilize VirB8 in order for VirB5 to bind to VirB8 and VirB10. Mutagenesis studies show that VirB5 proteins participate in protein-protein interactions important for pilus assembly and function. 173 -260132 cd14263 DAGK_IM_like Integral membrane diacylglycerol kinase and similar enzymes. This mostly bacterial family of homo-trimeric integral membrane enzymes, the products of the dgkA gene, catalyzes the ATP-dependent phosphorylation of substrates such as diacylglycerol to phosphatidic acid or of undecaprenol to undecaprenyl phosphate. They are not related other cytosolic or membrane-associated kinases, including the eukaryotic diacylglycerol kinases. 106 -260133 cd14264 DAGK_IM Integral membrane diacylglycerol kinase. This mostly bacterial family of homo-trimeric integral membrane enzymes, the products of the dgkA gene, catalyzes the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid. Escherichia coli DAGK participates in the membrane-derived oligosaccharide cycle (MDO cycle) by recycling lipids to restore phosphatidylglycerols that were used up in the biosynthesis of MDOs. DAGK also recycles diacylglycerols that are produced during the biosynthesis of lipopolysaccharides (LPS) back to phospholipids. DAGK is not the main source of phosphatidic acid in de-novo biosynthesis of glycerophospholipids. Escherichia coli DAGK has low activity as an undecaprenol kinase. 109 -260134 cd14265 UDPK_IM_like Integral membrane undecaprenol kinase and similar enzymes. This mostly bacterial family of homo-trimeric integral membrane enzymes, the products of the dgkA gene, catalyzes the ATP-dependent phosphorylation of undecaprenol to undecaprenyl phosphate. C55-isoprenyl (undecaprenyl) pyroposphate acts as a scaffold for the assembly of peptidoglycan components; undecaprenol kinase (UDPK) is involved in recycling undecaprenyl units for re-use in the peptidoglycan biosynthesis. UDPK does not participate in the de-novo biosynthesis of undecaprenyl phosphate. Gram-positive bacteria have a large pool of free undecaprenol, in contrast to gram-negative bacteria. UDPK may also play a role in a stress-induced pathway that affects the function of ribosomes. In Streptococcus mutans, UDPK has been shown to be required for biofilm formation, such as in the case of smooth surface dental caries. Members of the UDPK family have low activity as diacylglycerol kinases (DAGK), and many of them are annotated as DAGKs. 106 -260135 cd14266 UDPK_IM_PAP2_like Integral membrane undecaprenol kinase domain co-occurring with type 2 phosphatidic acid phosphatase-like domains. This bacterial family of homo-trimeric integral membrane enzyme domains catalyzes the ATP-dependent phosphorylation of of undecaprenol to undecaprenyl phosphate. They sit N-terminally to phosphatase domains that are members of the type 2 phosphatidic acid phosphatase superfamily, and the function of members of this domain architecture was determined to be undecaprenyl pyrophosphate phosphatases. The bi-functional enzymes might generate undecaprenyl phosphate via two mechanisms - the phosphorylation of undecaprenol or the cleavage of the terminal phosphate group of undecaprenyl pyrophosphate. 106 -341312 cd14267 Rif1_CTD_C-II_like Saccharomyces cerevisiae Rap1-interacting factor 1 CTD domain, metazoan Rif1 C-II domains and related domains. This model includes Saccharomyces cerevisiae Rif1_CTD (carboxy-terminal domain) and metazoan Rif1 C-II (C-terminal subdomain II). Rif1 was originally identified in S. cerevisiae where it negatively regulates telomere length homeostasis via interaction with the C-terminal domain of Rap1. A protective capping structure (telosome) comprised of Rap1, Rif1, and Rif2, inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks (DSBs). S. cerevisiae Rif1 has two Rap1 binding sites: the Rap1-binding module (RBM), and the CTD domain. The latter, represented here, has a lower Rap1 affinity, and provides trans binding through tetramerization. In mammals, Rif1 has been implicated in various cellular processes including pluripotency of stem cells, breast cancer development, and DSB repair pathway choice. A mutual antagonism between the nonhomologous end joining factors (53BP1-RIF1) and the homologous recombination factors (BRCA1 -CtIP) ensures correct repair pathway choice. 46 -270456 cd14270 UBA UBA domain found in proteins involved in ubiquitin-mediated proteolysis. The ubiquitin-associated (UBA) domains are commonly occurring sequence motifs found in proteins involved in ubiquitin-mediated proteolysis. They contribute to ubiquitin (Ub) binding or ubiquitin-like (UbL) domain binding. However, some kinds of UBA domains can only the bind UbL domain, but not the Ub domain. UBA domains are normally comprised of compact three-helix bundles which contain a conserved GF/Y-loop. They can bind polyubiquitin with high affinity. They also bind monoubiquitin and other proteins. Most UBA domain-containing proteins have one UBA domain, but some harbor two or three UBA domains. 30 -270457 cd14271 UBA_YLR419W_like UBA domain found in Saccharomyces cerevisiae putative ATP-dependent RNA helicase YLR419W and similar proteins. The group includes some uncharacterized hypothetical proteins which show a high level of sequence similarity with Saccharomyces cerevisiae putative ATP-dependent RNA helicase YLR419W. All family members contain a ubiquitin-associated (UBA) domain, RWD domain, DEAD-box (DEXDc), helicase superfamily c-terminal domain (HELICc), Helicase associated domain (HA2), and a C-terminal oligonucleotide/oligosaccharide-binding (OB)-fold. 41 -270458 cd14272 UBA_AMPK-RKs UBA domain of AMPK related kinases. The AMPK-RK family comprises AMP-activated protein kinases (AMPKs), MAP/microtubule affinity-regulating kinases (MARKs), Brain-specific kinases (BRSKs), Salt inducible kinases (SIKs), maternal embryonic leucine zipper kinase (MELK), and SNF-related serine/threonine-protein kinase (SNRK). It is the only kinase family in the human genome containing an ubiquitin-associated (UBA) or UBA-like domain which is located immediately C-terminal to their N-terminal protein kinase catalytic domain. In addition, most of family members contain a C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK), but some are lack of this region. AMPK-RKs play central roles in metabolic control, energy homeostasis and stress responses in eukaryotes. They require phosphorylation by liver kinase B1 (LKB1) for full activity. Normally, AMPK-RKs appear to exist as heterotrimeric complexes consisting of a catalytic alpha-subunit and regulatory beta- and gamma-subunits. This model corresponds to the catalytic subunit. The UBA domain, previously called SNF1 homology (SNH) domain, regulates the conformation, LKB1-mediated phosphorylation and activation, and localization of the AMPK-RKs, but does not interact with ubiquitin-like molecules. In AMPKalpha subunits, the UBA-like autoinhibitory domain (AID) is responsible for AMPKalpha subunit autoinhibition. Due to the lack of UBA domain, NUAK1 kinase, also called ARK5 (AMPK-related kinase 5), and NUAK2 kinase, also called SNARK (SNF1/AMPK-related kinase), are not included in this family. 38 -270459 cd14273 UBA_TAP-C_like UBA-like domain found in the NXF family of mRNA nuclear export factors and similar proteins. This family includes nuclear RNA export factors (NXF1/NXF2), FAS-associated factors (FAF1/2), tyrosyl-DNA phosphodiesterase 2 (TDP2), OTU domain-containing proteins (OTU7A/OTU7B), NSFL1 cofactor p47, defective in cullin neddylation protein 1 (DCN1)-like protein (DCNL1/DCNL2), yeast defective in cullin neddylation protein 1 (DCN1) and similar proteins. NXF proteins can stimulate nuclear export of mRNAs and facilitate the export of unspliced viral mRNA containing the constitutive transport element. FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF2 is the translation product of a highly expressed gene in the T-cells and eosinophils of atopic dermatitis patients compared with those of normal individuals. Its biological function remains unclear. TDP2 is a 5'-Tyr-DNA phosphodiesterase required for the efficient repair of topoisomerase II-induced DNA double strand breaks. OTU7A and OTU7B are zinc finger proteins that function as deubiquitinating enzymes. p47 is a major cofactor of the cytosolic AAA ATPase p97. It is required for the p97-regulated membrane reassembly of the endoplasmic reticulum (ER), the nuclear envelope and the Golgi apparatus. DCNL1 plays an essential role in the neddylation E3 complex and participates in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity. The biological function of DCNL2 remains unclear. Yeast DCN1 is a scaffold-type E3 ligase for cullin neddylation. It can bind directly to cullins and the ubiquitin-like protein Nedd8-specific E2 (Ubc12), and regulate cullin neddylation and thus display ubiquitin ligase activity. 31 -270460 cd14274 UBA_ACK1 UBA domain found in activated Cdc42 kinase 1 (ACK1) and similar proteins. ACK1, also called tyrosine kinase non-receptor protein 2, is an intracellular non-receptor tyrosine kinase that specifically interacts with Cdc42 and act as Cdc42 effectors. It forms a signaling complex with Cdc42, p130(Cas), and Crk, and mediates Cdc42-dependent cell migration and signaling to p130(Cas). Ack1 also stimulates prostate tumorigenesis in part by inhibiting the proapoptotic tumor suppressor WW domain containing oxidoreductase (Wwox). Moreover, ACK1 associates directly with the heavy chain of clathrin and further participates in trafficking, underlying an ability to increase receptor-mediated transferrin uptake. It may functions as a regulator of the guanine nucleotide exchange factor Dbl that can activate Rho family proteins. ACK1 consists of an N-terminal tyrosine kinase catalytic domain followed by an SH3 domain, a Cdc42/Rac interactive binding (CRIB) domain, a proline-rich region, and a C-terminal ubiquitin-association (UBA) domain. The proline-rich region of ACK1 is responsible for the binding to the adaptor proteins Nck, Grb2, sorting nexin protein 9 (SH3PX1), and Hck. 45 -270461 cd14275 UBA_EF-Ts UBA domain found in elongation factor Ts (EF-Ts) from bacteria, chloroplasts and mitochondria of eukaryotes. EF-Ts functions as a nucleotide exchange factor in the functional cycle of EF-Tu, another translation elongation factor that facilitates the binding of aminoacylated transfer RNAs (aminoacyl-tRNA) to the ribosomal A site as a ternary complex with guanosine triphosphate during the elongation cycle of protein biosynthesis, and then catalyzes the hydrolysis of GTP and release itself in GDP-bound form. EF-Ts forms complex with EF-Tu and catalyzes the nucleotide exchange reaction promoting the formation of EF-Tu in GTP-bound form from EF-Tu in GDP-bound form. EF-Ts from Thermus thermophiles is shorter than EF-Ts from Escherichia coli, but it has higher thermostability. The mitochondrial translational EF-Ts from chloroplasts and mitochondria display high similarity to the bacterial EF-Ts. The majority of family members contain one ubiquitin-associated (UBA) domain, but some family members from plants harbor two tandem UBA domains. 37 -270462 cd14276 UBA_UBP25_like UBA domain found in ubiquitin carboxyl-terminal hydrolase UBP25, UBP28, and similar proteins. UBP25, also called deubiquitinating enzyme 25, USP on chromosome 21, ubiquitin thioesterase 25, or ubiquitin-specific-processing protease 25, belongs to the deubiquitinating enzyme (DUB) family that specifically hydrolyzes ubiquitin chains on ubiquitin-conjugated proteins. USP25 has one muscular isoform and two ubiquitous isoforms. The longer muscular isoform can bind to muscle-restricted cytoskeletal and sarcomeric proteins, such as myosin binding protein C1 (MyBPC1), actin alpha-1 (ACTA1) and filamin C (FLNC), and further prevent their degradation. USP25 harbors three potential ubiquitin-binding domains (UBDs), one ubiquitin-associated (UBA) domain and two ubiquitin-interacting motifs (UIMs) in the N-terminal region. Its C-terminal tyrosine-rich region is responsible for the binding of the second SH2 domain of SYK, a non-receptor tyrosine kinase that specifically phosphorylates USP25 and alters its cellular levels. UBP28, also called deubiquitinating enzyme 28, ubiquitin thioesterase 28, or ubiquitin-specific-processing protease 28, is also an ubiquitin-specific protease belonging to the DUB family. UBP28 can form a ternary complex with nucleoplasmic Fbw7alpha, an F-box protein that is part of an SCF-type ubiquitin ligase, and MYC, a transcription factor encoded by MYC proto-oncogene. UBP28 is required for the stability of MYC, and this stabilization is necessary for tumour-cell proliferation. Besides, UBP28 plays a critical role in the regulation of the Chk2-p53-PUMA pathway. It specifically interacts with 53BP1 and is essential to stabilize Chk2 and 53BP1 in response to DNA damage. 38 -270463 cd14277 UBA_UBP2_like UBA domain found in ubiquitin-associated protein 2 (UBAP-2) like proteins. The family contains some uncharacterized ubiquitin-associated proteins, including UBAP-2 and its homolog, UBAP2-like [UBP2L, also called protein NICE-4 (for newly identified cDNA from the epidermal differentiation complex EDC)], both of which contain an N-terminal ubiquitin-associated (UBA) domain along with a highly conserved, but function unknown domain (DUF3697). 38 -270464 cd14278 UBA_NAC_like UBA-like domain found in nascent polypeptide-associated complex subunit alpha (NACA) and similar proteins. The family contains nascent polypeptide-associated complex subunit alpha (NACA), putative NACA-like protein (NACP1), nascent polypeptide-associated complex subunit alpha domain-containing protein 1 (NACAD), and similar proteins found in archaea and bacteria. NACA, also called NAC-alpha or Alpha-NAC, together with BTF3, also called Beta-NAC, form the nascent polypeptide-associated complex (NAC) which is a cytosolic protein chaperone that contacts the nascent polypeptide chains as they emerge from the ribosome. Besides, NACA has a high affinity for nucleic acids and exists as part of several protein complexes playing a role in proliferation, apoptosis, or degradation. It is a cytokine-modulated specific transcript in the human TF-1 erythroleukemic cell line. It also acts as a transcriptional co-activator in osteoblasts by binding to phosphorylated c-Jun, a member of the activator-protein-1 (AP-1) family. Moreover, NACA binds to and regulates the adaptor protein Fas-associated death domain (FADD). In addition, NACA functions as a novel factor participating in the positive regulation of human erythroid-cell differentiation. The biological function of NACP1 (also called Alpha-NAC pseudogene 1 or NAC-alpha pseudogene 1) and NACAD remain unclear. The family also includes huntingtin-interacting protein K (HYPK), also called Huntingtin yeast partner K or Huntingtin yeast two-hybrid protein K. It is an intrinsically unstructured Huntingtin (HTT)-interacting protein with chaperone-like activity. It may be involved in regulating cell growth, cell cycle, unfolded protein response and cell death. All members in this family contain an ubiquitin-associated (UBA) domain. 37 -270465 cd14279 CUE CUE domain found in ubiquitin-binding CUE proteins. This family includes many coupling of ubiquitin conjugation to endoplasmic reticulum degradation (CUE) domain containing proteins that are characterized by an FP and a di-leucine-like sequence and bind to monoubiquitin with varying affinities. Some higher eukaryotic CUE domain proteins do not bind monoubiquitin efficiently, since they carry LP, rather than FP among CUE domains. CUE domains form three-helix bundle structures and are distantly related to the ubiquitin-associated (UBA) domains which are widely occurring ubiquitin-binding motifs found in a broad range of cellular proteins in species ranging from yeast to human. The majority of family members contain one CUE domain, but some family members from fungi harbor two CUE domains. 38 -270466 cd14280 UBA1_Rad23_like UBA1 domain of Rad23 proteins found in eukaryotes. The Rad23 family includes the yeast nucleotide excision repair (NER) proteins, Rad23p (in Saccharomyces cerevisiae) and Rhp23p (in Schizosaccharomyces pombe), their mammalian orthologs HR23A and HR23B, and putative DNA repair proteins from plants. Rad23 proteins play dual roles in DNA repair as well as in proteosomal degradation. They have affinity for both the proteasome and ubiquitinylated proteins and participate in translocating polyubiquitinated proteins to the proteasome. Rad23 proteins carry a ubiquitin-like (UBL) and two ubiquitin-associated (UBA) domains, as well as a xeroderma pigmentosum group C (XPC) protein-binding domain. UBL domain is responsible for the binding to proteasome. UBA domains are important for binding of ubiquitin (Ub) or multi-ubiquitinated substrates which suggests Rad23 proteins might be involved in certain pathways of ubiquitin metabolism. Both UBL domain and XPC-binding domain are necessary for efficient NER function of Rad23 proteins. This model corresponds to the UBA1 domain. 39 -270467 cd14281 UBA2_Rad23_like UBA2 domain of Rad23 proteins found in eukaryotes. The Rad23 family includes the yeast nucleotide excision repair (NER) proteins, Rad23p (in Saccharomyces cerevisiae) and Rhp23p (in Schizosaccharomyces pombe), their mammalian orthologs HR23A and HR23B, and putative DNA repair proteins from plants. Rad23 proteins play dual roles in DNA repair as well as in proteosomal degradation. They have affinity for both the proteasome and ubiquitinylated proteins and participate in translocating polyubiquitinated proteins to the proteasome. Rad23 proteins carry a ubiquitin-like (UBL) and two ubiquitin-associated (UBA) domains, as well as a xeroderma pigmentosum group C (XPC) protein-binding domain. UBL domain is responsible for the binding to proteasome. UBA domains are important for binding of ubiquitin (Ub) or multi-ubiquitinated substrates which suggests Rad23 proteins might be involved in certain pathways of ubiquitin metabolism. Both UBL domain and XPC-binding domain are necessary for efficient NER function of Rad23 proteins. This model corresponds to the UBA2 domain. 38 -270468 cd14282 UBA_TDRD3 UBA domain of Tudor domain-containing protein 3 (TDRD3) and similar proteins. TDRD3 is a modular protein containing Tudor domain, a DUF/OB-fold motif and a ubiquitin-associated (UBA) domain. It shows both nucleic acid- and methyl-binding properties and can interact with methylated RNA-binding proteins, such as fragile X mental retardation protein (FMRP) and DEAD/H box-3 (also known as DDX3X/Y, DBX/Y, HLP2 and DDX14) which is implicated in human genetic diseases. At this point, TDRD3 may play a central role in RNA processing regulatory pathways involving arginine methylation. TDRD3 localizes predominantly to the cytoplasm stress granules (SGs). The Tudor domain is essential and sufficient for its recruitment to SGs. 39 -270469 cd14283 UBA_TNR6C UBA domain found in trinucleotide repeat-containing gene 6C protein (TNRC6C) and similar proteins. TNRC6C is one of three GW182 paralogs in mammalian genomes. It is enriched in P-bodies and important for efficient miRNA-mediated repression. TNRC6C is composed of an N-terminal glycine/tryptophan (G/W)-rich region containing an Ago hook responsible for Ago protein-binding; a ubiquitin-associated (UBA) domain and a glutamine (Q)-rich region in the middle region; a middle G/W-rich region, a RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal G/W-rich region, at the C-terminus. A bipartite C-terminal region including the middle and C-terminal G/W-rich regions is referred as silencing domain that triggers silencing of bound transcripts by inhibiting protein expression and promoting mRNA decay via deadenylation. The C-terminal half containing the RRM domain functions as a key effector domain mediating protein synthesis repression by TNRC6C. 38 -270470 cd14284 UBA_GAWKY UBA domain found in Drosophila melanogaster protein Gawky (GW) and similar proteins. GW is the D. melanogaster GW182 homolog (dGW182) which belongs to the GW182 protein family. The GW182 proteins directly interact with Argonaute (Ago) proteins, and thus function as downstream effectors in the miRNA pathway, responsible for inhibition of translation and acceleration of mRNA decay. They are characterized by an abnormally high content of glycine/tryptophan (G/W) repeats, one or more glutamine (Q)-rich motifs, and a C-terminal RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The GW182 proteins are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein. Then they promote translational repression and/or degradation of miRNA targets through their C-terminal silencing domain. In addition to a G/W repeats region, a Q-rich region, and a RRM domain, GW also contains a ubiquitin-associated domain (UBA). 35 -270471 cd14285 UBA_scEDE1_like UBA domain found in Saccharomyces cerevisiae EH domain-containing and endocytosis protein 1 (Ede1) and similar proteins. Ede1, also bud site selection protein 15, is the mammalian protein Eps15 homolog found in yeast and functions at the internalization step of endocytosis. Both Ede1 and Eps15 are endocytic scaffold proteins that may involve in stabilization of the adaptor-cargo complex. They both contain contains three N-terminal Eps15 homology (EH) domains and C-terminal ubiquitin-binding motifs. Whereas Eps15 has two ubiquitin interacting motifs (UIM), Ede1 harbors a single ubiquitin-associated (UBA) domain. This model corresponds to Ede1 UBA domain that is responsible for the binding of monoubiquitinated proteins and negatively regulates EH domain-mediated protein-protein interactions. 35 -270472 cd14286 UBA_UBP24 UBA domain found in ubiquitin carboxyl-terminal hydrolase 24 (UBP24) and similar proteins. UBP24, also called deubiquitinating enzyme 24, ubiquitin thioesterase 24, or ubiquitin-specific-processing protease 24, is a deubiquitinating protein that interacts with damage-specific DNA-binding protein 2 (DDB2) and regulates DDB2 stability. It may also play a role in the pathogenesis of Parkinson's disease (PD). UBP24 proteins contain an N-terminal ubiquitin-associated (UBA) domain and a C-terminal peptidase C19 domain. 37 -270473 cd14287 UBA_At3g58460_like UBA domain found in uncharacterized protein At3g58460 from Arabidopsis thaliana and its homologs from other plants. The uncharacterized protein At3g58460 from Arabidopsis thaliana is also known as rhomboid-like protein 15 which is encoded by RBL15 gene. Although the biological function of the family members remains unclear, they all contain an N-terminal rhomboid-like domain and a C-terminal ubiquitin-associated (UBA) domain. 36 -270474 cd14288 UBA_HUWE1 UBA domain found in eukaryotic E3 ubiquitin-protein ligase HUWE1 and similar proteins. HUWE1, also called ARF-binding protein 1 (ARF-BP1), HECT, UBA and WWE domain-containing protein 1, homologous to E6AP carboxyl terminus homologs protein 9 (HectH9), large structure of UREB1 (LASU1), Mcl-1 ubiquitin ligase E3 (Mule), upstream regulatory element-binding protein 1 (URE-B1), or URE-binding protein 1, may function as a ubiquitin-protein ligase that involves in the ubiquitination cascade that targets specific substrate proteins in proteolysis. It can ubiquitylate DNA polymerase beta (Pol beta), the major BER DNA polymerase and modulates base excision repair (BER). HUWE1 also acts as a critical mediator of both the p53-independent and p53-dependent tumor suppressor functions of ARF tumor suppressor in p53 regulation. Moreover, HUWE1 is both required and sufficient for the polyubiquitination of Mcl-1, an anti-apoptotic Bcl-2 family member involving in DNA damage-induced apoptosis. Furthermore, HUWE1 plays an important role in the regulation of Cdc6 stability after DNA damage. In addition, HUWE1 works as a partner of N-Myc oncoprotein in neural cells. It ubiquitinates N-Myc and primes it for proteasomal-mediated degradation. HUWE1 contains a ubiquitin-associated (UBA) domain, a WWE domain, and a Bcl-2 homology region 3 (BH3) domain at the N-terminus and a HECT domain at the C-terminus. WWE domain plays a role in the regulation of specific protein-protein interactions in a ubiquitin conjugation system. BH3 domain is responsible for the specific binding to Mcl-1. HECT domain involves in the inhibition of the transcriptional activity of p53 via a ubiquitin-dependent degradation pathway. It also controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. 40 -270475 cd14289 UBA_RHBD3 UBA domain found in vertebrate rhomboid domain-containing protein 3 (RHBD3). RHBD3 is encoded by a novel chromosome 22 CpG island-associated gene (C22orf3) that is not expressed in a significant proportion of pituitary tumors. C22orf3 is also called pituitary tumor apoptosis gene (PTAG) or RHBDD3 which is located directly upstream of EWSR1. Although its biological function remains unclear, RHBD3 contains an N-terminal rhomboid domain and a C-terminal ubiquitin-associated (UBA) domain. 44 -270476 cd14290 UBA_PUB_plant UBA domain found in plant PNGase/UBA or UBX (PUB) domain-containing proteins. This family includes some uncharacterized hypothetical proteins found in plants. Although their biological function remain unclear, all family members contain an N-terminal ubiquitin-associated (UBA) domain and a C-terminal PUB domain. UBA domain, along with UBL (ubiquitin-like) domain, has been implicated in proteasomal degradation by associating with substrates destined for degradation as well as with subunits of the proteasome, thus regulating protein turnover. PUB domain functions as a p97 (also known as valosin-containing protein or VCP) adaptor by interacting with the D1 and/or D2 ATPase domains. The type II AAA+ ATPase p97 is involved in a variety of cellular processes such as the deglycosylation of ERAD substrates, membrane fusion, transcription factor activation and cell cycle regulation through differential binding to specific adaptor proteins. 49 -270477 cd14291 UBA1_NUB1_like UBA1 domain found in NEDD8 ultimate buster 1 (NUB1) and similar proteins. NUB1, also called negative regulator of ubiquitin-like proteins 1, renal carcinoma antigen NY-REN-18, or protein BS4, is a NEDD8-interacting protein that can be induced by interferon. It functions as a strong post-transcriptional down-regulator of the NEDD8 expression and plays critical roles in regulating many biological events, such as cell growth, NF-kappaB signaling, and biological responses to hypoxia. NUB1 can also interact with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) which may function in the regulation of cell cycle progression. NUB1 contains three ubiquitin-associated domains (UBA), a bipartite nuclear localization signal (NLS) and a PEST motif. This model corresponds to UBA1 domain. 36 -270478 cd14292 UBA2_NUB1 UBA2 domain found in NEDD8 ultimate buster 1 (NUB1) and similar proteins. NUB1, also called negative regulator of ubiquitin-like proteins 1, renal carcinoma antigen NY-REN-18, or protein BS4, is a NEDD8-interacting protein that can be induced by interferon. It functions as a strong post-transcriptional down-regulator of the NEDD8 expression and plays critical roles in regulating many biological events, such as cell growth, NF-kappaB signaling, and biological responses to hypoxia. NUB1 can also interact with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) which may function in the regulation of cell cycle progression. NUB1 contains three ubiquitin-associated domains (UBA), a bipartite nuclear localization signal (NLS) and a PEST motif. This model corresponds to UBA2 domain. 35 -270479 cd14293 UBA3_NUB1 UBA3 domain found in NEDD8 ultimate buster 1 (NUB1) and similar proteins. NUB1, also called negative regulator of ubiquitin-like proteins 1, renal carcinoma antigen NY-REN-18, or protein BS4, is a NEDD8-interacting protein that can be induced by interferon. It functions as a strong post-transcriptional down-regulator of the NEDD8 expression and plays critical roles in regulating many biological events, such as cell growth, NF-kappaB signaling, and biological responses to hypoxia. NUB1 can also interact with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) which may function in the regulation of cell cycle progression. NUB1 contains three ubiquitin-associated domains (UBA), a bipartite nuclear localization signal (NLS) and a PEST motif. This model corresponds to UBA3 domain. 36 -270480 cd14294 UBA1_UBP5_like UBA1 domain found in ubiquitin carboxyl-terminal hydrolase UBP5, UBP13 and similar proteins. UBP5, also called deubiquitinating enzyme 5, Isopeptidase T (IsoT), ubiquitin thioesterase 5, or ubiquitin-specific-processing protease 5, is a deubiquitinating enzyme largely responsible for the disassembly of the majority of unanchored polyubiquitin in the cell. Zinc is required for its catalytic activity. UBP5 contains four ubiquitin (Ub)-binding sites including an N-terminal zinc finger (ZnF) domain, a catalytic ubiquitin-specific processing protease (UBP) domain (catalytic C-box and H-box), and two ubiquitin-associated (UBA) domains. ZnF domain binds the proximal ubiquitin. UBP domain forms the active site. UBA domains are involved in binding linear or K48-linked polyubiquitin. UBP13, also called deubiquitinating enzyme 13, Isopeptidase T-3 (isoT3), ubiquitin thioesterase 13, or ubiquitin-specific-processing protease 13, is an ortholog of UBP5. It has similar domain architecture, but functions differently from USP5 in cellular deubiquitination processes. It exhibits a weak deubiquitinating activity preferring to Lys63-linked polyubiquitin in a non-activation manner. Moreover, the zinc finger (ZnF) domain of USP13 cannot bind to Ub. Its tandem UBA domains can bind with different types of diUb but preferentially with K63-linked.USP13 can also regulate the protein level of CD3delta in cells via its UBA domains. This model corresponds to the UBA1 domain. 44 -270481 cd14295 UBA1_atUBP14 UBA1 domain found in Arabidopsis thaliana ubiquitin carboxyl-terminal hydrolase 14 (atUBP14) and similar proteins. atUBP14, also called deubiquitinating enzyme 14, TITAN-6 protein, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. atUBP14 is essential for early plant development. It can disassemble multi-ubiquitin chains linked internally via epsilon-amino isopeptide bonds using Lys48 and can process some, but not all, translational fusions of ubiquitin linked via alpha-amino peptide bonds. atUBP14 contains two ubiquitin-association (UBA) domains. This model corresponds to the UBA1 domain. 45 -270482 cd14296 UBA1_scUBP14_like UBA1 domain found in Saccharomyces cerevisiae ubiquitin carboxyl-terminal hydrolase 14 (scUBP14) and similar proteins. scUBP14, also called deubiquitinating enzyme 14, glucose-induced degradation protein 6, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, is the yeast ortholog of human Isopeptidase T (USP5), a deubiquitinating enzyme known to bind the 29-linked polyubiquitin chains. scUBP14 has been identified as a K29-linked polyubiquitin binding protein as well. It is involved in K29-linked polyubiquitin metabolism by binding to the 29-linked Ub4 resin and serving as an internal positive control in budding yeast. Members in this family contain two tandem ubiquitin-association (UBA) domains. This model corresponds to the UBA1 domain. 39 -270483 cd14297 UBA2_spUBP14_like UBA2 domain found in Schizosaccharomyces pombe ubiquitin carboxyl-terminal hydrolase 14 (spUBP14) and similar proteins. spUBP14, also called deubiquitinating enzyme 14, UBA domain-containing protein 2, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, functions as a deubiquitinating enzyme that is involved in protein degradation in fission yeast. Members in this family contain two tandem ubiquitin-association (UBA) domains. This model corresponds to the UBA2 domain. 39 -270484 cd14298 UBA2_scUBP14_like UBA2 domain found in Saccharomyces cerevisiae ubiquitin carboxyl-terminal hydrolase 14 (scUBP14) and similar proteins. scUBP14, also called deubiquitinating enzyme 14, glucose-induced degradation protein 6, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, is the yeast ortholog of human Isopeptidase T (USP5), a deubiquitinating enzyme known to bind the 29-linked polyubiquitin chains. scUBP14 has been identified as a K29-linked polyubiquitin binding protein as well. It is involved in K29-linked polyubiquitin metabolism by binding to the 29-linked Ub4 resin and serving as an internal positive control in budding yeast. Members in this family contain two tandem ubiquitin-association (UBA) domains. This model corresponds to the UBA2 domain. 38 -270485 cd14300 UBA_UBS3A_like UBA domain found in ubiquitin-associated and SH3 domain-containing protein A (UBS3A) and similar proteins. UBS3A, also called Cbl-interacting protein 4 (CLIP4), suppressor of T-cell receptor signaling 2 (Sts-2), or T-cell ubiquitin ligand 1 (TULA-1), is a lymphoid protein only detected in thymus, spleen, and bone marrow. UBS3A exhibits extremely low phosphatase activity, but is capable of promoting T-cell apoptosis independent of either T cell receptor (TCR)/CD3-mediated signaling or caspase activity. It functions as a negative regulator of TCR signaling. UBS3A can also inhibit HIV-1 biogenesis through the binding of ATP-binding cassette protein family E member 1 (ABCE-1), a host factor of HIV-1 assembly. Moreover, UBS3A acts as the Cbl- and ubiquitin-interacting protein that can inhibit endocytosis and downregulation of ligand-activated epidermal growth factor receptor (EGFR) by impairing Cbl-induced ubiquitination, as well as inhibit clathrin-dependent endocytosis in general. This family also includes Arabidopsis thaliana ubiquitin carboxyl-terminal hydrolase 14 (atUBP14) and some uncharacterized AAA-type ATPase-like proteins found in plants. 37 -270486 cd14301 UBA_UBS3B UBA domain found in ubiquitin-associated and SH3 domain-containing protein B (UBS3B) and similar proteins. UBS3B, or Cbl-interacting protein p70, suppressor of T-cell receptor signaling 1 (Sts-1), T-cell ubiquitin ligand 2 (TULA-2), or tyrosine-protein phosphatase STS1/TULA2, is ubiquitously expressed in mammalian tissues in a variety of cell types. It exhibits high phosphatase activity, but demonstrates no proapoptotic activity. It negatively regulates the tyrosine kinase Zap-70 activation and T cell receptor (TCR) signaling pathways that modulate T cell activation. Moreover, UBS3B acts as a Cbl- and ubiquitin-interacting protein that inhibits endocytosis of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor. 38 -270487 cd14302 UBA_UBXN1 UBA domain found in UBX domain-containing protein 1 (UBXN1) and similar proteins. UBXN1, also called SAPK substrate protein 1 (SAKS1) or UBA/UBX 33.3 kDa protein, is a widely expressed protein containing an N-terminal ubiquitin-associated (UBA) domain, a coiled-coil region, and a C-terminal ubiquitin-like (UBX) domain. It binds polyubiquitin and valosin-containing protein (VCP), and has been identified as a substrate for stress-activated protein kinases (SAPKs). Moreover, UBXN1 specifically binds to Homer2b. It may also interact with ubiquitin (Ub) and may be involved in the Ub-proteasome proteolytic pathways. In addition, UBXN1 can associate with autoubiquitinated BRCA1 tumor suppressor and inhibit its enzymatic function through its UBA domain. 41 -270488 cd14303 UBA1_KPC2 UBA1 domain found in Kip1 ubiquitination-promoting complex protein 2 (KPC2) and similar proteins. KPC2, also called ubiquitin-associated domain-containing protein 1 (UBAC1), or glialblastoma cell differentiation-related protein 1, is one of two subunits of Kip1 ubiquitination-promoting complex (KPC), a novel E3 ubiquitin-protein ligase that also contains KPC1 subunit and regulates the ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor p27 at G1 phase. KPC2 contains a ubiquitin-like (UBL) domain and two ubiquitin-associated (UBA) domains. This model corresponds to the UBA1 domain. 41 -270489 cd14304 UBA2_KPC2 UBA2 domain found in Kip1 ubiquitination-promoting complex protein 2 (KPC2) and similar proteins. KPC2, also called ubiquitin-associated domain-containing protein 1 (UBAC1), or glialblastoma cell differentiation-related protein 1, is one of two subunits of Kip1 ubiquitination-promoting complex (KPC), a novel E3 ubiquitin-protein ligase that also contains KPC1 subunit and regulates the ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor p27 at G1 phase. KPC2 contains a ubiquitin-like (UBL) domain and two ubiquitin-associated (UBA) domains. This model corresponds to the UBA2 domain. 39 -270490 cd14305 UBA_UBAC2 UBA domain found in ubiquitin-associated domain-containing protein 2 (UBAC2) and similar proteins. UBAC2, also called phosphoglycerate dehydrogenase-like protein 1, is a ubiquitin-associated domain (UBA)-domain containing protein encoded by gene UBAC2 (or PHGDHL1), a risk gene for Behcet's disease (BD). It may play an important role in the development of BD through its transcriptional modulation. Members in this family contain an N-terminal rhomboid-like domain and a C-terminal UBA domain. 38 -270491 cd14306 UBA_VP13D UBA domain found in vacuolar protein sorting-associated protein 13D (VP13D) and similar proteins. VP13D is a chorea-acanthocytosis (CHAC)-similar protein encoded by gene VPS13D. it contains two putative domains, ubiquitin-associated (UBA) domain and lectin domain of ricin B chain profile (ricin-B-lectin), suggesting it may interact with, and be involved in the trafficking of, proteins modified with ubiquitin and/or carbohydrate molecules. Further investigation is required. 36 -270492 cd14307 UBA_RUP1p UBA domain found in yeast UBA domain-containing protein RUP1p and similar proteins. RUP1p is a ubiquitin-associated (UBA) domain-containing protein encoded by a nonessential yeast gene RUP1. It can mediate the association of Rsp5 and Ubp2. The N-terminal UBA domain is responsible for antagonizing Rsp5 function, as well as bridging the Rsp5-Ubp2 interaction. No other characterized functional domains or motifs are found in RUP1p. 38 -270493 cd14308 UBA_Mud1_like UBA domain found in Schizosaccharomyces pombe UBA domain-containing protein mud1 and similar proteins. Schizosaccharomyces pombe mud1 is an ortholog of the Saccharomyces cerevisiae DNA-damage response protein Ddi1. S. cerevisiae Ddi1, also called v-SNARE-master 1 (Vsm1), belongs to a family of proteins known as the ubiquitin receptors which can bind ubiquitinated substrates and the proteasome. It is involved in the degradation of the F-box protein Ufo1, involved in the G1/S transition. It also participates in Mec1-mediated degradation of Ho endonuclease. Both S. pombe mud1 and S. cerevisiae Ddi1 contain an N-terminal ubiquitin-like (UBL) domain, an aspartyl protease-like domain, and a C-terminal ubiquitin-associated (UBA) domain. S. pombe mud1 binds to K48-linked polyubiquitin (polyUb) through UBA domain. 36 -270494 cd14309 UBA_scDdi1_like UBA domain found in Saccharomyces cerevisiae DNA-damage response protein Ddi1 and similar proteins. Ddi1, also called v-SNARE-master 1 (Vsm1), is a ubiquitin receptor involved in regulation of the cell cycle and late secretory pathway in Saccharomyces cerevisiae. It functions as a ubiquitin association domain (UBA)- ubiquitin-like-domain (UBL) shuttle protein that is required for the proteasome to enable ubiquitin-dependent degradation of its ligands. For instance, Ddi1 plays an essential role in the final stages of proteasomal degradation of Ho endonuclease and of its cognate FBP, Ufo1. Moreover, Ddi1 and its associated protein Rad23p play a cooperative role as negative regulators in yeast PHO pathway. Ddi1 contains an N-terminal UBL domain and a C-terminal UBA domain. It also harbors a central retroviral aspartyl-protease-like domain (RVP) which may be important in cell-cycle control. At this point, Ddi1 may function proteolytically during regulated protein turnover in the cell. This family also includes mammalian regulatory solute carrier protein family 1 member 1 (RSC1A1), also called transporter regulator RS1 (RS1) which mediates transcriptional and post-transcriptional regulation of Na(+)-D-glucose cotransporter SGLT1. 36 -270495 cd14310 UBA_cnDdi1_like UBA domain found in Cryptococcus neoformans DNA-damage response protein Ddi1 and similar proteins. The family includes some uncharacterized Ddi and similar proteins which show a high level of sequence similarity with yeast Ddi1. Ddi1, also called v-SNARE-master 1 (Vsm1), is a ubiquitin receptor involved in regulation of the cell cycle and late secretory pathway in yeast. It functions as a ubiquitin association domain (UBA)- ubiquitin-like-domain (UBL) shuttle protein that is required for the proteasome to enable ubiquitin-dependent degradation of its ligands. Ddi1 contains an N-terminal UBL domain and a C-terminal UBA domain. It also harbors a central retroviral aspartyl-protease-like domain (RVP) which may be important in cell-cycle control. At this point, Ddi1 may function proteolytically during regulated protein turnover in the cell. 30 -270496 cd14311 UBA_II_E2_UBC1 UBA domain of yeast ubiquitin-conjugating enzyme E2 1 (UBC1) and similar proteins. UBC1, also called ubiquitin-conjugating enzyme E2-24 kDa, or ubiquitin-protein ligase, is the yeast homolog of mammalian ubiquitin-conjugating enzyme E2 K (UBE2K or E2-25K). UBC1 and UBE2K are unique class II E2 conjugating enzymes, both of which contain a C-terminal ubiquitin-associated (UBA) domain in addition to an N-terminal catalytic ubiquitin-conjugating enzyme E2 (UBCc) domain. The yeast UBC1 plays an important role in the degradation of short-lived proteins especially during the G0-G1 transition accompanying spore germination. 48 -270497 cd14312 UBA_II_E2_UBC27_like UBA domain found in plant ubiquitin-conjugating enzyme E2 27 and similar proteins. UBC27, also called ubiquitin carrier protein 27, functions as a class II ubiquitin-conjugating (UBC) enzyme (E2). E2, together with E1 (ubiquitin-activating enzyme UBA) and E3 (ubiquitin ligase), is required in the multi-step reaction of ubiquitin conjugation. Unlike other Arabidopsis UBCs, in addition to an N-terminal ubiquitin-conjugating enzyme E2 catalytic domain (UBCc), UBC27 has an additional C-terminal ubiquitin-associated domain (UBA). 36 -270498 cd14313 UBA_II_E2_UBE2K_like UBA domain found in vertebrate ubiquitin-conjugating enzyme E2 K (UBE2K), Drosophila melanogaster ubiquitin-conjugating enzyme E2-22 kDa (UbcD4) and similar proteins. UBE2K, also called Huntingtin-interacting protein 2 (HIP-2), ubiquitin carrier protein, ubiquitin-conjugating enzyme E2-25 kDa (E2-25K), or ubiquitin-protein ligase, is a multi-ubiquitinating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains which is involved in the ubiquitin (Ub)-dependent proteolytic pathway. It interacts with the frameshift mutant of ubiquitin B and functions as a crucial factor regulating amyloid-beta neurotoxicity. It has also been characterized as Huntingtin-interacting protein that modulates the neurotoxicity of Amyloid-beta (Abeta), the principal protein involved in Alzheimer's disease pathogenesis. Moreover, E2-25K increases aggregate the formation of expanded polyglutamine proteins and polyglutamine-induced cell death in the pathology of polyglutamine diseases. UbcD4, also called ubiquitin carrier protein, or ubiquitin-protein ligase, is encoded by Drosophila E2 gene which is only expressed in pole cells in embryos. It is a putative E2 enzyme homologous to the Huntingtin interacting protein-2 (HIP2) of human. UbcD4 specifically interacts with the polyubiquitin-binding subunit of the proteasome. This family also includes a putative ubiquitin conjugating enzyme from plasmodium Yoelii (pyUCE). It shows a high level of sequence similarity with UBE2K and may also plays a role in the ubiquitin-mediated protein degradation pathway. All family members are class II E2 conjugating enzymes which contain a C-terminal ubiquitin-associated (UBA) domain in addition to an N-terminal catalytic ubiquitin-conjugating enzyme E2 (UBCc) domain. 36 -270499 cd14314 UBA_II_E2_pyUCE_like UBA domain found in a putative ubiquitin conjugating enzyme from plasmodium Yoelii (pyUCE) and similar proteins. P. Yoelii ubiquitin-conjugating enzyme and other uncharacterized family members show high sequence similarity to the human Huntingtin interacting protein-2 (HIP2) which belongs to a class II E2 ubiquitin-conjugating enzyme family. These proteins may play roles in the ubiquitin-mediated protein degradation pathway. They all contain a C-terminal ubiquitin-associated (UBA) domain in addition to an N-terminal catalytic ubiquitin-conjugating enzyme E2 (UBCc) domain. 37 -270500 cd14315 UBA1_UBAP1 UBA1 domain found in vertebrate ubiquitin-associated protein 1 (UBAP-1). UBAP-1, also called nasopharyngeal carcinoma-associated gene 20 protein, is a ubiquitously expressed protein that may play an important role in the ubiquitin pathway and cell progression. It co-localizes with TDP-43 proteins in neuronal cytoplasmic inclusions and acts as a genetic risk factor for frontotemporal lobar degeneration (FTLD). Moreover, UBAP-1, together with VPS37A, forms an endosome-specific endosomal sorting complexes I required for transport (ESCRT-I) complex that displays a restricted cellular function, ubiquitin-dependent endosomal sorting and multivesicular body (MVB) biogenesis. UBAP-1 contains an N-terminal UBAP-1-MVB12-associated (UMA) domain, and two tandem ubiquitin-associated (UBA) domains that may be responsible for the binding of ubiquitin-conjugating enzymes. This model corresponds to UBA1 domain. 43 -270501 cd14316 UBA2_UBAP1_like UBA2 domain found in ubiquitin-associated protein 1 (UBAP-1) and similar proteins. UBAP-1, also called nasopharyngeal carcinoma-associated gene 20 protein, is a ubiquitously expressed protein that may play an important role in the ubiquitin pathway and cell progression. It co-localizes with TDP-43 proteins in neuronal cytoplasmic inclusions and acts as a genetic risk factor for frontotemporal lobar degeneration (FTLD). Moreover, UBAP-1, together with VPS37A, forms an endosome-specific endosomal sorting complexes I required for transport (ESCRT-I) complex that displays a restricted cellular function, ubiquitin-dependent endosomal sorting and multivesicular body (MVB) biogenesis. UBAP-1 contains an N-terminal UBAP-1-MVB12-associated (UMA) domain, and two tandem ubiquitin-associated (UBA) domains that may be responsible for the binding of ubiquitin-conjugating enzymes. This model corresponds to UBA2 domain. 37 -270502 cd14317 UBA_DHX57 UBA domain found in putative ATP-dependent RNA helicase DHX57 and similar proteins. DHX57, also called DEAH box protein 57, is a multi-domain protein with an N-terminal ubiquitin-association (UBA) domain, a Zinc finger domain, a RWD domain, a DEAD-like helicase domain and two C-terminal helicase associated domains. Although the precise biological function of DHX57 remains unclear, it may function as a putative ATP-dependent RNA helicase. 38 -270503 cd14318 UBA_Cbl_like UBA domain found in casitas B-lineage lymphoma (Cbl) proteins. The Cbl adaptor proteins family contains a small class of RING-type E3 ubiquitin ligases with oncogenic activity which is represented by three mammalian members, c-Cbl, Cbl-b and Cbl-3. Cbl proteins function as potent negative regulators of various signaling cascades in a wide range of cell types. They play roles in ubiquitinating the activated tyrosine kinases and targeting them for degradation. Cbl proteins in this family consists of a highly conserved N-terminal half that includes a tyrosine-kinase-binding (TKB) domain and a RING finger domain, both of which are required for Cbl-mediated downregulation of RTKs, and a C-terminal half that includes a ubiquitin-associated (UBA) domain and other protein interaction motifs. The UBA domain contains leucine/isoleucine repeats and may play a role in dimerization of Cbl proteins. In addition, although both c-Cbl and Cbl-b have the C-terminal UBA domain, only the UBA domain from Cbl-b can bind ubiquitin. 40 -270504 cd14319 UBA_NBR1 UBA domain of next to BRCA1 gene 1 protein (NBR1) and similar proteins. NBR1, also called cell migration-inducing gene 19 protein, membrane component chromosome 17 surface marker 2, neighbor of BRCA1 gene 1 protein, or protein 1A1-3B, is a scaffold protein that may be involved in signal transmission downstream of the serine/protein kinase from the giant muscle protein titin. Moreover, NBR1 functions as an autophagic receptor for ubiquitinated cargo. It interacts with ATG8-family proteins for its degradation by autophagy. NBR1 contains an N-terminal Phox and Bem1p (PB1) domain that plays a critical role in mediating protein-protein interactions with both titin kinase and with another scaffold protein, p62. NBR1 also has a LC3-interaction region (LIR) and a ubiquitin-associated (UBA) domain. The LIR is required for the autophagic clearance of NBR1. UBA domain is responsible for the ubiquitin binding which is necessary for the puromycin-induced formation of ubiquitinated protein aggregates. 39 -270505 cd14320 UBA_SQSTM UBA domain of sequestosome-1 (SQSTM) and similar proteins. SQSTM, also called EBI3-associated protein of 60 kDa (EBIAP /p60), phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa, or ubiquitin-binding protein p62, is a widely expressed multifunctional cytoplasmic protein that is able to noncovalently bind ubiquitin and several signaling proteins, suggesting a regulatory role connected to the ubiquitin-proteasome pathway. It functions as a scaffolding protein that regulates a diverse range of signaling pathways leading to activation of the nuclear factor kappa B (NF-kappaB) family of transcription factors. It also plays a novel role in connecting receptor signals with the endosomal signaling network required for mediating TrkA-induced differentiation. SQSTM contains a PB1 dimerization domain, a tumor necrosis factor receptor-associated factor 6 (TRAF6) binding site, and a C-terminal ubiquitin-associated (UBA) domain that mediates the recognition of polyubiquitin chains and ubiquitylated substrates. 40 -270506 cd14321 UBA_IAPs UBA domain found in inhibitor of apoptosis proteins (IAPs). IAPs are frequently overexpressed in cancer and associated with tumor cell survival, chemoresistance, disease progression and poor prognosis. They function primarily as negative regulators of cell death. They regulate caspases and apoptosis through the inhibition of specific members of the caspase family of cysteine proteases. In addition, IAPs has been implicated in a multitude of other cellular processes, including inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis, as well as cell invasion and metastasis. IAPs in this family includes cellular inhibitor of apoptosis protein c-IAP1 and c-IAP2, XIAP, and BIRC8, all of which contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of binds polyubiquitin (polyUb), and a RING domain at the carboxyl terminus that is required for ubiquitin ligase activity. c-IAPs contains an additional caspase activation and recruitment domain (CARD) between UBA and RING domains. CARD domain may serve as a protein interaction surface. 44 -270507 cd14322 UBA_LATS UBA domain found in serine/threonine-protein kinase LATS and similar proteins. The LATS proteins family consists of two isoforms, LATS1 and LATS2, both of which are mammalian homologs of the Drosophila tumor suppressor gene lats/warts. LATS1, also called large tumor suppressor homolog 1, or WARTS protein kinase (warts), is a serine/threonine-protein kinase that highly conserved from fly to human. LATS2, also called kinase phosphorylated during mitosis protein, or large tumor suppressor homolog 2, or serine/threonine-protein kinase KPM, or Warts-like kinase, inhibits the G1/S transition and is essential for embryonic development, proliferation control and genomic integrity. LATS proteins contain an N-terminal ubiquitin-associated (UBA) domain and a C-terminal protein kinase domain. 39 -270508 cd14323 UBA_PLCs_like UBA domain of eukaryotic protein linking integrin-associated protein with cytoskeleton (PLIC) proteins, Saccharomyces cerevisiae proteins Dsk2p and Gts1p, and similar proteins. The PLIC proteins (or ubiquilins) family contains human homologs of the yeast ubiquitin-like Dsk2 protein, PLIC-1 (also called ubiquilin-1), PLIC-2 (also called ubiquilin-2 or Chap1), PLIC-3 (also called ubiquilin-3) and PLIC-4 (also called ubiquilin-4, Ataxin-1 interacting ubiquitin-like protein, A1Up, Connexin43-interacting protein of 75 kDa, or CIP75), and mouse PLIC proteins. They are ubiquitin-binding adaptor proteins involved in all protein degradation pathways through delivering ubiquitinated substrates to proteasomes. They also promote autophagy-dependent cell survival during nutrient starvation. Saccharomyces cerevisiae Dsk2p is a nuclear-enriched protein that may involve in the ubiquitin-proteasome proteolytic pathway through interacting with K48-linked polyubiquitin and the proteasome. Gts1p, also called protein LSR1, is encoded by a pleiotropic gene GTS1 in budding yeast. The formation of Gts1p-mediated protein aggregates may induce reactive oxygen species (ROS) production and apoptosis. Gts1p also plays an important role in the regulation of heat and other stress responses under glucose-limited or -depleted conditions in either batch or continuous culture. 39 -270509 cd14324 UBA_Dsk2p_like UBA domain of Saccharomyces cerevisiae proteasome interacting protein Dsk2p and its homologs found in fungi. The family contains several fungal multi-ubiquitin receptors, including Saccharomyces cerevisiae Dsk2p and Schizosaccharomyces pombe Dph1p, both of which have been characterized as shuttle proteins transporting ubiquitinated substrates destined for degradation from the E3 ligase to the 26S proteasome. They interact with the proteasome through their N-terminal ubiquitin-like domain (UBL) and with ubiquitin (Ub) through their C-terminal ubiquitin-associated domain (UBA). S. cerevisiae Dsk2p is a nuclear-enriched protein that may involve in the ubiquitin-proteasome proteolytic pathway through interacting with K48-linked polyubiquitin and the proteasome. Moreover, it has been implicated in spindle pole duplication through assisting in Cdc31 assembly into the new spindle pole body (SPB). S. pombe Dph1p is a ubiquitin receptor working in concert with the class V myosin, Myo52, to target the degradation of the S. pombe CLIP-170 homolog, Tip1. It also can protect ubiquitin chains against disassembly by deubiquitinating enzymes. 42 -270510 cd14325 UBA_RNF31 UBA domain found in E3 ubiquitin-protein ligase RING finger protein 31 and similar proteins. RNF31, also called HOIL-1-interacting protein (HOIP), or zinc in-between-RING-finger ubiquitin-associated domain protein, together with HOIL-1 and SHARPIN, forms the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis. RNF31 contains a central ubiquitin-associated (UBA) domain that is responsible for the interaction with the N-terminal ubiquitin-like domain (UBL) of HOIL-1L. In addition, RNF31 can interact with the atypical mammalian orphan receptor DAX-1, trigger DAX-1 ubiquitination and stabilization, and participate in repressing steroidogenic gene expression. 55 -270511 cd14326 UBA_UBL7 UBA domain found in ubiquitin-like protein 7 (UBL7) and similar proteins. UBL7, also called bone marrow stromal cell ubiquitin-like protein (BMSC-UbP), or ubiquitin-like protein SB132, is a novel ubiquitin-like protein that may play roles in regulation of bone marrow stromal cell (BMSC) function or cell differentiation via an evocator-associated and cell-specific pattern. UBL7 contains an N-terminal ubiquitin domain (UBQ) and a C-terminal ubiquitin-associated (UBA) domain. UBQ domain interacts with 26S proteasome-dependent degradation, and UBA domain links cellular processes and the ubiquitin system. 38 -270512 cd14327 UBA_atUPL1_2_like UBA domain found in Arabidopsis thaliana E3 ubiquitin-protein ligase UPL1 (atUPL1), UPL2 (atUPL2) and similar proteins. The family includes two highly similar 405-kDa HECT E3 ubiquitin-protein ligases (UPLs), UPL1 and UPL2, from Arabidopsis thaliana. The HECT E3 UPL family plays a prominent role in the ubiquitination of plant proteins. The biological functions of UPL1 and UPL2 remain unclear. Both of them contain a ubiquitin-associated (UBA) domain and a C-terminal HECT domain. UBA domain may be involved in ubiquitin metabolism. HECT domain is necessary and sufficient for their E3 catalytic activity, but requires ATP, E1 and an E2 of the Arabidopsis UBC8 family to ubiquitinate proteins. 38 -270513 cd14328 UBA_TNK1 UBA domain found in non-receptor tyrosine-protein kinase TNK1 and similar proteins. TNK1, also called CD38 negative kinase 1, is a non-receptor protein tyrosine kinase (NRPTK) that has been implicated in the regulation of apoptosis, cell growth, nuclear factor-kappaB, and Ras. It associates with phospholipase C (PLC)-gamma1 and may play a role in phospholipid signal transduction. TNK1 contains an NH2-terminal kinase, a Src Homology 3 (SH3) domain, a proline-rich (PR) region, and a C-terminal ubiquitin-association (UBA) domain. 40 -270514 cd14329 UBA_SWA2p_like UBA domain found in yeast auxilin-like clathrin uncoating factor SWA2 (Swa2p) and similar proteins. The lineage specific group includes Swa2p and other uncharacterized hypothetical proteins from Saccharomyces. Swa2p, also called bud site selection protein 24, DnaJ-related protein SWA2, or synthetic lethal with ARF1 protein 2, is the yeast auxilin ortholog that is a multifunctional protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin-association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. It is required for disassembly of clathrin-coated vesicles (CCVs) in an ATP-dependent manner, as well as for cortical endoplasmic reticulum (ER) inheritance. 36 -270515 cd14330 UBA_atDRM2_like UBA domain found in Arabidopsis thaliana DNA (cytosine-5)-methyltransferase DRM2 (atDRM2) and similar proteins. atDRM2, also called protein domains rearranged methylase 2, is a homolog of the mammalian de novo methyltransferase DNMT3. It is the major de novo methyltransferase targeted to DNA by small interfering RNAs (siRNAs) in the RNA-directed DNA methylation (RdDM) pathway in Arabidopsis thaliana. atDRM2 is a part of the RdDM effector complex and plays a catalytic role in RdDM. It contains an N-terminal UBA domains and a C-terminal methyltransferase domain, both of which are required for normal RdDM. 37 -270516 cd14331 UBA_HERC1_2 UBA domain found in probable E3 ubiquitin-protein ligase HERC1, HERC2 and similar proteins. HERC1, also called HECT domain and RCC1-like domain-containing protein 1, p532, or p619, is an ubiquitously expressed giant protein involved in ubiquitin-dependent intracellular membrane trafficking through its interaction with vesicle coat proteins such as clathrin and ARF. Moreover, it has been identified as a tuberous sclerosis complex TSC2-interacting protein that may play a role in TSC-mTOR (mammalian target of rapamycin) pathway. HERC2, also called HECT domain and RCC1-like domain-containing protein 2, is a SUMO-regulated E3 ubiquitin ligase that plays an important role in the SUMO-dependent pathway which orchestrates the DNA double-strand break (DSB) response. Moreover, HERC2 functions as a RNF8 auxiliary factor that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. HERC1 and HERC2 are multi-domain proteins with different domain organizations. Both of them contain a ubiquitin-association (UBA) domain, more than one RCC1-like domains (RLDs) and a C-terminal HECT E3 ubiquitin ligase domain. 40 -270517 cd14332 UBA_RuvA_C C-terminal UBA-like domain of holliday junction ATP-dependent DNA helicase RuvA. RuvA, along with RuvB and RuvC proteins, is involved in branch migration of heteroduplex DNA in homologous recombination that is a crucial process for maintaining genomic integrity and generating biological diversity in all living organisms. RuvA has a tetrameric architecture in which each subunit comprised of three distinct domains. This model corresponds to the C-terminal domain of RuvA which is distantly related to the ubiquitin-associated (UBA) domain. It plays a significant role in the ATP-dependent branch migration of the hetero-duplex through direct contact with RuvB. Within the Holliday junction, the C-terminal domain makes no interaction with DNA. 45 -270518 cd14333 UBA_unchar_Eumetazoa UBA domain found in some hypothetical proteins from Eumetazoa. The family includes some uncharacterized Eumetazoan proteins. Although their biological function remain unclear, they all contain a very conserved ubiquitin-associated (UBA) domain which is a commonly occurring sequence motif found in proteins involved in ubiquitin-mediated proteolysis. 38 -270519 cd14334 UBA_SNF1_fungi UBA domain of yeast carbon catabolite-derepressing protein kinases (Snf1) and similar proteins found in fungi. Snf1, also called yeast adenosine monophosphate (AMP)-activated protein kinase (AMPK), is a global regulator of carbon metabolism in the yeast Saccharomyces cerevisiae. Its phosphorylation is essential for the regulation by carbon catabolite repression in eukaryotic cells. Snf1 is involved in the cellular responses to nutrient stress, as well as other environmental stresses, including sodium ion stress, heat shock, alkaline pH, oxidative stress, and genotoxic stress. It plays roles in various nutrient-responsive, cellular developmental processes, including meiosis and sporulation, aging, haploid invasive growth, and diploid pseudohyphal growth. It is required for transcription of glucose-repressed genes, glycogen storage, thermotolerance, and peroxisome biogenesis. The catalytic activity of Snf1 can be regulated by upstream kinases, Sak1, Elm1, and Tos3, by the Reg1-Glc7 protein phosphatase 1, and by autoinhibition. In addition to an N-terminal protein kinase domain and a C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK), Snf1 contains an ubiquitin-associated (UBA) domain, previously called SNF1 homology (SNH) domain, in the middle region. 48 -270520 cd14335 UBA_SnRK1_plant UBA domain found in the plant sucrose nonfermenting-1-related kinase (SnRK1) proteins. The plant SnRK1 proteins (also known as AKIN10/11) family contains plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK), including two catalytic alpha-subunits of plant Snf1-related kinases (SnRKs): SNF1-related protein kinase catalytic subunit alpha KIN10 (also called AKIN10 or AKIN alpha2) and SNF1-related protein kinase catalytic subunit alpha KIN11 (also called AKIN11 or AKIN alpha1). AKIN10 and AKIN11 function as central integrators of sugar, metabolic, stress, and developmental signals in plants. They form different complexes with the regulatory AKINbeta2, a plant ortholog of conserved Snf1/AMPK beta-subunits. In addition to an N-terminal protein kinase domain and a C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK), Snf1 contains an ubiquitin-associated (UBA) domain, previously called SNF1 homology (SNH) domain, in the middle region. 41 -270521 cd14336 UBA_AID_AMPKalpha UBA-like autoinhibitory domain (AID) found in vertebrate 5'-AMP-activated protein kinase catalytic alpha (AMPKalpha) subunits. The family corresponds to the catalytic subunits of adenosine monophosphate (AMP)-activated protein kinase (AMPK) which includes two isoforms encoded by two distinct genes, AMPKalpha-1 (PRKAA1) and AMPKalpha-2 (PRKAA2). Skeletal muscle predominantly expresses the AMPKalpha-2, whereas the liver expresses approximately equal amounts of both AMPKalpha subunits. One AMPKalpha subunit and two regulatory subunits, beta (beta1, beta2, beta3) and gamma (gamma1, gamma2, gamma3) form a heterotrimeric AMPK complex that plays a central role in the regulation of cellular energy metabolism, activates energy-producing pathways and inhibits energy-consuming processes through responding to a fall in intracellular ATP levels. It is activated in beta-cells at low glucose concentrations, but inhibited as glucose levels increase. AMPKalpha subunits show significant similarity in the catalytic core region, but have divergent COOH-terminal tails, suggesting they may interact with different proteins within this region. Both of AMPKalpha subunits have an N-terminal Ser/Thr kinase domain followed by an ubiquitin-associated (UBA)-like AID, and a C-terminal AMPK regulatory domain. The Ser/Thr kinase domain contains a conserved Thr residue that must be phosphorylated for activity in the activation loop. The AID is responsible for AMPKalpha subunits autoinhibition. The C-terminal regulatory domain of the alpha-subunit is essential for binding the beta- and gamma-subunits. 65 -270522 cd14337 UBA_MARK_Par1 UBA domain found in microtubule-associated protein (MAP)/microtubule affinity-regulating kinase (MARK)/ partitioning-defective 1 (Par-1) and similar proteins. The MARK/Par-1 subfamily contains serine/threonine-protein kinases including mammal MARKs, and polarity kinases Par-1 found in Caenorhabditis elegans and Drosophila melanogaster. Those proteins are frequently found associated with membrane structures and participate in diverse processes from control of the cell cycle and polarity to intracellular signaling and microtubule stability. They are involved in nematode embryogenesis, cell cycle control, epithelial cell polarization, cell signaling, and neuronal migration and differentiation. The mammals MARKs have been implicated in carcinomas, Alzheimer's disease (through tau hyperphosphorylation), and autism. Four MARK isoforms exist in humans. Members in this subfamily contain an N-terminal protein kinase catalytic domain, followed by an ubiquitin-associated (UBA) domain and a C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK). 40 -270523 cd14338 UBA_SIK UBA domain found in salt-inducible kinase SIK1, SIK2, SIK3 and similar proteins. Salt-inducible kinase SIK1, SIK2, SIK3 are serine/threonine kinases that belong to the AMP-activated protein kinases (AMPK) family involved in the regulation of metabolism during energy stress. SIK1, also called serine/threonine-protein kinase SNF1-like kinase 1 (SNF1LK), is required for myogenic differentiation. It is degraded by the proteasome in myoblasts which is regulated by cAMP signaling. Moreover, SIK1 acts as a class II histone deacetylase (HDAC) kinase, triggering the cytoplasmic export of the HDACs and activation of myocyte enhancer factor 2 (MEF2)-dependent transcription. It also regulates transcription through inhibitory phosphorylation of a family of cAMP responsive element binding protein (CREB) coactivators, called TORCs/CRTCs. In addition, SIK1 links LKB1 to p53-dependent anoikis and suppresses metastasis. It is also involved in a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. SIK2, also called Qin-induced kinase or serine/threonine-protein kinase SNF1-like kinase 2 (SNF1LK2), plays an important role in the insulin-signaling pathway during adipocyte differentiation, as well as in autophagy progression. Moreover, SIK2 plays a critical role in neuronal survival and modulates cAMP responsive element binding protein (CREB)-mediated gene expression in response to hormones and nutrients. SIK2 acts as a critical determinant in autophagy progression. In addition, SIK2 localizes at the centrosome and functions as a centrosome kinase required for bipolar mitotic spindle formation. It is involved in the initiation of mitosis, and regulates the localization of the centrosome linker protein, C-Nap1, through S2392 phosphorylation. SIK3, also called salt-inducible kinase 3 or serine/threonine-protein kinase QSK, acts as a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism. It also play an essential role in facilitating chondrocyte hypertrophy during skeletogenesis and growth plate maintenance. Members in this family contain an N-terminal protein kinase catalytic domain followed by an ubiquitin-associated (UBA) domain. 45 -270524 cd14339 UBA_SNRK UBA domain of SNF-related serine/threonine-protein kinase (SNRK) and similar proteins mainly found in metazoa. SNRK, also called Sucrose nonfermenting 1 (Snf1)-related kinase, is a serine/threonine kinase highly expressed in the testis. It is a distant member of the largely adenosine monophosphate (AMP)-activated protein kinase (AMPK) family. SNRK can be phosphorylated and activated by LKB1 and may mediate cellular effects regulated by LKB1. It is also involved in the regulation of colon cancer cell proliferation and beta-catenin signaling. It inhibits colon cancer cell proliferation through calcyclin-binding protein (CacyBP)-dependent reduction of beta-catenin. In addition to an N-terminal protein kinase domain, it harbors an ubiquitin-associated (UBA) domain, previously called SNF1 homology (SNH) domain which is conserved in other Snf1-related kinases, but not in any other protein kinase. 48 -270525 cd14340 UBA_BRSK UBA domain found in serine/threonine-protein kinase BRSK1, BRSK2 and similar proteins. The family includes brain-specific kinases BRSK1 and BRSK2. They are AMP-activated protein kinase (AMPK)-related kinases that are highly expressed in mammalian forebrain and crucial for establishing neuronal polarity.BRSK1, also called brain-selective kinase 1, brain-specific serine/threonine-protein kinase 1, BR serine/threonine-protein kinase 1, serine/threonine-protein kinase SAD-B, or synapses of Amphids Defective homolog 1 (SAD1 homolog), is associated with synaptic vesicles and is tightly associated with the presynaptic cytomatrix in nerve terminals. It can regulate neurotransmitter release presynaptically. BRSK2, also called brain-selective kinase 2, brain-specific serine/threonine-protein kinase 2, BR serine/threonine-protein kinase 2, serine/threonine-protein kinase 29, or serine/threonine-protein kinase SAD-A is an AMP-activated protein kinase (AMPK)-related kinase exclusively expressed in brain and pancreas. It plays an essential role in neuronal polarization. It interacts with CDK-related protein kinase PCTAIRE1, a kinase involved in neurite outgrowth and neurotransmitter release, and further negatively regulates glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells through activation of p21-activated kinase-1 (PAK1). BRSK2 also regulates cell-cycle progression controlled by APC/C(Cdh1) through the ubiquitin-proteasome pathway. Moreover, BRSK2 is regulated by endoplasmic reticulum (ER) stress in protein level and involved in ER stress-induced apoptosis. Both BRSK1 and BRSK2 contain an N-terminal protein kinase catalytic domain followed by an ubiquitin-associated (UBA) domain. 54 -270526 cd14341 UBA_MELK UBA domain found in maternal embryonic leucine zipper kinase (MELK) and similar proteins. MELK, also called protein kinase Eg3 (pEg3 kinase), protein kinase PK38 (PK38), or tyrosine-protein kinase MELK, is a cell cycle dependent protein kinase involved in diverse cell processes including stem cell renewal, cell cycle progression, cell proliferation, apoptosis and mRNA processing. It is expressed in normal tissues and especially in cancer cells. It is upregulated in cancer tissues and thus may act as potential anticancer target in diverse tumor entities. MELK comprises an N-terminal protein kinase catalytic domain, followed by an ubiquitin-associated (UBA) domain, and a C-terminal autoinhibitory domain of 5'-AMP-activated protein kinase (AMPK). 52 -270527 cd14342 UBA_TAP-C UBA-like domain found in nuclear RNA export factor NXF1, NXF2 and similar proteins. The NXF family of mRNA nuclear export factors including vertebrate NXF1 (also called tip-associated protein or mRNA export factor TAP), NXF2 (also called cancer/testis antigen CT39 or TAP-like protein TAPL-2), Caenorhabditis elegans NXF1 (ceNXF1), Saccharomyces cerevisiae mRNA nuclear export factor Mex67p and similar proteins. NXF proteins can stimulate nuclear export of mRNAs and facilitate the export of unspliced viral mRNA containing the constitutive transport element. It is a multi-domain protein with a nuclear localization sequence (NLS), a non-canonical mRNA-binding domain, and four leucine-rich repeats (LLR) at the N-terminal region. Its C-terminal part contains a NTF2-like domain and a ubiquitin-associated (UBA)-like domain, joined by flexible Pro-rich linker. Caenorhabditis elegans NXF1 are essential for the nuclear export of poly(A)+mRNA. In budding yeast, Mex67p binds mRNAs through its adaptor Yra1/REF. It also interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export. Moreover, Mex67p associates with both nuclear pore protein (nucleoporin) FG repeats and Hpr1, a component of the TREX/THO complex linking transcription and export. 51 -270528 cd14343 UBA_F100B_like UBA-like domain found in protein FAM100B. The family corresponds to the uncharacterized protein FAM100B and its homologs mainly found in Metazoa. Although their biological roles remain unclear, all family members contain a ubiquitin-associated (UBA)-like domain that may be involved in the binding of ubiquitin. 39 -270529 cd14344 UBA_TYDP2 UBA-like domain found in tyrosyl-DNA phosphodiesterase 2 (TDP2) and similar proteins. TDP2, also called ETS1-associated protein II (EAPII) or TRAF and TNF receptor-associated protein (Ttrap), is a 5'-Tyr-DNA phosphodiesterase, a member of the Mg(2+)/Mn(2+)-dependent family of phosphodiesterases which contains an N-terminal ubiquitin-associated (UBA)-like domain and a C-terminal phosphodiesterase domain. TDP2 is required for the efficient repair of topoisomerase II-induced DNA double strand breaks. The topoisomerase is covalently linked by a phosphotyrosyl bond to the 5'-terminus of the break. TDP2 cleaves the DNA 5'-phosphodiester bond and restores 5'-phosphate termini needed for subsequent DNA ligation and hence repair of the break. Tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that cleaves 3'-phosphotyrosyl bonds, and TDP2 are complementary activities; together, they allow cells to remove trapped topoisomerase from both 3'- and 5'-DNA termini. TDP2 has been reported as being involved in apoptosis, embryonic development, and transcriptional regulation. It can associate with CD40, tumor necrosis factor receptor-75 (TNF-R75) and TNF receptor-associated factors (TRAFs) and may inhibit the activation of nuclear factor-kappa B (NF-kappaB). 37 -270530 cd14345 UBA_UBXD7 UBA-like domain found in UBX domain-containing protein 7 (UBXD7) and similar proteins. UBXD7, also known as UBXN7, functions as a ubiquitin-binding adaptor that mediates the interaction between the AAA+ ATPase p97 (also known as VCP or Cdc48) and the transcription factor HIF1alpha. It binds only to the active, NEDD8- or Rub1-modified form of cullins. UBXD7 contains the ubiquitin-associated (UBA), ubiquitin-associating (UAS), ubiquitin regulatory X (UBX), and ubiquitin-interacting motif (UIM) domains. Either UBA or UIM could serve as a docking site for neddylated-cullins. Moreover, UBA-like domain is required for binding ubiquitylated-protein substrates, UIM motif is responsible for the binding to cullin RING ligases (CRLs), and UBX domain is essential for p97 binding. 37 -270531 cd14346 UBA_Ubx5_like UBA-like domain found in Saccharomyces cerevisiae UBX domain-containing protein 5 (Ubx5) and similar proteins. Ubx5 is a ubiquitin regulatory X (UBX) domain-containing protein encoded by the open reading frame (ORF) YDR330W in yeast. As the yeast ortholog of mammalian UBXD7, Ubx5 functions as the cofactor of AAA+ ATPase p97, also known as VCP or Cdc48. It binds only to the active, NEDD8- or Rub1-modified form of cullins. Ubx5 contains the ubiquitin-associated (UBA), ubiquitin-associating (UAS), ubiquitin regulatory X (UBX) and ubiquitin-interacting motif (UIM) domains and its UIM domain is required to promote UV-dependent degradation of polyubiquitinated Rpb1. 39 -270532 cd14347 UBA_Cezanne_like UBA-like domain found in OTU domain-containing proteins OTU7A, OTU7B and similar proteins. OTU7A, also called zinc finger protein Cezanne 2, belongs to a family of proteins that have been characterized as highly specific ubiquitin iso-peptidases removing ubiquitin from proteins. OTU7B, also called cellular zinc finger anti-NF-kappaB protein, zinc finger A20 domain-containing protein 1, or zinc finger protein Cezanne, is a novel deubiquitinating enzyme that acts as a negative regulator of NF-kappaB and may play a role in the control of the inflammatory process. Both OTU7A and OTU7B contain an N-terminal ubiquitin-associated (UBA)-like domain, followed by an ovarian tumor (OTU) domain and a ubiquitin binding domain, A20-like zinc finger. In addition, they both display proteolytic activity. 43 -270533 cd14348 UBA_p47 UBA-like domain found in NSFL1 cofactor p47 and similar proteins. p47, also called UBX domain-containing protein 2C, is a major cofactor of the cytosolic AAA ATPase p97. It is required for the p97-regulated membrane reassembly of the endoplasmic reticulum (ER), the nuclear envelope and the Golgi apparatus. p47, together with p97, forms the p97-p47 complex that plays an important role in regulation of membrane fusion events. p47 contains an N-terminal ubiquitin-associated (UBA)-like domain, a central SEP (named after shp1, eyc and p47) domain, and a ubiquitin-like (UBX) domain. UBA-like domain is responsible for forming a highly stable complex with ubiquitin. SEP domain and UBX domain may involve in p47 trimerization or forms a stable complex with the p97 N-terminal domain. 40 -270534 cd14349 UBA_CF106 UBA-like domain found in uncharacterized protein C6orf106 and similar proteins. The family corresponds to a group of uncharacterized protein C6orf106 and its homologs mainly found in Metazoa. All family members contain a ubiquitin-associated (UBA)-like domain. 41 -270535 cd14350 UBA_DCNL UBA-like domain found in DCN1-like protein DCNL1, DCNL2 and similar proteins. DCNL1 (defective in cullin neddylation protein 1-like protein 1), also called DCUN1 domain-containing protein 1, is encoded by squamous cell carcinoma-related oncogene SCCRO (DCUN1D1). It interacts with known cullin isoforms as well as ROC1, Ubc12 and CAND1, the components of the neddylation pathway. It plays an essential role in the neddylation E3 complex and participates in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity. DCNL1 contains an N-terminal ubiquitin-associated (UBA)-like domain and a C-terminal cullin binding domain that binds to cullins and Rbx-1, components of an E3 ubiquitin ligase complex for neddylation. DCNL2 (defective in cullin neddylation protein 1-like protein 2), also called DCUN1 domain-containing protein 2, is encoded by gene DCUN1D2. Although its biological function remains unclear, DCNL2 shows high sequence similarity with DCNL1 and may also contribute to neddylation of cullin components of SCF-type E3 ubiquitin ligase complexes. Like DCNL1, DCNL2 contains an N-terminal UBA-like domain and a C-terminal cullin binding domain. 42 -270536 cd14351 UBA_Ubx1_like UBA-like domain found in yeast UBX domain-containing protein 1 (Ubx1) and similar proteins. Ubx1, also called suppressor of high-copy PP1 protein (Shp1), is the substrate-recruiting cofactor of AAA-adenosine triphosphatase Cdc48 in Saccharomyces cerevisiae. In concert with ubiquitin-like Atg8, Cdc48 and Ubx1 are involved in the regulation of autophagosome biogenesis. Ubx1 also functions as a regulator of phosphoprotein phosphatase 1 (PP1) with differential effects on glycogen metabolism, meiotic differentiation, and mitotic cell cycle progression. All family members contain an N-terminal ubiquitin-associated (UBA)-like domain. 37 -270537 cd14352 UBA_DCN1 UBA-like domain found in yeast defective in cullin neddylation protein 1 (DCN1) and similar proteins. DCN1 is a scaffold-type E3 ligase for cullin neddylation. It can bind directly to cullins and the ubiquitin-like protein Nedd8-specific E2 (Ubc12), and regulate cullin neddylation and thus display ubiquitin ligase activity. It contains an N-terminal ubiquitin-associated (UBA)-like domain and a unique C-terminal PONY domain that is essential for the neddylation function of DCN1. 36 -270538 cd14353 UBA_FAF UBA-like domain found in FAS-associated factor FAF1, FAF2 and similar proteins. FAF1, also called UBX domain-containing protein 12 or UBX domain-containing protein 3A, is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP) which is involved in the ubiquitin-proteosome pathway. FAF2, also called protein ETEA, UBX domain-containing protein 3B, or UBX domain-containing protein 8, is the translation product of a highly expressed gene in the T-cells and eosinophils of atopic dermatitis patients compared with those of normal individuals. FAF2 shows homology to Fas-associated factor 1 (FAF1). Both of them contain N-terminal ubiquitin-associated (UBA)-like domain, UAS and ubiquitin-like (UBX) domains. Compared to FAF1, however, FAF2 lacks the nuclear targeting domain. The function of FAF2 remains unclear. A yeast two-hybrid assay showed that it can interact with Fas. Because of its homology to FAF1, it is postulated that FAF2 could be involved in modulating Fas-mediated apoptosis of T-cells and eosinophils of atopic dermatitis patients, making them more resistant to apoptosis. 32 -270539 cd14354 UBA_UBP25 UBA domain found in ubiquitin carboxyl-terminal hydrolase 25 (UBP25) and similar proteins. UBP25, also called deubiquitinating enzyme 25, USP on chromosome 21, ubiquitin thioesterase 25, or ubiquitin-specific-processing protease 25, belongs to the deubiquitinating enzyme (DUB) family that specifically hydrolyzes ubiquitin chains on ubiquitin-conjugated proteins. USP25 has one muscular isoform and two ubiquitous isoforms. The longer muscular isoform can bind to muscle-restricted cytoskeletal and sarcomeric proteins, such as myosin binding protein C1 (MyBPC1), actin alpha-1 (ACTA1) and filamin C (FLNC), and further prevent their degradation. USP25 harbors three potential ubiquitin-binding domains (UBDs), one ubiquitin-associated (UBA) domain and two ubiquitin-interacting motifs (UIMs) in the N-terminal region. Its C-terminal tyrosine-rich region is responsible for the binding of the second SH2 domain of SYK, a non-receptor tyrosine kinase that specifically phosphorylates USP25 and alters its cellular levels. 46 -270540 cd14355 UBA_UBP28 UBA domain found in ubiquitin carboxyl-terminal hydrolase 28 (UBP28) and similar proteins. UBP28, also called deubiquitinating enzyme 28, ubiquitin thioesterase 28, or ubiquitin-specific-processing protease 28, is an ubiquitin-specific protease that belongs to the deubiquitinating enzyme (DUB) family which specifically hydrolyzes ubiquitin chains on ubiquitin-conjugated proteins. UBP28 can form a ternary complex with nucleoplasmic Fbw7alpha, an F-box protein that is part of an SCF-type ubiquitin ligase, and MYC, a transcription factor encoded by MYC proto-oncogene. UBP28 is required for the stability of MYC, and this stabilization is necessary for tumour-cell proliferation. Besides, UBP28 plays a critical role in the regulation of the Chk2-p53-PUMA pathway. It specifically interacts with 53BP1 and is essential to stabilize Chk2 and 53BP1 in response to DNA damage. 42 -270541 cd14358 UBA_NAC_euk UBA-like domain found in nascent polypeptide-associated complex subunit alpha (NACA) and its homologs mainly found in eukaryotes. The subfamily contains nascent polypeptide-associated complex subunit alpha (NACA), putative NACA-like protein (NACP1), nascent polypeptide-associated complex subunit alpha domain-containing protein 1 (NACAD), and similar proteins. NACA, also called NAC-alpha or Alpha-NAC, together with BTF3, also called Beta-NAC, form the nascent polypeptide-associated complex (NAC) which is a cytosolic protein chaperone that contacts the nascent polypeptide chains as they emerge from the ribosome. Besides, NACA has a high affinity for nucleic acids and exists as part of several protein complexes playing a role in proliferation, apoptosis, or degradation. It is a cytokine-modulated specific transcript in the human TF-1 erythroleukemic cell line. It also acts as a transcriptional co-activator in osteoblasts by binding to phosphorylated c-Jun, a member of the activator-protein-1 (AP-1) family. Moreover, NACA binds to and regulates the adaptor protein Fas-associated death domain (FADD). In addition, NACA functions as a novel factor participating in the positive regulation of human erythroid-cell differentiation. The biological function of NACP1 (also called Alpha-NAC pseudogene 1 or NAC-alpha pseudogene 1) and NACAD remain unclear. All family members contain an NAC domain and a C-terminal ubiquitin-associated (UBA) domain. 37 -270542 cd14359 UBA_AeNAC UBA-like domain found in archaeal nascent polypeptide-associated complex homolog from Methanothermobacter marburgensis (AeNAC) and similar proteins. AeNAC is a functional archaeal homolog of eukaryotic nascent polypeptide-associated complex (NAC). Both AeNAC and eukaryotic NAC function as the cytosolic chaperone that can bind to ribosomal RNA, interact with the nascent polypeptide chains as they emerge from the ribosome, and assist in post-translational processes. They all contain a NAC domain and an ubiquitin-associated (UBA) domain in the C-terminus. However, unlike eukaryotic NAC, AeNAC forms a ribosome associated homodimer, but not heterodimer. The NAC domain of AeNAC is responsible for the homodimer formation. 40 -270543 cd14360 UBA_NAC_like_bac UBA-like domain found in uncharacterized bacteria proteins similar to eukaryotic nascent polypeptide-associated complex proteins (NAC). This subfamily contains a group of uncharacterized proteins found in bacteria. They all contain an N-terminal ubiquitin-associated (UBA) that shows high sequence similarity with that of eukaryotic nascent polypeptide-associated complex proteins (NAC) which is one of the cytosolic chaperones that contact the nascent polypeptide chains as they emerge from the ribosome and assist in post-translational processes. 38 -270544 cd14361 UBA_HYPK UBA-like domain found in Huntingtin-interacting protein K (HYPK) and similar proteins. HYPK, also called Huntingtin yeast partner K or Huntingtin yeast two-hybrid protein K, is an intrinsically unstructured Huntingtin (HTT)-interacting protein with chaperone-like activity. It is involved in regulating cell growth, cell cycle, unfolded protein response, and cell death. All members in this subfamily contain an N-terminal ubiquitin-associated (UBA) that shows high sequence similarity with that of eukaryotic nascent polypeptide-associated complex proteins (NAC) which is one of the cytosolic chaperones that contact the nascent polypeptide chains as they emerge from the ribosome and assist in post-translational processes. 41 -270545 cd14362 CUE_TAB2_TAB3 CUE domain found in the N-terminal of TGF-beta-activated kinase 1 and MAP3K7-binding proteins TAB2, TAB3 and similar proteins. TAB2, also called mitogen-activated protein kinase kinase kinase 7-interacting protein 2, TAK1-binding protein 2, or TGF-beta-activated kinase 1-binding protein 2, is an adaptor protein that regulates activation of TAK1, a MAP kinase kinase kinase (MAPKKK), through linking TAK1 to TRAF6 in the Interleukin-1 (IL-1) induced NF-kappaB activation pathway. TAB3, also called mitogen-activated protein kinase kinase kinase 7-interacting protein 3, NF-kappa-B-activating protein 1, TAK1-binding protein 3, or TGF-beta-activated kinase 1-binding protein 3, is a TAB2-like TAK1-binding protein that activates NF-kappaB similar to TAB2. It activates TAK1 and regulates its association with TRAF2 and TRAF6. Moreover, TAB3 interacts with TRAF6 and TRAF2 in an IL-1- and a TNF-dependent manner, respectively. In summary, TAB2 and TAB3 function redundantly as mediators of TAK1 activation in IL-1 and TNF signal transduction. Both of them contain an N-terminal CUE domain, a coiled-coil (CC) region, a TAK1-binding domain and a C-terminal Npl4 zinc finger (NZF) ubiquitin-binding domain (UBD). 42 -270546 cd14363 CUE_TOLIP CUE domain found in the C-terminal of toll-interacting protein (Tollip) and similar proteins. Tollip is a new component of the IL-1RI pathway which contains an N-terminal C2 domain and a C-terminal CUE domain. Tollip binds to the cytoplasmic TIR domain of IL-1Rs after IL-1 stimulation. It is sufficient for recruitment of IRAK to IL-1Rs and negatively regulates IL-1-induced signaling by inhibiting IRAK phosphorylation. In addition, Tollip directly interacts with toll-like receptors TLR2 and TLR4, and plays an inhibitory role in TLR-mediated cell activation through suppressing phosphorylation and kinase activity of IRAK. Moreover, Tollip can associate with GAT domains of Tom1 and its related proteins Tom1L1 and Tom1L2, and facilitate the recruitment of clathrin onto endosomes. 41 -270547 cd14364 CUE_ASCC2 CUE domain found in activating signal cointegrator 1 complex subunit 2 (ASCC2) and similar proteins. ASCC2, also called ASC-1 complex subunit p100 or Trip4 complex subunit p100, together with ASCC1 (also called p50) and ASCC3 (also called p300), form the activating signal cointegrator complex (ASCC). ASCC plays an essential role in activating protein 1 (AP-1), serum response factor (SRF), and nuclear factor kappaB (NF-kappaB) transactivation. It acts as a transcriptional coactivator of nuclear receptors and regulates the transrepression between nuclear receptors and either AP-1 or NF-kappaB in vivo. Members in this family all contain a CUE domain. 40 -270548 cd14365 CUE_N4BP2 CUE domain found in NEDD4-binding protein 2 (N4BP2) and similar proteins. N4BP2 has been identified as an oncogene bcl-3 coding protein BCL-3-binding protein (B3BP) that participates in connecting transcriptional activation and genetic recombination of the Ig gene. In addition to BCL-3, it also interacts with p300/CBP histone acetyltransferases. N4BP2 shows intrinsic ATP binding and hydrolyzing activity. It contains an N-terminal ATP-binding region that is responsible for the interaction with BCL-3 and p300/CBP. N4BP2 also functions as a 5'-polynucleotide kinase that can transfer a phosphate group to the 5' end of DNA and RNA substrates. Moreover, N4BP2 contains a C-terminal MutS-related domain that possesses nicking endonuclease activity and may play a role in DNA mismatch repair (MMR). This model corresponds to CUE domain in the N-terminus of N4BP2. 42 -270549 cd14366 CUE_CUED1 CUE domain found in CUE domain-containing protein 1 (CUED1) and similar proteins. The subfamily includes a group of uncharacterized CUE domain-containing protein termed CUED1. Their biological function remains unknown. 42 -270550 cd14367 CUE_CUED2 CUE domain found in CUE domain-containing protein 2 (CUED2) and similar proteins. CUEDC2 is a novel negative regulator of progesterone receptor (PR) and functions to promote the progesterone-induced PR degradation by the ubiquitin-proteasome pathway. It also acts as the regulator of JAK1/STAT3 signaling through inhibiting cytokine-induced phosphorylation of JAK1 and STAT3 and the subsequent STAT3 transcriptional activity. All members in this subfamily contain a CUE domain. 42 -270551 cd14368 CUE_DEF1_like CUE domain found in fungal RNA polymerase II degradation factor 1 (DEF1) and similar proteins. DEF1, also called RRM3-interacting protein 1, is a RNA Polymerase II (RNAPII) degradation factor that may be required to couple arrested RNAPII to the proteasome to facilitate its degradation. It contains a CUE domain that is responsible for the binding of ubiquitin. The family also includes many uncharacterized hypothetical proteins. They show a high level of sequence similarity with DEF1. 41 -270552 cd14369 CUE_VPS9_like CUE domain found in vacuolar protein sorting-associated protein 9 (VPS9) and similar proteins. VPS9, also called vacuolar protein-targeting protein 9, is a cytosolic yeast protein required for localization of vacuolar proteins, such as the soluble vacuolar hydrolases CPY and PrA. It may bind and act as an effector of a rab GTPase and plays a role in vacuolar protein sorting (VPS) pathway. VPS9 contains a region called GBH domain that is related to mammalian Ras-binding proteins, Rin1 and JC265, and may negatively regulate Ras-mediated signaling in yeast Saccharomyces cerevisiae. This model corresponds to the N-terminal CUE domain that interacts specifically with monoubiquitin and regulates intramolecular monoubiquitylation. 42 -270553 cd14370 CUE_DMA CUE-like DMA domain found in the DM domain gene family encodes putative transcription factors DMRTA1, DMRTA2 and DMRTA3. The DM domain proteins are related to the sexual regulators doublesex from Drosophila melanogaster and MAB-3 from Caenorhabditis elegans. Thus, they have been named as doublesex- and mab-3-related transcription factors and may be involved in sexual development or in somite development. All DM domain proteins contain a DM domain which is an unusual zinc finger motif. In addition to an N-terminal DM domain, members in this family, including DMRTA1, DMRTA2 and DMRTA3, also harbor additional CUE-like DMA domain. DMRTA1 is encoded by gene DMRT1, a vertebrate equivalent of the D. melanogaster master sex regulator gene, doublesex. In D. melanogaster, doublesex controls the terminal switch of the pathway leading to sex fate choice. DMRT1 may function as regulator of sex differentiation in vertebrate. Especially, it is required for testis differentiation, but is not involved in the gonadal sex fate choice. DMRTA2, also called Doublesex- and mab-3-related transcription factor 5 (DMRT5), is encoded by gene DMRT2. In the zebrafish, DMRT2 is involved in somite development. DMRTA2 may act as an activator of cyclin-dependent kinase inhibitor 2C (cdkn2c) during spermatogenesis. It may also play significant roles in embryonic neurogenesis. DMRTA3 is encoded by tumor suppressor gene DMRT3 which serves as a novel potential target for homozygous deletion in squamous cell carcinoma of the lung. 40 -270554 cd14371 CUE_CID7_like CUE domain found in CTC-interacting domain proteins CID5, CID6, CID7 and similar proteins. CID7 is encoded by ubiquitously expressed gene CID7. It contains an N-terminal PABC-interacting domain (PAM2 or PABP-interacting motif 2) which is also found in the human Paip1 and Paip2. At this point, it functions as an interaction partner of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins. It also harbors an ubiquitin-associated (UBA)-like CUE domain and a C-terminal small MutS-related (SMR) domain. CID5 and CID6 are encoded by gene CID5, CID6, respectively. CID5 is only expressed in immature siliques. The biological function of CID5 and CID6 remain unclear. 43 -270555 cd14372 CUE_Cue5p_like CUE domain found in yeast ubiquitin-binding protein CUE5 (Cue5p), donuts protein 1 (DON1p) and similar proteins. Cue5p, also called coupling of ubiquitin conjugation to ER degradation protein 5, is encoded by the open reading frame (ORF) Yor042. It contains a CUE domain which exhibits weak ubiquitin binding properties. Donuts protein 1 (DON1p) is encoded by the ORF YDR273w. It localizes specifically to the prospore membrane and is expressed exclusively during meiosis. DON1p may function as a unique marker to investigate the defects associated with the impaired function of the meiotic plaque in the mpc- mutants. 45 -270556 cd14373 CUE_Cue3p_like CUE domain found in yeast ubiquitin-binding protein CUE3 (Cue3p) and similar proteins. Cue3p, also called coupling of ubiquitin conjugation to ER degradation protein 3, is encoded by the open reading frame (ORF) YGL110C. It is involved in the intramolecular monoubiquitination that serves as a regulatory signal in a variety of cellular processes in yeast. Cue3p contains a CUE domain. 41 -270557 cd14374 CUE1_Cue2p_like CUE1 domain found in yeast ubiquitin-binding protein CUE2 (Cue2p) and similar proteins. Cue2p, also called coupling of ubiquitin conjugation to ER degradation protein 2, is encoded by the open reading frame (ORF) YKL090W. It is involved in the intramolecular monoubiquitination that serves as a regulatory signal in a variety of cellular processes in yeast. Cue2p contains two tandem CUE domains at the N-terminus. Both of them can bind monoubiquitin independently. This model corresponds to the first CUE domain. 42 -270558 cd14375 CUE2_Cue2p_like CUE2 domain found in yeast ubiquitin-binding protein CUE2 (Cue2p) and similar proteins. Cue2p, also called coupling of ubiquitin conjugation to ER degradation protein 2, is encoded by the open reading frame (ORF) YKL090W. It is involved in the intramolecular monoubiquitination that serves as a regulatory signal in a variety of cellular processes in yeast. Cue2p contains two tandem CUE domains at the N-terminus. Both of them can bind monoubiquitin independently. This model corresponds to the second CUE domain. 38 -270559 cd14376 CUE_AUP1_AMFR_like CUE domain found in ancient ubiquitous protein 1 (AUP1), autocrine motility factor receptor (AMFR) and similar proteins. AUP1 is a component of the HRD1-SEL1L endoplasmic reticulum (ER) quality control complex and is essential for US11-mediated dislocation of class I MHC heavy chains. AMFR is an internalizing cell surface glycoprotein that is localized in both plasma membrane caveolae and the ER, and involves in the regulation of cellular adhesion, proliferation, motility and apoptosis, as well as in the process of learning and memory. Cue1p is an N-terminally membrane-anchored endoplasmic reticulum (ER) protein essential for the activity of the two major yeast RING finger ubiquitin ligases (E3s) implicated in ER-associated degradation (ERAD). This family also includes plant E3 ubiquitin protein ligases RIN2, RIN3, and similar proteins. Comparing with other CUE domain-containing proteins, some family members from higher eukaryotes do not bind monoubiquitin efficiently, since they carry LP, rather than FP among CUE domains. 37 -270560 cd14377 UBA1_Rad23 UBA1 domain of Rad23 proteins found in metazoa. The family includes mammalian orthologs of yeast nucleotide excision repair (NER) proteins, Rad23p (in Saccharomyces cerevisiae) and Rhp23p (in Schizosaccharomyces pombe). Rad23 proteins play dual roles in DNA repair as well as in proteosomal degradation. They have affinity for both the proteasome and ubiquitinylated proteins and participate in translocating polyubiquitinated proteins to the proteasome. Rad23 proteins carry a ubiquitin-like (UBL) and two ubiquitin-associated (UBA) domains, as well as a xeroderma pigmentosum group C (XPC) protein-binding domain. UBL domain is responsible for the binding to proteasome. UBA domains are important for binding of ubiquitin (Ub) or multi-ubiquitinated substrates which suggests Rad23 proteins might be involved in certain pathways of ubiquitin metabolism. Both UBL domain and XPC-binding domain are necessary for efficient NER function of Rad23 proteins. This model corresponds to the UBA1 domain. 40 -270561 cd14378 UBA1_Rhp23p_like UBA1 domain of Schizosaccharomyces pombe UV excision repair protein Rhp23p and its homologs. The subfamily contains several fungal multi-ubiquitin receptors, including Schizosaccharomyces pombe Rhp23p and Saccharomyces cerevisiae Rad23p, both of which are orthologs of human HR23A. They play roles in nucleotide excision repair (NER) and in cell cycle regulation. They also function as shuttle proteins transporting ubiquitinated substrates destined for degradation from the E3 ligase to the 26S proteasome. For instance, S. pombe Rhp23p forms a complex with Rhp41p to recognize photolesions and help initiate DNA repair, and it also protects ubiquitin chains against disassembly by deubiquitinating enzymes. Like human HR23A, members in this subfamily interact with the proteasome through their N-terminal ubiquitin-like domain (UBL), and with ubiquitin (Ub), or multi-ubiquitinated substrates, through their two ubiquitin-associated domains (UBA), termed internal UBA1 and C-terminal UBA2. In addition, they contain a xeroderma pigmentosum group C (XPC) protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA1 domain. 47 -270562 cd14379 UBA1_Rad23_plant UBA1 domain of putative DNA repair proteins Rad23 found in plant. The radiation sensitive 23 (Rad23) subfamily consists of four isoforms of putative DNA repair proteins from Arabidopsis thaliana and similar proteins from other plants. The nuclear-enriched Rad23 proteins function in the cell cycle, morphology, and fertility of plants through their delivery of ubiquitin (Ub)/26S proteasome system (UPS) substrates to the 26S proteasome. Rad23 proteins contain an N-terminal ubiquitin-like (UBL) domain that associates with the 26S proteasome Ub receptor RPN10, and two C-terminal ubiquitin-associated (UBA) domains that bind Ub conjugates. This model corresponds to the UBA1 domain. 50 -270563 cd14380 UBA2_Rad23 UBA2 domain of Rad23 proteins found in metazoa. The family includes mammalian orthologs of yeast nucleotide excision repair (NER) proteins, Rad23p (in Saccharomyces cerevisiae) and Rhp23p (in Schizosaccharomyces pombe). Rad23 proteins play dual roles in DNA repair as well as in proteosomal degradation. They have affinity for both the proteasome and ubiquitinylated proteins and participate in translocating polyubiquitinated proteins to the proteasome. Rad23 proteins carry a ubiquitin-like (UBL) and two ubiquitin-associated (UBA) domains, as well as a xeroderma pigmentosum group C (XPC) protein-binding domain. UBL domain is responsible for the binding to proteasome. UBA domains are important for binding of ubiquitin (Ub) or multi-ubiquitinated substrates which suggests Rad23 proteins might be involved in certain pathways of ubiquitin metabolism. Both UBL domain and XPC-binding domain are necessary for efficient NER function of Rad23 proteins. This model corresponds to the UBA2 domain. 39 -270564 cd14381 UBA2_Rhp23p_like UBA2 domain of Schizosaccharomyces pombe UV excision repair protein Rhp23p and its fungal homologs. The subfamily contains several fungal multiubiquitin receptors, including Schizosaccharomyces pombe Rhp23p and Saccharomyces cerevisiae Rad23p, both of which are orthologs of human HR23A. They play roles in nucleotide excision repair (NER) and in cell cycle regulation. They also function as shuttle proteins transporting ubiquitinated substrates destined for degradation from the E3 ligase to the 26S proteasome. For instance, S. pombe Rhp23p forms a complex with Rhp41p to recognize photolesions and help initiate DNA repair, and it also protects ubiquitin chains against disassembly by deubiquitinating enzymes. Like human HR23A, members in this subfamily interact with the proteasome through their N-terminal ubiquitin-like domain (UBL), and with ubiquitin (Ub), or multi-ubiquitinated substrates, through their two ubiquitin-associated domains (UBA), termed internal UBA1 and C-terminal UBA2. In addition, they contain a xeroderma pigmentosum group C (XPC) protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA2 domain. 40 -270565 cd14382 UBA2_RAD23_plant UBA2 domain of putative DNA repair proteins RAD23 found in plant. The radiation sensitive 23 (RAD23) subfamily consists of four isoforms of putative DNA repair proteins from Arabidopsis thaliana and similar proteins from other plants. The nuclear-enriched RAD23 proteins function in the cell cycle, morphology, and fertility of plants through their delivery of ubiquitin (Ub)/26S proteasome system (UPS) substrates to the 26S proteasome. RAD23 proteins contain an N-terminal ubiquitin-like (UBL) domain that associates with the 26S proteasome Ub receptor RPN10, and two C-terminal ubiquitin-associated (UBA) domains that bind Ub conjugates. This model corresponds to the UBA2 domain. 43 -270566 cd14383 UBA1_UBP5 UBA1 domain found in ubiquitin carboxyl-terminal hydrolase 5 (UBP5). UBP5, also called deubiquitinating enzyme 5, Isopeptidase T (IsoT), ubiquitin thioesterase 5, or ubiquitin-specific-processing protease 5, is a deubiquitinating enzyme largely responsible for the disassembly of the majority of unanchored polyubiquitin in the cell. Zinc is required for its catalytic activity. UBP5 contains four ubiquitin (Ub)-binding sites including an N-terminal zinc finger (ZnF) domain, a catalytic ubiquitin-specific processing protease (UBP) domain (catalytic C-box and H-box), and two ubiquitin-associated (UBA) domains. ZnF domain binds the proximal ubiquitin. UBP domain forms the active site. UBA domains are involved in binding linear or K48-linked polyubiquitin. This model corresponds to the UBA1 domain. 49 -270567 cd14384 UBA1_UBP13 UBA1 domain found in ubiquitin carboxyl-terminal hydrolase 13 (UBP13). UBP13, also called deubiquitinating enzyme 13, Isopeptidase T-3 (isoT3), ubiquitin thioesterase 13, or ubiquitin-specific-processing protease 13, is an ortholog of UBP5 implicated in catalyzing hydrolysis of various ubiquitin (Ub)-chains. It contains a zinc finger (ZnF) domain, a catalytic ubiquitin-specific processing protease (UBP) domain (catalytic C-box and H-box), and two ubiquitin-associated (UBA) domains. Due to the non-activating catalysis for K63-polyubiquitin chains, UBP13 may function differently from USP5 in cellular deubiquitination processes. Moreover, the zinc finger (ZnF) domain of USP13 cannot bind to Ub. Its tandem UBA domains can bind with different types of diUb but preferentially with K63-linked.USP13 can also regulate the protein level of CD3delta in cells via its UBA domains. This model corresponds to the UBA1 domain. 49 -270568 cd14385 UBA1_spUBP14_like UBA1 domain found in Schizosaccharomyces pombe ubiquitin carboxyl-terminal hydrolase 14 (spUBP14) and similar proteins. spUBP14, also called deubiquitinating enzyme 14, UBA domain-containing protein 2, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, functions as a deubiquitinating enzyme that is involved in protein degradation in fission yeast. Members in this family contain two tandem ubiquitin-association (UBA) domains. This model corresponds to the UBA1 domain. 47 -270569 cd14386 UBA2_UBP5 UBA2 domain found in ubiquitin carboxyl-terminal hydrolase 5 (UBP5). UBP5, also called deubiquitinating enzyme 5, Isopeptidase T (IsoT), ubiquitin thioesterase 5, or ubiquitin-specific-processing protease 5, is a deubiquitinating enzyme largely responsible for the disassembly of the majority of unanchored polyubiquitin in the cell. Zinc is required for its catalytic activity. UBP5 contains four ubiquitin (Ub)-binding sites including an N-terminal zinc finger (ZnF) domain, a catalytic ubiquitin-specific processing protease (UBP) domain (catalytic C-box and H-box), and two ubiquitin-associated (UBA) domains. ZnF domain binds the proximal ubiquitin. UBP domain forms the active site. UBA domains are involved in binding linear or K48-linked polyubiquitin. This model corresponds to the UBA2 domain. 43 -270570 cd14387 UBA2_UBP13 UBA2 domain found in ubiquitin carboxyl-terminal hydrolase 13 (UBP13). UBP13, also called deubiquitinating enzyme 13, Isopeptidase T-3 (isoT3), ubiquitin thioesterase 13, or ubiquitin-specific-processing protease 13 is an ortholog of UBP5 implicated in catalyzing hydrolysis of various ubiquitin (Ub)-chains. It contains a zinc finger (ZnF) domain, a catalytic ubiquitin-specific processing protease (UBP) domain (catalytic C-box and H-box), and two ubiquitin-associated (UBA) domains. Due to the non-activating catalysis for K63-polyubiquitin chains, UBP13 may function differently from USP5 in cellular deubiquitination processes. Moreover, the zinc finger (ZnF) domain of USP13 cannot bind to Ub. Its tandem UBA domains can bind with different types of diUb but preferentially with K63-linked.USP13 can also regulate the protein level of CD3delta in cells via its UBA domains. This model corresponds to the UBA2 domain. 35 -270571 cd14388 UBA2_atUBP14 UBA2 domain found in Arabidopsis thaliana ubiquitin carboxyl-terminal hydrolase 14 (atUBP14) and similar proteins. atUBP14, also called deubiquitinating enzyme 14, TITAN-6 protein, ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. atUBP14 is essential for early plant development. It can disassemble multi-ubiquitin chains linked internally via epsilon-amino isopeptide bonds using Lys48 and can process some, but not all, translational fusions of ubiquitin linked via alpha-amino peptide bonds. atUBP14 contains two ubiquitin-association (UBA) domains. This model corresponds to the UBA2 domain which show a high level of sequence similarity with mammalian ubiquitin-associated and SH3 domain-containing protein A (UBS3A). 38 -270572 cd14389 UBA_AAA_plant UBA domain found in plant AAA-type ATPase-like proteins. This family includes some uncharacterized AAA-type ATPase-like proteins found in plant. The AAA+ ATPases function as molecular chaperons, ATPase subunits of proteases, helicases, or nucleic-acid stimulated ATPases. Members in this family contains an N-terminal ubiquitin-association (UBA) domain, a AAA-type ATPase domain and a C-terminal MgsA AAA+ ATPase domain. This model corresponds to the UBA domain which show a high level of sequence similarity with mammalian ubiquitin-associated and SH3 domain-containing protein A (UBS3A). 37 -270573 cd14390 UBA_II_E2_UBE2K UBA domain of vertebrate ubiquitin-conjugating enzyme E2 K (UBE2K). UBE2K, also called Huntingtin-interacting protein 2 (HIP-2), ubiquitin carrier protein, ubiquitin-conjugating enzyme E2-25 kDa (E2-25K), or ubiquitin-protein ligase is a multi-ubiquitinating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains which is involved in the ubiquitin (Ub)-dependent proteolytic pathway. It interacts with the frameshift mutant of ubiquitin B and functions as a crucial factor regulating amyloid-beta neurotoxicity. It has also been characterized as Huntingtin-interacting protein that modulates the neurotoxicity of Amyloid-beta (Abeta), the principal protein involved in Alzheimer's disease pathogenesis. Moreover, E2-25K increases aggregate the formation of expanded polyglutamine proteins and polyglutamine-induced cell death in the pathology of polyglutamine diseases. UBE2K and its yeast homolog UBC1 are unique class II E2 conjugating enzymes, both of which contain a C-terminal ubiquitin-associated (UBA) domain in addition to an N-terminal catalytic ubiquitin-conjugating enzyme E2 (UBCc) domain. 38 -270574 cd14391 UBA_II_E2_UBCD4 UBA domain found in Drosophila melanogaster ubiquitin-conjugating enzyme E2-22 kDa (UbcD4) and similar proteins. UbcD4, also called ubiquitin carrier protein or ubiquitin-protein ligase, is a class II E2 ubiquitin-conjugating enzyme encoded by Drosophila E2 gene which is only expressed in pole cells in embryos. It is a putative E2 enzyme homologous to the Huntingtin interacting protein-2 (HIP2) of human. UbcD4 specifically interacts with the polyubiquitin-binding subunit of the proteasome. It contains a C-terminal ubiquitin-associated (UBA) domain in addition to an N-terminal catalytic ubiquitin-conjugating enzyme E2 (UBCc) domain. 36 -270575 cd14392 UBA_Cbl-b UBA domain found in E3 ubiquitin-protein ligase Cbl-b and similar proteins. Cbl-b, also called casitas B-lineage lymphoma proto-oncogene b, RING finger protein 56, SH3-binding protein Cbl-b, or signal transduction protein Cbl-b, has been identified as a regulator of antigen-specific, T cell-intrinsic, peripheral immune tolerance (a state also called clonal anergy). It may inhibit activation of the p85 subunit of phosphoinositide 3-kinase (PI3K), protein kinase C-theta (PKC-theta), and phospholipase C-gamma1 (PLC-gamma1) and negatively regulates T-cell receptor-induced transcription factor nuclear factor-kappaB (NF-kappaB) activation. In addition, Cbl-b may target multiple signaling molecules involved in transforming growth factor (TGF)-beta-mediated transactivation pathways. Cbl-b contains a proline rich domain, a nuclear localization signal, a C3HC4 zinc finger and a ubiquitin-associated (UBA) domain. 41 -270576 cd14393 UBA_c-Cbl UBA domain found in E3 ubiquitin-protein ligase Cbl and similar proteins. Cbl, also called casitas B-lineage lymphoma proto-oncogene, proto-oncogene c-Cbl, RING finger protein 55, or signal transduction protein Cbl, is a multi-domain protein that acts as a key negative regulator of various receptor and non-receptor tyrosine kinases signaling. It contains a tyrosine kinase-binding domain (TKB), a proline-rich domain, a RING domain, and a ubiquitin-associated (UBA) domain. The TKB is responsible for the interactions with many tyrosine kinases, such as the colony-stimulating factor-1 (CSF-1) receptor, Syk/ZAP-70 and Src-family of protein tyrosine kinases. The proline-rich domain can recruit proteins with SH3 domain. Moreover, Cbl functions as an E3 ubiquitin ligase that can bind ubiquitin-conjugating enzymes (E2s) through RING domain. 40 -270577 cd14394 UBA_BIRC2_3 UBA domain found in baculoviral IAP repeat-containing protein BIRC2, BIRC3 and similar proteins. The subfamily includes cellular inhibitor of apoptosis protein 1 (c-IAP1) and c-IAP2. c-IAPs function as ubiquitin E3 ligases that mediate the ubiquitination of the substrates involved in apoptosis, nuclear factor-kappaB (NF-kappaB)signaling, and oncogenesis. Unlike other apoptosis proteins (IAPs), such as XIAP, c-IAPs exhibit minimal binding to caspases and may not play an important role in the inhibition of these proteases. c-IAP1, also called baculoviral IAP repeat-containing protein BIRC2, IAP-2, RING finger protein 48, or TNFR2-TRAF-signaling complex protein 2, is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-kappaB signaling pathways in the cytoplasm. It can also regulate E2F1 transcription factor-mediated control of cyclin transcription in the nucleus. c-IAP2, also called BIRC3, IAP-1, apoptosis inhibitor 2 (API2), or IAP homolog C, also influences ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-kappaB. c-IAPs contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of binds polyubiquitin (polyUb), a caspase activation and recruitment domain (CARD) that serves as a protein interaction surface, and a RING domain at the carboxyl terminus that is required for ubiquitin ligase activity. 50 -270578 cd14395 UBA_BIRC4_8 UBA domain found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP repeat-containing protein 8 (BIRC8) and similar proteins. XIAP, also called baculoviral IAP repeat-containing protein 4 (BIRC4), IAP-like protein (ILP), inhibitor of apoptosis protein 3 (IAP-3), or X-linked inhibitor of apoptosis protein (X-linked IAP), is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases, including caspase-3, -7, and -9. It promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. The ubiquitin-protein ligase (E3) activity of XIAP also exhibits in the ubiquitination of second mitochondria-derived activator of caspases (Smac). The mitochondrial proteins, Smac/DIABLO and Omi/HtrA2, can inhibit the antiapoptotic activity of XIAP. XIAP has also been implicated in several intracellular signaling cascades involved in the cellular response to stress, such as the c-Jun N-terminal kinase (JNK) pathway, the nuclear factor-kappaB (NF-kappaB) pathway, and the transforming growth factor-beta (TGF-beta) pathway. Moreover, XIAP can regulate copper homeostasis through interacting with MURR1. BIRC8, also called inhibitor of apoptosis-like protein 2 (IAP-like protein 2 or ILP-2), or testis-specific inhibitor of apoptosis, is a tissue-specific homolog of E3 ubiquitin-protein ligase XIAP. It has been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. Both XIAP and BIRC8 contain three N-terminal baculoviral IAP repeat (BIR) domains, a ubiquitin-association (UBA) domain and a RING domain at the carboxyl terminus. 50 -270579 cd14396 UBA_XtBIRC7_like UBA domain found in Xenopus tropicalis baculoviral IAP repeat-containing protein BIRC7, BIRC71A and similar proteins. X. tropicalis BIRC7, also called E3 ubiquitin-protein ligase EIAP, embryonic/Egg IAP (xEIAP/XLX), inhibitor of apoptosis (IAP)-like protein, XIAP homolog XLX, is a weak apoptosis inhibitor that exhibits caspase inhibition and autoubiquitylation. It is uniquely modified by MAPK- and Cdc2/Cyclin B-dependent phosphorylation during oocyte maturation. Its caspase-dependent cleavage is altered when it is phosphorylated. X. tropicalis BIRC7 contains two N-terminal baculoviral IAP repeats (BIRs) and a C-terminal RING domain. Based on sequence homology, it also harbors a ubiquitin-associated (UBA) domain which is not detected in human BIRC7. 44 -270580 cd14397 UBA_LATS1 UBA domain found in vertebrate serine/threonine-protein kinase LATS1. LATS1, also called large tumor suppressor homolog 1 or WARTS protein kinase (warts), is a serine/threonine-protein kinase that highly conserved from fly to human. It plays a crucial role in the prevention of tumor formation by controlling mitosis progression. Human LATS1 is the mammalian homologs of Drosophila lats/warts gene that could suppress tumor growth and rescue all developmental defects in flies, including embryonic lethality. It forms a regulatory complex with zyxin, a regulator of actin filament assembly. The LATS1/zyxin complex plays a role in controlling mitosis progression on mitotic apparatus. LATS1 is phosphorylated in a cell-cycle-dependent manner and complexes with CDC2 in early mitosis. It can negatively modulates tumor cell growth by inducing G(2)/M cell cycle transition or apoptosis. It also functions as a mitotic exit network kinase interacting with MOB1A, a protein whose homolog in budding yeast associates with kinases involved in mitotic exit. Moreover, LATS1 acts as a novel cytoskeleton regulator that affects cytokinesis by regulating actin polymerization through inhibiting LIMK1. LATS1 can also inhibit transcription regulation and transformation functions of oncogene YAP by inhibiting its nuclear translocation through phosphorylation. In addition, LATS1 can regulate the transcriptional activity of forkhead L2 (FOXL2) via phosphorylation. It also acts as an acting-binding protein that can negatively regulate the actin polymerization. LATS1 contains an N-terminal ubiquitin-associated (UBA) domain and a C-terminal protein kinase domain. 41 -270581 cd14398 UBA_LATS2 UBA domain found in vertebrate serine/threonine-protein kinase LATS2. LATS2, also called kinase phosphorylated during mitosis protein, or large tumor suppressor homolog 2, or serine/threonine-protein kinase KPM, or Warts-like kinase, is a novel mammalian homolog of the Drosophila tumor suppressor gene lats/warts. It inhibits the G1/S transition and is essential for embryonic development, proliferation control, and genomic integrity. LATS2 is a serine/threonine kinase that negatively regulates CyclinE/CDK2 and plays a role in tumor suppression. It also acts as the negative regulator of androgen receptor (AR) through inhibiting androgen-regulated gene expression and thus plays an important role in AR -regulated transcription and in the development of prostate cancer. Moreover, LATS2 induces apoptosis via down-regulation of anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells. It is a centrosomal protein and forms a complex with Ajuba, a LIM protein, to regulate organization of the spindle apparatus through recruitment of gamma-tubulin to the centrosome during mitosis. Furthermore, LATS2 interacts with Mdm2 to inhibit p53 ubiquitination and promote p53 activation. It stabilizes the cellular protein level of Snail1, a central regulator of epithelial cell adhesion and movement in epithelial-to-mesenchymal transitions (EMTs) during embryo development, and enhances its EMT activity. LATS2 contains an N-terminal ubiquitin-associated (UBA) domain and a C-terminal protein kinase domain. 41 -270582 cd14399 UBA_PLICs UBA domain of eukaryotic protein linking integrin-associated protein (IAP, also known as CD47) with cytoskeleton (PLIC) proteins. The PLIC proteins (or ubiquilins) family contains human homologs of the yeast ubiquitin-like Dsk2 protein, PLIC-1 (also called ubiquilin-1), PLIC-2 (also called ubiquilin-2 or Chap1), PLIC-3 (also called ubiquilin-3) and PLIC-4 (also called ubiquilin-4, Ataxin-1 interacting ubiquitin-like protein, A1Up, Connexin43-interacting protein of 75 kDa, or CIP75), and mouse PLIC proteins. They are ubiquitin-binding adaptor proteins involved in all protein degradation pathways through delivering ubiquitinated substrates to proteasomes. They also promote autophagy-dependent cell survival during nutrient starvation. PLIC-1 regulates the function of the thrombospondin receptor CD47 and G protein signaling. It plays a role in TLR4-mediated signaling through interacting with the Toll/interleukin-1 receptor (TIR) domain of TLR4. It also inhibits the TLR3-Trif antiviral pathway by reducing the abundance of Trif. Moreover, PLIC-1 binds to gamma-aminobutyric acid receptors (GABAARs) and modulates the ubiquitin-dependent, proteasomal degradation of GABAARs. Furthermore, PLIC-1 acts as a molecular chaperone regulating amyloid precursor protein (APP) biosynthesis, trafficking, and degradation by stimulating K63-linked polyubiquitination of lysine 688 in the APP intracellular domain. In addition, PLIC-1 is involved in the protein aggregation-stress pathway via associating with the ubiquitin-interacting motif (UIM) proteins ataxin 3, HSJ1a, and epidermal growth factor substrate 15 (EPS15). PLIC-2 is a protein that binds the ATPase domain of the HSP70-like Stch protein. It functions as a negative regulator of G protein-coupled receptor (GPCR) endocytosis. It also involved in amyotrophic lateral sclerosis (ALS)-related dementia. PLIC-3 is encoded by UBQLN3, a testis-specific gene. It shows high sequence similarity with the Xenopus protein XDRP1, a nuclear phosphoprotein that binds to the N-terminus of cyclin A and inhibits Ca2+-induced degradation of cyclin A, but not cyclin B. PLIC-4 is a ubiquitin-like nuclear protein that interacts with ataxin-1 and further links ataxin-1 with the chaperone and ubiquitin-proteasome pathways. It also binds to the non-ubiquitinated gap junction protein connexin43 (Cx43) and regulates the turnover of Cx43 through the proteasomal pathway. PLIC proteins contain an N-terminal ubiquitin-like (UBL) domain that is responsible for the binding of ubiquitin-interacting motifs (UIMs) expressed by proteasomes and endocytic adaptors, and C-terminal ubiquitin-associated (UBA) domain that interacts with ubiquitin chains present on proteins destined for proteasomal degradation. In addition, mammalian PLIC2 proteins have an extra collagen-like motif region which is absent in other PLIC proteins and the yeast Dsk2 protein. 40 -270583 cd14400 UBA_Gts1p_like UBA domain found in Saccharomyces cerevisiae protein GTS1 (Gts1p) and similar proteins. Gts1p, also called protein LSR1, is encoded by a pleiotropic gene GTS1 in budding yeast. The formation of Gts1p-mediated protein aggregates may induce reactive oxygen species (ROS) production and apoptosis. Gts1p also plays an important role in the regulation of heat and other stress responses under glucose-limited or -depleted conditions in either batch or continuous culture. Gts1p contains an N-terminal zinc finger motif similar to that of GATA-transcription factors, a ubiquitin-associated (UBA) domain and a C-terminal glutamine-rich strand. The zinc finger is responsible for the binding to the glycolytic enzyme glyceraldehydes-3-phosphate dehydrogenase (GAPDH) which is required for the maintenance of the metabolic oscillations of budding yeast. The polyglutamine sequence is indispensable for the pleiotropy and nuclear localization of Gts1p. It is essential for the transcriptional activation, whereas Gts1p lacks DNA binding activity. 39 -270584 cd14401 UBA_HERC1 UBA domain found in probable E3 ubiquitin-protein ligase HERC1 and similar proteins. HERC1, also called HECT domain and RCC1-like domain-containing protein 1, or p532, or p619, is an ubiquitously expressed multi-domain protein involved in ubiquitin-dependent intracellular membrane trafficking through its interaction with vesicle coat proteins such as clathrin and ARF. Moreover, it has been identified as a tuberous sclerosis complex TSC2-interacting protein that may play a role in TSC-mTOR (mammalian target of rapamycin) pathway. In addition to a ubiquitin-association (UBA) domain, HERC1 contains more than one RCC1-like domains (RLDs) and a C-terminal HECT E3 ubiquitin ligase domain. At this point, it may function as both E3 ubiquitin ligases and guanine nucleotide exchange factors (GEFs). 44 -270585 cd14402 UBA_HERC2 UBA domain found in probable E3 ubiquitin-protein ligase HERC2 and similar proteins. HERC2, also called HECT domain and RCC1-like domain-containing protein 2, is a SUMO-regulated E3 ubiquitin ligase that plays an important role in the SUMO-dependent pathway which orchestrates the DNA double-strand break (DSB) response. Moreover, HERC2 functions as a RNF8 auxiliary factor that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. In addition to a ubiquitin-association (UBA) domain, HERC2 contains more than one RCC1-like domains (RLDs) and a C-terminal HECT E3 ubiquitin ligase domain. 45 -270586 cd14403 UBA_AID_AAPK1 UBA-like autoinhibitory domain (AID) found in vertebrate 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPKalpha-1). AMPKalpha-1, also called acetyl-CoA carboxylase kinase (ACACA kinase), hydroxymethylglutaryl-CoA reductase kinase (HMGCR kinase), or Tau-protein kinase PRKAA1, is one of the catalytic subunits of adenosine monophosphate (AMP)-activated protein kinase (AMPK). It has been implicated in a number of important cellular processes. For instance, it functions as a glucose sensor controlling CD8 T-cell memory, as well as a new kinase for RhoA and a new mediator of the vasoprotective effects of estrogen. It also plays a significant role in cervical malignant growth, in regulating oxidative stress and life span in erythrocytes, in modulating the antioxidant status of vascular endothelial cells, in limiting skeletal muscle overgrowth during hypertrophy through inhibition of the mammalian target of rapamycin (mTOR)-signaling pathway. AMPKalpha-1 has an N-terminal Ser/Thr kinase domain followed by an ubiquitin-associated (UBA)-like AID and a C-terminal AMPK regulatory domain. The Ser/Thr kinase domain contains a conserved Thr residue that must be phosphorylated for activity in the activation loop. The AID is responsible for AMPKalpha subunit autoinhibition. The C-terminal regulatory domain of the alpha1-subunit is essential for binding the beta1- and gamma1-subunits. 65 -270587 cd14404 UBA_AID_AAPK2 UBA-like autoinhibitory domain (AID) found in vertebrate 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPKalpha-2). AMPKalpha-2, also called acetyl-CoA carboxylase kinase (ACACA kinase) or hydroxymethylglutaryl-CoA reductase kinase (HMGCR kinase), is one of the catalytic subunits of adenosine monophosphate (AMP)-activated protein kinase (AMPK). It shows a wide expression pattern and is highly expressed in skeletal muscle, heart, and liver. It may be involved in the regulation of glucose and lipid metabolism and protein synthesis in peripheral tissues, as well as in regulation of energy intake and body weight. AMPKalpha-2 has an N-terminal Ser/Thr kinase domain followed by an ubiquitin-associated (UBA)-like AID, and a C-terminal AMPK regulatory domain. The Ser/Thr kinase domain contains a conserved Thr residue that must be phosphorylated for activity in the activation loop. The AID is responsible for AMPKalpha subunit autoinhibition. The C-terminal regulatory domain is essential for binding the beta- and gamma-subunits. 65 -270588 cd14405 UBA_MARK1 UBA domain found in serine/threonine-protein kinase MARK1 and similar proteins. MARK1, also called MAP/microtubule affinity-regulating kinase 1 or PAR1 homolog c (Par-1c), is a kinase-regulating microtubule-dependent transport in axons and dendrites. It is involved in the specification of neuronal polarity, in axon-dendrite specification, and in the synaptic plasticity in adult neurons. It has been implicated in Alzheimer's disease, cancer, and autism. 41 -270589 cd14406 UBA_MARK2 UBA domain found in serine/threonine-protein kinase MARK2 and similar proteins. MARK2, also called ELKL motif kinase 1 (EMK-1), MAP/microtubule affinity-regulating kinase 2, PAR1 homolog, or PAR1 homolog b (Par-1b), is enriched in brain. It belongs to the AMPK family of Ser/Thr kinases. MARK2 has been implicated in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. The activity of MARK2 is necessary for the outgrowth of cell processes, neurites, and dendritic spines. It is a TORC2 (also known as Crtc2) Ser-275 kinase that blocks TORC2-induced cAMP response element binding protein (CREB) activity. It regulates axon formation via phosphorylation of a kinesin-like motor protein GAKIN/KIF13B. It also acts as a positive regulator of Wnt-beta-catenin signaling. 42 -270590 cd14407 UBA_MARK3_4 UBA domain found in MAP/microtubule affinity-regulating kinase MARK3, MARK4, and similar proteins. MARK3, also called C-TAK1, Cdc25C-associated protein kinase 1, ELKL motif kinase 2 (EMK-2), protein kinase STK10, Ser/Thr protein kinase PAR-1 (Par-1a), or serine/threonine-protein kinase p78, is a known regulator of KSR1, a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. It binds plakophilin 2 (PKP2), phosphorylates human Cdc25C on serine 216, and promotes 14-3-3 protein binding and protein localization. It also interacts with microphthalmia-associated transcription factor, Mitf which is necessary for regulating genes involved in osteoclast differentiation. Moreover, MARK3 is involved in regulating localization and activity of class IIa histone deacetylases. The lack of MARK3 leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. MARK4, also called MAP/microtubule affinity-regulating kinase-like 1 (MARKL1), or Par-1d, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases. It plays a key role in energy metabolism and may act as a novel drug target for the treatment of obesity and type 2 diabetes. MARK4 also functions as the substrate of ubiquitin specific protease-9 (USP9X) and can be regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains. Furthermore, MARK4 may play some role in hepatocellular carcinogenesis. 43 -270591 cd14408 UBA_SIK1 UBA domain found in salt-inducible kinase 1 (SIK1). SIK1, also called serine/threonine-protein kinase SNF1-like kinase 1 (SNF1LK), is a serine/threonine kinase abundant in adrenal glands. It belongs to the AMP-activated protein kinases (AMPK) family involved in the regulation of metabolism during energy stress. SIK1 is required for myogenic differentiation. It is degraded by the proteasome in myoblasts which is regulated by cAMP signaling. Moreover, SIK1 acts as a class II histone deacetylase (HDAC) kinase, triggering the cytoplasmic export of the HDACs and activation of myocyte enhancer factor 2 (MEF2)-dependent transcription. It also regulates transcription through inhibitory phosphorylation of a family of cAMP responsive element binding protein (CREB) coactivators, called TORCs/CRTCs. In addition, SIK1 links LKB1 to p53-dependent anoikis and suppresses metastasis. It is also involved in a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. SIK1 contains an N-terminal protein kinase catalytic domain followed by an ubiquitin-associated (UBA) domain and a putative PEST domain. 50 -270592 cd14409 UBA_SIK2 UBA domain found in salt-inducible kinase 2 (SIK2). SIK2, also called Qin-induced kinase or serine/threonine-protein kinase SNF1-like kinase 2 (SNF1LK2), is a serine/threonine kinase highly expressed in adipocytes. It belongs to the AMP-activated protein kinases (AMPK) family involved in the regulation of metabolism during energy stress. It plays an important role in the insulin-signaling pathway during adipocyte differentiation, as well as in autophagy progression. Moreover, SIK2 plays a critical role in neuronal survival and modulates cAMP responsive element binding protein (CREB)-mediated gene expression in response to hormones and nutrients. SIK2 acts as a critical determinant in autophagy progression. In addition, SIK2 localizes at the centrosome and functions as a centrosome kinase required for bipolar mitotic spindle formation. It is involved in the initiation of mitosis, and regulates the localization of the centrosome linker protein, C-Nap1, through S2392 phosphorylation. SIK2 contains an N-terminal protein kinase catalytic domain followed by an ubiquitin-associated (UBA) domain. 45 -270593 cd14410 UBA_SIK3 UBA domain found in salt-inducible kinase 3 (SIK3). SIK3, also called salt-inducible kinase 3 or serine/threonine-protein kinase QSK, is a serine/threonine kinase ubiquitously expressed. It belongs to the AMP-activated protein kinases (AMPK) family involved in the regulation of metabolism during energy stress. It acts as a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism. It also play an essential role in facilitating chondrocyte hypertrophy during skeletogenesis and growth plate maintenance. SIK3 contains an N-terminal protein kinase catalytic domain followed by an ubiquitin-associated (UBA) domain. 45 -270594 cd14411 UBA_DCNL1 UBA-like domain found in DCN1-like protein 1 (DCNL1) and similar proteins. DCNL1 (defective in cullin neddylation protein 1-like protein 1), also called DCUN1 domain-containing protein 1, is encoded by squamous cell carcinoma-related oncogene SCCRO (DCUN1D1). It interacts with known cullin isoforms as well as ROC1, Ubc12 and CAND1, the components of the neddylation pathway. It plays an essential role in the neddylation E3 complex and participates in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity. DCNL1 contains an N-terminal ubiquitin-associated (UBA)-like domain and a C-terminal cullin binding domain that binds to cullins and Rbx-1, components of an E3 ubiquitin ligase complex for neddylation. 51 -270595 cd14412 UBA_DCNL2 UBA-like domain found in DCN1-like protein 2 (DCNL2) and similar proteins. DCNL2 (defective in cullin neddylation protein 1-like protein 2), also called DCUN1 domain-containing protein 2, is encoded by gene DCUN1D2. Although its biological function remains unclear, DCNL2 shows high sequence similarity with DCNL1, a protein that plays an essential role in the neddylation E3 complex and participates in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity. At this point, DCNL2 may also contribute to neddylation of cullin components of SCF-type E3 ubiquitin ligase complexes. Like DCNL1, DCNL2 contains an N-terminal ubiquitin-associated (UBA)-like domain and a C-terminal cullin binding domain that is responsible for the binding to cullins and Rbx-1, components of an E3 ubiquitin ligase complex for neddylation. 47 -270596 cd14413 UBA_FAF1 UBA-like domain found in FAS-associated factor 1 (FAF1) and similar proteins. FAF1, also called UBX domain-containing protein 12 or UBX domain-containing protein 3A, is a multi-functional Fas associating protein that contains an N-terminal ubiquitin-associated (UBA)-like domain, UAS and ubiquitin-like (UBX) domains, p150 subunit of a chromatin assembly factor like domain (CAF) and a novel nuclear localization signal (NLS). FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP) which is involved in the ubiquitin-proteosome pathway. 33 -270597 cd14414 UBA_FAF2 UBA-like TAP-C domain found in FAS-associated factor 2 (FAF2) and similar proteins. FAF2, also called protein ETEA, UBX domain-containing protein 3B, or UBX domain-containing protein 8, is the translation product of a highly expressed gene in the T-cells and eosinophils of atopic dermatitis patients compared with those of normal individuals. FAF2 shows homology to Fas-associated factor 1 (FAF1). Both of them contain N-terminal ubiquitin-associated (UBA)-like domain, UAS and ubiquitin-like (UBX) domains. Compared to FAF1, however, FAF2 lacks the nuclear targeting domain. The function of FAF2 remains unclear. A yeast two-hybrid assay showed that it can interact with Fas. Because of its homology to FAF1, it is postulated that FAF2 could be involved in modulating Fas-mediated apoptosis of T-cells and eosinophils of atopic dermatitis patients, making them more resistant to apoptosis. 38 -270598 cd14415 UBA_NACA_NACP1 UBA-like domain found in nascent polypeptide-associated complex subunit alpha (NACA) and putative NACA-like protein (NACP1). NACA, also called NAC-alpha or alpha-NAC, together with BTF3, also called Beta-NAC, form the nascent polypeptide-associated complex (NAC) which is a cytosolic protein chaperone that contacts the nascent polypeptide chains as they emerge from the ribosome. Besides, NACA has a high affinity for nucleic acids and exists as part of several protein complexes playing a role in proliferation, apoptosis, or degradation. It is a cytokine-modulated specific transcript in the human TF-1 erythroleukemic cell line. It also acts as a transcriptional co-activator in osteoblasts by binding to phosphorylated c-Jun, a member of the activator-protein-1 (AP-1) family. Moreover, NACA binds to and regulates the adaptor protein Fas-associated death domain (FADD). In addition, NACA functions as a novel factor participating in the positive regulation of human erythroid-cell differentiation. Both NACA and BTF3 harbor an NAC domain that mediates the dimerization of the two subunits. By contrast, NACA has an extra ubiquitin-associated (UBA) domain in the C-terminus. In addition to NACA, the family includes NACP1, also called Alpha-NAC pseudogene 1 or NAC-alpha pseudogene 1. The biological function of NACP1 remains unclear. 46 -270599 cd14416 UBA_NACAD UBA-like domain found in nascent polypeptide-associated complex subunit alpha domain-containing protein 1 (NACAD). The subfamily includes a group of uncharacterized proteins mainly found in vertebrates. Their biological function remains unknown, but they show high sequence similarity to the nascent polypeptide-associated complex (NAC) subunit alpha (NACA) that exists as part of several protein complexes playing a role in proliferation, apoptosis, or degradation. Like NACA, NACAD contains an NAC domain and a C-terminal ubiquitin-associated (UBA) domain. 44 -270600 cd14417 CUE_DMA_DMRTA1 CUE-like DMA domain found in doublesex- and mab-3-related transcription factor A1 (DMRTA1) and similar proteins. DMRTA1 is encoded by gene DMRT1, a vertebrate equivalent of the Drosophila melanogaster master sex regulator gene, doublesex. In D. melanogaster, doublesex controls the terminal switch of the pathway leading to sex fate choice. DMRT1 may function as regulator of sex differentiation in vertebrate. Especially, it is required for testis differentiation, but is not involved in the gonadal sex fate choice. 40 -270601 cd14418 CUE_DMA_DMRTA2 CUE-like DMA domain found in doublesex- and mab-3-related transcription factor A2 (DMRTA2). DMRTA2, also called Doublesex- and mab-3-related transcription factor 5 (DMRT5), is encoded by gene DMRT2. In the zebrafish, DMRT2 is involved in somite development. DMRTA2 may act as an activator of cyclin-dependent kinase inhibitor 2C (cdkn2c) during spermatogenesis. It may also play significant roles in embryonic neurogenesis. 42 -270602 cd14419 CUE_DMA_DMRTA3 CUE-like DMA domain found in doublesex- and mab-3-related transcription factor 3 (DMRTA3). DMRTA3 is encoded by tumor suppressor gene DMRT3 which serves as a novel potential target for homozygous deletion in squamous cell carcinoma of the lung. 43 -270603 cd14420 CUE_AUP1 CUE domain found in ancient ubiquitous protein 1 (AUP1) and similar proteins. AUP1 is a component of the HRD1-SEL1L endoplasmic reticulum (ER) quality control complex and is essential for US11-mediated dislocation of class I MHC heavy chains. It also binds to the membrane-proximal KVGFFKR motif of the cytoplasmic tail of the integrin alphaCTs that plays a crucial role in the inside-out signaling of alpha(IIb)beta(3). AUP1 is found in both the ER and in lipid droplets. It contains two conserved cytoplasmic domains, an acyltransferase domain, a CUE domain and an E2 ubiquitin conjugase G2 (Ube2g2)-binding domain (G2BR). The acyltransferase domain transfers fatty acids onto phospholipids and CUE domain participates in ubiquitin binding or in recruitment of ubiquitin-conjugating enzymes to the site of dislocation. 45 -270604 cd14421 CUE_AMFR CUE domain found in autocrine motility factor receptor (AMFR) and similar proteins. AMFR is an internalizing cell surface glycoprotein that is localized in both plasma membrane caveolae and the endoplasmic reticulum (ER), and involves in the regulation of cellular adhesion, proliferation, motility and apoptosis, as well as in the process of learning and memory. It is also called ER-protein gp78 that has been identified as a RING finger-dependent ubiquitin protein ligase (E3) implicated in degradation from the ER. AMFR contains an N-terminal RING-finger domain and a C-terminal CUE domain. 41 -270605 cd14422 CUE_RIN3_plant CUE domain found in plant E3 ubiquitin protein ligases RIN2, RIN3 and similar proteins. RIN2 and RIN3 are two closely related RPM1-interacting proteins conserved in higher eukaryotes. They are orthologs of the mammalian autocrine motility factor receptor (AMFR), a cytokine receptor localized in both plasma membrane caveolae and the endoplasmic reticulum (ER). RIN2 and RIN3 have been identified as membrane-bound RING-finger type ubiquitin ligases with six apparent transmembrane domains, a RING-finger domain and a CUE domain. They act as positive regulators of RPM1- and RPS2-dependent hypersensitive response (HR). 38 -270606 cd14423 CUE_UBR5 CUE domain found in E3 ubiquitin-protein ligase UBR5 and similar proteins. UBR5, also called E3 ubiquitin-protein ligase, HECT domain-containing 1, hyperplastic discs protein homolog (HYD), progestin-induced protein, EDD, or Rat100, belongs to the E3 protein family of HECT (homologous to E6-AP C-terminus) ligases. It is frequently overexpressed in breast and ovarian cancer, suggesting a role in cancer development. UBR5 is involved in DNA-damage signaling. It can ubiquitinate DNA topoisomerase II-binding protein 1 (TopBP1) in the presence of the E2 enzyme UBCH4. It also activates the DNA-damage checkpoint kinase CHK2. Moreover, UBR5 interacts with the calcium and integrin-binding protein (CIB) in a DNA-damage-dependent manner. It functions as the substrate of the extracellular signal-regulated kinases (ERKs) 1 and 2. It also acts as a ubiquitin ligase that controls the levels of poly(A)-binding protein-interacting protein 2. In addition, UBR5 ubiquitinates and up-regulates beta-catenin, regulates transcription, and activates smooth-muscle differentiation through its ability to stabilize myocardin. UBR5 contains an N-terminal CUE domain, a zinc-finger-like domain termed the ubiquitin-recognin (UBR) box, a MLLE (mademoiselle) domain, and a C-terminal catalytic HECT domain. 47 -270607 cd14424 CUE_Cue1p_like CUE domain found in yeast ubiquitin-binding protein CUE1 (Cue1p), CUE4 (Cue4p) and similar proteins. Cue1p, also called coupling of ubiquitin conjugation to ER degradation protein 1 or kinetochore-defect suppressor 4, is encoded by the open reading frame (ORF) YMR264W in yeast. It is an N-terminally membrane-anchored endoplasmic reticulum (ER) protein essential for the activity of the two major yeast RING finger ubiquitin ligases (E3s) implicated in ER-associated degradation (ERAD). It interacts with the ERAD ubiquitin-conjugating enzyme (E2) Ubc7p in vivo, stimulates Ubc7p E2 activity, and further activates ER-associated protein degradation. Cue1p contains a CUE domain which binds ubiquitin much more weakly than those of other CUE domain containing proteins. It also has an Ubc7p binding-domain at the C-terminal region which is required for Ubc7p-dependent ubiquitylation and for degradation of substrates in the ER. This family also includes Cue4p, also called coupling of ubiquitin conjugation to ER degradation protein 4. It is encoded by the open reading frame (ORF) YML101C in yeast. Cue4p contains a CUE domain which shows high level of similarity with that of Cue1p. 37 -270608 cd14425 UBA1_HR23A UBA1 domain of UV excision repair protein RAD23 homolog A (HR23A) found in vertebrates. HR23A, also called Rad23A, is a DNA repair protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation which is required for efficient nucleotide excision repair (NER), a primary mechanism for removing UV-induced DNA lesions. HR23A also plays a critical role in the interaction of HIV-1 viral protein R (Vpr) with proteasome, especially facilitating Vpr to promote protein poly-ubiquitination. HR23A contains an N-terminal ubiquitin-like (UBL) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA1 domain. 40 -270609 cd14426 UBA1_HR23B UBA1 domain of UV excision repair protein RAD23 homolog B (HR23B) found in vertebrates. HR23B, also called xeroderma pigmentosum group C (XPC) repair-complementing complex 58 kDa protein (p58), is tightly complexed with XPC protein to form the XPC-HR23B complex. Although it displays a high affinity for both single- and double-stranded DNA, the XPC-HR23B complex functions as a global genome repair (GGR)-specific repair factor that is specifically involved in global genome but not transcription-coupled nucleotide excision repair (NER). HR23B also interacts specifically with S5a subunit of the human 26 S proteasome, and plays an important role in shuttling ubiquitinated cargo proteins to the proteasome. HR23B contains an N-terminal ubiquitin-like (UBL) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA1 domain. 46 -270610 cd14427 UBA2_HR23A UBA2 domain of UV excision repair protein RAD23 homolog A (HR23A) found in vertebrates. HR23A, also called Rad23A, is a DNA repair protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation which is required for efficient nucleotide excision repair (NER), a primary mechanism for removing UV-induced DNA lesions. HR23A also plays a critical role in the interaction of HIV-1 viral protein R (Vpr) with proteasome, especially facilitating Vpr to promote protein poly-ubiquitination. HR23A contains an N-terminal ubiquitin-like (UBL) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA2 domain. 41 -270611 cd14428 UBA2_HR23B UBA2 domain of UV excision repair protein RAD23 homolog B (HR23B) found in vertebrates. HR23B, also called xeroderma pigmentosum group C (XPC) repair-complementing complex 58 kDa protein (p58), is tightly complexed with XPC protein to form the XPC-HR23B complex. Although it displays a high affinity for both single- and double-stranded DNA, the XPC-HR23B complex functions as a global genome repair (GGR)-specific repair factor that is specifically involved in global genome but not transcription-coupled nucleotide excision repair (NER). HR23B also interacts specifically with S5a subunit of the human 26 S proteasome, and plays an important role in shuttling ubiquitinated cargo proteins to the proteasome. HR23B contains an N-terminal ubiquitin-like (UBL) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. This model corresponds to the UBA2 domain. 45 -259859 cd14435 SPO1_TF1_like Bacteriophage SPO1-encoded TF1 binds and bends DNA. This group contains proteins related to bacillus phage SPO1-encoded transcription factor 1 (TF1), a type II DNA-binding protein related to the DNA sequence specific (IHF) and non-specific (HU) domains. Type II DNA-binding proteins bind and bend DNA as dimers. Like IHF, TF1 binds DNA specifically and bends DNA sharply. Bacteriophage SPO1-encoded TF1 recognizes SPO1 phage DNA containing 5-(hydroxymethyl)-2'-deoxyuridine as opposed to thymine, Related family members includes integration host factor (IHF) and HU, also called type II DNA-binding proteins (DNABII), which are small dimeric proteins that specifically bind the DNA minor groove, inducing large bends in the DNA and serving as architectural factors in a variety of cellular processes such as recombination, initiation of replication/transcription and gene regulation. IHF binds DNA in a sequence specific manner while HU displays little or no sequence preference. IHF homologs are usually heterodimers, while HU homologs are typically homodimers (except HU heterodimers from E. coli and other enterobacteria). HU is highly basic and contributes to chromosomal compaction and maintenance of negative supercoiling, thus often referred to as histone-like protein. IHF is an essential cofactor in phage lambda site-specific recombination, having an architectural role during assembly of specialized nucleoprotein structures (snups). 87 -271226 cd14436 LepB Legionella Rab1-specific GAP LepB. LepB of Legionella, a human pathogen, is a specific RabGAP for Rab1, a member of the largest subfamily of small GTPases. RabGTPases play a role in the control of vesicular trafficking and are switched off by GTPase-activating enzymes (GAPs) that stimulate the intrinsic GTP hydrolysis activity. Legionella LepB is unrelated to the TBC family of human Rab1 RabGAPs. 272 -271227 cd14437 nt01cx_1156_like Uncharacterized proteins conserved in Clostridia. Some members of this uncharacterized protein family have been annotated as putative lipoproteins. The structure resembles that of a partial beta-propeller (3 out of 6 blades), suggesting that family members might form dimers. 199 -271228 cd14438 Hip_N N-terminal dimerization domain of the Hsp70-interacting protein (Hip) and similar proteins. The Hsc70/Hsp70-interacting protein (Hip, also p48 or suppressor of tumorigenicity ST13) functions as a regulator of the cyclic action of Hsp70. Hip forms homodimers, and this model characterizes the N-terminal dimerization domain, which may not be directly involved in its regulatory function. A central domain of Hip that contains TPR repeats binds the ATPase domain of Hsp70 and slows the release of ADP. 41 -270205 cd14439 AlgX_N_like N-terminal catalytic domain of putative alginate O-acetyltranferase and similar proteins. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. Its N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. This wider family includes AlgX, AlgJ, AlgV, and a number of uncharacterized families, some of which may have been mis-annotated in sequence databases. 316 -270206 cd14440 AlgX_N_like_3 Uncharacterized proteins similar to putative alginate O-acetyltransferase. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. Its N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. Members of this uncharacterized protein family resemble AlgX_N. 315 -270207 cd14441 AlgX_N N-terminal catalytic domain of the putative alginate O-acetyltranferase AlgX. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. This N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. AlgX contains a C-terminal carbohydrate binding domain that belongs to the wider family of CBM6-CBM35-CBM36_like domains. 310 -270208 cd14442 AlgJ_like putative alginate O-acetyltranferases AlgJ, AlgV, and similar proteins. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. Its N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. Members of this family have been annotated as AlgJ or AlgV, and they closely resemble AlgX in sequence and function, although they lack the C-terminal carbohydrate binding domain of AlgX. 321 -270209 cd14443 AlgX_N_like_2 Uncharacterized proteins similar to putative alginate O-acetyltranferase. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. Its N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. Some members of this uncharacterized family, which resembles AlgX_N, have been annotated as twin-arginine translocation signal, although they share little or no similarity with experimentally characterized proteins that bear the same name. 313 -270210 cd14444 AlgX_N_like_1 Uncharacterized proteins similar to putative alginate O-acetyltranferase. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such those as by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. Its N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. Members of this uncharacterized family similar to AlgX_N have been annotated as cell division proteins FtsQ, although they share little or no similarity with experimentally characterized members of the FtsQ family. 298 -271220 cd14445 RILP-like Rab interacting lysosomal protein-like 1 and 2 (Rilpl1 and Rilpl2). This domain is found in Rab interacting lysosomal protein-like 1 and 2, and appears to be conserved in Bilateria. The Rilp-like proteins regulate the concentration of ciliary membrane proteins in the primary cilium. Rilpl2 interacts with myosin-Va and has been linked to the regulation of cellular morphology in neurons; it forms a complex with Rac1 and activates Rac1-Pak signaling, dependent on myosin-Va. 89 -271219 cd14446 bt3222_like Uncharacterized proteins similar to Bacteriodes thetaiotaomicron bt3222. This family appears to be specific to Bacteroidetes; the two-domain protein forms a homodimer. 266 -269894 cd14447 SPX Domain found in Syg1, Pho81, XPR1, and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). This domain is found at the amino terminus of a variety of proteins. In the yeast protein Syg1, the N-terminus directly binds to the G-protein beta subunit and inhibits transduction of the mating pheromone signal. Similarly, the N-terminus of the human XPR1 protein binds directly to the beta subunit of the G-protein heterotrimer leading to increased production of cAMP. These findings suggest that members of this family are involved in G-protein associated signal transduction. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors Pho81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa, are also members of this family. The SPX domain of S. cerevisiae low-affinity phosphate transporters Pho87 and Pho90 auto-regulates uptake and prevents efflux. This SPX dependent inhibition is mediated by the physical interaction with Spl2. NUC-2 contains several ankyrin repeats. Several members of this family are annotated as XPR1 proteins: the xenotropic and polytropic retrovirus receptor confers susceptibility to infection with xenotropic and polytropic murine leukaemia viruses (MLV). Infection by these retroviruses can inhibit XPR1-mediated cAMP signaling and result in cell toxicity and death. The similarity between Syg1, phosphate regulators and XPR1 sequences has been previously noted, as has the additional similarity to several predicted proteins, of unknown function, from Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Schizosaccharomyces pombe, S. cerevisiae, and many other diverse organisms. 143 -259990 cd14448 CuRO_2_BOD_CotA_like Cupredoxin domain 2 of Bilirubin oxidase (BOD), the bacterial endospore coat component CotA, and similar proteins. Bilirubin oxidase (BOD) catalyzes the oxidation of bilirubin to biliverdin and the four-electron reduction of molecular oxygen to water. CotA protein is an abundant component of the outer coat layer in bacterial endospore coat and is required for spore resistance against hydrogen peroxide and UV light. Also included in this subfamily are phenoxazinone synthase (PHS), which catalyzes the oxidative coupling of substituted o-aminophenols to produce phenoxazinones, and FtsP (also named SufI), which is a component of the cell division apparatus. These proteins are laccase-like multicopper oxidases (MCOs) that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs are capable of oxidizing a vast range of substrates, varying from aromatic compounds to inorganic compounds such as metals. Although the members of this family have diverse functions, majority of them have three cupredoxin domain repeats. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper. 144 -259991 cd14449 CuRO_1_2DMCO_NIR_like_2 The cupredoxin domain 1 of a two-domain laccase related to nitrite reductase. The two-domain laccase (small laccase) in this family differs significantly from all laccases. It resembles the two domain nitrite reductase in both sequence and structure. It consists of two cupredoxin domains and forms trimers, and hence resembles the quaternary structure of nitrite reductases more than that of large laccases. There are three trinuclear copper clusters in the enzyme localized between domains 1 and 2 of each pair of neighbor chains. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety of organic substrates coupled to the reduction of molecular oxygen to water. It displays broad substrate specificity, catalyzing the oxidation of a wide variety of aromatic, notably phenolic, and inorganic substances. Laccase has been implicated in a wide spectrum of biological activities. This subfamily has lost the type 1 (T1) copper binding site in domain 1 that is present in other two-domain laccases. 135 -259992 cd14450 CuRO_3_FV_like The third cupredoxin domain of coagulation factor V and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 3 of unprocessed Factor V or the heavy chain of Factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 181 -259993 cd14451 CuRO_5_FV_like The fifth cupredoxin domain of coagulation factor V and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 5 of unprocessed Factor V or the first cupredoxin domain of the light chain of coagulation factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 173 -259994 cd14452 CuRO_1_FVIII_like The first cupredoxin domain of coagulation factor VIII and similar proteins. Factor VIII functions in the factor X-activating complex of the intrinsic coagulation pathway. It facilitates blood clotting by acting as a cofactor for factor IXa. In the presence of Ca2+ and phospholipids, Factor VIII and IXa form a complex that converts factor X to the activated form Xa. A variety of mutations in the Factor VIII gene can cause hemophilia A, which typically requires replacement therapy with purified protein. Factor VIII is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor VIII is initially processed through proteolysis to generate a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2), which circulates in a tight complex with von Willebrand factor (VWF). Further processing of the heavy chain produces activated factor VIIIa, a heterotrimer composed of polypeptides (1-2), (3-4), and the light chain. This model represents the cupredoxin domain 1 of unprocessed Factor VIII or the heavy chain of circulating Factor VIII, and similar proteins. 173 -259995 cd14453 CuRO_2_FV_like The second cupredoxin domain of coagulation factor V and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 2 of unprocessed Factor V or the heavy chain of Factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 123 -259996 cd14454 CuRO_4_FV_like The fourth cupredoxin domain of coagulation factor V and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 4 of unprocessed Factor V or the heavy chain of Factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 144 -259997 cd14455 CuRO_6_FV_like The sixth cupredoxin domain of coagulation factor V and similar proteins. Factor V is an essential coagulation protein with both pro- and anti-coagulant functions. Aberrant expression of human factor V can lead to bleeding or thromboembolic disease, which may be life-threatening. Bovine factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation. Factor V is synthesized as a single polypeptide with six cupredoxin domains and a domain structure of 1-2-3-4-B-5-6-C1-C2, where 1-6 are cupredoxin domains, B is a domain with no known structural homologs and is dispensible for coagulant activity, and C are domains distantly related to discoidin protein-fold family members. Factor V has little activity prior to proteolytic cleavage by thrombin or FXa upon secretion. The resulting Factor Va is a heterodimer consisting of a heavy chain (1-2-3-4) and a light chain (5-6-C1-C2). This model represents the cupredoxin domain 6 of unprocessed Factor V or the second cupredoxin domain of the light chain of coagulation factor Va, and similar proteins including pseutarin C non-catalytic subunit. Pseutarin C is a prothrombin activator from Pseudonaja textilis venom. 140 -271218 cd14456 Menin Scaffolding protein menin encoded by the MEN1 gene. MEN1 is the gene responsible for multiple endocrine neoplasia type 1, and it has been characterized as a tumor suppressor gene that encodes a protein called menin. Menin is mostly found in the nucleus and can regulate gene expression in a positive and in a negative way, and it has been shown to interact with transcription activators, transcription repressors, cell signaling proteins, and various other proteins. It plays major roles in DNA repair, the regulation of the cell cycle, and chromatin remodeling. 437 -271217 cd14458 DP_DD Dimerization domain of DP. DP functions as a binding partner for E2F transcription factors. DP and E2F form heterodimers and play important roles in regulating genes involved in DNA synthesis, cell cycle progression, proliferation and apoptosis. The transcriptional activity of E2F is inhibited by the retinoblastoma protein (Rb) which binds to the E2F-DP heterodimer, blocks the transactivation domain, and negatively regulates the G1-S transition. DP is distantly related to E2F. In humans, there are at least six closely related E2F and two DP family members, all containing a DNA binding domain, a coiled-coil (CC) region, and a marked-box domain. E2F1 to E2F5 also contain a C-terminal transactivation domain. 105 -270615 cd14472 mltA_B_like Domain B insert of mltA_like lytic transglycosylases. Escherichia coli MltA is a membrane-bound lytic transglycosylase comprised of two domains separated by a large groove, where the peptidoglycan strand binds. Domain A is made up of an N-terminal and a C-terminal portion, which correspond to the 3D domain, named for 3 conserved aspartate residues. Domain B is inserted within the linear sequence of domain A. MltA is distinct from other bacterial lytic transglycosylases (LTs), which are similar to each other. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. PG chains (also known as murein), the major components of the bacterial cell wall, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), and lytic transglycosylases cleave this beta-1-4 bond. Typically, peptidoglycan lytic transglycosylases (LT) are exolytic, releasing Metabolite 1 (GlcNAc-anhMurNAc-L-Ala-D-Glu-m-Dap-D-Ala-D-Ala) from the ends of the PG strands. In contrast, MltE is endolytic , cleaving in the middle of PG strands, with further processing to Metabolite 1 accomplished by other LTs. In E. coli, there are six membrane-bound LTs: MltA-MltF and soluble Slt70. Slt35 is a soluble fragment cleaved from MltB. Bacterial LTs are classified in 4 families: Family 1 includes slt70 MltC-MltF, Family 2 includes MltA, Family 3 includes MltB, and Family 4 of bacteriophage origin. While most of the LT family members are similar in structure and sequence with a lysozyme-like fold, Family 2 (including mltA) is distinct. 134 -271216 cd14473 FERM_B-lobe FERM domain B-lobe. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites. 99 -269895 cd14474 SPX_YDR089W SPX domain of the yeast protein YDR089W and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The uncharacterized yeast protein YDR089W has not been shown to be involved in phosphate homeostasis, in contrast to most of the other SPX-domain containing proteins. 144 -269896 cd14475 SPX_SYG1_like SPX domain of the yeast plasma protein Syg1 and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. In the yeast protein Syg1, the N-terminus binds directly to the G-protein beta subunit and inhibits transduction of the mating pheromone signal, and it co-occurs with a C-terminal domain from the EXS family. 139 -269897 cd14476 SPX_PHO1_like SPX domain of the plant protein PHOSPHATE1 (PHO1). This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The PHO1 gene family conserved in plants is involved in a variety of processes, most notably the transport of inorganic phosphate from the root to the shoot of the plant and mediating the response to low levels of inorganic phosphate. More recently it has become evident that PHO1 gene families have diverged in various plants and may play roles in stress response as well as the stomatal response to abscisic acid. 139 -269898 cd14477 SPX_XPR1_like SPX domain of the xenotropic and polytropic retrovirus receptor 1 (XPR1) and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The N-terminus of the human XPR1 protein (xenotropic and polytropic retrovirus receptor 1) binds directly to the beta subunit of the G-protein heterotrimer leading to increased production of cAMP. These findings suggest that all members of this family are involved in G-protein associated signal transduction. Several members of this family are annotated as XPR1 proteins: the xenotropic and polytropic retrovirus receptor confers susceptibility to infection with xenotropic and polytropic murine leukaemia viruses (MLV). Infection by these retroviruses can inhibit XPR1-mediated cAMP signaling and result in cell toxicity and death. Similarity between Syg1, phosphate regulators and XPR1 sequences has been previously noted, as has the additional similarity to several predicted proteins, of unknown function, from Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae, and many other diverse organisms. 161 -269899 cd14478 SPX_PHO87_PHO90_like SPX domain of the phosphate transporters Pho87, Pho90, Pho91, and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The SPX domain of the Saccharomyces cerevisiae membrane-localized low-affinity phosphate transporters Pho87 and Pho90 auto-regulates uptake and prevents efflux. This SPX dependent inhibition is mediated by the physical interaction with Spl2. Pho91 is involved in the export of inorganic phosphate from the vacuole to the cytosol. While both, Pho87 and Pho90, transport phosphate into the cell, only Pho87 appears to also function as a sensor for high extracellular phosphate concentrations. 148 -269900 cd14479 SPX-MFS_plant SPX domain of proteins found in plants and stramenopiles; most have a C-terminal MFS domain. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The SPX domain is found at the amino terminus of a variety of proteins. This family, mostly found in plants, contains a C-terminal MFS domain (major facilitator superfamily), suggesting a function as a secondary transporter. The function of this N-terminal region is unclear, although it might be involved in regulating transport. 140 -269901 cd14480 SPX_VTC2_like SPX domain of the vacuolar transport chaperone Vtc2 and similar proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. Vtc2 is part of the Saccharomyces cerevisiae membrane-integral VTC complex, together with Vtc1, Vtc3, and Vtc4. It contains an N-terminal SPX domain next to a central polyphosphate polymerase domain and a C-terminal domain of unknown function. 135 -269902 cd14481 SPX_AtSPX1_like SPX domain of the plant protein SPX1 and similar proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. This family of plant proteins contains a single SPX domain. Arabidopsis thaliana SPX1 and SPX3 have been reported to play roles in the adaptation to low-phosphate conditions, SPX3 may be involved in the regulation of SPX1 activity. Oryza sativa SPX1 suppresses the regulation of expression of OsPT2, a low-affinity phosphate transporter, by the MYB-like OsPHR2. 149 -269903 cd14482 SPX_BAH1-like SPX domain of the E3 ubiquitin-protein ligase BAH1/NLA and similar proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. BAH1 (benzoic acid hypersensitive 1) appears to function as an E3 ubiquitin ligase; the protein contains an SPX and a RING finger domain. It has been suggested that BAH1/NLA is involved in the regulation of plant immune responses, probably via a pathway of salicylic acid biosynthesis that includes benzoic acid as an intermediate. 156 -269904 cd14483 SPX_PHO81_NUC-2_like SPX domain of Pho81, NUC-2, and similar proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors Pho81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa, are also members of this family. NUC-2 plays an important role in the phosphate-regulated signal transduction pathway in N. crassa. It shows high similarity to a cyclin-dependent kinase inhibitory protein Pho81, which is part of the phosphate regulatory cascade in S. cerevisiae. Both, NUC-2 and Pho81, have multi-domain architecture, including the SPX N-terminal domain following by several ankyrin repeats and a putative C-terminal glycerophosphodiester phosphodiesterase domain (GDPD) with unknown function. 162 -269905 cd14484 SPX_GDE1_like SPX domain of Gde1 and similar proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors Pho81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa, are also members of this family. The yeast protein Gde1/Ypl110c is similar to both, NUC-2 and Pho81, in sharing their multi-domain architecture, which includes the SPX N-terminal domain followed by several ankyrin repeats and a C-terminal glycerophosphodiester phosphodiesterase domain (GDPD). Gde1 hydrolyzes intracellular glycerophosphocholine into glycerolphosphate and choline, and plays a role in the utilization of glycerophosphocholine as a source for phosphate. 134 -270618 cd14485 mltA_like_LT_A Domain A of MltA and related lytic transglycosylase; domain A is interrupted by domain B. Escherichia coli MltA is a membrane-bound lytic transglycosylase comprised of two domains separated by a large groove, where the peptidoglycan strand binds. Domain A is made up of an N-terminal and a C-terminal portion, which correspond to the 3D domain, named for 3 conserved aspartate residues. Domain B is inserted within the linear sequence of domain A. MltA is distinct from other bacterial lytic transglycosylases (LTs), which are similar to each other. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. PG chains (also known as murein), the major components of the bacterial cell wall, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), and lytic transglycosylases cleave this beta-1-4 bond. Typically, peptidoglycan lytic transglycosylases (LT) are exolytic, releasing Metabolite 1 (GlcNAc-anhMurNAc-L-Ala-D-Glu-m-Dap-D-Ala-D-Ala) from the ends of the PG strands. In contrast, MltE is endolytic , cleaving in the middle of PG strands, with further processing to Metabolite 1 accomplished by other LTs. In E. coli, there are six membrane-bound LTs: MltA-MltF and soluble Slt70. Slt35 is a soluble fragment cleaved from MltB. Bacterial LTs are classified in 4 families: Family 1 includes slt70 MltC-MltF, Family 2 includes MltA, Family 3 includes MltB, and Family 4 of bacteriophage origin. While most of the LT family members are similar in structure and sequence with a lysozyme-like fold, Family 2 (including mltA) is distinct. 159 -270619 cd14486 3D_domain 3D domain, named for 3 conserved aspartate residues, is found in mltA-like lytic transglycosylases and numerous other contexts. This family contains the 3D domain, named for its 3 conserved aspartates. It is found in conjunction with numerous other domains such as MltA (membrane-bound lytic murein transglycosylase A). These aspartates are critical active site residues of mltA-like lytic transglycosylases. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. MltA has 2 domains, separated by a large groove, where the peptidoglycan strand binds. The C-terminus has a double-psi beta barrel fold within the 3D domain, which forms the larger A domain along with the N-terminal region of Mlts, but is also found in various other domain architectures. Peptigoglycan (also known as murein) chains, the primary structural component of bacterial cells walls, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc); lytic transglycosylases (LTs) cleave this beta-1-4 bond. Typically, LTs are exolytic, releasing Metabolite 1 (GlcNAc-anhMurNAc-L-Ala-D-Glu-m-Dap-D-Ala-D-Ala) from the ends of the PG strands. In contrast, membrane-bound lytic murein transglycosylase E (MltE) is endolytic , cleaving in the middle of PG strands, with further processing to Metabolite 1 accomplished by other LTs. In E. coli, there are six membrane- bound LTs: MltA-MltF and soluble Slt70. Slt35 is a soluble fragment cleaved from MltB. Bacterial LTs are classified in 4 families: Family 1 includes slt70 MltC-MltF, Family 2 includes MltA, Family 3 includes MltB, and family 4 of bacteriophage origin. While most LTs are related members of the lysozyme-like lytic transglycosylase family, MltA represents a distinct fold and sequence conservation. 104 -271153 cd14487 AlgX_C C-terminal carbohydrate-binding domain of the alginate O-acetyltranferase AlgX. The alginate biosynthesis protein AlgX appears to be directly involved in the O-acetylation of alginate, an exopolysaccharide that is associated with the formation of persistent biofilms, such as those by mucoid strains of Pseudomonas aeruginosa that affect patients suffering from cystic fibrosis. This N-terminal catalytic domain resembles SGNH hydrolases, though with a permuted topology. The active site matches that of the SGNH hydrolases, is well conserved, and has been verified experimentally. AlgX contains a C-terminal carbohydrate binding domain that belongs to the wider family of CBM6-CBM35-CBM36_like domains. 128 -271154 cd14488 CBM6-CBM35-CBM36_like_2 uncharacterized members of the carbohydrate binding module 6 (CBM6) and CBM35_like superfamily. Carbohydrate binding module family 6 (CBM6, family 6 CBM), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36). These are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of the appended catalytic modules to their dedicated, insoluble substrates. Many of these CBMs are associated with glycoside hydrolase (GH) domains. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. CBM36s are calcium-dependent xylan binding domains. CBM35s display conserved specificity through extensive sequence similarity, but divergent function through their appended catalytic modules. 132 -271155 cd14489 CBM_SBP_bac_1_like Putative Carbohydrate Binding Module (CBM) of extracellular solute-binding protein family 1. Domains in this family co-occur with extracellular solute-binding domains which are periplasmic components of ABC-type sugar transport systems involved in carbohydrate transport and metabolism. Carbohydrate binding modules of family 6 (CBM6), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36) are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of co-occuring (catalytic) modules to their insoluble substrates. 150 -271156 cd14490 CBM6-CBM35-CBM36_like_1 uncharacterized members of the carbohydrate binding module 6 (CBM6) and CBM35_like superfamily. Carbohydrate binding module family 6 (CBM6, family 6 CBM), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36). These are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of the appended catalytic modules to their dedicated, insoluble substrates. Many of these CBMs are associated with glycoside hydrolase (GH) domains. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. CBM36s are calcium-dependent xylan binding domains. CBM35s display conserved specificity through extensive sequence similarity, but divergent function through their appended catalytic modules. 156 -350344 cd14494 PTP_DSP_cys cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily. This superfamily is composed of cys-based phosphatases, which includes classical protein tyrosine phosphatases (PTPs) as well as dual-specificity phosphatases (DUSPs or DSPs). They are characterized by a CxxxxxR conserved catalytic loop (where C is the catalytic cysteine, x is any amino acid, and R is an arginine). PTPs are part of the tyrosine phosphorylation/dephosphorylation regulatory mechanism, and are important in the response of the cells to physiologic and pathologic changes in their environment. DUSPs show more substrate diversity (including RNA and lipids) and include pTyr, pSer, and pThr phosphatases. 113 -350345 cd14495 PTPLP-like Protein tyrosine phosphatase-like domains of phytases and similar domains. This subfamily contains the tandem protein tyrosine phosphatase (PTP)-like domains of protein tyrosine phosphatase-like phytases (PTPLPs) and similar domains including the PTP domain of Pseudomonas syringae tyrosine-protein phosphatase hopPtoD2. PTPLPs, also known as cysteine phytases, are one of four known classes of phytases, enzymes that degrade phytate (inositol hexakisphosphate [InsP(6)]) to less-phosphorylated myo-inositol derivatives. Phytate is the most abundant cellular inositol phosphate and plays important roles in a broad scope of cellular processes, including DNA repair, RNA processing and export, development, apoptosis, and pathogenicity. PTPLPs adopt a PTP fold, including the active-site signature sequence (CX5R(S/T)) and utilize a classical PTP reaction mechanism. However, these enzymes display no catalytic activity against classical PTP substrates due to several unique structural features that confer specificity for myo-inositol polyphosphates. 278 -350346 cd14496 PTP_paladin protein tyrosine phosphatase-like domains of paladin. Paladin is a putative phosphatase, which in mouse is expressed in endothelial cells during embryonic development and in arterial smooth muscle cells in adults. It has been suggested to be an antiphosphatase that regulates the activity of specific neural crest regulatory factors and thus, modulates neural crest cell formation and migration. Paladin contains two protein tyrosine phosphatase (PTP)-like domains. This model represents both repeats. 185 -350347 cd14497 PTP_PTEN-like protein tyrosine phosphatase-like domain of phosphatase and tensin homolog and similar proteins. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that acts as a dual-specificity protein phosphatase and as a lipid phosphatase. It dephosphorylates phosphoinositide trisphosphate. In addition to PTEN, this family includes tensins, voltage-sensitive phosphatases (VSPs), and auxilins. They all contain a protein tyrosine phosphatase-like domain although not all are active phosphatases. Tensins are intracellular proteins that act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility, and they may or may not have phosphatase activity. VSPs are phosphoinositide phosphatases with substrates that include phosphatidylinositol-4,5-diphosphate and phosphatidylinositol-3,4,5-trisphosphate. Auxilins are J domain-containing proteins that facilitate Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles, and they do not exhibit phosphatase activity. 160 -350348 cd14498 DSP dual-specificity phosphatase domain. The dual-specificity phosphatase domain is found in typical and atypical dual-specificity phosphatases (DUSPs), which function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Typical DUSPs, also called mitogen-activated protein kinase (MAPK) phosphatases (MKPs), deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Atypical DUSPs contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Also included in this family are dual specificity phosphatase-like domains of catalytically inactive members such as serine/threonine/tyrosine-interacting protein (STYX) and serine/threonine/tyrosine interacting like 1 (STYXL1), as well as active phosphatases with substrates that are not phosphoproteins such as PTP localized to the mitochondrion 1 (PTPMT1), which is a lipid phosphatase, and laforin, which is a glycogen phosphatase. 135 -350349 cd14499 CDC14_C C-terminal dual-specificity phosphatase domain of CDC14 family proteins. The cell division control protein 14 (CDC14) family is highly conserved in all eukaryotes, although the roles of its members seem to have diverged during evolution. Yeast Cdc14, the best characterized member of this family, is a dual-specificity phosphatase that plays key roles in cell cycle control. It preferentially dephosphorylates cyclin-dependent kinase (CDK) targets, which makes it the main antagonist of CDK in the cell. Cdc14 functions at the end of mitosis and it triggers the events that completely eliminates the activity of CDK and other mitotic kinases. It is also involved in coordinating the nuclear division cycle with cytokinesis through the cytokinesis checkpoint, and in chromosome segregation. Cdc14 phosphatases also function in DNA replication, DNA damage checkpoint, and DNA repair. Vertebrates may contain more than one Cdc14 homolog; humans have three (CDC14A, CDC14B, and CDC14C). CDC14 family proteins contain a highly conserved N-terminal pseudophosphatase domain that contributes to substrate specificity and a C-terminal catalytic dual-specificity phosphatase domain with the PTP signature motif. 174 -350350 cd14500 PTP-IVa protein tyrosine phosphatase type IVA family. Protein tyrosine phosphatases type IVA (PTP-IVa), also known as protein-tyrosine phosphatases of regenerating liver (PRLs) constitute a family of small, prenylated phosphatases that are the most oncogenic of all PTPs. They stimulate progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. They associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Vertebrates contain three members: PRL-1, PRL-2, and PRL-3. 156 -350351 cd14501 PFA-DSP plant and fungi atypical dual-specificity phosphatase. Plant and fungi atypical dual-specificity phosphatases (PFA-DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds. They share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The PFA-DSP group is composed of active as well as inactive phosphatases. The best characterized member is Saccharomyces Siw14, also known as Oca3, which plays a role in actin filament organization and endocytosis. Siw14 has been shown to be an inositol pyrophosphate phosphatase, hydrolyzing the beta-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7). 149 -350352 cd14502 RNA_5'-triphosphatase RNA 5'-triphosphatase domain. This family of RNA-specific cysteine phosphatases includes baculovirus RNA 5'-triphosphatase, dual specificity protein phosphatase 11 (DUSP11), and the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. RNA/polynucleotide 5'-triphosphatase (EC 3.1.3.33) catalyzes the removal of the gamma-phosphate from the 5'-triphosphate end of nascent mRNA to yield a diphosphate end. mRNA capping enzyme is a bifunctional enzyme that catalyzes the first two steps of cap formation. DUSP11 has RNA 5'-triphosphatase and diphosphatase activity, but only poor protein-tyrosine phosphatase activity. 167 -350353 cd14503 PTP-bact bacterial tyrosine-protein phosphataseS similar to Neisseria NMA1982. This subfamily is composed of bacterial tyrosine-protein phosphatases similar to Neisseria meningitidis NMA1982, which displays phosphatase activity but whose biological function is still unknown. 136 -350354 cd14504 DUSP23 dual specificity phosphatase 23. Dual specificity phosphatase 23 (DUSP23), also known as VH1-like phosphatase Z (VHZ) or low molecular mass dual specificity phosphatase 3 (LDP-3), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP23 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It is able to enhance activation of JNK and p38 MAPK, and has been shown to dephosphorylate p44-ERK1 (MAPK3) in vitro. It has been associated with cell growth and human primary cancers. It has also been identified as a cell-cell adhesion regulatory protein; it promotes the dephosphorylation of beta-catenin at Tyr 142 and enhances the interaction between alpha- and beta-catenin. 142 -350355 cd14505 CDKN3-like cyclin-dependent kinase inhibitor 3 and similar proteins. This family is composed of eukaryotic cyclin-dependent kinase inhibitor 3 (CDKN3) and related archaeal and bacterial proteins. CDKN3 is also known as kinase-associated phosphatase (KAP), CDK2-associated dual-specificity phosphatase, cyclin-dependent kinase interactor 1 (CDI1), or cyclin-dependent kinase-interacting protein 2 (CIP2). It has been characterized as dual-specificity phosphatase, which function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and protein-tyrosine-phosphatase (EC 3.1.3.48). It dephosphorylates CDK2 at a threonine residue in a cyclin-dependent manner, resulting in the inhibition of G1/S cell cycle progression. It also interacts with CDK1 and controls progression through mitosis by dephosphorylating CDC2. CDKN3 may also function as a tumor suppressor; its loss of function was found in a variety of cancers including glioblastoma and hepatocellular carcinoma. However, it has also been found over-expressed in many cancers such as breast, cervical, lung and prostate cancers, and may also have an oncogenic function. 163 -350356 cd14506 PTP_PTPDC1 protein tyrosine phosphatase domain of PTP domain-containing protein 1. protein tyrosine phosphatase domain-containing protein 1 (PTPDC1) is an uncharacterized non-receptor class protein-tyrosine phosphatase (PTP). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Small interfering RNA (siRNA) knockdown of the ptpdc1 gene is associated with elongated cilia. 206 -350357 cd14507 PTP-MTM-like protein tyrosine phosphatase-like domain of myotubularins. Myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Not all members are catalytically active proteins, some function as adaptors for the active members. 226 -350358 cd14508 PTP_tensin protein tyrosine phosphatase-like domain of tensins. The tensin family of intracellular proteins (tensin-1, -2, -3 and -4) act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of tensin expression has been implicated in human cancer. Tensin-1, -2, and -3 contain an N-terminal region with a protein tyrosine phosphatase (PTP)-like domain followed by a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. In addition, tensin-2 contains a zinc finger N-terminal to its PTP domain. Tensin-4 is not included in this model as it does not contain a PTP-like domain. 159 -350359 cd14509 PTP_PTEN protein tyrosine phosphatase-like catalytic domain of phosphatase and tensin homolog. Phosphatase and tensin homolog (PTEN), also phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN or mutated in multiple advanced cancers 1 (MMAC1), is a tumor suppressor that acts as a dual-specificity protein phosphatase and as a lipid phosphatase. It is a critical endogenous inhibitor of phosphoinositide signaling. It dephosphorylates phosphoinositide trisphosphate, and therefore, has the function of negatively regulating Akt. The PTEN/PI3K/AKT pathway regulates the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth. PTEN contains an N-terminal PIP-binding domain, a protein tyrosine phosphatase (PTP)-like catalytic domain, a regulatory C2 domain responsible for its cellular location, a C-tail containing phosphorylation sites, and a C-terminal PDZ domain. 158 -350360 cd14510 PTP_VSP_TPTE protein tyrosine phosphatase-like catalytic domain of voltage-sensitive phosphatase/transmembrane phosphatase with tensin homology. Voltage-sensitive phosphatase (VSP) proteins comprise a family of phosphoinositide phosphatases with substrates that include phosphatidylinositol-4,5-diphosphate and phosphatidylinositol-3,4,5-trisphosphate. This family is conserved in deuterostomes; VSP was first identified as a sperm flagellar plasma membrane protein in Ciona intestinalis. Gene duplication events in primates resulted in the presence of paralogs, transmembrane phosphatase with tensin homology (TPTE) and TPTE2, that retain protein domain architecture but, in the case of TPTE, have lost catalytic activity. TPTE, also called cancer/testis antigen 44 (CT44), may play a role in the signal transduction pathways of the endocrine or spermatogenic function of the testis. TPTE2, also called TPTE and PTEN homologous inositol lipid phosphatase (TPIP), occurs in several differentially spliced forms; TPIP alpha displays phosphoinositide 3-phosphatase activity and is localized on the endoplasmic reticulum, while TPIP beta is cytosolic and lacks detectable phosphatase activity. VSP/TPTE proteins contain an N-terminal voltage sensor consisting of four transmembrane segments, a protein tyrosine phosphatase (PTP)-like phosphoinositide phosphatase catalytic domain, followed by a regulatory C2 domain. 177 -350361 cd14511 PTP_auxilin-like protein tyrosine phosphatase-like domain of auxilin and similar proteins. This subfamily contains proteins similar to auxilin, characterized by also containing a J domain. It includes auxilin, also called auxilin-1, and cyclin-G-associated kinase (GAK), also called auxilin-2. Auxilin-1 and -2 facilitate Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles. GAK is expressed ubiquitously and is enriched in the Golgi, while auxilin-1 which is nerve-specific. Both proteins contain a protein tyrosine phosphatase (PTP)-like domain similar to the PTP-like domain of PTEN (a phosphoinositide 3-phosphatase), and a C-terminal region with clathrin-binding and J domains. In addition, GAK contains an N-terminal protein kinase domain that phosphorylates the mu subunits of adaptor protein (AP) 1 and AP2. 164 -350362 cd14512 DSP_MKP dual specificity phosphatase domain of mitogen-activated protein kinase phosphatase. Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs, which are involved in gene regulation, cell proliferation, programmed cell death and stress responses, as an important feedback control mechanism that limits MAPK cascades. MKPs, also referred to as typical DUSPs, function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). 136 -350363 cd14513 DSP_slingshot dual specificity phosphatase domain of slingshot family phosphatases. The slingshot (SSH) family of dual specificity protein phosphatases is composed of Drosophila slingshot phosphatase and its vertebrate homologs: SSH1, SSH2 and SSH3. Its members specifically dephosphorylate and reactivate Ser-3-phosphorylated cofilin (P-cofilin), an actin-binding protein that plays an essential role in actin filament dynamics. In Drosophila, loss of ssh gene function causes prominent elevation in the levels of P-cofilin and filamentous actin and disorganized epidermal cell morphogenesis, including bifurcation phenotypes of bristles and wing hairs. SSH family phosphatases contain an N-terminal, SSH family-specific non-catalytic (SSH-N) domain, followed by a short domain with similarity to the C-terminal domain of the chromatin-associated protein DEK, and a dual specificity phosphatase catalytic domain. In addition, many members contain a C-terminal tail. The SSH-N domain plays critical roles in P-cofilin recognition, F-actin-mediated activation, and subcellular localization of SSHs. 139 -350364 cd14514 DUSP14-like dual specificity protein phosphatases 14, 18, 21, 28 and similar proteins. This family is composed of dual specificity protein phosphatase 14 (DUSP14, also known as MKP-6), 18 (DUSP18), 21 (DUSP21), 28 (DUSP28), and similar proteins. They function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48), and are atypical DUSPs. They contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP14 directly interacts and dephosphorylates TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1) in T cells, and negatively regulates TCR signaling and immune responses. DUSP18 has been shown to interact and dephosphorylate SAPK/JNK, and may play a role in regulating the SAPK/JNK pathway. DUSP18 and DUSP21 target to opposing sides of the mitochondrial inner membrane. DUSP28 has been implicated in hepatocellular carcinoma progression and in migratory activity and drug resistance of pancreatic cancer cells. 133 -350365 cd14515 DUSP3-like dual specificity protein phosphatases 3, 13, 26, 27, and similar domains. This family is composed of dual specificity protein phosphatase 3 (DUSP3, also known as VHR), 13B (DUSP13B, also known as TMDP), 26 (DUSP26, also known as MPK8), 13A (DUSP13A, also known as MDSP), dual specificity phosphatase and pro isomerase domain containing 1 (DUPD1), and inactive DUSP27. In general, DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Members of this family are atypical DUSPs; they contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Inactive DUSP27 contains a dual specificity phosphatase-like domain with the active site cysteine substituted to serine. 148 -350366 cd14516 DSP_fungal_PPS1 dual specificity phosphatase domain of fungal dual specificity protein phosphatase PPS1-like. This subfamily contains fungal proteins with similarity to dual specificity protein phosphatase PPS1 from Saccharomyces cerevisiae, which has a role in the DNA synthesis phase of the cell cycle. As a dual specificity protein phosphatase, PPS1 functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It contains a C-terminal catalytic dual specificity phosphatase domain. 177 -350367 cd14517 DSP_STYXL1 dual specificity phosphatase-like domain of serine/threonine/tyrosine interacting like 1. Serine/threonine/tyrosine interacting like 1 (STYXL1), also known as DUSP24 and MK-STYX, is a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). STYXL1 plays a role in regulating pathways by competing with active phosphatases for binding to MAPKs. Similar to MKPs, STYXL1 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, however its C-terminal dual specificity phosphatase-like domain is a pseudophosphatase missing the catalytic cysteine. 155 -350368 cd14518 DSP_fungal_YVH1 dual specificity phosphatase domain of fungal YVH1-like dual specificity protein phosphatase. This family is composed of Saccharomyces cerevisiae dual specificity protein phosphatase Yvh1 and similar fungal proteins. Yvh1 could function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It regulates cell growth, sporulation, and glycogen accumulation. It plays an important role in ribosome assembly. Yvh1 associates transiently with late pre-60S particles and is required for the release of the nucleolar/nuclear pre-60S factor Mrt4, which is necessary to construct a translation-competent 60S subunit and mature ribosome stalk. Yvh1 contains an N-terminal catalytic dual specificity phosphatase domain and a C-terminal tail. 153 -350369 cd14519 DSP_DUSP22_15 dual specificity phosphatase domain of dual specificity protein phosphatase 22, 15, and similar proteins. Dual specificity protein phosphatase 22 (DUSP22, also known as VHX) and 15 (DUSP15, also known as VHY) function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). They are atypical DUSPs; they contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. The both contain N-terminal myristoylation recognition sequences and myristoylation regulates their subcellular location. DUSP22 negatively regulates the estrogen receptor-alpha-mediated signaling pathway and the IL6-leukemia inhibitory factor (LIF)-STAT3-mediated signaling pathway. DUSP15 has been identified as a regulator of oligodendrocyte differentiation. DUSP22 is a single domain protein containing only the catalytic dual specificity phosphatase domain while DUSP15 contains a short C-terminal tail. 136 -350370 cd14520 DSP_DUSP12 dual specificity phosphatase domain of dual specificity protein phosphatase 12 and similar proteins. Dual specificity protein phosphatase 12 (DUSP12), also called YVH1, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP12 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It targets p38 MAPK to regulate macrophage response to bacterial infection. It also ameliorates cardiac hypertrophy in response to pressure overload through c-Jun N-terminal kinase (JNK) inhibition. DUSP12 has been identified as a modulator of cell cycle progression, a function independent of phosphatase activity and mediated by its C-terminal zinc-binding domain. 144 -350371 cd14521 DSP_fungal_SDP1-like dual specificity phosphatase domain of fungal dual specificity protein phosphatase SDP1, MSG5, and similar proteins. This family is composed of fungal dual specificity protein phosphatases (DUSPs) including Saccharomyces cerevisiae SDP1 and MSG5, and Schizosaccharomyces pombe Pmp1. function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. SDP1 is oxidative stress-induced and dephosphorylates MAPK substrates such as SLT2. MSG5 dephosphorylates the Fus3 and Slt2 MAPKs operating in the mating and cell wall integrity (CWI) pathways, respectively. Pmp1 is responsible for dephosphorylating the CWI MAPK Pmk1. These phosphatases bind to their target MAPKs through a conserved IYT motif located outside of the dual specificity phosphatase domain. 155 -350372 cd14522 DSP_STYX dual specificity phosphatase-like domain of serine/threonine/tyrosine-interacting protein. Serine/threonine/tyrosine-interacting protein (STYX), also called protein tyrosine phosphatase-like protein, is a catalytically inactive member of the protein tyrosine phosphatase family that plays an integral role in regulating pathways by competing with active phosphatases for binding to MAPKs. It acts as a nuclear anchor for MAPKs, affecting their nucleocytoplasmic shuttling. 151 -350373 cd14523 DSP_DUSP19 dual specificity phosphatase domain of dual specificity protein phosphatase 19. Dual specificity protein phosphatase 19 (DUSP19), also called low molecular weight dual specificity phosphatase 3 (LMW-DSP3) or stress-activated protein kinase (SAPK) pathway-regulating phosphatase 1 (SKRP1), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP19 interacts with the MAPK kinase MKK7, a JNK activator, and inactivates the JNK MAPK pathway. 137 -350374 cd14524 PTPMT1 protein-tyrosine phosphatase mitochondrial 1. Protein-tyrosine phosphatase mitochondrial 1 or PTP localized to the mitochondrion 1 (PTPMT1), also called phosphoinositide lipid phosphatase (PLIP), phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1, or PTEN-like phosphatase, is a lipid phosphatase or phosphatidylglycerophosphatase (EC 3.1.3.27) which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). It is targeted to the mitochondrion by an N-terminal signal sequence and is found anchored to the matrix face of the inner membrane. It is essential for the biosynthesis of cardiolipin, a mitochondrial-specific phospholipid regulating the membrane integrity and activities of the organelle. PTPMT1 also plays a crucial role in hematopoietic stem cell (HSC) function, and has been shown to display activity toward phosphoprotein substrates. 149 -350375 cd14526 DSP_laforin-like dual specificity phosphatase domain of laforin and similar domains. This family is composed of glucan phosphatases including vertebrate dual specificity protein phosphatase laforin, also called lafora PTPase (LAFPTPase), and plant starch excess4 (SEX4). Laforin is a glycogen phosphatase; its gene is mutated in Lafora progressive myoclonus epilepsy or Lafora disease (LD), a fatal autosomal recessive neurodegenerative disorder characterized by the presence of progressive neurological deterioration, myoclonus, and epilepsy. One characteristic of LD is the accumulation of insoluble glucans. Laforin prevents LD by at least two mechanisms: by preventing hyperphosphorylation of glycogen by dephosphorylating it, allowing proper glycogen formation, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with malin. Laforin contains an N-terminal CBM20 (carbohydrate-binding module, family 20) domain and a C-terminal catalytic dual specificity phosphatase (DSP) domain. Plant SEX4 regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. It contains an N-terminal catalytic DSP domain and a C-terminal Early (E) set domain. 146 -350376 cd14527 DSP_bac unknown subfamily of bacterial and plant dual specificity protein phosphatases. This subfamily is composed of uncharacterized bacterial and plant dual-specificity protein phosphatases. DUSPs function as a protein-serine/threonine phosphatases (EC 3.1.3.16) and a protein-tyrosine-phosphatases (EC 3.1.3.48). 136 -350377 cd14528 PFA-DSP_Siw14 atypical dual specificity phosphatases similar to yeast Siw14. This subfamily contains Saccharomyces Siw14 and a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Siw14, also known as Oca3, plays a role in actin filament organization and endocytosis. Siw14 has been shown to be an inositol pyrophosphate phosphatase, hydrolyzing the beta-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7). The At1g05000 protein, also called AtPFA-DSP1, has been shown to have highest activity toward olyphosphate (poly-P(12-13)) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidylinositols. This subfamily belongs to a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds called plant and fungi atypical dual-specificity phosphatases (PFA-DSPs). 148 -350378 cd14529 TpbA-like bacterial protein tyrosine and dual-specificity phosphatases related to Pseudomonas aeruginosa TpbA. This subfamily contains bacterial protein tyrosine phosphatases (PTPs) and dual-specificity phosphatases (DUSPs) related to Pseudomonas aeruginosa TpbA, a DUSP that negatively regulates biofilm formation by converting extracellular quorum sensing signals and to Mycobacterium tuberculosis PtpB, a PTP virulence factor that attenuates host immune defenses by interfering with signal transduction pathways in macrophages. PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides, while DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and PTPs. 158 -350379 cd14531 PFA-DSP_Oca1 atypical dual specificity phosphatases similar to oxidant-induced cell-cycle arrest protein 1. Oxidant-induced cell-cycle arrest protein 1 (Oca1) is an atypical dual specificity phosphatase whose gene is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide. It may function in linking growth, stress responses, and the cell cycle. Oca1 belongs to a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds called plant and fungi atypical dual-specificity phosphatases (PFA-DSPs). 149 -350380 cd14532 PTP-MTMR6-like protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases 6, 7, and 8. This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTMR6, MTMR7 and MTMR8, and related domains. Beside the phosphatase domain, they contain a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR6, MTMR7 and MTMR8 form complexes with catalytically inactive MTMR9, and display differential substrate preferences. In cells, the MTMR6/R9 complex significantly increases the cellular levels of PtdIns(5)P, the product of PI(3,5)P(2) dephosphorylation, whereas the MTMR8/R9 complex reduces cellular PtdIns(3)P levels. The MTMR6/R9 complex serves to inhibit stress-induced apoptosis while the MTMR8/R9 complex inhibits autophagy. 301 -350381 cd14533 PTP-MTMR3-like protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases 3 and 4. This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTMR3, also known as ZFYVE10, and MTMR4, also known as ZFYVE11, and related domains. Beside the phosphatase domain, they contain a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. 229 -350382 cd14534 PTP-MTMR5-like protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatases 5 and 13. This subgroup of enzymatically inactive phosphatase domains of myotubularins consists of MTMR5, also known as SET binding factor 1 (SBF1) and MTMR13, also known as SET binding factor 2 (SBF2), and similar domains. Beside the pseudophosphatase domain, they contain a variety of other domains, including a DENN and a PH-like domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR5 and MTMR13 are pseudophosphatases that lack the catalytic cysteine in their catalytic pocket. Mutations in MTMR13 causes Charcot-Marie-Tooth type 4B2, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR2. Mutations in the MTMR5 gene cause Charcot-Marie-tooth disease type 4B3. MTMR5 and MTMR13 interact with MTMR2 and stimulate its phosphatase activity. 274 -350383 cd14535 PTP-MTM1-like protein tyrosine phosphatase-like domain of myotubularin, and myotubularin related phosphoinositide phosphatases 1 and 2. This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTM1, MTMR1 and MTMR2. All contain an additional N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. 249 -350384 cd14536 PTP-MTMR9 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 9. Myotubularin related phosphoinositide phosphatase 9 (MTMR9) is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. Mutations have been associated with obesity and metabolic syndrome. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR9 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It forms complexes with catalytically active MTMR6, MTMR7 and MTMR8, and regulates their activities; the complexes display differential substrate preferences. The MTMR6/R9 complex serves to inhibit stress-induced apoptosis while the MTMR8/R9 complex inhibits autophagy. 224 -350385 cd14537 PTP-MTMR10-like protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatases 10, 11, and 12. This subgroup of enzymatically inactive phosphatase domains of myotubularins consists of MTMR10, MTMR11, MTMR12, and similar proteins. Beside the phosphatase domain, they contain an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR10, MTMR11, and MTMR12 are pseudophosphatases that lack the catalytic cysteine in their catalytic pocket. MTMR12 functions as an adapter for the catalytically active myotubularin to regulate its intracellular location. 200 -350386 cd14538 PTPc-N20_13 catalytic domain of tyrosine-protein phosphatase non-receptor type 20 and type 13. Tyrosine-protein phosphatase non-receptor type 20 (PTPN20) and type 13 (PTPN13, also known as PTPL1) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN20 is a widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization. Human PTPN13 is an important regulator of tumor aggressiveness. 207 -350387 cd14539 PTP-N23 PTP-like domain of tyrosine-protein phosphatase non-receptor type 23. Tyrosine-protein phosphatase non-receptor type 23 (PTPN23), also called His domain-containing protein tyrosine phosphatase (HD-PTP) or protein tyrosine phosphatase TD14 (PTP-TD14), is a catalytically inactive member of the tyrosine-specific protein tyrosine phosphatase (PTP) family. Human PTPN23 may be involved in the regulation of small nuclear ribonucleoprotein assembly and pre-mRNA splicing by modifying the survival motor neuron (SMN) complex. It plays a role in ciliogenesis and is part of endosomal sorting complex required for transport (ESCRT) pathways. PTPN23 contains five domains: a BRO1-like domain that plays a role in endosomal sorting; a V-domain that interacts with Lys63-linked polyubiquitinated substrates; a central proline-rich region that might recruit SH3-containing proteins; a PTP-like domain; and a proteolytic degradation-targeting motif, also known as a PEST sequence. 205 -350388 cd14540 PTPc-N21_14 catalytic domain of tyrosine-protein phosphatase non-receptor type 21 and type 14. Tyrosine-protein phosphatase non-receptor type 21 (PTPN21) and type 14 (PTPN14) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Both PTPN21 and PTPN14 contain an N-terminal FERM domain and a C-terminal catalytic PTP domain, separated by a long intervening sequence. 219 -350389 cd14541 PTPc-N3_4 catalytic domain of tyrosine-protein phosphatase non-receptor type 21 and type 14. Tyrosine-protein phosphatase non-receptor type 3 (PTPN3) and type 4 (PTPN4) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN3 and PTPN4 are large modular proteins containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain. PTPN3 interacts with mitogen-activated protein kinase p38gamma and serves as its specific phosphatase. PTPN4 functions in TCR cell signaling, apoptosis, cerebellar synaptic plasticity, and innate immune responses. 212 -350390 cd14542 PTPc-N22_18_12 catalytic domain of tyrosine-protein phosphatase non-receptor type 22, type 18 and type 12. Tyrosine-protein phosphatase non-receptor type 22 (PTPN22), type 18 (PTPN18) and type 12 (PTPN12) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN22 is expressed in hematopoietic cells and it functions as a key regulator of immune homeostasis by inhibiting T-cell receptor signaling through the direct dephosphorylation of Src family kinases (Lck and Fyn), ITAMs of the TCRz/CD3 complex, and other signaling molecules. TPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination states. PTPN12 is characterized as a tumor suppressor and a pivotal regulator of EGFR/HER2 signaling. 202 -350391 cd14543 PTPc-N9 catalytic domain of tyrosine-protein phosphatase non-receptor type 9. Tyrosine-protein phosphatase non-receptor type 9 (PTPN9), also called protein-tyrosine phosphatase MEG2, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN9 plays an important role in promoting intracellular secretary vesicle fusion in hematopoietic cells and promotes the dephosphorylation of ErbB2 and EGFR in breast cancer cells, leading to impaired activation of STAT5 and STAT3. It also directly dephosphorylates STAT3 at the Tyr705 residue, resulting in its inactivation. PTPN9 has been found to be dysregulated in various human cancers, including breast, colorectal, and gastric cancer. 271 -350392 cd14544 PTPc-N11_6 catalytic domain of tyrosine-protein phosphatase non-receptor type 11 and type 6. Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) and type 6 (PTPN6) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN11 and PTPN6, are also called SH2 domain-containing tyrosine phosphatase 2 (SHP2) and 1 (SHP1), respectively. They contain two tandem SH2 domains: a catalytic PTP domain, and a C-terminal tail with regulatory properties. Although structurally similar, they have different localization and different roles in signal transduction. PTPN11/SHP2 is expressed ubiquitously and plays a positive role in cell signaling, leading to cell activation, while PTPN6/SHP1 expression is restricted mainly to hematopoietic and epithelial cells and functions as a negative regulator of signaling events. 251 -350393 cd14545 PTPc-N1_2 catalytic domain of tyrosine-protein phosphatase non-receptor type 1 and type 2. Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) type 2 (PTPN2) belong to the family of classical tyrosine-specific protein tyrosine phosphatases, (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN1 (or PTP-1B) is the first PTP to be purified and characterized and is the prototypical intracellular PTP found in a wide variety of human tissues. It dephosphorylates and regulates the activity of a number of receptor tyrosine kinases, including the insulin receptor, the EGF receptor, and the PDGF receptor. PTPN2 (or TCPTP), a tumor suppressor, dephosphorylates and inactivates EGFRs, Src family kinases, Janus-activated kinases (JAKs)-1 and -3, and signal transducer and activators of transcription (STATs)-1, -3 and -5, in a cell type and context-dependent manner. 231 -350394 cd14546 R-PTP-N-N2 PTP-like domain of receptor-type tyrosine-protein phosphatase-like N and N2. Receptor-type tyrosine-protein phosphatase-like N (PTPRN) and N2 (PTPRN2) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). They consist of a large ectodomain that contains a RESP18HD (regulated endocrine-specific protein 18 homology domain), followed by a transmembrane segment, and a single, catalytically-impaired, PTP domain. They are mainly expressed in neuropeptidergic neurons and peptide-secreting endocrine cells, including insulin-producing pancreatic beta-cells, and are involved in involved in the generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in beta-cell proliferation. They also are major autoantigens in type 1 diabetes and are involved in the regulation of insulin secretion. 208 -350395 cd14547 PTPc-KIM catalytic domain of the kinase interaction motif (KIM) family of protein-tyrosine phosphatases. The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes tyrosine-protein phosphatases non-receptor type 7 (PTPN7) and non-receptor type 5 (PTPN5), and protein-tyrosine phosphatase receptor type R (PTPRR). PTPN7 is also called hematopoietic protein-tyrosine phosphatase (HePTP) while PTPN5 is also called striatal-enriched protein-tyrosine phosphatase (STEP). They belong to the family of classical tyrosine-specific PTPs (EC 3.1.3.48) that catalyze the dephosphorylation of phosphotyrosine peptides. KIM-PTPs are characterized by the presence of a 16-amino-acid KIM that binds specifically to members of the MAPK (mitogen-activated protein kinase) family. They are highly specific to the MAPKs ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38, over JNK (c-Jun N-terminal kinase); they dephosphorylate these kinases and thereby critically modulate cell proliferation and differentiation. 224 -350396 cd14548 R3-PTPc catalytic domain of R3 subfamily receptor-type tyrosine-protein phosphatases and similar proteins. R3 subfamily receptor-type phosphotyrosine phosphatases (RPTP) are characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. Vertebrate members include receptor-type tyrosine-protein phosphatase-like O (PTPRO), J (PTPRJ), Q (PTPRQ), B (PTPRB), V (PTPRV) and H (PTPRH). They belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Most members are PTPs, except for PTPRQ, which dephosphorylates phosphatidylinositide substrates. PTPRV is characterized only in rodents; its function has been lost in humans. Both vertebrate and invertebrate R3 subfamily RPTPs are involved in the control of a variety of cellular processes, including cell growth, differentiation, mitotic cycle and oncogenic transformation. 222 -350397 cd14549 R5-PTPc-1 catalytic domain of R5 subfamily receptor-type tyrosine-protein phosphatases, repeat 1. The R5 subfamily of receptor-type phosphotyrosine phosphatases (RPTP) is composed of receptor-type tyrosine-protein phosphatase Z (PTPRZ) and G (PTPRG). They belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. They are type 1 integral membrane proteins consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the catalytic PTP domain (repeat 1). 204 -350398 cd14550 R5-PTP-2 PTP-like domain of R5 subfamily receptor-type tyrosine-protein phosphatases, repeat 2. The R5 subfamily of receptor-type phosphotyrosine phosphatases (RPTP) is composed of receptor-type tyrosine-protein phosphatase Z (PTPRZ) and G (PTPRG). They belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. They are type 1 integral membrane proteins consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the inactive PTP-like domain (repeat 2). 200 -350399 cd14551 R-PTPc-A-E-1 catalytic domain of receptor-type tyrosine-protein phosphatase A and E, repeat 1. Receptor-type tyrosine-protein phosphatase A (PTPRA) and E (PTPRE) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRA and PTPRE share several functions including regulation of Src family kinases and voltage-gated potassium (Kv) channels. They both contain a small extracellular domain, a transmembrane segment, and an intracellular region containing two tandem catalytic PTP domains. This model represents the first catalytic PTP domain (repeat 1). 202 -350400 cd14552 R-PTPc-A-E-2 catalytic domain of receptor-type tyrosine-protein phosphatase A and E, repeat 2. Receptor-type tyrosine-protein phosphatase A (PTPRA) and E (PTPRE) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRA and PTPRE share several functions including regulation of Src family kinases and voltage-gated potassium (Kv) channels. They both contain a small extracellular domain, a transmembrane segment, and an intracellular region containing two tandem catalytic PTP domains. This model represents the second PTP domain (repeat 2). 202 -350401 cd14553 R-PTPc-LAR-1 catalytic domain of LAR family receptor-type tyrosine-protein phosphatases, repeat 1. The LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs) include three vertebrate members: LAR (or PTPRF), R-PTP-delta (or PTPRD), and R-PTP-sigma (or PTPRS). They belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules; they bind to distinct synaptic membrane proteins and are physiologically responsible for mediating presynaptic development by shaping various synaptic adhesion pathways. They play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. LAR-RPTPs contain an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the catalytic PTP domain (repeat 1). 238 -350402 cd14554 R-PTP-LAR-2 PTP-like domain of the LAR family receptor-type tyrosine-protein phosphatases, repeat 2. The LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs) include three vertebrate members: LAR (or PTPRF), R-PTP-delta (or PTPRD), and R-PTP-sigma (or PTPRS). They belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules; they bind to distinct synaptic membrane proteins and are physiologically responsible for mediating presynaptic development by shaping various synaptic adhesion pathways. They play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. LAR-RPTPs contain an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). 238 -350403 cd14555 R-PTPc-typeIIb-1 catalytic domain of type IIb (or R2B) subfamily receptor-type tyrosine-protein phosphatases, repeat 1. The type II (or R2B) subfamily of receptor protein tyrosine phosphatases (RPTPs) include the prototypical member PTPmu (or PTPRM), PCP-2 (or PTPRU), PTPrho (or PTPRT), and PTPkappa (or PTPRK). They belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Type IIb RPTPs mediate cell-cell adhesion though homophilic interactions; their ligand is an identical molecule on an adjacent cell. No heterophilic interactions between the subfamily members have been observed. They also commonly function as tumor suppressors. They contain an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the first (repeat 1) PTP domain. 204 -350404 cd14556 R-PTPc-typeIIb-2 PTP domain of type IIb (or R2B) subfamily receptor-type tyrosine-protein phosphatases, repeat 2. The type IIb (or R2B) subfamily of receptor protein tyrosine phosphatases (RPTPs) include the prototypical member PTPmu (or PTPRM), PCP-2 (or PTPRU), PTPrho (or PTPRT), and PTPkappa (or PTPRK). They belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Type IIb RPTPs mediate cell-cell adhesion though homophilic interactions; their ligand is an identical molecule on an adjacent cell. No heterophilic interactions between the subfamily members have been observed. They also commonly function as tumor suppressors. They contain an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the second (repeat 2) PTP domain. 201 -350405 cd14557 R-PTPc-C-1 catalytic domain of receptor-type tyrosine-protein phosphatase C, repeat 1. Receptor-type tyrosine-protein phosphatase C (PTPRC), also known as CD45, leukocyte common antigen (LCA) or GP180, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRC/CD45 is found in all nucleated hematopoietic cells and is an essential regulator of T- and B-cell antigen receptor signaling. It controls immune response, both positively and negatively, by dephosphorylating a number of signaling molecules such as the Src family kinases, the CD3zeta chain of TCY, and ZAP-70 kinase. Mutations in the human PTPRC/CD45 gene are associated with severe combined immunodeficiency (SCID) and multiple sclerosis. PTPRC/CD45 contains an extracellular receptor-like region with fibronectin type III (FN3) repeats, a short transmembrane segment, and a cytoplasmic region comprising of a membrane proximal catalytically active PTP domain (repeat 1 or D1) and a membrane distal catalytically impaired PTP-like domain (repeat 2, or D2). This model represents repeat 1. 201 -350406 cd14558 R-PTP-C-2 PTP-like domain of receptor-type tyrosine-protein phosphatase C, repeat 2. Receptor-type tyrosine-protein phosphatase C (PTPRC), also known as CD45, leukocyte common antigen (LCA) or GP180, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRC/CD45 is found in all nucleated hematopoietic cells and is an essential regulator of T- and B-cell antigen receptor signaling. It controls immune response, both positively and negatively, by dephosphorylating a number of signaling molecules such as the Src family kinases, the CD3zeta chain of TCY, and ZAP-70 kinase. Mutations in the human PTPRC/CD45 gene are associated with severe combined immunodeficiency (SCID) and multiple sclerosis. PTPRC/CD45 contains an extracellular receptor-like region with fibronectin type III (FN3) repeats, a short transmembrane segment, and a cytoplasmic region comprising of a membrane proximal catalytically active PTP domain (repeat 1 or D1) and a membrane distal catalytically impaired PTP-like domain (repeat 2, or D2). This model represents repeat 2. 203 -350407 cd14559 PTP_YopH-like YopH and related bacterial protein tyrosine phosphatases. Yersinia outer protein H (YopH) belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. YopH is an essential virulence determinant of the pathogenic bacterium by dephosphorylating several focal adhesion proteins including p130Cas in human epithelial cells, resulting in the disruption of focal adhesions and cell detachment from the extracellular matrix. It contains an N-terminal domain that contains signals required for TTSS-mediated delivery of YopH into host cells and a C-terminal catalytic PTP domain. 227 -350408 cd14560 PTP_tensin-1 protein tyrosine phosphatase-like domain of tensin-1. Tensin-1 (TNS1) is part of the tensin family of intracellular proteins (tensin-1, -2, -3 and -4), which act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. It plays an essential role in TGF-beta-induced myofibroblast differentiation and myofibroblast-mediated formation of extracellular fibronectin and collagen matrix. It also positively regulates RhoA activity through its interaction with DLC1, a RhoGAP-containing tumor suppressor; the tensin-1-DLC1-RhoA signaling axis is critical in regulating cellular functions that lead to angiogenesis. Tensin-1 contains an N-terminal region with a protein tyrosine phosphatase (PTP)-like domain followed by a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. 159 -350409 cd14561 PTP_tensin-3 protein tyrosine phosphatase-like domain of tensin-3. Tensin-3 (TNS3) is also called tensin-like SH2 domain-containing protein 1 (TENS1) or tumor endothelial marker (TEM6). It is part of the tensin family of intracellular proteins (tensin-1, -2, -3 and -4), which act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Tensin-3 contributes to cell migration, anchorage-independent growth, tumorigenesis, and metastasis of cancer cells. It cooperates with Dock5, an exchange factor for the small GTPase Rac, for osteoclast activity to ensure the correct organization of podosomes. Tensin-3 contains an N-terminal region with a protein tyrosine phosphatase (PTP)-like domain followed by a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. 159 -350410 cd14562 PTP_tensin-2 protein tyrosine phosphatase-like domain of tensin-2. Tensin-2 (TNS2) is also called tensin-like C1 domain-containing phosphatase (TENC1) or C1 domain-containing phosphatase and tensin homolog (C1-TEN). It is part of the tensin family of intracellular proteins (tensin-1, -2, -3 and -4), which act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Tensin-2 is an essential component for the maintenance of glomerular basement membrane (GBM) structures. It also modulates cell contractility and remodeling of collagen fibers through the DLC1, a RhoGAP that binds to tensins in focal adhesions. Tensin-2 may have phosphatase activity; it reduces AKT1 phosphorylation. It contains an N-terminal region with a zinc finger, a protein tyrosine phosphatase (PTP)-like domain and a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. 159 -350411 cd14563 PTP_auxilin_N N-terminal protein tyrosine phosphatase-like domain of auxilin. Auxilin, also called auxilin-1 or DnaJ homolog subfamily C member 6 (DNAJC6), is a J-domain containing protein that recruits the ATP-dependent chaperone Hsc70 to newly budded clathrin-coated vesicles and promotes uncoating of clathrin-coated vesicles, driving the clathrin assembly#disassembly cycle. Mutations in the DNAJC6 gene, encoding auxilin, are associated with early-onset Parkinson's disease. Auxilin contains an N-terminal protein tyrosine phosphatase (PTP)-like domain similar to the PTP-like domain of PTEN, a phosphoinositide 3-phosphatase, and a C-terminal region with clathrin-binding and J domains. 163 -350412 cd14564 PTP_GAK protein tyrosine phosphatase-like domain of cyclin-G-associated kinase. cyclin-G-associated kinase (GAK), also called auxilin-2, contains an N-terminal protein kinase domain that phosphorylates the mu subunits of adaptor protein (AP) 1 and AP2. In addition, it contains an auxilin-1-like domain structure consisting of a protein tyrosine phosphatase (PTP)-like domain similar to the PTP-like domain of PTEN (a phosphoinositide 3-phosphatase), and a C-terminal region with clathrin-binding and J domains. Like auxilin-1, GAK facilitates Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles. GAK is expressed ubiquitously and is enriched in the Golgi, unlike auxilin-1 which is nerve-specific. GAK also plays regulatory roles outside of clathrin-mediated membrane traffic including the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses through interaction with the interleukin 12 receptor. 163 -350413 cd14565 DSP_MKP_classI dual specificity phosphatase domain of class I mitogen-activated protein kinase phosphatase. Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class I MKPs consist of DUSP1/MKP-1, DUSP2 (PAC1), DUSP4/MKP-2 and DUSP5. They are all mitogen- and stress-inducible nuclear MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 138 -350414 cd14566 DSP_MKP_classII dual specificity phosphatase domain of class II mitogen-activated protein kinase phosphatase. Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class II MKPs consist of DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4, and are ERK-selective cytoplasmic MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 137 -350415 cd14567 DSP_DUSP10 dual specificity phosphatase domain of dual specificity protein phosphatase 10. Dual specificity protein phosphatase 10 (DUSP10), also called mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP10/MKP-5 coordinates skeletal muscle regeneration by negatively regulating mitochondria-mediated apoptosis. It is also an important regulator of intestinal epithelial barrier function and a suppressor of colon tumorigenesis. DUSP10/MKP-5 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 152 -350416 cd14568 DSP_MKP_classIII dual specificity phosphatase domain of class III mitogen-activated protein kinase phosphatase. Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class III MKPs consist of DUSP8, DUSP10/MKP-5 and DUSP16/MKP-7, and are JNK/p38-selective phosphatases, which are found in both the cell nucleus and cytoplasm. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 140 -350417 cd14569 DSP_slingshot_2 dual specificity phosphatase domain of slingshot homolog 2. Dual specificity protein phosphatase slingshot homolog 2 (SSH2), also called SSH-like protein 2, is part of the slingshot (SSH) family, whose members specifically dephosphorylate and reactivate Ser-3-phosphorylated cofilin (P-cofilin), an actin-binding protein that plays an essential role in actin filament dynamics. SSH2 has been identified as a target of protein kinase D1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. There are at least two human SSH2 isoforms reported: hSSH-2L (long) and hSSH-2. As SSH family phosphatases, they contain an N-terminal, SSH family-specific non-catalytic (SSH-N) domain, followed by a short domain with similarity to the C-terminal domain of the chromatin-associated protein DEK, and a dual specificity phosphatase catalytic domain. In addition, hSSH-2L contains a long C-terminal tail while hSSH-2 does not. 144 -350418 cd14570 DSP_slingshot_1 dual specificity phosphatase domain of slingshot homolog 1. Dual specificity protein phosphatase slingshot homolog 1 (SSH1), also called SSH-like protein 1, is part of the slingshot (SSH) family, whose members specifically dephosphorylate and reactivate Ser-3-phosphorylated cofilin (P-cofilin), an actin-binding protein that plays an essential role in actin filament dynamics. SSH1 links NOD1 signaling to actin remodeling, facilitating the changes that leads to NF-kappaB activation and innate immune responses. There are at least two human SSH1 isoforms reported: hSSH-1L (long) and hSSH-1S (short). As SSH family phosphatases, they contain an N-terminal, SSH family-specific non-catalytic (SSH-N) domain, followed by a short domain with similarity to the C-terminal domain of the chromatin-associated protein DEK, and a dual specificity phosphatase catalytic domain. They also contain C-terminal tails, differing in the lengths of the tail. 144 -350419 cd14571 DSP_slingshot_3 dual specificity phosphatase domain of slingshot homolog 3. Dual specificity protein phosphatase slingshot homolog 3 (SSH3), also called SSH-like protein 3, is part of the slingshot (SSH) family, whose members specifically dephosphorylate and reactivate Ser-3-phosphorylated cofilin (P-cofilin), an actin-binding protein that plays an essential role in actin filament dynamics. The Xenopus homolog (xSSH) is involved in the gastrulation movement. Mouse SSH3 dephosphorylates actin-depolymerizing factor (ADF) and cofilin but is dispensable for development. There are at least two human SSH3 isoforms reported: hSSH-3L (long) and hSSH-3. As SSH family phosphatases, they contain an N-terminal, SSH family-specific non-catalytic (SSH-N) domain, followed by a short domain with similarity to the C-terminal domain of the chromatin-associated protein DEK, and a dual specificity phosphatase catalytic domain. In addition, hSSH-3L contains a C-terminal tail while hSSH-3 does not. 144 -350420 cd14572 DUSP14 dual specificity protein phosphatase 14. dual specificity protein phosphatase 14 (DUSP14), also called mitogen-activated protein kinase (MAPK) phosphatase 6 (MKP-6) or MKP-1-like protein tyrosine phosphatase (MKP-L), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP14 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP14 dephosphorylates JNK, ERK, and p38 in vitro. It also directly interacts and dephosphorylates TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1) in T cells, and negatively regulates TCR signaling and immune responses. 150 -350421 cd14573 DUSP18_21 dual specificity protein phosphatases 18 and 21. This subfamily contains dual specificity protein phosphatase 18 (DUSP18), dual specificity protein phosphatase 21 (DUSP21), and similar proteins. They function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48), and are atypical DUSPs. They contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP18, also called low molecular weight dual specificity phosphatase 20 (LMW-DSP20), is a catalytically active phosphatase with a preference for phosphotyrosine over phosphoserine/threonine oligopeptides in vitro. In vivo, it has been shown to interact and dephosphorylate SAPK/JNK, and may play a role in regulating the SAPK/JNK pathway. DUSP21 is also called low molecular weight dual specificity phosphatase 21 (LMW-DSP21). Its gene has been identified as a potential therapeutic target in human hepatocellular carcinoma. DUSP18 and DUSP21 target to opposing sides of the mitochondrial inner membrane. 158 -350422 cd14574 DUSP28 dual specificity protein phosphatase 28. Dual specificity protein phosphatase 28 (DUSP28), also called VHP, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It is an atypical DUSP that contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It has been implicated in hepatocellular carcinoma progression and in migratory activity and drug resistance of pancreatic cancer cells. DUSP28 has an exceptionally low phosphatase activity due to the presence of bulky residues in the active site pocket resulting in low accessibility. 140 -350423 cd14575 DUPD1 dual specificity phosphatase and pro isomerase domain containing 1. Dual specificity phosphatase and pro isomerase domain containing 1 (DUPD1) was initially named as such because computational prediction appeared to encode a protein of 446 amino acids in length that included two catalytic domains: a proline isomerase and a dual specificity phosphatase (DUSP). However, it was subsequently shown that the true open reading frame only encompassed the DUSP domain and the gene product was therefore renamed DUSP27. This is distinct from inactive DUSP27. DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). DUPD1/DUSP27 has been shown to have catalytic activity with preference for phosphotyrosine over phosphothreonine and phosphoserine residues. It associates with the short form of the prolactin (PRL) receptor and plays a role in PRL-mediated MAPK inhibition in ovarian cells. 160 -350424 cd14576 DSP_iDUSP27 dual specificity phosphatase-like domain of inactive dual specificity protein phosphatase 27. Inactive dual specificity protein phosphatase 27 (DUSP27) may play a role in myofiber maturation. It is a pseudophosphatase containing a substitution of the active site cysteine into a serine. It is a large protein of more than 1000 amino acids in length with an N-terminal dual specificity phosphatase-like domain. 159 -350425 cd14577 DUSP13B dual specificity protein phosphatase 13 isoform B. Dual specificity protein phosphatase 13 isoform B (DUSP13B), also called testis- and skeletal-muscle-specific DSP (TMDP) or dual specificity phosphatase SKRP4, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP13B is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP13B inactivates MAPK activation in the order of selectivity, JNK = p38 > ERK in cells. It may play a role in protection from external stress during spermatogenesis. 163 -350426 cd14578 DUSP26 dual specificity protein phosphatase 26. Dual specificity protein phosphatase 26 (DUSP26), also called mitogen-activated protein kinase (MAPK) phosphatase 8 (MKP-8) or low-molecular-mass dual-specificity phosphatase 4 (LDP-4), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP26 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It is a brain phosphatase highly overexpressed in neuroblastoma and has also been identified as a p53 phosphatase, dephosphorylating phospho-Ser20 and phospho-Ser37 in the p53 transactivation domain. 144 -350427 cd14579 DUSP3 dual specificity protein phosphatase 3. Dual specificity protein phosphatase 3 (DUSP3), also called vaccinia H1-related phosphatase (VHR), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP3 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It favors bisphosphorylated substrates over monophosphorylated ones, and prefers pTyr peptides over pSer/pThr peptides. Reported physiological substrates includes MAPKs ERK1/2, JNK, and p38, as well as STAT5, EGFR, and ErbB2. DUSP3 has been linked to breast and prostate cancer, and may also play a role in thrombosis. 168 -350428 cd14580 DUSP13A dual specificity protein phosphatase 13 isoform A. Dual specificity protein phosphatase 13 isoform A (DUSP13A), also called branching-enzyme interacting DSP or muscle-restricted DSP (MDSP), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP13A is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP13A also functions as a regulator of apoptosis signal-regulating kinase 1 (ASK1), a MAPK kinase kinase, by interacting with its N-terminal domain and inducing ASK1-mediated apoptosis through the activation of caspase-3. This function is independent of phosphatase activity. 145 -350429 cd14581 DUSP22 dual specificity protein phosphatase 22. Dual specificity protein phosphatase 22 (DUSP22), also called JNK-stimulatory phosphatase-1 (JSP-1), low molecular weight dual specificity phosphatase 2 (LMW-DSP2), mitogen-activated protein kinase phosphatase x (MKP-x) or VHR-related MKPx (VHX), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP22 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP22 negatively regulates the estrogen receptor-alpha-mediated signaling pathway and the IL6-leukemia inhibitory factor (LIF)-STAT3-mediated signaling pathway. It also regulates cell death by acting as a scaffold protein for the ASK1-MKK7-JNK signal transduction pathway independently of its phosphatase activity. 149 -350430 cd14582 DSP_DUSP15 dual specificity phosphatase domain of dual specificity protein phosphatase 15. Dual specificity protein phosphatase 15 (DUSP15), also called Vaccinia virus VH1-related dual-specific protein phosphatase Y (VHY) or VH1-related member Y, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). DUSP15 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It is highly expressed in the testis and is located in the plasma membrane in a myristoylation-dependent manner. It may be involved in the regulation of meiotic signal transduction in testis cells. It is also expressed in the brain and has been identified as a regulator of oligodendrocyte differentiation. DUSP15 contains an N-terminal catalytic dual specificity phosphatase domain and a short C-terminal tail. 146 -350431 cd14583 PTP-MTMR7 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 7. Myotubularin related phosphoinositide phosphatase 7 (MTMR7) is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. In neuronal cells, MTMR7 forms a complex with catalytically inactive MTMR9 and dephosphorylates phosphatidylinositol 3-phosphate and Ins(1,3)P2. 302 -350432 cd14584 PTP-MTMR8 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 8. Myotubularin related phosphoinositide phosphatase 8 (MTMR8) is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR8 forms a complex with catalytically inactive MTMR9 and preferentially dephosphorylates PtdIns(3)P; the MTMR8/R9 complex inhibits autophagy. In zebrafish, it cooperates with PI3K to regulate actin filament modeling and muscle development. 308 -350433 cd14585 PTP-MTMR6 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 6. Myotubularin related phosphoinositide phosphatase 6 is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR6 forms a complex with catalytically inactive MTMR9 and preferentially dephosphorylates PtdIns(3,5)P(2); the MTMR6/R9 complex serves to inhibit stress-induced apoptosis. 302 -350434 cd14586 PTP-MTMR3 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 3. Myotubularin related phosphoinositide phosphatase 3 (MTMR3), also known as FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1) or Zinc finger FYVE domain-containing protein 10 (ZFYVE10), is enzymatically active and contains a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Together with phosphoinositide 5-kinase PIKfyve, phosphoinositide 3-phosphatase MTMR3 constitutes a phosphoinositide loop that produces PI(5)P via PI(3,5)P2 and regulates cell migration. 317 -350435 cd14587 PTP-MTMR4 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 4. Myotubularin related phosphoinositide phosphatase 4 (MTMR4), also known as FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2) or zinc finger FYVE domain-containing protein 11 (ZFYVE11), is enzymatically active and contains a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway. It plays a role in bacterial pathogenesis by stabilizing the integrity of bacteria-containing vacuoles. 308 -350436 cd14588 PTP-MTMR5 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 5. Myotubularin related phosphoinositide phosphatase 5 (MTMR5), also known as SET binding factor 1 (SBF1), is enzymatically inactive and contains a variety of other domains, including a DENN and a PH-like domain. Mutations in the MTMR5 gene cause Charcot-Marie-tooth disease type 4B3. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR5 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It interacts with MTMR2, an active myotubularin related phosphatidylinositol phosphatase, regulates its enzymatic activity and subcellular location. 291 -350437 cd14589 PTP-MTMR13 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 13. Myotubularin related phosphoinositide phosphatase 13 (MTMR13), also known as SET binding factor 2 (SBF2), is enzymatically inactive and contains a variety of other domains, including a DENN and a PH-like domain. Mutations in MTMR13 causes Charcot-Marie-Tooth type 4B2, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR2. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR13 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It is believed to interact with MTMR2 and stimulate its phosphatase activity. It is also a guanine nucleotide exchange factor (GEF) which may activate RAB28, promoting the exchange of GDP to GTP and converting inactive GDP-bound Rab proteins into their active GTP-bound form. 297 -350438 cd14590 PTP-MTMR2 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 2. Myotubularin related phosphoinositide phosphatase 2 (MTMR2) is enzymatically active and contains an additional N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. Mutations in MTMR2 causes Charcot-Marie-Tooth type 4B1, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR13. MTMR13, an inactive phosphatase, is believed to interact with MTMR2 and stimulate its phosphatase activity. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. 262 -350439 cd14591 PTP-MTM1 protein tyrosine phosphatase-like domain of myotubularin phosphoinositide phosphatase 1. Myotubularin phosphoinositide phosphatase 1 (MTM1), also called myotubularin, is enzymatically active and contains an N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. Mutations in MTM1 cause X-linked myotubular myopathy. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. 249 -350440 cd14592 PTP-MTMR1 protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 1. Myotubularin-related phosphoinositide phosphatase 1 (MTMR1) is enzymatically active and contains an N-terminal PH-GRAM domain, a C-terminal coiled-coiled domain and a PDZ binding site. MTMR1 is associated with myotonic dystrophy. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. 249 -350441 cd14593 PTP-MTMR10 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 10. Myotubularin related phosphoinositide phosphatase 10 (MTMR10) is enzymatically inactive and contains an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR10 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. 195 -350442 cd14594 PTP-MTMR12 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 12. Myotubularin related phosphoinositide phosphatase 12 (MTMR12), also called phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit (3-PAP), is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR12 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It functions as an adapter for the catalytically active myotubularin to regulate its intracellular location. 203 -350443 cd14595 PTP-MTMR11 protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 11. Myotubularin related phosphoinositide phosphatase 11 (MTMR11), also called cisplatin resistance-associated protein (hCRA) in humans, is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR11 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. 195 -350444 cd14596 PTPc-N20 catalytic domain of tyrosine-protein phosphatase non-receptor type 20. Tyrosine-protein phosphatase non-receptor type 20 (PTPN20) belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN20 is a widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization. 207 -350445 cd14597 PTPc-N13 catalytic domain of tyrosine-protein phosphatase non-receptor type 13. Tyrosine-protein phosphatase non-receptor type 13 (PTPN13, also known as PTPL1) belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN13 is an important regulator of tumor aggressiveness. It regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. In hepatocellular carcinoma, PTPN13 is a tumor suppressor. PTPN13 contains a FERM domain, five PDZ domains, and a C-terminal catalytic PTP domain. With its PDZ domains, PTPN13 has numerous interacting partners that can actively participate in the regulation of its phosphatase activity or can permit direct or indirect recruitment of tyrosine phosphorylated substrates. Its FERM domain is necessary for localization to the membrane. 234 -350446 cd14598 PTPc-N21 catalytic domain of tyrosine-protein phosphatase non-receptor type 21. Tyrosine-protein phosphatase non-receptor type 21 (PTPN21), also called protein-tyrosine phosphatase D1, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN21 is a component of a multivalent scaffold complex nucleated by focal adhesion kinase (FAK) at specific intracellular sites. It promotes cytoskeleton events that induce cell adhesion and migration by modulating Src-FAK signaling. It can also selectively associate with and stimulate Tec family kinases and modulate Stat3 activation. Human PTPN21 may also play a pathologic role in gastrointestinal tract tumorigenesis. PTPN21 contains an N-terminal FERM domain and a C-terminal catalytic PTP domain, separated by a long intervening sequence. 220 -350447 cd14599 PTPc-N14 catalytic domain of tyrosine-protein phosphatase non-receptor type 14. Tyrosine-protein phosphatase non-receptor type 14 (PTPN14), also called protein-tyrosine phosphatase pez, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN14 is a potential tumor suppressor and plays a regulatory role in the Hippo and Wnt/beta-catenin signaling pathways. It contains an N-terminal FERM domain and a C-terminal catalytic PTP domain, separated by a long intervening sequence. 287 -350448 cd14600 PTPc-N3 catalytic domain of tyrosine-protein phosphatase non-receptor type 3. Tyrosine-protein phosphatase non-receptor type 3 (PTPN3), also called protein-tyrosine phosphatase H1 (PTP-H1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN3 interacts with mitogen-activated protein kinase p38gamma and serves as its specific phosphatase. PTPN3 and p38gamma cooperate to promote Ras-induced oncogenesis. PTPN3 is a large modular protein containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain. Its PDZ domain binds with the PDZ-binding motif of p38gamma and enables efficient tyrosine dephosphorylation. 274 -350449 cd14601 PTPc-N4 catalytic domain of tyrosine-protein phosphatase non-receptor type 4. Tyrosine-protein phosphatase non-receptor type 4 (PTPN4), also called protein-tyrosine phosphatase MEG1, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN4 functions in TCR cell signaling, apoptosis, cerebellar synaptic plasticity, and innate immune responses. It specifically inhibits the TRIF-dependent TLR4 pathway by suppressing tyrosine phosphorylation of TRAM. It is a large modular protein containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain; the PDZ domain regulates the catalytic activity of PTPN4. 212 -350450 cd14602 PTPc-N22 catalytic domain of tyrosine-protein phosphatase non-receptor type 22. Tyrosine-protein phosphatase non-receptor type 22 (PTPN22), also called lymphoid phosphatase (LyP), PEST-domain phosphatase (PEP), or hematopoietic cell protein-tyrosine phosphatase 70Z-PEP, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN22 is expressed in hematopoietic cells and it functions as a key regulator of immune homeostasis by inhibiting T-cell receptor signaling through the direct dephosphorylation of Src family kinases (Lck and Fyn), ITAMs of the TCRz/CD3 complex, and other signaling molecules. Mutations in the PTPN22 gene are associated with multiple connective tissue and autoimmune diseases including type 1 diabetes mellitus, rheumatoid arthritis, and systemic lupus erythematosus. PTPN22 contains an N-terminal catalytic PTP domain and four proline-rich regions at the C-terminus. 234 -350451 cd14603 PTPc-N18 catalytic domain of tyrosine-protein phosphatase non-receptor type 18. Tyrosine-protein phosphatase non-receptor type 18 (PTPN18), also called brain-derived phosphatase, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination states. The N-terminal catalytic PTP domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation, and its C-terminal PEST domain promotes K48-linked HER2 ubiquitination and its destruction via the proteasome pathway. 266 -350452 cd14604 PTPc-N12 catalytic domain of tyrosine-protein phosphatase non-receptor type 12. Tyrosine-protein phosphatase non-receptor type 12 (PTPN12), also called PTP-PEST or protein-tyrosine phosphatase G1 (PTPG1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN12 is characterized as a tumor suppressor and a pivotal regulator of EGFR/HER2 signaling. It regulates various physiological processes, including cell migration, immune response, and neuronal activity, by dephosphorylating multiple substrates including HER2, FAK, PYK2, PSTPIP, WASP, p130Cas, paxillin, Shc, catenin, c-Abl, ArgBP2, p190RhoGAP, RhoGDI, cell adhesion kinase beta, and Rho GTPase. 297 -350453 cd14605 PTPc-N11 catalytic domain of tyrosine-protein phosphatase non-receptor type 11. Tyrosine-protein phosphatase non-receptor type 11 (PTPN11), also called SH2 domain-containing tyrosine phosphatase 2 (SHP-2 or SHP2), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN11 promotes the activation of the RAS/Mitogen-Activated Protein Kinases (MAPK) Extracellular-Regulated Kinases 1/2 (ERK1/2) pathway, a canonical signaling cascade that plays key roles in various cellular processes, including proliferation, survival, differentiation, migration, or metabolism. It also regulates the phosphoinositide 3-kinase (PI3K)/AKT pathway, a fundamental cascade that functions in cell survival, proliferation, migration, morphogenesis, and metabolism. PTPN11 dysregulation is associated with several developmental diseases and malignancies, such as Noonan syndrome and juvenile myelomonocytic leukemia. It contains two tandem SH2 domains, a catalytic PTP domain, and a C-terminal tail with regulatory properties. 253 -350454 cd14606 PTPc-N6 catalytic domain of tyrosine-protein phosphatase non-receptor type 6. Tyrosine-protein phosphatase non-receptor type 6 (PTPN6), also called SH2 domain-containing protein-tyrosine phosphatase 1 (SHP1 or SHP-1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN6 expression is restricted mainly to hematopoietic and epithelial cells. It is an important regulator of hematopoietic cells, downregulating pathways that promote cell growth, survival, adhesion, and activation. It regulates glucose homeostasis by modulating insulin signalling in the liver and muscle, and it also negatively regulates bone resorption, affecting both the formation and the function of osteoclasts. PTPN6 contains two tandem SH2 domains, a catalytic PTP domain, and a C-terminal tail with regulatory properties. 266 -350455 cd14607 PTPc-N2 catalytic domain of tyrosine-protein phosphatase non-receptor type 2. Tyrosine-protein phosphatase non-receptor type 2 (PTPN2), also called T-cell protein-tyrosine phosphatase (TCPTP), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN2, a tumor suppressor, dephosphorylates and inactivates EGFRs, Src family kinases, Janus-activated kinases (JAKs)-1 and -3, and signal transducer and activators of transcription (STATs)-1, -3 and -5, in a cell type and context-dependent manner. It is deleted in 6% of all T-cell acute lymphoblastic leukemias and is associated with constitutive JAK1/STAT5 signaling and tumorigenesis. 257 -350456 cd14608 PTPc-N1 catalytic domain of tyrosine-protein phosphatase non-receptor type 1. Tyrosine-protein phosphatase non-receptor type 1 (PTPN1), also called protein-tyrosine phosphatase 1B (PTP-1B), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN1/PTP-1B is the first PTP to be purified and characterized and is the prototypical intracellular PTP found in a wide variety of human tissues. It contains an N-terminal catalytic PTP domain, followed by two tandem proline-rich motifs that mediate interaction with SH3-domain-containing proteins, and a small hydrophobic stretch that localizes the enzyme to the endoplasmic reticulum (ER). It dephosphorylates and regulates the activity of a number of receptor tyrosine kinases, including the insulin receptor, the EGF receptor, and the PDGF receptor. 277 -350457 cd14609 R-PTP-N PTP-like domain of receptor-type tyrosine-protein phosphatase N. Receptor-type tyrosine-protein phosphatase-like N (PTPRN or R-PTP-N), also called islet cell antigen 512 (ICA512) or PTP IA-2, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). It consists of a large ectodomain that contains a RESP18HD (regulated endocrine-specific protein 18 homology domain), followed by a transmembrane segment, and a single, catalytically-impaired, PTP domain. PTPRN is located in secretory granules of neuroendocrine cells and is involved in the generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in beta-cell proliferation. It is a major autoantigen in type 1 diabetes and is involved in the regulation of insulin secretion. 281 -350458 cd14610 R-PTP-N2 PTP-like domain of receptor-type tyrosine-protein phosphatase N2. Receptor-type tyrosine-protein phosphatase N2 (PTPRN2 or R-PTP-N2), also called islet cell autoantigen-related protein (IAR), ICAAR, phogrin, or IA-2beta, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). It consists of a large ectodomain that contains a RESP18HD (regulated endocrine-specific protein 18 homology domain), followed by a transmembrane segment, and a single, catalytically-impaired, PTP domain. It is mainly expressed in neuropeptidergic neurons and peptide-secreting endocrine cells, including insulin-producing pancreatic beta-cells. It may function as a phosphatidylinositol phosphatase to regulate insulin secretion. It is also required for normal accumulation of the neurotransmitters norepinephrine, dopamine and serotonin in the brain. 283 -350459 cd14611 R-PTPc-R catalytic domain of receptor-type tyrosine-protein phosphatase R. Receptor-type tyrosine-protein phosphatase-like R (PTPRR or R-PTP-R), also called protein-tyrosine phosphatase PCPTP1, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRR is a kinase interaction motif (KIM)-PTP, characterized by the presence of a 16-amino-acid KIM that binds specifically to members of the MAPK (mitogen-activated protein kinase) family. The human and mouse PTPRR gene produces multiple neuronal protein isoforms of varying sizes (in human, PTPPBS-alpha, beta, gamma and delta). All isoforms contain the KIM motif and the catalytic PTP domain. PTPRR-deficient mice show significant defects in fine motor coordination and balance skills that are reminiscent of a mild ataxia. 226 -350460 cd14612 PTPc-N7 catalytic domain of tyrosine-protein phosphatase non-receptor type 7. Tyrosine-protein phosphatase non-receptor type 7 (PTPN7), also called hematopoietic protein-tyrosine phosphatase (HePTP) or LC-PTP. belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN7/HePTP is a kinase interaction motif (KIM)-PTP, characterized by the presence of a 16-amino-acid KIM that binds specifically to members of the MAPK (mitogen-activated protein kinase) family. PTPN7/HePTP is found exclusively in the white blood cells in bone marrow, thymus, spleen, lymph nodes and all myeloid and lymphoid cell lines. It negatively regulates T-cell activation and proliferation, and is often dysregulated in the preleukemic disorder myelodysplastic syndrome, as well as in acute myelogenous leukemia. 247 -350461 cd14613 PTPc-N5 catalytic domain of tyrosine-protein phosphatase non-receptor type 5. Tyrosine-protein phosphatase non-receptor type 5 (PTPN5), also called striatum-enriched protein-tyrosine phosphatase (STEP) or neural-specific PTP, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN5/STEP is a kinase interaction motif (KIM)-PTP, characterized by the presence of a 16-amino-acid KIM that binds specifically to members of the MAPK (mitogen-activated protein kinase) family. It is a CNS-enriched protein that regulates key signaling proteins required for synaptic strengthening, as well as NMDA and AMPA receptor trafficking. PTPN5 is implicated in multiple neurologic and neuropsychiatric disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, and fragile X syndrome. 258 -350462 cd14614 R-PTPc-O catalytic domain of receptor-type tyrosine-protein phosphatase O. Receptor-type tyrosine-protein phosphatase O (PTPRO or R-PTP-O), also known as glomerular epithelial protein 1 or protein tyrosine phosphatase U2 (PTP-U2), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRO is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is essential for sustaining the structure and function of foot processes by regulating tyrosine phosphorylation of podocyte proteins. It has been identified as a synaptic cell adhesion molecule (CAM) that serves as a potent initiator of synapse formation. It is also a tumor suppressor in several types of cancer, such as hepatocellular carcinoma, lung cancer, and breast cancer. 245 -350463 cd14615 R-PTPc-J catalytic domain of receptor-type tyrosine-protein phosphatase J. Receptor-type tyrosine-protein phosphatase J (PTPRJ or R-PTP-J), also known as receptor-type tyrosine-protein phosphatase eta (R-PTP-eta) or density-enhanced phosphatase 1 (DEP-1) OR CD148, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRJ is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats (eight in PTPRJ) and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is expressed in various cell types including epithelial, hematopoietic, and endothelial cells. It plays a role in cell adhesion, migration, proliferation and differentiation. It dephosphorylates or contributes to the dephosphorylation of various substrates including protein kinases such as FLT3, PDGFRB, MET, RET (variant MEN2A), VEGFR-2, LYN, SRC, MAPK1, MAPK3, and EGFR, as well as PIK3R1 and PIK3R2. 229 -350464 cd14616 R-PTPc-Q catalytic domain of receptor-type tyrosine-protein phosphatase Q. Receptor-type tyrosine-protein phosphatase Q (PTPRQ or R-PTP-Q), also called phosphatidylinositol phosphatase PTPRQ, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRQ is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats (18 in PTPRQ) and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It displays low tyrosine-protein phosphatase activity; rather, it functions as a phosphatidylinositol phosphatase required for auditory processes. It regulates the levels of phosphatidylinositol 4,5-bisphosphate (PIP2) in the basal region of hair bundles. It can dephosphorylate a broad range of phosphatidylinositol phosphates, including phosphatidylinositol 3,4,5-trisphosphate and most phosphatidylinositol monophosphates and diphosphates. 224 -350465 cd14617 R-PTPc-B catalytic domain of receptor-type tyrosine-protein phosphatase B. Receptor-type tyrosine-protein phosphatase B (PTPRB), also known as receptor-type tyrosine-protein phosphatase beta (R-PTP-beta) or vascular endothelial protein tyrosine phosphatase(VE-PTP), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRB/VE-PTP is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is expressed specifically in vascular endothelial cells and it plays an important role in blood vessel remodeling and angiogenesis. 228 -350466 cd14618 R-PTPc-V catalytic domain of receptor-type tyrosine-protein phosphatase V. Receptor-type tyrosine-protein phosphatase V (PTPRV or R-PTP-V), also known as embryonic stem cell protein-tyrosine phosphatase (ES cell phosphatase) or osteotesticular protein-tyrosine phosphatase (OST-PTP), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRV is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. In rodents, it may play a role in the maintenance of pluripotency and may function in signaling pathways during bone remodeling. It is the only PTP whose function has been lost between rodent and human. The human OST-PTP gene is a pseudogene. 230 -350467 cd14619 R-PTPc-H catalytic domain of receptor-type tyrosine-protein phosphatase H. Receptor-type tyrosine-protein phosphatase H (PTPRH or R-PTP-H), also known as stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRH is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. It plays a role in intestinal immunity by regulating CEACAM20 through tyrosine dephosphorylation. It is also a negative regulator of integrin-mediated signaling and may contribute to contact inhibition of cell growth and motility. 233 -350468 cd14620 R-PTPc-E-1 catalytic domain of receptor-type tyrosine-protein phosphatase E, repeat 1. Receptor-type tyrosine-protein phosphatase E (PTPRE), also known as receptor-type tyrosine-protein phosphatase epsilon (R-PTP-epsilon), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. The PTPRE gene contains two distinct promoters that generate the two major isoforms: transmembrane (receptor type RPTPe or PTPeM) and cytoplasmic (cyt-PTPe or PTPeC). Receptor type RPTPe plays a critical role in signaling transduction pathways and phosphoprotein network topology in red blood cells, and may also play a role in osteoclast formation and function. It also negatively regulates PDGFRbeta-mediated signaling pathways that are crucial for the pathogenesis of atherosclerosis. cyt-PTPe acts as a negative regulator of insulin receptor signaling in skeletal muscle. It regulates insulin-induced phosphorylation of proteins downstream of the insulin receptor. Receptor type RPTPe contains a small extracellular region, a single transmembrane segment, and an intracellular region two tandem catalytic PTP domains. This model represents the first PTP domain (repeat 1). 229 -350469 cd14621 R-PTPc-A-1 catalytic domain of receptor-type tyrosine-protein phosphatase A, repeat 1. Receptor-type tyrosine-protein phosphatase A (PTPRA), also known as receptor-type tyrosine-protein phosphatase alpha (R-PTP-alpha), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRA is a positive regulator of Src and Src family kinases via dephosphorylation of the Src-inhibitory tyrosine 527. Thus, it affects transformation and tumorigenesis, inhibition of proliferation, cell cycle arrest, integrin signaling, neuronal differentiation and outgrowth, and ion channel activity. It is also involved in interleukin-1 signaling in fibroblasts through its interaction with the focal adhesion targeting domain of focal adhesion kinase. PTPRA comprises a small extracellular domain, a transmembrane segment, and an intracellular region containing two tandem catalytic PTP domains. This model represents the first catalytic PTP domain (repeat 1). 296 -350470 cd14622 R-PTPc-E-2 catalytic domain of receptor-type tyrosine-protein phosphatase E, repeat 2. Receptor-type tyrosine-protein phosphatase E (PTPRE), also known as receptor-type tyrosine-protein phosphatase epsilon (R-PTP-epsilon), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. The PTPRE gene contains two distinct promoters that generate the two major isoforms: transmembrane (receptor type RPTPe or PTPeM) and cytoplasmic (cyt-PTPe or PTPeC). Receptor type RPTPe plays a critical role in signaling transduction pathways and phosphoprotein network topology in red blood cells, and may also play a role in osteoclast formation and function. It also negatively regulates PDGFRbeta-mediated signaling pathways that are crucial for the pathogenesis of atherosclerosis. cyt-PTPe acts as a negative regulator of insulin receptor signaling in skeletal muscle. It regulates insulin-induced phosphorylation of proteins downstream of the insulin receptor. Receptor type RPTPe contains a small extracellular region, a single transmembrane segment, and an intracellular region two tandem catalytic PTP domains. This model represents the second PTP domain (repeat 2). 205 -350471 cd14623 R-PTPc-A-2 catalytic domain of receptor-type tyrosine-protein phosphatase A, repeat 2. Receptor-type tyrosine-protein phosphatase A (PTPRA), also known as receptor-type tyrosine-protein phosphatase alpha (R-PTP-alpha), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRA is a positive regulator of Src and Src family kinases via dephosphorylation of the Src-inhibitory tyrosine 527. Thus, it affects transformation and tumorigenesis, inhibition of proliferation, cell cycle arrest, integrin signaling, neuronal differentiation and outgrowth, and ion channel activity. It is also involved in interleukin-1 signaling in fibroblasts through its interaction with the focal adhesion targeting domain of focal adhesion kinase. PTPRA comprises a small extracellular domain, a transmembrane segment, and an intracellular region containing two tandem catalytic PTP domains. This model represents the second PTP domain (repeat 2). 228 -350472 cd14624 R-PTPc-D-1 catalytic domain of receptor-type tyrosine-protein phosphatase D, repeat 1. Receptor-type tyrosine-protein phosphatase D (PTPRD), also known as receptor-type tyrosine-protein phosphatase delta (R-PTP-delta), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules that play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. PTPRD is involved in pre-synaptic differentiation through interaction with SLITRK2. It contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the catalytic PTP domain (repeat 1). 284 -350473 cd14625 R-PTPc-S-1 catalytic domain of receptor-type tyrosine-protein phosphatase S, repeat 1. Receptor-type tyrosine-protein phosphatase S (PTPRS), also known as receptor-type tyrosine-protein phosphatase sigma (R-PTP-sigma), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRS is a receptor for glycosaminoglycans, including heparan sulfate proteoglycan and neural chondroitin sulfate proteoglycans (CSPGs), which present a barrier to axon regeneration. It also plays a role in stimulating neurite outgrowth in response to the heparan sulfate proteoglycan GPC2. PTPRS contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the catalytic PTP domain (repeat 1). 282 -350474 cd14626 R-PTPc-F-1 catalytic domain of receptor-type tyrosine-protein phosphatase F, repeat 1. Receptor-type tyrosine-protein phosphatase F (PTPRF), also known as leukocyte common antigen related (LAR), is the prototypical member of the LAR family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRF/LAR plays a role for LAR in cadherin complexes where it associates with and dephosphorylates beta-catenin, a pathway which may be critical for cadherin complex stability and cell-cell association. It also regulates focal adhesions through cyclin-dependent kinase-1 and is involved in axon guidance in the developing nervous system. It also functions in regulating insulin signaling. PTPRF contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the catalytic PTP domain (repeat 1). 276 -350475 cd14627 R-PTP-S-2 PTP-like domain of receptor-type tyrosine-protein phosphatase S, repeat 2. Receptor-type tyrosine-protein phosphatase S (PTPRS), also known as receptor-type tyrosine-protein phosphatase sigma (R-PTP-sigma), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRS is a receptor for glycosaminoglycans, including heparan sulfate proteoglycan and neural chondroitin sulfate proteoglycans (CSPGs), which present a barrier to axon regeneration. It also plays a role in stimulating neurite outgrowth in response to the heparan sulfate proteoglycan GPC2. PTPRS contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. 290 -350476 cd14628 R-PTP-D-2 PTP-like domain of receptor-type tyrosine-protein phosphatase D, repeat 2. Receptor-type tyrosine-protein phosphatase-like D (PTPRD), also known as receptor-type tyrosine-protein phosphatase delta (R-PTP-delta), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules that play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. PTPRD is involved in pre-synaptic differentiation through interaction with SLITRK2. It contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. 292 -350477 cd14629 R-PTP-F-2 PTP-like domain of receptor-type tyrosine-protein phosphatase F, repeat 2. Receptor-type tyrosine-protein phosphatase F (PTPRF), also known as leukocyte common antigen related (LAR), is the prototypical member of the LAR family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRF/LAR plays a role for LAR in cadherin complexes where it associates with and dephosphorylates beta-catenin, a pathway which may be critical for cadherin complex stability and cell-cell association. It also regulates focal adhesions through cyclin-dependent kinase-1 and is involved in axon guidance in the developing nervous system. It also functions in regulating insulin signaling. PTPRF contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. 291 -350478 cd14630 R-PTPc-T-1 catalytic domain of receptor-type tyrosine-protein phosphatase T, repeat 1. Receptor-type tyrosine-protein phosphatase T (PTPRT), also known as receptor-type tyrosine-protein phosphatase rho (RPTP-rho or PTPrho), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRT is highly expressed in the nervous system and it plays a critical role in regulation of synaptic formation and neuronal development. It dephosphorylates a specific tyrosine residue in syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, and regulates its binding to syntaxin 1. PTPRT has been identified as a potential candidate gene for autism spectrum disorder (ASD) susceptibility. It contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the first (repeat 1) PTP domain. 237 -350479 cd14631 R-PTPc-K-1 catalytic domain of receptor-type tyrosine-protein phosphatase K, repeat 1. Receptor-type tyrosine-protein phosphatase K (PTPRK), also known as receptor-type tyrosine-protein phosphatase kappa (RPTP-kappa or PTPkappa), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRK is widely expressed and has been shown to stimulate cell motility and neurite outgrowth. It is required for anti-proliferative and pro-migratory effects of TGF-beta, suggesting a role in regulation, maintenance, and restoration of cell adhesion. It is a potential tumour suppressor in primary central nervous system lymphomas, colorectal cancer, and breast cancer. It contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the first (repeat 1) PTP domain. 218 -350480 cd14632 R-PTPc-U-1 catalytic domain of receptor-type tyrosine-protein phosphatase U, repeat 1. Receptor-type tyrosine-protein phosphatase U (PTPRU), also known as pancreatic carcinoma phosphatase 2 (PCP-2), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRU/PCP-2 is the most distant member of the type IIb subfamily and may have a distinct biological function other than cell-cell aggregation. It localizes to the adherens junctions and directly binds and dephosphorylates beta-catenin, and regulates the balance between signaling and adhesive beta-catenin. It plays an important role in the maintenance of epithelial integrity. PTPRU contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the first (repeat 1) PTP domain. 205 -350481 cd14633 R-PTPc-M-1 catalytic domain of receptor-type tyrosine-protein phosphatase M, repeat 1. Receptor-type tyrosine-protein phosphatase M (PTPRM), also known as protein-tyrosine phosphatase mu (R-PTP-mu or PTPmu), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRM/PTPmu is a homophilic cell adhesion molecule expressed in CNS neurons and glia. It is required for E-, N-, and R-cadherin-dependent neurite outgrowth. Loss of PTPmu contributes to tumor cell migration and dispersal of human glioblastomas. PTPRM contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the first (repeat 1) PTP domain. 273 -350482 cd14634 R-PTPc-T-2 PTP domain of receptor-type tyrosine-protein phosphatase T, repeat 2. Receptor-type tyrosine-protein phosphatase T (PTPRT), also known as receptor-type tyrosine-protein phosphatase rho (RPTP-rho or PTPrho), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRT is highly expressed in the nervous system and it plays a critical role in regulation of synaptic formation and neuronal development. It dephosphorylates a specific tyrosine residue in syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, and regulates its binding to syntaxin 1. PTPRT has been identified as a potential candidate gene for autism spectrum disorder (ASD) susceptibility. It contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the second (repeat 2) PTP domain. 206 -350483 cd14635 R-PTPc-M-2 PTP domain of receptor-type tyrosine-protein phosphatase M, repeat 2. Receptor-type tyrosine-protein phosphatase M (PTPRM), also known as protein-tyrosine phosphatase mu (R-PTP-mu or PTPmu), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRM/PTPmu is a homophilic cell adhesion molecule expressed in CNS neurons and glia. It is required for E-, N-, and R-cadherin-dependent neurite outgrowth. Loss of PTPmu contributes to tumor cell migration and dispersal of human glioblastomas. PTPRM contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the second (repeat 2) PTP domain. 206 -350484 cd14636 R-PTPc-K-2 PTP domain of receptor-type tyrosine-protein phosphatase K, repeat 2. Receptor-type tyrosine-protein phosphatase K (PTPRK), also known as receptor-type tyrosine-protein phosphatase kappa (RPTP-kappa or PTPkappa), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRK is widely expressed and has been shown to stimulate cell motility and neurite outgrowth. It is required for anti-proliferative and pro-migratory effects of TGF-beta, suggesting a role in regulation, maintenance, and restoration of cell adhesion. It is a potential tumour suppressor in primary central nervous system lymphomas, colorectal cancer, and breast cancer. It contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the second (repeat 2) PTP domain. 206 -350485 cd14637 R-PTPc-U-2 PTP domain of receptor-type tyrosine-protein phosphatase U, repeat 2. Receptor-type tyrosine-protein phosphatase U (PTPRU), also known as pancreatic carcinoma phosphatase 2 (PCP-2), belongs to the type IIb subfamily of receptor protein tyrosine phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRU/PCP-2 is the most distant member of the type IIb subfamily and may have a distinct biological function other than cell-cell aggregation. It localizes to the adherens junctions and directly binds and dephosphorylates beta-catenin, and regulates the balance between signaling and adhesive beta-catenin. It plays an important role in the maintenance of epithelial integrity. PTPRU contains an extracellular region with an Meprin-A5 (neuropilin)-mu (MAM) domain, an immunoglobulin (Ig) domain, and four fibronectin type III (FN3) repeats, a transmembrane domain, and an intracellular segment with a juxtamembrane domain similar to the cytoplasmic domain of classical cadherins and two tandem PTP domains. This model represents the second (repeat 2) PTP domain. 207 -350486 cd14638 DSP_DUSP1 dual specificity phosphatase domain of dual specificity protein phosphatase 1. Dual specificity protein phosphatase 1 (DUSP1), also called mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class I subfamily and is a mitogen- and stress-inducible nuclear MKP. Human MKP-1 dephosphorylates MAPK1/ERK2, regulating its activity during the meiotic cell cycle. Although initially MKP-1 was considered to be ERK-specific, it has been shown that MKP-1 also dephosphorylates both JNK and p38 MAPKs. DUSP1/MKP-1 is involved in various functions, including proliferation, differentiation, and apoptosis in normal cells. It is a central regulator of a variety of functions in the immune, metabolic, cardiovascular, and nervous systems. It contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 151 -350487 cd14639 DSP_DUSP5 dual specificity phosphatase domain of dual specificity protein phosphatase 5. Dual specificity protein phosphatase 5 (DUSP5) functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other mitogen-activated protein kinase (MAPK) phosphatases (MKPs), it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class I subfamily and is a mitogen- and stress-inducible nuclear MKP. DUSP5 preferentially dephosphorylates extracellular signal-regulated kinase (ERK), and is involved in ERK signaling and ERK-dependent inflammatory gene expression in adipocytes. It also plays a role in regulating pressure-dependent myogenic cerebral arterial constriction, which is crucial for the maintenance of constant cerebral blood flow to the brain. DUSP5 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 138 -350488 cd14640 DSP_DUSP4 dual specificity phosphatase domain of dual specificity protein phosphatase 4. Dual specificity protein phosphatase 4 (DUSP4), also called mitogen-activated protein kinase (MAPK) phosphatase 2 (MKP-2), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class I subfamily and is a mitogen- and stress-inducible nuclear MKP. DUSP4 regulates either ERK or c-JUN N-terminal kinase (JNK), depending on the cell type. It dephosphorylates nuclear JNK and induces apoptosis in diffuse large B cell lymphoma (DLBCL) cells. It acts as a negative regulator of macrophage M1 activation and inhibits inflammation during macrophage-adipocyte interaction. It has been linked to different aspects of cancer: it may have a role in the development of ovarian cancers, oesophagogastric rib metastasis, and pancreatic tumours; it may also be a candidate tumor suppressor gene, with its deletion implicated in breast cancer, prostate cancer, and gliomas. DUSP4/MKP-2 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 141 -350489 cd14641 DSP_DUSP2 dual specificity phosphatase domain of dual specificity protein phosphatase 2. Dual specificity protein phosphatase 2 (DUSP2), also called dual specificity protein phosphatase PAC-1, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other mitogen-activated protein kinase (MAPK) phosphatases (MKPs), it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class I subfamily and is a mitogen- and stress-inducible nuclear MKP. DUSP2 can preferentially dephosphorylate ERK1/2 and p38, but not JNK in vitro. It is predominantly expressed in hematopoietic tissues with high T-cell content, such as thymus, spleen, lymph nodes, peripheral blood and other organs such as the brain and liver. It has a critical and positive role in inflammatory responses. DUSP2 mRNA and protein are significantly reduced in most solid cancers including breast, colon, lung, ovary, kidney and prostate, and the suppression of DUSP2 is associated with tumorigenesis and malignancy. DUSP2 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 144 -350490 cd14642 DSP_DUSP6 dual specificity phosphatase domain of dual specificity protein phosphatase 6. Dual specificity protein phosphatase 6 (DUSP6), also called mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) or dual specificity protein phosphatase PYST1, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class II subfamily and is an ERK-selective cytoplasmic MKP. DUSP6/MKP-3 plays an important role in obesity-related hyperglycemia by promoting hepatic glucose output. MKP-3 deficiency attenuates body weight gain induced by a high-fat diet, protects mice from developing obesity-related hepatosteatosis, and reduces adiposity, possibly by repressing adipocyte differentiation. It also contributes to p53-controlled cellular senescence. It contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 143 -350491 cd14643 DSP_DUSP7 dual specificity phosphatase domain of dual specificity protein phosphatase 7. Dual specificity protein phosphatase 7 (DUSP7), also called mitogen-activated protein kinase (MAPK) phosphatase X (MKP-X) or dual specificity protein phosphatase PYST2, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class II subfamily and is an ERK-selective cytoplasmic MKP. DUSP7 has been shown as an essential regulator of multiple steps in oocyte meiosis. Due to alternative promoter usage, the PYST2 gene gives rise to two isoforms, PYST2-S and PYST2-L. PYST2-L is over-expressed in leukocytes derived from AML and ALL patients as well as in some solid tumors and lymphoblastoid cell lines; it plays a role in cell-crowding. It contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 149 -350492 cd14644 DSP_DUSP9 dual specificity phosphatase domain of dual specificity protein phosphatase 9. Dual specificity protein phosphatase 9 (DUSP9), also called mitogen-activated protein kinase (MAPK) phosphatase 4 (MKP-4), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class II subfamily and is an ERK-selective cytoplasmic MKP. DUSP9 is a mediator of bone morphogenetic protein (BMP) signaling to control the appropriate ERK activity critical for the determination of embryonic stem cell fate. Down-regulation of DUSP9 expression has been linked to severe pre-eclamptic placenta as well as cancers such as hepatocellular carcinoma. DUSP9 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 145 -350493 cd14645 DSP_DUSP8 dual specificity phosphatase domain of dual specificity protein phosphatase 8. Dual specificity protein phosphatase 8 (DUSP8), also called DUSP hVH-5 or M3/6, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP8 controls basal and acute stress-induced ERK1/2 signaling in adult cardiac myocytes, which impacts contractility, ventricular remodeling, and disease susceptibility. It also plays a role in decreasing ureteric branching morphogenesis by inhibiting p38MAPK. DUSP8 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 151 -350494 cd14646 DSP_DUSP16 dual specificity phosphatase domain of dual specificity protein phosphatase 16. Dual specificity protein phosphatase 16 (DUSP16), also called mitogen-activated protein kinase (MAPK) phosphatase 7 (MKP-7), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP16/MKP-7 plays an essential role in perinatal survival and selectively controls the differentiation and cytokine production of myeloid cells. It is acetylated by Mycobacterium tuberculosis Eis protein, which leads to the inhibition of JNK-dependent autophagy, phagosome maturation, and ROS generation, and thus, initiating suppression of host immune responses. DUSP16/MKP-7 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. 145 -271236 cd14651 ZIP_Put3 Leucine zipper Dimerization domain of transcription factor Put3. Put3p activates the transcription of PUT1 and PUT2 genes in the presence of proline, allowing yeast cells to use proline as a nitrogen source. These genes encode for proteins that convert proline to glutamate, which is a metabolically more useful form of nitrogen. Put3p is a member of the Gal4p family of transcriptional activators which contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 31 -271237 cd14653 ZIP_Gal4p-like Leucine zipper Dimerization domain of Gal4p-like transcription factors. The Gal4p family of transcriptional activators contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. Included in this family are Saccharomyces cerevisiae Gal4p, Hap1p, Put3p, Ppr1p and Sip4p, Neurospora crassa acu-15, and Colletotrichum acutatum Nir1, among others. Gal4p functions in the induction of GAL genes in the presence of galactose; GAL proteins are responsible for the transport of galactose into the cell and for its metabolism through the glycolytic pathway. Hap1p promotes transcription of genes required for respiration and controlling oxidative damage in response to heme. Put3p activates the transcription of the PUT1 and PUT2 genes in the presence of proline, allowing yeast cells to use proline as a nitrogen source. Ppr1p activates transcription of the URA1, URA3, and URA4 genes, which encode enzymes involved in the regulation of pyrimidine levels. Sip4p activates target genes under conditions of glucose deprivation. Acu-15 is involved in regulating acetate utilization while Nir1 plays a role during nitrogen-starvation conditions. 24 -271238 cd14654 ZIP_Gal4 Leucine zipper Dimerization domain of transcription factor Gal4 and similar fungal proteins. Gal4p is one of several GAL proteins required for the growth of yeast on galactose; GAL proteins are responsible for the transport of galactose into the cell and for its metabolism through the glycolytic pathway. Gal4p functions in the induction of GAL genes in the presence of galactose through an upstream activating sequence (UAS) present in their promoters. The Gal4p family of transcriptional activators contain an N-terminal DNA binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 47 -271239 cd14655 ZIP_Hap1 Leucine zipper Dimerization domain of transcription factor Hap1 and similar fungal proteins. Hap1p mediates oxygen sensing and heme signaling in yeast. In response to heme, it promotes transcription of genes required for respiration and controlling oxidative damage. It is a member of the Gal4/Gal4p family of transcriptional activators which contain an N-terminal DNA binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. Hap1p binds to DNA containing a direct repeat of two CGG triplets. It is a large protein that contains repression modules (RPMs) and heme-responsive motifs (HRMs) in addition to the DNA-binding and dimerization domains. 32 -271139 cd14656 Imelysin-like_EfeO EfeO is a component of the EfeUOB operon. This family includes the EfeO domain, an essential component of the EfeUOB operon which is highly conserved in bacteria. However, its biochemical function is unknown. EfeO contains an N-terminal cupredoxin (CUP)-like domain and C-terminal imelysin-like domain that may bind iron. Algp7, a member of EfeO family protein from Sphingomonas sp. A1, is found to bind alginate at neutral pH, but does not contain the CUP domain, thus having a role that does not seem to be related to iron uptake. Some members of this family are fused to an N-terminal putative EfeU ion permease domain. The imelysin-like domain of this family also contains the GxHxxE sequence motif and a highly conserved functional site, suggesting a similar role to other imelysin family proteins containing the same motif. 239 -271140 cd14657 Imelysin_IrpA-like Imelysin-like iron-regulated protein A-like. This family includes putative iron-regulated protein A (IrpA) mainly from Bacteriodes, proteobacteria and cyanobacteria, as well as uncharacterized proteins with domains similar to insulin-cleaving membrane protease (imelysin, ICMP) protein. IrpA has been shown to be essential for growth under iron-deficient conditions in the cyanobacteria Synechococcus sp. The conserved GxHxxE motif is similar to other known imelysin-like proteins that are regulated by iron, such as ICMP, IrpA and EfeO. Imelysin is a membrane protein with the active site outside the cell envelope. The tertiary structure shows a fold consisting of two domains, each of which consists of a bundle of four helices that are similar to each other, implying an ancient gene duplication and fusion event. 345 -271141 cd14658 Imelysin-like_IrpA Imelysin-like domain in iron-regulated protein A. This family includes putative iron-regulated protein A (IrpA) mainly from Bacteriodes, proteobacteria and cyanobacteria, with domain similar to insulin-cleaving membrane protease (imelysin, ICMP) protein. It has been shown to be essential for growth under iron-deficient conditions in the cyanobacteria Synechococcus sp. The conserved GxHxxE motif is similar to other known imelysin-like proteins that are regulated by iron, such as ICMP, IrpA and EfeO. Imelysin is a membrane protein with the active site outside the cell envelope. The tertiary structure shows a fold consisting of two domains, each of which consists of a bundle of four helices that are similar to each other, implying an ancient gene duplication and fusion event. 282 -271142 cd14659 Imelysin-like_IPPA Imelysin-like protein. This family includes insulin-cleaving membrane protease (imelysin, ICMP)-like protein (IPPA from Psychrobacter arcticus), the Pseudomonas aeruginosa PA4372 and Vibrio cholera VC1266 Fur-regulated imelysin-like protein. They share the overall fold and a similar functional site as the insulin-cleaving membrane protease (ICMP). However, IPPA adopts a structure distinctive from the known HxxE metallopeptidases or iron-binding proteins, suggesting this protein may not be a peptidase; the histidine in the GxHxxE motif region is no longer conserved (GxxxxE), indicating a possible loss of enzymatic function or a change in substrate preference (compared to imelysin and IrpA families). A putative functional site for this non-peptidase homolog is located at the domain interface. The tertiary structure shows a fold consisting of two domains, each of which consists of a bundle of four helices that are similar to each other, implying an ancient gene duplication and fusion event. 331 -271137 cd14660 E2F_DD Dimerization domain of E2F transcription factors. E2F transcription factors are involved in the regulation of DNA synthesis, cell cycle progression, proliferation and apoptosis. It associates with the retinoblastoma (Rb) protein, negatively regulating the G1-S transition until cyclin-dependent kinases phosphorylate Rb, which causes E2F release. E2F forms heterodimers with DP, a distantly related protein. Heterodimerization enhances the Rb binding, DNA binding, and transactivation activities of E2Fs. In humans, there are at least six closely related E2F and two DP family members, all containing a DNA-binding domain, a coiled-coil (CC) region, and a marked-box domain. E2F1 to E2F5 also contain a C-terminal transactivation domain. 104 -271136 cd14661 Imelysin_like_PIBO Permuted imelysin-like protein from Bacteroides ovatus (PIBO) and similar proteins. This family includes imelysin-like proteins such as imelysin-like protein from gut bacteria Bacteroides ovatus (PIBO) that have a circularly permuted topology compared with the canonical imelysin fold, such that the N-terminal and C-terminal regions are swapped in the primary sequence. PIBO is highly similar to imelysin-like protein from Psychrobacter arcticus (IPPA) despite low sequence similarity and circular permutation. PIBO is functionally equivalent to insulin-cleaving membrane protease (ICMP or imelysin), although the permutation results in the conserved GxHxxE motif to be at the C-terminus. It may have a conserved role in iron uptake although it adopts a structure distinctive from known metallopeptidases or iron-binding proteins. 347 -271132 cd14662 STKc_SnRK2 Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -271133 cd14663 STKc_SnRK3 Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK3 is represented in this cd. The SnRK3 group contains members also known as CBL-interacting protein kinase, salt overly sensitive 2, SOS3-interacting proteins and protein kinase S. These kinases interact with calcium-binding proteins such as SOS3, SCaBPs, and CBL proteins, and are involved in responses to salt stress and in sugar and ABA signaling. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 256 -271134 cd14664 STK_BAK1_like Catalytic domain of the Serine/Threonine Kinase, BRI1 associated kinase 1 and related STKs. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes three leucine-rich repeat receptor-like kinases (LRR-RLKs): Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1), and Physcomitrella patens CLL1B clavata1-like receptor S/T protein kinase. BAK1 functions in various signaling pathways. It plays a role in BR (brassinosteroid)-regulated plant development as a co-receptor of BRASSINOSTEROID (BR) INSENSITIVE 1 (BRI1), the receptor for BRs, and is required for full activation of BR signaling. It also modulates pathways involved in plant resistance to pathogen infection (pattern-triggered immunity, PTI) and herbivore attack (wound- or herbivore feeding-induced accumulation of jasmonic acid (JA) and JA-isoleucine. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The STK_BAK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 270 -271135 cd14665 STKc_SnRK2-3 Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2, group 3. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. 257 -270620 cd14667 3D_containing_proteins Non-mltA associated 3D domain containing proteins, named for 3 conserved aspartate residues. This family contains the 3D domain, named for its 3 conserved aspartates, including similar uncharacterized proteins. These proteins contain the critical active site aspartate of mltA-like lytic transglycosylases where the 3D domain forms a larger domain with the N-terminal region. This domain is also found in conjunction with numerous other domains such as the Escherichia coli MltA, a membrane-bound lytic transglycosylase comprised of 2 domains separated by a large groove, where the peptidoglycan strand binds. Domain A is made up of an N-terminal and a C-terminal portion, corresponding to the 3D domain and Domain B is inserted within the linear sequence of domain A. MltA is distinct from other bacterial LTs, which are similar to each other. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. PG chains (also known as murein), the major components of the bacterial cell wall, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), and lytic transglycosylases cleave this beta-1-4 bond. 90 -270616 cd14668 mlta_B Domain B insert of mltA_like lytic transglycosylases. Escherichia coli MltA is a membrane-bound lytic transglycosylase comprised of two domains separated by a large groove, where the peptidoglycan strand binds. Domain A is made up of an N-terminal and a C-terminal portion, which correspond to the 3D domain, named for 3 conserved aspartate residues. Domain B is inserted within the linear sequence of domain A. MltA is distinct from other bacterial lytic transglycosylases (LTs), which are similar to each other. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. PG chains (also known as murein), the major components of the bacterial cell wall, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), and lytic transglycosylases cleave this beta-1-4 bond. Typically, peptidoglycan lytic transglycosylases (LT) are exolytic, releasing Metabolite 1 (GlcNAc-anhMurNAc-L-Ala-D-Glu-m-Dap-D-Ala-D-Ala) from the ends of the PG strands. In contrast, MltE is endolytic , cleaving in the middle of PG strands, with further processing to Metabolite 1 accomplished by other LTs. In E. coli, there are six membrane-bound LTs: MltA-MltF and soluble Slt70. Slt35 is a soluble fragment cleaved from MltB. Bacterial LTs are classified in 4 families: Family 1 includes slt70 MltC-MltF, Family 2 includes MltA, Family 3 includes MltB, and Family 4 of bacteriophage origin. While most of the LT family members are similar in structure and sequence with a lysozyme-like fold, Family 2 (including mltA) is distinct. 159 -270617 cd14669 mlta_related_B putative domain B insert of mltA_type lytic transglycosylases. Escherichia coli MltA is a membrane-bound lytic transglycosylase comprised of two domains separated by a large groove, where the peptidoglycan strand binds. Domain A is made up of an N-terminal and a C-terminal portion, which correspond to the 3D domain, named for 3 conserved aspartate residues. Domain B is inserted within the linear sequence of domain A. MltA is distinct from other bacterial lytic transglycosylases (LTs), which are similar to each other. Escherichia coli peptidoglycan lytic transglycosylase (LT) initiates cell wall recycling in response to damage, during bacterial fission, and cleaves peptidoglycan (PG) to create functional spaces in its wall. PG chains (also known as murein), the major components of the bacterial cell wall, are comprised of alternating beta-1-4-linked N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc), and lytic transglycosylases cleave this beta-1-4 bond. Typically, peptidoglycan lytic transglycosylases (LT) are exolytic, releasing Metabolite 1 (GlcNAc-anhMurNAc-L-Ala-D-Glu-m-Dap-D-Ala-D-Ala) from the ends of the PG strands. In contrast, MltE is endolytic , cleaving in the middle of PG strands, with further processing to Metabolite 1 accomplished by other LTs. In E. coli, there are six membrane-bound LTs: MltA-MltF and soluble Slt70. Slt35 is a soluble fragment cleaved from MltB. Bacterial LTs are classified in 4 families: Family 1 includes slt70 MltC-MltF, Family 2 includes MltA, Family 3 includes MltB, and Family 4 of bacteriophage origin. While most of the LT family members are similar in structure and sequence with a lysozyme-like fold, Family 2 (including mltA) is distinct. 128 -270614 cd14670 BslA_like Bacterial immunoglobulin-like hydrophobin BslA and similar proteins. BslA (YuaB) is a protein from Bacillus subtilis acting as a hydrophobin, which forms surface layers around biofilms and participates in biofilm assembly. BslA contains an unusually hydrophobic "cap structure", which is essential for its activity and for the ability of bacteria to form hydrophobic, non-wetting biofilms. A number of domains in various proteins from Bacilli and other bacterial lineages appear related to BslA, but do not conserve the hydrophobic cap. 128 -269821 cd14671 PAAR_like proline-alanine-alanine-arginine (PAAR) repeat superfamily. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat superfamily, where it forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). The T6SS is responsible for translocation of a wide variety of toxic effector molecules, allowing predatory cells to kill prokaryotic as well as eukaryotic prey cells. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. The PAAR-repeat proteins form a diverse superfamily with several subgroups extended both N- and C-terminally by domains with various predicted functions; the termini are exposed to solution, and do not distort the VgrG binding site. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. It has been shown that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae (encodes two PAAR proteins) and Acinetobacter baylyi (encodes three PAAR proteins); inactivation of all these PAAR genes results in inactivation of Hcp secretion as well as T6SS-dependent killing of E. coli. 77 -270612 cd14672 UBA_ceTYDP2_like UBA-like domain found in Caenorhabditis elegans tyrosyl-DNA phosphodiesterase 2 (TDP2) and similar proteins. The family includes C. elegans TDP2 and its homologs found in bilateria. TDP2 (also known as TTRAP or EAPII) belongs to the Mg(2+)/Mn(2+)-dependent family of phosphodiesterases which contains an N-terminal ubiquitin-associated (UBA)-like domain and a C-terminal phosphodiesterase domain. It required for the efficient repair of topoisomerase II-induced DNA double strand breaks. The topoisomerase is covalently linked by a phosphotyrosyl bond to the 5'-terminus of the break. TDP2 cleaves the DNA 5'-phosphodiester bond and restores 5'-phosphate termini needed for subsequent DNA ligation and hence repair of the break. Tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that cleaves 3'-phosphotyrosyl bonds, and TDP2 are complementary activities; together, they allow cells to remove trapped topoisomerase from both 3'- and 5'-DNA termini. TDP2 has been reported as being involved in apoptosis, embryonic development, and transcriptional regulation. 37 -270192 cd14673 PH_PHLDB1_2 Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain. PHLDB2 (also called LL5beta) and PHLDB1 (also called LL5alpha) are cytoskeleton- and membrane-associated proteins. PHLDB2 has been identified as a key component of the synaptic podosomes that play an important role in in postsynaptic maturation. Both are large proteins containing an N-terminal pleckstrin (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -270193 cd14674 PH_PLEKHM3_1 Pleckstrin homology domain-containing family M member 3 Pleckstrin homology domain 1. PLEKHM3 (also called differentiation associated protein/DAPR) exists as three alternatively spliced isoforms that participate in metal ion binding. It contains 2 PH domains and 1 phorbol-ester/DAG-type zinc finger domain. PLEKHM3 is found in Humans, canines, bovine, mouse, rat, chicken and zebrafish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2, or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 90 -270194 cd14675 PH-SEC3_like PH-like domain of Sec3-like protein. Fungal Sec3, as well as its homolog in higher eukaryotes Exocyst complex component 1 (EXOC1) are part of the exocyst is a conserved octameric complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 115 -270195 cd14676 PH_DOK1,2,3 Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 1, 2, and 3. The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 113 -270196 cd14677 PH_DOK7 Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 7. The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain is binds to acidic phospholids and localizes proteins to the plasma membrane. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -270197 cd14678 PH_DOK4_DOK5_DOK6 Pleckstrin homology (PH) domain of Downstream of tyrosine kinase 4, 5, and 6 proteins. The Dok family adapters are phosphorylated by different protein tyrosine kinases. Dok proteins are involved in processes such as modulation of cell differentiation and proliferation, as well as in control of the cell spreading and migration The Dok protein contains an N-terminal pleckstrin homology (PH) domain followed by a central phosphotyrosine binding (PTB) domain, which has a PH-like fold, and a proline- and tyrosine-rich C-terminal tail. The PH domain binds to acidic phospholids and localizes proteins to the plasma membrane, while the PTB domain mediates protein-protein interactions by binding to phosphotyrosine-containing motifs. The C-terminal part of Dok contains multiple tyrosine phosphorylation sites that serve as potential docking sites for Src homology 2-containing proteins such as ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. There are 7 mammalian Dok members: Dok-1 to Dok-7. Dok-1 and Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, interacting with SHIP-1 and Grb2. Dok-4- 6 play roles in protein tyrosine kinase(PTK)-mediated signaling in neural cells and Dok-7 is the key cytoplasmic activator of MuSK (Muscle-Specific Protein Tyrosine Kinase). In general, PH domains have diverse functions, but are generally involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 105 -275429 cd14679 PH_p115RhoGEF Rho guanine nucleotide exchange factor Pleckstrin homology domain. p115RhoGEF (also called LSC, GEF1 or LBCL2) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p115RhoGEF contains an N-terminal RGS (Regulator of G-protein signalling) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 125 -275430 cd14680 PH_p190RhoGEF Rho guanine nucleotide exchange factor Pleckstrin homology domain. p190RhoGEF (also called RIP2 or ARHGEF28) belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. In addition to the Dbl homology (DH)-PH domain, p190RhoGEF contains an N-terminal C1 (Protein kinase C conserved region 1) domain. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 101 -270200 cd14681 PH-STXBP6 PH-like domain of Syntaxin binding protein 6. Syntaxin binding protein 6 (STXBP6, also called Amisyn) contains, beside the N-terminal PH-like domain, a C-terminal R-SNARE-like domain, which allows it to assemble into SNARE complexes, which in turn makes the complexes inactive and inhibits exocytosis. SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, with STXBP6 being a R-SNARE. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 130 -270201 cd14682 PH-EXOC1_like PH-like domain of Exocyst complex component 1-like. Exocyst complex component 1-like proteins are short, higher eukaryotic proteins that show homology to the PH-domain of higher eukaryotic EXOC1 and yeast SEC3 which are part of the exocyst complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. Their function is unknown. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 118 -270202 cd14683 PH-EXOC1 PH-like domain of Exocyst complex component 1. Exocyst complex component 1 (EXOC1, also known as SEC3) is the higher eukaryotes homolog of yeast Sec3. The Exocyst is a conserved octameric complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 117 -270203 cd14684 RanBD1_RanBP2-like Ran-binding protein 2, Ran binding domain repeat 1. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include human, chicken, frog, tunicates, sea urchins, ticks, sea anemones, and sponges. RanBD repeat 1 is present in this hierarchy. 117 -270204 cd14685 RanBD3_RanBP2-like Ran-binding protein 2, Ran binding domain repeat 3. RanBP2 (also called E3 SUMO-protein ligase RanBP2, 358 kDa nucleoporin, and nuclear pore complex (NPC) protein Nup358) is a giant nucleoporin that localizes to the cytosolic face of the NPC. RanBP2 contains a leucine-rich region, 8 zinc-finger motifs, a cyclophilin A homologous domain, and 4 RanBDs. Ran is a Ras-like nuclear small GTPase, which regulates receptor-mediated transport between the nucleus and the cytoplasm. RanGTP hydrolysis is stimulated by RanGAP together with the Ran-binding domain containing acessory proteins RanBP1 and RanBP2. These accessory proteins stabilize the active GTP-bound form of Ran. All eukaryotic cells contain RanBP1, but in vertebrates however, the main RanBP seems to be RanBP2. There is no RanBP2 ortholog in yeast. Transport complex disassembly is accomplished by a small ubiquitin-related modifier-1 (SUMO-1)-modified version of RanGAP that is bound to RanBP2. RanBP1 acts as a second line of defense against exported RanGTP-importin complexes which have escaped from dissociation by RanBP2. RanBP2 also interacts with the importin subunit beta-1. RabBD shares structural similarity to the PH domain, but lacks detectable sequence similarity. The members here include human, chicken, frog, tunicates, sea urchins, ticks, sea anemones, and sponges. RanBD repeats 3 is present in this hierarchy. 117 -269834 cd14686 bZIP Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain. Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269835 cd14687 bZIP_ATF2 Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar proteins: a DNA-binding and dimerization domain. ATF-2 is a sequence-specific DNA-binding protein that belongs to the Basic leucine zipper (bZIP) family of transcription factors. In response to stress, it activates a variety of genes including cyclin A, cyclin D, and c-Jun. ATF-2 also plays a role in the DNA damage response that is independent of its transcriptional activity. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269836 cd14688 bZIP_YAP Basic leucine zipper (bZIP) domain of Yeast Activator Protein (YAP) and similar proteins: a DNA-binding and dimerization domain. This subfamily is composed predominantly of AP-1-like transcription factors including Saccharomyces cerevisiae YAPs, Schizosaccharomyces pombe PAP1, and similar proteins. Members of this subfamily belong to the Basic leucine zipper (bZIP) family of transcription factors. The YAP subfamily is composed of eight members (YAP1-8) which may all be involved in stress responses. YAP1 is the major oxidative stress regulator and is also involved in iron metabolism (like YAP5) and detoxification of arsenic (like YAP8). YAP2 is involved in cadmium stress responses while YAP4 and YAP6 play roles in osmotic stress. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 63 -269837 cd14689 bZIP_CREB3 Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 3 (CREB3) and similar proteins: a DNA-binding and dimerization domain. This subfamily is composed of CREB3 (also called LZIP or Luman), and the CREB3-like proteins CREB3L1 (or OASIS), CREB3L2, CREB3L3 (or CREBH), and CREB3L4 (or AIbZIP). They are type II membrane-associated members of the Basic leucine zipper (bZIP) family of transcription factors, with their N-termini facing the cytoplasm and their C-termini penetrating through the ER membrane. They contain an N-terminal transcriptional activation domain followed bZIP and transmembrane domains, and a C-terminal tail. They play important roles in ER stress and the unfolded protein response (UPR), as well as in many other biological processes such as cell secretion, bone and cartilage formation, and carcinogenesis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269838 cd14690 bZIP_CREB1 Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) and similar proteins: a DNA-binding and dimerization domain. CREB1 is a Basic leucine zipper (bZIP) transcription factor that plays a role in propagating signals initiated by receptor activation through the induction of cAMP-responsive genes. Because it responds to many signal transduction pathways, CREB1 is implicated to function in many processes including learning, memory, circadian rhythm, immune response, and reproduction, among others. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 55 -269839 cd14691 bZIP_XBP1 Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a DNA-binding and dimerization domain. XBP1, a member of the Basic leucine zipper (bZIP) family, is the key transcription factor that orchestrates the unfolded protein response (UPR). It is the most conserved component of the UPR and is critical for cell fate determination in response to ER stress. The inositol-requiring enzyme 1 (IRE1)-XBP1 pathway is one of the three major sensors at the ER membrane that initiates the UPR upon activation. IRE1, a type I transmembrane protein kinase and endoribonuclease, oligomerizes upon ER stress leading to its increased activity. It splices the XBP1 mRNA, producing a variant that translocates to the nucleus and activates its target genes, which are involved in protein folding, degradation, and trafficking. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 58 -269840 cd14692 bZIP_ATF4 Basic leucine zipper (bZIP) domain of Activating Transcription Factor-4 (ATF-4) and similar proteins: a DNA-binding and dimerization domain. ATF-4 was also isolated and characterized as the cAMP-response element binding protein 2 (CREB2). It is a Basic leucine zipper (bZIP) transcription factor that has been reported to act as both an activator or repressor. It is a critical component in both the unfolded protein response (UPR) and amino acid response (AAR) pathways. Under certain stress conditions, ATF-4 transcription is increased; accumulation of ATF-4 induces the expression of genes involved in amino acid metabolism and transport, mitochondrial function, redox chemistry, and others that ensure protein synthesis and recovery from stress. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 63 -269841 cd14693 bZIP_CEBP Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein (CEBP) and similar proteins: a DNA-binding and dimerization domain. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate the cell cycle, differentiation, growth, survival, energy metabolism, innate and adaptive immunity, and inflammation, among others. They are also associated with cancer and viral disease. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. Each possesses unique properties to regulate cell type-specific growth and differentiation. The sixth isoform, CEBPZ (zeta), lacks an intact DNA-binding domain and is excluded from this subfamily. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 60 -269842 cd14694 bZIP_NFIL3 Basic leucine zipper (bZIP) domain of Nuclear factor interleukin-3-regulated protein (NFIL3): a DNA-binding and dimerization domain. NFIL3, also called E4 promoter-binding protein 4 (E4BP4), is a Basic leucine zipper (bZIP) transcription factor that was independently identified as a transactivator of the IL3 promoter in T-cells and as a transcriptional repressor that binds to a DNA sequence site in the adenovirus E4 promoter. Its expression levels are regulated by cytokines and it plays crucial functions in the immune system. It is required for the development of natural killer cells and CD8+ conventional dendritic cells. In B-cells, NFIL3 mediates immunoglobulin heavy chain class switching that is required for IgE production, thereby influencing allergic and pathogenic immune responses. It is also involved in the polarization of T helper responses. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 60 -269843 cd14695 bZIP_HLF Basic leucine zipper (bZIP) domain of Hepatic leukemia factor (HLF) and similar proteins: a DNA-binding and dimerization domain. HLF, also called vitellogenin gene-binding protein (VBP) in birds, is a circadian clock-controlled Basic leucine zipper (bZIP) transcription factor which is a direct transcriptional target of CLOCK/BMAL1. It is implicated, together with bZIPs DBP and TEF, in the regulation of genes involved in the metabolism of endobiotic and xenobiotic agents. Triple knockout mice display signs of early aging and suffer premature death, likely due to impaired defense against xenobiotic stress. A leukemogenic translocation results in the chimeric fusion protein E2A-HLF that results in a rare form of pro-B-cell acute lymphoblastic leukemia (ALL). bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 60 -269844 cd14696 bZIP_Jun Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and dimerization domain. Jun is a member of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are three Jun proteins: c-Jun, JunB, and JunD. c-Jun is the most potent transcriptional activator of the AP-1 proteins. Both c-Jun and JunB are essential during development; deletion of either results in embryonic lethality in mice. c-Jun is essential in hepatogenesis and liver erythropoiesis, while JunB is required in vasculogenesis and angiogenesis in extraembryonic tissues. While JunD is dispensable in embryonic development, it is involved in transcription regulation of target genes that help cells to cope with environmental signals. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269845 cd14697 bZIP_Maf Basic leucine zipper (bZIP) domain of musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain. Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, and a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. The small Mafs (MafF, MafK, MafG) do not contain a transactivation domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. They play roles in stress response and detoxification pathways. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 70 -269846 cd14698 bZIP_CNC Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain. CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 68 -269847 cd14699 bZIP_Fos_like Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain. This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 59 -269848 cd14700 bZIP_ATF6 Basic leucine zipper (bZIP) domain of Activating Transcription Factor-6 (ATF-6) and similar proteins: a DNA-binding and dimerization domain. ATF-6 is a type I membrane-bound Basic leucine zipper (bZIP) transcription factor that binds to the consensus ER stress response element (ERSE) and enhances the transcription of genes encoding glucose-regulated proteins Grp78, Grp94, and calreticulum. ATF-6 is one of three sensors of the unfolded protein response (UPR) in metazoans; the others being the kinases Ire1 and PERK. It contains an ER-lumenal domain that detects unfolded proteins. In response to ER stress, ATF-6 translocates from the ER to the Golgi with simultaneous cleavage in a process called regulated intramembrane proteolysis (Rip) to its transcriptionally competent form, which enters the nucleus and upregulates target UPR genes. The three UPR sensor branches cross-communicate to form a signaling network. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269849 cd14701 bZIP_BATF Basic leucine zipper (bZIP) domain of BATF proteins: a DNA-binding and dimerization domain. Basic leucine zipper (bZIP) transcription factor ATF-like (BATF or SFA2), BATF2 (or SARI) and BATF3 form heterodimers with Jun proteins. They function as inhibitors of AP-1-driven transcription. Unlike most bZIP transcription factors that contain additional domains, BATF and BATF3 contain only the the bZIP DNA-binding and dimerization domain. BATF2 contains an additional C-terminal domain of unknown function. BATF:Jun hetrodimers preferentially bind to TPA response elements (TREs) with the consensus sequence TGA(C/G)TCA, and can also bind to a TGACGTCA cyclic AMP response element (CRE). In addition to negative regulation, BATF proteins also show positive transcriptional activities in the development of classical dendritic cells and T helper cell subsets, and in antibody production. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 58 -269850 cd14702 bZIP_plant_GBF1 Basic leucine zipper (bZIP) domain of Plant G-box binding factor 1 (GBF1)-like transcription factors: a DNA-binding and dimerization domain. This subfamily is composed of plant bZIP transciption factors including Arabidopsis thaliana G-box binding factor 1 (GBF1), Zea mays Opaque-2 and Ocs element-binding factor 1 (OCSBF-1), Triticum aestivum Histone-specific transcription factor HBP1 (or HBP-1a), Petroselinum crispum Light-inducible protein CPRF3 and CPRF6, and Nicotiana tabacum BZI-3, among many others. bZIP G-box binding factors (GBFs) contain an N-terminal proline-rich domain in addition to the bZIP domain. GBFs are involved in developmental and physiological processes in response to stimuli such as light or hormones. Opaque-2 plays a role in affecting lysine content and carbohydrate metabolism, acting indirectly on starch/amino acid ratio. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269851 cd14703 bZIP_plant_RF2 Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and dimerization domain. This subfamily is composed of plant bZIP transciption factors with similarity to Oryza sativa RF2a and RF2b, which are important for plant development. They interact with, as homodimers or heterodimers with each other, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter, which is regulated by sequence-specific DNA-binding proteins that bind to the essential cis element BoxII. RF2a and RF2b show differences in binding affinities to BoxII, expression patterns in different rice organs, and subcellular localization. Transgenic rice with increased RF2a and RF2b display increased resistance to rice tungro disease (RTD) with no impact on plant development. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269852 cd14704 bZIP_HY5-like Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription factors and similar proteins: a DNA-binding and dimerization domain. This subfamily is predominantly composed of plant Basic leucine zipper (bZIP) transcription factors with similarity to Solanum lycopersicum and Arabidopsis thaliana HY5. Also included are the Dictyostelium discoideum bZIP transcription factors E and F. HY5 plays an important role in seedling development and is a positive regulator of photomorphogenesis. Plants with decreased levels of HY5 show defects in light responses including inhibited photomorphogenesis, loss of alkaloid organization, and reduced carotenoid accumulation. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269853 cd14705 bZIP_Zip1 Basic leucine zipper (bZIP) domain of Fungal Zip1-like transcription factors: a DNA-binding and dimerization domain. This subfamily is composed of fungal bZIP transcription factors including Schizosaccharomyces pombe Zip1, Saccharomyces cerevisiae Methionine-requiring protein 28 (Met28p), and Neurospora crassa cys-3, among others. Zip1 is required for the production of key proteins involved in sulfur metabolism and also plays a role in cadmium response. Met28p acts as a cofactor of Met4p, a transcriptional activator of the sulfur metabolic network; it stabilizes DNA:Met4 complexes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 55 -269854 cd14706 bZIP_CREBZF Basic leucine zipper (bZIP) domain of CREBZF/Zhangfei transcription factor and similar proteins: a DNA-binding and dimerization domain. CREBZF (also called Zhangfei, ZF, LAZip, or SMILE) is a neuronal bZIP transcription factor that is involved in the infection cycle of herpes simplex virus (HSV) and related cellular processes. It suppresses the ability of the HSV transactivator VP16 to initiate the viral replicative cycle. CREBZF has also been implicated in the regulation of the human nerve growth factor receptor trkA and the tumor suppressor p53. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 54 -269855 cd14707 bZIP_plant_BZIP46 Basic leucine zipper (bZIP) domain of uncharaterized Plant BZIP transcription factors: a DNA-binding and dimerization domain. This subfamily is composed of uncharacterized plant bZIP transciption factors with similarity to Glycine max BZIP46, which may be a drought-responsive gene. Plant bZIPs are involved in developmental and physiological processes in response to stimuli/stresses such as light, hormones, and temperature changes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 55 -269856 cd14708 bZIP_HBP1b-like Basic leucine zipper (bZIP) domain of uncharaterized BZIP transcription factors with similarity to Triticum aestivum HBP-1b: a DNA-binding and dimerization domain. This subfamily is composed primarily of uncharacterized bZIP transciption factors from flowering plants, mosses, clubmosses, and algae. Included in this subfamily is wheat HBP-1b, which contains a C-terminal DOG1 domain, which is a specific plant regulator for seed dormancy. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 53 -269857 cd14709 bZIP_CREBL2 Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein-like 2 (CREBL2): a DNA-binding and dimerization domain. CREBL2 is a bZIP transcription factor that interacts with CREB and plays a critical role in adipogenesis and lipogenesis. Its overexpression upregulates the expression of PPARgamma and CEBPalpha to promote adipogenesis as well as accelerate lipogenesis by increasing GLUT1 and GLUT4. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 56 -269858 cd14710 bZIP_HAC1-like Basic leucine zipper (bZIP) domain of Fungal HAC1-like transcription factors: a DNA-binding and dimerization domain. HAC1 (also called Hac1p or HacA) is a bZIP transcription factor that plays a critical role in the unfolded protein response (UPR). The UPR is initiated by the ER-resident protein kinase and endonuclease IRE1, which promotes non-conventional splicing of the HAC1 mRNA, facilitating its translation. HAC1 binds to and activates promoters of genes that encode chaperones and other targets of the UPR. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 53 -269859 cd14711 bZIP_CEBPA Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein alpha (CEBPA): a DNA-binding and dimerization domain. CEPBA is a critical regulator of myeloid development; it directs granulocyte and monocyte differentiation. It is highly expressed in early myeloid progenitors and is found mutated in over half of patients with acute myeloid leukemia (AML). It is also a key regulator in energy homeostasis; mice deficient of CEBPA show abnormalities in glycogen/lipid synthesis and storage. CEPBA is the longest CEBP protein containing two transactivation domains at the N-terminus followed by a regulatory domain, a bZIP domain, and C-terminal tail. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate many cellular processes. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269860 cd14712 bZIP_CEBPB Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein beta (CEBPB): a DNA-binding and dimerization domain. CEBPB is a key regulator of metabolism, adipocyte differentiation, myogenesis, and macrophage activation. It is expressed as three distinct isoforms from an intronless gene through alternative translation initiation: CEBPB1 (or liver-enriched activator protein 1, LAP1); CEBPB2 (OR LAP2); and CEBPB3 (or liver-enriched inhibitory protein, LIP). LAP1/2 function as transcriptional activators while LIP is a repressor due to its lack of a transactivation domain. The relative expression of LAP and LIP has effects on inflammation, ER stress, and insulin resistance. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate many cellular processes. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 71 -269861 cd14713 bZIP_CEBPG Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein gamma (CEBPG): a DNA-binding and dimerization domain. CEBPG is an important regulator of cellular senescence; mouse embryonic fibroblasts deficient of CEBPG proliferated poorly, entered senescence prematurely, and expressed elevated levels of proinflammatory genes. It is also the primary transcription factor that regulates antioxidant and DNA repair transcripts in normal bronchial epithelial cells. In a subset of AML patients with CEBPA hypermethylation, CEBPG is significantly overexpressed. CEBPG is the shortest CEBP protein and it lacks a transactivation domain. It acts as a regulator and buffering reservoir against the transcriptional activities of other CEBP proteins. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate many cellular processes. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269862 cd14714 bZIP_CEBPD Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein delta (CEBPD): a DNA-binding and dimerization domain. CEBPD is an inflammatory response gene that is induced by Toll-like receptor 4 (TLR4) and is essential in the expression of many lipopolysaccharide (LPS)-induced genes and the clearance of bacterial infection. Its expression is increased in response to various extracellular stimuli and it induces growth arrest and apoptosis in cancer cells. It is thought to function as a tumor suppressor and its expression is found reduced by site-specific methylation in many cancers including breast, cervical, and hepatocellular carcinoma. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate many cellular processes. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 65 -269863 cd14715 bZIP_CEBPE Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein epsilon (CEBPE): a DNA-binding and dimerization domain. CEBPE is a critical regulator of terminal granulocyte differentiation or granulopoiesis. It is expressed only in myeloid cells. Mice deficient with CEBPE are normal at birth and fertile, but they do not produce normal neutrophils or eosinophils, and show impaired inflammatory and bacteriocidal responses. Functional loss of CEBPE causes the rare congenital disorder, Neutrophil-specific granule deficiency (SGD), which is characterized by patients' neutrophils with atypical nuclear morphology, abnormal migration and bactericidal activity, and the lack of specific granules. Patients with SGD suffer from severe and frequent bacterial infections. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate many cellular processes. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 61 -269864 cd14716 bZIP_CEBP-like_1 Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein (CEBP)-like proteins: a DNA-binding and dimerization domain. This group is an uncharacterized subfamily of CEBP-like proteins. CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate the cell cycle, differentiation, growth, survival, energy metabolism, innate and adaptive immunity, and inflammation, among others. They are also associated with cancer and viral disease. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. Each possesses unique properties to regulate cell type-specific growth and differentiation. The sixth isoform, CEBPZ (zeta), lacks an intact DNA-binding domain and is excluded from this subfamily. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 60 -269865 cd14717 bZIP_Maf_small Basic leucine zipper (bZIP) domain of small musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain. Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The small Mafs (MafF, MafK, and MafG) do not contain a transactivation domain but do harbor the anxillary DNA-binding domain and a C-terminal bZIP domain. They form dimers with cap'n'collar (CNC) proteins that harbor transactivation domains, and they act either as activators or repressors depending on their dimerization partner. CNC transcription factors include NFE2 (nuclear factor, erythroid-derived 2) and similar proteins NFE2L1 (NFE2-like 1), NFE2L2, and NFE2L3, as well as BACH1 and BACH2. Small Mafs play roles in stress response and detoxification pathways. They also regulate the expression of betaA-globin and other genes activated during erythropoiesis. They have been implicated in various diseases such as diabetes, neurological diseases, thrombocytopenia and cancer. Triple deletion of the three small Mafs is embryonically lethal. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 70 -269866 cd14718 bZIP_Maf_large Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain. Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, and neural retina leucine zipper or NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. MafA and MafB also play crucial roles in islet beta cells; they regulate genes essential for glucose sensing and insulin secretion cooperatively and sequentially. Large Mafs are also implicated in oncogenesis; MafB and c-Maf chromosomal translocations result in multiple myelomas. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 70 -269867 cd14719 bZIP_BACH Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and dimerization domain. BACH proteins are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. In addition, they contain a BTB domain (Broad complex-Tramtrack-Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain) that is absent in other CNC proteins. Veterbrates contain two members, BACH1 and BACH2. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. It has also been implicated as the master regulator of breast cancer bone metastasis. The BACH1 bZIP transcription factor should not be confused with the protein originally named as BRCA1-Associated C-terminal Helicase1 (BACH1), which has been renamed BRIP1 (BRCA1 Interacting Protein C-terminal Helicase1) and also called FANCJ. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. It plays an important role in class switching and somatic hypermutation of immunoglobulin genes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 71 -269868 cd14720 bZIP_NFE2-like Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar proteins: a DNA-binding and dimerization domain. This subfamily is composed of NFE2 and NFE2-like proteins including NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). These are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. NFE2 functions in development; it is required for the proper development of platelets. The three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. As the master regulator of the antioxidant defense pathway, it plays roles in the biology of inflammation, obesity, and cancer. Nrf1 is an essential protein that binds to the antioxidant response element (ARE) and is also involved in regulating oxidative stress. In addition, it also regulates genes involved in cell and tissue differentiation, inflammation, and hepatocyte homeostasis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 68 -269869 cd14721 bZIP_Fos Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 62 -269870 cd14722 bZIP_ATF3 Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar proteins: a DNA-binding and dimerization domain. ATF-3 is a Basic leucine zipper (bZIP) transcription factor that is induced by various stress signals such as cytokines, genetoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. Mice deficient with ATF3 display increased susceptibility to endotoxic shock induced death. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 62 -271240 cd14723 ZIP_Ppr1 Leucine zipper Dimerization coil of Ppr1-like transcription factors. Ppr1/Ppr1p activates transcription of the URA1, URA3, and URA4 genes, which encode enzymes involved in the regulation of pyrimidine levels. Also included in this subfamily is Colletotrichum acutatum Nir1 which plays a role during nitrogen-starvation conditions. Proteins in this subfamily are members of the Gal4p family of transcriptional activators which contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 25 -271241 cd14724 ZIP_Gal4-like_1 Leucine zipper Dimerization domain of Gal4-like transcription factors. The Gal4p family of transcriptional activators contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. Gal4p family members are involved in the activation of genes in response to a specific signal. Gal4p functions in the induction of GAL genes in the presence of galactose; GAL proteins are responsible for the transport of galactose into the cell and for its metabolism through the glycolytic pathway. Hap1p promotes transcription of genes required for respiration and controlling oxidative damage in response to heme. Put3p activates the transcription of PUT1 and PUT2 genes in the presence of proline, allowing yeast cells to use proline as a nitrogen source. Sip4p activates target genes under conditions of glucose deprivation while Nir1 plays a role during nitrogen-starvation conditions. This subfamily is composed of uncharacterized members of the Gal4p family. 24 -271242 cd14725 ZIP_Gal4-like_2 Leucine zipper Dimerization coil of Gal4-like transcription factors. The Gal4p family of transcriptional activators contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. Gal4p family members are involved in the activation of genes in response to a specific signal. Gal4p functions in the induction of GAL genes in the presence of galactose; GAL proteins are responsible for the transport of galactose into the cell and for its metabolism through the glycolytic pathway. Hap1p promotes transcription of genes required for respiration and controlling oxidative damage in response to heme. Put3p activates the transcription of the PUT1 and PUT2 genes in the presence of proline, allowing yeast cells to use proline as a nitrogen source. Sip4p activates target genes under conditions of glucose deprivation while Nir1 plays a role during nitrogen-starvation conditions. This subfamily is composed of uncharacterized members of the Gal4p family. 24 -350608 cd14726 TraB_PrgY-like TraB/PryY confer plasmid-borne pheromone resistance. TraB/PrgY proteins, identified in gut bacterium Enterococcus faecalis, are plasmid-borne homologs that are induced by pheromones. Induction rends the host bacterium insensitive to self-induction by its own pheromones, and prevents the transfer of the pheromone-inducible conjugative plasmids to bacteria that already contain it. Based on homology to Tiki activity, it has been proposed that TraB acts as a protease in the inactivation of mating pheromone, cleaving at the amino-terminus. The pheromones are small peptides (7-8 residues) encoded by the bacterial genome, and are specific for particular plasmids, or class of plasmids, which may contain several virulence factors and disseminate rapidly. Plasmid-borne antibiotic resistance and virulence determinants make these elements important contributors to medical problems. Trab/PrygY is a member of a Tiki-like superfamily. Tiki is a membrane-associated metalloprotease (MEROPS family M96) that inhibits Wnt via the cleavage of its amino terminus. Wnt is essential in animal development and homeostasis. In Xenopus, Tiki is critical in head development. In human cells, Tiki inhibits Wnt-signaling. Tiki proteins are also related to erythromycin esterase, gumN plant pathogens, RtxA containing toxins, and Campylobacter Jejuni ChaN heme-binding protein. 177 -350609 cd14727 ChanN-like ChaN is an iron-regulated, heme-binding protein. This family represents a domain found in ChaN, a heme-binding/iron-regulated lipoprotein from Campylobacter jejuni. ChaN, possibly involved in the uptake of heme-iron, contains a pair of cofacial heme groups situated between two ChaN monomers. A single tyrosine residue contacts the heme-bound iron atom while the heme-binding regions of each monomer also have contacts to the heme in the complementary monomer. ChaN presumably associates with an outer membrane-associated receptor, ChaR. Campylobacter jejuni is an important cause of food-borne illness, and is dependent on iron uptake from the host. ChaN like proteins are related to the Tiki/TraB like family of proteases. Proteins containing this domain also include protein reticulata-related from Arabidopsis which may play a role in leaf development. 211 -350610 cd14728 Ere-like Erythromycin esterase and succinoglycan biosynthesis related proteins. This group contains erythromycin esterase, which shares conserved active site residues of the Tiki/TraB family. Erythromycin esterases (EreA and EreB) disrupt erythromycin via the hydrolysis of the macrolactone ring. A critical catalytic histidine acts as a general base in the activation of a water molecule. Macrolides act by inhibiting bacterial protein synthesis by binding at the exit tunnel of ribosomal subunit 50s, blocking the translation of the polypeptide. Erythromycin esterase, typically found in integrons and transposons, confers antibiotic resistance through the disruption of the drug ring structure. EreB substrate profile is substantially broader than that for EreA, being able to also metabolize semisynthetic derivatives such as azalide azithromycin. 367 -350611 cd14729 RtxA-like C2-2 like domain of various multidomain toxins, including RTX-containing like proteins. This group contains mostly poorly-characterized C2-2 like domains of multidomain bacterial toxins, including Pasteurella multocida toxin PMT (also known as dermonecrotic toxin), MARTX (multifunctional-autoprocessing repeats-in-toxin holotoxin RtxA) proteins from Vibrio vulnificus, as well as bacterial effector protein from Pseudomonas syringae (type III effector HopAC1). MARTX domains at the N- and C- termini act in the translocation of the central domain across the eukaryotic plasma membrane, where it is proteolytically released. These are related to Pasteurella multicida toxin, which has structural and sequence similarity to the TIKI/TraB family of proteases. However, while this group of multidomain proteins shows fairly strong conservation of the active site residues of this family, the Pasteurella multicida toxin does not. 170 -269830 cd14730 LodA_like L-lysine epsilon-oxidase from Marinomonas mediterranea and similar proteins. L-lysine epsilon-oxidase is responsible for oxidative deamination of L-lysine, producing L-2-aminoadipate-6-semialdehyde. Hydrogen peroxide is a side-product of this enzymatic reaction, which requires the cofactor CTQ (cysteine tryptophylquinone). CTQ most likely forms a Schiff base with the free amino acid substrate. The protein is also called marinocine, for its broad-spectrum antibacterial activity; the latter is most likely caused by hydrogen peroxide synthesis. Homologs of LodA have been detected in various gram-negative bacteria, and they appear to be associated with the formation of biofilms. 509 -269831 cd14731 LodA_like_1 Uncharacterized proteins similar to L-lysine epsilon-oxidase from Marinomonas mediterranea. L-lysine epsilon-oxidase is responsible for oxidative deamination of L-lysine, producing L-2-aminoadipate-6-semialdehyde. Hydrogen peroxide is a side-product of this enzymatic reaction, which requires the cofactor CTQ (cysteine tryptophylquinone). CTQ most likely forms a Schiff base with the free amino acid substrate. The protein is known for its broad-spectrum antibacterial activity; the latter is most likely caused by hydrogen peroxide synthesis. Although members of this related family share features of the active site, their functions are not known. Homologs of LodA have been detected in various gram-negative bacteria, and they appear to be associated with the formation of biofilms. 587 -269832 cd14732 LodA L-lysine epsilon-oxidase from Marinomonas mediterranea and similar proteins. L-lysine epsilon-oxidase is responsible for oxidative deamination of L-lysine, producing L-2-aminoadipate-6-semialdehyde. Hydrogen peroxide is a side-product of this enzymatic reaction, which requires the cofactor CTQ (cysteine tryptophylquinone). CTQ most likely forms a Schiff base with the free amino acid substrate. The protein is also called marinocine, for its broad-spectrum antibacterial activity; the latter is most likely caused by hydrogen peroxide synthesis. The dimerization interface observed in the available 3D structure does not seem to be conserved. Homologs of LodA have been detected in various gram-negative bacteria, and they appear to be associated with the formation of biofilms. 639 -350515 cd14733 BACK BACK (BTB and C-terminal Kelch) domain. The BACK domain is found in architectures C-terminal to a BTB domain, in a diverse set of architectures together with Kelch, MATH, and/or TAZ domains. It is involved in interactions with the Cullin3 (Cul3) ubiquitin ligase complex, as well as in homo-oligomerization. Most proteins containing the BACK domain are understood to function as adaptor proteins that play a role in ubiquitination of various substrates. 55 -350516 cd14736 BACK_AtBPM-like BACK (BTB and C-terminal Kelch) domain found in plant BTB/POZ-MATH (BPM) protein family. The BPM protein family includes Arabidopsis thaliana BTB/POZ and MATH domain-containing proteins, AtBPM1-6, and similar proteins. BPM protein, also termed protein BTB-POZ and MATH domain, may act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. 62 -269822 cd14737 PAAR_1 proline-alanine-alanine-arginine (PAAR) domain. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family, where it forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). The T6SS is responsible for translocation of a wide variety of toxic effector molecules, allowing predatory cells to kill prokaryotic as well as eukaryotic prey cells. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. It has been shown that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae (encodes two PAAR proteins) and Acinetobacter baylyi (encodes three PAAR proteins); inactivation of all these PAAR genes results in inactivation of Hcp secretion as well as T6SS-dependent killing of E. coli. 94 -269823 cd14738 PAAR_2 proline-alanine-alanine-arginine (PAAR) domain. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family, where it forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). The T6SS is responsible for translocation of a wide variety of toxic effector molecules, allowing predatory cells to kill prokaryotic as well as eukaryotic prey cells. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. It has been shown that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae (encodes two PAAR proteins) and Acinetobacter baylyi (encodes three PAAR proteins); inactivation of all these PAAR genes results in inactivation of Hcp secretion as well as T6SS-dependent killing of E. coli. 94 -269824 cd14739 PAAR_3 proline-alanine-alanine-arginine (PAAR) domain. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family, where it forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). The T6SS is responsible for translocation of a wide variety of toxic effector molecules, allowing predatory cells to kill prokaryotic as well as eukaryotic prey cells. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. It has been shown that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae (encodes two PAAR proteins) and Acinetobacter baylyi (encodes three PAAR proteins); inactivation of all these PAAR genes results in inactivation of Hcp secretion as well as T6SS-dependent killing of E. coli. 90 -269825 cd14740 PAAR_4 proline-alanine-alanine-arginine (PAAR) domain. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family of bacteria, and forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). A few members contains C-terminal domain extensions corresponding to Rearrangement hotspot (Rhs) protein repeats and conserved Rhs repeat-associated unique core sequences as well as uncharacterized domains such as DUF4150. However, these terminal domains are exposed to solution, and do not distort the binding site of VgrG. Rhs and related YD-peptide repeat proteins are widely distributed in bacteria. Rhs shares similar architecture with distantly related WapA proteins of Bacillus and Listeria species, suggesting intercellular growth inhibition as its primary function. Additionally, a plasmid-encoded Rhs protein has been implicated in bacteriocin production in Pseudomonas savastanoi. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. 121 -269826 cd14741 PAAR_5 proline-alanine-alanine-arginine (PAAR) domain. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family in bacteria as well as some archaea, where it forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). The T6SS is responsible for translocation of a wide variety of toxic effector molecules, allowing predatory cells to kill prokaryotic as well as eukaryotic prey cells. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. It has been shown that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae (encodes two PAAR proteins) and Acinetobacter baylyi (encodes three PAAR proteins); inactivation of all these PAAR genes results in inactivation of Hcp secretion as well as T6SS-dependent killing of E. coli. 95 -269827 cd14742 PAAR_RHS proline-alanine-alanine-arginine (PAAR) domain, also containing C-terminal Rearrangement hotspot (Rhs) extensions. This PAAR (proline-alanine-alanine-arginine) repeat subfamily, which forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS), contains C- and N-terminal domain extensions. These include Rearrangement hotspot (Rhs) protein repeats and conserved Rhs repeat-associated unique core sequences at the C-terminal, and various predicted functions at N- and C-terminal extensions. However, these terminal domains are exposed to solution, and do not distort the binding site of VgrG. Rhs and related YD-peptide repeat proteins are widely distributed in bacteria. Rhs shares similar architecture with distantly related WapA proteins of Bacillus and Listeria species, suggesting intercellular growth inhibition as its primary function. Additionally, a plasmid-encoded Rhs protein has been implicated in bacteriocin production in Pseudomonas savastanoi. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. 86 -269828 cd14743 PAAR_CT_1 proline-alanine-alanine-arginine (PAAR) domain with C-terminal extension. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family of mostly gamma-proteobacteria, and forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). Some members contains C-terminal domain extensions corresponding to Rearrangement hotspot (Rhs) protein repeats and conserved Rhs repeat-associated unique core sequences as well as uncharacterized domains. However, these terminal domains are exposed to solution, and do not distort the binding site of VgrG. Rhs and related YD-peptide repeat proteins are widely distributed in bacteria. Rhs shares similar architecture with distantly related WapA proteins of Bacillus and Listeria species, suggesting intercellular growth inhibition as its primary function. Additionally, a plasmid-encoded Rhs protein has been implicated in bacteriocin production in Pseudomonas savastanoi. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. 78 -269829 cd14744 PAAR_CT_2 proline-alanine-alanine-arginine (PAAR) domain with uncharacterized C-terminal extension. This domain is found in the PAAR (proline-alanine-alanine-arginine) repeat family of mostly beta- and gamma-proteobacteria, and forms a sharp conical extension on the VgrG spike, a trimeric protein complex of the bacterial type VI secretion system (T6SS). Most members contain C-terminal domain extensions corresponding to several uncharacterized domains such as S-type pyocin, DUF2235, DUF2345 and cytotoxic proteins. However, these terminal domains are exposed to solution, and do not distort the binding site of VgrG. The pointed tip of the PAAR domain is stabilized by a zinc atom positioned close to the cone's vertex and is likely to be important for its integrity during penetration of the target cell envelope. VgrG proteins are orthologous to the central baseplate spikes of bacteriophages with contractile tails, and genes encoding proteins with PAAR motifs have been frequently found immediately downstream from vgrG-like genes. 78 -270613 cd14745 GH66 Glycoside Hydrolase Family 66. Glycoside Hydrolase Family 66 contains proteins characterized as cycloisomaltooligosaccharide glucanotransferase (CITase) and dextranases from a variety of bacteria. CITase cyclizes part of a (1-6)-alpha-D-glucan (dextrans) chain by formation of a (1-6)-alpha-D-glucosidic bond. Dextranases catalyze the endohydrolysis of (1-6)-alpha-D-glucosidic linkages in dextran. Some members contain Carbohydrate Binding Module 35 (CBM35) domains, either C-terminal or inserted in the domain or both. 331 -270450 cd14747 PBP2_MalE Maltose-binding protein MalE; possesses type 2 periplasmic binding fold. This group includes the periplasmic maltose-binding component of an ABC transport system from the phytopathogen Xanthomonas citri and its related bacterial proteins. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 386 -270451 cd14748 PBP2_UgpB The periplasmic-binding component of ABC transport system specific for sn-glycerol-3-phosphate; possesses type 2 periplasmic binding fold. This group includes the periplasmic component of an ABC transport system specific for sn-glycerol-3-phosphate (G3P) and closely related proteins from archaea and bacteria. Under phophate starvation conditions, Escherichia coli can utilize G3P as phosphate source when exclusively imported by an ATP-binding cassette (ABC) transporter composed of the periplasmic binding protein, UgpB, the transmembrane subunits, UgpA and UgpE, and a homodimer of the nucleotide binding subunit, UgpC. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 385 -270452 cd14749 PBP2_XBP1_like The periplasmic-binding component of ABC transport systems specific for xylo-oligosaccharides; possesses type 2 periplasmic binding fold. This group represents the periplasmic component of an ABC transport system XBP1 that shows preference for xylo-oligosaccharides in the order of xylotriose > xylobiose > xylotetraose. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 388 -270453 cd14750 PBP2_TMBP The periplasmic-binding component of ABC transport systems specific for trehalose/maltose; possesses type 2 periplasmic binding fold. This group represents the periplasmic trehalose/maltose-binding component of an ABC transport system and related proteins from archaea and bacteria. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 385 -270454 cd14751 PBP2_GacH The periplasmic-binding component of the putative oligosacchride ABC transporter GacHFG; possesses type 2 periplasmic binding fold. This group represents the periplasmic component GacH of an ABC import system. GacH is identified as a maltose/maltodextrin-binding protein with a low affinity for acarbose. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. 376 -270212 cd14752 GH31_N N-terminal domain of glycosyl hydrolase family 31 (GH31). This family is found N-terminal to the glycosyl-hydrolase domain of Glycoside hydrolase family 31 (GH31). GH31 includes the glycoside hydrolases alpha-glucosidase (EC 3.2.1.20), alpha-1,3-glucosidase (EC 3.2.1.84), alpha-xylosidase (EC 3.2.1.177), sucrase-isomaltase (EC 3.2.1.48 and EC 3.2.1.10), as well as alpha-glucan lyase (EC 4.2.2.13). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite-1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues of the catalytic domain have been identified as the catalytic nucleophile and the acid/base, respectively. A loop of the N-terminal beta-sandwich domain is part of the active site pocket. 122 -271288 cd14755 GS_BA2291-HK_like Non-heme globin sensor domain of BA2291 histidine kinase and related domains. This subfamily includes the sensor domain of Bacillus anthracis BA2291 histidine kinase. BA2291 is one of the most active kinases in promoting sporulation, and is found in most members of the Bacillus cereus subfamily of the genus Bacillae, which includes B. anthracis and Bacillus thuringiensis, but not Bacillus subtilis. This subfamily also includes two sensor-only plasmid encoded sporulation inhibitors pXO1-118 and pXO2-61 found only in B. anthracis and various strains of Bacillus cereus having similar plasmids. The pXO1-118 and pXO2-61 sensor domains form homodimers, and in vitro bind fatty acid and halide, and not heme; there may be roles for fatty acid (or similar molecule), chloride ion, and possibly pH, as signaling cues. It has been proposed that BA2291 senses the same environmental cue in vivo, and that pXO1-118 and pXO2-61 act by titrating out an environmental signal that might cause an ill-timed sporulation. 132 -271289 cd14756 TrHb Truncated Mb-fold globins, T family. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. They are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). Typical of the TrHb1s (N) group is a protein matrix tunnel. An example of a TrHb1 is Mycobacterium tuberculosis TrHb1/Mt-trHbN which is expressed during the Mycobacterium stationary phase, and plays a specific defense role against nitrosative stress. TrHb2s include the dimeric Arabidopsis thaliana TrHb2 AtGLB3. GLB3 is likely to have a function distinct from other plant globins: it exhibits a low O2 affinity, an unusual concentration-independent binding of O2 and CO, and does not respond to any of the treatments that induce plant 3-on-3 globins. TrHb3s include Campylobacter jejuni Ctb, encoded by Cj0465c, which may play a role in moderating O2 flux within C. jejuni. 111 -271290 cd14757 GS_EcDosC-like_GGDEF Globin sensor domain of Escherichia coli Direct Oxygen Sensing Cyclase and related proteins; coupled to a C-terminal GGDEF domain. Globin-coupled-sensors belonging to this subfamily have a C-terminal diguanylate cyclase (DGC/GGDEF) domain coupled to the globin sensor domain. DGC/GGDEF likely functions as a c-di-GMP cyclase in the synthesis of the second messenger cyclic-di-GMP (c-di-GMP). Members include Escherichia coli DosC (also known as YddV), the gene for which is found in a two-gene operon, dosCP. In DosC, the sensory globin domain is coupled to a GGDEF-class diguanylate cyclase, while in DosP, a heme-containing PAS domain is coupled to an EAL-class c-di-GMP phosphodiesterase. DosP and DosC associate in a di-GMP-responsive Escherichia coli RNA processing complex along with polynucleotide phosphorylase (PNPase), enolase, RNase E, and RNA. 151 -271291 cd14758 GS_GGDEF_1 Globin sensor domain, coupled to DGC/GGDEF domains; uncharacterized subgroup. Globin-coupled-sensors belonging to this subfamily have a sensor domain coupled to a C-terminal diguanylate cyclase (DGC/GGDEF) domain. DGC/GGDEF likely functions as a c-di-GMP cyclase in the synthesis of the second messenger cyclic-di-GMP (c-di-GMP). 148 -271292 cd14759 GS_GGDEF_2 Globin sensor domain, coupled to DGC/GGDEF domains; uncharacterized subgroup. The majority of globin-coupled-sensors in this subfamily have diguanylate cyclase (DGC/GGDEF) domains N-terminal to the globin sensor domain and/or C-terminal EAL domains, DGC/GGDEF and EAL domains are involved in the synthesis and degradation of the secondary messenger c-di-GMP, respectively. Some members have GAF small-molecule-binding domains in addition. 150 -271293 cd14760 GS_PAS-GGDEF-EAL Globin sensor domain; coupled to PAS, DGC/GGDEF and EAL domains. In addition to the N-terminal sensing domain, globin-coupled-sensors in this bacterial subfamily have a signal-sensing PAS domain, and diguanylate cyclase (DGC/GGDEF) and EAL domains. The latter two domains are involved in the synthesis and degradation of c-di-GMP, respectively, and may be involved in regulating cell surface adhesiveness, and in the transition between planktonic and biofilm growth modes. 148 -271294 cd14761 GS_GsGCS_like Globin sensor domain of Geobacter sulfurreducens globin-coupled-sensor and related proteins. GsGCS is a GCS of unknown function, comprised of an N-terminal globin sensor domain and a C- terminal transmembrane signal-transduction domain. For GCSs in general, the first signal O2 binds to/dissociates from the heme iron complex inducing a structural change in the globin domain, which is then transduced to the functional domain, switching on (or off) the function of the latter. Ferric GsGCS is bis-histidyl hexa-coordinated (provided by a His residue located at the E11 topological site, as distinct from the E7 site). Ferrous GsGCS is a penta- and hexa-coordinated mixture. The C-terminal domains of other members of this subfamily include histidine kinase, and PsiE domains. 149 -271295 cd14762 GS_STAS Globin sensor domain; coupled to a STAS domain. Globin-coupled-sensors in this subfamily have a C-terminal sulphate transporter and anti-sigma factor antagonist (STAT) domain coupled to the globin sensor domain. 143 -271296 cd14763 SSDgbs_1 Sensor single-domain globins; uncharacterized bacterial subgroup. This subfamily of sensor single-domain globins, belongs to a family that includes GCSs (globin-coupled-sensors) and single-domain protoglobins (Pgbs). For GCSs, an N-terminal heme-bound oxygen-sensing/binding globin domain is coupled to a C-terminal functional/signaling domain. The first signal O2 binds to/dissociates from the heme in its sensor domain inducing a conformational change in that domain and ultimately in the signaling domain. It has been demonstrated that the Pgbs and other single domain globins can function as sensors, when coupled to an appropriate regulatory domain. 142 -271297 cd14764 SSDgbs_2 Sensor single-domain globins; uncharacterized subgroup. This subfamily of sensor single-domain globins, belongs to a family that includes GCSs (globin-coupled-sensors) and single-domain protoglobins (Pgbs). For GCSs, an N-terminal heme-bound oxygen-sensing/binding globin domain is coupled to a C-terminal functional/signaling domain. The first signal O2 binds to/dissociates from the heme in its sensor domain inducing a conformational change in that domain and ultimately in the signaling domain. It has been demonstrated that the Pgbs and other single domain globins can function as sensors, when coupled to an appropriate regulatory domain. 145 -271298 cd14765 Hb Hemoglobins. Hb is the oxygen transport protein of erythrocytes. It is an allosterically modulated heterotetramer. Hemoglobin A (HbA) is the most common Hb in adult humans, and is formed from two alpha-chains and two beta-chains (alpha2beta2). An equilibrium exists between deoxygenated/unliganded/T(tense state) Hb having low oxygen affinity, and oxygenated /liganded/R(relaxed state) Hb having a high oxygen affinity. Various endogenous heterotropic effectors bind Hb to modulate its oxygen affinity and cooperative behavior, e.g. hydrogen ions, chloride ions, carbon dioxide and 2,3-bisphosphoglycerate. Hb is also an allosterically regulated nitrite reductase; the plasma nitrite anion may be activated by hemoglobin in areas of hypoxia to bring about vasodilation. Other Hb types are: HbA2 (alpha2delta2) which, in normal individuals, is naturally expressed at a low level; Hb Portland-1 (zeta2gamma2), Hb Gower-1 (zeta2epsilon2), and Hb Gower-2 (alpha2epsilon2), which are Hbs present during the embryonic period; and fetal hemoglobin (HbF, alpha2gamma2), the primary Hb throughout most of gestation. These Hb types have differences in O2 affinity and in their interactions with allosteric effectors. 134 -271299 cd14766 CeGLB25_like Caenorhabditis elegans globin GLB-25, and related globins. The C. elegans genome contains 33 genes encoding globins that are all transcribed. These are very diverse in gene and protein structure and are localized in a variety of cells. The C. elegans globin GLB-25 (locus tag T06A1.3), like the majority of them, was expressed in neuronal cells in the head and tail portions of the body and in the nerve cord. 136 -271300 cd14767 PE_beta_like Phycoerythrin beta subunit, a component of the phycobiliosome rod; and related proteins. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). This subfamily also includes the beta subunits of Cryptophyte phycobiliproteins which represent another type of biliprotein antenna with different structure and organization. The beta subunits of cryptophyte PBPs share a high degree of sequence identity with both the alpha and beta subunits of the cyanobacterial and red algal PBPs, however the alpha cryptophyte subunits are shorter, and unrelated. There is only one type of PBP present in a single species, either phycocyanin or phycoerythrin, but not allophycocyanin. Structurally, phycoerythrin in cryptophytes is an alpha1alpha2betabeta dimer and not a trimer as in the PBS. 176 -271301 cd14768 PC_PEC_beta Beta subunits of phycoerythrin and phycoerythrocyanin; phycobiliosome rod components. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 171 -271302 cd14769 PE_alpha Phycoerythrin alpha subunit, a phycobiliosome rod component. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 164 -271303 cd14770 PC-PEC_alpha Alpha subunits of phycoerythrin and phycoerythrocyanin; phycobiliosome rod components. Phycobiliosomes (PBSs) are the main light-harvesting complex in cyanobacteria and red algae. In general, they consist of a central core and surrounding rods and function to harvest and channel light energy toward the photosynthetic reaction centers within the membrane. They are comprised of phycobiliproteins/chromophorylated proteins (PBPs) maintained together by linker polypeptides. PBPs have different numbers of chromophores, and the basic monomer component (alpha/beta heterodimers) can further oligomerize to ring-shaped trimers (heterohexamers) and hexamers (heterododecamers). Stacked PBP hexamers form both the core and the rods of the PBS; the core is mainly made up by allophycocyanin (APC) while the rods can be composed of the PBPs phycoerythrin (PE), phycocyanin (PC) and phycoerythrocyanian (PEC). 162 -271304 cd14771 TrHb2_Mt-trHbO-like_O Truncated hemoglobins, group 2 (O); Mycobacterium tuberculosis hemoglobin O like. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). This group includes a Mycobacterium tuberculosis TrHb2, Mt-trHbO, encoded by the Mycobacterium tuberculosis glbO gene, which is expressed throughout the Mycobacterium growth phase. It also includes a TrHb2 from the thermophilic Thermobifida fusca ( Tf-trHb) which has a high thermostability and at the optimal growth temperature for Thermobifida fusca (between 55 and 60 degrees C ), it is capable of efficient O2 binding and release. Tf-trHb shares a relatively slow rate of oxygen binding with Mt-trHbO. 119 -271305 cd14772 TrHb2_Bs-trHb-like_O Truncated hemoglobins, group 2 (O); Bacillus subtilis TrHb like. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). TrHb2's belonging to this group include monomeric Bacillus subtilis trHb (Bs-trHb), which exhibits an extremely high oxygen affinity, and a dimeric TrHb2 from the thermophilic aerobic spore forming bacterium Geobacillus stearothermophilus(Gs-trHb). 116 -271306 cd14773 TrHb2_PhHbO-like_O Truncated hemoglobins, group 2 (O); Pseudoalteromonas haloplanktis PhHbO like. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). TrHb2's belonging to this group include Pseudoalteromonas haloplanktis PhHbO (encoded by the PSHAa0030 gene) which appears to be involved in oxidative and nitrosative stress resistance. 119 -271307 cd14774 TrHb2_O_1 Truncated hemoglobins, group 2 (O); uncharacterized subgroup. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). 118 -271308 cd14775 TrHb2_O_2 Truncated hemoglobins, group 2 (O); uncharacterized subgroup. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties: TrHb1s (N), TrHb2s (O) and TrHb3s (P). 119 -271309 cd14776 HmpEc-globin_like Globin domain of Escherichia coli flavohemoglobin (Hmp) and related proteins. Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. This subfamily includes Vibrio fischeri Hmp and E.coli Hmp. NO scavenging by flavoHb affects the swarming behavior of Escherichia coli, and protects against NO during initiation of the squid-Vibrio symbiosis. E.coli Hmp can catalyze the reduction of several alkylhydroperoxide substrates into their corresponding alcohols using NADH as an electron donor, and it has been suggested that it participates in the repair of the lipid membrane oxidative damage generated during oxidative/nitrosative stress. 138 -271310 cd14777 Yhb1-globin_like Globin domain of Saccharomyces cerevisiae flavohemoglobin (Yhb1p) and related domains. FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. S. cerevisiae Yhb1p has been shown to protect against nitrosative stress and to control ferric reductase activity; it may participate in regulating the activity of plasma membrane ferric reductase(s). Also included in this subfamily is Dictyostelium discoideum FlavoHb, the expression of which affects D. discoideum development. 140 -271311 cd14778 VtHb-like_SDgb Vitreoscilla stercoraria hemoglobin and related proteins; single-domain globins. VtHb is homodimeric, and may both transport oxygen to terminal respiratory oxidases, and provide resistance to nitrosative stress. It has medium oxygen affinity and displays cooperative ligand-binding properties. VHb has biotechnological application, its expression in heterologous hosts (bacteria and plants) has improved growth and productivity under microaerobic conditions. Another member of this subfamily Campylobacter jejuni hemoglobin (Cgb) is monomeric, and plays a role in detoxifying NO. Along with a truncated globin Ctb, it is up-regulated by the transcription factor NssR in response to nitrosative stress. 140 -271312 cd14779 FHP_Ae-globin_like Globin domain of Alcaligenes eutrophus flavohemoglobin (FHP) and related proteins. Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb maintains Medicago truncatula-Sinorhizobium meliloti symbiosis. Alcaligenes eutrophus FHP contains a phospholipid-binding site. 140 -271313 cd14780 HmpPa-globin_like Globin domain of Pseudomonas aeruginosa flavohemoglobin (HmpPa) and related proteins. Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. The physiological role of HmpPa is thought to be detoxification of NO under aerobic conditions. 140 -271314 cd14781 FHb-globin_1 Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup. FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. This subfamily may contain some single-domain goblins (SDgbs). 139 -271315 cd14782 FHb-globin_2 Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup. FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. 143 -271316 cd14783 FHb-globin_3 Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup. FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. 140 -271317 cd14784 class1_nsHb_like Class 1 nonsymbiotic hemoglobins and related proteins. Class1 nsHbs include the dimeric hexacoordinate Trema tomentosa nsHb and the dimeric hexacoordinate nsHb from monocot barley. This subfamily also includes ParaHb, a dimeric pentacoordinate Hb from the root nodules of Parasponia andersonii, a non-legume capable of symbiotic nitrogen fixation. ParaHb is unusual in that it has different heme redox potentials for each subunit. 149 -270211 cd14785 V-ATPase_C Subunit C of vacuolar H+-ATPase (V-ATPase). This family contains subunit C of vacuolar H+-ATPase (V-ATPase), a protein that plays a crucial role in the vacuolar system of eukaryotic cells. The main function of V-ATPase is to generate a proton-motive force at the expense of ATP and to cause limited acidification in the internal space (lumen) of several organelles of the vacuolar system. V-ATPases are multi-subunit protein complexes made up of two distinct structures: a peripheral catalytic sector (V1) and a hydrophobic membrane sector (V0) responsible for driving protons; subunit C is one of five polypeptides composing V1. The key function of the C subunit is intimately involved in the reversible dissociation of the V1 and V0 structures. It has also been identified as a mediator of the acidic microenvironment of tumors which it controls by proton extrusion to the extracellular medium. The acidic environment causes tissue damage, activates destructive enzymes in the extracellular matrix, and acquires metastatic cell phenotypes. 368 -341075 cd14786 STAT_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription (STAT), also called alpha domain. This family consists of the coiled-coil (alpha) domain of the STAT proteins (Signal Transducer and Activator of Transcription, or Signal Transduction And Transcription), which are latent cytoplasmic transcriptional factors that play an important role in cytokine and growth factor signaling. STAT proteins regulate several aspects of growth, survival and differentiation in cells. The transcription factors of this family are activated by JAK (Janus kinase) and dysregulation of this pathway is frequently observed in primary tumors and leads to immunosuppression, increased angiogenesis and enhanced survival of tumors. There are seven mammalian STAT family members that have been identified: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT proteins consist of six structural regions: N-domain (ND)/protein interaction domain, coiled-coil domain (CCD)/STAT all alpha domain, DNA-binding domain (DBD), linker domain (LK), a Src homology 2 (SH2) domain, and C-terminal transcriptional activation domain (TA) that includes two conserved phosphorylation sites (tyrosine and serine residues). The coiled-coil or alpha domain is an interacting region with other proteins, including IRF-9/p48 for STAT1, c-Jun, StIP1, and GRIM-19 for STAT3, and SMRT with STAT5A and STAT5B. A functional STAT1 mutant (phenylalanine to serine) in this domain region shows significantly decreased protein expression caused by translational/post-translational mechanisms independent of proteasome machinery. The phenylalanine is not conserved in STAT4 and STAT6 that have tight specificity, suggesting a novel potential mechanism of specific activation of STAT proteins. Specifically, STAT3, STAT5, and STAT6, which are continually imported to the nucleus independent of tyrosine phosphorylation, require the conformational structure of their coiled-coil domains. 125 -350612 cd14787 Tiki_TraB-like diverse proteins related to the Tiki and TraB protease domains. The extracellular domain of Tiki family proteins shares homology with bacterial TraB/PrgY proteins which are known for their roles in the inhibition of mating pheromones. Tiki and TraB/PrgY proteins share limited sequence identity, but their predicted secondary structures reveal that several catalytic residues are anchored in a similar manner, consistent with a common evolutionary origin. Tiki domains are related to the erythromycin esterase, gumN plant pathogens, RtxA toxins, and Campylobacter Jejuni heme-binding, ChaN-like proteins. Tiki is a membrane-associated metalloprotease (MEROPS family M96) that inhibits Wnt via the cleavage of its amino terminus, diminishing Wnt's binding to receptors. Wnt is essential in animal development and homeostasis. In Xenopus, Tiki is critical in head development. In human cells, Tiki inhibits Wnt-signaling, which is important in embryogenesis, homeostasis, and regeneration. Deregulation of Wnt contributes to birth defects, cancer and various diseases. TraB/PrgY protein has been identified in gut bacterium Enterococcus faecalis, but its function has not been well characterized. Plasmid-borne TraB has been implicated in the regulation of pheromone sensitivity and specificity. Based on homology to Tiki activity, it has been proposed that TraB acts as a metalloprotease in the inactivation of mating pheromone. Pasteurella multicida toxin has structural and sequence similarity to the Tiki/TraB family of proteases. However, unlike related multidomain toxins in this family, they do not exhibit conservation of the typical active site residues. 127 -350613 cd14788 GumN poorly characterized family of proteins related to gumN pathogenicity factor of Xanthomonas. GumN, a poorly characterized protein, is part of the large gum cluster of pathogenicity factors of the plant pathogen Xanthomonas. Except for GumN, the gum cluster is conserved, and proteins of this operon are involved in the production of xanthan, an extracellular polysaccharide that promotes plant disease. Xanthomonas campestri is responsible for 'black rot' disease in certain crop plants. GumN has sequence similarity to the Tiki/TraB protease family, but lacks the typical conserved residues of the active site. 286 -350614 cd14789 Tiki Tiki homology domain antagonizes Wnt function via cleavage of amino-terminal residues. Tiki is a membrane-associated metalloprotease that inhibits Wnt via the cleavage of its amino terminus, diminishing Wnt's binding to receptors. Wnt is essential in animal development and homeostasis. In xenopus, tiki is critical in head development. In human cells, TIKI inhibits Wnt-signaling, which is important in embryogenesis, homeostasis, and regeneration. Deregulation of WNT contributes to birth defects, cancer and various diseases. TIKI homology domains are part of the TraB family and are related to the Erythromycin esterase, GumN plant pathogens, RtxA toxins, and Campylobacter Jejuni heme-binding, Chan-like proteins. TraB/PrgY are identified in gut bacterium Enterococcus faecalis, but its function has not been well characterized. Plasmid-borne, TraB has been implicated in the regulation of pheromone sensitivity and specificity. Based on homology to TIKI activity, it has been proposed that TraB acts as a metalloprotease in the inactivation of mating pheromone. The TIKI/TraB family has 2 conserved GxxH motifs and conserved glutamate and arginine residues that may be catalytic. 259 -269891 cd14790 GH_D Glycoside hydrolases, clan D. This group of glycosyl hydrolase families is comprised of glycosyl hydrolase family 31 (GH31), family 36 (GH36), and family 27 (GH27). These structurally and mechanistically related protein families are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. They have a wide range of functions including alpha-glucosidase, alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase, alpha-N-acetylgalactosaminidase, stachyose synthase, raffinose synthase, and alpha-1,4-glucan lyase. 253 -269892 cd14791 GH36 glycosyl hydrolase family 36 (GH36). GH36 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-galactosidase, alpha-N-acetylgalactosaminidase, stachyose synthase, and raffinose synthase. All GH36 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH36 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. 299 -269893 cd14792 GH27 glycosyl hydrolase family 27 (GH27). GH27 enzymes occur in eukaryotes, prokaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-N-acetylgalactosaminidase, and 3-alpha-isomalto-dextranase. All GH27 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH27 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. 271 -269816 cd14793 DUF302_like Domains similar to DUF302 and the N-terminal domains found in some bacterial RNAses. DUF302 is an uncharacterized domain with widespread phylogenetic distribution. It appears homologous to the N-terminal domains of RNAse H3 and the Escherichia coli toxin RnlA. 81 -269817 cd14794 RNLA_N_1 N-terminal repeat domain of toxin RnlA; first out of two repeats. The Escherichia coli toxin RnlA functions as an mRNA endoribonuclease and is part of a two-component toxin-antitoxin system that promotes resistance to phage infections, together with the antitoxin RnlB. RNAse activity is located in the C-terminal domain. This N-terminal domain appears to participate in homodimerization and is the first out of two repeats. 90 -269818 cd14795 RNLA_N_2 N-terminal repeat domain of toxin RnlA; second out of two repeats. The Escherichia coli toxin RnlA functions as an mRNA endoribonuclease and is part of a two-component toxin-antitoxin system that promotes resistance to phage infections, together with the antitoxin RnlB. RNAse activity is located in the C-terminal domain. This N-terminal domain appears to participate in homodimerization and is the second out of two repeats. 87 -269819 cd14796 RNAse_HIII_N N-terminal domain of ribonuclease H3. RNAse H3 (HIII) is a bacterial type 2 ribonuclease, which endonucleolytically hydrolyzes an RNA strand when it is annealed to a complementary DNA strand in the presence of divalent cations, and plays a role in DNA replication and repair. The N-terminal domain characterized by this model has been shown to be important in substrate binding; it might form initial contacts with the substrate and not be part of the active complex that involves the C-terminal ribonuclease domain. This domain has also been characterized as DUF3378. 66 -269820 cd14797 DUF302 Uncharacterized domain family DUF302. These domains are mostly found in bacterial single-domain proteins and have been shown to form homodimers; they may also bind zinc. Also characterized as COG3439. 124 -271353 cd14798 RX-CC_like Coiled-coil domain of the potato virux X resistance protein and similar proteins. The potato virus X resistance protein (RX) confers resistance against potato virus X. It is a member of a family of resistance proteins with a domain architecture that includes an N-terminal coiled-coil domain (modeled here), a nucleotide-binding domain, and leucine-rich repeats (CC-NB-LRR). These intracellular resistance proteins recognize pathogen effector proteins and will subsequently trigger a response that may be as severe as localized cell death. The N-terminal coiled-coil domain of RX has been shown to interact with RanGAP2, which is a necessary co-factor in the resistance response. 124 -341082 cd14801 STAT_DBD DNA-binding domain of Signal Transducer and Activator of Transcription (STAT). This family consists of the DNA binding domain (DBD) of the STAT proteins (Signal Transducer and Activator of Transcription, or Signal Transduction And Transcription), which are latent cytoplasmic transcriptional factors that play an important role in cytokine and growth factor signaling. STAT proteins regulate several aspects of growth, survival and differentiation in cells. The transcription factors of this family are activated by JAK (Janus kinase) and dysregulation of this pathway is frequently observed in primary tumors and leads to immunosuppression, increased angiogenesis and enhanced survival of tumors. There are seven mammalian STAT family members that have been identified: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT proteins consist of six structural regions: N-terminal domain (ND)/protein interaction domain, coiled-coil domain (CCD)/STAT all alpha domain, DNA-binding domain (DBD), linker domain (LK), a Src homology 2 (SH2) domain, and C-terminal transcriptional activation domain (TA) that includes two conserved phosphorylation sites (tyrosine and serine residues). STAT1 and STAT3 have the greatest diversity of biological functions among the 7 known members of the STAT family. The DNA binding domain of STAT has an Ig-like fold. DNA binding specificity experiments of different STAT proteins show that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as also seen from the evolutionary relationships. 157 -269812 cd14803 RAP Receptor-associated protein (RAP). Receptor-associated protein, RAP, is an antagonist and a specialized chaperone in the endoplasmic reticulum that binds tightly to members of the low-density lipoprotein (LDL) receptor family and prevents them from associating with other ligands. RAP associates with (LDL) receptor-related protein (LRP) early in the secretory pathway, reducing its ligand binding capacity, and then dissociates from LRP in the low-pH environment of the Golgi; studies have shown that histidine residues in RAP D3 serve as a switch that facilitates its uncoupling from the receptor. RAP is a modular protein identified as having an internal triplication, with domains, D1, D2, and D3, each thought to have distinct functions; these domains are independent and do not interact. The carboxyl-terminal domain (D3) of RAP is required for folding and trafficking of LRP, while the amino-terminal tandem D1D2 domains of RAP are essential for blocking LRP from binding of certain ligands, such as activated forms of alpha2-macroglobulin. 97 -271351 cd14804 Tra_M TraM mediates signalling between transferosome and relaxosome. TraM is a plasmid encoded DNA-binding protein that is essential for conjugative transfer of F-like plasmids (e.g. F, R1, R100 and pED208) between bacterial cells. Bacterial conjugation, a form of horizontal gene transfer between cells, is an important contributor to bacterial genetic diversity, enabling virulence and antibiotics resistance factors to rapidly spread in medically important human pathogens. Mutation studies have shown that TraM is required for normal levels of transfer gene expression as well as for efficient site-specific single-stranded DNA cleavage at the origin of transfer (oriT). TraM tetramers bridge oriT to a key component of the conjugative pore, the coupling protein TraD. The N-terminal ribbon-helix-helix (RHH) domain of TraM is able to cooperatively bind DNA in a staggered arrangement without interaction between tetramers. This allows the C-terminal TraM tetramerization domains to be free to make multiple interactions with TraD, thus driving plasmid recruitment to the conjugative pore. 122 -271348 cd14805 Translin-like Translin and translin-associated factor-X (TRAX). Translin (also known as TB-RBP), and its binding partner protein TRAX (translin-associated factor-X) are a paralogous pair of conserved proteins, and oligomeric complexes of TRAX and translin are known as C3PO proteins (for component 3 promoter of RNA-induced silencing complex or RISC). The Translin-Trax complex enhances the removal of the passenger strand in RNAi and the formation of active RISC. Translin and Trax participate in a variety of nucleic acid metabolism pathways in addition to RNAi and have been implicated in a wide range of biological activities, including mRNA processing, cell growth regulation, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis; however, their precise role in some of the processes remains unclear. It has been shown that Trax subunit, but not Translin, possesses a Glu-Glu-Asp catalytic center with the capacity to digest RNA as well as DNA; this catalytic activity is required for passenger-strand removal and RISC activation in RNAi. In Archaeoglobus fulgidus, Trax-like-subunits assemble into an octameric structure, highly similar to human C3PO; its complex with duplex RNA reveals that the octamer entirely encapsulates a single 13-base-pair RNA duplex inside a large inner cavity. 197 -269813 cd14806 RAP_D1 Receptor-associated protein (RAP), Domain 1. This subfamily is the N-terminal domain (D1) of receptor-associated protein, RAP, an antagonist and a specialized chaperone in the endoplasmic reticulum that binds tightly to members of the low-density lipoprotein (LDL) receptor family and prevents them from associating with other ligands. D1 as well as domain 2 (D2) are essential for blocking low-density lipoprotein receptor-related protein (LRP) from binding of certain ligands, such as activated forms of alpha2-macroglobulin; D1 and D2 each bind LRP weakly but the tandem D1D2 binds much more tightly, suggesting the avidity effects arising from amino acid residues contributed from each domain. The double module of complement type repeats, CR56, of LRP binds many ligands including alpha2-macroglobulin, which promotes the catabolism of the Abeta-peptide implicated in Alzheimer's disease. 71 -269814 cd14807 RAP_D2 Domain 2 of receptor-associated protein (RAP). This subfamily is the N-terminal domain (D2) of receptor-associated protein, RAP, an antagonist and a specialized chaperone in the endoplasmic reticulum that binds tightly to members of the low-density lipoprotein (LDL) receptor family and prevents them from associating with other ligands. D2, along with RAP domain 1 (D1), is essential for blocking low-density lipoprotein receptor-related protein (LRP) from binding of certain ligands, such as alpha2-macroglobulin; D1 and D2 each bind LRP weakly but the tandem D1D2 binds much more tightly to the second and the fourth ligand-binding clusters present on LRP, suggesting the avidity effects arising from amino acid residues contributed from each domain. Also, RAP has regions that interact weakly with heparin, one located in D2 and two located in D3. The double module of complement type repeats, CR56, of LRP binds many ligands including alpha2-macroglobulin, which promotes the catabolism of the Abeta-peptide implicated in Alzheimer's disease. 98 -269815 cd14808 RAP_D3 C-terminal receptor-associated protein (RAP), Domain 3. This subfamily is the C-terminal domain (D3) of receptor-associated protein, RAP, an antagonist and a specialized chaperone in the endoplasmic reticulum that binds tightly to members of the low-density lipoprotein (LDL) receptor family and prevents them from associating with other ligands. D3 is required for folding and trafficking of low-density lipoprotein receptor-related protein (LRP). In the mildly acidic pH of the Golgi, unfolding of RAP-D3 helical bundle facilitates dissociation of RAP from the LDL receptor type A (LA) repeats of LDLR family proteins. Also, RAP has 3 regions that interact weakly with heparin, two regions located in D3 and one in RAP domain 2 (D2). The double module of complement type repeats, CR56, of LRP binds many ligands including alpha2-macroglobulin, which promotes the catabolism of the Abeta-peptide implicated in Alzheimer's disease. 100 -269871 cd14809 bZIP_AUREO-like Basic leucine zipper (bZIP) domain of blue light (BL) receptor aureochrome (AUREO) and similar bZIP domains. AUREO is a BL-activated transcription factor specific to phototrophic stramenopiles. It has a bZIP and a BL-sensing light-oxygen voltage (LOV) domain. It has been shown to mediate BL-induced branching and regulate the development of the sex organ in Vaucheria frigida. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. This subgroup also includes the Epstein-Barr virus (EBV) immediate-early transcription factor ZEBRA (BZLF1, Zta, Z, EB1). ZEBRA exhibits a variant of the bZIP fold, it has a unique dimer interface and a substantial hydrophobic pocket; it has a C-terminal moiety which stabilizes the coiled coil involved in dimer formation. ZEBRA functions to trigger the switch of EBV's biphasic infection cycle from latent to lytic infection. It activates the promoters of EBV lytic genes by binding ZEBRA response elements (ZREs) and inducing a cascade of expression of over 50 viral genes. It also down regulates latency-associated promoters, is an essential replication factor, induces host cell cycle arrest, and alters cellular immune responses and transcription factor activity. 52 -269872 cd14810 bZIP_u1 Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily. Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269873 cd14811 bZIP_u2 Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily. Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269874 cd14812 bZIP_u3 Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily. Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -269875 cd14813 bZIP_BmCbz-like Basic leucine zipper (bZIP) domain of Bombyx mori chorion b-ZIP transcription factor and similar bZIP domains. Bombyx mori chorion b-ZIP transcription factor, is encoded by the Cbz gene. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. 52 -350615 cd14814 Peptidase_M15 Metalloproteases including zinc D-Ala-D-Ala carboxypeptidase, L-Ala-D-Glu peptidase, L,D-carboxypeptidase, bacteriophage endolysins, and related proteins. This family summarizes zinc-binding metallopeptidases which are mostly carboxypeptidases and dipeptidases, and includes zinc-dependent D-Ala-D-Ala carboxypeptidases, VanX, L-Ala-D-Glu peptidase, L,D-carboxypeptidase and bacteriophage endolysins, amongst other family members. These peptidases belong to MEROPS family M15 which are involved in bacterial cell wall biosynthesis and metabolism. 111 -271352 cd14815 BA_2398_like Putative Bacillus anthracis lipoprotein and related proteins. Uncharacterized protein family found in Bacilli and Gammaproteobacteria 145 -350616 cd14817 D-Ala-D-Ala_dipeptidase_VanX D-Ala-D-Ala dipeptidase VanX. D-Ala-D-Ala dipeptidase (also known as D-alanyl-D-alanine dipeptidase vanX; VanX; EC 3.4.13.22) is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci and other bacteria (both Gram-positive and Gram-negative). It is part of a gene cluster that affects cell-wall biosynthesis. The operon triggers the termination of peptidoglycan precursors by D-Ala-(R)-lactate instead of D-Ala-D-Ala dipeptides. The enzyme is stereospecific, as L-Ala-L-Ala, D-Ala-L-Ala and L-Ala-D-Ala are not substrates. It belongs in the MEROPS peptidase family M15, subfamily D. 199 -341426 cd14818 longin-like Longin-like domains. Longin-like domains are small protein domains present in a variety of proteins and members of protein complexes involved in or required for different steps during the transport of proteins from the ribosome to the ER to the plasma membrane, via the Golgi apparatus. Examples are mu and sigma subunits of the heterotetrameric adaptor protein (AP) complex, zeta and delta subunits of the heterotetrameric F-COPI complex, a subgroup of R-SNARE proteins, a subfamily of the transport protein particle (TRAPP), and the signal recognition particle receptor subunit alpha (SR-alpha). 117 -271349 cd14819 Translin Translin, also known as TB-RBP (testis brain RNA-binding protein). Translin (also known as TB-RBP for Testis Brain RNA-binding protein, a mouse ortholog), is a paralog of its binding partner protein TRAX (translin-associated factor-X) and together they form oligomeric complexes known as C3PO proteins (for component 3 promoter of RNA-induced silencing complex or RISC). DNA damage has been proposed to stimulate transport of Translin into nuclei. It binds to RNA and single-stranded DNA, and its selectivity is modulated by interactions with GTP and TRAX. Translin may also regulate dendritic trafficking of BDNF RNAs as well as function as a key activator of siRNA-mediated silencing in drosophila. Translin and Trax participate in a variety of nucleic acid metabolism pathways in addition to RNAi and have been implicated in a wide range of biological activities, including mRNA processing, cell growth regulation, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis; however, their precise role in some of the processes remains unclear. 206 -271350 cd14820 TRAX Translin-associated factor-X (TRAX). TRAX (translin-associated factor-X) is a paralog of its binding partner protein Translin and together they form oligomeric complexes known as C3PO proteins (for component 3 promoter of RNA-induced silencing complex or RISC). TRAX complexed with Translin is possibly involved in dendritic RNA processing and in DNA double-strand break repair as an interacting partner with C1D, an activator of the DNA-dependent protein kinase involved in the repair of DNA-double strand breaks. It has been shown that Trax subunit, but not Translin, possesses a Glu-Glu-Asp catalytic center with the capacity to digest RNA; this catalytic activity is required for passenger-strand removal and RISC activation in RNAi. In Archaeoglobus fulgidus, Trax-like-subunits assemble into an octameric structure, highly similar to human C3PO; its complex with duplex RNA reveals that the octamer entirely encapsulates a single 13-base-pair RNA duplex inside a large inner cavity. Translin and Trax participate in a variety of nucleic acid metabolism pathways in addition to RNAi and have been implicated in a wide range of biological activities, including mRNA processing, cell growth regulation, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis; however, their precise role in some of the processes remains unclear. 182 -350517 cd14821 BACK_SPOP_like BACK (BTB and C-terminal Kelch) domain found in speckle-type POZ protein (SPOP) and similar proteins. This family includes speckle-type POZ protein (SPOP), speckle-type POZ protein-like (SPOPL), TD and POZ domain-containing proteins (TDPOZ), Drosophila melanogaster protein roadkill, and similar proteins. Both SPOP and SPOPL serve as adaptors of cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination and proteasomal degradation of target proteins. TDPOZ is a family of bipartite animal and plant proteins that contain a tumor necrosis factor receptor-associated factor (TRAF) domain (TD) and a POZ/BTB domain. TDPOZ proteins may be nuclear scaffold proteins involved in transcription regulation in early development and other cellular processes. Drosophila melanogaster protein roadkill, also termed Hh-induced MATH and BTB domain-containing protein (HIB), is a hedgehog-induced BTB protein that modulates hedgehog signaling by degrading Ci/Gli transcription factor. 59 -350518 cd14822 BACK_BTBD9 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 9 (BTBD9). BTBD9 is a risk factor for Restless Legs Syndrome (RLS) encoding a Cullin-3 substrate adaptor. The BTBD9 gene may be associated with antipsychotic-induced RLS in schizophrenia. Mutations in BTBD9 lead to reduced dopamine, increased locomotion and sleep fragmentation. 101 -341427 cd14823 AP_longin-like Longin-like domains of AP complex subunits. AP complex sigma subunits are part of the heterotetrameric adaptor protein (AP) complex which consists of one large subunit (alpha-, gamma-, delta- or epsilon), one beta-, one mu-, and one sigma-subunit. In general, AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In most cases the coat protein is clathrin (AP1 and AP2 complex), but some of the other members of the AP complex family are associated with nonclathrin coats. The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 131 -341428 cd14824 Longin longin domain. Longin-domain is N-terminal domain of a subgroup of R-SNARE proteins, including VAMP7, Ykt6, and Sec22. Longin is one of the approximately 26 components required for transporting proteins from the ER to the plasma membrane, via the Golgi apparatus. It is necessary for the steps of the transfer from the ER to the Golgi complex. Longins are the only R-SNAREs that are common to all eukaryotes, and they are characterized by a conserved N-terminal domain with a profilin-like fold called a longin domain. 122 -341429 cd14825 TRAPPC2_sedlin Trafficking protein particle complex subunit 2. Trafficking protein particle complex subunit 2 (TRAPPC2), also known as Sedlin (SEDL) or TRS20, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. In humans, deletions or point mutations in the SEDL gene cause the genetic disease spondyloepiphyseal dysplasia tarda (SEDT), an X-linked skeletal disorder. 135 -341430 cd14826 SR_alpha_SRX SRX domain of signal recognition particle receptor subunit alpha. Signal recognition particle receptor subunit alpha (SR-alpha) is part of the membrane-associated heterodimeric receptor for the signal recognition particle (SRP). The signal recognition particle (SRP) pathway is highly conserved and plays an important role in the translocation of proteins across and insertion into membranes by targeting the translating ribosome to the endoplasmic reticulum. The N-terminal SRX domain of SR-alpha has a profilin-like fold and has been shown to be the interaction site with the second subunit, SR-beta. 118 -341431 cd14827 AP_sigma AP complex subunit sigma. AP complex sigma subunits are part of the heterotetrameric adaptor protein (AP) complex which consists of one large subunit (alpha-, gamma-, delta- or epsilon), one beta-, one mu-, and one sigma-subunit. In general, AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In most cases the coat protein is clathrin (AP1 and AP2 complex), but some of the other members of the AP complex family are associated with nonclathrin coats. The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 138 -341432 cd14828 AP_Mu_N AP complex subunit mu N-terminal domain. AP complex mu subunits are part of the heterotetrameric adaptor protein (AP) complex which consists of one large subunit (alpha-, gamma-, delta- or epsilon), one beta-, one mu-, and one sigma-subunit. In general, AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In most cases the coat protein is clathrin (AP1 and AP2 complex), but some of the other members of the AP complex family are associated with nonclathrin coats. The mu subunit is comprised of an N-terminal longin domain followed by a C-terminal domain which is involved in the binding of the Y-X-X-Phi sorting signal. 136 -341433 cd14829 Zeta-COP zeta subunit of the F-COPI complex. Zeta subunit of the heterotetrameric F-COPI complex, which consists of one beta-, one gamma-, one delta-, and one zeta subunit, where beta- and gamma- subunits are related to the large adaptor protein (AP) complex subunits, and delta- and zeta- subunits are related to the medium and small AP subunits, respectively. F-COPI forms a coatomer together with the B-COPI subcomplex, which assembles with a small GTPase, ADP-ribosylation factor 1 (ARF1), playing an important role in the formation of COPI complex-coated vesicles. COPI complex-coated vesicles function in the early secretory pathway mediating the retrograde transport from the Golgi to the ER, and intra-Golgi transport. 132 -341434 cd14830 Delta_COP_N delta subunit of the F-COPI complex, N-terminal domain. Delta subunit of the heterotetrameric F-COPI complex, which consists of one beta-, one gamma-, one delta-, and one zeta subunit, where beta- and gamma- subunits are related to the large adaptor protein (AP) complex subunits, and delta- and zeta- subunits are related to the medium and small AP subunits, respectively. F-COPI forms a coatomer together with the B-COPI subcomplex, which assembles with a small GTPase, ADP-ribosylation factor 1 (ARF1), playing an important role in the formation of COPI complex-coated vesicles. COPI complex-coated vesicles function in the early secretory pathway mediating the retrograde transport from the Golgi to the ER, and intra-Golgi transport. 130 -341435 cd14831 AP1_sigma AP-1 complex subunit sigma. AP-1 complex sigma subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large gamma-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In the case of AP-1 the coat protein is clathrin. AP-1 binds the phospholipid PI(4)P which plays a role in its localisation to the trans-Golgi network (TGN)/endosome. The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 143 -341436 cd14832 AP4_sigma AP-4 complex subunit sigma. AP-4 complex sigma subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large epsilon-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. AP-4 does not bind the coat protein clathrin, it is associated with nonclathrin coats. Its phospholipid binding partner is unknown and it is localized in the trans-Golgi network (TGN). The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 138 -341437 cd14833 AP2_sigma AP-2 complex subunit sigma. AP-2 complex sigma subunit is part of the heterotetrameric adaptor protein (AP)-2 complex which consists of one large alpha-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In the case of AP-2 the coat protein is clathrin. AP-2 binds the phospholipid PI(4,5)P2 which is important for its localisation to the plasma membrane. The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 141 -341438 cd14834 AP3_sigma AP-3 complex subunit sigma. AP-3 complex sigma subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large delta-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. AP-3 binds the coat protein clathrin and the phospholipid PI(3)P and it is localized in the endosome. The sigma subunit is comprised of a single longin domain and plays a role in binding dileucine-based sorting signals. 146 -341439 cd14835 AP1_Mu_N AP-1 complex subunit mu N-terminal domain. AP-1 complex mu subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large gamma-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In the case of AP-1 the coat protein is clathrin. AP-1 binds the phospholipid PI(4)P which plays a role in its localisation to the trans-Golgi network (TGN)/endosome. The mu subunit is comprised of an N-terminal longin domain followed by a C-terminal domain which is involved in the binding of the Y-X-X-Phi sorting signal. 139 -341440 cd14836 AP2_Mu_N AP-2 complex subunit mu N-terminal domain. AP-2 complex mu subunit is part of the heterotetrameric adaptor protein (AP)-2 complex which consists of one large alpha-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. In the case of AP-2 the coat protein is clathrin. AP-2 binds the phospholipid PI(4,5)P2 which is important for its localisation to the plasma membrane. The mu subunit is comprised of an N-terminal longin domain followed by a C-terminal domain which is involved in the binding of the Y-X-X-Phi sorting signal. 140 -341441 cd14837 AP3_Mu_N AP-3 complex subunit mu N-terminal domain. AP-3 complex mu subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large delta-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. AP-3 binds the coat protein clathrin and the phospholipid PI(3)P and it is localized in the endosome. The mu subunit is comprised of an N-terminal longin domain followed by a C-terminal domain which is involved in the binding of the Y-X-X-Phi sorting signal. 139 -341442 cd14838 AP4_Mu_N AP-4 complex subunit mu N-terminal domain. AP-4 complex mu subunit is part of the heterotetrameric adaptor protein (AP)-1 complex which consists of one large epsilon-, one beta-, one mu-, and one sigma-subunit. AP complexes link the cytosolic domains of the cargo proteins to the protein coat that induces vesicle budding in the donor compartment during vesicle transport. AP-4 does not bind the coat protein clathrin, it is associated with nonclathrin coats. Its phospholipid binding partner is unknown and it is localized in the trans-Golgi network (TGN). The mu subunit is comprised of an N-terminal longin domain followed by a C-terminal domain which is involved in the binding of the Y-X-X-Phi sorting signal. 137 -350617 cd14840 D-Ala-D-Ala_dipeptidase_Aad D-Ala-D-Ala dipeptidase (includes Lactobacillus plantarum Aad peptidase). D-Ala-D-Ala dipeptidase (also known as D-alanyl-D-alanine dipeptidase vanX; VanX; EC 3.4.13.22) is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci and other bacteria (both Gram-positive and Gram-negative). It is part of a gene cluster that affects cell-wall biosynthesis. The operon triggers the termination of peptidoglycan precursors by D-Ala-(R)-lactate instead of D-Ala-D-Ala dipeptides. The enzyme is stereospecific, as L-Ala-L-Ala, D-Ala-L-Ala and L-Ala-D-Ala are not substrates. This subfamily includes Lactobacillus Aad peptidase and belongs in the MEROPS peptidase family M15, subfamily D. 158 -350618 cd14843 D-Ala-D-Ala_dipeptidase_like D-Ala-D-Ala dipeptidase, includes uncharacterized enzymes. This subfamily of D-Ala-D-Ala dipeptidase (also known as D-alanyl-D-alanine dipeptidase vanX; VanX; EC 3.4.13.22) also includes several uncharacterized proteins. This is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci and other bacteria (both Gram-positive and Gram-negative). It is part of a gene cluster that affects cell-wall biosynthesis. The operon triggers the termination of peptidoglycan precursors by D-Ala-(R)-lactate instead of D-Ala-D-Ala dipeptides. The enzyme is stereospecific, as L-Ala-L-Ala, D-Ala-L-Ala and L-Ala-D-Ala are not substrates. It belongs in the MEROPS peptidase family M15, subfamily D. 160 -350619 cd14844 Zn-DD-carboxypeptidase_like Proteins similar to the zinc-containing D-Ala-D-Ala dipeptidase. The zinc D-Ala-D-Ala carboxypeptidase (Streptomyces-type) (also known as D-alanyl-D-alanine hydrolase; D-alanyl-D-alanine-cleaving carboxypeptidase; DD-carboxypeptidase; DD-carboxypeptidase-transpeptidase; Zn2+ G peptidase; G enzyme; EC 3.4.17.14) is a zinc enzyme that belongs to the peptidase M15 subfamily A. The enzyme catalyzes carboxypeptidation but not transpeptidation reactions involved in bacterial cell wall metabolism. Its specificity with substrates of the type Xaa-Yaa-Zaa shows that the enzyme requires the substrate N-terminus to be blocked and C-terminus to be free, and Yaa and Zaa should be in the D-configuration. It is weakly inhibited by beta-lactams most likely caused by the enzyme active site geometry. 108 -350620 cd14845 L-Ala-D-Glu_peptidase_like L-Ala-D-Glu peptidase, also known as L-alanyl-D-glutamate endopeptidase. This L-Ala-D-Glu peptidase family includes L-alanyl-D-glutamate peptidase (bacteriophage T5) (also known as L-alanoyl-D-glutamate endopeptidase), and Ply118 and Ply500 L-Ala-D-Glu peptidase. Bacteriophage endolysin degrades the peptidoglycan of the bacterial host from within, leading to cell lysis and release of progeny virions. The bacteriophage endolysin Ply118 cleaves between L-Ala and D-Glu residues of Listeria cell wall peptidoglycan. This family belongs to the MEROPS peptidase M15 subfamily C. 126 -350621 cd14846 Peptidase_M15_like Uncharacterized family of the peptidase family M15, subfamily B. This family of uncharacterized proteins, similar to endolysin lys (Clavibacter phage CMP1) and VanYn peptidase, are zinc-binding enzymes that belong to the peptidase M15 subfamily B, involved in bacterial cell wall metabolism. 104 -350622 cd14847 DD-carboxypeptidase_like Uncharacterized proteins of the MEROPS peptidase family M15, subfamily B. This family of uncharacterized proteins similar to D-Ala-D-Ala carboxypeptidase pdcA (Myxococcus-type) are zinc-binding enzymes that belong to the peptidase M15 subfamily B. The enzyme D-Ala-D-Ala carbozypeptidase catalyzes carboxypeptidation reactions involved in bacterial cell wall metabolism. 162 -350623 cd14849 DD-dipeptidase_VanXYc D-Ala-D-Ala dipeptidase/D-Ala-D-Ala carboxypeptidase (VanXYc) and related proteins. VanXYc peptidase (also known as vanXY(C) peptidase, D-alanyl-D-alanine carboxypeptidase D,D-dipeptidase/D,D-carboxypeptidase, vancomycin resistance D,D-dipeptidase) is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci. Some of the vancomycin resistance operons encode VanXY D,D-carboxypeptidase which hydrolyzes both, dipeptide (D-Ala-D-Ala) or pentapeptide (UDP-MurNac-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala). It is a bifunctional enzyme that catalyzes D,D-peptidase and D,D-carboxypeptidase activities. VanXY has higher sequence similarity to VanY than with VanX and hydrolyzes D,D-dipeptides such as D-Ala-D-Ala, whereas VanY is inactive against this substrate; thus having a less restrictive active site to accommodate larger substrates such as UDP-MurNAc-pentapeptide[Ala]. This family belongs to the MEROPS family M15, subfamily B, and includes the D,D-dipeptidases VanXYg and VanXYe. 127 -350624 cd14852 LD-carboxypeptidase L,D-carboxypeptidase DacB and LdcB, and related proteins. This L,D-carboxypeptidase family includes LdcB LD-Carboxypeptidase from Streptococcus pneumoniae, Bacillus anthracis, and Bacillus subtilis, and L,D-carboxypeptidase DacB from Streptococcus pneumonia and Lactococcus lactis. These enzymes are active against cell-wall-derived tetrapeptides and synthetic tetrapeptides lacking the sugar moiety but are inactive against tetrapeptides terminating in L-alanine. L,D-carboxypeptidase DacB plays a key role in the remodeling of S. pneumoniae peptidoglycan during cell division. It adopts a zinc-dependent carboxypeptidase fold and acts as an L,D-carboxypeptidase towards the tetrapeptide L-Ala-D-iGln-L-Lys-D-Ala of the peptidoglycan stem. This family also includes vanY D-Ala-D-Ala carboxypeptidase which is vancomycin-inducible and penicillin-resistant. VanY hydrolyzes depsipeptide- and D-alanyl-D-alanine-containing peptidoglycan precursors; it is insensitive to beta-lactams. All these enzymes belong to the MEROPS family M15 subfamily B. 162 -341443 cd14853 TRAPPC_longin-like Longin-like domains of Trafficking protein particle complex. Longin-like domains of a subfamily of core components of the trafficking protein particle complex (TRAPP), including TRAPPC2, TRAPPC4, TRAPPC1 and a TRAPPC2L, whose function is not known. TRAPP complexes are required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. 132 -341444 cd14854 TRAPPC2L Trafficking protein particle complex subunit 2-like. Trafficking protein particle complex subunit 2-like (TRAPPC2L) is related to TRAPPC2. Its function is not known, but there are indications that it is part of the TRAPP II complex, which is required for distinct tethering events at Golgi membranes. TRAPPC2 has been identified as a general component of transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. 135 -341445 cd14855 TRAPPC1_MUM2 Trafficking protein particle complex subunit 1. Trafficking protein particle complex subunit 1 (TRAPPC1), also known as MUM2 and BET5, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. 132 -341446 cd14856 TRAPPC4_synbindin Trafficking protein particle complex subunit 4. Trafficking protein particle complex subunit 4 (TRAPPC4), also known as synbindin or TRS23, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. 127 -275438 cd14859 PMEI_like pectin methylesterase inhibitor and related proteins. Pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) catalyzes the demethylesterification of homogalacturonans in the cell wall. Its activity is regulated by the proteinaceous PME inhibitor (PMEI) which inhibits PME and invertase through formation of a non-covalent 1:1 complex. Depending on the mode of demethylesterification, PMEI activity results in either loosening or rigidification of the cell wall. PMEI has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. Thus, PMEI probably plays an important physiological role in PME regulation in plants, possessing several potential applications in a food-technological context. CIF (cell-wall inhibitor of beta-fructosidase from tobacco) is structurally similar to PMEI and these members are also included in this model. Comparison of the CIF/INV1 structure with the complex between PMEI/PME suggests a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds. 140 -341482 cd14860 4HBD_NAD 4-hydroxybutyrate dehydrogenase, also called gamma-hydroxybutyrate dehydrogenase, catalyzes the reduction of succinic simialdehyde to 4-hydroxybutyrate in the succinic degradation pathway. 4-hydroxybutyrate dehydrogenase (4HBD) is an iron-containing (type III) NAD-dependent alcohol dehydrogenase. It plays a role in the succinate metabolism biochemical pathway. It catalyzes the reduction of succinic simialdehide to 4-hydroxybutyrate in the succinate degradation pathway This succinate degradation pathway is present in some bacteria which can use succinate as sole carbon source. 371 -341483 cd14861 Fe-ADH-like Iron-containing alcohol dehydrogenases-like. This family contains proteins similar to iron-containing alcohol dehydrogenase (Fe-ADH), most of which have not been characterized. Their specific function is unknown. The protein structure represents a dehydroquinate synthase-like fold and belongs to the alcohol dehydrogenase-like superfamily. It is distinct from other alcohol dehydrogenases which contain different protein domains. Alcohol dehydrogenase catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. 374 -341484 cd14862 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 375 -341485 cd14863 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 380 -341486 cd14864 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 376 -341487 cd14865 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 383 -341488 cd14866 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 384 -271246 cd14867 uS7_Eukaryote Eukaryota homolog of Ribosomal Protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. Eukaryotic RPS7 (also named RPS5) have variable N-terminal regions that affect the efficiency of initiation translation process by impacting small ribosomal subunit to function. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit which is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 185 -271247 cd14868 uS7_Mitochondria_Fungi Fungal Mitochondrial homolog of Ribosomal Protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. Fungal and plants mitochondrial RPS7 shows less homology to the mammalian than to bacterial RPS7. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 151 -271248 cd14869 uS7_Bacteria Bacterial homolog of Ribosomal Protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. Prokaryotic RPS7 is lacking the variable N-terminal region of eukaryotic RPS7. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit which is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 138 -271249 cd14870 uS7_Mitochondria_Mammalian Mammalian Mitochondrial homolog of Ribosomal Protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. MRPS7 shows more homology to bacterial RPS7 than mitochondrial proteins from plants and fungi. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The ribosomes present in mammalian mitochondria have more proteins and low percentage of ribosomal RNA than bacterial ribosomes. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 199 -271250 cd14871 uS7_Chloroplast Chloroplast homolog of Ribosomal Protein S7. Chloroplast RPS7 has both general and specific regulatory roles in chloroplast translation process. uS7, also known as Ribosomal protein (RP)S7, is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. The chloroplasts of plants and algae have bacterial ancestry, but it has adopted novel mechanisms in order to execute its roles within a eukaryotic cell. Chloroplast RPS7 is more homologous to bacterial RPS7 than other eukaryotic mitochondrial proteins. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The chloroplast translation regulation is more complex than in bacteria with additional RNA and chloroplast-unique proteins. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 146 -276839 cd14872 MYSc_Myo4 class IV myosin, motor domain. These myosins all possess a WW domain either N-terminal or C-terminal to their motor domain and a tail with a MyTH4 domain followed by a SH3 domain in some instances. The monomeric Acanthamoebas were the first identified members of this group and have been joined by Stramenopiles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 644 -276840 cd14873 MYSc_Myo10 class X myosin, motor domain. Myosin X is an unconventional myosin motor that functions as a monomer. In mammalian cells, the motor is found to localize to filopodia. Myosin X walks towards the barbed ends of filaments and is thought to walk on bundles of actin, rather than single filaments, a unique behavior. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are a variable number of IQ domains, 2 PH domains, a MyTH4 domain, and a FERM domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 651 -276841 cd14874 MYSc_Myo12 class XXXIII myosin, motor domain. Little is known about the XXXIII class of myosins. They are found predominately in nematodes. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 628 -276842 cd14875 MYSc_Myo13 class XIII myosin, motor domain. These myosins have an N-terminal motor domain, a light-chain binding domain, and a C-terminal GPA/Q-rich domain. There is little known about the function of this myosin class. Two of the earliest members identified in this class are green alga Acetabularia cliftonii, Aclmyo1 and Aclmyo2. They are striking with their short tail of Aclmyo1 of 18 residues and the maximum of 7 IQ motifs in Aclmyo2. It is thought that these myosins are involved in organelle transport and tip growth. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 664 -276843 cd14876 MYSc_Myo14 class XIV myosin, motor domain. These myosins localize to plasma membranes of the intracellular parasites and may be involved in the cell invasion process. Their known functions include: transporting phagosomes to the nucleus and perturbing the developmentally regulated elimination of the macronucleus during conjugation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to their motor domain these myosins have a MyTH4-FERM protein domain combination. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 649 -276844 cd14878 MYSc_Myo16 class XVI myosin, motor domain. These XVI type myosins are also known as Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3/NYAP3. Myo16 is thought to play a regulatory role in cell cycle progression and has been recently implicated in Schizophrenia. Class XVI myosins are characterized by an N-terminal ankyrin repeat domain and some with chitin synthase domains that arose independently from the ones in the class XVII fungal myosins. They bind protein phosphatase 1 catalytic subunits 1alpha/PPP1CA and 1gamma/PPP1CC. Human Myo16 interacts with ACOT9, ARHGAP26 and PIK3R2 and with components of the WAVE1 complex, CYFIP1 and NCKAP1. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 656 -276845 cd14879 MYSc_Myo17 class XVII myosin, motor domain. This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 647 -276846 cd14880 MYSc_Myo19 class XIX myosin, motor domain. Monomeric myosin-XIX (Myo19) functions as an actin-based motor for mitochondrial movement in vertebrate cells. It contains a variable number of IQ domains. Human myo19 contains a motor domain, three IQ motifs, and a short tail. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 658 -276847 cd14881 MYSc_Myo20 class XX myosin, motor domain. These class 20 myosins are primarily insect myosins with such members as Drosophila, Daphnia, and mosquitoes. These myosins contain a single IQ motif in the neck region. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 633 -276848 cd14882 MYSc_Myo21 class XXI myosin, motor domain. The myosins here are comprised of insects. Leishmania class XXI myosins do not group with them. Myo21, unlike other myosin proteins, contains UBA-like protein domains and has no structural or functional relationship with the myosins present in other organisms possessing cilia or flagella. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They have diverse tails with IQ, WW, PX, and Tub domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 642 -276849 cd14883 MYSc_Myo22 class XXII myosin, motor domain. These myosins possess an extended neck with multiple IQ motifs such as found in class V, VIII, XI, and XIII myosins. These myosins are defined by two tandem MyTH4 and FERM domains. The apicomplexan, but not diatom myosins contain 4-6 WD40 repeats near the end of the C-terminal tail which suggests a possible function of these myosins in signal transduction and transcriptional regulation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 661 -276850 cd14884 MYSc_Myo23 class XXIII myosin, motor domain. These myosins are predicted to have a neck region with 1-2 IQ motifs and a single MyTH4 domain in its C-terminal tail. The lack of a FERM domain here is odd since MyTH4 domains are usually found alongside FERM domains where they bind to microtubules. At any rate these Class XXIII myosins are still proposed to function in the apicomplexan microtubule cytoskeleton. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 685 -276851 cd14886 MYSc_Myo25 class XXV myosin, motor domain. These myosins are MyTH-FERM myosins that play a role in cell adhesion and filopodia formation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 650 -276852 cd14887 MYSc_Myo26 class XXVI myosin, motor domain. These MyTH-FERM myosins are thought to be related to the other myosins that have a MyTH4 domain such as class III, VII, IX, X , XV, XVI, XVII, XX, XXII, XXV, and XXXIV. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 725 -276853 cd14888 MYSc_Myo27 class XXVII myosin, motor domain. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 667 -276854 cd14889 MYSc_Myo28 class XXVIII myosin, motor domain. These myosins are found in fish, chicken, and mollusks. The tail regions of these class-XXVIII myosins consist of an IQ motif, a short coiled-coil region, and an SH2 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 659 -276855 cd14890 MYSc_Myo29 class XXIX myosin, motor domain. Class XXIX myosins are comprised of Stramenopiles and have very long tail domains consisting of three IQ motifs, short coiled-coil regions, up to 18 CBS domains, a PB1 domain, and a carboxy-terminal transmembrane domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 662 -276856 cd14891 MYSc_Myo30 class XXX myosin, motor domain. Myosins of class XXX are composed of an amino-terminal SH3-like domain, two IQ motifs, a coiled-coil region and a PX domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 645 -276857 cd14892 MYSc_Myo31 class XXXI myosin, motor domain. Class XXXI myosins have a very long neck region consisting of 17 IQ motifs and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 656 -276858 cd14893 MYSc_Myo32 class XXXII myosin, motor domain. Class XXXII myosins do not contain any IQ motifs, but possess tandem MyTH4 and FERM domains. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 741 -276859 cd14894 MYSc_Myo33 class myosin, motor domain. Class XXXIII myosins have variable numbers of IQ domain and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 871 -276860 cd14895 MYSc_Myo34 class XXXIV myosin, motor domain. Class XXXIV myosins are composed of an IQ motif, a short coiled-coil region, 5 tandem ANK repeats, and a carboxy-terminal FYVE domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 704 -276861 cd14896 MYSc_Myo35 class XXXV myosin, motor domain. This class of metazoan myosins contains 2 IQ motifs, 2 MyTH4 domains, a single FERM domain, and an SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 644 -276862 cd14897 MYSc_Myo36 class XXXVI myosin, motor domain. This class of molluscan myosins contains a motor domain followed by a GlcAT-I (Beta1,3-glucuronyltransferase I) domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 635 -276863 cd14898 MYSc_Myo37 class XXXVII myosin, motor domain. The class XXXVIII myosins are comprised of fungi. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 578 -276864 cd14899 MYSc_Myo38 class XXXVIII myosin. The class XXXVIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 717 -276865 cd14900 MYSc_Myo39 class XXXIX myosin, motor domain. The class XXXIX myosins are found in Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 627 -276866 cd14901 MYSc_Myo40 class XL myosin, motor domain. The class XL myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 655 -276867 cd14902 MYSc_Myo41 class XLI myosin, motor domain. The class XLI myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 716 -276868 cd14903 MYSc_Myo42 class XLII myosin, motor domain. The class XLII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 658 -276869 cd14904 MYSc_Myo43 class XLIII myosin, motor domain. The class XLIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 653 -276870 cd14905 MYSc_Myo44 class XLIV myosin, motor domain. There is little known about the function of the myosin XLIV class. Members here include cellular slime mold Polysphondylium and soil-living amoeba Dictyostelium. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 673 -276871 cd14906 MYSc_Myo45 class XLV myosin, motor domain. The class XLVI myosins are comprised of slime molds Dictyostelium and Polysphondylium. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 715 -276872 cd14907 MYSc_Myo46 class XLVI myosin, motor domain. The class XLVI myosins are comprised of Alveolata. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 669 -276873 cd14908 MYSc_Myo47 class XLVII myosin, motor domain. The class XLVII myosins are comprised of Stramenopiles. Not much is known about this myosin class. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 682 -276874 cd14909 MYSc_Myh1_insects_crustaceans class II myosin heavy chain 1, motor domain. Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in insects and crustaceans. Myh1 is a type I skeletal muscle myosin that in Humans is encoded by the MYH1 gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 666 -276875 cd14910 MYSc_Myh1_mammals class II myosin heavy chain 1, motor domain. Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in mammals. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 671 -276876 cd14911 MYSc_Myh2_insects_mollusks class II myosin heavy chain 2, motor domain. Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in insects and mollusks. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 674 -276877 cd14912 MYSc_Myh2_mammals class II myosin heavy chain 2, motor domain. Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in mammals. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 673 -276878 cd14913 MYSc_Myh3 class II myosin heavy chain 3, motor domain. Myosin motor domain of fetal skeletal muscle myosin heavy chain 3 (MYHC-EMB, MYHSE1, HEMHC, SMHCE) in tetrapods including mammals, lizards, and frogs. This gene is a member of the MYH family and encodes a protein with an IQ domain and a myosin head-like domain. Mutations in this gene have been associated with two congenital contracture (arthrogryposis) syndromes, Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 668 -276879 cd14915 MYSc_Myh4 class II myosin heavy chain 4, motor domain. Myosin motor domain of skeletal muscle myosin heavy chain 4 (also called MYH2B, MyHC-2B, MyHC-IIb). Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 671 -276880 cd14916 MYSc_Myh6 class II myosin heavy chain 6, motor domain. Myosin motor domain of alpha (or fast) cardiac muscle myosin heavy chain 6. Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 670 -276881 cd14917 MYSc_Myh7 class II myosin heavy chain 7, motor domain. Myosin motor domain of beta (or slow) type I cardiac muscle myosin heavy chain 7 (also called CMH1, MPD1, and CMD1S). Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory light chain subunits. It is expressed predominantly in normal human ventrical and in skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 668 -276882 cd14918 MYSc_Myh8 class II myosin heavy chain 8, motor domain. Myosin motor domain of perinatal skeletal muscle myosin heavy chain 8 (also called MyHC-peri, MyHC-pn). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. A mutation in this gene results in trismus-pseudocamptodactyly syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 668 -276883 cd14919 MYSc_Myh9 class II myosin heavy chain 9, motor domain. Myosin motor domain of non-muscle myosin heavy chain 9 (also called NMMHCA, NMHC-II-A, MHA, FTNS, EPSTS, and DFNA17). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. The encoded protein is a myosin IIA heavy chain that contains an IQ domain and a myosin head-like domain which is involved in several important functions, including cytokinesis, cell motility and maintenance of cell shape. Defects in this gene have been associated with non-syndromic sensorineural deafness autosomal dominant type 17, Epstein syndrome, Alport syndrome with macrothrombocytopenia, Sebastian syndrome, Fechtner syndrome and macrothrombocytopenia with progressive sensorineural deafness. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 670 -276952 cd14920 MYSc_Myh10 class II myosin heavy chain 10, motor domain. Myosin motor domain of non-muscle myosin heavy chain 10 (also called NMMHCB). Mutations in this gene have been associated with May-Hegglin anomaly and developmental defects in brain and heart. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 673 -276885 cd14921 MYSc_Myh11 class II myosin heavy chain 11, motor domain. Myosin motor domain of smooth muscle myosin heavy chain 11 (also called SMMHC, SMHC). The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. Inversion of the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Mutations in MYH11 have been described in individuals with thoracic aortic aneurysms leading to acute aortic dissections with patent ductus arteriosus. MYH11 mutations are also thought to contribute to human colorectal cancer and are also associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 zebrafish. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 673 -276887 cd14923 MYSc_Myh13 class II myosin heavy chain 13, motor domain. Myosin motor domain of skeletal muscle myosin heavy chain 13 (also called MyHC-eo) in mammals, chicken, and green anole. Myh13 is a myosin whose expression is restricted primarily to the extrinsic eye muscles which are specialized for function in eye movement. Class II myosins, also called conventional myosins, are the myosin type responsible for producing muscle contraction in muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 671 -276953 cd14927 MYSc_Myh7b class II myosin heavy chain 7b, motor domain. Myosin motor domain of cardiac muscle, beta myosin heavy chain 7b (also called KIAA1512, dJ756N5.1, MYH14, MHC14). MYH7B is a slow-twitch myosin. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 676 -276892 cd14929 MYSc_Myh15_mammals class II myosin heavy chain 15, motor domain. Myosin motor domain of sarcomeric myosin heavy chain 15 in mammals (also called KIAA1000) . MYH15 is a slow-twitch myosin. Myh15 is a ventricular myosin heavy chain. Myh15 is absent in embryonic and fetal muscles and is found in orbital layer of extraocular muscles at birth. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 662 -276893 cd14930 MYSc_Myh14_mammals class II myosin heavy chain 14 motor domain. Myosin motor domain of non-muscle myosin heavy chain 14 (also called FLJ13881, KIAA2034, MHC16, MYH17). Its members include mammals, chickens, and turtles. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. 670 -276895 cd14932 MYSc_Myh18 class II myosin heavy chain 18, motor domain. Myosin motor domain of muscle myosin heavy chain 18. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 676 -276896 cd14934 MYSc_Myh16 class II myosin heavy chain 16, motor domain. Myosin motor domain of myosin heavy chain 16 pseudogene (also called MHC20, MYH16, and myh5), encoding a sarcomeric myosin heavy chain expressed in nonhuman primate masticatory muscles, is inactivated in humans. This cd contains Myh16 in mammals. MYH16 has intermediate fibres between that of slow type 1 and fast 2B fibres, but exert more force than any other fibre type examined. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. 659 -276897 cd14937 MYSc_Myo24A class XXIV A myosin, motor domain. These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The function of the class XXIV myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 637 -276898 cd14938 MYSc_Myo24B class XXIV B myosin, motor domain. These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The functions of these myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 713 -320093 cd14939 7tmD_STE2 fungal alpha-factor pheromone receptor STE2, member of the class D family of seven-transmembrane G protein-coupled receptors. This subfamily represents the alpha-factor pheromone receptor encoded by the STE2 gene, which is required for pheromone sensing and mating in haploid cells of the yeast Saccharomyces cerevisiae. The STE2-encoded seven-transmembrane domain receptor is a member of the class D GPCRs. Class D receptors are composed of two major subfamilies: Ste2 and Ste3. These two GPCRs (Ste2 and Ste3) sense the polypeptide mating pheromones, alpha-factor and a-factor, which activate a G protein-coupled receptors on the surface of the opposite yeast-mating haploid-types (MATa and MAT-alpha), respectively. Activation of these receptors by pheromones leads to activation of the mitogen-activated protein kinase (MAPK) signal transduction cascades, G1 cell cycle arrest, and polarized cell growth in the direction of the partner cell (a process called shmooing), which ultimately induces cell-cell fusion and the formation of a diploid zygote. Like all GPCRs, these pheromone mating factor receptors possess the same basic architecture of seven-transmembrane (7TM) domains and share common signaling mechanisms; however, there is no significant sequence similarity either between Ste2 and Ste3, or between these two receptors and the other 7TM GPCRs. Thus, STE2 and STE3 represent phylogenetically distinct groups. 265 -320094 cd14940 7tmE_cAMP_R_Slime_mold slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G protein-coupled receptors. This family represents the class E of seven-transmembrane G-protein coupled receptors found in soil-living amoebas, commonly referred to as slime molds. The class E family includes cAMP receptors (cAR1-4) and cAMP receptors-like proteins (CrlA-C) from Dictyostelium discoideum, and their highly homologous cAMP receptors (TasA and TasB) from Polysphondylium pallidum. So far, four subtypes of cAMP receptors (cAR1-4) have been identified that play an essential role in the detection and transmit of the periodic extracellular cAMP waves that regulate chemotactic cell movement during Dictyostelium development, from the unicellular amoeba aggregate into many multicellular slugs and then differentiate into a sporocarp, a fruiting body with cells specialized for different functions. These four subtypes differ in their expression levels and patterns during development. cAR1 is high-affinity receptor that is the first one to be expressed highly during early aggregation and continues to be expressed at low levels during later developmental stages. cAR1 detects extracellular cAMP and is coupled to G-alpha2 protein. Cells lacking cAR1 fail to aggregate, demonstrating that cAR1 is responsible for aggregation. During later aggregation the high-affinity cAR3 receptor is expressed at low levels. Nonetheless, cells lacking cAR3 do not show an obviously altered pattern of development and are still able to aggregate into fruiting bodies. In contrast, cAR2 and cAR4 are low affinity receptors expressed predominantly after aggregation in pre-stalk cells. cAR2 is essential for normal tip formation and deletion of the receptor arrests development at the mound stage. On the other hand, CAR4 regulates axial patterning and cellular differentiation, and deletion of the receptor results in defects during culmination. Furthermore, three cAMP receptor-like proteins (CrlA-C) were identified in Dictyostelium that show limited sequence similarity to the cAMP receptors. Of these CrlA is thought to be required for normal cell growth and tip formation in developing aggregates. 256 -271344 cd14941 TRAPPC_bet3-like Bet3-like domains of TRAPP. Bet3-like domains of a subfamily of core components of the trafficking protein particle complex (TRAPP) include TRAPPC3, TRAPPC5, and TRAPPC6A. TRAPP complexes play a key role in the regulation of ER-to-Golgi and intra-Golgi transport by tethering the vesicle membrane to the target membrane. TRAPPs are large multimeric protein complexes which contain six core subunits that belong to two distinct structural families, the bet3-like family and the sedlin-like family. 152 -271345 cd14942 TRAPPC3_bet3 Bet3-TRAPPC3 subunit of the TRAPP complex. Bet3 (also known as TRAPPC3) subunit of the trafficking protein particle complex (TRAPP). Bet3 is one of the six core subunits of TRAPP complexes which play a key role in the regulation of ER-to-Golgi and intra-Golgi transport by tethering the vesicle membrane to the target membrane. TRAPPC3 has also been shown to be additionally important for membrane fusion during the formation of vesicular tubular clusters (VTC). In its core, Bet3 forms a hydrophobic channel that also contains a conserved acylation site. 155 -271346 cd14943 TRAPPC5_Trs31 Trs31 subunit of the TRAPP complex. TRS31 (also known as TRAPPC5) subunit of the trafficking protein particle complex (TRAPP). TRS31 is one of the six core subunits of TRAPP complexes which play a key role in the regulation of ER-to-Golgi and intra-Golgi transport by tethering the vesicle membrane to the target membrane. 158 -271347 cd14944 TRAPPC6A_Trs33 Trs33 subunit of the TRAPP complex. TRS33 (also known as TRAPPC6A) subunit of the trafficking protein particle complex (TRAPP). TRS33 is one of the six core subunits of TRAPP complexes which play a key role in the regulation of ER-to-Golgi and intra-Golgi transport by tethering the vesicle membrane to the target membrane. In mammals, mutations in TRAPPC6a cause mosaic loss of coat pigment. 167 -271253 cd14945 Myo5-like_CBD Cargo binding domain of myosin 5 and similar proteins. Class V myosins are well studied unconventional myosins, represented by three paralogs (Myo5 a,b,c) in vertebrates and two (myo2 and myo4) in fungi and related to plant class XI myosins. Their C-terminal cargo binding domains is important for the binding of a diverse set of cargos, including membrane vesicles, organelles, proteins and mRNA. MyoV-CBDs interact with several adaptor proteins that in turn interact with the cargo. 288 -271343 cd14947 NBR1_like Functionally uncharacterized domain in neighbor of Brca1 Gene 1 and related proteins. NBR1 has been characterized as a specific late endosomal protein, which might play a role in receptor (RTK) trafficking. Specifically, NBR1 was shown to inhibit ligand-mediated receptor internalization from the cell surface. The region covered by this domain model may be involved in that function, as the C-terminus (which contains a UBA domain) was shown to be essential but not sufficient by itself. In an earlier yeast two-hybrid study, the region in mouse NBR1 covered by this domain has been shown to interact with CIB (calcium and integrin-binding protein) and FEZ1 (fasciculation and elongation protein zeta-1). Thus, NBR1 may play a role in cellular signalling pathways and possibly in neural development. 112 -271342 cd14948 BACON Bacteroidetes-Associated Carbohydrate-binding (putative) Often N-terminal (BACON) domain. The BACON domain is found in diverse domain architectures and accociated with a wide variety of domains, including carbohydrate-active enzymes and proteases. It was named for its suggested function of carbohydrate binding; the latter was inferred from domain architectures, sequence conservation, and phyletic distribution. However, recent experimental data suggest that its primary function in Bacteroides ovatus endo-xyloglucanase BoGH5A is to distance the catalytic module from the cell surface and confer additional mobility to the catalytic domain for attack of the polysaccharide. No evidence for a direct role in carbohydrate binding could be found in that case. The large majority of BACON domains are found in Bacteroidetes. 83 -271340 cd14949 Asparaginase_2_like_3 Uncharacterized bacterial subfamily of the L-Asparaginase type 2-like enzymes, an Ntn-hydrolase family. The wider family of Asparaginase 2-like enzymes includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoprotein. Taspase1 catalyzes the cleavage of the Mix Lineage Leukemia (MLL) nuclear protein and transcription factor TFIIA. L-Asparaginase type 2 hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzymes of this family undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. 280 -271341 cd14950 Asparaginase_2_like_2 Uncharacterized archaebacterial subfamily of the L-Asparaginase type 2-like enzymes, an Ntn-hydrolase family. The wider family of Asparaginase 2-like enzymes includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoprotein. Taspase1 catalyzes the cleavage of the Mix Lineage Leukemia (MLL) nuclear protein and transcription factor TFIIA. L-Asparaginase type 2 hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzymes of this family undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. 251 -271321 cd14951 NHL-2_like NHL repeat domain of NHL repeat-containing protein 2 and similar proteins. NHL repeat-containing protein 2 (NHLRC2) and related bacterial proteins; members of this eukaryotic and bacterial family are uncharacterized, the NHL repeat domain is found C-terminally of a thioredoxin domain. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 334 -271322 cd14952 NHL_PKND_like NHL repeat domain of the protein kinase PknD. PknD is a mycobacterial transmembrane protein with a cytosolic kinase domain and an extracellular sensor domain that contains NHL repeats. It plays a key role in the development of central nervous system tuberculosis, by mediating the invasion of host brain endothelia. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 247 -271323 cd14953 NHL_like_1 Uncharacterized NHL-repeat domain in bacterial proteins. This bacterial family of NHL-repeat domains is found in a variety of domain architectures. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 323 -271324 cd14954 NHL_TRIM71_like NHL repeat domain of the tripartite motif-containing protein 71 (TRIM71) and related proteins. The E3 ubiquitin-protein ligase TRIM71 (LIN-41) is a RING-finger domain containing protein that has been associated with a variety of activities. The NHL repeat domain appears responsible for targeting TRIM71 to mRNAs, and TRIM71 appears responsible for translational repression and mRNA decay. Together with BRAT, TRIM71 may be part of a family of mRNA repressors that regulate proliferation and differentiation. TRIM has been shown to negatively regulate stability of Lin28B, which inhibits the pre-let-7 miRNA precursor from maturing by recruiting the terminal uriyltransferase TUT4. This family also contains the Caenorhabditis elegans NHL repeat containing 1 (NHL-1), a RING-finger-containing protein that was shown to interact with E2 ubiquitin conjugating enzymes in two-hybrid screens. Its domain architecture resembles that of the E3 ubiquitin protein ligases TRIM2, TRIM32, and TRIM71. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 285 -271325 cd14955 NHL_like_4 Uncharacterized NHL-repeat domain in bacterial and archaeal proteins. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 279 -271326 cd14956 NHL_like_3 Uncharacterized NHL-repeat domain in bacterial proteins. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 274 -271327 cd14957 NHL_like_2 Uncharacterized NHL-repeat domain in bacterial and archaeal proteins. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 280 -271328 cd14958 NHL_PAL_like Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL, EC 4.3.2.5). PAL catalyzes the N-dealkylation of peptidyl-alpha-hydroxyglycine, which results in an alpha-amidated peptide and glyoxylate. Amidation of the C-terminus is required for the activity of many peptide hormones and neuropeptides. The catalytic residues of PAL are located on several NHL-repeats. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 300 -271329 cd14959 NHL_brat_like NHL repeat domain of the Drosophila brain-tumor protein (brat) and similar proteins. Drosophila brain-tumor (brat) has been identified as a tumor suppressor that negatively regulates cell proliferation during development of the Drosophila larval brain. It appears to be recruited to the 3'-untranslated region of hunchback RNA and regulates its translation by forming a complex with Pumilio (Pum) and Nanos (Nos). The NHL domain of brat appears to be involved by interacting with the RNA-binding Puf repeats of Pumilio, a sequence-specific RNA binding protein. This family also contains the Caenorhabditis elegans homolog NCL-1. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 274 -271330 cd14960 NHL_TRIM2_like NHL repeat domain of the tripartite motif-containing protein 2 (TRIM2) and related proteins. The E3 ubiquitin-protein ligase TRIM2 is responsible for ubiquinating the apoptosis-inducing Bcl-2-interacting mediator of cell death (Bim), when the latter is phosphorylated by p42/p44 MAPK. TRIM2 regulates the ubiquitination of neurofilament light subunit (NF-L), deficiencies in TRIM2 result in increased NF-L levels in axons and subsequent axonopathy. TRIM2 is also involved in regulating axon outgrowth during development; it contains RING and BBOX domains, the NHL repeat domain is located at its C-terminus. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 274 -271331 cd14961 NHL_TRIM32_like NHL repeat domain of the tripartite motif-containing protein 32 (TRIM32) and related proteins. The E3 ubiquitin-protein ligase TRIM32 (HT2A) is widely expressed and is responsible for ubiquinating a large variety of targets, including dysbindin (DTNBP1), NPHP7/Glis2, TAp73, and others. TRIM32 promotes disassociation of the plakoglobin-PI3K complex and reduces PI3K-Akt-FoxO signaling. Mutations in TRIM32 have been implemented in the two diverse diseases limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet-Biedl syndrome type 11 (BBS11). The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 273 -271332 cd14962 NHL_like_6 Uncharacterized NHL-repeat domain in bacterial proteins. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 271 -271333 cd14963 NHL_like_5 Uncharacterized NHL-repeat domain in bacterial proteins. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies, typically as 6 instances. It is about 40 residues long and resembles the WD repeat and other beta-propeller structures. 268 -341315 cd14964 7tm_GPCRs seven-transmembrane G protein-coupled receptor superfamily. This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. 268 -320096 cd14965 7tm_Opsins_type1 type 1 opsins, member of the seven-transmembrane GPCR superfamily. This group represents the microbial rhodopsin family, also known as type 1 rhodopsins, which can function as light-dependent ion pumps, cation channels, and sensors. They have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. Members of the type I rhodopsin family include: light-driven inward chloride pump halorhodopsin (HR); light-driven outward proton pump bacteriorhodopsin (BR); light-gated cation channel channelrhodopsin (ChR); light-sensor activating transmembrane transducer proteins, sensory rhodopsin I and II (SRI and II); light-sensor activating soluble transducer protein Anabaena sensory rhodopsin (ASR); and other light-driven proton pumps such as blue-light-absorbing and green-light absorbing proteorhodopsins, among others. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins. 214 -320097 cd14966 7tmD_STE3 fungal a-factor pheromone receptor STE3, member of the class D family of seven-transmembrane G protein-coupled receptors. This subfamily represents the a-factor pheromone receptor encoded by the STE3 gene, which is required for pheromone sensing and mating in haploid cells of the yeast Saccharomyces cerevisiae. The STE3-encoded seven-transmembrane domain receptor is a member of the class D GPCRs. Class D receptors are composed of two major subfamilies: Ste2 and Ste3. These two GPCRs (Ste2 and Ste3) sense the polypeptide mating pheromones, alpha-factor and a-factor, which activate a G protein-coupled receptors on the surface of the opposite yeast-mating haploid-types (MATa and MAT-alpha), respectively. Activation of these receptors by pheromones leads to activation of the mitogen-activated protein kinase (MAPK) signal transduction cascades, G1 cell cycle arrest, and polarized cell growth in the direction of the partner cell (a process called shmooing), which ultimately induces cell-cell fusion and the formation of a diploid zygote. Like all GPCRs, these pheromone mating factor receptors possess the same basic architecture of seven-transmembrane (7TM) domains and share common signaling mechanisms; however, there is no significant sequence similarity either between Ste2 and Ste3, or between these two receptors and the other 7TM GPCRs. Thus, STE2 and STE3 represent phylogenetically distinct groups. 259 -320098 cd14967 7tmA_amine_R-like amine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. Amine receptors of the class A family of GPCRs include adrenoceptors, 5-HT (serotonin) receptors, muscarinic cholinergic receptors, dopamine receptors, histamine receptors, and trace amine receptors. The receptors of amine subfamily are major therapeutic targets for the treatment of neurological disorders and psychiatric diseases. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 259 -341316 cd14968 7tmA_Adenosine_R adenosine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors. The adenosine receptors (or P1 receptors), a family of G protein-coupled purinergic receptors, bind adenosine as their endogenous ligand. There are four types of adenosine receptors in human, designated as A1, A2A, A2B, and A3. Each type is encoded by a different gene and has distinct functions with some overlap. For example, both A1 and A2A receptors are involved in regulating myocardial oxygen consumption and coronary blood flow in the heart, while the A2A receptor also has a broad spectrum of anti-inflammatory effects in the body. These two receptors also expressed in the brain, where they have important roles in the release of other neurotransmitters such as dopamine and glutamate, while the A2B and A3 receptors found primarily in the periphery and play important roles in inflammation and immune responses. The A1 and A3 receptors preferentially interact with G proteins of the G(i/o) family, thereby lowering the intracellular cAMP levels, whereas the A2A and A2B receptors interact with G proteins of the G(s) family, activating adenylate cyclase to elevate cAMP levels. 285 -320100 cd14969 7tmA_Opsins_type2_animals type 2 opsins in animals, member of the class A family of seven-transmembrane G protein-coupled receptors. This rhodopsin family represents the type 2 opsins found in vertebrates and invertebrates except sponge. Type 2 opsins primarily function as G protein coupled receptors and are responsible for vision as well as for circadian rhythm and pigment regulation. On the contrary, type 1 opsins such as bacteriorhodopsin and proteorhodopsin are found in both prokaryotic and eukaryotic microbes, functioning as light-gated ion channels, proton pumps, sensory receptors and in other unknown functions. Although these two opsin types share seven-transmembrane domain topology and a conserved lysine reside in the seventh helix, type 1 opsins do not activate G-proteins and are not evolutionarily related to type 2. Type 2 opsins can be classified into six distinct subfamilies including the vertebrate opsins/encephalopsins, the G(o) opsins, the G(s) opsins, the invertebrate G(q) opsins, the photoisomerases, and the neuropsins. 284 -320101 cd14970 7tmA_Opioid_R-like opioid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes opioid receptors, somatostatin receptors, melanin-concentrating hormone receptors (MCHRs), and neuropeptides B/W receptors. Together they constitute the opioid receptor-like family, members of the class A G-protein coupled receptors. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and are involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. MCHR binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Neuropeptides B/W receptors are primarily expressed in the CNS and stimulate the cortisol secretion by activating the adenylate cyclase- and the phospholipase C-dependent signaling pathways. 282 -320102 cd14971 7tmA_Galanin_R-like galanin receptor and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes G-protein coupled galanin receptors, kisspeptin receptor and allatostatin-A receptor (AstA-R) in insects. These receptors, which are members of the class A of seven transmembrane GPCRs, share a high degree of sequence homology among themselves. The galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, eating disorders, and epilepsy, among many others. KiSS1-derived peptide receptor (also known as GPR54 or kisspeptin receptor) binds the peptide hormone kisspeptin (metastin), which encoded by the metastasis suppressor gene (KISS1) expressed in various endocrine and reproductive tissues. AstA-R is a G-protein coupled receptor that binds allatostatin A. Three distinct types of allatostatin have been identified in the insects and crustaceans: AstA, AstB, and AstC. They both inhibit the biosynthesis of juvenile hormone and exert an inhibitory influence on food intake. Therefore, allatostatins are considered as potential targets for insect control. 281 -341317 cd14972 7tmA_EDG-like endothelial differentiation gene family, member of the class A family of seven-transmembrane G protein-coupled receptors. This group represents the endothelial differentiation gene (Edg) family of G-protein coupled receptors, melanocortin/ACTH receptors, and cannabinoid receptors as well as their closely related receptors. The Edg GPCRs bind blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). Melanocortin receptors bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. Two types of cannabinoid receptors, CB1 and CB2, are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. 275 -320104 cd14973 7tmA_Mrgpr mas-related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. Also included in this family is Mas-related G-protein coupled receptor 1-like (MAS1L) which is only found in primates. The angiotensin-II metabolite angiotensin is an endogenous ligand for MAS1L. 272 -320105 cd14974 7tmA_Anaphylatoxin_R-like anaphylatoxin receptors and related G protein-coupled chemokine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily of G-protein coupled receptors includes anaphylatoxin receptors, formyl peptide receptors (FPR), prostaglandin D2 receptor 2, GPR1, and related chemokine receptors. The anaphylatoxin receptors are a group of G-protein coupled receptors that bind anaphylatoxins. The members of this group include C3a and C5a receptors. The formyl peptide receptors (FPRs) are chemoattractant GPCRs that involved in mediating immune responses to infection. They are expressed mainly on polymorphonuclear and mononuclear phagocytes and bind N-formyl-methionyl peptides (FMLP), which are derived from the mitochondrial proteins of ruptured host cells or invading pathogens. Chemokine receptor-like 1 (also known as chemerin receptor 23) is a GPCR for the chemoattractant adipokine chemerin, also known as retinoic acid receptor responder protein 2 (RARRES2), and for the omega-3 fatty acid derived molecule resolvin E1. Interaction with chemerin induces activation of the MAPK and PI3K signaling pathways leading to downstream functional effects, such as a decrease in immune responses, stimulation of adipogenesis, and angiogenesis. On the other hand, resolvin E1 negatively regulates the cytokine production in macrophages by reducing the activation of MAPK1/3 and NF-kB pathways. Prostaglandin D2 receptor, also known as CRTH2, is a chemoattractant G-protein coupled receptor expressed on T helper type 2 cells that binds prostaglandin D2 (PGD2). PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses and also causes vasodilation. PGD2 exerts its inflammatory effects by binding to two G-protein coupled receptors, the D-type prostanoid receptor (DP) and PD2R2 (CRTH2). PD2R2 couples to the G protein G(i/o) type which leads to a reduction in intracellular cAMP levels and an increase in intracellular calcium. GPR1 is an orphan receptor that can be activated by the leukocyte chemattractant chemerin, thereby suggesting that some of the anti-inflammatory actions of chemerin may be mediated through GPR1. 274 -320106 cd14975 7tmA_LTB4R leukotriene B4 receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is a powerful chemotactic activator for granulocytes and macrophages. Two receptors for LTB4 have been identified: a high-affinity receptor (LTB4R1 or BLT1) and a low-affinity receptor (TB4R2 or BLT2). Both BLT1 and BLT2 receptors belong to the rhodopsin-like G-protein coupled receptor superfamily and primarily couple to G(i) proteins, which lead to chemotaxis, calcium mobilization, and inhibition of adenylate cyclase. In some cells, they can also couple to the G(q)-like protein, G16, and activate phospholipase C. LTB4 is involved in mediating inflammatory processes, immune responses, and host defense against infection. Studies have shown that LTB4 stimulates leukocyte extravasation, neutrophil degranulation, lysozyme release, and reactive oxygen species generation. 278 -320107 cd14976 7tmA_RNL3R relaxin-3 like peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This G protein-coupled receptor subfamily is composed of the relaxin-3 like peptide receptors, RNL3R1 and RNL3R2, and similar proteins. The relaxin-3 like peptide family includes relaxin-1, -2, -3, as well as insulin-like (INSL) peptides 3 to 6. RNL3/relaxin-3 and INSL5 are the endogenous ligands for RNL3R1 and RNL3R2, respectively. RNL3R1, also called GPCR135 or RXFP3, is predominantly expressed in the brain and is implicated in stress, anxiety, feeding, and metabolism. Insulin-like peptide 5 (INSL5), the endogenous ligand for RNL3R2 (also called GPCR142 or RXFP4), plays a role in fat and glucose metabolism. INSL5 is highly expressed in human rectal and colon tissues. Both RNL3R1 and RNL3R2 signal through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation. RNL3R1 is shown to activate Erk1/2 signaling pathway. 290 -320108 cd14977 7tmA_ET_R-like endothelin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily of G-protein coupled receptors includes endothelin receptors, bombesin receptor subtype 3 (BRS-3), gastrin-releasing peptide receptor (GRPR), neuromedin B receptor (NMB-R), endothelin B receptor-like 2 (ETBR-LP-2), and GRP37. The endothelin receptors and related proteins are members of the seven transmembrane rhodopsin-like G-protein coupled receptor family (class A GPCRs) which activate multiple effectors via different types of G protein. 292 -320109 cd14978 7tmA_FMRFamide_R-like FMRFamide (Phe-Met-Arg-Phe) receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes Drosophila melanogaster G-protein coupled FMRFamide (Phe-Met-Arg-Phe-NH2) receptor DrmFMRFa-R and related invertebrate receptors, as well as the vertebrate proteins GPR139 and GPR142. DrmFMRFa-R binds with high affinity to FMRFamide and intrinsic FMRFamide-related peptides. FMRFamide is a neuropeptide from the family of FMRFamide-related peptides (FaRPs), which all containing a C-terminal RFamide (Arg-Phe-NH2) motif and have diverse functions in the central and peripheral nervous systems. FMRFamide is an important neuropeptide in many types of invertebrates such as insects, nematodes, molluscs, and worms. In invertebrates, the FMRFamide-related peptides are involved in the regulation of heart rate, blood pressure, gut motility, feeding behavior, and reproduction. On the other hand, in vertebrates such as mice, they play a role in the modulation of morphine-induced antinociception. Orphan receptors GPR139 and GPR142 are very closely related G protein-coupled receptors, but they have different expression patterns in the brain and in other tissues. These receptors couple to inhibitory G proteins and activate phospholipase C. Studies suggested that dimer formation may be required for their proper function. GPR142 is predominantly expressed in pancreatic beta-cells and mediates enhancement of glucose-stimulated insulin secretion, whereas GPR139 is mostly expressed in the brain and is suggested to play a role in the control of locomotor activity. Tryptophan and phenylalanine have been identified as putative endogenous ligands of GPR139. 299 -320110 cd14979 7tmA_NTSR-like neurotensin receptors and related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes the neurotensin receptors and related G-protein coupled receptors, including neuromedin U receptors, growth hormone secretagogue receptor, motilin receptor, the putative GPR39 and the capa receptors from insects. These receptors all bind peptide hormones with diverse physiological effects. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 300 -320111 cd14980 7tmA_Glycoprotein_LRR_R-like glycoprotein hormone receptors and leucine-rich repeats containing G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes the glycoprotein hormone receptors (GPHRs), vertebrate receptors containing 17 leucine-rich repeats (LGR4-6), and the relaxin family peptide receptors (also known as LGR7 and LGR8). They are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone receptor family contains receptors for the pituitary hormones, thyrotropin (thyroid-stimulating hormone receptor), follitropin (follicle-stimulating hormone receptor), and lutropin (luteinizing hormone receptor). Glycoprotein hormone receptors couple primarily to the G(s)-protein and promotes cAMP production, but also to the G(i)- or G(q)-protein. Two orphan GPCRs, LGR7 and LGR8, have been recently identified as receptors for the relaxin peptide hormones. 286 -320112 cd14981 7tmA_Prostanoid_R G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. 288 -341318 cd14982 7tmA_purinoceptor-like purinoceptor and its related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. Members of this subfamily include lysophosphatidic acid receptor, P2 purinoceptor, protease-activated receptor, platelet-activating factor receptor, Epstein-Barr virus induced gene 2, proton-sensing G protein-coupled receptors, GPR35, and GPR55, among others. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 283 -320114 cd14983 7tmA_FFAR free fatty acid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes the free fatty acid receptors (FFARs) which bind free fatty acids (FFAs). They belong to the class A G-protein coupled receptors and are composed of three members, each encoded by a separate gene (FFAR1, FFAR2, and FFAR3). These genes and a fourth pseudogene, GPR42, are localized together on chromosome 19. FFAR1 is a receptor for medium- and long-chain FFAs, whereas FFAR2 and FFAR3 are receptors for short chain FFAs (SCFAs), which have different ligand affinities. FFAR1 directly mediates FFA stimulation of glucose-stimulated insulin secretion and also indirectly increases insulin secretion by enhancing the release of incretin. FFAR2 activation by SCFA suppresses adipose insulin signaling, which leads to the inhibition of fat accumulation in adipose tissue. FAAR3 is expressed in intestinal L cells, which produces glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), suggesting that this receptor may be involved in energy homeostasis. FFARs are considered important components of the body's nutrient sensing mechanism, and therefore, these receptors are potential therapeutic targets for the treatment of metabolic disorders, such as type 2 diabetes and obesity. 278 -341319 cd14984 7tmA_Chemokine_R classical and atypical chemokine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. In addition to these classical chemokine receptors, there exists a subfamily of atypical chemokine receptors (ACKRs) that are unable to couple to G-proteins and, instead, they preferentially mediate beta-arrestin dependent processes, such as receptor internalization, after ligand binding. The classical chemokine receptors contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling. However, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-chemokine receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, Duffy antigen receptor for chemokine (DARC), and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. 278 -341320 cd14985 7tmA_Angiotensin_R-like angiotesin receptor family and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the angiotensin receptors, the bradykinin receptors, apelin receptor as well as putative G-protein coupled receptors (GPR15 and GPR25). Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2 receptor, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Bradykinins (BK) are pro-inflammatory peptides that mediate various vascular and pain responses to tissue injury through its B1 and B2 receptors. Apelin (APJ) receptor binds the endogenous peptide ligands, apelin and Toddler/Elabela. APJ is an adipocyte-derived hormone that is ubiquitously expressed throughout the human body, and Toddler/Elabela is a short secretory peptide that is required for normal cardiac development in zebrafish. Activation of APJ receptor plays key roles in diverse physiological processes including vasoconstriction and vasodilation, cardiac muscle contractility, angiogenesis, and regulation of water balance and food intake. Orphan receptors, GPR15 and GPR25, share strong sequence homology to the angiotensin II type AT1 and AT2 receptors. 284 -320117 cd14986 7tmA_Vasopressin-like vasopressin receptors and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Members of this group form a subfamily within the class A G-protein coupled receptors (GPCRs), which includes the vasopressin and oxytocin receptors, the gonadotropin-releasing hormone receptors (GnRHRs), the neuropeptide S receptor (NPSR), and orphan GPR150. These receptors share significant sequence homology with each other, suggesting that they have a common evolutionary origin. Vasopressin, also known as arginine vasopressin or anti-diuretic hormone, is a neuropeptide synthesized in the hypothalamus. The actions of vasopressin are mediated by the interaction of this hormone with three tissue-specific subtypes: V1AR, V1BR, and V2R. Although vasopressin differs from oxytocin by only two amino acids, they have divergent physiological functions. Vasopressin is involved in regulating osmotic and cardiovascular homeostasis, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR has also been associated with asthma and allergy. GPR150 is an orphan receptor closely related to the oxytocin and vasopressin receptors. 295 -320118 cd14987 7tmA_ACKR3_CXCR7 CXC chemokine receptor 7, member of the class A family of seven-transmembrane G protein-coupled receptors. ACKR3, also known as CXCR7, is an atypical chemokine receptor for CXCL12 and CXCR11. Unlike the classical chemokine receptors, ACKR3 contains a DRYLSIT-sequence instead of the conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling. Thus, ACKR3 does not activate classical GPCR signaling, instead induces beta-arrestin recruitment which is leading to ligand internalization and MAP-kinase activation. It is acting as a scavenger for CXCL12 and, to a lesser degree, for CXCL11. ACKR3 is highly expressed by blood vascular endothelial cells in brain, in numerous embryonic and neonatal tissues, in inflamed tissues and in a variety of cancers such as lymphomas, sarcomas, prostate and breast cancers, and gliomas. Five receptors have been identified for the ACKR family, including CC-Chemokine Receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, DARC, and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. 282 -320119 cd14988 7tmA_GPR182 G protein-coupled receptor 182, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR182 is an orphan G-protein coupled receptor that belongs to the class A of seven-transmembrane GPCR superfamily. When GPR182 gene was first cloned, it was proposed to encode an adrenomedullin receptor. However when the corresponding protein was expressed, it was found not to respond to adrenomedullin (ADM). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 278 -320120 cd14989 7tmA_GPER1 G protein-coupled estrogen receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled estrogen receptor 1 (GPER1), also known as the G-protein coupled receptor 30 (GPR30), is a high affinity receptor for estrogen. This receptor is a member of the class A of seven-transmembrane GPCRs. Estrogen binding results in intracellular calcium mobilization and synthesis of phosphatidylinositol (3,4,5)-trisphosphate in the nucleus. GPR30 plays an important role in development of tamoxifen resistance in breast cancer cells. The distribution of GPR30 is well established in the rodent, with high expression observed in the hypothalamus, pituitary gland, adrenal medulla, kidney medulla and developing follicles of the ovary. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 276 -320121 cd14990 7tmA_GPR146 G protein-coupled receptor 146, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR146 is an orphan G-protein coupled receptor that belongs to the class A of seven-transmembrane GPCR superfamily. The endogenous ligand for GPR146 is not known. It has been suggested that GPR146 may be a part of the C-peptide signaling complex. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 280 -320122 cd14991 7tmA_HCAR-like hydroxycarboxylic acid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the hydroxycarboxylic acid receptors (HCARs) as well as their closely related receptors, GPR31 and oxoeicosanoid receptor 1 (OXER1). HCARs are members of the class A family of G-protein coupled receptors (GPCRs). HCAR subfamily contain three receptor subtypes: HCAR1, HCAR2, and HCAR3. The endogenous ligand of HCAR1 (also known as lactate receptor 1, GPR104, or GPR81) is L-lactic acid. The endogenous ligands of HCAR2 (also known as niacin receptor 1, GPR109A, nicotinic acid receptor) and HCAR3 (also known as niacin receptor 2, orGPR109B) are 3-hydroxybutyric acid and 3-hydroxyoctanoic acid, respectively. All three HCA receptors are expressed in adipocytes, and are coupled to G(i)-proteins mediating anti-lipolytic effects in fat cells. OXER1 is a receptor for eicosanoids and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-OXO-ETE), 5(S)-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5(S)-HPETE) and arachidonic acid, whereas GPR31 is a high-affinity receptor for 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-S-HETE). 280 -320123 cd14992 7tmA_TACR_family tachykinin receptor and closely related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes G-protein coupled receptors for a variety of neuropeptides of the tachykinin (TK) family as well as closely related receptors. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty. 291 -320124 cd14993 7tmA_CCKR-like cholecystokinin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group represents four G-protein coupled receptors that are members of the RFamide receptor family, including cholecystokinin receptors (CCK-AR and CCK-BR), orexin receptors (OXR), neuropeptide FF receptors (NPFFR), and pyroglutamylated RFamide peptide receptor (QRFPR). These RFamide receptors are activated by their endogenous peptide ligands that share a common C-terminal arginine (R) and an amidated phenylanine (F) motif. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. Orexins (OXs; also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. The 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103. Neuropeptide FF (NPFF) is a mammalian octapeptide that has been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of NPFF are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. 296 -320125 cd14994 7tmA_GPR141 orphan G protein-coupled receptor 141, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the G-protein coupled receptor 141 of unknown function. Several ESTs for GPR141 were found in marrow and cancer cells. GPR141 is a member of the rhodopsin-like, class A GPCRs, which is a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 275 -320126 cd14995 7tmA_TRH-R thyrotropin-releasing hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. TRH-R is a member of the class A rhodopsin-like G protein-coupled receptors, which binds the tripeptide thyrotropin releasing hormone. The TRH-R activates phosphoinositide metabolism through a pertussis-toxin-insensitive G-protein, the G(q)/G(11) class. TRH stimulates the synthesis and release of thyroid-stimulating hormone in the anterior pituitary. TRH is produced in many other tissues, especially within the nervous system, where it appears to act as a neurotransmitter/neuromodulator. It also stimulates the synthesis and release of prolactin. In the CNS, TRH stimulates a number of behavioral and pharmacological actions, including increased turnover of catecholamines in the nucleus accumbens. There are two thyrotropin-releasing hormone receptors in some mammals, thyrotropin-releasing hormone receptor 1 (TRH1) which has been found in a number of species including rat, mouse, and human and thyrotropin-releasing hormone receptor 2 (TRH2) which has, only been found in rodents. These TRH receptors are found in high levels in the anterior pituitary, and are also found in the retina and in certain areas of the brain. 269 -320127 cd14996 7tmA_GPR82 orphan G protein-coupled receptor 82, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the G-protein coupled receptor 82 of unknown function. GPR82 is a member of the rhodopsin-like, class A GPCRs, which is a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 305 -320128 cd14997 7tmA_ETH-R ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the ecdysis-triggering hormone receptors found in insects, which are members of the class A family of seven-transmembrane G-protein coupled receptors. Ecdysis-triggering hormones are vital regulatory signals that govern the stereotypic physiological sequence leading to cuticle shedding in insects. Thus, the ETH signaling system has been a target for the design of more sophisticated insect-selective pest control strategies. Two subtypes of ecdysis-triggering hormone receptor were identified in Drosophila melanogaster. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. In insects, ecdysis is thought to be controlled by the interaction between peptide hormones; in particular between ecdysis-triggering hormone (ETH) from the periphery and eclosion hormone (EH) and crustacean cardioactive peptide (CCAP) from the central nervous system. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 294 -320129 cd14998 7tmA_GPR153_GPR162-like orphan G protein-coupled receptors 153 and 162, member of the class A family of seven-transmembrane G protein-coupled receptors. This group contains the G-protein coupled receptor 153 (GPR153), GPR162, and similar proteins. These are orphan GCPRs with unknown endogenous ligand and function. GPR153 and GPR163 are widely expressed in the central nervous system (CNS) and share a common evolutionary ancestor due to a gene duplication event. Although categorized as members of the rhodopsin-like class A GPCRs, both GPR162 and GPR153 contain an HRM-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the LPxF motif, a variant of NPxxY motif that plays a crucial role during receptor activation, is found at the end of TM7 in both GPR162 and GPR153. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 301 -320130 cd14999 7tmA_UII-R urotensin-II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The urotensin-II receptor (UII-R, also known as the hypocretin receptor) is a member of the class A rhodopsin-like G-protein coupled receptors, which binds the peptide hormone urotensin-II. Urotensin II (UII) is a vasoactive somatostatin-like or cortistatin-like peptide hormone. However, despite the apparent structural similarity to these peptide hormones, they are not homologous to UII. Urotensin II was first identified in fish spinal cord, but later found in humans and other mammals. In fish, UII is secreted at the back part of the spinal cord, in a neurosecretory centre called uroneurapophysa, and is involved in the regulation of the renal and cardiovascular systems. In mammals, urotensin II is the most potent mammalian vasoconstrictor identified to date and causes contraction of arterial blood vessels, including the thoracic aorta. The urotensin II receptor is a rhodopsin-like G-protein coupled receptor, which binds urotensin-II. The receptor was previously known as GPR14, or sensory epithelial neuropeptide-like receptor (SENR). The UII receptor is expressed in the CNS (cerebellum and spinal cord), skeletal muscle, pancreas, heart, endothelium and vascular smooth muscle. It is involved in the pathophysiological control of cardiovascular function and may also influence CNS and endocrine functions. Binding of urotensin II to the receptor leads to activation of phospholipase C, through coupling to G(q/11) family proteins. The resulting increase in intracellular calcium may cause the contraction of vascular smooth muscle. 282 -320131 cd15000 7tmA_BNGR-A34-like putative neuropeptide receptor BNGR-A34 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes putative neuropeptide receptor BNGR-A34 found in silkworm and its closely related proteins from invertebrates. They are members of the class A rhodopsin-like GPCRs, which represent a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 285 -320132 cd15001 7tmA_GPRnna14-like GPRnna14 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the orphan G-protein coupled receptor GPRnna14 found in body louse (Pediculus humanus humanus) as well as its closely related proteins of unknown function. These receptors are members of the class A rhodopsin-like G-protein coupled receptors. As an obligatory parasite of humans, the body louse is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. GPRnna14 shares significant sequence similarity with the members of the neurotensin receptor family. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 266 -320133 cd15002 7tmA_GPR151 G protein-coupled receptor 151, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor 151 (GRP151) is an orphan receptor of unknown function. Its expression is conserved in habenular axonal projections of vertebrates and may be a promising novel target for psychiatric drug development. GPR151 shows high sequence similarity with galanin receptors (GALR). GPR151 is a member of the class A rhodopsin-like GPCRs, which represent a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 280 -320134 cd15005 7tmA_SREB-like super conserved receptor expressed in brain and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 329 -320135 cd15006 7tmA_GPR176 orphan G protein-coupled receptor 176, member of the rhodopsin-like class A GPCR family. GPR176 is a putative G protein-coupled receptor that belongs to the class A GPCR superfamily; no endogenous ligand for GPR176 has yet been identified. The class A rhodopsin-like GPCRs represent a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 289 -320136 cd15007 7tmA_GPR75 G protein-coupled receptor 75, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor 75 (GPR75) is an atypical chemokine receptor that is expressed by mouse and human islets. Although GPR75 shows low sequence homology to C-C chemokine receptors, chemokine (C-C motif) ligand 5 (CCL5) has been shown to act as an endogenous ligand for GPR75. CCL5 plays a key role in recruiting lymphocytes to sites of inflammatory and infection through promiscuous binding to the C-C chemokine G-protein-coupled receptors. Although categorized as a member of the rhodopsin-like class A GPCRs, GPR75 contains HRL-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors and important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. GPR75 is coupled to the G-protein G(q), which elevates intracellular calcium. 261 -320137 cd15008 7tmA_GPR19 G protein-coupled receptor 19, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor 19 is an orphan receptor that is expressed predominantly in neuronal cells during mouse embryogenesis. Its mRNA is found frequently overexpressed in patients with small cell lung cancer. GPR19 shares a significant amino acid sequence identity with the D2 dopamine and neuropeptide Y families of receptors. Human GPR19 gene, intronless in the coding region, also has a distribution in brain overlapping that of the D2 dopamine receptor gene, and is located on chromosome 12. GPR19 is a member of the class A family of GPCRs, which represents a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 275 -320138 cd15010 7tmA_ACKR1_DARC Duffy antigen receptor for chemokines, member of the class A family of seven-transmembrane G protein-coupled receptors. Atypical chemokine receptor 1 (ACKR1), also known as DARC (Duffy antigen receptor for chemokines) or Fy glycoprotein (GpFy), was originally identified on erythrocytes. ACKR1 is also ubiquitously expressed by endothelial cells of venules and is highly promiscuous among all chemokine receptor. It binds many proinflammatory chemokines from both the CC and CXC subfamilies, including CCL2, CCL5, CCL7, CCL11, CXCL1, CXCL2, CXCL3, and CXCL5. Erythrocyte ACKR1 is thought to act as a chemokine sink, limiting the levels of circulating chemokines, thereby controlling leukocyte activation. ACKR1-deficient erythrocytes are shown to confer resistance to the malarial parasite, Plasmodium vivax. On the other hand, ACKR1-expressing endothelial cells can internalize chemokines. ACKR1-internalized chemokines can be moved intact across the endothelium and promotes neutrophil transmigration. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-Chemokine Receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, DARC, and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. 257 -320139 cd15011 7tmA_GPR149 G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 256 -320140 cd15012 7tmA_Trissin_R trissin receptor and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the Drosophila melanogaster trissin receptor and closely related invertebrate proteins which are a member of the class A family of seven-transmembrane G-protein coupled receptors. The cysteine-rich trissin has been shown to be an endogenous ligand for the orphan CG34381 in Drosophila melanogaster. Trissin is a peptide composed of 28 amino acids with three intrachain disulfide bonds with no significant structural similarities to known endogenous peptides. Cysteine-rich peptides are known to have antimicrobial or toxicant activities, although frequently their mechanism of action is poorly understood. Since the expression of trissin and its receptor is reported to predominantly localize to the brain and thoracicoabdominal ganglion, trissin is predicted to behave as a neuropeptide. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 277 -320141 cd15013 7tm_TAS2R4 mammalian taste receptor 2, subtype 4, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 4, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 286 -320142 cd15014 7tm_TAS2R40 mammalian taste receptor 2, subtype 40, member of the seven-transmembraneG-protein coupled receptor superfamily. This group includes the mammalian taste receptor 2 (T2R) subtype 40, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (taste of glutamate MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 290 -320143 cd15015 7tm_TAS2R39 mammalian taste receptor 2, subtype 39, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (T2R) subtype 39, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (taste of glutamate MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 289 -320144 cd15016 7tm_TAS2R1 mammalian taste receptor 2, subtype 1, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 1, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 283 -320145 cd15017 7tm_TAS2R16 mammalian taste receptor 2, subtype 16, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 16, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 285 -320146 cd15018 7tm_TAS2R41-like mammalian taste receptor 2, subtype 41, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 41, which functions as a bitter taste receptor. Also included is the closely related TAS2R60. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 290 -320147 cd15019 7tm_TAS2R14-like mammalian taste receptor 2, subtype 14, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 14, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 290 -320148 cd15020 7tm_TAS2R3 mammalian taste receptor 2, subtype 3, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 3, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 290 -320149 cd15021 7tm_TAS2R10 mammalian taste receptor 2, subtype 10, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 10, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 285 -320150 cd15022 7tm_TAS2R8 mammalian taste receptor 2, subtype 8, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 8, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 292 -320151 cd15023 7tm_TAS2R7-like mammalian taste receptor 2, subtypes 7 and 9, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtypes 7 and 9, which function as bitter taste receptors. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 291 -320152 cd15024 7tm_TAS2R42 mammalian taste receptor 2, subtype 42, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 42, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 288 -320153 cd15025 7tm_TAS2R38 mammalian taste receptor 2, subtype 38, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (T2R) subtype 38, which functions as a bitter taste receptor. Genetic variants of human TAS2R38 influence the ability to taste synthetic compounds 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC). Thus, sensitivity to the bitter taste of PROP is often used as a marker for individual differences in taste perception that can affect food preferences and intake. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 293 -320154 cd15026 7tm_TAS2R13 mammalian taste receptor 2, subtype 13, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtype 13, which functions as a bitter taste receptor. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 287 -320155 cd15027 7tm_TAS2R43-like mammalian taste receptor 2, subtype 43, and related proteins, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (T2R) subtype 43, which functions as a bitter taste receptor. Also included are the closely related taste receptors TAS2R19, TAS2R20, TAS2R30, TAS2R31, TAS2R45 and TAS2R50. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (the taste of glutamate, MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 292 -320156 cd15028 7tm_Opsin-1_euk proton pumping rhodopsins in fungi and algae, member of the seven-transmembrane GPCR superfamily. This subgroup represents uncharacterized proton pumping rhodopsins found in fungi and algae. They belong to the microbial rhodopsin family, also known as type I rhodopsins, consisting of the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-gated cation channel channelrhodopsin (ChR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 231 -320157 cd15029 7tm_SRI_SRII light-sensor activating transmembrane transducer protein sensory rhodopsin I and II; member of the seven-transmembrane GPCR superfamily. This subgroup includes the light-sensor activating transmembrane transducer proteins, sensory rhodopsin I (SRI) and II (SRII, also called phoborhodopsin). SRI and SRII are responsible for positive (attractive) and negative (repellent) phototaxis in halobacteria, respectively, thereby controlling the cell's directional movement in response to changes in light intensity by swimming either towards or away from the light. Both sensory rhodopsins belong to the family of microbial rhodopsins, also known as type I rhodopsins, consisting of the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-gated cation channel channelrhodopsin (ChR), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 214 -320158 cd15030 7tmF_SMO_homolog class F smoothened family membrane region, a homolog of frizzled receptors. This group represents smoothened (SMO), a transmembrane G protein-coupled receptor that acts as the transducer of the hedgehog (HH) signaling pathway. SMO is activated by the hedgehog (HH) family of proteins acting on the 12-transmembrane domain receptor patched (PTCH), which constitutively inhibits SMO. Thus, in the absence of HH proteins, PTCH inhibits SMO signaling. On the other hand, binding of HH to the PTCH receptor activates its internalization and degradation, thereby releasing the PTCH inhibition of SMO. This allows SMO to trigger intracellular signaling and the subsequent activation of the Gli family of zinc finger transcriptional factors and induction of HH target gene expression (PTCH, Gli1, cyclin, Bcl-2, etc). SMO is closely related to the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate family of G-protein coupled receptors. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The WNT and HH signaling pathways play critical roles in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 331 -320159 cd15031 7tmF_FZD3_insect class F insect frizzled subfamily 3, member of 7-transmembrane G protein-coupled receptors. This group represents subfamily 3 of the frizzled (FZD) family of seven transmembrane-spanning G protein-coupled proteins that is found in insects such as Drosophila melanogaster. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 311 -320160 cd15032 7tmF_FZD6 class F frizzled subfamily 6, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 6 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 321 -320161 cd15033 7tmF_FZD3 class F frizzled subfamily 3, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 3 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 321 -320162 cd15034 7tmF_FZD1_2_7-like class F frizzled subfamilies 1, 2 and 7; member of 7-transmembrane G protein-coupled receptors. This group includes subfamilies 1, 2 and 7 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of G-protein coupled receptors, as well as their closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 322 -320163 cd15035 7tmF_FZD5_FZD8-like class F frizzled subfamilies 5, 8 and related proteins; member of 7-transmembrane G protein-coupled receptors. This group includes subfamilies 5 and 8 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, as well as their closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 307 -320164 cd15036 7tmF_FZD9 class F frizzled subfamily 9, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 9 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 320 -320165 cd15037 7tmF_FZD10 class F frizzled subfamily 10, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 10 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 320 -320166 cd15038 7tmF_FZD4 class F frizzled subfamily 4, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 4 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 304 -320167 cd15039 7tmB3_Methuselah-like Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors. The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. 270 -320168 cd15040 7tmB2_Adhesion adhesion receptors, subfamily B2 of the class B family of seven-transmembrane G protein-coupled receptors. The B2 subfamily of class B GPCRs consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 253 -341321 cd15041 7tmB1_hormone_R The subfamily B1 of hormone receptors (secretin-like), member of the class B family seven-transmembrane G protein-coupled receptors. The B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of this subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. Moreover, the B1 subfamily receptors play key roles in hormone homeostasis and are promising drug targets in various human diseases including diabetes, osteoporosis, obesity, neurodegenerative conditions (Alzhemer's and Parkinson's), cardiovascular disease, migraine, and psychiatric disorders (anxiety, depression). Furthermore, the subfamilies B2 and B3 consist of receptors that are capable of interacting with epidermal growth factors (EGF) and the Drosophila melanogaster Methuselah gene product (Mth), respectively. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes. 273 -320170 cd15042 7tmC_Boss Bride of sevenless, member of the class C family of seven-transmembrane G protein-coupled receptors. Bride of Sevenless (Boss) is a putative Drosophila melanogaster G protein-coupled receptor that functions as a glucose-responding receptor to regulate energy metabolism. Boss is expressed predominantly in the fly's fat body, a nutrient-sensing tissue functionally analogous to the mammalian liver and adipose tissues, and in photoreceptor cells. Boss, which is expressed on the surface of R8 photoreceptor cell, binds and activates the Sevenless receptor tyrosine kinase on the neighboring R7 precursor cell. Activation of Sevenless results in phosphorylation of the Sevenless, triggering a signaling transduction cascade through Ras pathway that ultimately leads to the differentiation of the R7 precursor into a fully functional R7 photoreceptor, the last of eight photoreceptors to differentiate in each ommatidium of the developing Drosophila eye. In the absence of either of Sevenless or Boss, the R7 precursor fails to differentiate as a photoreceptor and instead develops into a non-neuronal cone cell. Moreover, Boss mutants in Drosophila showed elevated food intake, but reduced stored triglyceride levels, suggesting that Boss may play a role in regulating energy homeostasis in nutrient sensing tissues. Furthermore, GPRC5B, a mammalian Boss homolog, activates obesity-associated inflammatory signaling in adipocytes, and that the GPRC5B knockout mice showed resistance to high-fat diet-induced obesity and insulin resistance. 238 -320171 cd15043 7tmC_RAIG_GPRC5 retinoic acid-inducible orphan G-protein-coupled receptors; class C family of seven-transmembrane G protein-coupled receptors, group 5. Retinoic acid-inducible G-protein-coupled receptors (RAIGs), also referred to as GPCR class C group 5, are a group consisting of four orphan receptors RAIG1 (GPRC5A), RAIG2 (GPRC5B), RAIG3 (GPRC5C), and RAIG4 (GPRC5D). Unlike other members of the class C GPCRs which contain a large N-terminal extracellular domain, RAIGs have a shorter N-terminus. Thus, it is unlikely that RAIGs bind an agonist at its N-terminus domain. Instead, agonists may bind to the seven-transmembrane domain of these receptors. In addition, RAIG2 and RAIG3 contain a cleavable signal peptide whereas RAIG1 and RAIG4 do not. Although their expression is induced by retinoic acid (vitamin A analog), their biological function is not clearly understood. To date, no ligand is known for the members of RAIG family. Three receptor types (RAIG1-3) are found in vertebrates, while RAIG4 is only present in mammals. They show distinct tissue distribution with RAIG1 being primarily expressed in the lung, RAIG2 in the brain and placenta, RAIG3 in the brain, kidney and liver, and RAIG4 in the skin. RAIG1 is evolutionarily conserved from mammals to fish. RAIG1 has been to shown to act as a tumor suppressor in non-small cell lung carcinoma as well as oral squamous cell carcinoma, but it could also act as an oncogene in breast cancer, colorectal cancer, and pancreatic cancer. Studies have shown that overexpression of RAIG1 decreases intracellular cAMP levels. Moreover, knocking out RAIG1 induces the activation of the NF-kB and STAT3 signaling pathways leading to cell proliferation and resistance to apoptosis. RAIG2 (GPRC5B), a mammalian Boss (Bride of sevenless) homolog, activates obesity-associated inflammatory signaling in adipocytes, and GPRC5B knockout mice show resistance to high-fat diet-induced obesity and insulin resistance. The specific functions of RAIG3 and RAIG4 are unknown; however, they may play roles in mediating the effects of retinoic acid on embryogenesis, differentiation, and tumorigenesis through interactions with G-protein signaling pathways. 248 -320172 cd15044 7tmC_V2R_AA_sensing_receptor-like vomeronasal type-2 pheromone receptors, amino acid-sensing receptors and closely related proteins; member of the class C family of seven-transmembrane G protein-coupled receptors. This group is composed of vomeronasal type-2 pheromone receptors (V2Rs), a subgroup of broad-spectrum amino-acid sensing receptors including calcium-sensing receptor (CaSR) and GPRC6A, as well as their closely related proteins. Members of the V2R family of vomeronasal GPCRs are involved in detecting protein pheromones for social and sexual cues between the same species. V2Rs and G-alpha(o) protein are co-expressed in the basal layer of the vomeronsal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes, and monkeys. On the other hand, members of the V1R receptor family and G-alpha(i2) protein are co-expressed in the apical neurons of the VNO. Activation of V1R or V2R causes activation of phospholipase pathway, producing the second messengers diacylglycerol (DAG) and IP3. However, in contrast to V1Rs, V2Rs contain the long N-terminal extracellular domain, which is believed to bind pheromones. CaSR is a widely expressed GPCR that is involved in sensing small changes in extracellular levels of calcium ion to maintain a constant level of the extracellular calcium via modulating the synthesis and secretion of calcium regulating hormones, such as parathyroid hormone (PTH), in order to regulate Ca(2+)transport into or out of the extracellular fluid via kidney, intestine, and/or bone. For instance, when Ca2+ is high, CaSR downregulates PTH synthesis and secretion, leading to an increase in renal Ca2+ excretion, a decrease in intestinal Ca2+ absorption, and a reduction in release of skeletal Ca2+. GRPC6A (GPCR, class C, group 6, subtype A) is a widely expressed amino acid-sensing GPCR that is most closely related to CaSR. GPRC6A is most potently activated by the basic amino acids L-arginine, L-lysine, and L-ornithine and less potently by small aliphatic amino acids. Moreover, the receptor can be either activated or modulated by divalent cations such as Ca2+. GPRC6A is expressed in the testis, but not the ovary and specifically also binds to the osteoblast-derived hormone osteocalcin (OCN), which regulates testosterone production by the testis and male fertility independently of the hypothalamic-pituitary axis. Furthermore, GPRC6A knockout studies suggest that GRPC6A is involved in regulation of bone metabolism, male reproduction, energy homeostasis, glucose metabolism, and in activation of inflammation response, as well as prostate cancer growth and progression, among others. 251 -320173 cd15045 7tmC_mGluRs metabotropic glutamate receptors, member of the class C family of seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group I mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to (Gi/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 253 -320174 cd15046 7tmC_TAS1R type 1 taste receptors, member of the class C of seven-transmembrane G protein-coupled receptors. This subfamily represents the type I taste receptors (TAS1Rs) that belongs to the class C family of G protein-coupled receptors. The functional TAS1Rs are obligatory heterodimers built from three known members, TAS1R1-3. TAS1R1 combines with TAS1R3 to form an umami taste receptor, which is responsible for the perception of savory taste, such as the food additive monosodium glutamate (MSG); whereas the combination of TAS1R2-TAS1R3 forms a sweet-taste receptor for sugars and D-amino acids. On the other hand, the type II taste receptors (TAS2Rs), which belong to the class A family of GPCRs, recognize bitter tasting compounds. In the case of sweet, for example, the TAS1R2-TAS1R3 heterodimer activates phospholipase C (PLC) via alpha-gustducin, a heterodimeric G protein that is involved in perception of sweet and bitter tastes. This activation leads to generation of inositol (1, 4, 5)-trisphosphate (IP3) and diacylglycerol (DAG), and consequently increases intracellular Ca2+ mobilization and activates a cation channel, TRPM5. In contrast to the TAS1R2-TAS1R3 heterodimer, TAS1R3 alone could activate adenylate cyclase leading to cAMP formation in the absence of alpha-gustducin. Each TAS1R contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD) and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TAS1R receptors. 253 -320175 cd15047 7tmC_GABA-B-like gamma-aminobutyric acid type B receptor and related proteins, member of the class C family of seven-transmembrane G protein-coupled receptors. The type B receptor for gamma-aminobutyric acid, GABA-B, is activated by its endogenous ligand GABA, the principal inhibitory neurotransmitter. The functional GABA-B receptor is an obligatory heterodimer composed of two related subunits, GABA-B1, which is primarily involved in GABA ligand binding, and GABA-B2, which is responsible for both G-protein coupling and trafficking of the heterodimer to the plasma membrane. Activation of GABA-B couples to G(i/o)-type G proteins, which in turn modulate three major downstream effectors: adenylate cyclase, voltage-sensitive Ca2+ channels, and inwardly-rectifying K+ channels. Consequently, GABA-B receptor produces slow and sustained inhibitory responses by decreased neurotransmitter release via inhibition of Ca2+ channels and by postsynaptic hyperpolarization via the activation of K+ channels through the G-protein beta-gamma dimer. The GABA-B is expressed in both pre- and postsynaptic sites of glutamatergic and GABAergic neurons in the brain where it regulates synaptic activity. Thus, the GABA-B receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in multiple sclerosis patients. Moreover, GABA-B antagonists improves cognitive performance in mammals, while GABA-B agonists suppress cognitive behavior. In most of the class C family members, the extracellular Venus-flytrap domain in the N-terminus is connected to the seven-transmembrane (7TM) via a cysteine-rich domain (CRD). However, in the GABA-B receptor, the CRD is absent in both subunits and the Venus-flytrap ligand-binding domain is directly connected to the 7TM via a 10-15 amino acids linker, suggesting that GABA-B receptor may utilize a different activation mechanism. Also included in this group are orphan receptors, GPR156 and GPR158, which are closely related to the GABA-B receptor family. 263 -320176 cd15048 7tmA_Histamine_H3R_H4R histamine receptor subtypes H3R and H4R, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes histamine subtypes H3R and H4R, members of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 296 -341322 cd15049 7tmA_mAChR muscarinic acetylcholine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -320178 cd15050 7tmA_Histamine_H1R histamine subtype H1 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes histamine receptor subtype H1R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). H1R selectively interacts with the G(q)-type G protein that activates phospholipase C and the phosphatidylinositol pathway. Antihistamines, a widely used anti-allergy medication, act on the H1 subtype and produce drowsiness as a side effect. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 263 -320179 cd15051 7tmA_Histamine_H2R histamine subtype H2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes histamine receptor subtype H2R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H2R subtype selectively interacts with the G(s)-type G protein that activates adenylate cyclase, leading to increased cAMP production and activation of Protein Kinase A. H2R is found in various tissues such as the brain, stomach, and heart. Its most prominent role is in histamine-induced gastric acid secretion. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 287 -320180 cd15052 7tmA_5-HT2 serotonin receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -320181 cd15053 7tmA_D2-like_dopamine_R D2-like dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. In contrast, activation of D2-like family receptors is linked to G proteins of the G(i) family, which inhibit adenylate cyclase. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 263 -320182 cd15054 7tmA_5-HT6 serotonin receptor subtype 6, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT6 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the mammalian central nervous system (CNS). 5-HT6 receptors are selectively linked to G proteins of the G(s) family, which positively stimulate adenylate cyclase, causing cAMP formation and activation of protein kinase A. The 5-HT6 receptors mediates excitatory neurotransmission and are involved in learning and memory; thus they are promising targets for the treatment of cognitive impairment. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 267 -320183 cd15055 7tmA_TAARs trace amine-associated receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The trace amine-associated receptors (TAARs) are a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 285 -320184 cd15056 7tmA_5-HT4 serotonin receptor subtype 4, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT4 subtype is a member of the serotonin receptor family that belongs to the class A G protein-coupled receptors, and binds the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the mammalian central nervous system (CNS). 5-HT4 receptors are selectively linked to G proteins of the G(s) family, which positively stimulate adenylate cyclase, causing cAMP formation and activation of protein kinase A. 5-HT4 receptor-specific agonists have been shown to enhance learning and memory in animal studies. Moreover, hippocampal 5-HT4 receptor expression has been reported to be inversely correlated with memory performance in humans. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 294 -320185 cd15057 7tmA_D1-like_dopamine_R D1-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. In contrast, activation of D2-like family receptors is linked to G proteins of the G(i) family, which inhibit adenylate cyclase. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 299 -320186 cd15058 7tmA_Beta_AR beta adrenergic receptors (adenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors. The beta adrenergic receptor (beta adrenoceptor), also known as beta AR, is activated by hormone adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate, as well as pulmonary physiology. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 305 -320187 cd15059 7tmA_alpha2_AR alpha-2 adrenergic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 261 -320188 cd15060 7tmA_tyramine_octopamine_R-like tyramine/octopamine receptor-like, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes tyramine/octopamine receptors and similar proteins found in insects and other invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 260 -320189 cd15061 7tmA_tyramine_R-like tyramine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes tyramine-specific receptors and similar proteins found in insects and other invertebrates. These tyramine receptors form a distinct receptor family that is phylogenetically different from the other tyramine/octopamine receptors which also found in invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 256 -320190 cd15062 7tmA_alpha1_AR alpha-1 adrenergic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. 261 -320191 cd15063 7tmA_Octopamine_R octopamine receptors in invertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor for octopamine (OA), which functions as a neurotransmitter, neurohormone, and neuromodulator in invertebrate nervous system. Octopamine (also known as beta, 4-dihydroxyphenethylamine) is an endogenous trace amine that is highly similar to norepinephrine, but lacks a hydroxyl group, and has effects on the adrenergic and dopaminergic nervous systems. Based on the pharmacological and signaling profiles, the octopamine receptors can be classified into at least two groups: OA1 receptors elevate intracellular calcium levels in muscle, whereas OA2 receptors activate adenylate cyclase and increase cAMP production. 266 -320192 cd15064 7tmA_5-HT1_5_7 serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes serotonin receptor subtypes 1, 5, and 7 that are activated by the neurotransmitter serotonin. The 5-HT1 and 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family. The 5-HT1 receptor subfamily includes 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as 5-HT2C receptor. The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. The 5-HT7 receptor is coupled to Gs, which positively stimulates adenylate cyclase activity, leading to increased intracellular cAMP formation and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 258 -320193 cd15065 7tmA_Ap5-HTB1-like serotonin receptor subtypes B1 and B2 from Aplysia californica and similar proteins; member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes Aplysia californica serotonin receptors Ap5-HTB1 and Ap5-HTB2, and similar proteins from bilateria including insects, mollusks, annelids, and worms. Ap5-HTB1 is one of the several different receptors for 5-hydroxytryptamine (5HT, serotonin). In Aplysia, serotonin plays important roles in a variety of behavioral and physiological processes mediated by the central nervous system. These include circadian clock, feeding, locomotor movement, cognition and memory, synaptic growth and synaptic plasticity. Both Ap5-HTB1 and Ap5-HTB2 receptors are coupled to G-proteins that stimulate phospholipase C, leading to the activation of phosphoinositide metabolism. Ap5-HTB1 is expressed in the reproductive system, whereas Ap5-HTB2 is expressed in the central nervous system. 300 -320194 cd15066 7tmA_DmOct-betaAR-like Drosophila melanogaster beta-adrenergic receptor-like octopamine receptors and similar receptors in bilateria; member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes Drosophila beta-adrenergic-like octopamine receptors and similar proteins. The biogenic amine octopamine is the invertebrate equivalent of vertebrate adrenergic neurotransmitters and exerts its effects through different G protein-coupled receptor types. Insect octopamine receptors are involved in the modulation of carbohydrate metabolism, muscular tension, cognition and memory. The activation of octopamine receptors mediating these actions leads to an increase in adenylate cyclase activity, thereby increasing cAMP levels. In Drosophila melanogaster, three subgroups have been classified on the basis of their structural homology and functional equivalents with vertebrate beta-adrenergic receptors: DmOctBeta1R, DmOctBeta2R, and DmOctBeta3R. 265 -320195 cd15067 7tmA_Dop1R2-like dopamine 1-like receptor 2 from Drosophila melanogaster and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled dopamine 1-like receptor 2 is expressed in Drosophila heads and it shows significant sequence similarity with vertebrate and invertebrate dopamine receptors. Although the Drosophila Dop1R2 receptor does not cluster into the D1-like structural group, it does show pharmacological properties similar to D1-like receptors. As shown in vertebrate D1-like receptors, agonist stimulation of Dop1R2 activates adenylyl cyclase to increase cAMP levels and also generates a calcium signal through stimulation of phospholipase C. 262 -320196 cd15068 7tmA_Adenosine_R_A2A adenosine receptor subtype A2A, member of the class A family of seven-transmembrane G protein-coupled receptors. The A2A receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand and is involved in regulating myocardial oxygen consumption and coronary blood flow. High-affinity A2A and low-affinity A2B receptors are preferentially coupled to G proteins of the stimulatory (Gs) family, which lead to activation of adenylate cyclase and thereby increasing the intracellular cAMP levels. The A2A receptor activation protects against tissue injury and acts as anti-inflammatory agent. In human skin endothelial cells, activation of A2B receptor, but not the A2A receptor, promotes angiogenesis. Alternatively, activated A2A receptor, but not the A2B receptor, promotes angiogenesis in human umbilical vein and lung microvascular endothelial cells. The A2A receptor alters cardiac contractility indirectly by modulating the anti-adrenergic effect of A1 receptor, while the A2B receptor exerts direct effects on cardiac contractile function, but does not modulate beta-adrenergic or A1 anti-adrenergic effects. 293 -320197 cd15069 7tmA_Adenosine_R_A2B adenosine receptor subtype 2AB, member of the class A family of seven-transmembrane G protein-coupled receptors. The A2B receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand and is involved in regulating myocardial oxygen consumption and coronary blood flow. High-affinity A2A and low-affinity A2B receptors are preferentially coupled to G proteins of the stimulatory (Gs) family, which lead to activation of adenylate cyclase and thereby increasing the intracellular cAMP levels. The A2A receptor activation protects against tissue injury and acts as anti-inflammatory agent. In human skin endothelial cells, activation of A2B receptor, but not the A2A receptor, promotes angiogenesis. Alternatively, activated A2A receptor, but not the A2B receptor, promotes angiogenesis in human umbilical vein and lung microvascular endothelial cells. The A2A receptor alters cardiac contractility indirectly by modulating the anti-adrenergic effect of A1 receptor, while the A2B receptor exerts direct effects on cardiac contractile function, but does not modulate beta-adrenergic or A1 anti-adrenergic effects. 294 -320198 cd15070 7tmA_Adenosine_R_A3 adenosine receptor subtype A3, member of the class A family of seven-transmembrane G protein-coupled receptors. The A3 receptor, a member of the adenosine receptor family of G protein-coupled receptors, is coupled to G proteins of the inhibitory G(i) family, which lead to inhibition of adenylate cyclase and thereby lowering the intracellular cAMP levels. The A3 receptor has a sustained protective function in the heart during cardiac ischemia and contributes to inhibition of neutrophil degranulation in neutrophil-mediated tissue injury. Moreover, activation of A3 receptor by adenosine protects astrocytes from cell death induced by hypoxia. 280 -341323 cd15071 7tmA_Adenosine_R_A1 adenosine receptor subtype A1, member of the class A family of seven-transmembrane G protein-coupled receptors. The adenosine A1 receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand. The A1 receptor has primarily inhibitory function on the tissues in which it is located. The A1 receptor slows metabolic activity in the brain and has a strong anti-adrenergic effects in the heart. Thus, it antagonizes beta1-adrenergic receptor-induced stimulation and thereby reduces cardiac contractility. The A1 receptor preferentially couples to G proteins of the G(i/o) family, which lead to inhibition of adenylate cyclase and thereby lowering the intracellular cAMP levels. 290 -320200 cd15072 7tmA_Retinal_GPR retinal G protein coupled receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. This group represents the retinal G-protein coupled receptor (RGR) found exclusively in retinal pigment epithelium (RPE) and Muller cells. RGR is a member of the class A rhodopsin-like receptor family. As with other opsins, RGR binds all-trans retinal and contains a conserved lysine reside on the seventh helix. RGR functions as a photoisomerase to catalyze the conversion of all-trans-retinal to 11-cis-retinal. Two mutations in RGR gene are found in patients with retinitis pigmentosa, indicating that RGR is essential to the visual process. 260 -320201 cd15073 7tmA_Peropsin retinal pigment epithelium-derived rhodopsin homolog, member of the class A family of seven-transmembrane G protein-coupled receptors. Peropsin, also known as a retinal pigment epithelium-derived rhodopsin homolog (RRH), is a visual pigment-like protein found exclusively in the apical microvilli of the retinal pigment epithelium. Peropsin belongs to the type 2 opsin family of the class A G-protein coupled receptors. Peropsin presumably plays a physiological role in the retinal pigment epithelium either by detecting light directly or monitoring the levels of retinoids, the primary light absorber in visual perception, or other pigment-related compounds in the eye. 280 -320202 cd15074 7tmA_Opsin5_neuropsin neuropsin (Opsin-5), member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropsin, also known as Opsin-5, is a photoreceptor protein expressed in the retina, brain, testes, and spinal cord. Neuropsin belongs to the type 2 opsin family of the class A G-protein coupled receptors. Mammalian neuropsin activates Gi protein-mediated photo-transduction pathway in a UV-dependent manner, whereas, in non-mammalian vertebrates, neuropsin is involved in regulating the photoperiodic control of seasonal reproduction in birds such as quail. As with other opsins, it may also act as a retinal photoisomerase. 284 -320203 cd15075 7tmA_Parapinopsin non-visual parapinopsin, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the non-visual pineal pigment, parapinopsin, which is a member of the class A of the seven transmembrane G protein-coupled receptors. Parapinopsin serves as a UV-sensitive pigment for the wavelength discrimination in the pineal-related organs of lower vertebrates such as reptiles, amphibians, and fish. Although parapinopsin is phylogenetically related to vertebrate visual pigments such as rhodopsin, which releases its retinal chromophore and bleaches, the parapinopsin photoproduct is stable and does not bleach. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. 279 -320204 cd15076 7tmA_SWS1_opsin short wave-sensitive 1 opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes Short Wave-Sensitive opsin 1 (SWS1), which mediates visual transduction in response to light at short wavelengths (ultraviolet to blue). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 280 -320205 cd15077 7tmA_SWS2_opsin short wave-sensitive 2 opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes Short Wave-Sensitive opsin 2 (SWS2), which mediates visual transduction in response to light at short wavelengths (violet to blue). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 280 -320206 cd15078 7tmA_Encephalopsin encephalopsins (opsin-3), member of the class A family of seven-transmembrane G protein-coupled receptors. Encephalopsin, also called Opsin-3 or Panopsin, is a mammalian extra-retinal opsin that is highly localized in the brain. It is thought to play a role in encephalic photoreception. Encephalopsin belongs to the class A of the G protein-coupled receptors and shows strong homology to the vertebrate visual opsins. 279 -320207 cd15079 7tmA_photoreceptors_insect insect photoreceptors R1-R6 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the insect photoreceptors and their closely related proteins. The Drosophila eye is composed of about 800 unit eyes called ommatidia, each of which contains eight photoreceptor cells (R1-R8). The six outer photoreceptors (R1-R6) function like the vertebrate rods and are responsible for motion detection in dim light and image formation. The R1-R6 photoreceptors express a blue-absorbing pigment, Rhodopsin 1(Rh1). The inner photoreceptors (R7 and R8) are considered the equivalent of the color-sensitive vertebrate cone cells, which express a range of different pigments. The R7 photoreceptors express one of two different UV absorbing pigments, either Rh3 or Rh4. Likewise, the R8 photoreceptors express either the blue absorbing pigment Rh5 or green absorbing pigment Rh6. These photoreceptors belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 292 -341324 cd15080 7tmA_MWS_opsin medium wave-sensitive opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes Medium Wave-Sensitive opsin, which mediates visual transduction in response to light at medium wavelengths (green). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 280 -320209 cd15081 7tmA_LWS_opsin long wave-sensitive opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. Long Wave-Sensitive opsin is also called red-sensitive opsin or red cone photoreceptor pigment, which mediates visual transduction in response to light at long wavelengths. Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 292 -320210 cd15082 7tmA_VA_opsin non-visual VA (vertebrate ancient) opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. The vertebrate ancient (VA) opsin photopigments were originally identified in salmon and they appear to have diverged early in the evolution of vertebrate opsins. VA opsins are localized in the inner retina and the brain in teleosts. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extraretinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity, and body color change. The VA opsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 291 -320211 cd15083 7tmA_Melanopsin-like vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group represent the Gq-coupled rhodopsin subfamily consists of melanopsins, insect photoreceptors R1-R6, invertebrate Gq opsins as well as their closely related opsins. Melanopsins (also called Opsin-4) are the primary photoreceptor molecules for non-visual functions such as the photo-entrainment of the circadian rhythm and pupillary constriction in mammals. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. The outer photoreceptors (R1-R6) are the insect Drosophila equivalent to the vertebrate rods and are responsible for image formation and motion detection. The invertebrate G(q) opsins includes the arthropod and mollusk visual opsins as well as invertebrate melanopsins, which are also found in vertebrates. Arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. Members of this subfamily belong to the class A of the G protein-coupled receptors and have seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 291 -320212 cd15084 7tmA_Pinopsin non-visual pinopsins, member of the class A family of seven-transmembrane G protein-coupled receptors. Pinopsins are found in the pineal organ of birds, reptiles and amphibians, but are absent from teleosts and mammals. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Pinopsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 295 -320213 cd15085 7tmA_Parietopsin non-visual parietopsins, member of the class A family of seven-transmembrane G protein-coupled receptors. Parietopsin is a non-visual green light-sensitive opsin that was initially identified in the parietal eye of lizards. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Parietopsin belongs to the class A of the G protein-coupled receptors and shows strong homology to the vertebrate visual opsins. 280 -320214 cd15086 7tmA_tmt_opsin teleost multiple tissue (tmt) opsin, member of the class A family of seven-transmembrane G protein-coupled receptors. Teleost multiple tissue (tmt) opsins are homologs of encephalopsin. Mouse encephalopsin (or panopsin) is highly expressed in the brain and testes, whereas the teleost homologs are localized to multiple tissues. The exact functions of the encephalopsins and tmt-opsins are unknown. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Tmt opsins belong to the class A of the G protein-coupled receptors and show strong homology to the vertebrate visual opsins. 276 -320215 cd15087 7tmA_NPBWR neuropeptide B/W receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropeptide B/W receptor 1 and 2 are members of the class A G-protein coupled receptors that bind the neuropeptides B and W, respectively. NPBWR1 (previously known as GPR7) is expressed predominantly in cerebellum and frontal cortex, while NPBWR2 (previously known as GPR8) is located mostly in the frontal cortex and is present in human, but not in rat and mice. These receptors are suggested to be involved in the regulation of food intake, neuroendocrine function, and modulation of inflammatory pain, among many others. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320216 cd15088 7tmA_MCHR-like melanin concentrating hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 278 -320217 cd15089 7tmA_Delta_opioid_R opioid receptor subtype delta, member of the class A family of seven-transmembrane G protein-coupled receptors. The delta-opioid receptor binds the endogenous pentapeptide ligands such as enkephalins and produces antidepressant-like effects. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. 281 -320218 cd15090 7tmA_Mu_opioid_R opioid receptor subtype mu, member of the class A family of seven-transmembrane G protein-coupled receptors. The mu-opioid receptor binds endogenous opioids such as beta-endorphin and endomorphin. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. 279 -320219 cd15091 7tmA_Kappa_opioid_R opioid receptor subtype kappa, member of the class A family of seven-transmembrane G protein-coupled receptors. The kappa-opioid receptor binds the opioid peptide dynorphin as the primary endogenous ligand. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. 282 -320220 cd15092 7tmA_NOFQ_opioid_R nociceptin/orphanin FQ peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The nociceptin (NOP) receptor binds nociceptin or orphanin FQ, a 17 amino acid endogenous neuropeptide. The NOP receptor is involved in the modulation of various brain activities including instinctive and emotional behaviors. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. 279 -320221 cd15093 7tmA_SSTR somatostatin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. They share common signaling cascades such as inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase activity, and G-protein-dependent regulation of MAPKs. 280 -320222 cd15094 7tmA_AstC_insect somatostatin-like receptor for allatostatin C, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. In Drosophila melanogaster and other insects, a 15-amino-acid peptide named allatostatin C(AstC) binds the somatostatin-like receptors. Two AstC receptors have been identified in Drosophila with strong sequence homology to human somatostatin and opioid receptors. 282 -320223 cd15095 7tmA_KiSS1R KiSS1-derived peptide (kisspeptin) receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled KiSS1-derived peptide receptor (GPR54 or kisspeptin receptor) binds the peptide hormone kisspeptin (previously known as metastin), which encoded by the metastasis suppressor gene (KISS1) expressed in various endocrine and reproductive tissues. The KiSS1 receptor is coupled to G proteins of the G(q/11) family, which lead to activation of phospholipase C and increase of intracellular calcium. This signaling cascade plays an important role in reproduction by regulating the secretion of gonadotropin-releasing hormone. 288 -320224 cd15096 7tmA_AstA_R_insect allatostatin-A receptor in insects, member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled AstA receptor binds allatostatin A. Three distinct types of allatostatin have been identified in the insects and crustaceans: AstA, AstB, and AstC. They both inhibit the biosynthesis of juvenile hormone and exert an inhibitory influence on food intake. Therefore, allatostatins are considered as potential targets for insect control. 284 -320225 cd15097 7tmA_Gal2_Gal3_R galanin receptor subtypes 2 and 3, member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Three receptors subtypes have been so far identified: GAL1, GAL2, and GAL3. The specific functions of each subtype remains mostly unknown, although galanin is thought to be involved in a variety of neuronal functions such as hormone release and food intake. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, depression, eating disorders, epilepsy and stroke, among many others. 279 -320226 cd15098 7tmA_Gal1_R galanin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Three receptors subtypes have been so far identified: GAL1, GAL2, and GAL3. The specific functions of each subtype remains mostly unknown, although galanin is thought to be involved in a variety of neuronal functions such as hormone release and food intake. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, depression, eating disorders, epilepsy and stroke, among many others. 282 -320227 cd15099 7tmA_Cannabinoid_R cannabinoid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. 281 -320228 cd15100 7tmA_GPR3_GPR6_GPR12-like G protein-coupled receptors 3, 6, 12, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3. Also included in this subfamily is GPRx, also known as GPR185, which involved in the maintenance of meiotic arrest in frog oocytes. 268 -341325 cd15101 7tmA_LPAR lysophosphatidic acid receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 274 -320230 cd15102 7tmA_S1PR sphingosine-1-phosphate receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 270 -320231 cd15103 7tmA_MCR melanocortin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 270 -320232 cd15104 7tmA_GPR119_R_insulinotropic_receptor G protein-coupled receptor 119, also called glucose-dependent insulinotropic receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR119 is activated by oleoylethanolamide (OEA), a naturally occurring bioactive lipid with hypophagic and anti-obesity effects. Immunohistochemistry and double-immunofluorescence studies revealed the predominant GPR119 localization in pancreatic polypeptide (PP)-cells of islets. In addition, GPR119 expression is elevated in islets of obese hyperglycemic mice as compared to control islets, suggesting a possible involvement of this receptor in the development of obesity and diabetes. GPR119 has a significant sequence similarity with the members of the endothelial differentiation gene family. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 283 -320233 cd15105 7tmA_MrgprA mas-related G protein-coupled receptor subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 276 -320234 cd15106 7tmA_MrgprX-like primate-specific mas-related G protein-coupled receptor subtype X-like, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 274 -320235 cd15107 7tmA_MrgprB mas-related G protein-coupled receptor subtype B, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 276 -320236 cd15108 7tmA_MrgprD mas-related G protein-coupled receptor subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 276 -320237 cd15109 7tmA_MrgprF mas-related G protein-coupled receptor subtype F, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 274 -320238 cd15110 7tmA_MrgprH mas-related G protein-coupled receptor subtype H, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 274 -320239 cd15111 7tmA_MrgprG mas-related G protein-coupled receptor subtype G, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 263 -320240 cd15112 7tmA_MrgprE mas-related G protein-coupled receptor subtype E, member of the class A family of seven-transmembrane G protein-coupled receptors. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 272 -320241 cd15113 7tmA_MAS1L mas-related G protein-coupled receptor 1-like (MAS1L), member of the class A family of seven-transmembrane G protein-coupled receptors. MAS1L is also called MAS1 oncogene-like (MAS1-like) or mas-related G-protein coupled receptor MRG. MAS1L is a G protein-coupled receptor that only found in primates. The angiotensin-II metabolite angiotensin is an endogenous ligand for MAS1L. The Mas-related G-protein coupled receptor (Mrgpr) family constitutes a group of orphan receptors exclusively expressed in nociceptive primary sensory neurons and mast cells in the skin. Members of the Mrgpr family have been implicated in the modulation of nociception, pruritus (itching), and mast cell degranulation. The Mrgpr family in rodents and humans contains more than 50 members that can be grouped into 9 distinct subfamilies: MrgprA, B, C (MrgprX1), D, E, F, G, H (GPR90), and the primate-specific MrgprX subfamily. Some Mrgprs can be activated by endogenous ligands such as beta-alanine, adenine (a cell metabolite and potential transmitter), RF-amide related peptides, or salusin-beta (a bioactive peptide). However, the effects of these agonists are not clearly understood, and the physiological role of the individual receptor family members remains to be determined. 265 -320242 cd15114 7tmA_C5aR complement component 5a anaphylatoxin chemotactic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The anaphylatoxin receptors are a group of G-protein coupled receptors which bind anaphylatoxins; members of this group include C3a receptors and C5a receptors. Anaphylatoxins are also known as complement peptides (C3a, C4a and C5a) that are produced from the activation of the complement system cascade. These complement anaphylatoxins can trigger degranulation of endothelial cells, mast cells, or phagocytes, which induce a local inflammatory response and stimulate smooth muscle cell contraction, histamine release, and increased vascular permeability. They are potent mediators involved in chemotaxis, inflammation, and generation of cytotoxic oxygen-derived free radicals. In humans, a single receptor for C3a (C3AR1) and two receptors for C5a (C5AR1 and C5AR2, also known as C5L2 or GPR77) have been identified, but there is no known receptor for C4a. 274 -320243 cd15115 7tmA_C3aR complement component 3a anaphylatoxin chemotactic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The anaphylatoxin receptors are a group of G-protein coupled receptors which bind anaphylatoxins; members of this group include C3a receptors and C5a receptors. Anaphylatoxins are also known as complement peptides (C3a, C4a and C5a) that are produced from the activation of the complement system cascade. These complement anaphylatoxins can trigger degranulation of endothelial cells, mast cells, or phagocytes, which induce a local inflammatory response and stimulate smooth muscle cell contraction, histamine release, and increased vascular permeability. They are potent mediators involved in chemotaxis, inflammation, and generation of cytotoxic oxygen-derived free radicals. In humans, a single receptor for C3a (C3AR1) and two receptors for C5a (C5AR1 and C5AR2, also known as C5L2 or GPR77) have been identified, but there is no known receptor for C4a. 265 -320244 cd15116 7tmA_CMKLR1 chemokine-like receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Chemokine receptor-like 1 (also known as Chemerin receptor 23) is a GPCR for the chemoattractant adipokine chemerin, also known as retinoic acid receptor responder protein 2 (RARRES2), and for the omega-3 fatty acid derived molecule resolvin E1. Interaction with chemerin induces activation of the MAPK and PI3K signaling pathways leading to downstream functional effects, such as a decrease in immune responses, stimulation of adipogenesis, and angiogenesis. On the other hand, resolvin E1 negatively regulates the cytokine production in macrophages by reducing the activation of MAPK1/3 and NF-kB pathways. CMKLR1 is prominently expressed in dendritic cells and macrophages. 284 -320245 cd15117 7tmA_FPR-like N-formyl peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The formyl peptide receptors (FPRs) are chemoattractant GPCRs that involved in mediating immune responses to infection. They are expressed at elevated levels on polymorphonuclear and mononuclear phagocytes. FPRs bind N-formyl peptides, which are derived from the mitochondrial proteins of ruptured host cells or invading pathogens. Activation of FPRs by N-formyl peptides such as N-formyl-Met-Leu-Phe (FMLP) triggers a signaling cascade that stimulates neutrophil accumulation, phagocytosis and superoxide production. These responses are mediated through a pertussis toxin-sensitive G(i) protein that activates a PLC-IP3-calcium signaling pathway. While FPRs are involved in host defense responses to bacterial infection, they can also suppress the immune system under certain conditions. Yet, the physiological role of the FPR family is not fully understood. 288 -320246 cd15118 7tmA_PD2R2_CRTH2 prostaglandin D2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin D2 receptor, also known as CRTH2, is a chemoattractant G-protein coupled receptor expressed on T helper type 2 cells that binds prostaglandin D2 (PGD2). PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses and also causes vasodilation. PGD2 exerts its inflammatory effects by binding to two G-protein coupled receptors, the D-type prostanoid receptor (DP) and PD2R2 (CRTH2). PD2R2 couples to the G protein G(i/o) type which leads to a reduction in intracellular cAMP levels and an increase in intracellular calcium. PD2R2 is involved in mediating chemotaxis of Th2 cells, eosinophils, and basophils generated during allergic inflammatory processes. CRTH2 (PD2R2), but not DP receptor, undergoes agonist-induced internalization which is one of key processes that regulates the signaling of the GPCR. 284 -320247 cd15119 7tmA_GPR1 G protein-coupled receptor 1 for chemerin, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor 1 (GPR1) belongs to the class A of the seven transmembrane domain receptors. This is an orphan receptor that can be activated by the leukocyte chemattractant chemerin, thereby suggesting that some of the anti-inflammatory actions of chemerin may be mediated through GPR1. GPR1 is most closely related to another chemerin receptor CMKLR1. In an in-vitro study, GPR1 has been shown to act as a co-receptor to allow replication of HIV viruses. 278 -320248 cd15120 7tmA_GPR33 orphan receptor GPR33, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein coupled receptor GPR33, an orphan member of the chemokine-like receptor family, was originally identified as a pseudogene in humans as well as in several apes and rodent species. Although the intact GPR33 allele is still present in a small fraction of the human population, the human GPR33 contains a premature stop codon. The amino acid sequence of GPR33 shares a high degree of sequence identity with the members of the chemokine and chemoattractant receptors that control leukocyte chemotaxis. The human GPR33 is expressed in spleen, lung, heart, kidney, pancreas, thymus, gonads, and leukocytes. 282 -320249 cd15121 7tmA_LTB4R1 leukotriene B4 receptor subtype 1 (LTB4R1 or BLT1), member of the class A family of seven-transmembrane G protein-coupled receptors. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is a powerful chemotactic activator for granulocytes and macrophages. Two receptors for LTB4 have been identified: a high-affinity receptor (LTB4R1 or BLT1) and a low-affinity receptor (TB4R2 or BLT2). Both BLT1 and BLT2 receptors belong to the rhodopsin-like G-protein coupled receptor superfamily and primarily couple to G(i) proteins, which lead to chemotaxis, calcium mobilization, and inhibition of adenylate cyclase. In some cells, they can also couple to the Gq-like protein, G16, and activate phospholipase C. LTB4 is involved in mediating inflammatory processes, immune responses, and host defense against infection. Studies have shown that LTB4 stimulates leukocyte extravasation, neutrophil degranulation, lysozyme release, and reactive oxygen species generation. 278 -320250 cd15122 7tmA_LTB4R2 leukotriene B4 receptor subtype 2 (LTB4R2 or BLT2), member of the class A family of seven-transmembrane G protein-coupled receptors. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is a powerful chemotactic activator for granulocytes and macrophages. Two receptors for LTB4 have been identified: a high-affinity receptor (LTB4R1 or BLT1) and a low-affinity receptor (TB4R2 or BLT2). Both BLT1 and BLT2 receptors belong to the rhodopsin-like G-protein coupled receptor superfamily and primarily couple to G(i) proteins, which lead to chemotaxis, calcium mobilization, and inhibition of adenylate cyclase. In some cells, they can also couple to the Gq-like protein, G16, and activate phospholipase C. LTB4 is involved in mediating inflammatory processes, immune responses, and host defense against infection. Studies have shown that LTB4 stimulates leukocyte extravasation, neutrophil degranulation, lysozyme release, and reactive oxygen species generation. 281 -320251 cd15123 7tmA_BRS-3 bombesin receptor subtype 3, member of the class A family of seven-transmembrane G protein-coupled receptors. BRS-3 is classified as an orphan receptor and belongs to the bombesin subfamily of G-protein coupled receptors, whose members also include neuromedin B receptor (NMBR) and gastrin-releasing peptide receptor (GRPR). Bombesin is a tetradecapeptide, originally isolated from frog skin. Mammalian bombesin-related peptides are widely distributed in the gastrointestinal and central nervous systems. The bombesin family receptors couple primarily to the G proteins of G(q/11) family. BRS-3 interacts with known naturally-occurring bombesin-related peptides with low affinity; however, no endogenous high-affinity ligand to the receptor has been identified. BRS-3 is suggested to play a role in sperm cell division and maturation. 294 -320252 cd15124 7tmA_GRPR gastrin-releasing peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The gastrin-releasing peptide receptor (GRPR) is a G-protein coupled receptor whose endogenous ligand is gastrin releasing peptide. GRP shares high sequence homology with the neuropeptide neuromedin B in the C-terminal region. This receptor is high glycosylated and couples to a pertussis-toxin-insensitive G protein of the family of Gq/11, which leads to the activation of phospholipase C. Gastrin-releasing peptide (GRP) is a potent mitogen for neoplastic tissues and involved in regulating multiple functions of the gastrointestinal and central nervous systems. These include the release of gastrointestinal hormones, the contraction of smooth muscle cells, and the proliferation of epithelial cells. GRPR belongs to the bombesin subfamily of G-protein coupled receptors, whose members also include neuromedin B receptor (NMBR) and bombesin receptor subtype 3 (BRS-3). Bombesin is a tetradecapeptide, originally isolated from frog skin. 293 -320253 cd15125 7tmA_NMBR neuromedin B receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The neuromedin B receptor (NMBR), also known as BB1, is a G-protein coupled receptor whose endogenous ligand is the neuropeptide neuromedin B. Neuromedin B is a potent mitogen and growth factor for normal and cancerous lung and for gastrointestinal epithelial tissues. NMBR is widely distributed in the CNS, with especially high levels in olfactory nucleus and thalamic regions. The receptor couples primarily to a pertussis-toxin-insensitive G protein of the Gq/11 family, which leads to the activation of phospholipase C. NMBR belongs to the bombesin subfamily of G-protein coupled receptors, whose members also include gastrin-releasing peptide receptor (GRPR) and bombesin receptor subtype 3 (BRS-3). Bombesin is a tetradecapeptide, originally isolated from frog skin. 292 -320254 cd15126 7tmA_ETBR-LP2 endothelin B receptor-like protein 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Endothelin B receptor-like protein 2, also called GPR37L1, is almost exclusively expressed in the nervous system. It has recently been shown to act as a receptor for the neuropeptide prosaptide, the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also called sulfated glycoprotein-1). Both prosaptide and prosaposin protect primary astrocytes against oxidative stress. GPR37L1 is part of the class A family of GPCRs that includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 298 -320255 cd15127 7tmA_GPR37 G protein-coupled receptor 37, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR37, also called parkin-associated endothelin-like receptor (Pael-R), was isolated from a set of human brain frontal lobe expressed sequence tags. It is highly expressed in the mammalian CNS. It is a substrate of parkin and is involved in the pathogenesis of Parkinson's disease. GPR37 has recently been shown to act as a receptor for the neuropeptide prosaptide, the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also called sulfated glycoprotein-1). Both prosaptide and prosaposin protect primary astrocytes against oxidative stress. GPR37 is part of the class A family of GPCRs that includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 298 -320256 cd15128 7tmA_ET_R endothelin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Endothelins are 21-amino acid peptides which able to activate a number of signal transduction processes including phospholipase A2, phospholipase C, and phospholipase D, as well as cytosolic protein kinase activation. They play an important role in the regulation of the cardiovascular system and are the most potent vasoconstrictors identified, stimulating cardiac contraction, regulating the release of vasoactive substances, and stimulating mitogenesis in blood vessels. Two endothelin receptor subtypes have been isolated and identified in vertebrates, endothelin A receptor (ET-A) and endothelin B receptor (ET-B), and are members of the seven transmembrane class A G-protein coupled receptor family which activate multiple effectors via different types of G protein. Some vertebrates contain a third subtype, endothelin A receptor (ET-C). ET-A receptors are mainly located on vascular smooth muscle cells, whereas ET-B receptors are present on endothelial cells lining the vessel wall. Endothelin receptors have also been found in the brain. 300 -320257 cd15129 7tmA_GPR142 G-protein-coupled receptor GPR142, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR142, a vertebrate orphan receptor, is very closely related to GPR139, but they have different expression patterns in the brain and in other tissues. These receptors couple to inhibitory G proteins and activate phospholipase C. Studies suggested that dimer formation may be required for their proper function. GPR142 is predominantly expressed in pancreatic beta-cells and plays an important role in mediating enhancement of glucose-stimulated insulin secretion and maintaining glucose homeostasis, whereas GPR139 is expressed almost exclusively in the brain and is suggested to play a role in the control of locomotor activity. These orphan receptors are phylogenetically clustered with invertebrate FMRFamide receptors such as Drosophila melanogaster DrmFMRFa-R. 270 -320258 cd15130 7tmA_NTSR neurotensin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortlin, is not a G protein-coupled receptor. 281 -320259 cd15131 7tmA_GHSR growth hormone secretagogue receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Growth hormone secretagogue receptor, GHSR, is also known as GH-releasing peptide receptor (GHRP) or Ghrelin receptor. Ghrelin, the endogenous ligand for GHSR, is an acylated 28-amino acid peptide hormone produced by ghrelin cells in the gastrointestinal tract. Ghrelin, also called hunger hormone, is involved in the regulation of growth hormone release, appetite and feeding, gut motility, lipid and glucose metabolism, and energy balance. It also plays a role in the cardiovascular, immune, and reproductive systems. GHSR couples to G-alpha-11 proteins. Both ghrelin and GHSR are expressed in a wide range of cancer tissues. Recent studies suggested that ghrelin may play a role in processes associated with cancer progression, including cell proliferation, metastasis, apoptosis, and angiogenesis. 291 -320260 cd15132 7tmA_motilin_R motilin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Motilin receptor, also known as GPR38, is a G-protein coupled receptor that binds the endogenous ligand motilin. Motilin is a 22 amino acid peptide hormone expressed throughout the gastrointestinal tract and stimulates contraction of gut smooth muscle. Motilin is also called as the housekeeper of the gut because it is responsible for the proper filling and emptying of the gastrointestinal tract in response to food intake, and for stimulating the production of pepsin. Motilin receptor shares significant amino acid sequence identity with the growth hormone secretagogue receptor (GHSR) and neurotensin receptors (NTS-R1 and 2). 289 -320261 cd15133 7tmA_NMU-R neuromedin U receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure. 298 -320262 cd15134 7tmA_capaR neuropeptide capa receptor and similar invertebrate proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. CapaR is a G-protein coupled receptor for the Drosophila melanogaster capa neuropeptides (Drm-capa-1 and -2), which act on the Malpighian tubules to increase fluid transport. The capa peptides are evolutionarily related to vertebrate Neuromedin U neuropeptide and contain a C-terminal FPRXamide motif. CapaR regulates fluid homeostasis through its ligands, thereby acts as a desiccation stress-responsive receptor. CapaR undergoes desensitization, with internalization mediated by beta-arrestin-2. 298 -320263 cd15135 7tmA_GPR39 G protein-coupled receptor 39, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR39 is an orphan G protein-coupled receptor that belongs to the growth hormone secretagogue and neurotensin receptor subfamily. GPR39 is expressed in peripheral tissues such as pancreas, gut, gastrointestinal tract, liver, kidney as well as certain regions of the brain. The divalent metal ion Zn(2+) has been shown to be a ligand capable of activating GPR39. Thus, it has been suggested that GPR39 function as a G(q)-coupled Zn(2+)-sensing receptor which involved in the regulation of endocrine pancreatic function, body weight, gastrointestinal mobility, and cell death. 320 -320264 cd15136 7tmA_Glyco_hormone_R glycoprotein hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The glycoprotein hormone receptors (GPHRs) are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone family includes three gonadotropins: luteinizing hormone (LH), follicle-stimulating hormone (FSH), chorionic gonadotropin (CG) and a pituitary thyroid-stimulating hormone (TSH). The glycoprotein hormones exert their biological functions by interacting with their cognate GPCRs. Both LH and CG bind to the same receptor, the luteinizing hormone-choriogonadotropin receptor (LHCGR); FSH binds to FSH-R and TSH to TSH-R. GPHRs couple primarily to the G(s)-protein and promotes cAMP production, but also to the G(i)- or G(q)-protein. 275 -320265 cd15137 7tmA_Relaxin_R relaxin family peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes relaxin/insulin-like family peptide receptor 1 (RXFP1 or LGR7) and 2 (RXFP2 or LGR8), which contain a very large extracellular N-terminal domain with numerous leucine-rich repeats responsible for hormone recognition and binding. Relaxin is a member of the insulin superfamily that has diverse actions in both reproductive and non-reproductive tissues. The relaxin-like peptide family includes relaxin-1, relaxin-2, and the insulin-like (INSL) peptides such as INSL3, INSL4, INSL5 and INSL6. The relaxin family peptides share high structural but low sequence similarity, and exert their physiological functions by activating a group of four GPCRs, RXFP1-4. Relaxin and INSL3 are the endogenous ligands for RXFP1 and RXFP2, respectively. Upon receptor binding, relaxin activates a variety of signaling pathways to produce second messengers such as cAMP. 284 -320266 cd15138 7tmA_LRR_GPR orphan leucine-rich repeat-containing G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), 5 (LGR5), and 6 (LGR6). These receptors contain a subfamily of receptors related to the glycoprotein hormone receptor family, which includes the luteinizing hormone (LH) receptor, the follicle-stimulating hormone (FSH) receptor, and the pituitary thyroid-stimulating hormone (TSH) receptor. LGR4-6 are receptors for the R-spondin (Rspo) family of secreted proteins containing two N-terminal furin-like repeats and a thrombospondin domain. The RSPO proteins are involved in regulating proliferation and differentiation of adult stem cells by potently enhancing the WNT-stimulated beta-catenin signaling. LGR4 is broadly expressed in proliferating cells, and its deficient mice display development defects in multiple organs. LGR5 acts as a marker for resident stem cell in numerous epithelial cell layers, including small intestine, colon, stomach, and kidney. LGR6 also serves as a marker of multipotent stem cells in the hair follicle that generate all skin cell lineages. Members of this group are characterized by a very large extracellular N-terminal domain containing 17 leucine-rich repeats (LRRs), flanked by cysteine-rich N- and C-terminal capping domains, and the extracellular domain is responsible for high-affinity binding with the Rspo proteins. 274 -320267 cd15139 7tmA_PGE2_EP2 prostaglandin E2 receptor EP2 subtype, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin E2 receptor EP2, also called prostanoid EP2 receptor, is one of four receptor subtypes whose endogenous physiological ligand is prostaglandin E2 (PGE2). Each of these subtypes (EP1-EP4) have unique but overlapping tissue distributions that activate different intracellular signaling pathways. Stimulation of the EP2 receptor by PGE2 causes cAMP accumulation through G(s) protein activation, which subsequently produces smooth muscle relaxation and mediates the systemic vasodepressor response to PGE2. Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. 299 -320268 cd15140 7tmA_PGD2 prostaglandin D2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin D2 receptor (also called prostanoid DP receptor, DP1, or PGD2R1) is a G-protein coupled receptor whose endogenous ligand is prostaglandin D2 (PGD2). PGD2, the major cyclooxygenase metabolite of arachidonic acid produced by mast cells, mediates inflammatory reactions in response to allergen challenge and causes peripheral vasodilation. PGD2 exerts its biological effects by binding to two types of cell surface receptors: a DP1 receptor that belongs to the prostanoid receptor family and a chemoattractant receptor-homologous molecule expressed on the T-helper type 2 cells (CRTH2 or PD2R2). 312 -320269 cd15141 7tmA_PGI2 prostaglandin I2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin I2 receptor (also called prostacyclin receptor or prostanoid IP receptor) is a class A, G protein-coupled receptor whose endogenous ligand is prostacyclin, which is the major product of cyclooxygenase metabolite of arachidonic acid that found predominantly in platelets and vascular smooth muscle cells (VSMCs). The PGI2 receptor is coupled to both G(s) and G(q) protein subtypes, resulting in increased cAMP formation, phosphoinositide turnover, and Ca2+ signaling. PGI2 receptor activation by prostacyclin induces VSMC differentiation and produces a potent vasodilation and inhibition of platelet aggregation. 301 -320270 cd15142 7tmA_PGE2_EP4 prostaglandin E2 receptor EP4 subtype, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin E2 receptor EP4, also called prostanoid EP4 receptor, is one of four receptor subtypes whose endogenous physiological ligand is prostaglandin E2 (PGE2). Each of these subtypes (EP1-EP4) have unique but overlapping tissue distributions that activate different intracellular signaling pathways. Like the EP2 receptor, stimulation of the EP4 receptor by PGE2 causes cAMP accumulation through G(s) protein activation. Knockout studies in mice suggest that EP4 receptor may be involved in the maintenance of bone mass and fracture healing. Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. 302 -320271 cd15143 7tmA_TXA2_R thromboxane A2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The thromboxane receptor, also known as the prostanoid TP receptor, is a class A G-protein coupled receptor whose endogenous ligand is thromboxane A2 (TXA2). TXA2 is the major product of cyclooxygenase metabolite of arachidonic acid that found predominantly in platelets and stimulates platelet aggregation, Ca2+ influx into platelets, and also causes vasoconstriction. TXA2 has been shown to be involved in immune regulation, angiogenesis and metastasis, among many others. Activation of TXA2 receptor is coupled to G(q) and G(13), resulting in the activations of phospholipase C and RhoGEF, respectively. TXA2 receptor is widely distributed in the body and is abundantly expressed in thymus and spleen. 296 -320272 cd15144 7tmA_PGE2_EP1 prostaglandin E2 receptor EP1 subtype, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin E2 receptor EP1, also called prostanoid EP1 receptor, is one of four receptor subtypes whose endogenous physiological ligand is prostaglandin E2 (PGE2). Each of these subtypes (EP1-EP4) have unique but overlapping tissue distributions that activate different intracellular signaling pathways. It has been shown that stimulation of the EP1 receptor by PGE2 causes smooth muscle contraction and increased intracellular Ca2+ levels; however, it is still unclear whether EP1 receptor is exclusively coupled to G(q/11), which leading to activation of phospholipase C and phosphatidylinositol hydrolysis. Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. 294 -320273 cd15145 7tmA_FP prostaglandin F2-alpha receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The PGF2-alpha receptor, also called prostanoid FP receptor, is a class A G-protein coupled receptor whose endogenous ligand is prostaglandin F2-alpha. PGF2-alpha binding to this receptor is coupled to the stimulation of phospholipase C (PLC) pathway via G-protein subunit G(q). This leads to the release of inositol trisphosphate (IP3) and diacylglycerol (DAG) which results in increased intracellular Ca2+ levels and activation of PKC. The receptor activation primarily induces uterine contraction and bronchoconstriction, and stimulates luteolysis. Like most prostanoid receptors, the PGF2-alpha receptor has also been implicated in tumor angiogenesis and metastasis. 290 -320274 cd15146 7tmA_PGE2_EP3 prostaglandin E2 receptor EP3 subtype, member of the class A family of seven-transmembrane G protein-coupled receptors. Prostaglandin E2 receptor EP3, also called prostanoid EP3 receptor, is one of four receptor subtypes whose endogenous physiological ligand is prostaglandin E2 (PGE2). Each of these subtypes (EP1-EP4) have unique but overlapping tissue distributions that activate different intracellular signaling pathways. Stimulation of the EP3 receptor by PGE2 preferentially couples to G(i) protein. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels, which subsequently produces smooth muscle contraction. Knockout mice studies suggest that the EP3 receptor may act as a systemic vasopressor. Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. 308 -320275 cd15147 7tmA_PAFR platelet-activating factor receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The platelet-activating factor receptor is a G(q/11)-protein coupled receptor, which is linked to p38 MAPK and PI3K signaling pathways. PAF is a phospholipid (1-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) which is synthesized by cells especially involved in host defense such as platelets, macrophages, neutrophils, and monocytes. PAF is well-known for its ability to induce platelet aggregation and anaphylaxis, and also plays important roles in allergy, asthma, and inflammatory responses, among many others. 291 -320276 cd15148 7tmA_GPR34-like putative G protein-coupled receptor 34, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the G-protein coupled receptor 34 of unknown function. Orphan GPR34 is a member of the rhodopsin-like, class A GPCRs, which is a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320277 cd15149 7tmA_P2Y14 P2Y purinoceptor 14, member of the class A family of seven-transmembrane G protein-coupled receptors. The P2Y14 receptor is activated by UDP-sugars and belongs to the G(i) class of the P2Y family of purinergic G-protein coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-sugars. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-sugars (P2Y14). P2Y14 receptor has been reported to be involved in a diverse set of physiological responses in many epithelia as well as in immune and inflammatory cells. 284 -341326 cd15150 7tmA_P2Y12 P2Y purinoceptor 12, member of the class A family of seven-transmembrane G protein-coupled receptors. The P2Y12 receptor (P2Y12R) is found predominantly on the surface of blood platelets and is activated by adenosine diphosphate (ADP). P2Y12R plays an important role in the regulation of blood clotting and belongs to the G(i) class of the P2Y family of purinergic G protein-coupled receptors. P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-sugars. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-sugars (P2Y14). 285 -341327 cd15151 7tmA_P2Y13 P2Y purinoceptor 13, member of the class A family of seven-transmembrane G protein-coupled receptors. The P2Y13 receptor (P2Y13R) is activated by adenosine diphosphate (ADP) and belongs to the G(i) class of the P2Y family of purinergic G protein-coupled receptors. P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-sugars. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-sugars (P2Y14). 284 -320280 cd15152 7tmA_GPR174-like putative purinergic receptor GPR174, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR174 has been recently identified as a lysophosphatidylserine receptor that enhances intracellular cAMP formation by coupling to a G(s) protein. GPR174 is a member of the rhodopsin-like, class A GPCRs, which is a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320281 cd15153 7tmA_P2Y10 P2Y purinoceptor 10, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y10 receptor is a G-protein coupled receptor that is activated by both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Phylogenetic analysis of the class A GPCRs shows that P2Y10 is grouped into the cluster comprising nucleotide and lipid receptors. Although the mouse P2Y10 was found to be expressed in brain, lung, reproductive organs, and skeletal muscle, the physiological function of this receptor is not yet known. S1P and LPA are bioactive lipid molecules that induce a variety of cellular responses through G proteins: adhesion, invasion, cell migration and proliferation, among many others. 283 -320282 cd15154 7tmA_LPAR5 lysophosphatidic acid receptor 5, member of the class A family of seven-transmembrane G protein-coupled receptors. Lysophosphatidic acid receptor 5 (LPAR5) is a G protein-coupled receptor that binds the bioactive lipid lysophosphatidic acid (LPA) and is involved in maintenance of human hair growth. Phylogenetic analysis of the class A GPCRs shows that LAPR5 is classified into the cluster consisting receptors that are preferentially activated by adenosine and uridine nucleotides. Although LPA6 (P2Y5) is expressed in human hair follicle cells, LPA4 and LPA5 are not. These three receptors are highly homologous and mediate an increase in intracellular cAMP production. Activation of LPAR5 is coupled to G(q) and G(12/13) proteins. 285 -320283 cd15155 7tmA_LPAR4 lysophosphatidic acid receptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. Lysophosphatidic acid receptor 4 (LPAR4) is a G protein-coupled receptor that binds and is activated by the bioactive lipid lysophosphatidic acid (LPA), which is released by activated platelets and constitutively found in serum. Phylogenetic analysis of the class A GPCRs shows that LAPR4 is classified into the cluster consisting receptors that are preferentially activated by adenosine and uridine nucleotides. Although LPA6 (P2Y5) is expressed in human hair follicle cells, LPA4 and LPA5 are not. These three receptors are highly homologous and mediate an increase in intracellular cAMP production. Activation of LPAR5 is coupled to G(12/13) proteins, leading to neurite retraction and stress fiber formation, whereas coupling to G(q) protein leads to increases in calcium levels. 283 -320284 cd15156 7tmA_LPAR6_P2Y5 lysophosphatidic acid receptor 6, member of the class A family of seven-transmembrane G protein-coupled receptors. Lysophosphatidic acid receptor 6 (LPAR6), also known as P2Y5, is a G(i), G(12/13) G protein-coupled receptor that is activated by the bioactive lipid lysophosphatidic acid (LPA), which is released by activated platelets and constitutively present in serum. LPAR6 plays an important role in maintenance of human hair growth. Thus, mutations in the receptor are responsible for both autosomal recessive wooly hair and hypotrichosis. Phylogenetic analysis of the class A GPCRs shows that LAPR6 (P2Y5) is classified into the cluster consisting of receptors that are preferentially activated by adenosine and uridine nucleotides. Although LPA6 (P2Y5) is expressed in human hair follicle cells, LPA4 and LPA5 are not. These three receptors are highly homologous and mediate an increase in intracellular cAMP production. 285 -320285 cd15157 7tmA_CysLTR2 cysteinyl leukotriene receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are the most potent inflammatory lipid mediators that play an important role in human asthma. They are synthesized in the leucocytes (cells of immune system) from arachidonic acid by the actions of 5-lipoxygenase and induce bronchial constriction through G protein-coupled receptors, CysLTR1 and CysLTR2. Activation of CysLTR1 by LTD4 induces airway smooth muscle contraction and proliferation, eosinophil migration, and damage to the lung tissue. They belong to the class A GPCR superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 278 -320286 cd15158 7tmA_CysLTR1 cysteinyl leukotriene receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are the most potent inflammatory lipid mediators that play an important role in human asthma. They are synthesized in the leucocytes (cells of immune system) from arachidonic acid by the actions of 5-lipoxygenase and induce bronchial constriction through G protein-coupled receptors, CysLTR1 and CysLTR2. Activation of CysLTR1 by LTD4 induces airway smooth muscle contraction and proliferation, eosinophil migration, and damage to the lung tissue. They belong to the class A GPCR superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 285 -320287 cd15159 7tmA_EBI2 Epstein-Barr virus (EBV)-induced gene 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2), also called GPR183, is activated by 7alpha, 25-dihydroxyxcholesterol (7alpha, 25-OHC), an oxysterol. EBI2 was originally identified as one of major genes induced in the Burkitt's lymphoma cell line BL41by EBV infection. EBI2 is involved in regulating B cell migration and responses, and is also implicated in human diseases such as type I diabetes, multiple sclerosis, and cancers. 286 -320288 cd15160 7tmA_Proton-sensing_R proton-sensing G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Proton/pH-sensing G-protein coupled receptors sense pH of 7.6 to 6.0. They mediate a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. The proton/pH-sensing receptor family includes the G2 accumulation receptor (G2A, also known as GPR132), the T cell death associated gene-8 (TDAG8, GPR65) receptor, ovarian cancer G-protein receptor 1 (OGR-1, GPR68), and G-protein-coupled receptor 4 (GPR4). 280 -320289 cd15161 7tmA_GPR17 G protein-coupled receptor 17, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR17 is a Forkhead box protein O1 (FOXO1) target and abundantly expressed in agouti-related peptide (AGRP) neurons. FOXO1 is a transcription factor that plays key roles in regulation of gluconeogenesis and glycogenolysis by insulin signaling. For instance, food intake and body weight increase when hypothalamic FOXO1 is activated, whereas they both decrease when FOXO1 is inhibited. However, a recent study has been reported that GPR17 deficiency in mice did not affect food intake or glucose homeostasis. Thus, GPR17 may not play a role in the control of food intake, body weight, or glycemic control. GPR17 is phylogenetically closely related to purinergic P2Y and cysteinyl-leukotriene receptors. 277 -341328 cd15162 7tmA_PAR protease-activated receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes purinergic receptor P2Y8 and protease-activated receptors. P2Y8 (or P2RY8) expression is often increased in leukemia patients, and it plays a role in the pathogenesis of acute leukemia. P2Y8 is phylogenetically closely related to the protease-activated receptors (PARs), which are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. Four different types of the protease-activated receptors have been identified (PAR1-4) and are predominantly expressed in platelets. PAR1, PAR3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 280 -320291 cd15163 7tmA_GPR20 G protein-coupled receptor 20, member of the class A family of seven-transmembrane G protein-coupled receptors. Orphan GPR20 is phylogenetically related to the P2Y family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. GPR20 has been shown to constitutively activate G(i) proteins in the absence of a ligand; however its functional role is not known. GPR20 is a member of the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A common feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. G-proteins regulate a variety of cellular functions including metabolic enzymes, ion channels, and transporters, among many others. 258 -320292 cd15164 7tmA_GPR35-like G protein-coupled receptor 35 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR35 shares closest homology with GPR55, and they belong to the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A number of studies have suggested that GPR35 may play important physiological roles in hypertension, atherosclerosis, nociception, asthma, glucose homeostasis and diabetes, and inflammatory bowel disease. GPR35 is thought to be responsible for brachydactyly mental retardation syndrome, which is associated with a deletion comprising chromosome 2q37 in human, and is also implicated as a potential oncogene in stomach cancer. Several endogenous ligands for GPR35 have been identified including kynurenic acid, 2-oleoyl lysophosphatidic acid, and zaprinast. GPR35 couples to G(13) and G(i/o) proteins. 272 -320293 cd15165 7tmA_GPR55-like G protein-coupled receptor 55 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR55 shares closest homology with GPR35, and they belong to the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. GPR55 has been reported to couple to G(13), G(12), or G(q) proteins. Activation of GPR55 leads to activation of phospholipase C, RhoA, ROCK, ERK, p38MAPK, and calcium release. Lysophophatidylinositol (LPI) is currently considered as the endogenous ligand for GPR55, although the receptor was initially deorphanized as a cannabinoid receptor and binds many cannabinoid ligands. 277 -320294 cd15166 7tmA_NAGly_R_GPR18 N-arachidonyl glycine receptor, GPR18, member of the class A family of seven-transmembrane G protein-coupled receptors. N-arachidonyl glycine (NAGly), an endogenous metabolite of the endocannabinoid anandamide, has been identified as an endogenous ligand of the G(i/o) protein-coupled receptor 18 (GPR18). NAGly is involved in directing microglial migration in the CNS through activation of GPR18. NAGly-GPR18 signaling is thought to play an important role in microglial-neuronal communication. Recent studies also show that GPR18 functions as the abnormal cannabidiol (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of cannabidiol and is inactive at cannabinoid receptors (CB1 or CB2), but acts as a selective agonist at GPR18. The NAGly receptor is a member of the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. G-proteins regulate a variety of cellular functions including metabolic enzymes, ion channels, and transporters, among many others. 275 -320295 cd15167 7tmA_GPR171 orphan G protein-coupled receptor 171, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR171 is phylogenetically related to the P2Y family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. A recent study has been reported that the peptide LENSSPQAPARRLLPP (BigLEN) activates GPR17 to regulate body weight in mice; however the biological role of the receptor remains unknown. GPR171 is a member of the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A common feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. G-proteins regulate a variety of cellular functions including metabolic enzymes, ion channels, and transporters, among many others. 282 -341329 cd15168 7tmA_P2Y1-like P2Y purinoceptors 1, 2, 4, 6, 11 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). This cluster only includes P2Y1-like receptors as well as other closely related orphan receptors, such as GPR91 (a succinate receptor) and GPR80/GPR99 (an alpha-ketoglutarate receptor). 284 -320297 cd15169 7tmA_FFAR1 free fatty acid receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes the mammalian free fatty acid receptor 1 (FFAR1), also called GPR40. FFAR1 is a cell-surface receptor for medium- and long-chain free fatty acids (FFAs). The receptor is most potently activated by eicosatrienoic acid (C20:3), but can also be activated at micromolar concentrations of various fatty acids. FFAR1 directly mediates FFA stimulation of glucose-stimulated insulin secretion and indirectly increases insulin secretion by enhancing the release of incretin. Free fatty acid receptors (FFARs) belong to the class A G-protein coupled receptors and are comprised of three members, each encoded by a separate gene (FFAR1, FFAR2, and FFAR3). These genes and a fourth pseudogene, GPR42, are localized together on chromosome 19. FFARs are considered important components of the body's nutrient sensing mechanism, and therefore, these receptors are potential therapeutic targets for the treatment of metabolic disorders, such as type 2 diabetes and obesity. 284 -320298 cd15170 7tmA_FFAR2_FFAR3 free fatty acid receptors 2, 3, and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes free fatty acid receptor 2 (FFAR2), FFAR3, and similar proteins. They are a member of the class A G-protein coupled receptors that bind free fatty acids. The FFAR subfamily is composed of three receptors, each encoded by a separate gene (FFAR1, FFAR2, and FFAR3). These genes and a fourth pseudogene, GPR42, are localized together on chromosome 19. FFAR2 and FFAR3 are cell-surface receptors for short chain FFAs (SCFAs) with different ligand affinities, whereas FFAR1 is a receptor for medium- and long-chain FFAs. FFAR2 activation by SCFA suppresses adipose insulin signaling, which leads to inhibition of fat accumulation in adipose tissue. FAAR3 is expressed in intestinal L cells, which produces glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), thus suggesting that this receptor may be involved in energy homeostasis. FFARs are considered important components of the body's nutrient sensing mechanism, and therefore, these receptors are potential therapeutic targets for the treatment of metabolic disorders, such as type 2 diabetes and obesity. 278 -320299 cd15171 7tmA_CCRL2 CC chemokine receptor-like 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Chemokine (CC-motif) receptor-like 2 (CCRL2) is a member of the atypical chemokine receptor family. CCRL2, like other atypical receptors, has an alteration in the conserved DRYLAIV motif in the third intracellular loop, which is essential for GPCR coupling and signaling. CCR2L is expressed in most hematopoietic cells and many lymphoid organs as well as in heart and lung. CCRL2 was initially reported to promote chemotaxis and calcium fluxes in responses to chemokines (CCL2, CCL5, CCL7, and CCL8); however, these results are still controversial. More recently, chemerin, a chemotactic agonist of CMKLR1 (chemokine-like receptor-1) and GPR1, was identified as a novel non-signaling ligand for both human and mouse CCRL2. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). 279 -341330 cd15172 7tmA_CCR6 CC chemokine receptor type 6, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR6 is the only known receptor identified for the chemokine CCL20 (also known as macrophage inflammatory protein-3alpha, MIP-3alpha). CCR6 is expressed by all mature human B cells, effector memory T-cells, and dendritic cells found in the gut mucosal immune system. CCL20 contributes to recruitment of CCR6-expressing cells to Peyer's patches and isolated lymphoid follicles in the intestine, thereby promoting the assembly and maintenance of organized lymphoid structures. Also, CCL20 expression is highly inducible in response to inflammatory signals. Thus, CCL20 is involved in both inflammatory and homeostatic functions in the immune system. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. The CC chemokine receptors are all activating the G protein Gi. 281 -320301 cd15173 7tmA_CXCR6 CXC chemokine receptor type 6, member of the class A family of seven-transmembrane G protein-coupled receptors. CXCR6 binds specifically to the chemokine CXCL16, which is expressed on dendritic cells, monocyte/macrophages, activated T cells, fibroblastic reticular cells, and cancer cells. CXCR6 is phylogenetically more closely related to CC-type chemokine receptors (CCR6 and CCR9) than other CXC receptors. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 270 -320302 cd15174 7tmA_CCR9 CC chemokine receptor type 9, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR9 is a homeostatic receptor specific for CCL25 (formerly known as thymus expressed chemokine) and is highly expressed on both immature and mature thymocytes as well as on intestinal homing T Lymphocytes and mucosal Lymphocytes. In cutaneous melanoma, activation of CCR9-CCL25 has been shown to stimulate metastasis to the small intestine. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. The CC chemokine receptors are all activating the G protein Gi. 280 -341331 cd15175 7tmA_CCR7 CC chemokine receptor type 7, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR7 is a major homeostatic receptor responsible for lymph node development and effective adaptive immune responses and plays a critical role in trafficking of dendritic cells and B and T lymphocytes. Its only two ligands, CCL and CCl21, are primarily produced by stromal cells in the T cell zones of lymph nodes and spleen. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. The CC chemokine receptors are all activating the G protein Gi. 278 -320304 cd15176 7tmA_ACKR4_CCR11 atypical chemokine receptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. ACKR4 was first reported to bind several CC chemokines including CCL19, CCL21, and CCL25 and was originally designated CCR11. AKCR4 is unable to couple to G-protein and, instead, it preferentially mediates beta-arrestin dependent processes, such as receptor internalization, after ligand binding. Thus, ACKR4 may act as a scavenger receptor to suppress the effects of proinflammatory chemokines. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-chemokine receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, Duffy antigen receptor for chemokine (DARC), and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. 276 -341332 cd15177 7tmA_CCR10 CC chemokine receptor type 10, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR10 is a homeostatic receptor specific for two C-C motif chemokines, CCL27 and CCL28. Activation of CCR10 by its two ligands mediates diverse activities, ranging from leukocyte trafficking to skin cancer. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. The CC chemokine receptors are all activating the G protein Gi. 280 -341333 cd15178 7tmA_CXCR1_2 CXC chemokine receptor types 1 and 2, member of the class A family of seven-transmembrane G protein-coupled receptors. CXCR1 and CXCR2 are closely related chemotactic receptors for a group of CXC chemokines distinguished by the presence of the amino acid motif ELR immediately adjacent to their CXC motif. Expression of CXCR1 and CXCR2 is strictly controlled in neutrophils by external stimuli such as lipopolysaccharide (LPS), tumor necrosis factor (TNF)-alpha, Toll-like receptor agonists, and nitric oxide. CXCL8 (formerly known as interleukin-8) binds with high-affinity and activates both receptors. CXCR1 also binds CXCL7 (neutrophil-activating protein-2), whereas CXCR2 non-selectively binds to all seven ELR-positive chemokines (CXCL1-7). Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 279 -341334 cd15179 7tmA_CXCR4 CXC chemokine receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors. CXCR4 is the only known G protein-coupled chemokine receptor for the key homeostatic ligand CXCL12, which is constitutively secreted by bone marrow stromal cells. Atypical chemokine receptor CXCR7 (ACKR3) also binds CXCL12, but activates signaling in a G protein-independent manner. CXCR4 is also a co-receptor for HIV infection and plays critical roles in the development of immune system during both lymphopoiesis and myelopoiesis. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 278 -341335 cd15180 7tmA_CXCR3 CXC chemokine receptor type 3, member of the class A family of seven-transmembrane G protein-coupled receptors. CXCR3 is an inflammatory chemotactic receptor for a group of CXC chemokines distinguished by the presence of the amino acid motif ELR immediately adjacent to their CXC motif. CXCR3 specifically binds three chemokines CXCL9 (monokine induced by gamma-interferon), CXCL10 (interferon induced protein of 10 kDa), and CXCL11 (interferon inducible T-cell alpha-chemoattractant, I-TAC). CXC3R is expressed on CD4+ Th1 and CD8+ cytotoxic T lymphocytes as well as highly on innate lymphocytes, such as NK cells and NK T cells, where it may mediate the recruitment of these cells to the sites of infection and inflammation. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 280 -341336 cd15181 7tmA_CXCR5 CXC chemokine receptor type 5, member of the class A family of seven-transmembrane G protein-coupled receptors. CXCR5 is a B-cell selective receptor that binds specifically to the homeostatic chemokine CXCL13 and regulates adaptive immunity. The receptor is found on all peripheral blood and tonsillar B cells and is involved in lymphocyte migration (homing) to specific tissues and development of normal lymphoid tissue. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 281 -341337 cd15182 7tmA_XCR1 XC chemokine receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. XCR1 is a chemokine receptor specific for XCL1 and XCL2 (previously called lymphotatctin alpha/beta), which differ in only two amino acids. XCL1/2 is the only member of the C chemokine subfamily, which is unique as containing only two of the four cysteines that are found in other chemokine families. Human XCL1/2 has been shown to be secreted by activated CD8+ T cells and upon activation of the innate immune system. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. 271 -320311 cd15183 7tmA_CCR1 CC chemokine receptor type 1, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR1 is widely expressed on both hematopoietic and non-hematopoietic cells and binds to the inflammatory CC chemokines CCL3, CCL5, CCL6, CCL9, CCL15, and CCL23. CCR1 activates the typical chemokine signaling pathway through the G(i/o) type of G proteins, causing inhibition of adenylate cyclase and stimulation of phospholipase C, PKC, calcium flux, and PLA2. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 278 -341338 cd15184 7tmA_CCR5_CCR2 CC chemokine receptor types 5 and 2, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR2 and CCR5 share very high amino acid sequence identity. Both receptors play important roles in the trafficking of monocytes/macrophages and are implicated in the pathogenesis of immunologic diseases (rheumatoid arthritis, celiac disease, and transplant rejection) and cardiovascular diseases (atherosclerosis and autoimmune hepatitis). CCR2 is a receptor specific for members of the monocyte chemotactic protein family, including CCL2, CCL7, and CCL13. Conversely, CCR5 is a major co-receptor for HIV infection and binds many CC chemokine ligands, including CC chemokine ligands including CCL2, CCL3, CCL4, CCL5, CCL11, CCL13, CCL14, and CCL16. CCR2 is expressed primarily on blood monocytes and memory T cells, whereas CCR5 is expressed on antigen-presenting cells (macrophages and dendritic cells) and activated T effector cells. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 278 -341339 cd15185 7tmA_CCR3 CC chemokine receptor type 3, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR3 is a highly promiscuous receptor that binds a variety of inflammatory CC-type chemokines, including CCL11 (eotaxin-1), CCL3L1, CCL5 (regulated on activation, normal T cell expressed and secreted; RANTES), CCL7 (monocyte-specific chemokine 3 or MCP-3), CCL8 (MCP-2), CCL11, CCL13 (MCP-4), CCL15, CCL24 (eotaxin-2), CCL26 (eotaxin-3), and CCL28. Among these, the eosinophil chemotactic chemokines (CCL11, CCL24, and CCL26) are the most potent and specific ligands. In addition to eosinophil, CCR3 is expressed on cells involved in allergic responses, such as basophils, Th2 lymphocytes, and mast cells. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 278 -320314 cd15186 7tmA_CX3CR1 CX3C chemokine receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. CX3CR1 is an inflammatory receptor specific for CX3CL1 (also known as fractalkine in human), which is involved in the adhesion and migration of leukocytes. The CX3C chemokine subfamily is only represented by CX3CL1, which exists in both soluble and membrane-anchored forms. Membrane-anchored form promotes strong adhesion of receptor-bearing leukocytes to CX3CL1-expressing endothelial cells. On the other hand, soluble CX3CL1, which is released by the proteolytic cleavage of membrane-anchored CX3CL1, is a potent chemoattractant for CX3CR1-expressing T cells and monocytes. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. 273 -320315 cd15187 7tmA_CCR8 CC chemokine receptor type 8, member of the class A family of seven-transmembrane G protein-coupled receptors. CCR8, the receptor for the CC chemokines CCL1 and CC16, is highly expressed on allergen-specific T-helper type 2 cells, and is implicated in the pathogenesis of human asthma. CCL1- and CCR8-expressing CD4+ effector T lymphocytes are shown to have a critical role in lung mucosal inflammatory responses. CCR8 is also a functional receptor for CCL16, a liver-expressed CC chemokine that involved in attracting lymphocytes, dendritic cells, and monocytes. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. 276 -320316 cd15188 7tmA_ACKR2_D6 atypical chemokine receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. ACKR2 (also known as D6) binds non-selectively to all inflammatory CC-chemokines, but not to homeostatic CC-chemokines involved in controlling the migration of cells. Unlike the classical chemokine receptors that contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-chemokine receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, Duffy antigen receptor for chemokine (DARC), and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. 278 -320317 cd15189 7tmA_Bradykinin_R bradykinin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The bradykinin receptor family is a group of the seven transmembrane G-protein coupled receptors, whose endogenous ligand is the pro-inflammatory nonapeptide bradykinin that mediates various vascular and pain responses. Two major bradykinin receptor subtypes, B1 and B2, have been identified based on their pharmacological properties. The B1 receptor is rapidly induced by tissue injury and inflammation, whereas the B2 receptor is ubiquitously expressed on many tissue types. Both receptors contain three consensus sites for N-linked glycosylation in extracellular domains and couple to G(q) protein to activate phospholipase C, leading to phosphoinositide hydrolysis and intracellular calcium mobilization. They can also interact with G(i) protein to inhibit adenylate cyclase and activate the MAPK (mitogen-activated protein kinase) pathways. 284 -341340 cd15190 7tmA_Apelin_R apelin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Apelin (APJ) receptor is a G protein-coupled receptor that binds the endogenous peptide ligands, apelin and Toddler/Elabela. APJ is an adipocyte-derived hormone that is ubiquitously expressed throughout the human body and Toddler/Elabela is a short secretory peptide that is required for normal cardiac development in zebrafish. Activation of APJ receptor plays key roles in diverse physiological processes including vasoconstriction and vasodilation, cardiac muscle contractility, angiogenesis, and regulation of water balance and food intake. 304 -341341 cd15191 7tmA_AT2R type 2 angiotensin II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2R, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Moreover, AT1R promotes cell proliferation, whereas AT2R inhibits proliferation and stimulates cell differentiation. The AT2R is highly expressed during fetal development, however it is scarcely present in adult tissues and is induced in pathological conditions. Generally, the AT1R mediates many actions of Ang II, while the AT2R is involved in the regulation of blood pressure and renal function. 285 -320320 cd15192 7tmA_AT1R type 1 angiotensin II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2R, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Moreover, AT1R promotes cell proliferation, whereas AT2R inhibits proliferation and stimulates cell differentiation. The AT2R is highly expressed during fetal development, however it is scarcely present in adult tissues and is induced in pathological conditions. Generally, the AT1R mediates many actions of Ang II, while the AT2R is involved in the regulation of blood pressure and renal function. 285 -320321 cd15193 7tmA_GPR25 G protein-coupled receptor 25, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR25 is an orphan G-protein coupled receptor that shares strong sequence homology to GPR15 and the angiotensin II receptors. These closely related receptors form a group within the class A G-protein coupled receptors (GPCRs). GPR15 controls homing of T cells, especially FOXP3(+) regulatory T cells, to the large intestine mucosa and thereby mediates local immune homeostasis. Moreover, GRP15-deficient mice were shown to be prone to develop more severe large intestine inflammation. Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. 279 -320322 cd15194 7tmA_GPR15 G protein-coupled receptor 15, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR15, also called as Brother of Bonzo (BOB), is an orphan G-protein coupled receptor that was originally identified as a co-receptor for human immunodeficiency virus. GPR15 is upregulated in patients with rheumatoid arthritis and shares high sequence homology with angiotensin II type AT1 and AT2 receptors; however, its endogenous ligand is unknown. GPR15 controls homing of T cells, especially FOXP3(+) regulatory T cells, to the large intestine mucosa and thereby mediates local immune homeostasis. Moreover, GRP15-deficient mice were shown to be prone to develop more severe large intestine inflammation. 281 -320323 cd15195 7tmA_GnRHR-like gonadotropin-releasing hormone and adipokinetic hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Gonadotropin-releasing hormone (GnRH) and adipokinetic hormone (AKH) receptors share strong sequence homology to each other, suggesting that they have a common evolutionary origin. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Adipokinetic hormone (AKH) is a lipid-mobilizing hormone that is involved in control of insect metabolism. Generally, AKH behaves as a typical stress hormone by mobilizing lipids, carbohydrates and/or certain amino acids such as proline. Thus, it utilizes the body's energy reserves to fight the immediate stress problems and subdue processes that are less important. Although AKH is known to responsible for regulating the energy metabolism during insect flying, it is also found in insects that have lost its functional wings and predominantly walk for their locomotion. Both GnRH and AKH receptors are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily. 293 -320324 cd15196 7tmA_Vasopressin_Oxytocin vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) and oxytocin are synthesized in the hypothalamus and are released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. 264 -320325 cd15197 7tmA_NPSR neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR is widely expressed in the brain, and its activation induces an elevation of intracellular calcium and cAMP concentrations, presumably by coupling to G(s) and G(q) proteins. Mutations in NPSR have been associated with an increased susceptibility to asthma. NPSR was originally identified as an orphan receptor GPR154 and is also known as G protein receptor for asthma susceptibility (GPRA) or vasopressin receptor-related receptor 1 (VRR1). 294 -320326 cd15198 7tmA_GPR150 G protein-coupled receptor 150, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR150 is an orphan receptor closely related to the oxytocin and vasopressin receptors. Its endogenous ligand is not known. These receptors share a significant amino acid sequence similarity, suggesting that they have a common evolutionary origin. 299 -320327 cd15199 7tmA_GPR31 G protein-coupled receptor 31, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR31, also known as 12-(S)-HETE receptor, is a high-affinity receptor for 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid. Phylogenetic analysis showed that GPR31 and oxoeicosanoid receptor 1 (OXER1, GPR170) are the most closely related receptors to the hydroxycarboxylic acid receptor family (HCARs). GPR31, like OXER1, activates the ERK1/2 (MAPK3/MAPK1) pathway of intracellular signaling, but unlike the OXER1, does not cause increase in the cytosolic calcium level. GPR31 is also shown to activate NFkB. 12-(S)-HETE is a 12-lipoxygenase metabolite of arachidonic acid produced by mammalian platelets and tumor cells. It promotes tumor cells adhesion to endothelial cells and subendothelial matrix, which is a critical step for metastasis. 278 -320328 cd15200 7tmA_OXER1 oxoeicosanoid receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. OXER1, also called GPR170, is a receptor for eicosanoids and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-OXO-ETE), 5(S)-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5(S)-HPETE) and arachidonic acid. OXER1 is a member of the class A family of seven-transmembrane G-protein coupled receptors and appears to be coupled to the G(i/o) protein. The receptor is expressed in various tissues except brain. Phylogenetic analysis showed that GPR31 and OXER1 are the most closely related receptors to the hydroxycarboxylic acid receptor family (HCARs). OXER1, like GPR31, activates the ERK1/2 (MAPK3/MAPK1) pathway of intracellular signaling, but unlike GPR31, does cause increase in the cytosolic calcium level. 276 -320329 cd15201 7tmA_HCAR1-3 hydroxycarboxylic acid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Hydroxycarboxylic acid receptor (HCAR) subfamily, a member of the class A G-protein coupled receptors (GPCRs), contains three receptor subtypes: HCAR1, HCAR2, and HCAR3. The endogenous ligand of HCAR1 (also known as lactate receptor 1, GPR104, or GPR81) is L-lactic acid. The endogenous ligands of HCAR2 (also known as niacin receptor 1, GPR109A, or nicotinic acid receptor) and HCAR3 (also known as niacin receptor 2 or GPR109B) are 3-hydroxybutyric acid and 3-hydroxyoctanoic acid, respectively. Because nicotinic acid is capable of stimulating HCAR2 at higher concentrations only (in the range of sub-micromolar concentration), it is unlikely that nicotinic acts as a physiological ligand of HCAR2. All three receptors are expressed in adipocytes and mediate anti-lipolytic effects in fat cells through G(i) type G protein-dependent inhibition of adenylate cyclase. 281 -320330 cd15202 7tmA_TACR-like tachykinin receptors and related receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes the neurokinin/tachykinin receptors and its closely related receptors such as orphan GPR83 and leucokinin-like peptide receptor. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty. 288 -320331 cd15203 7tmA_NPYR-like neuropeptide Y receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to Gi or Go proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. Also included in this subgroup is prolactin-releasing peptide (PrRP) receptor (previously known as GPR10), which is activated by its endogenous ligand PrRP, a neuropeptide possessing C-terminal Arg-Phe-amide motif. There are two active isoforms of PrRP in mammals: one consists of 20 amino acid residues (PrRP-20) and the other consists of 31 amino acid residues (PrRP-31). PrRP receptor shows significant sequence homology to the NPY receptors, and a micromolar level of NPY can bind and completely inhibit the PrRP-evoked intracellular calcium response in PrRP receptor-expressing cells, suggesting that the PrRP receptor shares a common ancestor with the NPY receptors. 293 -320332 cd15204 7tmA_prokineticin-R prokineticin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Prokineticins 1 (PROK1) and 2 (PROK2), also known as endocrine gland vascular endothelial factor and Bombina varigata 8, respectively, are multifunctional chemokine-like peptides that are highly conserved across species. Prokineticins can bind with similar affinities to two closely homologous 7-transmembrane G protein coupled receptors, PROKR1 and PROKR2, which are phylogenetically related to the tachykinin receptors. Prokineticins and their GPCRs are widely distributed in human tissues and are involved in numerous physiological roles, including gastrointestinal motility, generation of circadian rhythms, neuron migration and survival, pain sensation, angiogenesis, inflammation, and reproduction. Moreover, different point mutations in genes encoding PROK2 or its receptor (PROKR2) can lead to Kallmann syndrome, a disease characterized by delayed or absent puberty and impaired olfactory function. 288 -320333 cd15205 7tmA_QRFPR pyroglutamylated RFamide peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that belongs to a family of neuropeptides containing an Arg-Phe-NH2 (RFamide) motif at its C-terminus. 26Rfa/QRFP exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103. 298 -320334 cd15206 7tmA_CCK_R cholecystokinin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. 269 -320335 cd15207 7tmA_NPFFR neuropeptide FF receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R. 291 -320336 cd15208 7tmA_OXR orexin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Orexins (OXs, also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. Thus, activation of OX1R or OX2R will activate phospholipase activity and the phosphatidylinositol and calcium signaling pathways. Additionally, OX2R activation can also lead to inhibition of adenylate cyclase. 303 -320337 cd15209 7tmA_Mel1 melatonin receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase. 279 -320338 cd15210 7tmA_GPR84-like G protein-coupled receptor 84 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR84, also known as the inflammation-related G-Protein coupled receptor EX33, is a receptor for medium-chain free fatty acid (FFA) with carbon chain lengths of C9 to C14. Among these medium-chain FFAs, capric acid (C10:0), undecanoic acid (C11:0), and lauric acid (C12:0) are the most potent endogenous agonists of GPR84, whereas short-chain and long-chain saturated and unsaturated FFAs do not activate this receptor. GPR84 contains a [G/N]RY-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors and important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. In the case of GPR84, activation of the receptor couples to a pertussis toxin sensitive G(i/o)-protein pathway. GPR84 knockout mice showed increased Th2 cytokine production including IL-4, IL-5, and IL-13 compared to wild-type mice. It has been also shown that activation of GPR84 augments lipopolysaccharide-stimulated IL-8 production in polymorphonuclear leukocytes and TNF-alpha production in macrophages, suggesting that GPR84 may function as a proinflammatory receptor. 254 -320339 cd15211 7tmA_GPR88-like G protein-coupled receptor 88, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR88, an orphan G protein-coupled receptor, is predominantly and almost exclusively expressed within medium spiny neurons (MSNs) of the brain's striatum in both human and rodents; thus it is also called Striatum-specific GPCR (STRG). The striatum is known to involve in motor coordination, reward-based decision making, and response learning. GPR88 is shown to co-localize with both dopamine D1 and D2 receptors and displays the highest sequence similarity to receptors for biogenic amines such as dopamine and serotonin. GPR88 knockout mice showed abnormal behaviors observed in schizophrenia, such as disrupted sensorimotor gating, increased stereotypic behavior and locomotor activity in response to treatment with dopaminergic compounds such as apomorphine and amphetamine, respectively, suggesting a role for GPR88 in dopaminergic signaling. Furthermore, the transcriptional profiling studies showed that GPR88 expression is altered in a number of psychiatric disorders such as depression, drug addiction, bipolar and schizophrenia, providing further evidence that GPR88 plays an important role in CNS signaling pathways related to psychiatric disorder. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 283 -320340 cd15212 7tmA_GPR135 G protein-coupled receptor 135, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR135, also known as the somastostatin- and angiotensin-like peptide receptor (SALPR), is found in various tissues including eye, brain, cervix, stomach, and testis. Pharmacological studies have shown that relaxin-3 (R3) is a high-affinity endogenous ligand for GPR135. R3 has recently been identified as a new member of the insulin/relaxin family of peptide hormones and is exclusively expressed in the brain neurons. In addition to GPR135, R3 also acts as an agonist for GPR142, a pseudogene in the rat, and can activate LGR7 (leucine repeat-containing G-protein receptor-7), which is the main receptor for relaxin-1 (R1) and relaxin-2 (R2). While R1 and R2 are hormones primarily associated with reproduction and pregnancy, R3 is involved in neuroendocrine and sensory processing. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 285 -320341 cd15213 7tmA_PSP24-like G protein-coupled receptor PSP24 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes two human orphan receptors, GPR45 and GPR65, and their closely related proteins found in vertebrates and invertebrates. GPR45 and GPR 65 are also called PSP24-alpha (or PSP24-1) and PSP24-beta (or PSP24-2) in other vertebrates, respectively. These receptors exhibit the highest sequence homology to each other. PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Instead, sphingosine 1-phosphate and dioleoylphosphatidic acid have been shown to act as low affinity agonists for GPR63. PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -320342 cd15214 7tmA_GPR161 orphan G protein-coupled receptor 161, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR161, an orphan GPCR, is a negative regulator of Sonic hedgehog (Shh) signaling, which promotes the processing of zinc finger protein GLI3 into its transcriptional repressor form (GLI3R) during neural tube development. In the absence of Shh, this proteolytic processing is normally mediated by cAMP-dependent protein kinase A (PKA). GPR161 is recruited to primary cilia by a mechanism depends on TULP3 (tubby-related protein 3) and the intraflagellar complex A (IFT-A). Moreover, Gpr161 knockout mice show phenotypes observed in Tulp3/IFT-A mutants, and cause increased Shh signaling in the neural tube. Taken together, GPR161 negatively regulates the PKA-dependent GLI3 processing in the absence of Shh signal by coupling to G(s) protein, which causes activation of adenylate cyclase, elevated cAMP levels, and activation of PKA. Conversely, in the presence of Shh, GPR161 is removed from the cilia by internalization into the endosomal recycling compartment, leading to downregulation of its activity and thereby allowing Shh signaling to proceed. In addition, GPR161 is overexpressed in triple-negative breast cancer (lacking estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expression) and correlates with poor prognosis. Mutations of GPR161 have also been implicated as a novel cause for pituitary stalk interruption syndrome (PSIS), a rare congenital disease of the pituitary gland. GPR161 is a member of the class A family of GPCRs, which contains receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 261 -320343 cd15215 7tmA_GPR101 orphan G protein-coupled receptor 101, member of the class A family of seven-transmembrane G protein-coupled receptors. Gpr101, an orphan GPCR, is predominantly expressed in the brain within discrete nuclei and is predicted to couple to the stimulatory G(s) protein, a potent activator of adenylate cyclase. GPR101 has been implicated in mediating the actions of GnRH-(1-5), a pentapeptide formed by metallopeptidase cleavage of the decapeptide gonadotropin-releasing hormone (GnRH), which plays a critical role in the regulation of the hypothalamic-pituitary-gonadal axis. GnRH-(1-5) acts on GPR101 to stimulate epidermal growth factor (EFG) release and EFG-receptor (EGFR) phosphorylation, leading to enhanced cell migration and invasion in the Ishikawa endometrial cancer cell line. Furthermore, these effects of GnRH-(1-5) are also dependent on enzymatic activation of matrix metallopeptidase-9 (MMP-9). GPR101 is a member of the class A family of GPCRs, which includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 261 -320344 cd15216 7tmA_SREB1_GPR27 super conserved receptor expressed in brain 1 (or GPR27), member of the class A family of seven-transmembrane G protein-coupled receptors. The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 332 -320345 cd15217 7tmA_SREB3_GPR173 super conserved receptor expressed in brain 3 (or GPR173), member of the class A family of seven-transmembrane G protein-coupled receptors. The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 329 -320346 cd15218 7tmA_SREB2_GPR85 super conserved receptor expressed in brain 2 (or GPR85), member of the class A family of seven-transmembrane G protein-coupled receptors. The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 330 -320347 cd15219 7tmA_GPR26_GPR78-like G protein-coupled receptors 26 and 78, member of the class A family of seven-transmembrane G protein-coupled receptors. Orphan G-protein coupled receptor 26 (GPR26) and GPR78 are constitutively active and coupled to increased cAMP formation. They are closely related based on sequence homology and comprise a conserved subgroup within the class A G-protein coupled receptor (GPCR) superfamily. Both receptors are widely expressed in selected tissues of the brain but their endogenous ligands are unknown. GPR26 knockout mice showed increased levels of anxiety- and depression-like behaviors, whereas GPR78 has been implicated in susceptibility to bipolar affective disorder and schizophrenia. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 264 -320348 cd15220 7tmA_GPR61_GPR62-like G protein-coupled receptors 61 and 62, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes the orphan receptors GPR61 and GPR62, which are both constitutively active and predominantly expressed in the brain. While GPR61 couples to G(s) subtype of G proteins, the signaling pathway and function of GPR 62 are unknown. GPR61-deficient mice displayed significant hyperphagia and heavier body weight compared to wild-type mice, suggesting that GPR61 is involved in the regulation of food intake and body weight. GPR61 transcript expression was found in the caudate, putamen, and thalamus of human brain, whereas GPR62 transcript expression was found in the basal forebrain, frontal cortex, caudate, putamen, thalamus, and hippocampus. Both receptors share the highest sequence homology with each other and comprise a conserved subgroup within the class A family of GPCRs, which includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. Members of this subgroup contain [A/E]RY motif, a variant of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of the class A GPCRs and important for efficient G protein-coupled signal transduction. 264 -320349 cd15221 7tmA_OR52B-like olfactory receptor subfamily 52B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor (OR) subfamilies 52B, 52D, 52H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320350 cd15222 7tmA_OR51-like olfactory receptor family 51 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 51 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320351 cd15223 7tmA_OR56-like olfactory receptor family 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 56 and related proteins in other mammals, sauropsids, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320352 cd15224 7tmA_OR6B-like olfactory receptor subfamily 6B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 6B, 6A, 6Y, 6P, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320353 cd15225 7tmA_OR10A-like olfactory receptor subfamily 10A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 10A, 10C, 10H, 10J, 10V, 10R, 10J, 10W, among others, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320354 cd15226 7tmA_OR4-like olfactory receptor family 4 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 4 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 267 -320355 cd15227 7tmA_OR14-like olfactory receptor family 14 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 14 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320356 cd15228 7tmA_OR10D-like olfactory receptor subfamily 10D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 10D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320357 cd15229 7tmA_OR8S1-like olfactory receptor subfamily 8S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 8S1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320358 cd15230 7tmA_OR5-like olfactory receptor family 5 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 5, some subfamilies from families 8 and 9, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320359 cd15231 7tmA_OR5V1-like olfactory receptor subfamily 5V1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5V1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320360 cd15232 7tmA_OR13-like olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 13 (subfamilies 13A1 and 13G1) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320361 cd15233 7tmA_OR3A-like olfactory receptor subfamily 3A3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 3A3 and 3A4, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320362 cd15234 7tmA_OR7-like olfactory receptor family 7 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 7 and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320363 cd15235 7tmA_OR1A-like olfactory receptor subfamily 1A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 1A, 1B, 1K, 1L, 1Q and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 278 -320364 cd15236 7tmA_OR1E-like olfactory receptor subfamily 1E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 1E, 1J, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320365 cd15237 7tmA_OR2-like olfactory receptor family 2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor families 2 and 13, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320366 cd15238 7tm_ARII-like Acetabularia rhodopsin II and similar proteins, member of the seven-transmembrane GPCR superfamily. This subgroup includes the eukaryotic light-driven proton-pumping Acetabularia rhodopsin II from the giant unicellular marine alga Acetabularis acetabulum, as well as its closely related proteins. They belong to the microbial rhodopsin family, also known as type I rhodopsins, comprising the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-gated cation channel channelrhodopsin (ChR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 219 -320367 cd15239 7tm_YRO2_fungal-like fungal YRO2 and related proteins, member of the seven-transmembrane GPCR superfamily. This subgroup includes the yeast YRO2 protein and it closely related proteins. Although the exact function of these proteins is unknown, they show strong sequence homology to the family of microbial rhodopsins, also known as type I rhodopsins, comprising the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-gated cation channel channelrhodopsin (ChR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 227 -320368 cd15240 7tm_ASR-like Anabaena sensory rhodopsin and similar proteins, member of the seven-transmembrane GPCR superfamily. This subgroup includes eubacterial sensory rhodopsin from the freshwater cyanobacterium Anabaena and its closely related proteins. Unlike other sensory rhodopsins (SRI and SRII), the Anabaena sensory rhodopsin (ASR) activates a soluble transducer protein (ASRT), which may leading to transcriptional control of several genes. Although ASRT was shown to interact with DNA in vitro, the exact mechanism of photosensory transduction is not clearly understood. Moreover, the regulation of CRP (cAMP receptor protein) expression by ASR has been reported demonstrating a direct interaction of the C-terminal region of ASR with DNA, suggesting that ASR itself may also work as a transcription factor. ASR belongs to the microbial rhodopsin family, also known as type I rhodopsins, comprising the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-gated cation channel channelrhodopsin (ChR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 221 -320369 cd15241 7tm_ChRs channelrhodopsins, member of the seven-transmembrane GPCR superfamily. Channelrhodopsins (ChRs) are light-gated ion channels acting as sensory photoreceptors in unicellular green algae, controlling phototaxis (directional movement toward or away from light). ChRs are large seven-transmembrane proteins with large C-terminal extensions, which have been implicated in localizing the channel to the algal eyespot, a single layer of pigmented granules, overlaying part of the plasma membrane but are not required for ion channel function. ChRs are belongs to the microbial rhodopsin family, also known as type I rhodopsins, comprising the light-driven inward chloride pump halorhodopsin (HR), the outward proton pump bacteriorhodopsin (BR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), the light-sensor activating soluble transducer protein Anabaena sensory rhodopsin (ASR), and the other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. Microbial rhodopsins have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 219 -320370 cd15242 7tm_Proteorhodopsin green- and blue-light absorbing proteorhodopsins, member of the seven-transmembrane GPCR superfamily. This subgroup represents blue-light absorbing and green-light absorbing proteorhodopsins (PRs), which act as a light-driven proton pump that plays a major role in supplying light energy for phototropic marine microorganisms, by a mechanism similar to that of bacteriorhodopsin. PRs are found in most marine bacteria in surface waters, as well as in archaea and eukaryotes. They belong to the microbial rhodopsin family, also known as type 1 rhodopsins, comprising the light-driven inward chloride pump halorhodopsin (HR), the light-gated cation channel channelrhodopsin (ChR), the light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), the light-sensor activating soluble transducer protein Anabaena sensory rhodopsin (ASR), and the other light-driven proton pumps such as bacteriorhodopsin (BR). They have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 229 -320371 cd15243 7tm_Halorhodopsin light-driven inward chloride pump halorhodopsin, member of the seven-transmembrane GPCR superfamily. Halorhodopsin (HR) acts as a light-driven inward-directed chloride pump. When activated by yellow light, HR pumps chloride ions into the cell cytoplasm, generating a negative-inside membrane potential which drives proton uptake. The resulting electrochemical ion gradient provides an energy source to the cell and contributes to pH homeostasis. HR is found in phylogenetically ancient archaea, known as halobacteria which live in high salty environments. HR belongs to the microbial rhodopsin family, also known as type I rhodopsins, comprising light-driven retinal-binding outward pump bacteriorhodopsin (BR), light-gated cation channel channelrhodopsin (ChR), light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), light-sensor activating soluble transducer protein Anabaena sensory rhodopsin (ASR), and other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. They have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 226 -320372 cd15244 7tm_bacteriorhodopsin light-driven outward proton pump bacteriorhodopsin, member of the seven-transmembrane GPCR superfamily. Bacteriorhosopsin (BR) serves as a light-driven retinal-binding outward proton pump, generating an outside positive membrane potential and thus creating an inwardly directed proton motive force (PMF) necessary for ATP synthesis. BR belongs to the microbial rhodopsin family, also known as type I rhodopsins, comprising light-driven inward chloride pump halorhodopsin (HR), light-gated cation channel channelrhodopsin (ChR), light-sensor activating transmembrane transducer protein sensory rhodopsin II (SRII), light-sensor activating soluble transducer protein Anabaena sensory rhodopsin (ASR), and other light-driven proton pumps such as blue-light absorbing and green-light absorbing proteorhodopsins, among others. They have been found in various single-celled microorganisms from all three domains of life, including halophile archaea, gamma-proteobacteria, cyanobacteria, fungi, and green algae. While microbial (type 1) and animal (type 2) rhodopsins have no sequence similarity with each other, they share a common architecture consisting of seven-transmembrane alpha-helices (TM) connected by extracellular loops and intracellular loops. Both types of rhodopsins consist of opsin and a covalently attached retinal (the aldehyde of vitamin A), a photoreactive chromophore, via a protonated Schiff base linkage to an amino group of lysine in the middle of the seventh transmembrane helix (TM7). Upon the absorption of light, microbial rhodopsins undergo light-induced photoisomerization of all-trans retinal into the 13-cis isomer, whereas the photoisomerization of 11-cis retinal to all-trans isomer occurs in the animal rhodopsins. While animal visual rhodopsins are activated by light to catalyze GDP/GTP exchange in the alpha subunit of the retinal G protein transducin (Gt), microbial rhodopsins do not activate G proteins, but instead can function as light-dependent ion pumps, cation channels, and sensors. 221 -320373 cd15245 7tmF_FZD2 class F frizzled subfamily 2, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 2 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of G-protein coupled receptors. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 330 -320374 cd15246 7tmF_FZD7 class F frizzled subfamily 7, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 7 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of G-protein coupled receptors. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others 331 -320375 cd15247 7tmF_FZD1 class F mammalian frizzled subfamily 1, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 1 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of G-protein coupled receptors. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 341 -320376 cd15248 7tmF_FZD1_insect class F insect frizzled subfamily 1, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 1 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of G-protein coupled receptors, found in insects such as Drosophila melanogaster. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 332 -320377 cd15249 7tmF_FZD5 class F frizzled subfamily 5, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 5 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 310 -320378 cd15250 7tmF_FZD8 class F frizzled subfamily 8, member of 7-transmembrane G protein-coupled receptors. This group includes subfamily 8 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 314 -320379 cd15251 7tmB2_BAI_Adhesion_VII brain-specific angiogenesis inhibitors, group VII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediate direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. 253 -320380 cd15252 7tmB2_Latrophilin_Adhesion_I Latrophilins and similar receptors, group I adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors. Group I adhesion GPCRs consist of latrophilins (also called lectomedins or latrotoxin receptors) and ETL (EGF-TM7-latrophilin-related protein. These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 257 -320381 cd15253 7tmB2_GPR113 orphan adhesion receptor GPR113, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR113 is an orphan receptor that belongs to group VI adhesion-GPCRs along with GPR110, GPR111, GPR115, and GPR116. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR113 contains a hormone binding domain and one EGF (epidermal grown factor) domain, and is primarily expressed in a subset of taste receptor cells. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 271 -320382 cd15254 7tmB2_GPR116_Ig-Hepta The immunoglobulin-repeat-containing receptor Ig-hepta/GPR116, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR116 (also known as Ig-Hepta) is an orphan receptor that belongs to group VI adhesion-GPCRs along with GPR110, GPR111, GPR113, and GPR115. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR116 has two C2-set immunoglobulin-like repeats, which is found in the members of the immunoglobulin superfamily of cell surface proteins, and a SEA (sea urchin sperm protein, enterokinase, and a grin)-box, which is present in the extracellular domain of the transmembrane mucin (MUC) family and known to enhance O-glycosylation. GPR116 is highly expressed in fetal and adult lung, and it has been shown to regulate lung surfactant levels as well as to stimulate breast cancer metastasis through a G(q)-p63-RhoGEF-Rho GTPase signaling pathway. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 275 -320383 cd15255 7tmB2_GPR144 orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR144 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR133. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 263 -320384 cd15256 7tmB2_GPR133 orphan adhesion receptor GPR133, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR133 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR144. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 260 -320385 cd15257 7tmB2_GPR128 orphan adhesion receptor GPR128, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR128 is an orphan receptor of the adhesion family (subclass B2) that belongs to the class B GPCRs. Expression of GPR128 was detected in the mouse intestinal mucosa and is thought to be involved in energy balance, as its knockout mice showed a decrease in body weight gain and an increase in intestinal contraction frequency compared to wild-type controls. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 303 -320386 cd15258 7tmB2_GPR126-like_Adhesion_VIII orphan GPR126 and related proteins, group VIII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Group VIII adhesion GPCRs include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, GPR114, and GPR126. GPR56 is involved in the regulation of oligodendrocyte development and myelination in the central nervous system via coupling to G(12/13) proteins, which leads to the activation of RhoA GTPase. GPR126, on the other hand, is required for Schwann cells, but not oligodendrocyte myelination in the peripheral nervous system. Gpr64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also overexpressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. GPR97 is identified as a lymphatic adhesion receptor that is specifically expressed in lymphatic endothelium, but not in blood vascular endothelium, and is shown to regulate migration of lymphatic endothelial cells via the small GTPases RhoA and cdc42. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 267 -320387 cd15259 7tmB2_GPR124-like_Adhesion_III orphan GPR124 and related proteins, group III adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors. group III adhesion GPCRs include orphan GPR123, GPR124, GPR125, and their closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. GPR123 is predominantly expressed in the CNS including thalamus, brainstem and regions containing large pyramidal cells. GPR124, also known as tumor endothelial marker 5 (TEM5), is highly expressed in tumor vessels and in the vasculature of the developing embryo. GPR124 is essentially required for proper angiogenic sprouting into neural tissue, CNS-specific vascularization, and formation of the blood-brain barrier. GPR124 also interacts with the PDZ domain of DLG1 (discs large homolog 1) through its PDZ-binding motif. Recently, studies of double-knockout mice showed that GPR124 functions as a co-activator of Wnt7a/Wnt7b-dependent beta-catenin signaling in brain endothelium. Furthermore, WNT7-stimulated beta-catenin signaling is regulated by GPR124's intracellular PDZ binding motif and leucine-rich repeats (LRR) in its N-terminal extracellular domain. GPR125 directly interacts with dishevelled (Dvl) via its intracellular C-terminus, and together, GPR125 and Dvl recruit a subset of planar cell polarity (PCP) components into membrane subdomains, a prerequisite for activation of Wnt/PCP signaling. Thus, GPR125 influences the noncanonical WNT/PCP pathway, which does not involve beta-catenin, through interacting with and modulating the distribution of Dvl. 260 -320388 cd15260 7tmB1_NPR_B4_insect-like insect neuropeptide receptor subgroup B4 and related proteins, member of the class B family of seven-transmembrane G protein-coupled receptors. This subgroup includes a neuropeptide receptor found in Nilaparvata lugens (brown planthopper) and its closely related proteins from mollusks and annelid worms. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes. 267 -320389 cd15261 7tmB1_PDFR The pigment dispersing factor receptor, member of the class B seven-transmembrane G protein-coupled receptors. The pigment dispersing factor receptor (PDFR) is a G protein-coupled receptor that binds the circadian clock neuropeptide PDF, a functional ortholog of the mammalian vasoactive intestinal peptide (VIP), on the pacemaker neurons. The PDFR is implicated in regulating flight circuit development and in modulating acute flight In Drosophila melanogaster. The PDFR activation stimulates adenylate cyclase, thereby increasing cAMP levels in many different pacemakers, and the receptor signaling has been shown to regulate behavioral circadian rhythms and geotaxis in Drosophila. The PDFR belongs to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. . These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. They play key roles in hormone homeostasis in mammals and are promising drug targets in various human diseases including diabetes, osteoporosis, obesity, neurodegenerative conditions (Alzhemer's and Parkinson's), cardiovascular disease, migraine, and psychiatric disorders (anxiety, depression). 282 -320390 cd15262 7tmB1_NPR_B3_insect-like insect neuropeptide receptor subgroup B3 and related proteins belong to subfamily B1 of hormone receptors; member of the class B secretin-like seven-transmembrane G protein-coupled receptors. This subgroup includes a neuropeptide receptor found in Bombyx mori (silk worm) and its closely related proteins from arthropods. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes. 270 -320391 cd15263 7tmB1_DH_R insect diuretic hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors. This group includes G protein-coupled receptors that specifically bind to insect diuretic hormones found in Manduca sexta (moth) and Acheta domesticus (the house cricket), among others. Insect diuretic hormone and their GPCRs play critical roles in the regulation of water and ion balance. Thus they are attractive targets for developing new insecticides. Activation of the diuretic hormone receptors stimulate adenylate cyclase, thereby increasing cAMP levels in Malpighian tube. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of Gs family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. 272 -320392 cd15264 7tmB1_CRF-R corticotropin-releasing factor receptors, member of the class B family of seven-transmembrane G protein-coupled receptors. The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 265 -320393 cd15265 7tmB1_PTHR parathyroid hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors. The parathyroid hormone (PTH) receptor family has three subtypes: PTH1R, PTH2R and PTH3R. PTH1R is expressed in bone and kidney and is activated by two polypeptide ligands: PTH, an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH1R couples predominantly to a G(s)-protein that in turn activates adenylate cyclase thereby producing cAMP, but it can also couple to several G protein subtypes, including G(q/11), G(i/o), and G(12/13), resulting in activation of multiple intracellular signaling pathways. PTH2R is potently activated by tuberoinfundibular peptide-39 (TIP-39), but not by PTHrP. PTH also strongly activates human PTH2R, but only weakly activates rat and zebrafish PTH2Rs, suggesting that TIP-39 is a natural ligand for PTH2R. On the other hand, PTH3R binds and responds to both PTH and PTHrP, but not the TIP-39. Moreover, the PTH3R is more closely related to the PTH1R than PTH2R. PTH1R is found in all vertebrate species, whereas PTH2R is found in mammals and fish, but not in chicken or frog. The PTH3R is found in chicken and fish, but it is absent in mammals. The PTH receptors are members of the B1 (or secretin-like) subfamily of class B GPCRs, which include receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. 289 -320394 cd15266 7tmB1_GLP2R glucagon-like peptide-2 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Glucagon-like peptide-2 receptor (GLP2R) is a member of the glucagon receptor family of G protein-coupled receptors, which also includes glucagon receptor (GCGR) and GLP1R. GLP2R is activated by glucagon-like peptide 2, which is derived from the large proglucagon precursor. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. GLP2R belongs to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 280 -320395 cd15267 7tmB1_GCGR glucagon receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Glucagon receptor (GCGR) is a member of the glucagon receptor family of G protein-coupled receptors, which also includes glucagon-like peptide-1 receptor (GLP1R) and GLP2R. GCGR is activated by glucagon, which is derived from the large proglucagon precursor. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. GCGR belongs to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 281 -341342 cd15268 7tmB1_GLP1R glucagon-like peptide-1 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Glucagon-like peptide-1 receptor (GLP1R) is a member of the glucagon receptor family of G protein-coupled receptors, which also includes glucagon receptor and GLP2R. GLP1R is activated by glucagon-like peptide 1 (GLP1), which is derived from the large proglucagon precursor. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. Receptors in this group belong to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 279 -320397 cd15269 7tmB1_VIP-R1 vasoactive intestinal polypeptide (VIP) receptor 1, member of the class B family of seven-transmembrane G protein-coupled receptors. Vasoactive intestinal peptide (VIP) receptor 1 is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, growth-hormone-releasing hormone (GHRH), and pituitary adenylate cyclase activating polypeptide (PACAP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. VIP-R1 is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. However, depending on its cellular location, VIP-R1 is also capable of coupling to additional G proteins such as G(q) protein, thus leading to the activation of phospholipase C and intracellular calcium influx. 268 -320398 cd15270 7tmB1_GHRHR growth-hormone-releasing hormone receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Growth hormone-releasing hormone receptor (GHRHR) is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, pituitary adenylate cyclase activating polypeptide (PACAP), and vasoactive intestinal peptide. These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. GHRH is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. GHRHR is found in mammals as well as zebrafish and chicken, whereas the GHRHR type 2, an ortholog of the GHRHR, has only been identified in ray-finned fish, chicken and Xenopus. Xenopus laevis GHRHR2 has been shown to interact with both endogenous GHRH and PACAP-related peptide (PRP). 268 -320399 cd15271 7tmB1_GHRHR2 growth-hormone-releasing hormone receptor type 2, member of the class B family of seven-transmembrane G protein-coupled receptors. Growth hormone-releasing hormone receptor type 2 (GHRHR2) is found in non-mammalian vertebrates such as chicken and frog. It is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide, and mammalian growth hormone-releasing hormone. These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Mammalian GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. Mammalian GHRH is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. GHRHR is found in mammals as well as zebrafish and chicken, whereas the GHRHR type 2, an ortholog of the GHRHR, has only been identified in ray-finned fish, chicken and Xenopus. Xenopus laevis GHRHR2 has been shown to interact with both endogenous GHRH and PACAP-related peptide (PRP). 267 -320400 cd15272 7tmB1_PTH-R_related invertebrate parathyroid hormone-related receptors, member of the class B family of seven-transmembrane G protein-coupled receptors. This group includes parathyroid hormone (PTH)-related receptors found in invertebrates such as mollusks and annelid worms. The PTH family receptors are members of the B1 subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. The parathyroid hormone type 1 receptor (PTH1R) is found in all vertebrate species and is activated by two polypeptide ligands: parathyroid hormone (PTH), an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH1R couples predominantly to G(s)- protein that in turn activates adenylyl cyclase thereby producing cAMP, but it can also couple to several G protein subtypes, including G(q/11), G(i/o), and G(12/13), resulting in activation of multiple signaling pathways. 285 -320401 cd15273 7tmB1_NPR_B7_insect-like insect neuropeptide receptor subgroup B7 and related proteins, member of the class B family of seven-transmembrane G protein-coupled receptors. This subgroup includes a neuropeptide receptor found in Nilaparvata lugens (brown planthopper) and its closely related proteins from invertebrates. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes. 285 -341343 cd15274 7tmB1_calcitonin_R calcitonin receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. This group includes G protein-coupled receptors for calcitonin (CT) and calcitonin gene-related peptides (CGRPs). Calcitonin, a 32-amino acid peptide hormone, is involved in calcium metabolism in many mammalian species and acts to reduce blood calcium levels and directly inhibits bone resorption by acting on osteoclast. Thus, CT acts as an antagonist to parathyroid hormone and is commonly used in the treatment of bone disorders. The CT receptor is predominantly found in osteoclasts, kidney, and brain, and is primarily coupled to stimulatory G(s) protein, which leads to activation of adenylate cyclase, thereby increasing cAMP production. CGRP, a member of the calcitonin family of peptides, is a potent vasodilator and may contribute to migraine. It is expressed in the peripheral and central nervous system and exists in two forms in humans (alpha-CGRP and beta-CGRP). CGRP meditates its physiological effects through calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 1 (RAMP1), a single transmembrane domain protein. Thus, the CRLR/RAMP1 complex serves as a functional CGRP receptor. On the other hand, the CRLR/RAMP2 and CRLR/RAMP3 complexes function as adrenomedullin-specific receptors. The CT and CGRP receptors belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. 274 -320403 cd15275 7tmB1_secretin secretin receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Secretin receptor is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include vasoactive intestinal peptide (VIP), growth-hormone-releasing hormone (GHRH), and pituitary adenylate cyclase activating polypeptide (PACAP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors, and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Secretin, a polypeptide secreted by entero-endocrine S cells in the small intestine, is involved in maintaining body fluid balance. This polypeptide regulates the secretion of bile and bicarbonate into the duodenum from the pancreatic and biliary ducts, as well as regulates the duodenal pH by the control of gastric acid secretion. Studies with secretin receptor-null mice indicate that secretin plays a role in regulating renal water reabsorption. Secretin mediates its biological actions by elevating intracellular cAMP via G protein-coupled secretin receptor, which is expressed in the brain, pancreas, stomach, kidney, and liver. 271 -320404 cd15277 7tmC_RAIG3_GPRC5C retinoic acid-inducible orphan G-protein-coupled receptor 3; class C family of seven-transmembrane G protein-coupled receptors, group 5, member C. Retinoic acid-inducible G-protein-coupled receptors (RAIGs), also referred to as GPCR class C group 5, are a group consisting of four orphan receptors RAIG1 (GPRC5A), RAIG2 (GPRC5B), RAIG3 (GPRC5C), and RAIG4 (GPRC5D). Unlike other members of the class C GPCRs which contain a large N-terminal extracellular domain, RAIGs have a shorter N-terminus. Thus, it is unlikely that RAIGs bind an agonist at its N-terminus domain. Instead, the agonists may bind to the seven-transmembrane domain of these receptors. In addition, RAIG2 and RAIG3 contain a cleavable signal peptide whereas RAIG1 and RAIG4 do not. Although their expression is induced by retinoic acid (vitamin A analog), their biological function is not clearly understood. To date, no ligand is known for the members of RAIG family. Three receptor types (RAIG1-3) are found in vertebrates, while RAIG4 is only present in mammals. They show distinct tissue distribution with RAIG1 being primarily expressed in the lung, RAIG2 in the brain and placenta, RAIG3 in the brain, kidney and liver, and RAIG4 in the skin. The specific function of RAIG3 is unknown; however, this protein may play a role in mediating the effects of retinoic acid on embryogenesis, differentiation, and tumorigenesis through interaction with a G-protein signaling cascade. 250 -320405 cd15278 7tmC_RAIG2_GPRC5B retinoic acid-inducible orphan G-protein-coupled receptor 2; class C family of seven-transmembrane G protein-coupled receptors, group 5, member B. Retinoic acid-inducible G-protein-coupled receptors (RAIGs), also referred to as GPCR class C group 5, are a group consisting of four orphan receptors RAIG1 (GPRC5A), RAIG2 (GPRC5B), RAIG3 (GPRC5C), and RAIG4 (GPRC5D). Unlike other members of the class C GPCRs which contain a large N-terminal extracellular domain, RAIGs have a shorter N-terminus. Thus, it is unlikely that RAIGs bind an agonist at its N-terminus domain. Instead, the agonists may bind to the seven-transmembrane domain of these receptors. In addition, RAIG2 and RAIG3 contain a cleavable signal peptide whereas RAIG1 and RAIG4 do not. Although their expression is induced by retinoic acid (vitamin A analog), their biological function is not clearly understood. To date, no ligand is known for the members of RAIG family. Three receptor types (RAIG1-3) are found in vertebrates, while RAIG4 is only present in mammals. They show distinct tissue distribution with RAIG1 being primarily expressed in the lung, RAIG2 in the brain and placenta, RAIG3 in the brain, kidney and liver, and RAIG4 in the skin. RAIG2 (GPRC5B), a mammalian Boss (Bride of sevenless) homolog, has been shown to activate obesity-associated inflammatory signaling in adipocytes, and that the GPRC5B knockout mice have been shown to be resistance to high-fat diet-induced obesity and insulin resistance. 244 -320406 cd15279 7tmC_RAIG1_4_GPRC5A_D retinoic acid-inducible orphan G-protein-coupled receptors 1 and 4; class C family of seven-transmembrane G protein-coupled receptors, group 5, member A and D. Retinoic acid-inducible G-protein-coupled receptors (RAIGs), also referred to as GPCR class C group 5, are a group consisting of four orphan receptors RAIG1 (GPRC5A), RAIG2 (GPRC5B), RAIG3 (GPRC5C), and RAIG4 (GPRC5D). Unlike other members of the class C GPCRs which contain a large N-terminal extracellular domain, RAIGs have a shorter N-terminus. Thus, it is unlikely that RAIGs bind an agonist at its N-terminus domain. Instead, the agonists may bind to the seven-transmembrane domain of these receptors. In addition, RAIG2 and RAIG3 contain a cleavable signal peptide whereas RAIG1 and RAIG4 do not. Although their expression is induced by retinoic acid (vitamin A analog), their biological function is not clearly understood. To date, no ligand is known for the members of RAIG family. Three receptor types (RAIG1-3) are found in vertebrates, while RAIG4 is only present in mammals. They show distinct tissue distribution with RAIG1 being primarily expressed in the lung, RAIG2 in the brain and placenta, RAIG3 in the brain, kidney and liver, and RAIG4 in the skin. RAIG1 is evolutionarily conserved from mammals to fish. RAIG1 has been to shown to act as a tumor suppressor in non-small cell lung carcinoma as well as oral squamous cell carcinoma, but it could also act as an oncogene in breast cancer, colorectal cancer, and pancreatic cancer. Studies have shown that overexpression of RAIG1 decreases intracellular cAMP levels. Moreover, knocking out RAIG1 induces the activation of the NF-kB and STAT3 signaling pathways leading to cell proliferation and resistance to apoptosis. The specific function of RAIG4 is unknown; however, this protein may play a role in mediating the effects of retinoic acid on embryogenesis, differentiation, and tumorigenesis through interaction with a G-protein signaling cascade. 248 -320407 cd15280 7tmC_V2R-like vomeronasal type-2 receptor-like proteins, member of the class C family of seven-transmembrane G protein-coupled receptors. This group represents vomeronasal type-2 receptor-like proteins that are closely related to the V2R family of vomeronasal GPCRs. Members of the V2R family of vomeronasal GPCRs are involved in detecting protein pheromones for social and sexual cues between the same species. V2Rs and G-alpha(o) protein are coexpressed in the basal layer of the vomeronasal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes, and monkeys. On the other hand, members of the V1R receptor family and G-alpha(i2) protein are co-expressed in the apical neurons of the VNO. Activation of V1R or V2R causes activation of phospholipase pathway, generating the secondary messengers diacylglycerol (DAG) and IP3. However, in contrast to V1Rs, V2Rs contain the long N-terminal extracellular domain, which is believed to bind pheromones. Human V2R1-like protein, also known as putative calcium-sensing receptor-like 1 (CASRL1), is not included here because it is a nonfunctional pseudogene. 253 -320408 cd15281 7tmC_GPRC6A class C of seven-transmembrane G protein-coupled receptors, subtype 6A. GRPC6A (GPCR, class C, group 6, subtype A) is a widely expressed amino acid-sensing GPCR that is most closely related to CaSR. GPRC6A is most potently activated by the basic amino acids L-arginine, L-lysine, and L-ornithine and less potently by small aliphatic amino acids. Moreover, the receptor can be either activated or modulated by divalent cations such as Ca2+ and Mg2+. GPRC6A is expressed in the testis, but not the ovary and specifically also binds to the osteoblast-derived hormone osteocalcin (OCN), which regulates testosterone production by the testis and male fertility independently of the hypothalamic-pituitary axis. Furthermore, GPRC6A knockout studies suggest that GRPC6A is involved in regulation of bone metabolism, male reproduction, energy homeostasis, glucose metabolism, and in activation of inflammation response, as well as prostate cancer growth and progression, among others. GPRC6A has been suggested to couple to the Gq subtype of G proteins, leading to IP3 production and intracellular calcium mobilization. GPRC6A contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD), and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B, GPRC6A, mGlu, and TAS1R receptors. 249 -320409 cd15282 7tmC_CaSR calcium-sensing receptor, member of the class C of seven-transmembrane G protein-coupled receptors. CaSR is a widely expressed GPCR that is involved in sensing small changes in extracellular levels of calcium ion to maintain a constant level of the extracellular calcium via modulating the synthesis and secretion of calcium regulating hormones, such as parathyroid hormone (PTH), in order to regulate Ca(2+)transport into or out of the extracellular fluid via kidney, intestine, and/or bone. For instance, when Ca2+ is high, CaSR downregulates PTH synthesis and secretion, leading to an increase in renal Ca2+ excretion, a decrease in intestinal Ca2+ absorption, and a reduction in release of skeletal Ca2+. CaSR is coupled to both G(q/11)-dependent activation of phospholipase and, subsequently, intracellular calcium mobilization and protein kinase C activation as well as G(i/o)-dependent inhibition of adenylate cyclase leading to inhibition of cAMP formation. CaSR is closely related to GRPC6A (GPCR, class C, group 6, subtype A), which is an amino acid-sensing GPCR that is most potently activated by the basic amino acids L-arginine, L-lysine, and L-ornithine. These receptors contain a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD), and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TASR1 receptors. 252 -320410 cd15283 7tmC_V2R_pheromone vomeronasal type-2 pheromone receptors, member of the class C family of seven-transmembrane G protein-coupled receptors. This group represents vomeronasal type-2 pheromone receptors (V2Rs). Members of the V2R family of vomeronasal GPCRs are involved in detecting protein pheromones for social and sexual cues between the same species. V2Rs and G-alpha(o) protein are coexpressed in the basal layer of the vomeronsal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes, and monkeys. On the other hand, members of the V1R receptor family and G-alpha(i2) protein are coexpressed in the apical neurons of the VNO. Activation of V1R or V2R causes activation of phospholipase pathway, producing the second messengers diacylglycerol (DAG) and IP3. However, in contrast to V1Rs, V2Rs contain the long N-terminal extracellular domain, which is believed to bind pheromones. 252 -320411 cd15284 7tmC_mGluR_group2 metabotropic glutamate receptors in group 2, member of the class C family of seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) in group 2 include mGluR 2 and 3. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 254 -320412 cd15285 7tmC_mGluR_group1 metabotropic glutamate receptors in group 1, member of the class C family of seven-transmembrane G protein-coupled receptors. Group 1 mGluRs includes mGluR1 and mGluR5, as well as their closely related invertebrate receptors. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 250 -320413 cd15286 7tmC_mGluR_group3 metabotropic glutamate receptors in group 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) in group 3 include mGluRs 4, 6, 7, and 8. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 271 -320414 cd15287 7tmC_TAS1R2a-like type 1 taste receptor subtype 2a and similar proteins, member of the class C of seven-transmembrane G protein-coupled receptors. This group includes TAS1R2a and its similar proteins found in fish. They are members of the type I taste receptor (TAS1R) family that belongs to the class C of G protein-coupled receptors. The functional TAS1Rs are obligatory heterodimers built from three known members, TAS1R1-3. TAS1R1 combines with TAS1R3 to form an umami taste receptor, which is responsible for the perception of savory taste, such as the food additive monosodium glutamate (MSG); whereas the combination of TAS1R2-TAS1R3 forms a sweet-taste receptor for sugars and D-amino acids. On the other hand, the type II taste receptors (TAS2Rs), which belong to the class A family of GPCRs, recognize bitter tasting compounds. In the case of sweet, for example, the TAS1R2-TAS1R3 heterodimer activates phospholipase C (PLC) via alpha-gustducin, a heterodimeric G protein that is involved in perception of sweet and bitter tastes. This activation leads to generation of inositol (1, 4, 5)-trisphosphate (IP3) and diacylglycerol (DAG), and consequently increases intracellular Ca2+ mobilization and activates a cation channel, TRPM5. In contrast to the TAS1R2-TAS1R3 heterodimer, TAS1R3 alone could activate adenylate cyclase leading to cAMP formation in the absence of alpha-gustducin. Each TAS1R contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD) and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TAS1R receptors. 252 -320415 cd15288 7tmC_TAS1R2 type 1 taste receptor subtype 2, member of the class C of seven-transmembrane G protein-coupled receptors. This group represents TAS1R2, which is a member of the type I taste receptor (TAS1R) family that belongs to the class C of G protein-coupled receptors. The functional TAS1Rs are obligatory heterodimers built from three known members, TAS1R1-3. TAS1R1 combines with TAS1R3 to form an umami taste receptor, which is responsible for the perception of savory taste, such as the food additive monosodium glutamate (MSG); whereas the combination of TAS1R2-TAS1R3 forms a sweet-taste receptor for sugars and D-amino acids. On the other hand, the type II taste receptors (TAS2Rs), which belong to the class A family of GPCRs, recognize bitter tasting compounds. In the case of sweet, for example, the TAS1R2-TAS1R3 heterodimer activates phospholipase C (PLC) via alpha-gustducin, a heterodimeric G protein that is involved in perception of sweet and bitter tastes. This activation leads to generation of inositol (1, 4, 5)-trisphosphate (IP3) and diacylglycerol (DAG), and consequently increases intracellular Ca2+ mobilization and activates a cation channel, TRPM5. In contrast to the TAS1R2-TAS1R3 heterodimer, TAS1R3 alone could activate adenylate cyclase leading to cAMP formation in the absence of alpha-gustducin. Each TAS1R contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD) and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TAS1R receptors. 254 -320416 cd15289 7tmC_TAS1R1 type 1 taste receptor subtype 1, member of the class C of seven-transmembrane G protein-coupled receptors. This group represents TAS1R1, which is a member of the type I taste receptor (TAS1R) family that belongs to the class C of G protein-coupled receptors. The functional TAS1Rs are obligatory heterodimers built from three known members, TAS1R1-3. TAS1R1 combines with TAS1R3 to form an umami taste receptor, which is responsible for the perception of savory taste, such as the food additive monosodium glutamate (MSG); whereas the combination of TAS1R2-TAS1R3 forms a sweet-taste receptor for sugars and D-amino acids. On the other hand, the type II taste receptors (TAS2Rs), which belong to the class A family of GPCRs, recognize bitter tasting compounds. In the case of sweet, for example, the TAS1R2-TAS1R3 heterodimer activates phospholipase C (PLC) via alpha-gustducin, a heterodimeric G protein that is involved in perception of sweet and bitter tastes. This activation leads to generation of inositol (1, 4, 5)-trisphosphate (IP3) and diacylglycerol (DAG), and consequently increases intracellular Ca2+ mobilization and activates a cation channel, TRPM5. In contrast to the TAS1R2-TAS1R3 heterodimer, TAS1R3 alone could activate adenylate cyclase leading to cAMP formation in the absence of alpha-gustducin. Each TAS1R contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD) and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TAS1R receptors. 253 -320417 cd15290 7tmC_TAS1R3 type 1 taste receptor subtype 3, member of the class C of seven-transmembrane G protein-coupled receptors. This group represents TAS1R3, which is a member of the type I taste receptor (TAS1R) family that belongs to the class C of G protein-coupled receptors. The functional TAS1Rs are obligatory heterodimers built from three known members, TAS1R1-3. TAS1R1 combines with TAS1R3 to form an umami taste receptor, which is responsible for the perception of savory taste, such as the food additive monosodium glutamate (MSG); whereas the combination of TAS1R2-TAS1R3 forms a sweet-taste receptor for sugars and D-amino acids. On the other hand, the type II taste receptors (TAS2Rs), which belong to the class A family of GPCRs, recognize bitter tasting compounds. In the case of sweet, for example, the TAS1R2-TAS1R3 heterodimer activates phospholipase C (PLC) via alpha-gustducin, a heterodimeric G protein that is involved in perception of sweet and bitter tastes. This activation leads to generation of inositol (1, 4, 5)-trisphosphate (IP3) and diacylglycerol (DAG), and consequently increases intracellular Ca2+ mobilization and activates a cation channel, TRPM5. In contrast to the TAS1R2-TAS1R3 heterodimer, TAS1R3 alone could activate adenylate cyclase leading to cAMP formation in the absence of alpha-gustducin. Each TAS1R contains a large extracellular Venus flytrap-like domain in the N-terminus, cysteine-rich domain (CRD) and seven-transmembrane (7TM) domain, which are characteristics of the class C GPCRs. The Venus flytrap-like domain shares strong sequence homology to bacterial periplasmic binding proteins and possess the orthosteric amino acid and calcium binding sites for members of the class C, including CaSR, GABA-B1, GPRC6A, mGlu, and TAS1R receptors. 253 -320418 cd15291 7tmC_GABA-B-R1 gamma-aminobutyric acid type B receptor subunit 1, member of the class C family of seven-transmembrane G protein-coupled receptors. The type B receptor for gamma-aminobutyric acid, GABA-B, is activated by its endogenous ligand GABA, the principal inhibitory neurotransmitter. The functional GABA-B receptor is an obligatory heterodimer composed of two related subunits, GABA-B1, which is primarily involved in GABA ligand binding, and GABA-B2, which is responsible for both G-protein coupling and trafficking of the heterodimer to the plasma membrane. Activation of GABA-B couples to G(i/o)-type G proteins, which in turn modulate three major downstream effectors: adenylate cyclase, voltage-sensitive Ca2+ channels, and inwardly-rectifying K+ channels. Consequently, GABA-B receptor produces slow and sustained inhibitory responses by decreased neurotransmitter release via inhibition of Ca2+ channels and by postsynaptic hyperpolarization via the activation of K+ channels through the G-protein beta-gamma dimer. The GABA-B is expressed in both pre- and postsynaptic sites of glutamatergic and GABAergic neurons in the brain where it regulates synaptic activity. Thus, the GABA-B receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in multiple sclerosis patients. Moreover, GABA-B antagonists improves cognitive performance in mammals, while GABA-B agonists suppress cognitive behavior. In most of the class C family members, the extracellular Venus-flytrap domain in the N-terminus is connected to the seven-transmembrane (7TM) via a cysteine-rich domain (CRD). However, in the GABA-B receptor, the CRD is absent in both subunits and the Venus-flytrap ligand-binding domain is directly connected to the 7TM via a 10-15 amino acids linker, suggesting that GABA-B receptor may utilize a different activation mechanism. 274 -320419 cd15292 7tmC_GPR156 orphan GPR156, member of the class C family of seven-transmembrane G protein-coupled receptors. This subgroup represents orphan GPR156 that is closely related to the type B receptor for gamma-aminobutyric acid (GABA-B), which is activated by its endogenous ligand GABA, the principal inhibitory neurotransmitter. The functional GABA-B receptor is an obligatory heterodimer composed of two related subunits, GABA-B1, which is primarily involved in GABA ligand binding, and GABA-B2, which is responsible for both G-protein coupling and trafficking of the heterodimer to the plasma membrane. Activation of GABA-B couples to G(i/o)-type G proteins, which in turn modulate three major downstream effectors: adenylate cyclase, voltage-sensitive Ca2+ channels, and inwardly-rectifying K+ channels. Consequently, GABA-B receptor produces slow and sustained inhibitory responses by decreased neurotransmitter release via inhibition of Ca2+ channels and by postsynaptic hyperpolarization via the activation of K+ channels through the G-protein beta-gamma dimer. The GABA-B is expressed in both pre- and postsynaptic sites of glutamatergic and GABAergic neurons in the brain where it regulates synaptic activity. Thus, the GABA-B receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in multiple sclerosis patients. Moreover, GABA-B antagonists improves cognitive performance in mammals, while GABA-B agonists suppress cognitive behavior. In most of the class C family members, the extracellular Venus-flytrap domain in the N-terminus is connected to the seven-transmembrane (7TM) via a cysteine-rich domain (CRD). However, in the GABA-B receptor, the CRD is absent in both subunits and the Venus-flytrap ligand-binding domain is directly connected to the 7TM via a 10-15 amino acids linker, suggesting that GABA-B receptor may utilize a different activation mechanism. 268 -320420 cd15293 7tmC_GPR158-like orphan GPR158 and similar proteins, member of the class C family of seven-transmembrane G protein-coupled receptors. This group includes orphan receptors GPR158, GPR158-like (also called GPR179) and similar proteins. These orphan receptors are closely related to the type B receptor for gamma-aminobutyric acid (GABA-B), which is activated by its endogenous ligand GABA, the principal inhibitory neurotransmitter. The functional GABA-B receptor is an obligatory heterodimer composed of two related subunits, GABA-B1, which is primarily involved in GABA ligand binding, and GABA-B2, which is responsible for both G-protein coupling and trafficking of the heterodimer to the plasma membrane. Activation of GABA-B couples to G(i/o)-type G proteins, which in turn modulate three major downstream effectors: adenylate cyclase, voltage-sensitive Ca2+ channels, and inwardly-rectifying K+ channels. Consequently, GABA-B receptor produces slow and sustained inhibitory responses by decreased neurotransmitter release via inhibition of Ca2+ channels and by postsynaptic hyperpolarization via the activation of K+ channels through the G-protein beta-gamma dimer. The GABA-B is expressed in both pre- and postsynaptic sites of glutamatergic and GABAergic neurons in the brain where it regulates synaptic activity. Thus, the GABA-B receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in multiple sclerosis patients. Moreover, GABA-B antagonists improves cognitive performance in mammals, while GABA-B agonists suppress cognitive behavior. In most of the class C family members, the extracellular Venus-flytrap domain in the N-terminus is connected to the seven-transmembrane (7TM) via a cysteine-rich domain (CRD). However, in the GABA-B receptor, the CRD is absent in both subunits and the Venus-flytrap ligand-binding domain is directly connected to the 7TM via a 10-15 amino acids linker, suggesting that GABA-B receptor may utilize a different activation mechanism. 252 -320421 cd15294 7tmC_GABA-B-R2 gamma-aminobutyric acid type B receptor subunit 2, member of the class C family of seven-transmembrane G protein-coupled receptors. The type B receptor for gamma-aminobutyric acid, GABA-B, is activated by its endogenous ligand GABA, the principal inhibitory neurotransmitter. The functional GABA-B receptor is an obligatory heterodimer composed of two related subunits, GABA-B1, which is primarily involved in GABA ligand binding, and GABA-B2, which is responsible for both G-protein coupling and trafficking of the heterodimer to the plasma membrane. Activation of GABA-B couples to G(i/o)-type G proteins, which in turn modulate three major downstream effectors: adenylate cyclase, voltage-sensitive Ca2+ channels, and inwardly-rectifying K+ channels. Consequently, GABA-B receptor produces slow and sustained inhibitory responses by decreased neurotransmitter release via inhibition of Ca2+ channels and by postsynaptic hyperpolarization via the activation of K+ channels through the G-protein beta-gamma dimer. The GABA-B is expressed in both pre- and postsynaptic sites of glutamatergic and GABAergic neurons in the brain where it regulates synaptic activity. Thus, the GABA-B receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in multiple sclerosis patients. Moreover, GABA-B antagonists improves cognitive performance in mammals, while GABA-B agonists suppress cognitive behavior. In most of the class C family members, the extracellular Venus-flytrap domain in the N-terminus is connected to the seven-transmembrane (7TM) via a cysteine-rich domain (CRD). However, in the GABA-B receptor, the CRD is absent in both subunits and the Venus-flytrap ligand-binding domain is directly connected to the 7TM via a 10-15 amino acids linker, suggesting that GABA-B receptor may utilize a different activation mechanism. 270 -320422 cd15295 7tmA_Histamine_H4R histamine receptor subtype H4R, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes histamine subtype H4R, a member of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 267 -320423 cd15296 7tmA_Histamine_H3R histamine receptor subtypes H3R and H3R-like, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes histamine subtypes H3R and H3R-like, members of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 271 -320424 cd15297 7tmA_mAChR_M2 muscarinic acetylcholine receptor subtype M2, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of M2 receptor causes a decrease in cAMP production, generally leading to inhibitory-type effects. This causes an outward current of potassium in the heart, resulting in a decreased heart rate. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -341344 cd15298 7tmA_mAChR_M4 muscarinic acetylcholine receptor subtype M4, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to G(i/o) types of G proteins. The M4 receptor is mainly found in the CNS and function as an inhibitory autoreceptor regulating acetycholine release. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -320426 cd15299 7tmA_mAChR_M3 muscarinic acetylcholine receptor subtype M3, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. The M3 receptor is mainly located in smooth muscle, exocrine glands and vascular endothelium. It induces vomiting in the central nervous system and is a critical regulator of glucose homeostasis by modulating insulin secretion. Generally, M3 receptor causes contraction of smooth muscle resulting in vasoconstriction and increased glandular secretion. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 274 -320427 cd15300 7tmA_mAChR_M5 muscarinic acetylcholine receptor subtype M5, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. M5 mAChR is primarily found in the central nervous system and mediates acetylcholine-induced dilation of cerebral blood vessels. Activation of M5 receptor triggers a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -320428 cd15301 7tmA_mAChR_DM1-like muscarinic acetylcholine receptor DM1, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes muscarinic acetylcholine receptor DM1-like from invertebrates. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 270 -320429 cd15302 7tmA_mAChR_GAR-2-like muscarinic acetylcholine receptor GAR-2 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 266 -341345 cd15304 7tmA_5-HT2A serotonin receptor subtype 2A, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 267 -341346 cd15305 7tmA_5-HT2C serotonin receptor subtype 2C, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 275 -341347 cd15306 7tmA_5-HT2B serotonin receptor subtype 2B, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 277 -320433 cd15307 7tmA_5-HT2_insect-like serotonin receptor subtype 2 from insects, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 279 -320434 cd15308 7tmA_D4_dopamine_R D4 dopamine receptor of the D2-like family, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 258 -320435 cd15309 7tmA_D2_dopamine_R D2 subtype of the D2-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 254 -320436 cd15310 7tmA_D3_dopamine_R D3 subtype of the D2-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 259 -320437 cd15312 7tmA_TAAR2_3_4 trace amine-associated receptors 2, 3, 4, and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. TAAR2, TAAR3, and TAAR4 are among the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 289 -320438 cd15314 7tmA_TAAR1 trace amine-associated receptor 1 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. The trace amine-associated receptor 1 (TAAR1) is one of the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. TAAR1 is coupled to the Gs protein, which leads to activation of adenylate cyclase, and is thought to play functional role in the regulation of brain monoamines. TAAR1 is also shown to be activated by psychoactive compounds such as Ecstasy (MDMA), amphetamine and LSD. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320439 cd15316 7tmA_TAAR6_8_9 trace amine-associated receptors 6, 8, and 9, member of the class A family of seven-transmembrane G protein-coupled receptors. Included in this group are mammalian TAAR6, TAAR8, TAAR9, and similar proteins. They are among the 15 identified amine-associated receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 290 -320440 cd15317 7tmA_TAAR5-like trace amine-associated receptor 5 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Included in this group are mammalian TAAR5, TAAR6, TAAR8, TAAR9, and similar proteins. They are among the 15 identified trace amine-associated receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 290 -320441 cd15318 7tmA_TAAR5 trace amine-associated receptor 5, member of the class A family of seven-transmembrane G protein-coupled receptors. The trace amine-associated receptor 5 is one of the 15 identified amine-activated G protein-coupled receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320442 cd15319 7tmA_D1B_dopamine_R D1B (or D5) subtype dopamine receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 317 -320443 cd15320 7tmA_D1A_dopamine_R D1A (or D1) subtype dopamine receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. 319 -320444 cd15321 7tmA_alpha2B_AR alpha-2 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. 268 -320445 cd15322 7tmA_alpha2A_AR alpha-2 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. 259 -320446 cd15323 7tmA_alpha2C_AR alpha-2 adrenergic receptors subtype C, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. 261 -320447 cd15324 7tmA_alpha-2D_AR alpha-2 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. 256 -320448 cd15325 7tmA_alpha1A_AR alpha-1 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. 261 -320449 cd15326 7tmA_alpha1B_AR alpha-1 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. 261 -320450 cd15327 7tmA_alpha1D_AR alpha-1 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors. The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. 261 -320451 cd15328 7tmA_5-HT5 serotonin receptor subtype 5, member of the class A family of seven-transmembrane G protein-coupled receptors. 5-HT5 receptor, one of 14 mammalian 5-HT receptors, is activated by the neurotransmitter and peripheral signal mediator serotonin (also known as 5-hydroxytryptamine or 5-HT). The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/0) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 259 -320452 cd15329 7tmA_5-HT7 serotonin receptor subtype 7, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT7 receptor, one of 14 mammalian serotonin receptors, is a member of the class A of GPCRs and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). 5-HT7 receptor mainly couples to Gs protein, which positively stimulates adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. 5-HT7 receptor is expressed in various human tissues, mainly in the brain, the lower gastrointestinal tract and in vital blood vessels including the coronary artery. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 260 -320453 cd15330 7tmA_5-HT1A_vertebrates serotonin receptor subtype 1A from vertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 260 -320454 cd15331 7tmA_5-HT1A_invertebrates serotonin receptor subtype 1A from invertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 261 -320455 cd15333 7tmA_5-HT1B_1D serotonin receptor subtypes 1B and 1D, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 265 -320456 cd15334 7tmA_5-HT1F serotonin receptor subtype 1F, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 259 -320457 cd15335 7tmA_5-HT1E serotonin receptor subtype 1E, member of the class A family of seven-transmembrane G protein-coupled receptors. The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. 258 -320458 cd15336 7tmA_Melanopsin vertebrate melanopsins (Opsin-4), member of the class A family of seven-transmembrane G protein-coupled receptors. Melanopsin (also called Opsin-4) is the G protein-coupled photopigment that mediates non-visual responses to light. In mammals, these photoresponses include the photo-entrainment of circadian rhythm, pupillary constriction, and acute nocturnal melatonin suppression. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. Melanopsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 290 -320459 cd15337 7tmA_Opsin_Gq_invertebrates invertebrate Gq opsins, member of the class A family of seven-transmembrane G protein-coupled receptors. The invertebrate Gq-coupled opsin subfamily includes the arthropod and mollusc visual opsins. Like the vertebrate visual opsins, arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. The invertebrate Gq opsins are closely related to the vertebrate melanopsins, the primary photoreceptor molecules for non-visual responses to light, and the R1-R6 photoreceptors, which are the fly equivalent to the vertebrate rods. The Gq opsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. 292 -320460 cd15338 7tmA_MCHR1 melanin concentrating hormone receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 282 -320461 cd15339 7tmA_MCHR2 melanin concentrating hormone receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 283 -320462 cd15340 7tmA_CB1 cannabinoid receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. 292 -320463 cd15341 7tmA_CB2 cannabinoid receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. 279 -320464 cd15342 7tmA_LPAR2_Edg4 lysophosphatidic acid receptor subtype 2 (LPAR2 or LPA2), also called Endothelial differentiation gene 4 (Edg4), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 274 -320465 cd15343 7tmA_LPAR3_Edg7 lysophosphatidic acid receptor subtype 3 (LPAR3 or LPA3), also called endothelial differentiation gene 7 (Edg7), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 274 -341348 cd15344 7tmA_LPAR1_Edg2 lysophosphatidic acid receptor subtype 1 (LPAR1 or LPA1), also called endothelial differentiation gene 2 (Edg2), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 273 -320467 cd15345 7tmA_S1PR3_Edg3 sphingosine-1-phosphate receptor subtype 3 (S1PR3 or S1P3), also called endothelial differentiation gene 3 (Edg3), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 270 -320468 cd15346 7tmA_S1PR1_Edg1 sphingosine-1-phosphate receptor subtype 1 (S1PR1 or S1P1), also called endothelial differentiation gene 1 (Edg1), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 277 -320469 cd15347 7tmA_S1PR2_Edg5 sphingosine-1-phosphate receptor subtype 2 (S1PR2 or S1P2), also called endothelial differentiation gene 5 (Edg5), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 266 -320470 cd15348 7tmA_S1PR5_Edg8 sphingosine-1-phosphate receptor subtype 5 (S1PR5 or S1P5), also called endothelial differentiation gene 8 (Edg8), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 277 -320471 cd15349 7tmA_S1PR4_Edg6 sphingosine-1-phosphate receptor subtype 4 (S1PR4 or S1P4), also called endothelial differentiation gene 6 (Edg6), member of the class A family of seven-transmembrane G protein-coupled receptors. The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13). 271 -320472 cd15350 7tmA_MC2R_ACTH_R melanocortin receptor subtype 2, also called adrenocorticotropic hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 270 -320473 cd15351 7tmA_MC1R melanocortin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 271 -320474 cd15352 7tmA_MC3R melanocortin receptor subtype 3, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 272 -320475 cd15353 7tmA_MC4R melanocortin receptor subtype 4, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 269 -320476 cd15354 7tmA_MC5R melanocortin receptor subtype 5, member of the class A family of seven-transmembrane G protein-coupled receptors. The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. 270 -320477 cd15355 7tmA_NTSR1 neurotensin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortlin, is not a G protein-coupled receptor. 310 -320478 cd15356 7tmA_NTSR2 neurotensin receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortlin, is not a G protein-coupled receptor. 285 -320479 cd15357 7tmA_NMU-R2 neuromedin U receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure. 293 -320480 cd15358 7tmA_NMU-R1 neuromedin U receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure. 305 -320481 cd15359 7tmA_LHCGR luteinizing hormone-choriogonadotropin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The glycoprotein hormone receptors are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone family includes the three gonadotropins: luteinizing hormone (LH), follicle-stimulating hormone (FSH), chorionic gonadotropin (CG), and a pituitary thyroid-stimulating hormone (TSH). The glycoprotein hormones exert their biological functions by interacting with their cognate GPCRs. Both LH and CG bind to the same receptor, the luteinizing hormone-choriogonadotropin receptor (LHCGR); FSH binds to FSH-R and TSH to TSH-R. LHCGR is expressed predominantly in the ovary and testis, and plays an essential role in sexual development and reproductive processes. LHCGR couples primarily to the G(s)-protein and activates adenylate cyclase, thereby promoting cAMP production. 275 -320482 cd15360 7tmA_FSH-R follicle-stimulating hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The glycoprotein hormone receptors are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone family includes the three gonadotropins: luteinizing hormone (LH), follicle-stimulating hormone (FSH), chorionic gonadotropin (CG), and a pituitary thyroid-stimulating hormone (TSH). The glycoprotein hormones exert their biological functions by interacting with their cognate GPCRs. Both LH and CG bind to the same receptor, the luteinizing hormone-choriogonadotropin receptor (LHCGR); FSH binds to FSH-R and TSH to TSH-R. FSH-R functions in gonad development and is found in the ovary, testis, and uterus. Defects in this receptor cause ovarian dysgenesis type 1, and also ovarian hyperstimulation syndrome. The FSH-R activation couples to the G(s)-protein and stimulates adenylate cyclase, thereby promoting cAMP production. 275 -320483 cd15361 7tmA_LGR4 leucine-rich repeats-containing G protein-coupled receptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. The leucine-rich repeat containing G-protein coupled receptor Lgr4 (formerly known as Gpr48), together with its close family members LGR5 and LGR6, is structurally related to the glycoprotein hormone receptor family, which includes the luteinizing hormone (LH) receptor, the follicle-stimulating hormone (FSH) receptor, and the pituitary thyroid-stimulating hormone (TSH) receptor. LGR4-6 are receptors for the R-spondin (Rspo) family of secreted proteins containing two N-terminal furin-like repeats and a thrombospondin domain. The Rspo proteins are involved in regulating proliferation and differentiation of adult stem cells by potently enhancing the WNT-stimulated beta-catenin signaling. LGR4 is broadly expressed in proliferating cells, and its deficient mice display development defects in multiple organs. LGR5 acts as a marker for resident stem cell in numerous epithelial cell layers, including small intestine, colon, stomach, and kidney. LGR6 also serves as a marker of multipotent stem cells in the hair follicle that generate all skin cell lineages. Members of this group are characterized by a very large extracellular N-terminal domain containing 17 leucine-rich repeats (LRRs), flanked by cysteine-rich N- and C-terminal capping domains, and the extracellular domain is responsible for high-affinity binding with the Rspo proteins. 274 -320484 cd15362 7tmA_LGR6 leucine-rich repeats-containing G protein-coupled receptor 6, the class A of 7-transmembrane GPCRs. The leucine-rich repeat containing G-protein coupled receptor LGR5, together with its family members LGR4 and LGR6, is structurally related to the glycoprotein hormone receptor family, which includes the luteinizing hormone (LH) receptor, the follicle-stimulating hormone (FSH) receptor, and the pituitary thyroid-stimulating hormone (TSH) receptor. LGR4-6 are receptors for the R-spondin (Rspo) family of secreted proteins containing two N-terminal furin-like repeats and a thrombospondin domain. The Rspo proteins are involved in regulating proliferation and differentiation of adult stem cells by potently enhancing the WNT-stimulated beta-catenin signaling. LGR5 serves as a marker for resident stem cell in numerous epithelial cell layers, including small intestine, colon, stomach, and kidney. LGR6 is a marker for multipotent stem cells in the hair follicle that generate all skin cell lineages. In addition, LGR4 is broadly expressed in proliferating cells, and its deficient mice display development defects in multiple organs. Members of this group are characterized by a very large extracellular N-terminal domain containing 17 leucine-rich repeats (LRRs), flanked by cysteine-rich N- and C-terminal capping domains, and the extracellular domain is responsible for high-affinity binding with the Rspo proteins. 276 -320485 cd15363 7tmA_LGR5 leucine-rich repeats-containing G protein-coupled receptor 5, member of the class A family of seven-transmembrane G protein-coupled receptors. The leucine-rich repeat containing G-protein coupled receptor LGR6, together with its family members LGR4 and LGR5, is structurally related to the glycoprotein hormone receptor family, which includes the luteinizing hormone (LH) receptor, the follicle-stimulating hormone (FSH) receptor, and the pituitary thyroid-stimulating hormone (TSH) receptor. LGR4-6 are receptors for the R-spondin (Rspo) family of secreted proteins containing two N-terminal furin-like repeats and a thrombospondin domain. The Rspo proteins are involved in regulating proliferation and differentiation of adult stem cells by potently enhancing the WNT-stimulated beta-catenin signaling. LGR6 serves as a marker of multipotent stem cells in the hair follicle that generate all skin cell lineages, whereas LGR5 is a marker for resident stem cell in numerous epithelial cell layers, including small intestine, colon, stomach, and kidney. In addition, LGR4 is broadly expressed in proliferating cells, and its deficient mice display development defects in multiple organs. Members of this group are characterized by a very large extracellular N-terminal domain containing 17 leucine-rich repeats (LRRs), flanked by cysteine-rich N- and C-terminal capping domains, and the extracellular domain is responsible for high-affinity binding with the Rspo proteins. 274 -320486 cd15364 7tmA_GPR132_G2A proton-sensing G protein-coupled receptor 132, member of the class A family of seven-transmembrane G protein-coupled receptors. The G2 accumulation receptor (G2A, also known as GPR132) is a member of the proton-sensing G-protein-coupled receptor (GPCR) family which also includes the T cell death associated gene-8 (TDAG8, GPR65) receptor, ovarian cancer G-protein receptor 1 (OGR-1, GPR68), and G-protein-coupled receptor 4 (GPR4). Proton-sensing G-protein coupled receptors sense pH of 7.6 to 6.0 and mediates a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. G2A was originally identified as a stress-inducible receptor that causes the cell cycle arrest at G2/M phase when serum is deprived. Lysophosphatidylcholine was identified as a ligand for G2A, and whose overexpression was shown to induce cell proliferation, oncogenic transformation, and apoptosis. 279 -320487 cd15365 7tmA_GPR65_TDAG8 proton-sensing G protein-coupled receptor 65, member of the class A family of seven-transmembrane G protein-coupled receptors. The T cell death associated gene-8 receptor (TDAG8, also known as GPR65) is a member of the proton-sensing G-protein-coupled receptor (GPCR) family which also includes the G2 accumulation receptor (G2A, also known as GPR132), ovarian cancer G-protein receptor 1 (OGR-1, GPR68), and G-protein-coupled receptor 4 (GPR4). Proton-sensing G-protein coupled receptors sense pH of 7.6 to 6.0 and mediates a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. Activation of TDAG8 by extracellular acidosis increases the cAMP production, stimulates Rho, and induces stress fiber formation. TDAG8 has also been shown to regulate the extracellular acidosis-induced inhibition of pro-inflammatory cytokine production in peritoneal macrophages. 277 -320488 cd15366 7tmA_GPR4 proton-sensing G protein-coupled receptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. G-protein-coupled receptor 4 (GPR4) is a member of the proton-sensing G-protein-coupled receptor (GPCR) family which also includes the G2 accumulation receptor (G2A, also known as GPR132), the T cell death associated gene-8 receptor (TDAG8, GPR65), ovarian cancer G-protein receptor 1 (OGR-1, GPR68), and G-protein-coupled receptor 4 (GPR4). Proton-sensing G-protein coupled receptors sense pH of 7.6 to 6.0 and mediates a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. GPR4 overexpression in melanoma cells was shown to reduce cell migration, membrane ruffling, and cell spreading under acidic pH conditions. Activation of GPR4 via extracellular acidosis is coupled to the G(s), G(q), and G(12/13) pathways. 280 -320489 cd15367 7tmA_GPR68_OGR1 G protein-coupled receptor 68, member of the class A family of seven-transmembrane G protein-coupled receptors. The ovarian cancer G-protein receptor 1 (OGR1, also known as GPR68) is a member of the proton-sensing G-protein-coupled receptor (GPCR) family which also includes the G2 accumulation receptor (G2A, also known as GPR132), the T cell death associated gene-8 receptor (TDAG8, GPR65), and the G-protein-coupled receptor 4 (GPR4). Proton-sensing G-protein coupled receptors sense pH of 7.6 to 6.0 and mediates a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. Knock-out mice studies have suggested that OGR1 plays a role in the regulation of insulin secretion and glucose metabolism. OGR1 couples to G(q/11) proteins and activates phospholipase C and Ca2+ signaling pathways. 276 -320490 cd15368 7tmA_P2Y8 purinergic receptor P2Y8, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y8 (or P2RY8) expression is often increased in leukemia patients, and it plays a role in the pathogenesis of acute leukemia. P2Y8 is phylogenetically closely related to the protease-activated receptors (PARs), which are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. Four different types of the protease-activated receptors have been identified (PAR1-4) and are predominantly expressed in platelets. PAR1, PA3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 281 -320491 cd15369 7tmA_PAR1 protease-activated receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Protease-acted receptors (PARs) are seven-transmembrane proteins that belong to the class A G-protein coupled receptor (GPCR) family. Four different types of the protease-activated receptors have been identified: PAR1, PAR2, PAR3, and PAR4. PARs are predominantly expressed in platelets and are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. PAR1, PA3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 281 -341349 cd15370 7tmA_PAR2 protease-activated receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Protease-acted receptors (PARs) are seven-transmembrane proteins that belong to the class A G-protein coupled receptor (GPCR) family. Four different types of the protease-activated receptors have been identified: PAR1, PAR2, PAR3, and PAR4. PARs are predominantly expressed in platelets and are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. PAR1, PA3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 280 -320493 cd15371 7tmA_PAR3 protease-activated receptor 3, member of the class A family of seven-transmembrane G protein-coupled receptors. Protease-acted receptors (PARs) are seven-transmembrane proteins that belong to the class A G-protein coupled receptor (GPCR) family. Four different types of the protease-activated receptors have been identified: PAR1, PAR2, PAR3, and PAR4. PARs are predominantly expressed in platelets and are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. PAR1, PA3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 274 -320494 cd15372 7tmA_PAR4 protease-activated receptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. Protease-acted receptors (PARs) are seven-transmembrane proteins that belong to the class A G-protein coupled receptor (GPCR) family. Four different types of the protease-activated receptors have been identified: PAR1, PAR2, PAR3, and PAR4. PARs are predominantly expressed in platelets and are activated by serine proteases such as thrombin, trypsin, and tryptase. These proteases cleave the extracellular domain of the receptor to form a new N-terminus, which in turn functions as a tethered ligand. The newly-formed tethered ligand binds intramolecularly to activate the receptor and triggers G-protein binding and intracellular signaling. PAR1, PA3, and PAR4 are activated by thrombin, whereas PAR2 is activated by trypsin. The PARs are known to couple with several G-proteins including Gi (cAMP inhibitory), G12/13 (Rho and Ras activation), and Gq (calcium signaling) to activate downstream signaling messengers which induces numerous cellular and physiological effects. 274 -320495 cd15373 7tmA_P2Y2 P2Y purinoceptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y2 belongs to the P2Y receptor family of purinergic G-protein coupled receptors and is implicated to play a role in the control of the cell cycle of endometrial carcinoma cells. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 283 -320496 cd15374 7tmA_P2Y4 P2Y purinoceptor 4, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y4 belongs to the P2Y receptor family of purinergic G-protein coupled receptors. This family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 285 -320497 cd15375 7tmA_OXGR1 2-oxoglutarate receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. 2-oxoglutarate receptor 1 (OXGR1) is also known as GPR80, GPR99, or P2Y15. OXGR1 functions as a receptor for alpha-ketoglutarate, a citric acid cycle intermediate, and acts exclusively through a G(q)-dependent pathway. OXGR1 belongs to the class A GPCR superfamily and is phylogenetically related to the purinergic P2Y1-like receptor subfamily, whose members are coupled to G(q) protein to activate phospholipase C (PLC). OXGR1 has also been reported as a potential third cysteinyl leukotriene receptor with specificity for leukotriene E4. 280 -320498 cd15376 7tmA_P2Y11 P2Y purinoceptor 11, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y11 belongs to the P2Y receptor family of purinergic G-protein coupled receptors. The activation of P2Y11 is a major pathway of macrophage activation that leads to the release of cytokines. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 284 -341350 cd15377 7tmA_P2Y1 P2Y purinoceptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y1 belongs to the P2Y receptor family of purinergic G-protein coupled receptors. This family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 289 -320500 cd15378 7tmA_SUCNR1_GPR91 succinate receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Succinate receptor (SUCNR1) GPR91 exclusively couples to G(i) protein to inhibit cAMP production and also activates PLC-beta to increase intracellular calcium concentrations in an inositol phosphate dependent mechanism. Succinate, an intermediate molecule of the citric cycle, is shown to cause cardia hypertrophy via GPR91 activation. Furthermore, succinate-induced GPR91 activation is involved in the regulation of renin-angiotensin system and is suggested to play an important role in the development of renovascular hypertension and diabetic nephropathy. SUCNR1 belongs to the class A GPCR superfamily and is phylogenetically related to the purinergic P2Y1-like receptor subfamily, whose members are coupled to G(q) protein to activate phospholipase C (PLC). 283 -320501 cd15379 7tmA_P2Y6 P2Y purinoceptor 6, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes mammalian P2Y6, avian P2Y3, and similar proteins. P2Y3 is the avian homolog of mammalian P2Y6. They belong to the G(i) class of a family of purinergic G-protein coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 288 -320502 cd15380 7tmA_BK-1 bradykinin receptor B1, member of the class A family of seven-transmembrane G protein-coupled receptors. The bradykinin receptor family is a group of the seven transmembrane G-protein coupled receptors, whose endogenous ligand is the pro-inflammatory nonapeptide bradykinin that mediates various vascular and pain responses. Two major bradykinin receptor subtypes, B1 and B2, have been identified based on their pharmacological properties. The B1 receptor is rapidly induced by tissue injury and inflammation, whereas the B2 receptor is ubiquitously expressed on many tissue types. Both receptors contain three consensus sites for N-linked glycosylation in extracellular domains and couple to G(q) protein to activate phospholipase C, leading to phosphoinositide hydrolysis and intracellular calcium mobilization. They can also interact with G(i) protein to inhibit adenylate cyclase and activate the MAPK (mitogen-activated protein kinase) pathways. 286 -320503 cd15381 7tmA_BK-2 bradykinin receptor B2, member of the class A family of seven-transmembrane G protein-coupled receptors. The bradykinin receptor family is a group of the seven transmembrane G-protein coupled receptors, whose endogenous ligand is the pro-inflammatory nonapeptide bradykinin that mediates various vascular and pain responses. Two major bradykinin receptor subtypes, B1 and B2, have been identified based on their pharmacological properties. The B1 receptor is rapidly induced by tissue injury and inflammation, whereas the B2 receptor is ubiquitously expressed on many tissue types. Both receptors contain three consensus sites for N-linked glycosylation in extracellular domains and couple to G(q) protein to activate phospholipase C, leading to phosphoinositide hydrolysis and intracellular calcium mobilization. They can also interact with G(i) protein to inhibit adenylate cyclase and activate the MAPK (mitogen-activated protein kinase) pathways. 284 -320504 cd15382 7tmA_AKHR adipokinetic hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Adipokinetic hormone (AKH) is a lipid-mobilizing hormone that is involved in control of insect metabolism. Generally, AKH behaves as a typical stress hormone by mobilizing lipids, carbohydrates and/or certain amino acids such as proline. Thus, it utilizes the body's energy reserves to fight the immediate stress problems and subdue processes that are less important. Although AKH is known to responsible for regulating the energy metabolism during insect flight, it is also found in insects that have lost its functional wings and predominantly walk for their locomotion. AKH is structurally related to the mammalian gonadotropin-releasing hormone (GnRH) and they share a common ancestor. Both GnRH and AKH receptors are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily. 298 -320505 cd15383 7tmA_GnRHR_vertebrate vertebrate gonadotropin-releasing hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. GnRHR is expressed predominantly in the gonadotrope membrane of the anterior pituitary as well as found in nuemerous extrapituitary tissues including lymphocytes, breast, ovary, prostate, and cancer cell lines. There are at least two types of GnRH receptors, GnRHR1 and GnRHR2, which couple primarily to G proteins of the Gq/11 family. GnRHR is closely related to the adipokinetic hormone receptor (AKH), which binds to a lipid-mobilizing hormone that is involved in control of insect metabolism. They share a common ancestor and are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily. 295 -320506 cd15384 7tmA_GnRHR_invertebrate invertebrate gonadotropin-releasing hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. GnRHR is expressed predominantly in the gonadotrope membrane of the anterior pituitary as well as found in nuemerous extrapituitary tissues including lymphocytes, breast, ovary, prostate, and cancer cell lines. There are at least two types of GnRH receptors, GnRHR1 and GnRHR2, which couple primarily to G proteins of the Gq/11 family. GnRHR is closely related to the adipokinetic hormone receptor (AKH), which binds to a lipid-mobilizing hormone that is involved in control of insect metabolism. They share a common ancestor and are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily. 293 -320507 cd15385 7tmA_V1aR vasopressin receptor subtype 1A, member of the class A family of seven-transmembrane G protein-coupled receptors. V1a-type receptor is a G(q/11)-coupled receptor that mediates blood vessel constriction. Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) is synthesized in the hypothalamus and is released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. 301 -320508 cd15386 7tmA_V1bR vasopressin receptor subtype 1B, member of the class A family of seven-transmembrane G protein-coupled receptors. The V1b receptor is specifically expressed in corticotropes of the anterior pituitary and plays a critical role in regulating the activity of hypothalamic-pituitary-adrenal axis, a key part of the neuroendocrine system that controls reactions to stress, by maintaining adrenocorticotropic hormone (ACTH) and corticosterone levels. Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) is synthesized in the hypothalamus and is released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. 302 -320509 cd15387 7tmA_OT_R oxytocin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Oxytocin is a peptide of nine amino acids synthesized in the hypothalamus and is released from the posterior pituitary gland. Oxytocin plays an important role in sexual reproduction of both sexes and is structurally very similar to vasopressin. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. 297 -320510 cd15388 7tmA_V2R vasopressin receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. The vasopressin type 2 receptor (V2R) is a G(s)-coupled receptor that controls balance of water and sodium ion by regulating their reabsorption in the renal collecting duct. Mutations of V2R is responsible for nephrogenic diabetes insipidus. Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) is synthesized in the hypothalamus and is released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. 295 -320511 cd15389 7tmA_GPR83 G protein-coupled receptor 83, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR83, also known as GPR72, is widely expressed in the brain, including hypothalamic nuclei which is involved in regulating energy balance and food intake. The hypothalamic expression of GPR83 is tightly regulated in response to nutrient availability and is decreased in obese mice. A recent study suggests that GPR83 has a critical role in the regulation of systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. GPR83 shares a significant amino acid sequence identity with the tachykinin receptors, however its endogenous ligand is unknown. 285 -320512 cd15390 7tmA_TACR neurokinin receptors (or tachykinin receptors), member of the class A family of seven-transmembrane G protein-coupled receptors. This group represents G-protein coupled receptors for a variety of neuropeptides of the tachykinin (TK) family. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty. 289 -320513 cd15391 7tmA_NPR-like_invertebrate invertebrate neuropeptide receptor-like, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes putative neuropeptide receptor found in invertebrates, which is a member of class A of 7-transmembrane G protein-coupled receptors. This orphan receptor shares a significant amino acid sequence identity with the neurokinin 1 receptor (NK1R). The endogenous ligand for NK1R is substance P, an 11-amino acid peptide that functions as a vasodilator and neurotransmitter and is released from the autonomic sensory nerve fibers. 289 -320514 cd15392 7tmA_PR4-like neuropeptide Y receptor-like found in insect and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes a novel G protein-coupled receptor (also known as PR4 receptor) from Drosophila melanogaster, which can be activated by the members of the neuropeptide Y (NPY) family, including NPY, peptide YY (PYY) and pancreatic polypeptide (PP), when expressed in Xenopus oocytes. These homologous peptides of 36-amino acids in length contain a hairpin-like structural motif, which referred to as the pancreatic polypeptide fold, and function as gastrointestinal hormones and neurotransmitters. The PR4 receptor also shares strong sequence homology to the mammalian tachykinin receptors (NK1R, NK2R, and NK3R), whose endogenous ligands are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), respectively. The tachykinins function as excitatory transmitters on neurons and cells in the gastrointestinal tract. 287 -320515 cd15393 7tmA_leucokinin-like leucokinin-like peptide receptor from tick and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes a leucokinin-like peptide receptor from the Southern cattle tick, Boophilus microplus, a pest of cattle world-wide. Leucokinins are invertebrate neuropeptides that exhibit myotropic and diuretic activity. This receptor is the first neuropeptide receptor known from the Acari and the second known in the subfamily of leucokinin-like peptide G-protein-coupled receptors. The other known leucokinin-like peptide receptor is a lymnokinin receptor from the mollusc Lymnaeastagnalis. 288 -320516 cd15394 7tmA_PrRP_R prolactin-releasing peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Prolactin-releasing peptide (PrRP) receptor (previously known as GPR10) is expressed in the central nervous system with the highest levels located in the anterior pituitary and is activated by its endogenous ligand PrRP, a neuropeptide possessing a C-terminal Arg-Phe-amide motif. There are two active isoforms of PrRP in mammals: one consists of 20 amino acids (PrRP-20) and the other consists of 31 amino acids (PrRP-31), where PrRP-20 is a C-terminal fragment of PrRP-31. Binding of PrRP to the receptor coupled to G(i/o) proteins activates the extracellular signal-related kinase (ERK) and it can also couple to G(q) protein leading to an increase in intracellular calcium and activation of c-Jun N-terminal protein kinase (JNK). The PrRP receptor shares significant sequence homology with the neuropeptide Y (NPY) receptor, and micromolar levels of NPY can bind and completely inhibit the PrRP-evoked intracellular calcium response in PrRP receptor-expressing cells, suggesting that the PrRP receptor shares a common ancestor with the NPY receptors. PrRP has been shown to reduce food intake and body weight and modify body temperature when administered in rats. It also has been shown to decrease circulating growth hormone levels by activating somatostatin-secreting neurons in the hypothalamic periventricular nucleus. 286 -320517 cd15395 7tmA_NPY1R neuropeptide Y receptor type 1, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. When NPY signals through NPY2R in concert with NPY5R, it induces angiogenesis and consequently plays an important role in revascularization and wound healing. On the other hand, when NPY acts through NPY1R and NPYR5, it acts as a vascular mitogen, leading to restenosis and atherosclerosis. 293 -320518 cd15396 7tmA_NPY6R neuropeptide Y receptor type 6, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. 293 -320519 cd15397 7tmA_NPY4R neuropeptide Y receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. 293 -320520 cd15398 7tmA_NPY5R neuropeptide Y receptor type 5, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. When NPY signals through NPY2R in concert with NPY5R, it induces angiogenesis and consequently plays an important role in revascularization and wound healing. On the other hand, when NPY acts through NPY1R and NPYR5, it acts as a vascular mitogen, leading to restenosis and atherosclerosis. 273 -320521 cd15399 7tmA_NPY2R neuropeptide Y receptor type 2, member of the class A family of seven-transmembrane G protein-coupled receptors. NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. When NPY signals through NPY2R in concert with NPY5R, it induces angiogenesis and consequently plays an important role in revascularization and wound healing. On the other hand, when NPY acts through NPY1R and NPYR5, it acts as a vascular mitogen, leading to restenosis and atherosclerosis. 285 -320522 cd15400 7tmA_Mel1B melatonin receptor subtype 1B, member of the class A family of seven-transmembrane G protein-coupled receptors. Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase. 279 -320523 cd15401 7tmA_Mel1C melatonin receptor subtype 1C, member of the class A family of seven-transmembrane G protein-coupled receptors. Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase. 279 -320524 cd15402 7tmA_Mel1A melatonin receptor subtype 1A, member of the class A family of seven-transmembrane G protein-coupled receptors. Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase. 279 -320525 cd15403 7tmA_GPR45 G protein-coupled receptor 45, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes the human orphan receptor GPR45 and closely related proteins found in vertebrates. GPR45 is also called PSP24 in Xenopus and PSP24-alpha (or PSP24-1) in mammals. GPR45 shows the highest sequence homology with GPR63 (PSP24-beta, or PSP24-2). PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Mammalian PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 301 -320526 cd15404 7tmA_GPR63 G protein-coupled receptor 63, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup includes the human orphan receptor GPR63, which is also called PSP24-beta or PSP24-2, and its closely related proteins found in vertebrates. GPR63 shares the highest sequence homology with GPR45 (Xenopus PSP24, mammalian PSP24-alpha or PSP24-1). PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Mammalian PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 265 -320527 cd15405 7tmA_OR8B-like olfactory receptor subfamily 8B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 8B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320528 cd15406 7tmA_OR8D-like olfactory receptor subfamily 8D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 8D and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 290 -320529 cd15407 7tmA_OR5B-like olfactory receptor subfamily 5B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320530 cd15408 7tmA_OR5AK3-like olfactory receptor subfamily 5AK3, 5AU1, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5AK3, 5AU1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 287 -320531 cd15409 7tmA_OR5H-like olfactory receptor subfamily 5H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5H, 5K, 5AC, 5T and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320532 cd15410 7tmA_OR5D-like olfactory receptor subfamily 5D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5D, 5L, 5W, and related proteins in otehr mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 294 -320533 cd15411 7tmA_OR8H-like olfactory receptor subfamily 8H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 8H, 8I, 5F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320534 cd15412 7tmA_OR5M-like olfactory receptor subfamily 5M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5M and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320535 cd15413 7tmA_OR8K-like olfactory receptor subfamily 8K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 8K, 8U, 8J, 5R, 5AL and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320536 cd15414 7tmA_OR5G-like olfactory receptor subfamily 5G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 285 -320537 cd15415 7tmA_OR5J-like olfactory receptor subfamily 5J and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5J and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320538 cd15416 7tmA_OR5P-like olfactory receptor subfamily 5P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5P and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320539 cd15417 7tmA_OR5A1-like olfactory receptor subfamily 5A1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5A1, 5A2, 5AN1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320540 cd15418 7tmA_OR9G-like olfactory receptor subfamily 9G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 9G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 281 -320541 cd15419 7tmA_OR9K2-like olfactory receptor subfamily 9K2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes transmembrane olfactory receptor subfamily 9K2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 279 -320542 cd15420 7tmA_OR2A-like olfactory receptor subfamily 2A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 2A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320543 cd15421 7tmA_OR2T-like olfactory receptor subfamily 2T and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamilies 2T, 2M, 2L, 2V, 2Z, 2AE, 2AG, 2AK, 2AJ, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320544 cd15424 7tmA_OR2_unk olfactory receptor family 2, unknown subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors. This group represents an unknown subfamily, conserved in some mammalia and sauropsids, in family 2 of olfactory receptors. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320545 cd15428 7tmA_OR2D-like olfactory receptor subfamily 2D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 2D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320546 cd15429 7tmA_OR2F-like olfactory receptor subfamily 2F and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 2F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320547 cd15430 7tmA_OR13-like olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 13 (subfamilies 13C, 13D, 13F, and 13J), some subfamilies from OR family 2 (2K and 2S), and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320548 cd15431 7tmA_OR13H-like olfactory receptor subfamily 13H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 13H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 269 -320549 cd15432 7tmA_OR2B2-like olfactory receptor subfamily 2B2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes transmembrane olfactory receptor subfamily 2B2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320550 cd15433 7tmA_OR2Y-like olfactory receptor subfamily 2Y and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 2Y, 2I, and related protein in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320551 cd15434 7tmA_OR2W-like olfactory receptor subfamily 2W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 2W and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320552 cd15436 7tmB2_Latrophilin Latrophilins, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 258 -320553 cd15437 7tmB2_ETL Epidermal Growth Factor, latrophilin and seven transmembrane domain-containing protein 1; member of the class B2 family of seven-transmembrane G protein-coupled receptors. ETL (EGF-TM7-latrophilin-related protein) belongs to Group I adhesion GPCRs, which also include latrophilins (also called lectomedins or latrotoxin receptors). All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. ETL, for instance, contains EGF-like repeats, which also present in other EGF-TM7 adhesion GPCRs, such as Cadherin EGF LAG seven-pass G-type receptors (CELSR1-3), EGF-like module receptors (EMR1-3), CD97, and Flamingo. ETL is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 258 -320554 cd15438 7tmB2_CD97 CD97 antigen, member of the class B2 family of seven-transmembrane G protein-coupled receptors. group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. 261 -320555 cd15439 7tmB2_EMR epidermal growth factor-like module-containing mucin-like hormone receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors. group II adhesion GPCRs, including the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4) and the leukocyte cell-surface antigen CD97, are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying number of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of EMR2, alternative splicing results in four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. 263 -320556 cd15440 7tmB2_latrophilin-like_invertebrate invertebrate latrophilin-like receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors. This subgroup includes latrophilim-like proteins that are found in inveterbrates such as insects and worms. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of vertebrate latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 259 -320557 cd15441 7tmB2_CELSR_Adhesion_IV cadherin EGF LAG seven-pass G-type receptors, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors. The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuron migration and axon guidance in the CNS. 254 -320558 cd15442 7tmB2_GPR97 orphan adhesion receptor GPR97, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR97 is an orphan receptor that has been classified into the group VIII of adhesion GPCRs. Other members of the Group VII include GPR56, GPR64, GPR112, GPR114, and GPR126. GPR97 is identified as a lymphatic adhesion receptor that is specifically expressed in lymphatic endothelium, but not in blood vascular endothelium, and is shown to regulate migration of lymphatic endothelial cells via the small GTPases RhoA and cdc42. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 277 -320559 cd15443 7tmB2_GPR114 orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR114 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include GPR56, GPR64, GPR97, GPR112, and GPR126. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 268 -320560 cd15444 7tmB2_GPR64 orphan adhesion receptor GPR64 and related proteins, member of subfamily B2 of the class B secretin-like receptors of seven-transmembrane G protein-coupled receptors. GPR64 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR97, GPR112, GPR114, and GPR126. GPR64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also overexpressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 271 -320561 cd15445 7tmB1_CRF-R1 corticotropin-releasing factor receptor 1, member of the class B family of seven-transmembrane G protein-coupled receptors. The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 265 -320562 cd15446 7tmB1_CRF-R2 corticotropin-releasing factor receptor 2, member of the class B family of seven-transmembrane G protein-coupled receptors. The vertebrate corticotropin-releasing factor (CRF) receptors are predominantly expressed in central nervous system with high levels in cortex tissue, brain stem, and pituitary. They have two isoforms as a result of alternative splicing of the same receptor gene: CRF-R1 and CRF-R2, which differ in tissue distribution and ligand binding affinities. Recently, a third CRF receptor (CRF-R3) has been identified in catfish pituitary. The catfish CRF-R1 is highly homologous to CRF-R3. CRF is a 41-amino acid neuropeptide that plays a central role in coordinating neuroendocrine, behavioral, and autonomic responses to stress by acting as the primary neuroregulator of the hypothalamic-pituitary-adrenal axis, which controls the levels of cortisol and other stress related hormones. In addition, the CRF family of neuropeptides also includes structurally related peptides such as mammalian urocortin, fish urotensin I, and frog sauvagine. The actions of CRF and CRF-related peptides are mediated through specific binding to CRF-R1 and CRF-R2. CRF and urocortin 1 bind and activate mammalian CRF-R1 with similar high affinities. By contrast, urocortin 2 and urocortin 3 do not bind to CRF-R1 or stimulate CRF-R1-mediated cAMP formation. Urocortin 1 also shows high affinity for mammalian CRF-R2, whereas CRF has significantly lower affinity for this receptor. These evidence suggest that urocortin 1 is an endogenous ligand for CRF-R1 and CRF-R2. The CRF receptors are members of the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, and parathyroid hormone (PTH). These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on its cellular location and function, CRF receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 264 -320563 cd15447 7tmC_mGluR2 metabotropic glutamate receptor 2 in group 2, member of the class C family oof seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) in group 2 include mGluR 2 and 3. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 254 -320564 cd15448 7tmC_mGluR3 metabotropic glutamate receptor 3 in group 2, member of the class C family of seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) in group 2 include mGluR 2 and 3. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 254 -320565 cd15449 7tmC_mGluR1 metabotropic glutamate receptor 1 in group 1, member of the class C family of seven-transmembrane G protein-coupled receptors. Group 1 mGluRs includes mGluR1 and mGluR5, as well as their closely related invertebrate receptors. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 250 -320566 cd15450 7tmC_mGluR5 metabotropic glutamate receptor 5 in group 1, member of the class C family of seven-transmembrane G protein-coupled receptors. Group 1 mGluRs includes mGluR1 and mGluR5, as well as their closely related invertebrate receptors. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 250 -320567 cd15451 7tmC_mGluR7 metabotropic glutamate receptor 7 in group 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The receptors in group 3 include mGluRs 4, 6, 7, and 8. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 307 -320568 cd15452 7tmC_mGluR4 metabotropic glutamate receptor 4 in group 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The receptors in group 3 include mGluRs 4, 6, 7, and 8. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 327 -320569 cd15453 7tmC_mGluR6 metabotropic glutamate receptor 6 in group 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The receptors in group 3 include mGluRs 4, 6, 7, and 8. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 273 -320570 cd15454 7tmC_mGluR8 metabotropic glutamate receptor 8 in group 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The receptors in group 3 include mGluRs 4, 6, 7, and 8. They are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group 1 mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to G(i/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 311 -271319 cd15457 NADAR Escherichia coli swarming motility protein YbiA and related proteins. This family of uncharacterized domains was initially classified as Domain of Unknown Function (DUF1768). It contains members such as the E. coli swarming motility protein YbiA. Mutations in YbiA cause defects in Escherichia coli swarming, but not necessarily in motility. More recently, this family has been predicted to be involved in NAD-utilizing pathways, likely to act on ADP-ribose derivatives, and has been named the NADAR (NAD and ADP-ribose) superfamily. 148 -271230 cd15464 HN_like Haemagglutinin-neuraminidase (HN) of paramyxoviridae and similar proteins. Most paramyxoviridae have two membrane-anchored glycoproteins that mediate entry of the virus into the host cell. The protein characterized by this model is called hemagglutinin-neuraminidase (HN), hemagglutinin glycoprotein (H), or glycoprotein (G). Typically it has a variety of functions during viral infection; it participates in virus attachment to host cells, may cleave sialic acid off host oligosaccharides, and has a stimulating effect on membrane fusion during the entry of the virus into the host cell. 391 -275386 cd15465 bS6_mito Mitochondrial Ribosomal Protein (MRP) S6. bS6_MRPS6 is one of the proteins of the small subunit of the mitochondrial ribosome. Mitochondrial and chloroplastic ribosomes are similar to bacterial ribosomes. The ribosome is a ribonucleoprotein organelle that decodes the genetic information in messenger RNA and forms peptide bonds to synthesize the corresponding polypeptide. Ribosomes consist of a large and a small subunit, which assemble during the initiation stage of protein synthesis. Prokaryotic ribosomes consist of three molecules of RNA and more than 50 proteins. The small subunits of bacterial and eukaryotic ribosomes have the same overall shapes (with structural elements described as head, body, platform, beak and shoulder). Mitochondrial and chloroplastic ribosomes synthesize proteins that are involved in oxidative phosphorylation (ATP generation) and photosynthesis. bS6_MRPS6 is one of the fourteen mitochondrial ribosomal proteins that is known to have significant sequence homology with their bacterial counterpart. 95 -271318 cd15466 CLU-central An uncharacterized central domain of CLU mitochondrial proteins. Mutations in the mitochondrial CLU proteins have been shown to result in clustered mitochondria. CLU proteins include Saccharomyces cerevisiae clustered mitochondria protein (Clu1p, alias translation initiation factor 31/TIF31p), Dictyostelium discoideum clustered mitochondria protein homolog (CluA), Caenorhabditis elegans clustered mitochondria protein homolog (CLUH/ Protein KIAA0664), Drosophila clueless (alias clustered mitochondria protein homolog), Arabidopsis clustered mitochondria protein (CLU, alias friendly mitochondria protein/FMT), and human clustered mitochondria protein homolog (CLUH). Dictyostelium CluA is involved in mitochondrial dynamics and is necessary for both, mitochondrial fission and fusion. Drosophila clueless is essential for cytoplasmic localization and function of cellular mitochondria. The Drosophila clu gene interacts genetically with parkin (park, the Drosophila ortholog of a human gene responsible for many familial cases of Parkinson's disease). Arabidopsis CLU/FMT is required for correct mitochondrial distribution and morphology. The specific role CLU proteins play in mitochondrial processes in not yet known. In an early study, S. cerevisiae Clu1/TIF31p was reported as sometimes being associated with the elF3 translation initiation factor. The authors noted, however, that its tentative assignment as a subunit of elf3 was uncertain, and to date there has been no direct evidence for a role of this protein in translation. 159 -271231 cd15467 MV-h Measles virus hemagglutinin. The hemagglutinin (H) of measles virus plays several roles during viral infection; it participates in virus attachment to host cells via binding to a proteinaceous receptor and it has a stimulating effect on membrane fusion during the entry of the virus into the host cell by interacting with the fusion protein F. This model characterizes the globular ectodomain of measles hemagglutinin, minus the stalk region. Receptors for measles virus have been identified as the signaling lymphocyte activation molecule (SLAM, in particular its distal ectodomain), CD46, and nectin-4 in epithelial cells. 415 -271232 cd15468 HeV-G Glycoprotein G, or hemagglutinin-neuraminidase of Hendravirus and Nipah virus. The glycoprotein (G) of Nendravirus and Nipah virus has a variety of functions during viral infection; it participates in virus attachment to host cells and has a stimulating effect on membrane fusion during the entry of the virus into the host cell. This models characterizes the globular ectodomain of glycoprotein G. The receptors for Hendravirus and Nipah virus have been identified as ephrin B2 (EFNB2) and ephrin B3 (EFNB3). 413 -271233 cd15469 HN Hemagglutinin-neuraminidase (HN) of parainfluenza virus 5, Newcastle disease virus, and related paramyxoviridiae. The hemagglutinin-neuraminidase (HN) found in this family of viruses has a variety of functions during viral infection; it participates in virus attachment to host cells, cleaves sialic acid off host oligosaccharides, and has a stimulating effect on membrane fusion during the entry of the virus into the host cell. This model characterizes the global ectodomain of HN. Hemagglutinin-neuraminidase ectodomains of these viruses attaches the virion to sialic acid receptors on host cells; the neuraminidase cleaves sialic acid moieties from host cell molecules as well as virus particles, this removal may happen in the trans Golgi network. 408 -271254 cd15470 Myo5_CBD Cargo binding domain of myosin 5. Class V myosins are well studied unconventional myosins, represented by three paralogs (Myo5a,b,c) in vertebrates. Their C-terminal cargo binding domains (CBDs) are important for the binding of a diverse set of cargos, including membrane vesicles, organelles, proteins and mRNA. The MyoV-CBDs directly interact with several adaptor proteins, in case of Myo5a, melanophilin (MLPH), Rab interacting lysosomal protein-like 2 (RILPL2), and granuphilin, and in case of Myo5b, Rab11-family interacting protein 2. 332 -271255 cd15471 Myo5p-like_CBD_afadin cargo binding domain of myosin 5-like of afadin. Afadin is an actin filament (F-actin) and Rap1 small G protein-binding protein, found in cadherin-based adherens junctions in epithelial cells, endothelial cells, and fibroblasts. It interacts with cell adhesion molecules and signaling molecules and plays a role in the formation of cell junctions, cell polarization, migration, survival, proliferation, and differentiation. Afadin is a multi domain protein, that contains beside a myosin5-like CBD, two Ras-associated domains, a forkhead-associated domain, a PDZ domain, three proline-rich domains, and an F-actin-binding domain. 322 -271256 cd15472 Myo5p-like_CBD_Rasip1 cargo binding domain of myosin 5-like of Ras-interacting protein 1. Ras-interacting protein 1 (Rasip1 or RAIN) is an effector of the small G protein Rap1 and plays an important role in endothelial junction stabilization. Rasip1, like afadin, is a multi domain protein, that contains beside a myosin5-like CBD, a Ras-associated domain and a PDZ domain. 366 -271257 cd15473 Myo5p-like_CBD_DIL_ANK cargo binding domain of myosin 5-like of dil and ankyrin domain containing protein. DIL and ankyrin domain-containing protein are a group of fungal proteins that contain a domain homologous to the cargo binding domain of class V myosins and ankyrin repeats. Their function is unknown. 316 -271258 cd15474 Myo5p-like_CBD_fungal cargo binding domain of fungal myosin V -like proteins. Yeast myosin V travels along actin cables, actin filaments that are bundled by fimbrin, in the presence of tropomyosin. This is in contrast to the other vertebrate class V myosins. Like other class V myosins, fungal myosin 2 and 4 contain a C-terminal cargo binding domain. In case of Myo4 it has been shown to bind to the adapter protein She3p (Swi5p-dependent HO expression 3), which in turn anchors myosin 4 to its cargos, zip-coded mRNP (messenger ribonucleoprotein particles) and tER (tubular endoplasmic reticulum). Myo 2 binds to Vac17, vacuole-specific cargo adaptor, and Mmr1, mitochondria-specific cargo adaptor. Both adaptors bind competitivly at the same site. 352 -271259 cd15475 MyosinXI_CBD cargo binding domain of myosin XI. Class XI myosins are a plant specific group, homologous to class V myosins. C-terminal domain of Arabidopsis myosin XI has been shown to be homologous to the cargo-binding domain of yeast myosin V myo2p, which targets myosin to vacuole- and mitochondria, as well as secretory vesicle. 326 -271260 cd15476 Myo5c_CBD Cargo binding domain of myosin 5C. Class V myosins are well studied unconventional myosins, represented by three paralogs (Myo5a,b,c) in vertebrates. Their C-terminal cargo binding domains (CBDs) are important for the binding of a diverse set of cargos, including membrane vesicles, organelles, proteins and mRNA. The MyoV-CBDs directly interact with several adaptor proteins.MyoVb and myoVc areprimarily expressed in epithelial cells, and have been implicated as motors involved in recycling endosomes. 332 -271261 cd15477 Myo5b_CBD Cargo binding domain of myosin 5b. Class V myosins are well studied unconventional myosins, represented by three paralogs (Myo5a,b,c) in vertebrates. Their C-terminal cargo binding domains (CBDs) are important for the binding of a diverse set of cargos, including membrane vesicles, organelles, proteins and mRNA. They interact with several adaptor proteins, in case of Myo5b-CBD, Rab11-family interacting protein 2. 372 -271262 cd15478 Myo5a_CBD Cargo binding domain of myosin 5a. Class V myosins are well studied unconventional myosins, represented by three paralogs (Myo5a,b,c) in vertebrates. Their C-terminal cargo binding domains (CBDs) are important for the binding of a diverse set of cargos, including membrane vesicles, organelles, proteins and mRNA. They interact with several adaptor proteins, in case of Myo5a-CBD, melanophilin (MLPH), Rab interacting lysosomal protein-like 2 (RILPL2), and granuphilin. Mutations in human Myo5a (many of which map to the cargo binding domain) lead to Griscelli syndrome, a severe neurological disease. 375 -271263 cd15479 fMyo4p_CBD cargo binding domain of fungal myosin 4. Yeast myosin V travels along actin cables, actin filaments that are bundled by fimbrin, in the presence of tropomyosin. This is in contrast to the other vertebrate class V myosins. Like other class V myosins, fungal myosin 2 and 4 contain a C-terminal cargo binding domain. In case of Myo4 it has been shown to bind to the adapter protein She3p (Swi5p-dependent HO expression 3), which in turn anchors myosin 4 to its cargos, zip-coded mRNP (messenger ribonucleoprotein particles) and tER (tubular endoplasmic reticulum). 329 -271264 cd15480 fMyo2p_CBD cargo binding domain of fungal myosin 2. Yeast myosin V travels along actin cables, actin filaments that are bundled by fimbrin, in the presence of tropomyosin. This is in contrast to the other vertebrate class V myosins. Like other class V myosins, fungal myosin 2 and 4 contain a C-terminal cargo binding domain. Myo 2 binds to Vac17, vacuole-specific cargo adaptor, and Mmr1, mitochondria-specific cargo adaptor. Both adaptors bind competitivly at the same site. 363 -271252 cd15481 SRP68-RBD RNA-binding domain of signal recognition particle subunit 68. Signal recognition particles (SRPs) are ribonucleoprotein complexes that target particular nascent pre-secretory proteins to the endoplasmic reticulum. SRP68 is one of the two largest proteins found in SRPs (the other being SRP72), and it forms a heterodimer with SRP72. Heterodimer formation is essential for SRP function. This model characterizes the N-terminal RNA-binding domain SRP68-RBD, a tetratricopeptide-like module. Interactions between SRP68-RBD and SRP RNA (7SL RNA) are thought to facilitate a conformation of SRP RNA that is required for interactions with ribosomal RNA. 195 -271234 cd15482 Sialidase_non-viral Non-viral sialidases. Sialidases or neuraminidases function to bind and hydrolyze terminal sialic acid residues from various glycoconjugates, they play vital roles in pathogenesis, bacterial nutrition and cellular interactions. They have a six-bladed, beta-propeller fold with the non-viral sialidases containing 2-5 Asp-box motifs (most commonly Ser/Thr-X-Asp-[X]-Gly-X-Thr- Trp/Phe). This CD includes eubacterial and eukaryotic sialidases. 339 -271235 cd15483 Influenza_NA Sialidase or neuraminidase (EC 3.2.1.18) of Influenza viruses A and B. Sialidases or neuraminidases function to bind and hydrolyze terminal sialic acid residues from various glycoconjugates. Viral neuraminidases, such as this family from Influenza viruses A and B, play a vital role in pathogenesis. Influenza neuraminidase cleaves an alpha-ketosidic linkage between sialic acid and a neighboring sugar residue. During budding of virus particles from the infected cell, the sialidase helps to prevent the newly formed viral particles from aggregating. The viral sialidase cleaves terminal sialic acid from glycan structures on the infected cell surface, promoting virus release and the spread of virus to neighboring cells that are not yet infected. Also, sialidase modifies mucins in the respiratory tract and may improve access of the viral particle to its target cells. Sialidases have a six-bladed beta-propeller fold. 386 -271251 cd15484 uS7_plant plant ribosomal protein S7. uS7, also known as Ribosomal protein (RP)S7, is an important part of the translation process which is universally present in the small subunit of prokaryotic and eukaryotic ribosomes. The ribosome small subunit is one of the two subunits of ribosome organelles that use mRNA as a template for protein synthesis in a process called translation. The small subunits of bacteria and eukaryotes have the same shape of head, body, platform, beak, and shoulder. RPS7 is located at the head of the small subunit. RPS7 is a primary ribosomal RNA (rRNA) binding protein that assists in rRNA folding and the binding of other proteins during small subunit assembly in all species. RPS7 is also involved in the formation of the mRNA exit channel at the interface of the large and small subunits. Some ribosomal proteins have extra ribosomal functions in cell differentiation and apoptosis. 147 -271243 cd15485 ZIP_Cat8 Leucine zipper Dimerization domain of transcription factor Cat8 and similar proteins. Cat8p binds to carbon source-responsive element (CSRE) motifs and activates target genes under conditions of glucose deprivation. It mediates the transcriptional control of at least nine genes (ACS1, FBP1, ICL1, IDP2, JEN1, MLS1, PCK1, SFC1, and SIP4) under non-fermentative growth conditions in yeast. Studies show another 25 genes or open reading frames whose expression at the transition between the fermentative and the oxidative metabolism (diauxic shift) is altered in the absence of Cat8p. This Cat8p-dependent control results in a parallel alteration in mRNA and protein synthesis. The biochemical functions of proteins encoded by Cat8p-dependent genes are essentially related to the first steps of ethanol utilization, the glyoxylate cycle, and gluconeogenesis. Cat8p is a member of the Gal4p family of transcriptional activators which contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 27 -271244 cd15486 ZIP_Sip4 Leucine zipper Dimerization domain transcription factor Sip4p and similar fungal proteins. Sip4p binds to carbon source-responsive element (CSRE) motifs and activates transcription of target genes under conditions of glucose deprivation. Its function is modulated through phosphorylation by SNF1 protein kinase, a protein essential for expression of glucose-repressed genes in response to glucose deprivation. Sip4p is a member of the Gal4p family of transcriptional activators which contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 27 -275387 cd15487 bS6_chloro_cyano 30S ribosomal protein S6 of chloroplasts and cyanobacteria. bS6 is one of the components of the small subunit of the prokaryotic ribosome, a ribonucleoprotein organelle that decodes the genetic information in messenger RNA and forms peptide bonds to synthesize the corresponding polypeptides. Mitochondrial and chloroplastic ribosomes are similar to bacterial ribosomes. Ribosomes consist of a large and a small subunit, which assemble during the initiation stage of protein synthesis. Prokaryotic ribosomes consist of three molecules of RNA and more than 50 proteins. The small subunits of bacterial and eukaryotic ribosomes have the same overall shapes (with structural elements described as head, body, platform, beak and shoulder). The bacterial ribosomal protein S6 is important for the assembly of the central domain of the small subunit via heterodimerization with ribosomal protein S18. 94 -350626 cd15488 Tm-1-like ATP-binding domain found in plant Tm-1-like (Tm-1L) and similar proteins. Members of this family have been annotated as UPF0261-domain containing proteins. They are found in plants, fungi, bacteria, and archaea. A three-dimensional structure of a complex between the tomato resistance gene product Tm-1 and tomato mosaic virus helicase reveals an organization encompassing two distinct structurally similar domains and an ATP-binding site present in the N-terminal subdomain. The Tm-1-like domain is found co-occurring with a C-terminal TIM-barrel signal transduction (TBST) domain in some plant proteins like Tm-1, and with an N-terminal ABC-transporter ATP-binding domain in a few bacterial proteins. 399 -276966 cd15489 PHD_SF PHD finger superfamily. The PHD finger superfamily includes a canonical plant homeodomain (PHD) finger typically characterized as Cys4HisCys3, and a non-canonical extended PHD finger, characterized as Cys2HisCys5HisCys2His. Variations include the RAG2 PHD finger characterized by Cys3His2Cys2His and the PHD finger 5 found in nuclear receptor-binding SET domain-containing proteins characterized by Cys4HisCys2His. The PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. Single or multiple copies of PHD fingers have been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. The PHD finger domain SF is structurally similar to the RING and FYVE_like superfamilies. 48 -294011 cd15490 eIF2_gamma_III Domain III of eukaryotic initiation factor eIF2 gamma. This family represents the C-terminal domain of the gamma subunit of eukaryotic translation initiation factor 2 (eIF2-gamma) found in eukaryotes and archaea. eIF2 is a G protein that delivers the methionyl initiator tRNA to the small ribosomal subunit and releases it upon GTP hydrolysis after the recognition of the initiation codon. eIF2 is composed three subunits, alpha, beta and gamma. Subunit gamma shows strongest conservation, and it confers both tRNA binding and GTP/GDP binding. 90 -294012 cd15491 selB_III Domain III of selenocysteine-specific translation elongation factor. This family represents domain III of bacterial selenocysteine (Sec)-specific elongation factor (EFSec), homologous to domain III of EF-Tu. SelB is a specialized translation elongation factor responsible for the co-translational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop, called Sec insertion sequence (SECIS) element. 87 -276967 cd15492 PHD_BRPF_JADE_like PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins. The family includes BRPF proteins, Jade proteins, protein AF-10 and AF-17. BRPF proteins are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. Jade proteins are required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6, to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. AF-10, also termed ALL1 (acute lymphoblastic leukemia)-fused gene from chromosome 10 protein, is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is a putative transcription factor that may play a role in multiple signaling pathways. All Jade proteins, AF-10, and AF-17 contain a canonical PHD finger followed by a non-canonical ePHD finger. This model corresponds to the canonical PHD finger. 46 -276968 cd15493 PHD_JMJD2 PHD finger found in Jumonji domain-containing protein 2 (JMJD2) family of histone demethylases. JMJD2 proteins, also termed lysine-specific demethylase 4 histone demethylases (KDM4), have been implicated in various cellular processes including DNA damage response, transcription, cell cycle regulation, cellular differentiation, senescence, and carcinogenesis. They selectively catalyze the demethylation of di- and trimethylated H3K9 and H3K36. This model contains only three JMJD2 proteins, JMJD2A-C, which all contain jmjN and jmjC domains in the N-terminal region, followed by a Cys4HisCys3 canonical PHD finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a Tudor domain. JMJD2D is not included in this family, since it lacks both PHD and Tudor domains and has a different substrate specificity. JMJD2A-C are required for efficient cancer cell growth. This model corresponds to the Cys4HisCys3 canonical PHD finger. 42 -276969 cd15494 PHD_ATX1_2_like PHD finger found in Arabidopsis thaliana histone-lysine N-methyltransferase arabidopsis trithorax-like protein ATX1, ATX2, and similar proteins. The family includes A. thaliana ATX1 and ATX2, both of which are sister paralogs originating from a segmental chromosomal duplication. They are plant counterparts of the Drosophila melanogaster trithorax (TRX) and mammalian mixed-lineage leukemia (MLL1) proteins. ATX1, also termed protein SET domain group 27, or trithorax-homolog protein 1 (TRX-homolog protein 1), is a methyltransferase that trimethylates histone H3 at lysine 4 (H3K4me3). It also acts as a histone modifier and as a positive effector of gene expression. ATX1regulates transcription from diverse classes of genes implicated in biotic and abiotic stress responses. It is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. ATX2, also termed protein SET domain group 30, or trithorax-homolog protein 2 (TRX-homolog protein 2), is involved in dimethylating histone H3 at lysine 4 (H3K4me2). Both ATX1 and ATX2 are multi-domain containing proteins that consist of an N-terminal PWWP domain, FYRN- and FYRC (DAST, domain associated with SET in trithorax) domains, a canonical Cys4HisCys3 plant homeodomain (PHD) finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a C-terminal SET domain; this model corresponds to the Cys4HisCys3 canonical PHD finger. 47 -276970 cd15495 PHD_ATX3_4_5_like PHD finger found in Arabidopsis thaliana histone-lysine N-methyltransferase arabidopsis trithorax-like protein ATX3, ATX4, ATX5, and similar proteins. The family includes A. thaliana ATX3 (also termed protein SET domain group 14, or trithorax-homolog protein 3), ATX4 (also termed protein SET domain group 16, or trithorax-homolog protein 4) and ATX5 (also termed protein SET domain group 29, or trithorax-homolog protein 5), which belong to the histone-lysine methyltransferase family. They show distinct phylogenetic origins from the ATX1 and ATX2 family. They are multi-domain containing proteins that consist of an N-terminal PWWP domain, a canonical Cys4HisCys3 plant homeodomain (PHD) finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a C-terminal SET domain; this model corresponds to the Cys4HisCys3 canonical PHD finger. 47 -276971 cd15496 PHD_PHF7_G2E3_like PHD finger found in PHD finger protein 7 (PHF7) and G2/M phase-specific E3 ubiquitin-protein ligase (G2E3). PHF7, also termed testis development protein NYD-SP6, is a testis-specific plant homeodomain (PHD) finger-containing protein that associates with chromatin and binds histone H3 N-terminal tails with a preference for dimethyl lysine 4 (H3K4me2). It may play an important role in stimulating transcription involved in testicular development and/or spermatogenesis. PHF7 contains a canonical Cys4HisCys3 PHD finger and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which may be involved in activating transcriptional regulation. G2E3 is a dual function ubiquitin ligase (E3) that may play a possible role in cell cycle regulation and the cellular response to DNA damage. It is essential for prevention of apoptosis in early embryogenesis. It is also a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. G2E3 contains two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination, and a C-terminal catalytic HECT domain that plays an important role in ubiquitin ligase activity and in the dynamic subcellular localization of the protein. The RING-like ubiquitin ligase domains consist of a PHD finger and an ePHD finger. This model corresponds to the Cys4HisCys3 canonical PHD finger. 54 -276972 cd15497 PHD1_Snt2p_like PHD finger 1 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and similar proteins. Snt2p is a yeast protein that may function in multiple stress pathways. It coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress through interaction with Ecm5 and the Rpd3 deacetylase. Snt2p contains a bromo adjacent homology (BAH) domain, two canonical Cys4HisCys3 plant homeodomain (PHD) fingers, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain; this model corresponds to the first canonical Cys4HisCys3 PHD finger. 48 -276973 cd15498 PHD2_Snt2p_like PHD finger 2 found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and similar proteins. This group corresponds to Snt2p and similar proteins. Snt2p is a yeast protein that may function in multiple stress pathways. It coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress through interaction with Ecm5 and the Rpd3 deacetylase. Snt2p contains a bromo adjacent homology (BAH) domain, two canonical Cys4HisCys3 plant homeodomain (PHD) fingers, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain; this model corresponds to the second canonical Cys4HisCys3 PHD finger. 55 -276974 cd15499 PHD1_MTF2_PHF19_like PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins. The family includes two PCL family proteins, metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are homologs of PHD finger protein1 (PHF1). PCL family proteins are accessory components of the polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. They specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD fingers of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the first PHD finger. 53 -276975 cd15500 PHD1_PHF1 PHD finger 1 found in PHD finger protein1 (PHF1). PHF1, also termed polycomb-like protein 1 (PCL1), together with JARID2 and AEBP2, associates with the polycomb repressive complex 2 (PRC2), which is the major H3K27 methyltransferase that regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. PHF1 is essential in epigenetic regulation and genome maintenance. It acts as a dual reader of Lysine trimethylation at Lysine 36 of Histone H3 and Lysine 27 of Histone variant H3t. PHF1 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. Its Tudor domain selectively binds to histone H3K36me3. Moreover, PHF1 is required for efficient H3K27me3 and Hox gene silencing. It can mediate deposition of the repressive H3K27me3 mark and acts as a cofactor in early DNA-damage response. This model corresponds to the first PHD finger. 51 -276976 cd15501 PHD_Int12 PHD finger found in integrator complex subunit 12 (Int12) and similar proteins. Int12, also termed IntS12, or PHD finger protein 22, is a component of integrator, a multi-protein mediator of small nuclear RNA processing. The integrator complex directly interacts with the C-terminal domain of RNA polymerase II (RNAPII) largest subunit and mediates the 3' end processing of small nuclear RNAs (snRNAs) U1 and U2. Different from other components of integrator, Int12 contains a PHD finger, which is not required for snRNA 3' end cleavage. Instead, Int12 harbors a small microdomain at its N-terminus which is necessary and sufficient for Int12 function; this microdomain facilitates Int12 binding to Int1 and promotes snRNA 3' end formation. 52 -276977 cd15502 PHD_Phf1p_Phf2p_like PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 (Phf1p) and Phf2 (Phf2p). Phf1p and Phf2p are components of the SWM histone demethylase complex that specifically demethylates histone H3 at lysine 9 (H3K9me2), a specific tag for epigenetic transcriptional activation. They function as corepressors and play roles in regulating heterochromatin propagation and euchromatic transcription. Both Phf1p and Phf2p contain a plant homeodomain (PHD) finger. 52 -276978 cd15503 PHD2_MTF2_PHF19_like PHD finger 2 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins. The PCL family includes PHD finger protein1 (PHF1) and its homologs metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are accessory components of the Polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two plant homeodomain (PHD) fingers, and a C-terminal MTF2 domain. PCL proteins specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD finger of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the second PHD finger. 52 -276979 cd15504 PHD_PRHA_like PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and similar proteins. PRHA is a homeodomain protein encoded by a single-copy Arabidopsis thaliana homeobox gene, prha. It shows the capacity to bind to TAATTG core sequence elements but requires additional adjacent bases for high-affinity binding. PRHA contains a plant homeodomain (PHD) finger, a homeodomain, peptide repeats and a putative leucine zipper dimerization domain. 53 -276980 cd15505 PHD_ING PHD finger found in the inhibitor of growth (ING) protein family. The ING family includes a group of tumor suppressors, ING1-5, which act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. 45 -276981 cd15506 PHD1_KMT2A_like PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B). This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. 47 -276982 cd15507 PHD2_KMT2A_like PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B). This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. 50 -276983 cd15508 PHD3_KMT2A_like PHD finger 3 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B). This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the third PHD finger. 57 -276984 cd15509 PHD1_KMT2C_like PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the first PHD finger. 48 -276985 cd15510 PHD2_KMT2C_like PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. 46 -276986 cd15511 PHD3_KMT2C PHD finger 3 found in Histone-lysine N-methyltransferase 2C (KMT2C). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the third PHD finger. 52 -276987 cd15512 PHD4_KMT2C_like PHD finger 4 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD domain 3 found in KMT2D. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, two extended PHD (ePHD) fingers, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fourth PHD finger of KMT2C and the third domain of KMT2D. 49 -276988 cd15513 PHD5_KMT2C_like PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in KMT2D. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fifth PHD finger of KMT2C and the fourth PHD finger of KMT2D. 47 -276989 cd15514 PHD6_KMT2C_like PHD finger 6 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 5 found in KMT2D. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the sixth PHD finger of KMT2C and the fifth PHD finger of KMT2D. 51 -276990 cd15515 PHD1_KDM5A_like PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar proteins. The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog, protein little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me2 and H3K4me3), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. This family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent H3K4me3 demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 46 -276991 cd15516 PHD2_KDM5A_like PHD finger 2 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D, and similar proteins. The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog protein, little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 and H3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. The family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. 53 -276992 cd15517 PHD_TCF19_like PHD finger found in Transcription factor 19 (TCF-19), Lysine-specific demethylase KDM5A and KDM5B, and other similar proteins. TCF-19 was identified as a putative trans-activating factor with expression beginning at the late G1-S boundary in dividing cells. It functions as a novel islet factor necessary for proliferation and survival in the INS-1 beta cell line. It plays an important role in susceptibility to both Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM); it has been suggested that it may positively impact beta cell mass under conditions of beta cell stress and increased insulin demand. KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interaction with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. This family also includes Caenorhabditis elegans Lysine-specific demethylase 7 homolog (ceKDM7A). ceKDM7A (also termed JmjC domain-containing protein 1.2, PHD finger protein 8 homolog, or PHF8 homolog) is a plant homeodomain (PHD)- and JmjC domain-containing protein that functions as a histone demethylase specific for H3K9me2 and H3K27me2. The binding of the PHD finger to H3K4me3 guides H3K9me2- and H3K27me2-specific demethylation by its catalytic JmjC domain in a trans-histone regulation mechanism. In addition, this family includes plant protein OBERON 1 and OBERON 2, Alfin1-like (AL) proteins, histone acetyltransferases (HATs) HAC, and AT-rich interactive domain-containing protein 4 (ARID4). 49 -276993 cd15518 PHD_Ecm5p_Lid2p_like PHD finger found in Saccharomyces cerevisiae extracellular matrix protein 5 (Ecm5p), Schizosaccharomyces pombe Lid2 complex component Lid2p, and similar proteins. The family includes Saccharomyces cerevisiae Ecm5p, Schizosaccharomyces pombe Lid2 complex component Lid2p, and similar proteins. Ecm5p is a JmjC domain-containing protein that directly removes histone lysine methylation via a hydroxylation reaction. It associates with the yeast Snt2p and Rpd3 deacetylase, which may play a role in regulating transcription in response to oxidative stress. Ecm5p promotes oxidative stress tolerance, while Snt2p ultimately decreases tolerance. Ecm5p contains an N-terminal ARID domain, a JmjC domain, and a C-terminal plant homeodomain (PHD) finger. Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model includes the second PHD finger of Lid2p. 45 -276994 cd15519 PHD1_Lid2p_like PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins. Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model corresponds to the first PHD finger. 46 -276995 cd15520 PHD3_Lid2p_like PHD finger 3 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins. Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1, and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. The family corresponds to the third PHD finger. 47 -276996 cd15521 PHD_VIN3_plant PHD finger found in Arabidopsis thaliana protein Vernalization Insensitive 3 (VIN3) and similar proteins. The lineage specific VIN3 family of proteins includes VIN3, VIN3-like1 (VIL1, or Vernalization5 (VRN5)), VIN3-like2 (VIL2, or Vernalization5/VIN3-like protein 1 (VEL1)), VIN3-like3 (VIL3 or Vernalization5/VIN3-like protein 2 (VEL2)), and similar proteins. They contain a plant homeodomain (PHD) finger, and collectively repress different sets of members of the Flowering LOCUS C (FLC) gene family during the course of vernalization. Both VIN3 and VIL1 are required for modifying the histone architecture of the MADS box floral repressor FLC in response to prolonged cold exposure in Arabidopsis. VIN3 is required for both Histone H3 Lys 9 (H3K9) and Histone H3 Lys 27 (H3K27) methylation at FLC chromatin, ultimately leading to its repression. It is regulated by the components of Polycomb Response Complex2 (PRC2), which trimethylates histone H3 Lys 27 (H3K27me3). VIL1 appears to play a prominent role in regulating FLC by vernalization. VIL2 acts together with PRC2 to repress the floral repressor MAF5, an FLC clade member, in a photoperiod-dependent manner to accelerate flowering under non-inductive photoperiods. 64 -276997 cd15522 PHD_TAF3 PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3). TAF3 (also termed 140 kDa TATA box-binding protein-associated factor, TBP-associated factor 3, transcription initiation factor TFIID 140 kDa subunit (TAF140), or TAFII-140, is an integral component of TFIID) is a general initiation factor (GTF) that plays a key role in preinitiation complex (PIC) assembly through core promoter recognition. The interaction of H3K4me3 with TAF3 directs global TFIID recruitment to active genes, which regulates gene-selective functions of p53 in response to genotoxic stress. TAF3 is highly enriched in embryonic stem cells and is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. Moreover, TAF3, along with TRF3, forms a complex that is essential for myogenic differentiation. TAF3 contains a plant homeodomain (PHD) finger. This family also includes Drosophila melanogaster BIP2 (Bric-a-brac interacting protein 2) protein, which functions as an interacting partner of D. melanogaster p53 (Dmp53). 46 -276998 cd15523 PHD_PHF21A PHD finger found in PHD finger protein 21A (PHF21A). PHF21A (also termed BHC80a or BRAF35-HDAC complex protein BHC80) along with HDAC1/2, CtBP1, CoREST, and BRAF35, is associated with LSD1, a lysine (K)-specific histone demethylase. It inhibits LSD1-mediated histone demethylation in vitro. PHF21A is predominantly present in the central nervous system and spermatogenic cells and is one of the six components of BRAF-HDAC complex (BHC) involved in REST-dependent transcriptional repression of neuron-specific genes in non-neuronal cells. It acts as a scaffold protein in BHC in neuronal as well as non-neuronal cells and also plays a role in spermatogenesis. PHF21A contains a C-terminal plant homeodomain (PHD) finger that is responsible for the binding directly to each of five other components of BHC, and of organizing BHC mediating transcriptional repression. 43 -276999 cd15524 PHD_PHF21B PHD finger found in PHD finger protein 21B (PHF21B). PHF21B is a plant homeodomain (PHD) finger-containing protein whose biological function remains unclear. It shows high sequence similarity with PHF21A, which is associated with LSD1, a lysine (K)-specific histone demethylase and inhibits LSD1-mediated histone demethylation in vitro. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. 43 -277000 cd15525 PHD_UHRF1_2 PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and UHRF2. UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. 47 -277001 cd15526 PHD1_MOZ_d4 PHD finger 1 found in monocytic leukemia zinc-finger protein (MOZ), its factor (MORF), and d4 gene family proteins. MOZ is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity and to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF) is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphoma genesis and bone development, and its homologs. This family also includes three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes via changing the condensed/decondensed state of chromatin in nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro specific gene clusters. All family members contain two plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 56 -277002 cd15527 PHD2_KAT6A_6B PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF). MOZ, also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60 protein 3 (MYST-3), or runt-related transcription factor-binding protein 2, or zinc finger protein 220, is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF), also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. In contrast, MORF contains an N-terminal region containing two PHD fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The family corresponds to the first PHD finger. 46 -277003 cd15528 PHD1_PHF10 PHD finger 1 found in PHD finger protein 10 (PHF10) and similar proteins. PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 54 -277004 cd15529 PHD2_PHF10 PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins. PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. 44 -277005 cd15530 PHD2_d4 PHD finger 2 found in d4 gene family proteins. The family includes proteins coded by three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes by changing the condensed/decondensed state of chromatin in the nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro-specific gene clusters. The d4 family proteins show distinct domain organization with domain 2/3 in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc finger in the central part and two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the second PHD finger. 46 -277006 cd15531 PHD1_CHD_II PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins. Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. 43 -277007 cd15532 PHD2_CHD_II PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins. Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. 43 -277008 cd15533 PHD1_PHF12 PHD finger 1 found in PHD finger protein 12 (PHF12). PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant-homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This model corresponds to the first PHD finger. 45 -277009 cd15534 PHD2_PHF12_Rco1 PHD finger 2 found in PHD finger protein 12 (PHF12), yeast Rco1, and similar proteins. PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This subfamily also includes yeast transcriptional regulatory protein Rco1 and similar proteins. Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two PHD fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the second PHD finger. 47 -277010 cd15535 PHD1_Rco1 PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and similar proteins. Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two plant homeodomain (PHD) fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the first PHD finger. 45 -277011 cd15536 PHD_PHRF1 PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1). PHRF1, also termed KIAA1542, or CTD-binding SR-like protein rA9, is a ubiquitin ligase that induces the ubiquitination of TGIF (TG-interacting factor) at lysine 130. It acts as a tumor suppressor that promotes the transforming growth factor (TGF)-beta cytostatic program through selective release of TGIF-driven promyelocytic leukemia protein (PML) inactivation. PHRF1 contains a plant homeodomain (PHD) finger and a RING finger. 46 -277012 cd15537 PHD_BS69 PHD finger found in protein BS69. Protein BS69, also termed zinc finger MYND domain-containing protein 11 (ZMYND11 or ZMY11), is a ubiquitously expressed nuclear protein acting as a transcriptional co-repressor in association with various transcription factors. It was originally identified as an adenovirus 5 E1A-binding protein that inhibits E1A transactivation, as well as c-Myb transcription. It also mediates repression, at least in part, through interaction with the co-repressor N-CoR. Moreover, it interacts with Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1 (TICAM-1, also named TRIF) to facilitate NF-kappaB activation and type I IFN induction. It associates with PIAS1, a SUMO E3 enzyme, and Ubc9, a SUMO E2 enzyme, and plays an inhibitory role in muscle and neuronal differentiation. Moreover, BS69 regulates Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)/C-terminal activation region 2 (CTAR2)-mediated NF-kappaB activation by interfering with the complex formation between TNFR-associated death domain protein (TRADD) and LMP1/CTAR2. It also cooperates with tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) in the regulation of EBV-derived LMP1/CTAR1-induced NF-kappaB activation. Furthermore, BS69 is involved in the p53-p21Cip1-mediated senescence pathway. BS69 contains a plant homeodomain (PHD) finger, a bromodomain, a proline-tryptophan-tryptophan-proline (PWWP) domain, and a Myeloid translocation protein 8, Nervy and DEAF-1 (MYND) domain. 43 -277013 cd15538 PHD_PRKCBP1 PHD finger found in protein kinase C-binding protein 1 (PRKCBP1). PRKCBP1, also termed cutaneous T-cell lymphoma-associated antigen se14-3 (CTCL-associated antigen se14-3), or Rack7, or zinc finger MYND domain-containing protein 8 (ZMYND8), is a novel receptor for activated C-kinase (RACK)-like protein that may play an important role in the activation and regulation of PKC-beta I, and the PKC signaling cascade. It also has been identified as a formin homology-2-domain containing protein 1 (FHOD1)-binding protein that may be involved in FHOD1-regulated actin polymerization and transcription. Moreover, PRKCBP1 may function as a REST co-repressor 2 (RCOR2) interacting factor; the RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. PRKCBP1 contains a plant homeodomain (PHD) finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. 41 -277014 cd15539 PHD1_AIRE PHD finger 1 found in autoimmune regulator (AIRE). AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the first PHD finger that recognizes the unmethylated tail of histone H3 and targets AIRE-dependent genes. 43 -277015 cd15540 PHD2_AIRE PHD finger 2 found in autoimmune regulator (AIRE). AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the second PHD finger that may play a critical role in the activation of gene transcription. 42 -277016 cd15541 PHD_TIF1_like PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar proteins. The TIF1 family of transcriptional cofactors includes TIF1alpha (TRIM24), TIF1beta (TRIM28), TIF1gamma (TRIM33), and TIF1delta (TRIM66), which are characterized by an N-terminal RING-finger B-box coiled-coil (RBCC/TRIM) motif and plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region. TIF1 proteins couple chromatin modifications to transcriptional regulation, signaling, and tumor suppression. They exert a deacetylase-dependent silencing effect when tethered to a promoter region. TIF1alpha, TIF1beta, and TIF1delta can homodimerize and contain a PXVXL motif necessary and sufficient for heterochromatin protein 1(HP1) binding. TIF1alpha and TIF1beta bind nuclear receptors and Kruppel-associated boxes (KRAB) specifically and respectively. In contrast, TIF1delta appears to lack nuclear receptor- and KRAB-binding activity. Moreover, TIF1delta is specifically involved in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. TIF1gamma is structurally closely related to TIF1alpha and TIF1beta, but has very little functional features in common with them. It does not interact with the KRAB silencing domain of KOX1 or the heterochromatinic proteins HP1alpha, beta, and gamma. It cannot bind to nuclear receptors (NRs). This family also includes Sp100/Sp140 family proteins, the nuclear body SP100 and SP140. Sp110 is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. SP140 is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus viral infectivity factor (Vif) protein. Both Sp110 and Sp140 contain a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). 43 -277017 cd15542 PHD_UBR7 PHD finger found in putative E3 ubiquitin-protein ligase UBR7. UBR7, also termed N-recognin-7, is a UBR box-containing protein that belongs to the E3 ubiquitin ligase family that recognizes N-degrons or structurally related molecules for ubiquitin-dependent proteolysis or related processes through the UBR box motif. In addition to the UBR box, UBR7 also harbors a plant homeodomain (PHD) finger. The biochemical properties of UBR7 remain unclear. 54 -277018 cd15543 PHD_RSF1 PHD finger found in Remodeling and spacing factor 1 (Rsf-1). Rsf-1, also termed HBV pX-associated protein 8, or Hepatitis B virus X-associated protein alpha (HBxAPalpha), or p325 subunit of RSF chromatin-remodeling complex, is a novel nuclear protein with histone chaperon function. It is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF), and plays a role in mediating ATPase-dependent chromatin remodeling and conferring tumor aggressiveness in common carcinomas. As an ataxia-telangiectasia mutated (ATM)-dependent chromatin remodeler, Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. It regulates the mitotic spindle checkpoint and chromosome instability through the association with serine/threonine kinase BubR1 (BubR1) and Hepatitis B virus (HBV) X protein (HBx) in the chromatin fraction during mitosis. It also interacts with cyclin E1 and promotes tumor development. Rsf-1 contains a plant homeodomain (PHD) finger. 46 -277019 cd15544 PHD_BAZ1A_like PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B. BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. Both BAZ1A and BAZ1B contain a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. 46 -277020 cd15545 PHD_BAZ2A_like PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B (BAZ2B). BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A. Both BAZ2A and BAZ2B contain a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. BAZ2B also harbors an extra Apolipophorin-III like domain in its N-terminal region. 46 -277021 cd15546 PHD_PHF13_like PHD finger found in PHD finger proteins PHF13 and PHF23. PHF13, also termed survival time-associated PHD finger protein in ovarian cancer 1 (SPOC1), is a novel plant homeodomain (PHD) finger-containing protein that shows strong expression in spermatogonia and ovarian cancer cells, modulates chromatin structure and mitotic chromosome condensation, and is important for proper cell division. It is also required for spermatogonial stem cell differentiation and sustained spermatogenesis. The overexpression of PHF13 associates with unresectable carcinomas and shorter survival in ovarian cancer. PHF23, also termed PHD-containing protein JUNE-1, is a hypothetical protein with a PHD finger. It is encoded by gene PHF23 that acts as a candidate fusion partner for the nucleoporin gene NUP98. The NUP98-PHF23 fusion results from a cryptic translocation t(11;17)(p15;p13) in acute myeloid leukemia (AML). 44 -277022 cd15547 PHD_SHPRH PHD finger found in E3 ubiquitin-protein ligase SHPRH. SHPRH, also termed SNF2, histone-linker, PHD and RING finger domain-containing helicase, belongs to the SWI2/SNF2 family of ATP-dependent chromatin remodeling enzymes, containing the Cys3HisCys4 RING-finger characteristic of E3 ubiquitin ligases. It plays a key role in the error-free branch of DNA damage tolerance. As functional homologs of Saccharomyces cerevisiae Rad5, SHPRH and its closely-related protein, helicase like transcription factor (HLTF), act as ubiquitin ligases that cooperatively mediate Ubc13-Mms2-dependent polyubiquitination of proliferating cell nuclear antigen (PCNA) and maintain genomic stability. SHPRH contains a SNF2 domain, a H1.5 (linker histone H1 and H5) domain, a plant homeodomain (PHD) finger, a Cys3HisCys4 RING-finger, and a C-terminal helicase domain. 47 -277023 cd15548 PHD_ASH1L PHD finger found in histone-lysine N-methyltransferase ASH1L. ASH1L, also termed ASH1-like protein, or absent small and homeotic disks protein 1 homolog, or lysine N-methyltransferase 2H, is a protein belonging to the Trithorax family. It methylates Lys36 of histone H3 independently of transcriptional elongation to promote the establishment of Hox gene expression by counteracting Polycomb silencing. It can suppress interleukin-6 (IL-6), and tumor necrosis factor (TNF) production in Toll-like receptor (TLR)-triggered macrophages, and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. ASH1L contains an associated with SET domain (AWS), a SET domain, a post-SET domain, a bromodomain, a bromo-adjacent homology domain (BAH), and a plant homeodomain (PHD) finger. 43 -277024 cd15549 PHD_PHF20_like PHD finger found in PHD finger protein 20 (PHF20) and PHD finger protein 20-like protein 1 (P20L1). PHF20, also termed Glioma-expressed antigen 2, or hepatocellular carcinoma-associated antigen 58, or novel zinc finger protein, or transcription factor TZP (referring to Tudor and zinc finger domain containing protein), is a regulator of NF-kappaB activation by disrupting recruitment of PP2A to p65. It also functions as a transcription factor that binds Akt and plays a role in Akt cell survival/growth signaling. Moreover, it transcriptionally regulates p53. The phosphorylation of PHF20 on Ser291 mediated by protein kinase B (PKB) is essential in tumorigenesis via the regulation of p53 mediated signaling. P20L1 is an active malignant brain tumor (MBT) domain-containing protein that binds to monomethylated lysine 142 on DNA (Cytosine-5) Methyltransferase 1 (DNMT1) (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. Its MBT domain reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 proteasomal degradation. Both PHF20 and PHF20L1 contain an N-terminal MBT domain, two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. 45 -277025 cd15550 PHD_MLL5 PHD finger found in mixed lineage leukemia 5 (MLL5). MLL5 is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. It contains a single plant homeodomain (PHD) finger followed by a catalytic SET domain. MLL5 can be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation by binding to the cell cycle regulator host cell factor (HCF-1), thereby facilitating the cell cycle G1 to S phase transition. It is also involved in mitotic fidelity and genomic integrity by modulating the stability of the chromosomal passenger complex (CPC) via the interaction with Borealin. Moreover, MLL5 is a component of a complex associated with retinoic acid receptor that requires GlcN Acylation of its SET domain in order to activate its histone lysine methyltransferase activity. It also participates in the camptothecin (CPT)-induced p53 activation. Furthermore, MLL5 indirectly regulates H3K4 methylation, represses cyclin A2 (CycA) expression, and promotes myogenic differentiation. 44 -277026 cd15551 PHD_PYGO PHD finger found in PYGO proteins. The family includes Drosophila melanogaster protein pygopus (dPYGO) and its two homologs, PYGO1 and PYGO2. dPYGO is a fundamental Wnt signaling transcriptional component in Drosophila. PYGO1 is essential for the association with Legless (Lgs)/Bcl9 that acts an adaptor between Pygopus (Pygo) and Arm/beta-catenin. dPYGO and PYGO2 function as context-dependent beta-catenin coactivators, and they bind di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). Moreover, PYGO2 acts as a histone methylation reader, and a chromatin remodeler in a testis-specific and Wnt-unrelated manner. It also mediates chromatin regulation and links Wnt signaling and Notch signaling to suppress the luminal/alveolar differentiation competence of mammary stem and basal cells. PYGO2 also plays a new role in rRNA transcription during cancer cell growth. It regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. All family members contain a plant homeodomain (PHD) finger. 54 -277027 cd15552 PHD_PHF3_like PHD finger found in PHD finger protein 3 (PHF3), and death-inducer obliterator variants Dido1, Dido2, and Dido3. PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. PHF3 contains an N-terminal plant homeodomain (PHD) finger, a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. This family also includes Dido gene encoding three alternative splicing variants (Dido1, 2, and 3), which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1 is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved PHD finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine4 (H3K4me3). Gene Dido1 is a Bone morphogenetic protein (BMP) target gene and promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform and is ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but is involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, a SPOC module, and a long C-terminal region (CT) of unknown homology. 50 -277028 cd15553 PHD_Cfp1 PHD finger found in CXXC-type zinc finger protein 1 (Cfp1). Cfp1, also termed CpG-binding protein, or PHD finger and CXXC domain-containing protein 1 (PCCX1), is a specificity factor that binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). It integrates both promoter CpG content and gene activity for accurate trimethylation of histone H3 Lys 4 (H3K4me3) deposition in embryonic stem cells. Moreover, Cfp1 is an essential component of the SETD1 histone H3K4 methyltransferase complex and functions as a critical regulator of histone methylation, cytosine methylation, cellular differentiation, and vertebrate development. Cfp1 contains a plant homeodomain (PHD) finger, a CXXC domain, and a CpG binding protein zinc finger C-terminal domain. Its CXXC domain selectively binds to non-methylated CpG islands, following by a preference for a guanosine nucleotide. 46 -277029 cd15554 PHD_PHF2_like PHD finger found in PHF2, PHF8 and KDM7. This family includes PHF2, PHF8, KDM7, and similar proteins. PHF2, also termed GRC5, or PHD finger protein 2, is a histone lysine demethylase ubiquitously expressed in various tissues. PHF8, also termed PHD finger protein 8, or KDM7B, is a monomethylated histone H4 lysine 20(H4K20me1) demethylase that transcriptionally regulates many cell cycle genes. It also preferentially acts on H3K9me2 and H3K9me1. PHF8 is modulated by CDC20-containing anaphase-promoting complex (APC (cdc20)) and plays an important role in the G2/M transition. It acts as a critical molecular sensor for mediating retinoic acid (RA) treatment response in RAR alpha-fusion-induced leukemia. Moreover, PHF8 is essential for cytoskeleton dynamics and is associated with X-linked mental retardation. KDM7, also termed JmjC domain-containing histone demethylation protein 1D (JHDM1D), or KIAA1718, is a dual histone demethylase that catalyzes demethylation of monomethylated and dimethylated H3K9 (H3K9me2/me1) and H3K27 (H3K27me2/me1), which functions as an eraser of silencing marks on chromatin during brain development. It also plays a tumor-suppressive role by regulating angiogenesis. All family members contain a plant homeodomain (PHD) finger and a JmjC domain. 47 -277030 cd15555 PHD_KDM2A_2B PHD finger found in Lysine-specific demethylase KDM2A, KDM2B, and similar proteins. This family includes KDM2A, KDM2B, and F-box and leucine-rich repeat protein 19 (FBXL19). KDM2A is a ubiquitously expressed histone H3 lysine 36 (H3K36) demethylase that has been implicated in gene silencing, cell cycle, cell growth, and cancer development. KDM2B is a ubiquitously expressed histone H3 lysine 4 (H3K4me2) or histone H3 lysine 36 (H3K36me2) demethylase that functions as a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. Both KDM2A and KDM2B belong to the JmjC-domain-containing histone demethylase family. They consist of two Jumonji C (JmjC) domains, and FBXHA and FBXHB domains. A CXXC zinc-finger domain, followed by a plant homeodomain (PHD) finger, is located within the FBXHA domain, and an F-box domain, followed by an antagonist of mitotic exit network protein 1 (AMN1) domain, is located within the FBXHB domain. FBXL19 belongs to the Skp1-Cullin-F-box (SCF) family of E3 ubiquitin ligases. It mediates ubiquitination and interleukin 33 (IL-33)-induced degradation of ST2L receptor in lung epithelia, blocks IL-33-mediated apoptosis, and prevents endotoxin-induced acute lung injury. FBXL19 consists of FBXHA and FBXHB domains, similar to KDM2A and KDM2B. 55 -277031 cd15556 PHD_MMD1_like PHD finger found in Arabidopsis thaliana PHD finger protein MALE MEIOCYTE DEATH 1 (MMD1), PHD finger protein MALE STERILITY 1 (MS1), and similar proteins. MMD1 is a plant homeodomain (PHD) finger protein expressed in male meiocytes. It is encoded by the gene DUET, which is required for male meiotic chromosome organization and progression. MMD1 has been implicated in the regulation of gene expression during meiosis. The mmd1 mutation triggers cell death in male meiocytes. MS1 is a nuclear transcriptional activator that is important for tapetal development and pollen wall biosynthesis. It contains a Leu zipper-like domain and a PHD finger motif, both of which are essential for its function. 46 -277032 cd15557 PHD_CBP_p300 PHD finger found in CREB-binding protein (CBP) and histone acetyltransferase p300. This p300/CBP family includes two highly homologous histone acetyltransferases (HATs), CREB-binding protein (CBP) and p300. CBP is also known as KAT3A or CREBBP. It specifically interacts with the phosphorylated form of cyclic adenosine monophosphate-responsive element-binding protein (CREB). p300, also termed as KAT3B, or E1A-associated protein p300 (EP300), is a paralog of CBP. and is involved in E1A function in cell cycle progression and cellular differentiation. Both CBP and p300 are co-activator proteins that have been implicated in cell cycle regulation, apoptosis, embryonic development, cellular differentiation and cancer. They associate with a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. They contain a cysteine-histidine rich region, KIX (CREB interaction) domain, a plant homeodomain (PHD) finger, a HAT domain, followed by a SRC interaction domain. 37 -277033 cd15558 PHD_Hop1p_like PHD finger found in Schizosaccharomyces pombe meiosis-specific protein hop1 (Hop1p) and similar proteins. Fission yeast Hop1p, also termed linear element-associated protein hop1, is an S. pombe homolog of the synaptonemal complex (SC)-associated protein Hop1 in Saccharomyces cerevisiae. In contrast to S. cerevisiae, S. pombe forms thin threads, known as linear elements (LinEs), in meiotic nuclei, instead of a canonical synaptonemal complex. LinEs contain Rec10 protein and are evolutionary relics of SC axial elements. Fission yeast Hop1p is a linear element (LinE)-associated protein. It also associates with Rec10, which plays a role in recruiting the recombination machinery to chromatin. Hop1p contains an N-terminal HORMA (for Hop1p, Rev7p, and MAD2) domain and a C-terminal plant homeodomain (PHD) finger. 47 -277034 cd15559 PHD1_BPTF PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF). BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the first PHD finger. 43 -277035 cd15560 PHD2_3_BPTF PHD finger 2 and 3 found in bromodomain and PHD finger-containing transcription factor (BPTF). BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the second and third PHD fingers. 47 -277036 cd15561 PHD1_PHF14 PHD finger 1 found in PHD finger protein 14 (PHF14) and similar proteins. PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the first PHD finger. 56 -277037 cd15562 PHD2_PHF14 PHD finger 2 found in PHD finger protein 14 (PHF14) and similar proteins. PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the second PHD finger. 50 -277038 cd15563 PHD3_PHF14 PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins. PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the third PHD finger. 49 -277039 cd15564 PHD1_NSD PHD finger 1 found in nuclear receptor-binding SET domain-containing (NSD) proteins. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the first PHD finger. 43 -277040 cd15565 PHD2_NSD PHD finger 2 found in nuclear receptor-binding SET domain-containing (NSD) proteins. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the second PHD finger. 51 -277041 cd15566 PHD3_NSD PHD finger 3 found in nuclear receptor-binding SET domain-containing (NSD) proteins. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the third PHD finger. 48 -277042 cd15567 PHD4_NSD PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fourth PHD finger. 41 -277043 cd15568 PHD5_NSD PHD finger 5 found in nuclear receptor-binding SET domain-containing (NSD) proteins. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fifth PHD finger. 43 -277044 cd15569 PHD_RAG2 PHD finger found in V(D)J recombination-activating protein 2 (RAG-2) and similar proteins. RAG-2 is an essential component of the lymphoid-specific recombination activating gene RAG1/2 V(D)J recombinase mediating antigen-receptor gene assembly. It contains an acidic hinge region implicated in histone-binding, a non-canonical plant homeodomain (PHD) finger followed by a C-terminal extension of 40 amino acids that is essential for phosphoinositide (PtdIns)-binding. The PHD finger is a chromatin-binding module that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3) and influences V(D)J recombination. 67 -277045 cd15570 PHD_Bye1p_SIZ1_like PHD domain found in Saccharomyces cerevisiae bypass of ESS1 protein 1 (Bye1p), the E3 Sumo Ligase SIZ1, and similar proteins. Yeast Bye1p is a nuclear transcription factor with a domain resembling the central domain in the transcription elongation factor TFIIS and plays an inhibitory role during transcription elongation. It functions as a multicopy suppressor of Ess1, a peptidyl-prolyl cis-trans isomerase involved in proline isomerization of the C-terminal domain (CTD) of RNA polymerase II (Pol II). Bye1p contains an N-terminal plant homeodomain (PHD) finger, a central Pol II-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. The PHD domain binds to a histone H3 tail peptide containing trimethylated lysine 4 (H3K4me3). The TLD domain is responsible for the association with chromatin. Plant SIZ1 protein is a SUMO (small ubiquitin-related modifier) E3 ligase that facilitates conjugation of SUMO to substrate target proteins (sumoylation) and belongs to the protein inhibitor of activated STAT (PIAS) protein family. It negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. It also modulates plant growth and plays a role in drought stress response likely through the regulation of gene expression. SIZ1 functions as a floral repressor that not only represses the salicylic acid (SA)-dependent pathway, but also promotes FLOWERING LOCUS C (FLC) expression by repressing FLOWERING LOCUS D (FLD) activity through sumoylation. SIZ1 contains a PHD finger, which specifically binds methylated histone H3 at lysine 4 and arginine 2. 50 -277046 cd15571 ePHD Extended plant homeodomain (PHD) finger, characterized by Cys2HisCys5HisCys2His. PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. The extended PHD finger is characterized as Cys2HisCys5HisCys2His, which has been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. 112 -277047 cd15572 PHD_BRPF PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins. The family of BRPF proteins includes BRPF1, BRD1/BRPF2, and BRPF3. They are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. This model corresponds to the canonical Cys4HisCys3 PHD finger. 54 -277048 cd15573 PHD_JADE PHD finger found in proteins Jade-1, Jade-2, Jade-3, and similar proteins. This family includes proteins Jade-1 (PHF17), Jade-2 (PHF15), and Jade-3 (PHF16), each of which is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. This family also contains Drosophila melanogaster PHD finger protein rhinoceros (RNO). It is a novel plant homeodomain (PHD)-containing nuclear protein that may function as a transcription factor that antagonizes Ras signaling by regulating transcription of key EGFR/Ras pathway regulators in the Drosophila eye. All Jade proteins contain a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. 46 -277049 cd15574 PHD_AF10_AF17 PHD finger found in protein AF-10 and AF-17. This family includes protein AF-10 and AF-17. AF-10, also termed ALL1 (acute lymphoblastic leukemia)-fused gene from chromosome 10 protein, is a transcription factor encoded by gene AF10, a translocation partner of the MLL (mixed-lineage leukemia) oncogene in leukemia. AF-10 has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. It plays a key role in the survival of uncommitted hematopoietic cells. Moreover, AF-10 functions as a follistatin-related gene (FLRG)-interacting protein. The interaction with FLRG enhances AF10-dependent transcription. It interacts with the human counterpart of the yeast Dot1, hDOT1L, and may act as a bridge for the recruitment of hDOT1L to the genes targeted by MLL-AF10. It also interacts with the synovial sarcoma associated SYT protein and may play a role in synovial sarcomas and acute leukemias. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is encoded by gene AF17 that has been identified in hematological malignancies as translocation partners of the mixed lineage leukemia gene MLL. It is a putative transcription factor that may play a role in multiple signaling pathways. It is involved in chromatin-mediated gene regulation mechanisms. It functions as a component of the multi-subunit Dot1 complex (Dotcom) and plays a role in the Wnt/Wingless signaling pathway. It also seems to be a downstream target of the beta-catenin/T-cell factor pathway, and participates in G2-M progression. Moreover, it may function as an important regulator of ENaC-mediated Na+ transport and thus blood pressure. Both AF-10 and AF-17 contain an N-terminal canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. The PHD finger is involved in their homo-oligomerization. In the C-terminal region, they possess a leucine zipper domain and a glutamine-rich region. This family also includes ZFP-1, the Caenorhabditis elegans AF10 homolog. It was originally identified as a factor promoting RNAi interference in C. elegans. It also acts as a Dot1-interacting protein that opposes H2B ubiquitination to reduce polymerase II (Pol II) transcription. This model corresponds to the canonical Cys4HisCys3 PHD finger. 48 -277050 cd15575 PHD_JMJD2A PHD finger found in Jumonji domain-containing protein 2A (JMJD2A). JMJD2A, also termed lysine-specific demethylase 4A (KDM4A), or JmjC domain-containing histone demethylation protein 3A (JHDM3A), catalyzes the demethylation of di- and trimethylated H3K9 and H3K36. It is involved in carcinogenesis and functions as a transcription regulator that may either stimulate or repress gene transcription. It associates with nuclear receptor co-repressor complex or histone deacetylases. Moreover, JMJD2A forms complexes with both the androgen and estrogen receptor (ER) and plays an essential role in growth of both ER-positive and -negative breast tumors. It is also involved in prostate, colon, and lung cancer progression. JMJD2A contains jmjN and jmjC domains in the N-terminal region, followed by a canonical Cys4HisCys3 PHD finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a Tudor domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. 100 -277051 cd15576 PHD_JMJD2B PHD finger found in Jumonji domain-containing protein 2B (JMJD2B). JMJD2B, also termed lysine-specific demethylase 4B (KDM4B), or JmjC domain-containing histone demethylation protein 3B (JHDM3B), specifically antagonizes the trimethyl group from H3K9 in pericentric heterochromatin and reduces H3K36 methylation in mammalian cells. It plays an essential role in the growth regulation of cancer cells by modulating the G1-S transition and promotes cell-cycle progression through the regulation of cyclin-dependent kinase 6 (CDK6). It interacts with heat shock protein 90 (Hsp90) and its stability can be regulated by Hsp90. JMJD2B also functions as a direct transcriptional target of p53, which induces its expression through promoter binding. Moreover, JMJD2B expression can be controlled by hypoxia-inducible factor 1alpha (HIF1alpha) in colorectal cancer and estrogen receptor alpha (ERalpha) in breast cancer. It is also involved in bladder, lung, and gastric cancer. JMJD2B contains jmjN and jmjC domains in the N-terminal region, followed by a canonical Cys4HisCys3 PHD finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a Tudor domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. 99 -277052 cd15577 PHD_JMJD2C PHD finger found in Jumonji domain-containing protein 2C (JMJD2C). JMJD2C, also termed lysine-specific demethylase 4C (KDM4C), or gene amplified in squamous cell carcinoma 1 protein (GASC-1 protein), or JmjC domain-containing histone demethylation protein 3C (JHDM3C), is an epigenetic factor that catalyzes the demethylation of di- and trimethylated H3K9 and H3K36, and may be involved in the development and/or progression of various types of cancer including esophageal squamous cell carcinoma (ESC) and breast cancer. It selectively interacts with hypoxia-inducible factor 1alpha (HIF1alpha) and plays a role in breast cancer progression. Moreover, JMJD2C may play an important role in the treatment of obesity and its complications through modulating the regulation of adipogenesis by nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). JMJD2C contains jmjN and jmjC domains in the N-terminal region, followed by a canonical Cys4HisCys3 plant homeodomain (PHD) finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a Tudor domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. 104 -277053 cd15578 PHD1_MTF2 PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2). MTF2, also termed metal regulatory transcription factor 2, or metal-response element DNA-binding protein M96, or polycomb-like protein 2 (PCL2), complexes with the polycomb repressive complex-2 (PRC2) in embryonic stem cells and regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation. It recruits the PRC2 complex to the inactive X chromosome and target loci in embryonic stem cells. Moreover, MTF2 is required for PRC2-mediated Hox cluster repression. It activates the Cdkn2a gene and promotes cellular senescence, thus suppressing the catalytic activity of PRC2 locally. MTF2 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. This model corresponds to the first PHD finger. 53 -277054 cd15579 PHD1_PHF19 PHD finger 1 found in PHD finger protein 19 (PHF19). PHF19, also termed Polycomb-like protein 3 (PCL3), is a component of the polycomb repressive complex 2 (PRC2), which is the major H3K27 methyltransferase that regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. PHF19 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. It binds trimethylated histone H3 Lys36 (H3K36me3) through its Tudor domain and recruits the PRC2 complex and the H3K36me3 demethylase NO66 to embryonic stem cell genes during differentiation. Moreover, PHF19 and its upstream regulator, Akt, play roles in the phenotype switch of melanoma cells from proliferative to invasive states. This model corresponds to the first PHD finger. 53 -277055 cd15580 PHD2_MTF2 PHD finger 2 found in metal-response element-binding transcription factor 2 (MTF2). MTF2, also termed metal regulatory transcription factor 2, or metal-response element DNA-binding protein M96, or Polycomb-like protein 2 (PCL2), complexes with the Polycomb repressive complex-2 (PRC2) in embryonic stem cells and regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation. It recruits the PRC2 complex to the inactive X chromosome and target loci in embryonic stem cells. Moreover, MTF2 is required for PRC2-mediated Hox cluster repression. It activates the Cdkn2a gene and promotes cellular senescence, thus suppressing the catalytic activity of PRC2 locally. MTF2 consists of an N-terminal Tudor domain followed by two plant homeodomain (PHD) fingers, and a C-terminal MTF2 domain. This model corresponds to the second PHD finger. 52 -277056 cd15581 PHD2_PHF19 PHD finger 2 found in PHD finger protein 19 (PHF19). PHF19, also termed Polycomb-like protein 3 (PCL3), is a component of the Polycomb repressive complex 2 (PRC2), which is the major H3K27 methyltransferase that regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. PHF19 consists of an N-terminal Tudor domain followed by two plant homeodomain (PHD) fingers, and a C-terminal MTF2 domain. It binds H3K36me3 through its Tudor domain and recruits the PRC2 complex and the H3K36me3 demethylase NO66 to embryonic stem cell genes during differentiation. Moreover, PHF19 and its upstream regulator, Akt, play roles in the phenotype switch of melanoma cells from proliferative to invasive states. This model corresponds to the second PHD finger. 52 -277057 cd15582 PHD2_PHF1 PHD finger 2 found in PHD finger protein1 (PHF1). PHF1, also termed Polycomb-like protein 1 (PCL1), together with JARID2 and AEBP2, associates with the Polycomb repressive complex 2 (PRC2), which is the major H3K27 methyltransferase that regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. PHF1 is essential in epigenetic regulation and genome maintenance. It acts as a dual reader of Lysine trimethylation at Lysine 36 of Histone H3 and Lysine 27 of Histone variant H3t. PHF1 consists of an N-terminal Tudor domain followed by two plant homeodomain (PHD) fingers, and a C-terminal MTF2 domain. Its Tudor domain selectively binds to histone H3K36me3. Moreover, PHF1 is required for efficient H3K27me3 and Hox gene silencing. It can mediate deposition of the repressive H3K27me3 mark and acts as a cofactor in early DNA-damage response. This model corresponds to the second PHD finger. 52 -277058 cd15583 PHD_ash2p_like PHD finger found in Schizosaccharomyces pombe Set1 complex component ash2 (spAsh2p) and similar proteins. spAsh2p, also termed Set1C component ash2, or COMPASS component ash2, or complex proteins associated with set1 protein ash2, or Lid2 complex component ash2, or Lid2C component ash2, is orthologous to Drosophila melanogaster Ash2 protein. Both spAsh2p and D. melanogaster Ash2 contain a plant homeodomain (PHD) finger and a SPRY domain. In contrast, its counterpart in Saccharomyces cerevisiae, Bre2p, has no PHD finger and is not included in this family. spAsh2p shows histone H3 Lys4 (H3K4) methyltransferase activity through its PHD finger. It also interacts with Lid2p in S. pombe. Human Ash2L contains an atypical PHD finger that lacks part of the Cys4HisCys3 signature characteristic of PHD fingers, it binds to only one zinc ion through the second half of the motif and does not have histone tail binding activity. 50 -277059 cd15584 PHD_ING1_2 PHD finger found in inhibitor of growth protein 1 (ING1) and 2 (ING2). ING1 is an epigenetic regulator and a type II tumor suppressor that impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. It acts as a reader of the active chromatin mark, the trimethylation of histone H3 lysine 4 (H3K4me3). It binds and directs Growth arrest and DNA damage inducible protein 45 a (Gadd45a) to target sites, thus linking the histone code with DNA demethylation. It interacts with the proliferating cell nuclear antigen (PCNA) via the PCNA-interacting protein (PIP) domain in a UV-inducible manner. It also interacts with a PCNA-interacting protein, p15 (PAF). Moreover, ING1 associates with members of the 14-3-3 family, which is necessary for cytoplasmic relocalization. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX and colocalizes with BAX in a UV-inducible manner. It stabilizes the p53 tumor suppressor by inhibiting polyubiquitination of multi-monoubiquitinated forms via interaction with and colocalization of the herpesvirus-associated ubiquitin-specific protease (HAUSP)-deubiquitinase with p53. It is also involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. In addition, tyrosine kinase Src can bind and phosphorylate ING1 and further regulates its activity. ING2, also termed inhibitor of growth 1-like protein (ING1Lp), or p32, or p33ING2, belongs to the inhibitor of growth (ING) family of type II tumor suppressors. It is a core component of a multi-factor chromatin-modifying complex containing the transcriptional co-repressor SIN3A and histone deacetylase 1 (HDAC1). It has been implicated in the control of cell cycle, in genome stability, and in muscle differentiation. ING2 independently interacts with H3K4me3 (Histone H3 trimethylated on lysine 4) and PtdIns(5)P, and modulates crosstalk between lysine methylation and lysine acetylation on histone proteins through association with chromatin in the presence of DNA damage. It collaborates with SnoN to mediate transforming growth factor (TGF)-beta-induced Smad-dependent transcription and cellular responses. It is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. It also acts as a cofactor of p300 for p53 acetylation and plays a positive regulatory role during p53-mediated replicative senescence. Both ING1 and ING2 contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. 45 -277060 cd15585 PHD_ING3 PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins. ING3, also termed p47ING3, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It is ubiquitously expressed and has been implicated in transcription modulation, cell cycle control, and the induction of apoptosis. It is an important subunit of human NuA4 histone acetyltransferase complex, which regulates the acetylation of histones H2A and H4. Moreover, ING3 promotes ultraviolet (UV)-induced apoptosis through the Fas/caspase-8-dependent pathway in melanoma cells. It physically interacts with subunits of E3 ligase Skp1-Cullin-F-boxprotein complex (SCF complex) and is degraded by the SCF (F-box protein S-phase kinase-associated protein 2, Skp2)-mediated ubiquitin-proteasome system. It also acts as a suppression factor during tumorigenesis and progression of hepatocellular carcinoma (HCC). ING3 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. 45 -277061 cd15586 PHD_ING4_5 PHD finger found in inhibitor of growth protein 4 (ING4) and 5 (ING5). ING4, also termed p29ING4, and ING5, also termed p28ING5, belong to the inhibitor of growth (ING) family of type II tumor suppressors. ING4 acts as an E3 ubiquitin ligase to induce ubiquitination of the p65 subunit of NF-kappaB and inhibit the transactivation of NF-kappaB target genes. It also induces apoptosis through a p53 dependent pathway, including increasing p53 acetylation, inhibiting Mdm2-mediated degradation of p53 and enhancing the expression of p53 responsive genes both at the transcriptional and post-translational levels. Moreover, ING4 can inhibit the translation of proto-oncogene MYC by interacting with AUF1. It also regulates other transcription factors, such as hypoxia-inducible factor (HIF). ING5 is a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. Both ING4 and ING5 contain an N-terminal ING histone-binding domain and a C-terminal plant homeodomain (PHD) finger. They associate with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further direct the MOZ/MORF and HBO1 complexes to chromatin. 45 -277062 cd15587 PHD_Yng1p_like PHD finger found in yeast orthologs of ING tumor suppressor family. The yeast orthologs of the plant homeodomain (PHD) finger-containing ING tumor suppressor family consists of chromatin modification-related protein YNG1 (Yng1p), YNG2 (Yng2p), and transcriptional regulatory protein PHO23 (Pho23p). Yng1p, also termed ING1 homolog 1, is one of the components of the NuA3 histone acetyltransferase (HAT) complex. Its PHD finger binding to H3 Trimethylated at K4 (H3K4me3) promotes NuA3 H3 HAT activity at K14 of H3 on chromatin. Yng2p, also termed ESA1-associated factor 4, or ING1 homolog 2, is a subunit of the NuA4 HAT complex. It plays a critical role in intra-S-phase DNA damage response. Pho23p is part of the Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Yng1p and Pho23p inhibit p53-dependent transcription. In contrast, Yng2p has the opposite effect. All family members contain an N-terminal ING histone-binding domain and a C-terminal PHD finger. 47 -277063 cd15588 PHD1_KMT2A PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A). KMT2A (also termed ALL-1, CXXC-type zinc finger protein 7, myeloid/lymphoid or mixed-lineage leukemia protein 1 (MLL1), trithorax-like protein (Htrx), or zinc finger protein HRX) is a histone methyltransferase that belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2). It regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in MLL1 complex, which also contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL1 complex is highly active and specific for H3K4 methylation. KMT2A contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, a Bromodomain domain, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. 47 -277064 cd15589 PHD1_KMT2B PHD finger 1 found in Histone-lysine N-methyltransferase 2B (KMT2B). KMT2B, also termed trithorax homolog 2 or WW domain-binding protein 7 (WBP-7), is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3 lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. 47 -277065 cd15590 PHD2_KMT2A PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A). KMT2A (also termed ALL-1, CXXC-type zinc finger protein 7, myeloid/lymphoid or mixed-lineage leukemia protein 1 (MLL1), trithorax-like protein (Htrx), or zinc finger protein HRX) is a histone methyltransferase that belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2). It regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex, which also contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL1 complex is highly active and specific for H3K4 methylation. KMT2A contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, a Bromodomain domain, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. 50 -277066 cd15591 PHD2_KMT2B PHD domain 2 found in Histone-lysine N-methyltransferase 2B (KMT2B). KMT2B, also termed trithorax homolog 2 or WW domain-binding protein 7 (WBP-7), is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD), an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. 50 -277067 cd15592 PHD3_KMT2A PHD finger 3 found in histone-lysine N-methyltransferase 2A (KMT2A). KMT2A (also termed ALL-1, CXXC-type zinc finger protein 7, myeloid/lymphoid or mixed-lineage leukemia protein 1 (MLL1), trithorax-like protein (Htrx), or zinc finger protein HRX) is a histone methyltransferase that belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2). It regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex, which also contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL1 complex is highly active and specific for H3K4 methylation. KMT2A contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, a Bromodomain domain, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the third PHD finger. 57 -277068 cd15593 PHD3_KMT2B PHD finger 3 found in Histone-lysine N-methyltransferase 2B (KMT2B). KMT2B, also termed trithorax homolog 2 or WW domain-binding protein 7 (WBP-7), is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3 lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the third PHD finger. 57 -277069 cd15594 PHD2_KMT2C PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the second PHD finger. 46 -277070 cd15595 PHD2_KMT2D PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D). KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such asHOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. 46 -277071 cd15596 PHD4_KMT2C PHD finger 4 found in Histone-lysine N-methyltransferase 2C (KMT2C). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the fourth PHD finger. 57 -277072 cd15597 PHD3_KMT2D PHD finger 3 found in Histone-lysine N-methyltransferase 2D (KMT2D). KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the third PHD finger. 51 -277073 cd15600 PHD6_KMT2C PHD finger 6 found in Histone-lysine N-methyltransferase 2C (KMT2C). KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the sixth PHD finger. 51 -277074 cd15601 PHD5_KMT2D PHD finger 5 found in Histone-lysine N-methyltransferase 2D (KMT2D). KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such asHOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is downregulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fifth PHD finger. 51 -277075 cd15602 PHD1_KDM5A PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A). KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 49 -277076 cd15603 PHD1_KDM5B PHD finger 1 found in lysine-specific demethylase 5B (KDM5B). KDM5B (also termed Cancer/testis antigen 31 (CT31), Histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A)) is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of pregnant females and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 46 -277077 cd15604 PHD1_KDM5C_5D PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D). The family includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C (also termed Histone demethylase JARID1C, Jumonji/ARID domain-containing protein 1C, SmcX, or Xe169) is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D (also termed Histocompatibility Y antigen (H-Y), Histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or SmcY) is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 andH3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. 46 -277078 cd15605 PHD1_Lid_like PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar proteins. Drosophila melanogaster Lid, also termed Retinoblastoma-binding protein 2 homolog, is identified genetically as a trithorax group (trxG) protein that is a Drosophila homolog of the human protein JARID1A/kdm5A, a member of the JARID subfamily within the JmjC proteins. Lid functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Lid contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger of Lid. 46 -277079 cd15606 PHD2_KDM5A PHD finger 2 found in Lysine-specific demethylase 5A (KDM5A). KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. 56 -277080 cd15607 PHD2_KDM5B PHD finger 2 found in lysine-specific demethylase 5B (KDM5B). KDM5B (also termed Cancer/testis antigen 31 (CT31), Histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), or PLU-1) is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. 44 -277081 cd15608 PHD2_KDM5C_5D PHD finger 2 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D). The family includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C (also termed Histone demethylase JARID1C, Jumonji/ARIDdomain-containing protein 1C, SmcX, or Xe169) is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D (also termed Histocompatibility Y antigen (H-Y), Histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or SmcY) is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 and H3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. 58 -277082 cd15609 PHD_TCF19 PHD finger found in Transcription factor 19 (TCF-19) and similar proteins. TCF-19, also termed transcription factor SC1, was identified as a putative trans-activating factor with expression beginning at the late G1-S boundary in dividing cells. It also functions as a novel islet factor necessary for proliferation and survival in the INS-1 beta cell line. It plays an important role in susceptibility to both Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM); it has been suggested that it may positively impact beta cell mass under conditions of beta cell stress and increased insulin demand. TCF-19 contains an N-terminal fork head association domain (FHA), a proline rich region, and a C-terminal plant homeodomain (PHD) finger. The FHA domain may serve as a nuclear signaling domain or as a phosphoprotein binding domain. The proline rich region is a common characteristic of trans-activating factors. The PHD finger may allow TCF-19 to interact with chromatin via methylated histone H3. 50 -277083 cd15610 PHD3_KDM5A_like PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A), 5B (KDM5B), and similar proteins. The family includes KDM5A and KDM5B, both of which belong to the JARID subfamily within the JmjC proteins. KDM5A, also termed Histone demethylase JARID1A, or Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2), was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as the trimethylated histone H3 lysine 4 (H3K4me3) demethylase. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5B, also termed Cancer/testis antigen 31 (CT31), or Histone demethylase JARID1B, or Jumonji/ARID domain-containing protein 1B (JARID1B), or PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well asTIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. The family also includes the Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. 50 -277084 cd15612 PHD_OBE1_like PHD finger found in Arabidopsis thaliana protein OBERON 1, OBERON 2, and similar proteins mainly found in plants. Included in this family are OBERON 1 (OBE1, or potyvirus VPg-interacting protein 2) and OBERON 2 (OBE2, or potyvirus VPg-interacting protein 1), which have been involved in the maintenance and/or establishment of the meristems in Arabidopsis. They interact with potyvirus VPg-interacting proteins (PVIP1 and 2) and act as central regulators in auxin-mediated control of development. Both OBE1and OBE2 contain a plant homeodomain (PHD) finger. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. 60 -277085 cd15613 PHD_AL_plant PHD finger found in plant Alfin1-like (AL) proteins. AL proteins are ubiquitously expressed nuclear proteins existing only in plants. They are involved in chromatin regulation by binding to tri- and dimethylated histone H3 at lysine 4 (H3K4me3/2), the active histone markers, through their plant homeodomain (PHD) fingers. 51 -277086 cd15614 PHD_HAC_like PHD finger found in Arabidopsis thaliana histone acetyltransferases (HATs) HAC and similar proteins. This family includes A. thaliana HACs (HAC1/2/4/5/12), which are histone acetyltransferases of the p300/CREB-binding protein (CBP) co-activator family. CBP-type HAT proteins are also found in animals, but absent in fungi. The domain architecture of CBP-type HAT proteins differs between plants and animals. Members in this family contain an N-terminal partially conserved KIX domain, a Zf-TAZ domain, a Cysteine rich CBP-type HAT domain that harbors a plant homeodomain (PHD) finger, a Zf-ZZ domain, and a Zf-TAZ domain. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. 73 -277087 cd15615 PHD_ARID4_like PHD finger found in Arabidopsis thaliana AT-rich interactive domain-containing protein 4 (ARID4) and similar proteins. This family includes A. thaliana ARID4 (ARID domain-containing protein 4) and similar proteins. Their biological roles remain unclear, but they all contain an AT-rich interactive domain (ARID) and a plant homeodomain (PHD) finger at the C-terminus. ARID is a helix-turn-helix motif-based DNA-binding domain conserved in all eukaryotes. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. 57 -277088 cd15616 PHD_UHRF1 PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1). UHRF1 (also termed inverted CCAAT box-binding protein of 90 kDa, nuclear protein 95, nuclear zinc finger protein Np95 (Np95), RING finger protein 106, transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1) is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET and RING finger associated (SRA) domain, and a C-terminal RING-finger domain. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitylation has an essential role in maintaining DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD finger targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-finger domain exhibit both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. 47 -277089 cd15617 PHD_UHRF2 PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2). UHRF2 (also termed Np95/ICBP90-like RING finger protein (NIRF), Np95-like RING finger protein, nuclear protein 97, nuclear zinc finger protein Np97, RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2) was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs,p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. 47 -277090 cd15618 PHD1_MOZ_MORF PHD finger 1 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF). MOZ (also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60protein 3 (MYST-3), runt-related transcription factor-binding protein 2, or zinc finger protein 220) is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF), also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. In contrast, MORF contains an N-terminal region containing two PHD fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The model corresponds to the first PHD finger. 58 -277091 cd15619 PHD1_d4 PHD finger 1 found in d4 gene family proteins. The family includes proteins coded by three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes by changing the condensed/decondensed state of chromatin in the nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro-specific gene clusters. The d4 family proteins show distinct domain organization with domain 2/3 in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc finger in the central part and two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the first PHD finger. 56 -277092 cd15622 PHD_TIF1alpha PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha). TIF1-alpha, also termed tripartite motif-containing protein 24 (TRIM24), or E3 ubiquitin-protein ligase TRIM24, or RING finger protein 82, belongs to the TRIM/RBCC protein family. It interacts specifically and in a ligand-dependent manner with the ligand binding domain (LBD) of several nuclear receptors (NRs), including retinoid X (RXR), retinoic acid (RAR), vitamin D3 (VDR), estrogen (ER), and progesterone (PR) receptors. It also associates with heterochromatin-associated factors HP1alpha, MOD1 (HP1beta) and MOD2 (HP1gamma), as well as vertebrate Kruppel-type (C2H2) zinc finger proteins that contain transcriptional silencing domain KRAB. TIF1-alpha is a ligand-dependent co-repressor of retinoic acid receptor (RAR) that interacts with multiple nuclear receptors in vitro via an LXXLL motif, and further acts as a gatekeeper of liver carcinogenesis. It also functions as an E3-ubiquitin ligase targeting p53 and is broadly associated with chromatin silencing. Moreover, it is a chromatin regulator that recognizes specific, combinatorial histone modifications through its C-terminal plant homeodomain (PHD)-Bromodomain (Bromo) region. In addition, it interacts with chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. TIF1-alpha contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. 43 -277093 cd15623 PHD_TIF1beta PHD finger found in transcription intermediary factor 1-beta (TIF1-beta). TIF1-beta, also termed Kruppel-associated Box (KRAB)-associated protein 1 (KAP-1), or KRAB-interacting protein 1 (KRIP-1), or nuclear co-repressor KAP-1, or RING finger protein 96, or tripartite motif-containing protein 28 (TRIM28), or E3 SUMO-protein ligase TRIM28, acts as a nuclear co-repressor that plays a role in transcription and in DNA damage response. Upon DNA damage, the phosphorylation of KAP-1 on serine 824 by the ataxia telangiectasia-mutated (ATM) kinase enhances cell survival and facilitates chromatin relaxation and heterochromatic DNA repair. It also regulates CHD3 nucleosome remodeling during DNA double-strand break (DSB) response. Meanwhile, KAP-1 can be dephosphorylated by protein phosphatase PP4C in the DNA damage response. In addition, KAP-1 is a co-activator of the orphan nuclear receptor NGFI-B (or Nur77) and is involved in NGFI-B-dependent transcription. It is also a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. TIF1-beta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), which can interact with KRAB zinc finger proteins (KRAB-ZFPs), MDM2, MM1, C/EBPbeta, and mediates homo- and heterodimerization, a plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region, which interact with SETDB1, Mi-2alpha and other proteins to form complexes with histone deacetylase or methyltransferase activity. 43 -277094 cd15624 PHD_TIF1gamma PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma). TIF1gamma, also termed tripartite motif-containing 33 (trim33), or ectodermin, or RFG7, or PTC7, is an E3-ubiquitin ligase that functions as a regulator of transforming growth factor beta (TGFbeta) signaling; it inhibits the Smad4-mediated TGFbeta response by interaction with Smad2/3 or ubiquitylation of Smad4. Moreover, TIF1gamma is an important regulator of transcription during hematopoiesis, as well as a key factor of tumorigenesis. Like other TIF1 family members, TIF1gamma also contains an intrinsic transcriptional silencing function. It can control erythroid cell fate by regulating transcription elongation. It can bind to the anaphase-promoting complex/cyclosome (APC/C) and promotes mitosis. TIF1gamma contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. 46 -277095 cd15625 PHD_TIF1delta PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta). TIF1delta, also termed tripartite motif-containing protein 66 (TRIM66), is a novel heterochromatin protein 1 (HP1)-interacting member of the transcriptional intermediary factor1 (TIF1) family expressed by elongating spermatids. Like other TIF1 proteins, TIF1delta displays a potent trichostatin A (TSA)-sensitive repression function; TSA is a specific inhibitor of histone deacetylases. Moreover, TIF1delta plays an important role in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. It functions as a negative regulator of postmeiotic genes acting through HP1 isotype gamma (HP1gamma) complex formation and centromere association. TIF1delta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. 49 -277096 cd15626 PHD_SP110_140 PHD finger found in the Sp100/Sp140 family of nuclear body components. The Sp100/Sp140 family includes nuclear body proteins SP100, SP140, and similar proteins. Sp110, also termed interferon-induced protein 41/75, or speckled 110 kDa, or transcriptional coactivator Sp110, is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. Sp110 gene polymorphisms may be associated with susceptibility to tuberculosis in Chinese population. Sp110 contains a Sp100-like domain, a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). SP140, also termed lymphoid-restricted homolog of Sp100 (LYSp100), or nuclear autoantigen Sp-140, or speckled 140 kDa, is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus's viral infectivity factor (Vif) protein. Sp140 contains a nuclear localization signal, a dimerization domain (HSR or CARD domain), a SAND domain, a PHD finger, and a BRD. 42 -277097 cd15627 PHD_BAZ1A PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A). BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1A contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. 46 -277098 cd15628 PHD_BAZ1B PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B). BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. BAZ1B contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. 46 -277099 cd15629 PHD_BAZ2A PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A). BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. 47 -277100 cd15630 PHD_BAZ2B PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B). BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A, which is the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP-and histone H4 tail-dependent fashion. BAZ2B contains a TAM (TIP5/ARBP/MBD) domain, an Apolipophorin-III like domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. 49 -277101 cd15631 PHD_PHF23 PHD finger found in PHD finger protein 23 (PHF23). PHF23, also termed PHD-containing protein JUNE-1, is a hypothetical protein with a plant homeodomain (PHD) finger. It is encoded by gene PHF23 that acts as a candidate fusion partner for the nucleoporin gene NUP98. The NUP98-PHF23 fusion results from a cryptic translocation t(11;17)(p15;p13) in acute myeloid leukemia (AML). 44 -277102 cd15632 PHD_PHF13 PHD finger found in PHD finger protein 13 (PHF13). PHF13, also termed survival time-associated PHD finger protein in ovarian cancer 1 (SPOC1), is a novel plant homeodomain (PHD) finger-containing protein that shows strong expression in spermatogonia and ovarian cancer cells, modulates chromatin structure and mitotic chromosome condensation, and is important for proper cell division. It is also required for spermatogonial stem cell differentiation and sustained spermatogenesis. The overexpression of PHF13 associates with unresectable carcinomas and shorter survival in ovarian cancer. 47 -277103 cd15633 PHD_PHF20L1 PHD finger found in PHD finger protein 20-like protein 1 (P20L1). P20L1 is an active malignant brain tumor (MBT) domain-containing protein that binds to monomethylated lysine 142 on DNA (Cytosine-5) Methyltransferase 1 (DNMT1) (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. Its MBT domain reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 proteasomal degradation. In addition to the MBT domain, PHF20L1 also contains two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. 46 -277104 cd15634 PHD_PHF20 PHD finger found in PHD finger protein 20 (PHF20). PHF20, also termed Glioma-expressed antigen 2, or hepatocellular carcinoma-associated antigen 58, or novel zinc finger protein, or transcription factor TZP (referring to Tudor and zinc finger domain containing protein), is a regulator of NF-kappaB activation by disrupting recruitment of PP2A to p65. It also functions as a transcription factor that binds Akt and plays a role in Akt cell survival/growth signaling. Moreover, it transcriptionally regulates p53. The phosphorylation of PHF20 on Ser291 mediated by protein kinase B (PKB) is essential in tumorigenesis via the regulation of p53 mediated signaling. PHF20 contains an N-terminal malignant brain tumor (MBT) domain, two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. 44 -277105 cd15635 PHD_PYGO1 PHD finger found in pygopus homolog 1 (PYGO1). PYGO1 is a homolog of Drosophila melanogaster protein pygopus (dPYGO), which is a fundamental Wnt signaling transcriptional component in Drosophila. It functions as a context-dependent beta-catenin coactivator, and binds di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). PYGO1 is essential for the association with Legless (Lgs)/Bcl9 that acts as an adaptor between Pygopus (Pygo) and Arm/beta-catenin. PYGO1 contains a plant homeodomain (PHD) finger, which is important for Lgs/Bcl9 recognition as well as for the regulation of the Wnt/beta-catenin signaling pathway. 57 -277106 cd15636 PHD_PYGO2 PHD finger found in pygopus homolog 2 (PYGO2). PYGO2 is a homolog of Drosophila melanogaster protein pygopus (dPYGO), which is a fundamental Wnt signaling transcriptional component in Drosophila. It functions as a context-dependent beta-catenin coactivator, as well as a histone methylation reader that binds di-and trimethylated lysine 4 of histone H3 (H3K4me2/3). Moreover, PYGO2 acts as a chromatin remodeler in a testis-specific and Wnt-unrelated manner. It also mediates chromatin regulation and links Wnt signaling and Notch signaling to suppress the luminal/alveolar differentiation competence of mammary stem and basal cells. Furthermore, PYGO2 plays a new role in rRNA transcription during cancer cell growth. It regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. PYGO2 contains a plant homeodomain (PHD) finger, which is important for Lgs/Bcl9 recognition as well as for the regulation of the Wnt/beta-catenin signaling pathway. 54 -277107 cd15637 PHD_dPYGO PHD finger found in Drosophila melanogaster protein pygopus (dPYGO) and similar proteins. dPYGO, also termed protein gammy legs, is a nuclear adapter protein encoded by pygopus (pygo). It is a fundamental Wnt signaling transcriptional component in Drosophila, and has both Wnt-related and Wnt-independent functions. It plays a critical role in aging-related cardiac dysfunction that is canonical Wnt signaling independent. dPYGO contains a plant homeodomain (PHD) finger, which is important for Lgs/Bcl9 recognition as well as for the regulation of the Wnt/beta-catenin signaling pathway. 54 -277108 cd15638 PHD_PHF3 PHD finger found in PHD finger protein 3 (PHF3). PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. PHF3 contains an N-terminal plant homeodomain (PHD) finger, a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. 51 -277109 cd15639 PHD_DIDO1_like PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3. This family includes three alternative splicing variants (Dido1, 2, and 3) encoded by the Dido gene, which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1, also termed DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved plant homeodomain (PHD) finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). Gene Dido is a Bonemorphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, aspen paralog and ortholog (SPOC) module, and a long C-terminal region (CT) of unknown homology. Its PHD finger interacts with H3K4me3. 54 -277110 cd15640 PHD_KDM7 PHD finger found in lysine-specific demethylase 7 (KDM7). KDM7, also termed JmjC domain-containing histone demethylation protein 1D (JHDM1D), or KIAA1718, is a dual histone demethylase that catalyzes demethylation of monomethylated and dimethylated H3K9 (H3K9me2/me1) and H3K27 (H3K27me2/me1), which functions as an eraser of silencing marks on chromatin during brain development. It also plays a tumor-suppressive role by regulating angiogenesis. KDM7 contains a plant homeodomain (PHD) that binds Lys4-trimethylated histone 3 (H3K4me3) and a jumonji domain that demethylates either H3K9me2 or H3K27me2. 50 -277111 cd15641 PHD_PHF2 PHD finger found in lysine-specific demethylase PHF2. PHF2, also termed GRC5, or PHD finger protein 2, is a histone lysine demethylase ubiquitously expressed in various tissues. It contains a plant homeodomain (PHD) finger and a JmjC domain and plays an important role in adipogenesis. The PHD finger domain can recognize trimethylated histone H3 lysine 4 (H3K4me3). PHF2 also has dimethylated histone H3 lysine 9(H3K9me2) demethylase activity and acts as a coactivator of several metabolism-related transcription factors. Moreover, it can demethylate ARID5B and further forms a complex with demethylated ARD5B to bind the promoter regions of target genes. The overexpression of PHF2 is involved in the progression of esophageal squamous cell carcinoma (ESCC). 50 -277112 cd15642 PHD_PHF8 PHD finger found in histone lysine demethylase PHF8. PHF8, also termed PHD finger protein 8, or KDM7B, is a monomethylated histone H4 lysine 20 (H4K20me1) demethylase that transcriptionally regulates many cell cycle genes. It also preferentially acts on H3K9me2 and H3K9me1. PHF8 is modulated by CDC20-containing anaphase-promoting complex (APC (cdc20)) and plays an important role in the G2/M transition. It acts as a critical molecular sensor for mediating retinoic acid (RA) treatment response in RAR alpha-fusion-induced leukemia. Moreover, PHF8 is essential for cytoskeleton dynamics and is associated with X-linked mental retardation. PHF8 contains an N-terminal plant homeodomain (PHD) finger followed by a JmjC domain. The PHD finger mediates binding to nucleosomes at active gene promoters and the JmjC domain catalyzes the demethylation of mono- or dimethyl-lysines. 52 -277113 cd15643 PHD_KDM2A PHD finger found in Lysine-specific demethylase 2A (KDM2A). KDM2A, also termed CXXC-type zinc finger protein 8, or F-box and leucine-rich repeat protein 11 (FBXL11), or F-box protein FBL7, or F-box protein Lilina, or F-box/LRR-repeat protein 11, or JmjC domain-containing histone demethylation protein 1A (Jhdm1a), or [Histone-H3]-lysine-36 demethylase 1A, is a ubiquitously expressed histone H3 lysine 36 (H3K36) demethylase that has been implicated in gene silencing, cell cycle, cell growth, and cancer development. It acts as a key negative regulator of gluconeogenic gene expression and plays a critical role in the invasiveness, proliferation, and anchorage-independent growth of non-small cell lung cancer (NSCLC) cells, as well as in the osteo/dentinogenic differentiation of Mesenchymal stem cells (MSCs). It regulates rRNA transcription in response to starvation. Meanwhile, it is a negative regulator of NFkappaB. Moreover, KDM2A is a heterochromatin-associated and HP1-interacting protein that promotes HP1 localization to chromatin. It is specifically recruited to CpG islands to define a unique chromatin architecture, which requires direct and specific interaction with linker DNA. It also functions as a H3K4 demethylase that regulates cell proliferation through p15 (INK4B) and p27 (Kip1) in stem cells from apical papilla (SCAPs). KDM2A belongs to the JmjC-domain-containing histone demethylase family. KDM2A consists of two Jumonji C (JmjC) domains, and FBXHA and FBXHB domains. A CXXC zinc-finger domain, followed by a plant homeodomain (PHD) finger, is located within the FBXHA domain, and an F-box domain, followed by an antagonist of mitotic exit network protein 1 (AMN1) domain, is located within the FBXHB domain. 57 -277114 cd15644 PHD_KDM2B PHD finger found in Lysine-specific demethylase 2B (KDM2B). KDM2B, also termed Ndy1, or CXXC-type zinc finger protein 2, or F-box and leucine-rich (LRR) repeat protein 10 (FBXL10), or F-box protein FBL10, or JmjC domain-containing histone demethylation protein 1B (Jhdm1b), or Jumonji domain-containing EMSY-interactor methyltransferase motif protein (Protein JEMMA), or [Histone-H3]-lysine-36 demethylase 1B, is a ubiquitously expressed histone H3 lysine 4 (H3K4me2) or histone H3 lysine 36 (H3K36me2) demethylase that functions as a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. It regulates the differentiation of Mesenchymal Stem Cells (MSCs) and has been implicated in cell cycle regulation by de-repressing cyclin-dependent kinase inhibitor 2B (CDKN2B or p15INK4B). It also plays a role in recruiting polycomb repressive complex 1 (PRC1) to CpG islands (CGIs) of developmental genes and regulates lysine 119 monoubiquitylation on H2A (H2AK119ub1) in embryonic stem cells (ESCs). Moreover, it acts as an oncogene that plays a critical role in leukemia development and maintenance. KDM2B consists of two Jumonji C (JmjC) domains, and FBXHA and FBXHB domains. A CXXC zinc-finger domain, followed by a plant homeodomain (PHD) finger, is located within the FBXHA domain, and an F-box domain, followed by an antagonist of mitotic exit network protein 1 (AMN1) domain, is located within the FBXHB domain. 62 -277115 cd15645 PHD_FXL19 PHD finger found in F-box and leucine-rich repeat protein 19 (FBXL19). FBXL19, also termed F-box/LRR-repeat protein 19, is a novel homolog of KDM2A and KDM2B. It belongs to the Skp1-Cullin-F-box (SCF) family of E3 ubiquitin ligases. FBXL19 mediates ubiquitination and interleukin 33 (IL-33)-induced degradation of ST2L receptor in lung epithelia, blocks IL-33-mediated apoptosis, and prevents endotoxin-induced acute lung injury. It also functions as a RhoA antagonist during cell proliferation and cytoskeleton rearrangement, and regulates RhoA ubiquitination and degradation in lung epithelial cells. Moreover, FBXL19 regulates cell migration by targeting Rac1 for its polyubiquitination and proteasomal degradation. It plays an essential role in regulating TGFbeta1-induced E-cadherin down-regulation by mediating Rac3 site-specific ubiquitination and stability. FBXL19 consists of FBXHA and FBXHB domains. A CXXC zinc-finger domain, followed by a plant homeodomain (PHD) finger, is located within the FBXHA domain, and an F-box domain, followed by an antagonist of mitotic exit network protein 1 (AMN1) domain, is located within the FBXHB domain. 62 -277116 cd15646 PHD_p300 PHD finger found in histone acetyltransferase p300. p300, also termed KAT3B, or E1A-associated protein p300 (EP300), is a paralog of CREB-binding protein (CBP). It is involved in E1A function in cell cycle progression and cellular differentiation. It functions as an intrinsic HAT, as well as a factor acetyltransferase (FAT) for many transcription regulators. And thus, p300 serves as a scaffold or bridge for transcription factors and other components of the basal transcription machinery to facilitate chromatin remodeling and to activate gene transcription. p300 contains a cysteine-histidine rich region, KIX (CREB interaction) domain, a plant homeodomain (PHD) finger, a HAT domain, followed by a SRC interaction domain. 40 -277117 cd15647 PHD_CBP PHD finger found in CREB-binding protein (CBP). CBP, also termed as KAT3A, is an acetyltransferase acting on histone, which gives a specific tag for transcriptional activation and also acetylates non-histone proteins. CBP is also known as CREBBP, since it specifically interacts with the phosphorylated form of cyclic adenosine monophosphate-responsive element-binding protein (CREB). It augments the activity of phosphorylated CREB to activate transcription of cAMP-responsive genes. CBP contains a cysteine-histidine rich region, a KIX (CREB interaction) domain, a plant homeodomain (PHD) finger, a HAT domain, followed by a SRC interaction domain. 40 -277118 cd15648 PHD1_NSD1_2 PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2. NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). Both NSD1 and NSD2 contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). In addition, NSD2 harbors a high mobility group (HMG) box. The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the first PHD finger. 43 -277119 cd15649 PHD1_NSD3 PHD finger 1 found in nuclear SET domain-containing protein 3 (NSD3). NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the first PHD finger. 44 -277120 cd15650 PHD2_NSD1 PHD finger 2 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1). NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or LysineN-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (C5HCH). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the second PHD finger. 47 -277121 cd15651 PHD2_NSD2 PHD finger 2 found in nuclear SET domain-containing protein 2 (NSD2). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the second PHD finger. 47 -277122 cd15652 PHD2_NSD3 PHD finger 2 found in nuclear SET domain-containing protein 3 (NSD3). NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the second PHD finger. 47 -277123 cd15653 PHD3_NSD1 PHD finger 3 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1). NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the third PHD finger. 54 -277124 cd15654 PHD3_NSD2 PHD finger 3 found in nuclear SET domain-containing protein 2 (NSD2). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the third PHD finger. 54 -277125 cd15655 PHD3_NSD3 PHD finger 3 found in nuclear SET domain-containing protein 3 (NSD3). NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the third PHD finger. 53 -277126 cd15656 PHD4_NSD1 PHD finger 4 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1). NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. 40 -277127 cd15657 PHD4_NSD2 PHD finger 4 found in nuclear SET domain-containing protein 2 (NSD2). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fourth PHD finger. 41 -277128 cd15658 PHD4_NSD3 PHD finger 4 found in nuclear SET domain-containing protein 3 (NSD3). NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fourth PHD finger. 40 -277129 cd15659 PHD5_NSD1 PHD finger 5 found in nuclear receptor-binding SET domain-containing protein 1 (NSD1). NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD1 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. 43 -277130 cd15660 PHD5_NSD2 PHD finger 5 found in nuclear SET domain-containing protein 2 (NSD2). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). NSD2 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, a high mobility group (HMG) box, five PHD (plant-homeodomain) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the fifth PHD finger. 43 -277131 cd15661 PHD5_NSD3 PHD finger 5 found in nuclear SET domain-containing protein 3 (NSD3). NSD3, also termed histone-lysine N-methyltransferase NSD3, or protein whistle, or WHSC1-like 1 isoform 9 with methyltransferase activity to lysine, or Wolf-Hirschhorn syndrome candidate 1-like protein 1 (WHSC1-like protein 1, or WHSC1L1), is a lysine methyltransferase encoded by gene NSD3, which is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to the development of acute myeloid leukemia. NSD3 contains a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-prolin motif (PWWP) domains, five plant-homeodomain (PHD) zinc fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). The SET domain is responsible for histone methyltransferase activity. The PWWP and PHD fingers are involved in protein-protein interactions. This model corresponds to the fifth PHD finger. 43 -277132 cd15662 ePHD_ATX1_2_like Extended PHD finger found in Arabidopsis thaliana ATX1, -2, and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This subfamily includes the ePHD finger of A. thaliana histone-lysine N-methyltransferase arabidopsis trithorax-like proteins ATX1, -2, and similar proteins. ATX1 and -2 are sister paralogs originating from a segmental chromosomal duplication; they are plant counterparts of the Drosophila melanogaster trithorax (TRX) and mammalian mixed-lineage leukemia (MLL1) proteins. ATX1 (also known as protein SET domain group 27, or trithorax-homolog protein 1/TRX-homolog protein 1), is a methyltransferase that trimethylates histone H3 at lysine 4 (H3K4me3). It also acts as a histone modifier and as a positive effector of gene expression. ATX1 regulates transcription from diverse classes of genes implicated in biotic and abiotic stress responses. It is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. ATX2 (also known as protein SET domain group 30, or trithorax-homolog protein 2/TRX-homolog protein 2), is involved in dimethylating histone H3 at lysine 4 (H3K4me2). ATX1 and ATX2 are multi-domain proteins that consist of an N-terminal PWWP domain, FYRN- and FYRC (DAST, domain associated with SET in trithorax) domains, a canonical PHD finger, this non-canonical ePHD finger, and a C-terminal SET domain. 115 -277133 cd15663 ePHD_ATX3_4_5_like Extended PHD finger found in Arabidopsis thaliana ATX3, -4, -5, and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This subfamily includes the ePHD finger of A. thaliana histone-lysine N-methyltransferase arabidopsis trithorax-like proteins ATX3 (also termed protein SET domain group 14, or trithorax-homolog protein 3), ATX4 (also termed protein SET domain group 16, or trithorax-homolog protein 4) and ATX5 (also termed protein SET domain group 29, or trithorax-homolog protein 5), which belong to the histone-lysine methyltransferase family. These proteins show distinct phylogenetic origins from the family of ATX1 and ATX2. They are multi-domain proteins that consist of an N-terminal PWWP domain, a canonical PHD finger, this non-canonical extended PHD finger, and a C-terminal SET domain. 112 -277134 cd15664 ePHD_KMT2A_like Extended PHD finger found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This subfamily includes the ePHD finger of histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A/MLL1 and KMT2B/MLL2. KMT2A and KMT2B comprise the mammalian Trx branch of COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation by mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three PHD fingers, this extended PHD (ePHD) finger, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. 105 -277135 cd15665 ePHD1_KMT2C_like Extended PHD finger 1 found in histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the first ePHD finger of KMTC2C and KMTC2D. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five plant PHD fingers, two ePHD fingers, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. 90 -277136 cd15666 ePHD2_KMT2C_like Extended PHD finger 2 found in histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the second ePHD finger of KMT2C, and KMT2D. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five PHD fingers, two ePHD fingers, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. 105 -277137 cd15667 ePHD_Snt2p_like Extended PHD finger found in Saccharomyces cerevisiae SANT domain-containing protein 2 (Snt2p) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Snt2p. Sntp2 is a yeast protein that may function in multiple stress pathways. It coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress through interaction with Ecm5 and the Rpd3 deacetylase. Snt2p contains a bromo adjacent homology (BAH) domain, two canonical PHD fingers, a non-canonical ePHD finger, and a SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain. 141 -277138 cd15668 ePHD_RAI1_like Extended PHD finger found in retinoic acid-induced protein 1 (RAI1), transcription factor 20 (TCF-20) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the C-terminal ePHD/ADD (ATRX-DNMT3-DNMT3L) domain of RAI1 and TCF-20. RAI1, a homolog of stromelysin-1 PDGF (platelet-derived growth factor)-responsive element-binding protein (SPBP, also termed TCF-20), is a chromatin-binding protein implicated in the regulation of gene expression. TCF-20 is involved in transcriptional activation of the MMP3 (matrix metalloprotease 3) promoter. It also functions as a transcriptional co-regulator that enhances or represses the transcriptional activity of certain transcription factors/cofactors, such as specificity protein 1 (Sp1), E twenty-six 1 (Ets1), paired box protein 6 (Pax6), small nuclear RING-finger (SNURF)/RNF4, c-Jun, androgen receptor (AR) and estrogen receptor alpha (ERalpha). Both RAI1 and TCF-20 are strongly enriched in chromatin in interphase HeLa cells, and display low nuclear mobility, and have been implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome. 103 -277139 cd15669 ePHD_PHF7_G2E3_like Extended PHD finger found in PHD finger protein 7 (PHF7) and G2/M phase-specific E3 ubiquitin-protein ligase (G2E3). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of PHF7 and G2E3. PHF7, also termed testis development protein NYD-SP6, is a testis-specific PHD finger-containing protein that associates with chromatin and binds histone H3 N-terminal tails with a preference for dimethyl lysine 4 (H3K4me2). It may play an important role in stimulating transcription involved in testicular development and/or spermatogenesis. PHF7 contains a PHD finger and a non-canonical ePHD finger, both of which may be involved in activating transcriptional regulation. G2E3 is a dual function ubiquitin ligase (E3) that may play a possible role in cell cycle regulation and the cellular response to DNA damage. It is essential for prevention of apoptosis in early embryogenesis. It is also a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. G2E3 contains two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination, and a C-terminal catalytic HECT domain that plays an important role in ubiquitin ligase activity and in the dynamic subcellular localization of the protein. The RING-like ubiquitin ligase domains consist of a PHD finger and an ePHD finger. 112 -277140 cd15670 ePHD_BRPF Extended PHD finger found in BRPF proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the ePHD finger of the family of BRPF proteins, which includes BRPF1, BRD1/BRPF2, and BRPF3. These are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a plant homeodomain (PHD) zinc finger followed by a non-canonical ePHD finger, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. This PHD finger binds to lysine 4 of histone H3 (K4H3), the bromodomain interacts with acetylated lysines on N-terminal tails of histones and other proteins, and the PWWP domain shows histone-binding and chromatin association properties. 116 -277141 cd15671 ePHD_JADE Extended PHD finger found in protein Jade-1, Jade-2, Jade-3 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Jade-1 (PHF17), Jade-2 (PHF15), and Jade-3 (PHF16); each of these proteins is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, has reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. This family also contains Drosophila melanogaster PHD finger protein rhinoceros (RNO). It is a novel plant homeodomain (PHD)-containing nuclear protein that may function as a transcription factor that antagonizes Ras signaling by regulating transcription of key EGFR/Ras pathway regulators in the Drosophila eye. All Jade proteins contain a canonical PHD finger followed by this non-canonical ePHD finger, both of which are zinc-binding motifs. 112 -277142 cd15672 ePHD_AF10_like Extended PHD finger found in protein AF-10 and AF-17. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of AF-10 and AF-17. AF-10, also termed ALL1 (acute lymphoblastic leukaemia)-fused gene from chromosome 10 protein, is a transcription factor encoded by gene AF10, a translocation partner of the MLL (mixed-lineage leukaemia) oncogene in leukaemia. AF-10 has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. It plays a key role in the survival of uncommitted hematopoietic cells. Moreover, AF-10 functions as a follistatin-related gene (FLRG)-interacting protein. The interaction with FLRG enhances AF10-dependent transcription. It interacts with the human counterpart of yeast Dot1, hDOT1L, and may act as a bridge for the recruitment of hDOT1L to the genes targeted by MLL-AF10. It also interacts with the synovial sarcoma associated protein SYT protein and may play a role in synovial sarcomas and acute leukemias. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is encoded by gene AF17 that has been identified in hematological malignancies as translocation partners of the mixed lineage leukemia gene MLL. It is a putative transcription factor that may play a role in multiple signaling pathways. It is involved in chromatin-mediated gene regulation mechanisms. It functions as a component of the multi-subunit Dot1 complex (Dotcom) and plays a role in the Wnt/Wingless signaling pathway. It also seems to be a downstream target of the beta-catenin/T-cell factor pathway, and participates in G2-M progression. Moreover, it may function as an important regulator of ENaC-mediated Na+ transport and thus blood pressure. Both AF-10 and AF-17 contain an N-terminal plant homeodomain (PHD) finger followed by this non-canonical ePHD finger. The PHD finger is involved in their homo-oligomerization. In the C-terminal region, they possess a leucine zipper domain and a glutamine-rich region. This family also includes ZFP-1, the Caenorhabditis elegans AF10 homolog. It was originally identified as a factor promoting RNAi interference in C. elegans. It also acts as Dot1-interacting protein that opposes H2B ubiquitination to reduce polymerase II (Pol II) transcription. 116 -277143 cd15673 ePHD_PHF6_like Extended PHD finger found in PHD finger protein 6 (PHF6) and PHD finger protein 11 (PHF11). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the two ePHD fingers of PFH6 and the single ePHD finger of PFH11. PHF6, also termed the X-linked mental retardation disorder Borjeson-Forssman-Lehmann syndrome-associated protein, is a nucleolus, ribosomal RNA promoter-associated protein that regulates cell cycle progression by suppressing ribosomal RNA synthesis. It has been implicated in cell cycle control, genomic maintenance, and tumor suppression. PHF6 shows transcriptional repression activity through directly interacting with the nucleosome remodeling and deacetylation complex component RBBP4. PHF6 contains two non-canonical ePHD fingers. PHF11, also termed BRCA1 C-terminus-associated protein, or renal carcinoma antigen NY-REN-34, is a transcriptional co-activator of the Th1 effector cytokine genes, interleukin-2 (IL2) and interferon-gamma (IFNG), co-operating with nuclear factor kappa B (NF-kappaB). It is involved in T-cell activation and viability. Polymorphisms within PHF11 are associated with total IgE, allergic asthma and eczema. 116 -277144 cd15674 ePHD_PHF14 Extended PHD finger found in PHD finger protein 14 (PHF14) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of PHF14. PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and this non-canonical ePHD finger. It can interact with histones through its PHD fingers. 114 -277145 cd15675 ePHD_JMJD2 Extended PHD finger found in Jumonji domain-containing protein 2 (JMJD2) family of histone demethylases. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of JMJD2 proteins. JMJD2 proteins, also termed lysine-specific demethylase 4 histone demethylases (KDM4), have been implicated in various cellular processes including DNA damage response, transcription, cell cycle regulation, cellular differentiation, senescence, and carcinogenesis. They selectively catalyze the demethylation of di- and trimethylated H3K9 and H3K36. This model contains three JMJD2 proteins, JMJD2A-C, which all contain jmjN and jmjC domains in the N-terminal region, followed by a canonical PHD finger, this non-canonical ePHD finger, and a Tudor domain. JMJD2D is not included in this family, since it lacks both PHD and Tudor domains and has a different substrate specificity. JMJD2A-C are required for efficient cancer cell growth. 112 -277146 cd15676 PHD_BRPF1 PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar proteins. BRPF1, also termed peregrin or protein Br140, is a multi-domain protein that binds histones, mediates monocytic leukemic zinc-finger protein (MOZ)-dependent histone acetylation, and is required for Hox gene expression and segmental identity. It is a close partner of the MOZ histone acetyltransferase (HAT) complex and a novel Trithorax group (TrxG) member with a central role during development. BRPF1 is primarily a nuclear protein that has a broad tissue distribution and is abundant in testes and spermatogonia. It contains a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. BRPF1 may be involved in chromatin remodeling. This model corresponds to the canonical Cys4HisCys3 PHD finger. 62 -277147 cd15677 PHD_BRPF2 PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar proteins. BRPF2, also termed bromodomain-containing protein 1 (BRD1), or BR140-like protein, is encoded by BRL (BR140 Like gene). It is responsible for the bulk of the acetylation of H3K14 and forms a novel monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with HBO1 and ING4. The complex is required for full transcriptional activation of the erythroid-specific regulator genes essential for terminal differentiation and survival of erythroblasts in fetal liver. BRPF2 shows widespread expression and localizes to the nucleus within spermatocytes. It contains a cysteine rich region harboring a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. 54 -277148 cd15678 PHD_BRPF3 PHD finger found in bromodomain and PHD finger-containing protein 3 (BRPF3) and similar proteins. BRPF3 is a homolog of BRPF1 and BRPF2. It is a scaffold protein that forms a novel monocytic leukemic zinc finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with other regulatory subunits. BRPF3 contains a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. 55 -277149 cd15679 PHD_JADE1 PHD finger found in protein Jade-1 and similar proteins. Jade-1, also termed PHD finger protein 17 (PHF17), is a novel binding partner of von Hippel-Lindau (VHL) tumor suppressor Pvhl, a key regulator of the cellular oxygen sensing pathway. It is highly expressed in renal proximal tubules. Jade-1 functions as an essential regulator of multiple cell signaling pathways. It may be involved in the serine/threonine kinase AKT/AKT1 pathway during renal cancer pathogenesis and normally prevents renal epithelial cell proliferation and transformation. It also acts as a pro-apoptotic and growth suppressive ubiquitin ligase to inhibit canonical Wnt downstream effector beta-catenin for proteasomal degradation, and as a transcription factor associated with histone acetyltransferase activity and with increased abundance of cyclin-dependent kinase inhibitor p21. Moreover, Jade-1 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex, and plays a role in epithelial cell regeneration. It has also been identified as a novel component of the nephrocystin protein (NPHP) complex and interacts with the ciliary protein nephrocystin-4 (NPHP4). Jade-1 contains a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. 46 -277150 cd15680 PHD_JADE2 PHD finger found in protein Jade-2 and similar proteins. Jade-2, also termed PHD finger protein 15 (PHF15), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-2 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-2 contains a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. 46 -277151 cd15681 PHD_JADE3 PHD finger found in protein Jade-3 and similar proteins. Jade-3, also termed PHD finger protein 16 (PHF16), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-3 is required for ING4 and ING5 to associate with histone acetyl transferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-3 contains a canonical Cys4HisCys3 PHD domain followed by a non-canonical extended PHD (ePHD) domain, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. 50 -277152 cd15682 PHD_ING1 PHD finger found in inhibitor of growth protein 1 (ING1). ING1 is an epigenetic regulator and a type II tumor suppressor that impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. It acts as a reader of the active chromatin mark, the trimethylation of histone H3 lysine 4 (H3K4me3). It binds and directs Growth arrest and DNA damage inducible protein 45 a (Gadd45a) to target sites, thus linking the histone code with DNA demethylation. It interacts with the proliferating cell nuclear antigen (PCNA) via the PCNA-interacting protein (PIP) domain in a UV-inducible manner. It also interacts with a PCNA-interacting protein, p15 (PAF). Moreover, ING1 associates with members of the 14-3-3 family, which is necessary for the cytoplasmic relocalization. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX and colocalizes with BAX in a UV-inducible manner. It stabilizes the p53 tumor suppressor by inhibiting polyubiquitination of multi-monoubiquitinated forms via interaction with and colocalization of the herpesvirus-associated ubiquitin-specific protease (HAUSP)-deubiquitinase with p53. It is also involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. In addition, tyrosine kinase Src can bind phosphorylate ING1 and further regulates its activity. ING1 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. 49 -277153 cd15683 PHD_ING2 PHD finger found in inhibitor of growth protein 2 (ING2). ING2, also termed inhibitor of growth 1-like protein (ING1Lp), or p32, or p33ING2, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It is a core component of a multi-factor chromatin-modifying complex containing the transcriptional co-repressor SIN3A and histone deacetylase 1 (HDAC1). It has been implicated in the control of cell cycle, in genome stability, and in muscle differentiation. ING2 independently interacts with H3K4me3 (Histone H3 trimethylated on lysine 4) and PtdIns(5)P, and modulates crosstalk between lysine methylation and lysine acetylation on histone proteins through association with chromatin in the presence of DNA damage. It collaborates with SnoN to mediate transforming growth factor (TGF)-beta-induced Smad-dependent transcription and cellular responses. It is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. It also acts as a cofactor of p300 for p53 acetylation and plays a positive regulatory role during p53-mediated replicative senescence. ING2 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. 49 -277154 cd15684 PHD_ING4 PHD finger found in inhibitor of growth protein 4 (ING4). ING4, also termed p29ING4, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It acts as an E3 ubiquitin ligase to induce ubiquitination of the p65 subunit of NF-kappaB and inhibit the transactivation of NF-kappaB target genes. It also induces apoptosis through a p53 dependent pathway, including increasing p53 acetylation, inhibiting Mdm2-mediated degradation of p53 and enhancing the expression of p53 responsive genes both at the transcriptional and post-translational levels. Moreover, ING4 can inhibit the translation of proto-oncogene MYC by interacting with AUF1. It also regulates other transcription factors, such as hypoxia-inducible factor (HIF). In addition, ING4 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further directs the MOZ/MORF and HBO1 complexes to chromatin. ING4 contains an N-terminal ING histone-binding domain and a C-terminal plant homeodomain (PHD) finger. 48 -277155 cd15685 PHD_ING5 PHD finger found in inhibitor of growth protein 5 (ING5). ING5, also termed p28ING5, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It acts as a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. In addition, ING5 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further directs the MOZ/MORF and HBO1 complexes to chromatin. ING5 contains an N-terminal ING histone-binding domain and a C-terminal plant homeodomain (PHD) finger. 49 -277156 cd15686 PHD3_KDM5A PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A). KDM5A, also termed Histone demethylase JARID1A, or Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2), was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. 52 -277157 cd15687 PHD3_KDM5B PHD finger 3 found in lysine-specific demethylase 5B (KDM5B). KDM5B, also termed Cancer/testis antigen 31 (CT31), or Histone demethylase JARID1B, or Jumonji/ARID domain-containing protein 1B (JARID1B), or PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. 50 -277158 cd15688 PHD1_MOZ PHD finger 1 found in monocytic leukemia zinc-finger protein (MOZ). MOZ, also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60 protein 3 (MYST-3), or runt-related transcription factor-binding protein 2, or zinc finger protein 220, is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ and MOZ-related factor (MORF) are catalytic subunits of histone acetyltransferase (HAT) complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and implicated in human leukemias. It is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. The model corresponds to the first PHD finger. 59 -277159 cd15689 PHD1_MORF PHD finger 1 found in monocytic leukemia zinc finger protein-related factor (MORF). MORF, also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic histone acetyltransferase (HAT) activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. MORF and monocytic leukemia zinc-finger protein (MOZ) are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MORF contains an N-terminal region containing two plant homeodomain (PHD) fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The model corresponds to the first PHD finger. 59 -277160 cd15690 PHD1_DPF1 PHD finger 1 found in D4, zinc and double PHD fingers family 1 (DPF1). DPF1, also termed zinc finger protein neuro-d4, or BRG1-associated factor 45B (BAF45B), is encoded by a neuro specific gene, neuro-d4. It may be involved in the transcription regulation of neuro specific gene clusters. DPF1 contains a nuclear localization signal in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc-finger and a sequence of negatively charged amino acids in the central, and a cysteine/histidine-rich region that is composed of two adjacent plant homeodomain (PHD)-fingers (d4-domain) in the C-terminal part of the molecule. The family corresponds to the first PHD finger. 58 -277161 cd15691 PHD1_DPF2_like PHD finger 1 found in D4, zinc and double PHD fingers family 2 (DPF2). DPF2 (also termed zinc finger protein ubi-d4, apoptosis response zinc finger protein, BRG1-associated factor 45D (BAF45D), or protein requiem) is a transcription factor that is encoded by the ubiquitously expressed gene, ubi-d4, and may be involved in leukemia or other cancers with other genes connected with cancer. It recognizes acetylated histone H3 and suppresses the function of estrogen-related receptor alpha (ERRalpha) through histone deacetylase 1 (HDAC1). Moreover, DPF2 functions as a linker protein between the SWI/SNF complex and RelB/p52 NF-kappaB heterodimer and plays important roles in NF-kappaB transactivation via its non-canonical pathway. It is also required as a transcriptional coactivator in SWI/SNF complex-dependent activation of NF-kappaB RelA/p50 heterodimer. DPF2 contains a nuclear localization signal in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc-finger and a sequence of negatively charged amino acids in the central region, and a cysteine/histidine-rich region that is composed of two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This subfamily also includes DPF3 from zebrafish. This model describes the first PHD finger. 56 -277162 cd15692 PHD1_DPF3 PHD finger 1 found in D4, zinc and double PHD fingers family 3 (DPF3). DPF3, also termed BRG1-associated factor 45C (BAF45C), or zinc finger protein cer-d4, is encoded by a neuro-specific gene, cer-d4. It functions as a new epigenetic key factor for heart and muscle development and may be involved in the transcription regulation of neuro-specific gene clusters. It interacts with the BAF chromatin remodeling complex and binds methylated and acetylated lysine residues of histone 3 and 4. DPF3 contains a nuclear localization signal in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc-finger and a sequence of negatively charged amino acids in the central region, and a cysteine/histidine-rich region that is composed of two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the first PHD finger. 57 -277163 cd15693 ePHD_KMT2A Extended PHD finger found in histone-lysine N-methyltransferase 2A (KMT2A). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This subfamily includes the ePHD finger of KMT2A. KMT2A also termed ALL-1, or CXXC-type zinc finger protein 7, or myeloid/lymphoid or mixed-lineage leukemia protein 1 (MLL1), or trithorax-like protein (Htrx), or zinc finger protein HRX, is a histone methyltransferase that belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2). It regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex, which also contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL1 complex is highly active and specific for H3K4methylation. KMT2A contains a CxxC (x for any residue) zinc finger domain, three PHD fingers, a Bromodomain domain, this extended PHD finger, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. 113 -277164 cd15694 ePHD_KMT2B Extended PHD finger found in histone-lysine N-methyltransferase 2B (KMT2B). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This subfamily includes the ePHD finger of KMT2B. KMT2B is also called trithorax homolog 2 or WW domain-binding protein 7 (WBP-7). KMT2B is encoded by the gene that was first named myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), a second human homolog of Drosophila trithorax, located on chromosome 19. It belongs to the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal mammalian embryonic development. KMT2B functions as the catalytic subunit in the MLL2 complex, which contains WDR5, RbBP5, ASH2L and DPY30 as integral core subunits required for the efficient methylation activity of the complex. The MLL2 complex is highly active and specific for histone 3 lysine 4 (H3K4) methylation, which stimulates chromatin transcription in a SAM- and H3K4-dependent manner. Moreover, KMT2B plays a critical role in memory formation by mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. KMT2B contains a CxxC (x for any residue) zinc finger domain, three PHD fingers, this ePHD finger, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. 105 -277165 cd15695 ePHD1_KMT2D Extended PHD finger 1 found in histone-lysine N-methyltransferase 2D (KMT2D). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the first ePHD finger of KMT2D. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 at Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five PHD fingers, two ePHD fingers, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. 90 -277166 cd15696 ePHD1_KMT2C Extended PHD finger 1 found in histone-lysine N-methyltransferase 2C (KMT2C). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the first ePHD finger of KMT2C. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several PHD fingers, two ePHD fingers, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. 90 -277167 cd15697 ePHD2_KMT2C Extended PHD finger 2 found in histone-lysine N-methyltransferase 2C (KMT2C). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the second ePHD finger of KMT2C. KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains PHD fingers, two ePHD fingers, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. 105 -277168 cd15698 ePHD2_KMT2D Extended PHD finger 2 found in histone-lysine N-methyltransferase 2D (KMT2D). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the second ePHD finger of KMT2D. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five PHD fingers, two ePHD fingers, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. 107 -277169 cd15699 ePHD_TCF20 Extended PHD finger (ePHD) found in transcription factor 20 (TCF-20). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the C-terminal ePHD/ADD (ATRX-DNMT3-DNMT3L) domain of TCF-20. TCF-20, also termed nuclear factor SPBP, or protein AR1, or stromelysin-1 PDGF (platelet-derived growth factor)-responsive element-binding protein (SPRE-binding protein), is involved in transcriptional activation of the MMP3 (matrix metalloprotease 3) promoter. It is strongly enriched on chromatin in interphase HeLa cells, and displays low nuclear mobility, and has been implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome. As a chromatin-binding protein, TCF-20 plays a role in the regulation of gene expression. It also functions as a transcriptional co-regulator that enhances or represses the transcriptional activity of certain transcription factors/cofactors, such as specificity protein 1 (Sp1), E twenty-six 1 (Ets1), paired box protein 6 (Pax6), small nuclear RING-finger (SNURF)/RNF4, c-Jun, androgen receptor (AR) and estrogen receptor alpha (ERalpha). TCF-20 contains an N-terminal transactivation domain, a novel DNA-binding domain with an AT-hook motif, three nuclear localization signals (NLSs) and a C-terminal ePHD/ADD domain. 103 -277170 cd15700 ePHD_RAI1 Extended PHD finger (ePHD) found in retinoic acid-induced protein 1 (RAI1). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model corresponds to the C-terminal ePHD/ADD (ATRX-DNMT3-DNMT3L) domain of RAI1. RAI1, a homolog of stromelysin-1 PDGF (platelet-derived growth factor)-responsive element-binding protein (SPBP, also termed TCF-20), is a chromatin-binding protein implicated in the regulation of gene expression. It is strongly enriched on chromatin in interphase HeLa cells, and displays low nuclear mobility, and has been implicated in Smith-Magenis syndrome, Potocki-Lupski syndrome, and non-syndromic autism. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP and an ePHD/ADD domain with ability to bind nucleosomes. 104 -277171 cd15701 ePHD_BRPF1 Extended PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of BRPF1. BRPF1, also termed peregrin, or protein Br140, is a multi-domain protein that binds histones, mediates monocytic leukemic zinc-finger protein (MOZ) -dependent histone acetylation, and is required for Hox gene expression and segmental identity. It is a close partner of the MOZ histone acetyltransferase (HAT) complex and a novel Trithorax group (TrxG) member with a central role during development. BRPF1 is primarily a nuclear protein that has a broad tissue distribution and is abundant in testes and spermatogonia. It contains a plant homeodomain (PHD) zinc finger followed by a non-canonical ePHD finger, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. This PHD finger binds to methylated lysine 4 of histone H3 (H3K4me), the bromodomain interacts with acetylated lysines on N-terminal tails of histones and other proteins, and the PWWP domain shows histone-binding and chromatin association properties. BRPF1 may be involved in chromatin remodeling. 121 -277172 cd15702 ePHD_BRPF2 Extended PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of BRPF2. BRPF2 also termed bromodomain-containing protein 1 (BRD1), or BR140-likeprotein, is encoded by BRL (BR140 Like gene). It is responsible for the bulk of the acetylation of H3K14 and forms a novel monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with HBO1 and ING4. The complex is required for full transcriptional activation of the erythroid-specific regulator genes essential for terminal differentiation and survival of erythroblasts in fetal liver. BRPF2 shows widespread expression and localizes to the nucleus within spermatocytes. It contains a cysteine rich region harboring a plant homeodomain (PHD) finger followed by a non-canonical ePHD finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. 118 -277173 cd15703 ePHD_BRPF3 Extended PHD finger found in bromodomain and PHD finger-containing protein 3 (BRPF3) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of BRPF3. BRF3 is a homolog of BRPF1 and BRPF2. It is a scaffold protein that forms a novel monocytic leukemic zinc finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with other regulatory subunits. BRPF3 contains a plant homeodomain (PHD) finger followed by this non-canonical ePHD finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. 118 -277174 cd15704 ePHD_JADE1 Extended PHD finger found in protein Jade-1 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Jade-1. Jade-1, also termed PHD finger protein 17 (PHF17), is a novel binding partner of von Hippel-Lindau (VHL) tumor suppressor Pvhl, a key regulator of cellular oxygen sensing pathway. It is highly expressed in renal proximal tubules. Jade-1 functions as an essential regulator of multiple cell signaling pathways. It may be involved in the Serine/threonine kinase AKT/AKT1 pathway during renal cancer pathogenesis and normally prevents renal epithelial cell proliferation and transformation. It also acts as a pro-apoptotic and growth suppressive ubiquitin ligase to inhibit canonical Wnt downstream effector beta-catenin for proteasomal degradation and ASA transcription factor associated with histone acetyltransferase activity and with increased abundance of cyclin-dependent kinase inhibitor p21. Moreover, Jade-1 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex, and plays a role in epithelial cell regeneration. It has also been identified as a novel component of the nephrocystin protein (NPHP) complex and interacts with the ciliary protein nephrocystin-4 (NPHP4). Jade-1 contains a canonical plant homeodomain (PHD) finger followed by this non-canonical ePHD finger, both of which are zinc-binding motifs. 118 -277175 cd15705 ePHD_JADE2 Extended PHD finger found in protein Jade-2 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Jade-2. Jade-2, also termed PHD finger protein 15 (PHF15), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-2 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-2 contains a canonical PHD finger followed by this non-canonical ePHD finger, both of which are zinc-binding motifs. 111 -277176 cd15706 ePHD_JADE3 Extended PHD finger found in protein Jade-3 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Jade-3. Jade-3, also termed PHD finger protein 16 (PHF16), is a plant homeodomain (PHD) zinc finger protein that is close related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-3 is required for ING4 and ING5 to associate with histone acetyl transferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-3 contains a canonical PHD domain followed by this non-canonical ePHD domain, both of which are zinc-binding motifs. 111 -277177 cd15707 ePHD_RNO Extended PHD finger found in Drosophila melanogaster PHD finger protein rhinoceros (RNO) and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of Drosophila melanogaster RNO. RNO is a novel plant homeodomain (PHD)-containing nuclear protein that may function as a transcription factor that antagonizes Ras signaling by regulating the transcription of key EGFR/Ras pathway regulators in the Drosophila eye. RNO contains a canonical PHD domain followed by this non-canonical ePHD domain, both of which are zinc-binding motifs. 113 -277178 cd15708 ePHD_AF10 Extended PHD finger found in protein AF-10 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of AF-10. AF-10, also termed ALL1 (acute lymphoblastic leukaemia)-fused gene from chromosome 10 protein, is a transcription factor encoded by gene AF10, a translocation partner of the MLL (mixed-lineage leukaemia) oncogene in leukaemia. AF-10 has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. It plays a key role in the survival of uncommitted hematopoietic cells. Moreover, AF-10 functions as a follistatin-related gene (FLRG)-interacting protein. The interaction with FLRG enhances AF10-dependent transcription. It interacts with human counterpart of the yeast Dot1, hDOT1L, and may act as a bridge for the recruitment of hDOT1L to the genes targeted by MLL-AF10. It also interacts with the synovial sarcoma associated protein SYT protein and may play a role in synovial sarcomas and acute leukemias. AF-10 contains an N-terminal plant homeodomain (PHD) finger followed by this non-canonical ePHD finger. 129 -277179 cd15709 ePHD_AF17 Extended PHD finger found in protein AF-17 and similar proteins. The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of AF-17. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is encoded by gene AF17 that has been identified in hematological malignancies as a translocation partner of the mixed lineage leukemia gene MLL. It is a putative transcription factor that may play a role in multiple signaling pathways. It is involved in chromatin-mediated gene regulation mechanisms. It functions as a component of the multi-subunit Dot1 complex (Dotcom) and plays a role in the Wnt/Wingless signaling pathway. It also seems to be a downstream target of the beta-catenin/T-cell factor pathway, and participates in G2-M progression. Moreover, it may function as an important regulator of ENaC-mediated Na+ transport and thus blood pressure. AF-17 contains an N-terminal plant homeodomain (PHD) finger followed by a non-canonical ePHD finger. 125 -277180 cd15710 ePHD1_PHF6 Extended PHD finger 1 found in PHD finger protein 6 (PHF6). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. PHF6 contains two non-canonical ePHD fingers, this model corresponds to the first ePHD finger. PHF6, also termed the X-linked mental retardation disorder Borjeson-Forssman-Lehmann syndrome-associated protein, is a nucleolus, ribosomal RNA promoter-associated protein that regulates cell cycle progression by suppressing ribosomal RNA synthesis. It has been implicated in cell cycle control, genomic maintenance, and tumor suppression. PHF6 shows transcriptional repression activity through directly interacting with the nucleosome remodeling and deacetylation complex component RBBP4. . 115 -277181 cd15711 ePHD2_PHF6 Extended PHD finger 2 found in PHD finger protein 6 (PHF6). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. PHF6 contains two non-canonical ePHD fingers, this model corresponds to the second ePHD finger. PHF6, also termed the X-linked mental retardation disorder Borjeson-Forssman-Lehmann syndrome-associated protein, is a nucleolus, ribosomal RNA promoter-associated protein that regulates cell cycle progression by suppressing ribosomal RNA synthesis. It has been implicated in cell cycle control, genomic maintenance, and tumor suppression. PHF6 shows transcriptional repression activity through directly interacting with the nucleosome remodeling and deacetylation complex component RBBP4. 118 -277182 cd15712 ePHD_PHF11 Extended PHD finger found in PHD finger protein 11 (PHF11). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of PHF11. PHF11, also termed BRCA1 C-terminus-associated protein, or renal carcinoma antigen NY-REN-34, is a transcriptional co-activator of the Th1 effector cytokine genes, interleukin-2 (IL2) and interferon-gamma (IFNG), co-operating with nuclear factor kappa B (NF-kappaB). It is involved in T-cell activation and viability. Polymorphisms within PHF11 are associated with total IgE, allergic asthma and eczema. 115 -277183 cd15713 ePHD_JMJD2A Extended PHD finger (ePHD) found in Jumonji domain-containing protein 2A (JMJD2A). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of JMJD2A. JMJD2A, also termed lysine-specific demethylase 4A (KDM4A), or JmjC domain-containing histone demethylation protein 3A (JHDM3A), catalyzes the demethylation of di- and trimethylated H3K9 and H3K36. It is involved in carcinogenesis and functions as a transcription regulator that may either stimulate or repress gene transcription. It associates with nuclear receptor co-repressor complex or histone deacetylases. Moreover, JMJD2A forms complexes with both the androgen and estrogen receptor (ER) and plays an essential role in growth of both ER-positive and -negative breast tumors. It is also involved in prostate, colon, and lung cancer progression. JMJD2A contains jmjN and jmjC domains in the N-terminal region, followed by a canonical PHD finger, this non-canonical ePHD finger, and a Tudor domain. 110 -277184 cd15714 ePHD_JMJD2B Extended PHD finger found in Jumonji domain-containing protein 2B (JMJD2B). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of JMJD2B. JMJD2B, also termed lysine-specific demethylase 4B (KDM4B), or JmjC domain-containing histone demethylation protein 3B (JHDM3B), specifically antagonizes the trimethyl group from H3K9 in pericentric heterochromatin and reduces H3K36 methylation in mammalian cells. It plays an essential role in the growth regulation of cancer cells by modulating the G1-S transition and promotes cell-cycle progression through the regulation of cyclin-dependent kinase 6 (CDK6). It interacts with heat shock protein 90 (Hsp90) and its stability can be regulated by Hsp90. JMJD2B also functions as a direct transcriptional target of p53, which induces its expression through promoter binding. Moreover, JMJD2B expression can be controlled by hypoxia-inducible factor 1alpha (HIF1alpha) in colorectal cancer and estrogen receptor alpha (ERalpha) in breast cancer. It is also involved in bladder, lung, and gastric cancer. JMJD2B contains jmjN and jmjC domains in the N-terminal region, followed by a canonical PHD finger, this non-canonical ePHD finger, and a Tudor domain. 110 -277185 cd15715 ePHD_JMJD2C Extended PHD finger found in Jumonji domain-containing protein 2C (JMJD2C). The extended plant homeodomain (ePHD) zinc finger is characterized as Cys2HisCys5HisCys2His. This model includes the ePHD finger of JMJD2C. JMJD2C, also termed lysine-specific demethylase 4C (KDM4C), or gene amplified in squamous cell carcinoma 1 protein (GASC-1 protein), or JmjC domain-containing histone demethylation protein 3C (JHDM3C), is an epigenetic factor that catalyzes the demethylation of di- and trimethylated H3K9 and H3K36, and may be involved in the development and/or progression of various types of cancer including esophageal squamous cell carcinoma (ESC) and breast cancer. It selectively interacts with hypoxia-inducible factor 1alpha (HIF1alpha) and plays a role in breast cancer progression. Moreover, JMJD2C may play an important role in the treatment of obesity and its complications by modulating the regulation of adipogenesis by nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). JMJD2C contains jmjN and jmjC domains in the N-terminal region, followed by a canonical plant homeodomain (PHD) finger, this non-canonical ePHD finger, and a Tudor domain. 110 -277256 cd15716 FYVE_RBNS5 FYVE domain found in FYVE finger-containing Rab5 effector protein rabenosyn-5 (Rbsn-5) and similar proteins. Rbsn-5, also termed zinc finger FYVE domain-containing protein 20, is a novel Rab5 effector that is complexed to the Sec1-like protein VPS45 and recruited in a phosphatidylinositol-3-kinase-dependent fashion to early endosomes. It also binds to Rab4 and EHD1/RME-1, two regulators of the recycling route, and is involved in cargo recycling to the plasma membrane. Moreover, Rbsn-5 regulates endocytosis at the apical side of the wing epithelium and plays a role of the apical endocytic trafficking of Fmi in the establishment of planar cell polarity (PCP). 61 -277257 cd15717 FYVE_PKHF FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), and similar proteins. This family includes protein containing both PH and FYVE domains 1 (phafin-1) and 2 (phafin-2). Phafin-1 is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Phafin-2 is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. 61 -277258 cd15718 FYVE_WDFY1_like FYVE domain found in WD40 repeat and FYVE domain-containing protein WDFY1 and WDFY2, and similar proteins. This family includes WD40 repeat and FYVE domain-containing protein WDFY1 and WDFY2. WDFY1, also termed FYVE domain containing protein localized to endosomes-1 (FENS-1), or phosphoinositide-binding protein 1, or zinc finger FYVE domain-containing protein 17, is a novel single FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. WDFY1 to early endosomes requires an intact FYVE domain and is inhibited by wortmannin, a PI3-kinase inhibitor. WDFY2, also termed zinc finger FYVE domain-containing protein 22, or ProF (propeller-FYVE protein), is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that is localized to a distinct subset of early endosomes close to the plasma membrane. It interacts preferentially with endogenous serine/threonine kinase Akt2, but not Akt1, and plays a specific role in modulating signaling through Akt downstream of the interaction of this kinase with the endosomal proteins APPL (adaptor protein containing PH domain, PTB domain, and leucine zipper motif). In addition to Akt, WDFY2 serves as a binding partner for protein kinase C, zeta (PRKCZ), and its substrate vesicle-associated membrane protein 2 (VAMP2), and is involved in vesicle cycling in various secretory pathways. Moreover, Silencing of WDFY2 by siRNA produces a strong inhibition of endocytosis. Both WDFY1 and WDFY2 contain a FYVE domain and multiple WD-40 repeats. 70 -277259 cd15719 FYVE_WDFY3 FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar proteins. WDFY3, also termed autophagy-linked FYVE protein (Alfy), is a ubiquitously expressed phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein required for selective macroautophagic degradation of aggregated proteins. It regulates the protein degradation through the direct interaction with the autophagy protein Atg5. Moreover, WDFY3 acts as a scaffold that bridges its cargo to the macroautophagic machinery via the creation of a greater complex with Atg12, Atg16L, and LC3. It also functionally associates with sequestosome-1/p62 (SQSTM1) in osteoclasts. WDFY3 shuttles between the nucleus and cytoplasm. It predominantly localizes to the nucleus and nuclear membrane under basal conditions, but is recruited to cytoplasmic ubiquitin-positive protein aggregates under stress conditions. WDFY3 contains a PH-BEACH domain assemblage, five WD40 repeats and a PtdIns3P-binding FYVE domain. 65 -277260 cd15720 FYVE_Hrs FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) and similar proteins. Hrs, also termed protein pp110, is a tyrosine phosphorylated protein that plays an important role in the signaling pathway of HGF. It is localized to early endosomes and an essential component of the endosomal sorting and trafficking machinery. Hrs interacts with hypertonia-associated protein Trak1, a novel regulator of endosome-to-lysosome trafficking. It can also forms an Hrs/actinin-4/BERP/myosin V protein complex that is required for efficient transferrin receptor (TfR) recycling but not for epidermal growth factor receptor (EGFR) degradation. Moreover, Hrs, together with STAM proteins, STAM1 and STAM2, and EPs15, forms a multivalent ubiquitin-binding complex that sorts ubiquitinated proteins into the multivesicular body pathway, and plays a regulatory role in endocytosis/exocytosis. Furthermore, Hrs functions as an interactor of the neurofibromatosis 2 tumor suppressor protein schwannomin/merlin. It is also involved in the inhibition of citron kinase-mediated HIV-1 budding. Hrs contains a single ubiquitin-interacting motif (UIM) that is crucial for its function in receptor sorting, and a FYVE domain that harbors double Zn2+ binding sites. 61 -277261 cd15721 FYVE_RUFY1_like FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins. This family includes RUN and FYVE domain-containing protein RUFY1 and RUFY2. RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Both RUFY1 and RUFY2 contain an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. 58 -277262 cd15723 FYVE_protrudin FYVE-related domain found in protrudin and similar proteins. Protrudin, also termed zinc finger FYVE domain-containing protein 27 (ZFY27 or ZFYVE27), is a FYVE domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia (HSP). It is involved in neurite outgrowth through binding to spastin. Moreover, it functions as a key regulator of the Rab11-dependent membrane trafficking during neurite extension. It serves as an adaptor molecule that links its associated proteins, such as Rab11-GDP, VAP-A and -B, Surf4, and RTN3, to KIF5, a motor protein that mediates anterograde vesicular transport in neurons, and thus plays a key role in the maintenance of neuronal function. The FYVE domain of protrudin resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. In addition, unlike canonical FYVE domains that is located to early endosomes and specifically binds to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), the FYVE domain of protrudin is located to plasma membrane and preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). In addition to FYVE-related domain, protrudin also contains a Rab11-binding domain (RBD11), two hydrophobic domains, HP-1 and HP-2, an FFAT motif, and a coiled-coil domain. 62 -277263 cd15724 FYVE_ZFY26 FYVE domain found in FYVE domain-containing protein 26 (ZFY26 or ZFYVE26). ZFY26, also termed FYVE domain-containing centrosomal protein (FYVE-CENT), or spastizin, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that localizes to the centrosome and midbody. ZFY26 and its interacting partners TTC19 and KIF13A are required for cytokinesis. It also interacts with Beclin 1, a subunit of class III phosphatidylinositol 3-kinase complex, and may have potential implications for carcinogenesis. In addition, it has been considered as the causal agent of a rare form of hereditary spastic paraplegia. ZFY26 contains a FYVE domain that is important for targeting of FYVE-CENT to the midbody. 61 -277264 cd15725 FYVE_PIKfyve_Fab1 FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins. PIKfyve, also termed FYVE finger-containing phosphoinositide kinase, or 1-phosphatidylinositol 3-phosphate 5-kinase, or phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase), is a phosphoinositide 5-kinase that forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] from phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. At this point, PIKfyve is vital in early embryonic development. Moreover, PIKfyve forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, which plays a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate Epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human ether-a-go-go (hERG) channels. This family also includes the yeast and plant orthologs of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal lipid kinase domain related to PtdInsP kinases. 62 -277265 cd15726 FYVE_FYCO1 FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar proteins. FYCO1, also termed zinc finger FYVE domain-containing protein 7, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport. It acts as an effector of GTP-bound Rab7, a GTPase that recruits FYCO1 to autophagosomes and has been implicated in autophagosome-lysosomal fusion. FYCO1 also interacts with two microtubule motor proteins, kinesin (KIF) 5B and KIF23, and thus functions as a platform for assembly of vesicle fusion and trafficking factors. FYCO1 contains an N-terminal alpha-helical RUN domain followed by a long central coiled-coil region, a FYVE domain and a GOLD (Golgi dynamics) domain in C-terminus. 58 -277266 cd15727 FYVE_ZF21 FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins. ZF21 is phosphoinositide-binding protein that functions as a regulator of focal adhesions and cell movement through interaction with focal adhesion kinase. It can also bind to the cytoplasmic tail of membrane type 1 matrix metalloproteinase, a potent invasion-promoting protease, and play a key role in regulating multiple aspects of cancer cell migration and invasion. ZF21 contains a FYVE domain, which corresponds to this model. 64 -277267 cd15728 FYVE_ANFY1 FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar proteins. ANFY1, also termed ankyrin repeats hooked to a zinc finger motif (Ankhzn), is a novel cytoplasmic protein that belongs to a new group of double zinc finger proteins involved in vesicle or protein transport. It is ubiquitously expressed in a spatiotemporal-specific manner and is located on endosomes. ANFY1 contains an N-terminal coiled-coil region and a BTB/POZ domain, ankyrin repeats in the middle, and a C-terminal FYVE domain. 63 -277268 cd15729 FYVE_endofin FYVE domain found in endofin and similar proteins. Endofin, also termed zinc finger FYVE domain-containing protein 16 (ZFY16), or endosome-associated FYVE domain protein, is a FYVE domain-containing protein that is localized to EEA1-containing endosomes. It is regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Endofin is involved in Bone morphogenetic protein (BMP) signaling through interacting with Smad1 preferentially and enhancing Smad1 phosphorylation and nuclear localization upon BMP stimulation. It also functions as a scaffold protein that brings Smad4 to the proximity of the receptor complex in Transforming growth factor (TGF)-beta signaling. Moreover, endofin is a novel tyrosine phosphorylation target downstream of epidermal growth factor receptor (EGFR) in EGF-signaling. In addition, endofin plays a role in endosomal trafficking by recruiting cytosolic TOM1, an important molecule for membrane recruitment of clathrin, onto endosomal membranes. 68 -277269 cd15730 FYVE_EEA1 FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins. EEA1, also termed endosome-associated protein p162, or zinc finger FYVE domain-containing protein 2, is an essential component of the endosomal fusion machinery and required for the fusion and maturation of early endosomes in endocytosis. It forms a parallel coiled-coil homodimer in cells. EEA1 serves as the p97 ATPase substrate and the p97 ATPase may regulate the size of early endosomes by governing the oligomeric state of EEA1. It can interact with the GTP-bound form of Rab22a and be involved in endosomal membrane trafficking. EEA1 also functions as an obligate scaffold for angiotensin II-induced Akt activation in early endosomes. It can be phosphorylated by p38 mitogen-activated protein kinase (MAPK) and further regulate mu opioid receptor endocytosis. EEA1 consists of an N-terminal C2H2 Zn2+ finger, four long heptad repeats, and a C-terminal region containing a calmodulin binding (IQ) motif, a Rab5 interaction site, and a FYVE domain. This model corresponds to the FYVE domain that is responsible for binding phosphatidyl inositol-3-phosphate (PtdIns3P or PI3P) on the membrane. 63 -277270 cd15731 FYVE_LST2 FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins. Lst2, also termed zinc finger FYVE domain-containing protein 28, is a monoubiquitinylated phosphoprotein that functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling. Unlike other FYVE domain-containing proteins, Lst2 displays primarily non-endosomal localization. Its endosomal localization is regulated by monoubiquitinylation. Lst2 physically binds Trim3, also known as BERP or RNF22, which is a coordinator of endosomal trafficking and interacts with Hrs and a complex that biases cargo recycling. 65 -277271 cd15732 FYVE_MTMR3 FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins. MTMR3, also termed Myotubularin-related phosphatase 3, or FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1), or zinc finger FYVE domain-containing protein 10, is a ubiquitously expressed phosphoinositide 3-phosphatase specific for phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and PIKfyve, which produces PtdIns(3,5)P2 from PtdIns3P. It regulates cell migration through modulating phosphatidylinositol 5-phosphate (PtdIns5P) levels. MTMR3 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Unlike conventional FYVE domains, the FYVE domain of MTMR3 neither confers endosomal localization nor binds to PtdIns3P. It is also not required for the enzyme activity of MTMR3. In contrast, the PH-G domain binds phosphoinositides. 61 -277272 cd15733 FYVE_MTMR4 FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins. MTMR4, also termed FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2), or zinc finger FYVE domain-containing protein 11, is an dual specificity protein phosphatase that specifically dephosphorylates phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). It is localizes to early endosomes, as well as to Rab11- and Sec15-positive recycling endosomes, and regulates sorting from early endosomes. Moreover, MTMR4 is preferentially associated with and dephosphorylated the activated regulatory Smad proteins (R-Smads) in cytoplasm to keep transforming growth factor (TGF) beta signaling in homeostasis. It also functions as an essential negative modulator for the homeostasis of bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signaling. In addition, MTMR4 acts as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4) and may play a role in the biological process of muscle breakdown. MTMR4 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. 60 -277273 cd15734 FYVE_ZFYV1 FYVE domains found in zinc finger FYVE domain-containing protein 1 (ZFYV1) and similar proteins. ZFYV1, also termed double FYVE-containing protein 1 (DFCP1), or SR3, or tandem FYVE fingers-1, is a novel tandem FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. The subcellular distribution of exogenously-expressed ZFYV1 to Golgi, endoplasmic reticulum (ER) and vesicular is governed in part by its FYVE domains but unaffected by wortmannin, a PI3-kinase inhibitor. In addition to C-terminal tandem FYVE domain, ZFYV1 contains an N-terminal putative C2H2 type zinc finger and a possible nucleotide binding P-loop. 61 -277274 cd15735 FYVE_spVPS27p_like FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 (spVps27p) and similar proteins. spVps27p, also termed suppressor of ste12 deletion protein 4 (Sst4p), is a conserved homolog of budding Saccharomyces cerevisiae Vps27 and of mammalian Hrs. It functions as a downstream factor for phosphatidylinositol 3-kinase (PtdIns 3-kinase) in forespore membrane formation with normal morphology. It colocalizes and interacts with Hse1p, a homolog of Saccharomyces cerevisiae Hse1p and of mammalian STAM, to form a complex whose ubiquitin-interacting motifs (UIMs) are important for sporulation. spVps27p contains a VHS (Vps27p/Hrs/Stam) domain, a FYVE domain, and two UIMs. 59 -277275 cd15736 FYVE_scVPS27p_Vac1p_like FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and FYVE-related domain 1 found in yeast protein VAC1 (Vac1p) and similar proteins. The family includes Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and protein VAC1 (Vac1p). scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif. Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The FYVE domain in both Vps27p and Vac1p harbors a zinc-binding site composed of seven Cysteines and one Histidine, which is different from that of other FYVE domain containing proteins. 56 -277276 cd15737 FYVE2_Vac1p_like FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins. Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The family corresponds to the second FYVE domain that is responsible for the ability of Pep7p to efficiently interact with Vac1p and Vps45p. 83 -277277 cd15738 FYVE_MTMR_unchar FYVE-related domain found in uncharacterized myotubularin-related proteins mainly from eumetazoa. This family includes a group of uncharacterized myotubularin-related proteins mainly found in eumetazoa. Although their biological functions remain unclear, they share similar domain architecture that consists of an N-terminal pleckstrin homology (PH) domain, a highly conserved region related to myotubularin proteins, a C-terminal FYVE domain. The model corresponds to the FYVE domain, which resembles the FYVE-related domain as it has an altered sequence in the basic ligand binding patch. 61 -277278 cd15739 FYVE_RABE_unchar FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria. This family includes a group of uncharacterized rab GTPase-binding effector proteins found in bilateria. Although their biological functions remain unclear, they all contain a FYVE domain that harbors a putative phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding site. 73 -277279 cd15740 FYVE_FGD3 FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 3 (FGD3) and similar proteins. FGD3, also termed zinc finger FYVE domain-containing protein 5, is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) that undergoes the ubiquitin ligase SCFFWD1/beta-TrCP-mediated proteasomal degradation. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Due to this difference, FGD3 may play different roles from that of FGD1 to regulate cell morphology or motility. The FYVE domain of FGD3 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities. 54 -277280 cd15741 FYVE_FGD1_2_4 FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia FGD1, FGD2, FGD4. This family represents a group of Rho GTPase cell division cycle 42 (Cdc42)-specific guanine nucleotide exchange factors (GEFs), including FYVE, RhoGEF and PH domain-containing protein FGD1, FGD2 and FGD4. FGD1, also termed faciogenital dysplasia 1 protein, or Rho/Rac guanine nucleotide exchange factor FGD1 (Rho/Rac GEF), or zinc finger FYVE domain-containing protein 3, is a central regulator of extracellular matrix remodeling and belongs to the DBL family of GEFs that regulate the activation of the Rho GTPases. FGD1 is encoded by gene FGD1. Disabling mutations in the FGD1 gene cause the human X-linked developmental disorder faciogenital dysplasia (FGDY, also known as Aarskog-Scott syndrome). FGD2, also termed zinc finger FYVE domain-containing protein 4, is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. It localizes to early endosomes and active membrane ruffles. It plays a role in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system. FGD4, also termed actin filament-binding protein frabin, or FGD1-related F-actin-binding protein, or zinc finger FYVE domain-containing protein 6, functions as an F-actin-binding (FAB) protein showing significant homology to FGD1. It induces the formation of filopodia through the activation of Cdc42 in fibroblasts. Those FGD proteins possess a similar domain organization that contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus. However, each FGD has a unique N-terminal region that may directly or indirectly interact with F-actin. FGD1 and FGD4 have an N-terminal proline-rich domain (PRD) and an N-terminal F-actin binding (FAB) domain, respectively. This model corresponds to the FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. FGD1 possesses a FYVE-like domain that lack the N-terminal WxxD motif. Moreover, FGD2 is the only known RhoGEF family member shown to have a functional FYVE domain and endosomal binding activity. 65 -277281 cd15742 FYVE_FGD5 FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 5 (FGD5) and similar proteins. FGD5, also termed zinc finger FYVE domain-containing protein 23, is an endothelial cell (EC)-specific guanine nucleotide exchange factor (GEF) that regulates endothelial adhesion, survival, and angiogenesis by modulating phosphatidylinositol 3-kinase signaling. It functions as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis. FGD5 is a homologue of FGD1 and contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. The FYVE domain of FGD5 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities. 67 -277282 cd15743 FYVE_FGD6 FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins. FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. 61 -277283 cd15744 FYVE_RUFY3 FYVE-related domain found in RUN and FYVE domain-containing protein 3 (RUFY3) and similar proteins. RUFY3, also termed Rap2-interacting protein x (RIPx or RPIPx), or single axon-regulated protein (singar), is an N-terminal RUN domain and a C-terminal FYVE domain containing protein predominantly expressed in the brain. It suppresses formation of surplus axons for neuronal polarity. Unlike other RUFY proteins, RUFY3 can associate with the GTP-bound active form of Rab5. Moreover, the FYVE domain of RUFY3 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue). 52 -277284 cd15745 FYVE_RUFY4 FYVE-related domain found in RUN and FYVE domain-containing protein 4 (RUFY4) and similar proteins. RUFY4 belongs to the FUFY protein family which is characterized by the presence of an N-terminal RUN domain and a C-terminal FYVE domain. The FYVE domain of RUFY4 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue). The biological function of RUFY4 still remains unclear. 52 -277285 cd15746 FYVE_RP3A_like FYVE-related domain found in rabphilin-3A, Rab effector Noc2, and similar proteins. This family includes rabphilin-3A and Rab effector Noc2. Rabphilin-3A, also termed exophilin-1, is an effector protein that binds to the GTP-bound form of Rab3A, which is one of the most abundant Rab proteins in neurons and predominantly localized to synaptic vesicles. Rabphilin-3A is homologous to alpha-Rab3-interacting molecules (RIMs). It is a multi-domain protein containing an N-terminal Rab3A effector domain, a proline-rich linker region, and two tandem C2 domains. The effector domain binds specifically to the activated GTP-bound state of Rab3A and harbors a conserved FYVE zinc finger. The C2 domains are responsible for the binding of phosphatidylinositol-4,5-bisphosphate (PIP2) , a key player in the neurotransmitter release process. Thus, Rabphilin-3A has also been implicated in vesicle trafficking. Rab effector Noc2, also termed No C2 domains protein, or rabphilin-3A-like protein (RPH3AL), is a Rab3 effector that mediates the regulation of secretory vesicle exocytosis in neurons and certain endocrine cells. It also functions as a Rab27 effector and is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Noc2 contains an N-terminal Rab3A effector domain which only harbors a conserved FYVE zinc finger. The FYVE domains of Rabphilin-3A and Noc2 resemble a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 55 -277286 cd15747 FYVE_Slp3_4_5 FYVE-related domain found in the synaptotagmin-like proteins 3, 4, 5. The synaptotagmin-like proteins 1-5 (Slp1-5) family belongs to the carboxyl-terminal-type (C-type) tandem C2 proteins superfamily, which also contains the synaptotagmin and the Doc2 families. Slp proteins are putative membrane trafficking proteins that are characterized by the presence of a unique N-terminal Slp homology domain (SHD), and C-terminal tandem C2 domains (known as the C2A domain and C2B domain). The SHD consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2. The SHD1 and SHD2 of Slp3, Slp4 and Slp5 are separated by a putative FYVE zinc finger. By contrast, Slp1 and Slp2 lack such zinc finger and their SHD1 and SHD2 are linked together. This model corresponds to the FYVE zinc finger. At this point, Slp1 and Slp2 are not included in this model. Moreover, the FYVE domains of Slp3, Slp4 and Slp5 resemble a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 48 -277287 cd15748 FYVE_SPIR FYVE-related domain found in Spir proteins, Spire1 and Spire2. Spir proteins were originally discovered as the protein products of the Drosophila spire gene. They are Jun N-terminal kinase (JNK)-interacting proteins that have exclusively been identified in metazoans. They may play roles in membrane trafficking and cortical filament crosslinking. This family includes Spire1 and Spire2, which function as new essential factors in asymmetric division of oocytes. They mediate asymmetric spindle positioning by assembling a cytoplasmic actin network. They are also required for polar body extrusion by promoting assembly of the cleavage furrow. Moreover, they cooperate synergistically with Fmn2 to assemble F-actin in oocytes. Both Spire1 and Spire2 contain an N-terminal protein-interaction KIND domain, WH2 actin-binding domains, a Rab GTPase-interaction Spir-box, and a C-terminal FYVE membrane-binding domain. Their FYVE domains resemble FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a binding pocket that specifically bind the phospholipid phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). 42 -277288 cd15749 FYVE_ZFY19 FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins. ZFY19, also termed mixed lineage leukemia (MLL) partner containing FYVE domain, is encoded by a novel gene, MLL partner containing FYVE domain (MPFYVE). The FYVE domain of ZFY19 resembles FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. The biological function of ZFY19 remains unclear. 51 -277289 cd15750 FYVE_CARP FYVE-like domain found in caspase-associated ring proteins, CARP1 and CARP2. CARP1 and CARP2 are a novel group of caspase regulators by the presence of a FYVE-type zinc finger domain. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD (x for any residue) motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. 47 -277290 cd15751 FYVE_BSN_PCLO FYVE-related domain found in protein bassoon and piccolo. This family includes protein bassoon and piccolo. Protein bassoon, also termed zinc finger protein 231, is a core component of the presynaptic cytomatrix. It is a vertebrate-specific active zone scaffolding protein that plays a key role in structural organization and functional regulation of presynaptic release sites. Bassoon may modulate synaptic transmission efficiency by binding to presynaptic P/Q-type voltage-dependent calcium channel (VDCC) complexes and modify the channel function. As one of the most highly phosphorylated synaptic proteins, bassoon can interact with the small ubiquitous adaptor protein 14-3-3 in a phosphorylation-dependent manner, which modulates its anchoring to the presynaptic cytomatrix. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Both bassoon and piccolo contain two N-terminal FYVE zinc fingers, a PDZ domain and two C-terminal C2 domains. Their FYVE domain resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 62 -277291 cd15752 FYVE_SlaC2-a FYVE-related domain found in Slp homolog lacking C2 domains a (SlaC2-a) and similar proteins. SlaC2-a, also termed melanophilin, or exophilin-3, is a GTP-bound form of Rab27A-, myosin Va-, and actin-binding protein present on melanosomes. It is involved in the control of transferring of melanosomes from microtubules to actin filaments. It also functions as a melanocyte type myosin Va (McM5) binding partner and directly activates the actin-activated ATPase activity of McM5 through forming a tripartite protein complex with Rab27A and an actin-based motor myosin Va. SlaC2-a belongs to the Slp homolog lacking C2 domains (Slac2) family. It contains an N-terminal Slp homology domain (SHD), but lacks tandem C2 domains. The SHD consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of SlaC2-a are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. Moreover, Slac2-a has a middle myosin-binding domain and a C-terminal actin-binding domain. 76 -277292 cd15753 FYVE_SlaC2-c FYVE-related domain found in Slp homolog lacking C2 domains c (SlaC2-c) and similar proteins. SlaC2-c, also termed Rab effector MyRIP, or exophilin-8, or myosin-VIIa- and Rab-interacting protein, or synaptotagmin-like protein lacking C2 domains c, is a GTP-bound form of Rab27A-, myosin Va/VIIa-, and actin-binding protein mainly present on retinal melanosomes and secretory granules. It may play a role in insulin granule exocytosis. It is also involved in the control of isoproterenol (IPR)-induced amylase release from parotid acinar cells. SlaC2-c belongs to the Slp homolog lacking C2 domains (Slac2) family. It contains an N-terminal Slp homology domain (SHD), but lacks tandem C2 domains. The SHD consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of SlaC2-c are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. Moreover, Slac2-c has a middle myosin-binding domain and a C-terminal actin-binding domain. 49 -277293 cd15754 FYVE_PKHF1 FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar proteins. Phafin-1, also termed lysosome-associated apoptosis-inducing protein containing PH (pleckstrin homology) and FYVE domains (LAPF), or pleckstrin homology domain-containing family F member 1 (PKHF1), or PH domain-containing family F member 1, or apoptosis-inducing protein, or PH and FYVE domain-containing protein 1, or zinc finger FYVE domain-containing protein 15, is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. 64 -277294 cd15755 FYVE_PKHF2 FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar proteins. Phafin-2, also termed endoplasmic reticulum-associated apoptosis-involved protein containing PH and FYVE domains (EAPF), or pleckstrin homology domain-containing family F member 2 (PKHF2), or PH domain-containing family F member 2, or PH and FYVE domain-containing protein 2, or zinc finger FYVE domain-containing protein 18, is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. 64 -277295 cd15756 FYVE_WDFY1 FYVE domain found in WD40 repeat and FYVE domain-containing protein 1 (WDFY1) and similar proteins. WDFY1, also termed FYVE domain containing protein localized to endosomes-1 (FENS-1), or phosphoinositide-binding protein 1, or zinc finger FYVE domain-containing protein 17, is a novel single FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. WDFY1 to early endosomes requires an intact FYVE domain and is inhibited by wortmannin, a PI3-kinase inhibitor. In addition to FYVE domain, WDFY1 harbors multiple WD-40 repeats. 76 -277296 cd15757 FYVE_WDFY2 FYVE domain found in WD40 repeat and FYVE domain-containing protein 2 (WDFY2). WDFY2, also termed zinc finger FYVE domain-containing protein 22, or ProF (propeller-FYVE protein), is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that is localized to a distinct subset of early endosomes close to the plasma membrane. It interacts preferentially with endogenous serine/threonine kinase Akt2, but not Akt1, and plays a specific role in modulating signaling through Akt downstream of the interaction of this kinase with the endosomal proteins APPL (adaptor protein containing PH domain, PTB domain, and leucine zipper motif). In addition to Akt, WDFY2 serves as a binding partner for protein kinase C, zeta (PRKCZ), and its substrate vesicle-associated membrane protein 2 (VAMP2), and is involved in vesicle cycling in various secretory pathways. Moreover, Silencing of WDFY2 by siRNA produces a strong inhibition of endocytosis. WDFY2 contains WD40 motifs and a FYVE domain. 70 -277297 cd15758 FYVE_RUFY1 FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins. RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY1 contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. 71 -277298 cd15759 FYVE_RUFY2 FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins. RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. It is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. 71 -277299 cd15760 FYVE_scVPS27p_like FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and similar proteins. scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif. 59 -277300 cd15761 FYVE1_Vac1p_like FYVE-related domain 1 found in yeast protein VAC1 (Vac1p) and similar proteins. Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The family corresponds to the first FYVE domain, which resembles the FYVE-related domain as it has an altered sequence in the basic ligand binding patch. 76 -277301 cd15762 FYVE_RP3A FYVE-related domain found in rabphilin-3A and similar proteins. Rabphilin-3A, also termed exophilin-1, is an effector protein that binds to the GTP-bound form of Rab3A, which is one of the most abundant Rab proteins in neurons and predominantly localized to synaptic vesicles. Rabphilin-3A is homologous to alpha-Rab3-interacting molecules (RIMs). It is a multi-domain protein containing an N-terminal Rab3A effector domain, a proline-rich linker region, and two tandem C2 domains. The effector domain binds specifically to the activated GTP-bound state of Rab3A and harbors a conserved FYVE zinc finger. The C2 domains are responsible for the binding of phosphatidylinositol-4,5-bisphosphate (PIP2) , a key player in the neurotransmitter release process. Thus, Rabphilin-3A has also been implicated in vesicle trafficking. The FYVE domain of Rabphilin-3A resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 80 -277302 cd15763 FYVE_RPH3L FYVE-related domain found in Rab effector Noc2 and similar proteins. Rab effector Noc2, also termed No C2 domains protein, or rabphilin-3A-like protein (RPH3AL), is a Rab3 effector that mediates the regulation of secretory vesicle exocytosis in neurons and certain endocrine cells. It also functions as a Rab27 effector and is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Noc2 contains an N-terminal Rab3A effector domain which harbors a conserved zinc finger, but lacks tandem C2 domains. The FYVE domain of Noc2 resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 64 -277303 cd15764 FYVE_Slp4 FYVE-related domain found in synaptotagmin-like protein 4 (Slp4) and similar proteins. Slp4, also termed exophilin-2, or granuphilin, has been characterized as a regulator of the release of insulin granules from pancreatic beta-cells and dense core granules from PC12 neuronal cells by binding to Rab27A , and amylase granules from parotid gland acinar cells through interaction with syntaxin-2/3 in a Munc18-2-dependent manner on the apical plasma membrane. It can binds to syntaxin 2 in parotid acinar cells. It is also involved in granule transport by recruitment of the motor protein myosin Va. Moreover, it requires Rab8 to increase granule release in platelets. Slp4 contains an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. The Slp homology domain (SHD) consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of Slp4 are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 50 -277304 cd15765 FYVE_Slp3 FYVE-related domain found in synaptotagmin-like protein 3 (Slp3) and similar proteins. Slp3, also termed exophilin-6, functions as a Rab27A-specific effector in cytotoxic T lymphocytes. It binds to kinesin-1 motor through interaction with the tetratricopeptide repeat of the kinesin-1 light chain (KLC1). The kinesin-1/Slp3/Rab27a complex plays a role in mediating the terminal transport of lytic granules to the immune synapse. Slp3 contains an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. The Slp homology domain (SHD) consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of Slp3 are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. In addition, the Slp3 C2A domain showed Ca2+-dependent phospholipid binding activity. At this point, Slp3 is a Ca2+-dependent isoform in Slp proteins family. 48 -277305 cd15766 FYVE_Slp5 FYVE-related domain found in synaptotagmin-like protein 5 (Slp5) and similar proteins. Slp5 is a novel Rab27A-specific effector that is highly expressed in placenta and liver. Slp5 specifically interacted with the GTP-bound form of Rab27A and is involved in Rab27A-dependent membrane trafficking in specific tissues. Slp5 contains an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. The Slp homology domain (SHD) consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of Slp5 are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 47 -277306 cd15767 FYVE_SPIR1 FYVE-related domain found in protein spire homolog 1 (Spire1) and similar proteins. Spire1 is encoded by gene spir-1, which is primarily found to be expressed in the developing nervous system and in neuronal cells of the adult brain, as well as in the fetal liver and in the adult spleen. It functions as a new essential factor in asymmetric division of oocytes. It mediates asymmetric spindle positioning by assembling a cytoplasmic actin network. It is also required for polar body extrusion by promoting assembly of the cleavage furrow. Moreover, it cooperates synergistically with Fmn2 to assemble F-actin in oocytes. Spire1 contains an N-terminal protein-interaction KIND domain, WH2 actin-binding domains, a Rab GTPase-interaction Spir-box, and a C-terminal FYVE membrane-binding domain. The FYVE domain resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a binding pocket that specifically binds the phospholipid phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). 79 -277307 cd15768 FYVE_SPIR2 FYVE-related domain found in protein spire homolog 2 (Spire2) and similar proteins. Spire2 is encoded by gene spir-2, which is expressed in the nervous system and highly expressed in the colonic epithelium. It functions as a new essential factor in asymmetric division of oocytes. It mediates asymmetric spindle positioning by assembling a cytoplasmic actin network. It is also required for polar body extrusion by promoting assembly of the cleavage furrow. Moreover, it cooperates synergistically with Fmn2 to assemble F-actin in oocytes. Spire2 contains an N-terminal protein-interaction KIND domain, WH2 actin-binding domains, a Rab GTPase-interaction Spir-box, and a C-terminal FYVE membrane-binding domain. The FYVE domain resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a binding pocket that specifically binds the phospholipid phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). 112 -277308 cd15769 FYVE_CARP1 FYVE-like domain found in caspase regulator CARP1 and similar proteins. CARP1, also termed E3 ubiquitin-protein ligase RNF34, or caspases-8 and -10-associated RING finger protein 1, or FYVE-RING finger protein Momo, or RING finger homologous to inhibitor of apoptosis protein (RFI), or RING finger protein 34, or RING finger protein RIFF, is a nuclear protein that functions as a specific E3 ubiquitin ligase for the transcriptional coactivator PGC-1alpha, a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell, and negatively regulates brown fat cell metabolism. It is preferentially expressed in esophageal, gastric and colorectal cancers, suggesting a possible association with the development of the digestive tract cancers. It regulates the p53 signaling pathway through degrading 14-3-3 sigma and stabilizing MDM2. CARP1 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, CARP1 has an altered sequence in the basic ligand binding patch and lack the WxxD (x for any residue) motif that is conserved only in phosphoinositide binding FYVE domains. Thus it belongs to a family of unique FYVE-type domains called FYVE-like domains. In addition to the N-terminal FYVE-like domain, CARP1 harbors a C-terminal RING domain. 47 -277309 cd15770 FYVE_CARP2 FYVE-like domain found in caspase regulator CARP2 and similar proteins. CARP2, also termed E3 ubiquitin-protein ligase rififylin, or caspases-8 and -10-associated RING finger protein 2, or FYVE-RING finger protein Sakura (Fring), or RING finger and FYVE-like domain-containing protein 1, or RING finger protein 189, or RING finger protein 34-like, is a novel caspase regulator containing a FYVE-type zinc finger domain. It regulates the p53 signaling pathway through degrading 14-3-3 sigma and stabilizing MDM2. CARP2 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, CARP2 has an altered sequence in the basic ligand binding patch and lack the WxxD (x for any residue) motif that is conserved only in phosphoinositide binding FYVE domains. Thus it belongs to a family of unique FYVE-type domains called FYVE-like domains. In addition to the N-terminal FYVE-like domain, CARP2 harbors a C-terminal RING domain. 49 -277310 cd15771 FYVE1_BSN_PCLO FYVE-related domain 1 found in protein bassoon and piccolo. This family includes protein bassoon and piccolo. Protein bassoon, also termed zinc finger protein 231, is a core component of the presynaptic cytomatrix. It is a vertebrate-specific active zone scaffolding protein that plays a key role in structural organization and functional regulation of presynaptic release sites. Bassoon may modulate synaptic transmission efficiency by binding to presynaptic P/Q-type voltage-dependent calcium channel (VDCC) complexes and modify the channel function. As one of the most highly phosphorylated synaptic proteins, bassoon can interact with the small ubiquitous adaptor protein 14-3-3 in a phosphorylation-dependent manner, which modulates its anchoring to the presynaptic cytomatrix. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Both bassoon and piccolo contain two N-terminal FYVE zinc fingers, a PDZ domain and two C-terminal C2 domains. Their FYVE domain resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. This model corresponds to the first FYVE-related domain. 61 -277311 cd15772 FYVE2_BSN_PCLO FYVE-related domain 2 found in protein bassoon and piccolo. This family includes protein bassoon and piccolo. Protein bassoon, also termed zinc finger protein 231, is a core component of the presynaptic cytomatrix. It is a vertebrate-specific active zone scaffolding protein that plays a key role in structural organization and functional regulation of presynaptic release sites. Bassoon may modulate synaptic transmission efficiency by binding to presynaptic P/Q-type voltage-dependent calcium channel (VDCC) complexes and modify the channel function. As one of the most highly phosphorylated synaptic proteins, bassoon can interact with the small ubiquitous adaptor protein 14-3-3 in a phosphorylation-dependent manner, which modulates its anchoring to the presynaptic cytomatrix. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Both bassoon and piccolo contain two N-terminal FYVE zinc fingers, a PDZ domain and two C-terminal C2 domains. Their FYVE domain resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. This model corresponds to the second FYVE-related domain. 64 -277312 cd15773 FYVE1_BSN FYVE-related domain 1 found in protein bassoon. Protein bassoon, also termed zinc finger protein 231, is a core component of the presynaptic cytomatrix. It is a vertebrate-specific active zone scaffolding protein that plays a key role in structural organization and functional regulation of presynaptic release sites. Bassoon may modulate synaptic transmission efficiency by binding to presynaptic P/Q-type voltage-dependent calcium channel (VDCC) complexes and modify the channel function. As one of the most highly phosphorylated synaptic proteins, bassoon can interact with the small ubiquitous adaptor protein 14-3-3 in a phosphorylation-dependent manner, which modulates its anchoring to the presynaptic cytomatrix. Bassoon contains two N-terminal FYVE zinc fingers, a PDZ domain and two C-terminal C2 domains. This family corresponds to the first FYVE domain, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 64 -277313 cd15774 FYVE1_PCLO FYVE-related domain 1 found in protein piccolo. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Piccolo is a multi-domain protein containing two N-terminal FYVE zinc fingers, a polyproline tract, and a PDZ domain and two C-terminal C2 domains. This family corresponds to the first FYVE domain, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 62 -277314 cd15775 FYVE2_BSN FYVE-related domain 2 found in protein bassoon. Protein bassoon, also termed zinc finger protein 231, is a core component of the presynaptic cytomatrix. It is a vertebrate-specific active zone scaffolding protein that plays a key role in structural organization and functional regulation of presynaptic release sites. Bassoon may modulate synaptic transmission efficiency by binding to presynaptic P/Q-type voltage-dependent calcium channel (VDCC) complexes and modify the channel function. As one of the most highly phosphorylated synaptic proteins, bassoon can interact with the small ubiquitous adaptor protein 14-3-3 in a phosphorylation-dependent manner, which modulates its anchoring to the presynaptic cytomatrix. Bassoon contains two N-terminal FYVE zinc fingers, a PDZ domain and two C-terminal C2 domains. This family corresponds to the second FYVE domain, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 65 -277315 cd15776 FYVE2_PCLO FYVE-related domain 2 found in protein piccolo. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Piccolo is a multi-domain protein containing two N-terminal FYVE zinc fingers, a polyproline tract, and a PDZ domain and two C-terminal C2 domains. This family corresponds to the second FYVE domain, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 64 -276940 cd15777 CRBN_C_like Thalidomide-binding C-terminal domain of cereblon (CRBN) and similar protein domains. Cereblon is part of an E3 ubiquitin ligase complex, together with damaged DNA-binding protein 1 (DDB1), CUL4A and ROC1. Cereblon interacts directly with DDB1, although the C-terminal domain characterized here does not contribute to that interaction. Ubiquination of cellular targets by this complex increases levels of FGF8 and FGF10, which was shown to affect the development of limbs and auditory vesicles in embryogenesis. The C-terminal domain of Cereblon was shown to contain the binding site for thalidomide and its analogs, a class of teratogenic drugs that exhibit an antiproliferative effect on myelomas. Mutations in CRBN, some of which map onto the C-terminal domain, were associated with autosomal recessive mental retardation, which may have to do with interactions between CRBN and ion channels in the brain. 101 -275446 cd15778 Lreu_0056_like Proteins similar to Lactobacillus reuteri ORF 0056. This family of Lactobacillus proteins has not been characterized. The 3D structure has been solved for a hypothetical protein with a predicted signal peptide, as part of a wider examination of the structural biology of commensal human gut flora and pathogens. 112 -294014 cd15783 SA1633_like Uncharacterized protein family conserved in Staphylococci. Some proteins in this family have been described as putative beta-lactamases. They are structurally similar to the C-terminal beta-grasp domains of Staphylococcal and Streptococcal superantigens. 143 -275431 cd15784 PH_RUTBC Rab-binding Pleckstrin homology domain (PH) of small G-protein signaling modulator 1 and similar proteins. Small G-protein signaling modulator 1, or RUN and TBC1 domain containing 2 (RUTBC2), as well as RUTBC1, bind to Rab9A via their Pleckstrin homology (PH) domain. They do not seem to act as GAP proteins that stimulate GTP hydrolysis by Rab9A, and RUTBC2 has been shown to also interact with Rab9B, most likely in a similar manner. RUTBC1 does stimulate GTP hydrolysis by Rab32 and Rab33B, however, while RUTBC2 appears to be a GAP for Rab36. Rab9A and associated proteins control the recycling of mannose-6-phosphate receptors from late endosomes to the trans-Golgi. 176 -276946 cd15785 YycH_N_like N-terminal domain of YycH and structurally similar proteins conserved in Firmicutes. These protein domains appear to be members of a somewhat larger structural family conserved in Firmicutes, including the N-terminal domain of YycH. YycH plays a role in signal transduction and is found immediately downstream of the essential histidine kinase YycG. YycG forms a two-component system together with its cognate response regulator YycF. YycH functions as a modulator of YycG activity, possibly by interacting with YchI. All three molecules (YchG, YchH, and YchI) have been characterized as membrane proteins, and they may be able to form homodimers. 113 -276947 cd15786 CPF_1278_like Uncharacterized protein conserved in Clostridia. This protein appears to be a member of a somewhat larger structural family conserved in Firmicutes. The 3D structure is available for one protein, CPF_1278, which has been labelled a putative lipoprotein. CPF_1278 displays structural similarity to the N-terminal domain of YycH, which plays a role in signal transduction and is found immediately downstream of the essential histidine kinase YycG. YycG forms a two-component system together with its cognate response regulator YycF. YycH functions as a modulator of YycG activity, possibly by interacting with YchI. All three molecules (YchG, YchH, and YchI) have been characterized as membrane proteins, and they may be able to form homodimers. 124 -276948 cd15787 YycH_N N-terminal domain of YycH and similar proteins. This protein appears to be a member of a somewhat larger structural family conserved in Firmicutes. YycH plays a role in signal transduction and is found immediately downstream of the essential histidine kinase YycG. YycG forms a two-component system together with its cognate response regulator YycF. YycH functions as a modulator of YycG activity, possibly by interacting with YchI. All three molecules (YchG, YchH, and YchI) have been characterized as membrane proteins, and they may be able to form homodimers. This model describes the N-terminal domain of YycH. 143 -276949 cd15788 Clospo_01618_like Uncharacterized protein conserved in Clostridia. This protein appears to be a member of a somewhat larger structural family conserved in Firmicutes. It displays structural similarity to the N-terminal domain of YycH, which plays a role in signal transduction and is found immediately downstream of the essential histidine kinase YycG. YycG forms a two-component system together with its cognate response regulator YycF. YycH functions as a modulator of YycG activity, possibly by interacting with YchI. All three molecules (YchG, YchH, and YchI) have been characterized as membrane proteins, and they may be able to form homodimers. 129 -275432 cd15789 PH_ARHGEF2_18_like rho guanine nucleotide exchange factor. RhoGEFs belongs to regulator of G-protein signaling (RGS) domain-containing RhoGEFs that are RhoA-selective and directly activated by the Galpha12/13 family of heterotrimeric G proteins. The members here all contain Dbl homology (DH)-PH domains. In addition some members contain N-terminal C1 (Protein kinase C conserved region 1) domains, PDZ (also called DHR/Dlg homologous regions) domains, ANK (ankyrin) domains, and RGS (Regulator of G-protein signalling) domains or C-terminal ATP-synthase B subunit. The DH-PH domains bind and catalyze the exchange of GDP for GTP on RhoA. RhoGEF2/Rho guanine nucleotide exchange factor 2, p114RhoGEF/p114 Rho guanine nucleotide exchange factor, p115RhoGEF, p190RhoGEF, PRG/PDZ Rho guanine nucleotide exchange factor, RhoGEF 11, RhoGEF 12, RhoGEF 18, AKAP13/A-kinase anchoring protein 13, and LARG/Leukemia-associated Rho guanine nucleotide exchange factor are included in this CD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 102 -275433 cd15790 PH-GRAM_MTMR11 Myotubularian (MTM) related 11 protein (MTMR11) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain. MTMR10, MTMR11, and MTMR12 are catalytically inactive phosphatases that play a role as an adapter for the phosphatase myotubularin to regulate myotubularintracellular location. They contains a Glu residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase. They contains an N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an inactive PTP domain, a SET interaction domain, and a C-terminal coiled-coil domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. 123 -275434 cd15791 PH1_FDG4 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 4, N-terminal Pleckstrin homology (PH) domain. In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 94 -275435 cd15792 PH1_FGD5 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin Homology (PH) domain. FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -275436 cd15793 PH1_FGD6 FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain. FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 123 -275437 cd15794 PH_ARHGEF18 Rho guanine nucleotide exchange factor 18 Pleckstrin homology (PH) domain. ARHGEF18, also called p114RhoGEF, is a key regulator of RhoA-Rock2 signaling that is crucial for maintenance of polarity in the vertebrate retinal epithelium, and consequently is essential for cellular differentiation, morphology and eventually organ function. ARHGEF18 contains Dbl-homology (DH) and pleckstrin-homology (PH) domains which bind and catalyze the exchange of GDP for GTP on RhoA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. 119 -275439 cd15795 PMEI-Pla_a_1_like Pollen allergen Pla a 1 and similar plant proteins. The major Platanus acerifolia pollen allergen Pla a 1 belongs to a class of allergens related to proteinaceous invertase and pectin methylesterase inhibitors. Platanus acerifolia is an important cause of pollinosis; Pla a 1 has a prevalence of about 80% among plane tree pollen-allergic patients. Recombinant Pla a 1 binds IgE in vitro, similar to its natural counterpart, rendering it suitable for specific diagnosis and structural studies. Invertase inhibitors are structurally similar to those of pectin methylesterase (PMEIs), an enzyme that is involved in the control of pectin metabolism and is structurally unrelated to invertases. All inhibitors share a size of about 18 kDa, two strictly conserved disulfide bridges and only moderate sequence homology (about 20% sequence identity). 148 -275440 cd15796 CIF_like Cell-wall inhibitor of beta fructosidase and similar proteins. Cell-wall invertases (CWIs) are secreted apoplastic enzymes belonging to the glycoside hydrolase family 32 (EC 3.2.1.26) that catalyze the hydrolytic cleavage of the disaccharide sucrose into glucose and fructose. Their activity is tightly regulated by compartment-specific inhibitor proteins at transcriptional and post-transcriptional levels. Invertase inhibitors are structurally similar to those of pectin methylesterase (PMEIs), an enzyme that is involved in the control of pectin metabolism and is structurally unrelated to invertases. All inhibitors share a size of about 18 kDa, two strictly conserved disulfide bridges and only moderate sequence homology (about 20% sequence identity). Interaction of invertase inhibitor Nt-CIF (Nicotiana tabacum cell-wall inhibitor of beta-fructosidase) with CWI is strictly pH-dependent, modulated between pH 4 and 6, with rapid dissociation at neutral pH mediated by structure rearrangement or surface charge pattern in the binding interface. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. 148 -275441 cd15797 PMEI Pectin methylesterase inhibitor. Pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) catalyzes the demethylesterification of homogalacturonans in the cell wall. Its activity is regulated by the proteinaceous PME inhibitor (PMEI) which inhibits PME and invertase through formation of a non-covalent 1:1 complex. Depending on the mode of demethylesterification, PMEI activity results in either loosening or rigidification of the cell wall. PMEI has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. Thus, PMEI probably plays an important physiological role in PME regulation in plants, possessing several potential applications in a food-technological context. 149 -275442 cd15798 PMEI-like_3 Uncharacterized subfamily of plant invertase/pectin methylesterase inhibitor domains. This subfamily contains inhibitors similar to those of pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) that catalyzes the demethylesterification of homogalacturonans in the cell wall. The proteinaceous PME inhibitor (PMEI) inhibits PME and invertase through formation of a non-covalent 1:1 complex. Depending on the mode of demethylesterification, PMEI activity results in either loosening or rigidification of the cell wall. PMEI has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. Thus, PMEI probably plays an important physiological role in PME regulation in plants, possessing several potential applications in a food-technological context. 154 -275443 cd15799 PMEI-like_4 plant invertase/pectin methylesterase inhibitor domain-containing protein. This subfamily contains inhibitors similar to those of pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) that catalyzes the demethylesterification of homogalacturonans in the cell wall, and cell-wall invertases (CWIs) that catalyze the hydrolytic cleavage of the disaccharide sucrose into glucose and fructose. The proteinaceous PME inhibitor (PMEI) inhibits PME and invertase through formation of a non-covalent 1:1 complex. Cell-wall inhibitor of beta-fructosidase from tobacco (CIF) interacts with CWI in a strictly pH-dependent manner, modulated between pH 4 and 6, with rapid dissociation at neutral pH mediated by structure rearrangement or surface charge pattern in the binding interface. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. 151 -275444 cd15800 PMEI-like_2 Uncharacterized subfamily of plant invertase/pectin methylesterase inhibitors. This subfamily contains inhibitors similar to those of pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) that catalyzes the demethylesterification of homogalacturonans in the cell wall, and cell-wall invertases (CWIs) that catalyze the hydrolytic cleavage of the disaccharide sucrose into glucose and fructose. The proteinaceous PME inhibitor (PMEI) inhibits PME and invertase through formation of a non-covalent 1:1 complex. Cell-wall inhibitor of beta-fructosidase from tobacco (CIF) interacts with CWI in a strictly pH-dependent manner, modulated between pH 4 and 6, with rapid dissociation at neutral pH mediated by structure rearrangement or surface charge pattern in the binding interface. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. 148 -275445 cd15801 PMEI-like_1 Uncharacterized subfamily of plant invertase/pectin methylesterase inhibitors. This subfamily contains inhibitors similar to those of pectin methylesterase (PME; Pectinesterase; EC 3.1.1.11; CAZy class 8 of carbohydrate esterases) that catalyzes the demethylesterification of homogalacturonans in the cell wall, and cell-wall invertases (CWIs) that catalyze the hydrolytic cleavage of the disaccharide sucrose into glucose and fructose. The proteinaceous PME inhibitor (PMEI) inhibits PME and invertase through formation of a non-covalent 1:1 complex. Cell-wall inhibitor of beta-fructosidase from tobacco (CIF) interacts with CWI in a strictly pH-dependent manner, modulated between pH 4 and 6, with rapid dissociation at neutral pH mediated by structure rearrangement or surface charge pattern in the binding interface. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. 146 -276805 cd15802 RING_CBP-p300 atypical RING domain found in CREB-binding protein and p300 histone acetyltransferases. CBP and p300 (also known as CREBBP or KAT3A and EP300 or KAT3B, respectively) are two histone acetyltransferases (HATs) that associate with and acetylate transcriptional regulators and chromatin. The catalytic core of animal CBP-p300 contains a bromodomain, a CH2 region containing a discontinuous PHD domain interrupted by this RING domain, and a HAT domain. Bromodomain-RING-PHD forms a compact module in which the RING domain is juxtaposed with the HAT substrate-binding site. This ring domain contains only a single zinc ion-binding cluster instead of two; instead of a second zinc atom, a network of hydrophobic interactions stabilizes the domain. The RING domain has an inhibitory role. Disease mutations that disrupt RING attachment lead to upregulation of HAT activity. HAT regulation may require repositioning of the RING domain to facilitate access to an otherwise partially occluded HAT active site. Plant CBP-p300 type HATs lack a bromodomain whose role in the animal animal CBP-p300's is to bind acetylated histones; it has been suggested that these plant proteins may utilize a different domain or another bromodomain protein to perform this function. This RING domain has also been referred to as DUF902. 73 -276941 cd15803 RLR_C_like C-terminal domain of Retinoic acid-inducible gene (RIG)-I-like Receptors, Cereblon (CRBN), and similar protein domains. Retinoic acid-inducible gene (RIG)-I-like Receptors (RLRs) are cytoplasmic RNA receptors that recognize non-self RNA and act as molecular sensors to detect viral pathogens. They play crucial roles in innate antiviral responses, including the production of proinflammatory cytokines and type I interferon. There are three RLRs in vertebrates, RIG-I, LGP2, and MDA5. They are characterized by a central DExD/H-box helicase domain and a C-terminal domain, both of which are responsible for binding viral RNA. Cereblon is part of an E3 ubiquitin ligase complex, together with damaged DNA binding protein 1 (DDB1), CUL4A and ROC1. Cereblon interacts directly with DDB1, although the C-terminal domain characterized here does not contribute to that interaction. The C-terminal domain of Cereblon was shown to contain the binding site for thalidomide and its analogs, a class of teratogenic drugs that exhibit an antiproliferative effect on myelomas. Mutations in CRBN, some of which map onto the C-terminal domain, were associated with autosomal recessive mental retardation, which may have to do with interactions between CRBN and ion channels in the brain. RLRs and Cereblon contain a common conserved zinc binding site in their C-terminal domains. 84 -276942 cd15804 RLR_C C-terminal domain of Retinoic acid-inducible gene (RIG)-I-like Receptors. Retinoic acid-inducible gene (RIG)-I-like Receptors (RLRs) are cytoplasmic RNA receptors that recognize non-self RNA and act as molecular sensors to detect viral pathogens. They play crucial roles in innate antiviral responses, including the production of proinflammatory cytokines and type I interferon. There are three RLRs in vertebrates, RIG-I, LGP2, and MDA5. They are characterized by a central DExD/H-box helicase domain and a C-terminal domain, both of which are responsible for binding viral RNA. The helicase domain catalyzes the unwinding of double stranded RNA in an ATP-dependent manner. RIG-I and MDA5 also contain two N-terminal caspase activation and recruitment domains (CARDs), which initiate downstream signaling upon viral RNA sensing. They may detect partially overlapping viral substrates, including dengue virus, West Nile virus (WNV), reoviruses, and several paramyxoviruses (such as measles virus and Sendai virus). LGP2 lacks CARD and may play a regulatory role in RLR signaling. It may cooperate with either RIG-I or MDA5 to sense viral RNA. 111 -276943 cd15805 RIG-I_C C-terminal domain of Retinoic acid-inducible gene (RIG)-I protein, a cytoplasmic viral RNA receptor. Retinoic acid-inducible gene (RIG)-I protein, also called DEAD box protein 58 (DDX58), is one of three members of the RIG-I-like Receptor (RLR) family. RLRs are cytoplasmic RNA receptors that recognize non-self RNA and act as molecular sensors to detect viral pathogens. RIG-I is activated by blunt-ended double-stranded RNA with or without a 5'-triphosphate (ppp), by single-stranded RNA marked by a 5'-ppp and by polyuridine sequences. It has been found to confer resistance to many negative-sense RNA viruses, including orthomyxoviruses, rhabdoviruses, bunyaviruses, and paramyxoviruses, as well as the positive-strand hepatitis C virus. RLRs are characterized by a central DExD/H-box helicase domain and a C-terminal domain, both of which are responsible for binding viral RNA. The helicase domain catalyzes the unwinding of double stranded RNA in an ATP-dependent manner. RIG-I and MDA5 also contain two N-terminal caspase activation and recruitment domains (CARDs), which initiate downstream signaling upon viral RNA sensing. 112 -276944 cd15806 LGP2_C C-terminal domain of Laboratory of Genetics and Physiology 2 (LGP2), a cytoplasmic viral RNA receptor. Laboratory of Genetics and Physiology 2 (LGP2) is one of three members of the RIG-I-like Receptor (RLR) family. RLRs are cytoplasmic RNA receptors that recognize non-self RNA and act as molecular sensors to detect viral pathogens. They are characterized by a central DExD/H-box helicase domain and a C-terminal domain, both of which are responsible for binding viral RNA. LGP2 lacks the caspase activation and recruitment domains (CARDs) that are present in other RLRs, which initiate downstream signaling upon viral RNA sensing. LGP2 may play a regulatory role in RLR signaling, and may cooperate with either RIG-I or MDA5 to sense viral RNA. 112 -276945 cd15807 MDA5_C C-terminal domain of Melanoma differentiation-associated protein 5, a cytoplasmic viral RNA receptor. Melanoma differentiation-associated protein 5 (MDA5) is also called Interferon-induced helicase C domain-containing protein 1 (IFIH1) or RIG-I-like receptor 2 (RLR-2). It is one of three members of the RLR family. RLRs are cytoplasmic RNA receptors that recognize non-self RNA and act as molecular sensors to detect viral pathogens. It has been shown to detect viruses from the Picornaviridae and Caliciviridae families. RLRs are characterized by a central DExD/H-box helicase domain and a C-terminal domain, both of which are responsible for binding viral RNA. The helicase domain catalyzes the unwinding of double stranded RNA in an ATP-dependent manner. RIG-I and MDA5 also contain two N-terminal caspase activation and recruitment domains (CARDs), which initiate downstream signaling upon viral RNA sensing. 117 -293980 cd15808 SPRY_PRY_TRIM47 PRY/SPRY domain in tripartite motif-containing protein 47 (TRIM47), also known as RING finger protein 100 (RNF100) or Gene overexpressed in astrocytoma protein (GOA). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM47, also known as GOA (Gene overexpressed in astrocytoma protein) or RNF100 (RING finger protein 100). TRIM47 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. It is highly expressed in kidney tubular cells, but lowly expressed in most tissue. It is overexpressed in astrocytoma tumor cells and plays an important role in the process of dedifferentiation that is associated with astrocytoma tumorigenesis; astrocytoma, also known as cerebral astrocytoma, is a malignant glioma that arises from astrocytes. Genome wide studies on white matter lesions have identified a novel locus on chromosome 17q25 harboring several genes such as TRIM47 and TRIM65 which pinpoints to possible novel mechanisms leading to these lesions. 206 -293981 cd15809 SPRY_PRY_TRIM4 PRY/SPRY domain in tripartite motif-binding protein 4 (TRIM4), also known as RING finger protein 87 (RNF87). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM4 which is also known as RING finger protein 87 (RNF87). TRIM4 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. It is a positive regulator of RIG-I-mediated interferon (IFN) induction. It regulates virus-induced IFN induction and cellular antiviral innate immunity by targeting RIG-I for K63-linked poly-ubiquitination. Over-expression of TRIM4 enhances virus-triggered activation of transcription factors IRF3 and NF-kappaB, as well as IFN-beta induction. Expression of TRIM4 differs significantly in Huntington's Disease (HD) neural cells when compared with wild-type controls, possibly impacting down-regulation of the Huntingtin (HTT) gene, which is involved in the regulation of diverse cellular activities that are impaired in Huntington's Disease (HD) cells. 191 -293982 cd15810 SPRY_PRY_TRIM5_6_22_34 PRY/SPRY domain of tripartite motif-binding protein 5, 6, 22 and 34 (TRIM5, TRIM6, TRIM22 and TRIM34). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of very close paralogs, TRIM5, TRIM6, TRIM22 and TRIM34. These domains are composed of RING/B-box/coiled-coil core and are also known as RBCC proteins. They form a locus of four closely related TRIM genes within an olfactory receptor-rich region on chromosome 11 of the human genome. Genetic analysis of this locus indicates that these four genes have evolved by gene duplication from a common ancestral gene. All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. TRIM5 promotes innate immune signaling by activating the TAK1 kinase complex by cooperating with the heterodimeric E2, UBC13/UEV1A. It also stimulates NFkB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines, amplifying these activities upon retroviral infection. Interaction of its PRY-SPRY or cyclophilin domains with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. TRIM6 is selectively expressed in embryonic stem (ES) cells and interacts with the proto-oncogene product Myc, maintaining the pluripotency of the ES cells. TRIM6, together with E2 Ubiquitin conjugase (UbE2K) and K48-linked poly-Ub chains, is critical for the IkappaB kinase epsilon (IKKepsilon) branch of type I interferon (IFN-I) signaling pathway and subsequent establishment of a protective antiviral response. TRIM22 plays an integral role in the host innate immune response to viruses; it has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. Altered TRIM22 expression has also been associated with multiple sclerosis, cancer, and autoimmune disease. While the PRY-SPRY domain of TRIM5a provides specificity and the capsid recognition motif to retroviral restriction, TRIM34 binds HIV-1 capsid but does not restrict HIV-1 infection. 189 -293983 cd15811 SPRY_PRY_TRIM11 PRY/SPRY domain of tripartite motif-binding protein 11 (TRIM11), also known as RING finger protein 92 (RNF92). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM11, also known as RING finger protein 92 (RNF92) or BIA1. TRIM11 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. It localizes to the nucleus and the cytoplasm; it is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. TRIM11 increases expression of dopamine beta-hydroxylase gene by interacting with the homeodomain transcription factor, PHOX2B, via the B30.2/SPRY domain, thus playing a potential role in the specification of noradrenergic (NA) neuron phenotype. It has also been shown that TRIM11 plays a critical role in the clearance of mutant PHOX2B, which causes congenital central hypoventilation syndrome, via the proteasome. TRIM11 binds a key component of the activator-mediated cofactor complex (ARC105), and destabilizes it, through the ubiquitin-proteasome system; ARC105 mediates chromatin-directed transcription activation and is a key regulatory factor for transforming growth factor beta (TGFbeta) signaling. 169 -293984 cd15812 SPRY_PRY_TRIM17 PRY/SPRY domain of tripartite motif-binding protein 17 (TRIM17), also known as testis RING finger protein (terf). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM17, also known as RING finger protein 16 (RNF16) or testis RING finger protein (terf). TRIM17 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein, expressed almost exclusively in the testis. It exhibits E3 ligase activity, causing protein degradation of ZW10 interacting protein (ZWINT), a known component of the kinetochore complex required for the mitotic spindle checkpoint, and negatively regulates proliferation of breast cancer cells. TRIM17 undergoes ubiquitination in COS7 fibroblast-like cells but is inhibited and stabilized by TRIM44. 176 -293985 cd15813 SPRY_PRY_TRIM20 PRY/SPRY domain in tripartite motif-binding protein 20 (TRIM20), also known as pyrin. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM20, which is also known as pyrin or marenostrin. Unlike TRIM domains that are composed of RING/B-box/coiled-coil core, the N-terminal RING domain in TRIM20 is exchanged by a PYRIN domain (PYD), a prime mediator of protein interactions necessary for apoptosis, inflammation and innate immune signaling pathway, and it also harbors a C-terminal B30.2 domain. Mutations in pyrin (TRIM20) are associated with familial Mediterranean fever (FMF), a recessively hereditary periodic fever syndrome, characterized by episodes of inflammation and fever. These mutations cluster in the C-terminal B30.2 domain and therefore it is assumed that pyrin plays a role in the innate immune system by possibly effecting caspase-1-dependent IL-1beta maturation. 184 -293986 cd15814 SPRY_PRY_TRIM27 PRY/SPRY domain in tripartite motif-containing protein 27 (TRIM27), also known as RING finger protein 76 (RNF76). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM27, also known as RING finger protein 76 (RNF76) or RET finger protein (RFP). TRIM27 domain is composed of RING/B-box/coiled-coil core and also known as RBCC proteins. It is highly expressed in the spleen, thymus and in cells of the hematopoietic compartment. TRIM27 exhibits either nuclear or cytosolic localization depending on the cell type. TRIM27 negatively regulates nucleotide-binding oligomerization domain containing 2 (NOD2)-mediated signaling by proteasomal degradation of NOD2, suggesting that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases such as Crohn's. High expression of TRIM27 is observed in several human cancers, including breast and endometrial cancer, where elevated TRIM27 expression predicts poor prognosis. Also, TRIM27 forms an oncogenic fusion protein with Ret proto-oncogene. It is involved in different stages of spermatogenesis and its significant expression in male germ cells and seminomas, suggests that TRIM27 may be associated with the regulation of testicular germ cell proliferation and histological-type of germ cell tumors. TRIM27 could also be a predictive marker for chemoresistance in ovarian cancer patients. In the neurotoxin model of Parkinson's disease (PD), deficiency of TRIM27 decreases apoptosis and protects dopaminergic neurons, making TRIM27 an effective potential target during the treatment of PD. 177 -293987 cd15815 SPRY_PRY_TRIM38 PRY/SPRY domain of tripartite motif-binding protein 38 (TRIM38), also known as Ring finger protein 15 (RNF15). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM38, which is also known as RING finger protein 15 (RNF15) or RORET. TRIM38 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. TRIM38 has been shown to act as a suppressor in TOLL-like receptor (TLR)-mediated interferon (IFN)-beta induction by promoting degradation of TRAF6 and NAP1 through the ubiquitin-proteasome system. Another study has shown that TRIM38 may act as a novel negative regulator for TLR3-mediated IFN-beta signaling by targeting TRIF for degradation. TRIM38 has been identified as a critical negative regulator in TNFalpha- and IL-1beta-triggered activation of NF-kappaB and MAP Kinases (MAPKs); it causes degradation of two essential cellular components, TGFbeta-associated kinase 1 (TAK1)-associating chaperones 2 and 3 (TAB2/3). The degradation is promoted through a lysosomal-dependent pathway, which requires the C-terminal PRY-SPRY of TRIM38. Enterovirus 71 infection induces degradation of TRIM38, suggesting that TRIM38 may play a role in viral infections. 182 -293988 cd15816 SPRY_PRY_TRIM58 PRY/SPRY domain in tripartite motif-binding protein 58 (TRIM58), also known as BIA2. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM58, also known as BIA2. TRIM58 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins.It is implicated by genome-wide association studies (GWAS) to regulate erythrocyte traits, including cell size and number. Trim58 facilitates erythroblast enucleation by inducing proteolytic degradation of the microtubule motor dynein. 168 -293989 cd15817 SPRY_PRY_TRIM60_75 PRY/SPRY domain of tripartite motif-binding protein 60 and 75 (TRIM60 and TRIM75). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM60 and TRIM75, both composed of RING/B-box/coiled-coil core and also known as RBCC proteins. TRIM60 domain is also known as RING finger protein 33 (RNF33) or 129 (RNF129). Based on its expression profile, RNF33 likely plays an important role in the spermatogenesis process, the development of the pre-implantation embryo, and in testicular functions; Rnf33 is temporally transcribed in the unfertilized egg and the pre-implantation embryo, and is permanently silenced before the blastocyst stage. Mice experiments have shown that RNF33 associates with the cytoplasmic motor proteins, kinesin-2 family members 3A (KIF3A) and 3B (KIF3B), suggesting possible contribution to cargo movement along the microtubule in the expressed sites. TRIM75, also known as Gm794, has a single site of positive selection in its RING domain associated with E3 ubiquitin ligase activity. It has not been detectably expressed experimentally due to their constant turnover by the proteasome, and therefore not been characterized. 168 -293990 cd15818 SPRY_PRY_TRIM69 PRY/SPRY domain in tripartite motif-binding protein 69 (TRIM69), also known as RING finger protein 36 (RNF36). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM69, which is also known as RING finger protein 36 (RNF36) or testis-specific ring finger (Trif). TRIM69 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. It is a novel testis E3 ubiquitin ligase that may function to ubiquitinate its particular substrates during spermatogenesis. In humans, TRIM69 localizes in the cytoplasm and nucleus, and requires an intact RING finger domain to function. The mouse ortholog of this gene is specifically expressed in germ cells at the round spermatid stages during spermatogenesis and, when overexpressed, induces apoptosis. TRIM69 has been shown to be a novel regulator of mitotic spindle assembly in tumor cells; it associates with spindle poles and promotes centrosomal clustering, and is therefore essential for formation of a bipolar spindle. 187 -293991 cd15819 SPRY_PRY_BTN1_2 butyrophilin subfamily member A1 and A2 (BTN1A and BTN2A). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of butyrophilin family 1A and 2A (BTN1A and BTN2A). BTNs belong to receptor glycoproteins of immunoglobulin (Ig) superfamily, characterized by the presence of extracellular Ig-like domains (IgV and/or IgC). BTN1A plays a role in the secretion, formation and stabilization of milk fat globules. The B30.2 domain of BTN1A1 binds the enzyme xanthine oxidoreductase (XOR) in order to participate in milk fat globule secretion; this interaction may lead to the production of reactive oxygen species, which have immunomodulatory and antimicrobial functions. Duplication events have led to three paralogs of BTN2A in primates: BTN2A1, BTN2A2, and BTN2A3. In humans, only BTN2A1 has been functionally characterized; it has been detected on epithelial cells and leukocytes, and identified as a novel ligand of dendritic cell-specific ICAM-3 grabbing nonintegrin (DCSIGN), a C-type lectin receptor that acts as an internalization receptor for HIV-1, HCV, and other pathogens. BTN2A2 mRNA has been shown to be expressed in circulating human immune cells. 172 -293992 cd15820 SPRY_PRY_BTN3 PRY/SPRY domain of butyrophilin 3 (BTN3), includes BTN3A1, BTN3A2, BTN3A3 as well as BTN-like 3 (BTNL3); BTN3A also known as CD277. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of butyrophilin family 3A (BTN3A); duplication events have led to three paralogs in primates: BTN3A1, BTN3A2, and BTN3A3. BTNs belong to receptor glycoproteins of immunoglobulin (Ig) superfamily, characterized by the presence of extracellular Ig-like domains (IgV and/or IgC). BTN3 transcripts are ubiquitously present in all immune cells (T cells, B cells, NK cells, monocytes, dendritic cells, and hematopoietic precursors) with different expression levels; BTN3A1 and BTN3A2 are expressed mainly by CD4+ and CD8+ T cells, BTN3A2 is the major form expressed in NK cells, and BTN3A3 is poorly expressed in these immune cells. The PRY/SPRY domain of the BTN3A1 isoform mediates phosphoantigen (pAg)-induced activation by binding directly to the pAg. 176 -293993 cd15821 SPRY_PRY_RFPL Ret finger protein-like (RFPL), includes RFP1, 2, 3, 4. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of RFPL protein family, which includes RFPL1, RFPL2, RFPL3 and RFPL4. In humans, RFPL transcripts can be detected at the onset of neurogenesis in differentiating human embryonic stem cells, and in the developing human neocortex. The human RFPL1, 2, 3 genes have a role in neocortex development. RFPL1 is a primate-specific target gene of Pax6, a key transcription factor for pancreas, eye and neocortex development; human RFPL1 decreases cell number through its RFPL-defining motif (RDM) and SPRY domains. The RFPL4 (also known as RFPL4A) gene encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells and interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. 178 -293994 cd15822 SPRY_PRY_TRIM5 PRY/SPRY domain in tripartite motif-binding protein 5 (TRIM5), also known as RING finger protein 88 (RNF88). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM5 which is also known as RING finger protein 88 (RNF88) or TRIM5alpha (TRIM5a), an antiretroviral restriction factor and a retrovirus capsid sensor in immune signaling. TRIM5 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. It blocks retrovirus infection soon after the virion core enters the cell cytoplasm by recognizing the capsid protein lattice that encases the viral genomic RNA; the SPRY domain provides the capsid recognition motif that dictates specificity to retroviral restriction. TRIM5a, an E3 ubiquitin ligase, promotes innate immune signaling by activating the TAK1 kinase complex by cooperating with the heterodimeric E2, UBC13/UEV1A. It also stimulates NFkB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines, and amplifies these activities upon retroviral infection. Interaction of its PRY-SPRY or cyclophilin domains with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. 200 -293995 cd15823 SPRY_PRY_TRIM6 PRY/SPRY domain in tripartite motif-binding protein 6 (TRIM6), also known as RING finger protein 89 (RNF89). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM6, also known as RING finger protein 89 (RNF89). TRIM6 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. It is selectively expressed in embryonic stem (ES) cells and interacts with the proto-oncogene product Myc, maintaining the pluripotency of the ES cells. TRIM6, together with E2 Ubiquitin conjugase (UbE2K) and K48-linked poly-Ub chains, is critical for the IkappaB kinase epsilon (IKKepsilon) branch of type I interferon (IFN-I) signaling pathway and subsequent establishment of a protective antiviral response. 188 -293996 cd15824 SPRY_PRY_TRIM22 PRY/SPRY domain in tripartite motif-containing protein 22 (TRIM22), also known as RING finger protein 94 (RNF94) or Stimulated trans-acting factor of 50 kDa (STAF50). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM22, also known as RING finger protein 94 (RNF94) or STAF50 (Stimulated trans-acting factor of 50 kDa). TRIM6 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. TRIM22 is an interferon-induced protein, predominantly expressed in peripheral blood leukocytes, in lymphoid tissue such as spleen and thymus, and in the ovary.TRIM22 plays an integral role in the host innate immune response to viruses; it has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. TRIM22 inhibits influenza A virus (IAV) infection by targeting the viral nucleoprotein for degradation; it represents a novel restriction factor up-regulated upon IAV infection that curtails its replicative capacity in epithelial cells. Altered TRIM22 expression has also been associated with multiple sclerosis, cancer, and autoimmune disease. A large number of high-risk non-synonymous (ns)SNPs have been identified in the highly polymorphic TRIM22 gene, most of which are located in the SPRY domain and could possibly alter critical regions of the SPRY structural and functional residues, including several sites that undergo post-translational modification. TRIM22 is a direct p53 target gene and inhibits the clonogenic growth of leukemic cells. Its expression in Wilms tumors is negatively associated with disease relapse. It is greatly under-expressed in breast cancer cells as compared to non-malignant cell lines; p53 dysfunction may be one of the mechanisms for its down-regulation. 198 -293997 cd15825 SPRY_PRY_TRIM34 PRY/SPRY domain in tripartite motif-containing protein 34 (TRIM34), also known as RING finger protein 21 (RNF21) or interferon-responsive finger protein (IFP1). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM34, also known as RING finger protein 21 (RNF21) or interferon-responsive finger protein (IFP1). TRIM34 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. The TRIM21 cDNA possesses at least three kinds of isoforms, due to alternative splicing, of which only the long and medium forms contain the SPRY domain. It is an interferon-induced protein, predominantly expressed in the testis, kidney, and ovary. The SPRY domain provides the capsid recognition motif that dictates specificity to retroviral restriction. While the PRY-SPRY domain provides specificity and the capsid recognition motif to retroviral restriction, TRIM34 binds HIV-1 capsid but does not restrict HIV-1 infection. 185 -293998 cd15826 SPRY_PRY_TRIM15 PRY/SPRY domain in tripartite motif-binding protein 15 (TRIM15). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of tripartite motif-containing protein 15 (TRIM15), also referred to as RING finger protein 93 (RNF93) or Zinc finger protein B7 or 178 (ZNFB7 or ZNF178). TRIM15 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. The PRY and SPRY/B30.2 domains can function as immune defense components and in pathogen sensing. TRIM15 has been shown to regulate inflammatory and innate immune signaling, in addition to displaying antiviral activities. Down-regulation of TRIM15, as well as TRIM11, enhances virus release, suggesting that these proteins contribute to the endogenous restriction of retroviruses in cells. TRIM15 is also a regulatory component of focal adhesion turnover and cell migration. 170 -293999 cd15827 SPRY_PRY_TRIM10 PRY/SPRY domain of tripartite motif-binding protein 10 (TRIM10) also known as hematopoietic RING finger 1 (HERF1). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM10, also known as RING finger protein 9 (RNF9) or hematopoietic RING finger 1 (HERF1). TRIM10 domain is composed of RING/B-box/coiled-coil core and also known as RBCC protein. TRIM10/HERF1 is predominantly expressed during definitive erythropoiesis and in embryonic liver, and minimally expressed in adult liver, kidney, and colon. It is critical for erythroid cell differentiation and its down-regulation leads to cell death; inhibition of TRIM10 expression blocks terminal erythroid differentiation, while its over-expression in erythroid cells induces beta-major globin expression and erythroid differentiation. 172 -294000 cd15828 SPRY_PRY_TRIM60 PRY/SPRY domain of tripartite motif-binding protein 60 (TRIM60) also known as RING finger protein 33 (RNF33). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM60, which is also known as RING finger protein 33 (RNF33) or 129 (RNF129). TRIM60 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. Based on its expression profile, RNF33 likely plays an important role in the spermatogenesis process, the development of the pre-implantation embryo, and in testicular functions; Rnf33 is temporally transcribed in the unfertilized egg and the pre-implantation embryo, and is permanently silenced before the blastocyst stage. Mice experiments have shown that RNF33 associates with the cytoplasmic motor proteins, kinesin-2 family members 3A (KIF3A) and 3B (KIF3B), suggesting possible contribution to cargo movement along the microtubule in the expressed sites. 180 -294001 cd15829 SPRY_PRY_TRIM75 PRY/SPRY domain of tripartite motif-binding protein 75 (TRIM75). This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of TRIM75, also known as Gm794. TRIM75 domains are composed of RING/B-box/coiled-coil core and also known as RBCC proteins. TRIM75 has a single site of positive selection in its RING domain associated with E3 ubiquitin ligase activity. It has not been detectably expressed experimentally due to their constant turnover by the proteasome, and therefore not been characterized. 187 -276939 cd15830 BamD BamD lipoprotein, a component of the beta-barrel assembly machinery. BamD, also called YfiO, is part of the beta-barrel assembly machinery (BAM), which is essential for the folding and insertion of outer membrane proteins (OMPs) in the OM of Gram-negative bacteria. Transmembrane OMPs carry out important functions including nutrient and waste management, cell adhesion, and structural roles. The BAM complex is composed of the beta-barrel OMP BamA (also called Omp85/YaeT) and four lipoproteins BamBCDE. BamD is the only BAM lipoprotein required for viability. Both BamA and BamD are broadly distributed in Gram-negative bacteria, and may constitute the core of the BAM complex. BamD contains five Tetratricopeptide repeats (TPRs). The three TPRs at the N-terminus may participate in interaction with substrates, while the two TPRs in the C-terminus may be involved in binding with other BAM components. 213 -276938 cd15831 BTAD Bacterial Transcriptional Activation (BTA) domain. The Bacterial Transcriptional Activation (BTA) domain is present in the putative transcriptional regulator Mycobacterium EmbR and the related Streptomyces antibiotic regulatory protein (SARP) family of transcription factors, which includes DnrI and AfsR, among others. Members of this family contain an N-terminal DNA-binding domain, followed by the BTA domain, and many have diverse domains at the C-terminus. EmbR contains an C-terminal forkhead-associated (FHA) domain, which mediates binding to threonine-phosphorylated sites in a sequence-specific manner. The BTA domain of EmbR contains three Tetratricopeptide repeats (TPRs) and two C-terminal helices. The TPR motif typically contains 34 amino acids, and 5 or 6 tandem repeats of the motif generate a right-handed helical structure with an amphipathic channel that is thought to accommodate an alpha-helix of a target protein. 146 -276937 cd15832 SNAP Soluble N-ethylmaleimide-sensitive factor (NSF) Attachment Protein family. Members of the soluble NSF attachment protein (SNAP) family are involved in intracellular membrane trafficking, including vesicular transport between the endoplasmic reticulum and Golgi apparatus. Higher eukaryotes contain three isoforms of SNAPs: alpha, beta, and gamma. Alpha-SNAP is universally present in eukaryotes and acts as an adaptor protein between SNARE (integral membrane SNAP receptor) and NSF for recruitment to the 20S complex. Beta-SNAP is brain-specific and shares high sequence identity (about 85%) with alpha-SNAP. Gamma-SNAP is weakly related (about 20-25% identity) to the two other isoforms, and is ubiquitous. It may help regulate the activity of the 20S complex. The X-ray structures of vertebrate gamma-SNAP and yeast Sec17, a SNAP family member, show similar all-helical structures consisting of an N-terminal extended twisted sheet of four Tetratricopeptide repeat (TPR)-like helical hairpins and a C-terminal helical bundle. 278 -276930 cd15834 TNFRSF1A_teleost Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) in teleosts; also known as TNFR1. This subfamily of TNFRSF1 ((also known as type I TNFR, TNFR1, DR1, TNFRSF1A, CD120a, p55) is found in teleosts. It binds TNF-alpha, through the death domain (DD), and activates NF-kappaB, mediates apoptosis and activates signaling pathways controlling inflammatory, immune, and stress responses. It mediates signal transduction by interacting with antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRAF2 and TRADD that play regulatory roles. The human genetic disorder called tumor necrosis factor associated periodic syndrome (TRAPS), or periodic fever syndrome, is associated with germline mutations of the extracellular domains of this receptor, possibly due to impaired receptor clearance. Serum levels of TNFRSF1A are elevated in schizophrenia and bipolar disorder, and high levels are also associated with cognitive impairment and dementia. Knockout studies in zebrafish embryos have shown that a signaling balance between TNFRSF1A and TNFRSF1B is required for endothelial cell integrity. TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-kappaB in endothelial cells. Thus, this apoptotic pathway seems to be evolutionarily conserved, as TNFalpha promotes apoptosis of human endothelial cells and triggers caspase-2 and P53 activation in these cells via TNFRSF1A. 150 -276931 cd15835 TNFRSF1B_teleost Tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) in teleost; also known as TNFR2. This subfamily of TNFRSF1B (also known as TNFR2, type 2 TNFR, TNFBR, TNFR80, TNF-R75, TNF-R-II, p75, CD120b) is found in teleosts. It binds TNF-alpha, but lacks the death domain (DD) that is associated with the cytoplasmic domain of TNFRSF1A (TNFR1). It is inducible and expressed exclusively by oligodendrocytes, astrocytes, T cells, thymocytes, myocytes, endothelial cells, and in human mesenchymal stem cells. TNFRSF1B protects oligodendrocyte progenitor cells (OLGs) against oxidative stress, and induces the up-regulation of cell survival genes. While pro-inflammatory and pathogen-clearing activities of TNF are mediated mainly through activation of TNFRSF1A, a strong activator of NF-kappaB, TNFRSF1B is more responsible for suppression of inflammation. Although the affinities of both receptors for soluble TNF are similar, TNFRSF1B is sometimes more abundantly expressed and thought to associate with TNF, thereby increasing its concentration near TNFRSF1A receptors, and making TNF available to activate TNFRSF1A (a ligand-passing mechanism). Knockout studies in zebrafish embryos have shown that a signaling balance between TNFRSF1A and TNFRSF1B is required for endothelial cell integrity. TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-kB in endothelial cells. In goldfish (Carassius aurutus L.), TNFRSF1B expression is substantially higher than that of TNFRSF1 in tissues and various immune cell types. Both receptors are most robustly expressed in monocytes; mRNA levels of TNFRSF1B are lowest in peripheral blood leukocytes. 130 -276932 cd15836 TNFRSF11A_teleost Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) in teleost; also known as RANK. TNFRSF11A (also known as RANK, FEO, OFE, ODFR, OSTS, PDB2, CD26, OPTB7, TRANCER, LOH18CR1) induces the activation of NF-kappa B and MAPK8/JNK through interactions with various TRAF adaptor proteins. This receptor and its ligand are important regulators of the interaction between T cells and dendritic cells. This receptor is also an essential mediator for osteoclast and lymph node development. Mutations at this locus have been associated with familial expansile osteolysis, autosomal recessive osteopetrosis, and Juvenile Paget's disease (JPD) of bone. Alternatively spliced transcript variants have been described for this locus. Mutation analysis may improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. 122 -276933 cd15837 TNFRSF26 Tumor necrosis factor receptor superfamily member 26 (TNFRSF26), also known as tumor necrosis factor receptor homolog 3 (TNFRH3). TNFRSF26 (also known as tumor necrosis factor receptor homolog 3 (TNFRH3) or TNFRSF24) is predominantly expressed in embryos and lymphoid cell types, along with its closely related TNFRSF22 and TNFRSF23 orthologs, and is developmentally regulated. Unlike TNFRSF22/23, TNFRSF26 does not serve as a TRAIL decoy receptor; it remains an orphan receptor. 118 -276934 cd15838 TNFRSF27 Tumor necrosis factor receptor superfamily member 27 (TNFRSF27), also known as ectodysplasin A2 receptor (EDA2R) or X-linked ectodermal dysplasia receptor (XEDAR). TNFRSF27 (also known as ectodysplasin A2 receptor (EDA2R), X-linked ectodermal dysplasia receptor (XEDAR), EDAA2R, EDA-A2R) has two isoforms, EDA-A1 and EDA-A2, that are encoded by the anhidrotic ectodermal dysplasia (EDA) gene. It is highly expressed during embryonic development and binds to ectodysplasin-A2 (EDA-A2), playing a crucial role in the p53-signaling pathway. EDA2R is a direct p53 target that is frequently down-regulated in colorectal cancer tissues due to its epigenetic alterations or through the p53 gene mutations. Mutations in the EDA-A2/XEDAR signaling give rise to ectodermal dysplasia, characterized by loss of hair, sweat glands, and teeth. A non-synonymous SNP on EDA2R, along with genetic variants in human androgen receptor is associated with androgenetic alopecia (AGA). 116 -276935 cd15839 TNFRSF_viral Tumor necrosis factor receptor superfamily members, virus-encoded. This family contains viral TNFR homologs that include vaccinia virus (VACV) cytokine response modifier E (CrmE), an encoded TNFR that shares significant sequence similarity with mammalian type 2 TNF receptors (TNFSFR1B, p75, TNFR type 2), a cowpox virus encoded cytokine-response modifier B (crmB), which is a secreted form of TNF receptor that can contribute to the modification of TNF-mediated antiviral processes, and a myxoma virus (MYXV) T2 (M-T2) protein that binds and inhibits rabbit TNF-alpha. The CrmE structure confirms that the canonical TNFR fold is adopted, but only one of the two "ligand-binding" loops of TNFRSF1A is conserved, suggesting a mechanism for the higher affinity of poxvirus TNFRs for TNFalpha over lymphotoxin-alpha. CrmB protein specifically binds TNF-alpha and TNF-beta indicating that cowpox virus seeks to invade antiviral processes mediated by TNF. Intracellular M-T2 blocks virus-induced lymphocyte apoptosis via a highly conserved viral preligand assembly domain (vPLAD), which controls receptor signaling competency prior to ligand binding. 125 -277193 cd15840 SNARE_Qa SNARE motif, subgroup Qa. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qa SNAREs are syntaxin 18, syntaxin 5, syntaxin 16, and syntaxin 1. 59 -277194 cd15841 SNARE_Qc SNARE motif, subgroup Qc. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qc SNAREs are C-terminal domains of SNAP23 and SNAP25, syntaxin 8, syntaxin 6, and Bet1. 59 -277195 cd15842 SNARE_Qb SNARE motif, subgroup Qb. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qb SNAREs are N-terminal domains of SNAP23 and SNAP25, Vti1, Sec20 and GS27. 62 -277196 cd15843 R-SNARE SNARE motif, subgroup R-SNARE. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). In contrast to Qa-, Qb- and Qc-SNAREs that are localized to target organelle membranes, R-SNAREs are localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qa SNAREs are syntaxin 18, syntaxin 5, syntaxin 16, and syntaxin 1. 60 -277197 cd15844 SNARE_syntaxin5 SNARE motif of syntaxin 5. Syntaxin 5 (Syn5) regulates the transport from the ER to the Golgi, as well as the early/recycling endosomes to the trans-Golgi network and participates in the assembly of transitional ER and the Golgi, lipid droplet fusion, and cytokinesis. Syn5 exists in 2 isoforms, long (42 kDa) and short (35 kDa). The short form is localized in the Golgi complex, whereas the long form is additionally found in the endoplasmic reticulum (ER). The syntaxin-5 SNARE complexes, which also contain Bet1 (Qc) and either GS27 (Qb) and Sec22B (R-SNARE) or GS28 (Qb) and Ykt6 (R-SNARE), regulate the early secretory pathway of eukaryotic cells at the level of endoplasmic reticulum (ER) to Golgi transport. The syntaxin-5 SNARE complex, which also contains GS15 (Qc), GS28 (Qb) and Ykt6 (R-SNAREs) is involved in the transport from the trans-Golgi network to the cis-Golgi. Syn5 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 86 -277198 cd15845 SNARE_syntaxin16 SNARE motif of syntaxin 16. Syntaxin 16 is located in trans-Golgi network (TGN) and regulated by the SM protein Vps45p. It forms a complex with syntaxin 6 (Qc), Vti1a (Qb) and VAMP4 (R-SNARE) and is involved in the regulation of recycling of early endosomes to the trans-Golgi network (TGN). Syntaxin 16 is a member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 59 -277199 cd15846 SNARE_syntaxin17 SNARE motif of syntaxin 17. Synthaxin 17 (STX17) belongs to the Qa subgroup of SNAREs and interacts with SNAP29 (Qb/Qc) and the lysosomal R-SNARE VAMP8. The complex plays a role in autophagosome-lysosome fusion. Autophagosome transports cytoplasmic materials, including cytoplasmic proteins, glycogen, lipids, organelles, and invading bacteria to the lysosome for degradation. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 62 -277200 cd15847 SNARE_syntaxin7_like SNARE motif of syntaxin 7, 12 and related sequences. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. This subgroup of the Qa SNAREs includes syntaxin 7, syntaxin 12, TSNARE1 and related proteins. 60 -277201 cd15848 SNARE_syntaxin1-like SNARE motif of syntaxin 1 and related proteins. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. This subgroup of the Qa SNAREs includes syntaxin 1, syntaxin 11, syntaxin 19, syntaxin 2, syntaxin 3, syntaxin 4 and related proteins. 63 -277202 cd15849 SNARE_Sso1 SNARE motif of Sso1. Saccharomyces cerevisiae SNARE protein Sso1p forms a complex with synaptobrevin homolog Snc1p (R-SNARE) and the SNAP-25 homolog Sec9p (Qb/c) which is involved in exocytosis. Sso1 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 64 -277203 cd15850 SNARE_syntaxin18 SNARE motif, subgroup Qa. Syntaxin18 (also known as Ufe1p) is involved in retrograde transport of CopI coatomer coated vesicles from the Golgi to the ER. It forms a complex with USE1 (SLT1, Qc), Bnip1 (Sec20p, Qb) and Sec22b (R-SNARE). Syntaxin18 is a member of the Qa subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 59 -277204 cd15851 SNARE_Syntaxin6 SNARE motif of syntaxin 6. Syntaxin 6 forms a complex with syntaxin 16 (Qa), Vti1a (Qb) and VAMP4 (R-SNARE) and is involved in the regulation of recycling of early endosomes to the trans-Golgi network (TGN). Syntaxin 6 and its yeast homolog TLG1 are members of the Qc subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 66 -277205 cd15852 SNARE_Syntaxin8 SNARE motif of syntaxin 8. Syntaxin 8 forms a complex with syntaxin 7 (Qa), Vti1b (Qb) and either VAMP7 or VAMP8 (R-SNARE) and is involved in the transport from early endosomes to the lysosome. Syntaxin 8 is a member of the Qc subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 59 -277206 cd15853 SNARE_Bet1 SNARE motif of Bet1. Bet1 forms a complexes with GS27 (Qb), syntaxin-5 (Qa) and Sec22B (R-SNARE) or GS28 (Qb), syntaxin-5 (Qa) and Ykt6 (R-SNARE). These complexes regulates the early secretory pathway of eukaryotic cells at the level of the transport from endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) and from ERGIC to the cis-Golgi, respectively. Bet1 is a member of the Qc subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 59 -277207 cd15854 SNARE_SNAP47C C-terminal SNARE motif of SNAP47. C-terminal SNARE motif of SNAP47, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. The exact funtion of SNAP47 is unknown. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP29 and SEC9. 59 -277208 cd15855 SNARE_SNAP25C_23C C-terminal SNARE motif of SNAP25 and SNAP23. C-terminal SNARE motifs of SNAP25 and SNAP23, members of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP23 interacts with STX4 (Qa) and the lysosomal R-SNARE VAMP8. The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. SNAP25 interacts with Syntaxin-1 (Qa) and the R-SNARE VAMP2 (also called synaptobrevin-2). The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP29, SNAP47 and SEC9. 59 -277209 cd15856 SNARE_SNAP29C C-terminal SNARE motif of SNAP29. C-terminal SNARE motif of SNAP29, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP29 interacts with STX17 (Qa) and the lysosomal R-SNARE VAMP8. The complex plays a role in autophagosome-lysosome fusion. Autophagosome transports cytoplasmic materials including cytoplasmic proteins, glycogen, lipids, organelles, and invading bacteria to the lysosome for degradation. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SEC9. 59 -277210 cd15857 SNARE_SEC9C C-terminal SNARE motif of SEC9. C-terminal SNARE motif of fungal SEC9, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SEC9 interacts with Sso1(Qa) and the lysosomal R-SNARE Snc1. The complex plays a role in post-Golgi transport. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SNAP29. 59 -277211 cd15858 SNARE_VAM7 SNARE motif of VAM7. Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family involved in vacuolar protein transport and membrane fusion. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 59 -277212 cd15859 SNARE_SYN8 SNARE motif of SYN8. Fungal SYN8 is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family presetn in the endosomes. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 68 -277213 cd15860 SNARE_USE1 SNARE motif of USE1. USE1 (unconventional SNARE in the ER 1 homolog, also known as SNARE-like tail-anchored protein 1 or SLT1) is involved in retrograde transport of CopI coatomer coated vesicles from the Golgi to the ER. It forms a complex with syntaxin18 (Ufe1p, Qa), Bnip1 (Sec20p, Qb) and Sec22b (R-SNARE). USE1 is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 60 -277214 cd15861 SNARE_SNAP25N_23N_29N_SEC9N N-terminal SNARE motif of SNAP25, SNAP23, SNAP29, and SEC9. N-terminal SNARE motif of members of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP29, SNAP47 and SEC9. 65 -277215 cd15862 SNARE_Vti1 SNARE motif of Vti1. Vti1 (vesicle transport through interaction with t-SNAREs homolog 1) belongs to the Qb subgroup of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). Vti1b interacts with syntaxin 7 (Qa), syntaxin 8 (Qc), and the lysosomal R-SNARE VAMP8 or VAMP7 to form the endosomal SNARE core complex that mediates transport from the early endosomes and the MVBs (multivesicular bodies), and from the MVBs to the lysosomes, respectively. Vti1a interacts with syntaxin 16 (Qa), syntaxin 6 (Qc), and the lysosomal R-SNARE VAMP4 to form an endosomal SNARE core complex that mediates transport from the early endosomes to the TGN (trans-Golgi network). SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qb SNAREs are N-terminal domains of SNAP23 and SNAP25, Vti1, Sec20 and GS27. 62 -277216 cd15863 SNARE_GS27 SNARE motif of GS27. GS27 (also known as Bos1, EPM6, golgi SNAP receptor complex member 2 or GOSR2) is a member of the Qb subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. GS27 forms a complex together with Bet1 (Qc), syntaxin-5 (Qa) and Sec22B (R-SNARE). This complex regulates the early secretory pathway of eukaryotic cells at the level of the transport from endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 66 -277217 cd15864 SNARE_GS28 SNARE motif of GS28. GS28 (also known as golgi SNAP receptor complex member 1 or GOSR1) forms complexes with syntaxin-5 (Qa), Ykt6 (R-SNARE) and either Bet1 (Qc) or GS15 (Qc). These complexes regulate the early secretory pathway of eukaryotic cells at the level of the transport from the ER-Golgi intermediate compartment (ERGIC) to the cis-Golgi and transport from the trans-Golgi network to the cis-Golgi, respectively. GS28 is a member of the Qb subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins which contain coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 66 -277218 cd15865 SNARE_SEC20 SNARE motif of SEC20. SEC20 (also known as BNIP1, NIP1, or TRG-8) forms a complex with syntaxin 18 (Qa), SEC22 (R-SNARE)and USE1 (Qc), and is involved in the transport from cis-Golgi to the endoplasmic reticulum (ER). SEC20 is a member of the Qb subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins which contain coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 93 -277219 cd15866 R-SNARE_SEC22 SNARE motif of SEC22. SEC22 forms complexes with syntaxin 18 (Qa), Sec20 (Qb) and USE1 (Qc), and with syntaxin 5 (Qa), GS27 (Qb) and Bet1 (Qc). These complexes are involved in the transport from cis-Golgi to the endoplasmic reticulum (ER) and in the transport from endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC), respectively. SEC22 is a member of the R-SNARE subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins which contain coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 64 -277220 cd15867 R-SNARE_YKT6 SNARE motif of YKT6. Ykt6 forms complexes with syntaxin-5 (Qa), GS28 (Qb) and either Bet1 (Qc) or GS15 (Qc). This complex regulates the early secretory pathway of eukaryotic cells at the level of the transport from the ER-Golgi intermediate compartment (ERGIC) to the cis-Golgi and transport from the trans-Golgi network to the cis-Golgi, respectively. Ykt6 is a member of the R-SNARE subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins which contain coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 61 -277221 cd15868 R-SNARE_VAMP8 SNARE motif of VAMP8. The lysosomal VAMP8 (vesicle-associated membrane protein 8, also called endobrevin) protein belongs to the R-SNARE subgroup of SNAREs and interacts with STX17 (Qa) and SNAP29 (Qb/Qc). The complex plays a role in autophagosome-lysosome fusion via regulating the transport from early endosomes to multivesicular bodies. Autophagosome transports cytoplasmic materials including cytoplasmic proteins, glycogen, lipids, organelles, and invading bacteria to the lysosome for degradation. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins contain coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 68 -277222 cd15869 R-SNARE_VAMP4 SNARE motif of VAMP4. The VAMP-4 (vesicle-associated membrane protein 4) protein belongs to the R-SNARE subgroup of SNAREs and interacts with syntaxin 16 (Qa), Vti1a (Qb) and syntaxin 6 (Qc). This complex plays a role in maintenance of Golgi ribbon structure and normal retrograde trafficking from the early endosome to the trans-Golgi network (TGN). SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins contain coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 67 -277223 cd15870 R-SNARE_VAMP2 SNARE motif of VAMP2. The VAMP-2 (vesicle-associated membrane protein 2, also called synaptobrevin-2) protein belongs to the R-SNARE subgroup of SNAREs and interacts with Syntaxin-1 (Qa) and SNAP-25(Qb/Qc), as well as syntaxin 12 (Qa) and SNAP23 (Qb/Qc). The complexes play a role in transport of secretory granule from trans-Golgi network to the plasma membrane, and in the transport from early endosomes to and from the plasma membrane, respectively. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins contain coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 63 -277224 cd15871 R-SNARE_VAMP7 SNARE motif of VAMP7. The VAMP-7 (vesicle-associated membrane protein 7, also called synaptobrevin-like protein 1) protein belongs to the R-SNARE subgroup of SNAREs and interacts with syntaxin 7(Qa), syntaxin 8 (Qc) and Vti1b (Qb). The complex is involved in the transport from early endosomes to the lysosome via regulating the transport from multivesicular bodies to the lysosomes. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins contain coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 65 -277225 cd15872 R-SNARE_VAMP5 SNARE motif of VAMP5. The VAMP-5 (vesicle-associated membrane protein 5) protein belongs to the R-SNARE subgroup of SNAREs. Its function is unknown. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins contain coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. 68 -277226 cd15873 R-SNARE_STXBP5_6 SNARE domain of STXBP5, STXBP6 and related proteins. Syntaxin binding protein 5 (STXBP5, also called Tomosyn), as well as its relative Syntaxin binding protein 6 (STXBP6, also called Amisyn) contains a C-terminal R-SNARE-like domain, which allows it to assemble into SNARE complexes, which in turn makes the complexes inactive and inhibits exocytosis. In general, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 61 -277227 cd15874 R-SNARE_Snc1 SNARE motif of Snc1. Saccharomyces cerevisiae SNARE protein Snc1p forms a complex with synaptobrevin homolog Sso1p (Qa) and the SNAP-25 homolog Sec9p (Qb/c) which is involved in exocytosis. Snc1 is a member of the R-SNARE subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 60 -277228 cd15875 SNARE_syntaxin7 SNARE motif of syntaxin 7. Syntaxin 7 forms a complex with syntaxin 8 (Qc), Vti1b (Qb) and either VAMP7 or VAMP8 (R-SNARE) and is involved in the transport from early endosomes to the lysosome. Syntaxin 7 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 60 -277229 cd15876 SNARE_syntaxin12 SNARE motif of syntaxin 12. Syntaxin 12 (STX12, also known as STX13 and STX14) forms a complex with SNAP25 (Qb/Qc) or SNAP29 (Qb/Qc) and VAMP2 or VAMP3 (R-SNARE) and plays a role in plasma membrane to early endosome transport. Syntaxin 12 is a member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 67 -277230 cd15877 SNARE_TSNARE1 SNARE motif of TSNARE1. TSNARE1 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. Its function is unknown, but polymorphisms in human TSNARE1 have been associated with schizophrenia susceptibility. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. TSNARE1 is part of a subgroup of the Qa SNAREs that also includes syntaxin 7, syntaxin 12 and related proteins. 64 -277231 cd15878 SNARE_syntaxin11 SNARE motif of syntaxin 11. Syntaxin 11 (also known as STX11, FHL4, HLH4, HPLH4) is present on endosomal membranes, including late endosomes and lysosomes in macrophages, and has been shown to bind Vti1b and regulate the availability of Vti1b to form other SNARE-complexes. Mutations in human STX11 has been linked to familial hemophagocytic lymphohistiocytosis type-4 (FHL-4), an autosomal recessive disorder of immune dysregulation. Syntaxin 11 is a member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 63 -277232 cd15879 SNARE_syntaxin19 SNARE motif of syntaxin 19. Syntaxin 19 has been shown to have the potential to form SNARE complexes with SNAP-23, 25 and 29 (Qb/Qc) and VAMP3 and VAMP8 (R-SNARE), indicating a role in post-Golgi trafficking or plasma membrane fusion. Syntaxin 19 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 63 -277233 cd15880 SNARE_syntaxin1 SNARE motif of syntaxin 1. Syntaxin-1 belongs to the Qa subgroup of SNAREs and interacts with SNAP-25 (Qb/Qc) and the R-SNARE VAMP2 (also called synaptobrevin-2). The complex plays a role in exocytosis of synaptic vesicles. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 69 -277234 cd15881 SNARE_syntaxin3 SNARE motif of syntaxin 3. Syntaxin 3 (STX3) has been shown to form a complex with VAMP8 (R-SNARE) and SNAP-23 (Qb/c) in mast cells. Mutations have been implicated in human microvillus inclusion disease (MVID), a disorder of the differentiation of intestinal epithelium. Syntaxin 3 is a member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 69 -277235 cd15882 SNARE_syntaxin2 SNARE motif of syntaxin 2. Syntaxin 2 (STX2), also known as epimorphin (EPM or EPIM), may interact with SNAP-23 (Qb/c) and genetic varioations are associated with type 1 von Willebrand disease (VWD). Syntaxin 2 is a member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 69 -277236 cd15883 SNARE_syntaxin4 SNARE motif of syntaxin 4. Syntaxin-4 forms a complex with SNAP-23 (Qb/Qc) and R-SNAREs VAMP8, VAMP2 and VAMP7 which plays a role in exocytosis of secetory granule. Syntaxin 4 is member of the Qa subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 63 -277237 cd15884 SNARE_SNAP23C C-terminal SNARE motif of SNAP23. C-terminal SNARE motifs of SNAP23, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP23 interacts with Syntaxin-4 (Qa) and the R-SNARE VAMP8. The complex plays a role in exocytosis of secretory granule. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP25, SNAP29, SNAP47 and SEC9. 59 -277238 cd15885 SNARE_SNAP25C C-terminal SNARE motif of SNAP25. C-terminal SNARE motifs of SNAP25, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP25 interacts with Syntaxin-1 (Qa) and the R-SNARE VAMP2 (also called synaptobrevin-2). The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP29, SNAP47 and SEC9. 59 -277239 cd15886 SNARE_SEC9N N-terminal SNARE motif of SEC9. N-terminal SNARE motif of fungal SEC9, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SEC9 interacts with Sso1(Qa) and the lysosomal R-SNARE Snc1. The complex plays a role in post-Golgi transport. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SNAP29. 70 -277240 cd15887 SNARE_SNAP29N N-terminal SNARE motif of SNAP29. N-terminal SNARE motif of SNAP29, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP29 interacts with STX17 (Qa) and the lysosomal R-SNARE VAMP8. The complex plays a role in autophagosome-lysosome fusion. Autophagosome transports cytoplasmic materials including cytoplasmic proteins, glycogen, lipids, organelles, and invading bacteria to the lysosome for degradation. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SEC9. 65 -277241 cd15888 SNARE_SNAP47N N-terminal SNARE motif of SNAP47. N-terminal SNARE motif of SNAP47, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. The exact funtion of SNAP47 is unknown. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP29 and SEC9. 65 -277242 cd15889 SNARE_SNAP25N_23N N-terminal SNARE motif of SNAP25 and SNAP23. N-terminal SNARE motifs of SNAP25 and SNAP23, members of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP23 interacts with STX4 (Qa) and the lysosomal R-SNARE VAMP8. The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. SNAP25 interacts with Syntaxin-1 (Qa) and the R-SNARE VAMP2 (also called synaptobrevin-2). The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP29, SNAP47 and SEC9. 65 -277243 cd15890 SNARE_Vti1b SNARE motif of Vti1b-like. Vti1b (vesicle transport through interaction with t-SNAREs homolog 1B) belongs to the Qb subgroup of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). Vti1b interacts with syntaxin 7 (Qa), syntaxin 8 (Qc), and the lysosomal R-SNARE VAMP8 or VAMP7 to form the endosomal SNARE core complexes that mediate transport from the early endosomes and the MVBs (multivesicular bodies), and from the MVBs to the lysosomes, respectively. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qb SNAREs are N-terminal domains of SNAP23 and SNAP25, Vti1, Sec20 and GS27. 62 -277244 cd15891 SNARE_Vti1a SNARE motif of Vti1b-like. Vti1a (vesicle transport through interaction with t-SNAREs homolog 1A) belongs to the Qb subgroup of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). Vti1a interacts with syntaxin 16 (Qa), syntaxin 6 (Qc), and the lysosomal R-SNARE VAMP4 to form an endosomal SNARE core complex that mediates transport from the early endosomes to the TGN (trans-Golgi network). SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qb SNAREs are N-terminal domains of SNAP23 and SNAP25, Vti1, Sec20 and GS27. 62 -277245 cd15892 R-SNARE_STXBP6 SNARE domain of STXBP6. Syntaxin binding protein 6 (STXBP6, also called Amisyn), as well as its relative Syntaxin binding protein 5 (STXBP5, also called Tomosyn), contains a C-terminal R-SNARE-like domain, which allows it to assemble into SNARE complexes, which in turn makes the complexes inactive and inhibits exocytosis. In general, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 62 -277246 cd15893 R-SNARE_STXBP5 SNARE domain of STXBP5. Syntaxin binding protein 5 (STXBP5, also called Tomosyn), as well as its relative Syntaxin binding protein 6 (STXBP6, also called Amisyn) contains a C-terminal R-SNARE-like domain, which allows it to assemble into SNARE complexes, which in turn makes the complexes inactive and inhibits exocytosis. Tomosyn contains an N-terminal WD40 repeat region and has been shown to form complexes with SNAP-25 and syntaxin 1a, as well as SNAP-23 and syntaxin 4. In general, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. 61 -277247 cd15894 SNARE_SNAP25N N-terminal SNARE motif of SNAP25. N-terminal SNARE motifs of SNAP25, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP25 interacts with Syntaxin-1 (Qa) and the R-SNARE VAMP2 (also called synaptobrevin-2). The complex plays a role in transport of secretory granule from trans-Golgi network to the plasma membrane. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP29, SNAP47 and SEC9. 73 -277248 cd15895 SNARE_SNAP23N N-terminal SNARE motif of SNAP23. N-terminal SNARE motifs of SNAP23, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP23 interacts with Syntaxin-4 (Qa) and the R-SNARE VAMP8. The complex plays a role in exocytosis of secretory granule. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP25, SNAP29, SNAP47 and SEC9. 67 -276899 cd15896 MYSc_Myh19 class II myosin heavy chain19, motor domain. Myosin motor domain of muscle myosin heavy chain 19. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 675 -320054 cd15897 EFh_PEF The penta-EF hand (PEF) family. The penta-EF hand (PEF) family contains a group of five EF-hand calcium-binding proteins, including several classical calpain large catalytic subunits (CAPN1, 2, 3, 8, 9, 11, 12, 13, 14), two calpain small subunits (CAPNS1 and CAPNS2), as well as non-calpain PEF proteins, ALG-2 (apoptosis-linked gene 2, also termed programmed cell death protein 6, PDCD6), peflin, sorcin, and grancalcin. Based on the sequence similarity of EF1 hand, ALG-2 and peflin have been classified into group I PEF proteins. Calcium-dependent protease calpain subfamily members, sorcin and grancalcin, are group II PEF proteins. Calpains (EC 3.4.22.17) are calcium-activated intracellular cysteine proteases that play important roles in the degradation or functional modulation in a variety of substrates. They have been implicated in a number of physiological processes such as cell cycle progression, remodeling of cytoskeletal-cell membrane attachments, signal transduction, gene expression and apoptosis. ALG-2 is a pro-apoptotic factor that forms a homodimer in the cell or a heterodimer with its closest paralog peflin through their EF5s. Peflin is a 30-kD PEF protein with a longer N-terminal hydrophobic domain than any other member of the PEF family, and it contains nine nonapeptide (A/PPGGPYGGP) repeats. It exists only as a heterodimer with ALG-2. The dissociation of heterodimer occurs in the presence of Ca2+. ALG-2 interacts with various proteins in a Ca2+-dependent manner. Sorcin (for soluble resistance-related calcium binding protein) is a soluble resistance-related calcium-binding protein that participates in the regulation of calcium homeostasis in cells. Grancalcin is a cytosolic Ca2+-binding protein specifically expressed in neutrophils and monocytes/macrophages. It plays a key role in leukocyte-specific functions that are responsible for host defense. Grancalcin can form a heterodimer together with sorcin. Members in this family contain five EF-hand motifs attached to an N-terminal region of variable length containing one or more short Gly/Pro-rich sequences. These proteins form homodimers or heterodimers through pairing between the 5th EF-hands from the two molecules. Unlike calmodulin, the PEF domains do not undergo major conformational changes upon binding Ca2+. 165 -320029 cd15898 EFh_PI-PLC EF-hand motif found in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) isozymes. PI-PLC isozymes are signaling enzymes that hydrolyze the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, Inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. Calcium is required for the catalysis. This family corresponds to the four EF-hand motifs containing PI-PLC isozymes, including PI-PLC-beta (1-4), -gamma (1-2), -delta (1,3,4), -epsilon (1), -zeta (1), eta (1-2). Lower eukaryotes such as yeast and slime molds contain only delta-type isozymes. In contrast, other types of isoforms present in higher eukaryotes. This family also includes 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase 1 (PLC1) from fungi. Some homologs from plants contain only two atypical EF-hand motifs and they are not included. All PI-PLC isozymes except sperm-specific PI-PLC-zeta share a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. PI-PLC-zeta lacks the PH domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Most of EF-hand motifs found in PI-PLCs consist of a helix-loop-helix structure, but lack residues critical to metal binding. Moreover, the EF-hand region of most of PI-PLCs may have an important regulatory function, but it has yet to be identified. However, PI-PLC-zeta is a key exception. It is responsible for Ca2+ oscillations in fertilized oocytes and exhibits a high sensitivity to Ca2+ mediated through its EF-hand domain. In addition, PI-PLC-eta2 shows a canonical EF-loop directing Ca2+-sensitivity and thus can amplify transient Ca2+ signals. Also it appears that PI-PLC-delta1 can regulate the binding of PH domain to PIP2 in a Ca2+-dependent manner through its functionally important EF-hand domains. PI-PLCs can be activated by a variety of extracellular ligands, such as growth factors, hormones, cytokines and lipids. Their activation has been implicated in tumorigenesis and/or metastasis linked to migration, proliferation, growth, inflammation, angiogenesis and actin cytoskeleton reorganization. PI-PLC-beta isozymes are activated by G-protein coupled receptor (GPCR) through different mechanisms. However, PI-PLC-gamma isozymes are activated by receptor tyrosine kinase (RTK), such as Rho and Ras GTPases. In contrast, PI-PLC-epsilon are activated by both GPCR and RTK. PI-PLC-delta1 and PLC-eta 1 are activated by GPCR-mediated calcium mobilization. The activation mechanism for PI-PLC-zeta remains unclear. 137 -320021 cd15899 EFh_CREC EF-hand, calcium binding motif, found in CREC-EF hand family. The CREC (Cab45/reticulocalbin/ERC45/calumenin)-EF hand family contains a group of six EF-hand, low-affinity Ca2+-binding proteins, including reticulocalbin (RCN-1), ER Ca2+-binding protein of 55 kDa (ERC-55, also known as TCBP-49 or E6BP), reticulocalbin-3 (RCN-3), Ca2+-binding protein of 45 kDa (Cab45 and its splice variant Cab45b), and calumenin ( also known as crocalbin or CBP-50). The proteins are not only localized in various parts of the secretory pathway, but also found in the cytosolic compartment and at the cell surface. They interact with different ligands or proteins and have been implicated in the secretory process, chaperone activity, signal transduction as well as in a large variety of disease processes. 267 -320080 cd15900 EFh_MICU EF-hand, calcium binding motif, found in mitochondrial calcium uptake proteins MICU1, MICU2, MICU3, and similar proteins. This family includes mitochondrial calcium uptake protein MICU1 and its two additional paralogs, MICU2 and MICU3. MICU1 localizes to the inner mitochondrial membrane (IMM). It functions as a gatekeeper of the mitochondrial calcium uniporter (MCU) and regulates MCU-mediated mitochondrial Ca2+ uptake, which is essential for maintaining mitochondrial homoeostasis. MICU1 and MICU2 are physically associated within the uniporter complex and are co-expressed across all tissues. They may play non-redundant roles in the regulation of the mitochondrial calcium uniporter. At present, the precise molecular function of MICU2 and MICU3 remain unclear. MICU2 may play possible roles in Ca2+ sensing and regulation of MCU, calcium buffering with a secondary impact on transport or assembly and stabilization of MCU. MICU3 likely has a role in mitochondrial calcium handling. All members in this family contains an N-terminal mitochondrial targeting sequence (MTS) as well as two evolutionarily conserved canonical Ca2+-binding EF-hands separated by a long stretch of residues predicted to form alpha-helices. 152 -319999 cd15901 EFh_DMD_DYTN_DTN EF-hand-like motif found in the dystrophin/dystrobrevin/dystrotelin family. The dystrophin/dystrobrevin/dystrotelin family has been characterized by a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. Dystrophin is the founder member of this family. It is a sub-membrane cytoskeletal protein associated with the inner surface membrane. Dystrophin and its close paralog utrophin have a large N-terminal extension of actin-binding CH domains, up to 24 spectrin repeats, and a WW domain. Its further paralog, dystrophin-related protein 2 (DRP-2), retains only two of the spectrin repeats. Dystrophin, utrophin or DRP2 can form the core of a membrane-bound complex consisting of dystroglycan, sarcoglycans and syntrophins, known as the dystrophin-glycoprotein complex (DGC) that plays an important role in brain development and disease, as well as in the prevention of muscle damage. Dystrobrevins, including alpha- and beta-dystrobrevin, lack the large N-terminal extension found in dystrophin, but alpha-dystrobrevin has a characteristic C-terminal extension. Dystrobrevins are part of the DGC. They physically associate with members of the dystrophin family and with the syntrophins through their homologous C-terminal coiled coil motifs. In contrast, dystrotelins lack both the large N-terminal extension found in dystrophin and the obvious syntrophin-binding sites (SBSs). Dystrotelins are not critical for mammalian development. They may be involved in other forms of cytokinesis. Moreover, dystrotelin is unable to heterodimerize with members of the dystrophin or dystrobrevin families, or to homodimerize. 163 -320075 cd15902 EFh_HEF EF-hand, calcium binding motif, found in the hexa-EF hand proteins family. The hexa-EF hand proteins family, also named the calbindin sub-family, contains a group of six EF-hand Ca2+-binding proteins, including calretinin (CR, also termed 29 kDa calbindin), calbindin D28K (CB, also termed vitamin D-dependent calcium-binding protein, avian-type), and secretagogin (SCGN). CR is a cytosolic hexa-EF-hand calcium-binding protein predominantly expressed in a variety of normal and tumorigenic t-specific neurons of the central and peripheral nervous system. It is a multifunctional protein implicated in many biological processes, including cell proliferation, differentiation, and cell death. CB is highly expressed in brain tissue. It is a strong calcium-binding and buffering protein responsible for preventing a neuronal death as well as maintaining and controlling calcium homeostasis. SCGN is a six EF-hand calcium-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. It plays a crucial role in cell apoptosis, receptor signaling and differentiation. It is also involved in vesicle secretion through binding to various proteins, including interacts with SNAP25, SNAP23, DOC2alpha, ARFGAP2, rootletin, KIF5B, beta-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2. SCGN functions as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Although the family members share a significant amount of secondary sequence homology, they display altered structural and biochemical characteristics, and operate in distinct fashions. CB contains six EF-hand motifs in a single globular domain, where EF-hands 1, 3, 4, 5 bind four calcium ions. CR contains six EF-hand motifs within two independent domains, CR I-II and CR III-VI. They harbor two and four EF-hand motifs, respectively. The first 5 EF-hand motifs are capable of binding calcium ions, while the EF-hand 6 is inactive. SCGN consists of the three globular domains each of which contains a pair of EF-hand motifs. Human SCGN simultaneously binds four calcium ions through its EF-hands 3, 4, 5 and 6 in one high affinity and three low affinity calcium-binding sites. In contrast, SCGNs in other lower eukaryotes, such as D. rerio, X. laevis, M. domestica, G. gallus, O. anatinus, are fully competent in terms of six calcium-binding. 254 -277191 cd15903 Dicer_PBD Partner-binding domain of the endoribonuclease Dicer. The endoribonuclease Dicer plays a central role in RNA interference by breaking down RNA molecules into fragments of about 22 nucleotides (miRNAs and siRNAs). Loading of RNA onto Dicer and the enzymatic cleavage are supported by dsRNA-binding proteins, including trans-activation response (TAR) RNA-binding protein (TRBP) or protein activator of PKR (PACT). Together with Argonaute, this constitutes the RNA-induced silencing complex (RISC) which functions to load the small RNA fragments onto Argonaute. The Partner-binding domain of Dicer is responsible for interactions with the dsRNA-binding proteins. This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases. 104 -320706 cd15904 TSPO_MBR Translocator protein (TSPO)/peripheral-type benzodiazepine receptor (MBR) family. This family contains tryptophan-rich translocator protein (TSPO), an integral membrane protein that is highly conserved from bacteria to mammals. In eukaryotes, it is mainly found in the outer mitochondrial membranes of steroid-synthesizing cells of the nervous system where it transports cholesterol into mitochondria. It is known to be highly expressed in metastatic cancer, steriodogenic tissues, as well as inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO is also known as the peripheral benzodiazepine receptor (MBR) and its ligands include benzodiazepine drugs, implicated in regulating apoptosis. In human, a single polymorphism A147T is associated with psychiatric disorders; the mutation causes structural changes in a region implicated in cholesterol binding. TSPO is homologous to bacterial tryptophan-rich sensory proteins, and their tryptophan residues are believed to be functionally important. In bacteria, TSPO acts as a negative regulator of expression of specific photosynthesis genes in response to oxygen/light; it catalyzes a photooxidative degradation of Proto porphyrine (PpIX). R. sphaeroides TSPO (RsTSPO) is involved in porphyrin transport, similar to human, while Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism. 142 -320571 cd15905 7tmA_GPBAR1 G protein-coupled bile acid receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. The G-protein coupled bile acid receptor GPBAR1 is also known as BG37, TGR5 (Takeda G-protein-coupled receptor 5), M-BAR (membrane-type receptor for bile acids), and GPR131. GPBAR1 is highly expressed in the gastrointestinal tract, but also found at many other tissues including liver, colon, heart, skeletal muscle, and brown adipose tissue. GPBAR1 functions as a membrane-bound receptor specific for bile acids, which are the end products of cholesterol metabolism that facilitate digestion and absorption of lipids or fat-soluble vitamins. Bile acids act as liver-specific metabolic signaling molecules and stimulate liver regeneration by activating GPBAR1 and nuclear receptors such as the farnesoid X receptor (FXR). Upon bile acids binding, GPBAR1 activation causes release of the G-alpha(s) subunit and activation of adenylate cyclase. The increase in intracellular cAMP level then stimulates the expression of many genes via the PKA-mediated phosphorylation of cAMP-response element binding protein (CREB). Thus, GPAR1-signalling exerts various biological effects in immune cells, liver, and metabolic tissues. For example, GPBAR1 activation leads to enhanced energy expenditure in brown adipose tissue and skeletal muscle; stimulation of glucagon-like peptide-1 (GLP-1) production in enteroendocrine L-cells; and inhibition of pro-inflammatory cytokine production in macrophages and attenuation of atherosclerosis development. GPBAR1 is a member of the class A rhodopsin-like family of GPCRs, which comprises receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. 272 -320572 cd15906 7tmA_GPR162 G protein-coupled receptor 162, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the orphan G-protein coupled receptor 162 (GPR162), also called A-2 or GRCA, with unknown endogenous ligand and function. Phylogenetical analysis indicates that GPR162 and GPR153 share a common evolutionary ancestor due to a gene duplication event. Although categorized as members of the rhodopsin-like class A GPCRs, both GPR162 and GPR153 contain HRM-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors and important for efficient G protein-coupled signal transduction. Moreover, the LPxF motif, a variant of NPxxY motif that plays a crucial role during receptor activation, is found at the end of TM7 in GPR162 and GPR153. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 315 -320573 cd15907 7tmA_GPR153 orphan G protein-coupled receptor 153, member of the class A family of seven-transmembrane G protein-coupled receptors. This subgroup represents the G-protein coupled receptor 153 (GPR153) with unknown endogenous ligand and function. GPR153 shares a common evolutionary origin with GPR162 and is highly expressed in central nervous system (CNS) including the thalamus, cerebellum, and the arcuate nucleus. Although categorized as a member of the rhodopsin-like class A GPCRs, GPR153 contains HRM-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors and important for efficient G protein-coupled signal transduction. Moreover, the LPxFL motif, a variant of NPxxY motif that plays a crucial role during receptor activation, is found at the end of TM7 in GPR153. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 301 -320574 cd15908 7tm_TAS2R40-like taste receptor 2, subtypes 39 and 40, and similar receptors, member of the seven-transmembrane G protein-coupled receptor superfamily. This group includes the mammalian taste receptor 2 (TAS2R) subtypes 39 and 40, which function as bitter taste receptors. The human TAS2R family contains about 25 functional members, which are glycoproteins and have the ability to form both homomeric and heteromeric receptor complexes. Five basic tastes are perceived by animals: bitter, sweet, sour, salty, and umami (taste of glutamate MSG). Among these, sour and salty are mediated by ion channels, while the perception of umami and sweet tastes is mediated by the TAS1R taste receptors, which belong to the class C GPCR family. The TAS2Rs in humans have a short extracellular N-terminus and the ligand binds within the transmembrane domain, whereas the TAS1Rs have a large N-terminal extracellular domain composed of the Venus flytrap module that forms the orthosteric (primary) ligand binding site. Signal transduction of bitter taste involves binding of bitter compounds to TAS2Rs linked to the alpha-subunit of gustaducin, a heterotrimeric G protein expressed in taste receptor cells. This G-alpha subunit stimulates phosphodiesterase and decreases cAMP and cGMP levels. Further steps in the signaling cascade is still unknown. The beta-gamma-subunit of gustducin also mediates bitter taste transduction by activating phospholipase C, which leads to an increased formation of IP3 (inositol triphosphate) and DAG (diacylglycerol), thereby causing release of Ca2+ from intracellular stores and enhanced neurotransmitter release. 289 -320575 cd15909 7tmF_FZD4_9_10-like class F frizzled subfamilies 4, 9, 10, and related proteins; member of 7-transmembrane G protein-coupled receptors. This group includes subfamilies 4, 9 and 10 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and their closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 320 -320576 cd15910 7tmF_FZD3_FZD6-like class F frizzled subfamilies 3, 6 and related proteins; member of 7-transmembrane G protein-coupled receptors. This group includes subfamilies 3 and 6 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and their closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. 321 -320577 cd15911 7tmA_OR11A-like olfactory receptor subfamily 11A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 11A and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320578 cd15912 7tmA_OR6C-like olfactory receptor subfamily 6C and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 6C, 6X, 6J, 6T, 6V, 6M, 9A, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320579 cd15913 7tmA_OR11G-like olfactory receptor OR11G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 11G, 11H, and related proteins in other mammals, and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320580 cd15914 7tmA_OR6N-like olfactory receptor OR6N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 6N, 6K, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320581 cd15915 7tmA_OR12D-like olfactory receptor subfamily 12D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 12D and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 271 -320582 cd15916 7tmA_OR10G-like olfactory receptor subfamily 10G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 10G, 10S, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 276 -341351 cd15917 7tmA_OR51_52-like olfactory receptor family 51, 52, 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor families 51, 52, 56, and related proteins in other mammals, sauropsids, amphibians, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320584 cd15918 7tmA_OR1_7-like olfactory receptor families 1, 7, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor families 1 and 7, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320585 cd15919 7tmA_GPR139 G-protein-coupled receptor GPR139, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR139, a vertebrate orphan receptor, is very closely related to GPR142, but they have different expression patterns in the brain and in other tissues. These receptors couple to inhibitory G proteins and activate phospholipase C. Studies suggested that dimer formation may be required for their proper function. GPR142 is predominantly expressed in pancreatic beta-cells and plays an important role in mediating insulin secretion and maintaining glucose homeostasis, whereas GPR139 is expressed almost exclusively in the brain and is suggested to play a role in the control of locomotor activity. Tryptophan and phenylalanine have been identified as putative endogenous ligands of GPR139. These orphan receptors are phylogenetically clustered with invertebrate FMRFamide receptors such as Drosophila melanogaster DrmFMRFa-R. 270 -320586 cd15920 7tmA_GPR34-like P2Y-like receptor and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR34 is phylogenetically related to the P2Y family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. GPR34 is shown to couple to G(i/o) protein and is highly expressed in microglia. Recently, lysophosphatidylserine has been identified as a ligand for GPR34. This group belongs to the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. G-proteins regulate a variety of cellular functions including metabolic enzymes, ion channels, and transporters, among many others. 278 -320587 cd15921 7tmA_CysLTR cysteinyl leukotriene receptors, member of the class A family of seven-transmembrane G protein-coupled receptors. Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are the most potent inflammatory lipid mediators that play an important role in human asthma. They are synthesized in the leucocytes (cells of immune system) from arachidonic acid by the actions of 5-lipoxygenase and induce bronchial constriction through G protein-coupled receptors, CysLTR1 and CysLTR2. Activation of CysLTR1 by LTD4 induces airway smooth muscle contraction and proliferation, eosinophil migration, and damage to the lung tissue. They belong to the class A GPCR superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 283 -320588 cd15922 7tmA_P2Y-like P2Y purinoceptor-like proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y-like proteins are an uncharacterized group that is phylogenetically related to a family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 284 -320589 cd15923 7tmA_GPR35_55-like G protein-coupled receptor 35, GPR55, and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily is composed of GPR35, GPR55, and similar proteins. GPR35 shares closest homology with GPR55, and they belong to the class A G protein-coupled receptor superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A number of studies have suggested that GPR35 may play important physiological roles in hypertension, atherosclerosis, nociception, asthma, glucose homeostasis and diabetes, and inflammatory bowel disease. GPR35 is thought to be responsible for brachydactyly mental retardation syndrome, which is associated with a deletion comprising chromosome 2q37 in human, and is also implicated as a potential oncogene in stomach cancer. GPR35 couples to G(13) and G(i/o) proteins, whereas GPR55 has been reported to couple to G(13), G(12), or G(q) proteins. Activation of GPR55 leads to activation of phospholipase C, RhoA, ROCK, ERK, p38MAPK, and calcium release. Recently, lysophophatidylinositol (LPI) has been identified as an endogenous ligand for GPR55, while several endogenous ligands for GPR35 have been identified including kynurenic acid, 2-oleoyl lysophosphatidic acid, and zaprinast. 273 -341352 cd15924 7tmA_P2Y12-like P2Y purinoceptors 12, 13, 14, and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). This cluster only includes P2Y12-like receptors as well as closely related orphan receptor, GPR87. 284 -320591 cd15925 7tmA_RNL3R2 relaxin-3 receptor 2 (RNL3R2), member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled receptor RNL3R2 is also known as GPR100, GPR142, and relaxin family peptide receptor 4 (RXFP4). Insulin-like peptide 5 (INSL5) is an endogenous ligand for RNL3R2 and plays a role in fat and glucose metabolism. INSL5 is highly expressed in human rectal and colon tissues. RNL3R2 signals through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation. 283 -320592 cd15926 7tmA_RNL3R1 relaxin 3 receptor 1 (RNL3R1), member of the class A family of seven-transmembrane G protein-coupled receptors. The G protein-coupled receptor RNL3R1 is also known as GPCR135, relaxin family peptide receptor 3 (RXFP3), and somatostatin- and angiotensin-like peptide receptor (SALPR). RNL3/relaxin-3, a member of the insulin superfamily, is an endogenous neuropeptide ligand for RNL3R1. RNL3R1 is predominantly expressed in brain regions and implicated in stress, anxiety, and feeding, and metabolism. RNL3R1 signals through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation, and also activates Erk1/2 signaling pathway. 288 -320593 cd15927 7tmA_Bombesin_R-like bombesin receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors. This bombesin subfamily of G-protein coupled receptors consists of neuromedin B receptor (NMBR), gastrin-releasing peptide receptor (GRPR), and bombesin receptor subtype 3 (BRS-3). Bombesin is a tetradecapeptide, originally isolated from frog skin. Mammalian bombesin-related peptides are widely distributed in the gastrointestinal and central nervous systems. The bombesin family receptors couple mainly to the G proteins of G(q/11) family. NMBR functions as the receptor for the neuropeptide neuromedin B, a potent mitogen and growth factor for normal and cancerous lung and for gastrointestinal epithelial tissues. Gastrin-releasing peptide is an endogenous ligand for GRPR and shares high sequence homology with NMB in the C-terminal region. Both NMB and GRP possess bombesin-like biochemical properties. BRS-3 is classified as an orphan receptor and suggested to play a role in sperm cell division and maturation. BRS-3 interacts with known naturally-occurring bombesin-related peptides with low affinity; however, no endogenous high-affinity ligand to the receptor has been identified. The bombesin receptor family belongs to the seven transmembrane rhodopsin-like G-protein coupled receptors (class A GPCRs), which perceive extracellular signals and transduce them to guanine nucleotide-binding (G) proteins. 294 -320594 cd15928 7tmA_GHSR-like growth hormone secretagogue receptor, motilin receptor, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This subfamily includes growth hormone secretagogue receptor (GHSR or ghrelin receptor), motilin receptor (also called GPR38), and related proteins. Both GHSR and GPR38 bind peptide hormones. Ghrelin, the endogenous ligand for GHSR, is an acylated 28-amino acid peptide hormone produced by ghrelin cells in the gastrointestinal tract. Ghrelin is also called the hunger hormone and is involved in the regulation of growth hormone release, appetite and feeding, gut motility, lipid and glucose metabolism, and energy balance. Motilin, the ligand for GPR38, is a 22 amino acid peptide hormone expressed throughout the gastrointestinal tract and stimulates contraction of gut smooth muscle. It is involved in the regulation of digestive tract motility. 288 -341353 cd15929 7tmB1_GlucagonR-like glucagon receptor-like subfamily, member of the class B family of seven-transmembrane G protein-coupled receptors. This group represents the glucagon receptor family of G protein-coupled receptors, which includes glucagon receptor (GCGR), glucagon-like peptide-1 receptor (GLP1R), GLP2R, and closely related receptors. These receptors are activated by the members of the glucagon (GCG) peptide family including GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from the large proglucagon precursor. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. Receptors in this group belong to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 279 -320596 cd15930 7tmB1_Secretin_R-like secretin receptor-like group of hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors. This group represents G protein-coupled receptors for structurally similar peptide hormones that include secretin, growth-hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating polypeptide (PACAP), and vasoactive intestinal peptide (VIP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Secretin, a polypeptide secreted by entero-endocrine S cells in the small intestine, is involved in maintaining body fluid balance. This polypeptide regulates the secretion of bile and bicarbonate into the duodenum from the pancreatic and biliary ducts, as well as regulates the duodenal pH by the control of gastric acid secretion. Studies with secretin receptor-null mice indicate that secretin plays a role in regulating renal water reabsorption. Secretin mediates its biological actions by elevating intracellular cAMP via G protein-coupled secretin receptors, which are expressed in the brain, pancreas, stomach, kidney, and liver. GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. All B1 subfamily GPCRs are able to increase intracellular cAMP levels by coupling to adenylate cyclase via a stimulatory Gs protein. However, depending on its cellular location, some members of subfamily B1 are also capable of coupling to additional G proteins such as G(i/o) and/or G(q) proteins, thereby leading to activation of phospholipase C and intracellular calcium influx. 268 -320597 cd15931 7tmB2_EMR_Adhesion_II EGF-like module receptors, group II adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors. group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. On the other hand, EMR2 generates four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. 262 -320598 cd15932 7tmB2_GPR116-like_Adhesion_VI orphan GPR116 and related proteins, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors. group VI adhesion GPCRs consist of orphan receptors GPR110, GPR111, GPR113, GPR115, GPR116, and closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR110 possesses a SEA box in the N-terminal has been identified as an oncogene overexpressed in lung and prostate cancer. GPR113 contains a hormone binding domain and one EGF (epidermal grown factor) domain. GPR112 has extremely long N-terminus (about 2,400 amino acids) containing a number of Ser/Thr-rich glycosylation sites and a pentraxin (PTX) domain. GPR116 has two C2-set immunoglobulin-like repeats, which is found in the members of the immunoglobulin superfamily of cell surface proteins, and a SEA (sea urchin sperm protein, enterokinase, and a grin)-box, which is present in the extracellular domain of the transmembrane mucin (MUC) family and known to enhance O-glycosylation. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 268 -320599 cd15933 7tmB2_GPR133-like_Adhesion_V orphan GPR133 and related proteins, group V adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors. group V adhesion GPCRs include orphan receptors GPR133, GPR144, and closely related proteins. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the G(s) protein, leading to activation of adenylate cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. 252 -320600 cd15934 7tmC_mGluRs_group2_3 metabotropic glutamate receptors in group 2 and 3, member of the class C family of seven-transmembrane G protein-coupled receptors. The metabotropic glutamate receptors (mGluRs) are homodimeric class C G-protein coupled receptors which are activated by glutamate, the major excitatory neurotransmitter of the CNS. The mGluRs are involved in regulating neuronal excitability and synaptic transmission via intracellular activation of second messenger signaling pathways. While the ionotropic glutamate receptor subtypes (AMPA, NMDA, and kainite) mediate fast excitatory postsynaptic transmission, mGluRs are known to mediate slower excitatory postsynaptic responses and to be involved in synaptic plasticity in the mammalian brain. In addition to seven-transmembrane helices, the class C GPCRs are characterized by a large N-terminal extracellular Venus flytrap-like domain, which is composed of two adjacent lobes separated by a cleft which binds an endogenous ligand. Moreover, they exist as either homo- or heterodimers, which are essential for their function. For instance, mGluRs form homodimers via interactions between the N-terminal Venus flytrap domains and the intermolecular disulphide bonds between cysteine residues located in the cysteine-rich domain (CRD). At least eight different subtypes of metabotropic receptors (mGluR1-8) have been identified and further classified into three groups based on their sequence homology, pharmacological properties, and signaling pathways. Group 1 (mGluR1 and mGluR5) receptors are predominantly located postsynaptically on neurons and are involved in long-term synaptic plasticity in the brain, including long-term potentiation (LTP) in the hippocampus and long-term depression (LTD) in the cerebellum. They are coupled to G(q/11) proteins, thereby activating phospholipase C to generate inositol-1,4,5-triphosphate (IP3) and diacyglycerol (DAG), which in turn lead to Ca2+ release and protein kinase C activation, respectively. Group I mGluR expression is shown to be strongly upregulated in animal models of epilepsy, brain injury, inflammatory, and neuropathic pain, as well as in patients with amyotrophic lateral sclerosis or multiple sclerosis. Group 2 (mGluR2 and mGluR3) and 3 (mGluR4, mGluR6, mGluR7, and mGluR8) receptors are predominantly localized presynaptically in the active region of neurotransmitter release. They are coupled to (Gi/o) proteins, which leads to inhibition of adenylate cyclase activity and cAMP formation, and consequently to a decrease in protein kinase A (PKA) activity. Ultimately, activation of these receptors leads to inhibition of neurotransmitter release such as glutamate and GABA via inhibition of Ca2+ channels and activation of K+ channels. Furthermore, while activation of Group 1 mGluRs increases NMDA (N-methyl-D-aspartate) receptor activity and risk of neurotoxicity, Group 2 and 3 mGluRs decrease NMDA receptor activity and prevent neurotoxicity. 252 -320601 cd15935 7tmA_OR4Q3-like olfactory receptor 4Q3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 4Q3 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 268 -320602 cd15936 7tmA_OR4D-like olfactory receptor 4D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 4D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 267 -320603 cd15937 7tmA_OR4N-like olfactory receptor 4N, 4M, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 4N, 4M, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 267 -320604 cd15938 7tmA_OR4Q2-like olfactory receptor 4Q2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 4Q2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 265 -320605 cd15939 7tmA_OR4A-like olfactory receptor 4A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 4A, 4C, 4P, 4S, 4X and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 267 -320606 cd15940 7tmA_OR4E-like olfactory receptor 4E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 4E and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 267 -320607 cd15941 7tmA_OR10S1-like olfactory receptor subfamily 10S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 10S1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320608 cd15942 7tmA_OR10G6-like olfactory receptor subfamily 10G6 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor 10G6 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320609 cd15943 7tmA_OR5AP2-like olfactory receptor subfamily 5AP2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5AP2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 295 -320610 cd15944 7tmA_OR5AR1-like olfactory receptor subfamily 5AR1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5AR1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 294 -320611 cd15945 7tmA_OR5C1-like olfactory receptor subfamily 5C1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 5C1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 292 -320612 cd15946 7tmA_OR1330-like olfactory receptor 1330 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes olfactory receptors 1330 from mouse, Olr859 from rat, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320613 cd15947 7tmA_OR2B-like olfactory receptor subfamily 2B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor family 2 (subfamilies 2B, 2C, 2G, 2H, 2I, 2J, 2W, 2Y) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 270 -320614 cd15948 7tmA_OR52K-like olfactory receptor subfamily 52K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52K and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 277 -320615 cd15949 7tmA_OR52M-like olfactory receptor subfamily 52M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52M and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 292 -320616 cd15950 7tmA_OR52I-like olfactory receptor subfamily 52I and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52I and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320617 cd15951 7tmA_OR52R_52L-like olfactory receptor subfamily 52R, 52L, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamilies 52R, 52L and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320618 cd15952 7tmA_OR52E-like olfactory receptor subfamily 52E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52E and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 274 -341354 cd15953 7tmA_OR52P-like olfactory receptor subfamily 52P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52P and related proteins in other mammals, sauropsids and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -320620 cd15954 7tmA_OR52N-like olfactory receptor subfamily 52N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52N and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 276 -320621 cd15955 7tmA_OR52A-like olfactory receptor subfamily 52A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 276 -320622 cd15956 7tmA_OR52W-like olfactory receptor subfamily 52W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes human olfactory receptor subfamily 52W and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. 275 -341355 cd15957 7tmA_Beta2_AR beta-2 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors. Beta-2 AR is activated by adrenaline that plays important roles in cardiac function and pulmonary physiology. While beta-1 AR and beta-2 AR are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway, beta-2 AR can couple to both G(s) and G(i) proteins in the heart. Moreover, beta-2 AR activation leads to smooth muscle relaxation and bronchodilation in the lung. The beta adrenergic receptors are a subfamily of the class A rhodopsin-like G protein-coupled receptors. 301 -320624 cd15958 7tmA_Beta1_AR beta-1 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors. The beta-1 adrenergic receptor (beta-1 adrenoceptor), also known as beta-1 AR, is activated by adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. 298 -320625 cd15959 7tmA_Beta3_AR beta-3 adrenergic receptors (adenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors. The beta-3 adrenergic receptor (beta-3 adrenoceptor), also known as beta-3 AR, is activated by adrenaline and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. 302 -320626 cd15960 7tmA_GPR185-like G protein-coupled receptor 185 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR185, also called GPRx, is a member of the constitutively active GPR3/6/12 subfamily of G protein-coupled receptors. It plays a role in the maintenance of meiotic arrest in Xenopus laevis oocytes through G(s) protein, which leads to increased cAMP levels. In Xenopus laevis, GPR185 is primarily expressed in brain, ovary, and testis; however, its ortholog has not been identified in other vertebrate genomes. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. 268 -320627 cd15961 7tmA_GPR12 G protein-coupled receptor 12, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3. 268 -320628 cd15962 7tmA_GPR6 G protein-coupled receptor 6, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3. 268 -320629 cd15963 7tmA_GPR3 G protein-coupled receptor 3, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3. 268 -320630 cd15964 7tmA_TSH-R thyroid-stimulating hormone receptor (or thyrotropin receptor), member of the class A family of seven-transmembrane G protein-coupled receptors. The glycoprotein hormone receptors are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone family includes the three gonadotropins: luteinizing hormone (LH), follicle-stimulating hormone (FSH), chorionic gonadotropin (CG), and a pituitary thyroid-stimulating hormone (TSH). The glycoprotein hormones exert their biological functions by interacting with their cognate GPCRs. Both LH and CG bind to the same receptor, the luteinizing hormone-choriogonadotropin receptor (LHCGR); FSH binds to FSH-R and TSH to TSH-R. TSH-R plays an important role thyroid physiology, and its activation stimulates the production of thyroxine (T4) and triiodothyronine (T3). Defects in TSH-R are a cause of several types of hyperthyroidism. The receptor is predominantly found on the surface of the thyroid epithelial cells and couples to the G(s)-protein and activates adenylate cyclase, thereby promoting cAMP production. TSH and cAMP stimulate thyroid cell proliferation, differentiation, and function. 275 -320631 cd15965 7tmA_RXFP1_LGR7 relaxin receptor 1 (or LGR7), member of the class A family of seven-transmembrane G protein-coupled receptors. Relaxin is a member of the insulin superfamily that has diverse actions in both reproductive and non-reproductive tissues. The relaxin-like peptide family includes relaxin-1, relaxin-2, and the insulin-like (INSL) peptides such as INSL3, INSL4, INSL5 and INSL6. The relaxin family peptides share high structural but low sequence similarity, and exert their physiological functions by activating a group of four G protein-coupled receptors, RXFP1-4. Relaxin is the endogenous ligand for RXFP1, which has a large extracellular N-terminal domain containing 10 leucine-rich repeats and a unique low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. Upon receptor binding, relaxin activates a variety of signaling pathways to produce second messengers such as cAMP and nitric oxide. RXFP1 is expressed in various tissues including uterus, ovary, placenta, cerebral cortex, heart, lung and kidney, among others. 287 -320632 cd15966 7tmA_RXFP2_LGR8 relaxin receptor 2 (or LGR8), member of the class A family of seven-transmembrane G protein-coupled receptors. Relaxin is a member of the insulin superfamily that has diverse actions in both reproductive and non-reproductive tissues. The relaxin-like peptide family includes relaxin-1, relaxin-2, and the insulin-like (INSL) peptides such as INSL3, INSL4, INSL5 and INSL6. The relaxin family peptides share high structural similarity, but low sequence similarity, and exert their physiological functions by activating a group of four G protein-coupled receptors, RXFP1-4. INSL3 is the endogenous ligand for RXFP2, which couples to the G(s) protein to increase intracellular cAMP levels, but also to the GoB protein to decrease cAMP formation. RXFP2 (or LGR8) is expressed in various tissues including the brain, kidney, muscle, testis, thyroid, uterus, and peripheral blood cells, among others. 287 -320633 cd15967 7tmA_P2Y1-like P2Y purinoceptor 1-like. P2Y1-like is an uncharacterized group that is phylogenetically related to a family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 281 -320634 cd15968 7tmA_P2Y6_P2Y3-like P2Y purinoceptors 6 and 3, and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. This group includes P2Y receptor 6 (P2Y6), P2Y3, and P2Y3-like proteins. These receptors belong to the G(i) class of a family of purinergic G-protein coupled receptors. In the CNS, P2Y6 plays a role in microglia activation and phagocytosis, and is involved in the secretion of interleukin from monocytes and macrophages in the immune system. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 285 -320635 cd15969 7tmA_GPR87 G protein-coupled receptor 87, member of the class A family of seven-transmembrane G protein-coupled receptors. GPR87 acts as one of multiple receptors for lysophosphatidic acid (LPA). This orphan receptor has been shown to be overexpressed in several malignant tumors including lung squamous cell carcinoma and regulated by p53. GPR87 is phylogenetically closely related to the G(i) class of the P2Y family of purinergic G protein-coupled receptors. P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-sugars. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. 283 -320636 cd15970 7tmA_SSTR1 somatostatin receptor type 1, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR1 is coupled to a Na/H exchanger, voltage-dependent calcium channels, and AMPA/kainate glutamate channels. SSTR1 is expressed in the normal human pituitary and in nearly half of all pituitary adenoma subtypes. 276 -320637 cd15971 7tmA_SSTR2 somatostatin receptor type 2, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin, a polypeptide hormone that regulates a wide variety of physiological such as neurotransmission, endocrine secretion, cell proliferation, and smooth muscle contractility. SSTRs are composed of five distinct subtypes (SSTR1-5) which are encoded by separate genes on different chromosomes. SSTR2 plays critical roles in growth hormone secretion, glucagon secretion, and immune responses. SSTR2 is expressed in the normal human pituitary and in nearly all pituitary growth hormone adenomas. 279 -320638 cd15972 7tmA_SSTR3 somatostatin receptor type 3, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR3 is coupled to inward rectifying potassium channels. SSTR3 plays critical roles in growth hormone secretion, endothelial cell cycle arrest and apoptosis. Furthermore, SSTR3 is expressed in the normal human pituitary and in nearly half of pituitary growth hormone adenomas. 279 -320639 cd15973 7tmA_SSTR4 somatostatin receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR4 plays a critical role in mediating inflammation. Unlike other SSTRs, SSTR4 subtype is not detected in all pituitary adenomas while it is expressed in the normal human pituitary. 274 -320640 cd15974 7tmA_SSTR5 somatostatin receptor type 5, member of the class A family of seven-transmembrane G protein-coupled receptors. G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR5 is coupled to inward rectifying K channels and phospholipase C, and plays critical roles in growth hormone and insulin secretion. SSTR5 acts as a negative regulator of PDX-1 (pancreatic and duodenal homeobox-1) expression, which is a conserved homeodomain-containing beta cell-specific transcription factor essentially involved in pancreatic development, among many other functions. 277 -320641 cd15975 7tmA_ET-AR endothelin A (or endothelin-1) receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Endothelins are able to activate a number of signal transduction processes including phospholipase A2, phospholipase C, and phospholipase D, as well as cytosolic protein kinase activation. They play an important role in the regulation of the cardiovascular system and are the most potent vasoconstrictors identified, stimulating cardiac contraction, regulating the release of vasoactive substances, and stimulating mitogenesis in blood vessels. Two endothelin receptor subtypes have been isolated and identified in vertebrates, endothelin A receptor (ET-A) and endothelin B receptor (ET-B), and are members of the seven transmembrane class A G-protein coupled receptor family which activate multiple effectors via different types of G protein. Some vertebrates contain a third subtype, endothelin A receptor (ET-C). ET-A receptors are mainly located on vascular smooth muscle cells, whereas ET-B receptors are present on endothelial cells lining the vessel wall. Endothelin receptors have also been found in the brain. 300 -320642 cd15976 7tmA_ET-BR endothelin B receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Endothelins are able to activate a number of signal transduction processes including phospholipase A2, phospholipase C, and phospholipase D, as well as cytosolic protein kinase activation. They play an important role in the regulation of the cardiovascular system and are the most potent vasoconstrictors identified, stimulating cardiac contraction, regulating the release of vasoactive substances, and stimulating mitogenesis in blood vessels. Two endothelin receptor subtypes have been isolated and identified in vertebrates, endothelin A receptor (ET-A) and endothelin B receptor (ET-B), and are members of the seven transmembrane class A G-protein coupled receptor family which activate multiple effectors via different types of G protein. Some vertebrates contain a third subtype, endothelin A receptor (ET-C). ET-A receptors are mainly located on vascular smooth muscle cells, whereas ET-B receptors are present on endothelial cells lining the vessel wall. Endothelin receptors have also been found in the brain. 296 -320643 cd15977 7tmA_ET-CR endothelin C receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. Endothelins are able to activate a number of signal transduction processes including phospholipase A2, phospholipase C, and phospholipase D, as well as cytosolic protein kinase activation. They play an important role in the regulation of the cardiovascular system and are the most potent vasoconstrictors identified, stimulating cardiac contraction, regulating the release of vasoactive substances, and stimulating mitogenesis in blood vessels. Two endothelin receptor subtypes have been isolated and identified in vertebrates, endothelin A receptor (ET-A) and endothelin B receptor (ET-B), and are members of the seven transmembrane class A G-protein coupled receptor family which activate multiple effectors via different types of G protein. Some vertebrates contain a third subtype, endothelin A receptor (ET-C). ET-A receptors are mainly located on vascular smooth muscle cells, whereas ET-B receptors are present on endothelial cells lining the vessel wall. Endothelin receptors have also been found in the brain. The ET-C receptor is specific for endothelin-3 on frog dermal melanophores; its activation causes dispersion of pigment granules. 296 -320644 cd15978 7tmA_CCK-AR cholecystokinin receptor type A, member of the class A family of seven-transmembrane G protein-coupled receptors. Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. 278 -320645 cd15979 7tmA_CCK-BR cholecystokinin receptor type B, member of the class A family of seven-transmembrane G protein-coupled receptors. Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. 275 -320646 cd15980 7tmA_NPFFR2 neuropeptide FF receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R. 299 -320647 cd15981 7tmA_NPFFR1 neuropeptide FF receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors. Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R. 299 -320648 cd15982 7tmB1_PTH2R parathyroid hormone 2 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. The parathyroid hormone 2 receptor (PTH2R), one of the three subtypes of PTH receptor family, is found in mammals and fish, but not in chicken or frog. PTH2R is potently activated by tuberoinfundibular peptide-39 (TIP-39) but not by PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH, an endocrine hormone that regulates calcium homoeostasis and bone maintenance, strongly activates human PTH2R, but only weakly activates rat and zebrafish PTH2Rs. These results suggest that TIP-39 is a natural ligand for PTH2R. Conversely, PTH1R is activated by PTH and PTHrP, but not by TIP-39. The PTH family receptors are members of the B1 (or secretin-like) subfamily of class B GPCRs, which include receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. 289 -320649 cd15983 7tmB1_PTH3R parathyroid hormone 3 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. The parathyroid hormone 3 receptor (PTH3R), one of the three subtypes of PTH receptor family, is found in chicken and fish, but it is absent in mammals. On the other hand, the PTH1R is found in all vertebrate species, whereas PTH2R is found in mammals and fish, but not in chicken or frog. PTH1R is is activated by two polypeptide ligands: PTH, an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH2R is potently activated by tuberoinfundibular peptide-39 (TIP-39), but not by PTHrP. PTH also strongly activates human PTH2R, but only weakly activates rat and zebrafish PTH2Rs, suggesting that TIP-39 is a natural ligand for PTH2R. Conversely, PTH3R binds and responds to both PTH and PTHrP, but not the TIP-39. The PTH family receptors are members of the B1 (or secretin-like) subfamily of class B GPCRs, which include receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. 285 -320650 cd15984 7tmB1_PTH1R parathyroid hormone 1 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. The parathyroid hormone (PTH) receptor family has three subtypes: PTH1R, PTH2R and PTH3R. PTH1R is expressed in bone and kidney and is activated by two polypeptide ligands: PTH, an endocrine hormone that regulates calcium homoeostasis and bone maintenance, and PTH-related peptide (PTHrP), a paracrine factor that regulates endochondral bone development. PTH1R couples predominantly to G(s)-protein that in turn activates adenylate cyclase thereby producing cAMP, but it can also couple to several G protein subtypes, including G(q/11), G(i/o), and G(12/13), resulting in activation of multiple intracellular signaling pathways. PTH1R is found in all vertebrate species, whereas PTH2R is found in mammals and fish, but not in chicken or frog. PTH3R is found in chicken and fish, but it is absent in mammals. The PTH receptors are members of the B1 (or secretin-like) subfamily of class B GPCRs, which include receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), and calcitonin gene-related peptide. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. 290 -320651 cd15985 7tmB1_GlucagonR-like_1 uncharacterized group of glucagon receptor-like proteins, member of the class B family of seven-transmembrane G protein-coupled receptors. This group consists of uncharacterized proteins with similarity to members of the glucagon receptor family of G protein-coupled receptors, which include glucagon receptor (GCGR), and glucagon-like peptide-1 receptor (GLP1R), and GLP2R. The glucagon receptors are activated by the members of the glucagon (GCG) peptide family including GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from the large proglucagon precursor. GCGR regulates blood glucose levels by control of hepatic glycogenolysis and gluconeogenesis and by regulation of insulin secretion from the pancreatic beta-cells. Activation of GLP1R stimulates glucose-dependent insulin secretion from pancreatic beta cells, whereas activation of GLP2R stimulates intestinal epithelial proliferation and increases villus height in the small intestine. Receptors in this group belong to the B1 (or secretin-like) subfamily of class B GPCRs, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. However, depending on their cellular location, GCGR and GLP receptors can activate multiple G proteins, which can in turn stimulate different second messenger pathways. 280 -320652 cd15986 7tmB1_VIP-R2 vasoactive intestinal polypeptide (VIP) receptor 2, member of the class B family of seven-transmembrane G protein-coupled receptors. Vasoactive intestinal peptide (VIP) receptor 2 is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, growth-hormone-releasing hormone (GHRH), and pituitary adenylate cyclase activating polypeptide (PACAP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. VIP-R1 is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. However, depending on its cellular location, VIP-R1 is also capable of coupling to additional G proteins such as G(q) protein, thus leading to the activation of phospholipase C and intracellular calcium influx. 269 -320653 cd15987 7tmB1_PACAP-R1 pituitary adenylate cyclase-activating polypeptide type 1 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors. Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PACAP-R1) is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, growth-hormone-releasing hormone (GHRH), and vasoactive intestinal peptide (VIP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. PACAP-R1 is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. 268 -320654 cd15988 7tmB2_BAI2 brain-specific angiogenesis inhibitor 2, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. 291 -320655 cd15989 7tmB2_BAI3 brain-specific angiogenesis inhibitor 3, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. 293 -320656 cd15990 7tmB2_BAI1 brain-specific angiogenesis inhibitor 1, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. 267 -320657 cd15991 7tmB2_CELSR1 Cadherin EGF LAG seven-pass G-type receptor 1, member of the class B2 family of seven-transmembrane G protein-coupled receptors. The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 254 -320658 cd15992 7tmB2_CELSR2 Cadherin EGF LAG seven-pass G-type receptor 2, member of the class B2 family of seven-transmembrane G protein-coupled receptors. The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 255 -320659 cd15993 7tmB2_CELSR3 Cadherin EGF LAG seven-pass G-type receptor 3, member of the class B2 family of seven-transmembrane G protein-coupled receptors. The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuronal migration and axon guidance in the CNS. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 254 -320660 cd15994 7tmB2_GPR111_115 orphan adhesion receptors GPR111 and GPR115, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR111 and GPR115 are highly homologous orphan receptors that belong to group VI adhesion-GPCRs along with GPR110, GPR113, and GPR116. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. Both GPR111 and GPR5 are present only in land-living animals and are predominantly expressed in the developing skin. 267 -320661 cd15995 7tmB2_GPR56 orphan adhesion receptor GPR56, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR56 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR64, GPR97, GPR112, GPR114, and GPR126. GPR56 is involved in the regulation of oligodendrocyte development and myelination in the central nervous system via coupling to G(12/13) proteins, which leads to the activation of RhoA GTPase. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 269 -320662 cd15996 7tmB2_GPR126 orphan adhesion receptor GPR126, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR126 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, and GPR114. GPR126 is required in Schwann cells for proper differentiation and myelination via G-Protein Activation. GPR126 is believed to couple to G(s)-protein, which leads to activation of adenylate cyclase for cAMP production. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 271 -320663 cd15997 7tmB2_GPR112 Probable G protein-coupled receptor 112, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR112 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR114, and GPR126. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 269 -320664 cd15998 7tmB2_GPR124 G protein-coupled receptor 124, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR124 is an orphan receptor that has been classified as that belongs to the group III of adhesion GPCRs, which also includes orphan GPR123 and GPR125. GPR124, also known as tumor endothelial marker 5 (TEM5), is highly expressed in tumor vessels and in the vasculature of the developing embryo. GPR124 is essentially required for proper angiogenic sprouting into neural tissue, CNS-specific vascularization, and formation of the blood-brain barrier. GPR124 interacts with the PDZ domain of DLG1 (discs large homolog 1) through its PDZ-binding motif. Recently, studies of double-knockout mice showed that GPR124 functions as a co-activator of Wnt7a/Wnt7b-dependent beta-catenin signaling in brain endothelium. Moreover, WNT7-stimulated beta-catenin signaling is regulated by GPR124's intracellular PDZ binding motif and leucine-rich repeats (LRR) in its N-terminal extracellular domain. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 268 -320665 cd15999 7tmB2_GPR125 G protein-coupled receptor 125, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR125 is an orphan receptor that has been classified as that belongs to the group III of adhesion GPCRs, which also includes orphan receptors GPR123 and GPR124. GPR125 directly interacts with dishevelled (Dvl) via its intracellular C-terminus, and together, GPR125 and Dvl recruit a subset of planar cell polarity (PCP) components into membrane subdomains, a prerequisite for activation of Wnt/PCP signaling. Thus, GPR125 influences the noncanonical WNT/PCP pathway, which does not involve beta-catenin, through interacting with and modulating the distribution of Dvl. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 312 -320666 cd16000 7tmB2_GPR123 G protein-coupled receptor 123, member of the class B2 family of seven-transmembrane G protein-coupled receptors. GPR123 is an orphan receptor that has been classified as that belongs to the group III of adhesion GPCRs, and also includes orphan receptors GPR124 and GPR125. GPR123 is predominantly expressed in the CNS including thalamus, brainstem and regions containing large pyramidal cells, yets its biological function remains to be determined. Adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 275 -320667 cd16001 7tmA_P2Y3-like P2Y purinoceptor 3-like proteins, member of the class A family of seven-transmembrane G protein-coupled receptors. P2Y3-like proteins are an uncharacterized group that belongs to the G(i) class of a family of purinergic G-protein coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). 284 -320668 cd16002 7tmA_NK1R neurokinin 1 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1) or substance P receptor (SPR), is a G-protein coupled receptor found in the mammalian central nervous and peripheral nervous systems. The tachykinins act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. SP is an extremely potent vasodilator through endothelium dependent mechanism and is released from the autonomic sensory nerves. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. 284 -320669 cd16003 7tmA_NKR_NK3R neuromedin-K receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The neuromedin-K receptor (NKR), also known as tachykinin receptor 3 (TACR3) or neurokinin B receptor or NK3R, is a G-protein coupled receptor that specifically binds to neurokinin B. The tachykinins (TKs) act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty. 282 -320670 cd16004 7tmA_SKR_NK2R substance-K receptor, member of the class A family of seven-transmembrane G protein-coupled receptors. The substance-K receptor (SKR), also known as tachykinin receptor 2 (TACR2) or neurokinin A receptor or NK2R, is a G-protein coupled receptor that specifically binds to neurokinin A. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. 285 -320671 cd16005 7tmB2_Latrophilin-3 Latrophilin-3, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 258 -320672 cd16006 7tmB2_Latrophilin-2 Latrophilin-2, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 258 -320673 cd16007 7tmB2_Latrophilin-1 Latrophilin-1, member of the class B2 family of seven-transmembrane G protein-coupled receptors. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. 258 -293733 cd16009 PPM Bacterial phosphopentomutase. Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert alpha-D-ribose 5-phosphate (ribose 5-phosphate) and alpha-D-ribose 1-phosphate (ribose 1-phosphate). This reaction bridges glucose metabolism and RNA biosynthesis. PPM is a Mn(2+)-dependent enzyme and protein phosphorylation activates the enzyme. 382 -293734 cd16010 iPGM 2 3 bisphosphoglycerate independent phosphoglycerate mutase iPGM. The 2,3-diphosphoglycerate- independent phosphoglycerate mutase (iPGM) catalyzes the interconversion of 3-phosphoglycerate (3PGA) and 2-phosphoglycerate (2PGA). They are the predominant PGM in plants and some other bacteria, including endospore forming Gram-positive bacteria and their close relatives. The two steps catalysis is a phosphatase reaction removing the phosphate from 2- or 3-phosphoglycerate, generating an enzyme-bound phosphoserine intermediate, followed by a phosphotransferase reaction as the phosphate is transferred from the enzyme back to the glycerate moiety. The iPGM exists as a dimer, each monomer binding 2 magnesium atoms, which are essential for enzymatic activity. 503 -293735 cd16011 iPGM_like uncharacterized subfamily of alkaline phosphatase, homologous to 2 3 bisphosphoglycerate independent phosphoglycerate mutase (iPGM) and bacterial phosphopentomutases. The proteins in this subfamily of alkaline phosphatase are not characterized. Their sequences show similarity to 2 3 bisphosphoglycerate independent phosphoglycerate mutase (iPGM) which catalyzes the interconversion of 3-phosphoglycerate to 2-phosphoglycerate, and to bacterial phosphopentomutases (PPMs) which interconvert alpha-D-ribose 5-phosphate (ribose 5-phosphate) and alpha-D-ribose 1-phosphate (ribose 1-phosphate). 368 -293736 cd16012 ALP Alkaline Phosphatase. Alkaline phosphatases are non-specific membrane-bound phosphomonoesterases that catalyze the hydrolysis reaction via a phosphoseryl intermediate to produce inorganic phosphate and the corresponding alcohol, optimally at high pH. Alkaline phosphatase exists as a dimer, each monomer binding 2 zinc atoms and one magnesium atom, which are essential for enzymatic activity. Mammalian alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression. They are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. 283 -293737 cd16013 AcpA acid phosphatase A. Acid phosphatase A catalyzes the hydrolysis reaction via a phosphoseryl intermediate to produce inorganic phosphate and the corresponding alcohol, optimally at low pH. AcpA hydrolyzes a variety of substrates, including p-nitrophenylphosphate (pNPP), p-nitrophenylphosphorylcholine (pNPPC), peptides containing phosphotyrosine, inositol phosphates, AMP, ATP, fructose 1,6-bisphosphate, glucose and fructose 6-phosphates, NADP, and ribose 5-phosphate. AcpA is distinct from histidine ACPs and purple ACPs, as well as class A, B, and C bacterial nonspecific ACPs. 370 -293738 cd16014 PLC non-hemolytic phospholipase C. Nonhemolytic Phospholipases C is produced by pathogenic bacterial. The toxic phospholipases C can interact with eukaryotic cell membranes and hydrolyze phosphatidylcholine and sphingomyelin, leading to cell lysis. 287 -293739 cd16015 LTA_synthase Lipoteichoic acid synthase like. Lipoteichoic acid (LTA) is an important cell wall polymer found in Gram-positive bacteria. It may contain long chains of ribitol or glycerol phosphate. LTA synthase catalyzes the reaction to extend the polymer by the repeated addition of glycerolphosphate (GroP) subunits to the end of the growing chain. 283 -293740 cd16016 AP-SPAP SPAP is a subclass of alkaline phosphatase (AP). Alkaline phosphatases are non-specific phosphomonoesterases that catalyze the hydrolysis reaction via a phosphoseryl intermediate to produce inorganic phosphate and the corresponding alcohol, optimally at high pH. Alkaline phosphatase exists as a dimer, each monomer binding 2 zinc atoms and one magnesium atom, which are essential for enzymatic activity. Although SPAP is a subclass of alkaline phosphatase, SPAP has many differences from other APs: 1) the catalytic residue is a threonine instead of serine, 2) there is no binding pocket for the third metal ion, and 3) the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an asparagine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. 457 -293741 cd16017 LptA Lipooligosaccharide Phosphoethanolamine Transferase A (LptA) or Lipid A Phosphoethanolamine Transferase. Lipooligosaccharide Phosphoethanolamine Transferase A (LptA) or Lipid A Phosphoethanolamine Transferase catalyzes the modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues. Lipopolysaccharides, also called endotoxins, protect bacterial pathogens from antimicrobial peptides and have roles in virulence. The PEA modified lipid A increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane. 288 -293742 cd16018 Enpp Ectonucleotide pyrophosphatase/phosphodiesterase, also called autotaxin. Ecto-nucleotide pyrophosphatases/phosphodiesterases (ENPPs) hydrolyze 5'-phosphodiester bonds in nucleotides and their derivatives, resulting in the release of 5'-nucleotide monophosphates. ENPPs have multiple physiological roles, including nucleotide recycling, modulation of purinergic receptor signaling, regulation of extracellular pyrophosphate levels, stimulation of cell motility, and possible roles in regulation of insulin receptor (IR) signaling and activity of ecto-kinases. The eukaryotic ENPP family contains at least five members that have different tissue distribution and physiological roles. 267 -293743 cd16019 GPI_EPT GPI ethanolamine phosphate transferase. Ethanolamine phosphate transferase is involved in glycosylphosphatidylinositol-anchor biosynthesis. It catalyzes the transfer of ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor. It may act as suppressor of replication stress and chromosome missegregation. 292 -293744 cd16020 GPI_EPT_1 GPI ethanolamine phosphate transferase 1; PIG-N. Ethanolamine phosphate transferase is involved in glycosylphosphatidylinositol-anchor biosynthesis. It catalyzes the transfer of ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor. It may act as suppressor of replication stress and chromosome missegregation. 294 -293745 cd16021 ALP_like uncharacterized Alkaline phosphatase subfamily. Alkaline phosphatases are non-specific phosphomonoesterases that catalyze the hydrolysis reaction via a phosphoseryl intermediate to produce inorganic phosphate and the corresponding alcohol, optimally at high pH. Alkaline phosphatase exists as a dimer, each monomer binding 2 zinc atoms and one magnesium atom, which are essential for enzymatic activity. 278 -293746 cd16022 sulfatase_like sulfatase. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 236 -293747 cd16023 GPI_EPT_3 GPI ethanolamine phosphate transferase 3, PIG-O. Ethanolamine phosphate transferase is involved in glycosylphosphatidylinositol-anchor biosynthesis. It catalyzes the transfer of ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor. It may act as suppressor of replication stress and chromosome missegregation. 289 -293748 cd16024 GPI_EPT_2 GPI ethanolamine phosphate transferase 2; PIG-G. Ethanolamine phosphate transferase is involved in glycosylphosphatidylinositol-anchor biosynthesis. It catalyzes the transfer of ethanolamine phosphate to the first alpha-1,4-linked mannose of the glycosylphosphatidylinositol precursor of GPI-anchor. It may act as suppressor of replication stress and chromosome missegregation. 274 -293749 cd16025 PAS_like Bacterial Arylsulfatase of Pseudomonas aeruginosa and related proteins. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 402 -293750 cd16026 GALNS_like galactosamine-6-sulfatase; also known as N-acetylgalactosamine-6-sulfatase (GALNS). Lysosomal galactosamine-6-sulfatase removes sulfate groups from a terminal N-acetylgalactosamine-6-sulfate (or galactose-6-sulfate) in mucopolysaccharides such as keratan sulfate and chondroitin-6-sulfate. Defects in GALNS lead to accumulation of substrates, resulting in the development of the lysosomal storage disease mucopolysaccharidosis IV A. 399 -293751 cd16027 SGSH N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). N-sulfoglucosamine sulfohydrolase (SGSH) belongs to the sulfatase family and catalyses the cleavage of N-linked sulfate groups from the GAGs heparin sulfate and heparin. The active site is characterized by the amino-acid sequence motif C(X)PSR that is highly conserved among most sulfatases. The cysteine residue is post-translationally converted to a formylglycine (FGly) residue, which is crucial for the catalytic process. Loss of function of SGSH results a disease called mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities. 373 -293752 cd16028 PMH Phosphonate monoester hydrolase/phosphodiesterase. Phosphonate monoester hydrolase/phosphodiesterase hydrolyses phosphonate monoesters or phosphate diesters using a posttranslationally formed formylglycine as the catalytic nucleophile. PMH is the member of the alkaline phosphatase superfamily. The structure of PMH is more homologous to arylsulfatase than alkaline phosphatase. Sulfatases also use formylglycine as catalytic nucleophile. 449 -293753 cd16029 4-S N-acetylgalactosamine 4-sulfatase, also called arylsulftase B. Sulfatases catalyze the hydrolysis of sulfuric acid esters from a wide variety of substrates. N-acetylgalactosamine 4-sulfatase catalyzes the removal of the sulfate ester group from position 4 of an N-acetylgalactosamine sugar at the non-reducing terminus of the polysaccharide in the degradative pathways of the glycosaminoglycans dermatan sulfate and chondroitin-4-sulfate. N-acetylgalactosamine 4-sulfatase is a lysosomal enzyme. 393 -293754 cd16030 iduronate-2-sulfatase iduronate-2-sulfatase. Iduronate 2-sulfatase is a sulfatase enzyme that catalyze the hydrolysis of sulfate ester bonds from a wide variety of substrates, including steroids, carbohydrates and proteins. Iduronate 2-sulfatase is required for the lysosomal degradation of heparan sulfate and dermatan sulfate. Mutations in the iduronate 2-sulfatase gene that result in enzymatic deficiency lead to the sex-linked mucopolysaccharidosis type II, also known as Hunter syndrome. 435 -293755 cd16031 G6S_like unchracterized sulfatase homologous to glucosamine (N-acetyl)-6-sulfatase(G6S, GNS). N-acetylglucosamine-6-sulfatase also known as glucosamine (N-acetyl)-6-sulfatase hydrolyzes of the 6-sulfate groups of the N-acetyl-D-glucosamine 6-sulfate units of heparan sulfate and keratan sulfate. Deficiency of N-acetylglucosamine-6-sulfatase results in the disease of Sanfilippo Syndrome type IIId or Mucopolysaccharidosis III (MPS-III), a rare autosomal recessive lysosomal storage disease. 429 -293756 cd16032 choline-sulfatase choline-sulfatase. Choline-sulphatase is involved in the synthesis of glycine betaine from choline. The symbiotic soil bacterium Rhizobium meliloti can synthesize glycine betaine from choline-O-sulphate and choline to protect itself from osmotic stress. This biosynthetic pathway is encoded by the betICBA locus, which comprises a regulatory gene, betI, and three structural genes, betC (choline sulfatase), betB (betaine aldehyde dehydrogenase), and betA (choline dehydrogenase). betICBA genes constitute a single operon. 327 -293757 cd16033 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 411 -293758 cd16034 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 399 -293759 cd16035 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 311 -293760 cd16037 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 321 -277186 cd16039 PHD_SPP1 PHD finger found in Set1 complex component SPP1. Set1C component SPP1, also called COMPASS component Spp1, or Complex proteins associated with set1 protein Spp1, or Suppressor of PRP protein 1, is a component of the COMPASS complex that links histone methylation to initiation of meiotic recombination. It induces double-strand break (DSB) formation by tethering to recombinationally cold regions. SPP1 interacts with H3K4me3 and Mer2, a protein required for DSB formation, to promote recruitment of potential meiotic DSB sites to the chromosomal axis. SPP1 contains a PHD finger, a zinc binding motif. 46 -294002 cd16040 SPRY_PRY_SNTX Stonustoxin subunit alpha or SNTX subunit alpha. This domain, consisting of the distinct N-terminal PRY subdomain followed by the SPRY subdomain, is found at the C-terminus of Stonustoxin alpha proteins. Stonustoxin (SNTX) is a multifunctional lethal protein isolated from venom elaborated by the stonefish. It comprises two subunits, termed alpha and beta. SNTX elicits an array of biological responses, particularly a potent hypotension and respiratory difficulties. 180 -293880 cd16074 OCRE OCRE domain. The OCRE (OCtamer REpeat) domain contains 5 repeats of an 8-residue motif, which were shown to form beta-strands. Based on the architectures of proteins containing OCRE domains, a role in RNA metabolism and/or signalling has been proposed. 54 -293922 cd16075 ORC6_CTD C-terminal domain of the eukaryotic origin recognition complex subunit ORC6. In eukaryotes, a complex consisting of six subunits promotes the onset of DNA replication. The 6th subunit, ORC6, does not belong to the wider AAA+ family of nucleotide hydrolases, but contains a tandemly repeated domain resembling the transcription factor TFIIB, as well as this C-terminal domain which harbors a helical segment that is responsible for interactions with the complex by binding to ORC3. Mutations in this C-terminal helix interfere with the formation of the ORC and have been linked to Meier-Gorlin syndrome, a dwarfism disorder. 53 -293923 cd16076 TSPcc Coiled coil region of thrombospondin. This domain family contains coiled coil region of subgroup B of thrombospondins, comprising TSP-3, TSP-4, and TSP-5, that assemble as pentamers. This region is located adjacent to the N-terminal domain (NTD) of thrombospondin (TSP), that mediates co-translational oligomerization via formation of a left-handed super-helix which binds hydrophilic signaling molecules such as vitamin D3 and vitamin A. Pentameric TSPs are stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end. TSP-5 is also known as cartilage oligomeric matrix protein (COMP). TSPs comprise a conserved family of extracellular, oligomeric, multidomain, calcium-binding glycoproteins. In mammals, they have several complex tissue-specific roles, including activities in wound healing and angiogenesis, connective tissue organization, vessel wall biology, and synaptogenesis, all mechanistically derived from interactions with cell surfaces, cytokines, growth factors, or components of the extracellular matrix (ECM) that together regulate many aspects of cell phenotype. In invertebrates, TSPs may have ancient functions such as bridging activities in cell-cell and cell-ECM interactions. Most protostomes and inferred basal metazoa encode a single TSP with the general domain organization of subgroup B TSPs and with a pentamerizing coiled coil. 40 -293924 cd16077 TSP-5cc Coiled coil region of thrombospondin-5 (TSP-5). This family contains the N-terminal coiled coil region of TSP-5, also known as cartilage oligomeric matrix protein (COMP). It forms a pentameric left-handed coiled coil (COMPcc) with a channel that is a unique carrier for lipophilic compounds. It is known to bind hydrophilic signaling molecules such as vitamin D3 and vitamin A, making it a possible targeted drug delivery system. TSP-5/COMP is expressed in all types of cartilage as well as in the vitreous of the eye, tendons, vascular smooth muscle cells, and heart. The pentamer is stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end of the coiled coil region. TSP-5 is essential for modulating the phenotypic transition of vascular smooth muscle cells and vascular remodeling. Mutations in TSP-5 result in two different inherited chondrodysplasias and osteoarthritic phenotypes: pseudoachondroplasia and multiple epithelial dysplasia. Deficiency of TSP-5 causes dilated cardiomyopathy (DCM), a common cause of congestive heart failure. Early increase in serum TSP-5 is associated with joint damage progression in patients with rheumatoid arthritis, thus representing a novel indicator of an activated destructive process in the joint. 43 -293925 cd16079 TSP-3cc Coiled coil region of thrombospondin-3 (TSP-3). This family contains the N-terminal coiled coil region of TSP-3, which is highly expressed in osteosarcomas and associated with metastasis. TSP-3, along with TSP-5 and type IX collagen, is also expressed in the growth plate and all operate in concert and participate in growth plate organization that directly modulates linear growth. It forms a pentameric left-handed coiled coil with a channel that is a unique carrier for lipophilic compounds. The pentamer is stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end of the coiled coil region. TSP-3 knockout mice have been shown to display accelerated endochondral ossification and increased trabecular bone in the femoral head. 43 -293926 cd16080 TSP-4cc Coiled coil region of thrombospondin-4 (TSP-4). This family contains the N-terminal coiled coil region of TSP-4, which is abundantly expressed in tendon and muscle, as well as in neural and osteogenic tissues, and has also been detected in brain capillaries. It forms a pentameric left-handed coiled coil with a channel that is a unique carrier for lipophilic compounds. The pentamer is stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end of the coiled coil region. TSP-4 regulates the composition of the deposition of extracellular matrix (ECM) in tendon and skeletal muscle. The absence of TSP-4 alters the organization, composition and physiological functions of these tissues. TSP-4 deficiency causes incorrect modification of heparan-sulfate (HS), resulting in decreased activity of lipoprotein lipase (LpL) and loss of beta-glycan; HS is involved in a wide variety of cellular functions, LpL is an endothelial enzyme responsible for the uptake and hydrolysis of lipoproteins, and beta-glycan has inhibiting effect on TGF-beta signaling in skeletal muscle. The human gene THBS4 that encodes for TSP-4 contains a single nucleotide polymorphism (SNP), which is expressed at high frequency in Caucasians and associated with a significantly increased risk of premature myocardial infarction. TSP-4 also binds stromal interaction molecule 1 (STIM1), a transmembrane protein that functions in the endoplasmic reticulum (ER), and regulates calcium channel activity. Studies show that TSP-4 may act as an organizer of adhesive and axon outgrowth-promoting molecules in the ECM to optimize retinal ganglion cell responses. TSP-4 is also involved in the post-translational modification of collagen and may assist in collagen fibril assembly. 44 -293927 cd16081 TSPcc_insect Coiled coil region of thrombospondin in protostomes. This family contains the N-terminal coiled coil region of thrombospondin (TSP) in some protostomes, which suggest ancient functions that include bridging activities in cell-cell and cell-ECM interactions. It appears that most protostomes and inferred basal metazoa encode a single TSP with the general domain organization of subgroup B TSPs and with a pentamerizing coiled coil. This region has heparin-binding activity and is a component of extracellular matrix (ECM), showing that the pentameric TSPs are of earlier origin and that the trimeric TSP subfamily A form is associated with higher chordates. The left-handed coiled coil pentamer forms a channel that is a unique carrier for lipophilic compounds, and is stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end of the coiled coil region. Several heparan sulphate (HS) proteoglycans are known in D. melanogaster, including both transmembrane and matrix forms, which could contribute to its retention in pericellular matrix. 42 -319331 cd16082 IgC_CRIg Immunoglobulin (Ig) constant domain in complement receptor of the immunoglobulin superfamily (CRIg). The N-terminal domain of CRIg (also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), belongs to the IgV family of immunoglobulin-like domains while the C-terminal domain of CRIg belongs to the IgC family of immunoglobulin-like domains. CRIg plays a role in the complement system, an inhibitor of the alternative pathway convertases, and a negative regulator of T cell activation. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins such as T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins such as butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 86 -319332 cd16083 IgC_CD80 Immunoglobulin constant (IgC)-like domain of antigen receptor CD80. Glycoproteins B7-1 (CD80) and B7-2 (CD86) are expressed on antigen-presenting cells and deliver the co-stimulatory signal through CD28 and CTLA-4 (CD152) on T cells. Signalling through CD28 augments the T-cell response, whereas CTLA-4 signalling attenuates it. CD80 contains two Ig-like domains, an amino-terminal immunoglobulin variable (IgV)-like domain characteristic of adhesion molecules and a membrane proximal immunoglobulin constant (IgC)-like domain similar to the constant domains of antigen receptors. Members of the Ig family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and Major Histocompatibility Complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. 91 -319333 cd16084 IgC_CH2_IgD Immunoglobulin Constant domain. IgC: Immunoglobulin constant domain (IgC) in delta heavy chains. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and Major Histocompatibility Complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. 96 -319334 cd16085 IgC_SIRP_domain_3 Signal-regulatory protein (SIRP) immunoglobulin-like domain 3. Immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 3 (C1 repeat 2). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains a single V-set and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs but also binds CD47, but with much less affinity. 104 -319335 cd16086 IgV_CD80 Immunoglobulin variable domain (IgV) in CD80. Glycoproteins B7-1 (CD80) and B7-2 (CD86) are expressed on antigen-presenting cells and deliver the co-stimulatory signal through CD28 and CTLA-4 (CD152) on T cells. Signalling through CD28 augments the T-cell response, whereas CTLA-4 signalling attenuates it. CD80 contains two Ig-like domains, an amino-terminal immunoglobulin variable (IgV)-like domain characteristic of adhesion molecules and a membrane proximal immunoglobulin constant (IgC)-like domain similar to the constant domains of antigen receptors. Members of the Ig family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and Major Histocompatibility Complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. 105 -319336 cd16087 IgV_CD86 Immunoglobulin variable domain (IgV) in CD86. Glycoproteins B7-1 (CD80) and B7-2 (CD86) are expressed on antigen-presenting cells and deliver the co-stimulatory signal through CD28 and CTLA-4 (CD152) on T cells. Signalling through CD28 augments the T-cell response, whereas CTLA-4 signalling attenuates it. The CTLA-4 and B7-2 monomers are both two-layer beta-sandwiches that display the chain topology characteristic of the immunoglobulin variable (V-type) domains present in antigen receptors. The front and back sheets of B7-2 are composed of AGFCC'C" and BED strands, respectively. Members of the IgV family are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. 106 -319337 cd16088 IgV_PD1 Immunoglobulin (Ig)-like domain of Programmed cell Death 1 (PD1). Programmed cell Death 1 (PD1, also known as CD279 or cluster of differentiation 279) is a cell surface receptor that is expressed on T cells and pro-B cells. The protein's structure includes an extracellular IgV domain followed by a transmembrane region and an intracellular tail. Activation of CD4+ T cells, CD8+ T cells, NKT cells, B cells, and monocytes induces PD-1 expression, immediately after which it binds two distinct ligands, PD-L1 (also known as B7-H1 or CD274) and PD-L2, also known as B7-DC. PD-1 plays an important role in down regulating the immune system by preventing the activation of T-cells, reducing autoimmunity and promoting self-tolerance. The inhibitory effect of PD-1 is accomplished by promoting apoptosis in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells. A class of drugs that target PD-1, known as the PD-1 inhibitors, activate the immune system to attack tumors and treat cancer. Comparisons between the mouse PD-1 (mPD-1) and human PD-1 (hPD-1) reveals that unlike the mPD-1 which has a conventional IgSF V-set domain, hPD-1 lacks a C" strand, and instead the C' and D strands are connected by a long and flexible loop. In addition, the BC loop is not stabilized by disulfide bonding to the F strand of the ligand binding beta sheet. These differences result in different binding affinities of human and mouse PD-1 for their ligands. 110 -319338 cd16089 IgV_CRIg Immunoglobulin variable (IgV)-like domain in complement receptor of the immunoglobulin superfamily (CRIg). The N-terminal domain of CRIg (also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), belongs to the IgV family of immunoglobulin-like domains while the C-terminal domain of CRIg belongs to the IgC family of immunoglobulin-like domains. Like all members of this family, the CRIg domain contains two beta-sheets, one composed of strands A', G, F, C, C' and C", and the other of strands B, E and D. The complement system is an important part of the innate immune system, and is required for removal of pathogens from the bloodstream. After exposure to pathogens, the third component of the complement system, C3, is cleaved to C3b which, after recruitment of factor B, initiates formation of the alternative pathway convertases. CRIg, a complement receptor expressed on macrophages, binds to C3b and iC3b mediating phagocytosis of the particles. It is also a potent inhibitor of the alternative pathway convertases and a negative regulator of T cell activation. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as, T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as, butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 111 -319339 cd16090 IgV_CD47 Immunoglobulin variable domain (IgV) in CD47. CD47 also known as integrin associated protein (IAP), partners with membrane integrins and binds thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRP alpha). It is involved in apoptosis, proliferation, adhesion, migration, and immune and angiogenic responses. Members of the IgV family are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. 106 -319340 cd16091 Ig_HHLA2 Immunoglobulin (Ig) domain in HERV-H LTR-associating 2. HERV-H LTR-associating 2 (HHLA2) is a protein ligand found on the surface of monocytes which is believed to regulate cell-mediated immunity by binding to a receptor on T lymphocytes and inhibiting the proliferation of these cells. Alternate splicing results in multiple transcript variants. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as, T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as, butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. 91 -319341 cd16092 IgC_CH1_IgD CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH1: The first immunoglobulin constant domain (IgC), of immunoglobulin (Ig) delta heavy chains. This domain is found on the Fab antigen-binding fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 96 -319342 cd16093 IgC_CH2_Mu CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH2: The second immunoglobulin constant domain (IgC) of mu heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 100 -319343 cd16094 IgC_CH3_IgD CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin. IgC_CH3: The third immunoglobulin constant domain (IgC) of delta heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma and mu, all consisting of a variable domain (VH) and three (in alpha, delta and gamma) or four (in epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. 100 -319344 cd16095 IgV_H_TCR_mu T-cell receptor Mu, Heavy chain, variable (V) domain. IgV_H: Immunoglobulin (Ig) heavy chain (H), variable (V) domain in mu. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which can associate with any of the heavy chains. This family includes alpha, gamma, delta, epsilon, and mu heavy chains. 112 -319345 cd16096 IgV_CD79b_beta Immunoglobulin variable domain (IgV). IgV: Immunoglobulin variable domain (IgV) in CD79B (Cluster of Differentiation 79B). Members of the IgV family are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. 91 -319346 cd16097 IgV_SIRP Immunoglobulin (Ig)-like domain of Signal-Regulatory Protein (SIRP). IgV: immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains a single V-set and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs but also binds CD47, but with much less affinity. 111 -294015 cd16098 FliS flagellar export chaperone FliS. This family contains flagellar export chaperone FliS, a protein critical for flagellar assembly and bacterial colonization. FliS prevents premature polymerization of flagellins, the major protein of the filament, by regulating interactions between structural components of the bacterial flagellum in the cytosol. It binds specifically to FliC (flagellin) which is sequentially secreted in large numbers through the central channel of the flagellum and polymerized to form the tail filament. FliS protects FliC from degradation and aggregation by binding to the FliC C-terminal helical domain, which contributes to stabilization of flagellin subunit interactions during polymerization. FliS has been shown to interact specifically with FlgM, whose role is to inhibit FliA, a flagellum-specific RNA polymerase responsible for flagellin transcription; FliA competes with FliS for FlgM binding. 102 -350627 cd16100 ARID ARID/BRIGHT DNA binding domain family. The AT-rich interaction domain (ARID) family of transcription factors, found in a broad array of organisms from fungi to mammals, is characterized by a highly conserved, helix-turn-helix DNA binding domain that binds to the major groove of DNA. The ARID domain, also called BRIGHT, was first identified in the mouse B-cell-specific transcription factor Bright and in the product of the dead ringer (dri) gene of Drosophila melanogaster. ARID family members are implicated in normal development, differentiation, cell cycle regulation, transcriptional activation and chromatin remodeling. Different family members exhibit different DNA-binding properties. Drosophila Dri, mammalian ARID3A/3B/3C and ARID5A/5B, selectively bind AT-rich sites. However, ARID1A/1B, Drosophila Osa, yeast SWI1, ARID2, ARID4A/4B, JARID1A/1B/1C/1D, and JARID2, bind DNA without sequence specificity. 87 -341089 cd16101 ING Inhibitor of growth (ING) domain family. The Inhibitor of growth (ING) family includes a group of tumor suppressors, ING1-5, which act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation, and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain that binds unmodified H3 tails, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain, which binds lysine 4-tri-methylated histone H3 (H3K4me3). Although these two regions can bind histones independently, together they increase the apparent association of the ING domain for the H3 tail. The ING family also includes three yeast orthologs, chromatin modification-related protein YNG1 (Yng1p), YNG2 (Yng2p), and transcriptional regulatory protein PHO23 (Pho23p). Yng1p, also termed ING1 homolog 1, is one of the components of the NuA3 histone acetyltransferase (HAT) complex. Yng2p, also termed ESA1-associated factor 4, or ING1 homolog 2, is a subunit of the NuA4 HAT complex. It plays a critical role in intra-S-phase DNA damage response. Pho23p is part of Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Yng1p and Pho23p inhibit p53-dependent transcription. In contrast, Yng2p has the opposite effect. 88 -340519 cd16102 RAWUL_PCGF_like RRING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in PCGF1-6, RING1 and -2, DRIP and similar proteins; structurally similar to a beta-grasp ubiquitin-like fold. The family includes six Polycomb Group (PcG) RING finger homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) that use epigenetic mechanisms to maintain or repress expression of their target genes. They were first discovered in fruit flies that can remodel chromatin such that epigenetic silencing of genes takes place, and are well known for silencing Hox genes through modulation of chromatin structure during embryonic development in fruit flies. PCGF homologs play important roles in cell proliferation, differentiation, and tumorigenesis. They all have been found to associate with ring finger protein 2 (RNF2). The RNF2-PCGF heterodimer is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF homologs are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes which are involved in the maintenance of gene repression and target different genes through distinct mechanisms. The Drosophila PRC1 core complex is formed by the Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc), and Sex combs extra (Sce, also known as Ring) subunits. In mammals, the composition of PRC1 is much more diverse and varies depending on the cellular context. All PRC1 complexes contain homologs of the Drosophila Ring protein. Ring1A/RNF1 and Ring1B/RNF2 are E3 ubiquitin ligases that mark lysine 119 of histone H2A with a single ubiquitin group (H2AK119ub). Mammalian homologs of the Drosophila Psc protein, such as PCGF2/Mel-18 or PCGF4/BMI1, regulate PRC1 enzymatic activity. PRC1 complexes can be divided into at least two classes according to the presence or absence of CBX proteins, which are homologs of Drosophila Pc. Canonical PRC1 complexes contain CBX proteins that recognize and bind H3K27me3, the mark deposited by PRC2. Therefore, canonical PRC1 complexes and PRC2 can act together to repress gene transcription and maintain this repression through cell division. Non-canonical PRC1 complexes, containing RYBP (together with additional proteins, such as L3mbtl2 or Kdm2b) rather than the CBX proteins, have recently been described in mammals. PCGF homologs contain a C3HC4-type RING-HC finger, and a RAWUL domain that might be responsible for interaction with Cbx members of the Polycomb repression complexes. 87 -340520 cd16103 Ubl2_OASL ubiquitin-like (Ubl) domain 2 found in 2'-5'-oligoadenylate synthase-like protein (OASL) and similar proteins. OASL, also termed 2'-5'-OAS-related protein (2'-5'-OAS-RP), or 59 kDa 2'-5'-oligoadenylate synthase-like protein, or thyroid receptor-interacting protein 14, or TR-interacting protein 14 (TRIP-14), or p59 OASL (p59OASL), is an interferon (IFN)-induced antiviral protein that plays an important role in the IFNs-mediated antiviral signaling pathway. It inhibits respiratory syncytial virus replication and is targeted by the viral nonstructural protein 1 (NS1). It also displays antiviral activity against encephalomyocarditis virus (EMCV) and hepatitis C virus (HCV) via an alternative antiviral pathway independent of RNase L. Moreover, OASL does not have 2'-5'-OAS activity, but can bind double-stranded RNA (dsRNA) to enhance RIG-I signaling. OASL belongs to the 2'-5' oligoadenylate synthase (OAS) family. While each member of this family has a conserved N-terminal OAS catalytic domain, only OASL has two tandem C-terminal ubiquitin-like (Ubl) repeats, which are required for its antiviral activity. This family corresponds to the second Ubl domain. 72 -340521 cd16104 Ubl_USP14_like ubiquitin-like (Ubl) domain found in ubiquitin carboxyl-terminal hydrolase 14 (USP14) and similar proteins. USP14 (EC 3.4.19.12), also termed deubiquitinating enzyme 14, or ubiquitin thioesterase 14, or ubiquitin-specific-processing protease 14, or ubiquitin carboxyl-terminal hydrolase 14, is a component of proteasome regulatory subunit 19S that regulates deubiquitinated proteins entering inside the proteasome core 20S, which plays an inhibitory role in protein degradation. USP14 is also associated with various signal transduction pathways and tumorigenesis, and thus plays an essential role in the development of various types of cancer. Moreover, USP14 mediates the development of cardiac hypertrophy by promoting GSK-3beta phosphorylation, suggesting a role in cardiac hypertrophy treatment. USP14 contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, and a C-terminal ubiquitin-specific protease (USP) domain. 75 -340522 cd16105 Ubl_ASPSCR1_like Ubiquitin-like (Ubl) domain found at the N-terminus of mammalian ASPSCR1 (alveolar soft part sarcoma chromosomal region candidate gene 1 protein), Saccharomyces cerevisie Ubx4p, and similar proteins. ASPSCR1 (alveolar soft part sarcoma chromosomal region candidate gene 1 protein) is also known as alveolar soft part sarcoma locus protein (ASPL), tether containing UBX domain for GLUT4, TUG, UBX domain protein 9, UBXD9, UBXN9 or renal papillary cell carcinoma protein 17 (RCC17). The majority of members of this family contain two beta-grasp ubiquitin-like fold domains: the N-terminal UBL domain (described in this CD), and a C-terminal UBX domain. This UBL domain lacks the characteristic C-terminal double glycine motif. ASPSCR1 functions as a cofactor of the hexameric AAA (ATPase associated with various activities) ATPase complex, known as p97 or VCP in mammals and Cdc48p in yeast. In mammalian cells, ASPSCR1 is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus; ASPSCR1 also plays a role in controlling vesicle translocation by interacting with insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. Ubx4p and ASPSCR1 have only partially overlapping functions: both interact with p97/Cdc48p; however, Ubx4p is important for the ERAD (endoplasmic reticulum-associated protein degradation) pathway while ASPSCR1 appears not to be. 71 -340523 cd16106 Ubl_Dsk2p_like ubiquitin-like (Ubl) domain found in Saccharomyces cerevisiae proteasome interacting protein Dsk2p and similar proteins. The family contains several fungal multiubiquitin receptors, including Saccharomyces cerevisiae Dsk2p and Schizosaccharomyces pombe Dph1p, both of which have been characterized as shuttle proteins transporting ubiquitinated substrates destined for degradation from the E3 ligase to the 26S proteasome. They interact with the proteasome through their N-terminal ubiquitin-like domain (Ubl) and with ubiquitin (Ub) through their C-terminal Ub-associated domain (UBA). S. cerevisiae Dsk2p is a nuclear-enriched protein that may involve in the ubiquitin-proteasome proteolytic pathway through interacting with K48-linked polyubiquitin and the proteasome. Moreover, it has been implicated in spindle pole duplication through assisting in Cdc31 assembly into the new spindle pole body (SPB). S. pombe Dph1p is an ubiquitin (Ub0 receptor working in concert with the class V myosin, Myo52, to target the degradation of the S. pombe CLIP-170 homolog, Tip1. It also can protect Ub chains against disassembly by deubiquitinating enzymes. 73 -340524 cd16107 Ubl_AtUPL5_like ubiquitin-like (Ubl) domain found in Arabidopsis thaliana ubiquitin-protein ligase 5 (AtUPL5) and similar proteins. Arabidopsis thaliana AtUPL5, also termed HECT-type E3 ubiquitin transferase UPL5, is an E3 ubiquitin-protein ligase that contains a ubiquitin-like domain (Ubl), a C-type lectin-binding domain, a leucine zipper and a HECT domain. HECT domain containing-ubiquitin-protein ligases have more than one member in different genomes, these proteins have been classified into four sub-families (UPL1/2, UPL3/4, UPL5 and UPL6/7). AtUPL5 fUPL5 regulates leaf senescence in Arabidopsis through degradation of the transcription factor WRKY53. 70 -340525 cd16108 Ubl_ATG8_like ubiquitin-like (Ubl) domain found in autophagy-related 8 (ATG8) and similar proteins. The ATG8 family of proteins constitute a single member in Saccharomyces cerevisiae, Atg8p, and multiple homologs in higher eukaryotes, they are multifunctional ubiquitin-like (Ubl) key regulators of autophagy. The ATG8 system is a Ubl conjugation system that is essential for autophagosome formation. In the ATG8 system, a cysteine protease (ATG4) cleaves a C-terminal arginine from ATG8, and then the exposed C-terminal glycine is conjugated to phosphatidylethanolamine (PE) by ATG7, an E1-like enzyme, and ATG3, an E2-like enzyme. The mammalian ATG8 family is classified into three subfamilies: i) MAP1LC3 (microtubule associated protein 1 light chain 3) which includes MAP1LC3A, MAP1LC3B, MAP1LC3B2, and MAP1LC3C, ii) GABARAP (GABA type A receptor associated protein) which includes GABARAP, GABARAPL1, and GABARAPL3, and iii) GABARAPL2 (GABA type A receptor associated protein like 2), also known as GATE-16 (golgi-associated adenosine triphosphatase enhancer of 16 kDa). 85 -340526 cd16109 DCX1 Dublecortin-like domain 1. Members of the doublecortin (DCX) gene family are microtubule-associated proteins (MAPs). Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The DCX gene family consists of eleven paralogs in human and mouse, and its protein domains can occur in double tandem or single repeats. The family represents the first repeat of the DCX domain which has a stable ubiquitin-like tertiary fold. Proteins with DCX double tandem domains in general have roles in microtubule (MT) regulation and signal transduction such as X-linked doublecortin (DCX), retinitis pigmentosa-1 (RP1) and doublecortin-like kinase (DCLK). 85 -340527 cd16110 DCX1_RP_like Doublecortin-like domain 1 found in retinitis pigmentosa (RP)-like protein. RP-like protein family is part of doublecortin (DCX) family. It has double tandem DCX repeats that are associated with retinitis pigmentosa. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. RP-like proteins are colocalized to the photoreceptor and share a function in outer segment disc morphogenesis. 75 -340528 cd16111 DCX_DCLK3 Doublecortin-like domain found in doublecortin-like kinase 3 (DCLK3). DCLK3 is a member of doublecortin (DCX) protein family. It functions as a microtubule-associated protein (MAP). DCLK3 contains only one N-terminal doublecortin domain (DCX), unlike DCLK1 and DCLK2 which each have two conserved DCX domains. The DCX domain has a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. In addition to microtubule binding domains, DCLK3 has a serine/threonine kinase domain that is similar to Ca/calmodulin-dependent (Cam) protein kinases. 85 -340529 cd16112 DCX1_DCX Dublecortin-like domain 1 found in neuronal migration protein doublecortin (DCX). DCX, also termed doublin or lissencephalin-X (Lis-XDCX), is a microtubule-associated protein (MAP). It belongs to the doublecortin (DCX) family, has double tandem DCX repeats, and is expressed in migrating neurons. Structure studies show that the N-terminal DCX domain has a stable ubiquitin-like fold. DCX is not only a unique MAP in terms of structure, it also interacts with multiple additional proteins. Mutations in the human DCX genes are associated with abnormal neuronal migration, epilepsy, and mental retardation. 89 -340530 cd16113 DCX2_DCDC2_like Doublecortin-like domain 2 found in doublecortin domain-containing protein 2 (DCDC2). DCDC2 is a member of the doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of a ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 74 -340531 cd16114 Ubl_SUMO1 ubiquitin-like (Ubl) domain found in small ubiquitin-related modifier 1 (SUMO-1) and similar proteins. SUMO (also known as "Smt3" and "sentrin" in other organisms) resembles ubiquitin (Ub) in structure, ligation to other proteins and the mechanism of ligation. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of Ub and the epsilon-amino group of a substrate lysine. SUMOs, like Ub, are covalently conjugated to lysine residues in a wide variety of target proteins in eukaryotic cells and regulate numerous cellular processes, such as transcription, epigenetic gene control, genomic instability, and protein degradation. Four SUMO paralogs exist in mammals, SUMO1 through SUMO4. SUMO2-SUMO4 are more closely related to each other than they are to SUMO1. SUMO1 is a binding partner of the RAD51/52 nucleoprotein filament proteins, which mediate DNA strand exchange. SUMO1 conjugation to cellular proteins has been implicated in multiple important cellular processes, such as nuclear transport, cell cycle control, oncogenesis, inflammation, and the response to virus infection. 76 -340532 cd16115 Ubl_SUMO2_3_4 ubiquitin-like (Ubl) domain found in small ubiquitin-related modifier SUMO-2, SUMO-3, SUMO-4, and similar proteins. SUMO (also known as "Smt3" and "sentrin" in other organisms) resembles ubiquitin (Ub) in structure, ligation to other proteins and the mechanism of ligation. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of Ub and the epsilon-amino group of a substrate lysine. SUMOs, like Ub, are covalently conjugated to lysine residues in a wide variety of target proteins in eukaryotic cells and regulate numerous cellular processes, such as transcription, epigenetic gene control, genomic instability, and protein degradation. The mammalian SUMOs have four paralogs, SUMO1 through SUMO4. SUMO2 and SUMO3 are more closely related to each other than they are to SUMO1. SUMO2/3 are capable of forming chains on substrate proteins through internal lysine residues. The basic biology of SUMO4 remains unclear. A M55V polymorphism in SUMO4 has been associated with susceptibility to type I diabetes in some genetic studies. 72 -340533 cd16116 Ubl_Smt3_like ubiquitin-like (Ubl) domain found in Saccharomyces cerevisiae ubiquitin-like protein Smt3p and similar proteins. Smt3 (Suppressor of Mif Two 3) was originally isolated as a high-copy suppressor of a mutation in MIF2, the gene of a centromere binding protein in S. cerevisiae. Smt3p is the yeast homolog of small ubiquitin-related modifier (SUMO) proteins that are involved in post-translational protein modification called SUMOylation, covalently attaching to and detaching from other proteins in cells to modify their function. SUMO resembles ubiquitin (Ub) in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of Ub and the epsilon-amino group of a substrate lysine. Smt3p plays essential roles in cell-cycle regulation and chromosome segregation in budding yeast. It interacts with different modification enzymes, and regulates their functions through linking covalently to its targets. 74 -340534 cd16117 UBX_UBXN4 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 4 (UBXN4) and similar proteins. UBXN4, also termed ERAD (endoplasmic-reticulum-associated protein degradation) substrate erasing protein (erasin), or UBX domain-containing protein 2 (UBXD2), or UBXDC1, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN4 is an endoplasmic reticulum (ER) localized protein that interacts with p97 (also known as VCP or Cdc48) via its UBX domain. Erasin exists in a complex with other p97/VCP-associated factors involved in endoplasmic-reticulum-associated protein degradation (ERAD). p97 is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The overexpression of UBXN4 increases degradation of a classical ERAD substrate and UBXN4 levels are increased in ER stressed cells. Anti-UBXN4 staining is increased in neuropathological lesions in brains of patients with Alzheimer's disease. 77 -340535 cd16118 UBX2_UBXN9 Ubiquitin regulatory domain X (UBX) 2 found in UBX domain protein 9 (UBXN9, UBXD9, or ASPSCR1) and similar proteins. UBXN9, also termed tether containing UBX domain for GLUT4 (TUG), or alveolar soft part sarcoma chromosomal region candidate gene 1 protein (ASPSCR1), or alveolar soft part sarcoma locus (ASPL), or renal papillary cell carcinoma protein 17 (RCC17), belongs to the UBXD family of proteins that contains two ubiquitin regulatory domains X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, UBXN9 contains an N-terminal ubiquitin-like (Ubl) domain. UBXN9 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. However, high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers; the extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers.UBXN9 is involved in insulin-stimulated redistribution of the glucose transporter GLUT4, assembly of the Golgi apparatus. In addition to GLUT4, UBXN9 also controls vesicle translocation by interacting with insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. UBXN9 and its budding yeast ortholog, Ubx4p, are multifunctional proteins that share some, but not all functions. Yeast Ubx4p is important for endoplasmic reticulum-associated protein degradation (ERAD) but UBXN9 appears not to share this function. 74 -340536 cd16119 UBX_UBXN6 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 6 (UBXN6) and similar proteins. UBXN6, also termed UBX domain-containing protein 1 (UBXD1), and UBXDC2, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN6 acts as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. Unlike other p97 cofactors that binds the N-domain of p97 through their UBX domain, UBXN6 binds p97 in two regions, at the p97 C terminus via a PUB domain and at the p97 N-domain with a short linear interaction motif termed VIM. Its UBX domain is not functional for the binding of p97. The UBXN6-p97 complex regulates the endolysosomal sorting of ubiquitylated plasma membrane protein caveolin-1 (CAV1), as well as the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53. In addition, UBXN6 is a regulatory component of endoplasmic reticulum-associated degradation (ERAD) that may modulate the adaptor binding to p97. 73 -340537 cd16120 UBX_UBXN3B Ubiquitin regulatory domain X (UBX) found in FAS associated factor 2 (FAF2, also known as UBXN3B) and similar proteins. UBX domain-containing protein 3B (UBXN3B), also termed protein ETEA, or FAF2, or UBX domain-containing protein 8 (UBXD8), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. FAF2 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The p97-UBXD8 complex destabilizes mRNA by promoting release of ubiquitinated the RNA-binding protein HuR from messenger ribonucleoprotein (mRNP). Moreover, FAF2 is the translation product of a highly expressed gene in the T-cells and eosinophils of atopic dermatitis patients compared with those of normal individuals. A yeast two-hybrid assay showed that FAF2 can interact with Fas. 80 -340538 cd16121 FERM_F1_SNX17 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in sorting nexin protein 17 (SNX17). SNX17 is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. It localizes to early endosomes, and plays an important role in mediating endocytic internalization, recycling, and/or protection from lysosomal degradation of NPxY-motif containing cell surface proteins including amyloid precursor protein (APP), P-selectin, beta1-integrin, low density lipoprotein receptor (LDLR), LDLR related protein (Lrp1), ApoER2, and FEEL1. SNX17 also affects T cell activation by regulating T cell receptor and integrin recycling. SNX17 contains a PX (Phox homology) domain and a FERM (Band 4.1, ezrin, radixin, moesin) domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 93 -340539 cd16122 FERM_F1_SNX31 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in sorting nexin protein 31 (SNX31). SNX31 is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. It is a novel sorting nexin associated with the uroplakin-degrading multivesicular bodies in terminally differentiated urothelial cells. SNX31 binds multiple beta integrin cytoplasmic domains and regulates beta1 integrin surface levels and stability. SNX31 contains a PX (Phox homology) domain and a FERM (Band 4.1, ezrin, radixin, moesin) domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 98 -340540 cd16123 RA_RASSF7_like Ras-associating (RA) domain found in Ras-association domain family members, RASSF7, RASSF8, RASSF9, and RASSF10. The RASSF family of proteins shares a conserved RalGDS/AF6 Ras association (RA) domain either in the C-terminus (RASSF1-6) or N-terminus (RASSF7-10). RASSF7-10 lacks a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that is found in members of the RASSF1-6 family. The structural differences between the C-terminus and N-terminus RASSF subgroups have led to the suggestion that they are two distinct families. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ras proteins are small GTPases that are involved in cellular signal transduction. The N-terminus RASSF proteins are potential Ras effectors that have been linked to key biological processes, including cell death, proliferation, microtubule stability, promoter methylation, vesicle trafficking and response to hypoxia. 81 -340541 cd16124 RA_GRB7_10_14 Ras-associating (RA) domain found in growth factor receptor-bound (Grb) protein 7/10/14. The RA domain is highly conserved among the members of the Grb proteins family which includes Grb7, Grb10 and Grb14. Grb7/10/14 are multi-domain cytoplasmic adaptor proteins that are recruited to activated receptor tyrosine kinases. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Grb7 and its related family members Grb10 and Grb14 share a conserved domain architecture that includes an amino-terminal proline-rich region, a central segment termed the GM region (for Grb and Mig) which includes the RA, PIR, and pleckstrin homology (PH) domains, and a carboxyl-terminal SH2 domain. The tandem RA and PH domains of Grb7/10/14 are also found in a second adaptor family, Rap1-interacting adaptor molecule (RIAM) and lamellipodin, which is involved in actin-cytoskeleton rearrangement. Grb7/10/14 family proteins are phosphorylated on serine/threonine as well as tyrosine residues and are mainly localized to the cytoplasm. 85 -340542 cd16125 RA_ASPP1_2 Ras-associating (RA) domain found in apoptosis-stimulating protein of p53 (ASPP) 1 and 2. The ASPP protein (apoptosis-stimulating protein of p53; also called ankyrin repeat-, Src homology 3 domain- and Pro-rich region-containing protein) plays a critical role in regulating apoptosis. The ASPP family consists of three members, ASPP1, ASPP2 and iASPP, all of which bind to p53 and regulate p53-mediated apoptosis. ASPP1 and ASPP2, have a RA domain at their N-terminus and have pro-apoptotic functions, while iASPP is involved in anti-apoptotic responses. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. 80 -340543 cd16126 Ubl_HR23B ubiquitin-like (Ubl) domain found in UV excision repair protein RAD23 homolog B (HR23B). HR23B, also termed xeroderma pigmentosum group C (XPC) repair-complementing complex 58 kDa protein (p58), is tightly complexed with XPC protein to form the XPC-HR23B complex. Although it displays a high affinity for both single- and double-stranded DNA, the XPC-HR23B complex functions as a global genome repair (GGR)-specific repair factor that is specifically involved in global genome but not transcription-coupled nucleotide excision repair (NER). HR23B also interacts specifically with S5a subunit of the human 26S proteasome, and plays an important role in shuttling ubiquitinated cargo proteins to the proteasome. HR23B contains an N-terminal ubiquitin-like (Ubl) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. 78 -340544 cd16127 Ubl_ATG8_GABARAP_like ubiquitin-like (Ubl) domain found in gamma-aminobutyric acid receptor-associated protein (GABARAP) and similar proteins; sub-family of the autophagy-related 8 (ATG8) protein family. GABARAP (also termed GABA(A) receptor-associated protein, ATG8A, or MM46) has been implicated in intracellular protein trafficking. It is a cytosolic protein, localized to transport vesicles, the Golgi network and the endoplasmic reticulum. It interacts with the intracellular domain of the gamma2 subunit of GABA(A) receptors, and thus, functions as a trafficking modulator implicated in the intracellular trafficking of GABA(A) receptor. GABARAP also acts as a Ubl modifier belonging to the ATG8 (autophagy-related 8) protein family which is essential for autophagosome biogenesis and maturation. GABARAP recruits phosphatidylinositol 4-kinase II alpha (PI4KIIalpha) as a specific downstream effector, and regulates phosphatidylinositol 4-phosphate (PI4P)-dependent autophagosome lysosome fusion. This sub-family also includes GABARAPL1 (also termed GABA(A) receptor-associated protein-like, or GEC1), GABARAPL2/GATE-16, and GABARAPL3. GABARAPL1 has been involved in the intracellular transport of receptors via interactions with tubulin and GABA(A) or kappa opioid receptors. GABARAPL1 is also a Ubl modifier that functions as a mediator involved in androgen-regulated autophagy process. It is transcriptionally modulated by androgen receptor (AR) and has a repressive role in autophagy. In addition, GABARAPL1 is required for increased membrane expression of epidermal growth factor receptor (EGFR) during hypoxia, suggesting a possible role in the trafficking of these membrane proteins. GABARAPL1 may also play a key role in several important biological processes such as cancer or neurodegenerative diseases. Low expression of GABARAPL1 is associated with poor prognosis of patients with hepatocellular carcinoma. 107 -340545 cd16128 Ubl_ATG8 ubiquitin-like (Ubl) domain found in Saccharomyces cerevisiae Atg8p and related proteins; sub-family of the autophagy-related 8 (ATG8) family. The ATG8 family of proteins constitutes a single member in Saccharomyces cerevisiae, Atg8p, and multiple homologs in higher eukaryotes. These proteins are multifunctional ubiquitin-like (Ubl) key regulators of autophagy. ATG8 is characterized by a C-terminal ubiquitin-like (Ubl) domain with a short N-terminal extension. The covalent attachment of ATG8 to phosphatidylethanolamine (PtdEth) at the autophagosomal membrane places it at a crucial juncture during autophagosome formation. ATG Ubl proteins such as Saccharomyces cerevisiae Atg8p undergo a unique Ubl conjugation, a process essential for autophagosome formation. 103 -340546 cd16129 Ubl_ATG8_MAP1LC3 ubiquitin-like (Ubl) domain found in microtubule associate protein 1 light chain 3 (MAP1LC3). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. MAP1LC3 (also known as LC3) has a ubiquitin-like (Ubl) fold and belongs to the ATG8 autophagy protein family. A Ubl conjugation of MAP1LC3 by the phospholipid phosphatidylethanolamine (PE) is an essential process for the formation of autophagosomes. MAP1LC3 is cleaved by the cysteine protease ATG4 and is then conjugated with PE by E1-like enzyme ATG7 and ATG3, an E2-like enzyme. The Ubl conversion of MAP1LC3 is known as a marker of autophagy-induction. This sub-family includes MAP1LC3A, MAP1LC3B, and MAP1LC3C, each encoded by a different MAP1LC3 gene. 105 -340547 cd16130 RA_Rin3 Ras-associating (RA) domain found in Ras and Rab interactor 3 (Rin3). Rin3, also termed Ras interaction/interference protein 3, is a RAS effector and a RAB5-activating guanine nucleotide exchange factor (GEF) specifically for GTPase Rab31. It functions as a negative regulator of mast cell responses to Stem Cell Factor (SCF). Rin3 contains the Vps9p-like guanine nucleotide exchange factor and Ras-association (RA) domains. 88 -340548 cd16131 RA_Rin2 Ras-associating (RA) domain found in Ras and Rab interactor 2 (Rin2). Rin2, also termed Ras association domain family 4, or Ras inhibitor JC265, or Ras interaction/interference protein 2, is a Rab5 GDP/GTP exchange factor with the Vps9p-like guanine nucleotide exchange factor and Ras-association (RA) domains. Rin2 connects three GTPases, R-Ras, Rab5 and Rac1, to promote endothelial cell adhesion through the regulation of integrin internalization and Rac1 activation. Rin2 is involved in the regulation of Rab5-mediated early endocytosis. The deficiency of Rin2 can cause the RIN2 syndrome, an autosomal recessive connective tissue disorder. 91 -340549 cd16132 RA_RASSF10 Ras-associating (RA) domain found in N-terminal Ras-association domain family 10 (RASSF10). RASSF10 is a member of a family of N-terminus RASSF7-10 proteins. RASSF7-10 has an RA domain at the N-terminus and lacks a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that is found in members of the RASSF1-6 family. RA domain of N-terminal RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RASSF10 is expressed in a wide variety of tissues and its expression in human thyroid, pancreas, placenta, heart, lung and kidney has been observed. RASSF10 is the most frequently methylated of the N-terminal RASSFs in some cancers such as in childhood acute lymphoblastic leukemia and both, thyroid cancer cell lines and primary thyroid carcinomas. 102 -340550 cd16133 RA_RASSF9 Ras-associating (RA) domain of N-terminal Ras-association domain family 9 (RASSF9). RASSF9, also termed PAM COOH-terminal interactor protein 1 (P-CIP1), or peptidylglycine alpha-amidating monooxygenase COOH-terminal interactor, is a member of N-terminus RASSF7-10 protein family. RASSF7-10 has an RA domain at the N-terminus and lacks a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that is found in members of the RASSF1-6 family. The RA domain of the N-terminal RASSF proteins family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RASSF9 was formerly known as PAM COOH-terminal interactor-1 (P-CIP1) because of its interaction with peptidylglycine alpha-amidating mono-oxygenase (PAM) and possibility of its role in regulating the trafficking of integral membrane PAM. RASSF9 is widely expressed in multiple organs such as testis, kidney, skeletal muscle, liver, lung, brain, and heart. Cloned RASSF9 showed preferential binding to N-Ras and K-Ras. 93 -340551 cd16134 RA_RASSF8 Ras-associating (RA) domain found in N-terminal Ras-association domain family 8 (RASSF8). RASSF8, also termed carcinoma-associated protein HOJ-1, is a member of the N-terminus RASSF7-10 protein family. RASSF7-10 has an RA-domain at the N-terminus and lacks a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that is found in members of the RASSF1-6 family. The RA domain of N-terminal RASSF proteins family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RASSF8 has been described as a potential tumor suppressor. RASSF8 might have a role in the regulation of cell-cell adhesion and cell growth. 82 -340552 cd16135 RA_RASSF7 Ras-associating (RA) domain found in N-terminal Ras-association domain family 7 (RASSF7). RASSF7, also termed HRAS1-related cluster protein 1, is a member of the N-terminus RASSF7-10 protein family. RASSF7-10 has an RA-domain at the N-terminus and lacks a conserved SARAH (Salvador/RASSF/Hpo) motif adjacent to the RA domain that is found in members of the RASSF1-6 family. The RA domain of N-terminal RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RASSF7 is a potential Ras effector as its function has been linked to some key biological processes including the regulation of cell death and proliferation; for example, RASSF7 is up-regulated in pancreatic cancer. 83 -340553 cd16136 RA_MRL_Lpd Ras-associating (RA) domain found in the adapter protein lamellipodin (Lpd). Lpd, also termed Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1), or amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein, or amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein, or proline-rich EVH1 ligand 2 (PREL-2), or protein RMO1, is a member of MRL (Mig10/RIAM/Lpd) family proteins that regulates cell migration and promote lamellipodia protrusion in fibroblast by interacting with Ena/VASP proteins. MRL proteins share a common structural architecture, including a central structural unit consisting of an RA domain and a pleckstrin homology (PH) domain, an upstream coiled-coil region, and a number of polyproline motifs. Lpd also contains a helical region at the amino terminus for talin binding. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RA and PH domain in Lpd form a tandem domain pair (RA-PH), and serve tightly coordinated functions in both Ras GTPase signaling via the RA domain and membrane translocalization via the PH domain. Lpd also exhibits other unique enzymatic functions including its catalytic activity of butyrylcholinesterase, a potent therapeutic treatment targeting cocaine abuse. 90 -340554 cd16137 RA_MRL_RIAM Ras-associating (RA) domain found in Rap1-GTP-interacting adapter molecule (RIAM). RIAM, also termed amyloid beta A4 precursor protein-binding family B member 1-interacting protein, or APBB1-interacting protein 1, or proline-rich EVH1 ligand 1 (PREL-1), or proline-rich protein 73, or retinoic acid-responsive proline-rich protein 1 (RARP-1), is a member of MRL (Mig10/RIAM/Lpd) family proteins that regulates cell migration and promote lamellipodia protrusion in fibroblast by interacting with Ena/VASP proteins. RIAM regulates cell migration and mediates Rap1-induced cell adhesion. MRL proteins share a common structural architecture, including a central structural unit consisting of an RA domain and a pleckstrin homology (PH) domain, an upstream coiled-coil region, and a number of polyproline motifs. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RIAM also contains a helical region at the amino terminus for talin binding. RA and PH form a tandem domain pair (RA-PH), and serve tightly coordinated functions in both Ras GTPase signaling via the RA domain and membrane translocalization via the PH domain. 89 -340555 cd16138 RA_MRL_MIG10 Ras-associating (RA) domain found in Caenorhabditis elegans abnormal cell migration protein 10 (MIG-10) and similar proteins. MIG-10 is lamellipodin (Lpd) found in C. elegans. It stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of Evi-1 proto-oncogene, EGL-43, in C. elegans. It also shows netrin-independent functions and is a transcriptional target of FOS-1A, a transcription factor that promotes basement membrane breaching, during anchor cell invasion in C. elegans. MIG-10 is a member of MRL (Mig10/RIAM/Lpd) family of proteins that is involved in antero-posterior migration of embryonic neurons CAN (canalassociated neurons), ALM (anterior lateral microtubule cells) and HSN (hermaphrodite-specific neurons). MRL proteins share a common structural architecture, including a central structural unit consisting of an RA domain and a pleckstrin homology (PH) domain, an upstream coiled-coil region, and a number of polyproline motifs. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RA and PH form a tandem domain pair (RA-PH), and serve tightly coordinated functions in both Ras GTPase signaling via the RA domain and membrane translocalization via the PH domain. 86 -340556 cd16139 RA_GRB14 Ras-associating (RA) domain found in growth factor receptor-bound (Grb) protein 14. Grb14, a member of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ubi is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. A novel function of Grb14 RA domain is to interact with the nucleotide binding pocket of a cyclic nucleotide gated channel alpha subunit (CNGA1) and inhibits its activity. Grb7 and its related family members Grb10 and Grb14 share a conserved domain architecture that includes an amino-terminal proline-rich region, a central segment termed the GM region (for Grb and Mig) which includes the RA, PIR, and PH domains, and a carboxyl-terminal SH2 domain. Grb7/10/14 family proteins are phosphorylated on serine/threonine as well as tyrosine residues and are mainly localized to the cytoplasm. 85 -340557 cd16140 RA_GRB7 Ras-associating (RA) domain found in growth factor receptor-bound (Grb) protein 7. GRB7, also termed B47, or epidermal growth factor receptor GRB-7, or GRB7 adapter protein, is a signal-transducing cytoplasmic adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. Grb7 and its related family members Grb10 and Grb14 share a conserved domain architecture that includes an amino-terminal proline-rich region, a central segment termed the GM region (for Grb and Mig) which includes the RA, PIR, and pleckstrin homology (PH) domains, and a carboxyl-terminal SH2 domain. The tandem RA and PH domains of Grb7/10/14 are also found in a second adaptor family, Rap1-interacting adaptor molecule (RIAM) and lamellipodin, which is involved in actin-cytoskeleton rearrangement. Grb7/10/14 family proteins are phosphorylated on serine/threonine as well as tyrosine residues and are mainly localized to the cytoplasm. Grb7 could interact with activated N-Ras in transfected cells. 88 -340558 cd16141 RA_GRB10 Ras-associating (RA) domain found in growth factor receptor-bound (Grb) protein 10. GRB10, also termed insulin receptor-binding protein Grb-IR, is a multi-domain cytoplasmic adaptor protein that binds to the insulin-like growth factor 1 receptor (IGF-1R) and inhibits insulin signaling. Grb10 and its related family members Grb7 and Grb14 share a conserved domain architecture that includes an amino-terminal proline-rich region, a central segment termed the GM region (for Grb and Mig) which includes the RA, PIR, and pleckstrin homology (PH) domains, and a carboxyl-terminal SH2 domain. The tandem RA and PH domains of Grb7/10/14 are also found in a second adaptor family, Rap1-interacting adaptor molecule (RIAM) and lamellipodin, which is involved in actin-cytoskeleton rearrangement. Grb7/10/14 family proteins are phosphorylated on serine/threonine as well as tyrosine residues and are mainly localized to the cytoplasm. Grb14 binds to both GTPase-defective mutant Rab5 as well as CNGA1, whereas Grb10 binds only to GTP-bound form of active Rab5. 92 -293761 cd16142 ARS_like uncharacterized arylsulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 372 -293762 cd16143 ARS_like uncharacterized arylsulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 395 -293763 cd16144 ARS_like uncharacterized arylsulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 421 -293764 cd16145 ARS_like uncharacterized arylsulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 415 -293765 cd16146 ARS_like uncharacterized arylsulfatase. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 409 -293766 cd16147 G6S glucosamine (N-acetyl)-6-sulfatase(G6S, GNS) AND sulfatase 1(SULF1). N-acetylglucosamine-6-sulfatase also known as glucosamine (N-acetyl)-6-sulfatase hydrolyzes of the 6-sulfate groups of the N-acetyl-D-glucosamine 6-sulfate units of heparan sulfate and keratan sulfate. Deficient of N-acetylglucosamine-6-sulfatase results in disease of Sanfilippo Syndrome type IIId or Mucopolysaccharidosis III (MPS-III), a rare autosomal recessive lysosomal storage disease. SULF1 encodes an extracellular heparan sulfate endosulfatase, that removes 6-O-sulfate groups from heparan sulfate chains of heparan sulfate proteoglycans (HSPGs). 396 -293767 cd16148 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 271 -293768 cd16149 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 257 -293769 cd16150 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 423 -293770 cd16151 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 377 -293771 cd16152 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 373 -293772 cd16153 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 282 -293773 cd16154 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 372 -293774 cd16155 sulfatase_like uncharacterized sulfatase subfamily. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 372 -293775 cd16156 sulfatase_like uncharacterized sulfatase subfamily; includes Escherichia coli YidJ. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 468 -293776 cd16157 GALNS galactosamine-6-sulfatase; also known as N-acetylgalactosamine-6-sulfatase (GALNS). Lysosomal galactosamine-6-sulfatase removes sulfate groups from a terminal N-acetylgalactosamine-6-sulfate (or galactose-6-sulfate) in mucopolysaccharides such as keratan sulfate and chondroitin-6-sulfate. Defects in GALNS lead to accumulation of substrates, resulting in the development of the lysosomal storage disease mucopolysaccharidosis IV A. 466 -293777 cd16158 ARSA Arylsulfatase A or cerebroside-sulfatase. Arylsulfatase A breaks down sulfatides, namely cerebroside 3-sulfate into cerebroside and sulfate. It is a member of the sulfatase family. The arylsulfatase A was located in lysosome-like structures and transported to dense lysosomes in a mannose 6-phosphate receptor-dependent manner. Deficiency of arylsulfatase A leads to the accumulation of cerebroside sulfate, which causes a lethal progressive demyelination. Arylsulfatase A requires the posttranslational oxidation of the -CH2SH group of a conserved cysteine to an aldehyde, yielding a formylglycine to be in an active form. 479 -293778 cd16159 ES Estrone sulfatase. Human estrone sulfatase (ES) is responsible for maintaining high levels of the active estrogen in tumor cells. ES catalyzes the hydrolysis of E1 sulfate, which is a component of the three-enzyme system that has been implicated in intracrine biosynthesis of estradiol. It is associated with the membrane of the endoplasmic reticulum (ER). The structure of ES consisting of two antiparallel alpha helices that protrude from the roughly spherical molecule. These highly hydrophobic helices anchor the functional domain on the membrane surface facing the ER lumen. 521 -293779 cd16160 spARS_like sea urchin arylsulfatase-like. This family includes sea urchin arylsulfatase and its homologous proteins. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 445 -293780 cd16161 ARSG arylsulfatase G. Arylsulfatase G is a subfamily of sulfatases which specifically hydrolyze sulfate esters in a wide variety of substrates such as glycosaminoglycans, steroid sulfates, or sulfolipids. ARSG has arylsulfatase activity toward different pseudosubstrates like p-nitrocatechol sulfate and 4-methylumbelliferyl sulfate. An active site Cys is post-translationally converted to the critical active site C(alpha)-formylglycine. ARSG mRNA expression was found to be tissue-specific with highest expression in liver, kidney, and pancreas, suggesting a metabolic role of ARSG that might be associated with a non-classified lysosomal storage disorder. 383 -293881 cd16162 OCRE_RBM5_like OCRE domain found in RNA-binding protein RBM5, RBM10, and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing, and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an OCtamer REpeat (OCRE) domain, two C2H2-type zinc fingers, and a G-patch/D111 domain. 56 -293882 cd16163 OCRE_RBM6 OCRE domain found in RNA-binding protein 6 (RBM6) and similar proteins. RBM6, also called lung cancer antigen NY-LU-12, or protein G16, or RNA-binding protein DEF-3, has been predicted to be a nuclear factor based on its nuclear localization signal. It shows high sequence similarity to RNA-binding protein 5 (RBM5 or LUCA15 or NY-REN-9). Both specifically binds poly(G) RNA. RBM6 contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an OCtamer REpeat (OCRE) domain, two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. In contrast to RBM5, RBM6 has an additional unique domain, the POZ (poxvirus and zinc finger) domain, which may be involved in protein-protein interactions and inhibit binding of target sequences by zinc fingers. 57 -293883 cd16164 OCRE_VG5Q OCRE domain found in angiogenic factor VG5Q and similar proteins. VG5Q, also called angiogenic factor with G patch and FHA domains 1 (AGGF1), or G patch domain-containing protein 7, or vasculogenesis gene on 5q protein, functions as a potent angiogenic factor in promoting angiogenesis through interacting with TWEAK (also known as TNFSF12), which is a member of the tumor necrosis factor (TNF) superfamily that induces angiogenesis in vivo. VG5Q can bind to the surface of endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. The chromosomal translocation t(5;11) and the E133K variant in VG5Q are associated with Klippel-Trenaunay syndrome (KTS), a disorder characterized by diverse effects in the vascular system. In addition to a forkhead-associated (FHA) domain and a G-patch motif, VG5Q contains an N-terminal OCtamer REpeat (OCRE) domain that is characterized by a 5-fold, imperfectly repeated octameric sequence. 54 -293884 cd16165 OCRE_ZOP1_plant OCRE domain found in Zinc-finger and OCRE domain-containing Protein 1 (ZOP1) and similar proteins found in plant. ZOP1 is a novel plant-specific nucleic acid-binding protein required for both RNA-directed DNA methylation (RdDM) and pre-mRNA splicing. It promotes RNA polymerase IV (Pol IV)-dependent siRNA accumulation, DNA methylation, and transcriptional silencing. As a pre-mRNA splicing factor, ZOP1 associates with several typical splicing proteins as well as with RNA polymerase II (RNAP II and Pol II). It also shows both RdDM-dependent and -independent roles in transcriptional silencing. ZOP1 contains an N-terminal C2H2-type ZnF domain and an OCtamer REpeat (OCRE) domain that is usually related to RNA processing. 55 -293885 cd16166 OCRE_SUA_like OCRE domain found in Suppressor of ABI3-5 (SUA) and similar proteins. SUA is an RNA-binding protein located in the nucleus and expressed in all plant tissues. It functions as a splicing factor that influences seed maturation by controlling alternative splicing of ABI3. The suppression of the cryptic ABI3 intron indicates a role of SUA in mRNA processing. SUA also interacts with the prespliceosomal component U2AF65, the larger subunit of the conserved pre-mRNA splicing factor U2AF. SUA contains two RNA recognition motifs surrounding a zinc finger domain, an OCtamer REpeat (OCRE) domain, and a Gly-rich domain close to the C-terminus. 54 -293886 cd16167 OCRE_RBM10 OCRE domain found in RNA-binding protein 10 (RBM10) and similar proteins. RBM10, also called G patch domain-containing protein 9, or RNA-binding protein S1-1 (S1-1), is a paralogue of putative tumor suppressor RNA-binding protein 5 (RBM5 or LUCA15 or H37). It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. RBM10 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an OCtamer REpeat (OCRE) domain, two C2H2-type zinc fingers, and a G-patch/D111 domain. 64 -293887 cd16168 OCRE_RBM5 OCRE domain found in RNA-binding protein 5 (RBM5) and similar proteins. RBM5 is also called protein G15, H37, putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9. It is a known modulator of apoptosis. It acts as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both of them specifically binds poly(G) RNA. RBM5 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an OCtamer REpeat (OCRE) domain, two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. 56 -320085 cd16169 Tau138_eWH extended winged-helix domain of tau138 and related proteins. Tau138 is one of three subunits of the tauB subcomplex of yeast transcription factor IIIC. This extended winged-helix domain of tau138 appears to interact with the TPR (tetratricopeptide repeat) array of tauA subunit tau131, and may therefore play a role in linking tauA, tauB, and TFIIIB to regulate the formation of the RNA polymerase III pre-initiation complex. 97 -320084 cd16170 MvaT_DBD DNA-binding domain of the bacterial xenogeneic silencer MvaT. MvaT is a xenogeneic silencer conserved in Pseudomonas which assists in distinguishing foreign from self DNA. It prefers binding to flexible DNA segments with multiple TpA steps, and forms nucleoprotein filaments through cooperative polymerization. 42 -293781 cd16171 ARSK arylsulfatase family, member K ....arylsulfatase k short ask flags precursor. ARSK is a lysosomal sulfatase which exhibits an acidic pH optimum for catalytic activity against arylsulfate substrates. Other names for ARSK include arylsulfatase K and TSULF. Sulfatases catalyze the hydrolysis of sulfate esters from wide range of substrates, including steroids, carbohydrates and proteins. Sulfate esters may be formed from various alcohols and amines. The biological roles of sulfatase includes the cycling of sulfur in the environment, in the degradation of sulfated glycosaminoglycans and glycolipids in the lysosome, and in remodeling sulfated glycosaminoglycans in the extracellular space. The sulfatases are essential for human metabolism. At least eight human monogenic diseases are caused by the deficiency of individual sulfatases. 366 -293930 cd16172 TorS_sensor_domain sensor domain of the sensor histidine kinase TorS. TorS is part of the trimethylamine-N-oxide (TMAO) reductase (Tor) pathway, which consists TorT, a periplasmic binding protein that binds TMAO; TorS, a sensor histidine kinase that forms a complex with TorT, and TorR, the response regulator. The Tor pathway is involved in regulating a cellular response to trimethylamine-N-oxide (TMAO), a terminal electron receptor in anaerobic respiration. TorS consists of a periplasmic sensor domain, as well as a HAMP domain, a histidine kinase domain, and a receiver domain. 261 -320081 cd16173 EFh_MICU1 EF-hand, calcium binding motif, found in calcium uptake protein 1, mitochondrial (MICU1) and similar proteins. MICU1, also termed atopy-related autoantigen CALC (ara CALC), or calcium-binding atopy-related autoantigen 1 (CBARA1), or Hom s 4, or EFHA3, localizes to the inner mitochondrial membrane (IMM). It functions as a gatekeeper of the mitochondrial calcium uniporter (MCU) and regulates MCU-mediated mitochondrial Ca2+ uptake, which is essential for maintaining mitochondrial homoeostasis. MICU1 and its paralog, MICU2, are physically associated within the uniporter complex and are co-expressed across all tissues. They may operate together with MCU to regulate the channel. The mutations in MICU1 are associated with neuromuscular abnormalities in children. MICU1 contains an N-terminal mitochondrial targeting sequence (MTS) as well as two evolutionarily conserved canonical Ca2+-binding EF-hands separated by a long stretch of residues predicted to form alpha-helices. 153 -320082 cd16174 EFh_MICU2 EF-hand, calcium binding motif, found in calcium uptake protein 2, mitochondrial (MICU2) and similar proteins. MICU2, also termed EF-hand domain-containing family member A1 (EFHA1), is a mitochondrial-localized paralog of MICU1. MICU2 and its paralog, MICU1, are physically associated within the mitochondrial calcium uniporter (MCU) complex and are co-expressed across all tissues. They may operate together with MCU to regulate the channel. At present, the precise molecular function of MICU2 remains unclear. It may play possible roles in Ca2+ sensing and regulation of MCU, calcium buffering with a secondary impact on transport or assembly and stabilization of MCU. MICU2 contains an N-terminal mitochondrial targeting sequence (MTS) as well as two evolutionarily conserved canonical Ca2+-binding EF-hands separated by a long stretch of residues predicted to form alpha-helices. 154 -320083 cd16175 EFh_MICU3 EF-hand, calcium binding motif, found in calcium uptake protein 3, mitochondrial (MICU3) and similar proteins. MICU3, also termed EF-hand domain-containing family member A2 (EFHA2), is a paralog of MICU1 and notably found in the central nervous system (CNS) and skeletal muscle. At present, the precise molecular function of MICU3 remains unclear. It likely has a role in mitochondrial calcium handling. MICU3 contains an N-terminal mitochondrial targeting sequence (MTS) as well as two evolutionarily conserved canonical Ca2+-binding EF-hands separated by a long stretch of residues predicted to form alpha-helices. 128 -320076 cd16176 EFh_HEF_CB EF-hand, calcium binding motif, found in calbindin (CB). CB, also termed calbindin D28, or D-28K, or avian-type vitamin D-dependent calcium-binding protein, is a unique intracellular calcium binding protein that functions as both a calcium sensor and buffer in eukaryotic cells, which undergoes a conformational change upon calcium binding and protects cells against insults of high intracellular calcium concentration. CB is highly expressed in brain and sensory neurons. It plays essential roles in neural functioning, altering synaptic interactions in the hippocampus, modulating calcium channel activity, calcium transients, and intrinsic neuronal firing activity. It prevents a neuronal death, as well as maintains and controls calcium homeostasis. CB also modulates the activity of proteins participating in the development of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and bipolar disorder. Moreover, CB interacts with Ran-binding protein M, a protein known to involve in microtubule function. It also interacts with alkaline phosphatase and myo-inositol monophosphatase, as well as caspase 3, an enzyme that plays an important role in the regulation of apoptosis. CB contains six EF-hand motifs in a single globular domain, where EF-hands 1, 3, 4, 5 bind four calcium ions with high affinity. 243 -320077 cd16177 EFh_HEF_CR EF-hand, calcium binding motif, found in calretinin (CR). CR, also termed 29 kDa calbindin, is a cytosolic hexa-EF-hand calcium-binding protein predominantly expressed in a variety of normal and tumorigenic t specific neurons of the central and peripheral nervous system. It possibly functions as a calcium buffer, calcium sensor, and apoptosis regulator, which may be implicated in many biological processes, including cell proliferation, differentiation, and cell death. CR contains six EF-hand motifs within two independent domains, CR I-II and CR III-VI. CR I-II consists of EF-hand motifs 1 and 2, and CR III-VI consists of EF-hand motifs 3-6. The first 5 EF-hand motifs are capable of binding calcium ions, while the EF-hand 6 is inactive. Thus, CR has two pairs of cooperative binding sites (I-II and III-IV), which display high affinity calcium-binding sites, and one independent calcium ion-binding site (V), which displays lower affinity binding. 248 -320078 cd16178 EFh_HEF_SCGN EF-hand, calcium binding motif, found in secretagogin (SCGN). SCGN is a six EF-hand calcium-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. It plays a crucial role in cell apoptosis, receptor signaling and differentiation. It is also involved in vesicle secretion through binding to various proteins, including interacts with SNAP25, SNAP23, DOC2alpha, ARFGAP2, rootletin, KIF5B, beta-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2. SCGN functions as a calcium sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. It also serves as a calcium buffer in neurons. Thus, SCGN may be linked to the pathogenesis of neurological diseases such as Alzheimer's, and also acts as a serum marker of neuronal damage, or as a tumor biomarker. SCGN consists of the three globular domains each of which contains a pair of EF-hand motifs. All six EF hand motifs of SCGN in some eukaryotes, including D. rerio, X. laevis, M. domestica, G. gallus, O. anatinus, could potentially bind six calcium ions. In contrast, SCGNs from higher eukaryotes have at least one non-functional EF-hand motif due to the mutation(s) or deletions. For instance, the EF1 loop does not coordinate calcium ion due to the key residue asparagine replaced by lysine in SCGNs of many mammalian species. Moreover, the EF2 loop seems to be competent for calcium-binding in most mammalian SCGNs except for human and chimpanzee orthologs. 257 -320079 cd16179 EFh_HEF_CBN EF-hand, calcium binding motif, found in Drosophila melanogaster calbindin-32 (CBN) and similar proteins. CBN, the product of the cbn gene, is a Drosophila homolog to vertebrate neuronal six EF-hand calcium binding proteins. It is expressed through most of ontogenesis with a selective distribution in the nervous system and in a few small adult thoracic muscles. Its precise biological role remains unclear. CBN contains six EF-hand motifs, but some of them may not bind calcium ions due to the lack of key residues. 261 -320055 cd16180 EFh_PEF_Group_I Penta-EF hand, calcium binding motifs, found in Group I PEF proteins. The family corresponds to Group I PEF proteins that have been found not only in higher animals but also in lower animals, plants, fungi and protists. Group I PEF proteins include apoptosis-linked gene 2 protein (ALG-2), peflin and similar proteins. ALG-2, also termed programmed cell death protein 6 (PDCD6), is a widely expressed calcium-binding modulator protein associated with cell proliferation and death, as well as cell survival. It forms a homodimer in the cell or a heterodimer with its closest paralog peflin. Among the PEF proteins, ALG-2 can bind three Ca2+ ions through its EF1, EF3, and EF5 hands, where it is unique in that its EF5 hand binds Ca2+ ion in a canonical coordination. Peflin is a ubiquitously expressed 30-kD PEF protein containing five EF-hand motifs in its C-terminal domain and a longer N-terminal hydrophobic domain (NHB domain) than any other member of the PEF family. The NHB domain harbors nine repeats of a nonapeptide (A/PPGGPYGGP). Peflin may modulate the function of ALG-2 in Ca2+ signaling. It exists only as a heterodimer with ALG-2, and binds two Ca2+ ions through its EF1 and EF3 hands. Its additional EF5 hand is unpaired and does not bind Ca2+ ion but mediates the heterodimerization with ALG-2. The dissociation of heterodimer occurs in the presence of Ca2+. 164 -320056 cd16181 EFh_PEF_Group_II_sorcin_like Penta-EF hand, calcium binding motifs, found in sorcin, grancalcin, and similar proteins. The family corresponds to the second group of penta-EF hand (PEF) proteins that includes sorcin, grancalcin, and similar proteins. Sorcin, also termed 22 kDa Ca2+-binding protein, CP-22, or V19, is a soluble resistance-related calcium-binding protein that is expressed in normal mammalian tissues, such as the liver, lungs and heart. It contains a flexible glycine and proline-rich N-terminal extension and five EF-hand motifs that associate with membranes in a calcium-dependent manner. It may harbor three potential Ca2+ binding sites through its EF1, EF2 and EF3 hands. However, binding of only two Ca2+/monomer suffices to trigger the conformational change that exposes hydrophobic regions and leads to interaction with the respective targets. Sorcin forms homodimers through the association of the unpaired EF5 hand. Among the PEF proteins, sorcin is unique in that it contains potential phosphorylation sites by cAMP-dependent protein kinase (PKA), and it can form a tetramer at slightly acid pH values although remaining a stable dimer at neutral pH. Grancalcin (GCA) is a cytosolic Ca2+-binding protein specifically expressed in neutrophils and monocytes/macrophages. It can strongly interact with sorcin to form a heterodimer and further modulate the function of sorcin. GCA exists as homodimers in solution. It contains five EF-hand motifs attached to an N-terminal region of an approximately 50 residue-long segment rich in glycines and prolines. In contrast with sorcin, GCA binds two Ca2+ ions through its EF1 and EF3 hands. 165 -320057 cd16182 EFh_PEF_Group_II_CAPN_like Penta-EF hand, calcium binding motifs, found in PEF calpain family. The PEF calpain family belongs to the second group of penta-EF hand (PEF) proteins. It includes classical (also called conventional or typical) calpain (referring to a calcium-dependent papain-like enzymes, EC 3.4.22.17) large catalytic subunits (CAPN1, 2, 3, 8, 9, 11, 12, 13, 14) and two calpain small subunits (CAPNS1 and CAPNS2), which are largely confined to animals (metazoans). These PEF-containing are nonlysosomal intracellular calcium-activated intracellular cysteine proteases that play important roles in the degradation or functional modulation in a variety of substrates in response to calcium signalling. The classical mu- and m-calpains are heterodimers consisting of homologous but a distinct (large) L-subunit/chain (CAPN1 or CAPN2) and a common (small) S-subunit/chain (CAPNS1 or CAPNS2). These L-subunits (CAPN1 and CAPN2) and S-subunit CAPNS1 are ubiquitously found in all tissues. Other calpains likely consist of an isolated L-subunit/chain alone. Many of them, such as CAPNS2, CAPN3 (in skeletal muscle, or lens), CAPN8 (in stomach), CAPN9 (in digestive tracts), CAPN11 (in testis), CAPN12 (in follicles), are tissue-specific and have specific functions in distinct organs. The L-subunits of similar structure (called CALPA and B) also have been found in Drosophila melanogaster. The S-subunit seems to have a chaperone-like function for proper folding of the L-subunit. The catalytic L-subunits contain a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The S-subunits only have the PEF domain following an N-terminal Gly-rich hydrophobic domain. The calpains undergo a rearrangement of the protein backbone upon Ca2+-binding. 167 -320058 cd16183 EFh_PEF_ALG-2 EF-hand, calcium binding motif, found in apoptosis-linked gene 2 protein (ALG-2) and similar proteins. ALG-2, also termed programmed cell death protein 6 (PDCD6), or probable calcium-binding protein ALG-2, is one of the prototypic members of the penta EF-hand protein family. It is a widely expressed calcium-binding modulator protein associated with cell proliferation and death, as well as cell survival. ALG-2 acts as a pro-apoptotic factor participating in T cell receptor-, Fas-, and glucocorticoid-induced programmed cell death, and also serves as a useful molecular marker for the prognosis of cancers. Moreover, ALG-2 functions as a calcium ion sensor at endoplasmic reticulum (ER) exit sites, and modulates ER-stress-stimulated cell death and neuronal apoptosis during organ formation. Furthermore, ALG-2 can mediate the pro-apoptotic activity of cisplatin or tumor necrosis factor alpha (TNFalpha) through the down-regulation of nuclear factor-kappaB (NF-kappaB) expression. It also inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of vascular endothelial growth factor receptor-2 (VEGFR-2). In addition, nuclear ALG-2 may participate in the post-transcriptional regulation of Inositol Trisphosphate Receptor Type 1 (IP3R1) pre-mRNA at least in part by interacting with CHERP (Ca2+ homeostasis endoplasmic reticulum protein) calcium-dependently. ALG-2 contains five serially repeated EF-hand motifs and interacts with various proteins, including ALG-2-interacting protein X (Alix), Fas, annexin XI, death-associated protein kinase 1 (DAPk1), Tumor susceptibility gene 101 (TSG101), Sec31A, phospholipid scramblase 3 (PLSCR3), the P-body component PATL1, and endosomal sorting complex required for transport (ESCRT)-III-related protein IST1, in a calcium-dependent manner. It forms a homodimer in the cell or a heterodimer with its closest paralog peflin. Among the PEF proteins, ALG-2 can bind three Ca2+ ions through its EF1, EF3, and EF5 hands, where it is unique in that its EF5 hand binds Ca2+ ion in a canonical coordination. 165 -320059 cd16184 EFh_PEF_peflin EF-hand, calcium binding motif, found in peflin and similar proteins. Peflin, also termed penta-EF hand (PEF) protein with a long N-terminal hydrophobic domain, or penta-EF hand domain-containing protein 1, is a ubiquitously expressed 30-kD PEF protein containing five EF-hand motifs in its C-terminal domain and a longer N-terminal hydrophobic domain (NHB domain) than any other member of the PEF family. The NHB domain harbors nine repeats of a nonapeptide (A/PPGGPYGGP). Peflin may modulate the function of ALG-2 in Ca2+ signaling. It exists only as a heterodimer with ALG-2, and binds two Ca2+ ions through its EF1 and EF3 hands. Its additional EF5 hand is unpaired and does not bind Ca2+ ion but mediates the heterodimerization with ALG-2. The dissociation of heterodimer occurs in the presence of Ca2+. In lower vertebrates, peflin may interact with transient receptor potential N (TRPN1), suggesting a potential role of peflin in fast transducer channel adaptation. 165 -320060 cd16185 EFh_PEF_ALG-2_like EF-hand, calcium binding motif, found in homologs of mammalian apoptosis-linked gene 2 protein (ALG-2). The family includes some homologs of mammalian apoptosis-linked gene 2 protein (ALG-2) mainly found in lower eukaryotes, such as a parasitic protist Leishmarua major and a cellular slime mold Dictyostelium discoideum. These homologs contains five EF-hand motifs. Due to the presence of unfavorable residues at the Ca2+-coordinating positions, their non-canonical EF4 and EF5 hands may not bind Ca2+. Two Dictyostelium PEF proteins are the prototypes of this family. They may bind to cytoskeletal proteins and/or signal-transducing proteins localized to detergent-resistant membranes named lipid rafts, and occur as monomers or weak homo- or heterodimers like ALG-2. They can serve as a mediator for Ca2+ signaling-related Dictyostehum programmed cell death (PCD). 163 -320061 cd16186 EFh_PEF_grancalcin Penta-EF hand, calcium binding motifs, found in grancalcin. Grancalcin (GCA) is a cytosolic Ca2+-binding protein specifically expressed in neutrophils and monocytes/macrophages. It displays a Ca2+-dependent translocation to granules and plasma membrane upon neutrophil activation, suggesting roles in granule-membrane fusion and degranulation of neutrophils. It may also play a role in the regulation of vesicle/granule exocytosis through the reversible binding of secretory vesicles and plasma membranes upon the presence of calcium. Moreover, GCA is involved in inflammation, as well as in the process of adhesion of neutrophils to fibronectin. It plays a key role in leukocyte-specific functions that are responsible for host defense, and affects the function of integrin receptors on immune cells through binding to L-plastin in the absence of calcium. Furthermore, GCA can strongly interact with sorcin to form a heterodimer, and further modulate the function of sorcin. GCA exists as homodimers in solution. It contains five EF-hand motifs attached to an N-terminal region of an approximately 50 residue-long segment rich in glycines and prolines. GCA binds two Ca2+ ions through its EF1 and EF3 hands. 165 -320062 cd16187 EFh_PEF_sorcin Penta-EF hand, calcium binding motifs, found in sorcin. Sorcin, also termed 22 kDa Ca2+-binding protein, CP-22, or V19, is a soluble resistance-related calcium-binding protein that is expressed in normal mammalian tissues, such as the liver, lungs and heart. The up-regulation of sorcin is correlated with a number of cancer types, including colorectal, gastric and breast cancer. It may represent a therapeutic target for reversing tumor multidrug resistance (MDR). Sorcin participates in the regulation of calcium homeostasis in cells and is necessary for the activation of mitosis and cytokinesis. It enhances metastasis and promotes epithelial-to-mesenchymal transition of colorectal cancer. Moreover, sorcin has been implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. It displays the anti-apoptotic properties via the modulation of mitochondrial Ca2+ handling in cardiac myocytes. It can target and activate the sarcolemmal Na+/Ca2+ exchanger (NCX1) in cardiac muscle. Meanwhile, sorcin modulates cardiac L-type Ca2+ current by functional interaction with the alpha1C subunit. It also associates with calcium/calmodulin-dependent protein kinase IIdeltaC (CaMKIIdelta(C)) and further modulates ryanodine receptor (RyR) function in cardiac myocytes. Furthermore, sorcin may act as a Ca2+ sensor for glucose-induced nuclear translocation and the activation of carbohydrate-responsive element-binding protein (ChREBP)-dependent genes. As a mitochondrial chaperone TRAP1 interactor, sorcin involves in mitochondrial metabolism through the TRAP1 pathway. In addition, sorcin may regulate the inhibition of type I interferon response in cells through interacting with foot-and-mouth disease virus (FMDV) VP1. Sorcin contains a flexible glycine and proline-rich N-terminal extension and five EF-hand motifs that associate with membranes in a calcium-dependent manner. It may harbor three potential Ca2+ binding sites through its EF1, EF2 and EF3 hands. However, binding of only two Ca2+/monomer suffices to trigger the conformational change that exposes hydrophobic regions and leads to interaction with the respective targets. Sorcin forms homodimers through the association of the unpaired EF5 hand. Among the PEF proteins, sorcin is unique in that it contains potential phosphorylation sites by cAMP-dependent protein kinase (PKA), and it can form a tetramer at slightly acid pH values although remaining a stable dimer at neutral pH. 165 -320063 cd16188 EFh_PEF_CPNS1_2 Penta-EF hand, calcium binding motifs, found in calcium-dependent protease small subunit CAPNS1 and CAPNS2. CAPNS1, also termed calpain small subunit 1 (CSS1), or calcium-activated neutral proteinase small subunit (CANP small subunit), or calcium-dependent protease small subunit (CDPS), or calpain regulatory subunit, is a common 28-kDa regulatory calpain subunit encoded by the calpain small 1 (Capns1, also known as Capn4) gene. It acts as a binding partner to form a heterodimer with the 80 kDa calpain large catalytic subunit and is required in maintaining the activity of calpain. CAPNS1 plays a significant role in tumor progression of human cancer, and functions as a potential therapeutic target in human hepatocellular carcinoma (HCC), nasopharyngeal carcinoma (NPC), glioma, and clear cell renal cell carcinoma (ccRCC). It may be involved in regulating migration and cell survival through binding to the SH3 domain of Ras GTPase-activating protein (RasGAP). It may also modulate Akt/FoxO3A signaling and apoptosis through PP2A. CAPNS1 contains an N-terminal glycine rich domain and a C-terminal PEF-hand domain. CAPNS2, also termed calpain small subunit 2 (CSS2), is a novel tissue-specific 30 kDa calpain small subunit that lacks two oligo-Gly stretches characteristic of the N-terminal Gly-rich domain of CAPNS1. CAPNS2 acts as a chaperone for the calpain large subunit, and appears to be the functional equivalent of CAPNS1. However, CAPNS2 binds the large subunit much more weakly than CAPNS1 and it does not undergo the autolytic conversion typical of CAPNS1. 169 -320064 cd16189 EFh_PEF_CAPN1_like Penta-EF hand, calcium binding motifs, found in mu-type calpain (CAPN1), m-type calpain (CAPN2), and similar proteins. The family includes mu-type calpain (CAPN1) and m-type calpain (CAPN2), both of which are ubiquitously expressed 80-kDa Ca2+-dependent intracellular cysteine proteases that contain a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The catalytic subunit CAPN1 or CAPN2 in complex with a regulatory subunit encoded by CAPNS1 forms a mu- or m-calpain heterodimer, respectively. 168 -320065 cd16190 EFh_PEF_CAPN3 Calcium-activated neutral. CAPN3, also termed calcium-activated neutral proteinase 3 (CANP 3), or calpain L3, or calpain p94, or muscle-specific calcium-activated neutral protease 3, or new calpain 1 (nCL-1), is a calpain large subunit that is mainly expressed in skeletal muscle, or lens. The skeletal muscle-specific CAPN3 are pathologically associated with limb girdle muscular dystrophy type 2A (LGMD2A). Its autolytic activity can be positively regulated by calmodulin (CaM), a known transducer of the calcium signal. CAPN3 is also involved in human melanoma tumorigenesis and progression. It impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells. Moreover, it plays an important role in sarcomere remodeling and mitochondrial protein turnover. Furthermore, the phosphorylated skeletal muscle-specific CAPN3 acts as a myofibril structural component and may participate in myofibril-based signaling pathways. In the eye, the lens-specific CAPN3, together with CAPN2, is responsible for proteolytic cleavages of alpha and beta-crystallin. Overactivated alpha and beta-crystallin can lead to cataract formation. CAPN3 exists as a homodimer, rather than a heterodimer with the calpain small subunit. It may also form heterodimers with other calpain large subunits. CAPN3 contains a long N-terminal region, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. Ca2+ binding at EF5 of the CAPN3 PEF domain is a distinct feature not observed in other calpain isoforms. 169 -320066 cd16191 EFh_PEF_CAPN8 Penta-EF hand, calcium binding motifs, found in calpain-8 (CAPN8). CAPN8, also termed new calpain 2 (nCL-2), or stomach-specific M-type calpain, is a calpain large subunit predominantly expressed in the stomach. It appears to be involved in membrane trafficking in the gastric surface mucus cells (pit cells), via its location at the Golgi and interaction with the beta-subunit of coatomer complex (beta-COP) of vesicles derived from the Golgi. Moreover, CAPN8, together with CAPN9, forms an active protease complex, G-calpain, in which both proteins are essential for stability and activity. The G-Calpain has been implicated in gastric mucosal defense. CAPN8 exists as both a monomer and homo-oligomer, but not as a heterodimer with the conventional calpain regulatory subunit (30K). The monomer and homodimer forms predominate. CAPN8 contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. 168 -320067 cd16192 EFh_PEF_CAPN9 Penta-EF hand, calcium binding motifs, found in calpain-9 (CAPN9). CAPN9, also termed digestive tract-specific calpain, or new calpain 4 (nCL-4), or protein CG36, is a calpain large subunit predominantly expressed in gastrointestinal tract. It plays a physiological role in the suppression of tumorigenesis. It acts as an important biomolecule link for the regression of colorectal cancer via intracellular calcium homeostasis. CAPN9 may also play a critical role in lumen formation. Moreover, CAPN9, together with CAPN8, forms an active protease complex, G-calpain, in which both proteins are essential for stability and activity. The G-Calpain has been implicated in gastric mucosal defense. Furthermore, down-regulation of calpain 9 has been linked to hypertensive heart and kidney disease in salt-sensitive Dahl rats. CAPN9 contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. 169 -320068 cd16193 EFh_PEF_CAPN11 Penta-EF hand, calcium binding motifs, found in calpain-11 (CAPN11). CAPN11, also termed calcium-activated neutral proteinase 11 (CANP 11), is a mammalian orthologue of micro/m calpain. It is one of the calpain large subunits that appears to be exclusively expressed in certain cells of the testis. It may be involved in regulating calcium-dependent signal transduction events during meiosis and sperm functional processes. CAPN11 contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. 169 -320069 cd16194 EFh_PEF_CAPN12 Penta-EF hand, calcium binding motifs, found in calpain-12 (CAPN12). CAPN12, also termed calcium-activated neutral proteinase 12 (CANP 12), is a calpain large subunit mainly expressed in the cortex of the hair follicle. It may affect apoptosis regulation. CAPN12 contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. 169 -320070 cd16195 EFh_PEF_CAPN13_14 Penta-EF hand, calcium binding motifs, found in calpain-13 (CAPN13), calpain-14 (CAPN14), and similar proteins. CAPN13, also termed calcium-activated neutral proteinase 13 (CANP 13), a 63.6 kDa calpain large subunit that exhibits a restricted tissue distribution with low levels of expression detected only in human testis and lung. In calpain family, CAPN13 is most closely related to calpain-14 (CAPN14). CAPN14, also termed calcium-activated neutral proteinase 14 (CANP 14), is a 76.7 kDa calpain large subunit that is most highly expressed in the oesophagus. Its expression and calpain activity can be induced by IL-13. Both CAPN13 and CAPN14 contain a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. 168 -320071 cd16196 EFh_PEF_CalpA_B Penta-EF hand, calcium binding motifs, found in Drosophila melanogaster calpain-A (CalpA), calpain-B (CalpB), and similar proteins. The family contains two calpains that have been found in Drosophila, CalpA and CalpB. CalpA, also termed calcium-activated neutral proteinase A (CANP A), or calpain-A catalytic subunit, is a Drosophila calpain homolog specifically expressed in a few neurons in the central nervous system, in scattered endocrine cells in the midgut, and in blood cells. CalpB, also termed calcium-activated neutral proteinase B (CANP B), contains calpain-B catalytic subunit 1 and calpain-B catalytic subunit 2. Both CalpA and CalpB are closely related to that of vertebrate calpains, and they share similar domain architecture, which consists of four domains: the N-terminal domain I, the catalytic domain II carrying the three active site residues, Cys, His and Asn, the Ca2+-regulated phospholipid-binding domain III, and penta-EF-hand Ca2+-binding domain IV. Besides, CalpA and CalpB display some distinguishing structural features that are not found in mammalian typical calpains. CalpA harbors a 76 amino acid long hydrophobic stretch inserted in domain IV, which may be involved in membrane attachment of this enzyme. CalpB has an unusually long N-terminal tail of 224 amino acids, which belongs to the class of intrinsically unstructured proteins (IUP) and may become ordered upon binding to target protein(s). Moreover, they do not need small regulatory subunits for their catalytic activity, and their proteolytic function is not regulated by an intrinsic inhibitor as the Drosophila genome contains neither regulatory subunit nor calpastatin orthologs. As a result, they may exist as a monomer or perhaps as a homo- or heterodimer together with a second large subunit. Furthermore, both CalpA and CalpB are dispensable for viability and fertility and do not share vital functions during Drosophila development. Phosphatidylinositol 4,5-diphosphate, phosphatidylinositol 4-monophosphate, phosphatidylinositol, and phosphatidic acid can stimulate the activity and the rate of activation of CalpA, but not CalpB. Calpain A modulates Toll responses by limited Cactus/IkappaB proteolysis. CalpB directly interacts with talin, an important component of the focal adhesion complex, and functions as an important modulator in border cell migration within egg chambers, which may act via the digestion of talin. CalpB can be phosphorylated by cAMP-dependent protein kinase (protein kinase A, PKA; EC 2.7.11.11) at Ser240 and Ser845, as well as by mitogen-activated protein kinase (ERK1 and ERK2; EC 2.7.11.24) at Thr747. The activation of the ERK pathway by extracellular signals results in the phosphorylation and activation of calpain B. In Schneider cells (S2), calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes. 167 -320072 cd16197 EFh_PEF_CalpC Penta-EF hand, calcium binding motifs, found in Drosophila melanogaster calpain-C (CalpC) and similar proteins. CalpC, also termed calcium-activated neutral proteinase homolog C (CANP C), is a catalytically inactive homolog of CalpA and CalpB found in Drosophila. It is strongly expressed in the salivary glands. In contrast with CalpA and CalpB, both of which are closely related to that of vertebrate calpains, and they share similar domain architecture, which consists of four domains: the N-terminal domain I, the catalytic domain II carrying the three active site residues, Cys, His and Asn, the Ca2+-regulated phospholipid-binding domain III, and penta-EF-hand Ca2+-binding domain IV. CalpC is a truncated calpain form missing domain I and about 20 residues from domain II. Moreover, due to all three mutated active site residues (Cys to Arg, His to Val and Asn to Ser), it may not have proteolytic activity. 166 -320073 cd16198 EFh_PEF_CAPN1 Penta-EF hand, calcium binding motifs, found in mu-type calpain (CAPN1). CAPN1, also termed calpain-1 80-kDa catalytic subunit, or calpain-1 large subunit, or micromolar-calpain (muCANP), or calcium-activated neutral proteinase 1 (CANP 1), or cell proliferation-inducing gene 30 protein, is a ubiquitously expressed 80-kDa Ca2+-dependent intracellular cysteine protease that contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The catalytic subunit CAPN1 in complex with a regulatory subunit encoded by CAPNS1 forms a mu-calpain heterodimer. CAPN1 plays a central role in postmortem proteolysis and meat tenderization processes, as well as in regulation of proliferation and survival of skeletal satellite cells. It also acts as a novel regulator in IgE-mediated mast cell activation and could serve as a potential therapeutic target for the management of allergic inflammation. Moreover, CAPN1 is involved in neutrophil motility and functions as a potential target for intervention in inflammatory disease. It also facilitates age-associated aortic wall calcification and fibrosis through the regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells, and thus plays a role in hypertension and atherosclerosis. The proteolytic cleavage of beta-amyloid precursor protein and tau protein by CAPN1 may be involved in plaque formation. Furthermore, CAPN1 is activated in the brains of individuals with Alzheimer's disease. It is involved in the maintenance of a proliferative neural stem cell pool. The activation and macrophage inflammation of CAPN1 in hypercholesterolemic nephropathy is promoted by nicotinic acetylcholine receptor alpha1 (nAChRalpha1). In addition, CAPN1 displays a functional role in hemostasis, as well as in sickle cell disease. 169 -320074 cd16199 EFh_PEF_CAPN2 Penta-EF hand, calcium binding motifs, found in m-type calpain (CAPN2). CAPN2, also termed millimolar-calpain (m-calpain), or calpain-2 catalytic subunit, or calcium-activated neutral proteinase 2 (CANP 2), or calpain large polypeptide L2, or calpain-2 large subunit, is a ubiquitously expressed 80-kDa Ca2+-dependent intracellular cysteine protease that contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The catalytic subunit CAPN2 in complex with a regulatory subunit encoded by CAPNS1 forms an m-calpain heterodimer. CAPN2 acts as the key protease responsible for N-methyl-d-aspartic acid (NMDA)-induced cytoplasmic polyadenylation element-binding protein 3 (CPEB3) degradation in neurons. It cleaves several components of the focal adhesion complex, such as FAK and talin, triggering disassembly of the complex at the rear of the cell. The stimulation of CAPN2 activity is required for Golgi antiapoptotic proteins (GAAPs) to promote cleavage of FA kinase (FAK), cell spreading, and enhanced migration. calpain 2 is also involved in the onset of glial differentiation. It regulates proliferation, survival, migration, and tumorigenesis of breast cancer cells through a PP2A-Akt-FoxO-p27(Kip1) signaling cascade. Its expression is associated with response to platinum based chemotherapy, progression-free and overall survival in ovarian cancer. Moreover, CAPN2 may play a role in fundamental mitotic functions, such as the maintenance of sister chromatid cohesion. The activation of CAPN2 plays an essential role in hippocampal synaptic plasticity and in learning and memory. In the eye, CAPN2, together with a lens-specific variant of CAPN3, is responsible for proteolytic cleavages of alpha and beta-crystallin. Overactivated alpha and beta-crystallin can lead to cataract formation. Sometimes, CAPN2 compensates for loss of CAPN1, and both calpain isoforms are involved in AngII-induced aortic aneurysm formation. The main phosphorylation sites in m-calpain are Ser50 and Ser369/Thr370. 168 -320030 cd16200 EFh_PI-PLCbeta EF-hand motif found in metazoan phosphoinositide-specific phospholipase C (PI-PLC)-beta isozymes. PI-PLC-beta isozymes represent a class of metazoan PI-PLCs that hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors (EC 3.1.4.11). They have been implicated in numerous processes relevant to central nervous system (CNS), including chemotaxis, cardiovascular function, neuronal signaling, and opioid sensitivity. Like other PI-PLC isozymes, PI-PLC-beta isozymes contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, they have a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are four PI-PLC-beta isozymes (1-4). PI-PLC-beta1 and PI-PLC-beta3 are expressed in a wide range of tissues and cell types, whereas PI-PLC-beta2 and PI-PLC-beta4 have been found only in hematopoietic and neuronal tissues, respectively. All PI-PLC-beta isozymes are activated by the heterotrimeric G protein alpha subunits of the Gq class through their C2 domain and long C-terminal extension. They are GTPase-activating proteins (GAPs) for these G alpha(q) proteins. PI-PLC-beta2 and PI-PLC-beta3 can also be activated by beta-gamma subunits of the G alpha(i/o) family of heterotrimeric G proteins and the small GTPases such as Rac and Cdc42. This family also includes two invertebrate homologs of PI-PLC-beta, PLC21 from cephalopod retina and No receptor potential A protein (NorpA) from Drosophila melanogaster. 153 -320031 cd16201 EFh_PI-PLCgamma EF-hand motif found in phosphoinositide phospholipase C gamma isozymes (PI-PLC-gamma). PI-PLC-gamma isozymes represent a class of metazoan PI-PLCs that hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors. They can form a complex with the phosphorylated cytoplasmic domains of the immunoglobulin Ig-alpha and Ig-beta subunits of the B cell receptor (BCR), the membrane-tethered Src family kinase Lyn, phosphorylated spleen tyrosine kinase (Syk), the phosphorylated adaptor protein B-cell linker (BLNK), and activated Bruton's tyrosine kinase (Btk). Like other PI-PLC isozymes, PI-PLC-gamma isozymes contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unique to PI-PLC-gamma, a second PH domain, which is split by two SH2 (Src homology 2) domains, and one SH3 (Src homology 3) domain, are present within this linker. The SH2 and SH3 domains are responsible for the binding of phosphotyrosine-containing sequences and proline-rich sequences, respectively. There are two PI-PLC-gamma isozymes (1-2), both of which are activated by receptor and non-receptor tyrosine kinases due to the presence of SH2 and SH3 domains. 145 -320032 cd16202 EFh_PI-PLCdelta EF-hand motif found in phosphoinositide phospholipase C delta (PI-PLC-delta). PI-PLC-delta isozymes represent a class of metazoan PI-PLCs that are some of the most sensitive to calcium among all PLCs. Their activation is modulated by intracellular calcium ion concentration, phospholipids, polyamines, and other proteins, such as RhoAGAP. Like other PI-PLC isozymes, PI-PLC-delta isozymes contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There are three PI-PLC-delta isozymes (1, 3 and 4). PI-PLC-delta1 is relatively well characterized. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. Different PI-PLC-delta isozymes have different tissue distribution and different subcellular locations. PI-PLC-delta1 is mostly a cytoplasmic protein, PI-PLC-delta3 is located in the membrane, and PI-PLC-delta4 is predominantly detected in the cell nucleus. PI-PLC-delta isozymes is evolutionarily conserved even in non-mammalian species, such as yeast, slime molds and plants. 140 -320033 cd16203 EFh_PI-PLCepsilon EF-hand motif found in phosphoinositide phospholipase C epsilon 1 (PI-PLC-epsilon1). PI-PLC-epsilon1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1, or pancreas-enriched phospholipase C, or phospholipase C-epsilon-1 (PLC-epsilon-1), is dominant in connective tissues and brain. It has been implicated in carcinogenesis, such as in bladder and intestinal tumor, oesophageal squamous cell carcinoma, gastric adenocarcinoma, murine skin cancer, head and neck cancer. PI-PLC-epsilon1 contains an N-terminal CDC25 homology domain with a guanyl-nucleotide exchange factor (GFF) activity, a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, a C2 domain, and at least one and perhaps two C-terminal predicted RA (Ras association) domains that are implicated in the binding of small GTPases, such as Ras or Rap, from the Ras family. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. There is only one PI-PLC-epsilon isozyme. It is directly activated by G alpha(12/13), G beta gamma, and activated members of Ras and Rho small GTPases. 174 -320034 cd16204 EFh_PI-PLCzeta EF-hand motif found in phosphoinositide phospholipase C zeta 1 (PI-PLC-zeta1). PI-PLC-zeta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta-1, or phospholipase C-zeta-1 (PLC-zeta-1), or testis-development protein NYD-SP27, is only found in the testis. The sperm-specific PI-PLC plays a fundamental role in vertebrate fertilization by initiating intracellular calcium oscillations that trigger the embryo development. However, the mechanism of its activation still remains unclear. PI-PLC-zeta1 contains an N-terminal four atypical EF-hand motifs, a PLC catalytic core domain, and a C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unlike other PI-PLCs, PI-PLC-zeta is responsible for Ca2+ oscillations in fertilized oocytes and exhibits a high sensitivity to Ca2+ mediated through its EF-hand domain. There is only one PLC-zeta isozyme. Aside from PI-PLC-zeta identified in mammals, its eukaryotic homologs have been classified with this family. 142 -320035 cd16205 EFh_PI-PLCeta EF-hand motif found in phosphoinositide phospholipase C eta (PI-PLC-eta). PI-PLC-eta isozymes represent a class of neuron-specific metazoan PI-PLCs that are most abundant in the brain, particularly in the hippocampus, habenula, olfactory bulb, cerebellum, and throughout the cerebral cortex. They are phosphatidylinositol 4,5-bisphosphate-hydrolyzing enzymes that are more sensitive to Ca2+ than other PI-PLC isozymes. They function as calcium sensors activated by small increases in intracellular calcium concentrations. They are also activated through G-protein-coupled receptor (GPCR) stimulation, and further mediate GPCR signalling pathways. PI-PLC-eta isozymes contain an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. The C-terminal tail harbors a number of proline-rich motifs which may interact with SH3 (Src homology 3) domain-containing proteins, as well as many serine/threonine residues, suggesting possible regulation of interactions by protein kinases/phosphatases. There are two PI-PLC-eta isozymes (1-2). Aside from the PI-PLC-eta isozymes identified in mammals, their eukaryotic homologs are also present in this family. 141 -320036 cd16206 EFh_PRIP EF-hand motif found in phospholipase C-related but catalytically inactive proteins (PRIP). This family represents a class of metazoan phospholipase C related, but catalytically inactive proteins (PRIP), which belong to a group of novel inositol 1,4,5-trisphosphate (InsP3) binding protein. PRIP has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP do not have PLC enzymatic activity. PRIP consists of two subfamilies, PRIP-1(also known as p130 or PLC-L1), which is predominantly expressed in the brain, and PRIP-2 (also known as PLC-L2), which exhibits a relatively ubiquitous expression. Experiments show both, PRIP-1 and PRIP-2, are involved in InsP3-mediated calcium signaling pathway and GABA(A)receptor-mediated signaling pathway. In addition, PRIP-2 acts as a negative regulator of B-cell receptor signaling and immune responses. 143 -320037 cd16207 EFh_ScPlc1p_like EF-hand motif found in Saccharomyces cerevisiae phospholipase C-1 (ScPlc1p) and similar proteins. This family represents a group of putative phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) encoded by PLC1 genes from yeasts, which are homologs of the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain organization. Mammalian PI-PLC is a signaling enzyme that hydrolyzes the membrane phospholipids phosphatidylinositol-4,5-bisphosphate (PIP2) to generate two important second messengers in eukaryotic signal transduction cascades, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 triggers inflow of calcium from intracellular stores, while DAG, together with calcium, activates protein kinase C, which then phosphorylates other molecules, leading to altered cellular activity. Calcium is required for the catalysis. The prototype of this family is protein Plc1p (also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase 1) encoded by PLC1 genes from Saccharomyces cerevisiae. ScPlc1p contains both highly conserved X- and Y- regions of PLC catalytic core domain, as well as a presumptive EF-hand like calcium binding motif. Experiments show that ScPlc1p displays calcium dependent catalytic properties with high similarity to those of the mammalian PLCs, and plays multiple roles in modulating the membrane/protein interactions in filamentation control. CaPlc1p encoded by CAPLC1 from the closely related yeast Candida albicans, an orthologue of S. cerevisiae Plc1p, is also included in this group. Like SCPlc1p, CaPlc1p has conserved presumptive catalytic domain, shows PLC activity when expressed in E. coli, and is involved in multiple cellular processes. There are two other gene copies of CAPLC1 in C. albicans, CAPLC2 (also named as PIPLC) and CAPLC3. Experiments show CaPlc1p is the only enzyme in C. albicans which functions as PLC. The biological functions of CAPLC2 and CAPLC3 gene products must be clearly different from CaPlc1p, but their exact roles remain unclear. Moreover, CAPLC2 and CAPLC3 gene products are more similar to extracellular bacterial PI-PLC than to the eukaryotic PI-PLC, and they are not included in this subfamily. 142 -320038 cd16208 EFh_PI-PLCbeta1 EF-hand motif found in phosphoinositide phospholipase C beta 1 (PI-PLC-beta1). PI-PLC-beta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1, or PLC-154, or phospholipase C-I (PLC-I), or phospholipase C-beta-1 (PLC-beta1), is expressed at highest levels in specific regions of the brain, as well as in the cardiovascular system. It has two splice variants, PI-PLC-beta1a and PI-PLC-beta1b, both of which are present within the nucleus. Nuclear PI-PLC-beta1 is a key molecule for nuclear inositide signaling, where it plays a role in cell cycle progression, proliferation and differentiation. It also contributes to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PI-PLC-beta1 acts as an effector and a GTPase activating protein (GAP) specifically activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It regulates neuronal activity in the cerebral cortex and hippocampus, and has been implicated for participations in diverse critical functions related to forebrain diseases such as schizophrenia. It may play an important role in maintenance of the status epilepticus, and in osteosarcoma-related signal transduction pathways. PI-PLC-beta1 also functions as a regulator of erythropoiesis in kinamycin F, a potent inducer of gamma-globin production in K562 cells. The G protein activation and the degradation of PI-PLC-beta1 can be regulated by the interaction of alpha-synuclein. As a result, it may reduce cell damage under oxidative stress. Moreover, PI-PLC-beta1 works as a new intermediate in the HIV-1 gp120-triggered phosphatidylcholine-specific phospholipase C (PC-PLC)-driven signal transduction pathway leading to cytoplasmic CCL2 secretion in macrophages. PI-PLC-beta1 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 151 -320039 cd16209 EFh_PI-PLCbeta2 EF-hand motif found in phosphoinositide phospholipase C beta 2 (PI-PLC-beta2). PI-PLC-beta2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2, or phospholipase C-beta-2 (PLC-beta2), is expressed at highest levels in cells of hematopoietic origin. It is activated by the heterotrimeric G protein alpha q subunits (G alpha(q)) through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta2 has two cellular binding partners, alpha- and gamma-synuclein. The binding of either alpha- and gamma-synuclein inhibits PI-PLC-beta2 activity through preventing the binding of its activator G alpha(q). However, the binding of gamma-synuclein to PI-PLC-beta2 does not affect its binding to G beta(gamma) subunits or small G proteins, but enhances these signals. Meanwhile, gamma-synuclein may protect PI-PLC-beta2 from protease degradation and contribute to its over-expression in breast cancer. In leukocytes, the G beta(gamma)-mediated activation of PI-PLC-beta2 can be promoted by a scaffolding protein WDR26, which is also required for the translocation of PI-PLC-beta2 from the cytosol to the membrane in polarized leukocytes. PI-PLC-beta2 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 151 -320040 cd16210 EFh_PI-PLCbeta3 EF-hand motif found in phosphoinositide phospholipase C beta 3 (PI-PLC-beta3). PI-PLC-beta3, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3, or phospholipase C-beta-3 (PLC-beta3), is widely expressed at highest levels in brain, liver, and parotid gland. It is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It is also activated by the beta-gamma subunits of heterotrimeric G proteins. PI-PLC-beta3 associates with CXC chemokine receptor 2 (CXCR2) and Na+/H+ exchanger regulatory factor-1 (NHERF1) to form macromolecular complexes at the plasma membrane of pancreatic cancer cells, which functionally couple chemokine signaling to PI-PLC-beta3-mediated signaling cascade. Moreover, PI-PLC-beta3 directly interacts with the M3 muscarinic receptor (M3R), a prototypical G alpha-q-coupled receptor that promotes PI-PLC-beta3 localization to the plasma membrane. This binding can alter G alpha-q-dependent PLC activation. Furthermore, PI-PLC-beta3 inhibits the proliferation of hematopoietic stem cells (HSCs) and myeloid cells through the interaction of SH2-domain-containing protein phosphatase 1 (SHP-1) and signal transducer and activator of transcription 5 (Stat5), and the augment of the dephosphorylating activity of SHP-1 toward Stat5, leading to the inactivation of Stat5. It is also involved in atopic dermatitis (AD) pathogenesis via regulating the expression of periostin in fibroblasts and thymic stromal lymphopoietin (TSLP) in keratinocytes. In addition, PI-PLC-beta3 mediates the thrombin-induced Ca2+ response in glial cells. PI-PLC-beta3 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 151 -320041 cd16211 EFh_PI-PLCbeta4 EF-hand motif found in phosphoinositide phospholipase C beta 4 (PI-PLC-beta4). PI-PLC-beta4, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4, or phospholipase C-beta-4 (PLC-beta4), is expressed in high concentrations in cerebellar Purkinje and granule cells, the median geniculate body, and the lateral geniculate nucleus. It may play a critical role in linking anxiety behaviors and theta rhythm heterogeneity. PI-PLC-beta4 is activated by the heterotrimeric G protein alpha q subunits through their C2 domain and long C-terminal extension. It contributes to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PI-PLC-beta4 functions as a downstream signaling molecule of type 1 metabotropic glutamate receptors (mGluR1s). The thalamic mGluR1-PI-PLC-beta4 cascade is essential for formalin-induced inflammatory pain by regulating the response of ventral posterolateral thalamic nucleus (VPL) neurons. Moreover, PI-PLC-beta4 is essential for long-term depression (LTD) in the rostral cerebellum, which may be required for the acquisition of the conditioned eyeblink response. Besides, PI-PLC-beta4 may play an important role in maintenance of the status epilepticus. The mutations of PI-PLC-beta4 has been identified as the major cause of autosomal dominant auriculocondylar syndrome (ACS). PI-PLC-beta4 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. Besides, it has a unique C-terminal coiled-coil (CT) domain necessary for homodimerization. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 153 -320042 cd16212 EFh_NorpA_like EF-hand motif found in Drosophila melanogaster No receptor potential A protein (NorpA) and similar proteins. NorpA, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase, is an eye-specific phosphoinositide phospholipase C (PI-PLC) encoded by norpA gene in Drosophila. It is expressed predominantly in photoreceptors and plays an essential role in the phototransduction pathway of Drosophila. A mutation within the norpA gene can render the fly blind without affecting any of the obvious structures of the eye. Like beta-class of vertebrate PI-PLCs, NorpA contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 153 -320043 cd16213 EFh_PI-PLC21 EF-hand motif found in phosphoinositide phospholipase PLC21 and similar proteins. The family includes invertebrate homologs of phosphoinositide phospholipase C beta (PI-PLC-beta) named PLC21 from cephalopod retina. It also includes PLC21 encoded by plc-21 gene, which is expressed in the central nervous system of Drosophila. Like beta-class of vertebrate PI-PLCs, PLC21 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. 154 -320044 cd16214 EFh_PI-PLCgamma1 EF-hand motif found in phosphoinositide phospholipase C gamma 1 (PI-PLC-gamma1). PI-PLC-gamma1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1, or PLC-148, or phospholipase C-II (PLC-II), or phospholipase C-gamma-1 (PLC-gamma-1), is abundantly expressed in embryonal cortical structures, neurons, oligodendrocytes and astrocytes, and is involved in various cellular events, including proliferation, differentiation, migration, survival, and cell death. It also associates with many diseases, including epilepsy, Huntington's disease (HD), depression, Alzheimer's disease (AD) and bipolar disorder. PI-PLC-gamma1 plays a critical role in cell migration and tumor cell invasiveness and metastasis. It can mediate the cell motility effects of growth factors, including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor (IGF) and hepatocyte growth factor (HGF), as well as adhesion receptors. Moreover, PI-PLC-gamma1 can modulate neurite outgrowth, neuronal cell migration and synaptic plasticity through the Trk receptor. PI-PLC-gamma1 contains an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Besides, PI-PLC-gamma1 has a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region, which are present within this linker. PI-PLC-gamma1 is activated by receptor and non-receptor tyrosine kinases via its two SH2 and a single SH3 domain. 146 -320045 cd16215 EFh_PI-PLCgamma2 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2. PI-PLC-gamma2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2, or phospholipase C-IV (PLC-IV), or phospholipase C-gamma-2 (PLC-gamma-2), is highly expressed in cells of hematopoietic origin. It has been implicated in cell motility important to invasion and dissemination of tumor cells. As an important component of the B cell receptor (BCR) signaling pathway, PI-PLC-gamma2 is required for efficient formation of germinal center (GC) and memory B cells. It works as a critical effector stimulating the increase of intracellular Ca2+ and activates various signaling pathways downstream of the BCR. Moreover, PI-PLC-gamma2 has been implicated in Fc receptor-mediated degranulation of mast cells, integrin signaling in platelets, as well as integrin and Fc receptor-mediated neutrophil functions. It also acts as a crucial signaling mediator modifying DC gene expression program to activate DC responses to beta-glucan-containing pathogens. PI-PLC-gamma2 contains an N-terminal pleckstrin homology (PH) domain, an array of EF hands, a PLC catalytic core domain, and a C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Besides, PI-PLC-gamma2 has a second PH domain, two SH2 (Src homology 2) regions, and one SH3 (Src homology 3) region, which are present within this linker. PI-PLC-gamma2 is activated by receptor and non-receptor tyrosine kinases via its two SH2 and a single SH3 domain. Unlike PI-PLC-gamma1, the activation of PI-PLC-gamma2 may require concurrent stimulation of PI 3-kinase. 154 -320046 cd16216 EFh_PI-PLCgamma1_like EF-hand motif found in 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1-like proteins. This family corresponds to a small group of uncharacterized 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1-like (PI-PLC-gamma1-like) proteins. Although their biological function remains unclear, they shows high sequence similarity with other phosphoinositide phospholipase C gamma proteins. They contain a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. A second PH domain, which is split by two SH2 (Src homology 2) domains, and one SH3 (Src homology 3) domain, are present within this linker. 150 -320047 cd16217 EFh_PI-PLCdelta1 EF-hand motif found in phosphoinositide phospholipase C delta 1 (PI-PLC-delta1). PI-PLC-delta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1 (PLCD1), or phospholipase C-III (PLC-III), or phospholipase C-delta-1 (PLC-delta-1), is present in high abundancy in the brain, heart, lung, skeletal muscle and testis. It is activated by high calcium levels generated by other PI-PLC family members, and therefore functions as a calcium amplifier within the cell. PI-PLC-delta1 is required for maintenance of homeostasis in skin and metabolic tissues. Moreover, it is essential in trophoblasts for placental development. Simultaneous loss of PI-PLC-delta1 may cause placental vascular defects, leading to embryonic lethality. PI-PLC-delta1 can be positively or negatively regulated by several binding partners, including p122/Rho GTPase activating protein (RhoGAP), Gha/Transglutaminase II, RalA, and calmodulin. It is involved in Alzheimer's disease and hypertension. Furthermore, PI-PLC-delta1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity and p27 levels. It can be activated by alpha1-adrenoreceptors (AR) in a calcium-dependent manner and may be important for G protein-coupled receptors (GPCR) responses in vascular smooth muscle (VSM). PI-PLC-delta1 may also be involved in noradrenaline (NA)-induced phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis and modulate sustained contraction of mesenteric small arteries. In addition, it inhibits thermogenesis and induces lipid accumulation, and therefore contributes to the development of obesity. PI-PLC-delta1 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. PI-PLC-delta1 can regulate the binding of PH domain to PIP2 in a Ca2+-dependent manner through its functionally important EF-hand domains. In addition, PI-PLC-delta1 possesses a classical leucine-rich nuclear export sequence (NES) located in the EF hand motifs, as well as a nuclear localization signal within its linker region, both of which may be responsible for translocating PI-PLC-delta1 into and out of the cell nucleus. 139 -320048 cd16218 EFh_PI-PLCdelta3 EF-hand motif found in phosphoinositide phospholipase C delta 3 (PI-PLC-delta3). PI-PLC-delta3, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3 (PLCD3), phospholipase C-delta-3 (PLC-delta-3), is expressed abundantly in brain, skeletal muscle and heart. PI-PLC-delta3 gene expression is down-regulation by cAMP and calcium. PI-PLC-delta3 acts as anchoring of myosin VI on plasma membrane, and further modulates Myosin IV expression and microvilli formation in enterocytes. It negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and plays an essential role in normal neuronal migration by promoting neuronal outgrowth in the developing brain. Moreover, PI-PLC-delta3 is essential in trophoblasts for placental development. Simultaneous loss of PI-PLC-delta3 may cause placental vascular defects, leading to embryonic lethality. PI-PLC-delta3 contains a core set of domains, including an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core, and a single C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. In addition, PI-PLC-delta3 possesses a classical leucine-rich nuclear export sequence (NES) located in the EF hand motifs, which may be responsible transporting PI-PLC-delta3 from the cell nucleus. 138 -320049 cd16219 EFh_PI-PLCdelta4 EF-hand motif found in phosphoinositide phospholipase C delta 4 (PI-PLC-delta4). PI-PLC-delta4, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-4 (PLCD4), or phospholipase C-delta-4 (PLC-delta-4), is expressed in various tissues with the highest levels detected selectively in the brain, skeletal muscle, testis and kidney. It plays a significant role in cell growth, cell proliferation, tumorigenesis, and in an early stage of fertilization. PI-PLC-delta4 may function as a key enzyme in the regulation of PtdIns(4,5)P2 levels and Ca2+ metabolism in nuclei in response to growth factors, and its expression may be partially regulated by an increase in cytoplasmic Ca2+. Moreover, PI-PLC-delta4 binds glutamate receptor-interacting protein1 (GRIP1) in testis and is required for calcium mobilization essential for the zona pellucida-induced acrosome reaction in sperm. Overexpression or dysregulated expression of PLCdelta4 may initiate oncogenesis in certain tissues through upregulating erbB1/2 expression, extracellular signal-regulated kinase (ERK) signaling pathway, and proliferation in MCF-7 cells. PI-PLC-delta4 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, and a C-terminal C2 domain. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. Unlike PI-PLC-delta 1 and 3, a putative nuclear export sequence (NES) located in the EF-hand domain, which may be responsible transporting PI-PLC-delta1 and 3 from the cell nucleus, is not present in PI-PLC-delta4. 140 -320050 cd16220 EFh_PI-PLCeta1 EF-hand motif found in phosphoinositide phospholipase C eta 1 (PI-PLC-eta1). PI-PLC-eta1, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1, or phospholipase C-eta-1 (PLC-eta-1), or phospholipase C-like protein 3 (PLC-L3), is a neuron-specific PI-PLC that is most abundant in the brain, particularly in the hippocampus, habenula, olfactory bulb, cerebellum, and throughout the cerebral cortex. It is also expressed in the zona incerta and in the spinal cord. PI-PLC-eta1 may perform a fundamental role in the brain. It may also act in synergy with other PLC subtypes. For instance, it is activated via intracellular Ca2+ mobilization and then plays a role in the amplification of GPCR (G-protein-coupled receptor)-mediated PLC-beta signals. In addition, its activity can be stimulated by ionomycin. PI-PLC-eta1 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. The C-terminal tail harbors a number of proline-rich motifs which may interact with SH3 (Src homology 3) domain-containing proteins, as well as many serine/threonine residues, suggesting possible regulation of interactions by protein kinases/phosphatases. 141 -320051 cd16221 EFh_PI-PLCeta2 EF-hand motif found in phosphoinositide phospholipase C eta 2 (PI-PLC-eta2). PI-PLC-eta2, also termed 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2, or phosphoinositide phospholipase C-like 4, or phospholipase C-like protein 4 (PLC-L4), or phospholipase C-eta-2 (PLC-eta2), is a neuron-specific PI-PLC that is most abundant in the brain, particularly in the hippocampus, habenula, olfactory bulb, cerebellum, and throughout the cerebral cortex. It is also expressed in the pituitary gland, pineal gland, retina, and lung, as well as in neuroendocrine cells. PI-PLC-eta2 has been implicated in the regulation of neuronal differentiation/maturation. It is required for retinoic acid-stimulated neurite growth. It may also in part function downstream of G-protein-coupled receptors and play an important role in the formation and maintenance of the neuronal network in the postnatal brain. Moreover, PI-PLC-eta2 acts as a Ca2+ sensor that shows a canonical EF-loop directing Ca2+-sensitivity and thus can amplify transient Ca2+ signals. Its activation can be triggered either by intracellular calcium mobilization or by G beta-gamma signaling. PI-PLC-eta2 contains an N-terminal pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain, a C2 domain, and a unique C-terminal tail that terminates with a PDZ-binding motif, a potential interaction site for other signaling proteins. The PLC catalytic core domain is a TIM barrel with two highly conserved regions (X and Y) split by a highly degenerate linker sequence. The C-terminal tail harbors a number of proline-rich motifs which may interact with SH3 (Src homology 3) domain-containing proteins, as well as many serine/threonine residues, suggesting possible regulation of interactions by protein kinases/phosphatases. 141 -320052 cd16222 EFh_PRIP1 EF-hand motif found in phospholipase C-related but catalytically inactive protein 1 (PRIP-1). PRIP-1, also termed phospholipase C-deleted in lung carcinoma, or inactive phospholipase C-like protein 1 (PLC-L1), or p130, is a novel inositol 1,4,5-trisphosphate (InsP3) binding protein that is predominantly expressed in the brain. It is involved in InsP3-mediated calcium signaling pathway and GABA(A)receptor-mediated signaling pathway. It interacts with the catalytic subunits of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), and functions as a scaffold to regulate the activities and subcellular localizations of both PP1 and PP2A in phospho-dependent cellular signaling. It also promotes the translocation of phosphatases to lipid droplets to trigger the dephosphorylation of hormone-sensitive lipase (HSL) and perilipin A, thus reducing protein kinase A (PKA)-mediated lipolysis. Moreover, PRIP-1 plays an important role in insulin granule exocytosis through the association with GABAA-receptor-associated protein (GABARAP) to form a complex to regulate KIF5B-mediated insulin secretion. It also inhibits regulated exocytosis through direct interactions with syntaxin 1 and synaptosomal-associated protein 25 (SNAP-25) via its C2 domain. Furthermore, PRIP-1 has been implicated in the negative regulation of bone formation. PRIP-1 has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP-1 does not have PLC enzymatic activity. 143 -320053 cd16223 EFh_PRIP2 EF-hand motif found in phospholipase C-related but catalytically inactive protein 2 (PRIP-2). PRIP-2, also termed phospholipase C-L2, or phospholipase C-epsilon-2 (PLC-epsilon-2), or inactive phospholipase C-like protein 2 (PLC-L2), is a novel inositol 1,4,5-trisphosphate (InsP3) binding protein that exhibits a relatively ubiquitous expression. It functions as a novel negative regulator of B-cell receptor (BCR) signaling and immune responses. PRIP-2 has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP-2 does not have PLC enzymatic activity. 144 -320022 cd16224 EFh_CREC_RCN2 EF-hand, calcium binding motif, found in reticulocalbin-2 (RCN2). RCN2, also termed calcium-binding protein ERC-55, or E6-binding protein (E6BP), or TCBP-49, is an endoplasmic reticulum resident low-affinity Ca2+-binding protein that has been implicated in immunity, redox homeostasis, cell cycle regulation and coagulation. It is associated with tumorigenesis, in particular with transformation of cells of the cervix induced by human papillomavirus (HPV), through binding to human papillomavirus (HPV) E6 oncogenic protein. It specifically interacts with vitamin D receptor among nuclear receptors. RCN2 contains an N-terminal signal sequence followed by six copies of the EF-hand Ca2+-binding motif, and a C-terminal His-Asp-Glu-Leu (HDEL) tetrapeptide that is required for retention of RCN2 in the endoplasmic reticulum (ER). 268 -320023 cd16225 EFh_CREC_cab45 EF-hand, calcium binding motif, found in 45 kDa calcium-binding protein (Cab45). Cab45, also termed stromal cell-derived factor 4 (SDF-4), is a soluble, lumenal Golgi resident low-affinity Ca2+-binding protein that contains six copies of the EF-hand Ca2+-binding motif. It is required for secretory pathway calcium ATPase1 (SPCA1)-dependent Ca2+ import into the trans-Golgi network (TGN) and plays an essential role in Ca2+-dependent secretory cargo sorting at the TGN. 278 -320024 cd16226 EFh_CREC_Calumenin_like EF-hand, calcium binding motif, found in calumenin, reticulocalbin-1 (RCN-1), reticulocalbin-3 (RCN-3), and similar proteins. The family corresponds to a group of six EF-hand Ca2+-binding proteins, including calumenin (also known as crocalbin or CBP-50), reticulocalbin-1 (RCN-1), reticulocalbin-3 (RCN-3), and similar proteins. Calumenin is an endo/sarcoplasmic reticulum (ER/SR) resident low-affinity Ca2+-binding protein that contains six EF-hand domains and a C-terminal SR retention signal His-Asp-Glu-Phe (HDEF) tetrapeptide. It functions as a novel regulator of SERCA2, and its expressional changes are tightly coupled with Ca2+-cycling of cardiomyocytes. It is also broadly involved in haemostasis and in the pathophysiology of thrombosis. Moreover, the extracellular calumenin acts as a suppressor of cell migration and tumor metastasis. RCN-1 is an endoplasmic reticulum resident Ca2+-binding protein with a carboxyl-terminal His-Asp-Glu-Leu (HDEL) tetrapeptide signal. It acts as a potential negative regulator of B-RAF activation and can negatively modulate cardiomyocyte hypertrophy by inhibition of the mitogen-activated protein kinase signalling cascade. It also plays a key role in the development of doxorubicin-associated resistance. RCN-3 is a putative six EF-hand Ca2+-binding protein that contains five RXXR (X is any amino acid) motifs and a C-terminal ER retrieval signal HDEL tetrapeptide. The RXXR motif represents the target sequence of subtilisin-like proprotein convertases (SPCs). RCN-3 is specifically bound to the paired basic amino-acid-cleaving enzyme-4 (PACE4) precursor protein and plays an important role in the biosynthesis of PACE4. 264 -320025 cd16227 EFh_CREC_RCN2_like EF-hand, calcium binding motif, found in reticulocalbin-2 (RCN2) mainly from protostomes. This family corresponds to a group of uncharacterized RCN2-like proteins, which are mainly found in protostomes. Although their biological function remains unclear, they show high sequence similarity with RCN2 (also known as E6BP or TCBP-49), which is an endoplasmic reticulum resident low-affinity Ca2+-binding protein that has been implicated in immunity, redox homeostasis, cell cycle regulation and coagulation. Members in this family contain six copies of the EF-hand Ca2+-binding motif, but may lack a C-terminal His-Asp-Glu-Leu (HDEL) tetrapeptide that is required for retention of RCN2 in the endoplasmic reticulum (ER). 263 -320026 cd16228 EFh_CREC_Calumenin EF-hand, calcium binding motif, found in calumenin. Calumenin, also termed crocalbin, or IEF SSP 9302, is an endo/sarcoplasmic reticulum (ER/SR) resident low-affinity Ca2+-binding protein that contains six EF-hand domains and a C-terminal SR retention signal His-Asp-Glu-Phe (HDEF) tetrapeptide. It is highly expressed in various brain regions. Thus it plays an important role in migration and differentiation of neurons, and/or in Ca2+ signaling between glial cells and neurons. Calumenin is involved in Ca2+ homeostasis through interacting with ryanodine receptor RyR2 and SERCA2. It acts as a novel regulator of SERCA2, and its expressional changes are tightly coupled with Ca2+-cycling of cardiomyocytes. Calumenin also forms a Ca2+-dependent complex with thrombospondin-1, which is broadly involved in haemostasis and thrombosis. Moreover, calumenin is a molecular chaperone that endogenously regulates the vitamin K-dependent gamma-carboxylation of several proteins, including blood coagulation factors (such as FII, FVII, FIX, FX, and proteins C, S and Z), cell survival factors (Gas6) and bone metabolism proteins (such as matrix Gla protein or MGP, osteocalcin and periostin), through targeting the gamma-glutamyl carboxylase. It also functions as a charged F508del-cystic fibrosis transmembrane regulator (CFTR) folding modulator, as well as a G551D-CFTR associated protein. Furthermore, the extracellular calumenin acts as a suppressor of cell migration and tumor metastasis. It binds to and stabilizes fibulin-1, and further inactivates extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling. 263 -320027 cd16229 EFh_CREC_RCN1 EF-hand, calcium binding motif, found in reticulocalbin-1 (RCN-1). RCN-1 is an endoplasmic reticulum resident low-affinity Ca2+-binding protein with six EF-hand motifs and a carboxyl-terminal His-Asp-Glu-Leu (HDEL) tetrapeptide signal. It is expressed at the cell surface. RCN-1 acts as a potential negative regulator of B-RAF activation and can negatively modulate cardiomyocyte hypertrophy by inhibition of the mitogen-activated protein kinase signaling cascade. It also plays a key role in the development of doxorubicin-associated resistance. 267 -320028 cd16230 EFh_CREC_RCN3 EF-hand, calcium binding motif, found in reticulocalbin-3 (RCN-3). RCN-3, also termed EF-hand calcium-binding protein RLP49, is a putative six EF-hand Ca2+-binding protein that contains five RXXR (X is any amino acid) motifs and a C-terminal ER retrieval signal His-Asp-Glu-Leu (HDEL) tetrapeptide. The RXXR motif represents the target sequence of subtilisin-like proprotein convertases (SPCs). RCN-3 is specifically bound to the paired basic amino-acid-cleaving enzyme-4 (PACE4) precursor protein and plays an important role in the biosynthesis of PACE4. 268 -320010 cd16231 EFh_SPARC_like EF-hand, extracellular calcium-binding (EC) motif, found in secreted protein acidic and rich in cysteine (SPARC) and similar proteins. This family includes secreted protein acidic and rich in cysteine (SPARC), secreted protein, acidic and rich in cysteine-like 1 (SPARCL1), and similar proteins. SPARC is a prototypic collagen-binding matricellular protein that is involved in extracellular matrix (ECM) assembly and fibrosis through binding both fibrillar collagen and basal lamina collagen IV. It regulates the activity of matrix metalloproteinases (MMPs), as well as the growth factor signaling mediated by cell surface receptors including vascular endothelial growth factor (VEGF) receptor, basic fibroblast growth factor (bFGF), and transforming growth factor (TGF) beta1. It also shows survival activity in tumor progression. SPARC contains an N-terminal acidic 52-residue segment followed by a follistatin-like (FS) domain, and an alpha-helical EC domain with 2 unusual calcium-binding EF-hands and the collagen-binding site. SPARCL1 is the closest family member to SPARC. It shares the three primary domains contained within SPARC with an expanded N-terminal domain. SPARCL1 may function as both a tumor suppressor and as a regulator of angiogenesis. It can bind to collagens and be counter-adhesive to wild-type dermal fibroblasts, but do not influence rates of cell proliferation. Moreover, SPARCL1 can influence central nervous system (CNS) development and synaptic rearrangement. 116 -320011 cd16232 EFh_SPARC_TICN EF-hand, extracellular calcium-binding (EC) motif, found in testicans. Testicans are nervous system-expressed proteoglycans that play important roles in the regulation of protease activity, as well as in the determination of age at menarche. Testican-1 (TICN1, also termed protein SPOCK) is a secreted chimeric proteoglycan that is highly expressed in brain and carries both chondroitin and heparan sulfate glycosaminoglycan side chains. It has been implicated in autoimmune disease. It also acts as a regulator of bone morphogenetic protein (BMP) signaling and show critical functions in the nervous system. Testican-2 (TICN2, also termed protein SPOCK2) is an extracellular heparan sulphate proteoglycan highly expressed in brain. It may play regulatory roles in the development of the central nervous system. It also participates in diverse steps of neurogenesis. TICN1, but not TICN2, inhibits cathepsin L. TICN1 also inhibits attachment and neurite outgrowth in cultures of N2A neuroblastoma cells, While TICN2 is able to inhibit neurite outgrowth from primary cerebellar cells. Testicans contain an N-terminal signal peptide, a testican-specific domain followed by a follistatin-like (FS) domain, an extracellular calcium-binding (EC) domain including a pair of EF hands, a thyroglobulin-like domain (TY), and a C-terminal region with two putative glycosaminoglycan attachment sites. The substitution of a ligating Asp residue by Tyr orTyr in the +Y position of EF hand 2 in testican-2 could prevent Ca2+ binding to this site and also cause EF-hand 1 to bind one Ca2+ with low affinity. The substitution of a ligating Asp residue by Phe or Tyr in the +Y position of EF-hand 2 in testicans could prevent Ca2+ binding to this site and also cause EF-hand 1 to bind one Ca2+ ion with low affinity. 108 -320012 cd16233 EFh_SPARC_FSTL1 EF-hand, extracellular calcium-binding (EC) motif, found in follistatin-related protein 1 (FRP-1). FRP-1, also termed follistatin-like protein 1 (fstl-1), TGF-beta-stimulated clone 36 (TSC-36/Flik), or TGF-beta inducible protein, is a secreted glycoprotein that is overexpressed in certain inflammatory diseases and has been implicated in many autoimmune diseases. FRP-1 functions as an important proinflammatory factor in the pathogenesis of osteoarthritis (OA) by activating the canonical NF-kappaB-mediated inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and enhancing fibroblast like synoviocytes proliferation. It also acts as a critical mediator of collagen-induced arthritis (CIA), juvenile rheumatoid arthritis (JRA), as well as Lyme arthritis observed after Borrelia burgdorferi infection. Meanwhile, it enhances nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated IL-1beta secretion from monocytes and macrophages. Moreover, FRP-1 shows critical functions in the nervous system. It differentially regulates transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signaling, leading to epithelial injury and fibroblast activation. Furthermore, FRP-1 functions as a cardiokine with cardioprotective properties. It may play a potential role in ischemic stroke through decreasing neuronal apoptosis and improving neurological deficits via disco-interacting protein 2 homolog A (DIP2A)/Akt pathway after middle cerebral artery occlusion (MCAO). Plasma FRP-1 is elevated in Kawasaki disease (KD) and thus may play a possible role in the formation of coronary artery aneurysm (CAA). FRP-1 contains a follistatin-like (FS) domain, an extracellular calcium-binding (EC) domain including a pair of EF hands, and a von Willebrand factor type C (VWC) domain. The EC domain does not undergo characteristic structural changes upon calcium addition or depletion and therefore is not a functional calcium binding domain. 114 -320013 cd16234 EFh_SPARC_SMOC EF-hand, extracellular calcium-binding (EC) motif, found in secreted modular calcium-binding protein SMOC-1, SMOC-2, and similar proteins. SMOC proteins corresponds to a group matricellular proteins that are involved in direct or indirect modulation of growth factor signaling pathways and play diverse roles in physiological processes involving extensive tissue remodeling, migration, proliferation, and angiogenesis. They may mediate intercellular signaling and cell type-specific differentiation during gonad and reproductive tract development. SMOC-1 is localized in basement membranes. Its mutations have been found to be associated with individuals with Warrdenburg Anopthalmia Syndrome. SMOC-2 is ubiquitously expressed and is involved in angiogenesis and the regulation of cell cycle progression. It enhances the angiogenic effect of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). It has also been implicated in generalized vitiligo. SMOC proteins consist of a follistatin-like (FS) domain, two thyroglobulin-like (TY) domains, a novel domain conserved only in SMOC proteins, and an extracellular calcium-binding (EC) domain with two EF-hand calcium-binding motifs. 104 -320014 cd16235 EFh_SPARC_SPARC EF-hand, extracellular calcium-binding (EC) motif, found in secreted protein acidic and rich in cysteine (SPARC). SPARC, also termed basement-membrane protein 40 (BM-40), or osteonectin (ON), is a prototypic collagen-binding matricellular protein that is essential for embryo development in invertebrates and highly expressed in bone. It participates in normal tissue remodeling as it regulates the deposition of extracellular matrix, as well as in neoplastic transformation. It is involved in extracellular matrix (ECM) assembly and fibrosis through binding both fibrillar collagen and basal lamina collagen IV. It regulates the activity of matrix metalloproteinases (MMPs), as well as the growth factor signaling mediated by cell surface receptors including vascular endothelial growth factor (VEGF) receptor, basic fibroblast growth factor (bFGF), and transforming growth factor (TGF) beta1. SPARC shows survival activity in tumor progression. It plays a role in metastatic process to the lung during melanoma progression. It can suppress prostate cancer cell growth and survival. Moreover, SPARC is a bone- associated protein that has a major role in bone development and mineralisationis. It is involved in the initiation and progression of vascular calcification and upregulated by adiponectin. Furthermore, SPARC may be one of the molecules that govern the uptake and delivery of proteins from blood to the cerebrospinal fluid (CSF) during brain development. SPARC contains an N-terminal acidic 52-residue segment followed by a follistatin-like (FS) domain, and an alpha-helical EC domain with 2 unusual calcium-binding EF-hands and the collagen-binding site. Platelet-derived growth factor (PDGF) also interacts with its EC domain, but in a calcium-independent manner, whereas collagen binding is calcium-dependent. 96 -320015 cd16236 EFh_SPARC_SPARCL1 EF-hand, extracellular calcium-binding (EC) motif, found in secreted protein, acidic and rich in cysteine-like 1 (SPARCL1). SPARCL1, also termed SPARC-like protein 1, or high endothelial venule protein (Hevin), or MAST 9, or SC-1, or RAGS-1, or QR1, or ECM 2, is a diversely expressed and developmentally regulated extracellular matrix glycoprotein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM) proteins. It plays a pivotal role in the corneal wound healing. SPARCL1 may function as both a tumor suppressor and as a regulator of angiogenesis. It regulates cell migration/invasion and suppresses metastasis in many cancers, including prostate cancer, colorectal cancer, gastric cancer, and breast cancer. It can bind to collagens and be counter-adhesive to wild-type dermal fibroblasts, but do not influence rates of cell proliferation. Moreover, SPARCL1 contributes to neural development and participates in remodeling events associated with neuronal degeneration following neural injury. It can influence central nervous system (CNS) development and synaptic rearrangement. SPARCL1 is the closest family member to secreted protein acidic and rich in cysteine (SPARC), but does not compensate for the absence of SPARC in the CNS. SPARC contains an N-terminal acidic 52-residue segment followed by a follistatin-like (FS) domain, and an alpha-helical EC domain with 2 unusual calcium-binding EF-hands and the collagen-binding site. SPARCL1 shares the three primary domains contained within SPARC with an expanded N-terminal domain. 93 -320016 cd16237 EFh_SPARC_TICN1 EF-hand, extracellular calcium-binding (EC) motif, found in testican-1 (TICN1). TICN1, also termed protein SPOCK, or SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 1 (Spock1), is a secreted chimeric proteoglycan that is highly expressed in brain and carries both chondroitin and heparan sulfate glycosaminoglycan side chains. It promotes resistance against Pseudomonas aeruginosa-induced keratitis through regulation of matrix metalloproteinase (MMP)-2 expression and activation. It also acts as a potential cancer prognostic marker that promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/Akt pathway. Moreover, TICN1 corresponding gene SPOCK1 is a novel transforming growth factor-beta target gene that regulates lung cancer cell epithelial-mesenchymal transition. It is also up-regulated by chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1L), and promotes human hepatocellular carcinoma (HCC) cell invasiveness and metastasis. Furthermore, TICN1 inhibits the lysosomal cysteine protease cathepsin L in intracellular vesicles and in the extracellular milieu. TICN1 contains an N-terminal signal sequence known to direct nascent polypeptides to the extracellular space, an unique region to the testicans, a follistatin (FS)-like domain generally involving five disulfide bridges, an extracellular calcium-binding (EC) domain including a pair of EF hands, and a thyroglobulin type-1 (TY) domain followed by a C-terminal acidic region with high density of negatively charged amino acids. The substitution of a ligating Asp residue by Phe291 in the +Y position of EF-hand 2 in TICN1 could prevent Ca2+ binding to this site and also cause EF-hand 1 to bind one Ca2+ ion with low affinity. 112 -320017 cd16238 EFh_SPARC_TICN2 EF-hand, extracellular calcium-binding (EC) motif, found in testican-2 (TICN2). TICN2, also termed SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (Spock2), is an extracellular heparan sulphate proteoglycan expressed in brain, lung, and testis. It inhibits neurite extension from cultured primary cerebellar neurons and may play regulatory roles in the development of the central nervous system. It also participates in diverse steps of neurogenesis. Moreover, TICN2 may contribute to ECM remodeling by regulating function(s) of other testican family members, which possess membrane-type matrix metalloproteinases (MT-MMPs) inhibitory function. Furthermore, TICN2 corresponding gene SPOCK2 acts as a susceptibility gene for bronchopulmonary dysplasia. TICN2 contains an N-terminal signal peptide, a testican-specific domain followed by a follistatin-like (FS) domain, an extracellular calcium-binding (EC) domain including a pair of EF hands, a thyroglobulin-like domain (TY), and a C-terminal region with two putative glycosaminoglycan attachment sites. The substitution of a ligating Asp residue by Tyr292 in the +Y position of EF-hand 2 in TICN2 could prevent Ca2+ binding to this site and also cause EF-hand 1 to bind one Ca2+ ion with low affinity. 112 -320018 cd16239 EFh_SPARC_TICN3 EF-hand, extracellular calcium-binding (EC) motif, found in testican-3 (TICN3). TICN3, also termed SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 3 (Spock3), is a brain-specific heparan sulfate proteoglycan that shows a widespread distribution within the extracellular matrix of the brain. It plays an important role in the formation or maintenance of major neuronal structures in the brain. It also functions as a novel regulator to reduce the activity of matrix metalloproteinase (MMP) in adult T-cell leukemia (ATL). It suppresses membrane-type 1 MMP-mediated MMP-2 activation and tumor invasion. Moreover, TICN3 corresponding gene SPOCK3 acts as a risk gene for adult attention-deficit/hyperactivity disorder (ADHD) and personality disorders. TICN3 contains an N-terminal signal peptide, a testican-specific domain followed by the follistatin-like (FS) and extracellular calcium-binding (EC) domains characteristic of the BM-40 family. Towards the C-terminus they contain a thyroglobulin-like domain (TY) and a novel sequence (domain V), which includes two potential glycosaminoglycan attachment sites. The substitution of a ligating Asp residue by Tyr295 in the +Y position of EF-hand 2 in testican-3 could prevent Ca2+ binding to this site and also cause EF-hand 1 to bind one Ca2+ ion with low affinity. 113 -320019 cd16240 EFh_SPARC_SMOC1 EF-hand, extracellular calcium-binding (EC) motif, found in secreted modular calcium-binding protein 1 (SMOC-1). SMOC-1, also termed SPARC-related modular calcium-binding protein 1, or smooth muscle-associated protein 1 (SMAP-1), is an Arf6 GTPase-activating protein (GAP) that directly interacts with clathrin and regulates the clathrin-dependent endocytosis of transferrin receptors from the plasma membrane. It is predominantly localized in basement membranes. SMOC-1 acts as a regulator of osteoblast differentiation and is involved in inhibition of transforming growth factor-beta (TGF-beta) signaling through production of nitric oxide. It also plays an essential role in ocular and limb development and functions as a regulator of bone morphogenic protein (BMP) signaling. It interacts with a matricellular protein, tenascin C in addition to the serum proteins, fibulin-1 and C-reactive protein, but not collagens. Two point mutations in the SMOC1 gene may cause Waardenburg Anophtalmia Syndrome. Moreover, SMOC-1 is involved in direct or indirect modulation of growth factor signaling pathways and plays a role in physiological processes involving extensive tissue remodeling. SMOC-1 contains a follistatin-like (FS) domain, two thyroglobulin-like (TY) domains, a novel domain, which is found only in the homologous SMOC-2, and an extracellular calcium-binding (EC) domain with two EF-hand calcium-binding motifs. 115 -320020 cd16241 EFh_SPARC_SMOC2 EF-hand, extracellular calcium-binding (EC) motif, found in secreted modular calcium-binding protein 2 (SMOC-2). SMOC-2, also termed SPARC-related modular calcium-binding protein 2, or smooth muscle-associated protein 2 (SMAP-2), is a ubiquitously expressed matricellular protein that enhances the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. It is also associated with vitiligo and craniofacial and dental defects. Moreover, SMOC-2 acts as an Arf1 GTPase-activating protein (GAP) that interacts with clathrin heavy chain (CHC) and clathrin assembly protein CALM and functions in the retrograde, early endosome/trans-Golgi network (TGN) pathway in a clathrin- and AP-1-dependent manner. It also contributes to mitogenesis via activation of integrin-linked kinase (ILK). SMOC-2 contains a follistatin-like (FS) domain, two thyroglobulin-like (TY) domains, a novel domain, which is found only in the homologous SMOC-1, and an extracellular calcium-binding (EC) domain with two EF-hand calcium-binding motifs. 114 -320000 cd16242 EFh_DMD_like EF-hand-like motif found in the dystrophins subfamily. This dystrophins subfamily includes dystrophin and its two paralogs, utrophin and DRP-2. Dystrophin is a large, submembrane cytoskeletal protein that is the main component of the dystrophin-glycoprotein complex (DGC) in skeletal muscle. It links the transmembrane DGC to the actin cytoskeleton through binding strongly to the cytoplasmic tail of beta-dystroglycan, the transmembrane subunit of a highly O-glycosylated cell-surface protein. Dystrophin also involves in maintaining the structural integrity of cells, as well as in the formation of the blood-brain barrier (BBB). Utrophin, also termed dystrophin-related protein 1 (DRP-1), is an autosomal dystrophin homologue that increases dystrophic muscle function and reduces pathology. It is broadly expressed at both the mRNA and protein levels, and occurs in the cerebrovascular endothelium. Utrophin forms the utrophin-glycoprotein complex (UGC) by interacting with the dystroglycans (DGs) and the sarcoglycan-dystroglycans, sarcoglycans and sarcospan (SG-SSPN) subcomplex. It may act as a scaffolding protein that stabilizes lipid microdomains and clusters mechanosensitive channel subunits, and link the F-actin cytoskeleton to the cell membrane via the associated glycoprotein complex. DRP-2 is mainly expressed in the vertebrate central nervous system (CNS). It is associated with brain membrane fractions and highly enriched in the postsynaptic density. DRP-2 plays a role in the organization of central cholinergic synapses. It interacts with dystroglycan and L-Periaxin to form a transmembrane complex, which plays a role in Schwann cell-basal lamina interactions and in the regulation of the terminal stages of myelination. The dystrophins subfamily has been characterized by a compact cluster of domains comprising a WW domain, four EF-hand-like motifs and a ZZ-domain, followed by two syntrophin binding sites (SBSs) and a looser region with two coiled-coils. 163 -320001 cd16243 EFh_DYTN EF-hand-like motif found in dystrotelin and similar proteins. Dystrotelin is the vertebrate orthologue of Drosophila DAH, which is involved in the synchronised cellularization of thousands of nuclei in the syncytial early fly embryo (a specialised form of cytokinesis). Dystrotelin is mainly expressed in the developing central nervous system (CNS) and adult nervous and muscular tissues. Heterologously expressed dystrotelin protein localizes spontaneously to the cytoplasmic membrane, and possibly to the endoplasmic reticulum (ER). Dystrotelin is not critical for mammalian development. It may be involved in other forms of cytokinesis. Its N-terminal region contains a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. The C-terminal region is extremely divergent. Unlike other superfamily members, dystrophin or dystrobrevin, the residues directly involved in beta-dystroglycan binding are not conserved in dystrotelin, which makes it unlikely that dystrotelin interacts with this ligand. Moreover, dystrotelin is unable to heterodimerize with members of the dystrophin or dystrobrevin families, or to homodimerize. 163 -320002 cd16244 EFh_DTN EF-hand-like motif found in dystrobrevins and similar proteins. Dystrobrevins are part of the dystrophin-glycoprotein complex (DGC). They physically associate with members of the dystrophin family and with the syntrophins through their homologous C-terminal coiled coil motifs. The family includes two paralogs dystrobrevins, alpha- and beta-dystrobrevin, both of which are cytoplasmic components of the dystrophin-associated protein complex that function as scaffold proteins in signal transduction and intracellular transport. Absence of alpha- and beta-dystrobrevin causes cerebellar synaptic defects and abnormal motor behavior. The dystrobrevins subfamily has been characterized by a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, dystrobrevins contain one or two syntrophin binding sites (SBSs). 161 -320003 cd16245 EFh_DAH EF-hand-like motif found in Drosophila melanogaster discontinuous actin hexagon (DAH) and similar proteins. DAH, the product of the dah (discontinuous actin hexagon) gene, is a Drosophila homolog to vertebrate dystrotelin. It is tightly membrane-associated and highly phosphorylated in a time-dependent fashion. DAH plays an essential role in the process of cellularization, and is associated with vesicles that convene at the cleavage furrow. The absence of DAH leads the severe disruption of the cleavage furrows around the nuclei and development stalls. DAH contains a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. 164 -320004 cd16246 EFh_DMD EF-hand-like motif found in dystrophin. Dystrophin is a large, submembrane cytoskeletal protein that is the main component of the dystrophin-glycoprotein complex (DGC) in skeletal muscle. It links the transmembrane DGC to the actin cytoskeleton through binding strongly to the cytoplasmic tail of beta-dystroglycan, the transmembrane subunit of a highly O-glycosylated cell-surface protein. It involves in maintaining the structural integrity of cells, as well as in the formation of the blood-brain barrier (BBB). The dystrophin subfamily has been characterized by a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, dystrophin contains two syntrophin binding sites (SBSs) and a long N-terminal extension that comprises two actin-binding calponin homology (CH) domains, approximately 24 spectrin repeats (SRs) and a WW domain. Mutations in dystrophin lead to Duchenne muscular dystrophy (DMD). Moreover, dystrophin deficiency is associated abnormal cerebral diffusion and perfusion, acute Trypanosoma cruzi infection. 162 -320005 cd16247 EFh_UTRO EF-hand-like motif found in utrophin. Utrophin, also termed dystrophin-related protein 1 (DRP-1), is an autosomal dystrophin homologue that increases dystrophic muscle function and reduces pathology. It is broadly expressed at both the mRNA and protein levels, and occurs in the cerebrovascular endothelium. Utrophin forms the utrophin-glycoprotein complex (UGC) by interacting with the dystroglycans (DGs) and the sarcoglycan-dystroglycans, sarcoglycans and sarcospan (SG-SSPN) subcomplex. It may act as a scaffolding protein that stabilizes lipid microdomains and clusters mechanosensitive channel subunits, and link the F-actin cytoskeleton to the cell membrane via the associated glycoprotein complex. Like dystrophin, Utrophin has a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, it contains two syntrophin binding sites (SBSs) and a long N-terminal extension that comprises two actin-binding calponin homology (CH) domains, up to 24 spectrin repeats (SRs) and a WW domain. However, utrophin lacks the intrinsic microtubule binding activity of dystrophin SRs. 162 -320006 cd16248 EFh_DRP-2 EF-hand-like motif found in dystrophin-related protein 2 (DRP-2). DRP-2 is a dystrophin homologue mainly expressed in the vertebrate central nervous system (CNS). It is associated with brain membrane fractions and highly enriched in the postsynaptic density. DRP-2 plays a role in the organization of central cholinergic synapses. It interacts with dystroglycan and L-Periaxin to form a transmembrane complex, which plays a role in Schwann cell-basal lamina interactions and in the regulation of the terminal stages of myelination. Like dystrophin, DRP-2 has a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, it contains two syntrophin binding sites (SBSs) and a long N-terminal extension that comprises only two spectrin repeats (SRs) and a WW domain. 162 -320007 cd16249 EFh_DTNA EF-hand-like motif found in alpha-dystrobrevin. Alpha-dystrobrevin, also termed dystrobrevin alpha (DTN-A), or dystrophin-related protein 3 (DRP-3), is the mammalian ortholog of the Torpedo 87 kDa postsynaptic protein that tightly associates with dystrophin. It is a cytoplasmic protein expressed predominantly in skeletal muscle, heart, lung, and brain. Alpha-dystrobrevin has been implicated in the regulation of acetylcholine receptor (AChR) aggregate density and patterning. It is also essential in the pathogenesis of dystrophin-dependent muscular dystrophies. It plays a critical role in the full functionality of dystrophin through increasing dystrophin's binding to the dystrophin-glycoprotein complex (DGC), and provides protection during cardiac stress. Alpha-dystrobrevin binds to the intermediate filament proteins syncoilin and beta-synemin, thereby linking the dystrophin-associated protein complex (DAPC) to the intermediate filament network. Moreover, alpha-dystrobrevin involves in cell signaling via interaction with other proteins such as syntrophin, a modular adaptor protein that coordinates the assembly of the signaling proteins nitric oxide synthase, stress-activated protein kinase-3, and Grb2 to the DAPC. Furthermore, alpha-dystrobrevin plays an important role in muscle function, as well as in nuclear morphology maintenance through specific interaction with the nuclear lamina component lamin B1. In addition, alpha-dystrobrevin is required in dystrophin-associated protein scaffolding in brain. Absence of glial alpha-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. Alpha-dystrobrevin has a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, alpha-dystrobrevin contain two syntrophin binding sites (SBSs). 161 -320008 cd16250 EFh_DTNB EF-hand-like motif found in beta-dystrobrevin. Beta-dystrobrevin, also termed dystrobrevin beta (DTN-B), is a dystrophin-related protein that is restricted to non-muscle tissues and is abundantly expressed in brain, lung, kidney, and liver. It may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation, through the interactions with the high mobility group HMG20 proteins iBRAF/HMG20a and BRAF35 /HMG20b. It also binds to and represses the promoter of synapsin I, a neuronal differentiation gene. Moreover, beta-dystrobrevin functions as a kinesin-binding receptor involved in brain development via the association with the extracellular matrix components pancortins. Furthermore, beta-dystrobrevin binds directly to dystrophin and is a cytoplasmic component of the dystrophin-associated glycoprotein complex, a multimeric protein complex that links the extracellular matrix to the cortical actin cytoskeleton and acts as a scaffold for signaling proteins such as protein kinase A. Absence of alpha- and beta-dystrobrevin causes cerebellar synaptic defects and abnormal motor behavior. Beta-dystrobrevin has a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, beta-dystrobrevin contain two syntrophin binding sites (SBSs). 161 -319994 cd16251 EFh_parvalbumin_like EF-hand, calcium binding motif, found in parvalbumin-like EF-hand family. The family includes alpha- and beta-parvalbumins, and a group of uncharacterized calglandulin-like proteins. Parvalbumins are small, acidic, cytosolic EF-hand-containing Ca2+-buffer and Ca2+ transporter/shuttle proteins belonging to EF-hand superfamily. They are expressed by vertebrates in fast-twitch muscle cells, specific neurons of the central and peripheral nervous system, sensory cells of the mammalian auditory organ (Corti's cell), and some other cells, and characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix) called AB, CD, and EF, but only CD and EF can chelate metal ions, such as Ca2+ and Mg2+. Thus, they may play an additional role in Mg2+ handling. Moreover, parvalbumins represent one of the major animal allergens. In metal-bound states, parvalbumins possess a rigid and stable tertiary structure and display strong allergenicity. In contrast, the metal-free parvalbumins are intrinsically disordered, and the loss of metal ions results in a conformational change that decreases their IgE binding capacity. Furthermore, parvalbumins have been widely used as a neuronal marker for a variety of functional brain systems. They also function as a Ca2+ shuttle transporting Ca2+ from troponin-C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus they may facilitate myocardial relaxation and play important roles in cardiac diastolic dysfunction. Parvalbumins consists of alpha- and beta- sublineages, which can be distinguished on the basis of isoelectric point (pI > 5 for alpha; pI 101 -319995 cd16252 EFh_calglandulin_like EF-hand, calcium binding motif, found in uncharacterized calglandulin-like proteins. The family corresponds to a group of uncharacterized calglandulin-like proteins. Although their biological function remain unclear, they show high sequence similarity with human calglandulin-like protein GAGLP, which is an ortholog of calglandulin from the venom glands of Bothrops insularis snake. Both GAGLP and calglandulin are putative Ca2+-binding proteins with four EF-hand motifs. However, members in this family contain only three EF-hand motifs. In this point, they may belong to the parvalbumin-like EF-hand family, which is characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix). 106 -319996 cd16253 EFh_parvalbumins EF-hand, calcium binding motif, found in parvalbumins. Parvalbumins are small, acidic, cytosolic EF-hand-containing Ca2+-buffer and Ca2+ transporter/shuttle proteins belonging to EF-hand superfamily. They are expressed by vertebrates in fast-twitch muscle cells, specific neurons of the central and peripheral nervous system, sensory cells of the mammalian auditory organ (Corti's cell), and some other cells, and characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix) called AB, CD, and EF, but only CD and EF can chelate metal ions, such as Ca2+ and Mg2+. Thus, they may play an additional role in Mg2+ handling. Moreover, parvalbumins represent one of the major animal allergens. In metal-bound states, parvalbumins possess a rigid and stable tertiary structure and display strong allergenicity. In contrast, the metal-free parvalbumins are intrinsically disordered, and the loss of metal ions results in a conformational change that decreases their IgE binding capacity. Furthermore, parvalbumins have been widely used as a neuronal marker for a variety of functional brain systems. They also function as a Ca2+ shuttle transporting Ca2+ from troponin-C (TnC) to the sarcoplasmic reticulum (SR) Ca2+ pump during muscle relaxation. Thus they may facilitate myocardial relaxation and play important roles in cardiac diastolic dysfunction. Parvalbumins consists of alpha- and beta- sublineages, which can be distinguished on the basis of isoelectric point (pI > 5 for alpha; pI 101 -319997 cd16254 EFh_parvalbumin_alpha EF-hand, calcium binding motif, found in alpha-parvalbumin. Alpha-parvalbumin is cytosolic Ca2+/Mg2+-binding protein expressed mainly in fast-twitch skeletal myofibrils, where it may act as a soluble relaxing factor facilitating the Ca2+-mediated relaxation phase. It is also expressed in rapidly firing neurons, particularly GABA-ergic neurons, and thus may confer protection against Ca2+ toxicity. The major role of alpha-parvalbumin is metal buffering and transport of Ca2+. It binds different metal cations, and exhibits very high affinity for Ca2+ and physiologically significant affinity for Mg2+. Alpha-parvalbumin is characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix) called AB, CD, and EF, but only CD and EF can chelate metal ions, such as Ca2+ and Mg2+. Both metal ion-binding sites in alpha-parvalbumin are high-affinity sites. Additionally, in contrast to beta-parvalbumin, alpha-parvalbumin is less acidic and has an additional residue in the C-terminal helix. 101 -319998 cd16255 EFh_parvalbumin_beta EF-hand, calcium binding motif, found in beta-parvalbumin. Beta-parvalbumin, also termed Oncomodulin-1 (OM), is a small calcium-binding protein that is expressed in hepatomas, as well as in the blastocyst and the cytotrophoblasts of the placenta. It is also found to be expressed in the cochlear outer hair cells of the organ of Corti and frequently expressed in neoplasms. Mammalian beta-parvalbumin is secreted by activated macrophages and neutrophils. It may function as a tissue-specific Ca2+-dependent regulatory protein, and may also serve as a specialized cytosolic Ca2+ buffer. Beta-parvalbumin acts as a potent growth-promoting signal between the innate immune system and neurons in vivo. It has high and specific affinity for its receptor on retinal ganglion cells (RGC) and functions as the principal mediator of optic nerve regeneration. It exerts its effects in a cyclic adenosine monophosphate (cAMP)-dependent manner and can further elevate intracellular cAMP levels. Moreover, beta-parvalbumin is associated with efferent function and outer hair cell electromotility, and can identify different hair cell types in the mammalian inner ear. Beta-parvalbumin is characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix) called AB, CD, and EF, but only CD and EF can chelate metal ions, such as Ca2+ and Mg2+. The EF site displays a high-affinity for Ca2+/Mg2+, and the CD site is a low-affinity Ca2+-specific site. In addition, beta-parvalbumin is distinguished from other parvalbumins by its unusually low isoelectric point (pI = 3.1) and sequence eccentricities (e.g., Y57-L58-D59 instead of F57-I58-E59). 101 -293929 cd16256 LumP lumazine protein. Lumazine protein (LumP) is involved in the bioluminescence of certain marine bacteria. It serves as an optical transponder in bioluminescence emission. The intense fluorescence of LumP is caused by non-covalently bound 6,7- dimethyl-8-ribityllumazine. Though its amino acid sequence is very similar to riboflavin synthase it functions as a monomer, unlike the riboflavin synthases from eubacteria, yeasts and plants which act as trimers. 186 -293914 cd16257 EFG_III-like Domain III of Elongation factor G (EF-G) and related proteins. Bacterial Elongation factor G (EF-G) and related proteins play a role in translation and share a similar domain architecture. Elongation factor EFG participates in the elongation phase during protein biosynthesis on the ribosome by stimulating translocation. Its functional cycles depend on GTP binding and its hydrolysis. Domain III is involved in the activation of GTP hydrolysis. This domain III, which is different from domain III in EF-TU and related elongation factors, is found in several translation factors, like bacterial release factors RF3, elongation factor 4, elongation factor 2, GTP-binding protein BipA and tetracycline resistance protein Tet. 71 -293915 cd16258 Tet_III Domain III of Tetracycline resistance protein Tet. Tetracycline resistance proteins, including TetM and TetO, catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner thereby mediating Tc resistance. Tcs are broad-spectrum antibiotics. Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the occupation of site A by aminoacyl-tRNA. 71 -293916 cd16259 RF3_III Domain III of bacterial Release Factor 3 (RF3). The class II RF3 is a member of one of two release factor (RF) classes required for the termination of protein synthesis by the ribosome. RF3 is a GTPase that removes class I RFs (RF1 or RF2) from the ribosome after release of the nascent polypeptide. RF3 in the GDP state binds to the ribosomal class I RF complex, followed by an exchange of GDP for GTP and release of the class I RF. Sequence comparison of class II release factors with elongation factors shows that prokaryotic RF3 is more similar to EF-G whereas eukaryotic eRF3 is more similar to eEF1A, implying that their precise function may differ. 70 -293917 cd16260 EF4_III Domain III of Elongation Factor 4 (EF4). Elongation factor 4 (EF4 or LepA) is a highly conserved guanosine triphosphatase found in bacteria and eukaryotic mitochondria and chloroplasts. EF4 functions as a translation factor, which promotes back-translocation of tRNAs on posttranslocational ribosome complexes and competes with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. 76 -293918 cd16261 EF2_snRNP_III Domain III of Elongation Factor 2 (EF2). This model represents domain III of Elongation factor 2 (EF2) found in eukaryotes and archaea, and the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and its yeast counterpart Snu114p. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. This translocation step is catalyzed by EF-2_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP. Experiments suggest that GTP binding and probably GTP hydrolysis are important for the function of the U5-116 kD/Snu114p. 72 -293919 cd16262 EFG_III Domain III of Elongation Factor G (EFG). This model represents domain III of bacterial Elongation factor G (EF-G), and mitochondrial Elongation factor G1 (mtEFG1) and G2 (mtEFG2), which play an important role during peptide synthesis and tRNA site changes. In bacteria, this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. mtEFG1 and mtEFG2 show significant homology to bacterial EF-Gs. Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects, and a tendency to lose mitochondrial DNA. No clear phenotype has been found for mutants of the yeast homolog of mtEFG2, MEF2. 76 -293920 cd16263 BipA_III Domain III of GTP-binding protein BipA (TypA). BipA (also called TypA) is a highly conserved protein with global regulatory properties in Escherichia coli. BipA is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways. BipA functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of EF-G and has a GTPase activity that is sensitive to high GDP:GTP ratios. It is stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. 79 -293921 cd16264 snRNP_III Domain III of the spliceosomal 116kD U5 small nuclear ribonucleoprotein (snRNP) component. Domain III of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and its yeast counterpart Snu114p is homologous to domain III of the eukaryotic translational elongation factor EF-2. U5-116 kD is a GTPase component of the spliceosome complex which functions in the processing of precursor mRNAs to produce mature mRNAs. 72 -293910 cd16265 Translation_Factor_II Proteins related to domain II of EF-Tu and related translation factors. Elongation factor Tu consists of three structural domains; this family represents single domain proteins that are related to the second domain of EF-Tu. Domain II of EF-Tu adopts a beta barrel structure and is involved in binding to charged tRNA. Domain II is also found in other proteins such as elongation factor G and translation initiation factor IF-2. 80 -293911 cd16266 IF2_aeIF5B_IV Domain IV of prokaryotic Initiation Factor 2 and archaeal and eukaryotic Initiation Factor 5. This family represents the domain IV of prokaryotic Initiation Factor 2 (IF2) and its archaeal and eukaryotic homologs IF5B. IF2, the largest initiation factor is an essential GTP binding protein. In E. coli three natural forms of IF2 exist in the cell, IF2alpha, IF2beta1, and IF2beta2. Disruption of the eIF5B gene (FUN12) in yeast causes a severe slow-growth phenotype, associated with a defect in translation. eIF5B has a function analogous to prokaryotic IF2 in mediating the joining of the 60S ribosomal subunit. The eIF5B consists of three N-terminal domains (I, II, II) connected by a long helix to domain IV. Domain I is a G domain, domain II and IV are beta-barrels and domain III has a novel alpha-beta-alpha sandwich fold. The G domain and the beta-barrel domain II display a similar structure and arrangement to the homologous domains in EF1A, eEF1A and aeIF2gamma. 87 -293912 cd16267 HBS1-like_II Domain II of Hbs1-like proteins. S. cerevisiae Hbs1 is closely related to the eukaryotic class II release factor (eRF3). Hbs1, together with Dom34 (pelota), plays an important role in termination and recycling, but in contrast to eRF3/eRF1, Hbs1, together with Dom34 (pelota), functions on mRNA-bound ribosomes in a codon-independent manner and promotes subunit splitting on completely empty ribosomes. 84 -293913 cd16268 EF2_II Domain II of Elongation Factor 2. This subfamily represents domain II of elongation factor 2 (EF-2) found in eukaryotes and archaea. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. This translocation step is catalyzed by EF-2_GTP, which is hydrolyzed to provide the required energy. Thus, this action releases the uncharged tRNA from the P site and transfers the newly formed peptidyl-tRNA from the A site to the P site. 96 -293879 cd16269 GBP_C Guanylate-binding protein, C-terminal domain. Guanylate-binding protein (GBP), C-terminal domain. Guanylate-binding proteins (GBPs) are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence, and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. This C-terminal domain has been shown to mediate inhibition of endothelial cell proliferation by inflammatory cytokines. 291 -293878 cd16270 Apc5_N N-terminal domain of the anaphase-promoting complex subunit Apc5 (or Anapc5). The N-terminal domain of Apc5 interacts with subunits Apc4, Apc15, and CDC23. Apc5 is a subunit of the eukaryotic anaphase-promoting complex/cyclosome (APC/C) which is a multi-subunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. Although Apc5 does not contain a classical RNA binding domain, it binds the poly(A) binding protein (PABP), which directly binds the internal ribosome entry site (IRES) of growth factor 2 mRNA. PABP was found to enhance IRES-mediated translation, whereas Apc5 over-expression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and co-sediments with the ribosomal fraction. The N-terminus of Afi1 serves to stabilize the union between Apc4 and Apc5, both of which lie towards the bottom-front of the APC. 143 -293830 cd16272 RNaseZ_MBL-fold Ribonuclease Z; MBL-fold metallo-hydrolase domain. The tRNA maturase RNase Z (also known as tRNase Z or 3' tRNase) catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Two forms of RNase Z exist in eukaryotes, one long (ELAC2) and one short form (ELAC1), the former may have resulted from a duplication of the shorter enzyme. Only the short form exists in bacteria. It includes the C-terminus of human ELAC2 and Escherichia coli zinc phosphodiesterase (ZiPD, also known as ecoZ, tRNase Z, or RNase BN) is a 3' tRNA-processing endonuclease, encoded by the elaC gene. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 180 -293831 cd16273 SNM1A-1C-like_MBL-fold SNM1A , artemis/SNM1C, yeast Pso2p, and related proteins; MBL-fold metallo-hydrolase domain. Includes human SNM1A (SNM1 homolog A, also known as DNA cross-link repair 1A protein) and Saccharomyces cerevisiae Pso2 protein (PSOralen derivative sensitive 2, also known as SNM1, sensitive to nitrogen mustard 1), both proteins are 5'-exonucleases and function in interstrand cross-links (ICL) repair. Also includes the nuclease artemis (also known as SNM1C, SNM1 homolog C, SNM1-like protein, and DNA cross-link repair 1C protein) which plays a role in V(D)J recombination/DNA repair. Purified artemis protein possesses single-strand-specific 5' to 3' exonuclease activity. Upon complex formation with, and phosphorylation by, DNA-dependent protein kinase, artemis gains endonucleolytic activity on hairpins and 5' and 3' overhangs. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 160 -293832 cd16274 PQQB-like_MBL-fold Coenzyme pyrroloquinoline quinone (PQQ) synthesis protein B and related proteins; MBL-fold metallo hydrolase domainhydrolase domain. PQQB is essential for the synthesis of the cofactor pyrroloquinoline quinone (PQQ) in Klebsiella pneumonia. PqqB is not directly involved in the PQQ biosynthesis but may serve as a carrier for PQQ when PQQ is released from PqqC. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 220 -293833 cd16275 BaeB-like_MBL-fold Bacillus amyloliquefaciens BaeB and related proteins; MBL-fold metallo hydrolase domain. Bacillus amyloliquefaciens BaeB may play a role in the synthesis of the antibiotic polyketide bacillaene. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 174 -293834 cd16276 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 188 -293835 cd16277 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 222 -293836 cd16278 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 185 -293837 cd16279 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. Some members of this subgroup are named as octanoyltransferase (also known as lipoate-protein ligase B). 193 -293838 cd16280 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 251 -293839 cd16281 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 252 -293840 cd16282 metallo-hydrolase-like_MBL-fold uncharacterized subgroup of the MBL-fold_metallo-hydrolase superfamily; MBL-fold metallo hydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily.Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 209 -293841 cd16283 RomA-like_MBL-fold Enterobacter cloacae RomA and related proteins; MBL-fold metallo hydrolase domain. Derepression of the romA-ramA locus results in a multidrug-resistance phenotype. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) from which this fold was named are only a small fraction of the activities which are included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases, hydroxyacylglutathione hydrolases, AHL (acyl homoserine lactone) lactonases, persulfide dioxygenases, flavodiiron proteins, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J and ribonuclease Z, cyclic nucleotide phosphodiesterases, insecticide hydrolases, and proteins required for natural transformation competence. Classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, however the diversity of biological roles is reflected in variations in the active site metallo-chemistry. 181 -293842 cd16284 UlaG-like_MBL-fold UlaG a putative l-ascorbate-6-P lactonase and related proteins; MBL-fold metallo hydrolase domain. UlaG is essential for L-ascorbate utilization under anaerobic conditions; it is a putative l-ascorbate-6-P lactonase thought to catalyze the hydrolysis of L-ascorbate-6-phosphate to 3-keto-L-gulonate-6-phosphate. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 178 -293843 cd16285 MBL-B1 metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. Subclass B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. Includes chromosomally-encoded MBLs such as Bacillus cereus BcII, Bacteroides fragilis CcrA, and Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) BlaB and acquired MBLs including IMP-1, VIM-1, VIM-2, GIM-1, NDM-1 and FIM-1. 210 -293844 cd16286 SPM-1-like_MBL-B1-B2-like Pseudomonas areoginosa SPM-1 and related metallo-beta-lactamases, subclasses B1 and B2 like; MBL-fold metallo-hydrolase domain. SPM-1 was first identified in a Pseudomonas aeruginosa strain from a paediatric leukaemia patient and is a major clinical problem. MBLs (class B of the Ambler beta-lactamase classification) have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs are most closely related to each other. SPM-1 appears to be a hybrid B1/B2 MBL. 236 -293845 cd16287 CphS_ImiS-like_MBL-B2 metallo-beta-lactamases, subclass B2; MBL-fold metallo-hydrolase domain. Includes Aeromonas hydrophyla CphA, Aeromonas veronii ImiS, and Serratia fonticola Sfh-I. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. B2 MBLs have a narrow substrate profile relative to subclass B1 MBLs that includes carbapenems, and they are active with one zinc ion bound in the Asp-Cys-His site, binding of a second zinc ion in the modified 3H site (Asn-His-His) inhibits catalysis. 226 -293846 cd16288 BJP-1_FEZ-1-like_MBL-B3 BJP-1, FEZ-1, GOB-1, Mbl1b and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. This subgroup of B3 subclass MBLs includes Bradyrhizobium diazoefficiens BJP-1, Fluoribacter gormanii FEZ-1, Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) GOB-1, Caulobacter crescentus Mbl1b. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 254 -293847 cd16289 L1_POM-1-like_MBL-B3 Stenotrophomonas maltophilia L1, Pseudomonas otitidis POM-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of L1- and Pom-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 239 -293848 cd16290 AIM-1_SMB-1-like_MBL-B3 AIM-1, SMB-1, EVM-1, THIN-B and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. This subgroup of B3 subclass MBLs includes Pseudomonas Aeruginosa AIM-1, Serratia marcescens SMB-1, Erythrobacter vulgaris EVM-1, and Janthinobacterium lividum THIN-B. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of AIM-1-,SMB-1-, EVM-1-, THIN-B-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 256 -293849 cd16291 INTS11-like_MBL-fold Integrator complex subunit 11, and related proteins; MBL-fold metallo-hydrolase domain. Integrator is a metazoan-specific multisubunit, multifunctional protein complex composed of 14 subunits named Int1-Int14 (Integrator subunits). This subgroup includes Int11 (also known as cleavage and polyadenylation-specific factor (CPSF) 3-like protein, and protein related to CPSF subunits of 68 kDa (RC-68)). Integrator complex has been implicated in a variety of Pol II transcription events including 3' end processing of snRNA, transcription initiation, promoter-proximal pausing, termination of protein-coding transcripts, and in HVS pre-miRNA 3' end processing. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 199 -293850 cd16292 CPSF3-like_MBL-fold cleavage and polyadenylation specificity factor (CPSF) subunit 3 and related proteins; MBL-fold metallo-hydrolase domain. CPSF3 (also known as cleavage and polyadenylation specificity factor 73 kDa subunit/CPSF-73) functions as a 3' endonuclease in 3' end processing of pre-mRNAs during cleavage/polyadenylation, and in 3' end processing of metazoan histone pre-mRNAs. This subgroup also contains the yeast homolog of CPSF-73, Ysh1/Brr5 which has roles in mRNA and snoRNA synthesis. In addition to this MBL-fold metallo-hydrolase domain, members of this subgroup contain a beta-CASP (named for metallo-beta-lactamase, CPSF, Artemis, Snm1, Pso2) domain, and a RMMBL domain (RNA-metabolizing metallo-beta-lactamase). Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 194 -293851 cd16293 CPSF2-like_MBL-fold cleavage and polyadenylation specificity factor (CPSF) subunit 2 and related proteins; MBL-fold metallo-hydrolase domain. CPSF2, also known as cleavage and polyadenylation specificity factor 100 kDa subunit (CPSF-100), is a component of the CPSF complex, which plays a role in 3' end processing of pre-mRNAs during cleavage/polyadenylation, and during processing of metazoan histone pre-mRNAs. This subgroup includes Ydh1p, the yeast homolog of CPSF2. In addition to this MBL-fold metallo-hydrolase domain, members of this subgroup contain a beta-CASP (named for metallo-beta-lactamase, CPSF, Artemis, Snm1, Pso2) domain. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 199 -293852 cd16294 Int9-like_MBL-fold integrator subunit 9, and related proteins; MBL-fold metallo-hydrolase domain. Integrator is a metazoan-specific multisubunit, multifunctional protein complex composed of 14 subunits named Int1-Int14 (Integrator subunits). This subgroup includes Int9, also known as protein related to CPSF subunits of 74 kDa (RC-74). Integrator complex has been implicated in a variety of Pol II transcription events including 3' end processing of snRNA, transcription initiation, promoter-proximal pausing, termination of protein-coding transcripts, and in HVS pre-miRNA 3' end processing. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 166 -293853 cd16295 TTHA0252-CPSF-like_MBL-fold Thermus thermophilus TTHA0252 and related cleavage and polyadenylation specificity factors; MBL-fold metallo-hydrolase domain. Includes the archaeal cleavage and polyadenylation specificity factors (CPSFs) such as Methanothermobacter thermautotrophicus MTH1203, and Pyrococcus horikoshii PH1404. In addition to the MBL-fold metallo-hydrolase nuclease and the beta-CASP domains, members of this subgroup contain two contiguous KH domains. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 197 -293854 cd16296 RNaseZ_ELAC2-N-term-like_MBL-fold Ribonuclease Z, N-terminus of human ELAC2 and related proteins; MBL-fold metallo-hydrolase domain. The tRNA maturase RNase Z (also known as tRNase Z or 3' tRNase) catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors. Two forms of RNase Z exist in eukaryotes, one long (ELAC2) and one short form (ELAC1), the former may have resulted from a duplication of the shorter enzyme. This eukaryotic subgroup includes the N-terminus of human ELAC2 and related proteins. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 175 -293855 cd16297 artemis-SNM1C-like_MBL-fold artemis-SNM1C and related proteins; MBL-fold metallo-hydrolase domain. Includes the nuclease artemis (also known as SNM1C, SNM1 homolog C, SNM1-like protein and DNA cross-link repair 1C protein) which plays a role in V(D)J recombination/DNA repair. Purified artemis protein possesses single-strand-specific 5' to 3' exonuclease activity. Upon complex formation with, and phosphorylation by, DNA-dependent protein kinase, artemis gains endonucleolytic activity on hairpins and 5' and 3' overhangs. Inactivation of Artemis causes severe combined immunodeficiency (SCID). Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 171 -293856 cd16298 SNM1A-like_MBL-fold 5'-exonucleases human SNM1A and related proteins; MBL-fold metallo-hydrolase domain. Includes human SNM1A (SNM1 homolog A, also known as DNA cross-link repair 1A protein) which is a 5'-exonuclease and functions in interstrand cross-links (ICL) repair. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. 157 -293857 cd16299 IND_BlaB-like_MBL-B1 IND1, IND2, BlaB-1 and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the chromosome-encoded metallo-beta-lactamases Chryseobacterium indologenes IND-1, IND-2, and IND-7, Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) BlaB, Chryseobacterium gleum CGB-1, and Empedobacter brevis EBR-1. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 212 -293858 cd16300 NDM_FIM-like_MBL-B1 NDM-1, FIM-1 and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the ISCR-mediated MBLs NDM-1 (NDM (New Delhi metallo-beta-lactamase) and FIM-1 (Florence imipenemase). MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 214 -293859 cd16301 IMP_DIM-like_MBL-B1 IMP-1, DIM-1, GIM-1, SIM-1, TMB-1 and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the acquired MBLs IMP-1(a beta-lactamase that is active on imipenem), DIM-1 (Dutch imipenemase), GIM-1 (German imipenemase), KHM-1 (Kyorin Health Science MBL 1), SIM-1 (Seoul imipenemase), and TMB-1 (Tripoli metallo-beta-lactamase). IMP-1, DIM-1, GIM-1, SIM-1, and TMB-1 are Class 1 integron-mediated MBLs, KMH-1 is plasmid-mediated. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of acquired MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 215 -293860 cd16302 CcrA-like_MBL-B1 Bacteroides fragilis CcrA and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 212 -293861 cd16303 VIM_type_MBL-B1 VIM-type metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. VIM (Verona integron-encoded metallo-beta-lactamase)-type MBLs are integron-associated and are widely distributed acquired MBLs. MBLs (class B of the Ambler beta-lactamase classification) have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of VIM-type MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 218 -293862 cd16304 BcII-like_MBL-B1 Bacillus cereus Beta-lactamase 2 and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Bacillus cereus Beta-lactamase 2, also called BcII. MBLs (class B of the Ambler beta-lactamase classification) have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. BcII is a chromosome-encoded B1 MBL. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 212 -293863 cd16305 Sfh-1-like_MBL-B2 Serratia fonticola Sfh-I and related metallo-beta-lactamases, subclass B2; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. B2 MBLs have a narrow substrate profile relative to subclass B1 MBLs that includes carbapenems, and they are active with one zinc ion bound in the Asp-Cys-His site, binding of a second zinc ion in the modified 3H site (Asn-His-His) inhibits catalysis. 226 -293864 cd16306 CphA_ImiS-like_MBL-B2 Aeromonas hydrophyla CphA, Aeromonas veronii ImiS, and related metallo-beta-lactamases, subclass B2; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. B2 MBLs have a narrow substrate profile relative to subclass B1 MBLs that includes carbapenems, and they are active with one zinc ion bound in the Asp-Cys-His site, binding of a second zinc ion in the modified 3H site (Asn-His-His) inhibits catalysis. 222 -293865 cd16307 FEZ-1-like_MBL-B3 Fluoribacter gormanii FEZ-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of FEZ-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 255 -293866 cd16308 GOB1-like_MBL-B3 Elizabethkingia meningoseptica GOB-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of GOB-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 254 -293867 cd16309 BJP-1-like_MBL-B3 Bradyrhizobium diazoefficiens BJP-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of BJP-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 252 -293868 cd16310 Mbl1b-like_MBL-B3 Caulobacter crescentus Mbl1b and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of Mbl1b-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 252 -293869 cd16311 THIN-B2-like_MBL-B3 Janthinobacterium lividum THIN-B2 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of THIN-B2-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 257 -293870 cd16312 THIN-B-like_MBL-B3 Janthinobacterium lividum THIN-B and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of THIN-B-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 258 -293871 cd16313 SMB-1-like_MBL-B3 SMB-1, THIN-B and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of SMB-1- and THIN-B-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 254 -293872 cd16314 AIM-1-like_MBL-B3 Pseudomonas Aeruginosa AIM-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup AIM-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 255 -293873 cd16315 EVM-1-like_MBL-B3 Erythrobacter vulgaris EVM-1 and related metallo-beta-lactamases, subclass B3; MBL-fold metallo-hydrolase domain. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup EVM-1-like MBLs belongs to the B3 subclass. Subclass B3 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. These B3 enzymes have a modified Zn2/DCH site (Asp-His-His). 248 -293874 cd16316 BlaB-like_MBL-B1 Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) BlaB and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the chromosome-encoded MBL Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) BlaB and related MBLs. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 214 -293875 cd16317 IND_MBL-B1 Chryseobacterium indologenes IND-1, IND-2, IND-7and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the chromosome-encoded MBLs Chryseobacterium indologenes IND-1, IND-2, and IND-7 and related MBLs. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 215 -293876 cd16318 MUS_TUS_MBL-B1 Myroides odoratimimus MUS-1, MUS-2, TUS-1 and related metallo-beta-lactamases, subclass B1; MBL-fold metallo-hydrolase domain. Includes the chromosome-encoded MBLs Myroides odoratimimus MUS-1 and related MBLs. MBLs (class B of the Ambler beta-lactamase classification) are a diverse group of metallo-enzymes that are capable of catalyzing the hydrolysis of a wide range of beta-lactam antibiotics. MBLs have been divided into three subclasses B1, B2 and B3, based on sequence/structural relationships and substrates, with the B1 and B2 MBLs being most closely related to each other. This subgroup of MBLs belongs to the B1 subclass. B1 enzymes are most active with two zinc ions bound in the active site, and have a broad-spectrum substrate profile. 214 -293782 cd16319 MraZ protein domain of unknown function (UPF0040) includes MraZ. This family contains proteins of unknown function (UPF0040), implicated in a cellular function of bacterial cell division. It includes protein MraZ which is present in almost all bacteria and appears to be essential for survival. It is found in gene clusters associated with the cellular function of cell division and cell wall biosynthesis. Members of this family contain two tandem copies of the domain; the crystal structure of a member of this family (MPN314) reveals that the two subdomains are related by a pseudo two-fold axis, with each subdomain containing a highly conserved DXXXR sequence motif in close proximity to each other, suggested to form the functional site. 53 -293783 cd16320 MraZ_N N-terminal subdomain of transcriptional regulator MraZ. This family contains the N-terminal domain of proteins of unknown function (UPF0040), implicated in a cellular function of bacterial cell division. It includes protein MraZ which is present in almost all bacteria and appears to be essential for survival. It is found in gene clusters associated with the cellular function of cell division and cell wall biosynthesis, including mraW, ftsI, murE, murF, ftsW and murG. Members of this family contain two tandem copies of the domain; the crystal structure of a member of this family (MPN314) reveals that the two subdomains are related by a pseudo two-fold axis, with each subdomain containing a highly conserved DXXXR sequence motif in close proximity to each other, suggested to form the functional site. 60 -293784 cd16321 MraZ_C C-terminal subdomain of transcriptional regulator MraZ. This family contains the C-terminal domain of proteins of unknown function (UPF0040), implicated in a cellular function of bacterial cell division. It includes protein MraZ which is present in almost all bacteria and appears to be essential for survival. It is found in gene clusters associated with the cellular function of cell division and cell wall biosynthesis, including mraW, ftsI, murE, murF, ftsW and murG. Members of this family contain two tandem copies of the domain; the crystal structure of a member of this family (MPN314) reveals that the two subdomains are related by a pseudo two-fold axis, with each subdomain containing a highly conserved DXXXR sequence motif in close proximity to each other, suggested to form the functional site. 62 -293877 cd16322 TTHA1623-like_MBL-fold uncharacterized Thermus thermophilus TTHA1623 and related proteins; MBL-fold metallo hydrolase domain. Includes the MBL-fold metallo hydrolase domain of uncharacterized Thermus thermophilus TTHA1623 and related proteins. Members of this subgroup belong to the MBL-fold metallo-hydrolase superfamily which is comprised mainly of hydrolytic enzymes which carry out a variety of biological functions. This family includes homologs present in a wide range of bacteria and archaea and some eukaryota. Members of the MBL-fold metallo-hydrolase superfamily exhibit a variety of active site metallo-chemistry, TTHA1623 exhibiting a uniquely shaped putative substrate-binding pocket with a glyoxalase II-type metal-coordination mode. 204 -319993 cd16323 Syd Syd, a SecY-interacting protein. This family contains the Syd protein that has been implicated in the Sec-dependent transport of polypeptides across the inner membrane in bacteria. Syd has been shown to bind the SecY subunit of membrane-embedded SecYEG heterotrimer (also known as core translocon or SecY complex) which is a conserved protein-conducting channel essential for the biogenesis of most of the secretory and integral membrane proteins. The SecY-binding site of Syd is a conserved concave and electronegative groove that forms interactions with the electropositive loops of the SecY subunit. Syd is also known to verify the proper assembly of the SecY complex in the membrane by interfering with protein translocation only when the channel displays abnormal SecY-SecE associations. Operon analysis has shown that Syd protein may function as immunity protein in bacterial toxin systems. 173 -319982 cd16324 LolA_fold-like family containing periplasmic molecular chaperone LolA, the outer membrane lipoprotein receptor LolB and the periplasmic protein RseB. This family contains the periplasmic molecular chaperone LolA, the outer membrane lipoprotein receptor LolB and the N-terminal domain of periplasmic protein RseB, all of which have similar unclosed beta-barrel structures that resemble a baseball glove-like scaffold consisting of an 11-stranded antiparallel sheet. There are five Lol proteins (LolA, LolB, LolC, LolD, and LolE) involved in the sorting and membrane localization of lipoprotein and are highly conserved in Gram-negative bacteria. LolA accepts outer membrane (OM)-specific lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. It is proposed that the LolA/LolB complex forms a tunnel-like structure, where the hydrophobic insides of LolA and LolB are connected, which enables lipoproteins to transfer from LolA to LolB. RseB exerts a crucial role in modulating the stability of RseA, the transmembrane anti-sigma-factor that is degraded during sigma-E-dependent transcription caused by bacterial envelope stress. Its structural similarity to LolA and LolB suggests that RseA may act as a sensor of periplasmic stress with a dual functionality, detecting mislocalized lipoproteins as well as propagating the signal to induce the sigma-E-response. 162 -319983 cd16325 LolA LolA, a periplasmic chaperone. This family contains periplasmic molecular chaperone LolA which binds to outer-membrane specific lipoproteins and transports them from inner membrane to outer membrane (OM) through LolB, a lipoprotein anchored to outer membranes. There are five Lol proteins (LolA, LolB, LolC, LolD, and LolE) involved in the sorting and membrane localization of lipoprotein and are highly conserved in Gram-negative bacteria. LolA accepts OM-specific lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. Studies have shown that hydrophobic surface patches large enough to accommodate acyl chains of the OM lipoproteins and the structural flexibility of LolA are important factors for its role as a periplasmic chaperone. 166 -319984 cd16326 LolB LolB, an outer membrane lipoprotein receptor. This family contains the outer membrane lipoprotein receptor, LolB, which catalyzes the last step of lipoprotein transfer from the inner to the outer membrane. There are five Lol proteins (LolA, LolB, LolC, LolD, and LolE) involved in the sorting and membrane localization of lipoprotein and are highly conserved in Gram-negative bacteria. LolA transports lipoproteins through the periplasm to LolB, which then localizes them to outer membranes; the protruding loop of LolB has been shown to be essential for the localization of lipoproteins in the anchoring of bacterial triacylated proteins to the outer membrane. 163 -319985 cd16327 RseB RseB, a sensor in periplasmic stress. This family contains the periplasmic protein RseB (also known as MucB or Mucb/RseB) which exerts a crucial role in modulating the stability of RseA, the transmembrane anti-sigma-factor that is degraded during sigma-E-dependent transcription caused by bacterial envelope stress. RseB binds to RseA and inhibits its sequential cleavage, thereby functioning as a negative modulator of this response. The protein is composed of two domains, the larger N-terminal domain resembling an unclosed beta-barrel that is remarkably similar structurally to LolA and LolB, proteins capable of binding the lipid anchor of lipoproteins, suggesting that RseA acts as a sensor of periplasmic stress with a dual functionality, detecting mislocalized lipoproteins as well as propagating the signal to induce the sigma-E-response. 166 -319992 cd16328 RseA_N N-terminal domain of RseA. This family contains the cytoplasmic (N-terminal) domain of RseA, the transmembrane anti-sigma-E factor. RseA is degraded during sigma-E-dependent transcription caused by bacterial envelope stress such as heat shock. It is an inner membrane protein with an N-terminal cytoplasmic domain that binds sigma-E and blocks its transcriptional activity, and a C-terminal periplasmic domain that binds RseB, an auxiliary negative regulator. Under inducing conditions, RseA is rapidly degraded and sigma-E is released into the cytoplasm, where it can bind core RNAP and induce its regulon. It has been shown that just the N-terminal domain is sufficient to bind and inhibit sigma-E. The C-terminal domain may interact with other proteins that signal periplasmic stress. 65 -319986 cd16329 LolA_like proteins similar to periplasmic molecular chaperone LolA, the outer membrane lipoprotein receptor LolB and the periplasmic protein RseB. This family contains uncharacterized proteins similar to the periplasmic molecular chaperone LolA, the outer membrane lipoprotein receptor LolB and the periplasmic protein RseB, all of which have similar unclosed beta-barrel structures that resemble a baseball glove-like scaffold consisting of an 11-stranded antiparallel sheet. There are five Lol proteins (LolA, LolB, LolC, LolD, and LolE) involved in the sorting and membrane localization of lipoprotein and are highly conserved in Gram-negative bacteria. LolA accepts outer membrane (OM)-specific lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. It is proposed that the LolA/LolB complex forms a tunnel-like structure, where the hydrophobic insides of LolA and LolB are connected, which enables lipoproteins to transfer from LolA to LolB. RseB exerts a crucial role in modulating the stability of RseA, the transmembrane anti-sigma-factor that is degraded during sigma-E-dependent transcription caused by bacterial envelope stress. Its structural similarity to LolA and LolB suggests that RseA may act as a sensor of periplasmic stress with a dual functionality, detecting mislocalized lipoproteins as well as propagating the signal to induce the sigma-E-response. 225 -319987 cd16330 LolA_VioE Proteins similar to violacein biosynthetic enzyme VioE that shares fold with periplasmic molecular chaperone LolA. This family includes the violacein biosynthetic enzyme VioE which shares a core fold with lipoprotein transporter proteins that include lipoprotein transporter proteins LolA and LolB. VioE is an enzyme with no characterized homologs that plays a key role in the biosynthesis of violacein, a naturally occurring bisindole product with various biological activities, including antitumor activity as well as antibacterial and cytotoxic properties. In Chromobacterium violaceum, VioE catalyzes the third step in violacein biosynthesis from a pair of Trp residues (i.e. mediates a 1,2 shift of an indole ring and oxidative chemistry) to generate prodeoxyviolacein, a precursor to violacein. Structural and mutagenesis studies suggest that VioE acts as a catalytic chaperone, using this fold associated with lipoprotein transporters to catalyze the production of its prodeoxyviolacein product. 175 -319991 cd16331 YjgA-like uncharacterized proteins similar to Escherichia coli YjgA. Family of conserved uncharacterized proteins similar to Escherichia coli YjgA, which has been identified as comigrating with the 50S ribosome 153 -319990 cd16332 YsxB-like conserved uncharacterized protein similar to Bacillus subtilis YsxB. family of conserved uncharacterized proteins similar to Bacillus subtilis YsxB 102 -319989 cd16333 RELM resistin-like molecule (RELM) hormone family. RELMs, secreted proteins with roles including insulin resistance and the activation of inflammatory processes, are also known as found in inflammatory zone (FIZZ), and include four members in mouse (RELM-alpha/FIZZ1/HIMF, RELM-beta/FIZZ2, Resistin/FIZZ3, and RELM-gamma/FIZZ4) and two members in human (resistin and RELM-beta). Little is yet known about the differences and similarities in function of the different isoforms. RELMs are potentially implicated in a wide range of physiological and pathological processes including obesity-associated diabetes, cardiovascular system function, cancer development and metastasis. There are significant differences between human and rodent RELMs with respect to gene and protein structure, differential gene regulation, different tissue distribution profiles, and insulin resistance induction. Resistin appears to convey insulin resistance in rodents, and to instigate inflammatory processes in humans. In the pathophysiology of obesity-associated diabetes, mouse resistin is secreted by adipocytes and increases hepatic gluconeogenesis, thereby promoting insulin resistance, human resistin is secreted by macrophages and may play a role through inflammatory contributions. Elevated levels of human resistin have been reported in various cancers including colorectal, endometrial, and postmenopausal breast cancers, and may initiate the production of further inflammatory cytokines, to promote tumor cell progression; contrary to this, in vitro overexpression of human RELM-beta abolishes invasion, metastasis and angiogenesis of gastric cancer cells. Resistin circulates as hexamers and trimers; structural similarity has been noted between the resistin homotrimer and the proprotein convertase subtilisin/kexin type 9, C-terminal cysteine-rich domain. 86 -319988 cd16334 LppX-like family includes lipoproteins LppX, LprA, LprF and LprG from Mycobacterium tuberculosis. This family includes the homologous lipoproteins LppX, LprA, LprF and LprG from Mycobacterium tuberculosis (Mtb), all of which share a core fold with lipoprotein transporter proteins LolA and LolB. Mtb contains components such as glycolipids, lipoglycans and lipoproteins that play critical roles in regulating host responses and promoting survival of the pathogen. Mtb LprA is a lipoprotein agonist of Toll-like receptor 2 (TLR2) that regulates innate immunity and APC function. LprF, which is also found in Mycobacterium bovis but not in the nonpathogenic Mycobacterium smegmatis, has a central hydrophobic cavity that binds a diacylated glycolipid that it transfers from the plasma membrane to the cell wall, which might be related to the pathogenesis of the bacteria. Similarly, LprG functions as a carrier of glycolipids and lipoglycans, such as lipoarabinomannan (LAM), during their trafficking and delivery to the mycobacterial cell wall, contributing to virulence; LAM inhibits fusion of phagosomes with lysosomes as a means for mycobacteria to evade host defense. In addition, LprG has potent TLR2 agonist activity that modulates antigen processing of dendritic cells and macrophages. LppX is required for the translocation of the key virulence factors, the phthiocerol dimycocerosates (PDIMs), to the surface of Mtb. 196 -319981 cd16335 MukF_N bacterial condensin complex subunit MukF, N-terminal domain. MukF is part of the MukBEF condensin complex that is mainly found in proteobacteria and is involved in chromosome organization and condensation. The complex is believed to serve as a part of the chromosome scaffold rather than a bulk DNA packing protein. MukE and MukF form a stable complex with each other and dynamically associate with MukB, a member of the SMC protein family. MukEF does not bind DNA on its own but modulates MukB-DNA activity. The stoichiometry of the MukEF complex is MukE4F2. 315 -319980 cd16336 MukE bacterial condensin complex subunit MukE. MukE is part of the MukBEF condensin complex that is mainly found in proteobacteria and is involved in chromosome organization and condensation. The complex is believed to serve as a part of the chromosome scaffold rather than a bulk DNA packing protein. MukE and MukF form a stable complex with each other and dynamically associate with MukB, a member of the SMC protein family. MukEF does not bind DNA on its own but modulates MukB-DNA activity. The stoichiometry of the MukEF complex is MukE4F2. 204 -319979 cd16337 MukF_C bacterial condensin complex subunit MukF, C-terminal domain. MukF is part of the MukBEF condensin complex that is mainly found in proteobacteria and is involved in chromosome organization and condensation. The complex is believed to serve as a part of the chromosome scaffold rather than a bulk DNA packing protein. MukE and MukF form a stable complex with each other and dynamically associate with MukB, a member of the SMC protein family. MukEF does not bind DNA on its own but modulates MukB-DNA activity. The stoichiometry of the MukEF complex is MukE4F2. 97 -319976 cd16338 CpcT T-type phycobiliprotein (PBP) lyase. This family contains the T-type phycobiliprotein (PBP) lyase (includes CpcT/CpeT, also known as CpcT bilin lyase). PBP lyases are employed by cyanobacteria, red algae, cryptophytes and glaucophytes for light-harvesting. Pigmentation of light-harvesting phycobiliproteins of cyanobacteria and cryptophytes requires covalent attachment of open-chain tetrapyrrole chromophores, the phycobilins, to the apoproteins. PBP lyases mediate this covalent attachment of phycobilin chromophores to apo-PBPs and also ensure the correct binding of the chromophore with regard to the specific attachment site and stereospecificity. The T-type lyase is distantly related to CpcS and is responsible for covalent attachment of phycocyanobilin (PCB) or phycoerythrobilin to a specific cysteine residue in the beta-subunit of phycocyanin (CpcB) and the beta-subunit of phycoerythrocyanin (PecB), and with a different stereochemistry than CpcS. In CpcT (All5339) from Nostoc (Anabaena) sp. PCC7120, sequential binding studies indicate that beta-subunit chromophorylation with PCB at a specific C- terminal cysteine residue in cyanobacterial phycocyanin and phycoerythrocyanin is hindered by a preceding chromophorylation at a specific N-terminal cysteine residue by CpcS. T-type PBP lyases adopt a beta-barrel structure with a modified lipocalin fold, similar to S-type PBP lyases. 180 -319977 cd16339 CpcS S-type phycobiliprotein (PBP) lyase. This family contains the S-type phycobiliprotein (PBP) lyase (denoted CpcS/CpcU or CpeS/CpeU). PBP lyases are employed by cyanobacteria, red algae, cryptophytes and glaucophytes for light-harvesting. Pigmentation of light-harvesting phycobiliproteins of cyanobacteria and cryptophytes requires covalent attachment of open-chain tetrapyrrole chromophores, the phycobilins, to the apoproteins. PBP lyases mediate this covalent attachment of phycobilin chromophores to apo-PBPs and also ensure the correct binding of the chromophore with regard to the specific attachment site and stereospecificity. The S-type lyase is distantly related to CpcT and similarly adopts a beta-barrel structure with a modified lipocalin fold. Many members of the CpcS/CpcU family ligate phycocyanobilin (PCB) to a specific cysteine residue in the beta-subunits of phycocyanin (CpcB) or phycoerythrocyanin (PecB) and to a related cysteine residue in the alpha and beta subunits of allophycocyanin (AP); they are typically given the designation of "CpcS" or "CpcU". Other members which attach phycoerythrobilin (PEB) to the beta-subunit of phycoerythrin (PE) are given the designation "CpeS" or "CpeU". In Guillardia theta, a Cryptophyte, which has adopted phycoerythrobilin (PEB) biosynthesis from cyanobacteria, phycobiliprotein lyase has been shown to provide structural requirements for the transfer of this chromophore to the specific cysteine residue of the apophycobiliprotein. 166 -319978 cd16340 CpcS_T S- and T-type phycobiliprotein (PBP) lyases. This family contains the S- and T-type phycobiliprotein (PBP) lyases. PBP lyases are employed by cyanobacteria, red algae, cryptophytes and glaucophytes for light-harvesting. Pigmentation of light-harvesting phycobiliproteins of cyanobacteria and cryptophytes requires covalent attachment of open-chain tetrapyrrole chromophores, the phycobilins, to the apoproteins. PBP lyases mediate this covalent attachment of phycobilin chromophores to apo-PBPs. These lyases are distinguishable in the clades of E/F-, S/U-, and T-type lyases; T-type lyases (which include CpcT) are distantly related to S-type lyases (which include CpcS and CpcU). S- and T-type PBP lyases differ in mechanistic details; the conformation and protonation state in which the chromophore is presented account for their differences in stereochemistry of the chromophore selectivity as well as corresponding binding sites. On the other hand, both lyases carry out the main functions of assisting site selectivity in the apo-PBP, protecting the chromophore and ensuring the regio- and stereoselectivity of the addition. The S- and T-type PBP lyases adopt a beta-barrel structure with a modified lipocalin fold. 166 -319975 cd16341 FdhE formate dehydrogenase accessory protein FdhE and similar proteins. This family contains formate dehydrogenase accessory protein FdhE and FdhE-like protein, found largely in gamma- and some beta-Proteobacteria, where the fdhE genes are almost always genetically-linked to the structural genes for formate dehydrogenases. FdhE is required for the assembly of formate dehydrogenase although not present in the final complex. In E. coli, FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. E. coli FdhE interacts with the catalytic subunits, FdnG and FdoG, of the Tat- dependent respiratory formate dehydrogenases. Site-directed mutagenesis has shown that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in Fe(III) ligation. The iron likely is redox active, suggesting that the switch from aerobic to anaerobic conditions may be important in modulating FdhE function. Alternatively, FdhE may be involved in an electron transfer reaction, similar to other rubredoxins. 257 -319974 cd16342 FusC_FusB Fusidic acid resistance protein (FusC/FusB). The fusidic acid resistance protein FusC (FusB) mediates resistance to the antibiotic fusidic acid. Its C-terminal domain, which contains a zinc-binding site, interacts with EF-G with high affinity, promoting the dissociation of stalled ribosome#EF-G#GDP complexes that form in the presence of fusidic acid, thus allowing the ribosomes to resume translation. 204 -319971 cd16343 LMWPTP Low molecular weight protein tyrosine phosphatase. Low molecular weight protein tyrosine phosphatases (LMW-PTP) are a family of small soluble single-domain enzymes that are characterized by a highly conserved active site motif (V/I)CXGNXCRS and share no sequence similarity with other types of protein tyrosine phosphatases (PTPs). LMW-PTPs play important roles in many biological processes and are widely distributed in prokaryotes and eukaryotes. 147 -319972 cd16344 LMWPAP low molecular weight protein arginine phosphatase. Low molecular weight protein arginine phosphatases are part of the low molecular weight phosphatase (LMWP) family. They share a highly conserved active site motif (V/I)CXGNTCRS. It has been shown that the conserved threonine, which in many LMWPTPs is an isoleucine, confers specificity to phosphoarginine over phosphotyrosine. 142 -319973 cd16345 LMWP_ArsC Arsenate reductase of the LMWP family. Arsenate reductase plays an important role in the reduction of intracellular arsenate to arsenite, an important step in arsenic detoxification. The reduction involves three different thiolate nucleophiles. In arsenate reductases of the LMWP family, reduction can be coupled with thioredoxin (Trx)/thioredoxin reductase (TrxR) or glutathione (GSH)/glutaredoxin (Grx). 132 -319957 cd16347 VOC_like uncharacterized subfamily of the vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 221 -319958 cd16348 VOC_YdcJ_like uncharacterized metal-dependent enzyme similar to Shigella flexneri YdcJ. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 310 -319959 cd16349 VOC_like uncharacterized subfamily of the vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 301 -319960 cd16350 VOC_like uncharacterized subfamily of the vicinal oxygen chelate (VOC) family. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 254 -319750 cd16351 CheB_like methylesterase CheB domain family. This family contains the methylesterase CheB (EC 3.1.1.61; also known as CheB methylesterase, chemotaxis-specific methylesterase, methyl-accepting chemotaxis protein methyl-esterase, or protein methyl-esterase) domain, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Signaling output of the chemotaxis receptors is modulated by CheB and methyltransferase CheR by controlling the level of receptor methylation. CheB family members may also contain an N-terminal regulatory (REC) domain, which blocks the active site of the C-terminal domain until it is phosphorylated, or a CheR domain; typically cheB and cheR occur in the same operon. Reversible methylation of transmembrane chemoreceptors plays an important role in ligand-dependent signaling and cellular adaptation in bacterial chemotaxis. Phosphorylated CheB catalyzes deamidation of specific glutamine residues in the cytoplasmic region of the chemoreceptors and demethylation of specific methyl glutamate residues introduced into the chemoreceptors by CheR. 184 -319352 cd16352 CheD chemotaxis protein CheD stimulates methylation of methyl-accepting chemotaxis proteins. This family contains bacterial chemotaxis protein CheD that stimulates methylation of methyl-accepting chemotaxis proteins (MCPs). The CheD chemotaxis gene is not found in the Escherichia coli genome, but is present in many other organisms, including B. subtilis, where CheD appears to have two separate roles; it binds to chemoreceptors to activate them as part of the CheC/CheD/CheYp adaptation system, and it deamidates selected residues to activate chemoreceptors, enabling them to mediate amino acid chemotaxis. CheD has been shown to catalyze amide hydrolysis of specific glutaminyl side chains of the B. subtilis chemoreceptors McpA, McpB and McpC; deamination by CheD is required for the chemoreceptors to effectively transduce signals to the CheA kinase. CheD's ability to bind the receptors is controlled by CheC via a competitive binding mechanism; substituting Gln into the receptor motif of the signal-terminating phosphatase, CheC, turns the inhibitor into a receptor-modifying deamidase CheD substrate. Also, CheYp increases the affinity of CheD for CheC, controlling CheD binding to the receptors through its interactions with CheC. Thus, high levels of CheYp means CheC is a better binding target for CheD than the receptors, resulting in decreased CheA activity. The CheD structure reveals a distant homology with a class of bacterial toxins represented by the cytotoxic necrotizing factor 1 (CNF1) as well as a class of proteins of unknown function represented by B. subtilis YfiH. An invariant Cys-His pair forming a catalytic dyad is observed, and is required by the toxins for deamidation activity. 146 -319961 cd16354 BAT Bleomycin N-Acetyltransferase and similar proteins. BlmB, encodes a bleomycin N-acetyltransferase, designated BAT, which inactivates Bm using acetyl-coenzyme A (AcCoA). BAT forms a dimer structure via interaction of its C-terminal domains in the monomers. The N-terminal domain of BAT has a tunnel with two entrances: a wide entrance that accommodates the metal-binding domain of Bm and a narrow entrance that accommodates acetyl-CoA (AcCoA). A groove formed on the dimer interface of two BAT C-terminal domains forms the DNA-binding domain of Bm. In a ternary complex of BAT, BmA(2), and CoA, a thiol group of CoA is positioned near the primary amine of Bm at the midpoint of the tunnel and ensures efficient transfer of an acetyl group from AcCoA to the primary amine of Bm. BAT belongs to vicinal oxygen chelate (VOC) superfamily that is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including thiocoraline, bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 114 -319962 cd16355 VOC_like uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 121 -319963 cd16356 PsjN_like Burkholderia Phytofirmans glyoxalase/bleomycin resistance protein/dioxygenase family enzyme and similar proteins. Burkholderia Phytofirmans glyoxalase/bleomycin resistance protein/dioxygenase family enzyme and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 119 -319964 cd16357 GLOD4_C C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins. Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 114 -319965 cd16358 GlxI_Ni Glyoxalase I that uses Ni(++) as cofactor. This family includes Escherichia coil and other prokaryotic glyoxalase I that uses nickel as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event. 122 -319966 cd16359 VOC_BsCatE_like_C C-terminal of Bacillus subtilis CatE like protein, a vicinal oxygen chelate subfamily. Uncharacterized subfamily of vicinal oxygen chelate (VOC) superfamily contains Bacillus subtilis CatE and similar proteins. CatE is proposed to function as Catechol-2,3-dioxygenase. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 110 -319967 cd16360 ED_TypeI_classII_N N-terminal domain of type I, class II extradiol dioxygenases. This family contains the N-terminal non-catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. 111 -319968 cd16361 VOC_ShValD_like vicinal oxygen chelate (VOC) family protein similar to Streptomyces hygroscopicus ValD protein. This subfamily of vicinal oxygen chelate (VOC) family protein includes Streptomyces hygroscopicus ValD protein and similar proteins. ValD protein functions in validamycin biosynthetic pathway. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. 150 -319969 cd16362 TflA Toxoflavin Lyase. Toxoflavin lyase (TflA) is metalloenzyme degrading toxoflavin at the presence of oxygen, Mn(II), and dithiothreitol. TflA is structurally homologous to proteins of the vicinal oxygen chelate superfamily. The structure of TflA contains fold that displays a rare rearrangement of the structural modules indicative of domain permutation. Moreover, unlike the 2-His-1-carboxylate facial triad commonly utilized by vicinal oxygen chelate dioxygenases and other dioxygen-activating non-heme Fe(II) enzymes, the metal center in TflA consists of a 1-His-2-carboxylate facial triad. Toxoflavin is an azapteridine that is toxic to various plants, fungi, animals, and bacteria. 110 -319897 cd16363 Col_Im_like inhibitory immunity (Im) protein of colicin (Col) deoxyribonuclease (DNase) and pyocins. This family contains inhibitory immunity (Im) proteins that bind to colicin endonucleases (DNases) or pyocins with very high affinity and specificity; this is critical for the neutralization of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The DNase colicin family (ColE2, ColE7, ColE8 and ColE9) in E. coli, and pyocin family (S1, S2, S3 and AP41) in P. aeruginosa, are potent bacteriocins where the immunity proteins (Ims) protect the colicin/pyocin producing (i.e. colicinogenic) bacteria by binding and inactivating colicin nucleases. The binding affinities between cognate and non-cognate nucleases by Im proteins can vary up to 10 orders of magnitude. 81 -341100 cd16364 T3SC_I_like class I type III secretion system (T3SS) chaperones and similar proteins. This family contains class I type III secretion system (T3SS) chaperones mainly found in Gram-negative bacteria such as Pseudomonas, Yersinia, Salmonella, Escherichia and Erwinia, among others. A wide variety of these bacterial pathogens and symbionts require a T3SS to inject eukaryotic host cells with effector proteins important for suppressing host defenses and establishing infection. Many of these effector proteins interact with specific type III secretion chaperones prior to secretion. These T3SS chaperones have been classified as class I type III secretion chaperones (T3SC), which are small structurally conserved dimers that interact specifically with T3SS effector proteins. Class I T3SC consists of two subclasses: IA and IB. Class IA T3SC binds a single effector, whereas class IB T3SC binds to several effectors. Class IA and Class IB T3SCs typically exhibit little sequence similarities, but share a common overall heart-shaped structure fold (alpha-beta-beta-beta-alpha-beta-beta-alpha) and features, such as a small size, an acidic pI and an amphipathic C-terminal alpha-helix. Chaperone protein CesT serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. In Pseudomonas aeruginosa, chaperone ExsC binds small secreted protein ExsE as well as the non-secreted anti-activator protein ExsD; it relieves repression of the transcriptional activator ExsA (which activates expression of T3SS genes) by ExsD. P. aeruginosa SpcU binds the cytotoxin ExoU, which is a broad-specificity phospholipase A2 (PLA2) and lysophospholipase, and maintains the N-terminus of ExoU in an unfolded state which is required for secretion. Salmonella enterica chaperone SicP forms a complex with effector protein SptP at an early stage of its secretion process in order to avoid premature degradation, while chaperone SigE binds to effector SigD, which, upon translocation into the host cell, preferentially dephosphorylates specific inositol phospholipids that are thought to be crucial for subsequent activation of the host cell Ser-Thr kinase Akt. This family also includes Yersinia chaperone/escortee pairs SycE/YopE, SycH/YopH, SycT/YopT and SycN+YscB/YopN, all of which bind to specific Yersinia outer proteins (Yops). Also included are several DspF and related sequences from several plant pathogenic bacteria. The "disease-specific" (dsp) region next to the hrp gene cluster of Erwinia amylovora is required for pathogenicity but not for elicitation of the hypersensitive reaction. In addition, a group of proteins including Escherichia coli YbjN, Erwinia amylovora AmyR, and their homologs, are included in this family. They share a class I T3SC-like fold with T3SS chaperone proteins but appear to function independently of the T3SS. 118 -319887 cd16365 NarH_like beta FeS subunits DMSOR NarH-like family. This subfamily contains beta FeS subunits of several DMSO reductase superfamily, including nitrate reductase A, ethylbenzene dehydrogenase and selenate reductase. DMSO Reductase (DMSOR) family members have a large, periplasmic molybdenum-containing alpha subunit as well as a small beta FeS subunit, and may also have a small gamma subunit. . The beta subunits of DMSOR contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. Nitrate reductase A contains three subunits (the catalytic subunit NarG, the catalytic subunit NarH with four [Fe-S] clusters, and integral membrane subunit NarI) and often forms a respiratory chain with the formate dehydrogenase via the lipid soluble quinol pool. Ethylbenzene dehydrogenase oxidizes the hydrocarbon ethylbenzene to (S)-1-phenylethanol. Selenate reductase catalyzes reduction of selenate to selenite in bacterial species that can obtain energy by respiring anaerobically with selenate as the terminal electron acceptor. 201 -319888 cd16366 FDH_beta_like beta FeS subunits of formate dehydrogenase N (FDH-N) and similar proteins. This family contains beta FeS subunits of several dehydrogenases in the DMSO reductase superfamily, including formate dehydrogenase N (FDH-N), tungsten-containing formate dehydrogenase (W-FDH) and other similar proteins. FDH-N is a major component of nitrate respiration of Escherichia coli; it catalyzes the oxidation of formate to carbon dioxide, donating the electrons to a second substrate to a cytochrome. W-FDH contains a tungsten instead of molybdenum at the catalytic center and seems to be exclusively found in organisms such as hyperthermophilic archaea that live in extreme environments. It catalyzes the oxidation of formate to carbon dioxide, donating the electrons to a second substrate. 156 -319889 cd16367 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 138 -319890 cd16368 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 200 -319891 cd16369 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 172 -319892 cd16370 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 131 -319893 cd16371 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 140 -319894 cd16372 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 125 -319895 cd16373 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 154 -319896 cd16374 DMSOR_beta_like uncharacterized subfamily of DMSO Reductase beta subunit family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 139 -319867 cd16375 Avd_IVP_like proteins similar to the diversity-generating retroelement protein bAvd. A superfamily of four-helix bundles that form homopentamers, including the bacterial accessory variability determinant (bAvd) protein and a family of functionally uncharacterized bacterial proteins, some of which are encoded by an atypically large intervening sequence present within some 23S rRNA genes. 103 -319868 cd16376 Avd_like diversity-generating retroelement protein bAvd and similar proteins. The bacterial accessory variability determinant (bAvd) protein, together with a reverse transcriptase, is involved in retrohoming processes as part of a diversity-generating retroelement (DGR), a type of system that is involved in generating sequence variation in bacterial proteins by inserting coding information from a template region into a variable region of a protein coding gene. bAvd forms homopentamers and interacts with the reverse transcriptase as well as with DNA and/or RNA. 106 -319869 cd16377 23S_rRNA_IVP_like 23S rRNA-intervening sequence protein and similar proteins. A family of functionally uncharacterized bacterial proteins, some of which are encoded by an atypically large intervening sequence present within some 23S rRNA genes. The distantly related bAvd protein, which also forms a homopentamer of four-helix bundles, has been suggested to interact with nucleic acids and a reverse transcriptase. 108 -319866 cd16378 CcmH_N N-terminal domain of cytochrome c-type biogenesis protein CcmH and related proteins. Cytochrome c-type biogenesis protein CcmH is a membrane-anchored thiol-oxidoreductase that is essential in the maturation of c-type cytochromes. CcmH consists of an N-terminal catalytic domain with the active site CXXC motif and a C-terminal domain of unknown function which is predicted to contain TPR-like repeats. Other members of this family include NrfF, CycL, and Ccl2. 67 -319863 cd16379 YitT_C_like C-terminal domain of Bacillus subtilis YitT and similar protein domains. This domain, found in various bacterial proteins, has no known function. It has been given the designation DUF2179 and occurs at the C-terminus of the Bacillus subtilis membrane protein YitT as well as in single-domain proteins. 80 -319864 cd16380 YitT_C C-terminal domain of Bacillus subtilis YitT and similar protein domains. This domain, found in various bacterial proteins, has no known function. It has been given the designation DUF2179 and occurs at the C-terminus of the Bacillus subtilis membrane protein YitT. 85 -319865 cd16381 YitT_C_like_1 Proteins similar to the C-terminal domain of Bacillus subtilis YitT. This domain, characteristic of various bacterial proteins, has no known function. It has been given the designation DUF2179 and is similar to the C-terminus of the Bacillus subtilis membrane protein. 80 -341357 cd16382 XisI-like XisI is FdxN element excision controlling factor protein. This family contains XisI proteins, also known as FdxN element excision controlling factors, and similar proteins. FdxN element is excised from the chromosome during heterocyst differentiation in cyanobacteria. This is accomplished by the large serine recombinase XisF (fdxN element site-specific recombinase). The xisH as well as the xisF and xisI genes are required. XisI may function as recombination directionality factor (RDF), and needs XisH which may function as an endonuclease. 107 -319862 cd16383 GUN4 porphyrin-binding protein domain GUN4. GUN4 is a porphyrin-binding protein involved in chlorophyll biosynthesis regulation and intracellular signaling, found in aerobic photosynthetic organisms. It has been implicated in retrograde signalling between the chloroplast and nucleus. GUN4 can bind protoporphyrin IX (PIX) and magnesium protoporphyrin IX (MgPIX), substrate and product of the Mg-chelatase, as well as heme and cobalt protoporphyrin IX (CoPIX). It may play a role in protecting plants from reactive oxygen species (ROS)-mediated damage. 142 -319760 cd16384 VirB8_like virulence protein VirB8. This family contains bacterial virulence protein VirB8 and similar proteins which consist of cytoplasmic, transmembrane, and periplasmic regions. VirB8 is an essential assembly factor of type IV secretion system (T4SS) channel proteins that are highly diverse in function relative to other bacterial secretion systems. T4SS proteins are important virulence factors for many Gram-negative pathogens, such as Agrobacterium, Brucella, Legionella, and Helicobacter. This family also includes the conjugal transfer protein family TrbF, a family of proteins known to be involved in conjugal transfer. The TrbF protein is thought to compose part of the pilus required for transfer. This domain has a similar fold to the nuclear transport factor-2 (NTF2) protein. 133 -319861 cd16385 IcmL inner membrane protein IcmL/DotI. This family contains the periplasmic domain of the inner membrane protein DotI of the Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system, including its ortholog in the conjugation system of plasmid R64, TraM, and similar proteins. These domains share striking structural similarity to the type IV secretion system (T4ASS) component VirB8 suggesting DotI/TraM to be its functional counterpart. DotI is essential for intracellular growth of Legionella pneumophila (causing agent of Legionnaires' disease) within mammalian and protozoan cells; it translocates numerous effector proteins into its eukaryotic host. 132 -319860 cd16386 TcpC_N N-terminal domain of conjugative transposon protein TcpC. This family contains the N-terminal domain of conjugation protein TcpC and similar proteins. TcpC is required for efficient conjugative transfer, localizing to the cell membrane independently of other conjugation proteins, where membrane localization is important for its function, oligomerization and interaction with the conjugation proteins TcpA, TcpH, and TcpG. N-terminal region (sometimes referred to as central domain) of TcpC is required for efficient conjugation, oligomerization and protein-protein interactions. TcpC has low level sequence identity to proteins encoded by the conjugative transposon Tn916, which is responsible for a large proportion of the tetracycline resistance in different pathogens. 123 -319246 cd16387 ParB_N_Srx ParB N-terminal domain and sulfiredoxin protein-related families. The ParB N-terminal domain/Sulfiredoxin (Srx) superfamily contains proteins with diverse activities. Many of the families are involved in segregation and competition between plasmids and chromosomes. Several families share similar activities with the N-terminal domain of ParB (Spo0J in Bacillus subtilis), a DNA-binding component of the prokaryotic parABS partitioning system. Also within this superfamily is sulfiredoxin (Srx; reactivator of oxidatively inactivated 2-cys peroxiredoxins), RepB N-terminal domain (plasmid segregation replication protein B like protein), nucleoid occlusion protein, KorB N-terminal domain partition protein of low copy number plasmid RK2, irbB (immunoglobulin-binding regulator that activates eib genes), N-terminal domain of sopB protein (promotes proper partitioning of F1 plasmid), fertility inhibition factors OSA and FiwA,DNA sulfur modification protein DndB, and a ParB-like toxin domain. Other activities includes a StrR (regulator in the streptomycin biosynthetic gene cluster), and a family containing a Pyrococcus furiosus nuclease and putative transcriptional regulators sbnI (Staphylococcus aureus siderophore biosynthetic gene cluster ). Nuclease activity has also been reported in Arabidopsis Srx. 54 -319247 cd16388 SbnI_like_N N-terminal domain of transcriptional regulators similar to SbnI. Siderophore staphylobactin biosynthesis protein SbnI of Staphylococcus aureus is a ParB/Spo0J like protein required for the expression of genes in the sbn operon, which is responsible for staphyloferrin B (SB) biosynthesis. SnbI forms dimers and binds DNA upstream of sdnD. SbnI binds heme, which inhibits DNA binding of SbnI, leading to a suppression of sbn operon expression. 77 -319248 cd16389 FIN fertility inhibition factors, including OSA and FiwA, related to the ParB/Srx superfamily. Osa and FiwA are fertility inhibition factors (FIN), which are employed by plasmids to block import of rival plasmids. Osa (oncogenic suppressive activity) of IncW group plasmid pSa gene inhibits the oncogenic properties of Agrobacterium tumefaciens. Osa is structurally similar to the ParB N-terminal domain/Srx superfamily of proteins: ParB acts in the bacterial and plasmid parABS partitioning systems. Osa has been shown to have ATPase and DNAse activities, an can block T-DNA transfer into plants. FiwA is encoded by plasmid RP1 and blocks the transfer of plasmid R388. The gene product of Haemophilus influenzae p1056.10c also blocks T-DNA transfer. 124 -319249 cd16390 ParB_N_Srx_like uncharacterized family distantly related to the N-terminal domain of the ParB/Srx superfamily. Uncharacterized proteins distantly related to the N-terminal domain of the ParB superfamily, primarily involved in bacterial and plasmid parABS-related partitioning systems. A small minority of proteins in this family include a C-terminal inorganic pyrophosphatase domain. Also within the ParB superfamily is sulfiredoxin (Srx), which is a reactivator of oxidatively inactivated 2-cys peroxiredoxins. Other families includes a putative regulator in the biosynthetic gene cluster and a family containing a Pyrococcus furiosus nuclease and putative transcriptional regulators SbnI (Staphylococcus aureus siderophore biosynthetic gene cluster ) and EdeB (Brevibacillus brevis antimicrobial peptide edeine biosynthetic cluster). Nuclease activity has also been reported in Arabidopsis Srx. 162 -319250 cd16392 toxin-ParB toxin domain of the ParB/Srx superfamily. toxin domain with similarity to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system and related proteins. Toxin found, for example, at the C-terminus of polymorphic toxin system members. 72 -319251 cd16393 SPO0J_N Thermus thermophilus stage 0 sporulation protein J-like N-terminal domain, ParB family member. Spo0J (stage 0 sporulation protein J) is a ParB family member, a critical component of the ParABS-type bacterial chromosome segregation system. The Spo0J N-terminal region acts in protein-protein interaction and is adjacent to the DNA-binding domain that binds to parS sites. Two Spo0J bind per parS site, and Spo0J interacts with neighbors via the N-terminal domain to form oligomers via an Arginine-rich patch (RRXR). This superfamily represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 97 -319252 cd16394 sopB_N N-terminal domain of sopB protein, which promotes proper partitioning of F1 plasmid. Escherichia coli SopB acts in the equitable partitioning of the F plasmid in the SopABC system. SopA binds to the sopAB promoter, while SopB binds SopC and helps stimulate polymerization of SopA in the presence of ATP and Mg(II). Mutation of SopA inhibits proper plasmid segregation. This N-terminal domain is related to the ParB N-terminal domain of bacterial and plasmid parABS partitioning systems, which binds parA. 67 -319253 cd16395 Srx Sulfiredoxin reactivates peroxiredoxins after oxidative inactivation. Sulfiredoxin reduces and thereby re-activates 2-cys peroxiredoxins. Peroxiredoxins act as molecular switches, inactivating in response to hyperoxidation from hydrogen peroxide and other free radicals. Sulfiredoxin reactivates Prx-SO(2)(-) via ATP-Mg(2+)-dependent reduction. Arabidopsis sulfiredoxin has been described as a dual function enzyme, having nuclease activity in addition to the sulfiredoxin activity. This protein is similar to ParB N-terminal-like domain of bacterial and plasmid parABS partitioning systems. 90 -319254 cd16396 Noc_N nucleoid occlusion protein, N-terminal domain, and related domains of the ParB partitioning protein family. Nucleoid occlusion protein has been shown in Bacillus subtilis to bind to specific DNA sequences on the chromosome (Noc-binding DNA sequences, NBS), inhibiting cell division near the nucleoid and thereby protecting the chromosome. This N-terminal domain is related to the N-terminal domain of ParB/repB partitioning system proteins. 95 -319255 cd16397 IbrB_like immunoglobulin-binding regulator IbrB activates eib genes. IbrB (along with IbrA) activates immunoglobulin-binding eib genes in Escherichia coli. IbrB is related to the ParB N-terminal domain family, which includes DNA-binding proteins involved in chromosomal/plasmid segregation and transcriptional regulation, consistent with a possible mechanism for IbrB in DNA binding-related regulation of eib expression. The ParB like family is a diverse domain superfamily with structural and sequence similarity to ParB of bacterial chromosomes/plasmid parABS partitioning system and Sulfiredoxin (Srx), which is a reactivator of oxidatively inactivated 2-cys peroxiredoxins. Other families includes proteins related to StrR, a putative regulator in the biosynthetic gene cluster and a family containing a Pyrococcus furiosus nuclease and putative transcriptional regulators SbnI (Staphylococcus aureus siderophore biosynthetic gene cluster ) and EdeB (Brevibacillus brevis antimicrobial peptide edeine biosynthetic cluster). Nuclease activity has also been reported in arabidopsis Srx. 100 -319256 cd16398 KorB_N_like ParB-like partition protein of low copy number plasmid RK2, N-terminal domain and related domains. KorB, a member of the ParB like family, is present on the low copy number, broad host range plasmid RK2. KorB encodes a gene product involved in segregation of RK2 and acts as a transcriptional regulator, down-regulating at least 6 RK2 operons. KorB binds RNA polymerase and acts cooperatively with several co-repressors in modulating transcription. KorB is comprised of 3 domains, including a beta-strand C-terminal domain similar to SH3 domains and an alpha helical central domain that interacts with operator DNA. In ParB of P1 and SopB of F, the N-terminal region is responsible for interaction with the parA component. However, korB interaction with the RK2 parA-equivalent IncC has been mapped to the central HTH motif. This family is related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 91 -319257 cd16400 ParB_Srx_like_nuclease ParB/Srx_like nuclease and putative transcriptional regulators related to SbnI. This family contains a Pyrococcus Furiosus enzyme reported to have DNA nuclease activity and resembles the N-terminal domain of ParB proteins of the parABS bacterial chromosome partitioning system. This sub-family also includes siderophore staphylobactin biosynthesis protein SbnI. 60% of the P. furiosus nuclease activity was retained at 90 degree C, suggesting a physiological role in the organism, which can grow in temperatures as high as 100 degrees Celsius. The protein has endo- and exo-nuclease activity vs. single- and double-stranded DNA, and nuclease activity was lost in methylated proteins prepared for structure solution. This family has a fairly well-conserved DGHHR motif that corresponds to the same structural position as the phosphorylation site (a portion of the ATP-Mg-binding site) of sulfiredoxin and the arginine-rich ParB BoxII of ParB. 72 -319258 cd16401 ParB_N_like_MT ParB N-terminal-like domain, some attached to C-terminal S-adenosylmethionine-dependent methyltransferase domain. This family represents domains related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, fused to a variety of C-terminal domains, including S-adenosylmethionine-dependent methyltransferase-like domains. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 85 -319259 cd16402 ParB_N_like_MT ParB N-terminal-like domain, some attached to C-terminal S-adenosylmethionine-dependent methyltransferase domain. This family represents domains related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, fused to a variety of C-terminal domains, including S-adenosylmethionine-dependent methyltransferase-like domains and DUF4417. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 87 -319260 cd16403 ParB_N_like_MT ParB N-terminal-like domain, some attached to C-terminal S-adenosylmethionine-dependent methyltransferase. This family represents domains related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, fused to a variety of C-terminal domains, including S-adenosylmethionine-dependent methyltransferase-like domains. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 88 -319261 cd16404 pNOB8_ParB_N_like pNOB8 ParB-like N-terminal domain, plasmid partitioning system protein domain. archaeal pNOB8 ParB acts in a plasmid partitioning system made up of 3 parts: AspA, ParA motor protein, and ParB, which links ParA to the protein-DNA superhelix. As demonstrated in Sulfolobus, AspA spreads along DNA, which allows ParB binding, and links to the Walker-motif containing ParA motor protein. The Sulfolobus ParB C-terminal domain resembles eukaryotic segregation protein CenpA, and other histones. This family is related to the N-terminal domain of ParB (Spo0J in Bacillus subtilis), a DNA-binding component of the prokaryotic parABS partitioning system and related proteins. 69 -319262 cd16405 RepB_like_N plasmid segregation replication protein B like protein, N-terminal domain. RepB, found on plasmids and secondary chromosomes, works along with repA in directing plasmid segregation, and has been shown in Rhizobium etli to require the parS centromere-like sequence for full transcriptional repression of the repABC operon, inducing plasmid incompatibility. RepA is a Walker-type ATPase that complexes with RepB to form DNA-protein complexes in the presence of ATP/ADP. RepC is an initiator protein for the plasmid. repA and repB are homologous to the parA and ParB genes of the parABS partitioning system found on primary chromosomes. 91 -319263 cd16406 ParB_N_like ParB N-terminal, parA-binding, -like domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 82 -319264 cd16407 ParB_N_like ParB N-terminal, parA-binding, -like domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 86 -319265 cd16408 ParB_N_like ParB N-terminal, parA -binding, -like domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 84 -319266 cd16409 ParB_N_like ParB N-terminal-like domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 74 -319267 cd16410 ParB_N_like ParB N-terminal, parA-binding, -like domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 80 -319268 cd16411 ParB_N_like ParB N-terminal, parA -binding, domain of bacterial and plasmid parABS partitioning systems. This family represents the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 90 -319269 cd16412 dndB DNA sulfur modification protein DndB. dndB acts in the regulation of DNA modifications, including DNA phosphorothioation. DndB may act by binding near the phosphorothioate modification site and regulating access of the Dnd modification machinery to DNA. These proteins show similarity to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, and other members of the ParB/Srx superfamily. 333 -319270 cd16413 DGQHR_domain DGQHR motif containing domain. Uncharacterized diverse domain family with conserved DGQHR motif, in addition to QR and FXXXN motifs. Some proteins have been identified as parts of DNA phosphorothioation systems. Related to dndB, which acts in the regulation of DNA modifications, including DNA phosphorothioation. These proteins show similarity to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, and other members of the ParB/Srx superfamily. 229 -319271 cd16414 dndB_like DNA-sulfur modification-associated domain. Family of proteins related to dndB. dndB acts in the regulation of DNA modifications, including DNA phosphorothioation. Both have a conserved DGQHR sequence motif. These proteins show similarity to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, and other members of the ParB/Srx superfamily 238 -319852 cd16415 HAD_dREG-2_like uncharacterized family of the haloacid dehalogenase-like superfamily, similar to uncharacterized Drosophila melanogaster rhythmically expressed gene 2 protein and human haloacid dehalogenase-like hydrolase domain-containing protein 3. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 128 -319853 cd16416 HAD_BsYqeG-like Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the uncharacterized protein Bacillus subtilis YqeG. The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 108 -319854 cd16417 HAD_PGPase Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the haloacid dehalogenase-like superfamily. Phosphoglycolate phosphatase (PGP; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 212 -319855 cd16418 HAD_Pase phosphatases, similar to human PHOSPHO1 and PHOSPHO2 phosphatases; belongs to the haloacid dehalogenase-like superfamily. This family includes phosphatases with different substrate specificities. Human PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase associated with high levels of expression at mineralizing regions of bone and cartilage and is thought to be involved in the generation of inorganic phosphate for bone mineralization. Human PHOSPHO2 is a putative phosphatase which shows high specific activity toward pyridoxal-5-phosphate; PHODPHO2 is not specific to bone but is expressed in a wide range of soft tissues. These belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 130 -319856 cd16419 HAD_SPS sucrose-phosphate synthase; belongs to the haloalcanoic acid dehalogenase (HAD) superfamily. Sucrose phosphate synthase (SPS; EC 2.4.1.14) also known as UDP-glucose-fructose-phosphate glucosyltransferase, catalyzes the transfer of a hexosyl group from UDP-glucose to D-fructose 6-phosphate to form UDP and D-sucrose-6-phosphate, this is the rate limiting step of sucrose synthesis. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 174 -319857 cd16421 HAD_PGPase Rhodobacter capsulatus Cbbz phosphoglycolate phosphatase and related proteins; ; belongs to the haloacid dehalogenase-like superfamily. Phosphoglycolate phosphatase (PGPase; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 105 -319858 cd16422 HAD_Pase_UmpH-like uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid dehalogenase-like superfamily. This uncharacterized subfamily belongs to the UmpH/NagD phosphatase family and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 247 -319859 cd16423 HAD_BPGM-like uncharacterized subfamily of beta-phosphoglucomutase-like family, similar to uncharacterized Bacillus subtilis YhcW. This subfamily includes the uncharacterized Bacillus subtilis YhcW. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. 169 -319761 cd16424 VirB8 periplasmic domain of VirB8 protein. This family contains the periplasmic domain of VirB8 protein which is an essential assembly factor of type IV secretion system (T4SS) channel proteins that are highly diverse in function relative to other bacterial secretion systems. T4SS proteins are important virulence factors for many Gram-negative pathogens, such as Agrobacterium, Brucella, Legionella, and Helicobacter. VirB8 is a bacterial virulence protein with cytoplasmic, transmembrane, and periplasmic regions. It is thought that VirB8 is a primary constituent of a DNA transporter. It is a crucial structural and functional component of the T4SS, with interactions between VirB8 and many other T4SS proteins, including VirB10, VirB9, VirB1, VirB4, and VirB11, as well as with itself. 137 -319762 cd16425 TrbF conjugal transfer protein TrbF. This family includes the conjugal transfer protein family TrbF, a family of proteins known to be involved in conjugal transfer. The TrbF protein is thought to compose part of the pilus required for transfer. This domain is similar to the type IV secretion system (T4ASS) component VirB8 and possibly has a similar fold to the nuclear transport factor-2 (NTF-2)-like superfamily. 133 -319754 cd16426 VirB10_like VirB10 and similar proteins form part of core complex in Type IV secretion system (T4SS). This family contains VirB10, a component of the type IV secretion system (T4SS) and its homologs, including TraB, TraF, IcmE, and similar proteins. T4S system is employed by pathogenic bacteria to export virulence DNAs and/or proteins directly from the bacterial cytoplasm into the host cell. It forms a large multiprotein complex consisting of 12 proteins termed VirB1-11 and VirD4. VirB10 interacts with VirB7 and VirB9, forming the membrane-spanning 'core complex' (CC), around which all other components assemble. The CC is inserted in both the outer and inner membranes, playing a fundamental role as a scaffold for the rest of the T4SS components and actively participating in T4S substrate transfer through the bacterial envelope via conformational changes regulating channel opening and closing. In Gram-negative bacterial pathogen Helicobacter pylori, an important aetiological agent of gastroduodenal disease in humans, the comB3 gene encodes protein with best homologies to TraS/TraB from the Pseudomonas aeruginosa conjugative plasmid RP1 and TrbI of plasmid RP4 and VirB10 from the Ti plasmid of Agrobacterium tumefaciens, as well as DotG/IcmE of Legionella pneumophila. 151 -319758 cd16427 TraM-like C-terminal domain of transfer protein TraM. This family contains the C-terminal domain of transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501 and similar proteins. The protein localizes to the cell envelope and is part of the plasmid transfer system that is accessible from outside of the cell. TraM displays a fold similar to the type IV secretion system (T4SS) VirB8 proteins from A. tumefaciens and B. suis (G-) and to the transfer protein TcpC from C. perfringens plasmid pCW3 (G+), reinforcing the prediction that TraM performs a key role in the secretion process, which is underlined by its surface accessibility. It is also structurally related to members of the nuclear transport factor-2 (NTF-2)-like superfamily with a high similarity to the NTF-2 protein from Rattus norvegicus. TraM (categorized as T4SS VirB8-like class GAMMA) does not possess the binding pocket of classic VirB8 class ALPHA proteins, recognized by VirB8 interaction inhibitors. 108 -319759 cd16428 TcpC_C C-terminal domain of conjugative transposon protein TcpC. This family contains the C-terminal domain of conjugation protein TcpC and similar proteins. TcpC is required for efficient conjugative transfer, localizing to the cell membrane independently of other conjugation proteins, where membrane localization is important for its function, oligomerization and interaction with the conjugation proteins TcpA, TcpH, and TcpG. C-terminal domain is critical for interactions with these other conjugation proteins. TcpC has low level sequence identity to proteins encoded by the conjugative transposon Tn916, which is responsible for a large proportion of the tetracycline resistance in different pathogens. 97 -319755 cd16429 VirB10 VirB10 forms part of core complex in Type IV secretion system (T4SS). This family contains VirB10, a component of the type IV secretion system (T4SS), including homologs TrbI, TraF, TrwE and TraL. T4S system is employed by pathogenic bacteria to export virulence DNAs and/or proteins directly from the bacterial cytoplasm into the host cell. It forms a large multiprotein complex consisting of 12 proteins termed VirB1-11 and VirD4. VirB10, interacts with VirB7 and VirB9, forming the membrane-spanning 'core complex' (CC), around which all other components assemble. The CC is inserted in both, the outer and inner membranes, playing a fundamental role as a scaffold for the rest of the T4SS components and actively participating in T4S substrate transfer through the bacterial envelope via conformational changes regulating channel opening and closing. TrwE in R33 plasmid has been shown to be anchored to the inner membrane and its C-terminal is necessary for conjugation; the transmembrane domains of TrwB and TrwE are involved in TrwB-TrwE interactions. TraF protein of the RP4 plasmid is involved in circularization of pilin subunits of P-type pili. In gonococcal genetic island (GGI) of Neisseria gonorrhoeae, T4SS encodes TrbI and circularization occurs via a covalent intermediate between the C terminus of putative pilin protein TraA and TrbI. 180 -319756 cd16430 TraB TraB is a homolog of VirB10 which forms part of core complex in Type IV secretion system (T4SS). This family contains TraB (VirB10 homolog) and a component of the type IV secretion system (T4SS), and similar proteins. T4S system is employed by pathogenic bacteria to export virulence DNAs and/or proteins directly from the bacterial cytoplasm into the host cell. It forms a large multiprotein complex consisting of 12 proteins termed VirB1-11 and VirD4. VirB10, interacts with VirB7 and VirB9, forming the membrane-spanning 'core complex' (CC), around which all other components assemble. The CC is inserted in both the outer and inner membranes, playing a fundamental role as a scaffold for the rest of the T4SS components and actively participating in T4S substrate transfer through the bacterial envelope via conformational changes regulating channel opening and closing. TraB is localized similarly to related proteins in other systems, but unlike in other systems, Neisseria gonorrhoeae TraB does not require the presence of other T4SS components for proper localization. It has been shown to be expressed with TraK (VirB9 homolog) at low levels in wild-type cells, suggesting that gonococcal T4SS may be present in single copy per cell and the small amounts of these proteins are sufficient for DNA secretion. 203 -319757 cd16431 IcmE DotG/IcmE is a homolog of VirB10 which forms part of core complex in Type IV secretion system. This family contains DotG/IcmE (VirB10 homolog) and a component of the type IV secretion system (T4SS), and similar proteins. The Dot/Icm system is a T4SS found in the pathogens Legionella and Coxiella and the conjugative apparatus of IncI plasmids; T4SS is employed by pathogenic bacteria to export virulence DNAs and/or proteins directly from the bacterial cytoplasm into the host cell. Similar to T4SS VirB/D components, the Legionella Dot/Icm secretion apparatus contains a critical five-protein sub-assembly that forms the membrane-spanning 'core-complex' (CC), around which all other components assemble. This transmembrane connection is mediated by protein dimer pairs consisting of two inner membrane proteins, DotF and DotG, each independently associating with DotH/DotC/DotD in the outer membrane. 179 -319751 cd16432 CheB_Rec Chemotaxis response regulator protein-glutamate methylesterase, CheB, with N-terminal REC domain. This family contains the methylesterase CheB (EC 3.1.1.61; also known as CheB methylesterase, chemotaxis-specific methylesterase, methyl-accepting chemotaxis protein methyl-esterase, or protein methyl-esterase) domain with a REC domain at the N-terminus. CheB is a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Signaling output of the chemotaxis receptors is modulated by CheB and methyltransferase CheR by controlling the level of receptor methylation. The N-terminal regulatory (REC) domain blocks the active site of the C-terminal domain until it is phosphorylated. Reversible methylation of transmembrane chemoreceptors plays an important role in ligand-dependent signaling and cellular adaptation in bacterial chemotaxis. Phosphorylated CheB catalyzes deamidation of specific glutamine residues in the cytoplasmic region of the chemoreceptors and demethylation of specific methyl glutamate residues introduced into the chemoreceptors by CheR. 184 -319752 cd16433 CheB Chemotaxis response regulator protein-glutamate methylesterase, CheB. This family contains the methylesterase CheB (EC 3.1.1.61; also known as CheB methylesterase, chemotaxis-specific methylesterase, methyl-accepting chemotaxis protein methyl-esterase, or protein methyl-esterase) domain, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Signaling output of the chemotaxis receptors is modulated by CheB and methyltransferase CheR by controlling the level of receptor methylation. cheR and cheB have a strong preference to occur in the same operon, and a subgroup contains multidomain proteins with CheB-CheR fusions. Reversible methylation of transmembrane chemoreceptors plays an important role in ligand-dependent signaling and cellular adaptation in bacterial chemotaxis. Phosphorylated CheB catalyzes deamidation of specific glutamine residues in the cytoplasmic region of the chemoreceptors and demethylation of specific methyl glutamate residues introduced into the chemoreceptors by CheR. 181 -319753 cd16434 CheB-CheR_fusion Chemotaxis response regulator protein-glutamate methylesterase, CheB, fused with CheR domain. This family contains the methylesterase CheB (EC 3.1.1.61; also known as CheB methylesterase, chemotaxis-specific methylesterase, methyl-accepting chemotaxis protein methyl-esterase, or protein methyl-esterase) domain, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors, fused with a CheR domain as well as other domains. Signaling output of the chemotaxis receptors is modulated by CheB and methyltransferase CheR by controlling the level of receptor methylation. cheB and cheR are typically found in the same operon. However, CheB and CheR are fused in multi-domain proteins in this subgroup. The CheR protein/domain includes an all-alpha N-terminal domain and an S-adenosylmethionine-dependent methyltransferase C-terminal domain. Reversible methylation of transmembrane chemoreceptors plays an important role in ligand-dependent signaling and cellular adaptation in bacterial chemotaxis. Phosphorylated CheB catalyzes deamidation of specific glutamine residues in the cytoplasmic region of the chemoreceptors and demethylation of specific methyl glutamate residues introduced into the chemoreceptors by CheR. 180 -319740 cd16435 BPL_LplA_LipB biotin-lipoate ligase family. This family includes biotin protein ligase (BPL), lipoate-protein ligase A (LplA) and octanoyl-[acyl carrier protein]-protein acyltransferase (LipB). Biotin is covalently attached at the active site of certain enzymes that transfer carbon dioxide from bicarbonate to organic acids to form cellular metabolites. Biotin protein ligase (BPL) is the enzyme responsible for attaching biotin to a specific lysine at the active site of biotin enzymes. Biotin attachment is a two step reaction that results in the formation of an amide linkage between the carboxyl group of biotin and the epsilon-amino group of the modified lysine. Lipoate-protein ligase A (LplA) catalyses the formation of an amide linkage between lipoic acid and a specific lysine residue in lipoate dependent enzymes. 198 -319744 cd16436 beta_Kdo_transferase beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. KpsC and KpsS are retaining beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferases. They are part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. 222 -319745 cd16437 beta_Kdo_transferase_KpsC beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase KpsC. KpsC is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides, that are important virulence factors for many pathogenic bacteria. KpsC contains a domain duplication. 256 -319746 cd16438 beta_Kdo_transferase_KpsS_like beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase KpsS like. KpsS is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. 254 -319747 cd16439 beta_Kdo_transferase_KpsC_2 beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase KpsC, repeat 2. KpsC is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. KpsC contains a domain duplication. 259 -319748 cd16440 beta_Kdo_transferase_KpsC_1 beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase KpsC, repeat1. KpsC is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. KpsC contains a domain duplication. 262 -319749 cd16441 beta_Kdo_transferase_KpsS beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase KpsS. KpsS is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. 307 -319741 cd16442 BPL biotin protein ligase. Biotin protein ligase (EC 6.3.4.15) catalyzes the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. Biotin protein ligase (BPL) is the enzyme responsible for attaching biotin to a specific lysine at the active site of biotin enzymes. Biotin attachment is a two step reaction that results in the formation of an amide linkage between the carboxyl group of biotin and the epsilon-amino group of the modified lysine. 173 -319742 cd16443 LplA lipoate-protein ligase. Lipoate-protein ligase A (LplA) catalyzes the formation of an amide linkage between free lipoic acid and a specific lysine residue of the lipoyl domain in lipoate dependent enzymes, similar to the biotinylation reaction mediated by biotinyl protein ligase (BPL). The two step reaction includes activation of exogenously supplied lipoic acid at the expense of ATP to lipoyl-AMP and then transfer to the epsilon-amino group of a specific lysine residue of the lipoyl domain of the target protein. 209 -319743 cd16444 LipB lipoyl/octanoyl transferase. Lipoate-protein ligase B is a octanoyl-[acyl carrier protein]-protein acyltransferase the catalyzes the first step of lipoic acid synthesis. It transfers endogenous octanoic acid attached via a thioester bond to acyl carrier protein (ACP) onto lipoyl domains, which is later converted by lipoate synthase LipA into lipoylated derivatives. 199 -319362 cd16448 RING-H2 H2 subclass of RING (RING-H2) finger and its variants. RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized as two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have different Cys/His pattern. Some lack a single Cys or His residues at typical Zn ligand positions. Especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can indeed chelate Zn in a RING finger as well. This family corresponds to H2 subclass of RING (RING-H2) finger proteins that are characterized by containing C3H2C3-type canonical RING-H2 fingers or noncanonical RING-H2 finger variants, including C4HC3- (RING-CH alias RINGv), C3H3C2-, C3H2C2D-, C3DHC3-, and C4HC2H-type modified RING-H2 fingers. The canonical RING-H2 finger has been defined as C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-H-X2-C-X(4-48)-C-X2-C, X is any amino acid and the number of X residues varies in different fingers. It binds two Zn ions in a unique "cross-brace" arrangement, which distinguishes it from tandem zinc fingers and other similar motifs. RING-H2 finger can be found in a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serves as a scaffold for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates. 44 -319363 cd16449 RING-HC HC subclass of RING (RING-HC) finger and its variants. RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized into two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have a different Cys/His pattern. Some lack a single Cys or His residue at typical Zn ligand positions, especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can chelate Zn in a RING finger as well. This family corresponds to HC subclass of RING (RING-HC) finger proteins that are characterized by containing C3HC4-type canonical RING-HC fingers or noncanonical RING-HC finger variants, including C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type modified RING-HC fingers. The canonical RING-HC finger has been defined as C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C. It binds two Zn ions in a unique "cross-brace" arrangement, which distinguishes it from tandem zinc fingers and other similar motifs. RING-HC finger can be found in a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle, and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serve as scaffolds for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates. 39 -319364 cd16450 mRING-C3HGC3_RFWD3 Modified RING finger, C3HGC3-type, found in RING finger and WD repeat domain-containing protein 3 (RFWD3) and similar proteins. RFWD3, also known as RING finger protein 201 (RNF201) or FLJ10520, is an E3 ubiquitin-protein ligase that forms a complex with Mdm2 and p53 to synergistically ubiquitinate p53 and acts as a positive regulator of p53 stability in response to DNA damage. It is phosphorylated by checkpoint kinase ATM/ATR and the phosphorylation mutant fails to stimulate p53 ubiquitination. RFWD3 also functions as a novel replication protein A (RPA)-associated protein involved in DNA replication checkpoint control. RFWD3 contains an N-terminal SQ-rich region followed by a RING finger domain that exhibits robust E3 ubiquitin ligase activity toward p53, a coiled-coil domain and three WD40 repeats in the C-terminus, the latter two of which may be responsible for protein-protein interaction. The RING finger in this family is a modified C3HGC3-type RING finger, but not a canonical C3H2C3-type RING-H2 finger or C3HC4-type RING-HC finger. 49 -319365 cd16451 mRING_PEX12 Modified RING finger found in peroxin-12 (PEX12) and similar proteins. PEX12, also known as peroxisome assembly protein 12 or peroxisome assembly factor 3 (PAF-3), is a RING finger domain-containing integral membrane peroxin required for protein import into peroxisomes. Mutations in human PEX12 result in the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III), a lethal neurological disorder. PEX12 also functions as an E3-ubiquitin ligase that facilitates the PEX4-dependent monoubiquitination of PEX5, a key player in peroxisomal matrix protein import, to control PEX5 receptor recycling or degradation. PEX12 contains a modified RING finger that lacks the third, fourth, and eighth zinc-binding residues of the consensus RING finger motif, suggesting PEX12 may only bind one zinc ion. 42 -319366 cd16452 SP-RING_like A group of variants of RING finger including SP-RING finger, SPL-RING finger, dRING finger, and RING-like Rtf2 domain. The family corresponds to a group of proteins with variants of RING fingers that are characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues compared with the classic C3H2C3-/C3HC4-type RING fingers. They include SP-RING finger found in the Siz/PIAS RING (SP-RING) family of SUMO E3 ligases, SPL-RING finger found in E3 SUMO-protein ligase NSE2, degenerated RING (dRING) finger found in Saccharomyces cerevisiae required for meiotic nuclear division protein 5 (Rmd5p) and homologs, and RING-like Rtf2 domain found in the replication termination factor 2 (Rtf2) protein family. The SP-RING family includes PIAS (protein inhibitor of activated STAT) proteins, Zmiz proteins, and Siz proteins from plants and fungi. The PIAS (protein inhibitor of activated STAT) protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. NSE2, also known as MMS21 homolog (MMS21) or non-structural maintenance of chromosomes element 2 homolog (Non-SMC element 2 homolog, NSMCE2), is an autosumoylating small ubiquitin-like modifier (SUMO) ligase required for the response to DNA damage. It regulates sumoylation and nuclear-to-cytoplasmic translocation of skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide associated complex (skNAC)-Smyd1 in myogenesis. It is also required for resisting extrinsically induced genotoxic stress. Rmd5p, also known as glucose-induced degradation protein 2 (Gid2) or sporulation protein RMD5, is an E3 ubiquitin ligase that forms the heterodimeric E3 ligase unit of the glucose induced degradation deficient (GID) complex with Gid9 (also known as Fyv10), which has a degenerated RING finger as well. The GID complex triggers polyubiquitylation and subsequent proteasomal degradation of the gluconeogenic enzymes fructose-1, 6-bisphosphate by fructose-1, 6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK), and cytoplasmic malate dehydrogenase (c-MDH). The Rtf2 protein family includes a group of conserved proteins found in eukaryotes ranging from fission yeast to humans. The defining member of the family is Schizosaccharomyces pombe Rtf2 (SpRtf2), which is a proliferating cell nuclear antigen-interacting protein that functions as a key requirement for efficient replication termination at the site-specific replication barrier RTS1. It promotes termination at RTS1 by preventing replication restart. The RING-like Rtf2 domain in fission yeast is required to stabilize a paused DNA replication fork during imprinting at the mating type locus, possibly by facilitating sumoylation of PCNA. The family also includes Arabidopsis RTF2 (AtRTF2), an essential nuclear protein required for both normal embryo development and for proper expression of the GFP reporter gene. It plays a critical role in splicing the GFP pre-mRNA, and may also have a more transient regulatory role during the spliceosome cycle. The biological function of Rtf2 homologs found in eumetazoa remains unclear. 42 -319367 cd16453 RING-Ubox U-box domain, a modified RING finger. The U-box protein family is a family of E3 enzymes that also includes the HECT family and the RING finger family. E3 enzyme is ubiquitin-protein ligase that cooperates with a ubiquitin-activating enzyme (E1) and a ubiquitin-conjugating enzyme (E2), and plays a central role in determining the specificity of the ubiquitination system. It removes the ubiquitin molecule from E2 enzyme and attaches it to the target substrate, forming a covalent bond between ubiquitin and the target. U-box proteins are characterized by the presence of a U-box domain of approximately 70 amino acids. U-box is a modified form of the RING finger domain that lacks metal chelating cysteines and histidines. It resembles the cross-brace RING structure consisting of three beta-sheets and a single alpha-helix, which would be stabilized by salt bridges instead of chelated metal ions. U-box proteins are widely distributed among eukaryotic organisms and show a higher prevalence in plants than in other organisms. 40 -319368 cd16454 RING-H2_PA-TM-RING RING finger, H2 subclass, found in the PA-TM-RING ubiquitin ligase family. The PA-TM-RING family represents a group of transmembrane-type E3 ubiquitin ligases, which has been characterized by an N-terminal transient signal peptide, a PA (protease-associated) domain, a TM (transmembrane) domain, as well as a C-terminal C3H2C3-type RING-H2 finger domain. It includes RNF13, RNF167, ZNRF4 (zinc and RING finger 4), GRAIL (gene related to anergy in lymphocytes)/RNF128, RNF130, RNF133, RNF148, RNF149 and RNF150 (which are more closely related), as well as RNF43 and ZNRF3 which have substantially longer C-terminal tail extensions compared with the others. PA-TM-RING proteins are expressed at low levels in all mammalian tissues and species, but they are not present in yeast. They play a common regulatory role in intracellular trafficking/sorting, suggesting that abrogation of their function may result in dysregulation of cellular signaling events in cancer. 43 -319369 cd16455 RING-H2_AMFR RING finger, H2 subclass, found in autocrine motility factor receptor (AMFR) and similar proteins. AMFR, also known as AMF receptor, or RING finger protein 45, or ER-protein gp78, is an internalizing cell surface glycoprotein localized in both plasma membrane caveolae and the endoplasmic reticulum (ER). It is involved in the regulation of cellular adhesion, proliferation, motility and apoptosis, as well as in the process of learning and memory. AMFR also functions as a RING finger-dependent ubiquitin protein ligase (E3) implicated in degradation from the ER. AMFR contains an N-terminal RING-H2 finger and a C-terminal ubiquitin-associated (UBA)-like CUE domain. 44 -319370 cd16456 RING-H2_APC11 RING finger, H2 subclass, found in anaphase-promoting complex subunit 11 (APC11) and similar proteins. APC11, also known as cyclosome subunit 11, or hepatocellular carcinoma-associated RING finger protein, is a C3H2C3-type RING-H2 protein that facilitates ubiquitin chain formation by recruiting ubiquitin-charged ubiquitin conjugating enzymes (E2) through its RING-H2 domain. APC11 and its partner the cullin-like subunit APC2 form the dynamic catalytic core of the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), also known as the cyclosome, which is a ubiquitin-protein ligase (E3) composed of at least 12 subunits and controls cell division by ubiquitinating cell cycle regulators, such as cyclin B and securin, to drive their timely degradation. APC11 can be inhibited by hydrogen peroxide, which may contributes to the delay in cell cycle progression through mitosis that is characteristic of cells subjected to oxidative stress. APC11 contains a canonical RING-H2-finger domain, which includes one histidine and seven cysteine residues that coordinate two Zn2+ ions. In addition, it contains a third Zn2+-binding site and the third Zn2+ ion is not essential for its ligase activity. 63 -319371 cd16457 RING-H2_BRAP2 RING finger, H2 subclass, found in BRCA1-associated protein (BRAP2) and similar proteins. BRAP2, also known as impedes mitogenic signal propagation (IMP), RING finger protein 52, or renal carcinoma antigen NY-REN-63, is a novel cytoplasmic protein interacting with the two functional nuclear localization signal (NLS) motifs of BRCA1, a nuclear protein linked to breast cancer. It also binds to the SV40 large T antigen NLS motif and the bipartite NLS motif found in mitosin. BRAP2 serves as a cytoplasmic retention protein and plays a role in in the regulation of nuclear protein transport. It contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C3H2C3-type RING-H2 finger and a UBP-type zinc finger. 44 -319372 cd16458 RING-H2_Dmap_like RING finger, H2 subclass, found in defective in mitotic arrest proteins (Dmap) and similar proteins. The subfamily includes one Schizosaccharomyces pombe protein Dma1 (SpDma1p), two Saccharomyces cerevisiae proteins, Dma1 (ScDma1p) and Dma2 (ScDma2p), and their homologs from fungi. SpDma1p was originally isolated as multicopy suppressor of the temperature-sensitive growth phenotype caused by cdc16 mutations. It functions to prevent mitotic exit and cytokinesis during spindle checkpoint arrest by inhibiting septation initiation network (SIN) signaling. ScDma1p and ScDma2p, also known as checkpoint forkhead associated with RING domains-containing protein 1 and 2 respectively, seem to be functionally redundant. They are involved in proper septin ring positioning and cytokinesis. The simultaneous lack of Dma1 and Dma2 leads to spindle mispositioning and defects in the spindle position checkpoint. All members in this family contain a forkhead-associated domain (FHA) and a C3H2C3-type RING-H2 finger, the latter suggesting they may possibly possess E3 ubiquitin-ligase activities. 47 -319373 cd16459 RING-H2_DTX1_like RING finger, H2 subclass, found in E3 ubiquitin-protein ligase Deltex1 (DTX1), Deltex2 (DTX2), Deltex4 (DTX4), and similar proteins. This family includes Drosophila melanogaster Deltex, its vertebrate homologs, DTX1, DTX2, and DTX4, and other similar proteins mainly from eumetazoa. Deltex is a ubiquitously expressed cytoplasmic ubiquitin E3 ligase that mediates Notch activation in Drosophila. It selectively suppresses T-cell activation through degradation of a key signaling molecule, MAP kinase kinase kinase 1 (MEKK1). It also inhibits Jun-mediated transcription at the stage of Ras-dependent Jun N-terminal protein kinase (JNK) activation. Deltex contains N-terminal two Notch-binding WWE domains that physically interact with the Notch ankyrin domains, a proline-rich motif that shares homology with SH3-binding domains, and a RING finger at the C-terminus. The vertebrate homologs of Deltex have been involved in Notch signaling and neurogenesis. The mammalian DTX1 is most closely related to the Drosophila Deltex. Both of them bind to SH3-domain containing protein Grb2 and further inhibit E2A. DTX1 functions as a Notch downstream transcription regulator. It interacts with the transcription coactivator p300 and inhibits transcription activation mediated by the neural specific transcription factor MASH1. It is also a transcription target of nuclear factor of activated T cells (NFAT) and participated in T cell anergy and Foxp3 protein level maintenance in vivo. Moreover, DTX1 promotes protein kinase C theta degradation and sustains Casitas B-lineage lymphoma expression. DTX4, also known as RING finger protein 155, shares the highest degree of sequence similarity with DTX1. So it likely interacts with the intracellular domain of Notch as well. Like DTX1 and DTX4, DTX2 is expressed in thymocytes. It interacts with the intracellular domain of Notch receptors and acts as a negative regulator of Notch signals in T cells. However, the endogenous levels of DTX1 and DTX2 is not important for regulating Notch signals during thymocyte development. In contrast to other DTXs, DTX3 does not contain N-terminal two Notch-binding WWE domains, but a short unique N-terminal domain. It does not interact with intracellular domain of Notch. In addition, it has a different class of RING finger (C3HC4 type or RING-HC subclass) than do the other DTXs which harbor a C3H2C3-type RING-H2 finger. Thus DTX3 is not included in this family. 64 -319374 cd16460 RING-H2_DZIP3 RING finger, H2 subclass, found in DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3) and similar proteins. DZIP3, also known as RNA-binding ubiquitin ligase of 138 kDa (RUL138) or 2A-HUB protein, is an RNA-binding E3 ubiquitin-protein ligase that interacts with coactivator-associated arginine methyltransferase 1 (CARM1) and acts as a transcriptional coactivator of estrogen receptor (ER) alpha. It is also a histone H2A ubiquitin ligase that catalyzes monoubiquitination of H2A at lysine 119, functioning as a combinatoric component of the repression machinery required for repressing a specific chemokine gene expression program, critically modulating migratory responses to Toll-like receptors (TLR) activation. DZIP3 contains a C3H2C3-type RING-H2 finger at the C-terminus. 43 -319375 cd16461 RING-H2_EL5_like RING finger, H2 subclass, found in rice E3 ubiquitin-protein ligase EL5 and similar proteins. EL5, also known as protein ELICITOR 5, is an E3 ubiquitin-protein ligase containing an N-terminal transmembrane domain and a C3H2C3-type RING-H2 finger that is a binding site for ubiquitin-conjugating enzyme (E2). It can be rapidly induced by N-acetylchitooligosaccharide elicitor. EL5 catalyzes polyubiquitination via the Lys48 residue of ubiquitin, and thus plays a crucial role as a membrane-anchored E3 in the maintenance of cell viability after the initiation of root primordial formation in rice. It also acts as an anti-cell death enzyme that might be responsible for mediating the degradation of cytotoxic proteins produced in root cells after the actions of phytohormones. Moreover, EL5 interacts with UBC5b, a rice ubiquitin carrier protein, through its RING-H2 finger. EL5 is an unstable protein, and its degradation is regulated by the C3H2C3-type RING-H2 finger in a proteasome-independent manner. 43 -319376 cd16462 RING-H2_Pep3p_like RING finger, H2 subclass, found in Saccharomyces cerevisiae vacuolar membrane protein PEP3 (Pep3p) and similar proteins. Pep3p, also known as carboxypeptidase Y-deficient protein 3, vacuolar morphogenesis protein 8, vacuolar protein sorting-associated protein 18 (Vps18p), or vacuolar protein-targeting protein 18, is a vacuolar membrane protein that affects late Golgi functions required for vacuolar protein sorting and efficient alpha-factor prohormone maturation. It is required for vacuolar biogenesis caused hypersensitivity to heat shock and ethanol stresses, probably due to disappearance of normal vacuoles. As a component of the homotypic fusion and vacuole protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET) complexes, its overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Moreover, Pep3p forms the Class C Vps protein complex (C-Vps complex) with Pep5p (also known as Vps11), Vps16, and Vps33, and is necessary for trafficking of hydrolase precursors to the vacuole by promoting vesicular docking reactions with SNARE proteins. Pep3p contains a C3H2C3-type RING-H2 finger at the C-terminus. 50 -319377 cd16463 RING-H2_PHR RING finger, H2 subclass, found in the PHR protein family. The PHR protein family represents an evolutionally conserved family of large proteins including human E3 ubiquitin ligase protein associated with Myc (Pam) and its homologs, Phr1 (for Pam/Highwire/RPM-1) in mouse, Highwire (HIW) in Drosophila, RPM-1 (regulator of presynaptic morphology 1) in Caenorhabditis elegans, and Esrom in zebrafish. Those proteins are large E3 ubiquitin ligases containing regulator of chromosome condensation (RCC) homology domains (RHD-1 and RHD-2) with inferred guanine exchange factor (GEF) activity, a Myc-binding domain, a B-box zinc finger, and a C-terminal C3H2C3-type RING-H2 finger with E3 ubiquitin (Ub) ligase activity. They play an important role in axon guidance and synaptogenesis. They regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans, and may control a variety of signaling pathways, including cAMP signaling in mammalian cells, JNK/p38 MAPK signaling in Drosophila and C. elegans, and bone morphogenetic protein signaling in Drosophila. Pam also known as Myc-binding protein 2 (MYCBP2), or Pam/highwire/rpm-1 protein (PHR1), negatively regulates neuronal growth, synaptogenesis and synaptic plasticity by modulating several signaling pathways including the p38 MAPK signaling cascade. It also participates in receptor and ion channel internalization, such as regulating internalization of transient receptor potential vanilloid receptor 1 (TRPV1) in peripheral sensory neurons, as well as duration of thermal hyperalgesia through p38 MAPK. It interacts with neuron-specific electroneutral potassium (K+) and chloride (Cl-) cotransporter KCC2 and modulates its function. Moreover, Pam genetically interacts with Robo2 to modulate axon guidance in the olfactory system. It also associates with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Furthermore, Pam is the longest lasting nontranscriptional regulator of adenylyl cyclase activity, and can mediate sustained inhibition of cAMP signaling by sphingosine-1-phosphate. It is also involved in spinal nociceptive processing. Phr1 is an essential regulator of retinal ganglion cell projection during both dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) topographic map development. RPM-1 positively regulates a Rab GTPase pathway to promote vesicular trafficking via late endosomes, thereby regulating synapse formation and axon termination. Esrom has E3 ligase activity and modulates the amount of phosphorylated Tuberin, a tumor suppressor, in growth cones. It is required in formation of the retinotectal projection. 55 -319378 cd16464 RING-H2_Pirh2 RING finger, H2 subclass, found in p53-induced RING-H2 protein (Pirh2) and similar proteins. Pirh2, also known as RING finger and CHY zinc finger domain-containing protein 1 (Rchy1), androgen receptor N-terminal-interacting protein, CH-rich-interacting match with PLAG1, RING finger protein 199 (RNF199), or zinc finger protein 363 (ZNF363), is a p53 inducible E3 ubiquitin-protein ligase that functions as a negative regulator of p53. It ubiquitylates preferably the tetrameric form of p53 in vitro and in vivo, suggesting a role of Pirh2 in downregulating the transcriptionally active form of p53 in the cell. Moreover, Pirh2 inhibits p73, a homolog of the tumor suppressor p53, transcriptional activity by promoting its ubiquitination. It also monoubiquitinates DNA polymerase eta (PolH) to suppress translesion DNA synthesis. Furthermore, Pirh2 functions as a negative regulator of the cyclin-dependent kinase inhibitor p27(Kip1) function by promoting ubiquitin-dependent proteasomal degradation. In addition, Pirh2 enhances androgen receptor (AR) signaling through inhibition of histone deacetylase 1 (HDAC1) and is overexpressed in prostate cancer. Pirh2 also interacts with TIP60 and the TIP60-Pirh2 association may regulate Pirh2 stability. In addition, the oncoprotein pleomorphic adenoma gene like 2 (PLAGL2) can bind to Pirh2 dimer and therefore control the stability of Pirh2. Pirh2 contains a total of nine zinc-binding sites with six located at the N-terminal region, two in the C3H2C3-type RING-H2 domain, and one in the C-terminal region. Nine zinc binding sites comprise three different zinc coordination schemes, including RING type cross-brace zinc coordination, C4 zinc finger, and a novel left-handed beta-spiral zinc-binding motif formed by three recurrent CCHC sequence motifs. 45 -319379 cd16465 RING-H2_PJA1_2 RING finger, H2 subclass, found in protein E3 ubiquitin-protein ligase Praja-1, Praja-2, and similar proteins. The family includes two highly similar E3 ubiquitin-protein ligases Praja-1 and Praja-2. Praja-1, also known as RING finger protein 70, is a RING-H2 finger ubiquitin ligase encoded by gene PJA1, a novel human X chromosome gene abundantly expressed in brain. It has been implicated in bone and liver development, as well as memory formation and X-linked mental retardation (MRX). Praja-1 interacts with and activates the ubiquitin-conjugating enzyme UbcH5B, and shows E2-dependent E3 ubiquitin ligase activity. It is a 3-deazaneplanocin A (DZNep)-induced ubiquitin ligase that directly ubiquitinates individual polycomb repressive complex 2 (PRC2) subunits in a cell free system, which leads to their proteasomal degradation. It also plays an important role in neuronal plasticity, which is the basis for learning and memory. Moreover, Praja-1 ubiquitinates embryonic liver fodrin (ELF) and Smad3, but not Smad4, in a transforming growth factor-beta (TGF-beta)-dependent manner. It controls ELF abundance through ubiquitin-mediated degradation, and further regulates TGF-beta signaling, which plays a key role in the suppression of gastric carcinoma. Furthermore, Praja-1 regulates the transcription function of the homeodomain protein Dlx5 by controlling the stability of the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1, via an ubiquitin-dependent degradation pathway. Praja-2, also known as RING finger protein 131, or NEURODAP1, or KIAA0438, is an E2-dependent E3 ubiquitin ligase that interacts with and activates the ubiquitin-conjugating enzyme UbcH5B. It functions as an A-kinase anchoring protein (AKAP)-like E3 ubiquitin ligase that plays a critical role in controlling cyclic AMP (cAMP) dependent PKA activity and pro-survival signaling, and further promotes cell proliferation and growth. Praja-2 is also involved in protein sorting at the postsynaptic density region of axosomatic synapses and possibly plays a role in synaptic communication and plasticity. Moreover, Praja-2, together with the AMPK-related kinase SIK2 and the CDK5 activator CDK5R1/p35, forms a SIK2-p35-PJA2 complex that plays an essential role for glucose homeostasis in pancreatic beta cell functional compensation. Furthermore, Praja-2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumor-suppressor Hippo signaling. Both Praja-1 and Praja-2 contain a potential nuclear localization signal (NLS) and a C-terminal C3H2C3-type RING-H2 motif. 46 -319380 cd16466 RING-H2_RBX2 RING finger, H2 subclass, found in RING-box protein 2 (RBX2) and similar proteins. RBX2, also known as CKII beta-binding protein 1 (CKBBP1), RING finger protein 7 (RNF7), regulator of cullins 2 (ROC2), or sensitive to apoptosis gene protein (SAG), is an E3 ubiquitin-protein ligase that protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in embryogenesis and vasculogenesis. It promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1alpha, IkappaBalpha, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. RBX2 is necessary for ubiquitin ligation activity of the multimeric cullin (Cul)-RING E3 ligases (CRLs). RBX2-containing CRLs are involved in NEDD8 pathway and RBX2 specifically regulate NEDD8ylation of Cul5. It can bind and activate HIV-1 Vif-Cullin5 E3 ligase complex in vitro. It is also a substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. The inactivation of RBX2 E3 ubiquitin ligase activity triggers senescence and inhibits Kras-induced immortalization. Endothelial deletion of RBX2 causes embryonic lethality and blocks tumor angiogenesis, suggesting a way for anti-angiogenesis therapy of human cancer. Moreover, as a component of Cullin 5-RING E3 ubiquitin ligase (CRL5) complex, RBX2 regulates neuronal migration through different CRL5 adaptors, such as SOCS7. Furthermore, RBX2 functions as a redox inducible antioxidant protein that scavenges oxygen radicals by forming inter- and intra-molecular disulfide bonds when acting alone. RBX2 contains a C-terminal C3H2C3-type RING-H2 finger that is essential for its ligase activity. 60 -319381 cd16467 RING-H2_RNF6_like RING finger, H2 subclass, found in E3 ubiquitin-protein ligase RNF6, RNF12, and similar proteins. RNF6 is an androgen receptor (AR)-associated protein that induces AR ubiquitination and promotes AR transcriptional activity. RNF6-induced ubiquitination may regulate AR transcriptional activity and specificity through modulating cofactor recruitment. RNF6 is overexpressed in hormone-refractory human prostate cancer tissues and required for prostate cancer cell growth under androgen-depleted conditions. Moreover, RNF6 regulates local serine/threonine kinase LIM kinase 1 (LIMK1) levels in axonal growth cones. RNF6-induced LIMK1 polyubiquitination is mediated via K48 of ubiquitin and leads to proteasomal degradation of the kinase. RNF6 also binds and upregulates the Inha promoter, and functions as a transcription regulatory protein in the mouse sertoli cell. Furthermore, RNF6 acts as a potential tumor suppressor gene involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC). RNF12, also known as LIM domain-interacting RING finger protein, or RING finger LIM domain-binding protein (R-LIM), is E3 ubiquitin-protein ligase encoded by gene RLIM that is crucial for normal embryonic development in some species and for normal X inactivation in mice. It thus functions as a major sex-specific epigenetic regulator of female mouse nurturing tissues. RNF12 is widely expressed during embryogenesis, and mainly localizes to the cell nucleus, where it regulates the levels of many proteins, including CLIM, LMO, HDAC2, TRF1, SMAD7, and REX1, by proteasomal degradation. Both RNF6 and RNF12 contain a well conserved C3H2C3-type RING-H2 finger. 43 -319382 cd16468 RING-H2_RNF11 RING finger, H2 subclass, found in RING finger protein 11 (RNF11) and similar proteins. RNF11 is an E3 ubiquitin-protein ligase that acts both as an adaptor and a modulator of itch-mediated control of ubiquitination events underlying membrane traffic. It is the downstream of an enzymatic cascade for the ubiquitination of specific substrates. It is also a molecular adaptor of homologous to E6-associated protein C-terminus (HECT)-type ligases. RNF11 has been implicated in the regulation of several signaling pathways. It enhances the transforming growth factor receptor (TGFR) signaling by both abrogating Smurf2-mediated receptor ubiquitination and by promoting the Smurf2-mediated degradation of AMSH (associated molecule with the SH3 domain of STAM), a de-ubiquitinating enzyme that enhances transforming growth factor-beta (TGF-beta) signaling and epidermal growth factor receptor (EGFR) endosomal recycling. It also acts directly on Smad4 to enhance Smad4 function, and plays a role in prolonged TGF-beta signaling. Moreover, RNF11 functions as a critical component of the A20 ubiquitin-editing protein complex that negatively regulates tumor necrosis factor (TNF)-mediated nuclear factor (NF)-kappaB activation. It also interacts with Smad anchor for receptor activation (SARA) and the endosomal sorting complex required for transport (ESCRT)-0 complex, thus participating in the regulation of lysosomal degradation of EGFR. Furthermore, RNF11 acts as a novel GGA cargo actively participating in regulating the ubiquitination of the GGA protein family. In addition, RNF11 functions together with TAX1BP1 to target TANK-binding kinase 1 (TBK1)/IkappaB kinase IKKi, and further restricts antiviral signaling and type I interferon (IFN)-beta production. RNF11 contains an N-terminal PPPY motif that binds WW domain-containing proteins such as AIP4/itch, Nedd4 and Smurf1/2 (SMAD-specific E3 ubiquitin-protein ligase 1/2), and a C-terminal C3H2C3-type RING-H2 finger that functions as a scaffold for the coordinated transfer of ubiquitin to substrate proteins together with the E2 enzymes UbcH527 and Ubc13. 43 -319383 cd16469 RING-H2_RNF24_like RING finger, H2 subclass, found in RING finger proteins RNF24, RNF122, and similar proteins. The family includes RNF24, RNF122, and similar proteins. RNF24 is an intrinsic membrane protein localized in the Golgi apparatus. It specifically interacts with the ankyrin-repeats domains (ARDs) of TRPC1, ?3, ?4, ?5, ?6, and ?7, and affects TRPC intracellular trafficking without affecting their activity. RNF122 is a RING finger protein associated with HEK 293T cell viability. It is localized to the endoplasmic reticulum (ER) and the Golgi apparatus, and overexpressed in anaplastic thyroid cancer cells. RNF122 functions as an E3 ubiquitin ligase that can ubiquitinate itself and undergoes degradation through its RING finger in a proteasome-dependent manner. Both RNF24 and RNF122 contain an N-terminal transmembrane domain and a C-terminal C3H2C3-type RING-H2 finger. 47 -319384 cd16470 RING-H2_RNF25 RING finger, H2 subclass, found in RING finger protein 25 (RNF25) and similar proteins. RNF25, also known as AO7, is a putative E3 ubiquitin-protein ligase that was initially identified as an interacting protein with an ubiquitin-conjugating enzyme, Ubc5B. It is ubiquitously expressed in various tissues and predominantly localized in the nucleus. RNF25 activates the nuclear factor (NF)-kappaB-dependent gene expression upon stimulation with Interleukin-1 beta (IL-1beta), or tumor necrosis factor (TNF), or overexpression of NF-kappaB-inducing kinase. It interacts with the p65 transactivation domain (TAD) and modulates its transcriptional activity. RNF25 contains an N-terminal RWD domain, a C3H2C3-type RING-H2 finger, and a C-termial Pro-rich region. Both the RING-H2 finger and the C-terminal regions of RNF25 are necessary for the transcriptional activation. 68 -319385 cd16471 RING-H2_RNF32 RING finger, H2 subclass, found in RING finger protein 32 (RNF32) and similar proteins. RNF32 is mainly expressed in testis spermatogenesis, most likely in spermatocytes and/or in spermatids, suggesting a possible role in sperm formation. RNF32 contains two C3H2C3-type RING-H2 fingers separated by an IQ domain of unknown function. Although the biological function of RNF32 remains unclear, the protein with double RING-H2 fingers may act as a scaffold for binding several proteins that function in the same pathway. 49 -319386 cd16472 RING-H2_RNF38_like RING finger, H2 subclass, found in RING finger proteins RNF38, RNF44, and similar proteins. The family includes RING finger proteins RNF38, RNF44, and similar proteins. RNF38 is a nuclear E3 ubiquitin protein ligase that plays a role in regulating p53. RNF44 is an uncharacterized RING finger protein that shows high sequence similarity with RNF38. Both RNF38 and RNF44 contain a coiled-coil motif, a KIL motif (Lys-X2-Ile/Leu-X2-Ile/Leu, X can be any amino acid), and a C3H2C3-type RING-H2 finger. In addition, RNF38 harbors two potential nuclear localization signals. 45 -319387 cd16473 RING-H2_RNF103 RING finger, H2 subclass, found in RING finger protein 103 (RNF103) and similar proteins. RNF103, also known as KF-1, or zinc finger protein 103 homolog (Zfp-103), is an endoplasmic reticulum (ER)-resident E3 ubiquitin-protein ligase that is widely expressed in many different organs, including brain, heart, kidney, spleen, and lung. It is involved in the ER-associated degradation (ERAD) pathway through interacting with components of the ERAD pathway, including Derlin-1 and VCP. RNF103 contains several hydrophobic regions at its N-terminal and middle regions, as well as a C-terminal C3H2C3-type RING-H2 finger. 46 -319388 cd16474 RING-H2_RNF111_like RING finger, H2 subclass, found in RING finger proteins RNF111, RNF165, and similar proteins. The family includes RING finger proteins RNF111, RNF165, and similar proteins. RNF111, also known as Arkadia, is a nuclear E3 ubiquitin-protein ligase that targets intracellular effectors and modulators of transforming growth factor beta (TGF-beta)/Nodal-related signaling for polyubiquitination and proteasome-dependent degradation. It also interacts with the clathrin-adaptor 2 (AP2) complex and regulates endocytosis of certain cell surface receptors, leading to modulation of epidermal growth factor (EGF) and possibly other signaling pathways. The N-terminal half of RNF111 harbors three SUMO-interacting motifs (SIMs). It thus functions as a SUMO-targeted ubiquitin ligase (STUbL) that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response, as well as triggers degradation of signal-induced polysumoylated proteins, such as the promyelocytic leukemia protein (PML). RNF165, also known as Arkadia-like 2, or Arkadia2, or Ark2C, is an E3 ubiquitin ligase with homology to C-terminal half of RNF111. It is expressed specifically in the nervous system, and can serve to amplify neuronal responses to specific signals. It thus acts as a positive regulator of bone morphogenetic protein (BMP)-Smad signaling that is involved in motor neuron (MN) axon elongation. Both RNF165 and RNF111 contain a C-terminal C3H2C3-type RING-H2 finger. 46 -319389 cd16475 RING-H2_RNF121_like RING finger, H2 subclass, found in RING finger proteins RNF121, RNF175 and similar proteins. The family includes RNF121, RNF175 and similar proteins. RNF121 is an E3-ubiquitin ligase present in the endoplasmic reticulum (ER) and cis-Golgi compartments. It is a novel regulator of apoptosis. It also facilitates the degradation and membrane localization of voltage-gated sodium (NaV) channels, and thus plays a role in the quality control of NaV channels during their synthesis and subsequent transport to the membrane. Moreover, RNF121 acts as a broad regulator of nuclear factor kappaB (NF-kappaB) signaling since its silencing also dampens NF-kappaB activation following stimulation of toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like Receptors (RLRs) or after DNA damages. RNF121 contains five conserved transmembrane (TM) domains and a C3H2C2-type RING-H2 finger. RNF175 is an uncharacterized RING finger protein that shows high sequence similarity with RNF121. This family also includes Arabidopsis RING finger E3 ligase RHA2A, RHA2B, and their homologs. RHA2A is a novel positive regulator of abscisic acid (ABA) signaling during seed germination and early seedling development. RHA2B may play a role in the ubiquitin-dependent proteolysis pathway that respond to proteasome inhibition. All family members contain a C3H2C3-type RING-H2 finger, which is responsible for E3-ubiquitin ligase activity. 55 -319390 cd16476 RING-H2_RNF139_like RING finger, H2 subclass, found in RING finger proteins RNF139, RNF145, and similar proteins. RNF139, also known as translocation in renal carcinoma on chromosome 8 protein (TRC8), is an endoplasmic reticulum (ER)-resident multi-transmembrane protein that functions as a potent growth suppressor in mammalian cells, inducing G2/M arrest, decreased DNA synthesis and increased apoptosis. It is a tumor suppressor that has been implicated in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control. The mutation of RNF139 has been identified in families with hereditary renal (RCC) and thyroid cancers. RNF145 is an uncharacterized RING finger protein encoded by RNF145 gene, which is expressed in T lymphocytes, and its expression is altered in acute myelomonocytic and acute promyelocytic leukemias. Although its biological function remains unclear, RNF145 shows high sequence similarity with RNF139. Both RNF139 and RNF145 contain a C3H2C3-type RING-H2 finger with possible E3-ubiquitin ligase activity. 41 -319391 cd16477 RING-H2_RNF214 RING finger, H2 subclass, found in RING finger protein 214 (RNF214) and similar proteins. RNF214 is an uncharacterized RING finger protein containing a C3H2C3-type RING-H2 finger, suggesting possible E3-ubiquitin ligase activity. 45 -319392 cd16478 RING-H2_Rapsyn RING finger, H2 subclass, found in 43 kDa receptor-associated protein of the synapse (Rapsyn) and similar proteins. Rapsyn, also known as acetylcholine receptor-associated 43 kDa protein or RING finger protein 205 (RNF205), is a 43 kDa postsynaptic protein that plays an essential role in the clustering and maintenance of acetylcholine receptor (AChR) in the postsynaptic membrane of the motor endplate (EP). AChRs enable the transport of rapsyn from the Golgi complex to the plasma membrane through a molecule-specific interaction. Rapsyn also mediates subsynaptic anchoring of protein kinase A (PKA) type I in close proximity to the postsynaptic membrane, which is essential for synapse maintenance. Its mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Rapsyn contains an N-terminal myristoylation signal required for membrane association, seven tetratricopeptide repeats (TPRs) that subserve rapsyn self-association, a coiled-coil domain responsible for the binding of determinants within the long cytoplasmic loop of each AChR subunit, a C3H2C3-type RING-H2 finger that binds to the cytoplasmic domain of beta-dystroglycan and to S-NRAP and links rapsyn to the subsynaptic cytoskeleton, and a serine phosphorylation site. 47 -319393 cd16479 RING-H2_synoviolin RING finger, H2 subclass, found in synoviolin and similar proteins. Synoviolin, also known as synovial apoptosis inhibitor 1 (Syvn1), Hrd1, or Der3, is an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis and plays a role in homeostasis maintenance. It also targets tumor suppressor gene p53 for proteasomal degradation, suggesting the crosstalk between ER associated degradation (ERAD) and p53 mediated apoptotic pathway under ER stress. Moreover, Synoviolin controls body weight and mitochondrial biogenesis through negative regulation of the thermogenic coactivator peroxisome proliferator-activated receptor coactivator (PGC)-1beta. It upregulates amyloid beta production by targeting a negative regulator of gamma-secretase, Retention in endoplasmic reticulum 1 (Rer1), for degradation. It is also involved in the degradation of endogenous immature nicastrin, and affects amyloid beta-protein generation. Moreover, Synoviolin is highly expressed in rheumatoid synovial cells and may be involved in the pathogenesis of rheumatoid arthritis (RA). It functions as an anti-apoptotic factor that is responsible for the outgrowth of synovial cells during the development of RA. It promotes inositol-requiring enzyme 1 (IRE1) ubiquitination and degradation in synovial fibroblasts with collagen-induced arthritis. Furthermore, the upregulation of Synoviolin may represent a protective response against neurodegeneration in Parkinson"s disease (PD). In addition, Synoviolin is involved in liver fibrogenesis. Synoviolin contains a C3H2C2-type RING-H2 finger. 43 -319394 cd16480 RING-H2_TRAIP RING finger, H2 subclass, found in TRAF-interacting protein (TRAIP) and similar proteins. TRAIP, also known as RING finger protein 206 (RNF206) or TRIP, is a ubiquitously expressed nucleolar E3 ubiquitin ligase important for cellular proliferation and differentiation. It is found near mitotic chromosomes and functions as a regulator of the spindle assembly checkpoint. TRAIP interacts with tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins and inhibits TNF-alpha-mediated nuclear factor (NF)-kappaB activation. It also interacts with two tumor suppressors CYLD and spleen tyrosine kinase (Syk), and DNA polymerase eta, which facilitates translesional synthesis after DNA damage. TRAIP contains an N-terminal C3H2C2-type RING-H2 finger and an extended coiled-coil domain. 45 -319395 cd16481 RING-H2_TTC3 RING finger, H2 subclass, found in Tetratricopeptide repeat protein 3 (TTC3) and similar proteins. TTC3, also known as protein DCRR1, or TPR repeat protein D, or TPR repeat protein 3, or RING finger protein 105 (RNF105), is an E3 ubiquitin-protein ligase encoded by a gene within the Down syndrome (DS) critical region on chromosome 21. It affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. It inhibits the neuronal-like differentiation of pheocromocytoma cells by activating RhoA and by binding to Citron proteins. TTC3 is an Akt-specific E3 ligase that binds to phosphorylated Akt and facilitates its ubiquitination and degradation within the nucleus. TTC3 contains four N-terminal TPR motifs, a potential coiled-coil region and a Citron binding region in the central part, and a C-terminal C3H2C2-type RING-H2 finger.TTC3, also known as protein DCRR1, TPR repeat protein D, TPR repeat protein 3, or RING finger protein 105 (RNF105), is an E3 ubiquitin-protein ligase encoded by a gene within the Down syndrome (DS) critical region on chromosome 21. It also affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. It inhibits the neuronal-like differentiation of pheocromocytoma cells by activating RhoA and by binding to Citron proteins. TTC3 is an Akt-specific E3 ligase that binds to phosphorylated Akt and facilitates its ubiquitination and degradation within the nucleus. TTC3 contains four N-terminal TPR motifs, a potential coiled-coil region and a Citron binding region in the central part, and a C-terminal C3H2C2-type RING-H2 finger. 42 -319396 cd16482 RING-H2_UBR1_like RING finger, H2 subclass, found in ubiquitin-protein ligase E3-alpha-1 (UBR1), E3-alpha-2 (UBR2), and similar proteins. Two UBR family members, UBR1 and UBR2, are major N-recognin ubiquitin ligases that both function in the N-end rule degradation pathway. They can recognize substrate proteins with type-1 (basic) and type-2 (bulky hydrophobic) N-terminal residues as part of N-degrons and an internal lysine residue for ubiquitin conjugation. They also function in a quality control pathway for degradation of unfolded cytosolic proteins. Their action is stimulated by Hsp70. Moreover, UBR1 and UBR2 are negative regulators of the leucine-mTOR signaling pathway. Leucine might activate this pathway in part through inhibition of their ubiquitin ligase activity. In yeast only one E3, encoded by UBR1, mediates the recognition of substrates by the N-end rule pathway. Saccharomyces cerevisiae UBR1 also functions as an additional E3 ligase in endoplasmic reticulum-associated protein degradation (ERAD) in yeast. It can provide ubiquitin ligation activity for the ERAD substrate mutated Ste6 (sterile). Schizosaccharomyces pombe UBR1 is a critical regulator that influences the oxidative stress response via degradation of active Pap1 basic leucine zipper (bZIP) transcription factor in the nucleus. Both UBR1 and UBR2 contain an N-terminal ubiquitin-recognin (UBR) box involved in binding type-1 (basic) N-end rule substrate, an N-domain (also known as ClpS domain) required for type-2 (bulky hydrophobic) N-end rule substrate recognition, a C3H2C3-type RING-H2 finger, and a C-terminal UBR-specific autoinhibitory (UAIN) domain. 67 -319397 cd16483 RING-H2_UBR3 RING finger, H2 subclass, found in ubiquitin-protein ligase E3-alpha-3 (UBR3) and similar proteins. UBR3, also known as N-recognin-3, E3alpha-III, or zinc finger protein 650, is an E3 ubiquitin-protein ligase targeting the essential DNA repair protein APE1, also known as Ref-1, for ubiquitylation. It regulates cellular levels of APE1 and is required for genome stability. It also plays a regulatory role in sensory pathways, including olfaction. Moreover, in Drosophila, UBR3 regulates apoptosis by controlling the activity of Drosophila inhibitor of apoptosis protein 1 (DIAP1), which is required to prevent caspase activation. UBR3 contains an N-terminal ubiquitin-recognin (UBR) box, a C3H2C3-type RING-H2 finger, and a C-terminal UBR-specific autoinhibitory (UAIN) domain. 90 -319398 cd16484 RING-H2_Vps RING finger, H2 subclass, found in vacuolar protein sorting-associated proteins Vps8, Vps11, Vps18, Vps41, and similar proteins. This family corresponds to a group of vacuolar protein sorting-associated proteins containing a C-terminal C3H2C3-type RING-H2 finger, which includes Vps8, Vps11, Vps18, and Vps41. Vps11 and Vps18 associate with Vps16 and Vps33 to form a Class C Vps core complex that is required for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE)-mediated membrane fusion at the lysosome-like yeast vacuole. The core complex, together with two additional compartment-specific subunits, forms the tethering complexes HOPS (homotypic vacuole fusion and protein sorting) and CORVET (class C core vacuole/endosome transport) protein complexes. CORVET contains the additional Vps3 and Vps8 subunits. It operates at endosomes, controls traffic into late endosomes and interacts with the Rab5/Vps21-GTP form. HOPS contains the additional Vps39 and Vps41 subunits. It operates at the lysosomal vacuole, controls all traffic from late endosomes into the vacuole and interacts with the Rab7/Ypt7-GTP form. 46 -319399 cd16485 mRING-H2-C3H2C2D_RBX1 modified RING finger, H2 subclass (C3H2C2D-type), found in RING-box protein 1 (RBX1) and similar proteins. RBX1, also known as Hrt1, protein ZYP, RING finger protein 75 (RNF75), or regulator of cullins 1 (ROC1), is an E3 ubiquitin-protein ligase necessary for ubiquitin ligation activity of the multimeric cullin (Cul)-RING E3 ligases (CRLs). RBX1-containing CRLs are involved in NEDD8 pathway and RBX1 specifically regulate NEDD8ylation of Cul1-4. It can also bind and activate HIV-1 Vif-Cullin5 E3 ligase complex in vitro. Moreover, RBX1 is an essential element of Skp1/Cullins/F-box (SCF) E3-ubiquitin ligase complex that targets diverse proteins for proteasome-mediated degradation. It is a direct functional target of miR-194 and plays an important role in proliferation and migration of gastric cancer (GC) cells. RBX1 is also an essential component of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex that functions as a regulator of NFE2-related factor 2 (NRF2) and plays a key role in NRF2 pathway deregulation in multiple tumor types, including ovarian carcinomas (OVCA) and papillary thyroid carcinoma (PTC). Furthermore, RBX1 associates with DDB1, Cul4A, and Fbxw5 to form the Fbxw5-DDB1-Cul4A-Rbx1 complex that may function as a dual SUMO/ubiquitin ligase suppressing c-Myb activity through sumoylation or ubiquitination. RBX1 contains a C-terminal modified RING-H2 finger that is C3H2C2D-type, rather than the canonical C3H2C3-type. The modified RING-H2 finger is essential for its ligase activity. 62 -319400 cd16486 mRING-H2-C3H2C2D_ZSWM2 Modified RING finger, H2 subclass (C3H2C2D-type), found in zinc finger SWIM domain-containing protein 2 (ZSWIM2) and similar proteins. ZSWIM2, also known as MEKK1-related protein X (MEX) or ZZ-type zinc finger-containing protein 2, is a testis-specific E3 ubiquitin ligase that promotes death receptor-induced apoptosis through Fas, death receptor (DR) 3 and DR4 signaling. ZSWIM2 is self-ubiquitinated and targeted for degradation through the proteasome pathway. It also acts as an E3 ubiquitin ligase, through the E2, Ub-conjugating enzymes UbcH5a, UbcH5c, or UbcH6. ZSWIM2 contains four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain critical for its ubiquitination, and two modified RING-H2 fingers separated by a ZZ zinc finger domain, which was required for interaction with UbcH5a and its self-association. This family corresponds to the second RING-H2 finger, which is not a canonical C3H2C3-type, but a modified C3H2C2D-type. 44 -319401 cd16487 mRING-H2-C3DHC3_ZFPL1 Modified RING finger, H2 subclass (C3DHC3-type), found in zinc finger protein-like 1 (ZFPL1) and similar proteins. ZFPL1, also known as zinc finger protein MCG4, is a novel mitotic Golgi phosphoprotein required for cis-Golgi integrity and efficient endoplasmic reticulum (ER)-to-Golgi transport via directly interacting with the cis-Golgi matrix protein GM130. ZFPL1 is a widely expressed integral membrane protein with two predicted zinc fingers at its N-terminus. One is a novel type of zinc finger, and the other is a modified RING-H2 finger that lacks the fourth zinc-binding residue of the consensus C3H2C3-type RING-H2 finger. It also contains a bipartite nuclear localization signal (NLS), and a leucine zipper at the C-terminus. 55 -319402 cd16488 mRING-H2-C3H3C2_Mio_like Modified RING finger, H2 subclass (C3H3C2-type), found in WD repeat-containing protein mio and its homologs. This family contains Mio, WDR24, WDR59, and their counterpart Sea4, Sea2, and Sea3 from yeast, respectively. Mio/Sea4, Sea2/WDR24, and Sea3/WDR59 are components of GATOR2 complex, which also includes another two subunits, Seh1and Sec13. GATOR2 and GATOR1, which is composed of three subunits, DEPDC5, Nprl2, and Nprl3, form the Rag-interacting complex GATOR (GAP Activity Towards Rags). Inhibition of GATOR1 subunits makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits suppresses mTORC1 signaling and GATOR2 negatively regulates DEPDC5. All family members contain an N-terminal WD40 domain and a C-terminal RING-H2 finger with an unusual arrangement of zinc-coordinating residues. The cysteines and histidines in RING-H2 finger are arranged as a modified C3H3C2-type, rather than the canonical C3H2C3-type. 44 -319403 cd16489 mRING-CH-C4HC2H_ZNRF Modified RING-CH finger, H2 subclass (C4HC2H-type), found in the ZNRF family. This ZNRF family includes zinc/RING finger proteins ZNRF1, ZNRF2, and similar proteins. It has been characterized by containing a unique combination zinc finger-RING finger motif in the C-terminal region, which is evolutionarily conserved in a wide range of species, including Caenorhabditis elegans and Drosophila. The ZNRF family of proteins function as an E3 ubiquitin ligase and are highly expressed in central nervous system (CNS) and peripheral nervous system (PNS) neurons, particularly during development and in adulthood. In neurons, ZNRF1 and ZNRF2 are differentially localized within the synaptic region. ZNRF1 is associated with synaptic vesicle membranes, whereas ZNRF2 is present in presynaptic plasma membranes. They are N-myrisotoylated and also located in the endosome-lysosome compartment in fibroblasts. ZNRF proteins may play a role in the establishment and maintenance of neuronal transmission and plasticity via their ubiquitin ligase activity, as well as in regulating Ca2+-dependent exocytosis. The RING fingers found in ZNRF proteins are modified as C4HC2H-type RING-CH finger, rather than the typical C4HC3-type RING-CH finger, which is a variant of RING-H2 finger. 43 -319404 cd16490 RING-CH-C4HC3_FANCL RING-CH finger, H2 subclass (C4HC3-type), found in Fanconi anemia group L protein (FANCL) and similar proteins. FANCL, also known as fanconi anemia-associated polypeptide of 43 kDa (FAAP43) or PHF9, is a monomeric RING E3 ubiquitin-protein ligase that monoubiquitinates FANCD2 and FANCI. The monoubiquitinated FANCD2-FANCI heterodimer complex in turn recruits key proteins involved in homologous recombination and DNA repair. FANCL is also one of seven components in Fanconi anemia (FA) nuclear core complex, which provides the essential E3 ligase function for spatially defined FANCD2 ubiquitination and FA pathway activation. In the FA core complex, FANCL associates with FANCB and FAAP100 to constitute a catalytic subcomplex that functions as the monoubiquitination module. FANCL specifically interacts with the E2 ubiquitin-conjugating (UBC) enzyme Ube2T to make an E3-E2 pair, which is the catalytic center of the Fanconi Anemia (FA) pathway required for DNA interstrand crosslink repair. Moreover, FANCL has a noncanonical function to regulate the Wnt/beta-catenin signaling, a pathway involved in hematopoietic stem cell self-renewal. It functionally enhances beta-catenin activity through ubiquitinating beta-catenin, with atypical ubiquitin chains (K11 linked). FANCL contains an N-terminal E2-like fold (ELF) domain, a novel double-RWD (DRWD) domain with a clear hydrophobic core, and a C-terminal C4HC3-type RING-CH finger. The DRWD domain is required for substrate binding. The RING-CH finger, also known as vRING or RINGv, is predicted to facilitate E2 binding. It has an unusual arrangement of zinc-coordinating residues. Its cysteines and histidines are arranged in the sequence as C4HC3-type, rather than the C3H2C3-type in canonical RING-H2 finger. 58 -319405 cd16491 RING-CH-C4HC3_LTN1 RING-CH finger, H2 subclass (C4HC3-type), found in E3 ubiquitin-protein ligase listerin and similar proteins. Listerin, also known as RING finger protein 160 or zinc finger protein 294, is the mammalian homolog of yeast Ltn1. It is widely expressed in all tissues, but motor and sensory neurons and neuronal processes in the brainstem and spinal cord are primarily affected in the mutant. Listerin is required for embryonic development and plays an important role in neurodegeneration. It also functions as a critical E3 ligase involving quality control of nonstop proteins. It mediates ubiquitylation of aberrant proteins that become stalled on ribosomes during translation. Ltn1 works with several cofactors to form a large ribosomal subunit-associated quality control complex (RQC), whick mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. It appears to first associate with nascent chain-stalled 60S subunits together with two proteins of unknown function, Tae2 and Rqc1. Listerin contains a long stretch of HEAT (Huntingtin, Elongation factor 3, PR65/A subunit of protein phosphatase 2A, and TOR) or ARM (Armadillo) repeats in the N terminus and middle region, and a catalytic RING-CH finger, also known as vRING or RINGv, with an unusual arrangement of zinc-coordinating residues in the C-terminus . Its cysteines and histidines are arranged in the sequence as C4HC3-type, rather than the C3H2C3-type in canonical RING-H2 finger. 50 -319406 cd16492 RING-CH-C4HC3_NFX1_like RING-CH finger, H2 subclass (C4HC3-type), found in transcriptional repressor NF-X1, NF-X1-type zinc finger protein NFXL1, and similar proteins. NF-X1, also known as nuclear transcription factor, X box-binding protein 1, is a novel cysteine-rich sequence-specific DNA-binding protein that interacts with the conserved X-box motif of the human major histocompatibility complex (MHC) class II genes via a repeated Cys-His domain. It functions as a cytokine-inducible transcriptional repressor that plays an important role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by interferon gamma (IFN- gamma). NFXL1, also known as NF-X1-type zinc finger protein NFXL1 or ovarian zinc finger protein (OZFP), is encoded by a novel human cytoplasm-distribution zinc finger protein (CDZFP) gene. This family also includes human transcription factor NF-X1 homologs from insects, plants, and fungi. Drosophila melanogaster shuttle craft (STC) is a DNA- or RNA-binding protein required for proper axon guidance in the central nervous system. It functions as a putative transcription factor and plays an essential role in the completion of embryonic development. In contrast to NF-X1, STC contains an RD domain. The Arabidopsis genome encodes two NF-X1 homologs, AtNFXL1 and AtNFXL2, both of which function as regulators of salt stress responses. The AtNFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. It also functions as a negative regulator of the type A trichothecene phytotoxin-induced defense response. AtNFXL2 controls abscisic acid (ABA) levels and suppresses ABA responses. It may also prevent unnecessary and costly stress adaptation under favorable conditions. FKBP12-associated protein 1 (FAP1) is a dosage suppressor of rapamycin toxicity in budding yeast. It is localized in the cytoplasm, but upon rapamycin treatment translocates to the nucleus. FAP1 interacts with FKBP12 in a rapamycin-sensitive manner. It is a proline-rich protein containing a novel cysteine-rich DNA-binding motif. Unique structural features of the NFX1 and NFXL proteins are the Cys-rich region and a specific RING-CH finger motif with an unusual arrangement of zinc-coordinating residues. The Cys-rich region is required for binding to specific promoter elements. It frequently comprises more than 500 amino acids and harbors several NFX1-type zinc finger domains, characterized by the pattern C-X(1-6)-H-X-C-X3-C(H/C)-X(3-4)-(H/C)-X(1-10)-C. The RING-CH finger, also known as vRING or RINGv, may have E3 ligase activity. It is characterized by a C4HC3-type Zn ligand signature and additional conserved amino acids, rather than C3H2C3-type cysteines and histidines arrangement in canonical RING-H2 finger. In addition to the Cys-rich region and RING-CH finger, NFX1 contains a PAM2 motif in the N-terminus and a R3H domain in the C-terminus. 58 -319407 cd16493 RING-CH-C4HC3_NSE1 RING-CH finger, H2 subclass (C4HC3-type), found in non-structural maintenance of chromosomes element 1 homolog (NSE1) and similar proteins. NSE1, also known as non-SMC element 1 homolog (NSMCE1), is an E3 ubiquitin ligase that contains a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger. It together with its partner, proteins NSE3 and NSE4, form a tight subcomplex of the structural maintenance of chromosomes SMC5-6 complex, which includes another two subcomplexes, SMC6-SMC5-NSE2 and NSE5-NSE6. The vRING finger is essential for normal NSE1-NSE3-NSE4 trimer formation in vitro and for damage-induced recruitment of NSE4 and SMC5 to subnuclear foci in vivo. Thus it functions as a protein-protein interaction domain required for SMC5-6 holocomplex integrity and recruitment to, or retention at, DNA lesions. The C-terminal half of NSE1, including the vRING finger, is required for DNA damage resistance and mitotic fidelity of SMC5-6 complex in the fission yeast Schizosaccharomyces pombe. The RING-CH finger may play an important role in Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. 47 -319408 cd16494 RING-CH-C4HC3_ZSWM2 RING-CH finger, H2 subclass (C4HC3-type), found in zinc finger SWIM domain-containing protein 2 (ZSWIM2) and similar proteins. ZSWIM2, also known as MEKK1-related protein X (MEX) or ZZ-type zinc finger-containing protein 2, is a testis-specific E3 ubiquitin ligase that promotes death receptor-induced apoptosis through Fas, death receptor (DR) 3, and DR4 signaling. ZSWIM2 is self-ubiquitinated and targeted for degradation through the proteasome pathway. It also acts as an E3 ubiquitin ligase, through the E2, Ub-conjugating enzymes UbcH5a, UbcH5c, or UbcH6. ZSWIM2 contains four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain critical for its ubiquitination and two RING fingers separated by a ZZ zinc finger domain, which was required for interaction with UbcH5a and its self-association. This family corresponds to the first RING finger, which is a C4HC3-type RING-CH finger, also known as vRING or RINGv, rather than the canonical C3H2C3-type RING-H2 finger. 58 -319409 cd16495 RING_CH-C4HC3_MARCH RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH proteins (MARCH). The family corresponds to a novel family of membrane-associated E3 ubiquitin ligases, consisting of 11 members in mammals (MARCH1-11), which are characterized by containing an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger). Most family members have hydrophobic transmembrane spans and are localized to the plasma membrane and intracellular organelle membrane. Only MARCH7 and MARCH10 are predicted to have no transmembrane spanning region. MARCH proteins have been implicated in mediating the ubiquitination and subsequent down-regulation of cell-surface immune regulatory molecules, such as major histocompatibility complex class II and CD86, as well as in endoplasmic reticulum-associated degradation, endosomal protein trafficking, mitochondrial dynamics, and spermatogenesis. 52 -319410 cd16496 RING-HC_BARD1 RING finger, HC subclass, found in BRCA1-associated RING domain protein 1 (BARD-1) and similar proteins. BARD-1 is a critical factor in BRCA1-mediated tumor suppression and may also serve as a target for tumorigenic lesions in some human cancers. It associates with BRCA1 (breast cancer-1) to form a heterodimeric BRCA1/BARD1 complex that is responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. The BRCA1/BARD1 complex catalyzes autoubiquitination of BRCA1 and trans ubiquitination of other protein substrates. Its E3 ligase activity is dramatically reduced in the presence of UBX domain protein 1 (UBXN1). BARD-1 contains an C3HC4-type RING-HC finger that binds BRCA1 at its N-terminus and three tandem ankyrin repeats and tandem BRCT repeat domains that bind CstF-50 (cleavage stimulation factor) to modulate mRNA processing and RNAP II stability in response to DNA damage at its C-terminus. 45 -319411 cd16497 RING-HC_BAR RING finger, HC subclass, found in bifunctional apoptosis regulator (BAR). BAR, also known as RING finger protein 47, was originally identified as an inhibitor of Bax-induced apoptosis. It participates in the block of apoptosis induced by TNF-family death receptors (extrinsic pathway) and mitochondria-dependent apoptosis (intrinsic pathway). BAR is predominantly expressed by neurons in the central nervous system and is involved in the regulation of neuronal survival. It is an endoplasmic reticulum (ER)-associated RING-type E3 ubiquitin ligase that interacts with BI-1 protein and post-translationally regulates its stability as well as functions in ER stress. BAR contains an N-terminal C3HC4-type RING-HC finger, a SAM domain, a coiled-coil domain, and a C-terminal transmembrane (TM) domain. This family corresponds to the RING-HC finger responsible for the binding of ubiquitin conjugating enzymes (E2s). 46 -319412 cd16498 RING-HC_BRCA1 RING finger, HC subclass, found in breast cancer type 1 susceptibility protein (BRCA1) and similar proteins. BRCA1, also known as RING finger protein 53 (RNF53), is a RING finger protein encoded by tumor suppressor gene BRCA1 that regulates all DNA double-strand break (DSB) repair pathways. BRCA1 is frequently mutated in in patients with hereditary breast and ovarian cancer (HBOC). Its mutation is also associated with an increased risk of pancreatic, stomach, laryngeal, fallopian tube, and prostate cancer. It plays an important role in the DNA damage response signaling and has been implicated in various cellular processes such as cell cycle regulation, transcriptional regulation, chromatin remodeling, DNA DSBs, and apoptosis. BRCA1 contains an N-terminal C3HC4-type RING-HC finger, and two BRCT (BRCA1 C-terminus domain) repeats at the C-terminus. 48 -319413 cd16499 RING-HC_BRE1_like RING finger, HC subclass, found in yeast Bre1 and its homologs from eukaryotes. Bre1 is an E3 ubiquitin-protein ligase that catalyzes monoubiquitination of histone H2B in concert with the E2 ubiquitin-conjugating enzyme, Rad6. The Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks (DSBs) during meiosis in yeast. it is also required, indirectly, for the methylation of histone 3 on lysine 4 (H3K4) and 79. RNF20, also known as BRE1A and RNF40, also known as BRE1B, are the mammalian homologs of Bre1. They work together to form a heterodimeric Bre1 complex that facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. Moreover, Bre1 complex acts as a tumor suppressor, augmenting expression of select tumor suppressor genes and suppressing select oncogenes. Deficiency in the mammalian histone H2B ubiquitin ligase Bre1 leads to replication stress and chromosomal instability. All family members contain a C3HC4-type RING-HC finger at its C-terminus. 42 -319414 cd16500 RING-HC_CARP RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein CARP-1, CARP-2 and similar proteins. The CARPs family includes CARP-1 and CARP-2 proteins, both of which are E3 ubiquitin ligases that ubiquitinate apical caspases and target them for proteasome-mediated degradation. As a novel group of caspase regulators with a FYVE-type zinc finger domain, they do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8, and caspase 10. Moreover, they stabilize MDM2 by inhibiting MDM2 self-ubiquitination, as well as by targeting 14-3-3sigma for degradation. They work together with MDM2 enhancing p53 degradation, thereby inhibiting p53-mediated cell death. CARPs contain an N-terminal FYVE-like domain that can serve as a membrane-targeting or endosome localizing signal and a C-terminal C3HC4-type RING-HC finger domain. 39 -319415 cd16501 RING-HC_CblA_like RING finger, HC subclass, found in Dictyostelium discoideum Cbl-like protein A (CblA) and similar proteins. CblA is a Dictyostelium homolog of the Cbl proteins which are multi-domain proteins acting as key negative regulators of various receptor and non-receptor tyrosine kinases signaling. CblA upregulates STATc tyrosine phosphorylation by downregulating PTP3, the protein tyrosine phosphatase responsible for dephosphorylating STATc. STATc is a signal transducer and activator of transcription protein. Like other Cbl proteins, CblA contains a tyrosine-kinase-binding domain (TKB), a proline-rich domain, a C3HC4-type RING-HC finger, and an ubiquitin-associated (UBA) domain. TKB, also known as a phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain. This family also includes Drosophila melanogaster defense repressor 1 (Dnr1) that was identified as an inhibitor of Dredd activity in the absence of a microbial insult in Drosophila S2 cells. It inhibits the Drosophila initiator caspases Dredd and Dronc. Moreover, Dnr1 acts as a negative regulator of the Imd (immune deficiency) innate immune-response pathway. Its mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Dnr1 contains a FERM N-terminal domain followed by a region rich in glutamine and serine residues, a central FERM domain, and a C-terminal C3HC4-type RING-HC finger. 37 -319416 cd16502 RING-HC_Cbl_like RING finger, HC subclass, found in Casitas B-lineage lymphoma (Cbl) proteins. The Cbl adaptor proteins family contains a small class of RING-type E3 ubiquitin ligases with oncogenic activity, which is represented by three mammalian members, c-Cbl, Cbl-b and Cbl-c, as well as two invertebrate Cbl-family proteins, D-Cbl in Drosophila and Sli-1 in C. elegans. Cbl proteins function as potent negative regulators of various signaling cascades in a wide range of cell types. They play roles in ubiquitinating the activated tyrosine kinases and targeting them for degradation. D-Cbl associates with the Drosophila epidermal growth factor receptor (EGFR) and overexpression of D-Cbl in the eye of Drosophila embryos inhibits EGFR dependent photoreceptor cell development. Sli-1 is a negative regulator of the Let-23 receptor tyrosine kinase, an EGFR homolog, in vulva development. Cbl proteins in this family consist of a highly conserved N-terminal half that includes a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain) and a C3HC4-type RING-HC finger, both of which are required for Cbl-mediated downregulation of RTKs, and a divergent C-terminal region. 43 -319417 cd16503 RING-HC_CHFR RING finger, HC subclass, found in checkpoint with forkhead and RING finger domains protein (CHFR). CHFR, also known as RING finger protein 196 (RNF196), is a checkpoint protein that delays entry into mitosis in response to stress. It functions as an E3 ubiquitin ligase that ubiquitinates and degrades its target proteins, such as Aurora-A, Plk1, Kif22, and PARP-1, which are critical for proper mitotic transitions. It also plays an important role in cell cycle progression and tumor suppression, and is negatively regulated by SUMOylation-mediated proteasomal ubiquitylation. Moreover, CHFR is involved in the early stage of the DNA damage response, which mediates the crosstalk between ubiquitination and poly-ADP-ribosylation. CHFR contains a fork head associated- (FHA) and a C3HC4-type RING-HC finger. 44 -319418 cd16504 RING-HC_COP1 RING finger, HC subclass, found in constitutive photomorphogenesis protein 1 (COP1) and similar proteins. COP1, also known as RING finger and WD repeat domain protein 2 (RFWD2) or RING finger protein 200 (RNF200), was defined as a central regulator of photomorphogenic development in plants, which targets key transcription factors for proteasome-dependent degradation. It is localized predominantly in the nucleus, but may also be present in the cytosol. Mammalian COP1 functions as an E3 ubiquitin-protein ligase that interacts with Jun transcription factors and modulates their transcriptional activity. It also interacts with and negatively regulates the tumor-suppressor protein p53. Moreover, COP1 associates with COP9 signalosome subunit 6 (CSN6), and is involved in 14-3-3 delta ubiquitin-mediated degradation. The CSN6-COP1 link enhances ubiquitin-mediated degradation of p27(Kip1), a critical CDK inhibitor involved in cell cycle regulation, to promote cancer cell growth. Furthermore, COP1 functions as the negative regulator of ETV1 and influences prognosis in triple-negative breast cancer. COP1 contains an N-terminal extension, a C3HC4-type RING-HC finger, a coiled coil domain, and seven WD40 repeats. In human COP1, a classic leucine-rich NES, and a novel bipartite NLS is bridged by the RING-HC finger. 46 -319419 cd16505 RING-HC_CYHR1 RING finger, HC subclass, found in cysteine and histidine-rich protein 1 (CYHR1) and similar proteins. CYHR1, also known as cysteine/histidine-rich protein (Chrp), shows sequence similarity with the Drosophila RING finger protein Seven-in-Absentia (sina) and its murine and human siah homologs. It is a novel prognostic marker that may work as a therapeutic target in patients with esophageal squamous cell carcinoma. It is also a biomarker of the response to erythropoietin in hemodialysis patients. CYHR1 contains an N-terminal C3HC4-type RING-HC finger and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD). 49 -319420 cd16506 RING-HC_DTX3_like RING finger, HC subclass, found in E3 ubiquitin-protein ligase Deltex3 (DTX3), Deltex-3-like (DTX3L) and similar proteins. The family contains Deltex3 (DTX3) and Deltex-3-like (DTX3L), both of which are E3 ubiquitin-protein ligases belonging to the Deltex (DTX) family. DTX3, also known as RING finger protein 154 (RNF154), has a biological function that remains unclear. DTX3L, also known as B-lymphoma- and BAL-associated protein (BBAP) or Rhysin-2 (Rhysin2), regulates endosomal sorting of the G protein-coupled receptor CXCR4 from endosomes to lysosomes. It also regulates subcellular localization of its partner protein, B aggressive lymphoma (BAL), by a dynamic nucleocytoplasmic trafficking mechanism. In contrast to other DTXs, both DTX3 and DTX3L contain a C3HC4-type RING-HC finger, and a previously unidentified C-terminal domain. DTX3L can associate with DTX1 through its unique N termini and further enhance self-ubiquitination. 41 -319421 cd16507 RING-HC_GEFO_like RING finger, HC subclass, found in Dictyostelium discoideum Ras guanine nucleotide exchange factor O (RasGEFO) and similar proteins. RasGEFO, also known as RasGEF domain-containing protein O, is one of the Ras guanine-nucleotide exchange factors (RasGEFs), which are the proteins that activate Ras through catalyzing the replacement of GDP with GTP. They are particularly important for signaling in development and chemotaxis in many organisms, including Dictyostelium. RasGEFO contain a C3HC4-type RING-HC finger that may be responsible for the E3 ubiquitin ligase activity. 40 -319422 cd16508 RING-HC_HAKAI_like RING finger, HC subclass, found in E3 ubiquitin-protein ligase Hakai, zinc finger protein 645 (ZNF645), and similar proteins. Hakai, also known as Casitas B-lineage lymphoma-transforming sequence-like protein 1, RING finger protein 188 (RNF188), or c-Cbl-like protein 1 (CBLL1), is an E3 ubiquitin ligase that disrupts cell-cell contacts in epithelial cells and is upregulated in human colon and gastric adenocarcinomas. It was identified to mediate the posttranslational downregulation of E-cadherin (CDH1), a major component of adherens junctions in epithelial cells and a potent tumor suppressor. It also promotes ubiquitination of several other tyrosine-phosphorylated Src substrates, including cortactin (CTTN) and DOK1. Hakai acts as a homodimer with a novel HYB (Hakai pTyr-binding) domain that forms a phosphotyrosine-binding pocket upon, and consists of a pair of monomers arranged in an anti-parallel configuration. Each monomer contains a C3HC4-type RING-HC finger and a short pTyr-B domain that incorporates a novel, atypical C2H2-type Zn-finger coordination motif. Both domains are important for dimerization. ZNF645 is a novel testis-specific E3 ubiquitin-protein ligase that plays a role in sperm production and quality control. It has a structure similar to that of the c-Cbl-like protein Hakai. In contrast to Hakai, its HYB domain demonstrates different target specificities. It interacts with v-Src-phosphorylated E-cadherin, but not to cortactin. 38 -319423 cd16509 RING-HC_HLTF RING finger, HC subclass, found in helicase-like transcription factor (HLTF) and similar proteins. HLTF, also known as DNA-binding protein/plasminogen activator inhibitor 1 regulator, or HIP116, or RING finger protein 80, or SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3, or sucrose nonfermenting protein 2-like 3, is a yeast RAD5 homolog found in mammals. It has both E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. It is involved in Lys-63-linked poly-ubiquitination of proliferating cell nuclear antigen (PCNA) at Lys-164 and in the regulation of DNA damage tolerance. It shows double-stranded DNA translocase activity with 3'-5' polarity, thereby facilitating regression of the replication fork. HLTF contains an N-terminal HIRAN (HIP116 and RAD5 N-terminal) domain, a SWI/SNF helicase domain that is divided into N- and C-terminal parts by an insertion of a C3HC4-type RING-HC finger involved in the poly-ubiquitination of PCNA. 43 -319424 cd16510 RING-HC_IAPs RING finger, HC subclass, found in inhibitor of apoptosis proteins (IAPs). IAPs are frequently overexpressed in cancer and associated with tumor cell survival, chemoresistance, disease progression, and poor prognosis. They function primarily as negative regulators of cell death. They regulate caspases and apoptosis through the inhibition of specific members of the caspase family of cysteine proteases. In addition, IAPs has been implicated in a multitude of other cellular processes, including inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis, as well as cell invasion and metastasis. IAPs in this family includes cellular inhibitor of apoptosis protein c-IAP1 (BIRC2) and c-IAP2 (BIRC3), XIAP (BIRC4), BIRC7, and BIRC8, all of which contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of binds polyubiquitin (polyUb), and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. The UBA domain is only absent in mammalian homologs of BIRC7. Moreover, c-IAPs contains an additional caspase activation and recruitment domain (CARD) between UBA and C3HC4-type RING-HC domains. CARD domain may serve as a protein interaction surface. 39 -319425 cd16511 vRING-HC_IRF2BP1_like variant of RING finger, HC subclass, found in interferon regulatory factor 2-binding protein IRF-2BP1, IRF-2BP2, and similar proteins. The family includes IRF-2BP1, IRF-2BP2, and their homolog, IRF-2BP-like, also known as IRF-2BPL or C14orf4. IRF-2BP1 and IRF-2BP2 are nuclear proteins that bind to the C-terminal repression domain of IRF-2 and act as an IRF-2-dependent transcriptional corepressors, both enhancer-activated and basal transcription. IRF-2BPL is expressed in the mediobasal hypothalamus and plays a critical function in regulating the female reproductive neuroendocrine axis. All family members contain a C-terminal C3HC4-type RING-HC finger with a partially new pattern. 56 -319426 cd16512 RING-HC_LNX3_like RING finger, HC subclass, found in ligand of Numb protein LNX3, LNX4, and similar proteins. The ligand of Numb protein X (LNX) family, also known as PDZ and RING (PDZRN) family, includes LNX1-5, which can interact with Numb, a key regulator of neurogenesis and neuronal differentiation. LNX5 (also known as PDZK4, or PDZRN4L) shows high sequence homology to LNX3 and LNX4, but it lacks the RING domain. LNX1-4 proteins function as E3 ubiquitin ligases and have a unique domain architecture consisting of an N-terminal RING-HC finger for E3 ubiquitin ligase activity and either two or four PDZ domains necessary for the substrate-binding. This family corresponds to LNX3/LNX4-like proteins, which contains a typical C3HC4-type RING-HC finger and two PDZ domains. 41 -319427 cd16513 RING1-HC_LONFs RING finger 1, HC subclass, found in the LON peptidase N-terminal domain and RING finger proteins family. The LON peptidase N-terminal domain and RING finger proteins family includes LONRF1 (also known as RING finger protein 191 or RNF191), LONRF2 (also known as RING finger protein 192 or RNF192, or neuroblastoma apoptosis-related protease), LONRF3 (also known as RING finger protein 127 or RNF127), which are characterized by containing two C3HC4-type RING-HC fingers, four tetratricopeptide (TPR) repeats, and one N-terminal domain of the ATP-dependent protease La (LON) domain at the C-terminus. Their biological function remain unclear. This family corresponds to the first RING-HC finger. 42 -319428 cd16514 RING2-HC_LONFs RING finger 2, HC subclass, found in the LON peptidase N-terminal domain and RING finger proteins family. The LON peptidase N-terminal domain and RING finger proteins family includes LONRF1 (also known as RING finger protein 191 or RNF191), LONRF2 (also known as RING finger protein 192 or RNF192, or neuroblastoma apoptosis-related protease), LONRF3 (also known as RING finger protein 127 or RNF127), which are characterized by containing two C3HC4-type RING-HC fingers, four tetratricopeptide (TPR) repeats, and one N-terminal domain of the ATP-dependent protease La (LON) domain at the C-terminus. Their biological function remain unclear. This family corresponds to the second RING-HC finger. 42 -319429 cd16515 RING-HC_LRSAM1 RING finger, HC subclass, found in leucine-rich repeat and sterile alpha motif-containing protein 1 (LRSAM1) and similar proteins. LRSAM1, also known as Tsg101-associated ligase (TAL), or RIFLE, is an E3 ubiquitin-protein ligase that physically associates with, and selectively ubiquitylates, Tsg101, an E2-like molecule that regulates vesicular trafficking processes in yeast and mammals. It regulates a Tsg101-associated complex responsible for the sorting of cargo into cytoplasm-containing vesicles that bud at the multivesicular body and at the plasma membrane. LRSAM1 is a multidomain protein containing an N-terminal leucine-rich repeat (LRR), followed by several recognizable motifs, including an ezrin-radixin-moezin (ERM) domain, a coiled-coil (CC) region, a SAM domain, and a C-terminal C3HC4-type RING-HC finger domain. 40 -319430 cd16516 RING-HC_malin RING finger, HC subclass, found in malin and similar proteins. Malin ("mal" for seizure in French), also known as NHL repeat-containing protein 1 (NHLRC1), or EPM2B, is a nuclear E3 ubiquitin-protein ligase that ubiquitinates and promotes the degradation of laforin (EPM2A encoding protein phosphatase). Malin and laforin operate as a functional complex that play key roles in regulating cellular functions such as glycogen metabolism, unfolded cellular stress response, and proteolytic processes. They act as pro-survival factors that negatively regulate the Hipk2-p53 cell death pathway. They also negatively regulate cellular glucose uptake by preventing plasma membrane targeting of glucose transporters. Moreover, they degrade polyglucosan bodies in concert with glycogen debranching enzyme and brain isoform glycogen phosphorylase. Furthermore, they, together with Hsp70, form a new functional complex that suppress the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Defects in either malin or laforin may cause Lafora disease (LD), a fatal form of teenage-onset autosomal recessive progressive myoclonus epilepsy. In addition, malin may have function independent of laforin in lysosomal biogenesis and/or lysosomal glycogen disposal. Malin contains six NHL-repeat protein-protein interaction domains and a C3HC4-type RING-HC finger. 48 -319431 cd16517 RING-HC_MAT1 RING finger, HC subclass, found in RING finger protein MAT1. MAT1, also known as CDK-activating kinase assembly factor MAT1, CDK7/cyclin-H assembly factor, cyclin-G1-interacting protein, menage a trois, RING finger protein 66 (RNF66), p35, or p36, is involved in cell cycle control and in RNA transcription by RNA polymerase II. It associates primarily with the catalytic subunit cyclin-dependent kinase 7 (CDK7) and the regulatory subunit cyclin H to form the CDK-activating kinase (CAK) complex that can further associate with the core-TFIIH to form the transcription factor IIH (TFIIH) basal transcription/DNA repair factor, which activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. MAT1 contains an N-terminal C3HC4-type RING-HC finger, a central coiled coil domain, and a C-terminal domain rich in hydrophobic residues. 49 -319432 cd16518 RING-HC_MEX3 RING finger, HC subclass, found in RNA-binding proteins of the evolutionarily-conserved MEX-3 family. The family includes MEX-3 family phosphoproteins have been found in vertebrates. They are mediators of post-transcriptional regulation in different organisms, and have been implicated in many core biological processes, including embryonic development, epithelial homeostasis, immune responses, metabolism, and cancer. They contain two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. They shuttle between the nucleus and the cytoplasm via the CRM1-dependent export pathway. The RNA-binding protein MEX-3 from nematode Caenorhabditis elegans is the founding member of the MEX-3 family. Due to the lack of RING-HC finger, it is not included here. 41 -319433 cd16519 RING-HC_MIBs RING finger, HC subclass, found in mind bomb MIB1, MIB2, and similar proteins. MIBs are large, multi-domain E3 ubiquitin-protein ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. They are also responsible for TBK1 K63-linked ubiquitination and activation, promoting interferon production and controlling antiviral immunity. Moreover, MIBs selectively control responses to cytosolic RNA and regulate type I interferon transcription. Both MIB1 and MIB2 have similar domain architectures, which consist of two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region, where MIB1 and MIB2 contain three and two C3HC4-type RING-HC fingers, respectively. This family corresponds to the first RING-HC finger of MIB1 and MIB2, as well as the second RING-HC finger of MIB1. 37 -319434 cd16520 RING-HC_MIBs_like RING finger, HC subclass, found in mind bomb MIB1, MIB2, RGLG1, RGLG2, and similar proteins. MIBs are large, multi-domain E3 ubiquitin-protein ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. They are also responsible for TBK1 K63-linked ubiquitination and activation, promoting interferon production and controlling antiviral immunity. Moreover, MIBs selectively control responses to cytosolic RNA and regulate type I interferon transcription. Both MIB1 and MIB2 have similar domain architectures, which consist of two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region, where MIB1 and MIB2 contain three and two C3HC4-type RING-HC fingers, respectively. This family corresponds to the third RING-HC finger of MIB1, as well as the second RING-HC finger of MIB2. In addition to MIB1 and MIB2, RING domain ligase RGLG1, RGLG2 and similar proteins from plant have also been included in this family. RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. All RGLG proteins contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. 38 -319435 cd16521 RING-HC_MKRN RING finger, HC subclass, found in the makorin (MKRN) protein family. The MKRN protein family includes the ribonucleoproteins that are characterized by a variety of zinc-finger motifs, including typical arrays of one to four C3H1-type zinc fingers and a C3HC4-type RING-HC finger. Another motif rich in Cys and His residues (CH), with so far unknown function, is also generally present in MKRN proteins. MKRN proteins may have E3 ubiquitin ligase activity. 51 -319436 cd16522 RING-HC_MSL2 RING finger found in Drosophila melanogaster male-specific lethal-2 (MSL2) and similar proteins. MSL2, also known as RING finger protein 184 (RNF184), is a putative DNA-binding protein required for X chromosome dosage compensation in Drosophila males. Its expression is sex specifically regulated by Sex-lethal. Drosophila dosage compensation proteins MOF, MSL1, MSL2, and MSL3 are essential for elevating transcription of the single X chromosome in the male (X chromosome dosage compensation). MSL2 plays a critical role in translation and/or stability of MSL1 in males. In complex with MSL1, it acts as an E3 ubiquitin ligase that promotes ubiquitination of histone H2B. MSL2 contains a C3HC4-type RING-HC finger and a metallothionein-like domain with eight conserved and two non-conserved cysteines, as well as a positively and a negatively charged amino acid residue cluster and a coiled coil domain that may be involved in protein-protein interactions. This family also includes many male-specific lethal-2 homologs from bilaterians. 45 -319437 cd16523 RING-HC_MYLIP RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) and similar proteins. MYLIP, also known as inducible degrader of the low-density lipoprotein (LDL)-receptor (IDOL), or MIR, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR, and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains an ERM-homology domain and a C-terminal C3HC4-type RING-HC finger. 38 -319438 cd16524 RING-HC_NHL-1_like RING finger, HC subclass, found in Caenorhabditis elegans RING finger protein NHL-1 and similar proteins. NHL-1 functions as an E3 ubiquitin-protein ligase in the presence of both UBC-13 and UBC-1 within the ubiquitin pathway of Caenorhabditis elegans. It acts in chemosensory neurons to promote stress resistance in distal tissues by the transcription factor DAF-16 activation but is dispensable for the activation of heat shock factor 1 (HSF-1). NHL-1 belongs to the TRIM (tripartite motif)-NHL family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. 45 -319439 cd16525 RING-HC_PCGF RING finger, HC subclass, found in Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and 6), and similar proteins. The family includes six Polycomb Group (PcG) RING finger homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) that use epigenetic mechanisms to maintain or repress expression of their target genes. They were first discovered in fruit flies that can remodel chromatin such that epigenetic silencing of genes takes place, and are well known for silencing Hox genes through modulation of chromatin structure during embryonic development in fruit flies. PCGF homologs play important roles in cell proliferation, differentiation, and tumorigenesis. They all have been found to associate with ring finger protein 2 (RNF2). The RNF2-PCGF heterodimer is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF homologs are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes which is involved in the maintenance of gene repression and target different genes through distinct mechanisms. The Drosophila PRC1 core complex is formed by the Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc), and Sex combs extra (Sce, also known as Ring) subunits. In mammals, the composition of PRC1 is much more diverse and varies depending on the cellular context. All PRC1 complexes contain homologs of the Drosophila Ring protein. Ring1A/RNF1 and Ring1B/RNF2 are E3 ubiquitin ligases that mark lysine 119 of histone H2A with a single ubiquitin group (H2AK119ub). Mammalian homologs of the Drosophila Psc protein, such as PCGF2/Mel-18 or PCGF4/BMI1, regulate PRC1 enzymatic activity. PRC1 complexes can be divided into at least two classes according to the presence or absence of CBX proteins, which are homologs of Drosophila Pc. Canonical PRC1 complexes contain CBX proteins that recognize and bind H3K27me3, the mark deposited by PRC2. Therefore, canonical PRC1 complexes and PRC2 can act together to repress gene transcription and maintain this repression through cell division. Non-canonical PRC1 complexes, containing RYBP (together with additional proteins, such as L3mbtl2 or Kdm2b) rather than the CBX proteins have recently been described in mammals. PCGF homologs contain a C3HC4-type RING-HC finger. 42 -319440 cd16526 RING-HC_PEX2 RING finger, HC subclass, found in peroxin-2 (PEX2) and similar proteins. PEX2, also known as peroxisome biogenesis factor 2, 35 kDa peroxisomal membrane protein, peroxisomal membrane protein 3, peroxisome assembly factor 1 (PAF-1), or RING finger protein 72 (RNF72), is an integral peroxisomal membrane protein with two transmembrane regions and a C3HC4-type RING-HC finger within its cytoplasmically exposed C-terminus. It may be involved in the biogenesis of peroxisomes, as well as in peroxisomal matrix protein import. Mutations in the PEX2 gene are the primary defect in a subset of patients with Zellweger syndrome and related peroxisome biogenesis disorders. Moreover, PEX2 functions as an E3-ubiquitin ligase that mediates the UBC4-dependent polyubiquitination of PEX5, a key player in peroxisomal matrix protein import, to control PEX5 receptor recycling or degradation. 43 -319441 cd16527 RING-HC_PEX10 RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins. PEX10, also known as peroxisome biogenesis factor 10, peroxisomal biogenesis factor 10, peroxisome assembly protein 10, or RING finger protein 69 (RNF69), is an integral peroxisomal membrane protein with two transmembrane regions and a C3HC4-type RING-HC finger within its cytoplasmically exposed C-terminus. It plays an essential role in peroxisome assembly, import of target substrates, and recycling or degradation of protein complexes and amino acids. It is an essential component of the spinal locomotor circuit, and thus its mutations may be involved in peroxisomal biogenesis disorders (PBD). Mutations in human PEX10 also result in autosomal recessive ataxia. Moreover, PEX10 functions as an E3-ubiquitin ligase with an E2, UBCH5C. It mono- or poly-ubiquitinates PEX5, a key player in peroxisomal matrix protein import, in a UBC4-dependent manner, to control PEX5 receptor recycling or degradation. It also links the E2 ubiquitin conjugating enzyme PEX4 to the protein import machinery of the peroxisome. 40 -319442 cd16528 RING-HC_prokRING RING finger, HC subclass, found in prokaryotic RING finger family proteins. The family corresponds to a group of uncharacterized prokaryotic C3HC4-type RING-HC finger containing proteins. The RING finger is fused to an N-terminal alpha-helical domain, ROT/Trove-like repeats, and a C-terminal TerD domain, suggesting a possible role in an RNA-processing complex. 39 -319443 cd16529 RING-HC_RAD18 RING finger, HC subclass, found in postreplication repair protein RAD18 and similar proteins. RAD18, also known as HR18 or RING finger protein 73 (RNF73), is an E3 ubiquitin-protein ligase involved in post replication repair of UV-damaged DNA via its recruitment to stalled replication forks. It associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on K164. It also interacts with another E2 ubiquitin conjugating enzyme RAD6 to form a complex that monoubiquitinates proliferating cell nuclear antigen at stalled replication forks in DNA translesion synthesis. Moreover, Rad18 is a key factor in double-strand break DNA damage response (DDR) pathways via its association with K63-linked polyubiquitylated chromatin proteins. It can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after ionizing radiation (IR) exposure. RAD18 contains a C3HC4-type RING-HC finger, a ubiquitin-binding zinc finger domain (UBZ), a SAP (SAF-A/B, Acinus and PIAS) domain, and a RAD6-binding domain (R6BD). 42 -319444 cd16530 RING-HC_RAG1 RING finger, HC subclass, found in recombination activating gene-1 (RAG-1) and similar proteins. RAG-1, also known as V(D)J recombination-activating protein 1, RING finger protein 74 (RNF74), or endonuclease RAG1, is the catalytic component of the RAG complex, a multiprotein complex that mediates the DNA cleavage phase during V(D)J recombination. RAG1 is the lymphoid-specific factor that mediates the DNA-binding to the conserved recombination signal sequences (RSS) and catalyzes the DNA cleavage activities by introducing a double-strand break between the RSS and the adjacent coding segment. It also functions as an E3 ubiquitin-protein ligase that mediates monoubiquitination of histone H3, which is required for the joining step of V(D)J recombination. RAG-1 contains an N-terminal C3HC4-type RING-HC finger that mediates monoubiquitylation of Histone H3, an adjacent C2H2-type zinc finger, and a nonamer binding (NBD) DNA-binding domain. 46 -319445 cd16531 RING-HC_RING1_like RING finger, HC subclass, found in really interesting new gene proteins RING1, RING2 and similar proteins. RING1, also known as polycomb complex protein RING1, RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), was identified as a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. RING2, also known as huntingtin-interacting protein 2-interacting protein 3, HIP2-interacting protein 3, protein DinG, RING finger protein 1B (RING1B), RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. Both RING1 and RING2 are core components of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING2 acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity. Members in this family contain a C3HC4-type RING-HC finger. 41 -319446 cd16532 RING-HC_RNFT1_like RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein RNFT1, RNFT2, and similar proteins. Both RNFT1 and RNFT2 are multi-pass membrane proteins containing a C3HC4-type RING-HC finger. Their biological roles remain unclear. 40 -319447 cd16533 RING-HC_RNF4 RING finger, HC subclass, found in RING finger protein 4 (RNF4) and similar proteins. RNF4, also known as small nuclear ring finger protein (SNURF), is a SUMO-targeted E3 ubiquitin-protein ligase with a pivotal function in the DNA damage response (DDR) through interacting with the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, and further facilitating DNA repair. It plays a novel role in preventing the loss of intact chromosomes and ensures the maintenance of chromosome integrity. Moreover, RNF4 is responsible for the UbcH5A-catalyzed formation of K48 chains that target SUMO-modified promyelocytic leukemia (PML) protein for proteasomal degradation in response to arsenic treatment. It also interacts with telomeric repeat binding factor 2 (TRF2) in a small ubiquitin-like modifiers (SUMO)-dependent manner and preferentially targets SUMO-conjugated TRF2 for ubiquitination through SUMO-interacting motifs (SIMs). Furthermore, RNF4 can form a complex with a Ubc13-ubiquitin conjugate and Ube2V2. It catalyzes K63-linked polyubiquitination by the Ube2V2-Ubc13 (ubiquitin-loaded) complex. Meanwhile, RNF4 negatively regulates nuclear factor kappa B (NF-kappaB) signaling by down-regulating transforming growth factor beta (TGF-beta)-activated kinase 1 (TAK1)-TAK1-binding protein2 (TAB2). RNF4 contains four SIMs followed by a C3HC4-type RING-HC finger at the C-terminus. 54 -319448 cd16534 RING-HC_RNF5_like RING finger, HC subclass, found in RING finger protein RNF5, RNF185 and similar proteins. RNF5 and RNF185 are E3 ubiquitin-protein ligases that are anchored to the outer membrane of the endoplasmic reticulum (ER). RNF5 acts at early stages of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) biosynthesis, and functions as a target for therapeutic modalities to antagonize mutant CFTR proteins in CF patients carrying the F508del allele. RNF185 controls the degradation of CFTR and CFTR F508del allele in a RING- and proteasome-dependent manner, but does not control that of other classical endoplasmic reticulum-associated degradation (ERAD) model substrates. Moreover, both RNF5 and RNF185 play important roles in cell adhesion and migration through the modulation of cell migration by ubiquitinating paxillin. Arabidopsis thaliana RING membrane-anchor proteins (AtRMAs) are also included in this family. They possess E3 ubiquitin-protein ligase activity and may play a role in the growth and development of Arabidopsis. All members in this family contain a C3HC4-type RING-HC finger. 43 -319449 cd16535 RING-HC_RNF8 RING finger, HC subclass, found in RING finger protein 8 (RNF8) and similar proteins. RNF8 is a telomere-associated E3 ubiquitin-protein ligase that plays an important role in DNA double-strand break (DSB) repair via histone ubiquitination. It is localized in the nucleus and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3), but not with other E2s (UbcH5, UbcH7, UbcH10, hCdc34, and hBendless). It recruits UBC13 for lysine 63-based self polyubiquitylation. Its deficiency causes neuronal pathology and cognitive decline, and its loss results in neuron degeneration. RNF8, together with RNF168, catalyzes a series of ubiquitylation events on substrates such as H2A and H2AX, with the H2AK13/15 ubiquitylation being particularly important for recruitment of repair factors p53-binding protein 1 (53BP1) or the RAP80-BRCA1 complex to sites of DSBs. Specially, RNF8 mediates the ubiquitination of gammaH2AX, and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DNA damage response (DDR) and inhibits chromosomal instability. Moreover, RNF8 interacts with retinoid X receptor alpha (RXR alpha) and enhances its transcription-stimulating activity. It also regulates the rate of exit from mitosis and cytokinesis. RNF8 contains an N-terminal forkhead-associated (FHA) domain and a C-terminal C3HC4-type RING-HC finger. 42 -319450 cd16536 RING-HC_RNF10 RING finger, HC subclass, found in RING finger protein 10 (RNF10) and similar proteins. RNF10 is an E3 ubiquitin-protein ligase that interacts with mesenchyme Homeobox 2 (MEOX2) transcription factor, a regulator of the proliferation, differentiation and migration of vascular smooth muscle cells and cardiomyocytes, and enhances Meox2 activation of the p21 promoter. It also regulates the expression of myelin-associated glycoprotein (MAG) genes and is required for myelin production in Schwann cells of peripheral nervous system. Moreover, RNF10 regulates retinoic acid-induced neuronal differentiation and the cell cycle exit of P19 embryonic carcinoma cells. RNF10 contains a C3HC4-type RING-HC finger and three putative nuclear localization signals. 43 -319451 cd16537 RING-HC_RNF37 RING finger, HC subclass, found in RING finger protein 37 (RNF37). RNF37, also known as KIAA0860, U-box domain-containing protein 5 (UBOX5), UbcM4-interacting protein 5 (UIP5), or ubiquitin-conjugating enzyme 7-interacting protein 5, is an E3 ubiquitin-protein ligase found exclusively in the nucleus as part of a nuclear dot-like structure. It interacts with the molecular chaperone VCP/p97 protein. RNF37 contains a U-box domain followed by a potential nuclear location signal (NLS) and a C-terminal C3HC4-type RING-HC finger. The U-box domain is a modified RING finger domain that lacks the hallmark metal-chelating cysteines and histidines of the latter, and is likely to adopt a RING finger-like conformation. The presence of the U-box, but not of the RING finger, is required for the E3 activity. The U-box domain can directly interact with several E2 enzymes, including UbcM2, UbcM3, UbcM4, UbcH5, and UbcH8, suggesting a similar function as the RING finger in the ubiquitination pathway. This family corresponds to the RING-HC finger. 47 -319452 cd16538 RING-HC_RNF112 RING finger, HC subclass, found in RING finger protein 112 (RNF112) and similar proteins. RNF112, also known as brain finger protein (BFP), zinc finger protein 179 (ZNF179), or neurolastin, is a peripheral membrane protein that is predominantly expressed in the central nervous system and localizes to endosomes. It contains functional GTPase and C3HC4-type RING-HC finger domains and has been identified as a brain-specific dynamin family GTPase that affects endosome size and spine density. Moreover, RNF112 acts as a downstream target of sigma-1 receptor (Sig-1R) regulation and may play a novel role in neuroprotection by mediating the neuroprotective effects of dehydroepiandrosterone (DHEA) and its sulfated analog (DHEAS). 48 -319453 cd16539 RING-HC_RNF113A_B RING finger, HC subclass, found in RING finger proteins RNF113A, RNF113B, and similar proteins. RNF113A, also known as zinc finger protein 183 (ZNF183), is an E3 ubiquitin-protein ligase that physically interacts with the E2 protein, UBE2U. A nonsense mutation in RNF113A is associated with an X-linked trichothiodystrophy (TTD). Its yeast ortholog Cwc24p is predicted to have a spliceosome function and acts in a complex with Cef1p to participate in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing. It is also important for the U2 snRNP binding to primary transcripts and co-migrates with spliceosomes. Moreover, the ortholog of RNF113A in fruit flies may also act as a spliceosome and is hypothesized to be involved in splicing, namely within the central nervous system. The ortholog in Caenorhabditis elegans is involved in DNA repair of inter-strand crosslinks. RNF113B, also known as zinc finger protein 183-like 1, shows high sequence similarity with RNF113A. Both RNF113A and RNF113B contain a CCCH-type zinc finger, which is commonly found in RNA-binding proteins involved in splicing, and a C3HC4-type RING-HC finger, which is frequently found in E3 ubiquitin ligases. 41 -319454 cd16540 RING-HC_RNF114 RING finger, HC subclass, found in RING finger protein 114 (RNF114) and similar proteins. RNF114, also known as zinc finger protein 228 (ZNF228) or zinc finger protein 313 (ZNF313), is a p21(WAF1)-targeting ubiquitin E3 ligase that interacts with X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) and may play a role in p53-mediated cell-fate decisions. It is involved in immune response to double-stranded RNA in disease pathogenesis. Moreover, RNF114 interacts with A20 and modulates its ubiquitylation. It negatively regulates nuclear factor-kappaB (NF-kappaB)-dependent transcription and positively regulates T-cell activation. RNF114 may play a putative role in the regulation of immune responses, since it corresponds to a novel psoriasis susceptibility gene, ZNF313. RNF114, together with three closely related proteins: RNF125, RNF138 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). 42 -319455 cd16541 RING-HC_RNF123 RING finger, HC subclass, found in RING finger protein 123 (RNF123) and similar proteins. RNF123, also known as Kip1 ubiquitination-promoting complex protein 1 (KPC1), is an E3 ubiquitin-protein ligase that mediates ubiquitination and proteasomal processing of the nuclear factor-kappaB 1 (NF- kappaB1) precursor p105 to the p50 active subunit restricts tumor growth. It also regulates degradation of heterochromatin protein 1alpha (HP1alpha) and 1beta (HP1beta) in lamin A/C knock-down cells. Moreover, RNF123, together with Kip1 ubiquitylation-promoting complex 2 (KPC2), forms the Kip1 ubiquitination-promoting complex (KPC), acting as a cytoplasmic ubiquitin ligase that regulates degradation of the cyclin-dependent kinase inhibitor p27 (Kip1) at the G1 phase of the cell cycle. Furthermore, RNF123 may function as a clinically relevant, peripheral state marker of depression. RNF123 contains a C3HC4-type RING-HC finger at the C-terminus. 41 -319456 cd16542 RING-HC_RNF125 RING finger, HC subclass, found in RING finger protein 125 (RNF125). RNF125, also known as T-cell RING activation protein 1 (TRAC-1), is an E3 ubiquitin-protein ligase that is predominantly expressed in lymphoid cells, and functions as a positive regulator of T cell activation. It also down-modulates HIV replication and inhibits pathogen-induced cytokine production. It negatively regulates type I interferon signaling, which conjugates Lys(48)-linked ubiquitination to retinoic acid-inducible gene-I (RIG-I) and subsequently leads to the proteasome-dependent degradation of RIG-I. Further, RNF125 conjugates ubiquitin to melanoma differentiation-associated gene 5 (MDA5), a family protein of RIG-I. It thus acts as a negative regulator of RIG-I signaling, and is a direct target of miR-15b in the context of Japanese encephalitis virus (JEV) infection. Moreover, RNF125 binds to and ubiquitinates JAK1, prompting its degradation and inhibition of receptor tyrosine kinase (RTK) expression. It also negatively regulates p53 function through physical interaction and ubiquitin-mediated proteasome degradation. Mutations in RNF125 may lead to overgrowth syndromes (OGS). RNF125, together with three closely related proteins: RNF114, RNF138 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). The UIM of RNF125 binds K48-linked poly-ubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. 42 -319457 cd16543 RING-HC_RNF135_like RING finger, HC subclass, found in RING finger protein 135 (RNF135), tripartite motif-containing protein 15 (TRIM15) and similar proteins. RNF135, also known as RIG-I E3 ubiquitin ligase (REUL) or Riplet, is a widely expressed E3 ubiquitin-protein ligase that consists of an N-terminal C3HC4-type RING-HC finger and C-terminal B30.2/SPRY and PRY motifs, but lacks the B-box and coiled-coil domains that are also typically present in TRIM proteins. RNF135 serves as a specific retinoic acid-inducible gene-I (RIG-I)-interacting protein that ubiquitinates RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity to produce antiviral type-I interferon (IFN) during the early phase of viral infection. It also has been identified as a bio-marker and therapy target of glioblastoma. It associates with the ERK signal transduction pathway and plays a role in glioblastoma cell proliferation, migration and cell cycle. TRIM15, also known as RING finger protein 93 (RNF93), zinc finger protein 178 (ZNF178), or zinc finger protein B7 (ZNFB7), is a focal adhesion protein that regulates focal adhesion disassembly. It localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. TRIM15 can also associate with coronin 1B, cortactin, filamin binding LIM protein1, and vasodilator-stimulated phosphoprotein, which are involved in actin cytoskeleton dynamics. As an additional component of the integrin adhesome, it regulates focal adhesion turnover and cell migration. TRIM15 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. 37 -319458 cd16544 RING-HC_RNF138 RING finger, HC subclass, found in RING finger protein 138 (RNF138) and similar proteins. RNF138, also known as Nemo-like kinase-associated RING finger protein (NARF) or NLK-associated RING finger protein, is an E3 ubiquitin-protein ligase that plays an important role in glioma cell proliferation, apoptosis, and cell cycle. It specifically cooperates with the E2 conjugating enzyme E2-25K (Hip-2/UbcH1), regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF), and further suppresses Wnt-beta-catenin signaling. RNF138, together with three closely related proteins: RNF114, RNF125 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). 46 -319459 cd16545 RING-HC_RNF141 RING finger, HC subclass, found in RING finger protein 141 (RNF141) and similar proteins. RNF141, also known as zinc finger protein 230 (ZNF230), is a RING finger protein present primarily in the nuclei of spermatogonia, the acrosome, and the tail of spermatozoa. It may have a broad function during early development of vertebrates. It plays an important role in spermatogenesis, including spermatogenic cell proliferation and sperm maturation, as well as motility and fertilization. It also exhibits DNA binding activity. RNF141 corresponding ZNF230 gene mutation may be associated with azoospermia. RNF141 contains a C3HC4-type RING finger domain that may function as an activator module in transcription. 39 -319460 cd16546 RING-HC_RNF146 RING finger, HC subclass, found in RING finger protein 146 (RNF146) and similar proteins. RNF146, also known as dactylidin, or iduna, is a cytoplasmic E3 ubiquitin-protein ligase that is responsible for PARylation-dependent ubiquitination (PARdU). It displays neuroprotective property due to its inhibition of Parthanatos, a PAR dependent cell death, via binding with Poly(ADP-ribose) (PAR). It also modulates PAR polymerase-1 (PARP-1)-mediated oxidative cell injury in cardiac myocytes. Moreover, RNF146 mediates tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. It also facilitates DNA repair and protects against cell death induced by DNA damaging agents or gamma-irradiation through translocating to the nucleus after cellular injury and promoting the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. Furthermore, RNF146 is implicated in neurodegenerative disease and cancer development. It regulates the development and progression of non-small cell lung cancer (NSCLC) by enhancing cell growth, invasion, and survival. RNF146 contains an N-terminal C3HC4-type RING-HC finger followed by a WWE domain with a poly(ADP-ribose) (PAR) binding motif at the tail. 40 -319461 cd16547 RING-HC_RNF151 RING finger, HC subclass, found in RING finger protein 151 (RNF151) and similar proteins. RNF151 is a testis-specific RING finger protein that interacts with dysbindin, a synaptic and microtubular protein that binds brain snapin, a SNARE-binding protein that mediated intracellular membrane fusion in both neuronal and non-neuronal cells. Thus, it may be involved in acrosome formation of spermatids through interacting with multiple proteins participating in membrane biogenesis and microtubule organization. RNF151 contains a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TNF receptor associated factor (TRAF)-type zinc finger domain. 39 -319462 cd16548 RING-HC_RNF152 RING finger, HC subclass, found in RING finger protein 152 (RNF152) and similar proteins. RNF152 is a lysosome-anchored E3 ubiquitin-protein ligase involved in apoptosis. It is polyubiquitinated through K48 linkage. It negatively regulates the activation of the mTORC1 pathway by targeting RagA GTPase for K63-linked ubiquitination. It interacts with and ubiquitinates RagA in an amino-acid-sensitive manner. The ubiquitination of RagA recruits its inhibitor GATOR1, a GAP complex for Rag GTPases to the Rag complex, thereby inactivating mTORC1 signaling. RNF152 contains an N-terminal C3HC4-type RING-HC finger and a C-terminal transmembrane domain, both of which are responsible for its E3 ligase activity. 45 -319463 cd16549 RING-HC_RNF166 RING finger, HC subclass, found in RING finger protein 166 (RNF166) and similar proteins. RNF166 is encoded by gene RNF166 targeted by thyroid hormone receptor alpha1 (TRalpha1), which is important in brain development. It plays an important role in RNA virus-induced interferon-beta production by enhancing the ubiquitination of TRAF3 and TRAF6. RNF166, together with three closely related proteins: RNF114, RNF125 and RNF138, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). 47 -319464 cd16550 RING-HC_RNF168 RING finger, HC subclass, found in RING finger protein 168 (RNF168) and similar proteins. RNF168 is an E3 ubiquitin-protein ligase that promotes noncanonical K27 ubiquitination to signal DNA damage. It, together with RNF8, functions as a DNA damage response (DDR) factor that promotes a series of ubiquitylation events on substrates, such as H2A and H2AX with H2AK13/15 ubiquitylation, facilitates recruitment of repair factors p53-binding protein 1 (53BP1) or the RAP80-BRCA1 complex to sites of double-strand breaks (DSBs), and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. RNF168 also promotes H2A neddylation, which antagonizes ubiquitylation of H2A and regulates DNA damage repair. Moreover, RNF168 forms a functional complex with RAD6A or RAD6B during the DNA damage response. RNF168 contains an N-terminal C3HC4-type RING-HC finger that catalyzes H2A-K15ub and interacts with H2A, and two MIU (motif interacting with ubiquitin) domains responsible for the interaction with K63 linked poly-ubiquitin. 42 -319465 cd16551 RING-HC_RNF169 RING finger, HC subclass, found in RING finger protein 169 (RNF169) and similar proteins. RNF169 is an uncharacterized E3 ubiquitin-protein ligase paralogous to RNF168. It functions as a negative regulator of the DNA damage signaling cascade. RNF169 recognizes polyubiquitin structures but does not itself contribute to double-strand break (DSB)-induced chromatin ubiquitylation. It contributes to regulation of the DSB repair pathway utilization via functionally competing with recruiting repair factors, 53BP1 and RAP80-BRCA1, for association with RNF168-modified chromatin independent of its catalytic activity, limiting the magnitude of the RNF8/RNF168-dependent signaling response to DSBs. RNF169 contains an N-terminal C3HC4-type RING-HC finger and a C-terminal MIU (motif interacting with ubiquitin) domain. 41 -319466 cd16552 RING-HC_NEURL3 RING finger, HC subclass, found in neuralized-like protein 3 (NEURL3) and similar proteins. NEURL3, also known as lung-inducible neuralized-related C3HC4 RING domain protein (LINCR), is a novel inflammation-induced E3 ubiquitin-protein ligase encoded by LINCR, a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. It is expressed in alveolar epithelial type II cells, preferentially interacts with the ubiquitin-conjugating enzyme UbcH6, and generates polyubiquitin chains linked via non-canonical lysine residues. Overexpression of NEURL3 in the developing lung epithelium inhibits distal differentiation and induces cystic changes in the Notch signaling pathway. NEURL3 contains an N-terminal neuralized homology repeat (NHR) domain similar to the SPRY (SPla and the RYanodine receptor) domain and a C-terminal C3HC4-type RING-HC finger. 42 -319467 cd16553 RING-HC_RNF170 RING finger, HC subclass, found in RING finger protein 170 (RNF170) and similar proteins. RNF170, also known as putative LAG1-interacting protein, is an endoplasmic reticulum (ER) membrane-bound E3 ubiquitin-protein ligase that mediates ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate (IP3) receptors (ITPR1) via the endoplasmic-reticulum-associated protein degradation (ERAD) pathway. A point mutation (arginine to cysteine at position 199) of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. RNF170 contains a C3HC4-type RING-HC finger. 44 -319468 cd16554 RING-HC_RNF180 RING finger, HC subclass, found in RING finger protein 180 (RNF180) and similar proteins. RNF180, also known as Rines, is a membrane-bound E3 ubiquitin-protein ligase well conserved among vertebrates. It is a critical regulator of the monoaminergic system, as well as emotional and social behavior. It interacts with brain monoamine oxidase A (MAO-A) and targets it for ubiquitination and degradation. It also functions as a novel tumor suppressor in gastric carcinogenesis. The hypermethylated CpG site count of RNF180 DNA promoter can be used to predict the survival of gastric cancer. RNF180 contains a novel conserved dual specificity protein phosphatase Rines conserved (DSPRC) domain, a basic coiled-coil domain, a C3HC4-type RING-HC finger, and a C-terminal hydrophobic region that is predicted to be a transmembrane domain. 44 -319469 cd16555 RING-HC_RNF182 RING finger, HC subclass, found in RING finger protein 182 (RNF182) and similar proteins. RNF182 is a brain-enriched E3 ubiquitin-protein ligase that stimulates E2-dependent polyubiquitination in vitro. It is upregulated in the Alzheimer"s disease (AD) brains and neuronal cells exposed to injurious insults. It interacts with ATP6V0C and promotes its degradation by the ubiquitin-proteosome pathway, suggesting a very specific role in controlling the turnover of an essential component of neurotransmitter release machinery. RNF182 contains an N-terminal C3HC4-type RING-HC finger, and a C-terminal transmembrane domain. 51 -319470 cd16556 RING-HC_RNF183_like RING finger, HC subclass, found in RING finger protein RNF183, RNF223 and similar proteins. RNF183 is an E3 ubiquitin-protein ligase that is upregulated during intestinal inflammation and is negatively regulated by miR-7. It promotes intestinal inflammation by increasing the ubiquitination and degradation of inhibitor of kappa B, thereby resulting in secondary activation of the Nuclear factor-kappaB (NF-kB) pathway. The interaction between RNF183-mediated ubiquitination and miRNA may be an important novel epigenetic mechanism in the pathogenesis of inflammatory bowel disease (IBD). The biological function of RNF223 remains unclear. Both RNF183 and RNF223 contain an N-terminal C3HC4-type RING-HC finger and a C-terminal transmembrane domain. 54 -319471 cd16557 RING-HC_RNF186 RING finger, HC subclass, found in RING finger protein 186 (RNF186) and similar proteins. RNF186 is an E3 ubiquitin-protein ligase with an N-terminal C3HC4-type RING-HC finger and two putative C-terminal transmembrane domains which enable it to localize in a certain organelle. It regulates RING-dependent self-ubiquitination, as well as endoplasmic reticulum (ER) stress-mediated apoptosis through interaction with the Bcl-2 family protein BNip1. 51 -319472 cd16558 RING-HC_RNF207 RING finger, HC subclass, found in RING finger protein 207 (RNF207) and similar proteins. RNF207 is a cardiac-specific E3 ubiquitin-protein ligase that plays an important role in the regulation of cardiac repolarization. It regulates action potential duration, likely via effects on human ether-a-go-go-related gene (HERG) trafficking and localization in a heat shock protein-dependent manner. RNF207 contains a C3HC4-type RING-HC finger, Bbox 1 and Bbox C-terminal (BBC), as well as a C-terminal non-homologous region (CNHR). 43 -319473 cd16559 RING-HC_RNF208 RING finger, HC subclass, found in RING finger protein 208 (RNF208) and similar proteins. RNF208 is an E3 ubiquitin-protein ligase whose activity can be modulated by S-nitrosylation. It contains a C3HC4-type RING-HC finger. 50 -319474 cd16560 RING-HC_RNF212_like RING finger, HC subclass, found in RING finger proteins RNF212, RNF212B and similar proteins. The family includes RING finger protein RNF212, RNF212B, and their homologs. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. It plays a central role in designating crossover sites and coupling chromosome synapsis to the formation of crossover-specific recombination complexes. It also functions as an E3 ligase for small ubiquitin-related modifier (SUMO) modification. RNF212B shows high sequence similarity with RNF212, but its biological function remains unclear. Members in this family contain an N-terminal C3HC4-type RING-HC finger. The family also includes two homologs of RNF212, meiotic procrossover factors Zip3 and ZHP-3, which have been identified in Saccharomyces cerevisiae and Caenorhabditis elegans, respectively. Budding yeast Zip3 is a small ubiquitin-related modifier (SUMO) E3 ligase implicated in the SUMO pathway of post-translational modification. It sumoylates chromosome axis proteins, thus promoting synaptonemal complex polymerization. It also acts as a Smt3 E3 ligase. Zip3 includes a SUMO Interacting Motif (SIM) and a modified C3HCHC2-type RING-HC finger that are important for Zip3 in vitro E3 ligase activity and necessary for SC polymerization and correct sporulation. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and chiasma formation in Caenorhabditis elegans. It possess a C3HC4-type RING-HC finger. 41 -319475 cd16561 RING-HC_RNF213 RING finger, HC subclass, found in RING finger protein 213 (RNF213) and similar proteins. RNF213, also known as ALK lymphoma oligomerization partner on chromosome 17 or Moyamoya steno-occlusive disease-associated AAA+ and RING finger protein (mysterin), is an intracellular soluble protein that functions as an E3 ubiquitin-protein ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. It plays a unique role in endothelial cells for proper gene expression in response to inflammatory signals from the environment. Mutations in RNF213 may associate with Moyamoya disease (MMD), an idiopathic cerebrovascular occlusive disorder prevalent in East Asia. It also acts as a nuclear marker for acanthomorph phylogeny. RNF213 contains two tandem enzymatically active AAA+ ATPase modules and a C3HC4-type RING-HC finger. It can forms huge ring-shaped oligomeric complex. 41 -319476 cd16562 RING-HC_RNF219 RING finger, HC subclass, found in RING finger protein 219 (RNF219) and similar proteins. RNF219 may function as a modulator of late-onset Alzheimer"s disease (LOAD) associated amyloid beta A4 precursor protein (APP) endocytosis and metabolism. It genetically interacts with apolipoprotein E epsilon4 allele (APOE4). Thus a genetic variant within RNF219 was found to affect amyloid deposition in human brain and LOAD age-of-onset. Moreover, common genetic variants at the RNF219 locus had been associated with alternations in lipid metabolism, cognitive performance and central nervous system ventricle volume. RNF219 contains a C3HC4-type RING-HC finger. 42 -319477 cd16563 RING-HC_RNF220 RING finger, HC subclass, found in RING finger protein 220 (RNF220) and similar proteins. RNF220 is an E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of Sin3B, a scaffold protein of the Sin3/HDAC (histone deacetylase) corepressor complex. It can also bind E2 and mediate auto-ubiquitination of itself. Moreover, RNF220 specifically interacts with beta-catenin, and enhances canonical Wnt signaling through ubiquitin-specific protease 7 (USP7)-mediated deubiquitination and stabilization of beta-catenin, which is independent of its E3 ligase activity. RNF220 contains a characteristic C3HC4-type RING-HC finger at its C-terminus. 41 -319478 cd16564 RING-HC_RNF222 RING finger, HC subclass, found in RING finger protein 222 (RNF222) and similar proteins. RNF222 is an uncharacterized C3HC4-type RING-HC finger-containing protein. It may function as an E3 ubiquitin-protein ligase. 47 -319479 cd16565 RING-HC_RNF224_like RING finger, HC subclass, found in RING finger protein RNF224, RNF225 and similar proteins. Both RNF224 and RNF225 are uncharacterized C3HC4-type RING-HC finger-containing proteins. They may function as an E3 ubiquitin-protein ligase. 49 -319480 cd16566 RING-HC_RSPRY1 RING finger, HC subclass, found in RING finger and SPRY domain-containing protein 1 (RSPRY1) and similar proteins. RSPRY1 is a hypothetical RING and SPRY domain-containing protein of unknown physiological function. Mutations in its corresponding gene RSPRY1 may associate with a distinct skeletal dysplasia syndrome. RSPRY1 contains a B30.2/SPRY domain and a C3HC4-type RING-HC finger. 41 -319481 cd16567 RING-HC_RAD16_like RING finger, HC subclass, found in Saccharomyces cerevisiae DNA repair protein RAD16, Schizosaccharomyces pombe rhp16, and similar proteins. Budding yeast RAD16, also known as ATP-dependent helicase RAD16, is encoded by a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. It is a component of the global genome repair (GGR) complex which promotes global genome nucleotide excision repair (GG-NER) that removes DNA damage from non-transcribing DNA. RAD16 is involved in differential repair of DNA after UV damage, and repairs preferentially the MAT-alpha locus compared with the HML-alpha locus. Fission yeast rhp16, also known as ATP-dependent helicase rhp16, is a RAD16 homolog. It is involved in GGR via nucleotide excision repair (NER), in conjunction with rhp7, after UV irradiation. Both RAD16 and rhp16 contain a C3HC4-type RING-HC finger, as well as a DEAD-like helicase domain and a helicase superfamily C-terminal domain. 47 -319482 cd16568 RING-HC_ScPSH1_like RING finger, HC subclass, found in Saccharomyces cerevisiae POB3/SPT16 histone-associated protein 1 (ScPSH1), Arabidopsis thaliana Protein KEEP ON GOING (AtKEG) and similar proteins. ScPSH1 is a Cse4-specific E3 ubiquitin ligase that interacts with the kinetochore protein Pat1 and targets the degradation of budding yeast centromeric histone H3 variant, CENP-ACse4, which is essential for faithful chromosome segregation. ScPSH1 contains a C3HC4-type RING-HC finger and a DNA directed RNA polymerase domain. AtKEG is an E3 ubiquitin ligase essential for Arabidopsis growth and development. It maintains low levels of ABSCISIC ACID-INSENSITIVE5 (ABI5) in the absence of stress and thus functions as a negative regulator of abscisic acid (ABA) signaling. AtKEG is a multidomain protein that includes a C3HC4-type RING-HC finger, a kinase domain, ankyrin repeats, and 12 HERC2-like (for HECT and RCC1-like) repeats. 45 -319483 cd16569 RING-HC_SHPRH RING finger, HC subclass, found in SNF2 histone-linker PHD finger RING finger helicase (SHPRH) and similar proteins. SHPRH is a yeast RAD5 homolog found in mammals. It functions as an E3 ubiquitin-protein ligase that associates with proliferating cell nuclear antigen (PCNA), RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and suppresses genomic instability through proliferating methyl methanesulfonate (MMS)-induced PCNA polyubiquitination. SHPRH contains a SWI/SNF helicase domain that is divided into N- and C-terminal parts by an insertion of a linker histone domain (H15), a PHD-finger, and a C3HC4-type RING-HC finger involved in the poly-ubiquitination of PCNA. 51 -319484 cd16570 RING-HC_SH3RFs RING finger, HC subclass, found in SH3 domain-containing RING finger proteins SH3RF1, SH3RF2, SH3RF3, and similar proteins. SH3RF1, also known as plenty of SH3s (POSH), RING finger protein 142 (RNF142), or SH3 multiple domains protein 2 (SH3MD2), is a trans-Golgi network-associated pro-apoptotic scaffold protein with E3 ubiquitin-protein ligase activity. SH3RF2, also known as heart protein phosphatase 1-binding protein (HEPP1), plenty of SH3s (POSH)-eliminating RING protein (POSHER), protein phosphatase 1 regulatory subunit 39, or RING finger protein 158 (RNF158), is a putative E3 ubiquitin-protein ligase that acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway by binding to and promoting the proteasomal degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. SH3RF3, also known as plenty of SH3s 2 (POSH2) or SH3 multiple domains protein 4 (SH3MD4), is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2) and may play a role in regulating c-Jun N-terminal kinase (JNK) mediated apoptosis in certain conditions. Members in this family contain an N-terminal C3HC4-type RING-HC finger responsible for the E3 ligase activity and four Src Homology 3 (SH3) domains that are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. 46 -319485 cd16571 RING-HC_SIAHs RING finger, HC subclass, found in Drosophila melanogaster protein Seven-in-Absentia (sina) and its homologs. The family includes the Drosophila melanogaster protein Seven-in-Absentia (sina), its mammalian orthologs, SIAH1 and SIAH2, plant SINA-related proteins, and similar proteins. The Drosophila homolog sina plays an important role in the phyllopod-dependent degradation of the transcriptional repressor tramtrack as for the formation of the R7 photoreceptor in the developing eye of Drosophila melanogaster. Both of SIAH1 and SIAH2 are E3 ubiquitin-protein ligases, mediating the ubiquitinylation and subsequent proteasomal degradation of biologically important target proteins that regulate general functions, such as cell cycle control, apoptosis, and DNA repair. They are inducible by the tumor suppressor and transcription factor p53. SIAH2 can also be regulated by sex hormones and cytokine signaling. Moreover, they share high sequence similarity, but possess contrary roles in cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. Plant SINAT1-5 are putative E3 ubiquitin ligase involved in the regulation of stress responses. All family members possess two characteristic domains, an N-terminal C3HC4-type RING-HC finger and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD). 38 -319486 cd16572 RING-HC_SpRad8_like RING finger, HC subclass, found in Schizosaccharomyces pombe DNA repair protein Rad8 (SpRad8) and similar proteins. SpRad8 is a conserved protein homologous to Saccharomyces cerevisiae DNA repair protein Rad5 and human helicase-like transcription factor (HLTF) that is required for error-free postreplication repair by contributing to polyubiquitylation of PCNA. SpRad8 contains a C3HC4-type RING-HC finger responsible for the E3 ubiquitin ligase activity, a SNF2-family helicase domain including an ATP binding site, and a family-specific HIRAN domain (HIP116, Rad5p N-terminal domain) that contributes to nuclear localization. 49 -319487 cd16573 RING-HC_TFB3_like RING finger, HC subclass, found in RNA polymerase II transcription factor B subunit 3 (TFB3) from fungi. TFB3, also known as RNA polymerase II transcription factor B 38 kDa subunit, RNA polymerase II transcription factor B p38 subunit, or Rig2, is a component of the general transcription and DNA repair factor IIH (TFIIH or factor B), which is essential for both basal and activated transcription and is involved in nucleotide excision repair (NER) of damaged DNA. TFIIH has CTD kinase and DNA-dependent ATPase activity, and is essential for polymerase II transcription in vitro. TFB3 is a homolog of MAT1 of higher eukaryotes which forms a ternary complex with MO15 (cdk7) and cyclin H. It physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 as well as the Hrt1/Rtt101 complex. It targets the yeast Cul4-type cullin Rtt101 for its neddylation and ubiquitylation, and regulates neddylation and activity of cullin-3, but not Cdc53. TFB3 contains an N-terminal C3HC4-type RING-HC finger and a C-terminal MAT1 domain responsible for the interaction with the transcription factor TFIIH. 54 -319488 cd16574 RING-HC_Topors RING finger, HC subclass, found in topoisomerase I-binding arginine/serine-rich protein (Topors) and similar proteins. Topors, also known as topoisomerase I-binding RING finger protein, tumor suppressor p53- binding protein 3, or p53-binding protein 3 (p53BP3), is a ubiquitously expressed nuclear E3 ubiquitin-protein ligase that can ligate both ubiquitin and small ubiquitin-like modifier (SUMO) to substrate proteins in the nucleus. It contains an N-terminal C3HC4-type RING-HC finger which ligates ubiquitin to its target proteins including DNA topoisomerase I, p53, NKX3.1, H2AX, and the AAV-2 Rep78/68 proteins. As a RING-dependent E3 ubiquitin ligase, Topors works with the E2 enzymes UbcH5a, UbcH5c, and UbcH6, but not with UbcH7, CDC34, or UbcH2b. Topors acts as a tumor suppressor in various malignancies. It regulates p53 modification, suggesting it may be responsible for astrocyte elevated gene-1 (AEG-1, also known as metadherin, or LYRIC) ubiquitin modification. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. It also functions as a negative regulator of the prostate tumor suppressor NKX3.1. Moreover, Topors is associated with promyelocytic leukemia nuclear bodies, and may be involved in the cellular response to camptothecin. It also plays a key role in the turnover of H2AX protein, discriminating the type of DNA damaging stress. Furthermore, Topors is a cilia-centrosomal protein associated with autosomal dominant retinal degeneration. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa (adRP). 40 -319489 cd16575 RING-HC_MID_C-I RING finger, HC subclass, found in midline-1 (MID1), midline-2 (MID2) and similar proteins. MID1, also known as midin, midline 1 RING finger protein, putative transcription factor XPRF, RING finger protein 59 (RNF59), or tripartite motif-containing protein 18 (TRIM18), is a microtubule-associated E3 ubiquitin-protein ligase implicated in epithelial-mesenchymal differentiation, cell migration and adhesion, and programmed cell death along specific regions of the ventral midline during embryogenesis. MID2, also known as midin-2, midline defect 2, RING finger protein 60 (RNF60), or tripartite motif-containing protein 1 (TRIM1), is highly related to MID1. It associates with the microtubule network and may at least partially compensate for the loss of MID1. Both MID1 and MID2 interacts with Alpha 4, which is a regulatory subunit of PP2-type phosphatases, such as PP2A, and an integral component of the rapamycin-sensitive signaling pathway. They also play a central role in the regulation of granule exocytosis and the functional redundancy exists between MID1 and MID2 in cytotoxic lymphocytes (CTL). Both MID1 and MID2 belong to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 52 -319490 cd16576 RING-HC_TRIM9_like_C-I RING finger, HC subclass, found in tripartite motif-containing proteins TRIM9, TRIM36, TRIM46, TRIM67, and similar proteins. Tripartite motif-containing proteins TRIM9, TRIM36, TRIM46, and TRIM67 belong to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, consisting of three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. TRIM9 (the human ortholog of rat Spring), also known as RING finger protein 91 (RNF91), is a brain-specific E3 ubiquitin-protein ligase collaborating with an E2 ubiquitin conjugating enzyme UBCH5b. TRIM9 plays an important role in the regulation of neuronal functions and participates in the neurodegenerative disorders through its ligase activity. TRIM36 (the human ortholog of mouse Haprin), also known as RING finger protein 98 (RNF98), or zinc-binding protein Rbcc728, is an E3 ubiquitin-protein ligase expressed in the germ plasm. It has been implicated in acrosome reaction, fertilization, and embryogenesis, as well as in the carcinogenesis. TRIM46, also known as gene Y protein (GeneY) or tripartite, fibronectin type-III and C-terminal SPRY motif protein (TRIFIC), is a microtubule-associated protein that forms parallel microtubule bundles in the proximal axon and plays a crucial role for the establishment and maintenance of neuronal polarity. TRIM67, also known as TRIM9-like protein (TNL), is a protein selectively expressed in the cerebellum. It interacts with PRG-1, an important molecule in the control of hippocampal excitability dependent on presynaptic LPA2 receptor signaling, and 80K-H, also known as glucosidase II beta, a protein kinase C substrate. 42 -319491 cd16577 RING-HC_MuRF_C-II RING finger, HC subclass, found in muscle-specific RING finger proteins TRIM63/MuRF-1, TRIM55/MuRF-2 and TRIM54/MuRF-3. This family corresponds to a group of striated muscle-specific tripartite motif (TRIM) proteins, including TRIM63/MuRF-1, TRIM55/MuRF-2, and TRIM54/MuRF-3, which function as E3 ubiquitin ligases in ubiquitin-mediated muscle protein turnover. They are tightly developmentally regulated in skeletal muscle and associate with different cytoskeleton components, such as microtubules, Z-disks and M-bands, as well as with metabolic enzymes and nuclear proteins. They also cooperate with diverse proteins implicated in selective protein degradation by the proteasome and autophagosome, and target proteins of metabolic regulation, sarcomere assembly and transcriptional regulation. Moreover, MURFs display variable fibre-type preferences. TRIM63/MuRF-1 is predominantly fast (type II) fibre-associated in skeletal muscle. TRIM55/MuRF-2 is predominantly slow-fibre associated. TRIM54/MuRF-3 is ubiquitously present. They play an active role in microtubule-mediated sarcomere assembly. MuRFs belong to the C-II subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, and an acidic residue-rich (AR) domain positioned C-terminal to the RBCC domain. They also harbor a MURF family-specific conserved box (MFC) between its RING-HC finger and Bbox domains. 51 -319492 cd16578 RING-HC_TRIM42_C-III RING finger, HC subclass, found in tripartite motif-containing protein 42 (TRIM42) and similar proteins. TRIM42 belongs to the C-III subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain. It also has a novel cysteine-rich motif N-terminal to the RBCC domain, as well as a COS (carboxyl-terminal subgroup one signature) box and a fibronectin type-III (FN3) domain positioned C-terminal to the RBCC domain. TRIM42 can interact with TRIM27, a known cancer-associated protein. Its precise biological function remains unclear. 51 -319493 cd16579 RING-HC_PML_C-V RING finger, HC subclass, found in promyelocytic leukemia protein (PML) and similar proteins. Protein PML, also known as RING finger protein 71 (RNF71) or tripartite motif-containing protein 19 (TRIM19), is predominantly a nuclear protein with a broad intrinsic antiviral activity. It is the eponymous component of PML nuclear bodies (PML NBs) and has been implicated in a wide variety of cell processes, including DNA damage signaling, apoptosis, and transcription. PML interferes with the replication of many unrelated viruses, including human immunodeficiency virus 1 (HIV-1), human foamy virus (HFV), poliovirus, influenza virus, rabies virus, EMCV, adeno-associated virus (AAV), and vesicular stomatitis virus (VSV). It also selectively interacts with misfolded proteins through distinct substrate recognition sites and conjugates these proteins with the small ubiquitin-like modifiers (SUMOs) through its SUMO ligase activity. PML belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as an uncharacterized region positioned C-terminal to the RBCC domain. 37 -319494 cd16580 RING-HC_TRIM8_C-V RING finger, HC subclass, found in tripartite motif-containing protein 8 (TRIM8) and similar proteins. TRIM8, also known as glioblastoma-expressed RING finger protein (GERP) or RING finger protein 27 (RNF27), is a probable E3 ubiquitin-protein ligase that may promote proteasomal degradation of suppressor of cytokine signaling 1 (SOCS1) and further regulate interferon-gamma signaling. It functions as a new p53 modulator that stabilizes p53 impairing its association with MDM2 and inducing the reduction of cell proliferation. TRIM8 deficit dramatically impairs p53 stabilization and activation in response to chemotherapeutic drugs. TRIM8 also modulates tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta)-triggered nuclear factor-kappaB (NF- kappa B) activation by targeting transforming growth factor beta (TGFbeta) activated kinase 1 (TAK1) for K63-linked polyubiquitination. Moreover, TRIM8 modulates translocation of phosphorylated STAT3 into the nucleus through interaction with Hsp90beta and consequently regulates transcription of Nanog in embryonic stem cells. It also interacts with protein inhibitor of activated STAT3 (PIAS3), which inhibits IL-6-dependent activation of STAT3. TRIM8 belongs to the C-V subclass of nuclear TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as an uncharacterized region positioned C-terminal to the RBCC domain. The coiled coil domain is required for homodimerization and the region immediately C-terminal to the RING motif is sufficient to mediate the interaction with SOCS1. 44 -319495 cd16581 RING-HC_TRIM13_like_C-V RING finger, HC subclass, found in tripartite motif-containing proteins TRIM13, TRIM59 and similar proteins. TRIM13 and TRIM59, two closely related tripartite motif-containing proteins, belong to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, followed by a C-terminal transmembrane domain. TRIM13, also known as B-cell chronic lymphocytic leukemia tumor suppressor Leu5, leukemia-associated protein 5, putative tumor suppressor RFP2, RING finger protein 77 (RNF77), or Ret finger protein 2, is an endoplasmic reticulum (ER) membrane anchored E3 ubiquitin-protein ligase that interacts proteins localized to the ER, including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). TRIM59, also known as RING finger protein 104 (RNF104) or tumor suppressor TSBF-1, is a putative E3 ubiquitin-protein ligase that functions as a novel multiple cancer biomarker for immunohistochemical detection of early tumorigenesis. 45 -319496 cd16582 RING-HC_TRIM31_C-V RING finger, HC subclass, found in tripartite motif-containing protein 31 (TRIM31) and similar proteins. TRIM31 is an E3 ubiquitin-protein ligase that primarily localizes to the cytoplasm, but is also associated with the mitochondria. It can negatively regulate cell proliferation and may be a potential biomarker of gastric cancer as it is overexpressed from the early stage of gastric carcinogenesis. TRIM31 is downregulated in non-small cell lung cancer and serves as a potential tumor suppressor. It interacts with p52 (Shc) and inhibits Src-induced anchorage-independent growth. TRIM31 belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as an uncharacterized region positioned C-terminal to the RBCC domain. 41 -319497 cd16583 RING-HC_TRIM40-C-V RING finger, HC subclass, found in tripartite motif-containing protein 40 (TRIM40) and similar proteins. TRIM40, also known as probable E3 NEDD8-protein ligase or RING finger protein 35 (RNF35), is highly expressed in the gastrointestinal tract including the stomach, small intestine, and large intestine. It enhances neddylation of inhibitor of nuclear factor kappaB kinase subunit gamma (IKKgamma), inhibits the activity of nuclear factor-kappaB (NF-kappaB)-mediated transcription, and thus prevents inflammation-associated carcinogenesis in the gastrointestinal tract. TRIM40 belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region , as well as an uncharacterized region positioned C-terminal to the RBCC domain. 46 -319498 cd16584 RING-HC_TRIM56_C-V RING finger, HC subclass, found in tripartite motif-containing protein 56 (TRIM56) and similar proteins. TRIM56, also known as RING finger protein 109 (RNF109), is a virus-inducible E3 ubiquitin ligase that restricts pestivirus infection. It positively regulates the Toll-like receptor 3 (TLR3) antiviral signaling pathway, and possesses antiviral activity against bovine viral diarrhea virus (BVDV), a ruminant pestivirus classified within the family Flaviviridae shared by tick-borne encephalitis virus (TBEV). It also possesses antiviral activity against two classical flaviviruses, yellow fever virus (YFV) and dengue virus (DENV), as well as a human coronavirus, HCoV-OC43, which is responsible for a significant share of common cold cases. It may do not act on positive-strand RNA viruses indiscriminately. Moreover, TRIM56 is an interferon-inducible E3 ubiquitin ligase that modulates STING to confer double-stranded DNA-mediated innate immune responses. TRIM56 belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as an uncharacterized region positioned C-terminal to the RBCC domain. 44 -319499 cd16585 RING-HC_TIF1_C-VI RING finger, HC subclass, found in the transcriptional inknown asiary factor 1 (TIF1) family and similar proteins. This family corresponds to the TIF1 family of transcriptional cofactors including TIF1alpha (TRIM24), TIF1beta (TRIM28), and TIF1gamma (TRIM33), which belongs to the C-VI subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a plant homeodomain (PHD), and a bromodomain (Bromo) positioned C-terminal to the RBCC domain. TIF1 proteins couple chromatin modifications to transcriptional regulation, signaling, and tumor suppression. They exert a deacetylase-dependent silencing effect when tethered to a promoter region. TIF1alpha and TIF1beta can homodimerize and contain a PXVXL motif necessary and sufficient for heterochromatin protein 1(HP1) binding. They bind nuclear receptors and Kruppel-associated boxes (KRAB) specifically and respectively. TIF1gamma is structurally closely related to TIF1alpha and TIF1beta, but has very little functional features in common with them. It does not interact with the KRAB silencing domain of KOX1 or the heterochromatinic proteins HP1alpha, beta and gamma. It cannot bind to nuclear receptors (NRs). TIF1delta (TRIM66) doesn"t have RING-HC finger and is not included here. 61 -319500 cd16586 RING-HC_TRIM2_like_C-VII RING finger, HC subclass, found in tripartite motif-containing protein TRIM2, TRIM3, and similar proteins. TRIM2, also known as RING finger protein 86 (RNF86), is an E3 ubiquitin-protein ligase that ubiquitinates the neurofilament light chain, a component of the intermediate filament in axons. Loss of function of TRIM2 results in early-onset axonal neuropathy. TRIM3, also known as brain-expressed RING finger protein (BERP), RING finger protein 97 (RNF97), or RING finger protein 22 (RNF22), is an E3 ubiquitin-protein ligase involved in the pathogenesis of various cancers. It also plays an important role in the central nervous system (CNS). In addition, TRIM3 may be involved in vesicular trafficking via its association with the cytoskeleton-associated-recycling or transport (CART) complex that is necessary for efficient transferrin receptor recycling, but not for epidermal growth factor receptor (EGFR) degradation. Both TRIM2 and TRIM3 belong to the C-VII subclass of TRIM (tripartite motif)-NHL family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. 45 -319501 cd16587 RING-HC_TRIM32_C-VII RING finger, HC subclass, found in tripartite motif-containing protein 32 (TRIM32) and similar proteins. TRIM32, also known as 72 kDa Tat-interacting protein, or zinc finger protein HT2A, or BBS11, is an E3 ubiquitin-protein ligase that promotes degradation of several targets, including actin, PIASgamma, Abl interactor 2, dysbindin, X-linked inhibitor of apoptosis (XIAP), p73 transcription factor, thin filaments and Z-bands during fasting. It plays important roles in neuronal differentiation of neural progenitor cells, as well as in controlling cell fate in skeletal muscle progenitor cells. It reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation. It also functions as a pluripotency-reprogramming roadblock that facilitates cellular transition towards differentiation via modulating the levels of Oct4 and cMyc. Moreover, TRIM32 is an intrinsic influenza A virus (IAV) restriction factor which senses and targets the polymerase basic protein 1 (PB1) polymerase for ubiquitination and protein degradation. It also plays a significant role in mediating the biological activity of the HIV-1 Tat protein in vivo, binds specifically to the activation domain of HIV-1 Tat, and can also interact with the HIV-2 and EIAV Tat proteins in vivo. Furthermore, Trim32 regulates myoblast proliferation by controlling turnover of NDRG2 (N-myc downstream-regulated gene). It negatively regulates tumor suppressor p53 to promote tumorigenesis. It also facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. In addition, TRIM32 plays important roles in regulation of hyperactivities and positively regulates the development of anxiety and depression disorders induced by chronic stress. It also plays a role in regeneration by affecting satellite cell cycle progression via modulation of the SUMO ligase PIASy (PIAS4). Defects in TRIM32 leads to limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and Bardet-Biedl syndrome. TRIM32 belongs to the C-VII subclass of TRIM (tripartite motif)-NHL family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. The NHL domain mediates the interaction with Argonaute proteins and consequently allows TRIM32 to modulate the activity of certain miRNAs. 47 -319502 cd16588 RING-HC_TRIM45-C-VII RING finger, HC subclass, found in tripartite motif-containing protein 45 (TRIM45) and similar proteins. TRIM45, also known as RING finger protein 99 (RNF99), is a novel receptor for activated C-kinase (RACK1)-interacting protein that suppresses transcriptional activities of Elk-1 and AP-1 and downregulates mitogen-activated protein kinase (MAPK) signal transduction through inhibiting RACK1/PKC (protein kinase C) complex formation. It also negatively regulates tumor necrosis factor alpha (TNFalpha)-induced nuclear factor-kappaB (NF-kappa B)-mediated transcription and suppresses cell proliferation. TRIM45 belongs to the C-VII subclass of TRIM (tripartite motif) family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a filamin-type immunoglobulin (IG-FLMN) domain and NHL repeats positioned C-terminal to the RBCC domain. 64 -319503 cd16589 RING-HC_TRIM71_C-VII RING finger, HC subclass, found in tripartite motif-containing protein 71 (TRIM71) and similar proteins. TRIM71, also known as protein lineage variant 41 (lin-41), is an E3 ubiquitin-protein ligase that may plays essential roles in embryonic stem cells, cellular reprogramming and the timing of embryonic neurogenesis. It was first identified in the nematode Caenorhabditis elegans as target of the differentiation-associated microRNA (miRNA) let-7 (lethal 7) and therefore part of a heterochronic gene network that controls larval development. In humans, it regulates let-7 microRNA biogenesis via modulation of Lin28B protein polyubiquitination. TRIM71 localizes to cytoplasmic P-bodies and directly interacts with the miRNA pathway proteins Argonaute 2 (AGO2) and DICER. It represses miRNA activity by promoting degradative ubiquitination of AGO2. Moreover, TRIM71 associates with SHCBP1, a novel component of the fibroblast growth factor (FGF) signaling pathway, and regulates its non-degradative polyubiquitination. It is also involved in the post-transcriptional regulation of the CDKN1A, RBL1 and RBL2 or EGR1 mRNAs through mediating RNA-binding in embryonic stem cells. TRIM71 belongs to the C-VII subclass of TRIM (tripartite motif)-NHL family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. 77 -319504 cd16590 RING-HC_TRIM4_C-IV_like RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM4, TRIM75, tripartite motif family-like protein 1 (TRIML1) and similar proteins. TRIM4 and TRIM75, two closely related tripartite motif-containing proteins, belong to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. TRIM4, also known as RING finger protein 87 (RNF87), is a cytoplasmic E3 ubiquitin-protein ligase that it had recently evolved and is present only in higher mammals. It transiently interacts with mitochondria, induces mitochondrial aggregation and sensitizes the cells to hydrogen peroxide (H2O2) induced death. Its interaction with peroxiredoxin 1 (PRX1) is critical for the regulation of H2O2 induced cell death. Moreover, TRIM4 functions as a positive regulator of RIG-I-mediated type I interferon induction. It regulates the K63-linked ubiquitination of RIG-1 and assembly of antiviral signaling complex at mitochondria. TRIM75 mainly localizes within spindles, suggesting it may function in spindle organization and thereby affect meiosis. The family also includes TRIML1 that is identical to TRIM11 and TRIM17 except for the absence of B-box domain. TRIML1, also known as RING finger protein 209 (RNF209), is a probable E3 ubiquitin-protein ligase expressed in embryo before implantation. It plays an important role in blastocyst development. By interacting with USP5 (also known as isoT), TRIML1 may exerts its influence on debranching ubiquitin from multi-chains on the stability and activity of protein substrates in the preimplantation embryo. 45 -319505 cd16591 RING-HC_TRIM5_like-C-IV RING finger, HC subclass, found in tripartite motif-containing proteins TRIM5, TRIM6, TRIM22, TRIM34 and similar proteins. TRIM5, TRIM6, TRIM22, and TRIM34, four closely related tripartite motif-containing proteins, belong to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. TRIM5, also known as RING finger protein 88 (RNF88), is a capsid-specific restriction factor that prevents infection from non-host-adapted retroviruses in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. Its retroviral restriction activity correlates with the ability to activate TAK1-dependent innate immune signaling. TRIM5 also acts as a pattern recognition receptor that activates innate immune signaling in response to the retroviral capsid lattice. Moreover, TRIM5 plays a role in regulating autophagy through activation of autophagy regulator BECN1 by causing its dissociation from its inhibitors BCL2 and TAB2. It also plays a role in autophagy by acting as a selective autophagy receptor which recognizes and targets HIV-1 capsid protein p24 for autophagic destruction. TRIM6, also known as RING finger protein 89 (RNF89), is an E3-ubiquitin ligase that cooperates with the E2-ubiquitin conjugase UbE2K to catalyze the synthesis of unanchored K48-linked polyubiquitin chains, and further stimulates the interferon-I kappa B kinase epsilon (IKKepsilon) kinase-mediated antiviral response. It also regulates the transcriptional activity of Myc during the maintenance of embryonic stem (ES) cell pluripotency, and may act as a novel regulator for Myc-mediated transcription in ES cells. TRIM22, also known as 50 kDa-stimulated trans-acting factor (Staf-50) or RING finger protein 94 (RNF94), is an E3 ubiquitin-protein ligase that plays an integral role in the host innate immune response to viruses. It has been shown to inhibit the replication of a number of viruses, including HIV-1, hepatitis B, and influenza A. TRIM22 acts as a suppressor of basal HIV-1 long terminal repeat (LTR)-driven transcription by preventing the transcription factor specificity protein 1 (Sp1) binding to the HIV-1 promoter. It also controls FoxO4 activity and cell survival by directing Toll-like receptor 3 (TLR3)-stimulated cells toward type I interferon (IFN) type I gene induction or apoptosis. Moreover, TRIM22 can activate the noncanonical nuclear factor-kappaB (NF-kappaB) pathway by activating I kappa B kinase alpha (IKKalpha). It also regulates nucleotide binding oligomerization domain containing 2 (NOD2)-dependent activation of interferon-beta signaling and nuclear factor-kappaB. TRIM34, also known as interferon-responsive finger protein 1 or RING finger protein 21 (RNF21), may function as antiviral protein that contribute to the defense against retroviral infections. 49 -319506 cd16592 RING-HC_TRIM7_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 7 (TRIM7) and similar proteins. TRIM7, also known as glycogenin-interacting protein (GNIP) or RING finger protein 90 (RNF90), is an E3 ubiquitin-protein ligase that mediates c-Jun/AP-1 activation by Ras signalling. Its phosphorylation and activation by MSK1 in response to direct activation by the Ras-Raf-MEK-ERK pathway can stimulate TRIM7 E3 ubiquitin ligase activity in mediating Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilization. Moreover, TRIM7 binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. TRIM7 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 45 -319507 cd16593 RING-HC_TRIM10_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 10 (TRIM10) and similar proteins. TRIM10, also known as B30-RING finger protein (RFB30), RING finger protein 9 (RNF9), or hematopoietic RING finger 1 (HERF1), is a novel hematopoiesis-specific RING finger protein required for terminal differentiation of erythroid cells. TRIM10 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 49 -319508 cd16594 RING-HC_TRIM11_like_C-IV RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM11 and TRIM27, and similar proteins. TRIM11 and TRIM27, two closely related tripartite motif-containing proteins, belong to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. TRIM11, also known as protein BIA1, or RING finger protein 92 (RNF92), is an E3 ubiquitin-protein ligase involved in the development of the central nervous system. It is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. TRIM11 acts as a potential therapeutic target for congenital central hypoventilation syndrome (CCHS) through mediating the degradation of congenital central hypoventilation syndrome-associated polyalanine-expanded Phox2b. Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system, and thus plays an essential role for the Pax6-dependent neurogenesis. It also binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105), humanin, a neuroprotective peptide against Alzheimer"s disease-relevant insults, through the ubiquitin-proteasome system, and further regulates ARC105 function in transforming growth factor beta (TGFbeta) signaling. Moreover, TRIM11 negatively regulates retinoic acid-inducible gene-I (RIG-I)-mediated interferon-beta (IFNbeta) production and antiviral activity by targeting TANK-binding kinase-1 (TBK1). It may contribute to the endogenous restriction of retroviruses in cells. It enhances N-tropic murine leukemia virus (N-MLV) entry by interfering with Ref1 restriction. It also suppresses the early steps of human immunodeficiency virus HIV-1 transduction, resulting in decreased reverse transcripts. TRIM27, also known as RING finger protein 76 (RNF76), RET finger protein (RFP), or zinc finger protein RFP, is a nuclear E3 ubiquitin-protein ligase that is highly expressed in testis and in various tumor cell lines. Expression of TRIM27 is associated with prognosis of colon and endometrial cancers. TRIM27 was first identified as a fusion partner of the RET receptor tyrosine kinase. It functions as a transcriptional repressor and associates with several proteins involved in transcriptional activity, such as enhancer of polycomb 1 (Epc1), a member of the Polycomb group proteins, and Mi-2beta, a main component of the nucleosome remodeling and deacetylase (NuRD) complex, and the cell cycle regulator retinoblastoma protein (RB1). It also interacts with HDAC1, leading to downregulation of thioredoxin binding protein 2 (TBP-2), which inhibits the function of thioredoxin. Moreover, TRIM27 mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. In addition, it inhibits muscle differentiation by modulating serum response factor (SRF) and Epc1. Furthermore, TRIM27 promote a non-canonical polyubiquitinations of PTEN, a lipid phosphatase that catalyzes PtdIns(3,4,5)P3 (PIP3) to PtdIns(4,5)P2 (PIP2). It is an IKKepsilon-interacting protein that regulates IkappaB kinase (IKK) function and negatively regulates signaling involved in the antiviral response and inflammation. In addition, TRIM27 forms a protein complex with MBD4 or MBD2 or MBD3, and thus plays an important role in the enhancement of transcriptional repression through MBD proteins in tumorigenesis, spermatogenesis, and embryogenesis. It is also a component of an estrogen receptor 1 (ESR1) regulatory complex, and is involved in estrogen receptor-mediated transcription in MCF-7 cells. Meanwhile, TRIM27 interacts with the hinge region of chromosome 3 protein (SMC3), a component of the multimeric cohesin complex that holds sister chromatids together and prevents their premature separation during mitosis. 45 -319509 cd16595 RING-HC_TRIM17_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM17 and similar proteins. TRIM17, also known as RING finger protein 16 (RNF16) or testis RING finger protein (Terf), is a crucial E3 ubiquitin ligase that is necessary and sufficient for neuronal apoptosis and contributes to Mcl-1 ubiquitination in cerebellar granule neurons (CGNs). It interacts in a SUMO-dependent manner with nuclear factor of activated T cell NFATc3 transcription factor, and thus inhibits the activity of NFATc3 by preventing its nuclear localization. In contrast, it binds to and inhibits NFATc4 transcription factor in a SUMO-independent manner. Moreover, TRIM17 stimulates degradation of kinetochore protein ZW10 interacting protein (ZWINT), a known component of the kinetochore complex required for the mitotic spindle checkpoint, and negatively regulates cell proliferation. TRIM17 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 48 -319510 cd16596 RING-HC_TRIM21_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM21 and similar proteins. TRIM21, also known as 52 kDa Ro protein, 52 kDa ribonucleoprotein autoantigen Ro/SS-A, Ro(SS-A), RING finger protein 81 (RNF81), or Sjoegren syndrome type A antigen (SS-A), is a ubiquitously expressed E3 ubiquitin-protein ligase and a high affinity antibody receptor uniquely expressed in the cytosol of mammalian cells. As a cytosolic Fc receptor, TRIM21 binds the Fc of virus-associated antibodies and targets the complex in the cytosol for proteasomal degradation in a process known as antibody-dependent intracellular neutralization (ADIN), and provides an intracellular immune response to protect host defense against pathogen infection. It shows remarkably broad isotype specificity as it does not only bind IgG, but also IgM and IgA. Moreover, TRIM21 promotes the cytosolic DNA sensor cGAS and the cytosolic RNA sensor RIG-I sensing of viral genomes during infection by antibody-opsonized virus. It stimulates inflammatory signaling and activates innate transcription factors, such as nuclear factor-kappaB (NF-kappaB). TRIM21 also plays an essential role in p62-regulated redox homeostasis, suggesting a viable target for treating pathological conditions resulting from oxidative damage. Furthermore, TRIM21 may have implications for various autoimmune diseases associated uncontrolled antiviral signaling through the regulation of Nmi-IFI35 complex-mediated inhibition of innate antiviral response. TRIM21 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 44 -319511 cd16597 RING-HC_TRIM25_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM25 and similar proteins. TRIM25, also known as estrogen-responsive finger protein (EFP), RING finger protein 147 (RNF147), or RING-type E3 ubiquitin transferase, is an E3 ubiquitin/ISG15 ligase that is induced by estrogen and is therefore particularly abundant in placenta and uterus. TRIM25 regulates various cellular processes through E3 ubiquitin ligase activity, transferring ubiquitin and ISG15 to target proteins. It mediates K63-linked polyubiquitination of retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. It is also required for melanoma differentiation-associated gene 5 (MDA5) and mitochondrial antiviral signaling (MAVS, also known as IPS-1, VISA, Cardiff) mediated activation of nuclear factor-kappaB (NF-kappaB) and interferon production. Upon UV irradiation, TRIM25 interacts with mono-ubiquitinated PCNA and promotes its ISG15 modification (ISGylation), suggesting a crucial role in termination of error-prone translesion DNA synthesis. TRIM25 also functions as a novel regulator of p53 and Mdm2. It enhances p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26S proteasomes. Meanwhile, it inhibits p53's transcriptional activity and dampens the response to DNA damage, and is essential for medaka development and this dependence is rescued by silencing of p53. Moreover, TRIM25 is involved in the host cellular innate immune response against retroviral infection. It interferes with the late stage of feline leukemia virus (FeLV) replication. Furthermore, TRIM25 acts as an oncogene in gastric cancer. Its blockade by RNA interference inhibits migration and invasion of gastric cancer cells through transforming growth factor-beta (TGF-beta) signaling, suggesting it presents a novel target for the detection and treatment of gastric cancer. In addition, TRIM25 acts as an RNA-specific activator for Lin28a/TuT4-mediated uridylation. TRIM25 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 44 -319512 cd16598 RING-HC_TRIM26_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 26 (TRIM26) and similar proteins. TRIM26, also known as acid finger protein (AFP), RING finger protein 95 (RNF95), or zinc finger protein 173 (ZNF173), is an E3 ubiquitin-protein ligase that negatively regulates interferon-beta production and antiviral response through polyubiquitination and degradation of nuclear transcription factor IRF3. It functions as an important regulator for RNA virus-triggered innate immune response by bridging TBK1 to NEMO (NF-kappaB essential modulator, also known as IKKgamma) and mediating TBK1 activation. It also acts as a novel tumor suppressor of hepatocellular carcinoma by regulating cancer cell proliferation, colony forming ability, migration, and invasion. TRIM26 belongs the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 45 -319513 cd16599 RING-HC_TRIM35_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 35 (TRIM35) and similar proteins. TRIM35, also known as hemopoietic lineage switch protein 5 (HLS5), is a putative hepatocellular carcinoma (HCC) suppressor that inhibits phosphorylation of pyruvate kinase isoform M2 (PKM2), which is involved in aerobic glycolysis of cancer cells and further suppresses the Warburg effect and tumorigenicity in HCC. It also negatively regulates Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon production by suppressing the stability of interferon regulatory factor 7 (IRF7). Moreover, TRIM35 regulates erythroid differentiation by modulating globin transcription factor 1 (GATA-1) activity. TRIM35 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 44 -319514 cd16600 RING-HC_TRIM38_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 38 (TRIM38) and similar proteins. TRIM38, also known as RING finger protein 15 (RNF15) or zinc finger protein RoRet, is an E3 ubiquitin-protein ligase that promotes K63- and K48-linked ubiquitination of cellular proteins and also catalyzes self-ubiquitination. It negatively regulates Tumor necrosis factor alpha(TNF-alpha)- and interleukin-1beta-triggered Nuclear factor-kappaB (NF-kappaB) activation by mediating lysosomal-dependent degradation of transforming growth factor beta (TGFbeta)-activated kinase 1 (TAK1)-binding protein (TAB)2/3, two critical components of the TAK1 kinase complex. It also inhibits TLR3/4-mediated activation of NF-kappaB and interferon regulatory factor 3 (IRF3) by mediating ubiquitin-proteasomal degradation of TNF receptor-associated factor 6 (Traf6) and NAK-associated protein 1 (Nap1), respectively. Moreover, TRIM38 negatively regulates TLR3-mediated interferon beta (IFN-beta) signaling by targeting ubiquitin-proteasomal degradation of TIR domain-containing adaptor inducing IFN-beta (TRIF). It functions as a valid target for autoantibodies in primary Sjogren"s Syndrome. TRIM38 belongs the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 51 -319515 cd16601 RING-HC_TRIM39_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 39 (TRIM39) and similar proteins. TRIM39, also known as RING finger protein 23 (RNF23) or testis-abundant finger protein, is an E3 ubiquitin-protein ligase that plays a role in controlling DNA damage-induced apoptosis through inhibition of the anaphase promoting complex (APC/C), a multiprotein ubiquitin ligase that controls multiple cell cycle regulators, including cyclins, geminin, and others. TRIM39 also functions as a regulator of several key processes in the proliferative cycle. It directly regulates p53 stability. It modulates cell cycle progression and DNA damage responses via stabilizing p21. Moreover, TRIM39 negatively regulates the nuclear factor kappaB (NFkappaB)-mediated signaling pathway through stabilization of Cactin, an inhibitor of NFkappaB- and Toll-like receptor (TLR)-mediated transcriptions, which is induced by inflammatory stimulants such as tumor necrosis factor alpha (TNFalpha). Furthermore, TRIM39 is a MOAP-1-binding protein that can promote apoptosis signaling through stabilization of MOAP-1 via the inhibition of its poly-ubiquitination process. TRIM39 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 44 -319516 cd16602 RING-HC_TRIM41_like_C-IV RING finger, HC subclass, found in tripartite motif-containing proteins TRIM41, TRIM52 and similar proteins. TRIM41 and TRIM52, two closely related tripartite motif-containing proteins, have dramatically expanded RING domains compared with the rest of the TRIM family proteins. TRIM41 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. In contrast, TRIM52 lacks the putative viral recognition SPRY/B30.2 domain, and thus has been classified to the C-V subclass of TRIM family that contains only RBCC domains. TRIM41, also known as RING finger-interacting protein with C kinase (RINCK), is an E3 ubiquitin-protein ligase that promotes the ubiquitination of protein kinase C (PKC) isozymes in cells. It specifically recognizes the C1 domain of PKC isozymes. It controls the amplitude of PKC signaling by controlling the amount of PKC in the cell. TRIM52, also known as RING finger protein 102 (RNF102), is encoded by a novel, noncanonical antiviral TRIM52 gene in primate genomes with unique specificity determined by the rapidly evolving RING domain. 41 -319517 cd16603 RING-HC_TRIM43_like_C-IV RING finger, HC subclass, found in tripartite motif-containing proteins TRIM43, TRIM48, TRIM49, TRIM51, TRIM64, TRIM77 and similar proteins. The family includes a group of closely related uncharacterized tripartite motif-containing proteins, TRIM43, TRIM43B, TRIM48/RNF101, TRIM49/RNF18, TRIM49B, TRIM49C/TRIM49L2, TRIM49D/TRIM49L, TRIM51/SPRYD5, TRIM64, TRIM64B, TRIM64C, and TRIM77, whose biological function remain unclear. TRIM49, also known as testis-specific RING-finger protein, has moderate similarity with SS-A/Ro52 antigen, suggesting it may be one of target proteins of autoantibodies in the sera of patients with these autoimmune disorders. All family members belong to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. 46 -319518 cd16604 RING-HC_TRIM47_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 47 (TRIM47) and similar proteins. TRIM47, also known as gene overexpressed in astrocytoma protein (GOA) or RING finger protein 100 (RNF100), belongs a subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. It plays an important role in the process of dedifferentiation that is associated with astrocytoma tumorigenesis. 47 -319519 cd16605 RING-HC_TRIM50_like_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM50, TRIM73, TRIM74 and similar proteins. TRIM50 is a stomach-specific E3 ubiquitin-protein ligase, encoded by the Williams-Beuren syndrome (WBS) TRIM50 gene, which regulates vesicular trafficking for acid secretion in gastric parietal cells. It colocalizes, interacts with, and increases the level of p62/SQSTM1, a multifunctional adaptor protein implicated in various cellular processes including the autophagy clearance of polyubiquitinated protein aggregates. It also promotes the formation and clearance of aggresome-associated polyubiquitinated proteins through the interaction with the histone deacetylase 6 (HDAC6), a tubulin specific deacetylase that regulates microtubule-dependent aggresome formation. TRIM50 can be acetylated by PCAF and p300. TRIM50 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. The family also includes two paralogs of TRIM50, tripartite motif-containing protein 73 (TRIM73), also known as tripartite motif-containing protein 50B (TRIM50B), and tripartite motif-containing protein 74 (TRIM74), also known as tripartite motif-containing protein 50C (TRIM50C), both of which are WBS-related genes encoding proteins and may also act as E3 ligases. In contrast with TRIM50, TRIM73 and TRIM74 belong to the C-V subclass of TRIM family of proteins that are defined by an N-terminal RBCC domains only. 45 -319520 cd16606 RING-HC_TRIM58_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM58 and similar proteins. TRIM58, also known as protein BIA2, is an erythroid E3 ubiquitin-protein ligase induced during late erythropoiesis. It binds and ubiquitinates the intermediate chain of the microtubule motor dynein (DYNC1LI1/DYNC1LI2), stimulating the degradation of the dynein holoprotein complex. It may participate in the erythroblast enucleation process through regulation of nuclear polarization. TRIM58 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 51 -319521 cd16607 RING-HC_TRIM60_like_C-IV RING finger, HC subclass, found in tripartite motif-containing proteins TRIM60, TRIM61 and similar proteins. TRIM60 and TRIM61 are two closely related tripartite motif-containing proteins. TRIM60, also known as RING finger protein 129 (RNF129) or RING finger protein 33 (RNF33), is a cytoplasmic protein expressed in the testis. It may play an important role in the spermatogenesis process, the development of the preimplantation embryo, and in testicular functions. RNF33 interacts with the cytoplasmic kinesin motor proteins KIF3A and KIF3B suggesting possible contribution to cargo movement along the microtubule in the expressed sites. It is also involved in spermatogenesis in Sertoli cells under the regulation of nuclear factor-kappaB (NF-kappaB). TRIM60 belongs the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. In contrast to TRIM60, TRIM61 belongs to the C-V subclass of TRIM family that contains RBCC domains only. Its biological function remains unclear. 47 -319522 cd16608 RING-HC_TRIM62_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 62 (TRIM62) and similar proteins. TRIM62, also known as Ductal Epithelium Associated Ring Chromosome 1 (DEAR1), is a cytoplasmic E3 ubiquitin-protein ligase that was identified as a dominant regulator of acinar morphogenesis in the mammary gland. It is implicated in the inflammatory response of immune cells by regulating the Toll-like receptor 4 (TLR4) signaling pathway, leading to increased activity of the activator protein 1 (AP-1) transcription factor in primary macrophages. It is also involved in muscular protein homeostasis, especially during inflammation-induced atrophy, and may play a role in the pathogenesis of ICU-acquired weakness (ICUAW) by activating and maintaining inflammation in myocytes. Moreover, TRIM62 facilitates K27-linked poly-ubiquitination of CARD9 and also regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Furthermore, TRIM62 is involved in the regulation of apical-basal polarity and acinar morphogenesis. It also functions as a chromosome 1p35 tumor suppressor and negatively regulates transforming growth factor beta (TGFbeta)-driven epithelial-mesenchymal transition (EMT) through binding to and promoting the ubiquitination of SMAD3, a major effector of TGFbeta-mediated EMT. TRIM62 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 50 -319523 cd16609 RING-HC_TRIM65_C-IV RING finger, HC subclass, found in tripartite motif-containing protein TRIM65 and similar proteins. TRIM65 is an E3 ubiquitin-protein ligase that interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-beta signaling. It functions as a potential oncogenic protein that negatively regulates p53 through ubiquitination, providing insight into development of novel approaches targeting TRIM65 for non-small cell lung carcinoma (NSCLC) treatment, and also overcoming chemotherapy resistance. Moreover, TRIM65 negatively regulates microRNA-driven suppression of mRNA translation by targeting TNRC6 proteins for ubiquitination and degradation. TRIM65 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 47 -319524 cd16610 RING-HC_TRIM68_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 68 (TRIM68) and similar proteins. TRIM68, also known as RING finger protein 137 (RNF137) or SSA protein SS-56 (SS-56), is an E3 ubiquitin-protein ligase that negatively regulates Toll-like receptor (TLR)- and RIG-I-like receptor (RLR)-driven type I interferon production by degrading TRK fused gene (TFG), a novel driver of IFN-beta downstream of anti-viral detection systems. It also functions as a cofactor for androgen receptor-mediated transcription through regulating ligand-dependent transcription of androgen receptor in prostate cancer cells. Moreover, TRIM68 is a cellular target of autoantibody responses in Sjogren"s syndrome (SS), as well as systemic lupus erythematosus (SLE). It is also an auto-antigen for T cells in SS and SLE. TRIM68 belongs the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 49 -319525 cd16611 RING-HC_TRIM69_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 69 (TRIM69) and similar proteins. TRIM69, also known as RFP-like domain-containing protein trimless or RING finger protein 36 (RNF36), is a testis E3 ubiquitin-protein ligase that plays a specific role in apoptosis and may also play an important role in germ cell homeostasis during spermatogenesis. TRIM69 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 44 -319526 cd16612 RING-HC_TRIM72_C-IV RING finger, HC subclass, found in tripartite motif-containing protein 72 (TRIM72) and similar proteins. TRIM72, also known as Mitsugumin-53 (MG53), is a muscle-specific protein that plays a central role in cell membrane repair by nucleating the assembly of the repair machinery at muscle injury sites. It is required in repair of alveolar epithelial cells under plasma membrane stress failure. It interacts with dysferlin to regulate sarcolemmal repair. Upregulation of TRIM72 develops obesity, systemic insulin resistance, dyslipidemia, and hyperglycemia, as well as induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor alpha (PPAR-alpha) signaling pathway. Compensation for the absence of AKT signaling by ERK signaling during TRIM72 overexpression leads to pathological hypertrophy. Moreover, TRIM72 functions as a novel negative feedback regulator of myogenesis via targeting insulin receptor substrate-1 (IRS-1). It is transcriptionally activated by the synergism of myogenin (MyoD) and myocyte enhancer factor 2 (MEF2). TRIM72 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 47 -319527 cd16613 RING-HC_UHRF RING finger, HC subclass, found in ubiquitin-like PHD and RING finger domain-containing proteins, UHRF1 and UHRF2, and similar proteins. UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumor suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation, but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal C3HC4-type RING-HC finger. 46 -319528 cd16614 RING-HC_UNK_like RING finger, HC subclass, found in RING finger protein unkempt (UNK), unkempt-like (UNKL), and similar proteins. UNK, also known as zinc finger CCCH domain-containing protein 5, is a metazoan-specific zinc finger protein enriched in embryonic brains. It may play a broad regulatory role during the formation of the central nervous system (CNS). It is a sequence-specific RNA-binding protein required for the early neuronal morphology. UNK is a neurogenic component of the mTOR pathway, and functions as a negative regulator of the timing of photoreceptor differentiation. It also specifically binds to Brg/Brm-associated factor BAF60b and promotes its ubiquitination in a Rac1-dependent manner. UNKL, also known as zinc finger CCCH domain-containing protein 5-like, is a putative E3 ubiquitin-protein ligase that may participate in a protein complex showing an E3 ligase activity regulated by RAC1. Both UNK and UNKL contain several tandem CCCH-type zinc fingers at the N-terminus, and a C3HC4-type RING-HC finger at its C-terminus. 34 -319529 cd16615 RING-HC_ZNF598 RING finger, HC subclass, found in zinc finger protein 598 (ZNF598) and similar proteins. ZNF598 associates with eukaryotic initiation factor 4E (eIF4E) homologous protein from mammalian (m4EHP) through binding to Grb10-interacting GYF protein 2 (GIGYF2). The m4EHP-GIGYF2 complex functions as a translational repressor and is essential for normal embryonic development of mammalian. ZNF598 harbors a C3HC4-type RING-HC finger at its N-terminus. 41 -319530 cd16616 mRING-HC-C4C4_Asi1p_like Modified RING finger, HC subclass (C4C4-type), found in Saccharomyces cerevisiae amino acid sensor-independent protein Asi1p, Asi3p and similar proteins. Asi1p and Asi3p are inner nuclear membrane proteins that act as negative regulators of SPS (Ssy1-Ptr3-Ssy5)-sensor signaling in yeast. Together with Asi2p, they assemble into an Asi complex that functions in the SPS amino acid sensing pathway involved in degradation of Stp1 and Stp2 transcription factors. Both Asi1p and Asi3p contain five membrane-spanning domains, as well as highly conserved RING fingers at their extreme C termini, which are a C4C4-type RING finger motif whose overall folding is similar to that of the C3HC4-type RING-HC finger. 44 -319531 cd16617 mRING-HC-C4C4_CesA_plant Modified RING finger, HC subclass (C4C4-type), found in Arabidopsis thaliana cellulose synthase A (CesA) catalytic subunit 1-10, and similar proteins from plant. The family includes a group of plant catalytic subunits of cellulose synthase terminal complexes ("rosettes") required for beta-1,4-glucan microfibril crystallization, a major mechanism of the cell wall formation. CesA1, also known as protein RADIALLY SWOLLEN 1 (RSW1), is required during embryogenesis for cell elongation, orientation of cell expansion and complex cell wall formations, such as interdigitated pattern of epidermal pavement cells, stomatal guard cells, and trichomes. It plays a role in lateral roots formation, but seems unnecessary for the development of tip-growing cells such as root hairs. CesA2, also known as Ath-A, is involved in the primary cell wall formation. It forms a homodimer. CesA3, also known as constitutive expression of VSP1 protein 1, or isoxaben-resistant protein 1, or Ath-B, or protein ECTOPIC LIGNIN 1, or protein RADIALLY SWOLLEN 5 (RSW5), is involved in the primary cell wall formation, especially in roots. CesA4, also known as protein IRREGULAR XYLEM 5 (IRX5), is involved in the secondary cell wall formation, and required for the xylem cell wall thickening. CesA5 may be partially redundant with CesA6. CesA6, also known as AraxCelA, isoxaben-resistant protein 2, protein PROCUSTE 1, or protein QUILL, is involved in the primary cell wall formation. Like CesA1, CesA6 is critical for cell expansion. The CESA6-dependent cell elongation seems to be independent of gibberellic acid, auxin, and ethylene. CesA6 interacts with and moves along cortical microtubules for the process of cellulose deposition. CesA7, also known as protein FRAGILE FIBER 5, or protein IRREGULAR XYLEM 3 (IRX3) is involved in the secondary cell wall formation and required for the xylem cell wall thickening. CesA8, also known as protein IRREGULAR XYLEM 1 (IRX1) or protein LEAF WILTING 2, is involved in the secondary cell wall formation and required for the xylem cell wall thickening. The biological function of CesA9 and CesA10 remain unclear. CesA1, CesA3, and CesA6 form a functional complex essential for primary cell wall cellulose synthesis, while CesA4, CesA7, and CesA8 form a functional complex located in secondary cell wall deposition sites. All family members contain an N-terminal C4C4-type RING-HC finger and a C-terminal glycosyltransferase family A (GT-A) domain. 51 -319532 cd16618 mRING-HC-C4C4_CNOT4 Modified RING finger, HC subclass (C4C4-type), found in CCR4-NOT transcription complex subunit 4 (NOT4) and similar proteins. NOT4, also known as CCR4-associated factor 4, E3 ubiquitin-protein ligase CNOT4, or potential transcriptional repressor NOT4, is a component of the multifunctional CCR4-NOT complex, a global regulator of RNA polymerase II transcription. It associates with polysomes and contributes to the negative regulation of protein synthesis. NOT4 functions as an E3 ubiquitin-protein ligase that interacts with a specific E2, Ubc4/5 in yeast, and the ortholog UbcH5B in humans, and ubiquitylates a wide range of substrates, including ribosome-associated factors. Thus, it plays a role in cotranslational quality control (QC) through ribosome-associated ubiquitination and degradation of aberrant peptides. NOT4 contains a C4C4-type RING finger motif, whose overall folding is similar to that of the C3HC4-type RING-HC finger, a central RNA recognition motif (RRM), and a C-terminal domain predicted to be unstructured. 45 -319533 cd16619 mRING-HC-C4C4_TRIM37_C-VIII Modified RING finger, HC subclass (C4C4-type), found in tripartite motif-containing protein 37 (TRIM37) and similar proteins. TRIM37, also known as mulibrey nanism protein, or MUL, is a peroxisomal E3 ubiquitin-protein ligase that is involved in the tumorigenesis of several cancer types, including pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC), breast cancer, and sporadic fibrothecoma. It mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. Moreover, TRIM37 possesses anti-HIV-1 activity, and interferes with viral DNA synthesis. Mutations in the human TRIM37 gene (also known as MUL) cause Mulibrey (muscle-liver-brain-eye) nanism, a rare growth disorder of prenatal onset characterized by dysmorphic features, pericardial constriction, and hepatomegaly. TRIM37 belongs to the C-VIII subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C4C4-type RING finger, whose overall folding is similar to that of the typical C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a MATH (meprin and TRAF-C homology) domain positioned C-terminal to the RBCC domain. Its MATH domain has been shown to interact with the TRAF (TNF-Receptor-Associated Factor) domain of six known TRAFs in vitro. 43 -319534 cd16620 vRING-HC-C4C4_RBBP6 Variant RING finger, HC subclass (C4C4-type), found in retinoblastoma-binding protein 6 (RBBP6) and similar proteins. RBBP6, also known as proliferation potential-related protein, protein P2P-R, retinoblastoma-binding Q protein 1 (RBQ-1), or p53-associated cellular protein of testis (PACT), is a nuclear E3 ubiquitin-protein ligase involved in multiple processes, such as the control of gene expression, mitosis, cell differentiation, and cell apoptosis. It plays a role in both promoting and inhibiting apoptosis in many human cancers, including esophageal, lung, hepatocellular, and colon cancers, familial myeloproliferative neoplasms, as well as in human immunodeficiency virus-associated nephropathy (HIVAN). It functions as an Rb- and p53-binding protein that plays an important role in chaperone-mediated ubiquitination and possibly in protein quality control. It acts as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in an increase of MDM2-mediated ubiquitination and degradation of p53/TP53, and leading to both apoptosis and cell growth. It is also a double-stranded RNA-binding protein that plays a role in mRNA processing by regulating the human polyadenylation machinery and modulating expression of mRNAs with AU-rich 3' untranslated regions (UTRs). Moreover, RBBP6 ubiquitinates and destabilizes the transcriptional repressor ZBTB38 that negatively regulates transcription and levels of the MCM10 replication factor on chromatin. Furthermore, RBBP6 is involved in tunicamycin-induced apoptosis through mediating protein kinase (PKR) activation. RBBP6 contains an N-terminal ubiquitin-like domain and a C4C4-type RING finger, whose overall folding is similar to that of the typical C3HC4-type RING-HC finger. RBBP6 interacts with chaperones Hsp70 and Hsp40 through its N-terminal ubiquitin-like domain. It promotes the ubiquitination of p53 by Hdm2 in an E4-like manner through its RING finger. It also interacts directly with the pro-proliferative transcription factor Y-box-binding protein-1 (YB-1) via its RING finger. 45 -319535 cd16621 vRING-HC-C4C4_RFPL1_like Variant RING finger, HC subclass (C4C4-type), found in Ret finger protein-like (RFPL) family. RFPL family, also known as RING-B30 family, represents a group of RFPL gene products, RFPL1, RFPL2, RFPL3, and RFPL4A, which are characterized by containing an N-terminal RFPL1, 2, 3-specifying helix (RSH), a C4C4- or a modified C4C4-type RING finger, whose overall folding is similar to that of the typical C3HC4-type RING-HC finger, an RFPL-defining motif (RDM), and C-terminal PRY/SPRY-forming B30.2 domain. RFPL1, also known as RING finger protein 78 (RNF78), is expressed during cell differentiation, its impact on cell-cycle lengthening therefore provides novel insights into primate-specific development. RFPL2, also known as RING finger protein 79 (RNF79), shows high sequence similarity with other RFPL gene products. Its biological role remains unclear. RFPL3 interacts directly with CREB binding protein (CBP) in the nucleus of lung cancer cells. RFPL3 and CBP synergistically upregulate TERT activity and promote lung cancer growth. Moreover, RFPL3 acts as a novel E3 ubiquitin ligase modulating the integration activity of human immunodeficiency virus, type 1 (HIV-1) preintegration complex. RFPL4A, also known as RING finger protein 210 (RNF210), is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy in human colorectal cancer cells. This family corresponds to the C4C4-type RING finger. RFPL4A lacks the fourth conserved zinc-binding residue, cysteine, and the eighth zinc-binding residue, cysteine, in RFPL2 is replaced by serine. 44 -319536 cd16622 vRING-HC-C4C4_RBR_RNF217 Variant RING finger, HC subclass (C4C4-type), found in RING finger protein 217 (RNF217) and similar proteins. RNF217, also known as IBR domain-containing protein 1 (IBRDC1), is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase mainly expressed in testis and skeletal muscle with different splice variants. It interacts with the anti-apoptotic protein HAX1, and is adjacent to a translocation breakpoint involving ETV6 in childhood acute lymphoblastic leukemia (ALL). RNF217 contains a RBR domain followed by TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a variant C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. 47 -319537 cd16623 RING-HC_RBR_TRIAD1_like RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1), ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) and similar proteins. TRIAD1, also known as ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is a RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48 as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. ANKIB1 is a RBR-type E3 ubiquitin-protein ligase that may function as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. Both TRIAD1 and ANKIB1 contain a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. In contrast to TRIAD1, ANKIB1 harbors an extra N-terminal ankyrin repeats domain. 50 -319538 cd16624 RING-HC_RBR_CUL9 RING finger, HC subclass, found in cullin-9 (CUL-9) and similar proteins. CUL-9, also known as UbcH7-associated protein 1 (H7-AP1), p53-associated parkin-like cytoplasmic protein, or PARC, is a cytoplasmic RBR-type E3 ubiquitin-protein ligase that is a tumor suppressor and promotes p53-dependent apoptosis. It mediates the ubiquitination and degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. It is also a critical downstream effector of the 3M complex in the maintenance of microtubules and genome integrity. Moreover, CUL-9, together with CUL-7, forms homodimers and heterodimers, as well as some atypical cullin RING ligase complexes, which may exhibit ubiquitin ligase activity. CUL-9 contains a CPH domain (Cul7, PARC, and HERC2), a DOC (DOC1/APC10) domain, cullin homology (CH) domains linked with E3 ligase function, and a C-terminal RBR domain previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 52 -319539 cd16625 RING-HC_RBR_HEL2_like RING finger, HC subclass, found in Saccharomyces cerevisiae histone E3 ligase 2 (HEL2) and similar proteins. HEL2 is an E3 ubiquitin-protein ligase that interacts with the E2 ubiquitin-conjugating enzyme UBC4 and histones H3 and H4. It plays an important role in regulating histone protein levels and also likely to contribute to the maintenance of genomic stability in the budding yeast. HEL2 can be phosphorylated by the DNA damage checkpoint kinase and histone protein regulator Rad53. This family also includes Schizosaccharomyces pombe histone E3 ligase 1 (HEL1), also known as DNA-break-localizing protein 4 (dbl4), and Dictyostelium discoideum Ariadne-like ubiquitin ligase (RbrA). RbrA may act as an E3 ubiquitin-protein ligase that appears to be required for normal cell-type proportioning and cell sorting during multicellular development, and is also necessary for spore cell viability. Members in this family contain a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 54 -319540 cd16626 RING-HC_RBR_HHARI RING finger, HC subclass, found in human homolog of Drosophila ariadne (HHARI) and similar proteins. The family includes Drosophila melanogaster protein ariadne-1 (ARI-1), and its eukaryotic homologs, such as HHARI. ARI-1 is a novel widely expressed Drosophila RING-finger protein that localizes mainly in the cytoplasm and is required for neural development. It interacts with a novel ubiquitin-conjugating enzyme, UbcD10. HHARI, also known as H7-AP2, monocyte protein 6 (MOP-6), protein ariadne-1 homolog, Ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1), ariadne-1 (ARI-1), UbcH7-binding protein, UbcM4-interacting protein, or ubiquitin-conjugating enzyme E2-binding protein 1, is a RBR-type E3 ubiquitin-protein ligase highly expressed in nuclei, where it is co-localized with nuclear bodies including Cajal, PML, and Lewy bodies. It interacts with the E2 conjugating enzymes UbcH7, UbcH8, UbcM4, and UbcD10 in human, mouse, and fly, and modulates the ubiquitylation of substrate proteins including single-minded 2 (SIM2) and translation initiation factor 4E homologous protein (4EHP). It functions as a potent mediator of DNA damage-induced translation arrest, which protects stem and cancer cells against genotoxic stress by initiating a 4EHP-mediated mRNA translation arrest. HHARI contains a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 58 -319541 cd16627 RING-HC_RBR_parkin RING finger, HC subclass, found in parkin and similar proteins. Parkin, also known as Parkinson juvenile disease protein 2, is a RBR-type E3 ubiquitin-protein ligase that is associated with recessive early onset Parkinson"s disease (PD), and exerts a protective effect against dopamine-induced alpha-synuclein-dependent cell toxicity. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Parkin functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746, and AIMP2. It mediates monoubiquitination, as well as Lys-6-, Lys-11-, Lys-48- and Lys-63-linked polyubiquitination of substrates depending on the context. Parkin may enhance cell viability and protects dopaminergic neurons from oxidative stress-mediated death by regulating mitochondrial function. It also limits the production of reactive oxygen species (ROS) and regulates cyclin-E during neuronal apoptosis. Moreover, parkin displays a ubiquitin ligase-independent function in transcriptional repression of p53. Parkin contains an N-terminal ubiquitin-like domain and a C-terminal RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 59 -319542 cd16628 RING-HC_RBR_RNF14 RING finger, HC subclass, found in RING finger protein 14 (RNF14) and similar proteins. RNF14, also known as androgen receptor-associated protein 54 (ARA54), HFB30, or Triad2 protein, is a RBR-type E3 ubiquitin-protein ligase that is highly expressed in the testis and interacts with class III E2s (UBE2E2, UbcH6, and UBE2E3). Its differential localization may play an important role in testicular development and spermatogenesis in humans. RNF14 functions as a transcriptional regulator of mitochondrial and immune function in muscle. It is a ligand-dependent androgen receptor (AR) co-activator that enhances AR-dependent transcriptional activation. It also may participate in enhancing cell cycle progression and cell proliferation via induction of cyclin D1. Moreover, RNF14 is crucial for colon cancer cell survival. It acts as a new enhancer of the Wnt-dependent transcriptional outputs that acts at the level of the T-cell factor/lymphoid enhancer factor (TCF/LEF)-beta-catenin complex. RNF14 contains an N-terminal RWD domain and a C-terminal RBR domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 54 -319543 cd16629 RING-HC_RBR_RNF19 RING finger, HC subclass, found in the family of RING finger proteins RNF19A, RNF19B and similar proteins. The family includes RING finger protein RNF19A and RNF19B, both of which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF19A, also known as double ring-finger protein (Dorfin) or p38, localizes to the ubiquitylated inclusions in Parkinson's disease (PD), dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis (ALS). It interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome, and further participates in the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. It modulates the ubiquitination and degradation of calcium-sensing receptor (CaR), which may contribute to a general mechanism for CaR quality control during biosynthesis. Moreover, RNF19A can also ubiquitylate mutant superoxide dismutase 1 (SOD1), the causative gene of familial ALS. It may associate with endoplasmic reticulum-associated degradation (ERAD) pathway, which is related to the pathogenesis of neurodegenerative disorders, such as PD or Alzheimer"s disease. It is also involved in the pathogenic process of PD and Lewy body (LB) formation by ubiquitylation of synphilin-1. RNF19B, also known as IBR domain-containing protein 3 or natural killer lytic-associated molecule (NKLAM), plays a role in controlling tumor dissemination and metastasis. It is involved in the cytolytic function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). It interacts with ubiquitin conjugates UbcH7 and UbcH8, and ubiquitinates uridine kinase like-1 (URKL-1) protein, targeting it for degradation. Moreover, RNF19B is a novel component of macrophage phagosomes and plays a role in macrophage anti-bacterial activity. It functions as a novel modulator of macrophage inducible nitric oxide synthase (iNOS) expression. Both RNF19A and RNF19B contain a RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 55 -319544 cd16630 RING-HC_RBR_RNF216 RING finger, HC subclass, found in RING finger protein 216 (RNF216) and similar proteins. RNF216, also known as Triad domain-containing protein 3 (Triad3A), ubiquitin-conjugating enzyme 7-interacting protein 1, or zinc finger protein inhibiting NF-kappa-B (ZIN), is a RBR-type E3 ubiquitin-protein ligase that interacts with several components of Toll-like receptor (TLR) signaling and promotes their proteolytic degradation. It negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter following RNA virus infection. It also controls ubiquitination and proteasomal degradation of receptor-interacting protein 1 (RIP1), a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappa B activation, following disruption of Hsp90 binding. Moreover, RNF216 is involved in inflammatory diseases through strongly inhibiting autophagy in macrophages. It interacts with and ubiquitinates BECN1, a key regulator in autophagy, thereby contributing to BECN1 degradation. It regulates synaptic strength by ubiquitination of Arc, resulting in its rapid proteasomal degradation. It is also a key negative regulator of sustained Killer cell Ig-like receptor (KIR) with two Ig-like domains and a long cytoplasmic domain 4 (2DL4)-mediated NF-kappaB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes. Furthermore, RNF216 interacts with human immunodeficiency virus type 1 (HIV-1) Virion infectivity factor (Vif) protein, which is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Mutations in RNF216 may result in Gordon Holmes syndrome, a condition defined by hypogonadotropic hypogonadism and cerebellar ataxia, as well as in autosomal recessive Huntington-like disorder. RNF216 contains a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger motif required for RBR-mediated ubiquitination. 58 -319545 cd16631 mRING-HC-C4C4_RBR_HOIP Modified RING finger, HC subclass (C4C4-type), found in HOIL-1-interacting protein (HOIP) and similar proteins. HOIP, also known as RING finger protein 31 (RNF31) or zinc in-between-RING-finger ubiquitin-associated domain protein, together with HOIL-1 and SHARPIN, forms the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis. It also interacts with the atypical mammalian orphan receptor DAX-1, trigger DAX-1 ubiquitination and stabilization, and participate in repressing steroidogenic gene expression. HOIP contains three Npl4 zinc fingers, a central ubiquitin-associated (UBA) domain responsible for the interaction with the N-terminal ubiquitin-like domain (UBL) of HOIL-1L, a RBR domain, and a C-terminal linear chain determining domain (LDD). The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C4C4-type RING finger motif whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. 53 -319546 cd16632 mRING-HC-C4C4_RBR_RNF144 Modified RING finger, HC subclass (C4C4-type), found in the RNF144 protein family. The RNF144 family includes RNF144A and RNF144B, both of which are transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligases. RNF144A, also known as UbcM4-interacting protein 4 (UIP4) or ubiquitin-conjugating enzyme 7-interacting protein 4 targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and thus promote DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144B, also known as PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), induces p53-dependent, but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Both RNF144A and RNF144B contain a RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. 51 -319547 cd16633 mRING-HC-C3HC3D_RBR_HOIL1 Modified RING finger, HC subclass (C3HC3D-type), found in heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1) and similar proteins. HOIL-1, also known as RBCK1, HOIL-1L, RanBP-type and C3HC4-type zinc finger-containing protein 1, HBV-associated factor 4, Hepatitis B virus X-associated protein 4, RING finger protein 54 (RNF54), ubiquitin-conjugating enzyme 7-interacting protein 3, or UbcM4-interacting protein 28 (UIP28), together with E3 ubiquitin-protein ligase RNF31 (also known as HOIP) and SHANK-associated RH domain interacting protein (SHARPIN), form the E3-ligase complex (also known as linear-ubiquitin-chain assembly complex LUBAC) that regulates NF-kappaB activity and apoptosis through conjugation of linear polyubiquitin chains to NF-kappaB essential modulator (also known as NEMO or IKBKG). HOIL-1 plays a crucial role in TNF-alpha-mediated NF-kappaB activation. It also functions as an ubiquitin-protein ligase E3 that interacts with not only PKCbeta, but also PKCzeta. It can recognize heme-oxidized IRP2 (iron regulatory protein2) and is thought to affect the turnover of oxidatively damaged proteins. HOIL-1 contains an N-terminal ubiqutin-like (UBL) domain and an Npl4 zinc-finger (NZF) domain, which regulate the interaction with the LUBAC subunit RNF31 and ubiquitin, respectively. The NZF domain belongs to RanBP2-type zinc finger (zf-RanBP2) domain superfamily. In addition, HOIL-1 has a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a modified C3HC3D-type RING-HC finger required for RBR-mediated ubiquitination. 55 -319548 cd16634 mRING-HC-C3HC3D_Nrdp1 Modified RING finger, HC subclass (C3HC3D-type), found in neuregulin receptor degradation protein-1 (Nrdp1) and similar proteins. Nrdp1 (referred to as FLRF in mice), also known as RING finger protein 41 (RNF41), is an E3 ubiquitin-protein ligase that plays a critical role in the regulation of cell growth and apoptosis, inflammation and production of reactive oxygen species (ROS), as well as in doxorubicin (DOX)-induced cardiac injury. It promoten and degradation of the epidermal growth factor receptor (EGFR/ErbB) family member, ErbB3, which is independent of growth factor stimulation. It also promotes M2 macrophage polarization by ubiquitinating and activating transcription factor CCAAT/enhancer-binding Protein beta (C/EBPbeta) via Lys-63-linked ubiquitination. Moreover, Nrdp1 interacts with and modulates activity of Parkin, a causative protein for early onset recessive juvenile parkinsonism (AR-JP). It also interacts with ubiquitin-specific protease 8 (USP8), which is involved in trafficking of various transmembrane proteins. Furthermore, Nrdp1 inhibits basal lysosomal degradation and enhances ectodomain shedding of JAK2-associated cytokine receptors. Its phosphorylation by the kinase Par-1b (also known as MARK2) is required for epithelial cell polarity. Nrdp1 contains an N-terminal modified C3HC3D-type RING-HC finger required for enhancing ErbB3 degradation, a B-box, a coiled-coil domain responsible for Nrdp1 oligomerization, and a C-terminal ErbB3-binding domain. 43 -319549 cd16635 mRING-HC-C3HC3D_PHRF1 Modified RING finger, HC subclass (C3HC3D-type), found in PHD and RING finger domain-containing protein 1(PHRF1) and similar proteins. PHRF1, also known as KIAA1542, or CTD-binding SR-like protein rA9, is a ubiquitin ligase which induces the ubiquitination of TGIF (TG-interacting factor) at lysine 130. It acts as a tumor suppressor that promotes the transforming growth factor (TGF)-beta cytostatic program through selective release of TGIF-driven promyelocytic leukemia protein (PML) inactivation. PHRF1 contains a plant homeodomain (PHD) finger and a modified C3HC3D-type RING-HC finger. 44 -319550 cd16636 mRING-HC-C3HC3D_SCAF11 Modified RING finger, HC subclass (C3HC3D-type), found in SR-related and CTD-associated factor 11 (SCAF11) and similar proteins. SCAF11, also known as CTD-associated SR protein 11 (CASP11), renal carcinoma antigen NY-REN-40, SC35-interacting protein 1 (Sip1), Serine/arginine-rich splicing factor 2 (SRSF2)-interacting protein, or splicing regulatory protein 129 (SRrp129), is a novel arginine-serine-rich (RS) domain-containing protein essential for pre-mRNA splicing. It functions as an auxiliary splice factor interacting with spliceosomal component SC35 promoting RNAPII elongation. In addition to SR proteins, such as SC35, ASF/SF2, SRp75, and SRp20, SCAF11 also associates with U1-70K and U2AF65, proteins associated with 5' and 3' splice sites, respectively. SCAF11 contains an N-terminal modified C3HC3D-type RING-HC finger, an internal serine-arginine rich domain (SR domain), and a C-terminal SRI domain. 43 -319551 cd16637 mRING-HC-C3HC3D_LNX1_like Modified RING finger, HC subclass (C3HC3D-type), found in ligand of Numb protein LNX1, LNX2, and similar proteins. The ligand of Numb protein X (LNX) family, also known as PDZ and RING (PDZRN) family, includes LNX1-5, which can interact with Numb, a key regulator of neurogenesis and neuronal differentiation. LNX5 (also known as PDZK4 or PDZRN4L) shows high sequence homology to LNX3 and LNX4, but it lacks the RING domain. LNX1-4 proteins function as E3 ubiquitin ligases and have a unique domain architecture consisting of an N-terminal RING-HC finger for E3 ubiquitin ligase activity and either two or four PDZ domains necessary for the substrate-binding. This family corresponds to LNX1/LNX2-like proteins, which contains a modified C3HC3D-type RING-HC finger and four PDZ domains. 42 -319552 cd16638 mRING-HC-C3HC3D_Roquin Modified RING finger, HC subclass (C3HC3D-type), found in Roquin-1, Roquin-2, and similar proteins. This family corresponds to the ROQUIN family of proteins, including Roquin-1, Roquin-2, and similar proteins, which localize to the cytoplasm and upon stress are concentrated in stress granules. They may play essential roles in preventing T-cell-mediated autoimmune disease and in microRNA-mediated repression of inducible costimulator (Icos) mRNA. They function as E3 ubiquitin ligases consisting of an N-terminal modified C3HC3D-type RING-HC finger with a potential E3 activity, a highly conserved ROQ domain required for RNA binding and localization to stress granules, and a CCCH-type zinc finger involved in RNA recognition. 44 -319553 cd16639 RING-HC_TRAF2 RING finger, HC subclass, found in tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) and similar proteins. TRAF2, also known as tumor necrosis factor type 2 receptor-associated protein 3, is an E3 ubiquitin-protein ligase that was identified as a 75 kDa tumor necrosis factor receptor (TNF-R2)-assciated signaling protein. It interacts with members of the TNF receptor superfamily and connects the receptors to downstream signaling proteins. It also mediates K63-linked polyubiquitination of RIP1, a kinase pivotal in TNFalpha-induced NF-kappaB activation. Moreover, TRAF2 regulates peripheral CD8(+) T-cell and NKT-cell homeostasis by modulating sensitivity to IL-15. It also acts an important biological suppressor of necroptosis. It inhibits TNF-related apoptosis inducing ligand (TRAIL)- and CD95L-induced apoptosis and necroptosis. TRAF2 contains an N-terminal domain with a typical C3HC4-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain. 42 -319554 cd16640 RING-HC_TRAF3 RING finger, HC subclass, found in tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) and similar proteins. TRAF3, also known as CAP-1, CD40 receptor-associated factor 1 (CRAF1), CD40-binding protein (CD40BP), or LMP1-associated protein 1 (LAP1), is a member of TRAF protein family, which mainly functions in the immune system, where it mediates signaling through tumor necrosis factor receptors (TNFRs) and interleukin-1/Toll-like receptors (IL-1/TLRs). It also plays a unique cell type-specific and critical role in the restraint of B-cell homeostatic survival, a role with important implications for both B-cell differentiation and the pathogenesis of B-cell malignancies. Meanwhile, TRAF3 differentially regulates differentiation of specific T cell subsets. It is required for iNKT cell development, restrains Treg cell development in the thymus, and plays an essential role in the homeostasis of central memory CD8+ T cells. TRAF3 contains an N-terminal domain with a typical C3HC4-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain, and a conserved TRAF-C domain. 42 -319555 cd16641 mRING-HC-C3HC3D_TRAF4 Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) and similar proteins. TRAF4, also known as cysteine-rich domain associated with RING and Traf domains protein 1, or metastatic lymph node gene 62 protein (MLN 62), or RING finger protein 83 (RNF83), is a member of TRAF protein family, which mainly function in the immune system, where they mediate signaling through tumor necrosis factor receptors (TNFRs) and interleukin-1/Toll-like receptors (IL-1/TLRs). It also plays a critical role in nervous system, as well as in carcinogenesis. TRAF4 promotes the growth and invasion of colon cancer through the Wnt/beta-catenin pathway. It contributes to the TNFalpha-induced activation of 70 kDa ribosomal protein S6 kinase (p70s6k) signaling pathway, and activation of transforming growth factor beta (TGF-beta)-induced SMAD-dependent signaling and non-SMAD signaling in breast cancer. It also enhances osteosarcoma cell proliferation and invasion by Akt signaling pathway. Moreover, TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration. TRAF4 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain. 45 -319556 cd16642 mRING-HC-C3HC3D_TRAF5 Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) and similar proteins. TRAF5, also known as RING finger protein 84 (RNF84), is an important signal transducer for a wide range of TNF receptor superfamily members, including tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), CD40, and other lymphocyte costimulatory receptors, RANK/TRANCE-R, ectodysplasin-A Receptor (EDAR), lymphotoxin-beta receptor (LT-betaR), latent membrane protein 1 (LMP1), and IRE1. It functions as an activator of NF-kappaB, MAPK, and JNK, and is involved in both RANKL- and TNFalpha-induced osteoclastogenesis. It mediates CD40 signaling through associating with the cytoplasmic tail of CD40. It also negatively regulates Toll-like receptor (TLR) signaling and functions as a negative regulator of the interleukin 6 (IL-6) receptor signaling pathway that limits the differentiation of inflammatory CD4(+) T cells. TRAF5 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain. 43 -319557 cd16643 mRING-HC-C3HC3D_TRAF6 Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and similar proteins. TRAF6, also known as interleukin-1 signal transducer or RING finger protein 85 (RNF85), is a cytoplasmic adapter protein that mediates signals induced by the tumor necrosis factor receptor (TNFR) superfamily and Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) family. It functions as a mediator involved in the activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways, as well as in IL-1R-mediated activation of NF-kappaB. TRAF6 is also an oncogene that plays a vital role in K-RAS-mediated oncogenesis. TRAF6 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain. 58 -319558 cd16644 mRING-HC-C3HC3D_TRAF7 Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 7 (TRAF7) and similar proteins. TRAF7, also known as RING finger and WD repeat-containing protein 1 or RING finger protein 119 (RNF119), is an E3 ubiquitin-protein ligase involved in signal transduction pathways that lead either to activation or repression of NF-kappaB transcription factor through promoting K29-linked ubiquitination of several cellular targets, including the NF-kappaB essential modulator (NEMO) and the p65 subunit of NF-kappaB transcription factor. It is also involved in K29-linked polyubiquitination that has been implicated in lysosomal degradation of proteins. Moreover, TRAF7 is required for K48-linked ubiquitination of p53, a key tumor suppressor and a master regulator of various signaling pathways, such as those related to apoptosis, cell cycle and DNA repair. It is also required for tumor necrosis factor alpha (TNFalpha)-induced Jun N-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. Furthermore, TRAF7 functions as small ubiquitin-like modifier (SUMO) E3 ligase involved in other post-translational modification, such as sumoylation. It binds to and stimulates sumoylation of the proto-oncogene product c-Myb, a transcription factor regulating proliferation and differentiation of hematopoietic cells. It potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. Meanwhile, TRAF7 mediates MyoD1 regulation of the pathway and cell-cycle progression in myoblasts. It also plays a role in Toll-like receptors (TLR) signaling. TRAF7 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and an adjacent zinc finger, and a unique C-terminal domain that comprises a coiled coil domain and seven WD40 repeats. 39 -319559 cd16645 mRING-HC-C3HC3D_TRIM23_C-IX Modified RING finger, HC subclass (C3HC3D-type), found in tripartite motif-containing protein 23 (TRIM23) and similar proteins. TRIM23, also known as ADP-ribosylation factor domain-containing protein 1, GTP-binding protein ARD-1, or RING finger protein 46 (RNF46), is an E3 ubiquitin-protein ligase belonging to the C-IX subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a modified C3HC3D-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as C-terminal ADP ribosylation factor (ARF) domains. TRIM23 is involved in nuclear factor (NF)-kappaB activation. It mediates atypical lysine 27 (K27)-linked polyubiquitin conjugation to NF-kappaB essential modulator NEMO, also known as IKKgamma, which plays an important role in the NF-kappaB pathway, and this conjugation is essential for TLR3- and RIG-I/MDA5-mediated antiviral innate and inflammatory responses. It also regulates adipocyte differentiation via stabilization of the adipogenic activator peroxisome proliferator-activated receptor gamma (PPARgamma) through atypical ubiquitin conjugation to PPARgamma. Moreover, TRIM23 interacts with and polyubiquitinates yellow fever virus (YFV) NS5 to promote its binding to STAT2 and trigger type I interferon (IFN-I) signaling inhibition. 50 -319560 cd16646 mRING-HC-C2H2C4_MDM2_like Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2, protein MDM4 and similar proteins. MDM2 (also known as HDM2) and MDM4 (also known as MDMX or HDMX) are the primary p53 tumor suppressor negative regulators. They have non-redundant roles in the regulation of p53. MDM2 mainly functions to control p53 stability, while MDM4 controls p53 transcriptional activity. Both MDM2 and MDM4 contain an N-terminal p53-binding domain, a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region, and a C-terminal modified C2H2C4-type RING-HC finger. Mdm2 can form homo-oligomers through its RING domain and displays E3 ubiquitin ligase activity that catalyzes the attachment of ubiquitin to p53 as an essential step in the regulation of its level in cells. Despite its RING domain and structural similarity with MDM2, MDM4 does not homo-oligomerize and lacks ubiquitin-ligase function, but inhibits the transcriptional activity of p53. In addition, both their RING domains are responsible for the hetero-oligomerization, which is crucial for the suppression of P53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. Moreover, MDM2 and MDM4 can be phosphorylated and destabilized in response to DNA damage stress. In response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through the interaction with ribosomal proteins L5, L11, and L23. However, MDM4 is not bound to ribosomal proteins, suggesting its different response to regulation by small basic proteins such as ribosomal proteins and ARF. 44 -319561 cd16647 mRING-HC-C3HC5_NEU1 Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein NEURL1A, NEURL1B, and similar proteins. The family includes Drosophila neuralized (D-neu) protein, and its two mammalian homologs, NEURL1A and NEURL1B. D-neu is a regulator of the developmentally important Notch signaling pathway. NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of D-neu. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in medulloblastoma. NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is another mammalian homolog of D-neu protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling through working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. Members in this family contain two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 42 -319562 cd16648 mRING-HC-C3HC5_MAPL Modified RING finger, HC subclass (C3HC5-type), found in mitochondrial-anchored protein ligase (MAPL) and similar proteins. MAPL, also known as MULAN, mitochondrial ubiquitin ligase activator of NFKB 1, E3 SUMO-protein ligase MUL1, E3 ubiquitin-protein ligase MUL1, growth inhibition and death E3 ligase (GIDE), putative NF-kappa-B-activating protein 266, or RING finger protein 218 (RNF218), is a multifunctional mitochondrial outer membrane protein involved in several processes specific to metazoan (multicellular animal) cells, such as NF-kappaB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. MAPL contains a unique BAM (beside a membrane)/GIDE (growth inhibition death E3 ligase) domain and a C-terminal modified cytosolic C3HC5-type RING-HC finger which is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 40 -319563 cd16649 mRING-HC-C3HC5_CGRF1_like Modified RING finger, HC subclass (C3HC5-type), found in RING finger proteins, RNF26, RNF197 (CGRRF1), RNF156 (MGRN1), RNF157 and similar proteins. This family corresponds to a group of RING finger proteins containing a modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Cell growth regulator with RING finger domain protein 1 (CGRRF1), also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker of tissue monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. RNF26 is an E3 ubiquitin ligase that temporally regulates virus-triggered type I interferon induction by increasing the stability of Mediator of IRF3 activation, MITA, also known as STING, through K11-linked polyubiquitination of MITA after viral infection and promoting degradation of IRF3, another important component required for virus-triggered interferon induction. Mahogunin ring finger-1 (MGRN1), also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in brain. It is a homolog of the E3 ligase MGRN1. In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. 41 -319564 cd16650 SP-RING_PIAS_like SP-RING finger found in the Siz/PIAS RING (SP-RING) family of SUMO E3 ligases. The SP-RING family includes PIAS (protein inhibitor of activated STAT) proteins, Zmiz proteins, and Siz proteins from plants and fungi. The PIAS (protein inhibitor of activated STAT) protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. It consists of four members: PIAS1, PIAS2 (also known as PIASx), PIAS3, and PIAS4 (also known as PIASy). PIAS proteins were initially identified as inhibitors of activated STAT only, but are now known to interact with and modulate several other proteins, including androgen receptor (AR), tumor suppressor p53, and the transforming growth factor-beta (TGF-beta) signaling protein SMAD. They interact with STATs in a cytokine-dependent manner. PIAS proteins have SUMO E3-ligase activity and interaction of PIAS proteins with transcription factors often results in sumoylation of that protein. Zmiz1 (Zimp10) and its homolog Zmiz2 (Zimp7) were initially identified in humans as androgen receptor (AR) interacting proteins and function as transcriptional co-activators. They interact with BRG1, the catalytic subunit of the SWI-SNF remodeling complex. They also associate with other hormone nuclear receptors and transcription factors such as p53 and Smad3/Smad4, and regulate transcription of specific target genes by altering their chromatin structure. SIZ1 proteins from plants and fungi are also founding members of this family. SIZ1-mediated conjugation of SUMO1 and SUMO2 to other intracellular proteins is essential in Arabidopsis. Yeast SIZ proteins are SUMO E3 ligases involved in a novel pathway of chromosome maintenance. They enhance SUMO modification to many substrates in vivo, but also exhibit unique substrate specificity. All family members contain a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, which is essential for SUMO ligase activity. The SP-RING finger is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. 48 -319565 cd16651 SPL-RING_NSE2 SPL-RING finger found in E3 SUMO-protein ligase NSE2 and similar proteins. NSE2, also known as MMS21 homolog (MMS21) or non-structural maintenance of chromosomes element 2 homolog (Non-SMC element 2 homolog, NSMCE2), is an autosumoylating small ubiquitin-like modifier (SUMO) ligase required for the response to DNA damage. It regulates sumoylation and nuclear-to-cytoplasmic translocation of skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide associated complex (skNAC)-Smyd1 in myogenesis. It is also required for resisting extrinsically induced genotoxic stress. Moreover, NSE2 together with its partner proteins SMC6 and SMC5 form a tight subcomplex of the structural maintenance of chromosomes SMC5-6 complex, which includes another two subcomplexes, NSE1-NSE3-NSE4 and NSE5-NSE6. SMC6 and NSE3 are sumoylated in an NSE2-dependent manner, but SMC5 and NSE1 are not. NSE2-dependent E3 SUMO ligase activity is required for efficient DNA repair, but not for SMC5-6 complex stability. NSE2 contains a RING variant known as a Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription)-like RING (SPL-RING) finger that is likely shared by the SP-RING type SUMO E3 ligases, such as PIAS family proteins. The SPL-RING finger is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. It harbors only one Zn2+-binding site and is required for the sumoylating activity. 67 -319566 cd16652 dRing_Rmd5p_like Degenerated RING (dRING) finger found in Saccharomyces cerevisiae required for meiotic nuclear division protein 5 (Rmd5p) and similar proteins. Rmd5p, also known as glucose-induced degradation protein 2 (Gid2) or sporulation protein RMD5, is an E3 ubiquitin ligase containing a Lissencephaly type-1-like homology motif (LisH), a C-terminal to LisH motif (CTLH) domain, and a degenerated RING finger that is characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues compared with the classic C3H2C3-/C3HC4-type RING fingers. It forms the heterodimeric E3 ligase unit of the glucose induced degradation deficient (GID) complex with Gid9 (also known as Fyv10), which has a degenerated RING finger as well. The GID complex triggers polyubiquitylation and subsequent proteasomal degradation of the gluconeogenic enzymes fructose-1, 6-bisphosphate by fructose-1, 6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK), and cytoplasmic malate dehydrogenase (c-MDH). Moreover, Rmd5p can form the GID complex with the other six Gid proteins, including Gid1/Vid30, Gid4/Vid24, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10. The GID complex in which the seven Gid proteins reside functions as a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. 49 -319567 cd16653 RING-like_Rtf2 RING-like Rtf2 domain, C2HC2-type, found in the replication termination factor 2 (Rtf2) protein family. The Rtf2 protein family includes a group of conserved proteins found in eukaryotes ranging from fission yeast to humans. The defining member of the family is Schizosaccharomyces pombe Rtf2 (SpRtf2), which is a proliferating cell nuclear antigen-interacting protein that functions as a key requirement for efficient replication termination at the site-specific replication barrier RTS1. It promotes termination at RTS1 by preventing replication restart. SpRtf2 contains a RING-like Rtf2 domain that is characterized by a C2HC2 motif similar to C3HC4 RING-HC finger motif known to bind two Zn2+ ions and mediate protein-protein interactions. The C2HC2 motif lacks three of the seven conserved cysteines of the C3HC4 motif, and forms only one functional Zn2+ ion-binding site. The RING-like Rtf2 domain in fission yeast is required to stabilize a paused DNA replication fork during imprinting at the mating type locus, possibly by facilitating sumoylation of PCNA. The family also includes Arabidopsis RTF2 (AtRTF2), an essential nuclear protein required for both normal embryo development and for proper expression of the GFP reporter gene. It plays a critical role in splicing the GFP pre-mRNA, and may also have a more transient regulatory role during the spliceosome cycle. The biological function of Rtf2 homologs found in eumetazoa remains unclear. They contains a variant C2HC2 motif where the middle conserved histidine has been replaced by cysteine. 46 -319568 cd16654 RING-Ubox_CHIP U-box domain, a modified RING finger, found in carboxyl terminus of HSP70-interacting protein (CHIP) and similar proteins. CHIP, also known as STIP1 homology and U box-containing protein 1 (STUB1), CLL-associated antigen KW-8, or Antigen NY-CO-7, is a multifunctional protein that functions both as a co-chaperone and an E3 ubiquitin-protein ligase. It couples protein folding and proteasome mediated degradation by interacting with heat shock proteins (e.g. HSC70) and ubiquitinating their misfolded client proteins thereby targeting them for proteasomal degradation. It is also important for cellular differentiation and survival (apoptosis), as well as susceptibility to stress. It targets a wide range of proteins, such as expanded ataxin-1, ataxin-3, huntingtin, and androgen receptor, which play roles in glucocorticoid response, tau degradation, and both p53 and cAMP signaling. CHIP contains an N-terminal tetratricopeptide repeat (TPR) domain responsible for protein-protein interaction, a highly charged middle coiled-coil (CC), and a C-terminal RING-like U-box domain acting as an ubiquitin ligase. 67 -319569 cd16655 RING-Ubox_WDSUB1_like U-box domain, a modified RING finger, found in WD repeat, SAM and U-box domain-containing protein 1 (WDSUB1) and similar proteins. WDSUB1 is an uncharacterized protein containing seven WD40 repeats and a SAM domain in addition of the U-box. Its biological role remains unclear. The family also includes many uncharacterized kinase domain-containing U-box (AtPUB) proteins and several MIF4G motif-containing AtPUB proteins from Arabidopsis. 42 -319570 cd16656 RING-Ubox_PRP19 U-box domain, a modified RING finger, found in pre-mRNA-processing factor 19 (Prp19) and similar proteins. Prp19, also known as nuclear matrix protein 200 (NMP200), senescence evasion factor (SNEV), or DNA repair protein Pso4 (psoralen-sensitive mutant 4), is a ubiquitously expressed multifunctional E3 ubiquitin ligase with pleiotropic activities in DNA damage signaling, repair, and replicative senescence. It functions as a critical component of DNA repair and DNA damage checkpoint complexes. It senses DNA damage, binds double-stranded DNA in a sequence-independent manner, facilitates processing of damaged DNA, promotes DNA end joining, regulates replication protein A (RPA2) phosphorylation and ubiquitination at damaged DNA, and regulates RNA splicing and mitotic spindle formation in its integral capacity as a scaffold for a multimeric core complex. Prp19 contains an N-terminal E3 ubiquitin ligase U-box domain with E2 recruitment function that facilitates dimerization and is essential for its auto-ubiquitination activity in vitro or when overexpressed, a coiled-coil Prp19 homology region that mediates its tetramerization and interaction with CDC5L and SPF27, and a C-terminal seven-bladed WD40 beta-propeller type of leucine-rich architectural repeats that form an asymmetrical barrel-shaped structure important for substrate recognition and recruitment. 53 -319571 cd16657 RING-Ubox_UBE4A U-box domain, a modified RING finger, found in ubiquitin conjugation factor E4 A (UBE4A) and similar proteins. The family includes yeast ubiquitin fusion degradation protein 2 (UFD2p) and its mammalian homolog, UBE4A. Yeast UFD2p, also known as ubiquitin conjugation factor E4 or UB fusion protein 2, is a polyubiquitin chain conjugation factor (E4) in the ubiquitin fusion degradation (UFD) pathway which catalyzes elongation of the ubiquitin chain through Lys48 linkage. It binds to substrates conjugated with one to three ubiquitin molecules and catalyzes the addition of further ubiquitin moieties in the presence of ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3), yielding multiubiquitylated substrates that are targets for the 26S proteasome. UFD2p is implicated in cell survival under stress conditions and is essential for homoeostasis of unsaturated fatty acids. It interacts with UBL-UBA proteins Rad23 and Dsk2, which are involved in the endoplasmic reticulum-associated degradation, ubiquitin fusion degradation, and OLE-1 gene induction pathway. UBE4A is a U-box-type ubiquitin-protein ligase that is located in common neuroblastoma deletion regions and may be subject to mutations in tumors. It may have a specific role in different biochemical processes other than ubiquitination, including growth or differentiation. Members in this family contain an N-terminal ubiquitin elongating factor core and a RING-like U-box domain at the C-terminus. 70 -319572 cd16658 RING-Ubox_UBE4B U-box domain, a modified RING finger, found in ubiquitin conjugation factor E4 B (UBE4B) and similar proteins. UBE4B, also known as UFD2a, is a U-box-type ubiquitin-protein ligase that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor, which catalyzes formation of Lys27- and Lys33-linked polyubiquitin chains rather than the Lys48-linked chain. It is a mammalian homolog of yeast UFD2 ubiquitination factor and participates in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. It is located in common neuroblastoma deletion regions and may be subject to mutations in tumors. UBE4B has contradictory functions upon tumorigenesis as an oncogene or tumor suppressor in different types of cancers. It is essential for Hdm2 (also known as Mdm2)-mediated p53 degradation. It mediates p53 polyubiquitination and degradation, as well as inhibits p53-dependent transactivation and apoptosis, and thus plays an important role in regulating phosphorylated p53 following DNA damage. UBE4B is also associated with other pathways independent of the p53 family, such as polyglutamine aggregation and Wallerian degeneration, both of which are critical in neurodegenerative diseases. Moreover, UBE4B acts as a regulator of epidermal growth factor receptor (EGFR) degradation. It is recruited to endosomes in response to EGFR activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0, and then regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. UBE4B contains a ubiquitin elongating factor core and a RING-like U-box domain at the C-terminus. 75 -319573 cd16659 RING-Ubox_Emp U-box domain, a modified RING finger, found in erythroblast macrophage protein (Emp) and similar proteins. Emp, also known as cell proliferation-inducing gene 5 protein or macrophage erythroblast attacher (MAEA), is a key protein which functions in normal differentiation of erythroid cells and macrophages. It is a potential biomarker for hematopoietic evaluation of Hematopoietic stem cell transplantation (HSCT) patients. Emp was initially identified as a heparin-binding protein involved in the association of erythroblasts with macrophages promotes erythroid proliferation and maturation. It also plays an important role in erythroblastic island formation. Absence of Emp leads to failure of erythroblast nuclear extrusion. It is required in definitive erythropoiesis and plays a cell intrinsic role in the erythroid lineage. Emp contains a Lissencephaly type-1-like homology (LisH) motif, a C-terminal to LisH (CTLH) domain, and a RING-like U-box domain at the C-terminus. 50 -319574 cd16660 RING-Ubox_RNF37 U-box domain, a modified RING finger, found in RING finger protein 37 (RNF37). RNF37, also known as KIAA0860, U-box domain-containing protein 5 (UBOX5), UbcM4-interacting protein 5 (UIP5), or ubiquitin-conjugating enzyme 7-interacting protein 5, is an E3 ubiquitin-protein ligase found exclusively in the nucleus as part of a nuclear dot-like structure. It interacts with the molecular chaperone VCP/p97 protein. RNF37 contains a U-box domain followed by a potential nuclear location signal (NLS), and a C-terminal C3HC4-type RING-HC finger. The U-box domain is a modified RING finger domain that lacks the hallmark metal-chelating cysteines and histidines of the latter, but is likely to adopt a RING finger-like conformation. The presence of the U-box, but not of the RING finger, is required for the E3 activity. The U-box domain can directly interact with several E2 enzymes, including UbcM2, UbcM3, UbcM4, UbcH5, and UbcH8, suggesting a similar function as the RING finger in the ubiquitination pathway. This family corresponds to the U-box domain. 53 -319575 cd16661 RING-Ubox1_NOSIP U-box domain 1, a modified RING finger, found in nitric oxide synthase-interacting protein (NOSIP) and similar proteins. NOSIP, also known as endothelial NO synthase (eNOS)-interacting protein, p33RUL, is an E3 ubiquitin-protein ligase implicated in the control of airway and vascular diameter, mucosal secretion, NO synthesis in ciliated epithelium, and, therefore, of mucociliary and bronchial function. The loss of NOSIP may cause holoprosencephaly and facial anomalies, including cleft lip/palate, cyclopia, and facial midline clefting. NOSIP interacts with neuronal nitric oxide synthase (nNOS) and eNOS by inhibiting the nitric oxide (NO) production. It acts as a novel type of modulator that promotes translocation of eNOS from the plasma membrane to intracellular sites, thereby uncoupling eNOS from plasma membrane caveolae and inhibiting NO synthesis. NOSIP also interacts with protein phosphatase PP2A and mediates the monoubiquitination of the PP2A catalytic subunit. Thus, it is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. Moreover, NOSIP associates with the erythropoietin (Epo) receptor (EpoR), mediates ubiquitination of EpoR, and plays an essential role in erythropoietin-induced proliferation. NOSIP contains an atypical N-terminal RING-like U-box domain that is split into two parts by an interjacent stretch of 104 amino acid residues, as well as a C-terminal RING-like U-box domain. This family corresponds to the first U-box domain. 43 -319576 cd16662 RING-Ubox2_NOSIP U-box domain 2, a modified RING finger, found in nitric oxide synthase-interacting protein (NOSIP) and similar proteins. NOSIP, also known as endothelial NO synthase (eNOS)-interacting protein, p33RUL, is an E3 ubiquitin-protein ligase implicated in the control of airway and vascular diameter, mucosal secretion, NO synthesis in ciliated epithelium, and, therefore, of mucociliary and bronchial function. The loss of NOSIP may cause holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. NOSIP interacts with neuronal nitric oxide synthase (nNOS) and eNOS by inhibiting nitric oxide (NO) production. It acts as a novel type of modulator that promotes translocation of eNOS from the plasma membrane to intracellular sites, thereby uncoupling eNOS from plasma membrane caveolae and inhibiting NO synthesis. NOSIP also interacts with protein phosphatase PP2A and mediates the monoubiquitination of the PP2A catalytic subunit. Thus, it is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. Moreover, NOSIP associates with the erythropoietin (Epo) receptor (EpoR), mediates ubiquitination of EpoR, and plays an essential role in erythropoietin-induced proliferation. NOSIP contains an atypical N-terminal RING-like U-box domain that is split into two parts by an interjacent stretch of 104 amino acid residues, as well as a C-terminal RING-like U-box domain. This family corresponds to the second U-box domain. 65 -319577 cd16663 RING-Ubox_PPIL2 U-box domain, a modified RING finger, found in peptidyl-prolyl cis-trans isomerase-like 2 (PPIL2) and similar proteins. PPIL2 (EC 5.2.1.8), also known as PPIase, CYC4, cyclophilin-60 (Cyp60), cyclophilin-like protein Cyp-60, or Rotamase PPIL2, is a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c and regulates gene expression. PPIL2 belongs to the cyclophilin family of peptidylprolyl isomerases and catalyzes cis-trans isomerization of proline-peptide bonds, which is often a rate-limiting step in protein folding. It positively regulates beta-site amyloid precursor protein cleaving enzyme (BACE1) expression and beta-secretase activity. Moreover, PPIL2 plays an important role in the translocation of CD147 to the cell surface, and thus may present a novel target for therapeutic interventions in diseases where CD147 functions as a pathogenic factor in cancer, human immunodeficiency virus infection, or rheumatoid arthritis. PPIL2 contains an N-terminal RING-like U-box domain and a C-terminal cyclophilin (Cyp)-like chaperone domain. 73 -319578 cd16664 RING-Ubox_PUB U-box domain, a modified RING finger, found in Arabidopsis plant U-box proteins (AtPUB) and similar proteins. The plant PUB proteins, also known as U-box domain-containing proteins, are much more numerous in Arabidopsis which has 62 in comparison with the typical 6 in most animals . The majority of AtPUB of this family are known as ARM domain-containing PUB proteins which contain a C-terminal located, tandem ARM (armadillo) repeat protein-interaction region in addition to the U-box domain. They have been implicated in the regulation of cell death and defense. They also play important roles in other plant-specific pathways, such as controlling both self-incompatibility and pseudo-self-incompatibility, as well as acting in abiotic stress. A subgroup of ARM domain-containing PUB proteins harbors a plant-specific U-box N-terminal domain. 43 -319579 cd16665 RING-H2_RNF13_like RING finger, H2 subclass, found in RING finger protein 13 (RNF13), RING finger protein 167 (RNF167), and similar proteins. This subfamily includes RING finger protein 13 (RNF13), RING finger protein 167 (RNF167), Zinc/RING finger protein 4 (ZNRF4), and similar proteins, which belong to a larger PA-TM-RING ubiquitin ligase family that has been characterized by containing an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane domain (TM), and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. RNF13 is a widely expressed membrane-associated E3 ubiquitin-protein ligase that is functionally significant in the regulation of cancer development, muscle cell growth, and neuronal development. Its expression is developmentally regulated during myogenesis and is upregulated in various tumors. RNF13 negatively regulates cell proliferation through its E3 ligase activity. RNF167, also known as RING105, is an endosomal/lysosomal E3 ubiquitin-protein ligase involved in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) ubiquitination. It acts as an endosomal membrane protein which ubiquitylates vesicle-associated membrane protein 3 (VAMP3) and regulates endosomal trafficking. Moreover, RNF167 plays a role in the regulation of TSSC5 (tumor-suppressing subchromosomal transferable fragment cDNA; also known as ORCTL2/IMPT1/BWR1A/SLC22A1L), which can function in concert with the ubiquitin-conjugating enzyme UbcH6. ZNRF4, also known as RING finger protein 204 (RNF204), or Nixin, is an endoplasmic reticulum (ER) membrane-anchored ubiquitin ligase that physically interacts with the ER-localized chaperone calnexin in a glycosylation-independent manner, induces calnexin ubiquitination, and p97-dependent degradation, indicating an ER-associated degradation-like mechanism of calnexin turnover. The murine protein sperizin (spermatid-specific ring zinc finger) is a homolog of human ZNRF4. It is specifically expressed in Haploid germ cells and involved in spermatogenesis. 46 -319580 cd16666 RING-H2_RNF43_like RING finger, H2 subclass, found in RING finger proteins RNF43, ZNRF3, and similar proteins. RNF43 and ZNRF3 (also known as RNF203) are transmembrane E3 ubiquitin-protein ligases that belong to the PA-TM-RING ubiquitin ligases family, which has been characterized by containing an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C3H2C3-type RING-H2 finger domain followed by a long C-terminal region. Both RNF43 and RNF203 function as tumor suppressors involved in the regulation of Wnt/beta-catenin signaling. They negatively regulate Wnt signaling through interacting with complexes of frizzled receptors (FZD) and low-density lipoprotein receptor-related protein (LRP) 5/6, which leads to ubiquitination of Frizzled receptors (FZD) and endocytosis of the Wnt receptor. Dishevelled (DVL), a positive Wnt regulator, is required for ZNRF3/RNF43-mediated ubiquitination and degradation of FZD. They also associate with R-spondin 1 (RSPO1). This interaction may block Frizzled ubiquitination and enhances Wnt signaling. 45 -319581 cd16667 RING-H2_RNF126_like RING finger, H2 subclass, found in RING finger proteins RNF126, RNF115, and similar proteins. The family includes RING finger proteins RNF126, RNF115, and similar proteins. RNF126 is a Bag6-dependent E3 ubiquitin ligase that is involved in the mislocalized protein (MLP) pathway of quality control. It regulates the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR). RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation, and could be a novel therapeutic target in breast and prostate cancers. It is also able to ubiquitylate cytidine deaminase (AID), a poorly soluble protein that is essential for antibody diversification. RNF115, also known as Rab7-interacting ring finger protein (Rabring 7), or zinc finger protein 364 (ZNF364), or breast cancer-associated gene 2 (BCA2), is an E3 ubiquitin-protein ligase that is an endogenous inhibitor of adenosine monophosphate-activated protein kinase (AMPK) activation and its inhibition increases the efficacy of metformin in breast cancer cells. It also functions as a co-factor in the restriction imposed by tetherin on HIV-1, and targets HIV-1 Gag for lysosomal degradation, impairing virus assembly and release, in a tetherin-independent manner. Moreover, RNF115 is a Rab7-binding protein that stimulates c-Myc degradation through mono-ubiquitination of MM-1. It also plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis. RNF115 and RNF126 associate with the epidermal growth factor receptor (EGFR) and promote ubiquitylation of EGFR, suggesting they play a role in the ubiquitin-dependent sorting and downregulation of membrane receptors. Both of them contain an N-terminal BCA2 Zinc-finger domain (BZF), the AKT-phosphorylation sites, and the C-terminal C3H2C3-type RING-H2 finger. 43 -319582 cd16668 RING-H2_GRAIL RING finger, H2 subclass, found in the GRAIL transmembrane proteins family. The GRAIL transmembrane proteins family includes RING finger proteins RNF128 (also known as GRAIL), RNF130, RNF133, RNF148, RNF149, and RNF150, which belong to a larger PA-TM-RING ubiquitin ligase family that has been characterized by an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. RNF128 is a type 1 transmembrane E3 ubiquitin-protein ligase that is a critical regulator of adaptive immunity and development. RNF130, also known as Goliath homolog (H-Goliath), is a paralog of RNF128. It is a transmembrane E3 ubiquitin-protein ligase expressed in leukocytes. It has a self-ubiquitination property, and controls the development of T cell clonal anergy by ubiquitination. RNF133 is a testis-specific endoplasmic reticulum-associated E3 ubiquitin ligase that may play a role in sperm maturation through an ER-associated degradation (ERAD) pathway. RNF148 is a testis-specific E3 ubiquitin ligase that is abundantly expressed in testes and slightly expressed in pancreas. Its expression regulated by histone deacetylases. RNF149, also known as DNA polymerase-transactivated protein 2, is an E3 ubiquitin-protein ligase that induces the ubiquitination of wild-type v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) and promotes its proteasome-dependent degradation. RNF150 is a RING finger protein that its polymorphisms may be associated with chronic obstructive pulmonary disease (COPD) risk in the Chinese population. The family also includes Drosophila melanogaster protein goliath (d-goliath), also known as protein g1, which is one of the funding members of the family. It was originally identified as a transcription factor involved in the embryo mesoderm formation. 48 -319583 cd16669 RING-H2_RNF181 RING finger, H2 subclass, found in RING finger protein 181 (RNF181) and similar proteins. RNF181, also known as HSPC238, is a platelet E3 ubiquitin-protein ligase containing a C3H2C3-type RING-H2 finger. It interacts with the KVGFFKR motif of platelet integrin alpha(IIb)beta3, suggesting a role for RNF181-mediated ubiquitination in integrin and platelet signaling. It also suppresses the tumorigenesis of hepatocellular carcinoma (HCC) through the inhibition of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in the liver. 46 -319584 cd16670 RING-H2_RNF215 RING finger, H2 subclass, found in RING finger protein 215 (RNF215) and similar proteins. This family includes uncharacterized protein RNF215 and similar proteins. Although its biological function remains unclear, RNF215 shares high sequence similarity with PA-TM-RING ubiquitin ligases, which have been characterized by containing an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain. 50 -319585 cd16671 RING-H2_DTX1_4 RING finger, H2 subclass, found in E3 ubiquitin-protein ligase deltex1 (DTX1), deltex4 (DTX4), and similar proteins. DTX1 is a mammalian homolog of Drosophila Deltex that is a ubiquitously expressed cytoplasmic ubiquitin E3 ligase that mediates Notch activation in Drosophila. It functions as a Notch downstream transcription regulator that mediates a Notch signal to block differentiation of neural progenitor cells. DTX1 interacts with the transcription coactivator p300 and inhibits transcription activation mediated by the neural specific transcription factor MASH1. It is also a transcription target of nuclear factor of activated T cells (NFAT) and participates in T cell anergy and Foxp3 protein level maintenance in vivo. Moreover, Deltex1 appears to promote B-cell development at the expense of T-cell development. It also promotes protein kinase C theta degradation and sustains Casitas B-lineage lymphoma expression. DTX4, also known as RING finger protein 155, shares the highest degree of sequence similarity with DTX1 and likely interacts with the intracellular domain of Notch as well. Both DTX1 and DTX4 contain N-terminal two Notch-binding WWE domains that physically interact with the Notch ankyrin domains, a proline-rich motif that shares homology with SH3-binding domains, and a C3H2C3-type RING-H2 finger at the C-terminus. They also harbor two nuclear localization signals. 69 -319586 cd16672 RING-H2_DTX2 RING finger, H2 subclass, found in E3 ubiquitin-protein ligase Deltex2 (DTX2) and similar proteins. DTX2, also known as RING finger protein 58, together with DTX1 and DTX4, forms a family of related proteins that are the mammalian homologs of Drosophila Deltex, a known regulator of Notch signals. Like DTX1 and DTX4, DTX2 is expressed in thymocytes. It interacts with the intracellular domain of Notch receptors and acts as a negative regulator of Notch signals in T cells. However, the endogenous levels of DTX1 and DTX2 is not important for regulating Notch signals during thymocyte development. DTX2 contains N-terminal two Notch-binding WWE domains that physically interact with the Notch ankyrin domains, a proline-rich motif that shares homology with SH3-binding domains, and a C3H2C3-type RING-H2 finger at the C-terminus. It also harbors two nuclear localization signals. 72 -319587 cd16673 RING-H2_RNF6 RING finger, H2 subclass, found in E3 ubiquitin-protein ligase RNF6 and similar proteins. RNF6 is an androgen receptor (AR)-associated protein that induces AR ubiquitination and promotes AR transcriptional activity. RNF6-induced ubiquitination may regulate AR transcriptional activity and specificity through modulating cofactor recruitment. RNF6 is overexpressed in hormone-refractory human prostate cancer tissues and required for prostate cancer cell growth under androgen-depleted conditions. Moreover, RNF6 regulates local serine/threonine kinase LIM kinase 1 (LIMK1) levels in axonal growth cones. RNF6-induced LIMK1 polyubiquitination is mediated via K48 of ubiquitin and leads to proteasomal degradation of the kinase. RNF6 also binds and upregulates the Inha promoter, and functions as a transcription regulatory protein in the mouse sertoli cell. Furthermore, RNF6 acts as a potential tumor suppressor gene involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC). RNF6 contains an N-terminal coiled-coil domain, a Lys-X-X-Leu/Ile-X-X-Leu/Ile (KIL) motif, and a C-terminal C3H2C3-type RING-H2 finger which is responsible for its ubiquitin ligase activity. The KIL motif is present in a subset of RING-H2 proteins from organisms as evolutionarily diverse as human, mouse, chicken, Drosophila, Caenorhabditis elegans, and Arabidopsis thaliana. 45 -319588 cd16674 RING-H2_RNF12 RING finger, H2 subclass, found in RING finger protein 12 (RNF12) and similar proteins. RNF12, also known as LIM domain-interacting RING finger protein or RING finger LIM domain-binding protein (R-LIM), is an E3 ubiquitin-protein ligase encoded by gene RLIM that is crucial for normal embryonic development in some species and for normal X inactivation in mice. It thus functions as a major sex-specific epigenetic regulator of female mouse nurturing tissues. RNF12 is widely expressed during embryogenesis, and mainly localizes to the cell nucleus, where it regulates the levels of many proteins, including CLIM, LMO, HDAC2, TRF1, SMAD7, and REX1, by proteasomal degradation. Its functional activity is regulated by phosphorylation-dependent nucleocytoplasmic shuttling. It is negatively regulated by pluripotency factors in embryonic stem cells. p53 represses its transcription through Sp1. RNF12 is the primary factor responsible for X chromosome inactivation (XCI) in female placental mammals. It is an indispensable factor in up-regulation of Xist transcription, thereby leading to initiation of random XCI. It also targets REX1, an inhibitor of XCI, for proteasomal degradation. Moreover, RNF12 acts as a co-regulator of a range of transcription factors, particularly those containing a LIM homeodomain, and modulates the formation of transcriptional multiprotein complexes. It is a negative regulator of Smad7, which in turn negatively regulates the type I receptors in transforming growth factor beta (TGF-beta) superfamily signaling. In addition, paternal RNF12 is a critical survival factor for milk-producing alveolar cells. RNF12 contains an nuclear localization signal (NLS) and a C3H2C3-type RING-H2 finger. 45 -319589 cd16675 RING-H2_RNF24 RING finger, H2 subclass, found in RING finger protein 24 (RNF24) and similar proteins. RNF24 is an intrinsic membrane protein localized in the Golgi apparatus. It specifically interacts with the ankyrin-repeats domains (ARDs) of TRPC1, ?3, ?4, ?5, ?6, and ?7, and affects TRPC intracellular trafficking without affecting their activity. RNF24 contains an N-terminal transmembrane domain and a C-terminal C3H2C3-type RING-H2 finger. 47 -319590 cd16676 RING-H2_RNF122 RING finger, H2 subclass, found in RING finger protein 122 (RNF122) and similar proteins. RNF122 is a RING finger protein associated with HEK 293T cell viability. It is localized to the endoplasmic reticulum (ER) and the Golgi apparatus, and overexpressed in anaplastic thyroid cancer cells. RNF122 functions as an E3 ubiquitin ligase that can ubiquitinate itself and undergoes degradation through its RING finger in a proteasome-dependent manner. It interacts with calcium-modulating cyclophilin ligand (CAML), which is not a substrate, but a stabilizer of RNF122. RNF122 contains an N-terminal transmembrane domain and a C-terminal C3H2C3-type RING-H2 finger. 47 -319591 cd16677 RING1-H2_RNF32 RING finger 1, H2 subclass, found in RING finger protein 32 (RNF32) and similar proteins. RNF32 is mainly expressed in testis spermatogenesis, most likely in spermatocytes and/or in spermatids, suggesting a possible role in sperm formation. RNF32 contains two C3H2C3-type RING-H2 fingers separated by an IQ domain of unknown function. Although the biological function of RNF32 remains unclear, the protein with double RING-H2 fingers may act as a scaffold for binding several proteins that function in the same pathway. This family corresponds to the first RING-H2 finger. 44 -319592 cd16678 RING2-H2_RNF32 RING finger 2, H2 subclass, found in RING finger protein 32 (RNF32) and similar proteins. RNF32 is mainly expressed in testis spermatogenesis, most likely in spermatocytes and/or in spermatids, suggesting a possible role in sperm formation. RNF32 contains two C3H2C3-type RING-H2 fingers separated by an IQ domain of unknown function. Although the biological function of RNF32 remains unclear, the protein with double RING-H2 fingers may act as a scaffold for binding several proteins that function in the same pathway. This family corresponds to the second RING-H2 finger. 60 -319593 cd16679 RING-H2_RNF38 RING finger, H2 subclass, found in RING finger protein 38 (RNF38) and similar proteins. RNF38 is a nuclear E3 ubiquitin protein ligase that is widely expressed throughout the body in human, especially highly expressed in the heart, brain, placenta and the testis. It recognizes p53 as a substrate for ubiquitination, and thus plays a role in regulating p53. The overexpression of RNF38 increases p53 ubiquitination and alters p53 localization. It is also capable of autoubiquitination. Moreover, RNF38 expression is negatively regulated by the serotonergic system. Induction of RNF38 may be involved in the anxiety-like behavior or non-cell autonomous by the decline of serotonin (5-HT) levels. RNF38 contains a coiled-coil motif, a KIL motif (Lys-X2-Ile/Leu-X2-Ile/Leu, X can be any amino acid), and a C3H2C3-type RING-H2 finger, as well as two potential nuclear localization signals. 49 -319594 cd16680 RING-H2_RNF44 RING finger, H2 subclass, found in RING finger protein 44 (RNF44) and similar proteins. RNF44 is an uncharacterized RING finger protein that shows high sequence similarity with RNF38, which is a nuclear E3 ubiquitin protein ligase that plays a role in regulating p53. RNF44 contains a coiled-coil motif, a KIL motif (Lys-X2-Ile/Leu-X2-Ile/Leu, X can be any amino acid), and a C3H2C2-type RING-H2 finger. 45 -319595 cd16681 RING-H2_RNF111 RING finger, H2 subclass, found in RING finger protein 111 (RNF111) and similar proteins. RNF111, also known as Arkadia, is a nuclear E3 ubiquitin-protein ligase that targets intracellular effectors and modulators of transforming growth factor beta (TGF-beta)/Nodal-related signaling for polyubiquitination and proteasome-dependent degradation. It acts as an amplifier of Nodal signals, and enhances the dorsalizing activity of limiting amounts of Xnr1, a Nodal homolog, and requires Nodal signaling for its function. The loss of RNF111 results in early embryonic lethality, with defects attributed to compromised Nodal signaling. Moreover, RNF111 regulates tumor metastasis by modulation of the TGF-beta pathway. Its ubiquitination can be modulated by the four and a half LIM-only protein 2 (FHL2) that activates TGF-beta signal transduction. Furthermore, RNF111 interacts with the clathrin-adaptor 2 (AP2) complex and regulates endocytosis of certain cell surface receptors, leading to modulation of epidermal growth factor (EGF) and possibly other signaling pathways. In addition, RNF111 has been identified as a small ubiquitin-like modifier (SUMO)-binding protein with clustered SUMO-interacting motifs (SIMs) that together form a SUMO-binding domain (SBD). It thus functions as a SUMO-targeted ubiquitin ligase (STUbL) that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response, as well as triggers degradation of signal-induced polysumoylated proteins, such as the promyelocytic leukemia protein (PML). The N-terminal half of RNF111 harbors three SIMs. Its C-terminal half show high sequence similarity with RING finger protein 165 (RNF165), where it contains two serine rich domains, two nuclear localization signals, a NRG-TIER domain, and a C-terminal C3H2C3-type RING-H2 finger that is required for polyubiqutination and proteasome-dependent degradation of phosphorylated forms of Smad2/3 and three major negative regulators of TGF-beta signaling, Smad7, SnoN and c-Ski. 46 -319596 cd16682 RING-H2_RNF165 RING finger, H2 subclass, found in RING finger protein 165 (RNF165) and similar proteins. RNF165, also known as Arkadia-like 2, or Arkadia2, or Ark2C, is an E3 ubiquitin ligase with homology to C-terminal half of RNF111. It is expressed specifically in the nervous system, and can serve to amplify neuronal responses to specific signals. It thus acts as a positive regulator of bone morphogenetic protein (BMP)-Smad signaling that is involved in motor neuron (MN) axon elongation. RNF165 contains two serine rich domains, a nuclear localization signal, a NRG-TIER domain, and a C-terminal C3H2C3-type RING-H2 finger that is responsible for the enhancement of BMP-Smad1/5/8 signaling in the spinal cord. 51 -319597 cd16683 RING-H2_RNF139 RING finger, H2 subclass, found in RING finger protein 139 (RNF139) and similar proteins. RNF139, also known as translocation in renal carcinoma on chromosome 8 protein (TRC8), is an endoplasmic reticulum (ER)-resident multi-transmembrane protein that functions as a potent growth suppressor in mammalian cells, inducing G2/M arrest, decreased DNA synthesis and increased apoptosis. It is a tumor suppressor that has been implicated in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control. The mutation of RNF139 has been identified in families with hereditary renal (RCC) and thyroid cancers. RNF139 physically and functionally interacts with von Hippel-Lindau (VHL), which is part of an SCF related E3-ubiquitin ligase complex with "gatekeeper" function in renal carcinoma and is defective in most sporadic clear-cell renal cell carcinomas (ccRCC). It suppresses growth and functions with VHL in a common pathway. RNF139 also suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Moreover, RNF139 is a target of Translin (TSN), a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells, suggesting a role of RNF139 in dysgerminoma. Furthermore, RNF139 physically and functionally interacts with von Hippel-Lindau (VHL), which is part of an SCF related E3-ubiquitin ligase complex with "gatekeeper" function in renal carcinoma and is defective in most sporadic clear-cell renal cell carcinomas (ccRCC). It suppresses growth and functions with VHL in a common pathway. In addition, RNF139 forms an integral part of a novel multi-protein ER complex, containing MHC I, US2, and signal peptide peptidase, which is associated with ER-associated degradation (ERAD) pathway. It is required for the ubiquitination of MHC class I molecules before dislocation from the ER. As a novel sterol-sensing ER membrane protein, RNF139 hinders sterol regulatory element-binding protein-2 (SREBP-2) processing through interaction with SREBP-2 and SREBP cleavage-activated protein (SCAP), regulating its own turnover rate via its E3 ubiquitin ligase activity. RNF139 shows two regions of similarity with the receptor for sonic hedgehog (SHH), Patched. The first region corresponds to the second extracellular domain of Patched, which is involved in binding SHH. The second region is a putative sterol-sensing domain (SSD). In addition, the C-terminal half of RNF139 contains a C3H2C3-type RING-H2 finger with E3-ubiquitin ligase activity in vitro. 42 -319598 cd16684 RING-H2_RNF145 RING finger, H2 subclass, found in RING finger protein 145 (RNF145) and similar proteins. RNF145 is an uncharacterized RING finger protein encoded by RNF145 gene, which is expressed in T lymphocytes, and its expression is altered in acute myelomonocytic and acute promyelocytic leukemias. Although its biological function remains unclear, RNF145 shows high sequence similarity with RNF139, an endoplasmic reticulum (ER)-resident multi-transmembrane protein that functions as a potent growth suppressor in mammalian cells, inducing G2/M arrest, decreased DNA synthesis and increased apoptosis. Like RNF139, RNF145 contains a C3H2C3-type RING-H2 finger with possible E3-ubiquitin ligase activity. 43 -319599 cd16685 RING-H2_UBR1 RING finger, H2 subclass, found in ubiquitin-protein ligase E3-alpha-1 (UBR1) and similar proteins. UBR1, also known as N-recognin-1 or E3alpha-I, is an E3 ubiquitin-protein ligase that is the E3 component of the N-end rule pathway. It also promotes degradation of proteins via distinct mechanism that detects a misfolded conformation. UBR1 associates with the RAD6-encoded E2 enzyme to form an E2-E3 complex that catalyzes the synthesis of a substrate-linked multi-ubiquitin chain and may also mediate the delivery of substrates to the 26S proteasome. Moreover, UBR1 promotes the degradation of a misfolded protein in the cytosol. It promotes protein kinase quality control and sensitizes cells to heat shock protein 90 (Hsp90) inhibition. Furthermore, UBR1 functions as a polyubiquitylation-enhancing component of the UBR1-UFD4 complex in its targeting of ubiquitin-fusion degradation (UFD) substrates. UBR1 harbors at least three distinct substrate-binding sites and functions in association with Ubc2/Rad6 and also Ubc4. It contains an N-terminal ubiquitin-recognin (UBR) box involved in binding type-1 (basic) N-end rule substrate, an N-domain (also known as ClpS domain) required for type-2 (bulky hydrophobic) N-end rule substrate recognition, a C3H2C3-type RING-H2 finger, and a C-terminal UBR-specific autoinhibitory (UAIN) domain. A missense mutation in UBR1 is responsible for Johanson-Blizzard syndrome leads to UBR box unfolding and loss of function. 120 -319600 cd16686 RING-H2_UBR2 RING finger, H2 subclass, found in ubiquitin-protein ligase E3-alpha-2 (UBR2) and similar proteins. UBR2, also known as N-recognin-2 or E3alpha-II, is an E3 ubiquitin-protein ligase that play an important role in maintaining genome integrity and in homologous recombination repair. It regulates the level of the transcription factor Rpn4 (also known as Son1 and Ufd5) through ubiquitylation. The ubiquitin-conjugating enzyme Rad6, another binding partner of URB2, and an additional factor Mub1, are required for the ubiquitin-dependent degradation of Rpn4. UBR2 associates with Mub1 to form a Mub1/Ubr2 ubiquitin ligase complex that regulates the conserved Dsn1 kinetochore protein levels, which is a part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability. As the recognition component of a major cellular proteolytic system, UBR2 is associated with chromatin and controls chromatin dynamics and gene expression in both spermatocytes and somatic cells. Moreover, UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. It functions as a scaffold E3 promoting HR6B/UbcH2-dependent ubiquitylation of H2A and H2B, but not H3 and H4. It also binds to Tex19.1, also known as Tex19, a germ cell-specific protein, and metabolically stabilizes it during spermatogenesis. Furthermore, UBR2 is involved in skeletal muscle (SKM) atrophy. Its expression can be modulated by the mouse ether-a-gogo-related gene 1a (MERG1a) potassium channel. In addition, UBR2 up-regulation in cachectic muscle is mediated by the p38beta-CCAAT/enhancer binding protein (C/EBP)-beta signaling pathway responsible for the bulk of tumor-induced muscle proteolysis. UBR2 contains an N-terminal ubiquitin-recognin (UBR) box involved in binding type-1 (basic) N-end rule substrate, an N-domain (also known as ClpS domain) required for type-2 (bulky hydrophobic) N-end rule substrate recognition, a C3H2C3-type RING-H2 finger, and a C-terminal UBR-specific autoinhibitory (UAIN) domain. 116 -319601 cd16687 RING-H2_Vps8 RING finger, H2 subclass, found in vacuolar protein sorting-associated protein 8 (Vps8) and similar proteins. Vps8 is the Rab-specific subunit of the endosomal tethering complex CORVET (class C core vacuole/endosome transport) that also includes Vps3 and a Class C Vps core complex composed of Vps11, Vps16, Vps18, and Vps33. CORVET operates at endosomes, controls traffic into late endosomes, and interacts with the Rab5/Vps21-GTP form. The CORVET-specific Vps3 and Vps8 subunits belong to a class D Vps. They form a subcomplex that interact with Rab5/Vps21, and are critical for localization and function of the CORVET tethering complex on endosomes. Vps8 contains an N-terminal WD40 repeat and a C-terminal C3H2C3-type RING-H2 finger. 55 -319602 cd16688 RING-H2_Vps11 RING finger, H2 subclass, found in vacuolar protein sorting-associated protein 11 homolog (Vps11) and similar proteins. Vps11, also known as RING finger protein 108 (RNF108), is a soluble protein involved in regulation of glycolipid degradation and retrograde toxin transport. It is highly expressed in heart and pancreas. Vps11 associates with Vps16, Vps18, and Vps33 to form a Class C Vps core complex that is required for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE)-mediated membrane fusion at the lysosome-like yeast vacuole. The core complex, together with two additional compartment-specific subunits, forms the tethering complexes HOPS (homotypic vacuole fusion and protein sorting) and CORVET (class C core vacuole/endosome transport) protein complexes. CORVET contains the additional Vps3 and Vps8 subunits. It operates at endosomes, controls traffic into late endosomes and interacts with the Rab5/Vps21-GTP form. HOPS contains the additional Vps39 and Vps41 subunits. It operates at the lysosomal vacuole, controls all traffic from late endosomes into the vacuole and interacts with the Rab7/Ypt7-GTP form. Vps11 is a central scaffold protein upon which both HOPS and CORVET assemble. The HOPS and CORVET complexes disassemble in the absent of Vps11, resulting in a massive fragmentation of vacuoles. Vps11 contains a clathrin repeat domain and a C-terminal C3H2C3-type RING-H2 finger. This subfamily also includes Vps11 homologs found in fungi, such as Saccharomyces cerevisiae vacuolar membrane protein Pep5p, also known as carboxypeptidase Y-deficient protein 5, vacuolar morphogenesis protein 1, or vacuolar biogenesis protein END1. Pep5p is essential for vacuolar biogenesis in Saccharomyces cerevisiae. It associates with Pep3p to form a core Pep3p/Pep5p complex that promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. 44 -319603 cd16689 RING-H2_Vps18 RING finger, H2 subclass, found in vacuolar protein sorting-associated protein 18 (Vps18) and similar proteins. Vps18 is an ubiquitin ligase E3 that is highly expressed in heart. It induces the ubiquitylation and degradation of serum-inducible kinase (SNK). Vps18 associates with Vps11, Vps16, and Vps33 to form a Class C Vps core complex that is required for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE)-mediated membrane fusion at the lysosome-like yeast vacuole. The core complex, together with two additional compartment-specific subunits, forms the tethering complexes HOPS (homotypic vacuole fusion and protein sorting) and CORVET (class C core vacuole/endosome transport) protein complexes. CORVET contains the additional Vps3 and Vps8 subunits. It operates at endosomes, controls traffic into late endosomes and interacts with the Rab5/Vps21-GTP form. HOPS contains the additional Vps39 and Vps41 subunits. It operates at the lysosomal vacuole, controls all traffic from late endosomes into the vacuole and interacts with the Rab7/Ypt7-GTP form. Vps18 deficiency inhibits dendritogenesis in Purkinje cells by blocking the lysosomal degradation of lysyl oxidase. Vps18 contains a clathrin heavy chain repeat, a coiled-coil domain, and a C3H2C3-type RING-H2 finger domain close to its C-terminus. This subfamily also includes Vps18 homologs found in insects and fungi, such as Drosophila melanogaster protein deep orange (dor) gene encoding protein Dor, and Saccharomyces cerevisiae vacuolar membrane protein Pep3p, also known as carboxypeptidase Y-deficient protein 3, or vacuolar morphogenesis protein 8. Drosophila Dor is part of a protein complex, which also includes the Sep1p homolog carnation (car), which localizes to endosomal compartments and is required not only for the biogenesis of pigment granules but also for the normal delivery of proteins to lysosomes. Pep3p is a vacuolar peripheral membrane protein that is required for vacuolar biogenesis in Saccharomyces cerevisiae. Pep3p associates with Pep5p to form a core Pep3p/Pep5p complex that promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. 38 -319604 cd16690 RING-H2_Vps41 RING finger, H2 subclass, found in vacuolar protein sorting-associated protein 41 (Vps41) and similar proteins. Vps41, also known as S53, is a protein involved in trafficking of proteins from the late Golgi to the vacuole. It interacts with caspase-8, suggesting a potential role of Vps41 beyond lysosomal trafficking. It has been identified as a potential therapeutic target for human Parkinson"s disease (PD). Vps41 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein VAMP7 are specifically involved in the fusion of the trans-Golgi network-derived lysosome-associated membrane protein carriers with late endosomes. Vps41 is a specific subunit of the lysosomal tethering complex HOPS (homotypic vacuole fusion and protein sorting) that also includes Vps39 and a Class C Vps core complex composed of Vps11, Vps16, Vps18, and Vps33. HOPS operates at the lysosomal vacuole, controls all traffic from late endosomes into the vacuole and interacts with the Rab7/Ypt7-GTP form. The HOPS-specific Vps39 and Vps41 subunits belong to a class B Vps. They form a subcomplex that interacts with Rab7/Ypt7 and is are required for homotypic and heterotypic late endosome fusion. Vps41 contains an N-terminal WD40 repeat, one or two clathrin repeats and a C3H2C3-type RING-H2 finger domain close to its C-terminus. This subfamily also includes Vps18 homologs found in insects, such as Drosophila melanogaster eye color gene light encoding protein. 51 -319605 cd16691 mRING-H2-C3H3C2_Mio Modified RING finger, H2 subclass (C3H3C2-type), found in WD repeat-containing protein mio and simialr proteins. This family contains Mio, its counterpart Sea4 from yeast, and other homologs. Mio/Sea4 is a component of GATOR2 complex, which also includes another four subunits, Seh1, Sec13, Sea2/WDR24, and Sea3/WDR59. GATOR2 and GATOR1, which is composed of three subunits, DEPDC5, Nprl2, and Nprl3, form the Rag-interacting complex GATOR (GAP Activity Towards Rags). Inhibition of GATOR1 subunits makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits suppresses mTORC1 signaling and GATOR2 negatively regulates DEPDC5. Mio interacts with endogenous RagA and RagC, and plays an essential role in the activation of mTOR Complex 1 (mTORC1) by amino acids. In GATOR2, Mio and Seh1 localize to lysosomes and autolysosomes, and form a heterodimer that is required to oppose the TORC1 inhibitory activity of the Iml1/GATOR1 complex to prevent the constitutive down-regulation of TORC1 activity in later stages of oogenesis. A tissue-specific requirement is necessary for Mio to be involved in cell growth in the female germ line. Mio contains an N-terminal WD40 domain and a C-terminal RING-H2 finger with an unusual arrangement of zinc-coordinating residues. The cysteines and histidines in RING-H2 finger are arranged as a modified C3H3C2-type, rather than the canonical C3H2C3-type. 73 -319606 cd16692 mRING-H2-C3H3C2_WDR59 Modified RING finger, H2 subclass (C3H3C2-type), found in WD repeat-containing protein 59 (WDR59) and similar proteins. WDR59 is a component of GATOR2 complex, which also includes another four subunits, Seh1, Sec13, Sea2/WDR24, and Mio/Sea4. GATOR2 and GATOR1, which is composed of three subunits, DEPDC5, Nprl2, and Nprl3, form the Rag-interacting complex GATOR (GAP Activity Towards Rags). Inhibition of GATOR1 subunits makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits suppresses mTORC1 signaling and GATOR2 negatively regulates DEPDC5. WDR59 contains an N-terminal WD40 domain followed by a RWD domain, and a C-terminal RING-H2 finger with an unusual arrangement of zinc-coordinating residues. The cysteines and histidines in RING-H2 finger are arranged as a modified C3H3C2-type, rather than the canonical C3H2C3-type. Sea3 is the yeast counterpart of WDR59. It is not included in this subfamily. 47 -319607 cd16693 mRING-H2-C3H3C2_WDR24 Modified RING finger, H2 subclass (C3H3C2-type), found in WD repeat-containing protein 24 (WDR24) and similar proteins. WDR24 is a component of GATOR2 complex, which also includes another four subunits, Seh1, Sec13, Sea3/WDR59, and Mio/Sea4. GATOR2 and GATOR1, which is composed of three subunits, DEPDC5, Nprl2, and Nprl3, form the Rag-interacting complex GATOR (GAP Activity Towards Rags). Inhibition of GATOR1 subunits makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits suppresses mTORC1 signaling and GATOR2 negatively regulates DEPDC5. WDR24 contains an N-terminal WD40 domain and a C-terminal RING-H2 finger with an unusual arrangement of zinc-coordinating residues. The cysteines and histidines in RING-H2 finger are arranged as a modified C3H3C2-type, rather than the canonical C3H2C3-type. Sea2 is the yeast counterpart of WDR24. It is not included in this subfamily. 46 -319608 cd16694 mRING-CH-C4HC2H_ZNRF1 Modified RING-CH finger, H2 subclass (C4HC2H-type), found in zinc/RING finger protein 1 (ZNRF1) and similar proteins. ZNRF1, also known as Nerve injury-induced gene 283 protein (nin283), or peripheral nerve injury protein (PNIP), is an E3 ubiquitin-protein ligase that is highly expressed in the nervous system during development and is associated with synaptic vesicle membranes. It is N-myrisotoylated and also located in the endosome-lysosome compartment in fibroblasts, suggesting it may participate in ubiquitin-mediated protein modification. It contains an N-terminal MAGE domain, and a special C-terminal domain that combines a zinc finger and a modified C4HC2H-type RING-CH finger, rather than the typical C4HC3-type RING-CH finger, which is a variant of RING-H2 finger. Only the RING finger of the zinc finger-RING finger motif is required for its E3 ubiquitin ligase activity. ZNRF1 regulates Schwann cell differentiation by proteasomal degradation of glutamine synthetase (GS). It also mediates regulation of neuritogenesis via interaction with beta-tubulin type 2 (Tubb2). Moreover, ZNRF1 promotes Wallerian degeneration by degrading AKT to induce glycogen synthase kinase-3beta (GSK3B)-dependent CRMP2 phosphorylation. Furthermore, ZNRF1 and its sister protein ZNRF2 regulate the ubiquitous Na+/K+ pump (Na+/K+ATPase). In addition, ZNRF1 may be associated with leukemogenesis of acute lymphoblastic leukemia (ALL) with paired box domain gene 5 (PAX5) alteration. 46 -319609 cd16695 mRING-CH-C4HC2H_ZNRF2 Modified RING-CH finger, H2 subclass (C4HC2H-type), found in zinc/RING finger protein 2 (ZNRF2) and similar proteins. ZNRF2, also known as protein Ells2 or RING finger protein 202 (RNF202), is an E3 ubiquitin-protein ligase that is highly expressed in the nervous system during development and is present in presynaptic plasma membranes. It is N-myrisotoylated and also located in the endosome-lysosome compartment in fibroblasts. It contains an N-terminal MAGE domain, and a special C-terminal domain that combines a zinc finger and a modified C4HC2H-type RING-CH finger, rather than the typical C4HC3-type RING-CH finger, which is a variant of RING-H2 finger. Only the RING finger of the zinc finger-RING finger motif is required for its E3 ubiquitin ligase activity. Together with its sister protein ZNRF1, ZNRF2 regulates the ubiquitous Na+/K+ pump (Na+/K+ATPase). 45 -319610 cd16696 RING-CH-C4HC3_NFX1 RING-CH finger, H2 subclass (C4HC3-type), found in transcriptional repressor NF-X1 and similar proteins. NF-X1, also known as nuclear transcription factor, X box-binding protein 1, is a novel cysteine-rich sequence-specific DNA-binding protein that interacts with the conserved X-box motif of the human major histocompatibility complex (MHC) class II genes via a repeated Cys-His domain. It functions as a cytokine-inducible transcriptional repressor that plays an important role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by interferon gamma (IFN- gamma). NFX1 contains an N-terminal PAM2 motif, a C4HC3-type RING-CH finger, a Cys-rich region that harbors several NFX1-type zinc fingers, and a C-terminal R3H domain. 55 -319611 cd16697 RING-CH-C4HC3_NFXL1 RING-CH finger, H2 subclass (C4HC3-type), found in nuclear transcription factor, X-box binding-like 1 (NFXL1) and similar proteins. NFXL1, also known as NF-X1-type zinc finger protein NFXL1, or ovarian zinc finger protein (OZFP), is encoded by a novel human cytoplasm-distribution zinc finger protein (CDZFP) gene. It is a putative zinc finger protein with a C4HC3-type RING-CH finger and a Cys-rich region that harbors several NFX1-type zinc fingers. 63 -319612 cd16698 RING_CH-C4HC3_MARCH1_like RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING finger protein MARCH1, MARCH8, and similar proteins. This family includes the closely related MARCH1 and MARCH8, both of which are located on endosomes and the plasma membrane and are implicated in regulating cell surface expression of their substrates. They ubiquitylate and downregulate many targets, including major histocompatibility complex class II (MHCII), CD86, transferrin receptor, HLA-DM, and Fas from the cell surface. MARCH1 is mainly expressed in cells of the immune system, while MARCH8 is more broadly expressed. Both of them contain an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, and two transmembrane domains. The cytoplasmic RING-CH domain participates in the ubiquitin transfer from the E2 to its substrate. The transmembrane domains are implicated in target recognition and dimer formation. 52 -319613 cd16699 RING_CH-C4HC3_MARCH2_like RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING finger protein MARCH2, MARCH3, and similar proteins. MARCH2 contain a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, in the N-terminal cytoplasmic region, two transmembrane domains in the middle region, and a PDZ-binding motif at the C-terminus. It is a Golgi-localized, membrane-associated E3 ubiquitin-protein ligase that is involved in endosomal trafficking through the binding of syntaxin 6 (STX6). It is involved in the cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL)-mediated ubiquitination and lysosomal degradation of mature CFTR through the association with adaptor proteins CAL and STX6. It also reduces the surface expression of CD86 and the transferrin receptor TFRC and regulates cell surface carvedilol-bound beta2-adrenergic receptor (beta2ARs) expression. Moreover, MARCH2 interacts with and ubiquitinates PDZ domains polarity determining scaffold protein DLG1 through its PDZ-binding motif, suggesting it may function as a molecular bridge with ubiquitin ligase activity connecting endocytic tumor suppressor proteins such as syntaxins to DLG1. MARCH3 is an E3 ubiquitin-protein ligase that is broadly expressed at relatively high levels in spleen, colon, and lung. It is localized to early endosomes, binds to MARCH2 and syntaxin 6, and is involved in the regulation of vesicular trafficking and fusion of the transport vesicles in endosomes. Its E2 specificity significantly overlaps that of MARCH2. 51 -319614 cd16700 RING_CH-C4HC3_MARCH4_like RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING finger protein MARCH4, MARCH9, MARCH11, and similar proteins. MARCH4 and MARCH9 are closely related to each other. They downregulate major histocompatibility complex-I (MHC-I). Moreover, MARCH4 and MARCH9, but not other MARCH proteins, can associate with Mult1 and prevent Mult1 expression at the cell surface in a lysine-dependent manner that can be reversed by heat shocking the cells. MARCH11 is a transmembrane RING-finger ubiquitin ligase that is predominantly expressed in developing spermatids in a stage-specific manner and is localized to the trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs). It mediates selective protein sorting via the TGN-MVB transport pathway through its ubiquitin ligase activity. SAMT family proteins have been identified as substrates of MARCH11 in mouse spermatids, suggesting that MARCH11 plays a role in mammalian spermiogenesis. Moreover, MARCH11 functions as an E3 ubiquitin ligase that targets CD4 for ubiquitination. It also forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. All family members contain an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, followed by two transmembrane regions. 51 -319615 cd16701 RING_CH-C4HC3_MARCH5 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH5 (MARCH5). MARCH5, also known as membrane-associated RING finger protein 5, membrane-associated RING-CH protein V (MARCH-V), RING finger protein 153 (RNF153), or mitochondrial ubiquitin ligase (MITOL), is a mitochondrial outer membrane-associated E3 ubiquitin-protein ligase that regulates mitochondrial dynamics including mitochondrial morphology, transport, and interaction with endoplasmic reticulum (ER), at least in part, through the ubiquitination of mitochondrial fission factor Drp1, microtubule-associated protein 1B (MAP1B) and mitofusin 2 (Mfn2), respectively. MARCH5 also mediates the cell cycle-dependent degradation of Mitofusin 1 (Mfn1) in G2/M phase, and thus serves as an upstream quality controller on Mitofusin 1 (Mfn1), preventing excessive accumulation of Mfn1 protein under stress conditions, which is crucial for mitochondrial homeostasis and cell viability. Moreover, MARCH5 is involved in maintaining mouse-embryonic stem cell (mESC) pluripotency via suppression of ERK signalling. It is also a positive regulator of Toll-like receptor 7 (TLR7)-mediated NF-kappaB activation in mammals. MARCH5 contains an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, and four C-terminal transmembrane spans. 61 -319616 cd16702 RING_CH-C4HC3_MARCH6 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH6 (MARCH6). MARCH6, also known as membrane-associated RING finger protein 6, membrane-associated RING-CH protein VI (MARCH-VI), RING finger protein 176 (RNF176), protein TEB-4, or Doa10 homolog, is an endoplasmic reticulum (ER)-localized E3 ubiquitin ligase that ubiquitinates ER-associated proteins with a cytoplasmic domain in a ubiquitin-conjugating enzyme 7 (UBC7)-dependent manner), such as Mps2, UBC6, and Ste6. It also regulates its own UBC7-mediated degradation. MARCH6 interacts with ubiquitin-specific protease USP19, which deubiquitinates and stabilizes MARCH6 and inhibits p97-dependent proteasomal degradation. It is also involved in the cholesterol synthesis pathway through controlling the degradation of squalene monooxygenase (SM), and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR). Furthermore, it may be a key regulator of thyroid hormone activation in a number of tissues, since it mediates the proteasomal degradation of type 2 iodothyronine deiodinase (D2). MARCH6 contains 14 transmembrane helices and a conserved N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, that catalyzes ubiquitin Lys48-specific ligation. 50 -319617 cd16703 RING_CH-C4HC3_MARCH7_like RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated MARCH7, MARCH10, and similar proteins. The subfamily includes two closely related membrane-associated RING-CH proteins, MARCH7 and MARCH10, both of which are predicted to have no transmembrane spanning region, but harbor a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, that is responsible for E3 activity. MARCH7, also known as MARCH-VII, RNF177, or axotrophin, is a ubiquitin E3 ligase expressed in multiple types of cells and tissues, including stem cells and precursor cells, and predominantly localized on the plasma membrane, and cytoplasm. MARCH7 is involved in T cell proliferation and neuronal development. It also participates in the regulation of cytoskeleton re-organization, cellular migration and invasion, cell proliferation, and tumorigenesis in ovarian carcinoma cells. Moreover, MARCH7 modulates nuclear factor kappaB (NF-kappaB) and Wnt/beta-catenin pathways. It has been identified as an authentic target of miR-101. Furthermore, ubiquitinates tau protein in vitro impairing microtubule binding. MARCH10, also known as MARCH-X or RNF190, is a microtubule-associated E3 ubiquitin ligase of developing spermatids. It is localized to the principal piece of elongating spermatids. MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids. 61 -319618 cd16704 RING-HC_RNF20_like RING finger, HC subclass, found in RING finger protein RNF20, RNF40, and similar proteins. RNF20, also known as BRE1A, and RNF40, also known as BRE1B, are E3 ubiquitin-protein ligases that work together to form a heterodimeric complex that facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. RNF20 regulates the cell cycle and differentiation of neural precursor cells (NPCs) and links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. RNF40, also known as 95 kDa retinoblastoma-associated protein (RBP95), was identified as a novel leucine zipper retinoblastoma protein (pRb)-associated protein that may function as a regulation factor in the process of RNA polymerase II-mediated transcription and/or transcriptional processing. All family members contain a C3HC4-type RING-HC finger at its C-terminus. 46 -319619 cd16705 RING-HC_dBre1_like RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins. dBre1 is the functional homolog of yeast Bre1, an E3 ubiquitin ligase required for the monoubiquitination of histone H2B and, indirectly, for H3K4 methylation. dBre1 acts as a nuclear component required cell autonomously for the expression of Notch target genes in Drosophila development. dBre1 contains a C3HC4-type RING-HC finger at its C-terminus. 42 -319620 cd16706 RING-HC_CARP1 RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 1 (CARP1) and similar proteins. CARP1, also known as caspase regulator CARP1, FYVE-RING finger protein Momo, RING finger homologous to inhibitor of apoptosis protein (RFI), RING finger protein 34 (RNF34), or RING finger protein RIFF, is a nuclear protein that functions as a specific E3 ubiquitin ligase for the transcriptional coactivator PGC-1alpha, a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell which negatively regulates brown fat cell metabolism. It is preferentially expressed in esophageal, gastric, and colorectal cancers, suggesting a possible association with the development of the digestive tract cancers. It regulates the p53 signaling pathway by degrading 14-3-3 sigma and stabilizing MDM2. CARP1 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP1 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain. 39 -319621 cd16707 RING-HC_CARP2 RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 2 (CARP-2) and similar proteins. CARP-2, also known as rififylin, caspase regulator CARP2, FYVE-RING finger protein Sakura (Fring), RING finger and FYVE-like domain-containing protein 1, RING finger protein 189 (RNF189), or RING finger protein 34-like, is an endosome-associated E3 ubiquitin-protein ligase that targets internalized receptor interacting kinase (RIP) for proteasome-mediated degradation. It acts as a negative regulator of tumor necrosis factor (TNF)-induced nuclear factor (NF)-kappaB activation. It also regulates the p53 signaling pathway through degrading 14-3-3 sigma and stabilizing MDM2. As a caspase regulator, CARP2 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP2 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain. 40 -319622 cd16708 RING-HC_Cbl RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl and similar proteins. Cbl, also known as Casitas B-lineage lymphoma proto-oncogene, proto-oncogene c-Cbl, RING finger protein 55 (RNF55), or signal transduction protein Cbl, is a multi-domain protein that acts as a key negative regulator of various receptor and non-receptor tyrosine kinases signaling. It contains a tyrosine kinase-binding domaina (TKB, also known as the phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a proline-rich domain, a C3HC4-type RING-HC finger, and an ubiquitin-associated (UBA) domain. TKB is responsible for the interactions with many tyrosine kinases, such as the colony-stimulating factor-1 (CSF-1) receptor, Syk/ZAP-70, and Src-family of protein tyrosine kinases. The proline-rich domain can recruit proteins with a SH3 domain. Moreover, Cbl functions as an E3 ubiquitin ligase that can bind ubiquitin-conjugating enzymes (E2s) through the RING-HC finger. 57 -319623 cd16709 RING-HC_Cbl-b RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-b and similar proteins. Cbl-b, also known as Casitas B-lineage lymphoma proto-oncogene b, RING finger protein 56 (RNF56), SH3-binding protein Cbl-b, or signal transduction protein Cbl-b, has been identified as a regulator of antigen-specific, T cell-intrinsic, peripheral immune tolerance, a state also known as clonal anergy. It may inhibit activation of the p85 subunit of phosphoinositide 3-kinase (PI3K), protein kinase C-theta (PKC-theta), and phospholipase C-gamma1 (PLC-gamma1) and negatively regulates T-cell receptor-induced transcription factor nuclear factor kappaB (NF-kappaB) activation. In addition, Cbl-b may target multiple signaling molecules involved in transforming growth factor (TGF)-beta-mediated transactivation pathways. Cbl-b contains a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a proline rich domain, a nuclear localization signal, a C3HC4-type RING-HC finger and an ubiquitin-associated (UBA) domain. 66 -319624 cd16710 RING-HC_Cbl-c RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-c and similar proteins. Cbl-c, also known as RING finger protein 57 (RNF57), SH3-binding protein Cbl-3, SH3-binding protein Cbl-c, or signal transduction protein Cbl-c, is an E3 ubiquitin-protein ligase expressed exclusively in epithelial cells. It contains a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a C3HC4-type RING-HC finger, and a short proline-rich region, but lacks the ubiquitin-associated (UBA) leucine zipper motif that are present in Cbl and Cbl-b. Cbl-c acts as a regulator of epidermal growth factor receptor (EGFR) mediated signal transduction. It also suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Moreover, Cbl-c ubiquitinates and downregulates RETMEN2A and implicates Enigma (PDLIM7) as a positive regulator of RETMEN2A through blocking of Cbl-mediated ubiquitination and degradation. The ubiquitin ligase activity of Cbl-c is increased via the interaction of its RING-HC finger domain with a LIM domain of the paxillin homolog, hydrogen peroxide Induced Construct 5 (Hic-5). 53 -319625 cd16711 RING-HC_DTX3 RING finger, HC subclass, found in E3 ubiquitin-protein ligase Deltex3 (DTX3) and similar proteins. DTX3, also known as RING finger protein 154 (RNF154), is an E3 ubiquitin-protein ligase that belongs to the Deltex (DTX) family. In contrast to other DTXs, DTX3 does not contain N-terminal two Notch-binding WWE domains, but a short unique N-terminal domain, suggesting it does not interact with intracellular domain of Notch. Its C-terminal region includes a C3HC4-type RING-HC finger, and a previously unidentified C-terminal domain. 41 -319626 cd16712 RING-HC_DTX3L RING finger, HC subclass, found in protein Deltex-3-like (DTX3L) and similar proteins. DTX3L, also known as B-lymphoma- and BAL-associated protein (BBAP) or Rhysin-2 (Rhysin2), is a RING-domain E3 ubiquitin-protein ligase that regulates endosomal sorting of the G protein-coupled receptor CXCR4 from endosomes to lysosomes. It also regulates subcellular localization of its partner protein, B aggressive lymphoma (BAL), by a dynamic nucleocytoplasmic trafficking mechanism. DTX3L has a unique N-terminus, but lacks the highly basic N-terminal motif and the central proline-rich motif present in other Deltex (DTX) family members, such as DTX1, DTX2, and DTX4. Moreover, its C-terminal region is highly homologous to DTX3. It includes a C3HC4-type RING-HC finger, and a previously unidentified C-terminal domain. DTX3L can associate with DTX1 through its unique N-terminus and further enhance self-ubiquitination. 41 -319627 cd16713 RING-HC_BIRC2_3_7 RING finger, HC subclass, found in apoptosis protein c-IAP1, c-IAP2, livin, and similar proteins. The cellular inhibitor of apoptosis protein c-IAPs function as ubiquitin E3 ligases that mediate the ubiquitination of the substrates involved in apoptosis, nuclear factor-kappaB (NF-kappaB) signaling, and oncogenesis. Unlike other apoptosis proteins (IAPs), such as XIAP, c-IAPs exhibit minimal binding to caspases and may not play an important role in the inhibition of these proteases. c-IAP1, also known as baculoviral IAP repeat-containing protein BIRC2, IAP-2, RING finger protein 48, or TNFR2-TRAF-signaling complex protein 2, is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-kappaB signaling pathways in the cytoplasm. It can also regulate E2F1 transcription factor-mediated control of cyclin transcription in the nucleus. c-IAP2, also known as BIRC3, IAP-1, apoptosis inhibitor 2 (API2), or IAP homolog C, also influences ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-kappaB. c-IAPs contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of binds polyubiquitin (polyUb), a caspase activation and recruitment domain (CARD) that serves as a protein interaction surface, and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. Livin, also known as baculoviral IAP repeat-containing protein 7 (BIRC7), or kidney inhibitor of apoptosis protein (KIAP), or melanoma inhibitor of apoptosis protein (ML-IAP), or RING finger protein 50, was identified as the melanoma IAP. It plays crucial roles in apoptosis, cell proliferation, and cell cycle control. Its anti-apoptotic activity is regulated by the inhibition of caspase-3, -7, and -9. Its E3 ubiquitin-ligase-like activity promotes degradation of Smac/DIABLO, a critical endogenous regulator of all IAPs. Unlike other family members, mammalian livin contains a single BIR domain and a C3HC4-type RING-HC finger. The UBA domain can be detected in non-mammalian homologs of livin. 54 -319628 cd16714 RING-HC_BIRC4_8 RING finger, HC subclass, found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP repeat-containing protein 8 (BIRC8) and similar proteins. XIAP, also known as baculoviral IAP repeat-containing protein 4 (BIRC4), IAP-like protein (ILP), inhibitor of apoptosis protein 3 (IAP-3), or X-linked inhibitor of apoptosis protein (X-linked IAP), is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases, including caspase-3, -7, and -9. It promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. The ubiquitin-protein ligase (E3) activity of XIAP also exhibits in the ubiquitination of second mitochondria-derived activator of caspases (Smac). The mitochondrial proteins, Smac/DIABLO and Omi/HtrA2, can inhibit the antiapoptotic activity of XIAP. XIAP has also been implicated in several intracellular signaling cascades involved in the cellular response to stress, such as the c-Jun N-terminal kinase (JNK) pathway, the nuclear factor-kappaB (NF-kappaB) pathway, and the transforming growth factor-beta (TGF-beta) pathway. Moreover, XIAP can regulate copper homeostasis through interacting with MURR1. BIRC8, also known as inhibitor of apoptosis-like protein 2, IAP-like protein 2, ILP-2, or testis-specific inhibitor of apoptosis, is a tissue-specific homolog of E3 ubiquitin-protein ligase XIAP. It has been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. Both XIAP and BIRC8 contain three N-terminal baculoviral IAP repeat (BIR) domains, a ubiquitin-association (UBA) domain and a C3HC4-type RING-HC finger at the carboxyl terminus. 62 -319629 cd16715 vRING-HC_IRF2BP1 variant of RING finger, HC subclass, found in interferon regulatory factor 2-binding protein 1 (IRF-2BP1). IRF-2BP1, also known as IRF-2-binding protein 1, is a nuclear protein that binds to the C-terminal repression domain of IRF-2 and acts as an IRF-2-dependent transcriptional corepressor, both enhancer-activated and basal transcription. It binds to Jun-dimerization protein 2 (JDP2), a member of the activating protein-1 (AP-1) family of transcription factors, and enhances the polyubiquitination of JDP2. It also represses activating transcription factor-2 (ATF2)-mediated transcriptional activation from a cyclic AMP-responsive element (CRE)-containing promoter. IRF-2BP1 contains an N-terminal C4-type zinc finger and a C-terminal C3HC4-type RING-HC finger with a partially new pattern. 56 -319630 cd16716 vRING-HC_IRF2BP2 variant of RING finger, HC subclass, found in interferon regulatory factor 2 (IRF2)-binding protein 2 (IRF-2BP2). IRF-2BP2, also known as IRF-2-binding protein 2 or DIF-1, is a nuclear protein that binds to the C-terminal repression domain of IRF-2 and acts as an IRF-2-dependent transcriptional corepressor, both enhancer-activated and basal transcription. IRF-2BP2 also specifically interacts with the C-terminal domain of the nuclear factor of activated T cells NFAT1 transcription factor, and negatively regulates the NFAT1-dependent transactivation of NFAT-responsive promoters. Moreover, IRF2BP2 suppresses the transactivation activity of p53 on both Bax and p21 promoters. It also shows anti-apoptotic activity through the modulation of a death domain in NRIF3. In addition, IRF2BP2 functions as a cofactor of VGLL4 and plays a critical role controlling gene expression in skeletal, cardiac, and smooth muscle cells. It is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGF-A) expression in muscle. IRF-2BP2 contains an N-terminal C4-type zinc finger and a C-terminal C3HC4-type RING-HC finger with a partially new pattern. The zinc finger is responsible for the homo- and hetero-dimerization between different members of the IRF-2BP2 family. The RING-HC finger interacts with IRF2 and also with nuclear receptor interacting factor 3 (NRIF3). 56 -319631 cd16717 vRING-HC_IRF2BPL variant of RING finger, HC subclass, found in interferon regulatory factor 2-binding protein-like (IRF-2BPL). IRF-2BPL, also known as C14orf4 or enhanced at puberty protein 1(EAP1), is a homolog of interferon regulatory factor 2-binding proteins, IRF-2BP1 and IRF-2BP2. It is expressed in the mediobasal hypothalamus and plays a critical function in regulating the female reproductive neuroendocrine axis. IRF-2BPL is a proline-rich protein with polyglutamine and polyalanine tracks at the N-terminus and a C3HC4-type RING-HC finger domain with a partially new pattern at the C-terminus. 56 -319632 cd16718 RING-HC_LNX3 RING finger, HC subclass, found in ligand of numb protein X 3 (LNX3). LNX3, also known as PDZ domain-containing RING finger protein 3 (PDZRN3), or Semaphorin cytoplasmic domain-associated protein 3 (SEMACAP3), is an E3 ubiquitin-protein ligase that was first identified as a Semaphorin-binding partner. It is also responsible for the ubiquitination and degradation of Numb, a component of the Notch signaling pathway that functions in the specification of cell fates during development and is known to control cell numbers during neurogenesis in vertebrates. LNX3 acts as a negative regulator of osteoblast differentiation by inhibiting Wnt-beta-catenin signaling. LNX3 also plays an important role in neuromuscular junction formation. It interacts with and ubiquitinates the muscle specific tyrosine kinase (MuSK), thus promoting its endocytosis and negatively regulating the cell surface expression of this key regulator of postsynaptic assembly. LNX3 contains an N-terminal typical C3HC4-type RING-HC finger, two PDZ domains, and a C-terminal LNX3 homology (LNX3H) domain. 42 -319633 cd16719 RING-HC_LNX4 RING finger, HC subclass, found in ligand of numb protein X 4 (LNX4). LNX4, also known as PDZ domain-containing RING finger protein 4 (PDZRN4), or SEMACAP3-like protein (SEMCAP3L), is an E3 ubiquitin-protein ligase responsible for the ubiquitination and degradation of Numb, a component of the Notch signaling pathway that functions in the specification of cell fates during development and is known to control cell numbers during neurogenesis in vertebrates. LNX4 contains an N-terminal typical C3HC4-type RING-HC finger, two PDZ domains, and a C-terminal LNX3 homology (LNX3H) domain. 42 -319634 cd16720 RING-HC_MEX3A RING finger, HC subclass, found in RNA-binding protein MEX3A. MEX3A, also known as RING finger and KH domain-containing protein 4 (RKHD4), is a RNA-binding phosphoprotein that localizes in P-bodies and stress granules, which are two structures involved in the storage and turnover of mRNAs. It has been implicated in the regulation of tumorigenesis. It controls the polarity and stemness of intestinal epithelial cells through the post-transcriptional regulation of the homeobox transcription factor CDX2, which plays a crucial role in intestinal cell fate specification, both during normal development and in tumorigenic processes involving intestinal reprogramming. Moreover, it exhibits a transforming activity when overexpressed in gastric epithelial cells. MEX3A contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3A shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway. 43 -319635 cd16721 RING-HC_MEX3B RING finger, HC subclass, found in RNA-binding protein MEX3B. MEX3B, also known as RING finger and KH domain-containing protein 3 (RKHD3), or RING finger protein 195 (RNF195), is a RNA-binding phosphoprotein that localizes in P-bodies and stress granules, which are two structures involved in the storage and turnover of mRNAs. It regulates the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions. It has a 3' long conserved untranslated region (3'LCU)-mediated fine-tuning system for mRNA regulation in early vertebrate development such as anteroposterior (AP) patterning and signal transduction. MEX3B contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3B shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway. 43 -319636 cd16722 RING-HC_MEX3C RING finger, HC subclass, found in RNA-binding protein MEX3C. MEX3C, also known as RING finger and KH domain-containing protein 2 (RKHD2), or RING finger protein 194 (RNF194), is a RNA-binding phosphoprotein that acts as a suppressor of chromosomal instability. It functions as a RNA-binding ubiquitin E3 ligase responsible for the post-transcriptional, HLA-A allotype-specific regulation of MHC class I molecules (MHC-I). It also modifies retinoic acid inducible gene-1 (RIG-I) in stress granules and plays a critical role in eliciting antiviral immune responses. Moreover, MEX3C plays an essential role in normal postnatal growth via enhancing the local expression of insulin-like growth factor 1 (IGF1) in bone. It may also be involved in metabolic regulation of energy balance. MEX3C contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3C shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway. 43 -319637 cd16723 RING-HC_MEX3D RING finger, HC subclass, found in RNA-binding protein MEX3D. MEX3D, also known as RING finger and KH domain-containing protein 1 (RKHD1), RING finger protein 193 (RNF193), or TINO, is a RNA-binding phosphoprotein that controls the stability of the transcripts coding for the anti-apoptotic protein BCL-2, and negatively regulates BCL-2 in HeLa cells. MEX3D contains two K homology (KH) domains that provide RNA-binding capacity, and a C-terminal C3HC4-type RING-HC finger. Like other MEX-3 family proteins, MEX3D shuttles between the nucleus and the cytoplasm via the CRM1-dependent export pathway. 45 -319638 cd16724 RING1-HC_MIB1 RING finger 1, HC subclass, found in mind bomb 1 (MIB1) and similar proteins. MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisted of three C3HC4-type RING-HC fingers. This family corresponds to the first RING-HC finger. 37 -319639 cd16725 RING2-HC_MIB1 RING finger 2, HC subclass, found in mind bomb 1 (MIB1) and similar proteins. MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisted of three C3HC4-type RING-HC fingers. This family corresponds to the second RING-HC finger. 37 -319640 cd16726 RING1-HC_MIB2 RING finger 1, HC subclass, found in mind bomb 2 (MIB2) and similar proteins. MIB2, also known as novel zinc finger protein (Novelzin), putative NF-kappa-B-activating protein 002N, skeletrophin, or zinc finger ZZ type with ankyrin repeat domain protein 1, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands. It promotes Delta ubiquitylation and endocytosis in Notch activation. Overexpression of MIB2, activates NF-kappaB and interferon-stimulated response element (ISRE) reporter activity. Moreover, MIB2 acts as a novel component of the activated B-cell CLL/lymphoma 10 (BCL10) complex and controls BCL10-dependent NF-kappaB activation. It also functions as a founder myoblast-specific protein that regulates myoblast fusion and muscle stability. MIB2 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisted of two C3HC4-type RING-HC fingers. This family corresponds to the first RING-HC finger. 37 -319641 cd16727 RING3-HC_MIB1 RING finger 3, HC subclass, found in mind bomb 1 (MIB1) and similar proteins. MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisted of three C3HC4-type RING-HC fingers. This family corresponds to the third RING-HC finger. 42 -319642 cd16728 RING2-HC_MIB2 RING finger 2, HC subclass, found in mind bomb 2 (MIB2) and similar proteins. MIB2, also known as novel zinc finger protein (Novelzin), putative NF-kappa-B-activating protein 002N, skeletrophin, or zinc finger ZZ type with ankyrin repeat domain protein 1, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands. Especially, it promotes Delta ubiquitylation and endocytosis in Notch activation. Overexpression of MIB2, activates NF-kappaB and interferon-stimulated response element (ISRE) reporter activity. Moreover, MIB2 acts as a novel component of the activated B-cell CLL/lymphoma 10 (BCL10) complex and controls BCL10-dependent NF-kappaB activation. It also functions as a founder myoblast-specific protein that regulates myoblast fusion and muscle stability. MIB2 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisted of two C3HC4-type RING-HC fingers. This family corresponds to the second RING-HC finger. 46 -319643 cd16729 RING-HC_RGLG_plant RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from plant. RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. All members in this family contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. 45 -319644 cd16730 RING-HC_MKRN1_3 RING finger, HC subclass, found in makorin-1 (MKRN1), makorin-3 (MKRN3), and similar proteins. MKRN1, also known as makorin RING finger protein 1 or RING finger protein 61 (RNF61), is an E3 ubiquitin-protein ligase targeting the telomerase catalytic subunit (TERT) for proteasome processing. It regulates the ubiquitination and degradation of peroxisome-proliferator-activated receptor gamma (PPARgamma), a nuclear receptor that is linked to obesity and metabolic diseases. It also mediates the posttranslational regulation of p14ARF, and thus potentially regulates cellular senescence and tumorigenesis in gastric cancer. Moreover, MKRN1 functions as a differentially negative regulator of p53 and p21, and controls cell cycle arrest and apoptosis. It induces degradation of West Nile virus (WNV) capsid protein to protect cells from WNV. Furthermore, MKRN1 may represent a nuclear protein with multiple nuclear functions, including regulating RNA polymerase II-catalyzed transcription. It is a RNA-binding protein involved in the modulation of cellular stress and apoptosis. It predominantly associates with proteins involved in mRNA metabolism including regulators of mRNA turnover, transport, and/or translation, and acts as a component of a ribonucleoprotein complex in embryonic stem cells (ESCs) that is recruited to stress granules upon exposure to environmental stress. Meanwhile, MKRN1 interacts with poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, in an RNA-independent manner, and stimulates translation in nerve cells. In addition, MKRN1 is a novel SEREX (serological identification of antigens by recombinant cDNA expression cloning) antigen of esophageal squamous cell carcinoma (SCC). It may be involved in carcinogenesis of the well-differentiated type of tumors possibly via ubiquitination of filamin A interacting protein 1 (L-FILIP). Human MKRN1 contains three N-terminal C3H1-type zinc fingers, a motif rich in Cys and His residues (CH), a C3HC4-type RING-HC finger, and another C3H1-type zinc finger at the C-terminus. MKRN3, also known as makorin RING finger protein 3, RING finger protein 63 (RNF63), or zinc finger protein 127 (ZNF127), is a therian mammal-specific retrocopy of MKRN1. It acts as a putative E3 ubiquitin-protein ligase involved in ubiquitination and cell signaling. MKRN3 shows a potential inhibitory effect on hypothalamic gonadotropin-releasing hormone (GnRH) secretion. Its defects represent the most frequent known genetic cause of familial central precocious puberty (CPP). In contrast to human MKRN1, human MKRN3 lacks the second C3H1-type zinc finger at the N-terminal region. The RING-HC finger of mammalian MKRN4 shows high sequence similarity with that of MKRN3, and is also included in this subfamily. 61 -319645 cd16731 RING-HC_MKRN2 RING finger, HC subclass, found in makorin-2 (MKRN2) and similar proteins. MKRN2, also known as makorin RING finger protein 2, RING finger protein 62 (RNF62), or HSPC070, is a putative ribonucleoprotein that acts as a neurogenesis inhibitor acting upstream of glycogen synthase kinase-3beta (GSK-3beta) in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. It also functions on promoting cell proliferation of primary CD34+ progenitor cells and K562 cells, indicating its possible involvement in normal and malignant hematopoiesis. Mammalian MKRN2 contains three N-terminal C3H1-type zinc fingers, a motif rich in Cys and His residues (CH), a C3HC4-type RING-HC finger, and another C3H1-type zinc finger at the C-terminus. The third C3H1-type zinc finger, the CH motif, as well as the RING zinc finger are necessary for its anti-neurogenic activity. 58 -319646 cd16732 RING-HC_MKRN4 RING finger, HC subclass, found in makorin-4 (MKRN4) and similar proteins. MKRN4, also known as makorin RING finger protein pseudogene 4, makorin RING finger protein pseudogene 5, RING finger protein 64 (RNF64), zinc finger protein 127-Xp (ZNF127-Xp), or zinc finger protein 127-like 1, is a new divergent member of the makorin protein family in vertebrates. It may have an ancestral gonad-specific function and maternal embryonic expression before duplication in vertebrates. MKRN4 contains typical arrays of one to four C3H1-type zinc fingers, a motif rich in Cys and His residues (CH) and a C3HC4-type RING-HC finger. The RING-HC finger of mammalian MKRN4 shows high sequence similarity with that of MKRN3, and is not included in this subfamily. 61 -319647 cd16733 RING-HC_PCGF1 RING finger, HC subclass, found in polycomb group RING finger protein 1 (PCGF1) and similar proteins. PCGF1, also known as nervous system Polycomb-1 (NSPc1) or RING finger protein 68 (RNF68), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like BCOR complex that also contains RING1, RNF2, RYBP, SKP1, as well as the BCL6 co-repressor BCOR and the histone demethylase KDM2B, and is required to maintain the transcriptionally repressive state of some genes, such as Hox genes, BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. PCGF1 promotes cell cycle progression and enhances cell proliferation as well. It is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the retinoid acid response element (RARE element). Moreover, PCGF1 functions as an epigenetic regulator involved in hematopoietic cell differentiation. It cooperates with the transcription factor runt-related transcription factor 1 (Runx1) in regulating differentiation and self-renewal of hematopoietic cells. Furthermore, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PCGF1 contains a C3HC4-type RING-HC finger. 43 -319648 cd16734 RING-HC_PCGF2 RING finger found in polycomb group RING finger protein 2 (PCGF2) and similar proteins. PCGF2, also known as DNA-binding protein Mel-18, RING finger protein 110 (RNF110), or zinc finger protein 144 (ZNF144), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a canonical Polycomb repressive complex 1 (PRC1), which is composed of a chromodomain-containing protein (CBX2, CBX4, CBX6, CBX7 or CBX8) and a Polyhomeotic protein (PHC1, PHC2, or PHC3). Like other PCGF homologs, PCGF2 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF2 uniquely regulates PRC1 to specify mesoderm cell fate in embryonic stem cells. It is required for PRC1 stability and maintenance of gene repression in embryonic stem cells (ESCs) and essential for ESC differentiation into early cardiac-mesoderm precursors. PCGF2 also plays a significant role in the angiogenic function of endothelial cells (ECs) by regulating endothelial gene expression. Furthermore, PCGF2 is a SUMO-dependent regulator of hormone receptors. It facilitates the deSUMOylation process by inhibiting PCGF4/BMI1-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). It is also a novel negative regulator of breast cancer stem cells (CSCs) that inhibits the stem cell population and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling. PCGF2 contains a C3HC4-type RING-HC finger. 43 -319649 cd16735 RING-HC_PCGF3 RING finger found in polycomb group RING finger protein 3 (PCGF3) and similar proteins. PCGF3, also known as RING finger protein 3A (RNF3A), is one of six PcG RING finger (PCGF) homologs (PCGF1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6) and serves as the core component of a Polycomb repressive complex 1 (PRC1). Like other PCGF homologs, PCGF3 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. PCGF3 contains a C3HC4-type RING-HC finger. 47 -319650 cd16736 RING-HC_PCGF4 RING finger found in polycomb group RING finger protein 4 (PCGF4) and similar proteins. PCGF4, also known as polycomb complex protein BMI-1 (B cell-specific Moloney murine leukemia virus integration site 1) or RING finger protein 51 (RNF51), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a canonical Polycomb repressive complex 1 (PRC1), which is composed of a chromodomain-containing protein (CBX2, CBX4, CBX6, CBX7 or CBX8) and a Polyhomeotic protein (PHC1, PHC2, or PHC3), and plays important roles in chromatin compaction and H2AK119 monoubiquitination. PCGF4 associates with the Runx1/CBFbeta transcription factor complex to silence target gene in a PRC2-independent manner. Moreover, PCGF4 is expressed in the hair cells and supporting cells. It can regulate cell survival by controlling mitochondrial function and reactive oxygen species (ROS) level in thymocytes and neurons, thus having an important role in the survival and sensitivity to ototoxic drug of auditory hair cells. Furthermore, PCGF4 controls memory CD4 T-cell survival through direct repression of Noxa gene in an Ink4a- and Arf-independent manner. It is required in neurons to suppress p53-induced apoptosis via regulating the antioxidant defensive response, and also involved in the tumorigenesis of various cancer types. PCGF4 contains a C3HC4-type RING-HC finger. 54 -319651 cd16737 RING-HC_PCGF5 RING finger found in polycomb group RING finger protein 5 (PCGF5) and similar proteins. PCGF5, also known as RING finger protein 159 (RNF159), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a Polycomb repressive complex 1 (PRC1). Like other PCGF homologs, PCGF5 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. PCGF5 contains a C3HC4-type RING-HC finger. 42 -319652 cd16738 RING-HC_PCGF6 RING finger found in polycomb group RING finger protein 6 (PCGF6) and similar proteins. PCGF6, also known as Mel18 and Bmi1-like RING finger (MBLR), or RING finger protein 134 (RNF134), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like L3MBTL2 complex, which is composed of some canonical components, such as RNF2, CBX3, CXB4, CXB6, CXB7, and CXB8, as well as some noncanonical components, such as L3MBTL2, E2F6, WDR5, HDAC1, and RYBP, and plays a critical role in epigenetic transcriptional silencing in higher eukaryotes. Like other PCGF homologs, PCGF6 possesses the transcriptional repression activity, and also associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF6 can regulate the enzymatic activity of JARID1d/KDM5D, a trimethyl H3K4 demethylase, through the direct interaction with it. Furthermore, PCGF6 is expressed predominantly in meiotic and post-meiotic male germ cells and may play important roles in mammalian male germ cell development. It also regulates mesodermal lineage differentiation in mammalian embryonic stem cells (ESCs) and functions in induced pluripotent stem (iPS) reprogramming. The activity of PCGF6 is found to be regulated by cell cycle dependent phosphorylation. PCGF6 contains a C3HC4-type RING-HC finger. 45 -319653 cd16739 RING-HC_RING1 RING finger, HC subclass, found in really interesting new gene 1 protein (RING1) and similar proteins. RING1, also known as polycomb complex protein RING1, RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), was identified as a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. It is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase that transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING1 interacts with multiple PcG proteins and displays tumorigenic activity. It also shows zinc-dependent DNA binding activity. Moreover, RING1 inhibits transactivation of the DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) by Notch through interaction with the LIM domains of KyoT2. RING1 contains a C3HC4-type RING-HC finger. 44 -319654 cd16740 RING-HC_RING2 RING finger, HC subclass, found in really interesting new gene 2 protein (RING2) and similar proteins. RING2, also known as huntingtin-interacting protein 2-interacting protein 3, HIP2-interacting protein 3, protein DinG, RING finger protein 1B (RING1B), RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. RING2 is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. The enzymatic activity of RING2 is enhanced by the interaction with BMI1/PCGF4, and it is dispensable for early embryonic development and much of the gene repression activity of PRC1. Moreover, RING2 plays a key role in terminating neural precursor cell (NPC)-mediated production of subcerebral projection neurons (SCPNs) during neocortical development. It also plays a critical role in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. Furthermore, RING2 is essential for expansion of hepatic stem/progenitor cells. It promotes hepatic stem/progenitor cell expansion through simultaneous suppression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. RING2 also negatively regulates p53 expression through directly binding with both p53 and MDM2 and promoting MDM2-mediated p53 ubiquitination in selective cancer cell types to stimulate tumor development. RING2 contains a C3HC4-type RING-HC finger. 47 -319655 cd16741 RING-HC_RNFT1 RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 1 (RNFT1). RNFT1, also known as protein PTD016, is a multi-pass membrane protein containing a C3HC4-type RING-HC finger. Its biological role remains unclear. 40 -319656 cd16742 RING-HC_RNFT2 RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 2(RNFT2). RNFT2, also known as transmembrane protein 118 (TMEM118), is a multi-pass membrane protein containing a C3HC4-type RING-HC finger. Its biological role remains unclear. 41 -319657 cd16743 RING-HC_RNF5 RING finger, HC subclass, found in RING finger protein 5 (RNF5) and similar proteins. RNF5, also known as protein G16 or Ram1, is an E3 ubiquitin-protein ligase anchored to the outer membrane of the endoplasmic reticulum (ER). It acts at early stages of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) biosynthesis and functions as a target for therapeutic modalities to antagonize mutant CFTR proteins in CF patients carrying the F508del allele. It also regulates the turnover of specific G protein-coupled receptors by ubiquitinating JNK-associated membrane protein (JAMP) and preventing proteasome recruitment. RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection through the regulation of ATG4B stability. It is also involved in the degradation of Pendrin, a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. RNF5 plays an important role in cell adhesion and migration. It can modulate cell migration by ubiquitinating paxillin. Furthermore, RNF5 interacts with virus-induced signaling adaptor (VISA) at mitochondria in a viral infection-dependent manner, and further targets VISA at K362 and K461 for K48-linked ubiquitination and degradation after viral infection. It also negatively regulates virus-triggered signaling by targeting MITA, also known as STING, for ubiquitination and degradation at the mitochondria. In addition, RNF5 determines breast cancer response to ER stress-inducing chemotherapies through the regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2). It also has been implicated in muscle organization and in recognition and processing of misfolded proteins. RNF5 contains a C3HC4-type RING-HC finger. 46 -319658 cd16744 RING-HC_RNF185 RING finger, HC subclass, found in RING finger protein 185 (RNF185) and similar proteins. RNF185 is an E3 ubiquitin-protein ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). It controls the degradation of CFTR and CFTR F508del allele in a RING- and proteasome-dependent manner, but does not control that of other classical ERAD model substrates. It also negatively regulates osteogenic differentiation by targeting dishevelled2 (Dvl2), a key mediator of Wnt signaling pathway, for degradation. Moreover, RNF185 regulates selective mitochondrial autophagy through interaction with the Bcl-2 family protein BNIP1. It also plays an important role in cell adhesion and migration through the modulation of cell migration by ubiquitinating paxillin. RNF185 contains a C3HC4-type RING-HC finger. 43 -319659 cd16745 RING-HC_AtRMA_like RING finger, HC subclass, found in Arabidopsis thaliana RING membrane-anchor proteins (AtRMAs) and similar proteins. AtRMAs, including AtRma1, AtRma2, and AtRma3, are endoplasmic reticulum (ER)-localized Arabidopsis homologs of human outer membrane of the ER-anchor E3 ubiquitin-protein ligase, RING finger protein 5 (RNF5). AtRMAs possess E3 ubiquitin ligase activity, and may play a role in the growth and development of Arabidopsis. The AtRMA1 and AtRMA3 genes are predominantly expressed in major tissues, such as cotyledons, leaves, shoot-root junction, roots, and anthers, while AtRMA2 expression is restricted to the root tips and leaf hydathodes. AtRma1 probably functions with the Ubc4/5 subfamily of E2. AtRma2 is likely involved in the cellular regulation of ABP1 expression levels through interacting with auxin binding protein 1 (ABP1). AtRMA proteins contain an N-terminal C3HC4-type RING-HC finger and a trans-membrane-anchoring domain in their extreme C-terminal region. 45 -319660 cd16746 RING-HC_RNF212 RING finger, HC subclass, found in RING finger protein 212 (RNF212) and similar proteins. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. It plays a central role in designating crossover sites and coupling chromosome synapsis to the formation of crossover-specific recombination complexes. It also functions as an E3 ligase for SUMO modification. RNF212 contains an N-terminal C3HC4-type RING-HC finger. 48 -319661 cd16747 RING-HC_RNF212B RING finger, HC subclass, found in RING finger protein 212B (RNF212B) and similar proteins. RNF212B is an uncharacterized protein with high sequence similarity with RNF212, a dosage-sensitive regulator of crossing-over during mammalian meiosis. RNF212B contains an N-terminal C3HC4-type RING-HC finger. 41 -319662 cd16748 RING-HC_SH3RF1 RING finger, HC subclass, found in SH3 domain-containing RING finger protein 1 (SH3RF1) and similar proteins. SH3RF1, also known as plenty of SH3s (POSH), RING finger protein 142 (RNF142), or SH3 multiple domains protein 2 (SH3MD2), is a trans-Golgi network-associated pro-apoptotic scaffold protein with E3 ubiquitin-protein ligase activity. It also plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and c-Jun N-terminal kinase (JNK) mediated apoptosis, linking Rac1 to downstream components. SH3RF1 also enhances the ubiquitination of ROMK1 potassium channel resulting in its increased endocytosis. Moreover, SH3RF1 assembles an inhibitory complex with the actomyosin regulatory protein Shroom3, which links to the actin-myosin network to regulate neuronal process outgrowth. It also forms a complex with apoptosis-linked gene-2 (ALG-2) and ALG-2-interacting protein (ALIX/AIP1) in a calcium-dependent manner to play a role in the regulation of the JNK pathway. Furthermore, direct interaction of SH3RF1 and another molecular scaffold JNK-interacting protein (JIP) is required for apoptotic activation of JNKs. Interaction of SH3RF1 and E3 ubiquitin-protein isopeptide ligases, Siah proteins, also needs to promote JNK activation and apoptosis. In addition, SH3RF1 binds to and degrades TAK1, a crucial activator of both the JNK and the Relish signaling pathways.SH3RF1 contains an N-terminal C3HC4-type RING-HC finger responsible for the E3 ligase activity and four Src Homology 3 (SH3) domains that are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. 48 -319663 cd16749 RING-HC_SH3RF2 RING finger, HC subclass, found in SH3 domain-containing RING finger protein 2 (SH3RF2) and similar proteins. SH3RF2, also known as heart protein phosphatase 1-binding protein (HEPP1), plenty of SH3s (POSH)-eliminating RING protein (POSHER), protein phosphatase 1 regulatory subunit 39, or RING finger protein 158 (RNF158), is a putative E3 ubiquitin-protein ligase that acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway by binding to and promoting the proteasomal degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. It may also play a role in cardiac functions together with protein phosphatase 1. SH3RF2 contains an N-terminal C3HC4-type RING-HC finger responsible for the E3 ligase activity and four Src Homology 3 (SH3) domains that are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. 48 -319664 cd16750 RING-HC_SH3RF3 RING finger, HC subclass, found in SH3 domain-containing RING finger protein 3 (SH3RF3) and similar proteins. SH3RF3, also known as plenty of SH3s 2 (POSH2) or SH3 multiple domains protein 4 (SH3MD4), is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating c-Jun N-terminal kinase (JNK) mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1. Both of them contain an N-terminal C3HC4-type RING-HC finger responsible for the E3 ligase activity and four Src Homology 3 (SH3) domains that are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. 46 -319665 cd16751 RING-HC_SIAH1 RING finger, HC subclass, found in seven in absentia homolog 1 (SIAH1) and similar proteins. SIAH1, also known as Siah-1a, is an inducible E3 ubiquitin-protein ligase that contributes to proteasome-mediated degradation of multiple targets in numerous cellular processes including apoptosis, tumor suppression, cell cycle, axon guidance, transcription regulation, and tumor necrosis factor signaling. SIAH1 functions as a scaffolding protein and interacts with a variety of different substrates for ubiquitination and subsequent degradation. It regulates the oncoprotein p34SEI-1 polyubiquitination and its subsequent degradation in a p53-dependent manner, which mediates p53 preferential vitamin C cytotoxicity. It targets the nonreceptor tyrosine kinase activated Cdc42-associated kinase 1 (ACK1), a valid target in cancer therapy, for ubiquitinylation and proteasomal degradation. It also interacts with KLF10 and targets for its degradation. The CDK2 phosphorylation-mediates KLF10 dissociation from SIAH1 is linked to cell cycle progression. Moreover, Siah1 is downregulated and associated with apoptosis and invasion in human breast cancer. It targets TAp73, a homolog of the tumor suppressor p53, for degradation. It is suppressed by hypoxia-inducible factor 1-alpha (HIF-1alpha) under hypoxic conditions to regulate TAp73 levels. It also promotes the migration and invasion of human glioma cells by regulating HIF-1alpha signaling under hypoxia. Furthermore, Siah1 forms a protein complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The apoptosis signal-regulating kinase 1 (ASK1) functions as an activator of the GAPDH-Siah1 stress-signaling cascade. It also plays an important role in ethanol-induced apoptosis in neural crest cells (NCCs). SIAH1 contains an N-terminal C3HC4-type RING-HC finger, two zinc-finger subdomains, and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD) responsible for dimer formation. 40 -319666 cd16752 RING-HC_SIAH2 RING finger, HC subclass, found in seven in absentia homolog 2 (SIAH2) and similar proteins. SIAH2 is an E3 ubiquitin-protein ligase that contributes to proteasome-mediated degradation of multiple targets in numerous cellular processes. It targets the ubiquitylation and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) under stress conditions, which is required for the cell to commit to undergoing apoptosis. It is, therefore, a key regulator of TRAF2-dependent signaling in response to tumor necrosis factor-alpha (TNF-alpha) treatment and UV irradiation. SIAH2 modulates the polyubiquitination of G protein pathway suppressor 2 (GPS2), and targets for its proteasomal degradation. It is also a regulator of NF-E2-related factor 2 (Nrf2), a key regulator of cellular oxidative response and contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, SIAH2 contributes to castration-resistant prostate cancer (CRPC) by regulation of androgen receptor (AR) transcriptional activity. It enhances AR transcriptional activity and prostate cancer cell growth. Its stability can be regulated by AKR1C3. SIAH2 also inhibits tyrosine kinase-2 (TYK2)-STAT3 signaling in lung carcinoma cells. Furthermore, SIAH2 regulates obesity-induced adipose tissue inflammation through altering peroxisome proliferator-activated receptor gamma (PPAR gamma) protein levels and selectively regulating PPAR gamma activity. It also functions as a regulator of the nuclear hormone receptor RevErbalpha (Nr1d1) stability and rhythmicity, and overall circadian oscillator function. In addition, Siah2 is an essential component of the hypoxia response Hippo signaling pathway and has been implicated in normal development and tumorigenesis. It modulates the hypoxia pathway upstream of hypoxia-induced transcription factor subunit HIF-1alpha, and therefore may play an important role in angiogenesis in response to hypoxic stress in endothelial cells. It also stimulates transcriptional coactivator YAP1 by destabilizing serine/threonine-protein kinase LATS2, a critical component of the Hippo pathway, in response to hypoxia. Meanwhile, Siah2 is involved in regulation of tight junction integrity and cell polarity under hypoxia, through its regulation of apoptosis-stimulating proteins of p53 subunit 2 (ASPP2) stability. SIAH2 contains an N-terminal C3HC4-type RING-HC finger, two zinc-finger subdomains, and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD) responsible for dimer formation. 38 -319667 cd16753 RING-HC_MID1 RING finger, HC subclass, found in midline-1 (MID1) and similar proteins. MID1, also known as midin, midline 1 RING finger protein, putative transcription factor XPRF, RING finger protein 59 (RNF59), or tripartite motif-containing protein 18 (TRIM18), is a microtubule-associated E3 ubiquitin-protein ligase implicated in epithelial-mesenchymal differentiation, cell migration and adhesion, and programmed cell death along specific regions of the ventral midline during embryogenesis. It monoubiquinates the alpha4 subunit of protein phosphatase 2A (PP2A), promoting proteosomal degradation of the catalytic subunit of PP2A (PP2Ac) and preventing the A and B subunits from forming an active complex. It promotes allergen and rhinovirus-induced asthma through the inhibition of PP2A activity. It is strongly upregulated in cytotoxic lymphocytes (CTLs) and directs lytic granule exocytosis and cytotoxicity of killer T cells. Loss-of-function mutations in MID1 lead to the human X-linked Opitz G/BBB (XLOS) syndrome characterized by defective midline development during embryogenesis. MID1 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. MID1 hetero-dimerizes in vitro with its paralog MID2. 54 -319668 cd16754 RING-HC_MID2 RING finger, HC subclass, found in midline-2 (MID2) and similar proteins. MID2, also known as midin-2, midline defect 2, RING finger protein 60 (RNF60), or tripartite motif-containing protein 1 (TRIM1), is a probable E3 ubiquitin-protein ligase that is highly related to MID1 that associate with cytoplasmic microtubules along their length and throughout the cell cycle. Like MID1, MID2 associates with the microtubule network and may at least partially compensate for the loss of MID1. Both MID1 and MID2 interacts with Alpha 4, which is a regulatory subunit of PP2-type phosphatases, such as PP2A, and an integral component of the rapamycin-sensitive signaling pathway. MID2 can also substitute for MID1 to control exocytosis of lytic granules in cytotoxic T cells. Loss-of-function mutations in MID2 lead to the human X-linked intellectual disability (XLID). MID2 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxy-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. MID2 hetero-dimerizes in vitro with its paralog MID1. 53 -319669 cd16755 RING-HC_TRIM9 RING finger, HC subclass, found in tripartite motif-containing protein 9 (TRIM9) and similar proteins. TRIM9, human ortholog of rat Spring, also known as RING finger protein 91 (RNF91), is a brain-specific E3 ubiquitin-protein ligase collaborating with an E2 ubiquitin conjugating enzyme UBCH5b. TRIM9 plays an important role in the regulation of neuronal functions and participates in the neurodegenerative disorders through its ligase activity. It interacts with the WD repeat region of beta-transducin repeat-containing protein (beta-TrCP) through its N-terminal degron motif depending on the phosphorylation status, and thus negatively regulates nuclear factor-kappaB (NF-kappaB) activation in the NF-kappaB pro-inflammatory signaling pathway. Moreover, TRIM9 acts as a critical catalytic link between Netrin-1 and exocytic soluble NSF attachment receptor protein (SNARE) machinery in murine cortical neurons. It promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. TRIM9 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 52 -319670 cd16756 RING-HC_TRIM36 RING finger, HC subclass, found in tripartite motif-containing protein 36 (TRIM36) and similar proteins. TRIM36, human ortholog of mouse Haprin, also known as RING finger protein 98 (RNF98) or zinc-binding protein Rbcc728, is an E3 ubiquitin-protein ligase expressed in the germ plasm. It has been implicated in acrosome reaction, fertilization, and embryogenesis, as well as in the carcinogenesis. TRIM36 functions upstream of Wnt/beta-catenin activation, and plays a role in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently dorsal axis formation. It is also potentially associated with chromosome segregation through interacting with the kinetochore protein centromere protein-H (CENP-H), and colocalizing with the microtubule protein alpha-tubulin. Its overexpression may cause chromosomal instability and carcinogenesis. It is, thus, a novel regulator affecting cell cycle progression. Moreover, TRIM36 plays a critical role in the arrangement of somites during embryogenesis. TRIM36 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 49 -319671 cd16757 RING-HC_TRIM46 RING finger, HC subclass, found in tripartite motif-containing protein 46 (TRIM46) and similar proteins. TRIM46, also known as gene Y protein (GeneY) or tripartite, fibronectin type-III and C-terminal SPRY motif protein (TRIFIC), is a microtubule-associated protein that specifically localizes to the proximal axon, partly overlaps with the axon initial segment (AIS) at later stages, and organizes uniform microtubule orientation in axons. It controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. TRIM46 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins, which are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 43 -319672 cd16758 RING-HC_TRIM67 RING finger, HC subclass, found in tripartite motif-containing protein 67 (TRIM67) and similar proteins. TRIM67, also known as TRIM9-like protein (TNL), is a protein selectively expressed in the cerebellum. It interacts with PRG-1, an important molecule in the control of hippocampal excitability dependent on presynaptic LPA2 receptor signaling, and 80K-H (also known as glucosidase II beta), a protein kinase C substrate. It negatively regulates Ras signaling in cell proliferation via degradation of 80K-H, leading to neural differentiation including neuritogenesis. TRIM67 belongs to the C-I subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. 50 -319673 cd16759 RING-HC_MuRF1 RING finger, HC subclass, found in muscle-specific RING finger protein 1 (MuRF-1) and similar proteins. MuRF-1, also known as tripartite motif-containing protein 63 (TRIM63), RING finger protein 28 (RNF28), iris RING finger protein, or striated muscle RING zinc finger, is an E3 ubiquitin-protein ligase in ubiquitin-mediated muscle protein turnover. It is predominantly fast (type II) fibre-associated in skeletal muscle and can bind to many myofibrillar proteins, including titin, nebulin, the nebulin-related protein NRAP, troponin-I (TnI), troponin-T (TnT), myosin light chain 2 (MLC-2), myotilin, and T-cap. The early and robust upregulation of MuRF-1 is triggered by disuse, denervation, starvation, sepsis, or steroid administration resulting in skeletal muscle atrophy. It also plays a role in maintaining titin M-line integrity. It associates with the periphery of the M-line lattice and may be involved in the regulation of the titin kinase domain. It also participates in muscle stress response pathways and gene expression. MuRF-1 belongs to the C-II subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, and an acidic residue-rich (AR) domain. It also harbors a MURF family-specific conserved box (MFC) between its RING-HC finger and Bbox domains. 63 -319674 cd16760 RING-HC_MuRF2 RING finger, HC subclass, found in muscle-specific RING finger protein 2 (MuRF-2) and similar proteins. MuRF-2, also known as tripartite motif-containing protein 55 (TRIM55) or RING finger protein 29 (RNF29), is a muscle-specific E3 ubiquitin-protein ligase in ubiquitin-mediated muscle protein turnover and also a ligand of the transactivation domain of the serum response transcription factor (SRF). It is predominantly slow-fibre associated and highly expressed in embryonic skeletal muscle. MuRF-2 associates transiently with microtubules, myosin, and titin during sarcomere assembly. It has been implicated in microtubule, intermediate filament, and sarcomeric M-line maintenance in striated muscle development, as well as in signalling from the sarcomere to the nucleus. It plays an important role in the earliest stages of skeletal muscle differentiation and myofibrillogenesis. It is developmentally downregulated and is assembled at the M-line region of the sarcomere and with microtubules. MuRF-2 belongs to the C-II subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, and an acidic residue-rich (AR) domain. It also harbors a MURF family-specific conserved box (MFC) between its RING-HC finger and Bbox domains. 64 -319675 cd16761 RING-HC_MuRF3 RING finger, HC subclass, found in muscle-specific RING finger protein 3 (MuRF-3) and similar proteins. MuRF-3, also known as tripartite motif-containing protein 54 (TRIM54), or RING finger protein 30 (RNF30), is an E3 ubiquitin-protein ligase in ubiquitin-mediated muscle protein turnover. It is ubiquitously detected in all fibre types, and is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. It associates with glutamylated microtubules during skeletal muscle development, and is required for skeletal myoblast differentiation and development of cellular microtubular networks. MuRF-3 controls the degradation of four-and-a-half LIM domain (FHL2) and gamma-filamin and is required for maintenance of ventricular integrity after myocardial infarction (MI). MuRF-3 belongs to the C-II subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, and an acidic residue-rich (AR) domain. It also harbors a MURF family-specific conserved box (MFC) between its RING-HC finger and Bbox domains. 59 -319676 cd16762 RING-HC_TRIM13_C-V RING finger, HC subclass, found in tripartite motif-containing protein 13 (TRIM13) and similar proteins. TRIM13, also known as B-cell chronic lymphocytic leukemia tumor suppressor Leu5, leukemia-associated protein 5, putative tumor suppressor RFP2, RING finger protein 77 (RNF77), or Ret finger protein 2, is an endoplasmic reticulum (ER) membrane anchored E3 ubiquitin-protein ligase that interacts proteins localized to the ER, including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). It also targets the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein) for its degradation. Moreover, TRIM13 regulates ubiquitination and degradation of NEMO to suppress tumor necrosis factor (TNF) induced nuclear factor-kappaB (NF- kappa B) activation. It is also involved in NF-kappaB p65 activation and nuclear factor of activated T-cells (NFAT)-dependent activation of c-Rel upon T-cell receptor engagement. Furthermore, TRIM13 negatively regulates lanoma differentiation-associated gene 5 (MDA5)-mediated type I interferon production. It also regulates caspase-8 ubiquitination, translocation to autophagosomes, and activation during ER stress induced cell death. Meanwhile, TRIM13 enhances ionizing radiation-induced apoptosis by increasing p53 stability and decreasing AKT kinase activity through MDM2 and AKT degradation. TRIM13 belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region. In addition, TRIM13 contains a C-terminal transmembrane domain. 57 -319677 cd16763 RING-HC_TRIM59_C-V RING finger, HC subclass, found in tripartite motif-containing protein 59 (TRIM59) and similar proteins. TRIM59, also known as RING finger protein 104 (RNF104) or tumor suppressor TSBF-1, is a putative E3 ubiquitin-protein ligase that functions as a novel multiple cancer biomarker for immunohistochemical detection of early tumorigenesis. It is upregulated in gastric cancer and promotes gastric carcinogenesis by interacting with and targeting the P53 tumor suppressor for its ubiquitination and degradation. It also acts as a novel accessory molecule involved in cytotoxicity of BCG-activated macrophages (BAM). Moreover, TRIM59 may serve as a multifunctional regulator for innate immune signaling pathways. It interacts with ECSIT and negatively regulates nuclear factor-kappaB (NF- kappa B) and interferon regulatory factor (IRF)-3/7-mediated signal pathways. TRIM59 belongs to the C-V subclass of TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region. In addition, TRIM59 contains a C-terminal transmembrane domain. 56 -319678 cd16764 RING-HC_TIF1alpha RING finger, HC subclass, found in transcription inknown asiary factor 1-alpha (TIF1-alpha). TIF1-alpha, also known as tripartite motif-containing protein 24 (TRIM24), E3 ubiquitin-protein ligase TRIM24, or RING finger protein 82, belongs to the C-VI subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a plant homeodomain (PHD), and a bromodomain (Bromo) positioned C-terminal to the RBCC domain. It interacts specifically and in a ligand-dependent manner with the ligand binding domain (LBD) of several nuclear receptors (NRs), including retinoid X (RXR), retinoic acid (RAR), vitamin D3 (VDR), estrogen (ER), and progesterone (PR) receptors. It also associates with heterochromatin-associated factors HP1alpha, MOD1 (HP1beta), and MOD2 (HP1gamma), as well as the vertebrate Kruppel-type (C2H2) zinc finger proteins that contains transcriptional silencing domain KRAB. TIF1-alpha is a ligand-dependent co-repressor of retinoic acid receptor (RAR) that interacts with multiple nuclear receptors in vitro via an LXXLL motif and further acts as a gatekeeper of liver carcinogenesis. It also functions as an E3-ubiquitin ligase targeting p53, and is broadly associated with chromatin silencing. Moreover, it is a chromatin regulator that recognizes specific, combinatorial histone modifications through its C-terminal PHD-Bromo region. In addition, it interacts with chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. 77 -319679 cd16765 RING-HC_TIF1beta RING finger, HC subclass, found in transcription inknown asiary factor 1-beta (TIF1-beta). TIF1-beta, also known as Kruppel-associated Box (KRAB)-associated protein 1 (KAP-1), KRAB-interacting protein 1 (KRIP-1), nuclear co-repressor KAP-1, RING finger protein 96, tripartite motif-containing protein 28 (TRIM28), or E3 SUMO-protein ligase TRIM28, belongs to the C-VI subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a plant homeodomain (PHD), and a bromodomain (Bromo) positioned C-terminal to the RBCC domain. It acts as a nuclear co-repressor that plays a role in transcription and in the DNA damage response. Upon DNA damage, the phosphorylation of KAP-1 on serine 824 by the ataxia telangiectasia-mutated (ATM) kinase enhances cell survival and facilitates chromatin relaxation and heterochromatic DNA repair. It also regulates CHD3 nucleosome remodeling during the DNA double-strand break (DSB) response. Meanwhile, KAP-1 can be dephosphorylated by protein phosphatase PP4C in the DNA damage response. Moreover, KAP-1 is a co-activator of the orphan nuclear receptor NGFI-B (or Nur77) and is involved in NGFI-B-dependent transcription. It is also a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. The N-terminal RBCC domains of TIF1-beta are responsible for the interaction with KRAB zinc finger proteins (KRAB-ZFPs), MDM2, MM1, C/EBPbeta, and the regulation of homo- and heterodimerization. The C-terminal PHD/Bromo domains are involved in interacting with SETDB1, Mi-2alpha and other proteins to form complexes with histone deacetylase or methyltransferase activity. 61 -319680 cd16766 RING-HC_TIF1gamma RING finger, HC subclass, found in transcriptional inknown asiary factor 1 gamma (TIF1gamma). TIF1gamma, also known as tripartite motif-containing 33 (TRIM33), ectodermin, RFG7, or PTC7, belongs to the C-VI subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a plant homeodomain (PHD), and a bromodomain (Bromo) positioned C-terminal to the RBCC domain. It is an E3-ubiquitin ligase that functions as a regulator of transforming growth factor beta (TGFbeta) signaling, inhibits the Smad4-mediated TGFbeta response by interaction with Smad2/3 or ubiquitylation of Smad4. Moreover, TIF1gamma is an important regulator of transcription during hematopoiesis, as well as a key actor of tumorigenesis. Like other TIF1 family members, TIF1gamma also contains an intrinsic transcriptional silencing function. It can control erythroid cell fate by regulating transcription elongation. It can bind to the anaphase-promoting complex/cyclosome (APC/C) and promotes mitosis. 67 -319681 cd16767 RING-HC_TRIM2 RING finger, HC subclass, found in tripartite motif-containing protein 2 (TRIM2). TRIM2, also known as RING finger protein 86 (RNF86), is an E3 ubiquitin-protein ligase that ubiquitinates the neurofilament light chain, a component of the intermediate filament in axons. Loss of function of TRIM2 results in early-onset axonal neuropathy. TRIM2 also plays a role in mediating the p42/p44 MAPK-dependent ubiquitination of the cell death-promoting protein Bcl-2-interacting mediator of cell death (Bim) in rapid ischemic tolerance. TRIM2 belongs to the C-VII subclass of TRIM (tripartite motif)-NHL family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. 46 -319682 cd16768 RING-HC_TRIM3 RING finger, HC subclass, found in tripartite motif-containing protein 3 (TRIM3). TRIM3, also known as brain-expressed RING finger protein (BERP), RING finger protein 97 (RNF97), or RING finger protein 22 (RNF22), is an E3 ubiquitin-protein ligase involved in the pathogenesis of various cancers. It functions as a tumor suppressor that regulates asymmetric cell division in glioblastoma. It binds to the cdk inhibitor p21(WAF1/CIP1) and regulates its availability that promotes cyclin D1-cdk4 nuclear accumulation. Moreover, TRIM3 plays an important role in the central nervous system (CNS). It corresponds to gene BERP (brain-expressed RING finger protein), a unique p53-regulated gene that modulates seizure susceptibility and GABAAR cell surface expression. Furthermore, TRIM3 mediates activity-dependent turnover of postsynaptic density (PSD) scaffold proteins GKAP/SAPAP1 and is a negative regulator of dendritic spine morphology. In addition, TRIM3 may be involved in vesicular trafficking via its association with the cytoskeleton-associated-recycling or transport (CART) complex that is necessary for efficient transferrin receptor recycling, but not for epidermal growth factor receptor (EGFR) degradation. It also regulates the motility of the kinesin superfamily protein KIF21B. TRIM3 belongs to the C-VII subclass of TRIM (tripartite motif)-NHL family that is defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as a NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain. 45 -319683 cd16769 RING-HC_UHRF1 RING finger, HC subclass, found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1). UHRF1, also known as inverted CCAAT box-binding protein of 90 kDa, nuclear protein 95, nuclear zinc finger protein Np95 (Np95), RING finger protein 106, transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1, is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 can acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumor suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also a N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) domain, a SET and RING finger associated (SRA) domain, and a C-terminal C3HC4-type RING-HC finger. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitylation has an essential role in maintenance DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD domain targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-HC finger exhibits both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. 47 -319684 cd16770 RING-HC_UHRF2 RING finger, HC subclass, found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2). UHRF2, also known as Np95/ICBP90-like RING finger protein (NIRF), Np95-like RING finger protein, nuclear protein 97, nuclear zinc finger protein Np97, RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2, was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation, but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) through interacting with HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) domain, a SET- and RING-associated (SRA) domain, and a C-terminal C3HC4-type RING-HC finger. 46 -319685 cd16771 RING-HC_UNK RING finger, HC subclass, found in RING finger protein unkempt (UNK) and similar proteins. UNK, also known as zinc finger CCCH domain-containing protein 5, is a metazoan-specific zinc finger protein enriched in embryonic brains. It may play a broad regulatory role during the formation of the central nervous system (CNS). It is a sequence-specific RNA-binding protein required for the early neuronal morphology. UNK is a neurogenic component of the mTOR pathway, and functions as a negative regulator of the timing of photoreceptor differentiation. It also specifically binds to Brg/Brm-associated factor BAF60b and promotes its ubiquitination in a Rac1-dependent manner. UNK contains six tandem CCCH-type zinc fingers at the N-terminus, and a C3HC4-type RING-HC finger at its C-terminus. 37 -319686 cd16772 RING-HC_UNKL RING finger, HC subclass, found in RING finger protein unkempt-like (UNKL) and similar proteins. UNKL, also known as zinc finger CCCH domain-containing protein 5-like, is a putative E3 ubiquitin-protein ligase that may participate in a protein complex showing an E3 ligase activity regulated by RAC1. It shows high sequence similarity with RING finger protein unkempt (UNK), which is a metazoan-specific zinc finger protein enriched in embryonic brains, and may play a broad regulatory role during the formation of the central nervous system (CNS). UNKL contains several CCCH-type zinc fingers at the N-terminus, and a C3HC4-type RING-HC finger at its C-terminus. 38 -319687 cd16773 RING-HC_RBR_TRIAD1 RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1). TRIAD1, also known as ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is a RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48, as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. It functions as a regulator of endosomal transport and is required for the proper function of multivesicular bodies. It also acts as a novel ubiquitination target for proteasome-dependent degradation by murine double minute 2 (MDM2). As a proapoptotic protein, TRIAD1 promotes p53 activation, and inhibits MDM2-mediated p53 ubiquitination and degradation. Furthermore, TRIAD1 can inhibit the ubiquitination and proteasomal degradation of growth factor independence 1 (Gfi1), a transcriptional repressor essential for the function and development of many different hematopoietic lineages. TRIAD1 contains a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 54 -319688 cd16774 RING-HC_RBR_ANKIB1 RING finger, HC subclass, found in ankyrin repeat and IBR domain-containing protein 1 (ANKIB1) and similar proteins. ANKIB1 is a RBR-type E3 ubiquitin-protein ligase that may function as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. It contains an N-terminal ankyrin repeats domain and a RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 57 -319689 cd16775 RING-HC_RBR_RNF19A RING finger, HC subclass, found in RING finger protein 19A (RNF19A) and similar proteins. RNF19A, also known as double ring-finger protein (Dorfin) or p38, is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that localizes to the ubiquitylated inclusions in Parkinson"s disease (PD), dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis (ALS). It interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome, and further participates in the ubiquitin-proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. It modulates the ubiquitination and degradation of calcium-sensing receptor (CaR), which may contribute to a general mechanism for CaR quality control during biosynthesis. Moreover, RNF19A can also ubiquitylate mutant superoxide dismutase 1 (SOD1), the causative gene of familial ALS. It may associate with endoplasmic reticulum-associated degradation (ERAD) pathway, which is related to the pathogenesis of neurodegenerative disorders, such as PD or Alzheimer"s disease. It is also involved in the pathogenic process of PD and Lewy body (LB) formation by ubiquitylation of synphilin-1. RNF19A contains a RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 55 -319690 cd16776 RING-HC_RBR_RNF19B RING finger, HC subclass, found in RING finger protein 19B (RNF19B) and similar proteins. RNF19B, also known as IBR domain-containing protein 3 or natural killer lytic-associated molecule (NKLAM), is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that plays a role in controlling tumor dissemination and metastasis. It is involved in the cytolytic function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). It interacts with ubiquitin conjugates UbcH7 and UbcH8, and ubiquitinates uridine kinase like-1 (URKL-1) protein, targeting it for degradation. Moreover, RNF19B is a novel component of macrophage phagosomes and plays a role in macrophage anti-bacterial activity. It functions as a novel modulator of macrophage inducible nitric oxide synthase (iNOS) expression. RNF19B contains a RBR domain followed by three TMs. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. 55 -319691 cd16777 mRING-HC-C4C4_RBR_RNF144A Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144A (RNF144A). RNF144A, also known as UbcM4-interacting protein 4 (UIP4) or ubiquitin-conjugating enzyme 7-interacting protein 4, is a transmembrane (TM) domain-containing RBR-type E3 ubiquitin-protein ligase that targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and thus promotes DNA damage-induced cell apoptosis. It is transcriptionally repressed by metastasis-associated protein 1 (MTA1) and inhibits MTA1-driven cancer cell migration and invasion. RNF144A contains a RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is responsible for the interaction of E2-conjugating enzymes UbcH7 and UbcH8. 54 -319692 cd16778 mRING-HC-C4C4_RBR_RNF144B Modified RING finger, HC subclass (C4C4-type), found in RING finger protein 144B (RNF144B). RNF144B, also known as PIR2, IBR domain-containing protein 2 (IBRDC2), or p53-inducible RING finger protein (p53RFP), is a transmembrane (TM) domain-containing RBR (RING1-IBR-RING2) E3 ubiquitin-protein ligase that induces p53-dependent, but caspase-independent apoptosis. It interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8, but not with UbcH5. It is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, suggesting a role in switching a cell from p53-mediated growth arrest to apoptosis. Moreover, RNF144B regulates the levels of Bax, a pro-apoptotic protein from the Bcl-2 family, and protects cells from unprompted Bax activation and cell death. It also regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. RNF144B contains a RBR domain followed by a potential single-TM domain. The RBR domain was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain use an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This family corresponds to the RING domain, a C4C4-type RING finger whose overall folding is similar to that of the C3HC4-type RING-HC finger. It is required for RBR-mediated ubiquitination. 57 -319693 cd16779 mRING-HC-C3HC3D_LNX1 Modified RING finger, HC subclass (C3HC3D-type), found in ligand of numb protein X 1 (LNX1). LNX1, also known as numb-binding protein 1 or PDZ domain-containing RING finger protein 2, is a PDZ domain-containing RING-type E3 ubiquitin ligase responsible for the ubiquitination and degradation of Numb, a component of the Notch signaling pathway that functions in the specification of cell fates during development and is known to control cell numbers during neurogenesis in vertebrates. LNX1 contains an N-terminal modified C3HC3D-type RING-HC finger, a NPAY motif for Numb-LNX interaction, and four PDZ domains necessary for the binding of substrates, including CAR, ErbB2, SKIP, JAM4, CAST, c-Src, Claudins, RhoC, KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2, PDZ-binding kinase (PBK), LNX2, and itself. 42 -319694 cd16780 mRING-HC-C3HC3D_LNX2 Modified RING finger, HC subclass (C3HC3D-type), found in ligand of numb protein X 2 (LNX2). LNX2, also known as numb-binding protein 2, or PDZ domain-containing RING finger protein 1 (PDZRN1), is a PDZ domain-containing RING-type E3 ubiquitin ligase responsible for the ubiquitination and degradation of Numb, a component of the Notch signaling pathway that functions in the specification of cell fates during development and is known to control cell numbers during neurogenesis in vertebrates. It interacts with contactin-associated protein 4 (Caspr4, also known as CNTNAP4) in a PDZ domain-dependent manner, which modulates the proliferation and neuronal differentiation of neural progenitor cells (NPCs). LNX2 contains an N-terminal modified C3HC3D-type RING-HC finger, a NPAF motif for Numb/ Numblike-LNX interaction, and four PDZ domains necessary for the binding of substrates, including ErbB2, RhoC, the presynaptic protein CAST, the melanoma/cancer-testis antigen MAGEB18 and several proteins associated with cell junctions, such as JAM4 and the Coxsackievirus and adenovirus receptor (CAR). 45 -319695 cd16781 mRING-HC-C3HC3D_Roquin1 Modified RING finger, HC subclass (C3HC3D-type), found in Roquin-1. Roquin-1, also known as RING finger and C3H zinc finger protein 1 (RC3H1), or RING finger protein 198 (RNF198), is a ubiquitously expressed RNA-binding protein essential for degradation of inflammation-related mRNAs and maintenance of immune homeostasis. It is localized in cytoplasmic granules and binds to the 3' untranslated region (3'UTR) of inducible costimulator (ICOS) mRNA to post-transcriptionally repress its expression. Roquin-1 interacts with 3'UTR of tumor necrosis factor receptor superfamily member 4 (TNFRSF4) and tumor-necrosis factor-alpha (TNFalpha), and post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappaB pathway. Moreover, Roquin-1 shares functions with its paralog Roquin-2 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Roquin-1 contains an N-terminal modified C3HC3D-type RING-HC finger with a potential E3 ubiquitin-ligase function, a highly conserved ROQ domain required for RNA binding and localization to stress granules, and a CCCH-type zinc finger that is involved in RNA recognition, typically contacting AU-rich elements. In addition, both N- and C-terminal to the ROQ domain are combined to form a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain that is highly likely to function as a RNA-binding domain. 44 -319696 cd16782 mRING-HC-C3HC3D_Roquin2 Modified RING finger, HC subclass (C3HC3D-type), found in Roquin-2. Roquin-2, also known as membrane-associated nucleic acid-binding protein (MNAB), RING finger and CCCH-type zinc finger domain-containing protein 2 (RC3H2), or RING finger protein 164 (RNF164), is an E3 ubiquitin ligase that is localized to the cytoplasm and upon stress is concentrated in stress granules. It is required for reactive oxygen species (ROS)-induced ubiquitination and degradation of apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5). Roquin-2 interacts with 3'UTR of tumor necrosis factor receptor superfamily member 4 (TNFRSF4) and tumor-necrosis factor-alpha (TNFalpha), and modulates immune responses. Moreover, Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Roquin-2 contains an N-terminal modified C3HC3D-type RING-HC finger with a potential E3 ubiquitin-ligase function, a highly conserved ROQ domain required for RNA binding and localization to stress granules, a coiled-coil (CC1), and a CCCH-type zinc finger that is involved in RNA recognition. 44 -319697 cd16783 mRING-HC-C2H2C4_MDM2 Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2 and similar proteins. MDM2, also known as double minute 2 protein (Hdm2), oncoprotein MDM2, or p53-binding protein, exerts its oncogenic activity predominantly by binding p53 tumor suppressor and blocking its transcriptional activity. It forms homo-oligomers and displays E3 ubiquitin ligase activity that catalyzes the attachment of ubiquitin to p53 as an essential step in the regulation of its level in cells. Moreover, in response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through its interaction with ribosomal proteins L5, L11, and L23. MDM2 can be phosphorylated in the DNA damage. Meanwhile, MDM2 has a p53-independent role in tumorigenesis and cell growth regulation. In addition, it binds interferon (IFN) regulatory factor-2 (IRF-2), an IFN-regulated transcription factor, and mediates its ubiquitination. MDM2 contains an N-terminal p53-binding domain, and a C-terminal modified C2H2C4-type RING-HC finger conferring E3 ligase activity that is required for ubiquitination and nuclear export of p53. It is also responsible for the hetero-oligomerization of MDM2, which is crucial for the suppression of P53 activity during embryonic development, and the recruitment of E2 ubiquitin-conjugating enzymes. MDM2 also harbors a RanBP2-type zinc finger (zf-RanBP2) domain, as well as a nuclear localization signal (NLS) and a nuclear export signal (NES), near the central acidic region. The zf-RanBP2 domain plays an important role in mediating MDM2 binding to ribosomal proteins and thus is involved in MDM2-mediated p53 suppression. 57 -319698 cd16784 mRING-HC-C2H2C4_MDM4 Modified RING finger, HC subclass (C2H2C4-type), found in protein MDM4 and similar proteins. MDM4, also known as double minute 4 protein (Hdm4), or MDM2-like p53-binding protein, or protein MDMX, or HDMX, or p53-binding protein MDM4, exerts its oncogenic activity predominantly by binding p53 tumor suppressor and blocking its transcriptional activity. MDM4 is phosphorylated and destabilized in response to DNA damage stress. It can also be specifically dephosphorylated through directly interacting with protein phosphatase 1 (PP1), which may increase its stability and thus inhibits p53 activity. Meanwhile, MDM4 has a p53-independent role in tumorigenesis and cell growth regulation. MDM4 contains an N-terminal p53-binding domain and a C-terminal modified C2H2C4-type RING-HC finger responsible for its hetero-oligomerization, which is crucial for the suppression of P53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. MDM4 also harbors a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region. 59 -319699 cd16785 mRING-HC-C3HC5_NEU1A Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1A (NEURL1A) and similar proteins. NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in the medulloblastoma. NEURL1A contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 44 -319700 cd16786 mRING-HC-C3HC5_NEU1B Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1B (NEURL1B). NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling through working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. NEURL1B contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 43 -319701 cd16787 mRING-HC-C3HC5_CGRF1 Modified RING finger, HC subclass (C3HC5-type), found in cell growth regulator with RING finger domain protein 1 (CGRRF1) and similar proteins. CGRRF1, also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker of tissue monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. CGRRF1 contains a C-terminal modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 37 -319702 cd16788 mRING-HC-C3HC5_RNF26 Modified RING finger, HC subclass (C3HC5-type), found in RING finger protein 26 (RNF26) and similar proteins. RNF26 is an E3 ubiquitin ligase that temporally regulates virus-triggered type I interferon induction by increasing the stability of Mediator of IRF3 activation, MITA, also known as STING, through K11-linked polyubiquitination of MITA after viral infection and promoting degradation of IRF3, another important component required for virus-triggered interferon induction. Although RNF26 substrates of ubiquitination remain unclear at present, RNF26 upregulation in gastric cancer might be implicated in carcinogenesis through dysregulation of growth regulators. RNF26 contains an N-terminal leucine zipper domain and a C-terminal modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 48 -319703 cd16789 mRING-HC-C3HC5_MGRN1_like---blasttree Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 (MGRN1), RING finger protein 157 (RNF157) and similar proteins. MGRN1, also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. MGRN1 interacts with cytosolic prion proteins (PrPs) that are linked with neurodegeneration. It also interacts with expanded polyglutamine proteins, and suppresses misfolded polyglutamine aggregation and cytotoxicity. Moreover, MGRN1 inhibits melanocortin receptor signaling by competition with Galphas, suggesting a novel pathway for melanocortin signaling from the cell surface to the nucleus. Furthermore, MGRN1 interacts with and ubiquitylates TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, and regulates endosomal trafficking. A null mutation in the gene encoding MGRN1 causes spongiform neurodegeneration, suggesting a link between dysregulation of endosomal trafficking and spongiform neurodegeneration. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in brain. It is a homolog of the E3 ligase mahogunin ring finger-1 (MGRN1). In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. Both MGRN1 and RNF157 contain a modified C3HC5-type RING-HC finger, and a functionally uncharacterized region, known as domain associated with RING2 (DAR2), N-terminal to the RING finger. The C3HC5-type RING-HC finger is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 41 -319704 cd16790 SP-RING_PIAS SP-RING finger found in protein inhibitor of activated signal transducer and activator of transcription (PIAS) proteins. The PIAS (protein inhibitor of activated STAT) protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. It consists of four members: PIAS1, PIAS2 (also known as PIASx), PIAS3, and PIAS4 (also known as PIASy). PIAS proteins were initially identified as inhibitors of activated STAT only, but are now known to interact with and modulate several other proteins, including androgen receptor (AR), tumor suppressor p53, and the transforming growth factor-beta (TGF-beta) signaling protein SMAD. They interact with STATs in a cytokine-dependent manner. PIAS1, PIAS2, and PIAS3 interact with STAT1, STAT3, and STAT4, respectively. In addition, PIAS4 is associated with STAT1. PIAS proteins have SUMO E3-ligase activity and interaction of PIAS proteins with transcription factors often results in sumoylation of that protein. PIAS proteins contain an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box with the LXXLL signature, which is required for the trans-repression of STAT1 activity by PIAS2, a PINT motif, which is essential for nuclear retention of PIAS3L (the long form of PIAS3), a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, which is essential for SUMO ligase activity, and the acidic C-terminal domain, which is involved in binding of PIAS3 to the nuclear coactivator TIF2. The SP-RING finger is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. 48 -319705 cd16791 SP-RING_ZMIZ SP-RING finger found in zinc finger MIZ domain-containing protein Zmiz1, Zmiz2, and similar proteins. This family includes Zmiz1 (Zimp10) and its homolog Zmiz2 (Zimp7), both of which were initially identified in humans as androgen receptor (AR) interacting proteins and function as transcriptional co-activators. They interact with BRG1, the catalytic subunit of the SWI-SNF remodeling complex. They also associate with other hormone nuclear receptors and transcription factors, such as p53 and Smad3/Smad4, and regulate transcription of specific target genes by altering their chromatin structure. The family also includes tonalli (Tna), an ortholog identified in Drosophila. It genetically interacts with the ATP-dependent SWI/SNF and Mediator complexes, suggesting a potential role for the Zmiz proteins in chromatin remodeling. Zmiz proteins contain a highly conserved Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, also known as msx-interacting zinc finger (Miz domain), and a strong transactivation domain within the C-terminus. The SP-RING/Miz domain is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. It is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. The strong intrinsic transactivation domain facilitates Zmiz proteins to augment the transcriptional activity of nuclear hormone receptors and other transcriptional factors. They may act as transcriptional co-regulators. 48 -319706 cd16792 SP-RING_Siz_plant SP-RING finger found in Arabidopsis thaliana E3 SUMO-protein ligase SIZ1 (AtSIZ1) and similar proteins. SIZ1-mediated conjugation of SUMO1 and SUMO2 to other intracellular proteins is essential in Arabidopsis. AtSIZ1 negatively regulates abscisic acid (ABA) signaling through the sumoylation of bZIP transcripton factor ABI5. It also mediates sumoylation of bromodomain GTE proteins. Moreover, AtSIZ1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affecting on FLOWERING LOCUS C (FLC) chromatin structure. It also plays a role in drought stress response likely through the regulation of gene expression. Members in this family contain an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box, a plant homeodomain (PHD) finger, and a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger. The SP-RING finger is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. 49 -319707 cd16793 SP-RING_ScSiz_like SP-RING finger found in Saccharomyces cerevisiae E3 SUMO-protein ligase SIZ1, SIZ2, and similar proteins. Saccharomyces cerevisiae SIZ proteins, also known as SAP and Miz-finger domain-containing proteins, are a Siz/PIAS RING (SP-RING) family of SUMO E3 ligases, and may be involved in a novel pathway of chromosome maintenance. They enhance SUMO modification with many substrates in vivo, but also exhibit unique substrate specificity. SIZ1, also known as ubiquitin-like protein ligase 1 (Ull1), modifies both cytoplasmic and nuclear proteins. It functions as an E3 factor specific for septin components. SIZ1-dependent substrates include Cdc3 and Cdc11 (septin subunits), Prp45 (a splicing factor), and the proliferating cell nuclear antigen (PCNA). SIZ2, also known as NFI1, interacts with Smt3, SUMO/Smt3 conjugating enzyme Ubc9, and a septin component Cdc3. Members in this family contain an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box with the LXXLL signature, a PINT motif, a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, and the acidic C-terminal domain. The SP-RING finger is a variant of RING finger, which lacks the second, fifth, and sixth zinc-binding residues of the consensus C3H2C3-/C3HC4-type RING fingers. 48 -319708 cd16794 dRING_RMD5A Degenerated RING finger found in protein RMD5 homolog A (RMD5A). RMD5A is one of the vertebrate homologs of yeast Rmd5p. The biological function of RMD5A remains unclear. RMD5A contains a Lissencephaly type-1-like homology motif (LisH), a C-terminal to LisH motif (CTLH) domain, and a degenerated RING finger that is characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues compared with the classic C3H2C3-/C3HC4-type RING fingers. 49 -319709 cd16795 dRING_RMD5B Degenerated RING finger found in protein RMD5 homolog B (RMD5B). RMD5B is one of the vertebrate homologs of yeast Rmd5p. The biological function of RMD5B remains unclear. RMD5B contains a Lissencephaly type-1-like homology motif (LisH), a C-terminal to LisH motif (CTLH) domain, and a degenerated RING finger that is characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues compared with the classic C3H2C3-/C3HC4-type RING fingers. 47 -319710 cd16796 RING-H2_RNF13 RING finger, H2 subclass, found in RING finger protein 13 (RNF13) and similar proteins. RING finger, H2 subclass, found in RING finger protein 13 (RNF13) and similar proteins RNF13 is a widely expressed membrane-associated E3 ubiquitin-protein ligase that is functionally significant in the regulation of cancer development, muscle cell growth, and neuronal development. Its expression is developmentally regulated during myogenesis and is upregulated in various tumors. RNF13 negatively regulates cell proliferation through its E3 ligase activity. It functions as an important regulator of Inositol-requiring transmembrane kinase/endonuclease IRE1alpha, mediating endoplasmic reticulum (ER) stress-induced apoptosis through the activation of the IRE1alpha-TRAF2-JNK signaling pathway. Moreover, RNF13 is involved in the regulation of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex via the ubiquitination of snapin, a SNAP25-interacting protein, which thereby controls synaptic function. In addition, RNF13 participates in regulating the function of satellite cells by modulating cytokine composition. RNF13 is evolutionarily conserved among many metazoans and contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. 49 -319711 cd16797 RING-H2_RNF167 RING finger, H2 subclass, found in RING finger protein 167 (RNF167) and similar proteins. RNF167, also known as RING105, is an endosomal/lysosomal E3 ubiquitin-protein ligase involved in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) ubiquitination. It ubiquitinates GluA2 and regulates its surface expression, and thus acts as a selective regulator of AMPAR-mediated neurotransmission. It acts as an endosomal membrane protein which ubiquitylates vesicle-associated membrane protein 3 (VAMP3) and regulates endosomal trafficking. Moreover, RNF167 plays a role in the regulation of TSSC5 (tumor-suppressing subchromosomal transferable fragment cDNA, also known as ORCTL2/IMPT1/BWR1A/SLC22A1L), which can function in concert with the ubiquitin-conjugating enzyme UbcH6. RNF167 is widely conserved in metazoans and contains an N-terminal signal peptide, a protease-associated (PA) domain, two transmembrane domains (TM1 and TM2), and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. 46 -319712 cd16798 RING-H2_RNF43 RING finger, H2 subclass, found in RING finger protein 43 (RNF43) and similar proteins. RNF43 is a transmembrane E3 ubiquitin-protein ligase that plays an important role in frizzled-dependent regulation of the Wnt/beta-catenin pathway. It functions as a tumor suppressor that inhibits Wnt/beta-catenin signaling by ubiquitinating Frizzled receptor and targeting it to the lysosomal pathway for degradation. miR-550a-5p directly targeted the 3?-UTR of gene RNF43 and regulated its expression. Moreover, RNF43 interacts with NEDD-4-like ubiquitin-protein ligase-1 (NEDL1) and regulates p53-mediated transcription. It may also be involved in cell growth control potentially through the interaction with HAP95, a chromatin-associated protein interfacing the nuclear envelope. Mutations of RNF43 have been identified in various tumors, including colorectal cancer (CRC), endometrial cancer, mucinous ovarian tumors, gastric adenocarcinoma, pancreatic ductal adenocarcinoma, liver fluke-associated cholangiocarcinoma, hepatocellular carcinoma, and glioma. RNF43 contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C3H2C3-type RING-H2 finger domain followed by a long C-terminal region. 47 -319713 cd16799 RING-H2_ZNRF3 RING finger, H2 subclass, found in zinc/RING finger protein 3 (ZNRF3) and similar proteins. ZNRF3, also known as RING finger protein 203 (RNF203), is a homolog of Ring finger protein 43 (RNF43). It is a transmembrane E3 ubiquitin-protein ligase that is associated with the Wnt receptor complex, and negatively regulates Wnt signaling by promoting the turnover of frizzled and lipoprotein receptor-related protein LRP6 in an R-spondin-sensitive manner. It inhibits gastric cancer cell growth and promotes the cell apoptosis by affecting the Wnt/beta-catenin/TCF signaling pathway. ZNRF3 contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C3H2C3-type RING-H2 finger domain followed by a long C-terminal region. 45 -319714 cd16800 RING-H2_RNF115 RING finger, H2 subclass, found in RING finger protein 115 (RNF115) and similar proteins. RNF115, also known as Rab7-interacting ring finger protein (Rabring 7), or zinc finger protein 364 (ZNF364), or breast cancer-associated gene 2 (BCA2), is an E3 ubiquitin-protein ligase that is an endogenous inhibitor of adenosine monophosphate-activated protein kinase (AMPK) activation and its inhibition increases the efficacy of metformin in breast cancer cells. It also functions as a co-factor in the restriction imposed by tetherin on HIV-1, and targets HIV-1 Gag for lysosomal degradation, impairing virus assembly and release, in a tetherin-independent manner. Moreover, RNF115 is a Rab7-binding protein that stimulates c-Myc degradation through mono-ubiquitination of MM-1. It also plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis. Furthermore, RNF115 and the related protein, RNF126 associate with the epidermal growth factor receptor (EGFR) and promote ubiquitylation of EGFR, suggesting they play a role in the ubiquitin-dependent sorting and downregulation of membrane receptors. RNF115 contains an N-terminal BCA2 Zinc-finger domain (BZF), the AKT-phosphorylation sites, and the C-terminal C3H2C3-type RING-H2 finger. 47 -319715 cd16801 RING-H2_RNF126 RING finger, H2 subclass, found in RING finger protein 126 (RNF126) and similar proteins. RNF126 is a Bag6-dependent E3 ubiquitin ligase that is involved in the mislocalized protein (MLP) pathway of quality control. It regulates the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR). Moreover, RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation, and could be a novel therapeutic target in breast and prostate cancers. It is also able to ubiquitylate cytidine deaminase (AID), a poorly soluble protein that is essential for antibody diversification. In addition, RNF126 and the related protein, RNF115 associate with the epidermal growth factor receptor (EGFR) and promote ubiquitylation of EGFR, suggesting they play a role in the ubiquitin-dependent sorting and downregulation of membrane receptors. RNF126 contains an N-terminal BCA2 Zinc-finger domain (BZF), the AKT-phosphorylation sites, and the C-terminal C3H2C3-type RING-H2 finger. 44 -319716 cd16802 RING-H2_RNF128_like RING finger, H2 subclass, found in RING finger protein 128 (RNF128) and similar proteins. This subfamily includes RING finger proteins RNF128, RNF133, RNF148, and similar proteins, which belong to a larger PA-TM-RING ubiquitin ligase family that has been characterized by containing an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. RNF128, also known as gene related to anergy in lymphocytes protein (GRAIL), is a type 1 transmembrane E3 ubiquitin-protein ligase that is a critical regulator of adaptive immunity and development. It inhibits cytokine gene transcription is expressed in anergic CD4+ T cells, and has been implicated in primary T cell activation, survival, and differentiation, as well as in T cell anergy and oral tolerance. It induces T cell anergy through the ubiquitination activity of its cytosolic RING finger. It regulates expression of the costimulatory molecule CD40L on CD4 T cells, and ubiquitinates the costimulatory molecule CD40 ligand (CD40L) during the induction of T cell anergy. Moreover, RNF128 interacts with the luminal/extracellular portion of both CD151 and the related tetraspanin CD81 via its PA domain, which promoted ubiquitination of cytosolic lysine residues. It also down-modulates the expression of CD83 (previously described as a cell surface marker for mature dendritic cells) on CD4 T cells. Furthermore, Rho guanine dissociation inhibitor (RhoGDI) has been identified as a potential substrate of RNF128, suggesting a role for Rho effector molecules in T cell anergy. In addition, RNF128 plays a role in environmental stress responses. It promotes environmental salinity tolerance in euryhaline tilapia. RNF133 is a testis-specific endoplasmic reticulum-associated E3 ubiquitin ligase that is mainly present in the cytoplasm of elongated spermatids. It may play a role in sperm maturation through an ER-associated degradation (ERAD) pathway. RNF148 is a testis-specific E3 ubiquitin ligase that is abundantly expressed in testes and slightly expressed in pancreas. Its expression regulated by histone deacetylases. 49 -319717 cd16803 RING-H2_RNF130 RING finger, H2 subclass, found in RING finger protein 130 (RNF130) and similar proteins. RNF130, also known as Goliath homolog (H-Goliath), is a paralog of RNF128, also known as gene related to anergy in lymphocytes protein (GRAIL). It is a transmembrane E3 ubiquitin-protein ligase expressed in leukocytes. It has a self-ubiquitination property, and controls the development of T cell clonal anergy by ubiquitination. RNF130 contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. 49 -319718 cd16804 RING-H2_RNF149 RING finger, H2 subclass, found in RING finger protein 149 (RNF149) and similar proteins. RNF149, also known as DNA polymerase-transactivated protein 2, is an E3 ubiquitin-protein ligase that interacts with wild-type v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), a RING domain-containing E3 ubiquitin ligase involved in control of gene transcription, translation, cytoskeletal organization, cell adhesion, and epithelial development. RNF149 induces the ubiquitination of wild-type BRAF and promotes its proteasome-dependent degradation. Mutated RNF149 has been found in some human breast, ovarian, and colorectal cancers. RNF149 contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. 48 -319719 cd16805 RING-H2_RNF150 RING finger, H2 subclass, found in RING finger protein 150 (RNF150) and similar proteins. RNF150 is a RING finger protein that its polymorphisms may be associated with chronic obstructive pulmonary disease (COPD) risk in the Chinese population. Further studies with larger numbers of participants worldwide are needed for validation of the relationships between RNF150 genetic variants and the pathogenesis of COPD. RNF150 contains an N-terminal signal peptide, a protease-associated (PA) domain, a transmembrane (TM) domain and a C-terminal C3H2C3-type RING-H2 finger domain followed by a putative PEST sequence. 49 -319720 cd16806 RING_CH-C4HC3_MARCH1 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH1 (MARCH1). MARCH1, also known as membrane-associated RING finger protein 1, membrane-associated RING-CH protein I (MARCH-I), or RING finger protein 171 (RNF171), is a membrane-anchored E3 ubiquitin ligase that mainly expressed in cells of the immune system. It regulates antigen presentation and T-cell costimulatory functions of dendritic cells by down-regulating the cell surface expression of major histocompatibility complex class II (MHCII) and CD86 molecules. It mediates ubiquitination of MHCII and CD86 in dendritic cells (DCs). This ubiquitination induces MHCII and CD86 endocytosis, lysosomal transport, and degradation. MARCH1 also plays a regulatory role in T cell activation during immune responses, as well as in splenic DC homeostasis. Moreover, MARCH1 may regulate its own expression through dimerization and autoubiquitination. MARCH1 contains an N-terminal cytoplasmic C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger and two transmembrane domains. 53 -319721 cd16807 RING_CH-C4HC3_MARCH8 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH8 (MARCH8). MARCH8, also known as membrane-associated RING finger protein 8, membrane-associated RING-CH protein VIII (MARCH-VIII), RING finger protein 178 (RNF178), or cellular modulator of immune recognition (c-MIR), is a membrane-anchored E3 ubiquitin ligase that is broadly expressed. It is a functional homolog of Kaposi"s sarcoma associated-herpes virus encodes proteins modulator of immune recognition (MIR) 1 and 2, which are involved in the evasion of host immunity. MARCH8 mediates the ubiquitination and down-regulation of immune regulatory cell surface molecules, including major histocompatibility complex class II (MHCII), CD86, transferrin receptor, HLA-DM, and Fas in immune cells. Moreover, MARCH8 controls cell surface expression of some additional proteins. It regulates the ubiquitination and lysosomal degradation of the transferrin receptor (TfR). Tumor necrosis factor-related apoptosis inducing ligand receptor 1 (TRAIL-R1) is also a physiological substrate of the endogenous MARCH8, which regulates the steady-state cell surface expression of TRAIL-R1. Meanwhile, it negatively regulates interleukin-1 (IL-1) beta-induced NF-kappaB activation by targeting the IL-1 receptor accessory protein (IL1RAP) coreceptor for ubiquitination and degradation. Furthermore, MARCH8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin. In addition, MARCH8 plays a role in the inhibition of inflammatory cytokine production, suggesting a new therapeutic approach to the treatment of rheumatoid arthritis (RA). MARCH8 contains an N-terminal cytoplasmic C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger and two transmembrane domains. 55 -319722 cd16808 RING_CH-C4HC3_MARCH2 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH2 (MARCH2). MARCH2, also known as membrane-associated RING finger protein 2, membrane-associated RING-CH protein II (MARCH-II), or RING finger protein 172 (RNF172), is a Golgi-localized, membrane-associated E3 ubiquitin-protein ligase that is involved in endosomal trafficking through the binding of syntaxin 6 (STX6). It is involved in the cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL)-mediated ubiquitination and lysosomal degradation of mature CFTR through the association with adaptor proteins CAL and STX6. It also reduces the surface expression of CD86 and the transferrin receptor TFRC and regulates cell surface carvedilol-bound beta2-adrenergic receptor (beta2ARs) expression. Moreover, MARCH2 interacts with and ubiquitinates PDZ domains polarity determining scaffold protein DLG1 through its PDZ-binding motif, suggesting it may function as a molecular bridge with ubiquitin ligase activity connecting endocytic tumor suppressor proteins such as syntaxins to DLG1. MARCH2 contains a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, in the N-terminal cytoplasmic region, two transmembrane domains in the middle region, and a PDZ-binding motif at the C-terminus. 52 -319723 cd16809 RING_CH-C4HC3_MARCH3 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH3 (MARCH3). MARCH3, also known as membrane-associated RING finger protein 3, or membrane-associated RING-CH protein III (MARCH-III), or RING finger protein 173 (RNF173), is an E3 ubiquitin-protein ligase that is broadly expressed at relatively high levels in spleen, colon, and lung. It is localized to early endosomes, binds to MARCH2 and syntaxin 6, and is involved in the regulation of vesicular trafficking and fusion of the transport vesicles in endosomes. MARCH3 is the closest homolog of MARCH2 and it is also a functional homolog of K3 and K5 viral ubiquitin E3 ligases related to immune-evasion strategies used by Kaposi"s sarcoma-associated herpesvirus (KSHV). Its E2 specificity significantly overlaps that of MARCH2. MARCH3 contains a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, in the N-terminal cytoplasmic region, two transmembrane domains in the middle region, and a PDZ-binding motif at the C-terminus. The RING-CH finger and PDZ-binding motif are essential for the subcellular localization of MARCH3 and the inhibitory effect on transferrin uptake. 51 -319724 cd16810 RING_CH-C4HC3_MARCH11 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH11 (MARCH11). MARCH11, also known as membrane-associated RING finger protein 11, or membrane-associated RING-CH protein XI (MARCH-XI), is a transmembrane RING-finger ubiquitin ligase that is predominantly expressed in developing spermatids in a stage-specific manner and is localized to the trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs). It mediates selective protein sorting via the TGN-MVB transport pathway through its ubiquitin ligase activity. SAMT family proteins have been identified as substrates of MARCH11 in mouse spermatids, suggesting that MARCH11 plays a role in mammalian spermiogenesis. Moreover, MARCH11 functions as an E3 ubiquitin ligase that targets CD4 for ubiquitination. It also forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. MARCH11 contains an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, and two transmembrane domains. In addition, it harbors a proline-rich region, a tyrosine-based motif, and a PDZ binding motif. 52 -319725 cd16811 RING_CH-C4HC3_MARCH4_9 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING finger protein MARCH4, MARCH9, and similar proteins. This subfamily includes the closely related MARCH4 and MARCH9, both belonging to the family of MARCH E3 ligases. They downregulate major histocompatibility complex-I (MHC-I). In the presence of MARCH4 or MARCH9, MHC-I can be ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail are resistant to downregulation. Moreover, MARCH4 and MARCH9, but not other MARCH proteins, can associate with Mult1 and prevent Mult1 expression at the cell surface in a lysine-dependent manner that can be reversed by heat shocking the cells. Both MARCH4 and MARCH9 contain an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, followed by two transmembrane regions. 51 -319726 cd16812 RING_CH-C4HC3_MARCH7 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH7 (MARCH7). MARCH7, also known as membrane-associated RING finger protein 7, membrane-associated RING-CH protein VII (MARCH-VII), RING finger protein 177 (RNF177), or axotrophin, is a ubiquitin E3 ligase expressed in multiple types of cells and tissues, including stem cells and precursor cells, and is predominantly localized on the plasma membrane and cytoplasm. MARCH7 is involved in T cell proliferation and neuronal development. It also participates in the regulation of cytoskeleton re-organization, cellular migration and invasion, cell proliferation, and tumorigenesis in ovarian carcinoma cells. Moreover, MARCH7 modulates nuclear factor kappaB (NF-kappaB) and Wnt/beta-catenin pathways. It has been identified as an authentic target of miR-101. Furthermore, ubiquitinates tau protein in vitro impairing microtubule binding. Unlike other MARCH proteins, MARCH7 is predicted to have no transmembrane spanning region. It harbors a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, that is responsible for its E3 activity. 65 -319727 cd16813 RING_CH-C4HC3_MARCH10 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH10 (MARCH10). MARCH10, also known as membrane-associated RING finger protein 10, membrane-associated RING-CH protein X (MARCH-X), or RING finger protein 190 (RNF190), is a microtubule-associated E3 ubiquitin ligase of developing spermatids. It is localized to the principal piece of elongating spermatids. MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids. Unlike other MARCH proteins, MARCH10 is predicted to have no transmembrane spanning region. It harbors a C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, that is responsible for its E3 activity. 64 -319728 cd16814 RING-HC_RNF20 RING finger, HC subclass, found in RING finger protein 20 (RNF20). RNF20, also known as BRE1A or BRE1, is an E3 ubiquitin-protein ligase that forms a heterodimeric complex together with BRE1B, also known as RNF40, to facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. It regulates the cell cycle and differentiation of neural precursor cells (NPCs), and links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Moreover, RNF20 promotes the polyubiquitination and proteasome-dependent degradation of transcription factor activator protein 2alpha (AP-2alpha), a negative regulator of adipogenesis by repressing the transcription of CCAAT/enhancer binding protein (C/EBPalpha) gene. Furthermore, RNF20 functions as an additional chromatin regulator that is necessary for mixed-lineage leukemia (MLL)-fusion-mediated leukemogenesis. It also inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. TFIIS is a factor capable of relieving stalled RNA polymerase II. RNF20 contains a C3HC4-type RING-HC finger at its C-terminus. 46 -319729 cd16815 RING-HC_RNF40 RING finger, HC subclass, found in RING finger protein 40 (RNF40). RNF40, also known as BRE1B or 95 kDa retinoblastoma-associated protein (RBP95), was identified as a novel leucine zipper retinoblastoma protein (pRb)-associated protein that may function as a regulation factor in the process of RNA polymerase II-mediated transcription and/or transcriptional processing. RNF40 also functions as an E3 ubiquitin-protein ligase that forms a heterodimeric complex together with BRE1B, also known as RNF40, to facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. It cooperates with SUPT16H to induce dynamic changes in chromatin structure during DSB repair. RNF40 contains a C3HC4-type RING-HC finger at the C-terminus. 55 -319730 cd16816 mRING-HC-C3HC5_MGRN1 Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 (MGRN1) and similar proteins. MGRN1, also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. MGRN1 interacts with cytosolic prion proteins (PrPs) that are linked with neurodegeneration. It also interacts with expanded polyglutamine proteins, and suppresses misfolded polyglutamine aggregation and cytotoxicity. Moreover, MGRN1 inhibits melanocortin receptor signaling by competition with Galphas, suggesting a novel pathway for melanocortin signaling from the cell surface to the nucleus. Furthermore, MGRN1 interacts with and ubiquitylates TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, and regulates endosomal trafficking. A null mutation in the gene encoding MGRN1 causes spongiform neurodegeneration, suggesting a link between dysregulation of endosomal trafficking and spongiform neurodegeneration. MGRN1 contains a modified C3HC5-type RING-HC finger, a conserved PSAP motif necessary for interaction between MGRN1 and TSG101. In addition, MGRN1 harbors a functionally uncharacterized region, as known as the domain associated with RING2 (DAR2), N-terminal to the RING finger. The C3HC5-type RING-HC finger is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 41 -319731 cd16817 mRING-HC-C3HC5_RNF157 Modified RING finger, HC subclass (C3HC5-type), found in RING finger protein 157 (RNF157) and similar proteins. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in brain. It is a homolog of the E3 ligase mahogunin ring finger-1 (MGRN1). In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. RNF157 contains a modified C3HC5-type RING-HC finger, and a functionally uncharacterized region, known as domain associated with RING2 (DAR2), N-terminal to the RING finger. The C3HC5-type RING-HC finger is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. 41 -319732 cd16818 SP-RING_PIAS1 SP-RING finger found in protein inhibitor of activated STAT protein 1 (PIAS1) and similar proteins. PIAS1, also known as DEAD/H box-binding protein 1, Gu-binding protein (GBP), or RNA helicase II-binding protein, was initially identified as an inhibitor of STAT1 that blocks the DNA-binding activity of STAT1 and specifically inhibits STAT1-mediated gene transcription in response to cytokine stimulation. It selectively inhibits interferon-inducible gene expression and plays an important role in the IFN-gamma- or IFN-beta-mediated innate immune response through negative regulation of STAT1. It also regulates the activity of other transcription factors to regulate immune response, such as NF-kappaB and Smad4. Moreover, PIAS1 functions as an E3 small ubiquitin-like modifier (SUMO)-protein ligase specifying target proteins for SUMO conjugation by Ubc9. The sumoylation activity of PIAS1 can suppress cytokine transforming growth factor beta (TGFbeta)-induced epithelial mesenchymal transition (EMT) in non-transformed epithelial cells to promote activation of the matrix metalloproteinase 2 (MMP2). It thus regulates TGFbeta-induced cancer cell invasion and metastasis. PIAS1 may also be involved in spatial learning and memory formation through its SUMOylation of cAMP-responsive element binding protein (CREB). In addition, PIAS1 is the E3 ligase responsible for SUMOylation of High mobility group nucleosomal binding domain 2 (HMGN2), which is a small and unique non-histone protein that has many functions in a variety of cellular processes, including regulation of chromatin structure, transcription, and DNA repair, as well as antimicrobial activity, cell homing, and regulating cytokine release. Furthermore, PIAS1 is a genuine chromatin-bound androgen receptor (AR) co-regulator that functions in a target gene selective fashion to regulate prostate cancer cell growth. It also mediates the SUMOylation of c-Myc, which is the most frequently overexpressed oncogene in tumours, including breast cancer, colon cancer, and lung cancer. Necdin, a pleiotropic protein that promotes differentiation and survival of mammalian neurons, can suppresses PIAS1 both by inhibiting SUMO E3 ligase activity and by promoting ubiquitin-dependent degradation. PIAS1 contains an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box with the LXXLL signature, a PINT motif, a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, and the acidic C-terminal domain. The SP-RING finger mediates the interaction of PIAS1 with the SUMO E2 conjugating enzyme Ubc9. 51 -319733 cd16819 SP-RING_PIAS2 SP-RING finger found in protein inhibitor of activated STAT protein 2 (PIAS2) and similar proteins. PIAS2, also known as androgen receptor-interacting protein 3 (ARIP3), DAB2-interacting protein (DIP), Msx-interacting zinc finger protein (Miz1), PIAS-NY protein, protein inhibitor of activated STAT x, protein inhibitor of activated STAT2, is an E3 SUMO-protein ligase highly expressed in the testis. It functions as a transcriptional activator of BCL2 and is essential for blocking c-MYC-induced apoptosis. It also acts as a negative regulator of cell proliferation, induces expression of the cell-cycle inhibitors p15(Ink4b) and p21(Cip1), and activates transcription of the p21(Cip1) gene in response to UV irradiation. Moreover, PIAS2 associates with topoisomerase II binding protein 1 (TopBP1), an essential activator of the Atr kinase. It thus affects the activity of the Atr checkpoint. Receptor of activated C kinase 1 (RACK1), glucocorticoid receptor (GR)-interacting protein 1 (GRIP1), friend leukemia integration-I (FLI-1), and ubiquitously expressed transcript (UXT) are binding partners of PIAS2. The interaction between UXT and PIAS2 may be important for the transcriptional activation of androgen receptor (AR). PIAS2 contains an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus, and PIAS) box with the LXXLL signature, a PINT motif, a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, and the acidic C-terminal domain. 49 -319734 cd16820 SP-RING_PIAS3 SP-RING finger found in protein inhibitor of activated STAT protein 3 (PIAS3) and similar proteins. PIAS3 is an E3 SUMO-protein ligase that was initially identified as an interleukin-6 (IL-6)-dependent repressor of signal transducer and activator of transcription 3 (STAT3) and has anti-proliferative properties. It binds specifically to phosphorylated STAT3 and inhibits its transcriptional activity by blocking its binding to DNA. It regulates STAT3-mediated induction of Snail expression, as well as suppresses acute graft-versus-host disease (GVHD) by modulating effector T and B cell subsets through inhibition of STAT3 activation. It activates the intrinsic apoptotic pathway in non-small cell lung cancer cells independent of p53 status. When overexpressed, it can interact with STAT5 to regulate prolactin-induced STAT5-mediated gene expression. Moreover, PIAS3 binds to and activates Smad3 transcriptional activity, resulting in the enhancement of transforming growth factor-beta (TGF-beta) signaling. It functions as a transcriptional corepressor of Erythroid Kruppel-like factor (EKLF or KLF1) and thus plays an important role in erythropoiesis. It also plays a significant role in DNA damage response (DDR) pathway through promoting homologous recombination (HR)- and non-homologous end joining (NHEJ)-mediated DNA double-strand break (DSB) repair. Furthermore, PIAS3 preferentially interacts with and enhances the SUMOylation of TAK1-binding protein 2 (TAB2), an upstream adaptor protein in the IL-1 signaling pathway. It also promotes SUMOylation and nuclear sequestration of ErbB4 receptor tyrosine kinase. In addition, PIAS3 may form a complex with microphthalmia-associated transcription factor, nuclear factor-kappaB, Smad, and estrogen receptor. Its other transcription factor binding partners include: ETS, EGR1, NR1I2, and GATA1. PIAS3 contains an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box with the LXXLL signature, a PINT motif, a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, and the acidic C-terminal domain. 51 -319735 cd16821 SP-RING_PIAS4 SP-RING finger found in protein inhibitor of activated STAT protein 4 (PIAS4) and similar proteins. PIAS4, also known as PIASy or protein inhibitor of activated STAT protein gamma (PIAS-gamma), is an E3 SUMO-protein ligase that interacts with the androgen receptor (AR) and is involved in ubiquitin signaling pathways. It is associated with macro/microcephaly in the novel interstitial 19p13.3 microdeletion/microduplication syndrome. It also regulates the hypoxia signalling pathway through interacting with the tumor suppressor von Hippel-Lindau (VHL) and leads to VHL sumoylation, oligomerization, and impaired function during growth of pancreatic cancer cells. Moreover, PIAS4 acts as a direct binding partner for vitamin D receptor (VDR) and facilitates its modification with SUMO2. The process of SUMOylation modulates VDR-mediated signaling. As components of the DNA-damage response (DDR), PIAS4 together with PIAS1 promote responses to DNA double-strand breaks (DSBs). They are required for effective ubiquitin-adduct formation mediated by RNF8, RNF168, and BRCA1 at sites of DNA damage. PIAS4 contains an N-terminal SAP (scaffold attachment factor A/B (SAF-A/B), acinus and PIAS) box with the LXXLL signature, a PINT motif, a specific RING finger known as Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, and the acidic C-terminal domain. 49 -319736 cd16822 SP-RING_ZMIZ1 SP-RING finger found in zinc finger MIZ domain-containing protein 1 (Zmiz1) and similar proteins. Zmiz1, also known as PIAS-like protein Zimp10 (zinc finger-containing, Miz1, PIAS-like protein on chromosome 10) or retinoic acid-induced protein 17, is a novel PIAS-like protein that was initially identified as an androgen receptor (AR) interacting protein and functions as a transcriptional co-activator. It co-localizes with AR and small ubiquitin-like modifier SUMO-1, forms a protein complex at replication foci in the nucleus, and augments AR-mediated transcription. It also functions as a transcriptional co-activator of the p53 tumor suppressor that plays a critical role in the cell cycle progression, DNA repair, and apoptosis. Moreover, Zmiz1 associates with multiple autoimmune diseases and has been implicated in the development, function, and survival of melanocyte. Zmiz1 also interacts with Smad3/4 proteins and augments Smad-mediated transcription, suggesting it is important in the regulation of the transforming growth factor beta (TGF-beta)/Smad signaling pathway and may have an inhibitory effect on the immune system. Furthermore, Zmiz1 is overexpressed in a significant percentage of human cutaneous squamous cell carcinoma (SCC), breast, ovarian, and colon cancers, suggesting it may play a broader role in epithelial cancers. It functionally interacts with NOTCH1 to promote C-MYC transcription and activity, and thus is involved in a variety of C-MYC-driven cancers. Zmiz1 contains a PAT domain, a highly conserved Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, also known as msx-interacting zinc finger (Miz domain), and a putative nuclear localization sequence (NLS), as well as a strong intrinsic transactivation domain within the C-terminus. 49 -319737 cd16823 SP-RING_ZMIZ2 SP-RING finger found in zinc finger MIZ domain-containing protein 2 (Zmiz2) and similar proteins. Zmiz2, also known as PIAS-like protein Zimp7 (zinc finger-containing, Miz1, PIAS-like protein on chromosome 7), is a novel PIAS-like protein that was initially identified as an androgen receptor (AR) interacting protein and functions as a transcriptional co-activator. It interacts with beta-catenin and enhances Wnt/beta-catenin-mediated transcription. It also associates with BRG1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes, and thus plays a potential role in modulation of AR and/or other nuclear receptor-mediated transcription. For instance, it can increase the effects of BRG1 on androgen receptor-mediated transcriptional activity. Moreover, Zmiz2 physically interacts with PIAS proteins, especially PIAS3. Through the interaction, PIAS3 augments Zmiz2-mediated transcription, suggesting PIAS proteins may play a regulatory role in Zmiz-mediated transcription. Furthermore, Zmiz2 is involved in transcriptional regulation of factors essential for patterning in the dorsoventral axis. It is required for the restriction of the zebrafish organizer and mesoderm development. Zmiz2 contains a PAT domain, a highly conserved Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING (SP-RING) finger, also known as msx-interacting zinc finger (Miz domain), and a strong intrinsic transactivation domain within the C-terminus. 49 -319738 cd16824 RING_CH-C4HC3_MARCH4 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH4 (MARCH4). MARCH4, also known as membrane-associated RING finger protein 4, membrane-associated RING-CH protein IV (MARCH-IV), or RING finger protein 174 (RNF174), is a transmembrane E3 ubiquitin-protein ligase that down-regulates the tetraspanin CD81 and major histocompatibility complex-I (MHC). It also associates with Mult1, suppressing Mult1 expression at the cell surface in a lysine-dependent manner that can be reversed by heat shocking the cells. MARCH4 contains an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, followed by two transmembrane regions. 51 -319739 cd16825 RING_CH-C4HC3_MARCH9 RING-CH finger, H2 subclass (C4HC3-type), found in membrane-associated RING-CH9 (MARCH9). MARCH9, also known as membrane-associated RING finger protein 9, membrane-associated RING-CH protein IX (MARCH-IX), or RING finger protein 179 (RNF179), is a transmembrane E3 ubiquitin-protein ligase that down-regulates Mult1, CD4, major histocompatibility complex-I (MHC), and intercellular adhesion molecule (ICAM-1). It may also interact with receptor-type protein-tyrosine phosphatases (e.g. PTPRJ/CD148) as well as Fc gamma receptor IIB (CD32B), HLA-DQ, signaling lymphocytic activation molecule (CD150), and polio virus receptor (CD155). MARCH9 contains an N-terminal C4HC3-type RING-CH finger, also known as vRING or RINGv, a variant of C3H2C3-type RING-H2 finger, followed by two transmembrane regions. 51 -319356 cd16827 ChuX-like heme utilization protein ChuX and similar proteins. This family contains ChuX, a member of the conserved heme utilization operon from pathogenic E. coli, and similar proteins, which include ChuS, HutX, HuvX, HugX, and ShuX in proteobacteria, among others. It forms a dimer which displays a very similar fold and organization to the monomeric structure of other heme utilization proteins such as HemS, ChuS, HmuS, PhuS; these latter occurring as duplicated domains. They all bind heme via a key conserved histidine. The genes encoded within these heme utilization operons enable the effective uptake and utilization of heme as an iron source in pathogenic microorganisms to enable multiplication and survival within hosts they invade. 141 -319357 cd16828 HemS-like N- and C-terminal domains of heme degrading enzyme HemS, and similar proteins. This family contains the N- and C-terminal domains of heme degrading enzyme HemS, and similar proteins, including PhuS, ChuS, ShuS, and HmuS in proteobacteria. Despite low sequence identity between the N- and C-terminal halves, these segments represent a structural duplication, with each terminal half having similar fold to single domains of ChuX. HemS shares homology with both heme degrading enzymes and heme trafficking enzymes. Heme is an iron source for pathogenic microorganisms to enable multiplication and survival within hosts they invade and therefore heme degrading enzyme activity is required for the release of iron from heme after its transportation into the cytoplasm. N- and C-terminal halves of ChuS are each a functional heme oxygenase (HO). The mode of heme coordination by ChuS has been shown to be distinct, whereby the heme is stabilized mostly by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. ChuS can use ascorbic acid or cytochrome P450 reductase-NADPH as electron sources for heme oxygenation. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity by physically sequestering DNA. PhuS in Pseudomonas aeruginosa has been reported as a heme chaperone and as a heme degrading enzyme, and is unique among this family since it contains three histidines in the heme-binding pocket, compared with only one in ChuX. Heme transporter protein PhuS in Pseudomonas aeruginosa is unique among this family since it contains three histidines in the heme-binding pocket, compared with only one in ChuX. 152 -319358 cd16829 ChuX_HutX-like heme iron utilization protein ChuX and similar proteins. This family contains proteins similar to ChuX, a member of the conserved heme utilization operon from pathogenic E. coli, and includes ChuS, HutX, HuvX, HugX, and ShuX in proteobacteria, among others. It forms a dimer which displays a very similar fold and organization to the monomeric structure of other heme utilization proteins such as HemS, ChuS, HmuS, PhuS; these latter occurring as duplicated domains. They all bind heme via a key conserved histidine. The genes encoded within these heme utilization operons enable the effective uptake and utilization of heme as an iron source in pathogenic microorganisms to enable multiplication and survival within hosts they invade. ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7, forms a dimer with a very similar fold to the monomer structure of two other heme utilization proteins, ChuS and HemS, despite low sequence homology. ChuX has been shown to bind heme in a 1:1 manner, inferring that the ChuX homodimer could coordinate two heme molecules in contrast to only one heme molecule bound in ChuS and HemS. Similarly, cytoplasmic heme-binding protein HutX in Vibrio cholera, an intracellular heme transport protein for the heme-degrading enzyme HutZ, forms a dimer, each domain binding heme that is transferred from HutX to HutZ via a specific protein-protein interaction. This family also includes AGR_C_4470p from Agrobacterium tumefaciens and found to be a dimer, with each subunit having strong structural homology and organization to the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. However, the heme binding site is not conserved in AGR_C_4470p, suggesting a possible different function. 143 -319359 cd16830 HemS-like_N N-terminal domain of heme degrading enzyme HemS, and similar proteins. This family contains the N-terminal domain of heme degrading enzyme HemS, and similar proteins, including PhuS, ChuS, ShuS, and HmuS in proteobacteria. Despite low sequence identity between the N- and C-terminal halves, these segments represent a structural duplication, with each terminal half having similar fold to single domains of ChuX. HemS shares homology with both heme degrading enzymes and heme trafficking enzymes. Heme is an iron source for pathogenic microorganisms to enable multiplication and survival within hosts they invade and therefore heme degrading enzyme activity is required for the release of iron from heme after its transportation into the cytoplasm. N- and C-terminal halves of ChuS are each a functional heme oxygenase (HO). The mode of heme coordination by ChuS has been shown to be distinct, whereby the heme is stabilized mostly by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. ChuS can use ascorbic acid or cytochrome P450 reductase-NADPH as electron sources for heme oxygenation. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity by physically sequestering DNA. Heme transporter protein PhuS in Pseudomonas aeruginosa is unique among this family since it contains three histidines in the heme-binding pocket, compared with only one in ChuX. 152 -319360 cd16831 HemS-like_C C-terminal domain of heme degrading enzyme HemS, and similar proteins. This family contains the C-terminal domain of heme degrading enzyme HemS, and similar proteins, including PhuS, ChuS, ShuS, and HmuS in proteobacteria. Despite low sequence identity between the N- and C-terminal halves, these segments represent a structural duplication, with each terminal half having similar fold to single domains of ChuX. HemS shares homology with both, heme degrading enzymes and heme trafficking enzymes. Heme is an iron source for pathogenic microorganisms to enable multiplication and survival within hosts they invade and therefore heme degrading enzyme activity is required for the release of iron from heme after its transportation into the cytoplasm. N- and C-terminal halves of ChuS are each a functional heme oxygenase (HO). The mode of heme coordination by ChuS has been shown to be distinct, whereby the heme is stabilized mostly by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. ChuS can use ascorbic acid or cytochrome P450 reductase-NADPH as electron sources for heme oxygenation. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity by physically sequestering DNA. Heme transporter protein PhuS in Pseudomonas aeruginosa is unique among this family since it contains three histidines in the heme-binding pocket, compared with only one in ChuX. 155 -319353 cd16832 CNF1_CheD_YfiH-like cytotoxic necrotizing factor 1 (CNF1), chemotaxis protein CheD and YfiH (DUF152) are distant homologs. This family contains distant homologs that include cytotoxic necrotizing factor 1 (CNF1), chemotaxis protein CheD and a protein of unknown function YfiH. CNF-1 along with dermonecrotic toxin (DNT) from Bordetella species, and Burkholderia Lethal Factor 1 (BLF1, also known as BPSL1549) are Rho-activating toxins. The bacterial chemotaxis protein CheD stimulates methylation of methyl-accepting chemotaxis proteins (MCPs). YfiH, a domain of unknown function, also included in this family reveals a structure with a distant homology between to the CNF1, and CheD, all having an invariant Cys-His pair forming a catalytic dyad that is required by the CNF-1 toxins for deamidation activity. 145 -319354 cd16833 YfiH protein of unknown function YfiH. This subfamily contains YfiH, a protein of unknown function from Shigella flexneri, E. coli, and many similar proteins which collectively are often called DUF152. The structure of YfiH reveals a distant homology to Rho-activating toxins cytotoxic necrotizing factor 1 (CNF1) as well as chemotaxis protein CheD that stimulates methylation of methyl-accepting chemotaxis proteins (MCPs), all having an invariant Cys-His pair forming a catalytic dyad, and is required by the CNF-1 toxins for deamidation activity. 185 -319355 cd16834 CNF1-like cytotoxic necrotizing factor 1 (CNF1) and similar proteins. This subfamily contains Rho-activating toxins cytotoxic necrotizing factor 1 (CNF1) and dermonecrotic toxin (DNT) from Bordetella species, as well as Burkholderia Lethal Factor 1 (BLF1, also known as BPSL1549), and similar proteins. CNF1 causes alteration of the host cell actin cytoskeleton and promotes bacterial invasion of blood-brain barrier endothelial cells. E. coli CNF1 constitutively activates host small G proteins such as RhoA and Cdc42 by deamidating a glutamine residue essential for GTP hydrolysis. DNT stimulates the assembly of actin stress fibers and focal adhesions by deamidation/polyamination of a specific glutamine of the small GTPase Rho. CNF1 and DNT are A-B toxins composed of an N-terminal receptor-binding (B) domain and a C-terminal enzymatically active (A) domain; their homology is restricted to the catalytic domains at the C termini of the toxins, suggesting that they share a similar molecular mechanism. BLF1, a toxin that inhibits helicase activity of translation factor eIF4A, is similar to the catalytic domain of Escherichia coli CNF1 (CNF1-C); although CNF1-C and BLF1 show little sequence identity, the active sites have the conserved LSGC (Leu, Ser, Gly, Cys) motif. 168 -319351 cd16837 BldD_C_like C-terminal domain of BldD and similar transcription factors. The Streptomyces transcription factor BldD dimerizes via an unusual mechanism that inolves a tetrameric c-di-GMP assembly. BdlD is involved in controlling multicellular differentiation in sporulating actinomycetes. 73 -319350 cd16839 PCSK9_C-CRD proprotein convertase subtilisin/kexin type 9, C-terminal cysteine-rich domain (CRD). PCSK9 post-translationally regulates hepatic low-density lipoprotein receptors (LDLRs) by binding to LDLRs on the cell surface, leading to their degradation. Other known PSCK9 targets include very-low-density lipoprotein receptor (VLDLR), apoE receptor2, lipoprotein receptor-related protein 1, etc. This PCSK9 C-terminal CRD may play an analogous role to the P (processing) domains of Furin and Kex2 (i.e. be required for the correct functioning/folding of the protein). Structural similarity has been noted between PCSK9 C-terminal CRD and the resistin homotrimer. This alignment model represents a three-fold repeat. 225 -319349 cd16840 toxin_MLD toxin effector region membrane localization domain. This domain functions as a membrane-targeting domain for toxin effectors such as the Rho-inactivation domain of Vibrio MARTX, Pasteurella mitogenic toxin (PMT), where it has been termed PMT C1 domain, and Clostridial glucosylating cytotoxins including Clostridium difficile toxins A and B, Clostridium novyi alpha-toxin, and Clostridium sordellii lethal toxin. 81 -319245 cd16841 RraA_family ribonuclease activity regulator RraA family. RraA protein family is named after the regulator of ribonuclease activity A (RraA), a protein that binds to RNase E and inhibits RNase E endonucleolytic cleavages. Members also include proteins with other functions, like a 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate (HMG/CHA) aldolase from Pseudomonas putida, which catalyzes the last step of the bacterial protocatechuate 4,5-cleavage pathway and the uncharacterized YER010Cp protein from yeast, an organism lacking RNAse E. 150 -319347 cd16842 Ig_SLAM-CD84_like_N N-terminal immunoglobulin (Ig)-like domain of the signaling lymphocyte activation molecule (SLAM) family. Ig_SLAM-CD84_like_N: The N-terminal immunoglobulin (Ig)-like domain of the signaling lymphocyte activation molecule (SLAM) family and similar domains. The SLAM family is a group of immune-cell specific receptors that can regulate both adaptive and innate immune responses. Members of this group include proteins such as CD84, SLAM (CD150), Ly-9 (CD229), NTB-A (ly-108, SLAM6), 19A (CRACC), and SLAMF9. The genes coding for the SLAM family are nested on chromosome 1, in humans at 1q23, and in mice at 1H2. The SLAM family is a subset of the CD2 family, which also includes CD2 and CD58 located on chromosome 1 at 1p13 in humans. In mice, CD2 is located on chromosome 3, and there is no CD58 homolog. The SLAM family proteins are organized as an extracellular domain with either two or four Ig-like domains, a single transmembrane segment, and a cytoplasmic region having Tyr-based motifs. The extracellular domain is organized as a membrane-distal Ig variable (IgV) domain that is responsible for ligand recognition and a membrane-proximal truncated Ig constant-2 (IgC2) domain. 96 -319348 cd16843 Ig_LILR_KIR_like Immunoglobulin (Ig)-like domain found in Leukocyte Ig-like receptors, natural and similar domains. Ig_LILR_KIR_like: domain similar to the first and second immunoglobulin (Ig)-like domains found in Leukocyte Ig-like receptors (LILRs) and Natural killer inhibitory receptors (KIRs). This group includes LILRB1 (or LIR-1), LILRA5 (or LIR9), an activating natural cytotoxicity receptor NKp46, the immune-type receptor glycoprotein VI (GPVI), and the IgA-specific receptor Fc-alphaRI (or CD89). LILRs are a family of immunoreceptors expressed on expressed on T and B cells, on monocytes, dendritic cells, and subgroups of natural killer (NK) cells. The human LILR family contains nine proteins (LILRA1-3,and 5, and LILRB1-5). From functional assays, and as the cytoplasmic domains of various LILRs, for example LILRB1 (LIR-1), LILRB2 (LIR-2), and LILRB3 (LIR-3) contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) it is thought that LIR proteins are inhibitory receptors. Of the eight LIR family proteins, only LIR-1 (LILRB1), and LIR-2 (LILRB2), show detectable binding to class I MHC molecules; ligands for the other members have yet to be determined. The extracellular portions of the different LIR proteins contain different numbers of Ig-like domains for example, four in the case of LILRB1 (LIR-1), and LILRB2 (LIR-2), and two in the case of LILRB4 (LIR-5). The activating natural cytotoxicity receptor NKp46 is expressed in natural killer cells, and is organized as an extracellular portion having two Ig-like extracellular domains, a transmembrane domain, and a small cytoplasmic portion. GPVI, which also contains two Ig-like domains, participates in the processes of collagen-mediated platelet activation and arterial thrombus formation. Fc-alphaRI is expressed on monocytes, eosinophils, neutrophils and macrophages; it mediates IgA-induced immune effector responses such as phagocytosis, antibody-dependent cell-mediated cytotoxicity and respiratory burst. 90 -319272 cd16844 ParB_N_like_MT ParB N-terminal-like domain, some attached to C-terminal S-adenosylmethionine-dependent methyltransferase domain. This family represents domains related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, fused to a variety of C-terminal domains, including S-adenosylmethionine-dependent methyltransferase-like domains and DUF4417. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 54 -341083 cd16845 STAT1_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 1 (STAT1). This family consists of the DNA-binding domain (DBD) of the STAT1 proteins (Signal Transducer and Activator of Transcription 1, or Signal Transduction And Transcription 1). The DNA binding domain has an Ig-like fold. STAT1 plays an essential role in mediating responses to all types of interferons (IFN), transducing signals from cytoplasmic domains of transmembrane receptors into the nucleus where it regulates gene expression. Thus STAT1 is involved in modulating diverse cellular processes, such as antimicrobial activities, cell proliferation and cell death. STAT1 function is crucial in the innate and adaptive arm of immunity and protects from pathogen infections; phosphorylation of a critical tyrosine by Janus kinases (JAKs) leads to its activation and nuclear translocation, while phosphorylation of a critical serine is required for full transcriptional activation upon IFN stimulation and in response to cellular stress. Transcription of protein-encoding genes (including Stat1 itself) as well as expression of microRNAs (miRNAs) is regulated by activated STAT1. Animal studies have shown that STAT1 is generally considered a tumor suppressor but it can also act as a tumor promoter; its functions are not restricted to tumor cells, but extend to parts of the tumor microenvironment such as immune cells, endothelial cells. STAT1 abundance is a reliable marker for good prognosis in selected tumor types, but it can also correlate with disease progression. In head and neck cancer (HNC) patients, upregulation of STAT1-induced HLA class I enhances immunogenicity and clinical response to anti-EGFR mAb cetuximab therapy. In systemic juvenile idiopathic arthritis (sJIA) characterized by systemic inflammation and arthritis, STAT1 phosphorylation downstream of IFNs is impaired. It exerts anti-oncogenic activities through interferon-gamma and interferon-alpha. STAT1 may inhibit hepatocellular carcinoma cell growth by regulating p53-related cell cycling and apoptosis. Studies also show a significant correlation of high STAT1 activity with longer colorectal cancer patient overall survival. Recent studies have shown that STAT1 suppresses mouse mammary gland tumorigenesis by immune regulatory as well as tumor cell-specific functions of STAT1. 161 -341084 cd16846 STAT2_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 2 (STAT2). This family consists of the DNA-binding domain (DBD) of the STAT2 proteins (Signal Transducer and Activator of Transcription 2, or Signal Transduction And Transcription 2). The DNA binding domain has an Ig-like fold. STAT2 activation is driven predominantly by only two classes of cell surface receptors: Type I and III interferon receptors, making it a unique STAT family of transcription factors. Thus, STAT2 plays a critical role in host defenses against viral infections since type I interferon (IFN-I) response inhibits viral replication, and sets the stage for the development of adaptive immunity; viruses target STAT2 by either inhibiting its expression, blocking its activity, or by targeting it for degradation, thus triggering remarkable divergence in the STAT2 gene across species compared to other STAT family members. STAT2 function is regulated by tyrosine phosphorylation which enables STAT dimerization, and subsequent nuclear translocation and transcriptional activation of IFN stimulated genes. Dengue virus (DENV)-mediated degradation of STAT2 has emerged as an important determinant of DENV pathogenesis and host tropism. This vector-borne flavivirus suppresses IFN1 signaling to replicate and cause disease in vertebrates via proteasome-dependent STAT2 degradation mediated by the nonstructural protein NS5 and its interaction partner UBR4, an E3 ubiquitin ligase. The mechanism of Zika virus (ZIKV) NS5 resembles DENV NS5 but through different mechanism - ZIKV does not require the UBR4 to induce STAT2 degradation. It has also been shown that the STAT2 and STAT4 genes are direct targets for transcription factor Oct-1 protein which is involved in the regulation of expression of genes of the JAK-STAT signaling pathway in the Namalwa Burkitt's lymphoma cell line. 160 -341085 cd16847 STAT3_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 3 (STAT3). This family consists of the DNA-binding domain (DBD) of the STAT3 proteins (Signal Transducer and Activator of Transcription 3, or Signal Transduction And Transcription 3). The DNA binding domain has an Ig-like fold. STAT3 plays key roles in vertebrate development and mature tissue function including control of inflammation and immunity. Mutations in human STAT3, especially in the DNA-binding and SH2 domains, are associated with diseases such as autoimmunity, immunodeficiency and cancer. STAT3 regulation is tightly controlled since either inactivation or hyperactivation results in disease. STAT3 activation is stimulated by several cytokines and growth factors, via diverse receptors. For example, IL-6 receptors depend on the tyrosine kinases JAK1 or JAK2, which associate with the cytoplasmic tail of gp130, and results in STAT3 phosphorylation, dimerization, and translocation to the nucleus; this leads to further IL-6 production and up-regulation of anti-apoptotic genes, thus promoting various cellular processes required for cancer progression. Other activators of STAT3 include IL-10, IL-23, and LPS activation of Toll-like receptors TLR4 and TLR9. STAT3 is constitutively activated in numerous cancer types, including over 40% of breast cancers. It has been shown to play a significant role in promoting acute myeloid leukemia (AML) through three mechanisms: promoting proliferation and survival, preventing AML differentiation to functional dendritic cells (DCs), and blocking T-cell function through other pathways. STAT3 also regulates mitochondrion functions, as well as gene expression through epigenetic mechanisms; its activation is induced by overexpression of Bcl-2 via an increase in mitochondrial superoxide. Thus, many of the regulators and functions of JAK-STAT3 in tumors are important therapeutic targets for cancer treatment. 164 -341086 cd16848 STAT4_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 4 (STAT4). This family consists of the DNA-binding domain (DBD) of the STAT4 proteins (Signal Transducer and Activator of Transcription 4, or Signal Transduction And Transcription 4). The DNA binding domain has an Ig-like fold. STAT4 acts as the major signaling transducing STATs in response to interleukin-12 (IL-12) by inducing interferon-gamma (IFNg) , and is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. It is essential for the differentiation and function of many immune cells, including natural killer cells, dendritic cells, mast cells and T helper cells. STAT4-mediated signaling promotes the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis, making STAT4 a promising therapeutic target for autoimmune diseases. Variations in STAT4 gene are linked to the development of systemic lupus erythematosus (SLE) in humans. STAT4 activation is detected in chronic liver diseases; polymorphism in STAT4 gene has been shown to be associated with the antiviral response in primary biliary cirrhosis (PBC), HCV-associated liver fibrosis, hepatocellular carcinoma (HCC), chronic hepatitis C and in drug-induced liver injury (DILI). STAT4 may inhibit HCC development by modulating HCC cell proliferation. Studies show that increased expression of STAT4 is positively correlated with the depth of invasion in colorectal cancer (CRC) patients, and the growth and invasion of CRC cells are repressed by inhibition of STAT4 expression, making STAT4 a promising therapeutic target for the treatment of CRC. 152 -341087 cd16849 STAT5_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 5 (STAT5). This family consists of the DNA-binding domain (DBD) of the STAT5 proteins (Signal Transducer and Activator of Transcription 5, or Signal Transduction And Transcription 4), which include STAT5A and STAT5B, both of which are >90% identical despite being encoded by separate genes. The DNA binding domain has an Ig-like fold. STAT5A and STAT5B regulate erythropoiesis, lymphopoiesis, and the maintenance of the hematopoietic stem cell population. STAT5A and STAT5B have overlapping and redundant functions; both isoforms can be activated by the same set of cytokines, but some cytokines preferentially activate either STAT5A or STAT5B, e.g. during pregnancy and lactation, STAT5A rather than STAT5B is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. STAT5 has been found to be constitutively phosphorylated in cancer cells, and therefore constantly activated, either by aberrant cell signaling expression or by mutations. It differentially regulates cellular behavior in human mammary carcinoma. Prolactin (PRL) in the prostate gland can induce growth and survival of prostate cancer cells and tissues through the activation of STAT5, its downstream target; PRL expression and STAT5 activation correlates with disease severity. STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases, displaying unique nuclear shuttling mechanisms and having a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). In addition, STAT5A and STAT5B promote survival of leukemic stem cells. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis via the induction of the expression of Id genes. Autosomal recessive STAT5B mutations are associated with severe growth failure, insulin-like growth factor (IGF) deficiency and growth hormone insensitivity (GHI) syndrome. STAT5B deficiency can lead to potentially fatal primary immunodeficiency. 159 -341088 cd16850 STAT6_DBD DNA-binding domain of Signal Transducer and Activator of Transcription 6 (STAT6). This family consists of the DNA-binding domain (DBD) of the STAT6 proteins (Signal Transducer and Activator of Transcription 6, or Signal Transduction And Transcription 6). The DNA binding domain has an Ig-like fold. STAT6 is essential for the functional responses of T helper 2 (Th2) lymphocyte mediated by interleukins IL-4 and IL-13. STAT6 almost exclusively mediates the expression of genes activated by these cytokines; IL-4 signaling regulates the expression of genes involved in immune and anti-inflammatory responses. Abnormal production of IL-4 and IL-13 play important roles in the pathogenesis of asthma where upregulation of the Th2 response mediated by IL-4/IL-13 is a main characteristic. STAT6 has a unique extended transactivation domain, not found in other STATs, through which it recruits p300/CBP and NCoA-1, two coactivators needed for transcriptional activation by IL-4. STAT6 activation is linked to Kaposi's sarcoma-associated herpesvirus (KSHV)-associated cancers such as primary effusion lymphoma, a cancerous proliferation of B cells. Studies show that Meningeal solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) represent a histopathologic spectrum linked by STAT6 nuclear expression and recurrent somatic fusions of the two genes, NGFI-A-binding protein 2 (NAB2) and STAT6 (NAB2-STAT6), similar to their soft tissue counterparts. It is associated with local recurrence and late distance metastasis of brain tumors to extracranial sites. 160 -341076 cd16851 STAT1_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 1 (STAT1). This family consists of the coiled-coil (alpha) domain of the STAT1 proteins (Signal Transducer and Activator of Transcription 1, or Signal Transduction And Transcription 1). STAT1 plays an essential role in mediating responses to all types of interferons (IFN), transducing signals from cytoplasmic domains of transmembrane receptors into the nucleus where it regulates gene expression. Thus STAT1 is involved in modulating diverse cellular processes, such as antimicrobial activities, cell proliferation and cell death. STAT1 function is crucial in the innate and adaptive arm of immunity and protects from pathogen infections; phosphorylation of a critical tyrosine by Janus kinases (JAKs) leads to its activation and nuclear translocation, while phosphorylation of a critical serine is required for full transcriptional activation upon IFN stimulation and in response to cellular stress. Transcription of protein-encoding genes (including Stat1 itself) as well as expression of microRNAs (miRNAs) is regulated by activated STAT1. Animal studies have shown that STAT1 is generally considered a tumor suppressor but it can also act as a tumor promoter; its functions are not restricted to tumor cells, but extend to parts of the tumor microenvironment such as immune cells, endothelial cells. STAT1 abundance is a reliable marker for good prognosis in selected tumor types, but it can also correlate with disease progression. In head and neck cancer (HNC) patients, upregulation of STAT1-induced HLA class I enhances immunogenicity and clinical response to anti-EGFR mAb cetuximab therapy. In systemic juvenile idiopathic arthritis (sJIA) characterized by systemic inflammation and arthritis, STAT1 phosphorylation downstream of IFNs is impaired. It exerts anti-oncogenic activities through interferon-gamma and interferon-alpha. STAT1 may inhibit hepatocellular carcinoma cell growth by regulating p53-related cell cycling and apoptosis. Studies also show a significant correlation of high STAT1 activity with longer colorectal cancer patient overall survival. Recent studies have shown that STAT1 suppresses mouse mammary gland tumorigenesis by immune regulatory as well as tumor cell-specific functions of STAT1. 176 -341077 cd16852 STAT2_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 2 (STAT2). This family consists of the coiled-coil (alpha) domain of the STAT2 proteins (Signal Transducer and Activator of Transcription 2, or Signal Transduction And Transcription 2). STAT2 activation is driven predominantly by only two classes of cell surface receptors: Type I and III interferon receptors, making it a unique STAT family of transcription factors. It differs from other STAT family members in that it associates constitutively with a non-STAT protein, the interferon regulatory factor 9 (IRF9). The coiled-coil domain of STAT2 is necessary for binding the carboxyl terminus of IRF9, an association required for the constitutive nuclear import of unphosphorylated STAT2. STAT2 plays a critical role in host defenses against viral infections since type I interferon (IFN-I) response inhibits viral replication, and sets the stage for the development of adaptive immunity; viruses target STAT2 by either inhibiting its expression, blocking its activity, or by targeting it for degradation, thus triggering remarkable divergence in the STAT2 gene across species compared to other STAT family members. STAT2 function is regulated by tyrosine phosphorylation which enables STAT dimerization, and subsequent nuclear translocation and transcriptional activation of IFN stimulated genes. Dengue virus (DENV)-mediated degradation of STAT2 has emerged as an important determinant of DENV pathogenesis and host tropism. This vector-borne flavivirus suppresses IFN1 signaling to replicate and cause disease in vertebrates via proteasome-dependent STAT2 degradation mediated by the nonstructural protein NS5 and its interaction partner UBR4, an E3 ubiquitin ligase. The mechanism of Zika virus (ZIKV) NS5 resembles DENV NS5 but through different mechanism - ZIKV does not require the UBR4 to induce STAT2 degradation. It has also been shown that the STAT2 and STAT4 genes are direct targets for transcription factor Oct-1 protein which is involved in the regulation of expression of genes of the JAK-STAT signaling pathway in the Namalwa Burkitt's lymphoma cell line. 172 -341078 cd16853 STAT3_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 3 (STAT3). This family consists of the coiled-coil (alpha) domain of the STAT3 proteins (Signal Transducer and Activator of Transcription 3, or Signal Transduction And Transcription 3). STAT3 continuously shuttles between nuclear and cytoplasmic compartments. The coiled-coil domain (CCD) of STAT3 appears to be required for constitutive nuclear localization signals (NLS) function; small deletions within the STAT3 CCD can abrogate nuclear import. Studies show that the CCD binds to the importin-alpha3 in the testis, and importin-alpha6 NLS adapters in most cells. STAT3 plays key roles in vertebrate development and mature tissue function including control of inflammation and immunity. Mutations in human STAT3, especially in the DNA-binding and SH2 domains, are associated with diseases such as autoimmunity, immunodeficiency and cancer. STAT3 regulation is tightly controlled since either inactivation or hyperactivation results in disease. STAT3 activation is stimulated by several cytokines and growth factors, via diverse receptors. For example, IL-6 receptors depend on the tyrosine kinases JAK1 or JAK2, which associate with the cytoplasmic tail of gp130, and results in STAT3 phosphorylation, dimerization, and translocation to the nucleus; this leads to further IL-6 production and up-regulation of anti-apoptotic genes, thus promoting various cellular processes required for cancer progression. Other activators of STAT3 include IL-10, IL-23, and LPS activation of Toll-like receptors TLR4 and TLR9. STAT3 is constitutively activated in numerous cancer types, including over 40% of breast cancers. It has been shown to play a significant role in promoting acute myeloid leukemia (AML) through three mechanisms: promoting proliferation and survival, preventing AML differentiation to functional dendritic cells (DCs), and blocking T-cell function through other pathways. STAT3 also regulates mitochondrion functions, as well as gene expression through epigenetic mechanisms; its activation is induced by overexpression of Bcl-2 via an increase in mitochondrial superoxide. Thus, many of the regulators and functions of JAK-STAT3 in tumors are important therapeutic targets for cancer treatment. 180 -341079 cd16854 STAT4_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 4 (STAT4). This family consists of the coiled-coil (alpha) domain of the STAT4 proteins (Signal Transducer and Activator of Transcription 4, or Signal Transduction And Transcription 4). STAT4 expression is restricted to spermatozoa, myeloid cells, and T lymphocytes, making it distinct from other STATs. It acts as the major signaling transducing STATs in response to interleukin-12 (IL-12) by inducing interferon-gamma (IFNgamma), and is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. It is essential for the differentiation and function of many immune cells, including natural killer cells, dendritic cells, mast cells and T helper cells. STAT4-mediated signaling promotes the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis, making STAT4 a promising therapeutic target for autoimmune diseases. Variations in STAT4 gene are linked to the development of systemic lupus erythematosus (SLE) in humans. STAT4 activation is detected in chronic liver diseases; polymorphism in STAT4 gene has been shown to be associated with the antiviral response in primary biliary cirrhosis (PBC), HCV-associated liver fibrosis, hepatocellular carcinoma (HCC), chronic hepatitis C and in drug-induced liver injury (DILI). STAT4 may inhibit HCC development by modulating HCC cell proliferation. Studies show that increased expression of STAT4 is positively correlated with the depth of invasion in colorectal cancer (CRC) patients, and the growth and invasion of CRC cells are repressed by inhibition of STAT4 expression, making STAT4 a promising therapeutic target for the treatment of CRC. 173 -341080 cd16855 STAT5_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 5 (STAT5). This family consists of the coiled-coil (alpha) domain of the STAT5 proteins (Signal Transducer and Activator of Transcription 5, or Signal Transduction And Transcription 5) which include STAT5A and STAT5B, both of which are >90% identical despite being encoded by separate genes. The coiled-coil domain (CCD) of STAT5A and STAT5B appears to be required for constitutive nuclear localization signals (NLS) function; small deletions within the CCD can abrogate nuclear import. Studies show that the CCD binds to the importin-alpha3 NLS adapter in most cells. STAT5A and STAT5B regulate erythropoiesis, lymphopoiesis, and the maintenance of the hematopoietic stem cell population. STAT5A and STAT5B have overlapping and redundant functions; both isoforms can be activated by the same set of cytokines, but some cytokines preferentially activate either STAT5A or STAT5B, e.g. during pregnancy and lactation, STAT5A rather than STAT5B is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. STAT5 has been found to be constitutively phosphorylated in cancer cells, and therefore constantly activated, either by aberrant cell signaling expression or by mutations. It differentially regulates cellular behavior in human mammary carcinoma. Prolactin (PRL) in the prostate gland can induce growth and survival of prostate cancer cells and tissues through the activation of STAT5, its downstream target; PRL expression and STAT5 activation correlates with disease severity. STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases, displaying unique nuclear shuttling mechanisms and having a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). In addition, STAT5A and STAT5B promote survival of leukemic stem cells. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis via the induction of the expression of Id genes. Autosomal recessive STAT5B mutations are associated with severe growth failure, insulin-like growth factor (IGF) deficiency and growth hormone insensitivity (GHI) syndrome. STAT5B deficiency can lead to potentially fatal primary immunodeficiency. 194 -341081 cd16856 STAT6_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription 6 (STAT6). This family consists of the coiled-coil (alpha) domain of the STAT6 proteins (Signal Transducer and Activator of Transcription 6, or Signal Transduction And Transcription 6). SImilar to STAT3 and STAT5. the coiled-coil domain (CCD) of STAT6 is required for constitutive nuclear localization signals (NLS) function; small deletions within the CCD can abrogate nuclear import. Studies show that the CCD binds to the importin-alpha3 NLS adapter in most cells.STAT6 is essential for the functional responses of T helper 2 (Th2) lymphocyte mediated by interleukins IL-4 and IL-13. STAT6 almost exclusively mediates the expression of genes activated by these cytokines; IL-4 signaling regulates the expression of genes involved in immune and anti-inflammatory responses. Abnormal production of IL-4 and IL-13 play important roles in the pathogenesis of asthma where upregulation of the Th2 response mediated by IL-4/IL-13 is a main characteristic. STAT6 has a unique extended transactivation domain, not found in other STATs, through which it recruits p300/CBP and NCoA-1, two coactivators needed for transcriptional activation by IL-4. STAT6 activation is linked to Kaposi's sarcoma-associated herpesvirus (KSHV)-associated cancers such as primary effusion lymphoma, a cancerous proliferation of B cells. Studies show that Meningeal solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) represent a histopathologic spectrum linked by STAT6 nuclear expression and recurrent somatic fusions of the two genes, NGFI-A-binding protein 2 (NAB2) and STAT6 (NAB2-STAT6), similar to their soft tissue counterparts. It is associated with local recurrence and late distance metastasis of brain tumors to extracranial sites. 167 -341090 cd16857 ING_ING1_2 Inhibitor of growth (ING) domain of inhibitor of growth protein ING1, ING2, and similar proteins. ING1 is an epigenetic regulator and a type II tumor suppressor that impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. It acts as a reader of the active chromatin mark, the trimethylation of histone H3 lysine 4 (H3K4me3). It binds and directs growth arrest and DNA damage inducible protein 45 a (Gadd45a) to target sites, thus linking the histone code with DNA demethylation. It interacts with the proliferating cell nuclear antigen (PCNA) via the PCNA-interacting protein (PIP) domain in a UV-inducible manner. It also interacts with a PCNA-interacting protein, p15 (PAF). Moreover, ING1 associates with members of the 14-3-3 family, which is necessary for cytoplasmic relocalization. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX and colocalizes with BAX in a UV-inducible manner. It stabilizes the p53 tumor suppressor by inhibiting polyubiquitination of multi-monoubiquitinated forms via interaction with and colocalization of the herpesvirus-associated ubiquitin-specific protease (HAUSP)-deubiquitinase with p53. It is also involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. In addition, tyrosine kinase Src can bind and phosphorylate ING1 and further regulates its activity. ING2, also termed inhibitor of growth 1-like protein (ING1Lp), or p32, or p33ING2, is a core component of a multi-factor chromatin-modifying complex containing the transcriptional co-repressor SIN3A and histone deacetylase 1 (HDAC1). It has been implicated in the control of cell cycle, in genome stability, and in muscle differentiation. ING2 independently interacts with H3K4me3 (Histone H3 trimethylated on lysine 4) and PtdIns(5)P, and modulates crosstalk between lysine methylation and lysine acetylation on histone proteins through association with chromatin in the presence of DNA damage. It collaborates with SnoN to mediate transforming growth factor (TGF)-beta-induced Smad-dependent transcription and cellular responses. It is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. It also acts as a cofactor of p300 for p53 acetylation and plays a positive regulatory role during p53-mediated replicative senescence. Both ING1 and ING2 contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 89 -341091 cd16858 ING_ING3_Yng2p Inhibitor of growth (ING) domain of inhibitor of growth protein 3 (ING3), Yng2p and similar proteins. ING3, also termed p47ING3, is a member of the inhibitor of growth (ING) family of type II tumor suppressors. It is ubiquitously expressed and has been implicated in transcription modulation, cell cycle control, and the induction of apoptosis. It is an important subunit of human NuA4 histone acetyltransferase complex, which regulates the acetylation of histones H2A and H4. Moreover, ING3 promotes ultraviolet (UV)-induced apoptosis through the Fas/caspase-8-dependent pathway in melanoma cells. It physically interacts with subunits of E3 ligase Skp1-Cullin-F-boxprotein complex (SCF complex) and is degraded by the SCF (F-box protein S-phase kinase-associated protein 2, Skp2)-mediated ubiquitin-proteasome system. It also acts as a suppression factor during tumorigenesis and progression of hepatocellular carcinoma (HCC). Yeast chromatin modification-related protein Yng2p, also termed ESA1-associated factor 4 or ING1 homolog 2, is a subunit of the NuA4 histone acetyltransferase (HAT) complex. It plays a critical role in intra-S-phase DNA damage response. Members of this family contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 92 -341092 cd16859 ING_ING4_5 Inhibitor of growth (ING) domain of inhibitor of growth protein ING4, ING5, and similar proteins. ING4, also termed p29ING4, and ING5, also termed p28ING5, belong to the inhibitor of growth (ING) family of type II tumor suppressors. ING4 acts as an E3 ubiquitin ligase to induce ubiquitination of the p65 subunit of NF-kappaB and inhibit the transactivation of NF-kappaB target genes. It also induces apoptosis through a p53 dependent pathway, including increasing p53 acetylation, inhibiting Mdm2-mediated degradation of p53, and enhancing the expression of p53 responsive genes both at the transcriptional and post-translational levels. Moreover, ING4 can inhibit the translation of proto-oncogene MYC by interacting with AUF1. It also regulates other transcription factors, such as hypoxia-inducible factor (HIF). ING5 is a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with Inhibitor of cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. Both ING4 and ING5 contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. They associate with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further direct the MOZ/MORF and HBO1 complexes to chromatin. 91 -341093 cd16860 ING_ING1 Inhibitor of growth (ING) domain of inhibitor of growth protein 1 (ING1). ING1 is an epigenetic regulator and a type II tumor suppressor that impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. It acts as a reader of the active chromatin mark, the trimethylation of histone H3 lysine 4 (H3K4me3). It binds and directs growth arrest and DNA damage inducible protein 45 a (Gadd45a) to target sites, thus linking the histone code with DNA demethylation. It interacts with the proliferating cell nuclear antigen (PCNA) via the PCNA-interacting protein (PIP) domain in a UV-inducible manner. It also interacts with a PCNA-interacting protein, p15 (PAF). Moreover, ING1 associates with members of the 14-3-3 family, which is necessary for the cytoplasmic relocalization. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX and colocalizes with BAX in a UV-inducible manner. It stabilizes the p53 tumor suppressor by inhibiting polyubiquitination of multi-monoubiquitinated forms via interaction with and colocalization of the herpesvirus-associated ubiquitin-specific protease (HAUSP)-deubiquitinase with p53. It is also involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. In addition, tyrosine kinase Src can bind phosphorylate ING1 and further regulates its activity. ING1 contains an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 88 -341094 cd16861 ING_ING2 Inhibitor of growth (ING) domain of inhibitor of growth protein 2 (ING2). ING2, also termed inhibitor of growth 1-like protein (ING1Lp), or p32, or p33ING2, is a core component of a multi-factor chromatin-modifying complex containing the transcriptional co-repressor SIN3A and histone deacetylase 1 (HDAC1). It has been implicated in the control of cell cycle, in genome stability, and in muscle differentiation. ING2 independently interacts with H3K4me3 (Histone H3 trimethylated on lysine 4) and PtdIns(5)P, and modulates crosstalk between lysine methylation and lysine acetylation on histone proteins through association with chromatin in the presence of DNA damage. It collaborates with SnoN to mediate transforming growth factor (TGF)-beta-induced Smad-dependent transcription and cellular responses. It is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. It also acts as a cofactor of p300 for p53 acetylation and plays a positive regulatory role during p53-mediated replicative senescence. ING2 contains an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 88 -341095 cd16862 ING_ING4 Inhibitor of growth (ING) domain of inhibitor of growth protein 4 (ING4). ING4, also termed p29ING4, is a member of the inhibitor of growth (ING) family of type II tumor suppressors. It acts as an E3 ubiquitin ligase to induce ubiquitination of the p65 subunit of NF-kappaB and inhibit the transactivation of NF-kappaB target genes. It also induces apoptosis through a p53 dependent pathway, including increasing p53 acetylation, inhibiting Mdm2-mediated degradation of p53 and enhancing the expression of p53 responsive genes both at the transcriptional and post-translational levels. Moreover, ING4 can inhibit the translation of proto-oncogene MYC by interacting with AUF1. It also regulates other transcription factors, such as hypoxia-inducible factor (HIF). In addition, ING4 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further directs the MOZ/MORF and HBO1 complexes to chromatin. ING4 contains an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 94 -341096 cd16863 ING_ING5 Inhibitor of growth (ING) domain of inhibitor of growth protein 5 (ING5). ING5, also termed p28ING5, is a member of the inhibitor of growth (ING) family of type II tumor suppressors. It acts as a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with Inhibitor of cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. In addition, ING5 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further directs the MOZ/MORF and HBO1 complexes to chromatin. ING5 contains an N-terminal leucine zipper-like (LZL) motif-containing ING domain, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain. 93 -350628 cd16864 ARID_JARID ARID/BRIGHT DNA binding domain of JARID proteins. The JARID subfamily within the JmjC protein family includes lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog, protein little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 and H3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. The family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members of this subfamily contain the catalytic JmjC domain, JmjN, the AT-rich domain interacting domain (ARID)/BRIGHT domain, a C5HC2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. 87 -350629 cd16865 ARID_ARID1A-like ARID/BRIGHT DNA binding domain found in AT-rich interactive domain-containing proteins ARID1A, ARID1B and similar proteins. This subfamily contains ARID1A and its paralog ARID1B. They are mutually exclusive components of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling protein complexes, but display different functions in development and cell-cycle control. SWI/SNF complexes containing ARID1A have an antiproliferative function, whereas the one harboring ARID1B shows a pro-proliferative function. ARID1A functions as an important tumor suppressor in various tumor types. It has been implicated in cell-cycle arrest, as well as in the interactions with p53 and BRG1/BRM and with topoisomerase II alpha. ARID1B may be considered as a potential therapeutic target for ARID1A-mutant cancers. Moreover, mutations in the ARID1B gene cause Coffin-Siris syndrome, exhibiting developmental defects, and haplo-insufficiency of ARID1B is a frequent cause of intellectual disability. Mutations in the ARID1B gene also have been found in many cancers. Both ARID1A and ARID1B contain an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), which binds DNA in a non-sequence-specific manner. 93 -350630 cd16866 ARID_ARID2 ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 2 (ARID2) and similar proteins. ARID2, also called BRG1-associated factor 200 (BAF200) or zinc finger protein with activation potential (Zipzap/p200), is a novel serum response factor (SRF)-binding protein with multiple conserved domains, including an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), RFX DNA-binding domain, a glutamine-rich domain, and two C2H2 zinc fingers. It binds DNA without sequence specificity. ARID2 is an intrinsic subunit of PBAF (SWI/SNF-B) remodeling complex, which needs ARID2 to play an essential role in promoting osteoblast differentiation, maintaining cellular identity and activating tissue-specific gene expression. Moreover, ARID2 may function as a tumor suppressor in many cancers. It may also serve as a transcription co-activator for the regulation of cardiac gene expression, and is required for heart morphogenesis and coronary artery development. 88 -350631 cd16867 ARID_ARID3 ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing proteins ARID3A, ARID3B, ARID3C, dead ringer (Dri) from Drosophila melanogaster, and similar proteins. The ARID3 subfamily includes AT-rich interactive domain (ARID, also known as BRIGHT)-containing proteins ARID3A, ARID3B and ARID3C, which are the most direct mammalian counterparts of the Drosophila "dead ringer" protein Dri. They consist of an acidic N-terminal region of unknown function, the central ARID matrix association (or attachment) region (MAR)-DNA binding domain, a SUMO-I conjugation (SUMO) motif, and a multifunctional homomerization/nuclear export REKLES domain in the C-terminal third of the molecule. The ARID domain in this subfamily has been described as the "extended" or e-ARID due to additional conserved sequences at both the N and C termini of the core ARID region. The REKLES domain is found only in the ARID3 subfamily. It has co-evolved with and regulates functional properties of the ARID DNA-binding domain. 118 -350632 cd16868 ARID_ARID4 ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing proteins ARID4A, ARID4B and similar proteins. This subfamily contains ARID4A and its paralog ARID4B, both of which are retinoblastoma (Rb)-binding proteins that function as coactivators to enhance the androgen receptor (AR) and Rb transcriptional activity, and play important roles in the AR and Rb pathways to control male fertility. They also act as the leukemia and tumor suppressors involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndrome. Moreover, they associate with the mSIN3A histone deacetylase (HDAC) chromatin remodeling complex through the interaction with each other, as well as with the breast cancer associated tumor suppressor ING1 and the breast cancer metastasis suppressor BRMS1. Both ARID4A and ARID4B contain a Tudor domain, a PWWP domain (also known as HATH domain or RBB1NT domain), an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a chromobarrel domain, and a C-terminal R2 domain. 87 -350633 cd16869 ARID_ARID5 ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing proteins ARID5A, ARID5B, and similar proteins. This subfamily contains ARID5A and its paralog ARID5B. ARID5A, also called modulator recognition factor 1 (MRF-1), is an estrogen receptor alpha (ER alpha)-interacting protein that is expressed abundantly in cardiovascular tissues and suppresses ER alpha-induced transactivation. It also plays an important role in the promotion of inflammatory processes and autoimmune diseases. ARID5B, also called MRF1-like protein or modulator recognition factor 2 (MRF-2), is a DNA-binding protein that directly interacts with plant homeodomain (PHD) finger 2 (PHF2) to form a protein kinase A (PKA)-dependent PHF2-ARID5B histone H3K9Me2 demethylase complex. It also functions as a transcriptional co-regulator for the transcription factor sex determining region Y (SRY)-box protein 9 (Sox9) and promotes chondrogenesis through histone modification. Moreover, ARID5B is highly expressed in the cardiovascular system and may play essential roles in the phenotypic change of smooth muscle cells (SMCs) through its regulation of SMC differentiation. Both ARID5A and ARID5B contain an AT-rich DNA-interacting domain (ARID, also known as BRIGHT). 87 -350634 cd16870 ARID_JARD2 ARID/BRIGHT DNA binding domain of Jumonji/ARID domain-containing protein 2 (JARID2) and similar proteins. JARID2, also called protein Jumonji, is a DNA-binding protein that contains both the Jumonji C (JmjC) domain and AT-rich DNA-interacting domain (ARID, also known as BRIGHT). It is an interacting component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27) and regulates important gene expression patterns during development. It exhibits nucleosome-binding activity that contributes to PRC2 stimulation. However, unlike other JmjC domain-containing proteins, JARID2 is catalytically inactive due to the lack of conserved residues essential for histone demethylase activity. JARID2 is also involved in transforming growth factor-beta (TGF-beta)-induced epithelial-mesenchymal transition (EMT) of lung and colon cancer cell lines through the modulation of histone H3K27 methylation. Moreover, JARID2 is a part of GLP- and G9a-containing protein complex that promotes lysine 9 on histone H3 (H3K9) methylation on the cyclin D1 promoter and silences the expression of cyclin D1 and other cell cycle genes. It functions as a transcriptional repressor that plays critical roles in embryonic development including heart development in mice, and regulates cardiomyocyte proliferation via interaction with retinoblastoma protein (Rb), one of the master regulatory genes of the cell cycle. Furthermore, JARID2 acts as a transcriptional repressor of target genes, including Notch1. It directly binds to SETDB1 (SET domain, bifurcated 1) to form a complex that plays an important role in a novel process involving the modification of H3K9 methylation during heart development. Meanwhile, JARID2 is a key transcriptional repressor that plays a role in invariant natural killer T (iNKT) cell maturation. It regulates promyelocytic leukemia zinc finger (PLZF) expression by linking T-cell receptor (TCR) signaling to H3K9me3. JARID2 polymorphisms are associated with non-syndromic orofacial clefts (NSOC) susceptibility. 112 -350635 cd16871 ARID_Swi1p-like ARID/BRIGHT DNA binding domain of yeast SWI/SNF chromatin-remodeling complex subunit Swi1p and similar proteins. Saccharomyces cerevisiae Swi1p, also called SWI/SNF chromatin-remodeling complex subunit SWI1, regulatory protein GAM3, or transcription regulatory protein ADR6, is a transcription regulatory protein that is a subunit of the SWI/SNF complex, which plays critical roles in the regulation of gene transcription and expression. It can exist as a prion, [SWI(+)], which demonstrates a link between prionogenesis and global transcriptional regulation. Swi1p contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT) that binds DNA nonspecifically. This subfamily also includes Schizosaccharomyces pombe SWI/SNF chromatin-remodeling complex subunit sol1 (sol1p, also known as switch one-like protein). sol1p is a homolog of S. cerevisiae Swi1p and is also a part of SWI/SNF chromatin-remodeling complex. 90 -350636 cd16872 ARID_HMGB9-like ARID/BRIGHT DNA binding domain of Arabidopsis thaliana high mobility group B proteins HMGB9, HMGB10, HMGB11, HMGB15 and similar proteins. This subfamily includes a group of conserved plant DNA-binding proteins, including HMGB9 (or ARID-HMG1), HMGB10 (or ARID-HMG2), HMGB11, and HMGB15. They have been termed ARID-HMG proteins, due to containing two DNA-binding domains, an N-terminal AT-rich DNA-interacting domain (ARID, also known as BRIGHT), and a C-terminal high mobility group (HMG)-box domain. They are widely expressed in Arabidopsis and localize primarily to the nucleus. HMGB9/ARID-HMG1 binds specifically to A/T-rich DNA. HMGB15 is a transcription factor predominantly expressed in mature pollen grains and pollen tubes. It may work in the form of a homodimer, or interact with HMGB9, HMGB10 and HMGB11 to form heteromultimers in plant cells. HMGB15 is required for pollen tube growth in Arabidopsis and is involved in transcriptional regulation through the interaction with AGL66 and AGL104. 86 -350637 cd16873 ARID_KDM5A ARID/BRIGHT DNA binding domain of lysine-specific demethylase 5A (KDM5A). KDM5A, also called histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2), was originally identified as a retinoblastoma protein (Rb)-binding partner; its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as the trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, a JmjN domain, an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a C5HC2 zinc finger, as well as three plant homeodomain (PHD) fingers. 92 -350638 cd16874 ARID_KDM5B ARID/BRIGHT DNA binding domain of lysine-specific demethylase 5B (KDM5B). KDM5B, also called cancer/testis antigen 31 (CT31), histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible earlygene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, a JmjN domain, an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a C5HC2 zinc finger, as well as three plant homeodomain (PHD) fingers. 90 -350639 cd16875 ARID_KDM5C_5D ARID/BRIGHT DNA binding domain of lysine-specific demethylase KDM5C and KDM5D. This group includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C, also called histone demethylase JARID1C, Jumonji/ARID domain-containing protein 1C, protein SmcX, or protein Xe169, is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D, also called histocompatibility Y antigen (H-Y), histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or protein SmcY, is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 and H3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, a JmjN domain, an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a C5HC2 zinc finger, as well as two plant homeodomain (PHD) fingers. 92 -350640 cd16876 ARID_ARID1A ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 1A (ARID1A) and similar proteins. ARID1A, also called B120, BRG1-associated factor 250a (BAF250A), Osa homolog 1(OSA1), SWI-like protein, SWI/SNF complex protein p270, or SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1 (SWI1), has been identified as a novel tumor suppressor in various tumor types. It interacts with BRG1 adenosine triphosphatase to form a SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling protein complex, which plays a critical role in transcriptional control and gene expression. ARID1A contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), and Eld/Osa homology domains (EHD) 1 and 2 within the C-terminus. The ARID in ARID1A binds nonspecific DNA in general and plays an important role in targeting SWI/SNF to chromatin. The EHD1 may be capable of mediating an intramolecular association with EHD2, and/or an intermolecular association resulting in homo- or hetero-dimerization. The EHD2 binds Swi2/Brahma homologue Brahma-related gene 1 (BRG1, also known as Snf2b), a human homologue of yeast Swi2. 93 -350641 cd16877 ARID_ARID1B ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 1B (ARID1B) and similar proteins. ARID1B, also called BRG1-associated factor 250b (BAF250B), BRG1-binding protein ELD/OSA1, Osa homolog 2 (Osa2), or p250R, is the largest subunit of ATP-dependent SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a critical role in transcriptional control and gene expression. ARID1B exhibits tumour-suppressor activities in pancreatic cancer cell lines. Mutations in the ARID1B gene cause Coffin-Siris syndrome, exhibiting developmental defects, and haplo-insufficiency of ARID1B is a frequent cause of intellectual disability. Moreover, mutations in the ARID1B gene have been found in many cancers. ARID1B contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), which binds DNA in a non-sequence-specific manner similar to ARID1A. 93 -350642 cd16878 ARID_ARID3A ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 3A (ARID3A) and similar proteins. ARID3A, also called B-cell regulator of IgH transcription (Bright), dead ringer-like protein 1 (Dril1), or E2F-binding protein 1 (E2FBP1), is an ubiquitously expressed DNA-binding protein that has been implicated in embryonic patterning, cell lineage gene regulation, and cell cycle control, chromatin remodeling and transcriptional regulation. It was originally identified as a B cell-specific trans-activator of immunoglobulin heavy-chain (IgH) transcription, which increases immunoglobulin transcription in antigen-activated B cells and plays regulatory roles in hematopoiesis. It also functions as an E2F transcription regulator, inducing promyelocytic leukemia protein (PML) reduction and suppressing the formation of PML-nuclear bodies. It antagonizes the p16(INK4A)-Rb tumor suppressor machinery by regulating PML stability. ARID3A transcriptional activity can be modulated by SUMO (Small Ubiquitin-related Modifier) modification through the interaction with the SUMO-conjugating enzyme Ubc9. ARID3A also plays an important role in marginal zone B lymphocyte development and autoantibody production. Furthermore, ARID3A is a direct p53 target gene. It controls cell growth in a p53-dependent manner. ARID3A contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a SUMO-I conjugation (SUMO) motif and a multifunctional homomerization/nuclear export REKLES domain, which consists of two subdomains: a modestly conserved N-terminal REKLES alpha and a highly conserved (among ARID3 orthologous proteins) C-terminal REKLES beta. 133 -350643 cd16879 ARID_ARID3B ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 3B (ARID3B) and similar proteins. ARID3B, also called Bright and dead ringer protein, or Bright-Dri-like protein (Bdp), is a DNA binding protein involved in cellular immortalization, epithelial-mesenchymal transition (EMT), and tumorigenesis. Its expression is differentially regulated in normal and malignant tissues. It is required for heart development by regulating the motility and differentiation of heart progenitors. ARID3B is overexpressed in neuroblastoma and ovarian cancer. It acts as a novel target with roles in cell motility in breast cancer cells, promotes migration of mouse embryo fibroblasts (MEFs) and breast cancer cells, and induces tumor necrosis factor alpha (TNFalpha)-mediated apoptosis. ARID3B contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a SUMO-I conjugation (SUMO) motif and a multifunctional homomerization/nuclear export REKLES domain, which consists of two subdomains: a modestly conserved N-terminal REKLES alpha and a highly conserved (among ARID3 orthologous proteins) C-terminal REKLES beta. 126 -350644 cd16880 ARID_ARID3C ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 3C (ARID3C) and similar proteins. ARID3C, also called Brightlike, is a new ARID3 family transcription factor that co-activates ARID3A-mediated immunoglobulin gene transcription. It also functions as a potential regulator of early events in B cell antigen receptor (BCR) signaling. ARID3C contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a SUMO-I conjugation (SUMO) motif and a multifunctional homomerization/nuclear export REKLES domain, which consists of two subdomains: a modestly conserved N-terminal REKLES alpha and a highly conserved (among ARID3 orthologous proteins) C-terminal REKLES beta. 127 -350645 cd16881 ARID_Dri-like ARID/BRIGHT DNA binding domain of dead ringer (Dri) from Drosophila melanogaster and similar proteins. Dri, also termed retained (retn), is a nuclear protein with a sequence-specific DNA-binding domain termed AT-rich DNA-interacting domain (ARID, also known as BRIGHT). It is a founding member of the ARID family. Sequence comparison shows that DRI belongs to the "extended" or e-ARID subfamily, which exhibits an extended region of similarity either side of the ARID. Dri plays an important role in embryogenesis. It functions as an essential transcription factor involved in aspects of dorsal/ventral and anterior/posterior axis patterning, as well as myogenesis and hindgut development. 125 -350646 cd16882 ARID_ARID4A ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 4A (ARID4A) and similar proteins. ARID4A, also called retinoblastoma-binding protein 1 (RBBP1, or RBP1), is a leukemia and tumor suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndrome. It associates with the mSIN3A histone deacetylase (HDAC) chromatin remodeling complex through the interaction with the breast cancer associated tumor suppressor ING1, the breast cancer metastasis suppressor BRMS1, and the ARID4 family homolog ARID4B (also known as RBP1L1). ARID4A specifically interacts with retinoblastoma protein (pRb) and shows both HDAC-dependent and -independent repression activities. It is also involved in the pocket domain of pRb-mediated repression of E2F-dependent transcription and cellular proliferation. Moreover, it acts as a Runx2 coactivator and is involved in the regulation of osteoblastic differentiation in Runx2-osterix transcriptional cascade. ARID4A contains a Tudor domain, a PWWP domain (also known as HATH domain or RBB1NT domain), an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a chromobarrel domain, and a C-terminal R2 domain. The ARID and R2 domains are responsible for the repression activities. The Tudor, PWWP, and chromobarrel domains are all Royal Family domains, but only chromobarrel domain of ARID4A is responsible for recognizing both dsDNA and methylated histone tails, particularly H4K20me3, in chromatin remodeling and epigenetic regulation. 87 -350647 cd16883 ARID_ARID4B ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 4B (ARID4B) and similar proteins. ARID4B, also called 180 kDa Sin3-associated polypeptide (p180), breast cancer-associated antigen BRCAA1, histone deacetylase complex subunit SAP180, or retinoblastoma-binding protein 1-like 1 (RBP1L1, or RBBP1L1), is a tumor suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndrome. It associates with the mSIN3A histone deacetylase (HDAC) chromatin remodeling complex through the interaction with the breast cancer associated tumor suppressor ING1, the breast cancer metastasis suppressor BRMS1, and the ARID4 family homolog ARID4A ( also known as RBP1). ARID4B plays a causative role in metastatic progression of breast cancer. It may also be associated with regulating cell cycle. ARID4B contains a Tudor domain, a PWWP domain (also known as HATH domain or RBB1NT domain), an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), a chromobarrel domain, and a C-terminal R2 domain. 92 -350648 cd16884 ARID_ARID5A ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 5A (ARID5A) and similar proteins. ARID5A, also called modulator recognition factor 1 (MRF-1), is an estrogen receptor alpha (ER alpha)-interacting protein that is expressed abundantly in cardiovascular tissues and suppresses ER alpha-induced transactivation. It also associates with thyroid receptor alpha (TR alpha) and retinoid X receptor alpha (RXR alpha) in a ligand-dependent manner, and with ER beta, androgen receptor (AR), and the retinoic acid receptor (RAR) in a ligand-independent manner. ARID5A functions as a negative regulator of RORgamma-induced Th17 cell differentiation and may be involved in the pathogenesis of rheumatoid arthritis (RA). Moreover, it is an important transcriptional partner of the transcription factor sex determining region Y (SRY)-box protein 9 (Sox9) in stimulation of chondrocyte-specific transcription. Meanwhile, ARID5A plays an important role in promotion of inflammatory processes and autoimmune diseases. It works as a unique RNA binding protein, which stabilizes interleukin-6 (IL-6) but not tumor necrosis factor-alpha (TNF-alpha) mRNA through binding to the 3' untranslated region (UTR) of IL-6 mRNA, and inhibits the destabilizing effect of regnase-1 on IL-6 mRNA. ARID5A contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT). 87 -350649 cd16885 ARID_ARID5B ARID/BRIGHT DNA binding domain of AT-rich interactive domain-containing protein 5B (ARID5B) and similar proteins. ARID5B, also called MRF1-like protein or modulator recognition factor 2 (MRF-2), is a DNA-binding protein that directly interacts with plant homeodomain (PHD) finger 2 (PHF2) to form a protein kinase A (PKA)-dependent PHF2-ARID5B histone H3K9Me2 demethylase complex, which is a signal-sensing modulator of histone methylation and gene transcription. It also functions as a transcriptional co-regulator for the transcription factor sex determining region Y (SRY)-box protein 9 (Sox9) and promotes chondrogenesis through histone modification. Moreover, ARID5B is highly expressed in the cardiovascular system and may play essential roles in the phenotypic change of smooth muscle cells (SMCs) through its regulation of SMC differentiation. Its polymorphism has been associated with risk for pediatric acute lymphoblastic leukemia (ALL). ARID5B contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), which can bind both the major and minor grooves of its target sequences. 95 -341123 cd16887 YEATS YEATS domain family, chromatin reader proteins. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein, YEATS2, Drosophila D12, and others. DNA regulation by chromatin through histone post-translational modification and other mechanisms involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state and stimulates transcriptional activity through preferential interactions with crotonylated lysines on histones. 120 -340374 cd16888 lyz_G_like1 Lysozyme G-like protein 1. Eukaryotic goose-type or G-type lysozymes (goose egg-white lysozyme; GEWL) catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). Mammals have two lysozyme G-like proteins, and this family corresponds to human and mouse lysozyme G-like protein 1. In humans and some other species, the canonical catalytic glutamate residue is absent, suggesting a loss of muramidase activity. 159 -340375 cd16889 chitinase_like chitinase-like domain. This family includes proteins such as chitinases, chitosanase, pesticin, and endolysin, which are involved in the degradation of 1,4-N-acetyl D-glucosamine linkages in chitin polymers and related activities. Chitinases are enzymes that catalyze the hydrolysis of the beta-1,4-N-acetyl-D-glucosamine linkages in chitin polymers. Chitosanase enzymes hydrolyze chitosan, a biopolymer of beta (1,4)-linked-D-glucosamine (GlcN) residues produced by partial or full deacetylation of chitin. Pesticin (Pst) is a anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. The dsDNA phages of eubacteria use endolysins or muralytic enzymes in conjunction with hollin, a small membrane protein, to degrade the peptidoglycan found in bacterial cell walls. Similarly, bacteria produce autolysins to facilitate the biosynthesis of its cell wall heteropolymer peptidoglycan and cell division. 109 -340376 cd16890 lyz_i I-type lysozyme. Invertebrate type (I-type) lysozyme, initially identified in starfish and marine bivalves, are found in various invertebrate phyla and are apparently ubiquitous in insects. Lysozymes cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell wall polymer. I-type enzymes share structural similarity and the conserved glutamate catalytic residue of the lysozyme family. 118 -340377 cd16891 CwlT_like CwlT-like N-terminal lysozyme domain and similar domains. CwlT is a bifunctional cell wall hydrolase containing an N-terminal lysozyme domain and a C-terminal NlpC/P60 endopeptidase domain (gamma-d-D-glutamyl-L-diamino acid endopeptidase), and has been implicated in the spread of transposons. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 151 -340378 cd16892 LT_VirB1_like VirB1-like subfamily. This subfamily includes VirB1 protein, one of twelve proteins making up type IV secretion systems (T4SS). T4SS are macromolecular assemblies generally composed of VirB1-11 and VirD4 proteins, and are used by bacteria to transport material across their membranes. VirB1 acts as a lytic transglycosylase (LT), and is important with respect to piercing the peptidoglycan layer in the periplasm. LTs catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 143 -340379 cd16893 LT_MltC_MltE Membrane-bound lytic murein transglycosylases MltC and MltE, and similar proteins. MltC and MltE are periplasmic, outer membrane attached lytic transglycosylases (LTs), which cleave beta-1,4-glycosidic bonds joining N-acetylmuramic acid and N-acetylglucosamine in the cell wall peptidoglycan, yielding 1,6-anhydromuropeptides. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 162 -340380 cd16894 MltD_like Membrane-bound lytic murein transglycosylase D and similar proteins. Lytic transglycosylases (LT) catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc). Membrane-bound lytic murein transglycosylase D protein (MltD) family members may have one or more small LysM domains, which may contribute to peptidoglycan binding. Unlike the similar "goose-type" lysozymes, LTs also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 129 -340381 cd16895 TraH_like Conjugal transfer protein H and similar proteins. This subfamily consists of several TraH proteins, putative conjugal transfer proteins of uncharacterized function, apparently found only in alphaproteobacteria. They have similarity to lysozyme and preserve the critical glutamate residue which has catalytic activity in lysozyme-like proteins. 203 -340382 cd16896 LT_Slt70_like Uncharacterized lytic transglycosylase subfamily with similarity to Slt70. Uncharacterized lytic transglycosylase (LT) with a conserved sequence pattern suggesting similarity to the Slt70, a 70kda soluble lytic transglycosylase which also has an N-terminal U-shaped U-domain and a linker L-domain. LTs catalyze the cleavage of the beta-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-glucosamine (GlcNAc) as do "goose-type" lysozymes. However, in addition to this, they also make a new glycosidic bond with the C6 hydroxyl group of the same muramic acid residue. Proteins similar to this family include the soluble and insoluble membrane-bound LTs in bacteria, the LTs in bacteriophage lambda, as well as the eukaryotic "goose-type" lysozymes (goose egg-white lysozyme; GEWL). 150 -340383 cd16897 LYZ_C C-type lysozyme. C-type lysozyme (chicken or conventional type; 1, 4-beta-N-acetylmuramidase). In humans, lysozyme is found in a wide variety of tissue types and body fluids. It has bacteriolytic properties through the hydolysis of beta-1,4, glyocosidic linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan, as well as between N-acetyl-D-glucosamine residues in chitodextrins. This family also includes digestive stomach lysozyme, which allow ruminants to digest bacteria in the foregut. The mammalian enzyme is related to lysozyme found hen egg-whites and related species. 126 -340384 cd16898 LYZ_LA alpha lactalbumin. alpha-lactalbumin (lactose synthase B protein, LA) is a calcium-binding metalloprotein that is expressed exclusively in the mammary gland during lactation. LA is the regulatory subunit of the enzyme lactose synthase. The association of LA with the catalytic component of lactose synthase, galactosyltransferase, alters the acceptor substrate specificity of this glycosyltransferase, facilitating biosynthesis of lactose. 123 -340385 cd16899 LYZ_C_invert C-type invertebrate lysozyme. C-type lysozyme proteins of invertebrates, including digestive lysozymes 1 and 2 from Musca domestica, which aid in the use of bacteria as a food source. These lysozymes have high expression in the gut and optimal lytic activity at a lower pH. Other lysozymes in this subfamily have immunological roles. e.g. Anopheles gambiae has eight lysozymes, most of which seem to have immunological roles, those some may function as digestive enzymes in larvae. C-type lysozyme (chicken or conventional type; 1, 4-beta-N-acetylmuramidase) has bacteriolytic properties through the hydolysis of beta-1,4, glyocosidic linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan, as well as between N-acetyl-D-glucosamine residues in chitodextrins. 121 -340386 cd16900 endolysin_R21_like endolysin R21-like proteins. Unlike T4 E phage lysozyme, the endolysin R21 from Enterobacteria phage P21 has an N-terminal SAR (signal-arrest-release) domain that anchors the endolysin to the membrane in an inactive form, which act to prevent premature lysis of the infected bacterium. The dsDNA phages of eubacteria use endolysins or muralytic enzymes in conjunction with hollin, a small membrane protein, to degrade the peptidoglycan found in bacterial cell walls. Similarly, bacteria produce autolysins to facilitate the biosynthesis of its cell wall heteropolymer peptidoglycan and cell division. Endolysins and autolysins are found in viruses and bacteria, respectively. Both endolysin and autolysin enzymes cleave the glycosidic beta 1,4-bonds between the N-acetylmuramic acid and the N-acetylglucosamine of the peptidoglycan. 141 -340387 cd16901 lyz_P1 P1 lysozyme Lyz-like proteins. Enterobacteria phage P1 lysozyme Lyz is secreted to the Escherichia coli periplasm where it is membrane bound and inactive. Activation involves the release from the membrane, an intramolecular thiol-disulfide isomerization and extensive structural rearrangement of the N-terminal region. The dsDNA phages of eubacteria use endolysins or muralytic enzymes in conjunction with hollin, a small membrane protein, to degrade the peptidoglycan found in bacterial cell walls. Similarly, bacteria produce autolysins to facilitate the biosynthesis of its cell wall heteropolymer peptidoglycan and cell division. Endolysins and autolysins are found in viruses and bacteria, respectively. Both endolysin and autolysin enzymes cleave the glycosidic beta 1,4-bonds between the N-acetylmuramic acid and the N-acetylglucosamine of the peptidoglycan. 140 -340388 cd16902 pesticin_lyz lysozyme-like C-terminal domain of pesticin. Pesticin (Pst) is an anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacterial stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. The pesticin C-terminal domain resembles the lysozyme-like family, which includes soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, and chitosanases. All the members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 178 -340389 cd16903 pesticin_lyz_like1 pesticin C-terminal-like domain of uncharacterized proteins. This subfamily is composed of uncharacterized proteins containing a lysozyme-like domain similar to the C-terminal domain of pesticin. Some members also contain an EF hand domain. Pesticin (Pst) is an anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacterial stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. The pesticin C-terminal domain resembles the lysozyme-like family, which includes soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, and chitosanases. All the members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 150 -340390 cd16904 pesticin_lyz_like2 pesticin C-terminal-like domain of uncharacterized proteins. This subfamily is composed of uncharacterized proteins containing a lysozyme-like domain similar to the C-terminal domain of pesticin. Pesticin (Pst) is an anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacterial stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. The pesticin C-terminal domain resembles the lysozyme-like family, which includes soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, and chitosanases. All the members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 138 -341124 cd16905 YEATS_Taf14_like YEATS domain found in Taf14 and similar proteins. Taf14 has been identified as a component of TFIIF and TFIID transcription factor complexes, various chromatin-remodeling complexes (such as SWI/SNF, INO80, and RSC) and the NuA3 histone acetyltransferase complex. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. Specifically, Taf14 has been show to be a reader of lysine crotonylation, associated with active gene promoters and enhancers and binding acetyllysine on in histone H3. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 118 -341125 cd16906 YEATS_AF-9_like YEATS domain found in ENL and AF-9-like proteins. Yeast AFF9 is a YEATS domain protein that binds to modified histones, with a preference for crotonyllysine over acetyllysine. Histone crotonylation upregulates gene expression in an AF9-dependent manner. Sub-family also includes eleven-nineteen-leukemia protein ENL, which binds histones H3 and H1. DNA regulation by chromatin through histone post-translational modification and other mechanisms involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state and stimulates transcriptional activity through preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 127 -341126 cd16907 YEATS_YEATS2_like YEATS domain found in YEATS2 and Drosophila D12. YEATS2 is a YEATS domain reader protein with a preference for recognition of histone H3 crotonylation on lysine 27 (H3K27crHistone crotonylation upregulates gene expression in an AF9-dependent manner. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 123 -341127 cd16908 YEATS_Yaf9_like YEATS domain found in Yaf9 and similar proteins. Yaf9 is a YEATS domain family protein essential in the function the NuA4 histone acetyltransferase complex and the SWR1-C ATP-dependent chromatin remodeling complex. Yaf9 shares structural similarity with histone chaperone Asf1, both exhibit histone H3 and H4 binding in vitro, and evidence supports both play a role in the same histone acetylation mechanism. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: `YNK7', `ENL', `AF-9', and `TFIIF small subunit', and also contains the GAS41 protein. 145 -341128 cd16909 YEATS_GAS41_like YEATS domain found in YEATS domain-containing protein 4 and similar proteins. glioma amplified sequence 41 (GAS41, also known as, YEATS domain-containing protein 4, NuMA-binding protein 1 ) is a YEATS domain family protein that is amplified and acts as an oncogene in human glioma. GAS41 is a YEATS domain family protein and has been shown to interact with the general transcription factor TFIIF via the YEATS domain. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 137 -341129 cd16910 YEATS_TFIID14_like YEATS domain found in transcription initiation factor TFIID subunit 14 and similar proteins. YEATS domain containing proteins, which include Transcription initiation factor TFIID subunits 14 and 14b of Arabidopsis, shown to be part of the TFIID general transcriptional regulator complex in a two-hybrid screen. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 131 -350650 cd16911 AfaD_SafA-like AfaD-like family of invasins. This family consists of Escherichia coli AfaD, Salmonella SafA and SafD, Yersinia pestis PsaA, Yersinia enterocolitica MyfA, and similar proteins. The afa gene clusters encode an afimbrial adhesive sheath produced by Escherichia coli. The adhesive sheath is composed of two proteins, AfaD and AfaE, which are independently exposed at the bacterial cell surface. AfaE is required for bacterial adhesion to HeLa cells and AfaD for the uptake of adherent bacteria into these cells. Saf-pilin pilus formation proteins SafA and SafD are the major and minor subunits, respectively, of Saf pili, which are often found in clinical isolates of Salmonella and are assembled by the chaperone-usher secretion pathway. PsaA and MyfA are the major subunits of pH 6 antigen (Psa) and Myf fimbrial homopolymers. Also included is the enteroaggregative Escherichia coli AAF/IV pilus tip protein, which is implicated in adhesion as well. During fimbria/pili assembly, polymerization occurs when the N-terminal extension (NTE) of one AfaD-like family monomer is inserted into an adjacent monomer, providing the final beta strand or G-strand, to complete the Ig-like fold, in a mechanism called the donor-strand complementation (DSC) or donor-strand exchange (DSE). 120 -341130 cd16913 YkuD_like L,D-transpeptidases/carboxypeptidases similar to Bacillus YkuD. Members of the YkuD-like family of proteins are found in a range of bacteria. The best studied member Bacillus YkuD has been shown to act as an L,D-transpeptidase that gives rise to an alternative pathway for peptidoglycan cross-linking. Another member Helicobacter pylori Csd6 functions as an L,D-carboxypeptidase and regulates helical cell shape and motility. The conserved region contains a conserved histidine and cysteine, with the cysteine thought to be an active site residue. 121 -340392 cd16915 HATPase_DpiB-CitA-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli K-12 DpiB, DcuS, and Bacillus subtilis CitS, DctS, and YufL. This family includes histidine kinase-like ATPase domains of Escherichia coli K-12 DpiB and DcuS, and Bacillus subtilis CitS, DctS and MalK histidine kinases (HKs) all of which are two component transduction systems (TCSs). E. coli K-12 DpiB (also known as CitA) is the histidine kinase (HK) of DpiA-DpiB, a two-component signal transduction system (TCS) required for the expression of citrate-specific fermentation genes and genes involved in plasmid inheritance. E. coli K-12 DcuS (also known as YjdH) is the HK of DcuS-DcuR, a TCS that in the presence of the extracellular C4-dicarboxlates, activates the expression of the genes of anaerobic fumarate respiration and of aerobic C4-dicarboxylate uptake. CitS is the HK of Bacillus subtilis CitS-CitT, a TCS which regulates expression of CitM, the Mg-citrate transporter. Bacillus subtilis DctS forms a tripartite sensor unit (DctS/DctA/DctB) for sensing C4 dicarboxylates. Bacillus subtilis MalK (also known as YfuL) is the HK of MalK-MalR (YufL-YufM) a TCS which regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Proteins having this DpiB-CitA-like HATPase domain generally have sensor domains such as Cache and PAS, and a histidine kinase A (HisKA)-like SpoOB-type, alpha-helical domain. 104 -340393 cd16916 HATPase_CheA-like Histidine kinase-like ATPase domain of the chemotaxis protein histidine kinase CheA, and some hybrid sensor histidine kinases. This family includes the cytoplasmic histidine kinase (HK) CheA, a transmembrane receptor which, together with cytoplasmic adaptor protein (CheW), forms the lattice at the core of the chemosensory array that controls the cellular chemotaxis of motile bacteria and archaea. CheA forms a two-component signal transduction system (TCS) with the response regulator CheY. Proteins having this CheA-like HATPase domain generally also have a histidine-phosphotransfer domain, a histidine kinase homodimeric domain, and a regulatory domain; some are hybrid sensor histidine kinases as they contain a REC signal receiver domain. 178 -340394 cd16917 HATPase_UhpB-NarQ-NarX-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli UhpB, NarQ and NarX, and Bacillus subtilis YdfH, YhcY and YfiJ. This family includes the histidine kinase-like ATPase (HATPase) domains of various histidine kinases (HKs) of two-component signal transduction systems (TCSs) such as Escherichia coli UhpB, a HK of the UhpB-UhpA TCS, NarQ and NarX, HKs of the NarQ-NarP and NarX-NarL TCSs, respectively, and Bacillus YdfH, YhcY and YfiJ HKs, of the YdfH-YdfI, YhcY-YhcZ and YfiJ-YfiK TCSs, respectively. In addition, it includes Bacillus YxjM, ComP, LiaS and DesK, HKs of the YxjM-YxjML, ComP-ComA, LiaS-LiaR, DesR-DesK TCSs, respectively. Proteins having this HATPase domain have a histidine kinase dimerization and phosphoacceptor domain; some have accessory domains such as GAF, HAMP, PAS and MASE sensor domains. 87 -340395 cd16918 HATPase_Glnl-NtrB-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli GlnL (synonyms NtrB and NRII). This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs), similar to Escherichia coli GlnL/NtrB/NRII HK of the two-component regulatory system (TCS) GlnL/GlnG (NtrB-NtrC, or NRII-NRI), which regulates the transcription of genes encoding metabolic enzymes and permeases in response to carbon and nitrogen status in E. coli and related bacteria. Also included in this family are Rhodobacter capsulatus NtrB, Azospirillum brasilense NtrB, Vibrio alginolyticus NtrB, Rhizobium leguminosarum biovar phaseoli NtrB, and Herbaspirillum seropedicae NtrB. Escherichia coli GlnL/NtrB/NRII is both a kinase and a phosphatase, catalyzing the phosphorylation and dephosphorylation of GlnG/NtrC/NRI. The kinase and phosphatase activities of GlnL/NtrB/NRII are regulated by the PII signal transduction protein, which on binding to GlnL/NtrB/NRII, inhibits the kinase activity of GlnL/NtrB/NRII and activates the GlnL/NtrB/NRII phosphatase activity. Proteins having this HATPase domain also have a histidine kinase dimerization and phosphoacceptor domain (HisKA); some also contain PAS sensor domain(s). 109 -340396 cd16919 HATPase_CckA-like Histidine kinase-like ATPase domain of two-component sensor hybrid histidine kinases, similar to Brucella abortus 2308 CckA. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component hybrid sensor histidine kinase (HKs) similar to Brucella abortus 2308 CckA, which is a component of an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival; phosphoryl transfer initiates from the sensor kinase CckA and proceeds via the ChpT phosphotransferase to two regulatory substrates: the DNA-binding response regulator CtrA and the phospho-receiver protein CpdR. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), a REC signal receiver domain, and some contain PAS or PAS and GAF sensor domain(s). 116 -340397 cd16920 HATPase_TmoS-FixL-DctS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Rhizobium meliloti FixL, and Rhodobacter capsulatus DctS; includes hybrid sensor histidine kinase similar to Pseudomonas mendocina TmoS. This family includes the histidine kinase-like ATPase (HATPase) domains of various histidine kinases (HKs) of two-component signal transduction systems (TCSs), such as Pseudomonas mendocina TmoS HK of the TmoS-TmoT TCS, which controls the expression of the toluene-4-monooxygenase pathway, Rhizobium meliloti FixL HK of the FixL-FixJ TCS, which regulates the expression of the genes related to nitrogen fixation in the root nodule in response to O(2) levels, and Rhodobacter capsulatus DctS of the DctS-DctR TCS, which controls synthesis of the high-affinity C4-dicarboxylate transport system. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA) and PAS sensor domain(s); many are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 104 -340398 cd16921 HATPase_FilI-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Methanosaeta harundinacea FilI and some hybrid sensor histidine kinases. This family includes FilI, the histidine kinase (HK) component of FilI-FilRs, a two-component signal transduction system (TCS) of the methanogenic archaeon, Methanosaeta harundinacea, which is involved in regulating methanogenesis. The cytoplasmic HK core consists of a C-terminal HK-like ATPase domain (represented here) and a histidine kinase dimerization and phosphoacceptor domain (HisKA) domain, which, in FilI, are coupled to CHASE, HAMP, PAS, and GAF sensor domains. FilI-FilRs catalyzes the phosphotransfer between FilI (HK) and FilRs (FilR1 and FilR2, response regulators) of the TCS. TCSs are predicted to be of bacterial origin, and acquired by archaea by horizontal gene transfer. This model also includes related HATPase domains such as that of Synechocystis sp. PCC6803 phytochrome-like protein Cph1. Proteins having this HATPase domain and HisKA domain also have accessory sensor domains such as CHASE, GAF, HAMP and PAS; some are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 105 -340399 cd16922 HATPase_EvgS-ArcB-TorS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases, many are hybrid sensor histidine kinases, similar to Escherichia coli EvgS, ArcB, TorS, BarA, RcsC. This family contains the histidine kinase-like ATPase (HATPase) domains of various two-component hybrid sensor histidine kinases (HKs), including the following Escherichia coli HKs: EvgS, a HK of the EvgS-EvgA two-component system (TCS) that confers acid resistance; ArcB, a HK of the ArcB-ArcA TCS that modulates the expression of numerous genes in response to respiratory growth conditions; TorS, a HK of the TorS-TorR TCS which is involved in the anaerobic utilization of trimethylamine-N-oxide; BarA, a HK of the BarA-UvrY TCS involved in the regulation of carbon metabolism; and RcsC, a HK of the RcsB-RcsC TCS which regulates the expression of the capsule operon and of the cell division gene ftsZ. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), with most having accessory sensor domain(s) such as GAF, PAS and CHASE; many are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 110 -340400 cd16923 HATPase_VanS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Enterococcus faecium VanS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Enterococcus faecium VanS HK of the VanS-VanR two-component regulatory system (TCS) which activates the transcription of vanH, vanA and vanX vancomycin resistance genes. It also contains Ecoli YedV and PcoS, probable members of YedW-YedV TCS and PcoS-PcoR TCS, repectively. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); most also have a HAMP sensor domain. 102 -340401 cd16924 HATPase_YpdA-YehU-LytS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli YpdA, YehU, Bacillus subtilis LytS, and some hybrid sensor histidine kinases. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Bacillus subtilis LytS, a HK of the two-component system (TCS) LytS-LytR needed for growth on pyruvate, and Staphylococcus aureus LytS-LytR TCS involved in the adaptation of S. aureus to cationic antimicrobial peptides. It also includes the HATPase domains of Escherichia coli YpdA and YehU, HKs of YpdA-YpdB and YehU-YehTCSs, which are involved together in a nutrient sensing regulatory network. Proteins having this HATPase domain also contain a histidine kinase domain (His-kinase), some having accessory sensor domain(s) such as Cache, HAMP or GAF; some are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 103 -340402 cd16925 HATPase_TutC-TodS-like Histidine kinase-like ATPase domain of hybrid sensor histidine kinases similar to Pseudomonas putida TodS and Thauera aromatica TutC. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component hybrid sensor histidine kinase (HKs) such Pseudomonas putida TodS HK of the TodS-TodT two-component regulatory system (TCS) which controls the expression of a toluene degradation pathway. Thauera aromatica TutC may be part of a TCS that is involved in anaerobic toluene metabolism. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), PAS sensor domain(s) and a REC domain. 110 -340403 cd16926 HATPase_MutL-MLH-PMS-like Histidine kinase-like ATPase domain of DNA mismatch repair proteins Escherichia coli MutL, human MutL homologs (MLH/ PMS), and related domains. This family includes the histidine kinase-like ATPase (HATPase) domains of Escherichia coli MutL, human MLH1 (mutL homolog 1), human PMS1 (PMS1 homolog 1, mismatch repair system component), human MLH3 (mutL homolog 3), and human PMS2 (PMS1 homolog 2, mismatch repair system component). MutL homologs (MLH/PMS) participate in MMR (DNA mismatch repair), and in addition have role(s) in DNA damage signaling and suppression of homologous recombination (recombination between partially homologous parental DNAs). The primary role of MutL in MMR is to mediate protein-protein interactions during mismatch recognition and strand removal; a ternary complex is formed between MutS, MutL, and the mismatched DNA, which activates the MutH endonuclease. 188 -340404 cd16927 HATPase_Hsp90-like Histidine kinase-like ATPase domain of human cytosolic Hsp90 and its homologs including Escherichia coli HtpG, and related domains. This family includes the histidine kinase-like ATPase (HATPase) domains of 90 kilodalton heat-shock protein (Hsp90) eukaryotic homologs including cytosolic Hsp90, mitochondrial TRAP1 (tumor necrosis factor receptor-associated protein 1), GRP94 (94 kDa glucose-regulated protein) of the endoplasmic reticulum (ER), and chloroplast Hsp90C. It also includes the bacterial homologs of Hsp90, known as HtpG (High temperature protein G). Hsp90 family of chaperones assist other proteins to fold correctly, stabilizes them against heat stress, and aids in protein degradation. 189 -340405 cd16928 HATPase_GyrB-like Histidine kinase-like ATPase domain of the B subunit of DNA gyrase. This family includes histidine kinase-like ATPase domain of the B subunit of DNA gyrase. Bacterial DNA gyrase is a type II topoisomerase (type II as it transiently cleaves both strands of DNA) which catalyzes the introduction of negative supercoils into DNA, possibly by a mechanism in which one segment of the double-stranded DNA substrate is passed through a transient break in a second segment. It consists of GyrA and GyrB subunits in an A2B2 stoichiometry; GyrA subunits catalyze strand-breakage and reunion reactions, and GyrB subunits hydrolyze ATP. DNA gyrase is found in bacteria, plants and archaea, but as it is absent in humans it is a possible drug target for the treatment of bacterial and parasite infections. 180 -340406 cd16929 HATPase_PDK-like Histidine kinase-like ATPase domain of pyruvate dehydrogenase kinase, branched-chain alpha-ketoacid dehydrogenase kinase and related domains. This family includes the histidine kinase-like ATPase (HATPase) domains of all four PDK isoforms (pyruvate dehydrogenase kinases 1-4) that have been described in mammals, and other PDKs including Saccharomyces Pkp1p and Pkp2p. PDKs and phosphatases tightly regulate the mitochondrial pyruvate dehydrogenase complex (PDC) by reversible phosphorylation. PDC catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA, connecting glycolysis and the TCA acid cycle. Also included in this family is mammalian branched-chain alpha-ketoacid dehydrogenase kinase (BDK), a mitochondrial protein kinase that phosphorylates a subunit of the branched-chain a-ketoacid dehydrogenase (BCKD) complex, which catalyzes the oxidative decarboxylation of branched-chain alpha-ketoacids derived from leucine, isoleucine, and valine, a rate-limiting step in the oxidative degradation of these branched-chain amino acids. 169 -340407 cd16930 HATPase_TopII-like Histidine kinase-like ATPase domain of eukaryotic topoisomerase II. This family includes the histidine kinase-like ATPase (HATpase) domains of human topoisomerase IIA (TopIIA) and TopIIB, Saccharomyces cerevisae TOP2p, and related proteins. These proteins catalyze the passage of DNA double strands through a transient double-strand break in the presence of ATP. 147 -340408 cd16931 HATPase_MORC-like Histidine kinase-like ATPase domain of human microrchidia (MORC) family CW-type zinc finger proteins MORC1-4, and related domains. This family includes the histidine kinase-like ATPase (HATPase) domain of human microrchidia (MORC) family CW-type zinc finger proteins MORC1-4, and related domains. In addition to the HATPase domain, MORC family proteins have a CW-type zinc finger domain containing four conserved cysteines and two conserved tryptophans, and coiled-coil domains at the carboxy-terminus. MORC1 has cross-species differential methylation in association with early life stress, and genome-wide association with major depressive disorder (MDD). MORC2 is involved in several nuclear processes, including transcription modulation and DNA damage repair, and exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY. MORC3 regulates p53, and is an antiviral factor which plays an important role during HSV-1 and HCMV infection, and is a positive regulator of influenza virus transcription. MORC4 is highly expressed in a subset of diffuse large B-cell lymphomas and has potential as a lymphoma biomarker. 118 -340409 cd16932 HATPase_Phy-like Histidine kinase-like ATPase domain of plant phytochromes similar to Arabidopsis thaliana Phytochrome A, B, C, D and E. This family includes the histidine kinase-like ATPase (HATPase) domains of plant red/far-red photoreceptors, the phytochromes, and includes the Arabidopsis thaliana phytochrome family phyA-phyE. Following red light absorption, biologically inactive forms of phytochromes convert to active forms, which rapidly convert back to inactive forms upon far-red light irradiation. Phytochromes can be considered as having an N-terminal photosensory region to which a bilin chromophore is bound, and a C-terminal output region, which includes the HATPase domain represented here, and is involved in dimerization and presumably contributes to relaying the light signal to downstream signaling events. 113 -340410 cd16933 HATPase_TopVIB-like Histidine kinase-like ATPase domain of type IIB topoisomerase, Topo VI, subunit B. This family includes the histidine kinase-like ATPase (HATPase) domain of the B subunit of topoisomerase VI (Topo VIB). Topo VI is a heterotetrameric complex composed of two TopVIA and two TopVIB subunits and is categorized as a type II B DNA topoisomerase. It is found in archaea and also in plants. Type II enzymes cleave both strands of a DNA duplex and pass a second duplex through the resulting break in an ATP-dependent mechanism. DNA cleavage by Topo VI generates two-nucleotide 5'-protruding ends. 203 -340411 cd16934 HATPase_RsbT-like Histidine kinase-like ATPase domain of the anti sigma-B factor Bacillus subtilis serine/threonine-protein kinase RsbT, and related domains. This family includes the histidine kinase-like ATPase (HATPase) domain of Bacillus subtilis serine/threonine-protein kinase RsbT, a component of the stressosome signaling complex of Bacillus subtilis. The stressosome is formed from multiple copies of three proteins, a sensor protein RsbR, a scaffold protein RsbS, and RsbT, and responds to environmental changes by initiating a protein partner switching cascade. Stress perception increases the phosphorylation of RsbR and RsbS, by RsbT. Subsequent dissociation of RsbT from the stressosome activates the sigma-B cascade, leading to the release of the alternative sigma factor, sigma-B. 117 -340412 cd16935 HATPase_AgrC-ComD-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Staphylococcus aureus AgrC and Streptococcus pneumoniae ComD which are involved in quorum sensing. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) including Staphylococcus aureus AgrC which is an HK of the accessory gene regulator (agr) quorum sensing two-component regulatory system (TCS) AgrC-AgrA. The agr system plays a part in the transition from persistent to virulent phenotype. This family also includes Streptococcus pneumoniae ComD HK of the ComD-ComE TCS, involved in quorum sensing and genetic competence. 134 -340413 cd16936 HATPase_RsbW-like Histidine kinase-like ATPase domain of RsbW, an anti sigma-B factor and serine-protein kinase involved in regulating sigma-B during stress in Bacilli, and related domains. This family includes histidine kinase-like ATPase (HATPase) domain of RsbW, an anti sigma-B factor as well as a serine-protein kinase involved in regulating sigma-B during stress in Bacilli. The alternative sigma factor sigma-B is an important regulator of the general stress response of Bacillus cereus and B. subtilis. RsbW is an anti-sigma factor while RsbV is an anti-sigma factor antagonist (anti-anti-sigma factor). RsbW can also act as a kinase on RsbV. In a partner-switching mechanism, RsbW, RsbV, and sigma-B participate as follows: in non-stressed cells, sigma-B is present in an inactive form complexed with RsbW; in this form, sigma-B is unable to bind to RNA polymerase. Under stress, RsbV binds to RsbW, forming an RsbV-RsbW complex, and sigma-B is released to bind to RNA polymerase. RsbW may then act as a kinase on RsbV, phosphorylating a serine residue; RsbW is then released to bind to sigma-B, hence blocking its ability to bind RNA polymerase. A phosphatase then dephosphorylates RsbV so that it can again form a complex with RsbW, leading to the release of sigma-B. 91 -340414 cd16937 HATPase_SMCHD1-like Histidine kinase-like ATPase domain of structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) protein. This family includes histidine kinase-like ATPase (HATPase) domain of structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) protein, which is involved in gene silencing and in DNA damage. It has critical roles in X-chromosome inactivation and is also an important regulator of autosomal gene clusters. Upon DNA damage, SMCHD1 promotes non-homologous end joining and inhibits homologous recombination repair. SMCHD1 is implicated in the pathogenesis of facioscapulohumeral muscular dystrophy. 119 -340415 cd16938 HATPase_ETR2_ERS2-EIN4-like Histidine kinase-like ATPase domain of Arabidopsis thaliana ETR2, ERS2, and EIN4, and related domains. This family includes the histidine kinase-like ATPase domains (HATPase) of three out of the five receptors that recognize the plant hormone ethylene in Arabidopsis thaliana. These three proteins have been classified as belonging to subfamily 2: ETR2, ERS2, and EIN4. They lack most of the motifs characteristic of histidine kinases, and EIN4 is the only one in this group containing the conserved histidine that is phosphorylated in two-component and phosphorelay systems. This family also includes the HATPase domains of Escherichia coli RcsD phosphotransferase which is a component of the Rcs-signaling system, a complex multistep phosphorelay involving five proteins, and is involved in many transcriptional networks such as cell division, biofilm formation, and virulence, among others. Also included is Schizosaccharomyces pombe Mak3 (Phk1) which participates in a multi-step two-component related system which regulates H2O2-induced activation of the Sty1 stress-activated protein kinase pathway. Most proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), and a GAF sensor domain; most are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 133 -340416 cd16939 HATPase_RstB-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Salmonella typhimurium RstB. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Salmonella typhimurium RstB HK of the RstA-RstB two-component regulatory system (TCS), which regulates expression of the constituents participating in pyrimidine metabolism and iron acquisition, and may be required for regulation of Salmonella motility and invasion. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), and a HAMP sensor domain. 104 -340417 cd16940 HATPase_BasS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli BasS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) similar to Escherichia coli BasS HK of the BasS-BasR two-component regulatory system (TCS). Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some contain a HAMP sensory domain, while some an N-terminal two-component sensor kinase domain. 113 -340418 cd16942 HATPase_SpoIIAB-like Histidine kinase-like ATPase domain of SpoIIAB, an anti sigma-F factor and serine-protein kinase involved in regulating sigma-F during sporulation in Bacilli, and related domains. This family includes histidine kinase-like ATPase (HATPase) domain of SpoIIAB, an anti sigma-F factor and a serine-protein kinase involved in regulating sigma-F during sporulation in Bacilli where, early in sporulation, the cell divides into two unequal compartments: a larger mother cell and a smaller forespore. Sigma-F transcription factor is activated in the forespore directly after the asymmetric septum forms, and its spatial and temporal activation is required for sporulation. Free sigma-F can associate with the RNA polymerase core and activate transcription of the sigma-F regulon, its regulation may comprise a partner-switching mechanism involving SpoIIAB, SpoIIAA, and sigma-F as follows: SpoIIAB can form alternative complexes with either: i) sigma-F, holding it in an inactive form and preventing its association with RNA polymerase, or ii) unphosphorylated SpoIIAA and a nucleotide, either ATP or ADP. In the presence of ATP, SpoIIAB acts as a kinase to specifically phosphorylate a serine residue of SpoIIAA; this phosphorylated form has low affinity for SpoIIAB and dissociates, making SpoIIAB available to capture sigma-F. SpoIIAA may then be dephosphorylated by a SpoIIE serine phosphatase and be free to attack the SpoIIAB sigma-F complex to induce the release of sigma-F. 135 -340419 cd16943 HATPase_AtoS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli K-12 AtoS. This family includes the histidine kinase-like ATPase (HATPase) domains of various histidine kinases (HKs) of two-component signal transduction systems (TCSs) such as Escherichia coli AtoS, an HK of the AtoS-AtoC TCS. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some have accessory domains such as HAMP or PAS sensor domains or CBS-pair domains. 105 -340420 cd16944 HATPase_NtrY-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Azorhizobium caulinodans NtrY. This family includes the histidine kinase-like ATPase (HATPase) domains of various histidine kinases (HKs) of two-component signal transduction systems (TCSs) such as Azorhizobium caulinodans ORS571 NtrY of the NtrY-NtrX TCS, which is involved in nitrogen fixation and metabolism. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA) and a HAMP sensor domain; some also have PAS sensor domains. 108 -340421 cd16945 HATPase_CreC-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli CreC. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Escherichia coli CreC of the CreC-CreB two-component regulatory system (TCS) involved in catabolic regulation. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), and accessory sensory domain(s) such as HAMP, CACHE or PAS. 106 -340422 cd16946 HATPase_BaeS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli BasS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) similar to Escherichia coli BaeS HK of the BaeS/BaeR two-component regulatory system (TCS), which responds to envelope stress. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), and a HAMP sensory domain. 109 -340423 cd16947 HATPase_YcbM-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Bacillus subtilis YcbM. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Bacillus subtilis YcbM, a HK of the two-component system YcbM-YcbL. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA). 125 -340424 cd16948 HATPase_BceS-YxdK-YvcQ-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Bacillus subtilis BceS, YxdK, and Bacillus thuringiensis YvcQ. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Bacillus subtilis BceS and Bacillus thuringiensis YvcQ, the HKs of the two-component regulatory system (TCSs) BceS-BceR and YvcQ-YvcP, repsectively, which are both involved in regulating bacitracin resistance. It also includes the HATPase domain of YxdK, the HK of YxdK-YxdJ TCS involved in sensing antimicrobial compounds. 109 -340425 cd16949 HATPase_CpxA-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli CpxA. This family includes the histidine kinase-like ATPase (HATPase) domains of two-component sensor histidine kinase (HKs) similar to Escherichia coli CpxA, HK of the CpxA-CpxR two-component regulatory system (TCS) which may function in acid stress and in cell wall stability. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA) and a HAMP sensor domain; some also contain a CpxA family periplasmic domain. 104 -340426 cd16950 HATPase_EnvZ-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli EnvZ and Pseudomonas aeruginosa BfmS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Escherichia coli EnvZ of the EnvZ-OmpR two-component regulatory system (TCS), which functions in osmoregulation. It also contains the HATPase domain of Pseudomonas aeruginosa BfmS, the HK of the BfmSR TCS, which functions in the regulation of the rhl quorum-sensing system and bacterial virulence in P. aeruginosa. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA) and a HAMP sensor domain; some also contain a periplasmic domain. 101 -340427 cd16951 HATPase_EL346-LOV-HK-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Erythrobacter litoralis blue light-activated histidine kinase 2. This domain family includes the histidine kinase-like ATPase (HATPase) domain of blue light-activated histidine kinase 2 of Erythrobacter litoralis (EL346). Signaling commonly occurs within HK dimers, however EL346 functions as a monomer. Also included in this family are the HATPase domains of ethanolamine utilization sensory transduction histidine kinase (EutW), whereby regulation of ethanolamine, a carbon and nitrogen source for gut bacteria, results in autophosphorylation and subsequent phosphoryl transfer to a response regulator (EutV) containing an RNA-binding domain. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some have an accessory PAS sensor domain, while some have an N-terminal histidine kinase domain. 131 -340428 cd16952 HATPase_EcPhoR-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli PhoR. This family includes histidine kinase-like ATPase (HATPase) domain of two-component sensor histidine kinases similar to Escherichia coli or Vibrio cholera PhoR, the histidine kinase (HK) of PhoB-PhoR a two-component signal transduction system (TCS) involved in phosphate regulation. PhoR monitors extracellular inorganic phosphate (Pi) availability and PhoB, the response regulator, regulates transcription of genes of the phosphate regulon. PhoR is a bifunctional histidine autokinase/phospho-PhoB phosphatase; in phosphate deficiency, it autophosphorylates and Pi is transferred to PhoB, and when environmental Pi is abundant, it removes the phosphoryl group from phosphorylated PhoB. Other roles of PhoB-PhoR TCS have been described, including motility, biofilm formation, intestinal colonization, and virulence in V. cholera. E.coli PhoR and Bacillus subtilis PhoR (whose HATPase domain belongs to a different family) sense very different signals in each bacterium. In E. coli the PhoR signal comes from phosphate transport mediated by the PstSCAB2 phosphate transporter and the PhoU chaperone-like protein while in B. subtilis, the PhoR activation signal comes from wall teichoic acid (WTA) metabolism. 108 -340429 cd16953 HATPase_BvrS-ChvG-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Brucella abortus BvrS and Sinorhizobium meliloti ChvG. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Brucella abortus BvrS of the BvrR-BvrS two-component regulatory system (TCS), which controls cell invasion and intracellular survival, as well as Sinorhizobium meliloti and Agrobacterium tumefaciens ChvG of the ChvI-ChvG TCS necessary for endosymbiosis and pathogenicity in plants. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA), an accessory HAMP sensor domain, a periplasmic stimulus-sensing domain, and some also have a sensor N-terminal transmembrane domain. 110 -340430 cd16954 HATPase_PhoQ-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli PhoQ and Providencia stuartii AarG. This family includes histidine kinase-like ATPase (HATPase) domain of two-component sensor histidine kinases similar to Escherichia coli PhoQ and Providencia stuartii AarG. PhoQ is the histidine kinase (HK) of the PhoP-PhoQ two-component regulatory system (TCS), which responds to the levels of Mg2+ and Ca2+, controls virulence, mediates the adaptation to Mg2+-limiting environments, and regulates numerous cellular activities. Providencia stuartii AarG is a putative sensor kinase which controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. The AarG product is similar to PhoQ in that it is able to restore wild-type levels of resistance to a Salmonella typhimurium phoQ mutant. However, the expression of the 2'-N-acetyltransferase gene and of aarP (a gene encoding a transcriptional activator of 2'-N-acetyltransferase) are not significantly affected by the levels of Mg2+ or Ca2+. Most proteins in this group contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some have an accessory HAMP sensor domain, and some have an intracellular membrane -interaction PhoQ sensor domain. 135 -340431 cd16955 HATPase_YpdA-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli YpdA. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Escherichia coli YpdA, a HK of the two-component system (TCS) YpdA-YpdB which is involved in a nutrient sensing regulatory network with YehU-YehT. Proteins having this HATPase domain also contain a histidine kinase domain (His-kinase), and some have a GAF sensor domain; some contain a DUF3816 domain; some are hybrid sensor histidine kinases as they also contain a REC signal receiver domain. 102 -340432 cd16956 HATPase_YehU-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Escherichia coli YehU. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) including Escherichia coli YehU, a HK of the two-component system (TCS) YehU-YehT which is involved in a nutrient sensing regulatory network. Proteins having this HATPase domain also contain a histidine kinase domain (His-kinase); some have a GAF sensor domain while some have a cupin domain. 101 -340433 cd16957 HATPase_LytS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Bacillus subtilis LytS and Staphylococcus aureus LytS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Bacillus subtilis LytS, a HK of the two-component system (TCS) LytS-LytR needed for growth on pyruvate, and Staphylococcus aureus LytS-LytR TCS involved in the adaptation of S. aureus to cationic antimicrobial peptides. Proteins having this HATPase domain also contain a histidine kinase domain (His-kinase), and a GAF sensor domain; most contain a DUF3816 domain. 106 -341131 cd16961 RMtype1_S_TRD-CR_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR) and similar domains. The restriction-modification (RM) system S subunit generally consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This superfamily represents a single TRD-CR unit; in addition to type I TRD-CR units, it includes RMtype1_S_TRD-CR_like domains of various putative Helicobacter type II restriction enzymes and methyltransferases, such as Hci611ORFHP and HfeORF12890P, as well as TRD-CR-like sequence-recognition domains of the M subunit of putative type I DNA methyltransferase such as M2.CinURNWORF2828P and M.Mae7806ORF3969P. 178 -340813 cd16962 RuvC Crossover junction endodeoxyribonuclease RuvC. Crossover junction endodeoxyribonuclease RuvC is also called Holliday junction resolvase RuvC. It is part of the RuvABC pathway in Escherichia coli and other Gram-negative bacteria that is involved in processing Holliday junctions, which are formed by the reciprocal exchange of strands between two DNA duplexes. Holliday junction resolvases (HJRs) are endonucleases that specifically resolve Holliday junction DNA intermediates during homologous recombination. RuvC is thought to bind either on the open, DNA exposed face of a single RuvA tetramer, or to replace one of the two tetramers. Binding is proposed to be mediated by an unstructured loop on RuvC, which becomes structured on binding RuvA. RuvC can be bound to the complex in either orientation, therefore resolving Holliday junctions in either a horizontal or vertical manner. HJRs occur in archaea, bacteria, and in the mitochondria of certain fungi. These are referred to as the RuvC family of Holliday junction resolvases, RuvC being the Escherichia coli HJR. RuvC and its orthologs are homodimers and display structural similarity to RNase H and Hsp70. 153 -340814 cd16963 CCE1 fungal mitochondrial Holliday junction resolvases similar to Saccharomyces cerevisiae CCE1. Saccharomyces cerevisiae Cruciform cutting endonuclease 1 (CCE1) is a Holliday junction resolvase specific for 4-way junctions. CCE1 is involved in the maintenance of mitochondrial DNA. Holliday junction resolvases (HJRs) are endonucleases that specifically resolve Holliday junction DNA intermediates during homologous recombination. Holliday junctions are formed by the reciprocal exchange of strands between two DNA duplexes. HJRs occur in archaea, bacteria, and in the mitochondria of certain fungi; they may form homodimers and display structural similarity to RNase H and Hsp70. 290 -340815 cd16964 YqgF putative pre-16S rRNA nuclease YqgF and RuvX family. Escherichia coli YqgF has been shown to act as a pre-16S rRNA nuclease, presumably as a monomer. It is involved in the processing of pre-16S rRNA during ribosome maturation. The RuvX gene product from Mycobacterium tuberculosis was shown to act, in a dimeric form, as a Holliday junction resolvase (HJR). HJRs endonucleases specifically resolve Holliday junction DNA intermediates during homologous recombination. Holliday junctions are formed by the reciprocal exchange of strands between two DNA duplexes. HJRs occur in archaea, bacteria, and in the mitochondria of certain fungi; they may form homodimers and display structural similarity to RNase H and Hsp70. 132 -341215 cd16965 Alpha_kinase_ChaK Alpha-kinase domain of channel kinases. This group is composed of channel kinases 1 (ChaK1) and 2 (ChaK2), and similar proteins. ChaK1 and ChaK2 are also called transient receptor potential cation channel subfamily M members 7 (TRMP7) and 6 (TRMP6), respectively. They are fusion proteins containing a transmembrane ion pore or channel and a C-terminal alpha-kinase domain, both of which are functional. They are both cation-selective channels that preferentially permeate Zn2+, Mg2+, and Ca2+ ions. They are central regulators of Mg2+ and Ca2+ homeostasis. TRMP7 is ubiquitously expressed while TRMP6 is highly expressed in specific tissues such as the kidney and intestine. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -341216 cd16966 Alpha_kinase_ALPK2_3 Alpha-kinase domain of alpha-protein kinases 2 and 3. Alpha-protein kinases 2 (ALPK2) and 3 (ALPK3) are also called heart alpha-protein kinase (HAK) and muscle alpha-protein kinase (MAK), respectively. They both contain a C-terminal alpha-kinase domain and two immunoglobulin (Ig)-like domains. Loss of function mutations in ALPK3 can cause early-onset and familial cardiomyopathy in humans. The ALPK2 gene may also be a novel candidate gene for inherited hypertension in Dahl rats. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -341217 cd16967 Alpha_kinase_eEF2K Alpha-kinase domain of eukaryotic elongation factor-2 kinase. Eukaryotic elongation factor-2 kinase (eEF2K) is also called calcium/calmodulin (CaM)-dependent eEF2K. It phosphorylates eukaryotic elongation factor-2 (EEF2) at a single site, leading to its inactivation and inability to bind ribosomes, and slowing down the elongation stage of protein synthesis. It has been linked to many human diseases including cardiovascular conditions (atherosclerosis) and pulmonary arterial hypertension, as well as solid tumors and neurological disorders. eEF2K is an atypical protein kinase containing a CaM binding region, an alpha-kinase catalytic domain, and TPR-like Sel1 repeats at the C-terminus. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 216 -341218 cd16968 Alpha_kinase_MHCK_like Alpha-kinase domain of myosin heavy chain kinase and similar domains. This group is composed of alpha-kinase domains of Dictyostelium discoideum myosin heavy chain kinases A-D (MHCKA, MHCKB, MHCKC, MHCKD), alpha-protein kinase 1 (AK1), and similar proteins. The myosin heavy chain kinases are involved in regulating myosin II filament assembly in Dictyostelium discoideum. They phosphorylate target threonine residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail, resulting in filament disassembly. The different MHCK isoforms display different spatial regulation, indicating specific roles for each isoform in fine tuning the Dictyostelium actomyosin cytoskeleton. They all contain an alpha-kinase domain as well as WD40 repeats at the C-terminus. AK1 contains an N-terminal Arf-GAP domain and a central alpha-kinase domain. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 202 -341219 cd16969 Alpha_kinase_ALPK1 Alpha-kinase domain of alpha-protein kinase 1. Alpha-protein kinase 1 is also called chromosome 4 kinase or lymphocyte alpha-protein kinase (LAK). ALPK1 is implicated in epithelial cell polarity and exocytic vesicular transport towards the apical plasma membrane. It resides on Golgi-derived vesicles where it phosphorylates myosin IA, a motor protein that regulates the delivery of vesicles to the plasma-membrane. It may be associated with inflammation-related diseases such as gout and type 2 diabetes mellitus. ALPK1 contains a C-terminal alpha-kinase domain, an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 227 -341220 cd16970 Alpha_kinase_VwkA_like Alpha-kinase domain of Dictyostelium discoideum VwkA and similar domains. Dictyostelium discoideum alpha-protein kinase VwkA is also called von Willebrand factor A alpha-kinase or vWF kinase. It influences myosin II abundance and assembly behavior as vWKA gene disruption leads to significant myosin II overassembly. VwkA also serves a critical conserved role in the periodic contractions of the contractile vacuole through its regulation of the myosin II cortical cytoskeleton. It contains a vWFa domain (named after its homology to von Willebrand factor A, a plasma glycoprotein essential for proper blood clotting) and a C-terminal alpha-kinase domain. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 227 -341221 cd16971 Alpha_kinase_ChaK1_TRMP7 Alpha-kinase domain of channel kinase 1, also called transient receptor potential cation channel subfamily M member 7. Channel kinase 1 (ChaK1), also called transient receptor potential cation channel subfamily M member 7 (TRMP7) or long transient receptor potential channel 7 (LTrpC7), is a fusion protein containing a transmembrane ion pore or channel and a C-terminal alpha-kinase domain, both of which are functional. It is ubiquitously expressed and is a cation-selective channel that preferentially permeates Zn2+, Mg2+, and Ca2+ ions. It is a central regulator of Mg2+ and Ca2+ homeostasis. TRPM7 plays a role in cancer proliferation, stroke, hydrogen peroxide dependent neurodegeneration, and heavy metal toxicity. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -341222 cd16972 Alpha_kinase_ChaK2_TRPM6 Alpha-kinase domain of channel kinase 2, also called transient receptor potential cation channel subfamily M member 6. Channel kinase 2 (ChaK2), also called transient receptor potential cation channel subfamily M member 6 (TRMP6) or melastatin-related TRP cation channel 6, is a fusion protein containing a transmembrane ion pore or channel and a C-terminal alpha-kinase domain, both of which are functional. It is highly expressed in the kidney and instestine. It is a cation-selective channel that preferentially permeates Zn2+, Mg2+, and Ca2+ ions. It is a central regulator of Mg2+ and Ca2+ homeostasis. TRPM6 is considered to be the Mg2+ entry pathway in the distal convoluted tubule of the kidney, where it functions as a gatekeeper for controlling the body's Mg2+ balance. Mutations in the TRPM6 gene cause the autosomal recessive disorder hypomagnesemia with secondary hypocalcemia, which often results in severe muscular and neurologic complications from early infancy that can lead to neurologic damage or cardiac arrest if left untreated. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -341223 cd16973 Alpha_kinase_ALPK3 Alpha-kinase domain of alpha-protein kinase 3. Alpha-protein kinase 3 (ALPK3) is also called muscle alpha-protein kinase (MAK) or myocytic induction/differentiation originator (Midori). Its expression is restricted to fetal and adult heart and adult skeletal muscle, and is localized in the nucleus. It is thought to act as a transcriptional regulator implicated in early cardiac development. Loss of function mutations in ALPK3 can cause early-onset and familial cardiomyopathy in humans. ALPK3 contains a C-terminal alpha-kinase domain and two immunoglobulin (Ig)-like domains. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -341224 cd16974 Alpha_kinase_ALPK2 Alpha-kinase domain of alpha-protein kinase 2. Alpha-protein kinase 2 (ALPK2) is also called heart alpha-protein kinase (HAK). Little functional information is known about ALPK2. In a three-dimensional colonic-crypt model, it has been identified as crucial for luminal apoptosis and expression of DNA repair-related genes, possibly in the transition of normal colonic crypt to adenoma. The ALPK2 gene may also be a novel candidate gene for inherited hypertension in Dahl rats. ALPK2 contains a C-terminal alpha-kinase domain and two immunoglobulin (Ig)-like domains. Alpha-kinase is an atypical protein kinase catalytic domain with no detectable similarity to conventional protein serine/threonine kinases. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 239 -340434 cd16975 HATPase_SpaK_NisK-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Bacillus subtilis SpaK and Lactococcus lactis NisK. This family includes histidine kinase-like ATPase (HATPase) domain of two-component sensor histidine kinases similar to Bacillus subtilis SpaK and Lactococcus lactis NisK. SpaK is the histidine kinase (HK) of the SpaK-SpaR two-component regulatory system (TCS), which is involved in the regulation of the biosynthesis of lantibiotic subtilin. NisK is the HK of the NisK-NisR TCS, which is involved in the regulation of the biosynthesis of lantibiotic nisin. SpaK and NisK may function as membrane-associated protein kinases that phosphorylate SpaR and NisR, respectively, in response to environmental signals. 107 -340435 cd16976 HATPase_HupT_MifS-like Histidine kinase-like ATPase domain of two-component sensor histidine kinases similar to Rhodobacter capsulatus HupT and Pseudomonas aeruginosa MifS. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Rhodobacter capsulatus HupT of the HupT-HupR two-component regulatory system (TCS), which regulates the synthesis of HupSL, a membrane bound [NiFe]hydrogenase. It also contains the HATPase domain of Pseudomonas aeruginosa MifS, the HK of the MifS-MifR TCS, which may be involved in sensing alpha-ketoglutarate and regulating its transport and subsequent metabolism. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some also have a C-terminal PAS sensor domain. 102 -340774 cd16977 VHS_GGA VHS (Vps27/Hrs/STAM) domain of GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) subfamily. GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) comprises a subfamily of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 133 -340775 cd16978 VHS_HSE1 VHS (Vps27/Hrs/STAM) domain of Class E vacuolar protein-sorting machinery protein HSE1. Class E vacuolar protein-sorting machinery protein HSE1, together with Vps27, comprise the ESCRT-0 complex, the sorting receptor for ubiquitinated cargo proteins at the multivesicular body (MVB). The complex directly binds to ubiquitinated transmembrane proteins and recruits both ubiquitin ligases and deubiquitinating enzymes. It is also required the efficient recycling of late Golgi proteins including the carboxypeptidase Y (CPY) sorting receptor, Vps10. Similar to metazoan STAMs, HSE1 contain: an N-terminal VHS domain, which is involved in cytokine-mediated intracellular signal transduction and has a superhelical structure similar to the structure of ARM (Armadillo) repeats; a Ubiquitin-Interacting Motif (UIM); a SH3 (Src Homology 3) domain, a well-established protein-protein interaction domain; and a GAT (GGA and TOM) domain, which is essential for the normal sorting function of HSE1. 134 -340776 cd16979 VHS_Vps27 VHS (Vps27/Hrs/STAM) domain of Vacuolar protein sorting-associated protein 27. Vacuolar protein sorting-associated protein 27 (Vps27 or Vps27p) is also called Golgi retention defective protein 11, and is the yeast homolog of Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate). Together with class E vacuolar protein-sorting machinery protein HSE1, it comprises the ESCRT-0 complex, the sorting receptor for ubiquitinated cargo proteins at the multivesicular body (MVB). The complex directly binds to ubiquitinated transmembrane proteins and recruits both ubiquitin ligases and deubiquitinating enzymes. It is also required the efficient recycling of late Golgi proteins including the carboxypeptidase Y (CPY) sorting receptor, Vps10. Vps27 contain similar domains and motifs to Hrs; it contains an N-terminal VHS domain, which has a superhelical structure similar to the structure of ARM (Armadillo) repeats, a FYVE (Fab1p, YOTB, Vac1p, and EEA1) zinc finger domain, two Ubiquitin-Interacting Motifs (UIMs), a GAT (GGA and TOM) domain, two a P(S/T)XP motifs that recruit ESCRT-I, and a short peptide motif near the C-terminus that recruits clathrin. 141 -340777 cd16980 VHS_Lsb5 VHS (Vps27/Hrs/STAM) domain of LAS seventeen-binding protein 5. LAS seventeen-binding protein 5 (LAS17-binding protein 5, Lsb5, or Lsb5p) localizes to the plasma membrane and plays a role in endocytosis in yeast. It interacts with actin regulators Sla1p and Las17p, ubiquitin, and Arf3p, coupling actin dynamics to membrane trafficking processes. Lsb5p contains an N-terminal VHS domain and a GAT (GGA and TOM) domain. The VHS domain has a superhelical structure similar to the structure of ARM (Armadillo) repeats. It is a right-handed superhelix of eight alpha helices. The VHS domain has been found in a number of proteins, some of which have been implicated in intracellular trafficking and sorting. 132 -340778 cd16981 CID_RPRD_like CID (CTD-Interacting Domain) of Regulation of nuclear pre-mRNA domain-containing proteins. This family is composed of Regulation of nuclear pre-mRNA domain-containing proteins 1A (RPRD1A), 1B (RPRD1B), 2 (RPRD2), yeast Rtt103, and similar proteins. RPRD1A, RPRD1B, and RPRD2 are CID (CTD-Interacting Domain) containing proteins that co-purify with RNA polymerase (Pol) II (RNAP II) and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. Yeast transcription termination factor Rtt103 is a CID containing protein that functions in DNA damage response. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 125 -340779 cd16982 CID_Pcf11 CID (CTD-Interacting Domain) of Pcf11. Pcf11 is conserved across eukaryotes. The best studied protein is Saccharomyces cerevisiae Pcf11, also called protein 1 of CF I, an essential subunit of the cleavage factor IA (CFIA) complex which is required for polyadenylation-dependent pre-mRNA 3'-end processing and RNA polymerase (Pol) II (RNAP II) transcription termination. Human Pcf11, also referred to as pre-mRNA cleavage complex 2 protein Pcf11, has been shown to enhance degradation of RNAP II-associated nascent RNA and transcriptional termination. The family also includes plant PCFS4 (Pcf11-similar-4 protein or Polyadenylation and cleavage factor homolog 4) and Caenorhabditis elegans Polyadenylation and cleavage factor homolog 11. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. Pcf11 CID preferentially interacts with CTD phosphorylated at Ser2. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 127 -340780 cd16983 CID_SCAF8_like CID (CTD-Interacting Domain) of SR-related and CTD-associated factor 8 and similar proteins. This subfamily includes SR-related and CTD-associated factors 8 (SCAF8) and 4 (SCAF4), and similar proteins. SCAF4 is also called Splicing factor arginine serine rich 15 (SFRS15). Members may play roles in mRNA processing. Both SCAF4 and SCAF8 contains a CTD-interacting domain (CID) at the amino terminus and a Ser/Arg-rich domain followed by an RNA recognition motif. CID binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II (RNAP II). During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 131 -340781 cd16984 CID_Nrd1_like CID (CTD-Interacting Domain) of Nrd1 and similar proteins. This subfamily includes Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein Seb1, and similar proteins. Nrd1 cooperates with Nab3 and Sen1, also called the Nrd1-Nab3-Sen1 (NNS) complex, to terminate the transcription by RNA polymerase (Pol) II (RNAPII) of many noncoding RNAs (ncRNAs), including small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and cryptic unstable transcripts (CUTs). Schizosaccharomyces pombe Seb1 does not function in an NNS-like termination pathway but promotes polyadenylation site selection of coding and noncoding genes. It cotranscriptionally controls alternative polyadenylation. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. Nrd1 CID preferentially interacts with CTD phosphorylated at Ser5. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 145 -340782 cd16985 ANTH_N_AP180 ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of adaptor protein 180 (AP180) subfamily. The Adaptor Protein 180 (AP180) subfamily members are phosphatidylinositol-binding clathrin assembly proteins, including mammalian clathrin coat assembly protein AP180 and Clathrin Assembly Lymphoid Myeloid Leukemia protein (CALM), Drosophila LAP (also called Like-AP180 or AP180), and Caenorhabditis elegans Uncoordinated protein 11 (unc-11, also called AP180-like adaptor protein). They are components of the adaptor complexes which link clathrin to receptors in coated vesicles. AP180 and CALM play important roles in clathrin-mediated endocytosis. AP180, also called 91 kDa synaptosomal-associated protein (SNAP91) or phosphoprotein F1-20, is a brain-specific clathrin-binding protein which stimulates clathrin assembly during the recycling of synaptic vesicles. CALM, also called phosphatidylinositol binding clathrin assembly protein (PICALM), is ubiquitously expressed. Members of this subfamily contain ANTH domains, which bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. This model describes the N-terminal region of ANTH domains of the Adaptor Protein 180 (AP180) subfamily. 117 -340783 cd16986 ANTH_N_Sla2p_HIP1_like ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of Sla2p/HIP1/HIP1R subfamily. Members of the Sla2p/HIP1/HIP1R subfamily share a common domain architecture, containing an N-terminal ANTH, a central clathrin-binding colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domains. HIP1 was identified in 1997 as an interactor of huntingtin; when mutated, it is involved in the neurodegenerative disorder Huntington's disease. Both HIP1 and HIP1R promote clathrin assembly in vitro. Yeast Sla2p, is a regulator of membrane cytoskeleton assembly. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. While the ANTH domain of Sla2p preferentially binds PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome, mammalian HIP1 and HIP1R were found to preferentially bind PtdIns(3,4)P2 and PtdIns(3,5)P2, respectively. This model describes the N-terminal region of ANTH domains of the Sla2p/HIP1/HIP1R subfamily. 117 -340784 cd16987 ANTH_N_AP180_plant ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of plant Clathrin coat assembly protein AP180 and similar proteins. This subfamily is composed of plant clathrin coat assembly protein AP180 and other ANTH domain containing proteins that are yet to be characterized. Arabidopsis thaliana AP180 (At-AP180) is a binding partner of plant alphaC-adaptin; it functions as a clathrin assembly protein that promotes the formation of cages with an almost uniform size distribution. In addition to At-AP180, Arabidopsis thaliana contains many ANTH domain containing proteins labelled as putative clathrin assembly proteins included in this subfamily such as At4g02650, At5g10410, At2g25430, and At1g33340, among others. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. This model describes the N-terminal region of ANTH domains of plant clathrin coat assembly protein AP180 and similar proteins. 122 -340785 cd16988 ANTH_N_YAP180 ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of yeast clathrin coat assembly protein AP180 (YAP180) and similar proteins. This subfamily includes yeast clathrin coat assembly protein AP180 (YAP180) and similar proteins. There are two YAP180 proteins in Saccharomyces cerevisiae, AP180A (yAP180A or YAP1801) and AP180B (yAP180B or YAP1802). They are involved in endocytosis and clathrin cage assembly. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. This model describes the N-terminal region of ANTH domains of plant clathrin coat assembly protein AP180 and similar proteins. 117 -340786 cd16989 ENTH_EpsinR Epsin N-Terminal Homology (ENTH) domain of Epsin-related protein. Epsin-related protein (EpsinR) is also called clathrin interactor 1 (Clint), enthoprotin, or epsin-4. It is a clathrin-coated vesicle (CCV) protein that binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), clathrin, and the gamma appendage domain of the adaptor protein complex 1 (AP1). It contains an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. The ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. The ENTH domain of human epsinR binds directly to the helical bundle domain of the mouse SNARE Vti1b; soluble NSF attachment protein receptors (SNAREs) are type II transmembrane proteins that have critical roles in providing the specificity and energy for transport-vesicle fusion. Specific ENTH domains may also function as protein cargo selection/recognition modules. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 130 -340787 cd16990 ENTH_Epsin Epsin N-Terminal Homology (ENTH) domain of Epsin family. Members of the epsin family play an important role as accessory proteins in clathrin-mediated endocytosis. They are important factors in clathrin-coated vesicle (CCV) generation. They contribute to membrane deformation and play a key function as adaptor proteins, coupling various components of clathrin-mediated uptake. They also have an important role in selecting and recognizing cargo. Three isoforms have been identified in mammals, epsin-1 to -3, and these are conserved in vertebrates. Epsin-1 is highly enriched and represents the dominant isoform in the brain. It is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. Epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. The ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of CCVs. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 124 -340788 cd16991 ENTH_Ent1_Ent2 Epsin N-Terminal Homology (ENTH) domain of Yeast Ent1, Ent2, and similar proteins. This subfamily is composed of the two orthologs of epsin in Saccharomyces cerevisiae, Epsin-1 (Ent1 or Ent1p) and Epsin-2 (Ent2 or Ent2p), and similar proteins. Yeast single epsin knockouts, either Ent1 and Ent2, are viable while the double knockout is not. Yeast epsins are required for endocytosis and localization of actin. Ent2 also plays a signaling role during cell division. The ENTH domain of Ent2 interacts with the septin organizing, Cdc42 GTPase activating protein, Bem3, leading to increased cytokinesis failure when overexpressed. Yeast epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 132 -340789 cd16992 ENTH_Ent3 Epsin N-Terminal Homology (ENTH) domain of Yeast Ent3 and similar proteins. This subfamily is composed of one of two epsinR orthologs present in Saccharomyces cerevisiae, Epsin-3 (Ent3 or Ent3p), and similar proteins. Ent3 is an adaptor proteins at the Trans-Golgi Network (TGN); it cooperates with yeast SNARE Vti1p to regulate transport from the TGN to the prevacuolar endosome. Ent3 facilitates the interaction between Gga2p with both the endosomal syntaxin Pep12p and clathrin in the GGA-dependent transport to the late endosome. Yeast epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. Similar to mammalian epsinR, The ENTH domain of Ent3 binds to the yeast SNARE Vti1p; soluble NSF attachment protein receptors (SNAREs) are type II transmembrane proteins that have critical roles in providing the specificity and energy for transport-vesicle fusion. Specific ENTH domains may also function as protein cargo selection/recognition modules. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 121 -340790 cd16993 ENTH_Ent5 Epsin N-Terminal Homology (ENTH) domain of Yeast Ent5 and similar proteins. This subfamily is composed of one of two epsinR orthologs present in Saccharomyces cerevisiae, Epsin-5 (Ent5 or Ent5p), and similar proteins. Ent5 is required, together with Ent3 and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. It is also required for protein transport from the Trans-Golgi Network (TGN) to the vacuole. Yeast epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 158 -340791 cd16994 ENTH_Ent4 Epsin N-Terminal Homology (ENTH) domain of Yeast Ent4 and similar proteins. Yeast Epsin-4 (Ent4 or Ent4p) has been reported to be involved in the Trans-Golgi Network (TGN)-to-vacuole sorting of Arn1p, a transporter for the uptake of ferrichrome, an important nutritional source of iron. Yeast epsins contain an Epsin N-Terminal Homology (ENTH) domain, an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. ENTH domain is highly similar to the N-terminal region of the AP180 N-Terminal Homology (ANTH_N) domain. ENTH and ANTH_N domains are structurally similar to the VHS domain and are composed of a superhelix of eight alpha helices. ENTH domains bind both, inositol phospholipids with preference for PtdIns(4,5)P2, and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. ENTH and ANTH (E/ANTH)-containing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the Trans-Golgi Network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding. 126 -340792 cd16995 VHS_Tom1 VHS (Vps27/Hrs/STAM) domain of Target of Myb protein 1. Tom1 (Target of myb1 - retroviral oncogene) is a novel negative regulator of interleukin-1 and tumor necrosis factor-induced signaling pathways. It also plays important roles in protein-degradation systems in Alzheimer's disease pathogenesis. Tom1 contains VHS and GAT domains in the N-terminal and central region, respectively. The VHS domain has a superhelical structure similar to the structure of the ARM repeats and is present at the very N-termini of proteins. It is a right-handed superhelix of eight alpha helices. The VHS domain has been found in a number of proteins, some of which have been implicated in intracellular trafficking and sorting. The VHS domain of Tom1 is essential for its function as a negative regulator. 137 -340793 cd16996 VHS_Tom1L2 VHS (Vps27/Hrs/STAM) domain of TOM1-like protein 2. TOM1-like protein 2 (Tom1L2) is a member of the Tom1 (Target of myb1) subfamily, characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. They are novel regulators for post-Golgi trafficking and signaling. Studies in Tom1L2 hypomorphic mice suggest that Tom1L2 may play roles in immune responses and tumor suppression. The VHS domain has a superhelical structure similar to the structure of the ARM repeats and is present at the very N-termini of proteins. It is a right-handed superhelix of eight alpha helices. The VHS domain has been found in a number of proteins, some of which have been implicated in intracellular trafficking and sorting. 137 -340794 cd16997 VHS_Tom1L1 VHS (Vps27/Hrs/STAM) domain of TOM1-like protein 1. TOM1-like protein 1 (Tom1L1) is also called Src-activating and signaling molecule protein (Srcasm). It is a member of the Tom1 (Target of myb1) subfamily, characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. They are novel regulators for post-Golgi trafficking and signaling. Tom1L1 has been implicated in multivesicular body (MVB) formation, viral egress from the cell, and cytokinesis. Its amplification enhances the metastatic progression of ERBB2-positive breast cancers. The VHS domain has a superhelical structure similar to the structure of the ARM repeats and is present at the very N-termini of proteins. It is a right-handed superhelix of eight alpha helices. The VHS domain has been found in a number of proteins, some of which have been implicated in intracellular trafficking and sorting. 137 -340795 cd16998 VHS_GGA_fungi VHS (Vps27/Hrs/STAM) domain of fungal GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) proteins. GGA (Golgi-localized, Gamma-ear-containing, Arf-binding) comprises a subfamily of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. Yeast GGAs facilitate the specific and direct delivery of vacuolar sorting receptor Vps10p and the processing protease Kex2p from the TGN to the late endosome/prevacuolar compartment (PVC). The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 139 -340796 cd16999 VHS_STAM2 VHS (Vps27/Hrs/STAM) domain of Signal Transducing Adapter Molecule 2. Signal Transducing Adapter Molecule 2 (STAM2) is also called EAST (EGFR-Associated protein with SH3 and TAM domain) and Hbp (Hrs-binding protein). It is highly expressed in neurons, where it is localized in the nucleus. STAM (Signal Transducing Adaptor Molecule) subfamily members have at their N-termini a VHS domain, which is involved in cytokine-mediated intracellular signal transduction and has a superhelical structure similar to the structure of ARM (Armadillo) repeats, followed by a Ubiquitin-Interacting Motif (UIM) and a SH3 (Src Homology 3) domain, which is a well-established protein-protein interaction domain, and a GAT (GGA and TOM) domain. At the C-termini of most vertebrate STAMS, an Immunoreceptor Tyrosine-based Activation Motif (ITAM) is present, which mediates the binding of HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) in endocytic and exocytic machineries. STAM is a component of the ESCRT (Endosomal Sorting Complex Required for Transport)-0 machinery and together with Hrs, functions to bind and sequester cargoes for downstream sorting into intralumenal vesicles. 139 -340797 cd17000 VHS_STAM1 VHS (Vps27/Hrs/STAM) domain of Signal Transducing Adapter Molecule 1. Signal Transducing Adapter Molecule 1 (STAM1) is part of a crucial regulatory axis for the ventral axonal trajectory of developing spinal motor neurons. It forms a complex with beta-arrestin, which regulates lysosomal trafficking of the chemokine receptor CXCR4 and also mediates CXCR4-dependent chemotaxis. STAM (Signal Transducing Adaptor Molecule) subfamily members have at their N-termini a VHS domain, which is involved in cytokine-mediated intracellular signal transduction and has a superhelical structure similar to the structure of ARM (Armadillo) repeats, followed by a Ubiquitin-Interacting Motif (UIM) and a SH3 (Src Homology 3) domain, which is a well-established protein-protein interaction domain, and a GAT (GGA and TOM) domain. At the C-termini of most vertebrate STAMS, an Immunoreceptor Tyrosine-based Activation Motif (ITAM) is present, which mediates the binding of HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) in endocytic and exocytic machineries. STAM is a component of the ESCRT (Endosomal Sorting Complex Required for Transport)-0 machinery and together with Hrs, functions to bind and sequester cargoes for downstream sorting into intralumenal vesicles. 131 -340798 cd17001 CID_RPRD2 CID (CTD-Interacting Domain) of Regulation of nuclear pre-mRNA domain-containing protein 2. Regulation of nuclear pre-mRNA domain-containing protein 2 (RPRD2) is a CID (CTD-Interacting Domain) domain containing protein that co-purifies with RNA polymerase (Pol) II (RNAP II) and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 125 -340799 cd17002 CID_RPRD1 CID (CTD-Interacting Domain) of Regulation of nuclear pre-mRNA domain-containing protein 1 and similar proteins. This subfamily contains Regulation of nuclear pre-mRNA domain-containing proteins 1A (RPRD1A) and 1B (RPRD1B) from jawed vertebrates, CID domain-containing protein 1 (CIDS1 or cids-1) from Caenorhabditis elegans, and similar proteins. RPRD1A and RPRD1B are CID (CTD-Interacting Domain) containing proteins that co-purify with RNA polymerase (Pol) II (RNAP II) and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains. Both associate directly with RPAP2 phosphatase and serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2. The function of CIDS1 is not yet known. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 128 -340800 cd17003 CID_Rtt103 CID (CTD-Interacting Domain) of yeast transcription termination factor Rtt103 and similar proteins. Yeast transcription termination factor Rtt103 is a CID (CTD-Interacting Domain) containing protein that functions in DNA damage response. It associates with sites of DNA breaks and is essential for recovery from DNA double strand breaks in the chromosome. CID binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II (RNAP II). Rtt103 CID preferentially interacts with CTD phosphorylated at Ser2. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 127 -340801 cd17004 CID_SCAF8 CID (CTD-Interacting Domain) of SR-related and CTD-associated factor 8. SR-related and CTD-associated factor 8 (SCAF8) is also called CDC5L complex-associated protein 7 (CCAP7) or RNA-binding motif protein 16 (RBM16). It may play a role in mRNA processing. SCAF8 contains a CTD-interacting domain (CID) at the amino terminus and a Ser/Arg-rich domain followed by an RNA recognition motif. CID binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II (RNAP II). During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 131 -340802 cd17005 CID_SFRS15_SCAF4 CID (CTD-Interacting Domain) of Splicing factor arginine serine rich 15. Splicing factor arginine serine rich 15 (SFRS15) is also called CTD-binding SR-like protein RA4 or SR-related and CTD-associated factor 4 (SCAF4). It may act to physically and functionally link transcription and pre-mRNA processing. SFRS15/SCAF4 contains a CTD-interacting domain (CID) at the amino terminus and a Ser/Arg-rich domain followed by an RNA recognition motif. CID binds tightly to the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II (RNAP II). During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 131 -340803 cd17006 ANTH_N_HIP1_like ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of Huntingtin-interacting protein 1 and related proteins. This subfamily includes Huntingtin-interacting protein 1 (HIP1), HIP1-related protein (HIP1R), and similar proteins. Mammalian HIP1 was identified in 1997 as an interactor of huntingtin; when mutated, it is involved in the neurodegenerative disorder Huntington's disease. HIP1 is expressed only in neurons while HIP1R is ubiquitously expressed. Together with its interacting partner HIPPI, HIP1 regulates apoptosis and gene expression. Both HIP1 and HIP1R promote clathrin assembly in vitro, and they share a common domain architecture, containing an N-terminal ANTH, a central clathrin-binding colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domains. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. Mammalian HIP1 and HIP1R were found to preferentially bind PtdIns(3,4)P2 and PtdIns(3,5)P2, respectively, instead of PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome. This model describes the N-terminal region of the ANTH domain of Huntingtin-interacting protein 1 and related proteins. 114 -340804 cd17007 ANTH_N_Sla2p ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of Sla2p and similar proteins. This subfamily is composed of Saccharomyces cerevisiae Sla2 protein (Sla2p, also called transmembrane protein MOP2), Schizosaccharomyces pombe endocytosis protein End4 (End4p, also called Sla2 protein homolog), and similar proteins. In yeast, cells lacking Sla2p have severe defects in actin organization, cell morphology, and endocytosis, suggesting roles in these processes. Sla2p regulates the Eps15-like Arp2/3 complex activator, Pan1p, controlling actin polymerization during endocytosis. In fission yeast, End4p has been implicated in cellular morphogenesis. Sla2p contains an N-terminal ANTH, a central colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domains. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. The ANTH domain of Sla2p preferentially binds PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome. This model describes the N-terminal region of ANTH domains f Sla2p and similar proteins. 115 -340805 cd17008 VHS_GGA3 VHS (Vps27/Hrs/STAM) domain of ADP-ribosylation factor-binding protein GGA3. ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, Gamma-ear-containing, Arf-binding 3) regulates the trafficking and is required for the lysosomal degradation of BACE (beta-site APP-cleaving enzyme), the protease that initiates the production of beta-amyloid, which causes Alzheimer's disease. It also plays a key role in GABA (+) transmission, which is important in the regulation of anxiety-like behaviors. GGA3 is a member of the GGA subfamily, which is comprised of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 141 -340806 cd17009 VHS_GGA1 VHS (Vps27/Hrs/STAM) domain of ADP-ribosylation factor-binding protein GGA1. ADP-ribosylation factor-binding protein GGA1 (Golgi-localized, Gamma-ear-containing, Arf-binding 1) is also called Gamma-adaptin-related protein 1. It is expressed in human brain and affects the generation of amyloid beta-peptide, and may be involved in the pathogenesis of Alzheimer disease. It is a member of the GGA subfamily, which is comprised of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 139 -340807 cd17010 VHS_GGA2 VHS (Vps27/Hrs/STAM) domain of ADP-ribosylation factor-binding protein GGA2. ADP-ribosylation factor-binding protein GGA2 (Golgi-localized, Gamma-ear-containing, Arf-binding 2) is also called Gamma-adaptin-related protein 2 and VHS domain and ear domain of gamma-adaptin (Vear). It is a member of the GGA subfamily, which is comprised of ubiquitously expressed, monomeric, motif-binding cargo/clathrin adaptor proteins involved in membrane trafficking between the Trans-Golgi Network (TGN) and endosomes. The VHS domain has a superhelical structure similar to the structure of the ARM (Armadillo) repeats and is present at the N-termini of proteins. GGA proteins have a multidomain structure consisting of an N-terminal VHS domain linked by a short proline-rich linker to a GAT (GGA and TOM) domain, which is followed by a long flexible linker to the C-terminal appendage, GAE (Gamma-Adaptin Ear) domain. The VHS domain of GGA proteins binds to the acidic-cluster dileucine (DxxLL) motif found on the cytoplasmic tails of cargo proteins trafficked between the Trans-Golgi Network and the endosomal system. 139 -340808 cd17011 CID_RPRD1A CID (CTD-Interacting Domain) of Regulation of nuclear pre-mRNA domain-containing protein 1A. Regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A) is also called Cyclin-dependent kinase inhibitor 2B-related protein or p15INK4B-related protein (P15RS). RPRD1A is a CID (CTD-Interacting Domain) containing protein that co-purifies with RNA polymerase (Pol) II (RNAP II) and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. RPRD1A form homodimers and heterodimers with RPRD1B through their coiled-coil domains. Both RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 128 -340809 cd17012 CID_RPRD1B CID (CTD-Interacting Domain) of Regulation of nuclear pre-mRNA domain-containing protein 1B. Regulation of nuclear pre-mRNA domain-containing protein 1B (RPRD1B) is also called Cell cycle-related and expression-elevated protein in tumor (CREPT). RPRD1B is a CID (CTD-Interacting Domain) containing protein that co-purifies with RNA polymerase (Pol) II (RNAP II) and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. CID binds tightly to the carboxy-terminal domain (CTD) of RNAP II. During transcription, RNAP II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing through the CTD, which consists of up to 52 repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. RPRD1B form homodimers and heterodimers with RPRD1A through their coiled-coil domains. Both RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2. RPRD1B is highly expressed during tumorigenesis and in endometrial cancer, has been shown to promote tumor growth by accelerating the cell cycle. CID contains eight alpha-helices in a right-handed superhelical arrangement, which closely resembles that of the VHS domains and ARM (Armadillo) repeat proteins, except for its two amino-terminal helices. 129 -340810 cd17013 ANTH_N_HIP1 ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of Huntingtin-interacting protein 1. Huntingtin-interacting protein 1 (HIP1) was identified in 1997 as an interactor of huntingtin; when mutated, it is involved in the neurodegenerative disorder Huntington's disease. HIP1 promotes clathrin assembly in vitro. Together with its interacting partner HIPPI, it regulates apoptosis and gene expression. HIP1 contains an N-terminal ANTH, a central clathrin-binding colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domain. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. The ANTH domain of mammalian HIP1 was found to preferentially bind PtdIns(3,4)P2 instead of PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome. This model describes the N-terminal region of ANTH domain of Huntingtin-interacting protein 1. 114 -340811 cd17014 ANTH_N_HIP1R ANTH (AP180 N-Terminal Homology) domain, N-terminal region, of Huntingtin-interacting protein 1-related protein. Huntingtin-interacting protein 1-related protein (HIP1R), also called HIP12, promotes clathrin assembly in vitro. It is an endocytic protein involved in receptor trafficking, including regulating cell surface expression of receptor tyrosine kinases. Low HIP1R protein expression is associated with worse survival in diffuse large B-cell lymphoma (DLBCL) patients; it is preferentially expressed in germinal center B-cell (GCB)-like DLBCL, and may be potentially useful in subtyping DLBCL cases. HIP1R contains an N-terminal ANTH, a central clathrin-binding colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domain. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. The ANTH domain of mammalian HIP1R was found to preferentially bind PtdIns(3,5)P2 instead of PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome. This model describes the N-terminal region of ANTH domain of Huntingtin-interacting protein 1-related protein. 114 -341097 cd17015 ING_plant Inhibitor of growth (ING) domain of plant inhibitor of growth proteins. This subfamily is composed of mainly plant inhibitor of growth proteins such as Arabidopsis thaliana ING1 (AtING1 or PHD finger protein ING1) and ING2 (AtING2 or PHD finger protein ING2). They are histone-binding components that specifically recognizes H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of virtually all active genes. The related mammalian ING proteins act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation, and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain that binds unmodified H3 tails, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain, which binds lysine 4-tri-methylated histone H3 (H3K4me3). Although these two regions can bind histones independently, together they increase the apparent association of the ING domain for the H3 tail. 98 -341098 cd17016 ING_Pho23p_like Inhibitor of growth (ING) domain of yeast Pho23p and similar proteins. This family is composed of Saccharomyces cerevisiae transcriptional regulatory protein PHO23 (Pho23p), Schizosaccharomyces pombe chromatin modification-related protein png2 (also called ING1 homolog 2), and similar proteins. Pho23p is part of Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Pho23p inhibits p53-dependent transcription. The related mammalian ING proteins act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain that binds unmodified H3 tails, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain, binding with lysine 4-tri-methylated histone H3 (H3K4me3). Although these two regions can bind histones independently, together they increase the apparent association of the ING for the H3 tail. 89 -341099 cd17017 ING_Yng1p Inhibitor of growth (ING) domain of yeast Yng1p and similar proteins. The ING family includes three yeast orthologs, chromatin modification-related protein YNG1 (Yng1p), YNG2 (Yng2p), and transcriptional regulatory protein PHO23 (Pho23p). Yng1p, also termed ING1 homolog 1, is one of the components of the NuA3 histone acetyltransferase (HAT) complex. Yng2p, also termed ESA1-associated factor 4, or ING1 homolog 2, is a subunit of the NuA4 HAT complex. It plays acritical role in intra-S-phase DNA damage response. Pho23p is part of Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Yng1p and Pho23p inhibit p53-dependent transcription. In contrast, Yng2p has the opposite effect. The related mammalian ING proteins act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain that binds unmodified H3 tails, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain, binding with lysine 4-tri-methylated histone H3 (H3K4me3). Although these two regions can bind histones independently, together they increase the apparent association of the ING for the H3 tail. 100 -341101 cd17018 T3SC_IA_ExsC-like Class IA type III secretion system chaperone protein, similar to Pseudomonas aeruginosa exoenzyme S synthesis protein C (ExsC). This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas aeruginosa and Aeromonas hydrophila ExsC (also known as exoenzyme S synthesis protein C). P. aeruginosa ExsC, a member of the type IA family of T3SS chaperones, is unique because, as part of the signaling process, it binds small secreted protein ExsE as well as the non-secreted anti-activator protein ExsD; it relieves repression of the transcriptional activator ExsA (which activates expression of T3SS genes) by ExsD. However, in Aeromonas, although ExsA is likely the master regulator of the T3SS, there is little evidence of ExsC and ExsE involvement in the regulation of the T3SS. 125 -341102 cd17019 T3SC_IA_ShcA-like Class IA type III secretion system chaperone protein, similar to Pseudomonas syringae chaperone protein ShcA. This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas syringae ShcA and similar proteins. In P. syringae, which is a plant pathogen that can infect a wide range of species, the T3SS allows injection of the effector HopA1 (previously known as HopPsyA or HrmA), a protein that has unknown functions in the host cell but possesses close homologs that trigger the plant hypersensitive response in resistant strains. Chaperone ShcA binding to Hop1A shows that interactions in animal pathogens are preserved in the Gram-negative pathogens of plants. 122 -341103 cd17020 T3SC_IA_ShcM-like Class IA type III secretion system chaperone protein, similar to Pseudomonas syringae chaperone protein ShcM. This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas syringae ShcM and similar proteins. In P. syringae, which is a plant pathogen that can infect a wide range of species, the T3SS allows injection of the effector protein HopPtoM (previously known as CEL ORF3), among known plant pathogen effectors, that makes a major contribution to the elicitation of lesion symptoms but not growth in host tomato leaves. Chaperone ShcM is required for efficient translocation and function of HopPtoM in the plant cell, consistent with the presence of customized chaperones in plant pathogenic bacteria. 121 -341104 cd17021 T3SC_IA_SicP-like Class IA type III secretion system chaperone protein, similar to Salmonella enterica chaperone protein SicP. This family includes type III secretion system (T3SS) chaperone proteins similar to Salmonella enterica SicP and similar proteins. In S. enterica, many of its serovars being serious human pathogens, the T3SS allows injection of the effector SptP, a virulence protein that is involved in bacterial invasion into a host cell. Chaperone SicP forms a complex with SptP at an early stage of the effector protein secretion process in order to avoid premature degradation; also, the complex is dissociated at a late stage to secrete only SptP with the help of the ATPase InvC which is part of the related T3SS injectisome. 120 -341105 cd17022 T3SC_IA_SigE-like Class IA type III secretion system chaperone protein, similar to Salmonella enterica SigE. This family includes type III secretion system (T3SS) chaperone proteins similar to Salmonella enterica chaperone SigE and similar proteins. In S. enterica, many of its serovars being serious human pathogens, the T3SS allows injection of the effector SigD (also known as SopB) which is an inositol phosphatase. Chaperone SigE binds to SigD, which, upon translocation into the host cell, preferentially dephosphorylates specific inositol phospholipids that are thought to be crucial for subsequent activation of the host cell Ser-Thr kinase Akt. 110 -341106 cd17023 T3SC_IA_CesT-like Class IA type III secretion system chaperone protein, similar to Escherichia coli CesT. This family includes type III secretion system (T3SS) chaperone proteins similar to Escherichia coli CesT and also contains Stm2138, a novel virulence chaperone in Salmonella enterica subsp. enterica serovar Typhimurium. In E. coli, the T3SS allows injection of the effector Tir (translocated intimin receptor), which plays a key role in enterohemorrhagic Escherichia coli (EHEC) infection, attaching and effacing (A/E) lesions, and intracellular signal transduction. CesT binds to Tir, which interacts with intimin and anchors the infected cell membrane inside the host cytoplasm for signaling. 121 -341107 cd17024 T3SC_IA_DspF-like Class IA type III secretion system chaperone protein, similar to Erwinia amylovora DspF (DspF/AvrF family protein). This family includes type III secretion system (T3SS) chaperone proteins similar to Erwinia amylovora DspF, Pantoea stewartii WtsE, Pseudomonas viridiflava AvrF, and similar proteins, all of which bind AvrE family type III effector proteins. In E. amylovora, a gram-negative enterobacterium that causes a devastating blight disease of apple and pear trees, the T3SS allows injection of effector DspE via the chaperone DspF. DspE has been shown to interact with several apple proteins, suppress salicylic acid-mediated host defenses and cause necrotic cell death in host and non-host plants. In Pectobacterium carotovorum, DspE is required early in solanum tuberosum leaf infection to cause cell death. Effector WtsE in P. stewartii causes disease-associated cell death in corn and requires the chaperone protein WtsF for stability. 122 -341108 cd17025 T3SC_IA_ShcF-like Class IA type III secretion system chaperone protein, similar to Pseudomonas syringae ShcF. This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas syringae ShcF and similar proteins. In P. syringae, which is a plant pathogen that can infect a wide range of species, the T3SS allows injection of the effector protein AvrPphF into genetically susceptible host cells. Chaperone ShcF (originally known as AvrPphF ORD1) binds AvrPphF in a similar manner to type III chaperones from bacterial pathogens of animals, indicating structural conservation of these specialized chaperones, despite high sequence divergence. 123 -341109 cd17026 T3SC_IA_SpcU-like Class IA type III secretion system chaperone protein, similar to Pseudomonas aeruginosa SpcU. This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas aeruginosa SpcU and similar proteins. In P. aeruginosa, a multidrug resistant pathogen associated with serious illnesses such as ventilator-associated pneumonia and various sepsis syndromes, the T3SS allows injection of effector protein ExoU, one of the most aggressive toxins injected by a T3SS, into the cytosol of target eukaryotic cells, leading to rapid cell necrosis. Chaperone SpcU binds the cytotoxin ExoU, which is a broad-specificity phospholipase A2 (PLA2) and lysophospholipase, and maintains the N-terminus of ExoU in an unfolded state which is required for secretion. 118 -341110 cd17027 T3SC_IA_YscB_AscB-like Class IA type III secretion system chaperone protein, similar to Yersinia pestis YscB. This family includes type III secretion system (T3SS) chaperone proteins similar to Yersinia pestis YscB and its homologs, Aeromonas hydrophila AscB and Photorhabdus luminescens LscB. In Yersinia pestis, which causes the deadly bubonic plague, the T3SS allows injection of effector proteins, termed Yersinia outer proteins (Yops) into macrophages and other immune cells, forming pores in the host cell membrane. The secretion of Yops is regulated by the activity of the YopN/SycN/YscB/TyeA complex. YscB acts, along with SycN, as a chaperone for YopN, a key part of a complex that regulates type III secretion so that it responds to contact with the eukaryotic target cell. 126 -341111 cd17028 T3SC_IA_SycE_Scc1-like Class IA type III secretion system chaperone protein, similar to Chlamydia SycE/Scc1. This family includes type III secretion system (T3SS) chaperone proteins similar to Chlamydia SycE (also known as Scc1) and similar proteins. Chlamydia SycE is homologous to that of the SycE chaperone protein of Yersinia, which is involved in promoting translocation of Yersinia outer protein E (YopE). In Chlamydia, two T3SS chaperones, Scc1 and Scc4, work together to promote secretion of the important effector and plug protein, CopN, whereas, the Scc3 chaperone represses its secretion. 130 -341112 cd17029 T3SC_IA_SycE_SpcS-like Class IA type III secretion system chaperone protein, similar to Yersinia SycE. This family includes type III secretion system (T3SS) chaperone proteins similar to Yersinia SycE and its homolog Pseudomonas aeruginosa SpcS. Involvement of Yersinia chaperone SycE (also known as YerA) in promoting translocation of Yersinia outer protein E (YopE), a selective activator of mammalian Rho-family GTPases, into host macrophages is essential to Yersinia pathogenesis. In P. aeruginosa, which is an opportunistic pathogen that harbors multiple virulence factors that widely manipulate host cell signaling and immune response, the effector toxin proteins of T3SS are ExoT, ExoS, ExoU and ExoY. Chaperone SpcS (formerly known as Orf1) binds to ExoT as well as its homolog, ExoS, both known to be the actual virulence determinants due to the presence of bifunctional GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) domains which are essential for inhibition of bacterial internalization and epithelial cell migration by altering the actin cytoskeleton. 116 -341113 cd17030 T3SC_IA_SycH-like Class IA type III secretion system chaperone protein, similar to Yersinia pestis SycH. This family includes type III secretion system (T3SS) chaperone proteins similar to Yersinia pestis SycH and similar proteins. In Yersinia pestis, the causative agent of bubonic and pneumonic plague, the T3SS allows injection of effector proteins, termed Yersinia outer proteins (Yops) into macrophages and other immune cells, forming pores in the host cell membrane and have been linked to cytolysis. The secretion of Yops is regulated by the activity of the YopN/SycN/YscB/TyeA complex. SycH is the chaperone for YopH, a potent eukaryotic-like protein tyrosine phosphatase that is essential for virulence. SycH also binds two negative regulators of type III secretion, YscM1 and YscM2, both sharing significant sequence homology with the chaperone-binding domain of YopH. 117 -341114 cd17031 T3SC_IA_SycN-like Class IA type III secretion system chaperone protein, similar to Yersinia pestis SycN. This family includes type III secretion system (T3SS) chaperone proteins similar to Yersinia pestis SycN and similar proteins. In Yersinia pestis, the causative agent of bubonic and pneumonic plague, the T3SS allows injection of effector proteins, termed Yersinia outer proteins (Yops) into macrophages and other immune cells, forming pores in the host cell membrane and have been linked to cytolysis. The secretion of Yops is regulated by the activity of the YopN/SycN/YscB/TyeA complex; SycN-YscB forms a heterodimeric secretion chaperone and binds YopN, a key part of a complex that regulates type III secretion, in response to calcium levels, so that secretion occurs only after contact with the targeted eukaryotic cell. Negative regulation is mediated by the complex by blocking the entrance to the secretion apparatus prior to contact with mammalian cells. 118 -341115 cd17032 T3SC_IA_SycT-like Class IA type III secretion system chaperone protein, similar to Yersinia enterocolitica SycT. This family includes type III secretion system (T3SS) chaperone proteins similar to Yersinia enterocolitica SycT and similar proteins. In Y. enterocolitica, a food-borne pathogen causing gastroenteritis and mesenteric lymphadenitis, chaperone SycT promotes translocation of effector YopT (Yersinia outer protein T), a cysteine protease that inactivates the small GTPase RhoA of targeted host cells by cleaving its C-terminal, prenylated cysteine, thereby releasing the GTPase into the host cytosol. 111 -341116 cd17033 DR1245-like possible type III secretion system (T3SS) chaperone protein DR1245 found in Deinococcus radiodurans. This family includes a possible type III secretion system (T3SS) chaperone protein DR1245 found in Deinococcus radiodurans, a bacterium that is exceptionally resistant to the lethal effects of ionizing radiation (IR), ultraviolet light and other DNA-damaging agents. DR1245, a protein of unknown function conserved only in the Deinococcaceae, and with strong structural homology to YbjN proteins and T3SS chaperones, may display some chaperone activity towards DdrB, a protein found to be highly up-regulated following irradiation; DR1245 may also bind to other substrates. 128 -341117 cd17034 T3SC_IA_ShcO1-like Class IA type III secretion system chaperone proteins, similar to Pseudomonas syringae ShcO1, ShcS1, and ShcS2. This family includes type III secretion system (T3SS) chaperone proteins similar to Pseudomonas syringae ShcO1 and similar proteins. In P. syringae, which is a plant pathogen that can infect a wide range of species, the T3SS allows injection of effector Hrp-dependent outer proteins (HOPs) HopO1-1, HopS1, and HopS2. Three homologous chaperones ShcO1, ShcS1, and ShcS2 facilitate the translocation of their cognate effectors HopO1-1, HopS1, and HopS2, respectively. Interestingly, ShcS1 and ShcS2 are capable of substituting for ShcO1 in facilitating HopO1-1 secretion and translocation. ShcS1 and ShcO1 are exceptional class IA T3SS chaperones because they can bind more than one target effector. 129 -341118 cd17035 T3SC_IB_Spa15-like Class IB type III secretion system chaperone protein, similar to Shigella flexneri Spa15. This family includes type III secretion system (T3SS) chaperone proteins similar to Shigella flexneri Spa15, Salmonella enterica InvB, and similar proteins. In S. flexineri, which is a facultative intracellular pathogen that invades the colonic epithelium and causes bacillary dysentery, the T3SS allows injection of a number of effectors to ensure their stabilization prior to secretion. Spa15 is the chaperone for several TTS effectors, including IpaA, IpgB1, OspC3, OspB and OspD1. Effector IpgB that chaperone Spa15 is a mimic of the human Ras-like Rho guanosine triphosphatase RhoG, thus activating Rac1 guanosine triphosphatase and setting off membrane ruffling of the cell, assisting the internalization of Shigella. Also, Spa15 is a chaperone for secreted anti-activator OspD1 which is involved in the control of transcription by the type III secretion apparatus (T3SA) activity in Shigella flexneri. 128 -341119 cd17036 T3SC_YbjN-like_1 T110839 is structurally similar to type III secretion system chaperones and YbjN family proteins. This family includes protein T110839 from Synechococcus elongatus that is structurally similar to type III secretion system (T3SS) chaperones (T3SC) that bind effector proteins, and is homologous to YbjN, a putative sensory transduction regulator protein found in Proteobacteria. 125 -341120 cd17037 T3SC_IA_ShcV-like Class IA type III secretion system chaperone protein, similar to Pseudomonas syringae ShcV. This family includes type III secretion system (T3SS) chaperone protein similar to Pseudomonas syringae ShcV. In P. syringae, which is a plant pathogen that can infect a wide range of species, the T3SS allows injection of effector HopPtoV which may play a subtle role in pathogenesis. Chaperone ShcV facilitates secretion of HopProV into plant cells via the amino-terminal third of the effector. 129 -341208 cd17038 Flavi_M Flavivirus envelope glycoprotein M. Flaviviruses are small enveloped viruses with a membrane-anchored envelope comprised of 3 proteins called C, M and E. The envelope glycoprotein M is translated as a precursor, called prM. The precursor portion of the protein is the signal peptide for the protein's entry into the membrane. prM is cleaved to form M by the proprotein convertase furin in a late-stage cleavage event. Associated with this cleavage is a change in the infectivity and fusion activity of the virus. 75 -340559 cd17039 Ubl_ubiquitin_like ubiquitin-like (Ubl) domain found in ubiquitin and ubiquitin-like Ubl proteins. Ubiquitin-like (Ubl) proteins have a similar ubiquitin (Ub) beta-grasp fold and attach to other proteins in a Ubl manner but with biochemically distinct roles. Ub and Ubl proteins conjugate and deconjugate via ligases and peptidases to covalently modify target polypeptides. Some Ubl domains have adaptor roles in Ub-signaling by mediating protein-protein interaction. Prokaryotic sulfur carrier proteins are Ub-related proteins that can be activated in an ATP-dependent manner. Polyubiquitination signals for a diverse set of cellular events via different isopeptide linkages formed between the C terminus of one ubiquitin (Ub) and the epsilon-amine of K6, K11, K27, K29, K33, K48, or K63 of a second Ub. One of these seven lysine residues (K27, Ub numbering) is conserved in this Ubl_ubiquitin_like family. K27-linked Ub chains are versatile and can be recognized by several downstream receptor proteins. K27 has roles beyond chain linkage, such as in Ubl NEDD8 (which contains many of the same lysines (K6, K11, K27, K33, K48) as Ub) where K27 has a role (other than conjugation) in the mechanism of protein neddylation. 68 -340560 cd17040 Ubl_MoaD_like ubiquitin-like (Ubl) domain found in a group of small sulfide carrier proteins. Ubiquitin-like (Ubl) domain found in a group of small sulfide carrier proteins This family includes ThiS, MoaD, CysO, QbsE, and their homologs, which are structurally homologous to ubiquitin (Ub) and may function as the sulfide donor for the biosynthesis of thiamin, molybdopterin, cysteine, thioquinolobactin, and other sulfur-containing natural products. Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Ubiquitination is comprised of a cascade of E1, E2 and E3 enzymes that results in a covalent bond between the C-terminus of Ub and the epsilon-amino group of a substrate lysine. Like Ub, small sulfide carrier proteins in this family are adenylated at a diglycyl C-terminus by specific activating proteins. The adenylated C-terminus is subsequently converted to a thiocarboxylate, serving as the sulfide source. Those activating proteins are diverse and show little sequence similarity. This family also includes the small archaeal modifier protein (SAMP), including SAMP1, SAMP2 and SAMP3, which are Ub-like proteins that function as protein modifiers and are required for the production of sulfur-containing biomolecules in the archaeon Haloferax volcanii. SAMP1 and SAMP2 are involved in sulfur transfer during molybdenum cofactor biosynthesis and tRNA thiolation much like MoaD and Urm1, respectively. They can form covalent conjugates with their protein targets through an isopeptide linkage via their C-terminal diglycine motif in a streamlined archaeal E1-dependent pathway. SAMP2 also forms homo-conjugates through the intermolecular isopeptide bond between the C-terminal Gly and the Lys58 side chain, a feature that likely resembles polyubiquitination. SAMP3 conjugates are dependent on the Ub-activating E1 enzyme homolog of archaea (UbaA) for synthesis and are cleaved by the JAMM/MPN+ domain metalloprotease HvJAMM1. 88 -340561 cd17041 Ubl_WDR48 Ubiquitin-like (Ubl) domain found in WD repeat-containing protein 48 (WDR48) and similar proteins. WDR48, also termed USP1-associated factor 1 (UAF1), or WD repeat endosomal protein, or p80, is required for the histone deubiquitination activity. It stimulates activity of ubiquitin-specific proteases USP1, USP12, and USP46.As potential tumor suppressor, WDR48 in complex with deubiquitinase USP12 suppresses Akt-dependent cell survival signaling by stabilizing PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1). WDR48 also functions as a novel interaction partner of E1 helicase from anogenital human papillomavirus (HPV) types, and plays an essential role in anogenital HPV DNA replication. WDR48 contains a WD40 domain and a ubiquitin-like domain that shows high sequence and structural similarity with RING finger- and WD40-associated ubiquitin-like (RAWUL) domain. 97 -340562 cd17042 Ubl_TmoB Ubiquitin-like (Ubl) domain found in toluene-4-monooxygenase system protein B (TmoB). TmoB is a component of the multicomponent toluene-4-monooxygenase (T4MO) system that metabolizes toluene as a carbon source. The T4MO complex is composed of a diiron hydroxylase (T4MOH), a Rieske-type ferredoxin (T4MOC), an effector protein (T4MOD), and an NADH oxidoreductase (T4MOF). The T4MOH component consists of TmoA, TmoB, and TmoE. TmoB adopts a beta-grasp ubiquitin-like fold but its precise role remains unclear. 79 -340563 cd17043 RA Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in various functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon. 87 -340564 cd17044 Ubl_TBCE ubiquitin-like (Ubl) domain found in tubulin-folding cofactor E (TBCE) and similar proteins. TBCE, also termed tubulin-specific chaperone E, is a tubulin polymerizing protein involved in the second step of the tubulin folding pathway through cooperating in tubulin heterodimer dissociation both in vivo and in vitro. It may also be implicated in the maintenance of the neuronal microtubule network. Mutations in TBCE gene cause hypoparathyroidism, mental retardation and facial dysmorphism. TBCE contains an N-terminal cytoskeleton-associated protein with glycine-rich segment (CAP-Gly) domain, a leucine-rich repeat protein-protein interaction domain followed by leucine-rich repeat (LRR) domains, and a C-terminal ubiquitin-like (Ubl) domain. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes. 83 -340565 cd17045 Ubl_TBCEL ubiquitin-like (Ubl) domain found in tubulin-specific chaperone cofactor E-like protein (TBCEL) and similar proteins. TBCEL, also termed leucine-rich repeat-containing protein 35 (LRRC35), or E-like (EL), is a novel regulator of tubulin stability, suggesting a link between tubulin turnover and vesicle transport. TBCEL is abundantly expressed in testis, but is also present in several tissues at a much lower level. It is required for the synchronous movement of the investment cones and is important for normal male fertility. TBCEL shows high sequence similarity to tubulin-specific chaperone cofactor E (TBCE), a component of the multimolecular complex required for tubulin heterodimer formation in all eukaryotic cells. It contains a leucine-rich repeat protein-protein interaction domain and a C-terminal ubiquitin-like (Ubl) domain, but does not harbor the cytoskeleton-associated protein with glycine-rich segment (CAP-Gly) domain found in TBCE. 87 -340566 cd17046 Ubl_IKKA_like ubiquitin-like (Ubl) domain found in inhibitor of nuclear factor kappa-B kinases, IKK-alpha and IKK-beta, and similar proteins. IKK, also termed IkappaB kinase, is an enzyme complex involved in propagating the cellular response to inflammation. It is part of the upstream nuclear factor kappa-B kinase (NF-kappaB) signal transduction cascade, and plays an important role in regulating the NF-kappaB transcription factor. IKK is composed of three subunits, IKK-alpha/CHUK, IKK-beta/IKBKB, and IKK-gamma/NEMO. The IKK-alpha and IKK-beta subunits together are catalytically active whereas the IKK-gamma subunit serves a regulatory function. IKK-alpha and IKK-beta phosphorylate the IkappaB proteins, marking them for degradation via ubiquitination and allowing NF-kappaB transcription factors to go into the nucleus. IKK-alpha, also known as IKK-A, or IkappaB kinase A (IkBKA), or conserved helix-loop-helix ubiquitous kinase (CHUK), or I-kappa-B kinase 1 (IKK1), or nuclear factor NF-kappa-B inhibitor kinase alpha (NFKBIKA), or transcription factor 16 (TCF-16), belongs to the serine/threonine protein kinase family. In addition to NF-kappaB response, it has many additional cellular targets in an NF-kappaB-independent manner. For instance, it plays a role in epidermal differentiation, as well as in the regulation of the cell cycle protein cyclin D1. IKK-beta, also known as IKK-B, or IkappaB kinase B (IkBKB), or I-kappa-B kinase 2 (IKK2), or nuclear factor NF-kappa-B inhibitor kinase beta (NFKBIKB), belongs to the serine/threonine protein kinase family as well. It interacts with many different protein partners and has been implicated in the treatment of many inflammatory diseases and cancers. Both IKK-alpha and IKK-beta contain an N-terminal catalytic domain followed by a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 75 -340567 cd17047 Ubl_UBFD1 ubiquitin-like (Ubl) domain found in ubiquitin domain-containing protein UBFD1 and similar proteins. UBFD1, also termed ubiquitin-binding protein homolog (UBPH), is a polyubiquitin binding protein containing a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. It may play a role as nuclear factor-kappaB (NF-kappaB) regulator. 70 -340568 cd17048 Ubl_UBL3 ubiquitin-like (Ubl) domain found in ubiquitin-like protein 3 (UBL3) and similar proteins. UBL3, also termed membrane-anchored ubiquitin-fold protein (MUB), or protein HCG-1, belongs to a newly described MUB protein family with structural homology with ubiquitin. MUB proteins have a beta-grasp ubiquitin-like (Ubl) domain with longer N- and C-termini and extended loops. The Ubl domain contains a C-terminal CAAX-box, a canonical motif for protein prenylation, which is modified through protein lipidation with a hydrophobic membrane anchor. The lipidation and membrane localization inhibit attachment of MUBs to target proteins. 82 -340569 cd17049 Ubl_Sacsin ubiquitin-like (Ubl) domain found in Sacsin and similar proteins. Sacsin, also termed DnaJ homolog subfamily C member 29 (DNAJC29), is encoded by SACS gene that is highly expressed in the brain. Mutations in SACS can cause the neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) which is characterized by early-onset spastic ataxia. Sacsin is a modular protein that is localized on the mitochondrial surface and possibaly required for normal mitochondrial network organization. Sacsin knockdown resulted in a reduction in cells expressing plyglutamine-expanded ataxin-1, which correlated with a loss of cells with large nuclear ataxin-1 incusions. At the N-terminus, sacsin contains a ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, which can interact with the proteasome. At the C-terminus, sacsin harbors a protein-protein interaction J-domain followed by an higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain. The J-domain is typically associated with DnaJ-like co-chaperones involved in regulation of the Hsp70 heat shock system. 73 -340570 cd17050 Ubl1_ANKUB1 ubiquitin-like (Ubl) domain 1 found in Ankyrin repeat and ubiquitin domain-containing 1 (ANKUB1) and similar proteins. ANKUB1 is an uncharacterized protein with two tandem ubiquitin-like (Ubl) domains located at the N-terminal of Ankyrin repeats (ANK). The Ubl domain may have an adaptor role in ubiquitin (Ub)-signaling by mediating protein-protein interaction. Ubl proteins have a beta-grasp Ubl fold and attach to other proteins in a Ubl manner with biochemically distinct roles. The ankyrin repeats have been identified in numerous proteins with diverse functions. The family corresponds to the first Ubl domain. 79 -340571 cd17051 Ubl2_ANKUB1 ubiquitin-like (Ubl) domain 2 found in Ankyrin repeat and ubiquitin domain-containing 1 (ANKUB1) and similar proteins. ANKUB1 is an uncharacterized protein with two tandem ubiquitin-like (Ubl) domains located at the N-terminal of Ankyrin repeats (ANK). The Ubl domain may have an adaptor role in ubiquitin(Ub)-signaling by mediating protein-protein interaction. Ubl proteins have a beta-grasp Ubl fold and attach to other proteins in a Ubl manner with biochemically distinct roles. The ankyrin repeats have been identified in numerous proteins with diverse functions. The family corresponds to the second Ubl domain. 83 -340572 cd17052 Ubl1_FAT10 ubiquitin-like (Ubl) domain 1 found in leukocyte antigen F (HLA-F) adjacent transcript 10 (FAT10) and similar proteins. FAT10, also termed ubiquitin D (UBD), or diubiquitin, is a cytokine-inducible ubiquitin-like (Ubl) modifer that is highly expressed in the thymus, and targets substrates covalently for 26S proteasomal degradation. It is also associated with cancer development, antigen processing and antimicrobial defense, chromosomal stability and cell cycle regulation. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by interferon gamma (IFNgamma) and tumor necrosis factor (TNFalpha) in the non-immune (liver parenchymal) cells. FAT10 contains two Ubl domains. The family corresponds to the first Ubl domain of FAT10. Some family members contain only one Ubl domain. 74 -340573 cd17053 Ubl2_FAT10 ubiquitin-like (Ubl) domain 2 found in leukocyte antigen F (HLA-F) adjacent transcript 10 (FAT10) and similar proteins. FAT10, also termed ubiquitin D (UBD), or diubiquitin, is a cytokine-inducible ubiquitin-like (Ubl) modifer that is highly expressed in the thymus, and targets substrates covalently for 26S proteasomal degradation. It is also associated with cancer development, antigen processing and antimicrobial defense, chromosomal stability and cell cycle regulation. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by interferon gamma (IFNgamma) and tumor necrosis factor (TNFalpha) in the non-immune (liver parenchymal) cells. FAT10 contains two Ubl domains. The family corresponds to the second Ubl domain of FAT10. Some family members contain only one Ubl domain. 71 -340574 cd17054 Ubl_AtBAG1_like ubiquitin-like (Ubl) domain found in Arabidopsis thaliana Bcl-2-associated athanogenes AtBAG1, AtBAG2, AtBAG3, AtBAG4, and similar proteins. The family includes four Arabidopsis BAG family proteins (AtBAG1, AtBAG2, AtBAG3, AtBAG4) that have very similar domain organizations with a ubiquitin-like (Ubl) domain in the N-terminus and a BAG domain in the C-terminus. They may function as co-chaperones that regulate diverse cellular pathways, such as programmed cell death and stress responses. AtBAG1, AtBAG3, and AtBAG4 are predicted to localize in the cytoplasm, but the localization of AtBAG2 is the microbody. AtBAG4 can interact with Hsc70. The overexpression of AtBAG4 in tobacco plants confers tolerance to a wide range of abiotic stresses such as UV light, cold, oxidants, and salt treatments. 70 -340575 cd17055 Ubl_AtNPL4_like ubiquitin-like (Ubl) domain found in Arabidopsis thaliana NPL4-like proteins NPL4-1, NPL4-2, and similar proteins. The family includes a group of uncharacterized plant ubiquitin-like (Ubl) domain-containing proteins, including Arabidopsis thaliana NPL4-like protein 1 and NPL4-like protein 2. 73 -340576 cd17056 Ubl_FAF1 ubiquitin-like (Ubl) domain found in FAS-associated factor 1 (FAF1) and similar proteins. FAF1, also termed UBX domain-containing protein 12 (UBXD12), or UBX domain-containing protein 3A (UBXN3A), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like (Ubl) fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, FAF1 contains two tandem Ubl domains, which show high structural similarity with UBX domain. FAF1 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The FAF1-p97 complex inhibits the proteasomal protein degradation in which p97 acts as a co-chaperone. Moreover, FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. This family corresponds to Ubl domains. 71 -340577 cd17057 Ubl_TMUB1_like ubiquitin-like (Ubl) domain found in transmembrane and ubiquitin-like domain-containing proteins TMUB1, TMUB2, and similar proteins. TMUB1, also termed dendritic cell-derived ubiquitin-like protein (DULP), or hepatocyte odd protein shuttling protein, or ubiquitin-like protein SB144, or HOPS, is highly expressed in the nervous system. It is involved in the termination of liver regeneration and plays a negative role in interleukin-6-induced hepatocyte proliferation. The overexpression of Tmub1 has been shown to play a role in the inhibition of cell proliferation. TMUB1 has been implicated in the regulation of locomotor activity and wakefulness in mice, perhaps acting through its interaction with CAMLG. It also facilitates the recycling of AMPA receptors into synaptic membrane in cultured primary neurons. TMUB1 contains transmembrane domains and a ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. TMUB2 is an uncharacterized transmembrane domain and Ubl domain-containing protein that shows high sequence similarity to TMUB1. 74 -340578 cd17058 Ubl_SNRNP25 ubiquitin-like (Ubl) domain found in small nuclear ribonucleoprotein U11/U12 subunit 25 (SNRNP25) and similar proteins. SNRNP25, also termed U11/U12 small nuclear ribonucleoprotein 25 kDa protein, U11/U12 snRNP 25 kDa protein (U11/U12-25K), or minus-99 protein, is a component of the U11/U12 snRNPs that are part of the U12-type spliceosome. It contains a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 89 -340579 cd17059 Ubl_OTU1 ubiquitin-like (Ubl) domain found in ubiquitin thioesterase OTU1 and similar proteins. OTU1 (EC 3.4.19.12), also termed YOD1, or DUBA-8, or HIV-1-induced protease 7 (HIN-7), or OTU domain-containing protein 2 (OTUD2), is a p97-associated deubiquitinylase that functions as a key player in endoplasmic reticulum-associated degradation (ERAD). Its deubiquitinylase activity is also required for negatively regulating cholera toxin A1 (CTA1) retro-translocation. OTU1 contains a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a C2H2-type zinc finger, and an OTU domain. 75 -340580 cd17060 Ubl_RB1CC1 ubiquitin-like (Ubl) domain found in retinoblastoma 1-inducible coiled-coil protein 1 (RB1CC1) and similar proteins. RB1CC1, also termed FAK family kinase-interacting protein of 200 kDa (FIP200), is the mammalian counterpart of the yeast Atg17 gene and functions as a component of the ULK1/Atg13/RB1CC1/Atg101 complex essential for induction of autophagy. RB1CC1 is a key signaling node to regulate cellular proliferation and differentiation. As a DNA-binding transcription factor, RB1CC1 has been implicated in the regulation of retinoblastoma 1 (RB1) expression. RB1CC1 contains a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, as well as a nuclear localization signal (KPRK), a leucine zipper motif and a coiled-coil structure. 75 -340581 cd17061 Ubl_IQUB ubiquitin-like (Ubl) domain found in IQ and ubiquitin-like domain-containing protein (IQUB) and similar proteins. IQUB is an IQ motif and ubiquitin domain-containing protein that may play roles in cilia formation and/or maintenance. It contains a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 79 -340582 cd17062 Ubl_NUB1 ubiquitin-like (Ubl) domain found in NEDD8 ultimate buster 1 (NUB1) and similar proteins. NUB1, also termed negative regulator of ubiquitin-like proteins 1, or renal carcinoma antigen NY-REN-18, or protein BS4, is a NEDD8-interacting protein that can be induced by interferon. It functions as a strong post-transcriptional down-regulator of the NEDD8 expression and plays critical roles in regulating many biological events, such as cell growth, NF-kappaB signaling, and biological responses to hypoxia. NUB1 can also interact with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), which may function in the regulation of cell cycle progression. NUB1 contains a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, three ubiquitin-associated domains (UBA), a bipartite nuclear localization signal (NLS) and a PEST motif. 78 -340583 cd17063 Ubl_ANKRD60 ubiquitin-like (Ubl) domain found in ankyrin repeat domain-containing protein 60 (ANKRD60) and similar proteins. ANKRD60 is an uncharacterized ankyrin repeat domain-containing protein which also harbors a conserved ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. 77 -340584 cd17064 Ubl_TAFs_like ubiquitin-like (Ubl) domain found in plant TBP-associated factors (TAFs) and similar proteins. TAFs, also termed transcription initiation factor TFIID subunits, or TAFII250 subunits, are components of the TFIID complex, a multisubunit protein complex involved in promoter recognition and essential for mediating regulation of RNA polymerase transcription. TAFs is the core scaffold of the TFIID complex, which is comprised of the TATA binding protein (TBP) and 12-15 TAFs. TAFs contain a ubiquitin-like (Ubl) domain and a Bromo domain. 72 -340585 cd17065 Ubl_UBP24 ubiquitin-like (Ubl) domain found in ubiquitin carboxyl-terminal hydrolase 24 (UBP24) and similar proteins. UBP24 (EC 3.4.19.12), also termed deubiquitinating enzyme 24, or ubiquitin thioesterase 24, or ubiquitin-specific-processing protease 24 (USP24), is a deubiquitinating protein that interacts with damage-specific DNA-binding protein 2 (DDB2) and regulates DDB2 stability. It may also play a role in the pathogenesis of Parkinson's disease (PD). UBP24 proteins contain an N-terminal ubiquitin-associated (UBA) domain, a ubiquitin-like (Ubl) domain, and a C-terminal peptidase C19 domain. 79 -340586 cd17066 Ubl_KPC2 ubiquitin-like (Ubl) domain found in Kip1 ubiquitination-promoting complex protein 2 (KPC2) and similar proteins. KPC2, also termed ubiquitin-associated domain-containing protein 1 or UBA domain containing 1 (UBAC1), or glialblastoma cell differentiation-related protein 1 (GBDR1), is one of two subunits of Kip1 ubiquitination-promoting complex (KPC), a novel E3 ubiquitin-protein ligase that also contains KPC1 subunit and regulates the ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor p27 at G1 phase. KPC2 contains an ubiquitin-like (Ubl) domain and two ubiquitin-associated (UBA) domains. 87 -340587 cd17067 RBD2_RGS12_like Ras-binding domain (RBD) 2 of regulator of G protein signaling 12 (RGS12) and similar proteins. Regulator of G-protein signaling (RGS) proteins belong to a large family of GTPase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. The RGS12-like subfamily is composed of RGS12 and RGS14, with multidomain architectures including a RGS domain, two tandem Ras-binding domains (RBDs), and a second Galpha interacting domain, the GoLoco motif. The RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. Ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 72 -340588 cd17068 RBD_PLEKHG5 Ras-binding domain (RBD) found in pleckstrin homology (PH) and RhoGEF domain containing G5 (PLEKHG5) and similar proteins. PLEKHG5, is also termed PH domain-containing family G member 5, or guanine nucleotide exchange factor 720 (GEF720), Syx, or Tech, is a novel Dbl-like protein related to p115Rho-GEF. It functions as a Rho guanine nucleotide exchange factor directly activating RhoA in vivo and potentially involved in the control of neuronal cell differentiation. It also regulates the balance of the RhoA downstream effector Dia and ROCK activities to promote polarized-cancer-cell migration. Moreover, PLEKHG5 activates the nuclear factor kappaB (NFkappaB) signaling pathway. Mutations in the PLEKHG5 gene are relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease (CMT) and lower motor neuron disease (LMND). 75 -340589 cd17069 DCX2 Dublecortin-like domain 2. Members in doublecortin (DCX) gene family are microtubule-associated proteins (MAPs). Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The DCX gene family consists of eleven paralogs in human and mouse, and its protein domains can occur in double tandem or as a single repeat. The first repeat of DCX domain has a stable ubiquitin-like tertiary fold. Proteins with DCX double tandem domains in general have roles in microtubule (MT) regulation and signal transduction such as X-linked doublecortin (DCX), retinitis pigmentosa-1 (RP1) and doublecortin-like kinase (DCLK). 84 -340590 cd17070 DCX2_RP_like Dublecortin-like domain 2 found in retinitis pigmentosa (RP)-like protein. RP-like protein family is part of doublecortin (DCX) superfamily with double tandem DCX repeats that are associated with retinitis pigmentosa. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. RP-like proteins are colocalized to the photoreceptor and share a function in outer segment disc morphogenesis. 69 -340591 cd17071 DCX1_DCDC2_like Dublecortin-like domain 1 found in doublecortin domain-containing protein 2 (DCDC2) and similar proteins. DCDC2 is a member of the doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 80 -340592 cd17072 DCX_DCDC5_like Doublecortin-like domain found in doublecortin domain-containing protein 5 (DCDC5) and similar proteins. DCDC5 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC5 is expressed during mitosis and involved in coordinating late cytokinesis. DCDC5 interacts with cytoplasmic dynein and Rab8 as well as with the Rab8 nucleotide exchange factor Rabin8. This family also includes DCDC1, which is a hydrophilic intracellular protein that contains only one DCX repeat. Therefore, DCDC1 might only bind to microtubules without microtubule polymerization properties. DCDC1 is mainly expressed in adult testis. 71 -340593 cd17073 KHA KHA, dimerization domain of potassium ion channel, similar to doublecortin-like domain, found in potassium channel tetramerization domain containing 9 (KCTD9) and similar proteins. This family corresponds to KHA, the tetramerization domain of eukaryotic voltage-dependent potassium ion-channel proteins, mainly found in vertebrates KCTD9 and plants AKT proteins. In plants the domain lies at the C-terminus whereas in many chordates it lies at the N-terminus. KHA shows high sequence similarity with doublecortin-like domain, which has a stable ubiquitin-like tertiary fold. KCTD9, also termed BTB/POZ domain-containing protein 9, belongs to the KCTD protein family, which corresponds to potassium channel tetramerization domain proteins, a class of BTB-domain-containing proteins. It is involved in potassium channel formation. Moreover, KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus (HBV)-induced acute-on-chronic liver failure. AKT proteins play crucial roles in K+ uptake and translocation in plant cells. 65 -340594 cd17074 Ubl_CysO_like ubiquitin-like (Ubl) domain found in Mycobacterium tuberculosis CysO and similar proteins. CysO, also termed 9.5 kDa culture filtrate antigen cfp10A, together with CysM (Cysteine synthase M), forms a protein complex CysM-CysO that represents a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. The replacement of the acetyl group of O-acetylserine by CysO thiocarboxylate to generate a protein-bound cysteine is catalyzed by CysM in a pyridoxal 5?-phosphate (PLP)-dependent manner. The family also includes QbsE that functions as the sulfide donor for the biosynthesis of thioquinolobactin in Pseudomonas fluorescens. A JAMM motif protein QbsD catalyzes removal of the carboxy-terminal dipeptide from QbsE. Both CysO and QbsE are similar to prokaryotic sulfur carrier proteins such as ThiS and MoaD, containing the beta-grasp ubiquitin-like fold. 89 -340595 cd17075 UBX1_UBXN9 Ubiquitin regulatory domain X (UBX) 1 found in UBX domain protein 9 (UBXN9, UBXD9, or ASPSCR1) and similar proteins. UBXN9, also termed tether containing UBX domain for GLUT4 (TUG), or alveolar soft part sarcoma chromosomal region candidate gene 1 protein (ASPSCR1), or alveolar soft part sarcoma locus (ASPL), or renal papillary cell carcinoma protein 17 (RCC17), belongs to the UBXD family of proteins that contains two ubiquitin regulatory domains X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, UBXN9 contains an N-terminal ubiquitin-like (Ubl) domain. UBXN9 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. UBXN9 is involved in insulin-stimulated redistribution of the glucose transporter GLUT4, assembly of the Golgi apparatus. In addition to GLUT4, UBXN9 also controls vesicle translocation by interacting with insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. UBXN9 and its budding yeast ortholog, Ubx4p, are multifunctional proteins that share some, but not all functions. Yeast Ubx4p is important for endoplasmic reticulum-associated protein degradation (ERAD) but UBXN9 appears not to share this function. 85 -340596 cd17076 UBX_UBXN10 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 10 (UBXN10) and similar proteins. UBXN10, also termed UBX domain-containing protein 3 (UBXD3), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN10 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. UBXN10 localizes to cilia in a p97-dependent manner, and both p97 and UBXN10 are required for ciliogenesis. Additionally, UBXN10 interacts with the intraflagellar transport B (IFT-B) and regulates anterograde transport into cilia. 76 -340597 cd17077 UBX_UBXN11 Ubiquitin regulatory domain X (UBX) found in UBX domain protein 11 (UBXN11) and similar proteins. UBXN11, also termed colorectal tumor-associated antigen COA-1, or socius, or UBX domain-containing protein 5 (UBXD5), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN11 may function as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. UBXN11 also acts as a novel interacting partner of Rnd proteins (Rnd1, Rnd2, and Rnd3/RhoE), new members of Rho family of small GTPases. It directly binds to Rnd GTPases through its C-terminal region, and further participates in disassembly of actin stress fibers. UBXN11 also binds directly to Galpha12 and Galpha13 through its N-terminal region. As a novel activator of the Galpha12 family, UBXN11 promotes the Galpha12-induced RhoA activation. 76 -340598 cd17078 Ubl_SLD1_NFATC2ip SUMO-like domain 1 (SLD1), structurally similar to a beta-grasp ubiquitin-like fold, found in nuclear factor of activated T-cells 2 interacting protein (NFATC2ip) and similar proteins. NFATC2ip, also termed nuclear factor of activated T cells (NFAT), cytoplasmic, calcineurin dependent 2 interacting protein, or 45 kDa NF-AT-interacting protein, or 45 kDa NFAT-interacting protein (Nip45), or nuclear factor of activated T-cells, or cytoplasmic 2-interacting protein, belongs to the eukaryotic-specific Rad60-Esc2-Nip45 (RENi) protein family. The family members may act as factors in transcriptional regulation, chromatin silencing and genomic stability, and typically contain an N-terminal polar/charged low-complexity segment and two C-terminal consecutive unique small ubiquitin-related modifier (SUMO)-like domains (SLD1 and SLD2) with beta-grasp fold. NFATC2ip was firstly identified as a co-regulator with NFAT and the T helper 2 (Th2)-specific transcription factor, c-Maf, to induce IL-4 production. NFATC2ip has also been involved in cellular differentiation and coordination of the immune response in humans and mice. 74 -340599 cd17079 Ubl_SLD2_NFATC2ip SUMO-like domain 2 (SLD2), structurally similar to a beta-grasp ubiquitin-like fold, found in nuclear factor of activated T-cells 2 interacting protein (NFATC2ip) and similar proteins. NFATC2ip, also termed nuclear factor of activated T cells (NFAT), cytoplasmic, calcineurin dependent 2 interacting protein, or 45 kDa NF-AT-interacting protein, or 45 kDa NFAT-interacting protein (Nip45), or nuclear factor of activated T-cells, or cytoplasmic 2-interacting protein, belongs to the eukaryotic-specific Rad60-Esc2-Nip45 (RENi) protein family. The family members may act as factors in transcriptional regulation, chromatin silencing and genomic stability, and typically contain an N-terminal polar/charged low-complexity segment and two C-terminal consecutive unique small ubiquitin-related modifier (SUMO)-like domains (SLD1 and SLD2) with beta-grasp fold. NFATC2ip was firstly identified as a co-regulator with NFAT and the T helper 2 (Th2)-specific transcription factor, c-Maf, to induce IL-4 production. NFATC2ip has also been involved in cellular differentiation and coordination of the immune response in humans and mice. NFATC2ip SLD2 domain binds to E2 SUMOylation enzyme, Ubc9, in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. 73 -340600 cd17080 Ubl_SLD2_Esc2_like SUMO-like domain 2 (SLD2), structurally similar to a beta-grasp ubiquitin-like fold, found in Saccharomyces cerevisiae establishes silent chromatin protein 2 (Esc2p) and similar proteins. Protein Esc2p belongs to the eukaryotic-specific Rad60-Esc2-Nip45 (RENi) protein family, whose members may act as factors in transcriptional regulation, chromatin silencing and genomic stability, and typically contain an N-terminal polar/charged low-complexity segment and two C-terminal consecutive unique small ubiquitin-related modifier (SUMO)-like domains (SLD1 and SLD2) with beta-grasp fold. Yeast Esc2p was identified as a factor promoting gene silencing. It is also required for genome integrity during DNA replication and sister chromatid cohesion in Saccharomyces cerevisiae. Esc2p promotes Mus81p complex-activity via its SUMO-like and DNA binding domains. It also acts as a novel structure-specific DNA-binding factor implicated in the local regulation of the Srs2p helicase through promoting recombination at sites of stalled replication. In addition, Esc2p specifically promotes the accumulation of SUMOylated Mms21-specific substrates and functions with Mms21p to suppress gross chromosomal rearrangements (GCRs). This family also includes DNA repair protein Rad60p from Schizosaccharomyces pombe. It is a SUMO mimetic and SUMO-targeted ubiquitin ligase (STUbL)-interacting protein that is required for the repair of DNA double strand breaks, recovery from S phase replication arrest, and plays an essential role in cell viability. Like other RENi family members, Rad60p has two SLD domains. 74 -340601 cd17081 RAWUL_PCGF1 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 1 (PCGF1) and similar proteins. PCGF1, also termed nervous system Polycomb-1 (NSPc1), or RING finger protein 68 (RNF68), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like BCOR complex that also contains RING1, RNF2, RYBP, SKP1, as well as the BCL6 co-repressor BCOR and the histone demethylase KDM2B, and is required to maintain the transcriptionally repressive state of some genes, such as Hox genes, BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. PCGF1 promotes cell cycle progression and enhances cell proliferation as well. It is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the retinoid acid response element (RARE element). Moreover, PCGF1 functions as an epigenetic regulator involved in hematopoietic cell differentiation. It cooperates with the transcription factor runt-related transcription factor 1 (Runx1) in regulating differentiation and self-renewal of hematopoietic cells. Furthermore, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PCGF1 contains a C3HC4-type RING-HC finger and a RAWUL domain. 92 -340602 cd17082 RAWUL_PCGF2_like RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger proteins PCGF2, PCGF4, and similar proteins. This family includes polycomb group RING finger proteins, PCGF2 (also known as Mel-18, or RNF110, or ZNF144) and PCGF4 (also known as BMI-1, or RNF51), both serving as the core component of a canonical polycomb repressive complex 1 (PRC1). PRC1 is composed of a chromodomain-containing protein (CBX2, CBX4, CBX6, CBX7 or CBX8) and a polyhomeotic protein (PHC1, PHC2, or PHC3). Like other PCGF homologs, PCGF2 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. PCGF4 associates with the Runx1/CBFbeta transcription factor complex to silence the target gene in a PRC2-independent manner. Both, PCGF2 and PCGF4, contain a C3HC4-type RING-HC finger and a RAWUL domain. 108 -340603 cd17083 RAWUL_PCGF3 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 3 (PCGF3) and similar proteins. PCGF3, also termed RING finger protein 3A (RNF3A), is one of six PcG RING finger (PCGF) homologs (PCGF1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6) and serves as the core component of a Polycomb repressive complex 1 (PRC1). Like other PCGF homologs, PCGF3 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. PCGF3 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 85 -340604 cd17084 RAWUL_PCGF5 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 5 (PCGF5) and similar proteins. PCGF5, also termed RING finger protein 159 (RNF159), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a Polycomb repressive complex 1 (PRC1). Like other PCGF homologs, PCGF5 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. PCGF5 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 101 -340605 cd17085 RAWUL_PCGF6 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 6 (PCGF6) and similar proteins. PCGF6, also termed Mel18 and Bmi1-like RING finger (MBLR), or RING finger protein 134 (RNF134), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5 and PCGF6/MBLR), and serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like L3MBTL2 complex, which is composed of some canonical components, such as RNF2, CBX3, CXB4, CXB6, CXB7 and CXB8, as well as some noncanonical components, such as L3MBTL2, E2F6, WDR5, HDAC1 and RYBP, and plays critical roles in epigenetic transcriptional silencing in higher eukaryotes. Like other PCGF homologs, PCGF6 possesses the transcriptional repression activity, and also associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF6 can regulate the enzymatic activity of JARID1d/KDM5D, a trimethyl H3K4 demethylase, through the direct interaction with it. Furthermore, PCGF6 is expressed predominantly in meiotic and post-meiotic male germ cells and may play important roles in mammalian male germ cell development. It also regulates mesodermal lineage differentiation in mammalian embryonic stem cells (ESCs) and functions in induced pluripotent stem (iPS) reprogramming. The activity of PCGF6 is found to be regulated by cell cycle dependent phosphorylation. PCGF6 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 89 -340606 cd17086 RAWUL_RING1_like RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in really interesting new gene proteins RING1, RING2 and similar proteins. RING1, also termed polycomb complex protein RING1, or RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), has been identified as a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. RING2, also termed huntingtin-interacting protein 2-interacting protein 3, or HIP2-interacting protein 3, or protein DinG, or RING finger protein 1B (RING1B), or RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. Both, RING1 and RING2, are core components of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING2 acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity. Members in this family contain a C3HC4-type RING-HC finger, and a RAWUL domain. 106 -340607 cd17087 RAWUL_DRIP_like RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in DREB2A-interacting protein (DRIP) and similar proteins. Dehydration-Responsive Element-Binding Protein 2A (DREB2A) regulates the expression of stress-inducible genes via the dehydration-responsive elements and requires posttranslational modification for its activation. DREB2A-Interacting Protein (DRIP) contains a RING finger, and a RING finger- and WD40-associated ubiquitin-like (RAWUL) domain. DRIP interacts with DREB2A and functions as a E3 ubiquitin ligases that negatively regulates DREB2A expression. 104 -340608 cd17088 FERM_F1_FRMPD1_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM and PDZ domain-containing proteins FRMPD1, FRMPD3, FRMPD4, and similar proteins. This family includes FERM and PDZ domain-containing proteins FRMPD1, FRMPD3, and FRMPD4, which all contain a PDZ domain and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain of the FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). FRMPD1, also termed FERM domain-containing protein 2, is an activator of G-protein signaling 3 (AGS3)-binding protein that regulates the subcellular location of AGS3 and its interaction with G-proteins. FRMPD4, also termed PDZ domain-containing protein 10, or PSD-95-interacting regulator of spine morphogenesis (Preso), is a multiscaffolding protein that modulates both Homer1 and post-synaptic density protein 95 activity. Both FRMPD1 and FRMPD4 can associate with the tetratricopeptide repeat (TPR) motif-containing adaptor protein LGN. The biological role of FRMPD3 remains unclear. 90 -340609 cd17089 FERM_F0_TLN FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in Talin and similar proteins. Talin is a cytoskeletal protein that activates integrins and couples them to cytoskeletal actin. Talin consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F0 domain that is joined to the F1 domain in a novel fixed orientation by an extensive charged interface. It is required for maximal integrin-activation, by interacting with other FA components; no binding partner has yet been found for it. 84 -340610 cd17090 FERM_F1_TLN FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Talin and similar proteins. Talin is a cytoskeletal protein that activates integrins and couples them to cytoskeletal actin. Talin consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F0 domain that is joined to the F1 domain in a novel fixed orientation by an extensive charged interface. It is required for maximal integrin-activation, by interacting with other FA components; no binding partner has yet been found for it. 111 -340611 cd17091 FERM_F0_SHANK FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in SH3 and multiple ankyrin repeat domains proteins, SHANK1, SHANK2, and SHANK3. SHANK proteins (SHANK1, SHANK2, and SHANK3) are core components of the postsynaptic density (PSD) of excitatory synapses. They act as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. They play important roles in proper excitatory synapse and circuit function. Mutations in SHANK genes, especially in SHANK3 and SHANK2, may lead to neuropsychiatric disorders, such as autism spectrum disorder (ASD). SHANK proteins contain an N-terminal F0 domain of FERM (Band 4.1, ezrin, radixin, moesin), six ankyrin (ANK) repeats, one SH3 (Src homology 3) domain, one PDZ (PSD-95, Dlg, and ZO-1/2, also termed DHR or GLGF) domain, and a C-terminal SAM (sterile alpha motif) domain. This family corresponds to the F0 domain that adopts a ubiquitin-like fold. 84 -340612 cd17092 FERM1_F1_Myosin-VII FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins. This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 99 -340613 cd17093 FERM2_F1_Myosin-VII FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins. This family includes two nontraditional members of myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the second FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 98 -340614 cd17094 FERM_F1_Max1_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Caenorhabditis elegans max-1 and its homologs PLEKHH1 and PLEKHH2. Caenorhabditis elegans max-1 is expressed and functions in motor neurons. MAX-1 protein plays a possible role in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway. PLEKHH1 is critically required in vascular patterning in vertebrate species through acting upstream of the ephrin pathway. PLEKHH2 is highly enriched in renal glomerular podocytes, and acts as a novel, important component of the podocyte foot processes. It is involved in matrix adhesion and actin dynamics. Members in this family all contain two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 102 -340615 cd17095 FERM_F0_kindlins FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in the kindlin family. The kindlin family is composed of kindlin-1, 2 and 3, which are FERM domain-containing adaptor molecules that interact with the cytoplasmic component of integrins and regulate cell-matrix connections. Kindlins belong to the 4.1- ezrin-ridixin-moesin (FERM) domain containing protein family. They contain F1, F2 and F3 subdomains that typify FERM family members, and these subdomains are preceded by an N-terminal F0 subdomain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F0 domain. In addition, a distinctive feature of kindlins is the insertion of a pleckstrin homology (PH) subdomain into the F2 subdomain. 80 -340616 cd17096 FERM_F1_kindlins FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the kindlin family. The kindlin family is composed of Kindlin-1, 2 and 3, which are FERM domain-containing adaptor molecules that interact with the cytoplasmic component of integrins and regulate cell-matrix connections. Kindlins belong to the 4.1- ezrin-ridixin-moesin (FERM) domain containing protein family. They contain F1, F2 and F3 subdomains that typify FERM family members, and these subdomains are preceded by an N-terminal F0 subdomain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F1 domain. In addition, a distinctive feature of kindlins is the insertion of a pleckstrin homology (PH) subdomain into the F2 subdomain. 90 -340617 cd17097 FERM_F1_ERM_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family proteins. The ezrin-radixin-moesin (ERM) family includes a group of closely related cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. They exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Merlin, which is highly related to the members of the ezrin, radixin, and moesin (ERM) protein family that are directly attached to and functionally linked with NHE1, is included in this family. 83 -340618 cd17098 FERM_F1_FARP1_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, RhoGEF and pleckstrin domain-containing protein 1 (FARP1) and similar proteins. This family includes the F1 sub-domain of FERM, RhoGEF and pleckstrin domain-containing proteins FARP1, FARP2, and FERM domain-containing protein 7 (FRMD7). FARP1, also termed chondrocyte-derived ezrin-like protein (CDEP), or pleckstrin homology (PH) domain-containing family C member 2 (PLEKHC2), is a neuronal activator of the RhoA GTPase. It promotes outgrowth of developing motor neuron dendrites. It also regulates excitatory synapse formation and morphology, as well as activates the GTPase Rac1 to promote F-actin assembly. FARP2, also termed FERM domain including RhoGEF (FIR), or Pleckstrin homology (PH) domain-containing family C member 3, is a Dbl-family guanine nucleotide exchange factor (GEF) that activates Rac1 or Cdc42 in response to upstream signals, suggesting roles in regulating processes such as neuronal axon guidance and bone homeostasis. It is also a key molecule involved in the response of neuronal growth cones to class-3 semaphorins. FRMD7 plays an important role in neuronal development and is involved in the regulation of F-actin, neurofilament, and microtubule dynamics. All family members contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 85 -340619 cd17099 FERM_F1_PTPN14_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptors PTPN14, PTPN21, and similar proteins. This family includes tyrosine-protein phosphatase non-receptors PTPN14 and PTPN21, both of which are protein-tyrosine phosphatase (PTP). They belong to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN14 plays a role in the nucleus during cell proliferation. PTPN21 interacts with a Tec tyrosine kinase family member, the epithelial and endothelial tyrosine kinase (Etk, also known as Bmx), modulates Stat3 activation, and plays a role in the regulation of cell growth and differentiation. 85 -340620 cd17100 FERM_F1_PTPN3_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 3 (PTPN3) and similar proteins. This family includes two tyrosine-protein phosphatase non-receptors, PTPN3 and PTPN4, both of which belong to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 86 -340621 cd17101 FERM_F1_PTPN13_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 13 (PTPN13) and similar proteins. This family includes tyrosine-protein phosphatase non-receptor type 13 (PTPN13), FERM and PDZ domain-containing protein 2 (FRMPD2), and FERM domain-containing proteins FRMD1 and FRMD6. All family members contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 97 -340622 cd17102 FERM_F1_FRMD3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 3 (FRMD3) and similar proteins. FRMD3, also termed band 4.1-like protein 4O, or ovary type protein 4.1 (4.1O), belongs to the 4.1 protein superfamily, which share the highly conserved membrane-association FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). FRMD3 is involved in maintaining cell shape and integrity. It also functions as a tumour suppressor in non-small cell lung carcinoma (NSCLC). Some single nucleotide polymorphisms (SNPs) located in FRMD3 have been associated with diabetic kidney disease (DKD) in different ethnicities. 82 -340623 cd17103 FERM_F1_FRMD4 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing proteins FRMD4A, FRMD4B, and similar proteins. This family includes FERM domain-containing proteins FRMD4A and FRMD4B, both of which contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). FRMD4A is a cytohesin adaptor involved in cell structure, transport and signaling. It promotes the growth of cancer cells in tongue, head and neck squamous cell carcinomas. FRMD4B, also termed GRP1-binding protein GRSP1, interacts with the coil-coil domain of ARF exchange factor GRP1 to form the Grsp1-Grp1 complex that co-localizes with cortical actin rich regions in response to stimulation of CHO-T cells with insulin or epidermal growth factor (EGF). 91 -340624 cd17104 FERM_F1_MYLIP FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in E3 ubiquitin-protein ligase MYLIP and similar proteins. MYLIP, also termed inducible degrader of the LDL-receptor (Idol), or myosin regulatory light chain interacting protein (MIR), is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family, including UBE2D1, UBE2D2, UBE2D3, and UBE2D4. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains a FERM-domain and a C-terminal C3HC4-type RING-HC finger. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 81 -340625 cd17105 FERM_F1_EPB41 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1 (EPB41) and similar proteins. EPB41, also termed protein 4.1 (P4.1), or 4.1R, or Band 4.1, or EPB4.1, belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41 is a widely expressed cytoskeletal phosphoprotein that stabilizes the spectrin-actin cytoskeleton and anchors the cytoskeleton to the cell membrane. EPB41 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 83 -340626 cd17106 FERM_F1_EPB41L FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like proteins. The family includes erythrocyte membrane protein band 4.1-like proteins EPB41L1/4.1N, EPB41L2/4.1G, and EPB41L3/4.1B. They belong to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L1 is a cytoskeleton-associated protein that may serve as a tumor suppressor in solid tumors. EPB41L2 is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L3 also acts as a tumor suppressor implicated in a variety of meningiomas and carcinomas. Members in this family contain a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 84 -340627 cd17107 FERM_F1_EPB41L4A FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band 4.1-like protein 4A (EPB41L4A) and similar proteins. EPB41L4A, also termed protein NBL4, is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). EPB41L4A is an important component of the beta-catenin/Tcf pathway. It may be related to determination of cell polarity or proliferation. 91 -340628 cd17108 FERM_F1_EPB41L5_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like 5 (EPB41L5) and similar proteins. This family includes FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like proteins, EPB41L5 and EPB41L4B. EPB41L5 is a mesenchymal-specific protein that is an integral component of the ARF6-based pathway. EPB41L4B is a positive regulator of keratinocyte adhesion and motility, suggesting a role in wound healing. It also promotes cancer metastasis in melanoma, prostate cancer and breast cancer. Both EPB41L5 and EPB41L4B contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 81 -340629 cd17109 FERM_F1_SNX17_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in PX-FERM family sorting nexin proteins. This family includes three endosome-associated PX (Phox homology) and FERM (Band 4.1, ezrin, radixin, moesin) domain-containing proteins called sorting nexin (SNX) 17, SNX27, and SNX31, which are modular peripheral membrane proteins acting as central scaffolds mediating protein-lipid interactions, cargo binding, and regulatory protein recruitment. They are key regulators of endosomal recycling and bind conserved NPX(Y/F) peptide sorting motifs in transmembrane cargos via an atypical FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 93 -340630 cd17110 FERM_F1_Myo10_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional myosin-X and similar proteins. Myosin-X, also termed myosin-10 (Myo10), is an untraditional member of myosin superfamily. It is an actin-based motor protein that plays a critical role in diverse cellular motile events, such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance, as well as a number of disease states including cancer metastasis and pathogen infection. Myosin-X functions as an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. It regulates neuronal radial migration through interacting with N-cadherin. Like other unconventional myosins, Myosin-X is composed of a conserved motor head, a neck region and a variable tail. The neck region consists of three IQ motifs (light chain-binding sites), and a predicted stalk of coiled coil. The tail contains three PEST regions, three PH domains, a MyTH4 domain, and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Amoebozoan Dictyostelium discoideum myosin VII (DdMyo7) and uncharacterized pleckstrin homology domain-containing family H member 3 (PLEKHH3) are also included in this family. Like metazoan Myo10, DdMyo7 is essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin. 97 -340631 cd17111 RA1_DAGK-theta Ras-associating (RA) domain 1 found in diacylgylcerol kinase theta (DAGK-theta) and similar proteins. DAGK phosphorylates the second messenger diacylglycerol to phosphatidic acid as part of a protein kinase C pathway. DAGK-theta is characterized as a type V DAGK that has three cysteine-rich domains (all other isoforms have two), a proline/glycine-rich domain at its N-terminal, and a proposed Ras-associating (RA) domain. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has a beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Ten mammalian isoforms of DAGK have been identified to date which are organized into five categories based on the domain architecture. DAGK-theta also contains a pleckstrin homology (PH) domain. The subcellular localization and the activity of DAGK-theta are regulated in a complex (stimulation- and cell type-dependent) manner. This family corresponds to the first RA domain of DAGK-theta. 91 -340632 cd17112 RA_MRL_like Ras-associating (RA) domain found in Mig10/RIAM/Lpd (MRL) family and growth factor receptor-bound (Grb) protein 7/10/14. MRL proteins share a common structural architecture, including a central structural unit consisting of a Ras-associating (RA) domain and a pleckstrin homology (PH) domain, an upstream coiled-coil region, and a number of polyproline motifs. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. RA and PH form a tandem domain pair (RA-PH), and serve tightly coordinated functions in both Ras GTPase signaling via the RA domain and membrane translocalization via the PH domain. MRL proteins have distinct functions in cell migration and adhesion, signaling, and in cell growth. Grb7/10/14 are multi-domain cytoplasmic adaptor proteins that are recruited to activated receptor tyrosine kinases. Grb7 and its related family members Grb10 and Grb14 share a conserved domain architecture that includes an amino-terminal proline-rich region, a central segment termed the GM region (for Grb and Mig) which includes the RA, PIR, and pleckstrin homology (PH) domains, and a carboxyl-terminal SH2 domain. The tandem RA and PH domains of Grb7/10/14 are also found in a second adaptor family, Rap1-interacting adaptor molecule (RIAM) and lamellipodin, which is involved in actin-cytoskeleton rearrangement. Grb7/10/14 family proteins are phosphorylated on serine/threonine as well as tyrosine residues and are mainly localized to the cytoplasm. 81 -340633 cd17113 RA_ARAPs Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing proteins ARAP1, ARAP2, ARAP3, and similar proteins. ARAPs are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating proteins (GAPs). They contain multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 95 -340634 cd17114 RA_PLC-epsilon Ras-associating (RA) domain found in Phosphatidylinositide-specific phospholipase C (PLC)-epsilon. PLC is a signaling enzyme that hydrolyzes membrane phospholipids to generate inositol triphosphate. PLC-epsilon represents a novel forth class of PLC that has a PLC catalytic core domain, a CDC25 guanine nucleotide exchange factor domain and two RA (Ras-association) domains. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Although PLC RA1 and RA2 have homologous ubiquitin-like folds only RA2 can bind Ras and activate it. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. 97 -340635 cd17115 RA_RHG20 Ras-associating (RA) domain found in Rho GTPase-activating protein 20 (RHG20) and similar proteins. RHG20, also termed ARHGAP20, is one of GTPase activating proteins for Rho family proteins (RhoGAPs). It contains a PH-like domain, an RA domain, a RhoGap domain, and two Annexin-like (ANXL) repeats. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin that is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 117 -340636 cd17116 RA_Radil_like Ras-associating (RA) domain found in ras-associating and dilute domain-containing protein (Radil) and similar proteins. Radil acts as an important small GTPase Rap1 effector required for cell spreading and migration. It regulates neutrophil adhesion and motility through linking Rap1 to beta2-integrin activation.This family also includes Ras-interacting protein 1 (Rain, also termed Rasip1), which is a novel Ras-interacting protein with a unique subcellular localization. It interacts with Ras in a GTP-dependent manner, and may serve as an effector for endomembrane-associated Ras. Radil contains RA, DIL, and PDZ domains. In contrast, Rain contains a myosin5-like cargo binding domain, a RA domain and a PDZ domain. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 121 -340637 cd17117 RA_ANKFN1_like Ras-associating (RA) domain found in Ankyrin repeat and fibronectin type-III domain-containing protein 1 (ANKFN1) and similar proteins. ANKFN1 is a multi-domain protein, with unknown function, that contains two ankyrin repeats and one fibronectin type-III domain. Except for the mammalian homologs, most metazon ANKFN1 harbor a RA domain at the C-terminus. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. 97 -340638 cd17118 Ubl_HERP1 ubiquitin-like (Ubl) domain found in homocysteine-inducible endoplasmic reticulum stress protein HERP1 and similar proteins. HERP1, also termed homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein (HERPUD1), or methyl methanesulfonate (MMF)-inducible fragment protein 1 (MIF1), is an endoplasmic reticulum (ER) integral membrane protein containing an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. HERP1 is a component of the ER quality control (ERQC) system, also called ER-associated degradation (ERAD), which is involved in ubiquitin-dependent degradation of misfolded ER proteins. It promotes the degradation of ER-resident Ca2+ channels. It is also involved in ubiquitin ligase HRD1-dependent protein degradation at the ER. Moreover, HERP1 plays a role in regulating the cell cycle, apoptosis and steroid hormone biosynthesis in mouse granulosa cells. 78 -340639 cd17119 Ubl_HERP2 ubiquitin-like (Ubl) domain found in homocysteine-inducible endoplasmic reticulum stress protein HERP2 and similar proteins. HERP2, also termed homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 2 protein (HERPUD2), is an endoplasmic reticulum (ER) integral membrane protein containing an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. It is homologous to HERP1, and could be involved in the unfolded protein response (UPR) pathway. It regulates the ubiquitin ligase HRD1-dependent protein degradation at the ER. 77 -340640 cd17120 Ubl_UBTD1 ubiquitin-like (Ubl) domain found in ubiquitin domain-containing protein 1 (UBTD1). UBTD1 is the mammalian homolog of the mitochondrial Dc-UbP/UBTD2 protein, both of which contain an N-terminal ubiquitin binding domain (UBD) and a C-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions. UBTD1 stably interacts with the UBE2D family of E2 ubiquitin conjugating enzymes. As a tumor suppressor, UBTD1 plays a pivotal role in in regulating cellular senescence that mediates p53 function. It is also involved in MDM2 ubiquitination and degradation. 69 -340641 cd17121 Ubl_UBTD2 ubiquitin-like (Ubl) domain found in ubiquitin domain-containing protein 2 (UBTD2). UBTD2, also termed dendritic cell-derived ubiquitin-like protein (DC-UbP), or ubiquitin-like protein SB72, is a potential ubiquitin shuttle protein firstly identified in dendritic cells and implicated in apoptosis. It binds proteins involved in the ubiquitination pathway and may play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells. UBTD2 is expressed in tumor cells but not in normal human adult tissue suggesting a role in tumorogenesis. It can potentially regulate the stability of proteins involved in various physiological processes relevant to many disease phenotypes, such as ageing and cancer. UBTD2 reconciles protein ubiquitination and deubiquitination via linking UbE1 and USP5 enzymes. 75 -340642 cd17122 Ubl_UHRF1 ubiquitin-like (Ubl) domain found in ubiquitin-like PHD and RING finger domain-containing protein 1(UHRF1). UHRF1, also termed inverted CCAAT box-binding protein of 90 kDa, or nuclear protein 95, or nuclear zinc finger protein Np95 (Np95), or RING finger protein 106, or transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1, is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma, gastric cancer, esophageal squamous cell carcinoma, colorectal cancer, prostate cancer, and breast cancer. UHRF1 can acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumor suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21.Moreover, UHRF1-dependent repression of factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination ofTIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (Ubl), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET and RING finger associated (SRA) domain, and a C-terminal RING-finger domain. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitination has an essential role in maintenance DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD finger targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-finger domain exhibits both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. 74 -340643 cd17123 Ubl_UHRF2 ubiquitin-like (Ubl) domain found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2). UHRF2, also termed Np95/ICBP90-like RING finger protein (NIRF), or Np95-likeRING finger protein, or nuclear protein 97, or nuclear zinc finger protein Np97, or RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2, was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131(ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) through interacting with HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (Ubl), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a set- and ring-associated (SRA) domain, and a C-terminal RING finger. 74 -340644 cd17124 Ubl_TECR ubiquitin-like (Ubl) domain found in trans-2,3-enoyl-CoA reductase (TECR). TECR, also termed very-long-chain enoyl-CoA reductase, or synaptic glycoprotein SC2, or TER, or GPSN2, is a synaptic glycoprotein that catalyzes the fourth reaction in the synthesis of very long-chain fatty acids (VLCFA) which is the reduction step of the microsomal fatty acyl-elongation process. Diseases involving perturbations to normal synthesis and degradation of VLCFA (e.g. adrenoleukodystrophy and Zellweger syndrome) have significant neurological consequences. The mammalian TECR P182L mutation causes nonsyndromic mental retardation. Deletion of the yeast TECR homolog (TSC13p) is lethal. TECR contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions, as well as a C-terminal catalytic domain. 79 -340645 cd17125 Ubl_TECRL ubiquitin-like (Ubl) domain found in trans-2,3-enoyl-CoA reductase-like (TECRL). TECRL, also termed steroid 5-alpha-reductase 2-like 2 protein (SRD5A2L2), is associated with life?threatening inherited arrhythmias displaying features of both long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). TECRL contains an N-terminal ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold, a common structure involved in protein-protein interactions, as well as a C-terminal catalytic domain. 78 -340646 cd17126 Ubl_HR23A ubiquitin-like (Ubl) domain found in UV excision repair protein RAD23 homolog A (HR23A). HR23A, also termed RAD23A, is a DNA repair protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation, which is required for efficient nucleotide excision repair (NER), a primary mechanism for removing UV-induced DNA lesions. HR23A also plays a critical role in the interaction of HIV-1 viral protein R (Vpr) with the proteasome, especially facilitating Vpr to promote protein poly-ubiquitination. HR23A contains an N-terminal ubiquitin-like (Ubl) domain that binds proteasomes and two C-terminal ubiquitin-associated (UBA) domains that bind ubiquitin or multi-ubiquitinated substrates. In addition, it has a XPC protein-binding domain that might be necessary for its efficient NER function. 76 -340647 cd17127 Ubl_TBK1 ubiquitin-like (Ubl) domain found in TRAF family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK1). TBK1, also termed NF-kappa-B-activating kinase, or T2K, or TANK-binding kinase 1, is an interferon regulatory factor-activating kinase that is a non-canonical member of IKK family. It plays a role in regulating innate immunity, inflammation and oncogenic signaling. TBK1 is involved in the regulation of type I interferons and of nuclear factor-kappaB (NF-kappaB) signal transduction. It regulates factors such as IRF3 and IRF7, promoting antiviral activity in the interferon signaling pathways. It modulates inflammatory hyperalgesia by regulating MAP kinases and NF-kappaB dependent genes. Moreover, TBK1 acts as a central player in the intracellular nucleic acid-sensing pathways involved in antiviral signaling. Dysregulation of TBK1 activity is often associated with autoimmune diseases and cancer. TBK1 contains an N-terminal protein kinase domain followed a ubiquitin-like (Ubl) domain, and a C-terminal elongated helical domain. The Ubl domain acts as a protein-protein interaction domain, and has been implicated in regulating kinase activity, which modulates interactions in the interferon pathway. 78 -340648 cd17128 Ubl_IKKE ubiquitin-like (Ubl) domain found in inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKK-E). IKK-E (EC 2.7.11.10), also termed I-kappa-B kinase epsilon (IKKepsilon), or IKK-epsilon, or IkBKE, or inducible I kappa-B kinase (IKK-i), is an interferon regulatory factor-activating kinase that is a non-canonical member of IKK family. It is involved in the cellular innate immunity by inducing type I interferons. It is induced by the activation of nuclear factor-kappaB (NF-kappaB). IKK-E has also been implicated in antiviral immune response in higher vertebrates. It acts as a crucial pro-survival factor in human T cell leukemia virus type 1 (HTLV-1)-transformed T lymphocytes. Moreover, IKK-E plays an essential role in tumor initiation and progression. It inhibits protein kinase C (PKC) to promote Fascin-dependent actin bundling. IKK-E contains an N-terminal protein kinase domain followed a ubiquitin-like (Ubl) domain, and a C-terminal elongated helical domain. The Ubl domain acts as a protein-protein interaction domain, and has been implicated in regulating kinase activity, which modulates interactions in the interferon pathway. 78 -340649 cd17129 Ubl1_FAF1 ubiquitin-like (Ubl) domain 1 found in FAS-associated factor 1 (FAF1) and similar proteins. FAF1, also termed UBX domain-containing protein 12 (UBXD12), or UBX domain-containing protein 3A (UBXN3A), belongs to the UBXD family of proteins that contains the ubiquitin (Ub) regulatory domain X (UBX) with a beta-grasp ubiquitin-like (Ubl) fold, but without the C-terminal double glycine motif. The UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, FAF1 contains two tandem Ubl domains, which show high structural similarity with the UBX domain. FAF1 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The FAF1-p97 complex inhibits the proteasomal protein degradation in which p97 acts as a co-chaperone. Moreover, FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. The family corresponds to the first Ubl domain. 73 -340650 cd17130 Ubl2_FAF1 ubiquitin-like (Ubl) domain 2 found in FAS-associated factor 1 (FAF1) and similar proteins. FAF1, also termed UBX domain-containing protein 12 (UBXD12), or UBX domain-containing protein 3A (UBXN3A), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like (Ubl) fold, but without the C-terminal double glycine motif. The UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. In addition, FAF1 contains two tandem Ubl domains, which show high structural similarity with the UBX domain. FAF1 functions as a cofactor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The FAF1-p97 complex inhibits the proteasomal protein degradation in which p97 acts as a co-chaperone. Moreover, FAF1 is an apoptotic signaling molecule that acts downstream in the Fas signal transduction pathway. It interacts with the cytoplasmic domain of Fas, but not to a Fas mutant that is deficient in signal transduction. FAF1 is widely expressed in adult and embryonic tissues, and in tumor cell lines, and is localized not only in the cytoplasm where it interacts with Fas, but also in the nucleus. FAF1 contains phosphorylation sites for protein kinase CK2 within the nuclear targeting domain. Phosphorylation influences nuclear localization of FAF1 but does not affect its potentiation of Fas-induced apoptosis. Other functions have also been attributed to FAF1. It inhibits nuclear factor-kappaB (NF-kappaB) by interfering with the nuclear translocation of the p65 subunit. Although the precise role of FAF1 in the ubiquitination pathway remains unclear, FAF1 interacts with valosin-containing protein (VCP), which is involved in the ubiquitin-proteosome pathway. The family corresponds to the second Ubl domain. 75 -340651 cd17131 Ubl_TMUB1 ubiquitin-like (Ubl) domain found in transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1). TMUB1, also termed dendritic cell-derived ubiquitin-like protein (DULP), or hepatocyte odd protein shuttling protein, or ubiquitin-like protein SB144, or HOPS, is highly expressed in the nervous system. It is involved in the termination of liver regeneration and plays a negative role in interleukin-6-induced hepatocyte proliferation. The overexpression of Tmub1 has been shown to play a role in the inhibition of cell proliferation. TMUB1 has also been implicated in the regulation of locomotor activity and wakefulness in mice, perhaps acting through its interaction with CAMLG. It also facilitates the recycling of AMPA receptors into synaptic membrane in cultured primary neurons. TMUB1 contains transmembrane domains and a ubiquitin-like (Ubl) domain with a beta-grasp Ubl fold. 71 -340652 cd17132 Ubl_TMUB2 ubiquitin-like (Ubl) domain found in transmembrane and ubiquitin-like domain-containing protein 2 (TMUB2). TMUB2 is composed of an uncharacterized transmembrane domain and a ubiquitin-like (Ubl) domain-containing protein that shows high sequence similarity to TMUB1; the latter is highly expressed in the nervous system and is involved in the termination of liver regeneration. 71 -340653 cd17133 RBD_ARAF Ras-binding domain (RBD) found in serine/threonine-protein kinase ARAF. ARAF, also termed proto-oncogene ARAF, or proto-oncogene ARAF1, or proto-oncogene PKS2, belongs to the RAF protein family. The RAF family includes three RAF kinases ARAF, BRAF, and RAF1/CRAF, encoded by proto-oncogenes, which activate the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) cascade downstream of RAS. They share a common structure consisting of an N-terminal regulatory domain and a C-terminal kinase domain. There are three conserved regions (CR1-3) in the regulatory domain, CR1 contains a Ras-binding domain (RBD) and a cysteine-rich domain (CRD), CR2 is a serine/threonine-rich domain, and CR3 encodes the kinase domain required for RAF. The RBD of RAF has a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. ARAF is predominantly found in urogenital tissue with a low basal kinase activity. It directly cross-talks with NODAL/SMAD2 signaling in a MAPK-independent manner. It also promotes MAPK pathway activation and cell migration in a cell type-dependent manner. Moreover, ARAF acts as a scaffold to stabilize BRAF-CRAF heterodimers. Mice deleted for ARAF are viable but die perinatally. 73 -340654 cd17134 RBD_BRAF Ras-binding domain (RBD) found in serine/threonine-protein kinase BRAF. BRAF, also termed proto-oncogene B-Raf, or p94, or v-Raf murine sarcoma viral oncogene homolog B1, belongs to the RAF family. The RAF family includes three RAF kinases ARAF, BRAF, and RAF1/CRAF, encoded by proto-oncogenes, which activate the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) cascade downstream of RAS. They share a common structure consisting of an N-terminal regulatory domain and a C-terminal kinase domain. There are three conserved regions (CR1-3) in the regulatory domain, CR1 contains a Ras-binding domain (RBD) and a cysteine-rich domain (CRD), CR2 is a serine/threonine-rich domain, and CR3 encodes the kinase domain required for RAF. The RBD of RAF has a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. BRAF is the most effective RAF kinase in terms of induction of MEK/ERK activity. It is somatically mutated in a number of human cancers. 79 -340655 cd17135 RBD_CRAF Ras-binding domain (RBD) found in RAF proto-oncogene serine/threonine-protein kinase RAF1/CRAF. RAF1/CRAF, also termed proto-oncogene c-RAF (cRaf), or Raf-1, belongs to the RAF family. The RAF family includes three RAF kinases ARAF, BRAF, and RAF1/CRAF, encoded by proto-oncogenes, which activate the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) cascade downstream of RAS. They share a common structure consisting of an N-terminal regulatory domain and a C-terminal kinase domain. There are three conserved regions (CR1-3) in the regulatory domain, CR1 contains a Ras-binding domain (RBD) and a cysteine-rich domain (CRD), CR2 is a serine/threonine-rich domain, and CR3 encodes the kinase domain required for RAF. The RBD of RAF has a beta-grasp ubiquitin-like fold, a common structure involved in protein-protein interactions. RAF1/CRAF is an important effector of Ras-mediated signaling and is a critical regulator of the MAPK/ERK pathway. 77 -340656 cd17136 RBD1_RGS12 Ras-binding domain (RBD) 1 of regulator of G protein signaling 12 (RGS12). RGS12 (regulator of G protein signaling 12) is a multidomain RGS protein with numerous signaling regulatory elements. In addition to a central RGS domain which is responsible for GAP activity, the long RGS12 splice variant contains a PDZ (PSD-95/Discs-large/ZO-1 homology) domain capable of binding the interleukin-8 receptor B (CXCR2) or its own C-terminal, a phosphotyrosine-binding (PTB) domain that associates with tyrosine-phosphorylated N-type calcium channel, two tandem Ras-binding domains (RBDs) that may integrate signaling pathways involving both heterotrimeric and monomeric G-proteins, and a GoLoco (G-alpha-i/o-Loco) interaction motif which has guanine nucleotide dissociation inhibitor (GDI) activity toward G-alpha-i subunits. RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. RGS proteins belong to a large family of GTpase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. 70 -340657 cd17137 RBD1_RGS14 Ras-binding domain (RBD) 1 of regulator of G protein signaling 14 (RGS14). RGS12 (regulator of G protein signaling 14) is a RGS protein with a multidomain structure that allows it to interact with binding partners from multiple signaling pathways. RGS proteins belong to a large family of GTPase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. RGS14 contains an N-terminal RGS domain, two tandem Ras-binding domains (RBDs) and a G protein regulatory (GPR, also referred to as a GoLoco) motif. RGS14 binds activated H-Ras-GTP through its first RBD and interacts with Rap2-GTP and RAF kinases by the second tandem RBD. RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. RGS14 modulates neuronal physiology and all of its binding partners have roles in synaptic plasticity. 71 -340658 cd17138 RBD2_RGS12 Ras-binding domain (RBD) 2 of regulator of G protein signaling 12 (RGS12). RGS12 (regulator of G-protein signaling 12) is a multidomain RGS protein with numerous signaling regulatory elements. In addition to a central RGS domain which is responsible for GAP activity, the long RGS12 splice variant contains a PDZ (PSD-95/Discs-large/ZO-1 homology) domain capable of binding the interleukin-8 receptor B (CXCR2) or its own C-terminal, a phosphotyrosine-binding (PTB) domain that associates with tyrosine-phosphorylated N-type calcium channel, two tandem Ras-binding domains (RBDs) that may integrate signaling pathways involving both heterotrimeric and monomeric G-proteins, and a GoLoco (G-alpha-i/o-Loco) interaction motif which has guanine nucleotide dissociation inhibitor (GDI) activity toward G-alpha-i subunits. RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. RGS proteins belong to a large family of GTpase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. 73 -340659 cd17139 RBD2_RGS14 Ras-binding domain (RBD) 2 of regulator of G protein signaling 14 (RGS14). RGS14 (regulator of G protein signaling 14) is a RGS protein with a multidomain structure that allows it to interact with binding partners from multiple signaling pathways. RGS proteins belong to a large family of GTPase-accelerating proteins (GAPs) which act as key inhibitors of G-protein-mediated cell responses in eukaryotes. RGS14 contains an N-terminal RGS domain, two tandem Ras-binding domains (RBDs) and a G protein regulatory (GPR, also referred to as a GoLoco) motif. RGS14 binds activated H-Ras-GTP through its first RBD and interacts with RAP2-GTP and RAF kinases by the second tandem RBD. RBD is structurally similar to the beta-grasp fold of ubiquitin, a common structure involved in protein-protein interactions. RGS14 modulates neuronal physiology and all of its binding partners have roles in synaptic plasticity. 73 -340660 cd17140 DCX1_DCLK1 Dublecortin-like domain 1 found in doublecortin-like kinase 1 (DCLK1). DCLK1 is a member of doublecortin (DCX) protein superfamily that functions as a microtubule-associated protein (MAP), and contains two conserved tubulin binding domains. The DCX domain has a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. In addition to microtubule-binding domains, DCLK encodes a serine/threonine kinase domain that is similar to Ca/calmodulin-dependent (Cam) protein kinases. DCLK1 appears to regulate cyclic AMP signaling and is involved in neuronal migration, retrograde transport, neuronal apoptosis and neurogenesis. Unlike DCX, this DCLK has varying levels of expression throughout embryonic and adult life. 89 -340661 cd17141 DCX1_DCLK2 Dublecortin-like domain 1 found in doublecortin-like kinase 2 (DCLK2). DCLK2 is a member of doublecortin (DCX) protein superfamily that functions as a microtubule-associated protein (MAP), and contains two conserved tubulin binding domains, which typically occur in tandem. The DCX domain has a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier (Ubiquitination) in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. In addition to microtubule binding domains, DCLK encodes a serine/threonine kinase-domain that is similar to Ca/calmodulin-dependent (Cam) protein kinases. Molecular actions of DCX members are less well characterized and it shows that DCLK2 members regulate cyclic AMP signaling. Unlike DCX, this DCLK has varying levels of expression throughout embryonic and adult life. 85 -340662 cd17142 DCX2_DCX Dublecortin-like domain 2 found in neuronal migration protein doublecortin (DCX). DCX, also termed doublin or lissencephalin-X (Lis-XDCX), is a microtubule-associated protein (MAP). It belongs to the doublecortin (DCX) family, has double tandem DCX repeats, and is expressed in migrating neurons. Structure studies show that the N-terminal DCX domain has a stable ubiquitin-like fold. DCX is not only a unique MAP in terms of its structure, but also interacts with multiple additional proteins. Mutations in the human DCX genes are associated with abnormal neuronal migration, epilepsy, and mental retardation. 84 -340663 cd17143 DCX2_DCLK1 Dublecortin-like domain 2 found in doublecortin-like kinase 1 (DCLK1). DCLK1 is a member of doublecortin (DCX) protein family that functions as a microtubule-associated protein (MAP), and contains two conserved tubulin binding domains. The DCX domain has a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. In addition to microtubule binding domains, DCLK encodes a serine/threonine kinase-domain that is similar to Ca/calmodulin-dependent (Cam) protein kinases. DCLK1 appears to regulate cyclic AMP signaling and is involved in neuronal migration, retrograde transport, neuronal apoptosis and neurogenesis. Unlike DCX, the DCLK has varying levels of expression throughout embryonic and adult life. 84 -340664 cd17144 DCX2_DCLK2 Dublecortin-like domain 2 found in doublecortin-like kinase 2 (DCLK2). DCLK2 is a member of doublecortin (DCX) protein family that functions as a microtubule-associated protein (MAP), and contains two conserved tubulin binding domains, which typically occur in double tandem. The DCX domain has a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. In addition to microtubule binding domains, DCLK encodes a serine/threonine kinase-domain that is similar to Ca/calmodulin-dependent (Cam) protein kinases. DCLK2 members regulate cyclic AMP signaling. Unlike DCX, the DCLK has varying levels of expression throughout embryonic and adult life. 84 -340665 cd17145 DCX1_RP1 Doublecortin-like domain 1 found in retinitis pigmentosa 1 (RP1)-like protein. RP1, also termed oxygen-regulated protein 1, is a member of the doublecortin (DCX) family. Its DCX domains occur in double tandem repeats. RP1 is associated with retinitis pigmentosa, which is a type of inherited blindness. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The RP1 protein is expressed in photoreceptors and is required for correct stacking of outer segment discs. It interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 79 -340666 cd17146 DCX1_RP1L1 Doublecortin-like domain 1 found in retinitis pigmentosa 1-like 1 (RP1L1) protein. RP1L1 is a member of the doublecortin (DCX) family. Its DCX domains occur in double tandem repeats. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The DCX-domain of RP1L1 localizes to the photoreceptor and is genetically associated with retinitis pigmentosa. 79 -340667 cd17147 DCX2_RP1 Dublecortin-like domain 2 found in retinitis pigmentosa 1 (RP1)-like protein. RP1, also termed oxygen-regulated protein 1, is a member of doublecortin (DCX) superfamily that contains double tandem repeats of the DCX domains. RP1 is associated with retinitis pigmentosa, which is a type of inherited blindness. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The RP1 protein is expressed in photoreceptors that is required for correct stacking of outer segment discs. RP1 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 76 -340668 cd17148 DCX2_RP1L1 Dublecortin-like domain 2 found in retinitis pigmentosa 1-like 1 (RP1L1) protein. RP1L1 is a member of doublecortin (DCX) family. Its protein domains occur in tandem repeats. DCX is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. The DCX-domain of RP1L1 localizes to the photoreceptor and is genetically associated with retinitis pigmentosa. 76 -340669 cd17149 DCX1_DCDC2 Dublecortin-like domain 1 found in doublecortin domain-containing protein 2 (DCDC2). DCDC2 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 80 -340670 cd17150 DCX1_DCDC2B Dublecortin-like domain 1 found in doublecortin domain-containing protein 2B (DCDC2B). DCDC2 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 79 -340671 cd17151 DCX1_DCDC2C Dublecortin-like domain 1 found in doublecortin domain-containing protein 2C (DCDC2C). DCDC2 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 79 -340672 cd17152 DCX2_DCDC2 Doublecortin-like domain 2 found in doublecortin domain-containing protein 2 (DCDC2). DCDC2 is a member of the doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 80 -340673 cd17153 DCX2_DCDC2B Doublecortin-like domain 2 found in doublecortin domain-containing protein 2B (DCDC2B). DCDC2 is a member of the doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of a ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 80 -340674 cd17154 DCX2_DCDC2C Doublecortin-like domain 2 found in doublecortin domain-containing protein 2C (DCDC2C). DCDC2 is a member of the doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of a ubiquitin-like tertiary fold. Microtubules are key components of cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC2 genetic variation in humans is associated with reading disability, attention deficit hyperactivity disorder (ADHD), and difficulties in mathematics. A genetic variant of DCDC2 associates with dyslexia, a common neurobehavioral disorder of reading. DCDC2 protein interacts with many of the same cytoskeleton related proteins that other members of the DCX family interact with. 80 -340675 cd17155 DCX_DCDC1 Doublecortin-like domain found in doublecortin domain-containing protein 1 (DCDC1). Doublecortin (DCX) is a microtubule-associated protein (MAP) with a stable ubiquitin-like tertiary fold. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCX gene family consists of eleven paralogs in human and mouse, such that its protein domains can occur in tandem or single repeats. Proteins with DCX tandem domains in general have roles in microtubule (MT) regulation and signal transduction while single DCX repeat proteins are normally localized to actin-rich subcellular structures or to the nucleus. DCDC1 is a hydrophilic intracellular protein that contains only one DCX repeat. Therefore, DCDC1 might only bind to microtubules without microtubule polymerization properties. DCDC1 is mainly expressed in adult testis. 72 -340676 cd17156 DCX1_DCDC5 Doublecortin-like domain 1 found in doublecortin domain-containing protein 5 (DCDC5). DCDC5 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC5 is expressed during mitosis and is involved in coordinating late cytokinesis. DCDC5 interacts with cytoplasmic dynein and Rab8, as well as with the Rab8 nucleotide exchange factor Rabin8. 76 -340677 cd17157 DCX2_DCDC5 Doublecortin-like domain 2 found in doublecortin domain-containing protein 5 (DCDC5). DCDC5 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC5 is expressed during mitosis and involved in coordinating late cytokinesis. DCDC5 interacts with cytoplasmic dynein and Rab8, as well as with the Rab8 nucleotide exchange factor Rabin8. 86 -340678 cd17158 DCX3_DCDC5 Doublecortin-like domain 3 found in doublecortin domain-containing protein 5 (DCDC5). DCDC5 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC5 is expressed during mitosis and involved in coordinating late cytokinesis. DCDC5 interacts with cytoplasmic dynein and Rab8, as well as with the Rab8 nucleotide exchange factor Rabin8. 73 -340679 cd17159 DCX4_DCDC5 Doublecortin-like domain 4 found in doublecortin domain-containing protein 5 (DCDC5). DCDC5 is a member of doublecortin (DCX) family. It is a microtubule-associated protein (MAP) with stable double tandem DCX repeats of ubiquitin-like tertiary fold. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. Microtubules are key components of the cytoskeleton that are involved in cell movement, shape determination, division and transport. DCDC5 is expressed during mitosis and involved in coordinating late cytokinesis. DCDC5 interacts with cytoplasmic dynein and Rab8, as well as with the Rab8 nucleotide exchange factor Rabin8. 73 -340680 cd17160 UBX_UBXN2A Ubiquitin regulatory domain X (UBX) found in UBX domain protein 2A (UBXN2A) and similar proteins. UBXN2A, also termed UBX domain-containing protein 4 (UBXD4), belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN2A functions as a p97 (also known as VCP or Cdc48) adaptor protein facilitating the regulation of the cell surface number and stability of alpha3-containing neuronal nicotinic acetylcholine receptors (nAChRs). It also regulates nicotinic receptor degradation by modulating the E3 ligase activity of carboxyl terminus of Hsc70 interacting protein (CHIP) that is involved in the degradation of several disease-related proteins. In addition, UBXN2A is an important anticancer factor that contributes to p53 localization and activation as a host defense mechanism against cancerous growth. It acts as a potential mortalin inhibitor, as well as a potential chemotherapy sensitizer for clinical application. It binds to the oncoprotein mortalin-2 (mot-2), and further unsequesters p53 from mot-2 in the cytoplasm, resulting in translocation of p53 to the nucleus where p53 proteins activate their downstream biological effects, including apoptosis. 84 -340681 cd17161 UBX_UBXN2B Ubiquitin regulatory domain X (UBX) found in UBX domain protein 2B (UBXN2B) and similar proteins. UBXN2B, also termed NSFL1 cofactor p37, or p97 cofactor p37, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN2B is an adaptor protein of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. UBXN2B forms a tight complex with p97 in the cytosol and localizes to the Golgi and endoplasmic reticulum (ER). 82 -340682 cd17162 UBX_UBXN2C Ubiquitin regulatory domain X (UBX) found in NSFL1 cofactor (also known as UBX domain-containing protein 2C (UBXN2C) and similar proteins. UBXN2C, also termed NSFL1C, or NSFL1 cofactor p47, or p97 cofactor p47, UBX1, or UBXD10, belongs to the UBXD family of proteins that contains the ubiquitin regulatory domain X (UBX) with a beta-grasp ubiquitin-like fold, but without the C-terminal double glycine motif. UBX domain is typically located at the carboxyl terminus of proteins, and participates broadly in the regulation of protein degradation. UBXN2C is a major adaptor of p97 (also known as VCP or Cdc48), which is a homohexameric AAA ATPase (ATPase associated with a variety of activities) involved in a variety of functions ranging from cell-cycle regulation to membrane fusion and protein degradation. The main role of the UBXN2C/p97 complex is in regulation of membrane fusion events. It plays an essential role in the reassembly of Golgi stacks at the end of mitosis. UBXN2C also functions as an essential factor for Golgi membrane fusion, which associates with the nuclear factor-kappaB essential modulator (NEMO) subunit of the IkappaB kinase (IKK) complex upon tumor necrosis factor (TNF)-alpha or interleukin (IL)-1 stimulation, induces the lysosome-dependent degradation of polyubiquitinated NEMO without p97, and thus inhibits IKK activation. Moreover, UBXN2C regulates a membrane fusion process, which is required by the maintenance of the endoplasmic reticulum (ER) network, through phosphorylation by Cdc2 kinase. 82 -340683 cd17163 Ubl_ATG8_GABARAPL2 ubiquitin-like (Ubl) domain found in GABA type A receptor associated protein like 2 (GABARAPL2, also known as GATE16). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. GABARAPL2 (GABA type A receptor associated protein like 2), also known as GATE-16 (golgi-associated adenosine triphosphatase enhancer of 16 kDa), has a ubiquitin-like (Ubl) domain and is a sub-family of the autophagy-related 8 (ATG8) protein family. GABARAPL2 participates to the autophagosome maturation, and seems to be involved in constitutive transport under normal conditions and in autophagic processes during stress. GABARAPL2 is characterized as a membrane transport modulator that controls intra-Golgi transport by interacting with NSF and Golgi v-SNARE GOS-28. 112 -340684 cd17164 RAWUL_PCGF2 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 2 (PCGF2). PCGF2, also termed DNA-binding protein Mel-18, or RING finger protein 110 (RNF110), or zinc finger protein 144 (ZNF144), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a canonical polycomb repressive complex 1 (PRC1), which is composed of a chromodomain-containing protein (CBX2, CBX4, CBX6, CBX7 or CBX8) and a polyhomeotic protein (PHC1, PHC2, or PHC3). Like other PCGF homologs, PCGF2 associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF2 uniquely regulates PRC1 to specify mesoderm cell fate in embryonic stem cells. It is required for PRC1 stability and maintenance of gene repression in embryonic stem cells (ESCs) and essential for ESC differentiation into early cardiac-mesoderm precursors. PCGF2 also plays a significant role in the angiogenic function of endothelial cells (ECs) by regulating endothelial gene expression. Furthermore, PCGF2 is a SUMO-dependent regulator of hormone receptors. It facilitates the deSUMOylation process by inhibiting PCGF4/BMI1-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). It is also a novel negative regulator of breast cancer stem cells (CSCs) that inhibits the stem cell population, and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling. PCGF2 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 99 -340685 cd17165 RAWUL_PCGF4 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in polycomb group RING finger protein 4 (PCGF4). PCGF4, also termed polycomb complex protein BMI-1 (B cell-specific Moloney murine leukemia virus integration site 1), or RING finger protein 51 (RNF51), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) and serves as the core component of a canonical Polycomb repressive complex 1 (PRC1), which is composed of a chromodomain-containing protein (CBX2, CBX4, CBX6, CBX7 or CBX8) and a Polyhomeotic protein (PHC1, PHC2, or PHC3), and plays important roles in chromatin compaction and H2AK119 monoubiquitination. PCGF4 associates with the Runx1/CBFbeta transcription factor complex to silence target gene in a PRC2-independent manner. Moreover, PCGF4 is expressed in the hair cells and supporting cells. It can regulate cell survival by controlling mitochondrial function and reactive oxygen species (ROS) level in thymocytes and neurons, thus having an important role in the survival and sensitivity to ototoxic drug of auditory hair cells. Furthermore, PCGF4 controls memory CD4 T-cell survival through direct repression of Noxa gene in an Ink4a- and Arf-independent manner. It is required in neurons to suppress p53-induced apoptosis via regulating the antioxidant defensive response, and also involved in the tumorigenesis of various cancer types. PCGF4 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 97 -340686 cd17166 RAWUL_RING1 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in really interesting new gene 1 protein (RING1). RING1, also termed polycomb complex protein RING1, or RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), has been identified as a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. It is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase that transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING1 interacts with multiple PcG proteins and displays tumorigenic activity. It also shows zinc-dependent DNA binding activity. Moreover, RING1 inhibits transactivation of the DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) by Notch through interaction with the LIM domains of KyoT2. RING1 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 124 -340687 cd17167 RAWUL_RING2 RING finger- and WD40-associated ubiquitin-like (RAWUL) domain found in really interesting new gene 2 protein (RING2). RING2, also termed huntingtin-interacting protein 2-interacting protein 3, or HIP2-interacting protein 3, or protein DinG, or RING finger protein 1B (RING1B), or RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. RING2 is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. The enzymatic activity of RING2 is enhanced by the interaction with BMI1/PCGF4, and it is dispensable for early embryonic development and much of the gene repression activity of PRC1. Moreover, RING2 plays a key role in terminating neural precursor cell (NPC)-mediated production of subcerebral projection neurons (SCPNs) during neocortical development. It also plays a critical role in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. Furthermore, RING2 is essential for expansion of hepatic stem/progenitor cells. It promotes hepatic stem/progenitor cell expansion through simultaneous suppression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. RING2 also negatively regulates p53 expression through directly binding with both p53 and MDM2 and promoting MDM2-mediated p53 ubiquitination in selective cancer cell types to stimulate tumor development. RING2 contains a C3HC4-type RING-HC finger, and a RAWUL domain. 106 -340688 cd17168 FERM_F1_FRMPD1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM and PDZ domain-containing protein 1 (FRMPD1). FRMPD1, also termed FERM domain-containing protein 2, is an activator of G-protein signaling 3 (AGS3)-binding protein that regulates the subcellular location of AGS3 and its interaction with G-proteins. It also binds to the tetratricopeptide repeat (TPR) motif-containing adaptor protein LGN. FRMPD1 contains a PDZ domain and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 90 -340689 cd17169 FERM_F1_FRMPD3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM and PDZ domain-containing protein 3 (FRMPD3). FRMPD3 is an uncharacterized FERM and PDZ domain-containing protein. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 93 -340690 cd17170 FERM_F1_FRMPD4 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM and PDZ domain-containing protein 4 (FRMPD4). FRMPD4, also termed PDZ domain-containing protein 10, or PSD-95-interacting regulator of spine morphogenesis (Preso), is a multiscaffolding protein that modulates both Homer1 and postsynaptic density protein 95 activity. It can associate with the tetratricopeptide repeat (TPR) motif-containing adaptor protein LGN. Moreover, FRMPD4 is asymmetrically distributed in the cytosol and nuclei of neural stem/progenitor cells in the adult brain, suggesting a significant role in cell differentiation via association with cell polarity machinery. FRMPD4 contains a WW domain, a PDZ domain, and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain of the FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 94 -340691 cd17171 FERM_F0_TLN1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in Talin-1 (TLN1). TLN1 is a cytoskeletal protein that plays a pivotal role in regulating the activity of the integrin family of cell adhesion proteins by coupling them to F-actin. It functions as a focal adhesion protein involved in the attachment of the bacterium. It binds to multiple adhesion molecules, including integrins, vinculin, focal adhesion kinase (FAK), and actin. TLN1 also plays an essential role in integrin activation. TLN1 interacts with the hepatitis B virus (HBV) accessory protein X (HBx), which induces the degradation of TLN1. It also acts as an adaptor protein that regulates leukocyte function-associated antigen-1 (LFA-1) affinity. In addition, TLN1 is required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. TLN1 consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F0 domain. 84 -340692 cd17172 FERM_F0_TLN2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in Talin-2 (TLN2). TLN2 is a cytoskeletal protein that plays an important role in cell adhesion and recycling of synaptic vesicles. TLN2 is required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. TLN2 consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F0 domain. 84 -340693 cd17173 FERM_F1_TLN1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Talin-1 (TLN1). TLN1 is a cytoskeletal protein that plays a pivotal role in regulating the activity of the integrin family of cell adhesion proteins by coupling them to F-actin. It functions as a focal adhesion protein involved in the attachment of the bacterium. It binds to multiple adhesion molecules, including integrins, vinculin, focal adhesion kinase (FAK), and actin. TLN1 also plays an essential role in integrin activation. TLN1 interacts with the hepatitis B virus (HBV) accessory protein X (HBx), which induces the degradation of TLN1. It also acts as an adaptor protein that regulates leukocyte function-associated antigen-1 (LFA-1) affinity. In addition, TLN1 is required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. TLN1 consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F1 domain. 112 -340694 cd17174 FERM_F1_TLN2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Talin-2 (TLN2). TLN2 is a cytoskeletal protein that plays an important role in cell adhesion and recycling of synaptic vesicles. TLN2 is required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. TLN2 consists of an N-terminal head and a C-terminal rod. The talin head harbors a FERM (Band 4.1, ezrin, radixin, moesin) domain made up of F1, F2 and F3 domains, as well as an N-terminal region that precedes the FERM domain and has been referred to as the F0 domain. Both F0 and F1 domains have similar ubiquitin-like folds. This family corresponds to the F1 domain. 112 -340695 cd17175 FERM_F0_SHANK1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in SH3 and multiple ankyrin repeat domains protein 1 (SHANK1). SHANK1, also termed somatostatin receptor-interacting protein, or SSTR-interacting protein (SSTRIP), is a postsynaptic density (PSD)-associated scaffolding proteins at the excitatory synapse that interconnects neurotransmitter receptors and cell adhesion molecules by direct and indirect interactions with numerous other PSD-associated proteins. Mutations in the SHANK1 synaptic scaffolding gene may lead to autism spectrum disorder and mental retardation. SHANK1 contains an N-terminal F0 domain of FERM (Band 4.1, ezrin, radixin, moesin), six ankyrin (ANK) repeats, one SH3 (Src homology 3) domain, one PDZ (PSD-95, Dlg, and ZO-1/2, also termed DHR or GLGF) domain, and a C-terminal SAM (sterile alpha motif) domain. This family corresponds to the F0 domain that adopts a ubiquitin-like fold. 89 -340696 cd17176 FERM_F0_SHANK2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in SH3 and multiple ankyrin repeat domains protein 2 (SHANK2). SHANK2, also termed cortactin-binding protein 1 (CortBP1), or proline-rich synapse-associated protein 1, is a postsynaptic density (PSD)-associated scaffolding proteins at the excitatory synapse that interconnects neurotransmitter receptors and cell adhesion molecules by direct and indirect interactions with numerous other PSD-associated proteins. It is strongly expressed in the cerebellum. Moreover, SHANK2 acts as a component of the albumin endocytic pathway in podocytes, and regulates renal albumin endocytosis. It also associates with and regulates Na+/H+ exchanger 3 (NHE3) and is involved in the fine regulation of transepithelial salt and water transport through affecting NHE3 expression and activity. Mutations in the SHANK2 synaptic scaffolding gene may lead to autism spectrum disorder and mental retardation. SHANK2 contains an N-terminal F0 domain of FERM (Band 4.1, ezrin, radixin, moesin), six ankyrin (ANK) repeats, one SH3 (Src homology 3) domain, one PDZ (PSD-95, Dlg, and ZO-1/2, also termed DHR or GLGF) domain, and a C-terminal SAM (sterile alpha motif) domain. This family corresponds to the F0 domain that adopts a ubiquitin-like fold. 88 -340697 cd17177 FERM_F0_SHANK3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in SH3 and multiple ankyrin repeat domains protein 3 (SHANK3). SHANK3, also termed proline-rich synapse-associated protein 2 (ProSAP2), is a postsynaptic density (PSD)-associated scaffolding protein at the excitatory synapse that interconnects neurotransmitter receptors and cell adhesion molecules by direct and indirect interactions with numerous other PSD-associated proteins. It is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. It is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic strength. Mutations in the SHANK3 synaptic scaffolding gene may lead to autism spectrum disorder and mental retardation, and the cause of human Phelan-McDermid syndrome (22q13.3 deletion syndrome) has been isolated to loss of function of one copy of the SHANK3 gene. SHANK3 contains an N-terminal F0 domain of FERM (Band 4.1, ezrin, radixin, moesin), six ankyrin (ANK) repeats, one SH3 (Src homology 3) domain, one PDZ (PSD-95, Dlg, and ZO-1/2, also known as DHR or GLGF) domain, and a C-terminal SAM (sterile alpha motif) domain. This family corresponds to the F0 domain that adopts a ubiquitin-like fold. 87 -340698 cd17178 FERM_F1_PLEKHH1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 1 (PLEKHH1). PLEKHH1 is a homolog of Caenorhabditis elegans MAX-1 that has been implicated in motor neuron axon guidance. PLEKHH1 is critical in vascular patterning in vertebrate species through acting upstream of the ephrin pathway. PLEKHH1 contains a putative alpha-helical coiled-coil segment within the N-terminal half, and two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 106 -340699 cd17179 FERM_F1_PLEKHH2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 2 (PLEKHH2). PLEKHH2 is a novel podocyte protein downregulated in human focal segmental glomerulosclerosis. It is highly enriched in renal glomerular podocytes, and acts as a novel, important component of the podocyte foot processes. PLEKHH2 contains a putative alpha-helical coiled-coil segment within the N-terminal half, and two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PLEKHH2 is involved in matrix adhesion and actin dynamics. It directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. 103 -340700 cd17180 FERM_F0_KIND1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in kindlin-1 (KIND1). KIND1, also termed Kindlerin, or Kindler syndrome protein, or fermitin family homolog 1 (FERMT1), or Unc-112-related protein 1 (URP1), is an integrin-interacting protein that has been implicated in cell adhesion, proliferation, polarity, and motility. It is essential for maintaining the structure of cell-matrix adhesion, such as focal adhesions and podosomes. KIND1 is expressed primarily in epithelial cells. Loss or mutations of KIND1 gene may cause the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. KIND1 forms a molecular complex with the key transforming growth factor (TGF)-beta/Smad3 signaling components including type I TGFbeta receptor (TbetaRI), Smad3 and Smad anchor for receptor activation (SARA) to control the activation of TGF-beta/Smad3 signaling pathway. KIND1 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F0 domain. 84 -340701 cd17181 FERM_F0_KIND2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in kindlin-2 (KIND2). KIND2, also termed fermitin family homolog 2 (FERMT2), or mitogen-inducible gene 2 protein (MIG-2), or Pleckstrin homology (PH) domain-containing family C member 1, is an adaptor protein that is widely distributed and is particularly abundant in adherent cells. It binds to the integrin beta cytoplasmic tail to promote integrin activation. It promotes carcinogenesis through regulation of cell-cell and cell-extracellular matrix adhesion. In additon, KIND2 plays an important role in cardiac development. KIND2 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F0 domain. 80 -340702 cd17182 FERM_F0_KIND3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain, found in kindlin-3 (KIND3). KIND3, also termed fermitin family homolog 3 (FERMT3), or MIG2-like protein, or Unc-112-related protein 2, is an adaptor protein that expressed primarily in hematopoietic cells. It plays a central role in cell adhesion in hematopoietic cells, and also promotes integrin activation, clustering and outside-in signaling. KIND3, together with talin-1, contributes essentially to the activation of beta2-integrins in neutrophils. In addition, KIND3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Mutations in the KIND3 gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by high susceptibility to infections, spontaneous and episodic bleedings, and osteopetrosis. KIND3 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F0 domain. 83 -340703 cd17183 FERM_F1_KIND1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in kindlin-1 (KIND1). KIND1, also termed Kindlerin, or Kindler syndrome protein, or fermitin family homolog 1 (FERMT1), or Unc-112-related protein 1 (URP1), is an integrin-interacting protein that has been implicated in cell adhesion, proliferation, polarity, and motility. It is essential for maintaining the structure of cell-matrix adhesion, such as focal adhesions and podosomes. KIND1 is expressed primarily in epithelial cells. Loss or mutations of KIND1 gene may cause the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. KIND1 forms a molecular complex with the key transforming growth factor (TGF)-beta/Smad3 signaling components including type I TGFbeta receptor (TbetaRI), Smad3 and Smad anchor for receptor activation (SARA) to control the activation of TGF-beta/Smad3 signaling pathway. KIND1 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F1 domain. 93 -340704 cd17184 FERM_F1_KIND2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in kindlin-2 (KIND2). KIND2, also termed fermitin family homolog 2 (FERMT2), or mitogen-inducible gene 2 protein (MIG-2), or Pleckstrin homology (PH) domain-containing family C member 1, is an adaptor protein that is widely distributed and is particularly abundant in adherent cells. It binds to the integrin beta cytoplasmic tail to promote integrin activation. It promotes carcinogenesis through regulation of cell-cell and cell-extracellular matrix adhesion. KIND2 also plays an important role in cardiac development. KIND2 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F1 domain. 101 -340705 cd17185 FERM_F1_KIND3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in kindlin-3 (KIND3). KIND3, also termed fermitin family homolog 3 (FERMT3), or MIG2-like protein, or Unc-112-related protein 2, is an adaptor protein that expressed primarily in hematopoietic cells. It plays a central role in cell adhesion in hematopoietic cells, and also promotes integrin activation, clustering and outside-in signaling. KIND3, together with talin-1, contributes essentially to the activation of beta2-integrins in neutrophils. In addition, KIND3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Mutations in the KIND3 gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by high susceptibility to infections, spontaneous and episodic bleedings, and osteopetrosis. KIND3 consists of an atypical FERM domain that is made up of F1, F2 and F3 domains, as well as an N-terminal region, which precedes the FERM domain and has been referred to as the F0 domain. This family corresponds to the F1 domain. 91 -340706 cd17186 FERM_F1_Merlin FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in merlin and similar proteins. Merlin, also termed moesin-ezrin-radixin-like protein, or neurofibromin-2 (NF2), or Schwannomerlin, or Schwannomin, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif, merlin however lacks the typical actin-binding motif in the C-tail. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Merlin plays vital roles in controlling proper development of organ sizes by specifically binding to a large number of target proteins localized both in cytoplasm and nuclei. Merlin may function as a tumor suppressor that functions upstream of the core Hippo pathway kinases Lats1/2 (Wts in Drosophila) and Mst1/2 (Hpo in Drosophila), as well as the nuclear E3 ubiquitin ligase DDB1-and-Cullin 4-associated Factor 1 (DCAF1)-associated cullin 4-Roc1 ligase, CRL4(DCAF1). Merlin may also has a tumor suppressor function in melanoma cells, the inhibition of the proto-oncogenic Na(+)/H(+) exchanger isoform 1 (NHE1) activity. 85 -340707 cd17187 FERM_F1_ERM FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family proteins, Ezrin, Radixin, and Moesin. The ezrin-radixin-moesin (ERM) family includes a group of closely related cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. They exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 83 -340708 cd17188 FERM_F1_FRMD7 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 7 (FRMD7). FRMD7 plays an important role in neuronal development and is involved in the regulation of F-actin, neurofilament, and microtubule dynamics. It interacts with the Rho GTPase regulator, RhoGDIalpha, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. Mutations in the FRMD7 gene are responsible for the X-linked idiopathic congenital nystagmus (ICN), a disease which affects ocular motor control. FRMD7 contains a FERM domain, and a pleckstrin homology (PH) domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 86 -340709 cd17189 FERM_F1_FARP1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF and pleckstrin domain-containing protein 1 (FARP1). FARP1, also termed chondrocyte-derived ezrin-like protein (CDEP), or pleckstrin homology (PH) domain-containing family C member 2 (PLEKHC2), is a neuronal activator of the RhoA GTPase. It promotes outgrowth of developing motor neuron dendrites. It also regulates excitatory synapse formation and morphology, as well as activates the GTPase Rac1 to promote F-actin assembly. As a novel downstream signaling partner of Rif, FARP1 is involved in the regulation of semaphorin signaling in neurons. FARP1 contains a FERM domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 85 -340710 cd17190 FERM_F1_FARP2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF and pleckstrin domain-containing protein 2 (FARP2) and similar proteins. FARP2, also termed FERM domain including RhoGEF (FIR), or Pleckstrin homology (PH) domain-containing family C member 3, is a Dbl-family guanine nucleotide exchange factor (GEF) that activates Rac1 or Cdc42 in response to upstream signals, suggesting roles in regulating processes such as neuronal axon guidance and bone homeostasis. It is also a key molecule involved in the response of neuronal growth cones to class-3 semaphorins. FARP2 contains a FERM domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 85 -340711 cd17191 FERM_F1_PTPN14 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 14 (PTPN14) and similar proteins. PTPN14, also termed protein-tyrosine phosphatase pez, or PTPD2, or PTP36, is a widely expressed non-transmembrane cytosolic protein tyrosine phosphatase (PTP). It belongs to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN14 plays a role in the nucleus during cell proliferation. It forms a complex with Kibra and LATS1 proteins and negatively regulates the key Hippo pathway protein Yes-associated protein (YAP) oncogenic function by controlling its localization. It specifically regulates p130 Crk-associated substrate (p130Cas) phosphorylation at tyrosine residue 128 (Y128) in colorectal cancer (CRC) cells. Moreover, PTPN14 may be a critical enzyme in regulating endothelial cell function. It plays a crucial role in organogenesis by inducing transforming growth factor beta (TGFbeta) and epithelial-mesenchymal transition (EMT). It also acts as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. It regulates the lymphatic function and choanal development through the interaction with the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. Furthermore, PTPN14 functions as a regulator of cell motility through its action on cell-cell adhesion. Beta-Catenin, a central component of adherens junctions, has been identified as a PTPN14 substrate. PTPN14 works as a novel sperm-motility biomarker and a potential mitochondrial protein. 87 -340712 cd17192 FERM_F1_PTPN21 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 21 (PTPN21) and similar proteins. PTPN21, also termed protein-tyrosine phosphatase D1 (PTPD1), is a cytosolic non-receptor protein-tyrosine phosphatase (PTP) that belongs to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN21 interacts with a Tec tyrosine kinase family member, the epithelial and endothelial tyrosine kinase (Etk, also known as Bmx), modulates Stat3 activation, and plays a role in the regulation of cell growth and differentiation. It also associates with and activates Src tyrosine kinase, and directs epidermal growth factor (EGF)/Src signaling to the nucleus through activating ERK1/2- and Elk1-dependent gene transcription. PTPD1-Src complex interacts a protein kinase A-anchoring protein AKAP121 to forms a PTPD1-Src-AKAP121 complex, which is required for efficient maintenance of mitochondrial membrane potential and ATP oxidative synthesis. As a novel component of the endocytic pathway, PTPN21 supports EGF receptor stability and mitogenic signaling in bladder cancer cells. Moreover, PTPD1 regulates focal adhesion kinase (FAK) autophosphorylation and cell migration through modulating Src-FAK signaling at adhesion sites. 87 -340713 cd17193 FERM_F1_PTPN3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 3 (PTPN3). PTPN3, also termed protein-tyrosine phosphatase H1 (PTP-H1), belongs to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN3 associates with the mitogen-activated protein kinase p38gamma (also known as MAPK12) to form a PTPN3-p38gamma complex that promotes Ras-induced oncogenesis. It may also act as a tumor suppressor in lung cancer through its modulation of epidermal growth factor receptor (EGFR) signaling. Moreover, PTPN3 shows sensitizing effect to anti-estrogens. It dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear estrogen receptor, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). It also cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. 84 -340714 cd17194 FERM_F1_PTPN4 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 4 (PTPN4). PTPN4, also termed protein-tyrosine phosphatase MEG1 (MEG) or PTPase-MEG1, belongs to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN4 protects cells against apoptosis. It associates with the mitogen-activated protein kinase p38gamma (also known as MAPK12) to form a PTPN4-p38gamma complex that promotes cellular signaling, preventing cell death induction. It also inhibits tyrosine phosphorylation and subsequent cytoplasm translocation of TRIF-related adaptor molecule (TRAM, also known as TICAM2), resulting in the disturbance of TRAM-TRIF interaction. Moreover, PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI. 84 -340715 cd17195 FERM_F1_PTPN13 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 13 (PTPN13). PTPN13, also termed Fas-associated protein-tyrosine phosphatase 1 (FAP-1), or PTP-BAS, or protein-tyrosine phosphatase 1E (PTP-E1 or PTPE1), or protein-tyrosine phosphatase PTPL1, belongs to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a KIND domain, a FERM domain, five PDZ domains, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN13 interacts with a variety of ligands, suggests an important role as a scaffolding protein. It is also involved in the regulation of apoptosis, cytokinesis and cell cycle progression. 96 -340716 cd17196 FERM_F1_FRMPD2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM and PDZ domain-containing protein 2 (FRMPD2). FRMPD2, also termed PDZ domain-containing protein 4 (PDZK4), or PDZ domain-containing protein 5C (PDZD5C), is a potential scaffold protein involved in basolateral membrane targeting in epithelial cells. It interacts with nucleotide-binding oligomerization domain-2 (NOD2) through leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. FRMPD2 contains an N-terminal KIND domain, a FERM domain and three PDZ domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 95 -340717 cd17197 FERM_F1_FRMD1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 1 (FRMD1). FRMD1 is an uncharacterized FERM domain-containing protein. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 98 -340718 cd17198 FERM_F1_FRMD6 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 6 (FRMD6). FRMD6, also termed willin, expanded or expanded homolog, is a FERM domain-containing protein that plays a critical role in regulating both cell proliferation and apoptosis. It acts as a tumor suppressor of human breast cancer cells independently of the Hippo pathway. It also inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases. As an upstream component of the hippo signaling pathway, FRMD6 orchestrates mammalian peripheral nerve fibroblasts. FRMD6 contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 98 -340719 cd17199 FERM_F1_FRMD4A FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 4A (FRMD4A). FRMD4A is a cytohesin adaptor involved in cell structure, transport and signaling. It promotes the growth of cancer cells in tongue, head and neck squamous cell carcinomas. It also regulates tau secretion by activating cytohesin-Arf6 signaling through connecting cytohesin family Arf6-specific guanine-nucleotide exchange factors (GEFs) and Par-3 at primordial adherens junctions during epithelial polarization. As a genetic risk factor for late-onset Alzheimer's disease (AD), FRMD4A may play a role in amyloidogenic and tau-related pathways in AD. FRMD4A contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 89 -340720 cd17200 FERM_F1_FRMD4B FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 4B (FRMD4B). FRMD4B, also termed GRP1-binding protein GRSP1, interacts with the coil-coil domain of ARF exchange factor GRP1 to form the Grsp1-Grp1 complex that co-localizes with cortical actin rich regions in response to stimulation of CHO-T cells with insulin or epidermal growth factor (EGF). FRMD4B contains a FERM protein interaction domain as well as two coiled coil domains and may therefore function as a scaffolding protein. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 89 -340721 cd17201 FERM_F1_EPB41L1 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 1 (EPB41L1) and similar proteins. EPB41L1, also termed neuronal protein 4.1 (4.1N), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. It is a cytoskeleton-associated protein that may serve as a tumor suppressor in solid tumors. It suppresses hypoxia-induced epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. The down-regulation of EPB41L1 expression is a critical step for non-small cell lung cancer (NSCLC) development. Moreover, EPB41L1 functions as a linker protein between inositol 1,4,5-trisphosphate receptor type1 (IP3R1) and actin filaments in neurons. EPB41L1 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 84 -340722 cd17202 FERM_F1_EPB41L2 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 2 (EPB41L2) and similar proteins. EPB41L2, also termed generally expressed protein 4.1 (4.1G), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L2 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 84 -340723 cd17203 FERM_F1_EPB41L3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 3 (EPB41L3) and similar proteins. EPB41L3, also termed 4.1B, or differentially expressed in adenocarcinoma of the lung protein 1 (DAL-1), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L3 is a tumor suppressor that has been implicated in a variety of meningiomas and carcinomas. EPB41L3 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 84 -340724 cd17204 FERM_F1_EPB41L4B FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band 4.1-like protein 4B (EPB41L4B). EPB41L4B, also termed FERM-containing protein CG1, or expressed in high metastatic cells (Ehm2), or Lulu2, is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). EPB41L4B is a positive regulator of keratinocyte adhesion and motility, suggesting a role in wound healing. It also promotes cancer metastasis in melanoma, prostate cancer and breast cancer. 84 -340725 cd17205 FERM_F1_EPB41L5 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like 5 (EPB41L5). EPB41L5 is a mesenchymal-specific protein that is an integral component of the ARF6-based pathway. It is normally induced during epithelial-mesenchymal transition (EMT) by an EMT-related transcriptional factor, ZEB1, which drives ARF6-based invasion, metastasis and drug resistance. EPB41L5 also binds to paxillin to enhance integrin/paxillin association, and thus promotes focal adhesion dynamics. Moreover, EPB41L5 acts as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. EPB41L5 is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 86 -340726 cd17206 FERM_F1_Myosin-X FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional myosin-X. Myosin-X, also termed myosin-10 (Myo10), is an untraditional member of myosin superfamily. It is an actin-based motor protein that plays a critical role in diverse cellular motile events, such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance, as well as a number of disease states including cancer metastasis and pathogen infection. Myosin-X functions as an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. It regulates neuronal radial migration through interacting with N-cadherin. Like other unconventional myosins, Myosin-X is composed of a conserved motor head, a neck region and a variable tail. The neck region consists of three IQ motifs (light chain-binding sites), and a predicted stalk of coiled coil. The tail contains three PEST regions, three PH domains, a MyTH4 domain, and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 97 -340727 cd17207 FERM_F1_PLEKHH3 FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 3 (PLEKHH3). PLEKHH3 is an uncharacterized Pleckstrin homology (PH) domain-containing protein that shows high sequence similarity with unconventional myosin-X, an actin-based motor protein that plays a critical role in diverse cellular motile events, such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance, as well as a number of disease states including cancer metastasis and pathogen infection. In addition to two PH domains, PLEKHH3 harbors a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 96 -340728 cd17208 FERM_F1_DdMyo7_like FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Dictyostelium discoideum Myosin-VIIa (DdMyo7) and similar proteins. DdMyo7, also termed Myosin-I heavy chain, or class VII unconventional myosin, or M7, plays a role in adhesion in Dictyostelium where it is a component of a complex of proteins that serve to link membrane receptors to the underlying actin cytoskeleton. It interacts with talinA, an actin-binding protein with a known role in cell-substrate adhesion. DdMyo7 is required for phagocytosis. It is also essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin. Members in this family contain a myosin motor domain, two MyTH4 domains, two FERM (Band 4.1, ezrin, radixin, moesin) domains, and two Pleckstrin homology (PH) domains. Some family members contain an extra SH3 domain. Each FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). 98 -340729 cd17209 RA_RalGDS Ras-associating (RA) domain found in Ral guanine nucleotide dissociation stimulator (RalGDS) and similar proteins. RalGDS, also termed Ral guanine nucleotide exchange factor (RalGEF), is a guanine exchange factor (GEF) for the Ral family of small GTPases. It is the prototype of RalGDS family proteins that are involved in Ras and Ral signaling pathways as downstream effector proteins. RalGDS stimulates the dissociation of GDP from the Ras-related RalA and RalB GTPases which allows GTP binding and activation of the GTPases. It interacts and acts as an effector molecule for R-Ras, H-Ras, K-Ras, and Rap. Moreover, RalGDS functions as a novel interacting partner for Rab7-interacting lysosomal protein (RILP), a key regulator for late endosomal/lysosomal trafficking. RILP suppresses invasion of breast cancer cells by inhibiting the GEF activity for RalA of RalGDS. RalGDS also plays a vital role in the regulation of Ral-dependent Weibel-Palade bodies (WPB) exocytosis from endothelial cells. In addition, RalGDS couples growth factor signaling to Akt activation by promoting PDK1-induced Akt phosphorylation. Members in this family have similar domain structure: a central CDC25 homology domain with an upstream Ras Exchange motif (REM), and a C-terminal Ras-associating (RA) domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. 86 -340730 cd17210 RA_RGL Ras-associating (RA) domain found in Ral guanine nucleotide dissociation stimulator-like 1 (RalGDS-like 1) and similar proteins. RalGDS-like 1 (RGL) is a Ral-specific guanine nucleotide exchange factor that belongs to RalGDS family, whose members are involved in Ras and Ral signaling pathways as downstream effector proteins. RGL has been identified as a possible effector protein of Ras. It also regulates c-fos promoter and the GDP/GTP exchange of Ral. Members in this family have similar structure: a central CDC25 homology domain with an upstream Ras Exchange motif (REM), and a C-terminal Ras-associating (RA) domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. 87 -340731 cd17211 RA_RGL2 Ras-associating (RA) domain found in Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) and similar proteins. RalGDS-like 2 (RGL2), also termed RalGDS-like factor (RLF), or Ras-associated protein RAB2L, is a novel Ras and Rap 1A-associating protein that belongs to RalGDS family, whose members are involved in Ras and Ral signaling pathways as downstream effector proteins. RGL2 exhibits guanine nucleotide exchange activity towards the small GTPase Ral. Members in this family have similar domain structure: a central CDC25 homology domain with an upstream Ras Exchange motif (REM), and a C-terminal Ras-associating (RA) domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The RA domain of RGL2 is phosphorylated by protein kinase A and the phosphorylation affects the ability of RGL2 to bind both Ras and Rap1. 86 -340732 cd17212 RA_RGL3 Ras-associating (RA) domain found in Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) and similar proteins. RalGDS-like 3 (RGL3), also termed Ras pathway modulator (RPM), interacts in a GTP- and effector loop-dependent manner with Rit and Ras. As a novel potential effector of both p21 Ras and M-Ras, RGL3 negatively regulates Elk-1-dependent gene induction downstream of p21 Ras or mitogen activated protein/extracellular signal regulated kinase Kinase 1 (MEKK1). It also functions as a potential binding partner for Rap-family small G-proteins and profilin II. RGL3 belongs to RalGDS family, whose members are involved in Ras and Ral signaling pathways as downstream effector proteins. Members in this family have similar domain structure: a central CDC25 homology domain with an upstream Ras Exchange motif (REM), and a C-terminal Ras-associating (RA) domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier (Ubiquitination) in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. 87 -340733 cd17213 RA_PHLPP Ras-associating (RA) domain found in PH domain leucine-rich repeat-containing protein phosphatase PHLPP1, PHLPP2, and similar proteins. PHLPP represents a novel family of Ser/Thr protein phosphatases, which is involved in two key signaling pathways, the phosphatidylinositol 3-kinase and diacylglycerol signaling pathways, by directly dephosphorylating and inactivating Akt serine-threonine kinases (Akt1, Akt2, Akt3) and protein kinase C (PKC) isoforms. PHLPP targets oncogenic kinases and may act as a tumor suppressor in several types of cancers. Two PHLPP isoforms are included in this family, PHLPP1 and PHLPP2. They regulate Akt activation together when both phosphatases are expressed. PHLPP1 is also termed pleckstrin homology domain-containing family E member 1, or PH domain-containing family E member 1, or suprachiasmatic nucleus circadian oscillatory protein (SCOP). It plays a suppression role in inflammatory response of glioma. Its loss contributes to gliomas development and progression. Loss of PHLPP1 also protects against colitis by inhibiting intestinal epithelial cell apoptosis. The overexpression of PHLPP1 impairs hippocampus-dependent learning, suggesting a role for PHLPP1 in learning and memory. PHLPP2 is also termed PH domain leucine-rich repeat-containing protein phosphatase-like (PHLPP-like). Both PHLPP1 and PHLPP2 contain a putative Ras-associating (RA) domain followed by a pleckstrin homology (PH) domain, a series of leucine-rich repeats and a protein phosphatase 2C (PP2C) domain. 97 -340734 cd17214 RA_CYR1_like Ras-associating (RA) domain found in Saccharomyces cerevisiae adenylate cyclase and similar proteins. CYR1, also termed ATP pyrophosphate-lyase, or adenylyl cyclase, is a fungal adenylate cyclase that regulates developmental processes such as hyphal growth, biofilm formation, and phenotypic switching. CYR1 plays essential roles in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP. It acts as a scaffold protein keeping Ras2 available for its regulatory factors, the Ira proteins. CYR1 has at least four domains, including an N-terminal adenylate cyclase G-alpha binding domain, a Ras-associating (RA) domain, a middle leucine-rich repeat region, and a catalytic domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The RA domain of CYR1 post-translationally modifies a small GTPase called Ras, which is involved in cellular signal transduction. CYR1 activity is stimulated directly by regulatory proteins (Ras1 and Gpa2), peptidoglycan fragments and carbon dioxide. 99 -340735 cd17215 RA_Rin1 Ras-associating (RA) domain found in Ras and Rab interactor 1 (Rin1). Rin1, also termed Ras inhibitor JC99, or Ras interaction/interference protein 1, is a downstream Ras effector that represents a unique class of Ras effector connected to two independent signaling pathways. The first effector pathway is the direct activation of RAB5-mediated endocytosis and the second pathway involves direct activation of ABL tyrosine kinase activity. Rin1 functions as a guanine nucleotide exchange factor (GEF) for RAB5 GTPases. The RAB5 GEF activity of Rin1 promotes early endosome fusion, an early event in transit to the lysosome. Rin1 binds the SH3 and SH2 domains of ABL proteins, ABL1 and ABL2, and activates their tyrosine kinase activity. Rin1 contains SH2 and proline-rich domains in the N-terminal region, and RH, VPS9, and RA domains in the C-terminal region. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. 88 -340736 cd17216 RA_Myosin-IXa Ras-associating (RA) domain found in Myosin-IXa. Myosin-IXa, also termed myosin-9a (Myo9a), is a single-headed, actin-dependent motor protein of the unconventional myosin IX class. It is expressed in several tissues and is enriched in the brain and testes. Myosin-IXa contains a Ras-associating (RA) domain, a motor domain, a protein kinase C conserved region 1 (C1), and a Rho GTPase activating domain (RhoGAP). Its RA domain is located at its head domain and has the beta-grasp ubiquitin-like fold with unknown function. Myosin-IXa binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit, and plays a key role in controlling the molecular structure and function of hippocampal synapses. Moreover, Myosin-IXa functions in epithelial cell morphology and differentiation such that its knockout mice develop hydrocephalus and kidney dysfunction. Myosin-IXa regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Myosin-IXa negatively regulates Rho GTPase signaling, and functions as a regulator of kidney tubule function. 96 -340737 cd17217 RA_Myosin-IXb Ras-associating (RA) domain found in Myosin-IXb. Myosin-IXb, also termed myosin-9b (Myo9b), is a motor protein with a Rho GTPase activating domain (RhoGAP); it is an actin-dependent motor protein of the unconventional myosin IX class. It is expressed abundantly in tissues of the immune system, like lymph nodes, thymus, and spleen and in several immune cells including dendritic cells, macrophages and CD4+ T. Myosin-IXb contains a Ras-associating (RA) domain, a motor domain, a protein kinase C conserved region 1 (C1), and a RhoGAP domain. Its RA domain is located at its head domain and has the beta-grasp ubiquitin-like fold with unknown function. Myosin-IXb acts as a motorized signaling molecule that links Rho signaling to the dynamic actin cytoskeleton. It regulates leukocyte migration by controlling RhoA signaling. Myosin-IXb is also involved in the development of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus and type 1 diabetes. Moreover, Myosin-IXb is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. 96 -340738 cd17218 RA_RASSF1 Ras-associating (RA) domain found in Ras-association domain-containing protein 1 (RASSF1). RASSF1 is a member of a family of six related RASSF1-6 proteins (the classical RASSF proteins). RASSF1 has eight transcripts (A-H) arising from alternative splicing and differential promoter usage. With the exception of some minor splice variants (RASSF1F and RASSF1G), RASSF1 contains an RA domain and a C-terminal SARAH protein-protein interaction motif. The RA domain of the classical RASSF proteins has a beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. The RA domain mediates interactions with Ras and other small GTPases, and the SARAH domain mediates protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF1A and 1C are the most extensively studied RASSF1 with both localized to microtubules and involved in regulation of growth and migration. 157 -340739 cd17219 RA_RASSF3 Ras-associating (RA) domain found in Ras-association domain-containing protein 3 (RASSF3). RASSF3 is a member of a family of six related classical RASSF1-6 proteins (the classical RASSF proteins). RASSF3 has three transcripts (A-C) due to alternative splicing of the exons. The RASSF3B and 3C isoforms are shorter than RASSF3A, and unlike RASSF3A do not contain the RA or SARAH domains. The RA domain of the classical RASSF proteins has a beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. The RA domain mediates interactions with Ras and other small GTPases, and the SARAH domain mediates protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF3A regulates apoptosis and cell cycle via p53 stabilization and possibly is involved in DNA repair. 141 -340740 cd17220 RA_RASSF5 Ras-associating (RA) domain of Ras-association domain family 5 (RASSF5). RASSF5, also called New ras effector 1 (NORE1), or regulator for cell adhesion and polarization enriched in lymphoid tissues (RAPL), is a member of a family of six related RASSF1-6 proteins (the classical RASSF proteins) and is expressed as three transcripts (A-C) via differential promoter usage and alternative splicing. All transcripts variants of RASSF5 contain the RA or SARAH domains. The RA domain of the classical RASSF proteins has a beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. The RA domain mediates interactions with Ras and other small GTPases, and the SARAH domain mediates protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF5A is a pro-apoptotic Ras effector and functions as a Ras regulated tumor suppressor. RASSF5C is regulated by Ras related protein and modulates cellular adhesion. 152 -340741 cd17221 RA_RASSF2 Ras-associating (RA) domain found in Ras-association domain-containing protein 2 (RASSF2). RASSF2 is a member of a family of six related classical RASSF1-6 proteins. The RASSF2 gene is transcribed into two major isoforms (A and C). RASSF2 is structurally related to RASSF1A but unlike RASSF1A It is primarily a nuclear protein. RASSF2 contains the RA and SARAH domains. The RA domain of the classical RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RA domains mediate interactions with Ras and other small GTPases, and SARAH domains mediate protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF2 is inactivated in different cancers and cancer cell lines by promoter methylation and loss of expression, implicating the correlation and significance of RASSF2 in tumorigenesis. In addition to regulating apoptosis and proliferation RASSF2 may have other functions as RASSF2 knockout mice develop normally for the first two weeks but then develop growth retardation and die 4 weeks after birth. 87 -340742 cd17222 RA_RASSF4 Ras-associating (RA) domain found in Ras-association domain-containing protein 4 (RASSF4). RASSF4 is a member of a family of six related classical RASSF1-6 proteins and is broadly expressed in normal tissues. RASSF4 expression is reduced in tumor cell lines and primary tumors by promoter specific hypermethylation. RASSF4 contains the RA and SARAH domains. The RA domain of the classical RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RA domains mediate interactions with Ras and other small GTPases, and SARAH domains mediate protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF4 inhibits lung cancer cell proliferation and invasion. 87 -340743 cd17223 RA_RASSF6 Ras-associating (RA) domain found in Ras-association domain-containing protein 6 (RASSF6). RASSF6 is a member of a family of six related classical RASSF1-6 proteins and is expressed as four transcripts via alternative splicing. All transcripts variant of RASSF6 contain the RA and SARAH domains. The RA domain of the classical RASSF protein family has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. RA domains mediate interactions with Ras and other small GTPases, SARAH domains mediate protein-protein interactions crucial in the pathways that induce cell cycle arrest and apoptosis. RASSF6 is ubiquitiated and degraded by interacting with MDM2 to stabilize P53 and regulates apoptosis and cell cycle. RASSF6 is a tumor suppressor protein and is epigenetically silenced in childhood leukemia and neuroblastomas. Overexpression of RASSF6 causes apoptosis in HeLa cells. 87 -340744 cd17224 RA_ASPP1 Ras-associating (RA) domain found in apoptosis-stimulating protein of p53 protein 1 (ASPP1). ASPP1 is a member of the ASPP protein family (Apoptosi-Stimulating Protein of p53) that activates the p53-mediated apoptotic response. ASSP1 functions as a tumor suppressor and coordinates with p53 to protect hematopoietic stem cell (HSC) pool integrity, guarding against hematological malignancies. ASSP1 contains a RA domain at the N-terminus. The RA domain is a ubiquitin-like domain and RA domain-containing proteins are involved in several different functions ranging from tumor suppression to being oncoproteins. 85 -340745 cd17225 RA_ASPP2 Ras-associating (RA) domain found in apoptosis-stimulating protein of p53 protein 2 (ASPP2). ASPP2, also termed Bcl2-binding protein (Bbp), or renal carcinoma antigen NY-REN-51, or tumor suppressor p53-binding protein 2 (53BP2), or p53-binding protein 2 (p53BP2), is a member of ASPP protein family and it functions as a tumor suppressor. ASPP2 binds to p53 and enhances p53-mediated transcription of proapoptotic genes. ASSP2 contains a RA domain at the N-terminus. The RA domain is a ubiquitin-like domain and RA domain-containing proteins are involved in several different functions ranging from tumor suppression to being oncoproteins. All p53 amino acids that are important for ASPP2 binding are mutated in human cancer, and ASPP2 is frequently downregulated in these tumor cells. 80 -340746 cd17226 RA_ARAP1 Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1). ARAP1, also termed Centaurin-delta-2 (Cnt-d2), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome. It associates with the Cbl-interacting protein of 85 kDa (CIN85), regulates endocytic trafficking of the EGFR, and thus affects ubiquitination of EGFR. It also regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. ARAP1 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 93 -340747 cd17227 RA_ARAP2 Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2). ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 98 -340748 cd17228 RA_ARAP3 Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3). ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. 99 -340749 cd17229 RA1_PLC-epsilon Ras-associating (RA) domain 1 found in Phosphatidylinositide-specific phospholipase C (PLC)-epsilon. PLC is a signaling enzyme that hydrolyzes membrane phospholipids to generate inositol triphosphate. PLC-epsilon represents a novel forth class of PLC that has a PLC catalytic core domain, a CDC25 guanine nucleotide exchange factor domain and two RA (Ras-association) domains. RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin. Although PLC RA1 and RA2 have homologous ubiquitin-like folds only RA2 can bind Ras and activate it. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and involve in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. This family corresponds to the first RA domain of PLC-epsilon. 108 -340750 cd17230 TGS_DRG1 TGS (ThrRS, GTPase and SpoT) domain found in developmentally regulated GTP binding protein 1 (DRG-1). DRG-1 is a potassium-dependent GTPase that belongs to the DRG family GTP-binding proteins. It plays an important role in regulating cell growth. It functions as a potential oncogene in lung adenocarcinoma and promotes tumor progression via spindle checkpoint signaling regulation. It also plays an important role in melanoma cell growth and transformation, indicating a novel role in CD4(+) T cell-mediated immunotherapy in melanoma. In addition, DRG-1 is regulated by ZC3H15 (zinc finger CCCH-type containing 15, also known as Lerepo4), and displays a high temperature optimum of activity at 42C, suggesting the ability of being active under possible heat stress conditions. DRG-1 contains a domain of characteristic Obg-type G-motifs that may be the core of GTPase activity, as well as this C-terminal TGS (ThrRS, GTPase and SpoT) domain that has a predominantly beta-grasp ubiquitin-like fold and may be related to RNA binding. 80 -340751 cd17231 TGS_DRG2 TGS (ThrRS, GTPase and SpoT) domain found in developmentally regulated GTP binding protein 2 (DRG-2). DRG-2 is a member of the DRG family GTP-binding proteins. It has been implicated in cell growth, differentiation and death. DRG-2 plays a critical role in control of the cell cycle and apoptosis in Jurkat T cells. It regulates G2/M progression via the cyclin B1-Cdk1 complex. Moreover, DRG-2 is an endosomal protein and a key regulator of the small GTPase Rab5 deactivation and transferrin recycling. It enhances experimental autoimmune encephalomyelitis (EAE) by suppressing the development of TH17 cells. It is also associated with survival and cytoskeleton organization of osteoclasts under influence of macrophage colony-stimulating factor, and its overexpression leads to elevated bone resorptive activity of osteoclasts, resulting in bone loss. DRG-2 contains a domain of characteristic Obg-type G-motifs that may be the core of GTPase activity, as well as this C-terminal TGS (ThrRS, GTPase and SpoT) domain that has a predominantly beta-grasp ubiquitin-like fold and may be involved in RNA binding. 79 -340752 cd17232 Ubl_ATG8_GABARAP ubiquitin-like (Ubl) domain found in gamma-aminobutyric acid receptor-associated protein (GABARAP). GABARAP (also termed GABA(A) receptor-associated protein, ATG8A, or MM46) has been implicated in intracellular protein trafficking. It is a cytosolic protein that is localized to transport vesicles, the Golgi network and the endoplasmic reticulum. It interacts with the intracellular domain of the gamma2 subunit of GABA(A) receptors, and thus functions as a trafficking modulator implicated in the intracellular trafficking of GABA(A) receptor. GABARAP also acts as a Ubl modifier belonging to the ATG8 (autophagy-related 8) protein family, which is essential for autophagosome biogenesis and maturation. GABARAP recruits phosphatidylinositol 4-kinase II alpha (PI4KIIalpha) as a specific downstream effector, and regulates phosphatidylinositol 4-phosphate (PI4P)-dependent autophagosome lysosome fusion. 115 -340753 cd17233 Ubl_ATG8_GABARAPL1_like ubiquitin-like (Ubl) domain found in gamma-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1) and similar proteins. GABARAPL1, also termed GEC1, or GABA(A) receptor-associated protein-like, belongs to the small family of GABARAP proteins which includes GABARAP, GABARAPL1, GABARAPL2/GATE-16, and GABARAPL3. GABARAPL1 has been involved in the intracellular transport of receptors via interactions with tubulin and GABA(A) or kappa opioid receptors. It is also a Ubl modifier that functions as a mediator involved in androgen-regulated autophagy process. It is transcriptionally modulated by androgen receptor (AR) and has a repressive role in autophagy. In addition, GABARAPL1 is required for increased membrane expression of epidermal growth factor receptor (EGFR) during hypoxia, suggesting a possible role in the trafficking of these membrane proteins. GABARAPL1 may also play a key role in several important biological processes such as cancer or neurodegenerative diseases. Low expression of GABARAPL1 is associated with poor prognosis of patients with hepatocellular carcinoma. This family also includes GABARAPL3, a paralog of GABARAPL1. 107 -340754 cd17234 Ubl_ATG8_MAP1LC3A ubiquitin-like (Ubl) domain found in microtubule associate protein 1 light chain 3A (MAP1LC3A). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. MAP1LC3A is belong to MAP1LC3 (short name LC3) family proteins. MAP1LC3 has a ubiquitin-like fold (Ubl) that belongs to the autophagy-related 8 (ATG8) protein family. A Ubl conjugation of MAP1LC3 by the phospholipid phosphatidylethanolamine (PE) is an essential process for the formation of autophagosomes. MAP1LC3 is cleaved by cysteine protease ATG4 and then conjugated with PE by E1-like enzyme ATG7 and ATG3, an E2-like enzyme. The Ubl conversion of MAPLC3 is known as a marker of autophagy-induction. MAP1LC3A staining patterns are used for different cancer diagnostic. 117 -340755 cd17235 Ubl_ATG8_MAP1LC3B ubiquitin-like (Ubl) domain found in microtubule associate protein 1 light chain 3B (MAP1LC3B). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. MAPLC3B belongs to the MAP1LC3 (short name LC3) family proteins. MAP1LC3 has a ubiquitin-like (Ubl) fold and belongs to the autophagy-related 8 (ATG8) protein family. A Ubl conjugation of MAPLC3 by the phospholipid phosphatidylethanolamine (PE) is an essential process for the formation of autophagosomes. MAP1LC3 is cleaved by cysteine protease ATG4 and then conjugated with PE by E1-like enzyme ATG7 and ATG3, an E2-like enzyme. The Ubl conversion of MAP1LC3 is known as a marker of autophagy-induction. All MAP1LC3 proteins are dispensable for basal autophagy; however, it has been shown that MAP1LC3B is responsible for selective degradation of p62 through autophagy. 115 -340756 cd17236 Ubl_ATG8_MAP1LC3C ubiquitin-like (Ubl) domain found in microtubule associate protein 1 light chain 3C (MAPLC3C). Autophagy is an essential intracellular process that targets large protein complexes, bacterial pathogens, and organelles for degradation. MAP1LC3C belongs to the MAP1LC3 (short name LC3) family proteins. MAP1LC3 has a ubiquitin-like (Ubl) fold that belongs to the autophagy-related 8 (ATG8) protein family. A Ubl conjugation of MAP1LC3 by the phospholipid phosphatidylethanolamine (PE) is an essential process for the formation of autophagosomes. MAP1LC3 is cleaved by cysteine protease ATG4 and then conjugated with PE by E1-like enzyme ATG7 and ATG3, a E2-like enzyme. The Ubl conversion of MAP1LC3 is known as a marker of autophagy-induction. ATG8 proteins are ubiquitously expressed, although some subfamily members are expressed at increased levels in certain tissues, e.g. MAP1LC3C is transcribed at lower levels than other members of MAP1LC3 subfamily and expressed predominantly in the lung. 113 -340757 cd17237 FERM_F1_Moesin FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in moesin and similar proteins. Moesin, also termed membrane-organizing extension spike protein, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Moesin is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. It is required for the formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. 84 -340758 cd17238 FERM_F1_Radixin FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in radixin and similar proteins. Radixin is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Radixin plays important roles in cell polarity, cell motility, invasion and tumor progression. It mediates the binding of F-actin to the plasma membrane after a conformational activation through Akt2-dependent phosphorylation at Thr564. It is also involved in reversal learning and short-term memory by regulating synaptic GABAA receptor density. 83 -340759 cd17239 FERM_F1_Ezrin FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Ezrin and similar proteins. Ezrin, also termed cytovillin, or villin-2, or p81, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Ezrin is a tyrosine kinase substrate that functions as a cross-linker between actin cytoskeleton and plasma membrane. It has been implicated in the regulation of the proliferation, apoptosis, adhesion, invasion, metastasis and angiogenesis of cancer cells. 85 -340760 cd17240 RA_PHLPP1 Ras-associating (RA) domain found in PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). PHLPP1, also termed pleckstrin homology domain-containing family E member 1, or PH domain-containing family E member 1, or suprachiasmatic nucleus circadian oscillatory protein (SCOP), is involved in two key signaling pathways, the phosphatidylinositol 3-kinase and diacylglycerol signaling pathways, by directly dephosphorylating and inactivating Akt serine-threonine kinases (Akt1, Akt2, Akt3) and protein kinase C (PKC) isoforms. PHLPP1 also plays critical roles in many cancers, such as gastric cancer, sacral chordoma, gallbladder cancer, hypopharyngeal squamous cell carcinomas, and non-small cell lung cancer. It plays a suppression role in inflammatory response of glioma. Its loss contributes to gliomas development and progression. Loss of PHLPP1 also protects against colitis by inhibiting intestinal epithelial cell apoptosis. The overexpression of PHLPP1 impairs hippocampus-dependent learning, suggesting a role in learning and memory. PHLPP1 contains a Ras-associating (RA) domain followed by a pleckstrin homology (PH) domain, a series of leucine-rich repeats and a protein phosphatase 2C (PP2C) domain. 90 -340761 cd17241 RA_PHLPP2 Ras-associating (RA) domain found in PH domain leucine-rich repeat-containing protein phosphatase 2 (PHLPP2). PHLPP2, also termed PH domain leucine-rich repeat-containing protein phosphatase-like (PHLPP-like), is involved in two key signaling pathways, the phosphatidylinositol 3-kinase and diacylglycerol signaling pathways, by directly dephosphorylating and inactivating Akt serine-threonine kinases (Akt1, Akt2, Akt3) and protein kinase C (PKC) isoforms. PHLPP2 also plays critical roles in many cancers, such as glioma, hypopharyngeal squamous cell carcinomas, and non-small cell lung cancer. PHLPP2 contains a Ras-associating (RA) domain followed by a PH domain, leucine-rich repeats and protein phosphatase 2C (PP2C) domain. 108 -341132 cd17243 RMtype1_S_AchA6I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Arthrobacter chlorophenolicus A6 S subunit (S.AchA6I) TRD2-CR2. The S.AchA6I S subunit recognizes 5'... TGAANNNNNTCG ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.AchA6I-TRD1 recognizes TGAA/TTCA, and TRD2 recognizes CGA/TCG. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 182 -341133 cd17244 RMtype1_S_Apa101655I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Acetobacter pasteurianus S subunit (S.Apa101655I) TRD2-CR2. The S. Apa101655I S subunit recognizes 5'... TTAGNNNNNNTTC... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 180 -341134 cd17245 RMtype1_S_TteMORF1547P-TRD2-CR2_Aco12261I-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Thermoanaerobacter tengcongensis S subunit (S.TteMORF1547P) TRD2-CR2 and Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I) TRD1-CR1. The S.Aco12261I S subunit recognizes 5'... GCANNNNNNTGT ... 3', while the recognition sequence is undetermined for S.TteMORF1547P TRD2-CR2. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. S.TteMORF1547P TRD1-CR1 and S.Aco12261I TRD2-CR2 do not belong to this family. This family may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 174 -341135 cd17246 RMtype1_S_SonII-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Shewanella oneidensis MR-1 S subunit (S.SonII) TRD2-CR2. This model contains Shewanella oneidensis MR-1 S subunit (S.SonII) TRD2-CR2 and similar TRD-CR's. S.SonII recognizes 5'... GTCANNNNNNRTCA ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. S.SonII TRD1-CR1 does not belong to this subfamily. 189 -341136 cd17247 RMtype1_S_Eco2747I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli ST2747 S subunit (S.Eco2747I) TRD2-CR2. The S. Eco2747I S subunit recognizes 5'... CACNNNNNNNGTTG ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This CD contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 190 -341137 cd17248 RMtype1_S_AmiI-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Actinosynnema mirum DSM 43827 S subunit (S. AmiI) TRD2-CR2. The S. AmiI S subunit recognizes 5'... CAGNNNNNNNTCGA ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S. AmiI -TRD1 recognizes CAG/CTG, and TRD2 recognizes TCGA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 196 -341138 cd17249 RMtype1_S_EcoR124I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoR124I TRD2-CR2, S.Eco540I TRD2-CR2, S.Eco540AI TRD2-CR2, and S.Eco540ANI TRD2-CR2. Escherichia coli (R124) S subunit (S.EcoR124I), E. coli ST540 S subunit (S.Eco540I), E. coli ST540A S subunit (S.Eco540AI), and Escherichia coli ST540AN S subunit (S.Eco540ANI) recognize the sequence 5'... GAANNNNNNRTCG ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.EcoR124I -TRD1 recognizes GAA/TTC, and -TRD2 recognizes CGAY/RTCG. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 185 -341139 cd17250 RMtype1_S_Eco4255II_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli O118:H16 07-4255 S subunit (S.Eco4255II) TRD2-CR2 and Shewanella oneidensis MR-1 S subunit (S.SonIV) TRD1-CR1. Escherichia coli O118:H16 07-4255 S subunit (S.Eco4255II) recognizes 5'... TACNNNNNNNRTRTC ... 3 while Shewanella oneidensis MR-1 S subunit (S.SonIV) recognizes 5'... TACNNNNNNGTNGT ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.SonIV-TRD1 recognizes TAC/GTA and S.SonIV-TRD2 recognizes ACNAC/GTNGT. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 185 -341140 cd17251 RMtype1_S_HinAWORF1578P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to S.HinAWORF1578P TRD2-CR2. Haemophilus influenzae RdAW S subunit (S.HinAWORF1578P) recognizes 5'... CTANNNNNGTTY ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains mostly TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 185 -341141 cd17252 RMtype1_S_EcoKI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoKI TRD1-CR1, S.StySPI TRD1-CR1, S.Ara36733II TRD1-CR1, and S.Eco3722I TRD1-CR1. Escherichia coli str. K-12 substr. MG1655 S subunit (S.EcoKI) and Escherichia coli NCM3722 S subunit (S.Eco3722I) recognize 5'... AACNNNNNNGTGC ... 3', Salmonella enterica subsp. enterica serovar Potsdam S subunit (S.StySPI) recognizes 5'... AACNNNNNNGTRC ... 3', and Actinomyces radicidentis S subunit (S.Ara36733II) recognizes 5'... CATCNNNNNNCTC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.EcoKI-TRD1 and S.StySPI-TRD1 recognize AAC/GTT, S.EcoKI-TRD2 recognizes GCAC/GTGC, and S.StySPI-TRD2 recognizes GYAC/GTRC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases such as Treponema pedis T A4 putative Type IIG restriction enzyme/N6-adenine DNA methyltransferase RM.TpeTA4ORF2695P. It may also include type I DNA methyltransferases. 189 -341142 cd17253 RMtype1_S_Eco933I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Escherichia coli O157:H7 EDL933 S subunit (S.Eco933I), Escherichia coli O104:H4 2009EL-2071 S subunit (S.Eco2071ORF3585P) TRD2-CR2, and Streptomyces species SirexAA-E S subunit (S.SspAAEORF2129P) TRD1-CR1 and TRD2-CR2. Escherichia coli O157:H7 EDL933 S subunit (S.Eco933I) recognizes 5'... CACNNNNNNNCTGG ... 3' and Escherichia coli O104:H4 2009EL-2071 S subunit (S.Eco2071ORF3585P) recognizes 5'... RTCANNNNNNNNGTGG ... 3'. The recognition sequence of Streptomyces species SirexAA-E S subunit (S.SspAAEORF2129P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.Eco2071ORF3585P TRD1 recognizes RTCA/TGAY and S.Eco2071ORF3585P TRD2 recognizes CCAC/GTGG. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 193 -341143 cd17254 RMtype1_S_FclI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.FclI TRD1-CR1. The recognition sequence of Flavobacterium columnare G4 S subunit (S.FclI) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also contains TRD-CR-like sequence-recognition domains of type I DNA methyltransferases, such as putative Type I N6-adenine DNA methyltransferases from Microbacterium ketosireducens (M.Msp12510ORF408P) and Treponema primitia ZAS-2 (M.TprZAS2ORF3630P). It may also include various type II restriction enzymes and methyltransferases. 173 -341144 cd17255 RMtype1_S_Fco49512ORF2615P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Flavobacterium columnare S subunit (S.Fco49512ORF2615P) TRD2-CR2. The recognition sequence of Flavobacterium columnare S subunit (S.Fco49512ORF2615P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 166 -341145 cd17256 RMtype1_S_EcoJA65PI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoJA65PI TRD1-CR1, S.Fco49512ORF2615P TRD1-CR1, and S.SonIV TRD2-CR2. Escherichia coli UCD_JA65_pb S subunit (S.EcoJA65PI) recognizes 5'... AGCANNNNNNTGA ... 3' while Shewanella oneidensis MR-1 S subunit (S.SonIV) recognizes 5'... TACNNNNNNGTNGT ... 3'. The recognition sequence of Flavobacterium columnare S subunit (S.Fco49512ORF2615P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.EcoJA65PI TRD1 recognizes AGCA/TGCT and S.EcoJA65PI TRD2 recognizes TCA/TGA; S.SonIV TRD1 recognizes TAC/GTA and S.SonIV TRD2 recognizes ACNAC/GTNGT. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 182 -341146 cd17257 RMtype1_S_EcoBI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoBI TRD1-CR1, S.EcoSanI TRD1-CR1, and S.EcoVR50I TRD1-CR1. Escherichia coli B S subunit (S.EcoBI) and Escherichia coli VR50 S subunit (S.EcoVR50I) recognize 5'... TGANNNNNNNNTGCT ... 3', while Escherichia coli Sanji S subunit (S.EcoSanI) recognizes 5'... TGANNNNNNCTTC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 176 -341147 cd17258 RMtype1_S_Sau13435ORF2165P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.Sau13435ORF2165P TRD1-CR1 and S.SauL3067ORFAP TRD1-CR1. Staphylococcus aureus NCTC 13435 S subunit (S.Sau13435ORF2165P) recognizes 5'... TCTANNNNNNRTTC ... 3'; the recognition sequence of Staphylococcus aureus 3067 S.Sau3067ORFAP S subunit is as yet undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.Sau13435ORF2165P TRD1 recognizes TCTA/TAGA, and S.Sau13435ORF2165P TRD2 recognizes GAAY/RTTC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains mostly TRD1-CR1. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 173 -341148 cd17259 RMtype1_S_StySKI-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to TRD2-CR2's of StySKI, S.EcoAI, S.EcoJA17PI, and S.EcoJA23PI. Salmonella kaduna CDC-388 S subunit (StySKI) recognizes 5'... CGATNNNNNNNGTTA ... 3' while Escherichia coli Type-1 restriction enzyme EcoAI specificity protein (S.EcoAI), Escherichia coli UCD_JA17_pb S subunit (S.EcoJA17PI) and Escherichia coli UCD_JA23_pb S subunit (S.EcoJA23PI) recognize 5'... GAGNNNNNNNGTCA ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 189 -341149 cd17260 RMtype1_S_EcoEI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoEI TRD1-CR1, S.EcoJA17PI TRD1-CR1, S.EcoJA23PI TRD1-CR1, and S.StyLTIII TRD1-CR1. Escherichia coli A58 S subunit (S.EcoEI) recognizes 5'... GAGNNNNNNNATGC ... 3', Escherichia coli UCD_JA17_pb S subunit (S.EcoJA17PI) and Escherichia coli UCD_JA23_pb S subunit (S.EcoJA23PI) recognize 5'... GAGNNNNNNNGTCA ... 3', and Salmonella typhimurium LT7 S subunit (S.StyLTIII) recognizes 5'... GAGNNNNNNRTAYG ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example: S.EcoEI TRD1 and S.StyLTIII TRD1 recognize GAG/CTC, S.EcoEI TRD2 recognizes GCAT/ATGC, and S.StyLTIII TRD2 recognizes CRTAY/RTAYG. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases, such as Pseudomonas putida Jo 4-731 Type IIG restriction enzyme/N6-adenine DNA methyltransferas RM.PpiI and Porphyromonas macacae COT-192 OH2631 RM.Pma2631ORF8845P, as well as type I DNA methyltransferases such as Chlorobium limicola M.Cli245ORF128P. RM.PpiI recognizes the sequence 5' ... GAACNNNNNCTC ... 3'. 165 -341150 cd17261 RMtype1_S_EcoKI-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Escherichia coli str. K-12 substr. MG1655 S subunit (S.EcoKI) TRD2-CR2, Escherichia coli A58 S subunit (S.EcoEI) TRD2-CR2, and Aminomonas paucivorans S subunit (S.Apa12260I) TRD2-CR2. Escherichia coli str. K-12 substr. MG1655 S subunit (S.EcoKI) recognizes 5'... AACNNNNNNGTGC ... 3', Escherichia coli A58 S subunit (S.EcoEI) recognizes 5'... GAGNNNNNNNATGC ... 3', and Aminomonas paucivorans S subunit (S.Apa12260I) recognizes 5'... GCCNNNNNCTCC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.EcoKI-TRD1 recognizes AAC/GTT and S.EcoKI-TRD2 recognizes GCAC/GTGC, S.EcoEI TRD1 recognizes GAG/CTC and S.EcoEI TRD2 recognizes GCAT/ATGC, and S.Apa12260I TRD1 recognizes GCC/GGC and S.Apa12260I TRD2 recognizes GGAG/CTCC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 191 -341151 cd17262 RMtype1_S_Aco12261I-TRD2-CR2 Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I) TRD2-CR2 and Moraxella catarrhalis S subunit (S.Mca353ORF290P) TRD2-CR2. Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I) recognizes 5'... GCANNNNNNTGT ... 3', and Moraxella catarrhalis S subunit (S.Mca353ORF290P) recognizes 5'... CAAGNNNNNNTGT ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 172 -341152 cd17263 RMtype1_S_AbaB8300I-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Acinetobacter baumannii B8300 S subunit (S.AbaB8300I) TRD1-CR1. Acinetobacter baumannii B8300 S subunit (S.AbaB8300I) recognizes 5'... GAYNNNNNNNTCYC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 177 -341153 cd17264 RMtype1_S_Eco3763I-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli O69:H11 07-3763 S subunit (S.Eco3763I) TRD2-CR2. Escherichia coli O69:H11 07-3763 S subunit (S.Eco3763I) recognizes 5'... TACNNNNNNNRTRTC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 184 -341154 cd17265 RMtype1_S_Eco4255III-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli O118:H16 07-4255 S subunit (S.Eco4255III) TRD2-CR2 and Escherichia coli ECONIH1 S subunit (S.EcoNIH1II) TRD2-CR2. Escherichia coli O118:H16 07-4255 S subunit (S.Eco4255III) recognizes 5'... GAGNNNNNGTTY ... 3', and Escherichia coli ECONIH1 S subunit (S.EcoNIH1II) recognizes 5'... YTCANNNNNNGTTY ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.Eco4255III-TRD1 recognizes GAG/CTC and S.EcoNIH1II-TRD1 recognizes YTCA/TGAR, while both S.EcoNIH1II-TRD2 and S.Eco4255III-TRD2 recognize RAAC/GTTY. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 181 -341155 cd17266 RMtype1_S_Sau1132ORF3780P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Staphylococcus aureus subsp. aureus MSHR1132 S subunit (S.Sau1132ORF3780P) TRD2-CR2. Staphylococcus aureus subsp. aureus MSHR1132 S subunit (S.Sau1132ORF3780P) recognizes 5'... CAAGNNNNNRTC ... 3'. The RM system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example S.Sau1132ORF3780P-TRD1 recognizes CAAG/CTTG and S.Sau1132ORF3780P-TRD2 recognizes GAY/RTC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 159 -341156 cd17267 RMtype1_S_EcoAO83I-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoAO83I TRD1-CR1 and S.AbaB8342I TRD2-CR2. Escherichia coli strain A0 34/86 S subunit (S.EcoAO83I) recognizes 5'... GGANNNNNNNNATGC ... 3, and Acinetobacter baumannii B8342 S subunit (S.AbaB8342I) recognizes 5'... TTCANNNNNNTCC ... 3. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example S.AbaB8342I-TRD1 recognizes TTCA/TGAA and S.AbaB8342I-TRD2 recognizes GGA/TCC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases such as Type IIG restriction enzyme/N6-adenine DNA methyltransferases from Thermus scotoductus RFL1 (RM.TstI) and Acinetobacter lwoffi Ks 4-8 (RM.AloI), as well as type I DNA methyltransferases such as Sideroxydans lithotrophicus ES-1 Type I N6-adenine DNA methyltransferase (M.SliESORF1090P). RM.TstI recognizes 5' ... CACNNNNNNTCC ... 3' and RM.AloI recognizes 5' ... GAACNNNNNNTCC ... 3'. 158 -341157 cd17268 RMtype1_S_Ara36733I_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.Ara36733I TRD1-CR1 AND S.Ara36733I TRD2-CR2. Actinomyces radicidentis S subunit (S.Ara36733I) recognizes 5'... CGAGNNNNNCTG ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 185 -341158 cd17269 RMtype1_S_PluTORF4319P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Photorhabdus luminescens S subunit (S.PluTORF4319P) TRD2-CR2. The recognition sequence of Photorhabdus luminescens S subunit (S.PluTORF4319P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 168 -341159 cd17270 RMtype1_S_Sba223ORF3470P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.Sba223ORF3470P TRD1-CR1. The recognition sequence of Shewanella baltica OS223 S subunit (S.Sba223ORF3470P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 183 -341160 cd17271 RMtype1_S_NmaSCMORF606P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Nitrosopumilus maritimus SCM1 S subunit (S2.NmaSCMORF606P) TRD2-CR2, Corynebacterium jeikeium K411 S subunit (S.CjeKORF1254P) TRD2-CR2 and Porphyromonas canoris COT-108 OH2762 S subunit (S2.Pca2762ORF8685P) TRD1-CR1. The recognition sequences of Nitrosopumilus maritimus SCM1 S subunit (S2.NmaSCMORF606P), Corynebacterium jeikeium K411 S subunit (S.CjeKORF1254P), and Porphyromonas canoris COT-108 OH2762 S subunit (S2.Pca2762ORF8685P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 186 -341161 cd17272 RMtype1_S_Eco2747II-TRD2-CR2-like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.Eco2747II TRD2-CR2 and S.Eco2747AII TRD2-CR2. Escherichia coli ST2747 S subunit (S.Eco2747II) and Escherichia coli ST2747A s SUBUNIT (S.Eco2747AII) recognize 5'... GAANNNNNNNTAAA ... 3'. Generally The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains mainly TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 189 -341162 cd17273 RMtype1_S_EcoJA69PI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.EcoJA69PI TRD1-CR1, MjaXIP/S.MjaORF132P TRD2-CR2, and S.HspDL1ORF16625P TRD2-CR2. Escherichia coli UCD_JA69_pb S subunit (S.EcoJA69PI) recognizes 5'... CCANNNNNNNCTTC ... 3'. The recognition sequences of Methanococcus jannaschii MjaXIP/S.MjaORF132P TRD2-CR2 and Halobacterium species DL1 S subunit (S.HspDL1ORF16625P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various putative type II restriction enzymes and methyltransferases and may also include type I DNA methyltransferases. 186 -341163 cd17274 RMtype1_S_Eco540ANI-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.Eco540ANI TRD1-CR1, S.Eco2747AII TRD1-CR1, S.Eco540AI TRD1-CR1, S.Eco2747II TRD1-CR1, and S.Eco540I TRD1-CR1. Escherichia coli ST540AN S subunit (S.Eco540ANI ), Escherichia coli ST540A S subunit (S.Eco540AI), and Escherichia coli ST540 S subunit (S.Eco540I) recognize 5'... GAANNNNNNRTCG ... 3'. Escherichia coli ST2747A S subunit (S.Eco2747AII) and Escherichia coli ST2747 S subunit (S.Eco2747II) recognize 5'... GAANNNNNNNTAAA ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 171 -341164 cd17275 RMtype1_S_MjaORF132P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to MjaXIP/S.MjaORF132P TRD1-CR1. The recognition sequence of Methanococcus jannaschii S subunit (MjaXIP/S.MjaORF132P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 186 -341165 cd17276 RMtype1_S_Sau1132ORF3780P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to S.Sau1132ORF3780P TRD1-CR1, and S.Mca353ORF290P TRD1-CR1. The Staphylococcus aureus subsp. aureus MSHR1132 S subunit (S.Sau1132ORF3780P) recognizes 5'... CAAGNNNNNRTC ... 3', and Moraxella catarrhalis S subunit (S.Mca353ORF290P) recognizes 5'... CAAGNNNNNNTGT ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.Sau1132ORF3780P-TRD1 recognizes CAAG/CTTG, and S.Sau1132ORF3780P-TRD2 recognizes GAY/RTC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 187 -341166 cd17277 RMtype1_M_Cni19672ORF1405P_RMtype11G_Hci611ORFHP_TRD1-CR1_like Restriction modification N6-adenine DNA methyltransferase TRD-CR, similar to RMtype1 Calditerrivibrio nitroreducens M.Cni19672ORF1405P TRD1-CR1 and RMtype11G Helicobacter cinaedi PAGU611 RM.Hci611ORFHP TRD1-CR1. The recognition sequence of Calditerrivibrio nitroreducens M.Cni19672ORF1405P is undetermined, and the predicted recognition sequence of RM.Hci611ORFHP is 5'... GAGNNNNNGT ... 3'. M.Cni19672ORF1405P is a putative type I N6-adenine DNA methyltransferase. RM.Hci611ORFHP is a type II subtype gamma (also called type IIG and type IIC) N6-adenine DNA methyltransferase. Both are DNA methyltransferase-specificity subunit fusion proteins, they each have a domain corresponding to a HsdM methylation (M) subunit followed by a C-terminal, TRD-CR-like domain for sequence-recognition, which corresponds to the HsdS specificty (S) subunit. The latter consists of two variable TRDs, and two CRs which separate the TRDs; the TRDs each bind to different specific sequences in the DNA. RM.Hci611ORFHP has an additional N-terminal HSDR_N domain. Restriction-modification (RM) systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit, two modification (M) subunits, and two restriction (R) subunits. 184 -341167 cd17278 RMtype1_S_LdeBORF1052P-TRD2-CR2 Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Lactobacillus delbrueckii subsp. bulgaricus S subunit (S2.LdeBORF1052P) TRD2-CR2. The recognition sequence of Lactobacillus delbrueckii subsp. bulgaricus S subunit (S2.LdeBORF1052P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 189 -341168 cd17279 RMtype1_S_BmuCF2ORF3362P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Burkholderia multivorans CF2 S subunit (S.BmuCF2ORF3362P) TRD1-CR1 and and Halomonas campaniensis LS21 S subunit (S.HcaLS21ORF9970P) TRD1-CR1. The recognition sequences of Burkholderia multivorans CF2 S subunit (S.BmuCF2ORF3362P) and Halomonas campaniensis LS21 S subunit (S.HcaLS21ORF9970P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 184 -341169 cd17280 RMtype1_S_MspEN3ORF6650P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Marinobacter species EN3 S subunit (S.MspEN3ORF6650P) TRD1-CR1, Methanothermobacter marburgensis str. Marburg S subunit (S.Mma2133ORF14720P) TRD2-CR2 and Nostoc species NIES-3756 S subunit (S.Nsp3756ORF27100P) TRD1-CR1. The recognition sequences of Marinobacter species EN3 S subunit (S.MspEN3ORF6650P), Methanothermobacter marburgensis str. Marburg S subunit (S.Mma2133ORF14720P), and Nostoc species NIES-3756 S subunit (S.Nsp3756ORF27100P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 187 -341170 cd17281 RMtype1_S_HpyAXIII_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Helicobacter pylori 26695 S subunit (S.HpyAXIII/Prototype S.Hpy26695ORF4050P) TRD1-CR1, Neisseria meningitidis 510612 S subunit (S.Nme510612ORF1157P) TRD1-CR1 and Streptococcus mitis SVGS_061 S subunit (S2.Smi61ORF7905P) TRD1-CR1. Helicobacter pylori 26695 S subunit (S.HpyAXIII/Prototype S.Hpy26695ORF4050P) recognizes 5'... CTANNNNNNNNTGT ... 3', and the recognition sequences of Neisseria meningitidis 510612 S subunit (S.Nme510612ORF1157P) and Streptococcus mitis SVGS_061 S subunit (S2.Smi61ORF7905P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, Helicobacter pylori 26695 S subunit (S.HpyAXIII/Prototype S.Hpy26695ORF4050P) TRD1 recognizes CTA/TAG, and TRD2 recognizes ACA/TGT. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 196 -341171 cd17282 RMtype1_S_Eco16444ORF1681_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli G4/9 S subunit (S.Eco16444ORF1681P) TRD1-CR1 and Zobellia galactanivorans DsiJT S subunit (S.ZgaJTORF2697P)TRD2-CR2. The recognition sequences of Escherichia coli G4/9 S subunit (S.Eco16444ORF1681P) and Zobellia galactanivorans DsiJT S subunit (S.ZgaJTORF2697P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various putative type II restriction enzymes and methyltransferases and may also include type I DNA methyltransferases. 186 -341172 cd17283 RMtype1_S_Hpy180ORF7835P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Helicobacter pylori SJM180 S subunit (S.Hpy180ORF7835P) TRD2-CR2 and Haemophilus influenzae PittGG S subunit (S.HinGGORF3080P) TRD2-CR2. The recognition sequences of Helicobacter pylori SJM180 S subunit (S.Hpy180ORF7835P) and Haemophilus influenzae PittGG S subunit (S.HinGGORF3080P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 181 -341173 cd17284 RMtype1_S_Cbo7060ORF11580P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Clostridium botulinum CFSAN024410 S subunit (S.Cbo7060ORF11580P) TRD2-CR2 and Shewanella xiamenensis BC01 S subunit (S.SxiBC01ORF77P) TRD1-CR1. The recognition sequences of Clostridium botulinum CFSAN024410 S subunit (S.Cbo7060ORF11580P) and Shewanella xiamenensis BC01 S subunit (S.SxiBC01ORF77P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 185 -341174 cd17285 RMtype1_S_Csp16704I_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Campylobacter species RM1670 S subunit (S.Csp16704I) TRD2-CR2, Aeromonas media WS S subunit (S.AmeWSORF2351P) TRD1-CR1, and Clostridium carboxidivorans P7 S subunit (S.CcaPORF573P) TRD2-CR2. Campylobacter species RM16704 S subunit (S.Csp16704I ) recognizes 5'... ACANNNNNNNNTCG ... 3', and the recognition sequences of Aeromonas media WS TRD1-CR1 S subunit (S.AmeWSORF2351P) and Clostridium carboxidivorans P7 S subunit (S.CcaPORF573P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 181 -341175 cd17286 RMtype1_S_Lla161ORF747P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Lactococcus lactis subsp. lactis Dephy 1 S subunit (S.Lla161ORF747P) TRD1-CR1, and Lactococcus lactis IO-1 S subunit (S2.LlaIO1ORF1141P) TRD2-CR2. The recognition sequences of Lactococcus lactis subsp. lactis Dephy 1 S subunit (S.Lla161ORF747P) and Lactococcus lactis IO-1 S subunit (S2.LlaIO1ORF1141P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 179 -341176 cd17287 RMtype1_S_EcoN10ORF171P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Escherichia coli N10-0505 S subunit (S.EcoN10ORF171P) TRD2-CR2, and Herpetosiphon aurantiacus S subunit (S.HauORF5277P) TRD2-CR2. The recognition sequences of Escherichia coli N10-0505 S subunit (S.EcoN10ORF171P) and Herpetosiphon aurantiacus S subunit (S.HauORF5277P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 184 -341177 cd17288 RMtype1_S_LlaAI06ORF1089P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Lactococcus lactis S subunit (S.LlaAI06ORF1089P) TRD1-CR1 and Bacillus subtilis B4071 S subunit (S2.BsuCC16ORF609P) TRD2-CR2. The recognition sequences of Lactococcus lactis S subunit (S.LlaAI06ORF1089P) and Bacillus subtilis B4071 S subunit (S2.BsuCC16ORF609P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 163 -341178 cd17289 RMtype1_S_BamJRS5ORF1993P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Bacillus amyloliquefaciens JRS5 S subunit (S.BamJRS5ORF1993P) TRD1-CR1 and Bacillus pumilus Jo2 S subunit (S.BpuJo2I) TRD1-CR1. The recognition sequences of Bacillus amyloliquefaciens JRS5 S subunit (S.BamJRS5ORF1993P) and Bacillus pumilus Jo2 S subunit (S.BpuJo2I) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 191 -341179 cd17290 RMtype1_S_AleSS8ORF2795P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Algibacter lectus S subunit (S.AleSS8ORF2795P) TRD1-CR1 and Vibrio parahaemolyticus O1:K33 CDC_K4557 S subunit (S.Vpa4557ORF22590P) TRD2-CR2. The recognition sequences of Algibacter lectus S subunit (S.AleSS8ORF2795P) and Vibrio parahaemolyticus O1:K33 CDC_K4557 S subunit (S.Vpa4557ORF22590P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 184 -341180 cd17291 RMtype1_S_MgeORF438P-TRD-CR_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.MgeORF438P TRD1-CR1 and TRD2-CR2, and to Escherichia coli G5 S subunit (S.Eco16445ORF5013P ) TRD2-CR2 and Acetobacter pasteurianus IFO 3283-01 S subunit (S2.Apa3283ORF14230P) TRD1-CR1. The recognition sequences of Mycoplasma genitalium G-37 S subunit (S.MgeORF438P), Escherichia coli G5 S subunit (S.Eco16445ORF5013P), and Acetobacter pasteurianus IFO 3283-01 S subunit (S2.Apa3283ORF14230P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 161 -341181 cd17292 RMtype1_S_LlaA17I_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to the S subunit TRD2-CR2 regions of Lactococcus lactis subsp. cremoris A17 (S.LlaA17I), Haemophilus influenzae Rd (S.HindORF215P) and Clostridium species ASF502 (S.Csp502ORF478P). Lactococcus lactis subsp. cremoris A17 S subunit (S.LlaA17I) recognizes 5'... CAANNNNNNNNTAYG... 3', while the recognition sequences of Clostridium species ASF502 S subunit (S.Csp502ORF478P) and Haemophilus influenzae Rd S subunit (S.HindORF215P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases, such as Porphyromonas species COT-108 OH1349 Type IIG restriction enzyme/N6-adenine DNA methyltransferase (RM.Psp1349ORF730P) of unknown recognition sequence. It may also include type I DNA methyltransferases. 149 -341182 cd17293 RMtype1_S_Ppo21ORF8840P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Paenibacillus polymyxa SQR-21 SQR21 S subunit (S.Ppo21ORF8840P) TRD1-CR1, Nitrosococcus halophilus Nc4 S subunit (S.NhaNc4ORF3964P) TRD1-CR1. The recognition sequences of Paenibacillus polymyxa SQR-21 SQR21 S subunit (S.Ppo21ORF8840P) and Nitrosococcus halophilus Nc4 S subunit (S.NhaNc4ORF3964P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This superfamily contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 180 -341183 cd17294 RMtype1_S_MmaC7ORF19P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Methanococcus maripaludis C7 S subunit (S.MmaC7ORF19P) TRD1-CR1 and Mycoplasma gallinaceum S subunit (S3.Mme68BORF1125P) TRD2-CR2. The recognition sequences of Methanococcus maripaludis C7 S subunit (S.MmaC7ORF19P) and Mycoplasma gallinaceum S subunit (S3.Mme68BORF1125P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 188 -341184 cd17296 RMtype1_S_MmaC5ORF1169P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Methanococcus maripaludis C5 S subunit (S.MmaC5ORF1169P) TRD1-CR1, and Methanobacterium formicicum S subunit (S.Mfo3637ORF3708P) TRD2-CR2. The recognition sequences of Methanococcus maripaludis C5 S subunit (S.MmaC5ORF1169P) and Methanobacterium formicicum S subunit (S.Mfo3637ORF3708P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 182 -341209 cd17297 AldB-like proteins similar to alpha-acetolactate dehydrogenase. The structure of this domain displays an alpha-beta-beta-alpha four layer topology, with an H(x)H(x)nH motif (x could be any residue, n could be 9 or 10) that coordinates a zinc ion. The proteins are homologous to bacterial alpha-acetolactate decarboxylase (AldB, E.C. 4.1.1.5), which converts acetolactate into acetoin. 209 -341210 cd17298 DUF1907 proteins similar to putative ester hydrolase C11orf54/PTD012. The structure of this domain displays an alpha-beta-beta-alpha four layer topology, with an HxHxxxxxxxxxH motif (x could be any residue) that coordinates a zinc ion, and an acetate anion at a site that may support the enzymatic activity of a ester. In vitro hydrolytic activity towards para-nitrophenylacetate for the human enzyme was reported. The proteins are homologous to bacterial alpha-acetolactate decarboxylase (AldB, E.C. 4.1.1.5), which converts acetolactate into acetoin. 287 -341211 cd17299 acetolactate_decarboxylase alpha-acetolactate decarboxylase. alpha-acetolactate decarboxylase (AldB, E.C. 4.1.1.5) converts acetolactate ((2S)-2-hydroxy-2-methyl-3-oxobutanoate) into acetoin ((3R)-3-hydroxybutan-2-one) and CO(2). Acetoin may be secreted by the cells, perhaps in order to control the internal pH. AldB may function as a regulator in valine and leucine biosynthesis and in catalyzing the second step of the 2,3-butanediol pathway. The structure of this domain displays an alpha-beta-beta-alpha four layer topology, with an HxHxxxxxxxxxxH motif (x could be any residue) that coordinates a zinc ion. 232 -340437 cd17300 PIPKc_PIKfyve Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in 1-phosphatidylinositol-3-phosphate 5-kinase and similar proteins. 1-phosphatidylinositol-3-phosphate 5-kinase (EC 2.7.1.150) is also called FYVE finger-containing phosphoinositide kinase, PIKfyve, phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase). It forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] by catalyzing the phosphorylation of phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) on the fifth hydroxyl of the myo-inositol ring. Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. PIKfyve is vital in early embryonic development. It forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, playing a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human Ether-a-go-go-Related Gene (hERG) channels. This family also includes the yeast ortholog of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal catalytic lipid kinase domain related to PtdInsP kinases (or the PIPKc domain). 262 -340438 cd17301 PIPKc_PIP5KI Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5KI) and similar proteins. PIP5KIs, also known as PIPKIs, or PI4P5KIs, phosphorylate the head group of phosphatidylinositol 4-phosphate (PtdIns4P) to generate phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2), an essential lipid molecule in various cellular processes. Three distinct PIP5KIs have been characterized in erythrocytes, PIP5K1alpha, PIP5K1beta, and PIP5K1gamma isoforms. 320 -340439 cd17302 PIPKc_AtPIP5K_like Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Arabidopsis thaliana phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) and similar proteins. PIP5K (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase, or diphosphoinositide kinase, phosphorylates phosphatidylinositol-4-phosphate to produce phosphatidylinositol-4,5-bisphosphate as a precursor of two second messengers, inositol-1,4,5-triphosphate and diacylglycerol, and as a regulator of many cellular proteins involved in signal transduction and cytoskeletal organization. The family includes several PIP5Ks from Arabidopsis thaliana. AtPIP5K1 is involved in water-stress signal transduction. AtPIP5K2 acts as an interactor of all five Arabidopsis RAB-E proteins but not with other Rab subclasses residing at the Golgi or trans-Golgi network. AtPIP5K3 is a key regulator of root hair tip growth. AtPIP5K4 and AtPIP5K5 are type B PI4P 5-kinases expressed in pollen and have important functions in pollen germination and in pollen tube growth. AtPIP5K6 regulates clathrin-dependent endocytosis in pollen tubes. AtPIP5K9 interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. 314 -340440 cd17303 PIPKc_PIP5K_yeast_like Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in yeast phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) and similar proteins. PIP5K (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase, or diphosphoinositide kinase, phosphorylates phosphatidylinositol-4-phosphate to produce phosphatidylinositol-4,5-bisphosphate as a precursor of two second messengers, inositol-1,4,5-triphosphate and diacylglycerol, and as a regulator of many cellular proteins involved in signal transduction and cytoskeletal organization. The family includes Saccharomyces cerevisiae PIP5K MSS4, Schizosaccharomyces pombe PIP5K Its3. MSS4 is required for organization of the actin cytoskeleton in budding yeast. Its3 is involved, together with the calcineurin ppb1, in cytokinesis of fission yeast. 318 -340441 cd17304 PIPKc_PIP5KL1 Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase-like protein 1 (PIP5KL1) and similar proteins. PIP5KL1 (EC 2.7.1.68), also known as PI(4)P 5-kinase-like protein 1, or PtdIns(4)P-5-kinase-like protein 1, may act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment, and conversion to PI(3,4,5)P3. 319 -340442 cd17305 PIPKc_PIP5KII Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in type II phosphatidylinositol 5-phosphate 4-kinase (PIP5KII) and similar proteins. PIP5KIIs, also known as PIPKIIs, or PI4P5KIIs, are responsible for the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2), an essential lipid molecule in various cellular processes, from phosphatidylinositol-5-phosphate (PtdIns5P). Three distinct PIP5KIs have been characterized in erythrocytes, PIP5K2A, PIP5K2B, and PIP5K2C isoforms. 300 -340443 cd17306 PIPKc_PIP5K1A_like Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1alpha) and similar proteins. PIP5K1alpha (EC 2.7.1.68), also termed PIP5K1A, or PtdIns(4)P-5-kinase 1 alpha, or 68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha, or PIPKI-alpha, catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). It mediates extracellular calcium-induced keratinocyte differentiation. Unlike other type I phosphatidylinositol-4-phosphate 5-kinase (PIPKI) isoforms, PIP5K1alpha regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. This function is independent of its catalytic activity, and requires physical interaction of PIP5K1alpha with the Rac1 polybasic domain. The family also includes testis-specific PIP5K1A and PSMD4-like protein, also known as PIP5K1A-PSMD4 or PIPSL. It has negligeable PIP5 kinase activity and binds to ubiquitinated proteins. 339 -340444 cd17307 PIPKc_PIP5K1B Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 beta (PIP5K1beta) and similar proteins. PIP5K1beta (EC 2.7.1.68), also known as PtdIns(4)P-5-kinase 1 beta, or protein STM-7, or PIP5K1B, is encoded by the Friedreich's ataxia (FRDA) gene, STM7. FRDA is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus, and/or glucose intolerance. PIP5K1beta is an enzyme functionally linked to actin cytoskeleton dynamics and it phosphorylates phosphatidylinositol 4-phosphate (PtdIns4P) to generate phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). 321 -340445 cd17308 PIPKc_PIP5K1C Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) and similar proteins. PIP5K1gamma(EC 2.7.1.68), also known as PtdIns(4)P-5-kinase 1 gamma, or PIP5K1gamma, or PIPKIgamma, or PtdInsPKI gamma, is a phosphatidylinositol-4-phosphate 5-kinase that catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is involved in a variety of cellular processes and is the substrate to form phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), another second messenger. PIP5K1gamma is required for epidermal growth factor (EGF)-stimulated directional cell migration. It also modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. 323 -340446 cd17309 PIPKc_PIP5K2A Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha (PIP5K2A) and similar proteins. PIP5K2A (EC 2.7.1.149), also known as PIP4K2A, or 1-phosphatidylinositol 5-phosphate 4-kinase 2-alpha, or diphosphoinositide kinase 2-alpha, or PIP5KIII, or phosphatidylinositol 5-phosphate 4-kinase type II alpha, or PI(5)P 4-kinase type II alpha, or PIP4KII-alpha, or PtdIns(4)P-5-kinase C isoform, or PtdIns(5)P-4-kinase isoform 2-alpha, catalyzes the phosphorylation of phosphatidylinositol 5-phosphate (PtdIns5P) on the fourth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), one of the key metabolic crossroads in phosphoinositide signaling. It is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. PIP5K2A is associated with schizophrenia. It controls the function of KCNQ channels via phosphatidylinositol-4,5-bisphosphate (PIP2) synthesis, and plays a potential role in the regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. 309 -340447 cd17310 PIPKc_PIP5K2B Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (PIP5K2B) and similar proteins. PIP5K2B (EC 2.7.1.149), also known as 1-phosphatidylinositol 5-phosphate 4-kinase 2-beta, or diphosphoinositide kinase 2-beta, or phosphatidylinositol 5-phosphate 4-kinase type II beta, or PI(5)P 4-kinase type II beta, or PIP4KII-beta, or PtdIns(5)P-4-kinase isoform 2-beta, or PIP5KIIbeta, or PIP4K2B, participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate. It directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate (PtdIns(4,5)P2), one of the key metabolic crossroads in phosphoinositide signaling. It regulates the levels of nuclear PtdIns5P, which in turn modulates the acetylation of the tumour suppressor p53. It also interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Moreover, PIP5K2B is a molecular sensor that transduces changes in GTP into changes in the levels of the phosphoinositide PtdIns5P to modulate tumour cell growth. 311 -340448 cd17311 PIPKc_PIP5K2C Phosphatidylinositol phosphate kinase (PIPK) catalytic domain found in Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (PIP5K2C) and similar proteins. PIP5K2C (EC 2.7.1.149), also known as 1-phosphatidylinositol 5-phosphate 4-kinase 2-gamma, or PI5P4Kgamma, or diphosphoinositide kinase 2-gamma, or phosphatidylinositol 5-phosphate 4-kinase type II gamma, or PI(5)P 4-kinase type II gamma, or PIP4KII-gamma, or PIP4K2C, may play an important role in the production of phosphatidylinositol bisphosphate (PIP2) in the endoplasmic reticulum. It contributes to the development and maintenance of epithelial cell functional polarity. It also plays a role in the regulation of the immune system via mTORC1 signaling. Moreover, PIP5K2C is involved in arsenic trioxide (ATO) cytotoxicity. It mediates PIP2 generation required for positioning and assembly of bipolar spindles and alteration of PIP5K2C function by ATO may thus lead to spindle abnormalities. 298 -340870 cd17312 MFS_OPA_SLC37 Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of transporters. Organophosphate:Pi antiporters (OPA) are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA family is also called solute carrier family 37 (SLC37) in vertebrates. Members include glucose-6-phosphate (Glc6P) transporter (also called translocase or exchanger), glycerol-3-phosphate permease, 2-phosphonopropionate transporter, phosphoglycerate transporter, as well as membrane sensor protein UhpC from Escherichia coli. UhpC is both a sensor and a transport protein; it recognizes external Glc6P and induces transport by UhpT, and it can also transport Glc6P. Vertebrates contain four SLC37 or sugar-phosphate exchange (SPX) proteins: SLC37A1 (SPX1), SLC37A2 (SPX2), SLC37A3 (SPX3), and SLC37AA4 (SPX4). The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 364 -340871 cd17313 MFS_SLC45_SUC Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily of transporters. This group includes the solute carrier 45 (SLC45) family as well as plant sucrose transporters (SUCs or SUTs) and similar proteins such as Schizosaccharomyces pombe general alpha-glucoside permease. the SLC45 family is composed of four (A1-A4) vertebrate proteins as well as related insect proteins such as Drosophila sucrose transporter SCRT or Slc45-1. Members of this group transport sucrose and other sugars like maltose into the cell, with the concomitant uptake of protons (symport system). Plant sucrose transporters are crucial to carbon partitioning, playing a key role in phloem loading/unloading. They play a key role in loading and unloading of sucrose into the phloem and as a result, they control sucrose distribution throughout the whole plant and drive the osmotic flow system in the phloem. They also play a role in the exchange of sucrose between beneficial symbionts (mycorrhiza and Rhizobium) as well as pathogens such as nematodes and parasitic fungi. There are nine sucrose transporter genes in Arabidopsis and five in rice. Vertebrate SLC45 family proteins have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). Mutations in SLC45A2, also called MATP (membrane-associated transporter protein) or melanoma antigen AIM1, cause oculocutaneous albinism type 4 (OCA4), an autosomal recessive disorder of melanin biosynthesis that results in congenital hypopigmentation of ocular and cutaneous tissues. The SLC45 family and related sugar transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 421 -340872 cd17314 MFS_MCT_like Monocarboxylate transporter (MCT) family and similar transporters of the Major Facilitator Superfamily. The group is composed of the Monocarboxylate transporter (MCT) family in animals and similar transporters from fungi, plants, archaea, and bacteria. MCT is also called Solute carrier family 16 (SLC16 or SLC16A). It is composed of 14 members, MCT1-14. MCTs play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. MCTs have been found to facilitate the transport across the plasma membrane not only of monocarboxylates (MCT1-4), but also thyroid hormones (MCT8/10), and aromatic acids (MCT10). Yeast MCT homologous (Mch) proteins are not involved in the uptake of monocarboxylates; their substrates are not known. The MCT-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 385 -340873 cd17315 MFS_GLUT_like Glucose transporters (GLUTs) and other similar sugar transporters of the Major Facilitator Superfamily. This family is composed of glucose transporters (GLUTs) and other sugar transporters including fungal hexose transporters (HXT), bacterial xylose transporter (XylE), plant sugar transport proteins (STP) and polyol transporters (PLT), H(+)-myo-inositol cotransporter (HMIT), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. The GLUT-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 365 -340874 cd17316 MFS_SV2_like Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily. This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 353 -340875 cd17317 MFS_SLC22 Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily. The Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. The SLC22 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 331 -340876 cd17318 MFS_SLC17 Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters. The Solute carrier 17 (SLC17) family is primarily involved in the transport of organic anions. There are nime human proteins belonging to this family including: the type I phosphate transporters (SLC17A1-4) that were initially identified as sodium-dependent inorganic phosphate (Pi) transporters but are now known to be involved in tha transport of organic anions; lysosomal acidic sugar transporter (SLC17A5 or sialin), vesicular glutamate transporters (VGluT1#3 or SLC17A7, SLC17A6, and SLC17A8, respectively), and a vesicular nucleotide transporter (VNUT or SLC17A9). SLC17A1 and SLC17A3 have roles in the transport of urate and para-aminohippurate, respectively. The SLC17 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340877 cd17319 MFS_ExuT_GudP_like Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily. This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 358 -340878 cd17320 MFS_MdfA_MDR_like Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 379 -340879 cd17321 MFS_MMR_MDR_like Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 370 -340880 cd17322 MFS_ARN_like Yeast ARN family of Siderophore iron transporters and similar proteins of the Major Facilitator Superfamily. The ARN family of siderophore iron transporters includes ARN1 (or ferrichrome permease), ARN2 (or triacetylfusarinine C transporter 1 or TAF1), ARN3 (or siderophore iron transporter 1 or SIT1 or ferrioxamine B permease) and ARN4 (or Enterobactin permease or ENB1). They specifically recognize siderophore-iron chelates are expressed under conditions of iron deprivation. They facilitate the uptake of both hydroxamate- and catecholate-type siderophores. This group also includes glutathione exchanger 1 (Gex1p) and Gex2p, which are proton/glutathione antiporters that import glutathione from the vacuole and exports it through the plasma membrane. The ARN family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 514 -340881 cd17323 MFS_Tpo1_MDR_like Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This family is composed of fungal multidrug resistance (MDR) transporters including several proteins from Saccharomyces cerevisiae such as polyamine transporters 1-4 (Tpo1-4), quinidine resistance proteins 1-3 (Qdr1-3), dityrosine transporter 1 (Dtr1), fluconazole resistance protein 1 (Flr1), and protein HOL1. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, Flr1 confers resistance to the azole derivative fluconazole while Tpo1 confers resistance and adaptation to quinidine and ketoconazole. The polyamine transporters are involved in the detoxification of excess polyamines in the cytoplasm. Tpo1-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 376 -340882 cd17324 MFS_NepI_like Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily. This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 370 -340883 cd17325 MFS_MdtG_SLC18_like bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters. This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 375 -340884 cd17326 MFS_MFSD8 Major facilitator superfamily domain-containing protein 8. Major facilitator superfamily (MFS) domain-containing protein 8 (MFSD8) is also called ceroid-lipofuscinosis neuronal protein 7 (CLN7). It is a polytopic lysosomal membrane protein that may transport small solutes by using chemiosmotic ion gradients. Mutations in MFSD8/CLN7 cause a variant of late-infantile neuronal ceroid lipofuscinoses (vLINCL), a neurodegenerative lysosomal storage disorder. Some variants are associated with nonsyndromic autosomal recessive macular dystrophy. MFSD8/CLN7 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -340885 cd17327 MFS_FEN2_like Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily. This family is composed of Saccharomyces cerevisiae pantothenate transporter FEN2 (or fenpropimorph resistance protein 2) and similar proteins from fungi and bacteria including fungal vitamin H transporter, allantoate permease, and high-affinity nicotinic acid transporter, as well as Pseudomonas putida phthalate transporter and nicotinate degradation protein T (nicT). These proteins are involved in the uptake into the cell of specific substrates such as pathothenate, biotin, allantoate, and nicotinic acid, among others. The FEN2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 406 -340886 cd17328 MFS_spinster_like Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters. The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 405 -340887 cd17329 MFS_MdtH_MDR_like Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 376 -340888 cd17330 MFS_SLC46_TetA_like Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters. This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 349 -340889 cd17331 MFS_SLC22A18 Solute carrier family 22 member 18 of the Major Facilitator Superfamily of transporters. Solute carrier family 22 member 18 (SLC22A18) is also called Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene A protein (BWR1A or BWSCR1A), efflux transporter-like protein, imprinted multi-membrane-spanning polyspecific transporter-related protein 1 (IMPT1), organic cation transporter-like protein 2 (ORCTL2), or tumor-suppressing subchromosomal transferable fragment candidate gene 5 protein (TSSC5). It is localized at the apical membrane surface of renal proximal tubules and may act as an organic cation/proton antiporter. It functions as a tumor suppressor in several cancer types including glioblastoma and colorectal cancer. SLC22A18 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 382 -340890 cd17332 MFS_MelB_like Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily. This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 424 -340891 cd17333 MFS_FucP_MFSD4_like Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4, and similar proteins. This family is composed of bacterial L-fucose permease (FucP), eukaryotic Major facilitator superfamily domain-containing protein 4 (MFSD4) proteins, and similar proteins. L-fucose permease facilitates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell; it can also transport L-galactose and D-arabinose. The MFSD4 subfamily consists of two vertebrate members: MFSD4A and MFSD4B. The function of MFSD4A is unknown. MFSD4B is more commonly know as Sodium-dependent glucose transporter 1 (NaGLT1), a primary fructose transporter in rat renal brush-border membranes that also facilitates sodium-independent urea uptake. The FucP/MFSD4 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 372 -340892 cd17334 MFS_SLC49 Solute carrier 49 (SLC49) family of the Major Facilitator Superfamily of transporters. The Solute carrier 49 (SLC49) family is composed of four members: feline leukemia virus subgroup C receptor 1 (FLVCR1, SLC49A1); FLVCR2 (SLC49A2); major facilitator superfamily domain-containing protein 7 (MFSD7, SLC49A3); and disrupted in renal carcinoma protein 2 (DIRC2, SLC49A4). FLVCR1 and FLVCR2 are heme transporters. In addition, FLVCR2 also functions as a transporter for a calcium-chelator complex that is important for growth and calcium metabolism. The function of MFSD7 is unknown. DIRC2 is an electrogenic lysosomal metabolite transporter that is regulated by limited proteolytic processing by cathepsin L. The SLC49 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 407 -340893 cd17335 MFS_MFSD6 Major facilitator superfamily domain-containing protein 6. Human Major facilitator superfamily domain-containing protein 6 (MFSD6) is also called macrophage MHC class I receptor 2 homolog (MMR2). It has been postulated as a possible receptor for human leukocyte antigen (HLA)-B62. MFSD6 is conserved through evolution and appeared before bilateral animals. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 375 -340894 cd17336 MFS_SLCO_OATP Solute carrier organic anion transporters of the Major Facilitator Superfamily of transporters. Solute carrier organic anion transporters (SLCOs) are also called organic anion transporting polypeptides (OATPs) or SLC21 (Solute carrier family 21) proteins. They are sodium-independent transporters that mediate the transport of a broad range of endo- as well as xenobiotics. Their substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, although there are a few known neutral or positively charged substrates. These include drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives, and anticancer drugs. SLCOs/OATPs can be classified into 6 families (SLCO1-6 or OATP1-6) and each family may have subfamilies (e.g. OATP1A, OATP1B, OATP1C). Within the subfamilies, individual members are numbered according to the chronology of their identification and if there is already an ortholog known, they are given the same number. For example, the first SLCO identified, is rat OATP1A1 (encoded by the Slco1a1 gene). The second SLCO identified is the first human SLCO from the same subfamily and is called OATP1A2 (encoded by the SLCO1A2 gene). There are 11 human SLCOs/OATPs. SLCOs belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 411 -340895 cd17337 MFS_CsbX CsbX family of the Major Facilitator Superfamily of transporters. The CsbX family is composed of Bacillus subtilis CsbX protein (also named alpha-ketoglutarate permease), Klebsiella pneumoniae D-arabinitol transporter (DalT), and similar proteins. The csbX gene is a sigmaB-controlled gene that is expressed during the stationary phase of cell growth. DalT is a pentose-specific ion symporter for D-arabinitol uptake. Most members of this family remain uncharacterized. The CsbX family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 388 -340896 cd17338 MFS_unc93_like Unc-93 family of the Major Facilitator Superfamily of transporters. The Unc-93 family is composed of Caenorhabditis elegans uncoordinated protein 93 (also called putative potassium channel regulatory protein unc-93) and similar proteins including three vertebrate members: protein unc-93 homolog A (UNC93A), protein unc-93 homolog B1 (UNC93B1), and UNC93-like protein MFSD11 (also called major facilitator superfamily domain-containing protein 11 or protein ET). Unc-93 acts as a regulatory subunit of a multi-subunit potassium channel complex that may function in coordinating muscle contraction in C. elegans. The human UNC93A gene is located in a region of the genome that is frequently associated with ovarian cancer, however, there is no evidence that UNC93A has a tumor suppressor function. UNC93B1 controls intracellular trafficking and transport of a subset of Toll-like receptors (TLRs), including TLR3, TLR7 and TLR9, from the endoplasmic reticulum to endolysosomes where they can engage pathogen nucleotides and activate signaling cascades. MFSD11 is ubiquitously expressed in the periphery and the central nervous system of mice, where it is expressed in excitatory and inhibitory mouse brain neurons. The unc93-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 388 -340897 cd17339 MFS_NIMT_CynX_like 2-nitroimidazole and cyanate transporters and similar proteins of the Major Facilitator Superfamily of transporters. This family is composed of Escherichia coli 2-nitroimidazole transporter (NIMT) and cyanate transport protein CynX, and similar proteins. NIMT, also called YeaN, confers resistance to 2-nitroimidazole, the antibacterial and antifungal antibiotic, by mediating the active efflux of this compound. CynX is part of an active transport system that transports exogenous cyanate into E. coli cells. The NIMT/CynX-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -340898 cd17340 MFS_MFSD1 Major facilitator superfamily domain-containing protein 1. Human major facilitator superfamily domain-containing protein 1 (MFSD1) is also called smooth muscle cell-associated protein 4 (SMAP-4). The function of MFSD1 is still unknown. Its expression is affected by altered nutrient intake. During starvation, expression of MFSD1 is downregulated in anterior brain sections in mice while it is upregulated in the brainstem. In mice raised on high-fat diet, MFSD1 is specifically downregulated in brainstem and hypothalamus. MFSD1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 394 -340899 cd17341 MFS_NRT2_like Plant Nitrate transporter NRT2 family and Bacterial Nitrate/Nitrite transporters of the Major Facilitator Superfamily. This family is composed of plant NRT2 family high-affinity nitrate transporters as well as nitrate and nitrite transporters from bacteria including Bacillus subtilis nitrate transporter NasA and nitrite extrusion protein NarK, Staphylococcus aureus NarT, Synechococcus sp. nitrate permease NapA, Mycobacterium tuberculosis NarK2 and nitrite extrusion protein NarU. NRT2 family proteins are involved in the uptake of nitrate by plant roots from the soil through the high-affinity transport system (HATS). There are seven Arabidopsis thaliana NRT2 proteins, called AtNRT2:1 to AtNRT2:7. The NRT2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 384 -340900 cd17342 MFS_SLC37A3 Solute carrier family 37 member 3 of the Major Facilitator Superfamily of transporters. Solute carrier family 37 member 3 (SLC37A3) is also called sugar phosphate exchanger 3 (SPX3), and is one of four SLC37 family proteins in vertebrates. It's function and activity is unknown. The best characterized SLC37 family member is SLC37A4, also called the glucose-6-phosphate transporter (G6PT), a phosphate (Pi)-linked G6P antiporter. SLC37A3 is a member of the Organophosphate:Pi antiporter (OPA)/SLC37 family, whose members are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 399 -340901 cd17343 MFS_SLC37A4 Solute carrier family 37 member 4 of the Major Facilitator Superfamily of transporters. Solute carrier family 37 member 4 (SLC37A4), one of four SLC37 family proteins in vertebrates, is better known as glucose-6-phosphate transporter (G6PT). It is also called sugar phosphate exchanger 4 (SPX4), G6P translocase, or transformation-related gene 19 protein (TRG-19). G6PT is a phosphate (Pi)-linked G6P antiporter, catalyzing G6P:Pi and Pi:Pi exchanges. Deficiencies in human G6PT lead to glycogen storage disease type Ib (GSD-Ib), which is a metabolic and immune disorder. G6PT is a member of the Organophosphate:Pi antiporter (OPA)/SLC37 family, whose members are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 409 -340902 cd17344 MFS_SLC37A1_2 Solute carrier family 37 members 1 and 2 of the Major Facilitator Superfamily of transporters. Solute carrier family 37 members 1 (SLC37A1) and 2 (SLC37A2) are also called sugar phosphate exchangers 1 (SPX1) and 2 (SPX2). SLC37A1 and SLC37A2 are ER-associated, Pi-linked antiporters that can transport glucose-6-phosphate (G6P) but are insensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, unlike SLC37A4, the best characterized SLC37 family member and is the physiological G6P transporter (G6PT). SLC37A1 and SLC37A2 belong to the Organophosphate:Pi antiporter (OPA)/SLC37 family, whose members are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 400 -340903 cd17345 MFS_GlpT Glycerol-3-Phosphate Transporter of the Major Facilitator Superfamily of transporters. Glycerol-3-Phosphate Transporter (also called GlpT or G-3-P permease) is responsible for glycerol-3-phosphate uptake. It is part of the Organophosphate:Pi antiporter (OPA) family of integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The GlpT group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 411 -340904 cd17346 MFS_DtpA_like Dipeptide and tripeptide permease A (DtpA)-like subfamily of the Major Facilitator Superfamily of transporters. The DtpA-like subfamily includes four Escherichia coli proteins: dipeptide and tripeptide permeases A (DtpA, TppB or YdgR), B (DtpB or YhiP), C (DtpC or YjdL), and D (DtpD or YbgH). They are proton-dependent permeases that transport di- and tripeptides. DtpA and DtpB display a preference for di- and tripeptides composed of L-amino acids. DtpC shows higher specificity for dipeptides compared to tripeptides, and prefers dipeptides containing a C-terminal lysine residue. The DtpA-like subfamily belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 399 -340905 cd17347 MFS_SLC15A1_2_like Solute carrier family 15 members 1 and 2, and similar Major Facilitator Superfamily transporters. Solute carrier family 15 member 1 (SLC15A1) and SLC15A2 are members of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. They mediate the proton-coupled active transport of a broad range of dipeptides and tripeptides, including zwitterionic, anionic and cationic peptides, as well as a variety of peptide-like drugs such as cefadroxil, enalapril, and valacyclovir. SLC15A1, or peptide transporter 1 (PepT1), is primarily expressed in the brush border membranes of enterocytes of the small intestine and is also known as the intestinal isoform. SLC15A2, or peptide transporter 2 (PepT2), is abundantly expressed in the apical membrane of kidney proximal tubules and is also referred to as the renal isoform. Both proteins transport di/tripeptides, but not tetrapeptides or free amino acids, using the energy generated by an inwardly directed transmembrane proton gradient. The SLC15A1/SLC15A2-like group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 427 -340906 cd17348 MFS_SLC15A3_4 Solute Carrier family 15 members 3 and 4 of the Major Facilitator Superfamily of transporters. Solute carrier family 15 members 3 (SLC15A3) and 4 (SLC15A4) are members of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. They are peptide/histidine transporters (PHTs) that transport free histidine in addition to di/tripeptides. SLC15A4, also called peptide transporter 4 or peptide/histidine transporter 1 (PHT1), is expressed in the human brain, retina, placenta, and immune cells. It is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon production in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of lupus-like autoimmunity. SLC15A3, also called osteoclast transporter, peptide transporter 3, or peptide/histidine transporter 2 (PHT2), is expressed in immune tissues including the spleen and thymus. The SLC15A3/SLC15A4 group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 435 -340907 cd17349 MFS_SLC15A5 Solute Carrier family 15 member 5 of the Major Facilitator Superfamily of transporters. Solute carrier family 15 member 5 (SLC15A5) is a member of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The specific function of SLC15A5 is unknown. SLC15A5 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 437 -340908 cd17350 MFS_PTR2 Peptide transporter PTR2 of the Major Facilitator Superfamily of transporters. Fungal peptide transporter or permease PTR2 is a member of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. It is a 12-transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. As with other POT family proteins, it displays characteristic substrate multispecificity. PTR2 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 438 -340909 cd17351 MFS_NPF Plant NRT1/PTR family (NPF) of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 445 -340910 cd17352 MFS_MCT_SLC16 Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters. The animal Monocarboxylate transporter (MCT) family is also called Solute carrier family 16 (SLC16 or SLC16A). It is composed of 14 members, MCT1-14. MCTs play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. MCT1-4 are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT8 and MCT10 are transporters which stimulate the cellular uptake of thyroid hormones such as thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). MCT10 also functions as a sodium-independent transporter that mediates the uptake or efflux of aromatic acids. Many members are orphan transporters whose substrates are yet to be determined. The MCT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 361 -340911 cd17353 MFS_OFA_like Oxalate:formate antiporter (OFA) and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of Oxalobacter formigenes oxalate:formate antiporter (OFA or OxlT) and similar proteins. O. formigenes, a commensal found in the gut of animals and humans, plays an important role in clearing dietary oxalate from the intestinal tract, which is carried out by OFA/OxlT, an anion transporter that facilitates the exchange of divalent oxalate with monovalent formate, the product of oxalate decarboxylation. This exchange generates an electrochemical proton gradient and is the source of energy for ATP synthesis in this cell. The OFA-like subfamily belongs to the Monocarboxylate transporter -like (MCT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340912 cd17354 MFS_Mch1p_like Monocarboxylate transporter-homologous (Mch) 1 protein and similar transporters of the Major Facilitator Superfamily of transporters. Yeast monocarboxylate transporter-homologous (Mch) proteins are putative transporters that do not transport monocarboxylic acids across the plasma membrane, and may play roles distinct from their mammalian counterparts. Their function has not been determined. The Mch1p-like group belongs to the Monocarboxylate transporter -like (MCT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 385 -340913 cd17355 MFS_YcxA_like MFS-type transporter YcxA and similar proteins of the Major Facilitator Superfamily of transporters. This group is composed of uncharacterized bacterial MFS-type transporters including Bacillus subtilis YcxA and YbfB. YcxA has been shown to facilitate the export of surfactin in B. subtilis. The YcxA-like group belongs to the Monocarboxylate transporter -like (MCT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 386 -340914 cd17356 MFS_HXT Fungal Hexose transporter subfamily of the Major Facilitator Superfamily of transporters and similar proteins. The fungal hexose transporter (HXT) subfamily is comprised of functionally redundant proteins that function mainly in the transport of glucose, as well as other sugars such as galactose and fructose. Saccharomyces cerevisiae has 20 genes that encode proteins in this family (HXT1 to HXT17, GAL2, SNF3, and RGT2). Seven of these (HXT1-7) encode functional glucose transporters. Gal2p is a galactose transporter, while Rgt2p and Snf3p act as cell surface glucose receptors that initiate signal transduction in response to glucose, functioning in an induction pathway responsible for glucose uptake. Rgt2p is activated by high levels of glucose and stimulates expression of low affinity glucose transporters such as Hxt1p and Hxt3p, while Snf3p generates a glucose signal in response to low levels of glucose, stimulating the expression of high affinity glucose transporters such as Hxt2p and Hxt4p. Schizosaccharomyces pombe contains eight GHT genes (GHT1-8) belonging to this family. Ght1, Ght2, and Ght5 are high-affinity glucose transporters; Ght3 is a high-affinity gluconate transporter; and Ght6 high-affinity fructose transporter. The substrate specificities for Ght4, Ght7, and Ght8 remain undetermined. The HXT subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 403 -340915 cd17357 MFS_GLUT_Class1_2_like Class 1 and Class 2 Glucose transporters (GLUTs) of the Major Facilitator Superfamily. This subfamily includes Class 1 and Class 2 glucose transporters (GLUTs) including Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1, also called glucose transporter type 1 or GLUT1), SLC2A2-5 (GLUT2-5), SLC2A7 (GLUT7), SLC2A9 (GLUT9), SLC2A11 (GLUT11), SLC2A14 (GLUT14), and similar proteins. GLUTs are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUTs 1-5 are the most thoroughly studied and are well-established as glucose and/or fructose transporters in various tissues and cell types. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 447 -340916 cd17358 MFS_GLUT6_8_Class3_like Glucose transporter (GLUT) types 6 and 8, Class 3 GLUTs, and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of glucose transporter type 6 (GLUT6), GLUT8, plant early dehydration-induced gene ERD6-like proteins, and similar insect proteins including facilitated trehalose transporter Tret1-1. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). Insect Tret1-1 is a low-capacity facilitative transporter for trehalose that mediates the transport of trehalose synthesized in the fat body and the incorporation of trehalose into other tissues that require a carbon source. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 436 -340917 cd17359 MFS_XylE_like D-xylose-proton symporter and similar transporters of the Major Facilitator Superfamily. This subfamily includes bacterial transporters such as D-xylose-proton symporter (XylE or XylT), arabinose-proton symporter (AraE), galactose-proton symporter (GalP), major myo-inositol transporter IolT, glucose transport protein, putative metabolite transport proteins YfiG, YncC, and YwtG, and similar proteins. The symporters XylE, AraE, and GalP facilitate the uptake of D-xylose, arabinose, and galactose, respectively, across the boundary membrane with the concomitant transport of protons into the cell. IolT is involved in polyol metabolism and myo-inositol degradation into acetyl-CoA. The XylE-like subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 383 -340918 cd17360 MFS_HMIT_like H(+)-myo-inositol cotransporter and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of myo-inositol/inositol transporters and similar transporters from vertebrates, plant, and fungi. The human protein is called H(+)-myo-inositol cotransporter/Proton myo-inositol cotransporter (HMIT), or H(+)-myo-inositol symporter, or Solute carrier family 2 member 13 (SLC2A13). HMIT is classified as a Class 3 GLUT (glucose transporter) based on sequence similarity with GLUTs, but it does not transport glucose. It specifically transports myo-inositol and is expressed predominantly in the brain, with high expression in the hippocampus, hypothalamus, cerebellum and brainstem. HMIT may be involved in regulating processes that require high levels of myo-inositol or its phosphorylated derivatives, such as membrane recycling, growth cone dynamics, and synaptic vesicle exocytosis. Arabidopsis Inositol transporter 4 (AtINT4) mediates high-affinity H+ symport of myo-inositol across the plasma membrane. The HMIT-like subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 362 -340919 cd17361 MFS_STP Plant Sugar transport protein subfamily of the Major Facilitator Superfamily of transporters. The plant Sugar transport protein (STP) subfamily includes STP1-STP14; they are also called hexose transporters. They mediate the active uptake of hexoses such as glucose, 3-O-methylglucose, fructose, xylose, mannose, galactose, fucose, 2-deoxyglucose and arabinose, by sugar/hydrogen symport. Several STP family transporters are expressed in a tissue-specific manner, or at specific developmental stages. STP1 is the member with the highest expression level of all members and high expression is detected in photosynthetic tissues, such as leaves and stems, while roots, siliques, and flowers show lower expression levels. It plays a major role in the uptake and response of Arabidopsis seeds and seedlings to sugars. The STP subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 390 -340920 cd17362 MFS_GLUT10_12_Class3_like Glucose transporter (GLUT) types 10 and 12, Class 3 GLUTs, and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of glucose transporter type 10, GLUT12, plant polyol transporters (PLTs), and similar proteins. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340921 cd17363 MFS_SV2 Synaptic vesicle glycoprotein 2 of the Major Facilitator Superfamily of transporters. Synaptic vesicle glycoprotein 2 (SV2) is a transporter-like integral membrane glycoprotein, with 12 transmembrane regions, expressed in vertebrates and is localized to synaptic and endocrine secretory vesicles. Three isoforms have been identified, SV2A, SV2B, and SV2C. SV2A and SV2B are widely expressed in the brain, while SV2C is more restricted to evolutionarily older brain. SV2 isoforms have been shown to be critical for the proper function of the central nervous system. SV2 serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. The SV2 family belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 474 -340922 cd17364 MFS_PhT Inorganic Phosphate Transporter of the Major Facilitator Superfamily of transporters. This subfamily is composed of predominantly fungal and plant high-affinity inorganic phosphate transporters (PhT or PiPT), which are involved in the uptake, translocation, and internal transport of inorganic phosphate. They also function in sensing external phosphate levels as transceptors. Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. The Pht subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340923 cd17365 MFS_PcaK_like 4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator Superfamily. This aromatic acid:H(+) symporter subfamily includes Acinetobacter sp. 4-hydroxybenzoate transporter PcaK, Pseudomonas putida gallate transporter (GalT), Corynebacterium glutamicum gentisate transporter (GenK), Nocardioides sp. 1-hydroxy-2-naphthoate transporter (PhdT), Escherichia coli 3-(3-hydroxy-phenyl)propionate (3HPP) transporter (MhpT), and similar proteins. These transporters are involved in the uptake across the cytoplasmic membrane of specific aromatic compounds such as 4-hydroxybenzoate, gallate, gentisate (2,5-dihydroxybenzoate), 1-hydroxy-2-naphthoate, and 3HPP, respectively. The PcaK-like aromatic acid:H(+) symporter subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 351 -340924 cd17366 MFS_ProP Proline/betaine transporter of the Major Facilitator Superfamily of transporters. This subfamily is composed of Escherichia coli proline/betaine transporter, also called proline porter II (PPII), and similar proteins. ProP is a proton symporter that senses osmotic shifts and responds by importing osmolytes such as proline, glycine betaine, stachydrine, pipecolic acid, ectoine and taurine. It is both an osmosensor and an osmoregulator which is available to participate early in the bacterial osmoregulatory response. The ProP subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 377 -340925 cd17367 MFS_KgtP Alpha-ketoglutarate permease of the Major Facilitator Superfamily of transporters. This subfamily includes Escherichia coli alpha-ketoglutarate permease (KgtP) and similar proteins. KgtP is a constitutively expressed proton symporter that functions in the uptake of alpha-ketoglutarate across the boundary membrane. Also included is a putative transporter from Pseudomonas aeruginosa named dicarboxylic acid transporter PcaT. The KgtP subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 407 -340926 cd17368 MFS_CitA Citrate-proton symporter of the Major Facilitator Superfamily of transporters. Citrate-proton symporter, also called citrate carrier protein or citrate transporter or citrate utilization protein A (CitA), is a proton symporter that functions in the uptake of citrate across the boundary membrane. It allows the utilization of citrate as a sole source of carbon and energy. In Klebsiella pneumoniae, the gene encoding this protein is called citH, instead of citA, which is the case for Escherichia coli and other organisms. CitA belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 407 -340927 cd17369 MFS_ShiA_like Shikimate transporter and similar proteins of the Major Facilitator Superfamily. This subfamily is composed of Escherichia coli shikimate transporter (ShiA), inner membrane metabolite transport protein YhjE, and other putative metabolite transporters. ShiA is involved in the uptake of shikimate, an aromatic compound involved in siderophore biosynthesis. It has been suggested that YhjE may mediate the uptake of osmoprotectants. The ShiA-like subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 408 -340928 cd17370 MFS_MJ1317_like MJ1317 and similar transporters of the Major Facilitator Superfamily. This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -340929 cd17371 MFS_MucK Cis,cis-muconate transport protein and similar proteins of the Major Facilitator Superfamily. This subfamily is composed of Acinetobacter sp. Cis,cis-muconate transport protein (MucK), Escherichia coli putative sialic acid transporter 1, and similar proteins. MucK functions in the uptake of muconate and allows Acinetobacter calcoaceticus ADP1 (BD413) to grow on exogenous cis,cis-muconate as the sole carbon source. The MucK subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 389 -340930 cd17372 MFS_SVOP_like Synaptic vesicle 2-related protein (SVOP) and related proteins of the Major Facilitator Superfamily. This subfamily is composed of synaptic vesicle 2 (SV2)-related protein (SVOP), SVOP-like protein (SVOPL), and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Studies with knockout mice suggets that SVOP may perform a subtle function that is not necessary for survival under normal conditions, since mice lacking SVOP are viable, fertile, and phenotypically normal. SVOP and SVOPL share structural similarity to the solute carrier family 22 (SLC22), a large family of organic cation and anion transporters. The SVOP-like subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 367 -340931 cd17373 MFS_SLC22A17_like Solute carrier family 22, member 17 and similar proteins of the Major Facilitator Superfamily. This group is composed of Solute carrier family 22, members 17, 23, and 31. They are members of the SLC22 family of organic cation/anion/zwitterion transporters, which includes organic cation transporters (OCTs/OCTNs) and organic anion transporters (OATs). SLC22A17 functions as a cell surface receptor for lipocalin-2 (LCN2), also called NGAL or 24p3, which plays a key role in iron homeostasis and transport. SLC22A23 and SLC22A31 are orphan members of the SLC22 family. SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. The SLC22A17-like group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 348 -340932 cd17374 MFS_OAT Organic anion transporters of the Major Facilitator Superfamily of transporters. Organic anion transporters (OATs) generally display broad substrate specificity and they facilitate the exchange of extracellular with intracellular organic anions (OAs). Several OATs have been characterized including OAT1-10 and urate anion exchanger 1 (URAT1, also called SLC22A12). Many OATs occur in renal proximal tubules, the site of active drug secretion. OATs mediate the absorption, distribution, and excretion of a diverse array of environmental toxins, and clinically important drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories, and therefore is critical for the survival of the mammalian species. OAT falls into the SLC22 (solute carrier 22) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 341 -340933 cd17375 MFS_SLC22A16_CT2 Solute carrier family 22 member 16 (also called Carnitine transporter 2) of the Major Facilitator Superfamily of transporters. Solute carrier family 22 member 16 (SLC22A16) is also called carnitine transporter 2 (CT2), fly-like putative transporter 2 (FLIPT2), organic cation transporter OKB1, or organic cation/carnitine transporter 6 (OCT6). It is a partially sodium-ion dependent high affinity carnitine transporter. It also transports organic cations such as tetraethylammonium (TEA) and doxorubicin. It is one of several organic cation transporters (OCTs) that falls into the SLC22 (solute carrier 22) family. OCTs are broad-specificity transporters that play a critical role in the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins, and environmental waste products. SLC22A16 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 341 -340934 cd17376 MFS_SLC22A4_5_OCTN1_2 Solute carrier family 22 members 4 and 5 (also called Organic cation/carnitine transporters 1 and 2) of the Major Facilitator Superfamily of transporters. This subfamily is composed of solute carrier family 22 members 4 (SLC22A4) and 5 (SLC22A5), and similar proteins. SLC22A4 is also called ergothioneine transporter (ETT) or organic cation/carnitine transporter 1 (OCTN1). It is a sodium-ion dependent, low affinity carnitine transporter, and a highly specific transporter for the uptake of ergothioneine (ET), a thiolated derivative of histidine with antioxidant properties. ET is a natural compound produced only by certain fungi and bacteria and must be absorbed from the diet by humans and other vetebrates. SLC22A5, also called organic cation/carnitine transporter 2 (OCTN2), is a sodium-ion dependent, high affinity carnitine transporter involved in the active cellular uptake of carnitine. SLC22A4/5 belongs to the Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 342 -340935 cd17377 MFS_SLC22A15 Solute carrier family 22 member 15 of the Major Facilitator Superfamily of transporters. Solute carrier family 22 member 15 (SLC22A15) is also called fly-like putative transporter 1 (FLIPT1). It is expressed at the highest levels in the kidney and brain. It is a member of the SLC22 family of transporters, which includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. SLC22A15 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 353 -340936 cd17378 MFS_OCT_plant Plant organic cation/carnitine transporters of the Major Facilitator Superfamily of transporters. Plant organic cation/carnitine transporters (OCTs) are sequence-similar to their animal counterparts, which are broad-specificity transporters that play a critical role in the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins, and environmental waste products. Little is know about plant OCTs. In Arabidopsis, there are six genes belonging to this family that show distinct, organ-specific expression pattern of the individual genes. AtOCT1 has been found to affect root development and carnitine-related responses in Arabidopsis. AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT5 and 6 during salt stress treatments. Plant OCTs belongs to the Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 342 -340937 cd17379 MFS_SLC22A1_2_3 Solute carrier family 22 members 1, 2, and 3 (also called Organic cation transporters 1, 2, and 3) of the Major Facilitator Superfamily of transporters. This sufamily includes solute carrier family 22 member 1 (SLC22A1, also called organic cation transporter 1 or OCT1), SLC22A2 (or OCT2), SLC22A3 (or OCT3), and similar proteins. OCT1-3 have similar basic functional properties: they are able to translocate a variety of structurally different organic cations in both directions across the plasma membrane; to translocate organic cations independently from sodium, chloride or proton gradients; and to function as electrogenic uniporters for cations or as electroneutral cation exchangers. They show overlapping but distinct substrate and inhibitor specificities, and different tissue expression pattern. In humans, OCT1 is strongly expressed in the liver, OCT2 is highly expressed in the kidney where it is localized at the basolateral membrane of renal proximal tubules, and OCT3 is most strongly expressed in skeletal muscle. OCTs are broad-specificity transporters that play a critical role in the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins, and environmental waste products. The SLC22A1-3 subfamily belongs to the Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 340 -340938 cd17380 MFS_SLC17A9_like Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily includes solute carrier family 17 member 9 (SLC17A9) and similar proteins including plant inorganic phosphate transporters (PHT4) that are also probably anion transporters. SLC17A9, also called vesicular nucleotide transporter (VNUT), is involved in vesicular storage and exocytosis of ATP. It facilitates the accumulation of ATP and other nucleotides in secretory vesicles such as adrenal chromaffin granules and synaptic vesicles. It also functions as a lysosomal ATP transporter and regulates cell viability. Plant PHT4 family transporters mediate the transport of inorganic phosphate and may also transport organic anions. The Arabidopsis protein AtPHT4;4 is a chloroplast-localized ascorbate transporter. PHT4 proteins show differential expression that suggests specialized functions. The SLC17A9-like subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 361 -340939 cd17381 MFS_SLC17A5 Solute carrier family 17 member 5 (also called sialin) of the Major Facilitator Superfamily of transporters. Solute carrier family 17 member 5 (SLC17A5) is also called sialin, H(+)/nitrate cotransporter, H(+)/sialic acid cotransporter (AST), membrane glycoprotein HP59, or vesicular H(+)/aspartate-glutamate cotransporter. It transports glucuronic acid and free sialic acid out of the lysosome after its cleavage from sialoglycoconjugates, which is required for normal CNS myelination. It also mediates the membrane potential-dependent uptake of aspartate and glutamate into synaptic vesicles and synaptic-like microvesicles. In the plasma membrane, it functions as a nitrate transporter. Recessive mutations in the SLC17A5 gene cause the allelic disorders, Infantile sialic acid storage disease (ISSD) and Salla disease (a predominantly neurological disorder). SLC17A5 belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 397 -340940 cd17382 MFS_SLC17A6_7_8_VGluT Solute carrier family 17 members 6, 7, and 8 (also called Vesicular glutamate transporters) of the Major Facilitator Superfamily of transporters. This subfamily is composed of solute carrier family 17 member 6 (SLC17A6), SLC17A7, SLC17A8, and similar proteins. SLC17A6 is also called vesicular glutamate transporter 2 (VGluT2), differentiation-associated BNPI, or differentiation-associated Na(+)-dependent inorganic phosphate cotransporter. SLC17A7 is also called VGluT1 or brain-specific Na(+)-dependent inorganic phosphate cotransporter. SLC17A8 is also called VGluT3. They mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells, and may also mediate the transport of inorganic phosphate. VGluTs are also expressed and localized in various secretory vesicles in non-neuronal peripheral organelles such as hormone-containing secretory granules in endocrine cells, and thus, also act as metabolic regulators. The VGluT subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 380 -340941 cd17383 MFS_SLC18A3_VAChT Vesicular acetylcholine transporter (VAChT) and similar transporters of the Major Facilitator Superfamily. Vesicular acetylcholine transporter (VAChT) is also called solute carrier family 18 member 3 (SLC18A3) in vertebrates and uncoordinated protein 17 (unc-17) in Caenorhabditis elegans. It is a glycoprotein involved in acetylcholine transport into synaptic vesicles and is responsible for the accumulation of acetylcholine into pre-synaptic vesicules of cholinergic neurons. Variants in SLC18A3 are associated with congenital myasthenic syndrome in humans. VAChT belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 378 -340942 cd17384 MFS_SLC18A1_2_VAT1_2 Vesicular amine transporters 1 (VAT1) and 2 (VAT2), and similar transporters of the Major Facilitator Superfamily. Vesicular amine transporter 1 (VAT1 or VMAT1) is also called solute carrier family 18 member 1 (SLC18A1) or chromaffin granule amine transporter, while VAT2 (or VMAT2) is also called SLC18A2, synaptic vesicular amine transporter, or monoamine transporter. VATs (or VMATs) are responsible for the uptake of cytosolic monoamines into synaptic vesicles in monoaminergic neurons. VAT1 and VAT2 distinct pharmacological properties and tissue distributions. VAT1 is preferentially expressed in neuroendocrine cells and endocrine cells, where it transports biogenic monoamines, such as serotonin, from the cytoplasm into the secretory vesicles. VAT2 is primarily expressed in the CNS and is involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. VATs belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 373 -340943 cd17385 MFS_SLC18B1 Solute carrier family 18 member B1 of the Major Facilitator Superfamily of transporters. Solute carrier family 18 member B1 (SLC18B1) is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. It is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. It actively transports spermine and spermidine by exchange of H(+), and has been suggested to be a vesicular polyamine transporter (VPAT). SLC18B1 belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 390 -340944 cd17386 MFS_SLC46 Solute carrier 46 (SLC46) family of the Major Facilitator Superfamily of transporters. The solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3) and similar proteins from insects and nematodes. The best-studied member is SLC46A1, also called proton-coupled folate transporter (PCFT), which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. SLC46A2, also called thymic stromal cotransporter protein (TSCOT), is a putative 12-transmembrane protein mainly expressed in the thymic cortex in a specific thymic epithelial cell (TEC) subpopulation. SLC46A3 is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. The SLC46 family belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 360 -340945 cd17387 MFS_MFSD14 Major facilitator superfamily domain-containing 14A and 14B. This subfamily is composed of major facilitator superfamily domain-containing 14A (MFSD14A) and MFSD14B, and similar proteins. MFSD14A and MFSD14B are also called hippocampus abundant transcript 1 protein (HIAT1) and hippocampus abundant transcript-like protein 1 (HIATL1), respectively. They are both ubiquitously expressed with HIAT1 highly expressed intestis and HIATL1 most abundantly expressed in skeletal muscle. Gene disruption of MFSD14A causes globozoospermia and infertility in male mice. It has bee suggested that MFSD14A may transport a solute from the bloodstream that is required for spermiogenesis. The function of MFSD14B is unknown. The MFSD14 subfamily belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 410 -340946 cd17388 MFS_TetA Tetracycline resistance protein TetA and related proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of tetracycline resistance proteins similar to Escherichia coli TetA(A), TetA(B), and TetA(E), which are metal-tetracycline/H(+) antiporters that confer resistance to tetracycline by an active tetracycline efflux, which is an energy-dependent process that decreases the accumulation of the antibiotic in cells. TetA-like tetracycline resistance proteins belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 385 -340947 cd17389 MFS_MFSD10 Major facilitator superfamily domain-containing protein 10. Major facilitator superfamily domain-containing protein 10 (MFSD10) is also called tetracycline transporter-like protein (TETRAN). It is expressed in various human tissues, including the kidney. In cultured cells, its overexpression facilitated the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs). MFSD10/TETRAN overexpression cause resistance to some NSAIDs, suggesting that it may be an organic anion transporter that serves as an efflux pump for some NSAIDs and various other organic anions at the final excretion step. MFSD10 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 391 -340948 cd17390 MFS_MFSD9 Major facilitator superfamily domain-containing protein 9. Major facilitator superfamily domain-containing protein 9 (MFSD9) is expressed in the central nervous system (CNS) and in most peripheral tissues but at very low expression levels. The function of MFSD9 is unknown. MFSD9 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 350 -340949 cd17391 MFS_MdtG_MDR_like Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 380 -340950 cd17392 MFS_MFSD2 Major facilitator superfamily domain-containing protein 2 subfamily. The major facilitator superfamily domain-containing protein 2 (MFSD2) subfamily is composed of two vertebrate members, MFSD2A amd MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD2 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 446 -340951 cd17393 MFS_MosC_like Membrane protein MosC and similar proteins of the Major Facilitator Superfamily of transporters. The gene encoding Sinorhizobium meliloti membrane protein MosC is part of the mos locus, which encodes the biosynthesis of the rhizopine 3-O-methyl-scyllo-inosamine. MosC belongs to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 373 -340952 cd17394 MFS_FucP_like Fucose permease and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of L-fucose permease (also called L-fucose-proton symporter) and similar proteins such as glucose/galactose transporter and N-acetyl glucosamine transporter NagP. L-fucose permease facilitates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell; it can also transport L-galactose and D-arabinose. Glucose/galactose transporter functions in the uptake of of glucose and galactose. The FucP-like subfamily belongs to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 401 -340953 cd17395 MFS_MFSD4 Major facilitator superfamily domain-containing protein 4. The Major facilitator superfamily domain-containing protein 4 (MFSD4) subfamily consists of two vertebrate members: MFSD4A and MFSD4B. The function of MFSD4A is unknown. MFSD4B is more commonly know as sodium-dependent glucose transporter 1 (NaGLT1), a primary fructose transporter in rat renal brush-border membranes that also facilitates sodium-independent urea uptake. The MFSD4 subfamily belongs to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 367 -340954 cd17396 MFS_YdiM_like Inner membrane transport protein YdiM and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily contains Escherichia coli inner membrane transport proteins YdiM and YdiN, which belong to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 384 -340955 cd17397 MFS_DIRC2 Disrupted in renal carcinoma protein 2 of the Major Facilitator Superfamily of transporters. Disrupted in renal carcinoma protein 2 or disrupted in renal cancer protein 2 (DIRC2), encoded by the SLC49A4 gene, was initially identified as a breakpoint-spanning gene in a chromosomal translocation associated with the development of renal cancer. It is an electrogenic lysosomal metabolite transporter that is regulated by limited proteolytic processing by cathepsin L. DIRC2 belongs to the Solute carrier 49 (SLC49) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 381 -340956 cd17398 MFS_FLVCR_like Feline leukemia virus subgroup C receptor subfamily of the Major Facilitator Superfamily of transporters. The Feline leukemia virus subgroup C receptor (FLVCR) subfamily is conserved in metazoans and is composed of two vertebrate members, FLVCR1 and FLVCR2. FLVCR1 is a heme transporter and it has two isoforms: 1 (or FLVCR1a), which exports cytoplasmic heme as well as coproporphyrin and protoporphyrin IX; and 2 (FLVCR1b), which promotes heme efflux from the mitochondrion to the cytoplasm. FLVCR2 functions as a heme importer as well as a transporter for a calcium-chelator complex that is important for growth and calcium metabolism. The FLVCR subfamily belongs to the Solute carrier 49 (SLC49) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 406 -340957 cd17399 MFS_MFSD7 Major facilitator superfamily domain-containing protein 7. Major facilitator superfamily domain-containing protein 7 (MFSD7) is also called myosin light polypeptide 5 regulatory protein (MYL5). It's function is unknown. It is encoded by the a SLC49A3 gene and is a member of the Solute carrier 49 (SLC49) family, which also includes feline leukemia virus subgroup C receptor 1 (FLVCR1, SLC49A1), FLVCR2 (SLC49A2), as well as disrupted in renal carcinoma protein 2 (DIRC2, SLC49A4). FLVCR1 and FLVCR2 are heme transporters. DIRC2 is an electrogenic lysosomal metabolite transporter that is regulated by limited proteolytic processing by cathepsin L. MFSD7 belongs to the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 419 -340958 cd17400 MFS_SLCO1_OATP1 Solute carrier organic anion transporter 1 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 1 (SLCO1) or Organic anion transporting polypeptide 1 (OATP1) family contains three subfamilies: OATP1A, OATP1B, and OATP1C. OATP1A contains one human member, OATP1A2, which shows a broad spectrum of substrates including endogenous compounds (such as bile acids, steroid hormones and their conjugates, thyroid hormones) and various drugs (such as fexofenadine, ouabain and the cyanobacterial toxin microcystin). OATP1B contains two human proteins, OATP1B1 and OATP1B3, which can both accept a wide variety of structurally-unrelated compounds as substrates including clinically-important drugs such as hydroxymethylglutaryl (HMG)-CoA reductase inhibitors (statins), angiotensin II receptor blockers (sartans), angiotensin converting enzyme (ACE) inhibitors, and anti-diabetes drugs (glinides). OATP1C contains one mammalian member, OATP1C1, which is also called thyroxine transporter. It mediates the high affinity transport of the thyroid hormones, T4 (3,5,3',5'tetraiodo-L-thyronine or thyroxine), rT3 (3,3'5'-triiodo-L-thyronine), and T3 (3,5,3'tri-iodo-L-thyronine or triiodothyronine). The SLCO1/OATP1 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 436 -340959 cd17401 MFS_SLCO2_OATP2 Solute carrier organic anion transporter 2 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 2 (SLCO2) or Organic anion transporting polypeptide 2 (OATP2) family contains two subfamilies: OATP2A and OATP2B, each containing one mammalian member, OATP2A1 and OATP2B1, respectively. OATP2A1 (encoded by SLCO2A1) is a lactate/prostaglandin anion exchanger that mediates the release of newly synthesized prostaglandins (PGD2, PGE1, PGE2, PGF2A and PGI2) from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. OATP2B1 (encoded by SLCO2B1) mediates the Na(+)-independent transport of various organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost, as well as endogenous sex steroid conjugates such as dehydroepiandrosterone sulfate (DHEAS). The SLCO2/OATP2 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 440 -340960 cd17402 MFS_SLCO3_OATP3 Solute carrier organic anion transporter 3 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 3 (SLCO3) or Organic anion transporting polypeptide 3 (OATP3) family contains only one subfamily, OATP3A, which contains only one mammalian member OATP3A1 (encoded by SLCO3A1). It mediates the Na(+)-independent transport of organic anions such as estrone-3-sulfate, prostaglandins (PG) E1 and E2, thyroxine (T4), deltorphin II, BQ-123, and vasopressin. SLCO3A1 has been identified as a Crohn's disease (CD)-associated gene, which mediates inflammatory processes in intestinal epithelial cells through NF-kappaB transcription activation, resulting in a higher incidence of bowel perforation in CD patients. The SLCO3/OATP3 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 444 -340961 cd17403 MFS_SLCO4_OATP4 Solute carrier organic anion transporter 4 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 4 (SLCO4) or Organic anion transporting polypeptide 4 (OATP4) family contains two families: OATP4A and OATP4C, each containing one mammalian member, OATP4A1 and OATP4C1, respectively. OATP4A1 (encoded by SLCO4A1), is ubiquitously expressed and mediates the Na(+)-independent transport of the thyroid hormones T3 (triiodo-L-thyronine), T4 (thyroxine) and rT3, and other organic anions such as estrone sulfate and taurocholate. OATP4C1 (encoded by SLCO4C1) is capable of transporting pharmacological substances such as digoxin, ouabain, thyroxine, methotrexate, cAMP, and uremic toxins, which accumulate in patients with chronic kidney diseases (CKDs). The SLCO4/OATP4 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 420 -340962 cd17404 MFS_SLCO5_OATP5 Solute carrier organic anion transporter 5 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 5 (SLCO5) or Organic anion transporting polypeptide 5 (OATP5) family contains only one subfamily, OATP5A, which contains only one mammalian member OATP5A1 (encoded by SLCO5A1). Deletion of the SLCO5A1 gene has been implicated in the pathogenesis of Mesomelia-synostoses syndrome (MSS), a rare autosomal-dominant disorder characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations. OATP5A1 may be a non-classical OATP which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration. It seems to affect intracellular transport of drugs and may participate in chemoresistance of small cell lung cancer (SCLC by sequestration), rather than mediating cellular uptake. The SLCO5/OATP5 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 425 -340963 cd17405 MFS_SLCO6_OATP6 Solute carrier organic anion transporter 6 family of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 6 (SLCO6) or Organic anion transporting polypeptide 6 (OATP6) family contains only one subfamily, OATP6A, which contains only one human member OATP6A1 (encoded by SLCO6A1). The OATP6 family is the most diverged of the OATPs. OATP6A1 is also called cancer/testis antigen 48 (CT48) or gonad-specific transporter. It is strongly expressed only in normal testis, and weakly in spleen, brain, fetal brain, and placenta. It is found in tumor samples (lung, bladder, and esophageal) and cancer cell lines (lung), and may be of potential use as a target for therapy for a variety of tumor types. The SLCO6/OATP6 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 428 -340964 cd17406 MFS_unc93A_like Protein unc-93 homolog A and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of Caenorhabditis elegans Uncoordinated protein 93 (also called putative potassium channel regulatory protein unc-93), human protein unc-93 homolog A (HmUnc-93A or UNC93A), and similar proteins. Unc-93 acts as a regulatory subunit of a multi-subunit potassium channel complex that may function in coordinating muscle contraction in C. elegans. The human UNC93A gene is located in a region of the genome that is frequently associated with ovarian cancer, however, there is no evidence that UNC93A has a tumor suppressor function. This unc93A-like subfamily belongs to the Unc-93 family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 390 -340965 cd17407 MFS_MFSD11 UNC93-like Major facilitator superfamily domain-containing protein 11. This group is composed of UNC93-like protein MFSD11 (also called major facilitator superfamily domain-containing protein 11 or protein ET) and similar proteins, most of which are uncharacterized. MFSD11 is ubiquitously expressed in the periphery and the central nervous system of mice, where it is expressed in excitatory and inhibitory mouse brain neurons. Its expression is affected by altered energy homeostasis, suggesting plausible involvement in the energy regulation. MFSD11 belongs to the Unc-93 family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 387 -340966 cd17408 MFS_unc93B1 Protein unc-93 homolog B1 of the Major Facilitator Superfamily of transporters. Protein unc-93 homolog B1 (UNC93B1) controls intracellular trafficking and transport of a subset of Toll-like receptors (TLRs), including TLR3, TLR7 and TLR9, from the endoplasmic reticulum to endolysosomes where they can engage pathogen nucleotides and activate signaling cascades. It regulates differential transport of TLR7 and TLR9 into signaling endosomes to prevent autoimmunity. UNC93B1 belongs to the Unc-93 family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 456 -340967 cd17409 MFS_NIMT_like 2-nitroimidazole transporter and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of Escherichia coli 2-nitroimidazole transporter (NIMT), also called YeaN, and similar proteins. NIMT confers resistance to 2-nitroimidazole, the antibacterial and antifungal antibiotic, by mediating the active efflux of this compound. The NIMT-like subfamily belongs to the 2-nitroimidazole and cyanate transporters like (NIMT/CynX-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -340968 cd17410 MFS_CynX_like Cyanate transport protein CynX and similar proteins of the Major Facilitator Superfamily of transporters. This subfamily is composed of Escherichia coli cyanate transport protein CynX and similar proteins. CynX is part of an active transport system that transports exogenous cyanate into E. coli cells. The gene encoding CynX is part of the cyn operon that also includes cynS, encoding cynase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide, and cynT, which encodes a carbonic anhydrase. The CynX-like subfamily belongs to the 2-nitroimidazole and cyanate transporters like (NIMT/CynX-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 372 -340969 cd17411 MFS_SLC15A2 Solute carrier family 15 member 2 of the Major Facilitator Superfamily of transporters. Solute carrier family 15 member 2 (SLC15A2), also called peptide transporter 2 (PepT2), is a member of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. SLC15A2, as well as SLC15A1, mediate the proton-coupled active transport of a broad range of dipeptides and tripeptides, including zwitterionic, anionic and cationic peptides, as well as a variety of peptide-like drugs such as cefadroxil, enalapril, and valacyclovir. SLC15A2 is a high-affinity transporter and is abundantly expressed in the apical membrane of kidney proximal tubules and choroid plexus epithelial cells. It is the major transporter involved in the reclamation of peptide-bound amino acids and peptide-like drugs in the kidney, and is also called the renal isoform. In choroid plexus and the brain, it acts as an efflux transporter and plays a role in regulating peptide/neuropeptide homeostasis. SLC15A2/PepT2 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 403 -340970 cd17412 MFS_SLC15A1 Solute Carrier family 15 member 1 of the Major Facilitator Superfamily of transporters. Solute carrier family 15 member 1 (SLC15A1), also called peptide transporter 1 (PepT1), is a member of the proton-coupled oligopeptide transporter (POT) family of integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. SLC15A1, as well as SLC15A2, mediate the proton-coupled active transport of a broad range of dipeptides and tripeptides, including zwitterionic, anionic and cationic peptides, as well as a variety of peptide-like drugs such as cefadroxil, enalapril, and valacyclovir. SLC15A1 is primarily expressed in the brush border membranes of enterocytes of the small intestine and is also known as the intestinal isoform. It is a high-capacity/low-affinity transporter that drives the transport of di-and tripeptides for metabolic purposes. It's expression is upregulated in the colon during chronic inflammation associated with inflammatory bowel disease. SLC15A1/PepT1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 415 -340971 cd17413 MFS_NPF6 NRT1/PTR family (NPF), subfamily 6 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter 1/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF6 includes the first identified member of the NRT1/PTR family: Arabidopsis thaliana NRT1.1, now called AtNPF6.3. It is a dual affinity nitrate influx transporter and a nitrate sensor. It also transports auxin and has nitrate efflux activity. NPF6 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 457 -340972 cd17414 MFS_NPF4 NRT1/PTR family (NPF), subfamily 4 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. Members of the NPF4 subfamily have been shown to transport ABA. NPF4 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 456 -340973 cd17415 MFS_NPF3 NRT1/PTR family (NPF), subfamily 3 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF3 is the smallest NPF subfamily and it includes Cucumis sativus nitrite transporter (CsNitr1), now named CsNPF3.2. It functions as a chloroplast nitrite uptake transporter to remove toxic nitrite from the cytosol. NPF3 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 448 -340974 cd17416 MFS_NPF1_2 NRT1/PTR family (NPF), subfamily 1 and 2 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF1 includes Medicago truncatula LATD/NIP, now named MtNPF1.7, which is a high-affinity nitrate transporter and is involved in nodulation and root architecture. NPF2 members are well-established nitrate and glucosinolate transporters, including Arabidopsis nitrate influx and efflux transporters with varied tissue and developmental specificity. Examples are AtNPF2.7, which is expressed in the cortex of mature roots, and AtNPF2.9, which is expressed in root companion cells where it is involved in phloem loading. NPF1/2 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 444 -340975 cd17417 MFS_NPF5 NRT1/PTR family (NPF), subfamily 5 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF5 includes Arabidopsis thaliana PTR3 (AtPTR3, now named AtNPF5.2), which is a wound-induced peptide transporter that is necessary for defense against virulent bacterial pathogens. NPF5 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 452 -340976 cd17418 MFS_NPF8 NRT1/PTR family (NPF), subfamily 8 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF8 contains the Arabidopsis dipeptide transporters AtNPF8.1 (PTR1), AtNPF8.2 (PTR5), and AtNPF8.3 (PTR2), as well as tonoplast-localized transporters AtNPF8.4 (PTR4) and AtNPF8.5 (PTR6). Oryza sativa NRT1 (now called OsNPF8.9) is a low-affinity nitrate transporter. NPF8 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 447 -340977 cd17419 MFS_NPF7 NRT1/PTR family (NPF), subfamily 7 of the Major Facilitator Superfamily of transporters. The plant Nitrate transporter/Peptide transporter (NRT1/PTR) family (NPF) is related to the POT (proton-coupled oligopeptide transporter), Peptide transporter (PepT/PTR), or Solute Carrier 15 (SLC15) family in animals. In contrast to related animal and bacterial counterparts, the plant proteins transport a wide variety of substrates including nitrate, peptides, amino acids, dicarboxylates, glucosinolates, as well as the plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA). A recent study identified eight subfamilies within this family, named NPF1-NPF8. NPF7 includes the nitrate transporters AtNPF7.2 and AtNPF7.3, as well as the dipeptide transporter OsNPF7.3. AtNPF7.3 is a bidirectional transporter involved in nitrate influx and efflux. NPF7 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 447 -340978 cd17420 MFS_MCT8_10 Monocarboxylate transporters 8 and 10, and similar proteins of the Major Facilitator Superfamily of transporters. Monocarboxylate transporters 8 (MCT8) and 10 (MCT10) are transporters which stimulate the cellular uptake of thyroid hormones such as thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). MCT has a preference for T3 and is also a sodium-independent transporter that mediates the uptake or efflux of aromatic acids such as Phe, Tyr, and Trp, as well as L-3,4-di-hydroxy-phenylalanine. MCT8/10 and similar proteins belong to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 400 -340979 cd17421 MFS_MCT5 Monocarboxylate transporter 5 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 5 (MCT5) is also called Solute carrier family 16 member 4 (SLC16A4). It is an orphan transporter expressed in the brain, muscle, liver, kidney, lung, ovary, placenta, and heart. It is a member of the monocarboxylate transporter (MCT) family, whose members include MCT1-4, which are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT5 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 369 -340980 cd17422 MFS_MCT7 Monocarboxylate transporter 7 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 7 (MCT7) is also called Solute carrier family 16 member 6 (SLC16A6). Zebrafish MCT7 is required for hepatocyte secretion of ketone bodies during fasting; it has been shown to be a selective transporter of the major ketone body beta-hydroxybutyrate, whose abundance is increased during fasting. MCT7 is expressed in the brain, pancreas, muscle, and prostate. It belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 363 -340981 cd17423 MFS_MCT11_13 Monocarboxylate transporters 11 and 13 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporters 11 (MCT11) and 13 (MCT13) are also called Solute carrier family 16 members 11 (SLC16A11) and 13 (SLC16A13), respectively. They are orphan transporters whose substrates are yet to be determined. MCT11 is expressed in skin, lung, ovary, breast, lung, pancreas, retinal pigment epithelium, and choroid plexus. Genetic variants in SLC16A11, the gene encoding MCT11, are associated with type 2 diabetes in Mexican and other Latin American populations. MCT13 is expressed in breast and bone marrow stem cells. MCT11/13 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 383 -340982 cd17424 MFS_MCT12 Monocarboxylate transporter 12 of the of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 12 (MCT12) is also called Solute carrier family 16 member 12 (SLC16A12). It is a creatine transporter encoded by the cataract and glucosuria associated gene SLC16A12. A heterozygous mutation of the gene causes a syndrome with juvenile cataracts, microcornea, and glucosuria. MCT12 may function in a basolateral exit pathway for creatine in the proximal tubule. It belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 363 -340983 cd17425 MFS_MCT6 Monocarboxylate transporter 6 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 6 (MCT6) is also called Solute carrier family 16 member 5 (SLC16A5). MCT6 has been shown to transport bumetanide, nateglinide, probenecid, and prostaglandin F2a, but not L-lactic acid, in a pH- and membrane potential-dependent manner. It may be involved in the disposition and absorption of various drugs. MCT6 is expressed in the kidney, muscle, brain, heart, pancreas, prostate, lung, and placenta. It belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 364 -340984 cd17426 MFS_MCT1 Monocarboxylate transporter 1 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 1 (MCT1) is also called Solute carrier family 16 member 1 (SLC16A1). It is a proton-coupled transporter that facilitates the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. It is widely expressed in many tissues its main function is to transport lactate into the cell. MCT1 deficiency has been identified as a cause of profound ketoacidosis, a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. This suggests that MCT1-mediated ketone-body transport is crucial in maintaining acid-base balance. MCT1 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -340985 cd17427 MFS_MCT2 Monocarboxylate transporter 2 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 2 (MCT2) is also called Solute carrier family 16 member 7 (SLC16A7). It is a proton-coupled transporter that facilitates the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. It transports pyruvate and lactate outside and inside of sperm and plays roles in the regulation of spermatogenesis. Genetic variation in MCT2 has functional and clinical relevance with male infertility. MCT2 is consistently overexpressed in prostate cancer (PCa) cells and its location at peroxisomes is associated with malignant transformation. MCT2 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 367 -340986 cd17428 MFS_MCT9 Monocarboxylate transporter 9 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 9 (MCT9) is also called Solute carrier family 16 member 9 (SLC16A9). It is an orphan transporter that is expressed in a number of tissues including intestine and kidney. A missense variant of MCT9 (K258T) is associated with significant increase in susceptibility to renal overload (ROL) gout with intestinal urate underexcretion. This suggests that MCT9 may have a role in intestinal urate excretion; it is possible that it transports urate. MCT9 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 361 -340987 cd17429 MFS_MCT14 Monocarboxylate transporter 14 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 14 (MCT14) is also called Solute carrier family 16 member 14 (SLC16A14). It is an orphan transporter expressed in the brain, heart, muscle, ovary, prostate, breast, lung, pancreas, liver, spleen, and thymus. It may function as a neuronal aromatic-amino-acid transporter. MCT14 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 361 -340988 cd17430 MFS_MCT3_4 Monocarboxylate transporters 9 and 14, and similar proteins of the Major Facilitator Superfamily of transporters. Monocarboxylate transporters 3 (MCT3) and 4 (MCT4) are also called Solute carrier family 16 members 8 (SLC16A8) and 3 (SLC16A3), respectively. They are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT3 is preferentially expressed in the basolateral membrane of the retinal pigment epithelium and plays a role in pH and ion homeostasis of the outer retina by facilitating the transport of lactate and H(+) out of the retina. Mice deficient with MCT3 display altered visual function. MCT4 is highly expressed in tissues dependent on glycolysis, and it plays an important role in lactate efflux from cells. MCT4 is expressed in neurons and astrocytes; it has been found to play a role in neuroprotective mechanism of ischemic preconditioning in animals (in the gerbil) with transient cerebral ischemia. Increased MCT4 expression has also been correlated with worse prognosis across many cancer types. MCT3/4 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 368 -340989 cd17431 MFS_GLUT_Class1 Class 1 Glucose transporters (GLUTs) of the Major Facilitator Superfamily. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUTs 1-4 are well-established as glucose and/or fructose transporters in various tissues and cell types. GLUT1, also called solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), displays broad substrate specificity and can transport a wide range of pentoses and hexoses including glucose, galactose, mannose, and glucosamine. It is found in the brain, erythrocytes, and in many fetal tissues. GLUT2 (or SLC2A2) is found in the liver, islet of Langerhans, intestine, and kidney, and is the isoform that likely mediates the bidirectional transfer of glucose across the plasma membrane of hepatocytes and is responsible for uptake of glucose by beta cells. GLUT3 (or SLC2A3) is found in the brain and can mediates the uptake of glucose, 2-deoxyglucose, galactose, mannose, xylose and fucose, and dehydroascorbate. GLUT4 (or SLC2A4) is an insulin-regulated facilitative glucose transporter found in adipose tissues, and in skeletal and cardiac muscle. GLUT14 (or SLC2A14) is an orphan transporter expressed mainly in the testis. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 445 -340990 cd17432 MFS_GLUT_Class2 Class 2 Glucose transporters (GLUTs) of the Major Facilitator Superfamily. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUT5, also called Solute carrier family 2, facilitated glucose transporter member 5 (SLC2A5), is a well-established fructose transporter found in the small intestine. GLUT7 (or SLC2A7) is a high-affinity glucose and fructose transporter expressed in the small intestine and colon. GLUT9 (or SLC2A9) transports urate and fructose, and is most strongly expressed in the basolateral membranes of proximal renal tubular cells, liver and placenta. It may play a role in urate reabsorption by proximal tubules. GLUT11 (or SLC2A11) is a facilitative glucose transporter expressed in heart and skeletal muscle. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 452 -340991 cd17433 MFS_GLUT8_Class3 Glucose transporter type 8, a Class 3 GLUT, of the Major Facilitator Superfamily of transporters. Glucose transporter type 8 (GLUT8) is also called Solute carrier family 2, facilitated glucose transporter member 8 (SLC2A8) or glucose transporter type X1 (GLUTX1). It is classified as a Class 3 GLUT protein and is an insulin-regulated facilitative glucose transporter predominantly expressed in testis and brain. It can also transport fructose and galactose. SLC2A8 knockout mice were viable, developed normally, and display only a very mild phenotype, including mild alterations in the brain (increased proliferation of hippocampal neurons), heart (impaired transmission of electrical wave through the atrium), and sperm cells (reduced number of motile sperm cells). GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 416 -340992 cd17434 MFS_GLUT6_Class3 Glucose transporter type 6, a Class 3 GLUT, of the Major Facilitator Superfamily of transporters. Glucose transporter type 6 (GLUT6) is also called Solute carrier family 2, facilitated glucose transporter member 6 (SLC2A6). It is classified as a Class 3 GLUT protein, and is a facilitative glucose transporter that binds cytochalasin B with low affinity. It is found in the brain, spleen, and leucocytes. GLUT6 may function in oxalate secretion. SLC2A6 has been identified as an oxalate nephrolithiasis gene in mice; its deletion causes spontaneous calcium oxalate nephrolithiasis in the setting of hyperoxalaemia, hyperoxaluria, and nephrocalcinosis. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 417 -340993 cd17435 MFS_GLUT12_Class3 Glucose transporter type 12 (GLUT12), a Class 3 GLUT, of the Major Facilitator Superfamily of transporters. Glucose transporter type 12 (GLUT12) is also called Solute carrier family 2, facilitated glucose transporter member 12 (SLC2A12). It is a facilitative glucose transporter, classified as a Class 3 GLUT, and is expressed in the heart, skeletal muscle, prostate, and small intestine, and is highly upregulated in breast ductal cell carcinoma. It plays a role as a secondary insulin-sensitive glucose transporter in insulin-dependent tissues. The GLUT12 subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 376 -340994 cd17436 MFS_GLUT10_Class3 Glucose transporter type 10 (GLUT10), a Class 3 GLUT, of the Major Facilitator Superfamily of transporters. Glucose transporter type 10 (GLUT10) is also called Solute carrier family 2, facilitated glucose transporter member 10 (SLC2A10). It is classified as a Class 3 GLUT and is a facilitative glucose transporter that exhibits a wide tissue distribution. It is expressed in pancreas, placenta, heart, lung, liver, brain, fat, muscle, and kidney. GLUT10 facilitates the transport of dehydroascorbic acid (DHA), the oxidized form of vitamin C, into mitochondria, and also increases cellular uptake of DHA, which in turn protects cells against oxidative stress. Loss-of-function mutations in SLC2A10 cause arterial tortuosity syndrome (ATS), an autosomal recessive connective tissue disorder characterized by twisting and lengthening of the major arteries, hypermobility of the joints, and laxity of skin. The GLUT10 subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 376 -340995 cd17437 MFS_PLT Plant Polyol transporter family of the Major Facilitator Superfamily of transporters. The plant Polyol transporter (PLT) subfamily includes PLT1-6 from Arabidopsis thaliana and similar transporters. The best characterized member of the group is Polyol transporter 5, also called Sugar-proton symporter PLT5, which mediates the H+-symport of numerous substrates including linear polyols (such as sorbitol, xylitol, erythritol or glycerol), cyclic polyol myo-inositol, and different hexoses, pentoses (including ribose), tetroses, and sugar alcohols. It functions to transport a wide range of substrates into specific sink tissues in the plant. The PLT subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 387 -340996 cd17438 MFS_SV2B Synaptic vesicle glycoprotein 2B of the Major Facilitator Superfamily of transporters. Synaptic vesicle glycoprotein 2 (SV2) is a transporter-like integral membrane glycoprotein, with 12 transmembrane regions, expressed in vertebrates and is localized to synaptic and endocrine secretory vesicles. Three isoforms have been identified, SV2A, SV2B, and SV2C. SV2A and SV2B are widely expressed in the brain, while SV2C is more restricted to evolutionarily older brain. SV2 isoforms have been shown to be critical for the proper function of the central nervous system. SV2 serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. SV2B is a key modulator of amyloid toxicity at the synaptic site and also has an essential role in the formation and maintenance of the glomerular capillary wall. SV2B belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 477 -340997 cd17439 MFS_SV2A Synaptic vesicle glycoprotein 2A of the Major Facilitator Superfamily of transporters. Synaptic vesicle glycoprotein 2 (SV2) is a transporter-like integral membrane glycoprotein, with 12 transmembrane regions, expressed in vertebrates and is localized to synaptic and endocrine secretory vesicles. Three isoforms have been identified, SV2A, SV2B, and SV2C. SV2A and SV2B are widely expressed in the brain, while SV2C is more restricted to evolutionarily older brain. SV2 isoforms have been shown to be critical for the proper function of the central nervous system. SV2 serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. It is unclear how SV2A is involved in correct SV function, but it has been suggested to either act as a transporter or a regulator of exocytosis by mediating Ca2+ dynamics. SV2A has been identified as the molecular target of the antiepileptic drug levetiracetam (LEV). Its expression is decreased in patients with epilepsy and in epileptic animal models. SV2A belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 478 -340998 cd17440 MFS_SV2C Synaptic vesicle glycoprotein 2C of the Major Facilitator Superfamily of transporters. Synaptic vesicle glycoprotein 2 (SV2) is a transporter-like integral membrane glycoprotein, with 12 transmembrane regions, expressed in vertebrates and is localized to synaptic and endocrine secretory vesicles. Three isoforms have been identified, SV2A, SV2B, and SV2C. SV2A and SV2B are widely expressed in the brain, while SV2C is more restricted to evolutionarily older brain. SV2 isoforms have been shown to be critical for the proper function of the central nervous system. SV2 serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. SV2C exhibits enriched expression in several basal ganglia nuclei, and has been found to be involved in normal operation of the basal ganglia network and could be also be involved in system adaptation in basal ganglia pathological conditions. SV2C belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 479 -340999 cd17441 MFS_SVOP Synaptic vesicle 2-related protein (SVOP) of the Major Facilitator Superfamily. Synaptic vesicle 2 (SV2)-related protein (SVOP) is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Studies with knockout mice suggets that SVOP may perform a subtle function that is not necessary for survival under normal conditions, since mice lacking SVOP are viable, fertile, and phenotypically normal. SVOP shares structural similarity to the solute carrier family 22 (SLC22), a large family of organic cation and anion transporters. This SVOP subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 372 -341000 cd17442 MFS_SVOPL Synaptic vesicle 2 (SV2)-related protein-like (SVOPL) of the Major Facilitator Superfamily. Synaptic vesicle 2 (SV2)-related protein-like (SVOPL) or SVOP-like protein is a transporter-like protein that shares structural similarity to the solute carrier family 22 (SLC22), a large family of organic cation and anion transporters. It belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 375 -341001 cd17443 MFS_SLC22A31 Solute carrier family 22, member 31 of the Major Facilitator Superfamily. Solute carrier family 22, member 31 (SLC22A31) is an uncharacterized member of the SLC22 family of transporters, which includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. SLC22A31 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 343 -341002 cd17444 MFS_SLC22A23 Solute carrier family 22, member 23 of the Major Facilitator Superfamily. Solute carrier family 22, member 23 (SLC22A23) is an orphan member of the SLC22 family of organic cation/anion/zwitterion transporters, which includes organic cation transporters (OCTs/OCTNs) and organic anion transporters (OATs). It is abundantly expressed in brain and is also found in liver. Single-nucleotide polymorphisms in SLC22A23 are associated with inflammatory bowel disease (IBD) in a Canadian white population. SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. SLC22A23 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 364 -341003 cd17445 MFS_SLC22A17 Solute carrier family 22, member 17 of the Major Facilitator Superfamily. Solute carrier family 22, member 17 (SLC22A17) is also called 24p3 receptor (24p3R), lipocalin-2 receptor, or neutrophil gelatinase-associated lipocalin (NGAL) receptor (NGALR). It functions as a cell surface receptor for lipocalin-2 (LCN2), also called NGAL or 24p3, which plays a key role in iron homeostasis and transport. LCN2 is a secreted protein of the lipocalin family that induces apoptosis in some types of cells and inhibits bacterial growth by sequestration of the iron-laden bacterial siderophore. Over-expressions of NGAL and NGALR have been found to be correlated with unfavorable clinicopathologic features and poor prognosis of patients with hepatocellular carcinoma. SLC22A17 is a member of the SLC22 family of organic cation/anion/zwitterion transporters, which includes organic cation transporters (OCTs/OCTNs) and organic anion transporters (OATs). It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 346 -341004 cd17446 MFS_SLC22A6_OAT1_like Solute carrier family 22 member 6 (also called Organic anion transporter 1) and similar transporters of the Major Facilitator Superfamily. This subfamily includes solute carrier family 22 member 6 (SLC22A6, also called organic anion transporter 1 or OAT1 or para-aminohippurate (PAH) transporter), SLC22A8 (or OAT3), and SLC22A20 (or OAT6). OAT1 and OAT3 are involved in the renal elimination of endogenous and exogenous organic anions (OAs). They function as OA exchangers, coupling the uptake of OAs against an electrochemical gradient with the efflux of intracellular dicarboxylates. SLC22A20 is an OA transporter that mediates the uptake of estrone sulfate. The OAT1-like subfamily belongs to the Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 339 -341005 cd17447 MFS_SLC22A7_OAT2 Solute carrier family 22 member 7 (also called Organic anion transporter 2) of the Major Facilitator Superfamily of transporters. Solute carrier family 22 member 7 (SLC22A7), also called organic anion transporter 2 (OAT2) mediates sodium-independent transport of a variety of organic anions including prostaglandin E2, prostaglandin F2, tetracycline, bumetanide, estrone sulfate, glutarate, dehydroepiandrosterone sulfate, allopurinol, 5-fluorouracil, paclitaxel, L-ascorbic acid, salicylate, ethotrexate, and alpha-ketoglutarate. It also plays a role in renal uric acid uptake from blood as a first step of tubular secretion. OAT2 belongs to the Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily (MFS)of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 341 -341006 cd17448 MFS_SLC46A3 Solute carrier family 46 member 3 of the Major Facilitator Superfamily of transporters. Solute carrier family 46 member 3 (SLC46A3) is a lysosomal membrane protein that functions as a direct transporter of noncleavable antibody maytansine-based catabolites from the lysosome to the cytoplasm. SLC46A3 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 396 -341007 cd17449 MFS_SLC46A1_PCFT Solute carrier family 46 member 1, also called Proton-coupled folate transporter, of the Major Facilitator Superfamily of transporters. Solute carrier family 46 member 1 (SLC46A1) is also called proton-coupled folate transporter (PCFT), G21, or heme carrier protein 1 (HCP1). It functions in two ways: as an intestinal proton-coupled high-affinity folate transporter that facilitates the absorption of folates across the brush-border membrane of the small intestine; and as an intestinal heme transporter which mediates heme uptake from the gut lumen into duodenal epithelial cells. It displays a higher affinity for folate than heme. It is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of function mutations in the SLC46A1 gene results in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), characterized by severe systemic and cerebral folate deficiency. SLC46A1 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 425 -341008 cd17450 MFS_SLC46A2_TSCOT Solute carrier family 46 member 2, also called Thymic stromal cotransporter protein, of the Major Facilitator Superfamily of transporters. Solute carrier family 46 member 2 (SLC46A2) is also called thymic stromal cotransporter protein (TSCOT). It is a putative 12-transmembrane protein mainly expressed in the thymic cortex in a specific thymic epithelial cell (TEC) subpopulation. Polymorphisms in TSCOT are linked to cervical cancer in affected sib-pairs with high mean age at diagnosis. TSCOT belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 383 -341009 cd17451 MFS_NLS1_MFSD2A Sodium-dependent lysophosphatidylcholine symporter 1 of the Major Facilitator Superfamily of transporters. Sodium-dependent lysophosphatidylcholine (LPC) symporter 1 (NLS1) is also called major facilitator superfamily domain-containing protein 2A (MFSD2A). NLS1/MFSD2A is an LPC symporter that plays an essential role for blood-brain barrier formation and function. It also transports the essential omega-3 fatty acid docosahexaenoic acid (DHA), which is essential for normal brain growth and cognitive function, in the form of LPC into the brain across the blood-brain barrier. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. NLS1/MFSD2A belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 419 -341010 cd17452 MFS_MFSD2B Major facilitator superfamily domain-containing protein 2B. Major facilitator superfamily domain-containing protein 2B (MFSD2B) is closely related to MFSD2A, and their conserved genomic structure suggests that they are derived from the duplication of an ancestral gene. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer identified MFSD2B as a potential risk or protect factor in the prognosis of lung adenocarcinoma. MFSD2B belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 416 -341011 cd17453 MFS_MFSD4A Major facilitator superfamily domain-containing protein 4A. Major facilitator superfamily domain-containing protein 4A (MFSD4A) belongs to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 415 -341012 cd17454 MFS_NaGLT1_MFSD4B Sodium-dependent glucose transporter 1, also called Major facilitator superfamily domain-containing protein 4B. Sodium-dependent glucose transporter 1 (NaGLT1) is also called major facilitator superfamily domain-containing protein 4B (MFSD4B). NaGLT1 is a primary fructose transporter in rat renal brush-border membranes. It also facilitates sodium-independent urea uptake in assays performed on Xenopus oocytes. NaGLT1/MFSD4B belongs to the bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4 (FucP/MFSD4) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 369 -341013 cd17455 MFS_FLVCR1 Feline leukemia virus subgroup C receptor-related protein 1 of the Major Facilitator Superfamily of transporters. Feline leukemia virus subgroup C receptor-related protein 1 (FLVCR1) is also called feline leukemia virus subgroup C receptor (FLVCR). FLVCR1 is a heme transporter and it has two isoforms: 1 (or FLVCR1a), which exports cytoplasmic heme as well as coproporphyrin and protoporphyrin IX; and 2 (FLVCR1b), which promotes heme efflux from the mitochondrion to the cytoplasm. Mutations in the FLVCR1 gene have been linked to vision impairment, posterior column ataxia, and sensory neurodegeneration with loss of pain perception. FLVCR1 belongs to the Solute carrier 49 (SLC49) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 407 -341014 cd17456 MFS_FLVCR2 Feline leukemia virus subgroup C receptor-related protein 2 of the Major Facilitator Superfamily of transporters. Feline leukemia virus subgroup C receptor-related protein 2 (FLVCR2) is also called calcium-chelate transporter (CCT). It functions as a heme importer as well as a transporter for a calcium-chelator complex that is important for growth and calcium metabolism. Mutations in the FLVCR2 gene cause Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH), also known as Fowler syndrome, a rare autosomal recessive disorder characterized by glomerular vasculopathy in the central nervous system, severe hydrocephaly, hypokinesia and arthrogryphosis. FLVCR2 belongs to the Solute carrier 49 (SLC49) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 406 -341015 cd17457 MFS_SLCO1B_OATP1B Solute carrier organic anion transporter 1B subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 1B (SLCO1B), also called organic anion-transporting polypeptide 1B (OATP1B), subfamily is composed of two human proteins, OATP1B1 (encoded by SLCO1B1) and OATP1B3 (encoded by SLCO1B3), and one rodent member, OATP1B2 (encoded by Slco1b2). OATP1B1 and OATP1B3 are almost exclusively expressed on the basal side of hepatocytes in normal human organs. They both can accept a wide variety of structurally-unrelated compounds as substrates including clinically-important drugs such as hydroxymethylglutaryl (HMG)-CoA reductase inhibitors (statins), angiotensin II receptor blockers (sartans), angiotensin converting enzyme (ACE) inhibitors, and anti-diabetes drugs (glinides). Loss-of-function mutations in both SLCO1B1 and SLCO1B3 genes result in the Rotor syndrome, a hereditary hyperbilirubinemia. The SLCO1B/OATP1B subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 455 -341016 cd17458 MFS_SLCO1A_OATP1A Solute carrier organic anion transporter 1A subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 1A (SLCO1A), also called Organic anion-transporting polypeptide 1A (OATP1A), subfamily is composed of one human member OATP1A2 (encoded by SLCO1A2) and several rodent proteins encoded by the Slco1a1, Slco1a3, Slco1a4, Slco1a5, and Slco1a6 genes. OATP1A2, also known as human OATP-A or OATP1, shows a broad spectrum of substrates including endogenous compounds (such as bile acids, steroid hormones and their conjugates, thyroid hormones) and various drugs (such as fexofenadine, ouabain and the cyanobacterial toxin microcystin). It is expressed in the brain, kidney, intestine, liver, lung, testes, and the eye (ciliary body). The SLCO1A/OATP1A subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 527 -341017 cd17459 MFS_SLCO1C_OATP1C Solute carrier organic anion transporter 1C subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 1C (SLCO1C), also called Organic anion-transporting polypeptide 1C (OATP1C), subfamily contains one mammalian member, OATP1C1 (encoded by SLCO1C1), which is also called thyroxine transporter. It mediates the high affinity transport of the thyroid hormones, T4 (3,5,3',5'tetraiodo-L-thyronine or thyroxine), rT3 (3,3'5'-triiodo-L-thyronine), and T3 (3,5,3'tri-iodo-L-thyronine or triiodothyronine), as well as organic anions such as 17-beta-glucuronosyl estradiol, estrone-3-sulfate, and sulfobromophthalein (BSP), which are transported with much lower efficiency. The SLCO1C/OATP1C subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 498 -341018 cd17460 MFS_SLCO2B_OATP2B Solute carrier organic anion transporter 2B subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 2B (SLCO2B), also called Organic anion-transporting polypeptide 2B (OATP2B), subfamily has one mammalian member, OATP2B1 (encoded by SLCO2B1). It mediates the Na(+)-independent transport of various organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost. It also mediates the transport of endogenous sex steroid conjugates such as dehydroepiandrosterone sulfate (DHEAS). SLCO2B1 variations result in differential expression and uptake of DHEAS, which impacts subsequent resistance to androgen-deprivation therapy (ADT), the primary treatment of metastatic prostate cancer. The SLCO2B/OATP2B subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 479 -341019 cd17461 MFS_SLCO2A_OATP2A Solute carrier organic anion transporter 2A subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 2A (SLCO2A), also called Organic anion-transporting polypeptide 2A (OATP2A), subfamily has one mammalian member, OATP2A1 (encoded by SLCO2A1), which is also called prostaglandin transporter. It is a lactate/prostaglandin anion exchanger that mediates the release of newly synthesized prostaglandins (PGD2, PGE1, PGE2, PGF2A and PGI2) from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. Mutations in SLCO2A1 can cause primary hypertrophic osteoarthropathy (PHO), a rare multi-organic disease characterized by digital clubbing, pachydermia and periosteal reaction. The SLCO2A/OATP2A subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 474 -341020 cd17462 MFS_SLCO4A_OATP4A Solute carrier organic anion transporter 4A subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 4A (SLCO4A), also called Organic anion-transporting polypeptide 4A (OATP4A), subfamily has one mammalian member, OATP4A1 (encoded by SLCO4A1). It is ubiquitously expressed and it mediates the Na(+)-independent transport of the thyroid hormones T3 (triiodo-L-thyronine), T4 (thyroxine) and rT3, and other organic anions such as estrone sulfate and taurocholate. OATP4A1 is the most abundantly expressed transporter colorectal cancer (CRC) and its role in the transport of estrone sulfate, which is used in hormone replacement therapy (HRT), affects the outcome of the treatment. The SLCO4A/OATP4A subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 427 -341021 cd17463 MFS_SLCO4C_OATP4C Solute carrier organic anion transporter 4C subfamily of the Major Facilitator Superfamily of transporters. The Solute carrier organic anion transporter 4C (SLCO4C), also called Organic anion-transporting polypeptide 4C (OATP4C), subfamily has one mammalian member, OATP4C1 (encoded by SLCO4C1). It is capable of transporting pharmacological substances such as digoxin, ouabain, thyroxine, methotrexate and cAMP. It is the only OATP expressed at the basolateral side of proximal tubular cells in human kidney and it mediates the excretion of uremic toxins, which accumulate in patients with chronic kidney diseases (CKDs) and cause further progression of renal damage and cardiovascular diseases. Overexpression of human SLCO4C1 in rat kidney promotes the renal excretion of uremic toxins and reduces hypertension, cardiomegaly, and renal inflammation in renal failure. The SLCO4C/OATP4C subfamily belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 429 -341022 cd17464 MFS_MCT10 Monocarboxylate transporter 10 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 10 (MCT10) is also called Solute carrier family 16 member 10 (SLC16A10). In addition, human MCT10 is also called T-type amino acid transporter 1 (TAT1). MCT10 is a sodium-independent transporter that mediates the uptake or efflux of aromatic acids such as Phe, Tyr, and Trp, as well as L-3,4-di-hydroxy-phenylalanine. It is also a thyroid hormone transporter with preference for triiodothyronine (T3). MCT10 is expressed in intestine, kidney, liver, muscle, and placenta, and appears predominantly localized in the basolateral membrane. It belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 395 -341023 cd17465 MFS_MCT8 Monocarboxylate transporter 8 of the Major Facilitator Superfamily of transporters. Monocarboxylate transporter 8 (MCT8) is also called Solute carrier family 16 member 2 (SLC16A2) or X-linked PEST-containing transporter. MCT8 is a very active and specific thyroid hormone transporter which stimulates the cellular uptake of thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). Inactivating mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment known as Allan-Herndon-Dudley syndrome (AHDS). AHDS is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays, spastic paraplegia and dystonic movements, global developmental delay, and profound intellectual disability. MCT8 belongs to the Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 367 -350654 cd17466 T3SS_Flik_C_like C-terminal domain of type III secretion proteins FliK, HrpP, YscP, and similar domains. Type III secretion systems (T3SS) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS, which delivers effectors into eukaryotic cells. This model represents the C-terminal domain of T3SS proteins such as the flagellar hook-length control protein FliK, and non-flagellar Yop proteins translocation protein P (YscP) and HrpP. FliK is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate. HrpP is a type III secretion system substrate specificity switch-domain protein that is required for the export of pathogenicity factors into plant cells by pathogens. YscP is a needle-length sensing protein that controls the needle length of the injectisome, which is used by pathogenic bacteria to inject effector proteins across eukaryotic cell membranes. FliK, YscP, and HrpP contain a C-terminal globular domain that is necessary for the hierarchical switching of substrates during T3SS assembly and subsequent virulence effector secretion and is also referred to as the substrate-switching (SS) domain or the type III secretion substrate specificity switch (T3S4) domain. 87 -350655 cd17467 T3SS_YscP_C C-terminal substrate-switching domain of ruler proteins from the Ysc family, such as YscP and PscP. This subfamily includes needle-length sensing proteins, also called ruler proteins, in type 3 secretion systems (T3SS), such as Yersinia pestis Yop proteins translocation protein P (YscP) and Pseudomonas aeruginosa PscP. T3SS ruler proteins contain an N-terminal helical region that dictates needle length and is referred to as the length-sensing (LS) domain, and a C-terminal globular domain that is necessary for the hierarchical switching of substrates during T3SS assembly and subsequent virulence effector secretion and is also referred to as the substrate-switching (SS) domain or the type III secretion substrate specificity switch (T3S4) domain. The C-terminal SS domain is highly stable and sits on the extracellular side prior to needle assembly. 111 -350656 cd17468 T3SS_HrpP_C C-terminal domain of type III secretion protein HrpP and similar domains. This subfamily contains Pseudomonas syringae HrpP, a type III secretion system (T3SS) substrate specificity switch-domain protein that has has an atypical T3SS translocation signal. HrpP is required for the export of pathogenicity factors into plant cells. HrpP contains a C-terminal domain similar to the globular C-terminal substrate-switching (SS) domain, also called the type III secretion substrate specificity switch (T3S4) domain, of Yersinia pestis YscP. 89 -350657 cd17470 T3SS_Flik_C C-terminal domain of flagellar hook-length control protein FliK and similar domains. The flagellar hook-length control protein FliK is a soluble cytoplasmic protein that is secreted during flagellar formation. It controls hook elongation by two successive events: by determining hook length and by stopping the supply of hook protein. It contains an N-terminal domain that determines hook length and a C-terminal domain that is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate. 86 -341024 cd17471 MFS_Set Sugar efflux transporter (Set) family of the Major Facilitator Superfamily of transporters. This family is composed of sugar transporters such as Escherichia coli Sugar efflux transporter SetA, SetB, SetC and other sugar transporters. SetA, SetB, and SetC are involved in the efflux of sugars such as lactose, glucose, IPTG, and substituted glucosides or galactosides. They may be involved in the detoxification of non-metabolizable sugar analogs. The Set family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -341025 cd17472 MFS_YajR_like Escherichia coli inner membrane transport protein YajR and similar multidrug-efflux transporters of the Major Facilitator Superfamily. This family is composed of Escherichia coli inner membrane transport protein YajR and some uncharacterized multidrug-efflux transporters. YajR is a putative proton-driven major facilitator superfamily (MFS) transporter found in many gram-negative bacteria. Unlike most MFS transporters, YajR contains a C-terminal, cytosolic YAM domain, which may play an essential role for the proper functioning of the transporter. YajR-like transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -341026 cd17473 MFS_arabinose_efflux_permease_like Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily. This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -341027 cd17474 MFS_YfmO_like Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily. This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 374 -341028 cd17475 MFS_MT3072_like Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072 and similar transporters of the Major Facilitator Superfamily. This family includes the Mycobacterium tuberculosis uncharacterized MFS-type transporter MT3072. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 378 -341029 cd17476 MFS_Amf1_MDR_like Saccharomyces cerevisiae low affinity ammonium transporter Amf1p/YOR378W, aminotriazole resistance protein Atr1p, and similar transporters of the Major Facilitator Superfamily. Saccharomyces cerevisiae Amf1p/Ammonium Facilitator 1/YOR378W functions as a low affinity NH4+ transporter. S. cerevisiae aminotriazole resistance protein (Atr1p) is required for controlling sensitivity to aminotriazole; it is a putative component of the machinery responsible for pumping aminotriazole (and possibly other toxic compounds) out of the cell. This subfamily also includes S. cerevisiae YMR279C, a putative boron transporter involved in boron efflux and resistance, and Kluyveromyces lactis Knq1p which is involved in oxidative stress response and iron homeostasis. Amf1p, Atr1p, and YMR279C have been classified as group 1 members of the DHA2 (Drug:H+ Antiporter family 2) family, K. lactis Knq1 as group 2. This subfamily also includes two Aspergillus terreus terrein biosynthesis cluster proteins, efflux pump TerG and TerJ which may be required for efficient secretion of terrein or other secondary metabolites produced by the terrein gene cluster. The Amf1p-like subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 362 -341030 cd17477 MFS_YcaD_like YcaD and similar transporters of the Major Facilitator Superfamily. This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 360 -341031 cd17478 MFS_FsR Fosmidomycin resistance protein of the Major Facilitator Superfamily of transporters. Fosmidomycin resistance protein (FsR) confers resistance against fosmidomycin. It shows sequence similarity with the bacterial drug-export proteins that mediate resistance to tetracycline and chloramphenicol. This FsR family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 365 -341032 cd17479 MFS_MFSD6L Major facilitator superfamily domain-containing protein 6-like and similar transporters of the Major Facilitator Superfamily. Major facilitator superfamily domain-containing protein 6-like (MFSD6L) protein family includes a group uncharacterized proteins similar to human major facilitator superfamily domain-containing protein 6 (MFSD6). MFSD6 is also called Macrophage MHC class I receptor 2 homolog (MMR2). It has been postulated as a possible receptor for human leukocyte antigen (HLA)-B62. The MFSD6L family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 376 -341033 cd17480 MFS_SLC40A1_like Solute carrier family 40 member 1 of the Major Facilitator Superfamily of transporters. Solute carrier family 40 member 1 (SLC40A1 or SLC11A3) is also called ferroportin-1 (FPN1) or iron-regulated transporter 1 (IREG1). In the presence of a ferroxidase (hephaestin and/or ceruloplasmin), SLC40A1 acts as an iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. Specially, it is involved in iron export from duodenal epithelial cell and also in the transfer of iron between maternal and fetal circulation. The transport activity of SLC40A1 is suppressed by the peptide hormone hepcidin. This family also includes a bacterial homologue of SLC40A1 (Bdellovibrio bacteriovorus ferroportin). It adopts the major facilitator superfamily fold, but undergoes an intra-domain conformational rearrangement during the transport cycle. SLC40A1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 386 -341034 cd17481 MFS_MFSD13A Major facilitator superfamily domain containing 13A. Human major facilitator superfamily domain containing 13A (MFSD1A) protein is also called transmembrane protein 180. Its function is still unknown. MFSD13A belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement 429 -341035 cd17482 MFS_YxiO_like Bacillus subtilis YxiO, Listeria monocytogenes BtlA, and similar transporters of the Major Facilitator Superfamily. This family is composed of Bacillus subtilis MFS-type transporter YxiO, and similar proteins including Listeria monocytogenes BtlA. The function of B. subtilis YxiO is still unknown, and L. monocytogenes BtlA is a putative secondary transporter involved in bile tolerance and general stress resistance. This family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 362 -341036 cd17483 MFS_Atg22_like Autophagy-related protein 22 and similar proteins; member of the Major Facilitator Superfamily of transporters. Atg22 (also known as Aut4) protein functions as a vacuolar effluxer which mediates the efflux of amino acids resulting from autophagic degradation. The release of autophagic amino acids allows the maintenance of protein synthesis and viability during nitrogen starvation. Members of this family belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 467 -341037 cd17484 MFS_FBT Folate-biopterin transporter of the Major Facilitator Superfamily of transporters. The Folate-biopterin transporter (FBT) family includes folate carriers related to those of trypanosomatids in higher plant plastids and cyanobacteria. FBT mediates folate monoglutamate transport involved in tetrahydrofolate biosynthesis. It also mediates transport of antifolates, such as methotrexate and aminopterin. The FBT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 399 -341038 cd17485 MFS_MFSD3 Major facilitator superfamily domain containing 3 protein. Major facilitator superfamily domain containing 3 protein (MFSD3) is a predicted acetyl-CoA transporter. As an atypical putative membrane-bound solute carrier (SLC), MFSD3 is most likely to be functionally active in the plasma membrane and not in any intracellular organelles. MFSD3 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 386 -341039 cd17486 MFS_AmpG_like AmpG and similar transporters of the Major Facilitator Superfamily. AmpG acts as an inner membrane permease in the beta-lactamase induction system and in peptidoglycan recycling. It transports meuropeptide from the periplasm into the cytosol in gram-negative bacteria, which is essential for the induction of the ampC encoding beta-lactamase. The AmpG family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 387 -341040 cd17487 MFS_MFSD5_like Major facilitator superfamily domain containing 5 protein. Human major facilitator superfamily domain containing 5 protein (MFSD5) is also called molybdate-anion transporter, or molybdate transporter 2 homolog (MOT2). It acts as an atypical solute carrier (SLC) that mediates high-affinity intracellular uptake of the rare oligo-element molybdenum. It may also play a role in maintaining the glucose homeostasis and pancreatic beta-cell proliferation, as well as in altered energy homeostasis. MFSD5 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 385 -341041 cd17488 MFS_UhpC Membrane sensor protein UhpC of the Major Facilitator Superfamily of transporters. Membrane sensor protein UhpC acts as both a sensor and a transport protein. It is part of the UhpABC signaling cascade that controls the expression of the hexose phosphate transporter UhpT. UhpC recognizes external glucose-6-phosphate (Glc6P) and induces transport by UhpT. It can also transport and sense Glc6P, and interacts with the histidine kinase UhpB, leading to the stimulation of the autokinase activity of UhpB. This group also includes the hexose phosphate transport protein UhpT from Chlamydia pneumoniae; it is a transport protein for sugar phosphate uptake. It is part of the Organophosphate:Pi antiporter (OPA) family of integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The UhpC group belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 364 -341042 cd17489 MFS_YfcJ_like Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 367 -341043 cd17490 MFS_YxlH_like Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -341044 cd17491 MFS_MFSD12 Major facilitator superfamily domain-containing protein 12. Major facilitator superfamily domain-containing protein 12 (MFSD12) protein subfamily includes a group of uncharacterized proteins similar to human MFSD2. MFSD2 is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is an LPC symporter that plays an essential role for blood-brain barrier formation and function. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD12 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 438 -341212 cd17492 toxin_CptN type III toxin-antitoxin system toxin CptN and similar proteins. CptN-like toxin component of a type III toxin-antitoxin (TA) system, which consists of a ribonuclease (RNase) toxin that processes its structured and specific cognate RNA antitoxin, which in turn then directly inhibits the toxin. TA systems have been associated with many important phenotypes, like phage resistance, maintenance of genomic islands, and formation of bacterial persister cells. 149 -341213 cd17493 toxin_TenpN type III toxin-antitoxin system toxin TenpN and similar proteins. TenpN-like toxin component of a type III toxin-antitoxin (TA) system, which consists of a ribonuclease (RNase) toxin that processes its structured and specific cognate RNA antitoxin, which in turn then directly inhibits the toxin. TA systems have been associated with many important phenotypes, like phage resistance, maintenance of genomic islands, and formation of bacterial persister cells. 121 -341185 cd17494 RMtype1_S_Sma198ORF994P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Streptococcus macedonicus ACA-DC 198 S subunit (S1.Sma198ORF994P) TRD2-CR2 and Lactobacillus amylovorus GRL 1112 S subunit (S1.LamGRLORF5415P) TRD2-CR2. The recognition sequences of Streptococcus macedonicus ACA-DC 198 S subunit (S1.Sma198ORF994P) and Lactobacillus amylovorus GRL 1112 S subunit (S1.LamGRLORF5415P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 171 -341186 cd17495 RMtype1_S_Cep9333ORF4827P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Crinalium epipsammum S subunit (S.Cep9333ORF4827P) TRD2-CR2 and Corynebacterium genitalium sp. nov. S subunit (S.CgeORF10704P) TRD2-CR2. The recognition sequences for Crinalium epipsammum S subunit (S.Cep9333ORF4827P) and Corynebacterium genitalium sp. nov. S subunit (S.CgeORF10704P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 174 -341187 cd17496 RMtype1_S_BliBORF2384P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Bacillus licheniformis S subunit (S1.BliBORF2384P) TRD1-CR1 and Chlorobium tepidum TLS S subunit (S.CteTORF675P) TRD1-CR1. The recognition sequences for Bacillus licheniformis S subunit (S1.BliBORF2384P) and Chlorobium tepidum TLS S subunit (S.CteTORF675P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 175 -341188 cd17497 RMtype1_S_TteMORF1547P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Thermoanaerobacter tengcongensis S subunit (S.TteMORF1547P) TRD2-CR2. The recognition sequence is undetermined for Thermoanaerobacter tengcongensis S subunit (S.TteMORF1547P). The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This CD contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. S.TteMORF1547P TRD1-CR1 does not belong to this subfamily. 174 -341189 cd17498 RMtype1_S_Aco12261I-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I) TRD1-CR1. The S.Aco12261I S subunit recognizes 5'... GCANNNNNNTGT ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. S.Aco12261I TRD2-CR2 does not belong to this subfamily. 173 -341190 cd17499 RMtype1_S_CloLW9ORF3270P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Cecembia lonarensis LW9 S subunit (S.CloLW9ORF3270P) TRD1-CR1 and Bacillus licheniformis 9945A S subunit (S.Bli9945ORF10320P) TRD1-CR1. The recognition sequences for Cecembia lonarensis LW9 S subunit (S.CloLW9ORF3270P) and Bacillus licheniformis 9945A S subunit (S.Bli9945ORF10320P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases such as Helicobacter bizzozeronii CIII-1 putative Type IIG restriction enzyme/N6-adenine DNA methyltransferase RM.HbiCORF8670P, and may also contain type I DNA methyltransferases. 175 -341191 cd17500 RMtype1_S_MmaGORF2198P_TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Methanosarcina mazei Goe1 S subunit (S.MmaGORF2198P) TRD1-CR1, and Flavobacterium psychrophilum FPG3 S subunit (S.FpsFPG3ORF6820P) TRD1-CR1. The recognition sequences of Methanosarcina mazei Goe1 S subunit (S.MmaGORF2198P) and Flavobacterium psychrophilum FPG3 S subunit (S.FpsFPG3ORF6820P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains TRD1-CR1. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 186 -341192 cd17501 RMtype1_S_Vch69ORF1407P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Vibrio cholerae 1311-69 S subunit (S.Vch69ORF1407P) TRD2-CR2, and Methanococcoides methylutens MM1 S subunit (S.MmeMM1ORF456P) TRD2-CR2. The recognition sequences of Vibrio cholerae 1311-69 S subunit (S.Vch69ORF1407P) and Methanococcoides methylutens MM1 S subunit (S.MmeMM1ORF456P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 191 -341045 cd17502 MFS_Azr1_MDR_like Saccharomyces cerevisiae Azole resistance protein 1 (Azr1p), and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This subfamily is composed of multidrug resistance (MDR) transporters including various Saccharomyces cerevisiae proteins such as azole resistance protein 1 (Azr1p), vacuolar basic amino acid transporter 1 (Vba1p), vacuolar basic amino acid transporter 5 (Vba5p), and Sge1p (also known as Nor1p, 10-N-nonyl acridine orange resistance protein, and crystal violet resistance protein). MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 337 -341046 cd17503 MFS_LmrB_MDR_like Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This subfamily is composed of multidrug resistance (MDR) transporters including Bacillus subtilis lincomycin resistance protein LmrB, and several proteins from Escherichia coli such as the putative MDR transporters EmrB, MdtD, and YieQ. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 380 -341047 cd17504 MFS_MMR_MDR_like Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily. This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 371 -340762 cd17505 Ubl_SAMP1_like ubiquitin-like (Ubl) domain found in small archaeal modifier protein 1 (SAMP1). Ubiquitin-like small archaeal modifier protein 1 (SAMP1) shows a beta-grasp fold of Ub, suggesting that this archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. Several Ub-like structural features such as an N-terminal single lysine residue and di-glycine motif at the C-terminus, spatially isolated, implicate formation of a poly-SAMPylated chainpoly-SAMPylation. SAMP1 can form covalent conjugates with its protein targets through an isopeptide linkage via their C-terminal diglycine motif in a streamlined archaeal E1-dependent pathway. It is involved in sulfur transfer during molybdenum cofactor biosynthesis much like MoaD. This family also includes proteins such as Thermoplasma acidophilum TA0895 and others, all closely related to proteins MoaD. 90 -340763 cd17506 Ubl_SAMP2_like ubiquitin-like (Ubl) domain found in small archaeal modifier protein (SAMP2). Ubiquitin-like small archaeal modifier protein 2 (SAMP2) shows a beta-grasp fold of Ub, suggesting that this archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. Several Ub-like structural features such as an N-terminal single lysine residue and di-glycine motif at the C-terminus, spatially isolated, implicate formation of a poly-SAMPylated chainpoly-SAMPylation. SAMP2 can form covalent conjugates with its protein targets through an isopeptide linkage via their C-terminal diglycine motif in a streamlined archaeal E1-dependent pathway. It also forms homo-conjugates through the intermolecular isopeptide bond between the C-terminal Gly and the Lys58 side chain, a feature that likely resembles polyubiquitination. SAMP2 is involved in sulfur transfer during tRNA thiolation much like Urm1. This family also includes uncharacterized proteins such as Methanothermococcus thermolithotrophicus Mth1743, Pyrococcus furiosus PF1061 and others, all closely related to proteins MoaD. 67 -340861 cd17507 GT28_Beta-DGS-like beta-diglucosyldiacylglycerol synthase and similar proteins. beta-diglucosyldiacylglycerol synthase (processive diacylglycerol beta-glucosyltransferase EC 2.4.1.315) is involved in the biosynthesis of both the bilayer- and non-bilayer-forming membrane glucolipids. This family of glycosyltransferases also contains plant major galactolipid synthase (chloroplastic monogalactosyldiacylglycerol synthase 1 EC 2.4.1.46). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 364 -341225 cd17508 Alpha_kinase Alpha kinase family; uncharacterized subgroup. The alpha kinase family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional serine/threonine protein kinases. The family contains myosin heavy chain kinases, elongation factor-2 kinases, and bifunctional ion channel kinases. These kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+/Ca2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 243 -341226 cd17509 Alpha_kinase Alpha kinase family; uncharacterized subgroup. The alpha kinase family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional serine/threonine protein kinases. The family contains myosin heavy chain kinases, elongation factor-2 kinases, and bifunctional ion channel kinases. These kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+/Ca2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 221 -341121 cd17510 T3SC_YbjN-like_2 Uncharacterized protein is structurally similar to type III secretion system chaperones and YbjN family proteins. This family includes an uncharacterized protein from Methanothermobacter Thermautotrophicus that is structurally similar to type III secretion system (T3SS) chaperones (T3SC) that bind effector proteins, and is homologous to YbjN, a putative sensory transduction regulator protein found in Proteobacteria. 138 -341122 cd17511 YbjN_AmyR-like YbjN protein family is structurally similar to type III secretion system chaperones. This YbjN protein family includes Escherichia coli YbjN, Erwinia amylovora AmyR, and similar proteins. YbjN proteins share a class I type III secretion chaperone (T3SC)-like fold with type III secretion system (T3SS) chaperone proteins but appear to function independently of the T3SS. YbjN is an enterobacteria-specific protein. In E. coli, it acts as a sensory transduction regulator that may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions. E. amylovora AmyR, a functionally conserved ortholog of E. coli YbjN, is a stress and virulence associated protein that regulates the ams operon. Ams proteins are required for amylovoran biosynthesis. AmyR may also regulate the Rcs phosphorelay system, an atypical two-component signal transduction (TCST) system present only in Enterobacteriaceae and positively regulates amylovoran biosynthesis by activating the ams operon transcription. 116 -341193 cd17512 RMtype1_S_BceB55ORF5615P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Bacillus cereus HuB5-5 S subunit (S.BceB55ORF5615P) TRD2-CR2. The recognition sequence of Bacillus cereus HuB5-5 S subunit (S.BceB55ORF5615P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 195 -341194 cd17513 RMtype1_S_AveSPN6ORF1907P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Archaeoglobus veneficus SNP6 S subunit (S.AveSPN6ORF1907P) TRD2-CR2 and Bacillus subtilis JRS2 S subunit (S.BsuJRS7ORF3308P) TRD1-CR1. The recognition sequences of Archaeoglobus veneficus SNP6 S subunit (S.AveSPN6ORF1907P) and Bacillus subtilis JRS2 S subunit (S.BsuJRS7ORF3308P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 182 -341195 cd17514 RMtype1_S_Eco2747I_MmaC7ORF19P-TRD-CR_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Escherichia coli ST2747 S subunit (S.Eco2747I) TRD2-CR2, Methanococcus maripaludis C7 S subunit (S.MmaC7ORF19P) TRD1-CR1, and related domains. The S. Eco2747I S subunit recognizes 5'... CACNNNNNNNGTTG ... 3'. The recognition sequence of Methanococcus maripaludis C7 S subunit (S.MmaC7ORF19P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This CD contains both TRD1-CR1 and TRD2-CR2. It also includes the TRD-CR-like domains of putative type II restriction enzymes and methyltransferases, such as Helicobacter cinaedi PAGU611 Hci611ORFHP which may recognize 5'... GAGNNNNNGT ... 3', and type I N6-adenine DNA methyltransferases, such as Calditerrivibrio nitroreducens M.Cni19672ORF1405P whose recognition sequence is undetermined. 183 -341196 cd17515 RMtype1_S_MjaORF132P_Sau1132ORF3780P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to MjaXIP/S.MjaORF132P TRD1-CR1, S.Sau1132ORF3780P TRD1-CR1, S.Mca353ORF290P TRD1-CR1, and other TRD-CR's. The Staphylococcus aureus subsp. aureus MSHR1132 S subunit (S.Sau1132ORF3780P) recognizes 5'... CAAGNNNNNRTC ... 3', and Moraxella catarrhalis S subunit (S.Mca353ORF290P) recognizes 5'... CAAGNNNNNNTGT ... 3'. The recognition sequence of Methanococcus jannaschii S subunit (MjaXIP/S.MjaORF132P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.Sau1132ORF3780P-TRD1 recognizes CAAG/CTTG, and S.Sau1132ORF3780P-TRD2 recognizes GAY/RTC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 181 -341197 cd17516 RMtype1_S_HinAWORF1578P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to S.HinAWORF1578P TRD2-CR2. Haemophilus influenzae RdAW S subunit (S.HinAWORF1578P) recognizes 5'... CTANNNNNGTTY ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 184 -341198 cd17517 RMtype1_S_EcoKI_StySPI-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR),similar to Escherichia coli str. K-12 substr. MG1655 S subunit (S.EcoKI) TRD2-CR2, Salmonella enterica subsp. enterica serovar Potsdam S subunit (S.StySPI) TRD2-CR2, and other TRD-CR's. Escherichia coli str. K-12 substr. MG1655 S subunit (S.EcoKI) recognizes 5'... AACNNNNNNGTGC ... 3' and Salmonella enterica subsp. enterica serovar Potsdam S subunit (S.StySPI) recognizes 5'... AACNNNNNNGTRC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.EcoKI-TRD1 and S.StySPI-TRD1 both recognize AAC/GTT, S.EcoKI-TRD2 recognizes GCAC/GTGC and S.StySPI-TRD2 recognizes GYAC/GTRC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2.It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases, such as Pseudomonas putida Jo 4-731 Type IIG restriction enzyme/N6-adenine DNA methyltransferase (RM.PpiI), and type I DNA methyltransferases such as Bacillus cereus BDRD-ST24 M subunit of Type I N6-adenine DNA methyltransferase (M.Bce24ORF51270P). RM.PpiI recognizes 5' ... GAACNNNNNCTC ... 3'. 192 -341199 cd17518 RMtype1_S_Asp27244ORF1181P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Acinetobacter sp. S subunit (S.Asp27244ORF1181P) TRD1-CR1. The recognition sequence of Acinetobacter sp. S subunit (S.Asp27244ORF1181P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 180 -341200 cd17519 RMtype1_S_HpyCR35ORFAP-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Helicobacter pylori CR35 S subunit (S.HpyCR35ORFAP) TRD1-CR1 and Mycoplasma haemofelis str. Langford 1 S subunit (S2.Mha1ORF7190P) TRD1-CR1. The recognition sequences of Helicobacter pylori CR35 S subunit (S.HpyCR35ORFAP) and Mycoplasma haemofelis str. Langford 1 S subunit (S2.Mha1ORF7190P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 183 -341201 cd17520 RMtype1_S_HmoORF3075P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Heliobacterium modesticaldum Ice1 S subunit (S1.HmoORF3075P) TRD1-CR1. The recognition sequence of Heliobacterium modesticaldum Ice1 S subunit (S1.HmoORF3075P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This subfamily also includes the TRD-CR-like sequence-recognition domain of type I N6-adenine DNA methyltransferase (M) subunit of Clostridium intestinale URNW (M2.CinURNWORF2828P). The recognition sequence of M2.CinURNWORF2828P is undetermined. Type I methyltransferases included in this group include two domains: one for methylation, and another (TRD-CR-like) for sequence-recognition. 180 -341202 cd17521 RMtype1_S_Sau13435ORF2165P_TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Staphylococcus aureus NCTC 13435 S subunit (S.Sau13435ORF2165P) TRD2-CR2, Escherichia coli E24377A S subunit (S.EcoE24377ORF286P) TRD1-CR1 and Pseudoalteromonas species P1-13-1a S. subunit (S.Psp1bORF2093P) TRD2-CR2. Staphylococcus aureus NCTC 13435 S subunit (S.Sau13435ORF2165P) recognizes 5'... TCTANNNNNNRTTC ... 3', and the recognition sequences of Escherichia coli E24377A S subunit (S.EcoE24377ORF286P) and Pseudoalteromonas species P1-13-1a S subunit (S.Psp1bORF2093P) are undetermined. The restriction-modification (RM) system S subunit generally consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, Staphylococcus aureus NCTC 13435 S subunit (S.Sau13435ORF2165P) TRD1 recognizes TCTA/TAGA, and -TRD2 recognizes GAAY/RTTC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. In addition, this family includes RMtype1_S_TRD-CR_like domains of various putative Helicobacter type II restriction enzymes and methyltransferases, such as Hci611ORFHP and HfeORF12890P. 187 -341203 cd17522 RMtype1_S_MjaORF1531P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Methanocaldococcus jannaschii DSM 2661 S subunit (S.MjaORF1531P/MjaXIIP) TRD1-CR1. The recognition sequence of Methanocaldococcus jannaschii DSM 2661 S subunit (S.MjaORF1531P, also called MjaXIIP) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 190 -341204 cd17523 RMtype1_S_StySPI-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Salmonella enterica subsp. enterica serovar Potsdam S subunit (S.StySPI) TRD2-CR2. Salmonella enterica subsp. enterica serovar Potsdam S subunit (S.StySPI) recognizes 5'... AACNNNNNNGTRC ... 3'. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. For example, S.StySPI-TRD1 recognizes AAC/GTT and S.StySPI-TRD2 recognizes GYAC/GTRC. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 190 -341205 cd17524 RMtype1_S_EcoUTORF5051P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Escherichia coli UTI89 S subunit (S.EcoUTORF5051P) TRD2-CR2 and Archaeoglobus fulgidus VC-16 S subunit (S.AfuORF1715P) TRD2-CR2. Escherichia coli UTI89 S subunit (S.EcoUTORF5051P) recognizes 5'... CCANNNNNNNCTTC ... 3' and the recognition sequence of Archaeoglobus fulgidus VC-16 S subunit (S.AfuORF1715P) is undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It also includes TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases, such as Pseudomonas putida Jo 4-731 Type IIG restriction enzyme/N6-adenine DNA methyltransferase (RM.PpiI), and type I DNA methyltransferases such as Bacillus cereus BDRD-ST24 M subunit of Type I N6-adenine DNA methyltransferase (M.Bce24ORF51270P). RM.PpiI recognizes 5' ... GAACNNNNNCTC ... 3'. 189 -341206 cd17525 RMtype1_S_Eco15ORF14057P-TRD1-CR1_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Escherichia coli 541-15 S subunit (S.Eco15ORF14057P) TRD1-CR1 and Desulfotignum phosphitoxidans S subunit (S.Dph13687ORF2110P) TRD2-CR2. The recognition sequences of Escherichia coli 541-15 S subunit (S.Eco15ORF14057P) and Desulfotignum phosphitoxidans S subunit (S.Dph13687ORF2110P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. It may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases. 190 -341207 cd17526 RMtype1_S_Cje2232P-TRD2-CR2_like Type I restriction-modification system specificity (S) subunit TRD-CR, similar to Campylobacter jejuni RM 2232 S subunit (S.Cje2232P) TRD2-CR2 and Shewanella baltica OS223 S subunit (S.Sba223ORF389P) TRD1-CR1. The recognition sequences of Campylobacter jejuni RM 2232 S subunit (S.Cje2232P) and Shewanella baltica OS223 S subunit (S.Sba223ORF389P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. Also included in this subfamily is the C-terminal TRD-CR-like sequence-recognition domain of Microcystis aeruginosa putative type I N6-adenine DNA methyltransferase M subunit (M.Mae7806ORF3969P). The recognition sequence of M.Mae7806ORF3969P is undetermined. 192 -341285 cd17630 OSB_MenE-like O-succinylbenzoic acid-CoA ligase. This family contains O-succinylbenzoyl-CoA (OSB-CoA) synthetase (also known as O-succinylbenzoic acid CoA ligase) that belongs to the ANL superfamily and catalyzes the ligation of CoA to o-succinylbenzoate (OSB). It includes MenE in the bacterial menaquinone biosynthesis pathway which is a promising target for the development of novel antibacterial agents. MenE catalyzes CoA ligation via an acyl-adenylate intermediate; tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogs of this intermediate provide a pathway toward the development of optimized MenE inhibitors. 325 -341286 cd17631 FACL_FadD13-like fatty acyl-CoA synthetase, including FadD13. This family contains fatty acyl-CoA synthetases, including Mycobacterium tuberculosis acid-induced operon MymA encoding the fatty acyl-CoA synthetase FadD13 which is essential for virulence and intracellular growth of the pathogen. The fatty acyl-CoA synthetase activates lipids before entering into the metabolic pathways and is also involved in transmembrane lipid transport. However, unlike soluble fatty acyl-CoA synthetases, but like the mammalian integral-membrane very-long-chain acyl-CoA synthetases, FadD13 accepts lipid substrates up to the maximum length of C26, and this is facilitated by an extensive hydrophobic tunnel from the active site to a positively charged patch. Also included is feruloyl-CoA synthetase (Fcs) in Rhodococcus strains where it is involved in biotechnological vanillin production from eugenol and ferulic acid via a non-beta-oxidative pathway. 435 -341287 cd17632 AFD_CAR-like adenylation domain of carboxylic acid reductase (CAR). This family contains the adenylation domain of carboxylic acid reductase enzymes (CARs), and performs an equivalent function to that of the ANL superfamily of adenylating enzymes. It takes a carboxylic acid substrate and ATP, and produces an AMP-acyl phosphoester intermediate, releasing pyrophosphate. Kinetic analysis using various substrates shows that this enzyme has a broad but similar substrate specificity, preferring electron-rich acids. This suggests that attack by the carboxylate on the alpha-phosphate of adenosine triphosphate (ATP) is the step that determines the substrate specificity and reaction kinetics. CAR is an important enzyme for use as a biocatalyst providing regiospecific route to aldehydes from their respective carboxylic acids. 588 -341288 cd17633 AFD_YhfT-like fatty acid-CoA ligase VraA. This family of acyl-CoA ligases includes Bacillus subtilis YhfT, as well as long-chain fatty acid-CoA ligase VraA, all of which are as yet to be characterized. These proteins belong to the adenylate-forming enzymes which catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain 320 -341289 cd17634 ACS-like acetate-CoA ligase. This family includes acyl- and aryl-CoA ligases, as well as the adenylation domain of nonribosomal peptide synthetases and firefly luciferases. The adenylate-forming enzymes catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain. 587 -341290 cd17635 FADD10 adenylate forming domain, fatty acid CoA ligase (FadD10). This family contains long chain fatty acid CoA ligases, including FadD10 which is involved in the synthesis of a virulence-related lipopeptide. FadD10 is a fatty acyl-AMP ligase (FAAL) that transfers fatty acids to an acyl carrier protein. Structures of FadD10 in apo- and complexed form with dodecanoyl-AMP, show a novel open conformation, facilitated by its unique inter-domain and intermolecular interactions, which is critical for the enzyme to carry out the acyl transfer onto the acyl carrier protein (Rv0100) rather than coenzyme A. 340 -341291 cd17636 PtmA long-chain fatty acid CoA ligase (FadD). This family contains fatty acid CoA ligases, including acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II, most of which are yet to be characterized. Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 331 -341292 cd17637 ACLS-CaiC acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II. This family contains fatty acid CoA ligases, including acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II, most of which are yet to be characterized, but may be similar to Carnitine-CoA ligase (CaiC) which catalyzes the transfer of CoA to carnitine. Fatty acyl-CoA ligases catalyze the ATP-dependent activation of fatty acids in a two-step reaction. The carboxylate substrate first reacts with ATP to form an acyl-adenylate intermediate, which then reacts with CoA to produce an acyl-CoA ester. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. 333 -341293 cd17638 FadD3 acyl-CoA synthetase FadD3 and similar proteins. This family contains long chain fatty acid CoA ligases, including FadD3 which is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. The cholesterol catabolic pathway occurs in most mycolic acid-containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 catalyzes the ATP-dependent CoA thioesterification of 3a-alpha-H-4alpha(3'-propanoate)-7a-beta-methylhexahydro-1,5-indanedione (HIP) to yield HIP-CoA. Hydroxylated analogs of HIP, 5alpha-OH HIP and 1beta-OH HIP, can also be used. 330 -341294 cd17639 LC_FACS_euk1 Eukaryotic long-chain fatty acid CoA synthetase (LC-FACS), including fungal proteins. The members of this family are eukaryotic fatty acid CoA synthetases (EC 6.2.1.3) that activate fatty acids with chain lengths of 12 to 20 and includes fungal proteins. They act on a wide range of long-chain saturated and unsaturated fatty acids, but the enzymes from different tissues show some variation in specificity. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. This is a required step before free fatty acids can participate in most catabolic and anabolic reactions. Organisms tend to have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. In Schizosaccharomyces pombe, lcf1 gene encodes a new fatty acyl-CoA synthetase that preferentially recognizes myristic acid as a substrate. 507 -341295 cd17640 LC_FACS_like Long-chain fatty acid CoA synthetase. This family includes long-chain fatty acid (C12-C20) CoA synthetases, including an Arabidopsis gene At4g14070 that plays a role in activation and elongation of exogenous fatty acids. FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Eukaryotes generally have multiple isoforms of LC-FACS genes with multiple splice variants. For example, nine genes are found in Arabidopsis and six genes are expressed in mammalian cells. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 468 -341296 cd17641 LC_FACS_bac1 bacterial long-chain fatty acid CoA synthetase. The members of this family are bacterial long-chain fatty acid CoA synthetase, most of which are as yet uncharacterized. LC-FACS catalyzes the formation of fatty acyl-CoA in a two-step reaction: the formation of a fatty acyl-AMP molecule as an intermediate, and the formation of a fatty acyl-CoA. Free fatty acids must be "activated" to their CoA thioesters before participating in most catabolic and anabolic reactions. 569 -341297 cd17642 Firefly_Luc insect luciferase, similar to plant 4-coumarate: CoA ligases. This family contains insect firefly luciferases that share significant sequence similarity to plant 4-coumarate:coenzyme A ligases, despite their functional diversity. Luciferase catalyzes the production of light in the presence of MgATP, molecular oxygen, and luciferin. In the first step, luciferin is activated by acylation of its carboxylate group with ATP, resulting in an enzyme-bound luciferyl adenylate. In the second step, luciferyl adenylate reacts with molecular oxygen, producing an enzyme-bound excited state product (Luc=O*) and releasing AMP. This excited-state product then decays to the ground state (Luc=O), emitting a quantum of visible light. 532 -341298 cd17643 A_NRPS_Cytc1-like similar to adenylation domain of cytotrienin synthetase CytC1. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes Streptomyces sp. cytotrienin synthetase (CytC1), a relatively promiscuous adenylation enzyme that installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. Also included are Streptomyces sp Thr1, involved in the biosynthesis of 4-chlorothreonine, Pseudomonas aeruginosa pyoverdine synthetase D (PvdD), involved in the biosynthesis of the siderophore pyoverdine and Pseudomonas syringae syringopeptin synthetase, where syringpeptin is a necrosis-inducing phytotoxin that functions as a virulence determinant in the plant-pathogen interaction. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 450 -341299 cd17644 A_NRPS_ApnA-like similar to adenylation domain of anabaenopeptin synthetase (ApnA). This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes Planktothrix agardhii anabaenopeptin synthetase (ApnA A1), which is capable of activating two chemically distinct amino acids (Arg and Tyr). Structural studies show that the architecture of the active site forces Arg to adopt a Tyr-like conformation, thus explaining the bispecificity. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 465 -341300 cd17645 A_NRPS_LgrA-like adenylation (A) domain of linear gramicidin synthetase (LgrA) and similar proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes linear gramicidin synthetase (LgrA) in Brevibacillus brevis. LgrA has a formylation domain fused to the N-terminal end that formylates its substrate for linear gramicidin synthesis to proceed. This formyl group is essential for the clinically important antibacterial activity of gramicidin by enabling head-to-head gramicidin dimers to make a beta-helical pore in gram-positive bacterial membranes, allowing free passage of monovalent cations, destroying the ion gradient and killing bacteria. This family also includes bacitracin synthetase 1 (known as ATP-dependent cysteine adenylase or BA1); it activates cysteine, incorporates two D-amino acids, releases and cyclizes the mature bacitracin, an antibiotic that is a mixture of related cyclic peptides that disrupt gram positive bacteria by interfering with cell wall and peptidoglycan synthesis. Also included is surfactin synthetase which activates and polymerizes the amino acids Leu, Glu, Asp, and Val to form the antibiotic surfactin. 440 -341301 cd17646 A_NRPS_AB3403-like Peptide Synthetase. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 488 -341302 cd17647 A_NRPS_alphaAR Alpha-aminoadipate reductase. This family contains L-2-aminoadipate reductase, also known as alpha-aminoadipate reductase (EC 1.2.1.95) or alpha-AR or L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31), which catalyzes the activation of alpha-aminoadipate by ATP-dependent adenylation and the reduction of activated alpha-aminoadipate by NADPH. The activated alpha-aminoadipate is bound to the phosphopantheinyl group of the enzyme itself before it is reduced to (S)-2-amino-6-oxohexanoate. 520 -341303 cd17648 A_NRPS_ACVS-like N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase. This family contains ACV synthetase (ACVS, EC 6.3.2.26; also known as N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase or delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase) is involved in medically important antibiotic biosynthesis. ACV synthetase is active in an early step in the penicillin G biosynthesis pathway which involves the formation of the tripeptide 6-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV); each of the constituent amino acids of the tripeptide ACV are activated as aminoacyl-adenylates with peptide bonds formed through the participation of amino acid thioester intermediates. ACV is then cyclized by the action of isopenicillin N synthase. 453 -341304 cd17649 A_NRPS_PvdJ-like non-ribosomal peptide synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes pyoverdine biosynthesis protein PvdJ involved in the synthesis of pyoverdine, which consists of a chromophore group attached to a variable peptide chain and comprises around 6-12 amino acids that are specific for each Pseudomonas species, and for which the peptide might be first synthesized before the chromophore assembly. Also included is ornibactin biosynthesis protein OrbI; ornibactin is a tetrapeptide siderophore with an l-ornithine-d-hydroxyaspartate-l-serine-l-ornithine backbone. The adenylation domain at the N-terminal of OrbI possibly initiates the ornibactin with the binding of N5-hydroxyornithine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 450 -341305 cd17650 A_NRPS_PpsD_like similar to adenylation domain of plipastatin synthase (PpsD). This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetase 1 (BacA) in Bacillus licheniformis, tyrocidine synthetase in Brevibacillus brevis, plipastatin synthase (PpsD, an important antifungal protein) in Bacillus subtilis and mannopeptimycin peptide synthetase (MppB) in Streptomyces hygroscopicus. Plipastatin has strong fungitoxic activity and is involved in inhibition of phospholipase A2 and biofilm formation. Bacitracin, a mixture of related cyclic peptides, is used as a polypeptide antibiotic while function of tyrocidine is thought to be regulation of sporulation. MppB is involved in biosynthetic pathway of mannopeptimycin, a novel class of mannosylated lipoglycopeptides. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 447 -341306 cd17651 A_NRPS_VisG_like similar to adenylation domain of virginiamycin S synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes virginiamycin S synthetase (VisG) in Streptomyces virginiae; VisG is involved in virginiamycin S (VS) biosynthesis as the provider of an L-pheGly molecule, a highly specific substrate for the last condensation step by VisF. This family also includes linear gramicidin synthetase B (LgrB) in Brevibacillus brevis. Substrate specificity analysis using residues of the substrate-binding pockets of all 16 adenylation domains has shown good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 491 -341307 cd17652 A_NRPS_CmdD_like similar to adenylation domain of chondramide synthase cmdD. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) synthetase, where PTT is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus. This adenylation domain has been confirmed to directly activate beta-tyrosine, and fluorinated chondramides are produced through precursor-directed biosynthesis. Also included in this family is chondramide synthase D (also known as ATP-dependent phenylalanine adenylase or phenylalanine activase or tyrosine activase). Chondramides A-D are depsipeptide antitumor and antifungal antibiotics produced by C. crocatus, are a class of mixed peptide/polyketide depsipeptides comprised of three amino acids (alanine, N-methyltryptophan, plus the unusual amino acid beta-tyrosine or alpha-methoxy-beta-tyrosine) and a polyketide chain ([E]-7-hydroxy-2,4,6-trimethyloct-4-enoic acid). 436 -341308 cd17653 A_NRPS_GliP_like nonribosomal peptide synthase GliP-like. This family includes the adenylation (A) domain of nonribosomal peptide synthases (NRPS) gliotoxin biosynthesis protein P (GliP), thioclapurine biosynthesis protein P (tcpP) and Sirodesmin biosynthesis protein P (SirP). In the filamentous fungus Aspergillus fumigatus, NRPS GliP is involved in the biosynthesis of gliotoxin, which is initiated by the condensation of serine and phenylalanine. Studies show that GliP is not required for invasive aspergillosis, suggesting that the principal targets of gliotoxin are neutrophils or other phagocytes. SirP is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). In the fungus Claviceps purpurea, NRPS tcpP catalyzes condensation of tyrosine and glycine, part of biosynthesis of an unusual class of epipolythiodioxopiperazines (ETPs) that lacks the reactive thiol group for toxicity. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 433 -341309 cd17654 A_NRPS_acs4 acyl-CoA synthetase family member 4. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains acyl-CoA synthethase family member 4, also known as 2-aminoadipic 6-semialdehyde dehydrogenase or aminoadipate-semialdehyde dehydrogenase, most of which are uncharacterized. Acyl-CoA synthetase catalyzes the initial reaction in fatty acid metabolism, by forming a thioester with CoA. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 449 -341310 cd17655 A_NRPS_Bac bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 490 -341311 cd17656 A_NRPS_ProA gramicidin S synthase 2, also known as ATP-dependent proline adenylase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains gramicidin S synthase 2 (also known as ATP-dependent proline adenylase or proline activase or ProA). ProA is a multifunctional enzyme involved in synthesis of the cyclic peptide antibiotic gramicidin S and able to activate and polymerize the amino acids proline, valine, ornithine and leucine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 479 -350495 cd17657 CDC14_N N-terminal domain pseudophosphatase domain of CDC14 family proteins. The cell division control protein 14 (CDC14) family is highly conserved in all eukaryotes, although the roles of its members seem to have diverged during evolution. Yeast Cdc14, the best characterized member of this family, is a dual-specificity phosphatase that plays key roles in cell cycle control. It preferentially dephosphorylates cyclin-dependent kinase (CDK) targets, which makes it the main antagonist of CDK in the cell. Cdc14 functions at the end of mitosis and it triggers the events that completely eliminates the activity of CDK and other mitotic kinases. It is also involved in coordinating the nuclear division cycle with cytokinesis through the cytokinesis checkpoint, and in chromosome segregation. Cdc14 phosphatases also function in DNA replication, DNA damage checkpoint, and DNA repair. Vertebrates may contain more than one Cdc14 homolog; humans have three (CDC14A, CDC14B, and CDC14C). CDC14 family proteins contain a highly conserved N-terminal pseudophosphatase domain that contributes to substrate specificity and a C-terminal catalytic dual-specificity phosphatase domain with the PTP signature motif. The N-terminal pseudophosphatase domain lacks the catalytic residues. 144 -350496 cd17658 PTPc_plant_PTP1 protein tyrosine phosphatase 1 from Arabidopsis thaliana and similar plant PTPs. Arabidopsis thaliana protein tyrosine phosphatase 1 (AtPTP1) belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. AtPTP1 dephosphorylates and inhibits MAP kinase 6 (MPK6) in non-oxidative stress conditions. Together with MAP kinase phosphatase 1 (MKP1) it expresses salicylic acid (SA) and camalexin biosynthesis, and therefore, modulating defense response. 206 -350497 cd17659 PTP_paladin_1 protein tyrosine phosphatase-like domain of paladin, repeat 1. Paladin is a putative phosphatase, which in mouse is expressed in endothelial cells during embryonic development and in arterial smooth muscle cells in adults. It has been suggested to be an antiphosphatase that regulates the activity of specific neural crest regulatory factors and thus, modulates neural crest cell formation and migration. Paladin contains two tyrosine-protein phosphatase domains. This model represents repeat 1. 220 -350498 cd17660 PTP_paladin_2 protein tyrosine phosphatase-like domain of paladin, repeat 2. Paladin is a putative phosphatase, which in mouse is expressed in endothelial cells during embryonic development and in arterial smooth muscle cells in adults. It has been suggested to be an antiphosphatase that regulates the activity of specific neural crest regulatory factors and thus, modulates neural crest cell formation and migration. Paladin contains two tyrosine-protein phosphatase domains. This model represents repeat 2. 216 -350499 cd17661 PFA-DSP_Oca2 atypical dual specificity phosphatases similar to oxidant-induced cell-cycle arrest protein 2. Oxidant-induced cell-cycle arrest protein 2 (Oca2) is an atypical dual specificity phosphatase of unknown function. It has been identified as a putative negative regulator acting on cell wall integrity and mating MAPK pathways in yeast. It belongs to a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds called plant and fungi atypical dual-specificity phosphatases (PFA-DSPs). Oca2 may be an inactive DSP-like protein as it lacks the CxxxxxR catalytic motif. 146 -350500 cd17662 PFA-DSP_Oca4 atypical dual specificity phosphatases similar to oxidant-induced cell-cycle arrest protein 4. Oxidant-induced cell-cycle arrest protein 4 (Oca4) is an atypical dual specificity phosphatase of unknown function. It belongs to a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds called plant and fungi atypical dual-specificity phosphatases (PFA-DSPs). Oca4 may be an inactive DSP-like protein as it lacks the CxxxxxR catalytic motif. 177 -350501 cd17663 PFA-DSP_Oca6 atypical dual specificity phosphatases similar to oxidant-induced cell-cycle arrest protein 6. Oxidant-induced cell-cycle arrest protein 6 (Oca6) is an atypical dual specificity phosphatase of unknown function. It belongs to a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds called plant and fungi atypical dual-specificity phosphatases (PFA-DSPs). Oca6 may be an inactive DSP-like protein as it lacks the CxxxxxR catalytic motif. 162 -350502 cd17664 Mce1_N N-terminal triphosphatase domain of mRNA capping enzyme. mRNA capping enzyme, also known as RNA guanylyltransferase and 5'-phosphatase (RNGTT) or mammalian mRNA capping enzyme (Mce1) in mammals, is a bifunctional enzyme that catalyzes the first two steps of cap formation: (1) by removing the gamma-phosphate from the 5'-triphosphate end of nascent mRNA to yield a diphosphate end using the polynucleotide 5'-phosphatase activity (EC 3.1.3.33) of the N-terminal triphosphatase domain; and (2) by transferring the GMP moiety of GTP to the 5'-diphosphate terminus through the C-terminal mRNA guanylyltransferase domain (EC 2.7.7.50). The enzyme is also referred to as CEL-1 in Caenorhabditis elegans. 167 -350503 cd17665 DSP_DUSP11 dual-specificity phosphatase domain of dual specificity protein phosphatase 11 and similar proteins. dual specificity protein phosphatase 11 (DUSP11), also known as RNA/RNP complex-1-interacting phosphatase or phosphatase that interacts with RNA/RNP complex 1 (PIR1), has RNA 5'-triphosphatase and diphosphatase activity, but only poor protein-tyrosine phosphatase activity. It has activity for short RNAs but is less active toward mononucleotide triphosphates, suggesting that its primary function in vivo is to dephosphorylate RNA 5'-ends. It may play a role in nuclear mRNA metabolism. Also included in this subfamily is baculovirus RNA 5'-triphosphatase for Autographa californica nuclear polyhedrosis virus. 169 -350504 cd17666 PTP-MTM-like_fungal protein tyrosine phosphatase-like domain of fungal myotubularins. Myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Not all members are catalytically active proteins, some function as adaptors for the active members. 229 -350505 cd17667 R-PTPc-G-1 catalytic domain of receptor-type tyrosine-protein phosphatase G, repeat 1. Receptor-type tyrosine-protein phosphatase G (PTPRG), also called protein-tyrosine phosphatase gamma (R-PTP-gamma), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRG is an important tumor suppressor gene in multiple human cancers such as lung, ovarian, and breast cancers. It is widely expressed in many tissues, including the central nervous system, where it plays a role during neuroinflammation processes. It can dephosphorylate platelet-derived growth factor receptor beta (PDGFRB) and may play a role in PDGFRB-related infantile myofibromatosis. PTPRG has four splicing isoforms: three transmembrane isoforms, PTPRG-A, B, and C, and one secretory isoform, PTPRG-S, which are expressed in many tissues including the brain. PTPRG is a type 1 integral membrane protein consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the catalytic PTP domain (repeat 1). 274 -350506 cd17668 R-PTPc-Z-1 catalytic domain of receptor-type tyrosine-protein phosphatase Z, repeat 1. Receptor-type tyrosine-protein phosphatase Z (PTPRZ), also called receptor-type tyrosine-protein phosphatase zeta (R-PTP-zeta), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Three isoforms are generated by alternative splicing from a single PTPRZ gene: two transmembrane isoforms, PTPRZ-A and PTPRZ-B, and one secretory isoform, PTPRZ-S (also known as phosphacan); all are preferentially expressed in the central nervous system (CNS) as chondroitin sulfate (CS) proteoglycans. PTPRZ isoforms play important roles in maintaining oligodendrocyte precursor cells in an undifferentiated state. PTPRZ is a type 1 integral membrane protein consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the catalytic PTP domain (repeat 1). 209 -350507 cd17669 R-PTP-Z-2 catalytic domain of receptor-type tyrosine-protein phosphatase Z, repeat 2. Receptor-type tyrosine-protein phosphatase Z (PTPRZ), also called receptor-type tyrosine-protein phosphatase zeta (R-PTP-zeta), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Three isoforms are generated by alternative splicing from a single PTPRZ gene: two transmembrane isoforms, PTPRZ-A and PTPRZ-B, and one secretory isoform, PTPRZ-S (also known as phosphacan); all are preferentially expressed in the central nervous system (CNS) as chondroitin sulfate (CS) proteoglycans. PTPRZ isoforms play important roles in maintaining oligodendrocyte precursor cells in an undifferentiated state. PTPRZ is a type 1 integral membrane protein consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the inactive PTP-like domain (repeat 2). 204 -350508 cd17670 R-PTP-G-2 PTP-like domain of receptor-type tyrosine-protein phosphatase G, repeat 2. Receptor-type tyrosine-protein phosphatase G (PTPRG), also called protein-tyrosine phosphatase gamma (R-PTP-gamma), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRG is an important tumor suppressor gene in multiple human cancers such as lung, ovarian, and breast cancers. It is widely expressed in many tissues, including the central nervous system, where it plays a role during neuroinflammation processes. It can dephosphorylate platelet-derived growth factor receptor beta (PDGFRB) and may play a role in PDGFRB-related infantile myofibromatosis. PTPRG is a type 1 integral membrane protein consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the inactive PTP-like domain (repeat 2). 205 -349491 cd17672 MDM2 p53-binding domain found in E3 ubiquitin-protein ligase MDM2 and similar proteins. MDM2, also known as double minute 2 protein (Hdm2), or oncoprotein MDM2, or p53-binding protein, exerts its oncogenic activity predominantly by binding the p53 tumor suppressor and blocking its transcriptional activity. It forms homo-oligomers and displays E3 ubiquitin ligase activity, catalyzing the attachment of ubiquitin to p53 as an essential step in the regulation of its expression levels in cells. Moreover, in response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through the interaction with ribosomal proteins L5, L11, and L23. MDM2 also has a p53-independent role in tumorigenesis and cell growth regulation. In addition, it binds interferon (IFN) regulatory factor-2 (IRF-2), an IFN-regulated transcription factor, and mediates its ubiquitination. MDM2 contains an N-terminal p53-binding domain and a C-terminal zinc RING-finger domain conferring E3 ligase activity that is required for ubiquitination and nuclear export of p53. It is also responsible for the hetero-oligomerization of MDM2, which is crucial for the suppression of P53 activity during embryonic development, and the recruitment of E2 ubiquitin-conjugating enzymes. MDM2 also harbors a RanBP2-type zinc finger (zf-RanBP2) domain, as well as a nuclear localization signal (NLS) and a nuclear export signal (NES), near the central acidic region. 83 -349492 cd17673 MDM4 p53-binding domain found in MDM4 and similar proteins. MDM4, also known as double minute 4 protein, MDM2-like p53-binding protein, protein MDMX, HDMX, or p53-binding protein MDM4, exerts its oncogenic activity predominantly by binding the p53 tumor suppressor and blocking its transcriptional activity. MDM4 is phosphorylated and destabilized in response to DNA damage stress. It can also be specifically dephosphorylated through directly interacting with protein phosphatase 1 (PP1), which may increase its stability and thus inhibit p53 activity. MDM4 also has a p53-independent role in tumorigenesis and cell growth regulation. MDM4 contains an N-terminal p53-binding domain and a C-terminal zinc RING-finger domain responsible for its hetero-oligomerization, which is crucial for the suppression of P53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. MDM4 also harbors a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region. 79 -349493 cd17674 SWIB_BAF60A SWIB domain found in BRG1-associated factor 60A (BAF60A) and similar proteins. BAF60A, also termed SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 (SMARCD1), or 60 kDa BRG-1/Brm-associated factor subunit A, or SWI/SNF complex 60 kDa subunit, is a core subunit of the SWI/SNF chromatin-remodeling complex that activates the transcription of fatty acid oxidation genes during fasting. BAF60A is involved in chromatin remodeling and hepatic lipid metabolism. It mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. It is also a key component of the transcriptional control in cardiac progenitors. Moreover, BAF60A interacts with p53 to recruit the SWI/SNF complex, suggesting that the SWI/SNF chromatin remodeling complex is involved in the suppression of tumors. 77 -349494 cd17675 SWIB_BAF60B SWIB domain found in BRG1-associated factor 60B (BAF60B) and similar proteins. BAF60B, also termed SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 (SMARCD2), or 60 kDa BRG-1/Brm-associated factor subunit B, is a component of the BAF complex. It is involved in transcriptional activation and repression of select genes by chromatin remodeling. It plays a role in the ATM-p53 pathway in sensing chromatin opening by facilitating ATM recruitment to the SWI/SNF complex, as well as ATM activation. It also regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Thus, it acts as a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia. 80 -349495 cd17676 SWIB_BAF60C SWIB domain found in BRG1-associated factor 60C (BAF60C) and similar proteins. BAF60C, also termed SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 (SMARCD3), or 60 kDa BRG-1/Brm-associated factor subunit C, is a core subunit of the SWI/SNF chromatin-remodeling complex that activates the transcription of fatty acid oxidation genes during fasting. It is involved in chromatin remodeling and hepatic lipid metabolism. It is also essential for cardiomyocyte differentiation at the early heart development. Moreover, BAF60C drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Furthermore, BAF60C epigenetically regulates epithelial-mesenchymal transition (EMT) by activating WNT signaling pathways. 74 -350658 cd17706 MCM MCM helicase family. MCM helicases are a family of helicases that play an important role in replication and homologous recombination repair. The heterohexameric ring-shaped Mcm2-7 complex is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. Mcm8 and Mcm9, form a complex required for homologous recombination (HR) repair induced by DNA interstrand crosslinks (ICLs). 311 -349340 cd17707 BRCT_XRCC1_rpt2 Second (C-terminal) BRCT domain in X-ray repair cross-complementing protein 1 (XRCC1) and similar proteins. XRCC1 is a DNA repair protein that corrects defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. It forms homodimers and interacts with polynucleotide kinase (PNK), DNA polymerase-beta (POLB), DNA ligase III (LIG3), APTX, APLF, and APEX1. XRCC1 contains an N-terminal XRCC1-specific domain and two BRCT domains. This model corresponds to the second BRCT domain. 94 -349341 cd17709 BRCT_pescadillo_like BRCT domain of pescadillo and related proteins. Pescadillo has been characterized in zebrafish as a protein involved in the control of cell proliferation, specifically in the developing embryo. Mammalian homologs have been linked to ribosome biogenesis and nucleologenesis, and yeast homologs have been shown to be required for synthesis of the 60S ribosomal subunit. Pescadillo contains a BRCT domain. 86 -349342 cd17710 BRCT_PAXIP1_rpt2 second BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the second BRCT domain. 81 -349343 cd17711 BRCT_PAXIP1_rpt3 third BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the third BRCT domain. 81 -349344 cd17712 BRCT_PAXIP1_rpt5 fifth BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the fifth BRCT domain. 75 -349345 cd17713 BRCT_polymerase_mu_like BRCT domain of DNA-directed DNA/RNA polymerase mu (polymerase mu), DNA nucleotidylexotransferase and similar proteins. The family includes DNA-directed DNA/RNA polymerase mu (polymerase mu) and DNA nucleotidylexotransferase. Polymerase mu (EC 2.7.7.7), also termed Pol mu, or terminal transferase, is a Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). It participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. DNA nucleotidylexotransferase (EC 2.7.7.31), also termed terminal addition enzyme, or terminal deoxynucleotidyltransferase, or terminal transferase, is a template-independent DNA polymerase which catalyzes the random addition of deoxynucleoside 5'-triphosphate to the 3'-end of a DNA initiator. It is the addition of nucleotides at the junction (N region) of rearranged Ig heavy chain and T-cell receptor gene segments during the maturation of B- and T-cells. All family members contains a BRCT domain. 87 -349346 cd17714 BRCT_PAXIP1_rpt1 first (N-terminal) BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the first BRCT domain. 76 -349347 cd17715 BRCT_polymerase_lambda BRCT domain of DNA polymerase lambda and similar proteins. DNA polymerase lambda, also termed Pol Lambda, or DNA polymerase beta-2 (Pol beta2), or DNA polymerase kappa, is involved in base excision repair (BER) and is responsible for repair of lesions that give rise to abasic (AP) sites in DNA. It also contributes to DNA double-strand break repair by non-homologous end joining and homologous recombination. DNA polymerase lambda has both template-dependent and template-independent (terminal transferase) DNA polymerase activities, as well as a 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity. DNA polymerase lambda contains one BRCT domain. 80 -349348 cd17716 BRCT_microcephalin_rpt1 first (N-terminal) BRCT domain of microcephalin and similar proteins. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. It has been implicated in chromosome condensation and DNA damage induced cellular responses. It may play a role in neurogenesis and regulation of the size of the cerebral cortex. Microcephalin contains three BRCT repeats. This family corresponds to the first repeat. 78 -349349 cd17717 BRCT_DNA_ligase_IV_rpt2 second BRCT domain of DNA ligase 4 (LIG4) and similar proteins. LIG4 (EC 6.5.1.1), also termed DNA ligase IV, or polydeoxyribonucleotide synthase [ATP] 4, is involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. It is a component of the LIG4-XRCC4 complex that is responsible for the NHEJ ligation step. LIG4 contains two BRCT domains. The family corresponds to the second one. 88 -349350 cd17718 BRCT_TopBP1_rpt3 third BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the third BRCT domain. 83 -349351 cd17719 BRCT_Rev1 BRCT domain of DNA repair protein Rev1 and similar proteins. REV1, also termed alpha integrin-binding protein 80, or AIBP80, or Rev1-like terminal deoxycytidyl transferase, is a DNA template-dependent dCMP transferase required for mutagenesis induced by UV light. 87 -349352 cd17720 BRCT_Bard1_rpt2 second (C-terminal) BRCT domain of BRCA1-associated RING domain protein 1 (Bard1) and similar proteins. Bard1, also termed BARD-1, or RING-type E3 ubiquitin transferase BARD1, is a critical factor in BRCA1-mediated tumor suppression and may also serve as a target for tumorigenic lesions in some human cancers. It associates with BRCA1 (breast cancer-1) to form a heterodimeric BRCA1/BARD1 complex that is responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. The BRCA1/BARD1 complex catalyzes autoubiquitination of BRCA1 and trans ubiquitination of other protein substrates. Its E3 ligase activity is dramatically reduced in the presence of UBX domain protein 1 (UBXN1). BARD-1 contains an N-terminal C3HC4-type RING-HC finger that binds BRCA1, and a C-terminal region with three ankyrin repeats and tandem BRCT domains that bind CstF-50 (cleavage stimulation factor) to modulate mRNA processing and RNAP II stability in response to DNA damage. The family corresponds to the second BRCT domain. 101 -349353 cd17721 BRCT_BRCA1_rpt2 second (C-terminal) BRCT domain of breast cancer type 1 susceptibility protein (BRCA1) and similar proteins. BRCA1, also termed RING finger protein 53 (RNF53), is a RING finger protein encoded by BRCA1, a tumor suppressor gene that regulates all DNA double-strand break (DSB) repair pathways. BRCA1 is frequently mutated in patients with hereditary breast and ovarian cancer (HBOC). Its mutation is also associated with an increased risk of pancreatic, stomach, laryngeal, fallopian tube, and prostate cancer. It plays an important role in the DNA damage response signaling, and has been implicated in various cellular processes such as cell cycle regulation, transcriptional regulation, chromatin remodeling, DNA DSBs, and apoptosis. BRCA1 contains an N-terminal C3HC4-type RING-HC finger, and two BRCT repeats at the C-terminus. The family corresponds to the second BRCT domain. 98 -349354 cd17722 BRCT_DNA_ligase_IV_rpt1 first BRCT domain of DNA ligase 4 (LIG4) and similar proteins. LIG4 (EC 6.5.1.1), also termed DNA ligase IV, or polydeoxyribonucleotide synthase [ATP] 4, is involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. It is a component of the LIG4-XRCC4 complex that is responsible for the NHEJ ligation step. LIG4 contains two BRCT domains. The family corresponds to the first one. 90 -349355 cd17723 BRCT_Rad4_rpt4 fourth BRCT domain of Schizosaccharomyces pombe S-M checkpoint control protein Rad4 and similar proteins. Rad4, also termed P74, or protein cut5, is an essential component for DNA replication and the checkpoint control system, which couples S and M phases. It may directly or indirectly interact with chromatin proteins to form the complex required for the initiation and/or progression of DNA synthesis. Rad4 contains four BRCT repeats. The family corresponds to the fourth one. 74 -349356 cd17724 BRCT_p53bp1_rpt2 Second (C-terminal) BRCT domain in p53-binding protein 1 (p53BP1) and similar proteins. p53BP1, also termed 53BP1, or TP53-binding protein 1 (TP53BP1) , is a double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics, and class-switch recombination (CSR) during antibody genesis. TP53BP1 contains two tandem BRCT repeats. This family corresponds to the second BRCT domain. 87 -349357 cd17725 BRCT_XRCC1_rpt1 First (central) BRCT domain in X-ray repair cross-complementing protein 1 (XRCC1) and similar proteins. XRCC1 is a DNA repair protein that corrects defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. It forms homodimers and interacts with polynucleotide kinase (PNK), DNA polymerase-beta (POLB), DNA ligase III (LIG3), APTX, APLF, and APEX1. XRCC1 contains an N-terminal XRCC1-specific domain and two BRCT domains. This family corresponds to the first one. 80 -349358 cd17726 BRCT_PARP4_like BRCT domain of poly [ADP-ribose] polymerase 4 (PARP-4) and similar proteins. PARP-4, also termed 193 kDa vault protein, or ADP-ribosyltransferase diphtheria toxin-like 4 (ARTD4), or PARP-related/IalphaI-related H5/proline-rich (PH5P), or vault poly(ADP-ribose) polymerase (VPARP), shows poly(ADP-ribosyl)ation activity that catalyzes the formation of ADP-ribose polymers in response to DNA damage. PARP-4 is a component of the vault ribonucleoprotein particle, at least composed of MVP, PARP4 and one or more vault RNAs (vRNAs). The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this group. 85 -349359 cd17727 BRCT_TopBP1_rpt6 sixth BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the sixth BRCT domain. 75 -349360 cd17728 BRCT_TopBP1_rpt8 eighth (C-terminal) BRCT domain of DNA topoisomerase 2-binding protein 1. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the eighth BRCT domain. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this group. 80 -349361 cd17729 BRCT_CTDP1 BRCT domain of RNA polymerase II subunit A C-terminal domain phosphatase (CTDP1) and similar proteins. CTDP1 (EC 3.1.3.16), also termed TFIIF-associating CTD phosphatase, or TFIIF- associating RNA polymerase C-terminal domain phosphatase (FCP1), promotes the activity of RNA polymerase II through processively dephosphorylating 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. It plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. 97 -349362 cd17730 BRCT_PAXIP1_rpt4 fourth BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the fourth BRCT domain. 73 -349363 cd17731 BRCT_TopBP1_rpt2_like second BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the second BRCT domain. 77 -349364 cd17732 BRCT_Ect2_rpt2 second BRCT domain of epithelial cell-transforming sequence 2 protein (ECT2) and similar proteins. ECT2 is a guanine nucleotide exchange factor (GEF) for Rho GTPases, phosphorylated in G2/M phases, and is involved in the regulation of cytokinesis. It contains two tandem BRCT domains. The family corresponds to the second BRCT domain. 80 -349365 cd17733 BRCT_Ect2_rpt1 first BRCT domain of epithelial cell-transforming sequence 2 protein (ECT2) and similar proteins. ECT2 is a guanine nucleotide exchange factor (GEF) for Rho GTPases, phosphorylated in G2/M phases, and is involved in the regulation of cytokinesis. It contains two tandem BRCT domains. The family corresponds to the first BRCT domain. 76 -349366 cd17734 BRCT_Bard1_rpt1 first BRCT domain of BRCA1-associated RING domain protein 1 (Bard1) and similar proteins. Bard1, also termed BARD-1, or RING-type E3 ubiquitin transferase BARD1, is a critical factor in BRCA1-mediated tumor suppression and may also serve as a target for tumorigenic lesions in some human cancers. It associates with BRCA1 (breast cancer-1) to form a heterodimeric BRCA1/BARD1 complex that is responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. The BRCA1/BARD1 complex catalyzes autoubiquitination of BRCA1 and trans ubiquitination of other protein substrates. Its E3 ligase activity is dramatically reduced in the presence of UBX domain protein 1 (UBXN1). BARD-1 contains an N-terminal C3HC4-type RING-HC finger that binds BRCA1, and a C-terminal region with three ankyrin repeats and tandem BRCT domains that bind CstF-50 (cleavage stimulation factor) to modulate mRNA processing and RNAP II stability in response to DNA damage. The family corresponds to the first BRCT domain. 80 -349367 cd17735 BRCT_BRCA1_rpt1 first BRCT domain of breast cancer type 1 susceptibility protein (BRCA1) and similar proteins. BRCA1, also termed RING finger protein 53 (RNF53), is a RING finger protein encoded by BRCA1, a tumor suppressor gene that regulates all DNA double-strand break (DSB) repair pathways. BRCA1 is frequently mutated in patients with hereditary breast and ovarian cancer (HBOC). Its mutation is also associated with an increased risk of pancreatic, stomach, laryngeal, fallopian tube, and prostate cancer. It plays an important role in the DNA damage response signaling, and has been implicated in various cellular processes such as cell cycle regulation, transcriptional regulation, chromatin remodeling, DNA DSBs, and apoptosis. BRCA1 contains an N-terminal C3HC4-type RING-HC finger, and two BRCT (BRCA1 C-terminus domain) repeats at the C-terminus. The family corresponds to the first BRCT domain. 97 -349368 cd17736 BRCT_microcephalin_rpt2 second BRCT domain of microcephalin and similar proteins. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. It has been implicated in chromosome condensation and DNA damage induced cellular responses. It may play a role in neurogenesis and regulation of the size of the cerebral cortex. Microcephalin contains three BRCT repeats. This family corresponds to the second repeat. 76 -349369 cd17737 BRCT_TopBP1_rpt1 first BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the first BRCT domain. 72 -349370 cd17738 BRCT_TopBP1_rpt7 seventh BRCT domain of DNA topoisomerase 2-binding protein 1. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the seventh BRCT domain. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is missing in this group. 75 -349371 cd17740 BRCT_Rad4_rpt1 first BRCT domain of Schizosaccharomyces pombe S-M checkpoint control protein Rad4 and similar proteins. Rad4, also termed P74, or protein cut5, is an essential component for DNA replication and the checkpoint control system which couples the S and M phases. It may directly or indirectly interact with chromatin proteins to form the complex required for the initiation and/or progression of DNA synthesis. Rad4 contains four BRCT repeats. The family corresponds to the first one. 82 -349372 cd17741 BRCT_nibrin BRCT domain of nibrin and similar proteins. Nibrin (NBN), also termed Nijmegen breakage syndrome protein 1 (NBS1), or cell cycle regulatory protein p95, is a novel DNA double-strand break repair protein that is mutated in Nijmegen breakage syndrome. It is a component of the MRE11-RAD50-NBN (MRN complex) which plays a critical role in the cellular response to DNA damage and the maintenance of chromosome integrity. The BRCT (Breast Cancer Suppressor Protein BRCA1, carboxy-terminal) domain is found within many DNA damage repair and cell cycle checkpoint proteins. The unique diversity of this domain superfamily allows BRCT modules to interact forming homo/hetero BRCT multimers, BRCT-non-BRCT interactions, and interactions within DNA strand breaks. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is absent in this group. 74 -349373 cd17742 BRCT_CHS5_like BRCT domain of yeast chitin biosynthesis protein CHS5 and similar proteins. CHS5, also termed protein CAL3, is a component of the CHS5/6 complex which mediates export of specific cargo proteins, including chitin synthase CHS3. It is also involved in targeting FUS1 to sites of polarized growth. 77 -349374 cd17743 BRCT_BRC1_like_rpt5 fifth BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. The family also includes Cryptococcus neoformans DNA ligase 4 (LIG4, also known as DNA ligase IV or polydeoxyribonucleotide synthase [ATP] 4), which is involved in dsDNA break repair, and plays a role in non-homologous integration (NHI) pathways where it is required in the final step of non-homologus end-joining. Members in this family contain six BRCT domains. This family corresponds to the fifth one. 70 -349375 cd17744 BRCT_MDC1_rpt1 first BRCT domain of mediator of DNA damage checkpoint protein 1 (MDC1) and similar proteins. MDC1, also termed nuclear factor with BRCT domains 1 (NFBD1), is a nuclear chromatin-associated protein that is required for checkpoint mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle. It directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. MDC1 contains a forkhead-associated (FHA) domain and two BRCT domains, as well as an internal 41-amino acid repeat sequence. The family corresponds to the first BRCT domain. 72 -349376 cd17745 BRCT_p53bp1_rpt1 first (central) BRCT domain in p53-binding protein 1 (p53BP1) and similar proteins. p53BP1, also termed 53BP1, or TP53-binding protein 1 (TP53BP1) , is a double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis. TP53BP1 contains two tandem BRCT repeats. This family also includes Schizosaccharomyces pombe Crb2, which is a checkpoint mediator required for the cellular response to DNA damage. This model corresponds to the first BRCT domain. 99 -349377 cd17746 BRCT_Rad4_rpt2 second BRCT domain of Schizosaccharomyces pombe S-M checkpoint control protein Rad4 and similar proteins. Rad4, also termed P74, or protein cut5, is an essential component for DNA replication and the checkpoint control system which couples S and M phases. It may directly or indirectly interact with chromatin proteins to form the complex required for the initiation and/or progression of DNA synthesis. Rad4 contains four BRCT repeats. The family corresponds to the second one. 91 -349378 cd17747 BRCT_PARP1 BRCT domain of poly [ADP-ribose] polymerase 1 (PARP-1) and similar proteins. PARP-1 (EC 2.4.2.30), also termed ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1), or NAD(+) ADP-ribosyltransferase 1 (ADPRT 1), or poly[ADP-ribose] synthase 1, is involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. 76 -349379 cd17748 BRCT_DNA_ligase_like BRCT domain of bacterial NAD-dependent DNA ligase (LigA) and similar proteins. LigA, also called NAD(+)-dependent polydeoxyribonucleotide synthase, catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double-stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this family. 76 -349380 cd17749 BRCT_TopBP1_rpt4 fourth BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also called DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the fourth BRCT domain. 84 -349381 cd17750 BRCT_SLF1 BRCT domain of SMC5-SMC6 complex localization factor protein 1 (SLF1) and similar proteins. SLF1, also termed Smc5/6 localization factor 1, or ankyrin repeat domain-containing protein 32 (ANKRD32), or BRCT domain-containing protein 1 (BRCTD1), plays a role in the DNA damage response (DDR) pathway by regulating post replication repair of UV-damaged DNA and genomic stability maintenance. It is a component of the SLF1-SLF2 complex that acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand break (DSB) sites on chromatin during DNA repair in response to stalled replication forks. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is missing in this group. 81 -349382 cd17751 BRCT_microcephalin_rpt3 third BRCT domain of microcephalin and similar proteins. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. It has been implicated in chromosome condensation and DNA damage induced cellular responses. It may play a role in neurogenesis and regulation of the size of the cerebral cortex. Microcephalin contains three BRCT repeats. This family corresponds to the third repeat. 75 -349383 cd17752 BRCT_RFC1 BRCT domain of replication factor C subunit 1 (RFC1) and similar proteins. RFC1, also termed activator 1 140 kDa subunit, or A1 140 kDa subunit, or activator 1 large subunit, or activator 1 subunit 1, or replication factor C 140 kDa subunit, or RF-C 140 kDa subunit, or RFC140, is the large subunit of replication factor C (RFC), which is a heteropentameric protein essential for DNA replication and repair. RFC1 can bind single- or double-stranded DNA. It could play a role in DNA transcription regulation as well as DNA replication and/or repair. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this family. 79 -350659 cd17753 MCM2 DNA replication licensing factor Mcm2. Mcm2 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 325 -350660 cd17754 MCM3 DNA replication licensing factor Mcm3. Mcm3 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 299 -350661 cd17755 MCM4 DNA replication licensing factor Mcm4. Mcm4 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 309 -350662 cd17756 MCM5 DNA replication licensing factor Mcm5. Mcm5 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 317 -350663 cd17757 MCM6 DNA replication licensing factor Mcm6. Mcm6 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 307 -350664 cd17758 MCM7 DNA replication licensing factor Mcm7. Mcm7 is a helicase that play an important role in replication. It is part of the heterohexameric ring-shaped Mcm2-7 complex, which is part of the replicative helicase that unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. 306 -350665 cd17759 MCM8 DNA helicase Mcm8. Mcm8 plays an important role homologous recombination repair. It forms a complex with Mcm9 that is required for homologous recombination (HR) repair induced by DNA interstrand crosslinks (ICLs). 289 -350666 cd17760 MCM9 DNA helicase Mcm9. Mcm9 plays an important role homologous recombination repair. It forms a complex with Mcm8 that is required for homologous recombination (HR) repair induced by DNA interstrand crosslinks (ICLs). 299 -350667 cd17761 MCM_arch archaeal MCM protein. archaeal MCM proteins form a homohexameric ring homologous to the eukaryotic Mcm2-7 helicase and also function as the replicative helicase at the replication fork 308 -350162 cd17762 AMN AMP nucleosidase. AMP nucleosidase (AMN) catalyzes the hydrolysis of AMP to ribose 5-phosphate and adenine. It is a prokaryotic enzyme which plays a role in purine nucleoside salvage and intracellular AMP level regulation. AMN is active as a homohexamer; each monomer is comprised of a catalytic domain and a putative regulatory domain. This model represents the catalytic domain. AMN belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 242 -350163 cd17763 UP_hUPP-like uridine phosphorylases similar to a human UPP1 and UPP2. Uridine phosphorylase (UP) catalyzes the reversible phosphorolysis of uracil ribosides and analogous compounds to their respective nucleobases and ribose 1-phosphate. Human UPP1 has a role in the activation of pyrimidine nucleoside analogues used in chemotherapy, such as 5-fluorouracil. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 276 -350164 cd17764 MTAP_SsMTAPI_like 5'-deoxy-5'-methylthioadenosine phosphorylases similar to Sulfolobus solfataricus MTAPI. 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MTA) to adenine and 5-methylthio-D-ribose-1-phosphate. Sulfolobus solfataricus MTAPI will utilize inosine, guanosine, and adenosine as substrates, in addition to MTA. Two MTAPs have been isolated from S. solfataricus: SsMTAP1 and SsMTAPII, SsMTAPII belongs to a different subfamily of the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-I family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 220 -350165 cd17765 PNP_ThPNP_like purine nucleoside phosphorylases similar to Thermus thermophiles PNP. Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine nucleosides. Thermus thermophiles PNP catalyzes the phosphorolysis of guanosine but not adenosine. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 234 -350166 cd17766 futalosine_nucleosidase_MqnB futalosine nucleosidase which catalyzes the hydrolysis of futalosine to dehypoxanthinylfutalosine and a hypoxanthine base; similar to Thermus thermophiles MqnB. Futalosine nucleosidase (MqnB, EC 3.2.2.26, also known as futalosine hydrolase) functions in an alternative menaquinone biosynthetic pathway (the futalosine pathway) which operates in some bacteria, including Streptomyces coelicolor and Thermus thermophiles. This domain model belongs to the PNP_UDP_1 superfamily which includes members which accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. PNP_UDP_1 includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Superfamily members have different physiologically relevant quaternary structures: hexameric such as the trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP, homotrimeric such as human PNP and Escherichia coli PNPII (XapA), homohexomeric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD), or homodimeric such as human and Trypanosoma brucei UP. The PNP_UDP_2 (nucleoside phosphorylase-II family) is a different structural family. 217 -350167 cd17767 UP_EcUdp-like uridine phosphorylases similar to Escherichia coli Udp and related phosphorylases. Uridine phosphorylase (UP) is specific for pyrimidines, and is involved in pyrimidine salvage and in the maintenance of uridine homeostasis. In addition to E. coli Udp, this subfamily includes Shewanella oneidensis MR-1 UP and Plasmodium falciparum purine nucleoside phosphorylase (PfPNP). PfPNP is an outlier in terms of genetic distance from the other families of PNPs. PfPNP is catalytically active for inosine and guanosine, and in addition, has a weak UP activity. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 239 -350168 cd17768 adenosylhopane_nucleosidase_HpnG-like adenosylhopane nucleosidase which cleaves adenine from adenosylhopane to form ribosyl hopane; similar to Burkholderia cenocepacia HpnG. adenosylhopane nucleosidase HpnG, catalyzes the second step in hopanoid side-chain biosynthesis. Hopanoids are bacterial membrane lipids. This CD belongs to the PNP_UDP_1 superfamily which includes members which accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. PNP_UDP_1 includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Superfamily members have different physiologically relevant quaternary structures: hexameric such as the trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP, homotrimeric such as human PNP and Escherichia coli PNPII (XapA), homohexameric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD), or homodimeric such as human and Trypanosoma brucei UP. The PNP_UDP_2 (nucleoside phosphorylase-II family) is a different structural family. 188 -350169 cd17769 NP_TgUP-like nucleoside phosphorylases similar to Toxoplasma gondii uridine phosphorylase. This subfamily is composed of mostly uncharacterized proteins with similarity to Toxoplasma gondii uridine phosphorylase (TgUPase). Toxoplasma gondii appears to have a single non-specific uridine phosphorylase which catalyzes the reversible phosphorolysis of uridine, deoxyuridine and thymidine, rather than the two distinct enzymes of mammalian cells: uridine phosphorylase (nucleoside phosphorylase-I family) and thymidine phosphorylase (nucleoside phosphorylase-II family). TgUPase is a potential target for intervention against toxoplasmosis. It belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 255 -341407 cd17771 CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc CBS domain protein. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT_Pol-beta-like domain, and the DUF294 domain. Members of CAP_ED, include CAP which binds cAMP, FNR (fumarate and nitrate reductase) which uses an iron-sulfur cluster to sense oxygen, and CooA a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. The NT_Pol-beta-like domain includes the Nucleotidyltransferase (NT) domains of DNA polymerase beta and other family X DNA polymerases, as well as the NT domains of class I and class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly (A) polymerases, terminal uridylyl transferases, Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. DUF294 is a putative nucleotidyltransferase with a conserved DxD motif. CBS is a small domain originally identified in cystathionine beta-synthase and subsequently found in a wide range of different proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 115 -341408 cd17772 CBS_pair_DHH_polyA_Pol_assoc Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the DHH and nucleotidyltransferase (NT) domains. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with an upstream DHH domain which performs a phosphoesterase function and a downstream nucleotidyltransferase (NT) domain of family X DNA polymerases. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 112 -341409 cd17773 CBS_pair_NeuB Two tandem repeats of the cystathionine beta-synthase (CBS pair) domain present in N-acylneuraminate-9-phosphate synthase. This CD contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domain present in N-acylneuraminate-9-phosphate synthase NeuB. NeuB catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine, directly forming N-acetylneuraminic acid (or sialic acid). The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 118 -341410 cd17774 CBS_two-component_sensor_histidine_kinase_repeat2 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins, repeat 2. This cd contains 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins. Two-component regulation is the predominant form of signal recognition and response coupling mechanism used by bacteria to sense and respond to diverse environmental stresses and cues ranging from common environmental stimuli to host signals recognized by pathogens and bacterial cell-cell communication signals. The structures of both sensors and regulators are modular, and numerous variations in domain architecture and composition have evolved to tailor to specific needs in signal perception and signal transduction. The simplest histidine kinase sensors consists of only sensing and kinase domains. The more complex hybrid sensors contain an additional REC domain typical of two-component regulators and in some cases a C-terminal histidine phosphotransferase (HPT) domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 137 -341411 cd17775 CBS_pair_bact_arch Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and archaea. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 117 -341412 cd17776 CBS_pair_arch Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 115 -341413 cd17777 CBS_arch_repeat1 CBS pair domains found in archeal proteins, repeat 1. CBS pair domains found in archeal proteins that contain 2 repeats. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. 137 -341414 cd17778 CBS_arch_repeat2 CBS pair domains found in archeal proteins, repeat 2. CBS pair domains found in archeal proteins that contain 2 repeats. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. 131 -341415 cd17779 CBS_archAMPK_gamma-repeat1 signal transduction protein with CBS domains. Archeal gamma-subunit of 5'-AMP-activated protein kinase (AMPK) contains four CBS domains in tandem repeats, similar to eukaryotic homologs. AMPK is an important regulator of metabolism and of energy homeostasis. It is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma subunit senses the intracellular energy status by competitively binding AMP and ATP and is believed to be responsible for allosteric regulation of the whole complex. In humans mutations in gamma- subunit of AMPK are associated with hypertrophic cardiomiopathy, Wolff-Parkinson-White syndrome and glycogen storage in the skeletal muscle. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. 136 -341416 cd17780 CBS_pair_arch1_repeat1 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 1. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 106 -341417 cd17781 CBS_pair_MUG70_1 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains similar to MUG70 repeat1. Two tandem repeats of the cystathionine beta-synthase (CBS pair) domain, present in MUG70. The MUG70 protein, encoded by the Meiotically Up-regulated Gene 70, plays a role in meiosis and contains, beside the two CBS pairs, a PB1 domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 118 -341418 cd17782 CBS_pair_MUG70_2 Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains similar to MUG70 repeat2. Two tandem repeats of the cystathionine beta-synthase (CBS pair) domain, present in MUG70. The MUG70 protein, encoded by the Meiotically Up-regulated Gene 70, plays a role in meiosis and contains, beside the two CBS pairs, a PB1 domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 118 -341419 cd17783 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 108 -341420 cd17784 CBS_pair_Euryarchaeota Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in Euryarchaeota. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 120 -341421 cd17785 CBS_pair_bac_arch Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and archaea. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 136 -341422 cd17786 CBS_pair_Thermoplasmatales Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in Thermoplasmatales. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 114 -341423 cd17787 CBS_pair_ACT Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in Thermatoga in combination with an ACT domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 111 -341424 cd17788 CBS_pair_bac Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 137 -341425 cd17789 CBS_pair_plant_CBSX Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains from plant CBSX proteins. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains of plant single cystathionine beta-synthase (CBS) pair proteins (CBSX). CBSX1 and CBSX2 have been identified as redox regulators of the thioredoxin (Trx) system. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 141 -341356 cd17790 7tmA_mAChR_M1 muscarinic acetylcholine receptor subtype M1, member of the class A family of seven-transmembrane G protein-coupled receptors. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. M1 is the dominant mAchR subtype involved in learning and memory. It is linked to synaptic plasticity, neuronal excitability, and neuronal differentiation during early development. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 262 -341490 cd17791 HipA-like serine/threonine-protein kinases similar to HipA and CtkA. This family contains serine/threonine-protein kinases similar to Escherichia coli HipA, a type II toxin-antitoxin (TA) system HipA family toxin that phosphorylates Glu-tRNA-ligase (GltX), preventing it from being charged, leading to an increase in uncharged tRNA(Glu), and is the toxin component of the HipA-HipB TA module, as well as similar to the Helicobacter pylori serine/threonine-protein kinase CtkA (proinflammatory kinase), which has been shown to be secreted by the bacteria and to induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. 284 -341491 cd17792 CtkA serine/threonine-protein kinase CtkA and similar proteins. The Helicobacter pylori serine/threonine-protein kinase CtkA (proinflammatory kinase), encoded by the jhp940 gene, has been shown to be secreted by the bacterium and to induce cytokines in gastric epithelial cells. It may play a role in chronic gastric inflammation. CtkA autophosphorylates itself at a threonine residue near the N-terminus and it translocates into cultured human cells. It also enhances phosphorylation of the NF-kappaB p65 subunit at Ser276 in human epithelial cancer cells; phosphorylation at this position is known to activate the transcriptional activity of NF-kappaB. 281 -341492 cd17793 HipA type II toxin-antitoxin sytem toxin HipA and similar proteins. This family contains type II toxin-antitoxin (TA) system HipA family toxins similar to Escherichia coli and Shewanella oneidensis HipA, which is a serine/threonine-protein kinase that phosphorylates Glu-tRNA-ligase (GltX), preventing it from being charged, leading to an increase in uncharged tRNA(Glu). This induces amino acid starvation and the stringent response via RelA/SpoT and increased (p)ppGpp levels, which inhibits replication, transcription, translation and cell wall synthesis, reducing growth and leading to persistence and multidrug resistance. HipA is the toxin component of the HipA-HipB TA module that is a major factor in persistence and bioflim formation; its toxic effect is neutralized by its cognate antitoxin HipB. HipA, with HipB, acts as a a corepressor for transcription of the hipBA promoter. Structures of HipAB:DNA complexes from both Escherichia coli and Shewanella oneidensis reveal distinct complex assembly. 358 -341493 cd17808 HipA_Ec_like type II toxin-antitoxin sytem toxin HipA from Escherichia coli and similar proteins. This family contains type II toxin-antitoxin (TA) system HipA family toxins similar to Escherichia coli HipA, a serine/threonine-protein kinase that phosphorylates Glu-tRNA-ligase (GltX), preventing it from being charged, leading to an increase in uncharged tRNA(Glu). This induces amino acid starvation and the stringent response via RelA/SpoT and increased (p)ppGpp levels, which inhibits replication, transcription, translation and cell wall synthesis, reducing growth and leading to persistence and multidrug resistance. HipA is the toxin component of the HipA-HipB TA module that is a major factor in persistence and bioflim formation; its toxic effect is neutralized by its cognate antitoxin HipB. HipA, with HipB, acts as a a corepressor for transcription of the hipBA promoter. In the Escherichia coli HipAB:DNA promoter complex, HipA forms a dimer and each HipA monomer interacts with a HipB homodimer which binds DNA. The HipAB component of the complex is composed of two HipA and four HipB subunits. 401 -341494 cd17809 HipA_So_like type II toxin-antitoxin sytem toxin HipA from Shewanella oneidensis and similar proteins. This family contains type II toxin-antitoxin (TA) system HipA family toxins similar to Shewanella oneidensis HipA, a serine/threonine-protein kinase that phosphorylates Glu-tRNA-ligase (GltX), preventing it from being charged, leading to an increase in uncharged tRNA(Glu). This induces amino acid starvation and the stringent response via RelA/SpoT and increased (p)ppGpp levels, which inhibits replication, transcription, translation and cell wall synthesis, reducing growth and leading to persistence and multidrug resistance. HipA is the toxin component of the HipA-HipB TA module that is a major factor in persistence and bioflim formation; its toxic effect is neutralized by its cognate antitoxin HipB. HipA, with HipB, acts as a a corepressor for transcription of the hipBA promoter. In the Shewanella oneidensis HipAB:DNA promoter complex, HipB forms a dimer that binds the duplex operator DNA, with each HipB monomer interacting with separate HipA monomers. The HipAB component of the complex is composed of two HipA and two HipB subunits. 405 -341489 cd17814 Fe-ADH-like iron-containing alcohol dehydrogenases (Fe-ADH)-like. This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 374 -349777 cd17868 GPN GPN-loop GTPase. GPN-loop GTPases are deeply evolutionarily conserved family of three small GTPases, Gpn1, 2, and 3. They form heterodimers, interact with RNA polymerase II and may function in nuclear import of RNA polymerase II. 198 -349778 cd17869 TadZ-like pilus assembly protein TadZ. Pilus assembly protein TadZ is involved in the production of a variant of type IV pili. It is part of the SIMIBI superfamily which contains a variety of proteins which share a common ATP-binding domain. Functionally, proteins in this superfamily use the energy from hydrolysis of NTP to transfer electron or ion. 219 -349779 cd17870 GPN1 GPN-loop GTPase 1. GPN-loop GTPase 1 (GPN1, also kown as MBD2-interacting protein or MBDin, RNAPII-associated protein 4, and XPA-binding protein 1) is a GTPase is required for nuclear targeting of RNA polymerase II. It forms heterodimers with GPN3. 241 -349780 cd17871 GPN2 GPN-loop GTPase 2. GPN-loop GTPase 2 (GPN2) is a small GTPase required for proper localization of RNA polymerase II and III (RNAPII and RNAPIII). It forms heterodimers with GPN1 or GPN3. 196 -349781 cd17872 GPN3 GPN-loop GTPase 3. GPN-loop GTPase 3 (GPN3) is a small GTPase that is required for nuclear targeting of RNA polymerase II. It forms heterodimers with GPN1. 196 -349782 cd17873 FlhF signal-recognition particle GTPase FlhF. FlhF protein is a signal-recognition particle (SRP)-type GTPase that is essential for the placement and assembly of polar flagella. It is similar to the 54 kd subunit (SRP54) of the signal recognition particle (SRP) that mediates the transport to or across the plasma membrane in bacteria and the endoplasmic reticulum in eukaryotes. SRP recognizes N-terminal signal sequences of newly synthesized polypeptides at the ribosome. The SRP-polypeptide complex is then targeted to the membrane by an interaction between SRP and its cognated receptor (SR). 189 -349783 cd17874 FtsY signal recognition particle receptor FtsY. FtsY, the bacterial signal-recognition particle (SRP) receptor (SR), is homologous to the SRP receptor alpha-subunit (SRalpha) of the eukaryotic SR. It interacts with the signal-recognition particle (SRP) and is required for the co-translational membrane targeting of proteins. 199 -349784 cd17875 SRP54_G GTPase domain of the signal recognition 54 kDa subunit. The signal recognition particle (SRP) mediates the transport to or across the plasma membrane in bacteria and the endoplasmic reticulum in eukaryotes. SRP recognizes N-terminal signal sequences of newly synthesized polypeptides at the ribosome. The SRP-polypeptide complex is then targeted to the membrane by an interaction between SRP and its cognated receptor (SR). In mammals, SRP consists of six protein subunits and a 7SL RNA. One of these subunits is a 54 kd protein (SRP54), which is a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 is a multidomain protein that consists of an N-terminal domain, followed by a central G (GTPase) domain and a C-terminal M domain. 193 -349785 cd17876 SRalpha_C C-terminal domain of signal recognition particle receptor alpha subunit. The signal-recognition particle (SRP) receptor (SR) alpha-subunit (SRalpha) of the eukaryotic SR interacts with the signal-recognition particle (SRP) and is essential for the co-translational membrane targeting of proteins. 204 -350170 cd17877 NP_MTAN-like nucleoside phosphorylases similar to 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases. This subfamily includes both bacterial and plant 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTANs), as well as futalosine nucleosidase and adenosylhopane nucleosidase. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while plant enzymes are highly specific for MTA and are unable to metabolize SAH or show significantly reduced activity towards SAH. MTAN is involved in methionine and S-adenosyl-methionine recycling, polyamine biosynthesis, and bacterial quorum sensing. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 210 -350625 cd17880 D-Ala-D-Ala_dipeptidase D-Ala-D-Ala_dipeptidase. This family contains D-Ala-D-Ala dipeptidase enzymes which include D-alanyl-D-alanine dipeptidase vanX and Aad, among others. VanX is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci and other bacteria (both Gram-positive and Gram-negative). It is part of a gene cluster that affects cell-wall biosynthesis. The operon triggers the termination of peptidoglycan precursors by D-Ala-(R)-lactate instead of D-Ala-D-Ala dipeptides. The enzyme is stereospecific, as L-Ala-L-Ala, D-Ala-L-Ala and L-Ala-D-Ala are not substrates. It fasmily includes Lactobacillus Aad peptidase and belongs in the MEROPS peptidase family M15, subfamily D. 110 -350087 cd17900 ArfGap_ASAP3 ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3). The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma. 124 -350088 cd17901 ArfGap_ARAP1 ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1. The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome. 116 -350089 cd17902 ArfGap_ARAP3 ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3. The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion. 116 -350090 cd17903 ArfGap_AGFG2 ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2). The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication. 116 -350670 cd17912 DEAD-like_helicase_N N-terminal helicase domain of the DEAD-box helicase superfamily. The DEAD-like helicase superfamily is a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. The N-terminal domain contains the ATP-binding region. 81 -350671 cd17913 DEXQc_Suv3 DEXQ-box helicase domain of Suv3. Suppressor of var1 3-like protein (Suv3) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome (mtEXO) with exonuclease PNP (polynucleotide phosphorylase), that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Suv3 plays a role in the RNA surveillance system in mitochondria; it regulates the stability of mature mRNAs, the removal of aberrantly formed mRNAs and the rapid degradation of non coding processing intermediates. It also confers salinity and drought stress tolerance by maintaining both photosynthesis and antioxidant machinery, probably via an increase in plant hormone levels such as gibberellic acid (GA3), the cytokinin zeatin (Z), and indole-3-acetic acid (IAA). Suv3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 142 -350672 cd17914 DExxQc_SF1-N DEXQ-box helicase domain of superfamily 1 helicase. The superfamily (SF)1 family members include UvrD/Rep, Pif1-like, and Upf-1-like proteins. Like SF2, they do not form toroidal, predominantly hexameric structures like SF3-6. Their helicase core is surrounded by C and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains or domains engaged in protein-protein interactions. SF1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 116 -350673 cd17915 DEAHc_XPD-like DEAH-box helicase domain of XPD family DEAD-like helicases. The xeroderma pigmentosum group D (XPD)-like family members are DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 138 -350674 cd17916 DEXHc_UvrB DEXH-box helicase domain of excinuclease ABC subunit B. Excinuclease ABC subunit B (or UvrB) plays a central role in nucleotide excision repair (NER). Together with other components of the NER system, like UvrA, UvrC, UvrD (helicase II) and DNA polymerase I, it recognizes and cleaves damaged DNA in a multistep ATP-dependent reaction. UvrB is critical for the second phase of damage recognition by verifying the nature of the damage and forming the pre-incision complex. Its ATPase site becomes activated in the presence of UvrA and damaged DNA, but its activity is strand destabilization via distortion of the DNA at lesion site, with very limited DNA unwinding. UvrB is a member of the DEAD-like helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 299 -350675 cd17917 DEXHc_RHA-like DEXH-box helicase domain of DEAD-like helicase RHA family proteins. The RNA helicase A (RHA) family includes RHA, also called DEAH-box helicase 9 (DHX9), DHX8, DHX15-16, DHX32-38, and many others. The RHA family belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 159 -350676 cd17918 DEXHc_RecG DEXH/Q-box helicase domain of DEAD-like helicase RecG family proteins. The DEAD-like helicase RecG family is part of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 180 -350677 cd17919 DEXHc_Snf DEXH/Q-box helicase domain of DEAD-like helicase Snf family proteins. Sucrose Non-Fermenting (SNF) proteins DEAD-like helicases superfamily. A diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 182 -350678 cd17920 DEXHc_RecQ DEXH-box helicase domain of RecQ family proteins. The RecQ family of the type II DEAD box helicase superfamily is a family of highly conserved DNA repair helicases. This domain contains the ATP-binding region. 200 -350679 cd17921 DEXHc_Ski2 DEXH-box helicase domain of DEAD-like helicase Ski2 family proteins. Ski2-like RNA helicases play an important role in RNA degradation, processing, and splicing pathways. They belong to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 181 -350680 cd17922 DEXHc_LHR-like DEXH-box helicase domain of LHR. Large helicase-related protein (LHR) is a DNA damage-inducible helicase that uses ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single-stranded DNA (ssDNA) and to unwind RNA:DNA duplexes. This group also includes related bacterial and archaeal helicases from the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 166 -350681 cd17923 DEXHc_Hrq1-like DEAH-box helicase domain of Hrq1 and similar proteins. Yeast Hrq1, similar to RecQ4, plays a role in DNA inter-strand crosslink (ICL) repair and in telomere maintenance. Hrq1 lacks the Sld2-like domain found in RecQ4. Hrq1 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 182 -350682 cd17924 DDXDc_reverse_gyrase DDXD-box helicase domain of reverse gyrase. Reverse gyrase modifies the topological state of DNA by introducing positive supercoils in an ATP-dependent process. Reverse gyrase belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 189 -350683 cd17925 DEXDc_ComFA DEXD-box helicase domain of ComFA. ATP-dependent helicase ComFA (also called ComF operon protein 1) is part of the complex mediating the binding and uptake of single-stranded DNA. ComFA is required for DNA uptake but not for binding. It belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 143 -350684 cd17926 DEXHc_RE DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins. This family is composed of helicase restriction enzymes and similar proteins such as TFIIH basal transcription factor complex helicase XPB subunit. These proteins are part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 146 -350685 cd17927 DEXHc_RIG-I DEXH-box helicase domain of DEAD-like helicase RIG-I family proteins. Members of the RIG-I family include FANCM, dicer, Hef, and the RIG-I-like receptors. Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). Hef (helicase-associated endonuclease fork-structure) is involved in stalled replication fork repair. RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprises RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). The RIG-I family is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 201 -350686 cd17928 DEXDc_SecA DEXD-box helicase domain of SecA. SecA is a part of the Sec translocase that transports the vast majority of bacterial and ER-exported proteins. SecA binds both the signal sequence and the mature domain of the preprotein emerging from the ribosome. SecA belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 230 -350687 cd17929 DEXHc_priA DEXH-box helicase domain of PriA. PriA, also known as replication factor Y or primosomal protein N', is a 3'-->5' superfamily 2 DNA helicase that acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. PriA is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 178 -350688 cd17930 DEXHc_cas3 DEXH/Q-box helicase domain of Cas3. CRISPR-associated (Cas) 3 is a nuclease-helicase responsible for degradation of dsDNA. The two enzymatic units of Cas3, a histidine-aspartate (HD) nuclease and a Superfamily 2 (SF2) helicase, may be expressed from separate genes as Cas3' (SF2 helicase) and Cas3'' (HD nuclease) or may be fused as a single HD-SF2 polypeptide. The nucleolytic activity of most Cas3 enzymes is transition metal ion-dependent. Cas3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 186 -350689 cd17931 DEXHc_viral_Ns3 DEXH-box helicase domain of NS3 protease-helicase. NS3 is a nonstructural multifunctional protein found in pestiviruses that contains an N-terminal protease and a C-terminal helicase. The N-terminal domain is a chymotrypsin-like serine protease, which is responsible for most of the maturation cleavages of the polyprotein precursor in the cytosolic side of the endoplasmic reticulum membrane. The C-terminal domain, about two-thirds of NS3, is a helicase belonging to superfamily 2 (SF2) thought to be important for unwinding highly structured regions of the RNA genome during replication. NS3 plays an essential role in viral polyprotein processing and genome replication. NS3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 151 -350690 cd17932 DEXQc_UvrD DEXQD-box helicase domain of UvrD. UvrD is a highly conserved helicase involved in mismatch repair, nucleotide excision repair, and recombinational repair. It plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species including Helicobacter pylori and Escherichia coli. UvrD is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 189 -350691 cd17933 DEXSc_RecD-like DEXS-box helicase domain of RecD and similar proteins. RecD is a member of the RecBCD (EC 3.1.11.5, Exonuclease V) complex. It is the alpha chain of the complex and functions as a 3'-5' helicase. The RecBCD enzyme is both a helicase that unwinds, or separates the strands of DNA, and a nuclease that makes single-stranded nicks in DNA. RecD is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 155 -350692 cd17934 DEXXQc_Upf1-like DEXXQ-box helicase domain of Upf1-like helicase. The Upf1-like helicase family includes UPF1, HELZ, Mov10L1, Aquarius, IGHMBP2 (SMUBP2), and similar proteins. They belong to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 133 -350693 cd17935 EEXXQc_AQR EEXXQ-box helicase domain of AQR. Aquarius (AQR) is a multifunctional RNA helicase that binds precursor-mRNA introns at a defined position and is part of a pentameric intron-binding complex (IBC). It is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 207 -350694 cd17936 EEXXEc_NFX1 EEXXE-box helicase domain of NFX1. Human NFX1 protein was identified as a protein that represses class II MHC (major histocompatibility complex) gene expression. NFX1 binds a conserved cis-acting element, termed the X-box, in promoters of human class II MHC genes. The Cys-rich region contains several NFX1-type zinc finger domains. Frequently, a R3H domain is present in the C-terminus, and a RING finger domain and a PAM2 motif are present in the N-terminus. The lack of R3H and PAM2 motifs in the plant proteins indicates functional differences. Plant NFX1-like proteins are proposed to modulate growth and survival by coordinating reactive oxygen species, salicylic acid, further biotic stress and abscisic acid responses. A common feature of all members may be E3 ubiquitin ligase, due to the presence of a RING finger domain, as well as DNA binding. NFX1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 178 -350695 cd17937 DEXXYc_viral_SF1-N DEXXY-box helicase domain of viral superfamily 1 helicase. Superfamily 1 (SF1) helicases are nucleic acid motor proteins that couple ATP hydrolysis to translocation along with the concomitant unwinding of DNA or RNA. The members here contain arterivirus equine arteritis virus (EAV) non-structural protein (nsp)10. Nsp10 is composed of two domains, ZBD (ATPase) and HEL1 (helicase) along with 2 additional non-enymatic domains that are thought to regulate HEL1 function. The helicase activity depends on the extensive relay of interactions between the ZBD and HEL1 domains. The arterivirus helicase structurally resembles the cellular Upf1 helicase, suggesting that nidoviruses may also use their helicases for post-transcriptional quality control of their large RNA genomes. The proteins here are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 137 -350696 cd17938 DEADc_DDX1 DEAD-box helicase domain of DEAD box protein 1. DEAD box protein 1 (DDX1) acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. It possesses 5' single-stranded RNA overhang nuclease activity as well as ATPase activity on various RNA, but not DNA polynucleotides. DDX1 may play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. It may also be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. DDX1 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 204 -350697 cd17939 DEADc_EIF4A DEAD-box helicase domain of eukaryotic initiation factor 4A. The eukaryotic initiation factor-4A (eIF4A) family consists of 3 proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that function to unwind double-stranded RNA. EIF4A proteins are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 199 -350698 cd17940 DEADc_DDX6 DEAD-box helicase domain of DEAD box protein 6. DEAD box protein 6 (DDX6, also known as Rck or p54) participates in mRNA regulation mediated by miRNA-mediated silencing. It also plays a role in global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay. It is a member of the DEAD-box helicase family, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 201 -350699 cd17941 DEADc_DDX10 DEAD-box helicase domain of DEAD box protein 10. Fusion of the DDX10 gene and the nucleoporin gene, NUP98, by inversion 11 (p15q22) chromosome translocation is found in the patients with de novo or therapy-related myeloid malignancies. Diseases associated with DDX10 (also known as DDX10-NUP98 Fusion Protein Type 2) include myelodysplastic syndrome and leukemia, acute myeloid. DDX10 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 198 -350700 cd17942 DEADc_DDX18 DEAD-box helicase domain of DEAD box protein 18. This DDX18 gene encodes a DEAD box protein and is activated by Myc protein. DDX18 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 198 -350701 cd17943 DEADc_DDX20 DEAD-box helicase domain of DEAD box protein 20. DDX20 (also called DEAD Box Protein DP 103, Component Of Gems 3, Gemin-3, and SMN-Interacting Protein) interacts directly with SMN (survival of motor neurons), the spinal muscular atrophy gene product, and may play a catalytic role in the function of the SMN complex on ribonucleoproteins. Diseases associated with DDX20 include spinal muscular atrophy and muscular atrophy. DDX20 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 192 -350702 cd17944 DEADc_DDX21_DDX50 DEAD-box helicase domain of DEAD box proteins 21 and 50. DDX21 (also called Gu-Alpha and nucleolar RNA helicase 2) is an RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II. It promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) and binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs. DDX50 (also called Gu-Beta, Nucleolar Protein Gu2, and malignant cell derived RNA helicase). DDX21 and DDX50 have similar genomic structures and are in tandem orientation on chromosome 10, suggesting that the two genes arose by gene duplication in evolution. Diseases associated with DDX21 include stomach disease and cerebral creatine deficiency syndrome 3. Diseases associated with DDX50 include rectal disease. Both are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. Their name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP- binding region. 202 -350703 cd17945 DEADc_DDX23 DEAD-box helicase domain of DEAD box protein 23. DDX23 (also called U5 snRNP 100kD protein and PRP28 homolog) is involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation. Diseases associated with DDX23 include distal hereditary motor neuropathy, type II. DDX23 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 220 -350704 cd17946 DEADc_DDX24 DEAD-box helicase domain of DEAD box protein 24. The human DDX24 gene encodes a DEAD box protein, which shows little similarity to any of the other known human DEAD box proteins, but shows a high similarity to mouse Ddx24 at the amino acid level. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. DDX24 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP- binding region. 235 -350705 cd17947 DEADc_DDX27 DEAD-box helicase domain of DEAD box protein 27. DDX27 (also called RHLP, deficiency of ribosomal subunits protein 1 homolog, and probable ATP-dependent RNA helicase DDX27) is involved in the processing of 5.8S and 28S ribosomal RNAs. More specifically, the encoded protein localizes to the nucleolus, where it interacts with the PeBoW complex to ensure proper 3' end formation of 47S rRNA. DDX27 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 196 -350706 cd17948 DEADc_DDX28 DEAD-box helicase domain of DEAD box protein 28. DDX28 (also called mitochondrial DEAD-box polypeptide 28) plays an essential role in facilitating the proper assembly of the mitochondrial large ribosomal subunit and its helicase activity is essential for this function. DDX28 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 231 -350707 cd17949 DEADc_DDX31 DEAD-box helicase domain of DEAD box protein 31. DDX31 (also called helicain or G2 helicase) plays a role in ribosome biogenesis and TP53/p53 regulation through its interaction with NPM1. DDX31 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 214 -350708 cd17950 DEADc_DDX39 DEAD-box helicase domain of DEAD box protein 39. DDX39A is involved in pre-mRNA splicing and is required for the export of mRNA out of the nucleus. DDX39B is an essential splicing factor required for association of U2 small nuclear ribonucleoprotein with pre-mRNA, and it also plays an important role in mRNA export from the nucleus to the cytoplasm. Diseases associated with DDX39A (also called UAP56-Related Helicase, 49 kDa) include gastrointestinal stromal tumor and inflammatory bowel disease 6, while diseases associated with DDX39B (also called 56 kDa U2AF65-Associated Protein) include Plasmodium vivax malaria. DDX39 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 208 -350709 cd17951 DEADc_DDX41 DEAD-box helicase domain of DEAD box protein 41. DDX41 (also called ABS and MPLPF) interacts with several spliceosomal proteins and may recognize the bacterial second messengers cyclic di-GMP and cyclic di-AMP, resulting in the induction of genes involved in the innate immune response. Diseases associated with DDX41 include "myeloproliferative/lymphoproliferative neoplasms, familial" and "Ddx41-related susceptibility to familial myeloproliferative/lymphoproliferative neoplasms". DDX41 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 206 -350710 cd17952 DEADc_DDX42 DEAD-box helicase domain of DEAD box protein 42. DDX42 (also called Splicing Factor 3B-Associated 125 kDa Protein, RHELP, or RNAHP) is an NTPase with a preference for ATP, the hydrolysis of which is enhanced by various RNA substrates. It acts as a non-processive RNA helicase with protein displacement and RNA annealing activities. DDX42 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 197 -350711 cd17953 DEADc_DDX46 DEAD-box helicase domain of DEAD box protein 46. DDX46 (also called Prp5-like DEAD-box protein) is a component of the 17S U2 snRNP complex. It plays an important role in pre-mRNA splicing and has a role in antiviral innate immunity. DDX46 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 222 -350712 cd17954 DEADc_DDX47 DEAD-box helicase domain of DEAD box protein 47. DDX47 (also called E4-DEAD box protein) can shuttle between the nucleus and the cytoplasm, and has an RNA-independent ATPase activity. DX47 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 203 -350713 cd17955 DEADc_DDX49 DEAD-box helicase domain of DEAD box protein 49. DDX49 (also called Dbp8) is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 204 -350714 cd17956 DEADc_DDX51 DEAD-box helicase domain of DEAD box protein 51. DDX51 aids cell cancer proliferation by regulating multiple signalling pathways. Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA.It is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 231 -350715 cd17957 DEADc_DDX52 DEAD-box helicase domain of DEAD box protein 52. DDX52 (also called ROK1 and HUSSY19) is ubiquitously expressed in testis, endometrium, and other tissues in humans. DDX52 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 198 -350716 cd17958 DEADc_DDX43_DDX53 DEAD-box helicase domain of DEAD box proteins 43 and 53. DDX43 (also called cancer/testis antigen 13 or helical antigen) displays tumor-specific expression. Diseases associated with DDX43 include rheumatoid lung disease. DDX53 is also called cancer/testis antigen 26 or DEAD-Box Protein CAGE. Both DDX46 and DDX53 are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 197 -350717 cd17959 DEADc_DDX54 DEAD-box helicase domain of DEAD box protein 54. DDX54 interacts in a hormone-dependent manner with nuclear receptors, and represses their transcriptional activity. DDX54 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 205 -350718 cd17960 DEADc_DDX55 DEAD-box helicase domain of DEAD box protein 55. DDX55 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 202 -350719 cd17961 DEADc_DDX56 DEAD-box helicase domain of DEAD box protein 56. DDX56 is a helicase required for assembly of infectious West Nile virus particles. New research suggests that DDX56 relocalizes to the site of virus assembly during WNV infection and that its interaction with WNV capsid in the cytoplasm may occur transiently during virion morphogenesis. DDX56 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 206 -350720 cd17962 DEADc_DDX59 DEAD-box helicase domain of DEAD box protein 59. DDX59 plays an important role in lung cancer development by promoting DNA replication. DDX59 knockdown mice showed reduced cell proliferation, anchorage-independent cell growth, and reduction of tumor formation. Recent work shows that EGFR and Ras regulate DDX59 during lung cancer development.Diseases associated with DDX59 (also called zinc finger HIT domain-containing protein 5) include orofaciodigital syndrome V and orofaciodigital syndrome. DDX59 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 193 -350721 cd17963 DEADc_DDX19_DDX25 DEAD-box helicase domain of ATP-dependent RNA helicases DDX19 and DDX25. DDX19 (also called DEAD box RNA helicase DEAD5) and DDX25 (also called gonadotropin-regulated testicular RNA helicase (GRTH)) are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 196 -350722 cd17964 DEADc_MSS116 DEAD-box helicase domain of DEAD-box helicase Mss116. Mss116 is an RNA chaperone important for mitochondrial group I and II intron splicing, translational activation, and RNA end processing. Mss116 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 211 -350723 cd17965 DEADc_MRH4 DEAD-box helicase domain of ATP-dependent RNA helicase MRH4. Mitochondrial RNA helicase 4 (MRH4) plays an essential role during the late stages of mitochondrial ribosome or mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions. MRH4 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 251 -350724 cd17966 DEADc_DDX5_DDX17 DEAD-box helicase domain of ATP-dependent RNA helicases DDX5 and DDX17. DDX5 and DDX17 are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 197 -350725 cd17967 DEADc_DDX3_DDX4 DEAD-box helicase domain of ATP-dependent RNA helicases DDX3 and DDX4. This subfamily includes Drosophila melanogaster Vasa, which is essential for development. DEAD box protein 3 (DDX3) has been reported to display a high level of RNA-independent ATPase activity stimulated by both RNA and DNA. DEAD box protein 4 (DDX4, also known as VASA homolog) is an ATP-dependent RNA helicase required during spermatogenesis and is essential for the germline integrity. DDX3 and DDX4 are members of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 221 -350726 cd17968 DEAHc_DDX11_starthere DEAH-box helicase domain of ATP-dependent DNA helicase DDX11. DDX11 (also called ChlR1) encodes a protein of the conserved family of Iron-Sulfur (Fe-S) cluster DNA helicases and is thought to function in maintaining chromosome transmission fidelity and genome stability. Mutations in the Chl1 human homologs ChlR1/DDX11 and BACH1/BRIP1/FANCJ collectively result in Warsaw Breakage Syndrome, Fanconi anemia, cell aneuploidy and breast and ovarian cancers. DDX11 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 134 -350727 cd17969 DEAHc_XPD DEAH-box helicase domain of TFIIH basal transcription factor complex helicase XPD subunit. TFIIH can be resolved biochemically into a seven subunit core complex containing XPD/Rad3, XPB/Ssl2, p62/Tfb1, p52/Tfb2, p44/Ssl1, p34/Tfb4, and p8/Tfb5 and a three subunit Cdk Activating Kinase (CAK) complex containing CDK7/Kin28, cyclin H/Ccl1, and MAT1/Tfb3. XPD interacts directly with p44, which stimulates XPD helicase activity. XPD/Rad3 also interacts directly with the CAK via its MAT1/Tfb3 subunit inhibiting the helicase activity of XPD. XPD is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 157 -350728 cd17970 DEAHc_FancJ DEAH-box helicase domain of Fanconi anemia group J protein and similar proteins. Fanconi anemia group J protein (FACJ or FANCJ, also known as BRIP1) is a DNA helicase required for the maintenance of chromosomal stability. It plays a role in the repair of DNA double-strand breaks by homologous recombination dependent on its interaction with BRCA1. FANCJ belongs to the DEAD-box helicase family, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 181 -350729 cd17971 DEXHc_DHX8 DEXH-box helicase domain of DEAH-box helicase 8. DEAH-box helicase 8 (DHX8 ,also known as pre-mRNA-splicing factor ATP-dependent RNA helicase PRP22) acts late in the splicing of pre-mRNA and mediates the release of the spliced mRNA from spliceosomes. DHX8 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 179 -350730 cd17972 DEXHc_DHX9 DEXH-box helicase domain of DEAH-box helicase 9. DEAH-box helicase 9 (DHX9, also known as ATP-dependent RNA helicase A or RHA and leukophysin or LKP) plays an important role in many cellular processes, including regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. DHX9 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 234 -350731 cd17973 DEXHc_DHX15 DEXH-box helicase domain of DEAH-box helicase 15. DEAH-box helicase 15 (DHX15) is a pre-mRNA processing factor involved in disassembly of spliceosomes after the release of mature mRNA. DHX15 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 186 -350732 cd17974 DEXHc_DHX16 DEXH-box helicase domain of DEAH-box helicase 16. DEAH-box helicase 16 (DHX16) is probably involved in pre-mRNA splicing. DHX16 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 174 -350733 cd17975 DEXHc_DHX29 DEXH-box helicase domain of DEAH-box helicase 29. DEAH-box helicase 29 (DHX29) is a part of the 43S pre-initiation complex involved in translation initiation of mRNAs with structured 5'-UTRs. DHX29 is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 183 -350734 cd17976 DEXHc_DHX30 DEXH-box helicase domain of DEAH-box helicase 30. DEAH-box helicase 30 (DHX30) plays an important role in the assembly of the mitochondrial large ribosomal subunit. DHX30 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 178 -350735 cd17977 DEXHc_DHX32 DEXH-box helicase domain of DEAH-box helicase 32. DEAH-box helicase 32 (DHX32) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 176 -350736 cd17978 DEXHc_DHX33 DEXH-box helicase domain of DEAH-box helicase 33. DEAH-box helicase 33 (DHX33) stimulates RNA polymerase I transcription of the 47S precursor rRNA. DHX33 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 179 -350737 cd17979 DEXHc_DHX34 DEXH-box helicase domain of DEAH-box helicase 34. DEAH-box helicase 34 (DHX34) plays a role in the nonsense-mediated decay (NMD), a surveillance mechanism that degrades aberrant mRNAs. DHX34 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 170 -350738 cd17980 DEXHc_DHX35 DEXH-box helicase domain of DEAH-box helicase 35. DHX35 plays a role in colorectal cancers and seems to be associated with risk to thyroid cancers. It also has been shown to postively regulates poxviruses, such as Myxoma virus. DEAH-box helicase 35 (DHX35) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 185 -350739 cd17981 DEXHc_DHX36 DEXH-box helicase domain of DEAH-box helicase 36. DEAH-box helicase 36 (DHX36, also known as G4-resolvase 1 or G4R1, MLE-like protein 1 and RNA helicase associated with AU-rich element or RHAU) unwinds a G4-quadruplex in human telomerase RNA. DHX36 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 180 -350740 cd17982 DEXHc_DHX37 DEXH-box helicase domain of DEAH-box helicase 37. DHX37 plays a role in the development of the human nervous system and has been linked to schizophrenia. It also negatively regulates poxviruses such as Myxoma virus. DEAH-box helicase 37 (DHX37) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 191 -350741 cd17983 DEXHc_DHX38 DEXH-box helicase domain of DEAH-box helicase 38. DEAH-box helicase 38 (DHX38, also known as PRP16) is involved in pre-mRNA splicing. DHX38 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 173 -350742 cd17984 DEXHc_DHX40 DEXH-box helicase domain of DEAH-box helicase 40. DEAH-box helicase 40 (DHX40) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 178 -350743 cd17985 DEXHc_DHX57 DEXH-box helicase domain of DEAH-box helicase 57. DEAH-box helicase 57 (DHX57) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 177 -350744 cd17986 DEXQc_DQX1 DEXQ-box helicase domain of DEAQ-box RNA dependent ATPase 1. DEAQ-box RNA dependent ATPase 1 (DQX1) belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 177 -350745 cd17987 DEXHc_YTHDC2 DEXH-box helicase domain of YTH domain containing 2. YTH domain containing 2 (YTHDC2) regulates mRNA translation and stability via binding to N6-methyladenosine, a modified RNA nucleotide enriched in the stop codons and 3' UTRs of eukaryotic messenger RNAs. YTHDC2 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 176 -350746 cd17988 DEXHc_TDRD9 DEXH-box helicase domain of tudor domain containing 9. Tudor domain containing 9 (TDRD9, also known as HIG-1or NET54 or C14orf75) is a part of the nuclear PIWI-interacting RNA (piRNA) pathway essential for transposon silencing and male fertility TDRD9 belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 180 -350747 cd17989 DEXHc_HrpA DEXH-box helicase domain of ATP-dependent RNA helicase HrpA. HrpA is part of the HrpB-HrpA two-partner secretion (TPS) system, a secretion pathway important to the secretion of large virulence-associated proteins. HrpA belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 173 -350748 cd17990 DEXHc_HrpB DEXH-box helicase domain of ATP-dependent helicase HrpB. HrpB is part of the HrpB-HrpA two-partner secretion (TPS) system, a secretion pathway important to the secretion of large virulence-associated proteins. HrpB belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 174 -350749 cd17991 DEXHc_TRCF DEXH/Q-box helicase domain of the transcription-repair coupling factor. Transcription-repair coupling factor (TrcF) dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. TrcF is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 193 -350750 cd17992 DEXHc_RecG DEXH/Q-box helicase domain of RecG. ATP-dependent DNA helicase RecG plays a critical role in recombination and DNA repair. It is a member of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 225 -350751 cd17993 DEXHc_CHD1_2 DEXH-box helicase domain of the chromodomain helicase DNA binding proteins 1 and 2, and similar proteins. Chromodomain-helicase-DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin-remodeling factor which functions as the substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. It regulates polymerase II transcription and is also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. It is not only involved in transcription-related chromatin-remodeling, but is also required to maintain a specific chromatin configuration across the genome. CHD1 is also associated with histone deacetylase (HDAC) activity. Chromodomain-helicase-DNA-binding protein 2 (CHD2) is a DNA-binding helicase that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. It is involved in myogenesis via interaction with MYOD1; it binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression. Both are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 218 -350752 cd17994 DEXHc_CHD3_4_5 DEAH-box helicase domain of the chromodomain helicase DNA binding proteins 3, 4 and 5. Chromodomain-helicase-DNA-binding protein 3 (CHD3) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. It is required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a chromatin-remodeling protein that binds DNA through histones and regulates gene transcription. It is thought to specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3 and plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. As a tumor suppressor, it regulates the expression of genes involved in cell proliferation and differentiation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. CHD3, CHD4, and CHD5 are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 196 -350753 cd17995 DEXHc_CHD6_7_8_9 DEXH-box helicase domain of the chromodomain helicase DNA binding protein 6, 7, 8 and 9. Chromodomain-helicase-DNA-binding protein 6-9 (CHD6, CHD7, CHD8, and CHD9) are members of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 223 -350754 cd17996 DEXHc_SMARCA2_SMARCA4 DEXH-box helicase domain of SMARCA2 and SMARCA4. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, members 2 and 4 (SMARCA2 and SMARCA4) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 233 -350755 cd17997 DEXHc_SMARCA1_SMARCA5 DEAH-box helicase domain of SMARCA1 and SMARCA5. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 and 5 (SMARCA1 and SMARCA5) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 222 -350756 cd17998 DEXHc_SMARCAD1 DEXH-box helicase domain of SMARCAD1. SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1, also known as ATP-dependent helicase 1 or Hel1) possesses intrinsic ATP-dependent nucleosome-remodeling activity and is required for both DNA repair and heterochromatin organization. SMARCAD1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 187 -350757 cd17999 DEXHc_Mot1 DEXH-box helicase domain of Mot1. Modifier of transcription 1 (Mot1, also known as TAF172 in eukaryotes) regulates transcription in association with TATA binding protein (TBP). Mot1, Ino80C, and NC2 function coordinately to regulate pervasive transcription in yeast and mammals. Mot1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 232 -350758 cd18000 DEXHc_ERCC6 DEXH-box helicase domain of ERCC6. ERCC excision repair 6, chromatin remodeling factor (ERCC6, also known Cockayne syndrome group B (CSB), Rad26 in Saccharomyces cerevisiae, and Rhp26 in Schizosaccharomyces pombe) is a DNA-binding protein that is important in transcription-coupled excision repair. ERCC6 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 193 -350759 cd18001 DEXHc_ERCC6L DEXH-box helicase domain of ERCC6L. ERCC excision repair 6 like, spindle assembly checkpoint helicase (ERCC6L, also known as RAD26L) is an essential component of the mitotic spindle assembly checkpoint, by acting as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase. ERCC6L is proposed to stimulate cancer cell proliferation by promoting cell cycle through a way of RAB31-MAPK-CDK2. ERCC6L is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 232 -350760 cd18002 DEXQc_INO80 DEAQ-box helicase domain of INO80. INO80 is the catalytic ATPase subunit of the INO80 chromatin remodeling complex. INO80 removes histone H3-containing nucleosomes from associated chromatin, promotes CENP-ACnp1 chromatin assembly at the centromere in a redundant manner with another chromatin-remodeling factor Chd1Hrp1. INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. INO80 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 229 -350761 cd18003 DEXQc_SRCAP DEXH/Q-box helicase domain of SRCAP. Snf2-related CBP activator (SRCAP, also known as SWR1 or DOMO1) is the core catalytic component of the multiprotein chromatin-remodeling SRCAP complex, that is necessary for the incorporation of the histone variant H2A.Z into nucleosomes. SRCAP is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 223 -350762 cd18004 DEXHc_RAD54 DEXH-box helicase domain of RAD54. RAD54 proteins play a role in recombination. They are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 240 -350763 cd18005 DEXHc_ERCC6L2 DEXH-box helicase domain of ERCC6L2. ERCC excision repair 6 like 2 (ERCC6L2, also known as RAD26L) may play a role in DNA repair and mitochondrial function. In humans, mutations in the ERCC6L2 gene are associated with bone marrow failure syndrome 2. ERCC6L2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 245 -350764 cd18006 DEXHc_CHD1L DEAH/Q-box helicase domain of CHD1L. Chromodomain helicase DNA binding protein 1 like (CHD1L, also known as ALC1) is involved in DNA repair by regulating chromatin relaxation following DNA damage. CHD1L is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 216 -350765 cd18007 DEXHc_ATRX-like DEXH-box helicase domain of ATRX-like proteins. This family includes ATRX-like members such as transcriptional regulator ATRX (also called alpha thalassemia/mental retardation syndrome X-linked and X-linked nuclear protein or XNP) which is involved in transcriptional regulation and chromatin remodeling, and ARIP4 (also called androgen receptor-interacting protein 4, RAD54 like 2 or RAD54L2) which modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. They are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 239 -350766 cd18008 DEXDc_SHPRH-like DEXH-box helicase domain of SHPRH-like proteins. The SHPRH-like subgroup belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 241 -350767 cd18009 DEXHc_HELLS_SMARCA6 DEXH-box helicase domain of HELLS. HELLS (helicase, lymphoid specific, also known as Lsh or SMARCA6) is a major epigenetic regulator crucial for normal heterochromatin structure and function. HELLS is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 236 -350768 cd18010 DEXHc_HARP_SMARCAL1 DEXH-box helicase domain of SMARCAL1. SMARCAL1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a like 1, also known as HARP) is recruited to stalled replication forks to promote repair and helps restart replication. It plays a role in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress. Mutations cause Schimke Immunoosseous Dysplasia. SMARCAL1 is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 213 -350769 cd18011 DEXDc_RapA DEXH-box helicase domain of RapA. In bacteria, RapA is an RNA polymerase (RNAP)-associated SWI2/SNF2 (switch/sucrose non-fermentable) protein that mediates RNAP recycling during transcription. The ATPase activity of RapA is stimulated by its interaction with RNAP and inhibited by its N-terminal domain. The conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. RapA is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 207 -350770 cd18012 DEXQc_arch_SWI2_SNF2 DEAQ-box helicase domain of archaeal and bacterial SNF2-related proteins. Proteins belonging to SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. The Snf2 family comprises a large group of ATP-hydrolyzing proteins that are ubiquitous in eukaryotes, but also present in eubacteria and archaea. Archaeal SWI2 and SNF2 are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 218 -350771 cd18013 DEXQc_bact_SNF2 DEXQ-box helicase domain of bacterial SNF2 family proteins. Proteins belonging to the SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. The Snf2 family comprise a large group of ATP-hydrolyzing proteins that are ubiquitous in eukaryotes, but also present in eubacteria and archaea. The bacterial SNF2 present in this family are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 218 -350772 cd18014 DEXHc_RecQ5 DEAH-box helicase domain of RecQ5. ATP-dependent DNA helicase Q5 (RecQ5) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 205 -350773 cd18015 DEXHc_RecQ1 DEXH-box helicase domain of RecQ1. ATP-dependent DNA helicase Q1 (RecQ1) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 209 -350774 cd18016 DEXHc_RecQ2_BLM DEAH-box helicase domain of RecQ2. ATP-dependent DNA helicase Q2 (RecQ2, also called Bloom syndrome protein homolog or BLM) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Mutations in RecQ2 cause Bloom syndrome. 208 -350775 cd18017 DEXHc_RecQ3 DEAH-box helicase domain of RecQ3. DEAD-like helicase RecQ3 (also called Werner syndrome ATP-dependent helicase or WRN) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Mutations cause Werner's syndrome. 193 -350776 cd18018 DEXHc_RecQ4-like DEAH-box helicase domain of RecQ4 and similar proteins. ATP-dependent DNA helicase Q4 (RecQ4) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Mutations cause Rothmund-Thomson/RAPADILINO/Baller-Gerold syndrome. 201 -350777 cd18019 DEXHc_Brr2_1 N-terminal DEXH-box helicase domain of spliceosomal Brr2 RNA helicase. Brr2 is a type II DEAD box helicase that mediates spliceosome catalytic activation. It is a stable subunit of the spliceosome, required during splicing catalysis and spliceosome disassembly. Brr2 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 214 -350778 cd18020 DEXHc_ASCC3_1 N-terminal DEXH-box helicase domain of Activating signal cointegrator 1 complex subunit 3. Activating signal cointegrator 1 complex subunit 3 (ASCC3) is a type II DEAD box helicase that plays a role in the repair of N-alkylated nucleotides. ASCC3 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 199 -350779 cd18021 DEXHc_Brr2_2 C-terminal D[D/E]X[H/Q]-box helicase domain of spliceosomal Brr2 RNA helicase. Brr2 is a type II DEAD box helicase that mediates spliceosome catalytic activation. It is a stable subunit of the spliceosome, required during splicing catalysis and spliceosome disassembly. Brr2 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 191 -350780 cd18022 DEXHc_ASCC3_2 C-terminal DEXH-box helicase domain of Activating signal cointegrator 1 complex subunit 3. Activating signal cointegrator 1 complex subunit 3 (ASCC3) is a type II DEAD box helicase that plays a role in the repair of N-alkylated nucleotides. ASCC3 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 189 -350781 cd18023 DEXHc_HFM1 DEXH-box helicase domain of ATP-dependent DNA helicase HFM1. HFM1 is a type II DEAD box helicase, required for crossover formation and complete synapsis of homologous chromosomes during meiosis. HFM1 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 206 -350782 cd18024 DEXHc_Mtr4-like DEXH-box helicase domain of ATP-dependent RNA helicase Mtr4. Mtr4 (also known as DOB1 or SKIV2L2) is a type II DEAD box helicase that plays a role in the processing of structured RNAs, including the maturation of 5.8S ribosomal RNA (rRNA)and is part of the TRAMP complex that is involved in exosome-mediated degradation of aberrant RNAs. Mtr4 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 205 -350783 cd18025 DEXHc_DDX60 DEXH-box helicase domain of DEAD box protein 60. DEAD box protein 60 (DDX60) is an IFN-inducible cytoplasmic helicase that plays a role in RIG-I-mediated type I interferon (IFN) nuclease-mediated viral RNA degradation. DDX60 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 192 -350784 cd18026 DEXHc_POLQ-like DEXH-box helicase domain of DNA polymerase theta. DNA polymerase theta (POLQ) is important in the repair of genomic double-strand breaks (DSBs). POLQ contains an N-terminal type II DEAD box helicase domain which contains the ATP-binding region. 202 -350785 cd18027 DEXHc_SKIV2L DEXH-box helicase domain of SKIV2L. Superkiller viralicidic activity 2-like (SKIV2L, also called SKI2 or DHX13) plays a role in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. SKIV2L belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 179 -350786 cd18028 DEXHc_archSki2 DEXH-box helicase domain of archaeal Ski2-type helicase. Archaeal Ski2-type RNA helicases play an important role in RNA degradation, processing and splicing pathways. They belong to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 177 -350787 cd18029 DEXHc_XPB DEXH-box helicase domain of TFIIH XPB subunit and similar proteins. TFIIH basal transcription factor complex helicase XPB subunit (also known as DNA excision repair protein ERCC-3 or TFIIH 89 kDa subunit) is the ATP-dependent 3'-5' DNA helicase component of the core-TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. XPB is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 169 -350788 cd18030 DEXHc_RE_I_HsdR DEXH-box helicase domain of type I restriction enzyme HdsR subunit. The HdsR motor subunit of type I restriction-modification enzymes contains the DNA cleavage and ATP-dependent DNA translocation activities of the heteromeric complex. It is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 208 -350789 cd18031 DEXHc_UvsW DEXH-box helicase domain of bacteriophage UvsW. Bacteriophage UvsW is part of the WXY system that repairs DNA damage by a process that involves homologous recombination. UvsW is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 161 -350790 cd18032 DEXHc_RE_I_III_res DEXH-box helicase domain of type III restriction enzyme res subunit. Members of this cd includes both type I and type III restriction enzymes. Both are hetero-oligomeric proteins. Type I REs are encoded by three closely linked genes: a specificity subunit (HsdS or S) for recognizing a DNA sequence, a methylation subunit (HsdM or M) for methylating the recognized target bases, and a restriction subunit (HsdR or R) for the translocation and random cleavage of non-methylated DNA. They show diverse catalytic activities, including methyltransferase (MTase), ATP hydrolase (ATPase), DNA translocation and restriction activities. These enzymes cut at a site that differs, and is a random distance (at least 1000 bp) away, from their recognition site. Cleavage at these random sites follows a process of DNA translocation, which shows that these enzymes are also molecular motors. The recognition site is asymmetrical and is composed of two specific portions: one containing 3-4 nucleotides, and another containing 4-5 nucleotides, separated by a non-specific spacer of about 6-8 nucleotides. Type III enzymes are composed of two subunits, Res and Mod. The Mod subunit recognizes the DNA sequence specific for the system and is a modification methyltransferase; as such, it is functionally equivalent to the M and S subunits of type I restriction endonucleases. Res is required for restriction, although it has no enzymatic activity on its own. Type III enzymes recognize short 5-6 bp-long asymmetric DNA sequences and cleave 25-27 bp downstream to leave short, single-stranded 5' protrusions. They require the presence of two inversely oriented unmethylated recognition sites for restriction to occur. These enzymes methylate only one strand of the DNA, at the N-6 position of adenosyl residues, so newly replicated DNA will have only one strand methylated, which is sufficient to protect against restriction. Both type I and type III REs are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 163 -350791 cd18033 DEXDc_FANCM DEAH-box helicase domain of FANCM. Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. In complex with CENPS and CENPX, it binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA), and Holliday junction substrates. Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX. In complex with FAAP24, it efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates. In vitro, on its own, it strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA. FANCM is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 182 -350792 cd18034 DEXHc_dicer DEXH-box helicase domain of endoribonuclease Dicer. Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicers exist throughout eukaryotes, and a subset have an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 200 -350793 cd18035 DEXHc_Hef DEXH-box helicase domain of Hef. Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. All archaea encode a protein of the XPF/MUS81/FANCM family of endonucleases. It exists in two forms: a long form, referred as Hef which consists of an N-terminal helicase fused to a C-terminal nuclease and is specific to euryarchaea and a short form, referred as XPF which lacks the helicase domain and is specific to crenarchaea and thaumarchaea. Hef has the unique feature of having both active helicase and nuclease domains. This domain configuration is highly similar with the human FANCM, a possible ortholog of archaeal Hef proteins. Hef is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 181 -350794 cd18036 DEXHc_RLR DEXH-box helicase domain of RIG-I-like receptors. RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprise RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). RIG-I-like receptors (RLRs) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 204 -350795 cd18037 DEXSc_Pif1_like DEAD-box helicase domain of Pif1. Pif1 and other members of this family are RecD-like helicases involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. The members of Pif1 helicase subfamily studied so far all appear to contribute to telomere maintenance. Pif1 is a member of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 183 -350796 cd18038 DEXXQc_Helz-like DEXXQ/H-box helicase domain of Helz-like helicase. This subfamily contains HELZ, Mov10L1, and similar proteins. Helicase with zinc finger (HELZ) acts as a helicase that plays a role in RNA metabolism during development. Moloney leukemia virus 10-like protein 1 (Mov10L1) binds Piwi-interacting RNA (piRNA) precursors to initiate piRNA processing. All are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 229 -350797 cd18039 DEXXQc_UPF1 DEXXQ-box helicase domain of UPF1. UPF1 (also called RNA Helicase And ATPase, Regulator Of Nonsense Transcripts, or ATP-Dependent Helicase RENT1) is an RNA-dependent helicase and ATPase required for nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. It is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. It is recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) located downstream from the termination codon through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Diseases associated with UPF1 include juvenile amyotrophic lateral sclerosis and epidermolysis bullosa, junctional, non-Herlitz type. UPF1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 234 -350798 cd18040 DEXXc_HELZ2-C C-terminal DEXX-box helicase domain of HELZ2. Helicase with zinc finger 2 (HELZ2, also known as PPAR-alpha-interacting complex protein 285 or PRIC285 and PPAR-gamma DBD-interacting protein 1 or PDIP1) acts as a transcriptional coactivator for a number of nuclear receptors including PPARA, PPARG, THRA, THRB and RXRA. It belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 271 -350799 cd18041 DEXXQc_DNA2 DEXXQ-box helicase domain of DNA2. DNA2 (DNA Replication Helicase/Nuclease 2) possesses different enzymatic activities, such as single-stranded DNA (ssDNA)-dependent ATPase, 5-3 helicase, and endonuclease activities, and is involved in DNA replication and DNA repair in the nucleus and mitochondrion. It is involved in Okazaki fragment processing by cleaving long flaps that escape FEN1: flaps that are longer than 27 nucleotides are coated by replication protein A complex (RPA), leading to recruit DNA2 which cleaves the flap until it is too short to bind RPA and becomes a substrate for FEN1. It is also involved in 5-end resection of DNA during double-strand break (DSB) repair; it is recruited by BLM and mediates the cleavage of 5-ssDNA, while the 3-ssDNA cleavage is prevented by the presence of RPA. DNA2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 203 -350800 cd18042 DEXXQc_SETX DEXXQ-box helicase domain of SETX. The RNA/DNA helicase senataxin (SETX) plays a role in transcription, neurogenesis, and antiviral response. SEXT is an R-loop-associated protein that is thought to function as an RNA/DNA helicase. R-loops consist of RNA/DNA hybrids, formed during transcription when nascent RNA hybridizes to the DNA template strand, displacing the non-template DNA strand. Mutations in SETX are linked to two neurodegenerative disorders: ataxia with oculomotor apraxia type 2 (AOA2) and amyotrophic lateral sclerosis type 4 (ALS4). S. cerevisiae homolog splicing endonuclease 1 (Sen1) is an exclusively nuclear protein, important for nucleolar organization. S. cerevisiae Sen1 and its ortholog, the Schizosaccharomyces pombe Sen1, share conserved domains and belong to the family I class of helicases. Both proteins translocate 5' to 3' and unwind both DNA and RNA duplexes and also RNA/DNA hybrids in vitro. SETX is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 217 -350801 cd18043 DEXXQc_SF1 DEXXQ-box helicase domain of Superfamily 1 helicases. Superfamily 1 (SF1) helicases are nucleic acid motor proteins that couple ATP hydrolysis to translocation along with the concomitant unwinding of DNA or RNA. This is central to many aspects of cellular DNA and RNA metabolism and accordingly, they are implicated in a wide range of nucleic acid processing events including DNA replication, recombination, and repair as well as many aspects of RNA metabolism. Superfamily 1 helicases are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 127 -350802 cd18044 DEXXQc_SMUBP2 DEXXQ-box helicase domain of SMUBP2. SMUBP2 (also called immunoglobulin mu-binding protein 2, or IGHMBP2) is a 5' to 3' helicase that unwinds RNA and DNA duplexes in an ATP-dependent reaction. It is a DNA-binding protein specific to 5'-phosphorylated single-stranded guanine-rich sequence (5'-GGGCT-3') related to the immunoglobulin mu chain switch region. The IGHMBP2 gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). It is also thought to play a role in frontotemporal dementia (FTD) with amyotrophic lateral sclerosis (ALS) and major depressive disorder (MDD). SMUBP2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 191 -350803 cd18045 DEADc_EIF4AIII_DDX48 DEAD-box helicase domain of eukaryotic initiation factor 4A-III. Eukaryotic initiation factor 4A-III (EIF4AIII, also known as DDX48) is part of the exon junction complex (EJC) that plays a major role in posttranscriptional regulation of mRNA. EJC consists of four proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP. DDX48 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 201 -350804 cd18046 DEADc_EIF4AII_EIF4AI_DDX2 DEAD-box helicase domain of eukaryotic initiation factor 4A-I and 4-II. Eukaryotic initiation factor 4A-I (DDX2A) and eukaryotic initiation factor 4A-II (DDX2B) are involved in cap recognition and are required for mRNA binding to ribosome. They are DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 201 -350805 cd18047 DEADc_DDX19 DEAD-box helicase domain of DEAD box protein 19. DDX19 is an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. DDX19 functions in the nucleus in resolving RNA:DNA hybrids (R-loops). Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of DDX19 from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops. DDX19 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 205 -350806 cd18048 DEADc_DDX25 DEAD-box helicase domain of DEAD box protein 25. DDX25 (also called gonadotropin-regulated testicular RNA helicase (GRTH) is a testis-specific protein essential for completion of spermatogenesis. DDX25 is also a novel negative regulator of IFN pathway and facilitates RNA virus infection. Diseases associated with DDX25 include hydrolethalus syndrome, an autosomal recessive lethal malformation syndrome characterized by multiple developmental defects of fetus.. DDX25 (also called gonadotropin-regulated testicular RNA helicase) is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 229 -350807 cd18049 DEADc_DDX5 DEAD-box helicase domain of DEAD box protein 5. DDX5 (also called RNA helicase P68, HLR1, G17P1, or HUMP68) is involved in pathways that include the alteration of RNA structures, plays a role as a coregulator of transcription, a regulator of splicing, and in the processing of small noncoding RNAs. It synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and is involved in skeletal muscle differentiation. Dysregulation of this gene may play a role in cancer development. DDX5 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 234 -350808 cd18050 DEADc_DDX17 DEAD-box helicase domain of DEAD box protein 17. DDX17 (also called DEAD Box Protein P72 or DEAD Box Protein P82) has a wide variety of functions including regulating the alternative splicing of exons exhibiting specific features such as the inclusion of AC-rich alternative exons in CD44 transcripts, playing a role in innate immunity, and promoting mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1 in an ATPase-dependent manner. DDX17 synergizes with DDX5 and SRA1 RNA to activate MYOD1 transcriptional activity and is involved in skeletal muscle differentiation. DDX17 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 271 -350809 cd18051 DEADc_DDX3 DEAD-box helicase domain of DEAD box protein 3. DDX3 (also called helicase-like protein, DEAD box, X isoform, or DDX14) has been reported to display a high level of RNA-independent ATPase activity stimulated by both RNA and DNA. This protein has multiple conserved domains and is thought to play roles in both the nucleus and cytoplasm. Nuclear roles include transcriptional regulation, mRNP assembly, pre-mRNA splicing, and mRNA export. In the cytoplasm, this protein is thought to be involved in translation, cellular signaling, and viral replication. Misregulation of this gene has been implicated in tumorigenesis. Diseases associated with DDX3 include mental retardation, X-linked 102 and agenesis of the corpus callosum, with facial anomalies and robin sequence. DDX3 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 249 -350810 cd18052 DEADc_DDX4 DEAD-box helicase domain of DEAD box protein 4. DEAD box protein 4 (DDX4, also known as VASA homolog) is an ATP-dependent RNA helicase required during spermatogenesis and is essential for the germline integrity. DEAD-box helicases are a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. 264 -350811 cd18053 DEXHc_CHD1 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 1. Chromodomain-helicase-DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. It regulates polymerase II transcription and is also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. It is not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. CHD1 is also associated with histone deacetylase (HDAC) activity. It is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 237 -350812 cd18054 DEXHc_CHD2 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 2. Chromodomain-helicase-DNA-binding protein 2 (CHD2) is a DNA-binding helicase that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. It is involved in myogenesis via interaction with MYOD1; it binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression. CHD2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 237 -350813 cd18055 DEXHc_CHD3 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 3. Chromodomain-helicase-DNA-binding protein 3 (CHD3) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. It is required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity. CHD3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 232 -350814 cd18056 DEXHc_CHD4 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 4. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin by deacetylating histones. CHD4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 232 -350815 cd18057 DEXHc_CHD5 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 5. Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a chromatin-remodeling protein that binds DNA through histones and regulates gene transcription. It is thought to specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3 and plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. As a tumor suppressor, it regulates the expression of genes involved in cell proliferation and differentiation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. CHD5 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 232 -350816 cd18058 DEXHc_CHD6 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 6. Chromodomain-helicase-DNA-binding protein 6 (CHD6) is a DNA-dependent ATPase that plays a role in chromatin remodeling. It regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin. It activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2.2 and acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. CHD6 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 222 -350817 cd18059 DEXHc_CHD7 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 7. Chromodomain-helicase-DNA-binding protein 7 (CHD7) is a probable transcription regulator. It may be involved in the 45S precursor rRNA production. CHD7 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 222 -350818 cd18060 DEXHc_CHD8 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 8. Chromodomain-helicase-DNA-binding protein 8 (CHD8) is a DNA helicase that acts as a chromatin remodeling factor and regulates transcription. It also acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. It suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity and of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. It also acts as a negative regulator of Wnt signaling pathway and CTNNB1-targeted gene expression. CHD8 is also involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. It also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. CHD8 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 222 -350819 cd18061 DEXHc_CHD9 DEAH-box helicase domain of the chromodomain helicase DNA binding protein 9. Chromodomain-helicase-DNA-binding protein 9 (CHD9) acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. It is proposed to be a ATP-dependent chromatin remodeling protein. CHD9 has DNA-dependent ATPase activity and binds to A/T-rich DNA. It also associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis. CHD9 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 222 -350820 cd18062 DEXHc_SMARCA4 DEXH-box helicase domain of SMARCA4. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4, also known as transcription activator BRG1) is a component of the CREST-BRG1 complex that regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. Mutation of SMARCA4 (BRG1), the ATPase of BAF (mSWI/SNF) and PBAF complexes, contributes to a range of malignancies and neurologic disorders. SMARCA4 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 251 -350821 cd18063 DEXHc_SMARCA2 DEXH-box helicase domain of SMARCA2. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2 (SMARCA2, also known as brahma homolog) is a component of the BAF complex. SMARCA2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 251 -350822 cd18064 DEXHc_SMARCA5 DEAH-box helicase domain of SMARCA5. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 (SMARCA5, also called SNF2H) is the catalytic subunit of the four known chromatin-remodeling complexes: CHRAC, RSF, ACF/WCRF, and WICH. SMARCA5 plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding SMARCA5 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 244 -350823 cd18065 DEXHc_SMARCA1 DEAH-box helicase domain of SMARCA1. SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 (SMARCA1, also called SNF2L) is a component of NURF (nucleosome-remodeling factor) and CERF (CECR2-containing-remodeling factor) complexes which promote the perturbation of chromatin structure in an ATP-dependent manner. SMARCA1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 233 -350824 cd18066 DEXHc_RAD54B DEXH-box helicase domain of RAD54B. DNA repair and recombination protein RAD54B, also known as RDH54, binds to double-stranded DNA, displays ATPase activity in the presence of DNA, and may have a role in meiotic and mitotic recombination. RAD54B is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 235 -350825 cd18067 DEXHc_RAD54A DEXH-box helicase domain of RAD54A. DNA repair and recombination protein RAD54A, also known as RAD54L or RAD54, plays a role in homologous recombination related repair of DNA double-strand breaks. RAD54A is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 243 -350826 cd18068 DEXHc_ATRX DEXH-box helicase domain of ATRX. Transcriptional regulator ATRX (also called alpha thalassemia/mental retardation syndrome X-linked and X-linked nuclear protein or XNP) is involved in transcriptional regulation and chromatin remodeling. Mutations in humans cause mental retardation, X-linked, syndromic, with hypotonic facies 1 (MRXSHF1) and alpha-thalassemia myelodysplasia syndrome (ATMDS). ATRX is part of the a DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 246 -350827 cd18069 DEXHc_ARIP4 DEXH-box helicase domain of ARIP4. Androgen receptor-interacting protein 4 (ARIP4, also called RAD54 like 2 or RAD54L2 ) modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. ARIP4 is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 227 -350828 cd18070 DEXQc_SHPRH DEXQ-box helicase domain of SHPRH. E3 ubiquitin-protein ligase SHPRH is a ubiquitously expressed protein that contains motifs characteristic of several DNA repair proteins, transcription factors, and helicases. SHPRH is a functional homolog of S. cerevisiae RAD5 and is involved in DNA repair. SHPRH is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 257 -350829 cd18071 DEXHc_HLTF1_SMARC3 DEXH-box helicase domain of HLTF1. Helicase like transcription factor (HLTF1, also known as HIP116 or SMARCA3) has both helicase and E3 ubiquitin ligase activities and ATP-dependent nucleosome-remodeling activity. HLTF1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 239 -350830 cd18072 DEXHc_TTF2 DEAH-box helicase domain of TTF2. Transcription termination factor 2 (TTF2 also called Forkhead-box E1/FOXE1 ) is a transcription termination factor that couples ATP hydrolysis with the removal of RNA polymerase II from the DNA template. Single nucleotide polymorphism (SNP) within the 5'-UTR of TTF2 is associated with thyroid cancer risk.TTF2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 241 -350831 cd18073 DEXHc_RIG-I_DDX58 DEXH-box helicase domain of RIG-I. RIG-I (Retinoic acid-inducible gene I protein), also called DEAD box protein 58 (DDX58), is a pathogen-recognition receptor that recognizes viral 5'-triphosphates carrying double-stranded RNA. Upon binding to these microbe-associated molecular patterns (MAMPs), RIG-I forms oligomers and promotes downstream processes that result in type I interferon production and induction of an antiviral state. The optimal ligand for RIG-I has been found to be base-paired or double-stranded RNA (dsRNA) molecules containing a 5' triphosphate (5'-ppp-dsRNA). RIG-I contains two N-terminal caspase activation and recruitment domains (CARDs), which are required for interaction with IPS-1, a superfamily 2 helicase/translocase/ATPase (SF2) domain and a C-terminal regulatory/repressor domain (RD). RIG-I is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 202 -350832 cd18074 DEXHc_RLR-2 DEXH-box helicase domain of RLR-2. RIG-I-like receptor 2 (RLR-2, also known as melanoma differentiation-associated protein 5 or Mda5 and IFIH1) is a viral double-stranded RNA (dsRNA) receptor that shares sequence similarity and signaling pathways with RIG-I, yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. RLR-2 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. RLR-2 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement. The signaling domain (tandem CARD), which decorates the outside of the core RLR-2 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. RLR-2 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling. LGP2 appears to positively and negatively regulate RLR-2 and RIG-I signaling, respectively. RLR-2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 216 -350833 cd18075 DEXHc_RLR-3 DEXH-box helicase domain of RLR-3. RIG-I-like receptor 3 (RLR-3, also known as laboratory of genetics and physiology 2 or LGP2 and DHX58) appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. RLR-3 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. RNA binding is required for RLR-3-mediated enhancement of MDA5 activation. RLR-3 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. RLR-3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 200 -350834 cd18076 DEXXQc_HELZ2-N N-terminal DEXXQ-box helicase domain of HELZ2. Helicase with zinc finger 2 (HELZ2, also known as PPAR-alpha-interacting complex protein 285 or PRIC285 and PPAR-gamma DBD-interacting protein 1 or PDIP1) acts as a transcriptional coactivator for a number of nuclear receptors including PPARA, PPARG, THRA, THRB, and RXRA. It belongs to the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 230 -350835 cd18077 DEXXQc_HELZ DEXXQ-box helicase domain of HELZ. Helicase with zinc finger (HELZ) acts as a helicase that plays a role in RNA metabolism during development. HELZ is a member of the family I class of RNA helicases of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 226 -350836 cd18078 DEXXQc_Mov10L1 DEXXQ-box helicase domain of Mov10L1. Moloney leukemia virus 10-like protein 1 (Mov10L1) binds Piwi-interacting RNA (piRNA) precursors to initiate piRNA processing. Mov10L1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 230 -350837 cd18079 S-AdoMet_synt S-adenosylmethionine synthetase. S-adenosylmethionine synthetase (EC 2.5.1.6), also known as methionine adenosyltransferase, catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP in two steps, the formation of AdoMet and hydrolysis of the tripolyphosphate, which occurs prior to release of the product from the enzyme, which consists of three structural domains that have a similar alpha+beta fold. 371 -349953 cd18080 TrmD-like tRNA-M1G37-methyltransferase TrmD. The bacterial tRNA-(N(1)G37) methyltransferase (TrmD) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the N1 position of G37 in the anticodon loop of a subset of tRNA that contains a G at position 36. The presence of the modification prevents Watson-Crick base-pairing of this guanosine with cytosine in mRNA and translational frame-shifting. This family of proteins contains members of the SPOUT methyltransferases. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 219 -349954 cd18081 RlmH-like 23S-rRNA-pseudouridine1915-N3-methyltransferase RlmH. 23S rRNA (pseudouridine1915-N3)-methyltransferase RlmH catalyzes the addition of a methyl group at the N-3 position of pseudouridine Psi1915 in 23S rRNA to form m(3)Psi1915. This family of proteins belongs to the SPOUT methyltransferases. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 152 -349955 cd18082 SpoU-like_family SAM-dependent rRNA or tRNA methylase related to SpoU. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 145 -349956 cd18083 aTrm56-like archaeal tRNA (cytidine(56)-2'-O)-methyltransferase Trm56. Archaeal tRNA (cytidine(56)-2'-O)-methyltransferase Trm56 catalyzes the 2'-O-ribose methylation of cytidine at position 56 in tRNAs. Trm56 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 169 -349957 cd18084 RsmE-like SPOUT superfamily RNA methyltransferase RsmE-like. 16S rRNA m3U1498 methyltransferase RsmE modifies nucleotides during ribosomal RNA maturation in a site-specific manner. The Escherichia coli member is specific for U1498 methylation. RsmE is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 159 -349958 cd18085 TM1570-like SPOUT superfamily RNA methyltransferase TM1570-like. DUF2168; This domain, found in various hypothetical prokaryotic proteins, has no known function. It is also found in a few prokaryotic tRNA (guanine-N(1)-)-methyltransferases. Proteins of this family are members of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 178 -349959 cd18086 HsC9orf114-like SPOUT superfamily RNA methyltransferase HsC9orf114-like. Human C9orf114 (also known as centromere protein 32 or CENP-32) is required for association of the centrosomes with the poles of the bipolar mitotic spindle during metaphase. CENP-32 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 187 -349960 cd18087 TrmY-like tRNA (pseudouridine(54)-N(1))-methyltransferase TrmY. tRNA (pseudouridine(54)-N(1))-methyltransferase TrmY catalyzes the N1-methylation of pseudouridine at position 54 (Psi54) in tRNAs. TrmY is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 193 -349961 cd18088 Nep1-like 18S rRNA (pseudouridine(1248)-N1)-methyltransferase Nep1. 18S rRNA (pseudouridine(1248)-N1)-methyltransferase Nep1 (also known as EMG1) methylates pseudouridine at position1248 (Psi1248) in 18S rRNA and is required for small subunit (SSU) ribosomal RNA (rRNA) maturation. Mutations on human cause in Bowen-Conradi Syndrome. Nep1 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 204 -349962 cd18089 SPOUT_Trm10-like tRNA methyltransferase Trm10-like. Family of tRNA methyltransferase Trm10-like proteins catalyzes the N(1) methylation of guanine at position 9 (m(1)G9) of tRNA (eukaryotes) or N(1) methylation of guanine or adenine at position 9 (m1G9/m1A9) of tRNA (archaea), which might play a role in the stabilization of tRNA and in translation termination efficiency. Trm10 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 171 -349963 cd18090 Arginine_MT_Sfm1 SAM-dependent arginine methyltransferase related to yeast Sfm1. Arginine methyltransferase Sfm1 methylates R146 of 40S ribosomal protein S3 (Rps3), which contacts 18S RNA. Sfm1 is part of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent mainly RNA MTases which are structurally characterized by a deep trefoil knot. 140 -349964 cd18091 SpoU-like_TRM3-like SAM-dependent tRNA methylase related to TRM3. Yeast tRNA (guanosine(18)-2'-O)-methyltransferase TRM3 catalyzes the formation of 2'-O-methylguanosine at position 18 (Gm18) in various tRNAs. TRM3 is similar to C-terminal domain of TAR (HIV-1) RNA binding protein 1 (TARBP1), a protein binding to TAR, which functions as a RNA regulatory signal by forming a stable stem-loop structure to which transactivator protein Tat binds. The role of TARBP1 is believed to be to disengage RNA polymerase II from TAR during transcriptional elongation. TRM3 and the C-terminal methyltransferase domain of TARBP1 are members of the SPOUT methyltransferase superfamily. 145 -349965 cd18092 SpoU-like_TrmH SAM-dependent tRNA methylase related to TrmH. TrmH catalyzes the transfer of the methyl group from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of the ribose of the universally conserved guanosine 18 (G18) position in tRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 162 -349966 cd18093 SpoU-like_TrmJ SAM-dependent tRNA methylase related to TrmJ. tRNA methyltransferase TrmJ catalyzes the methyl transfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH at position 32 in both tRNASer1 and tRNAGln2. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 153 -349967 cd18094 SpoU-like_TrmL SAM-dependent tRNA methylase related to TrmL. tRNA (Um34/Cm34) methyltransferase TrmL catalyzes the methyl transfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH at position 34 in both tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 145 -349968 cd18095 SpoU-like_rRNA-MTase SAM-dependent rRNA methylase related to SpoU-TrmH. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 143 -349969 cd18096 SpoU-like SAM-dependent rRNA or tRNA methylase related to SpoU. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 140 -349970 cd18097 SpoU-like SAM-dependent rRNA or tRNA methylase related to SpoU. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 144 -349971 cd18098 SpoU-like SAM-dependent rRNA or tRNA methylase related to SpoU. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 138 -349972 cd18099 Trm10arch archaeal tRNA(m1G9/m1A9)-methyltransferase Trm10. Archaeal tRNA(m1G9/m1A9)-methyltransferase Trm10 catalyzes the N(1) methylation of guanine or adenine at position 9 (m1G9/m1A9) of tRNA, which might play a role in the stabilization of tRNA and in translation termination efficiency. Trm10 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 170 -349973 cd18100 Trm10euk_B eukaryotic tRNA m1G9 methyltransferase Trm10 homolog B. Eukaryotic tRNA m1G9 methyltransferase Trm10 homolog B (TM10B) catalyzes the N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which might play a role in the stabilization of tRNA and in translation termination efficiency. Trm10 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 182 -349974 cd18101 Trm10euk_A eukaryotic tRNA m1G9 methyltransferase Trm10 homolog A. Eukaryotic tRNA m1G9 methyltransferase Trm10 homolog A (TM10A) catalyzes the N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which might play a role in the stabilization of tRNA and in translation termination efficiency. Trm10 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 174 -349975 cd18102 Trm10_MRRP1 Mitochondrial ribonuclease P protein 1. Mitochondrial ribonuclease P protein 1 (or tRNA methyltransferase 10 homolog C) functions in mitochondrial tRNA maturation and is part of mitochondrial ribonuclease P, an enzyme composed of MRPP1/RG9MTD1, MRPP2/HSD17B10 and MRPP3/KIAA0391, which cleaves tRNA molecules in their 5'-ends. MRRP1 is related to Trm10, a tRNA m1G9 methyltransferase and is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 179 -349976 cd18103 SpoU-like_RlmB SAM-dependent rRNA methylase related to RlmB. 23S rRNA-M2G2251-MTase RlmB catalyzes the methylation of guanosine 2251, a modification conserved in the peptidyltransferase domain of 23S rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 143 -349977 cd18104 SpoU-like_RNA-MTase SAM-dependent RNA methylase related to SpoU-TrmH. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 146 -349978 cd18105 SpoU-like_MRM1 SAM-dependent rRNA methylase related to MRM1. MRM1 catalyzes the methylation of 2'-O-ribose residues G1145 to GmG residue of the mitochondrial 16S rRNA. MRM1 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 158 -349979 cd18106 SpoU-like_RNMTL1 SAM-dependent rRNA methylase related to RNMTL1. RNMTL1 (also known as HC90, MRM3 and RMTL1) catalyzes the methylation of 2'-O-ribose residues G1370 to GmG residue of the mitochondrial 16S rRNA. RNMTL1 is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 148 -349980 cd18107 SpoU-like_AviRb SAM-dependent rRNA methylase related to AviRb. AviRb from Streptomyces viridochromogenes methylates the 2'-O atom of U2479 of the 23S ribosomal RNA. AviRb is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 148 -349981 cd18108 SpoU-like_NHR Nosiheptide-resistance methyltransferase (NHR). Nosiheptide-resistance methyltransferase (NHR) confers resistance to the thiazole antibiotic nosiheptide via catalyzing 2'O-methylation of 23S rRNA at the nucleotide A1067. NHR is a member of the SPOUT (SpoU-TrmD) methyltransferase (MTase) superfamily, a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 144 -349982 cd18109 SpoU-like_RNA-MTase SAM-dependent RNA methylase related to SpoU-TrmH. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 141 -349745 cd18110 ATP-synt_F1_beta_C F1-ATP synthase beta (B) subunit, C-terminal domain. The beta (B) subunit of the F1 complex of F0F1-ATP synthase, C-terminal domain. The F-ATP synthase (also called FoF1-ATPase) is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinsic membrane domain, F1, is composed of alpha, beta, gamma, delta and epsilon subunits with a stoichiometry of 3:3:1:1:1. The beta subunit of ATP synthase is catalytic. 108 -349746 cd18111 ATP-synt_V_A-type_alpha_C V/A-type ATP synthase catalytic subunit A (alpha), C-terminal domain. The alpha (A) subunit of the V1/A1 complex of V/A-type ATP synthases, C-terminal domain. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 and A1 complexes contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex that forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPase) is found in archaea and functions like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, the V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. 105 -349747 cd18112 ATP-synt_V_A-type_beta_C V/A-type ATP synthase beta (B) subunit, C-terminal domain. The beta (B) subunit of the V1/A1 complexes of V/A-type ATP synthases, C-terminal domain. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 and A1 complexes contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex that forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPase) is found in archaea and functions like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, the V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. This subfamily consists of the non-catalytic beta subunit. 95 -349748 cd18113 ATP-synt_F1_alpha_C F1-ATP synthase alpha (A) subunit, C-terminal domain. The alpha (A) subunit of the F1 complex of F0F1-ATP synthase, C-terminal domain. The F-ATP synthase (also called FoF1-ATPase) is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinsic membrane domain, F1, is composed of alpha, beta, gamma, delta and epsilon subunits with a stoichiometry of 3:3:1:1:1. The alpha subunit of the F1 ATP synthase can bind nucleotides, but is non-catalytic. 126 -349749 cd18114 ATP-synt_flagellum-secretory_path_III_C Flagellum-specific ATP synthase, C-terminal domain. The C-terminal domain of the flagellum-specific ATPase/type III secretory pathway virulence-related protein. This group of ATPases are responsible for the export of flagellum and virulence-related proteins. The flagellum-specific ATPase FliI is the soluble export component that drives flagellar protein export, and it shows extensive similarity to the alpha and beta subunits of FoF1-ATP synthase. Although they both are proton driven rotary molecular devices, the main function of the bacterial flagellar motor is to rotate the flagellar filament for cell motility. Intracellular pathogens such as Salmonella and Chlamydia also have proteins which are similar to the flagellar-specific ATPase, but function in the secretion of virulence-related proteins via the type III secretory pathway. 71 -349739 cd18115 ATP-synt_F1_beta_N F1-ATP synthase beta (B) subunit, N-terminal domain. The beta (B) subunit of the F1 complex of FoF1-ATP synthase, N-terminal domain. The F-ATP synthase (also called FoF1-ATPase) is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinsic membrane domain, F1, is composed of alpha, beta, gamma, delta and epsilon subunits with a stoichiometry of 3:3:1:1:1. The beta subunit of ATP synthase is catalytic. 76 -349740 cd18116 ATP-synt_F1_alpha_N F1-ATP synthase alpha (A) subunit, N-terminal domain. The alpha (A) subunit of the F1 complex of FoF1-ATP synthase, N-terminal domain. The F-ATP synthase (also called FoF1-ATPase) is found in bacterial plasma membranes, in mitochondrial inner membranes, and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinsic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1. The alpha subunit of the F1 ATP synthase can bind nucleotides, but is non-catalytic. 67 -349741 cd18117 ATP-synt_flagellum-secretory_path_III_N Flagellum-specific ATP synthase, N-terminal domain. The N-terminal domain of the flagellum-specific ATPase/type III secretory pathway virulence-related protein. This group of ATPases are responsible for the export of flagellum and virulence-related proteins. The FliI ATPase is the soluble export component that drives flagellar protein export, and it shows extensive similarity to the alpha and beta subunits of F1-ATP synthase. Although they both are proton driven rotary molecular devices, the main function of the bacterial flagellar motor is to rotate the flagellar filament for cell motility. Intracellular pathogens, such as Salmonella and Chlamydia, also have proteins which are similar to the flagellar-specific ATPase, but function in the secretion of virulence-related proteins via the type III secretory pathway. 70 -349742 cd18118 ATP-synt_V_A-type_beta_N V/A-type ATP synthase beta (B) subunit, N-terminal domain. The beta (B) subunit of the V1/A1 complexes of V/A-type ATP synthases, N-terminal domain. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 or A1 complex which contains three copies each of the alpha and beta subunits that form the soluble catalytic core, that is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex which forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPase) is found in archaea and functions like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, the V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. This subfamily consists of the non-catalytic beta subunit. 72 -349743 cd18119 ATP-synt_V_A-type_alpha_N V/A-type ATP synthase catalytic subunit A (alpha), N-terminal domain. The alpha (A) subunit of the V1/A1 complexes of V/A-type ATP synthases, N-terminal domain. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 or A1 complex contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex that forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPase) is found in archaea and functions like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, the V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. 67 -349413 cd18120 ATP-synt_Vo_Ao_c Membrane-bound Vo/Ao complexes of V/A-type ATP synthases, subunit c. Vo/Ao-ATP synthase subunit c. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 and A1 complexes contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex that forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPases) is exclusively found in archaea and functions like the F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. The V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. The V1 complex consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The Vo complex consists of five different subunits: a, c, c', c'', and d. The Ao/A1 complexes are composed of nine subunits in a stoichiometry of A(3):B(3):C:D:E:F:H(2):a:c(x). ATP is synthesized on the A3:B3 hexamer and the energy released during that process is transferred to the Ao complex, which consists of the C-terminal segment of subunit a and subunit c. 62 -349414 cd18121 ATP-synt_Fo_c membrane-bound Fo complex of F-ATP synthase, subunit c. Subunit c (also called subunit 9, or proteolipid) of the Fo complex of F-ATP synthase. The F-ATP synthase (also called FoF1-ATPase) consists of two structural domains: the F1 (factor one) complex containing the soluble catalytic core, and the Fo (oligomycin sensitive factor) complex containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. F1 is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1, while Fo consists of the three subunits a, b, and c (1:2:10-14). An oligomeric ring of 10-14 c subunits (c-ring) make up the Fo rotor. The flux of protons though the ATPase channel (Fo) drives the rotation of the c-ring, which in turn is coupled to the rotation of the F1 complex gamma subunit rotor due to the permanent binding between the gamma and epsilon subunits of F1 and the c-ring of Fo. The F-ATP synthases are primarily found in the inner membranes of eukaryotic mitochondria, in the thylakoid membranes of chloroplasts, or in the plasma membranes of bacteria. The F-ATP synthases are the primary producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). Alternatively, under conditions of low driving force, ATP synthases function as ATPases, thus generating a transmembrane proton or Na(+) gradient at the expense of energy derived from ATP hydrolysis. This group also includes F-ATP synthase that has also been found in the archaea Methanosarcina acetivorans. 65 -350838 cd18133 HLD_clamp helical lid domain of clamp loader-like AAA+ proteins. Clamp loader complexes are multisubunit complexes that play an important role in DNA replication. They open sliding clamps for assembly and close them around DNA, specifically targeting them to sites where DNA synthesis is initiated and orienting them correctly for replication. The subunits belong to the clamp loader clade of AAA+ superfamily. 65 -350839 cd18137 HLD_clamp_pol_III_gamma_tau helical lid domain of DNA polymerase III subunits gamma and tau. DNA polymerase III subunit gamma/tau is part of the DNA polymerase III holoenzyme. Gamma and tau subunits are isoforms, both containing the helical lid domain. Gamma interacts with the delta subunit to transfer the beta subunit on the DNA while tau serves as a scaffold to help in the dimerization of the core complex. Both are members of the clamp-loader clade of the AAA+ superfamily. 65 -350840 cd18138 HLD_clamp_pol_III_delta helical lid domain of DNA polymerase III subunits delta. DNA polymerase III subunit delta is part of the DNA polymerase III holoenzyme. the delta subunit id required for ring opening and binds the beta subunit. It is a member of the clamp-loader clade of the AAA+ superfamily. 65 -350841 cd18139 HLD_clamp_RarA helical lid domain of recombination factor protein RarA. Recombination factor RarA (Replication associated recombination gene/protein A, also known as MgsA (Maintenance of genome stability A) or Mgs1 in yeast and WRNIP1 in mammals) is a member of the clamp-loader clade of the AAA+ superfamily. It functions as a tetramer. RarA co-localize with the replication fork throughout the cell cycle and may play a role in the rescue of stalled replication forks. 75 -350842 cd18140 HLD_clamp_RFC helical lid domain of replication factor C subunit. Replication factor C (RFC) is five-protein clamp loader complex that forms a stable ATP-dependent complex with the sliding clamp, PCNA, which binds specifically to primed DNA. RFC subunits belong to the clamp loader clade of the AAA+ superfamily. 63 -349482 cd18172 M14_CP_plant Zinc carboxypeptidase, including SOL1, a carboxypeptidase D in plant. This family includes only plant members of the carboxypeptidase (CP) N/E-like subfamily of the M14 family of metallocarboxypeptidases (MCPs). It includes Arabidopsis thaliana SOL1 carboxypeptidase D which is known to possess enzymatic activity to remove the C-terminal arginine residue of CLE19 proprotein in vitro, and SOL1-dependent cleavage of the C-terminal arginine residue is necessary for CLE19 activity in vivo. The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. The N/E subfamily includes eight members, of which five (CPN, CPE, CPM, CPD, CPZ) are considered enzymatically active, while the other three are non-active (CPX1, PCX2, ACLP/AEBP1) and lack the critical active site and substrate-binding residues considered necessary for CP activity. These non-active members may function as binding proteins or display catalytic activity towards other substrates. Unlike the A/B CP subfamily, enzymes belonging to the N/E subfamily are not produced as inactive precursors that require proteolysis to produce the active form; rather, they rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages that would otherwise damage the cell. In addition, all members of the N/E subfamily contain an extra C-terminal domain that is not present in the A/B subfamily. This domain has structural homology to transthyretin and other proteins and has been proposed to function as a folding domain. The active N/E enzymes fulfill a variety of cellular functions, including prohormone processing, regulation of peptide hormone activity, alteration of protein-protein or protein-cell interactions and transcriptional regulation. 276 -349483 cd18173 M14_CP_bacteria bacterial peptidase M14 carboxypeptidase, uncharacterized. This family contains only bacterial carboxypeptidase (CP) members of the M14 family of metallocarboxypeptidases (MCPs), mostly of which have yet to be characterized. The M14 family are zinc-binding CPs which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. The N/E subfamily includes eight members, of which five (CPN, CPE, CPM, CPD, CPZ) are considered enzymatically active, while the other three are non-active (CPX1, PCX2, ACLP/AEBP1) and lack the critical active site and substrate-binding residues considered necessary for CP activity. These non-active members may function as binding proteins or display catalytic activity towards other substrates. Unlike the A/B CP subfamily, enzymes belonging to the N/E subfamily are not produced as inactive precursors that require proteolysis to produce the active form; rather, they rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavages that would otherwise damage the cell. In addition, all members of the N/E subfamily contain an extra C-terminal domain that is not present in the A/B subfamily. This domain has structural homology to transthyretin and other proteins and has been proposed to function as a folding domain. The active N/E enzymes fulfill a variety of cellular functions, including prohormone processing, regulation of peptide hormone activity, alteration of protein-protein or protein-cell interactions and transcriptional regulation. 281 -349484 cd18174 M14_ASTE_ASPA_like Peptidase M14 Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA)-like; uncharacterized subgroup. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 187 -349415 cd18175 ATP-synt_Vo_c_ATP6C_rpt1 V-type proton ATPase 16 kDa proteolipid subunit (ATP6C/ATP6V0C/ATP6L/ATPL) and similar proteins. ATP6C (also called the V-ATPase 16 kDa proteolipid subunit, or vacuolar proton pump 16 kDa proteolipid subunit) is a proton-conducting pore forming subunit of the membrane integral Vo complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. 68 -349416 cd18176 ATP-synt_Vo_c_ATP6C_rpt2 V-type proton ATPase 16 kDa proteolipid subunit (ATP6C/ATP6V0C/ATP6L/ATPL) and similar proteins. ATP6C (also called V-ATPase 16 kDa proteolipid subunit, or vacuolar proton pump 16 kDa proteolipid subunit) is a proton-conducting pore forming subunit of the membrane integral Vo complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. 68 -349417 cd18177 ATP-synt_Vo_c_ATP6F_rpt1 V-type proton ATPase 21 kDa proteolipid subunit (ATP6F/ATP6V0B) and similar proteins. ATP6F (also called V-ATPase 21 kDa proteolipid subunit, or vacuolar proton pump 21 kDa proteolipid subunit) is a proton-conducting pore forming subunit of the membrane integral Vo complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. 63 -349418 cd18178 ATP-synt_Vo_c_ATP6F_rpt2 V-type proton ATPase 21 kDa proteolipid subunit (ATP6F/ATP6V0B) and similar proteins. ATP6F (also called V-ATPase 21 kDa proteolipid subunit, or vacuolar proton pump 21 kDa proteolipid subunit) is a proton-conducting pore forming subunit of the membrane integral Vo complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. 65 -349419 cd18179 ATP-synt_Vo_Ao_c_NTPK_rpt1 V-type sodium ATPase subunit K (NTPK) and similar proteins. NTPK (also called Na(+)-translocating ATPase subunit K, or sodium ATPase proteolipid component) is involved in ATP-driven sodium extrusion. 63 -349420 cd18180 ATP-synt_Vo_Ao_c_NTPK_rpt2 V-type sodium ATPase subunit K (NTPK) and similar proteins. NTPK (also called Na(+)-translocating ATPase subunit K, or sodium ATPase proteolipid component) is involved in ATP-driven sodium extrusion. 64 -349421 cd18181 ATP-synt_Vo_Ao_c_TtATPase_like Thermus thermophilus V/A-ATPase and similar proteins. This family includes a group of uncharacterized ATPase similar to Thermus thermophilus V/A-ATPase, which is homologous to the eukaryotic V-ATPase, but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. 62 -349422 cd18182 ATP-synt_Fo_c_ATP5G3 ATP synthase F(0) complex subunit C3 (ATP5G3) and similar proteins. ATP5G3 (also called ATP synthase lipid-binding protein, ATP synthase proteolipid P3, ATP synthase proton-transporting mitochondrial F(o) complex subunit C3, ATPase protein 9, or ATPase subunit c) transports protons across the inner mitochondrial membrane to the F1-ATPase protruding on the matrix side, resulting in the generation of ATP. 65 -349423 cd18183 ATP-synt_Fo_c_ATPH F-type proton-translocating ATP synthase (ATPH) and similar proteins. This family includes subunit c of chloroplast F-ATP synthase (F1Fo-ATP synthase), also known as ATP synthase F(o) sector subunit c (also called ATPase subunit III, F-type ATPase subunit c, or F-ATPase subunit c)and similar proteins. It is a proton-translocating subunit of the ATP synthase encoded by gene atpH. 75 -349424 cd18184 ATP-synt_Fo_c_NaATPase F-type sodium ion-translocating ATP synthase and similar proteins. This family includes F-type Na(+)-coupled ATP synthase and similar proteins. 65 -349425 cd18185 ATP-synt_Fo_c_ATPE F-type proton-translocating ATPase subunit c (ATPE) and similar proteins. This family includes subunit c of F-ATP synthase (also called ATP synthase F(o) sector subunit c, F-type ATPase subunit c, or F-ATPase subunit c) and similar proteins. It is a proton-translocating subunit of the ATP synthase encoded by gene atpE. 65 -349497 cd18186 BTB_POZ_ZBTB_KLHL-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing (ZBTB) proteins, Kelch-like (KLHL) proteins, and similar proteins. This family includes a variety of BTB/POZ domain-containing proteins, such as zinc finger and BTB domain-containing (ZBTB) proteins and Kelch-like (KLHL) proteins. They have diverse functions, such as transcriptional regulation, chromatin remodeling, protein degradation and cytoskeletal regulation. Many BTB/POZ proteins contain one or two additional domains, such as kelch repeats, zinc-finger domains, FYVE (Fab1, YOTB, Vac1, and EEA1) fingers, or ankyrin repeats. These special additional domains or interaction partners provide unique characteristics and functions to BTB/POZ proteins. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 82 -349498 cd18187 BTB_POZ_Kv_KCTD BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in voltage-gated potassium (Kv) channels and potassium channel tetramerization domain-containing (KCTD) proteins. This family includes two protein groups: voltage-gated potassium (Kv) channels and potassium channel tetramerization domain-containing (KCTD) proteins. Kv channels are membrane proteins with fundamental physiological roles. They are responsible for a variety of electrical phenomena, such as the repolarization of the action potential, spike frequency adaptation, synaptic repolarization, and smooth muscle contraction. KCTD proteins play crucial roles in a variety of fundamental biological processes, such as protein ubiquitination and degradation, suppression of proliferation or transcription, cytoskeleton regulation, tetramerization and gating of ion channels, and others. All family members contain the BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. 83 -349499 cd18190 BTB_POZ_ETO1-like BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Arabidopsis thaliana ethylene-overproduction protein 1 (ETO1) and similar proteins. ETO1, also called protein ethylene overproducer 1, is an essential regulator of the ethylene pathway, which acts by regulating the stability of 1-aminocyclopropane-1-carboxylate synthase (ACS) enzymes. It may act as a substrate-specific adaptor that connects ACS enzymes, such as ACS5, to ubiquitin ligase complexes, leading to proteasomal degradation of ACS enzymes. The family also includes ETO1-like proteins 1 (EOL1) and 2 (EOL2). ETO1, EOL1, and EOL2 contain a BTB domain and tetratricopeptide (TPR) repeats. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 83 -349500 cd18191 BTB_POZ_ARMC5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in armadillo repeat-containing protein 5 (ARMC5). ARMC5 plays a role in steroidogenesis, and modulates the expression and cortisol production of steroidogenic enzymes. It negatively regulates adrenal cells survival. It contains armadillo (ARM) repeats and a BTB domain, which is a common protein-protein interaction motif of about 100 amino acids. 100 -349501 cd18192 BTB_POZ_ZBTB1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 1 (ZBTB1). ZBTB1 acts as a transcriptional repressor that represses cAMP-responsive element (CRE)-mediated transcriptional activation. It also has a role in translesion DNA synthesis, and is essential for lymphocyte development. ZBTB1 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 114 -349502 cd18193 BTB_POZ_ZBTB2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 2 (ZBTB2). ZBTB2 is a POZ domain Kruppel-like zinc finger (POK) family transcription factor acting as a potent repressor of the ARF-HDM2-p53-p21 pathway, which is important in cell cycle regulation. It represses transcription of the ARF, p53, and p21 genes, but activates the HDM2 gene. ZBTB2 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 115 -349503 cd18194 BTB_POZ_ZBTB3-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing proteins, ZBTB3, ZBTB18, ZBTB42 and similar proteins. The family includes zinc finger and BTB domain-containing proteins, ZBTB3, ZBTB18 and ZBTB42. ZBTB3 is a transcription factor essential for cancer cell growth via the regulation of the reactive oxygen species (ROS) detoxification pathway. ZBTB18 is a sequence-specific transrepressor associated with heterochromatin. ZBTB42 is a transcriptional repressor that specifically binds DNA and probably acts by recruiting chromatin remodeling multiprotein complexes. Members of this family contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349504 cd18195 BTB_POZ_ZBTB4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 4 (ZBTB4). ZBTB4, also called KAISO-like zinc finger protein 1 (KAISO-L1), is a transcriptional repressor with bimodal DNA-binding specificity. It binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to the non-methylated consensus sequence 5'-CTGCNA-3', also known as the consensus kaiso binding site (KBS). It can also bind specifically to a single methyl-CpG pair and can bind hemimethylated DNA but with a lower affinity compared to methylated DNA. ZBTB4 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 124 -349505 cd18196 BTB_POZ_ZBTB5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 5 (ZBTB5). ZBTB5 is a POZ domain Kruppel-like zinc finger (POK) family transcription repressor of cell cycle arrest gene p21 and a potential proto-oncogene stimulating cell proliferation. ZBTB5 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 126 -349506 cd18197 BTB_POZ_ZBTB6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 6 (ZBTB6). ZBTB6, also called zinc finger protein 482 (ZNF482) or zinc finger protein with interaction domain, may be involved in transcriptional regulation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 116 -349507 cd18198 BTB_POZ_ZBTB7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 7 (ZBTB7). There are three ZBTB7 isoforms: ZBTB7A, ZBTB7B, and ZBTB7C. ZBTB7A is a transcription repressor of key glycolytic genes, including GLUT3, PFKP, and PKM, and its downregulation in human cancer contributes to tumor metabolism. ZBTB7B is a transcriptional regulator of extracellular matrix gene expression. ZBTB7C is a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function. ZBTB7 isoforms contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 120 -349508 cd18199 BTB_POZ_ZBTB8 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 8 (ZBTB8). There are two ZBTB8 isoforms: ZBTB8A and ZBTB8B. ZBTB8A is a novel proto-oncoprotein that stimulates cell proliferation. ZBTB8B may be involved in transcriptional regulation. They both contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 113 -349509 cd18200 BTB_POZ_ZBTB9 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 9 (ZBTB9). ZBTB9 may be involved in transcriptional regulation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 111 -349510 cd18201 BTB_POZ_ZBTB10 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 10 (ZBTB10). ZBTB10, also called zinc finger protein RIN ZF, is an mRNA target of miR-27a and a transcriptional repressor of Specificity protein (Sp) expression. The microRNA-27a:ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2, and survivin expression in ovarian epithelial cancer cells. ZBTB10 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 122 -349511 cd18202 BTB_POZ_ZBTB11 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 11 (ZBTB11). ZBTB11 is a transcriptional repressor of TP53. It is critical for basal and emergency granulopoiesis. It regulates neutrophil development through its integrase-like zinc finger domain. ZBTB11 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 118 -349512 cd18203 BTB_POZ_ZBTB12 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 12 (ZBTB12). ZBTB12, also called protein G10, may be involved in transcriptional regulation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 122 -349513 cd18204 BTB_POZ_ZBTB14 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 14 (ZBTB14). ZBTB14 is also called zinc finger protein 161 (Zfp-161), zinc finger protein 478, zinc finger protein 5 (ZF5), or Zfp-5. It is a novel transcriptional activator of the dopamine transporter, binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. It also binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. ZBTB14 acts as a transcriptional repressor of MYC and thymidine kinase promoters. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 114 -349514 cd18205 BTB_POZ_ZBTB16_PLZF BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 16 (ZBTB16). ZBTB16 is also called promyelocytic leukemia zinc finger protein, zinc finger protein 145, or zinc finger protein PLZF. It is a DNA-binding transcription factor essential for undifferentiated cell maintenance. ZBTB16 also acts as a downstream transcriptional regulator of Osterix and can be useful as a late marker of osteoblastic differentiation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 107 -349515 cd18206 BTB_POZ_ZBTB17_MIZ1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 17 (ZBTB17). ZBTB1 is also called c-Myc-interacting zinc finger protein 1 (Miz-1), zinc finger protein 151, or zinc finger protein 60. It is a poly-Cys2His2 zinc finger (ZF) transcription factor that can function as an activator or repressor depending on its binding partners, and by targeting negative regulators of cell cycle progression. ZBTB17 has been implicated in cardiomyopathy and is important in cardiac stress response. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 112 -349516 cd18207 BTB_POZ_ZBTB19_PATZ1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in POZ-, AT hook-, and zinc finger-containing protein 1 (PATZ1). PATZ1 is also called zinc finger and BTB domain-containing protein 19 (ZBTB19), BTB/POZ domain zinc finger transcription factor, protein kinase A RI subunit alpha-associated protein, zinc finger protein 278, or zinc finger sarcoma gene protein. It is an important transcriptional regulatory factor that regulates divergent pathways depending on the cellular context. For instance, it acts as a transcriptional suppressor that functions in T lymphocytes. It is also a DNA damage-responsive transcription factor that inhibits p53 function. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349517 cd18208 BTB_POZ_ZBTB20_DPZF BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 20 (ZBTB20). ZBTB20, also called dendritic-derived BTB/POZ zinc finger protein (DPZF) or zinc finger protein 288, may be a transcription factor involved in hematopoiesis, oncogenesis, and immune responses. It is an essential regulator of hepatic lipogenesis and may be a therapeutic target for the treatment of fatty liver disease. It also functions as a critical regulator of anterior pituitary development and lactotrope specification. Moreover, it promotes astrocytogenesis during neocortical development. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 117 -349518 cd18209 BTB_POZ_ZBTB21_ZNF295 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 21 (ZBTB21). ZBTB21, also called zinc finger protein 295 (ZNF295), is a transcription repressor that acts in a selective manner on different promoters. It may be involved in the bi-directional control of gene expression in concert with another transcription factor ZFP161. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 112 -349519 cd18210 BTB_POZ_ZBTB22_BING1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 22 (ZBTB22). ZBTB22, also called protein BING1 or zinc finger protein 297, may be involved in transcriptional regulation. Its gene, together with BING 3-5, TAPASIN, DAXX, RGL2, and HKE2, form a dense cluster at the centromeric end of the major histocompatibility complex class I region. ZBTB22 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 112 -349520 cd18211 BTB_POZ_ZBTB23_GZF1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in glial cell line-derived neurotrophic factor-inducible zinc finger protein 1 (GZF1). GZF1 is also called GDNF-inducible zinc finger protein 1, zinc finger and BTB domain-containing protein 23 (ZBTB23), or zinc finger protein 336 (ZNF336). It is a sequence-specific transcriptional repressor that binds the GZF1 responsive element (GRE), with the consensus sequence of 5'-TGCGCN[TG][CA]TATA-3'. It may play a role in renal branching morphogenesis. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349521 cd18212 BTB_POZ_ZBTB24_ZNF450 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 24 (ZBTB24). ZBTB24, also called zinc finger protein 450, functions as a transcription factor essentially involved in B-cell functions in humans. The loss-of-function mutations in ZBTB24 can cause ICF2 (immunodeficiency, centromeric instability and facial anomalies syndrome 2) with immunological characteristics of greatly reduced serum antibodies and circulating memory B cells. ZBTB24 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 118 -349522 cd18213 BTB_POZ_ZBTB25_ZNF46_KUP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 25 (ZBTB25). ZBTB25, also called zinc finger protein 46 (ZNF46) or zinc finger protein KUP, is a transcription repressor that facilitates viral RNA transcription and replication. It interacts with viral RNA-dependent RNA polymerase (RdRp) proteins and modulates their transcription activity. It also functions as a viral RNA-binding protein, binding preferentially to the U-rich sequence within 5' UTR of vRNA. ZBTB25 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349523 cd18214 BTB_POZ_ZBTB26_Bioref BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 26 (ZBTB26). ZBTB26, also called zinc finger protein 481 (ZNF481) or zinc finger protein Bioref, may be involved in transcriptional regulation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 122 -349524 cd18215 BTB_POZ_ZBTB27-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in B-cell lymphoma 6 proteins, BCL-6 and BCL-6B. This family includes B-cell lymphoma 6 proteins, BCL-6 and BCL-6B. BCL-6 is a transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation, which have different mechanisms of action specific to the lineage and biological functions. BCL-6B is a sequence-specific transcriptional repressor in association with BCL-6. It may function in a narrow stage or be related to some events in the early B-cell development. Family members contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 113 -349525 cd18216 BTB_POZ_ZBTB29-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in hypermethylated in cancer proteins, Hic-1 and Hic-2. The family includes hypermethylated in cancer proteins, Hic-1 and Hic-2. Hic-1 is a sequence-specific transcriptional repressor that recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3'. Hic-2 is a homolog of tumor suppressor Hic-1 that functions as a transcriptional regulator. Family members contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 118 -349526 cd18217 BTB_POZ_ZBTB31_myoneurin BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in myoneurin. Myoneurin, also called zinc finger and BTB domain-containing protein 31 (ZBTB31), is a novel member of the BTB/POZ-zinc finger family highly expressed in the neuromuscular system and is associated with neuromuscular junctions during the late embryonic period. It may function as a synaptic gene regulator. Myoneurin contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 111 -349527 cd18218 BTB_POZ_ZBTB32_FAZF_TZFP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 32 (ZBTB32). ZBTB32 is also called FANCC-interacting protein, fanconi anemia zinc finger protein (FAZF), testis zinc finger protein (TZFP), or zinc finger protein 538 (ZNF538). It is a DNA-binding transcription factor that binds to the 5'-TGTACAGTGT-3' core sequence. It acts as a transcription suppressor that controls T cell-mediated autoimmunity. ZBTB32 is essential for down-regulation of GATA3 via ZPO2; this promotes aggressive breast cancer development. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 110 -349528 cd18219 BTB_POZ_ZBTB33_KAISO BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kaiso. Kaiso, also called zinc finger and BTB domain-containing protein 33 (ZBTB33), is a DNA methylation-dependent transcriptional repressor that binds to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3'. It also binds to the non-methylated consensus sequence 5'-CTGCNA-3', also known as the consensus kaiso binding site (KBS). It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 106 -349529 cd18220 BTB_POZ_ZBTB34 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 34 (ZBTB34). ZBTB34 acts as a transcriptional regulator. It downregulates specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 in pancreatic cancer cells. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 120 -349530 cd18221 BTB_POZ_ZBTB35_ZNF131 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger protein 131 (ZNF131). ZNF131, also called zinc finger and BTB domain-containing protein 35 (ZBTB35), is a transcriptional activator implicated as a regulator of Kaiso-mediated biological processes. It regulates cell growth of developing and mature T cells. It inhibits estrogen signaling by suppressing estrogen receptor alpha homo-dimerization, and plays a role in breast cancer cell proliferation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 113 -349531 cd18222 BTB_POZ_ZBTB37 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 37 (ZBTB37). ZBTB37 may be involved in transcriptional regulation. It is differentially expressed in aryl hydrocarbon receptor (AhR)-KO mice compared with WT mice, and may potentially contribute to the aging phenotype of AhR-KO mice. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 123 -349532 cd18223 BTB_POZ_ZBTB38_CIBZ BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 38 (ZBTB38). ZBTB38, also termed CIBZ, is a transcriptional regulator with bimodal DNA-binding specificity. It binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3', as well as E-box elements (5'-CACGTG-3'). It can also bind specifically to a single methyl-CpG pair. ZBTB38 represses transcription in a methyl-CpG-dependent manner. It is a negative regulator of endoplasmic reticulum stress-associated apoptosis. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 114 -349533 cd18224 BTB_POZ_ZBTB39 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 39 (ZBTB39). ZBTB39 may be involved in transcriptional regulation. Its specific function is as yet unknown. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 123 -349534 cd18225 BTB_POZ_ZBTB40 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 40 (ZBTB40). ZBTB40 may be involved in transcriptional regulation. Single-nucleotide polymorphisms of ZBTB40 are associated with bone mineral density in European and East-Asian populations. ZBTB40 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 116 -349535 cd18226 BTB_POZ_ZBTB41 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 41 (ZBTB41). ZBTB41, also called FRBZ1, may be involved in transcriptional regulation. Its specific function is as yet unknown. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 114 -349536 cd18227 BTB_POZ_ZBTB43 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 43 (ZBTB43). ZBTB43, also called zinc finger and BTB domain-containing protein 22B (ZBTB22b), zinc finger protein 297B (ZNF297B), or ZnF-x, may be involved in transcriptional regulation. It interacts with BDP1, a subunit of transcription factor IIIB (TFIIIB). Since BDP1 is essential in Pol III transcription, ZBTB43 may also regulate these transcriptional pathways. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 121 -349537 cd18228 BTB_POZ_ZBTB44 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 44 (ZBTB44). ZBTB44, also called BTB/POZ domain-containing protein 15 (BTBD15) or zinc finger protein 851 (ZNF851), may be involved in transcriptional regulation. Single-nucleotide polymorphisms of ZBTB44 showed a suggestive association with disease progression of Crohn's disease. ZBTB44 has also preferentially been recognized by sera of patients with peripheral T-cell lymphoma (PTCL). It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 126 -349538 cd18229 BTB_POZ_ZBTB45 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 45 (ZBTB45). ZBTB45, also called zinc finger protein 499 (ZNF499), may act as a transcriptional regulator that is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 112 -349539 cd18230 BTB_POZ_ZBTB46 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 46 (ZBTB46). ZBTB46 is also called BTB-ZF protein expressed in effector lymphocytes (BZEL), BTB/POZ domain-containing protein 4 (BTBD4), or zinc finger protein 340 (ZNF340). It is a conventional dendritic cell (cDC) lineage specific transcription factor that acts as a negative regulator required to prevent activation of classical dendritic cells in the steady state. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 125 -349540 cd18231 BTB_POZ_ZBTB47_ZNF651 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 47 (ZBTB47). ZBTB47, also called zinc finger protein 651 (ZNF651), is a paralog of ZNF652, a novel zinc-finger transcriptional repressor. It interacts with CBFA2T3 via its carboxy-terminal proline-rich region. CBFA2T3-ZNF651 functions as a transcriptional co-repressor complex. ZBTB47 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 115 -349541 cd18232 BTB_POZ_ZBTB48_TZAP_KR3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in telomere zinc finger-associated protein (TZAP). TZAP is also called Krueppel-related zinc finger protein 3 (KR3), zinc finger and BTB domain-containing protein 48 (ZBTB48), or zinc finger protein 855 (ZNF855). It is a vertebrate telomere-binding protein involved in telomere length control. It directly binds the telomeric double-stranded 5'-TTAGGG-3' repeat. TZAP also acts as a transcription regulator that binds to promoter regions. It is a transcriptional activator of alternate reading frame (ARF) gene. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 108 -349542 cd18233 BTB_POZ_ZBTB49 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 49 (ZBTB49). ZBTB49, also called zinc finger protein 509 (ZNF509), is a transcription factor that inhibits cell proliferation by activating either CDKN1A/p21 transcription or RB1 transcription. There are four ZNF509 isoforms generated by alternative splicing. Short ZNF509 (ZNF509S1, -S2 and -S3) isoforms contain one or two out of the seven zinc-fingers contained in long ZNF509 (ZNF509L). ZBTB49 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 112 -349543 cd18234 BTB_POZ_KLHL1-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like proteins KLHL1, KLHL4 and KLHL5. This family contains the Kelch-like proteins: KLHL1, KLHL4 and KLHL5, all of which share high identity and similarity with the Drosophila kelch protein, a component of ring canals. KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (alpha1H T-type) calcium channels. Family members contain a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 105 -349544 cd18235 BTB_POZ_KLHL2-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like proteins, KLHL2 and KLHL3. The family includes Kelch-like proteins, KLHL2 and KLHL3. KLHL2 is a novel actin-binding protein predominantly expressed in brain. It plays a role in the reorganization of the actin cytoskeleton, and promotes growth of cell projections in oligodendrocyte precursors. KLHL2 and KLHL3 each functions as a component of an E3 ubiquitin ligase complex that mediates the ubiquitination of target proteins. They contain a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349545 cd18236 BTB_POZ_KLHL6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 6 (KLHL6). KLHL6 is a BTB-kelch protein with a lymphoid tissue-restricted expression pattern. It is involved in B-lymphocyte antigen receptor signaling and germinal center formation. It belongs to the KLHL gene family, which is composed of an N-terminal BTB-POZ domain and four to six Kelch motifs in tandem. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 129 -349546 cd18237 BTB_POZ_KLHL7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 7 (KLHL7). KLHL7 is a component of a Cul3-based E3 ubiquitin ligase complex and is involved in the ubiquitination of target proteins for proteasome-mediated degradation. Mutations in KLHL7 causes autosomal-dominant retinitis pigmentosa. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 126 -349547 cd18238 BTB_POZ_KLHL8 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 8 (KLHL8). KLHL8 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for the ubiquitination and degradation of rapsyn, a postsynaptic protein required for clustering of nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349548 cd18239 BTB_POZ_KLHL9_13 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like proteins KLHL9 and KLHL13. KLHL9 and KLHL13 (also called BTB and kelch domain-containing protein 2, or BKLHD2) are substrate-specific adaptors of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB and controls the dynamic behavior of AURKB on mitotic chromosomes, thereby coordinating faithful mitotic progression and completion of cytokinesis. They contain a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 128 -349549 cd18240 BTB_POZ_KLHL10 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 10 (KLHL10). KLHL10 is a substrate-specific adaptor of a CUL3-based E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins specifically in the testis during spermatogenesis. Haploinsufficiency of Klhl10 causes infertility in male mice. KLHL10 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349550 cd18241 BTB_POZ_KLHL11 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 11 (KLHL11). KLHL11 is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of target proteins, leading most often to their proteasomal degradation. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 135 -349551 cd18242 BTB_POZ_KLHL12_C3IP1_DKIR BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 12 (KLHL12). KLHL12, also called CUL3-interacting protein 1 (C3IP1) or DKIR homolog, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a negative regulator of the Wnt signaling pathway and ER-Golgi transport. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349552 cd18243 BTB_POZ_KLHL14_printor BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 14 (KLHL14). KLHL14 is also called protein interactor of Torsin-1A (TOR1A), protein interactor of torsinA, or Printor. It is a novel torsinA-interacting protein that preferentially interacts with ATP-free form of TOR1A and is implicated in dystonia pathogenesis. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 130 -349553 cd18244 BTB_POZ_KLHL15 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 15 (KLHL15). KLHL15 is a substrate-specific adaptor for the Cullin3 E3 ubiquitin-protein ligase complex that targets the serine/threonine-protein phosphatase 2A (PP2A) subunit PPP2R5B for ubiquitination and subsequent proteasomal degradation, thus promoting exchange with other regulatory subunits. It also plays a key role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR), by targeting the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. KLHL15 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 137 -349554 cd18245 BTB_POZ_KLHL16_gigaxonin BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in gigaxonin. Gigaxonin, also called Kelch-like protein 16 (KLHL16), may be a cytoskeletal component that directly or indirectly plays an important role in neurofilament architecture. It may also act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, including tubulin folding cofactor B (TBCB), microtubule-associated protein MAP1B, and glial fibrillary acidic protein (GFAP). Gigaxonin is mutated in giant axonal neuropathy. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 111 -349555 cd18246 BTB_POZ_KLHL17_actinfilin BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 17 (KLHL17). KLHL17, also called actinfilin, is a substrate-recognition component of some cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes. It acts as a Cullin 3 (Cul3) substrate adaptor that links GLUR6 to the E3 ubiquitin-ligase complex, and mediates the ubiquitination and subsequent degradation of GLUR6. It may play a role in actin-based neuronal function. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 139 -349556 cd18247 BTB_POZ_KLHL18 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 18 (KLHL18). KLHL18 acts as a substrate-specific adaptor for a Cullin3 E3 ubiquitin-protein ligase complex that regulates mitotic entry and ubiquitylates Aurora-A. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 116 -349557 cd18248 BTB_POZ_KLHL19_KEAP1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like ECH-associated protein 1 (KEAP1). KEAP1, also called cytosolic inhibitor of Nrf2 (INrf2) or Kelch-like protein 19 (KLHL19), is a redox-regulated substrate adaptor protein for a Cullin3-dependent ubiquitin ligase complex that targets NFE2L2/NRF2 for ubiquitination and degradation by the proteasome, thus resulting in the suppression of its transcriptional activity and the repression of antioxidant response element-mediated detoxifying enzyme gene expression. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349558 cd18249 BTB_POZ_KLHL20_KLEIP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 20 (KLHL20). KLHL20, also called Kelch-like ECT2-interacting protein (KLEIP) or Kelch-like protein X, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex involved in interferon response and anterograde Golgi to endosome transport. KLHL20 plays a role in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. It also controls endothelial migration and sprouting angiogenesis. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 128 -349559 cd18250 BTB_POZ_KLHL21 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 21 (KLHL21). KLHL21 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for efficient chromosome alignment and cytokinesis. The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of aurora B. KLHL21 also targets IkappaB kinase-beta to regulate nuclear factor kappa-light chain enhancer of activated B cells (NF-kappaB) signaling negatively. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349560 cd18251 BTB_POZ_KLHL22 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 22 (KLHL22). KLHL22 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for chromosome alignment and localization of polo-like kinase 1 (PLK1) at kinetochores. The BCR(KLHL22) ubiquitin ligase complex mediates mono-ubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 125 -349561 cd18252 BTB_POZ_KLHL23 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 23 (KLHL23). KLHL23 overexpression is associated with increased cell proliferation and invasion in gastric cancer. Downregulation of KLHL23 is associated with invasion, metastasis, and poor prognosis of hepatocellular carcinoma and pancreatic cancer. KLHL23 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 127 -349562 cd18253 BTB_POZ_KLHL24_KRIP6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 24 (KLHL24). KLHL24, also called kainate receptor-interacting protein for GluR6 (KRIP6) or protein DRE1, is necessary to maintain the balance between intermediate filament stability and degradation, a process that is essential for skin integrity. KLHL24 is a component of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that mediates ubiquitination of KRT14 and controls its levels during keratinocyte differentiation. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349563 cd18254 BTB_POZ_KLHL25 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 25 (KLHL25). KLHL25, also called ectoderm-neural cortex protein 2 (ENC-2), is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that is required for translational homeostasis. The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1). Cullin3-KLHL25 ubiquitin ligase also targets ATP-citrate lyase (ACLY), a key enzyme for lipid synthesis, for degradation to inhibit lipid synthesis and tumor progression. KLHL25 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 128 -349564 cd18255 BTB_POZ_KLHL26 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 26 (KLHL26). KLHL26 is encoded by the klhl26 gene, which is regulated by p53 via fuzzy tandem repeats. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349565 cd18256 BTB_POZ_KLHL27_IPP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in intracisternal A particle-promoted polypeptide (IPP). IPP, also called Kelch-like protein 27 (KLHL27) or actin-binding protein IPP, is an actin-binding protein that may play a role in organizing the actin cytoskeleton. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 125 -349566 cd18257 BTB_POZ_KLHL28_BTBD5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 28 (KLHL28). KLHL28, also called BTB/POZ domain-containing protein 5 (BTBD5), contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 118 -349567 cd18258 BTB_POZ_KLHL29_KBTBD9 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 29 (KLHL29). KLHL29 is also called Kelch repeat and BTB domain-containing protein 9 (KBTBD9). A novel fusion transcript NR5A2-KLHL29FT, resulting from transchromosomal insertion, may influence the origin or progression of colon cancer. KLHL29 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 125 -349568 cd18259 BTB_POZ_KLHL30 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 30 (KLHL30). KLHL30 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 137 -349569 cd18260 BTB_POZ_KLHL31_KBTBD1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 31 (KLHL31). KLHL31 is also called BTB and kelch domain-containing protein 6 (BKLHD6), Kelch repeat and BTB domain-containing protein 1 (KBTBD1), or Kelch-like protein KLHL. It is a transcriptional repressor in the MAPK/JNK signaling pathway to regulate cellular functions. Overexpression inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). It is also a novel modulator of canonical Wnt signaling, which is important for vertebrate myogenesis. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349570 cd18261 BTB_POZ_KLHL32 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 32 (KLHL32). KLHL32, also called BTB and kelch domain-containing protein 5 (BKLHD5), contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. Deletion of KLHL32 may be ssociated with Tourette syndrome and obsessive-compulsive disorder. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 133 -349571 cd18262 BTB1_POZ_KLHL33 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 33 (KLHL33). KLHL33 contains BTB domains and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. KLHL33 gene expression in normal and tumor tissue suggest a significant association with prostate cancer risk. KLHL33 contains two BTB domains. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 101 -349572 cd18263 BTB2_POZ_KLHL33 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 33 (KLHL33). KLHL33 contains BTB domains and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. KLHL33 gene expression in normal and tumor tissue suggest a significant association with prostate cancer risk. KLHL33 contains two BTB domains. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 118 -349573 cd18264 BTB_POZ_KLHL34 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 34 (KLHL34). KLHL34 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The methylation status of KLHL34 cg14232291 appears to be predictive of pathologic response to preoperative chemoradiation therapy in rectal cancer patients. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 136 -349574 cd18265 BTB_POZ_KLHL35 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 35 (KLHL35). KLHL35 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. Significant differences in DNA methylation of the KLHL35 gene in abdominal aortic aneurysm (AAA) patients compared to non-AAA controls suggest a potential role in AAA pathology. Hypermethylation of the KLHL35 gene has also been associated with the development of hepatocellular carcinoma. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 128 -349575 cd18266 BTB_POZ_KLHL36 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 36 (KLHL36). KLHL36 may act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 135 -349576 cd18267 BTB_POZ_KLHL37_ENC1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Ectoderm-neural cortex protein 1 (ENC-1). ENC-1 is also called Kelch-like protein 37 (KLHL37), nuclear matrix protein NRP/B, or p53-induced gene 10 protein. It is an actin-binding nuclear matrix protein that associates with p110(RB), and is involved in the regulation of neuronal process formation and in differentiation of neural crest cells. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 147 -349577 cd18268 BTB_POZ_KLHL38 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 38 (KLHL38). KLHL38 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The KLHL38 gene is significantly up-regulated during diapause, a temporary arrest of development during early ontogeny. It may also function in preadipocyte differentiation in the chicken. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 129 -349578 cd18269 BTB_POZ_KLHL40-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like proteins, KLHL40 and KLHL41. This family includes Kelch-like proteins, KLHL40 and KLHL41. KLHL40 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a key regulator of skeletal muscle development. KLHL41 is a novel kelch related protein that is involved in pseudopod elongation in transformed cells. They both contain a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 133 -349579 cd18270 BTB_POZ_KBTBD2_BKLHD1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 2 (KBTBD2). KBTBD2, also called BTB and kelch domain-containing protein 1 (BKLHD1), plays an essential role in the regulation of insulin-signaling pathway. It is a BTB-Kelch family substrate recognition subunit of the Cullin-3-based E3 ubiquitin ligase, which targets p85alpha, the regulatory subunit of the phosphoinositol-3-kinase (PI3K) heterodimer, causing p85alpha ubiquitination and proteasome-mediated degradation. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 133 -349580 cd18271 BTB_POZ_KBTBD3_BKLHD3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 3 (KBTBD3). KBTBD3, also called BTB and kelch domain-containing protein 3 (BKLHD3), contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 130 -349581 cd18272 BTB_POZ_KBTBD4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 4 (KBTBD4). KBTBD4, also called BTB and kelch domain-containing protein 4 (BKLHD4), is a BTB-BACK-Kelch domain protein belonging to a large family of cullin-RING ubiquitin ligase adaptors that facilitate the ubiquitination of target substrates. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 140 -349582 cd18273 BTB_POZ_KBTBD6_7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing proteins KBTBD6 and KBTBD7. KBTBD6 and KBTBD7 are substrate adaptors of a cullin-3 RING ubiquitin ligase complex that mediates ubiquitylation and proteasomal degradation of T-lymphoma and metastasis gene 1 (TIAM1), a RAC1-specific guanine exchange factor (GEF), by cooperating with gamma-aminobutyric acid receptor-associated proteins (GABARAP). KBTBD7 may also act as a new transcriptional activator in mitogen-activated protein kinase (MAPK) signaling. They both contain a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 142 -349583 cd18274 BTB_POZ_KBTBD8 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 8 (KBTBD8). KBTBD8, also called T-cell activation kelch repeat protein (TA-KRP), is a BTB-kelch family protein that is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. It acts as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of neural crest specification. The BCR(KBTBD8) complex monoubiquitylates NOLC1 and its paralog TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 129 -349584 cd18275 BTB_POZ_KBTBD11 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 11 (KBTBD11). KBTBD11 is also called chronic myelogenous leukemia-associated protein (CMLAP) or Kelch domain-containing protein 7B, or KLHDC7C. It is a BTB-Kelch family protein whose function remains unclear. A novel polymorphism rs11777210 in KBTBD11 is significantly associated with colorectal cancer risk. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 104 -349585 cd18276 BTB_POZ_KBTBD12 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 12 (KBTBD12). KBTBD12, also called Kelch domain-containing protein 6 (KLHDC6), contains a BTB domain and kelch repeats, characteristics of a kelch family protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 127 -349586 cd18277 BTB_POZ_BACH1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB and CNC homolog 1 (BACH1). BACH1, also called BTB-basic leucine zipper transcription factor 1, belongs to the cap 'n' collar (CNC) and basic leucine zipper (bZIP) factor family. It can act as repressor or activator. BACH1 is a heme-responsive transcriptional repressor of heme oxygenase (HO)-1. It represses genes involved in heme metabolism and oxidative stress response. It is also a negative regulator of nuclear factor erythroid 2-related factor 2 (Nrf2) that controls antioxidant response elements (ARE)-dependent gene expressions. BACH1 binds to NF-E2 binding sites in vitro, and plays important roles in coordinating transcription activation and repression by MafK. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349587 cd18278 BTB_POZ_BACH2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB and CNC homolog 2 (BACH2). BACH2, also called BTB-basic leucine zipper transcription factor 2, belongs to the cap 'n' collar (CNC) and basic leucine zipper (bZIP) factor family. BACH2 is a lymphoid-specific transcription factor with a prominent role in B-cell development. It is transcriptionally regulated by the BCR/ABL oncogene. It represses the anti-apoptotic factor heme oxygenase-1 (HO-1). It is also a potent general repressor of effector differentiation in naive T cells. Moreover, BACH2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349588 cd18279 BTB_POZ_SPOP-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in speckle-type POZ protein (SPOP) and similar proteins. This family includes speckle-type POZ protein (SPOP), speckle-type POZ protein-like (SPOPL), TD and POZ domain-containing proteins (TDPOZ), Drosophila melanogaster protein roadkill and similar proteins. Both, SPOP and SPOPL, serve as adaptors of cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes that mediate the ubiquitination and proteasomal degradation of target proteins. TDPOZ is a family of bipartite animal and plant proteins that contain a tumor necrosis factor receptor-associated factor (TRAF) domain (TD) and a POZ/BTB domains. TDPOZ proteins may be nuclear scaffold proteins probably involved in transcription regulation in early development and other cellular processes. Drosophila melanogaster protein roadkill, also called Hh-induced MATH and BTB domain-containing protein (HIB), is a hedgehog-induced BTB protein that modulates hedgehog signaling by degrading Ci/Gli transcription factor. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349589 cd18280 BTB_POZ_BPM_plant BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in plant BTB/POZ-MATH (BPM) protein family. The BPM protein family includes Arabidopsis thaliana BTB/POZ and MATH domain-containing proteins, AtBPM1-6, and similar proteins from other plants. BPM protein, also called protein BTB-POZ and MATH domain, may act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349590 cd18281 BTB_POZ_BTBD1_2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing proteins, BTBD1 and BTBD2. This family includes BTB/POZ domain-containing proteins BTBD1 and BTBD2, both of which are BTB-domain-containing Kelch-like proteins that interact with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 127 -349591 cd18282 BTB_POZ_BTBD3_6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing proteins, BTBD3 and BTBD6. This family includes BTB/POZ domain-containing proteins BTBD3 and BTBD6, both of which are BTB-domain-containing Kelch-like proteins. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. BTBD6 is required for proper embryogenesis and plays an essential evolutionary conserved role during neuronal development. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 108 -349592 cd18283 BTB1_POZ_BTBD7 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 7 (BTBD7). BTBD7 is a crucial regulator that is essential for region-specific epithelial cell dynamics and branching morphogenesis. It has been implicated in various cancers. BTBD7 contains two BTB domains. This model corresponds to the first domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 92 -349593 cd18284 BTB2_POZ_BTBD7 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 7 (BTBD7). BTBD7 is a crucial regulator that is essential for region-specific epithelial cell dynamics and branching morphogenesis. It has been implicated in various cancers. BTBD7 contains two BTB domains. This model corresponds to the second domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 146 -349594 cd18285 BTB1_POZ_BTBD8 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 8 (BTBD8). BTBD8 is a BTB-domain-containing Kelch-like protein that may play a role in developmental processes. It may also act as a protein-protein adaptor in a transcription complex and thus be involved in brain development. BTBD8 contains two BTB domains. This model corresponds to the first domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 104 -349595 cd18286 BTB2_POZ_BTBD8 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 8 (BTBD8). BTBD8 is a BTB-domain-containing Kelch-like protein that may play a role in developmental processes. It may also act as a protein-protein adaptor in a transcription complex and thus be involved in brain development. BTBD8 contains two BTB domains. This model corresponds to the second domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349596 cd18287 BTB_POZ_BTBD9 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 9 (BTBD9). BTBD9 is a risk factor for Restless Legs Syndrome (RLS) encoding a Cullin-3 substrate adaptor. The BTBD9 gene may be associated with antipsychotic-induced RLS in schizophrenia. Mutations in BTBD9 lead to reduced dopamine, increased locomotion and sleep fragmentation. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 119 -349597 cd18288 BTB_POZ_BTBD12_SLX4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Structure-specific endonuclease subunit SLX4. SLX4, also called BTB/POZ domain-containing protein 12 (BTBD12), is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases and is required for DNA repair. Mutations of the SLX4 gene are found in Fanconi anemia. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 116 -349598 cd18289 BTB_POZ_BTBD14A_NAC2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in nucleus accumbens-associated protein 2 (NAC-2). NAC-2, also called BTB/POZ domain-containing protein 14A (BTBD14A) or repressor with BTB domain and BEN domain (RBB), is a novel transcription repressor through its association with the NuRD complex. It recruits the NuRD complex to the promoter of MDM2, leading to the repression of MDM2 transcription and subsequent stability of p53/TP53. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 131 -349599 cd18290 BTB_POZ_BTBD14B_NAC1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in nucleus accumbens-associated protein 1 (NAC-1). NAC-1, also called BTB/POZ domain-containing protein 14B (BTBD14B), is a transcriptional repressor that contributes to tumor progression, tumor cell proliferation, and survival. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 123 -349600 cd18291 BTB_POZ_BTBD16 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 16 (BTBD16). BTBD16 is a BTB domain-containing protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 114 -349601 cd18292 BTB_POZ_BTBD17 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 17 (BTBD17). BTBD17, also called galectin-3-binding protein-like, is a BTB domain-containing protein. Its function remains unclear. It may be associated with hepatocellular carcinoma. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 114 -349602 cd18293 BTB_POZ_BTBD18 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 18 (BTBD18). BTBD18 acts as a specific controller for transcription activation through RNA polymerase II elongation at a subset of genomic PIWI-interacting RNA (piRNA) loci. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349603 cd18294 BTB_POZ_BTBD19 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 19 (BTBD19). BTBD19 is a BTB domain-containing protein. Its function remains unclear. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 111 -349604 cd18295 BTB1_POZ_ABTB1_BPOZ1 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Ankyrin repeat and BTB/POZ domain-containing protein 1 (ABTB1). ABTB1, also called elongation factor 1A-binding protein or bood POZ containing gene type 1 (BPOZ-1), is an anti-proliferative factor that may act as a mediator of the phosphatase and tensin homolog (PTEN) growth-suppressive signaling pathway. It may play a role in developmental processes. ABTB1 contains an ankyrin repeat and two BTB domains. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 119 -349605 cd18296 BTB2_POZ_ABTB1_BPOZ1 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Ankyrin repeat and BTB/POZ domain-containing protein 1 (ABTB1). ABTB1, also called elongation factor 1A-binding protein or bood POZ containing gene type 1 (BPOZ-1), is an anti-proliferative factor that may act as a mediator of the phosphatase and tensin homolog (PTEN) growth-suppressive signaling pathway. It may play a role in developmental processes. ABTB1 contains an ankyrin repeat and two BTB domains. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349606 cd18297 BTB_POZ_ABTB2-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Ankyrin repeat and BTB/POZ domain-containing protein 2 (ABTB2) and similar proteins. This family includes ABTB2, BTBD11, plant ARM repeat protein interacting with ABF2 (ARIA), and similar proteins. ABTB2, also called bood POZ containing gene type 2 (BPOZ-2), is a scaffold protein that controls the degradation of many biological proteins ranging from embryonic development to tumor progression. It may be involved in the initiation of hepatocyte growth. ABTB2 functions as an adaptor protein for the E3 ubiquitin ligase scaffold protein Cullin-3. It directly binds to eukaryotic elongation factor 1A1 (eEF1A1) to promote eEF1A1 ubiquitylation and degradation, and prevent translation. The BTBD11 gene has been recently identified as an all-trans retinoic acid (atRA)-responsive gene that lies downstream of atRA and its receptors in the regulation of neurite outgrowth and cell adhesion in neural as well as non-neural tissues. ARIA is an armadillo (ARM) repeat and BTB domain-containing protein that acts as a positive regulator of ABA response via the modulation of the transcriptional activity of ABF2. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 117 -349607 cd18298 BTB_POZ_RCBTB1_2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in RCC1 and BTB domain-containing proteins, RCBTB1 and RCBTB2. The RCC1-related guanine nucleotide exchange factor (GEF) family includes RCC1 and BTB domain-containing proteins, RCBTB1 and RCBTB2, both of which are chromosome condensation regulator-like guanine nucleotide exchange factors. They contain an RCC1 repeat, a BTB domain, and a BACK domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 108 -349608 cd18299 BTB1_POZ_RhoBTB first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing proteins (RhoBTB). RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases), which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. In vertebrates, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 103 -349609 cd18300 BTB2_POZ_RhoBTB second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing proteins (RhoBTB). RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases), which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, a tandem of 2 BTB domains, and a conserved C-terminal region. In humans, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 108 -349610 cd18301 BTB1_POZ_IBtk first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in inhibitor of Bruton tyrosine kinase (IBtk). IBtk is an inhibitor or negative regulator of Bruton tyrosine kinase (Btk), which is required for B-cell differentiation and development. IBtk binds to the PH domain of Btk and down-regulates the Btk kinase activity. It contains two BTB domains. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 99 -349611 cd18302 BTB2_POZ_IBtk second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in inhibitor of Bruton tyrosine kinase (IBtk). IBtk is an inhibitor or negative regulator of Bruton tyrosine kinase (Btk), which is required for B-cell differentiation and development. IBtk binds to the PH domain of Btk and down-regulates the Btk kinase activity. It contains two BTB domains. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 113 -349612 cd18303 BTB_POZ_Rank-5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in rabankyrin-5 (Rank-5). Rank-5, also called ankyrin repeat and FYVE domain-containing protein 1 (ANKFY1) or ankyrin repeats hooked to a zinc finger motif (ANKHZN), is a Rab5 effector that regulates and coordinates different endocytic mechanisms. It contains an N-terminal BTB domain, followed by a BACK domain, several ankyrin (ANK) repeats and a C-terminal FYVE domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349613 cd18304 BTB_POZ_M2BP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Mac-2-binding protein (MAC2BP/M2BP). M2BP is also called galectin-3-binding protein, basement membrane autoantigen p105, lectin galactoside-binding soluble 3-binding protein (LGALS3BP), or tumor-associated antigen 90K. It promotes integrin-mediated cell adhesion and may stimulate host defense against viruses and tumor cells. It contains a scavenger receptor cysteine-rich domain, followed by BTB and BACK domains. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 114 -349614 cd18305 BTB_POZ_GCL BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster protein germ cell-less (GCL) and similar proteins. GCL proteins are nuclear envelope proteins highly conserved between the mammalian and Drosophila orthologs. Drosophila melanogaster GCL is a key regulator required for the specification of pole cells and primordial germ cell formation in embryos. Both, human germ cell-less protein-like 1 (GMCL1) and germ cell-less protein-like 2 (GMCL2), also called germ cell-less protein-like 1-like (GMCL1P1 or GMCL1L), may function in spermatogenesis. They may also be substrate-specific adaptors of E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. They contain BTB and BACK domains. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 115 -349615 cd18306 BTB_POZ_NS1BP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Influenza virus NS1A-binding protein (NS1-BP). NS1-BP is also called NS1-binding protein, aryl hydrocarbon receptor-associated protein 3 (ARA3), or IVNS1ABP. It is a novel protein that interacts with the influenza A virus nonstructural NS1 protein, which is relocalized in the nuclei of infected cells. It plays a role in cell division and in the dynamic organization of the actin skeleton as a stabilizer of actin filaments by association with F-actin through its kelch repeats. It also interacts with alpha-enolase/MBP-1 and is involved in c-Myc gene transcriptional control. NS1-BP contains BTB and BACK domains at the N-terminal region and kelch repeats at the C-terminal region. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349616 cd18307 BTB_POZ_calicin BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in calicin. Calicin is a basic cytoskeletal protein involved in the formation and maintenance of the highly regular organization of the postacrosomal perinuclear theca, the calyx of mammalian spermatozoa. It contains BTB and BACK domains at the N-terminal region and kelch repeats at the C-terminal region. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 97 -349617 cd18308 BTB1_POZ_LZTR1 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in leucine-zipper-like transcriptional regulator 1 (LZTR-1). LZTR-1 is a golgi BTB-kelch protein that is degraded upon induction of apoptosis. It may also function as a transcriptional regulator that plays a crucial role in embryogenesis. Germline loss-of-function mutations in LZTR-1 predispose to an inherited disorder of multiple schwannomas. LZTR-1 contains two BTB domains. This model corresponds to the first domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 156 -349618 cd18309 BTB2_POZ_LZTR1 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in leucine-zipper-like transcriptional regulator 1 (LZTR-1). LZTR-1 is a golgi BTB-kelch protein that is degraded upon induction of apoptosis. It may also function as a transcriptional regulator that plays a crucial role in embryogenesis. Germline loss-of-function mutations in LZTR-1 predispose to an inherited disorder of multiple schwannomas. LZTR-1 contains two BTB domains. This model corresponds to the second domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 126 -349619 cd18310 BTB_POZ_NPR_plant BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in plant regulatory proteins, NPR1-4, and similar proteins. NPR1 and NPR2 are essential for pathogenicity and the utilization of many nitrogen sources. NPR1 is also called nitrogen pathogenicity regulation protein NPR1, non-inducible immunity protein 1 (Nim1), nonexpresser of PR genes 1, or salicylic acid insensitive 1 (Sai1). It acts as a transcription coactivator that plays dual roles in regulating plant immunity. NPR3 and NPR4 are involved in negative regulation of defense responses against pathogens in plant. NPR proteins contain a BTB domain, DUF3420, ankyrin (ANK) repeats, and a conserved C-terminal domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 145 -349620 cd18311 BTB_POZ_CP190-like BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster centrosomal protein 190kD (CP190) and similar proteins. CP190 is a large, multi-domain protein, first identified as a centrosome protein with oscillatory localization over the course of the cell cycle. It has an essential function in the nucleus as a chromatin insulator. It is known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. CP190 contains an N-terminal BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 110 -349621 cd18312 BTB_POZ_NPY3-like BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Arabidopsis thaliana protein naked pins in YUC mutants 3 (NPY3), Root phototropism protein 3 (RPT3), and similar proteins. NPY3 may play an essential role in auxin-mediated organogenesis and in root gravitropic responses in Arabidopsis. RPT3 is a signal transducer of the phototropic response and photo-induced movements. It is necessary for root and hypocotyl phototropisms, but not for the regulation of stomata opening. Proteins in this subfamily contain an N-terminal BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 105 -349622 cd18313 BTB_POZ_BT BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Arabidopsis thaliana BTB/POZ and TAZ domain-containing proteins, BT1-5. BT1-5 may act as substrate-specific adaptors of an E3 ubiquitin-protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. They contain a BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 102 -349623 cd18314 BTB_POZ_trishanku-like BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Dictyostelium discoideum trishanku and similar proteins. Trishanku is a novel regulator required for normal morphogenesis and cell-type stability in Dictyostelium discoideum. It contains a BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 96 -349624 cd18315 BTB_POZ_BAB-like BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster proteins bric-a-brac 1 (BAB1), bric-a-brac 2 (BAB2), modifier of mdg4 (doom), and similar proteins. BAB1 and BAB2 probably act as transcriptional regulators that are required for specification of the tarsal segment and are involved in antenna development. Doom is a product of the Drosophila mod(mdg4) gene. It induces apoptosis and binds to baculovirus inhibitor-of-apoptosis proteins. This subfamily also includes Drosophila melanogaster sex determination protein fruitless (FRU), protein jim lovell (LOV), zinc finger protein chinmo, transcription factor GAGA, transcription factor Ken, and longitudinals lacking proteins (LOLA). FRU probably acts as a transcriptional regulator that plays a role in male courtship behavior and sexual orientation, and enhances male-specific expression of takeout in brain-associated fat body. LOV, also called tyrosine kinase-related (TKR), has a regulatory role during midline cell development. Chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. GAGA is a transcriptional activator that functions by regulating chromatin structure. Ken, also termed protein Ken and Barbie, is a transcription factor required for Terminalia development. LOLA proteins are putative transcription factors required for axon growth and guidance in the central and peripheral nervous systems. Proteins in this subfamily contain a BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 85 -349625 cd18316 BTB_POZ_KCTD-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins. The potassium channel tetramerization domain (KCTD) family proteins contain the BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD proteins play crucial roles in a variety of fundamental biological processes, such as protein ubiquitination and degradation, suppression of proliferation or transcription, cytoskeleton regulation, tetramerization and gating of ion channels and others. Some KCTD proteins are involved in protein ubiquitination as part of the CRL (Cullin RING Ligase) E3 ligases. Some others show Cullin-independent functions including binding and regulation of GABA (gamma-aminobutyric acid) receptors (KCTD8, KCTD12 and KCTD16) and inhibition of AP-2 function (KCTD15). KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 83 -349626 cd18317 BTB_POZ_Kv BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in voltage-gated potassium (Kv) channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. This family includes several groups of alpha subunits such as KCNA/Kv1 family of Shaker-type Kv channels, KCNB/Kv2 family of Shab-type Kv channels, KCNC/Kv3 family of Shaw-type Kv channels, KCND/Kv4 family of Shal-type Kv channels, KCNF/Kv5 subfamily of Kv channels, KCNG/Kv6 subfamily of Kv channels, KCNV/Kv8 subfamily of Kv channels, and KCNS/Kv9 subfamily of Kv channels. Kv alpha subunits form functional homo- or hetero-tetrameric channels (typically with other alpha subunits from the same subfamily) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. KCNQ/Kv7 channels are not included in this family, since they do not contain a BTB/POZ domain. 82 -349627 cd18318 BTB_POZ_KCTD20-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 20 (KCTD20) and BTB/POZ domain-containing protein 10 (BTBD10). KCTD20, also termed potassium channel tetramerization domain containing 20, is a positive regulator of Akt signaling. It may play an important role in regulating the death and growth of some non-nervous and nervous cells. BTBD10, also termed glucose metabolism-related protein 1 (GMRP1), plays a major role as an activator of AKT family members. It binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. It also plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. 92 -349628 cd18319 BTB_POZ_KLHL42 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 42 (KLHL42). KLHL42, also called Cullin-3-binding protein 9 (Ctb9) or Kelch domain-containing protein 5, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL42) E3 ubiquitin ligase complex mediates the ubiquitination and subsequent degradation of katanin (KATNA1). KLHL42 is involved in microtubule dynamics throughout mitosis. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 93 -349629 cd18320 BTB_POZ_KBTBD13 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch repeat and BTB domain-containing protein 13 (KBTBD13). KBTBD13 is a muscle specific protein. Its autosomal dominant mutations may cause Nemaline Myopathy (NEM). KBTBD13 may act as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that functions as a muscle specific ubiquitin ligase, and thereby implicating the ubiquitin proteasome pathway in the pathogenesis of KBTBD13-associated NEM. KBTBD13 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 83 -349630 cd18321 BTB_POZ_EloC BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in Elongin-C (EloC) and similar proteins. Elongin-C is also called elongin 15 kDa subunit, RNA polymerase II transcription factor SIII subunit C, SIII p15, or transcription elongation factor B polypeptide 1 (TCEB1). It is a component of SIII (also known as elongin), which is a general transcription elongation factor that increases the RNA polymerase II transcription elongation past template-encoded arresting sites. It forms a regulatory complex with subunit B or elongin-B (BC) that enhances the activity of the transcriptionally active subunit A. The BC complex also functions as an adaptor protein in the proteasomal degradation of target proteins via different E3 ubiquitin ligase complexes, including the von Hippel-Lindau ubiquitination complex CBC (VHL) and the suppressors of cytokine signaling (SOCS) box ubiquitin ligase family. Elongin-C belongs to the BTB/POZ domain family; the domain is a common protein-protein interaction motif of about 100 amino acids. 95 -349631 cd18322 BTB_POZ_SKP1 BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in S-phase kinase-associated protein 1 (SKP1) and similar proteins. SKP1 is also called cyclin-A/CDK2-associated protein p19 (p19A), organ of Corti protein 2 (OCP-2), organ of Corti protein II (OCP-II), RNA polymerase II elongation factor-like protein, transcription elongation factor B polypeptide 1-like, or p19skp1. It is an essential component of the SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex, which mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription. SKP1 serves as an adaptor protein that links the F-box protein to CUL1. SKP1 and CUL1 are invariant components of all SCF complexes, while F-box proteins are variable substrate binding modules that determine specificity. SKP1 belongs to the BTB/POZ domain family; the domain is a common protein-protein interaction motif of about 100 amino acids. 120 -349632 cd18323 BTB_POZ_ZBTB3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 3 (ZBTB3). ZBTB3 is a transcription factor essential for cancer cell growth via the regulation of the reactive oxygen species (ROS) detoxification pathway. ZBTB3 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349633 cd18324 BTB_POZ_ZBTB18_RP58 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 18 (ZBTB18). ZBTB18 is also called 58 kDa repressor protein (RP58), transcriptional repressor RP58, translin-associated zinc finger protein 1 (TAZ-1), zinc finger protein 238 (ZNF238), or zinc finger protein C2H2-171. It is a sequence-specific transrepressor associated with heterochromatin. It plays a role in various developmental processes such as myogenesis and brain development. It specifically binds the consensus DNA sequence 5'-[AC]ACATCTG[GT][AC]-3' which contains the E box core, and acts by recruiting chromatin remodeling multiprotein complexes. ZBTB18 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 147 -349634 cd18325 BTB_POZ_ZBTB18_2-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 18.2 and similar proteins. This subfamily is composed of Xenopus laevis zinc finger and BTB domain-containing protein 18.2, encoded by the znf238.2.L gene, and similar proteins. Many proteins in this group are annotated as zinc finger and BTB domain-containing protein 42 (ZBTB42). However, characterized mammalian ZBTB42 does not belong to this subfamily. ZBTB18.2, like ZBTB18, functions as a transcriptional repressor that plays a role in various developmental processes. Members of this family contain a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 128 -349635 cd18326 BTB_POZ_ZBTB7A BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 7A (ZBTB7A). ZBTB7A is also called factor binding IST protein 1 (FBI-1), factor that binds to inducer of short transcripts protein 1, HIV-1 1st-binding protein 1, Leukemia/lymphoma-related factor (LRF), POZ and Krueppel erythroid myeloid ontogenic factor, POK erythroid myeloid ontogenic factor, Pokemon, TTF-I-interacting peptide 21 (TIP21), or zinc finger protein 857A (ZNF857A). It is a transcription repressor of key glycolytic genes, including GLUT3, PFKP, and PKM, and its downregulation in human cancer contributes to tumor metabolism. It has been implicated in carcinogenesis and cell differentiation and development. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 120 -349636 cd18327 BTB_POZ_ZBTB7B_ZBTB15 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 7B (ZBTB7B). ZBTB7B is also called Krueppel-related zinc finger protein cKrox, T-helper-inducing POZ/Krueppel-like factor, zinc finger and BTB domain-containing protein 15 (ZBTB15), zinc finger protein 67 (ZNF67), Zfp67, zinc finger protein 857B (ZNF857B), or zinc finger protein Th-POK. It is a transcriptional regulator of extracellular matrix gene expression. It plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. It also plays a role as a potent driver of brown fat development and thermogenesis, as well as cold-induced beige fat formation. ZBTB7B contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 127 -349637 cd18328 BTB_POZ_ZBTB7C_ZBTB36 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 7C (ZBTB7C). ZBTB7C is also called affected by papillomavirus DNA integration in ME180 cells protein 1 (APM-1), zinc finger and BTB domain-containing protein 36 (ZBTB36), zinc finger protein 857C (ZNF857C), or kidney cancer-related POZ domain and Kruppel-like protein (Kr-POK). It is a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function. It may act as an important regulator of fatty acid synthesis and may induce rapid cancer cell proliferation by increasing palmitate synthesis. The ZBTB7C gene has been identified as a susceptibility gene to ischemic injury. ZBTB7C contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 120 -349638 cd18329 BTB_POZ_ZBTB8A_BOZF1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 8A (ZBTB8A). ZBTB8A, also called BTB/POZ and zinc-finger domain-containing factor or BTB/POZ and zinc-finger domains factor on chromosome 1 (BOZ-F1), is a novel proto-oncoprotein that stimulates cell proliferation. It binds to all the proximal GC boxes to repress transcription, and it inhibits p53 acetylation without affecting p53 stability. It may be involved in gastric adenocarcinoma cell differentiation, cancer invasion, and metastasis. ZBTB8A contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 116 -349639 cd18330 BTB_POZ_ZBTB8B BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 8B (ZBTB8B). ZBTB8B may be involved in transcriptional regulation. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 113 -349640 cd18331 BTB_POZ_ZBTB27_BCL6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in B-cell lymphoma 6 protein (BCL-6). BCL-6 is also called B-cell lymphoma 5 protein (BCL-5), zinc finger and BTB domain-containing protein 27 (ZBTB27), protein LAZ-3, or zinc finger protein 51 (ZNF51). It is a transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation, which have different mechanisms of action specific to the lineage and biological functions. It represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' or indirectly by repressing the transcriptional activity of transcription factors. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 118 -349641 cd18332 BTB_POZ_ZBTB28_BCL6B BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in B-cell CLL/lymphoma 6 member B protein (BCL6B). BCL6B is also called Bcl6-associated zinc finger protein, zinc finger protein 62, or zinc finger and BTB domain-containing protein 28 (ZBTB28). It is a sequence-specific transcriptional repressor in association with BCL-6. It may function in a narrow stage or be related to some events in the early B-cell development. BCL6B plays an important role as a potential tumor suppressor in gastric cancer; it is found preferentially methylated in gastric cancer. It also inhibits both colorectal cancer growth and hepatocellular carcinoma metastases. BCL6B contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 114 -349642 cd18333 BTB_POZ_ZBTB29_HIC1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in hypermethylated in cancer 1 protein (Hic-1). Hic-1, also called zinc finger and BTB domain-containing protein 29 (ZBTB29), is a sequence-specific transcriptional repressor that recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3'. It may act as a tumor suppressor, and is involved in regulatory loops modulating P53-dependent and E2F1-dependent cell survival, growth control, and stress responses. It also regulates intestinal immunity and homeostasis. Hic-1 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 121 -349643 cd18334 BTB_POZ_ZBTB30_HIC2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in hypermethylated in cancer 2 protein (Hic-2). Hic-2 is also called HIC1-related gene on chromosome 22 protein (HRG22), Hic-3, or zinc finger and BTB domain-containing protein 30 (ZBTB30). It is a homolog of tumor suppressor Hic-1. It functions as a transcriptional regulator. It is a dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region. Hic-2 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 120 -349644 cd18335 BTB_POZ_KLHL1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 1 (KLHL1). KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (alpha1H T-type) calcium channels. It may play a role in organizing the actin cytoskeleton the brain cells. KLHL1 contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 126 -349645 cd18336 BTB_POZ_KLHL4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 4 (KLHL4). KLHL4 shares high identity and similarity with the Drosophila kelch protein, a component of ring canals. It may be associated with X-linked cleft palate (CPX) and is also a candidate gene in the impairment of mullerian duct development. In addition, it has been identified as a target of insulin-like growth factor binding protein 5 (IGFBP5). KLHL4 contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 126 -349646 cd18337 BTB_POZ_KLHL5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 5 (KLHL5). KLHL5 shares high identity and similarity with the Drosophila kelch protein, a component of ring canals. It is abundantly expressed in the ovary, adrenal gland, and thymus. It contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 130 -349647 cd18338 BTB_POZ_KLHL2_Mayven BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 2 (KLHL2). KLHL2, also called actin-binding protein Mayven, is a novel actin-binding protein predominantly expressed in the brain. It plays a role in the reorganization of the actin cytoskeleton, and promotes growth of cell projections in oligodendrocyte precursors. KLHL2 is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of target proteins, such as NPTXR, leading most often to their proteasomal degradation. It contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349648 cd18339 BTB_POZ_KLHL3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 3 (KLHL3). KLHL3 is a component of an E3 ubiquitin ligase complex that regulates blood pressure by targeting With-No-Lysine (WNK) kinases for degradation. It contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349649 cd18340 BTB_POZ_KLHL40_KBTBD5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 40 (KLHL40). KLHL40, also called Kelch repeat and BTB domain-containing protein 5 (KBTBD5) or sarcosynapsin, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a key regulator of skeletal muscle development. Mutations in KLHL40 may cause severe autosomal-recessive nemaline myopathy. KLHL40 contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 134 -349650 cd18341 BTB_POZ_KLHL41_KBTBD10 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Kelch-like protein 41 (KLHL41). KLHL41 is also called Kel-like protein 23, Kelch repeat and BTB domain-containing protein 10 (KBTBD10), Kelch-related protein 1 (Krp1), or sarcosine. It is a novel kelch-related protein that is involved in pseudopod elongation in transformed cells. It is also involved in skeletal muscle development and differentiation. It regulates proliferation and differentiation of myoblasts and plays a role in myofibril assembly by promoting lateral fusion of adjacent thin fibrils into mature, wide myofibrils. It contains a BTB domain and kelch repeats, characteristics of a kelch family protein. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 133 -349651 cd18342 BTB_POZ_SPOP BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in speckle-type POZ protein (SPOP). SPOP, also called HIB homolog 1 or Roadkill homolog 1, is a novel nuclear speckle-type protein which serves as an adaptor of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination and proteasomal degradation of target proteins, such as BRMS1, DAXX, PDX1/IPF1, GLI2 and GLI3. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 125 -349652 cd18343 BTB_POZ_SPOPL BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in speckle-type POZ protein-like (SPOPL). SPOPL, also called HIB homolog 2 or Roadkill homolog 2, is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes that mediate the ubiquitination and subsequent proteasomal degradation of target proteins. The complexes may contain homodimeric SPOPL or the heterodimers formed by speckle-type POZ protein (SPOP) and SPOPL, which are less efficient than ubiquitin ligase complexes containing only SPOP. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 123 -349653 cd18344 BTB_POZ_TDPOZ BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in TD and POZ domain-containing proteins (TDPOZ). TDPOZ is a family of bipartite animal and plant proteins that contains a tumor necrosis factor receptor-associated factor (TRAF) domain (TD) and a POZ/BTB domain. TDPOZ proteins may be nuclear scaffold proteins probably involved in transcription regulation in early development and other cellular processes. This subfamily contains only mammalian members. Plant TDPOZ proteins contain a MATH domain at the N-terminal region and are named "BTB/POZ and MATH domain-containing proteins (BPM)", not included in this subfamily. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 128 -349654 cd18345 BTB_POZ_roadkill-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster protein roadkill and similar proteins. Drosophila melanogaster protein roadkill, also called Hh-induced MATH and BTB domain-containing protein (HIB), is a hedgehog-induced BTB protein that modulates hedgehog signaling by degrading Ci/Gli transcription factor. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 121 -349655 cd18346 BTB_POZ_BTBD1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 1 (BTBD1). BTBD1, also called Hepatitis C virus NS5A-transactivated protein 8 or HCV NS5A-transactivated protein 8, is a BTB-domain-containing Kelch-like protein that is expressed in skeletal muscle and interacts with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. BTBD1 may serve as substrate-specific adaptor of an E3 ubiquitin-protein ligase complex that mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 133 -349656 cd18347 BTB_POZ_BTBD2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 2 (BTBD2). BTBD2 is a BTB-domain-containing Kelch-like protein that interacts with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 127 -349657 cd18348 BTB_POZ_BTBD3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 3 (BTBD3). BTBD3 is a BTB-domain-containing Kelch-like protein that controls dendrite orientation toward active axons in the mammalian neocortex. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 131 -349658 cd18349 BTB_POZ_BTBD6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 6 (BTBD6). BTBD6, also termed lens BTB domain protein, is a BTB-domain-containing Kelch-like protein required for proper embryogenesis and plays an essential evolutionary conserved role during neuronal development. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 109 -349659 cd18350 BTB_POZ_ABTB2_BPOZ2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Ankyrin repeat and BTB/POZ domain-containing protein 2 (ABTB2). ABTB2, also called bood POZ containing gene type 2 (BPOZ-2), is a scaffold protein that controls the degradation of many biological proteins with various functions ranging from embryonic development to tumor progression. It may be involved in the initiation of hepatocyte growth. It inhibits the aggregation of alpha-synuclein, with implications for Parkinson's disease. ABTB2 functions as an adaptor protein for the E3 ubiquitin ligase scaffold protein Cullin-3. It directly binds to eukaryotic elongation factor 1A1 (eEF1A1) to promote eEF1A1 ubiquitylation and degradation, and prevent translation. It is also involved in the growth suppressive effect of the phosphatase and tensin homolog (PTEN). It contains an ankyrin repeat, BTB/POZ, and BACK domains. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 134 -349660 cd18351 BTB_POZ_BTBD11 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 11 (BTBD11). BTBD11, also called ankyrin repeat and BTB/POZ domain-containing protein BTBD11, is a BTB-domain-containing protein. The BTBD11 gene has been recently identified as an all-trans retinoic acid (atRA)-responsive gene that lies downstream of atRA and its receptors in the regulation of neurite outgrowth and cell adhesion in neural as well as non-neural tissues. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 131 -349661 cd18352 BTB_POZ_ARIA_plant BTB (Broad-Complex, Tramtrack and Bric a brac) /POZ (poxvirus and zinc finger) domain found in plant ARM repeat protein interacting with ABF2 (ARIA) and similar proteins. ARIA is an armadillo (ARM) repeat and BTB domain-containing protein that acts as a positive regulator of ABA response via the modulation of the transcriptional activity of ABF2, a transcription factor which controls ABA-dependent gene expression via the G-box-type ABA-responsive elements. ARIA is a novel abscisic acid signaling component. It negatively regulates seed germination and young seedling growth. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 116 -349662 cd18353 BTB_POZ_RCBTB1_CLLD7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in RCC1 and BTB domain-containing protein 1 (RCBTB1). RCBTB1 is also called chronic lymphocytic leukemia deletion region gene 7 protein (CLLD7), CLL deletion region gene 7 protein, regulator of chromosome condensation and BTB domain-containing protein 1, or E4.5. It is a novel chromosome condensation regulator-like guanine nucleotide exchange factor that may be involved in cell cycle regulation by chromatin remodeling. It may also function as a tumor suppressor that regulates pathways of DNA damage/repair and apoptosis. RCBTB1 may also be a substrate adaptor for a cullin3 (CUL3) E3 ligase complex that mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Biallelic mutations in RCBTB1 may cause isolated and syndromic retinal dystrophy. It contains an RCC1 repeat, a BTB domain, and a BACK domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 117 -349663 cd18354 BTB_POZ_RCBTB2_CHC1L BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in RCC1 and BTB domain-containing protein 2 (RCBTB2). RCBTB2 is also called chromosome condensation 1-like (CHC1-L), RCC1-like G exchanging factor, or regulator of chromosome condensation and BTB domain-containing protein 2. It is a chromosome condensation regulator-like guanine nucleotide exchange factor (GEF) protein for the Ras-related GTPase Ran. It contains an RCC1 repeat, a BTB domain, and a BACK domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 117 -349664 cd18355 BTB1_POZ_RHOBTB1 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 1 (RhoBTB1). RhoBTB1 is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB1 functions as a tumor suppressor that regulates the integrity of the Golgi complex through the methyltransferase METTL7B. It also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 146 -349665 cd18356 BTB1_POZ_RHOBTB2 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 2 (RhoBTB2). RhoBTB2, also called Deleted in breast cancer 2 gene protein (DBC2) or p83, is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB2 functions as a tumor suppressor that regulates the expression of the methyltransferase METTL7A. It also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 148 -349666 cd18357 BTB1_POZ_RHOBTB3 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 3 (RhoBTB3). RhoBTB3 is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB3 is a Golgi-associated Rho-related ATPase that regulates the S/G2 transition of the cell cycle by targeting cyclin E for ubiquitylation. It is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. It binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. It also promotes proteasomal degradation of Hypoxia-inducible factor alpha (HIFalpha) through facilitating hydroxylation and suppresses the Warburg effect. This model corresponds to the first BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 159 -349667 cd18358 BTB2_POZ_RHOBTB1 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 1 (RhoBTB1). RhoBTB1 is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB1 functions as a tumor suppressor that regulates the integrity of the Golgi complex through the methyltransferase METTL7B. It also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 126 -349668 cd18359 BTB2_POZ_RHOBTB2 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 2 (RhoBTB2). RhoBTB2, also called Deleted in breast cancer 2 gene protein (DBC2) or p83, is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB2 functions as a tumor suppressor that regulates the expression of the methyltransferase METTL7A. It also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 124 -349669 cd18360 BTB2_POZ_RHOBTB3 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Rho-related BTB domain-containing protein 3 (RhoBTB3). RhoBTB3 is an atypical Rho family small guanosine triphosphatase (GTPase) and is a member of the RhoBTB subfamily, which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline-rich region, tandem BTB domains, and a conserved C-terminal region. The carboxyl terminal extension that harbors two BTB domains is capable of assembling cullin 3-dependent ubiquitin ligase complexes. RhoBTB3 is a Golgi-associated Rho-related ATPase that regulates the S/G2 transition of the cell cycle by targeting cyclin E for ubiquitylation. It is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. It binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. It also promotes proteasomal degradation of Hypoxia-inducible factor alpha (HIFalpha) through facilitating hydroxylation and suppresses the Warburg effect. This model corresponds to the second BTB domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 110 -349670 cd18361 BTB_POZ_KCTD1-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins, KCTD1 and KCTD15. This subfamily of KCTD proteins includes KCTD1 and KCTD15. KCTD1 is a nuclear BTB/POZ domain-containing protein that acts as a transcriptional repressor and mediates protein-protein interactions through a BTB domain. It represses the transcriptional activity of AP-2 family members, including TFAP2A, TFAP2B and TFAP2C. It also functions as a novel inhibitor of the Wnt signaling pathway. Mutations in KCTD1 cause scalp-ear-nipple (SEN) syndrome. KCTD15 is a BTB/POZ domain-containing protein that plays a role in the regulation of neural crest (NC) formation and other steps in embryonic development. It inhibits AP2 transcriptional activity by interaction with its activation domain. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD1 BTB domains form pentamers. 94 -349671 cd18362 BTB_POZ_KCTD2-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins KCTD2, KCTD5, and KCTD17, and similar proteins. This subfamily includes potassium channel tetramerization domain-containing proteins KCTD2, KCTD5, and KCTD17, all of which function as adaptors of Cullin3 based ubiquitin E3 ubiquitin ligases. KCTD2 suppresses gliomagenesis by destabilizing c-Myc. KCTD5 is a negative regulator of the AKT pathway, a key signaling cascade frequently deregulated in cancer. KCTD5 does not impact the operation of Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels. KCTD17 polyubiquitylates trichoplein, a protein involved in ciliogenesis down-regulation. It is a positive regulator of ciliogenesis, playing a crucial role in the initial steps of axoneme extension. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia (M-D). The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. KCTD5 and KCTD17 BTB domains form pentamer structures. 85 -349672 cd18363 BTB_POZ_KCTD3-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 3 (KCTD3) and SH3KBP1-binding protein 1 (SHKBP1). The group of KCTD proteins includes KCTD3 and SHKBP1. KCTD3, also called renal carcinoma antigen NY-REN-45, is a BTB/POZ domain-containing protein that is an accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3), upregulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. SHKBP1, also called SETA-binding protein 1, interacts with cathepsin B and participates in tumor necrosis factor (TNF)-induced apoptosis in ovarian cancer cells. It can promote epidermal growth factor receptor (EGFR) signaling by interrupting c-Cbl-CIN85 complex and inhibiting EGFR degradation. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 86 -349673 cd18364 BTB_POZ_KCTD4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 4 (KCTD4). KCTD4 is a BTB/POZ domain-containing protein with an unknown biological function. KCTD proteins play crucial roles in a variety of fundamental biological processes, such as protein ubiquitination and degradation, suppression of proliferation or transcription, cytoskeleton regulation, tetramerization and gating of ion channels and others. Some KCTD proteins are involved in protein ubiquitination as part of the CRL (Cullin RING Ligase) E3 ligases. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 86 -349674 cd18365 BTB_POZ_KCTD6_like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins, KCTD6, KCTD21 and similar proteins. KCTD6, also called KCASH3 (KCTD containing, Cullin3 adaptor, suppressor of Hedgehog 3), is a substrate-specific adaptor of cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). KCTD21, also called KCASH2, functions as a substrate-specific adaptor of cullin-3, promoting the ubiquitination and degradation of histone deacetylase HDAC1, thereby inhibiting the deacetylation-mediated transcriptional activation of the Hedgehog effectors Gli1 and Gli2. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 94 -349675 cd18366 BTB_POZ_KCTD7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 7 (KCTD7). KCTD7 is a BTB/POZ domain-containing protein that has an impact on K+ fluxes, neurotransmitter synthesis, and neuronal function. It functions as a regulator of potassium conductance in neurons, and is involved in the control of excitability of cortical neurons. Mutations in KCTD7 may cause progressive myoclonus epilepsy (PME). The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 92 -349676 cd18367 BTB_POZ_KCTD8-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins, KCTD8, KCTD12, KCTD16 and similar proteins. This subfamily of KCTD proteins includes KCTD8, KCTD12 (also called predominantly fetal expressed T1 domain/Pfetin), and KCTD16. They act as auxiliary subunits of GABAB receptors associated with mood disorders. KCTD8 interacts as a tetramer with GABRB1 and GABRB2. KCTD12 regulates agonist potency and kinetics of GABAB receptor signaling. It promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. KCTD16 interacts with amyloid beta precursor protein (APP), a type I transmembrane protein involved in a variety of cellular processes such as cell adhesion, and axon guidance. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 100 -349677 cd18368 BTB_POZ_KCTD9 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 9 (KCTD9). KCTD9 is a BTB/POZ domain-containing protein that contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. It functions as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of target proteins, leading to their degradation by the proteasome. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD9 BTB domain forms a pentameric structure. 100 -349678 cd18369 BTB_POZ_KCTD10-like_BACURD BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing proteins, KCTD10 (BACURD3), KCTD13 (BACURD1), and TNFAIP1 (BACURD2). This subfamily of KCTD proteins, also called the BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein (BACURD) subfamily, includes KCTD10 (BACURD3), KCTD13 (BACURD1), and TNFAIP1 (BACURD2). KCTD10 is a BTB/POZ domain-containing protein that interacts with proliferating cell nuclear antigen (PCNA) and polymerase delta, and participates in DNA repair, DNA replication, and cell-cycle control. Its down-regulation could inhibit cell proliferation. KCTD10 also plays crucial roles in embryonic angiogenesis and heart development in mammals by negatively regulating the Notch signaling pathway. KCTD13 is a BTB/POZ domain-containing protein that may function as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of RhoA, leading to its degradation by the proteasome, thereby regulating the actin cytoskeleton and cell migration. TNFAIP1, also called protein B12, is a BTB/POZ domain-containing protein that is involved in DNA replication, DNA damage repair, cell apoptosis, and is implicated in human diseases including cancer, Alzheimer's disease (AD) and type 2 diabetic nephropathy. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. KCTD10 and KCTD13 BTB domains form a novel two-fold symmetric tetramer that is distinct from the tetramer formed by voltage-gated potassium (Kv) channels. 91 -349679 cd18370 BTB_POZ_KCTD11 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein KCTD11. KCTD11 may function as an antagonist of the Hedgehog pathway of cell proliferation and differentiation by affecting the nuclear transfer of transcription factor GLI1, thus maintaining cerebellar granule cells in the undifferentiated state. It is a probable substrate-specific adapter for a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex towards HDAC1. It contains a BTB/POZ domain; in some cases the domain may be truncated. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. Variants of the human/mouse KCTD11 appear to contain truncated BTB/POZ domains. 88 -349680 cd18371 BTB_POZ_KCTD14 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 14 (KCTD14). KCTD14 is a BTB/POZ domain-containing protein with unknown biological function. KCTD proteins play crucial roles in a variety of fundamental biological processes, such as protein ubiquitination and degradation, suppression of proliferation or transcription, cytoskeleton regulation, tetramerization and gating of ion channels and others. Some KCTD proteins are involved in protein ubiquitination as part of the CRL (Cullin RING Ligase) E3 ligases. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 99 -349681 cd18372 BTB_POZ_KCTD18 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 18 (KCTD18). KCTD18 is a BTB/POZ domain-containing protein with with unknown biological function. A duplication of the KCTD18 gene has been found in a patient with epilepsy, developmental delay, and autistic behavior, which may contribute to the phenotype. KCTD proteins play crucial roles in a variety of fundamental biological processes, such as protein ubiquitination and degradation, suppression of proliferation or transcription, cytoskeleton regulation, tetramerization and gating of ion channels and others. Some KCTD proteins are involved in protein ubiquitination as part of the CRL (Cullin RING Ligase) E3 ligases. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 101 -349682 cd18373 BTB1_POZ_KCTD19 first BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 19 (KCTD19). KCTD19 is a BTB/POZ domain-containing protein with unclear biological function. It may be a host factor involved in Nef-induced downregulation of MHC-I. Nef is a HIV-1-encoded protein that plays a key role in the development of AIDS. KCTD19 contains two BTB domains. This model corresponds to the first domain. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 98 -349683 cd18374 BTB2_POZ_KCTD19 second BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 19 (KCTD19). KCTD19 is a BTB/POZ domain-containing protein with unclear biological function. It may be a host factor involved in Nef-induced downregulation of MHC-I. Nef is a HIV-1-encoded protein that plays a key role in the development of AIDS. KCTD19 contains two BTB domains. This model corresponds to the second domain. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 99 -349684 cd18375 BTB_POZ_KCNRG BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel regulatory protein (KCNRG). KCNRG, also called potassium channel regulator or protein CLLD4, is an endoplasmic reticulum (ER)-associated tumor suppressor that regulates Kv1 family potassium channel proteins by retaining a fraction of the channels in endomembranes. It contains a BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. 97 -349685 cd18376 BTB_POZ_FIP2-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Arabidopsis thaliana FH protein interacting protein FIP2 and similar proteins. FIP2 may act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. It contains a BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. 89 -349686 cd18377 BTB_POZ_Kv1_KCNA BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNA/Kv1 subfamily of Shaker-type voltage-dependent potassium channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv1, also known as subfamily A, contains eight alpha subunit members, Kv1.1 (KCNA1), Kv1.2 (KCNA2), Kv1.3 (KCNA3), Kv1.4 (KCNA4), Kv1.5 (KCNA5), Kv1.6 (KCNA6), Kv1.7 (KCNA7), and Kv1.8 (KCNA10), which are orthologs of the Shaker gene in Drosophila. They are delayed rectifiers except for Kv1.4 (KCNA4), which is an A-type potassium channel. Delayed rectifiers are slow opening and closing voltage-gated potassium channels. Because of their delayed activation kinetics, they play an important role in controlling action potential duration. A-type channels are fast/rapidly inactivating potassium channels. Kv1/KCNA subfamily alpha subunits form functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 85 -349687 cd18378 BTB_POZ_Kv2_KCNB BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNB/Kv2 subfamily of Shab-type voltage-dependent potassium channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv3, also known as subfamily C, contains two alpha subunit members, Kv2.1 (KCNB1) and Kv2.2 (KCNB2), which are orthologs of the Shab gene in Drosophila. They are delayed-rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Kv2/KCNB subfamily alpha subunits form functional homo- or hetero-tetrameric channels (with other alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 109 -349688 cd18379 BTB_POZ_Kv3_KCNC BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNC/Kv3 subfamily of Shaw-type voltage-dependent potassium channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv3, also known as subfamily C, contains four alpha subunit members, Kv3.1 (KCNC1), Kv3.2 (KCNC2), Kv3.3 (KCNC3), and Kv3.4 (KCNC4), which are orthologs of the Shaw gene in Drosophila. Unlike other Kv subfamilies, Kv3 channels typically open only at positive potentials and both, activation and deactivation, in response to changes in voltage are very rapid. They are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. Kv3/KCNC subfamily alpha subunits form functional homo- or hetero-tetrameric channels (with other alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 109 -349689 cd18380 BTB_POZ_Kv4_KCND BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCND/Kv4 subfamily of Shal-type voltage-dependent potassium channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv4, also known as subfamily D, contains three alpha subunit members, Kv4.1 (KCND1), Kv4.2 (KCND2), and Kv4.3 (KCND3), which are orthologs of the Shal gene in Drosophila. They are A-type potassium channels that mediate the native, fast inactivating (A-type) K+ current (IA) described both in the nervous system (A currents) and the heart (transient outward current). Kv4/KCND subfamily alpha subunits form functional homo- or hetero-tetrameric channels through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. They are modulated by cytoplasmic KChIPs/KCNIPs (Kv-channel interacting proteins), which are small calcium binding proteins with EF-hand-like domains. 102 -349690 cd18381 BTB_POZ_Kv5_KCNF1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNF/Kv5 subfamily of potassium voltage-gated channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv5, also known as subfamily F, only contains KCNF1 (also known as Kv5.1 or kH1), which functions as a regulatory alpha-subunit of voltage-gated potassium channel that when coassembled with Kv2.1 can modulate gating in a physiologically relevant manner. It forms hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 116 -349691 cd18382 BTB_POZ_Kv6_KCNG BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNG/Kv6 subfamily of potassium voltage-gated channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv6, also known as subfamily G, includes KCNG1 (Kv6.1), KCNG2 (Kv6.2 or KCNF2), KCNG3 (Kv6.3) and KCNG4 (Kv6.4), which are regulatory alpha subunits and do not form functional channels on their own. KCNG1 can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. KCNG2, also called cardiac potassium channel subunit, can form functional heterodimeric channels with KCNB1, and further modulates channel activity by shifting the threshold and the half-maximal activation to more negative values. KCNG3, also called voltage-gated potassium channel subunit Kv10.1, is an electrically silent modulatory subunit that can form functional heterotetrameric channels with KCNB1, and further promotes a reduction in the rate of activation and inactivation of the delayed rectifier voltage-gated potassium channel KCNB1. KCNG4 is a silent voltage-gated potassium (KvS) channel subunit that can form functional heterotetrameric channels with KCNB1, and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. 109 -349692 cd18384 BTB_POZ_Kv9_KCNS BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in KCNS/Kv9 subfamily of potassium voltage-gated channels. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. The potassium voltage-gated channel subfamily Kv9, also known as subfamily S, includes KCNS1 (Kv9.1), KCNS2 (Kv9.2) and KCNS3 (Kv9.3). They are regulatory alpha subunits that cannot form functional homo-tetrameric channels. Both KCNS1 and KCNS2 are delayed-rectifier K(+) channel alpha subunits that can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1) and KCNB2 (also known as Kv2.2), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. KCNS3 is a delayed-rectifier K(+) channel alpha subunit linked to tissue oxygenation responses. It can form functional heterotetrameric channels with KCNB1, and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. 106 -349693 cd18385 BTB_POZ_BTBD10_GMRP1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB/POZ domain-containing protein 10 (BTBD10). BTBD10, also called glucose metabolism-related protein 1 (GMRP1), plays a major role as an activator of AKT family members. It binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. It also plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. BTBD10 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 110 -349694 cd18386 BTB_POZ_KCTD20 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 20 (KCTD20). KCTD20, also called potassium channel tetramerization domain containing 20, is a positive regulator of Akt signaling. It may play an important role in regulating the death and growth of some non-nervous and nervous cells. It contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 104 -349695 cd18387 BTB_POZ_KCTD1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 1 (KCTD1). KCTD1 is a nuclear BTB/POZ domain-containing protein that acts as a transcriptional repressor and mediates protein-protein interactions through a BTB domain. It represses the transcriptional activity of AP-2 family members, including TFAP2A, TFAP2B and TFAP2C to various extent. It also functions as a novel inhibitor of the Wnt signaling pathway. Mutations in KCTD1 cause scalp-ear-nipple (SEN) syndrome. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD1 BTB domains form pentamers. 105 -349696 cd18388 BTB_POZ_KCTD15 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 15 (KCTD15). KCTD15 is a BTB/POZ domain-containing protein that plays a role in the regulation of neural crest (NC) formation and other steps in embryonic development. It inhibits AP2 transcriptional activity by interaction with its activation domain. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD1 BTB domains, closely related to KCTD15, form pentamers. 99 -349697 cd18389 BTB_POZ_KCTD2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 2 (KCTD2). KCTD2 is a BTB/POZ domain-containing protein that functions as an adaptor of Cullin3 E3 ubiquitin ligase. It suppresses gliomagenesis by destabilizing c-Myc. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. KCTD5 and KCTD17 BTB domain, highly similar to KCTD2, form pentamer structures. 105 -349698 cd18390 BTB_POZ_KCTD5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 5 (KCTD5). KCTD5 is a BTB/POZ domain-containing protein that functions as a substrate adaptor for cullin3 based ubiquitin E3 ligases. It is a negative regulator of the AKT pathway, a key signaling cascade frequently deregulated in cancer. KCTD5 does not impact the operation of Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. KCTD5 forms pentamers mediated by its BTB domain. 112 -349699 cd18391 BTB_POZ_KCTD17 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 17 (KCTD17). KCTD17 is a BTB/POZ domain-containing protein that functions as a substrate-adaptor for cullin3-RING ubiquitin ligases that polyubiquitylates trichoplein, a protein involved in ciliogenesis down-regulation. It is a positive regulator of ciliogenesis, playing a crucial role in the initial steps of axoneme extension. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia (M-D). The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD17 BTB domains form pentamers. 101 -349700 cd18392 BTB_POZ_KCTD3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 3 (KCTD3). KCTD3, also called renal carcinoma antigen NY-REN-45, is a BTB/POZ domain-containing protein that is an accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3), upregulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 88 -349701 cd18393 BTB_POZ_SHKBP1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in SH3KBP1-binding protein 1 (SHKBP1). SHKBP1, also called SETA-binding protein 1, interacts with cathepsin B and participates in tumor necrosis factor (TNF)-induced apoptosis in ovarian cancer cells. It can promote epidermal growth factor receptor (EGFR) signaling by interrupting c-Cbl-CIN85 complex and inhibiting EGFR degradation. It contains a BTB/POZ domain, also known as tetramerization (T1) domain, a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 103 -349702 cd18394 BTB_POZ_KCTD6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 6 (KCTD6). KCTD6, also called KCTD containing, Cullin3 adaptor, suppressor of Hedgehog 3 (KCASH3), is a BTB/POZ domain-containing protein that functions as a substrate-specific adaptor of cullin-3, regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5) as well as suppressing histone deacetylase and Hedgehog activity in medulloblastoma. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 104 -349703 cd18395 BTB_POZ_KCTD21 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 21 (KCTD21). KCTD21, also calledz KCTD containing, Cullin3 adaptor, suppressor of Hedgehog 2 (KCASH2), is a BTB/POZ domain-containing protein that functions as a substrate-specific adaptor of cullin-3, promoting the ubiquitination and degradation of histone deacetylase HDAC1, thereby inhibiting the deacetylation-mediated transcriptional activation of the Hedgehog effectors Gli1 and Gli2. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 98 -349704 cd18396 BTB_POZ_KCTD8 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein KCTD8. KCTD8, a BTB/POZ domain-containing protein, is an auxiliary subunit of GABA-B receptors that determine the pharmacology and kinetics of the receptor response. It interacts as a tetramer with GABRB1 and GABRB2. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 103 -349705 cd18397 BTB_POZ_KCTD12_Pfetin BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 12 (KCTD12). KCTD12, also called predominantly fetal expressed T1 domain (Pfetin), is a BTB/POZ domain-containing protein that is an auxiliary subunit of GABAB receptors associated with mood disorders. It regulates agonist potency and kinetics of GABAB receptor signaling. It promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. It also regulates colorectal cancer cell stemness through the ERK pathway. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 100 -349706 cd18398 BTB_POZ_KCTD16 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 16 (KCTD16). KCTD16 is a BTB/POZ domain-containing protein that is an auxiliary subunit of GABAB receptors associated with mood disorders. It interacts with amyloid beta precursor protein (APP), a type I transmembrane protein involved in a variety of cellular processes such as cell adhesion and axon guidance. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. 103 -349707 cd18399 BTB_POZ_KCTD10_BACURD3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 10 (KCTD10). KCTD10, also called BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein 3 (BACURD3), is a BTB/POZ domain-containing protein that interacts with proliferating cell nuclear antigen (PCNA) and polymerase delta, and participates in DNA repair, DNA replication, and cell-cycle control. Its down-regulation could inhibit cell proliferation. KCTD10 also plays crucial roles in embryonic angiogenesis and heart development in mammals by negatively regulating the Notch signaling pathway. Furthermore, KCTD10 may function as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of target proteins, leading to their degradation by the proteasome. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD10 BTB domain forms a novel two-fold symmetric tetramer that is distinct from the tetramer formed by voltage-gated potassium (Kv) channels. 110 -349708 cd18400 BTB_POZ_KCTD13_BACURD1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium channel tetramerization domain-containing protein 13 (KCTD13). KCTD13, also called BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein 1 (BACURD1), or TNFAIP1-like protein, is a BTB/POZ domain-containing protein that may function as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of RhoA, leading to its degradation by the proteasome, thereby regulating the actin cytoskeleton and cell migration. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The KCTD13 BTB domain forms a novel two-fold symmetric tetramer that is distinct from the tetramer formed by voltage-gated potassium (Kv) channels. 103 -349709 cd18401 BTB_POZ_TNFAIP1_BACURD2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in tumor necrosis factor, alpha-induced protein 1, endothelial (TNFAIP1). TNFAIP1, also called BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein 2 (BACURD2), or protein B12, is a BTB/POZ domain-containing protein that is involved in DNA replication, DNA damage repair and cell apoptosis, and is implicated in human diseases including cancer, Alzheimer's disease (AD) and type 2 diabetic nephropathy. The BTB/POZ domain, also known as tetramerization (T1) domain, is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. KCTD family BTB domains can adopt a wide range of oligomerization geometries, including homodimerization, tetramerization, and pentamerization. The BTB domains of other BACURD subfamily members, KCTD10 and KCTD13, form a novel two-fold symmetric tetramer that is distinct from the tetramer formed by voltage-gated potassium (Kv) channels. 104 -349710 cd18402 BTB_POZ_KCNA1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 1 (KCNA1). KCNA1 is also called voltage-gated K(+) channel HuKI, voltage-gated potassium channel HBK1, or voltage-gated potassium channel subunit Kv1.1. It mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney. It is involved in the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA1 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 98 -349711 cd18403 BTB_POZ_KCNA2_KCNA3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A members 2 (KCNA2) and 3 (KCNA3). KCNA2 is also called NGK1, voltage-gated K(+) channel HuKIV, voltage-gated potassium channel HBK5, or voltage-gated potassium channel subunit Kv1.2. KCNA3 is also called HGK5, HLK3, HPCN3, voltage-gated K(+) channel HuKIII, or voltage-gated potassium channel subunit Kv1.3. KCNA2 and KCNA3 mediate transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNA2 primarily functions in the brain and the central nervous system, but also in the cardiovascular system. It prevents aberrant action potential firing and regulates neuronal output. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA2 and KCNA3 are alpha subunits that form functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 99 -349712 cd18405 BTB_POZ_KCNA4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 4 (KCNA4). KCNA4 is also called HPCN2, or voltage-gated K(+) channel HuKII, voltage-gated potassium channel HBK4, voltage-gated potassium channel HK1, or voltage-gated potassium channel subunit Kv1.4. It mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA4 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 97 -349713 cd18406 BTB_POZ_KCNA5 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 5 (KCNA5). KCNA5, also called HPCN1, voltage-gated potassium channel HK2, or voltage-gated potassium channel subunit Kv1.5, mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNA5 may play a role in regulating the secretion of insulin in normal pancreatic islets. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA5 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 97 -349714 cd18407 BTB_POZ_KCNA6 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 6 (KCNA6). KCNA6, also called voltage-gated potassium channel HBK2 or voltage-gated potassium channel subunit Kv1.6, mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNA6 is distributed primarily in neurons of central and peripheral nervous systems. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA6 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 127 -349715 cd18408 BTB_POZ_KCNA7 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 7 (KCNA7). KCNA7, also called voltage-gated potassium channel subunit Kv1.7, mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNA7 plays an important role in the repolarization of cell membranes. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA7 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv1/KCNA alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 115 -349716 cd18409 BTB_POZ_KCNA10 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily A member 10 (KCNA10). KCNA10, also called voltage-gated potassium channel subunit Kv1.8, is a cyclic nucleotide-gated, voltage-activated potassium channel that mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNA10 is expressed in proximal tubular cells, glomerular and vascular endothelial cells, as well as in vascular smooth muscle cells. It may facilitate proximal tubular sodium absorption by stabilizing cell membrane voltage. The channel activity is up-regulated by cAMP. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNA10 is an alpha subunit that forms functional homotetrameric channels through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 87 -349717 cd18410 BTB_POZ_Shaker-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster potassium voltage-gated channel protein Shaker and similar proteins. Shaker, also termed protein minisleep, represents a family of putative potassium channel proteins in the nervous system of Drosophila. It is a voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Shaker plays a role in the regulation of sleep need or efficiency. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. Shaker is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 100 -349718 cd18411 BTB_POZ_KCNB1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily B member 1 (KCNB1). KCNB1, also called delayed rectifier potassium channel 1 (DRK1) or voltage-gated potassium channel subunit Kv2.1, mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNB1 is involved in the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNB1 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 117 -349719 cd18412 BTB_POZ_KCNB2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily B member 2 (KCNB2). KCNB2, also called voltage-gated potassium channel subunit Kv2.2, mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. KCNB2 contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNB2 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 127 -349720 cd18413 BTB_POZ_Shab-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster potassium voltage-gated channel protein Shab and similar proteins. Shab is a slow delayed rectifier voltage-gated potassium channel in Drosophila. It mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. Shab is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 109 -349721 cd18414 BTB_KCNC1_3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily C members KCNC1 and KCNC3. KCNC1 (also called NGK2, voltage-gated potassium channel subunit Kv3.1, or voltage-gated potassium channel subunit Kv4) and KCNC3 (also called KSHIIID or voltage-gated potassium channel subunit Kv3.3) play important roles in the rapid repolarization of fast-firing brain neurons. Assuming opened or closed conformations in response to the voltage difference across the membrane, the proteins form tetrameric potassium-selective channels through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNC1 and KCNC3 are alpha subunit that form functional homo- or hetero-tetrameric channels (with other alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 117 -349722 cd18415 BTB_KCNC2_4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily C members KCNC2 and KCNC4. KCNC2, also called Shaw-like potassium channel or voltage-gated potassium channel Kv3.2, is a delayed rectifier voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. It contributes to the regulation of the fast action potential repolarization and in sustained high-frequency firing in neurons of the central nervous system. KCNC4, also called KSHIIIC or voltage-gated potassium channel subunit Kv3.4, is a novel high-voltage-activating, tetraethylammonium (TEA)-sensitive, type-A potassium channel that mediates the voltage-dependent potassium ion permeability of excitable membranes. It plays a pivotal role in oxidative stress-related neural cell damage as an oxidation-sensitive channel. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNC2 and KCNC4 are alpha subunit that form functional homo- or hetero-tetrameric channels (with other alpha subunits) through their BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 124 -349723 cd18416 BTB_Shaw-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel protein Shaw. Shaw, also called Shaw2, is a voltage-gated potassium channel in Drosophila. It mediates transmembrane potassium transport in excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a tetrameric potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. Shaw is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 112 -349724 cd18417 BTB_POZ_KCND1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily D member 1 (KCND1). KCND1, also called voltage-gated potassium channel subunit Kv4.1, is a pore-forming subunit of voltage-gated rapidly inactivating A-type potassium channels. It may contribute to I (To) current in heart and I (Sa) current in neurons. Its properties are modulated by interactions with other alpha subunits and with regulatory subunits. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCND1 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv4/KCND alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. It is modulated by cytoplasmic KChIPs/KCNIPs (Kv-channel interacting proteins), which are small calcium binding proteins with EF-hand-like domains. 138 -349725 cd18418 BTB_POZ_KCND2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily D member 2 (KCND2). KCND2, also called voltage-gated potassium channel subunit Kv4.2, is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current I(SA) channels. It mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCND2 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv4/KCND alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. It is modulated by cytoplasmic KChIPs/KCNIPs (Kv-channel interacting proteins), which are small calcium binding proteins with EF-hand-like domains. 103 -349726 cd18419 BTB_POZ_KCND3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily D member 3 (KCND3). KCND3, also called voltage-gated potassium channel subunit Kv4.3, is a pore-forming subunit of voltage-gated rapidly inactivating A-type potassium channels. Mutations in KCND3 cause spinocerebellar ataxia. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCND3 is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other Kv4/KCND alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. It is modulated by cytoplasmic KChIPs/KCNIPs (Kv-channel interacting proteins), which are small calcium binding proteins with EF-hand-like domains. 138 -349727 cd18420 BTB_POZ_Shal-like BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in Drosophila melanogaster potassium voltage-gated channel protein Shal and similar proteins. Drosophila melanogaster Shal, also called Shaker cognate l or Shal2, is a transient potassium current (I(A)) channel, which is required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. It may play a role in the nervous system and in the regulation of beating frequency in pacemaker cells. Shal mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. Shal is an alpha subunit that forms functional homo- or hetero-tetrameric channels (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 139 -349728 cd18421 BTB_POZ_KCNG1_2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily G members, KCNG1 and KCNG2. KCNG1, also called voltage-gated potassium channel subunit Kv6.1 or kH2, functions as a regulatory alpha-subunit of voltage-gated potassium channel that can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. KCNG2, also called cardiac potassium channel subunit or voltage-gated potassium channel subunit Kv6.2, is a new gamma-subunit of voltage-gated potassium channels that can form functional heterodimeric channels with KCNB1, and further modulates channel activity by shifting the threshold and the half-maximal activation to more negative values. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNG1 and KCNG2 are regulatory alpha subunits and do not form homomultimers. They form heteromultimers (with other alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 114 -349729 cd18422 BTB_POZ_KCNG3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily G member 3 (KCNG3). KCNG3, also called voltage-gated potassium channel subunit Kv6.3 or voltage-gated potassium channel subunit Kv10.1, is an electrically silent modulatory subunit that can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1), and further promotes a reduction in the rate of activation and inactivation of the delayed rectifier voltage-gated potassium channel KCNB1. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNG3 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 111 -349730 cd18423 BTB_POZ_KCNG4 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily G member 4 (KCNG4). KCNG4, also called voltage-gated potassium channel subunit Kv6.4, is a silent voltage-gated potassium (KvS) channel subunit that can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNG4 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 112 -349731 cd18424 BTB_POZ_KCNV1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily V member 1 (KCNV1). KCNV1, also called neuronal potassium channel alpha subunit HNKA or voltage-gated potassium channel subunit Kv8.1, is a new neuronal voltage-gated potassium channel alpha subunit with specific inhibitory properties towards Shab and Shaw channels. It modulates KCNB1 (also known as Kv2.1) and KCNB2 (also known as Kv2.2) channel activity by shifting the threshold for inactivation to more negative values and by slowing the rate of inactivation. It can also down-regulate the channel activity of KCNB1, KCNB2, KCNC4 (also known as Kv3.4) and KCND1 (also known as Kv4.1), possibly by trapping them in intracellular membranes. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNV1 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 109 -349732 cd18425 BTB_POZ_KCNV2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily V member 2 (KCNV2). KCNV2, also called voltage-gated potassium channel subunit Kv8.2, is a modulatory voltage-gated potassium channel alpha subunit that modulates channel activity by shifting the threshold and the half-maximal activation to more negative values. KCNV2 is essential for visual function and cone survival. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNV2 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 108 -349733 cd18426 BTB_POZ_KCNS1 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily S member 1 (KCNS1). KCNS1, also called delayed-rectifier K(+) channel alpha subunit 1 or voltage-gated potassium channel subunit Kv9.1, is a modulatory alpha subunit of voltage-gated potassium channel that mediates neuropathic pain following nerve injury. It can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1) and KCNB2 (also known as Kv2.2), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNS1 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 106 -349734 cd18427 BTB_POZ_KCNS2 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily S member 2 (KCNS2). KCNS2, also called delayed-rectifier K(+) channel alpha subunit 2 or voltage-gated potassium channel subunit Kv9.2, is a modulatory alpha subunit of voltage-gated potassium channel that can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1) and KCNB2 (also known as Kv2.2), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNS2 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 107 -349735 cd18428 BTB_POZ_KCNS3 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in potassium voltage-gated channel subfamily S member 3 (KCNS3). KCNS3, also called delayed-rectifier K(+) channel alpha subunit 3 or voltage-gated potassium channel subunit Kv9.3, is an alpha subunit of voltage-gated potassium channel linked to tissue oxygenation responses. It can form functional heterotetrameric channels with KCNB1 (also known as Kv2.1), and further modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Voltage-gated potassium (Kv) channels are composed of alpha subunits, which form the actual conductance pore, and cytoplasmic beta subunits, which are auxiliary proteins that associate with alpha subunits to modulate the activity of the Kv channel. KCNS3 is a regulatory alpha subunit that cannot form a functional homo-tetrameric channel. It forms hetero-tetrameric channels (with other functional alpha subunits) through its BTB/POZ domain, also known as tetramerization (T1) domain, which is a versatile protein-protein interaction motif. 108 -349485 cd18429 M14_Nna1-like Peptidase M14-like domain of ATP/GTP binding proteins and cytosolic carboxypeptidases; uncharacterized bacterial subgroup. A bacterial subgroup of the Peptidase M14-like domain of Nna-1 (Nervous system Nuclear protein induced by Axotomy), also known as ATP/GTP binding protein (AGTPBP-1) and cytosolic carboxypeptidase (CCP),-like proteins. The Peptidase M14 family of metallocarboxypeptidases are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Nna1-like proteins are active metallopeptidases that are thought to act on cytosolic proteins (such as alpha-tubulin in eukaryotes) to remove a C-terminal tyrosine. Nna1-like proteins from the different phyla are highly diverse, but they all contain a unique N-terminal conserved domain right before the CP domain. It has been suggested that this N-terminal domain might act as a folding domain. 253 -349486 cd18430 M14_ASTE_ASPA_like Succinylglutamate desuccinylase/aspartoacylase; uncharacterized. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 168 -349384 cd18431 BRCT_DNA_ligase_III BRCT domain of DNA ligase 3 (LIG3) and similar proteins. LIG3 (EC 6.5.1.1), also termed DNA ligase III, or polydeoxyribonucleotide synthase [ATP] 3, functions as heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. 78 -349385 cd18432 BRCT_PAXIP1_rpt6_like sixth BRCT domain of PAX-interacting protein 1 (PAXIP1), second BRCT domain of mediator of DNA damage checkpoint protein 1 (MDC1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. MDC1, also termed nuclear factor with BRCT domains 1 (NFBD1), is a nuclear chromatin-associated protein that is required for checkpoint mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle. It directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. MDC1 contains a forkhead-associated (FHA) domain and two BRCT domains, as well as an internal 41-amino acid repeat sequence. The family corresponds to the sixth BRCT domain of PAXIP1 and the second BRCT domain of MDC1. 85 -349386 cd18433 BRCT_Rad4_rpt3 third BRCT domain of Schizosaccharomyces pombe S-M checkpoint control protein Rad4 and similar proteins. Rad4, also termed P74, or protein cut5, is an essential component for DNA replication and the checkpoint control system which couples S and M phases. It may directly or indirectly interact with chromatin proteins to form the complex required for the initiation and/or progression of DNA synthesis. Rad4 contains four BRCT repeats. The family corresponds to the third repeat. 83 -349387 cd18434 BRCT_TopBP1_rpt5 fifth BRCT domain of DNA topoisomerase 2-binding protein 1 (TopBP1) and similar proteins. TopBP1, also termed DNA topoisomerase II-beta-binding protein 1, or DNA topoisomerase II-binding protein 1, functions in DNA replication and damage response. It binds double-stranded DNA breaks and nicks as well as single-stranded DNA. TopBP1 contains six copies of BRCT domain. The family corresponds to the fifth BRCT domain. 89 -349388 cd18435 BRCT_BRC1_like_rpt1 first (N-terminal) BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. Members in this family contains six BRCT domains. This family corresponds to the fourth repeat. 107 -349389 cd18436 BRCT_BRC1_like_rpt2 second BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. The family also includes Cryptococcus neoformans DNA ligase 4 (LIG4, also known as DNA ligase IV or polydeoxyribonucleotide synthase [ATP] 4), which is involved in dsDNA break repair, and plays a role in non-homologous integration (NHI) pathways where it is required in the final step of non-homologus end-joining. Members in this family contains six BRCT domains. This family corresponds to the second repeat. 75 -349390 cd18437 BRCT_BRC1_like_rpt3 third BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. The family also includes Cryptococcus neoformans DNA ligase 4 (LIG4, also known as DNA ligase IV or polydeoxyribonucleotide synthase [ATP] 4), which is involved in dsDNA break repair, and plays a role in non-homologous integration (NHI) pathways where it is required in the final step of non-homologus end-joining. Members in this family contains six BRCT domains. This family corresponds to the third repeat. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this group; it contains a conserved Trp, but not the Cys/Ser residue. 78 -349391 cd18438 BRCT_BRC1_like_rpt4 fourth BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. Members in this family contains six BRCT domains. This family corresponds to the fourth repeat. 68 -349392 cd18439 BRCT_BRC1_like_rpt6 sixth (C-terminal) BRCT domain of Schizosaccharomyces pombe BRCT-containing protein 1 (BRC1) and similar proteins. Schizosaccharomyces pombe BRC1 is required for mitotic fidelity, specifically in the G2 phase of the cell cycle. It plays a role in chromatin organization. The family also includes Cryptococcus neoformans DNA ligase 4 (LIG4, also known as DNA ligase IV or polydeoxyribonucleotide synthase [ATP] 4), which is involved in dsDNA break repair, and plays a role in non-homologous integration (NHI) pathways where it is required in the final step of non-homologus end-joining. Members in this family contains six BRCT domains. This family corresponds to the sixth repeat. 116 -349393 cd18440 BRCT_PAXIP1_rpt6 sixth BRCT domain of PAX-interacting protein 1 (PAXIP1) and similar proteins. PAXIP1, also termed PAX transactivation activation domain-interacting protein (PTIP), is involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. It also facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. PAXIP1 contains six BRCT repeats. This family corresponds to the sixth BRCT domain. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this family. 90 -349394 cd18441 BRCT_MDC1_rpt2 second BRCT domain of mediator of DNA damage checkpoint protein 1 (MDC1) and similar proteins. MDC1, also termed nuclear factor with BRCT domains 1 (NFBD1), is a nuclear chromatin-associated protein that is required for checkpoint mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle. It directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. MDC1 contains a forkhead-associated (FHA) domain and two BRCT domains, as well as an internal 41-amino acid repeat sequence. The family corresponds to the second BRCT domain. The Trp-X-X-X-Cys/Ser signature motif of the BRCT family is not conserved in this family. 81 -349395 cd18442 BRCT_polymerase_mu BRCT domain of DNA-directed DNA/RNA polymerase mu (polymerase mu) and similar proteins. Polymerase Mu (EC 2.7.7.7), also termed Pol mu, or terminal transferase, is a Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). It participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. Polymerase Mu contains a BRCT domain. 98 -349396 cd18443 BRCT_DNTT BRCT domain of DNA nucleotidylexotransferase (DNTT) and similar proteins. DNTT (EC 2.7.7.31), also termed terminal addition enzyme, or terminal deoxynucleotidyltransferase, or terminal transferase, is a template-independent DNA polymerase which catalyzes the random addition of deoxynucleoside 5'-triphosphate to the 3'-end of a DNA initiator. It is the addition of nucleotides at the junction (N region) of rearranged Ig heavy chain and T-cell receptor gene segments during the maturation of B- and T-cells. DNA nucleotidylexotransferase contains a BRCT domain. 95 -350519 cd18444 BACK_KLHL1_like BACK (BTB and C-terminal Kelch) domain found in Kelch-like proteins KLHL1, KLHL4 and KLHL5. This subfamily contains Kelch-like proteins: KLHL1, KLHL4 and KLHL5, all of which share high identity and similarity with the Drosophila kelch protein, a component of ring canals. Members of this subfamily contain a BTB domain and kelch repeat domains, characteristics of a kelch family protein. KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (alpha1H T-type) calcium channels. 106 -350520 cd18445 BACK_KLHL2_like BACK (BTB and C-terminal Kelch) domain found in Kelch-like proteins, KLHL2 and KLHL3. This subfamily includes Kelch-like proteins, KLHL2 and KLHL3. KLHL2 is a novel actin-binding protein predominantly expressed in the brain. It plays a role in the reorganization of the actin cytoskeleton, and promotes growth of cell projections in oligodendrocyte precursors. Both KLHL2 and KLHL3 function as a component of an E3 ubiquitin ligase complex that mediates the ubiquitination of target proteins. 114 -350521 cd18446 BACK_KLHL6 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 6 (KLHL6). KLHL6 is a BTB-kelch protein with a lymphoid tissue-restricted expression pattern. It belongs to the KLHL gene family, which is composed of an N-terminal BTB-POZ domain and four to six Kelch motifs in tandem. It is involved in B-lymphocyte antigen receptor signaling and germinal center formation. 108 -350522 cd18447 BACK_KLHL7 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 7 (KLHL7). KLHL7 is a BTB-Kelch protein that constitutes a Cul3-based E3 ubiquitin ligase complex and is involved in the ubiquitination of target proteins for proteasome-mediated degradation. Mutations in KLHL7 cause autosomal-dominant retinitis pigmentosa. 98 -350523 cd18448 BACK_KLHL8 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 8 (KLHL8). KLHL8 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex. The BCR(KLHL8) ubiquitin ligase complex mediates ubiquitination and degradation of RAPSN. 97 -350524 cd18449 BACK_KLHL9_13 BACK (BTB and C-terminal Kelch) domain found in Kelch-like proteins, KLHL9 and KLHL13. KLHL9 and KLHL13 (also termed BTB and kelch domain-containing protein 2, or BKLHD2) are substrate-specific adaptors of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB and controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. 95 -350525 cd18450 BACK_KLHL10 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 10 (KLHL10). KLHL10 may be a substrate-specific adapter of a CUL3-based E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins during spermatogenesis. 80 -350526 cd18451 BACK_KLHL11 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 11 (KLHL11). KLHL11 is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of target proteins, leading most often to their proteasomal degradation. 88 -350527 cd18452 BACK_KLHL12 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 12 (KLHL12). KLHL12, also termed CUL3-interacting protein 1 (C3IP1), or DKIR, is a substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a negative regulator of Wnt signaling pathway and ER-Golgi transport. 136 -350528 cd18453 BACK_KLHL14 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 14 (KLHL14). KLHL14, also termed protein interactor of Torsin-1A, or Printor, or protein interactor of torsinA, is a novel ATP-free form of torsinA-interacting protein implicated in dystonia pathogenesis. 102 -350529 cd18454 BACK_KLHL15 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 15 (KLHL15). KLHL15 is a substrate-specific adaptor for Cullin3 E3 ubiquitin-protein ligase complex that target the serine/threonine-protein phosphatase 2A (PP2A) subunit PPP2R5B for ubiquitination and subsequent proteasomal degradation, thus promoting exchange with other regulatory subunits. It also plays a key role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR), by targeting the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. 108 -350530 cd18455 BACK_KLHL16_gigaxonin BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 16 (KLHL16). Gigaxonin, also termed Kelch-like protein 16 (KLHL16), may be a cytoskeletal component that directly or indirectly plays an important role in neurofilament architecture. It may also act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, such as tubulin folding cofactor B (TBCB), microtubule-associated protein MAP1B and glial fibrillary acidic protein (GFAP). Gigaxonin is mutated in giant axonal neuropathy. 97 -350531 cd18456 BACK_KLHL17 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 17 (KLHL17). KLHL17, also termed actinfilin, is a substrate-recognition component of some cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes. It acts as a Cullin 3 (Cul3) substrate adaptor that links GluR6 to the E3 ubiquitin-ligase complex, and mediates the ubiquitination and subsequent degradation of GLUR6. It may play a role in the actin-based neuronal function. 102 -350532 cd18457 BACK_KLHL18 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 18 (KLHL18). KLHL18 acts as a substrate-specific adaptor for the Cullin3 E3 ubiquitin-protein ligase complex that regulates mitotic entry and ubiquitylates Aurora-A. 107 -350533 cd18458 BACK_KLHL19_KEAP1 BACK (BTB and C-terminal Kelch) domain found in Kelch-like ECH-associated protein 1 (KEAP1). KEAP1, also termed cytosolic inhibitor of Nrf2 (INrf2), or Kelch-like protein 19 (KLHL19), is a redox-regulated substrate adaptor protein for a Cullin3-dependent ubiquitin ligase complex that targets NFE2L2/NRF2 for ubiquitination and degradation by the proteasome, thus resulting in the suppression of its transcriptional activity and the repression of antioxidant response element-mediated detoxifying enzyme gene expression. 91 -350534 cd18459 BACK_KLHL20 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 20 (KLHL20). KLHL20, also termed Kelch-like ECT2-interacting protein (KLEIP), or Kelch-like protein X, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex involved in interferon response and anterograde Golgi to endosome transport. KLHL20 plays a role in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. It also controls endothelial migration and sprouting angiogenesis. 100 -350535 cd18460 BACK_KLHL21 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 21 (KLHL21). KLHL21 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for efficient chromosome alignment and cytokinesis. The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of aurora B. KLHL21 targets IkappaB kinase-beta to regulate nuclear factor kappa-light chain enhancer of activated B cells (NF-kappaB) signaling negatively. 101 -350536 cd18461 BACK_KLHL22 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 22 (KLHL22). KLHL22 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for chromosome alignment and localization of Polo-like kinase 1 (PLK1) at kinetochores. The BCR(KLHL22) ubiquitin ligase complex mediates monoubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation. 104 -350537 cd18462 BACK_KLHL23 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 23 (KLHL23). KLHL23 is involved in tumorigenesis and resistance to anticancer drug treatment. It also associates with cone-rod dystrophy. 102 -350538 cd18463 BACK_KLHL24 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 24 (KLHL24). KLHL24, also called kainate receptor-interacting protein for GluR6 (KRIP6), or protein DRE1, is necessary to maintain the balance between intermediate filament stability and degradation, a process that is essential for skin integrity. KLHL24 is a component of the BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that mediates ubiquitination of KRT14 and controls its levels during keratinocyte differentiation. 78 -350539 cd18464 BACK_KLHL25_like BACK (BTB and C-terminal Kelch) domain found in Kelch-like proteins, KLHL25 and KLHL37. The family includes KLHL25 and KLHL37. KLHL25, also called ectoderm-neural cortex protein 2 (ENC-2), is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for translational homeostasis. The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1). KLHL37, also called ectoderm-neural cortex protein 1 (ENC-1), or nuclear matrix protein NRP/B, or p53-induced gene 10 protein, is an actin-binding nuclear matrix protein that associates with p110(RB), and is involved in the regulation of neuronal process formation and in differentiation of neural crest cells. 98 -350540 cd18465 BACK_KLHL26 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 26 (KLHL26). KLHL26 is a kelch family protein encoded by gene klhl26, which is regulated by p53 via fuzzy tandem repeats. 97 -350541 cd18466 BACK_KLHL27_IPP BACK (BTB and C-terminal Kelch) domain found in intracisternal A particle-promoted polypeptide (IPP). IPP, also termed Kelch-like protein 27 (KLHL27), is an actin-binding protein that may play a role in organizing the actin cytoskeleton. 103 -350542 cd18467 BACK_KLHL28_BTBD5 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 28 (KLHL28). KLHL28, also termed BTB/POZ domain-containing protein 5 (BTBD5), belongs to the KLHL family. Its function remains unclear. 99 -350543 cd18468 BACK_KLHL29_KBTBD9 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 29 (KLHL29). KLHL29, also termed Kelch repeat and BTB domain-containing protein 9 (KBTBD9), belongs to the KLHL family. Its function remains unclear. A nuclear receptor subfamily 5, group A, member 2 (NR5A2)-Kelch-like family member 29 (KLHL29) fusion transcript may participate in the origin or progression of some colon cancers. 102 -350544 cd18469 BACK_KLHL30 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 30 (KLHL30). KLHL30 belongs to the KLHL family. Its function remains unclear. Differential expression of the KLHL30 gene has been observed in glioblastoma multiforme versus normal brain. 104 -350545 cd18470 BACK_KLHL31_KBTBD1 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 31 (KLHL31). KLHL31, also termed BTB and kelch domain-containing protein 6, or Kelch repeat and BTB domain-containing protein 1, or Kelch-like protein KLHL, is a transcriptional repressor in MAPK/JNK signaling pathway that regulates cellular functions. Overexpression inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). 98 -350546 cd18471 BACK_KLHL32_BKLHD5 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 32 (KLHL32). KLHL32, also termed BTB and kelch domain-containing protein 5 (BKLHD5), belongs to the KLHL family. Its function remains unclear. KLHL32 SNPs may be associated with body mass index in individuals of African ancestry. 98 -350547 cd18472 BACK_KLHL33 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 33 (KLHL33). KLHL33 belongs to the KLHL family. Its function remains unclear. KLHL33 SNPs may be associated with prostate cancer risk. 75 -350548 cd18473 BACK_KLHL34 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 34 (KLHL34). KLHL34 belongs to the KLHL family. Its function remains unclear. The methylation status of KLHL34 cg14232291 may be a predictive candidate of sensitivity to preoperative chemoradiation therapy. 106 -350549 cd18474 BACK_KLHL35 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 35 (KLHL35). KLHL35 belongs to the KLHL family. Its function remains unclear. Hypermethylation of KLHL35 is associated with hepatocellular carcinoma and abdominal aortic aneurysm. 79 -350550 cd18475 BACK_KLHL36 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 36 (KLHL36). KLHL36 may act as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. 100 -350551 cd18476 BACK_KLHL38 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 38 (KLHL38). KLHL38 belongs to the KLHL family. Its function remains unclear. The klhl38 gene has recently been identified as a possible diapause (a temporary arrest of development during early ontogeny) gene, as it is significantly up-regulated during diapause. It may also be involved in chicken preadipocyte differentiation. 99 -350552 cd18477 BACK_KLHL40_like BACK (BTB and C-terminal Kelch) domain found in Kelch-like proteins, KLHL40 and KLHL41. The family includes Kelch-like proteins, KLHL40 and KLHL41. KLHL40 is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a key regulator of skeletal muscle development. KLHL41 is a novel kelch related protein that is involved in pseudopod elongation in transformed cells. 99 -350553 cd18478 BACK_KLHL42_KLHDC5 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 42 (KLHL42). KLHL42, also called Cullin-3-binding protein 9 (Ctb9), or Kelch domain-containing protein 5, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL42) E3 ubiquitin ligase complex mediates the ubiquitination and subsequent degradation of KATNA1. KLHL42 is involved in microtubule dynamics throughout mitosis. 103 -350554 cd18479 BACK_KBTBD2 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 2 (KBTBD2). KBTBD2, also called BTB and kelch domain-containing protein 1 (BKLHD1), plays an essential role in the regulating the insulin-signaling pathway. It is a BTB-Kelch family substrate recognition subunit of the Cullin-3-based E3 ubiquitin ligase, which targets p85alpha, the regulatory subunit of the phosphoinositol-3-kinase (PI3K) heterodimer, causing p85alpha ubiquitination and proteasome-mediated degradation. 96 -350555 cd18480 BACK_KBTBD3 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 3 (KBTBD3). KBTBD3, also termed BTB and kelch domain-containing protein 3 (BKLHD3), is a BTB-Kelch family protein. Its function remains unclear. 82 -350556 cd18481 BACK_KBTBD4 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 4 (KBTBD4). KBTBD4, also termed BTB and kelch domain-containing protein 4 (BKLHD4), is a BTB-BACK-Kelch domain protein belonging to a large family of cullin-RING ubiquitin ligase adaptors that facilitate the ubiquitination of target substrates. 88 -350557 cd18482 BACK_KBTBD6_7 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing proteins, KBTBD6 and KBTBD7. KBTBD6 and KBTBD7 are substrate adaptors of a cullin-3 RING ubiquitin ligase complex that mediates ubiquitylation and proteasomal degradation of T-lymphoma and metastasis gene 1 (TIAM1), a RAC1-specific guanine exchange factor (GEF), by cooperating with gamma-aminobutyric acid receptor-associated proteins (GABARAP). KBTBD7 may also act as a new transcriptional activator in mitogen-activated protein kinase (MAPK) signaling. 99 -350558 cd18483 BACK_KBTBD8 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 8 (KBTBD8). KBTBD8, also called T-cell activation kelch repeat protein (TA-KRP), is a BTB-kelch family protein that is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. It acts as a substrate-specific adaptor for a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of neural crest specification. The BCR(KBTBD8) complex monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. 97 -350559 cd18484 BACK_KBTBD11_CMLAP BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 11 (KBTBD11). KBTBD11, also termed chronic myelogenous leukemia-associated protein (CMLAP), or Kelch domain-containing protein 7B, or KLHDC7C, is a BTB-Kelch family protein. Its function remains unclear. A novel polymorphism rs11777210 in KBTBD11 is significantly associated with colorectal cancer risk; KBTBD11 may function as a tumor suppressor. KBTBD11 hypomethylation may also be a potential target for differentiating between the mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes. 77 -350560 cd18485 BACK_KBTBD12 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 12 (KBTBD12). KBTBD12, also termed Kelch domain-containing protein 6 (KLHDC6), is a BTB-Kelch family protein. Its function remains unclear. 100 -350561 cd18486 BACK_KBTBD13 BACK (BTB and C-terminal Kelch) domain found in Kelch repeat and BTB domain-containing protein 13 (KBTBD13). KBTBD13 is a muscle-specific protein. Autosomal dominant mutations may cause nemaline myopathy (NEM); these disease-associated mutations are located in conserved Kelch repeats and are predicted to disrupt the beta-propeller structure. KBTBD13 may act as a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that functions as a muscle specific ubiquitin ligase, and thereby implicate the ubiquitin proteasome pathway in the pathogenesis of KBTBD13-associated NEM. 89 -350562 cd18487 BACK_BTBD1_like BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing proteins, BTBD1 and BTBD2. This subfamily includes BTB/POZ domain-containing proteins BTBD1 and BTBD2, both of which are BTB-domain-containing Kelch-like proteins that interact with DNA topoisomerase 1 (Topo1), a key enzyme in cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. 95 -350563 cd18488 BACK_BTBD3_like BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing proteins, BTBD3 and BTBD6. This subfamily includes BTB/POZ domain-containing proteins BTBD3 and BTBD6, both of which are BTB-domain-containing Kelch-like proteins. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. BTBD6 is required for proper embryogenesis and plays an essential evolutionarily-conserved role during neuronal development. 95 -350564 cd18489 BACK_BTBD7 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 7 (BTBD7). BTBD7 is a crucial regulator that is essential for region-specific epithelial cell dynamics and branching morphogenesis. It has been implicated in various cancers. BTBD7 contains two BTB domains and a BACK domain. 98 -350565 cd18490 BACK_BTBD8 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 8 (BTBD8). BTBD8 is a BTB-domain-containing Kelch-like protein that may play a role in developmental process. It may also act as a protein-protein adaptor in a transcription complex and thus may be involved in brain development. 64 -350566 cd18491 BACK_ABTB2_like BACK (BTB and C-terminal Kelch) domain found in ankyrin repeat and BTB/POZ domain-containing protein 2 (ABTB2) and similar proteins. ABTB2, also called Bood POZ containing gene type 2 (BPOZ-2), is a scaffold protein that controls the degradation of many biological proteins involved in a range of functions from embryonic development to tumor progression. It may be involved in the initiation of hepatocyte growth. It inhibits the aggregation of alpha-synuclein, with implications in Parkinson's disease. ABTB2 functions as an adaptor protein for the E3 ubiquitin ligase scaffold protein Cullin-3. It directly binds to eukaryotic elongation factor 1A1 (eEF1A1) to promote eEF1A1 ubiquitylation and degradation and prevent translation. It is also involved in the growth suppressive effect of the phosphatase and tensin homologue (PTEN). This subfamily also includes BTB/POZ domain-containing protein 11 (BTBD11), whose function is unclear. 72 -350567 cd18492 BACK_BTBD16 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 16 (BTBD16). BTBD16 is a BTB-domain-containing Kelch-like protein. Its function remains unclear. BTBD16 SNPs may be bipolar disorder (BD) genetic susceptibility variants exhibiting genetic background-dependent effects. 97 -350568 cd18493 BACK_BTBD17 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 17 (BTBD17). BTBD17, also termed galectin-3-binding protein-like, is a BTB-domain-containing Kelch-like protein. Its function remains unclear. It may be involved in hepatocellular carcinoma development and progression. 74 -350569 cd18494 BACK_BTBD19 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 19 (BTBD19). BTBD19 is a BTB-domain-containing Kelch-like protein. Its function remains unclear. 73 -350570 cd18495 BACK_GCL BACK (BTB and C-terminal Kelch) domain found in Drosophila melanogaster protein germ cell-less (GCL) and similar proteins. The GCL protein is a nuclear envelope protein highly conserved between the mammalian and Drosophila orthologs. Drosophila melanogaster GCL is a key regulator required for the specification of pole cells and primordial germ cell formation in Drosophila embryos. Both human germ cell-less protein-like 1 (GMCL1) and germ cell-less protein-like 1-like (GMCL1P1 or GMCL1L) may function in spermatogenesis. They may also be substrate-specific adaptors of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. 78 -350571 cd18496 BACK_LGALS3BP BACK (BTB and C-terminal Kelch) domain found in lectin galactoside-binding soluble 3-binding protein (LGALS3BP). LGALS3BP, also called galectin-3-binding protein, or basement membrane autoantigen p105, or Mac-2-binding protein (MAC2BP/M2BP), or tumor-associated antigen 90K, promotes integrin-mediated cell adhesion. It may stimulate host defense against viruses and tumor cells. 74 -350572 cd18497 BACK_ABTB1_BPOZ BACK (BTB and C-terminal Kelch) domain found in ankyrin repeat and BTB/POZ domain-containing protein 1 (ABTB1). ABTB1, also called elongation factor 1A-binding protein, or Bood POZ containing gene type 1 (BPOZ-1), is an anti-proliferative factor that may act as a mediator of the phosphatase and tensin homologue (PTEN) growth-suppressive signaling pathway. It may play a role in developmental processes. 72 -350573 cd18498 BACK_RCBTB1_2 BACK (BTB and C-terminal Kelch) domain found in RCC1 and BTB domain-containing proteins, RCBTB1 and RCBTB2. The RCC1-related guanine nucleotide exchange factor (GEF) family includes RCC1 and BTB domain-containing proteins, RCBTB1 and RCBTB2, both of which are chromosome condensation regulator-like guanine nucleotide exchange factors. 64 -350574 cd18499 BACK_RHOBTB BACK (BTB and C-terminal Kelch) domain found in Rho-related BTB domain-containing proteins (RhoBTB). RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases), which is characterized by containing a GTPase domain (in most cases, non-functional) followed by a proline rich region, a tandem of 2 BTB domains, and a C-terminal BACK domain. In humans, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. 76 -350575 cd18500 BACK_IBtk BACK (BTB and C-terminal Kelch) domain found in inhibitor of Bruton tyrosine kinase (IBtk). IBtk is an inhibitor of Bruton's tyrosine kinase (Btk), thereby playing a role in B-cell development. 60 -350576 cd18501 BACK_ANKFY1_Rank5 BACK (BTB and C-terminal Kelch) domain found in rabankyrin-5 (Rank-5). Rank-5, also called ankyrin repeat and FYVE domain-containing protein 1 (ANKFY1), or ankyrin repeats hooked to a zinc finger motif (ANKHZN), is a Rab5 effector that regulates and coordinates different endocytic mechanisms. 89 -350577 cd18502 BACK_NS1BP_IVNS1ABP BACK (BTB and C-terminal Kelch) domain found in influenza virus NS1A-binding protein (NS1-BP). NS1-BP, also called NS1-binding protein, or Aryl hydrocarbon receptor-associated protein 3, or IVNS1ABP, is a novel protein that interacts with the influenza A virus nonstructural NS1 protein, which is relocalized in the nuclei of infected cells. It plays a role in cell division and in the dynamic organization of the actin skeleton as a stabilizer of actin filaments by association with F-actin through Kelch repeats. It also interacts with alpha-enolase/MBP-1 and is involved in c-Myc gene transcriptional control. 99 -350578 cd18503 BACK_calicin BACK (BTB and C-terminal Kelch) domain found in calicin. Calicin is a basic cytoskeletal protein involved in the formation and maintenance of the highly regular organization of the postacrosomal perinuclear theca, the calyx of mammalian spermatozoa. 78 -350579 cd18504 BACK_ARIA_like BACK (BTB and C-terminal Kelch) domain found in plant ARM repeat protein interacting with ABF2 (ARIA) and similar proteins. ARIA is an ARM repeat protein that acts as a positive regulator of ABA response via the modulation of the transcriptional activity of ABF2, a transcription factor which controls ABA-dependent gene expression via the G-box-type ABA-responsive elements. ARIA is a novel abscisic acid signaling component. It negatively regulates seed germination and young seedling growth. 64 -350580 cd18505 BACK1_LZTR1 first BACK (BTB and C-terminal Kelch) domain found in leucine-zipper-like transcriptional regulator 1 (LZTR-1). LZTR-1 is a Golgi BTB-kelch protein that is degraded upon induction of apoptosis. It may also function as a transcriptional regulator that plays a crucial role in embryogenesis. Germline loss-of-function mutations in LZTR-1 predispose to an inherited disorder of multiple schwannomas. 59 -350581 cd18506 BACK2_LZTR1 second BACK (BTB and C-terminal Kelch) domain found in leucine-zipper-like transcriptional regulator 1 (LZTR-1). LZTR-1 is a Golgi BTB-kelch protein that is degraded upon induction of apoptosis. It may also function as a transcriptional regulator that plays a crucial role in embryogenesis. Germline loss-of-function mutations in LZTR-1 predispose to an inherited disorder of multiple schwannomas. 61 -350582 cd18507 BACK_GPRS_like BACK (BTB and C-terminal Kelch) domain found in Drosophila melanogaster serine-enriched protein (GPRS) and similar proteins. The family includes uncharacterized Drosophila melanogaster serine-enriched protein (GPRS) and similar proteins. 80 -350583 cd18508 BACK_KEL_like BACK (BTB and C-terminal Kelch) domain found in Drosophila melanogaster ring canal kelch protein (KEL) and similar proteins. KEL, also termed kelch short protein, is a component of ring canals that regulates the flow of cytoplasm between cells. It binds actin and may be involved in the regulation of cytoplasm flow from nurse cells to the oocyte during oogenesis. 77 -350584 cd18509 BACK_KLHL1 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 1 (KLHL1). KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (alpha1H T-type) calcium channels. It may play a role in organizing the actin cytoskeleton in brain cells. KLHL1 contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. 106 -350585 cd18510 BACK_KLHL4 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 4 (KLHL4). KLHL4 shares high identity and similarity with the Drosophila kelch protein, a component of ring canals. It contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. 106 -350586 cd18511 BACK_KLHL5 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 5 (KLHL5). KLHL5 shares high identity and similarity with the Drosophila kelch protein, a component of ring canals. It contains a BTB domain and kelch repeat domains, characteristics of a kelch family protein. It is abundantly expressed in ovary, adrenal gland, and thymus. 106 -350587 cd18512 BACK_KLHL2_Mayven BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 2 (KLHL2). KLHL2, also called actin-binding protein Mayven, is a novel actin-binding protein predominantly expressed in the brain. It plays a role in the reorganization of the actin cytoskeleton, and promotes growth of cell projections in oligodendrocyte precursors. KLHL2 is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of target proteins, such as NPTXR, leading most often to their proteasomal degradation. 130 -350588 cd18513 BACK_KLHL3 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 3 (KLHL3). KLHL3 serves as a substrate adapter in Cullin3 (Cul3) E3 ubiquitin ligase complexes. It is a component of an E3 ubiquitin ligase complex that regulates blood pressure by targeting With-No-Lysine (WNK) kinases for degradation. 130 -350589 cd18514 BACK_KLHL25_ENC2 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 25 (KLHL25). KLHL25, also called ectoderm-neural cortex protein 2 (ENC-2), is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for translational homeostasis. The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1). 99 -350590 cd18515 BACK_KLHL37_ENC1 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 37 (KLHL37). KLHL37, also called ectoderm-neural cortex protein 1 (ENC-1), or nuclear matrix protein NRP/B, or p53-induced gene 10 protein, is an actin-binding nuclear matrix protein that associates with p110(RB), and is involved in the regulation of neuronal process formation and in differentiation of neural crest cells. 98 -350591 cd18516 BACK_KLHL40_KBTBD5 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 40 (KLHL40). KLHL40, also called Kelch repeat and BTB domain-containing protein 5, or sarcosynapsin, is a substrate-specific adaptor of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a key regulator of skeletal muscle development. Mutations in KLHL40 may cause severe autosomal-recessive nemaline myopathy. 99 -350592 cd18517 BACK_KLHL41_KBTBD10 BACK (BTB and C-terminal Kelch) domain found in Kelch-like protein 41 (KLHL41). KLHL41, also called Kel-like protein 23, or Kelch repeat and BTB domain-containing protein 10, or Kelch-related protein 1 (Krp1), or sarcosine, is a novel kelch related protein that is involved in pseudopod elongation in transformed cells. It is also involved in skeletal muscle development and differentiation. It regulates proliferation and differentiation of myoblasts and plays a role in myofibril assembly by promoting lateral fusion of adjacent thin fibrils into mature, wide myofibrils. 99 -350593 cd18518 BACK_SPOP BACK (BTB and C-terminal Kelch) domain found in speckle-type POZ protein (SPOP). SPOP, also termed HIB homolog 1, or Roadkill homolog 1, is a novel nuclear speckle-type protein which serves as an adaptor of cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination and proteasomal degradation of target proteins, such as BRMS1, DAXX, PDX1/IPF1, GLI2 and GLI3. 71 -350594 cd18519 BACK_SPOPL BACK (BTB and C-terminal Kelch) domain found in speckle-type POZ protein-like (SPOPL). SPOPL, also termed HIB homolog 2, or Roadkill homolog 2, is a component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The complexes containing homodimeric SPOPL or the heterodimer formed by speckle-type POZ protein (SPOP) and SPOPL are less efficient than ubiquitin ligase complexes containing only SPOP. 96 -350595 cd18520 BACK_roadkill_like BACK (BTB and C-terminal Kelch) domain found in Drosophila melanogaster protein roadkill and similar proteins. Drosophila melanogaster protein roadkill, also termed Hh-induced MATH and BTB domain-containing protein (HIB), is a hedgehog-induced BTB protein that modulates hedgehog signaling by degrading Ci/Gli transcription factor. 74 -350596 cd18521 BACK_Tdpoz BACK (BTB and C-terminal Kelch) domain found in TD and POZ domain-containing proteins, Tdpoz1-4. TDPOZ is a family of bipartite animal and plant proteins that contain a tumor necrosis factor receptor-associated factor (TRAF) domain (TD) and a POZ/BTB domain. TDPOZ proteins may be nuclear scaffold proteins probably involved in transcription regulation in early development and other cellular processes. This subfamily contains only mammalian members. Plant TDPOZ proteins contain a MATH domain at the N-terminal region and are named "BTB/POZ and MATH domain-containing proteins (BPM)", and are not inlcuded in this subfamily. 67 -350597 cd18522 BACK_BTBD1 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 1 (BTBD1). BTBD1, also called Hepatitis C virus NS5A-transactivated protein 8 or HCV NS5A-transactivated protein 8, is a BTB-domain-containing Kelch-like protein specifically expressed in skeletal muscle. It interacts with DNA topoisomerase 1 (Topo1), a key enzyme in cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. It may serve as a substrate-specific adaptor of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. 107 -350598 cd18523 BACK_BTBD2 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 2 (BTBD2). BTBD2 is a BTB-domain-containing Kelch-like protein that interacts with DNA topoisomerase 1 (Topo1), a key enzyme in cell survival. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. 106 -350599 cd18524 BACK_BTBD3 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 3 (BTBD3). BTBD3 is a BTB-domain-containing Kelch-like protein that controls dendrite orientation toward active axons in mammalian neocortex. 95 -350600 cd18525 BACK_BTBD6 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 6 (BTBD6). BTBD6, also called lens BTB domain protein, is a BTB-domain-containing Kelch-like protein that is required for proper embryogenesis and plays an essential evolutionarily-conserved role during neuronal development. 95 -350601 cd18526 BACK_ABTB2 BACK (BTB and C-terminal Kelch) domain found in ankyrin repeat and BTB/POZ domain-containing protein 2 (ABTB2). ABTB2, also called Bood POZ containing gene type 2 (BPOZ-2), is a scaffold protein that controls the degradation of many biological proteins with functions ranging from embryonic development to tumor progression. It may be involved in the initiation of hepatocyte growth. It inhibits the aggregation of alpha-synuclein, with implications in Parkinson's disease. ABTB2 functions as an adaptor protein for the E3 ubiquitin ligase scaffold protein Cullin-3. It directly binds to eukaryotic elongation factor 1A1 (eEF1A1) to promote eEF1A1 ubiquitylation and degradation and prevent translation. It is also involved in the growth suppressive effect of the phosphatase and tensin homologue (PTEN). 79 -350602 cd18527 BACK_BTBD11 BACK (BTB and C-terminal Kelch) domain found in BTB/POZ domain-containing protein 11 (BTBD11). BTBD11, also termed ankyrin repeat and BTB/POZ domain-containing protein BTBD11, is a BTB-domain-containing Kelch-like protein. Its function remains unclear. The BTBD11 gene has been identified as an all-trans retinoic acid-responsive gene that may play a role in neural development. 83 -350603 cd18528 BACK_RCBTB1 BACK (BTB and C-terminal Kelch) domain found in RCC1 and BTB domain-containing protein 1 (RCBTB1). RCBTB1, also called chronic lymphocytic leukemia deletion region gene 7 protein (CLLD7), or CLL deletion region gene 7 protein, or regulator of chromosome condensation and BTB domain-containing protein 1, or E4.5, is a novel chromosome condensation regulator-like guanine nucleotide exchange factor (GEF) that may be involved in cell cycle regulation by chromatin remodeling. It may also function as a tumor suppressor that regulates pathways of DNA damage/repair and apoptosis. Moreover, RCBTB1 acts as a putative substrate adaptor for a cullin3 (CUL3) E3 ligase complex that mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Biallelic mutations in RCBTB1 may cause isolated and syndromic retinal dystrophy. 66 -350604 cd18529 BACK_RCBTB2 BACK (BTB and C-terminal Kelch) domain found in RCC1 and BTB domain-containing protein 2 (RCBTB2). RCBTB2, also called chromosome condensation 1-like (CHC1-L), or RCC1-like G exchanging factor, or regulator of chromosome condensation and BTB domain-containing protein 2, is a chromosome condensation regulator-like guanine nucleotide exchange factor (GEF) protein for the Ras-related GTPase Ran. 65 -350605 cd18530 BACK_RHOBTB1 BACK (BTB and C-terminal Kelch) domain found in Rho-related BTB domain-containing protein 1 (RhoBTB1). RhoBTB1 is an atypical member of the Rho GTPase family of signaling proteins, which is characterized by containing a carboxyl terminal extension that harbors two BTB domains and a BACK domain and is capable of assembling cullin 3-dependent ubiquitin ligase complexes. It functions as a tumor suppressor that regulates the integrity of the Golgi complex through the methyltransferase METTL7B. RhoBTB1 also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. 100 -350606 cd18531 BACK_RHOBTB2 BACK (BTB and C-terminal Kelch) domain found in Rho-related BTB domain-containing protein 2 (RhoBTB2). RhoBTB2, also called Deleted in breast cancer 2 gene protein (DBC2), or p83, is an atypical member of the Rho GTPase family of signaling proteins, which is characterized by containing a carboxyl terminal extension that harbors two BTB domains and a BACK domain and is capable of assembling cullin 3-dependent ubiquitin ligase complexes. It functions as a tumor suppressor that regulates the expression of the methyltransferase METTL7A. RhoBTB2 also acts an adaptor of the Cullin-3-dependent E3 ubiquitin ligase complex. 97 -350607 cd18532 BACK_RHOBTB3 BACK (BTB and C-terminal Kelch) domain found in Rho-related BTB domain-containing protein 3 (RhoBTB3). RhoBTB3 is an atypical member of the Rho GTPase family of signaling proteins, which is characterized by containing a carboxyl terminal extension that harbors two BTB domains and a BACK domain and is capable of assembling cullin 3-dependent ubiquitin ligase complexes. It is a Golgi-associated Rho-related ATPase that regulates the S/G2 transition of the cell cycle by targeting cyclin E for ubiquitylation. RhoBTB3 is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. It binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. It also promotes proteasomal degradation of Hypoxia-inducible factor alpha (HIFalpha) by facilitating hydroxylation and ubiquitination. 83 -350509 cd18533 PTP_fungal fungal protein tyrosine phosphatases. This subfamily contains Saccharomyces cerevisiae protein-tyrosine phosphatases 1 (PTP1) and 2 (PTP2), Schizosaccharomyces pombe PTP1, PTP2, and PTP3, and similar fungal proteins. PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides; they regulate phosphotyrosine levels in signal transduction pathways. PTP2, together with PTP3, is the major phosphatase that dephosphorylates and inactivates the MAP kinase HOG1 and also modulates its subcellular localization. 212 -350510 cd18534 DSP_plant_IBR5-like dual specificity phosphatase domain of plant IBR5-like protein phosphatases. This subfamily is composed of Arabidopsis thaliana INDOLE-3-BUTYRIC ACID (IBA) RESPONSE 5 (IBR5) and similar plant proteins. IBR5 protein is also called SKP1-interacting partner 33. The IBR5 gene encodes a dual-specificity phosphatase (DUSP) which acts as a positive regulator of plant responses to auxin and abscisic acid. DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Typical DUSPs, also called mitogen-activated protein kinase (MAPK) phosphatases (MKPs), deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. IBR5 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs. It has been shown to target MPK12, which is a negative regulator of auxin signaling. 130 -350511 cd18535 PTP-IVa3 protein tyrosine phosphatase type IVA 3. Protein tyrosine phosphatase type IVA 3 (PTP-IVa3), also known as protein-tyrosine phosphatase of regenerating liver 3 (PRL-3), stimulates progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. It exerts its oncogenic functions through activation of PI3K/Akt, which is a key regulator of the rapamycin-sensitive mTOR complex 1. PRL-3 is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. 154 -350512 cd18536 PTP-IVa2 protein tyrosine phosphatase type IVA 2. Protein tyrosine phosphatase type IVA 2 (PTP-IVa2), also known as protein-tyrosine phosphatase of regenerating liver 2 (PRL-2), stimulates progression from G1 into S phase during mitosis and promotes tumors. It regulates tumor cell migration and invasion through an ERK-dependent signaling pathway. Its overexpression correlates with breast tumor formation and progression. PRL-2 is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. 155 -350513 cd18537 PTP-IVa1 protein tyrosine phosphatase type IVA 1. Protein tyrosine phosphatase type IVA 1 (PTP-IVa1), also known as protein-tyrosine phosphatase of regenerating liver 1 (PRL-1), stimulates progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. It may play a role in the development and maintenance of differentiating epithelial tissues. PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways. It is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. 167 -350514 cd18538 PFA-DSP_unk unknown subfamily of atypical dual-specificity phosphatases from fungi. This uncharacterized subfamily belongs to the plant and fungi atypical dual-specificity phosphatases (PFA-DSPs) group of atypical DSPs that present in plants, fungi, kinetoplastids, and slime molds. They share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The PFA-DSP group is composed of active as well as inactive phosphatases. This unknown subgroup contains the conserved the CxxxxxR catalytic motif present in active cysteine phosphatases. 145 -349786 cd18539 SRP_G GTPase domain of signal recognition particle protein. The signal recognition particle (SRP) mediates the transport to or across the plasma membrane in bacteria and the endoplasmic reticulum in eukaryotes. SRP recognizes N-terminal signal sequences of newly synthesized polypeptides at the ribosome. The SRP-polypeptide complex is then targeted to the membrane by an interaction between SRP and its cognated receptor (SR). In mammals, SRP consists of six protein subunits and a 7SL RNA. One of these subunits is a 54 kd protein (SRP54), which is a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 is a multidomain protein that consists of an N-terminal domain, followed by a central G (GTPase) domain and a C-terminal M domain. 193 -349984 cd18540 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 295 -349985 cd18541 ABC_6TM_TmrB_like Six-transmembrane helical domain (TmrB) of the heterodimeric Thermus thermophilus multidrug resistance proteins TmrAB, and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the heterodimeric Thermus thermophilus multidrug resistance proteins A and B (TmrAB), a homolog of the Antigen Translocation Complex Tap, and similar proteins. TmrAB has been shown to able to restore antigen processing in human TAP-deficient cells. The 6-transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 293 -349986 cd18542 ABC_6TM_YknU_like Six-transmembrane helical domain (6-TMD) of the uncharacterized ABC transporter YknU and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the uncharacterized ABC transporter YknU and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 292 -349987 cd18543 ABC_6TM_Rv0194_D1_like Six-transmembrane helical domain 1 (TMD1) of the multidrug efflux ABC transporter Rv0194 and similar proteins. This group includes the six-transmembrane helical domain 1 (TMD1) of the multidrug efflux ATP-binding/permease protein Rv0194 from Mycobacterium tuberculosis and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 291 -349988 cd18544 ABC_6TM_TmrA_like Six-transmembrane helical domain (TmrA) of the heterodimeric Thermus thermophilus multidrug resistance proteins TmrAB, and similar proteins. This group represents the six-transmembrane helical domain (TrmA) of the heterodimeric Thermus thermophilus multidrug resistance proteins A and B (TmrAB), a homolog of the Antigen Translocation Complex Tap, and similar proteins. TmrAB has been shown to able to restore antigen processing in human TAP-deficient cells. The 6-transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 294 -349989 cd18545 ABC_6TM_YknV_like Six-transmembrane helical domain (6-TMD) of the uncharacterized ABC transporter YknV and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the uncharacterized ABC transporter YknV and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 293 -349990 cd18546 ABC_6TM_Rv0194_D2_like Six-transmembrane helical domain 2 (TMD2) of the multidrug efflux ABC transporter Rv0194 and similar proteins. This group includes the six-transmembrane helical domain 2 (TMD2) of the multidrug efflux ATP-binding/permease protein Rv0194 from Mycobacterium tuberculosis and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 292 -349991 cd18547 ABC_6TM_Tm288_like Six-transmembrane helical domain Tm288 of a heterodimeric ABC transporter Tm287/288 from Thermotoga maritima and similar proteins. This group represents the six-transmembrane helical domain (Tm288) of a heterodimeric ABC transporter Tm287/288 from Thermotoga maritima and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Moreover, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 298 -349992 cd18548 ABC_6TM_Tm287_like Six-transmembrane helical domain Tm287 of a heterodimeric ABC transporter Tm287/288 from Thermotoga maritima and similar proteins. This group represents the six-transmembrane helical domain (Tm287) of a heterodimeric ABC transporter Tm287/288 from Thermotoga maritima and similar proteins. This TMD possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Moreover, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 292 -349993 cd18549 ABC_6TM_YwjA_like Six-transmembrane helical domain of an uncharacterized ABC transporter YwjA and similar proteins. This group represents the six-transmembrane helical domain of an uncharacterized ABC transporter YwjA from Bacillus subtilis and similar proteins. This transmembrane (TM) subunit possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Moreover, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 295 -349994 cd18550 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 294 -349995 cd18551 ABC_6TM_LmrA_like Six-transmembrane helical domain of the multidrug resistance ABC transporter LmrA and similar proteins. This group represents the six-transmembrane helical domain of the multidrug resistance ABC transporter LmrA from Lactococcus lactis and similar proteins. This transmembrane (TM) subunit possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Moreover, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 289 -349996 cd18552 ABC_6TM_MsbA_like Six-transmembrane helical domain of the bacterial ABC lipid flippase MsbA and similar proteins. The bacterial lipid flippase MsbA is found in Gram-negative bacteria and transports lipid A and lipopolysaccharide (LPS) from the cytoplasmic leaflet to the periplasmic leaflet of the inner membrane. MsbA is also a polyspecific transporter capable of transporting a broad spectrum of drug molecules. Additionally, MsbA exhibits significant sequence similarity to mammalian multidrug resistance (MDR) proteins such as human MDR protein 1 (MDR1) and LmrA from Lactococcus lactis. This subgroup also contains a putative transporter Brevibacillus brevis TycD; the location of the tycD gene within the Tyc (tyrocidine) biosynthesis operon suggests that TycD may play a role in the secretion of the cyclic decapeptide antibiotic tyrocidine. This transmembrane (TM) subunit possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Moreover, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 292 -349997 cd18553 ABC_6TM_PglK_like Six-transmembrane helical domain of the ABC transporter PglK and similar proteins. This group represents the transmembrane (TM) domain of an active lipid-linked oligosaccharides flippase PglK (protein glycosylation K), which is a homodimeric ABC transporter that flips a lipid-linked oligosaccharide that serves as a glycan donor in N-linked protein glycosylation. Pglk mediates the ATP-dependent translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate across the cell membrane; this is an essential step during the N-linked protein glycosylation pathway. This TM subunit exhibits the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. Bacterial ABC exporters are typically expressed as half-transporters that contain one transmembrane domain (TMD) fused to a nucleotide-binding domain (NBD), which dimerize to form the full transporter. 300 -349998 cd18554 ABC_6TM_Sav1866_like Six-transmembrane helical domain of the bacterial ABC multidrug exporter Sav1866 and similar proteins. This group represents the homodimeric bacterial ABC multidrug exporter Sav1866, which is homologous to the lipid flippase MsbA, and both of which are functionally related to the human P-glycoprotein multidrug transporter (ABCB1 or MDR1). This transmembrane (TM) subunit possesses the ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. Bacterial exporters are typically formed by dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are formed of two identical TMDs and two identical NBDs. 299 -349999 cd18555 ABC_6TM_T1SS_like Six-transmembrane helical domain (6-TMD) of the ATP-binding cassette subunit in the type 1 secretion systems, and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS) and similar proteins. These transporter subunits include HylB, PrtD, CyaB, CvaB, RsaD, HasD, LipB, and LapB, among many others. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). Most targeted proteins are not cleaved at the N terminus, but rather carry signals located toward the extreme C terminus to direct type I secretion. However, the 10 kDa Escherichia coli colicin V (CvaB) targets the ABC transporter using a cleaved, N-terminal signal sequence. Almost all transport substrates of the type I system have critical functions in attacking host cells either directly or by being essential for host colonization. The ABC-dependent T1SS transports various molecules, from ions, drugs, to proteins of various sizes up to 900 kDa. The molecules secreted vary in size from the small Escherichia coli peptide colicin V, (10 kDa) to the Pseudomonas fluorescens cell adhesion protein LapA of 520 kDa. The best characterized are the RTX toxins such as the adenylate cyclase (CyaA) toxin from Bordetella pertussis, the causative agent of whooping cough, and the lipases such as LipA. Type I secretion is also involved in export of non-protein substrates such as cyclic beta-glucans and polysaccharides. 294 -350000 cd18556 ABC_6TM_McjD_like Six-transmembrane helical domain of the antibacterial peptide ATP-binding cassette transporter McjD and similar proteins. This group represents the 6-TM subunit of the ABC transporter McjD that exports the antibacterial peptide microcin J25, which is an antimicrobial peptide produced by Enterobacteriaceae against other microorganisms for survival under nutrient starvation. Thus, the ABC exporter McjD provides self-immunity of the producing bacteria through export of the toxic peptide out of the cell. Bacterial ABC exporters are typically expressed as half-transporters that contain one transmembrane domain (TMD) fused to a nucleotide-binding domain (NBD), which dimerize to form the full transporter. 298 -350001 cd18557 ABC_6TM_TAP_ABCB8_10_like Six-transmembrane helical domain (6-TMD) of the ABC transporter TAP, ABCB8 and ABCB10. This group includes ABC transporter associated with antigen processing (TAP), which is essential to cellular immunity against viral infection, as well as ABCB8 and ABCB10, which are found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. TAP is involved in the transport of antigens from the cytoplasm to the endoplasmic reticulum(ER) for association with MHC class I molecules, which play a central role in the adaptive immune response to viruses and cancers by presenting antigenic peptides to CD8+ cytotoxic T lymphocytes (CTLs). Mammalian ABCB10 is essential for erythropoiesis and for protection of mitochondria against oxidative stress, while ABCB8 is essential for normal cardiac function, maintenance of mitochondrial iron homeostasis and maturation of cytosolic Fe/S proteins. 289 -350002 cd18558 ABC_6TM_Pgp_ABCB1 Six-transmembrane helical domain of P-glycoprotein 1 (Pgp) and related proteins. P-glycoprotein 1 (permeability glycoprotein, Pgp) also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1(ABCB1) is a member of the superfamily of ATP-binding cassette (ABC) transporters. Pgp acts as an ATP-dependent efflux pump, binds drugs with diverse chemical structures and pump them out of the drug resistant cancer cells. It is responsible for decreased drug accumulation in multidrug-resistant cells and mediates the development of resistance to anticancer drugs. Pgp consists of two alpha-helical transmembrane domains (TMDs) and two cytoplasmic nucleotide-binding domains (NBDs). This protein also functions as a transporter in the blood-brain barrier. In addition to Pgp, breast cancer resistance protein (BCRP/MXR/ABC-P/ABCG2) and multidrug resistance-associated proteins (MRP1/ABCC1 and MRP2/ABCC2) function as drug efflux pumps of anticancer drugs, and overexpression of these transporters induces multidrug resistance to a broad spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively pumping the drugs out of cells. 312 -350003 cd18559 ABC_6TM_ABCC Six-transmembrane helical domain of the ABC transporters, subfamily C. This group represents the 6-transmembrane (6TM) domain of the ABC transporters that belong to the ABCC subfamily, such as the sulphonylurea receptors SUR1/2 (ABCC8), the cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), Multidrug-Resistance associated Proteins (MRP1-9), VMR1 (vacuolar multidrug resistance protein 1), and YOR1 (yeast oligomycin resistance transporter protein). This TM subunit exhibits the type 3 ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The type 3 ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. 290 -350004 cd18560 ABC_6TM_ATM1_ABCB7_HMT1_ABCB6 Six-transmembrane helical domain (6-TMD) of the Atm1/ABCB7/HMT1/ABCB6 subfamily. This group represents the Atm1/ABCB7/HMT1/ABCB6 subfamily of ATP Binding Cassette (ABC) transporters that are involved in transition metal homeostasis and detoxification processes. Yeast ATM1 and human ABCB7 (ABC transporter subfamily B, member 7), which are involved in the assembly of cytosolic iron-sulfur (Fe/S) cluster-containing proteins by mediating export of Fe/S cluster precursors from mitochondria. In eukaryotes, the Atm1/ABCB7 is present in the inner membrane of mitochondria and is required for the formation of cytosolic iron sulfur cluster containing proteins; mutations of ABCB7 gene result in mitochondrial iron accumulation and are responsible for X-linked sideroblastic anemia. ABCB6 is originally identified as a porphyrin transporter present in the outer membrane of mitochondria. It is highly expressed in cells resistance to arsenic and protects against arsenic cytotoxicity. Moreover, Heavy Metal Tolerance Factor-1 (HMT1) proteins are required for cadmium resistance in Caenorhabditis elegans and Drosophila melanogaster. 292 -350005 cd18561 ABC_6TM_AarD_CydDC_like Six-transmembrane helical domain (6-TMD) of the ABC cysteine/GSH transporter CydDC, and similar proteins. The CydD protein, together with the CydC protein, constitutes a bacterial heterodimeric ATP-binding cassette (ABC) transporter complex required for formation of the functional cytochrome bd oxidase in both gram-positive and gram-negative aerobic bacteria. In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ABC-type cysteine/GSH transporter CydDC, which exports cysteine and glutathione from the cytoplasm to the periplasm to maintain redox homeostasis. Mutations in AarD, a homolog from Providencia stuartii, also show phenotypic characteristic consistent with a defect in the cytochrome d oxidase. The CydDC forms a heterodimeric ABC transporter with two transmembrane domains (TMDs), each predicted to comprise six TM alpha-helices and two nucleotide binding domains (NBDs). 289 -350006 cd18562 ABC_6TM_NdvA_beta-glucan_exporter_like Six-transmembrane helical domain of the cyclic beta-glucan ABC transporter NdvA, and similar proteins. This group represents the six-transmembrane domain of NdvA, an ATP-dependent exporter of cyclic beta glucans, and similar proteins. NdvA is required for nodulation of legume roots and is involved in beta-(1,2)-glucan export to the periplasm. NdvA mutants in Brucella abortus and Sinorhizobium meliloti have been shown to exhibit decreased virulence in mice and inhibit intracellular multiplication in HeLa cells. These results suggest that cyclic beta-(1,2)-glucan is required to transport into the periplasmatic space to function as a virulence factor. Bacterial exporters are typically formed by dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are formed of two identical TMDs and two identical NBDs. 289 -350007 cd18563 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 296 -350008 cd18564 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 307 -350009 cd18565 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 313 -350010 cd18566 ABC_6TM_PrtD_LapB_HlyB_like Six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (PrtD, LapB, HylB), and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS), including PrtD, LapB, and HylB. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type 1 secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). These three components assemble into a complex spanning both membranes and provide a channel for the translocation of unfolded polypeptides. In addition, PrtD is the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system (PrtDEF). LabB is an inner-membrane transporter component of the LapBCE system that is required for the secretion of the LapA adhesion. 294 -350011 cd18567 ABC_6TM_CvaB_RaxB_like Six-transmembrane helical domain (6-TMD) of the ABC transporter subunit of the type 1 secretion systems, CvaB and RaxB, and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the peptidase-containing ABC transporter subunit of T1SS (Type 1 secretion systems), such as Escherichia coli colicin V secretion/processing ATP-binding protein CvaB and putative ABC transporter RaxB. These ABC-transporter proteins carry a proteolytic peptidase domain in their N-termini, termed as C39, which cleaves a double glycine (GG) motif-containing signal peptide from substrates before secretion. RaxB is part of the T1SS RaxABC, which is responsible for the type 1-dependent secretion of the bacterial quorum-sensing molecule AvrXa21. Both CvaB and RaxB belong to a subgroup of T1SS ABC transporters that contain a C39 peptidase domain. T1SS are found in pathogenic Gram-negative bacteria to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. 294 -350012 cd18568 ABC_6TM_HetC_like Six-transmembrane helical domain (6-TMD) of the ABC subunit of T1SS-like HetC and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunit of T1SS (type 1 secretion systems), such as heterocyst differentiation protein HetC. HetC is similar to ABC protein exporters of T1SS (type 1 secretion systems) and is involved in early regulation of heterocyst differentiation in the filamentous cynobacterium Anabaena sp. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. ABC-transporter proteins in this group carry a proteolytic peptidase domain in their N-termini, termed as C39, which cleaves a double glycine (GG) motif-containing signal peptide from substrates before secretion. 294 -350013 cd18569 ABC_6TM_NHLM_bacteriocin Six-transmembrane helical domain (6-TMD) of NHLP family bacteriocin export ABC transporters. This group includes the six-transmembrane helical domain (6-TMD) of the ABC subunit of NHLM (Nitrile Hydratase Leader Microcin) bacteriocin system, which contains ABC transporter (permease/ATP-binding fused protein) with a peptidase domain. ABC-transporter proteins in this group are predicted to be a subunit of a bacteriocin processing and export system, and they carry a proteolytic peptidase domain in their N-termini, termed as C39, which cleaves a double glycine (GG) motif-containing signal peptide from substrates before secretion. 294 -350014 cd18570 ABC_6TM_PCAT1_LagD_like Six-transmembrane helical domain (6-TMD) of the peptidase-containing ATP-binding cassette transporters. This group includes the 6-TMD of the peptidase-containing ATP-binding cassette transporters (PCATs) such as Clostridium thermocellum PCAT1, a polypeptide processing and secretion transporter, and LagD, a bacteriocin ABC transporter from Lactococcus lactis. Bacterial exporters are typically formed by dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are formed of two identical TMDs and two identical NBDs. The transporters involved in protein secretion often contain additional peptidase domains essential for substrate processing. These peptidase domains belong to the cysteine protease superfamily, classified as family C39, bacteriocin-processing peptidase. LagD is highly similar to the peptidase-containing ATP-binding cassette transporters (PCATs). In Gram-positive bacteria, the PCATs are responsible for exporting quorum-sensing or antimicrobial peptides called bacteriocins. 294 -350015 cd18571 ABC_6TM_peptidase_like Six-transmembrane helical domain (6-TMD) of an uncharacterized peptidase ABC transporter and similar proteins. This group includes the 6-TMD of an uncharacterized peptidase-containing ABC transporter of T1SS (type 1 secretion systems), similar to heterocyst differentiation protein HetC. HetC is involved in early regulation of heterocyst differentiation in the filamentous cynobacterium Anabaena sp. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. ABC-transporter proteins in this group carry a proteolytic peptidase domain in their N-termini, termed as C39, which cleaves a double glycine (GG) motif-containing signal peptide from substrates before secretion. 294 -350016 cd18572 ABC_6TM_TAP Six-transmembrane helical domain (6-TMD) of the ABC transporter associated with antigen processing. This group represents the 6-TM subunit of the ABC transporter associated with antigen processing (TAP), which is essential to cellular immunity against viral infection. TAP is involved in the transport of antigens from the cytoplasm to the endoplasmic reticulum(ER) for association with MHC class I molecules, which play a central role in the adaptive immune response to viruses and cancers by presenting antigenic peptides to CD8+ cytotoxic T lymphocytes (CTLs). It also acts as a molecular scaffold for the assembly of the MHC I peptide-loading complex in the ER membrane. Newly synthesized MHC class I molecules associate with TAP via tapasin, which is one component of the peptide-loading complex. TAP is a heterodimer formed by two distinct subunits, TAP1 (ABCB2) and TAP2 (ABCB3), each half-transporter comprises one transmembrane domain (TMD) and one nucleotide domain (NBD). Two 6-helical core TMDs contain the peptide-binding pocket and translocation channel, while the NBDs bind and hydrolyze ATP to power peptide translocation. 289 -350017 cd18573 ABC_6TM_ABCB10_like Six-transmembrane helical domain (6-TMD) of the mitochondrial transporter ABCB10 (subfamily B, member 10) and similar proteins. This group includes the 6-TM subunit of the ABC10 (also known as ABC mitochondrial erythroid, ABC-me, mABC2, or ABCBA), which is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. In mammals, ABCB10 is essential for erythropoiesis and for protection of mitochondria against oxidative stress. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting significant structural diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. 294 -350018 cd18574 ABC_6TM_ABCB8_like Six-transmembrane helical domain (6-TMD) of ATP-binding cassette transporter subfamily B member 8, mitochondrial, and similar proteins. This group includes ABCB8, which is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. ABCB8 is essential for maintenance of normal cardiac function, involves mitochondrial iron export, and plays a role in the maturation of cytosolic Fe/S cluster-containing enzymes. ABCB8 is a half-molecule ABC protein that contains one TMD fused to a NBD, which dimerize to form a functional transporter. 295 -350019 cd18575 ABC_6TM_bac_exporter_ABCB8_10_like Six-transmembrane helical domain of putative bacterial ABC exporters, similar to ABCB8 and ABCB10. This group includes putative bacterial ABC transporters similar to ABCB8 and ABCB10, which are found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. Mammalian ABCB10 is essential for erythropoiesis and for protection of mitochondria against oxidative stress, while ABCB8 is essential for normal cardiac function, maintenance of mitochondrial iron homeostasis and maturation of cytosolic Fe/S proteins. Bacterial exporters are typically formed by dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are formed of two identical TMDs and two identical NBDs. 289 -350020 cd18576 ABC_6TM_bac_exporter_ABCB8_10_like Six-transmembrane helical domain of putative bacterial ABC exporters, similar to ABCB8 and ABCB10. This group includes putative bacterial ABC transporters similar to ABCB8 and ABCB10, which are found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. Mammalian ABCB10 is essential for erythropoiesis and for protection of mitochondria against oxidative stress, while ABCB8 is essential for normal cardiac function, maintenance of mitochondrial iron homeostasis and maturation of cytosolic Fe/S proteins. Bacterial exporters are typically formed by dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are formed of two identical TMDs and two identical NBDs. 289 -350021 cd18577 ABC_6TM_Pgp_ABCB1_D1_like Six-transmembrane helical domain 1 (TMD1) of P-glycoprotein 1 (Pgp) and related proteins. P-glycoprotein 1 (permeability glycoprotein, Pgp) also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1) is a member of the superfamily of ATP-binding cassette (ABC) transporters. Pgp acts as an ATP-dependent efflux pump, binds drugs with diverse chemical structures and pump them out of the drug resistant cancer cells. It is responsible for decreased drug accumulation in multidrug-resistant cells and mediates the development of resistance to anticancer drugs. Pgp consists of two alpha-helical transmembrane domains (TMDs) and two cytoplasmic nucleotide-binding domains (NBDs). This protein also functions as a transporter in the blood-brain barrier. In addition to Pgp, breast cancer resistance protein (BCRP/MXR/ABC-P/ABCG2) and multidrug resistance-associated proteins (MRP1/ABCC1 and MRP2/ABCC2) function as drug efflux pumps of anticancer drugs, and overexpression of these transporters induces multidrug resistance to a broad spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively pumping the drugs out of cells. 300 -350022 cd18578 ABC_6TM_Pgp_ABCB1_D2_like Six-transmembrane helical domain 2 (TMD2) of P-glycoprotein 1 (Pgp) and related proteins. P-glycoprotein 1 (permeability glycoprotein, Pgp) also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1) is a member of the superfamily of ATP-binding cassette (ABC) transporters. Pgp acts as an ATP-dependent efflux pump, binds drugs with diverse chemical structures and pump them out of the drug resistant cancer cells. It is responsible for decreased drug accumulation in multidrug-resistant cells and mediates the development of resistance to anticancer drugs. Pgp consists of two alpha-helical transmembrane domains (TMDs) and two cytoplasmic nucleotide-binding domains (NBDs). This protein also functions as a transporter in the blood-brain barrier. In addition to Pgp, breast cancer resistance protein (BCRP/MXR/ABC-P/ABCG2) and multidrug resistance-associated proteins (MRP1/ABCC1 and MRP2/ABCC2) function as drug efflux pumps of anticancer drugs, and overexpression of these transporters induces multidrug resistance to a broad spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively pumping the drugs out of cells. 317 -350023 cd18579 ABC_6TM_ABCC_D1 Six-transmembrane helical domain 1 (TMD1) of the ABC transporters, subfamily C. This group represents the six-transmembrane domain 1 (TMD1)of the ABC transporters that belong to the ABCC subfamily, such as the sulphonylurea receptors SUR1/2 (ABCC8), the cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), Multidrug-Resistance associated Proteins (MRP1-9), VMR1 (vacuolar multidrug resistance protein 1), and YOR1 (yeast oligomycin resistance transporter protein). This TM subunit exhibits the type 3 ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The type 3 ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. By contrast, bacterial ABC exporters are typically assembled from dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are comprised of two identical TMDs and two identical NBDs. 289 -350024 cd18580 ABC_6TM_ABCC_D2 Six-transmembrane helical domain 2 (TMD2) of the ABC transporters, subfamily C. This group represents the six-transmembrane domain 2 (TMD2) of the ABC transporters that belong to the ABCC subfamily, such as the sulphonylurea receptors SUR1/2 (ABCC8), the cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), Multidrug-Resistance associated Proteins (MRP1-9), VMR1 (vacuolar multidrug resistance protein 1), and YOR1 (yeast oligomycin resistance transporter protein). This TM subunit exhibits the type 3 ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The type 3 ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. All ABC transporters share a common architecture of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. By contrast, bacterial ABC exporters are typically assembled from dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are comprised of two identical TMDs and two identical NBDs. 294 -350025 cd18581 ABC_6TM_ABCB6 Six-transmembrane helical domain of the ATP-binding cassette subfamily B member 6, mitochondrial. This group represents the ABCB6 subfamily of ATP Binding Cassette (ABC) transporters that are involved in transition metal homeostasis and detoxification processes. ABCB6 is originally identified as a porphyrin transporter present in the outer membrane of mitochondria. It is highly expressed in cells resistance to arsenic and protects against arsenic cytotoxicity. Moreover, ABCB6 (ABC transporter subfamily B, member 6) is closely related to yeast ATM1 and human ABCB7, which are involved in the assembly of cytosolic iron-sulfur (Fe/S) cluster-containing proteins by mediating export of Fe/S cluster precursors from mitochondria. In eukaryotes, the Atm1/ABCB7 is present in the inner membrane of mitochondria and is required for the formation of cytosolic iron sulfur cluster containing proteins; mutations of ABCB7 gene result in mitochondrial iron accumulation and are responsible for X-linked sideroblastic anemia. 300 -350026 cd18582 ABC_6TM_ATM1_ABCB7 Six-transmembrane helical domain of the Atm1/ABC7 transporters. This group represents the Atm1/ABCB7 subfamily of ATP Binding Cassette (ABC) transporters that are involved in transition metal homeostasis and detoxification processes. Yeast ATM1 and human ABCB7 (ABC transporter subfamily B, member 7), which are involved in the assembly of cytosolic iron-sulfur (Fe/S) cluster-containing proteins by mediating export of Fe/S cluster precursors from mitochondria. In eukaryotes, the Atm1/ABCB7 is present in the inner membrane of mitochondria and is required for the formation of cytosolic iron sulfur cluster containing proteins; mutations of ABCB7 gene result in mitochondrial iron accumulation and are responsible for X-linked sideroblastic anemia. 292 -350027 cd18583 ABC_6TM_HMT1 Six-transmembrane helical domain of the heavy metal tolerance protein. This group represents the HMT1 subfamily of ATP Binding Cassette (ABC) transporters that are involved in transition metal homeostasis and detoxification processes. Heavy Metal Tolerance Factor-1 (HMT1) proteins are required for cadmium resistance in Caenorhabditis elegans and Drosophila melanogaster. HMT1 is closely related to Yeast ATM1 and human ABCB7 (ABC transporter subfamily B, member 7), which are involved in the assembly of cytosolic iron-sulfur (Fe/S) cluster-containing proteins by mediating export of Fe/S cluster precursors from mitochondria. 290 -350028 cd18584 ABC_6TM_AarD_CydD Six-transmembrane helical domain (6TM) of the CydD, a component of the ABC cysteine/GSH transporter, and a homolog AarD. The CydD protein, together with the CydC protein, constitutes a bacterial heterodimeric ATP-binding cassette (ABC) transporter complex required for formation of the functional cytochrome bd oxidase in both gram-positive and gram-negative aerobic bacteria. In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ABC-type cysteine/GSH transporter CydDC, which exports cysteine and glutathione from the cytoplasm to the periplasm to maintain redox homeostasis. Mutations in AarD, a homolog from Providencia stuartii, also show phenotypic characteristic consistent with a defect in the cytochrome d oxidase. The CydDC forms a heterodimeric ABC transporter with two transmembrane domains (TMDs), each predicted to comprise six TM alpha-helices and two nucleotide binding domains (NBDs). 290 -350029 cd18585 ABC_6TM_CydC Six-transmembrane helical domain (6-TMD) of the CydC, a component of the ABC cysteine/GSH transporter. The CydC protein, together with the CydD protein, constitutes a bacterial heterodimeric ATP-binding cassette (ABC) transporter complex required for formation of the functional cytochrome bd oxidase in both gram-positive and gram-negative aerobic bacteria. In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ABC-type cysteine/GSH transporter CydDC, which exports cysteine and glutathione from the cytoplasm to the periplasm to maintain redox homeostasis. The CydDC forms a heterodimeric ABC transporter with two transmembrane domains (TMDs), each predicted to comprise six TM alpha-helices and two nucleotide binding domains (NBDs). 290 -350030 cd18586 ABC_6TM_PrtD_like Six-transmembrane helical domain (6TM) domain of the ABC subunit (PrtD) in the T1SS metalloprotease secretion system, and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS) such as PrtD, which is the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system (PrtDEF). T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. The Aquifex aeolicus PrtDEF of T1SS is composed of an inner-membrane ABC transporter (PrtD), a periplasmic membrane-fusion protein (PrtE), and an outer-membrane porin (PrtF). These three components assemble into complex spanning both membranes and provide a channel for the translocation of unfolded polypeptides 291 -350031 cd18587 ABC_6TM_LapB_like Six-transmembrane helical domain of the ABC transporter subunit LapB and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS), such as LapB. LapB is an inner-membrane transporter component of the LapBCE system that is required for the secretion of the LapA adhesion, LapA is a RTX (repeats in toxin) protein found in Pseudomonas fluorescens and is required for biofilm formation in this organism. T1SS are found in pathogenic Gram-negative bacteria to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. In this T1SS system, LapB is a cytoplasmic membrane-localized ATPase, LapC is a membrane fusion protein, and LapE is an outer membrane protein. 293 -350032 cd18588 ABC_6TM_CyaB_HlyB_like Six-transmembrane helical domain of the ABC subunits of T1SS, CyaB/HylB, and similar proteins. This group represents the six-transmembrane helical domain (6-TMD) of the ABC subunits of T1SS, such as CyaG and HlyB. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). These three components assemble into a complex spanning both membranes and provide a channel for the translocation of unfolded polypeptides. Additionally, CyaB is part of the three T1SS complex proteins for adenylate cyclase toxin CyaA, which is a primary virulence factor in Bordetella pertussis: CyaB (an ABC transporter) CyaD (a membrane fusion protein), and CyaE (an outer membrane protein). 294 -350033 cd18589 ABC_6TM_TAP1 Six-transmembrane helical domain 1 (6-TMD1) of the ABC transporter associated with antigen processing 1 (TAP1). This group represents the 6-TM subunit of the ABC transporter associated with antigen processing (TAP), which is essential to cellular immunity against viral infection. TAP is involved in the transport of antigens from the cytoplasm to the endoplasmic reticulum(ER) for association with MHC class I molecules, which play a central role in the adaptive immune response to viruses and cancers by presenting antigenic peptides to CD8+ cytotoxic T lymphocytes (CTLs). It also acts as a molecular scaffold for the assembly of the MHC I peptide-loading complex in the ER membrane. Newly synthesized MHC class I molecules associate with TAP via tapasin, which is one component of the peptide-loading complex. TAP is a heterodimer formed by two distinct subunits, TAP1 (ABCB2) and TAP2 (ABCB3), each half-transporter comprises one transmembrane domain (TMD) and one nucleotide domain (NBD). Two 6-helical core TMDs contain the peptide-binding pocket and translocation channel, while the NBDs bind and hydrolyze ATP to power peptide translocation. 289 -350034 cd18590 ABC_6TM_TAP2 Six-transmembrane helical domain 2 (6-TMD2) of the ABC transporter associated with antigen processing 2 (TAP2). This group represents the 6-TM subunit of the ABC transporter associated with antigen processing (TAP), which is essential to cellular immunity against viral infection. TAP is involved in the transport of antigens from the cytoplasm to the endoplasmic reticulum(ER) for association with MHC class I molecules, which play a central role in the adaptive immune response to viruses and cancers by presenting antigenic peptides to CD8+ cytotoxic T lymphocytes (CTLs). It also acts as a molecular scaffold for the assembly of the MHC I peptide-loading complex in the ER membrane. Newly synthesized MHC class I molecules associate with TAP via tapasin, which is one component of the peptide-loading complex. TAP is a heterodimer formed by two distinct subunits, TAP1 (ABCB2) and TAP2 (ABCB3), each half-transporter comprises one transmembrane domain (TMD) and one nucleotide domain (NBD). Two 6-helical core TMDs contain the peptide-binding pocket and translocation channel, while the NBDs bind and hydrolyze ATP to power peptide translocation. 289 -350035 cd18591 ABC_6TM_SUR1_D1_like Six-transmembrane helical domain 1 (TMD1) of the sulphonylurea receptors SUR1/2. This group represents the six-transmembrane domain 1 (TMD1) of the sulphonylurea receptors SUR1/2 (ABCC8), which function as a modulator of ATP-sensitive potassium channels and insulin release, and they belong to the ABCC subfamily. The ATP-sensitive (K-ATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR subunits. Thus, in contrast to other ABC transporters, the SUR serves as the regulatory subunit of an ion channel. Mutations and deficiencies in the SUR proteins have been observed in patients with hyperinsulinemic hypoglycemia of infancy, an autosomal recessive disorder of unregulated and high insulin secretion. Mutations have also been associated with non-insulin-dependent diabetes mellitus type 2, an autosomal dominant disease of defective insulin secretion. 309 -350036 cd18592 ABC_6TM_MRP5_8_9_D1 Six-transmembrane helical domain 1 (TMD1) of multidrug resistance-associated proteins (MRPs) 5, 8, and 9. This group represents the six-transmembrane domain 1 (TMD1) of multidrug resistance-associated proteins (MRPs) 5, 8, and 9, all of which are belonging to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 287 -350037 cd18593 ABC_6TM_MRP4_D1_like Six-transmembrane helical domain 1 (TMD1) of multidrug resistance-associated protein 4 (MRP4) and similar proteins. This group represents the six-transmembrane domain 1 (TMD1) of multidrug resistance-associated protein 4 (MRP4), which belongs to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 291 -350038 cd18594 ABC_6TM_CFTR_D1 Six-transmembrane helical domain 1 of Cystic Fibrosis Transmembrane Conductance Regulator. This group represents the six-transmembrane domain 1 (TMD1) of the cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), which belongs to the ABCC subfamily. CFTR functions as a chloride channel, in contrast to other ABC transporters, and controls ion and water secretion and absorption in epithelial tissues. ABC proteins are formed from two homologous halves each containing a transmembrane domain (TMD) and a cytosolic nucleotide binding domain (NBD). In CFTR, these two TMD-NBD halves are linked by the unique regulatory (R) domain, which is not present in other ABC transporters. The ion channel only opens when its R-domain is phosphorylated by cyclic AMP-dependent protein kinase (PKA) and ATP is bound at the NBDs. Mutations in CFTR cause cystic fibrosis, the most common lethal genetic disorder in populations of Northern European descent. 291 -350039 cd18595 ABC_6TM_MRP1_2_3_6_D1_like Six-transmembrane helical domain 1 (TMD1) of multidrug resistance-associated proteins (MRPs) 1, 2, 3 and 6. This group represents the six-transmembrane domain 1 (TMD1) of multidrug resistance-associated proteins (MRPs) 1, 2, 3 and 6, all of which are belonging to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 290 -350040 cd18596 ABC_6TM_VMR1_D1_like Six-transmembrane helical domain 1 (TMD1) of the yeast Vmr1p, Ybt1p and Nft1; ABCC subfamily. This group includes the six-transmembrane domain 1 (TMD1) of the yeast Vmr1p, Ybt1p and Nft1, all of which are ABC transporters of the MRP (multidrug resistance-associated protein) subfamily (ABCC). Yeast ABCC (also termed MRP/CFTR) subfamily includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p), of which three members (Ycf1p, Bpt1P and Yor1p) are not included here. While Yor1p, an oligomycin resistance ABC transporter, has been shown to localize to the plasma membrane, the other 4 members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p and Vmr1p) have been shown to localize to the vacuolar membrane. Ybt1p is originally identified as a bile acid transporter and regulates membrane fusion through Ca2+ transport modulation. Ybt1p also plays a part in ade2 pigment transport. Moreover, Ybt1p has been recently shown to translocate phosphatidylcholine from the outer leaflet of the vacuole to the inner leaflet for degradation and choline recycling. Vmr1p, a vacuolar membrane protein, participates in the export of numerous growth inhibitors from the cell, such as cycloheximide, 2,4-dinitrophenole, cadmium and other toxic metals. Nft1p is not well-characterized, but it is proposed to be regulate Ycf1p, which is involved in heavy metal detoxification. 309 -350041 cd18597 ABC_6TM_YOR1_D1_like Six-transmembrane helical domain 1 (TMD1) of the yeast Yor1p and similar proteins; ABCC subfamily. This group includes the six-transmembrane domain 1 (TMD1) of the yeast Yor1p, an oligomycin resistance ABC transporter, and similar proteins. Members of this group belong to the MRP (multidrug resistance-associated protein) subfamily (ABCC). In addition to Yor1p, yeast ABCC (also termed MRP/CFTR) subfamily also comprises five other members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, and Vmr1p), which are not included in this group. Yor1p is a plasma membrane ATP-binding transporter that mediates export of many different organic anions including oligomycin. While Yor1p has been shown to localize to the plasma membrane, the other 4 members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p and Vmr1p) have been shown to localize to the vacuolar membrane. 293 -350042 cd18598 ABC_6TM_MRP7_D1_like Six-transmembrane helical domain 1 (TMD1) of multidrug resistance-associated protein 7, and similar proteins. This group represents the six-transmembrane domain 1 (TMD1) of multidrug resistance-associated protein 7 (MRP7), which belongs to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 288 -350043 cd18599 ABC_6TM_MRP5_8_9_D2 Six-transmembrane helical domain 2 (TMD2) of multidrug resistance-associated proteins (MRPs) 5, 8, and 9. This group represents the six-transmembrane domain 2 (TMD2) of multidrug resistance-associated proteins (MRPs) 5, 8, and 9, all of which are belonging to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 313 -350044 cd18600 ABC_6TM_CFTR_D2 Six-transmembrane helical domain 2 of Cystic Fibrosis Transmembrane Conductance Regulator. This group represents the six-transmembrane domain 2 (TMD2) of the ABC transporters that belong to the ABCC subfamily, such as the sulphonylurea receptors SUR1/2 (ABCC8), the cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), Multidrug-Resistance associated Proteins (MRP1-9), VMR1 (vacuolar multidrug resistance protein 1), and YOR1 (yeast oligomycin resistance transporter protein). This TM subunit exhibits the type 3 ATP-binding cassette (ABC) exporter fold, which is characterized by 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The type 3 ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds, a various type of lipids and polypeptides. All ABC transporters share a common architecture of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane by alternating between inward- and outward-facing conformations. By contrast, bacterial ABC exporters are typically assembled from dimers of TMD-NBD half-transporters. Thus, most bacterial ABC transporters are comprised of two identical TMDs and two identical NBDs. 324 -350045 cd18601 ABC_6TM_MRP4_D2_like Six-transmembrane helical domain 2 (TMD2) of multidrug resistance-associated protein 4 (MRP4) and similar proteins. This group represents the six-transmembrane domain 2 (TMD2) of multidrug resistance-associated protein 4 (MRP4), which belongs to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 314 -350046 cd18602 ABC_6TM_SUR1_D2_like Six-transmembrane helical domain 2 (TMD2) of the sulphonylurea receptors SUR1/2. This group represents the six-transmembrane domain 2 (TMD2) of the sulphonylurea receptors SUR1/2 (ABCC8), which function as a modulator of ATP-sensitive potassium channels and insulin release, and belong to the ABCC subfamily. The ATP-sensitive (K-ATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR subunits. Thus, in contrast to other ABC transporters, the SUR serves as the regulatory subunit of an ion channel. Mutations and deficiencies in the SUR proteins have been observed in patients with hyperinsulinemic hypoglycemia of infancy, an autosomal recessive disorder of unregulated and high insulin secretion. Mutations have also been associated with non-insulin-dependent diabetes mellitus type 2, an autosomal dominant disease of defective insulin secretion. 307 -350047 cd18603 ABC_6TM_MRP1_2_3_6_D2_like Six-transmembrane helical domain 2 (TMD2) of multidrug resistance-associated proteins (MRPs) 1, 2, 3 and 6. This group represents the six-transmembrane domain 2 (TMD2) of multidrug resistance-associated proteins (MRPs) 1, 2, 3 and 6, all of which are belonging to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 296 -350048 cd18604 ABC_6TM_VMR1_D2_like Six-transmembrane helical domain 2 (TMD2) of the yeast Vmr1p, Ybt1p and Nft1; ABCC subfamily. This group includes the six-transmembrane domain 2 (TMD2) of the yeast Vmr1p, Ybt1p and Nft1, all of which are ABC transporters of the MRP (multidrug resistance-associated protein) subfamily (ABCC). Yeast ABCC (also termed MRP/CFTR) subfamily includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p), of which three members (Ycf1p, Bpt1P and Yor1p) are not included here. While Yor1p, an oligomycin resistance ABC transporter, has been shown to localize to the plasma membrane, the other 4 members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p and Vmr1p) have been shown to localize to the vacuolar membrane. Ybt1p is originally identified as a bile acid transporter and regulates membrane fusion through Ca2+ transport modulation. Ybt1p also plays a part in ade2 pigment transport. Moreover, Ybt1p has been recently shown to translocate phosphatidylcholine from the outer leaflet of the vacuole to the inner leaflet for degradation and choline recycling. Vmr1p, a vacuolar membrane protein, participates in the export of numerous growth inhibitors from the cell, such as cycloheximide, 2,4-dinitrophenole, cadmium and other toxic metals. Nft1p is not well-characterized, but it is proposed to be regulate Ycf1p, which is involved in heavy metal detoxification. 297 -350049 cd18605 ABC_6TM_MRP7_D2_like Six-transmembrane helical domain 2 (TMD2) of multidrug resistance-associated protein 7, and similar proteins. This group represents the six-transmembrane domain 2 (TMD2) of multidrug resistance-associated protein 7 (MRP7), which belongs to the subfamily C of the ATP-binding cassette (ABC) transporter superfamily. The MRP subfamily (ABCC subfamily) is composed of 13 members, of which MRP1 to MRP9 are the major transporters that cause multidrug resistance in tumor cells by pumping anticancer drugs out of the cell. These nine MRP members function as ATP-dependent exporters for endogenous substances and xenobiotics. MRP family can be divided into two groups, depending on their structural architecture. MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 12, respectively) have a typical ABC transporter structure and each composed of two transmembrane domains (TMD1 and TMD2) and two nucleotide domains (NBD1 and NBD2). On the other hand, MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, respectively) have an additional N-terminal five transmembrane segments in a single domain (TMD0) connected to the core (TMD-NBD) by a cytoplasmic linker (L0). 300 -350050 cd18606 ABC_6TM_YOR1_D2_like Six-transmembrane helical domain 2 (TMD2) of the yeast Yor1p and similar proteins; ABCC subfamily. This group includes the six-transmembrane domain 1 (TMD1) of the yeast Yor1p, an oligomycin resistance ABC transporter, and similar proteins. Members of this group belong to the MRP (multidrug resistance-associated protein) subfamily (ABCC). In addition to Yor1p, yeast ABCC (also termed MRP/CFTR) subfamily also comprises five other members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, and Vmr1p), which are not included in this group. Yor1p is a plasma membrane ATP-binding transporter that mediates export of many different organic anions including oligomycin. While Yor1p has been shown to localize to the plasma membrane, the other 4 members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p and Vmr1p) have been shown to localize to the vacuolar membrane. 290 -350119 cd18607 GH130 Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. 269 -350120 cd18608 GH43_F5-8_typeC-like Glycosyl hydrolase family 43 protein most having a F5/8 type C domain C-terminal to the GH43 domain. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been annotated as having beta-xylosidase (EC 3.2.1.37), xylanase (EC 3.2.1.8), and beta-galactosidase (EC 3.2.1.145) activities, and some as F5/8 type C domain (also known as the discoidin (DS) domain)-containing proteins. Most contain a F5/8 type C domain C-terminal to the GH43 domain. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. Characterized enzymes belonging to this subgroup include Lactobacillus brevis (LbAraf43) and Weissella sp (WAraf43) which show activity with similar catalytic efficiency on 1,5-alpha-L-arabinooligosaccharides with a degree of polymerization (DP) of 2-3; size is limited by an extended loop at the entrance to the active site. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 276 -350121 cd18609 GH32-like Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 303 -350122 cd18610 GH130_BT3780-like Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism. 301 -350123 cd18611 GH130 Glycosyl hydrolase family 130; uncharacterized. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), most of which are as yet uncharacterized. GH130 enzymes are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. 289 -350124 cd18612 GH130_Lin0857-like Glycoside hydrolase family 130 such as Listeria innocua beta-1,2-mannobiose phosphorylase. This subfamily contains the glycosyl hydrolase family 130 (GH130), as classified by the carbohydrate-active enzymes database (CAZY), enzymes that are phosphorylases and hydrolases for beta-mannosides, and includes Listeria innocua beta-1,2-mannobiose phosphorylase (Lin0857). hey possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Structure of Lin0857 shows beta-1,2-mannotriose bound in a U-shape, interacting with a phosphate analog at both ends. Lin0857 has a unique dimer structure connected by a loop, with a significant open-close loop displacement observed for substrate entry. A long loop, which is exclusively present in Lin0857, covers the active site to limit the pocket size. 261 -350125 cd18613 GH130 Glycosyl hydrolase family 130; uncharacterized. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), most of which are as yet uncharacterized. GH130 enzymes are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. 302 -350126 cd18614 GH130 Glycosyl hydrolase family 130; uncharacterized. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), most of which are as yet uncharacterized. GH130 enzymes are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. 276 -350127 cd18615 GH130 Glycosyl hydrolase family 130; uncharacterized. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), most of which are as yet uncharacterized. GH130 enzymes are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. 277 -350128 cd18616 GH43_ABN-like Glycosyl hydrolase family 43 such as arabinan endo-1 5-alpha-L-arabinosidase. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activity. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 291 -350129 cd18617 GH43_XynB-like Glycosyl hydrolase family 43, such as Bacteroides ovatus alpha-L-arabinofuranosidase (BoGH43, XynB). This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have been characterized to have alpha-L-arabinofuranosidase (EC 3.2.1.55) and beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37) activities. Beta-1,4-xylosidases are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Also included in this subfamily are Bacteroides ovatus alpha-L-arabinofuranosidases, BoGH43A and BoGH43B, both having a two-domain architecture, consisting of an N-terminal 5-bladed beta-propeller domain harboring the catalytic active site, and a C-terminal beta-sandwich domain. However, despite significant functional overlap between these two enzymes, BoGH43A and BoGH43B share just 41% sequence identity. The latter appears to be significantly less active on the same substrates, suggesting that these paralogs may play subtly different roles during the degradation of xyloglucans from different sources, or may function most optimally at different stages in the catabolism of xyloglucan oligosaccharides (XyGOs), for example before or after hydrolysis of certain side-chain moieties. It also includes Phanerochaete chrysosporium BKM-F-1767 Xyl, a bifunctional xylosidase/arabinofuranosidase. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 285 -350130 cd18618 GH43_Xsa43E-like Glycosyl hydrolase family 43, including Butyrivibrio proteoclasticus arabinofuranosidase Xsa43E. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the GH43_AXH-like subgroup which includes enzymes that have been characterized with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55), alpha-1,2-L-arabinofuranosidase 43A (arabinan-specific; EC 3.2.1.-), endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. This subgroup includes Cellvibrio japonicus arabinan-specific alpha-1,2-arabinofuranosidase, CjAbf43A, which confers its specificity by a surface cleft that is complementary to the helical backbone of the polysaccharide, and Butyrivibrio proteoclasticus GH43 enzyme Xsa43E, also an arabinofuranosidase, which has been shown to cleave arabinose side chains from short segments of xylan. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 275 -350131 cd18619 GH43_CoXyl43_like Glycosyl hydrolase family 43 protein such as metagenomic beta-xylosidase/alpha-L-arabinofuranosidase CoXyl43. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the GH43_AXH-like subgroup which includes enzymes that have been characterized with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55), alpha-1,2-L-arabinofuranosidase 43A (arabinan-specific; EC 3.2.1.-), endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. Included in this subfamily is the metagenomic beta-xylosidase/alpha-L-arabinofuranosidase CoXyl43, which shows synergy with Trichoderma reesei cellulases and promotes plant biomass saccharification by degrading xylo-oligosaccharides, such as xylobiose and xylotriose, into the monosaccharide xylose. Studies show that the hydrolytic activity of CoXyl43 is stimulated in the presence of calcium. Several of these enzymes also contain carbohydrate binding modules (CBMs) that bind cellulose or xylan. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 313 -350132 cd18620 GH43_XylA-like Glycosyl hydrolase family 43-like protein such as Clostridium stercorarium alpha-L-arabinofuranosidase XylA. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the GH43_AXH-like subgroup which includes enzymes that have been characterized with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55), alpha-1,2-L-arabinofuranosidase 43A (arabinan-specific; EC 3.2.1.-), endo-alpha-L-arabinanase as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. The GH43_XylA-like subgroup includes Clostridium stercorarium alpha-L-arabinofuranosidase XylA, and enzymes that have been annotated as having beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55), endo-alpha-L-arabinanase (EC 3.2.1.-) as well as arabinoxylan arabinofuranohydrolase (AXH) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. AXHs specifically hydrolyze the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. 274 -350133 cd18621 GH32_XdINV-like glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 337 -350134 cd18622 GH32_Inu-like glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 289 -350135 cd18623 GH32_ScrB-like glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 289 -350136 cd18624 GH32_Fruct1-like glycoside hydrolase family 32 protein such as Arabidopsis thaliana cell-wall invertase 1 (AtBFruct1;Fruct1;AtcwINV1;At3g13790). This subfamily of glycosyl hydrolase family GH32 includes fructan beta-(2,1)-fructosidase and fructan 1-exohydrolase IIa (1-FEH IIa, EC 3.2.1.153), cell-wall invertase 1 (EC 3.2.1.26), sucrose:fructan 6-fructosyltransferase (6-Sst/6-Dft, EC 2.4.1.10), and levan fructosyltransferases (EC 2.4.1.-) among others. This enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 296 -350137 cd18625 GH32_BfrA-like glycoside hydrolase family 32 protein such as Thermotoga maritima invertase (BfrA or Tm1414). This subfamily of glycosyl hydrolase family GH32 includes beta-fructosidase (invertase, EC 3.2.1.26) that cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 286 -349276 cd18626 CD_eEF3 chromodomain-like insertion in an ATPase domain of elongation factor eEF3. Eukaryotic elongation factor eEF3 (also known as EF-3, YEF3, and TEF3), a member of the ATP-binding cassette (ABC) family of proteins, is a ribosomal binding ATPase essential for fungal translation machinery. Until recently it was considered fungal-specific and therefore an attractive target for antifungal therapy; however, recent bioinformatics analysis indicates it may be more widely distributed among other unicellular eukaryotes, and translation elongation factor 3 activity has been demonstrated from a non-fungal species, Phytophthora infestans. eEF3 is a soluble factor lacking a transmembrane domain and having two ABC domains arranged in tandem, with a unique chromodomain inserted within the ABC2 domain. Chromodomain mutations in the ABC2 domain of eEF3 have been shown to reduce ATPase activity, but not ribosome binding. Thus, the chromodomain-like insertion is critical to eEF3 function. In addition to its elongation function, eEF3 has been shown to interact with mRNA in a translation independent manner, suggesting an additional, non-elongation function for this factor. 56 -349277 cd18627 CD_polycomb_like chromodomain of polycomb and chromobox family proteins. CHRomatin Organization Modifier (chromo) domain of Polycomb and Polycomb-group (PcG) chromobox (CBX) family proteins such as CBX2, CBX4, CBX6, CBX7, and CBX8. These CBX proteins are components of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. 49 -349278 cd18628 CD3_cpSRP43_like chromodomain 3 of chloroplast signal recognition particle 43 kDa protein, and similar proteins. This subgroup includes the chromodomain 3 of chloroplast SRP43 (cpSRP43), and similar proteins. CpSRP43 is a component of the chloroplast signal recognition particle (SRP) pathway. It forms a stable complex with cpSRP54 (cpSRP complex) which is required for the efficient posttranslational transport of members of the nuclearly encoded light harvesting chlorophyll-a/b-binding proteins (LHCPs) to the thylakoid membrane. Chromatin organization modifier (chromo) domain is a conserved region of around 50 amino acids found in a variety of chromosomal proteins, which appear to play a role in the functional organization of the eukaryotic nucleus. Experimental evidence implicates the chromodomain in the binding activity of these proteins to methylated histone tails and maybe RNA. May occur as single instance, in a tandem arrangement or followed by a related chromo shadow domain. 51 -349279 cd18629 CD2_cpSRP43_like chromodomain 2 of chloroplast signal recognition particle 43 kDa protein, and similar proteins. This subgroup includes the chromodomain 2 of chloroplast SRP43 (cpSRP43), and similar proteins. CpSRP43 is a component of the chloroplast signal recognition particle (SRP) pathway. It forms a stable complex with cpSRP54 (cpSRP complex) which is required for the efficient posttranslational transport of members of the nuclearly encoded light harvesting chlorophyll-a/b-binding proteins (LHCPs) to the thylakoid membrane. Chromatin organization modifier (chromo) domain is a conserved region of around 50 amino acids found in a variety of chromosomal proteins, which appear to play a role in the functional organization of the eukaryotic nucleus. Experimental evidence implicates the chromodomain in the binding activity of these proteins to methylated histone tails and maybe RNA. May occur as single instance, in a tandem arrangement or followed by a related chromo shadow domain. 48 -349280 cd18630 CD_Rhino chromodomain of Drosophila melanogaster Rhino, and similar proteins. N-terminal CHRomatin Organization Modifier (chromo) domain of Drosophila melanogaster Rhino (also known as heterochromatin protein 1-like), and similar proteins. Rhino is a female-specific protein that affects chromosome structure and egg polarity that is required for germline PIWI-interacting RNA (piRNA) production. In Drosophila the RDC (rhino, deadlock, and cutoff) complex, composed of rhino, the protein deadlock (Del) and the Rai1-like transcription termination cofactor cutoff (Cuff) binds to chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is anchored to H3K9me3-marked chromatin in part via the H3K9me3-binding activity of Rhino, and is required for transcription of piRNA precursors. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 51 -349281 cd18631 CD_HP1_like chromodomain of heterochromatin protein 1 proteins, including HP1alpha, HP1beta, and HP1gamma. CHRomatin Organization Modifier (chromo) domain of mammalian HP1alpha (Cbx5), HP1beta (Cbx1), HP1gamma (Cbx5), and similar proteins. HP1 has diverse functions in heterochromatin formation and impacts both gene expression and gene silencing. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). 50 -349282 cd18632 CD_Clr4_like N-terminal chromodomain of the fission yeast histone methyltransferase Clr4, and similar proteins. N-terminal CHRomatin Organization Modifier (chromo) domain of cryptic loci regulator 4 (Clr4), a histone H3 lysine methyltransferase which targets H3K9. Clr4 regulates silencing and switching at the mating-type loci and affects chromatin structure at centromeres. Clr4 is a catalytic component of the rik1-associated E3 ubiquitin ligase complex that shows ubiquitin ligase activity and is required for histone H3K9 methylation. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting swi6/HP1 to methylated histones which leads to transcriptional silencing within centromeric heterochromatin, telomeric regions and at the silent mating-type loci. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 55 -349283 cd18633 CD_MMP8 chromodomain of M-phase phosphoprotein 8. The chromodomain of M-phase phosphoprotein 8 (MPP8), a component of the RanBPM-containing large protein complex, binds methylated H3K9. This may in turn recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promoting tumor cell motility and invasion. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 51 -349284 cd18634 CD_CDY chromodomain of the Chromodomain Y-like protein family. This group includes the chromodomain found in the mammalian chromodomain Y-like (CDY) protein family, and similar proteins. The human CDY family includes 6 proteins: the genes encoding four of these: two copies of CDY1 (CDY1a, CDY1a) and two copies of CDY2(CDY2a and CDY2b), are located on chromosome Y, and the genes encoding the other two members (CDYL and CDYL2) are located on autosomes. The chromosomal genes are only present in primates, whereas the CDYL and CDYL2 genes exist in most mammalian species. The CDY family proteins contain two functional domains: a chromodomain involved in chromatin binding and a catalytic domain found in many coenzyme A (CoA)- dependent acylation enzymes. CDYL is ubiquitously expressed, whereas CDYL2 shows selective expression in tissues of testis, prostate, spleen, and leukocyte. The CDYL genes are ubiquitously expressed, the CDY genes are only expressed in the testis. Deletion of the CDY1b gene has been shown to be a risk factor for male infertility. Impairments in CDY2 expression could be implicated in the pathogenesis of maturation arrest (a failure of germ cell development). 52 -349285 cd18635 CD_CMT3_like chromodomain of chromomethylase 3, and similar proteins. CHRomatin Organization Modifier (chromo) domain of DNA (cytosine-5)-methyltransferase chromomethylase 3 (CMT3, EC:2.1.1.37), and similar proteins. CMT3 is primarily a CHG (where H is either A, T or C) methyltransferase and is predominantly expressed in actively replicating cells. The protein is involved in preferentially methylating transposon-related sequences, reducing their mobility. Studies suggest that in order to target DNA methylation, CMT3 associates with H3K9me2-containing nucleosomes through binding of its BAH- and chromo-domains to H3K9me2. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 57 -349286 cd18636 CD_Chp1_like chromodomain of chromodomain-containing protein 1, and similar proteins. CHRomatin Organization Modifier (chromo) domain of chromodomain-containing protein 1 (CHp1), and similar proteins. Chp1 is needed for RNA interference-dependent heterochromatin formation in fission yeast. Chp1 is a member of the RNA-induced transcriptional silencing (RITS) complex which maintains the heterochromatin regions. The chromodomain of the Chp1 component binds the histone H3 lysine 9 methylated tail (H3K9me) and the core of the nucleosome. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 52 -349287 cd18637 CD_Swi6_like chromodomain of fission yeast Swi6, and similar proteins. Fission yeast Swi6 protein is a structural and functional homolog of mammalian HP1 (heterochromatin protein 1) and is involved in the chromatin structure by binding to centromeres, telomeres, and the silent mating-type locus. Swi6 contains a N-terminal chromo (CHRromatin Organization MOdifier) domain and a C-terminal chromo shadow domain (CSD). Swi6 binds histone H3 tails methylated at Lys- and the cohesion subunit Psc3, leading to silencing the genes and sister chromatid cohesion. It is also involved in the repression of the silent mating-type loci MAT2 and MAT3. Swi6 may compact MAT2/3 into a heterochromatin-like conformation which represses the transcription of these silent cassettes. chromodomains mediate the interaction of the heterochromatin with other heterochromatin proteins, thereby affecting chromatin structure (e.g. Drosophila and human heterochromatin protein (HP1) and mammalian modifier 1 and modifier 2). CSDs have only been found in proteins that also possess a chromodomain. 54 -349288 cd18638 CD_EhHp1_like chromodomain of Entamoeba histolytica heterochromatin protein 1, and similar proteins. This subgroup includes the N-terminal CHRomatin Organization Modifier (chromo) domain of heterochromatin protein 1 (HP1)-like protein from Entamoeba histolytica, and similar proteins. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 52 -349289 cd18639 CD_SUV39H1_like chromodomain of histone methyltransferase SUV39H1, and similar proteins. CHRomatin Organization Modifier (chromo) domain of human SUV39H1, a histone lysine methyltransferase (HMT) which catalyzes di- and tri-methylation of lysine 9 of histone H3 (H3K9me2/3), leading to heterochromatin formation and gene silencing. H3K9me2/3 represents a specific mark for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3, and/or CBX5) proteins to methylated histones. SUV39H1 mainly functions in heterochromatin regions. The human SUV39H1/2, histone H3K9 methyltransferases, are the mammalian homologs of Drosophila Su(var)3-9 and Schizosaccharomyces pombe Clr4. SUV39H1 contains a chromodomain at its N-terminus and a SET domain at its C-terminus. Although the SET domain performs the catalytic activity, the chromodomain of SUV39H1 is essential for the catalytic activity of SUV39H1. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 49 -349290 cd18640 CD_Chro-like chromodomain of Drosophila melanogaster chromator chromodomain protein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in chromodomain of Drosophila melanogaster chromator (also known as Chriz/Chro) chromodomain protein, and similar proteins. Chromator is a nuclear protein that plays a role in proper spindle dynamics during mitosis. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 52 -350843 cd18641 CBD_RBP1_like chromo barrel domain of retinoblastoma binding protein 1, and similar proteins. Retinoblastoma-binding protein 1 (RBP1), also termed AT-rich interaction domain 4A, is a ubiquitously expressed nuclear protein. RBP1 is a tumor and leukemia suppressor that binds both methylated histone tails and DNA, and is involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndromes. The chromo barrel domain of RBP1 has been reported to recognize histone H4K20me3 weakly, and this binding is enhanced by the simultaneous binding of DNA. RBP1 binds directly, with several other proteins, to retinoblastoma protein (pRB) which regulates cell proliferation; pRB represses transcription by recruiting RBP1. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromodomain. 59 -350844 cd18642 CBD_MOF_like chromo barrel domain of Drosophila melanogaster males-absent on the first protein, and similar proteins. This subgroup includes the chromo barrel domains found in human Tat-interactive protein 60 (TIP60, (also known as KAT5 or HTATIP), Drosophila melanogaster males-absent on the first (MOF) protein, and Saccharomyces ESA1. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. The MOF-like chromo barrels may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 67 -350845 cd18643 CBD chromo barrel domain of MOF acetyltransferase, and similar proteins. This group includes the chromo barrel domains found in human Tat-interactive protein 60 (TIP60, (also known as KAT5 or HTATIP), Drosophila melanogaster males-absent on the first (MOF) protein, human male-specific lethal (MSL) complex subunit 3 (MSL3), and retinoblastoma binding protein 1. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. The chromobarrel domains include a MOF-like subgroup which may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 61 -349291 cd18644 CD_polycomb chromodomain of polycomb. CHRomatin Organization Modifier (chromo) domain of the PcG (polycomb-group) chromodomain protein Polycomb (Pc) from Drosophila melanogaster, anthropod, worm, and sea cucumber, and similar proteins. Pc is a component of the Polycomb-group (PcG) multiprotein PRC1 complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. The core subunits of PRC1 are polycomb (Pc), polyhomeotic (Ph), posterior sex combs (Psc), and sex comb extra (Sce, also known as dRing). Polycomb (Pc) plays a role in modulating life span in flies, it negatively regulates longevity. 54 -349292 cd18645 CD_Cbx4 chromodomain of chromobox homolog 4. CHRomatin Organization Modifier (chromo) domain of chromobox homolog 4 (CBX4), a component of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. In addition to a chromodomain with H3K27me3-binding activity, Cbx4 contains two SUMO-interacting motifs responsible for its small ubiquitin-related modifier (SUMO) E3 ligase activity. CBX proteins may act as an oncogene or tumor suppressor in a cell-type-dependent manner, for example CBX8 promotes proliferation while suppressing metastasis, in colorectal carcinoma progression. CBX4 may serve as a tumor suppressor in colorectal carcinoma, and has been shown to be an oncogene in osteosarcoma and breast cancer. 55 -349293 cd18646 CD_Cbx7 chromodomain of chromobox homolog 7. CHRomatin Organization Modifier (chromo) domain of chromobox homolog 7 (CBX7), a component of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. CBX proteins may act as an oncogene or tumor suppressor in a cell-type-dependent manner, for example CBX8 promotes proliferation while suppressing metastasis, in colorectal carcinoma progression. CBX7 has been shown to function as a tumor suppressor in lung carcinoma and an oncogene in gastric cancer and lymphoma. 56 -349294 cd18647 CD_Cbx2 chromodomain of chromobox homolog 2. CHRomatin Organization Modifier (chromo) domain of chromobox homolog 2 (CBX2), a component of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. 53 -349295 cd18648 CD_Cbx6 chromodomain of chromobox homolog 6. CHRomatin Organization Modifier (chromo) domain of chromobox homolog 6 (CBX6), a component of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. 58 -349296 cd18649 CD_Cbx8 chromodomain of chromobox homolog 8. CHRomatin Organization Modifier (chromo) domain of chromobox homolog 8 (CBX8), a component of the PcG repressive complex PRC1, one of the two classes of PRCs. PcG proteins form large multiprotein complexes (PcG bodies) which are involved in the stable repression of genes involved in development, signaling or cancer via chromatin-based epigenetic modifications. Mammalian PRC1 includes canonical (cPRC1) and non-canonical complexes; cPRC1, contains four core subunits including one CBX protein (CBX2, CBX4, and CBX6-CBX8) that binds H3K27me3. CBX family members have different affinity for H3K27me3, with CBX7 having the highest binding capability. The human CBX proteins show distinct nuclear localizations and contribute differently to transcriptional repression. Some CBX proteins of the PRC1 complex have been implicated in transcriptional activation as well as in PRC1-independent roles in embryonic stem cells and in somatic cells. CBX proteins may act as an oncogene or tumor suppressor in a cell-type-dependent manner, CBX8 for example promotes proliferation while suppressing metastasis, in colorectal carcinoma progression. 55 -349297 cd18650 CD_HP1beta_Cbx1 chromodomain of heterochromatin protein 1 homolog beta. CHRomatin Organization Modifier (chromo) domain of heterochromatin protein 1 homolog beta (also known as HP1beta, CBX1, and chromobox 1), and related proteins. HP1beta is a highly conserved non-histone protein, which is a member of the heterochromatin protein family, and is enriched in the heterochromatin and associated with centromeres. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta, and HP1gamma (also known as Cbx3). 50 -349298 cd18651 CD_HP1alpha_Cbx5 chromodomain of heterochromatin protein 1 homolog alpha. CHRomatin Organization Modifier (chromo) domain of heterochromatin protein 1 homolog alpha (also known as HP1alpha, Cbx5, and Chromobox 5), and related proteins. HP1alpha has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha, HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). 50 -349299 cd18652 CD_HP1gamma_Cbx3 chromodomain of heterochromatin protein 1 homolog gamma. CHRomatin Organization Modifier (chromo) domain of heterochromatin protein 1 homolog gamma (also known as HP1gamma, Cbx3, and Chromobox 3), and related proteins. HP1gamma is a highly conserved non-histone protein, which is a member of the heterochromatin protein family, and is enriched in the heterochromatin and associated with centromeres. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. In addition to being involved in transcriptional silencing in heterochromatin-like complexes, HP1gamma also binds lamin B receptor, an integral membrane protein found in the inner nuclear membrane. The dual binding functions of the protein may explain the association of heterochromatin with the inner nuclear membrane. HP1gamma is also recruited to sites of ultraviolet-induced DNA damage and double-strand breaks. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma. 50 -349300 cd18653 CD_HP1a_insect chromodomain of insect HP1a. CHRomatin Organization Modifier (chromo) domain of insect HP1a. HP1a is a member of the heterochromatin protein family, and is enriched in the heterochromatin and associated with centromeres. HP1 has diverse functions in heterochromatin formation and impacts both gene expression and gene silencing. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. In Drosophila, there are at least five HP1 family proteins, this subgroup includes the CD of Drosophila melanogaster HP1a. 50 -349301 cd18654 CSD_HP1beta_Cbx1 chromo shadow domain of heterochromatin protein 1 homolog beta. heterochromatin protein 1 homolog beta (also known as HP1beta, Cbx1, chromobox 1) is a highly conserved non-histone protein, which is a member of the heterochromatin protein family, and is enriched in the heterochromatin and associated with centromeres. HP1beta has a single N-terminal chromodomain which can bind to histone proteins via methylated lysine residues, and a C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1beta may play an important role in the epigenetic control of chromatin structure and gene expression. CSD domains have only been found in proteins that also possess a related chromodomain, while chromodomains can exist in isolation. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta, and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3 58 -349302 cd18655 CSD_HP1alpha_Cbx5 chromo shadow domain of heterochromatin protein 1 homolog alpha. Chromo shadow domain (CSD) of heterochromatin protein 1 homolog alpha (also known as HP1alpha, Cbx5, and Chromobox 5), and related proteins. HP1alpha has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. CSD domains have only been found in proteins that also possess a related chromodomain, while chromodomains can exist in isolation. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha, HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 58 -349303 cd18656 CSD_HP1gamma_Cbx3 chromo shadow domain of heterochromatin protein 1 gamma homolog gamma. Chromo shadow domain (CSD) of heterochromatin protein 1 gamma homolog gamma (also known as HP1gamma, Cbx3, Chromobox 3), and related proteins. HP1gamma appears to be involved in transcriptional silencing in heterochromatin-like complexes. It binds histone H3 tails methylated at Lys-9, leading to epigenetic repression, and also binds lamin B receptor, an integral membrane protein found in the inner nuclear membrane. The dual binding functions of the protein may explain the association of heterochromatin with the inner nuclear membrane. HP1gamma is also recruited to sites of ultraviolet-induced DNA damage and double-strand breaks. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal CSD which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. CSD domains have only been found in proteins that also possess a related chromodomain, while chromodomains can exist in isolation. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma. The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 58 -349304 cd18657 CSD_Swi6 chromo shadow domain of chromatin-associated protein Swi6. Chromo shadow domain (CSD) of fission yeast Swi6 protein. Swi6 is a structural and functional homolog of mammalian HP1 (heterochromatin protein 1) and is involved in the chromatin structure by binding to centromere, telomere and silent mating-type locus. Swi6 contains a N-terminal chromo (CHRromatin Organization MOdifier) domain and a C-terminal chromo shadow domain (CSD). Swi6 binds histone H3 tails methylated at Lys- and the cohesion subunit Psc3, leading to silencing the genes and sister chromatid cohesion. It is also involved in the repression of the silent mating-type loci MAT2 and MAT3. Swi6 may compact MAT2/3 into a heterochromatin-like conformation which represses the transcription of these silent cassettes. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. 55 -349305 cd18658 CSD_HP1a_insect chromo shadow domain of insect heterochromatin protein 1a. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal CSD which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. In Drosophila, there are at least five HP1 family proteins, this subgroup includes the CSD of Drosophila melanogaster HP1a. 53 -349306 cd18659 CD2_tandem repeat 2 of paired tandem chromodomains. Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 to CHD9, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 54 -349307 cd18660 CD1_tandem repeat 1 of paired tandem chromodomains. Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 to CHD9, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 70 -349308 cd18661 CD2_tandem_CHD1-2_like repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 1 and 2, and similar proteins. Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 and CHD2. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 58 -349309 cd18662 CD2_tandem_CHD3-4_like repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins. Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4, and yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 55 -349310 cd18663 CD2_tandem_CHD5-9_like repeat 2 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, and similar proteins. Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD5, CHD6, CHD7, CHD8, and CHD9. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. CHD6, CHD7, and CHD8 enzymes have been demonstrated to have different substrate specificities and remodeling activities. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 59 -349311 cd18664 CD2_tandem_ScCHD1_like repeat 2 of the paired tandem chromodomains of yeast chromodomain helicase DNA-binding protein 1, and similar proteins. Repeat 2 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 59 -349312 cd18665 CD1_tandem_CHD1_yeast_like repeat 1 of the paired tandem chromodomains of yeast chromodomain helicase DNA-binding protein 1, and similar proteins. Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as yeast protein CHD1. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 65 -349313 cd18666 CD1_tandem_CHD1-2_like repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 1 and 2, and similar proteins. Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD1 and CHD2. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 85 -349314 cd18667 CD1_tandem_CHD3-4_like repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 3 and 4, and similar proteins. Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD3 and CHD4. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. Human CHD3 (also named Mi-2 alpha) and CHD4 (also named Mi-2 beta) are coexpressed in many cell lines and tissues and may act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). The proteins form distinct CHD3- and CHD4-NuRD complexes that repress, as well as activate gene transcription of overlapping and specific target genes. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 79 -349315 cd18668 CD1_tandem_CHD5-9_like repeat 1 of the paired tandem chromodomains of chromodomain helicase DNA-binding protein 5-9, and similar proteins. Repeat 1 of tandem CHRomatin Organization Modifier (chromo) domains, found in CHD (chromodomain helicase DNA-binding) proteins such as mammalian helicase DNA-binding proteins CHD5, CHD6, CHD7, CHD8, and CHD9. The CHD proteins belong to the SNF2 superfamily of ATP-dependent chromatin remodelers and contain two signature motifs: a pair of chromodomains located in the N-terminal region, and the SNF2-like ATPase domain located in the central region of the protein. CHD chromatin remodelers are important regulators of transcription and play critical roles during developmental processes. The N-terminal chromodomains of CHD1 have been shown to guard against sliding hexasomes. Mutations in the chromodomains of mouse CHD1 result in nuclear redistribution, suggesting that the chromodomain is essential for proper association with chromatin; also, deletion of the chromodomains in the Drosophila melanogaster CHD3-4 homolog impaired nucleosome binding, mobilization, and ATPase functions. CHD6, CHD7, and CHD8 enzymes have been demonstrated to have different substrate specificities and remodeling activities. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 68 -349948 cd18669 M20_18_42 M20, M18 and M42 Zn-peptidases include aminopeptidases and carboxypeptidases. This family corresponds to the MEROPS MH clan families M18, M20, and M42. The peptidase M20 family contains exopeptidases, including carboxypeptidases such as the glutamate carboxypeptidase from Pseudomonas, the thermostable carboxypeptidase Ss1 of broad specificity from archaea and yeast Gly-X carboxypeptidase, dipeptidases such as bacterial dipeptidase, peptidase V (PepV), a eukaryotic, non-specific dipeptidase, and two Xaa-His dipeptidases (carnosinases). This family also includes the bacterial aminopeptidase peptidase T (PepT) that acts only on tripeptide substrates and has therefore been termed a tripeptidase. These peptidases generally hydrolyze the late products of protein degradation so as to complete the conversion of proteins to free amino acids. Glutamate carboxypeptidase hydrolyzes folate analogs such as methotrexate, and therefore can be used to treat methotrexate toxicity. Peptidase families M18 and M42 contain metallo-aminopeptidases. M18 (aspartyl aminopeptidase, DAP) family cleaves only unblocked N-terminal acidic amino-acid residues and is highly selective for hydrolyzing aspartate or glutamate residues. Some M42 (also known as glutamyl aminopeptidase) enzymes exhibit aminopeptidase specificity while others also have acylaminoacyl-peptidase activity (i.e. hydrolysis of acylated N-terminal residues). 198 -350850 cd18670 PIN_Mut7-C-like PIN domain at the C-terminus of Caenorhabditis elegans exonuclease Mut-7 and related domains. The Mut7-C-like family of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog). Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The Mut7-C PIN domain family is recognized as a genuine PIN domain, however it is not included it in the CDD PIN domain superfamily hierarchical model as it is lacks a core strand and helix (H3 and S3). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap Endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. Matelska et al. recently classified PIN-like domains into distinct groups, this family includes some sequences belonging to two of these, PIN _10 and PIN_16. 65 -350238 cd18671 PIN_PRORP-Zc3h12a-like PIN domain of protein-only RNase P (PRORP), ribonuclease Zc3h12a, and related proteins. PRORPs catalyze the maturation of the 5' end of precursor tRNAs in eukaryotes. This family includes human PRORP, also known as proteinaceous RNase P and mitochondrial RNase P protein subunit 3 (MRPP3), and Arabidopsis thaliana PRORP1-3, PRORP1 localizes to the chloroplast and the mitochondria, and PRORP2 and PRORP3 localize to the nucleus. Zc3h12a (zinc finger CCCH-type containing 12A, also known as MCPIP1/MCP induced protein 1 and Regnase-1) is a critical regulator of inflammatory response, with additional roles in defense against viruses and various stresses, cellular differentiation, and apoptosis. This PIN_PRORP-Zc3h12a-like family also includes Caenorhabditis elegans REGE-1 (REGnasE-1), which also functions as a cytoplasmic endonuclease. Additionally, it includes three less-studied mammalian homologs: Zc3h12b-d/Regnase-2-4, as well as N4BP1 (NEDD4-binding partner-1), NYNRIN (NYN domain and retroviral integrase containing, also known as CGIN1/Cousin of GIN1), and KHNYN (KH and NYN domain containing) protein. N4BP1, CGIN1, and KHNYN proteins are probably of retroviral origin. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350239 cd18672 PIN_FAM120B-like FEN-like PIN domains of FAM120B (family with sequence similarity 120B) and related proteins. FAM120B (also known as CCPG, "constitutive coactivator of PPAR-gamma", PGCC1, "PPARgamma constitutive coactivator 1") is a constitutive coactivator of peroxisome proliferator-activated receptor (PPARgamma) that promotes adipogenesis in a PPARgamma-dependent manner. This subfamily belongs to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), the helical arch/clamp region is involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 210 -350240 cd18673 PIN_XRN1-2-like FEN-like PIN domains of XRN1, XRN2, and related proteins. XRN1 (5'-3' exoribonuclease 1, also known as SEP1) is a processive 5'-3' exoribonuclease that degrades the body of transcripts in the major pathway of RNA decay; XRN2 (5'-3' exoribonuclease 2) is predominantly localized in the nucleus and recognizes single-stranded RNAs with a 5'-terminal monophosphate to degrade them possessively to mononucleotides. XRN2 has a critical function to process maturation of 5.8S and 25S/28S rRNAs as well as degradation of some spacer fragments that are excised during rRNA maturation. Both XRN1 and XRN2 preferentially cleave 5'-monophosphorylated RNA. XRN2 is also known as Rat1p in yeast. This subfamily belongs to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), the helical arch/clamp region is involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 240 -350241 cd18674 PIN_Pox_G5 FEN-like PIN domain of vaccinia virus G5 protein and related proteins. Poxvirus G5 nuclease is involved in DNA replication and double-strand break repair by homologous recombination. This subfamily belongs to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), the helical arch/clamp region is involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 151 -350242 cd18675 PIN_SpAst1-like FEN-like PIN domain of Schizosaccharomyces pombe asteroid homolog 1 and related proteins. Schizosaccharomyces pombe Ast1 is a homologue of Drosophila Asteroid and human ASTE1. Ast1 appears to be involved in mounting a checkpoint response to endogenous damage in cells lacking Rad2 and Exo1. This subfamily belongs to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), the helical arch/clamp region is involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 163 -350243 cd18676 PIN_asteroid-like FEN-like PIN domain of Drosophila melanogaster asteroid and related proteins. This subfamily includes Drosophila melanogaster asteroid protein which may function in EGF receptor signaling, and may play a role in compound eye morphogenesis. This subfamily belongs to the structure-specific, 5' nuclease family (FEN-like) that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. Canonical members of the FEN-like family possess a PIN domain with a two-helical structure insert (also known as the helical arch, helical clamp or I domain) of variable length (approximately 16 to 800 residues), the helical arch/clamp region is involved in DNA binding. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 164 -350244 cd18677 PIN_MjVapC2-VapC6_like VapC-like PIN domain of Methanocaldococcus jannaschii VapC2, and VapC6, and related proteins. This subfamily includes Methanocaldococcus jannaschii VapC2 and VapC6. It belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 136 -350245 cd18678 PIN_MtVapC25_VapC33-like VapC-like PIN domain of Mycobacterium tuberculosis VapC25, VapC33, and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC25, VapC29, VapC33, VapC37, and VapC39 toxins. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 140 -350246 cd18679 PIN_VapC-Af1683-like VapC-like PIN domain of VapC ribonuclease similar to Archaeoglobus fulgidus uncharacterized Af1683 protein. Uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350247 cd18680 PIN_MtVapC20-like VapC-like PIN domain of Mycobacterium tuberculosis VapC20 and related proteins. M. tuberculosis VapC20 inhibits translation by site-specific cleavage of the universally conserved Sarcin-Ricin loop in 23S rRNA. This subfamily belongs to the VapC (virulence-associated protein C)-like nuclease family of the PIN domain-like superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. 131 -350248 cd18681 PIN_MtVapC27-VapC40_like VapC-like PIN domain of Mycobacterium tuberculosis VapC27, and VapC40, and related proteins. This subfamily includes Mycobacterium tuberculosis VapC27 and VapC40. It belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350249 cd18682 PIN_VapC-like Uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 118 -350250 cd18683 PIN_VapC-like Uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 125 -350251 cd18684 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 131 -350252 cd18685 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains and included distant subgroups, this subgroup includes some sequences belonging to one of these, PIN_14. 110 -350253 cd18686 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 119 -350254 cd18687 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_3. 118 -350255 cd18688 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 134 -350256 cd18689 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 125 -350257 cd18690 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_12. 134 -350258 cd18691 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 130 -350259 cd18692 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350260 cd18693 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_22. 129 -350261 cd18694 PIN_VapC-like uncharacterized subfamily of the VapC-like nuclease family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_24. 133 -350262 cd18695 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_13. 118 -350263 cd18696 PIN_MtVapC26-like VapC-like PIN domain of Mycobacterium tuberculosis VapC26 and related proteins. Mycobacterium tuberculosis VapC26 cleaves 23S rRNA in the Sarcin-Ricin Loop, it is inhibited by the cognate VapB26 antitoxin. This subfamily belongs to the VapC (virulence-associated protein C)-like nuclease family of the PIN domain-like superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 132 -350264 cd18697 PIN_VapC_N-like VapC-like N-terminal PIN (DUF4935) domain of DUF4935 domain-containing proteins and related proteins. This subgroup the includes N-terminal PIN domain of DUF4935 domain-containing proteins, and is an uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 183 -350265 cd18698 PIN_VapC_C-like VapC-like C-terminus of DUF1308 domain in DUF1308 domain-containing proteins and related proteins. This subfamily includes the C-terminus of DUF1308 domain in DUF1308 domain-containing proteins, and is an uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 138 -350266 cd18699 PIN_VapC_like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_15. 129 -350267 cd18700 PIN_GNAT-like VapC-like PIN domain of uncharacterized GNAT family proteins. This subfamily includes uncharacterized GNAT family proteins having an N-terminal GNAT family N-acetyltransferase domain. This subgroup belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_17. 137 -350268 cd18701 PIN_VapC_like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_18. 144 -350269 cd18702 PIN_VapC_like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_19 139 -350270 cd18703 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_20. 148 -350271 cd18704 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_21. 145 -350272 cd18705 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_23. 130 -350273 cd18706 PIN_STKc_like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily; includes the PIN domains of uncharacterized serine/threonine kinases. This subfamily includes the PIN domains of some uncharacterized proteins having serine/threonine kinase catalytic domains and annotated as serine/threonine kinases. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_25. 126 -350274 cd18707 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_26. 131 -350275 cd18708 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_28. 116 -350276 cd18709 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_4-1. 196 -350277 cd18710 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_4-2. 130 -350278 cd18711 PIN_VapC-like_DUF411 VapC-like PIN (DUF411) domain in DUF411 domain-containing proteins and related proteins. This subfamily includes the DUF411 PIN domain in proteins annotated as DUF411 domain-containing proteins. It is an uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 146 -350279 cd18712 PIN_VapC-like_DUF411 CapC-like PIN (DUF411) domain in DUF411 domain-containing proteins and related proteins. This subfamily includes the DUF411 PIN domain in proteins annotated as DUF411 domain-containing proteins. It is an uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 148 -350280 cd18713 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_27. 140 -350281 cd18714 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_8. 228 -350282 cd18715 PIN_VapC-like uncharacterized subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 125 -350283 cd18716 PIN_SSO1118-like VapC-like PIN domain of Sulfolobus solfataricus SSO1118 and related proteins. This subfamily includes the functionally uncharacterized protein SSO1118 from the hyperthermophilic archaeon Sulfolobus solfataricus P2. This subfamily belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 102 -350284 cd18717 PIN_ScNmd4p-like VapC-like PIN domain of Saccharomyces cerevisiae Nmd4p and related proteins. Saccharomyces cerevisiae Nmd4p may be involved in nonsense-mediated mRNA decay. This subfamily belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 150 -350285 cd18718 PIN_PRORP PIN domain of protein-only RNase P (PRORP) and related proteins. PRORPs catalyze the maturation of the 5' end of precursor tRNAs in eukaryotes. This family includes human PRORP, also known as proteinaceous RNase P and mitochondrial RNase P protein subunit 3 (MRPP3), and Arabidopsis thaliana PRORP1-3, PRORP1 localizes to the chloroplast and the mitochondria, and PRORP2 and PRORP3 localize to the nucleus. This subfamily belongs to the PRORP-Zc3h12a-like PIN family which in addition includes Zc3h12a (also known as MCPIP1/MCP induced protein 1 and Regnase-1), Caenorhabditis elegans REGE-1 (REGnasE-1), Zc3h12b-d (also known as Regnase-2-4), N4BP1, and NYNRIN (also known as CGIN1). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 124 -350286 cd18719 PIN_Zc3h12a-N4BP1-like PRORP-like PIN domain of ribonuclease Zc3h12a, NEDD4-binding partner-1, and related proteins. Zc3h12a (zinc finger CCCH-type containing 12A, also known as MCPIP1/MCP induced protein 1 and Regnase-1) is a critical regulator of inflammatory response, with additional roles in defense against viruses and various stresses, cellular differentiation, and apoptosis. This subfamily also includes Caenorhabditis elegans REGE-1 (REGnasE-1), which also functions as a cytoplasmic endonuclease. Additionally, it includes three less-studied mammalian homologs: Zc3h12b-d/Regnase-2-4, as well as N4BP1 (NEDD4-binding partner-1), NYNRIN (NYN domain and retroviral integrase containing, also known as CGIN1/Cousin of GIN1), and KHNYN (KH and NYN domain containing) protein. N4BP1, CGIN1, and KHNYN proteins are probably of retroviral origin. This subfamily belongs to the PRORP-Zc3h12a-like PIN family which in addition includes human PRORP, also known as proteinaceous RNase P and mitochondrial RNase P protein subunit 3 (MRPP3), and Arabidopsis thaliana PRORP1-3. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350287 cd18720 PIN_YqxD-like LabA-like PIN domain of uncharacterized Bacillus subtilis YqxD and related proteins. This subfamily includes the PIN domain of uncharacterized Bacillus subtilis YqxD (also known as YqfM) and Escherichia coli YaiI. Firmicute, such as Bacillus and Listeria, YqxD proteins are encoded within RNA polymerase major sigma43 operons, whereas E. coli YaiL is transcribed as a mono cistron. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 96 -350288 cd18721 PIN_ZNF451-like LabA-like PIN domain of human zinc finger protein 451 and related proteins. Human ZNF451 (also known as COASTER) functions as a transcriptional cofactor in promyelocytic leukemia bodies in the nucleus, it acts as a coactivator or corepressor, depending on the factors with which it interacts. ZNF451 interacts with p300 by the PIN-like domain and down regulates TGF-beta signaling in a p300-dependent and sumoylation-independent manner. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_11. 117 -350289 cd18722 PIN_NicB-like LabA-like PIN domain of Pseudomonas putida S16 NicB and related proteins. Curiously NicB from Pseudomonas putida S16 is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine. This subfamily also includes the uncharacterized CPP15 (plasmid) protein from Campylobacter jejuni. This subfamily belongs to LabA-like PIN domain family which includes Synechococcus elongatus PCC 7942 LabA, human ZNF451, uncharacterized Bacillus subtilis YqxD and Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously, a gene labeled NicB from Pseudomonas putida S16, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into the LabA-like PIN family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 117 -350290 cd18723 PIN_LabA-like uncharacterized subfamily of the LabA-like PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing, it is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system, and appears to be necessary for KaiC-dependent repression of gene expression. It also includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes, human ZNF451, uncharacterized Bacillus subtilis YqxD, uncharacterized Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously Pseudomonas putida S16 NicB, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_7. 110 -350291 cd18724 PIN_LabA-like uncharacterized subfamily of the LabA-like PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing, it is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system, and appears to be necessary for KaiC-dependent repression of gene expression. It also includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes, human ZNF451, uncharacterized Bacillus subtilis YqxD, uncharacterized Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously Pseudomonas putida S16 NicB, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 172 -350292 cd18725 PIN_LabA-like uncharacterized subfamily of the LabA-like PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing, it is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system, and appears to be necessary for KaiC-dependent repression of gene expression. It also includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes, human ZNF451, uncharacterized Bacillus subtilis YqxD, uncharacterized Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously Pseudomonas putida S16 NicB, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 131 -350293 cd18726 PIN_LabA-like uncharacterized subfamily of the LabA-like PIN domain of Synechococcus elongatus LabA (low-amplitude and bright) and related proteins. The LabA-like PIN domain family includes Synechococcus elongatus PCC 7942 LabA which participates in cyanobacterial circadian timing, it is required for negative feedback regulation of the autokinase/autophosphatase KaiC, a central component of the circadian clock system, and appears to be necessary for KaiC-dependent repression of gene expression. It also includes the N-terminal domain of limkain b1, a human autoantigen localized to a subset of ABCD3 and PXF marked peroxisomes, human ZNF451, uncharacterized Bacillus subtilis YqxD, uncharacterized Escherichia coli YaiI, and the N-terminal domain of a well-conserved group of mainly bacterial proteins with no defined function, which contain a C-terminal LabA_like_C domain. Curiously Pseudomonas putida S16 NicB, which is described as a putative NADH-dependent hydroxylase involved in the microbial degradation of nicotine also falls into this family. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 113 -350294 cd18727 PIN_Swt1-like VapC-like PIN domain of Saccharomyces cerevisiae Swt1p, human SWT1 and related proteins. Saccharomyces cerevisiae mRNA-processing endoribonuclease Swt1p plays an important role in quality control of nuclear mRNPs in eukaryotes. Human transcriptional protein SWT1 (RNA endoribonuclease homolog, also known as HsSwt1, C1orf26, and chromosome 1 open reading frame 26) is an RNA endonuclease that participates in quality control of nuclear mRNPs and can associate with the nuclear pore complex (NPC). This subfamily belongs to the Smg5 and Smg6-like PIN domain family. Smg5 and Smg6 are essential factors in NMD, a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal-ion dependent, degradation of single-stranded RNA, in vitro. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. 141 -350295 cd18728 PIN_N4BP1-like PRORP-like PIN domain of NEDD4 binding protein 1 and related proteins. NEDD4-binding partner-1 (N4BP1) interacts with and is a substrate of NEDD4 ubiquitin ligase (neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase). It is also an inhibitor of the E3 ubiquitin-protein ligase ITCH, a NEDD4 structurally related E3. This subfamily additionally includes NYNRIN (NYN domain and retroviral integrase containing, also known as CGIN1/Cousin of GIN1), and KHNYN (KH and NYN domain containing) protein. N4BP1, CGIN1, and KHNYN proteins are probably of retroviral origin. This subfamily belongs to the Zc3h12a-N4BP1-like PIN subfamily of the PRORP-Zc3h12a-like PIN family, the latter of which additionally includes human PRORP, also known as proteinaceous RNase P and mitochondrial RNase P protein subunit 3 (MRPP3), and Arabidopsis thaliana PRORP1-3. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350296 cd18729 PIN_Zc3h12-like PRORP-like PIN domain of ribonuclease Zc3h12a and related proteins. Zc3h12a (zinc finger CCCH-type containing 12A, also known as MCPIP1/MCP induced protein 1 and Regnase-1) is a critical regulator of inflammatory response, with additional roles in defense against viruses and various stresses, cellular differentiation, and apoptosis. This subfamily also includes three less-studied mammalian homologs: Zc3h12b-d/Regnase-2-4. It belongs to the Zc3h12a-N4BP1-like PIN subfamily of the PRORP-Zc3h12a-like PIN family, the latter of which additionally includes human PRORP, also known as proteinaceous RNase P and mitochondrial RNase P protein subunit 3 (MRPP3), and Arabidopsis thaliana PRORP1-3. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 131 -350297 cd18730 PIN_PH0500-like VapC-like PIN-domain of Pyrococcus horikoshii protein PH0500 and related proteins. This subfamily includes Pyrococcus horikoshii protein PH0500, a protein with possible exonuclease activity and involvement in DNA or RNA editing. This subfamily belongs to the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350298 cd18731 PIN_NgFitB-like VapC-like PIN domain of Neisseria gonorrhoeae FitB and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Neisseria gonorrhoeae FitB toxin of the FitAB toxin/antitoxin (TA) system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. In N. gonorrhoeae, FitA and FitB form a heterodimer: FitA is the DNA binding subunit and FitB contains a ribonuclease activity that is blocked by the presence of FitA. A tetramer of FitAB heterodimers binds DNA from the fitAB upstream promoter region with high affinity. This results in both sequestration of FitAB and repression of fitAB transcription. It is thought that FitAB release from the DNA and subsequent dissociation both slows N. gonorrhoeae replication and transcytosis by an as yet undefined mechanism. The toxin M. tuberculosis VapC is a structural homolog of N. gonorrhoeae FitB, but their antitoxin partners, VapB and FitA, respectively, differ structurally. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 136 -350299 cd18732 PIN_MtVapC4-C5_like VapC-like PIN domain of Mycobacterium tuberculosis VapC4, VapC5, and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 toxin of the VapBC toxin/antitoxin (TA) system. This family belongs to the PIN_VapC4-5_FitB-like subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. M. tuberculosis VapC4 interacts with, and cleaves tRNA44Cys-GCA. M. tuberculosis VapC5 has endonucleolytic activity with RNA, this activity is low with dsRNA, and no activity has been demonstrated on dsDNA. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 124 -350300 cd18733 PIN_RfVapC1-like VapC-like PIN domain of Rickettsia felis VapC1 and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Rickettsia felis VapC1, a ribonuclease toxin of the VapBC toxin/antitoxin (TA) system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC TA systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 131 -350301 cd18734 PIN_RfVapC2-like VapC-like PIN domain of Rickettsia felis VapC2 and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Rickettsia felis VapC2, a ribonuclease toxin of the VapBC toxin/antitoxin (TA) system. Rickettsia felis VapC2 cleaves single-stranded RNA. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC TA systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350302 cd18735 PIN_HiVapC1-like VapC-like PIN domain of Haemophilus influenzae VapC1 and related proteins. Haemophilus influenzae VapC1 has endonucleolytic activity with RNA, it cleaves initiator tRNA between the anticodon stem and loop, but does not cleave mRNA, rRNA or tmRNA, and has no activity on ssDNA or dsDNA. This subfamily belongs to the PIN_VapC4-5_FitB-like subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC TA systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. FitB is a toxin of the FitAB TA system. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350303 cd18736 PIN_CcVapC1-like VapC-like PIN domain of Caulobacter Crescentus VapC1-like and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Caulobacter Crescentus VapC1, a ribonuclease toxin of the VapBC toxin/antitoxin (TA) system. This subfamily belongs to the PIN_VapC4-5_FitB-like subfamily of the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC TA systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. FitB is a toxin of the FitAB TA system. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 123 -350304 cd18737 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 115 -350305 cd18738 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 118 -350306 cd18739 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 124 -350307 cd18740 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350308 cd18741 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 120 -350309 cd18742 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350310 cd18743 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350311 cd18744 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350312 cd18745 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 130 -350313 cd18746 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 133 -350314 cd18747 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 132 -350315 cd18748 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350316 cd18749 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350317 cd18750 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350318 cd18751 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 133 -350319 cd18752 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 130 -350320 cd18753 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 123 -350321 cd18754 PIN_VapC4-5_FitB-like uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350322 cd18755 PIN_MtVapC3_VapC21-like VapC-like PIN domain of Mycobacterium tuberculosis VapC3, VapC21 and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC3 and VapC21 toxins. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350323 cd18756 PIN_MtVapC15-VapC11-like VapC-like PIN domain of Mycobacterium tuberculosis VapC11, VapC15, and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC11 and VapC15 toxins. M. tuberculosis VapC11 and VapC15 cleave tRNA3 Leu-CAG, VapC11 may additionally cleave tRNA13Leu-GAG and tRNA10Gln-CTG. This subgroup belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350324 cd18757 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350325 cd18758 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350326 cd18759 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350327 cd18760 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350328 cd18761 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 127 -350329 cd18762 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 130 -350330 cd18763 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 128 -350331 cd18764 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 129 -350332 cd18765 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 131 -350333 cd18766 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 130 -350334 cd18767 PIN_MtVapC3-like uncharacterized subgroup of the VapC3-like nuclease subfamily of the PIN domain superfamily. The VapC3-like nuclease subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of various Mycobacterium tuberculosis VapC toxins including VapC3, VapC11, VapC15, VapC21, VapC25, VapC28, VapC29, VapC30, VapC32, VapC33, VapC37, and VapC39. It belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is a PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members, additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 126 -350335 cd18768 PIN_MtVapC4-C5-like VapC-like PIN domain of Mycobacterium tuberculosis VapC4, VapC5, and related proteins. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 toxin of the VapBC toxin/antitoxin (TA) system. This family belongs to the PIN_VapC4-5_FitB-like subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. M. tuberculosis VapC4 interacts with, and cleaves tRNA44Cys-GCA. M. tuberculosis VapC5 has endonucleolytic activity with RNA, this activity is low with dsRNA, and no activity has been demonstrated on dsDNA. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 123 -350851 cd18769 PIN_Mut7-C-like uncharacterized subgroup of the Mut7-C-like family of the PIN domain superfamily. The Mut7-C-like family of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog). Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The Mut7-C PIN domain family is recognized as a genuine PIN domain, however it not included it in the CDD PIN domain superfamily hierarchical model as it is lacks a core strand and helix (H3 and S3). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_10. 85 -350852 cd18770 PIN_Mut7-C-like uncharacterized subgroup of the Mut7-C-like family of the PIN domain superfamily. The Mut7-C-like family of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog) Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The Mut7-C PIN domain family is recognized as a genuine PIN domain, however it is not included it in the CDD PIN domain superfamily hierarchical model as it is lacks a core strand and helix (H3 and S3). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. Matelska et al. recently classified PIN-like domains into distinct groups; this subgroup includes some sequences belonging to one of these, PIN_16. 80 -350853 cd18771 PIN_Mut7-C-like uncharacterized subgroup of the Mut7-C-like family of the PIN domain superfamily. The Mut7-C-like family of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog). Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The Mut7-C PIN domain family is recognized as a genuine PIN domain, however it is not included it in the CDD PIN domain superfamily hierarchical model as it is lacks a core strand and helix (H3 and S3). The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. 62 -350854 cd18772 PIN_Mut7-C-like Mut7-C-like family of the PIN domain superfamily similar to the PIN domain found at the C-terminus of Caenorhabditis elegans exonuclease Mut-7 and related proteins. This Mut7-C-like subgroup of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog). Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. 81 -350341 cd18773 PDC1_HK_sensor first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins, diguanylate-cyclase and similar domains. Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. 125 -350342 cd18774 PDC2_HK_sensor second PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins, diguanylate-cyclase and similar domains. Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. 89 -350651 cd18775 SafA-like Saf-pilin pilus formation protein SafA. This subfamily is composed of Saf-pilin pilus formation protein SafA from Salmonella enterica and similar proteins. SafA is the major subunit of Saf pili, which are often found in clinical isolates of Salmonella and are assembled by the chaperone-usher secretion pathway. In addition to safA, the saf operon is also composed of safB (periplasmic chaperone), safC (outer membrane usher), and safD (minor subunit). SafA and SafD subunits are transported from the cytoplasm into the periplasm via the SEC machinery, and the periplasmic chaperone SafB donates its G1 strand to complete the correct folding of SafA or SafD. In Saf pili assembly, the N-terminal extension (NTE) of an incoming SafA replaces the G1 strand (in SafB) via a zip-in-zip-out mechanism (also called donor-strand complementation or exchange) to form the polymer of SafD-(SafA)n (n > 100). 122 -350652 cd18776 AfaD-like AfaD and similar proteins. This subfamily consists of Escherichia coli AfaD, Salmonella SafD, and similar proteins. The afa gene clusters encode an afimbrial adhesive sheath produced by Escherichia coli. The adhesive sheath is composed of two proteins, AfaD and AfaE, which are independently exposed at the bacterial cell surface. AfaE is required for bacterial adhesion to HeLa cells and AfaD for the uptake of adherent bacteria into these cells. SafD is the minor subunit of Saf pili, which are often found in clinical isolates of Salmonella and are assembled by the chaperone-usher secretion pathway. In addition to safD, the saf operon is also composed of safA (major subunit), safB (periplasmic chaperone), and safC (outer membrane usher). Also included is the enteroaggregative Escherichia coli AAF/IV pilus tip protein, which is implicated in adhesion as well. During fimbria/pili assembly, polymerization occurs when the N-terminal extension (NTE) of one monomer is inserted into an adjacent monomer, providing the final beta strand or G-strand, to complete the Ig-like fold, in a mechanism called the donor-strand complementation (DSC) or donor-strand exchange (DSE). 118 -350653 cd18777 PsaA_MyfA Fimbrial subunit PsaA, MyfA, and similar proteins. This subfamily is composed of Yersinia pestis PsaA, Yersinia enterocolitica MyfA, and similar proteins. PsaA and MyfA are the major subunits of pH 6 antigen (Psa) and Myf fimbrial homopolymers. Psa and Myf specifically recognize beta1-3- or beta1-4-linked galactose in glycosphingolipids, but while Psa also binds phosphatidylcholine, Myf does not. Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells. Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells. During fimbria/pili assembly, polymerization occurs when the N-terminal extension (NTE) of one monomer is inserted into an adjacent monomer, providing the final beta strand or G-strand, to complete the Ig-like fold, in a mechanism called the donor-strand complementation (DSC) or donor-strand exchange (DSE). 110 -350051 cd18778 ABC_6TM_exporter_like Six-transmembrane helical domain (TMD) of an uncharacterized ABC exporter, and similar proteins. This group includes a subunit of six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting the chemical diversity of the translocated substrates, while NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional transporter. The ABC exporters play a role in multidrug resistance to antibiotics and anticancer agents, and mutations in these proteins have been shown to cause severe human diseases such as cystic fibrosis. 293 -350052 cd18779 ABC_6TM_T1SS_like uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ATP-binding cassette subunit in the type 1 secretion systems, and similar proteins. uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS) and similar proteins. These transporter subunits include HylB, PrtD, CyaB, CvaB, RsaD, HasD, LipB, and LapB, among many others. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type I secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). Most targeted proteins are not cleaved at the N terminus, but rather carry signals located toward the extreme C terminus to direct type I secretion. However, the 10 kDa Escherichia coli colicin V (CvaB) targets the ABC transporter using a cleaved, N-terminal signal sequence. Almost all transport substrates of the type I system have critical functions in attacking host cells either directly or by being essential for host colonization. The ABC-dependent T1SS transports various molecules, from ions, drugs, to proteins of various sizes up to 900 kDa. The molecules secreted vary in size from the small Escherichia coli peptide colicin V, (10 kDa) to the Pseudomonas fluorescens cell adhesion protein LapA of 520 kDa. The best characterized are the RTX toxins such as the adenylate cyclase (CyaA) toxin from Bordetella pertussis, the causative agent of whooping cough, and the lipases such as LipA. Type I secretion is also involved in export of non-protein substrates such as cyclic beta-glucans and polysaccharides. 294 -350053 cd18780 ABC_6TM_AtABCB27_like Six-transmembrane helical domain (6-TMD) of the Arabidopsis ABC transporter B family member 27 and similar proteins. This group includes Arabidopsis ABC transporter B family member 27 (also known as AtABCB27, aluminum tolerance-related ATP-binding cassette transporter, transporter associated with antigen processing-like protein 2, AtTAP2, and ALS1) which may play a role in aluminum resistance. The ABC_6TM_TAP_ABCB8_10_like subgroup of the ABC_6TM exporter family includes ABC transporter associated with antigen processing (TAP), which is essential to cellular immunity against viral infection, as well as ABCB8 and ABCB10, which are found in the inner membrane of mitochondria, with the nucleotide-binding domains (NBDs) inside the mitochondrial matrix. Mammalian ABCB10 is essential for erythropoiesis and for protection of mitochondria against oxidative stress, while ABCB8 is essential for normal cardiac function, maintenance of mitochondrial iron homeostasis and maturation of cytosolic Fe/S proteins. The ABC_6TM exporter family represents the six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. In addition to ABC exporters, ABC transporters include two classes of ABC importers, classified depending on details of their architecture and mechanism. Only the ABC exporters are included in the ABC_6TM exporter family. 295 -350054 cd18781 ABC_6TM_AarD_CydDC_like uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC cysteine/GSH transporter CydDC, and similar proteins. This subgroup belongs to the ABC_6TM_AarD_CydDC_like subgroup of the ABC_6TM exporter family. The CydD protein, together with the CydC protein, constitutes a bacterial heterodimeric ATP-binding cassette (ABC) transporter complex required for formation of the functional cytochrome bd oxidase in both gram-positive and gram-negative aerobic bacteria. In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ABC-type cysteine/GSH transporter CydDC, which exports cysteine and glutathione from the cytoplasm to the periplasm to maintain redox homeostasis. Mutations in AarD, a homolog from Providencia stuartii, also show phenotypic characteristic consistent with a defect in the cytochrome d oxidase. The CydDC forms a heterodimeric ABC transporter with two transmembrane domains (TMDs), each predicted to comprise six TM alpha-helices and two nucleotide binding domains (NBDs). The ABC_6TM exporter family represents the six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. In addition to ABC exporters, ABC transporters include two classes of ABC importers, classified depending on details of their architecture and mechanism. Only the ABC exporters are included in the ABC_6TM exporter family. 290 -350055 cd18782 ABC_6TM_PrtD_LapB_HlyB_like uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (PrtD, LapB, HylB), and similar proteins. Uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS), including PrtD, LapB, and HylB. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type 1 secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). These three components assemble into a complex spanning both membranes and provide a channel for the translocation of unfolded polypeptides. In addition, PrtD is the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system (PrtDEF). LabB is an inner-membrane transporter component of the LapBCE system that is required for the secretion of the LapA adhesion. 294 -350056 cd18783 ABC_6TM_PrtD_LapB_HlyB_like uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (PrtD, LapB, HylB), and similar proteins. Uncharacterized subgroup of the six-transmembrane helical domain (6-TMD) of the ABC subunit in the type 1 secretion systems (T1SS), including PrtD, LapB, and HylB. T1SS are found in pathogenic Gram-negative bacteria (such as Escherichia coli, Vibrio cholerae or Bordetella pertussis) to export proteins (often proteases) across both inner and outer membranes to the extracellular medium. This is one of three proteins of the type 1 secretion apparatus. In the case of the Escherichia coli HlyA T1SS, these three proteins are HlyB (a dimeric ABC transporter), HlyD (MFP, oligomeric membrane fusion protein) and TolC (OMP, a trimeric oligomeric outer membrane protein). These three components assemble into a complex spanning both membranes and provide a channel for the translocation of unfolded polypeptides. In addition, PrtD is the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system (PrtDEF). LabB is an inner-membrane transporter component of the LapBCE system that is required for the secretion of the LapA adhesion. 294 -350057 cd18784 ABC_6TM_ABCB9_like Six-transmembrane helical domain (6-TMD) of ATP-binding cassette sub-family B member 9 and similar proteins. ATP-binding cassette sub-family B member 9 is also known as transporter associated with antigen processing, TAP-like protein, TAPL, and ABCB9. It is a half transporter comprises a homodimeric lysosomal peptide transport complex. It belongs to the ABC_6TM_TAP_ABCB8_10_like subgroup of the ABC_6TM exporter family. The ABC_6TM exporter family represents the six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. In addition to ABC exporters, ABC transporters include two classes of ABC importers, classified depending on details of their architecture and mechanism. Only the ABC exporters are included in the ABC_6TM exporter family. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs. The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting chemical diversity of the translocated substrates, whereas NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional unit. 289 -350172 cd18785 SF2_C C-terminal helicase domain of superfamily 2 DEAD/H-box helicases. Superfamily (SF)2 helicases include DEAD-box helicases, UvrB, RecG, Ski2, Sucrose Non-Fermenting (SNF) family helicases, and dicer proteins, among others. Similar to SF1 helicases, they do not form toroidal structures like SF3-6 helicases. SF2 helicases are a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Their helicase core is surrounded by C- and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains, or domains engaged in protein-protein interactions. The core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 77 -350173 cd18786 SF1_C C-terminal helicase domain of superfamily 1 DEAD/H-box helicases. Superfamily (SF)1 family members include UvrD/Rep, Pif1-like, and Upf-1-like proteins. Similar to SF2 helicases, they do not form toroidal, predominantly hexameric structures like SF3-6. SF1 helicases are a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Their helicase core is surrounded by C- and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains, or domains engaged in protein-protein interactions. The core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 89 -350174 cd18787 SF2_C_DEAD C-terminal helicase domain of the DEAD box helicases. DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis, and RNA degradation. They are superfamily (SF)2 helicases that, similar to SF1, do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 131 -350175 cd18788 SF2_C_XPD C-terminal helicase domain of xeroderma pigmentosum group D (XPD) family DEAD-like helicases. The xeroderma pigmentosum group D (XPD)-like family members are DEAD-box helicases belonging to superfamily (SF)2. This family includes DDX11 (also called ChlR1), a protein involved in maintaining chromosome transmission fidelity and genome stability, the TFIIH basal transcription factor complex XPD subunit, and FANCJ (also known as BRIP1), a DNA helicase required for the maintenance of chromosomal stability. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 159 -350176 cd18789 SF2_C_XPB C-terminal helicase domain of XPB-like helicases. TFIIH basal transcription factor complex helicase XPB (xeroderma pigmentosum type B) subunit (also known as DNA excision repair protein ERCC-3 or TFIIH 89 kDa subunit) is the ATP-dependent 3'-5' DNA helicase component of the core-TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. XPB is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 153 -350177 cd18790 SF2_C_UvrB C-terminal helicase domain of the UvrB family helicases. Excinuclease ABC subunit B (or UvrB) plays a central role in nucleotide excision repair (NER). Together with other components of the NER system, like UvrA, UvrC, UvrD (helicase II), and DNA polymerase I, it recognizes and cleaves damaged DNA in a multistep ATP-dependent reaction. UvrB is critical for the second phase of damage recognition by verifying the nature of the damage and forming the pre-incision complex. Its ATPase site becomes activated in the presence of UvrA and damaged DNA. Its activity is strand destabilization via distortion of the DNA at lesion site, with very limited DNA unwinding. UvrB is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 171 -350178 cd18791 SF2_C_RHA C-terminal helicase domain of the RNA helicase A (RHA) family helicases. The RNA helicase A (RHA) family includes RHA, also called DEAH-box helicase 9 (DHX9), DHX8, DHX15-16, DHX32-38, and many others. The RHA family members are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 171 -350179 cd18792 SF2_C_RecG_TRCF C-terminal helicase domain of the RecG family helicases. The DEAD-like helicase RecG family contains recombination factor RecG and transcription-repair coupling factor TrcF. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 160 -350180 cd18793 SF2_C_SNF C-terminal helicase domain of the SNF family helicases. The Sucrose Non-Fermenting (SNF) family includes chromatin-remodeling factors, such as CHD proteins and SMARCA proteins, recombination proteins Rad54, and many others. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 135 -350181 cd18794 SF2_C_RecQ C-terminal helicase domain of the RecQ family helicases. The RecQ helicase family is an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair, and replication. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 134 -350182 cd18795 SF2_C_Ski2 C-terminal helicase domain of the Ski2 family helicases. Ski2-like RNA helicases play an important role in RNA degradation, processing, and splicing pathways. This family includes spliceosomal Brr2 RNA helicase, ASCC3 (involved in the repair of N-alkylated nucleotides), Mtr4 (involved in processing of structured RNAs), DDX60 (involved in viral RNA degradation), and other proteins. Ski2-like RNA helicases are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 154 -350183 cd18796 SF2_C_LHR C-terminal helicase domain of LHR family helicases. Large helicase-related protein (LHR) is a DNA damage-inducible helicase that uses ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single-stranded DNA (ssDNA) and to unwind RNA:DNA duplexes. This group also includes related bacterial and archaeal helicases. LHR family helicases are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 150 -350184 cd18797 SF2_C_Hrq C-terminal helicase domain of HrQ family helicases. Yeast Hrq1, similar to RecQ4, plays a role in DNA inter-strand crosslink (ICL) repair and in telomere maintenance. Hrq1 lacks the Sld2-like domain found in RecQ4. HrQ family helicases are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 146 -350185 cd18798 SF2_C_reverse_gyrase C-terminal helicase domain of the reverse gyrase. Reverse gyrase modifies the topological state of DNA by introducing positive supercoils in an ATP-dependent process. Reverse gyrase is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 174 -350186 cd18799 SF2_C_EcoAI-like C-terminal helicase domain of EcoAI HsdR-like restriction enzyme family helicases. This family is composed of helicase restriction enzymes, including the HsdR subunit of restriction-modification enzymes such as Escherichia coli type I restriction enzyme EcoAI R protein (R.EcoAI). The EcoAI enzyme recognizes 5'-GAGN(7)GTCA-3'. The HsdR or R subunit is required for both nuclease and ATPase activities, but not for modification. These proteins are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 116 -350187 cd18800 SF2_C_EcoR124I-like C-terminal helicase domain of EcoR124I HsdR-like restriction enzyme family helicases. This family is composed of helicase restriction enzymes, including the HsdR subunit of restriction-modification enzymes such as Escherichia coli type I restriction enzyme EcoR124I R protein. EcoR124I recognizes the sequence, 5'-GAAN(6)RTCG-3', and cleaves at random sites. The HsdR or R subunit is required for both nuclease and ATPase activities, but not for modification. These proteins are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 82 -350188 cd18801 SF2_C_FANCM_Hef C-terminal helicase domain of Fanconi anemia group M family helicases. Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. FANCM and Hef are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 143 -350189 cd18802 SF2_C_dicer C-terminal helicase domain of the endoribonuclease Dicer. Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 142 -350190 cd18803 SF2_C_secA C-terminal helicase domain of the protein translocase subunit secA. SecA is a component of the Sec translocase that transports the vast majority of bacterial and ER-exported proteins. SecA binds both the signal sequence and the mature domain of the preprotein emerging from the ribosome. SecA is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 141 -350191 cd18804 SF2_C_priA C-terminal helicase domain of ATP-dependent helicase PriA. PriA, also known as replication factor Y or primosomal protein N', is a 3'-->5' DNA helicase that acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. PriA is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 238 -350192 cd18805 SF2_C_suv3 C-terminal helicase domain of ATP-dependent RNA helicase. The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in mitochondria and is a subunit of the degradosome complex involved in regulation of RNA surveillance and turnover. SUV3 exhibits DNA and RNA-dependent ATPase, DNA and RNA-binding and DNA and RNA unwinding activities. SUV3 is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 135 -350193 cd18806 SF2_C_viral C-terminal helicase domain of viral helicase. Viral helicases in this family here are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 145 -350194 cd18807 SF1_C_UvrD C-terminal helicase domain of UvrD family helicases. UvrD is a highly conserved helicase involved in mismatch repair, nucleotide excision repair, and recombinational repair. It plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species including Helicobacter pylori and Escherichia coli. This family also includes ATP-dependent helicase/nuclease AddA and helicase/nuclease RecBCD subunit RecB, among others. UvrD family helicases are DEAD-like helicases belonging to superfamily (SF)1, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF2 helicases, SF1 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 150 -350195 cd18808 SF1_C_Upf1 C-terminal helicase domain of Upf1-like family helicases. The Upf1-like helicase family includes UPF1, HELZ, Mov10L1, Aquarius, IGHMBP2 (SMUBP2), and similar proteins. They are DEAD-like helicases belonging to superfamily (SF)1, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF2 helicases, SF1 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 184 -350196 cd18809 SF1_C_RecD C-terminal helicase domain of RecD family helicases. RecD is a member of the RecBCD (EC 3.1.11.5, Exonuclease V) complex. It is the alpha chain of the complex and functions as a 3'-5' helicase. The RecBCD enzyme is both a helicase that unwinds, or separates the strands of DNA, and a nuclease that makes single-stranded nicks in DNA. RecD family helicases are DEAD-like helicases belonging to superfamily (SF)1, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF2 helicases, SF1 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 80 -350197 cd18810 SF2_C_TRCF C-terminal helicase domain of the transcription-repair coupling factor. Transcription-repair coupling factor (TrcF) dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. TrcF is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 151 -350198 cd18811 SF2_C_RecG C-terminal helicase domain of DNA helicase RecG. ATP-dependent DNA helicase RecG plays a critical role in recombination and DNA repair. RecG helps process Holliday junction intermediates to mature products by catalyzing branch migration. It is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 159 -349406 cd18812 CAP_PI15-like CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of peptidase inhibitor 15 and similar proteins. This family is composed of peptidase inhibitor 15 (PI15), peptidase inhibitor R3HDML, cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1), and cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). PI15 is a serine protease inhibitor which displays weak inhibitory activity against trypsin and may play a role in facial patterning during embryonic development. The PI15 gene is a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. R3HDML is a putative serine protease inhibitor, whose gene may be associated with clinical dimensions of schizophrenia. CRISPLD1 may play a role in NSCLP (nonsyndromic cleft lip with or without cleft palate) through the interaction with CRISPLD2 and folate pathway genes. plays a role in the etiology of NSCLP and is required for neural crest cell migration and cell viability during craniofacial development. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 146 -349407 cd18813 CAP_CRISPLD1 CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of cysteine-rich secretory protein LCCL domain-containing 1. Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1) is also called cysteine-rich secretory protein 10 (CRISP-10), CocoaCrisp, LCCL domain-containing cysteine-rich secretory protein 1 (LCRISP1), or CAP and LCCL domain containing protein 1 (CAPLD1). CRISPLD1 is clearly distinct from CRISPs because they do not contain the 10 absolutely conserved cysteines or the ICR (ion channel regulator) domain of the CRISPs. It may play a role in NSCLP (nonsyndromic cleft lip with or without cleft palate) through the interaction with CRISPLD2 and folate pathway genes. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 146 -349408 cd18814 CAP_PI15 CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of peptidase inhibitor 15. Peptidase inhibitor 15 (PI15) is also called 25 kDa trypsin inhibitor (p25TI), cysteine-rich secretory protein 8 (CRISP-8), or SugarCrisp. It is a serine protease inhibitor which displays weak inhibitory activity against trypsin and may play a role in facial patterning during embryonic development. The PI15 gene is a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. PI15 may also participate in the regulation of drug resistance in ovarian cancer and serve as a potential target in targeted therapies. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 146 -349409 cd18815 CAP_R3HDML CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of peptidase inhibitor R3HDML. Peptidase inhibitor R3HDML, also called cysteine-rich secretory protein R3HDML, is a putative serine protease inhibitor. The R3HDML gene may be associated with clinical dimensions of schizophrenia. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 146 -349410 cd18816 CAP_CRISPLD2 CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain of cysteine-rich secretory protein LCCL domain-containing 2. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) is also called cysteine-rich secretory protein 11 (CRSIP-11), LCCL domain-containing cysteine-rich secretory protein 2 (LCRISP2), or CAP and LCCL domain containing protein 2 (CAPLD2). It plays a role in the etiology of NSCLP (non-syndromic cleft lip with or without cleft palate). It is required for neural crest cell migration and cell viability during craniofacial development. The CRISPLD2 gene has been identified a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 146 -350138 cd18817 GH43f_LbAraf43-like Glycosyl hydrolase family 43 such as Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43. This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with alpha-L-arabinofuranosidase (EC 3.2.1.55) activity. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. Characterized enzymes belonging to this subgroup include Lactobacillus brevis (LbAraf43) and Weissella sp (WAraf43) which show activity with similar catalytic efficiency on 1,5-alpha-L-arabinooligosaccharides with a degree of polymerization (DP) of 2-3; size is limited by an extended loop at the entrance to the active site. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 262 -350139 cd18818 GH43_GbtXyl43B-like Glycosyl hydrolase family 43 such as Geobacillus thermoleovorans IT-08 beta-xylosidase/exo-xylanase (GbtXyl43B). This glycosyl hydrolase family 43 (GH43) subgroup includes the characterized enzymes Geobacillus thermoleovorans IT-08 beta-xylosidase (EC 3.2.1.37) / exo-xylanase (GbtXyl43B), and Paenibacillus sp. strain E18 alpha-L-arabinofuranosidase (EC 3.2.1.55) Abf43B. It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 273 -350140 cd18819 GH43_LbAraf43-like Glycosyl hydrolase family 43 proteins similar to Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans GbtXyl43B. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes enzymes with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55) and possibly bifunctional xylosidase/arabinofuranosidase activities, similar to Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans IT-08 beta-xylosidase / exo-xylanase (GbtXyl43B). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 277 -350141 cd18820 GH43_LbAraf43-like Glycosyl hydrolase family 43 proteins similar to Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans GbtXyl43B. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes enzymes with beta-xylosidase (EC 3.2.1.37), alpha-L-arabinofuranosidase (EC 3.2.1.55) and possibly bifunctional xylosidase/arabinofuranosidase activities, similar to Lactobacillus brevis alpha-L-arabinofuranosidase LbAraf43 and Geobacillus thermoleovorans IT-08 beta-xylosidase / exo-xylanase (GbtXyl43B). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 258 -350142 cd18821 GH43_Pc3Gal43A-like Glycosyl hydrolase family 43 protein such as Phanerochaete chrysosporium exo-beta-1,3-galactanase (Pc1, 3Gal43A, 1,3Gal43A). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), Fusarium oxysporum 12S Fo/1 (3Gal), and Streptomyces sp. 19(2012) SGalase1 and SGalase2. It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 262 -350143 cd18822 GH43_CtGH43-like Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43), Streptomyces avermitilis MA-4680 = NBRC 14893 (Sa1,3Gal43A;SAV2109) (1,3Gal43A), and Ruminiclostridium thermocellum ATCC 27405 (Ct1,3Gal43A;CtGH43;Cthe_0661) (1,3Gal43A). It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 266 -350144 cd18823 GH43_RcAra43A-like Glycosyl hydrolase family 43 such as Ruminococcus champanellensis arabinanase Ara43A. This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis arabinanase Ara43A and Fibrobacter succinogenes subsp. succinogenes S85 Fisuc_1994 / FSU_2517. It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 289 -350145 cd18824 GH43_CtGH43-like Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 282 -350146 cd18825 GH43_CtGH43-like Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 285 -350147 cd18826 GH43_CtGH43-like Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 269 -350148 cd18827 GH43_XlnD-like Glycosyl hydrolase family 43 protein such as Aspergillus niger DMS1957 xylanase D (XlnD); includes mostly xylanases. This glycosyl hydrolase family 43 (GH43) subgroup includes enzymes that have mostly been annotated as xylanases (endo-alpha-L-arabinanase, EC 3.2.1.8). It belongs to the GH43_bXyl-like subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_bXyl-like subgroup includes enzymes that have been annotated as xylan-digesting beta-xylosidases (EC 3.2.1.37) and xylanases, as well the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 277 -350149 cd18828 GH43_BT3675-like Glycosyl hydrolase family 43 protein such as Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (BT3675;BT_3675). This glycosyl hydrolase family 43 (GH43) subgroup includes the Bacteroides thetaiotaomicron VPI-5482 alpha-L-arabinofuranosidases (EC 3.2.1.55) (BT3675;BT_3675) and (BT3662;BT_3662). It belongs to the GH43_bXyl subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_bXyl subgroup also includes enzymes annotated as having xylan-digesting beta-xylosidase (EC 3.2.1.37) and xylanase (endo-alpha-L-arabinanase, EC 3.2.1.8) activities. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 283 -350150 cd18829 GH43_BsArb43A-like Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes annotated as having endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities, and includes Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase (AbnA;BSU28810) (Arb43A). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the arabinofuranosidase (ABF; EC 3.2.1.55) enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 273 -350151 cd18830 GH43_CjArb43A-like Glycosyl hydrolase family 43 protein such as Cellvibrio japonicus Ueda107 endo-alpha-1,5-L-arabinanase / exo-alpha-1,5-L-arabinanase 43A (ArbA;CJA_0805) (Arb43A). This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes annotated with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities, and includes the bifunctional Cellvibrio japonicus Ueda107 endo-alpha-1,5-L-arabinanase / exo-alpha-1,5-L-arabinanase 43A (ArbA;CJA_0805) (Arb43A). It belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 291 -350152 cd18831 GH43_AnAbnA-like Glycosyl hydrolase family 43 protein such as Aspergillus niger endo-alpha-L-arabinanase (AbnA). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities such as Aspergillus niger AbnA, Aspergillus niveus AbnA, and Chrysosporium lucknowense Abn1. It belongs to the GH43_Arb43a subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_Arb43a subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. The GH43_Arb43a subgroup includes many enzymes such as Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, and are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 286 -350153 cd18832 GH43_GsAbnA-like Glycosyl hydrolase family 43 protein such as Geobacillus stearothermophilus endo-alpha-1,5-L-arabinanase AbnA. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. It includes Geobacillus stearothermophilus T-6 NCIMB 40222 AbnA, Bacillus subtilis subsp. subtilis str. 168 (Abn2;YxiA;J3A;BSU39330) (Arb43B), and Thermotoga petrophila RKU-1 (AbnA;TpABN;Tpet_0637). These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 332 -350154 cd18833 GH43_PcXyl-like Glycosyl hydrolase family 43 protein such as the bifunctional Phanerochaete chrysosporium xylosidase/arabinofuranosidase (Xyl;PcXyl). This glycosyl hydrolase family 43 (GH43) subgroup includes Phanerochaete chrysosporium BKM-F-1767 Xyl, a characterized bifunctional enzyme with beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37)/ alpha-L-arabinofuranosidase (EC 3.2.1.55) activities. This subgroup belongs to the GH43_XybB subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_XybB subgroup includes enzymes having beta-1,4-xylosidase and alpha-L-arabinofuranosidase activities. Beta-1,4-xylosidases are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43_XybB subgroup includes Bacteroides ovatus alpha-L-arabinofuranosidases, BoGH43A and BoGH43B, both having a two-domain architecture, consisting of an N-terminal 5-bladed beta-propeller domain harboring the catalytic active site, and a C-terminal beta-sandwich domain. However, despite significant functional overlap between these two enzymes, BoGH43A and BoGH43B share just 41% sequence identity. The latter appears to be significantly less active on the same substrates, suggesting that these paralogs may play subtly different roles during the degradation of xyloglucans from different sources, or may function most optimally at different stages in the catabolism of xyloglucan oligosaccharides (XyGOs), for example before or after hydrolysis of certain side-chain moieties. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 292 -349736 cd18955 BTB_POZ_BACH BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in BTB and CNC homolog (BACH) proteins. This subfamily includes BACH1 (also called BTB-basic leucine zipper transcription factor 1), BACH2 (also called BTB-basic leucine zipper transcription factor 2), and similar proteins. They belong to the cap 'n' collar (CNC) and basic leucine zipper (bZIP) factor family. BACH1 is a heme-responsive transcriptional repressor of heme oxygenase (HO)-1. It represses genes involved in heme metabolism and oxidative stress response. BACH2 is a lymphoid-specific transcription factor with a prominent role in B-cell development. It is transcriptionally regulated by the BCR/ABL oncogene. It represses the anti-apoptotic factor heme oxygenase-1 (HO-1). Subfamily members contain a BTB domain and a basic leucine zipper (bZIP) domain. The BTB/POZ domain is a common protein-protein interaction motif of about 100 amino acids. 94 -349737 cd18956 BTB_POZ_ZBTB42 BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain found in zinc finger and BTB domain-containing protein 42 (ZBTB42). ZBTB42 is a transcriptional repressor that specifically binds DNA and probably acts by recruiting chromatin remodeling multiprotein complexes. It is enriched in skeletal muscles, especially at the neuromuscular junction. A ZBTB42 mutation has been identified to define a novel lethal congenital contracture syndrome (LCCS6), a lethal autosomal recessive form of arthrogryposis multiplex congenita (AMC). ZBTB42 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 129 -349316 cd18960 CD_HP1_like chromodomain of heterochromatin protein 1 proteins, including HP1alpha, HP1beta, and HP1gamma; uncharacterized subgroup. CHRomatin Organization Modifier (chromo) domain of mammalian HP1alpha (Cbx5), HP1beta (Cbx1), HP1gamma (Cbx5), and similar proteins. HP1 has diverse functions in heterochromatin formation and impacts both gene expression and gene silencing. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). 51 -349317 cd18961 CD_CEC-4_like chromodomain of Caenorhabditis elegans chromodomain protein 4, and similar proteins. CHRomatin Organization Modifier (chromo) domain of Caenorhabditis elegans CEC-4, and similar proteins. CEC-4 is a perinuclear heterochromatin anchor, it mediates the anchoring of H3K9 methylation-bearing chromatin at the nuclear periphery in early to mid-stage embryos. It is necessary for anchoring, but does not affect transcriptional repression. CEC-4 contributes to the efficiency with which muscle differentiation is induced following ectopic expression of the master regulator, HLH-1 (MyoD in mammals). A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 51 -349318 cd18962 CD_MT_like chromodomain of a putative Coemansia reversa NRRL 1564 methyltransferase, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in a Coemansia reversa NRRL 1564 SET (Su(var)3-9, enhancer-of-zeste, trithorax) domain-containing protein, and similar proteins. The SU(VAR)3-9 protein is the main chromocenter-specific histone H3-K9 methyltransferase (HMTase) in Drosophila where it plays a role in heterochromatic gene silencing. A chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and which appears to play a role in the functional organization of the eukaryotic nucleus. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 52 -349319 cd18963 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 57 -349320 cd18964 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 54 -349321 cd18965 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 53 -349322 cd18966 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 49 -349323 cd18967 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 55 -349324 cd18968 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 57 -349325 cd18969 chromodomain CHROMO (CHRromatin Organization Modifier) domain; uncharacterized subgroup; for most members of this subgroup, the chromodomain is followed by a chromo shadow domain. The chromodomain is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. Chromodomains belong to the chromo-like superfamily of SH3-fold-beta-barrel domains which includes chromo shadow domains and chromo barrel domains. Chromodomains differ from these in that they lack the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. For the majority of members of this subgroup, the chromodomain is followed by a chromo shadow domain (CSD). 56 -349326 cd18970 CD_POL_like chromodomain of Hypsizygus marmoreus TY3B-I_0 protein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Hypsizygus marmoreus TY3B-I_0 protein, a putative TY3/gypsy retrotransposon polyprotein, and similar proteins. The pol gene in TY3/gypsy elements generally encodes domains in the following order: an aspartyl protease, a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 49 -349327 cd18971 CD_POL_like chromodomain of a Magnaporthe grisea putative retrotransposon polyprotein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in a Magnaporthe grisea putative retrotransposon polyprotein which includes domains in the following order: an aspartyl protease, a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 50 -349328 cd18972 CD_POL_like chromodomain of a Moniliophthora perniciosa FA553 putative retrotransposon polyprotein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in a Moniliophthora perniciosa FA553 putative retrotelement polyprotein, which includes domains in the following order: a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related "chromo shadow" domain 50 -349329 cd18973 CD_Tf2-1_POL_like chromodomain of Rhizoctonia solani AG-1 IB retrotransposable element Tf2 155 kDa protein type 1, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Rhizoctonia solani AG-1 IB retrotransposable element Tf2 155 kDa protein type 1 (Tf2-1), and similar proteins. It belongs to the Ty3/gypsy family of long terminal repeat (LTR) retrotransposons. The pol gene in TY3/gypsy elements generally encodes domains in the following order: an aspartyl protease, a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 50 -349330 cd18974 CD_POL_like chromodomain of Penicillium solitum protein PENSOL_c198G03123. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Penicillium solitum protein PENSOL_c198G03123 a putative polyprotein from a Ty3/Gypsy long terminal repeat (LTR) retroelement. The pol gene in TY3/gypsy elements generally encodes domains in the following order: an aspartyl protease, a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 50 -349331 cd18975 CD_MarY1_POL_like chromodomain of Tricholoma matsutake polyprotein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in the polyprotein from the MarY1 Ty3/Gypsy long terminal repeat (LTR) retroelement from the from the Ectomycorrhizal Basidiomycete Tricholoma matsutake. The pol gene in TY3/gypsy elements generally encodes domains in the following order: prt-reverse transcriptase-RNase H-integrase, in marY1 POL the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 49 -349332 cd18976 CD_POL_like chromodomain of uncharacterized putative retroelement polyprotein proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in uncharacterized putative retrotransposon proteins, and similar proteins. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 51 -349333 cd18977 CD_POL_like chromodomain of a Rhizoctonia solani AG-3 Rhs1AP polyprotein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in a Rhizoctonia solani AG-3 Rhs1AP, a putative Ty3/Gypsy polyprotein/retrotransposon which includes a protease, a reverse transcriptase, a ribonuclease H, and an integrase domain, in that order, with a chromodomain at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 57 -349334 cd18978 CD_DDE_transposase_like chromodomain of Rhizopus microsporus putative DDE transposases, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Rhizopus microsporus putative DDE transposases, and similar proteins. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 52 -349335 cd18979 CD_POL_like chromodomain of a Zea maize putative metaviridae (gypsy-type) retrotransposon polyproteins (Z195D10.9), and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Zea maize Z195D10.9 protein, and other putative TY3/gypsy retrotransposon polyproteins. The pol gene in TY3/gypsy elements generally encodes domains in the following order: an aspartyl protease, a reverse transcriptase, RNase H, and an integrase, here the chromodomain is found at the C-terminus of the integrase domain. The chromodomain, is a conserved region of about 50 amino acids, found in a variety of chromosomal proteins, and implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 48 -349336 cd18980 CD_NC-like chromodomain of a Tasahii var. asahii CBS 8904 retrotransposon nucleocapsid protein, and similar proteins. This subgroup includes the CHROMO (CHRromatin Organization Modifier) domain found in Trichosporon asahii var. asahii CBS 8904 retrotransposon nucleocapsid protein, and similar proteins. The chromodomain is implicated in the binding, of the proteins in which it is found, to methylated histone tails and maybe RNA. A chromodomain may occur as a single instance, in a tandem arrangement, or followed by a related chromo shadow domain. 56 -349337 cd18981 CSD_HP1e_insect chromo shadow domain of insect heterochromatin protein 1E. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. CSDs are found for example in Drosophila and human heterochromatin protein (HP1) and mammalian modifier 1 and modifier 2. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 53 -349338 cd18982 CSD chromo shadow domain; uncharacterized subgroup. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. CSDs are found for example in Drosophila and human heterochromatin protein (HP1) and mammalian modifier 1 and modifier 2. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 50 -350846 cd18983 CBD_MSL3_like chromo barrel domain of human male-specific lethal complex subunit 3, and similar proteins. This subgroup includes human male-specific lethal (MSL) complex subunit 3 (MSL3, also known as MSL3L1). The MSL3 chromodomain specifically recognizes the H4K20 monomethyl mark, in a DNA-dependent manner, and may be involved in chromosomal targeting of the MSL complex. Also included is MORF-related gene on chromosome 15 (MRG15, also known as MORF4L1) which specifically binds to Lys36-methylated histone H3 and plays a role in transcriptional regulation and in DNA repair. This subgroup also includes Arabidopsis thaliana Morf Related Gene 2 (MRG2) which acts as a H3K4me3/H3K36me3 reader involved in the regulation of Arabidopsis flowering. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromo domain. 57 -350847 cd18984 CBD_MOF_like chromo barrel domain of Drosophila melanogaster males-absent on the first protein, and similar proteins. This subgroup includes the chromo barrel domain of Drosophila melanogaster males-absent on the first (MOF) protein. The histone H4 lysine 16 (H4K16)-specific acetyltransferase MOF is part of two distinct complexes involved in X chromosome dosage compensation and autosomal transcription regulation. Its chromobarrel domain is essential for H4K16 acetylation throughout the Drosophila genome and controls spreading of the male-specific lethal (MSL) complex on the X chromosome. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromodomain. The MOF-like chromo barrels may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 70 -350848 cd18985 CBD_TIP60_like chromo barrel domain of human tat-interactive protein 60, and similar proteins. Tat-interactive protein 60 (also known as KAT5 or HTATIP) catalyzes the acetylation of lysine side chains in various histone and nonhistone proteins, and in itself. It plays roles in multiple cellular processes including remodeling, transcription, DNA double-strand break repair, apoptosis, embryonic stem cell identity, and embryonic development. The TIP60 chromo barrel domain recognizes trimethylated lysine at site 9 of histone H3 (H3K9me3) which triggers TIP60 to acetylate and activate ataxia telangiectasia-mutated kinase, thereby promoting the DSB repair pathway. In a different study, the TIP60 chromo barrel domain was shown to bind H3K4me1, which stabilizes TIP60 recruitment to a subset of estrogen receptor alpha target genes, facilitating regulation of the associated gene transcription. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromodomain. This subgroup belongs to the MOF-like chromo barrels may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 64 -350849 cd18986 CBD_ESA1_like chromo barrel domain of yeast NuA4 histone acetyltransferase complex catalytic subunit ESA1, and similar proteins. The subgroup includes the chromo barrel domain of NuA4 histone acetyltransferase (HAT) complex catalytic subunit Esa1 (also known as Tas1 and Kat5). Yeast Esa1p acetylates specific histones nonrandomly in H4, H3, and H2A. Esa1 also plays roles in cell cycle progression. In addition, its chromo barrel domain plays a role in the yeast Piccolo NuA4 complex's ability to distinguish between histones and nucleosomes; however, the chromodomain is not required for the Piccolo to bind to nucleosomes. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromodomain. This subgroup belongs to the MOF-like chromo barrels may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 65 -349788 cd18987 LGIC_ECD_anion extracellular domain (ECD) of anionic Cys-loop neurotransmitter-gated ion channels. This family contains the extracellular domain (ECD) of anionic Cys-loop neurotransmitter-gated ion channels which include type-A gamma-aminobutyric acid receptor (GABAAR), glycine receptor (GlyR), invertebrate glutamate-gated chloride channel (GluCl), and histimine-gated chloride channel (HisCl). These neurotransmitter receptors directly mediate chloride permeability and constitute one half of the Cys-loop receptor family. Receptors in this family are composed of five either identical or homologous subunits, which generate diversity in functional profiles and pharmacological preferences. GABAAR and GlyR, both mediate fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR receptor pore, resulting in hyperpolarization of the neuron. GluCl channels are found only in protostomia, but are closely related to mammalian glycine receptors (GlyRs). They have several roles in these invertebrates, including controlling locomotion and feeding, and mediating sensory inputs into behavior. Ligand-gated chloride channels are critical not only for maintaining appropriate neuronal activity, but have long been important therapeutic targets: benzodiazepines, barbiturates, some intravenous and volatile anaesthetics, alcohol, strychnine, picrotoxin, and ivermectin all derive their biological activity from acting on this inhibitory half of the Cys-loop receptor family. Many of the therapeutically useful compounds acting at Cys-loop receptors target an allosteric site. The sites in Cys-loop receptors at which these allosteric ligands bind and their structure-based mechanisms of action are largely unresolved. 185 -349789 cd18988 LGIC_ECD_bact extracellular domain of prokaryotic pentameric ligand-gated ion channels (pLGIC). This family contains extracellular domain (ECD) of bacterial pentameric ligand-gated ion channels (pLGICs), including ones from Gloebacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC). These prokaryotic homologs of Cys-loop receptors have been useful in understanding their eukaryotic counterparts. The largely beta-sheet ECD in this family is similar to other pLGICs, but lacks the cysteine loop and an intracellular domain. While most pLGICs undergo desensitization on prolonged exposure to the agonist, GLIC is activated by protons, but does not desensitize, even at proton concentrations eliciting maximal electrophysiological response (pH 4.5). Studies show that GLIC activation is inhibited by most general anaesthetics at clinical concentrations, including xenon which has been used in clinical practice as a potent gaseous anesthetic for decades. Xenon binding sites have been identified in three distinct regions of the TMD: in a large intra-subunit cavity, in the pore, and at the interface between adjacent subunits. 182 -349790 cd18989 LGIC_ECD_cation extracellular domain (LBD) of cationic Cys-loop neurotransmitter-gated ion channels. This superfamily contains the extracellular domain (ECD) of cationic Cys-loop neurotransmitter-gated ion channels, which include nicotinic acetylcholine receptor (nAChR), serotonin 5-hydroxytryptamine receptor (5-HT3), and zinc-activated ligand-gated ion channel (ZAC) receptor. These ligand-gated ion channels (LGICs) are found across metazoans and have close homologs in bacteria. They are vital for communication throughout the nervous system. nAChR is a non-selective cation channel that is permeable to Na+ and K+, and some subunit combinations are also permeable to Ca2+. Na+ enters and K+ exits to allow net flow of positively charged ions inward. 5-HT3, a cation-selective channel, binds serotonin and is permeable to Na+, K+, and Ca2+. It mediates neuronal depolarization and excitation within the central and peripheral nervous systems. ZAC forms an ion channel gated by Zn2+, Cu2+, and H+ and is non-selectively permeable to monovalent cations. However, the role of ZAC in Zn2+, Cu2+, and H+ signaling require is as yet unknown. 180 -349791 cd18990 LGIC_ECD_GABAAR gamma-aminobutyric acid receptor extracellular domain. This family contains extracellular domain (ECD) of type-A gamma-aminobutyric acid receptor (GABAAR), a member of the pentameric "Cys-loop" superfamily of transmitter-gated ion channels. This family includes 19 isoforms in human; six alpha, 3 beta, 3 gamma, one of delta, epsilon, pi, and theta, known to form heteropentameric GABAARs, and 3 rho subunits that only form homopentameric channels (also known as GABAA rho or GABAC receptor) or pseudoheteromeric if consisting of different rho subunits. The majority of GABAA receptor pentamers contain two alpha subunits, two beta subunits, and a gamma subunit, with different isoforms affecting potency of the neurotransmitter. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to its site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. Benzodiazepine and barbiturates each bind to their own distinct sites on the ECD. The channels have to contain the gamma subunit and alpha subunits in order to respond to benzodiazepines. Specific combinations of alpha, beta, and gamma subunits exhibit ethanol sensitivity. All these major classes of drugs favor channel-opening. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. 184 -349792 cd18991 LGIC_ECD_GlyR extracellular domain of glycine receptor (GlyR). This subfamily contains extracellular domain of glycine receptor (GlyR or GLR) of the amino acid neurotransmitter glycine. GlyR has four known isoforms of the alpha-subunit (alpha1-4, encoded by GLRA1, GLRA2, GLRA3, GLRA4) that are essential to bind ligands and a single beta-subunit (encoded by GLRB), all of which have been described to have a regionally and temporally controlled expression during development and maturation of the central nervous system (CNS). Functional chloride-permeable GlyR ion channels are formed by 5 alpha subunit homopentamers or by alpha and beta subunit heteropentamers, which form complexes with either a 2alpha-3beta or 3alpha-2beta stoichiometry. The receptor can be activated by glycine as well as beta-alanine and taurine, and can be selectively blocked by the high-affinity competitive antagonist strychnine. Caffeine is also a competitive antagonist of GlyR. In human, glycine receptor alpha1 and beta subunits are the major targets of mutations that cause disruption of GlyR surface expression or reduced ability of expressed GlyRs to conduct chloride ions, leading to hyperekplexia, a rare neurological disorder characterized by neonatal hypertonia and exaggerated startle responses to unexpected stimuli. Mutations in GlyR alpha2 are known to cause cortical neuronal migration/autism spectrum disorder and in GlyR alpha3 to cause inflammatory pain sensitization/rhythmic breathing. 185 -349793 cd18992 LGIC_ECD_HisCl extracellular domain of histimine-gated chloride channel (HisCl or HGCC). This family contains extracellular domain (ECD) of histamine-gated chloride channel (HisCl), a member of the Cys-loop receptor superfamily of ligand-gated ion channels and is closely related to the mammalian GABAA receptor and glycine receptor (GlyR). Histamine (HA) is a neurotransmitter that activates GPCRs in vertebrates, but in arthropods, it is a photoreceptor neurotransmitter, directly gating chloride channels on large monopolar cells (LMCs), postsynaptic to photoreceptors in the lamina. It has also been reported to play important roles in mechanosensory reception, temperature preference, and sleep in insects. HA activates its receptor channels to cause an inward chloride flux in the insect nervous system. In Drosophila, HA acts on two histamine-gated chloride channel (HGCC) subunits called HisCl1 (HisClalpha2, HCLB) and HisCl2 (HisClalpha1, Ort, HCLA). HisCl1 (HCLB) and HisCl2 (HCLA) are expressed predominantly in the insect eye, sharing 60% sequence identity, and forming homomeric and heteromeric HGCCs. HCLA homomers are involved in synaptic transmission in the lamina, while HCLB homomers, localized in the glia cells, have a role in shaping the transmission. HCLB channels, but not HCLA channels, are also responsible for the activation and maintenance of wake state in D. melanogaster. In Manduca sexta, HCLB channels in the flight sensory-motor have been shown to be involved in olfactory processing circuit. Studies show that HCLB channels are more sensitive to agonists when compared with HCLA channels, but insensitive to known LGCC insecticides. 185 -349794 cd18993 LGIC_ECD_GluCl glutamate-gated chloride channel (GluCl) extracellular domain. This subfamily contains extracellular domain of glutamate-gated chloride channel (GluCl) found only in protostomia, but are closely related to mammalian glycine receptors. They have several roles in these invertebrates, including controlling locomotion and feeding, and mediating sensory inputs into behavior. Comparison of the GluCl gene families between organisms shows that insect gene family is relatively simple, while that found in nematodes tends to be larger and more diverse. Glutamate is an inhibitory neurotransmitter that shapes the responses of projection neurons to olfactory stimuli in the Drosophila. GluCls are targeted by the macrocyclic lactone family of anthelmintics and pesticides in arthropods and nematodes, thus making the GluCls of considerable medical and economic importance. In Drosophila melanogaster, GluCl mediates sensitivity to the antiparasitic agents ivermectin and nodulisporic acid, suggesting that their drug target is the same throughout the Ecdysozoa. 183 -349795 cd18994 LGIC_ECD_ZAC extracellular domain of zinc-activated ligand-gated ion channel. This family is the extracellular domain of zinc-activated ligand-gated ion channel (ZAC), a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC displays low sequence similarity to other members in the superfamily, with closest matches to the human serotonin 5-HT3 receptor (5-HT3R) subunits 5-HT3A and 5-HT3B, and nAChR alpha7 subunits that exhibit approximately 15% amino acid sequence identity to ZAC. Expression of ZAC has been detected in human fetal whole brain, spinal cord, pancreas, placenta, prostate, thyroid, trachea, and stomach, as well as in adult hippocampus, striatum, amygdala, and thalamus. ZAC forms an ion channel gated by Zn2+, Cu2+, and H+, and is non-selectively permeable to monovalent cations. However, the role of ZAC in Zn2+, Cu2+, and H+ signaling is as yet unknown. 170 -349796 cd18995 LGIC_AChBP acetylcholine binding protein (AChBP). This family contains acetylcholine binding protein (AChBP) which is a soluble extracellular domain homolog secreted by protostomia, and has been widely recognized as a surrogate for the ligand binding domain of nicotinic acetylcholine receptors (nAChRs). AChBP forms a pentameric structure where the interfaces between the subunits provide an acetylcholine (ACh) binding pocket homologous to the binding pocket of nAChRs. Thus far, AChBPs have been characterized only in aquatic mollusks, which have shown low sensitivity to neonicotinoids, the insecticides targeting insect nAChRs. Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) which has been found in glial cells as a water-soluble protein modulating synaptic ACh concentration has its the binding pocket show better resemblance as it contains all the five aromatic residues fully conserved in nAChR. Five AChBP subunits have been characterized in Pardosa pseudoannulata, a predator enemy against rice insect pests, and share higher sequence similarities with nAChR subunits of both insects and mammals compared with mollusk AChBP subunits. 180 -349797 cd18996 LGIC_ECD_5-HT3 extracellular domain of serotonin 5-HT3 receptor. This family contains extracellular domain of serotonin 5-HT3 receptor which belongs to the Cys-loop superfamily of ligand-gated ion channels (LGICs). This ion channel is cation-selective and mediates neuronal depolarization and excitation within the central and peripheral nervous systems. Like other ligand gated ion channels, the 5-HT3 receptor consists of five subunits arranged around a central ion conducting pore, which is permeable to Na+, K+, and Ca2+ ions. Binding of the neurotransmitter 5-hydroxytryptamine (serotonin) to the 5-HT3 receptor opens the channel, which then leads to an excitatory response in neurons, and the rapidly activating, desensitizing, inward current is predominantly carried by Na+ and K+ ions. This receptor is most closely related by homology to the nicotinic acetylcholine receptor (nAChR). Five subunits have been identified for this family: 5-HT3A, 5-HT3B, 5-HT3C, 5-HT3D, and 5-HT3E, encoded by HTR3A-E genes. Only 5-HT3A subunits are able to form functional homomeric receptors, whereas the 5-HT3B, C, D, and E subunits form heteromeric receptors with 5-HT3A. Different receptor subtypes are important mediators of nausea and vomiting during chemotherapy, pregnancy, and following surgery, while some contribute to neuro-gastroenterologic disorders such irritable bowel syndrome (IBS) and eating disorders as well as co-morbid psychiatric conditions. 5-HT3 receptor antagonists are established treatments for emesis and IBS, and are beneficial in the treatment of psychiatric diseases. 215 -349798 cd18997 LGIC_ECD_nAChR extracellular domain of nicotinic acetylcholine receptor. This family contains the extracellular domain of nicotinic acetylcholine receptor (nAChR), a member of the pentameric "Cys-loop" superfamily of transmitter-gated ion channels. nAChR is found in high concentrations at the nerve-muscle synapse, where it mediates fast chemical transmission of electrical signals in response to the endogenous neurotransmitter acetylcholine (ACh) released from the nerve terminal into the synaptic cleft. Thus far, seventeen nAChR subunits have been identified, including ten alpha subunits, four beta subunits, and one gamma, delta, and epsilon subunit each, all found on the cell membrane that non-selectively conducts cations (Na+, K+, Ca++). These nAChR subunits combine in several different ways to form functional nAChR subtypes which are broadly categorized as either muscle subtype located at the neuromuscular junction or neuronal subtype that are found on neurons and on other cell types throughout the body. The muscle type of nAChRs are formed by the alpha1, beta1, gamma, delta, and epsilon subunits while the neuronal type are composed of nine alpha subunits and three beta subunits, which combine in various permutations and combinations to form functional receptors. Among various subtypes of neuronal nAChRs, the homomeric alpha7 and the heteromeric alpha4beta2 receptors are the main subtypes widely distributed in the brain and implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Among subtypes of muscle nAChRs, the heteromeric subunits (alpha1)2, beta, gamma, and delta in fetal muscle, and the gamma subunit replaced by epsilon in adult muscle have been implicated in congenital myasthenic syndromes and multiple pterygium syndromes due to various mutations. This family also includes alpha- and beta-like nAChRs found in protostomia. 181 -349799 cd18998 LGIC_ECD_GABAAR_A extracellular domain of gamma-aminobutyric acid receptor subunit alpha. This family contains extracellular domain (ECD) of type-A gamma-aminobutyric acid receptor (GABAAR), a member of the pentameric "Cys-loop" superfamily of transmitter-gated ion channels. This family includes 19 isoforms in human; six alpha, 3 beta, 3 gamma, one of delta, epsilon, pi, and theta, known to form heteromeric GABAARs, and 3 rho subunits that only form homomeric channels (also known as GABAA rho or GABAC receptor) or pseudoheteromeric if consisting of different rho subunits. GABAAR is assembled from a variety of different subunit subtypes which determines their pharmacology and physiology; the most abundant being 2alpha2beta1gamma stoichiometry. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to its site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. Benzodiazepine and barbiturates each bind to their own distinct sites on the ECD. The channels have to contain the gamma subunit and alpha subunits in order to respond to benzodiazepines. All these major classes of drugs favor channel-opening. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABRA1, GABRA3, GABRB3, GABRG2, and GABRD, encoding the alpha1-, alpha3-, beta2-, gamma3-, and delta-subunits have been directly associated with epilepsy. Specific combinations of alpha, beta, and gamma subunits exhibit ethanol sensitivity. 184 -349800 cd18999 LGIC_ECD_GABAAR_B extracellular domain of gamma-aminobutyric acid receptor subunit beta (GABAAR-B or GABRB). This family contains extracellular domain (ECD) of beta subunits of type-A gamma-aminobutyric acid receptor (GABAAR), which include beta1-beta4 in vertebrates. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. Benzodiazepine and barbiturates each bind to their own distinct sites on the LBD. The channels must contain the gamma subunit and alpha subunits in order to respond to benzodiazepines. Specific combinations of alpha, beta, and gamma subunits exhibit ethanol sensitivity. All these major classes of drugs favor channel-opening. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. Mutations or genetic variations of the genes encoding the GABRB2 and GABRB3 have been associated with human epilepsy, both with and without febrile seizures. Mutations in GABRB2, and GABRB3 have been associated with infantile spasms and Lennox-Gastaut syndrome. A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy, a disease with a devastating prognosis, characterized by neonatal onset of seizures. Another de novo heterozygous missense variant in exon 4 of GABRB2 is associated with intellectual disability and epilepsy. Mutations in the GABRB1 gene promote alcohol consumption through increased tonic inhibition. 182 -349801 cd19000 LGIC_ECD_GABAAR_G extracellular domain of gamma-aminobutyric acid receptor subunit gamma. This family contains extracellular domain (ECD) of the theta subunit of type-A gamma-aminobutyric acid receptor (GABAAR). GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit. Also, two autism spectrum disorder (ASD)-associated protein truncation variants have been identified in alpha 3 (GABRA3) and theta (GABRQ) genes. 182 -349802 cd19001 LGIC_ECD_GABAAR_delta extracellular domain of gamma-aminobutyric acid receptor subunit delta. This family contains extracellular domain of delta subunit of type-A gamma-aminobutyric acid receptor (GABAAR). GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. Receptors containing the delta subunit (GABRD) are expressed exclusively extra-synaptically (in the cortex, hippocampus, thalamus, striatum, and cerebellum) and mediate tonic inhibition. Studies suggest that delta subunits form heteropentamers in similar stoichiometry and arrangement as alpha/beta/gamma receptors, with the delta subunit replacing the gamma subunit (2alpha:2beta:1delta), although other stoichiometries have also been detected. The delta subunit is flexible in its positioning in the pentameric complex, producing receptors with diverse pharmacological properties. Mutations in GABRD have been associated with susceptibility to generalized epilepsy with febrile seizures, type 5. GABRD gene may also be associated with childhood-onset mood disorders. 184 -349803 cd19002 LGIC_ECD_GABAAR_E extracellular domain of gamma-aminobutyric acid receptor subunit epsilon (GABRE). This family contains extracellular domain of epsilon subunit of type-A gamma-aminobutyric acid receptor (GABAAR), a protein that is encoded by the GABRE gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The epsilon subunits form heteropentamers with other GABAAR subunits, possibly with alpha3, beta4, and theta subunits since their genes are clustered on the same human chromosome. Various combinations of alpha3-, theta-, and epsilon-subunits may be assembled at a regional and developmental level in the brain. Brainstem expression of epsilon subunit-containing GABAA receptors is upregulated during pregnancy, particularly in the ventral respiratory neurons, thus protecting breathing, despite increased neurosteroid levels during pregnancy. 182 -349804 cd19003 LGIC_ECD_GABAAR_theta extracellular domain of gamma-aminobutyric acid receptor subunit theta (GABRQ). This family contains extracellular domain (ECD) of the theta subunit of type-A gamma-aminobutyric acid receptor (GABAAR), and encoded by the GABRQ gene, which is mapped to chromosome Xq28 in a cluster of genes that also that encode the alpha 3 and epsilon subunits. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAAR theta subunit. Also, two autism spectrum disorder (ASD)-associated protein truncation variants have been identified in alpha 3 (GABRA3) and theta (GABRQ) genes. 183 -349805 cd19004 LGIC_ECD_GABAAR_pi extracellular domain of gamma-aminobutyric acid receptor subunit pi (GABRP). This family contains extracellular domain of pi subunit of type-A gamma-aminobutyric acid receptor (GABAAR). GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABRP is expressed mainly in non-neuronal tissues such as the mammary gland, prostate gland, lung, thymus, and uterus. It is also highly expressed in certain types of cancer such as basal-like breast cancer and pancreatic ductal adenocarcinoma. GABRP is involved in inhibitory synaptic transmission in the central nervous system. Its assembly with other GABAAR subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone. Studies suggest that polymorphisms in the GABRP gene may be associated with the susceptibility to systematic lupus erythematosus (SLE). 182 -349806 cd19005 LGIC_ECD_GABAAR_rho extracellular domain of gamma-aminobutyric acid receptor subunit rho. This family contains extracellular domain of rho subunits (rho1, rho2, and rho3, encoded by GABRR1, GABRR2, and GABRR3, respectively) of type-A gamma-aminobutyric acid receptor (GABAAR). These subunits homo-oligomerize to form GABAA-rho receptors (formerly classified as GABA-rho or GABAC receptor), but do not co-assemble with any of the classical GABAA subunits. They are especially high expression in the retina and their distinctive pharmacological properties are unique; they are not modulated by many GABAA receptor modulators such as barbiturates, benzodiazepines, and neuroactive steroids. In humans, mutations in the GABRR1 and GABRR2 genes may be responsible for some cases of autosomal recessive retinitis pigmentosa. Variation in GABRR1 is also associated with susceptibility to bipolar schizoaffective disorder while a SNP in GABRR2 has been reported to show association with autism. 186 -349807 cd19006 LGIC_ECD_GABAAR_LCCH3-like gamma-aminobutyric acid receptor subunit beta-like extracellular domain in protostomia, such as LCCH3 (ligand-gated chloride channel homolog 3). This family contains extracellular domain of beta-like subunits of type-A gamma-aminobutyric acid receptor (GABAAR) found in protostomia, similar to Drosophila melanogaster ligand-gated chloride channel homolog 3 (LCCH3) subunits. Drosophila melanogaster expresses three GABA-receptor subunit orthologs: (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homolog 3), and may possibly form homo- and/or heteropentameric associations. LCCH3 has been shown to combine with subunit GRD to form cation-selective GABA-gated ion channels when coexpressed in Xenopus laevis oocytes. GABAARs are known to be the molecular targets of a class of insecticides. The resulting pentameric receptors in this family have been shown to be activated by insect GABA-receptor agonists muscimol and CACA, and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline. GABAARs are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. 183 -349808 cd19007 LGIC_ECD_GABAR_GRD-like gamma-aminobutyric acid receptor subunit alpha-like extracellular domain in protostomia, such as GRD (GABA/glycine-like receptor of Drosophila). This family contains extracellular domain of alpha-like subunits of type-A gamma-aminobutyric acid receptor (GABAAR) found in protostomia, similar to Drosophila melanogaster GABA/ glycine-like receptor of Drosophila (GRD) subunits. Drosophila melanogaster expresses three GABA-receptor subunit orthologs: (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homolog 3), and may possibly form homo- and/or heteropentameric associations. LCCH3 has been shown to combine with subunit GRD to form cation-selective GABA-gated ion channels when co-expressed in Xenopus laevis oocytes. GABAARs are known to be the molecular targets of a class of insecticides. The resulting pentameric receptors in this family have been shown to be activated by insect GABA-receptor agonists muscimol and CACA, and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline. GABAARs are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. 183 -349809 cd19008 LGIC_ECD_GABAR_RDL-like gamma-aminobutyric acid receptor subunit beta-like extracellular domain in protostomia, such as RDL (resistant to dieldrin). This family contains extracellular domain of beta-like subunits of type-A gamma-aminobutyric acid receptor (GABAAR) found in protostomia, similar to Drosophila melanogaster resistant to dieldrin (RDL) subunits. Drosophila melanogaster expresses three GABA-receptor subunit orthologs: (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homolog 3), and may possibly form homo- and/or heteropentameric associations. GABAARs are known to be the molecular targets of a class of insecticides. The resulting pentameric receptors in this family have been shown to be activated by insect GABA-receptor agonists muscimol and CACA, and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline. GABAARs are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. Bombyx mori includes three RDL (RD1, RD2, RD3), one LCCH3, and one GRD subunits. Its RDL1 gene has RNA-editing sites, and the RDL1 and RDL3 genes possess alternative splicing, enhancing the diversity of its GABA-receptor gene family. The three RDL subunits may have arisen from two duplication events. 184 -349810 cd19009 LGIC_ECD_GlyR_alpha extracellular domain of glycine receptor alpha subunit. This subfamily contains extracellular domain of glycine receptor (GlyR or GLR) alpha subunits of the amino acid neurotransmitter glycine. GlyR has four known isoforms of alpha-subunit (alpha1-4, encoded by GLRA1, GLRA2, GLRA3, GLRA4) that are essential to bind ligands, and, along with the GlyR beta subunit, have been described to have a regionally and temporally controlled expression during development and maturation of the central nervous system (CNS). These alpha subunits are highly homologous, but differ in their kinetic properties, temporal and regional expression and physiological functions. They can form functional chloride-permeable GlyR ion channels by forming homopentamers with 5 alpha subunits or heteropentamers with a combination of alpha and beta subunits, either a 2alpha-3beta or 3alpha-2beta stoichiometry. In human, mutations in glycine receptor alpha subunits cause disruption of GlyR surface expression or reduced ability of expressed GlyRs to conduct chloride ions. Mutations in GlyR alpha1 subunit leads to hyperekplexia, a rare neurological disorder characterized by neonatal hypertonia and exaggerated startle responses to unexpected stimuli, while mutations in GlyR alpha2 are known to cause cortical neuronal migration/autism spectrum disorder and in GlyR alpha3 to cause inflammatory pain sensitization/rhythmic breathing. GlyR alpha1 and alpha2 subunits have an important role in regulation of the excitatory-inhibitory balance, control of motor actions, modulation of sedative ethanol effects and probably regulation ethanol preference and consumption. 184 -349811 cd19010 LGIC_ECD_GlyR_beta extracellular domain of glycine receptor beta subunit. This subfamily contains extracellular domain of glycine receptor (GlyR or GLR) beta subunit of the amino acid neurotransmitter glycine encoded by GLRB gene. These subunits form heteropentamers with a combination of alpha and beta subunits, either a 2alpha-3beta or 3alpha-2beta stoichiometry. While the alpha subunits contain binding sites for agonists and antagonists and are responsible for ion channel formation, the beta subunit displays structural and regulatory functions, such as GlyR clustering in synaptic locations by interaction between intracellular loop domains with the scaffolding protein gephyrin, and control of pharmacologic responses to agonist or allosteric modulators due in part to the presence of interfaces alpha/beta and beta/beta. GLRB gene mutations are associated with the neurological disorder hyperekplexia, a rare neurological disorder characterized by neonatal hypertonia and exaggerated startle responses to unexpected stimuli, as well as agoraphobic cognitions. 187 -349812 cd19011 LGIC_ECD_5-HT3A extracellular domain of serotonin 5-hydroxytryptamine receptor (5-HT3) receptor subunit A (5HT3A). This subfamily contains extracellular domain of subunit A of serotonin 5-HT3 receptor (5-HT3AR), encoded by the HTR3A gene. 5-HT3A subunit forms a homopentameric complex or a heterologous combination with other subunits (B-E). Heteromeric combination of A and B subunits provides the full functional features of this receptor, since either subunit alone results in receptors with very low conductance and response amplitude. 5-HT3A receptors are located in the dorsal vagal complex of the brainstem and in the gastrointestinal (GI) tract, and form a channel circuit that controls gut motility, secretion, visceral perception, and the emesis reflex. These receptors are implicated in several GI and psychiatric disorder conditions including anxiety, depression, bipolar disorder, and irritable bowel syndrome (IBS). Several 5-HT3AR antagonists, such as the isoquinoline Palonosetron, are in clinical use to control emetic reflexes associated with gastrointestinal pathologies and cancer therapies. SNPs in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. 208 -349813 cd19012 LGIC_ECD_5-HT3B extracellular domain of serotonin 5-hydroxytryptamine receptor (5-HT3) receptor subunit B (5HT3B). This subfamily contains extracellular domain of subunit B of serotonin 5-HT3 receptor (5-HT3BR), encoded by the HTR3B gene. 5-HT3B is not functional as a homopentameric complex and is co-expression with the 5-HT3A subunit, resulting in heteromeric 5-HT3AB receptors that are functionally distinct from homomeric 5-HT3A receptors. This receptor causes fast, depolarizing responses in neurons after activation, with affinities of competitive ligands at the two receptor subtypes extracellular domains mostly similar. HTR3B gene variants may contribute to variability in severity of and response to anti-emetic therapy for nausea and vomiting in pregnancy, as well as efficacy of ondansetron in cancer chemotherapy, radiation therapy, or surgery. 5-HT3B subunit affects high-potency inhibition of 5-HT3 receptors by morphine by reducing its affinity at its high-affinity, non-competitive site. 210 -349814 cd19013 LGIC_ECD_5-HT3C_E extracellular domain of serotonin 5-hydroxytryptamine receptor (5-HT3) receptor subunit E (5HT3E); may include subunits C and D (5-HT3C,D). This subfamily contains extracellular domain of subunit E of serotonin 5-HT3 receptor (5-HT3ER), encoded by the HTR3E gene, and may also contain subunits C and D, all three encoding genes forming a cluster on chromosome 3. Data show that 5-HT3C, 5-HT3D, and 5-HT3E subunits are co-expressed with 5-HT3A in cell bodies of myenteric neurons, and that 5-HT3A and 5-HT3D are expressed in submucosal plexus of the human large intestine while HTR3E is restricted to the colon, intestine, and stomach. None of these subunits can form functional homopentamers, but, upon co-expression with the 5-HT3A subunit, they give rise to functional receptors that differ in maximal responses to 5-HT, and thus modulate 5-HT3 receptor's pharmacological profile. HTR3A and HTR3E polymorphisms have been shown to remarkably up-regulate the expression of 5-HT3 receptors, which have been proved to cause the gastric functional disorders including emesis, eating disorders and IBS-D. 215 -349815 cd19014 LGIC_ECD_nAChR_A1 extracellular domain of nicotinic acetylcholine receptor subunit alpha 1 (CHRNA1). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 1 (alpha1), encoded by the CHRNA1 gene. These muscle type nicotinic subunits form heteropentamers with other nAChR subunits, most broadly expressed as combination of two alpha1, beta1, delta, and epsilon subunits in mature muscles, and of two alpha1, beta1, delta, and gamma in embryonic cells. The alpha1 subunit in human nAChR is the primary target of Myasthenia gravis antibodies that disrupt communication between the nervous system and the muscle, causing chronic muscle weakness. 210 -349816 cd19015 LGIC_ECD_nAChR_A2 extracellular domain of nicotinic acetylcholine receptor subunit alpha 2 (CHRNA2). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 2 (alpha2), encoded by the CHRNA2 gene. It is specifically expressed in medial subpallium-derived amygdalar nuclei from early developmental stages to adult. This subunit is incorporated in heteropentameric neuronal nAChRs mainly with beta2 or beta4 subunits and, along with the alpha4 and alpha7, is one of the main nAChR subunits expressed in primate brain. In Xenopus laevis oocytes, when alpha2 is co-expressed with the beta2 subunit, two subtypes of alpha2beta2 nAChR are formed with either low or high ACh sensitivity. Mouse mutation studies show that alpha2 subunits in the nAChRs influence hippocampus-dependent learning and memory as well as CA1 synaptic plasticity in adolescent mice. 207 -349817 cd19016 LGIC_ECD_nAChR_A3 extracellular domain of nicotinic acetylcholine receptor subunit alpha 3 (CHRNA3). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 3 (alpha3), encoded by the CHRNA3 gene, and likely plays a role in neurotransmission. The alpha3 subunit is expressed in the aorta and macrophages, and may play a regulatory role in the process of vascular inflammation. One of the most broadly expressed subtype is the alpha3beta4 nAChR, also known as the ganglion-type nicotinic receptor, located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability. The exact pentameric stochiometry of alpha3beta4 receptor is not known and functional assemblies with varying subunit stoichiometries are possible. Alpha4 plays a pivotal role in regulating the inflammatory responses in endothelial cells and macrophages, via mechanisms involving the modulations of multiple cell signaling pathways. Polymorphisms in this gene (CHRNA3) have been associated with an increased risk of smoking initiation and an increased susceptibility to lung cancer. 207 -349818 cd19017 LGIC_ECD_nAChR_A4 extracellular domain of neuronal acetylcholine receptor subunit alpha 4 (CHRNA4). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 4 (alpha4), encoded by the CHRNA4 gene. Alpha4 forms a functional nAChR by interacting with either nAChR beta2 or beta4 subunits. Alpha4beta2, the major heteropentameric nAChR in the brain, exists in two isoforms, (alpha4)3(beta2)2 and (alpha4)2(beta2)3, with the latter believed to constitute the majority of alpha4beta2 nAChR in the cortex. Both isoforms contain two canonical alpha4:beta2 ACh-binding sites with either low or high ACh sensitivity. This protein is an integral membrane receptor subunit that can interact with either nAChR beta-2 or nAChR beta-4 to form a functional receptor. Mutations in this gene (CHRNA4) cause nocturnal frontal lobe epilepsy type 1. Polymorphisms in this gene may provide protection against nicotine addiction. 181 -349819 cd19018 LGIC_ECD_nAChR_A5 extracellular domain of nicotinic acetylcholine receptor subunit alpha 5 (CHRNA5). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 5 (alpha5), encoded by the CHRNA5 gene, which is part of the CHRNA5/A3/B4 gene cluster. Polymorphisms in this gene cluster have been identified as risk factors for nicotine dependence, lung cancer, chronic obstructive pulmonary disease, alcoholism, and peripheral arterial disease. A loss-of-function polymorphism in CHRNA5 is strongly linked to nicotine abuse and schizophrenia; the alpha5 nAChR subunit is strategically situated in the prefrontal cortex (PFC), where a loss-of-function in this subunit may contribute to cognitive disruptions in both disorders. Alpha5 forms heteropentamers with alpha3beta2 or alpha3beta4 nAChRs which increases the calcium permeability of the resulting receptors possibly playing significant roles in the initiation of ACh-induced signaling cascades under normal and pathological condition. Acetylcholine (ACh) release and signaling via alpha4/beta2 nAChR subunits plays a central role in the control of attention, but a subset of these oligomers also contains alpha5 subunit. A strong association is seen between a CHRNA5 polymorphism and the risk of lung cancer, especially in smokers. 207 -349820 cd19019 LGIC_ECD_nAChR_A6 extracellular domain of nicotinic acetylcholine receptor subunit alpha 6 (CHRNA6). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 6 (alpha6), encoded by the CHRNA6 gene. Human (alpha6beta2)(alpha4beta2)3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. In xenopus oocytes, data show efficient expression of (alpha6beta2)2beta3 AChR subunits with only small changes in alpha6 subunits, while not altering AChR pharmacology or channel structure. Alternatively spliced transcript variants have been observed for this gene. Single nucleotide polymorphisms in this gene have been associated with both nicotine and alcohol dependence. CHRNA6 has a cellular expression signature for retinal ganglion cells with high correlation to Thy1, a known marker, and is preferentially expressed by retinal ganglion cells (RGCs) in the young and adult mouse retina and expression is reduced in glaucoma. A genetic variant in CHRNB3#CHRNA6 cluster is associated with esophageal adenocarcinoma. 181 -349821 cd19020 LGIC_ECD_nAChR_A7 extracellular domain of neuronal acetylcholine receptor subunit alpha 7 (CHRNA7). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 7 (alpha7), encoded by the CHRNA7 gene. Alpha7 subunits form a homo-pentameric channel, displays marked permeability to calcium ions and is a major component of brain nicotinic receptors that are blocked by, and highly sensitive to, alpha-bungarotoxin. This protein is ubiquitously expressed in both the central nervous system and in the periphery, in several tissues, including adrenal, small intestine, testis, and stomach. CHRNA7 is located in a region identified as a major susceptibility locus for juvenile myoclonic epilepsy and a chromosomal location involved in the genetic transmission of schizophrenia. It is also genetically linked to other disorders with cognitive deficits, including bipolar disorder, ADHD, Alzheimer's disease, and Rett syndrome. An evolutionarily recent partial duplication of CHRNA7 on chromosome 15 forms a new gene, CHRFAM7A or FAM7A, which encodes the protein dup-alpha7. This protein assembles with alpha7 subunits, results in fewer binding sites and is a dominant negative regulator of alpha7 nAChR function. 180 -349822 cd19021 LGIC_ECD_nAChR_A7L extracellular domain of neuronal acetylcholine receptor subunit alpha-7-like. This family contains the extracellular domain of nicotinic acetylcholine receptor (nAChR), a member of the pentameric "Cys-loop" superfamily of transmitter-gated ion channels. nAChR is found in high concentrations at the nerve-muscle synapse, where it mediates fast chemical transmission of electrical signals in response to the endogenous neurotransmitter acetylcholine (ACh) released from the nerve terminal into the synaptic cleft. Thus far, seventeen nAChR subunits have been identified, including ten alpha subunits, four beta subunits and one gamma, delta, and epsilon subunit each, all found on the cell membrane that non-selectively conducts cations (Na+, K+, Ca++). These nAChR subunits combine in several different ways to form functional nAChR subtypes which are broadly categorized as either muscle subtype located at the neuromuscular junction or neuronal subtype that are found on neurons and on other cell types throughout the body. The muscle type of nAChRs are formed by the alpha1, beta1, gamma, delta, and epsilon subunits while the neuronal type are composed of nine alpha subunits and three beta subunits, which combine in various permutations and combinations to form functional receptors. Among various subtypes of neuronal nAChRs, the homomeric alpha7 and the heteromeric alpha4beta2 receptors are the main subtypes widely distributed in the brain and implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. 179 -349823 cd19022 LGIC_ECD_nAChR_A9 extracellular domain of neuronal acetylcholine receptor subunit alpha 9 (CHRNA9). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 9 (alpha9), encoded by the CHRNA9 gene. This protein is involved in cochlea hair cell development and is also expressed in the outer hair cells (OHCs) of the adult cochlea as well as in keratinocytes, the pituitary gland, B-cells, and T-cells. Mammalian alpha9 subunits can form functional homomeric alpha9 receptors as well as the heteromeric alpha9alpha10 receptors, the latter being atypical since the heteromeric alpha9alpha10 receptor is composed only of alpha subunits compared to nAChRs typically assembled from alpha and beta subunits. A stoichiometry of (alpha9)2(alpha10)3 has been determined for the rat recombinant receptor. The alpha9alpha10 nAChR is an important therapeutic target for pain; selective block of alpha9alpha10 nicotinic acetylcholine receptors by the conotoxin RgIA has been shown to be analgesic in an animal model of nerve injury pain, and accelerates recovery of nerve function after injury, possibly through immune/inflammatory-mediated mechanisms. CHRNA9 polymorphisms are associated with non-small cell lung cancer, and effect of a particular SNP (rs73229797) and passive smoking exposure on risk of breast malignancy has been observed. 207 -349824 cd19023 LGIC_ECD_nAChR_A10 extracellular domain of neuronal acetylcholine receptor subunit alpha 10 (CHRNA10). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha 10 (alpha10), encoded by the CHRNA10 gene. This protein is involved in cochlea hair cell development and is also expressed in the outer hair cells (OHCs) of the adult cochlea as well as in keratinocytes, the pituitary gland, B-cells, and T-cells. Unlike alpha9 nAChR subunits, alpha10 subunits do not generate functional channels when expressed heterologously, suggesting that alpha10 might serve as a structural subunit, much like a beta subunit of heteromeric receptors, providing only complementary components to the agonist binding site. Mammalian alpha10 subunits can form functional heteromeric alpha9alpha10 receptors, an atypical heteromeric receptor since it is composed only of alpha subunits compared to nAChRs typically assembled from alpha and beta subunits. A stoichiometry of (alpha9)2(alpha10)3 has been determined for the rat recombinant receptor. The alpha9alpha10 nAChR is an important therapeutic target for pain; selective block of alpha9alpha10 nicotinic acetylcholine receptors by the conotoxin RgIA has been shown to be analgesic in an animal model of nerve injury pain, and accelerates recovery of nerve function after injury, possibly through immune/inflammatory-mediated mechanisms. 181 -349825 cd19024 LGIC_ECD_nAChR_B1 extracellular domain of nicotinic acetylcholine receptor subunit beta 1 (CHRNB1). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit beta 1 (beta1), encoded by the CHRNB1 gene. It is a muscle type subunit found predominantly in the neuromuscular junction (NMJ), but also in other tissues and cell lines such as adrenal glands, carcinomas, brain, and lung. Simultaneous mRNA and protein expression of beta1 nAChR subunit is present in human placenta and skeletal muscle. The beta1 nAChR subunit forms a heteropentamer with either (alpha1)2, gamma and delta subunits in embryonic type or (alpha1)2, epsilon and delta subunits in adult type receptors. nAChRs containing beta1 subunits have been attributed to efficient clustering and anchoring of the receptors to the cytoskeleton which is important for formation of synapses in the NMJ. Mutations in the transmembrane domain region of this gene are associated with slow-channel congenital myasthenic syndrome (CMS). 213 -349826 cd19025 LGIC_ECD_nAChR_B2 extracellular domain of nicotinic acetylcholine receptor subunit beta 2 (CHRNB2). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit beta 2 (beta2), encoded by the CHRNB2 gene. The most abundant nicotinic subtype in the human brain is alpha4beta2 receptor which is known to assemble in two functional subunit stoichiometries, (alpha4)3(beta2)2 and (alpha4)2(beta2)3, the latter having a much higher affinity for both acetylcholine and nicotine. This subtype is implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism, and neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, pharmacological ligands targeting this subtype have been researched and developed as a treatment approach implicated in these diseases. They include agonists such as varenicline and cytisine used as smoking cessation aids, as well as positive allosteric modulators (PAMs) such as desformylflustrabromine (dFBr), which are ligands that bind to nicotinic receptors at sites other than the orthosteric site where acetylcholine binds, and are not able to act as agonists on nAChR. 204 -349827 cd19026 LGIC_ECD_nAChR_B3 extracellular domain of nicotinic acetylcholine receptor subunit beta 3 (CHRNB3). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit beta 3 (beta3), encoded by the CHRNB3 gene. CHRNB3 polymorphisms have been reported to potentially affect nicotine-induced upregulation of nicotinic and to be associated with disorders such as schizophrenia, autism, and cancer. Beta3 subunit is depleted in the striatum of Parkinson's disease patients. Rare variants in CHRNB3 are also implicated in risk for alcohol and cocaine dependence and independently associated with bipolar disorder. Human alpha6beta2beta3* (* indicating possible additional assembly partners) nAChRs on dopaminergic neurons are important targets for drugs to treat nicotine addiction and Parkinson's disease; (alpha6beta2)(alpha4beta2)beta3 nAChR is essential for addiction to nicotine and a target for drug development for smoking cessation. 179 -349828 cd19027 LGIC_ECD_nAChR_B4 extracellular domain of nicotinic acetylcholine receptor subunit beta 4 (CHRNB4). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit beta 4 (beta4), encoded by the CHRNB4 gene and ubiquitously expressed on lung epithelial cells. The cluster of human neuronal nicotinic receptor gene CHRNA5-CHRNA3-CHRNB4 is related to drug-related behaviors and the development of lung cancer. One of the most broadly expressed subtype is the alpha-3 beta-4 nAChR, also known as the ganglion-type nicotinic receptor, located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or pre-synaptic excitation, mainly by increased Na+ and K+ permeability. Beta4 forms heteromeric nAchRs to modulate receptor affinity for nicotine, but the exact pentameric stochiometry of alpha3beta4 receptor is not known; functional assemblies with varying subunit stoichiometries are possible. 178 -349829 cd19028 LGIC_ECD_nAChR_D extracellular domain of nicotinic acetylcholine receptor subunit delta (CHRND). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit delta (delta), encoded by the CHRND gene and found in the muscle. Delta nAChR subunit forms a heteropentamer with either (alpha1)2, beta and gamma subunits in embryonic type or (alpha1)2, beta and epsilon subunits in adult type receptors. Defects in this gene are a cause of multiple pterygium syndrome lethal type (MUPSL), congenital myasthenic syndrome slow-channel type (SCCMS), and congenital myasthenic syndrome fast-channel type (FCCMS). The slow-channel congenital myasthenic syndromes (SCCMS) are caused by prolonged opening episodes of AChR due to dominant gain-of-function mutations in the transmembrane regions of the heteropentamer. These mutations produce an increase in the channel opening rate, a decrease in the channel closing rate, or an increase in the affinity of ACh for the AChR, resulting in the stabilization of the open state or the destabilization of the closed state of the AChR. 221 -349830 cd19029 LGIC_ECD_nAChR_G extracellular domain of nicotinic acetylcholine receptor subunit gamma (CHRNG). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit gamma (gamma), encoded by the CHRNG gene expressed during early fetal development, and replaced by the epsilon subunit in the adult. The gamma subunit forms a heteropentamer with (alpha1)2, beta, and delta and plays a role in neuromuscular organogenesis and ligand binding. Disruption of gamma subunit expression prevents the correct localization of the receptor in cell membranes. Mutations in CHRNG may cause the non-lethal Escobar variant (EVMPS) and lethal form (LMPS) of multiple pterygium syndrome (MPS), a condition characterized by prenatal growth failure with pterygium and akinesia leading to muscle weakness and severe congenital contractures, as well as scoliosis. Muscle-type acetylcholine receptor is the major antigen in the autoimmune disease myasthenia gravis. 193 -349831 cd19030 LGIC_ECD_nAChR_E extracellular domain of nicotinic acetylcholine receptor subunit epsilon (CHRNE). This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit epsilon (epsilon), encoded by the CHRNE gene and found in adult skeletal muscle. Epsilon subunit forms a heteropentamer with (alpha1)2, beta and delta after birth, replacing the gamma subunit seen in embryonic receptors. The adult-type epsilon-AChR has a higher conductance and a shorter open time compared to embryonic gamma-AChR and the open channel is non-selectively cation permeable. Mutations of the CHRNE gene are the most common causes of congenital myasthenic syndrome (CMS), most of which are autosomal recessive loss-of-function mutations, resulting in endplate AChR deficiency. A highly fatal fast-channel syndrome is caused by AChR epsilon subunit mutation (Trp to Arg; changing environment from anionic to cationic) at the agonist binding site at the alpha/epsilon interface of the receptor, thus disrupting agonist binding affinity and gating efficiency. 191 -349832 cd19031 LGIC_ECD_nAChR_proto_alpha-like extracellular domain of nicotinic acetylcholine receptor subunit alpha-like found in protostomia. This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit alpha-like in organisms that include arthropods, mollusks, annelid worms, and flat worms, and have their cholinergic system limited to the central nervous system. C. elegans genome encodes 29 acetylcholine receptor subunits, of which the levamisole-sensitive receptor (L-AChR) alpha-subunits, UNC-38, UNC-63, and LEV-8, included in this subfamily, form heteromers with the two non-alpha (also known as beta-like) subunits, UNC-29 and LEV-1. This receptor functions as the main excitatory postsynaptic receptor at neuromuscular junctions, indicating that many are expressed in neurons. Also included is the nicotinic alpha subunit MARA1 (Manduca ACh Receptor Alpha 1) which is expressed in Ca2+ responding neurons and contributes to the nicotinic responses in the neurons. In insects, the receptors supply fast synaptic excitatory transmission and represent a major target for several insecticides. In Drosophila, ten exclusively neuronal nAChRs have been identified, Dalpha1-Dalpha7 and Dbeta1-Dbeta3, and various combinations of these subunits and mutations are key to nAChR function. Alpha5 subunit is involved in alpha-bungarotoxin sensitivity while the alpha6 subunit is essential for the insecticidal effect of spinosad. nAChR agonists acetylcholine, nicotine, and neonicotinoids stimulate dopamine release in Drosophila larval ventral nerve cord and mutations in nAChR subunits affect how insecticides stimulate dopamine release. 222 -349833 cd19032 LGIC_ECD_nAChR_proto_beta-like extracellular domain of nicotinic acetylcholine receptor subunit beta-like found in protostomia. This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit beta-like in organisms that include arthropods, mollusks, annelid worms, and flat worms, and have their cholinergic system limited to the central nervous system. C. elegans genome encodes 29 acetylcholine receptor subunits, of which the levamisole-sensitive receptor alpha-subunits (L-AChR), UNC-38, UNC-63, and LEV-8, form heteromers with the two non-alpha (also known as beta-like) subunits, UNC-29 and LEV-1 found in this subfamily. This receptor functions as the main excitatory postsynaptic receptor at neuromuscular junctions, indicating that many are expressed in neurons. In insects, the receptors supply fast synaptic excitatory transmission and represent a major target for several insecticides. In Drosophila, ten exclusively neuronal nAChR subunits have been identified, Dalpha1-Dalpha7 and Dbeta1-Dbeta3, and various combinations of these subunits and mutations are key to nAChR function. Dbeta1 subunits in dopaminergic neurons play a role in acute locomotor hyperactivity caused by nicotine in male Drosophila. Mutations of Dbeta2 or Dalpha1 nAChR subunits in Drosophila strains have significantly lower neonicotinoid-stimulated release, but no changes in nicotine-stimulated release; they are highly resistant to the neonicotinoids nitenpyram and imidacloprid. This family also includes a novel nAChR found in Aplysia bag cell neurons (neuroendocrine cells that control reproduction) which is a cholinergic ionotropic receptor that is both, nicotine insensitive and acetylcholine sensitive. 208 -349834 cd19033 LGIC_ECD_nAChR_proto-like nicotinic acetylcholine receptor (nAChR) subunit extracellular domain in molluscs and annelids. This subfamily contains the extracellular domain of nicotinic acetylcholine receptor subunit found in molluscs, including several Lymnaea nAChRs, and annelids that are mostly uncharacterized. To date, 12 Lymnaea nAChRs have been identified which can be subdivided in two subtypes according to the residues that may be contributing to the selectivity of ion conductance. Phylogenetic analysis of the nAChR gene sequences suggests that anionic nAChRs in molluscs probably evolved from cationic ancestors through amino acid substitutions in the ion channel pore which is a mechanism different from acetylcholine-gated channels in other invertebrates. 183 -349835 cd19034 LGIC_ECD_GABAAR_A1 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-1 (GABAAR-A1 or GABRA1). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-1 (GABAAR-A1), a protein that is encoded by the GABRA1 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-1 subunits form heteropentamers with other GABAAR subunits, most broadly expressed as combination of two alpha1, beta1, gamma. Alpha1, beta2, and gamma2 subunits are clustered on the same human chromosome and may be why alpha1beta2gamma2 receptors are one of the most abundant GABAA receptor isoforms in CNS neurons. Mutations in this gene cause familial juvenile myoclonic epilepsy, sporadic childhood absence epilepsy type 4, and idiopathic familial generalized epilepsy. Polymorphisms in GABRA1 are also significantly associated with schizophrenia. GABRA1 has also been associated with methamphetamine abuse. The GABRA1 receptor is the specific target of the z-drug class of nonbenzodiazepine hypnotic agents and is responsible for their hypnotic and hallucinogenic effects. 194 -349836 cd19035 LGIC_ECD_GABAAR_A2 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-2 (GABAAR-A2 or GABRA2). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-2 (GABAAR-A2), a protein that is encoded by the GABRA2 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-2 subunit forms heteropentamers with other GABAAR subunits, most broadly expressed as combination of alpha2beta3gamma2. The alpha-2 (GABRA2) subunit is found primarily in the forebrain and hippocampus, and is more confined to areas of the brain compared to other alpha subunits. GABRA2 increases the risk of anxiety, making it a target for treating behavioral disorders including alcohol dependence, and drug use. GABRA2 is a binding site for benzodiazepines (psychoactive drugs known to reduce anxiety), causing chloride channels to open, leading to the hyper-polarization of the membrane. Other anxiolytic drugs such as Diazepam bind this subunit to induce inhibitory effects. GABRA2 is associated with reward behavior when it activates the insula, the part of the cerebral cortex responsible for emotions. GABA alpha2 and/or alpha3 receptor subtypes are also involved in GABAergic modulation of prolactin secretion. 203 -349837 cd19036 LGIC_ECD_GABAAR_A3 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-3 (GABAAR-A3 or GABRA3). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-3 (GABAAR-A3), a protein that is encoded by the GABRA3 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-3 subunit forms heteropentamers with other GABAAR subunits, most broadly expressed as combination of alpha3betagamma2, typically found post-synaptically. Rare loss-of-function variants in GABRA3 have been shown to increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay, and dysmorphic features. GABRA3, normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression being inversely correlated with breast cancer survival. It activates the AKT pathway to promote breast cancer cell migration, invasion, and metastasis. GABRA3 promotes lymphatic metastasis in lung adenocarcinoma by mediating upregulation of matrix metalloproteinases, MMP-2 and MMP-9, through activation of the JNK/AP-1 signaling pathway. GABRA3 is overexpressed in human hepatocellular carcinoma growth and, with GABA, promotes the proliferation of cancer cells. 200 -349838 cd19037 LGIC_ECD_GABAAR_A4 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-4 (GABAAR-A4 or GABRA4). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-4 (GABAAR-A4), a protein that is encoded by the GABRA4 gene in humans, with biased expression in the brain and heart. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-4 subunit forms heteropentamers with other GABAAR subunits, most broadly expressed as combination of alpha2alpha4beta1gamma1, all four subunits existing on the same gene cluster. Alpha-4 is involved in the etiology of autism and eventually increases autism risk through interaction with the beta-1 (GABRB1) subunit. Polymorphism in GABRA4 may trigger migraine by ethanol, while another is associated to faster reaction times and with lower ethanol effects. A rare variant in GABRA4 may have modest physiological effect in autism spectrum disorder etiology. 199 -349839 cd19038 LGIC_ECD_GABAAR_A5 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-5 (GABAAR-A5 or GABRA5). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-5 (GABAAR-A5), a protein that is encoded by the GABRA5 gene in humans, with biased expression in the brain and heart. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-5 subunit forms heteropentamers with other GABAAR subunits, most broadly expressed as alpha5-beta-gamma2, and probably alpha5-beta3-gamma2, predominantly expressed in the hippocampus and localized extrasynaptically. These receptors have been demonstrated to play an important modulatory role in learning and memory processes, thus making them suitable targets for pharmacological intervention. Studies show that alpha5-containing GABAARs play an important part in tonic inhibition in hippocampal pyramidal neurons, and that these can also contribute to synaptic inhibition. Studies strongly suggest that amnesia is primarily mediated by alpha5-beta-gamma2. Polymorphisms in GABRA5 (and GABRA3) are linked to the susceptibility to panic disorder. A genetic association also exists between GABRA5 and bipolar affective disorder. 199 -349840 cd19039 LGIC_ECD_GABAAR_A6 extracellular domain of gamma-aminobutyric acid receptor subunit alpha-6 (GABAAR-A6 or GABRA6). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit alpha-6 (GABAAR-A6), a protein that is encoded by the GABRA6 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The alpha-6 subunit forms heteropentamers with other GABAAR subunits, most broadly expressed as alpha6-beta-gamma2 found extrasynaptically, alpha6-beta2/3-delta in the cerebellar granule cells and likely also forms alpha1-alpha6-beta-gamma/alpha1-alpha6-beta-delta. A GABRA6 mutation from Arg to Trp, has been identified as a susceptibility gene that may contribute to the pathogenesis of childhood absence epilepsy and cause neuronal disinhibition and increase in seizures via a reduction of alphabetagamma and alphabetadelta receptor function and expression. Polymorphism in the GABRA6 gene is associated with specific personality characteristics as well as a marked attenuation in hormonal and blood pressure responses to psychological stress. Alpha6-containing receptors lack high sensitivity to diazepam. 198 -349841 cd19040 LGIC_ECD_GABAAR_B1 extracellular domain of gamma-aminobutyric acid receptor subunit beta-1 (GABAAR-B1 or GABRB1). This family contains extracellular domain (ECD) of gamma-aminobutyric acid receptor beta-1 subunit, a protein that is encoded by the GABRB1 gene. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The beta-1 subunit forms heteropentamers with other GABAAR subunits, likely expressed as alpha-beta1-gamma/delta, mainly found in the brain. It is clustered on the chromosome with genes encoding alpha 4, alpha 2, and gamma 1 subunits of the GABAAR. GABRB1 expression is altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression, and bipolar disorder. Mutations in the GABRB1 gene promote alcohol consumption through increased tonic inhibition. Epigenetic control of gene expression may affect the expression of GABRB1 and disrupt inhibitory synaptic transmission during embryonic development. The GABRB1 gene is also associated with thalamus volume and modulates the association between thalamus volume and intelligence. 182 -349842 cd19041 LGIC_ECD_GABAAR_B2 extracellular domain of gamma-aminobutyric acid receptor subunit beta-2 (GABAAR-B2 or GABRB2). This family contains extracellular domain (ECD) of gamma-aminobutyric acid receptor beta-2 subunit, a protein that is encoded by the GABRB2 gene. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The beta-2 subunit forms heteropentamers with other GABAAR subunits, with alpha1-beta2-gamma2 subtype being the most prevalent isoform (approximately 50%-60% of all GABAARs), and are expressed in almost all regions of the brain. It also assembles less abundantly as alpha4beta2/3delta and alpha6beta2/3delta. Mutations or genetic variations of the genes encoding the GABRB2 and GABRB3 have been associated with human epilepsy, both with and without febrile seizures. Mutations in GABRB2, and GABRB3 have been associated with infantile spasms and Lennox-Gastaut syndrome. A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy, a disease with a devastating prognosis, characterized by neonatal onset of seizures. Another de novo heterozygous missense variant in exon 4 of GABRB2 is associated with intellectual disability and epilepsy. GABRB2 plays important tumorigenic functions and acts as a novel oncogene in papillary thyroid carcinoma (PTC). 182 -349843 cd19042 LGIC_ECD_GABAAR_B3 extracellular domain of gamma-aminobutyric acid receptor subunit beta-3 (GABAAR-B3 or GABRB3). This family contains extracellular domain (ECD) of gamma-aminobutyric acid receptor beta-3 subunit, a protein that is encoded by the GABRB3 gene. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The beta-3 subunit forms heteropentamers with other GABAAR subunits, with alpha2-beta3-gamma2 and alpha3-beta3-gamma2 subtypes highly enriched in hippocampal pyramidal neurons and cholinergic neurons of the basal forebrain, respectively. Other heteromers include alpha1-beta3-gamma2 and alpha5-beta3-gamma2. GABRB3 mutations are likely associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism. GABRB3 might be associated with heroin dependence, and increased expression possibly contributing to the pathogenesis of heroin dependence. This gene may also be associated with the pathogenesis of other disorders such as Angelman syndrome, Prader-Willi syndrome, nonsyndromic orofacial clefts, schizophrenia, and autism. 183 -349844 cd19043 LGIC_ECD_GABAAR_G1 extracellular domain of gamma-aminobutyric acid receptor subunit gamma-1 (GABAAR-G1 or GABRG1). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit gamma-1 (GABAAR-G1), a protein that is encoded by the GABRG1 gene in humans, clustered with the alpha2 gene GABRA2, which is associated with alcohol dependence. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The gamma-1 subunit forms heteropentamers with other GABAAR subunits, likely expressed as combination of alpha1/2-beta-gamma1 subunits. A variant in GABRG1 shows the strongest statistical evidence of association of recovery from eating disorders. Studies show that upregulating or preserving GABAA gamma1/3 and gamma2 receptors may protect neurons against neurofibrillary pathology in Alzheimer's disease. 182 -349845 cd19044 LGIC_ECD_GABAAR_G2 extracellular domain of gamma-aminobutyric acid receptor subunit gamma-2 (GABAAR-G2 or GABRG2). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit gamma-2 (GABAAR-G2), a protein that is encoded by the GABRG2 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The gamma-2 subunit forms heteropentamers with other GABAAR subunits, most prevalently expressed as alpha1-beta2-gamma2. The gamma2 subunit also coassembles with other alpha and beta variants in the brain, but these receptors are found in considerably less abundance and are restricted in their regional, e.g. the alpha2-beta3-gamma2 and alpha3-beta3-gamma2 subtypes are highly enriched in hippocampal pyramidal neurons and cholinergic neurons of the basal forebrain, respectively. Pathogenic missense and truncating variants in this gene have been associated with spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures, while a recurrent GABRG2 missense variant is associated with early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features, and vision/ocular issues. 184 -349846 cd19045 LGIC_ECD_GABAAR_G3 extracellular domain of gamma-aminobutyric acid receptor subunit gamma-3 (GABAAR-G3 or GABRG3). This family contains extracellular domain of gamma-aminobutyric acid receptor subunit gamma-3 (GABAAR-G3), a protein that is encoded by the GABRG3 gene in humans. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Upon gamma-aminobutyric acid (GABA) binding to the ligand binding site on the ECD, Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. The gamma-3 subunit forms heteropentamers with other GABAAR subunits, likely expressed as alpha1-beta3-gamma3. This subunit contains the benzodiazepine binding site. Polymorphisms in GABG3 show consistent evidence of alcohol dependence. 182 -349847 cd19046 LGIC_ECD_GABAAR_rho1 extracellular domain of gamma-aminobutyric acid receptor subunit rho-1 (GABA-rho1 or GABRR1). This family contains extracellular domain (ECD) of the rho subunit 1 of type-A gamma-aminobutyric acid receptor (GABAAR), encoded by the GABRR1 gene, expressed in many areas of the brain, but especially high in the retina. GABRR1 exists next to GABRR2 (encoding rho subunit 2) on the chromosome region thought to be associated with susceptibility for psychiatric disorders and epilepsy. Close proximity of the rho1 and rho2 subunit genes suggests that they emerged via a local duplication event. This subunit homo-oligomerizes to form GABAA-rho receptors (formerly classified as GABA-rho or GABAc receptor), but does not co-assemble with any of the classical GABAAR subunits. In humans, mutations in the GABRR1 gene may be responsible for some cases of autosomal recessive retinitis pigmentosa. Variation in GABRR1 is also associated with susceptibility to bipolar schizoaffective disorder, and may be associated with alcohol dependency. 186 -349848 cd19047 LGIC_ECD_GABAAR_rho2 extracellular domain of gamma-aminobutyric acid receptor subunit rho-2 (GABA-rho2 or GABRR2). This family contains extracellular domain (ECD) of the rho subunit 2 of type-A gamma-aminobutyric acid receptor (GABAAR), encoded by the GABRR2 gene which exists next to GABRR1 (encoding rho subunit 1) on the chromosome region thought to be associated with susceptibility for psychiatric disorders and epilepsy. Close proximity of the rho1 and rho2 subunit genes suggests that they emerged via a local duplication event. Rho1 is expressed in many areas of the brain, but especially high in the retina. This subunit homo-oligomerizes to form GABAA-rho receptors (formerly classified as GABA-rho or GABAc receptor), but does not co-assemble with any of the classical GABAAR subunits. In humans, mutations in the GABRR2 gene may be responsible for some cases of autosomal recessive retinitis pigmentosa. Variation in GABRR2 is also associated with susceptibility to bipolar schizoaffective disorder, as well as alcohol dependence and general cognitive ability. GABA-rho2 receptors expressed pre-synaptically in the spinal dorsal horn have been implicated in pain perception and identified as a novel target for analgesia. 186 -349849 cd19048 LGIC_ECD_GABAAR_rho3 extracellular domain of gamma-aminobutyric acid receptor subunit rho-3 (GABAA-rho3). This family contains extracellular domain (ECD) of the rho subunit 3 of type-A gamma-aminobutyric acid receptor (GABAAR), encoded by the GABRR3 gene which maps to a different chromosome to that of GABRR1 and GABRR2. While close proximity of the rho1 and rho2 subunit genes suggests that they emerged via a local duplication event, GABRR3 may have arisen by duplication of a GABRR1/GABRR2 progenitor. This subunit homo-oligomerizes to form GABAA-rho receptors (formerly classified as GABA-rho or GABAc receptor), but does not co-assemble with any of the classical GABAAR subunits. In humans, some individuals contain a variant that is predicted to inactivate this gene product. 186 -349851 cd19049 LGIC_TM_anion transmembrane domain of anionic Cys-loop neurotransmitter-gated ion channels, includes GABAAR, GlyR and GluCl. This family contains transmembrane domain of type-A gamma-aminobutyric acid receptor (GABAAR) as well as glycine receptor (GlyR) subunits. Thus far, there are 18 vertebrate receptor subunits categorized in 7 families: alpha1-6, beta1-4, gamma1-4, delta, epsilon, theta, rho, and pi. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GlyR, with a similar structure as GABAAR, is concentrated in the brain stem and spinal cord in the CNS and can be activated by glycine, beta-alanine, or taurine. It is selectively blocked by the high-affinity competitive antagonist strychnine, which causes death by asphyxiation. An autosomal dominant R271Q mutation in GLRA1 causes hyperekplexia (Startle disease or Stiff Baby Syndrome) by decreasing glycine sensitivity. 111 -349852 cd19050 LGIC_TM_bact transmembrane domain of prokaryotic pentameric ligand-gated ion channels (pLGIC). This family contains transmembrane (TM) domain of bacterial pentameric ligand-gated ion channels (pLGICs) including ones from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC). The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. Studies show that GLIC activation is inhibited by most general anaesthetics at clinical concentrations, including xenon which has been used in clinical practice as a potent gaseous anesthetic for decades. Xenon binding sites have been identified in three distinct regions of the TMD: in a large intra-subunit cavity, in the pore, and at the interface between adjacent subunits. Propofol, the drug used for induction and maintenance of general anesthesia, and desflurane, a negative allosteric modulator of GLIC bind at the entrance in the intra-subunit cavity. Alzheimer's drug memantine, which blocks ion conduction at vertebrate pLGICs by plugging the channel pore, has been shown to have similar potency in ELIC. 119 -349853 cd19051 LGIC_TM_cation transmembrane domain of Cys-loop neurotransmitter-gated ion channels, includes 5HT3, nAChR, and ZAC. This superfamily contains the transmembrane (TM) domain of cationic Cys-loop neurotransmitter-gated ion channels, which include nicotinic acetylcholine receptor (nAChR), serotonin 5-hydroxytryptamine receptor (5-HT3), and zinc-activated ligand-gated ion channel (ZAC) receptor. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. The ligand-gated ion channels (LGICs) in this family are found across metazoans and have close homologs in bacteria. They are vital for communication throughout the nervous system. nAChR is a non-selective cation channel that is permeable to Na+ and K+, and some subunit combinations are also permeable to Ca2+. Na+ enters and K+ exits to allow net flow of positively charged ions inward. 5-HT3, a cation-selective channel, binds serotonin and is permeable to Na+, K+, and Ca2+. It mediates neuronal depolarization and excitation within the central and peripheral nervous systems. ZAC forms an ion channel gated by Zn2+, Cu2+, and H+ and is non-selectively permeable to monovalent cations. However, the role of ZAC in Zn2+, Cu2+, and H+ signaling require is as yet unknown. 112 -349854 cd19052 LGIC_TM_GABAAR_alpha transmembrane domain of alpha subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane domain of type-A gamma-aminobutyric acid receptor (GABAAR) as well as glycine receptor (GlyR) subunits. Thus far, there are 18 vertebrate receptor subunits categorized in 7 families: alpha1-6, beta1-4, gamma1-4, delta, epsilon, theta, rho, and pi. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GlyR, with a similar structure as GABAAR, is concentrated in the brain stem and spinal cord in the CNS and can be activated by glycine, beta-alanine or taurine. It is selectively blocked by the high-affinity competitive antagonist strychnine, which causes death by asphyxiation. An autosomal dominant R271Q mutation in GLRA1 causes hyperekplexia (Startle disease or Stiff Baby Syndrome) by decreasing glycine sensitivity. 111 -349855 cd19053 LGIC_TM_GABAAR_beta transmembrane domain of beta subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the beta subunit of type-A beta-aminobutyric acid receptor (GABAAR), which includes beta1-beta4 in vertebrates. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. Mutations or genetic variations of the genes encoding beta2 (GABRB2) and beta3 (GABRB3) have been associated with human epilepsy, both with and without febrile seizures. Mutations in GABRB2, and GABRB3 have been associated with infantile spasms and Lennox-Gastaut syndrome. A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy, a disease with a devastating prognosis, characterized by neonatal onset of seizures. Another de novo heterozygous missense variant in exon 4 of GABRB2 is associated with intellectual disability and epilepsy. Mutations in the GABRB1 gene encoding beta1 promote alcohol consumption through increased tonic inhibition. 111 -349856 cd19054 LGIC_TM_GABAAR_gamma transmembrane domain of gamma subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the gamma subunit of type-A beta-aminobutyric acid receptor (GABAAR), which includes gamma1-gamma3 in vertebrates. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. Studies show upregulating or preserving GABAA gamma1/3 and gamma2 receptors may protect neurons against neurofibrillary pathology in Alzheimer's disease. Pathogenic missense and truncating variants in GABRG2 have been associated with spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. Polymorphisms in GABG3 show consistent evidence of alcohol dependence. 111 -349857 cd19055 LGIC_TM_GABAAR_delta transmembrane domain of delta subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the delta subunit of type-A gamma-aminobutyric acid receptor (GABAAR), encoded by the gene GABRD. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. Receptors containing the delta subunit (GABRD) are expressed exclusively extra-synaptically (in the cortex, hippocampus, thalamus, striatum, and cerebellum) and mediate tonic inhibition. Studies suggest that delta subunits form heteropentamers in similar stoichiometry and arrangement as alpha/beta/gamma receptors, with the delta subunit replacing the gamma subunit (2alpha:2beta:1delta), although other stoichiometries have also been detected. The delta subunit is flexible in its positioning in the pentameric complex, producing receptors with diverse pharmacological properties. Mutations in GABRD have been associated with susceptibility to generalized epilepsy with febrile seizures, type 5. GABRD gene may also be associated with childhood-onset mood disorders. 121 -349858 cd19056 LGIC_TM_GABAAR_theta transmembrane domain of theta subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the theta subunit of type-A gamma-aminobutyric acid receptor (GABAAR). The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit. Also, two autism spectrum disorder (ASD)-associated protein truncation variants have been identified in alpha 3 (GABRA3) and theta (GABRQ) genes. 118 -349859 cd19057 LGIC_TM_GABAAR_epsilon transmembrane domain of epsilon subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of type-A gamma-aminobutyric acid receptor (GABAAR) subunits as well as glycine receptor (GlyR). Thus far, there are 18 vertebrate receptor subunits categorized in 7 families: alpha1-6, beta1-4, gamma1-4, delta, epsilon, theta, rho, and pi. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GlyR, with a similar structure as GABAAR, is concentrated in the brain stem and spinal cord in the CNS and can be activated by glycine, beta-alanine, or taurine. It is selectively blocked by the high-affinity competitive antagonist strychnine, which causes death by asphyxiation. An autosomal dominant R271Q mutation in GLRA1 causes hyperekplexia (Startle disease or Stiff Baby Syndrome) by decreasing glycine sensitivity. 115 -349860 cd19058 LGIC_TM_GABAAR_pi transmembrane domain of pi subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the pi subunit of type-A gamma-aminobutyric acid receptor (GABAAR), encoded my the gene GABRP. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. GABRP is expressed mainly in non-neuronal tissues such as the mammary gland, prostate gland, lung, thymus, and uterus. It is also highly expressed in certain types of cancer such as basal-like breast cancer and pancreatic ductal adenocarcinoma. GABRP is involved in inhibitory synaptic transmission in the central nervous system. Its assembly with other GABAAR subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone. Studies suggest that polymorphisms in the GABRP gene may be associated with the susceptibility to systematic lupus erythematosus (SLE). 123 -349861 cd19059 LGIC_TM_GABAAR_rho transmembrane domain of rho subunits of type-A gamma-aminobutyric acid receptor (GABAAR). This family contains transmembrane (TM) domain of the rho subunit of type-A gamma-aminobutyric acid receptor (GABAAR), which includes rho1-3. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GABAAR is an anionic channel, mediating fast inhibitory synaptic transmission. Cl- ions are selectively conducted through the GABAAR pore, resulting in hyperpolarization of the neuron. GABAAR is the principal mediator of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signaling triggers hyperactive neurological disorders such as insomnia, anxiety, and epilepsy. These rho subunits homo-oligomerize to form GABAA-rho receptors (formerly classified as GABA-rho or GABAC receptor) but do not co-assemble with any of the classical GABAA subunits. They are especially high expression in the retina and their distinctive pharmacological properties are unique; they are not modulated by many GABAA receptor modulators such as barbiturates, benzodiazepines, and neuroactive steroids. In humans, mutations in the rho-1 and rho genes, GABRR1 and GABRR2, may be responsible for some cases of autosomal recessive retinitis pigmentosa. Variation in GABRR1 is also associated with susceptibility to bipolar schizoaffective disorder while a SNP in GABRR2 has been reported to show association with autism. 113 -349862 cd19060 LGIC_TM_GlyR_alpha transmembrane domain of alpha subunits of glycine receptor (GlyR). This family contains transmembrane (TM) domain of the alpha subunit of glycine receptor (GlyR or GLR) of the amino acid neurotransmitter glycine. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. GlyR has four known isoforms of the alpha-subunit (alpha1-4, encoded by GLRA1, GLRA2, GLRA3, GLRA4) that are essential to bind ligands and, along with the GlyR beta subunit, have been described to have a regionally and temporally controlled expression during development and maturation of the central nervous system (CNS). These alpha subunits are highly homologous but differ in their kinetic properties, temporal and regional expression and physiological functions. They can form functional chloride-permeable GlyR ion channels by forming homopentamers with 5 alpha subunits or heteropentamers with a combination of alpha and beta subunits, either a 2alpha-3beta or 3alpha-2beta stoichiometry. In human, mutations in glycine receptor alpha subunits cause disruption of GlyR surface expression or reduced ability of expressed GlyRs to conduct chloride ions. Mutations in GlyR alpha1 subunit leads to hyperekplexia, a rare neurological disorder characterized by neonatal hypertonia and exaggerated startle responses to unexpected stimuli, while mutations in GlyR alpha2 are known to cause cortical neuronal migration/autism spectrum disorder and in GlyR alpha3 to cause inflammatory pain sensitization/rhythmic breathing. GlyR alpha1 and alpha2 subunits have an important role in regulation of the excitatory-inhibitory balance, control of motor actions, modulation of sedative ethanol effects and probably regulation of ethanol preference and consumption. 120 -349863 cd19061 LGIC_TM_GlyR_beta transmembrane domain of beta subunits of glycine receptor (GlyR). This family contains transmembrane (TM) domain of the beta subunit of glycine receptor (GlyR or GLR) of the amino acid neurotransmitter glycine, encoded by GLRB gene. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. These subunits form heteropentamers with a combination of alpha and beta subunits, either a 2alpha-3beta or 3alpha-2beta stoichiometry. While the alpha subunits contain binding sites for agonists and antagonists and are responsible for ion channel formation, the beta subunit displays structural and regulatory functions, such as GlyR clustering in synaptic locations by interaction between intracellular loop domains with the scaffolding protein gephyrin, and control of pharmacologic responses to agonist or allosteric modulators due in part to the presence of interfaces alpha/beta and beta/beta. GLRB gene mutations are associated with the neurological disorder hyperekplexia, a rare neurological disorder characterized by neonatal hypertonia and exaggerated startle responses to unexpected stimuli, as well as agoraphobic cognitions. 114 -349864 cd19062 LGIC_TM_GluCl transmembrane domain of glutamate gated chloride channel (GluCl). This family contains transmembrane (TM) domain of the glutamate-gated chloride channel (GluCl) found only in protostomia but are closely related to mammalian glycine receptors. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. These GluCl channels have several roles in these invertebrates, including controlling locomotion and feeding, and mediating sensory inputs into behavior. Comparison of the GluCl gene families between organisms shows that insect gene family is relatively simple, while that found in nematodes tends to be larger and more diverse. Glutamate is an inhibitory neurotransmitter that shapes the responses of projection neurons to olfactory stimuli in the Drosophila. GluCls are targeted by the macrocyclic lactone family of anthelmintics and pesticides in arthropods and nematodes, thus making the GluCls of considerable medical and economic importance. In Drosophila melanogaster, GluCl mediates sensitivity to the antiparasitic agents ivermectin and nodulisporic acid, suggesting that their drug target is the same throughout the Ecdysozoa. 116 -349865 cd19063 LGIC_TM_5-HT3 transmembrane domain of 5-hydroxytryptamine 3 (5-HT3) receptor. This family contains transmembrane (TM) domain of the serotonin 5-HT3 receptors. The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. The 5-HT3 channel is cation-selective and mediates neuronal depolarization and excitation within the central and peripheral nervous systems. Like other ligand gated ion channels, the 5-HT3 receptor consists of five subunits arranged around a central ion conducting pore, which is permeable to Na+, K+, and Ca2+ ions. Binding of the neurotransmitter 5-hydroxytryptamine (serotonin) to the 5-HT3 receptor opens the channel, which then leads to an excitatory response in neurons, and the rapidly activating, desensitizing, inward current is predominantly carried by Na+ and K+ ions. This receptor is most closely related by homology to the nicotinic acetylcholine receptor (nAChR). Five subunits have been identified for this family: 5-HT3A, 5-HT3B, 5-HT3C, 5-HT3D, and 5-HT3E, encoded by HTR3A-E genes. Only 5-HT3A subunits are able to form functional homomeric receptors, whereas the 5-HT3B, C, D, and E subunits form heteromeric receptors with 5-HT3A. Different receptor subtypes are important mediators of nausea and vomiting during chemotherapy, pregnancy, and following surgery, while some contribute to neuro-gastroenterologic disorders such irritable bowel syndrome (IBS) and eating disorders as well as co-morbid psychiatric conditions. 5-HT3 receptor antagonists are established treatments for emesis and IBS, and are beneficial in the treatment of psychiatric diseases. 121 -349866 cd19064 LGIC_TM_nAChR transmembrane domain of nicotinic acetylcholine receptor (nAChR). This family contains transmembrane (TM) domain of the nicotinic acetylcholine receptor (nAChR). The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. nAChR is found in high concentrations at the nerve-muscle synapse, where it mediates fast chemical transmission of electrical signals in response to the endogenous neurotransmitter acetylcholine (ACh) released from the nerve terminal into the synaptic cleft. Thus far, seventeen nAChR subunits have been identified, including ten alpha subunits, four beta subunits and one gamma, delta, and epsilon subunit each, all found on the cell membrane that non-selectively conducts cations (Na+, K+, Ca++). These nAChR subunits combine in several different ways to form functional nAChR subtypes which are broadly categorized as either muscle subtype located at the neuromuscular junction or neuronal subtype that are found on neurons and on other cell types throughout the body. The muscle type of nAChRs are formed by the alpha1, beta1, gamma, delta, and epsilon subunits while the neuronal type are composed of nine alpha subunits and three beta subunits, which combine in various permutations and combinations to form functional receptors. Among various subtypes of neuronal nAChRs, the homomeric alpha7 and the heteromeric alpha4beta2 receptors are the main subtypes widely distributed in the brain and implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Among subtypes of muscle nAChRs, the heteromeric subunits (alpha1)2, beta, gamma, and delta in fetal muscle, and the gamma subunit replaced by epsilon in adult muscle have been implicated in congenital myasthenic syndromes and multiple pterygium syndromes due to various mutations. This family also includes alpha- and beta-like nAChRs found in protostomia. 113 -349867 cd19065 LGIC_TM_ZAC transmembrane domain of zinc-activated ligand-gated ion channel. This family contains transmembrane (TM) domain of zinc-activated ligand-gated ion channel (ZAC). The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. ZAC displays low sequence similarity to other members in the superfamily, with closest matches to the human serotonin 5-HT3 receptor (5-HT3R) subunits 5-HT3A and 5-HT3B, and nAChR alpha7 subunits that exhibit approximately 15% amino acid sequence identity to ZAC. Expression of ZAC has been detected in human fetal whole brain, spinal cord, pancreas, placenta, prostate, thyroid, trachea, and stomach, as well as in adult hippocampus, striatum, amygdala, and thalamus. ZAC forms an ion channel gated by Zn2+, Cu2+, and H+, and is non-selectively permeable to monovalent cations. However, the role of ZAC in Zn2+, Cu2+, and H+ signaling is as yet unknown. 176 -350856 cd19165 HemeO heme oxygenase in eukaryotes and some bacteria. This subfamily contains heme oxygenase (HO, EC 1.14.14.18) found in eukaryotes as well as some proteobacteria, including cyanobacteria. Heme oxygenase (HO) catalyzes the rate limiting step in the degradation of heme to biliverdin in a multi-step reaction. HO is essential for recycling of iron from heme which is used as a substrate and cofactor for its own degradation to biliverdin, iron, and carbon monoxide. In vertebrates, HO plays a role in heme homeostasis and oxidative stress response, and cellular signaling in mammals that include isoforms HO-1, HO-2 and HO-3. HO-1 is ubiquitously expressed after induction while HO-2 expression is constitutive, mostly limited to certain organs, such as the brain, testes, and the vascular system. HO-3 is non-functional in humans, suggesting that the Hmox3 gene is a pseudogene derived from HO-2 transcripts. In higher plants and cyanobacteria, heme oxygenase is required for the synthesis of light-harvesting pigments, which contain tetrapyrrols derived from biliverdin. Candida albicans expresses a heme oxygenase that is required for the utilization of heme as a nutritional iron source, whereas Saccharomyces cerevisiae responds to iron deprivation by increasing Hmx1p transcription, which is controlled by the major iron-dependent transcription factor, Aft1p, and promotes both the re-utilization of heme iron and the regulation of heme-dependent transcription during periods of iron scarcity. In pathogenic bacteria, HO is part of a pathway for iron acquisition from host heme. In Leptospira interrogans, a pathogenic spirochete that causes leptospirosis, HO is required for iron utilization when hemoglobin is the sole iron source, thus making HO an interesting target for novel antimicrobial agents. HO shares tertiary structure similarity to methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1) and thiaminase II (EC 3.5.99.2), but shares little sequence homology. 205 -350857 cd19166 HemeO-bac heme oxygenase found in pathogenic bacteria. This subfamily contains bacterial heme oxygenase (HO, EC 1.14.14.18), where HO is part of a pathway for iron acquisition from host heme and heme products. Most of these proteins have yet to be characterized. HO catalyzes the rate limiting step in the degradation of heme to biliverdin in a multi-step reaction. HO is essential for recycling of iron from heme which is used as a substrate and cofactor for its own degradation to biliverdin, iron, and carbon monoxide. This family includes heme oxygenase (pa-HO) from Pseudomonas aeruginosa, an opportunistic pathogen that causes a variety of systemic infections, particularly in those afflicted with cystic fibrosis, as well as cancer and AIDS patients who are immunosuppressed. Pa-HO, expressed by the PigA gene, is critical for the acquisition of host iron since there is essentially no free iron in mammals, and is unusual since it hydroxylates heme predominantly at the delta-meso heme carbon, while all other well-studied HOs hydroxylate the alpha-meso carbon. Also included in this family is Neisseria meningitidis HO which is substantially different from the human HO, with the reaction product being ferric biliverdin IXalpha rather than reduced iron and free biliverdin IXalpha. HO shares tertiary structure similarity to methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1) and thiaminase II (EC 3.5.99.2), but shares little sequence homology. 182 -350858 cl00011 PLAT N/A. This domain is found in a variety of membrane or lipid associated proteins. It is called the PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain or LH2 (Lipoxygenase homology) domain. The known structure of pancreatic lipase shows this domain binds to procolipase pfam01114, which mediates membrane association. So it appears possible that this domain mediates membrane attachment via other protein binding partners. The structure of this domain is known for many members of the family and is composed of a beta sandwich. 0 -350859 cl00012 alpha_CA N/A. Carbonic anhydrase alpha, isozyme IX. Carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide in a two-step mechanism: a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide, followed by the regeneration of the active site by ionization of the zinc-bound water molecule and removal of a proton from the active site. They are ubiquitous enzymes involved in fundamental processes like photosynthesis, respiration, pH homeostasis and ion transport. There are three evolutionary distinct groups - alpha, beta and gamma carbonic anhydrases - which show no significant sequence identity or structural similarity. Alpha CAs are strictly monomeric enzymes. The zinc ion is complexed by three histidine residues. This sub-family comprises the membrane protein CA IX. CA IX is functionally implicated in tumor growth and survival. CA IX is mainly present in solid tumors and its expression in normal tissues is limited to the mucosa of alimentary tract. CA IX is a transmembrane protein with two extracellular domains: carbonic anhydrase and, a proteoglycan-like segment mediating cell-cell adhesion. There is evidence for an involvement of the MAPK pathway in the regulation of CA9 expression. 0 -350860 cl00013 Lyase_I_like Lyase class I_like superfamily: contains the lyase class I family, histidine ammonia-lyase and phenylalanine ammonia-lyase, which catalyze similar beta-elimination reactions. This domain is found at the C-terminus of argininosuccinate lyase. 0 -350861 cl00014 SORL N/A. This domain is found in the sulfur oxidation protein SoxY. It is closely related to the Desulfoferrodoxin family pfam01880. Dissimilatory oxidation of thiosulfate is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. The structure of this domain shows an Ig-like fold. 0 -350862 cl00015 nt_trans nucleotidyl transferase superfamily. Pantoate-beta-alanine ligase, also know as pantothenate synthase, (EC:6.3.2.1) catalyzes the formation of pantothenate from pantoate and alanine. 0 -350863 cl00016 Cyt_c_Oxidase_Vb N/A. cytochrome c oxidase subunit Vb 0 -320713 cl00017 Cyt_c_Oxidase_VIa N/A. cytochrome c oxidase subunit VI protein 0 -350864 cl00018 DSRD N/A. Most members of this family are small (approximately 36 amino acids) proteins that from homodimeric complexes. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulphur atoms This family has a similar fold to the rubredoxin metal binding domain. It is also found as the N-terminal domain of desulfoferrodoxin, see (pfam01880). 0 -320715 cl00019 Macro N/A. This domain is an ADP-ribose binding module. It is found in a number of otherwise unrelated proteins. It is found at the C-terminus of the macro-H2A histone protein. This domain is found in the non-structural proteins of several types of ssRNA viruses such as NSP3 from alphaviruses. This domain is also found on its own in a family of proteins from bacteria, archaebacteria and eukaryotes. 0 -350865 cl00020 GAT_1 Type 1 glutamine amidotransferase (GATase1)-like domain. This family captures members that are not found in pfam00310, pfam07685 and pfam13230. 0 -350866 cl00021 PTS_IIB_man N/A. PTS system N-acetylgalactosamine-specific transporter subunit IIB; Provisional 0 -320718 cl00022 YbaK_like N/A. This domain is found either on its own or in association with the tRNA synthetase class II core domain (pfam00587). It is involved in the tRNA editing of mis-charged tRNAs including Cys-tRNA(Pro), Cys-tRNA(Cys), Ala-tRNA(Pro). The structure of this domain shows a novel fold. 0 -350867 cl00025 PTS_IIA_man N/A. phosphotransferase mannnose-specific family component IIA; Provisional 0 -350868 cl00030 CH N/A. Spef is a region of sperm flagellar proteins. It probably exerts a role in spermatogenesis in that the protein is expressed predominantly in adult tissue. It is present in the tails of developing and epididymal sperm internal to the fibrous sheath and around the dense outer fibers of the sperm flagellum. The amino-terminal domain (residues 1-110) shows a possible calponin homology (CH) domain; however Spef does not bind actin directly under in vitro conditions, so the function of the amino-terminal calponin-like domain is unclear. Transcription aberrations leading to a truncated protein result in immotile sperm. 0 -320721 cl00031 ALBUMIN N/A. Albumin domain, contains five or six internal disulphide bonds; albuminoid superfamily includes alpha-fetoprotein which binds various cations, fatty acids and bilirubin; vitamin D-binding protein which binds to vitamin D, its metabolites, and fatty acids; alpha-albumin which binds water, cations (such as Ca2+, Na+ and K+), fatty acids, hormones, bilirubin and drugs; and afamin of which little is known; these belong to a multigene family with highly conserved intron/exon organization and encoded protein structures; evolutionary comparisons strongly support vitamin D-binding protein as the original gene in this group with subsequent local duplications generating the remaining genes in the cluster 0 -320722 cl00032 ANATO N/A. C3a, C4a and C5a anaphylatoxins are protein fragments generated enzymatically in serum during activation of complement molecules C3, C4, and C5. They induce smooth muscle contraction. These fragments are homologous to a three-fold repeat in fibulins. 0 -350869 cl00033 AP2 N/A. This 60 amino acid residue domain can bind to DNA and is found in transcription factor proteins. 0 -320724 cl00034 BBOX N/A. B-Box-type zinc finger; zinc binding domain (CHC3H2); often present in combination with other motifs, like RING zinc finger, NHL motif, coiled-coil or RFP domain in functionally unrelated proteins, most likely mediating protein-protein interaction. 0 -350870 cl00035 BIR N/A. BIR stands for 'Baculovirus Inhibitor of apoptosis protein Repeat'. It is found repeated in inhibitor of apoptosis proteins (IAPs), and in fact it is also known as IAP repeat. These domains characteristically have a number of invariant residues, including 3 conserved cysteines and one conserved histidine that coordinate a zinc ion. They are usually made up of 4-5 alpha helices and a three-stranded beta-sheet. BIR is also found in other proteins known as BIR-domain-containing proteins (BIRPs), such as Survivin. 0 -350871 cl00038 BRCT C-terminal domain of the breast cancer suppressor protein (BRCA1) and related domains. DNTT (EC 2.7.7.31), also termed terminal addition enzyme, or terminal deoxynucleotidyltransferase, or terminal transferase, is a template-independent DNA polymerase which catalyzes the random addition of deoxynucleoside 5'-triphosphate to the 3'-end of a DNA initiator. It is the addition of nucleotides at the junction (N region) of rearranged Ig heavy chain and T-cell receptor gene segments during the maturation of B- and T-cells. DNA nucleotidylexotransferase contains a BRCT domain. 0 -350872 cl00040 C1 N/A. This domain is also known as the Protein kinase C conserved region 1 (C1) domain. 0 -350873 cl00042 CASc N/A. Members of this family are asparaginyl peptidases. The blood fluke parasite Schistosoma mansoni has at least five Clan CA cysteine peptidases in its digestive tract including cathepsins B (2 isoforms), C, F and L. All have been recombinantly expressed as active enzymes, albeit in various stages of activation. In addition, a Clan CD peptidase, termed asparaginyl endopeptidase or 'legumain' has been identified. This has formerly been characterized as a 'haemoglobinase', but this term is probably incorrect. Two cDNAs have been described for Schistosoma mansoni legumain; one encodes an active enzyme whereas the active site cysteine residue encoded by the second cDNA is substituted by an asparagine residue. Both forms have been recombinantly expressed. 0 -350874 cl00046 ChtBD3 Chitin/cellulose binding domains of chitinase and related enzymes. This short domain is found in many different glycosyl hydrolase enzymes and is presumed to have a carbohydrate binding function. The domain has six aromatic groups that may be important for binding. 0 -350875 cl00047 CAP_ED N/A. Catabolite gene activator protein (CAP) is a prokaryotic homologue of eukaryotic cNMP-binding domains, present in ion channels, and cNMP-dependent kinases. 0 -294042 cl00049 CUB N/A. This is a family of hypothetical C. elegans proteins. The aligned region has no known function nor do any of the proteins which possess it. However, this domain is related to the CUB domain. 0 -350876 cl00050 CYCLIN N/A. Cyclins contain two domains of similar all-alpha fold, this family corresponds with the C-terminal domain of some cyclins including cyclin C and cyclin H. 0 -350877 cl00051 CysPc N/A. Calpain-like thiol protease family (peptidase family C2). Calcium activated neutral protease (large subunit). 0 -350878 cl00054 DSRM N/A. Sequences gathered for seed by HMM_iterative_training Putative motif shared by proteins that bind to dsRNA. At least some DSRM proteins seem to bind to specific RNA targets. Exemplified by Staufen, which is involved in localization of at least five different mRNAs in the early Drosophila embryo. Also by interferon-induced protein kinase in humans, which is part of the cellular response to dsRNA. 0 -320734 cl00055 MH1 N-terminal Mad Homology 1 (MH1) domain. The MH1 (MAD homology 1) domain is found at the amino terminus of MAD related proteins such as Smads. This domain is separated from the MH2 domain by a non-conserved linker region. The crystal structure of the MH1 domain shows that a highly conserved 11 residue beta hairpin is used to bind the DNA consensus sequence GNCN in the major groove, shown to be vital for the transcriptional activation of target genes. Not all examples of MH1 can bind to DNA however. Smad2 cannot bind DNA and has a large insertion within the hairpin that presumably abolishes DNA binding. A basic helix (H2) in MH1 with the nuclear localization signal KKLKK has been shown to be essential for Smad3 nuclear import. Smads also use the MH1 domain to interact with transcription factors such as Jun, TFE3, Sp1, and Runx. 0 -350879 cl00056 MH2 C-terminal Mad Homology 2 (MH2) domain. This is the MH2 (MAD homology 2) domain found at the carboxy terminus of MAD related proteins such as Smads. This domain is separated from the MH1 domain by a non-conserved linker region. The MH2 domain mediates interaction with a wide variety of proteins and provides specificity and selectivity to Smad function and also is critical for mediating interactions in Smad oligomers. Unlike MH1, MH2 does not bind DNA. The well-studied MH2 domain of Smad4 is composed of five alpha helices and three loops enclosing a beta sandwich. Smads are involved in the propagation of TGF-beta signals by direct association with the TGF-beta receptor kinase which phosphorylates the last two Ser of a conserved 'SSXS' motif located at the C-terminus of MH2. 0 -350880 cl00057 vWFA N/A. This is a uncharacterized domain found in eukaryotes and viruses. 0 -350881 cl00060 FGF N/A. Fibroblast growth factors are a family of proteins involved in growth and differentiation in a wide range of contexts. They are found in a wide range of organisms, from nematodes to humans. Most share an internal core region of high similarity, conserved residues in which are involved in binding with their receptors. On binding, they cause dimerization of their tyrosine kinase receptors leading to intracellular signalling. There are currently four known tyrosine kinase receptors for fibroblast growth factors. These receptors can each bind several different members of this family. Members of this family have a beta trefoil structure. Most have N-terminal signal peptides and are secreted. A few lack signal sequences but are secreted anyway; still others also lack the signal peptide but are found on the cell surface and within the extracellular matrix. A third group remain intracellular. They have central roles in development, regulating cell proliferation, migration and differentiation. On the other hand, they are important in tissue repair following injury in adult organisms. 0 -350882 cl00061 FH N/A. FORKHEAD, also known as a "winged helix" 0 -350883 cl00062 FHA N/A. The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. 0 -350884 cl00063 FN1 N/A. One of three types of internal repeat within the plasma protein, fibronectin. Found also in coagulation factor XII, HGF activator and tissue-type plasminogen activator. In t-PA and fibronectin, this domain type contributes to fibrin-binding. 0 -350885 cl00064 ZnMc N/A. This is a family of uncharacterized proteins that carry the highly characteristic met-zincin mmotif HExxHxxGxxH, the extended zinc-binding domain of metallopeptidases. 0 -350886 cl00066 FU N/A. Furin-like repeats. Cysteine rich region. Exact function of the domain is not known. Furin is a serine-kinase dependent proprotein processor. Other members of this family include endoproteases and cell surface receptors. 0 -350887 cl00068 GAL4 N/A. Gal4 is a positive regulator for the gene expression of the galactose- induced genes of S. cerevisiae. Is present only in fungi. 0 -320743 cl00069 GGL N/A. G-protein gamma like domains (GGL) are found in the gamma subunit of the heterotrimeric G protein complex and in regulators of G protein signaling (RGS) proteins. It is also found fused to an inactive Galpha in the Dictyostelium protein gbqA. G-gamma likely shares a common origin with the helical N-terminal unit of G-beta. All organisms that posses a G-beta possess a G-gamma. 0 -350888 cl00071 GLECT N/A. This family contains galactoside binding lectins. The family also includes enzymes such as human eosinophil lysophospholipase (EC:3.1.1.5). 0 -320745 cl00072 GYF N/A. The GYF domain is named because of the presence of Gly-Tyr-Phe residues. The GYF domain is a proline-binding domain in CD2-binding protein. 0 -350889 cl00073 H15 N/A. Linker histone H1 is an essential component of chromatin structure. H1 links nucleosomes into higher order structures Histone H1 is replaced by histone H5 in some cell types. 0 -350890 cl00075 HATPase Histidine kinase-like ATPase domain. This family includes the histidine kinase-like ATPase (HATPase) domains of various two-component sensor histidine kinase (HKs) such as Rhodobacter capsulatus HupT of the HupT-HupR two-component regulatory system (TCS), which regulates the synthesis of HupSL, a membrane bound [NiFe]hydrogenase. It also contains the HATPase domain of Pseudomonas aeruginosa MifS, the HK of the MifS-MifR TCS, which may be involved in sensing alpha-ketoglutarate and regulating its transport and subsequent metabolism. Proteins having this HATPase domain also contain a histidine kinase dimerization and phosphoacceptor domain (HisKA); some also have a C-terminal PAS sensor domain. 0 -350891 cl00081 HLH N/A. Helix-loop-helix domain, found in specific DNA- binding proteins that act as transcription factors; 60-100 amino acids long. A DNA-binding basic region is followed by two alpha-helices separated by a variable loop region; HLH forms homo- and heterodimers, dimerization creates a parallel, left-handed, four helix bundle; the basic region N-terminal to the first amphipathic helix mediates high-affinity DNA-binding; there are several groups of HLH proteins: those (E12/E47) which bind specific hexanucleotide sequences such as E-box (5-CANNTG-3) or StRE 5-ATCACCCCAC-3), those lacking the basic domain (Emc, Id) function as negative regulators since they fail to bind DNA, those (hairy, E(spl), deadpan) which repress transcription although they can bind specific hexanucleotide sequences such as N-box (5-CACGc/aG-3), those which have a COE domain (Collier/Olf-1/EBF) which is involved in both in dimerization and in DNA binding, and those which bind pentanucleotides ACGTG or GCGTG and have a PAS domain which allows the dimerization between PAS proteins, the binding of small molecules (e.g., dioxin), and interactions with non-PAS proteins. 0 -350892 cl00082 HMG-box N/A. This short 71 residue domain is an HMG-box domain. HMG-box domains mediate re-modelling of chromatin-structure. Mammalian HMG-box proteins are of two types: those that are non-sequence-specific DNA-binding proteins with two HMG-box domains and a long highly acidic C-tail; and a diverse group of sequence-specific transcription factor-proteins with either a single HMG-box or up to six copies, and no acidic C-tail. 0 -350893 cl00083 HNHc N/A. This HNH nuclease domain is found in CRISPR-related proteins. 0 -350894 cl00084 homeodomain N/A. This is a homeobox transcription factor KN domain conserved from fungi to human and plants. They were first identified as TALE homeobox genes in eukaryotes, (including KNOX and MEIS genes). They have been recently classified. 0 -294064 cl00085 FReD N/A. Domain present at the C-termini of fibrinogen beta and gamma chains, and a variety of fibrinogen-related proteins, including tenascin and Drosophila scabrous. 0 -350895 cl00086 HPT N/A. The histidine-containing phosphotransfer (HPt) domain is a novel protein module with an active histidine residue that mediates phosphotransfer reactions in the two-component signaling systems. A multistep phosphorelay involving the HPt domain has been suggested for these signaling pathways. The crystal structure of the HPt domain of the anaerobic sensor kinase ArcB has been determined. The domain consists of six alpha helices containing a four-helix bundle-folding. The pattern of sequence similarity of the HPt domains of ArcB and components in other signaling systems can be interpreted in light of the three-dimensional structure and supports the conclusion that the HPt domains have a common structural motif both in prokaryotes and eukaryotes. In S. cerevisiae ypd1p this domain has been shown to contain a binding surface for Ssk1p (response regulator receiver domain containing protein pfam00072). 0 -350896 cl00087 HR1 Protein kinase C-related kinase homology region 1 (HR1) domain that binds Rho family small GTPases. The HR1 repeat was first described as a three times repeated homology region of the N-terminal non-catalytic part of protein kinase PRK1(PKN). The first two of these repeats were later shown to bind the small G protein rho known to activate PKN in its GTP-bound form. Similar rho-binding domains also occur in a number of other protein kinases and in the rho-binding proteins rhophilin and rhotekin. Recently, the structure of the N-terminal HR1 repeat complexed with RhoA has been determined by X-ray crystallography. It forms an antiparallel coiled-coil fold termed an ACC finger. 0 -350897 cl00089 NUC N/A. A family of bacterial and eukaryotic endonucleases share the following characteristics: they act on both DNA and RNA, cleave double-stranded and single-stranded nucleic acids and require a divalent ion such as magnesium for their activity. An histidine has been shown to be essential for the activity of the Serratia marcescens nuclease. This residue is located in a conserved region which also contains an aspartic acid residue that could be implicated in the binding of the divalent ion. 0 -320755 cl00092 IFab N/A. Interferons produce antiviral and antiproliferative responses in cells. They are classified into five groups, all of them related but gamma-interferon. 0 -294069 cl00094 IL1 N/A. This family includes interleukin-1 and interleukin-18. 0 -320756 cl00096 IRF N/A. This family of transcription factors are important in the regulation of interferons in response to infection by virus and in the regulation of interferon-inducible genes. Three of the five conserved tryptophan residues bind to DNA. 0 -350898 cl00097 KAZAL_FS N/A. Usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors. Kazal domains often occur in tandem arrays. Small alpha+beta fold containing three disulphides. 0 -350899 cl00098 KH-I N/A. KH motifs bind RNA in vitro. Auto-antibodies to Nova, a KH domain protein, cause para-neoplastic opsoclonus ataxia. 0 -350900 cl00100 KR N/A. Kringle domains have been found in plasminogen, hepatocyte growth factors, prothrombin, and apolipoprotein A. Structure is disulfide-rich, nearly all-beta. 0 -350901 cl00101 KU N/A. Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. 0 -350902 cl00103 Trefoil N/A. Proposed role in renewal and pathology of mucous epithelia. 0 -350903 cl00104 LDLa N/A. Cysteine-rich repeat in the low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. The N-terminal type A repeats in LDL receptor bind the lipoproteins. Other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. Mutations in the LDL receptor gene cause familial hypercholesterolemia. 0 -320761 cl00105 LMWP Low molecular weight phosphatase family. Arsenate reductase plays an important role in the reduction of intracellular arsenate to arsenite, an important step in arsenic detoxification. The reduction involves three different thiolate nucleophiles. In arsenate reductases of the LMWP family, reduction can be coupled with thioredoxin (Trx)/thioredoxin reductase (TrxR) or glutathione (GSH)/glutaredoxin (Grx). 0 -350904 cl00109 MADS N/A. SRF-like/Type I subfamily of MADS (MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators. Binds DNA and exists as hetero- and homo-dimers. Differs from the MEF-like/Type II subgroup mainly in position of the alpha 2 helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. 0 -320763 cl00110 MBD N/A. MBDa is a second MBD domain of Methyl-CpG-binding domain proteins. region implicated in binding the RbAp46/48 (retinoblastoma protein-associated protein) homolog p55, which is one of the components of the MBD2-NuRD complex. The MBD2-NuRD complex is a nucleosome remodelling and deacetylation complex. 0 -320764 cl00111 PAH N/A. Pancreatic hormone is a regulator of pancreatic and gastrointestinal functions. 0 -350905 cl00112 PAN_APPLE N/A. The PAN domain contains a conserved core of three disulphide bridges. In some members of the family there is an additional fourth disulphide bridge the links the N and C termini of the domain. The domain is found in diverse proteins, in some they mediate protein-protein interactions, in others they mediate protein-carbohydrate interactions. 0 -350906 cl00113 CRIB N/A. Small domains that bind Cdc42p- and/or Rho-like small GTPases. Also known as the Cdc42/Rac interactive binding (CRIB). 0 -320767 cl00116 PDGF N/A. Platelet-derived growth factor is a potent activator for cells of mesenchymal origin. PDGF-A and PDGF-B form AA and BB homodimers and an AB heterodimer. Members of the VEGF family are homologues of PDGF. 0 -350907 cl00117 PDZ N/A. This domain is the PDZ domain of tricorn protease. 0 -350908 cl00120 PP2Cc N/A. Protein phosphatase 2C is a Mn++ or Mg++ dependent protein serine/threonine phosphatase. 0 -350909 cl00123 PROF N/A. Binds actin monomers, membrane polyphosphoinositides and poly-L-proline. 0 -350910 cl00125 RHOD N/A. Rhodanese has an internal duplication. This Pfam represents a single copy of this duplicated domain. The domain is found as a single copy in other proteins, including phosphatases and ubiquitin C-terminal hydrolases. 0 -350911 cl00128 RNase_A N/A. Ribonucleases. Members include pancreatic RNAase A and angiogenins. Structure is an alpha+beta fold -- long curved beta sheet and three helices. 0 -320773 cl00130 PseudoU_synth Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). TruD is responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs. The structure of TruD reveals an overall V-shaped molecule which contains an RNA-binding cleft. 0 -350912 cl00133 CAP CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) domain family. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) is also called cysteine-rich secretory protein 11 (CRSIP-11), LCCL domain-containing cysteine-rich secretory protein 2 (LCRISP2), or CAP and LCCL domain containing protein 2 (CAPLD2). It plays a role in the etiology of NSCLP (non-syndromic cleft lip with or without cleft palate). It is required for neural crest cell migration and cell viability during craniofacial development. The CRISPLD2 gene has been identified a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. The wider family of CAP domain containing proteins includes plant pathogenesis-related protein 1 (PR-1), cysteine-rich secretory proteins (CRISPs), and allergen 5 from vespid venom, among others. 0 -350913 cl00134 Chemokine N/A. Includes a number of secreted growth factors and interferons involved in mitogenic, chemotactic, and inflammatory activity. Structure contains two highly conserved disulfide bonds. 0 -350914 cl00136 Sec7 N/A. The Sec7 domain is a guanine-nucleotide-exchange-factor (GEF) for the pfam00025 family. 0 -350915 cl00137 SERPIN N/A. The ovalbumin_like group of serpins contains ovalbumin, the squamous cell carcinoma antigen 1 (SCCA1) and other closely related serpins of clade B of the serpin superfamily. Ovalbumin, the major protein component of avian egg white, is a non-inhibitory member of SERine Proteinase INhibitorS (serpins). In contrast, SCCA1 inhibits cysteine proteinases such as cathepsin S, K, L, and papain, a so called cross-class serpin. 0 -350916 cl00140 SNc N/A. Present in all three domains of cellular life. Four copies in the transcriptional coactivator p100: these, however, appear to lack the active site residues of Staphylococcal nuclease. Positions 14 (Asp-21), 34 (Arg-35), 39 (Asp-40), 42 (Glu-43) and 110 (Arg-87) [SNase numbering in parentheses] are thought to be involved in substrate-binding and catalysis. 0 -350917 cl00144 Tar_Tsr_LBD ligand binding domain of Tar- and Tsr-related chemoreceptors. This family is a four helix bundle that operates as a ubiquitous sensory module in prokaryotic signal-transduction. The 4HB_MCP is always found between two predicted transmembrane helices indicating that it detects only extracellular signals. In many cases the domain is associated with a cytoplasmic HAMP domain suggesting that most proteins carrying the bundle might share the mechanism of transmembrane signalling which is well-characterized in E coli chemoreceptors. 0 -320780 cl00145 TBOX N/A. The T-box encodes a 180 amino acid domain that binds to DNA. Genes encoding T-box proteins are found in a wide range of animals, but not in other kingdoms such as plants. Family members are all thought to bind to the DNA consensus sequence TCACACCT. they are found exclusively in the nucleus, and perform DNA-binding and transcriptional activation/repression roles. They are generally required for development of the specific tissues they are expressed in, and mutations in T-box genes are implicated in human conditions such as DiGeorge syndrome and X-linked cleft palate, which feature malformations. 0 -350918 cl00146 TFIIS_I N/A. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species {1-2]. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Mediator exists in two major forms in human cells: a smaller form that interacts strongly with pol II and activates transcription, and a large form that does not interact strongly with pol II and does not directly activate transcription. Notably, the 'small' and 'large' Mediator complexes differ in their subunit composition: the Med26 subunit preferentially associates with the small, active complex, whereas cdk8, cyclin C, Med12 and Med13 associate with the large Mediator complex. This family includesthe C terminal region of a number of eukaryotic hypothetical proteins which are homologous to the Saccharomyces cerevisiae protein IWS1. IWS1 is known to be an Pol II transcription elongation factor and interacts with Spt6 and Spt5. 0 -350919 cl00147 TNF N/A. Family of cytokines that form homotrimeric or heterotrimeric complexes. TNF mediates mature T-cell receptor-induced apoptosis through the p75 TNF receptor. 0 -350920 cl00150 TY N/A. Thyroglobulin type 1 repeats are thought to be involved in the control of proteolytic degradation. The domain usually contains six conserved cysteines. These form three disulphide bridges. Cysteines 1 pairs with 2, 3 with 4 and 5 with 6. 0 -350921 cl00154 UBCc N/A. Proteins destined for proteasome-mediated degradation may be ubiquitinated. Ubiquitination follows conjugation of ubiquitin to a conserved cysteine residue of UBC homologs. TSG101 is one of several UBC homologs that lacks this active site cysteine. 0 -350922 cl00156 WAP N/A. WAP belongs to the group of Elafin or elastase-specific inhibitors. 0 -350923 cl00157 WW N/A. The WW domain is a protein module with two highly conserved tryptophans that binds proline-rich peptide motifs in vitro. 0 -350924 cl00159 fer2 N/A. The 2Fe-2S ferredoxin family have a general core structure consisting of beta(2)-alpha-beta(2) which abeta-grasp type fold. The domain is around one hundred amino acids with four conserved cysteine residues to which the 2Fe-2S cluster is ligated. 0 -350925 cl00160 LbetaH N/A. This family of proteins contains copies of the Bacterial transferase hexapeptide repeat family (pfam00132) and is only found in operons encoding the phosphonate C-P lyase system (GenProp0232). Many C-P lyase operons, however, lack a homolog of this protein. 0 -350926 cl00162 PTS_IIA_glc N/A. These are part of the The PTS Glucose-Glucoside (Glc) SuperFamily. The Glc family includes permeases specific for glucose, N-acetylglucosamine and a large variety of a- and b-glucosides. However, not all b-glucoside PTS permeases are in this class, as the cellobiose (Cel) b-glucoside PTS permease is in the Lac family (TC #4.A.3). The IIA, IIB and IIC domains of all of the permeases listed below are demonstrably homologous. These permeases show limited sequence similarity with members of the Fru family (TC #4.A.2). Several of the PTS permeases in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these permeases have the B and C domains linked together in a single polypeptide chain, and a cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P). Those permeases which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) permeases of E. coli . Most, but not all Scr permeases of other bacteria also lack a IIA domain. The three-dimensional structures of the IIA and IIB domains of the E. coli glucose permease have been elucidated. IIAglchas a complex b-sandwich structure while IIBglc is a split ab-sandwich with a topology unrelated to the split ab-sandwich structure of HPr. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 0 -350927 cl00163 PTS_IIA_fru N/A. 4.A.2 The PTS Fructose-Mannitol (Fru) Family Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Fru family is a large and complex family which includes several sequenced fructose and mannitol-specific permeases as well as several putative PTS permeases of unknown specificities. The fructose permeases of this family phosphorylate fructose on the 1-position. Those of family 4.6 phosphorylate fructose on the 6-position. The Fru family PTS systems typically have 3 domains, IIA, IIB and IIC, which may be found as 1 or more proteins. The fructose and mannitol transporters form separate phylogenetic clusters in this family. This model is specific for the IIA domain of the fructose PTS transporters. Also similar to the Enzyme IIA Fru subunits of the PTS, but included in TIGR01419 rather than this model, is enzyme IIA Ntr (nitrogen), also called PtsN, found in E. coli and other organisms, which may play a solely regulatory role. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 0 -350928 cl00165 Calpain_III N/A. The function of the domain III and I are currently unknown. Domain II is a cysteine protease and domain IV is a calcium binding domain. Calpains are believed to participate in intracellular signaling pathways mediated by calcium ions. 0 -350929 cl00166 PTS_IIA_lac N/A. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The lactose/cellobiose-specific family are one of four structurally and functionally distinct group IIA PTS system enzymes. This family of proteins normally function as a homotrimer, stabilized by a centrally located metal ion. Separation into subunits is thought to occur after phosphorylation. 0 -350930 cl00169 Mog1 N/A. Segregation of nuclear and cytoplasmic processes facilitates regulation of many eukaryotic cellular functions such as gene expression and cell cycle progression. Trafficking through the nuclear pore requires a number of highly conserved soluble factors that escort macromolecular substrates into and out of the nucleus. The Mog1 protein has been shown to interact with RanGTP which stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. The human homolog of Mog1 is thought to be alternatively spliced. 0 -350931 cl00170 eu-GS N/A. This model represents the eukaryotic glutathione synthetase, which shows little resemblance to the analogous enzyme of Gram-negative bacteria (TIGR01380). In the Kinetoplastida, trypanothione replaces glutathione, but can be made from glutathione; a sequence from Leishmania is not included in the seed, is highly divergent, and therefore scores between the trusted and noise cutoffs. 0 -320796 cl00173 VIP2 N/A. This is a family of bacterial and viral bi-glutamic acid ADP-ribosyltransferases, where, in Aeromonas salmonicida AexT, E403 is the catalytic residue and E401 contributes to the transfer of ADP-ribose to the target protein. In clostridial species it is actin that is being ADP-ribosylated; this result is lethal and dermonecrotic in infected mammals. 0 -320797 cl00175 alpha-crystallin-Hsps_p23-like alpha-crystallin domain (ACD) found in alpha-crystallin-type small heat shock proteins, and a similar domain found in p23 (a cochaperone for Hsp90) and in other p23-like proteins. This domain is involved in pre-rRNA processing. It has has been shown to be required either for nucleolar retention or correct assembly of the box C/D snoRNP in Saccharomyces cerevisiae. The C-terminal region of this family has similarity to the CS domain pfam04969. 0 -350932 cl00178 Ecotin Protease Inhibitor Ecotin; homodimeric protease inhibitor. Ecotin is a broad range serine protease inhibitor, which forms homodimers. The C-terminal region contains the dimerization motif. Interestingly, the binding sites show a fluidity of protein contacts binding sites show a fluidity of protein contacts derived from ecotin's innate flexibility in fitting itself to proteases while. 0 -350933 cl00179 AlgLyase N/A. This is the N-terminal domain of heparinase II/III proteins. It is a toroid-like domain. 0 -320800 cl00180 RabGEF N/A. Nucleotide exchange factor for Rab-like small GTPases (RabGEF), Mss4 type; RabGEF positely regulates the function of Rab GTPase by promoting exchange of GDP for GTP; members of the Rab subfamily of Ras GTPases are important in vesicular transport; 0 -350934 cl00182 Mth938-like N/A. This is a large family of uncharacterized proteins found in all domains of life. The structure shows a novel fold with three beta sheets. A dimeric form is found in the crystal structure. It was suggested that the cleft in between the two monomers might bing nucleic acid. 0 -350935 cl00184 CAS_like N/A. This family consists of taurine catabolism dioxygenases of the TauD, TfdA family. TauD from E. coli is a alpha-ketoglutarate-dependent taurine dioxygenase. This enzyme catalyzes the oxygenolytic release of sulfite from taurine. TfdA from Burkholderia sp. is a 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase. TfdA from Alcaligenes eutrophus JMP134 is a 2,4-dichlorophenoxyacetate monooxygenase. Also included are gamma-Butyrobetaine hydroxylase enzymes EC:1.14.11.1. 0 -320803 cl00185 PL_Passenger_AT N/A. Pertactin-like passenger domains (virulence factors), C-terminal, subgroup 2, of autotransporter proteins of the type V secretion system of Gram-negative bacteria. This subgroup includes the passenger domains of the nonprotease autotransporters, Ag43, AIDA-1 and IcsA, as well as, the less characterized ShdA, MisL, and BapA autotransporters. 0 -320804 cl00186 nidG2 N/A. Nidogen, an invariant component of basement membranes, is a multifunctional protein that interacts with most other major basement membrane proteins. The G2 fragment or (G2F domain) contains binding sites for collagen IV and perlecan. The structure is composed of an 11-stranded beta-barrel with a central helix. This domain is structurally related to that of green fluorescent protein pfam01353. A large surface patch on the beta-barrel is conserved in all metazoan nidogens. 0 -320805 cl00188 BPI N/A. The N and C terminal domains of the LBP/BPI/CETP family are structurally similar. 0 -350936 cl00189 YlxR N/A. Ylxr homologs; group of conserved hypothetical bacterial proteins of unknown function; structure revealed putative RNA binding cleft; proteins are encoded by an operon that includes other proteins involved in transcription and/or translation 0 -350937 cl00192 ribokinase_pfkB_like N/A. This family includes a variety of carbohydrate and pyrimidine kinases. 0 -350938 cl00193 cytochrome_b_C N/A. cytochrome b6-f complex subunit IV; Provisional 0 -350939 cl00194 EF1B N/A. This family is the guanine nucleotide exchange domain of EF-1 beta and EF-1 delta chains. 0 -350940 cl00195 SIR2 N/A. This region is characteristic of Silent information regulator 2 (Sir2) proteins, or sirtuins. These are protein deacetylases that depend on nicotine adenine dinucleotide (NAD). They are found in many subcellular locations, including the nucleus, cytoplasm and mitochondria. Eukaryotic forms play in important role in the regulation of transcriptional repression. Moreover, they are involved in microtubule organisation and DNA damage repair processes.i 0 -350941 cl00196 plant_peroxidase_like Heme-dependent peroxidases similar to plant peroxidases. L-ascorbate peroxidase 0 -350942 cl00197 cyclophilin N/A. The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyze peptidyl-prolyl isomerisation during which the peptide bond preceding proline (the peptidyl-prolyl bond) is stabilized in the cis conformation. Mammalian cyclophilin A (CypA) is a major cellular target for the immunosuppressive drug cyclosporin A (CsA). Other roles for cyclophilins may include chaperone and cell signalling function. 0 -350943 cl00198 Phosphoglycerate_kinase N/A. phosphoglycerate kinase; Provisional 0 -350944 cl00199 SO_family_Moco N/A. This domain is found in a variety of oxidoreductases. This domain binds to a molybdopterin cofactor. Xanthine dehydrogenases, that also bind molybdopterin, have essentially no similarity. 0 -350945 cl00200 MIP N/A. MIP (Major Intrinsic Protein) family proteins exhibit essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. 0 -350946 cl00202 rubredoxin_like N/A. Rubredoxin; nonheme iron binding domains containing a [Fe(SCys)4] center. Rubredoxins are small nonheme iron proteins. The iron atom is coordinated by four cysteine residues (Fe(S-Cys)4), but iron can also be replaced by cobalt, nickel or zinc. They are believed to be involved in electron transfer. 0 -350947 cl00203 Ribosomal_L30_like N/A. This family includes prokaryotic L30 and eukaryotic L7. 0 -350948 cl00204 PFK N/A. Members of this family that are characterized, save one, are phosphofructokinases dependent on pyrophosphate (EC 2.7.1.90) rather than ATP (EC 2.7.1.11). The exception is one of three phosphofructokinases from Streptomyces coelicolor. Family members are both bacterial and archaeal. [Energy metabolism, Glycolysis/gluconeogenesis] 0 -350949 cl00205 HMG-CoA_reductase Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR). The HMG-CoA reductases catalyze the conversion of HMG-CoA to mevalonate, which is the rate-limiting step in the synthesis of isoprenoids like cholesterol. Probably because of the critical role of this enzyme in cholesterol homeostasis, mammalian HMG-CoA reductase is heavily regulated at the transcriptional, translational, and post-translational levels. 0 -350950 cl00206 PTS-HPr_like N/A. The HPr family are bacterial proteins (or domains of proteins) which function in phosphoryl transfer system (PTS) systems. They include energy-coupling components which catalyze sugar uptake via a group translocation mechanism. The functions of most of these proteins are not known, but they presumably function in PTS-related regulatory capacities. All seed members are stand-alone HPr proteins, although the model also recognizes HPr domains of PTS fusion proteins. This family includes the related NPr protein. [Signal transduction, PTS] 0 -350951 cl00207 HMA N/A. This model describes an apparently copper-specific subfamily of the metal-binding domain HMA (pfam00403). Closely related sequences outside this model include mercury resistance proteins and repeated domains of eukaryotic eukaryotic copper transport proteins. Members of this family are strictly prokaryotic. The model identifies both small proteins consisting of just this domain and N-terminal regions of cation (probably copper) transporting ATPases. [Transport and binding proteins, Cations and iron carrying compounds] 0 -350952 cl00208 RNase_T2 N/A. Ribonuclease T2 (RNase T2) is a widespread family of secreted RNases found in every organism examined thus far. This family includes RNase Rh, RNase MC1, RNase LE, and self-incompatibility RNases (S-RNases). Plant T2 RNases are expressed during leaf senescence in order to scavenge phosphate from ribonucleotides. They are also expressed in response to wounding or pathogen invasion. S-RNases are thought to prevent self-fertilization by acting as selective cytotoxins of "self" pollen. Generally, RNases have two distinct binding sites: the primary site (B1 site) and the subsite (B2 site), for nucleotides located at the 5'- and 3'- terminal ends of the sessil bond, respectively. This CD includes the prokaryotic RNase T2 family members. 0 -350953 cl00210 Isoprenoid_Biosyn_C1 Isoprenoid Biosynthesis enzymes, Class 1. It has been suggested that this gene family be designated tps (for terpene synthase). It has been split into six subgroups on the basis of phylogeny, called tpsa-tpsf. tpsa includes vetispiridiene synthase, 5-epi- aristolochene synthase, and (+)-delta-cadinene synthase. tpsb includes (-)-limonene synthase. tpsc includes kaurene synthase A. tpsd includes taxadiene synthase, pinene synthase, and myrcene synthase. tpse includes kaurene synthase B. tpsf includes linalool synthase. 0 -294143 cl00211 Heme_Cu_Oxidase_III_like N/A. Heme-copper oxidase subunit III subfamily. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which couple the reduction of molecular oxygen to water to, proton pumping across the membrane. The heme-copper oxidase superfamily is diverse in terms of electron donors, subunit composition, and heme types. This superfamily includes cytochrome c and ubiquinol oxidases. Bacterial oxidases typically contain 3 or 4 subunits in contrast to the 13 subunit bovine cytochrome c oxidase (CcO). Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunits I, II and III of ubiquinol oxidase are homologous to the corresponding subunits in CcO. Although not required for catalytic activity, subunit III is believed to play a role in assembly of the multimer complex. Rhodobacter CcO subunit III stabilizes the integrity of the binuclear center in subunit I. It has been proposed that Archaea acquired heme-copper oxidases through gene transfer from Gram-positive bacteria. 0 -350954 cl00212 microbial_RNases N/A. This enzyme hydrolyzes RNA and oligoribonucleotides. 0 -350955 cl00213 DNA_BRE_C DNA breaking-rejoining enzymes, C-terminal catalytic domain. Topoisomerase I promotes the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. 0 -350956 cl00214 Aldolase_II N/A. This family includes class II aldolases and adducins which have not been ascribed any enzymatic function. 0 -350957 cl00215 Aconitase_swivel N/A. This family represents the N-terminal region of several bacterial Aconitate hydratase 2 proteins and is found in conjunction with pfam00330. 0 -320827 cl00216 L-asparaginase_like Bacterial L-asparaginases and related enzymes. This is the N-terminal domain of this enzyme. 0 -350958 cl00217 pyrophosphatase N/A. inorganic pyrophosphatase; Provisional 0 -350959 cl00219 Pterin_binding N/A. This family includes a variety of pterin binding enzymes that all adopt a TIM barrel fold. The family includes dihydropteroate synthase EC:2.5.1.15 as well as a group methyltransferase enzymes including methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr) that catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide centre in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. 0 -350960 cl00220 cysteine_hydrolases N/A. This family are hydrolase enzymes. 0 -350961 cl00221 ACBP N/A. acyl CoA binding protein; Provisional 0 -350962 cl00222 Lyz_like Lysozyme-like domains. This subfamily is composed of uncharacterized proteins containing a lysozyme-like domain similar to the C-terminal domain of pesticin. Pesticin (Pst) is an anti-bacterial toxin produced by Yersinia pestis that acts through uptake by the target related bacteria and the hydrolysis of peptidoglycan in the periplasm. Pst contains an N-terminal translocation domain, an intermediate receptor binding domain, and a phage-lysozyme like C-terminal activity domain. Bacteriocins such as pesticin are produced by gram-negative bacteria to attack related bacterial stains. Pst is transported to the periplasm via FyuA, an outer-membrane receptor of Y. pestis and E. coli, where it hydrolyzes peptidoglycan via the cleavage of N-acetylmuramic acid and C4 of N-acetylglucosamine. Disruption of the peptidoglycan layer renders the bacteria vulnerable to lysis via osmotic pressure. The pesticin C-terminal domain resembles the lysozyme-like family, which includes soluble lytic transglycosylases (SLT), goose egg-white lysozymes (GEWL), hen egg-white lysozymes (HEWL), chitinases, bacteriophage lambda lysozymes, endolysins, autolysins, and chitosanases. All the members are involved in the hydrolysis of beta-1,4- linked polysaccharides. 0 -350963 cl00223 NusB_Sun N/A. The NusB protein is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. 0 -350964 cl00224 PLPDE_IV N/A. The D-amino acid transferases (D-AAT) are required by bacteria to catalyze the synthesis of D-glutamic acid and D-alanine, which are essential constituents of bacterial cell wall and are the building block for other D-amino acids. Despite the difference in the structure of the substrates, D-AATs and L-ATTs have strong similarity. 0 -350965 cl00226 nuc_hydro N/A. A family of proteins in Rhodopirellula baltica that are predicted to be secreted. Also, a member has been identified in Caulobacter crescentus. These proteins mat be related to pfam01156. 0 -350966 cl00227 PEBP PhosphatidylEthanolamine-Binding Protein (PEBP) domain. putative kinase inhibitor protein; Provisional 0 -350967 cl00228 HIT_like N/A. This family consists of several scavenger mRNA decapping enzymes (DcpS) and is the C-terminal region. DcpS is a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. The C-terminal domain contains a histidine triad (HIT) sequence with three histidines separated by hydrophobic residues. The central histidine within the DcpS HIT motif is critical for decapping activity and defines the HIT motif as a new mRNA decapping domain, making DcpS the first member of the HIT family of proteins with a defined biological function. 0 -350968 cl00229 eIF1_SUI1_like Eukaryotic initiation factor 1 and related proteins. This protein family shows weak but suggestive similarity to translation initiation factor SUI1 and its prokaryotic homologs. 0 -350969 cl00230 Cis_IPPS Cis (Z)-Isoprenyl Diphosphate Synthases. Previously known as uncharacterized protein family UPF0015, a single member of this family has been identified as an undecaprenyl diphosphate synthase. 0 -350970 cl00231 SAICAR_synt 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) synthase. Also known as Phosphoribosylaminoimidazole-succinocarboxamide synthase. 0 -350971 cl00232 Ribosomal_L19e N/A. Ribosomal protein L19e, archaeal. L19e is found in the large ribosomal subunit of eukaryotes and archaea. L19e is distinct from the ribosomal subunit L19, which is found in prokaryotes. It consists of two small globular domains connected by an extended segment. It is located toward the surface of the large subunit, with one exposed end involved in forming the intersubunit bridge with the small subunit. The other exposed end is involved in forming the translocon binding site, along with L22, L23, L24, L29, and L31e subunits. 0 -350972 cl00233 HPPK N/A. This model describes the folate biosynthesis enzyme 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase. Alternate names include 6-hydroxymethyl-7,8-dihydropterin diphosphokinase and 7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase (HPPK). The extreme C-terminal region, of typically eight to thirty residues, is not included in the model. This enzyme may be found as a fusion protein with other enzymes of folate biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 0 -320843 cl00234 Pep_deformylase N/A. Peptide deformylase (EC 3.5.1.88), also called polypeptide deformylase, is a metalloenzyme that uses water to release formate from the N-terminal formyl-L-methionine of bacterial and chloroplast peptides. This enzyme should not be confused with formylmethionine deformylase (EC 3.5.1.31) which is active on free N-formyl methionine and has been reported from rat intestine. [Protein fate, Protein modification and repair] 0 -350973 cl00235 4Oxalocrotonate_Tautomerase N/A. This family includes the enzyme 4-oxalocrotonate tautomerase, which catalyzes the ketonisation of 2-hydroxymuconate to 2-oxo-3-hexenedioate. 0 -350974 cl00236 Hsp33 N/A. Hsp33 is a molecular chaperone, distinguished from all other known chaperones by its mode of functional regulation. Its activity is redox regulated. Hsp33 is a cytoplasmically localized protein with highly reactive cysteines that respond quickly to changes in the redox environment. Oxidising conditions like H2O2 cause disulfide bonds to form in Hsp33, a process that leads to the activation of its chaperone function. 0 -320846 cl00237 Peptidase_C15 N/A. PgaPase_1 is a family of functionally diverse Caenorhabditis proteins. The family is homologous to the cysteine-peptidases, but lack of a strictly conserved Glu-Cys-His catalytic triad or pGlu binding site implies that it has other functions that could have resulted in a change in reaction-specificity or even of catalytic activity. 0 -350975 cl00238 Frataxin N/A. This family contains proteins that have a domain related to the globular C-terminus of Frataxin the protein that is mutated in Friedreich's ataxia. This domain is found in a family of bacterial proteins. The function of this domain is currently unknown. It has been suggested that this family is involved in iron transport. 0 -350976 cl00239 GXGXG N/A. This domain is found in glutamate synthase, tungsten formylmethanofuran dehydrogenase subunit c (FwdC) and molybdenum formylmethanofuran dehydrogenase subunit c (FmdC). A repeated G-XX-G-XXX-G motif is seen in the alignment. 0 -350977 cl00240 RRF N/A. The ribosome recycling factor (RRF / ribosome release factor) dissociates the ribosome from the mRNA after termination of translation, and is essential bacterial growth. Thus ribosomes are "recycled" and ready for another round of protein synthesis. 0 -350978 cl00241 IF6 N/A. This family includes eukaryotic translation initiation factor 6 as well as presumed archaebacterial homologs. 0 -350979 cl00242 MoaC N/A. Members of this family are involved in molybdenum cofactor biosynthesis. However their molecular function is not known. 0 -320852 cl00245 MGS-like N/A. This domain composes the whole protein of methylglyoxal synthetase and the domain is also found in Carbamoyl phosphate synthetase (CPS) where it forms a regulatory domain that binds to the allosteric effector ornithine. This family also includes inosicase. The known structures in this family show a common phosphate binding site. 0 -294174 cl00246 MTHFR N/A. This family includes the 5,10-methylenetetrahydrofolate reductase EC:1.7.99.5 from bacteria and methylenetetrahydrofolate reductase EC: 1.5.1.20 from eukaryotes. The structure for this domain is known to be a TIM barrel. 0 -320853 cl00247 MCR_gamma N/A. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (pfam02249), 2 beta (pfam02241), and 2 gamma (this family) subunits with two identical nickel porphinoid active sites. 0 -350980 cl00248 OMPLA N/A. Phospholipase A1 is a bacterial outer membrane bound acyl hydrolase with a broad substrate specificity EC:3.1.1.32. It has been proposed that Ser164 is the active site for Escherichia coli phospholipase A1. 0 -350981 cl00249 MCH N/A. Methenyl tetrahydromethanopterin cyclohydrolase EC:3.5.4.27 is involved in methanogenesis in bacteria and archaea, producing methane from carbon monoxide or carbon dioxide. 0 -350982 cl00250 RaiA N/A. This Pfam family contains the sigma-54 modulation protein family and the S30AE family of ribosomal proteins which includes the light- repressed protein (lrtA). 0 -350983 cl00251 Translocase_SecB N/A. This family consists of preprotein translocase subunit SecB. SecB is required for the normal export of envelope proteins out of the cell cytoplasm. 0 -320858 cl00252 NifX_NifB N/A. This family contains several NIF (B, Y and X) proteins which are iron-molybdenum cofactors (FeMo-co) in the dinitrogenase enzyme which catalyzes the reduction of dinitrogen to ammonium. Dinitrogenase is a hetero-tetrameric (alpha(2)beta(2)) enzyme which contains the iron-molybdenum cofactor (FeMo-co) at its active site. 0 -350984 cl00253 Dtyr_deacylase N/A. This family comprises of several D-Tyr-tRNA(Tyr) deacylase proteins. Cell growth inhibition by several d-amino acids can be explained by an in vivo production of d-aminoacyl-tRNA molecules. Escherichia coli and yeast cells express an enzyme, d-Tyr-tRNA(Tyr) deacylase, capable of recycling such d-aminoacyl-tRNA molecules into free tRNA and d-amino acid. Accordingly, upon inactivation of the genes of the above deacylases, the toxicity of d-amino acids increases. Orthologues of the deacylase are found in many cells. 0 -350985 cl00254 NOS_oxygenase N/A. Nitric oxide synthase (NOS) eukaryotic oxygenase domain. NOS produces nitric oxide (NO) by catalyzing a five-electron heme-based oxidation of a guanidine nitrogen of L-arginine to L-citrulline via two successive monooxygenation reactions producing N(omega)-hydroxy-L-arginine (NHA) as an intermediate. In mammals, there are three distinct NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-2) and endothelial (eNOS or NOS-3) . Nitric oxide synthases are homodimers. In eukaryotes, each monomer has an N-terminal oxygenase domain, which binds to the substrate L-Arg, zinc, and to the cofactors heme and 5.6.7.8-(6R)-tetrahydrobiopterin (BH4) . Eukaryotic NOS's also have a C-terminal electron supplying reductase region, which is homologous to cytochrome P450 reductase and binds NADH, FAD and FMN. 0 -294183 cl00256 CheW_like N/A. CheW proteins are part of the chemotaxis signaling mechanism in bacteria. CheW interacts with the methyl accepting chemotaxis proteins (MCPs) and relays signals to CheY, which affects flageller rotation. This family includes CheW and other related proteins that are involved in chemotaxis. The CheW-like regulatory domain in CheA binds to CheW, suggesting that these domains can interact with each other. 0 -350986 cl00257 HU_IHF DNA sequence specific (IHF) and non-specific (HU) domains. This model describes a set of proteins related to but longer than DNA-binding protein HU. Its distinctive domain architecture compared to HU and related histone-like DNA-binding proteins justifies the designation as superfamily. Members include, so far, one from Bacteroides fragilis, a gut bacterium, and ten from Porphyromonas gingivalis, an oral anaerobe. [DNA metabolism, Chromosome-associated proteins] 0 -350987 cl00258 RIBOc N/A. Members of this family are involved in rDNA transcription and rRNA processing. They probably also cleave a stem-loop structure at the 3' end of U2 snRNA to ensure formation of the correct U2 3' end; they are involved in polyadenylation-independent transcription termination. Some members may be mitochondrial ribosomal protein subunit L15, others may be 60S ribosomal protein L3. 0 -350988 cl00259 Sm_like Sm and related proteins. This SM domain is found in Ataxin-2. 0 -350989 cl00261 PLPDE_III Type III Pyridoxal 5-phosphate (PLP)-Dependent Enzymes. These pyridoxal-dependent decarboxylases acting on ornithine, lysine, arginine and related substrates This domain has a TIM barrel fold. 0 -350990 cl00262 TroA-like N/A. This family includes bacterial periplasmic binding proteins. Several of which are involved in iron transport. 0 -350991 cl00263 TFold N/A. The QueF monomer is made up of two ferredoxin-like domains aligned together with their beta-sheets that have additional embellishments. This subunit is composed of a three-stranded beta-sheet and two alpha-helices. QueF reduces a nitrile bond to a primary amine. The two monomer units together create suitable substrate-binding pockets. 0 -350992 cl00264 Ferritin_like Ferritin-like superfamily of diiron-containing four-helix-bundle proteins. This family contains ferritins and other ferritin-like proteins such as members of the DPS family and bacterioferritins. 0 -320868 cl00266 HGTP_anticodon N/A. This is an HGTP_anticodon binding domain, found largely on Gcn2 proteins which bind tRNA to down regulate translation in certain stress situations. 0 -350993 cl00268 class_II_aaRS-like_core N/A. This is a family of class II aminoacyl-tRNA synthetase-like and ATP phosphoribosyltransferase regulatory subunits. 0 -350994 cl00269 cytidine_deaminase-like N/A. A distinct branch of the CDD/CDA-like deaminases prototyped by Leishmania LmjF36.5940. Members of this family are widely distributed across several microbial eukaryotes such as kinetoplastids, chlorophyte algae, stramenopiles and the alveolate Perkinsus. Domain architectures suggest that these proteins might possess mRNA editing or DNA mutagenizing activity. 0 -350995 cl00271 PI3Ka N/A. PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. 0 -350996 cl00274 ML N/A. This domain is distantly similar to pfam02221 and conserves its pattern of conserved cysteines. This suggests that this domain may be involved in lipid binding. 0 -350997 cl00275 Heme_Cu_Oxidase_I N/A. Cytochrome C oxidase subunit I. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Only subunits I and II are essential for function, but subunit III, which is also conserved, may play a role in assembly or oxygen delivery to the active site. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. Subunit I contains a heme-copper binuclear center (the active site where O2 is reduced to water) formed by a high-spin heme (heme a3) and a copper ion (CuB). It also contains a low-spin heme (heme a), believed to participate in the transfer of electrons to the binuclear center. For every reduction of an O2 molecule, eight protons are taken from the inside aqueous compartment and four electrons are taken from cytochrome c on the opposite side of the membrane. The four electrons and four of the protons are used in the reduction of O2; the four remaining protons are pumped across the membrane. This charge separation of four charges contributes to the electrochemical gradient used for ATP synthesis. Two proton channels, the D-pathway and K-pathway, leading to the binuclear center have been identified in subunit I. A well-defined pathway for the transfer of pumped protons beyond the binuclear center has not been identified. Electrons are transferred from cytochrome c (the electron donor) to heme a via the CuA binuclear site in subunit II, and directly from heme a to the binuclear center. 0 -350998 cl00276 Maf_Ham1 N/A. Maf is a putative inhibitor of septum formation in eukaryotes, bacteria, and archaea. 0 -350999 cl00278 CCC1_like CCC1-related family of proteins. This family includes the vacuolar Fe2+/Mn2+ uptake transporter, Ccc1 and the vacuolar iron transporter VIT1. 0 -351000 cl00279 APP_MetAP N/A. This family contains metallopeptidases. It also contains non-peptidase homologs such as the N terminal domain of Spt16 which is a histone H3-H4 binding module. 0 -351001 cl00281 metallo-dependent_hydrolases N/A. This family of enzymes are a a large metal dependent hydrolase superfamily. The family includes Adenine deaminase EC:3.5.4.2 that hydrolyzes adenine to form hypoxanthine and ammonia. Adenine deaminases reaction is important for adenine utilisation as a purine and also as a nitrogen source. This family also includes dihydroorotase and N-acetylglucosamine-6-phosphate deacetylases, EC:3.5.1.25 These enzymes catalyze the reaction N-acetyl-D-glucosamine 6-phosphate + H2O <=> D-glucosamine 6-phosphate + acetate. This family includes the catalytic domain of urease alpha subunit. Dihydroorotases (EC:3.5.2.3) are also included. 0 -351002 cl00282 cbb3_Oxidase_CcoQ N/A. This family consists of several Cbb3-type cytochrome oxidase components (FixQ/CcoQ). FixQ is found in nitrogen fixing bacteria. Since nitrogen fixation is an energy-consuming process, effective symbioses depend on operation of a respiratory chain with a high affinity for O2, closely coupled to ATP production. This requirement is fulfilled by a special three-subunit terminal oxidase (cytochrome terminal oxidase cbb3), which was first identified in Bradyrhizobium japonicum as the product of the fixNOQP operon. 0 -320879 cl00283 ADP_ribosyl N/A. Members of this family, which are found in prokaryotic exotoxin A, catalyze the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, with subsequent inhibition of protein synthesis. 0 -351003 cl00285 Aconitase Aconitase catalytic domain; Aconitase catalyzes the reversible isomerization of citrate and isocitrate as part of the TCA cycle. Family of hypothetical proteins. 0 -260328 cl00288 EPT_RTPC-like N/A. EPSP synthase domain. 3-phosphoshikimate 1-carboxyvinyltransferase (5-enolpyruvylshikimate-3-phosphate synthase) (EC 2.5.1.19) catalyses the reaction between shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form 5-enolpyruvylshkimate-3-phosphate (EPSP), an intermediate in the shikimate pathway leading to aromatic amino acid biosynthesis. The reaction is phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate. It is found in bacteria and plants but not animals. The enzyme is the target of the widely used herbicide glyphosate, which has been shown to occupy the active site. In bacteria and plants, it is a single domain protein, while in fungi, the domain is found as part of a multidomain protein with functions that are all part of the shikimate pathway. 0 -351004 cl00289 FIG N/A. This family represents the N-terminus of this protein family. 0 -351005 cl00292 AANH_like N/A. This domain is found in phosphoadenosine phosphosulfate (PAPS) reductase enzymes or PAPS sulfotransferase. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N type ATP PPases and ATP sulphurylases. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP). It is also found in NodP nodulation protein P from Rhizobium which has ATP sulfurylase activity (sulfate adenylate transferase). 0 -351006 cl00293 B12-binding_like N/A. This domain tends to occur to the N-terminus of the pfam04055 domain in hypothetical bacterial proteins. 0 -294208 cl00295 ZZ N/A. Zinc finger present in dystrophin, CBP/p300. ZZ in dystrophin binds calmodulin. Putative zinc finger; binding not yet shown. Four to six cysteine residues in its sequence are responsible for coordinating zinc ions, to reinforce the structure. 0 -351007 cl00296 Peptidase_C39_like N/A. BtrH_N is the N-terminus of the acyl carrier protein:aminoglycoside acyltransferase BtrH. Alternatively it can be referred to as butirosin biosynthesis protein H. BtrH transfers the unique (S)-4-amino-2-hydroxybutyrate (AHBA) side chain, which protects the antibiotic butirosin from several common resistance mechanisms. Butirosin, an aminoglycoside antibiotic produced by Bacillus circulans, exhibits improved antibiotic properties over its parent molecule and retains bactericidal activity toward many aminoglycoside-resistant strains. Butirosin is unique in carrying the AHBA side-chain. BtrH transfers the AHBA from the acyl carrier protein BtrI to the parent aminoglycoside ribostamycin as a gamma-glutamylated dipeptide. 0 -351008 cl00297 R3H N/A. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to be binding ssDNA. 0 -351009 cl00299 MIT N/A. The MIT domain forms an asymmetric three-helix bundle and binds ESCRT-III (endosomal sorting complexes required for transport) substrates. 0 -351010 cl00301 PAZ N/A. This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. 0 -351011 cl00303 PNP_UDP_1 Phosphorylase superfamily. This family consists of several purine nucleoside permease from both bacteria and fungi. 0 -351012 cl00304 TP_methylase S-AdoMet dependent tetrapyrrole methylases. This family uses S-AdoMet in the methylation of diverse substrates. This family includes a related group of bacterial proteins of unknown function. This family includes the methylase Dipthine synthase. 0 -351013 cl00305 Sua5_yciO_yrdC Telomere recombination. This domain is found in NodU from Rhizobium, CmcH from Nocardia lactamdurans and the bifunctional carbamoyltransferase TobZ from Streptoalloteichus tenebrarius. NodU a Rhizobium nodulation protein involved in the synthesis of nodulation factors has 6-O-carbamoyltransferase-like activity. CmcH is involved in cephamycin (antibiotic) biosynthesis and has 3-hydroxymethylcephem carbamoyltransferase activity, EC:2.1.3.7 catalyzing the reaction: Carbamoyl phosphate + 3-hydroxymethylceph-3-EM-4-carboxylate <=> phosphate + 3-carbamoyloxymethylcephem. TobZ functions as an ATP carbamoyltransferase and tobramycin carbamoyltransferase. These proteins contain two domains, this is the smaller, C-terminal, domain. 0 -320891 cl00307 Thiamine_BP Thiamine-binding protein. This protein has been crystallized in both Methanobacterium thermoautotrophicum and yeast, but its function remains unknown. Both crystal structures showed sulfate ions bound at the interface of two dimers to form a tetramer. [Unknown function, General] 0 -351014 cl00309 PRTases_typeI Phosphoribosyl transferase (PRT)-type I domain. This PRTase family, and C-terminal TRSP domain, are related to OPRTases, and are predicted to use Orotate as substrate. These genes are found in the biosynthetic operon associated with the Ter stress-response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 0 -351015 cl00310 AIRC AIR carboxylase. Phosphoribosylaminoimidazole carboxylase is a fusion protein in plants and fungi, but consists of two non-interacting proteins in bacteria, PurK and PurE. This model represents PurK, an N5-CAIR mutase. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] 0 -351016 cl00311 UbiD 3-octaprenyl-4-hydroxybenzoate carboxy-lyase. 3-octaprenyl-4-hydroxybenzoate decarboxylase; Provisional 0 -351017 cl00312 Ribosomal_S12_like N/A. This protein is known as S12 in bacteria and archaea and S23 in eukaryotes. 0 -351018 cl00313 uS7 Ribosomal protein S7. This family contains ribosomal protein S7 from prokaryotes and S5 from eukaryotes. 0 -351019 cl00314 Ribosomal_S10 Ribosomal protein S10p/S20e. This model describes the archaeal ribosomal protein uS10 and its equivalents (previously called S20) in eukaryotes. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351020 cl00315 RPS2 N/A. This model describes the ribosomal protein of the cytosol and of Archaea, homologous to S2 of bacteria. It is designated typically as Sa in eukaryotes and Sa or S2 in the archaea. TIGR01011 describes the related protein of organelles and bacteria. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351021 cl00317 Lumazine_synthase-like lumazine synthase and riboflavin synthase; involved in the riboflavin (vitamin B2) biosynthetic pathway. This family includes the beta chain of 6,7-dimethyl-8- ribityllumazine synthase EC:2.5.1.9, an enzyme involved in riboflavin biosynthesis. The family also includes a subfamily of distant archaebacterial proteins that may also have the same function. The family contains a number of different subsets including a family of proteins comprising archaeal lumazine and riboflavin synthases, type I lumazine synthases, and the eubacterial type II lumazine synthases. It has been established that lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. The type I lumazine synthases area active in pentameric or icosahedral quaternary assemblies, whereas the type II are decameric. Brucella, a bacterial genus that causes brucellosis, and other Rhizobiales have an atypical riboflavin metabolic pathway. Brucella spp code for both a type-I and a type-II lumazine synthase, and it has been shown that at least one of these two has to be present in order for Brucella to be viable, showing that in the case of Brucella flavin metabolism is implicated in bacterial virulence. 0 -351022 cl00318 YjeF_N YjeF-related protein N-terminus. The protein region corresponding to this model shows no clear homology to any protein of known function. This model is built on yeast protein YNL200C and the N-terminal regions of E. coli yjeF and its orthologs in various species. The C-terminal region of yjeF and its orthologs shows similarity to hydroxyethylthiazole kinase (thiM) and other enzymes involved in thiamine biosynthesis. Yeast YKL151C and B. subtilis yxkO match the yjeF C-terminal domain but lack this region. [Unknown function, General] 0 -351023 cl00319 Gn_AT_II N/A. This domain is a class-II glutamine amidotransferase domain found in a variety of enzymes such as asparagine synthetase and glutamine-fructose-6-phosphate transaminase. 0 -351024 cl00320 tRNA_bindingDomain N/A. This domain is found in prokaryotic methionyl-tRNA synthetases, prokaryotic phenylalanyl tRNA synthetases the yeast GU4 nucleic-binding protein (G4p1 or p42, ARC1), human tyrosyl-tRNA synthetase, and endothelial-monocyte activating polypeptide II. G4p1 binds specifically to tRNA form a complex with methionyl-tRNA synthetases. In human tyrosyl-tRNA synthetase this domain may direct tRNA to the active site of the enzyme. This domain may perform a common function in tRNA aminoacylation. 0 -351025 cl00322 Ribosomal_L1 N/A. This family includes prokaryotic L1 and eukaryotic L10. 0 -351026 cl00323 Chorismate_synthase Chorismase synthase, the enzyme catalyzing the final step of the shikimate pathway. Homotetramer (noted in E.coli) suggests reason for good conservation. [Amino acid biosynthesis, Aromatic amino acid family] 0 -351027 cl00324 RplC Ribosomal protein L3 [Translation, ribosomal structure and biogenesis]. This model describes exclusively the archaeal class of ribosomal protein L3. A separate model (TIGR03625) describes the bacterial/organelle form, and both belong to pfam00297. Eukaryotic proteins are excluded from this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351028 cl00325 Ribosomal_L4 Ribosomal protein L4/L1 family. Members of this protein family are ribosomal protein L4. This model recognizes bacterial and most organellar forms, but excludes homologs from the eukaryotic cytoplasm and from archaea. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351029 cl00326 Ribosomal_L23 Ribosomal protein L23. This model describes the archaeal ribosomal protein L23P and rigorously excludes the bacterial counterpart L23. In order to capture every known instance of archaeal L23P, the trusted cutoff is set lower than a few of the highest scoring eukaryotic cytosolic ribosomal counterparts. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351030 cl00327 Ribosomal_L22 N/A. This family includes L22 from prokaryotes and chloroplasts and L17 from eukaryotes. 0 -351031 cl00328 Ribosomal_L14 Ribosomal protein L14p/L23e. Part of the 50S ribosomal subunit. Forms a cluster with proteins L3 and L24e, part of which may contact the 16S rRNA in 2 intersubunit bridges. 0 -351032 cl00330 Ribosomal_S8 Ribosomal protein S8. 30S ribosomal protein S8; Validated 0 -351033 cl00331 Ribosomal_S13 Ribosomal protein S13/S18. This model describes bacterial ribosomal protein S13, to the exclusion of the homologous archaeal S13P and eukaryotic ribosomal protein S18. This model identifies some (but not all) instances of chloroplast and mitochondrial S13, which is of bacterial type. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -320911 cl00332 Ribosomal_S11 Ribosomal protein S11. This model describes the bacterial 30S ribosomal protein S11. Cutoffs are set such that the model excludes archaeal and eukaryotic ribosomal proteins, but many chloroplast and mitochondrial equivalents of S11 are detected. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351034 cl00333 Ribosomal_L13 N/A. 60S ribosomal protein L13a; Provisional 0 -351035 cl00334 Ribosomal_S9 Ribosomal protein S9/S16. ribosomal protein S9 0 -351036 cl00335 NDPk N/A. Nucleoside diphosphate kinase homolog 5 (NDP kinase homolog 5, NDPk5, NM23-H5; Inhibitor of p53-induced apoptosis-beta, IPIA-beta): In human, mRNA for NDPk5 is almost exclusively found in testis, especially in the flagella of spermatids and spermatozoa, in association with axoneme microtubules, and may play a role in spermatogenesis by increasing the ability of late-stage spermatids to eliminate reactive oxygen species. It belongs to the nm23 Group II genes and appears to differ from the other human NDPks in that it lacks two important catalytic site residues, and thus does not appear to possess NDP kinase activity. NDPk5 confers protection from cell death by Bax and alters the cellular levels of several antioxidant enzymes, including glutathione peroxidase 5 (Gpx5). 0 -351037 cl00336 DHBP_synthase 3,4-dihydroxy-2-butanone 4-phosphate synthase. Several members of the family are bifunctional, involving both ribA and ribB function. In these cases, ribA tends to be on the C-terminal end of the protein and ribB tends to be on the N-terminal. [Biosynthesis of cofactors, prosthetic groups, and carriers, Riboflavin, FMN, and FAD] 0 -351038 cl00337 PT_UbiA UbiA family of prenyltransferases (PTases). A fairly deep split separates this polyprenyltransferase subfamily from the set of mitochondrial and proteobacterial 4-hydroxybenzoate polyprenyltransferases, described in TIGR01474. Protoheme IX farnesyltransferase (heme O synthase) (TIGR01473) is more distantly related. Because no species appears to have both this protein and a member of TIGR01474, it is likely that this model represents 4-hydroxybenzoate polyprenyltransferase, a critical enzyme of ubiquinone biosynthesis, in the Archaea, Gram-positive bacteria, Aquifex aeolicus, the Chlamydias, etc. [Biosynthesis of cofactors, prosthetic groups, and carriers, Menaquinone and ubiquinone] 0 -351039 cl00338 ALAD_PBGS N/A. Porphobilinogen synthase (PBGS), which is also called delta-aminolevulinic acid dehydratase (ALAD), catalyzes the condensation of two 5-aminolevulinic acid (ALA) molecules to form the pyrrole porphobilinogen (PBG), which is the second step in the biosynthesis of tetrapyrroles, such as heme, vitamin B12 and chlorophyll. This reaction involves the formation of a Schiff base link between the substrate and the enzyme. PBGSs are metalloenzymes, some of which have a second, allosteric metal binding site, beside the metal ion binding site in their active site. Although PBGS is a family of homologous enzymes, its metal ion utilization at catalytic site varies between zinc and magnesium and/or potassium. PBGS can be classified into two groups based on differences in their active site metal binding site. The eukaryotic PBGSs represented by this model, which contain a cysteine-rich zinc binding motif (DXCXCX(Y/F)X3G(H/Q)CG), require zinc for their activity, they do not contain an additional allosteric metal binding site and do not bind magnesium. 0 -351040 cl00339 SugarP_isomerase N/A. This family contains several enzymes which take part in pathways involving acetyl-CoA. Acetyl-CoA hydrolase EC:3.1.2.1 catalyzes the formation of acetate from acetyl-CoA, CoA transferase (CAT1) EC:2.8.3.- produces succinyl-CoA, and acetate-CoA transferase EC:2.8.3.8 utilizes acyl-CoA and acetate to form acetyl-CoA. 0 -351041 cl00340 ILVD_EDD Dehydratase family. This protein, dihydroxy-acid dehydratase, catalyzes the fourth step in valine and isoleucine biosynthesis. It contains a catalytically essential [4Fe-4S] cluster This model generates scores of up to 150 bits vs. 6-phosphogluconate dehydratase, a homologous enzyme. [Amino acid biosynthesis, Pyruvate family] 0 -351042 cl00341 IGPD Imidazoleglycerol-phosphate dehydratase. imidazoleglycerol-phosphate dehydratase; Validated 0 -294246 cl00342 Trp-synth-beta_II N/A. Members of this family include SbnA, a protein of the staphyloferrin B biosynthesis operon of Staphylococcus aureus. SbnA and SbnB together appear to synthesize 2,3-diaminopropionate, a precursor of certain siderophores and other secondary metabolites. SbnA is a pyridoxal phosphate-dependent enzyme. [Cellular processes, Biosynthesis of natural products] 0 -351043 cl00344 PRA-CH Phosphoribosyl-AMP cyclohydrolase. phosphoribosyl-AMP cyclohydrolase; Reviewed 0 -351044 cl00348 GCD2 Translation initiation factor 2B subunit, eIF-2B alpha/beta/delta family [Translation, ribosomal structure and biogenesis]. This model, eIF-2B_rel, describes half of a superfamily, where the other half consists of eukaryotic translation initiation factor 2B (eIF-2B) subunits alpha, beta, and delta. It is unclear whether the eIF-2B_rel set is monophyletic, or whether they are all more closely related to each other than to any eIF-2B subunit because the eIF-2B clade is highly derived. Members of this branch of the family are all uncharacterized with respect to function and are found in the Archaea, Bacteria, and Eukarya, although a number are described as putative translation intiation factor components. Proteins found by eIF-2B_rel include at least three clades, including a set of uncharacterized eukaryotic proteins, a set found in some but not all Archaea, and a set universal so far among the Archaea and closely related to several uncharacterized bacterial proteins. [Unknown function, General] 0 -351045 cl00349 S15_NS1_EPRS_RNA-bind N/A. 40S ribosomal protein S15; Provisional 0 -351046 cl00350 Ribosomal_S19 Ribosomal protein S19. This model represents eukaryotic ribosomal protein uS19 (previously S15) and its archaeal equivalent. It excludes bacterial and organellar ribosomal protein S19. The nomenclature for the archaeal members is unresolved and given variously as S19 (after the more distant bacterial homologs) or S15. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351047 cl00351 Ribosomal_S17 Ribosomal protein S17. This model describes the bacterial ribosomal small subunit protein S17, while excluding cytosolic eukaryotic homologs and archaeal homologs. The model finds many, but not, chloroplast and mitochondrial counterparts to bacterial S17. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351048 cl00352 PTH N/A. Chloroplast RNA splicing 2 (CRS2) is a nuclear-encoded protein required for the splicing of group II introns in the chloroplast. CRS2 forms stable complexes with two CRS2-associated factors, CAF1 and CAF2, which are required for the splicing of distinct subsets of CRS2-dependent introns. CRS2 is closely related to bacterial peptidyl-tRNA hydrolases (PTH). 0 -351049 cl00353 Ribosomal_L16_L10e N/A. This model describes bacterial and organellar ribosomal protein L16. The homologous protein of the eukaryotic cytosol is designated L10 [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351050 cl00354 KOW KOW: an acronym for the authors' surnames (Kyrpides, Ouzounis and Woese). Ribosomal_L26 is a family of the 50S and the 60S ribosomal proteins from eukaryotes - L26 - and archaea - L25. 0 -351051 cl00355 Ribosomal_S14 Ribosomal protein S14p/S29e. 30S ribosomal protein S14P; Reviewed 0 -351052 cl00356 Ribosomal_L17 Ribosomal protein L17. Eubacterial and mitochondrial. The mitochondrial form, from yeast, contains an additional 110 amino acids C-terminal to the region found by this model. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351053 cl00359 Ribosomal_L27 Ribosomal L27 protein. Eubacterial, chloroplast, and mitochondrial. Mitochondrial members have an additional C-terminal domain. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -294257 cl00360 5-FTHF_cyc-lig 5-formyltetrahydrofolate cyclo-ligase family. This enzyme, 5,10-methenyltetrahydrofolate synthetase, is also called 5-formyltetrahydrofolate cycloligase. Function of bacterial proteins in this family was inferred originally from the known activity of eukaryotic homologs. Recently, activity was shown explicitly for the member from Mycoplasma pneumonia. Members of this family from alpha- and gamma-proteobacteria, designated ygfA, are often found in an operon with 6S structural RNA, and show a similar pattern of high expression during stationary phase. The function may be to deplete folate to slow 1-carbon biosynthetic metabolism. [Central intermediary metabolism, One-carbon metabolism] 0 -351054 cl00361 Transcrip_reg Transcriptional regulator. This model describes a minimally characterized protein family, restricted to bacteria excepting for some eukaryotic sequences that have possible transit peptides. YebC from E. coli is crystallized, and PA0964 from Pseudomonas aeruginosa has been shown to be a sequence-specific DNA-binding regulatory protein. In silico analysis suggests a role in Holliday junction resolution. [Regulatory functions, DNA interactions] 0 -351055 cl00365 F1-ATPase_gamma mitochondrial ATP synthase gamma subunit. A small number of taxonomically diverse prokaryotic species, including Methanosarcina barkeri, have what appears to be a second ATP synthase, in addition to the normal F1F0 ATPase in bacteria and A1A0 ATPase in archaea. These enzymes use ion gradients to synthesize ATP, and in principle may run in either direction. This model represents the F1 gamma subunit of this apparent second ATP synthase. 0 -351056 cl00366 PMSR Peptide methionine sulfoxide reductase. methionine sulfoxide reductase A; Provisional 0 -351057 cl00367 Ribosomal_L28 Ribosomal L28 family. This model describes bacterial and chloroplast forms of the 50S ribosomal protein L28, a polypeptide about 60 amino acids in length. Mitochondrial homologs differ substantially in architecture (e.g. SP|P36525 from Saccharomyces cerevisiae, which is 258 amino acids long) and are not included. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351058 cl00368 Ribosomal_S16 Ribosomal protein S16. This model describes ribosomal S16 of bacteria and organelles. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351059 cl00370 Ribosomal_L34 Ribosomal protein L34. 50S ribosomal protein L34; Reviewed 0 -351060 cl00373 Ribosomal_S18 Ribosomal protein S18. This ribosomal small subunit protein is found in all eubacteria so far, as well as in chloroplasts. YER050C from Saccharomyces cerevisiae and a related protein from Caenorhabditis elegans appear to be homologous and may represent mitochondrial forms. The trusted cutoff is set high enough that these two candidate S18 proteins are not categorized automatically. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351061 cl00376 Ribosomal_L10_P0 N/A. Ribosomal protein L10 family, L10 subfamily; composed of bacterial 50S ribosomal protein and eukaryotic mitochondrial 39S ribosomal protein, L10. L10 occupies the L7/L12 stalk of the ribosome. The N-terminal domain (NTD) of L10 interacts with L11 protein and forms the base of the L7/L12 stalk, while the extended C-terminal helix binds to two or three dimers of the NTD of L7/L12 (L7 and L12 are identical except for an acetylated N-terminus). The L7/L12 stalk is known to contain the binding site for elongation factors G and Tu (EF-G and EF-Tu, respectively); however, there is disagreement as to whether or not L10 is involved in forming the binding site. The stalk is believed to be associated with GTPase activities in protein synthesis. In a neuroblastoma cell line, L10 has been shown to interact with the SH3 domain of Src and to activate the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and the WASP-interacting protein (WIP). These bacteria and eukaryotic sequences have no additional C-terminal domain, present in other eukaryotic and archaeal orthologs. 0 -351062 cl00377 Ribosomal_L31 Ribosomal protein L31. This family consists exclusively of bacterial (and organellar) 50S ribosomal protein L31. In some species, such as Bacillus subtilis, this protein exists in two forms (RpmE and YtiA), one of which (RpmE) contains a pair of motifs, CXC and CXXC, for binding zinc. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -320941 cl00379 Ribosomal_L18_L5e N/A. This family includes the large subunit ribosomal proteins from bacteria, archaea, the mitochondria and the chloroplast. It does not include the 60S L18 or L5 proteins from Metazoa. 0 -351063 cl00380 Ribosomal_L36 Ribosomal protein L36. 50S ribosomal protein L36; Validated 0 -351064 cl00381 PNPOx/FlaRed_like Pyridoxine 5'-phosphate (PNP) oxidase-like and flavin reductase-like proteins. Pyridoxamine 5'-phosphate oxidase is a FMN flavoprotein that catalyzes the oxidation of pyridoxamine-5-P (PMP) and pyridoxine-5-P (PNP) to pyridoxal-5-P (PLP). This entry contains several pyridoxamine 5'-phosphate oxidases, and related proteins. 0 -351065 cl00382 Ribosomal_L21p Ribosomal prokaryotic L21 protein. 50S ribosomal protein L21; Validated 0 -351066 cl00383 Ribosomal_L33 Ribosomal protein L33. This model describes bacterial ribosomal protein L33 and its chloroplast and mitochondrial equivalents. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351067 cl00384 Ribosomal_S20p Ribosomal protein S20. ribosomal protein S20 0 -351068 cl00386 BolA BolA-like protein. transcriptional regulator BolA; Provisional 0 -351069 cl00388 Thioredoxin_like Protein Disulfide Oxidoreductases and Other Proteins with a Thioredoxin fold. Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. 0 -351070 cl00389 SIS N/A. SIS (Sugar ISomerase) domains are found in many phosphosugar isomerases and phosphosugar binding proteins. SIS domains are also found in proteins that regulate the expression of genes involved in synthesis of phosphosugars. Presumably the SIS domains bind to the end-product of the pathway. 0 -351071 cl00391 beta_CA N/A. This family includes carbonic anhydrases as well as a family of non-functional homologs related to YbcF. 0 -351072 cl00392 Ribosomal_L35p Ribosomal protein L35. This ribosomal protein is found in bacteria and organelles only. It is not closely related to any eukaryotic or archaeal ribosomal protein. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -351073 cl00393 Ribosomal_L20 Ribosomal protein L20. ribosomal protein L20 0 -351074 cl00394 HupF_HypC HupF/HypC family. hydrogenase 2 accessory protein HypG; Provisional 0 -351075 cl00395 FMT_core Formyltransferase, catalytic core domain. This family includes the following members. Glycinamide ribonucleotide transformylase catalyzes the third step in de novo purine biosynthesis, the transfer of a formyl group to 5'-phosphoribosylglycinamide. Formyltetrahydrofolate deformylase produces formate from formyl- tetrahydrofolate. Methionyl-tRNA formyltransferase transfers a formyl group onto the amino terminus of the acyl moiety of the methionyl aminoacyl-tRNA. Inclusion of the following members is supported by PSI-blast. HOXX_BRAJA (P31907) contains a related domain of unknown function. PRTH_PORGI (P46071) contains a related domain of unknown function. Y09P_MYCTU (Q50721) contains a related domain of unknown function. 0 -351076 cl00399 MoaE N/A. This family contains the MoaE protein that is involved in biosynthesis of molybdopterin. Molybdopterin, the universal component of the pterin molybdenum cofactors, contains a dithiolene group serving to bind Mo. Addition of the dithiolene sulfurs to a molybdopterin precursor requires the activity of the converting factor. Converting factor contains the MoaE and MoaD proteins. 0 -351077 cl00400 Fe-S_biosyn Iron-sulphur cluster biosynthesis. Proteins in this subfamily appear to be associated with the process of FeS-cluster assembly. The HesB proteins are associated with the nif gene cluster and the Rhizobium gene IscN has been shown to be required for nitrogen fixation. Nitrogenase includes multiple FeS clusters and many genes for their assembly. The E. coli SufA protein is associated with SufS, a NifS homolog and SufD which are involved in the FeS cluster assembly of the FhnF protein. The Azotobacter protein IscA (homologs of which are also found in E.coli) is associated which IscS, another NifS homolog and IscU, a nifU homolog as well as other factors consistent with a role in FeS cluster chemistry. A homolog from Geobacter contains a selenocysteine in place of an otherwise invariant cysteine, further suggesting a role in redox chemistry. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -351078 cl00402 UPF0054 Uncharacterized protein family UPF0054. This metalloprotein family is represented by a single member sequence only in nearly every bacterium. Crystallography demonstrated metal-binding activity, possibly to nickel. It is a predicted to be a metallohydrolase, and more recently it was shown that mutants have a ribosomal RNA processing defect. [Protein synthesis, Other] 0 -351079 cl00406 Ribosomal_L19 Ribosomal protein L19. 50S ribosomal protein L19; Provisional 0 -294285 cl00407 tRNA_m1G_MT tRNA (Guanine-1)-methyltransferase. tRNA (guanine-N(1)-)-methyltransferase; Reviewed 0 -351080 cl00410 G3P_acyltransf Glycerol-3-phosphate acyltransferase. This model represents the full length of acylphosphate:glycerol 3-phosphate acyltransferase, and integral membrane protein about 200 amino acids in length, called PlsY in Streptococcus pneumoniae, YneS in Bacillus subtilis, and YgiH in E. coli. It is found in a single copy in a large number of bacteria, including the Mycoplasmas but not Mycobacteria or spirochetes, for example. Its partner is PlsX (see TIGR00182), and the pair can replace PlsB for synthesizing 1-acylglycerol-3-phosphate. [Fatty acid and phospholipid metabolism, Biosynthesis] 0 -351081 cl00412 P-II Nitrogen regulatory protein P-II. This family of proteins with unknown function appears to be restricted to Proteobacteria. 0 -351082 cl00413 ATP-synt_A ATP synthase A chain. Bacterial forms should be designated ATP synthase, F0 subunit A; eukaryotic (chloroplast and mitochondrial) forms should be designated ATP synthase, F0 subunit 6. The F1/F0 ATP synthase is a multisubunit, membrane associated enzyme found in bacteria and mitochondria and chloroplast. This enzyme is principally involved in the synthesis of ATP from ADP and inorganic phosphate by coupling the energy derived from the proton electrochemical gradient across the biological membrane. A brief description of this multisubunit enzyme complex: F1 and F0 represent two major clusters of subunits. Individual subunits in each of these clusters are named differently in prokaryotes and in organelles e.g., mitochondria and chloroplast. The bacterial equivalent of subunit 6 is named subunit 'A'. It has been shown that proton is conducted though this subunit. Typically, deprotonation and reprotonation of the acidic amino acid side-chains are implicated in the process. [Energy metabolism, ATP-proton motive force interconversion] 0 -351083 cl00414 bS6 Bacterial ribosomal protein S6. bS6 is one of the components of the small subunit of the prokaryotic ribosome, a ribonucleoprotein organelle that decodes the genetic information in messenger RNA and forms peptide bonds to synthesize the corresponding polypeptides. Mitochondrial and chloroplastic ribosomes are similar to bacterial ribosomes. Ribosomes consist of a large and a small subunit, which assemble during the initiation stage of protein synthesis. Prokaryotic ribosomes consist of three molecules of RNA and more than 50 proteins. The small subunits of bacterial and eukaryotic ribosomes have the same overall shapes (with structural elements described as head, body, platform, beak and shoulder). The bacterial ribosomal protein S6 is important for the assembly of the central domain of the small subunit via heterodimerization with ribosomal protein S18. 0 -351084 cl00415 CobS Cobalamin-5-phosphate synthase. cobalamin synthase; Reviewed 0 -351085 cl00416 CS_ACL-C_CCL N/A. This is the long, C-terminal part of the enzyme. 0 -351086 cl00420 NadA Quinolinate synthetase A protein. quinolinate synthetase; Provisional 0 -351087 cl00424 UPF0014 Uncharacterized protein family (UPF0014). [Hypothetical proteins, Conserved] 0 -351088 cl00425 CofD_YvcK Family of CofD-like proteins and proteins related to YvcK. Members of this family are distantly related to CofD, the enzyme LPPG:FO 2-phospho-L-lactate transferase, involved in coenzyme F420 biosynthesis. This family appears to belong to a biosynthesis cassette of unknown function. 0 -351089 cl00426 YbjQ_1 Putative heavy-metal-binding. hypothetical protein; Provisional 0 -351090 cl00427 TM_PBP2 N/A. The alignments cover the most conserved region of the proteins, which is thought to be located in a cytoplasmic loop between two transmembrane domains. The members of this family have a variable number of transmembrane helices. 0 -351091 cl00429 SNARE_assoc SNARE associated Golgi protein. hypothetical protein; Provisional 0 -351092 cl00431 Pmp3 Proteolipid membrane potential modulator. Pmp3 is an evolutionarily conserved proteolipid in the plasma membrane which, in S. pombe, is transcriptionally regulated by the Spc1 stress MAPK (mitogen-activated protein kinases) pathway. It functions to modulate the membrane potential, particularly to resist high cellular cation concentration. In eukaryotic organisms, stress-activated mitogen-activated protein kinases play crucial roles in transmitting environmental signals that will regulate gene expression for allowing the cell to adapt to cellular stress. Pmp3-like proteins are highly conserved in bacteria, yeast, nematode and plants. 0 -320971 cl00436 SirA_YedF_YeeD N/A. Members of this family of hypothetical bacterial proteins have no known function. 0 -320972 cl00437 Zip ZIP Zinc transporter. The Zinc (Zn2+)-Iron (Fe2+) Permease (ZIP) Family (TC 2.A.5)Members of the ZIP family consist of proteins with eight putative transmembrane spanners. They are derived from animals, plants and yeast. Theycomprise a diverse family, with several paralogues in any one organism (e.g., at least five in Caenorabditis elegans, at least five in Arabidopsis thaliana and two inSaccharomyces cervisiae. The two S. cerevisiae proteins, Zrt1 and Zrt2, both probably transport Zn2+ with high specificity, but Zrt1 transports Zn2+ with ten-fold higher affinitythan Zrt2. Some members of the ZIP family have been shown to transport Zn2+ while others transport Fe2+, and at least one transports a range of metal ions. The energy source fortransport has not been characterized, but these systems probably function as secondary carriers. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351093 cl00438 FMN_red NADPH-dependent FMN reductase. This is a family of flavodoxins. Flavodoxins are electron transfer proteins that carry a molecule of non-covalently bound FMN. 0 -351094 cl00439 UPF0047 Uncharacterized protein family UPF0047. Members of this protein family have been studied extensively by crystallography. Members from several different species have been shown to have sufficient thiamin phosphate synthase activity (EC 2.5.1.3) to complement thiE mutants. However, it is presumed that this is a secondary activity, and the primary function of this enzyme remains unknown. [Unknown function, Enzymes of unknown specificity] 0 -351095 cl00445 Iso_dh Isocitrate/isopropylmalate dehydrogenase. Tartrate dehydrogenase catalyzes the oxidation of both meso- and (+)-tartrate as well as a D-malate. These enzymes are closely related to the 3-isopropylmalate and isohomocitrate dehydrogenases found in TIGR00169 and TIGR02088, respectively. [Energy metabolism, Other] 0 -351096 cl00447 Nudix_Hydrolase N/A. Nudix hydrolases are found in all classes of organism and hydrolyze a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, di-nucleoside and diphospho-inositol polyphosphates, nucleotide sugars and RNA caps, with varying degrees of substrate specificity. 0 -351097 cl00448 SurE Survival protein SurE. This protein family originally was named SurE because of its role in stationary phase survivalin Escherichia coli. In E. coli, surE is next to pcm, an L-isoaspartyl protein repair methyltransferase that is also required for stationary phase survival. Recent work () shows that viewing SurE as an acid phosphatase (3.1.3.2) is not accurate. Rather, SurE in E. coli, Thermotoga maritima, and Pyrobaculum aerophilum acts strictly on nucleoside 5'- and 3'-monophosphates. E. coli SurE is Recommended cutoffs are 15 for homology, 40 for probable orthology, and 200 for orthology with full-length homology. [Cellular processes, Adaptations to atypical conditions] 0 -320978 cl00451 MoCF_BD N/A. This domain is found a variety of proteins involved in biosynthesis of molybdopterin cofactor. The domain is presumed to bind molybdopterin. The structure of this domain is known, and it forms an alpha/beta structure. In the known structure of Gephyrin this domain mediates trimerisation. 0 -351098 cl00452 AAK N/A. This family includes kinases that phosphorylate a variety of amino acid substrates, as well as uridylate kinase and carbamate kinase. This family includes: Aspartokinase EC:2.7.2.4. Acetylglutamate kinase EC:2.7.2.8. Glutamate 5-kinase EC:2.7.2.11. Uridylate kinase EC:2.7.4.-. Carbamate kinase EC:2.7.2.2. 0 -351099 cl00453 CDP-OH_P_transf CDP-alcohol phosphatidyltransferase. Alternate names: phosphatidylglycerophosphate synthase; glycerophosphate phosphatidyltransferase; PGP synthase. A number of related enzymes are quite similar in both sequence and catalytic activity, including Saccharamyces cerevisiae YDL142c, now known to be a cardiolipin synthase. There may be problems with incorrect transitive annotation of near homologs as authentic CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase. [Fatty acid and phospholipid metabolism, Biosynthesis] 0 -351100 cl00454 TM_PBP1_branched-chain-AA_like N/A. This is a sub-family of bacterial binding protein-dependent transport systems family. This Pfam entry contains the inner components of this multicomponent transport system. 0 -320982 cl00456 SLC5-6-like_sbd Solute carrier families 5 and 6-like; solute binding domain. This transmembrane region is found in many amino acid transporters including UNC-47 and MTR. UNC-47 encodes a vesicular amino butyric acid (GABA) transporter, (VGAT). UNC-47 is predicted to have 10 transmembrane domains. MTR is a N system amino acid transporter system protein involved in methyltryptophan resistance. Other members of this family include proline transporters and amino acid permeases. 0 -351101 cl00457 Ribonuclease_P Ribonuclease P. ribonuclease P; Provisional 0 -351102 cl00458 Peptidase_A8 Signal peptidase (SPase) II. Alternate name: lipoprotein signal peptidase [Protein fate, Protein and peptide secretion and trafficking] 0 -320984 cl00459 MIT_CorA-like metal ion transporter CorA-like divalent cation transporter superfamily. The CorA transport system is the primary Mg2+ influx system of Salmonella typhimurium and Escherichia coli. CorA is virtually ubiquitous in the Bacteria and Archaea. There are also eukaryotic relatives of this protein. The family includes the MRS2 protein from yeast that is thought to be an RNA splicing protein. However its membership of this family suggests that its effect on splicing is due to altered magnesium levels in the cell. 0 -320985 cl00460 CMD Carboxymuconolactone decarboxylase family. PA26 is a p53-inducible protein. Its function is unknown. It has similarity to pfam04636 in its N-terminus. 0 -294315 cl00463 CbiQ Cobalt transport protein. This model represents the CbiQ component of the cobalt-specific ECF-type. CbiQ is now recognized as the T component of energy-coupling factor (ECF)-type transporters. The S component confers specificity (CbiM-N for cobalt systems), which CbiO is the ABC-family ATPase. In general, proteins found by this model reside next to the other putative subunits of the complex, identified as CbiN, CbiO, or CbiM. Note that the designation of cobalt transporter has been spread excessively among ECF system transporters with many other specificities. [Transport and binding proteins, Cations and iron carrying compounds] 0 -320986 cl00464 URO-D_CIMS_like N/A. The N-terminal domain and C-terminal domains of cobalamin-independent synthases together define a catalytic cleft in the enzyme. The N-terminal domain is thought to bind the substrate, in particular, the negatively charged polyglutamate chain. The N-terminal domain is also thought to stabilize a loop from the C-terminal domain. 0 -294317 cl00465 AI-2E_transport AI-2E family transporter. Three lines of evidence show this protein to be involved in sporulation. First, it is under control of a sporulation-specific sigma factor, sigma-E. Second, mutation leads to a sporulation defect. Third, it if found in exactly those genomes whose bacteria are capable of sporulation, except for being absent in Clostridium acetobutylicum ATCC824. This protein has extensive hydrophobic regions and is likely an integral membrane protein. [Cellular processes, Sporulation and germination] 0 -351103 cl00466 ATP-synt_C ATP synthase subunit C. F0F1 ATP synthase subunit C; Provisional 0 -351104 cl00467 Ntn_hydrolase N/A. The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologs vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria. The second is call beta-proteobacteria proteasome homolog (BPH). 0 -351105 cl00469 NADHdh NADH dehydrogenase. NADH:ubiquinone oxidoreductase subunit H; Provisional 0 -351106 cl00470 Aldo_ket_red N/A. This family includes a number of K+ ion channel beta chain regulatory domains - these are reported to have oxidoreductase activity. 0 -351107 cl00473 BI-1-like BAX inhibitor (BI)-1/YccA-like protein family. Programmed cell-death involves a set of Bcl-2 family proteins, some of which inhibit apoptosis (Bcl-2 and Bcl-XL) and some of which promote it (Bax and Bak). Human Bax inhibitor, BI-1, is an evolutionarily conserved integral membrane protein containing multiple membrane-spanning segments predominantly localized to intracellular membranes. It has 6-7 membrane-spanning domains. The C termini of the mammalian BI-1 proteins are comprised of basic amino acids resembling some nuclear targeting sequences, but otherwise the predicted proteins lack motifs that suggest a function. As plant BI-1 appears to localize predominantly to the ER, we hypothesized that plant BI-1 could also regulate cell death triggered by ER stress. BI-1 appears to exert its effect through an interaction with calmodulin. The budding yeast member of this family has been found unexpectedly to encode a BH3 domain-containing protein (Ybh3p) that regulates the mitochondrial pathway of apoptosis in a phylogenetically conserved manner. Examination of the crystal structure of a bacterial member of this family shows that these proteins mediate a calcium leak across the membrane that is pH-dependent. Calcium homoeostasis balances passive calcium leak with active calcium uptake. The structure exists in a pore-closed and pore-open conformation, at pHs of 8 and 6 respectively, and the pore can be opened by intracrystalline transition; together these findings suggest that pH controls the conformational transition. 0 -351108 cl00474 PAP2_like N/A. This family is closely related to the C-terminal a region of PAP2. 0 -320993 cl00475 FTR1 Iron permease FTR1 family. A characterized member from yeast acts as oxidase-coupled high affinity iron transporter. Note that the apparent member from E. coli K12-MG1655 has a frameshift by homology with member sequences from other species. [Unknown function, General] 0 -351109 cl00477 H2MP N/A. The family consists of hydrogenase maturation proteases. In E. coli HypI the hydrogenase maturation protease is involved in processing of HypE the large subunit of hydrogenases 3, by cleavage of its C-terminal. 0 -351110 cl00478 LGT Prolipoprotein diacylglyceryl transferase. The conversion of lipoprotein precursors into lipoproteins consists of three steps. First, the enzyme described by this model transfers a diacylglyceryl moiety from phosphatidylglycerol to the side chain of a Cys that will become the new N-terminus. Second, the signal peptide is removed by signal peptidase II. Finally, the free amino group of the new N-terminal Cys is acylated by apolipoprotein N-acyltransferase. [Protein fate, Protein modification and repair] 0 -351111 cl00480 RraA-like Aldolase/RraA. ribonuclease activity regulator protein RraA; Provisional 0 -351112 cl00481 SecE SecE/Sec61-gamma subunits of protein translocation complex. This model represents exclusively the bacterial (and some organellar) SecE protein. SecE is part of the core heterotrimer, SecYEG, of the Sec preprotein translocase system. Other components are the ATPase SecA, a cytosolic chaperone SecB, and an accessory complex of SecDF and YajC. [Protein fate, Protein and peptide secretion and trafficking] 0 -351113 cl00482 SmpB Small protein B (SmpB) is a component of the trans-translation system in prokaryotes for releasing stalled ribosome from damaged messenger RNAs. SsrA-binding protein; Validated 0 -351114 cl00483 UDG_like Uracil-DNA glycosylases (UDG) and related enzymes. This family consists of uncharacterized proteins around 230 residues in length and is mainly found in various Listeria species. The function of this family is unknown. 0 -351115 cl00485 LacAB_rpiB Ribose/Galactose Isomerase. This family is a member of the RpiB/LacA/LacB subfamily (TIGR00689) but lies outside the RpiB equivalog (TIGR01120) which is also a member of that subfamily. Ribose 5-phosphate isomerase is an essential enzyme of the pentose phosphate pathway; a pathway that appears to be present in the actinobacteria. The only candidates for ribose 5-phosphate isomerase in the Actinobacteria are members of this family. 0 -351116 cl00489 60KD_IMP 60Kd inner membrane protein. This model describes full-length from some species, and the C-terminal region only from other species, of the YidC/Oxa1 family of proteins. This domain appears to be univeral among bacteria (although absent from Archaea). The well-characterized YidC protein from Escherichia coli and its close homologs contain a large N-terminal periplasmic domain in addition to the region modeled here. [Protein fate, Protein and peptide secretion and trafficking] 0 -351117 cl00490 EEP Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily. This domain represents the endonuclease region of retrotransposons from a range of bacteria, archaea and eukaryotes. These are enzymes largely from class EC:2.7.7.49. 0 -351118 cl00492 Oxidored_q2 NADH-ubiquinone/plastoquinone oxidoreductase chain 4L. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351119 cl00493 trimeric_dUTPase Trimeric dUTP diphosphatases. dUTPase hydrolyzes dUTP to dUMP and pyrophosphate. 0 -351120 cl00494 YbaB_DNA_bd YbaB/EbfC DNA-binding family. hypothetical protein; Provisional 0 -351121 cl00495 Glu-tRNAGln Glu-tRNAGln amidotransferase C subunit. aspartyl/glutamyl-tRNA amidotransferase subunit C; Reviewed 0 -321006 cl00497 CxxCxxCC Putative zinc- or iron-chelating domain. hypothetical protein; Provisional 0 -351122 cl00500 ACPS 4'-phosphopantetheinyl transferase superfamily. This model models a domain active in transferring the phophopantetheine prosthetic group to its attachment site on enzymes and carrier proteins. Many members of this family are small proteins that act on the acyl carrier protein involved in fatty acid biosynthesis. Some members are domains of larger proteins involved specialized pathways for the synthesis of unusual molecules including polyketides, atypical fatty acids, and antibiotics. [Protein fate, Protein modification and repair] 0 -321008 cl00504 Cytochrom_C_asm Cytochrome C assembly protein. Members of this protein family represent one of two essential proteins of system II for c-type cytochrome biogenesis. Additional proteins tend to be part of the system but can be replaced by chemical reductants such as dithiothreitol. This protein is designated CcsB in Bordetella pertussis and some other bacteria, resC in Bacillus (where there is additional N-terminal sequence), and CcsA in chloroplast. We use the CcsB designation here. Member sequences show regions of strong sequence conservation and variable-length, poorly conserved regions in between; sparsely filled columns were removed from the seed alignment prior to model construction. [Energy metabolism, Electron transport, Protein fate, Protein modification and repair] 0 -351123 cl00505 DHQase_II N/A. 3-dehydroquinate dehydratase; Reviewed 0 -351124 cl00506 Haemolytic Haemolytic domain. This model describes a family, YidD, of small, non-essential proteins now suggested to improve YidC-dependent inner membrane protein insertion. A related protein is found in the temperature phage HP1 of Haemophilus influenzae. Annotation of some members of this family as hemolysins appears to represent propagation from an unpublished GenBank submission, L36462, attributed to Aeromonas hydrophila but a close match to E. coli. [Hypothetical proteins, Conserved] 0 -351125 cl00508 YGGT YGGT family. This family consists of a repeat found in conserved hypothetical integral membrane proteins. The function of this region and the proteins which possess it is unknown. 0 -351126 cl00509 hot_dog N/A. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 139 and 165 amino acids in length. There is a conserved PYF sequence motif. There is a single completely conserved residue N that may be functionally important. 0 -351127 cl00510 MlaE Permease MlaE. Permease subunit of ER-derived-lipid transporter; Provisional 0 -294347 cl00511 FTSW_RODA_SPOVE Cell cycle protein. This family consists of FtsW, an integral membrane protein with ten transmembrane segments. In general, it is one of two paralogs involved in peptidoglycan biosynthesis, the other being RodA, and is essential for cell division. All members of the seed alignment for this model are encoded in operons for the biosynthesis of UDP-N-acetylmuramoyl-pentapeptide, a precursor of murein (peptidoglycan). The FtsW designation is not used in endospore-forming bacterial (e.g. Bacillus subtilis), where the member of this family is designated SpoVE and three or more RodA/FtsW/SpoVE family paralogs are present. SpoVE acts in spore cortex formation and is dispensible for growth. Biological rolls for FtsW in cell division include recruitment of penicillin-binding protein 3 to the division site. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Cellular processes, Cell division] 0 -351128 cl00512 LpxC UDP-3-O-acyl N-acetylglycosamine deacetylase. UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase from E. coli , LpxC, was previously designated EnvA. This enzyme is involved in lipid-A precursor biosynthesis. It is essential for cell viability. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -321015 cl00514 Nitro_FMN_reductase N/A. The nitroreductase family comprises a group of FMN- or FAD-dependent and NAD(P)H-dependent enzymes able to metabolize nitrosubstituted compounds. 0 -351129 cl00516 Restriction_endonuclease_like N/A. This bacterial family of proteins has no known function. 0 -351130 cl00518 Asp_Glu_race Asp/Glu/Hydantoin racemase. This family consists of several bacterial and archaeal AroM proteins. In Escherichia coli the aroM gene is cotranscribed with aroL. The function of this family is unknown. 0 -351131 cl00519 RsfS Ribosomal silencing factor during starvation. This model describes a widely distributed family of bacterial proteins related to iojap from plants. It includes RsfS(YbeB) from E. coli. The gene iojap is a pattern-striping gene in maize, reflecting a chloroplast development defect in some cells. The conserved function of this protein is to silence ribosomes by binding the ribosomal large subunit and impairing joining with the small subunit in response to nutrient stress. Note that RsfS (starvation) is an author-endorsed change from the published symbol RsfA, which conflicted with previously published gene symbols. [Protein synthesis, Translation factors] 0 -351132 cl00521 TatC Sec-independent protein translocase protein (TatC). This model represents the TatC translocase component of the Sec-independent protein translocation system. This system is responsible for translocation of folded proteins, often with bound cofactors across the periplasmic membrane. A related model (TIGR01912) represents the archaeal clade of this family. TatC is often found in a gene cluster with the two other components of the system, TatA/E (TIGR01411) and TatB (TIGR01410). A model also exists for the Twin-arginine signal sequence (TIGR01409). [Protein fate, Protein and peptide secretion and trafficking] 0 -351133 cl00522 GTP_cyclohydro2 N/A. GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. 0 -351134 cl00523 Queuosine_synth Queuosine biosynthesis protein. This model describes the enzyme for S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA). QueA synthesizes Queuosine which is usually in the first position of the anticodon of tRNAs specific for asparagine, aspartate, histidine, and tyrosine. [Protein synthesis, tRNA and rRNA base modification] 0 -351135 cl00526 DAGK_IM_like Integral membrane diacylglycerol kinase and similar enzymes. This bacterial family of homo-trimeric integral membrane enzyme domains catalyzes the ATP-dependent phosphorylation of of undecaprenol to undecaprenyl phosphate. They sit N-terminally to phosphatase domains that are members of the type 2 phosphatidic acid phosphatase superfamily, and the function of members of this domain architecture was determined to be undecaprenyl pyrophosphate phosphatases. The bi-functional enzymes might generate undecaprenyl phosphate via two mechanisms - the phosphorylation of undecaprenol or the cleavage of the terminal phosphate group of undecaprenyl pyrophosphate. 0 -351136 cl00528 IscU_like Iron-sulfur cluster scaffold-like proteins. This domain is found in NifU in combination with pfam01106. This domain is found on isolated in several bacterial species. The nif genes are responsible for nitrogen fixation. However this domain is found in bacteria that do not fix nitrogen, so it may have a broader significance in the cell than nitrogen fixation. These proteins appear to be scaffold proteins for iron-sulfur clusters. 0 -351137 cl00529 Ribosomal_S21 Ribosomal protein S21. 30S ribosomal protein S21; Reviewed 0 -351138 cl00530 UreD UreD urease accessory protein. UreD is a urease accessory protein. Urease pfam00449 hydrolyzes urea into ammonia and carbamic acid. UreD is involved in activation of the urease enzyme via the UreD-UreF-UreG-urease complex and is required for urease nickel metallocenter assembly. See also UreF pfam01730, UreG pfam01495. 0 -351139 cl00532 Urease_gamma N/A. Urease is a nickel-binding enzyme that catalyzes the hydrolysis of urea to carbon dioxide and ammonia. 0 -351140 cl00533 Urease_beta N/A. This subunit is known as alpha in Heliobacter. 0 -351141 cl00535 Oxidored_q4 NADH-ubiquinone/plastoquinone oxidoreductase, chain 3. NADH dehydrogenase subunit A; Validated 0 -321029 cl00537 ExbD Biopolymer transport protein ExbD/TolR. The model describes the inner membrane protein TolR, part of the TolR/TolQ complex that transduces energy from the proton-motive force, through TolA, to an outer membrane complex made up of TolB and Pal (peptidoglycan-associated lipoprotein). The complex is required to maintain outer membrane integrity, and defects may cause a defect in the import of some organic compounds in addition to the resulting morphologic. While several gene pairs homologous to talR and tolQ may be found in a single genome, but the scope of this model is set to favor finding only bone fide TolR, supported by operon structure as well as by score. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] 0 -351142 cl00538 MinE Septum formation topological specificity factor MinE. cell division topological specificity factor MinE; Provisional 0 -351143 cl00540 Asp_decarbox Aspartate alpha-decarboxylase or L-aspartate 1-decarboxylase, a pyruvoyl group-dependent decarboxylase in beta-alanine production. Decarboxylation of aspartate is the major route of beta-alanine production in bacteria, and is catalyzed by the enzyme aspartate decarboxylase EC:4.1.1.11 which requires a pyruvoyl group for its activity. It is synthesized initially as a proenzyme which is then proteolytically cleaved to an alpha (C-terminal) and beta (N-terminal) subunit and a pyruvoyl group. This family contains both chains of aspartate decarboxylase. 0 -351144 cl00541 PNPsynthase N/A. Members of this family belong to the PdxJ family that catalyzes the condensation of 1-deoxy-d-xylulose-5-phosphate (DXP) and 1-amino-3-oxo-4-(phosphohydroxy)propan-2-one to form pyridoxine 5'-phosphate (PNP). This reaction is involved in de novo synthesis of pyridoxine (vitamin B6) and pyridoxal phosphate. 0 -351145 cl00542 RBFA Ribosome-binding factor A. ribosome-binding factor A; Validated 0 -351146 cl00546 POR Pyruvate ferredoxin/flavodoxin oxidoreductase. This model represents the beta subunit of indolepyruvate ferredoxin oxidoreductase, an alpha(2)/beta(2) tetramer, as found in Pyrococcus furiosus and Methanobacterium thermoautotrophicum. Cofactors for the tetramer include TPP, 4Fe4S, and 3Fe-4S. It shows considerable sequence similarity to subunits of several other ketoacid oxidoreductases. 0 -294369 cl00547 Branch_AA_trans Branched-chain amino acid transport protein. The Branched Chain Amino Acid:Cation Symporter (LIVCS) Family (TC 2.A.26) Characterized members of this family transport all three of the branched chain aliphatic amino acids (leucine (L), isoleucine (I) and valine (V)). They function by a Na+ or H+ symport mechanism and display 12 putative transmembrane helical spanners. [Transport and binding proteins, Amino acids, peptides and amines] 0 -351147 cl00548 Na_Ala_symp Sodium:alanine symporter family. The Alanine or Glycine: Cation Symporter (AGCS) Family (TC 2.A.25) Members of the AGCS family transport alanine and/or glycine in symport with Na+ and or H+. 0 -321036 cl00549 ABC_membrane ABC transporter transmembrane region. This family represents a unit of six transmembrane helices. 0 -351148 cl00551 Acylphosphatase Acylphosphatase. acylphosphatase; Provisional 0 -294373 cl00552 UPF0146 Uncharacterized protein family (UPF0146). hypothetical protein; Provisional 0 -351149 cl00553 DNase-RNase Bifunctional nuclease. This family is a bifunctional nuclease, with both DNase and RNase activity. It forms a wedge-shaped dimer, with each monomer being triangular in shape. A large groove at the thick end of the wedge contains a possible active site. 0 -351150 cl00554 NAD_binding_5 Myo-inositol-1-phosphate synthase. This is a family of myo-inositol-1-phosphate synthases. Inositol-1-phosphate catalyzes the conversion of glucose-6- phosphate to inositol-1-phosphate, which is then dephosphorylated to inositol. Inositol phosphates play an important role in signal transduction. 0 -351151 cl00555 SAF Domains similar to fish antifreeze type III protein. ChapFlgA is a family similar to the SAF family, and includes chaperones for flagellar basal-body proteins and pilus-assembly proteins, FlgA, RcpB and CpaB. ChapFlgA is necessary for the formation of the P-ring of the flagellum, FlgI, which sits in the peptidoglycan layer of the outer membrane of the bacterium. FlgA plays an auxiliary role in P-ring assembly. 0 -351152 cl00558 Abi CAAX protease self-immunity. The CAAX prenyl protease, in eukaryotes, catalyzes three covalent modifications, including cleavage and acylation, at the C-terminus of certain proteins in a process connected to protein sorting. This family describes a bacterial protein family homologous to one domain of the CAAX-processing enzyme. Members of this protein family are found in genomes that carry a predicted protein sorting system, PEP-CTERM/exosortase, usually in the vicinity of the EpsH homolog that is the hallmark of the system. The function of this protein is unknown, but it may relate to protein motification. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -321042 cl00559 PgpA Phosphatidylglycerophosphatase A; a bacterial membrane-associated enzyme involved in lipid metabolism. This family represents a family of bacterial phosphatidylglycerophosphatases (EC:3.1.3.27), known as PgpA. It appears that bacteria possess several phosphatidylglycerophosphatases, and thus, PgpA is not essential in Escherichia coli. 0 -351153 cl00561 CobD_Cbib CobD/Cbib protein. AmpE is a family of bacterial regulatory proteins. AmpE in conjunction with AmpD sense the effect of beta-lactam on peptidoglycan synthesis and relay this signal to AmpR. AmpR regulates the production of beta-lactamase. 0 -351154 cl00562 Cyt_bd_oxida_I Cytochrome bd terminal oxidase subunit I. cytochrome d terminal oxidase subunit 1; Provisional 0 -294381 cl00565 LysE LysE type translocator. [Transport and binding proteins, Amino acids, peptides and amines] 0 -351155 cl00567 Colicin_V Colicin V production protein. colicin V production protein; Provisional 0 -351156 cl00568 MotA_ExbB MotA/TolQ/ExbB proton channel family. The MotA protein, along with its partner MotB, comprise the stator complex of the bacterial flagellar motor. MotAB span the cytoplasmic membrane and undergo conformational changes powered by the translocation of protons. These conformational changes in turn are communicated to the rotor assembly, producing torque. This model represents one family of MotA proteins which are often not identified by the "transporter, MotA/TolQ/ExbB proton channel family" model, pfam01618. 0 -321047 cl00569 BCCT BCCT, betaine/carnitine/choline family transporter. putative transporter; Provisional 0 -351157 cl00570 AzlC AzlC protein. Overexpression of this gene results in resistance to a leucine analog, 4-azaleucine. The protein has 5 potential transmembrane motifs. It has been inferred, but not experimentally demonstrated, to be part of a branched-chain amino acid transport system. Commonly found in association with azlD. [Transport and binding proteins, Amino acids, peptides and amines] 0 -351158 cl00572 SpoIIM Stage II sporulation protein M. A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This predicted integral membrane protein is designated stage II sporulation protein M. [Cellular processes, Sporulation and germination] 0 -351159 cl00573 SDF Sodium:dicarboxylate symporter family. C4-dicarboxylate transporter DctA; Reviewed 0 -351160 cl00574 Asp23 Asp23 family, cell envelope-related function. The alkaline shock protein Asp23 was identified as an alkaline shock protein that was expressed in a sigmaB-dependent manner in Staphylococcus aureus. Following an alkaline shock Asp23 accumulates in the soluble protein fraction of the S. aureus cell. Asp23 is one of the most abundant proteins in the cytosolic protein fraction of stationary S. aureus cells, with a copy-number of >25000 per cell. A second Asp23-family protein, AmaP, which is encoded within the asp23-operon, is required to localize Asp23 to the cell membrane. The overall function for the family is thus a cell envelope-related one in Gram-positive bacteria. 0 -321052 cl00581 LytR_cpsA_psr Cell envelope-related transcriptional attenuator domain. This model describes a domain of unknown function that is found in the predicted extracellular domain of a number of putative membrane-bound proteins. One of these is proteins psr, described as a penicillin binding protein 5 (PDP-5) synthesis repressor. Another is Bacillus subtilis LytR, described as a transcriptional attenuator of itself and the LytABC operon, where LytC is N-acetylmuramoyl-L-alanine amidase. A third is CpsA, a putative regulatory protein involved in exocellular polysaccharide biosynthesis. Besides the region of strong similarily represented by this model, these proteins share the property of having a short putative N-terminal cytoplasmic domain and transmembrane domain forming a signal-anchor. [Regulatory functions, Other] 0 -351161 cl00583 PhaG_MnhG_YufB Na+/H+ antiporter subunit. putative monovalent cation/H+ antiporter subunit G; Reviewed 0 -351162 cl00584 CutA1 CutA1 divalent ion tolerance protein. divalent-cation tolerance protein CutA; Provisional 0 -351163 cl00585 RNA_binding RNA binding. hypothetical protein; Provisional 0 -351164 cl00588 CarD_CdnL_TRCF CarD-like/TRCF domain. CarD is a Myxococcus xanthus protein required for the activation of light- and starvation-inducible genes. This family includes the presumed N-terminal domain. CarD interacts with the zinc-binding protein CarG, to form a complex that regulates multiple processes in Myxococcus xanthus. This family also includes a domain to the N-terminal side of the DEAD helicase of TRCF proteins. TRCF displaces RNA polymerase stalled at a lesion, binds to the damage recognition protein UvrA, and increases the template strand repair rate during transcription. This domain is involved in binding to the stalled RNA polymerase. 0 -351165 cl00591 FlaG FlaG protein. flagellar protein FlaG; Provisional 0 -351166 cl00593 FliP FliP family. type III secretion system protein YscR; Provisional 0 -351167 cl00596 LrgB LrgB-like family. Members of this small but broadly distibuted (Gram-positive, Gram-negative, and Archaeal) family appear to have multiple transmembrane segments. The function is unknown. A homolog, LrgB of Staphylococcus aureus, in the same small superfamily but in an outgroup to this subfamily, is regulated by LytSR and is suggested to act as a murein hydrolase. Of the three paralogous proteins in B. subtilis, one is a full length member of this family, one lacks the C-terminal 60 residues and has an additional 128 N-terminal residues but branches within the family in a phylogenetic tree, and one is closely related to LrgB and part of the outgroup. [Hypothetical proteins, Conserved] 0 -351168 cl00597 Rnf-Nqr Rnf-Nqr subunit, membrane protein. electron transport complex RsxE subunit; Provisional 0 -351169 cl00598 SMC_ScpA Segregation and condensation protein ScpA. segregation and condensation protein A; Reviewed 0 -351170 cl00599 Extradiol_Dioxygenase_3B_like Subunit B of Class III Extradiol ring-cleavage dioxygenases. This family contains members from all branches of life. The molecular function of this protein is unknown, but Memo (mediator of ErbB2-driven cell motility) a human protein is included in this family. It has been suggested that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton. 0 -351171 cl00600 Ribosomal_L7Ae Ribosomal protein L7Ae/L30e/S12e/Gadd45 family. This RNA binding Pelota domain is at the C-terminus of a PRTase family. These PRTase+Pelota genes are found in the biosynthetic operon associated with the Ter stress-response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 0 -351172 cl00603 DmpA_OAT N/A. Members of the ArgJ family catalyze the first EC:2.3.1.1 and fifth steps EC:2.3.1.35 in arginine biosynthesis. 0 -351173 cl00604 STAS Sulphate Transporter and Anti-Sigma factor antagonist domain found in the C-terminal region of sulphate transporters as well as in bacterial and archaeal proteins involved in the regulation of sigma factors. The STAS (after Sulphate Transporter and AntiSigma factor antagonist) domain is found in the C terminal region of Sulphate transporters and bacterial antisigma factor antagonists. It has been suggested that this domain may have a general NTP binding function. 0 -321066 cl00605 RNase_P_Rpp14 Rpp14/Pop5 family. ribonuclease P protein component 2; Provisional 0 -351174 cl00606 Archease Archease protein family (MTH1598/TM1083). hypothetical protein; Provisional 0 -294405 cl00607 PUA PUA domain. This uncharacterized domain is found a number of enzymes and uncharacterized proteins, often at the C-terminus. It is found in some but not all members of a family of related tRNA-guanine transglycosylases (tgt), which exchange a guanine base for some modified base without breaking the phosphodiester backbone of the tRNA. It is also found in rRNA pseudouridine synthase, another enzyme of RNA base modification not otherwise homologous to tgt. It is found, again at the C-terminus, in two putative glutamate 5-kinases. It is also found in a family of small, uncharacterized archaeal proteins consisting mostly of this domain. 0 -351175 cl00608 LrgA LrgA family. murein hydrolase regulator LrgA; Provisional 0 -351176 cl00610 Ribosomal_S17e Ribosomal S17. 40S ribosomal protein S17; Provisional 0 -321070 cl00611 Methyltrans_RNA RNA methyltransferase. This family is likely to be an S-adenosyl-L-methionine (SAM)-dependent RNA methyltransferase. It is responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. 0 -351177 cl00612 SMC_ScpB Segregation and condensation complex subunit ScpB. segregation and condensation protein B; Reviewed 0 -351178 cl00613 ATP-synt_D ATP synthase subunit D. V-type ATP synthase subunit D; Provisional 0 -351179 cl00614 ADP_ribosyl_GH ADP-ribosylglycohydrolase. Members of this family are the enzyme ADP-ribosyl-[dinitrogen reductase] hydrolase (EC 3.2.2.24), better known as Dinitrogenase Reductase Activating Glycohydrolase, DRAG. This enzyme reverses a regulatory inactivation of dinitrogen reductase caused by the action of NAD(+)--dinitrogen-reductase ADP-D-ribosyltransferase (EC 2.4.2.37) (DRAT). This enzyme is restricted to nitrogen-fixing bacteria and belongs to the larger family of ADP-ribosylglycohydrolases described by pfam03747. [Central intermediary metabolism, Nitrogen fixation] 0 -294412 cl00615 Membrane-FADS-like N/A. Beta-carotene hydroxylase (CrtR), the carotenoid zeaxanthin biosynthetic enzyme catalyzes the addition of hydroxyl groups to the beta-ionone rings of beta-carotene to form zeaxanthin and is found in bacteria and red algae. Carotenoids are important natural pigments; zeaxanthin and lutein are the only dietary carotenoids that accumulate in the macular region of the retina and lens. It is proposed that these carotenoids protect ocular tissues against photooxidative damage. CrtR does not show overall amino acid sequence similarity to the beta-carotene hydroxylases similar to CrtZ, an astaxanthin biosynthetic beta-carotene hydroxylase. However, CrtR does show sequence similarity to the green alga, Haematococcus pluvialis, beta-carotene ketolase (CrtW), which converts beta-carotene to canthaxanthin. Sequences of the CrtR_beta-carotene-hydroxylase domain family, as well as, the CrtW_beta-carotene-ketolase domain family appear to be structurally related to membrane fatty acid desaturases and alkane hydroxylases. They all share in common extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXXH, HXXHH, and HXXHH. These histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within homologs, stearoyl CoA desaturase and alkane hydroxylase. 0 -351180 cl00616 DUF177 Uncharacterized ACR, COG1399. hypothetical protein; Provisional 0 -321075 cl00617 SRP19 SRP19 protein. signal recognition particle protein Srp19; Provisional 0 -351181 cl00618 Creatininase Creatinine amidohydrolase. Members of this family are creatininase (EC 3.5.2.10), an amidohydrolase that interconverts creatinine + H(2)O with creatine. It should not be confused with creatinase (EC 3.5.3.3), which hydrolyzes creatine to sarcosine plus urea. [Central intermediary metabolism, Nitrogen metabolism] 0 -321077 cl00620 DUF763 Protein of unknown function (DUF763). This family consists of several uncharacterized bacterial and archaeal proteins of unknown function. 0 -351182 cl00622 Csm2_III-A CRISPR/Cas system-associated protein Csm2. Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-associated) proteins. This entry represents Csm2 Type III-A, a family of Cas proteins also known as TM1810/Csm2. 0 -351183 cl00625 BioW 6-carboxyhexanoate--CoA ligase. 6-carboxyhexanoate--CoA ligase; Provisional 0 -351184 cl00627 DUF192 Uncharacterized ACR, COG1430. hypothetical protein; Provisional 0 -351185 cl00628 Piwi-like N/A. This domain is found in the protein Piwi and its relatives. The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteristics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. 0 -351186 cl00630 YdcF-like N/A. This large family of proteins contains several highly conserved charged amino acids, suggesting this may be an enzymatic domain (Bateman A pers. obs). The family includes SanA, which is involved in Vancomycin resistance. This protein may be involved in murein synthesis. 0 -351187 cl00632 ATP-synt_F ATP synthase (F/14-kDa) subunit. V-type ATP synthase subunit F; Provisional 0 -351188 cl00635 Ntn_Asparaginase_2_like L-Asparaginase type 2-like enzymes of the NTN-hydrolase superfamily. The wider family of Asparaginase 2-like enzymes includes Glycosylasparaginase, Taspase 1, and L-Asparaginase type 2. Glycosylasparaginase catalyzes the hydrolysis of the glycosylamide bond of asparagine-linked glycoprotein. Taspase1 catalyzes the cleavage of the Mix Lineage Leukemia (MLL) nuclear protein and transcription factor TFIIA. L-Asparaginase type 2 hydrolyzes L-asparagine to L-aspartate and ammonia. The proenzymes of this family undergo autoproteolytic cleavage before a threonine to generate alpha and beta subunits. The threonine becomes the N-terminal residue of the beta subunit and is the catalytic residue. 0 -351189 cl00638 RNA_pol_Rpb4 RNA polymerase Rpb4. DNA-directed RNA polymerase subunit F; Provisional 0 -351190 cl00640 DHQS 3-dehydroquinate synthase II (EC 1.4.1.24). 3-dehydroquinate synthase; Provisional 0 -351191 cl00641 Cas4_I-A_I-B_I-C_I-D_II-B CRISPR/Cas system-associated protein Cas4. Members of this family belong to the PD-(D/E)XK nuclease superfamily 0 -351192 cl00642 GCHY-1 Type I GTP cyclohydrolase folE2. putative GTP cyclohydrolase; Provisional 0 -351193 cl00644 F420_ligase F420-0:Gamma-glutamyl ligase. This protein family is related to CofE, a gamma-glutamyl ligase of coenzyme F420 biosynthesis. However, it occurs in a different gamma-glutamyl ligase context, polyglutamylated tetrahydrofolate biosynthesis-like regions in two widely separated lineages that both occur as intracellular bacteria - Chlamydia and Wolbachia. 0 -351194 cl00647 SfsA Sugar fermentation stimulation protein. probable regulatory factor involved in maltose metabolism contains a putative DNA binding domain. Isolated as a gene which enabled E.coli strain MK2001 to use maltose. [Energy metabolism, Sugars, Regulatory functions, Other] 0 -351195 cl00649 DsbB Disulfide bond formation protein DsbB. disulfide bond formation protein B; Provisional 0 -351196 cl00650 Cu-oxidase_4 Multi-copper polyphenol oxidoreductase laccase. PSI-BLAST converges on members of this family of uncharacterized bacterial proteins and shows no significant similarity to any characterized protein. No completed genome to date has two members. Members of the family have been crystallized but the function is unknown. [Unknown function, General] 0 -351197 cl00652 DUF501 Protein of unknown function (DUF501). Family of uncharacterized bacterial proteins. 0 -351198 cl00653 Endonuclease_V Endonuclease_V, a DNA repair enzyme that initiates repair of nitrosative deaminated purine bases. This domain is found in the C subunits of the bacterial and archaeal UvrABC system which catalyzes nucleotide excision repair in a multi-step process. UvrC catalyzes the first incision on the fourth or fifth phosphodiester bond 3' and on the eighth phosphodiester bond 5' from the damage that is to be excised. The domain described here is found to the N-terminus of a helix hairpin helix (pfam00633) motif and also co-occurs with the pfam01541 catalytic domain which is found at the N-terminus of the same proteins. 0 -351199 cl00654 FliS flagellar export chaperone FliS. FliS is coded for by the FliD operon and is transcribed in conjunction with FliD and FliT, however this protein has no known function. 0 -351200 cl00656 Cas1_I-II-III CRISPR/Cas system-associated protein Cas1. Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. This family of proteins corresponds to Cas1, a CRISPR-associated protein. Cas1 may be involved in linking DNA segments to CRISPR. 0 -321097 cl00659 FdhD-NarQ FdhD/NarQ family. FdhD in E. coli and NarQ in B. subtilis are required for the activity of formate dehydrogenase. The gene name in B. subtilis reflects the requirement of the neighboring gene narA for nitrate assimilation, for which NarQ is not required. In some species, the gene is associated not with a known formate dehydrogenase but with a related putative molybdopterin-binding oxidoreductase. A reasonable hypothesis is that this protein helps prepare a required cofactor for assembly into the holoenzyme. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 0 -351201 cl00660 vATP-synt_AC39 ATP synthase (C/AC39) subunit. The A1/A0 ATP synthase is homologous to the V-type (V1/V0, vacuolar) ATPase, but functions in the ATP synthetic direction as does the F1/F0 ATPase of bacteria. The C subunit is part of the hydrophilic A1 "stalk" complex (AhaABCDEFG), which is the site of ATP generation and is coupled to the membrane-embedded proton translocating A0 complex. 0 -321099 cl00661 DUF504 Protein of unknown function (DUF504). hypothetical protein; Provisional 0 -321100 cl00662 CooT-like CooT family nickel-binding protein. CooT is one of three nickel-insertion accessory proteins for CO dehydrogenase. Its homologs may function as accessory proteins of nickel-dependent enzymes. 0 -351202 cl00663 CRS1_YhbY CRS1 / YhbY (CRM) domain. GFP fused to a single-domain CRM protein from maize localises to the nucleolus, suggesting that an analogous activity may have been retained in plants. A CRM domain containing protein in plant chloroplasts has been shown to function in group I and II intron splicing. In vitro experiments with an isolated maize CRM domain have shown it to have RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. YhbY has a fold similar to that of the C-terminal domain of translation initiation factor 3 (IF3C), which binds to 16S rRNA in the 30S ribosome. 0 -351203 cl00666 CinA Competence-damaged protein. hypothetical protein; Validated 0 -351204 cl00667 DUF309 Domain of unknown function (DUF309). This domain is found in eubacterial and archaebacterial proteins of unknown function. The proteins contain a motif HXXXEXX(W/Y) where X can be any amino acid. This motif is likely to be functionally important and may be involved in metal binding. 0 -321104 cl00668 Hydantoinase_A Hydantoinase/oxoprolinase. This protein family was identified, by the method of partial phylogenetic profiling, as related to the use of tetrahydromethanopterin (H4MPT) as a C-1 carrier. Characteristic markers of the H4MPT-linked C1 transfer pathway include formylmethanofuran dehydrogenase subunits, methenyltetrahydromethanopterin cyclohydrolase, etc. Tetrahydromethanopterin, a tetrahydrofolate analog, occurs in methanogenic archaea, bacterial methanotrophs, planctomycetes, and a few other lineages. [Central intermediary metabolism, One-carbon metabolism] 0 -351205 cl00669 DUF503 Protein of unknown function (DUF503). Family of hypothetical bacterial proteins. 0 -351206 cl00670 CsrA Global regulator protein family. Modulates the expression of genes in the glycogen biosynthesis and gluconeogenesis pathways by accelerating the 5'-to-3' degradation of these transcripts through selective RNA binding. The N-terminal end of the sequence (AA 11-45) contains the KH motif which is characteristic of a set of RNA-binding proteins. [Energy metabolism, Glycolysis/gluconeogenesis, Regulatory functions, RNA interactions] 0 -351207 cl00671 Ribosomal_L40e Ribosomal L40e family. 50S ribosomal protein L40e; Provisional 0 -351208 cl00672 DrsE DsrE/DsrF-like family. DsrH is involved in oxidation of intracellular sulphur in the phototrophic sulphur bacterium Chromatium vinosum D. 0 -321109 cl00674 LUD_dom LUD domain. This entry represents a domain found in lactate utilization proteins B (LutB) and C (LutC), as well as several uncharacterized proteins. LutB and LutC are encoded by th conserved LutABC operon in bacteria. They are involved in lactate utilization and is implicated in the oxidative conversion of L-lactate into pyruvate 0 -351209 cl00676 DUF4040 Domain of unknown function (DUF4040). Possible subunit of Na+/H+ antiporter,. Predicted integral membrane protein, usually four transmembrane regions in this domain. Often found in bacterial NADH dehydrogenase subunit. 0 -351210 cl00679 SPOUT_MTase Predicted SPOUT methyltransferase. rRNA large subunit methyltransferase; Provisional 0 -351211 cl00681 FliL Flagellar basal body-associated protein FliL. flagellar basal body-associated protein FliL; Reviewed 0 -351212 cl00682 Alba Alba. The nuclear RNase P of Saccharomyces cerevisiae is made up of at least nine protein subunits; Pop1, Pop3, Pop4, Pop5, Pop6, Pop7, Pop8, Rpr2 and Rpp1. Many of these subunits seem to be present also in the RNase MRP, with the exception of Rpr2 (Rpp21) which is unique to RNase P. Human nuclear RNase P and MRP appear to contain at least 10 protein subunits, Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, hPop1 and hPop5, although there is recent evidence that not all of these subunits are shared between P and MRP. Archaeal RNase P has at least four protein subunits homologous to eukaryotic RNase P/MRP proteins. In the yeast RNase P, Pop6 and Pop7 (the Rpp20 homolog) interact with each other and they are both interaction partners of Pop4; in the human MRP Rpp25 and Rpp20 interact with each other and Rpp25 binds to Rpp29 (Pop4). 0 -351213 cl00683 FlbD Flagellar protein (FlbD). This family consists of several bacterial FlbD flagellar proteins. The exact function of this family is unknown. 0 -321115 cl00685 Grp1_Fun34_YaaH GPR1/FUN34/yaaH family. hypothetical protein; Provisional 0 -351214 cl00686 NfeD NfeD-like C-terminal, partner-binding. NfeD-like proteins are widely distributed throughout prokaryotes and are frequently associated with genes encoding stomatin-like proteins (slipins). There appear to be three major groups: an ancestral group with only an N-terminal serine protease domain and this C-terminal beta sheet-rich domain which is structurally very similar to the OB-fold domain, associated with its neighboring slipin cluster; a second major group with an additional middle, membrane-spanning domain, associated in some species with eoslipin and in others with yqfA; a final 'artificial' group which unites truncated forms lacking the protease region and associated with their ancestral gene partner, either yqfA or eoslipin. This NefD, C-terminal, domain appears to be the major one for relating to the associated protein. NfeD homologs are clearly reliant on their conserved gene neighbor which is assumed to be necessary for function, either through direct physical interaction or by functioning in the same pathway, possibly involve with lipid-rafts. 0 -351215 cl00687 AdoMet_dc S-adenosylmethionine decarboxylase. Members of this protein family are the single chain precursor of the S-adenosylmethionine decarboxylase as found in Escherichia coli. This form shows a substantially different architecture from the form shared by the Archaea, Bacillus, and many other species (TIGR03330). It shows little or no similarity to the form found in eukaryotes (TIGR00535). [Central intermediary metabolism, Polyamine biosynthesis] 0 -351216 cl00688 UPF0086 Domain of unknown function UPF0086. ribonuclease P protein component 1; Validated 0 -351217 cl00689 TYW3 Methyltransferase TYW3. hypothetical protein; Provisional 0 -351218 cl00693 CM_2 Chorismate mutase type II. This model represents the plant and yeast (plastidic) chorismate mutase. These CM's are distinct from other forms by the presence of an extended regulatory domain. [Amino acid biosynthesis, Aromatic amino acid family] 0 -351219 cl00698 CGI-121 Kinase binding protein CGI-121. KEOPS complex Cgi121-like subunit; Provisional 0 -351220 cl00700 Peptidase_S66 LD-Carboxypeptidase, a serine protease, includes microcin C7 self immunity protein. Muramoyl-tetrapeptide carboxypeptidase hydrolyzes a peptide bond between a di-basic amino acid and the C-terminal D-alanine in the tetrapeptide moiety in peptidoglycan. This cleaves the bond between an L- and a D-amino acid. The function of this activity is in murein recycling. This family also includes the microcin c7 self-immunity protein. This family corresponds to Merops family S66. 0 -294462 cl00701 Lactate_perm L-lactate permease. L-lactate permease; Provisional 0 -351221 cl00706 Ribosomal_L44 Ribosomal protein L44. 60S ribosomal protein L36a; Provisional 0 -351222 cl00711 Glyco_hydro_77 4-alpha-glucanotransferase. 4-alpha-glucanotransferase; Provisional 0 -351223 cl00712 RNA_pol_N RNA polymerases N / 8 kDa subunit. DNA-directed RNA polymerase subunit N; Provisional 0 -351224 cl00713 Auto_anti-p27 Sjogren's syndrome/scleroderma autoantigen 1 (Autoantigen p27). hypothetical protein; Validated 0 -351225 cl00716 tRNA_deacylase D-aminoacyl-tRNA deacylase. hypothetical protein; Provisional 0 -351226 cl00718 TOPRIM N/A. This is a family or Toprim-like proteins. 0 -351227 cl00720 DUF296 Domain of unknown function found in archaea, bacteria, and plants. This putative domain is found in proteins that contain AT-hook motifs pfam02178, which strongly suggests a DNA-binding function for the proteins as a whole. There are three highly conserved histidine residues, eg at 117, 119 and 133 in Reut_B5223, which should be a structurally conserved metal-binding unit, based on structural comparison with known metal-binding structures. The proteins should work as trimers. 0 -294470 cl00721 DDE_Tnp_IS1 IS1 transposase. Transposase proteins are necessary for efficient DNA transposition. This family represents bacterial IS1 transposases. 0 -351228 cl00723 YajQ_like Proteins similar to Escherichia coli YajQ. Family of uncharacterized proteins. 0 -260590 cl00724 DUF2226 Uncharacterized protein conserved in archaea (DUF2226). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321131 cl00727 DUF188 Uncharacterized BCR, YaiI/YqxD family COG1671. hypothetical protein; Validated 0 -321132 cl00728 EVE EVE domain. hypothetical protein; Provisional 0 -351229 cl00731 DUF179 Uncharacterized ACR, COG1678. hypothetical protein; Validated 0 -321134 cl00732 Arch_flagellin Archaebacterial flagellin. flagellin; Validated 0 -351230 cl00733 DUF523 Protein of unknown function (DUF523). Family of uncharacterized bacterial proteins. 0 -351231 cl00734 Bac_export_1 Bacterial export proteins, family 1. flagellar biosynthesis protein FliR; Reviewed 0 -321137 cl00735 AzlD Branched-chain amino acid transport protein (AzlD). putative L-valine exporter; Provisional 0 -321138 cl00738 MBOAT MBOAT, membrane-bound O-acyltransferase family. Members of this protein family are DltB, part of a four-gene operon for D-alanyl-lipoteichoic acid biosynthesis that is present in the vast majority of low-GC Gram-positive organisms. This protein may be involved in transport of D-alanine across the plasma membrane. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 0 -321139 cl00739 UPF0147 Uncharacterized protein family (UPF0147). hypothetical protein; Provisional 0 -351232 cl00740 FliW FliW protein. flagellar assembly protein FliW; Provisional 0 -351233 cl00742 LemA LemA family. The members of this family are related to the LemA protein. LemA contains an amino terminal predicted transmembrane helix. It has been predicted that the small amino terminus is extracellular. The exact molecular function of this protein is uncertain. 0 -351234 cl00746 RDD RDD family. This family of proteins contain three highly conserved amino acids: one arginine and two aspartates, hence the name of RDD family. This region contains two predicted transmembrane regions. The arginine occurs at the N-terminus of the first helix and the first aspartate occurs in the middle of this helix. The molecular function of this region is unknown. However this region may be involved in transport of an as yet unknown set of ligands (Bateman A pers. obs.). 0 -351235 cl00748 Ribosomal_L32_L32e N/A. This family includes ribosomal protein L32 from eukaryotes and archaebacteria. 0 -351236 cl00749 UPF0066 Escherichia coli YaeB and related proteins. This protein has been characterized by crystallography in complex with S-Adenosylmethionine, making it a probable S-adenosylmethionine-dependent methyltransferase. Analysis in EcoGene links this protein to the enzyme characterization mapped to the tsaA gene in Escherichia coli. [Unknown function, Enzymes of unknown specificity] 0 -351237 cl00750 Exonuc_VII_S Exonuclease VII small subunit. This protein is the small subunit for exodeoxyribonuclease VII. Exodeoxyribonuclease VII is made of a complex of four small subunits to one large subunit. The complex degrades single-stranded DNA into large acid-insoluble oligonucleotides. These nucleotides are then degraded further into acid-soluble oligonucleotides. [DNA metabolism, Degradation of DNA] 0 -351238 cl00751 DUF155 Uncharacterized ACR, YagE family COG1723. 0 -351239 cl00752 HicA_toxin HicA toxin of bacterial toxin-antitoxin,. HicA_toxin is a bacterial family of toxins that act as mRNA interferases. The antitoxin that neutralizes this is family HicB, pfam15919. 0 -351240 cl00753 DUF327 Protein of unknown function (DUF327). The proteins in this family are around 140-170 residues in length. The proteins contain many conserved residues. with the most conserved motifs found in the central and C-terminal region. The function of these proteins is unknown. 0 -351241 cl00755 zf-dskA_traR Prokaryotic dksA/traR C4-type zinc finger. Members of this predicted regulatory protein are found only in endospore-forming members of the Firmicutes group of bacteria, and in nearly every such species; Clostridium perfringens seems to be an exception. The member from Bacillus subtilis, the model system for the study of the sporulation program, has been designated both yteA and yzwB. Some (but not all) members of this family show a strong sequence match to Pfam family pfam01258 the C4-type zinc finger protein, DksA/TraR family, but only one of the four key Cys residues is conserved. All members of this protein family share an additional C-terminal domain. Smaller proteins from the proteobacteria with just the N-terminal domain, including DksA and DksA2 are RNA polymerase-binding regulatory proteins even if the Zn-binding site is not conserved. [Unknown function, General] 0 -351242 cl00756 Vut_1 Putative vitamin uptake transporter. hypothetical protein; Provisional 0 -242072 cl00757 UPF0060 Uncharacterized BCR, YnfA/UPF0060 family. hypothetical protein; Provisional 0 -321151 cl00759 UPF0058 Uncharacterized protein family UPF0058. This archaebacterial protein has no known function. 0 -351243 cl00762 VAPB_antitox Putative antitoxin. hypothetical protein; Provisional 0 -351244 cl00764 EMG1 EMG1/NEP1 methyltransferase. ribosome biogenesis protein; Provisional 0 -321154 cl00767 OsmC OsmC-like protein. pfam02566, OsmC-like protein, contains several deeply split clades of homologous proteins. The clade modeled here includes the protein OsmC, or osmotically induced protein C. The member from Thermus thermophilus was shown to have hydroperoxide peroxidase activity. In many species, this protein is induced by stress and helps resist oxidative stress. [Cellular processes, Detoxification] 0 -351245 cl00768 CitG ATP:dephospho-CoA triphosphoribosyl transferase. This protein acts in cofactor biosynthesis, preparing the coenzyme A derivative that becomes attached to the malonate decarboxylase acyl carrier protein (or delta subunit). The closely related protein CitG of citrate lyase produces the same molecule, but the two families are nonetheless readily separated. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -321156 cl00769 DUF531 Protein of unknown function (DUF531). Family of hypothetical archaeal proteins. 0 -351246 cl00770 PSP1 PSP1 C-terminal conserved region. This region is present in both eukaryotes and eubacteria. The yeast PSP1 protein is involved in suppressing mutations in the DNA polymerase alpha subunit in yeast. 0 -351247 cl00772 TctA Tripartite tricarboxylate transporter TctA family. This family, formerly known as DUF112, is a family of bacterial and archaeal tripartite tricarboxylate transporters of the extracytoplasmic solute binding receptor-dependent transporter group of families, distinct from the ABC and TRAP-T families. TctA is part of the tripartite TctABC system which, as characterized in S. typhimurium, is a secondary carrier that depends for activity on the extracytoplasmic tricarboxylate-binding receptor TctC as well as two integral membrane proteins, TctA and TctB. complete three-component systems are found only in bacteria. TctA is a large transmembrane protein with up to 12 predicted membrane spanning regions in bacteria and up to 11 such in archaea, with the N-terminal within the cytoplasm. TctA is thought to be a permease, and in most other bacteria functions without TctB and TctC molecules. 0 -351248 cl00774 Fae Formaldehyde-activating enzyme (Fae). This family consists of formaldehyde-activating enzyme, or the corresponding domain of longer, bifunctional proteins. It links formaldehyde to the C1 carrier tetrahydromethanopterin (H4MPT), an analog of tetrahydrofolate, and is common among species with H4MPT. The ribulose monophosphate (RuMP) pathway, which removes the toxic metabolite formaldehyde by assimilation, runs in the opposite direction in some species to produce ribulose 5-phosphate for nucleotide biosynthesis, leaving formaldehyde as an additional metabolite. In these species, formaldehyde activating enzyme may occur as a fusion protein with D-arabino 3-hexulose 6-phosphate formaldehyde lyase from the RuMP pathway. 0 -351249 cl00775 SepF Cell division protein SepF. SepF accumulates at the cell division site in an FtsZ-dependent manner and is required for proper septum formation. Mutants are viable but the formation of the septum is much slower and occurs with a very abnormal morphology. This family also includes archaeal related proteins of unknown function. 0 -351250 cl00777 DUF72 Protein of unknown function DUF72. hypothetical protein; Provisional 0 -351251 cl00779 NQR2_RnfD_RnfE NQR2, RnfD, RnfE family. Na(+)-translocating NADH-quinone reductase subunit B; Provisional 0 -351252 cl00780 Kinase-PPPase Kinase/pyrophosphorylase. PEP synthetase regulatory protein; Provisional 0 -351253 cl00781 DUF389 Domain of unknown function (DUF389). This conserved hypothetical protein is found so far only in three archaeal genomes and in Streptomyces coelicolor. It shares a hydrophobic uncharacterized domain (see TIGR00271) of about 180 residues with several eubacterial proteins, including the much longer protein sll1151 of Synechocystis PCC6803. [Hypothetical proteins, Conserved] 0 -321165 cl00782 ComA (2R)-phospho-3-sulfolactate synthase (ComA). This model finds the ComA (Coenzyme M biosynthesis A) protein, phosphosulfolactate synthase, in methanogenic archaea. The ComABC pathway is one of at least two pathways to the intermediate sulfopyruvate. Coenzyme M occurs rarely and sporadically outside of the archaea, as for expoxide metabolism in Xanthobacter autotrophicus Py2, but candidate phosphosulfolactate synthases from that and other species occur fall below the cutoff and outside the scope of this model. This model deliberately is narrower in scope than pfam02679. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 0 -351254 cl00784 DUF554 Protein of unknown function (DUF554). Family of uncharacterized prokaryotic proteins. Multiple predicted transmembrane regions suggest that the region is membrane associated. 0 -321167 cl00785 O_anti_polymase Putative O-antigen polymerase. Archaebacterial proteins of unknown function. Members of this family may be transmembrane proteins. These are potentially O-antigen assembly enzymes, with up to 11 transmembrane regions. 0 -351255 cl00787 Ribosomal_L25_TL5_CTC Ribosomal L25/TL5/CTC N-terminal 5S rRNA binding domain. Ribosomal protein L25 is an RNA binding protein, that binds 5S rRNA. This family includes Ctc from B. subtilis, which is induced by stress. 0 -294511 cl00788 MttA_Hcf106 mttA/Hcf106 family. This model distinguishes TatA/E from the related TatB, but does not distinguish TatA from TatE. The Tat (twin-arginine translocation) system is a Sec-independent exporter for folded proteins, often with a redox cofactor already bound, across the bacterial inner membrane. Functionally equivalent systems are found in the chloroplast and some in archaeal species. The signal peptide recognized by the Tat system is modeled by TIGR01409. [Protein fate, Protein and peptide secretion and trafficking] 0 -351256 cl00789 PurS Phosphoribosylformylglycinamidine (FGAM) synthase. phosphoribosylformylglycinamidine synthase subunit PurS; Reviewed 0 -351257 cl00793 DUF92 Integral membrane protein DUF92. [Hypothetical proteins, Conserved] 0 -351258 cl00795 Fumerase_C Fumarase C-terminus. L(+)-tartrate dehydratase subunit beta; Validated 0 -351259 cl00796 Adenosine_kin Adenosine specific kinase. The structure of a member of this family from the hyperthermophilic archaeon Pyrobaculum aerophilum contains a modified histidine residue which is interpreted as stable phosphorylation. In vitro binding studies confirmed that adenosine and AMP but not ADP or ATP bind to the protein. 0 -321173 cl00797 DUF356 Protein of unknown function (DUF356). Members of this family are around 120 amino acids in length and are found in some archaebacteria. The function of this family is unknown. However it contains a conserved motif IHPPAH that may be involved in its function. 0 -321174 cl00798 DUF357 Protein of unknown function (DUF357). Members of this family are short (less than 100 amino acid) proteins found in archaebacteria. The function of these proteins is unknown. 0 -321175 cl00799 UPF0128 Uncharacterized protein family (UPF0128). hypothetical protein; Provisional 0 -351260 cl00800 DUF116 Protein of unknown function DUF116. This archaebacterial protein has no known function. The protein contains seven conserved cysteines and may also be an integral membrane protein. 0 -351261 cl00802 LuxS S-Ribosylhomocysteinase (LuxS). S-ribosylhomocysteinase; Provisional 0 -321178 cl00803 Cas7_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas7. This group of families is one of several protein families that are always found associated with prokaryotic CRISPRs, themselves a family of clustered regularly interspaced short palindromic repeats, DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. It has been shown that the CRISPRs are virus-derived sequences acquired by the host to enable them to resist viral infection. The Cas proteins from the host use the CRISPRs to mediate an antiviral response. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Cas5 contains an endonuclease motif, whose inactivation leads to loss of resistance, even in the presence of phage-derived spacers. This family used to be known as DUF73. DevR appears to be negative auto-regulator within the system. 0 -321179 cl00805 UPF0179 Uncharacterized protein family (UPF0179). hypothetical protein; Provisional 0 -351262 cl00806 YajC Preprotein translocase subunit. While this protein is part of the preprotein translocase in Escherichia coli, it is not essential for viability or protein secretion. The N-terminus region contains a predicted membrane-spanning region followed by a region consisting almost entirely of residues with charged (acidic, basic, or zwitterionic) side chains. This small protein is about 100 residues in length, and is restricted to bacteria; however, this protein is absent from some lineages, including spirochetes and Mycoplasmas. [Protein fate, Protein and peptide secretion and trafficking] 0 -351263 cl00807 MNHE Na+/H+ ion antiporter subunit. putative monovalent cation/H+ antiporter subunit E; Reviewed 0 -321182 cl00808 CbiZ Adenosylcobinamide amidohydrolase. This prokaryotic protein family includes CbiZ which converts adenosylcobinamide (AdoCbi) to adenosylcobyric acid (AdoCby), an intermediate of the de novo coenzyme B12 biosynthetic route. 0 -351264 cl00809 RbsD_FucU RbsD / FucU transport protein family. L-fucose mutarotase; Provisional 0 -351265 cl00810 CheD CheD chemotactic sensory transduction. chemoreceptor glutamine deamidase CheD; Provisional 0 -351266 cl00811 DUF167 Uncharacterized ACR, YggU family COG1872. hypothetical protein; Validated 0 -351267 cl00813 VanY D-alanyl-D-alanine carboxypeptidase. This family resembles VanY, pfam02557, which is part of the peptidase M15 family. 0 -351268 cl00814 Cyclase Putative cyclase. One of several pathways of tryptophan degradation is as follows: tryptophan 2,3-dioxygenase (1.13.11.11) uses 02 to convert Trp to L-formylkynurenine. Arylformamidase (3.5.1.9) hydrolyzes the product to L-kynurenine and formate. Kynureninase (3.7.1.3) hydrolyzes L-kynurenine to anthranilate plus alanine. Members of the seed alignment for this model are bacterial predicted metal-dependent hydrolases. All are supported as arylformamidase (3.5.1.9) by an operon structure in which kynureninase and/or tryptophan 2,3-dioxygenase genes are adjacent. The members from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans were characterized. An example from Pseudomonas fluorescens is given the gene symbol qbsH instead of kynB because of its role in quinolobactin biosynthesis, which begins with tryptophan. All members of this family should be arylformamidase (3.5.1.9). [Energy metabolism, Amino acids and amines] 0 -351269 cl00816 OAD_beta Na+-transporting oxaloacetate decarboxylase beta subunit. Malonate decarboxylase can be a soluble enzyme, or a sodium ion-translocating with additional membrane-bound components. Members of this protein family are integral membrane proteins required to couple decarboxylation to sodium ion export. This family belongs to a broader family, TIGR01109 of sodium ion-translocating decarboxylase beta subunits. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351270 cl00817 MM_CoA_mutase N/A. The enzyme methylmalonyl-CoA mutase is a member of a class of enzymes that uses coenzyme B12 (adenosylcobalamin) as a cofactor. The enzyme induces the formation of an adenosyl radical from the cofactor. This radical then initiates a free-radical rearrangement of its substrate, succinyl-CoA, to methylmalonyl-CoA. 0 -321190 cl00818 DUF555 Protein of unknown function (DUF555). hypothetical protein; Provisional 0 -351271 cl00820 DUF211 Uncharacterized ArCR, COG1888. 0 -351272 cl00821 Ribosomal_S3Ae Ribosomal S3Ae family. 30S ribosomal protein S3Ae; Validated 0 -351273 cl00822 4HFCP_synth 4-HFC-P synthase. hypothetical protein; Provisional 0 -321194 cl00824 HEPN HEPN domain. 0 -351274 cl00826 DS Deoxyhypusine synthase. Deoxyhypusine synthase is responsible for the first step in creating hypusine. Hypusine is a modified amino acid found in eukaryotes and in archaea in their respective forms of initiation factor 5A. Its presence is confirmed in archaeal genera Pyrococcus (), Sulfolobus, Halobacterium, and Haloferax (), but in an older report was not detected in Methanococcus voltae (J Biol Chem 1987 Dec 5;262(34):16585-9). This family of apparent orthologs has an unusual UPGMA difference tree, in which the members from the archaea M. jannaschii and P. horikoshii cluster with the known eukaryotic deoxyhypusine synthases. Separated by a fairly deep branch, although still strongly related, is a small cluster of proteins from Methanobacterium thermoautotrophicum and Archeoglobus fulgidus, the latter of which has two. [Protein fate, Protein modification and repair] 0 -351275 cl00828 CbiD CbiD. This protein has been shown by cloning into E. coli to be required for cobalamin biosynthesis. role_id [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 0 -351276 cl00829 UxaC Glucuronate isomerase. glucuronate isomerase; Reviewed 0 -294541 cl00830 DUF401 Protein of unknown function (DUF401). This protein is predicted to have 10 transmembrane regions. Members of this family are found so far in the Archaea (Archaeoglobus fulgidus and Pyrococcus horikoshii) and in a bacterial thermophile, Thermotoga maritima. In Pyrococcus, the gene is located between nadA and nadB, two components of an enzyme involved in de novo synthesis of NAD. By PSI-BLAST, this family shows similarity (but not necessarily homology) to gluconate permease and other transport proteins. [Hypothetical proteins, Conserved] 0 -321198 cl00831 FlpD Methyl-viologen-reducing hydrogenase, delta subunit. This family consist of methyl-viologen-reducing hydrogenase, delta subunit / heterodisulphide reductase. No specific functions have been assigned to this subunit. The aligned region corresponds to almost the entire delta chain sequence and contains 4 conserved cysteine residues. However, in two Archaeoglobus sequences this region corresponds to only the C-terminus of these proteins. 0 -321199 cl00832 DUF359 Protein of unknown function (DUF359). hypothetical protein; Provisional 0 -351277 cl00838 FeoA FeoA domain. This domain also occurs at the C-terminus in related proteins. The transporter Feo is composed of three proteins: FeoA a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. Feo allows the bacterial cell to acquire iron from its environment. 0 -321201 cl00840 MTD methylene-5,6,7,8-tetrahydromethanopterin dehydrogenase. F420-dependent methylenetetrahydromethanopterin dehydrogenase; Provisional 0 -351278 cl00841 Gly_kinase Glycerate kinase family. The only characterized member of this family so far is the glycerate kinase GlxK (EC 2.7.1.31) of E. coli. This enzyme acts after glyoxylate carboligase and 2-hydroxy-3-oxopropionate reductase (tartronate semialdehyde reductase) in the conversion of glyoxylate to 3-phosphoglycerate (the D-glycerate pathway) as a part of allantoin degradation. [Energy metabolism, Other] 0 -321203 cl00842 CbiN Cobalt transport protein component CbiN. This model describes the cobalt transporter in bacteria and its equivalents in archaea. It principally functions in the ion uptake mechanism. It is a multisubunit transporter with two integral membrane proteins and two closely associated cytoplasmic subunits. This transporter belongs to the ABC transporter superfamily (ATP stands for ATP Binding Cassette). This superfamily includes two groups, one which catalyze the uptake of small molecules, including ions from the external milieu and the other group which is engaged in the efflux of small molecular weight compounds and ions from within the cell. Energy derived from the hydrolysis of ATP drive the both the process of uptake and efflux. [Transport and binding proteins, Cations and iron carrying compounds] 0 -321204 cl00845 DUF473 Protein of unknown function (DUF473). Family of uncharacterized Archaeal proteins. 0 -351279 cl00846 CsoR-like_DUF156 Transcriptional regulators CsoR (copper-sensitive operon repressor), RcnR, and FrmR, and related domains; this domain superfamily was previously known as DUF156. This is a family of metal-sensitive repressors, involved in resistance to metal ions. Members of this family bind copper, nickel or cobalt ions via conserved cysteine and histidine residues. In the absence of metal ions, these proteins bind to promoter regions and repress transcription. When bound to metal ions they are unable to bind DNA, leading to transcriptional derepression. 0 -351280 cl00847 PAC2 PAC2 family. This model represents one out of two closely related ortholgous sets of proteins that, so far, are found only in but are universal among the Archaea. This ortholog set includes MJ1210 from Methanococcus jannaschii and AF0525 from Archaeoglobus fulgidus while excluding MJ0106 and AF1251. [Hypothetical proteins, Conserved] 0 -321207 cl00848 Y1_Tnp Transposase IS200 like. Transposases are needed for efficient transposition of the insertion sequence or transposon DNA. This family includes transposases for IS200 from E. coli. 0 -321208 cl00849 PvlArgDC Pyruvoyl-dependent arginine decarboxylase (PvlArgDC). pyruvoyl-dependent arginine decarboxylase; Provisional 0 -351281 cl00850 Phage_holin_4_2 Mycobacterial 4 TMS phage holin, superfamily IV. These proteins are predicted transmembrane proteins with probably four transmembrane spans. The 1.E.40 is represented by the mycobacterial 4 phage holin, but it also contains many cyanobacterial. proteobacterial and firmicute proteins. Holins are encoded within the genomes of Gram-positive and Gram-negative bacteria as well as in those of the bacteriophage of these organisms. The primary function of holins appears to be transport of murein hydrolases across the cytoplasmic membrane to the cell wall where these enzymes hydrolyze the cell wall polymer as a prelude to cell lysis. When chromosomally encoded the enzymes are therefore autolysins. Holins may also facilitate leakage of electrolytes and nutrients from the cell cytoplasm, thereby promoting cell death. Some may catalyze export of nucleases. 0 -351282 cl00851 Fumerase Fumarate hydratase (Fumerase). A number of Fe-S cluster-containing hydro-lyases share a conserved motif, including argininosuccinate lyase, adenylosuccinate lyase, aspartase, class I fumarate hydratase (fumarase), and tartrate dehydratase (see PROSITE:PDOC00147). This model represents a subset of closely related proteins or modules, including the E. coli tartrate dehydratase alpha chain and the N-terminal region of the class I fumarase (where the C-terminal region is homologous to the tartrate dehydratase beta chain). The activity of archaeal proteins in this subfamily has not been established. 0 -321211 cl00857 DUF63 Membrane protein of unknown function DUF63. Proteins found in Archaebacteria of unknown function. These proteins are probably transmembrane proteins. 0 -351283 cl00858 BacA Bacitracin resistance protein BacA. undecaprenyl pyrophosphate phosphatase; Reviewed 0 -351284 cl00860 MscL Large-conductance mechanosensitive channel, MscL. Protein encodes a channel which opens in response to a membrane stretch force. Probably serves as an osmotic gauge. Carboxy terminus tends to be more divergent across species with a high degree of sequence conservation found at the N-terminus. [Cellular processes, Adaptations to atypical conditions] 0 -351285 cl00861 RNaseH_like Ribonuclease H-like. RNaseH_like is a family of uncharacterized eubacterial proteins that are distant homologs of Ribonuclease H-like. The family maintains all the core secondary structure elements of the RNase H-like fold and shares several conserved, presumably active site residues with RNase HI. This finding suggests that it functions as a nuclease. 0 -351286 cl00862 FBPase_3 Fructose-1,6-bisphosphatase. This is a family of bacterial and archaeal fructose-1,6-bisphosphatases (FBPases). FBPase catalyzes the hydrolysis of D-fructose-1,6-bisphosphate (FBP) to D-fructose-6-phosphate (F6P) and orthophosphate and is an essential regulatory enzyme in the glyconeogenic pathway. 0 -351287 cl00864 PspC PspC domain. DNA-binding transcriptional activator PspC; Provisional 0 -351288 cl00865 CT_A_B Carboxyltransferase domain, subdomain A and B. This domain represents subunit 2 of allophanate hydrolase (AHS2). 0 -351289 cl00866 NTPase_I-T Protein of unknown function DUF84. [Purines, pyrimidines, nucleosides, and nucleotides, Other] 0 -351290 cl00867 Bac_export_3 Bacterial export proteins, family 3. flagellar biosynthesis protein FliQ; Reviewed 0 -321220 cl00868 YdjM LexA-binding, inner membrane-associated putative hydrolase. inner membrane protein; Provisional 0 -321221 cl00871 ThiP_synth Thiamine-phosphate synthase. This family is thiamine-phosphate synthase, and it belongs to the SCOP phosphomethylpyrimidine kinase C-terminal domain-like family. Vitamin B1 (thiamine pyrophosphate) is involved in several microbial metabolic functions. Thiamine biosynthesis is accomplished by joining two intermediate molecules that are synthesized separately, HMP-PP and HET-P. In the archaeon Natrialba magadii, ThiE and ThiN, are known to join HMP-PP ( hydroxymethylpyrimidine pyrophosphate) and HET-P (hydroxyethylthiazole phosphate) to generate thiamine phosphate. Whereas ThiE in Natrialba magadii is a mono-functional protein, ThiN exists as a C-terminal domain in a ThiDN fusion protein - examples of all three forms, from various prokaryotes, are found in this family. 0 -351291 cl00872 DUF190 Uncharacterized ACR, COG1993. 0 -351292 cl00873 PdxA Pyridoxal phosphate biosynthetic protein PdxA. This model represents PdxA, an NAD+-dependent 4-hydroxythreonine 4-phosphate dehydrogenase (EC 1.1.1.262) active in pyridoxal phosphate biosynthesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 0 -351293 cl00874 DNA_RNApol_7kD DNA directed RNA polymerase, 7 kDa subunit. DNA-directed RNA polymerase subunit P; Provisional 0 -351294 cl00876 Ribosomal_S27 Ribosomal protein S27a. 30S ribosomal protein S27ae; Validated 0 -321225 cl00877 MazE_antitoxin Antidote-toxin recognition MazE, bacterial antitoxin. PrlF_antitoxin is a family of bacterial antitoxins that neutralizes the toxin YhaV. PrlF is labile and forms a homodimer that then binds to the YhaV toxin thereby neutralising its ribonuclease activity. Alone, it can also act as a transcription factor. The YhaV/PrlF complex binds the prlF-yhaV operon, probably regulating its expression negatively. Over-expression of PrlF leads to increased doubling time. 0 -351295 cl00878 Ribosomal_S24e Ribosomal protein S24e. 40S ribosomal protein S24; Provisional 0 -294572 cl00880 Ribosomal_S8e_like Eukaryotic/archaeal ribosomal protein S8e and similar proteins. 40S ribosomal protein S8-like; Provisional 0 -351296 cl00881 SQR_QFR_TM N/A. Fumarate reductase is a membrane-bound flavoenzyme consisting of four subunits, A-B. A and B comprise the membrane-extrinsic catalytic domain and C and D link the catalytic centers to the electron-transport chain. This family consists of the 15kD hydrophobic subunit C. 0 -351297 cl00883 RNA_pol_Rpb5_C RNA polymerase Rpb5, C-terminal domain. DNA-directed RNA polymerase subunit H; Reviewed 0 -351298 cl00884 AIM24 Mitochondrial biogenesis AIM24. [Hypothetical proteins, Conserved] 0 -321230 cl00886 Robl_LC7 Roadblock/LC7 domain. This family includes proteins that are about 100 amino acids long and have been shown to be related. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions. This family also includes Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus, a protein involved in gliding motility. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role. 0 -351299 cl00887 Rpr2 RNAse P Rpr2/Rpp21/SNM1 subunit domain. ribonuclease P protein component 4; Validated 0 -321232 cl00890 DUF366 Domain of unknown function (DUF366). Archaeal domain of unknown function. 0 -351300 cl00891 Cu-Zn_Superoxide_Dismutase N/A. superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the copper/zinc-binding family is one. Defects in the human SOD1 gene cause familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Structure is an eight-stranded beta sandwich, similar to the immunoglobulin fold. 0 -321234 cl00892 DUF131 Protein of unknown function DUF131. The member of this family from Pyrococcus horikoshii scores only 13.91 bits, largely because it is at least 15 residues shorter than other members of this family of small proteins and is penalized for not matching to the N-terminal section of the model. Cutoff scores are set so this hit is between noise and trusted cutoffs. [Hypothetical proteins, Conserved] 0 -351301 cl00893 DUF368 Domain of unknown function (DUF368). Predicted transmembrane domain of unknown function. Family members have between 6 and 9 predicted transmembrane segments. 0 -351302 cl00894 DUF169 Uncharacterized ArCR, COG2043. 0 -351303 cl00895 2-ph_phosp 2-phosphosulpholactate phosphatase. 2-phosphosulfolactate phosphatase catalyzes the sulfonation of phosphoenolpyruvate to form 2-phospho-3-sulfolactate, the second step in coenzyme M biosynthesis. Coenzyme M is the terminal methyl carrier in methanogenesis. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other, Energy metabolism, Methanogenesis] 0 -294584 cl00897 Ribosomal_S27e Ribosomal protein S27. 40S ribosomal protein S27; Provisional 0 -351304 cl00898 DUF370 Domain of unknown function (DUF370). hypothetical protein; Provisional 0 -351305 cl00900 Ldh_2 Malate/L-lactate dehydrogenase. This enzyme converts ureidoglycolate to oxalureate in the non-urea-forming catabolism of allantoin (GenProp0687). The pathway has been characterized in E. coli and is observed in the genomes of Entercoccus faecalis and Bacillus licheniformis. 0 -351306 cl00903 KdpA Potassium-transporting ATPase A subunit. Kdp is a high affinity ATP-driven K+ transport system in Escherichia coli. It is composed of three membrane-bound subunits, KdpA, KdpB and KdpC and one small peptide, KdpF. KdpA is the K+-transporting subunit of this complex. During assembly of the complex, KdpA and KdpC bind to each other. This interaction is thought to stabilize the complex [medline:9858692]. Data indicates that KdpC might connect the KdpA, the K+-transporting subunit, to KdpB, the ATP-hydrolyzing (energy providing) subunit [medline:9858692]. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351307 cl00907 Glutaminase Glutaminase. This family describes the enzyme glutaminase, from a larger family that includes serine-dependent beta-lactamases and penicillin-binding proteins. Many bacteria have two isozymes. This model is based on selected known glutaminases and their homologs within prokaryotes, with the exclusion of highly-derived (long branch) and architecturally varied homologs, so as to achieve conservative assignments. A sharp drop in scores occurs below 250, and cutoffs are set accordingly. The enzyme converts glutamine to glutamate, with the release of ammonia. Members tend to be described as glutaminase A (glsA), where B (glsB) is unknown and may not be homologous (as in Rhizobium etli). Some species have two isozymes that may both be designated A (GlsA1 and GlsA2). [Energy metabolism, Amino acids and amines] 0 -321242 cl00909 Ribosomal_L24e_L24 N/A. MYM-type zinc fingers were identified in MYM family proteins. Human protein ZMYM3 is involved in a chromosomal translocation and may be responsible for X-linked retardation in XQ13.1. ZMYM2 is also involved in disease. In myeloproliferative disorders it is fused to FGF receptor 1; in atypical myeloproliferative disorders it is rearranged. Members of the family generally are involved in development. This Zn-finger domain functions as a transcriptional trans-activator of late vaccinia viral genes, and orthologues are also found in all nucleocytoplasmic large DNA viruses, NCLDV. This domain is also found fused to the C termini of recombinases from certain prokaryotic transposons. 0 -351308 cl00911 AMMECR1 AMMECR1. Members of this protein family belong to the same domain family as AMMECR1, a mammalian protein named for AMME - Alport syndrome, Mental Retardation, Midface hypoplasia, and Elliptocytosis. Members of the present family occur as part of a three gene system with a homolog of the mammalian protein Memo (Mediator of ErbB2-driven cell MOtility), and an uncharacterized radical SAM enzyme. 0 -351309 cl00912 MmgE_PrpD MmgE/PrpD family. 2-methylcitrate dehydratase; Provisional 0 -351310 cl00913 CbiC Precorrin-8X methylmutase. precorrin-8X methylmutase; Validated 0 -321246 cl00914 DUF61 Protein of unknown function DUF61. hypothetical protein; Provisional 0 -321247 cl00915 SpoVG SpoVG. regulatory protein SpoVG; Reviewed 0 -321248 cl00916 DUF371 Domain of unknown function (DUF371). Archaeal domain of unknown function. 0 -351311 cl00920 Cob_adeno_trans Cobalamin adenosyltransferase. ethanolamine utilization cobalamin adenosyltransferase; Provisional 0 -321250 cl00921 Ribosomal_L31e Eukaryotic/archaeal ribosomal protein L31. 50S ribosomal protein L31e; Reviewed 0 -351312 cl00922 CbiJ Precorrin-6x reductase CbiJ/CobK. This enzyme catalyzes a step in cobalamin biosynthesis. It has been identified experimentally in Pseudomonas denitrificans and has been shown to be part of cobalamin biosynthetic operons in several other species. This enzyme was found to be a monomer by gel filtration. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin] 0 -351313 cl00927 Form_Nir_trans Formate/nitrite transporter. FocA (formate channel A) forms a pentameric formate-selective channel through the plasma membrane. The focA gene is largely restricted to Proteobacteria and occurs adjacent to genes for pyruvate formate lyase (PFL) and the PFL activase, a radical SAM protein. FocA is homologous to a nitrite transport protein, NirC. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -351314 cl00928 dsDNA_bind Double-stranded DNA-binding domain. hypothetical protein; Provisional 0 -321254 cl00929 PIG-L GlcNAc-PI de-N-acetylase. Members of this protein family are BshB1 (YpjG), an enzyme of bacillithiol biosynthesis; either BshB1 or BshB2 (YojG) must be present, and often both are present. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 0 -351315 cl00931 Ribosomal_S6e Ribosomal protein S6e. 30S ribosomal protein S6e; Validated 0 -321256 cl00932 Ribosomal_L37e Ribosomal protein L37e. 60S ribosomal protein L37; Provisional 0 -351316 cl00933 ClpS ATP-dependent Clp protease adaptor protein ClpS. ATP-dependent Clp protease adaptor; Reviewed 0 -351317 cl00934 CDH CDP-diacylglycerol pyrophosphatase. CDP-diacylglycerol pyrophosphatase; Provisional 0 -351318 cl00935 Brix Brix domain. ribosomal biogenesis protein; Validated 0 -351319 cl00936 RecX RecX family. recombination regulator RecX; Provisional 0 -351320 cl00937 Ribosomal_L21e Ribosomal protein L21e. 50S ribosomal protein L21e; Reviewed 0 -351321 cl00938 Rieske N/A. The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. 0 -351322 cl00941 FeS_assembly_P Iron-sulfur cluster assembly protein. The function is unknown for this protein family, but members are found almost always in operons for the the SUF system of iron-sulfur cluster biosynthesis. The SUF system is present elsewhere on the chromosome for those few species where SUF genes are not adjacent. This family shares this property of association with the SUF system with a related family, TIGR02945. TIGR02945 consists largely of a DUF59 domain (see pfam01883), while this protein is about double the length, with a unique N-terminal domain and DUF59 C-terminal domain. A location immediately downstream of the cysteine desulfurase gene sufS in many contexts suggests the gene symbol sufT. Note that some other homologs of this family and of TIGR02945, but no actual members of this family, are found in operons associated with phenylacetic acid (or other ring-hydroxylating) degradation pathways. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -351323 cl00942 PCD_DCoH N/A. Pterin 4 alpha carbinolamine dehydratase is also known as DCoH (dimerization cofactor of hepatocyte nuclear factor 1-alpha). 0 -351324 cl00943 DUF378 Domain of unknown function (DUF378). Predicted transmembrane domain of unknown function. The majority of the family have two predicted transmembrane regions. 0 -351325 cl00944 KdpC K+-transporting ATPase, c chain. potassium-transporting ATPase subunit C; Provisional 0 -321267 cl00945 Ribosomal_L18A Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A. 50S ribosomal protein LX; Validated 0 -321268 cl00946 zf-like Cysteine-rich small domain. Probable metal-binding domain. 0 -351326 cl00947 L-fuc_L-ara-isomerases N/A. L-Arabinose isomerase (AI) catalyzes the isomerization of L-arabinose to L-ribulose, the first reaction in its conversion into D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway, which allows L-arabinose to be used as a carbon source. AI can also convert D-galactose to D-tagatose at elevated temperatures in the presence of divalent metal ions. D-tagatose, rarely found in nature, is of commercial interest as a low-calorie sugar substitute. 0 -351327 cl00949 Acetyltransf_2 N-acetyltransferase. N-hydroxyarylamine O-acetyltransferase; Provisional 0 -351328 cl00951 SufE Fe-S metabolism associated domain. Members of this protein family are CsdE, formerly called YgdK. This protein, found as a paralog to SufE in Escherichia coli, Yersinia pestis, Photorhabdus luminescens, and related species, works together and physically interacts with CsdA (a paralog of SufS). CsdA has cysteine desulfurase activity that is enhanced by this protein (CsdE), in which Cys-61 (numbered as in E. coli) is a sulfur acceptor site. This gene pair, although involved in FeS cluster biosynthesis, is not found next to other such genes as are its paralogs from the Suf or Isc systems. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -321272 cl00952 Ribosomal_L39 Ribosomal L39 protein. 50S ribosomal protein L39e; Validated 0 -351329 cl00954 GCS2 Glutamate-cysteine ligase family 2(GCS2). Family of bacterial f glutamate-cysteine ligases (EC:6.3.2.2) that carry out the first step of the glutathione biosynthesis pathway. 0 -321274 cl00955 Ribosomal_L34e Ribosomal protein L34e. 60S ribosomal protein L34; Provisional 0 -351330 cl00957 Translin-like Translin and translin-associated factor-X (TRAX). Members of this family include Translin, which interacts with DNA and forms a ring around the DNA. This family also includes human TSNAX, which was found to interact with translin with yeast two-hybrid screen. 0 -351331 cl00958 Nitrate_red_del Nitrate reductase delta subunit. Type II members of the DMSO reductase family are heterotrimeric proteins with bis(molybdopterin guanine dinucleotide)Mo, iron-sulfur, and heme b prosthetic groups bound by the alpha, beta, and gamma subunits respectively. Members of this protein family are not part of the mature protein, although they are the product of a fourth clustered gene. Proteins in this family are interpreted as a chaperone, analogous to NarJ of nitrate reductases. 0 -351332 cl00959 Nitrate_red_gam Nitrate reductase gamma subunit. Involved in anerobic respiration the gene product catalyzes the reaction (reduced acceptor + NO3- = Acceptor + nitrite). Another possible role_id for this gene product is in nitrogen fixation (Role_id:160). [Energy metabolism, Anaerobic] 0 -351333 cl00960 Fic Fic/DOC family. The characterized member of this family is the death-on-curing (DOC) protein of phage P1. It is part of a two protein operon with prevents-host-death (phd) that forms an addiction module. DOC lacks homology to analogous addiction module post-segregational killing proteins involved in plasmid maintenance. These modules work as a combination of a long lived poison (e.g. this protein) and a more abundant but shorter lived antidote. Members of this family have a well-conserved central motif HxFx[ND][AG]NKR. A similar region, with K replaced by G, is found in the huntingtin interacting protein (HYPE) family. [Unknown function, General] 0 -321279 cl00969 Ribosomal_S19e Ribosomal protein S19e. 30S ribosomal protein S19e; Provisional 0 -321280 cl00970 DUF996 Protein of unknown function (DUF996). Family of uncharacterized bacterial and archaeal proteins. 0 -351334 cl00973 AbiEii Nucleotidyl transferase AbiEii toxin, Type IV TA system. This family was recently identified as belonging to the nucleotidyltransferase superfamily. AbiEii is the cognate toxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 0 -321282 cl00977 Nop10p Nucleolar RNA-binding protein, Nop10p family. H/ACA RNA-protein complex component Nop10p; Reviewed 0 -321283 cl00978 Transgly_assoc Transglycosylase associated protein. hypothetical protein; Provisional 0 -321284 cl00979 DUF402 Protein of unknown function (DUF402). hypothetical protein; Provisional 0 -351335 cl00983 Indigoidine_A Indigoidine synthase A like protein. Indigoidine is a blue pigment synthesized by Erwinia chrysanthemi implicated in pathogenicity and protection from oxidative stress. IdgA is involved in indigoidine biosynthesis, but its specific function is unknown. The recommended name for this protein is now pseudouridine-5'-phosphate glycosidase. 0 -321286 cl00984 TM2 TM2 domain. TM2 domain-containing protein 0 -351336 cl00987 GrpB GrpB protein. This family has been suggested to belong to the nucleotidyltransferase superfamily. It occurs at the C-terminus of dephospho-CoA kinase (CoaE) in a number of cases, where it plays a role in the proper folding of the enzyme. 0 -321288 cl00989 DUF420 Protein of unknown function (DUF420). Predicted membrane protein with four transmembrane helices. 0 -351337 cl00990 DUF421 Protein of unknown function (DUF421). YDFR family 0 -321290 cl00991 Caroten_synth Carotenoid biosynthesis protein. The representative member of this family is CruF, a C50 carotenoid 2',3'-hydratase involved in the synthesis of the C50 carotenoid bacterioruberin in the halophilic archaeon Haloarcula japonica. 0 -351338 cl00993 Zn-ribbon_8 Zinc ribbon domain. This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. 0 -351339 cl00994 CcmE CcmE. cytochrome c-type biogenesis protein CcmE; Reviewed 0 -351340 cl00995 PemK_toxin PemK-like, MazF-like toxin of type II toxin-antitoxin system. plasmid maintenance protein CcdB; Provisional 0 -351341 cl00997 Glyco_hydro_114 Glycoside-hydrolase family GH114. Original assignment of this protein family as cysteinyl-tRNA synthetase is controversial, supported by but challenged by and by subsequent discovery of the actual mechanism for synthesizing Cys-tRNA in species where a direct Cys--tRNA ligase was not found. Lingering legacy annotations of members of this family probably should be removed. Evidence against the role includes a signal peptide. This family as been renamed "extracellular protein" to facilitate correction. Members of this family occur in Deinococcus radiodurans (bacterial) and Methanococcus jannaschii (archaeal). A number of homologous but more distantly related proteins are annotated as alpha-1,4 polygalactosaminidases. The function remains unknown. [Unknown function, General] 0 -351342 cl00998 NTP_transf_9 Domain of unknown function (DUF427). This domain contains a beta-tent fold. 0 -321296 cl00999 YCII YCII-related domain. YciI-like protein; Reviewed 0 -351343 cl01001 YceI YceI-like domain. E. coli YceI is a base-induced periplasmic protein. The recent structure of a member of this family shows that it binds to polyisoprenoid. The structure consists of an extended, eight-stranded, antiparallel beta-barrel that resembles the lipocalin fold. 0 -351344 cl01002 DUF808 Protein of unknown function (DUF808). hypothetical protein; Provisional 0 -351345 cl01005 SpoVS Stage V sporulation protein S (SpoVS). In Bacillus subtilis this protein interferes with sporulation at an early stage and this inhibitory effect is overcome by SpoIIB and SpoVG. SpoVS seems to play a positive role in allowing progression beyond stage V of sporulation. Null mutations in the spoVS gene block sporulation at stage V, impairing the development of heat resistance and coat assembly. 0 -351346 cl01007 DAP_dppA Peptidase M55, D-aminopeptidase dipeptide-binding protein family. Bacillus subtilis DppA is a binuclear zinc-dependent, D-specific aminopeptidase. The structure reveals that DppA is a new example of a 'self-compartmentalising protease', a family of proteolytic complexes. Proteasomes are the most extensively studied representatives of this family. The DppA enzyme is composed of identical 30 kDa subunits organized in a decamer with 52 point-group symmetry. A 20 A wide channel runs through the complex, giving access to a central chamber holding the active sites. The structure shows DppA to be a prototype of a new family of metalloaminopeptidases characterized by the SXDXEG key sequence. The only known substrates are D-ala-D-ala and D-ala-gly-gly. 0 -351347 cl01008 DUF423 Protein of unknown function (DUF423). hypothetical protein; Provisional 0 -351348 cl01011 HupE_UreJ_2 HupE / UreJ protein. This family of proteins are hydrogenase / urease accessory proteins. The alignment contains many conserved histidines that are likely to be involved in nickel binding. The members usually have five membrane-spanning regions. 0 -351349 cl01012 Big_5 Bacterial Ig-like domain. CopC is a bacterial blue copper protein that binds 1 atom of copper per protein molecule. Along with CopA, CopC mediates copper resistance by sequestration of copper in the periplasm. 0 -351350 cl01015 FUN14 FUN14 family. This family of short proteins are found in eukaryotes and some archaea. Although the function of these proteins is not known they may contain transmembrane helices. 0 -321304 cl01017 DUF2227 Uncharacterized metal-binding protein (DUF2227). Members of this family of hypothetical bacterial proteins possess metal binding properties; however, their exact function has not, as yet, been determined. 0 -351351 cl01020 ASCH N/A. The ASCH domain adopts a beta-barrel fold similar to the pfam01472 domain. It is thought to function as an RNA-binding domain during coactivation, RNA-processing and possibly during prokaryotic translation regulation. 0 -321306 cl01021 DUF424 Protein of unknown function (DUF424). This is a family of uncharacterized proteins. 0 -321307 cl01024 Sm_multidrug_ex Putative small multi-drug export protein. This family contains a small number of putative small multi-drug export proteins. 0 -321308 cl01027 DUF432 Protein of unknown function (DUF432). Archaeal protein of unknown function. 0 -351352 cl01030 DUF433 Protein of unknown function (DUF433). 0 -321310 cl01031 DUF86 Protein of unknown function DUF86. The function of members of this family is unknown. 0 -321311 cl01033 Ribosomal_L35Ae Ribosomal protein L35Ae. 60S ribosomal protein L35a; Provisional 0 -351353 cl01034 DUF2304 Uncharacterized conserved protein (DUF2304). Members of this family of hypothetical archaeal proteins have no known function. 0 -351354 cl01041 DUF441 Protein of unknown function (DUF441). Predicted to be an integral membrane protein. 0 -351355 cl01047 DUF386 Domain of unknown function (DUF386). cryptic beta-D-galactosidase subunit beta; Reviewed 0 -351356 cl01048 Barstar_like N/A. Barstar_SaI14_like contains sequences that are similar to SaI14, an RNAase inhibitor, which are members of the Barstar family. Barstar is an intracellular inhibitor of barnase, an extracellular ribonuclease of Bacillus amyloliquefaciens. Barstar binds tightly to the barnase active site and sterically blocks it thus inhibiting its potentially lethal RNase activity inside the cell. The sequences in this subfamily are mostly uncharacterized, but believed to have a similar function and role. 0 -351357 cl01049 Zn_peptidase_2 Putative neutral zinc metallopeptidase. Zinc metallopeptidase zinc binding regions have been predicted in some family members by a pattern match (Prosite:PS00142), of the characteristic HEXXH motif. 0 -351358 cl01051 Antibiotic_NAT Aminoglycoside 3-N-acetyltransferase. This family consists of bacterial aminoglycoside 3-N-acetyltransferases EC:2.3.1.81, these catalyze the reaction: Acetyl-Co + a 2-deoxystreptamine antibiotic <=> CoA + N3'-acetyl-2-deoxystreptamine antibiotic. The enzyme can use a range of antibiotics with 2-deoxystreptamine rings as acceptor for its acetyltransferase activity, this inactivates and confers resistance to gentamicin, kanamycin, tobramycin, neomycin and apramycin amongst others. 0 -351359 cl01052 FlgM Anti-sigma-28 factor, FlgM. FlgM interacts with and inhibits the alternative sigma factor sigma(28) FliA. The C-terminus of FlgM contains the sigma(28)-binding domain. 0 -351360 cl01053 SGNH_hydrolase N/A. This domain is mainly found in uncharacterized proteins around 290 residues in length and is mainly found in various Bacteroides species. It has a curved central beta sheet flanked by helices. Distant homolog analysis showed it has a similarity with GDSL-like Lipase/Acylhydrose family. The function of this domain is still unknown. 0 -351361 cl01054 HAMP N/A. Histidine kinase, Adenylyl cyclase, Methyl-accepting protein, and Phosphatase (HAMP) domain. HAMP is a signaling domain which occurs in a wide variety of signaling proteins, many of which are bacterial. The HAMP domain consists of two alpha helices connected by an extended linker. The structure of the HAMP dimer from Archaeoglobus fulgidus has been solved using nuclear magnetic resonance, revealing a parallel four-helix bundle; this structure has been confirmed by cross-linking analysis of HAMP domains from the Escherichia coli aerotaxis receptor Aer. It has been suggested that the four-helix arrangement can rotate between the unusually packed conformation observed in the NMR structure and a canonical coiled-coil arrangement. Such rotation may coincide with signal transduction, but a common mechanism by which HAMP domains relay a variety of input signals has yet to be established. 0 -351362 cl01059 Adenine_glyco Methyladenine glycosylase. 3-methyl-adenine DNA glycosylase I; Provisional 0 -242278 cl01062 DUF452 Protein of unknown function (DUF452). 0 -351363 cl01063 DUF454 Protein of unknown function (DUF454). hypothetical protein; Provisional 0 -351364 cl01066 Trm112p Trm112p-like protein. hypothetical protein; Provisional 0 -294672 cl01067 Dyp_perox Dyp-type peroxidase family. A defined member of this superfamily is Dyp, a dye-decolorizing peroxidase that lacks a typical heme-binding region. A distinct, uncharacterized branch (TIGR01412) of this superfamily has a typical twin-arginine dependent signal sequence characteristic of exported proteins with bound redox cofactors. 0 -351365 cl01069 DUF456 Protein of unknown function (DUF456). This family is a putative membrane protein that contains glycine zipper motifs. 0 -351366 cl01070 DUF465 Protein of unknown function (DUF465). hypothetical protein; Provisional 0 -351367 cl01071 PCuAC Copper chaperone PCu(A)C. PCu(A)C is a periplasmic copper chaperone. Its role may be to capture and transfer copper to two other copper chaperones, PrrC and Cox11, which in turn deliver Cu(I) to cytochrome c oxidase. 0 -351368 cl01073 MlaA MlaA lipoprotein. ABC transporter outer membrane lipoprotein; Provisional 0 -351369 cl01074 MlaC MlaC protein. The genomes containing members of this family share the machinery for the biosynthesis of hopanoid lipids. Furthermore, the genes of this family are usually located proximal to other components of this biological process. The proteins are members of the pfam05494 family of putative transporters known as "toluene tolerance protein Ttg2D", although it is unlikely that the members included here have anything to do with toluene per-se. 0 -294678 cl01075 Cons_hypoth698 Conserved hypothetical protein 698. Members of this family are found so far only in one archaeal species, Archaeoglobus fulgidus, and in two related bacterial species, Haemophilus influenzae and Escherichia coli. It has 9 GES predicted transmembrane regions at conserved locations in all members. These proteins have a molecular weight of approximately 35 to 38 kDa. [Hypothetical proteins, Conserved] 0 -321329 cl01076 Peptidase_M78 IrrE N-terminal-like domain. This entry includes the catalytic domain of the protein ImmA, which is a metallopeptidase containing an HEXXH zinc-binding motif from peptidase family M78. ImmA is encoded on a conjugative transposon. Conjugating bacteria are able to transfer conjugative transposons that can, for example, confer resistance to antibiotics. The transposon is integrated into the chromosome, but during conjugation excises itself and then moves to the recipient bacterium and re-integrate into its chromosome. Typically a conjugative tranposon encodes only the proteins required for this activity and the proteins that regulate it. During exponential growth, the ICEBs1 transposon of Bacillus subtilis is inactivated by the immunity repressor protein ImmR, which is encoded by the transposon and represses the genes for excision and transfer. Cleavage of ImmR relaxes repression and allows transfer of the transposon. ImmA has been shown to be essential for the cleavage of ImmR. This domain is also found in in metalloprotease IrrE, a central regulator of DNA damage repair in Deinococcaceae, HTH-type transcriptional regulators RamB and PrpC. 0 -351370 cl01077 SIMPL Protein of unknown function (DUF541). oxidative stress defense protein; Provisional 0 -351371 cl01078 UPF0114 Uncharacterized protein family, UPF0114. hypothetical protein; Provisional 0 -351372 cl01080 YsxB-like conserved uncharacterized protein similar to Bacillus subtilis YsxB. This is a family of cysteine protease that are found to cleave the N-terminus extension of ribosomal subunit L27 in eubacteria. Proteins in this family are distinguished by a pair of invariant histidine and cysteine residues with conserved spacing that form the classic catalytic dyad of a cysteine protease. 0 -351373 cl01081 FMN_bind FMN-binding domain. This model represents the NqrC subunit of the six-protein, Na(+)-pumping NADH-quinone reductase of a number of marine and pathogenic Gram-negative bacteria. This oxidoreductase complex functions primarily as a sodium ion pump. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351374 cl01082 Sel_put Selenoprotein, putative. This entry includes a group of putative selenoproteins from Proteobacteria, Actinobacteria and Firmicutes. The invariant cysteine at the C-terminus is encoded by a TGA Sec codon in some Epsilonproteobacteria, suggesting a redox activity for the protein. 0 -321335 cl01085 UPF0175 Uncharacterized protein family (UPF0175). This family contains small proteins of unknown function. 0 -294686 cl01087 MreD rod shape-determining protein MreD. Members of this protein family are the MreD protein of bacterial cell shape determination. Most rod-shaped bacteria depend on MreB and RodA to achieve either a rod shape or some other non-spherical morphology such as coil or stalk formation. MreD is encoded in an operon with MreB, and often with RodA and PBP-2 as well. It is highly hydrophobic (therefore somewhat low-complexity) and highly divergent, and therefore sometimes tricky to discover by homology, but this model finds most examples. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 0 -351375 cl01090 SlyX SlyX. hypothetical protein; Provisional 0 -351376 cl01093 Fer2_BFD BFD-like [2Fe-2S] binding domain. bacterioferritin-associated ferredoxin; Provisional 0 -351377 cl01097 DUF489 Protein of unknown function (DUF489). putative lysogenization regulator; Reviewed 0 -321339 cl01098 IspA Intracellular septation protein A. intracellular septation protein A; Reviewed 0 -351378 cl01101 DsrC DsrC like protein. Members of this protein family may be described as TusE, a partner to TusBCD in a sulfur relay system for 2-thiouridine biosynthesis, a tRNA base modification process. Other members are DsrC, a functionally similar protein in species where the sulfur relay system exists primarily for sulfur metabolism rather than tRNA base modification. Some members of this family are known explicitly as the gamma subunit of sulfite reductases. 0 -351379 cl01102 DUF493 Protein of unknown function (DUF493). hypothetical protein; Provisional 0 -351380 cl01103 DUF494 Protein of unknown function (DUF494). hypothetical protein; Validated 0 -351381 cl01104 Iron_traffic Bacterial Fe(2+) trafficking. oxidative damage protection protein; Provisional 0 -351382 cl01106 DNA_pol3_chi DNA polymerase III chi subunit, HolC. DNA polymerase III subunit chi; Validated 0 -351383 cl01107 DUF502 Protein of unknown function (DUF502). Predicted to be an integral membrane protein. 0 -351384 cl01108 BrnT_toxin Ribonuclease toxin, BrnT, of type II toxin-antitoxin system. BrnT is a ribonuclease toxin of a type II toxin-antitoxin system that exhibits a RelE-like fold. The antitoxin that neutralizes this toxin is pfam14384. BrnT is found in bacteria, archaea, bacteriophage, and plasmids. BrnT-BrnA forms a 2:2 tetrameric complex and autoregulates its own expression, which is induced by a number of different environmental stresses. Expression of BrnT alone results in cessation of bacterial growth which can be rescued after subsequent expression of BrnA. 0 -351385 cl01109 SYLF The SYLF domain (also called DUF500), a novel lipid-binding module. Ysc84 is a family of Las17-binding proteins found in metazoa. Together, Las17 and Ysc84 are essential for proper polymerization of actin; Ysc84 is able to bind to and stabilize the actin dimer presented by Las17 and thereby promote polymerization. An active actin cytoskeleton is necessary for adequate endocytosis. (pfam00018), or a FYVE zinc finger (pfam01363). 0 -351386 cl01110 Sdh5 Flavinator of succinate dehydrogenase. hypothetical protein; Provisional 0 -351387 cl01112 DUF507 Protein of unknown function (DUF507). Bacterial protein of unknown function. 0 -351388 cl01115 BMFP Membrane fusogenic activity. BMFP consists of two structural domains, a coiled-coil C-terminal domain via which the protein self-associates as a trimer, and an N-terminal domain disordered at neutral pH but adopting an amphipathic alpha-helical structure in the presence of phospholipid vesicles, high ionic strength, acidic pH or SDS. BMFP interacts with phospholipid vesicles though the predicted amphipathic alpha-helix induced in the N-terminal half of the protein and promotes aggregation and fusion of vesicles in vitro. 0 -351389 cl01118 ThrE Putative threonine/serine exporter. ThrE_2 is a family of membrane proteins involved in the export of threonine and serine. L-threonine, L-serine are both substrates for the exporter. The exporter exhibits nine-ten predicted transmembrane-spanning helices with long charged C and N termini and an amphipathic helix present within the N-terminus. L-Threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum, but the potential for amino acid formation can be considerably improved by reducing its intracellular degradation into glycine and increasing its export by this exporter. Members of the family are found in Bacteria, Archaea, and the fungal kingdoms, and the family can exist either as a single long polypeptide chain or as two short polypeptides. All family members show an extended hydrophilic N-terminal domain with weak sequence similarity to portions of hydrolases (proteases, peptidases, and glycosidases); this suggests that since this region is cytoplasmic to the membrane it may be generating the transport substrate, so may imply that threonine may not be the primary substrate and the ThrE has a subsidiary function. 0 -351390 cl01119 DUF525 ApaG domain. CO2+/MG2+ efflux protein ApaG; Reviewed 0 -351391 cl01120 SspB Stringent starvation protein B. ClpXP protease specificity-enhancing factor; Provisional 0 -351392 cl01122 RdgC Putative exonuclease, RdgC. recombination associated protein; Reviewed 0 -351393 cl01123 Fe-S_assembly Iron-sulphur cluster assembly. hypothetical protein; Provisional 0 -351394 cl01125 LptE Lipopolysaccharide-assembly. LPS-assembly lipoprotein RlpB; Provisional 0 -351395 cl01126 EI24 Etoposide-induced protein 2.4 (EI24). CysZ-like protein; Reviewed 0 -351396 cl01128 DUF535 Protein of unknown function (DUF535). Family member Shigella flexneri VirK is a virulence protein required for the expression, or correct membrane localization of IcsA (VirG) on the bacterial cell surface,. This family also includes Pasteurella haemolytica lapB, which is thought to be membrane-associated. 0 -321359 cl01129 NqrM (Na+)-NQR maturation NqrM. The NqrM gene is often found adjacent to the nqr operons that encode (Na+)-NQR subunits. It is involved in the maturation of (Na+) translocating NADH:quinone oxidoreductase in proteobacteria. The four conserved Cys residues found in NqrM are required for (Na+)- NQR maturation and may serve as ligands for a metal ion or metal cluster used to build up the (Na+)-NQR molecule. 0 -321360 cl01131 HlyC RTX toxin acyltransferase family. Members of this family are enzymes EC:2.3.1.-. involved in fatty acylation of the protoxins (HlyA) at lysine residues, thereby converting them to the active toxin. Acyl-acyl carrier protein (ACP) is the essential acyl donor. This family show a number of conserved residues that are possible candidates for participation in acyl transfer. Site-directed mutagenesis of the single conserved histidine residue in Escherichia coli HlyC resulted in complete inactivation of the enzyme. 0 -321361 cl01132 FA_hydroxylase Fatty acid hydroxylase superfamily. beta-carotene hydroxylase 0 -351397 cl01133 Na_H_Exchanger Sodium/hydrogen exchanger family. This family contains a number of bacterial Na+/H+ antiporter 1 proteins. These are integral membrane proteins that catalyze the exchange of H+ for Na+ in a manner that is highly dependent on the pH. 0 -321363 cl01135 ABC_trans_aux ABC-type transport auxiliary lipoprotein component. ABC_trans_aux is a family of bacterial proteins that act as auxiliarires to the ABC-transporter in the gamma-hexachlorocyclohexane uptake permease system in Sphingobium japonicum. Gamma-hexachlorocyclohexane, or Lindane, can be used as the sole source of carbon in S.japonicum in aerobic conditions. Lindane is an insecticide. 0 -321364 cl01136 DUF393 Protein of unknown function, DUF393. Members of this family have two highly conserved cysteine residues near their N-terminus. The function of these proteins is unknown. 0 -321365 cl01137 YfbU YfbU domain. hypothetical protein; Validated 0 -351398 cl01139 Cofac_haem_bdg Haem-binding uptake, Tiki superfamily, ChaN. This is a family of putative bacterial lipoproteins necessary for the uptake of haem-iron. The structure of UniProtKB:Q0PBW2, Structure 2g5g, comprises a large parallel beta-sheet with flanking alpha-helices and a smaller domain consisting of alpha-helices. Two cofacial haem groups (~3.5 Angstom apart with an inter-iron distance of 4.4 Angstrom) bind in a pocket formed by a dimer of two ChaN monomers. 0 -351399 cl01143 H2O2_YaaD Peroxide stress protein YaaA. hypothetical protein; Validated 0 -351400 cl01144 YacG DNA gyrase inhibitor YacG. zinc-binding protein; Provisional 0 -351401 cl01146 ZapA Cell division protein ZapA. Z-ring-associated protein; Provisional 0 -351402 cl01147 YjgA-like uncharacterized proteins similar to Escherichia coli YjgA. This family of bacterial proteins has no known function. 0 -351403 cl01148 FxsA FxsA cytoplasmic membrane protein. phage T7 F exclusion suppressor FxsA; Reviewed 0 -321372 cl01153 NapB Nitrate reductase cytochrome c-type subunit (NapB). nitrate reductase cytochrome C550 subunit; Provisional 0 -294724 cl01162 DUF417 Protein of unknown function, DUF417. This family of uncharacterized proteins appears to be restricted to proteobacteria. 0 -351404 cl01163 NapD NapD protein. assembly protein for periplasmic nitrate reductase; Provisional 0 -351405 cl01164 Slp Outer membrane lipoprotein Slp family. Slp superfamily members are present in the Gram-negative gamma proteobacteria Escherichia coli, which also contains a close paralog, Haemophilus influenzae and Pasteurella multocida and Vibrio cholera. The known members of the family to date share a motif LX[GA]C near the N-terminus, which is compatible with the possibility that the protein is modified into a lipoprotein with Cys as the new N-terminus. Slp from Escherichia coli is known to be a lipoprotein of the outer membrane and to be expressed in response to carbon starvation. [Cell envelope, Other] 0 -351406 cl01166 DUF416 Protein of unknown function (DUF416). This is a bacterial protein family of unknown function. Proteins in this family adopt an alpha helical structure. Genome context analysis has suggested a high probability of a functional association with histidine kinases, which implicates proteins in this family to play a role in signalling (information from TOPSAN 2Q9R). 0 -351407 cl01171 RelB RelB antitoxin. Plasmids may be maintained stably in bacterial populations through the action of addiction modules, in which a toxin and antidote are encoded in a cassette on the plasmid. In any daughter cell that lacks the plasmid, the toxin persists and is lethal after the antidote protein is depleted. Toxin/antitoxin pairs are also found on main chromosomes, and likely represent selfish DNA. Sequences in the seed for this alignment all were found adjacent to toxin genes. The resulting model appears to describe a narrower set of proteins than pfam04221, although many in the scope of this model are not obviously paired with toxin proteins. Several toxin/antitoxin pairs may occur in a single species. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 0 -351408 cl01172 YihI Der GTPase activator (YihI). Der GTPase activator; Provisional 0 -351409 cl01173 UPF0149 Uncharacterized protein family (UPF0149). This family resembles pfam03695 (version pfam03695.3), uncharacterised protein family UPF0149, but is broader in scope and includes additional proteins. It includes E. coli proteins YgfB and YecA. The function of this family of proteins is unknown. The crystal structure is known for the member from Haemophilus influenzae (Ygfb, HI0817). [Unknown function, General] 0 -351410 cl01175 DUF1414 Protein of unknown function (DUF1414). hypothetical protein; Provisional 0 -351411 cl01178 RseC_MucC Positive regulator of sigma(E), RseC/MucC. SoxR reducing system protein RseC; Provisional 0 -351412 cl01179 CcmH Cytochrome C biogenesis protein. [Energy metabolism, Electron transport] 0 -351413 cl01180 UPF0270 Uncharacterized protein family (UPF0270). hypothetical protein; Provisional 0 -321382 cl01181 DctQ Tripartite ATP-independent periplasmic transporters, DctQ component. 2,3-diketo-L-gulonate TRAP transporter small permease protein YiaM; Provisional 0 -351414 cl01183 DUF412 Protein of unknown function, DUF412. hypothetical protein; Provisional 0 -351415 cl01184 SirB Invasion gene expression up-regulator, SirB. hypothetical protein; Provisional 0 -351416 cl01187 DUF446 tRNA pseudouridine synthase C. This family is suggested to be the catalytic domain of tRNA pseudouridine synthase C by association. The structure has been solved for one member, as Structure 2HGK, which by inference is designated in this way. 0 -351417 cl01190 EpmC Elongation factor P hydroxylase. This family catalyzes the final step in the elongation factor P modification pathway. It hydroxylates Lys-34 of elongation factor P. Members of this family have a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. 0 -351418 cl01193 DUF463 YcjX-like family, DUF463. These proteins possess a P-loop motif. 0 -351419 cl01194 Peptidase_M15_3 Peptidase M15. This family consists of a series of hypothetical bacterial proteins of unknown function. 0 -351420 cl01203 ACP_PD Acyl carrier protein phosphodiesterase. acyl carrier protein phosphodiesterase; Provisional 0 -351421 cl01204 COX4_pro Prokaryotic Cytochrome C oxidase subunit IV. This family (QoxD) encodes subunit IV of the aa3-type quinone oxidase, one of several bacterial terminal oxidases. This complex couples oxidation of reduced quinones with the reduction of molecular oxygen to water and the pumping of protons to form a proton gradient utilized for ATP production. aa3-type oxidases contain two heme a cofactors as well as copper atoms in the active site. [Energy metabolism, Electron transport] 0 -351422 cl01209 DUF480 Protein of unknown function, DUF480. hypothetical protein; Provisional 0 -351423 cl01213 DUF481 Protein of unknown function, DUF481. This family includes several proteins of uncharacterized function. 0 -351424 cl01215 DUF1315 Protein of unknown function (DUF1315). This family consists of several bacterial proteins of around 90 residues in length. The function of this family is unknown. 0 -351425 cl01217 YebG YebG protein. DNA damage-inducible protein YebG; Provisional 0 -351426 cl01219 CheZ Chemotaxis phosphatase, CheZ. chemotaxis regulator CheZ; Provisional 0 -351427 cl01221 DTW DTW domain. This presumed domain is found in bacterial and eukaryotic proteins. Its function is unknown. The domain contains multiple conserved motifs including a DTXW motif that this domain has been named after. 0 -351428 cl01222 T2SSM Type II secretion system (T2SS), protein M. putative general secretion pathway protein YghD; Provisional 0 -351429 cl01223 DUF1249 Protein of unknown function (DUF1249). putative dehydrogenase; Provisional 0 -351430 cl01224 DUF805 Protein of unknown function (DUF805). This family consists of several bacterial proteins of unknown function. 0 -351431 cl01225 SCP2 SCP-2 sterol transfer family. This domain is found at the C-terminus of alkyl sulfatases. Together with the N-terminal catalytic domain, this domain forms a hydrophobic chute and may recruit hydrophobic substrates. 0 -351432 cl01226 T6SS_HCP Type VI secretion system effector, Hcp. This family includes Hcp1 (hemolysin coregulated protein 1), an exported, homohexameric ring-forming virulence protein from Pseudomonas aeruginosa. Hcp1 lacks a conventional signal sequence and is instead exported by means of the type VI secretion system, encoded by a pathogenicity cluster of a class previously designated IAHP (IcmF-associated homologous protein). Homologs of Hcp1, in this protein family, are found in various bacteria of which most but not all are known pathogens. Pathogens may have many multiple members of this family, with three to ten in Erwinia carotovora, Yersinia pestis, uropathogenic Escherichia coli, and the insect pathogen Photorhabdus luminescens. [Cellular processes, Pathogenesis] 0 -321402 cl01230 Chor_lyase Chorismate lyase. This is a family of uncharacterized proteins. 0 -351433 cl01231 DUF485 Protein of unknown function, DUF485. This family includes several putative integral membrane proteins. 0 -321404 cl01234 PilO Pilus assembly protein, PilO. The T2SMb family is conserved in Proteobacteria and Actinobacteria, and differs from the T2SM proteins in Vibrio spp. (pfam04612). 0 -351434 cl01236 DMT_6 Putative member of DMT superfamily (DUF486). This family contains several proteins of uncharacterized function. The family is represented in the Transport classification database as 2.A.7.34, though the exact nature of what is transported is not known. 0 -351435 cl01237 DUF469 Protein with unknown function (DUF469). hypothetical protein; Provisional 0 -351436 cl01240 CtaG_Cox11 Cytochrome c oxidase assembly protein CtaG/Cox11. cytochrome C oxidase assembly protein; Provisional 0 -351437 cl01244 arom_aa_hydroxylase N/A. This family includes phenylalanine-4-hydroxylase, the phenylketonuria disease protein. 0 -321409 cl01245 META META domain. heat-inducible protein; Provisional 0 -351438 cl01246 DUF488 Protein of unknown function, DUF488. This family includes several proteins of uncharacterized function. 0 -351439 cl01247 FliO Flagellar biosynthesis protein, FliO. This short protein found in flagellar biosynthesis operons contains a highly hydrophobic N-terminal sequence followed generally by two basic amino acids. This region is reminiscent of but distinct from the twin-arginine translocation signal sequence. Some instances of this gene have been names "FliZ" but phylogenetic tree building supports a single FliO family. 0 -321412 cl01248 EutH Ethanolamine utilisation protein, EutH. ethanolamine utilization protein EutH; Provisional 0 -351440 cl01249 Haem_degrading Haem-degrading. hypothetical protein; Provisional 0 -321414 cl01250 Ureidogly_lyase Ureidoglycolate lyase. ureidoglycolate hydrolase; Provisional 0 -351441 cl01251 OHCU_decarbox OHCU decarboxylase. Previously thought to only proceed spontaneously, the decarboxylation of 2-oxo-4-hydroxy-4-carboxy--5-ureidoimidazoline (OHCU) has been recently been shown to be catalyzed by this enzyme in Mus musculus. Homologs of this enzyme are found adjacent to and fused with uricase in a number of prokaryotes and are represented by this model. This model is a separate (but related) clade from that represented by TIGR3164. This model places a second homolog in streptomyces species which (are not in the vicinity of other urate catabolism associated genes) below the trusted cutoff. 0 -351442 cl01252 UPF0167 Uncharacterized protein family (UPF0167). The proteins in this family are about 200 amino acids long and each contain 3 CXXC motifs. 0 -351443 cl01253 FixS Cytochrome oxidase maturation protein cbb3-type. CcoS from Rhodobacter capsulatus has been shown essential for incorporation of redox-active prosthetic groups (heme, Cu) into cytochrome cbb(3) oxidase. FixS of Bradyrhizobium japonicum appears to have the same function. Members of this family are found so far in organisms with a cbb3-type cytochrome oxidase, including Neisseria meningitidis, Helicobacter pylori, Campylobacter jejuni, Caulobacter crescentus, Bradyrhizobium japonicum, and Rhodobacter capsulatus. [Energy metabolism, Electron transport, Protein fate, Protein modification and repair] 0 -321418 cl01255 DAGK_cat Diacylglycerol kinase catalytic domain. Members of this family include ATP-NAD kinases EC:2.7.1.23, which catalyzes the phosphorylation of NAD to NADP utilising ATP and other nucleoside triphosphates as well as inorganic polyphosphate as a source of phosphorus. Also includes NADH kinases EC:2.7.1.86. 0 -351444 cl01256 NMN_transporter Nicotinamide mononucleotide transporter. The PnuC protein of E. coli is membrane protein responsible for nicotinamide mononucleotide transport, subject to regulation by interaction with the NadR (also called NadI) protein (see TIGR01526). This model defines a region corresponding to most of the length of PnuC, found primarily in pathogens. The extreme N- and C-terminal regions are poorly conserved and not included in the alignment and model. [Transport and binding proteins, Other, Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 0 -321420 cl01257 DUF2061 Predicted membrane protein (DUF2061). This domain, found in various prokaryotic proteins, has no known function. 0 -351445 cl01258 NnrS NnrS protein. This family consists of several bacterial NnrS like proteins. NnrS is a putative heme-Cu protein (NnrS) and a member of the short-chain dehydrogenase family. Expression of nnrS is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including nirK and nor. NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase. 0 -351446 cl01260 PilZ PilZ domain. This domain is related to Type IV pilus assembly protein PilZ (pfam07238). It is found in at least 12 copies in Myxococcus xanthus DK 1622. 0 -351447 cl01261 DUF2062 Uncharacterized protein conserved in bacteria (DUF2062). Members of this family are uncharacterized proteins, usually encoded by a gene adjacent to a member of family TIGR03545, which is also uncharacterized. 0 -351448 cl01262 DUF2063 Putative DNA-binding domain. This family represents the N-terminal part of a Neisseria protein, UniProtKB:Q5F5I0, Structure 3dee. It runs from residues 31-117 as a helical bundle with 4 main helices. \From genomic context and the fold of the C-terminal part, it is suggested that this protein is involved in transcriptional regulation. 0 -351449 cl01264 PsiE Phosphate-starvation-inducible E. phosphate-starvation-inducible protein PsiE; Provisional 0 -351450 cl01267 Peptidase_M90 Glucose-regulated metallo-peptidase M90. DgsA anti-repressor MtfA; Provisional 0 -351451 cl01275 DUF2065 Uncharacterized protein conserved in bacteria (DUF2065). This domain, found in various prokaryotic proteins, has no known function. 0 -351452 cl01279 MbtH MbtH-like protein. This domain is found in the MbtH protein as well as at the N-terminus of the antibiotic synthesis protein NIKP1. This domain is about 70 amino acids long and contains 3 fully conserved tryptophan residues. Many of the members of this family are found in known antibiotic synthesis gene clusters. 0 -351453 cl01280 Chlor_dismutase Chlorite dismutase. putative heme peroxidase; Provisional 0 -351454 cl01281 rhaM L-rhamnose mutarotase. Members of this protein family are rhamnose mutarotase from Escherichia coli, previously designated YiiL as an uncharacterized protein, and close homologs also associated with rhamnose dissimilation operons in other bacterial genomes. Mutarotase is a term for an epimerase that changes optical activity. This enzyme was shown experimentally to interconvert alpha and beta stereoisomers of the pyranose form of L-rhamnose. The crystal structure of this small (104 amino acid) protein shows a locally asymmetric dimer with active site residues of His, Tyr, and Trp. [Energy metabolism, Sugars] 0 -294784 cl01282 TRAM TRAM domain. This small domain has no known function. However it may perform a nucleic acid binding role (Bateman A. unpublished observation). 0 -351455 cl01284 DUF1722 Protein of unknown function (DUF1722). hypothetical protein; Provisional 0 -351456 cl01285 Gar1 Gar1/Naf1 RNA binding region. H/ACA RNA-protein complex component Gar1; Reviewed 0 -321433 cl01287 AE_Prim_S_like N/A. Members of this family adopt a structure consisting of a core of antiparallel beta sheets. They are found in various bacterial hypothetical proteins, and have been shown to harbour both primase and polymerase activities. 0 -321434 cl01288 DUF2067 Uncharacterized protein conserved in archaea (DUF2067). This domain, found in various archaeal proteins, has no known function. 0 -321435 cl01294 Baseplate_J Baseplate J-like protein. This family consists of a large, conserved hypothetical protein in phage tail-like regions of at least six bacterial genomes: Gloeobacter violaceus PCC 7421, Geobacter sulfurreducens PCA, Streptomyces coelicolor A3(2), Streptomyces avermitilis MA-4680, Mesorhizobium loti, and Myxococcus xanthus. The C-terminal region is identified by the broader model pfam04865 as related to baseplate protein J from phage P2, but that relationship is not observed directly. [Mobile and extrachromosomal element functions, Prophage functions] 0 -321436 cl01298 Glyco_transf_25 N/A. Members of this family belong to Glycosyltransferase family 25 This is a family of glycosyltransferases involved in lipopolysaccharide (LPS) biosynthesis. These enzymes catalyze the transfer of various sugars onto the growing LPS chain during its biosynthesis. 0 -351457 cl01299 DUF2069 Predicted membrane protein (DUF2069). This domain, found in various prokaryotes, has no known function. 0 -351458 cl01301 DUF1415 Protein of unknown function (DUF1415). This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 0 -351459 cl01304 DUF1289 Protein of unknown function (DUF1289). This family consists of a number of hypothetical bacterial proteins. The aligned region spans around 56 residues and contains 4 highly conserved cysteine residues towards the N-terminus. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 0 -351460 cl01308 CHASE4 CHASE4 domain. CHASE4. This is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in prokaryotes. Specifically, CHASE4 domains are found in histidine kinases in Archaea and in predicted diguanylate cyclases/phosphodiesterases in Bacteria. Environmental factors that are recognized by CHASE4 domains are not known at this time. 0 -351461 cl01311 DUF1294 Protein of unknown function (DUF1294). This family includes a number of hypothetical bacterial and archaeal proteins of unknown function. 0 -351462 cl01312 Sbt_1 Na+-dependent bicarbonate transporter superfamily. Family of bacterial proteins that are likely to be part of the Na(+)-dependent bicarbonate transporter (sbt) family. Members carry 10TMS in a 5+5 duplicated structure. The loop between helices 5 and 6 in Synechocystis PCC6803 is likely to be the location for regulatory mechanisms governing the activation of the transporter. 0 -321443 cl01314 RecU Recombination protein U. Holliday junction-specific endonuclease; Reviewed 0 -351463 cl01315 TANGO2 Transport and Golgi organisation 2. In eukaryotes this family is predicted to play a role in protein secretion and Golgi organisation. In plants this family includes Solanum habrochaites Cwp, which is involved in water permeability in the cuticles of fruit. Mouse Tango2 has been found to be expressed during early embryogenesis in mice. This protein contains a conserved NRDE motif. This gene has been characterized in Drosophila melanogaster and named as transport and Golgi organisation 2, hence the name Tango2. 0 -321445 cl01317 Cmr5_III-B CRISPR/Cas system-associated protein Cmr5. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family, represented by TM1791.1 of Thermotoga maritima, is found in both archaeal and bacterial species. 0 -321446 cl01318 DUF1232 Protein of unknown function (DUF1232). This family represents a conserved region of approximately 60 residues within a number of hypothetical bacterial and archaeal proteins of unknown function. 0 -321447 cl01319 HARE-HTH HB1, ASXL, restriction endonuclease HTH domain. Members of this family are the RNA polymerase delta subunit, as found in the Firmicutes and the Mollicutes. All members of the seed alignment have an extended C-terminal low-complexity region, consisting largely of Asp and Glu, that is not included in the model. Proteins giving borderline scores should be checked to confirm a similar acidic C-terminal domain. [Transcription, DNA-dependent RNA polymerase] 0 -351464 cl01321 SURF1 N/A. SURF1 superfamily. Surf1/Shy1 has been implicated in the posttranslational steps of the biogenesis of the mitochondrially-encoded Cox1 subunit of cytochrome c oxidase (complex IV). Cytochrome c oxidase (complex IV), the terminal electron-transferring complex of the respiratory chain, is an assemblage of nuclear and mitochondrially-encoded subunits. Its assembly is mediated by nuclear encoded assembly factors, one of which is Surf1/Shy1. Mutations in human Surf1 are a major cause of Leigh syndrome, a severe neurodegenerative disorder. 0 -321449 cl01327 DUF1684 Protein of unknown function (DUF1684). The sequences featured in this family are found in hypothetical archaeal and bacterial proteins of unknown function. The region in question is approximately 200 amino acids long. 0 -351465 cl01328 Dodecin Dodecin. Dodecin is a flavin-binding protein,found in several bacteria and few archaea and represents a stand-alone version of the SHS2 domain. It most closely resembles the SHS2 domains of FtsA and Rpb7p, and represents a single domain small-molecule binding form. 0 -321451 cl01329 DUF2071 Uncharacterized conserved protein (COG2071). This conserved protein (similar to YgjF), found in various prokaryotes, has no known function. 0 -351466 cl01330 IMP_cyclohyd IMP cyclohydrolase-like protein. This model represents IMP cyclohydrolase, the final step in the biosynthesis of inosine monophosphate (IMP) in archaea. In bacteria this step is catalyzed by a bifunctional enzyme (purH). 0 -321453 cl01332 DUF2073 Uncharacterized protein conserved in archaea (DUF2073). This archaeal protein has no known function. 0 -321454 cl01339 DUF1805 Domain of unknown function (DUF1805). This domain is found in bacteria and archaea and has an N terminal tetramerisation region that is composed of beta sheets. 0 -351467 cl01342 Peptidase_A22B Signal peptide peptidase. Mutations in presenilin-1 are a major cause of early onset Alzheimer's disease. It has been found that presenilin-1 binds to beta-catenin in-vivo. This family also contains SPE proteins from C.elegans. 0 -321456 cl01346 PaaA_PaaC Phenylacetic acid catabolic protein. Members of this protein family are BoxB, the B subunit of benzoyl-CoA oxygenase. This oxygen-requiring enzyme acts in an aerobic pathway of benzoate catabolism via coenzyme A ligation. [Energy metabolism, Other] 0 -351468 cl01349 YqcI_YcgG YqcI/YcgG family. This family of proteins are functionally uncharacterized. The family include YqcI and YcgG from B. subtilis. The alignment contains a conserved FPC motif at the N-terminus and CPF at the C-terminus. 0 -351469 cl01350 FTCD_C Formiminotransferase-cyclodeaminase. Members of this family are thought to be Formiminotransferase- cyclodeaminase enzymes EC:4.3.1.4. This domain is found in the C-terminus of the bifunctional animal members of the family. 0 -294813 cl01351 Glyco_hydro_8 Glycosyl hydrolases family 8. endo-1,4-D-glucanase; Provisional 0 -351470 cl01356 DUF1508 Domain of unknown function (DUF1508). This family represents a series of bacterial domains of unknown function of around 50 residues in length. Members of this family are often found as tandem repeats and in some cases represent the whole protein. All member proteins are described as being hypothetical. 0 -351471 cl01359 OpcA_G6PD_assem Glucose-6-phosphate dehydrogenase subunit. Members of this family are found in various prokaryotic OpcA and glucose-6-phosphate dehydrogenase proteins. The exact function of the domain is, as yet, unknown. 0 -321461 cl01360 Pilin_N Archaeal Type IV pilin, N-terminal. This entry represents the N-terminal domain of archaeal pilins, which play important roles in surface adhesion and twitching motility. This domain contains an conserved N- terminal hydrophobic motif. 0 -351472 cl01365 ZinT ZinT (YodA) periplasmic lipocalin-like zinc-recruitment. zinc/cadmium-binding protein; Provisional 0 -351473 cl01368 GyrI-like GyrI-like small molecule binding domain. This family contains Cass2 from Vibrio cholerae, an integron-associated protein that has been shown to bind cationic drug compounds with submicromolar affinity. Cass2 has been proposed to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and other closely-related species. 0 -351474 cl01369 CHASE CHASE domain. Predicted to be a ligand binding domain. 0 -351475 cl01370 DotU Type VI secretion system protein DotU. At least two families of proteins, often encoded by adjacent genes, show sequence similarity due to homology between type IV secretion systems and type VI secretion systems. One is the IcmF family (TIGR03348). The other is the family described by this model. Members include DotU from the Legionella pneumophila type IV secretion system. Many of the members of this protein family from type VI secretion systems have an additional C-terminal domain with OmpA/MotB homology. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -321466 cl01371 PaaB Phenylacetic acid degradation B. Phenylacetate-CoA oxygenase is comprised of a five gene complex responsible for the hydroxylation of phenylacetate-CoA (PA-CoA) as the second catabolic step in phenylacetic acid (PA) degradation. Although the exact function of this enzyme has not been determined, it has been shown to be required for phenylacetic acid degradation and has been proposed to function in a multicomponent oxygenase acting on phenylacetate-CoA. [Energy metabolism, Other] 0 -351476 cl01377 Iron_transport Fe2+ transport protein. This is a bacterial family of periplasmic proteins that are thought to function in high-affinity Fe2+ transport. 0 -351477 cl01378 LicD LicD family. The LICD family of proteins show high sequence similarity and are involved in phosphorylcholine metabolism. There is evidence to show that LicD2 mutants have a reduced ability to take up choline, have decreased ability to adhere to host cells and are less virulent. These proteins are part of the nucleotidyltransferase superfamily. 0 -351478 cl01379 TSPO_MBR Translocator protein (TSPO)/peripheral-type benzodiazepine receptor (MBR) family. Tryptophan-rich sensory protein (TspO) is an integral membrane protein that acts as a negative regulator of the expression of specific photosynthesis genes in response to oxygen/light. It is involved in the efflux of porphyrin intermediates from the cell. This reduces the activity of coproporphyrinogen III oxidase, which is thought to lead to the accumulation of a putative repressor molecule that inhibits the expression of specific photosynthesis genes. Several conserved aromatic residues are necessary for TspO function: they are thought to be involved in binding porphyrin intermediates. In, the rat mitochondrial peripheral benzodiazepine receptor (MBR) was shown to not only retain its structure within a bacterial outer membrane, but also to be able to functionally substitute for TspO in TspO- mutants, and to act in a similar manner to TspO in its in situ location: the outer mitochondrial membrane. The biological significance of MBR remains unclear, however. It is thought to be involved in a variety of cellular functions, including cholesterol transport in steroidogenic tissues. 0 -351479 cl01380 DUF1440 Protein of unknown function (DUF1440). This family contains a number of bacterial proteins of unknown function approximately 180 residues long. These are possibly integral membrane proteins. 0 -321471 cl01381 zinc_ribbon_13 Nucleic-acid-binding protein containing Zn-ribbon domain (DUF2082). This domain, found in various hypothetical prokaryotic proteins, as well as some Zn-ribbon nucleic-acid-binding proteins has no known function. 0 -321472 cl01382 PAD Phenolic Acid Decarboxylase. This family consists of several bacterial phenolic acid decarboxylase proteins. Phenolic acids, also called substituted cinnamic acids, are important lignin-related aromatic acids and natural constituents of plant cell walls. These acids (particularly ferulic, p-coumaric, and caffeic acids) bind the complex lignin polymer to the hemicellulose and cellulose in plants. The Phenolic acid decarboxylase (PAD) gene (pad) is transcriptionally regulated by p-coumaric, ferulic, or caffeic acid; these three acids are the three substrates of PAD. 0 -351480 cl01385 DUF1244 Protein of unknown function (DUF1244). This family consists of several short bacterial proteins of around 100 residues in length. The function of this family is unknown. 0 -321474 cl01386 2HCT 2-hydroxycarboxylate transporter family. These proteins are members of the Citrate:Cation Symporter (CCS) Family (TC 2.A.24). These proteins have 12 GES predicted transmembrane regions. Most members of the CCS family catalyze citrate uptake with either Na+ or H+ as the cotransported cation. However, one member is specific for L-malate and probably functions by a proton symport mechanism. [Unclassified, Role category not yet assigned] 0 -351481 cl01387 DUF3299 Protein of unknown function (DUF3299). This is a family of bacterial proteins of unknown function. 0 -351482 cl01389 Phage_sheath_1 Phage tail sheath protein subtilisin-like domain. major tail sheath protein; Provisional 0 -321477 cl01390 Phage_tube Phage tail tube protein FII. major tail tube protein; Provisional 0 -321478 cl01391 Phage_P2_GpU Phage P2 GpU. This family consists of several bacterial and phage proteins of around 130 residues in length which seem to be related to the bacteriophage P2 GpU protein, which is thought to be involved in tail assembly. 0 -351483 cl01393 DUF952 Protein of unknown function (DUF952). This family consists of several hypothetical bacterial and plant proteins of unknown function. 0 -351484 cl01397 DUF1349 Protein of unknown function (DUF1349). This family consists of several hypothetical bacterial proteins but contains one sequence from Saccharomyces cerevisiae. Members of this family are typically around 200 residues in length. The function of this family is unknown. 0 -351485 cl01402 T6SS_VipA Type VI secretion system, VipA, VC_A0107 or Hcp2. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -351486 cl01403 GPW_gp25 Gene 25-like lysozyme. Some members in this family of proteins are annotated as phage related, xkdS however currently there is no known function. 0 -351487 cl01404 T6SS_TssG Type VI secretion, TssG. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -351488 cl01405 T6SS-SciN Type VI secretion lipoprotein, VasD, EvfM, TssJ, VC_A0113. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -351489 cl01406 T6SS_VasE Bacterial Type VI secretion, VC_A0110, EvfL, ImpJ, VasE. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -351490 cl01407 Rdx Rdx family. This model represents a domain found in both bacteria and animals, including animal proteins SelT, SelW, and SelH, all of which are selenoproteins. In a CXXC motif near the N-terminus of the domain, selenocysteine may replace the second Cys. Proteins with this domain may include an insert of about 70 amino acids. This model is broader than the current SelW model pfam05169 in Pfam. 0 -351491 cl01408 AAL_decarboxy Alpha-acetolactate decarboxylase. Puruvate can be fermented to 2,3-butanediol. It is first converted to alpha-acetolactate by alpha-acetolactate synthase, then decarboxylated to acetoin by this enzyme. Acetoin can be reduced in some species to 2,3-butanediol by acetoin reductase. [Energy metabolism, Fermentation] 0 -351492 cl01409 DUF2219 Uncharacterized protein conserved in bacteria (DUF2219). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321489 cl01410 DUF2387 Probable metal-binding protein (DUF2387). Members of this family are small proteins, about 70 residues in length, with a basic triplet near the N-terminus and a probable metal-binding motif CPXCX(18)CXXC. Members are found in various Proteobacteria. 0 -351493 cl01411 QSregVF_b Putative quorum-sensing-regulated virulence factor. QSregVF_b is a family of short Pseudomonas proteins that are potential virulence factors. The structure of UniProtKB:Q9HY15 a secreted protein has been solved and deposited as Structure 3npd, from pfam13652. It is predicted that these two adjacent proteins form a single transcriptional unit based on the prediction that together they interact with their adjacent protein PotD, which is the putrescine-binding periplasmic protein in the polyamine uptake system comprising PotABCD. These two adjacent proteins are predicted to be quroum-sensing-regulated virulence factors. 0 -351494 cl01412 Alpha-L-AF_C Alpha-L-arabinofuranosidase C-terminal domain. This entry represents the C terminus (approximately 200 residues) of bacterial and eukaryotic alpha-L-arabinofuranosidase. This catalyses the hydrolysis of non-reducing terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides. 0 -351495 cl01414 DUF971 Protein of unknown function (DUF971). This family consists of several short bacterial proteins and one sequence from Oryza sativa. The function of this family is unknown. 0 -351496 cl01416 Fimbrial Fimbrial protein. FimA is a family of Gram-negative fimbrial component A proteins that form part of the pili. There are usually up to 1000 copies of this subunit in one pilus that form a helically wound rod onto which the tip fibrillum (FimF.FimG, FimH) is attached. Pilus subunits are translocated from the cytoplasm to the periplasm via the general secretory pathway SecYEG. 0 -321494 cl01417 Nuc-transf Predicted nucleotidyltransferase. hypothetical protein; Provisional 0 -351497 cl01418 Cupin_5 Cupin superfamily (DUF985). Family of uncharacterized proteins found in bacteria and eukaryotes that belongs to the Cupin superfamily. 0 -321496 cl01419 DUF1284 Protein of unknown function (DUF1284). This family consists of several hypothetical bacterial and archaeal proteins of around 130 residues in length. The function of this family is unknown, although it is thought that they may be iron-sulphur binding proteins. 0 -321497 cl01421 DUF1211 Protein of unknown function (DUF1211). This family represents a conserved region within a number of hypothetical proteins of unknown function found in eukaryotes, bacteria and archaea. These may possibly be integral membrane proteins. 0 -351498 cl01424 DUF2218 Uncharacterized protein conserved in bacteria (DUF2218). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351499 cl01425 Glycolipid_bind Putative glycolipid-binding. This family has a novel fold known as a spiral beta-roll, consisting of a 15-stranded beta sheet wrapped around a single alpha helix. It forms dimers. It has some structural similarity to the E. coli lipoprotein localization factors LolA and LolB. Its structure suggests that it may have a role in glycolipid binding. Its genomic context supports a role in glycolipid metabolism. 0 -351500 cl01427 DUF2214 Predicted membrane protein (DUF2214). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351501 cl01430 AntA AntA/AntB antirepressor. In E. coli the two proteins AntA and AntB have 62% amino acid identities near their N termini. AntA appears to be encoded by a truncated and divergent copy of AntB. The two proteins are homologous to putative antirepressors found in numerous bacteriophages, such as the hypothetical antirepressor protein encoded by the gene LO142 of the bacteriophage 933W. 0 -351502 cl01432 DUF779 Protein of unknown function (DUF779). This family consists of several bacterial proteins of unknown function. 0 -351503 cl01435 NTP_transf_6 Nucleotidyltransferase. This family consists of several hypothetical bacterial proteins of unknown function. This family was recently identified as belonging to the nucleotidyltransferase superfamily. 0 -351504 cl01438 zf-AN1 AN1-like Zinc finger. Zinc finger at the C-terminus of An1, a ubiquitin-like protein in Xenopus laevis. 0 -321505 cl01439 3D_domain 3D domain, named for 3 conserved aspartate residues, is found in mltA-like lytic transglycosylases and numerous other contexts. This short presumed domain contains three conserved aspartate residues, hence the name 3D. It has been shown to be part of the catalytic double psi beta barrel domain of MltA. 0 -351505 cl01440 TOBE_2 TOBE domain. The TOBE domain (Transport-associated OB) always occurs as a dimer as the C-terminal strand of each domain is supplied by the partner. Probably involved in the recognition of small ligands such as molybdenum and sulfate. Found in ABC transporters immediately after the ATPase domain. 0 -351506 cl01445 DUF4065 Protein of unknown function (DUF4065). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and viruses. Proteins in this family are typically between 155 and 202 amino acids in length. 0 -321508 cl01449 DUF2240 Uncharacterized protein conserved in archaea (DUF2240). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351507 cl01453 DUF1275 Protein of unknown function (DUF1275). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown although most members have 6 TM regions, and may be putative permeases. 0 -351508 cl01454 PhnG Phosphonate metabolism protein PhnG. PhnH is a component of the C-P lyase system (GenProp0232) for the catabolism of phosphonate compounds. The specific function of this component is unknown. This model is based on pfam06754.2, and has been broadened to include sequences missed by that model which are clearly true positive hits based on genome context. 0 -351509 cl01455 PhnH Bacterial phosphonate metabolism protein (PhnH). PhnH is a component of the C-P lyase system (GenProp0232) for the catabolism of phosphonate compounds. The specific function of this component is unknown. This model is based on pfam05845.2, and has been broadened to include sequences missed by that model which are clearly true positive hits based on genome context. 0 -351510 cl01456 PhnI Bacterial phosphonate metabolism protein (PhnI). This family consists of several Proteobacterial phosphonate metabolism protein (PhnI) sequences. Bacteria that use phosphonates as a phosphorus source must be able to break the stable carbon-phosphorus bond. In Escherichia coli phosphonates are broken down by a C-P lyase that has a broad substrate specificity. The genes for phosphonate uptake and degradation in E. coli are organized in an operon of 14 genes, named phnC to phnP. Three gene products (PhnC, PhnD and PhnE) comprise a binding protein-dependent phosphonate transporter, which also transports phosphate, phosphite, and certain phosphate esters such as phosphoserine; two gene products (PhnF and PhnO) may have a role in gene regulation; and nine gene products (PhnG, PhnH, PhnI, PhnJ, PhnK, PhnL, PhnM, PhnN, and PhnP) probably comprise a membrane-associated C-P lyase enzyme complex. 0 -321513 cl01457 PhnJ Phosphonate metabolism protein PhnJ. This family consists of several bacterial phosphonate metabolism (PhnJ) sequences. The exact role that PhnJ plays in phosphonate utilisation is unknown. 0 -351511 cl01458 OAD_gamma Oxaloacetate decarboxylase, gamma chain. This model finds the subfamily of distantly related, low complexity, hydrophobic small subunits of several related sodium ion-pumping decarboxylases. These include oxaloacetate decarboxylase gamma subunit and methylmalonyl-CoA decarboxylase delta subunit. Most sequences scoring between the noise and trusted cutoffs are eukaryotic sodium channel proteins. 0 -351512 cl01461 DUF2239 Uncharacterized protein conserved in bacteria (DUF2239). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351513 cl01462 ANT Phage antirepressor protein KilAC domain. This domain was called the KilAC domain by Iyer and colleagues. 0 -351514 cl01464 DUF2238 Predicted membrane protein (DUF2238). hypothetical protein; Provisional 0 -351515 cl01465 Cas7_I-C CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR-associated protein Cas7 is one of the components of the type I-B cascade-like antiviral defense complex. In Haloferax volcanii, Cas5, Cas6 and Cas7 form a small complex that aids the stability of CRISPR-derived RNA. 0 -351516 cl01467 DUF2237 Uncharacterized protein conserved in bacteria (DUF2237). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351517 cl01472 DUF2236 Uncharacterized protein conserved in bacteria (DUF2236). This domain, found in various hypothetical bacterial proteins, has no known function. This family contains a highly conserved arginine and histidine that may be active site residues for an as yet unknown catalytic activity. 0 -351518 cl01474 DUF1989 Domain of unknown function (DUF1989). A number of bacteria degrade urea as a nitrogen source by the urea carboxylase/allophanate hydrolase pathway, which uses biotin and consumes ATP, rather than my means of the nickel-dependent enzyme urease. This model represents one of a pair of homologous, tandem uncharacterized genes found together with the urea carboxylase and allophanate hydrolase genes. 0 -351519 cl01480 DUF2235 Uncharacterized alpha/beta hydrolase domain (DUF2235). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351520 cl01481 DDE_Tnp_IS1595 ISXO2-like transposase domain. This domain probably functions as an integrase that is found in a wide variety of transposases, including ISXO2. 0 -351521 cl01482 CpxP_like CpxP component of the bacterial Cpx-two-component system and related proteins. This is a metal-binding protein which is involved in resistance to heavy-metal ions. The protein forms a four-helix hooked hairpin, consisting of two long alpha helices each flanked by a shorter alpha helix. It binds a metal ion in a type-2 like centre. It contains two copies of an LTXXQ motif. 0 -351522 cl01483 Com_YlbF Control of competence regulator ComK, YlbF/YmcA. hypothetical protein; Provisional 0 -351523 cl01487 DUF1007 Protein of unknown function (DUF1007). Family of conserved bacterial proteins with unknown function. 0 -321527 cl01491 NYN_YacP YacP-like NYN domain. This family consists of bacterial proteins related to YacP. This family is uncharacterized functionally, but it has been suggested that these proteins are nucleases due to them containing a NYN domain. NYN (for N4BP1, YacP-like Nuclease) domains were discovered by Anantharaman and Aravind. Based on gene neighborhoods it was suggested that the bacterial YacP proteins interact with the Ribonuclease III and TrmH methylase in a processome complex that catalyzes the maturation of rRNA and tRNA. 0 -321528 cl01492 DUF1980 Domain of unknown function (DUF1980). Members of this occur in gene pairs with members of pfam03773. The N-terminal region contains several predicted transmembrane helix regions while the few invariant residues (G, CxxD, and W) occur in the C-terminal region. 0 -351524 cl01498 CitX Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase. 2'-(5''-triphosphoribosyl)-3'-dephospho-CoA:apo-citrate lyase; Reviewed 0 -351525 cl01500 VirB8 VirB8 protein. conjugal transfer protein TrbF; Provisional 0 -351526 cl01501 VirB3 Type IV secretory pathway, VirB3-like protein. type IV secretion system protein VirB3; Provisional 0 -351527 cl01503 TrbL TrbL/VirB6 plasmid conjugal transfer protein. conjugal transfer protein TrbL; Provisional 0 -321533 cl01505 YhhN YhhN family. The members of this family are similar to the hypothetical protein yhhN expressed by E. coli. Many are annotated as possible transmembrane proteins, and in fact they all have a high proportion of hydrophobic residues. A human member of this family, formerly known as TMEM86B, is a lysoplasmalogenase that catalyzes the hydrolysis of the vinyl ether bond of lysoplasmalogen. Putative conserved active site residues have been proposed for the YhhN family. 0 -351528 cl01506 EII-Sor PTS system sorbose-specific iic component. PTS system mannose-specific transporter subunit IIC; Provisional 0 -351529 cl01507 EIID-AGA PTS system mannose/fructose/sorbose family IID component. PTS system mannose-specific transporter subunit IID; Provisional 0 -351530 cl01508 KduI KduI/IolB family. Members of this protein family, 5-deoxy-glucuronate isomerase (iolB), represent one of eight enzymes in a pathway converting myo-inositol to acetyl-CoA. [Energy metabolism, Sugars] 0 -351531 cl01509 ChuX_HutX Haem utilisation ChuX/HutX. The Yersinia enterocolitica O:8 periplasmic binding-protein- dependent transport system consisted of four proteins: the periplasmic haemin-binding protein HemT, the haemin permease protein HemU, the ATP-binding hydrophilic protein HemV and the haemin-degrading protein HemS (this family). The structure for HemS has been solved and consists of a tandem repeat of this domain. 0 -351532 cl01511 AstB Succinylarginine dihydrolase. succinylarginine dihydrolase; Provisional 0 -321539 cl01513 Terminase_2 Terminase small subunit. Packaging of double-stranded viral DNA concatemers requires interaction of the prohead with virus DNA. This process is mediated by a phage-encoded DNA recognition and terminase protein. The terminase enzymes described so far, which are hetero-oligomers composed of a small and a large subunit, do not have a significant level of sequence homology. The small terminase subunit is thought to form a nucleoprotein structure that helps to position the terminase large subunit at the packaging initiation site. 0 -321540 cl01515 EII-GUT PTS system enzyme II sorbitol-specific factor. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Gut family consists only of glucitol-specific transporters, but these occur both in Gram-negative and Gram-positive bacteria.E. coli consists of IIA protein, a IIC protein and a IIBC protein. This family is specific for the IIC component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 0 -321541 cl01516 PTSIIA_gutA PTS system glucitol/sorbitol-specific IIA component. PTS system glucitol/sorbitol-specific transporter subunit IIA; Provisional 0 -351533 cl01519 DUF1287 Domain of unknown function (DUF1287). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown. This family is related to pfam00877. 0 -351534 cl01520 DUF817 Protein of unknown function (DUF817). This family consists of several bacterial proteins of unknown function. 0 -321544 cl01521 Peptidase_S78 Caudovirus prohead serine protease. This model describes the prohead protease of HK97 and related phage. It is generally encoded next to the gene for the capsid protein that it processes, and in some cases may be fused to it. This family does not show similarity to the prohead protease of phage T4 (see pfam03420). [Mobile and extrachromosomal element functions, Prophage functions, Protein fate, Other] 0 -351535 cl01522 FGase N-formylglutamate amidohydrolase. In some species, histidine is converted to via urocanate and then formimino-L-glutamate to glutamate in four steps, where the fourth step is conversion of N-formimino-L-glutamate to L-glutamate and formamide. In others, that pathway from formimino-L-glutamate may differ, with the next enzyme being formiminoglutamate hydrolase (HutF) yielding N-formyl-L-glutamate. This model represents the enzyme N-formylglutamate deformylase, also called N-formylglutamate amidohydrolase, which then produces glutamate. [Energy metabolism, Amino acids and amines] 0 -351536 cl01525 Terminase_4 Phage terminase, small subunit. This model describes a distinct family of phage (and integrated prophage) putative terminase small subunit. Members tend to be adjacent to the phage terminase large subunit gene. [Mobile and extrachromosomal element functions, Prophage functions] 0 -351537 cl01526 DUF934 Bacterial protein of unknown function (DUF934). This family consists of several bacterial proteins of unknown function. One of the members of this family BMEI1764 is thought to be an oxidoreductase. 0 -321548 cl01528 DUF937 Bacterial protein of unknown function (DUF937). hypothetical protein; Provisional 0 -351538 cl01529 GH99_GH71_like Glycoside hydrolase families 71, 99, and related domains. Members of this family are found in within O-antigen biosynthesis clusters in Gram negative bacteria, where they are predicted to function as glycosyltransferases. 0 -351539 cl01530 LprI Lysozyme inhibitor LprI. This family consists of several bacterial proteins of around 120 residues in length. Members of this family contain four highly conserved cysteine residues. Family members include lipoprotein LprI from Mycobacterium, which binds to and inhibits macrophage lysozyme, which may aid bacterial survival. 0 -351540 cl01531 DUF1376 Protein of unknown function (DUF1376). This family consists of several hypothetical bacterial proteins of around 95 residues in length. The function of this family is unknown. 0 -351541 cl01532 HutD HutD. hypothetical protein; Provisional 0 -351542 cl01533 DUF1304 Protein of unknown function (DUF1304). This family consists of several hypothetical bacterial proteins of around 120 residues in length. The function of this family is unknown. 0 -351543 cl01534 NDUFA12 NADH ubiquinone oxidoreductase subunit NDUFA12. NADH dehydrogenase; Validated 0 -351544 cl01535 TPM_phosphatase TPM domain. This family was first named TPM domain after its founding proteins: TLP18.3, Psb32 and MOLO-1. In Arabidopsis, this domain is called the thylakoid acid phosphatase -TAP - domain and has a Rossmann-like fold. In plants, the family resides in the thylakoid lumen attached to the outer membrane of the chloroplast/plastid. It is active in the photosystem II. 0 -351545 cl01538 Peptidase_M74 Penicillin-insensitive murein endopeptidase. penicillin-insensitive murein endopeptidase; Reviewed 0 -351546 cl01539 LapA_dom Lipopolysaccharide assembly protein A domain. This family includes a domain found in lipopolysaccharide assembly protein A (LapA). LapA functions along with LapB in the assembly of lipopolysaccharide (LPS). Domains in this family are also found in some uncharacterized bacterial proteins. 0 -321558 cl01542 DUF2313 Uncharacterized protein conserved in bacteria (DUF2313). Members of this family of proteins comprise various hypothetical and putative bacteriophage tail proteins. 0 -351547 cl01544 Bestrophin Bestrophin, RFP-TM, chloride channel. Bestrophin is a 68-kDa basolateral plasma membrane protein expressed in retinal pigment epithelial cells (RPE). It is encoded by the VMD2 gene, which is mutated in Best macular dystrophy, a disease characterized by a depressed light peak in the electrooculogram. VMD2 encodes a 585-amino acid protein with an approximate mass of 68 kDa which has been designated bestrophin. Bestrophin shares homology with the Caenorhabditis elegans RFP gene family, named for the presence of a conserved arginine (R), phenylalanine (F), proline (P), amino acid sequence motif. Bestrophin is a plasma membrane protein, localized to the basolateral surface of RPE cells consistent with a role for bestrophin in the generation or regulation of the EOG light peak. Bestrophin and other RFP family members represent a new class of chloride channels, indicating a direct role for bestrophin in generating the light peak. The VMD2 gene underlying Best disease was shown to represent the first human member of the RFP-TM protein family. More than 97% of the disease-causing mutations are located in the N-terminal RFP-TM domain implying important functional properties. The bestrophins are four-pass transmembrane chloride-channel proteins, and the RFP-TM or bestrophin domain extends from the N-terminus through approximately 350 amino acids and contains all of the TM domains as well as nearly all reported disease causing mutations. Interestingly, the RFP motif is not conserved evolutionarily back beyond Metazoa, neither is it in plant members. 0 -351548 cl01545 DUF1853 Domain of unknown function (DUF1853). This family of proteins are functionally uncharacterized. 0 -321561 cl01546 Cytochrom_B562 Cytochrome b562. cytochrome b562; Provisional 0 -351549 cl01547 DUF1318 Protein of unknown function (DUF1318). This family consists of several bacterial proteins of around 100 residues in length and is often known as YdbL. The function of this family is unknown. 0 -351550 cl01548 YccV-like Hemimethylated DNA-binding protein YccV like. YccV is a hemimethylated DNA binding protein which has been shown to regulate dnaA gene expression. The structure of one of the hypothetical proteins in this family has been solved and it forms a beta sheet structure with a terminating alpha helix. 0 -351551 cl01551 DUF2170 Uncharacterized protein conserved in bacteria (DUF2170). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321565 cl01553 GFA Glutathione-dependent formaldehyde-activating enzyme. glutathione-dependent formaldehyde-activating enzyme; Provisional 0 -351552 cl01557 DUF1697 Protein of unknown function (DUF1697). This family contains many hypothetical bacterial proteins. 0 -351553 cl01558 DUF2171 Uncharacterized protein conserved in bacteria (DUF2171). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351554 cl01561 DUF924 Bacterial protein of unknown function (DUF924). This family consists of several hypothetical bacterial proteins of unknown function. Structurally, this family resembles TPR-like repeats. 0 -351555 cl01562 DOPA_dioxygen Dopa 4,5-dioxygenase family. This family of proteins are related to a DOPA 4,5-dioxygenase that is involved in synthesis of betalain. DOPA-dioxygenase is the key enzyme involved in betalain biosynthesis. It converts 3,4-dihydroxyphenylalanine to betalamic acid, a yellow chromophore. 0 -351556 cl01565 zf-TFIIB Transcription factor zinc-finger. 0 -351557 cl01566 YjhX_toxin Putative toxin of bacterial toxin-antitoxin pair. hypothetical protein; Provisional 0 -351558 cl01567 DUF1993 Domain of unknown function (DUF1993). This family of proteins are functionally uncharacterized. 0 -321572 cl01570 DUF2085 Predicted membrane protein (DUF2085). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321573 cl01573 DUF969 Protein of unknown function (DUF969). Family of uncharacterized bacterial membrane proteins. 0 -351559 cl01575 DUF599 Protein of unknown function, DUF599. This family includes several uncharacterized proteins. 0 -351560 cl01577 MMP_TTHA0227_like Minimal MMP-like domain found in Thermus thermophilus TTHA0227, Acidothermus cellulolyticus ACEL2062 and similar proteins. This family of proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. The structure of this family is a minimal version of the metalloprotease fold (Structure 3E11). 0 -321576 cl01581 WGR WGR domain. This domain is found in a variety of polyA polymerases as well as the E. coli molybdate metabolism regulator and other proteins of unknown function. I have called this domain WGR after the most conserved central motif of the domain. The domain is found in isolation in proteins such as Rhizobium radiobacter Ych and is between 70 and 80 residues in length. I propose that this may be a nucleic acid binding domain. 0 -321577 cl01583 TrbC TrbC/VIRB2 family. conjugal transfer protein TrbC; Provisional 0 -321578 cl01585 Flp_Fap Flp/Fap pilin component. 0 -321579 cl01587 DUF1290 Protein of unknown function (DUF1290). This family consists of several bacterial small basic proteins of around 100 residues in length. The function of this family is unknown. 0 -351561 cl01589 DUF2087 Uncharacterized protein conserved in bacteria (DUF2087). This domain, found in various hypothetical prokaryotic proteins and transcriptional activators, has no known function. Structural modelling suggests this domain may bind nucleic acids. 0 -321581 cl01590 DUF2382 Domain of unknown function (DUF2382). This model describes an uncharacterized domain, sometimes found in association with a PRC-barrel domain (pfam05239, which is also found in rRNA processing protein RimM and in a photosynthetic reaction center complex protein). This domain is found in proteins from Bacillus subtilis, Deinococcus radiodurans, Nostoc sp. PCC 7120, Myxococcus xanthus, and several other species. The function is not known. 0 -351562 cl01595 DUF1385 Protein of unknown function (DUF1385). This family contains a number of hypothetical bacterial proteins of unknown function approximately 300 residues in length. Some family members are predicted to be metal-dependent. 0 -321583 cl01596 Spore_YtfJ Sporulation protein YtfJ (Spore_YtfJ). Members of this protein family, exemplified by YtfJ of Bacillus subtilis, are encoded by bacterial genomes if and only if the species is capable of endospore formation. YtfJ was confirmed in spores of Bacillus subtilis; it appears to be expressed in the forespore under control of SigF (see ). [Cellular processes, Sporulation and germination] 0 -351563 cl01598 DUF1343 Protein of unknown function (DUF1343). This family consists of several hypothetical bacterial proteins of around 400 residues in length. The function of this family is unknown. 0 -351564 cl01600 DUF1963 Domain of unknown function (DUF1963). This domain is found in a set of hypothetical bacterial proteins. Its exact function has not, as yet, been described. 0 -351565 cl01604 MliC Membrane-bound lysozyme-inhibitor of c-type lysozyme. lysozyme inhibitor; Provisional 0 -321587 cl01608 DUF1292 Protein of unknown function (DUF1292). hypothetical protein; Provisional 0 -351566 cl01610 Cytochrom_C_2 Cytochrome C'. 0 -351567 cl01611 DUF2094 Uncharacterized protein conserved in bacteria (DUF2094). Members of this protein family are found exclusively, although not universally, in bacterial species that possess a type VI secretion system. Genes are found in type VI secretion-associated gene clusters. The specific function is unknown. This model represents the rather well-conserved amino-terminal domain of a protein family in which carboxy-terminal regions, when present, show little conservation. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -351568 cl01614 DUF997 Protein of unknown function (DUF997). hypothetical protein; Provisional 0 -351569 cl01617 ExoD Exopolysaccharide synthesis, ExoD. Among the bacterial genes required for nodule invasion are the exo genes. These genes are involved in the production of an extracellular polysaccharide. Mutations in the exoD result in altered exopolysaccharide production and defects in nodule invasion. 0 -351570 cl01626 Rod-binding Rod binding protein. chemotactic signal-response protein CheL; Provisional 0 -321593 cl01627 LAB_N Lipid A Biosynthesis N-terminal domain. This family is found at the N-terminus of a group of Chlamydial Lipid A biosynthesis proteins. It is also found by itself in a family of proteins of unknown function. 0 -321594 cl01628 DUF1919 Domain of unknown function (DUF1919). This domain has no known function. It is found in various hypothetical and putative bacterial proteins. 0 -351571 cl01629 TPP_enzymes N/A. This family contains 1-deoxyxylulose-5-phosphate synthase (DXP synthase), an enzyme which catalyzes the thiamine pyrophosphoate-dependent acyloin condensation reaction between carbon atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate, to yield 1-deoxy-D- xylulose-5-phosphate, a precursor in the biosynthetic pathway to isoprenoids, thiamine (vitamin B1), and pyridoxol (vitamin B6). 0 -294953 cl01632 DUF2095 Uncharacterized protein conserved in archaea (DUF2095). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321596 cl01636 DUF749 Domain of unknown function (DUF749). Archaeal domain of unknown function. This domain has been solved as part of a structural genomics project and comprises of segregated helical and anti-parallel beta sheet regions. 0 -321597 cl01637 DUF2096 Uncharacterized protein conserved in archaea (DUF2096). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351572 cl01638 DUF1786 Putative pyruvate format-lyase activating enzyme (DUF1786). This family is annotated as pyruvate formate-lyase activating enzyme (EC:1.97.1.4) in UniProt. It is not clear where this annotation comes from. 0 -321599 cl01639 DUF2097 Uncharacterized protein conserved in archaea (DUF2097). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321600 cl01640 DUF2098 Uncharacterized protein conserved in archaea (DUF2098). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321601 cl01641 UPF0254 Uncharacterized protein family (UPF0254). hypothetical protein; Provisional 0 -351573 cl01642 DUF1188 Protein of unknown function (DUF1188). This family consists of several hypothetical archaeal proteins of around 260 residues in length which seem to be specific to Methanobacterium, Methanococcus and Methanopyrus species. The function of this family is unknown. 0 -321603 cl01645 DUF2099 Uncharacterized protein conserved in archaea (DUF2099). Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. 0 -261026 cl01648 DUF2101 Predicted membrane protein (DUF2101). This domain, found in various archaeal and bacterial proteins, has no known function. 0 -321604 cl01650 DUF2102 Uncharacterized protein conserved in archaea (DUF2102). Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 0 -321605 cl01651 DUF2103 Predicted metal-binding protein (DUF2103). This domain, found in various putative metal binding prokaryotic proteins, has no known function. 0 -321606 cl01653 DUF1894 Domain of unknown function (DUF1894). Members of this family have an important role in methanogenesis. They assume an alpha-beta globular structure consisting of six beta-strands and three alpha-helices forming the secondary structural topological arrangement of alpha1-beta1-alpha2-beta2-beta3-beta4-beta5-beta6-alpha3. 0 -294965 cl01655 DUF2104 Predicted membrane protein (DUF2104). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321607 cl01656 DUF2105 Predicted membrane protein (DUF2105). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321608 cl01659 DUF2108 Predicted membrane protein (DUF2108). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351574 cl01662 NiFe_hyd_3_EhaA NiFe-hydrogenase-type-3 Eha complex subunit A. Energy-converting [NiFe] hydrogenases are membrane-bound enzymes with a six-subunit core: the large and small hydrogenase subunits, plus two hydrophilic proteins and two integral membrane proteins. Their large and small subunits show little sequence similarity to other [NiFe] hydrogenases, except for key conserved residues coordinating the active site and [FeS] cluster. Energy-converting [NiFe] hydrogenases function as ion pumps, catalyzing the reduction of ferredoxin with H2 driven by the proton-motive force or the sodium-ion-motive force. Eha and Ehb hydrogenases contain extra subunits in addition to those shared by other energy-converting [NiFe] hydrogenases (or [NiFe]-hydrogenase-3-type). Eha contains a 6[4Fe-4S] polyferredoxin, a 10[4F-4S] polyferredoxin, ten other predicted integral membrane proteins (EhaA, EhaB, EhaC, EhaD, EhaE, EhaF, EhaG, EhaI, EhaK, EhaL) and four hydrophobic subunits (EhaM, EhaR, EhS, EhT). Eha and Ehb catalyze the reduction of low-potential redox carriers (e.g. ferredoxins or polyferredoxins), which then might function as electron donors to oxidoreductases. Based on sequence similarity and genome context analysis, other organisms such as Methanopyrus kandleri, Methanocaldococcus jannaschii, and Methanothermobacter marburgensis also encode Eha-like [NiFe]-hydrogenase-3-type complexes and have very similar eha operon structure. This domain family can be found on the small membrane proteins that are predicted to be the EhaA trans-membrane subunits of multisubunit membrane-bound [NiFe]-hydrogenase Eha complexes. 0 -321609 cl01665 DUF1512 Protein of unknown function (DUF1512). This family consists of several archaeal proteins of around 370 residues in length. The function of this family is unknown. 0 -321610 cl01666 AGOG N-glycosylase/DNA lyase. N-glycosylase/DNA lyase; Provisional 0 -321611 cl01667 DUF2111 Uncharacterized protein conserved in archaea (DUF2111). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321612 cl01669 DUF2112 Uncharacterized protein conserved in archaea (DUF2112). Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 0 -321613 cl01670 DUF2113 Uncharacterized protein conserved in archaea (DUF2113). Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 0 -321614 cl01673 MCR_D Methyl-coenzyme M reductase operon protein D. Members of this protein family are protein D, a non-structural protein, of the operon for methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). That enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis; it has several modified sites, so accessory proteins are expected. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. Proteins in this family are expressed at much lower levels than the methyl-coenzyme M reductase itself and associate and have been shown to form at least transient associations. The precise function is unknown. [Energy metabolism, Methanogenesis] 0 -321615 cl01674 MCR_C Methyl-coenzyme M reductase operon protein C. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. 0 -321616 cl01675 MtrE Tetrahydromethanopterin S-methyltransferase, subunit E. tetrahydromethanopterin S-methyltransferase subunit E; Provisional 0 -321617 cl01676 MtrD Tetrahydromethanopterin S-methyltransferase, subunit D. This model describes N5-methyltetrahydromethanopterin: coenzyme M methyltransferase subunit D in methanogenic archaea. This methyltranferase is membrane-associated enzyme complex that uses methy-transfer reaction to drive sodium-ion pump. Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This transferase is involved in the transfer of 'methyl' group from N5-methyltetrahydromethanopterin to coenzyme M. In an accompanying reaction, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme methyl-coenzyme M reductase. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Methanogenesis] 0 -321618 cl01677 MtrC Tetrahydromethanopterin S-methyltransferase, subunit C. tetrahydromethanopterin S-methyltransferase subunit C; Provisional 0 -321619 cl01678 MtrB Tetrahydromethanopterin S-methyltransferase subunit B. Members of this protein family are the MtrB protein of the tetrahydromethanopterin S-methyltransferase complex. This system is universal in archaeal methanogens. [Energy metabolism, Methanogenesis] 0 -321620 cl01680 DUF2114 Uncharacterized protein conserved in archaea (DUF2114). Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. [Energy metabolism, Methanogenesis] 0 -321621 cl01681 DUF2115 Uncharacterized protein conserved in archaea (DUF2115). hypothetical protein; Provisional 0 -294981 cl01683 DUF2116 Uncharacterized protein containing a Zn-ribbon (DUF2116). This domain, found in various hypothetical archaeal proteins, has no known function. Structural modelling suggests this domain may bind nucleic acids. 0 -321622 cl01684 DUF2118 Uncharacterized protein conserved in archaea (DUF2118). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321623 cl01685 DUF2119 Uncharacterized protein conserved in archaea (DUF2119). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321624 cl01686 Nit_Regul_Hom Uncharacterized protein, homolog of nitrogen regulatory protein PII. This domain, found in various hypothetical archaeal proteins, has no known function. It is distantly similar to the nitrogen regulatory protein PII. 0 -321625 cl01687 DUF2120 Uncharacterized protein conserved in archaea (DUF2120). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321626 cl01688 NADHdeh_related NADH dehydrogenase I, subunit N related protein. This family comprises a set of NADH dehydrogenase I, subunit N related proteins found in archaea. Their exact function, has not, as yet, been determined. 0 -321627 cl01691 DUF1890 Domain of unknown function (DUF1890). This domain is found in a set of hypothetical archaeal proteins. 0 -321628 cl01695 DUF2124 Uncharacterized protein conserved in archaea (DUF2124). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351575 cl01709 PBP2_NikA_DppA_OppA_like The substrate-binding domain of an ABC-type nickel/oligopeptide-like import system contains the type 2 periplasmic binding fold. The borders of this family are based on the PDBSum definitions of the domain edges for Salmonella typhimurium oppA. 0 -321630 cl01713 Gamma_PGA_hydro Poly-gamma-glutamate hydrolase. This family consists of a number of bacterial and phage proteins that function as gamma-PGA hydrolase enzymes. Structurally the protein in this family adopted an open alpha/beta mixed core structure with a seven-stranded parallel/anti-parallel beta-sheet. This structure shows similarity to mammalian carboxypeptidase A and related enzymes. 0 -351576 cl01720 Phage_Nu1 Phage DNA packaging protein Nu1. Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of subunits Nu1 and A. The smaller Nu1 terminase subunit has a low-affinity ATPase stimulated by non-specific DNA. 0 -321631 cl01722 DUF896 Bacterial protein of unknown function (DUF896). hypothetical protein; Provisional 0 -321632 cl01728 DUF2232 Predicted membrane protein (DUF2232). This family of bacterial proteins are multi-pass membrane proteins with up to 10 (2 x 4/5) transmembrane regions. The exact function of this potential pore molecule is not known, but in many instances it is associated with ABC-transporter-like domains, implying that it is part of a secretion system that uses energy. 0 -351577 cl01729 VKOR Vitamin K epoxide reductase (VKOR) family. Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologs the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. 0 -321634 cl01730 DUF2231 Predicted membrane protein (DUF2231). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321635 cl01731 DICT Sensory domain in DIguanylate Cyclases and Two-component system. DICT is a sensory domain found associated with GGDEF, EAL, HD-GYP, STAS, and two component systems (histidine-kinase type). It assumes an alpha+beta fold with a 4-stranded beta-sheet and might have a role in light response (Natural history of sensor domains in bacterial signaling systems by Aravind L, LM Iyer, Anantharaman V, from 'Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition.' Caister Academic Press. 2010) - see (http://de.scribd.com/doc/28576661/Bacterial-Signaling-Chapter) 0 -351578 cl01732 CHASE2 CHASE2 domain. Specifically, CHASE2 domains are found in histidine kinases, adenylate cyclases, serine/threonine kinases and predicted diguanylate cyclases/phosphodiesterases. Environmental factors that are recognised by CHASE2 domains are not known at this time. 0 -351579 cl01733 DUF2345 Uncharacterized protein conserved in bacteria (DUF2345). Members of this family are found in various bacterial hypothetical proteins, as well as Rhs element Vgr proteins. 0 -351580 cl01736 PelG Putative exopolysaccharide Exporter (EPS-E). PelG is a family of putative exopolysaccharide transporters like PelG. Most members carry twelve transmembrane regions. The family also contains fusion proteins with glycosyl transferase group 1, which are putative flippase transporters. 0 -321639 cl01737 McrBC McrBC 5-methylcytosine restriction system component. 5-methylcytosine-specific restriction enzyme subunit McrC; Provisional 0 -351581 cl01738 DUF898 Bacterial protein of unknown function (DUF898). This family consists of several bacterial proteins of unknown function. Some of the family members are described as putative membrane proteins. 0 -321641 cl01741 DUF1634 Protein of unknown function (DUF1634). This family contains many hypothetical bacterial and archaeal proteins. A few members of this family are annotated as being putative transmembrane proteins, and the region in question in fact contains many hydrophobic residues. 0 -351582 cl01742 DGC DGC domain. This domain appears to be a zinc binding domain from the conservation of four potential chelating cysteines. The domain is named after a conserved central motif. The function of this domain is unknown. 0 -351583 cl01743 GYD GYD domain. This protein is found in a range of bacteria. It is usually less than 100 amino acids in length. The function of the protein is unknown. It may belong to the dimeric alpha/beta barrel superfamily. 0 -351584 cl01744 Chrome_Resist Chromate resistance exported protein. Members of this family of bacterial proteins, are involved in the reduction of chromate accumulation and are essential for chromate resistance. 0 -351585 cl01747 SMI1_KNR4 SMI1 / KNR4 family (SUKH-1). Members of this family are related to the SMI1/KNR4-like or SUKH superfamily of proteins. 0 -351586 cl01749 UPF0160 Uncharacterized protein family (UPF0160). This family of proteins contains a large number of metal binding residues. The patterns are suggestive of a phosphoesterase function. The conserved DHH motif may mean this family is related to pfam01368. 0 -321647 cl01751 ASRT Anabaena sensory rhodopsin transducer. The family of bacterial Anabaena sensory rhodopsin transducers are likely to bind sugars or related metabolites. The entire protein is comprised of a single globular domain with an eight-stranded beta-sandwich fold. There are a few characteristics which define this beta-sandwich fold as being distinct from other so-named folds, and these are: 1) a well conserved tryptophan, usually following a polar residue, present at the start of the first strand; this tryptophan appears to be central to a hydrophobic interaction required to hold the two beta-sheets of the sandwich together, and 2) a nearly absolutely conserved asparagine located at the end of the second beta-strand, that hydrogen bonds with the backbone carbonyls of the residues 2 and 4 positions downstream from it, thereby stabilizing the characteristic tight turn between strands 2 and 3 of the structure. 0 -321648 cl01752 DUF2264 Uncharacterized protein conserved in bacteria (DUF2264). Members of this family of hypothetical bacterial proteins have no known function. 0 -351587 cl01753 DUF1345 Protein of unknown function (DUF1345). This family consists of several hypothetical bacterial proteins of around 230 residues in length. The function of this family is unknown. 0 -351588 cl01754 LtrA Bacterial low temperature requirement A protein (LtrA). This family consists of several bacteria specific low temperature requirement A (LtrA) protein sequences which have been found to be essential for growth at low temperatures in Listeria monocytogenes. 0 -321651 cl01755 DUF1802 Domain of unknown function (DUF1802). The function of this family is unknown. This region is found associated with a pfam04471 suggesting they could be part of a restriction modification system.. 0 -321652 cl01757 DUF2262 Uncharacterized protein conserved in bacteria (DUF2262). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351589 cl01759 YiaAB yiaA/B two helix domain. This domain consists of two transmembrane helices and a conserved linking section. 0 -351590 cl01762 EutC Ethanolamine ammonia-lyase light chain (EutC). ethanolamine ammonia-lyase small subunit; Provisional 0 -321655 cl01763 DUF2247 Uncharacterized protein conserved in bacteria (DUF2247). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351591 cl01767 SoxD Sarcosine oxidase, delta subunit family. This model describes the delta subunit of a family of known and putative heterotetrameric sarcosine oxidases. Five operons of such oxidases are found in Mesorhizobium loti and three in Agrobacterium tumefaciens, a high enough copy number to suggest that not all members are share the same function. The model is designated as subfamily rather than equivalog for this reason. Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to glycine. The reaction converts tetrahydrofolate to 5,10-methylene-tetrahydrofolate. The enzyme is known in monomeric and heterotetrameric (alpha,beta,gamma,delta) form [Energy metabolism, Amino acids and amines] 0 -351592 cl01768 Phenol_MetA_deg Putative MetA-pathway of phenol degradation. 0 -351593 cl01769 NosL NosL. NosL is one of the accessory proteins of the nos (nitrous oxide reductase) gene cluster. NosL is a monomeric protein of 18,540 MW that specifically and stoichiometrically binds Cu(I). The copper ion in NosL is ligated by a Cys residue, and one Met and one His are thought to serve as the other ligands. It is possible that NosL is a copper chaperone involved in metallo-centre assembly. 0 -351594 cl01770 DUF2251 Uncharacterized protein conserved in bacteria (DUF2251). Members of this family of hypothetical bacterial proteins have no known function. 0 -351595 cl01771 DUF1427 Protein of unknown function (DUF1427). This model describes an uncharacterized small, hydrophobic protein of about 50 amino acids, found between the xapB and xapR genes of the E. coli xanthosine utilization system, and homologous regions in other small proteins, such as the N-terminal region of DUF1427 (pfam07235). We name this domain XapX, as it comprises the full length of the protein encoded between the genes for the well-studied XapB and XapR proteins. [Unknown function, General] 0 -351596 cl01775 RHH_4 Ribbon-helix-helix domain. This short bacterial protein contains a ribbon-helix-helix domain that is likely to be DNA-binding. 0 -351597 cl01781 DUF4212 Domain of unknown function (DUF4212). Members of this family are highly hydrophobic bacterial proteins of about 90 amino acids in length. Members usually are found immediately upstream (sometimes fused to) a member of the solute:sodium symporter family, and therefore are a putative sodium:solute symporter small subunit. Members tend to be found in aquatic species, especially those from marine or other high salt environments. [Transport and binding proteins, Unknown substrate] 0 -321663 cl01783 DUF2243 Predicted membrane protein (DUF2243). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351598 cl01784 DUF1361 Protein of unknown function (DUF1361). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown although some members are annotated as being putative integral membrane proteins. 0 -321665 cl01785 DUF2127 Predicted membrane protein (DUF2127). This domain, found in various hypothetical prokaryotic and archaeal proteins, has no known function. 0 -351599 cl01786 DUF1062 Protein of unknown function (DUF1062). This family consists of several hypothetical bacterial proteins of unknown function. 0 -351600 cl01787 DUF1643 Protein of unknown function (DUF1643). The members of this family are all sequences found within hypothetical proteins expressed by various bacterial species. The region concerned is approximately 150 residues long. 0 -321668 cl01788 DUF2255 Uncharacterized protein conserved in bacteria (DUF2255). Members of this family of hypothetical bacterial proteins have no known function. 0 -351601 cl01790 DUF1445 Protein of unknown function (DUF1445). hypothetical protein; Provisional 0 -351602 cl01792 DUF2256 Uncharacterized protein conserved in bacteria (DUF2256). Members of this family of hypothetical bacterial proteins have no known function. 0 -351603 cl01794 2OG-Fe_Oxy_2 2OG-Fe dioxygenase. This family contains 2-oxoglutarate (2OG) and Fe-dependent dioxygenases. It includes L-isoleucine dioxygenase (IDO). 0 -321672 cl01797 DUF2258 Uncharacterized protein conserved in archaea (DUF2258). Members of this family of hypothetical bacterial archaeal have no known function. Structural modelling suggests this domain may bind nucleic acids. 0 -321673 cl01798 DUF1405 Protein of unknown function (DUF1405). This family consists of several bacterial and related archaeal protein of around 180 residues in length. The function of this family is unknown. 0 -351604 cl01799 Ribosomal_L13e Ribosomal protein L13e. 60S ribosomal protein L13; Provisional 0 -321675 cl01800 DUF1122 Protein of unknown function (DUF1122). This family consists of several hypothetical archaeal and bacterial proteins of unknown function. 0 -321676 cl01805 DUF2316 Uncharacterized protein conserved in bacteria (DUF2316). Members of this family of hypothetical bacterial proteins have no known function. 0 -295038 cl01807 DUF1517 Protein of unknown function (DUF1517). This family consists of several hypothetical glycine rich plant and bacterial proteins of around 300 residues in length. The function of this family is unknown. 0 -351605 cl01811 DUF2325 Uncharacterized protein conserved in bacteria (DUF2325). Members of this family of hypothetical bacterial proteins have no known function. 0 -321678 cl01813 DUF799 Putative bacterial lipoprotein (DUF799). This family consists of several bacterial proteins of unknown function. Some of the family members are described as putative lipoproteins. 0 -321679 cl01815 DUF1018 Protein of unknown function (DUF1018). This family consists of several bacterial and phage proteins of unknown function. 0 -321680 cl01817 Tail_P2_I Phage tail protein (Tail_P2_I). This model describes a region of sequence similarity shared by a number of uncharacterized proteins in bacterial genomes, including Geobacter sulfurreducens PCA, Mesorhizobium loti, Streptomyces coelicolor A3(2), Gloeobacter violaceus PCC 7421, and Myxococcus xanthus. In all cases, the genomic region resembles a phage tail region, based on tentative identifications of neighboring genes. A region of this domain resembles a region of TIGR01634, another phage tail protein model. [Mobile and extrachromosomal element functions, Prophage functions] 0 -321681 cl01818 DUF1320 Protein of unknown function (DUF1320). This family consists of both hypothetical bacterial and phage proteins of around 145 residues in length. The function of this family is unknown. 0 -321682 cl01820 DUF2322 Uncharacterized protein conserved in bacteria (DUF2322). Members of this family of hypothetical bacterial proteins have no known function. 0 -351606 cl01821 zf-CHCC Zinc-finger domain. This is a short zinc-finger domain conserved from fungi to humans. It is Cx8Hx14Cx2C. 0 -351607 cl01823 DUF2331 Uncharacterized protein conserved in bacteria (DUF2331). This model describes a conserved hypothetical protein that typically is encoded next to the gene efp for translation elongation factor P. The function is unknown. 0 -351608 cl01825 Phage_Mu_Gam Bacteriophage Mu Gam like protein. This family consists of bacterial and phage Gam proteins. The gam gene of bacteriophage Mu encodes a protein which protects linear double stranded DNA from exonuclease degradation in vitro and in vivo. 0 -321686 cl01826 Mu-like_gpT Mu-like prophage major head subunit gpT. Members of this family of proteins comprise various caudoviral prophage proteins, including the Mu-like prophage major head subunit gpT. 0 -321687 cl01827 DUF2330 Uncharacterized protein conserved in bacteria (DUF2330). Members of this family of hypothetical bacterial proteins have no known function. 0 -351609 cl01829 UT Urea transporter. Members of this protein family are bacterial urea transporters, found not only is species that contain urease, but adjacent to the urease operon. It was characterized in Yersinia pseudotuberculosis. Members are homologous to eukaryotic members of solute carrier family 14, a family that includes urea transporters, and to bacterial proteins in species with no detectable urea degradation system. [Transport and binding proteins, Other] 0 -351610 cl01831 DUF1003 Protein of unknown function (DUF1003). This family consists of several hypothetical bacterial proteins of unknown function. 0 -351611 cl01834 PSK_trans_fac Rv0623-like transcription factor. This entry represents the Rv0623-like family of transcription factors associated with the PSK operon. 0 -321691 cl01837 DUF2332 Uncharacterized protein conserved in bacteria (DUF2332). Members of this family of hypothetical bacterial proteins have no known function. 0 -351612 cl01841 DUF1499 Protein of unknown function (DUF1499). This family consists of several hypothetical bacterial and plant proteins of around 125 residues in length. The function of this family is unknown. 0 -351613 cl01842 Asparaginase_II L-asparaginase II. This family consists of several bacterial L-asparaginase II proteins. L-asparaginase (EC:3.5.1.1) catalyzes the hydrolysis of L-asparagine to L-aspartate and ammonium. Rhizobium etli possesses two asparaginases: asparaginase I, which is thermostable and constitutive, and asparaginase II, which is thermolabile, induced by asparagine and repressed by the carbon source. 0 -351614 cl01843 RuBisCO_small_like N/A. Ribulose bisphosphate carboxylase/oxygenase (Rubisco), small subunit. Rubisco is a bifunctional enzyme catalyzes the initial steps of two opposing metabolic pathways: photosynthetic carbon fixation and the competing process of photorespiration. Rubisco Form I, present in plants and green algae, is composed of eight large and eight small subunits. The nearly identical small subunits are encoded by a family of nuclear genes. After translation, the small subunits are translocated across the chloroplast membrane, where an N-terminal signal peptide is cleaved off. While the large subunits contain the catalytic activities, it has been shown that the small subunits are important for catalysis by enhancing the catalytic rate through inducing conformational changes in the large subunits. 0 -351615 cl01844 CreD Inner membrane protein CreD. inner membrane protein; Provisional 0 -321696 cl01845 DUF1778 Protein of unknown function (DUF1778). This is a family of uncharacterized proteins. The structure of one of the hypothetical proteins in this family has been solved and it forms a helix structure which may form interactions with DNA. 0 -351616 cl01848 NapE Periplasmic nitrate reductase protein NapE. NapE, homologous to TorE (TIGR02972), is a membrane protein of unknown function that is part of the periplasmic nitrate reductase system; it may be part of the enzyme complex. The periplasmic nitrate reductase allows for nitrate respiration in anaerobic conditions. [Energy metabolism, Anaerobic, Energy metabolism, Electron transport] 0 -351617 cl01850 CtsR Firmicute transcriptional repressor of class III stress genes (CtsR). This family consists of several Firmicute transcriptional repressor of class III stress genes (CtsR) proteins. CtsR of L. monocytogenes negatively regulates the clpC, clpP and clpE genes belonging to the CtsR regulon. 0 -351618 cl01852 VEG Biofilm formation stimulator VEG. VEG is a family that is highly conserved among Gram-positive bacteria. It stimulates biofilm formation through inducing transcription of the tapA-sipW-tasA operon. The products of this operon are resposible for production of the amyloid fibre (TasA) component of the biofilm. Veg or a Veg-induced protein acts as an antirepressor of SinR - part of the major overall biofilm transcriptional control system - to regulate and stimulate biofilm formation. Veg is transcribed at high levels during both exponential growth and sporulation. 0 -242748 cl01853 YabA Regulator of replication initiation timing [Replication, recombination and repair]. DNA replication intiation control protein YabA; Reviewed 0 -351619 cl01857 IreB-like IreB family regulatory phosphoprotein. IreB (EF1202) was characterized in Enterococcus faecalis as a small protein, well-conserved in the Firmicutes. It belongs to a system that includes the Ser/Thr protein kinase IreK, and phosphatase IreP, undergoes phosphorylation on threonine residues, and is involved in regulating cephalosporin resistance. This family was previously named DUF965 by Pfam model pfam06135 0 -351620 cl01860 DUF436 Protein of unknown function (DUF436). hypothetical protein; Provisional 0 -351621 cl01862 DUF1461 Protein of unknown function (DUF1461). This model represents a family of highly hydrophobic, uncharacterized predicted integral membrane proteins found almost entirely in low-GC Gram-positive bacteria, although a member is also found in the early-branching bacterium Aquifex aeolicus. 0 -351622 cl01864 DUF951 Bacterial protein of unknown function (DUF951). This family consists of several short hypothetical bacterial proteins of unknown function. Structural modelling suggests this domain may bind nucleic acids. 0 -351623 cl01867 DUF4176 Domain of unknown function (DUF4176). 0 -351624 cl01868 YukC WXG100 protein secretion system (Wss), protein YukC. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This protein is designated YukC in Bacillus subtilis and EssB is Staphylococcus aureus. [Protein fate, Protein and peptide secretion and trafficking] 0 -351625 cl01870 DUF1934 Domain of unknown function (DUF1934). Members of this family are found in a set of hypothetical bacterial proteins. Their precise function has not, as yet, been defined. 0 -321707 cl01873 AgrB Accessory gene regulator B. putative accessory gene regulator protein; Provisional 0 -351626 cl01877 17kDa_Anti_2 17 kDa outer membrane surface antigen. This is a bacterial domain of 17 kDa common-antigen proteins. 0 -351627 cl01879 DUF962 Protein of unknown function (DUF962). This family consists of several eukaryotic and prokaryotic proteins of unknown function. The yeast protein YGL010W has been found to be non-essential for cell growth. 0 -351628 cl01880 SulA Cell division inhibitor SulA. SOS cell division inhibitor; Provisional 0 -351629 cl01885 RusA Endodeoxyribonuclease RusA. endodeoxyribonuclease RUS; Reviewed 0 -321712 cl01886 Omptin Omptin family. outer membrane protease; Reviewed 0 -351630 cl01887 ChaB ChaB. cation transport regulator; Reviewed 0 -321714 cl01888 DUF883 Bacterial protein of unknown function (DUF883). hypothetical protein; Provisional 0 -321715 cl01889 EutN_CcmL Ethanolamine utilisation protein and carboxysome structural protein domain family. The crystal structure of EutN contains a central five-stranded beta-barrel, with an alpha-helix at the open end of this barrel (Structure 2HD3). The structure also contains three additional beta-strands, which help the formation of a tight hexamer, with a hole in the center. this suggests that EutN forms a pore, with an opening of 26 Angstrom in diameter on one face and 14 Angstrom on the other face. EutN is involved in the cobalamin-dependent degradation of ethanolamine. 0 -321716 cl01890 GutM Glucitol operon activator protein (GutM). DNA-binding transcriptional activator GutM; Provisional 0 -351631 cl01891 AceK Isocitrate dehydrogenase kinase/phosphatase (AceK). bifunctional isocitrate dehydrogenase kinase/phosphatase protein; Validated 0 -351632 cl01892 ZapD Cell division protein. hypothetical protein; Provisional 0 -351633 cl01893 GCV_T Aminomethyltransferase folate-binding domain. Sarcosine oxidase is a hetero-tetrameric enzyme that contains both covalently bound FMN and non-covalently bound FAD and NAD(+). This enzyme catalyzes the oxidative demethylation of sarcosine to yield glycine, H2O2, and 5,10-CH2-tetrahydrofolate (H4folate) in a reaction requiring H4folate and O2. 0 -351634 cl01894 VF530 DNA-binding protein VF530. VF530 contains a unique four-helix motif that shows some similarity to the C-terminal double-stranded DNA (dsDNA) binding domain of RecA, as well as other nucleic acid binding domains. 0 -295083 cl01898 DUF820 N/A. This family consists of hypothetical proteins that are greatly expanded in cyanobacteria. The proteins are found sporadically in other bacteria. A small number of member proteins also contain pfam02861 domains that are involved in protein interactions. Solutions of several structures for members of this family show that it is likely to be acting as an endonuclease. 0 -351635 cl01907 YscJ_FliF Secretory protein of YscJ/FliF family. All members of this protein family are predicted lipoproteins with a conserved Cys near the N-terminus for cleavage and modification, and are part of known or predicted type III secretion systems. Members are found in both plant and animal pathogens, including the obligately intracellular chlamydial species and (non-pathogenic) root nodule bacteria. The most closely related proteins outside this family are examples of the flagellar M-ring protein FliF. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -295085 cl01908 Phage_tail_L Phage minor tail protein L. This model detects members of the family of phage lambda minor tail protein L. This model was built as a fragment model to allow detection of fragmentary sequences, as might be found in cryptic prophage regions. [Mobile and extrachromosomal element functions, Prophage functions] 0 -351636 cl01912 HigB_toxin HigB_toxin, RelE-like toxic component of a toxin-antitoxin system. HigB_toxin is a family of RelE-like prokaryotic proteins that function as mRNA interferases. HigB cleaves translated mRNA only, and cleavage depended on translation of the target RNAs. HigB belongs to the RelE super-family of RNases. The toxin-antitoxin gene-pair is induced by environmental stress factors. 0 -351637 cl01913 YaeQ YaeQ protein. This family consists of several hypothetical bacterial proteins of around 180 residues in length which are often known as YaeQ. YaeQ is homologous to RfaH, a specialized transcription elongation protein. YaeQ is known to compensate for loss of RfaH function. 0 -321724 cl01916 DUF2138 Uncharacterized protein conserved in bacteria (DUF2138). hypothetical protein; Provisional 0 -351638 cl01917 DUF956 Domain of unknown function (DUF956). Family of bacterial sequences with undetermined function. 0 -351639 cl01919 ADC Acetoacetate decarboxylase (ADC). Members of this family are MppR, one of three enzymes involved in synthesizing enduracididine, a non-proteinogenic amino acid used in non-ribosomal peptide synthases to make natural products such as enduracidin from Streptomyces fungicidicus ATCC 21013. MppR is belongs to the acetoacetate decarboxylase-like superfamily. MppR catalyzes an aldol condensation and a dehydration, not a decarboxylation. 0 -321727 cl01925 DUF2139 Uncharacterized protein conserved in archaea (DUF2139). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351640 cl01930 DUF2141 Uncharacterized protein conserved in bacteria (DUF2141). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321729 cl01935 DUF2391 Putative integral membrane protein (DUF2391). Members of this family are found in Nostoc sp. PCC 7120, Agrobacterium tumefaciens, Sinorhizobium meliloti, and Gloeobacter violaceus in a conserved two-gene neighborhood. This family, as defined, includes some members of COG4711 but is narrower and strictly bacterial. Members appear to span the membrane seven times. [Cell envelope, Other] 0 -321730 cl01936 Rad52_Rad22 Rad52/22 family double-strand break repair protein. All proteins in this family for which functions are known are involved in recombination and recombination repair. Their exact biochemical activity is not yet known.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -351641 cl01938 DUF2167 Protein of unknown function (DUF2167). This domain, found in various hypothetical membrane-anchored prokaryotic proteins, has no known function. 0 -351642 cl01940 Phage_min_tail Phage minor tail protein. This family consists of a series of phage minor tail proteins and related sequences from several bacterial species. 0 -351643 cl01943 ABC_cobalt ABC-type cobalt transport system, permease component. Members of this family of prokaryotic proteins include various hypothetical proteins as well as ABC-type cobalt transport systems. 0 -295099 cl01945 Lambda_tail_I Bacteriophage lambda tail assembly protein I. This family consists of tail assembly proteins from lambdoid and T1 phages and related prophages, e.g. the tail assembly protein I (TAPI). Members of this family contain a core ubiquitin fold domain. The exact function of TAPI is not clear but it is not incorporated into the mature tail. Gene neighborhoods reveal that TAPI co-occurs with genes encoding the host-specificity protein TapJ, and TapK, which contains a JAB metallopeptidase fused to an NlpC/P60 peptidase. It is proposed that the TAPI protein is processed by the peptidase domains of TapK. 0 -321734 cl01947 MT-A70 MT-A70. MT-A70 is the S-adenosylmethionine-binding subunit of human mRNA:m6A methyl-transferase (MTase), an enzyme that sequence-specifically methylates adenines in pre-mRNAs. 0 -351644 cl01949 DUF1653 Protein of unknown function (DUF1653). This is a family of hypothetical bacterial proteins of unknown function. 0 -321736 cl01950 DUF1850 Domain of unknown function (DUF1850). This family of proteins are functionally uncharacterized. Some members of this family appear to be misannotated as RocC an amino acid transporter from B. subtilis. 0 -351645 cl01951 DUF2147 Uncharacterized protein conserved in bacteria (DUF2147). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351646 cl01953 ArdA Antirestriction protein (ArdA). This family consists of several bacterial antirestriction (ArdA) proteins. ArdA functions in bacterial conjugation to allow an unmodified plasmid to evade restriction in the recipient bacterium and yet acquire cognate modification. 0 -321739 cl01958 Endonuc_Holl Endonuclease related to archaeal Holliday junction resolvase. This domain is found in various predicted bacterial endonucleases which are distantly related to archaeal Holliday junction resolvases. 0 -321740 cl01959 DUF1616 Protein of unknown function (DUF1616). This is a family of sequences from hypothetical archaeal proteins. The region in question is approximately 330 amino acid residues long. 0 -321741 cl01960 DUF2149 Uncharacterized conserved protein (DUF2149). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321742 cl01962 MTH865 MTH865-like family. This domain has an EF-hand like fold. 0 -321743 cl01963 DUF2150 Uncharacterized protein conserved in archaea (DUF2150). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321744 cl01966 DUF2153 Uncharacterized protein conserved in archaea (DUF2153). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321745 cl01969 DUF1990 Domain of unknown function (DUF1990). This family of proteins are functionally uncharacterized. 0 -351647 cl01970 DUF2155 Uncharacterized protein conserved in bacteria (DUF2155). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321747 cl01971 VanZ VanZ like family. This family contains several examples of the VanZ protein, but also contains examples of phosphotransbutyrylases. 0 -351648 cl01972 DUF948 Bacterial protein of unknown function (DUF948). This family consists of bacterial sequences several of which are thought to be general stress proteins. 0 -351649 cl01973 Hpre_diP_synt_I Heptaprenyl diphosphate synthase component I. This family contains component I of bacterial heptaprenyl diphosphate synthase (EC:2.5.1.30) (approximately 170 residues long). This is one of the two dissociable subunits that form the enzyme, both of which are required for the catalysis of the biosynthesis of the side chain of menaquinone-7. 0 -351650 cl01974 GPDPase_memb Membrane domain of glycerophosphoryl diester phosphodiesterase. Members of this family comprise the membrane domain of the prokaryotic enzyme glycerophosphoryl diester phosphodiesterase. 0 -351651 cl01977 FeThRed_B Ferredoxin thioredoxin reductase catalytic beta chain. ferredoxin thioreductase subunit beta; Validated 0 -351652 cl01978 DUF1269 Protein of unknown function (DUF1269). This family consists of several bacterial and archaeal proteins of around 200 residues in length. The function of this family is unknown. The family carries a repeated glycine-zipper sequence- motif, GxxxGxxxG, where the x following the G is frequently found to be an alanine. As glycine-zippers occur in membrane proteins, this family is likely to be found spanning a membrane. 0 -351653 cl01981 DUF1307 Protein of unknown function (DUF1307). This family consists of several hypothetical bacterial proteins of around 150 residues in length. Some family members are described as putative lipoproteins but the function of the family is unknown. 0 -351654 cl01982 BMC Bacterial Micro-Compartment (BMC) domain. Bacterial microcompartments are primitive organelles composed entirely of protein subunits. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. These proteins for hexameric structure. 0 -351655 cl01983 DUF986 Protein of unknown function (DUF986). hypothetical protein; Provisional 0 -321756 cl01985 MepB MepB protein. MepB is a functionally uncharacterized protein in the mepRAB gene cluster of Staphylococcus aureus. 0 -321757 cl01986 DUF1048 Protein of unknown function (DUF1048). This family consists of several hypothetical bacterial proteins of unknown function. 0 -351656 cl01988 Abi_2 Abi-like protein. This family, found in various bacterial species, contains sequences that are similar to the Abi group of proteins, which are involved in bacteriophage resistance mediated by abortive infection in Lactococcus species. The proteins are thought to have helix-turn-helix motifs, found in many DNA-binding proteins, allowing them to perform their function. 0 -351657 cl01989 Phage_holin_4_1 Bacteriophage holin family. This model describes one of the many mutally dissimilar families of holins, phage proteins that act together with lytic enzymes in bacterial lysis. This family includes, besides phage holins, the protein TcdE/UtxA involved in toxin secretion in Clostridium difficile and related species. [Protein fate, Protein and peptide secretion and trafficking, Mobile and extrachromosomal element functions, Prophage functions] 0 -321760 cl01990 DUF2162 Predicted transporter (DUF2162). Members of this family of bacterial proteins are thought to be membrane transporters, but their exact function has not, as yet, been elucidated. 0 -321761 cl01991 DUF1622 Protein of unknown function (DUF1622). This is a family of 14 highly conserved sequences, from hypothetical proteins expressed by both bacterial and archaeal species. 0 -321762 cl01992 MIase Muconolactone delta-isomerase. Members of this protein family are muconolactone delta-isomerase (EC 5.3.3.4), the CatC protein of the ortho cleavage pathway for metabolizing aromatic compounds by way of catechol. [Energy metabolism, Other] 0 -321763 cl01993 Ribosomal_S26e Ribosomal protein S26e. ribosomal protein S26; Provisional 0 -321764 cl01994 DUF2173 Uncharacterized conserved protein (DUF2173). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -321765 cl02005 WXG100 Proteins of 100 residues with WXG. T7SS_ESX-EspC is a family of exported virulence proteins from largely Acinetobacteria and a few Fimicutes, Gram-positive bacteria. It is exported in conjunction with EspA as an interacting pair.ED F8ADQ6.1/227-313; F8ADQ6.1/227-313; 0 -351658 cl02008 2-oxoacid_dh 2-oxoacid dehydrogenases acyltransferase (catalytic domain). Chloramphenicol acetyltransferase (CAT).catalyzes the acetyl-CoA dependent acetylation of chloramphenicol (Cm), an antibiotic which inhibits prokaryotic peptidyltransferase activity. Acetylation of Cm by CAT inactivates the antibiotic. A histidine residue, located in the C-terminal section of the enzyme, plays a central role in its catalytic mechanism. There is a second family of CAT. evolutionary unrelated to the main family described above. These CAT belong to the bacterial hexapeptide-repeat containing-transferases family (see ). The crystal structure of the type III enzyme from Escherichia coli with chloramphenicol bound has been determined. CAT is a trimer of identical subunits (monomer Mr 25,000) and the trimeric structure is stabilised by a number of hydrogen bonds, some of which result in the extension of a beta-sheet across the subunit interface. Chloramphenicol binds in a deep pocket located at the boundary between adjacent subunits of the trimer, such that the majority of residues forming the binding pocket belong to one subunit while the catalytically essential histidine belongs to the adjacent subunit. His195 is appropriately positioned to act as a general base catalyst in the reaction, and the required tautomeric stabilisation is provided by an unusual interaction with a main-chain carbonyl oxygen. 0 -321767 cl02009 DUF1453 Protein of unknown function (DUF1453). This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. Members of this family seem to be found exclusively in the Order Bacillales. 0 -321768 cl02010 DUF2175 Uncharacterized protein conserved in archaea (DUF2175). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -321769 cl02011 DUF1444 Protein of unknown function (DUF1444). hypothetical protein; Provisional 0 -351659 cl02014 DUF2177 Predicted membrane protein (DUF2177). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321771 cl02015 YycI YycH protein. This domain is exclusively found in YycI proteins in the low GC content Gram positive species. These two domains share the same structural fold with domains two and three of YycH pfam07435. Both, YycH and YycI are always found in pair on the chromosome, downstream of the essential histidine kinase YycG. Additionally, both proteins share a function in regulating the YycG kinase with which they appear to form a ternary complex. Lastly, the two proteins always contain an N-terminal transmembrane helix and are localized to the periplasmic space as shown by PhoA fusion studies. 0 -321772 cl02016 DUF2178 Predicted membrane protein (DUF2178). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -295139 cl02017 DUF2180 Uncharacterized protein conserved in archaea (DUF2180). This domain, found in various hypothetical archaeal proteins, has no known function. A few of the family members contain a zinc finger domain. 0 -321773 cl02019 DUF2185 Protein of unknown function (DUF2185). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351660 cl02022 MecA Negative regulator of genetic competence (MecA). adaptor protein; Provisional 0 -321775 cl02025 Glm_e N/A. This family consists of several methylaspartate mutase E chain proteins (EC:5.4.99.1). Glutamate mutase catalyzes the first step in the fermentation of glutamate by Clostridium tetanomorphum. This is an unusual isomerisation in which L-glutamate is converted to threo-beta-methyl L-aspartate. 0 -321776 cl02034 DUF2193 Uncharacterized protein conserved in archaea (DUF2193). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351661 cl02037 DUF1847 Protein of unknown function (DUF1847). This family of proteins are functionally uncharacterized. THey contain 4 N-terminal cysteines that may form a zinc binding domain. 0 -351662 cl02038 Elf1 Transcription elongation factor Elf1 like. putative transcription elongation factor Elf1; Provisional 0 -351663 cl02039 YbgT_YccB Membrane bound YbgT-like protein. This model describes a very small (as short as 33 amino acids) protein of unknown function, essentially always found in an operon with CydAB, subunits of the cytochrome d terminal oxidase. It begins with an aromatic motif MWYFXW and appears to contain a membrane-spanning helix. This protein appears to be restricted to the Proteobacteria and exist in a single copy only. We suggest it may be a membrane subunit of the terminal oxidase. The family is named after the E. coli member YbgT (SP|P56100). This model excludes the apparently related protein YccB (SP|P24244). [Energy metabolism, Electron transport] 0 -321780 cl02041 Cyt-b5 Cytochrome b5-like Heme/Steroid binding domain. This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors. Many members of this subfamily are membrane anchored by an N-terminal transmembrane alpha helix. This family also includes a domain in some chitin synthases. There is no known ligand for this domain in the chitin synthases. 0 -295148 cl02042 DUF2195 Uncharacterized protein conserved in bacteria (DUF2195). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321781 cl02043 LOR LURP-one-related. Scramblase is palmitoylated and contains a potential protein kinase C phosphorylation site. Scramblase exhibits Ca2+-activated phospholipid scrambling activity in vitro. There are also possible SH3 and WW binding motifs. Scramblase is involved in the redistribution of phospholipids after cell activation or injury. 0 -351664 cl02044 DUF2196 Uncharacterized conserved protein (DUF2196). A pair of adjacent genes, ablAB (acetyl-beta-lysine biosynthesis) encodes lysine 2,3-aminomutase and beta-lysine acetyltransferase in methanogenic archaea. Homologous pairs, possibly with identical function, occur in a wide range of species, including Bacillus subtilis. This model describes a conserved hypothetical protein, small in size, with a phylogenetic distribution moderately well correlated to that of the acetyltransferase family. This protein family is also described as DUF2196 and COG4895. The function is unknown. [Hypothetical proteins, Conserved] 0 -351665 cl02047 DUF2200 Uncharacterized protein conserved in bacteria (DUF2200). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321784 cl02048 DUF2199 Uncharacterized protein conserved in bacteria (DUF2199). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351666 cl02050 Ribosomal_S25 S25 ribosomal protein. 30S ribosomal protein S25e; Provisional 0 -321786 cl02055 Dehydratase_SU Dehydratase small subunit. propanediol dehydratase small subunit; Provisional 0 -321787 cl02056 DUF2203 Uncharacterized conserved protein (DUF2203). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321788 cl02059 Halogen_Hydrol 5-bromo-4-chloroindolyl phosphate hydrolysis protein. Members of this family of prokaryotic proteins mediate the hydrolysis of 5-bromo-4-chloroindolyl phosphate bonds. 0 -321789 cl02063 DUF2209 Uncharacterized protein conserved in archaea (DUF2209). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -351667 cl02066 GDYXXLXY GDYXXLXY protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 171 and 199 amino acids in length. It contains a conserved GDYXXLXY motif. 0 -351668 cl02071 DUF1109 Protein of unknown function (DUF1109). This family consists of several hypothetical bacterial proteins of unknown function. 0 -351669 cl02073 DUF3422 Protein of unknown function (DUF3422). This family of proteins are functionally uncharacterized. This protein is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 426 to 444 amino acids in length. 0 -351670 cl02074 DUF2000 Protein of unknown function (DUF2000). This is a family of proteins of unknown function. The structure of one of the proteins in this family has been shown to adopt an alpha beta fold. 0 -351671 cl02079 YtxH YtxH-like protein. This family of proteins is found in bacteria. Proteins in this family are typically between 100 and 143 amino acids in length. The N-terminal region is the most conserved. Proteins is this family are functionally uncharacterized. 0 -321795 cl02087 DUF1834 Domain of unknown function (DUF1834). This family of proteins are functionally uncharacterized. One member is the Gp37 protein from the FluMu prophage. 0 -295164 cl02088 Phage_tail_X Phage Tail Protein X. This domain is found in a family of phage tail proteins. Visual analysis suggests that it is related to pfam01476 (personal obs: C Yeats). The functional annotation of family members further confirms this hypothesis. 0 -321796 cl02089 Phage_tail_S Phage virion morphogenesis family. This model describes protein S of phage P2, suggested experimentally to act in tail completion and stable head joining, and related proteins from a number of phage. [Mobile and extrachromosomal element functions, Prophage functions] 0 -321797 cl02091 Glyco_transf_15 Glycolipid 2-alpha-mannosyltransferase. This is a family of alpha-1,2 mannosyl-transferases involved in N-linked and O-linked glycosylation of proteins. Some of the enzymes in this family have been shown to be involved in O- and N-linked glycan modifications in the Golgi. 0 -261170 cl02092 Clat_adaptor_s Clathrin adaptor complex small chain. 0 -321798 cl02093 Coq4 Coenzyme Q (ubiquinone) biosynthesis protein Coq4. Coq4p was shown to peripherally associate with the matrix face of the mitochondrial inner membrane. The putative mitochondrial- targeting sequence present at the amino-terminus of the polypeptide efficiently imported it to mitochondria. The function of Coq4p is unknown, although its presence is required to maintain a steady-state level of Coq7p, another component of the Q biosynthetic pathway. The overall structure of Coq4 is alpha helical and shows resemblance to haemoglobin/myoglobin (information from TOPSAN). 0 -351672 cl02095 CDC50 LEM3 (ligand-effect modulator 3) family / CDC50 family. Members of this family have been predicted to contain transmembrane helices. The family member LEM3 is a ligand-effect modulator, mutation of which increases glucocorticoid receptor activity in response to dexamethasone and also confers increased activity on other intracellular receptors including the progesterone, oestrogen and mineralocorticoid receptors. LEM3 is thought to affect a downstream step in the glucocorticoid receptor pathway. Factors that modulate ligand responsiveness are likely to contribute to the context-specific actions of the glucocorticoid receptor in mammalian cells. The products of genes YNR048w, YNL323w, and YCR094w (CDC50) show redundancy of function and are involved in regulation of transcription via CDC39. CDC39 (also known as NOT1) is normally a negative regulator of transcription either by affecting the general RNA polymerase II machinery or by altering chromatin structure. One function of CDC39 is to block activation of the mating response pathway in the absence of pheromone, and mutation causes arrest in G1 by activation of the pathway. It may be that the cold-sensitive arrest in G1 noticed in CDC50 mutants may be due to inactivation of CDC39. The effects of LEM3 on glucocorticoid receptor activity may also be due to effects on transcription via CDC39. 0 -351673 cl02096 Gti1_Pac2 Gti1/Pac2 family. In S. pombe the gti1 protein promotes the onset of gluconate uptake upon glucose starvation. In S. pombe the Pac2 protein controls the onset of sexual development, by inhibiting the expression of ste11, in a pathway that is independent of the cAMP cascade. 0 -351674 cl02098 14-3-3 14-3-3 domain. This 14-3-3 domain family includes proteins in Caenorhabditis elegans, the silkworm (Bombyx mori) as well as barley (Hordeum vulgare). In C. elegans, 14-3-3 proteins are SIR-2.1 binding partners which induce transcriptional activation of DAF-16 during stress and are required for the life-span extension conferred by extra copies of sir-2.1. In B. mori, the 14-3-3 proteins are expressed widely in larval and adult tissues, including the brain, fat body, Malpighian tube, silk gland, midgut, testis, ovary, antenna, and pheromone gland, and interact with the N-terminal fragment of Hsp60, suggesting that 14-3-3 (a molecular adaptor) and Hsp60 (a molecular chaperone) work together to achieve a wide range of cellular functions in B. mori. In barley aleurone cells, 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the gibberellic acid (GA) pathway since the balance of GA and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. 14-3-3 is an essential part of 14-3-3 proteins, a ubiquitous class of regulatory, phosphoserine/threonine-binding proteins found in all eukaryotic cells, including yeast, protozoa and mammalian cells. 0 -351675 cl02099 CK_II_beta Casein kinase II regulatory subunit. Casein kinase II subunit beta; Provisional 0 -321803 cl02102 S10_plectin Plectin/S10 domain. 40S ribosomal protein S10; Provisional 0 -351676 cl02103 Maf1 Maf1 regulator. Maf1 is a negative regulator of RNA polymerase III. It targets the initiation factor TFIIIB. 0 -351677 cl02104 Ribosomal_L36e Ribosomal protein L36e. 60S ribosomal protein L36; Provisional 0 -351678 cl02106 IF4E Eukaryotic initiation factor 4E. translation initiation factor E4; Provisional 0 -351679 cl02107 Evr1_Alr Erv1 / Alr family. Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Erv1p of Saccharomyces cerevisiae mitochondria is required for the maturation of Fe/S proteins in the cytosol. The ALR (augmenter of liver regeneration) represents a mammalian orthologue of yeast Erv1p. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane an d it thought to operate downstream of the mitochondrial ABC transporter. 0 -351680 cl02109 GWT1 GWT1. Glycosylphosphatidylinositol (GPI) is a conserved post-translational modification to anchor cell surface proteins to plasma membrane in eukaryotes. GWT1 is involved in GPI anchor biosynthesis; it is required for inositol acylation in yeast. 0 -321809 cl02110 Pho88 Phosphate transport (Pho88). Members of this family of proteins are involved in regulating inorganic phosphate transport, as well as telomere length regulation and maintenance. 0 -351681 cl02111 PCI PCI domain. Also called the PCI (Proteasome, COP9, Initiation factor 3) domain. Unknown function. 0 -321811 cl02113 Vac_ImportDeg Vacuolar import and degradation protein. Members of this family are involved in the negative regulation of gluconeogenesis. They are required for both proteosome-dependent and vacuolar catabolite degradation of fructose-1,6-bisphosphatase (FBPase), where they probably regulate FBPase targeting from the FBPase-containing vesicles to the vacuole. 0 -321812 cl02117 ORMDL ORMDL family. Evidence form suggests that ORMDLs are involved in protein folding in the ER. Orm proteins have been identified as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. This novel and conserved protein complex, has been termed the SPOTS complex (serine palmitoyltransferase, Orm1/2, Tsc3, and Sac1). 0 -321813 cl02120 HAT_KAT11 Histone acetylation protein. Histone acetylation is required in many cellular processes including transcription, DNA repair, and chromatin assembly. This family contains the fungal KAT11 protein (previously known as RTT109) which is required for H3K56 acetylation. Loss of KAT11 results in the loss of H3K56 acetylation, both on bulk histone and on chromatin. KAT11 and H3K56 acetylation appear to correlate with actively transcribed genes and associate with the elongating form of Pol II in yeast. This family also incorporates the p300/CBP histone acetyltransferase domain which has different catalytic properties and cofactor regulation to KAT11. 0 -321814 cl02121 Med31 SOH1. The family consists of Saccharomyces cerevisiae SOH1 homologs. SOH1 is responsible for the repression of temperature sensitive growth of the HPR1 mutant and has been found to be a component of the RNA polymerase II transcription complex. SOH1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the SOH1 protein may serve to couple these two processes. 0 -321815 cl02122 TFIIF_beta Transcription initiation factor IIF, beta subunit. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIF (TFIIF) is a tetramer of two beta subunits associate with two alpha subunits which interacts directly with RNA polymerase II. The beta subunit of TFIIF is required for recruitment of RNA polymerase II onto the promoter. 0 -321816 cl02125 Med6 MED6 mediator sub complex component. Component of RNA polymerase II holoenzyme and mediator sub complex. 0 -321817 cl02127 RNA_pol_Rpc34 RNA polymerase Rpc34 subunit. Subunit specific to RNA Pol III, the tRNA specific polymerase. The C34 subunit of yeast RNA Pol III is part of a subcomplex of three subunits which have no counterpart in the other two nuclear RNA polymerases. This subunit interacts with TFIIIB70 and is therefore participates in Pol III recruitment. 0 -351682 cl02129 ParBc ParB-like nuclease domain. This domain is probably distantly related to pfam02195. Suggesting these uncharacterized proteins have a nuclease function. 0 -351683 cl02130 Got1 Got1/Sft2-like family. Traffic through the yeast Golgi complex depends on a member of the syntaxin family of SNARE proteins, Sed5, present in early Golgi cisternae. Got1 is thought to facilitate Sed5-dependent fusion events. This is a family of sequences derived from eukaryotic proteins. They are similar to a region of a SNARE-like protein required for traffic through the Golgi complex, SFT2 protein. This is a conserved protein with four putative transmembrane helices, thought to be involved in vesicular transport in later Golgi compartments. 0 -351684 cl02137 PRA1 PRA1 family protein. This family includes the PRA1 (Prenylated rab acceptor) protein which is a Rab guanine dissociation inhibitor (GDI) displacement factor. This family also includes the glutamate transporter EAAC1 interacting protein GTRAP3-18. 0 -351685 cl02138 G10 G10 protein. 0 -321822 cl02144 TLD TLD. This domain is predicted to be an enzyme and is often found associated with pfam01476. It's structure consists of a beta-sandwich surrounded by two helices and two one-turn helices. 0 -321823 cl02148 APC10-like APC10-like DOC1 domains in E3 ubiquitin ligases that mediate substrate ubiquitination. This model represents the APC10/DOC1-like domain present in the uncharacterized Zinc finger ZZ-type and EF-hand domain-containing protein 1 (ZZEF1) of Mus musculus. Members of this family contain EF-hand, APC10, CUB, and zinc finger ZZ-type domains. ZZEF1-like APC10 domains are homologous to the APC10 subunit/DOC1 domains present in E3 ubiquitin ligases, which mediate substrate ubiquitination (or ubiquitylation), and are components of the ubiquitin-26S proteasome pathway for selective proteolytic degradation. 0 -351686 cl02150 TAF10 The TATA Binding Protein (TBP) Associated Factor 10. The TATA Binding Protein (TBP) Associated Factor 10 (TAF 10) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of the seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and the assembly of the preinitiation complex. The TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. Several hypotheses are proposed for TAF functions, such as serving as activator-binding sites, being involved in core-promoter recognition, or to perform an essential catalytic activity. Each TAF - with the help of a specific activator - is required only for the expression of a subset of genes, and TAFs are not universally involved in transcription such as the GTFs. TAF10 regulates genes that are important for cell cycle progression and cell morphology. A lack of TAF10 leads to cell cycle arrest and cell death by apoptosis in mouse. In both yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF10 is part of other transcription regulatory multiprotein complexes (e.g., SAGA, TBP-free TAF-containing complex [TFTC], STAGA, and PCAF/GCN5). Several TAFs interact via histone-fold motifs. The histone fold (HFD) is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamer. The minimal HFD contains three alpha-helices linked by two loops. The HFD is found in core histones, TAFs and many other transcription factors. Five HF-containing TAF pairs have been described in TFIID: TAF6-TAF9, TAF4-TAF12, TAF11-TAF13, TAF8-TAF10 and TAF3-TAF10. 0 -351687 cl02153 TFIIE_beta_winged_helix TFIIE_beta_winged_helix domain, located at the central core region of TFIIE beta, with double-stranded DNA binding activity. General transcription factor TFIIE consists of two subunits, TFIIE alpha pfam02002 and TFIIE beta. TFIIE beta has been found to bind to the region where the promoter starts to open to be single-stranded upon transcription initiation by RNA polymerase II. The structure of the DNA binding core region has been solved and has a winged helix fold. 0 -321826 cl02154 YL1_C YL1 nuclear protein C-terminal domain. This domain is found in proteins of the YL1 family. These proteins have been shown to be DNA-binding and may be a transcription factor. This domain is found in proteins that are not YL1 proteins. 0 -351688 cl02155 ER_lumen_recept ER lumen protein retaining receptor. 0 -351689 cl02156 PTPLA Protein tyrosine phosphatase-like protein, PTPLA. 3-hydroxyacyl-CoA dehydratase subunit of elongase 0 -351690 cl02160 Rcd1 Cell differentiation family, Rcd1-like. Two of the members in this family have been characterized as being involved in regulation of Ste11 regulated sex genes. Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic acid-induced cell differentiation. 0 -321830 cl02161 Ssu72 Ssu72-like protein. The highly conserved and essential protein Ssu72 has intrinsic phosphatase activity and plays an essential role in the transcription cycle. Ssu72 was originally identified in a yeast genetic screen as enhancer of a defect caused by a mutation in the transcription initiation factor TFIIB. It binds to TFIIB and is also involved in mRNA elongation. Ssu72 is further involved in both poly(A) dependent and independent termination. It is a subunit of the yeast cleavage and polyadenylation factor (CPF), which is part of the machinery for mRNA 3'-end formation. Ssu72 is also essential for transcription termination of snRNAs. 0 -351691 cl02162 Fip1 Fip1 motif. This short motif is about 40 amino acids in length. In the Fip1 protein that is a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. This region of Fip1 is needed for the interaction with the Th1 subunit of the complex and for specific polyadenylation of the cleaved mRNA precursor. 0 -351692 cl02164 Utp11 Utp11 protein. This protein is found to be part of a large ribonucleoprotein complex containing the U3 snoRNA. Depletion of the Utp proteins impedes production of the 18S rRNA, indicating that they are part of the active pre-rRNA processing complex. This large RNP complex has been termed the small subunit (SSU) processome. 0 -351693 cl02165 CBFB_NFYA CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B. 0 -351694 cl02166 RRS1 Ribosome biogenesis regulatory protein (RRS1). This family consists of several eukaryotic ribosome biogenesis regulatory (RRS1) proteins. RRS1 is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly in Saccharomyces cerevisiae. 0 -321835 cl02170 Sec62 Translocation protein Sec62. Members of the NSCC2 family have been sequenced from various yeast, fungal and animals species including Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. These proteins are the Sec62 proteins, believed to be associated with the Sec61 and Sec63 constituents of the general protein secretary systems of yeast microsomes. They are also the non-selective cation (NS) channels of the mammalian cytoplasmic membrane. The yeast Sec62 protein has been shown to be essential for cell growth. The mammalian NS channel proteins has been implicated in platelet derived growth factor(PGDF) dependent single channel current in fibroblasts. These channels are essentially closed in serum deprived tissue-culture cells and are specifically opened by exposure to PDGF. These channels are reported to exhibit equal selectivity for Na+, K+ and Cs+ with low permeability to Ca2+, and no permeability to anions. [Transport and binding proteins, Amino acids, peptides and amines] 0 -351695 cl02172 Per1 Per1-like family. PER1 is required for GPI-phospholipase A2 activity and is involved in lipid remodelling of GPI-anchored proteins. PER1 is part of the CREST superfamily. 0 -242920 cl02174 TAF13 The TATA Binding Protein (TBP) Associated Factor 13 (TAF13) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. This family includes the Spt3 yeast transcription factors and the 18kD subunit from human transcription initiation factor IID (TFIID-18). Determination of the crystal structure reveals an atypical histone fold 0 -351696 cl02175 Rer1 Rer1 family. RER1 family protein are involved in involved in the retrieval of some endoplasmic reticulum membrane proteins from the early golgi compartment. The C-terminus of yeast Rer1p interacts with a coatomer complex. 0 -351697 cl02176 TAF11 TATA Binding Protein (TBP) Associated Factor 11 (TAF11) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. The conserved region is found at the C-terminal of most member proteins. The crystal structure of hTAFII28 with hTAFII18 shows that this region is involved in the binding of these two subunits. The conserved region contains four alpha helices and three loops arranged as in histone H3. 0 -351698 cl02183 Zincin_2 Zincin-like metallopeptidase. A phylogenetic tree of the DUF2342 family (TIGR03624) consists of two major branches. One of these branches, modeled here, is observed almost entirely to be found in coenzyme F420 biosynthesizing species of the Actinobacterial, Chloroflexi and Archaeal lineages. The few organisms having genes within this family and lacking F420 biosynthesis may either have an undiscovered F420 transporter, or may represent F420-to-FMN revertants. This family includes a Chloroflexus Aurantiacus protein whose crystal structure has been determined (PDB:3CMN_A). This has been annotated as a putative hydrolase, but the support for that assertion is untraceable. There is no cofactor present in the structure. 0 -321840 cl02185 DUF1093 Protein of unknown function (DUF1093). This model represents a family of small (about 115 amino acids) uncharacterized proteins with N-terminal signal sequences, found exclusively in Gram-positive organisms. Most genomes that have any members of this family have at least two members. [Hypothetical proteins, Conserved] 0 -351699 cl02186 Plus-3 Plus-3 domain. Plus3 domains occur in the Saccharomyces cerevisiae Rtf1p protein, which interacts with Spt6p, and in parsley CIP, which interacts with the bZIP protein CPRF1. 0 -351700 cl02188 CcdA Post-segregation antitoxin CcdA. plasmid maintenance protein CcdA; Provisional 0 -351701 cl02193 VirB5_like VirB5 protein family. Based on Bacteroides thetaiotaomicron gene BT_4772, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 0 -351702 cl02197 MmcB-like DNA repair protein MmcB-like. This family includes Caulobacter MmcB (CCNA_03580), which is involved in DNA repair. It has been proposed to be an endonuclease that creates the substrate for translesion synthesis. 0 -321845 cl02206 DUF1312 N-Utilization Substance G (NusG) N terminal (NGN) insert and Lin0431 are part of DUF1312. This domain is found in some NusG proteins where it forms domain II. However most NusG proteins are missing this domain. In other cases this domain is found in isolation. The function of this domain is unknown. 0 -321846 cl02207 IalB Invasion associated locus B (IalB) protein. This family consists of several invasion associated locus B (IalB) proteins and related sequences. IalB is known to be a major virulence factor in Bartonella bacilliformis where it was shown to have a direct role in human erythrocyte parasitism. IalB is upregulated in response to environmental cues signaling vector-to-host transmission. Such environmental cues would include, but not be limited to, temperature, pH, oxidative stress, and haemin limitation. It is also thought that IalB would aide B. bacilliformis survival under stress-inducing environmental conditions. The role of this protein in other bacterial species is unknown. 0 -351703 cl02210 DUF2335 Predicted membrane protein (DUF2335). Members of this family of hypothetical bacterial proteins have no known function. 0 -351704 cl02211 DUF983 Protein of unknown function (DUF983). hypothetical protein; Provisional 0 -351705 cl02212 DUF2169 Uncharacterized protein conserved in bacteria (DUF2169). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351706 cl02216 Terminase_6C Terminase RNaseH-like domain. This model represents the C-terminal region of a set of phage proteins typically about 400-500 amino acids in length, although some members are considerably shorter. An article on Methanobacterium phage Psi-M2 ( calls the member from that phage, ORF9, a putative large terminase subunit, and ORF8 a candidate terminase small subunit. Most proteins in this family have an apparent P-loop nucleotide-binding sequence toward the N-terminus. [Mobile and extrachromosomal element functions, Prophage functions] 0 -321851 cl02219 Bap31 B-cell receptor-associated protein 31-like. Bap31 is a polytopic integral protein of the endoplasmic reticulum membrane and a substrate of caspase-8. Bap31 is cleaved within its cytosolic domain, generating pro-apoptotic p20 Bap31. 0 -351707 cl02226 DUF1338 Domain of unknown function (DUF1338). This domain is found in a variety of bacterial and fungal hypothetical proteins of unknown function. The structure of this domain has been solved by structural genomics. The structure implies a zinc-binding function, so it is a putative metal hydrolase (information derived from TOPSAN for Structure 3iuz). 0 -351708 cl02228 ATP12 ATP12 chaperone protein. Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. These proteins include examples from eukaryotes and bacteria and may have chaperone activity, being involved in F1 ATPase complex assembly. 0 -321854 cl02232 DUF2306 Predicted membrane protein (DUF2306). Members of this family of hypothetical bacterial proteins have no known function. 0 -351709 cl02233 NTP_transf_8 Nucleotidyltransferase. This is a family of bacterial proteins that have a nucleotidyltransferase fold. The fold-prediction is backed up by conservation of three highly characteristic sequence motifs found in all other nucleotidyl transferases: i) pDhDhhh(h/p), where p is a polar residue and h is a hydrophobic residue; ii) upstream of the first, a GG/S; iii) a conserved D/E in a hydrophobic surround. In the classification of nucleotidyltransferases proposed in this is a group XVIII NTP-transferase. Many of these sequences were classified in the COG database as COG5397. The exact function is not known. 0 -321856 cl02234 DUF2286 Uncharacterized protein conserved in archaea (DUF2286). Members of this family of hypothetical archaeal proteins have no known function. 0 -351710 cl02235 DUF1134 Protein of unknown function (DUF1134). This family consists of several hypothetical bacterial proteins of unknown function. 0 -321858 cl02241 DUF2301 Uncharacterized integral membrane protein (DUF2301). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321859 cl02246 DUF2285 Uncharacterized conserved protein (DUF2285). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321860 cl02247 Rop-like Rop-like. This family contains several uncharacterized bacterial proteins. These proteins are found in nitrogen fixation operons so are likely to play some role in this process. They consist of two alpha helices which are joined by a four residue linker. The helices form an antiparallel bundle and cross towards their termini. They are likely to form a rod-like dimer. They have structural similarity to the regulatory protein Rop, pfam01815. 0 -321861 cl02248 DUF2284 Predicted metal-binding protein (DUF2284). Members of this family of metal-binding hypothetical bacterial proteins have no known function. 0 -321862 cl02250 DUF2298 Uncharacterized membrane protein (DUF2298). Members of this highly hydrophobic probable integral membrane family belong to two classes. In one, a single copy of the region covered by this model represents essentially the full length of a strongly hydrophobic protein of about 700 to 900 residues (variable because of long inserts in some). The domain architecture of the other class consists of an additional N-terminal region, two copies of the region represented by this model, and three to four repeats of TPR, or tetratricopeptide repeat. The unusual species range includes several Archaea, several Chloroflexi, and Clostridium phytofermentans. An unusual motif YYYxG is present, and we suggest the name Chlor_Arch_YYY protein. The function is unknown. 0 -351711 cl02251 DUF2283 Protein of unknown function (DUF2283). Members of this family of hypothetical bacterial proteins have no known function. 0 -321864 cl02253 SCPU Spore Coat Protein U domain. This domain is found in a bacterial family of spore coat proteins.as well as a family of secreted pili proteins involved in motility and biofilm formation. 0 -351712 cl02259 YibE_F YibE/F-like protein. The sequences featured in this family are similar to two proteins expressed by Lactococcus lactis, YibE and YibF. Most of the members of this family are annotated as being putative membrane proteins, and in fact the sequences contain a high proportion of hydrophobic residues. 0 -321866 cl02261 DUF2299 Uncharacterized conserved protein (DUF2299). Members of this family of hypothetical bacterial proteins have no known function. 0 -351713 cl02262 Tm-1-like ATP-binding domain found in plant Tm-1-like (Tm-1L) and similar proteins. hypothetical protein; Provisional 0 -351714 cl02266 CbtA Probable cobalt transporter subunit (CbtA). This model represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of five trans-membrane segments, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a small protein (CbtB) having a single additional trans-membrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site. 0 -351715 cl02268 DUF2460 Conserved hypothetical protein 2217 (DUF2460). This model represents a family of conserved hypothetical proteins. It is usually (but not always) found in apparent phage-derived regions of bacterial chromosomes. [Mobile and extrachromosomal element functions, Prophage functions] 0 -351716 cl02273 HlyU Transcriptional activator HlyU. This domain, found in various hypothetical prokaryotic proteins, has no known function. One of the sequences in this family corresponds to the transcriptional activator HlyU, indicating a possible similar role in other members. 0 -351717 cl02275 RcnB Nickel/cobalt transporter regulator. RcnB is a family of Proteobacteria proteins. RcnB is required for maintaining metal ion homeostasis, in conjunction with the efflux pump RcnA, family NicO, pfam03824. 0 -351718 cl02278 DUF2164 Uncharacterized conserved protein (DUF2164). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351719 cl02284 DUF1059 Protein of unknown function (DUF1059). This family consists of several short hypothetical archaeal proteins of unknown function. 0 -321874 cl02289 DUF2190 Uncharacterized conserved protein (DUF2190). This domain, found in various hypothetical prokaryotic proteins, as well as in some putative RecA/RadA recombinases, has no known function. 0 -351720 cl02290 DUF2165 Predicted small integral membrane protein (DUF2165). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -351721 cl02291 DUF2189 Predicted integral membrane protein (DUF2189). Members of this family are found in various hypothetical prokaryotic proteins, as well as putative cytochrome c oxidases. Their exact function has not, as yet, been established. 0 -351722 cl02292 Crr6 Chlororespiratory reduction 6. Chlororespiratory reduction 6 (Crr6) is a factor required for the assembly or stabilisation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. 0 -321878 cl02293 DUF2158 Uncharacterized small protein (DUF2158). Members of this family of prokaryotic proteins have no known function. 0 -351723 cl02294 DUF2160 Predicted small integral membrane protein (DUF2160). The members of this family of hypothetical prokaryotic proteins have no known function. It is thought that they are transmembrane proteins, but their function has not been inferred yet. 0 -351724 cl02296 DUF1036 Protein of unknown function (DUF1036). This family consists of several hypothetical bacterial proteins of unknown function. 0 -321881 cl02298 DUF2161 Putative PD-(D/E)XK phosphodiesterase (DUF2161). This family of proteins is functionally uncharacterized. This family of proteins is found in prokaryotes. Advanced homology-detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses s have established this family to be a member of the PD-(D/E)XK superfamily. 0 -351725 cl02302 DUF2244 Integral membrane protein (DUF2244). This domain, found in various bacterial hypothetical and putative membrane proteins, has no known function. 0 -351726 cl02303 DUF736 Protein of unknown function (DUF736). This family consists of several uncharacterized bacterial proteins of unknown function. 0 -295252 cl02309 DUF2259 Predicted secreted protein (DUF2259). Members of this family of hypothetical bacterial proteins have no known function. 0 -321884 cl02310 Glyco_hydro_81 Glycosyl hydrolase family 81. Family of eukaryotic beta-1,3-glucanases. Within the Aspergillus fumigatus protein ENGL1, two perfectly conserved Glu residues (E550 or E554) have been proposed as putative nucleophiles of the active site of the Engl1 endoglucanase, while the proton donor would be D475. The endo-beta-1,3-glucanase activity is essential for efficient spore release. 0 -321885 cl02314 DUF2267 Uncharacterized conserved protein (DUF2267). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -242981 cl02317 DUF819 Protein of unknown function (DUF819). This family contains proteins of unknown function from archaeal, bacterial and plant species. 0 -351727 cl02318 DUF1694 Protein of unknown function (DUF1694). This family contains many hypothetical proteins. 0 -351728 cl02319 DUF1428 Protein of unknown function (DUF1428). This family consists of several hypothetical bacterial and one archaeal sequence of around 120 residues in length. The function of this family is unknown. The structure of this family shows it to be part of the Dimeric-alpha-beta-barrel superfamily. Many members are annotated as being RNA signal recognition particle 4.5S RNA, but this could not be verified. 0 -351729 cl02324 DUF721 Protein of unknown function (DUF721). hypothetical protein; Provisional 0 -351730 cl02325 Inhibitor_I42 Chagasin family peptidase inhibitor I42. Chagasin is a cysteine peptidase inhibitor which forms a beta barrel structure. 0 -351731 cl02331 Intg_mem_TP0381 Integral membrane protein (intg_mem_TP0381). This model represents a family of hydrophobic proteins with seven predicted transmembrane alpha helices. Members are found in Bacillus subtilis (ywaF), TP0381 from Treponema pallidum (TP0381), Streptococcus pyogenes, Rhodococcus erythropolis, etc. 0 -351732 cl02333 Bac_rhodopsin Bacteriorhodopsin-like protein. The bacterial opsins are retinal-binding proteins that provide light- dependent ion transport and sensory functions to a family of halophilic bacteria.. They are integral membrane proteins believed to contain seven transmembrane (TM) domains, the last of which contains the attachment point for retinal (a conserved lysine). 0 -321892 cl02335 DUF2269 Predicted integral membrane protein (DUF2269). Members of this family of bacterial hypothetical integral membrane proteins have no known function. 0 -351733 cl02337 DUF2270 Predicted integral membrane protein (DUF2270). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -321894 cl02338 DUF2303 Uncharacterized conserved protein (DUF2303). Members of this family of hypothetical bacterial proteins have no known function. 0 -321895 cl02341 Sec66 Preprotein translocase subunit Sec66. Members of this family of proteins are a component of the heterotetrameric Sec62/63 complex composed of SEC62, SEC63, SEC66 and SEC72. The Sec62/63 complex associates with the Sec61 complex to form the Sec complex. Sec 66 is involved in SRP-independent post-translational translocation across the endoplasmic reticulum and functions together with the Sec61 complex and KAR2 in a channel-forming translocon complex. Furthermore, Sec66 is also required for growth at elevated temperatures. 0 -321896 cl02344 Phage_holin_1 Bacteriophage holin. Phage proteins for bacterial lysis typically include a membrane-disrupting protein, or holin, and one or more cell wall degrading enzymes that reach the cell wall because of holin action. Holins are found in a large number of mutually non-homologous families. [Mobile and extrachromosomal element functions, Prophage functions] 0 -351734 cl02346 Tmemb_14 Transmembrane proteins 14C. This family of short membrane proteins are as yet uncharacterized. 0 -351735 cl02349 DUF2277 Uncharacterized conserved protein (DUF2277). Members of this family of hypothetical bacterial proteins have no known function. 0 -351736 cl02351 NifT NifT/FixU protein. This largely uncharacterized protein family is assigned a role in nitrogen fixation by two criteria. First, its gene occurs, generally, among genes essential for expression of active nitrogenase. Second, its phylogenetic profile closely matches that of nitrogen-fixing bacteria. However, mutational studies in Klebsiella pneumoniae failed to demonstrate any phenotype for deletion or overexpression of the protein. 0 -351737 cl02353 DUF2280 Uncharacterized conserved protein (DUF2280). Members of this family of hypothetical bacterial proteins have no known function. 0 -351738 cl02355 DUF2281 Protein of unknown function (DUF2281). Members of this family of hypothetical bacterial proteins have no known function. 0 -351739 cl02356 CGGC CGGC domain. The domain has many conserved cysteines and histidines suggestive of a zinc binding function. 0 -351740 cl02360 Mor Mor transcription activator family. Mor (Middle operon regulator) is a sequence specific DNA binding protein. It mediates transcription activation through its interactions with the C-terminal domains of the alpha and sigma subunits of bacterial RNA polymerase. The N terminal region of Mor is the dimerization region, and the C terminal contains a helix-turn-helix motif which binds DNA. 0 -351741 cl02363 CusF_Ec Copper binding periplasmic protein CusF. periplasmic copper-binding protein; Provisional 0 -321905 cl02366 DUF2282 Predicted integral membrane protein (DUF2282). Members of this family of hypothetical bacterial proteins and putative signal peptide proteins have no known function. 0 -351742 cl02369 DUF624 Protein of unknown function, DUF624. This family includes several uncharacterized bacterial proteins. 0 -351743 cl02370 DUF1810 Protein of unknown function (DUF1810). This is a family of uncharacterized proteins. The structure of one of the members in this family has been solved and it adopts a mainly alpha helical structure. 0 -321908 cl02371 DUF2292 Uncharacterized small protein (DUF2292). Members of this family of hypothetical bacterial proteins have no known function. 0 -351744 cl02373 DUF2293 Uncharacterized conserved protein (DUF2293). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -351745 cl02374 DUF2461 Conserved hypothetical protein (DUF2461). Members of this family are widely (though sparsely) distributed bacterial proteins about 230 residues in length. All members have a motif RxxRDxRFxxx[DN]KxxY. The function of this protein family is unknown. In several fungi, this model identifies a conserved region of a longer protein. Therefore, it may be incorrect to speculate that all members share a common function. 0 -351746 cl02375 DUF1326 Protein of unknown function (DUF1326). This family consists of several hypothetical bacterial proteins which seem to be found exclusively in Rhizobium and Ralstonia species. Members of this family are typically around 210 residues in length and contain 5 highly conserved cysteine residues at their N-terminus. The function of this family is unknown. 0 -351747 cl02376 DUF2390 Protein of unknown function (DUF2390). Members of this family are bacterial hypothetical proteins, about 160 amino acids in length, found in various Proteobacteria, including members of the genera Pseudomonas and Vibrio. The C-terminal region is poorly conserved and is not included in the model. [Hypothetical proteins, Conserved] 0 -321913 cl02380 DUF2310 Zn-ribbon-containing, possibly nucleic-acid-binding protein (DUF2310). Members of this family of proteobacterial zinc ribbon proteins are thought to bind to nucleic acids, however their exact function has not as yet been defined. 0 -351748 cl02381 Tim17 Tim17/Tim22/Tim23/Pmp24 family. mitochondrial import inner membrane translocase subunit tim17; Provisional 0 -351749 cl02384 NOT2_3_5 NOT2 / NOT3 / NOT5 family. NOT1, NOT2, NOT3, NOT4 and NOT5 form a nuclear complex that negatively regulates the basal and activated transcription of many genes. This family includes NOT2, NOT3 and NOT5. 0 -321916 cl02390 DUF2294 Uncharacterized conserved protein (DUF2294). Members of this family of hypothetical bacterial proteins have no known function. 0 -351750 cl02395 DUF2291 Predicted periplasmic lipoprotein (DUF2291). Members of this family of hypothetical bacterial proteins have no known function. 0 -321918 cl02396 DUF2290 Uncharacterized conserved protein (DUF2290). Members of this family of hypothetical bacterial proteins have no known function. 0 -351751 cl02398 Host_attach Protein required for attachment to host cells. Members of this family of bacterial proteins are required for the attachment of the bacterium to host cells. 0 -351752 cl02399 DUF2288 Protein of unknown function (DUF2288). Members of this family of hypothetical bacterial proteins have no known function. 0 -321921 cl02406 DUF2274 Protein of unknown function (DUF2274). Members of this family of hypothetical bacterial proteins have no known function. 0 -351753 cl02411 RES RES domain. This presumed protein contains 3 highly conserved polar groups that could form an active site. These are an arginine, glutamate and serine, hence the RES domain. RES is found widely distributed in bacteria, it has about 150 residues in length. 0 -321923 cl02412 Rep_1 Replication protein. Replication proteins (rep) are involved in plasmid replication. The Rep protein binds to the plasmid DNA and nicks it at the double strand origin (dso) of replication. The 3'-hydroxyl end created is extended by the host DNA replicase, and the 5' end is displaced during synthesis. At the end of one replication round, Rep introduces a second single stranded break at the dso and ligates the ssDNA extremities generating one double-stranded plasmid and one circular ssDNA form. Complementary strand synthesis of the circular ssDNA is usually initiated at the single-stranded origin by the host RNA polymerase. 0 -351754 cl02415 DUF922 Bacterial protein of unknown function (DUF922). This family of proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. 0 -351755 cl02417 Myelin_PLP Myelin proteolipid protein (PLP or lipophilin). 0 -321926 cl02418 Hormone_5 Neurohypophysial hormones, C-terminal Domain. Vasopressin/oxytocin gene family. 0 -351756 cl02419 Notch LNR domain. The Notch protein is essential for the proper differentiation of the Drosophila ectoderm. This protein contains 3 NL domains. 0 -351757 cl02422 HRM Hormone receptor domain. This extracellular domain contains four conserved cysteines that probably for disulphide bridges. The domain is found in a variety of hormone receptors. It may be a ligand binding domain. 0 -295298 cl02423 LRRNT Leucine rich repeat N-terminal domain. Leucine Rich Repeats pfam00560 are short sequence motifs present in a number of proteins with diverse functions and cellular locations. Leucine Rich Repeats are often flanked by cysteine rich domains. This domain is often found at the N-terminus of tandem leucine rich repeats. 0 -321929 cl02425 Osteopontin Osteopontin. Osteopontin is an acidic phosphorylated glycoprotein of about 40 Kd which is abundant in the mineral matrix of bones and which binds tightly to hydroxyapatite. It is suggested that osteopontin might function as a cell attachment factor and could play a key role in the adhesion of osteoclasts to the mineral matrix of bone 0 -351758 cl02426 DIX DIX domain. Domain of unknown function. 0 -321931 cl02428 Ependymin Ependymin. Ependymins are the predominant proteins in the cerebrospinal fluid (CSF) of teleost fish. They have been implicated in the neurochemistry of memory and neuronal regeneration. They are glycoproteins of about 200 amino acids that can bind calcium. Four cysteines are conserved that probably form disulfide bonds. 0 -351759 cl02432 CLECT C-type lectin (CTL)/C-type lectin-like (CTLD) domain. This family includes both long and short form C-type 0 -321933 cl02434 CNH CNH domain. Domain found in NIK1-like kinase, mouse citron and yeast ROM1, ROM2. Unpublished observations. 0 -321934 cl02436 COLFI Fibrillar collagen C-terminal domain. Found at C-termini of fibrillar collagens: Ephydatia muelleri procollagen EMF1alpha, vertebrate collagens alpha(1)III, alpha(1)II, alpha(2)V etc. 0 -321935 cl02440 DAGK_acc Diacylglycerol kinase accessory domain. Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known. 0 -351760 cl02442 DEP N/A. The DEP domain is responsible for mediating intracellular protein targeting and regulation of protein stability in the cell. The DEP domain is present in a number of signaling molecules, including Regulator of G protein Signaling (RGS) proteins, and has been implicated in membrane targeting. New findings in yeast, however, demonstrate a major role for a DEP domain in mediating the interaction of an RGS protein to the C-terminal tail of a GPCR, thus placing RGS in close proximity with its substrate G protein alpha subunit. 0 -351761 cl02446 MATH N/A. This motif has been called the Meprin And TRAF-Homology (MATH) domain. This domain is hugely expanded in the nematode C. elegans. 0 -351762 cl02447 CRD_FZ CRD_domain cysteine-rich domain, also known as Fz (frizzled) domain. Also known as the CRD (cysteine rich domain), the C6 box in MuSK receptor. This domain of unknown function has been independently identified by several groups. The domain contains 10 conserved cysteines. 0 -351763 cl02448 Hormone_6 Glycoprotein hormone. Also called gonadotropins. Glycoprotein hormones consist of two glycosylated chains (alpha and beta) of similar topology. 0 -321939 cl02449 Gla Vitamin K-dependent carboxylation/gamma-carboxyglutamic (GLA) domain. A hyaluronan-binding domain found in proteins associated with the extracellular matrix, cell adhesion and cell migration. 0 -351764 cl02451 Hydrophobin Fungal hydrophobin. 0 -321941 cl02453 IlGF_like N/A. Superfamily includes insulins; relaxins; insulin-like growth factor; and bombyxin. All are secreted regulatory hormones. Disulfide rich, all-alpha fold. Alignment includes B chain, linker (which is processed out of the final product), and A chain. 0 -351765 cl02465 BTK BTK motif. Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains (but not all PH domains are followed by BTK motifs). The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. 0 -351766 cl02467 C4 C-terminal tandem repeated domain in type 4 procollagen. Duplicated domain in C-terminus of type 4 collagens. Mutations in alpha-5 collagen IV are associated with X-linked Alport syndrome. 0 -351767 cl02471 HX N/A. Hemopexin is a heme-binding protein that transports heme to the liver. Hemopexin-like repeats occur in vitronectin and some matrix metallopeptidases family (matrixins). The HX repeats of some matrixins bind tissue inhibitor of metallopeptidases (TIMPs). 0 -351768 cl02472 IGFBP Insulin-like growth factor binding protein. High affinity binding partners of insulin-like growth factors. 0 -351769 cl02473 IL6 Interleukin-6/G-CSF/MGF family. GCSF is a family of higher eukaryotic granulocyte colony-stimulating factor proteins. Granulocyte colony-stimulating factors are cytokines that are involved in haematopoeisis. They control the production, differentiation and function of white blood cell granulocytes. GCSF binds to the extracellular Ig-like and CRH domain of its receptor GCSFR, thereby triggering the receptor to homodimerize. Homodimerization result in activation of Janus tyrosine kinase-signal transducers and other activators of transcription (JAK-STAT)-type signalling cascades. 0 -351770 cl02475 LIM LIM is a small protein-protein interaction domain, containing two zinc fingers. This family represents two copies of the LIM structural domain. 0 -351771 cl02480 MyTH4 MyTH4 domain. Domain present twice in myosin-VIIa, and also present in 3 other myosins. 0 -321947 cl02481 NGF Nerve growth factor family. NGF is important for the development and maintenance of the sympathetic and sensory nervous systems. 0 -321948 cl02483 PI3K_p85B PI3-kinase family, p85-binding domain. Region of p110 PI3K that binds the p85 subunit. 0 -321949 cl02484 PI3K_rbd PI3-kinase family, ras-binding domain. Certain members of the PI3K family possess Ras-binding domains in their N-termini. These regions show some similarity (although not highly significant similarity) to Ras-binding RA domains (unpublished observation). 0 -351772 cl02485 RasGEF N/A. Guanine nucleotide exchange factor for Ras-like small GTPases. 0 -351773 cl02488 SPEC N/A. Spectrin repeat-domains are found in several proteins involved in cytoskeletal structure. These include spectrin, alpha-actinin and dystrophin. The sequence repeat used in this family is taken from the structural repeat in reference. The spectrin domain- repeat forms a three helix bundle. The second helix is interrupted by proline in some sequences. The repeats are defined by a characteristic tryptophan (W) residue at position 17 in helix A and a leucine (L) at 2 residues from the carboxyl end of helix C. Although the domain occurs in multiple repeats along sequences, the domains are actually stable on their own - ie they act, biophysically, like domains rather than repeats that along function when aggregated. 0 -351774 cl02489 SWIB SWIB/MDM2 domain. This family includes the SWIB domain and the MDM2 domain. The p53-associated protein (MDM2) is an inhibitor of the p53 tumor suppressor gene binding the transactivation domain and down regulating the ability of p53 to activate transcription. This family contains the p53 binding domain of MDM2. 0 -351775 cl02491 VHP Villin headpiece domain. 0 -321954 cl02494 SapA Saposin A-type domain. Present as four and three degenerate copies, respectively, in prosaposin and surfactant protein B. Single copies in acid sphingomyelinase, NK-lysin amoebapores and granulysin. Putative phospholipid membrane binding domains. 0 -351776 cl02495 RabGAP-TBC Rab-GTPase-TBC domain. Widespread domain present in Gyp6 and Gyp7, thereby giving rise to the notion that it performs a GTP-activator activity on Rab-like GTPases. 0 -351777 cl02501 IL10 Interleukin 10. Interleukin-22 is distantly related to interleukin (IL)-10, and is produced by activated T cells. IL-22 is a ligand for CRF2-4, a member of the class II cytokine receptor family. 0 -321956 cl02505 PTN_MK_N PTN/MK heparin-binding protein family, N-terminal domain. Heparin-binding domain family. 0 -321957 cl02506 SAA Serum amyloid A protein. Serum amyloid A proteins are induced during the acute-phase response. Secondary amyloidosis is characterised by the extracellular accumulation in tissues of SAA proteins. SAA proteins are apolipoproteins. 0 -351778 cl02507 SEA SEA domain. Proposed function of regulating or binding carbohydrate sidechains. 0 -321959 cl02508 Somatomedin_B Somatomedin B domain. Somatomedin-B is a peptide, proteolytically excised from vitronectin, that is a growth hormone-dependent serum factor with protease-inhibiting activity. 0 -321960 cl02509 SRCR_2 Scavenger receptor cysteine-rich domain. Members of this family form an extracellular domain of the serine protease hepsin. They are formed primarily by three elements of regular secondary structure: a 12-residue alpha helix, a twisted five-stranded antiparallel beta sheet, and a second, two-stranded, antiparallel sheet. The two beta-sheets lie at roughly right angles to each other, with the helix nestled between the two, adopting an SRCR fold. The exact function of this domain has not been identified, though it probably may serve to orient the protease domain or place it in the vicinity of its substrate. 0 -351779 cl02510 TGF_beta Transforming growth factor beta like domain. Family members are active as disulphide-linked homo- or heterodimers. TGFB is a multifunctional peptide that controls proliferation, differentiation, and other functions in many cell types. 0 -351780 cl02511 GH64-TLP-SF glycoside hydrolase family 64 (beta-1,3-glucanases which produce specific pentasaccharide oligomers) and thaumatin-like proteins. Family 64 glycoside hydrolases have beta-1,3-glucanase activity. 0 -351781 cl02512 NTR_like N/A. Sequence similarity between netrin UNC-6 and C345C complement protein family members, and hence the existence of the UNC-6 module, was first reported in. Subsequently, many additional members of the family were identified on the basis of sequence similarity between the C-terminal domains of netrins, complement proteins C3, C4, C5, secreted frizzled-related proteins, and type I pro-collagen C-proteinase enhancer proteins (PCOLCEs), which are homologous with the N-terminal domains of tissue inhibitors of metalloproteinases (TIMPs). The TIMPs are classified as a separate family in Pfam (pfam00965). This expanded domain family has been named as the NTR module. 0 -321964 cl02516 VWD von Willebrand factor type D domain. Von Willebrand factor contains several type D domains: D1 and D2 are present within the N-terminal propeptide whereas the remaining D domains are required for multimerisation. 0 -351782 cl02517 ZU5 ZU5 domain. Domain of unknown function. 0 -351783 cl02518 BTB BTB/POZ domain. In voltage-gated K+ channels this domain is responsible for subfamily-specific assembly of alpha-subunits into functional tetrameric channels. In KCTD1 this domain functions as a transcriptional repressor. It also mediates homomultimerisation of KCTD1 and interaction of KCTD1 with the transcription factor AP-2-alpha. 0 -321967 cl02520 REM N/A. A subset of guanine nucleotide exchange factor for Ras-like small GTPases appear to possess this motif/domain N-terminal to the RasGef (Cdc25-like) domain. 0 -351784 cl02521 CBM_1 Fungal cellulose binding domain. Small four-cysteine cellulose-binding domain of fungi 0 -351785 cl02522 Calx-beta Calx-beta domain. Domain in Na-Ca exchangers and integrin subunit beta4 (and some cyanobacterial proteins) 0 -321970 cl02524 GAS2 Growth-Arrest-Specific Protein 2 Domain. GROWTH-ARREST-SPECIFIC PROTEIN 2 Domain 0 -351786 cl02526 Peptidase_S41 C-terminal processing peptidase family S41. tail specific protease 0 -351787 cl02528 Crystall Beta/Gamma crystallin. Beta/gamma crystallins 0 -351788 cl02529 Ank Ankyrin repeat. Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. This repeat-domain is a 'membrane-binding' domain of up to 24 repeated units, and it mediates most of the protein's binding activities. 0 -351789 cl02533 SOCS N/A. The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases. 0 -351790 cl02535 F-box F-box domain. This is an F-box-like family. 0 -351791 cl02536 SAND SAND domain. The DNA binding activity of two proteins has been mapped to the SAND domain. The conserved KDWK motif is necessary for DNA binding, and it appears to be important for dimerization. This region is also found in the putative transcription factor RegA from the multicellular green alga Volvox cateri. This region of RegA is known as the VARL domain. 0 -351792 cl02539 BAG BAG domain. BAG domains, present in Bcl-2-associated athanogene 1 and silencer of death domains 0 -351793 cl02541 CIDE_N N/A. This domain is found in CAD nuclease and ICAD, the inhibitor of CAD nuclease. The two proteins interact through this domain. 0 -351794 cl02542 DnaJ N/A. DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are confirmed as DnaJ containing domains from literature. 0 -351795 cl02544 VHS_ENTH_ANTH VHS, ENTH and ANTH domain superfamily. Huntingtin-interacting protein 1-related protein (HIP1R), also called HIP12, promotes clathrin assembly in vitro. It is an endocytic protein involved in receptor trafficking, including regulating cell surface expression of receptor tyrosine kinases. Low HIP1R protein expression is associated with worse survival in diffuse large B-cell lymphoma (DLBCL) patients; it is preferentially expressed in germinal center B-cell (GCB)-like DLBCL, and may be potentially useful in subtyping DLBCL cases. HIP1R contains an N-terminal ANTH, a central clathrin-binding colied-coil, and a C-terminal actin-binding talin-like (also called I/LWEQ) domain. ANTH domains bind both inositol phospholipids and proteins, and contribute to the nucleation and formation of clathrin coats on membranes. The ANTH domain is a unique module whose N-terminal half is structurally similar to the Epsin N-Terminal Homology (ENTH) and Vps27/Hrs/STAM (VHS) domains, containing a superhelix of eight alpha helices. In addition, it contains a coiled-coil C-terminal half with strutural similarity to spectrin repeats. It binds phosphoinositide PtdIns(4,5)P2 at a short conserved motif K[X]9[K/R][H/Y] between helices 1 and 2. The ANTH domain of mammalian HIP1R was found to preferentially bind PtdIns(3,5)P2 instead of PtdIns(4,5)P2, which is considered to be an interaction hub in the clathrin interactome. This model describes the N-terminal region of ANTH domain of Huntingtin-interacting protein 1-related protein. 0 -351796 cl02546 Granulin Granulin. 0 -351797 cl02548 Laminin_B Laminin B (Domain IV). 0 -351798 cl02549 OLF Olfactomedin-like domain. 0 -351799 cl02553 Peptidase_C19 N/A. A subfamily of peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome. 0 -351800 cl02554 PWWP N/A. The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain binds to Histone-4 methylated at lysine-20, H4K20me, suggesting that it is methyl-lysine recognition motif. Removal of two conserved aromatic residues in a hydrophobic cavity created by this domain within the full-length protein, Pdp1, abolishes the interaction o f the protein with H4K20me3. In fission yeast, Set9 is the sole enzyme that catalyzes all three states of H4K20me, and Set9-mediated H4K20me is required for efficient recruitment of checkpoint protein Crb2 to sites of DNA damage. The methylation of H4K20 is involved in a diverse array of cellular processes, such as organising higher-order chromatin, maintaining genome stability, and regulating cell-cycle progression. 0 -351801 cl02556 Bromodomain N/A. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 0 -351802 cl02557 DM DM DNA binding domain. The DM domain is named after dsx and mab-3. dsx contains a single amino-terminal DM domain, whereas mab-3 contains two amino-terminal domains. The DM domain has a pattern of conserved zinc chelating residues C2H2C4. The dsx DM domain has been shown to dimerize and bind palindromic DNA. 0 -351803 cl02558 GED Dynamin GTPase effector domain. 0 -351804 cl02559 GPS GPCR proteolysis site, GPS, motif. Present in latrophilin/CL-1, sea urchin REJ and polycystin. 0 -351805 cl02562 PWI PWI domain. 0 -321991 cl02563 PX_domain The Phox Homology domain, a phosphoinositide binding module. PX domains bind to phosphoinositides. 0 -321992 cl02564 PXA PXA domain. unpubl. observations 0 -321993 cl02565 RGS Regulator of G protein signaling (RGS) domain superfamily. RGS family members are GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. 0 -351806 cl02566 SET SET domain. Putative methyl transferase, based on outlier plant homologues 0 -321995 cl02568 WSC WSC domain. Domain present in WSC proteins, polycystin and fungal exoglucanase 0 -351807 cl02569 RasGAP Ras GTPase Activating Domain. This family features the C-terminal regions of various plexins. Plexins are receptors for semaphorins, and plexin signalling is important in path finding and patterning of both neurons and developing blood vessels. The cytoplasmic region, which has been called a SEX domain in some members of this family, is involved in downstream signalling pathways, by interaction with proteins such as Rac1, RhoD, Rnd1 and other plexins. This domain acts as a RasGAP domain. 0 -351808 cl02570 RhoGAP N/A. GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. 0 -351809 cl02571 RhoGEF N/A. Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. 0 -351810 cl02573 TUDOR N/A. Members of this family consist of ten beta-strands and a carboxy-terminal alpha-helix. The amino-terminal five beta-strands and the C-terminal five beta-strands adopt folds that are identical to each other. This domain is essential for the recruitment of proteins to double stranded breaks in DNA, which is mediated by interaction with methylated Lys 79 of histone H3. 0 -351811 cl02574 Annexin Annexin. This family of annexins also includes giardin that has been shown to function as an annexin. 0 -351812 cl02575 Bcl-2_like N/A. (BH1, BH2, (BH3 (one helix only)) and not BH4(one helix only)). Involved in apoptosis regulation 0 -351813 cl02578 HRDC HRDC domain. RecQ helicases unwind DNA in an ATP-dependent manner. Sgs1 has a HRDC (helicase and RNaseD C-terminal) domain which modulates the helicase function via auxiliary contacts to DNA. 0 -351814 cl02581 KRAB_A-box KRAB (Kruppel-associated box) domain -A box. The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation. 0 -351815 cl02594 DD_R_PKA Dimerization/Docking domain of the Regulatory subunit of cAMP-dependent protein kinase and similar domains. cAMP-dependent protein kinase (PKA) is a serine/threonine kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. There are two classes of R subunits, RI and RII; each exists as two isoforms (alpha and beta) from distinct genes. These functionally non-redundant R isoforms allow for specificity in PKA signaling. RII subunits contain a phosphorylation site in their inhibitory site and are both substrates and inhibitors. RIIbeta plays an important role in adipocytes and neuronal tissues. Mice deficient with RIIbeta have small fat cells, and are resistant to obesity, diet-induced diabetes, and alcohol-induced motor defects. The R subunit contains an N-terminal dimerization/docking (D/D) domain, a linker with an inhibitory sequence, and two c-AMP binding domains. The D/D domain dimerizes to form a four-helix bundle that serves as a docking site for A-kinase-anchoring proteins (AKAPs), which facilitates the localization of PKA to specific sites in the cell. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. 0 -351816 cl02596 NR_DBD_like DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers. In nearly all cases, this is the DNA binding domain of a nuclear hormone receptor. The alignment contains two Zinc finger domains that are too dissimilar to be aligned with each other. 0 -351817 cl02598 Copper-fist Copper fist DNA binding domain. The domain is named for its resemblance to a fist. It can be found in some fungal transcription factors. These proteins activate the transcription of the metallothionein gene in response to copper. Metallothionein maintains copper levels in yeast. The copper fist domain is similar in structure to metallothionein itself, and on copper binding undergoes a large conformational change, which allows DNA binding. 0 -351818 cl02599 Ets Ets-domain. variation of the helix-turn-helix motif 0 -351819 cl02600 HTH_MerR-SF Helix-Turn-Helix DNA binding domain of transcription regulators from the MerR superfamily. This domain is a DNA-binding helix-turn-helix domain. 0 -351820 cl02601 PSI Plexin repeat. A cysteine rich repeat found in several different extracellular receptors. The function of the repeat is unknown. Three copies of the repeat are found Plexin. Two copies of the repeat are found in mahogany protein. A related C. elegans protein contains four copies of the repeat. The Met receptor contains a single copy of the repeat. The Pfam alignment shows 6 conserved cysteine residues that may form three conserved disulphide bridges, whereas shows 8 conserved cysteines. The pattern of conservation suggests that cysteines 5 and 7 (that are not absolutely conserved) form a disulphide bridge (Personal observation. A Bateman). 0 -322009 cl02602 STE STE like transcription factor. 0 -322010 cl02603 TEA TEA/ATTS domain family. 0 -351821 cl02605 SCAN SCAN oligomerization domain. The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several pfam00096 proteins. The domain has been shown to be able to mediate homo- and hetero-oligomerization. 0 -351822 cl02608 BAH N/A. This domain has been called BAH (Bromo adjacent homology) domain and has also been called ELM1 and BAM (Bromo adjacent motif) domain. The function of this domain is unknown but may be involved in protein-protein interaction. 0 -351823 cl02609 Zn-ribbon C-terminal zinc ribbon domain of RNA polymerase intrinsic transcript cleavage subunit. TFIIS is a zinc-containing transcription factor. It has been shown in vitro to have distinct biochemical activities, including binding to RNA polymerases, stimulation of transcript elongation, and activation of a nascent RNA cleavage activity in the RNA polymerase II (Pol II) elongation complex. TFIIS consists of three domains. Domain II and III are sufficient for all known TFIIS activities. Domain III is a zinc ribbon that separated from domain II by a long linker and is indispensable for TFIIS function. The TFIIS homologs, subunits A12.2, B9, and C11, of Pol I, II, and III respectively, are required for RNA cleavage by the polymerases. In a single organism, there are tissue-specific TFIIS related proteins. 0 -351824 cl02610 FF FF domain. RhoGAP-FF1 is the FF domain of the Rho GTPase activating proteins (GAPs). These are the key proteins that make the switch between the active guanosine-triphosphate-bound form of Rho guanosine triphosphatases (GTPases) and the inactive guanosine-diphosphate-bound form. Rho guanosine triphosphatases (GTPases) are a family of proteins with key roles in the regulation of actin cytoskeleton dynamics. The RhoGAP-FF1 region contains the FF domain that has been implicated in binding to the transcription factor TFII-I; and phosphorylation of Tyr308 within the first FF domain inhibits this interaction. The RhoGAPFF1 domain constitutes the first solved structure of an FF domain that lacks the first of the two highly conserved Phe residues, but the substitution of Phe by Tyr does not affect the domain fold. 0 -351825 cl02611 G-patch G-patch domain. Yeast Spp2, a G-patch protein and spliceosome component, interacts with the ATP-dependent DExH-box splicing factor Prp2. As this interaction involves the G-patch sequence in Spp2 and is required for the recruitment of Prp2 to the spliceosome before the first catalytic step of splicing, it is proposed that Spp2 might be an accessory factor that confers spliceosome specificity on Prp2. 0 -351826 cl02612 Link_Domain N/A. Link_domain_KIAA0527_like; this domain is found in the human protein KIAA0527. Sequence-wise, it is highly similar to the link domain. The link domain is a hyaluronan-binding (HA) domain. KIAA0527 contains a single link module. The KIAA0527 gene was originally cloned from human brain tissue. 0 -351827 cl02614 SPRY SPRY domain. SPRY Domain is named from SPla and the RYanodine Receptor. Domain of unknown function. Distant homologs are domains in butyrophilin/marenostrin/pyrin homologs. 0 -351828 cl02616 MACPF MAC/Perforin domain. Membrane attack complex/ Perforin (MACPF) Superfamily; Provisional 0 -322019 cl02617 Sorb Sorbin homologous domain. First found in the peptide hormone sorbin and later in the ponsin/ArgBP2/vinexin family of proteins. 0 -351829 cl02619 Smr Smr domain. hypothetical protein; Provisional 0 -351830 cl02620 SAD_SRA SAD/SRA domain. Domain of unknown function in SET domain containing proteins and in Deinococcus radiodurans DRA1533. 0 -322022 cl02621 TGF_beta_GS Transforming growth factor beta type I GS-motif. Aa approx. 30 amino acid motif that precedes the kinase domain in types I and II TGF beta receptors. Mutation of two or more of the serines or threonines in the TTSGSGSG of TGF-beta type I receptor impairs phosphorylation and signaling activity. 0 -351831 cl02622 Pre-SET Pre-SET motif. A Cys-rich putative Zn2+-binding domain that occurs N-terminal to some SET domains. Function is unknown. Unpublished. 0 -322024 cl02623 WIF WIF domain. Occurs as extracellular domain in metazoan Ryk receptor tyrosine kinases. C. elegans Ryk is required for cell-cuticle recognition. WIF-1 binds to Wnt and inhibits its activity. 0 -351832 cl02626 DNA_pol_A Family A polymerase primarily fills DNA gaps that arise during DNA repair, recombination and replication. Family A polymerase functions primarily to fill DNA gaps that arise during DNA repair, recombination and replication. DNA-dependent DNA polymerases can be classified in six main groups based upon phylogenetic relationships with E. coli polymerase I (classA), E. coli polymerase II (class B), E.coli polymerase III (class C), euryarchaaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family A polymerase are found primarily in organisms related to prokaryotes and include prokaryotic DNA polymerase I ,mitochondrial polymerase delta, and several bacteriphage polymerases including those from odd-numbered phage (T3, T5, and T7). Prokaryotic Pol Is have two functional domains located on the same polypeptide; a 5'-3' polymerase and 5'-3' exonuclease. Pol I uses its 5' nuclease activity to remove the ribonucleotide portion of newly synthesized Okazaki fragments and DNA polymerase activity to fill in the resulting gap. A combination of phylogenomic and signature sequence-based (or phonetic) approaches is used to understand the evolutionary relationships among bacteria. DNA polymerase I is one of the conserved proteins that is used to search for protein signatures. The structure of these polymerases resembles in overall morphology a cupped human right hand, with fingers (which bind an incoming nucleotide and interact with the single-stranded template), palm (which harbors the catalytic amino acid residues and also binds an incoming dNTP) and thumb (which binds double-stranded DNA) subdomains. 0 -351833 cl02628 XPG_N XPG N-terminal domain. domain in nucleases 0 -322027 cl02629 CBM_14 Chitin binding Peritrophin-A domain. This domain is called the Peritrophin-A domain and is found in chitin binding proteins particularly peritrophic matrix proteins of insects and animal chitinases. Copies of the domain are also found in some baculoviruses. Relevant references that describe proteins with this domain include. It is an extracellular domain that contains six conserved cysteines that probably form three disulphide bridges. Chitin binding has been demonstrated for a protein containing only two of these domains. 0 -351834 cl02632 PRP4 pre-mRNA processing factor 4 (PRP4) like. This small domain is found on PRP4 ribonuleoproteins. PRP4 is a U4/U6 small nuclear ribonucleoprotein that is involved in pre-mRNA processing. 0 -351835 cl02633 ARID ARID/BRIGHT DNA binding domain. Members of the recently discovered ARID (AT-rich interaction domain) family of DNA-binding proteins are found in fungi and invertebrate and vertebrate metazoans. ARID-encoding genes are involved in a variety of biological processes including embryonic development, cell lineage gene regulation and cell cycle control. Although the specific roles of this domain and of ARID-containing proteins in transcriptional regulation are yet to be elucidated, they include both positive and negative transcriptional regulation and a likely involvement in the modification of chromatin structure. The basic structure of the ARID domain domain appears to be a series of six alpha-helices separated by beta-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. Based on primary sequence homology, they can be partitioned into three structural classes: Minimal ARID proteins that consist of a core domain formed by six alpha helices; ARID proteins that supplement the core domain with an N-terminal alpha-helix; and Extended-ARID proteins, which contain the core domain and additional alpha-helices at their N- and C-termini. 0 -351836 cl02637 TFIIS_M Transcription factor S-II (TFIIS), central domain. Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III), this domain and pfam01096 are required for transcription activity. 0 -351837 cl02638 Hairy_orange Hairy Orange. This domain confers specificity among members of the Hairy/E(SPL) family. 0 -351838 cl02640 SAP SAP domain. The SAP (after SAF-A/B, Acinus and PIAS) motif is a putative DNA/RNA binding domain found in diverse nuclear and cytoplasmic proteins. 0 -351839 cl02642 PABP Poly-adenylate binding protein, unique domain. Involved in homodimerisation (either directly or indirectly) 0 -351840 cl02643 PSP PSP. Proline rich domain found in numerous spliceosome associated proteins. 0 -351841 cl02648 NIDO Nidogen-like. This is a nidogen-like domain (NIDO) domain and is an extracellular domain found in nidogen and hypothetical proteins of unknown function. 0 -351842 cl02649 LEM LEM (Lap2/Emerin/Man1) domain found in emerin, lamina-associated polypeptide 2 (LAP2), inner nuclear membrane protein Man1 and similar proteins. The LEM domain is 50 residues long and is composed of two parallel alpha helices. This domain is found in inner nuclear membrane proteins. It is called the LEM domain after LAP2, Emerin, and Man1. 0 -351843 cl02650 FYRN F/Y-rich N-terminus. is sometimes closely juxtaposed with the C-terminal region (FYRC), but sometimes is far distant. Unknown function, but occurs frequently in chromatin-associated proteins. 0 -351844 cl02651 FYRC F/Y rich C-terminus. is sometimes closely juxtaposed with the N-terminal region (FYRN), but sometimes is far distant. Unknown function, but occurs frequently in chromatin-associated proteins. 0 -295415 cl02652 MIF4G MIF4G domain. Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press) 0 -351845 cl02653 MA3 MA3 domain. Highly alpha-helical. May contain repeats and/or regions similar to MIF4G domains Ponting (TIBS) "Novel eIF4G domain homologues" in press 0 -295417 cl02656 zf-RanBP Zn-finger in Ran binding protein and others. Zinc finger domain in Ran-binding proteins (RanBPs), and other proteins. In RanBPs, this domain binds RanGDP. 0 -351846 cl02658 TAFH NHR1 homology to TAF. Domain in Drosophila nervy, CBFA2T1, human TAF105, human TAF130, and Drosophila TAF110. Also known as nervy homology region 1 (NHR1). 0 -295419 cl02659 z-alpha Adenosine deaminase z-alpha domain. Helix-turn-helix-containing domain. Also known as Zab. 0 -351847 cl02660 zf-TAZ TAZ zinc finger. The TAZ2 domain of CBP binds to other transcription factors such as the p53 tumor suppressor protein, E1A oncoprotein, MyoD, and GATA-1. The zinc coordinating motif that is necessary for binding to target DNA sequences consists of HCCC. 0 -351848 cl02661 A_deamin Adenosine-deaminase (editase) domain. Adenosine deaminases acting on RNA (ADARs) can deaminate adenosine to form inosine. In long double-stranded RNA, this process is non-specific; it occurs site-specifically in RNA transcripts. The former is important in defense against viruses, whereas the latter may affect splicing or untranslated regions. They are primarily nuclear proteins, but a longer isoform of ADAR1 is found predominantly in the cytoplasm. ADARs are derived from the Tad1-like tRNA deaminases that are present across eukaryotes. These in turn belong to the nucleotide/nucleic acid deaminase superfamily and are characterized by a distinct insert between the two conserved cysteines that are involved in binding zinc. 0 -351849 cl02662 SEP SEP domain. The SEP domain is named after Saccharomyces cerevisiae Shp1, Drosophila melanogaster eyes closed gene (eyc), and vertebrate p47. In p47, the SEP domain has been shown to bind to and inhibit the cysteine protease cathepsin L. Most SEP domains are succeeded closely by a UBX domain. 0 -322043 cl02663 Fasciclin Fasciclin domain. This extracellular domain is found repeated four times in grasshopper fasciclin I as well as in proteins from mammals, sea urchins, plants, yeast and bacteria. 0 -351850 cl02666 KU N/A. The Ku heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. This is the central DNA-binding beta-barrel domain. This domain is found in both the Ku70 and Ku80 proteins that form a DNA binding heterodimer. 0 -351851 cl02672 L27 L27 domain. The L27 domain is a protein interaction module that exists in a large family of scaffold proteins, functioning as an organisation centre of large protein assemblies required for the establishment and maintenance of cell polarity. L27 domains form specific heterotetrameric complexes, in which each domain contains three alpha-helices. 0 -351852 cl02674 DDT DDT domain. The DDT domain is named after (DNA binding homeobox and Different Transcription factors) and is approximately 60 residues in length. Along with the WHIM motifs, it comprises an entirely alpha helical module found in diverse eukaryotic chromatin proteins. Based on the structure of Ioc3, this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. In particular, the DDT domain, in combination with the WHIM1 and WHIM2 motifs form the SLIDE domain binding pocket. 0 -295427 cl02675 DZF DZF domain. The function of this domain is unknown. It is often found associated with pfam00098 or pfam00035. This domain has been predicted to belong to the nucleotidyltransferase superfamily. 0 -351853 cl02676 HSA HSA. This domain is predicted to bind DNA and is often found associated with helicases. 0 -351854 cl02677 POX Associated with HOX. The function of this domain is unknown. It is often found in plant proteins associated with pfam00046. 0 -322049 cl02684 zf-DBF DBF zinc finger. This domain is predicted to bind metal ions and is often found associated with pfam00533 and pfam02178. It was first identified in the Drosophila chiffon gene product, and is associated with initiation of DNA replication. 0 -351855 cl02686 PRY SPRY-associated domain. SPRY and PRY domains occur on PYRIN proteins. Their function is not known. 0 -322051 cl02687 RWD RWD domain. This domain was identified in WD40 repeat proteins and Ring finger domain proteins. The function of this domain is unknown. GCN2 is the alpha-subunit of the only translation initiation factor (eIF2 alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices. 0 -351856 cl02688 BRK BRK domain. The function of this domain is unknown. It is often found associated with helicases and transcription factors. 0 -322053 cl02689 RUN RUN domain. This domain is present in several proteins that are linked to the functions of GTPases in the Rap and Rab families. They could hence play important roles in multiple Ras-like GTPase signalling pathways. The domain is comprises six conserved regions, which in some proteins have considerable insertions between them. The domain core is thought to take up a predominantly alpha fold, with basic amino acids in regions A and D possibly playing a functional role in interactions with Ras GTPases. 0 -351857 cl02694 LCCL LCCL domain. Rxt3 has been shown in yeast to be required for histone deacetylation. 0 -351858 cl02699 VIT Vault protein inter-alpha-trypsin domain. Inter-alpha-trypsin inhibitors (ITIs) consist of one light chain and a variable set of heavy chains. ITIs play a role in extracellular matrix (ECM) stabilisation and tumor metastasis as well as in plasma protease inhibition. The vault protein inter-alpha-trypsin (VIT) domain described here is found to the N-terminus of a von Willebrand factor type A domain (pfam00092) in ITI heavy chains (ITIHs) and their precursors. 0 -351859 cl02701 Kelch_1 Kelch motif. The kelch motif was initially discovered in Kelch. In this protein there are six copies of the motif. It has been shown that Drosophila ring canal kelch protein is related to Galactose Oxidase for which a structure has been solved. The kelch motif forms a beta sheet. Several of these sheets associate to form a beta propeller structure as found in pfam00064, pfam00400 and pfam00415. 0 -351860 cl02703 zf-BED BED zinc finger. DNA-binding domain in chromatin-boundary-element-binding proteins and transposases 0 -351861 cl02704 EphR_LBD Ligand Binding Domain of Ephrin Receptors. The Eph receptors, which bind to ephrins pfam00812 are a large family of receptor tyrosine kinases. This family represents the amino terminal domain which binds the ephrin ligand. 0 -351862 cl02706 Malt_amylase_C Maltogenic Amylase, C-terminal domain. This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 110 amino acids in length. This domain is found associated with pfam00128, pfam02922. 0 -351863 cl02708 Big_2 Bacterial Ig-like domain (group 2). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in bacterial and phage surface proteins such as intimins. 0 -351864 cl02712 PGRP N/A. This family includes zinc amidases that have N-acetylmuramoyl-L-alanine amidase activity EC:3.5.1.28. This enzyme domain cleaves the amide bond between N-acetylmuramoyl and L-amino acids in bacterial cell walls (preferentially: D-lactyl-L-Ala). The structure is known for the bacteriophage T7 structure and shows that two of the conserved histidines are zinc binding. 0 -351865 cl02713 MurNAc-LAA N/A. This enzyme domain cleaves the amide bond between N-acetylmuramoyl and L-amino acids in bacterial cell walls. 0 -351866 cl02715 Surp Surp module. domain present in regulators which are responsible for pre-mRNA splicing processes 0 -351867 cl02716 RNA_pol_Rpb8 RNA polymerase Rpb8. RNA_pol_RpbG is a family of archaeal and fungal subunit G of DNA-directed RNA polymerase. 0 -295446 cl02717 RNA_POL_M_15KD RNA polymerases M/15 Kd subunit. 0 -295447 cl02720 PB1 N/A. Phox and Bem1p domain, present in many eukaryotic cytoplasmic signalling proteins. The domain adopts a beta-grasp fold, similar to that found in ubiquitin and Ras-binding domains. A motif, variously termed OPR, PC and AID, represents the most conserved region of the majority of PB1 domains, and is necessary for PB1 domain function. This function is the formation of PB1 domain heterodimers, although not all PB1 domain pairs associate. 0 -351868 cl02729 WWE WWE domain. The WWE domain is named after three of its conserved residues and is predicted to mediate specific protein- protein interactions in ubiquitin and ADP ribose conjugation systems. 0 -351869 cl02731 CLIP Regulatory CLIP domain of proteinases. Present in horseshoe crab proclotting enzyme N-terminal domain, Drosophila Easter and silkworm prophenoloxidase-activating enzyme. 0 -351870 cl02735 DM13 Electron transfer DM13. The DM13 domain is a component of a novel electron-transfer system potentially involved in oxidative modification of animal cell-surface proteins. It contains a nearly absolutely conserved cysteine, which could be involved in a redox reaction, either as a naked thiol group or through binding a prosthetic group like heme. 0 -351871 cl02739 THAP THAP domain. It features the conserved C2CH architecture (consensus sequence: Cys - 2-4 residues - Cys - 35-50 residues - Cys - 2 residues - His). Other universal features include the location of the domain at the N-termini of proteins, its size of about 90 residues, a C-terminal AVPTIF box and several other conserved residues. Orthologues of the human THAP domain have been identified in other vertebrates and probably worms and flies, but not in other eukaryotes or any prokaryotes. 0 -351872 cl02748 zf-CDGSH Iron-binding zinc finger CDGSH type. The CDGSH-type zinc finger domain binds iron rather than zinc as a redox-active pH-labile 2Fe-2S cluster. The conserved sequence C-X-C-X2-(S/T)-X3-P-X-C-D-G-(S/A/T)-H is a defining feature of this family. The domain is oriented towards the cytoplasm and is tethered to the mitochondrial membrane by a more N-terminal domain found in higher vertebrates, MitoNEET_N, pfam10660. The domain forms a uniquely folded homo-dimer and spans the outer mitochondrial membrane, orienting the iron-binding residues towards the cytoplasm. 0 -351873 cl02754 zf-LITAF-like LITAF-like zinc ribbon domain. Members of this family display a conserved zinc ribbon structure with the motif C-XX-C- separated from the more C-terminal HX-C(P)X-C-X4-G-R motif by a variable region of usually 25-30 (hydrophobic) residues. Although it belongs to one of the zinc finger's fold groups (zinc ribbon), this particular domain was first identified in LPS-induced tumor necrosis alpha factor (LITAF) which is produced in mammalian cells after being challenged with lipopolysaccharide (LPS). The hydrophobic region probably inserts into the membrane rather than traversing it. Such an insertion brings together the N- and C-terminal C-XX-C motifs to form a compact Zn2+-binding structure. 0 -351874 cl02755 LAM LA motif RNA-binding domain. This presumed domain is found at the N-terminus of La RNA-binding proteins as well as other proteins. The function of this region is uncertain. 0 -351875 cl02758 AMOP AMOP domain. This domain may have a role in cell adhesion. It is called the AMOP domain after Adhesion associated domain in MUC4 and Other Proteins. This domain is extracellular and contains a number of cysteines that probably form disulphide bridges. 0 -351876 cl02759 TRAM_LAG1_CLN8 TLC domain. Protein domain with at least 5 transmembrane alpha-helices. Lag1p and Lac1p are essential for acyl-CoA-dependent ceramide synthesis, TRAM is a subunit of the translocon and the CLN8 gene is mutated in Northern epilepsy syndrome. The family may possess multiple functions such as lipid trafficking, metabolism, or sensing. Trh homologues possess additional homeobox domains. 0 -351877 cl02760 NEAT NEAr Transport domain, a component of cell surface proteins. NEAT domains are heme and/or hemoprotein-binding modules highly conserved in secondary structure. They have roles in hemoprotein binding, heme extraction and heme transfer 0 -351878 cl02763 ChW Clostridial hydrophobic W. A novel extracellular macromolecular system has been proposed based on the proteins containing ChW repeats. ChW stands for Clostridial hydrophobic with conserved W (tryptophan). This repeat was originally described in Clostridium acetobutylicum but is also found in other Gram-positive bacteria including Enterococcus faecalis, Streptococcus agalactiae and Streptomyces coelicolor. 0 -351879 cl02766 NGN N-Utilization Substance G (NusG) N-terminal (NGN) domain Superfamily. Spt5p and prokaryotic NusG are shown to contain a novel 'NGN' domain. The combined NGN and KOW motif regions of Spt5 form the binding domain with Spt4. Spt5 complexes with Spt4 as a 1:1 heterodimer snf this Spt5-Spt4 complex regulates early transcription elongation by RNA polymerase II and has an imputed role in pre-mRNA processing via its physical association with mRNA capping enzymes. The Schizosaccharomyces pombe core Spt5-Spt4 complex is a heterodimer bearing a trypsin-resistant Spt4-binding domain within the Spt5 subunit. 0 -351880 cl02768 PASTA N/A. This domain is found at the C termini of several Penicillin-binding proteins and bacterial serine/threonine kinases. It binds the beta-lactam stem, which implicates it in sensing D-alanyl-D-alanine - the PBP transpeptidase substrate. It is a small globular fold consisting of 3 beta-sheets and an alpha-helix. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 0 -351881 cl02770 CFEM CFEM domain. This fungal specific cysteine rich domain is found in some proteins with proposed roles in fungal pathogenesis. The structure of the CFEM domain containing protein 'Surface antigen protein 2' from Candida albicans has been solved. 0 -351882 cl02772 BSD BSD domain. This domain contains a distinctive -FW- motif. It is found in a family of eukaryotic transcription factors as well as a set of proteins of unknown function. 0 -275778 cl02773 HTTM Horizontally Transferred TransMembrane Domain. Members of this protein family resemble SdpB (Sporulation Delaying Protein B), an integral membrane protein associated with production of the cannibalism peptide SdpC in Bacillus subtilis. Similar proteins are found in Myxococcus xanthus. 0 -351883 cl02774 Topoisomer_IB_N N/A. Topoisomerase I promotes the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. This family may be more than one structural domain. 0 -351884 cl02775 Oxidoreductase_nitrogenase N/A. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. This metal cluster-binding family is related to nitrogenase structural protein NifD and accessory protein NifE, among others. [Energy metabolism, Methanogenesis] 0 -351885 cl02776 GST_C_family C-terminal, alpha helical domain of the Glutathione S-transferase family. This domain is closely related to pfam00043. 0 -351886 cl02777 chaperonin_like N/A. This family consists of GroEL, the larger subunit of the GroEL/GroES cytosolic chaperonin. It is found in bacteria, organelles derived from bacteria, and occasionally in the Archaea. The bacterial GroEL/GroES group I chaperonin is replaced a group II chaperonin, usually called the thermosome in the Archaeota and CCT (chaperone-containing TCP) in the Eukaryota. GroEL, thermosome subunits, and CCT subunits all fall under the scope of pfam00118. [Protein fate, Protein folding and stabilization] 0 -351887 cl02779 TRFH N/A. Telomere repeat binding factor (TRF) family proteins are important for the regulation of telomere stability. The two related human TRF proteins hTRF1 and hTRF2 form homodimers and bind directly to telomeric TTAGGG repeats via the myb DNA binding domain pfam00249 at the carboxy terminus. TRF1 is implicated in telomere length regulation and TRF2 in telomere protection. Other telomere complex associated proteins are recruited through their interaction with either TRF1 or TRF2. The fission yeast protein Taz1p (telomere-associated in Schizosaccharomyces pombe) has similarity to both hTRF1 and hTRF2 and may perform the dual functions of TRF1 and TRF2 at fission yeast telomeres. This domain is composed of multiple alpha helices arranged in a solenoid conformation similar to TPR repeats. The fungal members have now also been found to carry two double strand telomeric repeat binding factors. 0 -322085 cl02780 MIT_C N/A. MIT_C is the C-terminal domain of MIT-containing proteins, pfam04212. It contains an unanticipated phospholipase d fold (PLD fold) that binds avidly to phosphoinositide-containing membranes. It is conserved in eukaryotes, though not fungi and plants, and some bacteria. 0 -351888 cl02781 tetraspanin_LEL N/A. Tetraspanin, extracellular domain or large extracellular loop (LEL), oculospanin_like family. Tetraspanins are trans-membrane proteins with 4 trans-membrane segments. Both the N- and C-termini lie on the intracellular side of the membrane. This alignment model spans the extracellular domain between the 3rd and 4th trans-membrane segment. Tetraspanins are involved in diverse processes and their various functions may relate to their ability to act as molecular facilitators. Tetraspanins associate laterally with one another and cluster dynamically with numerous parnter domains in membrane microdomains, forming a network of multimolecular complexes, the "tetraspanin web". This subfamily contains sequences similar to oculospanin, which is found to be expressed in retinal pigment epithelium, iris, ciliary body, and retinal ganglion cells. 0 -351889 cl02782 ERp29c N/A. ERp29 is a ubiquitously expressed endoplasmic reticulum protein found in mammals. ERp29 is comprised of two domains. This domain, the C-terminal domain, has an all helical fold. ERp29 is thought to form part of the thyroglobulin folding complex. 0 -351890 cl02783 TopoII_MutL_Trans N/A. This family represents the second domain of DNA gyrase B which has a ribosomal S5 domain 2-like fold. This family is structurally related to PF01119. 0 -351891 cl02784 Chelatase_Class_II N/A. The function of CbiX is uncertain, however it is found in cobalamin biosynthesis operons and so may have a related function. Some CbiX proteins contain a striking histidine-rich region at their C-terminus, which suggests that it might be involved in metal chelation. 0 -351892 cl02785 Elongation_Factor_C N/A. This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold. 0 -322091 cl02786 Translation_factor_III Domain III of Elongation factor (EF) Tu (EF-TU) and related proteins. Members of this family, which are found in the initiation factors eIF2 and EF-Tu, adopt a structure consisting of a beta barrel with Greek key topology. They are required for formation of the ternary complex with GTP and initiator tRNA. 0 -351893 cl02787 Translation_Factor_II_like Domain II of Elongation factor Tu (EF-Tu)-like proteins. Elongation factor Tu consists of several structural domains, and this is usually the fourth. 0 -351894 cl02788 Ser_Recombinase N/A. The N-terminal domain of the resolvase family (this family) contains the active site and the dimer interface. The extended arm at the C-terminus of this domain connects to the C-terminal helix-turn-helix domain of resolvase - see pfam02796. 0 -295478 cl02789 EFG_like_IV N/A. This domain is found in elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold. 0 -351895 cl02792 Cyt_c_Oxidase_IV N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit IV. The Dictyostelium member of this family is called COX VI. The yeast protein MTC3 appears to be the yeast COX IV subunit. 0 -351896 cl02793 Cyt_c_Oxidase_Va N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit Va. 0 -322096 cl02794 Cyt_c_Oxidase_VIb N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of the potentially heme-binding subunit IVb of the oxidase. 0 -351897 cl02795 Cyt_c_Oxidase_VIc N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIc. 0 -322098 cl02796 Cyt_c_Oxidase_VIIa N/A. Cytochrome c oxidase, a 13 sub-unit complex, is the terminal oxidase in the mitochondrial electron transport chain. This family also contains both heart and liver isoforms of cytochrome c oxidase subunit VIIa. 0 -351898 cl02797 Cyt_c_Oxidase_VIIc N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIIc. The yeast member of this family is called COX VIII. 0 -351900 cl02806 Laminin_N Laminin N-terminal (Domain VI). N-terminal domain of laminins and laminin-related protein such as Unc-6/ netrins. 0 -295487 cl02808 RT_like N/A. This family includes RNA-dependent RNA polymerase proteins (RdRPs) from Luteovirus, Totivirus and Rotavirus. 0 -351903 cl02823 phosphagen_kinases Phosphagen (guanidino) kinases. The substrate binding site is located in the cleft between N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. 0 -322110 cl02844 Arrestin_C Arrestin (or S-antigen), C-terminal domain. Ig-like beta-sandwich fold. Scop reports duplication with N-terminal domain. Arrestins comprise a family of closely-related proteins that includes beta-arrestin-1 and -2, which regulate the function of beta-adrenergic receptors by binding to their phosphorylated forms, impairing their capacity to activate G(S) proteins; Cone photoreceptors C-arrestin (arrestin-X). which could bind to phosphorylated red/green opsins; and Drosophila phosrestins I and II, which undergo light-induced phosphorylation, and probably play a role in photoreceptor transduction. 0 -351912 cl02872 DHQ_Fe-ADH Dehydroquinate synthase-like (DHQ-like) and iron-containing alcohol dehydrogenases (Fe-ADH). This family contains iron-containing alcohol dehydrogenase (Fe-ADH) which catalyzes the reduction of acetaldehyde to alcohol with NADP as cofactor. Its activity requires iron ions. The protein structure represents a dehydroquinate synthase-like fold and is a member of the iron-activated alcohol dehydrogenase-like family. It is distinct from other alcohol dehydrogenases which contains different protein domains. Proteins of this family have not been characterized. 0 -351914 cl02879 Chloroa_b-bind Chlorophyll A-B binding protein. photosystem II light-harvesting-Chl-binding protein Lhcb6 (CP24); Provisional 0 -351915 cl02885 Ebola_HIV-1-like_HR1-HR2 heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus and human immunodeficiency virus type 1 (HIV-1). This family includes envelope protein from a variety of retroviruses. It includes the GP41 subunit of the envelope protein complex from human and simian immunodeficiency viruses (HIV and SIV) which mediate membrane fusion during viral entry. The family also includes bovine immunodeficiency virus, feline immunodeficiency virus and Equine infectious anaemia (EIAV). The family also includes the Gp36 protein from mouse mammary tumor virus (MMTV) and human endogenous retroviruses (HERVs). 0 -295537 cl02891 E7 E7 protein, Early protein. E7 protein; Provisional 0 -295552 cl02915 Voltage_gated_ClC N/A. ClC-6-like chloride channel proteins. This CD includes ClC-6, ClC-7 and ClC-B, C, D in plants. Proteins in this family are ubiquitous in eukarotes and their functions are unclear. They are expressed in intracellular organelles membranes. This family belongs to the ClC superfamily of chloride ion channels, which share the unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge. ClC chloride ion channel superfamily perform a variety of functions including cellular excitability regulation, cell volume regulation, membrane potential stabilization, acidification of intracellular organelles, signal transduction, and transepithelial transport in animals. 0 -322131 cl02916 POLO_box Polo-box domain (PBD), a C-terminal tandemly repeated region of polo-like kinases. The polo-like Ser/Thr kinases (Plk1, Plk2/Snk, Plk3/Prk/Fnk, Plk4/Sak, and the inactive kinase Plk5) play various roles in cytokinesis and mitosis. At their C-terminus, they contain a tandemly repeated polo-box domain (in the case of Plk4, a tandem repeat of cryptic PBDs is found in the middle of the protein followed by a C-terminal single repeat), which appears to be involved in autoinhibition and in mediating the subcellular localization. The latter may be controlled via interactions between the polo-box domain and phospho-peptide motifs. The phosphopeptide binding site is formed at the interface between the two tandemly repeated PBDs. The PBDs of Plk4/Sak appear unique in participating in homodimer interactions, though it is not clear whether and how they interact with phosphopeptides. 0 -351920 cl02929 Cation_ATPase_C Cation transporting ATPase, C-terminus. PhoLip_ATPase_C is found at the C-terminus of a number of phospholipid-translocating ATPases. It is found in higher eukaryotes. 0 -351921 cl02930 Cation_ATPase_N Cation transporter/ATPase, N-terminus. This entry represents the conserved N-terminal region found in several classes of cation-transporting P-type ATPases, including those that transport H+, Na+, Ca2+, Na+/K+, and H+/K+. In the H+/K+- and Na+/K+-exchange P-ATPases, this domain is found in the catalytic alpha chain. In gastric H+/K+-ATPases, this domain undergoes reversible sequential phosphorylation inducing conformational changes that may be important for regulating the function of these ATPases. 0 -351923 cl02948 GH20_hexosaminidase N/A. This family consists of several uncharacterized proteins found in various Bacteroides and Chloroflexus species. The function of this family is unknown. 0 -322141 cl02954 Gas_vesicle Gas vesicle protein. gas vesicle synthesis-like protein; Reviewed 0 -351925 cl02959 Glyco_hydro_9 Glycosyl hydrolase family 9. endoglucanase 0 -322147 cl02977 Ribosomal_L15e Ribosomal L15. 50S ribosomal protein L15e; Validated 0 -351928 cl02990 ASC Amiloride-sensitive sodium channel. The Epithelial Na+ Channel (ENaC) Family (TC 1.A.06)The ENaC family consists of sodium channels from animals and has no recognizable homologues in other eukaryotes or bacteria. The vertebrate ENaC proteins from epithelial cells cluster tightly together on the phylogenetic tree: voltage-insensitive ENaC homologues are also found in the brain. Eleven sequenced C. elegans proteins, including the degenerins, are distantly related to the vertebrate proteins as well as to each other. At least some ofthese proteins form part of a mechano-transducing complex for touch sensitivity. Other members of the ENaC family, the acid-sensing ion channels, ASIC1-3,are homo- or hetero-oligomeric neuronal H+-gated channels that mediate pain sensation in response to tissue acidosis. The homologous Helix aspersa(FMRF-amide)-activated Na+ channel is the first peptide neurotransmitter-gated ionotropic receptor to be sequenced.Mammalian ENaC is important for the maintenance of Na+ balance and the regulation of blood pressure. Three homologous ENaC subunits, a, b and g, havebeen shown to assemble to form the highly Na+-selective channel.This model is designed from the vertebrate members of the ENaC family. [Transport and binding proteins, Cations and iron carrying compounds] 0 -322156 cl02993 P2X_receptor ATP P2X receptor. ATP-gated Cation Channel (ACC) Family (TC 1.A.7)Members of the ACC family (also called P2X receptors) respond to ATP, a functional neurotransmitter released by exocytosis from many types of neurons.These channels, which function at neuron-neuron and neuron-smooth muscle junctions, may play roles in the control of blood pressure and pain sensation. They may also function in lymphocyte and plateletphysiology. They are found only in animals.ACC channels are probably hetero- or homomultimers and transport small monovalent cations (Me+). Some also transport Ca2+; a few also transport small metabolites. [Transport and binding proteins, Cations and iron carrying compounds] 0 -351931 cl03000 Innexin Innexin. viral inexin-like protein; Provisional 0 -295603 cl03008 ATP-synt_8 ATP synthase protein 8. ATP synthase F0 subunit 8; Provisional 0 -322161 cl03012 Ammonium_transp Ammonium Transporter Family. Members of this protein family are well conserved subclass of putative ammonimum transporters, belonging to the much broader set of ammonium/methylammonium transporter described by TIGR00836. Species with this transporter tend to be marine bacteria. Partial phylogenetic profiling (PPP) picks a member of this protein family as the single best-scoring protein vs. a reference profile for the marine environment Genome Property for a large number of different query genomes. This finding by PPP suggests that this transporter family represents an important adaptation to the marine environment. 0 -322166 cl03026 CBM_3 Cellulose binding domain. 0 -351932 cl03042 MHC_II_beta Class II histocompatibility antigen, beta domain. Class II MHC glycoproteins are expressed on the surface of antigen-presenting cells (APC), including macrophages, dendritic cells and B cells. MHC II proteins present peptide antigens that originate extracellularly from foreign bodies such as bacteria. Proteins from the pathogen are degraded into peptide fragments within the APC, which sequesters these fragments into the endosome so they can bind to MHC class II proteins, before being transported to the cell surface. MHC class II receptors display antigens for recognition by helper T cells (stimulate development of B cell clones) and inflammatory T cells (cause the release of lymphokines that attract other cells to site of infection). 0 -351933 cl03055 DNA_gyraseB_C DNA gyrase B subunit, carboxyl terminus. TOPRIM_C is found as the C-terminal extension of the TOPRIM domain, pfam01751 in metazoa. 0 -351934 cl03056 CPSase_sm_chain Carbamoyl-phosphate synthase small chain, CPSase domain. The carbamoyl-phosphate synthase domain is in the amino terminus of protein. Carbamoyl-phosphate synthase catalyses the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. This important enzyme initiates both the urea cycle and the biosynthesis of arginine and/or pyrimidines. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. The small chain promotes the hydrolysis of glutamine to ammonia, which is used by the large chain to synthesise carbamoyl phosphate. The small chain has a GATase domain in the carboxyl terminus. 0 -351935 cl03058 MHC_II_alpha Class II histocompatibility antigen, alpha domain. Class II MHC glycoproteins are expressed on the surface of antigen-presenting cells (APC), including macrophages, dendritic cells and B cells. MHC II proteins present peptide antigens that originate extracellularly from foreign bodies such as bacteria. Proteins from the pathogen are degraded into peptide fragments within the APC, which sequesters these fragments into the endosome so they can bind to MHC class II proteins, before being transported to the cell surface. MHC class II receptors display antigens for recognition by helper T cells (stimulate development of B cell clones) and inflammatory T cells (cause the release of lymphokines that attract other cells to site of infection). 0 -351936 cl03065 Flavi_M Flavivirus envelope glycoprotein M. Flaviviruses are small enveloped viruses with virions comprised of 3 proteins called C, M and E. The envelope glycoprotein M is made as a precursor, called prM. The precursor portion of the protein is the signal peptide for the proteins entry into the membrane. prM is cleaved to form M in a late-stage cleavage event. Associated with this cleavage is a change in the infectivity and fusion activity of the virus. 0 -351939 cl03075 GrpE nucleotide exchange factor GrpE. heat shock protein GrpE; Provisional 0 -351944 cl03104 CKS Cyclin-dependent kinase regulatory subunit. cyclin-dependent kinases regulatory subunit; Provisional 0 -322196 cl03107 ETX_MTX2 Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2. This family represents the pore forming lobe of aerolysin. 0 -322198 cl03113 Peptidase_U32 Peptidase family U32. putative protease; Provisional 0 -351945 cl03114 RNase_PH RNase PH-like 3'-5' exoribonucleases. This family includes 3'-5' exoribonucleases. Ribonuclease PH contains a single copy of this domain, and removes nucleotide residues following the -CCA terminus of tRNA. Polyribonucleotide nucleotidyltransferase (PNPase) contains two tandem copies of the domain. PNPase is involved in mRNA degradation in a 3'-5' direction. The exosome is a 3'-5' exoribonuclease complex that is required for 3' processing of the 5.8S rRNA. Three of its five protein components contain a copy of this domain. A hypothetical protein from S. pombe appears to belong to an uncharacterized subfamily. This subfamily is found in both eukaryotes and archaebacteria. 0 -351946 cl03119 FpgNei_N N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases. Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the N-terminal domain contains eight beta-strands, forming a beta-sandwich with two alpha-helices parallel to its edges. 0 -322203 cl03120 ELO GNS1/SUR4 family. fatty acid elongase; Provisional 0 -351949 cl03129 T2SSN Type II secretion system (T2SS), protein N. Members of this family are the N (or GspN) protein of type II secretion systems (T2SS) as found in Leptospira, Geobacter, Myxococcus, and several other genera. Sequence similarity to GspN as found in, say, Gammaproteobacteria (see pfam01203) is extremely remote. [Protein fate, Protein and peptide secretion and trafficking] 0 -351951 cl03131 Dynein_light Dynein light chain type 1. dynein light chain; Provisional 0 -351954 cl03141 Ribosomal_S7e Ribosomal protein S7e. 40S ribosomal protein S7; Provisional 0 -351957 cl03152 TbpB_B_D C-lobe and N-lobe beta barrels of Tf-binding protein B. HpuA is a family of Neisseria spp proteins from the hpuAB operon, which are putative porphyrin transporters. 0 -351958 cl03164 Col_Im_like inhibitory immunity (Im) protein of colicin (Col) deoxyribonuclease (DNase) and pyocins. This family contains inhibitory immunity (Im) proteins that bind to colicin endonucleases (DNases) or pyocins with very high affinity and specificity; this is critical for the neutralization of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The DNase colicin family (ColE2, ColE7, ColE8 and ColE9) in E. coli, and pyocin family (S1, S2, S3 and AP41) in P. aeruginosa, are potent bacteriocins where the immunity proteins (Ims) protect the colicin/pyocin producing (i.e. colicinogenic) bacteria by binding and inactivating colicin nucleases. The binding affinities between cognate and non-cognate nucleases by Im proteins can vary up to 10 orders of magnitude. 0 -351959 cl03170 CheB_like methylesterase CheB domain family. This family contains the methylesterase CheB (EC 3.1.1.61; also known as CheB methylesterase, chemotaxis-specific methylesterase, methyl-accepting chemotaxis protein methyl-esterase, or protein methyl-esterase) domain, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors, fused with a CheR domain as well as other domains. Signaling output of the chemotaxis receptors is modulated by CheB and methyltransferase CheR by controlling the level of receptor methylation. cheB and cheR are typically found in the same operon. However, CheB and CheR are fused in multi-domain proteins in this subgroup. The CheR protein/domain includes an all-alpha N-terminal domain and an S-adenosylmethionine-dependent methyltransferase C-terminal domain. Reversible methylation of transmembrane chemoreceptors plays an important role in ligand-dependent signaling and cellular adaptation in bacterial chemotaxis. Phosphorylated CheB catalyzes deamidation of specific glutamine residues in the cytoplasmic region of the chemoreceptors and demethylation of specific methyl glutamate residues introduced into the chemoreceptors by CheR. 0 -295716 cl03179 PARP_regulatory Poly A polymerase regulatory subunit. poly(A) polymerase small subunit; Provisional 0 -322224 cl03181 Peptidase_C25_N Peptidase C25 family N-terminal domain, found in Arg-gingipain (Rgp), Lys-gingipain (Kgp) and related proteins. Domains in this subgroup are uncharacterized members of the Peptidase family C25 N-terminal domain family. Peptidases family C25 are a unique class of cysteine proteases, exemplified by gingipain, which is produced by Porphyromonas gingivalis. P. gingivalis is one of the primary gram-negative pathogens that causes periodontitis, a disease that is also associated with other diseases such as diabetes and cardiovascular disease. Gingipains are a group of extracellular Arg- and Lys-specific proteinases called Arg-gingipain (Rgp) and Lys-gingipain (Kgp); RgpA and RgpB are homologous Arg-specific gingipains encoded by two closely related genes, rgpA and rgpB, while Lys-specific gingipain is encoded by the single kgp gene. Mutant studies have shown that, among the large quantities of proteolytic enzymes produced by P. gingivalis, these three proteases are major virulence factors of this bacterium. All three genes encode an N-terminal pre-pro fragment, followed by the protease domain; however, rgpA and kgp also encode additional C-terminal HA (hemaglutinin/adhesion) subunits which consist of several sequence-related adhesion domains. Although unique, their cysteine protease active site residues (His and Cys) forming the catalytic dyad are well-conserved, cleaving the C-terminal peptide bond with Arg or Lys residues. Gingipains are evolutionarily related to other highly specific proteases including caspases, clostripain, legumains, and separase. Gingipains function by dysregulating host defense and inflammatory responses, and degrading host proteins, e.g. tissue, cells, matrix, plasma and immunological proteins. They are proposed to enhance gingival crevicular fluid (GCF) production through activation of the kallikrein/kinin pathways, thus increasing vascular permeability and causing gingival inflammation, a distinctive feature of periodontitis. RgpA and RgpB are also able to cleave and activate coagulation factors IX and X in order to activate prothrombin to produce thrombin, which in turn increases production of GCF. The gingipains also play a pivotal role in the survival of P. gingivalis in the host by attacking the host defense system through cleavage of several immunological molecules, while at the same time evading the host-immune response by dysregulating the cytokine network. 0 -322227 cl03191 CpcD CpcD/allophycocyanin linker domain. 0 -322229 cl03205 Jacalin_like Jacalin-like lectin domain. This beta-prism fold lectin is the C-terminal domain of the Vibrio cholerae cytolytic pore-forming toxin hemolysin. It binds to N-glycans with a heptasaccharide GlcNAc4Man3 core (NGA2). 0 -351964 cl03224 Porin3 Eukaryotic porin family that forms channels in the mitochondrial outer membrane. MDM10 is a family of eukaryotic proteins that forms a subunit of the SAM complex for biogenesis of beta-barrel proteins, though not porins, into the outer mitochondrial membrane. 0 -351965 cl03225 GRIP GRIP domain. The GRIP (golgin-97, RanBP2alpha,Imh1p and p230/golgin-245) domain is found in many large coiled-coil proteins. It has been shown to be sufficient for targeting to the Golgi. The GRIP domain contains a completely conserved tyrosine residue. At least some of these domains have been shown to bind to GTPase Arl1. 0 -351966 cl03230 DAHP_synth_2 Class-II DAHP synthetase family. phospho-2-dehydro-3-deoxyheptonate aldolase 0 -322243 cl03253 SAM_decarbox Adenosylmethionine decarboxylase. This enzyme is a key regulatory enzyme of the polyamine synthetic pathway. This protein is a pyruvoyl-dependent enzyme. The proenzyme is cleaved at a Ser residue that becomes a pyruvoyl group active site. [Central intermediary metabolism, Polyamine biosynthesis] 0 -295770 cl03283 Allergen_V_VI Group V, VI major allergens from grass, including Phlp 5, Phlp 6, Pha a 5 and Lol p 5. This family contains grass pollen proteins of group V. Phleum pratense pollen allergen Phl p 5b has been shown to possess ribonuclease activity. 0 -322257 cl03302 Glyco_hydro_12 Glycosyl hydrolase family 12. hypothetical protein; Provisional 0 -351979 cl03348 Ribosomal_L22e Ribosomal L22e protein family. 60S ribosomal protein L22; Provisional 0 -351980 cl03350 Ribosomal_L28e Ribosomal L28e protein family. 60S ribosomal protein L28; Provisional 0 -351981 cl03352 Ribosomal_L38e Ribosomal L38e protein family. 60S ribosomal protein L38; Provisional 0 -351982 cl03356 DcrB DcrB. This family consists of the 23 kDa subunit of oxygen evolving system of photosystem II or PsbP from various plants (where it is encoded by the nuclear genome) and Cyanobacteria. The 23 KDa PsbP protein is required for PSII to be fully operational in vivo, it increases the affinity of the water oxidation site for Cl- and provides the conditions required for high affinity binding of Ca2+. 0 -351983 cl03371 Peptidase_G1_like Peptidases of the G1 family and homologs that might lack peptidase activity. This family of proteins is found in bacteria. Proteins in this family are typically between 236 and 351 amino acids in length. The member from Bacillus subtilis, UniProtKB:O05411, is named YrpD. 0 -351985 cl03379 Myo5-like_CBD Cargo binding domain of myosin 5 and similar proteins. The DIL domain has no known function. 0 -322281 cl03381 pVHL von Hippel-Landau (pVHL) tumor suppressor protein. VHL forms a ternary complex with the elonginB and elonginC proteins. This complex binds Cul2, which then is involved in regulation of vascular endothelial growth factor mRNA. 0 -351986 cl03398 DUF111 Protein of unknown function DUF111. hypothetical protein; Provisional 0 -351987 cl03400 DUF137 Protein of unknown function DUF137. hypothetical protein; Provisional 0 -275793 cl03420 Gallidermin Gallidermin. Members of this family are lantibiotic precursors in the family that includes gallidermin, nisin, mutacin, epidermin, and streptin. [Cellular processes, Toxin production and resistance] 0 -322297 cl03428 MAS20 MAS20 protein import receptor. [Transport and binding proteins, Amino acids, peptides and amines] 0 -322303 cl03449 M35_like Peptidase M35 family. This is the catalytic region of aspzincins, a group of lysine-specific metallo-endopeptidases in the MEROPS:M35 family. They exhibit the following active-site architecture. The active site is composed of two helices and a loop region and includes the HExxH and GTxDxxYG motifs. In UniProt:P81054, His117, His121 and Asp130 coordinate to the catalytic zinc ligands. An electrostatically negative region composed of Asp154 and Glu157 attracts a positively charged Lys side chain of a substrate in a specific manner. 0 -351997 cl03493 Alpha_TIF Alpha trans-inducing protein (Alpha-TIF). Alpha-TIF (VP16) from Herpes Simplex virus is an essential tegument protein involved in the transcriptional activation of viral immediate early (IE) promoters (alpha genes) during the lytic phase of viral infection. VP16 associates with cellular transcription factors to enhance transcription rates, including the general transcription factor TFIIB and the transcriptional coactivator PC4. The N-terminal residues of VP16 confer specificity for the IE genes, while the C-terminal residues are responsible for transcriptional activation. Within the C-terminal region are two activation regions that can independently and cooperatively activate transcription. VP16 forms a transcriptional regulatory complex with two cellular proteins, the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1. VP16 is an alpha/beta protein with an unusual fold. Other transcription factors may have a similar topology. 0 -352001 cl03503 Fe_hyd_SSU Iron hydrogenase small subunit. Many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, photosynthetic, or sulphate-reducing bacteria, metabolise hydrogen. Hydrogen activation is mediated by a family of enzymes, termed hydrogenases, which either provide these organisms with reducing power from hydrogen oxidation, or act as electron sinks. There are two hydrogenases families that differ functionally from each other: NiFe hydrogenases tend to be more involved in hydrogen oxidation, while Iron-only FeFe (Fe only) hydrogenases in hydrogen production. Fe only hydrogenases show a common core structure, which contains a moiety, deeply buried inside the protein, with an Fe-Fe dinuclear centre, nonproteic bridging, terminal CO and CN- ligands attached to each of the iron atoms, and a dithio moiety, which also bridges the two iron atoms and has been tentatively assigned as a di(thiomethyl)amine. This common core also harbours three [4Fe-4S] iron-sulphur clusters. In FeFe hydrogenases, as in NiFe hydrogenases, the set of iron-sulphur clusters is dispersed regularly between the dinuclear Fe-Fe centre and the molecular surface. These clusters are distant by about 1.2 nm from each other but the [4Fe-4S] cluster closest to the dinuclear centre is covalently bound to one of the iron atoms though a thiolate bridging ligand. The moiety including the dinuclear centre, the thiolate bridging ligand, and the proximal [4Fe-4S] cluster is known as the H-cluster. A channel, lined with hydrophobic amino acid side chains, nearly connects the dinuclear centre and the molecular surface. Furthermore hydrogen-bonded water molecule sites have been identified at the interior and at the surface of the protein. The small subunit is comprised of alternating random coil and alpha helical structures that encompass the large subunit in a novel protein fold. 0 -352004 cl03508 TFIIA_gamma_N Gamma subunit of transcription initiation factor IIA, N-terminal helical domain. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIA (TFIIA) is a multimeric protein which facilitates the binding of TFIID to the TATA box. The N-terminal domain of the gamma subunit is a 4 helix bundle. 0 -352008 cl03519 UreI_AmiS_like UreI/AmiS family, proton-gated urea channel and putative amide transporters. This family includes UreI and proton gated urea channel as well as putative amide transporters. 0 -295899 cl03540 HDC Histidine carboxylase PI chain. This enzyme converts histadine to histamine in a single step by catalyzing the release of CO2. This type is synthesized as an inactive single chain precursor, then cleaved into two chains. The Ser at the new N-terminus at the cleavage site is converted to a pyruvoyl group essential for activity. This type of histidine decarboxylase appears is known so far only in some Gram-positive bacteria, where it may play a role in amino acid catabolism. There is also a pyridoxal phosphate type histidine decarboxylase, as found in human, where histamine is a biologically active amine. [Energy metabolism, Amino acids and amines] 0 -352023 cl03563 MraZ protein domain of unknown function (UPF0040) includes MraZ. This family contains the C-terminal domain of proteins of unknown function (UPF0040), implicated in a cellular function of bacterial cell division. It includes protein MraZ which is present in almost all bacteria and appears to be essential for survival. It is found in gene clusters associated with the cellular function of cell division and cell wall biosynthesis, including mraW, ftsI, murE, murF, ftsW and murG. Members of this family contain two tandem copies of the domain; the crystal structure of a member of this family (MPN314) reveals that the two subdomains are related by a pseudo two-fold axis, with each subdomain containing a highly conserved DXXXR sequence motif in close proximity to each other, suggested to form the functional site. 0 -322352 cl03567 Ycf4 Ycf4. photosystem I assembly protein Ycf4; Provisional 0 -186578 cl03578 MerT MerT mercuric transport protein. putative mercuric transport protein; Provisional 0 -322357 cl03585 PSI_PsaE Photosystem I reaction centre subunit IV / PsaE. photosystem I reaction center subunit IV; Provisional 0 -352024 cl03589 Chalcone_3 Chalcone isomerase-like. Chalcone-flavanone isomerase is a plant enzyme responsible for the isomerisation of chalcone to naringenin, 4',5,7-trihydroxyflavanone, a key step in the biosynthesis of flavonoids. 0 -352028 cl03620 DUF5011 Domain of unknown function (DUF5011). This domain is known as the HYR (Hyalin Repeat) domain, after the protein hyalin that is composed exclusively of this repeat. This domain probably corresponds to a new superfamily in the immunoglobulin fold. The function of this domain is uncertain it may be involved in cell adhesion. 0 -322371 cl03627 PSI_PsaF Photosystem I reaction centre subunit III. photosystem I reaction center subunit III; Provisional 0 -322375 cl03639 PsaD PsaD. photosystem I reaction center subunit II; Provisional 0 -352031 cl03646 SRAP SOS response associated peptidase (SRAP). hypothetical protein; Provisional 0 -322377 cl03649 HemD N/A. This family consists of uroporphyrinogen-III synthase HemD EC:4.2.1.75 also known as Hydroxymethylbilane hydrolyase (cyclizing) from eukaryotes, bacteria and archaea. This enzyme catalyzes the reaction: Hydroxymethylbilane <=> uroporphyrinogen-III + H(2)O. Some members of this family are multi-functional proteins possessing other enzyme activities related to porphyrin biosynthesis, such as HemD with pfam00590, however the aligned region corresponds with the uroporphyrinogen-III synthase EC:4.2.1.75 activity only. Uroporphyrinogen-III synthase is the fourth enzyme in the heme pathway. Mutant forms of the Uroporphyrinogen-III synthase gene cause congenital erythropoietic porphyria in humans a recessive inborn error of metabolism also known as Gunther disease. 0 -322378 cl03651 PsaL Photosystem I reaction centre subunit XI. photosystem I reaction center protein subunit XI; Provisional 0 -322379 cl03656 PS_Dcarbxylase Phosphatidylserine decarboxylase. Phosphatidylserine decarboxylase is synthesized as a single chain precursor. Generation of the pyruvoyl active site from a Ser is coupled to cleavage of a Gly-Ser bond between the larger (beta) and smaller (alpha chains). It is an integral membrane protein. A closely related family, possibly also active as phosphatidylserine decarboxylase, falls under model TIGR00164. [Fatty acid and phospholipid metabolism, Biosynthesis] 0 -322393 cl03715 Mago_nashi Mago nashi proteins, integral members of the exon junction complex. This family was originally identified in Drosophila and called mago nashi, it is a strict maternal effect, grandchildless-like, gene. The human homolog has been shown to interact with an RNA binding protein. An RNAi knockout of the C. elegans homolog causes masculinization of the germ line (Mog phenotype) hermaphrodites, suggesting it is involved in hermaphrodite germ-line sex determination. Mago nashi has been found to be part of the exon-exon junction complex that binds 20 nucleotides upstream of exon-exon junctions. 0 -352041 cl03728 Alpha_kinase Alpha-kinase family. This family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional kinases. The family contains myosin heavy chain kinases and Elongation Factor-2 kinase and a bifunctional ion channel. This family is known as the alpha-kinase family. The structure of the kinase domain revealed unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. 0 -352043 cl03741 Glyco_hydro_20b Glycosyl hydrolase family 20, domain 2. Alpha-glucuronidases, components of an ensemble of enzymes central to the recycling of photosynthetic biomass, remove the alpha-1,2 linked 4-O-methyl glucuronic acid from xylans. This family represents the N-terminal region of alpha-glucuronidase. The N-terminal domain forms a two-layer sandwich, each layer being formed by a beta sheet of five strands. A further two helices form part of the interface with the central, catalytic, module (pfam07488). 0 -352047 cl03749 STAT_int STAT protein, protein interaction domain. STAT proteins (Signal Transducers and Activators of Transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. STAT proteins also include an SH2 domain. 0 -352048 cl03757 phosphohexomutase N/A. This model describes GlmM, phosphoglucosamine mutase, also designated in MrsA and YhbF E. coli, UreC in Helicobacter pylori, and femR315 or FemD in Staphlococcus aureus. It converts glucosamine-6-phosphate to glucosamine-1-phosphate as part of the pathway toward UDP-N-acetylglucosamine for peptidoglycan and lipopolysaccharides. [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan, Central intermediary metabolism, Amino sugars] 0 -352049 cl03758 SRP54_N SRP54-type protein, helical bundle domain. This entry represents the N-terminal helical bundle domain of the 54 kDa SRP54 component, a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 of the signal recognition particle has a three-domain structure: an N-terminal helical bundle domain, a GTPase domain, and the M-domain that binds the 7s RNA and also binds the signal sequence. The extreme C-terminal region is glycine-rich and lower in complexity and poorly conserved between species. 0 -352050 cl03759 Alpha_adaptinC2 Adaptin C-terminal domain. Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. Gamma-adaptin is a subunit of the golgi adaptor. Alpha adaptin is a heterotetramer that regulates clathrin-bud formation. The carboxyl-terminal appendage of the alpha subunit regulates translocation of endocytic accessory proteins to the bud site. This Ig-fold domain is found in alpha, beta and gamma adaptins and consists of a beta-sandwich containing 7 strands in 2 beta-sheets in a greek-key topology.. The adaptor appendage contains an additional N-terminal strand. 0 -322411 cl03763 CaMBD Calmodulin binding domain. Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through this the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. The structure of this domain complexed with CaM is known. This domain forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. 0 -322415 cl03779 Enterotoxin_a Heat-labile enterotoxin alpha chain. pertussis toxin-like subunit ArtA; Provisional 0 -322424 cl03803 BAF Barrier to autointegration factor. Barrier-to-autointegration factor (BAF) is an essential protein that is highly conserved in metazoan evolution, and which may act as a DNA-bridging protein. BAF binds directly to double-stranded DNA, to transcription activators, and to inner nuclear membrane proteins, including lamin A filament proteins that anchor nuclear-pore complexes in place, and nuclear LEM-domain proteins that bind to laminins filaments and chromatin. New findings suggest that BAF has structural roles in nuclear assembly and chromatin organization, represses gene expression and might interlink chromatin structure, nuclear architecture and gene regulation in metazoans. BAF can be exploited by retroviruses to act as a host component of pre-integration complexes, which promote the integration of the retroviral DNA into the host chromosome by preventing autointegration of retroviral DNA. BAF might contribute to the assembly or activity of retroviral pre-integration complexes through direct binding to the retroviral proteins p55 Gag and matrix, as well as to DNA. 0 -352060 cl03812 Me-amine-dh_L Methylamine dehydrogenase, L chain. This family consists of the light chain of methylamine dehydrogenase light chain, a periplasmic enzyme. This subunit contains a tryptophan tryptophylquinone (TTQ) prothetic group derived from Trp-114 and Trp-165 of the precursor, numbered according to the sequence from Paracoccus denitrificans. The enzyme forms a complex with the type I blue copper protein amicyanin and cytochrome. Electron transfer procedes from TQQ to the copper and then to the heme group of the cytochrome. [Energy metabolism, Amino acids and amines] 0 -352063 cl03831 HlyIII Haemolysin-III related. This family includes proteins from pathogenic and non-pathogenic bacteria, Homo sapiens and Drosophila. In Bacillus cereus, a pathogen, it has been show to function as a channel-forming cytolysin. The human protein is expressed preferentially in mature macrophages, consistent with a role cytolytic role. 0 -352066 cl03849 PSS Phosphatidyl serine synthase. CDP-diacylglycerol-serine O-phosphatidyltransferase 0 -322447 cl03855 CemA CemA family. proton extrusion protein PcxA; Provisional 0 -352074 cl03888 PTPA N/A. Phosphotyrosyl phosphatase activator (PTPA) proteins stimulate the phosphotyrosyl phosphatase (PTPase) activity of the dimeric form of protein phosphatase 2A (PP2A). PTPase activity in PP2A (in vitro) is relatively low when compared to the better recognized phosphoserine/ threonine protein phosphorylase activity. The specific biological role of PTPA is unknown, Basal expression of PTPA depends on the activity of a ubiquitous transcription factor, Yin Yang 1 (YY1). The tumor suppressor protein p53 can inhibit PTPA expression through an unknown mechanism that negatively controls YY1. 0 -352075 cl03892 WRKY WRKY DNA -binding domain. The WRKY domain is a DNA binding domain found in one or two copies in a superfamily of plant transcription factors. These transcription factors are involved in the regulation of various physiological programs that are unique to plants, including pathogen defense, senescence and trichome development. The domain is a 60 amino acid region that is defined by the conserved amino acid sequence WRKYGQK at its N-terminal end, together with a novel zinc-finger-like motif. It binds specifically to the DNA sequence motif (T)(T)TGAC(C/T), which is known as the W box. The invariant TGAC core is essential for function and WRKY binding. 0 -352079 cl03904 CAT_RBD CAT RNA binding domain. This RNA binding domain is found at the amino terminus of transcriptional antitermination proteins such as BglG, SacY and LicT. These proteins control the expression of sugar metabolising operons in Gram+ and Gram- bacteria. This domain has been called the CAT (Co-AntiTerminator) domain. It binds as a dimer.to short Ribonucleotidic Anti-Terminator (RAT) hairpin, each monomer interacting symmetrically with both strands of the RAT hairpin. In the full-length protein, CAT is followed by two phosphorylatable PTS regulation domains that modulate the RNA binding activity of CAT. Upon activation, the dimeric proteins bind to RAT targets in the nascent mRNA, thereby preventing abortive dissociation of the RNA polymerase from the DNA template. 0 -352080 cl03905 EXS EXS family. We have named this region the EXS family after (ERD1, XPR1, and SYG1). This family includes C-terminus portions from the SYG1 G-protein associated signal transduction protein from Saccharomyces cerevisiae, and sequences that are thought to be murine leukaemia virus (MLV) receptors (XPR1). N-terminus portions from these proteins are aligned in the SPX pfam03105 family. The previously noted similarity between SYG1 and MLV receptors over their whole sequences is thus borne out in pfam03105 and this family. While the N-termini aligned in pfam03105 are thought to be involved in signal transduction, the role of the C-terminus sequences aligned in this family is not known. This region of similarity contains several predicted transmembrane helices. This family also includes the ERD1 (ERD: ER retention defective) yeast proteins. ERD1 proteins are involved in the localization of endogenous endoplasmic reticulum (ER) proteins. erd1 null mutants secrete such proteins even though they possess the C-terminal HDEL ER lumen localization label sequence. In addition, null mutants also exhibit defects in the Golgi-dependent processing of several glycoproteins, which led to the suggestion that the sorting of luminal ER proteins actually occurs in the Golgi, with subsequent return of these proteins to the ER via `salvage' vesicles. 0 -352081 cl03906 GAT_SF GAT domain found in eukaryotic ADP-ribosylation factor (Arf)-binding proteins (GGAs), metazoan myb protein 1 (Tom1)-like proteins, and similar proteins. The GAT domain is responsible for binding of GGA proteins to several members of the ARF family including ARF1 and ARF3. The GAT domain stabilizes membrane bound ARF1 in its GTP bound state, by interfering with GAP proteins. 0 -322465 cl03910 AnfG_VnfG Vanadium/alternative nitrogenase delta subunit. Nitrogenase is the enzyme of biological nitrogen fixation. The most wide-spread and most efficient nitrogenase contains a molybdenum cofactor. This protein family, VnfG, represents the delta subunit of the V-containing (vanadium) alternative nitrogenase. It is homologous to AnfG, the delta subunit of the Fe-only nitrogenase. [Central intermediary metabolism, Nitrogen fixation] 0 -352085 cl03918 CHB_HEX Putative carbohydrate binding domain. This domain represents the N terminal domain in chitobiases and beta-hexosaminidases EC:3.2.1.52. It is composed of a beta sandwich structure that is similar in structure to the cellulose binding domain of cellulase from Cellulomonas fimi. This suggests that this may be a carbohydrate binding domain. 0 -322471 cl03922 V-ATPase_G Vacuolar (H+)-ATPase G subunit. This model describes the vacuolar ATP synthase G subunit in eukaryotes and includes members from diverse groups e.g., fungi, plants, parasites etc. V-ATPases are multi-subunit enzymes composed of two functional domains: A transmembrane Vo domain and a peripheral catalytic domain V1. The G subunit is one of the subunits of the catalytic domain. V-ATPases are responsible for the acidification of endosomes and lysosomes, which are part of the central vacuolar system. [Energy metabolism, ATP-proton motive force interconversion] 0 -352086 cl03923 BURP BURP domain. It was named after the proteins in which it was first identified: the BNM2 clone-derived protein from Brassica napus; USPs and USP-like proteins; RD22 from Arabidopsis thaliana; and PG1beta from Lycopersicon esculentum. This domain is around 230 amino acid residues long. It possesses the following conserved features: two phenylalanine residues at its N-terminus; two cysteine residues; and four repeated cysteine-histidine motifs, arranged as: CH-X(10)-CH-X(25-27)-CH-X(25-26)-CH, where X can be any amino acid. The function of this domain is unknown. 0 -352089 cl03934 MerC MerC mercury resistance protein. putative mercury transport protein MerC; Provisional 0 -322479 cl03935 NifW Nitrogen fixation protein NifW. nitrogenase stabilizing/protective protein; Provisional 0 -322483 cl03951 CDC37_N Cdc37 N terminal kinase binding. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domain corresponds to the N terminal domain which binds predominantly to protein kinases.and is found N terminal to the Hsp (Heat shocked protein) 90-binding domain. Expression of a construct consisting of only the N-terminal domain of Saccharomyces pombe Cdc37 results in cellular viability. This indicates that interactions with the cochaperone Hsp90 may not be essential for Cdc37 function. 0 -296151 cl03953 ESAG1 ESAG protein. expression site-associated gene (ESAG); Provisional 0 -322485 cl03956 PSI_PsaH Photosystem I reaction centre subunit VI. photosystem I reaction centre subunit VI; Provisional 0 -352094 cl03973 DUF269 Protein of unknown function, DUF269. Members of this protein family, called DUF269 by pfam03270, are strictly limited to nitrogen-fixing species, although not universal among them. The gene typically is found next to the nifX gene (see TIGRFAMs model TIGR02663). [Central intermediary metabolism, Nitrogen fixation] 0 -296175 cl03994 Trp_dioxygenase Tryptophan 2,3-dioxygenase. Members of this family are tryptophan 2,3-dioxygenase, as confirmed by several experimental characterizations, and by conserved operon structure for many of the other members. This enzyme represents the first of a two-step degradation to L-kynurenine, and a three-step pathway (via kynurenine) to anthranilate plus alanine. [Energy metabolism, Amino acids and amines] 0 -322498 cl04000 Cornichon Cornichon protein. predicted protein; Provisional 0 -322510 cl04057 DUF1256 Protein of unknown function (DUF1256). This model describes a tetrameric protease that makes the rate-limiting first cut in the small, acid-soluble spore proteins (SASP) of Bacillus subtilis and related species. The enzyme lacks clear homology to other known proteases. It processes its own amino end before becoming active to cleave SASPs. [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Sporulation and germination] 0 -322512 cl04069 EspA EspA-like secreted protein. pathogenicity island 2 effector protein SseB; Provisional 0 -352103 cl04084 dDENN dDENN domain. The dDENN domain is part of the tripartite DENN domain. It is always found downstream of the DENN domain itself, which is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 0 -352104 cl04085 uDENN uDENN domain. The uDENN domain is part of the tripartite DENN domain. It is always found upstream of the DENN domain itself, which is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 0 -352105 cl04088 TRCF TRCF domain. A lesion in the template strand blocks the RNA polymerase complex (RNAP). The RNAP-DNA-RNA complex is specifically recognised by the transcription-repair-coupling factor (TRCF) which releases RNAP and the truncated transcript. 0 -352110 cl04104 Arg_tRNA_synt_N Arginyl tRNA synthetase N terminal domain. This domain is found at the amino terminus of Arginyl tRNA synthetase, also called additional domain 1 (Add-1). It is about 140 residues long and it has been suggested that this domain will be involved in tRNA recognition. 0 -352111 cl04109 Methyltransf_7 SAM dependent carboxyl methyltransferase. indole-3-acetate carboxyl methyltransferase 0 -352112 cl04114 Channel_Tsx Nucleoside-specific channel-forming protein, Tsx. This family of proteins is functionally uncharacterized. This family is found in various Bacteroides species. Proteins in this family are around 235 amino acids in length. 0 -352113 cl04129 Invas_SpaK Invasion protein B family. type III secretion system chaperone SpaK; Provisional 0 -296266 cl04142 VRP3 Salmonella virulence-associated 28kDa protein. type III effector phosphothreonine lyase; Provisional 0 -322548 cl04145 Peptidase_C58 Yersinia/Haemophilus virulence surface antigen. The model represents a cysteine protease domain found in proteins of bacteria that include plant pathogens (Pseudomonas syringae), root nodule bacteria, and intracellular pathogens (e.g. Yersinia pestis, Haemophilus ducreyi, Pasteurella multocida, Chlamydia trachomatis) of animal hosts. The domain features a catalytic triad of Cys, His, and Asp. Sequences can be extremely divergent outside of a few well-conserved motifs, and additional members may exist that are detected by this model. YopT, a virulence effector protein of Yersinia pestis, cleaves and releases host cell Rho GTPases from the membrane, thereby disrupting the actin cytoskeleton. Members of the family from pathogenic bacteria are likely to be pathogenesis factors. [Cellular processes, Pathogenesis] 0 -352121 cl04176 TDT The Tellurite-resistance/Dicarboxylate Transporter (TDT) family. This family of transporters has ten alpha helical transmembrane segments. The structure of a bacterial homolog of SLAC1 shows it to have a trimeric arrangement. The pore is composed of five helices with a conserved Phe residue involved in gating. One homolog, Mae1 from the yeast Schizosaccharomyces pombe, functions as a malate uptake transporter; another, Ssu1 from Saccharomyces cerevisiae and other fungi including Aspergillus fumigatus, is characterized as a sulfite efflux pump; and TehA from Escherichia coli is identified as a tellurite resistance protein by virtue of its association in the tehA/tehB operon. In plants, this family is found in the stomatal guard cells functioning as an anion-transporting pore. Many homologs are incorrectly annotated as tellurite resistance or dicarboxylate transporter (TDT) proteins. 0 -322568 cl04214 UPF0180 Uncharacterized protein family (UPF0180). hypothetical protein; Provisional 0 -322570 cl04219 LPG_synthase_TM Lysylphosphatidylglycerol synthase TM region. This family of hydrophobic proteins is observed in two distinct contexts. It is primarily found in the presence of genes for the biosynthesis and elaboration of hopene where we assign the gene symbol HpnL. In a subset of the genomes containing HpnL a second, often plasmid-encoded, homolog is observed in a context implying the biosynthesis of 2-aminoethylphosphonate head-group containing lipids. 0 -352132 cl04227 CBM41_pullulanase Family 41 Carbohydrate-Binding Module from pullulanase-like enzymes. Domain is found in pullanase - carbohydrate de-branching - proteins. It is found both to the N or the C terminii of of the alpha-amylase active site region. This domain contains several conserved aromatic residues that are suggestive of a carbohydrate binding function. 0 -352142 cl04270 Glyco_transf_WecG_TagA N/A. putative UDP-N-acetyl-D-mannosaminuronic acid transferase; Provisional 0 -352143 cl04271 IBN_N Importin-beta N-terminal domain. Members of the importin-beta (karyopherin-beta) family can bind and transport cargo by themselves, or can form heterodimers with importin-alpha. As part of a heterodimer, importin-beta mediates interactions with the pore complex, while importin-alpha acts as an adaptor protein to bind the nuclear localisation signal (NLS) on the cargo through the classical NLS import of proteins. Importin-beta is a helicoidal molecule constructed from 19 HEAT repeats. Many nuclear pore proteins contain FG sequence repeats that can bind to HEAT repeats within importins.. which is important for importin-beta mediated transport. 0 -352144 cl04273 MadL Malonate transporter MadL subunit. The MSS family includes the monobasic malonate:Na+ symporter of Malonomonas rubra. It consists of two integral membrane proteins, MadL and MadM. The transporter is believed to catalyze the electroneutral reversible uptake of H+-malonate with one Na+, and both subunits have been shown to be essential for activity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -352145 cl04274 MadM Malonate/sodium symporter MadM subunit. The MSS family includes the monobasic malonate:Na+ symporter of Malonomonas rubra. It consists of two integral membrane proteins, MadL and MadM.The transporter is believed to catalyze the electroneutral reversible uptake of H+-malonate with one Na+, and both subunits have been shown to be essential for activity. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -322597 cl04275 Mtc Tricarboxylate carrier. The MTC family consists of a limited number of homologues, all from eukaryotes. A single member of the family has been functionally characterized, the tricarboxylate carrier from rat liver mitochondria. The rat liver mitochondrial tricarboxylate carrier has been reported to transport citrate, cis-aconitate, threo-D-isocitrate, D- and L-tartrate, malate, succinate and phosphoenolpyruvate. It presumably functions by a proton symport mechanism. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -322598 cl04276 Mtp Golgi 4-transmembrane spanning transporter. The proteins of the MET family have 4 TMS regions and are located in late endosomal or lysosomal membranes. Substrates of the mouse MTP transporter include thymidine, both nucleoside and nucleobase analogues, antibiotics, anthracyclines, ionophores and steroid hormones. MET transporters may be involved in the subcellular compartmentation of steroid hormones and other compounds.Drug sensitivity by mouse MET was regulated by compounds that inhibit lysosomal function, interface with intracellular cholesterol transport, or modulate the multidrug resistance phenotype of mammalian cells. Thus, MET family members may compartmentalize diverse hydrophobic molecules, thereby affecting cellular drug sensitivity,nucleoside/nucleobase availability and steroid hormone responses. [Transport and binding proteins, Unknown substrate] 0 -352146 cl04283 Rad10 Binding domain of DNA repair protein Ercc1 (rad10/Swi10). All proteins in this family for which functions are known are components in a multiprotein endonuclease complex (usually made up of Rad1 and Rad10 homologs). This complex is used primarily for nucleotide excision repair but also for some aspects of recombination repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -352147 cl04285 RecT RecT family. This model represents the phage recombination protein Bet from a number of phage, including phage lambda. All members of this family are found in phage genomes or in putative prophage regions of bacterial genomes. [Mobile and extrachromosomal element functions, Prophage functions] 0 -352148 cl04289 Tfb2 Transcription factor Tfb2. All proteins in this family are part of the TFIIH complex which is involved in the initiation of transcription and nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -352150 cl04295 CG-1 CG-1 domain. The domains contain a predicted bipartite NLS and are named after a partial cDNA clone isolated from parsley encoding a sequence-specific DNA-binding protein. CG-1 domains are associated with CAMTA proteins (for CAlModulin -binding Transcription Activator) that are transcription factors containing a calmodulin -binding domain and ankyrins (ANK) motifs. 0 -352151 cl04297 ANTAR ANTAR domain. The majority of the domain consists of a coiled-coil. 0 -352152 cl04298 SpoVAC_SpoVAEB SpoVAC/SpoVAEB sporulation membrane protein. This model describes stage V sporulation protein AE, a paralog of stage V sporulation protein AC. Both are proteins found to present in a species if and only if that species is one of the Firmicutes capable of endospore formation, as of the time of the publication of the genome of Carboxydothermus hydrogenoformans. Mutants in spoVAE have a stage V sproulation defect. [Cellular processes, Sporulation and germination] 0 -352154 cl04309 RNAP_Rpb7_N_like N/A. Rpb7 bind to Rpb4 to form a heterodimer. This complex is thought to interact with the nascent RNA strand during RNA polymerase II elongation. This family includes the homologs from RNA polymerase I and III. In RNA polymerase I, Rpa43 is at least one of the subunits contacted by the transcription factor TIF-IA. The N-terminus of Rpb7p/Rpc25p/MJ0397 has a SHS2 domain that is involved in protein-protein interaction. 0 -322618 cl04326 Psb28 Psb28 protein. Members of this protein family are the Psb28 protein of photosystem II. Two different protein families, apparently without homology between them, have been designated PsbW. Cyanobacterial proteins previously designated PsbW are members of the family described here. However, while members of the plant PsbW family are not found (so far) in Cyanobacteria, members of the present family do occur in plants. We therefore support the alternative designation that has emerged for this protein family, Psp28, rather than PsbW. [Energy metabolism, Photosynthesis] 0 -352162 cl04375 PMEI_like pectin methylesterase inhibitor and related proteins. This domain inhibits pectin methylesterases (PMEs) and invertases through formation of a non-covalent 1:1 complex. It has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. It has been observed that it is often expressed as a large inactive preprotein. It is also found at the N-termini of PMEs predicted from DNA sequences (personal obs:C Yeats), suggesting that both PMEs and their inhibitor are expressed as a single polyprotein and subsequently processed. It has two disulphide bridges and is mainly alpha-helical. 0 -352169 cl04394 BRICHOS BRICHOS domain. Its exact function is unknown; roles that have been proposed for the domain, which is about 100 amino acids long, include (a) targeting of the protein to the secretory pathway, (b) intramolecular chaperone-like function, and (c) assisting the specialised intracellular protease processing system. This C-terminal domain is embedded in the endoplasmic reticulum lumen, and binds to the N-terminal, transmembrane, SP_C, pfam08999 provided that it is in non-helical conformation. Thus the Brichos domain of proSP-C is a chaperone that induces alpha-helix formation of an aggregation-prone TM region. 0 -352174 cl04407 Dopey_N Dopey, N-terminal. DopA is the founding member of the Dopey family and is required for correct cell morphology and spatiotemporal organisation of multicellular structures in the filamentous fungus Aspergillus nidulans. DopA homologs are found in mammals. S. cerevisiae DOP1 is essential for viability and, affects cellular morphogenesis. 0 -352188 cl04451 EIIC-GAT PTS system sugar-specific permease component. PTS system ascorbate-specific transporter subunit IIC; Reviewed 0 -322675 cl04460 DUF434 Protein of unknown function (DUF434). 0 -322676 cl04466 P-mevalo_kinase Phosphomevalonate kinase. This enzyme is part of the mevalonate pathway, one of two alternative pathways for the biosynthesis of IPP. In an example of nonorthologous gene displacement, two different types of phosphomevalonate kinase are found. One is this type, found in animals. The other is the ERG8 type, found in plants and fungi (TIGR01219) and in Gram-positive bacteria (TIGR01220). [Central intermediary metabolism, Other] 0 -352189 cl04467 DUF443 Protein of unknown function (DUF443). Members of this family of proteins, with average length of 210, have no invariant residues but five predicted transmembrane segments. Strangely, most members occur in groups of consecutive paralogous genes. A striking example is a set of eleven encoded consecutively, head-to-tail, in Staphylococcus aureus strain COL. 0 -322678 cl04468 Tic22 Tic22-like family. Two families of proteins are involved in the chloroplast envelope import appartus.They are the three proteins of the outer membrane (TOC) and four proteins in the inner membrane (TIC). This family is specific for the Tic22 protein. [Transport and binding proteins, Amino acids, peptides and amines] 0 -352191 cl04498 LytTR LytTr DNA-binding domain. This domain is found in a variety of bacterial transcriptional regulators. The domain binds to a specific DNA sequence pattern. 0 -352199 cl04524 Fimbrial_CS1 CS1 type fimbrial major subunit. putative fimbrial subunit TcfB; Provisional 0 -352201 cl04545 Phage_rep_O Bacteriophage replication protein O. This model represents the N-terminal region of the phage lambda replication protein O and homologous regions of other phage proteins. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 0 -352205 cl04571 MARVEL Membrane-associating domain. This family of plant proteins contains a domain that may have a catalytic activity. It has a conserved arginine and aspartate that could form an active site. These proteins are predicted to contain 3 or 4 transmembrane helices. 0 -322728 cl04601 SPC22 Signal peptidase subunit. signal peptidase; Provisional 0 -352224 cl04635 F1-ATPase_epsilon eukaryotic mitochondrial ATP synthase epsilon subunit. This family constitutes the mitochondrial ATP synthase epsilon subunit. This is not to be confused with the bacterial epsilon subunit, which is homologous to the mitochondrial delta subunit (pfam00401 and pfam02823) The epsilon subunit is located in the extrinsic membrane section F1, which is the catalytic site of ATP synthesis. The epsilon subunit was not well ordered in the crystal structure of bovine F1, but it is known to be located in the stalk region of F1. E subunit is thought to be involved in the regulation of ATP synthase, since a null mutation increased oligomycin sensitivity and decreased inhibition by inhibitor protein IF1. 0 -322744 cl04640 DUF600 Protein of unknown function, DUF600. This model represents a tandem array of 10 proteins in Staphylococcus aureus and the C-terminal region of one protein each in Bacillus subtilis and Bacillus halodurans. 0 -322747 cl04653 TAF7 TATA Binding Protein (TBP) Associated Factor 7 (TAF7) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. TAFII55 binds to TAFII250 and inhibits it acetyltransferase activity. The exact role of TAFII55 is currently unknown. The conserved region is situated towards the N-terminus of the protein. 0 -322751 cl04661 Polysacc_synt_4 Polysaccharide biosynthesis. This model represents an uncharacterized domain found in both Arabidopsis thaliana (at least 10 copies) and Oryza sativa. Most member proteins have only a short stretch of sequence N-terminal to this domain, but one has a long N-terminal extension that includes a protein kinase domain (pfam00069). 0 -352232 cl04704 PDDEXK_6 PDDEXK-like family of unknown function. This model represents a domain found toward the C-terminus of a number of uncharacterized plant proteins. The domain is strongly conserved (greater than 30 % sequence identity between most pairs of members) but flanked by highly divergent regions including stretches of low-complexity sequence. 0 -322773 cl04705 GRDA Glycine reductase complex selenoprotein A. putative glycine/sarcosine/betaine reductase complex protein A; Provisional 0 -322775 cl04707 PsbR Photosystem II 10 kDa polypeptide PsbR. photosystem II subunit R; Provisional 0 -352234 cl04722 PLAC8 PLAC8 family. This model describes an uncharacterized domain of about 100 residues. It is common in plants but found also in Homo sapiens, Dictyostelium, and Leishmania; at least 12 distinct members are found in Arabidopsis. Most members of this family contain more than 10 per cent Cys, but no Cys residue is invariant across the family. 0 -352235 cl04729 DUF617 Protein of unknown function, DUF617. This model represents a region of about 170 amino acids found at the C-terminus of a family of plant proteins. These proteins typically have additional highly divergent N-terminal regions rich in low complexity sequence. PSI-BLAST reveals no clear similarity to any characterized protein. At least 12 distinct members are found in Arabidopsis thaliana. 0 -352237 cl04737 ZF-HD_dimer ZF-HD protein dimerization region. This model describes a 54-residue domain found in the N-terminal region of plant proteins, the vast majority of which contain a ZF-HD class homeobox domain toward the C-terminus. The region between the two domains typically is rich in low complexity sequence. The companion ZF-HD homeobox domain is described in model TIGR01565. 0 -296659 cl04793 PSRP-3_Ycf65 Plastid and cyanobacterial ribosomal protein (PSRP-3 / Ycf65). hypothetical protein; Provisional 0 -352254 cl04796 Ovate Transcriptional repressor, ovate. This model describes an uncharacterized domain of about 70 residues found exclusively in plants, generally toward the C-terminus of proteins of 200 to 350 amino acids in length. At least 14 such proteins are found in Arabidopsis thaliana. Other regions of these proteins tend to consist largely of low-complexity sequence. 0 -322822 cl04813 EIN3 Ethylene insensitive 3. ETHYLENE-INSENSITIVE3-like3 protein; Provisional 0 -322828 cl04829 AmoC Ammonia monooxygenase/methane monooxygenase, subunit C. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit C of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 0 -352267 cl04850 Wzy_C O-Antigen ligase. This family of proteins is suggested to transport inorganic carbon (HCO3-), based on the phenotype of a mutant of IctB in Synechococcus sp. strain PCC 7942. Bicarbonate uptake is used by many photosynthetic organisms including cyanobacteria. These organisms are able to concentrate CO2/HCO3- against a greater than ten-fold concentration gradient. Cyanobacteria may have several such carriers operating with different efficiencies. Note that homology to various O-antigen ligases, with possible implications for mutant cell envelope structure, might allow alternatives to the interpretation of IctB as a bicarbonate transport protein. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -352270 cl04855 BLUF Sensors of blue-light using FAD. The BLUF domain has been shown to bind FAD in the AppA protein. AppA is involved in the repression of photosynthesis genes in response to blue-light. 0 -352271 cl04868 Phage_holin_2_3 Bacteriophage holin family HP1. Phage_holin_2_4 is a family of small hydrophobic phage proteins called holins with one transmembrane domain. Holins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. 0 -322864 cl04902 Agouti Agouti protein. The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. A highly homologous protein agouti signal protein (ASIP) is present in humans and is expressed at highest levels in adipose tissue where it may play a role in energy homeostasis and possibly human pigmentation. 0 -352282 cl04907 L51_S25_CI-B8 Mitochondrial ribosomal protein L51 / S25 / CI-B8 domain. Proteins containing this domain are located in the mitochondrion and include ribosomal protein L51, and S25. This domain is also found in mitochondrial NADH-ubiquinone oxidoreductase B8 subunit (CI-B8) . It is not known whether all members of this family form part of the NADH-ubiquinone oxidoreductase and whether they are also all ribosomal proteins. 0 -352288 cl04947 Phage_cap_P2 Phage major capsid protein, P2 family. This model family represents the major capsid protein component of the heads (capsids) of bacteriophage P2 and related phage. This model represents one of several analogous families lacking detectable sequence similarity. The gene encoding this component is typically located in an operon encoding the small and large terminase subunits, the portal protein and the prohead or maturation protease. [Mobile and extrachromosomal element functions, Prophage functions] 0 -352291 cl04955 LanC_like Cyclases involved in the biosynthesis of lantibiotics, and similar proteins. Lanthionines are thioether bridges that are putatively generated by dehydration of Ser and Thr residues followed by addition of cysteine residues within the peptide. This family contains the lanthionine synthetase C-like proteins 1 and 2 which are related to the bacterial lanthionine synthetase components C (LanC). LANCL1 (P40 seven-transmembrane-domain protein) and LANCL2 (testes-specific adriamycin sensitivity protein) are thought to be peptide-modifying enzyme components in eukaryotic cells. Both proteins are produced in large quantities in the brain and testes and may have role in the immune surveillance of these organs. Lanthionines are found in lantibiotics, which are peptide-derived, post-translationally modified antimicrobials produced by several bacterial strains. This region contains seven internal repeats. 0 -352293 cl04961 DSS1_Sem1 proteasome complex subunit DSS1/Sem1. This family contains the breast cancer tumor suppressor BRCA2-interacting protein DSS1 and its homolog SEM1, both of which are short acidic proteins. DSS1 has been shown to be a conserved component of the Rae1 mediated mRNA export pathway in Schizosaccharomyces pombe. 0 -352301 cl05000 CHASE3 CHASE3 domain. CHASE3 is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in bacteria. Specifically, CHASE3 domains are found in histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins and predicted diguanylate cyclases/phosphodiesterases. Environmental factors that are recognized by CHASE3 domains are not known at this time. 0 -352303 cl05005 TAF4 TATA Binding Protein (TBP) Associated Factor 4 (TAF4) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. This region of similarity is found in Transcription initiation factor TFIID component TAF4. 0 -352305 cl05012 FlhD Flagellar transcriptional activator (FlhD). transcriptional activator FlhD; Provisional 0 -352308 cl05017 UPF0203 Uncharacterized protein family (UPF0203). Uncharacterized protein At4g33100; Provisional 0 -352310 cl05036 FlhC Flagellar transcriptional activator (FlhC). transcriptional activator FlhC; Provisional 0 -322925 cl05060 TraE TraE protein. conjugal transfer pilus assembly protein TraE; Provisional 0 -352314 cl05087 Complex1_LYR Complex 1 protein (LYR family). This is a family of proteins carrying the LYR motif of family Complex1_LYR, pfam05347, likely to be involved in Fe-S cluster biogenesis in mitochondria. 0 -322935 cl05094 Phage_attach Phage Head-Tail Attachment. Members of this short family are putative ATP-binding sugar transporter-like protein. 0 -352318 cl05125 FliT Flagellar protein FliT. flagellar biosynthesis protein FliT; Provisional 0 -352319 cl05126 PqqD Coenzyme PQQ synthesis protein D (PqqD). Members of this protein show distant homology to PqqD, and belong to a three-gene cassette that included the HPr kinase related protein family of TIGR04352. The role of the cassette, and of this protein, are unknown. 0 -352320 cl05127 DUF4779 Domain of unknown function (DUF4779). This family consists of several histidine-rich protein II and III sequence from Plasmodium falciparum. 0 -322951 cl05142 GUN4 porphyrin-binding protein domain GUN4. In Arabidopsis, GUN4 is required for the functioning of the plastid mediated repression of nuclear transcription that is involved in controlling the levels of magnesium- protoporphyrin IX. GUN4 binds the product and substrate of Mg-chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. GUN4 is thought to participates in plastid-to-nucleus signaling by regulating magnesium-protoporphyrin IX synthesis or trafficking. 0 -322964 cl05182 PsaN Photosystem I reaction centre subunit N (PSAN or PSI-N). photosystem I reaction center subunit N; Provisional 0 -322989 cl05250 Peptidase_U57 YabG peptidase U57. Members of this family are the protein YabG, demonstrated for Bacillus subtilis to be an endopeptidase able to release N-terminal peptides from a number of sporulation proteins, including CotT, CotF, and SpoIVA. It appears to be expressed under control of sigma-K. [Cellular processes, Sporulation and germination] 0 -322998 cl05275 Prolamin_like Prolamin-like. putative protein; Provisional 0 -296991 cl05376 AfaD Enterobacteria AfaD invasin protein. fimbrial adhesin protein SefD; Provisional 0 -352356 cl05417 PLA2_like N/A. This family consists of several phospholipase A2 like proteins mostly from insects. 0 -323054 cl05433 ARPC4 ARP2/3 complex 20 kDa subunit (ARPC4). ARP2/3 complex subunit; Provisional 0 -323055 cl05434 TraX TraX protein. conjugal transfer protein TrbP; Provisional 0 -352358 cl05436 Haemagg_act haemagglutination activity domain. This model represents a conserved domain found near the N-terminus of a number of large, repetitive bacterial proteins, including many proteins of over 2500 amino acids. Members generally have a signal sequence, then an intervening region, then the region described by this model. Following this region, proteins typically have regions rich in repeats but may show no homology between the repeats of one member and the repeats of another. A number of the members of this family have been designated adhesins, filamentous haemagglutinins, heme/hemopexin-binding protein, etc. 0 -323057 cl05442 Dam DNA N-6-adenine-methyltransferase (Dam). This model is a fragment-mode model for a phage-borne DNA N-6-adenine-methyltransferase. [Mobile and extrachromosomal element functions, Prophage functions, DNA metabolism, Restriction/modification] 0 -352360 cl05460 Excalibur Excalibur calcium-binding domain. Extracellular Ca2+-dependent nuclease YokF from Bacillus subtilis and several other surface-exposed proteins from diverse bacteria are encoded in the genomes in two paralogous forms that differ by a ~45 amino acid fragment, which comprises a novel conserved domain. Sequence analysis of this domain revealed a conserved DxDxDGxxCE motif, which is strikingly similar to the Ca2+-binding loop of the calmodulin-like EF-hand domains, suggesting an evolutionary relationship between them. Functions of many of the other proteins in which the novel domain, named Excalibur (extracellular calcium-binding region), is found, as well as a structural model of its conserved motif are consistent with the notion that the Excalibur domain binds calcium. This domain is but one more example of the diversity of structural contexts surrounding the EF-hand-like calcium-binding loop in bacteria. This loop is thus more widespread than hitherto recognised and the evolution of EF-hand-like domains is probably more complex than previously appreciated. 0 -352368 cl05484 VipB Type VI secretion protein, EvpB/VC_A0108, tail sheath. Work by Mougous, et al. (2006), describes IAHP-related loci as a type VI secretion system (). This protein family is associated with type VI secretion loci, although not treated explicitly by Mougous, et al. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -297068 cl05524 Cir_Bir_Yir Plasmodium variant antigen protein Cir/Yir/Bir. This model represents a large paralogous family of variant antigens from several Plasmodium species (P. yoelii, P. berghei and P. chabaudi). The seed was generated from a list of ORF's in P. yoelii containing a paralagous domain as defined by an algorithm implemented at TIFR. The list was aligned and reduced to six sequences approximating the most divergent clades present in the data set. The model only hits genes previously characterized as yir, bir, or cir genes above the trusted cutoff. In between trusted and noise is one gene from P. vivax (vir25) which has been characterized as a distant relative of the yir/bir/cir family. The vir family appears to be present in 600-1000 copies per haploid genome and is preferentially located in the sub-telomeric regions of the chromosomes. The genomic data for yoelii is consistent with this observation. It is not believed that there are any orthologs of this family in P. falciparum. 0 -352372 cl05528 AlkA_N AlkA N-terminal domain. The presence of 8-oxoguanine residues in DNA can give rise to G-C to T-A transversion mutations. This enzyme is found in archaeal, bacterial and eukaryotic species, and is specifically responsible for the process which leads to the removal of 8-oxoguanine residues. It has DNA glycosylase activity (EC:3.2.2.23) and DNA lyase activity (EC:4.2.99.18). The region featured in this family is the N-terminal domain, which is organized into a single copy of a TBP-like fold. The domain contributes residues to the 8-oxoguanine binding pocket. 0 -352374 cl05556 Apyrase Apyrase. apyrase Superfamily; Provisional 0 -352377 cl05580 TraH Conjugative relaxosome accessory transposon protein. conjugal transfer pilus assembly protein TraH; Provisional 0 -352384 cl05618 tify tify domain. Although previously known as the Zim domain this is now called the tify domain after its most conserved amino acids. TIFY proteins can be further classified into two groups depending on the presence (group I) or absence (group II) of a C2C2-GATA domain. Functional annotation of these proteins is still poor, but several screens revealed a link between TIFY proteins of group II and jasmonic acid-related stress response. 0 -297128 cl05636 Phage_tail_T Minor tail protein T. This model represents a translation of the T gene in phage lambda and related phage. A translational frameshift from the upstream gene G into the frame of T produces a minor protein gpG-T, essential in tail assembly but not found in the mature virion. [Mobile and extrachromosomal element functions, Prophage functions] 0 -323139 cl05674 PET PET ((Prickle Espinas Testin) domain is involved in protein-protein interactions. This domain is suggested to be involved in protein-protein interactions. The family is found in conjunction with pfam00412. 0 -352392 cl05686 P_gingi_FimA Major fimbrial subunit protein (FimA). A family of uncharacterized proteins around 300 residues in length and found in various Bacteroides species. The function of this family is unknown. 0 -323150 cl05704 Allene_ox_cyc Allene oxide cyclase. allene oxide cyclase 0 -323170 cl05741 AGTRAP Angiotensin II, type I receptor-associated protein (AGTRAP). This family consists of several angiotensin II, type I receptor-associated protein (AGTRAP) sequences. AGTRAP is known to interact specifically with the C-terminal cytoplasmic region of the angiotensin II type 1 (AT(1)) receptor to regulate different aspects of AT(1) receptor physiology. The function of this family is unclear. 0 -323172 cl05743 RAP Receptor-associated protein (RAP). The alpha-2-macroglobulin receptor-associated protein (RAP) is a intracellular glycoprotein that binds to the 2-macroglobulin receptor and other members of the low density lipoprotein receptor family. The protein inhibits binding of all currently known ligands of these receptors. The N-terminal domain is predominately alpha helical. Two different studies have provided conflicted domain boundaries. 0 -352396 cl05752 HdeA HdeA/HdeB family. acid-resistance protein; Provisional 0 -352397 cl05753 TraD Conjugal transfer protein TraD. conjugal transfer protein TraD; Provisional 0 -352403 cl05762 SATase_N Serine acetyltransferase, N-terminal. The N-terminal domain of serine acetyltransferase has a sequence that is conserved in plants.and bacteria. 0 -186667 cl05775 SEF14_adhesin SEF14-like adhesin. fimbrial protein SefA; Provisional 0 -352412 cl05797 SMC_hinge SMC proteins Flexible Hinge Domain. This entry represents the hinge region of the SMC (Structural Maintenance of Chromosomes) family of proteins. The hinge region is responsible for formation of the DNA interacting dimer. It is also possible that the precise structure of it is an essential determinant of the specificity of the DNA-protein interaction. 0 -323210 cl05813 Disulph_isomer Disulphide isomerase. This protein family is one of several observed in species that express bacillithiol, an analog of glutathione and mycothiol. Rather than being involved in bacillithiol biosynthesis, members are likely to act in bacillithiol-dependent processes. A suggested term is bacilliredoxin (a glutaredoxin-like thiol-dependent oxidoreductase), and a suggested role of YphP is de-bacillithiolation - removing bacillithiol that became linked to protein thiols under oxidative stress. An older description of YphP as a disulphide isomerase therefore may be wrong. 0 -297251 cl05827 IpaD Invasion plasmid antigen IpaD. These proteins are found within type III secretion operons and have been shown to be secreted by that system. 0 -323239 cl05878 TraK TraK protein. This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 276 to 307 amino acids in length. 0 -352427 cl05880 CRA Circumsporozoite-related antigen (CRA). circumsporozoite-related antigen; Provisional 0 -352438 cl05946 PspB Phage shock protein B. phage shock protein B; Provisional 0 -352441 cl05964 zf-C4_ClpX ClpX C4-type zinc finger. The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C4 type. This presumed zinc binding domain is found at the N-terminus of the ClpX protein. ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. The molecular function of this domain is now known. 0 -352443 cl05973 FAM20_C_like C-terminal putative kinase domain of FAM20 (family with sequence similarity 20), Drosophila Four-jointed (Fj), and related proteins. Fam20C represents the C-terminus of eukaryotic secreted Golgi casein kinase proteins. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an autosomal recessive osteosclerotic bone dysplasia. 0 -352460 cl06067 TraU TraU protein. Members of this protein family are found in genomic regions associated with conjugative transfer and integrated TOL-like plasmids. The specific function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -352463 cl06082 ACP Malonate decarboxylase delta subunit (MdcD). citrate lyase subunit gamma; Provisional 0 -323319 cl06088 DUF1257 Protein of unknown function (DUF1257). Ycf35; Provisional 0 -297413 cl06106 Phage_TAC_2 Bacteriophage lambda tail assembly chaperone, TAC, protein G. This model describes a family of bacteriophage proteins including G of phage lambda. This protein has been described as undergoing a translational frameshift at a Gly-Lys dipeptide near the C-terminus of protein G from phage lambda, with about 4 % efficiency, to produce tail assembly protein G-T. The Lys of the Gly-Lys pair is the conserved second-to-last residue of seed alignment for this family. [Mobile and extrachromosomal element functions, Prophage functions] 0 -352472 cl06123 DHR2_DOCK Dock Homology Region 2, a GEF domain, of Dedicator of Cytokinesis proteins. This family represents a conserved region within a number of eukaryotic dedicator of cytokinesis proteins. These are potential guanine nucleotide exchange factors, which activate some small GTPases by exchanging bound GDP for free GTP. This region interacts with RAC1 and ELMO1. 0 -323340 cl06143 RELM resistin-like molecule (RELM) hormone family. This family consists of several mammalian resistin proteins. Resistin is a 12.5-kDa cysteine-rich secreted polypeptide first reported from rodent adipocytes. It belongs to a multigene family termed RELMs or FIZZ proteins. Plasma resistin levels are significantly increased in both genetically susceptible and high-fat-diet-induced obese mice. Immunoneutralisation of resistin improves hyperglycemia and insulin resistance in high-fat-diet-induced obese mice, while administration of recombinant resistin impairs glucose tolerance and insulin action in normal mice. It has been demonstrated that increases in circulating resistin levels markedly stimulate glucose production in the presence of fixed physiological insulin levels, whereas insulin suppressed resistin expression. It has been suggested that resistin could be a link between obesity and type 2 diabetes. 0 -352479 cl06181 PagP Antimicrobial peptide resistance and lipid A acylation protein PagP. phospholipid:lipid A palmitoyltransferase; Provisional 0 -352484 cl06211 KDGP_aldolase KDGP aldolase. Members of this family of relatively uncommon proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 0 -323379 cl06243 PsbW Photosystem II reaction centre W protein (PsbW). photosystem II reaction centre W protein (PsbW); Provisional 0 -323392 cl06278 TraL TraL protein. This protein is part of the type IV secretion system for conjugative plasmid transfer. The function of the TraL protein is unknown. [Cellular processes, Conjugation] 0 -352502 cl06336 Commd N/A. The leucine-rich, 70-85 amino acid long COMM domain is predicted to form a beta-sheet and an extreme C-terminal alpha- helix. The COMM domain containing proteins are about 200 residues in length and passed the C-terminal COMM domain. 0 -352503 cl06338 CDI_inhibitor_EC869_like Inhibitor of the contact-dependent growth inhibition (CDI) system of Escherichia coli EC869, and related proteins. CdiI immunity proteins function as part of the bacterial contact-dependent growth inhibition (CDI) system. CDI is mediated by the CdiB-CdiA two-partner secretion system. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). Cells with the CDI sytem also express a CdiI immunity protein that blocks the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. In many CDI systems the cdiBAI genes are followed by orphan cdiA-CT/cdiI modules, suggesting that these modules are exchanged between the CDI systems of different bacteria. 0 -352504 cl06345 DUF1439 Protein of unknown function (DUF1439). lipoprotein; Provisional 0 -323421 cl06353 BCHF 2-vinyl bacteriochlorophyllide hydratase (BCHF). This model represents the enzyme responsible for the first step in the modification of the ring A vinyl group of chlorophyllide a which (in part) distinguishes chlorophyll from bacteriochlorophyll. This enzyme is aparrently absent from cyanobacteria (which do not use bacteriochlorophyll). [Energy metabolism, Photosynthesis] 0 -323438 cl06401 Amastin Amastin surface glycoprotein. amastin surface glycoprotein; Provisional 0 -352512 cl06405 Syd Syd, a SecY-interacting protein. This family contains a number of bacterial Syd proteins approximately 180 residues long. It has been suggested that Syd is loosely associated with the cytoplasmic surface of the cytoplasmic membrane, and that interaction with SecY may be involved in this membrane association. Operon analysis showed that Syd protein may function as immunity protein in bacterial toxin systems. 0 -297589 cl06408 UP_III_II Uroplakin IIIb, IIIa and II. This family contains uroplakin II, which is approximately 180 residues long and seems to be restricted to mammals. Uroplakin II is an integral membrane protein, and is one of the components of the apical plaques of mammalian urothelium formed by the asymmetric unit membrane - this is believed to play a role in strengthening the urothelial apical surface to prevent the cells from rupturing during bladder distension. 0 -297618 cl06460 CblD CblD like pilus biogenesis initiator. putative fimbrial protein TcfD; Provisional 0 -323460 cl06461 YycH_N_like N-terminal domain of YycH and structurally similar proteins conserved in Firmicutes. This family consists of several uncharacterized proteins around 160 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 0 -323466 cl06472 HycH Formate hydrogenlyase maturation protein HycH. formate hydrogenlyase maturation protein HycH; Provisional 0 -352521 cl06473 CHRD CHRD domain. CHRD (after SWISS-PROT abbreviation for chordin) is a novel domain identified in chordin, an inhibitor of bone morphogenetic proteins. This family includes bacterial homologs. It is anticipated to have an immunoglobulin-like beta-barrel structure based on limited similarity to superoxide dismutases but, as yet, no clear functional prediction can be made. Its most conserved feature is a GE[I/L]RCG[V/I/L] motif towards its C-terminal end Most bacterial proteins in this family have only one CHRD domain, whereas it is found repeated in many eukaryotic proteins such as human chordin and Drosophila SOG.. 0 -141938 cl06484 Agglutinin Agglutinin domain. Although its biological function is unknown, it has a high binding specificity for the methyl-glycoside of the T-antigen, found linked to serine or threonine residues of cell surface glycoproteins. The protein is comprised of a homodimer, with each homodimer consisting of two beta-trefoil domains. 0 -352524 cl06505 Rho_N Rho termination factor, N-terminal domain. The Rho termination factor disengages newly transcribed RNA from its DNA template at certain, specific transcripts. It it thought that two copies of Rho bind to RNA and that Rho functions as a hexamer of protomers. This domain is found to the N-terminus of the RNA binding domain. 0 -352525 cl06508 MANEC MANEC domain. This domain, comprising 8 conserved cysteines, is found in the N terminus of higher multicellular animal membrane and extracellular proteins. It is postulated that this domain may play a role in the formation of protein complexes involving various protease activators and inhibitors. It is possible that some of the cysteine residues in the MANSC domain form structurally important disulfide bridges. All of the MANSC-containing proteins contain predicted transmembrane regions and signal peptides. It has been proposed that the MANSC domain in HAI-1 might function through binding with hepatocyte growth factor activator and matriptase. 0 -323488 cl06515 DUF1525 Protein of unknown function (DUF1525). Members of this protein belong to extended genomic regions that appear to be spread by conjugative transfer. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -352529 cl06527 HisKA_2 Histidine kinase. Two-component systems, consisting of a histidine kinase and a cognate response regulator protein, represent the best-known apparatus for transducing external cues into a physiological response in bacteria. The HWE domain is found in a subset of two-component system kinases, belonging to the same superfamily as pfam00512. The family was defined by the presence of a highly conserved H residue in the kinase domain and a WxE motif in a C-terminal ATPase domain that is related to pfam02518. These proteins are found in a variety of alpha- and gamma-proteobacteria, with significant enrichment in the rhizobia. 0 -323517 cl06567 BatA Aerotolerance regulator N-terminal. This model represents a prokaryotic N-terminal region of about 80 amino acids. The predicted membrane topology by TMHMM puts the N-terminus outside and spans the membrane twice, with a cytosolic region of about 25 amino acids between the two transmembrane regions. Member proteins tend to be between 600 and 1000 amino acids in length. [Hypothetical proteins, Domain] 0 -352541 cl06591 DUF1573 Protein of unknown function (DUF1573). This HMM describes a repeat domain just over 100 amino acids long and usually found in tandem copies. Members appear to be extracellular proteins that have some C-terminal anchoring domain, such as type IX secrection (T9SS) or PEP-CTERM. 0 -352553 cl06673 Extradiol_Dioxygenase_3A_like Subunit A of Class III extradiol dioxygenases. This is a family of aromatic ring opening dioxygenases which catalyze the ring-opening reaction of protocatechuate and related compounds. 0 -352566 cl06725 TraC TraC-like protein. conjugal transfer protein TraC; Provisional 0 -352573 cl06756 Nif11 Nif11 domain. This model describes a conserved, fairly long (about 65 residue) leader peptide region for a family of putative ribosomal natural products (RNP) of small size. Members of the seed alignment tend to have the Gly-Gly motif as the last two residues of the matched region. This is a cleavage site for a combination processing/export ABC transporter with a peptidase domain. Members include the prochlorosins, lantipeptides from Prochlorococcus. [Cellular processes, Biosynthesis of natural products] 0 -352574 cl06766 YabP YabP family. Members of this protein family are the YabP protein of the bacterial sporulation program, as found in Bacillus subtilis, Clostridium tetani, and other spore-forming members of the Firmicutes. In Bacillus subtilis, a yabP single mutant appears to sporulate and germinate normally (), but is in an operon with yabQ (essential for formation of the spore cortex), it near-universal among endospore-forming bacteria, and is found nowhere else. It is likely, therefore, that YabP does have a function in sporulation or germination, one that is either unappreciated or partially redundant with that of another protein. [Cellular processes, Sporulation and germination] 0 -352582 cl06793 PRKCSH Glucosidase II beta subunit-like protein. The sequences found in this family are similar to a region found in the beta-subunit of glucosidase II, which is also known as protein kinase C substrate 80K-H (PRKCSH). The enzyme catalyzes the sequential removal of two alpha-1,3-linked glucose residues in the second step of N-linked oligosaccharide processing. The beta subunit is required for the solubility and stability of the heterodimeric enzyme, and is involved in retaining the enzyme within the endoplasmic reticulum. The beta-subunit confers substrate specificity for di- and monoglucosylated glycans on the glucose-trimming activity of the alpha-subunit. 0 -352591 cl06838 C1_4 TFIIH C1-like domain. The carboxyl-terminal region of TFIIH is essential for transcription activity. This regions binds three zinc atoms through two independent domain. The first contains a C4 zinc finger motif, whereas the second is characterised by a CX(2)CX(2-4)FCADCD motif. The solution structure of the second C-terminal domain revealed homology with the regulatory domain of protein kinase C. 0 -323638 cl06842 X8 X8 domain. The X8 domain, which may be involved in carbohydrate binding, is found in an Olive pollen antigen as well as at the C terminus of family 17 glycosyl hydrolases. It contains 6 conserved cysteine residues which presumably form three disulfide bridges. 0 -352592 cl06844 SRR1 SRR1. Protein SENSITIVITY TO RED LIGHT REDUCED 1; Provisional 0 -352594 cl06858 DUF1704 Domain of unknown function (DUF1704). Members of this family include a possible metal-binding motif HEXXXH and, nearby, a perfectly conserved motif QEGLA. All members belong to the Proteobacteria, including Agrobacterium tumefaciens and several species of Vibrio and Pseudomonas, and are found in only one copy per chromosome (Vibrio vulnificus, with two chromosomes, has two). The function is unknown. 0 -352595 cl06868 FNR_like N/A. Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural similarity to ferredoxin reductase and sequence similarity to dihydroorotate dehydrogenases. Clostridium pasteurianum inducible dissimilatory type sulfite reductase is linked to ferredoxin and reduces NH2OH and SeO3 at a lesser rate than it's normal substate SO3(2-). Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. 0 -323649 cl06870 SpoU_sub_bind RNA 2'-O ribose methyltransferase substrate binding. This region is found in some members of the SpoU-type rRNA methylase family (pfam00588). 0 -352600 cl06893 UME UME (NUC010) domain. Characteristic domain in UVSP PI-3 kinase, MEI-41 and ESR-1. Found in nucleolar proteins. Associated with FAT, FATC, PI3_PI4_kinase modules. 0 -352604 cl06904 eNOPS_SF NOPS domain, including C-terminal helical extension region, in the p54nrb/PSF/PSP1 family. This domain is found at the C-terminus of NONA and PSP1 proteins adjacent to 1 or 2 pfam00076 domains. 0 -352608 cl06920 dimerization2 dimerization domain. This domain is found at the N-terminus of a variety of plant O-methyltransferases. It has been shown to mediate dimerization of these proteins. 0 -323687 cl06949 SspH Small acid-soluble spore protein H family. This model is derived from pfam08141 but has been expanded to include in the seed corresponding proteins from three species of Clostridium. Members of this family should occur only in endospore-forming bacteria, typically with two members per genome, but may be absent from the genomes of some endospore-forming bacteria. SspH (previously designated YfjU) was shown to be expressed specifically in spores of Bacillus subtilis. [Cellular processes, Sporulation and germination] 0 -352612 cl06950 AARP2CN AARP2CN (NUC121) domain. This domain is the central domain of AARP2. It is weakly similar to the GTP-binding domain of elongation factor TU. 0 -352614 cl06954 BP28CT BP28CT (NUC211) domain. This C-terminal domain is found in BAP28-like nucleolar proteins. 0 -352617 cl06957 BING4CT BING4CT (NUC141) domain. This C terminal domain is found in the BING4 family of nucleolar WD40 repeat proteins. 0 -352620 cl06960 GUCT RNA-binding GUCT domain found in the RNA helicase II/Gu protein family. This is the C terminal domain found in the RNA helicase II / Gu protein family. 0 -323717 cl06998 LEM_like LEM-like domain of lamina-associated polypeptide 2 (LAP2) and similar proteins. Short protein of 49 amino acid isolated from bovine spleen cells. Thymopoietins (TMPOs) are a group of ubiquitously expressed nuclear proteins. They are suggested to play an important role in nuclear envelope organisation and cell cycle control. 0 -352638 cl07019 SHR3_chaperone ER membrane protein SH3. This family of proteins are membrane localised chaperones that are required for correct plasma membrane localisation of amino acid permeases (AAPs). Shr3 prevents AAPs proteins from aggregating and assists in their correct folding. In the absence of Shr3, AAPs are retained in the ER. 0 -352639 cl07020 CW_7 CW_7 repeat. This domain was originally found in the C-terminal moiety of the Cpl-7 lysozyme encoded by the Streptococcus pneumoniae bacteriophage Cp-7. It is assumed that these repeats represent cell wall binding motifs although no direct evidence has been obtained so far. 0 -323734 cl07029 SPT2 SPT2 chromatin protein. This entry includes the Saccharomyces cerevisiae protein SPT2 which is a chromatin protein involved in transcriptional regulation. 0 -352643 cl07034 dCache_2 Cache domain. Members include the animal dihydropyridine-sensitive voltage-gated Ca2+ channel; alpha-2delta subunit, and various bacterial chemotaxis receptors. The name Cache comes from CAlcium channels and CHEmotaxis receptors. This domain consists of an N-terminal part with three predicted strands and an alpha-helix, and a C-terminal part with a strand dyad followed by a relatively unstructured region. The N-terminal portion of the (unpermuted) Cache domain contains three predicted strands that could form a sheet analogous to that present in the core of the PAS domain structure. Cache domains are particularly widespread in bacteria, with Vibrio cholerae. The animal calcium channel alpha-2delta subunits might have acquired a part of their extracellular domains from a bacterial source. The Cache domain appears to have arisen from the GAF-PAS fold despite their divergent functions. 0 -352648 cl07053 Sin3_corepress Sin3 family co-repressor. This domain is found on transcriptional regulators. It forms interactions with histone deacetylases. 0 -352649 cl07055 Bac_DnaA_C N/A. Could be involved in DNA-binding. 0 -323745 cl07060 NPCBM NPCBM/NEW2 domain. This novel putative carbohydrate binding module (NPCBM) domain is found at the N-terminus of glycosyl hydrolase family 98 proteins. This domain has also been called the NEW2 domain (Naumoff DG. Phylogenetic analysis of alpha-galactosidases of the GH27 family. Molecular Biology (Engl Transl). (2004)38:388-399.) 0 -352650 cl07066 Mad3_BUB1_I Mad3/BUB1 homology region 1. Proteins containing this domain are checkpoint proteins involved in cell division. This region has been shown to be essential for the binding of the binding of BUB1 and MAD3 to CDC20p. 0 -352654 cl07072 COG4 COG4 transport protein. This region is found in yeast oligomeric golgi complex component 4 which is involved in ER to Golgi and intra Golgi transport. 0 -323760 cl07097 oligo_HPY Oligopeptide/dipeptide transporter, C-terminal region. This model represents a domain found in the C-terminal regions of oligopeptide ABC transporter ATP binding proteins, immediately following the ATP-binding domain (pfam00005). All characterized members appear able to be involved in the transport of oligopeptides or dipeptides. Some are important for sporulation or antibiotic resistance. Some dipeptide transporters also act on the heme precursor delta-aminolevulinic acid. [Transport and binding proteins, Amino acids, peptides and amines] 0 -323788 cl07159 Rib Rib/alpha-like repeat. Sequences in this family are tandem repeats of about 79 amino acids, present in up to 14 copies in a protein and highly identical, even at the DNA level, within each protein. Sequences with these repeats are found in the Rib and alpha surface antigens of group B Streptococcus, Esp of Enterococcus faecalis, and related proteins of Lactobacillus. The repeat lacks Cys residues. Most members of this protein family also have the cell wall anchor motif LPXTG shared by many staphyloccal and streptococcal surface antigens. 0 -323810 cl07218 Ad_cyc_g-alpha Adenylate cyclase G-alpha binding domain. This fungal domain is found in adenylate cyclase and interacts with the alpha subunit of heterotrimeric G proteins. 0 -323826 cl07247 CDC37_C Cdc37 C terminal domain. Cdc37 is a protein required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the C terminal domain whose function is unclear. It is found C terminal to the Hsp90 chaperone (Heat shocked protein 90) binding domain pfam08565 and the N terminal kinase binding domain of Cdc37. 0 -323827 cl07248 CDC37_M Cdc37 Hsp90 binding domain. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the Hsp90 chaperone (Heat shocked protein 90) binding domain of Cdc37. It is found between the N terminal Cdc37 domain which is predominantly involved in kinase binding, and the C terminal domain of Cdc37 whose function is unclear. 0 -323858 cl07291 RNase_H2-C Ribonuclease H2-C is a subunit of the eukaryotic RNase H complex which cleaves RNA-DNA hybrids. This entry represents the non-catalytic subunit of RNase H2, which in S. cerevisiae is Ylr154p/Rnh203p. Whereas bacterial and archaeal RNases H2 are active as single polypeptides, the Saccharomyces cerevisiae homolog, Rnh2Ap, when expressed in Escherichia coli, fails to produce an active RNase H2. For RNase H2 activity three proteins are required [Rnh2Ap (Rnh201p), Ydr279p (Rnh202p) and Ylr154p (Rnh203p)]. Deletion of any one of the proteins or mutations in the catalytic site in Rnh2A leads to loss of RNase H2 activity. RNase H2 ia an endonuclease that specifically degrades the RNA of RNA:DNA hybrids. It participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers during DNA replication. 0 -352713 cl07336 MutL_C MutL C terminal dimerization domain. MutL and MutS are key components of the DNA repair machinery that corrects replication errors. MutS recognises mispaired or unpaired bases in a DNA duplex and in the presence of ATP, recruits MutL to form a DNA signaling complex for repair. The N terminal region of MutL contains the ATPase domain and the C terminal is involved in dimerisation. 0 -323902 cl07362 PriCT_1 Primase C terminal 1 (PriCT-1). This alpha helical domain is found at the C terminal of primases. 0 -352721 cl07364 Nfu_N Scaffold protein Nfu/NifU N terminal. This domain is found at the N terminus of NifU and NifU related proteins, and in the human Nfu protein. Both of these proteins are thought to be involved in the the assembly of iron-sulphur clusters. 0 -352725 cl07381 BCS1_N BCS1 N terminal. This domain is found at the N terminal of the mitochondrial ATPase BSC1. It encodes the import and intramitochondrial sorting for the protein. 0 -352726 cl07383 C8 C8 domain. Not all of the conserved cysteines have been included in the alignment model. It is found in disease-related proteins including von Willebrand factor, Alpha tectorin, Zonadhesin and Mucin. 0 -323917 cl07391 Cadherin_pro Cadherin prodomain like. Cadherins are a family of proteins that mediate calcium dependent cell-cell adhesion. They are activated through cleavage of a prosequence in the late Golgi. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions. 0 -352728 cl07392 GT-D Glycosyltransferase GT-D fold. Members of this protein family are putative glycosyltransferases. Some members are found close to genes for the accessory secretory (SecA2) system, and are suggested by Partial Phylogenetic Profiling to correlate with SecA2 systems. Glycosylation, therefore, may occur in the cytosol prior to secretion. 0 -323919 cl07396 CRM1_C CRM1 C terminal. CRM1 (also known as Exportin1) mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES). CRM1 forms a complex with the NES containing protein and the small GTPase Ran. This region forms an alpha helical structure formed by six helical hairpin motifs that are structurally similar to the HEAT repeat, but share little sequence similarity to the HEAT repeat. 0 -352730 cl07397 SoxZ Sulphur oxidation protein SoxZ. SoxZ forms a heterodimer with SoxY, the subunit that forms a covalent bond with a sulfur moiety during thiosulfate oxidation to sulfate. Note that virtually all proteins that have a SoxY domain fused to a SoxZ domain are functionally distinct and not involved in thiosulfate oxidation. 0 -352732 cl07405 DP_DD Dimerization domain of DP. DP forms a heterodimer with E2F and regulates genes involved in cell cycle progression. The transcriptional activity of E2F is inhibited by the retinoblastoma protein which binds to the E2F-DP heterodimer and negatively regulates the G1-S transition. 0 -352733 cl07406 c-SKI_SMAD_bind c-SKI Smad4 binding domain. c-SKI is an oncoprotein that inhibits TGF-beta signaling through interaction with Smad proteins. This domain binds to Smad4. 0 -352735 cl07418 HIRAN HIRAN domain. HIRAN is found as a standalone protein in several bacteria and prophages, or fused to other catalytic domains, such as a nuclease of the restriction endonuclease fold and TDP1-like DNA phosphoesterases, in the eukaryotes. It has been predicted that this protein functions as a DNA-binding domain that probably recognises features associated with damaged DNA or stalled replication forks. 0 -352737 cl07420 ydhR Putative mono-oxygenase ydhR. putative monooxygenase; Provisional 0 -352739 cl07428 Ivy Inhibitor of vertebrate lysozyme (Ivy). C-lysozyme inhibitor; Provisional 0 -323939 cl07433 Serine_rich_CAS Serine rich Four helix bundle domain of CAS (Crk-Associated Substrate) scaffolding proteins; a protein interaction module. This is a serine rich domain that is found in the docking protein p130(cas) (Crk-associated substrate). This domain folds into a four helix bundle which is associated with protein-protein interactions. 0 -323947 cl07443 Cdt1_m The middle winged helix fold of replication licensing factor Cdt1 binds geminin to inhibit binding of the MCM complex to origins of replication and DNA. CDT1 is a component of the replication licensing system and promotes the loading of the mini-chromosome maintenance complex onto chromatin. Geminin is an inhibitor of CDT1 and prevents inappropriate re-initiation of replication on an already fired origin. This region of CDT1 binds to Geminin. 0 -352743 cl07446 SymE_toxin Toxin SymE, type I toxin-antitoxin system. endoribonuclease SymE; Provisional 0 -323959 cl07460 FRG FRG domain. This presumed domain contains a conserved N-terminal (F/Y)RG motif. It is functionally uncharacterized. 0 -352746 cl07462 XisI-like XisI is FdxN element excision controlling factor protein. The fdxN element, along with two other DNA elements, is excised from the chromosome during heterocyst differentiation in cyanobacteria. The xisH as well as the xisF and xisI genes are required. 0 -352747 cl07463 DndE DNA sulphur modification protein DndE. This model describes the DndE protein encoded by an operon associated with a sulfur-containing modification to DNA. The operon is sporadically distributed in bacteria, much like some restriction enzyme operons. DndE is a putative carboxylase homologous to NCAIR synthetases. [DNA metabolism, Restriction/modification] 0 -352749 cl07469 QLQ QLQ. QLQ is found at the N-terminus of SWI2/SNF2 protein, which has been shown to be involved in protein-protein interactions. QLQ has been postulated to be involved in mediating protein interactions. 0 -323977 cl07481 DUF1845 Domain of unknown function (DUF1845). Members of this protein family, such as PFL4669, are found in integrating conjugative elements (ICE) of the PFGI-1 class as in Pseudomonas fluorescens. 0 -352760 cl07494 F_actin_bind F-actin binding. FABD is the F-actin binding domain of Bcr-Abl and its cellular counterpart c-Abl. The Bcr-Abl tyrosine kinase causes different forms of leukemia in humans. Depending on its position within the cell, Bcr-Abl differentially affects cellular growth. The FABD forms a compact left-handed four-helix bundle in solution. 0 -323996 cl07510 CsoSCA Carboxysome Shell Carbonic Anhydrase. This model describes a carboxysome shell protein that proves to be a novel class, designated epsilon, of carbonic anhydrase. It tends to be encoded near genes for RuBisCo and for other carboxysome shell proteins. [Central intermediary metabolism, One-carbon metabolism] 0 -324010 cl07531 DUF1874 Domain of unknown function (DUF1874). DNA binding protein 0 -298396 cl07585 T3SS_needle_reg YopR, type III needle-polymerization regulator. Members of this family are type III secretion system effectors, named differently in different species and designated YopR (Yersinia outer protein R), encoded by the YscH (Yersinia secretion H) gene. This Yops protein is unusual in that it is released to extracellularly rather than injected directly into the target cell as are most Yops. [Cellular processes, Pathogenesis] 0 -324049 cl07609 Sod_Ni Nickel-containing superoxide dismutase. This superoxide dismutase uses nickel, rather than iron, manganese, copper, or zinc. Its gene is always accompanied by a gene for a required protease. 0 -352773 cl07618 B2-adapt-app_C Beta2-adaptin appendage, C-terminal sub-domain. Members of this family adopt a structure consisting of a 5 stranded beta-sheet, flanked by one alpha helix on the outer side, and by two alpha helices on the inner side. This domain is required for binding to clathrin, and its subsequent polymerisation. Furthermore, a hydrophobic patch present in the domain also binds to a subset of D-phi-F/W motif-containing proteins that are bound by the alpha-adaptin appendage domain (epsin, AP180, eps15). 0 -352774 cl07621 EFh_DMD_DYTN_DTN EF-hand-like motif found in the dystrophin/dystrobrevin/dystrotelin family. Beta-dystrobrevin, also termed dystrobrevin beta (DTN-B), is a dystrophin-related protein that is restricted to non-muscle tissues and is abundantly expressed in brain, lung, kidney, and liver. It may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation, through the interactions with the high mobility group HMG20 proteins iBRAF/HMG20a and BRAF35 /HMG20b. It also binds to and represses the promoter of synapsin I, a neuronal differentiation gene. Moreover, beta-dystrobrevin functions as a kinesin-binding receptor involved in brain development via the association with the extracellular matrix components pancortins. Furthermore, beta-dystrobrevin binds directly to dystrophin and is a cytoplasmic component of the dystrophin-associated glycoprotein complex, a multimeric protein complex that links the extracellular matrix to the cortical actin cytoskeleton and acts as a scaffold for signaling proteins such as protein kinase A. Absence of alpha- and beta-dystrobrevin causes cerebellar synaptic defects and abnormal motor behavior. Beta-dystrobrevin has a compact cluster of domains comprising four EF-hand-like motifs and a ZZ-domain, followed by a looser region with two coiled-coils. These domains are believed to be involved in protein-protein interactions. In addition, beta-dystrobrevin contain two syntrophin binding sites (SBSs). 0 -352785 cl07672 GH15_N Glycoside hydrolase family 15, N-terminal domain. Members of this family, which are uniquely found in bacterial and archaeal glucoamylases and glucodextranases, adopt a structure consisting of 17 antiparallel beta-strands. These beta-strands are divided into two beta-sheets, and one of the beta-sheets is wrapped by an extended polypeptide, which appears to stabilize the domain. Members of this family are mainly concerned with catalytic activity, hydrolysing alpha-1,6-glucosidic linkages of dextran to release beta-D-glucose from the non-reducing end via an inverting reaction mechanism. 0 -352789 cl07688 FimH_man-bind Mannose binding domain of FimH and related proteins. Members of this family adopt a secondary structure consisting of a beta sandwich, with nine strands arranged in two sheets in a Greek key topology. They are predominantly found in bacterial mannose-specific adhesins, since they are capable of binding to D-mannose. 0 -352793 cl07696 PepX_N X-Prolyl dipeptidyl aminopeptidase PepX, N-terminal. This N-terminal domain adopts a secondary structure consisting of a helical bundle of eight alpha helices and three beta strands, with the last alpha helix connecting to the first strand of the catalytic domain. The first strand of the N-terminus also forms a small parallel beta sheet with strand five of the catalytic domain. This domain mediates dimerisation of the protein, with two proline residues present in the domain being critical for interaction. 0 -352798 cl07747 Aha1_N Activator of Hsp90 ATPase, N-terminal. This domain is predominantly found in the protein 'Activator of Hsp90 ATPase', it adopts a secondary structure consisting of an N-terminal alpha-helix leading into a four-stranded meandering antiparallel beta-sheet, followed by a C-terminal alpha-helix. The two helices are packed together, with the beta-sheet curving around them. They bind to the molecular chaperone HSP82 and stimulate its ATPase activity. 0 -352802 cl07779 DUF1967 Domain of unknown function (DUF1967). CgtA (see model TIGR02729) is a broadly conserved member of the obg family of GTPases associated with ribosome maturation. This model represents a unique C-terminal domain found in some but not all sequences of CgtA. This region is preceded, and may be followed, by a region of low-complexity sequence. 0 -352815 cl07828 zf-H2C2 His(2)-Cys(2) zinc finger. This is a family of probably DNA-binding zinc-fingers found on Gag-Pol polyproteins from mouse retroviruses. Added to clan to resolve overlaps with zf-H2C2, but neither are true members. 0 -324147 cl07831 growth_hormone_like Somatotropin/prolactin hormone family. Prolactin is primarily responsible for stimulating milk production and breast development in mammals. Aside from roles in reproduction, various functions have been attributed to prolactin, more than for other pituitary gland hormones combined. These are roles in growth and development, metamorphosis, metabolism of lipids, carbohydrates, and steroids, brain biochemistry and even immunoregulation, among others. Most of these roles are poorly understood, but it has become clear that many prolactin-like hormones are actually produced in the placenta and not the pituitary. 0 -324149 cl07834 C6 C6 domain. It is presumed to be an extracellular domain. The C6 domain contains six conserved cysteine residues in most copies of the domain. However some copies of the domain are missing cysteine residues 1 and 3 suggesting that these form a disulphide bridge. 0 -324153 cl07847 RGP Reversibly glycosylated polypeptide. reversibly glycosylated polypeptide; Provisional 0 -352820 cl07849 Acetyltransf_14 YopJ Serine/Threonine acetyltransferase. effector protein YopJ; Provisional 0 -352825 cl07863 Phasin Poly(hydroxyalcanoate) granule associated protein (phasin). This model describes a domain found in some proteins associated with polyhydroxyalkanoate (PHA) granules in a subset of species that have PHA inclusion granules. Included are two tandem proteins of Pseudomonas oleovorans, PhaI and PhaF, and their homologs in related species. PhaF proteins have a low-complexity C-terminal region with repeats similar to AAAKP. [Fatty acid and phospholipid metabolism, Biosynthesis] 0 -324168 cl07874 zf-AD Zinc-finger associated domain (zf-AD). The zf-AD domain, also known as ZAD, forms an atypical treble-cleft-like zinc co-ordinating fold. The zf-AD domain is thought to be involved in mediating dimer formation, but does not bind to DNA. 0 -352829 cl07879 DnaG_DnaB_bind DNA primase DnaG DnaB-binding. DnaG_DnaB_bind defines a domain of primase required for functional interaction with DnaB that attracts primase to the replication fork. DnaG_DnaB_bind is responsible for the interaction between DnaG and DnaB. 0 -352831 cl07883 CAMSAP_CKK Microtubule-binding calmodulin-regulated spectrin-associated. This is the C-terminal domain of a family of eumetazoan proteins collectively defined as calmodulin-regulated spectrin-associated, or CAMSAP, proteins. CAMSAP proteins carry an N-terminal region that includes the CH domain, a central region including a predicted coiled-coil and this C-terminal, or CKK, domain - defined as being present in CAMSAP, KIAA1078 and KIAA1543, The C-terminal domain is the part of the CAMSAP proteins that binds to microtubules. The domain appears to act by producing inhibition of neurite extension, probably by blocking microtubule function. CKK represents a domain that has evolved with the metazoa. The structure of a murine hypothetical protein from RIKEN cDNA has shown the domain to adopt a mainly beta barrel structure with an associated alpha-helical hairpin. 0 -352834 cl07889 Pro-peptidase_S53 Activation domain of S53 peptidases. Members of this family are found in various subtilase propeptides, and adopt a ferredoxin-like fold, with an alpha+beta sandwich. Cleavage of the domain results in activation of the peptide. 0 -352835 cl07890 AAI_LTSS N/A. This domain has a four-helix bundle structure. It contains four disulfide bonds, of which three function to keep the C- and N-terminal parts of the molecule in place. 0 -352836 cl07893 AmyAc_family Alpha amylase catalytic domain family. SLC3A1, also called Neutral and basic amino acid transport protein rBAT or NBAT, plays a role in amino acid and cystine absorption. Mutations in the gene encoding SLC3A1 causes cystinuria, an autosomal recessive disorder characterized by the failure of proximal tubules to reabsorb filtered cystine and dibasic amino acids. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. 0 -352837 cl07905 DUF3237 Protein of unknown function (DUF3237). hypothetical protein; Provisional 0 -324180 cl07906 DUF2585 Protein of unknown function (DUF2585). hypothetical protein; Provisional 0 -352838 cl07918 Virul_fac_BrkB Virulence factor BrkB. Initial identification of members of this protein family was based on characterization of the yihY gene product as ribonuclease BN in Escherichia coli. This identification has been withdrawn, as the group now finds the homolog in E. coli of RNase Z is the true ribonuclease BN rather than a strict functional equivalent of RNase Z. Members of this subfamily include the largely uncharacterized BrkB (Bordetella resist killing by serum B) from Bordetella pertussis. Some members have an additional C-terminal domain. Paralogs from E. coli (yhjD) and Mycobactrium tuberculosis (Rv3335c) are part of a smaller, related subfamily that form their own cluster. [Unknown function, General] 0 -352839 cl07929 Glyco_transf_56 4-alpha-L-fucosyltransferase glycosyl transferase group 56. 4-alpha-L-fucosyltransferase; Provisional 0 -324183 cl07930 Fe_bilin_red Ferredoxin-dependent bilin reductase. dihydrobiliverdin:ferredoxin oxidoreductase; Provisional 0 -352840 cl07940 SSPI Small, acid-soluble spore protein I. small acid-soluble spore protein SspI; Provisional 0 -324185 cl07943 SspO Small acid-soluble spore protein O family. This model represents a minor (low-abundance) spore protein, designated SspO. It is found in a very limited subset of the already small group of endospore-forming bacteria, but these species include Oceanobacillus iheyensis, Geobacillus kaustophilus, Bacillus subtilis, B. halodurans, and B. cereus. This protein was previously called CotK. [Cellular processes, Sporulation and germination] 0 -324186 cl07944 HutP Histidine Utilizing Protein, the hut operon positive regulatory protein. The HutP protein family regulates the expression of Bacillus 'hut' structural genes by an anti-termination complex, which recognizes three UAG triplet units, separated by four non-conserved nucleotides on the RNA terminator region. L-histidine and Mg2+ ions are also required. These proteins exhibit the structural elements of alpha/beta proteins, arranged in the order: alpha-alpha-beta-alpha-alpha-beta-beta-beta in the primary structure, and the four antiparallel beta-strands form a beta-sheet in the order beta1-beta2-beta3-beta4, with two alpha-helices each on the front (alpha1 and alpha2) and at the back (alpha3 and alpha4) of the beta-sheet. 0 -186720 cl07951 PRK03830 N/A. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. Although previously designated tlp (thioredoxin-like protein), the B. subtilis protein was shown to be a minor small acid-soluble spore protein SASP, unique to spores. The motif E[VIL]XDE near the C-terminus probably represents at a germination protease cleavage site. [Cellular processes, Sporulation and germination] 0 -352841 cl07980 FHIPEP FHIPEP family. Members of this family are closely homologous to the flagellar biosynthesis protein FlhA (TIGR01398) and should all participate in type III secretion systems. Examples include InvA (Salmonella enterica), LcrD (Yersinia enterocolitica), HrcV (Xanthomonas), etc. Type III secretion systems resemble flagellar biogenesis systems, and may share the property of translocating special classes of peptides through the membrane. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -324188 cl07986 PDGLE PDGLE domain. cobalt transport protein CbiN; Validated 0 -324189 cl08022 Spore_III_AB Stage III sporulation protein AB (spore_III_AB). stage III sporulation protein SpoAB; Provisional 0 -352842 cl08031 ThiC_Rad_SAM Radical SAM ThiC family. Members of this protein family closely resemble ThiC, an enzyme that performs a complex rearrangement during thiamin biosynthesis, but instead occur as one of two adjacent additional paralogs to bona fide ThiC, in a conserved gene neighborhood with a pair of B12 binding domain/radical SAM domain proteins. Members of the ThiC family are non-canonical radical SAM enzymes, using a C-terminal Cys-rich motif to ligand a 4Fe-4S cluster that cleaves S-adenosylmethionine (SAM), but that sequence region does not belong to pfam04055. 0 -352843 cl08044 Cse1_I-E CRISPR/Cas system-associated protein Cse1. Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry, represented by CT1972 from Chlorobaculum tepidum, is found in the CRISPR/Cas subtype Ecoli regions of many bacteria (most of which are mesophiles), and not in Archaea. It is designated Cse1. 0 -352844 cl08047 Lar_restr_allev Restriction alleviation protein Lar. Restriction alleviation proteins provide a countermeasure to host cell restriction enzyme defense against foreign DNA such as phage or plasmids. This family consists of homologs to the phage antirestriction protein Lar, and most members belong to phage genomes or prophage regions of bacterial genomes. [Mobile and extrachromosomal element functions, Prophage functions, DNA metabolism, Restriction/modification] 0 -324193 cl08066 YafO_toxin Toxin YafO, type II toxin-antitoxin system. putative toxin YafO; Provisional 0 -352845 cl08082 CsgF Type VIII secretion system (T8SS), CsgF protein. curli assembly protein CsgF; Provisional 0 -298624 cl08090 DUF2541 Protein of unknown function (DUF2541). hypothetical protein; Provisional 0 -324195 cl08095 HycA_repressor Transcriptional repressor of hyc and hyp operons. formate hydrogenlyase regulatory protein HycA; Provisional 0 -352846 cl08096 DUF1992 Domain of unknown function (DUF1992). hypothetical protein; Provisional 0 -352847 cl08107 DUF5329 Family of unknown function (DUF5329). hypothetical protein; Provisional 0 -324197 cl08110 DUF2756 Protein of unknown function (DUF2756). hypothetical protein; Provisional 0 -352848 cl08115 CsgE Curli assembly protein CsgE. curli assembly protein CsgE; Provisional 0 -352849 cl08119 YgbA_NO Nitrous oxide-stimulated promoter. hypothetical protein; Provisional 0 -324200 cl08122 NiFe-hyd_HybE [NiFe]-hydrogenase assembly, chaperone, HybE. Members of this family are chaperones for the assembly of [NiFe] hydrogenases, in the family of HybE, which is specific for hydrogenase-2 of Escherichia coli. Members often have an additional N-terminal rubredoxin domain. 0 -352850 cl08125 DUF3811 YjbD family (DUF3811). hypothetical protein; Provisional 0 -352851 cl08136 SecD-TM1 SecD export protein N-terminal TM region. EnvZ/OmpR regulon moderator; Provisional 0 -352852 cl08141 Lipoprotein_20 YfhG lipoprotein. hypothetical protein; Provisional 0 -352853 cl08147 RcsF RcsF lipoprotein. outer membrane lipoprotein; Reviewed 0 -352854 cl08171 HtrL_YibB Bacterial protein of unknown function (HtrL_YibB). hypothetical protein; Provisional 0 -324206 cl08177 DUF2625 Protein of unknown function DUF2625. hypothetical protein; Provisional 0 -298637 cl08186 DUF3251 Protein of unknown function (DUF3251). hypothetical protein; Provisional 0 -324207 cl08187 Cas2_I-E CRISPR/Cas system-associated protein Cas2. This entry represents a minor branch of the Cas2 family of CRISPR-associated protein which are found in IPR003799. Cas proteins are found adjacent to a characteristic short, palindromic repeat cluster termed CRISPR, a probable mobile DNA element. 0 -352855 cl08197 DUF2501 Protein of unknown function (DUF2501). hypothetical protein; Provisional 0 -352856 cl08212 Tipalpha TNF-alpha-Inducing protein of Helicobacter. tumor necrosis factor alpha-inducing protein; Reviewed 0 -352857 cl08220 Photo_RC D1, D2 subunits of photosystem II (PSII); M, L subunits of bacterial photosynthetic reaction center. This model decribes the photosynthetic reaction center M subunit in non-oxygenic photosynthetic bacteria. Reaction center is an integral membrane pigment-protein that carries out light-driven electron transfer reactions. At the core of reacion center is a collection light-harvesting cofactors and closely associated polypeptides. The core protein complex is made of L, M and H subunits. The common cofactors include bacterichlorophyll, bacteriopheophytins, ubiquinone and no-heme ferrous iron. The net result of electron tranfer reactions is the establishment of proton electrochemical gradient and production of reducing equivalents in form of NADH. Ultimately the process results in the reduction of C02 to carbohydrates(C6H12O6) In non-oxygenic organisms, the electron donor is some organic acid and not water. Much of our current functional understanding of photosynthesis comes from the structural determination, spectroscopic studies and mutational analysis on the reaction center of Rhodobacter sphaeroides. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 0 -324210 cl08223 PSII Photosystem II protein. photosystem II 47 kDa protein 0 -324211 cl08224 PsaA_PsaB Photosystem I psaA/psaB protein. photosystem I P700 chlorophyll a apoprotein A1; Provisional 0 -352858 cl08232 RuBisCO_large Ribulose bisphosphate carboxylase large chain. The C-terminal domain of RuBisCO large chain is the catalytic domain adopting a TIM barrel fold. 0 -352859 cl08246 MHC_I Class I Histocompatibility antigen, domains alpha 1 and 2. Members of this family are known as retinoic-acid-inducible proteins. They are ligands for the activating immunoreceptor NKG2D, which is widely expressed on natural killer cells, T cells, and macrophages. 0 -352861 cl08255 Na_K-ATPase Sodium / potassium ATPase beta chain. This model describes the Na+/K+ ATPase beta subunit in eukaryotes. Na+/K+ ATPase(also called Sodium-Potassium pump) is intimately associated with the plasma membrane. It couples the energy released by the hydrolysis of ATP to extrude 3 Na+ ions, with the concomitant uptake of 2K+ ions, against their ionic gradients. [Transport and binding proteins, Cations and iron carrying compounds] 0 -352864 cl08263 TBP_TLF N/A. archaeal TATA box binding protein (TBP): TBPs are transcription factors present in archaea and eukaryotes, that recognize promoters and initiate transcription. TBP has been shown to be an essential component of three different transcription initiation complexes: SL1, TFIID and TFIIIB, directing transcription by RNA polymerases I, II and III, respectively. TBP binds directly to the TATA box promoter element, where it nucleates polymerase assembly, thus defining the transcription start site. TBP's binding in the minor groove induces a dramatic DNA bending while its own structure barely changes. The conserved core domain of TBP, which binds to the TATA box, has a bipartite structure, with intramolecular symmetry generating a saddle-shaped structure that sits astride the DNA. 0 -324220 cl08267 ISOPREN_C2_like N/A. Proteins similar to alpha2-macroglobulin (alpha (2)-M). This group also contains the pregnancy zone protein (PZP). Alpha(2)-M and PZP are broadly specific proteinase inhibitors. Alpha (2)-M is a major carrier protein in serum. The structural thioester of alpha (2)-M, is involved in the immobilization and entrapment of proteases. PZP is a trace protein in the plasma of non-pregnant females and males which is elevated in pregnancy. Alpha (2)-M and PZ bind to placental protein-14 and may modulate its activity in T-cell growth and cytokine production contributing to fetal survival. It has been suggested that thioester bond cleavage promotes the binding of PZ and alpha (2)-M to the CD91 receptor clearing them from circulation. 0 -352865 cl08270 Peptidase_S10 Serine carboxypeptidase. serine carboxypeptidase (CBP1); Provisional 0 -352867 cl08275 RHD-n N-terminal sub-domain of the Rel homology domain (RHD). Proteins containing the Rel homology domain (RHD) are eukaryotic transcription factors. The RHD is composed of two structural domains. This is the N-terminal DNA-binding domain that is similar to that found in P53. The C-terminal domain has an immunoglobulin-like fold (See pfam16179) that functions as a dimerization domain. 0 -352868 cl08282 Acyl_transf_1 Acyl transferase domain. SAT is the N-terminal starter unit:ACP transacylase of the aflatoxin biosynthesis pathway. SAT selects the hexanoyl starter unit from a pair of specialized fungal fatty acid synthase subunits (HexA/HexB) and transfers it onto the polyketide synthase A acyl-carrier protein to prime polyketide chain elongation. The family is found in association with pfam02801, pfam00109, pfam00550, pfam00975, pfam00698. 0 -352870 cl08291 TCTP Translationally controlled tumor protein. translationally controlled tumor-like protein; Provisional 0 -352871 cl08298 NAP Nucleosome assembly protein (NAP). (NAP-L) nucleosome assembly protein -L; Provisional 0 -352872 cl08299 LAGLIDADG_3 LAGLIDADG-like domain. Homing endonucleases are encoded by mobile DNA elements that are found inserted within host genes in all domains of life. 0 -324233 cl08302 EFh N/A. S-100A10_like: S-100A10 domain found in proteins similar to S100A10. S100A10 is a member of the S100 family of EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A1_like group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins are expressed exclusively in vertebrates, and are implicated in intracellular and extracellular regulatory activities. A unique feature of S100A10 is that it contains mutation in both of the calcium binding sites, making it calcium insensitive. S100A10 has been detected in brain, heart, gastrointestinal tract, kidney, liver, lung, spleen, testes, epidermis, aorta, and thymus. Structural data supports the homo- and hetero-dimeric as well as hetero-tetrameric nature of the protein. S100A10 has multiple binding partners in its calcium free state and is therefore involved in many diverse biological functions. 0 -352874 cl08306 Peptidase_C12 Cysteine peptidase C12 contains ubiquitin carboxyl-terminal hydrolase (UCH) families L1, L3, L5 and BAP1. This ubiquitin C-terminal hydrolase (UCH) family includes UCH37 (also known as UCH-L5) and BRCA1-associated protein-1 (BAP1). They contain a UCH catalytic domain as well as an additional C-terminal extension which plays a role in protein-protein interactions. UCH37 is responsible for ubiquitin (Ub) isopeptidase activity in the 19S proteasome regulatory complex; it disassembles Lys48-linked poly-ubiquitin from the distal end of the chain. It is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated through transient association of hINO80 with hRpn13 that is bound to the 19S regulatory particle or the proteasome. UCH37 possibly plays a role in oncogenesis; it competes with Smad ubiquitination regulatory factor 2 (Smurf2, ubiquitin ligase) in binding concurrently to Smad7 in order to deubiquitinate the activated type I transforming growth factor beta (TGF-beta) receptor, thus rescuing it from proteasomal degradation. BAP1 binds to the wild-type BRCA1 RING finger domain, localized in the nucleus. In addition to the UCH catalytic domain, BAP1 contains a UCH37-like domain (ULD), binding domains for BRCA1 and BARD1, which form a tumor suppressor heterodimeric complex, and a binding domain for HCFC1, which interacts with histone-modifying complexes during cell division. The full-length human BRCA1 is a ubiquitin ligase. However, BAP1 does not appear to function in the deubiquitination of autoubiquitinated BRCA1. BAP1 exhibits tumor suppressor activity in cancer cells, and gene mutations have been reported in a small number of breast and lung cancer samples. In metastasis of uveal melanoma, the most common primary cancer of the eye, inactivating somatic mutations have been identified in the gene encoding BAP1 on chromosome 3p21.1. These mutations include several that cause premature protein termination as well as affect its UCH domain, thus implicating loss of BAP1 and suggesting that the BAP1 pathway may be a valuable therapeutic target. 0 -352876 cl08315 CAP_GLY CAP-Gly domain. A conserved motif, CAP-Gly, has been identified in a number of CAPs, including CLIP-170 and dynactins. The crystal structure of Caenorhabditis elegans F53F4.3 protein CAP-Gly domain was recently solved. The domain contains three beta-strands. The most conserved sequence, GKNDG, is located in two consecutive sharp turns on the surface, forming the entrance to a groove. 0 -352877 cl08320 Pollen_allerg_1 Pollen allergen. pollen allergen group 3; Provisional 0 -324243 cl08346 Rib_hydrolase ADP-ribosyl cyclase, also known as cyclic ADP-ribose hydrolase or CD38. ADP-ribosyl cyclase EC:3.2.2.5 (also know as cyclic ADP-ribose hydrolase or CD38) synthesizes cyclic-ADP ribose, a second messenger for glucose-induced insulin secretion. 0 -352880 cl08354 AFOR_N Aldehyde ferredoxin oxidoreductase, N-terminal domain. Enzymes of the aldehyde ferredoxin oxidoreductase (AOR) family contain a tungsten cofactor and an 4Fe4S cluster and catalyse the interconversion of aldehydes to carboxylates. This family includes AOR, formaldehyde ferredoxin oxidoreductase (FOR), glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), all isolated from hyperthermophilic archea. carboxylic acid reductase found in clostridia. and hydroxycarboxylate viologen oxidoreductase from Proteus vulgaris, the sole member of the AOR family containing molybdenum. GAPOR may be involved in glycolysis. but the functions of the other proteins are not yet clear. AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid oxidoreductases. 0 -352881 cl08356 TFIIA_gamma_C Gamma subunit of transcription initiation factor IIA, C-terminal domain. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIA (TFIIA) is a multimeric protein which facilitates the binding of TFIID to the TATA box. The C-terminal domain of the gamma subunit is a 12 stranded beta-barrel. 0 -352884 cl08380 CDC48_2 Cell division protein 48 (CDC48), domain 2. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the C-terminus. The VAT-N domain found in AAA ATPases is a substrate 185-residue recognition domain. 0 -352886 cl08398 mltA_B_like Domain B insert of mltA_like lytic transglycosylases. This beta barrel domain is found inserted in the MltA a murein degrading transglycosylase enzyme. This domain may be involved in peptidoglycan binding. 0 -352888 cl08409 Gln-synt_N Glutamine synthetase, beta-Grasp domain. 0 -352891 cl08418 TAF5_NTD2 TAF5_NTD2 is the second conserved N-terminal region of TATA Binding Protein (TBP) Associated Factor 5 (TAF5), involved in forming Transcription Factor IID (TFIID). This region is an all-alpha domain associated with the WD40 helical bundle of the TAF5 subunit of transcription factor TFIID. The domain has distant structural similarity to RNA polymerase II CTD interacting factors. It contains several conserved clefts that are likely to be critical for TFIID complex assembly. The TAF5 subunit is present twice in the TFIID complex and is critical for the function and assembly of the complex, and the NTD2 and N-terminal domain is crucial for homodimerization. 0 -352894 cl08424 OBF_DNA_ligase_family The Oligonucleotide/oligosaccharide binding (OB)-fold domain is a DNA-binding module that is part of the catalytic core unit of ATP dependent DNA ligases. This domain has an OB-like fold, but does not appear to be related to pfam03120. It is found at the C-terminus of the ATP dependent DNA ligase domain pfam01068. 0 -324270 cl08426 AMPKBI 5'-AMP-activated protein kinase beta subunit, interaction domain. This region is found in the beta subunit of the 5'-AMP-activated protein kinase complex, and its yeast homologues Sip1, Sip2 and Gal83, which are found in the SNF1 kinase complex. This region is sufficient for interaction of this subunit with the kinase complex, but is not solely responsible for the interaction, and the interaction partner is not known. The isoamylase N-terminal domain is sometimes found in proteins belonging to this family. 0 -352898 cl08444 CesT Tir chaperone protein (CesT) family. chaperone protein SicP; Provisional 0 -324279 cl08447 DUF1214 Protein of unknown function (DUF1214). This family represents the C-terminal region of several hypothetical proteins of unknown function. Family members are mostly bacterial, but a few are also found in eukaryotes and archaea. 0 -352902 cl08459 PA14 PA14 domain. The GLEYA domain is related to lectin-like binding domains found in the S. cerevisiae Flo proteins and the C. glabrata Epa proteins. It is a carbohydrate-binding domain that is found in fungal adhesins (also referred to as agglutinins or flocculins). Adhesins with a GLEYA domain possess a typical N-terminal signal peptide and a domain of conserved sequence repeats, but lack glycosylphosphatidylinositol (GPI) anchor attachment signals. They contain a conserved motif G(M/L)(E/A/N/Q)YA, hence the name GLEYA. Based on sequence homology, it is suggested that the GLEYA domain would predominantly contain beta sheets. The GLEYA domain is also found in S. pombe putative cell agglutination protein fta5, thought to be a kinetochore portein (Sim4 complex subunit), however no direct evidence for kinetochore association has been found. Furthermore, a global protein localization study in S. pombe identified it as a secreted protein localized to the Golgi complex. 0 -352904 cl08468 Leukocidin Leukocidin/Hemolysin toxin family. This family of cytolytic pore-forming proteins includes alpha toxin and leukocidin F and S subunits from Staphylococcus aureus, hemolysin II of Bacillus cereus, and related toxins. [Cellular processes, Toxin production and resistance] 0 -352906 cl08475 PIG-X PIG-X / PBN1. Mammalian PIG-X and yeast PBN1 are essential components of glycosylphosphatidylinositol-mannosyltransferase I. These enzymes are involved in the transfer of sugar molecules. 0 -352910 cl08488 ANAPC2 Anaphase promoting complex (APC) subunit 2. The anaphase promoting complex or cyclosome (APC2) is an E3 ubiquitin ligase which is part of the SCF family of ubiquitin ligases. Ubiquitin ligases catalyse the transfer of ubiquitin from the ubiquitin conjugating enzyme (E2), to the substrate protein. 0 -352913 cl08497 Cas6_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas6e. This domain forms an anti-parallel beta strand structure with flanking alpha helical regions. 0 -324299 cl08500 YtxC YtxC-like family. This uncharacterized protein is part of a panel of proteins conserved in all known endospore-forming Firmicutes (low-GC Gram-positive bacteria), including Carboxydothermus hydrogenoformans, and nowhere else. [Cellular processes, Sporulation and germination] 0 -352920 cl08520 Cdc6_C Winged-helix domain of essential DNA replication protein Cell division control protein (Cdc6), which mediates DNA binding. The C terminal domain of CDC6 assumes a winged helix fold, with a five alpha-helical bundle (alpha15-alpha19) structure, backed on one side by three beta strands (beta6-beta8). It has been shown that this domain acts as a DNA-localization factor, however its exact function is, as yet, unknown. Putative functions include: (1) mediation of protein-protein interactions and (2) regulation of nucleotide binding and hydrolysis. Mutagenesis studies have shown that this domain is essential for appropriate Cdc6 activity. 0 -352927 cl08531 ProRS-C_1 Prolyl-tRNA synthetase, C-terminal. Members of this family are predominantly found in prokaryotic prolyl-tRNA synthetase. They contain a zinc binding site, and adopt a structure consisting of alpha helices and antiparallel beta sheets arranged in 2 layers, in a beta-alpha-beta-alpha-beta motif. 0 -324322 cl09098 Sortase Sortase domain. Class D sortases are cysteine transpeptidases distributed in Gram-positive bacteria (mainly present in Firmicutes). They anchor surface proteins bearing a cell wall sorting signal to peptidoglycans of the bacterial cell wall envelope, which is responsible for spore formation under anaerobic conditions. This involves a transpeptidation reaction in which the surface protein substrate is cleaved at the cell wall sorting signal and covalently linked to peptidoglycan for display on the bacterial surface. The prototypical subfamily 2 of class D sortase from Clostridium perfringens (named Cp-SrtD) recognizes the LPQTGS signal motif for transpeptidation. Its catalytic activity is in a metal cation- and temperature- dependent manner. The presence of magnesium appears to enhance Cp-SrtD catalysis towards the LPQTGS signal motif. 0 -352932 cl09109 NTF2_like N/A. This family contains a large number of proteins that share the SnoaL fold. 0 -352933 cl09111 Prefoldin N/A. This family includes prefoldin subunits that are not detected by pfam02996. 0 -352934 cl09113 cpn10 N/A. This family contains GroES and Gp31-like chaperonins. Gp31 is a functional co-chaperonin that is required for the folding and assembly of Gp23, a major capsid protein, during phage morphogenesis. 0 -352935 cl09114 CRCB CrcB-like protein, Camphor Resistance (CrcB). camphor resistance protein CrcB; Provisional 0 -324327 cl09115 Ribosomal_L32p Ribosomal L32p protein family. This protein describes bacterial ribosomal protein L32. The noise cutoff is set low enough to include the equivalent protein from mitochondria and chloroplasts. No related proteins from the Archaea nor from the eukaryotic cytosol are detected by this model. This model is a fragment model; the putative L32 of some species shows similarity only toward the N-terminus. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -352936 cl09123 SecG Preprotein translocase SecG subunit. This family of proteins forms a complex with SecY and SecE. SecA then recruits the SecYEG complex to form an active protein translocation channel. [Protein fate, Protein and peptide secretion and trafficking] 0 -352937 cl09125 ResB ResB-like family. c-type cytochrome biogenensis protein; Validated 0 -324330 cl09134 NurA NurA domain. This family includes NurA a nuclease exhibiting both single-stranded endonuclease activity and 5'-3' exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. 0 -352938 cl09139 FliE Flagellar hook-basal body complex protein FliE. fliE is a component of the flagellar hook-basal body complex located possibly at (MS-ring)-rod junction. [Cellular processes, Chemotaxis and motility] 0 -352939 cl09141 ACT ACT domains are commonly involved in specifically binding an amino acid or other small ligand leading to regulation of the enzyme. The ACT domain is a structural motif of 70-90 amino acids that functions in the control of metabolism, solute transport and signal transduction. They are thus found in a variety of different proteins in a variety of different arrangements. In mammalian phenylalanine hydroxylase the domain forms no contacts but promotes an allosteric effect despite the apparent lack of ligand binding. 0 -352940 cl09153 PhdYeFM_antitox Antitoxin Phd_YefM, type II toxin-antitoxin system. This model recognizes a region of about 55 amino acids toward the N-terminal end of bacterial proteins of about 85 amino acids in length. The best-characterized member is prevent-host-death (phd) of bacteriophage P1, the antidote partner of death-on-curing (doc) (TIGR01550) in an addiction module. Addiction modules prevent plasmid curing by killing the host cell as the longer-lived killing protein persists while the gene for the shorter-lived antidote is lost. Note, however, that relatively few members of this family appear to be plasmid or phage-encoded. Also, there is little overlap, except for phage P1 itself, of species with this family and with the doc family. [Cellular processes, Toxin production and resistance, Mobile and extrachromosomal element functions, Other] 0 -352941 cl09154 MrpF_PhaF Multiple resistance and pH regulation protein F (MrpF / PhaF). putative monovalent cation/H+ antiporter subunit F; Reviewed 0 -352942 cl09159 Imelysin-like imelysin also called Peptidase M75. The imelysin peptidase was first identified in Pseudomonas aeruginosa. The active site residues have not been identified. However, His201 and Glu204 are completely conserved in the family and occur in an HXXE motif that is also found in family M14. 0 -352943 cl09170 ATP-synt_I ATP synthase I chain. F0F1 ATP synthase subunit I; Validated 0 -352944 cl09173 Caa3_CtaG Cytochrome c oxidase caa3 assembly factor (Caa3_CtaG). Members of this family are the CtaG protein required for assembly of active cytochrome c oxidase of the caa3 type, as in Bacillus subtilis. 0 -352945 cl09176 FlgN FlgN protein. flagella synthesis chaperone protein FlgN; Provisional 0 -352946 cl09182 DUF1009 Protein of unknown function (DUF1009). Family of uncharacterized bacterial proteins. 0 -352947 cl09190 MAPEG MAPEG family. This family is has been called MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism). It includes proteins such as Prostaglandin E synthase. This enzyme catalyzes the synthesis of PGE2 from PGH2 (produced by cyclooxygenase from arachidonic acid). Because of structural similarities in the active sites of FLAP, LTC4 synthase and PGE synthase, substrates for each enzyme can compete with one another and modulate synthetic activity. 0 -352948 cl09194 Sec61_beta Sec61beta family. preprotein translocase subunit SecG; Reviewed 0 -324342 cl09208 Tim44 Tim44-like domain. Mba1 is an inner membrane protein that is part of the mitochondrial protein export machinery. It binds to the large subunit of mitochondrial ribosomes and cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. It is proposed that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane. 0 -352949 cl09210 ROF Modulator of Rho-dependent transcription termination (ROF). Rho-binding antiterminator; Provisional 0 -352950 cl09211 Tagatose_6_P_K Tagatose 6 phosphate kinase. Aldolases specific for D-tagatose-bisphosphate occur in distinct pathways in Escherichia coli and other bacteria, one for the degradation of galactitol (formerly dulcitol) and one for degradation of N-acetyl-galactosamine and D-galactosamine. This family represents a protein of both systems that behaves as a non-catalytic subunit of D-tagatose-bisphosphate aldolase, required both for full activity and for good stability of the aldolase. Note that members of this protein family appear in public databases annotated as putative tagatose 6-phosphate kinases, possibly in error. [Energy metabolism, Sugars] 0 -324345 cl09219 DUF2208 Predicted membrane protein (DUF2208). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -352951 cl09232 YqaJ YqaJ-like viral recombinase domain. This family includes various alkaline exonucleases from members of the herpesviridae. Alkaline exonuclease appears to have an important role in the replication of herpes simplex virus. 0 -352952 cl09238 CY N/A. SQAPI, aspartic acid inhibitor first isolated from squash, inhibits a wide range of aspartic proteinases. This particular family of PAAPIs (proteinaceous aspartic acid inhibitors) seems to have evolved quite recently from an ancestral cystatin. Structurally it consists of a four-stranded anti-parallel beta-sheet gripping an alpha-helix in much the same manner that a hand grips a tennis racket. The unstructured N-terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. 0 -352957 cl09326 MATE_like Multidrug and toxic compound extrusion family and similar proteins. The MatE domain 0 -352966 cl09429 VirE2 VirE2. type IV secretion system single-stranded DNA binding protein VirE2; Provisional 0 -352968 cl09506 catalase_like Catalase-like heme-binding proteins and protein domains. Hydrogen peroxide is produced as a consequence of oxidative cellular metabolism and can be converted to the highly reactive hydroxyl radical via transition metals, this radical being able to damage a wide variety of molecules within a cell, leading to oxidative stress and cell death. Catalases act to neutralise hydrogen peroxide toxicity, and are produced by all aerobic organisms ranging from bacteria to man. Most catalases are mono-functional, haem-containing enzymes, although there are also bifunctional haem-containing peroxidase/catalases that are closely related to plant peroxidases, and non-haem, manganese-containing catalases that are found in bacteria. 0 -352969 cl09511 FERM_B-lobe FERM domain B-lobe. This domain is the central structural domain of the FERM domain. 0 -324396 cl09607 Gly_reductase Glycine/sarcosine/betaine reductase component B subunits. Members of this family are PrdD, encoded in the proline reductase gene cluster. Members are closely homologous to PrdA, which cleaves during maturation to create two subunits of the subunits of the proline reductase complex, one of which has a Cys-derived pyruvoyl active site. 0 -324397 cl09608 Cas7_I-E CRISPR/Cas system-associated RAMP superfamily protein Cas7. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family is represented by CT1975 of Chlorobium tepidum. 0 -352977 cl09615 E1_UFD Ubiquitin fold domain. This presumed domain found at the C terminus of Ubiquitin-activating enzyme e1 proteins is functionally uncharacterised. 0 -352983 cl09633 NIL NIL domain. This domain is likely to act as a substrate binding domain. The domain has been named after a conserved sequence in some members of the family. 0 -352985 cl09641 T3SS_needle_F Type III secretion needle MxiH, YscF, SsaG, EprI, PscF, EscF. type III secretion system needle protein SsaG; Provisional 0 -352986 cl09645 Ftsk_gamma Ftsk gamma domain. Mutated proteins with substitutions in the FtsK gamma DNA-recognition helix are impaired in DNA binding. 0 -324418 cl09653 Btz CASC3/Barentsz eIF4AIII binding. This domain is found on CASC3 (cancer susceptibility candidate gene 3 protein) which is also known as Barentsz (Btz). CASC3 is a component of the EJC (exon junction complex) which is a complex that is involved in post-transcriptional regulation of mRNA in metazoa. The complex is formed by the association of four proteins (eIF4AIII, Barentsz, Mago, and Y14), mRNA, and ATP. This domain wraps around eIF4AIII and stacks against the 5' nucleotide. 0 -299004 cl09697 Saf-Nte_pilin Saf-pilin pilus formation protein. Saf-pilin pilus formation protein SafA; Provisional 0 -299011 cl09710 Type_III_YscX Type III secretion system YscX (type_III_YscX). Members of this family are encoded within bacterial type III secretion gene clusters. Among all species with type III secretion, those with this protein are found among those that target animal rather than plant cells. The member of this family in Yersinia was shown by mutation to be required for type III secretion of Yops effector proteins and therefore is believe to be part of the secretion machinery. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -352999 cl09714 Flg_new Listeria-Bacteroides repeat domain (List_Bact_rpt). This model describes a conserved core region, about 43 residues in length, of at least two families of tandem repeats. These include 78-residue repeats from 2 to 15 in number, in some proteins of Bacteroides forsythus ATCC 43037, and 70-residue repeats in families of internalins of Listeria species. Single copies are found in proteins of Fibrobacter succinogenes, Geobacter sulfurreducens, and a few bacteria. [Unknown function, General] 0 -353000 cl09716 OrgA_MxiK Bacterial type III secretion apparatus protein (OrgA_MxiK). invasion protein OrgA; Provisional 0 -353001 cl09719 Cse2_I-E CRISPR/Cas system-associated protein Cse2. Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family of proteins, represented by CT1973 from Chlorobaculum tepidum, is encoded by genes found in the CRISPR/Cas subtype Ecoli regions of many bacteria (most of which are mesophiles), and not in Archaea. It is designated Cse2. 0 -324457 cl09723 CbtB Probable cobalt transporter subunit (CbtB). This model represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of a single trans-membrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a protein (CbtA) predicted to have five additional trans-membrane segments. 0 -324458 cl09726 DUF2389 Tryptophan-rich protein (DUF2389). Members of this family are small hypothetical proteins of 60 to 100 residues from Cyanobacteria and some Proteobacteria. Prochlorococcus marinus strains have two members, other species one only. Interestingly, of the eight most conserved residues, four are aromatic and three are invariant tryptophans. It appears all species that encode this protein can synthesize tryptophan de novo. 0 -324464 cl09741 Hypoth_Ymh Protein of unknown function (Hypoth_ymh). This family consists of a relatively rare (~ 8 occurrences per 200 genomes) prokaryotic protein family. Genes for members are appear to be associated variously with phage and plasmid regions, restriction system loci, transposons, and housekeeping genes. The function is unknown. [Hypothetical proteins, Domain] 0 -324466 cl09743 RNA_lig_T4_1 RNA ligase. RNA ligase A; Provisional 0 -324472 cl09752 Phg_2220_C Conserved phage C-terminus (Phg_2220_C). This model represents the conserved C-terminal domain of a family of proteins found exclusively in bacteriophage and in bacterial prophage regions. The functions of this domain and the proteins containing it are unknown. [Mobile and extrachromosomal element functions, Prophage functions] 0 -353007 cl09754 ATPase_gene1 Putative F0F1-ATPase subunit Ca2+/Mg2+ transporter. This model represents a protein found encoded in F1F0-ATPase operons in several genomes, including Methanosarcina barkeri (archaeal) and Chlorobium tepidum (bacterial). It is a small protein (about 100 amino acids) with long hydrophic stretches and is presumed to be a subunit of the enzyme. [Energy metabolism, ATP-proton motive force interconversion] 0 -324475 cl09771 Spore_III_AE Stage III sporulation protein AE (spore_III_AE). A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is found in a spore formation operon and is designated stage III sporulation protein AE. [Cellular processes, Sporulation and germination] 0 -324477 cl09775 Spore_II_R Stage II sporulation protein R (spore_II_R). A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is designated stage II sporulation protein R. [Cellular processes, Sporulation and germination] 0 -324480 cl09782 Cas6-I-III CRISPR/Cas system-associated RAMP superfamily protein Cas6. The Cas6 Crispr family of proteins averaging 140 residues are characterized by having a GhGxxxxxGhG motif, where h indicates a hydrophobic residue, at the C-terminus. The CRISPR-Cas system is possibly a mechanism of defense against invading pathogens and plasmids that functions analogously to the RNA interference (RNAi) systems in eukaryotes. 0 -324481 cl09783 Spore_YunB Sporulation protein YunB (Spo_YunB). A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. Mutation of this sigma E-regulated gene, designated yunB, has been shown to cause a sporulation defect. [Cellular processes, Sporulation and germination] 0 -324490 cl09801 Spore_YabQ Spore cortex protein YabQ (Spore_YabQ). YabQ, a protein predicted to span the membrane several times, is found in exactly those genomes whose species perform sporulation in the style of Bacillus subtilis, Clostridium tetani, and others of the Firmicutes. Mutation of this sigma(E)-dependent gene blocks development of the spore cortex. The length of the C-terminal region, including some hydrophobic regions, is rather variable between members. [Cellular processes, Sporulation and germination] 0 -324491 cl09807 Lin0512_fam Conserved hypothetical protein (Lin0512_fam). This family consists of few members, broadly distributed. It occurs so far in several Firmicutes (twice in Oceanobacillus), one Cyanobacterium, one alpha Proteobacterium, and (with a long prefix) in plants. The function is unknown. The alignment includes a perfectly conserved motif GxGxDxHG near the N-terminus. [Hypothetical proteins, Conserved] 0 -299055 cl09810 DUF2031 Protein of unknown function (DUF2031). This model represents a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. 0 -353009 cl09819 DUF2459 Protein of unknown function (DUF2459). This conserved hypothetical protein of unknown function is found in several Proteobacteria. Its function is unknown and its genome context is not well-conserved. It is found amid urease genes in at least one species. [Hypothetical proteins, Conserved] 0 -299060 cl09820 PhaP_Bmeg Polyhydroxyalkanoic acid inclusion protein (PhaP_Bmeg). This model describes a protein found in polyhydroxyalkanoic acid (PHA) gene regions and incorporated into PHA inclusions in Bacillus cereus and Bacillus megaterium. The role of the protein may include amino acid storage (see McCool,G.J. and Cannon,M.C, 1999). 0 -353010 cl09821 Fib_succ_major Fibrobacter succinogenes major domain (Fib_succ_major). This domain of about 175 to 200 amino acids is found, in from one to five copies, in over 50 proteins in Fibrobacter succinogenes S85, an obligate anaerobe of the rumen. Many members of this family have an apparent lipoprotein signal sequence. Conserved cysteine residues, suggestive of disulfide bond formation, are also consistent with an extracytoplasmic location for this domain. This domain can also be found in small numbers of proteins in Chlorobium tepidum and Bacteroides thetaiotaomicron. [Cell envelope, Other] 0 -353011 cl09823 Trep_Strep Hypothetical bacterial integral membrane protein (Trep_Strep). This family consists of strongly hydrophobic proteins about 190 amino acids in length with a strongly basic motif near the C-terminus. If is found in rather few species, but in paralogous families of 12 members in the oral pathogenic spirochaete Treponema denticola and 2 in Streptococcus pneumoniae R6. [Transport and binding proteins, Unknown substrate] 0 -353012 cl09826 Alph_Pro_TM Putative transmembrane protein (Alph_Pro_TM). This family consists of predicted transmembrane proteins of about 270 amino acids. Members are found, so far, only among the Alphaproteobacteria and only once in each genome. 0 -324500 cl09827 Csb2_I-U CRISPR/Cas system-associated protein Csb2. This entry represents a rare CRISPR-associated protein. So far, members are found in Geobacter sulfurreducens and in two unpublished genomes: Gemmata obscuriglobus and Actinomyces naeslundii. CRISPR-associated proteins typically are found near CRISPR repeats and other CRISPR-associated proteins, have low levels of sequence identify, have sequence relationships that suggest lateral transfer, and show some sequence similarity to DNA-active proteins such as helicases and repair proteins. 0 -353013 cl09829 Csy1_I-F CRISPR/Cas system-associated protein Csy1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2465 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy1, for CRISPR/Cas Subtype Ypest protein 1. 0 -353014 cl09832 Csy3_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy3. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2463 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy3, for CRISPR/Cas Subtype Ypest protein 3. 0 -324503 cl09834 Csb1_I-U CRISPR/Cas system-associated protein Csb1. This entry is found in CRISPR-associated (cas) proteins in the genomes of Geobacter sulfurreducens PCA and Desulfotalea psychrophila LSv54 (both Desulfobacterales from the Deltaproteobacteria), Gemmata obscuriglobus (a Planctomycete), and Actinomyces naeslundii MG1 (Actinobacteria). 0 -353015 cl09835 Cas6_I-F CRISPR/Cas system-associated RAMP superfamily protein Cas6f. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2462 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy4, for CRISPR/Cas Subtype Ypest protein 4. 0 -324505 cl09837 Csx3_III-U CRISPR/Cas system-associated protein Csx3. This entry is encoded in CRISPR-associated (cas) gene clusters, near CRISPR repeats, in the genomes of several different thermophiles: Archaeoglobus fulgidus (archaeal), Aquifex aeolicus (Aquificae), Dictyoglomus thermophilum (Dictyoglomi), and a thermophilic Synechococcus (Cyanobacteria). It is not yet assigned to a specific CRISPR/cas subtype (hence the x designation csx3). 0 -299071 cl09838 LcrR Type III secretion system regulator (LcrR). This protein is found in type III secretion operons and has been characterized in Yersinia as a regulator of the Low-Calcium Respone (LCR). [Protein fate, Protein and peptide secretion and trafficking] 0 -324506 cl09839 Csx1_III-U CRISPR/Cas system-associated protein Csx1. Members of this minor CRISPR-associated (Cas) protein family are encoded in cas gene clusters in Vibrio vulnificus YJ016, Nitrosomonas europaea ATCC 19718, Mannheimia succiniciproducens MBEL55E, and Verrucomicrobium spinosum. 0 -324514 cl09859 YopX YopX protein. This model represents an uncharacterized, well-conserved family of proteins found in bacteriophage and prophage regions of Gram-positive bacteria. [Mobile and extrachromosomal element functions, Prophage functions, Hypothetical proteins, Conserved] 0 -324516 cl09864 CHZ Histone chaperone domain CHZ. This domain is highly conserved from yeasts to humans and is part of the chaperone protein HIRIP3 in vertebrates which interacts with the H3.3 chaperone HIRA, implicated in histone replacement during transcription. N- and C- termini of Chz family members are relatively divergent but do contain similar acidic stretches rich in Glu/Asp residues, characteristic of all histone chaperones. 0 -353017 cl09865 PHA_gran_rgn Putative polyhydroxyalkanoic acid system protein (PHA_gran_rgn). All members of this family are encoded by genes polyhydroxyalkanoic acid (PHA) biosynthesis and utilization genes, including proteins at found at the surface of PHA granules. Examples so far are found in the Pseudomonales, Xanthomonadales, and Vibrionales, all of which belong to the Gammaproteobacteria. 0 -324518 cl09868 DUF2396 Protein of unknown function (DUF2396). Members of this family of conserved hypothetical proteins are found, so far, only in the Cyanobacteria. Members are about 170 amino acids long and share a motif CxxCx(14)CxxH near the amino end. [Hypothetical proteins, Conserved] 0 -324519 cl09869 Nitr_red_assoc Conserved nitrate reductase-associated protein (Nitr_red_assoc). Most members of this protein family are found in the Cyanobacteria, and these mostly near nitrate reductase genes and molybdopterin biosynthesis genes. We note that molybdopterin guanine dinucleotide is a cofactor for nitrate reductase. This protein is sometimes annotated as nitrate reductase-associated protein. Its function is unknown. 0 -299095 cl09872 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry describes archaeal proteins encoded in cas gene regions. 0 -324520 cl09873 Csm6_III-A CRISPR/Cas system-associated protein Csm6. Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 0 -324521 cl09875 DUF2398 Protein of unknown function (DUF2398). Members of this protein belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). [Hypothetical proteins, Conserved] 0 -353018 cl09881 Spore_GerQ Spore coat protein (Spore_GerQ). Members of this protein family are the spore coat protein GerQ of endospore-forming Firmicutes (low GC Gram-positive bacteria). This protein is cross-linked by a spore coat-associated transglutaminase. [Cellular processes, Sporulation and germination] 0 -353019 cl09883 TrbC_Ftype Type-F conjugative transfer system pilin assembly protein. conjugal transfer pilus assembly protein TrbC; Provisional 0 -353020 cl09884 DUF2400 Protein of unknown function (DUF2400). Members of this uncharacterized protein family are found sporadically, so far only among spirochetes, epsilon and delta proteobacteria, and Bacteroides. The function is unknown and its gene neighborhoods show little conservation. [Hypothetical proteins, Conserved] 0 -353021 cl09889 Phage_rep_org_N N-terminal phage replisome organizer (Phage_rep_org_N). This model represents the N-terminal domain of a small family of phage proteins. The protein contains a region of low-complexity sequence that reflects DNA direct repeats able to function as an origin of phage replication. The region covered by this model is N-terminal to the low-complexity region. [Mobile and extrachromosomal element functions, Prophage functions] 0 -324527 cl09890 Phage_holin_6_1 Bacteriophage holin of superfamily 6 (Holin_LLH). This model represents a putative phage holin from a number of phage and prophage regions of Gram-positive bacteria. Like other holins, it is small (about 100 amino acids) with stretches of hydrophobic sequence and is encoded adjacent to lytic enzymes. [Mobile and extrachromosomal element functions, Prophage functions] 0 -324528 cl09891 Lactococcin_972 Bacteriocin (Lactococcin_972). This model represents bacteriocins related to lactococcin 972. Members tend to be found in association with a seven transmembrane putative immunity protein. [Cellular processes, Toxin production and resistance] 0 -299108 cl09901 Gcw_chp Bacterial protein of unknown function (Gcw_chp). This model represents a conserved hypothetical protein about 240 residues in length found so far in Proteobacteria including Shewanella oneidensis, Ralstonia solanacearum, and Colwellia psychrerythraea, usually as part of a paralogous family. The function is unknown. 0 -324531 cl09903 Porph_ging Protein of unknown function (Porph_ging). This protein family was first noted as a paralogous set in Porphyromonas gingivalis, but it is more widely distributed among the Bacteroidetes. The protein family is now renamed GLPGLI after its best-conserved motif. 0 -299111 cl09906 Csa5_I-A CRISPR/Cas system-associated protein Csa5. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry represents a minor family of Cas proteins found in various species of Sulfolobus and Pyrococcus (all archaeal). It is found with two different CRISPR loci in Sulfolobus solfataricus. 0 -299112 cl09907 Cas8a2_I-A CRISPR/Cas system-associated protein Csa8a2. CRISPR loci appear to be mobile elements with a wide host range. This entry represents a protein that tends to be found near CRISPR repeats. The species range for this species, so far, is exclusively archaeal. It is found so far in only four different species, and includes two tandem genes in Pyrococcus furiosus DSM 3638. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 0 -299113 cl09912 Trep_dent_lipo Treponema clustered lipoprotein (Trep_dent_lipo). This model represents a family of six predicted lipoproteins from a region of about 20 tandemly arranged genes in the Treponema denticola genome. Two other neighboring genes share the lipoprotein signal peptide region but do not show more extensive homology. The function of this locus is unknown. 0 -353022 cl09913 Csn2_like CRISPR/Cas system-associated protein Csn2. Cas_St_Csn2 is a family of Csn2 CRISPR-associated (Cas) proteins found in Firmicutes, largely Streptococcus and Enterococcus. CRISPR-associated (Cas) proteins are the main executioners of the process whereby prokaryotes acquire immunity against foreign genetic material. Cas allow short segments of this DNA, called spacer, to become incorporated into chromosomal loci as clustered regularly interspaced short palindromic repeats or CRISPRs; the resulting encoded RNAs are then processed into small fragments that guide the silencing of the invading genetic elements. Thus Cas are involved in the acquisition of new spacers. This family of St_Csn2 is longer than the canonical Csn2, pfam09711 through the addition of a large C-terminal domain. The central domain present in both families appears to be a channel that selectively interacts with dsDNA. 0 -324533 cl09914 PHA_synth_III_E Poly(R)-hydroxyalkanoic acid synthase subunit (PHA_synth_III_E). This model represents the PhaE subunit of the heterodimeric class (class III) of polymerase for poly(R)-hydroxyalkanoic acids (PHAs), carbon and energy storage polymers of many bacteria. The most common PHA is polyhydroxybutyrate but about 150 different constituent hydroxyalkanoic acids (HAs) have been identified in various species. This model must be designated subfamily to indicate the heterogeneity of PHAs. [Cellular processes, Adaptations to atypical conditions, Fatty acid and phospholipid metabolism, Biosynthesis] 0 -353023 cl09915 A_thal_3526 Plant protein 1589 of unknown function (A_thal_3526). This model represents an uncharacterized plant-specific domain 57 residues in length. It is found toward the N-terminus of most proteins that contain it. Examples include at least 10 proteins from Arabidopsis thaliana and at least one from Oryza sativa. 0 -324535 cl09916 Plasmod_dom_1 Plasmodium protein of unknown function (Plasmod_dom_1). hypothetical protein; Provisional 0 -324536 cl09917 ETRAMP Malarial early transcribed membrane protein (ETRAMP). This model describes a family of proteins from the malaria parasite Plasmodium falciparum, several of which have been shown to be expressed specifically in the ring stage as well as the rident parasite Plasmodium yoelii. A homolog from Plasmodium chabaudi was localized to the parasitophorous vacuole membrane. Members have an initial hydrophobic, Phe/Tyr-rich stretch long enough to span the membrane, a highly charged region rich in Lys, a second putative transmembrane region, and a second highly charged, low complexity sequence region. Some members have up to 100 residues of additional C-terminal sequence. These genes have been shown to be found in the sub-telomeric regions of both P. falciparum and P. yoelii chromosomes 0 -353024 cl09918 CPW_WPC Plasmodium falciparum domain of unknown function (CPW_WPC). The domain can be found in tandem repeats, and is known so far only in Plasmodium falciparum. It is named for motifs of CPxxW and (less well conserved) WPC. Its function is unknown. 0 -353025 cl09920 C_GCAxxG_C_C Putative redox-active protein (C_GCAxxG_C_C). This model represents a putative redox-active protein of about 140 residues, with four perfectly conserved Cys residues. It includes a CGAXXG motif. Most members are found within one or two loci of transporter or oxidoreductase genes. A member from Geobacter sulfurreducens, located in a molybdenum transporter operon, has a TAT (twin-arginine translocation) signal sequence for Sec-independent transport across the plasma membrane, a hallmark of bound prosthetic groups such as FeS clusters. 0 -353026 cl09921 Unstab_antitox Putative addiction module component. Members of this family are bacterial proteins, typically are about 75 amino acids long, always found as part of a pair (at least) of two small genes. The other in the pair always belongs to a subfamily of the larger family pfam05016 (although not necessarily scoring above the designated cutoff), which contains plasmid stabilization proteins. It is likely that this protein and its pfam05016 member partner comprise some form of addiction module, although these gene pairs usually are found on the bacterial main chromosome. [Mobile and extrachromosomal element functions, Other] 0 -353027 cl09927 S1_like N/A. This family of proteins are components of the exosome 3'->5' exoribonuclease complex. The exosome mediates degradation of unstable mRNAs that contain AU-rich elements (AREs) within their 3' untranslated regions. 0 -353028 cl09928 Molybdopterin-Binding N/A. MopB_Res_Cmplx1_Nad11_M: Mitochondrial-encoded NADH-quinone oxidoreductase/respiratory complex I, the second domain of the Nad11/75-kDa subunit of some protists. NADH-quinone oxidoreductase is the first energy-transducting complex in the respiratory chain and functions as a redox pump that uses the redox energy to translocate H+ ions across the membrane, resulting in a significant contribution to energy production. The nad11 gene codes for the largest (75-kDa) subunit of the mitochondrial NADH-quinone oxidoreductase, it constitutes the electron input part of the enzyme, or the so-called NADH dehydrogenase fragment. The Nad11 subunit is made of two domains: the first contains three binding sites for FeS clusters (the fer2 domain), the second domain (this CD), is of unknown function or, as postulated, has lost an ancestral formate dehydrogenase activity that became redundant during the evolution of the complex I enzyme. Although only vestigial sequence evidence remains of a molybdopterin binding site, this protein domain belongs to the molybdopterin_binding (MopB) superfamily of proteins. 0 -324542 cl09929 MopB_CT N/A. This domain is found in various molybdopterin - containing oxidoreductases and tungsten formylmethanofuran dehydrogenase subunit d (FwdD) and molybdenum formylmethanofuran dehydrogenase subunit (FmdD); where the domain constitutes almost the entire subunit. The formylmethanofuran dehydrogenase catalyzes the first step in methane formation from CO2 in methanogenic archaea and has a molybdopterin dinucleotide cofactor. This domain corresponds to the C-terminal domain IV in dimethyl sulfoxide (DMSO)reductase which interacts with the 2-amino pyrimidone ring of both molybdopterin guanine dinucleotide molecules. 0 -353029 cl09930 RPA_2b-aaRSs_OBF_like Replication protein A, class 2b aminoacyl-tRNA synthetases, and related proteins with oligonucleotide/oligosaccharide (OB) fold. Replication protein A contains two OB domains in it's DNA binding region. This is the second of the OB domains. 0 -353030 cl09932 Acyl-CoA_dh_N Acyl-CoA dehydrogenase, N-terminal domain. Acyl-coenzyme A oxidase consists of three domains. An N-terminal alpha-helical domain, a beta sheet domain (pfam02770) and a C-terminal catalytic domain (pfam01756). This entry represents the N-terminal alpha-helical domain. 0 -353031 cl09933 ACAD Acyl-CoA dehydrogenase. C-terminal domain of Acyl-CoA dehydrogenase is an all-alpha, four helical up-and-down bundle. 0 -324546 cl09936 PP-binding Phosphopantetheine attachment site. acyl carrier protein; Provisional 0 -353032 cl09938 cond_enzymes N/A. This domain is found on 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III EC:2.3.1.180, the enzyme responsible for initiating the chain of reactions of the fatty acid synthase in plants and bacteria. 0 -353033 cl09939 RNR_PFL Ribonucleotide reductase and Pyruvate formate lyase. This family of enzymes includes pyruvate formate lyase, choline trimethylamine lyase, glycerol dehydratase, 4-hydroxyphenylacetate decarboxylase, and benzylsuccinate synthase. 0 -353034 cl09940 S4 N/A. The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4. 0 -353035 cl09943 Ribosomal_L29_HIP N/A. This family represents the N-terminal region (approximately 8 residues) of the eukaryotic mitochondrial 39-S ribosomal protein L47 (MRP-L47). Mitochondrial ribosomal proteins (MRPs) are the counterparts of the cytoplasmic ribosomal proteins, in that they fulfil similar functions in protein biosynthesis. However, they are distinct in number, features and primary structure. 0 -324551 cl09951 FN2 N/A. One of three types of internal repeat within the plasma protein, fibronectin. Also occurs in coagulation factor XII, 2 type IV collagenases, PDC-109, and cation-independent mannose-6-phosphate and secretory phospholipase A2 receptors. In fibronectin, PDC-109, and the collagenases, this domain contributes to collagen-binding function. 0 -353036 cl09954 DUF202 Domain of unknown function (DUF202). This family consists of hypothetical proteins some of which are putative membrane proteins. No functional information or experimental verification of function is known. This domain is around 100 amino acids long. 0 -353037 cl09957 zf-UBP Zn-finger in ubiquitin-hydrolases and other protein. 0 -353038 cl09961 DUF1027 Protein of unknown function (DUF1027). This family consists of several hypothetical bacterial proteins of unknown function. 0 -299138 cl09962 DUF771 Domain of unknown function (DUF771). Family of uncharacterized ORFs found in Bacteriophage and Lactococcus lactis. 0 -353040 cl10011 Periplasmic_Binding_Protein_Type_1 Type 1 periplasmic binding fold superfamily. This family includes a diverse range of periplasmic binding proteins. 0 -353041 cl10012 DnaQ_like_exo DnaQ-like (or DEDD) 3'-5' exonuclease domain superfamily. This is a highly divergent 3' exoribonuclease family. The proteins constitute a typical RNase fold, where the active site residues form a magnesium catalytic centre. The protein of the solved structure readily cleaves 3' overhangs in a time-dependent manner. It is similar to DEDD-type RNases and is an unusual ATP-binding protein that binds ATP and dATP. It forms a dimer in solution and both protomers in the asymmetric unit bind a magnesium ion through Asp-6 in UniProtKB:P9WJ73. 0 -353042 cl10013 Glycosyltransferase_GTB-type glycosyltransferase family 1 and related proteins with GTB topology. beta-diglucosyldiacylglycerol synthase (processive diacylglycerol beta-glucosyltransferase EC 2.4.1.315) is involved in the biosynthesis of both the bilayer- and non-bilayer-forming membrane glucolipids. This family of glycosyltransferases also contains plant major galactolipid synthase (chloroplastic monogalactosyldiacylglycerol synthase 1 EC 2.4.1.46). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. 0 -353043 cl10014 PTS_IIB N/A. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The lactose/cellobiose-specific family are one of four structurally and functionally distinct group IIB PTS system cytoplasmic enzymes. The fold of IIB cellobiose shows similar structure to mammalian tyrosine phosphatases. This family also contains the fructose specific IIB subunit. 0 -299145 cl10015 YjgF_YER057c_UK114_family N/A. Endoribonuclease active on single-stranded mRNA. Inhibits protein synthesis by cleavage of mRNA. Previously thought to inhibit protein synthesis initiation. This protein may also be involved in the regulation of purine biosynthesis. YjgF (renamed RidA) family members are enamine/imine deaminases. They hydrolyze reactive intermediates released by PLP-dependent enzymes, including threonine dehydratase. YjgF also prevents inhibition of transaminase B (IlvE) in Salmonella. 0 -353044 cl10017 Tubulin_FtsZ_Cetz-like Tubulin protein family of FtsZ and CetZ-like. This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerize into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. 0 -353045 cl10019 PurM-like N/A. This family includes Hydrogen expression/formation protein HypE, AIR synthases EC:6.3.3.1, FGAM synthase EC:6.3.5.3 and selenide, water dikinase EC:2.7.9.3. The function of the C-terminal domain of AIR synthase is unclear, but the cleft formed between N and C domains is postulated as a sulphate binding site. 0 -324562 cl10020 S2P-M50 N/A. This is a family of bacterial and plant peptidases in the same family as MEROPS:M50B. 0 -324563 cl10022 ABM Antibiotic biosynthesis monooxygenase. The function of this family is unknown, but it is upregulated in response to salt stress in Populus balsamifera. It is also found at the C-terminus of an fructose 1,6-bisphosphate aldolase from Hydrogenophilus thermoluteolus. Arthrobacter nicotinovorans ORF106 is found in the pA01 plasmid, which encodes genes for molybdopterin uptake and degradation of plant alkaloid nicotine. The structure of one has been solved and the domain forms an a/b barrel dimer. Although there is a clear duplication within the domain it is not obviously detectable in the sequence. 0 -353046 cl10023 POLBc N/A. DNA polymerase subunit B; Provisional 0 -353047 cl10029 Histidinol_dh N/A. histidinol dehydrogenase; Reviewed 0 -353048 cl10030 MECDP_synthase N/A. The ygbB protein is a putative enzyme of deoxy-xylulose pathway (terpenoid biosynthesis). 0 -353049 cl10031 DUF1190 Protein of unknown function (DUF1190). hypothetical protein; Provisional 0 -353050 cl10037 AroH N/A. Chorismate mutase EC:5.4.99.5 catalyzes the conversion of chorismate to prephenate in the pathway of tyrosine and phenylalanine biosynthesis. This enzyme is negatively regulated by tyrosine, tryptophan and phenylalanine. 0 -353051 cl10043 hemP Hemin uptake protein hemP. hypothetical protein; Provisional 0 -324571 cl10045 tRNA_int_endo tRNA intron endonuclease, catalytic C-terminal domain. tRNA-splicing endonuclease subunit beta; Reviewed 0 -353052 cl10048 TonB_C Gram-negative bacterial TonB protein C-terminal. This family contains TonB members that are not captured by pfam03544. 0 -324573 cl10072 Phage_Mu_F Phage Mu protein F like protein. Family of related phage minor capsid proteins. 0 -353053 cl10080 RPE65 Retinal pigment epithelial membrane protein. 9-cis-epoxycarotenoid dioxygenase 0 -353054 cl10125 DUF3461 Protein of unknown function (DUF3461). hypothetical protein; Provisional 0 -353055 cl10143 DUF5431 Family of unknown function (DUF5431). modulator of post-segregation killing protein; Provisional 0 -353056 cl10149 PRK13738 N/A. This protein is an essential component of the F-type conjugative transfer sytem for plasmid DNA transfer and has been shown to be localized to the periplasm. 0 -353057 cl10177 DUF5455 Family of unknown function (DUF5455). minor coat protein 0 -353058 cl10198 DUF5466 Family of unknown function (DUF5466). hypothetical protein 0 -353059 cl10201 O_Spanin_T7 outer-membrane spanin sub-unit. phage lambda Rz1-like protein 0 -353060 cl10205 Tube Tail tubular protein. tail tubular protein A 0 -353061 cl10212 DUF5476 Family of unknown function (DUF5476). hypothetical protein 0 -353062 cl10214 TA_inhibitor Inhibitor of toxin/antitoxin system (Gp4.5). hypothetical protein 0 -353063 cl10215 DUF5471 Family of unknown function (DUF5471). hypothetical protein 0 -353064 cl10223 DUF5480 Family of unknown function (DUF5480). hypothetical protein 0 -353065 cl10228 p6 Histone-like Protein p6. dsDNA binding protein 0 -324578 cl10256 YecR YecR-like lipoprotein. hypothetical protein 0 -353066 cl10264 DUF5493 Family of unknown function (DUF5493). hypothetical protein 0 -353067 cl10269 DUF5517 Family of unknown function (DUF5517). hypothetical protein 0 -353068 cl10273 DUF5489 Family of unknown function (DUF5489). hypothetical protein 0 -324579 cl10291 DUF2523 Protein of unknown function (DUF2523). putative minor coat protein 0 -353069 cl10305 Gp17 Superinfection exclusion protein, bacteriophage P22. hypothetical protein 0 -353070 cl10308 Phi29_Phage_SSB Phage Single-stranded DNA-binding protein. hypothetical protein 0 -324580 cl10335 Phage_TAC_12 Phage tail assembly chaperone protein, TAC. hypothetical protein 0 -324581 cl10351 Phage_gp49_66 Phage protein (N4 Gp49/phage Sf6 gene 66) family. hypothetical protein 0 -353071 cl10447 GH18_chitinase-like N/A. This DUF is likely to be a form of glycosyl hydrolase from CAZy family 18, possibly chitinase 18. This would have the EC number of EC:3.2.1.14. 0 -324583 cl10448 GH25_muramidase N/A. This domain is found in a set of uncharacterized hypothetical bacterial proteins. 0 -353072 cl10459 Peptidases_S8_S53 Peptidase domain in the S8 and S53 families. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values. 0 -353074 cl10465 Peptidase_S24_S26 N/A. The C-terminal domain of the CI repressor functions in oligomer formation. 0 -324589 cl10468 TerC Integral membrane protein TerC family. Predicted to be an integral membrane protein with multiple membrane spans. 0 -353077 cl10470 Rick_17kDa_Anti Glycine zipper 2TM domain. hypothetical protein; Provisional 0 -353078 cl10471 LU N/A. This extracellular disulphide bond rich domain is related to pfam00087. 0 -353079 cl10479 DUF413 Protein of unknown function, DUF. hypothetical protein; Provisional 0 -353080 cl10480 DUF2157 Predicted membrane protein (DUF2157). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -324594 cl10492 DUF596 Protein of unknown function, DUF596. This family contains several uncharacterized proteins. 0 -324595 cl10501 DUF1223 Protein of unknown function (DUF1223). This family consists of several hypothetical proteins of around 250 residues in length which are found in both plants and bacteria. The function of this family is unknown. Structurally it lies in the Thioredoxin-like superfamily. 0 -353081 cl10502 nitrobindin nitrobindin heme-binding domain. This domain forms a beta barrel structure but the function is unknown. The GO annotation for this protein indicates that the protein has a function in nematode larval development and has a positive regulation on growth rate. 0 -353082 cl10503 DUF1737 Domain of unknown function (DUF1737). This domain of unknown function is found at the N-terminus of bacterial and viral hypothetical proteins. 0 -299184 cl10504 DUF975 Protein of unknown function (DUF975). Family of uncharacterized bacterial proteins. 0 -353083 cl10507 Disintegrin Disintegrin. Snake disintegrins inhibit the binding of ligands to integrin receptors. They contain a 'RGD' sequence, identical to the recognition site of many adhesion proteins. Molecules containing both disintegrin and metalloprotease domains are known as ADAMs. 0 -324599 cl10509 PAW PNGase C-terminal domain, mannose-binding module PAW. present in several copies in proteins with unknown function in C. elegans 0 -353084 cl10511 Beach N/A. The BEACH domain was described in the BEIGE protein (D1035670) and in the highly homologous CHS protein. The BEACH domain is usually followed by a series of WD repeats. The function of the BEACH domain is unknown. 0 -353086 cl10557 Dak1 Dak1 domain. Two types of dihydroxyacetone kinase (glycerone kinase) are described. In yeast and a few bacteria, e.g. Citrobacter freundii, the enzyme is a single chain that uses ATP as phosphoryl donor and is designated EC 2.7.1.29. By contract, E. coli and many other bacterial species have a multisubunit form (EC 2.7.1.-) with a phosphoprotein donor related to PTS transport proteins. This family represents the DhaK subunit of the latter type of dihydroxyacetone kinase, but it specifically excludes the DhaK paralog DhaK2 (TIGR02362) found in the same operon as DhaK and DhaK in the Firmicutes. 0 -353087 cl10571 GT_MraY-like N/A. undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase; Provisional 0 -353090 cl10591 Bro-N BRO family, N-terminal domain. This family includes the N-terminus of baculovirus BRO and ALI motif proteins. The function of BRO proteins is unknown. It has been suggested that BRO-A and BRO-C are DNA binding proteins that influence host DNA replication and/or transcription. This Pfam domain does not include the characteristic invariant alanine, leucine, isoleucine motif of the ALI proteins. 0 -353099 cl10701 FIST FIST N domain. The FIST N domain is a novel sensory domain, which is present in signal transduction proteins from Bacteria, Archaea and Eukarya. Chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids. 0 -353101 cl10713 Phage_pRha Phage regulatory protein Rha (Phage_pRha). Members of this protein family are found in temperate phage and bacterial prophage regions. Members include the product of the rha gene of the lambdoid phage phi-80, a late operon gene. The presence of this gene interferes with infection of bacterial strains that lack integration host factor (IHF), which regulates the rha gene. It is suggested that pRha is a phage regulatory protein. [Mobile and extrachromosomal element functions, Prophage functions] 0 -353103 cl10717 CactinC_cactus Cactus-binding C-terminus of cactin protein. SF3A2 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp21 (subunit 1). with Prp21 wrapping around Prp11. 0 -353106 cl10727 E3_UFM1_ligase E3 UFM1-protein ligase 1. E3 UFM1-protein ligase 1 homolog; Provisional 0 -324667 cl10767 AD Anticodon-binding domain. This domain of approximately 100 residues is conserved from plants to humans. It is frequently found in association with Lsm domain-containing proteins. 0 -353132 cl10889 Cir_N N-terminal domain of CBF1 interacting co-repressor CIR. This is a 45 residue conserved region at the N-terminal end of a family of proteins referred to as CIRs (CBF1-interacting co-repressors). CBF1 (centromere-binding factor 1) acts as a transcription factor that causes repression by binding specifically to GTGGGAA motifs in responsive promoters, and it requires CIR as a co-repressor. CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex. 0 -353138 cl10918 Cg6151-P Uncharacterized conserved protein CG6151-P. This is a family of small, less than 200 residue long, proteins which are named as CG6151-P proteins that are conserved from fungi to humans. The function is unknown. The fungal members have a characteristic ICP sequence motif. Some members are annotated as putative clathrin-coated vesicle protein but this could not be defined. 0 -353153 cl10970 AP_MHD_Cterm C-terminal domain of adaptor protein (AP) complexes medium mu subunits and its homologs (MHD). This family also contains members which are coatomer subunits. 0 -353165 cl11037 EKR Domain of unknown function. EKR is a short, 33 residue, domain found in bacterial and some lower eukaryotic species which lies between a POR (pyruvate ferredoxin/flavodoxin oxidoreductase) and the 4Fe-4S binding domain Fer4. It contains a characteristic EKR sequence motif. The exact function of this domain is not known. 0 -353176 cl11062 BHD_1 Rad4 beta-hairpin domain 1. This short domain is found in the Rad4 protein. This domain binds to DNA. 0 -353177 cl11063 BHD_2 Rad4 beta-hairpin domain 2. This short domain is found in the Rad4 protein. This domain binds to DNA. 0 -353178 cl11065 TAF8 TATA Binding Protein (TBP) Associated Factor 8. This is the C-terminal, Delta, part of the TAF8 protein. The N-terminal is generally the histone fold domain, Bromo_TP (pfam07524). TAF8 is one of the key subunits of the transcription factor for pol II, TFIID. TAF8 is one of the several general cofactors which are typically involved in gene activation to bring about the communication between gene-specific transcription factors and components of the general transcription machinery. 0 -353187 cl11101 ATP-synt_Fo_b F-type ATP synthase, membrane subunit b. Proteins in this family have been implicated in the assembly of the large subunit of the ribosome and in telomere maintenance. Some proteins in this family contain a CCCH zinc finger. This family contains a protein called human fragile X mental retardation-interacting protein 1, which is known to bind RNA and is phosphorylated upon DNA damage. 0 -324881 cl11158 BEN BEN domain. hypothetical protein; Provisional 0 -353199 cl11171 Dev_Cell_Death Development and cell death domain. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell death by pathogens or ozone. 0 -353203 cl11186 Cullin_Nedd8 Cullin protein neddylation domain. This is the neddylation site of cullin proteins which are a family of structurally related proteins containing an evolutionarily conserved cullin domain. With the exception of APC2, each member of the cullin family is modified by Nedd8 and several cullins function in Ubiquitin-dependent proteolysis, a process in which the 26S proteasome recognises and subsequently degrades a target protein tagged with K48-linked poly-ubiquitin chains. Cullins are molecular scaffolds responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. Nedd8/Rub1 is a small ubiquitin-like protein, which was originally found to be conjugated to Cdc53, a cullin component of the SCF (Skp1-Cdc53/CUL1-F-box protein) E3 Ub ligase complex in Saccharomyces cerevisiae, and Nedd8 modification has now emerged as a regulatory pathway of fundamental importance for cell cycle control and for embryogenesis in metazoans. The only identified Nedd8 substrates are cullins. Neddylation results in covalent conjugation of a Nedd8 moiety onto a conserved cullin lysine residue. 0 -324906 cl11198 zinc_ribbon_2 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR. pfam12773. 0 -353210 cl11253 Germane Sporulation and spore germination. The GerMN domain is a region of approximately 100 residues that is found, duplicated, in the Bacillus GerM protein and is implicated in both sporulation and spore germination. The domain is found in a number of different bacterial species both alone and in association with other domains such as Amidase_3 pfam01520 Gmad1 and Gmad2. It is predicted to have a novel alpha-beta fold. 0 -299614 cl11266 EssA WXG100 protein secretion system (Wss), protein EssA. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This highly divergent protein family consists largely of a central region of highly polar low-complexity sequence containing occasional LF motifs in weak repeats about 17 residues in length, flanked by hydrophobic N- and C-terminal regions. [Protein fate, Protein and peptide secretion and trafficking] 0 -353215 cl11278 DUF2492 Protein of unknown function (DUF2492). This model describes a family of small cytosolic proteins, about 80 amino acids in length, in which the eight invariant residues include three His residues and two Cys residues. Two pairs of these invariant residues occur in motifs HxH (where x is A or G) and CxH, both of which suggest metal-binding activity. This protein family was identified by searching with a phylogenetic profile based on an anaerobic sulfatase-maturase enzyme, which contains multiple 4Fe-4S clusters. The linkages by phylogenetic profiling and by iron-sulfur cluster-related motifs together suggest this protein may be an accessory protein to certain maturases in sulfatase/maturase systems. 0 -325006 cl11377 NADH-u_ox-rdase NADH-ubiquinone oxidoreductase complex I, 21 kDa subunit. complex I subunit 0 -353238 cl11393 Peptidase_M14_like M14 family of metallocarboxypeptidases and related proteins. A functionally uncharacterized subgroup of the Succinylglutamate desuccinylase (ASTE)/aspartoacylase (ASPA) subfamily which is part of the M14 family of metallocarboxypeptidases. ASTE catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway, and aspartoacylase (ASPA, also known as aminoacylase 2, and ACY-2; EC:3.5.1.15) cleaves N-acetyl L-aspartic acid (NAA) into aspartate and acetate. NAA is abundant in the brain, and hydrolysis of NAA by ASPA may help maintain white matter. ASPA is an NAA scavenger in other tissues. Mutations in the gene encoding ASPA cause Canavan disease (CD), a fatal progressive neurodegenerative disorder involving dysmyelination and spongiform degeneration of white matter in children. This enzyme binds zinc which is necessary for activity. Measurement of elevated NAA levels in urine is used in the diagnosis of CD. 0 -353239 cl11394 Glyco_tranf_GTA_type Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. 0 -353240 cl11395 Pkinase_C Protein kinase C terminal domain. 0 -353241 cl11396 Patatin_and_cPLA2 Patatins and Phospholipases. This family consists of various patatin glycoproteins from plants. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein but it also has the enzymatic activity of lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have been found also in vertebrates. 0 -353242 cl11397 NR_LBD The ligand binding domain of nuclear receptors, a family of ligand-activated transcription regulators. This all helical domain is involved in binding the hormone in these receptors. 0 -353243 cl11399 HP Histidine phosphatase domain found in a functionally diverse set of proteins, mostly phosphatases; contains a His residue which is phosphorylated during the reaction. The histidine phosphatase superfamily is so named because catalysis centers on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches.The smaller branch 2 contains predominantly eukaryotic proteins. The catalytic functions in members include phytase, glucose-1-phosphatase and multiple inositol polyphosphate phosphatase. The in vivo roles of the mammalian acid phosphatases in branch 2 are not fully understood, although activity against lysophosphatidic acid and tyrosine-phosphorylated proteins has been demonstrated. 0 -353244 cl11403 pepsin_retropepsin_like Cellular and retroviral pepsin-like aspartate proteases. The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylanase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. 0 -353245 cl11404 Biotinyl_lipoyl_domains N/A. This is a family of largely bacterial haemolysin translocator HlyD proteins. 0 -353246 cl11409 RNAP_RPB11_RPB3 RPB11 and RPB3 subunits of RNA polymerase. The two eukaryotic subunits Rpb3 and Rpb11 dimerize to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerization domain of the alpha subunit/Rpb3 is interrupted by an insert domain (pfam01000). Some of the alpha subunits also contain iron-sulphur binding domains (pfam00037). Rpb11 is found as a continuous domain. Members of this family include: alpha subunit from eubacteria, alpha subunits from chloroplasts, Rpb3 subunits from eukaryotes, Rpb11 subunits from eukaryotes, RpoD subunits from archaeal spp, and RpoL subunits from archaeal spp. Many of the members of this family carry only the N-terminal region of Rpb11. 0 -353247 cl11410 TPP_enzyme_PYR Pyrimidine (PYR) binding domain of thiamine pyrophosphate (TPP)-dependent enzymes. Bacterial enzyme splits fructose-6-P and/or xylulose-5-P with the aid of inorganic phosphate into either acetyl-P and erythrose-4-P and/or acetyl-P and glyeraldehyde-3-P EC:4.1.2.9, EC:4.1.2.22. This family is distantly related to transketolases e.g. pfam02779. 0 -353248 cl11421 FAA_hydrolase Fumarylacetoacetate (FAA) hydrolase family. This bacterial family of proteins has no known function. 0 -353249 cl11423 VirB9_CagX_TrbG VirB9/CagX/TrbG, a component of the type IV secretion system. This family includes type IV secretion system CagX conjugation protein. Other members of this family are involved in conjugal transfer to plant cells of T-DNA. 0 -353250 cl11424 nitrilase Nitrilase superfamily, including nitrile- or amide-hydrolyzing enzymes and amide-condensing enzymes. This family contains hydrolases that break carbon-nitrogen bonds. The family includes: Nitrilase EC:3.5.5.1, Aliphatic amidase EC:3.5.1.4, Biotidinase EC:3.5.1.12, Beta-ureidopropionase EC:3.5.1.6. Nitrilase-related proteins generally have a conserved E-K-C catalytic triad, and are multimeric alpha-beta-beta-alpha sandwich proteins. 0 -325026 cl11425 PSI_PSAK Photosystem I psaG / psaK. Members of this protein family are the PsaK of the photosystem I reaction center. Photosystems I and II occur together in the same sets of organisms. Photosystem I uses light energy to transfer electrons from plastocyanin to ferredoxin, while photosystem II uses light energy to split water and releases molecular oxygen. [Energy metabolism, Photosynthesis] 0 -353251 cl11433 DivIC Septum formation initiator. In Escherichia coli, nine gene products are known to be essential for assembly of the division septum. One of these, FtsL, is a bitopic membrane protein whose precise function is not understood. It has been proposed that FtsL interacts with the DivIC protein pfam04977, however this interaction may be indirect. 0 -353252 cl11434 AlkD_like A new structural DNA glycosylase. This domain represents a new and uncharacterized structural superfamily of DNA glycosylases that form an alpha-alpha superhelix fold that are not belong to the identified five structural DNA glycosylase superfamilies (UDG, AAG/MNPG, MutM/Fpg and helix-hairpin-helix). DNA glycosylases removing alkylated base residues have been identified in all organisms investigated and may be universally present in nature. DNA glycosylases catalyze the first step in Base Excision Repair (BER) pathway by cleaving damaged DNA bases within double strand DNA to produce an abasic site. The resulting abasic site is further processed by AP endonuclease, phosphodiesterase, DNA polymerases, and DNA ligase functions to restore the DNA to an undamaged state. All glycosylase examined to date utilize a similar strategy for binding DNA and base flipping despite their structural diversity. The known structures for members of this family, AlkC and AlkD from Bacillus cereus, are distant homologues and are composed of six variant HEAT (Huntington/Elongation/ A subunit/Target of rapamycin) repeats. HEAT motifs are ~45-amino acid sequences that form antiparallel alpha-helices, which are packed by a conserved hyrophobic interface and are tandemly repeated to form superhelical alpha-structures. AlkD and AlkC are specific for removal of 3-methyladenine (3mA) and 7-methylguanine (7mG) from the DNA by base excision repair. Homologues of AlkC and AlkD were also identified in other organisms. 0 -353253 cl11435 DMB-PRT_CobT Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (DMB-PRT), also called CobT. This family of proteins represent the nicotinate-nucleotide- dimethylbenzimidazole phosphoribosyltransferase (NN:DBI PRT) enzymes involved in dimethylbenzimidazole synthesis. This function is essential to de novo cobalamin (vitamin B12) production in bacteria. Nicotinate mononucleotide (NaMN):5,6-dimethylbenzimidazole (DMB) phosphoribosyltransferase (CobT) from Salmonella enterica plays a central role in the synthesis of alpha-ribazole-5'-phosphate, an intermediate for the lower ligand of cobalamin. 0 -353254 cl11436 DNA_III_psi DNA polymerase III psi subunit. This small subunit of the DNA polymerase III holoenzyme in E. coli and related species appearsto have a narrow taxonomic distribution. It is not found so far outside the gamma subdivision proteobacteria. [DNA metabolism, DNA replication, recombination, and repair] 0 -353255 cl11437 DUF2057 Uncharacterized protein conserved in bacteria (DUF2057). hypothetical protein; Provisional 0 -353256 cl11440 AstA Arginine N-succinyltransferase beta subunit. In some bacteria, including Pseudomonas aeruginosa, the astB gene (arginine N-succinyltransferase) is replaced by tandem paralogs that form a heterodimer. This heterodimer from P. aeruginosa is characterized as arginine and ornithine N-2 succinyltransferase (AOST). Members of this protein family represent the less widespread paralog, designated AruI, or arginine/ornithine succinyltransferase, alpha subunit. 0 -353257 cl11442 Cas2_I_II_III CRISPR/Cas system-associated protein Cas2. Members of this family of bacterial proteins comprise various hypothetical proteins, as well as CRISPR (clustered regularly interspaced short palindromic repeats) associated proteins, conferring resistance to infection by certain bacteriophages. 0 -353258 cl11443 Cas6-I-III CRISPR/Cas system-associated RAMP superfamily protein Cas6. Cas6 is a member of the RAMP (repeat-associated mysterious protein) superfamily. It is among the most widely distributed Cas proteins and is found in both bacteria and archaea. Cas6 functions in the generation of CRISPR-derived guide RNAs for invader defense in prokaryotes. 0 -353259 cl11449 DUF406 Protein of unknown function (DUF406). These small proteins are approximately 100 amino acids in length and appear to be found only in gamma proteobacteria. The function of this protein family is unknown. [Hypothetical proteins, Conserved] 0 -353260 cl11450 MtlR Mannitol repressor. mannitol repressor protein; Provisional 0 -353261 cl11451 Cyd_oper_YbgE Cyd operon protein YbgE (Cyd_oper_YbgE). hypothetical protein; Provisional 0 -353262 cl11452 H_PPase Inorganic H+ pyrophosphatase. This model describes proton pyrophosphatases from eukaryotes (predominantly plants), archaea and bacteria. It is an integral membrane protein and is suggested to have about 15 membrane spanning domains. Proton translocating inorganic pyrophosphatase, like H(+)-ATPase, acidifies the vacuoles and is pivotal to the vacuolar secondary active transport systems in plants. [Transport and binding proteins, Cations and iron carrying compounds] 0 -353263 cl11454 FlaF Flagellar protein FlaF. flagellar biosynthesis regulatory protein FlaF; Reviewed 0 -353264 cl11455 FlbT Flagellar protein FlbT. flagellar biosynthesis repressor FlbT; Reviewed 0 -325041 cl11456 DUF1375 Protein of unknown function (DUF1375). hypothetical protein; Provisional 0 -325042 cl11457 Secretoglobin N/A. Uteroglobin is a homodimer of two identical 70 amino acid polypeptides linked by two disulphide bridges. The precise role of uteroglobin has still to be elucidated. 0 -353265 cl11461 Phage_H_T_join Phage head-tail joining protein. This family describes a small protein of about 100 amino acids found in bacteriophage and in bacterial prophage regions. Examples include gp9 of phage HK022 and gp16 of phage SPP1. This minor structural protein is suggested to be a head-tail adaptor protein (although the source of this annotation was not traced during construction of this model). [Mobile and extrachromosomal element functions, Prophage functions] 0 -325044 cl11463 Phage_TTP_12 Lambda phage tail tube protein, TTP. characterized members are major tail tube proteins from various phages, including lactococcal temperate bacteriophage TP901-1. 0 -353266 cl11466 STI N/A. Soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Inhibit proteases by binding with high affinity to their active sites. Trefoil fold, common to interleukins and fibroblast growth factors. 0 -325046 cl11468 KicB MukF winged-helix domain. condesin subunit F; Provisional 0 -353267 cl11470 SeqA SeqA protein C-terminal domain. replication initiation regulator SeqA; Provisional 0 -353268 cl11471 MukE bacterial condensin complex subunit MukE. Bacterial protein involved in chromosome partitioning, MukE 0 -353269 cl11472 DUF440 Protein of unknown function, DUF440. dsDNA-mimic protein; Reviewed 0 -325050 cl11473 DUF1043 Protein of unknown function (DUF1043). hypothetical protein; Provisional 0 -353270 cl11474 UPF0231 Uncharacterized protein family (UPF0231). hypothetical protein; Provisional 0 -353271 cl11475 CcmD Heme exporter protein D (CcmD). The model for this protein family describes a small, hydrophobic, and only moderately well-conserved protein, tricky to identify accurately for all of these reasons. However, members are found as part of large operons involved in heme export across the inner membrane for assembly of c-type cytochromes in a large number of bacteria. The gray zone between the trusted cutoff (13.0) and noise cutoff (4.75) includes both low-scoring examples and false-positive matches to hydrophobic domains of longer proteins. 0 -353272 cl11478 Rsd_AlgQ Regulator of RNA polymerase sigma(70) subunit, Rsd/AlgQ. anti-RNA polymerase sigma 70 factor; Provisional 0 -353273 cl11479 SMP_2 Bacterial virulence factor haemolysin. hypothetical protein; Provisional 0 -353274 cl11481 DUF1145 Protein of unknown function (DUF1145). hypothetical protein; Provisional 0 -353275 cl11483 PriC Primosomal replication protein priC. primosomal replication protein N''; Provisional 0 -325057 cl11485 YozE_SAM_like YozE SAM-like fold. hypothetical protein; Provisional 0 -325058 cl11488 DUF1450 Protein of unknown function (DUF1450). hypothetical protein; Provisional 0 -353276 cl11491 Phasin_2 Phasin protein. Members of this protein family are encoded in polyhydroxyalkanoic acid storage system regions in Vibrio, Photobacterium profundum SS9, Acinetobacter sp., Aeromonas hydrophila, and several species of Vibrio. Members appear distantly related to the phasin family proteins modeled by TIGR01841 and TIGR01985. 0 -353277 cl11492 DUF1447 Protein of unknown function (DUF1447). hypothetical protein; Provisional 0 -353278 cl11493 PQQ_DH_like PQQ-dependent dehydrogenases and related proteins. This bacterial subfamily of enzymes belongs to the dehydrogenase family with pyrroloquinoline quinone (PQQ) as cofactor, and is the only subfamily that is bound to the membrane. Glucose dehydrogenase converts D-glucose to D-glucono-1,5-lactone in a reaction that is coupled with the respiratory chain in the periplasmic oxidation of sugars and alcohols in gram-negative bacteria. Ubiquinone functions as the electron acceptor. The alignment model contains an 8-bladed beta-propeller. 0 -299748 cl11495 IncFII_repA IncFII RepA protein family. replication protein; Provisional 0 -299749 cl11500 Phage_Treg Lactococcus bacteriophage putative transcription regulator. putative transcription regulator; Provisional 0 -325062 cl11501 HHA Haemolysin expression modulating protein. gene expression modulator; Provisional 0 -353279 cl11502 Ter DNA replicatioN-terminus site-binding protein (Ter protein). DNA replication terminus site-binding protein; Provisional 0 -299752 cl11503 TraA TraA. conjugal transfer pilin subunit TraA; Provisional 0 -187080 cl11505 Sif Sif protein. secreted effector protein SifA; Reviewed 0 -353280 cl11506 CrgA Cell division protein CrgA. putative septation inhibitor protein; Reviewed 0 -353281 cl11507 DUF1471 Protein of unknown function (DUF1471). putative biofilm stress and motility protein A; Provisional 0 -299755 cl11508 NUMOD1 NUMOD1 domain. Repeat of unknown function, but possibly DNA-binding via helix-turn-helix motif (Ponting, unpublished). 0 -299756 cl11513 Chlamy_scaf Chlamydia-phage Chp2 scaffold (Chlamy_scaf). minor capsid protein 0 -353282 cl11515 TrbI_Ftype Type-F conjugative transfer system protein (TrbI_Ftype). This protein is an essential component of the F-type conjugative transfer sytem for plasmid DNA transfer and has been shown to be localized to the periplasm. 0 -299758 cl11516 TraQ Type-F conjugative transfer system pilin chaperone (TraQ). conjugal transfer pilin chaperone TraQ; Provisional 0 -325067 cl11518 IL4 Interleukin 4. Interleukins-4 and -13 are cytokines involved in inflammatory and immune responses. IL-4 stimulates B and T cells. 0 -325068 cl11519 DENN DENN (AEX-3) domain. The DENN domain is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 0 -325069 cl11522 Tom22 Mitochondrial import receptor subunit Tom22. The mitochondrial protein translocase (MPT) family, which brings nuclearly encoded preproteins into mitochondria, is very complex with 19 currently identified protein constituents.These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family is specific for the Tom22 proteins. [Transport and binding proteins, Amino acids, peptides and amines] 0 -175307 cl11526 Phage_connector Phage Connector (GP10). putative upper collar protein 0 -325070 cl11530 DUF104 Protein of unknown function DUF104. This family includes short archaebacterial proteins of unknown function. Archaeoglobus fulgidus has twelve copies of this protein, with several being clustered together in the genome. 0 -353283 cl11531 ZapB Cell division protein ZapB. septal ring assembly protein ZapB; Provisional 0 -353284 cl11533 DUF1013 Protein of unknown function (DUF1013). Family of uncharacterized proteins found in Proteobacteria. 0 -325073 cl11538 ssDNA-exonuc_C Single-strand DNA-specific exonuclease, C terminal domain. Members of this set of prokaryotic domains are found in a set of single-strand DNA-specific exonucleases, including RecJ. Their exact function has not, as yet, been determined. 0 -299766 cl11540 Mu-like_Com Mu-like prophage protein Com. Members of this family of proteins comprise the translational regulator of mom. 0 -299767 cl11541 CoiA Competence protein CoiA-like family. Many of the members of this family are described as transcription factors. CoiA falls within a competence-specific operon in Streptococcus. CoiA is an uncharacterized protein. 0 -325074 cl11542 EcsB Bacterial ABC transporter protein EcsB. This family consists of several bacterial ABC transporter proteins which are homologous to the EcsB protein of Bacillus subtilis. EcsB is thought to encode a hydrophobic protein with six membrane-spanning helices in a pattern found in other hydrophobic components of ABC transporters. 0 -353285 cl11545 DUF1820 Domain of unknown function (DUF1820). This family includes small functionally uncharacterized proteins around 100 amino acids in length. 0 -353286 cl11547 HTH_43 Winged helix-turn helix. This family, found in various hypothetical prokaryotic proteins, is a probable winged helix DNA-binding domain. 0 -353287 cl11548 DUF2140 Uncharacterized protein conserved in bacteria (DUF2140). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -325078 cl11550 DUF1797 Protein of unknown function (DUF1797). This is a domain of unknown function. It forms a central anti-parallel beta sheet with flanking alpha helical regions. 0 -325079 cl11551 DUF1149 Protein of unknown function (DUF1149). This family consists of several hypothetical bacterial proteins of unknown function. 0 -325080 cl11552 DUF1462 Protein of unknown function (DUF1462). This family consists of several hypothetical bacterial proteins of around 100 residues in length. The function of this family is unknown. 0 -353288 cl11555 DUF1129 Protein of unknown function (DUF1129). This family consists of several hypothetical bacterial proteins of unknown function. 0 -325082 cl11560 ComK ComK protein. This family consists of several bacterial ComK proteins. The ComK protein of Bacillus subtilis positively regulates the transcription of several late competence genes as well as comK itself. It has been found that ClpX plays an important role in the regulation of ComK at the post-transcriptional level. 0 -353289 cl11562 DUF1465 Protein of unknown function (DUF1465). This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 0 -264424 cl11564 GcrA GcrA cell cycle regulator. GcrA is a master cell cycle regulator that, together with CtrA (see pfam00072 and pfam00486), is involved in controlling cell cycle progression and asymmetric polar morphogenesis. During this process, there are temporal and spatial variations in the concentrations of GcrA and CtrA. The variation in concentration produces time and space dependent transcriptional regulation of modular functions that implement cell-cycle processes. More specifically, GcrA acts as an activator of components of the replisome and the segregation machinery. 0 -353290 cl11568 DUF1491 Protein of unknown function (DUF1491). This family consists of several bacterial proteins of around 115 residues in length. Members of this family seem to be found exclusively in the Class Alphaproteobacteria. The function of this family is unknown. 0 -353291 cl11569 DUF1467 Protein of unknown function (DUF1467). This family consists of several bacterial proteins of around 90 residues in length. The function of this family is unknown. 0 -325086 cl11570 DUF1489 Protein of unknown function (DUF1489). This family consists of several hypothetical bacterial proteins of around 150 residues in length. Members of this family seem to be founds exclusively in the Class Alphaproteobacteria. The function of this family is unknown. 0 -325087 cl11571 DUF1476 Domain of unknown function (DUF1476). This family consists of several hypothetical bacterial proteins of around 100 residues in length. Members of this family are found in Bradyrhizobium, Rhizobium, Brucella and Caulobacter species. The function of this family is unknown. 0 -325088 cl11574 DUF2279 Predicted periplasmic lipoprotein (DUF2279). lipoprotein; Provisional 0 -325089 cl11576 DUF1398 Protein of unknown function (DUF1398). This family consists of several hypothetical Enterobacterial proteins of around 130 residues in length. Members of this family seem to be found exclusively in Escherichia coli and Salmonella species. The function of this family is unknown. 0 -325090 cl11577 DUF1150 Protein of unknown function (DUF1150). This family consists of several hypothetical bacterial proteins of unknown function. 0 -353292 cl11580 DUF2002 Protein of unknown function (DUF2002). hypothetical protein; Provisional 0 -325091 cl11584 DUF2591 Protein of unknown function (DUF2591). hypothetical protein 0 -299787 cl11585 Phage_X Phage X family. gene X product; Reviewed 0 -353293 cl11586 snake_toxin N/A. This family predominantly includes venomous neurotoxins and cytotoxins from snakes, but also structurally similar (non-snake) toxin-like proteins (TOLIPs) such as Lymphocyte antigen 6D and Ly6/PLAUR domain-containing protein. Snake toxins are short proteins with a compact, disulphide-rich structure. TOLIPs have similar structural features (abundance of spaced cysteine residues, a high frequency of charge residues, a signal peptide for secretion and a compact structure) but, are not associated with a venom gland or poisonous function. They are endogenous animal proteins that are not restricted to poisonous animals. 0 -325093 cl11589 Knot1 N/A. Knottins, representing plant lectins/antimicrobial peptides, plant proteinase/amylase inhibitors, plant gamma-thionins and arthropod defensins. 0 -353294 cl11592 zf-CCCH Zinc finger C-x8-C-x5-C-x3-H type (and similar). 0 -353295 cl11594 SSI Subtilisin inhibitor-like. protease inhibitor protein; Provisional 0 -353296 cl11600 PBP_GOBP PBP/GOBP family. The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins which exist in the extracellular fluid surrounding the odorant receptors. This family is composed of pheromone binding proteins (PBP), which are male-specific and associate with pheromone-sensitive neurons and general-odorant binding proteins (GOBP). 0 -325097 cl11602 IL7 Interleukin 7/9 family. IL-7 is a cytokine that acts as a growth factor for early lymphoid cells of both B- and T-cell lineages. IL-9 is a multifunctional cytokine that, although originally described as a T-cell growth factor, its function in T-cell response remains unclear. 0 -325098 cl11603 Basic Myogenic Basic domain. This basic domain is found in the MyoD family of muscle specific proteins that control muscle development. The bHLH region of the MyoD family includes the basic domain and the Helix-loop-helix (HLH) motif. The bHLH region mediates specific DNA binding. With 12 residues of the basic domain involved in DNA binding. The basic domain forms an extended alpha helix in the structure. 0 -325099 cl11607 7TM_GPCR_Srab Serpentine type 7TM GPCR receptor class ab chemoreceptor. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srb is part of the Sra superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 0 -299794 cl11610 Phage_G Major spike protein (G protein). major spike protein 0 -353297 cl11612 DUF243 Domain of unknown function (DUF243). This family of uncharacterized proteins is only found in fly proteins. It is found associated with YLP motifs pfam02757 in some proteins. 0 -299796 cl11614 Peptidase_S77 Prohead core protein serine protease. prohead core scaffolding protein and protease 0 -325101 cl11619 SPK Domain of unknown function (DUF545). Family of uncharacterized C. elegans proteins. The region represented by this family can is found to be repeated up to four time in some proteins. 0 -325102 cl11622 Phage_endo_I Phage endonuclease I. endonuclease I 0 -353298 cl11625 Podovirus_Gp16 Podovirus DNA encapsidation protein (Gp16). DNA encapsidation protein 0 -353299 cl11627 HlyE Haemolysin E (HlyE). hemolysin E; Provisional 0 -299801 cl11629 KdgM Oligogalacturonate-specific porin protein (KdgM). outer membrane porin L; Provisional 0 -353300 cl11630 DinI DinI-like family. DNA damage-inducible protein I; Provisional 0 -271727 cl11632 DUF1035 Protein of unknown function (DUF1035). structural protein V1; Reviewed 0 -353301 cl11636 SecM Secretion monitor precursor protein (SecM). SecA regulator SecM; Provisional 0 -325106 cl11637 Mth_Ecto N/A. This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. 0 -353302 cl11643 WzyE WzyE protein, O-antigen assembly polymerase. putative common antigen polymerase; Provisional 0 -299806 cl11645 DUF1293 Protein of unknown function (DUF1293). hypothetical protein 0 -325108 cl11647 MalM Maltose operon periplasmic protein precursor (MalM). maltose regulon periplasmic protein; Provisional 0 -353303 cl11648 DUF1418 Protein of unknown function (DUF1418). hypothetical protein; Provisional 0 -325110 cl11650 DUF1431 Protein of unknown function (DUF1431). This family contains a number of Drosophila melanogaster proteins of unknown function. These contain several conserved cysteine residues. 0 -264457 cl11652 TraP TraP protein. conjugal transfer protein TraP; Provisional 0 -353304 cl11653 Crl Transcriptional regulator Crl. DNA-binding transcriptional regulator Crl; Provisional 0 -325112 cl11654 DUF1516 Protein of unknown function (DUF1516). hypothetical protein; Provisional 0 -159607 cl11655 PRE_C2HC Associated with zinc fingers. This function of this domain is unknown and is often found associated with pfam00096. 0 -353305 cl11656 FCD FCD domain. This family contains sequences that are similar to the fatty acid metabolism regulator protein (FadR). This functions as a dimer, with each monomer being composed of an N-terminal DNA-binding domain and a regulatory C-terminal domain. A linker comprising two short alpha helices joins the two domains. In the C-terminal domain, an antiparallel array of six alpha helices forms a barrel-like structure, while a seventh alpha helix forms a 'lid' at the end closest to the N-terminal domain. This structure was found to be similar to that of the C-terminal domain of the Tet repressor. Long-chain acyl-CoA thioesters interact directly and reversibly with the C-terminal domain, and this interaction affects the structure and therefore the DNA binding properties of the N-terminal domain. 0 -353306 cl11657 DM4_12 DM4/DM12 family. This family contains sequences derived from hypothetical proteins expressed by two insect species, D. melanogaster and A. gambiae. The region in question is approximately 115 amino acid residues long and contains four highly- conserved cysteine residues. 0 -353307 cl11660 PAN_3 PAN-like domain. 0 -353308 cl11665 7TM_GPCR_Srh Serpentine type 7TM GPCR chemoreceptor Srh. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Sri is part of the Str superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 0 -353309 cl11672 DUF2509 Protein of unknown function (DUF2509). hypothetical protein; Provisional 0 -325118 cl11677 FliX Class II flagellar assembly regulator. flagellar assembly regulator FliX; Reviewed 0 -353310 cl11681 Anti-adapt_IraP Sigma-S stabilisation anti-adaptor protein. anti-RssB factor; Provisional 0 -353311 cl11685 CdhC CO dehydrogenase/acetyl-CoA synthase complex beta subunit. acetyl-CoA decarbonylase/synthase complex subunit beta; Reviewed 0 -353312 cl11698 Lipoprotein_22 Uncharacterized lipoprotein family. hypothetical protein; Provisional 0 -275955 cl11748 LysW Lysine biosynthesis protein LysW. This very small, poorly characterized protein has been shown essential in Thermus thermophilus for an unusual pathway of Lys biosynthesis from aspartate by way of alpha-aminoadipate (AAA) rather than diaminopimelate. It is found also in Deinococcus radiodurans and Pyrococcus horikoshii, which appear to share the AAA pathway. [Amino acid biosynthesis, Aspartate family] 0 -325124 cl11777 zinc_ribbon_4 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR, pfam12773. 0 -325125 cl11797 Flagellar_put Putative flagellar. Members of this family are found in a subset of bacterial flagellar operons, generally between genes designated flgD and flgE, in species as diverse as Bacillus halodurans and various other Firmicutes, Geobacter sulfurreducens, and Bdellovibrio bacteriovorus. The specific molecular function is unknown. [Cellular processes, Chemotaxis and motility] 0 -325126 cl11819 LigD_N DNA polymerase Ligase (LigD). Most sequences in this family are the 3'-phosphoesterase domain of a multidomain, multifunctional DNA ligase, LigD, involved, along with bacterial Ku protein, in non-homologous end joining, the less common of two general mechanisms of repairing double-stranded breaks in DNA sequences. LigD is variable in architecture, as it lacks this domain in Bacillus subtilis, is permuted in Mycobacterium tuberculosis, and occasionally is encoded by tandem ORFs rather than as a multifuntional protein. In a few species (Dehalococcoides ethenogenes and the archaeal genus Methanosarcina), sequences corresponding to the ligase and polymerase domains of LigD are not found, and the role of this protein is unclear. [DNA metabolism, DNA replication, recombination, and repair] 0 -353314 cl11827 DUF3485 Protein of unknown function (DUF3485). In Methylobacillus sp strain 12S, EpsI is encoded immediately downstream of the multiple-membrane-spanning putative transporter EpsH, and is predicted to be a periplasmic protein involved in, but not required for, expression of the exopolysaccharide methanolan. In a number of other species, protein homologous to EpsI is encoded either next to EpsH or, more often, combined in a fused gene. We have proposed renaming EpsH, or the EpsHI fusion protein, to exosortase, based on its phylogenetic association with the PEP-CTERM proposed protein targeting signal. [Transport and binding proteins, Unknown substrate] 0 -353315 cl11840 DUF3289 Protein of unknown function (DUF3289). Members of this protein family have been found in several species of gammaproteobacteria, including Yersinia pestis and Y. pseudotuberculosis, Xylella fastidiosa, and Escherichia coli UTI89. As many as five members can be found in a single genome. The function is unknown. [Hypothetical proteins, Conserved] 0 -353316 cl11841 PSII_Pbs27 Photosystem II Pbs27. Members of this family are the Psb27 protein of the cyanobacterial photosynthetic supracomplex, photosystem II. Although most protein components of both cyanobacterial and chloroplast versions of photosystem II are closely related and described together by single models, this family is strictly bacterial. Some uncharacterized proteins with highly divergent sequences, from Arabidopsis, score between trusted and noise cutoffs for this model but are not at this time assigned as functionally equivalent photosystem II proteins. [Energy metabolism, Photosynthesis] 0 -325130 cl11843 DUF3623 Protein of unknown function (DUF3623). This uncharacterized protein family was identified, by the method of partial phylogenetic profiling, as having a matching phylogenetic distribution to that of the photosynthetic reaction center of the alpha-proteobacterial type. It is nearly always encoded near other photosynthesis-related genes, including puhA. [Energy metabolism, Photosynthesis] 0 -353317 cl11853 Couple_hipA HipA N-terminal domain. Although Pfam models pfam07805 and pfam07804 currently are called HipA-like N-terminal domain and HipA-like C-terminal domain, respectively, those models hit the central and C-terminal regions of E. coli HipA but not the N-terminal region. This model hits the N-terminal region of HipA and its homologs, and also identifies proteins that lack match regions for pfam07804 and pfam07805. 0 -275987 cl11864 Csf2_U CRISPR/Cas system-associated RAMP superfamily protein Csf2. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf2 (CRISPR/cas Subtype as in A. ferrooxidans protein 2), as it lies second closest to the repeats. 0 -187964 cl11865 Csf3_U CRISPR/Cas system-associated RAMP superfamily protein Csf3. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf3 (CRISPR/cas Subtype as in A. ferrooxidans protein 3), as it lies third closest to the repeats. 0 -275990 cl11869 Csc2_I-D CRISPR/Cas system-associated protein Csc2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc2 for CRISPR/Cas Subtype Cyano protein 2, as it is often the second gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 0 -325132 cl11871 AtpR N-ATPase, AtpR subunit. Members of this protein family are uncharacterized, highly hydrophobic proteins encoded in the middle of apparent F1/F0 ATPase operons. We note, however, that this protein is both broadly and sparsely distributed. It is found in about only about two percent of microbial genomes sequenced, with the first ten examples found coming from the Euryarchaeota, Chlorobia, Betaproteobacteria, Deltaproteobacteria, and Planctomycetes. In most of these species, surrounding operon appears to represent a second F1/F0 ATPase system, and the member proteins belong to subfamilies with the same phylogenetic distribution as the current protein family. 0 -353318 cl11879 VasI Type VI secretion system VasI, EvfG, VC_A0118. Members of this protein family, including VC_A0118 from Vibrio cholerae El Tor N16961, are restricted to a subset of bacteria with the type VI secretion system, and are encoded among the type VI-associated pathogenicity islands. However, many species with type VI secretion lack a member of this family. This lack suggests that members of this family may be targets rather than components of the type VI secretion system. 0 -353319 cl11880 T6SS_VasJ Type VI secretion, EvfE, EvfF, ImpA, BimE, VC_A0119, VasJ. This protein family is one of two related families in type VI secretion systems that contain an ImpA-related N-terminal domain (pfam06812). [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -325135 cl11881 CBP_BcsG Cellulose biosynthesis protein BcsG. This protein was identified by the partial phylogenetic profiling algorithm () as part of the system for cellulose biosynthesis in bacteria, and in fact is found in cellulose biosynthesis gene regions. The protein was designated YhjU in Salmonella enteritidis, where disruption of its gene disrupts cellulose biosynthesis and biofilm formation (). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -325136 cl11887 DUF3738 Protein of unknown function (DUF3738). Bacterial reference strains encoding members of this protein family are all isolated from soil. These include 39 members from Solibacter usitatus Ellin6076, 27 from Acidobacterium sp. MP5ACTX8 (both Acidobacteria), and four from Pedosphaera parvula Ellin514 (Verrucomicrobia). The family is well-diversified, with few pairs showing greater than 50 % pairwise identity. A few members are fused to Peptidase_M56 domains (see pfam05569), to Sigma70_r2 domains (see pfam04542), or have a duplication of this domain. 0 -187967 cl11892 Cas8c_I-C CRISPR/Cas system-associated protein Cas8c. Members of this family are found among cas (CRISPR-Associated) genes close to CRISPR repeats in Leptospira interrogans (a spirochete), Myxococcus xanthus (a delta-proteobacterium), and Lyngbya sp. PCC 8106 (a cyanobacterium). It is found with other cas genes in Anabaena variabilis ATCC 29413. In Lyngbya sp., the protein is split into two tandem genes. This model corresponds to the N-terminal region or upstream gene; the C-terminal region is described by TIGR03486. CRISPR/cas systems are associated with prokaryotic acquired resistance to phage and other exogenous DNA. 0 -187968 cl11893 Cas8c'_I-D CRISPR/Cas system-associated protein Cas8c'. Members of this family are found among cas (CRISPR-Associated) genes close to CRISPR repeats in Leptospira interrogans (a spirochete), Myxococcus xanthus (a delta-proteobacterium), and Lyngbya sp. PCC 8106 (a cyanobacterium). It is found with other cas genes in Anabaena variabilis ATCC 29413. In Lyngbya sp., the protein is split into two tandem genes. This model corresponds to the C-terminal region or downstream gene; the N-terminal region is modeled by TIGR03485. CRISPR/cas systems are associated with prokaryotic acquired resistance to phage and other exogenous DNA. 0 -187969 cl11894 Csp2_I-U CRISPR/Cas system-associated protein Cas8c. Members of this protein family are cas, or CRISPR-associated, proteins. The two sequences in the alignment seed are found within cas gene clusters that are adjacent to CRISPR DNA repeats in two members of the order Bacteroidales, Porphyromonas gingivalis W83 and Bacteroides forsythus ATCC 43037. This cas protein family is unique to the Pging (Porphyromonas gingivalis) subtype. 0 -187970 cl11895 Cas5_I CRISPR/Cas system-associated RAMP superfamily protein Cas5. CC Members of this protein family are cas, or CRISPR-associated, proteins. The two sequences in the alignment seed are found within cas gene clusters that are adjacent to CRISPR DNA repeats in two members of the order Bacteroidales, Porphyromonas gingivalis W83 and Bacteroides forsythus ATCC 43037. This cas protein family is unique to the Pgingi (Porphyromonas gingivalis) subtype, but shows some sequence similarity to genes of the Cas5 type (see TIGR02593). 0 -353320 cl11905 GldH_lipo GldH lipoprotein. Members of this protein family are predicted lipoproteins, exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). Members include GldH, a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Not all Bacteroidetes with members of this protein family may have gliding motility. [Cellular processes, Chemotaxis and motility] 0 -353321 cl11917 DUF4312 Domain of unknown function (DUF4312). Members of this family of small (about 100 amino acid), relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 0 -353322 cl11918 DUF4310 Domain of unknown function (DUF4310). Members of this family of relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. 0 -325139 cl11919 DUF4311 Domain of unknown function (DUF4311). Members of this family of relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Unknown function, General] 0 -353323 cl11923 DUF2805 Protein of unknown function (DUF2805). This model describes an uncharacterized bacterial protein family. Members average about 90 amino acids in length with several well-conserved uncommon amino acids (Trp, Met). The majority of species are marine bacteria. Few species have more than one copy, but Vibrio cholerae El Tor N16961 has three identical copies. [Hypothetical proteins, Conserved] 0 -353324 cl11943 Activator-TraM Transcriptional activator TraM. conjugal transfer protein TraM; Provisional 0 -353325 cl11960 Ig Immunoglobulin domain. This is an immunoglobulin-like domain. It is found on the T-cell surface glycoprotein CD3 delta chain. CD3delta and CD3epsilon complex together as part of the T-cell receptor complex. 0 -353326 cl11961 ALDH-SF NAD(P)+-dependent aldehyde dehydrogenase superfamily. This family of dehydrogenases act on aldehyde substrates. Members use NADP as a cofactor. The family includes the following members: The prototypical members are the aldehyde dehydrogenases EC:1.2.1.3. Succinate-semialdehyde dehydrogenase EC:1.2.1.16. Lactaldehyde dehydrogenase EC:1.2.1.22. Benzaldehyde dehydrogenase EC:1.2.1.28. Methylmalonate-semialdehyde dehydrogenase EC:1.2.1.27. Glyceraldehyde-3-phosphate dehydrogenase EC:1.2.1.9. Delta-1-pyrroline-5-carboxylate dehydrogenase EC: 1.5.1.12. Acetaldehyde dehydrogenase EC:1.2.1.10. Glutamate-5-semialdehyde dehydrogenase EC:1.2.1.41. This family also includes omega crystallin, an eye lens protein from squid and octopus that has little aldehyde dehydrogenase activity. 0 -353327 cl11964 CYTH-like_Pase CYTH-like (also known as triphosphate tunnel metalloenzyme (TTM)-like) Phosphatases. This presumed domain is found in the yeast vacuolar transport chaperone proteins VTC2, VTC3 and VTC4. This domain is also found in a variety of bacterial proteins. 0 -353328 cl11965 terB_like tellurium resistance terB-like protein. Some family members may be secreted or integral membrane proteins. 0 -353329 cl11966 NT_Pol-beta-like Nucleotidyltransferase (NT) domain of DNA polymerase beta and similar proteins. This family is likely to be an uncharacterized group of nucleotidyltransferases. 0 -353330 cl11967 Nucleotidyl_cyc_III Class III nucleotidyl cyclases. This domain is found linked to a wide range of non-homologous domains in a variety of bacteria. It has been shown to be homologous to the adenylyl cyclase catalytic domain and has diguanylate cyclase activity. This observation correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. In the WspR protein of Pseudomonas aeruginosa, the GGDEF domain acts as a diguanylate cyclase, Structure 3bre, when the whole molecule appears to form a tetramer consisting of two symmetrically-related dimers representing a biological unit. The active site is the GGD/EF motif, buried in the structure, and the cyclic dimeric guanosine monophosphate (c-di-GMP) bind to the inhibitory-motif RxxD on the surface. The enzyme thus catalyzes the cyclisation of two guanosine triphosphate (GTP) molecules to one c-di-GMP molecule. 0 -325148 cl11968 harmonin_N_like N-terminal protein-binding module of harmonin and similar domains, also known as HHD (harmonin homology domain). CCM2_HHD is a folded-helical region of a family of vertebral proteins, mutations in which cause cerebral cavernous malformations (CCMs). These malformations are congenital vascular anomalies of the central nervous system that can result in haemorrhagic stroke, seizures, recurrent headaches, and focal neurologic deficits. This domain is structurally homologous to the N-terminal domain of harmonin, so it is named the CCM2 harmonin-homology domain or CCM2_HHD. This protein is often called Malcavernin. 0 -353331 cl11970 PriL Archaeal/eukaryotic core primase: Large subunit, PriL. DNA primase is the polymerase that synthesizes small RNA primers for the Okazaki fragments made during discontinuous DNA replication. DNA primase is a heterodimer of two subunits, the small subunit Pri1 (48 kDa in yeast), and the large subunit Pri2 (58 kDa in the yeast S. cerevisiae). The large subunit of DNA primase forms interactions with the small subunit and the structure implicates that it is not directly involved in catalysis, but plays roles in correctly positioning the primase/DNA complex, and in the transfer of RNA to DNA polymerase. 0 -353332 cl11971 PPK2 Polyphosphate kinase 2 (PPK2). Members of this protein family belong to the polyphosphate kinase 2 (PPK2) family, which is not related in sequence to PPK1. While PPK1 tends to act in the biosynthesis of polyphosphate, or poly(P), members of the PPK2 family tend to use the terminal phosphate of poly(P) to regenerate ATP or GTP from the corresponding nucleoside diphosphate, or ADP from AMP as is the case with polyphosphate:AMP phosphotransferase (PAP). Members of this protein family most likely transfer the terminal phosphate between poly(P) and some nucleotide, but it is not clear which. [Central intermediary metabolism, Phosphorus compounds] 0 -325151 cl11976 SNF Sodium:neurotransmitter symporter family. These are twelve xTM-containing region transporters. 0 -325152 cl11978 DUF2333 Uncharacterized protein conserved in bacteria (DUF2333). Members of this family of hypothetical bacterial proteins have no known function. 0 -353333 cl11979 Lon_2 Putative ATP-dependent Lon protease. putative ATP-dependent protease 0 -325154 cl11982 RHS_repeat RHS Repeat. This model describes two tandem copies of a 21-residue extracellular repeat found in Gram-negative, Gram-positive, and animal proteins. The repeat is named for a YD dipeptide, the most strongly conserved motif of the repeat. These repeats appear in general to be involved in binding carbohydrate; the chicken teneurin-1 YD-repeat region has been shown to bind heparin. 0 -353334 cl12004 Cas8c_I-C CRISPR/Cas system-associated protein Cas8c. CRISPR loci appear to be mobile elements with a wide host range. This entry represents proteins that tend to be found near CRISPR repeats. The species range, so far, is exclusively bacterial and mesophilic, although CRISPR loci are particularly common among the archaea and thermophilic bacteria. Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 0 -325156 cl12007 Cby_like Chibby, a nuclear inhibitor of Wnt/beta-catenin mediated transcription, and similar proteins. This family includes the eukaryotic chibby proteins. These proteins inhibit the wingless/Wnt pathway by binding to beta-catenin and inhibiting beta-catenin-mediated transcriptional activation. Chibby is Japanese for small, and is named after the RNAi phenotype seen in Drosophila. 0 -299861 cl12008 FANCE_c-term Fanconi anemia complementation group E protein, C-terminal domain. Fanconi Anaemia (FA) is a cancer predisposition disorder. In response to DNA damage, the FA core complex monoubiquitinates the downatream FANCD2 protein. The protein FANCE has an important role in DNA repair as it is the FANCD2-binding protein in the FA core complex so it represents the link between the FA core complex and FANCD2. The sequence shown is the C terminal domain of the protein which consists predominantly of helices and does not contain any beta-strand. The fold of the polypeptide is a continuous right-handed solenoidal pattern from the N terminal to the C terminal end. 0 -353335 cl12009 HmuY_like Bacterial proteins similar to Porphyromonas gingivalis HmuY and the C-terminal domain of PARMER_03218. HmuY is a novel heme-binding protein that recruits heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 278 amino acids in length. 0 -353336 cl12013 BAR The Bin/Amphiphysin/Rvs (BAR) domain, a dimerization module that binds membranes and detects membrane curvature. Vps5 is a sorting nexin that functions in membrane trafficking. This is the C terminal dimerization domain. 0 -353338 cl12015 Adenylation_DNA_ligase_like Adenylation domain of proteins similar to ATP-dependent polynucleotide ligases. This is a family of RNA ligases. The enzyme repairs RNA strand breaks in nicked DNA:RNA and RNA:RNA but not in DNA:DNA duplexes. 0 -353340 cl12018 Peptidase_M48 Peptidase family M48. heat shock protein HtpX; Provisional 0 -353341 cl12020 Anticodon_Ia_like Anticodon-binding domain of class Ia aminoacyl tRNA synthetases and similar domains. This domain is found mainly hydrophobic tRNA synthetases. The domain binds to the anticodon of the tRNA. 0 -353342 cl12022 Ribosomal_L27A Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -325166 cl12033 Spt4 Transcription elongation factor Spt4. This family consists of several eukaryotic transcription elongation Spt4 proteins as well as archaebacterial RpoE2. Three transcription-elongation factors Spt4, Spt5, and Spt6 are conserved among eukaryotes and are essential for transcription via the modulation of chromatin structure. Spt4 and Spt5 are tightly associated in a complex, while the physical association of the Spt4-Spt5 complex with Spt6 is considerably weaker. It has been demonstrated that Spt4, Spt5, and Spt6 play roles in transcription elongation in both yeast and humans including a role in activation by Tat. It is known that Spt4, Spt5, and Spt6 are general transcription-elongation factors, controlling transcription both positively and negatively in important regulatory and developmental roles. RpoE2 is one of 13 subunits in the archaeal RNA polymerase. These proteins contain a C4-type zinc finger, and the structure has been solved in. The structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4, and the complex binds to and travels along the elongating RNA polymerase. The Spt4-Spt5 complex is likely to be an ancient, core component of the transcription elongation machinery. 0 -325168 cl12045 Ubiq_cyt_C_chap Ubiquinol-cytochrome C chaperone. 0 -325169 cl12046 DUF429 Protein of unknown function (DUF429). 0 -353345 cl12049 gp6_gp15_like Head-Tail Connector Proteins gp6 and gp15, and similar proteins. This family of proteins contain head-tail connector proteins related to gp6 from bacteriophage HK97. A structure of this protein shows similarity to gp15 a well characterized connector component of bacteriophage SPP1. 0 -353346 cl12050 TraB TraB family. traB is a plasmid encoded gene that functions in the shutdown of the peptide sex pheromone cPD1 which is produced by the plasmid free recipient cell prior to conjugative transfer in Enterococcus faecalis. Once the recipient acquires the plasmid, production of cPD1 is shut down. The gene product may play another role in the other species in the family. [Unknown function, General] 0 -353348 cl12054 Terminase_3 Phage terminase large subunit. This model detects members of a highly divergent family of the large subunit of phage terminase. All members are encoded by phage genomes or within prophage regions of bacterial genomes. This is a distinct family from pfam03354. [Mobile and extrachromosomal element functions, Prophage functions] 0 -353349 cl12057 YdfA_immunity SigmaW regulon antibacterial. hypothetical protein; Provisional 0 -325175 cl12064 DUF697 Domain of unknown function (DUF697). hypothetical protein; Provisional 0 -353352 cl12072 HypD Hydrogenase formation hypA family. HypD is involved in the hyp operon which is needed for the activity of the three hydrogenase isoenzymes in Escherichia coli. HypD is one of the genes needed for formation of these enzymes. This protein has been found in gram-negative and gram-positive bacteria and Archaea. [Protein fate, Protein modification and repair] 0 -325180 cl12074 YjgP_YjgQ Predicted permease YjgP/YjgQ family. Members of this family are LptG, one of homologous, two tandem-encoded permease genes of an export ATP transporter for lipopolysaccharide (LPS) assembly in most Gram-negative bacteria. The other permease subunit is LptF (TIGR04407). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, Transport and binding proteins, Other] 0 -353353 cl12076 THUMP THUMP domain, predicted to bind RNA. The THUMP domain is named after after thiouridine synthases, methylases and PSUSs. The THUMP domain consists of about 110 amino acid residues. The structure of ThiI reveals that the THUMP has a fold unlike that of previously characterized RNA-binding domains. It is predicted that this domain is an RNA-binding domain The THUMP domain probably functions by delivering a variety of RNA modification enzymes to their targets. 0 -353354 cl12077 Methyltrn_RNA_3 Putative RNA methyltransferase. This family has a TIM barrel-like fold with a deep C-terminal trefoil knot. The arrangement of its hydrophilic and hydrophobic surfaces are opposite to that of the classic TIM barrel proteins. It is likely to bind RNA, and may function as a methyltransferase. 0 -353355 cl12078 p450 Cytochrome P450. Members of this subfamily are cytochrome P450 enzymes that occur next to tRNA-dependent cyclodipeptide synthases. This group does NOT include CYP121 (Rv2275) from Mycobacterium tuberculosis, adjacent to the cyclodityrosine synthetase Rv2276. 0 -325184 cl12079 DUF373 Domain of unknown function (DUF373). Archaeal domain of unknown function. Predicted to be an integral membrane protein with six transmembrane regions. 0 -353356 cl12080 Pcc1 Transcription factor Pcc1. KEOPS complex Pcc1-like subunit; Provisional 0 -353357 cl12096 Iron_permease Low affinity iron permease. 0 -353358 cl12097 DUF1772 Domain of unknown function (DUF1772). This domain is of unknown function. 0 -353359 cl12098 DUF927 Domain of unknown function (DUF927). Family of bacterial proteins of unknown function. The C-terminal half of this family contains a P-loop motif. The N-terminal domain appears to have a unique fold, which contains three Helices and two strands. Structural analyses show that helicases containing this domain form a hexameric ring with a positively charged central pore threading a single DNA strand through suggestive of a replicative function for this helicase. 0 -353360 cl12101 CrtC CrtC N-terminal lipocalin domain. This family contains the members of the old Pfam family DUF2006. Structural characterization of family member NE1406 (from DUF2006 now merged into this family) has revealed a lipocalin-like fold with domain duplication. 0 -325190 cl12104 Dehydratase_LU N/A. This family contains the large subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances. 0 -353361 cl12113 HSF_DNA-bind HSF-type DNA-binding. 0 -325192 cl12114 HMG14_17 HMG14 and HMG17. 0 -325193 cl12115 HTH_Tnp_Tc5 Tc5 transposase DNA-binding domain. 0 -325194 cl12116 DUSP DUSP domain. The DUSP (domain present in ubiquitin-specific protease) domain is found at the N-terminus of Ubiquitin-specific proteases. The structure of this domain has been solved. Its tripod-like structure consists of a 3-fold alpha-helical bundle supporting a triple-stranded anti-parallel beta-sheet. 0 -353362 cl12117 JHBP Haemolymph juvenile hormone binding protein (JHBP). The juvenile hormone exerts pleiotropic functions during insect life cycles and its binding proteins regulate these functions. 0 -353363 cl12118 LEA_2 Late embryogenesis abundant protein. uncharacterized protein; Provisional 0 -325198 cl12124 HK97-gp10_like Bacteriophage HK97-gp10, putative tail-component. This model represents an uncharacterized, highly divergent bacteriophage family. The family includes gp10 from HK022 and HK97. It appears related to TIGR01635, a phage morphogenesis family believed to be involved in tail completion. [Mobile and extrachromosomal element functions, Prophage functions] 0 -353364 cl12127 Csy2_I-F CRISPR/Cas system-associated RAMP superfamily protein Csy2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2464 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy2, for CRISPR/Cas Subtype Ypest protein 2. 0 -353365 cl12129 DUF932 Domain of unknown function (DUF932). Members of this uncharacterized protein family are found in various Mycobacterium phage genomes, in Streptomyces coelicolor plasmid SCP1, and in bacterial genomes near various markers that suggest lateral gene transfer. The function is unknown. [Mobile and extrachromosomal element functions, Other] 0 -325201 cl12130 Bacteriocin_IId Bacteriocin class IId cyclical uberolysin-like. Circular bacteriocins are antibiotic proteins made by ribosomal translation of a precursor molecular, followed by cleavage and circularization. Members of this subclass of the circular bacteriocins include circularin A from Clostridium beijerinckii, bacteriocin AS-48 from Enterococcus faecalis, uberolysin from Streptococcus uberis, and carnocyclin A from Carnobacterium maltaromaticum. The mature circularized peptides average about 70 amino acids in size. [Cellular processes, Toxin production and resistance] 0 -353366 cl12133 CbiG_C Cobalamin synthesis G C-terminus. cobalamin biosynthesis protein CbiG; Provisional 0 -353367 cl12138 ThylakoidFormat Thylakoid formation protein. Thf1-like protein; Reviewed 0 -325204 cl12141 Tweety_N N-terminal domain of the protein encoded by the Drosophila tweety gene and related proteins, a family of chloride ion channels. The tweety (tty) gene has not been characterized at the protein level. However, it is thought to form a membrane protein with five potential membrane-spanning regions. A number of potential functions have been suggested in. 0 -353372 cl12219 PRK15003 N/A. cytochrome bd-II oxidase subunit 2; Provisional 0 -353373 cl12235 Phage_int_SAM_1 Phage integrase, N-terminal SAM-like domain. flagella biosynthesis protein FliZ; Provisional 0 -353374 cl12236 VirB7 Outer membrane lipoprotein virB7. type IV secretion system lipoprotein VirB7; Provisional 0 -353376 cl12263 CytoC_RC Cytochrome C subunit of the bacterial photosynthetic reaction center. Photosynthesis in purple bacteria is dependent on light-induced electron transfer in the reaction centre (RC), coupled to the uptake of protons from the cytoplasm. The RC contains a cytochrome molecule which re-reduces the oxidized electron donor. 0 -353378 cl12283 IPK Inositol polyphosphate kinase. inositol polyphosphate multikinase 0 -353385 cl12345 DUF1425 Putative periplasmic lipoprotein. This family consists of several hypothetical bacterial proteins of around 125 residues in length. Several members of this family are described as putative lipoproteins and are often known as YcfL. The function of this family is unknown. 0 -353387 cl12363 PrgH Type III secretion system protein PrgH-EprH (PrgH). type III secretion system needle complex protein PrgH; Provisional 0 -353391 cl12377 Brr6_like_C_C Di-sulfide bridge nucleocytoplasmic transport domain. Brr6_like_C_C is the highly conserved C-terminal region of a group of proteins found in fungi. It carries four highly conserved cysteine residues. It is suggested that members of the family interact with each other via di-sulfide bridges to form a complex which is involved in nucleocytoplasmic transport. 0 -353413 cl12560 DUF2806 Protein of unknown function (DUF2806). Members of this protein family are conserved hypothetical proteins with a limited species distribution within the Gammaproteobacteria. It is common in the genera Vibrio and Shewanella, and in this resembles the C-terminal domain and putative protein sorting motif TIGR03501. This model, but design, does not extend to all homologs,but rather represents a particular clade. 0 -325416 cl12633 DUF2859 Protein of unknown function (DUF2859). This model describes a protein family exemplified by PFL_4695 of Pseudomonas fluorescens Pf-5. Full-length proteins in this family show some architectural variety, but this model represents a conserved domain. Most or all member proteins belong to laterally transferred chromosomal islands called integrative conjugative elements, or ICE. 0 -325500 cl12752 EccE Putative type VII ESX secretion system translocon, EccE. This model represents the transmembrane protein EccB of the actinobacterial flavor of type VII secretion systems. Species such as Mycobacterium tuberculosis have several instances of this system per genome, designated EccE1, EccE2, etc. This model represents a conserved core region, and many members have 200 or more additional C-terminal residues. [Protein fate, Protein and peptide secretion and trafficking] 0 -325507 cl12761 Chs5_N N-terminal dimerization domain of Chs5 and similar proteins. This domain is found at the N-terminus of fungal chitin biosynthesis protein CHS5. It functions as a dimerization domain. 0 -325560 cl12832 DUF3090 Protein of unknown function (DUF3090). The conserved hypothetical protein described here occurs as part of the trio of uncharacterized proteins common in the Actinobacteria. 0 -325614 cl12902 DUF3168 Protein of unknown function (DUF3168). This family of proteins has no known function but is likely to be a component of bacteriophage. 0 -325632 cl12928 IcmL inner membrane protein IcmL/DotI. IcmL contains two amphipathic beta-sheet regions, required for the pore-forming ability which may be related to the transfer of this protein into a host cell membrane. The icmL gene shows significant similarity to plasmid genes involved in conjugation however IcmL is thought to be required for macrophage killing. It is unknown whether conjugation plays a role in macrophage killing. This is a family of DotI/IcmL proteins of type IVb secretion systems, that reside in the inner-membrane. It carries a single transmembrane helix in the N-terminal conserved region, has an extra-periplasmic domain, and is conserved in all T4BSSs including I-type conjugation systems (TraM). DotI/IcmL (and DotJ) may form an inner membrane complex that associates with the core complex. 0 -325651 cl12968 DUF2895 Protein of unknown function (DUF2895). Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. The function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -325694 cl13040 SeleniumBinding Selenium binding protein. This model describes a homopentameric selenium-binding protein with a suggested role in selenium transport and delivery to selenophosphate synthase, the SelD protein. This protein family is closely related to pfam01906, but is shorter because of several deleted regions. It is restricted to the archaeal genus Methanococcus. 0 -300590 cl13107 TSPcc Coiled coil region of thrombospondin. This family contains the N-terminal coiled coil region of thrombospondin (TSP) in some protostomes, which suggest ancient functions that include bridging activities in cell-cell and cell-ECM interactions. It appears that most protostomes and inferred basal metazoa encode a single TSP with the general domain organization of subgroup B TSPs and with a pentamerizing coiled coil. This region has heparin-binding activity and is a component of extracellular matrix (ECM), showing that the pentameric TSPs are of earlier origin and that the trimeric TSP subfamily A form is associated with higher chordates. The left-handed coiled coil pentamer forms a channel that is a unique carrier for lipophilic compounds, and is stabilized by inter-subunit disulfide bonds formed between cysteine residues adjacent to the C-terminal end of the coiled coil region. Several heparan sulphate (HS) proteoglycans are known in D. melanogaster, including both transmembrane and matrix forms, which could contribute to its retention in pericellular matrix. 0 -353544 cl13117 DUF4352 Domain of unknown function (DUF4352). Members of these family are putative lipoproteins that fall into the Antigen MPT63/MPB63 (immunoprotective extracellular protein) superfamily. 0 -353548 cl13131 rap1_RCT C-terminal domain of RAP1 recruits proteins to telomeres. This family of proteins represents the C-terminal domain of the protein Rap-1, which plays a distinct role in silencing at the silent mating-type loci and telomeres. The Rap-1 C-terminus adopts an all-helical fold. Rap1 carries out its function by recruiting the Sir3 and Sir4 proteins to chromatin via its C terminal domain. Rap1 is otherwise known as TRF2-interacting protein, as it is one of the six subunit components of the Shelterin complex. Shelterin protects telomere ends from attack by DNA-repair mechanisms. Model doesn't capture Sch. pombe as it cuts this sequence into two. 0 -353550 cl13152 RLR_C_like C-terminal domain of Retinoic acid-inducible gene (RIG)-I-like Receptors, Cereblon (CRBN), and similar protein domains. This family of proteins represents the regulatory domain RD of RIG-I, a protein which initiates a signalling cascade that provides essential antiviral protection for the host. The RD domain binds viral RNA, activating the RIG-I ATPase by RNA-dependant dimerization. The structure of RD contains a zinc-binding domain and is thought to confer ligand specificity. 0 -353562 cl13209 CPSF73-100_C Pre-mRNA 3'-end-processing endonuclease polyadenylation factor C-term. The exact function of this domain is not known. 0 -325809 cl13247 Candida_ALS_N Cell-wall agglutinin N-terminal ligand-sugar binding. This is likely to be the sugar or ligand binding domain of the yeast alpha-agglutinins. 0 -325929 cl13432 DUF3487 Protein of unknown function (DUF3487). Members of this protein family are found occasionally on plasmids. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -353642 cl13446 Telomerase_RBD Telomerase ribonucleoprotein complex - RNA binding domain. Telomeres in most organisms are comprised of tandem simple sequence repeats. The total length of telomeric repeat sequence at each chromosome end is determined in a balance of sequence loss and sequence addition. One major influence on telomere length is the enzyme telomerase. It is a reverse transcriptase that adds these simple sequence repeats to chromosome ends by copying a template sequence within the RNA component of the enzyme. The RNA binding domain of telomerase - TRBD - is made up of twelve alpha helices and two short beta sheets. How telomerase and associated regulatory factors physically interact and function with each other to maintain appropriate telomere length is poorly understood. It is known however that TRBD is involved in formation of the holoenzyme (which performs the telomere extension) in addition to recognition and binding of RNA. 0 -353647 cl13463 FAT-like_CAS_C C-terminal FAT-like Four helix bundle domain, also called DUF3513, of CAS (Crk-Associated Substrate) scaffolding proteins; a protein interaction module. This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 192 to 218 amino acids in length. This domain is found associated with pfam00018, pfam08824. This domain has a conserved QPP sequence motif. 0 -353714 cl13718 TryThrA_C Tryptophan-Threonine-rich plasmodium antigen C terminal. tryptophan/threonine-rich antigen superfamily; Provisional 0 -353724 cl13749 eIF3G eIF3G domain found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins. This domain family is found in eukaryotes, and is approximately 130 amino acids in length. The family is found in association with pfam00076. This family is subunit G of the eukaryotic translation initiation factor 3. Subunit G is required for eIF3 integrity. 0 -353729 cl13764 ASH Abnormal spindle-like microcephaly-assoc'd, ASPM-SPD-2-Hydin. TMEM131_like is a family of bacterial, plant and other metazoa transmembrane proteins. Many of the members are multi-pass transmembrane proteins. 0 -353795 cl13983 DUF3774 Wound-induced protein. hypothetical protein; Provisional 0 -276033 cl13994 DUF326 Cysteine-rich 4 helical bundle widely conserved in bacteria. Members of this family average about 150 amino acids in length, beginning with a twin-arginine translocation signal sequence, then a His-rich spacer region, followed by a ~105-residue region in which thirteen positions are nearly invariant Cys residues. CDD (Conserved Domain Database) assigns members of this family to clan cl13994, the DUF326 superfamily, based on homology to PA2107 from Pseudomonas aeruginosa. PA2107 is a cysteine-rich four helical bundle protein, with solved structure PDB:3KAW. 0 -353799 cl13995 MPP_superfamily metallophosphatase superfamily, metallophosphatase domain. This family of putative phosphoesterases contains the B. subtilis protein YmdB. 0 -353800 cl13996 MPN Mpr1p, Pad1p N-terminal (MPN) domains. A family of proteins present widely across the bacteria. This family was named initially with reference to the E. coli radC102 mutation which suggested that RadC was involved in repair of DNA lesions. However the relevant mutation has subsequently been shown to be in recG, where radC is in fact an allele of recG. In addition, a personal communication from Claverys, J-P, et al, indicates a total failure of all attempts to characterize a radiation-related function for RadC in Streptococcus pneumoniae, suggesting that it is not involved in repair of DNA lesions, in recombination during transformation, in gene conversion, nor in mismatch repair. Computational analysis, however, provides a possible function. The RadC-like family belong to the JAB superfamily of metalloproteins. The domain shows fusions to an N-terminal Helix-hairpin-Helix (HhH) domain in most instances. Other domain combinations include fusions to the anti-restriction module ArdC, the DinG/RAD3-like superfamily II helicases and the DNAG-like primase. In some bacteria, closely related DinG/Rad3- like superfamily II helicases are fused to a 3'-5' exonuclease in the same position as the RadC-like JAB domain. These conserved domain associations lead to the hypothesis that the RadC-like JAB domains might function as a nuclease. 0 -353801 cl13999 rhv_like N/A. CAUTION: This alignment is very weak. It can not be generated by clustalw. If a representative set is used for a seed, many so-called members are not recognized. The family should probably be split up into sub-families. Capsid proteins of picornaviruses. Picornaviruses are non-enveloped plus-strand ssRNA animal viruses with icosahedral capsids. They include rhinovirus (common cold) and poliovirus. Common structure is an 8-stranded beta sandwich. Variations (one or two extra strands) occur. 0 -353802 cl14014 Sec-ASP3 Accessory Sec secretory system ASP3. This protein is designated Asp3 because, along with SecY2, SecA2, and other proteins it is part of the accessory Sec system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -353803 cl14015 Asp2 Accessory Sec system GspB-transporter. This protein is designated Asp2 because, along with SecY2, SecA2, and other proteins it is part of the accessory secretory protein system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -326315 cl14019 Prok-E2_D Prokaryotic E2 family D. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. This protein family is designated protein B. 0 -326316 cl14020 Prok_Ub Prokaryotic Ubiquitin. A novel genetic system characterized by six major proteins, included a ParB homolog and a ThiF homolog, is designated PRTRC, or ParB-Related,ThiF-Related Cassette. It is often found on plasmids. This protein family is designated PRTRC system protein C. 0 -326317 cl14023 DUF4400 Domain of unknown function (DUF4400). Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -353804 cl14026 BCD Beta-carotene 15,15'-dioxygenase. This integral membrane protein family includes Brp (bacterio-opsin related protein) and Blh (Brp-like protein). Bacteriorhodopsin is a light-driven proton pump with a covalently bound retinal cofactor that appears to be derived beta-carotene. Blh has been shown to cleave beta-carotene to product two all-trans retinal molecules. Mammalian enzymes with similar enzymatic function are not multiple membrane spanning proteins and are not homologous. 0 -353805 cl14057 BPL_LplA_LipB biotin-lipoate ligase family. Lipoate-protein ligase B is a octanoyl-[acyl carrier protein]-protein acyltransferase the catalyzes the first step of lipoic acid synthesis. It transfers endogenous octanoic acid attached via a thioester bond to acyl carrier protein (ACP) onto lipoyl domains, which is later converted by lipoate synthase LipA into lipoylated derivatives. 0 -353806 cl14058 lectin_L-type legume lectins. Lectins are structurally diverse proteins that bind to specific carbohydrates. This family includes the VIP36 and ERGIC-53 lectins. These two proteins were the first recognized members of a family of animal lectins similar (19-24%) to the leguminous plant lectins. The alignment for this family aligns residues lying towards the N-terminus, where the similarity of VIP36 and ERGIC-53 is greatest. However, while Fiedler and Simons identified these proteins as a new family of animal lectins, our alignment also includes yeast sequences. ERGIC-53 is a 53kD protein, localized to the intermediate region between the endoplasmic reticulum and the Golgi apparatus (ER-Golgi-Intermediate Compartment, ERGIC). It was identified as a calcium-dependent, mannose-specific lectin. Its dysfunction has been associated with combined factors V and VIII deficiency OMIM:227300 OMIM:601567, suggesting an important and substrate-specific role for ERGIC-53 in the glycoprotein- secreting pathway. 0 -353807 cl14106 RIFIN Rifin. This model represents the rifin branch of the rifin/stevor family (pfam02009) of predicted variant surface antigens as found in Plasmodium falciparum. This model is based on a set of rifin sequences kindly provided by Matt Berriman from the Sanger Center. This is a global model and assesses a penalty for incomplete sequence. Additional fragmentary sequences may be found with the fragment model and a cutoff of 20 bits. 0 -246618 cl14192 Phage_T7_Capsid Phage T7 capsid assembly protein. capsid assembly protein 0 -353808 cl14340 B277 Family of unknown function. hypothetical protein 0 -326322 cl14348 T4-gp15_tss T4-like virus Myoviridae tail sheath stabilizer. tail sheath stabilizer and completion protein; Provisional 0 -353809 cl14364 Gp67 Gene product 67. prohead core protein; Provisional 0 -353810 cl14502 E7R Viral Protein E7. putative myristoylated protein; Provisional 0 -353811 cl14561 An_peroxidase_like Animal heme peroxidases and related proteins. Peroxidasin is a secreted heme peroxidase which is involved in hydrogen peroxide metabolism and peroxidative reactions in the cardiovascular system. The domain co-occurs with extracellular matrix domains and may play a role in the formation of the extracellular matrix. 0 -326324 cl14571 Tocopherol_cycl Tocopherol cyclase. tocopherol cyclase 0 -301315 cl14578 GrlR T3SS negative regulator,GrlR. negative regulator GrlR; Provisional 0 -353812 cl14603 C2 C2 domain. The Dock180/Dock1 and Zizimin proteins are atypical GTP/GDP exchange factors for the small GTPases Rac and Cdc42 and are implicated cell-migration and phagocytosis. Across all Dock180 proteins, two regions are conserved: C-terminus termed CZH2 or DHR2 (or the Dedicator of cytokinesis) whereas CZH1/DHR1 contain a new family of the C2 domain. 0 -353813 cl14605 DUF619-like DUF619 domain of various N-acetylglutamate Kinases and N-acetylglutamate Synthases. This is the C-terminal NAT or N-acetyltransferase domain of bifunctional N-acetylglutamate synthase/kinases. It catalyzes the first two steps in arginine biosynthesis. This domain contains the putative NAGS - N-acetylglutamate synthase - active site. It is found at the C-terminus of Neurospora crassa acetylglutamate synthase - amino-acid acetyltransferase, EC: 2.3.1.1. It is also found C-terminal to the amino acid kinase region (pfam00696) in some fungal acetylglutamate kinase enzymes. it stabilizes the yeast NAGK, N-acetyl-L-glutamate kinase, slows catalysis and modulates feed-back inhibition by arginine. This domain is found to be the N-acetyltransferase (NAT) domain, and it has a typical GCN5-related NAT fold and a site that catalyzes NAG synthesis which is located >25 Angstrom away from the L-arginine binding site in the N-temrinal domain pfam00696. 0 -326327 cl14606 Reeler_cohesin_like Domains similar to the eukaryotic reeler domain and bacterial cohesins. Domain found in bacteria with undetermined function. Its structure has been determined and is an immunoglobulin-like fold. 0 -326328 cl14607 OPT OPT oligopeptide transporter protein. This protein represents a small family of integral membrane proteins from Gram-negative bacteria, a Gram-positive bacteria, and an archaeal species. Members of this family contain 15 to 18 GES predicted transmembrane regions, and this family has extensive homology to a family of yeast tetrapeptide transporters, including isp4 (Schizosaccharomyces pombe) and Opt1 (Candida albicans). EspB, an apparent equivalog from Myxococcus xanthus, shares an operon with a two component system regulatory protein, and is required for the normal timing of sporulation after the aggregation of cells. This is consistent with a role in transporting oligopeptides as signals across the membrane. [Transport and binding proteins, Amino acids, peptides and amines] 0 -326329 cl14608 P53 P53 DNA-binding domain. This family contains one anomalous member, viz: Zea mays (Q6JAD8). This sequence is identical to human P53 and would appear to be a a human contaminant within the Zea mays sampling effort. 0 -353814 cl14615 PI-PLCc_GDPD_SF Catalytic domain of phosphoinositide-specific phospholipase C-like phosphodiesterases superfamily. This associates with pfam00387 to form a single structural unit. 0 -353815 cl14631 Cdt1_c The C-terminal fold of replication licensing factor Cdt1 is essential for Cdt1 activity and directly interacts with MCM2-7 helicase. This is the C-terminal domain of DNA replication factor Cdt1. This domain binds the MCM complex. 0 -353816 cl14632 VOC vicinal oxygen chelate (VOC) family. This domain is related to the Glyoxalase domain pfam00903. 0 -353817 cl14633 DD Death Domain Superfamily of protein-protein interaction domains. In the probable ATP-dependent RNA helicase DDX58 this CARD domain is found near the N-terminus and interacts with the C-terminal domain. 0 -353818 cl14643 SRPBCC START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily. This eukaryotic family of proteins has no known function but appears to be part of the START superfamily. 0 -353819 cl14647 GH43_62_32_68_117_130 Glycosyl hydrolase families: GH43, GH62, GH32, GH68, GH117, CH130. This glycosyl hydrolase family 43 (GH43) subgroup includes Phanerochaete chrysosporium BKM-F-1767 Xyl, a characterized bifunctional enzyme with beta-1,4-xylosidase (beta-D-xylosidase;xylan 1,4-beta-xylosidase; EC 3.2.1.37)/ alpha-L-arabinofuranosidase (EC 3.2.1.55) activities. This subgroup belongs to the GH43_XybB subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. The GH43_XybB subgroup includes enzymes having beta-1,4-xylosidase and alpha-L-arabinofuranosidase activities. Beta-1,4-xylosidases are part of an array of hemicellulases that are involved in the final breakdown of plant cell-wall whereby they degrade xylan. They hydrolyze beta-1,4 glycosidic bonds between two xylose units in short xylooligosaccharides. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43_XybB subgroup includes Bacteroides ovatus alpha-L-arabinofuranosidases, BoGH43A and BoGH43B, both having a two-domain architecture, consisting of an N-terminal 5-bladed beta-propeller domain harboring the catalytic active site, and a C-terminal beta-sandwich domain. However, despite significant functional overlap between these two enzymes, BoGH43A and BoGH43B share just 41% sequence identity. The latter appears to be significantly less active on the same substrates, suggesting that these paralogs may play subtly different roles during the degradation of xyloglucans from different sources, or may function most optimally at different stages in the catabolism of xyloglucan oligosaccharides (XyGOs), for example before or after hydrolysis of certain side-chain moieties. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 0 -353820 cl14648 Aldose_epim aldose 1-epimerase superfamily. Members of this protein family act as galactose mutarotase (D-galactose 1-epimerase) and participate in the Leloir pathway for galactose/glucose interconversion. All members of the seed alignment for this model are found in gene clusters with other enzymes of the Leloir pathway. This enzyme family belongs to the aldose 1-epimerase family, described by pfam01263. However, the enzyme described as aldose 1-epimerase itself (EC 5.1.3.3) is called broadly specific for D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose. The restricted genome context for genes in this family suggests members should act primarily on D-galactose. 0 -353821 cl14649 BRO1_Alix_like Protein-interacting Bro1-like domain of mammalian Alix and related domains. This domain is found in a number proteins including Rhophilin and BRO1. It is known to have a role in endosomal targeting. ESCRT-III subunit Snf7 binds to a conserved hydrophobic patch in the BRO1 domain that is required for protein complex formation and for the protein-sorting function of BRO1. 0 -353822 cl14651 RNA_pol_Rpb6 RNA polymerase Rpb6. DNA-directed RNA polymerase subunit omega; Reviewed 0 -353823 cl14653 KdgT 2-keto-3-deoxygluconate permease. This family includes the characterized 2-Keto-3-Deoxygluconate transporters from Bacillus subtilis and Erwinia chrysanthemi. There are homologs of this protein found in both gram-positive and gram-negative bacteria. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -353824 cl14654 V_Alix_like Protein-interacting V-domain of mammalian Alix and related domains. This domain family is comprised of uncharacterized plant proteins. It belongs to the V_Alix_like superfamily which includes the V-shaped (V) domains of Bro1 and Rim20 (also known as PalA) from Saccharomyces cerevisiae, mammalian Alix (apoptosis-linked gene-2 interacting protein X), (His-Domain) type N23 protein tyrosine phosphatase (HD-PTP, also known as PTPN23), and related domains. Alix, also known as apoptosis-linked gene-2 interacting protein 1 (AIP1), participates in membrane remodeling processes during the budding of enveloped viruses, vesicle budding inside late endosomal multivesicular bodies (MVBs), and the abscission reactions of mammalian cell division. It also functions in apoptosis. HD-PTP functions in cell migration and endosomal trafficking, Bro1 in endosomal trafficking, and Rim20 in the response to the external pH via the Rim101 pathway. Alix, HD-PTP, Bro1, and Rim20 all interact with the ESCRT (Endosomal Sorting Complexes Required for Transport) system. The mammalian Alix V-domain (belonging to a different family) contains a binding site, partially conserved in the superfamily, for the retroviral late assembly (L) domain YPXnL motif. The Alix V-domain is also a dimerization domain. In addition to this V-domain, members of the V_Alix_Rim20_Bro1_like superfamily also have an N-terminal Bro1-like domain, which binds components of the ESCRT-III complex. The Bro1-like domains of Alix and HD-PTP can also bind to human immunodeficiency virus type 1 (HIV-1) nucleocapsid. Many members of the V_Alix_like superfamily also have a proline-rich region (PRR). 0 -187418 cl14664 PRK15266 N/A. subtilase cytotoxin subunit B-like protein; Provisional 0 -353825 cl14670 CP12 CP12 domain. CP12 gene family protein; Provisional 0 -353826 cl14673 DUF1266 Protein of unknown function (DUF1266). hypothetical protein; Provisional 0 -353827 cl14674 DctA-YdbH Dicarboxylate transport. hypothetical protein; Provisional 0 -326346 cl14675 PorP_SprF Type IX secretion system membrane protein PorP/SprF. This model describes a protein family unique to, and greatly expanded in, the Bacteriodetes. Species in this lineage include several, such as Cytophaga hutchinsonii and Flavobacterium johnsoniae, that have type IX secretion systems (T9SS) and exhibit a poorly understood rapid gliding phenotype. Several members of this protein family are found in operons with other genes whose loss leads to a loss a this motility. 0 -353828 cl14676 PgaD PgaD-like protein. Members of this protein family are PgaD, essential to the production of poly-beta-1,6-N-acetyl-D-glucosamine (PGA). This cytoplasmic membrane protein appears to be an auxiliary subunit to the PGA synthase, PgaC (TIGR03937). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -353829 cl14695 C166 Family of unknown function. hypothetical protein; Provisional 0 -301338 cl14701 SopD Salmonella outer protein D. pathogenicity island 1 protein SopD2; Provisional 0 -353831 cl14716 UL16 Viral unique long protein 16. tegument protein UL16; Provisional 0 -353832 cl14728 DUF4922 Domain of unknown function (DUF4922). GDP-L-galactose-hexose-1-phosphate guanyltransferase; Provisional 0 -326350 cl14758 T3SS_basalb_I Type III secretion basal body protein I, YscI, HrpB, PscI. type III secretion system needle complex protein PrgJ; Provisional 0 -301342 cl14772 PDU_like Putative propanediol utilisation. Members of this family are PduM, a protein essential for forming functional microcompartments in which a trimeric B12-dependent enzyme acts as a dehydratase for 1,2-propanediol (Salmonella enterica) or glycerol (Lactobacillus reuteri). 0 -353834 cl14778 DnaJ-X X-domain of DnaJ-containing. RESA-like protein; Provisional 0 -353835 cl14782 RNase_H_like Ribonuclease H-like superfamily, including RNase H, HI, HII, HIII, and RNase-like domain IV of spliceosomal protein Prp8. This domain is found in plants and appears to be part of a retrotransposon. 0 -353836 cl14783 DOMON_like Domon-like ligand-binding domains. CBM9_2 is a family of putative endoxylanase-like proteins that belong to the Carbohydrate-binding family 9. 0 -353837 cl14785 FMT_C_like Carboxy-terminal domain of Formyltransferase and similar domains. Methylpurine-DNA glycosylase is a base excision-repair protein. It is responsible for the hydrolysis of the deoxyribose N-glycosidic bond, excising 3-methyladenine and 3-methylguanine from damaged DNA. 0 -276063 cl14805 Csx14_I-U CRISPR/Cas system-associated protein Csx14. This model describes a CRISPR-associated (cas) protein unique to the Dpsyc subtype (named for Desulfotalea psychrophila), a variant type I-C subtype, although not universal to the that subtype. Members of this family occur in CRISPR loci of Geobacter sulfurreducens PCA, Gemmata obscuriglobus UQM 2246, Rhodospirillum centenum SW, Planctomyces limnophilus DSM 3776, and Methylosinus trichosporium OB3b. 0 -353838 cl14807 ACE1-Sec16-like Ancestral coatomer element 1 (ACE1) of COPII coat complex assembly protein Sec16. Sec16 is a multi-domain vesicle coat protein. The C-terminal region is the part that binds to Sec23, a COPII vesicle coat protein. This association is part of the transport vesicle coat structure. 0 -353839 cl14813 GluZincin Gluzincin Peptidase family (thermolysin-like proteinases, TLPs) which includes peptidases M1, M2, M3, M4, M13, M32 and M36 (fungalysins). This family includes TATA binding protein (TBP) associated factor 2 (TAF2, TBP-associated factor TAFII150, transcription initiation factor TFIID subunit 2, RNA polymerase II TBP-associated factor subunit B), and has homology to the M1 gluzincin family. TAF2 is part of the TFIID multidomain subunit complex essential for transcription of most protein-encoded genes by RNA polymerase II. TAF2 is known to interact with the initiator element (Inr) found at the transcription start site of many genes, thus possibly playing a key role in promoter binding as well as start-site selection. Image analysis has shown TAF2 to form a complex with TAF1 and TBP, inferring its role in promoter recognition. Peptidases in the M1 family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile on activation during catalysis. TAF2, however, lacks these active site residues. 0 -353840 cl14817 DUF1858 Domain of unknown function (DUF1858). Members of this protein family resemble the domain of unknown function DUF1858 described by pfam08984, but all members contain an apparent redox-active disulfide. In at least one member protein, a cysteine in the CXXC motif is substituted by a selenocysteine. Most member proteins consist of this domain only, but a few members are fused to or adjacent to members of the hybrid-cluster (prismane) family or the nitrite/sulfite reductase family. [Energy metabolism, Electron transport] 0 -326359 cl14828 Lant_dehydr_C Lantibiotic biosynthesis dehydratase C-term. This domain occurs within longer proteins that contain lantibiotic dehydratase domains (see pfam04737 and pfam04738), and as single-domain proteins in bacteriocin biosynthesis genomic contexts. Three named genes in this family, SioK in Streptomyces sioyaensis, TsrD in Streptomyces laurentii, and NosD in Streptomyces actuosus, all occur in regions associated with thiopeptide biosynthesis. [Cellular processes, Toxin production and resistance] 0 -301355 cl14830 Mersacidin Two-component Enterococcus faecalis cytolysin (EFC). This model recognizes a number of type 2 lantibiotic-type bacteriocins, related to but distinct from the family that includes lichenicidin and mersacidin. Sequence similarity among members consists largely of a 20-residue block of conserved sequence that covers most of the leader peptide region, absent from the mature lantibiotic. This is followed by a region with characteristic composition for lantibiotic precursor regions, rich in Ser and Thr and including a near-invariant Cys near or at the C-terminus, involved in cyclization. Members of this family typically are shorter than 70 amino acids. [Cellular processes, Toxin production and resistance] 0 -353841 cl14834 TSCPD TSCPD domain. This model describes a family of conserved hypothetical proteins of small size, typically ~85 residues, with four invariant Cys residues. This small protein is distantly homologous to a C-terminal domain found in proteins identified by N-terminal homology as ribonucleotide reductases. The rare and sporadic distribution of this protein family falls mostly within the subset of bacterial genomes containing the uncharacterized radical SAM protein modeled by TIGR03904. [Unknown function, General] 0 -353842 cl14836 DUF4130 Domain of unknown function (DUF4130. This model represents a conserved hypothetical protein that almost invariably pairs with an uncharacterized radical SAM protein. The pair occurs in about twenty percent of completed prokaryotic genomes. About forty percent of the members of this family occur as fusion proteins, where the C-terminal domain belongs to the uracil-DNA glycosylase family, a DNA repair family (because uracil in DNA is deamidated cytosine). The linkage by gene clustering and correlated species distribution to a radical SAM protein, and by gene fusion to a DNA repair protein family, suggests a role in DNA modification and/or repair. 0 -353843 cl14844 DUF3817 Domain of unknown function (DUF3817). This model describes a strictly bacterial integral membrane domain of about 85 residues in length. It occurs in proteins that on rare occasions are fused to transporter domains such as the major facilitator superfamily domain. Of three invariant residues, two occur as a His-Gly dipeptide in the middle of three predicted transmembrane helices. [Unknown function, General] 0 -353844 cl14852 WYL WYL domain. Members of this protein family belong to CRISPR-associated (Cas) gene clusters. The majority of members are Cyanobacterial. 0 -326364 cl14855 Caps_synth_CapC Capsule biosynthesis CapC. Of four genes commonly found to be involved in biosynthesis and export of poly-gamma-glutamate, pgsB(capB) and pgsC(capC) are found to be involved in the synthesis per se. Members of this family are designated PgsC, covering both cases in which the poly-gamma-glutamate is secreted and those in which it is retained to form capsular material. PgsC binds tightly to PgsB, which has been shown to have poly-gamma-glutamate activity. [Cell envelope, Other] 0 -353845 cl14857 SdpA Sporulation delaying protein SdpA. Members of this protein family resemble SdpA (Sporulation Delaying Protein A), a protein associated with production and export of the cannibalism peptide SdpC in Bacillus subtilis. Similar proteins are found in Myxococcus xanthus, Stigmatella aurantiaca DW4/3-1, Streptomyces sp. ACTE, etc. 0 -276089 cl14861 AZL_007950_fam AZL_007950 family protein. The first characterized methanobactin is made from a ribosomal precursor in Methylosinus trichosporium OB3b. Two additional species with homologous precursor peptides (family TIGR04071) are Azospirillum sp. B510 and Gluconacetobacter sp. SXCC-1. This model describes a clique of related sequences, domain or full-length, that occurs always and only next to a methanobactin precursor of the Mb-OB3b type. The model excludes several Pseudomonas proteins whose function is unknown, which likewise are in model TIGR04061, but which diverge toward the C-terminus. 0 -353846 cl14869 SPASM Iron-sulfur cluster-binding domain. This domain contains regions binding additional 4Fe4S clusters found in various radical SAM proteins C-terminal to the domain described by model pfam04055. Radical SAM enzymes with this domain tend to be involved in protein modification, including anaerobic sulfatase maturation proteins, a quinohemoprotein amine dehydrogenase biogenesis protein, the Pep1357-cyclizing radical SAM enzyme, and various bacteriocin biosynthesis proteins. The motif CxxCxxxxxCxxxC is nearly invariant for members of this family, although PqqE has a variant form. We name this domain SPASM for Subtilosin, PQQ, Anaerobic Sulfatase, and Mycofactocin. 0 -276097 cl14874 Luminal_IRE1_like The Luminal domain, a dimerization domain, of Inositol-requiring protein 1-like proteins. The Luminal domain is a dimerization domain present in Inositol-requiring protein 1 (IRE1), a serine/threonine protein kinase (STK) and a type I transmembrane protein that is localized in the endoplasmic reticulum (ER). IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is a kinase receptor that also contains an endoribonuclease domain in the cytoplasmic side. It plays roles in the signaling of the unfolded protein response (UPR), which is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. IRE1 acts as an ER stress sensor and is the oldest and most conserved component of the UPR in eukaryotes. During ER stress, IRE1 dimerizes through its luminal domain and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and Xbp1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). IRE1alpha is expressed in all cells and tissues while IRE1beta is found only in intestinal epithelial cells. 0 -353847 cl14876 Zinc_peptidase_like Zinc peptidases M18, M20, M28, and M42. This family corresponds to the MEROPS MH clan families M18, M20, and M42. The peptidase M20 family contains exopeptidases, including carboxypeptidases such as the glutamate carboxypeptidase from Pseudomonas, the thermostable carboxypeptidase Ss1 of broad specificity from archaea and yeast Gly-X carboxypeptidase, dipeptidases such as bacterial dipeptidase, peptidase V (PepV), a eukaryotic, non-specific dipeptidase, and two Xaa-His dipeptidases (carnosinases). This family also includes the bacterial aminopeptidase peptidase T (PepT) that acts only on tripeptide substrates and has therefore been termed a tripeptidase. These peptidases generally hydrolyze the late products of protein degradation so as to complete the conversion of proteins to free amino acids. Glutamate carboxypeptidase hydrolyzes folate analogs such as methotrexate, and therefore can be used to treat methotrexate toxicity. Peptidase families M18 and M42 contain metallo-aminopeptidases. M18 (aspartyl aminopeptidase, DAP) family cleaves only unblocked N-terminal acidic amino-acid residues and is highly selective for hydrolyzing aspartate or glutamate residues. Some M42 (also known as glutamyl aminopeptidase) enzymes exhibit aminopeptidase specificity while others also have acylaminoacyl-peptidase activity (i.e. hydrolysis of acylated N-terminal residues). 0 -353848 cl14879 LabA_like_C C-terminal domain of LabA_like proteins. A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains. 0 -353849 cl14880 CBM6-CBM35-CBM36_like Carbohydrate Binding Module 6 (CBM6) and CBM35_like superfamily. This family contains insecticidal toxins produced by Bacillus species of bacteria. During spore formation the bacteria produce crystals of this protein. When an insect ingests these proteins they are activated by proteolytic cleavage. The N-terminus is cleaved in all of the proteins and a C terminal extension is cleaved in some members. Once activated the endotoxin binds to the gut epithelium and causes cell lysis leading to death. This activated region of the delta endotoxin is composed of three structural domains. The N-terminal helical domain is involved in membrane insertion and pore formation. The second and third domains are involved in receptor binding. 0 -353851 cl14897 HcyBio Homocysteine biosynthesis enzyme, sulfur-incorporation. This presumed domain is about is about 360 residues long. The function of this domain is unknown. It is found in some proteins that have two C-terminal CBS pfam00571 domains. There are also proteins that contain two inserted Fe4S domains near the C-terminal end of the domain. The Methanothermobacter thermautotrophicus gene MTH_855 product has been misannotated as an inosine monophosphate dehydrogenase based on the similarity to the CBS domains. Based on genetic analyses in the methanogen Methanosarcina acetivorans, this family is a key component of the metabolic network for sulfide assimilation and trafficking in methanogens. It is essential to a novel, O-acetylhomoserine sulfhydrylase-independent pathway for homocysteine biosynthesis, and may catalyze sulfur incorporation into the side chain of an as yet unidentified amino acid precursor. The DUF39-CBS and DUF39-ferredoxin architectures repeatedly occur together in the genomes of methanogenic Archaea, suggesting they may be of diverged function. This is consistent with a phylogenetic reconstruction of the DUF39 family, which clearly distinguishes the CBS-associated and ferredoxin-associated DUF39s. 0 -326371 cl14898 DUF1175 Protein of unknown function (DUF1175). This family consists of several hypothetical bacterial proteins of around 210 residues in length. The function of this family is unknown. 0 -353852 cl14901 DDE_Tnp_Tn3 Tn3 transposase DDE domain. This family includes transposases of Tn3, Tn21, Tn1721, Tn2501, Tn3926 transposons from E-coli. The specific binding of the Tn3 transposase to DNA has been demonstrated. Sequence analysis has suggested that the invariant triad of Asp689, Asp765, Glu895 (numbering as in Tn3) may correspond to the D-D-35-E motif previously implicated in the catalysis of numerous transposases. 0 -326373 cl14905 DUF1091 Protein of unknown function (DUF1091). This is a family of uncharacterized proteins. Based on its distant similarity to pfam02221 and conserved pattern of cysteine residues it is possible that these domains are also lipid binding. 0 -326374 cl14906 AKAP_110 A-kinase anchor protein 110 kDa (AKAP 110). This family consists of several mammalian protein kinase A anchoring protein 3 (PRKA3) or A-kinase anchor protein 110 kDa (AKAP 110) sequences. Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. PKA anchoring is a key biochemical mechanism controlling motility. AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. 0 -301371 cl14909 GspL_C GspL periplasmic domain. GspL-like protein; Provisional 0 -353861 cl15003 TcpC_C C-terminal domain of conjugative transposon protein TcpC. This family of proteins are annotated as conjugative transposon protein TcpC. The transfer clostridial plasmid (tcp) locus is part of some conjugative antibiotic resistance and virulence plasmids. TcpC was one of five genes whose products had low-level sequence identity to Tn916 proteins, having similarity to ORF13 homologs from Tn916, Tn5397, and CW459tet. This family of proteins is found in bacteria. Proteins in this family are typically between 302 and 351 amino acids in length. 0 -353887 cl15102 CLU-central An uncharacterized central domain of CLU mitochondrial proteins. Translation initiation factor eIF3 is a multi-subunit protein complex required for initiation of protein biosynthesis in eukaryotic cells. The complex promotes ribosome dissociation, the binding of the initiator methionyl-tRNA to the 40 S ribosomal subunit, and mRNA recruitment to the ribosome. The protein product from TIF31 genes in yeast is p135 which associates with the eIF3 but does not seem to be necessary for protein translation initiation. 0 -353906 cl15166 RRP7_like RRP7 domain ribosomal RNA-processing protein 7 (Rrp7p), ribosomal RNA-processing protein 7 homolog A (Rrp7A), and similar proteins. RRP7 is an essential protein in yeast that is involved in pre-rRNA processing and ribosome assembly. It is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. 0 -353922 cl15232 BACON Bacteroidetes-Associated Carbohydrate-binding (putative) Often N-terminal (BACON) domain. The BACON (Bacteroidetes-Associated Carbohydrate-binding Often N-terminal) domain is an all-beta domain found in diverse architectures, principally in combination with carbohydrate-active enzymes and proteases. These architectures suggest a carbohydrate-binding function which is also supported by the nature of BACON's few conserved amino-acids. The phyletic distribution of BACON and other data tentatively suggest that it may frequently function to bind mucin. Further work with the characterized structure of a member of glycoside hydrolase family 5 enzyme, Structure 3ZMR, has found no evidence for carbohydrate-binding for this domain. 0 -326545 cl15236 PliI_like Periplasmic lysozyme inhibitor, I-type (PliI) and similar proteins. Aeromonas hydrophila PliI is a dimeric periplasmic protein that enables bacteria to resist permeabilization of the outer membrane by the bactericidal action of lysozyme. PliI may be a direct inhibitor of lysozyme that inserts a conserved loop into the active site of type I (invertebrate) lysozymes. 0 -326546 cl15239 PLDc_SF Catalytic domain of phospholipase D superfamily proteins. TrmB is an alpha-glucoside sensing transcriptional regulator. The protein is the transcriptional repressor for gene cluster encoding trehalose/maltose ABC transporter in T.litoralis and P.furiosus. TrmB has lost its DNA binding domain but retained its sugar recognition site. A nonreducing glucosyl residue is shared by all substrates bound to TrmB which suggests that its a common recognition motif. 0 -197448 cl15240 Reelin_subrepeat_like Tandem repeat subunit of reelin and related proteins. Reelin is an extracellular glycoprotein involved in neuronal development, specifically in the brain cortex. It contains 8 tandemly repeated units, each of which is composed of two highly similar subrepeats and a central EGF domain. This model characterizes the C-terminal subrepeat, which directly contacts the N-terminal subrepeat and the EGF domain in a compact arrangement. Consecutive reelin repeat units are packed together to form an overall rod-like molecular structure. Reelin repeats 5 and 6 are reported to interact with neuronal receptors, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), triggering a signaling cascade upon binding and subsequent tyrosine phosphorylation of the cytoplasmic disabled-1 (Dab1). 0 -353925 cl15242 BfiI_C_EcoRII_N_B3 DNA binding domains of BfiI, EcoRII and plant B3 proteins. This is a family of plant transcription factors with various roles in development, the aligned region corresponds to the B3 DNA binding domain, this domain is found in VP1/AB13 transcription factors. Some proteins also have a second AP2 DNA binding domain pfam00847 such as RAV1. 0 -353926 cl15243 HemeO-like heme oxygenase. This subfamily contains bacterial heme oxygenase (HO, EC 1.14.14.18), where HO is part of a pathway for iron acquisition from host heme and heme products. Most of these proteins have yet to be characterized. HO catalyzes the rate limiting step in the degradation of heme to biliverdin in a multi-step reaction. HO is essential for recycling of iron from heme which is used as a substrate and cofactor for its own degradation to biliverdin, iron, and carbon monoxide. This family includes heme oxygenase (pa-HO) from Pseudomonas aeruginosa, an opportunistic pathogen that causes a variety of systemic infections, particularly in those afflicted with cystic fibrosis, as well as cancer and AIDS patients who are immunosuppressed. Pa-HO, expressed by the PigA gene, is critical for the acquisition of host iron since there is essentially no free iron in mammals, and is unusual since it hydroxylates heme predominantly at the delta-meso heme carbon, while all other well-studied HOs hydroxylate the alpha-meso carbon. Also included in this family is Neisseria meningitidis HO which is substantially different from the human HO, with the reaction product being ferric biliverdin IXalpha rather than reduced iron and free biliverdin IXalpha. HO shares tertiary structure similarity to methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1) and thiaminase II (EC 3.5.99.2), but shares little sequence homology. 0 -353927 cl15254 UBAN polyubiquitin binding domain of NEMO and related proteins. CC2-LZ is a leucine-zipper domain associated with the CC2 coiled-coil region of NF-kappa-B essential modulator, NEMO. It plays a regulatory role, along with the very C-terminal zinc-finger; it contains a ubiquitin-binding domain (UBD) and represents one region that contributes to NEMO oligomerization. NEMO itself is an integral part of the IkappaB kinase complex and serves as a molecular switch via which the NF-kappaB signalling pathway is regulated. 0 -353928 cl15255 SH2 Src homology 2 (SH2) domain. Cbl is an adaptor protein that binds EGF receptors (or other tyrosine kinases) and SH3 domains, functioning as a negative regulator of many signaling pathways. The N-terminal domain is evolutionarily conserved, and is known to bind to phosphorylated tyrosine residues. The so called N-terminal domain is actually 3 structural domains, of which this is the C-terminal SH2 domain. 0 -353929 cl15257 GIY-YIG_SF GIY-YIG nuclease domain superfamily. This is a family of fungal proteins found to be up-regulated in meiosis. 0 -326552 cl15262 PUB PNGase/UBA or UBX (PUB) domain of p97 adaptor proteins. The PUB (also known as PUG) domain is found in peptide N-glycanase where it functions as a AAA ATPase binding domain. This domain is also found on other proteins linked to the ubiquitin-proteasome system. 0 -353930 cl15265 YjbR YjbR. hypothetical protein; Provisional 0 -326554 cl15268 V4R V4R domain. This model represents the component of bacteriochlorophyll synthetase responsible for reduction of the B-ring pendant ethylene (4-vinyl) group. It appears that this step must precede the reduction of ring D, at least by the "dark" protochlorophyllide reductase enzymes BchN, BchB and BchL. This family appears to be present in photosynthetic bacteria except for the cyanobacterial clade. Cyanobacteria must use a non-orthologous gene to carry out this required step for the biosynthesis of both bacteriochlorophyll and chlorophyll. [Biosynthesis of cofactors, prosthetic groups, and carriers, Chlorophyll and bacteriochlorphyll] 0 -353931 cl15270 FinO_conjug_rep N/A. This family includes ProQ, which is required for full activation of the osmoprotectant transporter, ProP, in Escherichia coli. This family includes several bacterial fertility inhibition (FINO) proteins. The conjugative transfer of F-like plasmids is repressed by FinO, an RNA binding protein. FinO interacts with the F-plasmid encoded traJ mRNA and its antisense RNA, FinP, stabilizing FinP against endonucleolytic degradation and facilitating sense-antisense RNA recognition. ProQ operates as an RNA-chaperone, binding RNA and bringing about both RNA strand-exchange and RNA duplexing. This suggests that in fact it does not regulate ProP transcription but rather regulates ProP translation through activity as an RNA-binding protein. 0 -353932 cl15276 Phage_GPA Bacteriophage replication gene A protein (GPA). DNA replication initiation protein gpA 0 -326556 cl15278 TSP_1 Thrombospondin type 1 domain. Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. 0 -326557 cl15288 DUF2378 Protein of unknown function (DUF2378). This family consists of a set of at least 17 paralogous proteins in Myxococcus xanthus DK 1622. Members are about 200 amino acids in length. No other homologs are known; the function is unknown. 0 -301597 cl15289 DUF2380 Predicted lipoprotein of unknown function (DUF2380). This family consists of at least 9 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. One appears truncated toward the N-terminus; the others are predicted lipoproteins. The function is unknown. 0 -326558 cl15307 TPKR_C2 Tyrosine-protein kinase receptor C2 Ig-like domain. In the tyrosine-protein kinase receptor NTRK1 this domain interacts with beta-nerve growth factor NGF. 0 -326560 cl15347 CBM20 N/A. Novamyl (also known as acarviose transferase, ATase, maltogenic alpha-amylase, glucan 1,4-alpha-maltohydrolase, and AcbD), C-terminal CBM20 (carbohydrate-binding module, family 20) domain. Novamyl has a five-domain structure similar to that of cyclodextrin glucanotransferase (CGTase). Novamyl has a substrate-binding surface with an open groove which can accommodate both cyclodextrins and linear substrates. The CBM20 domain is found in a large number of starch degrading enzymes including alpha-amylase, beta-amylase, glucoamylase, and CGTase (cyclodextrin glucanotransferase). CBM20 is also present in proteins that have a regulatory role in starch metabolism in plants (e.g. alpha-amylase) or glycogen metabolism in mammals (e.g. laforin). CBM20 folds as an antiparallel beta-barrel structure with two starch binding sites. These two sites are thought to differ functionally with site 1 acting as the initial starch recognition site and site 2 involved in the specific recognition of appropriate regions of starch. 0 -353934 cl15354 CBS_pair_SF Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily. This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains of plant single cystathionine beta-synthase (CBS) pair proteins (CBSX). CBSX1 and CBSX2 have been identified as redox regulators of the thioredoxin (Trx) system. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). 0 -326562 cl15368 RNase_Ire1_like RNase domain (also known as the kinase extension nuclease domain) of Ire1 and RNase L. This domain is a endoribonuclease. Specifically it cleaves an intron from Hac1 mRNA in humans, which causes it to be much more efficiently translated. 0 -326563 cl15371 NIF3 NIF3 (NGG1p interacting factor 3). The characterization of this family of uncharacterized proteins as orthologous is tentative. Members are found in all three domains of life. Several members (from Bacillus subtilis, Listeria monocytogenes, and Mycobacterium tuberculosis - all classified as Firmicutes within the Eubacteria) share a long insert relative to other members. [Unknown function, General] 0 -353935 cl15373 PATR Passenger-associated-transport-repeat. This model represent a core 32-residue region of a class of bacterial protein repeat found in one to 30 copies per protein. Most proteins with a copy of this repeat have domains associated with membrane autotransporters (pfam03797, TIGR01414). The repeats occur with a periodicity of 60 to 100 residues. A pattern of sequence conservation is that every second residue is well-conserved across most of the domain. pfam05594 is based on a longer, much more poorly conserved multiple sequence alignment and hits some of the same proteins as this model with some overlap between the hit regions of the two models. It describes these repeats as likely to have a beta-helical structure. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -353936 cl15383 IDH Monomeric isocitrate dehydrogenase. The monomeric type of isocitrate dehydrogenase has been found so far in a small number of species, including Azotobacter vinelandii, Corynebacterium glutamicum, Rhodomicrobium vannielii, and Neisseria meningitidis. It is NADP-specific. [Energy metabolism, TCA cycle] 0 -326566 cl15384 DUF5131 Protein of unknown function (DUF5131). Members of this family are the upstream member (A) of a pair of tandem-encoded radical SAM enzymes. Most of these radical SAM gene pairs have an additional upstream regulatory gene in the MarR family. Examples of high sequence identity (over 96 percent) from cassettes in several Treponema species of the oral cavity to those in multiple Firmicutes in the gut microbiome suggest recent lateral gene transfer, as might be expected for antibiotic resistance genes. The function is unknown. 0 -326567 cl15385 MTTB Trimethylamine methyltransferase (MTTB). This model represents a distinct subfamily of pfam06253. All members here are trimethylamine:corrinoid methyltransferases that contain a critical pyrrolysine residue incorporated during translation via a special tRNA for a TAG (amber) codon. Known members so far are from the genus Methanosarcina. It is one of a suite of three non-homologous enzymes with a critical UAG-encoded pyrrolysine residue in these species (along with dimethylamine methyltransferase and monomethylamine methyltransferase). It demethylates trimethylamine, leaving dimethylamine, and methylates the prosthetic group of its small cognate corrinoid protein, MttC. The methyl group is then transferred by methylcorrinoid:coenzyme M methyltransferase to coenzyme M. Note that the pyrrolysine residue is variously translated as K or X, or as a stop codon that truncates the sequence. 0 -353937 cl15397 DUF89 Protein of unknown function DUF89. This family has no known function. 0 -301612 cl15401 12TM_1 Membrane protein of 12 TMs. This family carries twelve transmembrane regions. It does not have any characteristic nucleotide-binding-domains of the GxSGSGKST type. so it may not be an ATP-binding cassette transporter. However, it may well be a transporter of some description. ABC transporters always have two nucleotide binding domains; this has two unusual conserved sequence-motifs: 'KDhKxhhR' and 'LxxLP'. 0 -326569 cl15406 DUF2088 Domain of unknown function (DUF2088). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -353938 cl15407 DUF1614 Protein of unknown function (DUF1614). This is a family of sequences coming from hypothetical proteins found in both bacterial and archaeal species. 0 -353939 cl15411 SpecificRecomb Site-specific recombinase. Members of this family of bacterial proteins are found in various putative site-specific recombinase transmembrane proteins. 0 -353940 cl15413 AAA_assoc_C C-terminal AAA-associated domain. This had been thought to be an ATPase domain of ABC-transporter proteins. However, only one member has any trans-membrane regions. It is associated with an upstream ATP-binding cassette family, pfam00005. 0 -326573 cl15414 V-ATPase_C Subunit C of vacuolar H+-ATPase (V-ATPase). This family contains subunit C of vacuolar H+-ATPase (V-ATPase), a protein that plays a crucial role in the vacuolar system of eukaryotic cells. The main function of V-ATPase is to generate a proton-motive force at the expense of ATP and to cause limited acidification in the internal space (lumen) of several organelles of the vacuolar system. V-ATPases are multi-subunit protein complexes made up of two distinct structures: a peripheral catalytic sector (V1) and a hydrophobic membrane sector (V0) responsible for driving protons; subunit C is one of five polypeptides composing V1. The key function of the C subunit is intimately involved in the reversible dissociation of the V1 and V0 structures. It has also been identified as a mediator of the acidic microenvironment of tumors which it controls by proton extrusion to the extracellular medium. The acidic environment causes tissue damage, activates destructive enzymes in the extracellular matrix, and acquires metastatic cell phenotypes. 0 -353941 cl15415 Sec1 Sec1 family. 0 -326575 cl15422 DUF3419 Protein of unknown function (DUF3419). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 398 to 802 amino acids in length. 0 -353942 cl15424 PEP_hydrolase Phosphoenolpyruvate hydrolase-like. This domain has a TIM barrel fold related to IGPS and to phosphoenolpyruvate mutase/aldolase/carboxylase. 0 -353943 cl15430 Nucleoside_tran Nucleoside transporter. This is a family of proteins from the CLN3 gene. A mis-sense mutation of glutamic acid (E) to lysine (K) at position 295 in the human protein has been implicated in Juvenile neuronal ceroid lipofuscinosis (Batten disease). Batten disease is characterized by the accumulation of autofluorescent material in the lysosomes of most cells. Members of this family are transmembrane proteins functional in pre-vacuolar compartments. The protein in Sch.pombe is found to be localized to the vacuolar membrane, and a lack of functional protein clearly affects the size and pH of the vacuole. Thus the protein is necessary for vacuolar homeostasis. It is important for localization of late endosomal/lysosomal compartments, and it interacts with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. 0 -353944 cl15435 DUF1045 Protein of unknown function (DUF1045). This family of proteins is observed in the vicinity of other caharacterized genes involved in the catabolism of phosphonates via the3 C-P lyase system (GenProp0232), its function is unknown. These proteins are members of the somewhat broader pfam06299 model "Protein of unknown function (DUF1045)" which contains proteins found in a different genomic context as well. 0 -353945 cl15439 BTG BTG family. The tob/btg1 is a family of proteins that inhibit cell proliferation. 0 -326580 cl15442 DUF2381 Protein of unknown function (DUF2381). This family consists of at least 8 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. The function is unknown. 0 -353946 cl15454 HrpJ HrpJ-like domain. This protein is found in type III secretion operons and, in Yersinia is localized to the cell surface and is involved in the Low-Calicium Response (LCR), possibly by sensing the calcium concentration. In Salmonella, the gene is known as InvE and is believed to perform an essential role in the secretion process and interacts with the proteins SipBCD and SicA.//Altered name to reflect regulatory role. Added GO and role IDs . Negative regulation of type III secretion in Y pestis is mediated in part by a multiprotein complex that has been proposed to act as a physical impediment to type III secretion by blocking the entrance to the secretion apparatus prior to contact with mammalian cells. This complex is composed of YopN, its heterodimeric secretion chaperone SycN-YscB, and TyeA. 3[SS 6/3/05] [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -353947 cl15456 ADAM_CR ADAM cysteine-rich. ADAMs are membrane-anchored proteases that proteolytically modify cell surface and extracellular matrix (ECM) in order to alter cell behaviour. It has been shown that the cysteine-rich domain of ADAM13 regulates the protein's metalloprotease activity. 0 -353948 cl15462 T6SS_TssF Type VI secretion system, TssF. This protein family is associated with type VI secretion in a number of pathogenic bacteria. Mutation is associated with impaired virulence, such as impaired infection of plants by Rhizobium leguminosarum. 0 -326584 cl15463 Pup_ligase Pup-ligase protein. This protein family is paralogous to (and distinct from) the PafA (proteasome accessory factor) first described in Mycobacterium tuberculosis (see TIGR03686). Members of both this family and TIGR03686 itself tend to cluster with each other, with the ubiquitin analog Pup (TIGR03687) associated with targeting to the proteasome, and with proteasome subunits themselves. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 0 -276111 cl15465 CsaX_III-U CRISPR/Cas system-associated protein CsaX. This family comprises a minor CRISPR-associated protein family. It occurs only in the context of the (strictly archaeal) Apern subtype of CRISPR/Cas system, and is further restricted to the Sulfolobales, including Metallosphaera sedula DSM 5348 and multiple species of the genus Sulfolobus. 0 -353949 cl15473 NA37 37-kD nucleoid-associated bacterial protein. nucleoid-associated protein NdpA; Validated 0 -326586 cl15483 Hid1 High-temperature-induced dauer-formation protein. Dymeclin (Dyggve-Melchior-Clausen syndrome protein) contains a large number of leucine and isoleucine residues and a total of 17 repeated dileucine motifs. It is characteristically about 700 residues long and present in plants and animals. Mutations in the gene coding for this protein in humans give rise to the disorder Dyggve-Melchior-Clausen syndrome (DMC, MIM 223800) which is an autosomal-recessive disorder characterized by the association of a spondylo-epi-metaphyseal dysplasia and mental retardation. DYM transcripts are widely expressed throughout human development and Dymeclin is not an integral membrane protein of the ER, but rather a peripheral membrane protein dynamically associated with the Golgi apparatus. 0 -353966 cl15674 IPT N/A. The Rel homology domain (RHD) is composed of two structural domains, an N-terminal DNA_binding domain (pfam00554) and a C-terminal dimerization domain. This is the dimerization domain. 0 -353967 cl15675 RGL4_N N-terminal catalytic domain of rhamnogalacturonan lyase, a family 4 polysaccharide lyase. Members of this family are found in both fungi, bacteria and wood-eating arthropods. The domain is found at the N-terminus of rhamnogalacturonase B, a member of the polysaccharide lyase family 4. The domain adopts a structure consisting of a beta super-sandwich, with eighteen strands in two beta-sheets. The three domains of the whole protein rhamnogalacturonan lyase (RGL4), are involved in the degradation of rhamnogalacturonan-I, RG-I, an important pectic plant cell-wall polysaccharide. The active-site residues are a lysine at position 169 in UniProtKB:Q00019 and a histidine at 229, Lys169 is likely to be a proton abstractor, His229 a proton donor in the mechanism. The substrate is a disaccharide, and RGL4, in contrast to other rhamnogalacturonan hydrolases, cleaves the alpha-1,4 linkages of RG-I between Rha and GalUA through a beta-elimination resulting in a double bond in the nonreducing GalUA residue, and is thus classified as a polysaccharide lyase (PL). 0 -353968 cl15685 Wzt_C-like C-Terminal domain of O-antigenic polysaccharide transporter protein Wzt and related proteins. This domain is found at the C-terminus of the Wzt protein. The crystal structure of C-Wzt(O9a) reveals a beta sandwich with an immunoglobulin-like topology that contains the O-antigenic polysaccharide binding pocket. This domain is often associated with the ABC-transporter domain. 0 -353969 cl15687 RGL4_C C-terminal domain of rhamnogalacturonan lyase, a family 4 polysaccharide lyase. CBM-like is domain III of rhamnogalacturonan lyase (RG-lyase). The full-length protein specifically recognizes and cleaves alpha-1,4 glycosidic bonds between l-rhamnose and d-galacturonic acids in the backbone of rhamnogalacturonan-I, a major component of the plant cell wall polysaccharide, pectin. This domain possesses a jelly roll beta-sandwich fold structurally homologous to carbohydrate binding modules (CBMs), and it carries two sulfate ions and a hexa-coordinated calcium ion. 0 -326629 cl15688 anti-TRAP anti-TRAP (AT) protein specific to Bacilli. In Bacillus subtilis and related bacteria, AT binds to the TRAP protein, (tryptophan-activated trp RNA-binding attenuation protein), effectively disrupting interaction of TRAP with mRNAs. Upon binding of tryptophan, TRAP (which forms a complex of 11 identical subunits) interacts with a specific location in the leader RNA and blocks translation of the tryptophan biosynthetic operon. AT, in turn, recognizes the tryptophan-activated TRAP complex and prevents RNA binding. AT is expressed in response to high levels of uncharged tryptophan tRNA. AT contains a zinc-binding motif that closely resembles the zinc-binding motifs in the zinc-finger region of DnaJ/Hsp40. AT has been shown to form homo-dodecameric assemblies, and can actually do that in two different relative orientations, resulting in two different dodecamers. Recent data suggest that the trimeric form of AT may be the biologically relevant active complex. 0 -353970 cl15692 CE4_SF Catalytic NodB homology domain of the carbohydrate esterase 4 superfamily. Family of YdjC-like proteins. This region is possibly involved in the the cleavage of cellobiose-phosphate. 0 -353971 cl15693 Sema The Sema domain, a protein interacting module, of semaphorins and plexins. The Sema domain occurs in semaphorins, which are a large family of secreted and transmembrane proteins, some of which function as repellent signals during axon guidance. Sema domains also occur in the hepatocyte growth factor receptor and plexin-A3. 0 -353972 cl15694 Exosortase_EpsH Transmembrane exosortase (Exosortase_EpsH). This model represents the most conserved region of the multitransmembrane protein family of exosortases and archaeosortases. The region includes nearly invariant motifs at the ends of three predicted transmembrane helices on the extracytoplasmic face: a Cys (often Cys-Xaa-Gly), Asn-Xaa-Xaa-Arg, and His. This model is much broader than the bacterial exosortase model (TIGR02602), and has in intended scope similar to (or broader than) pfam09721. 0 -353973 cl15697 ADF_gelsolin Actin depolymerization factor/cofilin- and gelsolin-like domains. Severs actin filaments and binds to actin monomers. 0 -353974 cl15705 DUF563 Protein of unknown function (DUF563). Family of uncharacterized proteins. 0 -326636 cl15733 YyzF YyzF-like protein. Members of this protein family occur exclusively in the Firmicutes, in at least 50 different species. Members average about 55 residues in length, and four of the five invariant or nearly invariant residues occur in motifs CxxH and CxxC. The function is unknown. 0 -326637 cl15739 Bacteroid_pep Ribosomally synthesized peptide in Bacteroidetes. This model describes a rare family of small putative polypeptides, including three encoded in tandem in Sphingobacterium spiritivorum ATCC 33300, in the vicinity of a TIGR04085 protein. This pairing is conserved in Chryseobacterium gleum ATCC 35910, Kordia algicida OT-1, and other species. TIGR04085 describes a C-terminal additional 4Fe4S-binding domain in PqqE and other radical SAM enzymes that seems to be a marker for peptide modification, and the family modeled here is a candidate modified peptide precursor. 0 -326638 cl15753 CollagenBindB Repeat unit of collagen-binding protein domain B. GramPos_pilinD3 is one of the major backbone units of Gram-positive pili, such as those from S.pneumoniae. There are three major pilin subunits that form the polymeric backbone of the pilin from S. pneumoniae, constructed of three transthyretin-like, CnaB, domains along with a crucial N-terminal domain, D1. The three Cna-B like domains are stabilized by internal Lys-Asn isopeptdie bonds, Gram-positive pili are formed from a single chain of covalently linked subunit proteins (pilins), usually comprising an adhesin at the distal tip, a major pilin that forms the polymer shaft and a minor pilin that mediates cell wall anchoring at the base. 0 -353976 cl15755 SAM_superfamily SAM (Sterile alpha motif ). The fungal Ste50p SAM domain consists of five helices, which form a compact, globular fold. It is required for mediation of homodimerization and heterodimerization (and in some cases oligomerization) of the protein. 0 -353977 cl15774 Hemerythrin-like Hemerythrin family. Iteration of the HHE family found it to be related to Hemerythrin. It also demonstrated that what has been described as a single domain in fact consists of two cation binding domains. Members of this family occur all across nature and are involved in a variety of processes. For instance, in Nereis diversicolor hemerythrin binds Cadmium so as to protect the organism from toxicity. However Hemerythrin is classically described as Oxygen-binding through two attached Fe2+ ions. And the bacterial NorA is a regulator of response to NO, which suggests yet another set-up for its metal ligands. In Staphylococcus aureus the iron-sulfur cluster repair protein ScdA has been noted to be important when the organism switches to living in environments with low oxygen concentrations; perhaps this protein acts as an oxygen store or scavenger. 0 -326642 cl15781 K_trans K+ potassium transporter. potassium transporter; Provisional 0 -353978 cl15787 SEC14 N/A. This family includes divergent members of the CRAL-TRIO domain family. This family includes ECM25 that contains a divergent CRAL-TRIO domain identified by Gallego and colleagues. 0 -353979 cl15796 Phage_GPD Phage late control gene D protein (GPD). tail protein; Provisional 0 -353980 cl15806 zf-HC2 Putative zinc-finger. Members of this family are the anti-sigma-R factor RsrA, which contains a CXXC motif as a thiol-disulphide redox switch. It interacts with sigma-R. It regulates and is regulated by the mycothiol system, which occurs in many actinomycetes. [Transcription, Transcription factors] 0 -353981 cl15816 CheC CheC-like family. CheX is very closely related to the CheC chemotaxis phosphatase, but it dimerizes in a different way, via a continuous beta sheet between the subunits. CheC and CheX both dephosphorylate CheY, although CheC requires binding of CheD to achieve the activity of CheX. The ability of bacteria to modulate their swimming behaviour in the presence of external chemicals (nutrients and repellents) is one of the most rudimentary behavioural responses known, but the the individual components are very sensitively tuned. 0 -326649 cl15819 MqsA antitoxin MqsA for MqsR toxin. The YokU-like protein family includes the B. subtilis YokU protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There are two conserved CXXC sequence motifs. This is likely to be a family of bacterial antitoxins, as the sequence bears remote homology to the RelE fold family. 0 -353982 cl15824 LPP20 LPP20 lipoprotein. This family contains the LPP20 lipoprotein, which is a non-essential class of lipoprotein. 0 -353983 cl15825 YscW Type III secretion system lipoprotein chaperone (YscW). This family of proteins is found within type III secretion operons. The protein has been characterized as a chaperone for the outer membrane pore component YscC (TIGR02516). YscW is a lipoprotein which is itself localized to the outer membrane and, it is believed, facilitates the oligomerization and localization of YscC. 0 -353984 cl15827 BKACE beta-keto acid cleavage enzyme. BKACE, beta-keto acid cleavage enzyme plays, a role in lysine degradation. In certain instances it catalyzes the conversion of 3-keto-5-aminohexanoate and acetyl-CoA into acetoacetate and 3-aminobutyryl-CoA. The family is found to have at least 14 slightly different potential new enzymatic activities, all of which can therefore be designated as beta-keto acid cleavage enzymes. 0 -326653 cl15828 DUF308 Short repeat of unknown function (DUF308). acid-resistance membrane protein; Provisional 0 -326654 cl15830 DsbC Disulphide bond corrector protein DsbC. DsbC rearranges incorrect disulphide bonds during oxidative protein folding. It is activated by the N-terminal domain of DsbD, a transmembrane electron transporter. DsbD binds to a DsbC dimer and selectively activates it using electrons from the cytoplasm. 0 -326655 cl15834 YbjN Putative bacterial sensory transduction regulator. YbjN is a putative sensory transduction regulator protein found in Proteobacteria. As it is a multi-copy suppressor of the coenzyme A-associated temperature sensitivity in temperature-sensitive mutant strains of Escherichia coli the suggestion is that it both helps CoA-A1 and possibly works as a general stabilizer for some other unstable proteins. This family was expanded to subsume other related families: DUF1790, DUF1821 and DUF2596. 0 -353985 cl15838 Phage_GPO Phage capsid scaffolding protein (GPO) serine peptidase. capsid-scaffolding protein; Provisional 0 -301728 cl15839 ShK ShK domain-like. ShK toxin domain 0 -353986 cl15840 JmjN jmjN domain. To date, this domain always co-occurs with the JmjC domain (although the reverse is not true). 0 -353987 cl15841 SelR SelR domain. methionine sulfoxide reductase B; Provisional 0 -326659 cl15846 Phage_F Capsid protein (F protein). major capsid protein 0 -326660 cl15848 ESSS ESSS subunit of NADH:ubiquinone oxidoreductase (complex I). complex I subunit 0 -353988 cl15851 BcsB Bacterial cellulose synthase subunit. cellulose synthase regulator protein; Provisional 0 -353989 cl15855 Flg_bbr_C Flagellar basal body rod FlgEFG protein C-terminal. Members of this protein are FlgF, one of several homologous flagellar basal-body rod proteins in bacteria. [Cellular processes, Chemotaxis and motility] 0 -353991 cl15893 MgtC MgtC family. This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 0 -326668 cl15935 TIC20 Chloroplast import apparatus Tic20-like. Two families of proteins are involved in the chloroplast envelope import appartus.They are the three proteins of the outer membrane (TOC) and four proteins in the inner membrane (TIC). This family is specific for the Tic20 protein. [Transport and binding proteins, Amino acids, peptides and amines] 0 -276137 cl15945 PRK09822 N/A. Members of this family are WaaZ, or Kdo-III transferase. This enzyme, present in some strains of E. coli and its allies but not others, performs a non-stoichiometric addition of a third 3-deoxy-D-manno-oct-2-ulosonic acid (KDO-III) onto some fraction of KDO-II in the lipopolysaccharide (LPS) inner core. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -354043 cl16254 PDDEXK_3 PD-(D/E)XK nuclease superfamily. Members of this protein family average about 130 residues in length and include an almost perfectly conserved motif GxxExxY. Members occur in a wide range of prokaryotes, including Proteobacteria, Perrucomicrobia, Cyanobacteria, Bacteriodetes, Archaea, etc. 0 -354079 cl16352 zf-3CxxC Zinc-binding domain. This is a family with several pairs of CxxC motifs possibly representing a multiple zinc-binding region. Only one pair of cysteines is associated with a highly conserved histidine residue. 0 -354105 cl16409 GH31_N N-terminal domain of glycosyl hydrolase family 31 (GH31). This family is found N-terminal to glycosyl-hydrolase domains, and appears to be similar to the galactose mutarotase superfamily. 0 -354107 cl16414 DUF4185 Domain of unknown function (DUF4185). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are typically around 440 amino acids in length. 0 -327252 cl16774 AlgX_N_like N-terminal catalytic domain of putative alginate O-acetyltranferase and similar proteins. ALGX is a family found in bacteria. The domain demonstrates catalytic activity similar to that of the SGNH hydrolase-like domain, with the typical Ser-His-Asp triad found in this enzyme. Alginate is an exopolysaccharide that contributes to biofilm formation. ALGX is secreted into the biofilm and is responsible for the acetylation of biofilm polymers that help protect them from host destruction. 0 -327351 cl16901 DUF4425 Uncharacterized protein conserved in Bacteroidetes. A small family of bacterial proteins, found in several Bacteroides species. Structure determination (NMR and Xray) shows an immunoglobulin beta-barrel fold. Multiple homologs have been found in human gut metagenomics data sets. Structural experimentation shows it to share features with two well-established protein architectures in the SCOP database, ie, C2 (calcium/lipid-binding domain) of the Pfam PF00168 and PLAT/LH2 (lipase/lipooxigenase domain) of the Pfam PF01477. The C2 and PLAT/LH2 domains bind Ca2+ in their functions of targeting proteins to cell-membranes; this domain is also shown to bind Ca2+ as well as to be a novel fold. 0 -354285 cl16912 MDR Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family. quinone oxidoreductase, NADPH-dependent; Provisional 0 -327355 cl16914 O-FucT_like GDP-fucose protein O-fucosyltransferase and related proteins. Plant cell walls are crucial for development, signal transduction, and disease resistance in plants. Cell walls are made of cellulose, hemicelluloses, and pectins. Xyloglucan (XG), the principal load-bearing hemicellulose of dicotyledonous plants, has a terminal fucosyl residue. This fucosyltransferase adds this residue. 0 -354286 cl16915 ZnPC_S1P1 Zinc dependent phospholipase C/S1-P1 nuclease. This domain of unknown function contains several highly conserved histidines. 0 -354287 cl16916 ChtBD1 Hevein or type 1 chitin binding domain. Hevein or type 1 chitin binding domain (ChtBD1), a lectin domain found in proteins from plants and fungi that bind N-acetylglucosamine, plant endochitinases, wound-induced proteins such as hevein, a major IgE-binding allergen in natural rubber latex, and the alpha subunit of Kluyveromyces lactis killer toxin. This domain is involved in the recognition and/or binding of chitin subunits; it typically occurs N-terminal to glycosyl hydrolase domains in chitinases, together with other carbohydrate-binding domains, or by itself in tandem-repeat arrangements. 0 -354288 cl16919 CRAL_TRIO_N CRAL/TRIO, N-terminal domain. This all-alpha domain is found to the N-terminus of pfam00650. 0 -327359 cl16921 eIF2D_N_like N-terminal domain of eIF2D, malignant T cell-amplified sequence 1 and related proteins. Members of this family are found in a set of hypothetical Archaeal proteins. Their exact function has not, as yet, been defined. 0 -327360 cl16934 Axin_TNKS_binding Tankyrase binding N-terminal segment of axin. This is the N-terminal domain tankyrase binding domain of Axin-1. 0 -354289 cl16936 SATB1_N N-terminal domain of SATB1 and similar proteins. ULD is an N-terminal oligomerization domain of SATB or special AT-rich sequence-binding proteins. SATBs are global chromatin organizers and regulators of gene expression that are essential for T-cell development, breast cancer tumor growth and metastasis. SATBs assemble into a tetramer via the ULD domain, and the tetramerisation of SATBs are essential for recognising specific DNA sequences (such as multiple AT-rich DNA fragments). Thus, SATBs may regulate gene expression directly by binding to various promoters and upstream regions and thereby influencing promoter activity. 0 -327362 cl16937 Ndc10 Ndc10 component of the yeast centromere-binding factor 3. NDC10_II is a the second of five domains on the Kluyveromyces lactis Ndc10 protein. Each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. 0 -354290 cl16941 NTP-PPase Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain superfamily. This family of short proteins are distantly related to the MazG enzyme. This suggests that these proteins are enzymes that catalyze a related reaction. 0 -327364 cl16946 Actino_peptide Ribosomally synthesized peptide in actinomycetes. A ribosomally synthesized peptide related to microviridin and marinostatin, usually in the gene neighborhood of one or more RimK-like ATP-grasp. The gene-context suggests that it is further modified by the ATP-grasp. The peptide is predicted to function in a defensive or developmental role, or as an antibiotic. 0 -354291 cl16948 FctA Spy0128-like isopeptide containing domain. This model describes a domain that occurs once in the major pilin of Streptococcus pyogenes, Spy0128, but in higher copy numbers in other streptococcal proteins. The domain occurs nine times in a surface-anchored protein of Bifidobacterium longum. All members of this family have LPXTG-type sortase target sequences. The S. pyogenes major pilin has been shown to undergo isopeptide bond cross-linking, mediated by sortases, that are critical to maintaining pilus structural integrity. One such Lys-to-Asn isopeptide bond is to a near-invariant Asn near the C-terminal end of this domain (column 81 of the seed alignment). A Glu in the S. pyogenes major pilin (column 25 of the seed alignment), invariant as Glu or Gln, is described as catalytic for isopeptide bond formation. 0 -276145 cl16949 MAST_ArtA_sort MAST domain. Members of this protein family are exclusive to archaea, probably all of which have S-layer surface protein arrays. All member proteins have an N-terminal signal sequence. The majority of known members belong to codirectional tandem arrays in the genus Methanosarcina (nine in M. barkeri str. Fusaro). Nearly all members have an additional 50 residues, (trimmed from the seed alignment for this model), consisting of low-complexity sequence rich in E,N,Q,T,S, and P, followed by a variant (PAF) form of the PGF-CTERM putative archaeal surface glycoprotein sorting signal. The coined name, sarcinarray family protein, evokes the predicted archaeal surface layer localization, the taxonomic bias of known members, and the tandem organization of most members. 0 -354292 cl16980 CshA_fibril_rpt CshA-type fibril repeat. This 95-amino acid repeat occurs in tandem in proteins that may be several thousand amino acids long. 0 -354293 cl16982 Antigen_C Cell surface antigen C-terminus. This domain has a conserved Lys (position 3 in seed alignment) and Asn at 177 that form an intramolecular isopeptide bond. The Asp (or Glu) at position 59 0 -302586 cl17007 COE_DBD Colier/Olf/Early B-cell factor (EBF) DNA Binding Domain. COE_DBD is the amino-terminal DNA binding domain of the COE protein family. The COE transcription factor is a regulator of development in several organs and tissues that contain the DBD domain as well as IPT/TIG (immunoglobulin-like, Plexins, transcription factors/transcription factor immunoglobulin) and basic helix-loop-helix (bHLH) domains. COE has four members in mammals (COE1-4) with high sequence similarity at the amino-terminal region. COE_DBD requires a zinc ion to bind DNA and contains a zinc finger motif (H-X(3)-C-X(2)-C-X(5)-C) termed the zinc knuckle. COE is homo- or heterodimerized through the bHLH domain to bind DNA. COE1-4 each has a variant due to alternative splicing. However, this alternative splicing does not occur at the DBD domain. 0 -354294 cl17011 Arginase_HDAC Arginase-like and histone-like hydrolases. Histones can be reversibly acetylated on several lysine residues. Regulation of transcription is caused in part by this mechanism. Histone deacetylases catalyze the removal of the acetyl group. Histone deacetylases are related to other proteins. 0 -354295 cl17012 GINS_A Alpha-helical domain of GINS complex proteins; Sld5, Psf1, Psf2 and Psf3. The eukaryotic GINS complex is essential for the initiation and elongation phases of DNA replication. It consists of four paralogous protein subunits (Sld5, Psf1, Psf2 and Psf3), all of which are included in this family. The GINS complex is conserved from yeast to humans, and has been shown in human to bind directly to DNA primase. 0 -354296 cl17013 W2 C-terminal domain of eIF4-gamma/eIF5/eIF2b-epsilon. This domain of unknown function is found at the C-terminus of several translation initiation factors. 0 -354297 cl17014 eIF-5_eIF-2B Domain found in IF2B/IF5. translation initiation factor IF-2 subunit beta; Validated 0 -354298 cl17015 HRI1_like Tandem repeat domain of HRI1 and related proteins. Saccharomyces cerevisiae Hri1p (Hrr25-interacting protein 1, YLR301w) is a non-essential gene product named for its interaction with the yeast protein kinase Hrr25p. It has also been characterized as an interaction partner for Sec72p, but does not seem to be required for protein translocation into the ER. It may be a cytosolic protein. Hri1p contains a tandem repeat of a structural unit that forms a beta-barrel with structural similarity to nitrobindin. This C-terminal repeat is missing several strands and forms an incomplete barrel. 0 -327372 cl17018 FANC Fanconi anemia ID complex proteins FANCI and FANCD2. The Fanconi anaemia protein FancD2 is a nuclease necessary for the repair of DNA interstrand-crosslinks. 0 -327373 cl17028 hemoglobin_linker_C Globular domain of extracellular hemoglobin linker. This domain is found in linker subunits of the erythrocruorin respiratory complex in annelid worms. 0 -327374 cl17033 SOAR STIM1 Orai1-activating region. SOAR is the Orai1-activating region of STIM1, where STIM1 are calcium sensors in the endoplasmic reticulum. As the store of calcium is depleted the calcium sensor in the ER activates Orai1, a Ca2+-release-activated Ca2+ (CRAC) channel, in the plasma membrane. The SOAR region, which runs from residues 340-443 on UniProtKB:Q13586, forms a dimer, and is essential for oligomerization of the whole of STIM1. 0 -354299 cl17036 SH3 Src Homology 3 domain superfamily. SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organisation. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. 0 -354300 cl17037 NBD_sugar-kinase_HSP70_actin Nucleotide-Binding Domain of the sugar kinase/HSP70/actin superfamily. Type III pantothenate kinase catalyzes the phosphorylation of pantothenate (Pan), the first step in the universal pathway of CoA biosynthesis. 0 -354301 cl17041 helicase_insert_domain helicase_insert_domain. The endoribonuclease Dicer plays a central role in RNA interference by breaking down RNA molecules into fragments of about 22 nucleotides (miRNAs and siRNAs). Loading of RNA onto Dicer and the enzymatic cleavage are supported by dsRNA-binding proteins, including trans-activation response (TAR) RNA-binding protein (TRBP) or protein activator of PKR (PACT). Together with Argonaute, this constitutes the RNA-induced silencing complex (RISC) which functions to load the small RNA fragments onto Argonaute. The Partner-binding domain of Dicer is responsible for interactions with the dsRNA-binding proteins. This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases. 0 -354302 cl17042 Polysacc_deac_2 Divergent polysaccharide deacetylase. This family is divergently related to pfam01522 (personal obs:Yeats C). 0 -354303 cl17044 DD_cGKI Dimerization/Docking domain of Cyclic GMP-dependent Protein Kinase I. PKcGMP_CC is the N-terminal coiled-coil, dimerization, domain of cGMP-protein kinases. 0 -277498 cl17045 TM_EGFR-like Transmembrane domain of the Epidermal Growth Factor Receptor family of Protein Tyrosine Kinases. ErbB3 (HER3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane (TM) helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. ErbB receptors are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. ErbB3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. ErbB3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The ErbB2-ErbB3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. The TM domain not only serves as a membrane anchor, but also plays an important role in receptor dimerization and optimal activation. Mutations in the TM domain of ErbB receptors have been associated with increased breast cancer risk. ErbB3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. 0 -327382 cl17065 Cthe_2751_like Uncharacterized protein domain similar to Clostridium thermocellum 2751. Cthe_2751 has been found to form homodimers. Based on structural similarity to other families, a role in processing nucleic acids was suggested, though interactions with DNA could not be demonstrated. 0 -354306 cl17067 GH94N_like N-terminal domain of glycoside hydrolase family 94 and related domains. The glycosyltransferase family 36 includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-). Many members of this family contain two copies of this domain. 0 -354307 cl17068 AFD_class_I Adenylate forming domain, Class I superfamily. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains gramicidin S synthase 2 (also known as ATP-dependent proline adenylase or proline activase or ProA). ProA is a multifunctional enzyme involved in synthesis of the cyclic peptide antibiotic gramicidin S and able to activate and polymerize the amino acids proline, valine, ornithine and leucine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. 0 -354308 cl17070 AMPKA_C_like C-terminal regulatory domain of 5'-AMP-activated protein kinase (AMPK) alpha subunit and similar domains. This domain is found at the C-terminus of several fungal kinases. 0 -354309 cl17077 Caudo_TAP Caudovirales tail fibre assembly protein, lambda gpK. Phage_tail_APC is a family of general phage tail assembly chaperone proteins from double-stranded DNA viruses with no RNA stage, many of which are unclassified. 0 -327388 cl17091 Rev1_C C-terminal domain of the Y-family polymerase Rev1. This is the C-terminal domain of DNA repair protein REV1. It interacts with REV7, POLN, POLK and POLI. 0 -327389 cl17092 STING_C C-terminal domain of STING. Transmembrane protein 173, also known as stimulator of interferon genes protein (STING), is a transmembrane adaptor protein which is involved in innate immune signalling processes. It induces expression of type I interferons (IFN-alpha and IFN-beta) via the NF-kappa-B and IRF3, pathways in response to non-self cytosolic RNA and dsDNA. 0 -354310 cl17095 Bacova_04320_like Uncharacterized proteins similar to Bacteroides ovatus 4320. A large family of (predicted) secreted proteins with unknown functions from human gut and oral cavity. Typically forms a N-terminal domain with FMN binding domain at the C-terminus. Experimentaly determined 3D structure of this domain shows a variant of a TATA box binding - like fold, but no detectable sequence similarity to other proteins with this fold 0 -302613 cl17109 HopAB_KID Kinase-interacting domains of the HopAB family of Type III Effector proteins. AvrPtoB_bdg is a binding region on a family of bacterial plant pathogenic proteins. Type III effector proteins are injected into plants by bacteria when they are under attack, eg Pseudomonas syringae when attacking tomato. AvrPtoB is one such effector that suppresses the plants' PAMP-triggered innate immunity. PAMPs are pathogen/microbe-associated molecular patterns that are detected as non-self by a host. AvrPtoB suppresses this response by binding to BAK1, a kinase that acts with several pattern recognition receptors to activate defense signalling. AvrPtoB_bdg is the region of AvrPtoB that binds to BAK1 thereby preventing its kinase activity after the perception of flagellin. 0 -354311 cl17110 Erythro_esteras Erythromycin esterase. This family includes erythromycin esterase enzymes that confer resistance to the erythromycin antibiotic. 0 -327392 cl17112 AnfO_nitrog Iron only nitrogenase protein AnfO (AnfO_nitrog). Members of this protein family, called Anf1 in Rhodobacter capsulatus and AnfO in Azotobacter vinelandii, are found only in species with the Fe-only nitrogenase and are encoded immediately downstream of the structural genes in the above named species. 0 -271795 cl17113 DUF2833 Protein of unknown function (DUF2833). internal virion protein A 0 -354313 cl17157 Alt_A1 Alternaria alternata allergen Alt a 1. AltA1 is a family of fungal allergens. It shows a unique beta-barrel comprising 11 beta-strands. There is structural evidence for the location of IgE antibody-binding epitopes. The crystal structure will allow efforts to promote immunotherapy for patients allergic to Alternaria species. 0 -327396 cl17165 SKA2 Spindle and kinetochore-associated protein 2. Spindle and kinetochore-associated protein 2 (SKA2) interacts with the N-termini of SKA1 and SKA3 and forms the Ska complex. This is a microtubule binding complex required for chromosome segregation. 0 -327397 cl17166 MMACHC-like Methylmalonic aciduria and homocystinuria type C protein and similar proteins. MMACHC, also called CblC, is involved in the intracellular processing of vitamin B12 by catalyzing two reactions: the reductive decyanation of cyanocobalamin in the presence of a flavoprotein oxidoreductase and the dealkylation of alkylcobalamins through the nucleophilic displacement of the alkyl group by glutathione. Mutations in MMACHC cause combined methylmalonic acidemia/aciduria and homocystinuria (CblC type), the most common inherited disorder of cobalamin metabolism. The structure of MMACHC reveals it to be the most divergent member of the NADPH-dependent flavin reductase family that can use FMN or FAD to catalyze reductive decyanation; it is also the first enzyme with glutathione transferase (GST) activity that is unrelated to the GST superfamily in structure and sequence. 0 -354314 cl17169 RRM_SF RNA recognition motif (RRM) superfamily. The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. 0 -354315 cl17171 PH-like Pleckstrin homology-like domain. This PH domain is found at the N-terminus of sharpin and is involved in dimerization. 0 -354316 cl17172 ADH_N Alcohol dehydrogenase GroES-like domain. N-terminal region of oxidoreductase and prostaglandin reductase and alcohol dehydrogenase. 0 -354317 cl17173 AdoMet_MTases N/A. This family appears to be a methyltransferase domain. 0 -354318 cl17182 NAT_SF N-Acyltransferase superfamily: Various enyzmes that characteristicly catalyze the transfer of an acyl group to a substrate. This family of GCN5-related N-acetyl-transferases bind both CoA and acetyl-CoA. They are characterized by highly conserved glycine, a cysteine residue in the acetyl-CoA binding site near the acetyl group, their small size compared with other GNATs and a lack of of an obvious substrate-binding site. It is proposed that they transfer an acetyl group from acetyl-CoA to one or more unidentified aliphatic amines via an acetyl (cysteine) enzyme intermediate. The substrate might be another macromolecule. 0 -354319 cl17185 LPLAT Lysophospholipid acyltransferases (LPLATs) of glycerophospholipid biosynthesis. This family contains proteins with N-acetyltransferase functions. 0 -354320 cl17190 NK N/A. This family includes enzymes related to cytidylate kinase. 0 -354321 cl17194 Oxidored_q6 NADH ubiquinone oxidoreductase, 20 Kd subunit. This model describes the B chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoB. The quinone is plastoquinone in Synechocystis (where the chain is designated K) and in chloroplast, where NADH may be replaced by NADPH. In the methanogenic archaeal genus Methanosarcina, NADH is replaced by F420H2. [Energy metabolism, Electron transport] 0 -354322 cl17210 OSCP ATP synthase delta (OSCP) subunit. F0F1 ATP synthase subunit delta; Provisional 0 -354323 cl17212 PTA_PTB Phosphate acetyl/butaryl transferase. The plsX gene is part of the bacterial fab gene cluster which encodes several key fatty acid biosynthetic enzymes. The exact function of the plsX protein in fatty acid synthesis is unknown. 0 -354324 cl17225 DAHP_synth_1 DAHP synthetase I family. NeuB is the prokaryotic N-acetylneuraminic acid (Neu5Ac) synthase. It catalyzes the direct formation of Neu5Ac (the most common sialic acid) by condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc). This reaction has only been observed in prokaryotes; eukaryotes synthesize the 9-phosphate form, Neu5Ac-9-P, and utilize ManNAc-6-P instead of ManNAc. Such eukaryotic enzymes are not present in this family. This family also contains SpsE spore coat polysaccharide biosynthesis proteins. 0 -354325 cl17238 RING_Ubox The superfamily of RING finger (Really Interesting New Gene) domain and U-box domain. This zinc-finger is a typical RING-type of plant ubiquitin ligases. 0 -354326 cl17255 CPSase_L_D2 Carbamoyl-phosphate synthase L chain, ATP binding domain. This family includes a diverse set of enzymes that possess ATP-dependent carboxylate-amine ligase activity. 0 -354327 cl17279 DHFR N/A. The function of this domain is not known, but it is thought to be involved in riboflavin biosynthesis. This domain is found in the C-terminus of RibD/RibG, in combination with pfam00383, as well as in isolation in some archaebacterial proteins. This family appears to be related to pfam00186. 0 -327412 cl17319 PIN_5 PINc domain ribonuclease. hypothetical protein; Provisional 0 -327413 cl17340 Glyco_hydro_100 Alkaline and neutral invertase. beta-fructofuranosidase 0 -354328 cl17346 Trehalase Trehalase. This is a family of eukaryotic enzymes belonging to glycosyl hydrolase family 63. They catalyze the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2). Mannosyl oligosaccharide glucosidase EC:3.2.1.106 is the first enzyme in the N-linked oligosaccharide processing pathway. This family represents the C-terminal catalytic domain. 0 -354329 cl17362 Transglut_core Transglutaminase-like superfamily. Members of this family are predicted to be bacterial transglutaminase-like cysteine proteinases. They contain a conserved Cys-His-Asp catalytic triad. Their structure is predicted to be similar to that of Salmonella typhimurium N-hydroxyarylamine O-acetyltransferase, in pfam00797, however they lack the sub-domain which is important for arylamine recognition. 0 -302641 cl17365 TrkH Cation transport protein. potassium transporter; Provisional 0 -302642 cl17398 YtfJ_HI0045 Bacterial protein of unknown function (YtfJ_HI0045). This model represents sequences from gamma proteobacteria that are related to the E. coli protein, YtfJ. 0 -354330 cl17448 CP_ATPgrasp_2 Circularly permuted ATP-grasp type 2. An ATP-grasp family that is present both as catalytically active and inactive versions. Contextual analysis suggests that it functions in a distinct peptide synthesis/modification system that additionally contains a transglutaminase, an NTN-hydrolase, the Alpha-E domain, and a transglutaminase fused N-terminal to a circularly permuted COOH-NH2 ligase. The inactive forms are often fused N-terminal to the Alpha-E domain. 0 -327418 cl17486 Sipho_tail Phage tail protein. This model represents the best-conserved region of about 125 amino acids, toward the N-terminus, of a family of proteins from temperate phage of a number of Gram-positive bacteria. These phage proteins range in length from 230 to 525 amino acids. [Mobile and extrachromosomal element functions, Prophage functions] 0 -354331 cl17505 CamS_repeat Repeat domain of CamS sex pheromone cAM373 precursor and related proteins. This family includes CamS, from which Staphylococcus aureus sex pheromone staph-cAM373 is processed. 0 -248060 cl17506 LDT_IgD_like IgD-like repeat domain of mycobacterial L,D-transpeptidases. Immunoglobulin-like domain found in actinobacterial L,D-transpeptidases, including Mycobacterium tuberculosis LdtMt2, which is a non-classical transpeptidase that generates 3->3 transpeptide linkages. LdtMt2 is associated with virulence and resistance to amoxicillin. This domain may occur in a tandem-repeat arrangement and is found N-terminal to the catalytic L,D-transpeptidase domain; this model represents the repeat adjacent to the catalytic domain. 0 -248061 cl17507 LbR-like Left-handed beta-roll, including virulence factors and various other proteins. This group contains the collagen-binding domain virulence factor YadA an adhesion proteins of several Yersinia species, and related cell surface proteins, including Moraxella catarrhalis UspA-like proteins. The collagen-binding portion is found in the hydrophobic N-terminal region. YadA forms a matrix on the bacterial outer membrane, which mediates binding to collagen and epithelial cells. YadA inhibits the complement-activating pathway with the coating of the cell surface with factor H, which impedes C3b molecules. These domains form a left handed beta roll made up of a series of short repeated elements. UspA1 and UspA2 are part of a class of pathogenicity factors that act as cell surface adhesion molecules, in which N-terminal head and neck domains extend from the bacterial outer membrane. The UspA1 head domain of Moraxella catarrhalis, is formed from trimeric left-handed parallel beta-helices of 14-16 amino acid repeats. The UspA1 head domain connects to a neck region of large extended, charged loops that maybe be ligand binding, which is in turn connected to an extended coiled coil domain that tethers the head and neck region to the cell surface via a transmembrane region. 0 -354332 cl17515 FeS Putative Fe-S cluster. This family includes a domain with four conserved cysteines that probably form an Fe-S redox cluster. 0 -302647 cl17537 gp32 gp32 DNA binding protein like. single-stranded DNA binding protein; Provisional 0 -354333 cl17559 Amido_AtzD_TrzD Amidohydrolase ring-opening protein (Amido_AtzD_TrzD). Members of this family are are ring-opening amidohydrolases, including cyanuric acid amidohydrolase (EC 3.5.2.15) (AtzD and TrzD) and barbiturase. Note that barbiturase does not act as defined for EC 3.5.2.1 (barbiturate + water = malonate + urea) but rather catalyzes the ring-opening of barbituric acid to ureidomalonic acid (see Soong, et al., ). 0 -327422 cl17562 Spore_III_AF Stage III sporulation protein AF (Spore_III_AF). This family represents the stage III sporulation protein AF of the bacterial endospore formation program, which exists in some but not all members of the Firmicutes (formerly called low-GC Gram-positives). The C-terminal region of this protein is poorly conserved, so only the N-terminal region, which includes two predicted transmembrane domains, is included in the seed alignment. [Cellular processes, Sporulation and germination] 0 -354334 cl17592 TfoX_N TfoX N-terminal domain. TfoX may play a key role in the development of genetic competence by regulating the expression of late competence-specific genes. This family corresponds to the N-terminal presumed domain of TfoX. The domain is found as an isolated domain in some proteins suggesting this is an autonomous domain. 0 -354335 cl17621 DndB DNA-sulfur modification-associated. The DND system produces an phosphorothioation modification to DNA, replacing a non-bridging oxygen of a phosphate group with sulfur. The modification causes DNA degradation during electrophoresis in Tris buffer. This protein, like DndB (TIGR03233), contains a DGQHR domain (TIGR03187), which also occurs in several contexts that suggest lateral transfer rather than DNA phosphorothioation-dependent restriction. 0 -302653 cl17685 Phytase Phytase. Phytase is a secreted enzyme which hydrolyzes phytate to release inorganic phosphate. This family appears to represent a novel enzyme that shows phytase activity and has been shown to have a six- bladed propeller folding architecture. 0 -354336 cl17687 5_nucleotid 5' nucleotidase family. This model includes a 5'-nucleotidase specific for purines (IMP and GMP). These enzymes are members of the Haloacid Dehalogenase (HAD) superfamily. HAD members are recognized by three short motifs {hhhhDxDx(T/V)}, {hhhh(T/S)}, and either {hhhh(D/E)(D/E)x(3-4)(G/N)} or {hhhh(G/N)(D/E)x(3-4)(D/E)} (where "h" stands for a hydrophobic residue). Crystal structures of many HAD enzymes has verified PSI-PRED predictions of secondary structural elements which show each of the "hhhh" sequences of the motifs as part of beta sheets. This subfamily of enzymes is part of "Subfamily I" of the HAD superfamily by virtue of a "cap" domain in between motifs 1 and 2. This subfamily's cap domain has a different predicted secondary structure than all other known HAD enzymes and thus has been designated "subfamily IG". This domain appears to consist of a mixed alpha/beta fold. A Pfam model (pfam05761) detects an identical range of sequences above the trusted cutoff, but does not model the N-terminal motif 1 region. A TIGRFAMs model (TIGR01993) represents a (putative) family of _pyrimidine_ 5'-nucleotidases which are also subfamily I HAD's, which should not be confused with the current model. 0 -327426 cl17690 DUF2204 Nucleotidyl transferase of unknown function (DUF2204). This domain, found in various hypothetical archaeal proteins, has no known function. However, this family was identified as belonging to the nucleotidyltransferase superfamily. 0 -327427 cl17703 Dehydratase_MU Dehydratase medium subunit. propanediol dehydratase medium subunit; Provisional 0 -354337 cl17705 MBT mbt repeat. Present in Drosophila Scm, l(3)mbt, and vertebrate SCML2. These proteins are involved in transcriptional regulation. 0 -327429 cl17713 NnrU NnrU protein. This family consists of several plant and bacterial NnrU proteins. NnrU is thought to be involved in the reduction of nitric oxide. The exact function of NnrU is unclear. It is thought however that NnrU and perhaps NnrT are required for expression of both nirK and nor. 0 -354338 cl17715 Coat_F Coat F domain. The Coat F proteins, which contribute to the Bacillales spore coat. It occurs multiple times in the genomes it is found in. 0 -354339 cl17718 DUF2384 Protein of unknown function (DUF2384). Proteins in this family are found almost exclusively in the Proteobacteria, but also in Gloeobacter violaceus PCC 7421, a cyanobacterium. This family was proposed by Makarova, et al. (2009) to be the antitoxin component of a new class of type 2 toxin-antitoxin system, or addiction module. [Cellular processes, Other] 0 -354340 cl17720 Aminopep Putative aminopeptidase. This family of bacterial proteins has a conserved HEXXH motif, suggesting that members are putative peptidases of zincin fold. 0 -327433 cl17735 VWC von Willebrand factor type C domain. This cysteine rich domain occurs along side the TIL pfam01826 domain and is likely to be a distantly related relative. 0 -354341 cl17774 SAM_adeno_trans S-adenosyl-l-methionine hydroxide adenosyltransferase. Members of this family are fluorinase (adenosyl-fluoride synthase, EC 2.5.1.63), an enzyme involved in the first committed step in the biosynthesis of at least two different organofluorine compounds. Few organofluorine natural products are known. Related enzymes include chlorinases (EC 2.5.1.94) that lack fluorinase activity, although a fluorinase may show chlorinase activity. [Cellular processes, Biosynthesis of natural products] 0 -354342 cl17781 Chromate_transp Chromate transporter. Members of this family probably act as chromate transporters. Members of this family are found in both bacteria and archaebacteria. The proteins are composed of one or two copies of this region. The alignment contains two conserved motifs, FGG and PGP. 0 -302666 cl17795 ArsP_1 Predicted permease. This family of integral membrane proteins are predicted to be permeases of unknown specificity. 0 -327436 cl17805 DUF483 Protein of unknown function (DUF483). Family of uncharacterized prokaryotic proteins. 0 -327437 cl17812 Phage_base_V Type VI secretion system, phage-baseplate injector. This family consists of Bacteriophage Mu Gp45 related proteins from both phages and bacteria. The function of this family is unknown although it has been suggested that family members may be involved in baseplate assembly. 0 -354343 cl17816 OprB Carbohydrate-selective porin, OprB family. 0 -302671 cl17823 MASE1 MASE1. Predicted integral membrane sensory domain found in histidine kinases, diguanylate cyclases and other bacterial signaling proteins. This entry also includes members of the 8 transmembrane UhpB type (8TMR-UT) domain family. 0 -327438 cl17829 DUF917 Protein of unknown function (DUF917). This family consists of hypothetical bacterial and archaeal proteins of unknown function. 0 -354344 cl17838 DUF1365 Protein of unknown function (DUF1365). This family consists of several bacterial and plant proteins of around 250 residues in length. The function of this family is unknown. 0 -327441 cl17850 Trp_oprn_chp Tryptophan-associated transmembrane protein (Trp_oprn_chp). Members of this family are predicted transmembrane proteins with four membrane-spanning helices. Members are found in the Actinobacteria (Mycobacterium, Corynebacterium, Streptomyces), always associated with genes for tryptophan biosynthesis. 0 -327442 cl17851 DUF2100 Uncharacterized protein conserved in archaea (DUF2100). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -327443 cl17852 DUF2121 Uncharacterized protein conserved in archaea (DUF2121). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -354345 cl17857 DUF2278 Uncharacterized conserved protein (DUF2278). Members of this family of hypothetical bacterial proteins have no known function. 0 -327445 cl17862 CBP_GIL GGDEF I-site like or GIL domain. This protein, called BcsE (bacterial cellulose synthase E) or YhjS, is required for cellulose biosynthesis in Salmonella enteritidis. Its role is this process across multiple bacterial species is implied by the partial phylogenetic profiling algorithm. Members are found in the vicinity of other cellulose biosynthesis genes. The model does not include a much less well-conserved N-terminal region about 150 amino acids in length for most members. Solano, et al. suggest this protein acts as a protease. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -354346 cl17874 DDE_5 DDE superfamily endonuclease. This family of proteins are related to pfam00665 and are probably endonucleases of the DDE superfamily. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 0 -248453 cl17899 HyfE Hydrogenase-4 membrane subunit HyfE [Energy production and conversion]. hydrogenase 4 membrane subunit; Provisional 0 -302680 cl17916 BF2867_like Tandemly repeated domain found in Bacteroides fragilis Nctc 9343 BF2867 and related proteins. This family of proteins is found in bacteria. Proteins in this family are typically between 348 and 360 amino acids in length. Analysis of structural comparisons shows this family to be part of the FimbA (CL0450) superfamily of adhesin components or fimbrillins. 0 -302697 cl18310 NHL NHL repeat unit of beta-propeller proteins. This domain occurs in tandem repeats, as many as 13, in proteins from Bdellovibrio bacteriovorus, Azotobacter vinelandii, Geobacter sulfurreducens, Pirellula sp. 1, Myxococcus xanthus, and others, many of which are Deltaproteobacteria. The periodicity of the repeat ranges from about 57 to 61 amino acids, and a core region of about 54 is represented by this model and seed alignment. 0 -327485 cl18921 Bvu_2165_C_like The C-terminal domain of uncharacterized bacterial proteins. A C-terminal domain in a large family of (predicted) secreted proteins with uknown functions from human gut bacteroides 0 -327486 cl18929 TIN2_N N-terminal domain of TRF-interacting nuclear factor 2; shelterin complex protein of telomeres. This is the N-terminus of TERF1-interacting nuclear factor 2. It is required for the formation of the shelterin complex. The shelterin complex is involved in the protection and maintenance of telomeres. 0 -354369 cl18942 MqsR Motility quorum-sensing regulator (MqsR). MqsR_toxin is a family of bacterial toxins that act as an mRNA interferase. MqsR is the gene most highly upregulated in E. coli persister cells and it plays an essential role in biofilm regulation and cell signalling. It forms part of a bacterial toxin-antitoxin TA system, and as expected for a TA system, the expression of the MqsR toxin leads to growth arrest, while co-expression with its antitoxin, MqsA, rescues the growth arrest phenotype. In addition, MqsR associates with MqsA to form a tight, non-toxic complex and both MqsA alone and the MqsR:MqsA2:MqsR complex bind and regulate the mqsR promoter. The structure of MqsR shows that is is a member of the RelE/YoeB family of bacterial RNases that are structurally and functionally characterized bacterial toxins.y characterized bacterial toxins. 0 -354370 cl18945 Beta_elim_lyase Beta-eliminating lyase. Early annotation suggested this family, SepSecS, of several eukaryotic and archaeal proteins, was involved in antigen-antibodies responses in the liver and pancreas. Structural studies show that the family is O-phosphoseryl-tRNA(Sec) selenium transferase, an enzyme involved in the synthesis of the amino acid selenocysteine (Sec). Sec is the only amino acid whose biosynthesis occurs on its cognate transfer RNA (tRNA). SepSecS catalyzes the final step in the formation of the amino acid. The early observation that autoantibodies isolated from patients with type I autoimmune hepatitis targeted a ribonucleoprotein complex containing tRNASec led to the identification and characterization of the archaeal and the human SepSecS. SepSecS forms its own branch in the family of fold-type I pyridoxal phosphate (PLP) enzymes that goes back to the last universal common ancestor which explains why the archaeal sequences spcS and MK0229 are annotated as being pyridoxal phosphate-dependent enzymes. 0 -354371 cl18951 Amidase Amidase. Members of this protein family are aminohydrolases related to, but distinct from, glutamyl-tRNA(Gln) amidotransferase subunit A. The best characterized member is the biuret hydrolase of Pseudomonas sp. ADP, which hydrolyzes ammonia from the three-nitrogen compound biuret to yield allophanate. Allophanate is also an intermediate in urea degradation by the urea carboxylase/allophanate hydrolase pathway, an alternative to urease. [Unknown function, Enzymes of unknown specificity] 0 -354372 cl18957 TerD_like Uncharacterized proteins involved in stress response, similar to tellurium resistance terD. The TerD domain is found in TerD family proteins that include the paralogous TerD, TerA, TerE, TerF and TerZ proteins It is found in a stress response operon with TerB and TerC. TerD has a maximum of two calcium-binding sites depending on the conservation of aspartates. It has various fusions to nuclease domains, RNA binding domains, ubiquitin related domains, and metal binding domains. The ter gene products lie at the centre of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing linked to novel pathways. 0 -354373 cl18961 yceG_like proteins similar to Escherichia coli yceG. This family of proteins is found in bacteria. Proteins in this family are typically between 332 and 389 amino acids in length. This family was previously incorrectly annotated and names as aminodeoxychorismate lyase. The structure of YceG was solved by X-ray crystallography. 0 -354374 cl18962 Radical_SAM N/A. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerisation, sulphur insertion, ring formation, anaerobic oxidation and protein radical formation. 0 -276221 cl18967 Csx17_I-U CRISPR/Cas system-associated protein Csx17. Members of this protein family are found exclusively in CRISPR-associated (cas) type I system gene clusters of the Dpsyc subtype. Markers for that type include a variant form of cas3 (model TIGR02621) and the GSU0054-like protein family (model TIGR02165). This family occurs in less than half of known Dpsyc clusters. 0 -354375 cl18968 RNase_H2-B Ribonuclease H2-B is a subunit of the eukaryotic RNase H complex which cleaves RNA-DNA hybrids. RNases H are enzymes that specifically hydrolyze RNA when annealed to a complementary DNA and are present in all living organisms. In yeast RNase H2 is composed of a complex of three proteins (Rnh2Ap, Ydr279p and Ylr154p), this family represents the homologs of Ydr279p. It is not known whether non yeast proteins in this family fulfil the same function. 0 -276222 cl19000 Cas10_III CRISPR/Cas system-associated protein Cas10. Members of this uncommon, sporadically distributed protein family are large (>900 amino acids) and strictly associated, so far, with CRISPR-associated (Cas) gene clusters. Nearby Cas genes always include members of the RAMP superfamily and the six-gene CRISPR-associated RAMP module. Species in which it is found, so far, include three archaea (Methanosarcina mazei, M. barkeri and Methanobacterium thermoautotrophicum) and two bacteria (Thermodesulfovibrio yellowstonii DSM 11347 and Sulfurihydrogenibium azorense). 0 -276223 cl19002 Csf1_U CRISPR/Cas system-associated protein Csf1. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf1 (CRISPR/cas Subtype as in A. ferrooxidans protein 1), as it lies closest to the repeats. 0 -276224 cl19005 Csc1_I-D CRISPR/Cas system-associated protein Csc1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc1 for CRISPR/Cas Subtype Cyano protein 1, as it is often the first gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 0 -276225 cl19006 Cas10d_I-D CRISPR/Cas system-associated protein Cas10d. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family is a CRISPR-associated (Cas) family strictly associated with the Cyano subtype of CRISPR/Cas locus, found in several species of Cyanobacteria and several archaeal species. This family is designated Csc3 for CRISPR/Cas Subtype Cyano protein 3, as it is often the third gene upstream of the core cas genes, cas3-cas4-cas1-cas2. 0 -327494 cl19028 Csm6_III-A CRISPR/Cas system-associated protein Csm6. This entry represents a conserved region of about 150 amino acids found in at least five archaeal and three bacterial species. These species all contain CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). In six of eight species, the protein is encoded the vicinity of a CRISPR/Cas locus. 0 -327495 cl19029 Csx16_III-U CRISPR/Cas system-associated protein Csx16. This entry represents a conserved region of about 95 amino acids found exclusively in species with CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). In all bacterial species that contain this entry, the genes encoding the proteins are in the midst of a cluster of cas (CRISPR-associated) genes. 0 -327496 cl19051 ST7 Suppression of tumorigenicity 7. The ST7 (for suppression of tumorigenicity 7) protein is thought to be a tumor suppressor gene. The molecular function of this protein is uncertain. 0 -354376 cl19054 SDH_N_domain Saccharopine dehydrogenase N-terminal domain. Lysine-oxoglutarate reductase/Saccharopine dehydrogenase (LOR/SDH) is a bifunctional enzyme. This conserved region is commonly found immediately N-terminal to Saccharop_dh (pfam03435) in eukaryotes. 0 -354377 cl19078 REC N/A. This domain is found at the N-terminus of a subset of sigma54-dependent transcriptional activators that are involved in regulation of flagellar motility e.g. FleQ in Pseudomonas aeruginosa. It is clearly related to pfam00072, but lacks the conserved aspartate residue that undergoes phosphorylation in the classic two-component system response regulator (pfam00072). 0 -327499 cl19096 Flavin_utilizing_monoxygenases N/A. Members of this family are F420-binding enzymes with a proven functional N-terminal twin-arginine translocation (TAT) signal. Members are homologous to the cytosolic F420-dependent glucose-6-phosphate dehydrogenase but do not share the same function. 0 -354378 cl19097 TS_Pyrimidine_HMase N/A. This is a family of proteins that are flavin-dependent thymidylate synthases. 0 -354379 cl19102 Fer4_9 4Fe-4S dicluster domain. Domain II of the enzyme dihydroprymidine dehydrogenase binds FAD. Dihydroprymidine dehydrogenase catalyzes the first and rate-limiting step of pyrimidine degradation by converting pyrimidines to the corresponding 5,6- dihydro compounds. This domain carries two Fe4-S4 clusters. 0 -354380 cl19105 Sina N/A. The seven in absentia (sina) gene was first identified in Drosophila. The Drosophila Sina protein is essential for the determination of the R7 pathway in photoreceptor cell development: the loss of functional Sina results in the transformation of the R7 precursor cell to a non- neuronal cell type. The Sina protein contains an N-terminal RING finger domain pfam00097. Through this domain, Sina binds E2 ubiquitin-conjugating enzymes (UbcD1) Sina also interacts with Tramtrack (TTK88) via PHYL. Tramtrack is a transcriptional repressor that blocks photoreceptor determination, while PHYL down-regulates the activity of TTK88. In turn, the activity of PHYL requires the activation of the Sevenless receptor tyrosine kinase, a process essential for R7 determination. It is thought that thus Sina targets TTK88 for degradation, therefore promoting the R7 pathway. Murine and human homologs of Sina have also been identified. The human homolog Siah-1 also binds E2 enzymes (UbcH5) and through a series of physical interactions, targets beta-catenin for ubiquitin degradation. Siah-1 expression is enhanced by p53, itself promoted by DNA damage. Thus this pathway links DNA damage to beta-catenin degradation. Sina proteins, therefore, physically interact with a variety of proteins. The N-terminal RING finger domain that binds ubiquitin conjugating enzymes is described in pfam00097, and does not form part of the alignment for this family. The remainder C-terminal part is involved in interactions with other proteins, and is included in this alignment. In addition to the Drosophila protein and mammalian homologs, whose similarity was noted previously, this family also includes putative homologs from Caenorhabditis elegans, Arabidopsis thaliana. 0 -354381 cl19107 SPFH_like core domain of the SPFH (stomatin, prohibitin, flotillin, and HflK/C) superfamily. This domain is found in the Major Vault Protein and has been called the shoulder domain. This family includes two bacterial proteins, suggesting that some bacteria may possess vault particles. 0 -302764 cl19111 Sir4p-SID_like The SID domain of Saccharomyces cerevisiae silent information regulator 4, a Sir2p interaction domain; and related domains. This is the Sir2 interaction domain (SID domain) of silent information regulator 4 (Sir4). 0 -327504 cl19114 RNAP_largest_subunit_N Largest subunit of RNA polymerase (RNAP), N-terminal domain. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 3, represents the pore domain. The 3' end of RNA is positioned close to this domain. The pore delimited by this domain is thought to act as a channel through which nucleotides enter the active site and/or where the 3' end of the RNA may be extruded during back-tracking. 0 -354382 cl19115 Cupredoxin Cupredoxin superfamily. This family represents the N-terminal non-catalytic domain of protein-arginine deiminase. This domain has a cupredoxin-like fold. 0 -327506 cl19120 SMBP_like Small metal-binding protein conserved in proteobacteria. This histidine-rich protein binds metal ions. 0 -354383 cl19121 ABBA-PTs ABBA-type aromatic prenyltransferases (PTases). This family of proteins represents tryptophan dimethylallyltransferase (EC:2.5.1.34), which catalyzes the first step of ergot alkaloid biosynthesis. Ergot alkaloids, which are produced by endophyte fungi, can enhance plant host fitness, but also cause livestock toxicosis to host plants. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 390 to 465 amino acids in length. 0 -354384 cl19122 PANDER_like Domains similar to the Pancreatic-derived factor. ILEI is a family of proteins found in vertebrates. It is heavily involved in the process of the transition from epithelial to mesenchymal tissue - EMT - during all of embryonic development, cancer progression, metastasis, and chronic inflammation/fibrosis. ILEI is upregulated exclusively at the level of translation, and abnormal ILEI expression, ie cytoplasmic over-expression instead of vesicular localization, is associated with EMT in human cancerous tissue. In order to induce and maintain the EMT of hepatocytes in a TGF-beta-independent fashion ILEI needs the cooperation of oncogenic Ras. 0 -354385 cl19123 lytB_ispH 4-hydroxy-3-methylbut-2-enyl diphosphate reductase. The mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in many eubacteria, plants, and the malaria parasite. The LytB gene is involved in the trunk line of the MEP pathway. 0 -354386 cl19148 Molybdop_Fe4S4 Molybdopterin oxidoreductase Fe4S4 domain. The molybdopterin oxidoreductase Fe4S4 domain is found in a number of reductase/dehydrogenase families, which include the periplasmic nitrate reductase precursor and the formate dehydrogenase alpha chain. 0 -354387 cl19167 Bac_export_2 FlhB HrpN YscU SpaS Family. type III secretion system protein HrcU; Validated 0 -354388 cl19182 FlgH Flagellar L-ring protein. flagellar basal body L-ring protein; Reviewed 0 -354389 cl19186 Amidinotransf Amidinotransferase. Peptidyl-arginine deiminase (PAD) enzymes catalyze the deimination of the guanidino group from carboxy-terminal arginine residues of various peptides to produce ammonia. PAD from Porphyromonas gingivalis (PPAD) appears to be evolutionarily unrelated to mammalian PAD (pfam03068), which is a metalloenzyme. PPAD is thought to belong to the same superfamily as aminotransferase and arginine deiminase, and to form an alpha/beta propeller structure. This family has previously been named PPADH (Porphyromonas peptidyl-arginine deiminase homologs). The predicted catalytic residues in PPAD are Asp130, Asp187, His236, Asp238 and Cys351. These are absolutely conserved with the exception of Asp187 which is absent in two family members. PPAD is also able to catalyze the deimination of free L-arginine, but has primarily peptidyl-arginine specificity. It may have a FMN cofactor. 0 -327514 cl19188 PL-6 Polysaccharide Lyase Family 6. This family includes chondroitinases. These enzymes cleave the glycosaminoglycan dermatan sulfate. 0 -327515 cl19190 Flavoprotein Flavoprotein. phosphopantothenoylcysteine decarboxylase; Validated 0 -354390 cl19192 LolA_fold-like family containing periplasmic molecular chaperone LolA, the outer membrane lipoprotein receptor LolB and the periplasmic protein RseB. This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -354391 cl19194 Phage_portal Phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage capsid and the tail proteins. 0 -354392 cl19197 Complex1_30kDa Respiratory-chain NADH dehydrogenase, 30 Kd subunit. This model describes the C subunit of the NADH dehydrogenase complex I in bacteria, as well as many instances of the corresponding mitochondrial subunit (NADH dehydrogenase subunit 9) and of the F420H2 dehydrogenase in Methanosarcina. Complex I contains subunits designated A-N. This C subunit often occurs as a fusion protein with the D subunit. This model excludes the NAD(P)H and plastoquinone-dependent form of chloroplasts and [Energy metabolism, Electron transport] 0 -354393 cl19201 HypA Hydrogenase/urease nickel incorporation, metallochaperone, hypA. CXXC-~12X-CXXC and genetically seems a regulatory protein. In Hpylori, hypA mutant abolished hydrogenase activity and decrease in urease activity. Nickel supplementation in media restored urease activity and partial hydrogenase activity. HypA probably involved in inserting Ni in enzymes. [Protein fate, Protein modification and repair] 0 -354394 cl19212 PTH2_family N/A. Peptidyl-tRNA hydrolases are enzymes that release tRNAs from peptidyl-tRNA during translation. 0 -327522 cl19215 CoA_transf_3 CoA-transferase family III. Members of this protein family belong by homology to the family of CoA transferases. However, the characterized member from Chloroflexus aurantiacus appears to perform an intramolecular transfer, making it an isomerase. The enzyme converts mesaconyl-C1-CoA to mesaconyl-C4-CoA as part of the bicyclic 3-hydroxyproprionate pathway for carbon fixation. 0 -354395 cl19217 SBF Sodium Bile acid symporter family. These family members are 7TM putative membrane transporter proteins. The family is similar to the SBF family of bile-acid symporters, pfam01758. 0 -354396 cl19219 FapA Flagellar Assembly Protein A. This is a family of bactofilins, a functionally diverse class of cytoskeletal, polymer-forming, proteins that is widely conserved among bacteria. In the example species C. crescentus, two bactofilins assemble into a membrane-associated laminar structure that shows cell-cycle-dependent polar localization and acts as a platform for the recruitment of a cell wall biosynthetic enzyme involved in polar morphogenesis. Bactofilins display distinct subcellular distributions and dynamics in different bacterial species, suggesting that they are versatile structural elements that have adopted a range of different cellular functions. 0 -327525 cl19223 G_glu_transpept Gamma-glutamyltranspeptidase. gamma-glutamyltranspeptidase; Reviewed 0 -354397 cl19224 TGT Queuine tRNA-ribosyltransferase. queuine tRNA-ribosyltransferase; Provisional 0 -354398 cl19237 DUF45 Protein of unknown function DUF45. This family represents a domain found in eukaryotes and prokaryotes. The domain contains a characteristic motif of the zinc metallopeptidases. This family includes the bacterial SprT protein. 0 -354399 cl19248 CHAT CHAT domain. These proteins appear to be related to peptidases in peptidase clan CD that includes the caspases. This domain has been termed the CHAT domain for Caspase HetF Associated with Tprs. This family has been identified as a sister group to the separins. 0 -354400 cl19251 zf-ZPR1 ZPR1 zinc-finger domain. An orthologous protein found once in each of the completed archaeal genomes corresponds to a zinc finger-containing domain repeated as the N-terminal and C-terminal halves of the mouse protein ZPR1. ZPR1 is an experimentally proven zinc-binding protein that binds the tyrosine kinase domain of the epidermal growth factor receptor (EGFR); binding is inhibited by EGF stimulation and tyrosine phosphorylation, and activation by EGF is followed by some redistribution of ZPR1 to the nucleus. By analogy, other proteins with the ZPR1 zinc finger domain may be regulatory proteins that sense protein phosphorylation state and/or participate in signal transduction. 0 -354401 cl19252 MreC rod shape-determining protein MreC. rod shape-determining protein MreC; Provisional 0 -354402 cl19253 YcaO YcaO cyclodehydratase, ATP-ad Mg2+-binding. Members of this protein family include enzymes related to SagD, previously referred to as a scaffold or docking protein involved in the biosynthesis of streptolysin S in Streptococcus pyogenes from the protoxin polypeptide (product of the sagA gene). Newer evidence describes an enzymatic activity, an ATP-dependent cyclodehydration reaction, previously ascribed to the SagC component. This protein family serves as a marker for widely distributed prokaryotic systems for making a general class of heterocycle-containing bacteriocins. 0 -354403 cl19280 FlgI Flagellar P-ring protein. flagellar basal body P-ring protein; Provisional 0 -354404 cl19284 Ribosomal_L37ae Ribosomal L37ae protein family. This model finds eukaryotic ribosomal protein eL43 (previously L37a) and its archaeal orthologs. The nomeclature is tricky because eukaryotes have proteins called both L37 and L37a. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -354405 cl19285 SmpA_OmlA SmpA / OmlA family. Structure 3D4E shared structural similarity to beta-lactamase inhibitory proteins (BLIP) which already include 1XXM, 1S0W, 1JTG, 2G2U, 2G2W, 2B5R, and 3due. All of structures are involved in beta-lactamase inhibitor complex. (REF http://www.topsan.org/Proteins/JCSG/3d4e) 0 -302813 cl19288 RhaT L-rhamnose-proton symport protein (RhaT). Members of this family fall in to the drug/metabolite transporter (dmt) superfamily. They carry 10xTM domains arranged as 5+5. Although these two sets may originally have arisen by gene-duplication the divergence now is such that the two halves are no longer homologous. 0 -354406 cl19294 ApbE ApbE family. thiamine biosynthesis lipoprotein ApbE; Provisional 0 -354407 cl19297 COG2 COG (conserved oligomeric Golgi) complex component, COG2. This Sec5 family of eukaryotic proteins conserved is not representing the Sec5-Ral binding site. 0 -354408 cl19308 MdoG Periplasmic glucan biosynthesis protein, MdoG. glucan biosynthesis protein G; Provisional 0 -354409 cl19310 CT_C_D Carboxyltransferase domain, subdomain C and D. This domain represents subunit 1 of allophanate hydrolase (AHS1). 0 -354410 cl19311 Urocanase Urocanase Rossmann-like domain. urocanate hydratase; Provisional 0 -354411 cl19312 FdhE Protein involved in formate dehydrogenase formation. formate dehydrogenase accessory protein FdhE; Provisional 0 -354412 cl19356 PmbA_TldD Putative modulator of DNA gyrase. peptidase PmbA; Provisional 0 -354413 cl19360 DegV Uncharacterized protein, DegV family COG1307. This is the kinase domain of the dihydroxyacetone kinase family. 0 -354414 cl19362 Coprogen_oxidas Coproporphyrinogen III oxidase. coproporphyrinogen III oxidase; Provisional 0 -354415 cl19374 Diphthamide_syn Putative diphthamide synthesis protein. Members of this family are the archaeal protein Dph2, members of the universal archaeal protein family designated arCOG04112. The chemical function of this protein is analogous to the radical SAM family (pfam04055), although the sequence is not homologous. The chemistry involves [4Fe-4S]-aided formation of a 3-amino-3-carboxypropyl radical rather than the canonical 5'-deoxyadenosyl radical of the radical SAM family. 0 -327545 cl19388 COX15-CtaA Cytochrome oxidase assembly protein. cytochrome c oxidase assembly protein; Provisional 0 -354416 cl19398 Rep_3 Initiator Replication protein. Members of this family of bacterial proteins are single-stranded DNA binding proteins that are involved in DNA replication, repair and recombination. 0 -354417 cl19401 FUSC_2 Fusaric acid resistance protein-like. This family consists of bacterial proteins with three transmembrane regions that are purported to be aromatic acid exporters. 0 -327549 cl19409 Cad Cadmium resistance transporter. These proteins are members of the Cadmium Resistance (CadD) Family (TC 2.A.77). To date, this family of proteins has only been found in Gram-positive bacteria. The CadD family includes several closely related Staphylococcal proteins reported to function in cadmium resistance. Members are predicted to span the membrane five times; the mechanism of resistance is believed to be export but has also been suggested to be binding and sequestration in the membrane. Closely related but outside the scope of this model is another staphylococcal protein that has been reported to possibly function in quaternary ammonium ion export. Still more distant are other members of the broader LysE family (see Vrljic. et al, ). [Transport and binding proteins, Amino acids, peptides and amines] 0 -327550 cl19414 Glt_symporter Sodium/glutamate symporter. [Transport and binding proteins, Amino acids, peptides and amines] 0 -327551 cl19416 GRDB Glycine/sarcosine/betaine reductase selenoprotein B (GRDB). Members of this family form the PrdB subunit, usually a selenoprotein, in the D-proline reductase complex. The usual pathway is conversion of L-protein to D-proline by a racemase, then use of D-proline as an electron acceptor coupled to ATP generation under anaerobic conditions. 0 -354419 cl19417 FYDLN_acid Protein of unknown function (FYDLN_acid). Members of this family are bacterial proteins with a conserved motif [KR]FYDLN, sometimes flanked by a pair of CXXC motifs, followed by a long region of low complexity sequence in which roughly half the residues are Asp and Glu, including multiple runs of five or more acidic residues. The function of members of this family is unknown. 0 -267771 cl19418 PrpF PrpF protein. The 2-methylcitrate cycle is one of at least five degradation pathways for propionate via propionyl-CoA. Degradation of propionate toward pyruvate consumes oxaloacetate and releases succinate. Oxidation of succinate back into oxaloacetate by the TCA cycle makes the 2-methylcitrate pathway a cycle. This family consists of PrpF, an incompletely characterized protein that appears to be an essential accessory protein for the Fe/S-dependent 2-methylisocitrate dehydratase AcnD (TIGR02333). This protein is related to but distinct from FldA (part of pfam04303), a putative fluorene degradation protein of Sphingomonas sp. LB126. [Energy metabolism, Fermentation] 0 -327553 cl19419 DUF2263 Uncharacterized protein conserved in bacteria (DUF2263). Members of this uncharacterized protein family are found in Streptomyces, Nostoc sp. PCC 7120, Clostridium acetobutylicum, Lactobacillus johnsonii NCC 533, Deinococcus radiodurans, and Pirellula sp. for a broad but sparse phylogenetic distibution that at least suggests lateral gene transfer. 0 -327554 cl19420 Spore_IV_A Stage IV sporulation protein A (spore_IV_A). A comparative genome analysis of all sequenced genomes of shows a number of proteins conserved strictly among the endospore-forming subset of the Firmicutes. This protein, a member of this panel, is designated stage IV sporulation protein A. It acts in the mother cell compartment and plays a role in spore coat morphogenesis. [Cellular processes, Sporulation and germination] 0 -302859 cl19421 RHSP Retrotransposon hot spot protein. This model describes full-length and part-length members of the RHS (retrotransposon hot spot) family in Trypanosoma brucei and Trypanosoma cruzi. Members of this family are frequently interrupted by non-LTR retrotransposons inserted at exactly the same relative position. 0 -267777 cl19424 GCH_III GTP cyclohydrolase III. GTP cyclohydrolase III; Provisional 0 -354420 cl19428 TrbH Conjugal transfer protein TrbH. conjugal transfer protein TrbH; Provisional 0 -354421 cl19470 PTS_2-RNA RNA 2'-phosphotransferase, Tpt1 / KptA family. RNA 2'-phosphotransferase; Reviewed 0 -354422 cl19471 DUF945 Bacterial protein of unknown function (DUF945). hypothetical protein; Provisional 0 -354423 cl19472 Lipoprotein_16 Uncharacterized lipoprotein. hypothetical protein; Provisional 0 -327559 cl19473 DUF1846 Domain of unknown function (DUF1846). hypothetical protein; Provisional 0 -354424 cl19474 TraV Type IV conjugative transfer system lipoprotein (TraV). The TraV protein is a component of conjugative type IV secretion systems. TraV is an outer membrane lipoprotein and is believed to interact with the secretin TraK. The alignment contains three conserved cysteines in the N-terminal half. 0 -354425 cl19475 TraN Type-1V conjugative transfer system mating pair stabilisation. TraN is a large cysteine-rich outer membrane protein involved in the mating-pair stabilization (adhesin) component of the F-type conjugative plamid transfer system. TraN is believed to interact with the core type IV secretion system apparatus through the TraV protein. 0 -327562 cl19477 Sulf_transp Sulphur transport. For 79 of the first 80 reference genomes in which a member of this protein family, YedE, is found, a selenium utilization system is found, spread over a broad taxonomic range (Firmicutes, spirochetes, delta-proteobacteria, Fusobacteria, Bacteriodes, etc. This family is less widespread than YedF, also involved in selenium metabolism. 0 -354426 cl19481 LON Found in ATP-dependent protease La (LON). N-terminal domain of the ATP-dependent protease La (LON), present also in other bacterial ORFs. 0 -302875 cl19482 Peptidase_M8 Leishmanolysin. Glycoprotein GP63 (leishmanolysin); Provisional 0 -327564 cl19485 AMA-1 Apical membrane antigen 1. apical membrane antigen 1; Provisional 0 -354427 cl19499 UPF0061 Uncharacterized ACR, YdiU/UPF0061 family. hypothetical protein; Validated 0 -354428 cl19501 Mut7-C Mut7-C RNAse domain. RNAse domain of the PIN fold with an inserted Zinc Ribbon at the C-terminus. 0 -354429 cl19503 TadB Flp pilus assembly protein TadB [Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. 0 -354430 cl19504 SpoVR SpoVR like protein. SpoVR family protein; Provisional 0 -354431 cl19505 CreA CreA protein. hypothetical protein; Provisional 0 -354432 cl19506 RraB Regulator of ribonuclease activity B. RNase E inhibitor protein; Provisional 0 -354433 cl19507 Lipoprotein_18 NlpB/DapX lipoprotein. lipoprotein; Provisional 0 -327572 cl19509 Fibrillarin_2 Fibrillarin-like archaeal protein. Members of this protein family are HmdC, whose gene regularly occurs in the context of genes for HmdA (5,10-methenyltetrahydromethanopterin hydrogenase) and the radical SAM protein HmdB involved in biosynthesis of the HmdA cofactor. Bioinformatics suggests this protein, a homolog of eukaryotic fibrillarin, may be involved in biosynthesis of the guanylyl pyridinol cofactor in HmdA. [Protein fate, Protein modification and repair, Energy metabolism, Methanogenesis] 0 -327573 cl19510 EutB Ethanolamine ammonia lyase large subunit (EutB). ethanolamine ammonia lyase large subunit; Provisional 0 -327574 cl19511 BshC Bacillithiol biosynthesis BshC. Members of this protein family are BshC, an enzyme required for bacillithiol biosynthesis and described as a cysteine-adding enzyme. Bacillithiol is a low-molecular-weight thiol, an analog of glutathione and mycothiol, and is found largely in the Firmicutes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 0 -354434 cl19519 FKBP_C FKBP-type peptidyl-prolyl cis-trans isomerase. This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides species. Distant homology prediction algorithms consistently suggest a homology between this family and FKBP-type peptidyl-prolyl cis-trans isomerases (PF00254), but this relation is as yet not confirmed. The function of this family is unknown. 0 -354435 cl19522 PK_C Pyruvate kinase, alpha/beta domain. As well as being found in pyruvate kinase this family is found as an isolated domain in some bacterial proteins. 0 -327577 cl19527 SWIM SWIM zinc finger. This domain is found in bacterial, archaeal and eukaryotic proteins. It is predicted to be organized into two N-terminal beta-strands and a C-terminal alpha helix, thus possibly adopting a fold similar to that of the C2H2 zinc finger (pfam00096). SWIM is thought to be a versatile domain that can interact with DNA or proteins in different contexts. 0 -327578 cl19531 Phage_prot_Gp6 Phage portal protein, SPP1 Gp6-like. This model represents one of several distantly related families of phage portal protein. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. It functions as a dodecamer of a single polypeptide of average mol. wt. of 40-90 KDa. [Mobile and extrachromosomal element functions, Prophage functions] 0 -327580 cl19541 Head-tail_con Bacteriophage head to tail connecting protein. hypothetical protein 0 -354437 cl19543 Metallothio Metallothionein. This is a family of eukaryotic metallothioneins. 0 -302911 cl19548 DUF515 Protein of unknown function (DUF515). Family of hypothetical Archaeal proteins. 0 -327582 cl19549 DUF505 Protein of unknown function (DUF505). Family of uncharacterized prokaryotic proteins. 0 -354438 cl19551 Monooxygenase_B Monooxygenase subunit B protein. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit B of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 0 -354439 cl19557 DUF1016 Protein of unknown function (DUF1016). Family of uncharacterized proteins found in viruses, archaea and bacteria. 0 -327585 cl19561 DNA_circ_N DNA circularisation protein N-terminus. This family represents the N-terminus (approximately 100 residues) of a number of phage DNA circularisation proteins. 0 -302922 cl19562 PAS_5 PAS domain. This family contains a number of hypothetical bacterial proteins of unknown function approximately 200 residues long. This region is is distantly similar to other PAS domains. 0 -302924 cl19566 RE_Alw26IDE Type II restriction endonuclease (RE_Alw26IDE). Members of this family are type II restriction endonucleases of the Alw26I/Eco31I/Esp3I family. Characterized specificities of three members are GGTCTC, CGTCTC, and the shared subsequence GTCTC. [DNA metabolism, Restriction/modification] 0 -354440 cl19567 DSL Delta serrate ligand. 0 -354441 cl19568 wnt wnt family. Wnt genes have been identified in vertebrates and invertebrates but not in plants, unicellular eukaryotes or prokaryotes. In humans, 19 WNT proteins are known. Because of their insolubility little is known about Wnt protein structure, but all have 23 or 24 Cys residues whose spacing is highly conserved. Signal transduction by Wnt proteins (including the Wnt/beta-catenin, the Wnt/Ca++, and the Wnt/polarity pathway) is mediated by receptors of the Frizzled and LDL-receptor-related protein (LRP) families. 0 -354442 cl19569 VPS9 Vacuolar sorting protein 9 (VPS9) domain. Domain present in yeast vacuolar sorting protein 9 and other proteins. 0 -327589 cl19573 Pyr_excise Pyrimidine dimer DNA glycosylase. Members of this protein are found in a small number of taxonomically well separated species, yet are strongly conserved, suggesting lateral gene transfer. Members are found in Treponema denticola, Clostridium acetobutylicum, and several of the Firmicutes. The function of this protein is unknown. [Hypothetical proteins, Conserved] 0 -327590 cl19574 Salt_tol_Pase Glucosylglycerol-phosphate phosphatase (Salt_tol_Pase). Proteins in this family are glucosylglycerol-phosphate phosphatase, with the gene symbol stpA (Salt Tolerance Protein A). A motif characteristic of acid phosphatases is found, but otherwise this family shows little sequence similarity to other phosphatases. This enzyme acts on the glucosylglycerol phosphate, product of glucosylglycerol phosphate synthase and immediate precursor of the osmoprotectant glucosylglycerol. 0 -302930 cl19575 HrpB4 Bacterial type III secretion protein (HrpB4). This family of genes are always found in type III secretion operons in a limited number of species including Burkholderia, Xanthomonas and Ralstonia. 0 -327591 cl19576 HrpB1_HrpK Bacterial type III secretion protein (HrpB1_HrpK). This gene is found within type III secretion operons in a limited range of species including Xanthomonas, Ralstonia and Burkholderia. 0 -327592 cl19579 Peptidase_U4 Sporulation factor SpoIIGA. Members of this protein family are the stage II sporulation protein SpoIIGA. This protein acts as an activating protease for Sigma-E, one of several specialized sigma factors of the sporulation process in Bacillus subtilis and related endospore-forming bacteria. [Cellular processes, Sporulation and germination] 0 -354443 cl19580 pip_yhgE_Nterm YhgE/Pip N-terminal domain. Members of this family are associated with type VII secretion of WXG100 family targets in the Firmicutes, but not in the Actinobacteria. This model represents the conserved N-terminal domain. 0 -267934 cl19581 COG4008 Predicted metal-binding transcription factor, methanogenesis marker domain 9 [Transcription]. A gene for a protein that contains a copy of this domain, to date, is found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it. A 69-amino acid core region of this 110-amino acid domain contains eight invariant Cys residues, including two copies of a motif [WFY]CCxxKPC. These motifs could be consistent with predicted metal-binding transcription factor as was suggested for the COG4008 family. Some members of this family have an additional N-terminal domain of about 250 amino acids from the nifR3 family of predicted TIM-barrel proteins. 0 -327594 cl19585 Caud_tail_N Caudoviral major tail protein N-terminus. tail protein 0 -327595 cl19592 Zn_ribbon_recom Recombinase zinc beta ribbon domain. This is a viral family of phage zinc-binding transcriptional activators, which also contains cryptic members in some bacterial genomes. The P4 phage delta protein contains two such domains attached covalently, while the P2 phage Ogr proteins possess one domain but function as dimers. All the members of this family have the following consensus sequence: C-X(2)-C-X(3)-A-(X)2-R-X(15)-C-X(4)-C-X(3)-F. This family also includes zinc fingers in recombinase proteins. 0 -354444 cl19596 Peptidase_M29 Thermophilic metalloprotease (M29). 0 -302938 cl19597 SPAN Surface presentation of antigens protein. antigen presentation protein SpaN; Provisional 0 -302951 cl19613 IpgD Enterobacterial virulence protein IpgD. inositol phosphate phosphatase SopB; Provisional 0 -354445 cl19614 Phage_term_smal Phage small terminase subunit. terminase endonuclease subunit; Provisional 0 -354446 cl19619 FBPase_2 Firmicute fructose-1,6-bisphosphatase. This family consists of several bacterial fructose-1,6-bisphosphatase proteins (EC:3.1.3.11) which seem to be specific to phylum Firmicutes. Fructose-1,6-bisphosphatase (FBPase) is a well known enzyme involved in gluconeogenesis. This family does not seem to be structurally related to pfam00316. 0 -327599 cl19620 Acetone_carb_G Acetone carboxylase gamma subunit. Acetone carboxylase is the key enzyme of bacterial acetone metabolism, catalyzing the condensation of acetone and CO(2) to form acetoacetate. 0 -354447 cl19622 Plasmid_RAQPRD Plasmid protein of unknown function (Plasmid_RAQPRD). This model represents a small family of proteins about 100 amino acids in length, including a predicted signal sequence and a perfectly conserved motif RAQPRD towards the C-terminus. Members are found in the Pseudomonas putida TOL plasmid pWW0 and in cryptic plasmid regions of Salmonella enterica subsp. enterica serovar Typhi and Pseudomonas syringae DC3000. The function is unknown. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -327601 cl19623 ArsR ArsR transcriptional regulator. Members of this family of archaeal proteins are conserved transcriptional regulators belonging to the ArsR family. 0 -327602 cl19625 DUF2314 Uncharacterized protein conserved in bacteria (DUF2314). This domain is found in various bacterial hypothetical proteins, as well as putative ankyrin repeat proteins. The exact function of the domains comprising this family has not, as yet, been determined. 0 -302961 cl19626 DUF2321 Uncharacterized protein conserved in bacteria (DUF2321). Members of this family of hypothetical bacterial proteins have no known function. 0 -327603 cl19627 GlnD_UR_UTase GlnD PII-uridylyltransferase. This domain is found associated with presumed nucleotidyltransferase domains and seems to be distantly related to other helical substrate binding domains. 0 -354448 cl19633 DUF2799 Protein of unknown function (DUF2799). lipoprotein; Provisional 0 -327605 cl19646 DUF4138 Domain of unknown function (DUF4138). Members of this family are the TraN protein encoded by transfer region genes of conjugative transposons of Bacteroides. The family is related to conjugative transfer proteins VirB9 and TrbG of Agrobacterium Ti plasmids. [Cellular processes, DNA transformation] 0 -327606 cl19720 DUF4370 Domain of unknown function (DUF4370). Uncharacterized protein At1g47420 0 -354449 cl19721 CAAD CAAD domains of cyanobacterial aminoacyl-tRNA synthetase. photosystem I P subunit (PSI-P) 0 -354450 cl19726 DUF2884 Protein of unknown function (DUF2884). hypothetical protein; Provisional 0 -354451 cl19727 DUF1451 Zinc-ribbon containing domain. hypothetical protein; Provisional 0 -354452 cl19728 TraT Enterobacterial TraT complement resistance protein. conjugal transfer surface exclusion protein TraT; Provisional 0 -354453 cl19729 COG2888 Predicted RNA-binding protein involved in translation, contains Zn-ribbon domain, DUF1610 family [General function prediction only]. putative Zn-ribbon RNA-binding protein; Provisional 0 -354454 cl19730 Wzz Chain length determinant protein. Vi polysaccharide export inner membrane protein VexD; Provisional 0 -302980 cl19731 SipA Salmonella invasion protein A. pathogenicity island 1 effector protein SipA; Provisional 0 -354455 cl19736 NlpE NlpE N-terminal domain. lipoprotein involved with copper homeostasis and adhesion; Provisional 0 -327615 cl19737 DUF979 Protein of unknown function (DUF979). This family consists of several putative bacterial membrane proteins. The function of this family is unclear. 0 -354456 cl19739 DUF1131 Protein of unknown function (DUF1131). RpoE-regulated lipoprotein; Provisional 0 -354457 cl19740 DUF1272 Protein of unknown function (DUF1272). This family consists of several hypothetical bacterial proteins of around 80 residues in length. This family contains a number of conserved cysteine residues and its function is unknown. 0 -354458 cl19744 zf-UBR Putative zinc finger in N-recognin (UBR box). Domain is involved in recognition of N-end rule substrates in yeast Ubr1p 0 -327620 cl19745 Ins145_P3_rec Inositol 1,4,5-trisphosphate/ryanodine receptor. This domain corresponds to the ligand binding region on inositol 1,4,5-trisphosphate receptor, and the N terminal region of the ryanodine receptor. Both receptors are involved in Ca2+ release. They can couple to the activation of neurotransmitter-gated receptors and voltage-gated Ca2+ channels on the plasma membrane, thus allowing the endoplasmic reticulum discriminate between different types of neuronal activity. 0 -354459 cl19746 GDNF GDNF/GAS1 domain. This cysteine rich domain is found in multiple copies in GNDF and GAS1 proteins. GDNF and neurturin (NTN) receptors are potent survival factors for sympathetic, sensory and central nervous system neurons.. GDNF and neurturin promote neuronal survival by signaling through similar multicomponent receptors that consist of a common receptor tyrosine kinase and a member of a GPI-linked family of receptors that determines ligand specificity. 0 -354460 cl19747 BetaGal_dom2 Beta-galactosidase, domain 2. This is the second domain of the five-domain beta-galactosidase enzyme that altogether catalyses the hydrolysis of beta(1-3) and beta(1-4) galactosyl bonds in oligosaccharides as well as the inverse reaction of enzymatic condensation and trans-glycosylation. This domain is made up of 16 antiparallel beta-strands and an alpha-helix at its C terminus. The fold of this domain appears to be unique. In addition, the last seven strands of the domain form a subdomain with an immunoglobulin-like (I-type Ig) fold in which the first strand is divided between the two beta-sheets. In penicillin spp this strand is interrupted by a 12-residue insertion which forms an additional edge-strand to the second beta-sheet of the sub-domain. The remainder of the second domain forms a series of beta-hairpins at its N terminus, four strands of which are contiguous with part of the Ig-like sub-domain, forming in total a seven-stranded antiparallel beta-sheet. This domain is associated with family Glyco_hydro_35, which is N-terminal to it, but itself has no metazoan members. 0 -327623 cl19751 bPH_4 Bacterial PH domain. This family of proteins with unknown function appear to be related to bacterial PH domains. This family was formerly known as DUF2679. 0 -354461 cl19752 DUF2145 Uncharacterized protein conserved in bacteria (DUF2145). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -354462 cl19753 DUF2154 Cell wall-active antibiotics response 4TMS YvqF. 0 -276272 cl19755 heavy_Cys_CGP heavy-Cys/CGP-CTERM domain protein. In this domain of about 50 residues, eight of twelve invariant residues are Cys. Proteins with this domain tend to have N-terminal signal sequences, suggesting an extracytoplasmic location for this domain. 0 -354463 cl19756 I_LWEQ I/LWEQ domain. Thought to possess an F-actin binding function. 0 -302999 cl19758 FH2 Formin Homology 2 Domain. FH proteins control rearrangements of the actin cytoskeleton, especially in the context of cytokinesis and cell polarisation. Members of this family have been found to interact with Rho-GTPases, profilin and other actin-assoziated proteins. These interactions are mediated by the proline-rich FH1 domain, usually located in front of FH2 (but not listed in SMART). Despite this cytosolic function, vertebrate formins have been assigned functions within the nucleus. A set of Formin-Binding Proteins (FBPs) has been shown to bind FH1 with their WW domain. 0 -327627 cl19760 IBR IBR domain, a half RING-finger domain. the domains occurs between pairs og RING fingers 0 -327628 cl19763 BOP1NT BOP1NT (NUC169) domain. This N terminal domain is found in BOP1-like WD40 proteins. 0 -327629 cl19764 COG6 Conserved oligomeric complex COG6. COG6 is a component of the conserved oligomeric golgi complex, which is composed of eight different subunits and is required for normal golgi morphology and localisation. 0 -354464 cl19765 mTERF mTERF. MOC1-like protein; Provisional 0 -354465 cl19816 Hydantoinase_B Hydantoinase B/oxoprolinase. This family includes N-methylhydaintoinase B which converts hydantoin to N-carbamyl-amino acids, and 5-oxoprolinase EC:3.5.2.9 which catalyzes the formation of L-glutamate from 5-oxo-L-proline. These enzymes are part of the oxoprolinase family and are related to pfam01968. 0 -354466 cl19817 UreF UreF. This family consists of the Urease accessory protein UreF. The urease enzyme (urea amidohydrolase) hydrolyzes urea into ammonia and carbamic acid. UreF is proposed to modulate the activation process of urease by eliminating the binding of nickel irons to noncarbamylated protein. 0 -327633 cl19818 DUF106 Integral membrane protein DUF106. This archaebacterial protein family has no known function. Members are predicted to be integral membrane proteins. 0 -303008 cl19819 DUF499 Protein of unknown function (DUF499). Family of uncharacterized hypothetical prokaryotic proteins. 0 -303009 cl19820 DUF530 Protein of unknown function (DUF530). Family of hypothetical archaeal proteins. 0 -327634 cl19821 DUF166 Domain of unknown function. This family catalyzes the synthesis of thymidine monophosphate (dTMP) from deoxyuridine monophosphate (dUMP). The physiological co-substrate has not yet been identified. Previous designation of this famliy as being thymidylate synthase from one paper, PMID:10436953, has been shown to be erroneous. The proteins are uncharacterized. 0 -354467 cl19822 DUF362 Domain of unknown function (DUF362). Domain that is sometimes present in iron-sulphur proteins. 0 -327636 cl19823 GtrA GtrA-like protein. Members of this family are predicted to be integral membrane proteins with three or four transmembrane spans. They are involved in the synthesis of cell surface polysaccharides. The GtrA family are a subset of this family. GtrA is predicted to be an integral membrane protein with 4 transmembrane spans. It is involved is in O antigen modification by Shigella flexneri bacteriophage X (SfX), but does not determine the specificity of glucosylation. Its function remains unknown, but it may play a role in translocation of undecaprenyl phosphate linked glucose (UndP-Glc) across the cytoplasmic membrane. Another member of this family is a DTDP-glucose-4-keto-6-deoxy-D-glucose reductase, which catalyzes the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-D-fucose, which is involved in the biosynthesis of the serotype-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans Y4 (serotype b). This family also includes the teichoic acid glycosylation protein, GtcA, which is a serotype-specific protein in some Listeria innocua and monocytogenes strains. Its exact function is not known, but it is essential for decoration of cell wall teichoic acids with glucose and galactose. 0 -354468 cl19824 Alpha-E A predicted alpha-helical domain with a conserved ER motif. An uncharacterized alpha helical domain containing a highly conserved ER motif and typically found as a tandem duplication. Contextual analysis suggests that it functions in a distinct peptide synthesis/modification system comprising of a transglutaminase, a peptidase of the NTN-hydrolase superfamily, an active and inactive circularly permuted ATP-grasp domains and a transglutaminase fused N-terminal to a circularly permuted COOH-NH2 ligase domain. 0 -303014 cl19825 Zn_peptidase Putative neutral zinc metallopeptidase. Members of this family have a predicted zinc binding motif characteristic of neutral zinc metallopeptidases (Prosite:PDOC00129). 0 -327638 cl19826 FmdA_AmdA Acetamidase/Formamidase family. This family includes amidohydrolases of formamide EC:3.5.1.49 and acetamide. Methylophilus methylotrophus FmdA forms a homotrimer suggesting all the members of this family also do. 0 -354469 cl19828 DUF2309 Uncharacterized protein conserved in bacteria (DUF2309). Members of this family of hypothetical bacterial proteins have no known function. 0 -354470 cl19829 DUF333 Domain of unknown function (DUF333). This small domain of about 70 residues is found in a number of bacterial proteins. It is found at the N-terminus the of AF_1947 protein. The proteins containing this domain are uncharacterized. 0 -354471 cl19830 PilN Fimbrial assembly protein (PilN). 0 -354472 cl19831 PilP Pilus assembly protein, PilP. The PilP family are periplasmic proteins involved in the biogenesis of type IV pili. 0 -327643 cl19832 DIT1_PvcA Pyoverdine/dityrosine biosynthesis protein. DIT1 is involved in synthesising dityrosine. Dityrosine is a sporulation-specific component of the yeast ascospore wall that is essential for the resistance of the spores to adverse environmental conditions. Pyoverdine biosynthesis protein PvcA is involved in the biosynthesis of pyoverdine, a cyclized isocyano derivative of tyrosine. It has a modified Rossmann fold. 0 -354473 cl19833 HTH_42 Winged helix DNA-binding domain. This family contains two copies of a winged helix domain. 0 -354474 cl19834 DUF2066 Uncharacterized protein conserved in bacteria (DUF2066). This domain, found in various prokaryotic proteins, has no known function. 0 -327646 cl19836 DUF2072 Zn-ribbon containing protein. This archaeal protein has no known function. 0 -327647 cl19837 DUF790 Protein of unknown function (DUF790). This family consists of several hypothetical archaeal proteins of unknown function. 0 -354475 cl19838 DUF4190 Domain of unknown function (DUF4190). Family of uncharacterized proteins found in bacteria and archaea. 0 -354476 cl19839 TfuA TfuA-like protein. This family consists of a group of sequences that are similar to a region of TfuA protein. This protein is involved in the production of trifolitoxin (TFX), an gene-encoded, post-translationally modified peptide antibiotic. The role of TfuA in TFX synthesis is unknown, and it may be involved in other cellular processes. 0 -354477 cl19841 Glyco_hydro_125 Metal-independent alpha-mannosidase (GH125). This family, which contains bacterial and fungal glycoside hydrolases, is also known as GH125. They function as metal-independent alpha-mannosidases, with specificity for alpha-1,6-linked non-reducing terminal mannose residues. Structurally this family is part of the 6 hairpin glycosidase superfamily. 0 -327651 cl19842 DUF2213 Uncharacterized protein conserved in bacteria (DUF2213). Members of this family of bacterial proteins comprise various hypothetical and phage-related proteins. The exact function of these proteins has not, as yet, been determined. 0 -354478 cl19843 DUF871 Bacterial protein of unknown function (DUF871). This family consists of several conserved hypothetical proteins from bacteria and archaea. The function of this family is unknown. 0 -354479 cl19844 Metal_hydrol Predicted metal-dependent hydrolase. Members of this family of proteins comprise various bacterial transition metal-dependent hydrolases. 0 -354480 cl19845 NAGPA Phosphodiester glycosidase. This is a family conserved from bacteria to humans. The structure of a member from Bacteroides has been crystallized and modelled onto the luminal region of the human member of the family, the transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. There is some conservation of potentially functional residues, implying that in the bacterial members this family acts in some way as a phosphodiester glycosidase. The human protein is also present, so the eukaryotic members are likely to be catalyzing the second step in the formation of the mannose 6-phosphate targeting signal on lysosomal enzyme oligosaccharides. 0 -354481 cl19846 DGOK 2-keto-3-deoxy-galactonokinase. 2-keto-3-deoxy-galactonokinase EC:2.7.1.58 catalyzes the second step in D-galactonate degradation. 0 -354482 cl19847 DUF1285 Protein of unknown function (DUF1285). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown. The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain- interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress. 0 -327657 cl19849 DUF881 Bacterial protein of unknown function (DUF881). This family consists of a series of hypothetical bacterial proteins. One of the family members YlxW from Bacillus subtilis is thought to be involved in cell division and sporulation. 0 -354483 cl19850 Virulence_RhuM Virulence protein RhuM family. There are currently no experimental data for members of this group or their homologs. However, these proteins are implicated in virulence/pathogenicity because RhuM is encoded in the SPI-3 pathogenicity island in Salmonella typhimurium. 0 -327659 cl19851 DUF1152 Protein of unknown function (DUF1152). This family consists of several hypothetical archaeal proteins of unknown function. 0 -327660 cl19852 DUF2110 Uncharacterized protein conserved in archaea (DUF2110). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -327661 cl19853 DUF2117 Uncharacterized protein conserved in archaea (DUF2117). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -354484 cl19854 DUF1002 Protein of unknown function (DUF1002). This protein family has no known function. Its members are about 300 amino acids in length. It has so far been detected in Firmicute bacteria and some archaebacteria. 0 -268208 cl19855 DUF1501 Protein of unknown function (DUF1501). This family contains a number of hypothetical bacterial proteins of unknown function approximately 400 residues long. 0 -354485 cl19857 DUF2126 Putative amidoligase enzyme (DUF2126). Members of this family of bacterial domains are predominantly found in transglutaminase and transglutaminase-like proteins. Their exact function is, as yet, unknown, but they are likely to act as amidoligase enzymes Protein in this family are found in conserved gene neighborhoods encoding a glutamine amidotransferase-like thiol peptidase (in proteobacteria) or an Aig2 family cyclotransferase protein (in firmicutes). 0 -354486 cl19858 DUF1015 Protein of unknown function (DUF1015). Family of proteins with unknown function found in archaea and bacteria. 0 -327665 cl19860 DUF2252 Uncharacterized protein conserved in bacteria (DUF2252). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -354487 cl19861 zf-CHY CHY zinc finger. This family of domains are likely to bind to zinc ions. They contain many conserved cysteine and histidine residues. We have named this domain after the N-terminal motif CXHY. This domain can be found in isolation in some proteins, but is also often associated with pfam00097. One of the proteins in this family is a mitochondrial intermembrane space protein called Hot13. This protein is involved in the assembly of small TIM complexes. 0 -327667 cl19863 DUF935 Protein of unknown function (DUF935). This family consists of several bacterial proteins of unknown function as well as the Bacteriophage Mu gp29 protein. 0 -327668 cl19864 Mu-like_Pro Mu-like prophage I protein. Members of this family of proteins comprise various viral Mu-like prophage I proteins. 0 -327669 cl19866 SrfB Virulence factor SrfB. This family includes homologs of SsrAB is a two-component regulatory system encoded within the Salmonella pathogenicity island SPI-2. Among the products of genes activated by SsrAB within epithelial and macrophage cells is Salmonella typhimurium srfB. homologs are found in several other proteobacteria. 0 -327670 cl19867 Virul_Fac Putative bacterial virulence factor. Members of this family of prokaryotic proteins include various putative virulence factor effector proteins. Their exact function is, as yet, unknown. 0 -327671 cl19868 DUF1054 Protein of unknown function (DUF1054). This family consists of several hypothetical bacterial proteins of unknown function. 0 -327672 cl19870 DUF2135 Uncharacterized protein conserved in bacteria (DUF2135). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -303050 cl19871 DUF1646 Protein of unknown function (DUF1646). Some of the members of this family are hypothetical bacterial and archaeal proteins, but others are annotated as being cation transporters expressed by the archaebacterium Methanosarcina mazei. 0 -354488 cl19872 DUF885 Bacterial protein of unknown function (DUF885). This family consists of several hypothetical bacterial proteins several of which are putative membrane proteins. 0 -354489 cl19873 DUF2179 Uncharacterized protein conserved in bacteria (DUF2179). hypothetical protein; Provisional 0 -354490 cl19874 DUF2183 Uncharacterized conserved protein (DUF2183). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -303054 cl19875 AbiEi_2 Transcriptional regulator, AbiEi antitoxin, Type IV TA system. AbiEi_2 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 0 -327676 cl19876 DUF2192 Uncharacterized protein conserved in archaea (DUF2192). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -354491 cl19878 DUF2207 Predicted membrane protein (DUF2207). The majority of the proteins with a domain as described by this model have an extreme C-terminal sequence that is consists of extremely low-complexity sequence, rich in Ser or in Gly interspersed with Cys. That C-terminal region resembles ribosomal natural product precursors, although there is no evidence that C-terminal regions of these proteins undergo any modification or have any such function. 0 -354492 cl19879 PocR Sensory domain found in PocR. PocR, a ligand binding domain, has a novel variant of the PAS-like Fold. Evidence suggests that it binds small hydrocarbon derivatives such as 1,3-propanediol. In (Natural history of sensor domains in bacterial signaling systems by Aravind L, LM Iyer, Anantharaman V, from 'Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition.' Caister Academic Press. 2010) - see (http://de.scribd.com/doc/28576661/Bacterial-Signaling-Chapter) 0 -354493 cl19880 ROS_MUCR ROS/MUCR transcriptional regulator protein. This family consists of several ROS/MUCR transcriptional regulator proteins. The ros chromosomal gene is present in octopine and nopaline strains of Agrobacterium tumefaciens as well as in Rhizobium meliloti. This gene encodes a 15.5-kDa protein that specifically represses the virC and virD operons in the virulence region of the Ti plasmid and is necessary for succinoglycan production. Sinorhizobium meliloti can produce two types of acidic exopolysaccharides, succinoglycan and galactoglucan, that are interchangeable for infection of alfalfa nodules. MucR from Sinorhizobium meliloti acts as a transcriptional repressor that blocks the expression of the exp genes responsible for galactoglucan production therefore allowing the exclusive production of succinoglycan. 0 -354494 cl19881 YEATS YEATS family. We have named this family the YEATS family, after `YNK7', `ENL', `AF-9', and `TFIIF small subunit'. This family also contains the GAS41 protein. All these proteins are thought to have a transcription stimulatory activity 0 -354495 cl19882 TB2_DP1_HVA22 TB2/DP1, HVA22 family. This family includes members from a wide variety of eukaryotes. It includes the TB2/DP1 (deleted in polyposis) protein, which in humans is deleted in severe forms of familial adenomatous polyposis, an autosomal dominant oncological inherited disease. The family also includes the plant protein of known similarity to TB2/DP1, the HVA22 abscisic acid-induced protein, which is thought to be a regulatory protein. 0 -354496 cl19883 ERO1 Endoplasmic Reticulum Oxidoreductin 1 (ERO1). Members of this family are required for the formation of disulphide bonds in the ER. 0 -354497 cl19885 Sec6 Exocyst complex component Sec6. Sec6 is a component of the multiprotein exocyst complex. Sec6 interacts with Sec8, Sec10 and Exo70.These exocyst proteins localize to regions of active exocytosis-at the growing ends of interphase cells and in the medial region of cells undergoing cytokinesis-in an F-actin-dependent and exocytosis- independent manner. 0 -327684 cl19886 Cnd2 Condensin complex subunit 2. This family consists of several Barren protein homologs from several eukaryotic organisms. In Drosophila Barren (barr) is required for sister-chromatid segregation in mitosis. barr encodes a novel protein that is present in proliferating cells and has homologs in yeast and human. Mitotic defects in barr embryos become apparent during cycle 16, resulting in a loss of PNS and CNS neurons. Centromeres move apart at the metaphase-anaphase transition and Cyclin B is degraded, but sister chromatids remain connected, resulting in chromatin bridging. Barren protein localizes to chromatin throughout mitosis. Colocalization and biochemical experiments indicate that Barren associates with Topoisomerase II throughout mitosis and alters the activity of Topoisomerase II. It has been suggested that this association is required for proper chromosomal segregation by facilitating the decatenation of chromatids at anaphase. This family forms one of the three non-structural maintenance of chromosomes (SMC) subunits of the mitotic condensation complex along with Cnd1 and Cnd3. 0 -354498 cl19887 TFCD_C Tubulin folding cofactor D C terminal. This domain family is found in eukaryotes, and is typically between 182 and 199 amino acids in length. The family is found in association with pfam02985. There is a single completely conserved residue R that may be functionally important. Tubulin folding cofactor D does not co-polymerize with microtubules either in vivo or in vitro, but instead modulates microtubule dynamics by sequestering beta-tubulin from GTP-bound alphabeta-heterodimers in microtubules. 0 -354499 cl19888 2H-phosphodiest Domain of unknown function (DUF1868). This group of 2H-phosphodiesterases comprises a single family typified by the protein mlr3352 from M.loti. Members are also present in various alpha-proteobacteria, Synechocystis, Streptococcus and Chilo iridescent virus. The presence of a member of this predominantly bacterial group in a large eukaryotic DNA virus represents a potential case of horizontal transfer from a bacterial source into a virus. Several proteins of bacterial origin have been noticed in the insect viruses (L.M.Iyer, E.V.Koonin and L.Aravind, unpublished observations and these appear to have been acquired from endo-symbiotic or parasitic bacteria that share the same host cells with the viruses. Presence of 2H proteins in the proteomes of large DNA viruses (e.g. T4 57B protein and the Fowl-pox virus FPV025) may point to some role for these proteins in regulating the viral tRNA metabolism. Each member of this family contains an internal duplication, each of which contains an HXTX motif that defines the family. 0 -354500 cl19890 DHHC DHHC palmitoyltransferase. This entry refers to the DHHC domain, found in DHHC proteins which are palmitoyltransferases. Palmitoylation or, more specifically S-acylation, plays important roles in the regulation of protein localization, stability, and activity. It is a post-translational protein modification that involves the attachment of palmitic acid to Cys residues through a thioester linkage. Protein acyltransferases (PATs), also known as palmitoyltransferases, catalyze this reaction by transferring the palmitoyl group from palmitoyl-CoA to the thiol group of Cys residues. They are characterized by the presence of a 50-residue-long domain called the DHHC domain, which in most but not all cases is also cysteine-rich and gets its name from a highly conserved DHHC signature tetrapeptide (Asp-His-His-Cys). The Cys residue within the DHHC domain forms a stable acyl intermediate and transfers the acyl chain to the Cys residues of a target protein. Some proteins containing a DHHC domain include Drosophila DNZ1 protein, Mouse Abl-philin 2 (Aph2) protein, Mammalian ZDHHC9, Yeast ankyrin repeat-containing protein AKR1, Yeast Erf2 protein, and Arabidopsis thaliana tip growth defective 1. 0 -354501 cl19894 Pilus_CpaD Pilus biogenesis CpaD protein (pilus_cpaD). This family consists of a pilus biogenesis protein, CpaD, from Caulobacter, and homologs in other bacteria, including three in the root nodule bacterium Bradyrhizobium japonicum. The molecular function is not known. [Cell envelope, Surface structures] 0 -354502 cl19895 DUF2182 Predicted metal-binding integral membrane protein (DUF2182). This domain, found in various hypothetical bacterial membrane proteins having predicted metal-binding properties, has no known function. 0 -354503 cl19897 DUF2428 Putative death-receptor fusion protein (DUF2428). This is a family of proteins conserved from plants to humans. The function is not known. Several members have been annotated as being HEAT repeat-containing proteins while others are designated as death-receptor interacting proteins, but neither of these could be confirmed. 0 -327690 cl19898 Noc2 Noc2p family. At least one member, Noc2p from yeast, is required for a late step in 60S subunit export from the nucleus. It has also been shown to co-precipitate with Nug1p, a nuclear GTPase also required for ribosome nucleus export. This family was formerly known as UPF0120. 0 -327691 cl19900 HECT_2 HECT-like Ubiquitin-conjugating enzyme (E2)-binding. HECT_2 is a family of UbcH10-binding proteins. 0 -327692 cl19902 protein_MS5 Protein MS5. This model describes a paralogous family of hypothetical proteins in Arabidopsis thaliana. No homologs are detected from other species. Length heterogeneity within the family is attributable partly to a 21-residue repeat present in from zero to three tandem copies. The central region of the repeat resembles the pattern [VIF][FY][QK]GX[LM]P[DEK]XXXDDAL. 0 -354504 cl19905 TrwC TrwC relaxase. This domain is in the N-terminal (relaxase) region of TrwC, a relaxase-helicase that acts in plasmid R388 conjugation. The relaxase domain has DNA cleavage and strand transfer activities. Plasmid transfer protein TraI is also a member of this domain family. Members of this family on bacterial chromosomes typically are found near other genes typical of conjugative plasmids and appear to mark integrated plasmids. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -354505 cl19906 Spore_GerAC Spore germination B3/ GerAC like, C-terminal. Members of this protein family are restricted to endospore-forming members of the Firmicutes lineage of bacteria, including the genera Bacillus, Clostridium, Thermoanaerobacter, Carboxydothermus, etc. Members are nearly all predicted lipoproteins and belong to probable transport operons, some of which have been characterized as crucial to germination in response to alanine. Members typically have been gene symbols gerKC, gerAC, gerYC, etc. [Transport and binding proteins, Amino acids, peptides and amines, Cellular processes, Sporulation and germination] 0 -354506 cl19907 ImpA_N ImpA, N-terminal, type VI secretion system. This protein family is one of two related families in type VI secretion systems that contain an ImpA-related N-terminal domain (pfam06812). 0 -327696 cl19908 alpha-hel2 Alpha-helical domain 2. A novel genetic system characterized by seven (usually) major proteins, including a ParB homolog and a ThiF homolog, is commonly found on plasmids or in bacterial chromosomal regions near phage, plasmid, or transposon markers. It is most common among the beta Proteobacteria. We designate the system PRTRC, or ParB-Related,ThiF-Related Cassette. This protein family is designated protein F. It is the most divergent of the families. 0 -354507 cl19911 CBM_4_9 Carbohydrate binding domain. This family represents a duplicated conserved region found in a number of uncharacterized plant proteins, potentially in the stem. There is a conserved CGP sequence motif. 0 -354508 cl19912 DNA_pol3_delta DNA polymerase III, delta subunit. hypothetical protein; Provisional 0 -303079 cl19913 Peptidase_U49 Peptidase U49. phage exclusion protein Lit; Provisional 0 -327698 cl19916 ISG65-75 Invariant surface glycoprotein. 65 kDa invariant surface glycoprotein; Provisional 0 -354509 cl19922 FAD_binding_4 FAD binding domain. This family consists of various enzymes that use FAD as a co-factor, most of the enzymes are similar to oxygen oxidoreductase. One of the enzymes Vanillyl-alcohol oxidase (VAO) has a solved structure, the alignment includes the FAD binding site, called the PP-loop, between residues 99-110. The FAD molecule is covalently bound in the known structure, however the residue that links to the FAD is not in the alignment. VAO catalyzes the oxidation of a wide variety of substrates, ranging form aromatic amines to 4-alkylphenols. Other members of this family include D-lactate dehydrogenase, this enzyme catalyzes the conversion of D-lactate to pyruvate using FAD as a co-factor; mitomycin radical oxidase, this enzyme oxidizes the reduced form of mitomycins and is involved in mitomycin resistance. This family includes MurB an UDP-N-acetylenolpyruvoylglucosamine reductase enzyme EC:1.1.1.158. This enzyme is involved in the biosynthesis of peptidoglycan. 0 -354512 cl19929 A2M_N MG2 domain. This family includes a region of the alpha-2-macroglobulin family. 0 -354513 cl19932 OTU OTU-like cysteine protease. This family of proteins conserved from plants to humans is a highly specific ubiquitin iso-peptidase that removes ubiquitin from proteins. The modification of cellular proteins by ubiquitin (Ub) is an important event that underlies protein stability and function in eukaryote being a dynamic and reversible process. Otubain carries several key conserved domains: (i) the OTU (ovarian tumor domain) in which there is an active cysteine protease triad (ii) a nuclear localization signal, (iii) a Ub interaction motif (UIM)-like motif phi-xx-A-xxxs-xx-Ac (where phi indicates an aromatic amino acid, x indicates any amino acid and Ac indicates an acidic amino acid), (iv) a Ub-associated (UBA)-like domain and (v) the LxxLL motif. 0 -354514 cl19935 Gp_dh_C Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain. This Pfam entry contains the following members: N-acetyl-glutamine semialdehyde dehydrogenase (AgrC) Aspartate-semialdehyde dehydrogenase. 0 -327707 cl19950 Sec3_C Exocyst complex component Sec3. Vps52 complexes with Vps53 and Vps54 to form a multi- subunit complex involved in regulating membrane trafficking events. 0 -354516 cl19952 Gly_transf_sug Glycosyltransferase sugar-binding region containing DXD motif. This domain represents the N-terminal glycosyltransferase from a set of toxins found in some bacteria. This domain in TcdB glycosylates the host RhoA protein. 0 -354517 cl19976 7tm_7 7tm Chemosensory receptor. In Drosophila, taste is perceived by gustatory neurons located in sensilla distributed on several different appendages throughout the body of the animal. This family represents the taste receptor sensitive to trehalose. 0 -327725 cl20010 Consortin_C Consortin C-terminus. This family of proteins is found in eukaryotes. Proteins in this family are typically between 129 and 161 amino acids in length. 0 -327771 cl20183 DUF4810 Domain of unknown function (DUF4810). This family of proteins is found in bacteria. Proteins in this family are typically between 117 and 134 amino acids in length. There is a conserved PES sequence motif. It is a putative lipoprotein. 0 -327772 cl20192 DUF4915 Domain of unknown function (DUF4915). This protein family is uncharacterized. A number of motifs are conserved perfectly among all member sequences. The function of this protein is unknown. [Hypothetical proteins, Conserved] 0 -354543 cl20210 LTD Lamin Tail Domain. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 392 and 433 amino acids in length. There is a conserved NNS sequence motif. 0 -354545 cl20224 zf-MYND MYND finger. zf-C6H2 is an unusual zinc-finger similar to zf-MYND, pfam01753.This zinc-finger is found at the N-terminus of Pfam families Exo_endo_phos pfam03372 and Peptidase_M24 pfam00557. The domain is missing in prokaryotic methionine aminopeptidases, and is a unique type of zinc-finger domain. It consists of a C2-C2 zinc-finger motif similar to the RING finger family followed by a C2H2 motif similar to zinc-fingers involved in RNA-binding. In yeast the domain chelates zinc in a 2:1 ratio. The domain is found in yeast, plants and mammals. The domain is necessary for the association of the methionine aminopeptidase with the ribosome and the normal processing of the peptidase. 0 -354573 cl20343 Glyco_hydro_38C Glycosyl hydrolases family 38 C-terminal domain. This family consists of Glycosyl hydrolase family 38 proteins around 700 residues in length and is mainly found in various Clostridium and Rhizobium species. The function of this family is unknown. 0 -354605 cl20439 RNase_Zc3h12a Zc3h12a-like Ribonuclease NYN domain. PRORPs (protein-only RNase P) are a class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. Arabidopsis thaliana contains PRORP enzymes (PRORP1, PRORP2 and PRORP3) where PRORP1 localizes to mitochondria as well as chloroplasts, while PRORP2 and PRORP3 are found in the nucleus. In humans and most other metazoans, mt-RNase P is composed of three protein subunits (mitochondrial RNase P proteins 1-3; MRPP1-3), homologs to the Arabidopsis thaliana PRORP1-3. This domain corresponds to the metallonuclease domain of PRORPs. PRORP1 has 22% sequence identity to the human homolog MRPP3. PRORP1 crystal structure shows a V-shaped tripartite structure with a C-terminal metallonuclease domain of the NYN (N4BL1, YacP-like nuclease) family, with a typical and functional two-metal-ion catalytic site that has conserved aspartate residues. 0 -327937 cl20473 ANAPC5 Anaphase-promoting complex subunit 5. Apc5 is a subunit of the anaphase-promoting complex/cyclosome (APC/C) which is a multi-subunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. Apc5 binds the poly(A) binding protein (PABP), which directly binds the internal ribosome entry site (IRES) of growth factor 2 mRNA. PABP was found to enhance IRES-mediated translation, whereas Apc5 over-expression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and co-sediments with the ribosomal fraction. The N-terminus of Afi1 serves to stabilize the union between Apc4 and Apc5, both of which lie towards the bottom-front of the APC. This model represents the Tetratricopeptide repeat (TPR)-like motif region of Apc5. 0 -354640 cl20541 EFG_III-like Domain III of Elongation factor G (EF-G) and related proteins. This domain is found in Elongation Factor G. It shares a similar structure with domain V (pfam00679). 0 -354678 cl20644 DUF4976 Domain of unknown function (DUF4976). This family around 100 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Prevotella species. The function of this family remains unknown. 0 -354737 cl20817 GBP_C Guanylate-binding protein, C-terminal domain. IFT20 is subunit 20 of the intraflagellar transport complex B. The intraflagellar transport complex assembles and maintains eukaryotic cilia and flagella. IFT20 is localized to the Golgi complex and is anchored there by the Golgi polypeptide, GMAP210, whereas all other subunits except IFT172 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. IFT20 accompanies Golgi-derived vesicles to the point of exocytosis near the basal bodies where the other IFT polypeptides are present, and where the intact IFT particle is assembled in association with the inner surface of the cell membrane. Passage of the IFT complex then follows, through the flagellar pore recognition site at the transition region, into the ciliary compartment. There also appears to be a role of intraflagellar transport (IFT) polypeptides in the formation of the immune synapse in non ciliated cells. The flagellum, in addition to being a sensory and motile organelle, is also a secretory organelle. A number of IFT components are expressed in haematopoietic cells, which have no cilia, indicating an unexpected role of IFT proteins in immune synapse-assembly and intracellular membrane trafficking in T lymphocytes; this suggests that the immune synapse could represent the functional homolog of the primary cilium in these cells. 0 -328640 cl21329 nt01cx_1156_like Uncharacterized proteins conserved in Clostridia. This family of uncharacterized proteins from Clostridia and Bacilli classes has an unusual structure of three beta propeller repeats that do not form a barrel, as in well known 6-, 7- etc beta propeller barrels, but instead are stacked in a three-layer beta-sheet sandwich. The function of all the proteins from this family is unknown. 0 -354810 cl21453 PKc_like Protein Kinases, catalytic domain. This family includes eukaryotic fructosamine-3-kinase enzymes. The family also includes bacterial members that have not been characterized but probably have a similar or identical function. 0 -354811 cl21454 NADB_Rossmann Rossmann-fold NAD(P)(+)-binding proteins. This entry is the rossmann domain found in the Xanthine dehydrogenase accessory protein. 0 -354812 cl21455 P-loop_NTPase P-loop containing Nucleoside Triphosphate Hydrolases. Possible exonuclease SbcCD, C subunit, on AAA proteins. 0 -354813 cl21456 Periplasmic_Binding_Protein_Type_2 Type 2 periplasmic binding fold superfamily. This family includes bacterial extracellular solute-binding proteins. 0 -354814 cl21457 DRE_TIM_metallolyase DRE-TIM metallolyase superfamily. This family consists of several bacterial thiazole biosynthesis protein G sequences. ThiG, together with ThiF and ThiH, is proposed to be involved in the synthesis of 4-methyl-5-(b-hydroxyethyl)thiazole (THZ) which is an intermediate in the thiazole production pathway. This family also includes triosephosphate isomerase and pyridoxal 5'-phosphate synthase subunit PdxS. 0 -354815 cl21459 HTH Helix-turn-helix domains. This winged helix-turn-helix domain contains an extended C-terminal alpha helix which is responsible for dimerization of this domain. 0 -354816 cl21460 HAD_like Haloacid Dehalogenase-like Hydrolases. This family is part of the HAD superfamily. 0 -354817 cl21461 Globin_like Globin-like proteins. This family includes protoglobin from Methanosarcina acetivorans C2A. It is also found near the N-terminus of the Haem-based aerotactic transducer HemAT in Bacillus subtilis. It is part of the haemoglobin superfamily. Protoglobin has specific loops and an amino-terminal extension which leads to the burying of the haem within the matrix of the protein. Protoglobin-specific apolar tunnels allow the access of O2, CO and NO to the haem distal site. In HemAT it acts as an oxygen sensor domain. 0 -354818 cl21462 bZIP Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain. This domain is found at the C-terminus of ABC transporters. It has a coiled coil structure with an atypical 3(10)-helix in the alpha-hairpin region. It is involved in DNA_binding. 0 -354819 cl21463 UBA_like_SF UBA domain-like superfamily. The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for nuclear export of mRNA. Tap has a modular structure, and its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling. The structure of the C-terminal domain is composed of four helices. The structure is related to the UBA domain. 0 -354820 cl21464 cupin_like Conserved domain found in cupin and related proteins. Breaks down into dimethylsulfoniopropionate (DMSP) into acrylate and dimethyl sulfide. 0 -354821 cl21467 Cytochrom_C Cytochrome c. The bacterial oxidase complex, fixNOPQ or cytochrome cbb3, is thought to be required for respiration in endosymbiosis. FixO is a membrane bound mono-heme constituent of the fixNOPQ complex. 0 -354822 cl21469 HDc N/A. HD domains are metal dependent phosphohydrolases. 0 -354823 cl21470 Peptidase_M14NE-CP-C_like Peptidase associated domain: C-terminal domain of M14 N/E carboxypeptidase; putative folding, regulation, or interaction domain. This is the N-terminal of Calcineurin-like phosphoesterases. It is around 150 residues in length from various Bacteroides species. The function of this family is unknown. 0 -354824 cl21471 RAMP_I_III CRISPR/Cas system-associated RAMP superfamily protein. The molecular function of these proteins is not yet known. However, they have been identified and called the RAMP (Repair Associated Mysterious Proteins) superfamily. The members of this family have no known function they are around 300 amino acids in length and have several conserved motifs. 0 -354825 cl21473 ArsB_NhaD_permease N/A. CitMHS is a family of putative citrate transporters, belonging to the Na+/H+ antiporter NhaD-like permease superfamily. 0 -354826 cl21474 ABC2_membrane ABC-2 type transporter. This is the N-terminal region of 7tm proteins. The function is not known. 0 -354827 cl21478 ATP-synt_B ATP synthase B/B' CF(0). The Fo sector of the ATP synthase is a membrane bound complex which mediates proton transport. It is composed of nine different polypeptide subunits (a, b, c, d, e, f, g F6, A6L). 0 -328741 cl21479 Cas5_I CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This small Cas family is represented by CT1134 of Chlorobium tepidum. 0 -354828 cl21481 malate_synt N/A. This family includes 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase and 4-hydroxy-2-oxovalerate aldolase. 0 -354829 cl21482 RuvC_like Crossover junction endodeoxyribonuclease RuvC and similar proteins. Escherichia coli YqgF has been shown to act as a pre-16S rRNA nuclease, presumably as a monomer. It is involved in the processing of pre-16S rRNA during ribosome maturation. The RuvX gene product from Mycobacterium tuberculosis was shown to act, in a dimeric form, as a Holliday junction resolvase (HJR). HJRs endonucleases specifically resolve Holliday junction DNA intermediates during homologous recombination. Holliday junctions are formed by the reciprocal exchange of strands between two DNA duplexes. HJRs occur in archaea, bacteria, and in the mitochondria of certain fungi; they may form homodimers and display structural similarity to RNase H and Hsp70. 0 -354830 cl21484 Oxidored_q3 NADH-ubiquinone/plastoquinone oxidoreductase chain 6. NADH:ubiquinone oxidoreductase subunit J; Provisional 0 -354831 cl21486 Ketoacyl-synt_C Beta-ketoacyl synthase, C-terminal domain. This domain is found on 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III EC:2.3.1.41, the enzyme responsible for initiating the chain of reactions of the fatty acid synthase in plants and bacteria. 0 -354832 cl21487 OM_channels N/A. This family includes proteins annotated as TonB dependent receptors. But it is also likely to contain other membrane beta barrel proteins of other functions. 0 -354833 cl21488 ECF_trnsprt ECF transporter, substrate-specific component. This family is the substrate-binding component (S component) of the energy coupling-factor (ECF)-type riboflavin transporter. It is a transmembrane protein which binds riboflavin, and is responsible for riboflavin-uptake by cells. 0 -354834 cl21491 Transpeptidase Penicillin binding protein transpeptidase domain. This family is closely related to Beta-lactamase, pfam00144, the serine beta-lactamase-like superfamily, which contains the distantly related pfam00905 and PF00768 D-alanyl-D-alanine carboxypeptidase. 0 -328750 cl21492 PTS_EIIC Phosphotransferase system, EIIC. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The sugar-specific permease of the PTS consists of three domains (IIA, IIB and IIC). The IIC domain catalyzes the transfer of a phosphoryl group from IIB to the sugar substrate. 0 -354835 cl21493 Complex1_49kDa Respiratory-chain NADH dehydrogenase, 49 Kd subunit. This model represents that clade of F420-dependent hydrogenases (FRH) beta subunits found exclusively and universally in methanogenic archaea. This protein is a member of the Nickel-dependent hydrogenase superfamily represented by Pfam model, pfam00374. 0 -354836 cl21494 Abhydrolase alpha/beta hydrolases. This family consists of several chlorophyllase and chlorophyllase-2 (EC:3.1.1.14) enzymes. Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of an ester bond to yield chlorophyllide and phytol. The family includes both plant and Amphioxus members. 0 -354837 cl21495 Acyl_transf_3 Acyltransferase family. Probable integral membrane protein. 0 -354838 cl21496 2OG-FeII_Oxy 2OG-Fe(II) oxygenase superfamily. This family has structural similarity to the 2OG-Fe(II) oxygenase superfamily. 0 -354839 cl21497 PAAR_like proline-alanine-alanine-arginine (PAAR) repeat superfamily. This motif is found usually in pairs in a family of bacterial membrane proteins. It is also found as a triplet of tandem repeats comprising the entire length in a another family of hypothetical proteins. 0 -354840 cl21498 SANT N/A. This domain, approximately 90 residues, is mainly found in DNA methyltransferase 1-associated protein 1 (DAMP1) that plays an important role in development and maintenace of genome integrity in various mammalia species. It mainly consists of tandem repeats of three alpha-helices that are arranged in a helix-turn-helix motif and shows a structual similarity with SANT domain and Myb DNA-binding domain, indicating it contains a putative DNA binding site. 0 -354841 cl21499 SPX Domain found in Syg1, Pho81, XPR1, and related proteins. This region has been named the SPX domain after (Syg1, Pho81 and XPR1). The domain is found at the amino terminus of a variety of proteins. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors Pho81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa, are also members of this family. The yeast protein Gde1/Ypl110c is similar to both, NUC-2 and Pho81, in sharing their multi-domain architecture, which includes the SPX N-terminal domain followed by several ankyrin repeats and a C-terminal glycerophosphodiester phosphodiesterase domain (GDPD). Gde1 hydrolyzes intracellular glycerophosphocholine into glycerolphosphate and choline, and plays a role in the utilization of glycerophosphocholine as a source for phosphate. 0 -304393 cl21502 CTP_transf_1 Cytidylyltransferase family. CDP-archaeol synthase functions in the archaeal lipid biosynthetic pathway. It catalyzes the transfer of the nucleotide to its specific archaeal lipid substrate, leading to the formation of a CDP-activated precursor (CDP-archaeol) to which polar head groups are attached. Bacterial members of this family are uncharacterized. 0 -354842 cl21503 ParE_toxin ParE toxin of type II toxin-antitoxin system, parDE. YafQ is a family of bacterial toxin ribonucleases of type II toxin-antitoxin systems. The E.coli gene is expressed from the dinB operon. The cognate antitoxin for the E. coli protein is DinJ, in family RelB_antitoxin, pfam02604. 0 -354843 cl21504 EGF_CA N/A. This short domain on coagulation enzyme factor Xa is found to be the target for a potent inhibitor of coagulation, TAK-442. 0 -354844 cl21505 SpoU_methylase SpoU rRNA Methylase family. This family has a Rossmanoid fold, with a deep trefoil knot in its C-terminal region. It has structural similarity to RNA methyltransferases, and is likely to function as an S-adenosyl-L-methionine (SAM)-dependent RNA 2'-O methyltransferase. 0 -354845 cl21506 DinB_2 DinB superfamily. This family contains many hypothetical proteins from bacteria and yeast. 0 -354846 cl21508 Ribosomal_P1_P2_L12p N/A. This family includes archaebacterial L12, eukaryotic P0, P1 and P2. 0 -328763 cl21509 ApoLp-III_like Apolipophorin-III and similar insect proteins. This family consists of several insect apolipoprotein-III sequences. Exchangeable apolipoproteins constitute a functionally important family of proteins that play critical roles in lipid transport and lipoprotein metabolism. Apolipophorin III (apoLp-III) is a prototypical exchangeable apolipoprotein found in many insect species that functions in transport of diacylglycerol (DAG) from the fat body lipid storage depot to flight muscles in the adult life stage. 0 -328764 cl21511 PEMT Phospholipid methyltransferase. The isoprenylcysteine o-methyltransferase (EC:2.1.1.100) family carry out carboxyl methylation of cleaved eukaryotic proteins that terminate in a CaaX motif. In Saccharomyces cerevisiae this methylation is carried out by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology. 0 -328765 cl21513 NrfD Polysulphide reductase, NrfD. Bacterial polysulfide reductase is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. Polysulfides are a class of compounds composed of chains of sulfur atoms, which in their simplest form are present as an anion with general formula Sn(2-). In nature, polysulfides are found in particularly high concentrations in extreme volcanic or geothermically active environments. Here, the reduction and oxidation of polysulfides are vital processes for many bacteria and are essential steps in the global sulfur cycle. In particular, the reduction of polysulfide to hydrogen sulfide in these environments is usually linked to energy-generating respiratory processes, supporting growth of many microorganisms, particularly hyperthermophiles. 0 -354847 cl21514 TauE Sulfite exporter TauE/SafE. SAP is a transmembrane transport protein with six predicted transmembrane helices, with a hydrophilic domain between helices 3 and 4. This hyrodphobic region is highly variable among identified Gap-like (GPL, peptidoglycolipid, addressing protein) proteins and may be involved in substrate recognition. SAP also belongs to the LysE protein superfamily (pfam01810), whose members have been implicated in small molecule transport in bacteria. Other Gap proteins export metabolites across the cell membrane so it is possible that Sap specifically may be involved in transport of sulfolipid-1 across the membrane. 0 -354848 cl21515 GAF GAF domain. SpoVT_C is the C-terminal part of the stage V sporulation protein T, a transcription factor involved in endospore formation in Gram-positive bacteria such as Bacillus subtilis. Sporulation is induced by conditions of environmental stress to protect the genome. SpoVT behaves as a tetramer that shows an overall significant distortion mediated by electrostatic interactions. Two monomers dimerize via the highly charged N-terminal AbrB-like domains, family pfam04014, to form swapped-hairpin beta-barrels. These asymmetric dimers then form tetramers through the formation of mixed helix bundles between their C-terminal domains. The C-termini themselves fold as GAF (cGMP-specific and cGMP-stimulated phosphodiesterases, Anabaena adenylate cyclases, and Escherichia coli FhlA) domains. 0 -354849 cl21516 Csx1_III-U CRISPR/Cas system-associated protein Csx1. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. The family describes Cas proteins of about 400 residues that include the motif [VIL]-D-x-[ST]-H-[GS]. The CRISPR and associated proteins are thought to be involved in the evolution of host resistance. The exact molecular function of this family is currently unknown. 0 -328769 cl21517 Gly_radical Glycine radical. Members of this family belong to the class III anaerobic ribonucleoside-triphosphate reductases (RNR). These glycine-radical-containing enzymes are oxygen-sensitive and operate under anaerobic conditions. The genes for this family are pair with genes for an acitivating protein that creates a glycine radical. Members of this family, though related, fall outside the scope of TIGR02487, a functionally equivalent protein set; no genome has members in both familes. Identification as RNR is supported by gene pairing with the activating protein, lack of other anaerobic RNR, and presence of an upstream regulatory element strongly conserved upstream of most RNR operons. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 0 -328770 cl21519 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry describes a conserved region of about 65 amino acids from an otherwise highly divergent protein found in a minority of CRISPR-associated protein regions. This region features two motifs of CXXC. 0 -354850 cl21521 PEPcase Phosphoenolpyruvate carboxylase. This family of phosphoenolpyruvate carboxylases is based on seqeunces not picked up by the model for PEPcase, PF00311. Most of the family members are from Archaea. 0 -354851 cl21522 FN3 N/A. This fibronectin type III domain is found in fungal chitin biosynthesis protein CHS5 where, together with the neighboring BRCT domain (pfam00533), it binds to the Arf1 GTPase. 0 -276343 cl21524 PRK13923 N/A. In a subset of endospore-forming members of the Firmcutes, members of this protein family are found, several to a genome. Two very strongly conserved sequences regions are separated by a highly variable linker region. Much of the linker region was excised from the seed alignment for this model. A characterized member is the prespore-specific transcription RsfA from Bacillus subtilis, previously called YwfN, which is controlled by sigma factor F and seems to fine-tune expression of some genes in the sigma-F regulon. A paralog in Bacillus subtilis is designated YlbO. [Regulatory functions, DNA interactions, Cellular processes, Sporulation and germination] 0 -354852 cl21525 LysM Lysin Motif is a small domain involved in binding peptidoglycan. The LysM (lysin motif) domain is about 40 residues long. It is found in a variety of enzymes involved in bacterial cell wall degradation. This domain may have a general peptidoglycan binding function. The structure of this domain is known. 0 -354853 cl21526 TolB_N TolB amino-terminal domain. This is a family of Gram-negative bacterial outer membrane lipoproteins. LpoB is required for the function of the major peptidoglycan synthase enzyme PBP1B. It interacts with PBP1B protein via the UvrB-like non-catalytic domain on that protein. LpoB has a 54-aa-long flexible N-terminal stretch followed by a globular domain with similarity to the N-terminal domain of the prevalent periplasmic protein TolB. The long, flexible N-terminal region of LpoB enables it to span the periplasm and reach its docking site in PBP1B. Peptidoglycan is the essential polymer within the sacculus that surrounds the cytoplasmic membrane of bacteria. 0 -328775 cl21527 DoxX DoxX. This family of uncharacterized proteins are related to DoxX pfam07681. 0 -354854 cl21528 Lipocalin Lipocalin / cytosolic fatty-acid binding protein family. Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The structure is an eight-stranded beta barrel. 0 -277547 cl21530 Dockerin_like Dockerin repeat domains and domains resembling dockerin repeats. Bacterial cohesin domains bind to a complementary protein domain named dockerin, and this interaction is required for the formation of the cellulosome, a cellulose-degrading complex. The cellulosome consists of scaffoldin, a noncatalytic scaffolding polypeptide, that comprises repeating cohesion modules and a single carbohydrate-binding module (CBM). Specific calcium-dependent interactions between cohesins and dockerins appear to be essential for cellulosome assembly. This subfamily represents type I dockerins, which are responsible for anchoring a variety of enzymatic domains to the complex. 0 -354855 cl21531 Sialidase sialidases/neuraminidases. This family of proteins contains BNR-like repeats suggesting these proteins may act as sialidases. 0 -354856 cl21532 NADAR Escherichia coli swarming motility protein YbiA and related proteins. This is a domain of unknown function. It is alpha helical in structure. The GO annotation for this protein suggests it is involved in nematode larval development and has a positive regulation on growth rate. 0 -328778 cl21533 Cas8a1_I-A CRISPR/Cas system-associated protein Cas8a1. Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This minor cas protein is found in at least five prokaryotic genomes: Methanosarcina mazei, Sulfurihydrogenibium azorense, Thermotoga maritima, Carboxydothermus hydrogenoformans, and Dictyoglomus thermophilum, the first of which is archaeal while the rest are bacterial. 0 -354857 cl21534 NLPC_P60 NlpC/P60 family. This domain corresponds to an amidase function. Many of these proteins are involved in cell wall metabolism of bacteria. This domain is found at the N-terminus of Escherichia coli gss, where it functions as a glutathionylspermidine amidase EC:3.5.1.78. This domain is found to be the catalytic domain of PlyCA. CHAP is the amidase domain of bifunctional Escherichia coli glutathionylspermidine synthetase/amidase, and it catalyzes the hydrolysis of Gsp (glutathionylspermidine) into glutathione and spermidine. 0 -354858 cl21536 Rhomboid Rhomboid family. The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilisation of two different substrates for this process. The mutant classes were called 'der' for 'degradation in the ER'. DER1 was cloned by complementation of the der1-2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. Interestingly this family seems distantly related to the Rhomboid family of membrane peptidases. Suggesting that this family may also mediate degradation of misfolded proteins (Bateman A pers. obs.). 0 -354859 cl21538 TRAPPC_bet3-like Bet3-like domains of TRAPP. TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. TRAPP is a large multimeric protein that contains at least 10 subunits. This family contains many TRAPP family proteins. The Bet3 subunit is one of the better characterized TRAPP proteins and has a dimeric structure with hydrophobic channels. The channel entrances are located on a putative membrane-interacting surface that is distinctively flat, wide and decorated with positively charged residues. Bet3 is proposed to localize TRAPP to the Golgi. 0 -354860 cl21539 DnaJ_zf Zinc finger domain of DnaJ and HSP40. The central cysteine-rich (CR) domain of DnaJ proteins contains four repeats of the motif CXXCXGXG where X is any amino acid. The isolated cysteine rich domain folds in zinc dependent fashion. Each set of two repeats binds one unit of zinc. Although this domain has been implicated in substrate binding, no evidence of specific interaction between the isolated DNAJ cysteine rich domain and various hydrophobic peptides has been found. 0 -354861 cl21540 CopD Copper resistance protein D. It appears this conserved hypothetical integral membrane protein is found only in gram negative bacteria. Completed genomes that include a member of this family include Rickettsia prowazekii, Synechocystis sp. PCC6803, and Helicobacter pylori. These proteins have 3 (Helicobacter pylori) to 5 (Synechocystis sp. PCC 6803) GES predicted transmembrane regions. Most members have 4 GES predicted transmembrane regions. [Hypothetical proteins, Conserved] 0 -328784 cl21541 OstA OstA-like protein. This is a family of OstA-like proteins that are related to pfam03968. 0 -328785 cl21542 EthD EthD domain. MmlI is a short, approx 115 residue, protein of two alpha helices and four beta strands. It is involved in the catabolism of methyl-substituted aromatics via a modified oxo-adipate pathway in bacteria. The enzyme appears to be monomeric in some species and tetrameric in others. The known structure shows two copies of the protein form a dimeric alpha beta barrel. 0 -354862 cl21543 MMPL MMPL family. Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that promote lipid synthesis in animal cells. They are embedded in the membranes of the endoplasmic reticulum (ER) in a helical hairpin orientation and are released from the ER by a two-step proteolytic process. Proteolysis begins when the SREBPs are cleaved at Site-1, which is located at a leucine residue in the middle of the hydrophobic loop in the lumen of the ER. Upon proteolytic processing SREBP can activate the expression of genes involved in cholesterol biosynthesis and uptake. SCAP stimulates cleavage of SREBPs via fusion of the their two C-termini. This domain is the transmembrane region that traverses the membrane eight times and is the sterol-sensing domain of the cleavage protein. WD40 domains are found towards the C-terminus. 0 -354863 cl21544 FlgD_ig FlgD Ig-like domain. The function of this C-terminal domain is not known; there are several conserved tryptophan and asparagine residues. 0 -354864 cl21545 GHB_like Glycoprotein hormone beta chain homologues. This domain contains 9 conserved cysteines and is extracellular. Therefore the cysteines may form disulphide bridges. This family of proteins has been termed the DAN family after the first member to be reported. This family includes DAN, Cerberus and Gremlin. The gremlin protein is an antagonist of bone morphogenetic protein signaling. It is postulated that all members of this family antagonise different TGF beta pfam00019 ligands. Recent work shows that the DAN protein is not an efficient antagonist of BMP-2/4 class signals, we found that DAN was able to interact with GDF-5 in a frog embryo assay, suggesting that DAN may regulate signaling by the GDF-5/6/7 class of BMPs in vivo. 0 -354865 cl21549 rve Integrase core domain. This family includes the mariner transposase. 0 -354866 cl21551 Sulfotransfer_3 Sulfotransferase family. Members of this family are essential for the biosynthesis of sulpholipid-1 in prokaryotes. They adopt a structure that belongs to the sulphotransferase superfamily, consisting of a single domain with a core four-stranded parallel beta-sheet flanked by alpha-helices. 0 -354867 cl21552 TPK Thiamine pyrophosphokinase. Family of thiamin pyrophosphokinase (EC:2.7.6.2). Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. The structure of thiamin pyrophosphokinase suggest that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 0 -354868 cl21556 DUF2184 Uncharacterized protein conserved in bacteria (DUF2184). The Linocin_M18 is found in eubacteria and archaea. These proteins, referred to as encapsulins, form nanocompartments within the bacterium which contain ferritin-like proteins or peroxidases, enzymes involved in oxidative-stress response. These enzymes are targeted to the interior of encapsulins via unique C-terminal extensions. 0 -354869 cl21557 Yip1 Yip1 domain. This family consists of several hypothetical proteins of around 200 residues in length. The function of this family is unknown although a number of family members are thought to be putative membrane proteins. 0 -354870 cl21559 HGD-D 2-hydroxyglutaryl-CoA dehydratase, D-component. Members of this family include various bacterial hypothetical proteins, as well as CoA enzyme activases. The exact function of this domain has not, as yet, been defined. 0 -354871 cl21560 Ion_trans_2 Ion channel. This family includes the two membrane helix type ion channels found in bacteria. 0 -354872 cl21561 7tm_4 Olfactory receptor. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srx is part of the Srg superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 0 -354873 cl21562 DDE_Tnp_4 DDE superfamily endonuclease. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contains three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 0 -328800 cl21565 LIF_OSM LIF / OSM family. OSM, Oncostatin M 0 -354875 cl21566 Sedlin_N Sedlin, N-terminal conserved region. Sybindin is a physiological syndecan-2 ligand on dendritic spines, the small protrusions on the surface of dendrites that receive the vast majority of excitatory synapses. 0 -328802 cl21567 Cyclophil_like Cyclophilin-like. This is a family of bacterial and archaeal proteins, the structure for one of whose members has been characterized. Structure 3kop probably adopts a new hexameric form compared to previous structures. The putative active is near the domain interface. 3kop is most closely related, structurally to Structure 1zx8, where the potential active site is located near residues E51 and Y53 (conserved in 1zx8). Beyond the two residues above, the other residues are not conserved. Also the shape of the active site differs from that of 1zx8. Structure 1zx8 belongs to family DUF369. pfam04126, which is part of the cyclophilin-like clan. 0 -354876 cl21568 SurA_N_3 SurA N-terminal domain. This domain is found at the N-terminus of the chaperone SurA. It is a helical domain of unknown function. The C-terminus of the SurA protein folds back and forms part of this domain also but is not included in the current alignment. 0 -328804 cl21569 Ribosomal_S30 Ribosomal protein S30. 40S ribosomal protein S30; Provisional 0 -328805 cl21570 Csx1_III-U CRISPR/Cas system-associated protein Csx1. Members of this family are found, exclusively in the vicinity of CRISPR repeats and other CRISPR-associated (cas) genes, in Methanothermobacter thermautotrophicus (Methanobacterium thermoformicicum), Thermus thermophilus (Deinococcus-Thermus), Chloroflexus aurantiacus (Chloroflexi), and Thermomicrobium roseum (Thermomicrobia). 0 -354877 cl21572 GatB_Yqey GatB domain. The function of this domain found in the YqeY protein is uncertain. 0 -354878 cl21573 B3_4 B3/4 domain. This domain is found in the tRNA(Ile) lysidine synthetase (TilS) protein. 0 -354879 cl21578 PAS N/A. The MEKHLA domain shares similarity with the PAS domain and is found in the 3' end of plant HD-ZIP III homeobox genes, and bacterial proteins. 0 -354880 cl21579 CBM_2 Cellulose binding domain. This domain is found at the C terminal of cellulases and in vitro binding studies have shown it to binds to crystalline cellulose. 0 -328810 cl21581 FixH FixH. This family consists of several Rhizobium FixH like proteins. It has been suggested that suggested that the four proteins FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG. 0 -328811 cl21583 DUF305 Domain of unknown function (DUF305). This is a bacterial family of unknown function. 0 -354881 cl21584 Tryp_SPc N/A. This family includes trypsin-like peptidase domains. 0 -328813 cl21588 Snf7 Snf7. SNF-7-like protein; Provisional 0 -328814 cl21589 Relaxase Relaxase/Mobilisation nuclease domain. type IV secretion system T-DNA border endonuclease VirD2; Provisional 0 -354882 cl21590 PMT_2 Dolichyl-phosphate-mannose-protein mannosyltransferase. This family is conserved in bacteria. The function is not known. 0 -354883 cl21591 PRCH N/A. The PRC-barrel is an all beta barrel domain found in photosystem reaction centre subunit H of the purple bacteria and RNA metabolism proteins of the RimM group. PRC-barrels are approximately 80 residues long, and found widely represented in bacteria, archaea and plants. This domain is also present at the carboxyl terminus of the pan-bacterial protein RimM, which is involved in ribosomal maturation and processing of 16S rRNA. A family of small proteins conserved in all known euryarchaea are composed entirely of a single stand-alone copy of the domain. 0 -328817 cl21592 DUF998 Protein of unknown function (DUF998). Family of conserved archaeal proteins. 0 -328818 cl21594 Gate Nucleoside recognition. Members of this protein family are found exclusively in Firmicutes (low-GC Gram-positive bacterial) and are known from studies in Bacillus subtilis to be part of the sigma-E regulon. Mutation leads to a sporulation defect, confirming that members of this protein family, YlbJ, are sporulation proteins. This protein appears to be universal among endospore-forming bacteria, but is encoded by a pair ORFs distant from eash other in Symbiobacterium thermophilum IAM14863. [Cellular processes, Sporulation and germination] 0 -354884 cl21598 PMP22_Claudin PMP-22/EMP/MP20/Claudin family. Members of this family are claudins, that form tight junctions between cells. 0 -328821 cl21600 DUF302_like Domains similar to DUF302 and the N-terminal domains found in some bacterial RNAses. This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 80 amino acids in length. 0 -354885 cl21601 zf-CHC2 CHC2 zinc finger. This region represents the zinc binding domain. It is found in the N-terminal region of the bacteriophage P4 alpha protein, which is a multifunctional protein with origin recognition, helicase and primase activities. 0 -354886 cl21602 DUF1073 Protein of unknown function (DUF1073). This model describes an uncharacterized family of proteins found in prophage regions of a number of bacterial genomes, including Haemophilus influenzae, Xylella fastidiosa, Salmonella typhi, and Enterococcus faecalis. Distantly related proteins can be found in the prophage-bearing plasmids of Borrelia burgdorferi. [Mobile and extrachromosomal element functions, Prophage functions] 0 -354887 cl21606 GH3 GH3 auxin-responsive promoter. indole-3-acetic acid-amido synthetase 0 -354888 cl21608 Galactosyl_T Galactosyltransferase. This family includes a conserved region found in several uncharacterized plant proteins. 0 -354889 cl21610 PQ-loop PQ loop repeat. This family includes proteins such as drosophila saliva, MtN3 involved in root nodule development and a protein involved in activation and expression of recombination activation genes (RAGs). Although the molecular function of these proteins is unknown, they are almost certainly transmembrane proteins. This family contains a region of two transmembrane helices that is found in two copies in most members of the family. This family also contains specific sugar efflux transporters that are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. In many organisims it meditaes gluose transport; in Arabidopsis it is necessary for pollen viability; and two of the rice homologs are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. 0 -304464 cl21612 PolyA_pol Poly A polymerase head domain. hypothetical protein 0 -354890 cl21614 YkuD L,D-transpeptidase catalytic domain. This family of proteins are found in a range of bacteria. It has been shown that this domain can act as an L,D-transpeptidase that gives rise to an alternative pathway for peptidoglycan cross-linking. This gives bacteria resistance to beta-lactam antibiotics that inhibit PBPs which usually carry out the cross-linking reaction. The conserved region contains a conserved histidine and cysteine, with the cysteine thought to be an active site residue. Several members of this family contain peptidoglycan binding domains. The molecular structure of YkuD protein shows this domain has a novel tertiary fold consisting of a beta-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two beta-sheets form a cradle capped by an alpha-helix. This family was formerly called the ErfK/YbiS/YcfS/YnhG family, but is now named after the first protein of known structure. 0 -354891 cl21616 DUF4870 Domain of unknown function (DUF4870). 0 -328828 cl21617 Terminase_GpA Phage terminase large subunit (GpA). This family consists of several phage terminase large subunit proteins as well as related sequences from several bacterial species. The DNA packaging enzyme of bacteriophage lambda, terminase, is a heteromultimer composed of a small subunit, gpNu1, and a large subunit, gpA, products of the Nu1 and A genes, respectively. Terminase is involved in the site-specific binding and cutting of the DNA in the initial stages of packaging. It is now known that gpA is actively involved in late stages of packaging, including DNA translocation, and that this enzyme contains separate functional domains for its early and late packaging activities. 0 -354892 cl21618 Peptidase_M11 Gametolysin peptidase M11. This model describes a metalloproteinase domain, with a characteristic HExxH motif. Examples of this domain are found in proteins in the family of immune inhibitor A, which cleaves antibacterial peptides, and in other, only distantly related proteases. This model is built to be broader and more inclusive than pfam05547. 0 -354894 cl21622 PepSY Peptidase propeptide and YPEB domain. This region is likely to have a protease inhibitory function (personal obs:C Yeats). The name is derived from Peptidase & Bacillus subtilis YPEB. 0 -304471 cl21623 ALO D-arabinono-1,4-lactone oxidase. The substrate-binding domain found in Cholesterol oxidase is composed of an eight-stranded mixed beta-pleated sheet and six alpha-helices. This domain is positioned over the isoalloxazine ring system of the FAD cofactor bound by FAD_binding_4 (PF:PF01565) and forms the roof of the active site cavity, allowing for catalysis of oxidation and isomerisation of cholesterol to cholest-4-en-3-one. 0 -304472 cl21625 Capsule_synth Capsule polysaccharide biosynthesis protein. This family includes export proteins involved in capsule polysaccharide biosynthesis, such as KpsS and LipB. 0 -354895 cl21627 DRTGG DRTGG domain. This family represents the N-terminal region of Hpr Serine/threonine kinase PtsK. This kinase is the sensor in a multicomponent phospho-relay system in control of carbon catabolic repression in bacteria. This kinase in unusual in that it recognizes the tertiary structure of its target and is a member of a novel family unrelated to any previously described protein phosphorylating enzymes. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The blades are formed by two N-terminal domains each, and the compact central hub assembles the C-terminal kinase domains. 0 -328832 cl21628 POTRA Surface antigen variable number repeat. The POTRA domain (for polypeptide-transport-associated domain) is found towards the N-terminus of ShlB family proteins (pfam03865). ShlB is important in the secretion and activation of the haemolysin ShlA. It has been postulated that the POTRA domain has a chaperone-like function over ShlA; it may fold back into the C-terminal beta-barrel channel. 0 -328834 cl21633 TruB-C_2 Pseudouridine synthase II TruB, C-terminal. The C terminal domain of tRNA Pseudouridine synthase II adopts a PUA (pfam01472) fold, with a four-stranded mixed beta-sheet flanked by one alpha-helix on each side. It allows for binding of the enzyme to RNA, as well as stabilisation of the RNA molecule. 0 -354896 cl21636 AsmA_2 AsmA-like C-terminal region. This family is similar to the C-terminal of the AsmA protein of E. coli. 0 -272058 cl21638 LodA_like L-lysine epsilon-oxidase from Marinomonas mediterranea and similar proteins. L-lysine epsilon-oxidase is responsible for oxidative deamination of L-lysine, producing L-2-aminoadipate-6-semialdehyde. Hydrogen peroxide is a side-product of this enzymatic reaction, which requires the cofactor CTQ (cysteine tryptophylquinone). CTQ most likely forms a Schiff base with the free amino acid substrate. The protein is also called marinocine, for its broad-spectrum antibacterial activity; the latter is most likely caused by hydrogen peroxide synthesis. The dimerization interface observed in the available 3D structure does not seem to be conserved. Homologs of LodA have been detected in various gram-negative bacteria, and they appear to be associated with the formation of biofilms. 0 -354897 cl21639 GH_101_like Endo-a-N-acetylgalactosaminidase and related glcyosyl hydrolases. Virulence of pathogenic organisms such as the Gram-positive Streptococcus pneumoniae is largely determined by the ability to degrade host glycoproteins and to metabolize the resultant carbohydrates. This family is the enzymatic region, EC:3.2.1.97, of the cell surface proteins that specifically cleave Gal-beta-1,3-GalNAc-alpha-Ser/Thr (T-antigen, galacto-N-biose), the core 1 type O-linked glycan common to mucin glycoproteins. This reaction is exemplified by the S. pneumoniae protein Endo-alpha-N-acetylgalactosaminidase, where Asp764 is the catalytic nucleophile-base and Glu796 the catalytic proton donor. 0 -328837 cl21640 PUFD_like PCGF Ub-like fold discriminator and related domains. PUFD is the minimal domain at the C-terminus of BCORL (BCL6 corepressor) that is needed for binding and giving specificity to some of the PCGF proteins, polycomb-group RING finger homologs. PUFD binds to the RAWUL (RING finger- and WD40-associated ubiquitin-like) domain of the particular PCGF PCGF1, pfam16207. Polycomb group proteins form repressive complexes (PRC) that mediate epigenetic modifications of histones. In humans there are many different PCGF homologs whose functions all vary, but the direct binding partner of PCGF1 is BCOR. BCOR has emerged as an important player in development and health. 0 -354898 cl21642 Pentapeptide Pentapeptide repeats (8 copies). These repeats are found in many cyanobacterial proteins. The repeats were first identified in hglK. The function of these repeats is unknown. The structure of this repeat has been predicted to be a beta-helix. The repeat can be approximately described as A(D/N)LXX, where X can be any amino acid. 0 -328839 cl21648 Coa1 Cytochrome oxidase complex assembly protein 1. TIM21 interacts with the outer mitochondrial TOM complex and promotes the insertion of proteins into the inner mitochondrial membrane. 0 -304482 cl21649 GFO_IDH_MocA_C Oxidoreductase family, C-terminal alpha/beta domain. This is the C terminal of a family of putative oxidoreductases. 0 -304483 cl21652 Peptidase_C11 Clostripain family. Clostripain is a cysteine protease characterized from Clostridium histolyticum, and also known from Clostridium perfringens. It is a heterodimer processed from a single precursor polypeptide, specific for Arg-|-Xaa peptide bonds. The older term alpha-clostripain refers to the most active, most reduced form, rather than to the product of one of several different genes. Clostripain belongs to the peptidase family C11, or clostripain family (see pfam03415). [Protein fate, Degradation of proteins, peptides, and glycopeptides, Cellular processes, Pathogenesis] 0 -328840 cl21655 AMO Ammonia monooxygenase. Both ammonia oxidizers such as Nitrosomonas europaea and methanotrophs (obligate methane oxidizers) such as Methylococcus capsulatus each can grow only on their own characteristic substrate. However, both groups have the ability to oxidize both substrates, and so the relevant enzymes must be named here according to their ability to oxidze both. The protein family represented here reflects subunit A of both the particulate methane monooxygenase of methylotrophs and the ammonia monooxygenase of nitrifying bacteria. 0 -276368 cl21656 Silic_transp Silicon transporter. Marine diatoms such as Cylindrotheca fusiformis encode at least six silicon transport protein homologues which exhibit similar size and topology. One characterized member of the family (Sit1) functions in the energy-dependent uptake of either Silicic acid [Si(OH)4] or Silicate [Si(OH)3O-] by a Na+ symport mechanism. The system is found in marine diatoms which make their "glass houses" out of silicon. [Transport and binding proteins, Other] 0 -328841 cl21657 Phage_TTP_1 Phage tail tube protein. This model describes a set of proteins that share low levels of sequence similarity but similar lengths and similar patterns of charged, hydrophobic, and Gly/Pro residues. All members (except one attributed to mouse embryo cDNA) belong to phage of Gram-positive bacteria. Several are identified as phage major tail proteins. Some members of this family have additional C-terminal regions of about 100 residues not included in this model. [Mobile and extrachromosomal element functions, Prophage functions] 0 -328842 cl21658 NinB NinB protein. hypothetical protein; Provisional 0 -354899 cl21662 GH7_CBH_EG Glycosyl hydrolase family 7. Glycosyl hydrolase family 7 contains eukaryotic endoglucanases (EGs) and cellobiohydrolases (CBHs) that hydrolyze glycosidic bonds using a double-displacement mechanism. This leads to a net retention of the conformation at the anomeric carbon. Both enzymes work synergistically in the degradation of cellulose,which is the main component of plant cell wall, and is composed of beta-1,4 linked glycosyl units. EG cleaves the beta-1,4 linkages of cellulose and CBH cleaves off cellobiose disaccharide units from the reducing end of the chain. In general, the O-glycosyl hydrolases are a widespread group of enzymes that hydrolyze the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A glycosyl hydrolase classification system based on sequence similarity has led to the definition of more than 95 different families inlcuding glycoside hydrolase family 7. 0 -272086 cl21666 PHA02004 N/A. major capsid protein 0 -354900 cl21672 DIOX_N non-haem dioxygenase in morphine synthesis N-terminal. flavanone-3-hydroxylase; Provisional 0 -328845 cl21673 DUF3828 Protein of unknown function (DUF3828). putative lipoprotein; Provisional 0 -354901 cl21675 OprD outer membrane porin, OprD family. This family consists of Campylobacter major outer membrane proteins. The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. 0 -304491 cl21676 VRP1 Salmonella virulence plasmid 28.1kDa A protein. virulence protein SpvA; Provisional 0 -354902 cl21677 NHase_beta Nitrile hydratase beta subunit. Members of this protein family are the beta subunit of nitrile hydratase. The alpha subunit is represented by model TIGR01323. While nitrile hydratase is given the specific EC number 4.2.1.84, nitriles are a class of compounds, and one genome may carry more than one nitrile hydratase. The enzyme occurs in both non-heme iron and non-corrin cobalt forms. [Energy metabolism, Amino acids and amines] 0 -354903 cl21678 ChlI Subunit ChlI of Mg-chelatase. The Lon serine proteases must hydrolyze ATP to degrade protein substrates. In Escherichia coli, these proteases are involved in turnover of intracellular proteins, including abnormal proteins following heat-shock. The active site for protease activity resides in a C-terminal domain. The Lon proteases are classified as family S16 in Merops. 0 -354904 cl21680 DUF3276 Protein of unknown function (DUF3276). This bacterial family of proteins has no known function. 0 -354905 cl21681 STN Secretin and TonB N-terminus short domain. This is a short domain found at the N-terminus of the Secretins of the bacterial type II/III secretory system as well as the TonB-dependent receptor proteins. These proteins are involved in TonB-dependent active uptake of selective substrates. 0 -272102 cl21682 CBM_10 Cellulose or protein binding domain. This domain is found in two distinct sets of proteins with different functions. Those found in aerobic bacteria bind cellulose (or other carbohydrates); but in anaerobic fungi they are protein binding domains, referred to as dockerin domains or docking domains. They are believed to be responsible for the assembly of a multiprotein cellulase/hemicellulase complex, similar to the cellulosome found in certain anaerobic bacteria. 0 -354906 cl21683 TFIIA_alpha_beta_like Precursor of TFIIA alpha and beta subunits and similar proteins. Transcription factor II A (TFIIA) is one of the general transcription factors for RNA polymerase II. TFIIA increases the affinity of TATA-binding protein (TBP) for DNA in order to assemble the initiation complex. TFIIA also functions as an activator during development and differentiation, and is involved in transcription from TATA-less promoters. TFIIA is composed of more than one subunit in various organisms. Mammalian TFIIA large subunits (TFIIA alpha and beta) and the smaller subunit (TFIIA gamma) form a heterotrimer. TFIIA alpha and beta are encoded by a single gene (TFIIA_alpha_beta), its protein product is post-translationally processed and cleaved. TOA1 and TOA2 are the two subunits of Yeast TFIIA which correspond to Mammalian TFIIA_alpha_beta and TFIIA gamma, respectively. TOA1 and TOA2 form a heterodimeric protein complex. TFIIA_alpha_beta alone is sufficient for transcription in early embryogenesis, but the cleaved forms, TFIIA alpha and TFIIA beta, represent the vast majority of TFIIA in most differentiated cells. The exact functional differences between cleaved and uncleaved forms are not yet clear. This model also contains paralogs of the canonical TFIIA_alpha_beta, such as the human ALF, which may be involved in gametogenesis and early embryogenesis (and is also subject to proteolytic cleavage). 0 -354907 cl21684 DUF4397 Domain of unknown function (DUF4397). AlgF is essential for the addition of O-acetyl groups to alginate, an extracellular polysaccharide. The presence of O-acetyl groups plays an important role in the ability of the polymer to act as a virulence factor. 0 -328853 cl21686 RecO_N Recombination protein O N terminal. This entry contains members that are not captured by pfam11967. 0 -354908 cl21687 Orc6_mid Middle domain of the origin recognition complex subunit 6. This family consists of several eukaryotic origin recognition complex subunit 6 (ORC6) proteins. Despite differences in their structure and sequences among eukaryotic replicators, ORC is a conserved feature of replication initiation in all eukaryotes. ORC-related genes have been identified in organisms ranging from S. pombe to plants to humans. All DNA replication initiation is driven by a single conserved eukaryotic initiator complex termed he origin recognition complex (ORC). The ORC is a six protein complex. The function of ORC is reviewed in. 0 -328855 cl21688 DUF1743 Domain of unknown function (DUF1743). The first twenty-nine completed genomes with a member of this protein family include twenty-eight archaeal methanogens and one other related archaeon, Ferroglobus placidus DSM 10642. The exact function is unknown, but the protein likely belongs to a system usually tightly linked to methanogenesis. 0 -354909 cl21693 CDC48_N Cell division protein 48 (CDC48), N-terminal domain. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the N-terminus. The VAT-N domain found in AAA ATPases is a substrate 185-residue recognition domain. 0 -354910 cl21695 Tn7_Tnp_TnsA_N TnsA endonuclease N terminal. head completion protein; Provisional 0 -328858 cl21700 Glyco_hydro_26 Glycosyl hydrolase family 26. 0 -354911 cl21701 PC4 Transcriptional Coactivator p15 (PC4). p15 has a bipartite structure composed of an amino-terminal regulatory domain and a carboxy-terminal cryptic DNA-binding domain. The DNA-binding activity of the carboxy-terminal is disguised by the amino-terminal p15 domain. Activity is controlled by protein kinases that target the regulatory domain. 0 -304504 cl21702 DUF1700 Protein of unknown function (DUF1700). This family contains many hypothetical bacterial proteins and putative membrane proteins. 0 -354912 cl21703 Peptidase_A24 Type IV leader peptidase family. Peptidase A24, or the prepilin peptidase as it is also known, processes the N-terminus of the prepilins. The processing is essential for the correct formation of the pseudopili of type IV bacterial protein secretion. The enzyme is found across eubacteria and archaea. 0 -354913 cl21704 zf-CSL CSL zinc finger. This is a zinc binding motif which contains four cysteine residues which chelate zinc. This domain is often found associated with a pfam00226 domain. This domain is named after the conserved motif of the final cysteine. 0 -354914 cl21705 Arv1 Arv1-like family. Arv1 is a transmembrane protein with potential zinc-binding motifs. ARV1 is a novel mediator of eukaryotic sterol homeostasis. 0 -354915 cl21707 Phage_holin_3_6 Putative Actinobacterial Holin-X, holin superfamily III. Phage_holin_3_6 is a family of small hydrophobic proteins with two or three transmembrane domains of the Hol-X family. Holin proteins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. 0 -354916 cl21709 COQ9 COQ9. This uncharacterized protein is found in a number of Alphaproteobacteria and, with N-terminal regions long enough to be transit peptides, in eukaryotes. This phylogeny suggests mitochondrial derivation. In several Alphaproteobacteria, the gene for this protein is encoded divergently from rpsU, the gene for ribosomal protein S21. S21 is unusual in being encoded outside the usual long ribosomal protein operons, but rather in contexts that suggest regulation of the initiation of protein translation. [Unknown function, General] 0 -328865 cl21710 SASP_gamma Small, acid-soluble spore protein, gamma-type. This model represents a family of small, glutamine and asparagine-rich peptides that store amino acids in the spores of Bacillus subtilis and related bacteria. Most members of the family have two copies of the spore protease (GPR) cleavage motif, typically EFASE in this family, separating three low-complexity repeats. [Cellular processes, Sporulation and germination] 0 -328866 cl21712 T2SSC Type II secretion system protein C. Members of this protein family are found in type IV pilus biogenesis loci and include proteins designated PilP. [Cell envelope, Surface structures] 0 -354917 cl21715 TrbM TrbM. conjugal transfer protein TrbM; Provisional 0 -328868 cl21716 PapD_N Pili and flagellar-assembly chaperone, PapD N-terminal domain. putative fimbrial protein TcfA; Provisional 0 -328869 cl21721 IDO Indoleamine 2,3-dioxygenase. This domain has no known function. It is found in various hypothetical and conserved domain proteins. 0 -354918 cl21722 DnaJ_C C-terminal substrate binding domain of DnaJ and HSP40. This family consists of the C terminal region of the DnaJ protein. It is always found associated with pfam00226 and pfam00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions. Structural analysis of Structure 1nlt shows that PF00684 is nested within this DnaJ C-terminal region. 0 -354919 cl21724 GAG_Lyase N/A. This family consists of a group of secreted bacterial lyase enzymes EC:4.2.2.1 capable of acting on hyaluronan and chondroitin in the extracellular matrix of host tissues, contributing to the invasive capacity of the pathogen. 0 -354920 cl21727 VATPase_H N/A. The yeast Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying organelles. It functions as an ATP dependent proton pump that transports protons across a lipid bilayer. This domain corresponds to the N terminal domain of the H subunit of V-ATPase. The N-terminal domain is required for the activation of the complex whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation. 0 -328873 cl21728 CIA30 Complex I intermediate-associated protein 30 (CIA30). This protein is associated with mitochondrial Complex I intermediate-associated protein 30 (CIA30) in human and mouse. The family is also present in Schizosaccharomyces pombe which does not contain the NADH dehydrogenase component of complex I, or many of the other essential subunits. This means it is possible that this family of protein may not be directly involved in oxidative phosphorylation. 0 -304525 cl21731 DUF677 Protein of unknown function (DUF677). This family consists of several plant proteins and includes BYPASS1, which is required for normal root and shoot development. This protein prevents constitutive production of a root mobile carotenoid-derived signaling compound that is capable of arresting shoot and leaf development. 0 -354921 cl21735 Lung_7-TM_R Lung seven transmembrane receptor. This region of 270 amino acids is the seven transmembrane alpha-helical domains included within five GPCRRHODOPSN4 motifs of a G-protein-coupled-receptor (GPCR) protein, conserved from nematodes to humans. GPCRs are integral membrane receptors whose intracellular actions are mediated by signalling pathways involving G proteins and downstream secondary messengers. 0 -354922 cl21736 TAF6 TATA Binding Protein (TBP) Associated Factor 6 (TAF6) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. TAF6_C is the C-terminal domain of the TAF6 subunit of the general transcription factor TFIID. The crystal structure reveals the presence of five conserved HEAT repeats. This region is necessary for the complexing together of the subunits TAF5, TAF6 and TAF9. 0 -354923 cl21738 Alginate_lyase2 Alginate lyase. This family includes heparin lyase I, EC:4.2.2.7. Heparin lyase I depolymerizes heparin by cleaving the glycosidic linkage next to an iduronic acid moiety. The structure of heparin lyase I consists of a beta-jelly roll domain with a long, deep substrate-binding groove and an unusual thumb domain containing many basic residues extending from the main body of the enzyme. This family also includes glucuronan lyase, EC:4.2.2.14. The structure glucuronan lyase is a beta-jelly roll. 0 -354924 cl21742 Cas10_III CRISPR/Cas system-associated protein Cas10. This domain family is found in bacteria and archaea, and is typically between 101 and 138 amino acids in length. The proteins in this family are frequently annotated as CRISPR-associated proteins however there is little accompanying literature to confirm this. 0 -354925 cl21745 DUF4188 Domain of unknown function (DUF4188). This family includes aldoxime dehydratase, EC:4.99.1.5. This is a haem-containing enzyme, which catalyzes the dehydration of aldoximes to their corresponding nitrile. It also includes phenylacetaldoxime dehydratase, EC:4.99.1.7. This haem-containing enzyme catalyzes the dehydration of Z-phenylacetaldoxime to phenylacetonitrile. The enzyme forms an elliptic beta barrel, composed of eight beta-strands, flanked by alpha-helices. 0 -354926 cl21747 SusD starch binding outer membrane protein SusD. SusD is a secreted polysaccharide-binding protein with an N-terminal lipid moiety that allows it to associate with the outer membrane. SusD probably mediates xyloglucan-binding prior to xyloglucan transport in the periplasm for degradation. This domain is found N-terminal to pfam07980. 0 -328882 cl21750 Fis1 Mitochondrial Fission Protein Fis1, cytosolic domain. The mitochondrial fission protein Fis1 consists of two tetratricopeptide repeats. This domain is the C-terminal tetratricopeptide repeat 0 -354931 cl22411 E2F_DD Dimerization domain of E2F transcription factors. This is the coiled coil (CC) - marked box (MB) domain of E2F transcription factors. This domain forms a heterodimer with the corresponding domain of the DP transcription factor, the heterodimer binds the C-terminus of retinoblastoma protein. 0 -354932 cl22413 ADAM17_MPD Membrane-proximal domain of a disintegrin and metalloprotease 17 (ADAM17). ADAM17_MPD is the membrane-proximal domain of a family of disintegrin and metalloproteinase domain-containing protein 17 found in metazoan species. ADAM17 is a major sheddase that is responsible for the regulation of a wide range of biological processes, such as cellular differentiation, regeneration, and cancer progression. This MPD region acts as the sheddase switch. PDI or protein-disulfide isomerase interacts with ADAM17 and to down-regulate its enzymatic activity. The interaction is directly with the MPD, the region of dimerization and substrate recognition, where it catalyzes an isomerisation of disulfide bridges within the thioredoxin motif CXXC. this isomerisation results in a major structural change between an active, open state and an inactive, closed state of the MPD. This change is thought to act as a molecular switch, allowing a global reorientation of the extracellular domains in ADAM17 and regulating its shedding activity. 0 -328890 cl22415 ESP Exocrine gland-secreting peptide 1 (ESP1) and similar pheromones. ESP is a family of largely rodent exocrine gland-secreting peptides that are produced by the male extraorbital lacrimal gland to be secreted into the tear fluid. Other mice including females detect these peptides through receptors in the vomeronasal organ, and the receptors report information on mouse-strain, sex and species. The peptides are short, all carrying an N-terminal signal-peptide to indicate they are for secretion which accounts for much of the common conservation. 0 -354933 cl22417 bt3222_like Uncharacterized proteins similar to Bacteriodes thetaiotaomicron bt3222. A small family of uncharacterized proteins around 310 residues in length and found in various Bacteroides species. The function of this family is unknown. 0 -277561 cl22421 ZIP_Gal4p-like Leucine zipper Dimerization domain of Gal4p-like transcription factors. Sip4p binds to carbon source-responsive element (CSRE) motifs and activates transcription of target genes under conditions of glucose deprivation. Its function is modulated through phosphorylation by SNF1 protein kinase, a protein essential for expression of glucose-repressed genes in response to glucose deprivation. Sip4p is a member of the Gal4p family of transcriptional activators which contain an N-terminal DNA-binding domain with a Zn2Cys6 binuclear cluster that interact with CCG triplets and a leucine zipper-like heptad repeat that dimerizes. Dimerization allows binding of targets which contain two CCG motifs oriented in an inverted (CGG-CCG), direct (CCG-CCG), or everted (CCG-CGG) manner. 0 -328892 cl22422 SRP68-RBD RNA-binding domain of signal recognition particle subunit 68. SRP68 is a family that is part of the SRP or signal recognition particle complex. This complex, consisting of six proteins and a 7SL-RNA is necessary for guiding the emerging proteins designed for the membrane towards the translocation pore. SRP68 forms a stable heterodimer with SRP72, a protein with a TPR repeat. Specific RNA-binding of SRP68 is mediated by the N-terminal domain of approximately 200 residues of this family. 0 -354934 cl22423 NBR1_like Functionally uncharacterized domain in neighbor of Brca1 Gene 1 and related proteins. Domain present between positions 365-485 in the human next to BRCA1 gene 1 protein Q14596 (NBR1_HUMAN) Distant homology and fold prediction analysis suggests this domain has an immunoglobulin like fold and is distantly homologous to domains involved in cell adhesion such as CARDB (PF07705). JCSG construct was crystalized confirming the domain boundaries 0 -304554 cl22428 E1_enzyme_family N/A. Members of the HesA/MoeB/ThiF family of proteins (pfam00899) include a number of members encoded in the midst of thiamine biosynthetic operons. This mix of known and putative ThiF proteins shows a deep split in phylogenetic trees, with the Escherichia. coli ThiF and the E. coli MoeB proteins seemingly more closely related than E. coli ThiF and Campylobacter (for example) ThiF. This model represents the more widely distributed clade of ThiF proteins such found in E. coli. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine] 0 -354935 cl22429 HHH_5 Helix-hairpin-helix domain. The HHH domain is a short DNA-binding domain. 0 -354936 cl22433 H3TH_StructSpec-5'-nucleases H3TH domains of structure-specific 5' nucleases (or flap endonuclease-1-like) involved in DNA replication, repair, and recombination. Exonuclease-1 (EXO1) is involved in multiple, eukaryotic DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity), DNA repair processes (DNA mismatch repair (MMR) and post-replication repair (PRR), recombination, and telomere integrity. EXO1 functions in the MMS2 error-free branch of the PRR pathway in the maintenance and repair of stalled replication forks. Studies also suggest that EXO1 plays both structural and catalytic roles during MMR-mediated mutation avoidance. Members of this subgroup include the H3TH (helix-3-turn-helix) domains of EXO1 and other similar eukaryotic 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region/I domain (not included here) and inserted within the PIN domain is an atypical helix-hairpin-helix-2 (HhH2)-like region. This atypical HhH2 region, the H3TH domain, has an extended loop with at least three turns between the first two helices, and only three of the four helices appear to be conserved. Both the H3TH domain and the helical arch/clamp region are involved in DNA binding. Studies suggest that a glycine-rich loop in the H3TH domain contacts the phosphate backbone of the template strand in the downstream DNA duplex. These nucleases have a carboxylate rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+ or Mn2+) required for nuclease activity. The first metal binding site is composed entirely of Asp/Glu residues from the PIN domain, whereas, the second metal binding site is composed generally of two Asp residues from the PIN domain and one Asp residue from the H3TH domain. Together with the helical arch and network of amino acids interacting with metal binding ions, the H3TH region defines a positively charged active-site DNA-binding groove in structure-specific 5' nucleases. EXO1 nucleases also have C-terminal Mlh1- and Msh2-binding domains which allow interaction with MMR and PRR proteins, respectively. 0 -354937 cl22434 Hint N/A. This short domain is a conserved region of intein-containing proteins from lower eukaryotes. 0 -354938 cl22435 TPP_enzyme_M Thiamine pyrophosphate enzyme, central domain. TPP_enzyme_M_2 is the middle domain of thiamine pyrophosphate in sequences not captured by pfam00205. This enzyme is necessary for the first step of the biosynthesis of menaquinone, or vitamin K2, an important cofactor in electron transport in bacteria. 0 -354939 cl22448 Inhibitor_I29 Cathepsin propeptide inhibitor domain (I29). This domain is found at the N-terminus of some C1 peptidases such as Cathepsin L where it acts as a propeptide. There are also a number of proteins that are composed solely of multiple copies of this domain such as the peptidase inhibitor salarin. This family is classified as I29 by MEROPS. Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site. Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. 0 -354940 cl22450 RtcB tRNA-splicing ligase RtcB. Members of this family are related to RctB. RctB a protein of known structure but unknown function that often is encoded near RNA cyclase and therefore is suggested to be a tRNA or mRNA processing enzyme. This family of RctB-like proteins in encoded upstream of, and apparently is translationally coupled to, the putative peptide chain release factor RF-H (TIGR03072), product of the prfH gene. Note that a large deletion at the junction between this gene and the prfH gene in Escherichia coli K-12 marks both as probable pseudogenes. [Protein synthesis, Other] 0 -354941 cl22451 ASF1_hist_chap ASF1 like histone chaperone. This family includes the yeast and human ASF1 protein. These proteins have histone chaperone activity. ASF1 participates in both the replication-dependent and replication-independent pathways. The structure three-dimensional has been determined as a a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. 0 -354942 cl22454 HEAT_EZ HEAT-like repeat. Approx. 40 amino acid repeat. Tandem repeats form super-helix of helices that is proposed to mediate interaction of beta-catenin with its ligands. CAUTION: This family does not contain all known armadillo repeats. 0 -354944 cl22470 AXH Ataxin-1 and HBP1 module (AXH). unknown function 0 -328904 cl22471 MtrF Tetrahydromethanopterin S-methyltransferase, F subunit (MtrF). tetrahydromethanopterin S-methyltransferase subunit F; Provisional 0 -328905 cl22482 Sec63 Sec63 Brl domain. This domain was named after the yeast Sec63 (or NPL1) (also known as the Brl domain) protein in which it was found. This protein is required for assembly of functional endoplasmic reticulum translocons. Other yeast proteins containing this domain include pre-mRNA splicing helicase BRR2, HFM1 protein and putative helicases. 0 -304570 cl22495 Gp23 Major capsid protein Gp23. capsid vertex protein; Provisional 0 -328907 cl22503 DUF2385 Protein of unknown function (DUF2385). Members of this uncharacterized protein family are found in a number of alphaProteobacteria, including root nodule bacteria, Brucella suis, Caulobacter crescentus, and Rhodopseudomonas palustris. Conserved residues include two well-separated cysteines, suggesting a disulfide bond. The function is unknown. 0 -354945 cl22520 UPF0181 Uncharacterized protein family (UPF0181). hypothetical protein; Provisional 0 -304575 cl22532 Carbam_trans_N Carbamoyltransferase N-terminus. This family describes a protein family, YeaZ, now associated with the threonylcarbamoyl adenosine (t6A) tRNA modification. Members of this family may occur as fusions with ygjD (previously gcp) or the ribosomal protein N-acetyltransferase rimI, and is frequently encoded next to rimI. [Protein synthesis, tRNA and rRNA base modification] 0 -354946 cl22542 P22_CoatProtein P22 coat protein - gene protein 5. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 369 and 424 amino acids in length. There is a single completely conserved residue G that may be functionally important. 0 -328914 cl22548 DUF3792 Protein of unknown function (DUF3792). Members of this family of strongly hydrophobic putative transmembrane protein average about 125 amino acids in length and occur mostly, but not exclusively, in the Firmicutes. Members are quite diverse in sequence. The function is unknown. 0 -354947 cl22555 CRF Corticotropin-releasing factor family. 0 -304582 cl22557 SPAM Salmonella surface presentation of antigen gene type M protein. type III secretion system protein SpaM; Provisional 0 -304583 cl22571 VirC2 VirC2 protein. putative crown gall tumor protein VirC2; Provisional 0 -354948 cl22626 YSIRK_signal YSIRK type signal peptide. Many surface proteins found in Streptococcus, Staphylococcus, and related lineages share apparently homologous signal sequences. A motif resembling [YF]SIRKxxxGxxS[VIA] appears at the start of the transmembrane domain. The GxxS motif appears perfectly conserved, suggesting a specific function and not just homology. There is a strong correlation between proteins carrying this region at the N-terminus and those carrying the Gram-positive anchor domain with the LPXTG sortase processing site at the C-terminus. 0 -354949 cl22628 YcgL YcgL domain. This family of proteins formerly called DUF709 includes the E. coli gene ycgL. homologs of YcgL are found in gammaproteobacteria. The structure of this protein shows a novel alpha/beta/alpha sandwich structure. 0 -328918 cl22629 Cyt_c_Oxidase_VIIb N/A. Cytochrome C oxidase chain VIIb. Cytochrome c oxidase (CcO), the terminal oxidase in the respiratory chains of eukaryotes and most bacteria, is a multi-chain transmembrane protein located in the inner membrane of mitochondria and the cell membrane of prokaryotes. It catalyzes the reduction of O2 and simultaneously pumps protons across the membrane. The number of subunits varies from three to five in bacteria and up to 13 in mammalian mitochondria. Subunits I, II, and III of mammalian CcO are encoded within the mitochondrial genome and the remaining 10 subunits are encoded within the nuclear genome. The VIIb subunit is found only in eukaryotes and its specific function remains unclear. A rare polymorphism of the CcO VIIb gene may be associated with the high risk of nasopharyngeal carcinoma in a Cantonese family. 0 -354950 cl22636 DNA_pol3_theta DNA polymerase III, theta subunit. This family of proteins with unknown function appears to be restricted to Proteobacteria. 0 -276635 cl22681 wcaD N/A. This membrane protein is believed to function as the colanic acid repeating unit polymerase (in an analagous fashion to wzy proteins in O-antigen polymerization). 0 -276638 cl22684 wcaM N/A. This protein of uncharacterized function is the final gene in the conserved colanic acid biosynthesis cluster observed in Enterobacteraceae. 0 -304589 cl22701 Phage_lysis Bacteriophage Rz lysis protein. phage lambda Rz-like lysis protein 0 -354951 cl22733 DUF1800 Protein of unknown function (DUF1800). This is a family of large bacterial proteins of unknown function. 0 -354953 cl22759 T2SS_PulS_OutS Type II secretion system pilotin lipoprotein (PulS_OutS). This family comprises lipoproteins from four gamma proteobacterial species: PulS protein of Klebsiella pneumoniae, the OutS protein of Erwinia chrysanthemi and Pectobacterium chrysanthemi, and the functionally uncharacterized E. coli protein EtpO. PulS and OutS have been shown to interact with and facilitate insertion of secretins into the outer membrane, suggesting a chaperone-like, or piloting function for members of this family. [Transport and binding proteins, Amino acids, peptides and amines] 0 -354955 cl22765 SP_1775_like Uncharacterized protein conserved in Streptococci. This family of Firmicute sequences has members that are annotated as ribose-phosphate pyrophosphokinase; however there is no evidence for this attribution. Member proteins are all shorter than 100 residues in length. 0 -276720 cl22766 mycoplas_M_dom IgG-blocking virulence domain. Members of this family, including MG_281 of Mycoplasma genitalium, bind conserved regions of the IgG light chain sequences, blocking IgG's normal function of antigen-specific binding. It is therefore an important virulence protein. Members of this family are found also in Mycoplasma pneumoniae, M. penetrans, M. gallisepticum, and M. iowae. Model TIGR04524 describes a region within this protein that is shared by many additional Mycoplasma and Ureaplasma proteins. [Cellular processes, Pathogenesis] 0 -276722 cl22768 TIGR04562 TIGR04562 family protein. Members of this family are bacterial proteins, roughly 400 amino acids in length. Most members belong to the Deltaproteobacteria. All members of the Myxococcales, and order withing the Deltaproteobacteria, have a member. The arrangement of conserved residues into invariant motifs suggests enzymatic activity. The function is unknown. 0 -354956 cl22817 DUF4842 Domain of unknown function (DUF4842). This domain is abundant in the Leptospira, in Bacteroides, and in Vibrio (three widely separated lineages). Most members have plausible lipoprotein signal peptides, including lipoprotein LruC from Leptospira interrogans and BACOVA_00967, from Bacteroides ovatus, with a solved crystal structure. Note that the C-terminal region of pfam13448 (length 83) matches the N-terminal region of some members of this domain (length 243). 0 -328927 cl22834 CDPS Cyclodipeptide synthase. Members of this family take two aminoacylated tRNA molecules and produce a cyclic dipeptide with two peptide bonds. This enzyme therefore produces a type of nonribosomal peptide, but by a mechanism entirely different from the typical non-ribosomal peptide synthase (NRPS) that relies on adenylation to activate amino acids. Three characterized members of this family are the cyclodityrosine synthase of Mycobacterium tuberculosis (an essential gene), a cyclo(L-Phe-L-Leu) synthase from Streptomyces noursei involved in natural product biosynthesis, and cyclodileucine synthase YvmC from Bacillus licheniformis. Many cyclodipeptide synthases are found next to a cytochrome P450 that further modifies the product. 0 -354957 cl22837 Peptidase_Mx1 Putative zinc-binding metallo-peptidase. Members of this family are lipoproteins with the typical zinc metallohydrolase HExxH motif and additional similarities to a better-documented zinc peptidase family, pfam06167. The seed alignment begins immediately after the lipoprotein motif Cys residue. Up to five members of this protein family occur per genome, in the context of certain gene pairs related to RagA and RagB, or to SusC and SusD. Those gene pairs, like the present family, are restricted to the Bacteriodetes, may number up to 100 pairs per genome, and are linked to TonB-dependent uptake of biopolymer-derived nutrients such as glycans. A possible function for this lipoprotein is to hydrolyse larger molecules to prepare substrates for import and utilization. [Unknown function, Enzymes of unknown specificity] 0 -354958 cl22851 PHD_SF PHD finger superfamily. PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. 0 -354959 cl22853 Motor_domain Myosin and Kinesin motor domain. Myosin motor domain of cardiac muscle, beta myosin heavy chain 7b (also called KIAA1512, dJ756N5.1, MYH14, MHC14). MYH7B is a slow-twitch myosin. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. 0 -354960 cl22854 HTH_XRE N/A. YdaS_antitoxin is a family of putative bacterial antitoxins, neutralising the toxin YdaT, family pfam06254. 0 -354961 cl22855 TNFRSF Tumor necrosis factor receptor superfamily (TNFRSF). This family of proteins is found in eukaryotes. Proteins in this family are typically between 129 and 184 amino acids in length. This is the stn_TNFRSF12A_TNFR domain from the tumor necrosis factor receptor. The function of this domain is unknown. 0 -354962 cl22856 SNARE SNARE motif. Most if not all vesicular membrane fusion events in eukaryotic cells are believed to be mediated by a conserved fusion machinery, the SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors] machinery. The SNARE domain is thought to act as a protein-protein interaction module in the assembly of a SNARE protein complex. 0 -354963 cl22860 PEPCK_HprK N/A. catalyzes the formation of phosphoenolpyruvate by decarboxylation of oxaloacetate. 0 -354964 cl22861 LamG N/A. This domain belongs to the Concanavalin A-like lectin/glucanases superfamily. 0 -354965 cl22863 Str_synth Strictosidine synthase. This family consists of arylesterases (Also known as serum paraoxonase) EC:3.1.1.2. These enzymes hydrolyze organophosphorus esters such as paraoxon and are found in the liver and blood. They confer resistance to organophosphate toxicity. Human arylesterase (PON1) is associated with HDL and may protect against LDL oxidation. 0 -354966 cl22867 Sigma70_r4 N/A. Region 4 of sigma-70 like sigma-factors are involved in binding to the -35 promoter element via a helix-turn-helix motif. Due to the way Pfam works, the threshold has been set artificially high to prevent overlaps with other helix-turn-helix families. Therefore there are many false negatives. 0 -354967 cl22877 Autotransporter Autotransporter beta-domain. Secretion of protein products occurs by a number of different pathways in bacteria. One of these pathways known as the type IV pathway was first described for the IgA1 protease. The protein component that mediates secretion through the outer membrane is contained within the secreted protein itself, hence the proteins secreted in this way are called autotransporters. This family corresponds to the presumed integral membrane beta-barrel domain that transports the protein. This domain is found at the C-terminus of the proteins it occurs in. The N-terminus contains the variable passenger domain that is translocated across the membrane. Once the passenger domain is exported it is cleaved auto-catalytically in some proteins, in others a different peptidase is used and in some cases no cleavage occurs. 0 -354968 cl22881 DNA_processg_A DNA recombination-mediator protein A. This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 0 -354969 cl22882 S-methyl_trans Homocysteine S-methyltransferase. methionine synthase I; Validated 0 -354970 cl22885 TAF9 TATA Binding Protein (TBP) Associated Factor 9 (TAF9) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. This family represents the N-terminus of the 31kD subunit (42kD in drosophila) of transcription initiation factor IID (TAFII31). TAFII31 binds to p53, and is an essential requirement for p53 mediated transcription activation. 0 -354971 cl22886 GGCT_like N/A. GGACT, gamma-glutamylamine cyclotransferase, is a ubiquitous enzyme found in bacteria, plants, and metazoans from Dictyostelium through to humans. It converts gamma-glutamylamines to free amines and 5-oxoproline. 0 -328943 cl22894 Mem_trans Membrane transport protein. [Transport and binding proteins, Other] 0 -304622 cl22895 HTH_8 Bacterial regulatory protein, Fis family. DNA-binding protein Fis; Provisional 0 -354972 cl22897 TPR_1 Tetratricopeptide repeat. This Pfam entry includes outlying Tetratricopeptide-like repeats (TPR) that are not matched by pfam00515. 0 -354973 cl22899 UTRA UTRA domain. It has a similar fold to HutC/FarR-like bacterial transcription factors of the GntR family. It is believed to modulate activity of bacterial transcription factors in response to binding small molecules. 0 -304625 cl22901 RHH_1 Ribbon-helix-helix protein, copG family. ParD is the antitoxin of a bacterial toxin-antitoxin gene pair. The cognate toxin is ParE in, pfam05016. The family contains several related antitoxins from Cyanobacteria, Proteobacteria and Actinobacteria. Antitoxins of this class carry an N-terminal ribbon-helix-helix domain, RHH, that is highly conserved across all type II bacterial antitoxins, which dimerizes with the RHH domain of a second VapB molecule. A hinge section follows the RHH, with an additional pair of flexible alpha helices at the C-terminus. This C-terminus is the toxin-binding region of the dimer, and so is specific to the cognate toxin, whereas the RHH domain has the specific function of lying across the RNA-binding groove of the toxin dimer and inactivating the active-site - a more general function of all type II antitoxins. 0 -354974 cl22902 MdcG Phosphoribosyl-dephospho-CoA transferase MdcG. Malonate decarboxylase, like citrate lyase, has a unique acyl carrier protein subunit with a prosthetic group derived from, and distinct from, coenzyme A. Members of this protein family are the phosphoribosyl-dephospho-CoA transferase specific to the malonate decarboxylase system. This enzyme can also be designated holo-ACP synthase (2.7.7.61). The corresponding component of the citrate lyase system, CitX, shows little or no sequence similarity to this family. [Energy metabolism, Other] 0 -354975 cl22903 Arrestin_N Arrestin (or S-antigen), N-terminal domain. Vacuolar protein sorting-associated protein (Vps) 26 is one of around 50 proteins involved in protein trafficking. In particular, Vps26 assembles into a retromer complex with at least four other proteins Vps5, Vps17, Vps29 and Vps35. This family also contains Down syndrome critical region 3/A. 0 -304628 cl22904 CARDB CARDB. The English-language version of the first reference can be found on pages 388-399 of the above. This domain has been named NEW3 but its actual function is not known. It is found on proteins which are bacterial galactosidases. The domain is associated with the NPCBM family, pfam08305, a novel putative carbohydrate binding module found at the N-terminus of glycosyl hydrolases. 0 -328948 cl22907 zf-U1 U1 zinc finger. Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ribonucleoprotein C and other RNA-binding proteins. 0 -304631 cl22912 CsbD CsbD-like. hypothetical protein; Provisional 0 -354976 cl22913 DUF1255 Protein of unknown function (DUF1255). hypothetical protein; Provisional 0 -354977 cl22917 PNTB NAD(P) transhydrogenase beta subunit. pyridine nucleotide transhydrogenase; Provisional 0 -304634 cl22918 AnmK Anhydro-N-acetylmuramic acid kinase. anhydro-N-acetylmuramic acid kinase; Reviewed 0 -328952 cl22919 Tfb4 Transcription factor Tfb4. All proteins in this family are part of the TFIIH complex which is involved in the initiation of transcription and nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -354979 cl22923 DUF2268 Predicted Zn-dependent protease (DUF2268). This domain, found in various hypothetical bacterial proteins, as well as predicted zinc dependent proteases, has no known function. 0 -354980 cl22924 7TM_GPCR_Srd Serpentine type 7TM GPCR chemoreceptor Srd. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Str is a member of the Str superfamily of chemoreceptors. Almost a quarter (22.5%) of str and srj family genes and pseudogenes in C. elegans appear to have been newly formed by gene duplications since the species split. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 0 -354981 cl22925 SLBB SLBB domain. This family consists of the C-terminal domain of several bacterial Na(+)-translocating NADH-quinone reductase subunit A (NQRA) proteins. The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. 0 -304643 cl22931 TAF12 TATA Binding Protein (TBP) Associated Factor 12 (TAF12) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex. The TATA Binding Protein (TBP) Associated Factor 12 (TAF12) is one of several TAFs that bind TBP and are involved in forming the TFIID complex. TFIID is one of the seven General Transcription Factors (GTFs) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs are named after their electrophoretic mobility in polyacrylamide gels in different species. A new, unified nomenclature has been suggested for the pol II TAFs to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs function such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. These TAFs, with the help of specific activators, are required only for expression of a subset of genes and are not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; the HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFs and many other transcription factors. TFIID has a histone octamer-like substructure. TAF12 domain interacts with TAF4 and makes a novel histone-like heterodimer that binds DNA and has a core promoter function of a subset of genes. 0 -328959 cl22933 Spo0M SpoOM protein. This family consists of several bacterial SpoOM proteins which are thought to control sporulation in Bacillus subtilis.Spo0M exerts certain negative effects on sporulation and its gene expression is controlled by sigmaH. 0 -328960 cl22934 DUF1699 Protein of unknown function (DUF1699). This family contains many archaeal proteins which have very conserved sequences. 0 -354983 cl22935 GP11 GP11 baseplate wedge protein. baseplate wedge subunit and tail pin; Provisional 0 -354984 cl22936 DUF2089 Protein of unknown function (DUF2089). This domain, found in various hypothetical prokaryotic proteins, has no known function. This domain is a zinc-ribbon. 0 -304651 cl22942 TOMM_pelo NHLP leader peptide domain. This model recognizes a number of type 2 lantibiotic-type bacteriocins, including mersacidin and lichenicidin. Members often are found as gene pairs encoding two-chain bacteriocins. Maturation is accomplished, at least in part, by a LanM-type enzyme (TIGR03897). This model describes only the leader peptide region. [Cellular processes, Toxin production and resistance] 0 -328962 cl22943 DUF3693 Phage related protein. hypothetical protein 0 -304653 cl22944 COG5510 Predicted small secreted protein [Function unknown]. entericidin B membrane lipoprotein; Provisional 0 -328963 cl22948 FeoC FeoC like transcriptional regulator. ferrous iron transport protein FeoC; Provisional 0 -354985 cl22951 Vps51 Vps51/Vps67. The COG complex, the peripheral membrane oligomeric protein complex involved in intra-Golgi protein trafficking, consists of eight subunits arranged in two lobes bridged by Cog1. Cog5 is in the smaller, B lobe, bound in with Cog6-8, and is itself bound to Cog1 as well as, strongly, to Cog7. 0 -328965 cl22952 Pou Pou domain - N-terminal to homeobox domain. 0 -354986 cl22953 RCC_reductase Red chlorophyll catabolite reductase (RCC reductase). red chlorophyll catabolite reductase 0 -354987 cl22958 Agenet Agenet domain. Domain in plant sequences with possible chromatin-associated functions. 0 -328968 cl22959 VRR_NUC VRR-NUC domain. It is associated with members of the PD-(D/E)XK nuclease superfamily, which include the type III restriction modification enzymes, for example StyLTI. 0 -354988 cl22960 T4_gp9_10 Bacteriophage T4 gp9/10-like protein. baseplate wedge tail fiber connector; Provisional 0 -328970 cl22961 RNA_Me_trans Predicted SAM-dependent RNA methyltransferase. This family of proteins are predicted to be alpha/beta-knot SAM-dependent RNA methyltransferases. 0 -277679 cl22964 COG3905 Predicted transcriptional regulator [Transcription]. 0 -328971 cl22966 DUF1330 Domain of unknown function (DUF1330). This family consists of several hypothetical bacterial proteins of around 90 residues in length. The function of this family is unknown. 0 -354989 cl22970 Sulfotransfer_2 Sulfotransferase family. This family consists of several mammalian galactose-3-O-sulfotransferase proteins. Gal-3-O-sulfotransferase is thought to play a critical role in 3'-sulfation of N-acetyllactosamine in both O- and N-glycans. 0 -328973 cl22974 HpaP Type III secretion protein (HpaP). This family of genes is always found in type III secretion operons, althought its function in the processes of secretion and virulence is unclear. Hpa stands for Hrp-associated gene, where Hrp stands for hypersensitivity response and virulence. 0 -354992 cl22978 rve_3 Integrase core domain. 0 -277695 cl22980 Csx12 CRISPR/Cas system-associated protein Cas9. Members of this family of CRISPR-associated (cas) protein are found, so far, in CRISPR/cas loci in Wolinella succinogenes DSM 1740, Legionella pneumophila str. Paris, and Francisella tularensis, where the last probably is an example of a degenerate CRISPR locus, having neither repeats nor a functional Cas1. The characteristic repeat length is 37 base pairs and period is about 72. One region of this large protein shows sequence similarity to pfam01844, HNH endonuclease. 0 -328993 cl23554 DUF968 Protein of unknown function (DUF968). REF is a family of P1-like phage RecA-dependent nucleases. It does not appear to act as a positive RecA regulator. It is a new kind of enzyme, a RecA-dependent nuclease. 0 -355006 cl23634 EFh_HEF EF-hand, calcium binding motif, found in the hexa-EF hand proteins family. CBN, the product of the cbn gene, is a Drosophila homolog to vertebrate neuronal six EF-hand calcium binding proteins. It is expressed through most of ontogenesis with a selective distribution in the nervous system and in a few small adult thoracic muscles. Its precise biological role remains unclear. CBN contains six EF-hand motifs, but some of them may not bind calcium ions due to the lack of key residues. 0 -355014 cl23716 metallo-hydrolase-like_MBL-fold mainly hydrolytic enzymes and related proteins which carry out various biological functions; MBL-fold metallohydrolase domain. This is family of tRNase Z enzymes, that are closely related structurally to the Lactamase_B family members. tRNase Z is the endonuclease that is involved in tRNA 3'-end maturation through removal of the 3'-trailer sequences from tRNA precursors. The fission yeast Schizosaccharomyces pombe contains two candidate tRNase Zs encoded by two essential genes. The first, trz1, is targeted to the nucleus and has an SV40 nuclear localization signal at its N-terminus, consisting of four consecutive arginine and lysine residues between residues 208 and 211 (KKRK) that is critical for the NLS function. The second, trz2, is targeted to the mitochondria, with an N-terminal mitochondrial targeting signal within the first 38 residues. 0 -355015 cl23717 crotonase-like N/A. This family contains a diverse set of enzymes including: enoyl-CoA hydratase, napthoate synthase, carnitate racemase, 3-hydroxybutyryl-CoA dehydratase and dodecanoyl-CoA delta-isomerase. This family differs from pfam00378 in the structure of it's C-terminus. 0 -355016 cl23718 ALP_like alkaline phosphatases and sulfatases. This family represents the N-terminal region of the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (or phosphoglyceromutase or BPG-independent PGAM) protein (EC:5.4.2.1). The family is found in conjunction with pfam01676 (located in the C-terminal region of the protein). 0 -355017 cl23719 NAD_binding_1 Oxidoreductase NAD-binding domain. Xanthine dehydrogenases, that also bind FAD/NAD, have essentially no similarity. 0 -355018 cl23720 RILP-like Rab interacting lysosomal protein-like 1 and 2 (Rilpl1 and Rilpl2). This is the N-terminal 200 residues of a set of proteins conserved from yeasts to humans. Most of the proteins in this entry have an RhoGEF pfam00621 domain at their C-terminal end. 0 -355019 cl23721 AP2Ec N/A. This family consists of several uncharacterized bacterial proteins. 0 -355020 cl23723 Cytochrome_b_N N/A. This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 50 amino acids in length. There are two conserved histidines that may be functionally important. This family is N-terminally truncated compared to other members of the clan. 0 -355021 cl23724 PHP Polymerase and Histidinol Phosphatase domain. This protein is part of the RNase P complex that is involved in tRNA maturation. 0 -355022 cl23725 Glyco_hydro_1 Glycosyl hydrolase family 1. This is a family of glycosylphosphatidylinositol-anchored beta(1-3)glucanosyltransferases. The active site residues in the Aspergillus fumigatus example are the two glutamate residues at 160 and 261. 0 -304885 cl23728 ATP_bind_2 P-loop ATPase protein family. glmZ(sRNA)-inactivating NTPase; Provisional 0 -329040 cl23729 SdiA-regulated SdiA-regulated. This family represents a conserved region approximately within a number of hypothetical bacterial proteins that may be regulated by SdiA, a member of the LuxR family of transcriptional regulators. Some family members contain the pfam01436 repeat. 0 -355025 cl23730 F5_F8_type_C F5/8 type C domain. The C. elegans UNC-84 protein is a nuclear envelope protein that is involved in nuclear anchoring and migration during development. The S. pombe Sad1 protein localizes at the spindle pole body. UNC-84 and and Sad1 share a common C-terminal region, that is often termed the SUN (Sad1 and UNC) domain. In mammals, the SUN domain is present in two proteins, Sun1 and Sun2. The SUN domain of Sun2 has been demonstrated to be in the periplasm. 0 -355026 cl23733 FliJ Flagellar FliJ protein. flagellar biosynthesis chaperone; Validated 0 -329044 cl23735 H4 N/A. CENP-T is a family of vertebral kinetochore proteins that associates directly with CENP-W. The N-terminus of CENP-T proteins interacts directly with the Ndc80 complex in the outer kinetochore. Importantly, the CENP-T-W complex does not directly associate with CENP-A, but with histone H3 in the centromere region. CENP-T and -W form a hetero-tetramer with CENP-S and -X and bind to a ~100 bp region of nucleosome-free DNA forming a nucleosome-like structure. The DNA-CENP-T-W-S-X complex is likely to be associated with histone H3-containing nucleosomes rather than with CENP-nucleosomes. This domain is the C-terminal histone fold domain of CENP-T, which associates with chromatin. 0 -355027 cl23739 HCP_like N/A. This family includes both hybrid-cluster proteins and the beta chain of carbon monoxide dehydrogenase. The hybrid-cluster proteins contain two Fe/S centers - a [4Fe-4S] cubane cluster, and a hybrid [4Fe-2S-2O] cluster. The physiological role of this protein is as yet unknown, although a role in nitrate/nitrite respiration has been suggested. The prismane protein from Escherichia coli was shown to contain hydroxylamine reductase activity (NH2OH + 2e + 2 H+ -> NH3 + H2O). This activity is rather low. Hydroxylamine reductase activity was also found in CO-dehydrogenase in which the active site Ni was replaced by Fe. The CO dehydrogenase contains a Ni-3Fe-2S-3O centre. 0 -355029 cl23744 Peptidase_C1 N/A. This family is closely related to the Peptidase_C1 family pfam00112, containing several prokaryotic and eukaryotic aminopeptidases and bleomycin hydrolases. 0 -355031 cl23746 BenE Benzoate membrane transport protein. MFS_MOT1 is a family of molybdenate transporters. Molybdenum is an essential element that is taken up into the cell in the oxyanion molybdate. Molybdenum is used in the form of molybdopterin-cofactor, which participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. 0 -329052 cl23747 UPF0182 Uncharacterized protein family (UPF0182). hypothetical protein; Provisional 0 -355032 cl23748 DUF3585 Protein of unknown function (DUF3585). This family consists of several eukaryotic proteins. Suppressor of IKBKE 1 (SIKE) is a physiological suppressor of IKK-epsilon and TBK1, which are two IKK-related kinases involved in virus- and TLR3-triggered activation of interferon regulatory factor 3 (IRF-3). Other members of this family are circulating cathodic antigen (CCA), found in Schistosoma mansoni (Blood fluke), and FGFR1 oncogene partner 2, which may be involved in wound healing pathway. 0 -355033 cl23749 TIR_2 TIR domain. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 98 and 145 amino acids in length. 0 -355034 cl23750 vATP-synt_E ATP synthase (E/31 kDa) subunit. V-type ATP synthase subunit E; Provisional 0 -329056 cl23751 Plasmodium_Vir Plasmodium vivax Vir protein. variable surface protein Vir32; Provisional 0 -329057 cl23752 Cytochrom_C3 Heme-binding domain of the class III cytochrome C family and related proteins. This family includes cytochromes c7 and c7-type. In cytochromes c7 all three haems are bis-His co-ordinated. In c7-type the last haem is His-Met co-ordinated. 0 -329058 cl23754 EamA EamA-like transporter family. CSG2 is an integral membrane protein with up to 10 transmembrane segments that, when over-expressed, localizes to the endoplasmic reticulum. CSG2 is a family of fungal transmembrane proteins that regulate mannosyl phosphorylinositol ceramide synthase and are thereby implicated in calcium homoeostasis in the cell. 0 -304914 cl23757 OCRE OCRE domain. RBM5 is also called protein G15, H37, putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9. It is a known modulator of apoptosis. It acts as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both of them specifically binds poly(G) RNA. RBM5 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), an OCtamer REpeat (OCRE) domain, two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain. 0 -355036 cl23759 GT1 GT1, myb-like, SANT family. This presumed domain appears to be related to other Myb/SANT-like DNA binding domains. In particular pfam10545 seems most related. This family is greatly expanded in plants and appears in several proteins annotated as transposon proteins. 0 -329062 cl23762 TK Thymidine kinase. thymidine kinase; Provisional 0 -355037 cl23766 fungal_TF_MHR fungal transcription factor regulatory middle homology region. Cep3 is one of the major components of the CBF3. It dimerizes and in so doing forms a large central channel that is large enough to accommodate duplex B-form DNA. The dimerization region is followed by a linker to the zinc-finger domain at the C-terminus. The CBF3 complex is an essential core component of the budding yeast kinetochore and is required for the centromeric localization of all other kinetochore proteins. Cep3 is the only component with DNA-binding properties. 0 -355038 cl23768 ENDO3c N/A. This family contains a diverse range of structurally related DNA repair proteins. The superfamily is called the HhH-GPD family after its hallmark Helix-hairpin-helix and Gly/Pro rich loop followed by a conserved aspartate. This includes endonuclease III, EC:4.2.99.18 and MutY an A/G-specific adenine glycosylase, both have a C terminal 4Fe-4S cluster. The family also includes 8-oxoguanine DNA glycosylases. The methyl-CPG binding protein MBD4 also contains a related domain that is a thymine DNA glycosylase. The family also includes DNA-3-methyladenine glycosylase II EC:3.2.2.21 and other members of the AlkA family. 0 -329064 cl23770 FliH Flagellar assembly protein FliH. This is a prokaryotic family that contains proteins of the FliH and HrpE/YscL family. These proteins are involved in type III secretion, which is the process that drives flagellar biosynthesis and mediates bacterial-eukaryotic interactions. This family also V-type ATPase subunit E. This subunit appears to form a tight interaction with subunit G in the F0 complex. Subunits E and G may act together as stators to prevent certain subunits from rotating with the central rotary element. pfam01991 also contains V-type ATPase subunit E proteins. 0 -355039 cl23771 Big_1 Bacterial Ig-like domain (group 1). This family consists of bacterial domains with an Ig-like fold. 0 -304931 cl23774 TAF TATA box binding protein associated factor (TAF). TAFs (TATA box binding protein associated factors) are part of the transcription initiation factor TFIID multimeric protein complex. TFIID is composed of the TATA box binding protein (TBP) and a number of TAFs. The TAFs provide binding sites for many different transcriptional activators and co-activators that modulate transcription initiation by Pol II. TAF proteins adopt a histone-like fold. 0 -355042 cl23776 EFP_modif_epmB EF-P beta-lysylation protein EpmB. Members of this family are arginine 2,3-aminomutase, a radical SAM enzyme more closely related to lysine 2,3-aminomutase than to glutamate 2,3-aminomutase. The enzyme makes L-beta-arginine, sometimes in the context of antibiotic biosynthesis (blasticidin S, mildiomycin, etc). Activity is proven in Streptomyces griseochromogenes, which makes blasticidin S. 0 -304934 cl23777 PRK01005 N/A. V-type ATP synthase subunit E; Provisional 0 -355043 cl23778 LpxK Tetraacyldisaccharide-1-P 4'-kinase. Also called lipid-A 4'-kinase. This essential gene encodes an enzyme in the pathway of lipid A biosynthesis in Gram-negative organisms. A single copy of this protein is found in Gram-negative bacteria. PSI-BLAST converges on this set of apparent orthologs without identifying any other homologs. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -329070 cl23779 MethyltransfD12 D12 class N6 adenine-specific DNA methyltransferase. All proteins in this family for which functions are known are DNA-adenine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). The DNA adenine methylase (dam) of E. coli and related species is instrumental in distinguishing the newly synthesized strand during DNA replication for methylation-directed mismatch repair. This family includes several phage methylases and a number of different restriction enzyme chromosomal site-specific modification systems. [DNA metabolism, DNA replication, recombination, and repair] 0 -355044 cl23780 PepSY_TM PepSY-associated TM region. This is a family of bacterial proteins with three PepSY-like TM regions. 0 -355045 cl23781 Fascin N/A. This family consists of several fungal alpha-L-arabinofuranosidase B proteins. L-Arabinose is a constituent of plant-cell-wall poly-saccharides. It is found in a polymeric form in L-arabinan, in which the backbone is formed by 1,5-a- linked l-arabinose residues that can be branched via 1,2-a- and 1,3-a-linked l-arabinofuranose side chains. AbfB hydrolyzes 1,5-a, 1,3-a and 1,2-a linkages in both oligosaccharides and polysaccharides, which contain terminal non-reducing l-arabinofuranoses in side chains. 0 -329073 cl23783 PsbQ Oxygen evolving enhancer protein 3 (PsbQ). This protein through the member sll1638 from Synechocystis sp. PCC 6803, was shown to be part of the cyanobacteria photosystem II. It is homologous to (but quite diverged from) the chloroplast PsbQ protein, called oxygen-evolving enhancer protein 3 (OEE3). We designate this cyanobacteria protein PsbQ by homology. [Energy metabolism, Photosynthesis] 0 -329074 cl23784 RICIN N/A. This family of serine protease inhibitors has a beta-trefoil fold and inhibits trypsin and chymotrypsin. 0 -304945 cl23788 Met_repressor_MetJ N/A. transcriptional repressor protein MetJ; Provisional 0 -355048 cl23789 PLN02481 N/A. spermidine hydroxycinnamoyl transferase; Provisional 0 -355049 cl23790 Auxin_inducible Auxin responsive protein. uncharacterized protein; Provisional 0 -329080 cl23791 UPF0154 Uncharacterized protein family (UPF0154). hypothetical protein; Provisional 0 -355050 cl23792 DUF2129 Uncharacterized protein conserved in bacteria (DUF2129). hypothetical protein; Provisional 0 -329082 cl23793 PsbH Photosystem II 10 kDa phosphoprotein. photosystem II reaction center protein H; Provisional 0 -329083 cl23795 Mntp Putative manganese efflux pump. This protein family was identified, at the time of the publication of the Carboxydothermus hydrogenoformans genome, as having a phylogenetic profile that exactly matches the subset of the Firmicutes capable of forming endospores. The species include Bacillus anthracis, Clostridium tetani, Thermoanaerobacter tengcongensis, Geobacillus kaustophilus, etc. This protein, previously named YtaF, is therefore a putative sporulation protein. [Cellular processes, Sporulation and germination] 0 -304953 cl23796 DUF1120 Protein of unknown function (DUF1120). hypothetical protein; Provisional 0 -355051 cl23797 LPP Lipoprotein leucine-zipper. murein lipoprotein; Provisional 0 -355052 cl23798 CBM53 Starch/carbohydrate-binding module (family 53). CBM26 is a carbohydrate-binding module that binds starch. 0 -355053 cl23799 MgtE_N MgtE intracellular N domain. This is the N-terminal domain of the flagellar rotor protein FliG. 0 -355054 cl23800 Creatinase_N Creatinase/Prolidase N-terminal domain. This domain is structurally very similar to the creatinase N-terminal domain (pfam01321). However, little or no sequence similarity exists between the two families. 0 -329089 cl23802 Peptidase_C48 Ulp1 protease family, C-terminal catalytic domain. Protease specific for SMALL UBIQUITIN-RELATED MODIFIER (SUMO); Provisional 0 -355055 cl23804 CAF1 CAF1 family ribonuclease. The major pathways of mRNA turnover in eukaryotes initiate with shortening of the polyA tail. CAF1 encodes a critical component of the major cytoplasmic deadenylase in yeast. Both Caf1p is required for normal mRNA deadenylation in vivo and localizes to the cytoplasm. Caf1p copurifies with a Ccr4p-dependent polyA-specific exonuclease activity. Some members of this family include and inserted RNA binding domain pfam01424. This family of proteins is related to other exonucleases pfam00929 (Bateman A pers. obs.). The crystal structure of Saccharomyces cerevisiae Pop2 has been resolved at 2.3 Angstrom resolution. 0 -329091 cl23805 ABC_transp_aux ABC-type uncharacterized transport system. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldG is a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Knockouts of GldG abolish the gliding phenotype. GldG, along with GldA and GldF are believed to compose an ABC transporter and are observed as an operon. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 0 -355056 cl23808 TetR_C_11 Bacterial transcriptional repressor C-terminal. This family comprises the C-terminal portion of proteins that belong to the TetR family of transcriptional regulators. The C-terminus represents the regulatory region, and does not include the DNA binding helix-turn-helix domain. The target proteins that are repressed are involved in the transcriptional control of multi-drug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. One of the target proteins is BetI, an osmoprotectant which controls the choline-glycine betaine pathway in E.coli. 0 -355057 cl23809 DUF4271 Domain of unknown function (DUF4271). This family includes O-antigen polysaccharide polymerases. These enzymes link O-units via a glycosidic linkage to form a long O-antigen. These enzymes vary in specificity and sequence. 0 -329095 cl23811 Glucos_trans_II Glucosyl transferase GtrII. O-antigen conversion protein C 0 -329099 cl23815 Glyco_hydro_30 Glycosyl hydrolase family 30 TIM-barrel domain. 0 -304973 cl23816 CSF2 N/A. GM-CSF stimulates the development of and the cytotoxic activity of white blood cells. 0 -329100 cl23817 DUF1146 Protein of unknown function (DUF1146). Members of this protein family are small, typically about 80 residues in length, and are highly hydrophobic. The gene is found so far only in a subset of the Firmicutes in association with genes of the ATP synthase F1 complex or NADH-quinone oxidoreductase. This family includes ywzB from Bacillus subtilis; pfam06612 describes the same family as Protein of unknown function DUF1146. 0 -304975 cl23818 COG4020 Uncharacterized protein [Function unknown]. hypothetical protein; Provisional 0 -329101 cl23820 PSI_PsaJ Photosystem I reaction centre subunit IX / PsaJ. photosystem I reaction center subunit IX; Provisional 0 -355058 cl23821 GSP_synth Glutathionylspermidine synthase preATP-grasp. glutathionylspermidine synthase domain-containing protein 0 -355059 cl23822 TCP TCP family transcription factor. Protein TCP2; Provisional 0 -329104 cl23823 RALF Rapid ALkalinization Factor (RALF). rapid alkalinization factor 23-like protein; Provisional 0 -329105 cl23824 PetG Cytochrome B6-F complex subunit 5. cytochrome b6-f complex subunit PetG; Reviewed 0 -355060 cl23825 UPF0223 Uncharacterized protein family (UPF0223). hypothetical protein; Provisional 0 -355061 cl23826 Phageshock_PspG Phage shock protein G (Phageshock_PspG). phage shock protein G; Reviewed 0 -329108 cl23827 Tra_M TraM mediates signalling between transferosome and relaxosome. The TraM protein is an essential part of the DNA transfer machinery of the conjugative resistance plasmid R1 (IncFII). On the basis of mutational analyses, it was shown that the essential transfer protein TraM has at least two functions. First, a functional TraM protein was found to be required for normal levels of transfer gene expression. Second, experimental evidence was obtained that TraM stimulates efficient site-specific single-stranded DNA cleavage at the oriT, in vivo. Furthermore, a specific interaction of the cytoplasmic TraM protein with the membrane protein TraD was demonstrated, suggesting that the TraM protein creates a physical link between the relaxosomal nucleoprotein complex and the membrane-bound DNA transfer apparatus. 0 -355062 cl23828 RMF Ribosome modulation factor. ribosome modulation factor; Provisional 0 -304986 cl23829 PRK15383 N/A. type III secretion system protein; Provisional 0 -355063 cl23830 H2B Histone H2B. histone H2B; Provisional 0 -304988 cl23831 Csm4_III-A CRISPR/Cas system-associated RAMP superfamily protein Csm4. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. Members of this cas gene family are found in the mtube subtype of CRISPR/cas locus and designated Csm4, for CRISPR/cas Subtype Mtube, protein 4. 0 -304989 cl23832 photo_TT_lyase spore photoproduct lyase. This uncharacterized radical SAM domain protein occurs rarely and sporadically in species that include select Alphaproteobacteria and Actinobacteria, and in Deinococcus deserti VCD115. It is a distant but full-length homolog to the Bacillus subtilis spore photoproduct lyase (spl), which monomerizes thymine dimers created as DNA damage by uv radiation. 0 -355064 cl23833 NrfA Formate-dependent nitrite reductase, periplasmic cytochrome c552 subunit [Inorganic ion transport and metabolism]. cytochrome c nitrite reductase subunit c552; Provisional 0 -329112 cl23835 Glyco_transf_90 Glycosyl transferase family 90. This family of glycosyl transferases are specifically (mannosyl) glucuronoxylomannan/galactoxylomannan -beta 1,2-xylosyltransferases, EC:2.4.2.-. 0 -329113 cl23836 DUF262 Protein of unknown function DUF262. 0 -355065 cl23837 HicB_lk_antitox HicB_like antitoxin of bacterial toxin-antitoxin system. This family consists of several bacterial HicB related proteins. The function of HicB is unknown although it is thought to be involved in pilus formation. It has been speculated that HicB performs a function antagonistic to that of pili and yet is necessary for invasion of certain niches. 0 -329115 cl23838 PrsW-protease Protease prsW family. This is a family of putative peptidases, possibly belonging to the MEROPS M79 family. PrsW, appears to be a member of a widespread family of membrane proteins that includes at least one previously known protease. PrsW appears to be responsible for Site-1 cleavage of the RsiW anti-sigma factor, the cognate anti-sigma factor, and it senses antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress, The three acidic residues, E75, E76 and E95 in Aflv_1074, appear to be crucial since their mutation to alanine renders the protein inactive. Based on predictions of the bioinformatics programme TMHMM it is likely that these residues are located on the extracytoplasmic face of PrsW placing them in a position to act as a sensor for cell envelope stress. 0 -329116 cl23839 DUF496 Protein of unknown function (DUF496). hypothetical protein; Provisional 0 -304997 cl23840 AGE N/A. This family contains a number of eukaryotic and bacterial N-acylglucosamine 2-epimerase (GlcNAc 2-epimerase) enzymes (EC:5.3.1.8) approximately 500 residues long. This converts N-acyl-D-glucosamine to N-acyl-D-mannosamine. 0 -355066 cl23841 DUF411 Protein of unknown function, DUF. The function of the members of this bacterial protein family is unknown. Some members may be involved in conferring cation resistance. 0 -355067 cl23842 MatP MatP N-terminal domain. Ter macrodomain organizer matS-binding protein; Provisional 0 -305000 cl23843 DUF839 Bacterial protein of unknown function (DUF839). This family consists of several bacterial proteins of unknown function that contain a predicted beta-propeller repeats. 0 -305001 cl23844 Ble Predicted trehalose synthase [Carbohydrate transport and metabolism]. Three pathways for the biosynthesis of trehalose, an osmoprotectant that in some species is also a precursor of certain cell wall glycolipids. Trehalose synthase, TreS, can interconvert maltose and trehalose, but while the equilibrium may favor trehalose, physiological concentrations of trehalose may be much greater than that of maltose and TreS may act largely in its degradation. This model describes a domain found only as a C-terminal fusion to TreS proteins. The most closely related proteins outside this family, Pep2 of Streptomyces coelicolor and Mak1 of Actinoplanes missouriensis, have known maltokinase activity. We suggest this domain acts as a maltokinase and helps drive conversion of trehalose to maltose. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 0 -355068 cl23845 DUF2312 Uncharacterized protein conserved in bacteria (DUF2312). hypothetical protein; Provisional 0 -355069 cl23846 PhosphMutase 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. Members of this family are found in various bacterial 2,3-bisphosphoglycerate-independent phosphoglycerate mutase enzymes, which catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in the reaction: [2-phospho-D-glycerate + 2,3-diphosphoglycerate = 3-phospho-D-glycerate + 2,3-diphosphoglycerate]. 0 -329120 cl23847 UPF0262 Uncharacterized protein family (UPF0262). hypothetical protein; Provisional 0 -355070 cl23848 DUF1801 Domain of unknown function (DU1801). This large family of bacterial proteins is uncharacterized. They contain a presumed domain about 110 amino acids in length. 0 -355071 cl23849 TrbI Bacterial conjugation TrbI-like protein. Proteins in this entry are designated TraM and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. 0 -355072 cl23850 Plug TonB-dependent Receptor Plug Domain. This model describes a 31-residue signature region of the SusC/RagA family of outer membrane proteins from the Bacteriodetes. While many TonB-dependent outer membrane receptors are associated with siderophore import, this family seems to include generalized nutrient receptors that may convey fairly large oligomers of protein or carbohydrate. This family occurs in high copy numbers in the most abundant species of the human gut microbiome. 0 -329124 cl23851 MHB Haemophore, haem-binding. Members of this family, including Rv0203 from Mycobacterium tuberculosis, are secreted heme-binding proteins used in heme acquisition. Such proteins are called hemophores. Members have a cleavable N-terminal signal peptide, and a mature region just over 100 amino acids long with a pair of invariant Cys residues. An unrelated hemophore, HasA, occurs in Gram-negative pathogens such as Yersinia pestis. [Transport and binding proteins, Other] 0 -355073 cl23853 Condensation Condensation domain. This domain is found in wax ester synthase genes. In these proteins this domain catalyzes the CoA dependent acyltransferase reaction with fatty alcohols to form wax esters. 0 -355074 cl23855 FGE-sulfatase Sulfatase-modifying factor enzyme 1. This model represents a signature C-terminal region of a distinct clade in the EgtB subfamily, other members of which participate in ergothioneine biosynthesis 0 -305014 cl23857 DUF1565 Protein of unknown function (DUF1565). This model represents a tandem pair of an approximately 22-amino acid (each) repeat homologous to the beta-strand repeats that stack in a right-handed parallel beta-helix in the periplasmic C-5 mannuronan epimerase, AlgA, of Pseudomonas aeruginosa. A homology domain consisting of a longer tandem array of these repeats is described in the SMART database as CASH (SM00722), and is found in many carbohydrate-binding proteins and sugar hydrolases. A single repeat is represented by SM00710. This TIGRFAMs model represents a flavor of the parallel beta-helix-forming repeat based on prokaryotic sequences only in its seed alignment, although it also finds many eukaryotic sequences. 0 -355075 cl23858 PSCyt1 Planctomycete cytochrome C. This domain contains a potential haem-binding motif, CXXCH. This family is found in association with pfam00034 and pfam03150. 0 -355076 cl23859 Peptidase_M10_C Peptidase M10 serralysin C terminal. This family consists of a number of bacteria specific domains which are found in haemolysin-type calcium binding proteins. This family is found in conjunction with pfam00353 and is often found in multiple copies. 0 -329132 cl23862 PmrD Polymyxin resistance protein PmrD. anti-adapter protein IraM; Provisional 0 -355079 cl23863 BrnA_antitoxin BrnA antitoxin of type II toxin-antitoxin system. CopG antitoxin is a member of a type II toxin-antitoxin system family found in bacteria and archaea. Most antitoxins encoded by the relBE and parDE loci belong to the MetJ/Arc/CopG family of dimeric proteins which bind DNA through N-terminal ribbon-helix-helix (RHH) motifs. The toxin for CopG proteins falls into the family BrnT_toxin, pfam04365. 0 -355083 cl23870 PsbX Photosystem II reaction centre X protein (PsbX). photosystem II protein X; Reviewed 0 -305028 cl23871 DUF2560 Protein of unknown function (DUF2560). hypothetical protein 0 -305029 cl23872 A_amylase_inhib Alpha amylase inhibitor. Alpha amylase inhibitor inhibits mammalian alpha-amylases specifically, by forming a tight stoichiometric 1:1 complex with alpha-amylase. The inhibitor has no action on plant and microbial alpha amylases. 0 -305030 cl23873 Spider_toxin Spider neurotoxins including agatoxin, purotoxin and ctenitoxin. This family of spider neurotoxins are thought to be calcium ion channel inhibitors. 0 -305031 cl23874 DUF1187 Protein of unknown function (DUF1187). hypothetical protein; Provisional 0 -329141 cl23875 MvaI_BcnI MvaI/BcnI restriction endonuclease family. This family includes the LlaMI (recognizes and cleaves CC^NGG) restriction endonuclease. 0 -355084 cl23876 ToxGAP N/A. GTPase-activating protein (GAP) domain found in bacterial cytotoxins, ExoS, SptP, and YopE. Part of protein secretion system; stimulates Rac1- dependent cytoskeletal changes that promote bacterial internalization. 0 -329143 cl23877 Lysin-Sp18 N/A. Egg lysin creates a hole in the envelope of the egg thereby allowing the sperm to pass through the envelope and fuse with the egg. 0 -355085 cl23878 C1q C1q domain. Globular domain found in many collagens and eponymously in complement C1q. When part of full length proteins these domains form a 'bouquet' due to the multimerization of heterotrimers. The C1q fold is similar to that of tumour necrosis factor. 0 -329145 cl23879 IL2 Interleukin 2. Interleukin-2 is a cytokine produced by T-helper cells in response to antigenic or mitogenic stimulation. This protein is required for T-cell proliferation and other activities crucial to the regulation of the immune response. 0 -355086 cl23880 HALZ Homeobox associated leucine zipper. 0 -329147 cl23881 GIT_SHD Spa2 homology domain (SHD) of GIT. Helical motif in the GIT family of ADP-ribosylation factor GTPase-activating proteins, and in yeast Spa2p and Sph1p (CPP; unpublished results). In p95-APP1 the N-terminal GIT motif might be involved in binding PIX. 0 -329148 cl23882 Holin_SPP1 SPP1 phage holin. This model represents one of more than 30 families of phage proteins, all lacking detectable homology with each other, known or believed to act as holins. Holins act in cell lysis by bacteriophage. Members of this family are found in phage PBSX and phage SPP1, among others. [Mobile and extrachromosomal element functions, Prophage functions] 0 -305040 cl23883 DUF722 Protein of unknown function (DUF722). This model represents a family of phage proteins, including RinA, a transcriptional activator in staphylococcal phage phi 11. This family shows similarity to ArpU, a phage-related putative autolysin regulator, and to some sporulation-specific sigma factors. [Mobile and extrachromosomal element functions, Prophage functions, Regulatory functions, DNA interactions] 0 -355087 cl23884 PRESAN Plasmodium RESA N-terminal. This model represents a conserved sequence region of about 60 amino acids found in over 40 predicted proteins of Plasmodium falciparum. It is not found elsewhere, including closely related species such as Plasmodium yoelii. No member of this family is characterized. 0 -355088 cl23885 NTase_sub_bind Nucleotidyltransferase substrate binding protein like. The member of this family from Haemophilus influenzae, HI0074, has been shown by crystal structure to resemble nucleotidyltransferase substrate binding proteins. It forms a complex with HI0073, encoded by the adjacent gene and containing a nucleotidyltransferase nucleotide binding domain (pfam01909). 0 -329151 cl23886 SWM_repeat Putative flagellar system-associated repeat. This domain appears in 29 copies in a large (>10000 amino protein in Synechococcus sp. WH8102 associated with a novel flagellar system, as one of three different repeats. Similar domains are found in two different large (<3500) proteins of Synechocystis PCC6803. 0 -329152 cl23887 DUF4349 Domain of unknown function (DUF4349). This model describes a protein, PhaR, localized to polyhydroxyalkanoic acid (PHA) inclusion granules in Bacillus cereus and related species. PhaR is required for PHA biosynthesis along with PhaC and may be a regulatory subunit. 0 -329153 cl23888 Gmx_para_CXXCG Protein of unknown function (Gmx_para_CXXCG). This family consists of at least 10 paralogous proteins from Myxococcus xanthus that lack detectable sequence similarity to any other protein family. An imperfectly conserved CXXCG motif, a probable binding site, appears twice in the multiple sequence alignment. 0 -329154 cl23889 Dimeth_Pyl Dimethylamine methyltransferase (Dimeth_PyL). This family consists of dimethylamine methyltransferases from the genus Methanosarcina. It is found in three nearly identical copies in each of M. acetivorans, M. barkeri, and M. Mazei. It is one of a suite of three non-homologous enzymes with a critical UAG-encoded pyrrolysine residue in these species (along with trimethylamine methyltransferase and monomethylamine methyltransferase). It demethylates dimethylamine, leaving monomethylamine, and methylates the prosthetic group of the small corrinoid protein MtbC. The methyl group is then transferred by methylcorrinoid:coenzyme M methyltransferase to coenzyme M. Note that the pyrrolysine residue is variously translated as K or X, or as a stop codon that truncates the sequence. 0 -329155 cl23890 Bac_small_YrzI Probable sporulation protein (Bac_small_yrzI). Members of this family are very small proteins, about 47 residues each, in the genus Bacillus. Single members are found in Bacillus subtilis and Bacillus halodurans, but arrays of six in tandem in Bacillus cereus and Bacillus anthracis. An EIxxE motif present in most members of this family resembles cleavage sites by the germination protease GPR in a number small, acid-soluble spore proteins (SASP). A role in sporulation is possible. 0 -305048 cl23891 Type_III_YscG Bacterial type II secretion system chaperone protein (type_III_yscG). YscG is a molecular chaperone for YscE, where both are part of the type III secretion system that in Yersinia is designated Ysc (Yersinia secretion). The secretion system delivers effector proteins, designate Yops (Yersinia outer proteins) in Yersinia. This family consists of YscG of Yersinia, and functionally equivalent type III secretion machinery protein in other species: AscG in Aeromonas, LscG in Photorhabdus luminescens, etc. [Protein fate, Protein folding and stabilization, Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -355089 cl23892 TyeA TyeA. Members of this family include both small proteins, about 90 amino acids, in which this model covers the whole, and longer proteins of about 360 residues which match in the C-terminal region. The longer proteins (HrpJ) have N-terminal regions that match pfam07201. Members of this family belong to bacterial type III secretion systems, and include TyeA from the well-studied Yersinia systems. TyeA appears involved in calcium-responsive regulation of the delivery of type III effectors. 0 -329156 cl23893 HrpB2 Bacterial type III secretion protein (HrpB2). This family of genes is found in type III secretion operons in a narrow group of species including Xanthomonas, Burkholderia and Ralstonia. 0 -305052 cl23895 LcrG LcrG protein. This protein is found in type III secretion operons, along with LcrR, H and V. Also known as PcrG in Pseudomonas, the protein is believed to make a 1:1 complex with PcrV (LcrV). Mutants of LcrG cause premature secretion of effector proteins into the medium . 0 -329157 cl23896 PGPGW Putative transmembrane protein (PGPGW). Members of this family are Actinobacterial putative proteins of about 150 amino acids in length with three apparent transmembrane helix and an unusual motif with consensus sequence PGPGW. [Hypothetical proteins, Conserved] 0 -305054 cl23897 Phenyl_P_gamma Phenylphosphate carboxylase gamma subunit (Phenyl_P_gamma). Members of this protein family are the gamma subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. The gamma subunit has no known homologs. 0 -329158 cl23898 SpoIIIAC Stage III sporulation protein AC/AD protein family. Members of this family are the uncharacterized protein SpoIIIAD, part of the spoIIIA operon that acts at sporulation stage III as part of a cascade of events leading to endospore formation. Note that the start sites of members of this family as annotated tend to be variable; quite a few members have apparent homologous protein-coding regions continuing upstream of the first available start codon. The length of the alignment and the scoring cutoff thresholds for the model have been set to try to detect all valid members of the family, even if annotation of the start site begins too far downstream. [Cellular processes, Sporulation and germination] 0 -329159 cl23899 Spore_YpjB Sporulation protein YpjB (SpoYpjB). Members of this protein, YpjB, family are restricted to a subset of endospore-forming bacteria, including Bacillus species but not CLostridium or some others. In Bacillus subtilis, ypjB was found to be part of the sigma-E regulon, where sigma-E is a sporulation sigma factor that regulates expression in the mother cell compartment. Null mutants of ypjB show a sporulation defect. This protein family is not, however, a part of the endospore formation minimal gene set. [Cellular processes, Sporulation and germination] 0 -305057 cl23900 DUF2375 Protein of unknown function (DUF2375). Two members of this family are found in Colwellia psychrerythraea 34H and one each in various other species of Colwellia and Shewanella. One member from C. psychrerythraea is of special interest because it is preceded by the same cis-regulatory site as a number of genes that have the PEP-CTERM domain described by TIGR02595. [Hypothetical proteins, Conserved] 0 -329160 cl23901 DUF3938 Protein of unknown function (DUF3938). hypothetical protein; Provisional 0 -329161 cl23902 DUF2689 Protein of unknown function (DUF2689). conjugal transfer protein TrbD; Provisional 0 -329162 cl23903 TrbE Conjugal transfer protein TrbE. conjugal transfer protein TrbE; Provisional 0 -305061 cl23904 DNA_Packaging_2 DNA packaging protein. DNA packaging protein, small subunit 0 -329163 cl23905 DUF2824 Protein of unknown function (DUF2824). head assembly protein 0 -305063 cl23906 UvsW ATP-dependant DNA helicase UvsW. hypothetical protein; Provisional 0 -305065 cl23908 RBP-H Head domain of virus receptor-binding proteins (RBP). Caudo_bapla_RBP is a family of proteins expressed from ORF18 of the Lactococcus P2-like phage. This is one of three protein species, shoulders, neck, and head, that form the phage tail base-plate. In the overall structure this head domain exists as six trimers, and is necessary for specific recognition of the receptors at the host cell surface. Siphoviridae are the P2-like Caudovirales of Lactococcus. This family now includes DUF1914. Family Baseplate, pfam16774, is the ORF15 or shoulder component of the base-plate complex. 0 -329164 cl23910 Replic_Relax Replication-relaxation. putative internal core protein; Provisional 0 -329165 cl23911 MSP Manganese-stabilizing protein / photosystem II polypeptide. photosystem II oxygen-evolving enhancer protein 1; Provisional 0 -305069 cl23912 GlgS Glycogen synthesis protein. glycogen synthesis protein GlgS; Provisional 0 -329166 cl23913 DUF2614 Zinc-ribbon containing domain. hypothetical protein; Provisional 0 -329167 cl23914 UPF0257 Uncharacterized protein family (UPF0257). lipoprotein; Reviewed 0 -329168 cl23915 SspK Small acid-soluble spore protein K family. This protein family is restricted to a subset of endospore-forming bacteria such as Bacillus subtilis, all of which are in the Firmicutes (low-GC Gram-positive) lineage. It is a minor SASP (small, acid-soluble spore protein) designated SspK. [Cellular processes, Sporulation and germination] 0 -329169 cl23916 UPF0253 Uncharacterized protein family (UPF0253). hypothetical protein; Provisional 0 -305075 cl23918 SspP Small acid-soluble spore protein P family. acid-soluble spore protein P; Provisional 0 -329170 cl23919 Ribosomal_S22 30S ribosomal protein subunit S22 family. 30S ribosomal subunit S22; Reviewed 0 -329171 cl23920 Tafi-CsgC Thin aggregative fimbriae synthesis protein. curli assembly protein CsgC; Provisional 0 -355090 cl23921 YccJ YccJ-like protein. hypothetical protein; Provisional 0 -355091 cl23922 DUF2559 Protein of unknown function (DUF2559). hypothetical protein; Provisional 0 -329174 cl23924 DUF2767 Protein of unknown function (DUF2767). hypothetical protein; Provisional 0 -355092 cl23925 YedD YedD-like protein. lipoprotein; Provisional 0 -355093 cl23926 DUF2594 Protein of unknown function (DUF2594). hypothetical protein; Provisional 0 -355094 cl23927 DUF2583 Protein of unknown function (DUF2583). hypothetical protein; Provisional 0 -355095 cl23928 MsyB MsyB protein. secY/secA suppressor protein; Provisional 0 -355096 cl23929 YejG YejG-like protein. hypothetical protein; Provisional 0 -355097 cl23930 BssS BssS protein family. biofilm formation regulatory protein BssS; Reviewed 0 -305088 cl23931 Peptidase_S48 Peptidase family S48. heterocyst differentiation control protein; Reviewed 0 -355098 cl23932 DUF1283 Protein of unknown function (DUF1283). hypothetical protein; Provisional 0 -355099 cl23933 UPF0370 Uncharacterized protein family (UPF0370). hypothetical protein; Provisional 0 -355100 cl23934 YebF YebF-like protein. hypothetical protein; Provisional 0 -329183 cl23935 PsiA PsiA protein. plasmid SOS inhibition protein A; Provisional 0 -305093 cl23936 PTZ00202 N/A. tuzin-like protein; Provisional 0 -305094 cl23937 exosort_Gpos exosortase family protein XrtG. Members of this protein family, ArtF, belong to the archaeosortase/exosortase family, in which many members associate with specific protein C-terminal putative protein sorting domains (exosortase A with PEP-CTERM, archaeosortase A with PGF-CTERM, etc.). This subgroup is observed in Thermococcus gammatolerans EJ3 and Thermococcus sp. AM4, but the gene neighborhood is not conserved. The cognate sequence to ArtF is unknown, but should not be ICGP-CTERM (model TIGR04288), found also in many Pyrococcus species that lack any archaeosortase family member. 0 -305095 cl23938 GA GA module. The protein G-related albumin-binding (GA) module is composed of three alpha helices. This module is found in a range of bacterial cell surface proteins. The GA module from the Peptostreptococcus magnus albumin-binding protein (PAB) shows a strong affinity for albumin. 0 -305097 cl23940 PYST-C1 Plasmodium yoelii subtelomeric region (PYST-C1). This model represents the N-terminal domain of a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. The C-terminal portions of the genes which contain this domain are divergent and some contain other yoelii-specific paralogous domains such as PYST-C2 (TIGR01604). 0 -329184 cl23941 ChpXY CO2 hydration protein (ChpXY). This small family of proteins includes paralogs ChpX and ChpY in Synechococcus sp. PCC7942 and other cyanobacteria, associated with distinct NAD(P)H dehydrogenase complexes. These proteins collectively enable light-dependent CO2 hydration and CO2 uptake; loss of both blocks growth at low CO2 concentrations. [Energy metabolism, Photosynthesis] 0 -305099 cl23942 Paramecium_SA Paramecium surface antigen domain. This domain is a cysteine rich extracellular repeat found in surface antigens of Paramecium. The domain contains 8 cysteine residues. 0 -355101 cl23943 PCRF PCRF domain. This domain is found in peptide chain release factors. 0 -355102 cl23944 CaM_binding Plant calmodulin-binding domain. The sequences featured in this family are found repeated in a number of plant calmodulin-binding proteins, and are thought to constitute the calmodulin-binding domains.. Binding of the proteins to calmodulin depends on the presence of calcium ions.. These proteins are thought to be involved in various processes, such as plant defence responses.and stolonisation or tuberization. 0 -329187 cl23945 FragX_IP Cytoplasmic Fragile-X interacting family. Protein PIR; Provisional 0 -305103 cl23946 PHA01077 N/A. lower collar protein 0 -329188 cl23947 DUF3653 Phage protein. putative transcription regulator 0 -329189 cl23948 Peptidase_S80 Bacteriophage T4-like capsid assembly protein (Gp20). portal vertex protein; Provisional 0 -355103 cl23949 Late_protein_L1 L1 (late) protein. major capsid L1 protein; Provisional 0 -305108 cl23951 Pox_vIL-18BP Orthopoxvirus interleukin 18 binding protein. IL-18 binding protein; Provisional 0 -329190 cl23953 DUF212 Divergent PAP2 family. This family is related to the pfam01569 family (personal obs: C Yeats). 0 -329191 cl23954 DHNA Dihydroneopterin aldolase. 0 -305112 cl23955 COG2122 Uncharacterized protein, UPF0280 family, ApbE superfamily [Function unknown]. hypothetical protein; Provisional 0 -355104 cl23956 YitT_membrane Uncharacterized 5xTM membrane BCR, YitT family COG1284. This is probably a bacterial ABC transporter permease (personal obs:Yeats C). 0 -355105 cl23957 Lys_export Lysine exporter LysO. Members of this family contain a conserved core of four predicted transmembrane segments. Some members have an additional pair of N-terminal transmembrane helices. This family includes lysine exporter LysO (YbjE) from E. coli. 0 -355106 cl23958 DUF1040 Protein of unknown function (DUF1040). This family consists of several bacterial YihD proteins of unknown function. 0 -305116 cl23959 DUF1495 Winged helix DNA-binding domain (DUF1495). This family consists of several hypothetical archaeal proteins of around 110 residues in length. The structure of this domain possesses a winged helix DNA-binding domain suggesting these proteins are bacterial transcription factors. 0 -355107 cl23960 DUF4097 Putative adhesin. This bacterial family of proteins shows structural similarity to other pectin lyase families. Although structures from this family align with acetyl-transferases, there is no conservation of catalytic residues found. It is likely that the function is one of cell-adhesion. In Structure 3jx8, it is interesting to note that the sequence of contains several well defined sequence repeats, centred around GSG motifs defining the tight beta turn between the two sheets of the super-helix; there are 8 such repeats in the C-terminal half of the protein, which could be grouped into 4 repeats of two. It seems likely that this family belongs to the superfamily of trimeric auto-transporter adhesins (TAAs), which are important virulence factors in Gram-negative pathogens. In the case of Parabacteroides distasonis, which is a component of the normal distal human gut microbiota, TAA-like complexes probably modulate adherence to the host (information derived from TOPSAN). 0 -329196 cl23961 DUF2106 Predicted membrane protein (DUF2106). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -329197 cl23962 DUF1959 Domain of unknown function (DUF1959). This domain is found in a set of uncharacterized Archaeal hypothetical proteins. Its function has not, as yet, been described. 0 -355108 cl23964 DUF2324 Putative membrane peptidase family (DUF2324). This domain, found in various hypothetical bacterial proteins, has no known function. This family appears to be related to the prenyl protease 2 family pfam02517, suggesting this family may be peptidases. 0 -329199 cl23965 DUF910 Bacterial protein of unknown function (DUF910). This family consists of several short bacterial proteins of unknown function. 0 -355109 cl23966 Phage_TAC_7 Phage tail assembly chaperone proteins, E, or 41 or 14. This is family of various Myoviridae bacteriophage tail assembly chaperone, or TAC, proteins. 0 -355110 cl23967 DUF1033 Protein of unknown function (DUF1033). This family consists of several hypothetical bacterial proteins. Many of the sequences in this family are annotated as putative DNA binding proteins but the function of this family is unknown. 0 -329202 cl23968 DUF1128 Protein of unknown function (DUF1128). This family consists of several short, hypothetical bacterial proteins of unknown function. 0 -329203 cl23969 DUF2187 Uncharacterized protein conserved in bacteria (DUF2187). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -329204 cl23970 DUF2188 Uncharacterized protein conserved in bacteria (DUF2188). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -329205 cl23971 DUF2197 Uncharacterized protein conserved in bacteria (DUF2197). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -329206 cl23972 DUF2198 Uncharacterized protein conserved in bacteria (DUF2198). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -329207 cl23973 Glycoamylase Putative glucoamylase. The structure of UniProt:Q5LIB7 has an alpha/alpha toroid fold and is similar structurally to a number of glucoamylases. Most of these structural homologs are glucoamylases, involved in breaking down complex sugars (e.g. starch). The biologically relevant state is likely to be monomeric. The putative active site is located at the centre of the toroid with a well defined large cavity. 0 -329208 cl23974 zinc_ribbon_10 Predicted integral membrane zinc-ribbon metal-binding protein. This domain, found in various hypothetical bacterial and eukaryotic metal-binding proteins is a probably zinc-ribbon. 0 -355111 cl23975 DUF1127 Domain of unknown function (DUF1127). This family is found in several hypothetical bacterial proteins. In some cases it represents it represents the C-terminal region whereas in others it represents the whole sequence. 0 -329210 cl23976 DUF1189 Protein of unknown function (DUF1189). This family consists of several hypothetical bacterial proteins of around 260 residues in length. The function of this family is unknown. 0 -305135 cl23978 UPF0259 Uncharacterized protein family (UPF0259). hypothetical protein; Provisional 0 -355112 cl23979 UspB Universal stress protein B (UspB). universal stress protein UspB; Provisional 0 -329212 cl23980 MarB MarB protein. hypothetical protein; Provisional 0 -305138 cl23981 PyrBI_leader PyrBI operon leader peptide. pyrBI operon leader peptide; Provisional 0 -355113 cl23982 DUF3561 Protein of unknown function (DUF3561). hypothetical protein; Provisional 0 -355114 cl23983 DUF1422 Protein of unknown function (DUF1422). hypothetical protein; Provisional 0 -329215 cl23984 PsiB Plasmid SOS inhibition protein (PsiB). plasmid SOS inhibition protein B; Provisional 0 -355115 cl23985 Endostatin-like N/A. NC10 stands for Non-helical region 10 and is taken from COL15A1. A mutation in this region in COL18A1 is associated with an increased risk of prostate cancer. This domain is cleaved from the precursor and forms endostatin. Endostatin is a key tumor suppressor and has been used highly successfully to treat cancer. It is a potent angiogenesis inhibitor. Endostatin also binds a zinc ion near the N-terminus; this is likely to be of structural rather than functional importance according to. 0 -329217 cl23986 DAXX_helical_bundle Helical bundle domain of the death-domain associated protein (DAXX). The Daxx protein (also known as the Fas-binding protein) is thought to play a role in apoptosis. Daxx forms a complex with Axin. Remodelling of the family to a short domain based on the Structure 2kzs structure gives a more representative family. DAXX is a scaffold protein shown to play diverse roles in transcription and cell cycle regulation. This N-terminal domain folds into a left-handed four-helix bundle (H1, H2, H4, H5) that binds to the N-terminal residues of the tumor-suppressor Rassf1C. 0 -329218 cl23987 FBA_1 F-box associated. This model describes a large family of plant domains, with several hundred members in Arabidopsis thaliana. Most examples are found C-terminal to an F-box (pfam00646), a 60 amino acid motif involved in ubiquitination of target proteins to mark them for degradation. Two-hybid experiments support the idea that most members are interchangeable F-box subunits of SCF E3 complexes. Some members have two copies of this domain. 0 -355116 cl23989 Gram_pos_anchor LPXTG cell wall anchor motif. This model describes the LPXTG motif-containing region found at the C-terminus of many surface proteins of Streptococcus and Streptomyces species. Cleavage between the Thr and Gly by sortase or a related enzyme leads to covalent anchoring at the new C-terminal Thr to the cell wall. Hits that do not lie at the C-terminus or are not found in Gram-positive bacteria are probably false-positive. A common feature of this proteins containing this domain appears to be a high proportion of charged and zwitterionic residues immediatedly upstream of the LPXTG motif. This model differs from other descriptions of the LPXTG region by including a portion of that upstream charged region. [Cell envelope, Other] 0 -329220 cl23990 S-layer S-layer protein. This model represents a sequence region found tandemly duplicated in two proven archaeal S-layer glycoproteins, MA0829 from Methanosarcina acetivorans C2A and MM1976 from Methanosarcina mazei Go1, as well as in several paralogs of those L-layer proteins from both species. Members of the family show regions of local similarity to another known family of archaeal S-layer proteins described by model TIGR01564. Some members of this family, including the proven S-layer proteins, have the archaeosortase A target motif, PGF-CTERM (TIGR04126), at the protein C-terminus. [Cell envelope, Surface structures] 0 -355117 cl23991 Phage_holin_3_1 Phage holin family (Lysis protein S). This model represents one of a large number of mutally dissimilar families of phage holins. Holins act against the host cell membrane to allow lytic enzymes of the phage to reach the bacterial cell wall. This family includes the product of the S gene of phage lambda. [Mobile and extrachromosomal element functions, Prophage functions] 0 -329222 cl23992 Wx5_PLAF3D7 Protein of unknown function (Wx5_PLAF3D7). This model represents a family of at least four proteins in Plasmodium falciparum. An interesting feature is five perfectly conserved Trp residues. 0 -329223 cl23994 Prophage_tail Prophage endopeptidase tail. This model represents the conserved N-terminal region, typically from about residue 25 to about residue 350, of a family of uncharacterized phage proteins 500 to 1700 residues in length. [Mobile and extrachromosomal element functions, Prophage functions] 0 -305152 cl23995 Phage_XkdX Phage uncharacterized protein (Phage_XkdX). This model represents a family of small (about 50 amino acid) phage proteins, found in at least 12 different phage and prophage regions of Gram-positive bacteria. In a number of these phage, the gene for this protein is found near the holin and endolysin genes. [Mobile and extrachromosomal element functions, Prophage functions] 0 -305153 cl23996 DUF576 Csa1 family. Members of this family are predicted lipoproteins (mostly), found in Staphylococcus aureus in several different tandem clusters in pathogenicity islands. Members are also found, clustered, in Staphylococcus epidermidis. 0 -329224 cl23997 Phage_TAC_6 Phage tail assembly chaperone protein, TAC. This model describes a family of proteins found exclusively in phage or in prophage regions of bacterial genomes, including the phage-like Rhodobacter capsulatus gene transfer agent, which packages DNA. [Mobile and extrachromosomal element functions, Prophage functions] 0 -329225 cl23998 Phage_T4_gp19 T4-like virus tail tube protein gp19. This family consists of uncharacterized proteins. All members so far represent bacterial genes found in apparent phage or otherwisely laterally transferred regions of the chromosome. Tentatively identified neighboring proteins tend to be phage tail region proteins. In some species, including Photorhabdus luminescens TTO1, several members of this family may be encoded near each other. 0 -355118 cl23999 DUF2388 Protein of unknown function (DUF2388). This family consists of small hypothetical proteins, about 100 amino acids in length. The family includes five members (three in tandem) in Pseudomonas aeruginosa PAO1, and also in Pseudomonas putida KT2440, four in Pseudomonas syringae DC3000, and single members in several other Proteobacteria. The function is unknown. 0 -329227 cl24000 Pec_lyase Pectic acid lyase. Members of this family are isozymes of pectate lyase (EC 4.2.2.2), also called polygalacturonic transeliminase and alpha-1,4-D-endopolygalacturonic acid lyase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 0 -355119 cl24001 Flg_hook Flagellar hook-length control protein FliK. Members of this family include YscP of the Yersinia type III secretion system and equivalent proteins in other animal pathogen bacterial type III secretion systems. The model describes the conserved C-terminal region. N-terminal regions are poorly conserved and variable in length with some low-complexity sequence. 0 -305159 cl24002 Dot_icm_IcmQ Dot/Icm secretion system protein (dot_icm_IcmQ). Members of this protein family are the IcmQ component of Dot/Icm secretion systems, as found in obligate intracellular pathogens Legionella pneumophila and Coxiella burnetii. While this system resembles type IV secretion systems and has been called a form of type IV, the literature now seems to favor calling this the Dot/Icm system. This protein was shown to be essential for translocation (). 0 -329229 cl24004 CBP_BcsF Cellulose biosynthesis protein BcsF. Members of this protein family are found invariably together with genes of bacterial cellulose biosynthesis, and are presumed to be involved in the process. Members average about 63 amino acids in length and are not uncharacterized. The gene has been designated both YhjT and BcsF (bacterial cellulose synthesis F). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -329230 cl24005 DUF2570 Protein of unknown function (DUF2570). Members of this protein family are phage lysis regulatory protein, including the well-studied protein LysB (lysis protein B) of Enterobacteria phage P2. For members of this family, genes are found in phage or in prophage regions of bacterial genomes, typically near a phage lysozyme or phage holin. 0 -355120 cl24006 YidC_periplas YidC periplasmic domain. Essentially all bacteria have a member of the YidC family, whose C-terminal domain is modeled by TIGR03592. The two copies are found in endospore-forming bacteria such as Bacillus subtilis appear redundant during vegetative growth, although the member designated spoIIIJ (stage III sporulation protein J) has a distinct role in spore formation. YidC, its mitochondrial homolog Oxa1, and its chloroplast homolog direct insertion into the bacterial/organellar inner (or only) membrane. This model describes an N-terminal sequence region, including a large periplasmic domain lacking in YidC members from Gram-positive species. The multifunctional YidC protein acts both with and independently of the Sec system. [Protein fate, Protein and peptide secretion and trafficking] 0 -329232 cl24007 DUF2976 Protein of unknown function (DUF2976). Members of this protein family are found occasionally on plasmids such as the Pseudomonas putida TOL plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in a region flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -329233 cl24008 CtnDOT_TraJ homologs of TraJ from Bacteroides conjugative transposon. Members of this protein family are designated TraM and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. This family is related conjugation system proteins in the Proteobacteria, including TrbL of Agrobacterium Ti plasmids and VirB6. [Cellular processes, DNA transformation] 0 -329234 cl24009 Parvo_NS1 Parvovirus non-structural protein NS1. This protein is a DNA helicase that is required for initiation of viral DNA replication. This protein forms a complex with the E2 protein pfam00508. 0 -355121 cl24013 B_lectin N/A. These proteins include mannose-specific lectins from plants as well as bacteriocins from bacteria. 0 -355122 cl24015 DDE_Tnp_ISL3 Transposase. This domain was identified by Babu and colleagues. 0 -305174 cl24017 PCNA N/A. N-terminal and C-terminal domains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA. 0 -355123 cl24018 DUF4143 Domain of unknown function (DUF4143). This domain is almost always found C-terminal to an ATPase core family. 0 -355124 cl24019 CSN8_PSD8_EIF3K CSN8/PSMD8/EIF3K family. This family includes diverse proteins involved in large complexes. The alignment contains one highly conserved negatively charged residue and one highly conserved positively charged residue that are probably important for the function of these proteins. The family includes the yeast nuclear export factor Sac3, and mammalian GANP/MCM3-associated proteins, which facilitate the nuclear localization of MCM3, a protein that associates with chromatin in the G1 phase of the cell-cycle. 0 -355125 cl24020 Pyocin_S S-type Pyocin. The C-terminal region of colicin-like bacteriocins is either a pore-forming or an endonuclease-like domain. Cloacin and Pyocins have similar structures and activities to the colicins from E coli and the klebicins from Klebsiella spp. Colicins E5 and D cleave the anticodon loops of distinct tRNAs of Escherichia coli both in vivo and in vitro. The full-length molecule has an N-terminal translocation domain and a middle, double alpha-helical region which is receptor-binding. 0 -355126 cl24021 NPR3 Nitrogen Permease regulator of amino acid transport activity 3. This family of regulators are involved in post-translational control of nitrogen permease. 0 -329242 cl24023 Cyclase_polyket Polyketide synthesis cyclase. Members of this family have only been identified in species of the Streptomyces genus. Two family members are known to be part of gene clusters involved in the synthesis of polyketide-based spore pigments, homologous to clusters involved in the synthesis of polyketide antibiotics. The function of this protein is unknown, but it has been speculated to contain a NAD(P) binding site. Many of these proteins contain two copies of this presumed domain. 0 -355128 cl24030 SUR7 SUR7/PalI family. During the mating process of yeast cells, two Ca2+ influx pathways become activated. The resulting elevation of cytosolic free Ca2+ activates downstream signaling factors that promote long term survival of unmated cells. Fig1 is a regulator of the low affinity Ca2+ influx system (LACS), and is also required for efficient membrane fusion during yeast mating. 0 -329247 cl24032 QCR10 Ubiquinol-cytochrome-c reductase complex subunit (QCR10). The ubiquinol-cytochrome C reductase complex (cytochrome bc1 complex) is an essential component of the mitochondrial cellular respiratory chain. This family represents the 6.4kD protein, which may be closely linked to the iron-sulphur protein in the complex and function as an iron-sulphur protein binding factor. 0 -355129 cl24033 zf-NADH-PPase NADH pyrophosphatase zinc ribbon domain. Ths domain occurs at the N-terminus of several Nudix (Nucleoside Diphosphate linked to X) hydrolases. 0 -355130 cl24037 MRP-S25 Mitochondrial ribosomal protein S25. MRP-S23 is one of the proteins that makes up the 55S ribosome in eukaryotes from nematodes to humans. It does not appear to carry any common motifs, either RNA binding or ribosomal protein motifs. All of the mammalian MRPs are encoded in nuclear genes that are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. MRP-S23 is significantly up-regulated in uterine cancer cells. 0 -329252 cl24038 SNAP Soluble N-ethylmaleimide-sensitive factor (NSF) Attachment Protein family. Neuromuscular junction formation relies upon the clustering of acetylcholine receptors and other proteins in the muscle membrane. Rapsyn is a peripheral membrane protein that is selectively concentrated at the neuromuscular junction and is essential for the formation of synaptic acetylcholine receptor aggregates. Acetylcholine receptors fail to aggregate beneath nerve terminals in mice where rapsyn has been knocked out. The N-terminal six amino acids of rapsyn are its myristoylation site, and myristoylation is necessary for the targeting of the protein to the membrane. 0 -355131 cl24040 AbiEi_4 Transcriptional regulator, AbiEi antitoxin. AbiEi_3 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 0 -329257 cl24047 DUF4173 Domain of unknown function (DUF4173). Members of this family are annotated as putative inner membrane proteins. 0 -355136 cl24051 BBS2_Mid Ciliary BBSome complex subunit 2, middle region. Members of this family are annotated as being integrin-alpha FG-GAP repeat-containing protein 2. 0 -355137 cl24054 CTC1 CST, telomere maintenance, complex subunit CTC1. CTC1 is one of the three components of the CST complex that assists Shelterin to protect the ends of telomeres from attack by DNA-repair mechanisms. This family largely represents sequences from plants species. 0 -355139 cl24062 Phage_holin_3_3 LydA holin phage, holin superfamily III. Phage_holin_6_2 is a family of holins classified as 1.E.20 in the TC database. The hol gene (PRF9) product (117 aas) of Pseudomonas aeruginosa PAO1 exhibits a hydrophobicity profile similar to holins of P2 and phiCTX phages with two peaks of hydrophobicity that might correspond to either one or two TMSs. Hol functions in conjunction with the lytic enzyme, Lys, a glycosyl hydrolase that breaks-up the murein in the bacterial cell-wall, causing lysis of the cell and hence entry of phage particles. Several members are annotated as pyocin R2_PP when encoded on the chromosome. 0 -305223 cl24066 SA1633_like Uncharacterized protein family conserved in Staphylococci. This family consists of uncharacterized proteins around 190 residues in length and is mainly found in various Staphylococcus species. The function of this family is unknown. 0 -305234 cl24077 Zn_ribbon_17 Zinc-ribbon, C4HC2 type. This family is found at the C-terminus of WD40 repeat structures in eukaryotes. 0 -355143 cl24079 Helo_like_N Fungal N-terminal domain of STAND proteins. This is a family of fungal N-terminal domains that appear at the N-terminus of P-loop NTPases, NACHT-NTPases and Ankyrin or WD repeat proteins. The exact function is not known. 0 -355175 cl24283 DUF5349 Family of unknown function (DUF5349). This family of proteins is found in eukaryotes, where members are expressed at high levels in the brain, liver kidney and Ewing tumor cell lines. Proteins in this family are typically between 648 and 898 amino acids in length. 0 -329773 cl24758 DUF5128 6-bladed beta-propeller. This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides species, such as Bacteroides fragilis and Bacteroides sp. The function of this family is unknown. 0 -330171 cl25349 EFh_SPARC_EC EF-hand, extracellular calcium-binding (EC) motif, found in secreted protein acidic and rich in cysteine (SPARC)-like proteins. SMOC-2, also termed SPARC-related modular calcium-binding protein 2, or smooth muscle-associated protein 2 (SMAP-2), is a ubiquitously expressed matricellular protein that enhances the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. It is also associated with vitiligo and craniofacial and dental defects. Moreover, SMOC-2 acts as an Arf1 GTPase-activating protein (GAP) that interacts with clathrin heavy chain (CHC) and clathrin assembly protein CALM and functions in the retrograde, early endosome/trans-Golgi network (TGN) pathway in a clathrin- and AP-1-dependent manner. It also contributes to mitogenesis via activation of integrin-linked kinase (ILK). SMOC-2 contains a follistatin-like (FS) domain, two thyroglobulin-like (TY) domains, a novel domain, which is found only in the homologous SMOC-1, and an extracellular calcium-binding (EC) domain with two EF-hand calcium-binding motifs. 0 -355382 cl25352 EFh_PEF The penta-EF hand (PEF) family. CAPN2, also termed millimolar-calpain (m-calpain), or calpain-2 catalytic subunit, or calcium-activated neutral proteinase 2 (CANP 2), or calpain large polypeptide L2, or calpain-2 large subunit, is a ubiquitously expressed 80-kDa Ca2+-dependent intracellular cysteine protease that contains a short N-terminal anchor helix, followed by a calpain cysteine protease (CysPc) domain, a C2-domain-like (C2L) domain, and a C-terminal Ca2+-binding penta-EF-hand (PEF) domain. The catalytic subunit CAPN2 in complex with a regulatory subunit encoded by CAPNS1 forms an m-calpain heterodimer. CAPN2 acts as the key protease responsible for N-methyl-d-aspartic acid (NMDA)-induced cytoplasmic polyadenylation element-binding protein 3 (CPEB3) degradation in neurons. It cleaves several components of the focal adhesion complex, such as FAK and talin, triggering disassembly of the complex at the rear of the cell. The stimulation of CAPN2 activity is required for Golgi antiapoptotic proteins (GAAPs) to promote cleavage of FA kinase (FAK), cell spreading, and enhanced migration. calpain 2 is also involved in the onset of glial differentiation. It regulates proliferation, survival, migration, and tumorigenesis of breast cancer cells through a PP2A-Akt-FoxO-p27(Kip1) signaling cascade. Its expression is associated with response to platinum based chemotherapy, progression-free and overall survival in ovarian cancer. Moreover, CAPN2 may play a role in fundamental mitotic functions, such as the maintenance of sister chromatid cohesion. The activation of CAPN2 plays an essential role in hippocampal synaptic plasticity and in learning and memory. In the eye, CAPN2, together with a lens-specific variant of CAPN3, is responsible for proteolytic cleavages of alpha and beta-crystallin. Overactivated alpha and beta-crystallin can lead to cataract formation. Sometimes, CAPN2 compensates for loss of CAPN1, and both calpain isoforms are involved in AngII-induced aortic aneurysm formation. The main phosphorylation sites in m-calpain are Ser50 and Ser369/Thr370. 0 -330175 cl25354 EFh_CREC EF-hand, calcium binding motif, found in CREC-EF hand family. RCN-3, also termed EF-hand calcium-binding protein RLP49, is a putative six EF-hand Ca2+-binding protein that contains five RXXR (X is any amino acid) motifs and a C-terminal ER retrieval signal His-Asp-Glu-Leu (HDEL) tetrapeptide. The RXXR motif represents the target sequence of subtilisin-like proprotein convertases (SPCs). RCN-3 is specifically bound to the paired basic amino-acid-cleaving enzyme-4 (PACE4) precursor protein and plays an important role in the biosynthesis of PACE4. 0 -330177 cl25356 EFh_parvalbumin_like EF-hand, calcium binding motif, found in parvalbumin-like EF-hand family. Beta-parvalbumin, also termed Oncomodulin-1 (OM), is a small calcium-binding protein that is expressed in hepatomas, as well as in the blastocyst and the cytotrophoblasts of the placenta. It is also found to be expressed in the cochlear outer hair cells of the organ of Corti and frequently expressed in neoplasms. Mammalian beta-parvalbumin is secreted by activated macrophages and neutrophils. It may function as a tissue-specific Ca2+-dependent regulatory protein, and may also serve as a specialized cytosolic Ca2+ buffer. Beta-parvalbumin acts as a potent growth-promoting signal between the innate immune system and neurons in vivo. It has high and specific affinity for its receptor on retinal ganglion cells (RGC) and functions as the principal mediator of optic nerve regeneration. It exerts its effects in a cyclic adenosine monophosphate (cAMP)-dependent manner and can further elevate intracellular cAMP levels. Moreover, beta-parvalbumin is associated with efferent function and outer hair cell electromotility, and can identify different hair cell types in the mammalian inner ear. Beta-parvalbumin is characterized by the presence of three consecutive EF-hand motifs (helix-loop-helix) called AB, CD, and EF, but only CD and EF can chelate metal ions, such as Ca2+ and Mg2+. The EF site displays a high-affinity for Ca2+/Mg2+, and the CD site is a low-affinity Ca2+-specific site. In addition, beta-parvalbumin is distinguished from other parvalbumins by its unusually low isoelectric point (pI = 3.1) and sequence eccentricities (e.g., Y57-L58-D59 instead of F57-I58-E59). 0 -355383 cl25360 DMSOR_beta-like Beta subunit of the DMSO Reductase (DMSOR) family. This family consists of the small beta iron-sulfur (FeS) subunit of the DMSO Reductase (DMSOR) family. Members of this family also contain a large, periplasmic molybdenum-containing alpha subunit and may have a small gamma subunit as well. Examples of heterodimeric members with alpha and beta subunits include arsenite oxidase, and tungsten-containing formate dehydrogenase (FDH-T) while heterotrimeric members containing alpha, beta, and gamma subunits include formate dehydrogenase-N (FDH-N), and nitrate reductase (NarGHI). The beta subunit contains four Fe4/S4 and/or Fe3/S4 clusters which transfer the electrons from the alpha subunit to a hydrophobic integral membrane protein, presumably a cytochrome containing two b-type heme groups. The reducing equivalents are then transferred to menaquinone, which finally reduces the electron-accepting enzyme system. 0 -355384 cl25362 YitT_C_like C-terminal domain of Bacillus subtilis YitT and similar protein domains. This domain, characteristic of various bacterial proteins, has no known function. It has been given the designation DUF2179 and is similar to the C-terminus of the Bacillus subtilis membrane protein. 0 -355385 cl25364 beta_Kdo_transferase beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. KpsS is a beta-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)-transferase. It is part of the ATP-binding cassette transporter dependent capsular polysaccharides (CPSs) synthesis pathway, one of two CPS synthesis pathways present in Escherichia coli. The poly-Kdo linker is thought to be the common feature of CPSs synthesized via this pathway. CPSs are high-molecular-mass cell-surface polysaccharides that are important virulence factors for many pathogenic bacteria. 0 -355386 cl25366 ChuX-like heme utilization protein ChuX and similar proteins. This family contains the C-terminal domain of heme degrading enzyme HemS, and similar proteins, including PhuS, ChuS, ShuS, and HmuS in proteobacteria. Despite low sequence identity between the N- and C-terminal halves, these segments represent a structural duplication, with each terminal half having similar fold to single domains of ChuX. HemS shares homology with both, heme degrading enzymes and heme trafficking enzymes. Heme is an iron source for pathogenic microorganisms to enable multiplication and survival within hosts they invade and therefore heme degrading enzyme activity is required for the release of iron from heme after its transportation into the cytoplasm. N- and C-terminal halves of ChuS are each a functional heme oxygenase (HO). The mode of heme coordination by ChuS has been shown to be distinct, whereby the heme is stabilized mostly by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. ChuS can use ascorbic acid or cytochrome P450 reductase-NADPH as electron sources for heme oxygenation. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity by physically sequestering DNA. Heme transporter protein PhuS in Pseudomonas aeruginosa is unique among this family since it contains three histidines in the heme-binding pocket, compared with only one in ChuX. 0 -355388 cl25395 enolase_like N/A. Mandelate racemase (MR)-like subfamily of the enolase superfamily, subgroup 4. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. This subgroup's function is unknown. 0 -355389 cl25402 iSH2_PI3K_IA_R Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunits. PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects. 0 -355390 cl25403 ABC_ATPase ATP-binding cassette transporter nucleotide-binding domain. MEDS is prototyped by DcmR and is likely to function with the PocR domain in certain organisms in sensing hydrocarbon derivatives. The MEDS domain occurs fused to Histidine Kinase and as stand-alone version. Sequence analysis shows that it is a catalytically inactive version of the P-loop NTPase domain of the RecA superfamily. 0 -355391 cl25407 ClassIIa_HDAC_Gln-rich-N Glutamine-rich N-terminal helical domain of various Class IIa histone deacetylases (HDAC4, HDAC5 and HDCA9). This domain is found in eukaryotes, and is approximately 90 amino acids in length. The family is found in association with pfam00850. The domain forms an alpha helix which complexes to form a tetramer. The glutamine rich domains have many intra- and inter-helical interactions which are thought to be involved in reversible assembly and disassembly of proteins. The domain is part of histone deacetylase 4 (HDAC4) which removes acetyl groups from histones. This restores their positive charge to allow stronger DNA binding thus restricting transcriptional activity. 0 -355392 cl25409 SDR Short-chain dehydrogenases/reductases (SDR). Lin1944 protein from Listeria Innocua is a classical SDR, it contains a glycine-rich motif similar to the canonical motif of the SDR NAD(P)-binding site. However, the typical SDR active site residues are absent in this subgroup of proteins of undetermined function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. 0 -355393 cl25421 Lnt Apolipoprotein N-acyltransferase [Cell wall/membrane/envelope biogenesis]. apolipoprotein N-acyltransferase; Reviewed 0 -355394 cl25432 RseA_N N-terminal domain of RseA. Sigma-E is important for the induction of proteins involved in heat shock response. RseA binds sigma-E via its N-terminal domain, sequestering sigma-E and preventing transcription from heat-shock promoters. The C-terminal domain is located in the periplasm, and may interact with other protein that signal periplasmic stress. 0 -330255 cl25434 MukF_C bacterial condensin complex subunit MukF, C-terminal domain. This presumed domain is found at the C-terminus of the MukF protein. 0 -355395 cl25445 Cache_3-Cache_2 Cache 3/Cache 2 fusion domain. The Cache_3-Cache_2 domain likely originated as a fusion of sCache_3 and sCache_2 domains. 0 -355396 cl25446 PRK15055 N/A. Members of this protein family include the A subunit, one of three subunits, of the anaerobic sulfite reductase of Salmonella, and close homologs from various Clostridum species, where the three-gene neighborhood is preserved. Two such gene clusters are found in Clostridium perfringens, but it may be that these sets of genes correspond to the distinct assimilatory and dissimilatory forms as seen in Clostridium pasteurianum. Note that any one of these enzymes may have secondary substates such as NH2OH, SeO3(2-), and SO3(2-). Heterologous expression of the anaerobic sulfite reductase of Salmonella confers on Escherichia coli the ability to produce hydrogen sulfide gas from sulfite. [Central intermediary metabolism, Sulfur metabolism] 0 -330284 cl25463 Glyco_hydro_15 Glycosyl hydrolases family 15. The name of this type of amylase is based on the characterization of an glucoamylase family enzyme from Thermoactinomyces vulgaris. The T. vulgaris enzyme was expressed in E. coli and, like other glucoamylases, it releases beta-D-glucose from starch. However, unlike previously characterized glucoamylases, this T. vulgaris amylase hydrolyzes maltooligosaccharides (maltotetraose, maltose) more efficiently than starch (1), indicating this enzyme belongs to a class of glucoamylase-type enzymes with oligosaccharide-metabolizing activity. 0 -330301 cl25480 FA58C N/A. Cell surface-attached carbohydrate-binding domain, present in eukaryotes and assumed to have horizontally transferred to eubacterial genomes. 0 -330377 cl25556 tRNA-synt_2_TM Transmembrane region of lysyl-tRNA synthetase. tRNA-synt_2_TM is a family from the N-terminal region of tRNA-synthase-2, with 6xTMs. The presence of this region indicates that the protein is anchored in the membrane. The family is found in Actinobacteria. 0 -355421 cl25561 TadE TadE-like protein. The members of this family are similar to a region of the protein product of the bacterial tadE locus. In various bacterial species, the tad locus is closely linked to flp-like genes, which encode proteins required for the production of pili involved in adherence to surfaces. It is thought that the tad loci encode proteins that act to assemble or export an Flp pilus in various bacteria. All tad loci but TadA have putative transmembrane regions, and in fact the region in question is this family has a high proportion of hydrophobic amino acid residues. 0 -355422 cl25563 Mal_decarbox_Al Malonate decarboxylase, alpha subunit, transporter. This model describes malonate decarboxylase alpha subunit, from both the water-soluble form as found in Klebsiella pneumoniae and the form couple to sodium ion pumping in Malonomonas rubra. Malonate decarboxylase Na+ pump is the paradigm of the family of Na+ transport decarboxylases. Essentially, it couples the energy derived from decarboxylation of a carboxylic acid substrate to move Na+ ion across the bilayer. Functional malonate decarboylase is a multi subunit protein. The alpha subunit enzymatically performs the transfer of malonate (substrate) to an acyl carrier protein subunit for subsequent decarboxylation, hence the name: acetyl-S-acyl carrier protein:malonate carrier protein-SH transferase. [Transport and binding proteins, Cations and iron carrying compounds, Energy metabolism, Other] 0 -330385 cl25564 OFeT_1 Ferrous iron uptake permease, iron-lead transporter. OFeT_1 is a family of conserved archaeal membrane proteins that are putative oxidase-dependent Fe2+ transporters. 0 -330405 cl25584 RNA_pol_inhib RNA polymerase inhibitor. inhibitor of host bacterial RNA polymerase 0 -330406 cl25585 Stomagen Stomagen. stomagen; Provisional 0 -330419 cl25598 TRF2_RBM RAP1 binding motif of telomere repeat binding factor. This domain, found in telomeric repeat-binding factor 2, binds to the C-terminus of repressor activator protein 1 (RAP1) (telomeric repeat-binding factor 2-interacting protein 1). 0 -330429 cl25608 MSL2_CXC DNA-binding cysteine-rich domain of male-specific lethal 2 and related proteins. MSL2-CXC is an autonomously folded domain containing that binds three zinc ions. It lies on the E3 ubiquitin-protein ligase MSL2 in eukaryotes. The CXC domain critically contributes to the DNA-binding activity of MSL2. It carries 9 invariant cysteines within about a 50 residue region. 0 -355425 cl25616 Apocytochr_F_N Apocytochrome F, N-terminal. cytochrome f 0 -355430 cl25646 zn-ribbon_14 Zinc-ribbon. [Hypothetical proteins, Conserved] 0 -355433 cl25655 Patched Patched family. The transmembrane protein Patched is a receptor for the morphogene Sonic Hedgehog. This protein associates with the smoothened protein to transduce hedgehog signals. 0 -355434 cl25664 YaiA YaiA protein. hypothetical protein; Provisional 0 -355435 cl25669 DUF1735 Domain of unknown function (DUF1735). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this protein is unknown. 0 -330491 cl25670 DUF5018 Domain of unknown function (DUF5018). This small family consists of uncharacterized proteins around 370 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 0 -355436 cl25673 CcmF_C Cytochrome c-type biogenesis protein CcmF C-terminal. Members of this protein family closely resemble the CcmF protein of the CcmABCDEFGH system, or system I, for c-type cytochrome biogenesis (GenProp0678). Members are found, as a rule, next to closely related paralogs of CcmG and CcmH and always located near other genes associated with the cytochrome c nitrite reductase enzyme complex. As a rule, members are found in species that also encode bona fide members of the CcmF, CcmG, and CcmH families. 0 -355437 cl25682 DUF4912 Domain of unknown function (DUF4912). This family consists of uncharacterized proteins around 160 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 0 -355438 cl25683 DUF4910 Domain of unknown function (DUF4910). This domain, found in various hypothetical prokaryotic proteins, has no known function. An aminopeptidase domain is conserved within the family, but its relevance has not been established yet. Rebuilding from Structure 3kt9 shows this is an inserted (nested domain within the amino-peptidase). The function of this small domain is not known. 0 -330507 cl25686 COG5135 Uncharacterized protein [Function unknown]. Members of the PPOX family (see pfam01243) may contain either FMN or F420 as cofactor. This subfamily described here is widespread in Cyanobacteria and plants, and is named for alr4036 from Nostoc sp. PCC 7120. The family consists mostly of proteins from species that lack the capability to synthesize F420, so it is probable that all members bind FMN rather than F420. [Unknown function, Enzymes of unknown specificity] 0 -330508 cl25687 Pyrid_ox_like Pyridoxamine 5'-phosphate oxidase like. This domain, approximately 140 residues in length, is mainly found in general stress proteins in various Xanthomonas species. It is composed of a six-stranded antiparallel beta-barrel flanked by five alpha-helices and can bind to FMN and FAD, suggesting that it may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant. 0 -330525 cl25704 Stt3 Asparagine N-glycosylation enzyme, membrane subunit Stt3 [Posttranslational modification, protein turnover, chaperones]. Members of this protein family occur, one to three members per genome, in the same species of Euryarchaeota as contain the predicted protein-sorting enzyme archaeosortase (TIGR04125) and its cognate protein-sorting signal PGF-CTERM (TIGR04126). 0 -355439 cl25705 COG4745 Predicted membrane-bound mannosyltransferase [General function prediction only]. Members of this protein family, uncommon and rather sporadically distributed, are found almost always in the same genomes as members of family TIGR03662, and frequently as a nearby gene. Members show some N-terminal sequence similarity with pfam02366, dolichyl-phosphate-mannose-protein mannosyltransferase. The few invariant residues in this family, found toward the N-terminus, include a dipeptide DE, a tripeptide HGP, and two different Arg residues. Up to three members may be found in a genome. The function is unknown. 0 -355446 cl25771 ComGF Putative Competence protein ComGF. ComGF is a family of putative bacterial competence proteins. 0 -355456 cl25857 RmuC RmuC family. DNA recombination protein RmuC; Provisional 0 -355462 cl25912 Bacuni_01323_like Uncharacterized protein conserved in Bacteroidetes. Large family of predicted secreted proteins mostly from CFG group, but also from Burkholderia, Pseudomonas and Streptomyces. Function of these proteins is not known. A 3D structure of a representative of this family from Bacteroides uniformis was solved by JCSG and deposited to PDB as 4ghb. There is some overlap with RHS-repeat (PF05593) family despite lack of obvious repeats in the structure. 0 -355463 cl25917 XseA Exonuclease VII, large subunit [Replication, recombination and repair]. This family consist of exodeoxyribonuclease VII, large subunit XseA which catalyses exonucleolytic cleavage in either the 5'->3' or 3'->5' direction to yield 5'-phosphomononucleotides. Exonuclease VII consists of one large subunit and four small subunits. [DNA metabolism, Degradation of DNA] 0 -330753 cl25932 Peptidase_S21 Assemblin (Peptidase family S21). hypothetical protein; Provisional 0 -355468 cl25954 PRK06718 N/A. precorrin-2 dehydrogenase; Provisional 0 -355469 cl25961 POLXc DNA polymerase X family. includes vertebrate polymerase beta and terminal deoxynucleotidyltransferases 0 -355471 cl25973 RNA_pol DNA-dependent RNA polymerase. T3/T7-like RNA polymerase 0 -355476 cl25995 TM_EphA1 Transmembrane domain of Ephrin Receptor A1 Protein Tyrosine Kinase. Epha2_TM represents the left-handed dimer transmembrane domain of of EphA2 receptor. This domain oligomerises and is important for the active signalling process. 0 -330851 cl26030 Topo_C_assoc C-terminal topoisomerase domain. DNA Topoisomerase I (eukaryota), DNA topoisomerase V, Vaccina virus topoisomerase, Variola virus topoisomerase, Shope fibroma virus topoisomeras 0 -330862 cl26041 Gly_rich_SFCGS Glycine-rich SFCGS. Members of this family of small (about 120 amino acid), relatively rare proteins are found in both Gram-positive (e.g. Enterococcus faecalis) and Gram-negative (e.g. Aeromonas hydrophila) bacteria, as part of a cluster of conserved proteins. The function is unknown. [Hypothetical proteins, Conserved] 0 -355480 cl26042 Arylsulfotrans Arylsulfotransferase (ASST). This family consists of several bacterial Arylsulfotransferase proteins. Arylsulfotransferase (ASST) transfers a sulfate group from phenolic sulfate esters to a phenolic acceptor substrate. 0 -330878 cl26057 YdfZ YdfZ protein. This small protein has a very limited distribution, being found so far only among some gamma-Proteobacteria. The member from Escherichia coli was shown to bind selenium in the absence of a working SelD-dependent selenium incorporation system. Note that while the E. coli member contains a single Cys residue, a likely selenium binding site, some other members of this protein family contain two Cys residues or none. [Unknown function, General] 0 -355483 cl26058 MgrB MgrB protein. PhoPQ regulatory protein; Provisional 0 -355484 cl26069 Ricin_B_lectin Ricin-type beta-trefoil lectin domain. Carbohydrate-binding domain formed from presumed gene triplication. 0 -330899 cl26078 Clathrin Region in Clathrin and VPS. Each region is about 140 amino acids long. The regions are composed of multiple alpha helical repeats. They occur in the arm region of the Clathrin heavy chain. 0 -330910 cl26089 DDE_Tnp_IS240 DDE domain. This DDE domain is found in a wide variety of transposases including those found in IS240, IS26, IS6100 and IS26. 0 -355487 cl26118 LPAM_2 Prokaryotic lipoprotein-attachment site. In prokaryotes, membrane lipoproteins are synthesized with a precursor signal peptide, which is cleaved by a specific lipoprotein signal peptidase (signal peptidase II). The peptidase recognizes a conserved sequence and cuts upstream of a cysteine residue to which a glyceride-fatty acid lipid is attached. 0 -330953 cl26132 DUF3029 Protein of unknown function (DUF3029). Members of this family are homologs to enzymes known to undergo activation by a radical SAM protein to create an active site glycyl radical. This family appears to be activated by the YjjW radical SAM protein, usually encoded by an adjacent gene. [Unknown function, Enzymes of unknown specificity] 0 -330974 cl26153 Glyco_trans_1_3 Glycosyl transferase family 1. This model represents nearly the full length of MJ1255 from Methanococcus jannaschii and of an unpublished protein from Vibrio cholerae, as well as the C-terminal half of a protein from Methanobacterium thermoautotrophicum. A small region (~50 amino acids) within the domain appears related to a family of sugar transferases. [Hypothetical proteins, Conserved] 0 -355492 cl26156 Acetyltransf_8 Acetyltransferase (GNAT) domain. AlcB is the conserved 45 residue region of one of the proteins of a complex which mediates alcaligin biosynthesis in Bordetella and aerobactin biosynthesis in E. coli and other bacteria. The protein appears to catalyse N-acylation of the hydroxylamine group in N-hydroxyputrescine with succinyl CoA - an activated mono-thioester derivative of succinic acid that is an intermediate in the Krebs cycle. 0 -330984 cl26163 FUSC Fusaric acid resistance protein family. multidrug efflux system protein MdtO; Provisional 0 -330989 cl26168 Dehalogenase Reductive dehalogenase subunit. This model represents a family of corrin and 8-iron Fe-S cluster-containing reductive dehalogenases found primarily in halorespiring microorganisms such as dehalococcoides ethenogenes which contains as many as 17 enzymes of this type with varying substrate ranges. One example of a characterized species is the tetrachloroethene reductive dehalogenase (1.97.1.8) which also acts on trichloroethene converting it to dichloroethene. 0 -355495 cl26199 Transglut_core2 Transglutaminase-like superfamily. hypothetical protein; Provisional 0 -355496 cl26213 DUF4096 Putative transposase of IS4/5 family (DUF4096). 0 -331065 cl26244 VSG_B Trypanosomal VSG domain. variant surface glycoprotein; Provisional 0 -355498 cl26253 SCIFF Six-cysteine peptide SCIFF. Members of this protein family are essentially universal in the class Clostidia and therefore highly abundant in the human gut microbiome. This short peptide is designated SCIFF, for Six Cysteines in Forty-Five residues. It is a presumed ribosomal natural product precursor, always found associated with a yet-uncharacterized radical SAM protein, family TIGR03974, that resembles other peptide modification radical SAM enzymes and is designated SCIFF radical SAM maturase. 0 -355500 cl26307 FUSC-like FUSC-like inner membrane protein yccS. This model represents two clades of putative transmembrane proteins including the E. coli YccS and YhfK proteins. The YccS hypothetical equivalog (TIGR01666) is found in beta and gamma proteobacteria, while the smaller YhfK group is only found in E. coli, Salmonella and Yersinia. TMHMM on the 19 hits to this model shows a consensus of 11 transmembrane helices separated into two clusters, an N-terminal cluster of 6 and a central cluster of 5. This would indicate two non-membrane domains one on each side of the membrane 0 -331142 cl26321 FtsX Cell division protein FtsX [Cell cycle control, cell division, chromosome partitioning]. cell division ABC transporter subunit FtsX; Provisional 0 -355503 cl26348 T2SSppdC Type II secretion prepilin peptidase dependent protein C. hypothetical protein; Provisional 0 -331183 cl26362 Peptidase_M73 Camelysin metallo-endopeptidase. This model describes a protein N-terminal domain found regularly in proteins encoded near a variant form of signal peptidase I such as the SipW protein of Bacillus subtilis. Many though not all members are homologs of camelysin (a casein-cleaving metalloprotease) and TasA (CotN), a metalloprotease that is secreted, along with extracellular polysaccharide (EPS), to be the major protein constituent of the Bacillus subtilis biofilm matrix. Sequencing from several known TasA/CotN proteins shows the cleavage location to be near the center of the alignment and typical of type I signal peptidases, with small residues at -3 and -1. This domain, therefore, appears to be a special subclass of signal peptide. 0 -355505 cl26385 zf-C2H2_jaz Zinc-finger double-stranded RNA-binding. This domain family is found in archaea and eukaryotes, and is approximately 30 amino acids in length. The mammalian members of this group occur multiple times along the protein, joined by flexible linkers, and are referred to as JAZ - dsRNA-binding ZF protein - zinc-fingers. The JAZ proteins are expressed in all tissues tested and localize in the nucleus, particularly the nucleolus. JAZ preferentially binds to double-stranded (ds) RNA or RNA/DNA hybrids rather than DNA. In addition to binding double-stranded RNA, these zinc-fingers are required for nucleolar localization. 0 -355506 cl26390 Beta-TrCP_D D domain of beta-TrCP. This domain is found in eukaryotes, and is approximately 40 amino acids in length. It is found associated with F-box domain, WD domain. The protein that contains this domain functions as a ubiquitin ligase. Ubiquitination is required to direct proteins towards the proteasome for degradation. This protein is part of the WD40 class of F box proteins. The D domain of these F box proteins is involved in mediating the dimerisation of the protein. Dimerisation is necessary to polyubiquitinate substrates so this D domain is vital in directing substrates towards the proteasome for degradation. 0 -355508 cl26405 MgsA_C MgsA AAA+ ATPase C terminal. recombination factor protein RarA; Provisional 0 -355513 cl26420 IAT_beta Inverse autotransporter, beta-domain. putative invasin; Provisional 0 -355514 cl26423 DUF3421 Protein of unknown function (DUF3421). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 119 to 296 amino acids in length. 0 -355515 cl26442 Cytochrome_cB Cytochrome c bacterial. Members of this protein family are multiheme cytochrome c proteins of Methanosarcina acetivorans C2A and several other archaeal methanogens. All members have N-terminal signal peptides and are presumed to act in electron transfer reactions associated with methanogenesis. Putative heme-binding motifs include five (or six) CXXCH motifs, a CXXXCH motif, and a CXXXXCH motif. These proteins show multiple regions of local homology, in the same order, with multiheme cytochrome c proteins such as octaheme tetrathionate reductase from Shewanella. 0 -355516 cl26443 CbiG_N Cobalamin synthesis G N-terminal. cobalamin biosynthesis protein CbiG; Validated 0 -331274 cl26453 DUF3262 Protein of unknown function (DUF3262). Members of this family of small, hydrophobic proteins are found occasionally on plasmids such as the Pseudomonas putida TOL (toluene catabolic) plasmid pWWO_p085. Usually, however, they are found on the bacterial main chromosome in regions flanked by markers of conjugative transfer and/or transposition. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -331275 cl26454 VirionAssem_T7 Bacteriophage T7 virion assembly protein. tail assembly protein 0 -355517 cl26457 T2SSJ Type II secretion system (T2SS), protein J. The T2SJ proteins are pseudopilins, which are targeted to the membrane in E. Coli. T2SJ forms a complex with T2SI (pfam02501) and T2SK (pfam03934) which is part of the Type II secretion apparatus involved in the translocation of proteins across the outer membrane in E.coli. The T2SK-I-J complex has quasihelical characteristics. 0 -331281 cl26460 AllE Ureidoglycine aminohydrolase [Nucleotide transport and metabolism]. This model represents a protein containing a tandem arrangement of cupin domains (N-terminal part of pfam07883 and C-terminal more distantly related to pfam00190). This protein is found in the vicinity of genes involved in the catabolism of allantoin, a breakdown product of urate and sometimes of urate iteslf. The distribution of pathway components in the genomes in which this family is observed suggests that the function is linked to the allantoate catabolism to glyoxylate pathway (GenProp0686) since it is sometimes found in genomes lacking any elements of the xanthine-to-allantoin pathways (e.g. in Enterococcus faecalis). 0 -331282 cl26461 DUF3236 Protein of unknown function (DUF3236). This family of proteins with unknown function appears to be restricted to Methanobacteria. 0 -331288 cl26467 MerE MerE protein. putative mercury resistance protein; Provisional 0 -331289 cl26468 Scaffolding_pro Phi29 scaffolding protein. scaffolding protein 0 -355519 cl26470 PhaC Poly(3-hydroxyalkanoate) synthetase [Lipid transport and metabolism]. This model represents the class I subfamily of poly(R)-hydroxyalkanoate synthases, which polymerizes hydroxyacyl-CoAs with three to five carbons in the hydroxyacyl backbone into aliphatic esters termed poly(R)-hydroxyalkanoic acids. These polymers accumulate as carbon and energy storage inclusions in many species and can amount to 90 percent of the dry weight of cell. [Fatty acid and phospholipid metabolism, Biosynthesis] 0 -331295 cl26474 DUF2675 Protein of unknown function (DUF2675). host protein H-NS-interacting protein 0 -331296 cl26475 Phage_gp53 Base plate wedge protein 53. baseplate wedge subunit; Provisional 0 -331300 cl26479 EutA Ethanolamine utilisation protein EutA. reactivating factor for ethanolamine ammonia lyase; Provisional 0 -331302 cl26481 M11L Apoptosis regulator M11L like. Hypothetical protein; Provisional 0 -331303 cl26482 T4_tail_cap Tail-tube assembly protein. baseplate subunit; Provisional 0 -331307 cl26486 YfdX YfdX protein. hypothetical protein; Provisional 0 -331308 cl26487 DUF2745 Protein of unknown function (DUF2745). host dGTPase inhibitor 0 -331309 cl26488 DUF2718 Protein of unknown function (DUF2718). Hypothetical protein; Provisional 0 -331310 cl26489 FIDO Fido, protein-threonine AMPylation domain [Signal transduction mechanisms]. cell filamentation protein Fic; Provisional 0 -331311 cl26490 YliH Biofilm formation protein (YliH/bssR). biofilm formation regulatory protein BssR; Reviewed 0 -355520 cl26491 DSRB Dextransucrase DSRB. hypothetical protein; Provisional 0 -331313 cl26492 CedA Cell division activator CedA. cell division modulator; Provisional 0 -355521 cl26494 DUF2498 Protein of unknown function (DUF2498). hypothetical protein; Provisional 0 -355522 cl26496 DUF2496 Protein of unknown function (DUF2496). hypothetical protein; Provisional 0 -331319 cl26498 BDM Putative biofilm-dependent modulation protein. biofilm-dependent modulation protein; Provisional 0 -355523 cl26499 DUF4198 Domain of unknown function (DUF4198). This family was previously missannotated in Pfam as NikM. 0 -355524 cl26502 DisA-linker DisA bacterial checkpoint controller linker region. DNA integrity scanning protein DisA; Provisional 0 -331342 cl26521 AKAP7_NLS AKAP7 2'5' RNA ligase-like domain. unknown protein; Provisional 0 -355531 cl26560 TIR-like Predicted nucleotide-binding protein containing TIR-like domain. Members of this family of bacterial nucleotide-binding proteins contain a TIR-like domain. Their exact function has not, as yet, been defined. 0 -355532 cl26561 DUF2344 Uncharacterized protein conserved in bacteria (DUF2344). This model describes an uncharacterized protein encoded adjacent to, or as a fusion protein with, an uncharacterized radical SAM protein. 0 -331385 cl26564 DUF2338 Uncharacterized protein conserved in bacteria (DUF2338). Members of this family of hypothetical bacterial proteins have no known function. 0 -355533 cl26565 DUF2336 Uncharacterized protein conserved in bacteria (DUF2336). Members of this family of hypothetical bacterial proteins have no known function. 0 -355534 cl26566 HPTransfase Histidine phosphotransferase C-terminal domain. HPTransfase is a family of essential histidine phosphotransferases. It controls the activity of the master bacterial cell-cycle regulator CtrA through phosphorylation. It behaves as a homodimer by adopting the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal [alpha]/[beta] domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The C-terminal domain adopts an atypical Bergerat ATP-binding fold. 0 -355535 cl26569 DUF2318 Predicted membrane protein (DUF2318). Members of this family of hypothetical bacterial proteins have no known function. 0 -355536 cl26571 DUF2273 Small integral membrane protein (DUF2273). Members of this family of hypothetical bacterial proteins have no known function. 0 -355537 cl26572 Methyltransf_33 Histidine-specific methyltransferase, SAM-dependent. This model represents an uncharacterized domain of about 300 amino acids with homology to S-adenosylmethionine-dependent methyltransferases. Proteins with this domain are exclusively fungal. A few, such as EasF from Neotyphodium lolii, are associated with the biosynthesis of ergot alkaloids, a class of fungal secondary metabolites. EasF may, in fact, be the AdoMet:dimethylallyltryptophan N-methyltransferase, the enzyme that follows tryptophan dimethylallyltransferase (DMATS) in ergot alkaloid biosynthesis. Several other members of this family, including mug158 (meiotically up-regulated gene 158 protein) from Schizosaccharomyces pombe, contain an additional uncharacterized domain DUF323 (pfam03781). 0 -355538 cl26573 DUF2254 Predicted membrane protein (DUF2254). Members of this family of bacterial proteins comprises various hypothetical and putative membrane proteins. Their exact function, has not, as yet, been defined. 0 -331398 cl26577 DUF2225 Uncharacterized protein conserved in bacteria (DUF2225). This domain, found in various hypothetical bacterial proteins, has no known function. 0 -331399 cl26578 Tad_C Putative Tad-like Flp pilus-assembly. This domain, found in various hypothetical prokaryotic proteins, is likely to be involved in Flp lius biogenesis. 0 -331401 cl26580 DUF2206 Predicted membrane protein (DUF2206). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -331403 cl26582 VapB_antitoxin Bacterial antitoxin of type II TA system, VapB. VapB is the antitoxin of a bacterial toxin-antitoxin gene pair. The cognate toxin is VapC, pfam05016. The family contains several related antitoxins from Cyanobacteria and Actinobacterial families. Antitoxins of this class carry an N-terminal ribbon-helix-helix domain, RHH, that is highly conserved across all type II bacterial antitoxins, which dimerizes with the RHH domain of a second VapB molecule. A hinge section follows the RHH, with an additional pair of flexible alpha helices at the C-terminus. This C-terminus is the Toxin-binding region of the dimer, and so is specific to the cognate toxin, whereas the RHH domain has the specific function of lying across the RNA-binding groove of the toxin dimer and inactivating the active-site - a more general function of all antitoxins. 0 -355539 cl26583 DUF2163 Uncharacterized conserved protein (DUF2163). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -355540 cl26584 DUF2148 Uncharacterized protein containing a ferredoxin domain (DUF2148). This domain, found in various hypothetical bacterial proteins containing a ferredoxin domain, has no known function. 0 -355541 cl26586 DUF2125 Uncharacterized protein conserved in bacteria (DUF2125). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -331408 cl26587 DUF2109 Predicted membrane protein (DUF2109). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -331409 cl26588 DUF2107 Predicted membrane protein (DUF2107). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -355542 cl26589 DUF2093 Uncharacterized protein conserved in bacteria (DUF2093). This domain, found in various hypothetical prokaryotic proteins, has no known function. 0 -331412 cl26591 DUF2080 Putative transposon-encoded protein (DUF2080). This domain, found in various hypothetical archaeal proteins, has no known function. 0 -355543 cl26592 SHOCT Short C-terminal domain. 0 -355544 cl26593 DUF2076 Uncharacterized protein conserved in bacteria (DUF2076). This domain, found in various hypothetical prokaryotic proteins, has no known function. The domain, however, is found in various periplasmic ligand-binding sensor proteins. 0 -331416 cl26595 DUF2070 Predicted membrane protein (DUF2070). This is a family of Archaeal 7-TM proteins. There are 6 closely assembled TM-regions at the N-terminus followed by a long intracellular, from residues 220-590, highly conserved region, of unknown function, terminating with one more TM-region. The short 25 residue section between TMs 5 and 6 might lie on the outer surface of the membrane and be acting as a receptor (from TMHMM). 0 -331417 cl26596 DUF2059 Uncharacterized protein conserved in bacteria (DUF2059). This domain, found in various prokaryotic proteins, has no known function. 0 -355545 cl26597 DUF2058 Uncharacterized protein conserved in bacteria (DUF2058). This domain, found in various prokaryotic proteins, has no known function. 0 -331420 cl26599 Beta_propel Beta propeller domain. Members of this family comprise secreted bacterial proteins containing C-terminal beta-propeller domain distantly related to WD-40 repeats. Jpred secondary-structure prediction shows family to be a series of 4 short beta-strands, characteristic of beta-propeller families. 0 -331437 cl26616 DUF2397 Protein of unknown function (DUF2397). Members of this protein belong to a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). [Hypothetical proteins, Conserved] 0 -355548 cl26619 Myco_arth_vir_N Mycoplasma virulence signal region (Myco_arth_vir_N). This model represents the N-terminal region, including a probable signal sequence or signal anchor which in most instances has four consecutive Lys residues before the hydrophobic stretch, of a family of large, virulence-associated proteins in Mycoplasma arthritidis and smaller proteins in Mycoplasma capricolum. 0 -355550 cl26629 Phageshock_PspD Phage shock protein PspD (Phageshock_PspD). peripheral inner membrane phage-shock protein; Provisional 0 -331451 cl26630 Spore_YhcN_YlaJ Sporulation lipoprotein YhcN/YlaJ (Spore_YhcN_YlaJ). YhcN and YlaJ are predicted lipoproteins that have been detected as spore proteins but not vegetative proteins in Bacillus subtilis. Both appear to be expressed under control of the RNA polymerase sigma-G factor. The YlaJ-like members of this family have a low-complexity, strongly acidic 40-residue C-terminal domain that is not included in the seed alignment for this model. A portion of the low-complexity region between the lipoprotein signal sequence and the main conserved region of the protein family was also excised from the seed alignment. [Cellular processes, Sporulation and germination] 0 -331452 cl26631 DUF2379 Protein of unknown function (DUF2379). This family consists of at least eight paralogs in Myxococcus xanthus and six in Stigmatella aurantiaca DW4/3-1, both members of Myxococcales order within the Deltaproteobacteria. The function is unknown. Some member proteins consist of two copies of the domain. This domain is hereby named DUSAM, DUplication in Stigmatella And Myxococcus. 0 -331453 cl26632 Ehrlichia_rpt Ehrlichia tandem repeat (Ehrlichia_rpt). This model represents 77 residues of an 80 amino acid (240 nucleotide) tandem repeat, found in a variable number of copies in an immunodominant outer membrane protein of Ehrlichia chaffeensis, a tick-borne obligate intracellular pathogen. 0 -355554 cl26647 Lact-deh-memb D-lactate dehydrogenase, membrane binding. D-lactate dehydrogenase; Provisional 0 -355555 cl26651 AcetDehyd-dimer Prokaryotic acetaldehyde dehydrogenase, dimerization. acetaldehyde dehydrogenase; Validated 0 -331473 cl26652 FOLN Follistatin/Osteonectin-like EGF domain. Follistatin-N-terminal domain-like, EGF-like. Region distinct from the kazal-like sequence 0 -355556 cl26682 GshA Glutamate-cysteine ligase. This family consists of a rare family of glutamate--cysteine ligases, demonstrated first in Thiobacillus ferrooxidans and present in a few other Proteobacteria. It is the first of two enzymes for glutathione biosynthesis. It is also called gamma-glutamylcysteine synthetase. [Biosynthesis of cofactors, prosthetic groups, and carriers, Glutathione and analogs] 0 -331505 cl26684 IDEAL IDEAL domain. It is found at the C-terminus of proteins in the UPF0302 family. It is named after the sequence of the most conserved region in some members. 0 -331506 cl26685 DDR Diol dehydratase reactivase ATPase-like domain. Members of this family are the alpha (large) subunit of the alpha-2/beta-2 tetrameric enzyme that reactivates B12-dependent trimeric diol dehydratases (1,2-propanediol dehydratase, glycerol dehydratase). Note that the beta subunit of the reactivase is homologous to the beta (medium) subunit of the diol dehydratase. The reactivase catalyzes the exchange of chemically inactivated B-12 for active B12. This model excludes homologs from Mycobacterium (e.g. M. smegmatis), where the several paralogous forms of the dehydratase occur and are exceptional also by not being found in a carboxysome-like microcompartment. 0 -355557 cl26695 Ca_chan_IQ Voltage gated calcium channel IQ domain. Voltage gated calcium channels control cellular calcium entry in response to changes in membrane potential. The isoleucine-glutamine (IQ) motif in the voltage gated calcium channel IQ domain interacts with hydrophobic pockets of Ca2+/calmodulin. The interaction regulates two self-regulatory calcium dependent feedback mechanism, calcium dependent inactivation (CDI), and calcium-dependent facilitation (CDF). 0 -355558 cl26696 CotH CotH kinase protein. Members of this family include the spore coat protein H (cotH). This protein is an atypical protein kinase that phosphorylates CotB and CotG. 0 -355560 cl26712 U3_assoc_6 U3 small nucleolar RNA-associated protein 6. This is a family of U3 nucleolar RNA-associated proteins which are involved in nucleolar processing of pre-18S ribosomal RNA. 0 -331539 cl26718 VID27 VID27 cytoplasmic protein. This is a family of fungal and plant proteins and contains many hypothetical proteins. VID27 is a cytoplasmic protein that plays a potential role in vacuolar protein degradation. 0 -331548 cl26727 aMBF1 Archaeal ribosome-binding protein aMBF1, putative translation factor, contains Zn-ribbon and HTH domains [Translation, ribosomal structure and biogenesis]. [Hypothetical proteins, Conserved] 0 -355561 cl26728 STAG STAG domain. STAG domain proteins are subunits of cohesin complex - a protein complex required for sister chromatid cohesion in eukaryotes. The STAG domain is present in Schizosaccharomyces pombe mitotic cohesin Psc3, and the meiosis specific cohesin Rec11. Many organisms express a meiosis-specific STAG protein, for example, mice and humans have a meiosis specific variant called STAG3, although budding yeast does not have a meiosis specific version. 0 -355562 cl26729 LisH LisH. Alpha-helical motif present in Lis1, treacle, Nopp140, some katanin p60 subunits, muskelin, tonneau, LEUNIG and numerous WD40 repeat-containing proteins. It is suggested that LisH motifs contribute to the regulation of microtubule dynamics, either by mediating dimerisation, or else by binding cytoplasmic dynein heavy chain or microtubules directly. 0 -331551 cl26730 Amelin Ameloblastin precursor (Amelin). This family consists of several mammalian Ameloblastin precursor (Amelin) proteins. Matrix proteins of tooth enamel consist mainly of amelogenin but also of non-amelogenin proteins, which, although their volumetric percentage is low, have an important role in enamel mineralisation. One of the non-amelogenin proteins is ameloblastin, also known as amelin and sheathlin. Ameloblastin (AMBN) is one of the enamel sheath proteins which is though to have a role in determining the prismatic structure of growing enamel crystals. 0 -355563 cl26737 SpoIID Peptidoglycan hydrolase (amidase) enhancer domain [Cell wall/membrane/envelope biogenesis]. Stage II sporulation protein D (SpoIID) is a protein of the endospore formation program in a number of lineages in the Firmicutes (low-GC Gram-positive bacteria). It is expressed in the mother cell compartment, under control of Sigma-E. SpoIID, along with SpoIIM and SpoIIP, is one of three major proteins involved in engulfment of the forespore by the mother cell. [Cellular processes, Sporulation and germination] 0 -331565 cl26744 TPT Triose-phosphate Transporter family. triose or hexose phosphate/phosphate translocator; Provisional 0 -355568 cl26762 DUF1738 Domain of unknown function (DUF1738). This region is found in a number of bacterial hypothetical proteins. Some members are annotated as being similar to replication primases, and in fact this region is often found together with the Toprim domain (pfam01751). 0 -355569 cl26765 FBD FBD. This region is found in F-box (pfam00646) and other domain containing plant proteins; it is repeated in two family members. Its precise function is unknown, but it is thought to be associated with nuclear processes. In fact, several family members are annotated as being similar to transcription factors. 0 -355571 cl26771 DUF1729 Domain of unknown function (DUF1729). This domain of unknown function is found in fatty acid synthase beta subunits together with the MaoC-like domain (pfam01575) and the Acyltransferase domain (pfam00698). The domain has been identified in fungi and bacteria. 0 -355572 cl26778 TED Thioester domain. This model describes a domain of about 40 residues with an invariant TQ dipeptide in an almost invariant TQxA[VI]W motif. This domain occurs in surface-expressed proteins of Gram-positive bacteria, many of which are anchored by LPXTG-containing sortase target domains. Numerous members of this family have domains pfam05738 (Cna protein B-type domain) and pfam08341 (fibronectin-binding protein signal sequence). 0 -355573 cl26779 YicC_N YicC-like family, N-terminal region. hypothetical protein; Provisional 0 -331618 cl26797 SpoV Stage V sporulation protein family. stage V sporulation protein M; Provisional 0 -355574 cl26808 PqqA PqqA family. This model describes a very small protein, coenzyme PQQ biosynthesis protein A, which is smaller than 25 amino acids in many species. It is proposed to serve as a peptide precursor of coenzyme pyrrolo-quinoline-quinone (PQQ), with Glu and Tyr of a conserved motif Glu-Xxx-Xxx-Xxx-Tyr becoming part of the product. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -355575 cl26817 GSDH Glucose / Sorbosone dehydrogenase. PQQ, or pyrroloquinoline-quinone, serves as a cofactor for a number of sugar and alcohol dehydrogenases in a limited number of bacterial species. Most characterized PQQ-dependent enzymes have multiple repeats of a sequence region described by pfam01011 (PQQ enzyme repeat), but this protein family in unusual in lacking that repeat. Below the noise cutoff are related proteins mostly from species that lack PQQ biosynthesis. 0 -355576 cl26820 Glyco_hydro_92 Glycosyl hydrolase family 92. The identification of members of this family as putative alpha-1,2-mannosidases is based on an unpublished characterization of the aman2 gene in Bacillus sp. M-90 by Maruyama,Y., Nakajima,M. and Nakajima,T. (Genbank accession BAA76709, pid g4587313). Most members of this family appear to have signal sequences. Members from the dental pathogen Porphyromonas gingivalis have been described as immunoreactive with periodontitis patient serum. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -355577 cl26832 PLN03020 N/A. putative Low-temperature-induced protein; Provisional 0 -355578 cl26833 TraG_N TraG-like protein, N-terminal region. conjugal transfer mating pair stabilization protein TraG; Provisional 0 -355580 cl26840 Fucose_iso_N2 L-fucose isomerase, second N-terminal domain. L-fucose isomerase; Provisional 0 -355581 cl26841 PHB_acc_N PHB/PHA accumulation regulator DNA-binding domain. Poly-B-hydroxyalkanoates are lipidlike carbon/energy storage polymers found in granular inclusions. PhaR is a regulatory protein found in general near other proteins associated with polyhydroxyalkanoate (PHA) granule biosynthesis and utilization. It is found to be a DNA-binding homotetramer that is also capable of binding short chain hydroxyalkanoic acids and PHA granules. PhaR may regulate the expression of itself, of the phasins that coat granules, and of enzymes that direct carbon flux into polymers stored in granules. The C-terminal region is poorly conserved in this family and is not part of this model.//GO terms added 12/6/04 [SS] [Fatty acid and phospholipid metabolism, Biosynthesis, Regulatory functions, DNA interactions] 0 -355582 cl26842 DUF1656 Protein of unknown function (DUF1656). efflux system membrane protein; Provisional 0 -355583 cl26844 DUF1641 Protein of unknown function (DUF1641). Archaeal and bacterial hypothetical proteins are found in this family, with the region in question being approximately 40 residues long. 0 -355584 cl26845 FTCD_N Formiminotransferase domain, N-terminal subdomain. This model represents the tetrahydrofolate (THF) dependent glutamate formiminotransferase involved in the histidine utilization pathway. This enzyme interconverts L-glutamate and N-formimino-L-glutamate. The enzyme is bifunctional as it also catalyzes the cyclodeaminase reaction on N-formimino-THF, converting it to 5,10-methenyl-THF and releasing ammonia - part of the process of regenerating THF. This model covers enzymes from metazoa as well as gram-positive bacteria and archaea. In humans, deficiency of this enzyme results in a disease phenotype. The crystal structure of the enzyme has been studied in the context of the catalytic mechanism. [Energy metabolism, Amino acids and amines] 0 -355585 cl26855 LRR_2 Leucine Rich Repeat. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 0 -355586 cl26860 PRK15359 N/A. pathogenicity island 2 chaperone protein SscA; Provisional 0 -355587 cl26873 Nucleos_tra2_C Na+ dependent nucleoside transporter C-terminus. The Concentrative Nucleoside Transporter (CNT) Family (TC 2.A.41) Members of the CNT family mediate nucleoside uptake. In bacteria they are energized by H+ symport, but in mammals they are energized by Na+ symport. The different transporters exhibit differing specificities for nucleosides. The E. coli NupC permease transports all nucleosides (both ribo- and deoxyribonucleosides) except hypoxanthine and guanine nucleosides. The B. subtilis NupC is specific for pyrimidine nucleosides (cytidine and uridine and the corresponding deoxyribonucleosides). The mammalian permease members of the CNT family also exhibit differing specificities. Thus, rats possess at least two NupC homologues, one specific for both purine and pyrimidine nucleosides and one specific for purine nucleosides. At least three paralogues have been characterized from humans. One human homologue(CNT1) transports pyrimidine nucleosides and adenosine, but deoxyadenosine and guanosine are poor substrates of this permease. Another (CNT2) is selective for purine nucleosides. Alteration of just a few amino acyl residues in TMSs 7 and 8 interconverts their specificities. [Transport and binding proteins, Nucleosides, purines and pyrimidines] 0 -331696 cl26875 VPEP PEP-CTERM motif. This model describes a 25-residue domain that includes a near-invariant Pro-Glu-Pro (PEP) motif, a thirteen residue strongly hydrophobic sequence likely to span the membrane, and a five-residue strongly basic motif that often contains four Arg residues. In nearly every case, this motif is found within nine residues, and usually within five residues, of the extreme C-terminus of the protein. Proteins with this motif typically have signal sequences at the N-terminus. This region appears many times per genome or not at all, and co-occurs in genomes with a proposed protein-sorting integral membrane protein we designate exosortase (see TIGR02602). PEP-CTERM proteins frequently are poorly conserved, Ser/Thr-rich proteins and may become extensively modified proteinaceous constituents of extracellular material in bacterial biofilms. [Cell envelope, Surface structures] 0 -331698 cl26877 Band_3_cyto Band 3 cytoplasmic domain. The Anion Exchanger (AE) Family (TC 2.A.31)Characterized protein members of the AE family are found only in animals.They preferentially catalyze anion exchange (antiport) reactions, typically acting as HCO3-:Cl- antiporters, but also transporting a range of other inorganic and organic anions. Additionally, renal Na+:HCO3- cotransporters have been found to be members of the AE family. They catalyze the reabsorption of HCO3- in the renal proximal tubule. [Transport and binding proteins, Anions] 0 -355588 cl26884 TraI_2 Putative helicase. Members of this protein family are the TraI putative relaxases required for transfer by a subclass of integrating conjugative elements (ICE) as found in Pseudomonas fluorescens Pf-5, and understood from study of two related ICE, SXT and R391. This model represents the N-terminal domain. Note that no homology is detected to the similarly named TraI relaxase of the F plasmid. 0 -331706 cl26885 SplB DNA repair photolyase [Replication, recombination and repair]. Members of this family are the downstream member (B) of a pair of tandem-encoded radical SAM enzymes. Most of these radical SAM gene pairs have an additional upstream regulatory gene in the MarR family. Examples of high sequence identity (over 96 percent) from cassettes in several Treponema species of the oral cavity to those in multiple Firmicutes in the gut microbiome suggest recent lateral gene transfer, as might be expected for antibiotic resistance genes. The function is unknown. 0 -355589 cl26890 Collar Phage Tail Collar Domain. This region is occasionally found in conjunction with pfam03335. Most of the family appear to be phage tail proteins; however some appear to be involved in other processes. For instance a member from Rhizobium leguminosarum may be involved in plant-microbe interactions. A related protein MrpB is involved in the pathogenicity of Microcystis aeruginosa. The finding of this family in a structural component of the phage tail fibre baseplate suggests that its function is structural rather than enzymatic. Structural studies show this region consists of a helix and a loop and three beta-strands. This alignment does not catch the third strand as it is separated from the rest of the structure by around 100 residues. This strand is conserved in homologs but the intervening sequence is not. Much of the function of phage T4 appears to reside in this intervening region. In the tertiary structure of the phage baseplate this domain forms part of the 'collar'. The domain may bind SO4, however the residues accredited with this vary between the PDB file and the Swiss-Prot entry. The long unconserved region maybe due to domain swapping in and out of a loop or reflective of rapid evolution. 0 -331713 cl26892 PsaM Photosystem I protein M (PsaM). Members of this protein family are PsaM, which is subunit XII of the photosystem I reaction center. This protein is found in both the Cyanobacteria and the chloroplasts of plants, but is absent from non-oxygenic photosynthetic bacteria such as Rhodobacter sphaeroides. Species that contain photosystem I also contain photosystem II, which splits water and releases molecular oxygen. The seed alignment for this model includes sequences from pfam07465 and additional sequences, as from Prochlorococcus. [Energy metabolism, Photosynthesis] 0 -331715 cl26894 BofA SigmaK-factor processing regulatory protein BofA. Members of this protein family are found only in endospore-forming bacteria, such as Bacillus subtilis and Clostridium tetani. Among such bacteria, it appears only Symbiobacterium thermophilum lacks a member of this family. The protein, designated BofA, is an integral membrane protein that regulates the proteolytic activation of the RNA polymerase sigma factor K. [Cellular processes, Sporulation and germination] 0 -331716 cl26895 DUF1513 Protein of unknown function (DUF1513). This family consists of several bacterial proteins of around 360 residues in length. The function of this family is unknown. 0 -331719 cl26898 DUF1507 Protein of unknown function (DUF1507). hypothetical protein; Provisional 0 -355590 cl26909 COG4652 Uncharacterized protein [Function unknown]. This model represents a family of integral membrane proteins, most of which are about 650 residues in size and predicted to span the membrane seven times. Nearly half of the members of this family are found in association with a member of the lactococcin 972 family of bacteriocins (TIGR01653). Others may be associated with uncharacterized proteins that may also act as bacteriocins. Although this protein is suggested to be an immunity protein, and the bacteriocin is suggested to be exported by a Sec-dependent process, the role of this protein is unclear. [Cellular processes, Toxin production and resistance] 0 -355591 cl26914 Neuralized Neuralized. This family contains a conserved region approximately 60 residues long within eukaryotic neuralized and neuralized-like proteins. Neuralized belongs to a group of ubiquitin ligases and is required in a subset of Notch pathway-mediated cell fate decisions during development of the Drosophila nervous system. Some family members contain multiple copies of this region. 0 -331736 cl26915 Sugar_transport Sugar transport protein. This is a family of bacterial sugar transporters approximately 300 residues long. Members include glucose uptake proteins, ribose transport proteins, and several putative and hypothetical membrane proteins probably involved in sugar transport across bacterial membranes. These members are transmembrane proteins which are usually 5+5 duplications. This model recognizes a set of five TMs, 0 -331738 cl26917 SKA1_N Spindle and kinetochore-associated protein 1, N-terminal domain. Spindle and kinetochore-associated protein 1 (SKA1) is a component of the SKA1 complex (consists of Ska1, Ska2, and Ska3/Rama1), a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. 0 -355592 cl26923 DUF1328 Protein of unknown function (DUF1328). hypothetical protein; Provisional 0 -355593 cl26935 zf-LSD1 LSD1 zinc finger. This model describes a putative zinc finger domain found in three closely spaced copies in Arabidopsis protein LSD1 and in two copies in other proteins from the same species. The motif resembles CxxCRxxLMYxxGASxVxCxxC 0 -355594 cl26936 Extensin-like_C Extensin-like protein C-terminus. This family represents the C-terminus (approx. 120 residues) of a number of bacterial extensin-like proteins. Extensins are cell wall glycoproteins normally associated with plants, where they strengthen the cell wall in response to mechanical stress. Note that many family members of this family are hypothetical. 0 -331758 cl26937 YqfD Putative stage IV sporulation protein YqfD. YqfD is part of the sigma-E regulon in the sporulation program of endospore-forming Gram-positive bacteria. Mutation results in a sporulation defect in Bacillus subtilis. Members are found in all currently known endospore-forming bacteria, including the genera Bacillus, Symbiobacterium, Carboxydothermus, Clostridium, and Thermoanaerobacter. [Cellular processes, Sporulation and germination] 0 -355595 cl26941 DUF1246 Protein of unknown function (DUF1246). 5-formaminoimidazole-4-carboxamide-1-(beta)-D-ribofuranosyl 5'-monophosphate synthetase; Provisional 0 -331773 cl26952 BC10 Bladder cancer-related protein BC10. hypothetical protein 0 -355596 cl26955 DUF1192 Protein of unknown function (DUF1192). This family consists of several short, hypothetical, bacterial proteins of around 60 residues in length. The function of this family is unknown. 0 -331779 cl26958 DUF1156 Protein of unknown function (DUF1156). This family represents a conserved region within hypothetical prokaryotic and archaeal proteins of unknown function. Structural modelling suggests this domain may bind nucleic acids. 0 -355597 cl26962 DUF1126 DUF1126 PH-like domain. The structure of this domain shows that it has a PH-like fold. 0 -331785 cl26964 ABC_trans_CmpB Putative ABC-transporter type IV. CmpB is a family of membrane proteins that are likely to be part of a two-component type IV ABC-transporter system. Families can transport multiple drugs including ethidium and fluoroquinolones. UniProtKB:Q83XH0 is a member of TCDB family 3.A.1.121.4. 0 -331788 cl26967 Orthopox_A49R Orthopoxvirus A49R protein. hypothetical protein; Provisional 0 -331790 cl26969 Vitellogenin_N Lipoprotein amino terminal region. This family contains regions from: Vitellogenin, Microsomal triglyceride transfer protein and apolipoprotein B-100. These proteins are all involved in lipid transport. This family contains the LV1n chain from lipovitellin, that contains two structural domains. 0 -331793 cl26972 API3 N/A. Pepsin inhibitor-3 consisting of two domains, each comprising an antiparallel beta-sheet flanked by an alpha-helix. In the enzyme-inhibitor complex, the N-terminal beta-strand of PI-3 pairs with one strand of the active site flap region of pepsin. The two domains are tandem repeats of sequence, and has therefore been termed repeated domain. 0 -331796 cl26975 PsbY Photosystem II protein Y (PsbY). photosystem II protein Y; Reviewed 0 -331798 cl26977 Mito_fiss_Elm1 Mitochondrial fission ELM1. In plants, this family is involved in mitochondrial fission. It binds to dynamin-related proteins and plays a role in their relocation from the cytosol to mitochondrial fission sites. Its function in bacteria is unknown. 0 -331800 cl26979 Usg Usg-like family. Family of bacterial proteins, referred to as Usg. Usg is found in the same operon as trpF, trpB, and trpA and is expressed in a coupled transcription-translation system. 0 -331802 cl26981 Terminase_1 Phage Terminase. The majority of the members of this family are bacteriophage proteins, several of which are thought to be terminase large subunit proteins. There are also a number of bacterial proteins of unknown function. 0 -355598 cl26984 PTAC Phosphate propanoyltransferase. propanediol utilization phosphotransacylase; Provisional 0 -331806 cl26985 TLP-20 N/A. This family consists of several Nucleopolyhedrovirus telokin-like protein-20 (TLP20) sequences. The function of this family is unknown but TLP20 is known to shares some antigenic similarities to the smooth muscle protein telokin although the amino acid sequence shows no homologies to telokin. 0 -331817 cl26996 TelA Toxic anion resistance protein (TelA). This family consists of several prokaryotic TelA like proteins. TelA and KlA are associated with tellurite resistance and plasmid fertility inhibition. 0 -331826 cl27005 VirD1 T-DNA border endonuclease VirD1. type IV secretion system T-DNA border endonuclease VirD1; Provisional 0 -355602 cl27008 HECTc N/A. The name HECT comes from Homologous to the E6-AP Carboxyl Terminus. 0 -331832 cl27011 Pup Pup-like protein. Members of this protein family are Pup, a small protein whose ligation to target proteins steers them toward degradation. This protein family occurs in a number of bacteria, especially Actinobacteria such as Mycobacterium tuberculosis, that possess an archeal-type proteasome. All members of this protein family known during model construction end with the C-terminal motif [FY][VI]QKGG[QE]. Ligation is thought to occur between the C-terminal COOH of Pup and an epsilon-amino group of a Lys on the target protein. The N-terminal half of this protein is poorly conserved and not represented in the seed alignment. [Protein fate, Degradation of proteins, peptides, and glycopeptides] 0 -355603 cl27012 HIGH_NTase1 HIGH Nucleotidyl Transferase. hypothetical protein; Provisional 0 -355604 cl27023 TraY TraY domain. conjugal transfer protein TraY; Provisional 0 -331846 cl27025 Herpes_UL69 Herpesvirus transcriptional regulator family. multifunctional expression regulator; Provisional 0 -331852 cl27031 Phi-29_GP3 Phi-29 DNA terminal protein GP3. terminal protein 0 -331858 cl27037 FlaC_arch Flagella accessory protein C (FlaC). Although archaeal flagella appear superficially similar to those of bacteria, they are quite distinct. In several archaea, the flagellin genes are followed immediately by the flagellar accessory genes flaCDEFGHIJ. The gene products may have a role in translocation, secretion, or assembly of the flagellum. FlaC is a protein whose exact role is unknown but it has been shown to be membrane-associated (by immuno-blotting fractionated cells). 0 -355605 cl27038 YiaA Uncharacterized membrane protein YiaA [Function unknown]. hypothetical protein; Provisional 0 -331861 cl27040 PilS PilS N terminal. This family consists of several bundlin proteins from E. coli. Bundlin is a type IV pilin protein that is the only known structural component of enteropathogenic Escherichia coli bundle-forming pili (BFP). BFP play a role in virulence, antigenicity, autoaggregation, and localized adherence to epithelial cells. These proteins contain an N-terminal methylation motif. 0 -355606 cl27046 CopB Copper resistance protein B precursor (CopB). This family consists of several bacterial copper resistance proteins. Copper is essential and serves as cofactor for more than 30 enzymes yet a surplus of copper is toxic and leads to radical formation and oxidation of biomolecules. Therefore, copper homeostasis is a key requisite for every organism. CopB serves to extrude copper when it approaches toxic levels. 0 -355607 cl27047 CHAD CHAD domain. It has conserved histidines that may chelate metals. 0 -331883 cl27062 XPA_C XPA protein C-terminus. All proteins in this family for which functions are known are used for the recognition of DNA damage as part of nucleotide excision repair. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -355609 cl27068 AbrB Transition state regulatory protein AbrB. The model describes a hydrophobic sequence region that is duplicated to form the AbrB protein of Escherichia coli (not to be confused with a Bacillus subtilis protein with the same gene symbol). In some species, notably the Cyanobacteria and Thermus thermophilus, proteins consist of a single copy rather than two copies. The member from Pseudomonas putida, PP_1415, was suggested to be an ammonia monooxygenase characteristic of heterotrophic nitrifiers, based on an experimental indication of such activity in the organism and a glimmer of local sequence similarity between parts of P. putida protein and an instance of the AmoA protein from Nitrosomonas europaea (; we do not believe the sequence similarity to be meaningful. The member from E. coli (b0715, ybgN) appears to be the largely uncharacterized AbrB (aidB regulator) protein of E. coli cited in Volkert, et al. (PMID 8002588), although we did not manage to trace the origin of association of the article to the sequence. 0 -331894 cl27073 T7SS_ESX1_EccB Type VII secretion system ESX-1, transport TM domain B. This model represents the transmembrane protein EccB of the actinobacterial flavor of type VII secretion systems. Species such as Mycobacterium tuberculosis have several instances of this system per genome, designated EccB1, EccB2, etc. This model does not identify functionally related proteins in the Firmicutes such as Staphylococcus aureus and Bacillus anthracis. [Protein fate, Protein and peptide secretion and trafficking] 0 -331896 cl27075 Holin_BlyA holin, BlyA family. This family represents a BlyA, a small holin found in Borrelia circular plasmids that prove to be temperate phage. This protein was previously proposed to be an hemolysin. BlyA is small (67 residues) and contains two largely hydrophobic helices and a highly charged C-terminus. [Mobile and extrachromosomal element functions, Prophage functions] 0 -355610 cl27076 Glu_cyclase_2 Glutamine cyclotransferase. This family of enzymes EC:2.3.2.5 catalyze the cyclization of free L-glutamine and N-terminal glutaminyl residues in proteins to pyroglutamate (5-oxoproline) and pyroglutamyl residues respectively. This family includes plant and bacterial enzymes and seems unrelated to the mammalian enzymes. 0 -355611 cl27082 Phage_capsid Phage capsid family. This model family represents the major capsid protein component of the heads (capsids) of bacteriophage HK97, phi-105, P27, and related phage. This model represents one of several analogous families lacking detectable sequence similarity. The gene encoding this component is typically located in an operon encoding the small and large terminase subunits, the portal protein and the prohead or maturation protease. [Mobile and extrachromosomal element functions, Prophage functions] 0 -331904 cl27083 Menin Scaffolding protein menin encoded by the MEN1 gene. MEN1, the gene responsible for multiple endocrine neoplasia type 1, is a tumor suppressor gene that encodes a protein called Menin which may be an atypical GTPase stimulated by nm23. 0 -355612 cl27099 DltD DltD protein. Members of this protein family are DltD, part of the DltABCD system widely distributed in the Firmicutes for D-alanylation of lipoteichoic acids. The most common form of LTA, as in Staphylococcus aureus, has a backbone of polyglycerolphosphate. 0 -355613 cl27100 Glu_synthase Conserved region in glutamate synthase. This family represents a region of the glutamate synthase protein. This region is expressed as a separate subunit in the glutamate synthase alpha subunit from archaebacteria, or part of a large multidomain enzyme in other organisms. The aligned region of these proteins contains a putative FMN binding site and Fe-S cluster. 0 -355614 cl27103 SseC Secretion system effector C (SseC) like family. pathogenicity island 2 effector protein SseC; Provisional 0 -355615 cl27104 Mak16 Mak16 protein C-terminal region. Protein MAK16 homolog; Provisional 0 -355616 cl27109 Herpes_UL49_2 Herpesvirus UL49 tegument protein. tegument protein VP22; Provisional 0 -331932 cl27111 Herpes_ORF11 Herpesvirus dUTPase protein. hypothetical protein; Provisional 0 -331936 cl27115 IKI3 IKI3 family. Members of this family are components of the elongator multi-subunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. This region contains WD40 like repeats. 0 -331944 cl27123 Arch_fla_DE Archaeal flagella protein. Family of archaeal flaD and flaE proteins. Conserved region found at N-terminus of flaE but towards the C-terminus of flaD. 0 -331953 cl27132 Herpes_UL17 Herpesvirus UL17 protein. UL17 tegument protein; Provisional 0 -355619 cl27149 DUF572 Family of unknown function (DUF572). Family of eukaryotic proteins with undetermined function. 0 -355620 cl27156 FrhB_FdhB_C Coenzyme F420 hydrogenase/dehydrogenase, beta subunit C-terminus. Coenzyme F420 hydrogenase (EC:1.12.99.1) reduces the low-potential two-electron acceptor coenzyme F420. This family contains the C termini of F420 hydrogenase and dehydrogenase beta subunits,. The N-terminus of Methanobacterium formicicum formate dehydrogenase beta chain (EC:1.2.1.2) is also a member of this family. This region is often found in association with the 4Fe-4S binding domain, fer4 (pfam00037). 0 -355621 cl27158 FrhB_FdhB_N Coenzyme F420 hydrogenase/dehydrogenase, beta subunit N-term. This model represents that clade of F420-dependent hydrogenases (FRH) beta subunits found exclusively and universally in methanogenic archaea. The N- and C-terminal domains of this protein are modelled by pfam04422 and pfam04423 respectively. 0 -355622 cl27166 ATE_N Arginine-tRNA-protein transferase, N-terminus. arginyl-tRNA-protein transferase; Provisional 0 -355623 cl27167 HemX HemX, putative uroporphyrinogen-III C-methyltransferase. putative uroporphyrinogen III C-methyltransferase; Provisional 0 -331991 cl27170 DUF460 Protein of unknown function (DUF460). Archaeal protein of unknown function. 0 -331996 cl27175 CheF-arch Chemotaxis signal transduction system protein F from archaea. This is a family of proteins that are archaea-specific components of the bacterial-like chemotaxis signal transduction system of archaea. In H. salinarum, the CheF proteins interact with the chemotaxis proteins CheY, CheD and CheC2 as well as the flagella-accessory proteins FlaCE and FlaD, and are essential for any tactic response. CheF probably functions at the interface between the bacterial-like chemotaxis signal transduction system and the archaeal flagellar apparatus. 0 -331998 cl27177 Phospholamban Phospholamban. This model represents the short (52 residue) transmembrane phosphoprotein phospholamban. Phospholamban, in its unphosphorylated form, inhibits SERCA2, the cardiac sarcoplasmic reticulum Ca-ATPase. 0 -355624 cl27188 Mre11_DNA_bind Mre11 DNA-binding presumed domain. All proteins in this family for which functions are known are subunits of a nuclease complex made up of multiple proteins including MRE11 and RAD50 homologs. The functions of this nuclease complex include recombinational repair and non-homolgous end joining. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). The proteins in this family are distantly related to proteins in the SbcCD complex of bacteria. [DNA metabolism, DNA replication, recombination, and repair] 0 -355625 cl27198 ORC2 Origin recognition complex subunit 2. All DNA replication initiation is driven by a single conserved eukaryotic initiator complex termed he origin recognition complex (ORC). The ORC is a six protein complex. The function of ORC is reviewed in. 0 -355626 cl27200 Ribo_biogen_C Ribosome biogenesis protein, C-terminal. hypothetical protein; Provisional 0 -332023 cl27202 Mpp10 Mpp10 protein. This family includes proteins related to Mpp10 (M phase phosphoprotein 10). The U3 small nucleolar ribonucleoprotein (snoRNP) is required for three cleavage events that generate the mature 18S rRNA from the pre-rRNA. In Saccharomyces cerevisiae, depletion of Mpp10, a U3 snoRNP-specific protein, halts 18S rRNA production and impairs cleavage at the three U3 snoRNP-dependent sites. 0 -332029 cl27208 PRCH Photosynthetic reaction centre, H-chain N-terminal region. This model describes the photosynthetic reaction center H subunit in non-oxygenic photosynthetic bacteria. The reaction center is an integral membrane pigment-protein that carries out light-driven electron transfer reactions. At the core of reaction center is a collection light-harvesting cofactors and closely associated polypeptides. The core protein complex is made of L, M and H subunits. The common cofactors include bacterichlorophyll, bacteriopheophytins, ubiquinone and no-heme ferrous iron. The net result of electron tranfer reactions is the establishment of proton electrochemical gradient and production of reducing equivalents in the form of NADH. Ultimately, the process results in the reduction of C02 to carbohydrates(C6H12O6) In non-oxygenic organisms, the electron donor is an organic acid rather than water. Much of our current functional understanding of photosynthesis comes from the structural determination and spectroscopic studies on the reaction center of Rhodobacter sphaeroides. [Energy metabolism, Electron transport, Energy metabolism, Photosynthesis] 0 -355627 cl27223 CBF CBF/Mak21 family. 0 -332047 cl27226 DUF331 Domain of unknown function. Members of this family are uncharacterized proteins from a number of bacterial species. The proteins range in size from 50-70 residues. 0 -332057 cl27236 VMO-I N/A. VOMI binds tightly to ovomucin fibrils of the egg yolk membrane. The structure that consists of three beta-sheets forming Greek key motifs, which are related by an internal pseudo three-fold symmetry. Furthermore, the structure of VOMI has strong similarity to the structure of the delta-endotoxin, as well as a carbohydrate-binding site in the top region of the common fold. 0 -355628 cl27237 Trypsin Trypsin. Many of these are synthesised as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. A few, however, are active as single chain molecules, and others are inactive due to substitutions of the catalytic triad residues. 0 -355629 cl27240 PetN PetN. cytochrome b6/f complex subunit VIII 0 -355630 cl27241 YccF Inner membrane component domain. hypothetical protein; Provisional 0 -332072 cl27251 EIIBC-GUT_N Sorbitol phosphotransferase enzyme II N-terminus. Bacterial PTS transporters transport and concomitantly phosphorylate their sugar substrates, and typically consist of multiple subunits or protein domains. The Gut family consists only of glucitol-specific permeases, but these occur both in Gram-negative and Gram-positive bacteria.E. coli consists of IIA protein, a IIC protein and a IIBC protein. This family is specific for the IIBC component. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids, Signal transduction, PTS] 0 -355631 cl27253 Alc Allantoicase [Nucleotide transport and metabolism]. Members of this family are the enzyme allantoicase (EC 3.5.3.4), also called allantoate amidinohydrolase. This enzyme hydrolyzes allantoate to (S)-ureidoglycolate and urea; it can also degrade (R)-ureidoglycolate to glyoxylate and urea. Allantoinase (EC 3.5.2.5) hydrolyzes (S)-allantoin (a xanthine metabolite, via urate) to allantoate. Allantoate can then be degraded either by this enzyme, allantoicase, or by allantoate deiminase (EC 3.5.3.9). Members of the seed alignment for this model were taken from BRENDA. Proteins in this family contain two copies of the allantoicase repeat (pfam03561). A different but similarly named enzyme, allantoate amidohydrolase (EC 3.5.3.9), simultaneously breaks down the urea to ammonia and carbon dioxide. [Purines, pyrimidines, nucleosides, and nucleotides, Other, Energy metabolism, Other] 0 -355632 cl27261 NrdR Transcriptional regulator NrdR, contains Zn-ribbon and ATP-cone domains [Transcription]. transcriptional regulator NrdR; Validated 0 -355633 cl27262 MOSC MOSC domain. 6-N-hydroxylaminopurine resistance protein; Provisional 0 -355634 cl27268 UPF0126 UPF0126 domain. hypothetical protein; Provisional 0 -332097 cl27276 RNA_replicase_B RNA replicase, beta-chain. RNA replicase, beta subunit 0 -332102 cl27281 PapB Adhesin biosynthesis transcription regulatory protein. fimbriae biosynthesis regulatory protein; Provisional 0 -355635 cl27283 SDH_alpha Serine dehydratase alpha chain. This enzyme is also called serine deaminase and L-serine dehydratase 1. L-serine ammonia-lyase converts serine into pyruvate in the gluconeogenesis pathway from serine. This enzyme is comprised of a single chain in Escherichia coli, Mycobacterium tuberculosis, and several other species, but has separate alpha and beta chains in Bacillus subtilis and related species. The beta and alpha chains are homologous to the N-terminal and C-terminal regions, respectively, but are rather deeply branched in a UPGMA tree. This enzyme requires iron and dithiothreitol for activation in vitro, and is a predicted 4Fe-4S protein. Escherichia coli Pseudomonas aeruginosa have two copies of this protein. [Energy metabolism, Amino acids and amines, Energy metabolism, Glycolysis/gluconeogenesis] 0 -332108 cl27287 GLF UDP-galactopyranose mutase. This enzyme is involved in the conversion of UDP-GALP into UDP-GALF through a 2-keto intermediate. It contains FAD as a cofactor. The gene is known as glf, ceoA, and rfbD. It is known experimentally in E. coli, Mycobacterium tuberculosis, and Klebsiella pneumoniae. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -355636 cl27291 LUC7 LUC7 N_terminus. This family contains the N terminal region of several LUC7 protein homologs and only contains eukaryotic proteins. LUC7 has been shown to be a U1 snRNA associated protein with a role in splice site recognition. The family also contains human and mouse LUC7 like (LUC7L) proteins and human cisplatin resistance-associated overexpressed protein (CROP). 0 -355637 cl27293 UFD1 Ubiquitin fusion degradation protein UFD1. Post-translational ubiquitin-protein conjugates are recognized for degradation by the ubiquitin fusion degradation (UFD) pathway. Several proteins involved in this pathway have been identified. This family includes UFD1, a 40kD protein that is essential for vegetative cell viability. The human UFD1 gene is expressed at high levels during embryogenesis, especially in the eyes and in the inner ear primordia and is thought to be important in the determination of ectoderm-derived structures, including neural crest cells. In addition, this gene is deleted in the CATCH-22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate and hypocalcaemia with deletions on chromosome 22) syndrome. This clinical syndrome is associated with a variety of developmental defects, all characterized by microdeletions on 22q11.2. Two such developmental defects are the DiGeorge syndrome OMIM:188400, and the velo-cardio- facial syndrome OMIM:145410. Several of the abnormalities associated with these conditions are thought to be due to defective neural crest cell differentiation. 0 -355639 cl27315 NHase_alpha Nitrile hydratase, alpha chain. Members of this family are the gamma subunit of thiocyanate hydrolase. This family is closely related to the nitrile hydratase, alpha subunit (TIGR01323). 0 -355640 cl27316 GSH-S_N Prokaryotic glutathione synthetase, N-terminal domain. glutathione synthetase; Provisional 0 -332140 cl27319 Endonuclease_7 Recombination endonuclease VII. recombination endonuclease VII; Provisional 0 -355643 cl27362 MCR_beta_N Methyl-coenzyme M reductase beta subunit, N-terminal domain. Members of this protein family are the beta subunit of methyl coenzyme M reductase, also called coenzyme-B sulfoethylthiotransferase (EC 2.8.4.1). This enzyme, with alpha, beta, and gamma subunits, catalyzes the last step in methanogenesis. Several methanogens have encode two such enzymes, designated I and II; this model does not separate the isozymes. [Energy metabolism, Methanogenesis] 0 -332192 cl27371 GYR GYR motif. The GYR motif is found in several drosophila proteins. Its function is unknown, however the presence of completely conserved tyrosine residues may suggest it could be a substrate for tyrosine kinases. 0 -355644 cl27375 PyrI Aspartate carbamoyltransferase, regulatory subunit [Nucleotide transport and metabolism]. aspartate carbamoyltransferase regulatory subunit; Reviewed 0 -332209 cl27388 Herpes_UL31 Herpesvirus UL31-like protein. nuclear egress lamina protein UL31; Provisional 0 -332210 cl27389 Pap_E4 E4 protein. E4 protein; Provisional 0 -355645 cl27397 WhiA_N WhiA N-terminal LAGLIDADG-like domain. This family describes a DNA-binding protein widely conserved in Gram-positive bacteria, and occasionally occurring elsewhere, such as in Thermotoga. It is associated with cell division, and in sporulating organisms with sporulation. [Cellular processes, Cell division] 0 -355646 cl27405 RecO_C Recombination protein O C terminal. All proteins in this family for which functions are known are DNA binding proteins that are involved in the initiation of recombination or recombinational repair. [DNA metabolism, DNA replication, recombination, and repair] 0 -355647 cl27408 CstA Carbon starvation protein CstA. carbon starvation protein A; Provisional 0 -332230 cl27409 PsbK Photosystem II 4 kDa reaction centre component. Photosystem II reaction center protein K; Provisional 0 -332231 cl27410 PsbI Photosystem II reaction centre I protein (PSII 4.8 kDa protein). photosystem II reaction center I protein I; Provisional 0 -355648 cl27413 Thy1 Thymidylate synthase complementing protein. Two forms of microbial thymidylate synthase are known: ThyA (2.1.1.45) and ThyX (2.1.1.148). This model describes ThyX, a homotetrameric flavoprotein. Both enzymes convert dUMP to dTMP. Under oxygen-limiting conditions, thyX can complement a thyA mutation. [Purines, pyrimidines, nucleosides, and nucleotides, 2'-Deoxyribonucleotide metabolism] 0 -355649 cl27417 Rep_trans Replication initiation factor. DNA replication initiation protein 0 -355650 cl27418 Branch Core-2/I-Branching enzyme. acetylglucosaminyltransferase family protein; Provisional 0 -355651 cl27421 DisA_N DisA bacterial checkpoint controller nucleotide-binding. These proteins have no detectable global or local homology to any protein of known function. Members are restricted to the bacteria and found broadly in lineages other than the Proteobacteria. [Hypothetical proteins, Conserved] 0 -332250 cl27429 PsbL PsbL protein. photosystem II protein L 0 -332261 cl27440 Cyt_c_Oxidase_VIII N/A. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIII. 0 -332264 cl27443 Orthopox_35kD 35kD major secreted virus protein. chemokine binding protein; Provisional 0 -355652 cl27447 WSN Domain of unknown function. 0 -355653 cl27448 GoLoco GoLoco motif. GEF specific for Galpha_i proteins 0 -332271 cl27450 BH4 Bcl-2 homology region 4. 0 -355655 cl27463 TrpBP Tryptophan RNA-binding attenuator protein. transcription attenuation protein MtrB; Provisional 0 -332288 cl27467 NMU Neuromedin U. Neuromedin U (NmU) is a vertebrate peptide which stimulates uterine smooth muscle contraction and causes selective vasoconstriction. Like most other active peptides, it is proteolytically processed from a larger precursor protein. The mature peptides are 8 (NmU-8) to 25 (NmU-25) residues long and C- terminally amidated. The sequence of the C-terminal extremity of NmU is extremely well conserved in mammals, birds and amphibians. 0 -355656 cl27470 DUF108 Domain of unknown function DUF108. putative L-aspartate dehydrogenase; Provisional 0 -332295 cl27474 AdoMet_Synthase S-adenosylmethionine synthetase (AdoMet synthetase). S-adenosylmethionine synthetase; Provisional 0 -355657 cl27476 Ribosomal_L14e Ribosomal protein L14. 60S ribosomal protein L14; Provisional 0 -332308 cl27487 HOK_GEF Hok/gef family. small toxic polypeptide; Provisional 0 -332309 cl27488 Bax Uncharacterized FlgJ-related protein [General function prediction only]. hypothetical protein; Provisional 0 -332319 cl27498 PsbJ PsbJ. photosystem II reaction center protein J; Provisional 0 -332322 cl27501 Ribosomal_L29e Ribosomal L29e protein family. 60S ribosomal protein L29; Provisional 0 -332323 cl27502 Folate_carrier Reduced folate carrier. The Reduced Folate Carrier (RFC) Family (TC 2.A.48) Members of the RFC family mediate the uptake of folate, reduce folate, derivatives of reduced folate and the drug, methotrexate. Proteins of the RFC family are so-far restricted to animals. RFC proteins possess 12 putative transmembrane a-helical spanners (TMSs) and evidence for a 12 TMS topology has been published for the human RFC. The RFC transporters appear to transport reduced folate by an energy-dependent, pH-dependent, Na+-independent mechanism. Folate:H+ symport, folate:OH- antiport and folate:anion antiport mechanisms have been proposed, but the energetic mechanism is not well defined. [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] 0 -355658 cl27506 zf-A20 A20-like zinc finger. A20- (an inhibitor of cell death)-like zinc fingers. The zinc finger mediates self-association in A20. These fingers also mediate IL-1-induced NF-kappaB activation. 0 -332328 cl27507 Ycf9 YCF9. PsbZ is a core protein of photosystem II in thylakoid-containing Cyanobacteria and plant chloroplasts. The original Chlamydomonas gene symbol, ycf9, is a synonym. PsbZ controls the interaction of the reaction center core with the light-harvesting antenna. [Energy metabolism, Photosynthesis] 0 -332333 cl27512 Adeno_PIX Adenovirus hexon-associated protein (IX). capsid protein IX,hexon associated protein IX; Provisional 0 -355659 cl27532 B56 Protein phosphatase 2A regulatory B subunit (B56 family). serine/threonine protein phosphatase 2A; Provisional 0 -355660 cl27544 Herpes_glycop_D Herpesvirus glycoprotein D/GG/GX domain. envelope glycoprotein D; Provisional 0 -332374 cl27553 PLN02985 N/A. squalene epoxidase; Provisional 0 -355661 cl27556 Col_cuticle_N Nematode cuticle collagen N-terminal domain. The function of this domain is unknown. It is found in the N-terminal region of nematode cuticle collagens. Cuticle is a tough elastic structure secreted by hypodermal cells and is primarily composed of collagen proteins. 0 -355662 cl27557 P_proprotein Proprotein convertase P-domain. A unique feature of the eukaryotic subtilisin-like proprotein convertases is the presence of an additional highly conserved sequence of approximately 150 residues (P domain) located immediately downstream of the catalytic domain. 0 -355663 cl27575 PHO4 Phosphate transporter family. This family includes PHO-4 from Neurospora crassa which is a is a Na(+)-phosphate symporter. This family also contains the leukaemia virus receptor. 0 -355664 cl27577 RecJ Single-stranded DNA-specific exonuclease, DHH superfamily, may be involved in archaeal DNA replication intiation [Replication, recombination and repair]. All proteins in this family are 5'-3' single-strand DNA exonucleases. These proteins are used in some aspects of mismatch repair, recombination, and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair] 0 -332406 cl27585 Adenylate_cycl Adenylate cyclase, class-I. adenylate cyclase; Provisional 0 -355665 cl27586 Thymosin Thymosin beta-4 family. 0 -332409 cl27588 Parathyroid Parathyroid hormone family. 0 -332449 cl27628 Gastrin Gastrin/cholecystokinin family. This family gathers small proteins of about 100 130 amino acids that act as hormones, among them gastrin, cholecystokinin and preprocaerulein which stimulate gastric, biliary, and pancreatic secretion and smooth muscle contraction. 0 -355666 cl27631 Nebulin Nebulin repeat. Tandem arrays of these repeats are known to bind actin. 0 -332453 cl27632 Transposase_mut Transposase, Mutator family. 0 -332455 cl27634 STNV N/A. STNV domain; satellite tobacco necrosis virus (STNV) are small plant viruses which are completely dependent on the presence of a specific helper virus, TNV, for their replication; 60 identical subunits, this domain is one of them; form an icosahedral shell around a single RNA molecule. Half of the RNA codes for the coat protein with the other half being non-coding. The STNV domain has a "Swiss roll" Greek key topology with its two 4-stranded antiparallel beta sheets 0 -355667 cl27635 Ala_racemase_N Alanine racemase, N-terminal domain. putative bifunctional UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase/alanine racemase; Provisional 0 -332467 cl27646 Polyhedrin Polyhedrin. polyhedrin; Provisional 0 -332469 cl27648 Polyoma_coat Polyomavirus coat protein. Major capsid protein VP1; Provisional 0 -332473 cl27652 Plectin Plectin repeat. This family includes repeats from plectin, desmoplakin, envoplakin and bullous pemphigoid antigen. 0 -355668 cl27657 Motile_Sperm MSP (Major sperm protein) domain. Major sperm proteins are involved in sperm motility. These proteins oligomerise to form filaments. This family contains many other proteins. 0 -332480 cl27659 Filamin Filamin/ABP280 repeat. These form a rod-like structure in the actin-binding cytoskeleton protein, filamin. The C-terminal repeats of filamin bind beta1-integrin (CD29). 0 -355669 cl27660 MAM N/A. An extracellular domain found in many receptors. The MAM domain along with the associated Ig domain in type IIB receptor protein tyrosine phosphatases forms a structural unit (termed MIg) with a seamless interdomain interface. It plays a major role in homodimerization of the phosphatase ectoprotein and in cell adhesion. MAM is a beta-sandwich consisting of two five-stranded antiparallel beta-sheets rotated away from each other by approx 25 degrees, and plays a similar role in meprin metalloproteinases. 0 -332494 cl27673 E6 Early Protein (E6). E6 protein; Provisional 0 -355670 cl27691 AcrR DNA-binding transcriptional regulator, AcrR family [Transcription]. transcriptional regulator BetI; Validated 0 -355671 cl27706 Prion Prion/Doppel alpha-helical domain. The prion protein is a major component of scrapie-associated fibrils in Creutzfeldt-Jakob disease, kuru, Gerstmann-Straussler syndrome and bovine spongiform encephalopathy. 0 -332534 cl27713 Defensin_1 Mammalian defensin. Cysteine-rich domains that lyse bacteria, fungi and enveloped viruses by forming multimeric membrane-spanning channels. 0 -355672 cl27714 Endothelin Endothelin family. endothelin precursor; Provisional 0 -355673 cl27727 BBI N/A. Bowman-Birk type proteinase inhibitor (BBI); family of plant serine protease inhibitors that block trypsin or chymotrypsin.They are either single-headed (one reactive site, one inactive site, present mainly in monocotyledonous seeds) or double-headed (two reactive sites, present mainly in dicotyledonous seeds). 0 -355674 cl27728 Calc_CGRP_IAPP Calcitonin / CGRP / IAPP family. This family is formed by calcitonin, the calcitonin gene-related peptide, and amylin. They are short polypeptide hormones. 0 -355675 cl27729 ANP Atrial natriuretic peptide. Atrial natriuretic peptides are vertebrate hormones important in the overall control of cardiovascular homeostasis and sodium and water balance in general. 0 -332559 cl27738 YlmH RNA-binding protein YlmH, contains S4-like domain [General function prediction only]. Members of this protein family are about 265 residues long and each contains an S4 RNA-binding domain of about 48 residues. The member from the Cyanobacterium, Synechocystis sp. PCC 6803, was detected as a novel polypeptide in a highly purified preparation of active photosystem II (Kashino, et al., 2002). The phylogenetic distribution, including Cyanobacteria and Arabidopsis, supports a role in photosystem II, although the high bit score cutoffs for this model reflect similar sequences in non-photosynthetic organisms such as Carboxydothermus hydrogenoformans, a Gram-positive bacterium. [Energy metabolism, Photosynthesis] 0 -332567 cl27746 Hormone_2 Peptide hormone. This family contains glucagon, GIP, secretin and VIP. 0 -355677 cl27758 Zona_pellucida Zona pellucida-like domain. ZP proteins are responsible for sperm-adhesion fo the zona pellucida. ZP domains are also present in multidomain transmembrane proteins such as glycoprotein GP2, uromodulin and TGF-beta receptor type III (betaglycan). 0 -332591 cl27770 Tail_VII Inovirus G7P protein. minor coat protein 0 -332592 cl27771 RPS31 Ribosomal protein S31e. Members of this protein are the lineage-specific bacterial ribosomal small subunit proteint bTHX (previously THX), originally shown to exist in the genus Thermus. The protein is conserved for the first 26 amino acids, past which some members continue with additional sequence, often repetitive or low-complexity. This model also finds eukaryotic organelle forms, which have additional N-terminal transit peptides. [Protein synthesis, Ribosomal proteins: synthesis and modification] 0 -332599 cl27778 Phage_clamp_A Bacteriophage clamp loader A subunit. clamp loader small subunit; Provisional 0 -332600 cl27779 DMP12 Putative DNA mimic protein DMP12. This is a family of DNA-mimic proteins expressed by Neisseria species. In its monomeric form DMP12 interacts with the Neisseria dimeric form of the bacterial histone-like protein HU. HU proteins promote the assembly of higher-order DNA-protein structures, The interaction between DMP12 and HU protein may be instrumental in controlling the stability of the nucleoid in Neisseria as DMP12 prevents Neisseria HU protein from being digested by trypsin. 0 -332601 cl27780 UL141 Herpes-like virus membrane glycoprotein UL141. UL14 tegument protein; Provisional 0 -332602 cl27781 EAGR_box Enriched in aromatic and glycine Residues box. The EAGR box (Enriched in Aromatic and Glycine Residues) is found in three different proteins of the Mycoplasma genitalium terminal organelle, which acts in both cytadherence and gliding motility. The presence of this domain in a genome predicts the Mycoplasma-type terminal organelle structure, gliding motility, and cytadherence. The EAGR box may occur from one to nine times in a protein. 0 -355678 cl27782 Yop-YscD_ppl Inner membrane component of T3SS, periplasmic domain. type III secretion system protein SsaD; Provisional 0 -355679 cl27783 Cas9_REC REC lobe of CRISPR-associated endonuclease Cas9. CRISPR loci appear to be mobile elements with a wide host range. This model represents a protein found only in CRISPR-containing species, near other CRISPR-associated proteins (cas), as part of the NMENI subtype of CRISPR/Cas locus. The species range so far for this protein is animal pathogens and commensals only. 0 -332607 cl27786 FPRL1_inhibitor Formyl peptide receptor-like 1 inhibitory protein. formyl peptide receptor-like 1 inhibitory protein; Reviewed 0 -332610 cl27789 YmcE_antitoxin Putative antitoxin of bacterial toxin-antitoxin system. cold shock gene; Provisional 0 -355680 cl27796 Tox-PLDMTX Dermonecrotoxin of the Papain-like fold. pathogenicity island 2 effector protein SseI; Provisional 0 -355681 cl27802 MerR_2 MerR HTH family regulatory protein. chaperone-modulator protein CbpM; Provisional 0 -332632 cl27811 G-7-MTase mRNA (guanine-7-)methyltransferase (G-7-MTase). This model represents a common C-terminal region shared by paramyxovirus-like RNA-dependent RNA polymerases (see pfam00946). Polymerase proteins described by these two models are often called L protein (large polymerase protein). Capping of mRNA requires RNA triphosphatase and guanylyl transferase activities, demonstrated for the rinderpest virus L protein and at least partially localized to the region of this model. 0 -332633 cl27812 EF-hand_4 Cytoskeletal-regulatory complex EF hand. Pair of EF hand motifs that recognise proteins containing Asn-Pro-Phe (NPF) sequences. 0 -332642 cl27821 T4_baseplate T4 bacteriophage base plate protein. baseplate hub assembly protein; Provisional 0 -332643 cl27822 Protein_K Bacteriophage protein K. protein K 0 -332644 cl27823 Sulf_coat_C Sulfolobus virus coat protein C terminal. coat protein 0 -332645 cl27824 VirE1 Single-strand DNA-binding protein. type IV secretion system chaperone VirE1; Provisional 0 -332646 cl27825 VirArc_Nuclease Viral/Archaeal nuclease. hypothetical protein 0 -332649 cl27828 T4_neck-protein Virus neck protein. neck protein; Provisional 0 -332650 cl27829 NTPase_P4 ATPase P4 of dsRNA bacteriophage phi-12. packaging NTPase P4 0 -332651 cl27830 DUF3130 Protein of unknown function (DUF3130. Members of this protein family are similar in length and sequence (although remotely) to the WXG100 family of type VII secretion system (T7SS) targets, described by family TIGR03930. Phylogenetic profiling shows that members of this family are similarly restricted to species with T7SS, marking this family as a related set of T7SS effectors. Members include SACOL2603 from Staphylococcus aureus subsp. aureus COL. Oddly, members of family pfam10824 (DUF2580), which appears also to be related, seem not to be tied to T7SS. 0 -332652 cl27831 Phage_DsbA Transcriptional regulator DsbA. double-stranded DNA binding protein; Provisional 0 -332653 cl27832 DUF2830 Protein of unknown function (DUF2830). lysis protein 0 -332654 cl27833 Phage_glycop_gL Viral glycoprotein L. hypothetical protein; Provisional 0 -332655 cl27834 UL11 Membrane-associated tegument protein. tegument protein UL11; Provisional 0 -332656 cl27835 DNA_Packaging Terminase DNA packaging enzyme. small terminase protein; Provisional 0 -332657 cl27836 DUF2810 Protein of unknown function (DUF2810). hypothetical protein; Provisional 0 -332658 cl27837 DUF2685 Protein of unknown function (DUF2685). hypothetical protein; Provisional 0 -355682 cl27838 DUF2701 Protein of unknown function (DUF2701). putative transmembrane protein; Provisional 0 -332660 cl27839 DUF2649 Protein of unknown function (DUF2649). hypothetical protein 0 -332661 cl27840 DUF2654 Protein of unknown function (DUF2654). hypothetical protein; Provisional 0 -332662 cl27841 DUF2733 Protein of unknown function (DUF2733). Alkaline exonuclease; Provisional 0 -355683 cl27842 YbaJ Biofilm formation regulator YbaJ. Hha toxicity attenuator; Provisional 0 -332664 cl27843 Phage_holin_2_2 Phage holin T7 family, holin superfamily II. type II holin 0 -332665 cl27844 RepB-RCR_reg Replication regulatory protein RepB. replication protein; Provisional 0 -355684 cl27850 Glyco_hydro_65m Glycosyl hydrolase family 65 central catalytic domain. maltose phosphorylase; Provisional 0 -332674 cl27853 GSu_C4xC__C2xCH Geobacter CxxxxCH...CXXCH motif (GSu_C4xC__C2xCH). This domain occurs from three to eight times in eight different proteins of Geobacter sulfurreducens. The final CXXCH motif matches ProSite motif PS00190, the cytochrome c family heme-binding site signature, suggesting 0 -332675 cl27854 IpaC_SipC Salmonella-Shigella invasin protein C (IpaC_SipC). This model represents a family of proteins associated with bacterial type III secretion systems, which are injection machines for virulence factors into host cell cytoplasm. Characterized members of this protein family are known to be secreted and are described as invasins, including IpaC from Shigella flexneri (SP:P18012) and SipC from Salmonella typhimurium (GB:AAA75170.1). Members may be referred to as invasins, pathogenicity island effectors, and cell invasion proteins. [Cellular processes, Pathogenesis] 0 -332676 cl27855 Spore_SspJ Small spore protein J (Spore_SspJ). New small, acid-soluble proteins unique to spores of Bacillus subtilis [Cellular processes, Sporulation and germination] 0 -332677 cl27856 DUF2374 Protein of unknown function (Duf2374). This very small protein (about 46 amino acids) consists largely of a single predicted membrane-spanning region. It is found in Photobacterium profundum SS9 and in three species of Vibrio, always near periplasmic nitrate reductase genes, but far from the periplasmic nitrate reductase genes in Aeromonas hydrophila ATCC7966. [Hypothetical proteins, Conserved] 0 -332681 cl27860 Pfg27 Pfg27. gamete antigen 27/25-like protein; Provisional 0 -355685 cl27861 Phage-Gp8 Bacteriophage T4, Gp8. baseplate wedge subunit; Provisional 0 -332691 cl27870 T3SS_needle_E Type III secretion system, cytoplasmic E component of needle. Members of this family are found exclusively in type III secretion appparatus gene clusters in bacteria. Those bacteria with a protein from this family tend to target animal cells, as does Yersinia pestis. This protein is small (about 70 amino acids) and not well characterized. [Cellular processes, Pathogenesis] 0 -332699 cl27878 Flu_M1_C Influenza Matrix protein (M1) C-terminal domain. This region is thought to be a second domain of the M1 matrix protein. 0 -332703 cl27882 Phage_1_1 Bacteriophage 1.1 Protein. hypothetical protein 0 -332704 cl27883 SspN Small acid-soluble spore protein N family. acid-soluble spore protein N; Provisional 0 -332705 cl27884 TetM_leader Tetracycline resistance determinant leader peptide. tetracycline resistance determinant leader peptide; Provisional 0 -332706 cl27885 Leu_leader Leucine operon leader peptide. leu operon leader peptide; Provisional 0 -332707 cl27886 Tna_leader Tryptophanase operon leader peptide. tryptophanase leader peptide; Provisional 0 -355687 cl27888 PaaX PaaX-like protein. This family contains proteins that are similar to the product of the paaX gene of Escherichia coli. This protein is involved in the regulation of expression of a group of proteins known to participate in the metabolism of phenylacetic acid. 0 -332711 cl27890 Chaperone_III Type III secretion chaperone domain. type III secretion chaperone protein SigE; Provisional 0 -332717 cl27896 Herpes_UL37_2 Betaherpesvirus immediate-early glycoprotein UL37. UL37 tegument protein; Provisional 0 -332720 cl27899 Orthopox_B11R Orthopoxvirus B11R protein. hypothetical protein; Provisional 0 -332721 cl27900 DUF1314 Protein of unknown function (DUF1314). circ protein; Provisional 0 -332722 cl27901 GlpM GlpM protein. This family consists of several bacterial GlpM membrane proteins. GlpM is a hydrophobic protein containing 109 amino acids. It is thought that GlpM may play a role in alginate biosynthesis in Pseudomonas aeruginosa. 0 -332723 cl27902 DUF1235 Protein of unknown function (DUF1235). hypothetical protein; Provisional 0 -332726 cl27905 DUF1231 Protein of unknown function (DUF1231). hypothetical protein; Provisional 0 -332734 cl27913 DUF1181 Protein of unknown function (DUF1181). hypothetical protein; Provisional 0 -332736 cl27915 Orthopox_F6 Orthopoxvirus F6 protein. hypothetical protein; Provisional 0 -332739 cl27918 Me-amine-dh_H Methylamine dehydrogenase heavy chain (MADH). This family consists of the heavy chain of methylamine dehydrogenase light chain, a periplasmic enzyme. The enzyme contains a tryptophan tryptophylquinone (TTQ) prothetic group derived from two Trp residues in the light subunity. The enzyme forms a complex with the type I blue copper protein amicyanin and a cytochrome. Electron transfer procedes from TQQ to the copper and then to the heme group of the cytochrome. [Energy metabolism, Amino acids and amines] 0 -332742 cl27921 DUF1039 Protein of unknown function (DUF1039). type III secretion system protein SsaH; Provisional 0 -332743 cl27922 DUF1029 Protein of unknown function (DUF1029). ORF091 IMV membrane protein; Provisional 0 -332744 cl27923 Orthopox_A5L Orthopoxvirus A5L protein-like. virion core protein; Provisional 0 -332746 cl27925 PRK05629 N/A. hypothetical protein; Reviewed 0 -332748 cl27927 Chordopox_E11 Chordopoxvirus E11 protein. putative virion core protein; Provisional 0 -332749 cl27928 Chordopox_G3 Chordopoxvirus G3 protein. hypothetical protein; Provisional 0 -332750 cl27929 Pox_A30L_A26L Orthopoxvirus A26L/A30L protein. A-type inclusion protein; Provisional 0 -332751 cl27930 Chordopox_A30L Chordopoxvirus A30L protein. ORF107 virion morphogenesis; Provisional 0 -355688 cl27931 RING_CBP-p300 atypical RING domain found in CREB-binding protein and p300 histone acetyltransferases. This domain of unknown function is found in several transcriptional co-activators including the CREB-binding protein, which is an acetyltransferase that acetylates histones, giving a specific tag for transcriptional activation. This short domain is found to the C-terminus of bromodomains. The 40 residue domain contains four conserved cysteines suggesting that it may be stabilized by a zinc ion. In CREB this domain is to the N-terminus of another zinc binding PHD domain. 0 -332753 cl27932 Herpes_U5 Herpesvirus U5-like family. hypothetical protein; Provisional 0 -332754 cl27933 Chordopox_A35R Chordopoxvirus A35R protein. hypothetical protein; Provisional 0 -332758 cl27937 PSII_Ycf12 Photosystem II complex subunit Ycf12. hypothetical protein; Provisional 0 -332759 cl27938 Chordopox_A33R Chordopoxvirus A33R protein. EEV glycoprotein; Provisional 0 -332760 cl27939 Chordopox_A13L Chordopoxvirus A13L protein. IMV membrane protein; Provisional 0 -332761 cl27940 AgrD Staphylococcal AgrD protein. Members of this family of short peptides are precursors to thiolactone (unless Cys is replaced by Ser) cyclic autoinducer peptides, used in quorum-sensing systems in Gram-positive bacteria. The best characterized is the AgrD precursor, processed by the AgrB protein. Nearby proteins regularly encountered include a histidine kinase and a response regulator. This model is related to pfam05931 but is newer and currently broader in scope. 0 -332762 cl27941 Orthopox_F8 Orthopoxvirus F8 protein. Hypothetical protein; Provisional 0 -332763 cl27942 Chordopox_RPO7 Chordopoxvirus DNA-directed RNA polymerase 7 kDa polypeptide (RPO7). DNA-dependent RNA polymerase subunit; Provisional 0 -332764 cl27943 DUF848 Gammaherpesvirus protein of unknown function (DUF848). hypothetical protein; Provisional 0 -332765 cl27944 Orthopox_F7 Orthopoxvirus F7 protein. hypothetical protein; Provisional 0 -332766 cl27945 Herpes_BLRF2 Herpesvirus BLRF2 protein. hypothetical protein; Provisional 0 -332768 cl27947 Chordopox_G2 Chordopoxvirus protein G2. transcriptional elongation factor; Provisional 0 -332769 cl27948 Herpes_heli_pri Herpesvirus helicase-primase complex component. helicase-primase primase subunit; Provisional 0 -355689 cl27949 Pox_A14 Poxvirus virion envelope protein A14. ORF090 IMV phosphorylated membrane protein; Provisional 0 -355690 cl27954 SpvD Salmonella plasmid virulence protein SpvD. virulence protein SpvD; Provisional 0 -332777 cl27956 Pox_G7 Poxvirus G7-like. putative virion core protein; Provisional 0 -332778 cl27957 Phi-29_GP4 Phi-29-like late genes activator (early protein GP4). transcriptional regulator 0 -332779 cl27958 Pox_ser-thr_kin Poxvirus serine/threonine protein kinase. Ser/Thr kinase; Provisional 0 -332782 cl27961 Pox_A21 Poxvirus A21 Protein. hypothetical protein; Provisional 0 -332785 cl27964 Pox_A3L Poxvirus A3L Protein. virus redox protein; Provisional 0 -355691 cl27965 Herpes_UL1 Herpesvirus glycoprotein L. envelope glycoprotein L; Provisional 0 -332788 cl27967 DUF705 Protein of unknown function (DUF705). This model represents a family of viral proteins of unknown function. These proteins are members, however, of the IIIC (TIGR01681) subfamily of the haloacid dehalogenase (HAD) superfamily of aspartate nucleophile hydrolases. All characterized members of the III subfamilies (IIIA, TIGR01662; IIIB, pfam03767) are phosphatases, including MDP-1, a member of subfamily IIIC (TIGR01681). No member of this subfamily is characterized with respect to particular function. All of the active site residues characteristic of HAD-superfamily phosphatases are present in subfamily IIIC. These proteins also include an N-terminal domain (ca. 125 aas) that is unique to this clade. 0 -332791 cl27970 Baculo_p47 Baculovirus P47 protein. viral transcription regulator p47; Provisional 0 -332792 cl27971 LEF-9 Late expression factor 9 (LEF-9). late expression factor 9; Provisional 0 -332793 cl27972 DUF678 Protein of unknown function (DUF678). hypothetical protein; Provisional 0 -332794 cl27973 Herpes_UL43 Herpesvirus UL43 protein. UL43 envelope protein; Provisional 0 -332795 cl27974 Pox_A11 Poxvirus A11 Protein. hypothetical protein; Provisional 0 -332797 cl27976 PIF3 Per os infectivity factor 3. per os infectivity factor 3; Provisional 0 -332800 cl27979 LEF-8 Late expression factor 8 (LEF-8). DNA-directed RNA polymerase subunit beta-like protein; Provisional 0 -332801 cl27980 DUF655 Protein of unknown function (DUF655). This family includes several uncharacterized archaeal proteins. This protein appears to contain two HHH motifs. 0 -332802 cl27981 Pox_M2 Poxvirus M2 protein. hypothetical protein; Provisional 0 -332804 cl27983 Pox_L5 Poxvirus L5 protein family. ORF051 putative membrane protein; Provisional 0 -332806 cl27985 Pox_E10 E10-like protein conserved region. sulfhydryl oxidase; Provisional 0 -332807 cl27986 Herpes_BBRF1 BRRF1-like protein. hypothetical protein; Provisional 0 -332808 cl27987 Pox_H7 Late protein H7. hypothetical protein; Provisional 0 -332809 cl27988 Pox_F17 DNA-binding 11 kDa phosphoprotein. ORF017 DNA-binding phosphoprotein; Provisional 0 -332810 cl27989 InvH InvH outer membrane lipoprotein. invasion lipoprotein InvH; Provisional 0 -332811 cl27990 Agro_virD5 Agrobacterium VirD5 protein. The virD operon in Agrobacterium encodes a site-specific endonuclease, and a number of other poorly characterised products. This family represents the VirD5 protein. 0 -355692 cl27992 Pox_I5 Poxvirus protein I5. putative IMV membrane protein; Provisional 0 -332814 cl27993 Pox_F16 Poxvirus F16 protein. hypothetical protein; Provisional 0 -332816 cl27995 Microvir_H Microvirus H protein (pilot protein). minor spike protein 0 -332817 cl27996 Herpes_BTRF1 Herpesvirus BTRF1 protein conserved region. hypothetical protein; Provisional 0 -332818 cl27997 Pox_I3 Poxvirus I3 ssDNA-binding protein. DNA-binding phosphoprotein; Provisional 0 -332819 cl27998 Pox_E6 Pox virus E6 protein. Hypothetical protein; Provisional 0 -355693 cl27999 Herpes_pp85 Herpesvirus phosphoprotein 85 (HHV6-7 U14/HCMV UL25). DNA packaging tegument protein UL25; Provisional 0 -332821 cl28000 Pox_G5 Poxvirus G5 protein. Hypothetical protein; Provisional 0 -332822 cl28001 Pox_F15 Poxvirus protein F15. hypothetical protein; Provisional 0 -332823 cl28002 Herpes_UL55 Herpesvirus UL55 protein. nuclear protein UL55; Provisional 0 -332824 cl28003 Herpes_U44 Herpes virus U44 protein. tegument protein; Provisional 0 -332825 cl28004 Microvir_lysis Microvirus lysis protein (E), C-terminus. cell lysis protein 0 -332826 cl28005 Pox_VP8_L4R Poxvirus nucleic acid binding protein VP8/L4R. DNA-binding virion core protein; Provisional 0 -355694 cl28006 PHA02695 N/A. hypothetical protein; Provisional 0 -332830 cl28009 Poxvirus_B22R Poxvirus B22R protein. hypothetical protein; Provisional 0 -332837 cl28016 Hema_esterase Hemagglutinin esterase. 0 -332838 cl28017 Herpes_UL37_1 Herpesvirus UL37 tegument protein. UL37 tegument protein; Provisional 0 -332842 cl28021 Phage_mat-A Phage maturation protein. maturation protein 0 -332856 cl28035 Herpes_UL33 Herpesvirus UL33-like protein. DNA packaging protein UL33; Provisional 0 -355695 cl28037 PHA03163 N/A. hypothetical protein; Provisional 0 -332861 cl28040 Peptidase_C37 Southampton virus-type processing peptidase. Corresponds to Merops family C37. Norwalk-like viruses (NLVs), including the Southampton virus, cause acute non-bacterial gastroenteritis in humans. The NLV genome encodes three open reading frames (ORFs). ORF1 encodes a polyprotein, which is processed by the viral protease into six proteins. 0 -332864 cl28043 Peptidase_M44 Metallopeptidase from vaccinia pox. putative metalloprotease; Provisional 0 -332865 cl28044 Pox_E8 Poxvirus E8 protein. putative membrane protein; Provisional 0 -355696 cl28045 Herpes_UL46 Herpesvirus UL46 protein. tegument protein VP11/12; Provisional 0 -332867 cl28046 Pox_LP_H2 Viral late protein H2. putative viral membrane protein; Provisional 0 -332868 cl28047 Pox_L3_FP4 Poxvirus L3/FP4 protein. hypothetical protein; Provisional 0 -332869 cl28048 Pox_F12L Poxvirus F12L protein. EEV maturation protein; Provisional 0 -332871 cl28050 Herpes_VP19C Herpesvirus capsid shell protein VP19C. Capsid triplex subunit 1; Provisional 0 -355697 cl28051 PHA03144 N/A. helicase-primase primase subunit; Provisional 0 -332874 cl28053 Pox_I1 Poxvirus protein I1. putative DNA-binding virion core protein; Provisional 0 -332875 cl28054 Pox_Ag35 Pox virus Ag35 surface protein. late transcription factor VLTF-4; Provisional 0 -332877 cl28056 Herpes_UL21 Herpesvirus UL21. tegument protein UL21; Provisional 0 -332878 cl28057 Pox_P35 Poxvirus P35 protein. ORF059 IMV protein VP55; Provisional 0 -355698 cl28058 DNA_pol_B_2 DNA polymerase type B, organellar and viral. DNA polymerase; Provisional 0 -355699 cl28061 RAP-1 Rhoptry-associated protein 1 (RAP-1). rhoptry-associated protein 1 (RAP-1); Provisional 0 -332886 cl28065 Herpes_UL79 UL79 family. hypothetical protein; Provisional 0 -355700 cl28066 Herpes_UL16 Herpesvirus UL16/UL94 family. tegument protein UL16; Provisional 0 -355701 cl28067 Herpes_UL87 Herpesvirus UL87 family. hypothetical protein; Provisional 0 -332889 cl28068 Pox_G9-A16 Pox virus entry-fusion-complex G9/A16. poxvirus myristoylprotein; Provisional 0 -332891 cl28070 gpD Bacteriophage scaffolding protein D. external scaffolding protein 0 -332896 cl28075 Flavi_E_C Immunoglobulin-like domain III (C-terminal domain) of Flavivirus envelope glycoprotein E. The C-terminal domain (domain III) of Flavivirus glycoprotein E appears to be involved in low-affinity interactions with negatively charged glycoaminoglycans on the host cell surface. Domain III may also play a role in interactions with alpha-v-beta-3 integrins in West Nile virus, Japanese encephalitis virus, and Dengue virus. The interface between domain I and domain III appears to be destabilized by the low-pH environment of the endosome, and domain III may play a vital role in the conformational changes of envelope glycoprotein E that follow the clathrin-mediated endocytosis of viral particles and are a prerequisite to membrane fusion. 0 -332900 cl28079 Herpes_Helicase Helicase. helicase-primase subunit BBLF4; Provisional 0 -355702 cl28080 LpxB Lipid-A-disaccharide synthetase. lipid-A-disaccharide synthase; Reviewed 0 -332906 cl28085 US2 US2 family. virion protein US2; Provisional 0 -332907 cl28086 PsbN Photosystem II reaction centre N protein (psbN). photosystem II protein N 0 -355703 cl28088 L1R_F9L Lipid membrane protein of large eukaryotic DNA viruses. S-S bond formation pathway protein; Provisional 0 -355704 cl28089 TrkG Trk-type K+ transport system, membrane component [Inorganic ion transport and metabolism]. The proteins of the Trk family are derived from Gram-negative and Gram-positive bacteria, yeast and wheat. The proteins of E. coli K12 TrkH and TrkG as well as several yeast proteins have been functionally characterized.The E. coli TrkH and TrkG proteins are complexed to two peripheral membrane proteins, TrkA, an NAD-binding protein, and TrkE, an ATP-binding protein. This complex forms the potassium uptake system. [Transport and binding proteins, Cations and iron carrying compounds] 0 -332926 cl28105 Vac_Fusion Chordopoxvirus multifunctional envelope protein A27. ORF104 fusion protein; Provisional 0 -332927 cl28106 Phage_B Scaffold protein B. internal scaffolding protein 0 -332933 cl28112 PhoU_div Protein of unknown function DUF47. An apparent homolog with a suggested function is Pit accessory protein from Sinorhizobium meliloti, which may be involved in phosphate (Pi) transport. [Hypothetical proteins, Conserved] 0 -332935 cl28114 MatK_N MatK/TrnK amino terminal region. maturase K 0 -332936 cl28115 Levi_coat Levivirus coat protein. coat protein 0 -332937 cl28116 Translat_reg Bacteriophage translational regulator. translation repressor protein; Provisional 0 -332939 cl28118 Cytomega_gL Cytomegalovirus glycoprotein L. envelope glycoprotein L; Provisional 0 -332940 cl28119 Polyoma_agno Polyomavirus agnoprotein. agnoprotein; Provisional 0 -332942 cl28121 Herpes_UL7 Herpesvirus UL7 like. UL7 tegument protein; Provisional 0 -332943 cl28122 Herpes_env Herpesvirus putative major envelope glycoprotein. DNA packaging protein UL32; Provisional 0 -332947 cl28126 Fibritin_C Fibritin C-terminal region. fibritin; Provisional 0 -332949 cl28128 Herpes_glycop Herpesvirus glycoprotein M. envelope glycoprotein M; Provisional 0 -332950 cl28129 Herpes_UL25 Herpesvirus UL25 family. DNA packaging tegument protein UL25; Provisional 0 -332955 cl28134 PsbT Photosystem II reaction centre T protein. photosystem II protein T 0 -332957 cl28136 MMTV_SAg Mouse mammary tumor virus superantigen. hypothetical protein; Provisional 0 -355705 cl28141 psaI N/A. photosystem I subunit VIII; Validated 0 -332963 cl28142 Viral_DNA_bp ssDNA binding protein. single-stranded DNA binding protein; Provisional 0 -332973 cl28153 Late_protein_L2 Late Protein L2. major capsid L1 protein; Provisional 0 -355706 cl28158 psbF N/A. photosystem II protein VI 0 -355707 cl28166 AMN1 Antagonist of mitotic exit network protein 1. Amn1 has been functionally characterized in Saccharomyces cerevisiae as a component of the Antagonist of MEN pathway (AMEN). The AMEN network is activated by MEN (mitotic exit network) via an active Cdc14, and in turn switches off MEN. Amn1 constitutes one of the alternative mechanisms by which MEN may be disrupted. Specifically, Amn1 binds Tem1 (Termination of M-phase, a GTPase that belongs to the RAS superfamily), and disrupts its association with Cdc15, the primary downstream target. Amn1 is a leucine-rich repeat (LRR) protein, with 12 repeats in the S. cerevisiae ortholog. As a negative regulator of the signal transduction pathway MEN, overexpression of AMN1 slows the growth of wild type cells. The function of the vertebrate members of this family has not been determined experimentally, they have fewer LRRs that determine the extent of this model. 0 -332992 cl28172 Mollicu_LP MOLPALP family lipoprotein. Members of this family occur strictly in the genus Mycoplasma, average 1050 in length with little length variability, have an N-terminal signal sequence, and exhibit no detectable sequence similarity to any characterized protein. Up to four tandem copies occur in some Mycoplasma (e.g. M. putrefaciens KS1). Incorrect inclusion of a 57-amino acid stretch of one family member in pfam08178, for a helix-turn-helix transcriptional regulator in several E. coli phage, has caused many members of this family to be annotated, in error, as GnsA/GnsB family proteins. We suggest the name STREFT (Secreted Thousand Residue Frequently Tandem) protein as a distinctive name to spread and replace the incorrect GnsA/GnsB designation. [Unknown function, General] 0 -355708 cl28191 sorted_by_XrtN XrtN system VIT domain protein. Members of this protein family average over 900 residues in length and appear to have multiple membrane-spanning helices in the N-terminal half. The extreme C-terminal region consists of a motif with consensus sequence MSEP, then a transmembrane alpha helix, then a short region with several basic residues. This region, hereby dubbed MSEP-CTERM, resembles other putative sorting signals associated with the archaeosortase/exosortase protein family (see TIGR04178). Genes for all members of this family are found next to a gene for exosortase K. 0 -333016 cl28196 PchG Oxidoreductase (NAD-binding), involved in siderophore biosynthesis [Inorganic ion transport and metabolism]. This reductase is found associated with gene clusters for the biosynthesis of various non-ribosomal peptide derived natural products in which cysteine is cyclized to a thiazoline ring containing an imide double bond. Examples include yersiniabactin (irp3/YbtU, GP|21959262) and pyochelin (PchG, GP|4325022). 0 -333041 cl28221 GlyGly_RbtA Acinetobacter rhombotarget A. This model describes an N-terminal region, with a motif CSLREA, shared by tandem genes in Acinetobacter that both have the GlyGly-CTERM putative protein-sorting domain. Many proteins with this domain are putative outer membrane proteins (OMPs) with predicted beta strand-forming repeats. 0 -333042 cl28222 COG1991 Uncharacterized protein, UPF0333 family [Function unknown]. Members of this protein family are short proteins that consist largely of the archaeal class III signal peptide (see pfam04021). Members are encoded in a gene cassette between archaeosortase D (TIGR04175) and its PIP-CTERM target protein (TIGR04173). 0 -333077 cl28257 SpsG Spore coat polysaccharide biosynthesis protein SpsG, predicted glycosyltransferase [Cell wall/membrane/envelope biogenesis]. This protein is found in association with enzymes involved in the biosynthesis of pseudaminic acid, a component of polysaccharide in certain Pseudomonas strains as well as a modification of flagellin in Campylobacter and Hellicobacter. The role of this protein is unclear, although it may participate in N-acetylation in conjunction with, or in the absence of PseH (TIGR03585) as it often scores above the trusted cutoff to pfam00583 representing a family of acetyltransferases. 0 -333089 cl28269 CitF Citrate lyase, alpha subunit (CitF). This is a model of the alpha subunit of the holoenzyme citrate lyase (EC 4.1.3.6) composed of alpha (EC 2.8.3.10), beta (EC 4.1.3.34), and acyl carrier protein subunits in a stoichiometric relationship of 6:6:6. Citrate lyase is an enzyme which converts citrate to oxaloacetate. In bacteria, this reaction is involved in citrate fermentation. The alpha subunit catalyzes the reaction Acetyl-CoA + citrate = acetate + (3S)-citryl-CoA. The seed contains an experimentally characterized member from Lactococcus lactis subsp. lactis. The model covers both Gram positive and Gram negative bacteria. It is quite robust with queries scoring either quite well or quite poorly against the model. There are currently no hits in between the noise cutoff and trusted cutoff. [Energy metabolism, Fermentation] 0 -333147 cl28327 PHA02142 N/A. The member of this family from Deinococcus radiodurans, a species that withstands and recovers from extensive radiation or dessication damage, is an apparent RNA ligase. It repairs RNA stand breaks in nicked DNA:RNA and RNA:RNA but not DNA:DNA duplexes. It has adenylyltransferase activity associated with the C-terminal domain. Related proteins also in this family are found in Streptomyces avermitilis MA-4680 and in bacteriophage 44RR2.8t. The phage example is unsurprising since one mechanism of host cell defense against phage is cleavage and inactivation of certain tRNA molecules. A fungal sequence from Neurospora crassa scores between trusted and noise cutofffs and may be similar in function. 0 -355709 cl28330 XerC Integrase [Replication, recombination and repair, Mobilome: prophages, transposons]. The phage integrase family describes a number of recombinases with tyrosine active sites that transiently bind covalently to DNA. Many are associated with mobile DNA elements, including phage, transposons, and phase variation loci. This model represents XerD, one of two closely related chromosomal proteins along with XerC (TIGR02224). XerC and XerD are site-specific recombinases which help resolve chromosome dimers to monomers for cell division after DNA replication. In species with a large chromosome and with homologs of XerD on other replicons, the chomosomal copy was preferred for building this model. This model does not detect all XerD, as some apparent XerD examples score below the trusted and noise cutoff scores. XerC and XerD interact with cell division protein FtsK. [DNA metabolism, DNA replication, recombination, and repair] 0 -333168 cl28348 COG1907 Predicted archaeal sugar kinase [General function prediction only]. This protein family contains several archaeal examples of beta-ribofuranosylaminobenzene 5-prime-phosphate synthase (beta-RFAP synthase), an enzyme involved in methanopterin biosynthesis. In some species, two members of this family are found. It is unclear whether both act as beta-RFAP synthase. This family is related to the GHMP kinases (Galactokinase, Homoserine kinase, Mevalonate kinase, Phosphomevalonate kinase). Members are found so far only in the Archaea and in Methylobacterium extorquens. [Unknown function, Enzymes of unknown specificity] 0 -355710 cl28372 Exonuc_V_gamma Exodeoxyribonuclease V, gamma subunit. This model describes the gamma subunit of exodeoxyribonuclease V. Species containing this protein should also have the alpha (TIGR01447) and beta (TIGR00609) subunits. Candidates from Borrelia and from the Chlamydias differ dramatically and score between trusted and noise cutoffs. [DNA metabolism, DNA replication, recombination, and repair] 0 -333203 cl28383 Pus10 tRNA U54 and U55 pseudouridine synthase Pus10 [Translation, ribosomal structure and biogenesis]. Members of this family show twilight-zone similarity to several predicted RNA pseudouridine synthases. All trusted members of this family are archaeal. Several eukaryotic homologs lack N-terminal homology including two CXXC motifs. [Hypothetical proteins, Conserved] 0 -333258 cl28438 Phage_Coat_Gp8 Phage major coat protein, Gp8. major coat protein 0 -333259 cl28439 Pox_I6 Poxvirus I6-like family. Hypothetical protein; Provisional 0 -333264 cl28444 Polyoma_coat2 Polyomavirus coat protein. VP3; Provisional 0 -355711 cl28445 PlantTI N/A. Plant trypsin inhibitors such as squash trypsin inhibitor. Plant proteinase inhibitors play important roles in natural plant defense. Proteinase inhibitors from squash seeds form an uniform family of small proteins cross-linked with three disulfide bridges. 0 -333282 cl28462 pnk N/A. NAD kinase 0 -333305 cl28485 RlmM 23S rRNA C2498 (ribose-2'-O)-methylase RlmM [Translation, ribosomal structure and biogenesis]. putative 23S rRNA C2498 ribose 2'-O-ribose methyltransferase; Provisional 0 -333312 cl28492 PheB ACT domain-containing protein [General function prediction only]. hypothetical protein; Provisional 0 -333347 cl28527 HYS2 Archaeal DNA polymerase II, small subunit/DNA polymerase delta, subunit B [Replication, recombination and repair]. DNA polymerase II small subunit; Validated 0 -333351 cl28531 ENDO3c Thermostable 8-oxoguanine DNA glycosylase [Replication, recombination and repair, Defense mechanisms]. N-glycosylase/DNA lyase; Provisional 0 -333356 cl28536 COG5412 Phage-related protein [Mobilome: prophages, transposons]. membrane protein P6 0 -355712 cl28539 PRK14982 N/A. This enzyme, found in cyanobacteria, reduces a long-chain (mainly C16 or C18) fatty acyl ACP ester to its corresponding fatty aldehyde, releasing the acyl carrier protein (ACP). NADPH or NADH is the reductant for this reaction. This enzyme may be distantly related to the short-chain dehydrogenase or reductase (SDR) family (pfam00106). The purpose of this reaction is in the first step of alkane biosynthesis (GenProp0942). [Central intermediary metabolism, Other] 0 -333370 cl28550 PilV Tfp pilus assembly protein PilV [Cell motility, Extracellular structures]. Pilus systems categorized as type IV pilins differ greatly from one another, with some showing greater similarty to type II or type III secretion systems than to each other. Members of this protein family represent the PilV protein of type IV pilus systems as found in Pseudomonas aeruginosa PAO1, Pseudomonas syringae DC3000, Neisseria meningitidis MC58, Xylella fastidiosa 9a5c, etc. [Cell envelope, Surface structures, Protein fate, Protein modification and repair] 0 -333390 cl28570 CoxE Uncharacterized conserved protein, contains von Willebrand factor type A (vWA) domain [Function unknown]. 0 -333397 cl28577 MVD1 Mevalonate pyrophosphate decarboxylase [Lipid transport and metabolism]. diphosphomevalonate decarboxylase 0 -333400 cl28580 EntD 4'-phosphopantetheinyl transferase EntD (siderophore biosynthesis) [Secondary metabolites biosynthesis, transport and catabolism]. phosphopantetheinyltransferase component of enterobactin synthase multienzyme complex; Provisional 0 -355713 cl28581 PRK15430 N/A. This uncharacterized protein is predicted to have many membrane-spanning domains. [Transport and binding proteins, Unknown substrate] 0 -333409 cl28589 YciW Alkylhydroperoxidase family enzyme, contains CxxC motif [Inorganic ion transport and metabolism]. Members of this family are alkylhydroperoxidases, which catalyze the reduction of peroxides to their corresponding alcohols via oxidation of cysteine residues. In these alkylhydroperoxidases, the cysteines are located in a conserved -CXXC- motif located towards the COOH terminus. In Mycobacterium tuberculosis, two non-homologous alkylhydroperoxidases, AhpD and AhpC, are found in the same operon. [Cellular processes, Detoxification] 0 -333416 cl28596 NhaC Na+/H+ antiporter NhaC [Energy production and conversion]. A single member of the NhaC family, a protein from Bacillus firmus, has been functionally characterized.It is involved in pH homeostasis and sodium extrusion. Members of the NhaC family are found in both Gram-negative bacteria and Gram-positive bacteria. Intriguingly, archaeal homolog ArcD (just outside boundaries of family) has been identified as an arginine/ornithine antiporter. [Transport and binding proteins, Cations and iron carrying compounds] 0 -333419 cl28599 COG1318 Predicted transcriptional regulator [Transcription]. This model describes a common domain shared by two different families of proteins, each of which occurs regularly next to its corresponding partner family, a probable regulatory with homology to KaiC. By implication, this protein family likely is also involved in sensory transduction and/or regulation. 0 -355714 cl28607 PHA03402 N/A. hypothetical protein; Provisional 0 -333429 cl28609 PHA03178 N/A. UL43 envelope protein; Provisional 0 -355715 cl28610 Herpes_HEPA Herpesvirus DNA helicase/primase complex associated protein. hypothetical protein; Provisional 0 -333432 cl28612 PHA03128 N/A. dUTPase; Provisional 0 -333435 cl28615 PHA02681 N/A. putative IMV membrane protein; Provisional 0 -333436 cl28616 PHA02670 N/A. GM-CSF/IL-2 inhibition factor; Provisional 0 -333439 cl28619 PHA03415 N/A. virion protein; Provisional 0 -333447 cl28627 PLN00046 N/A. Members of this family are the PsaO protein of photosystem I. This protein is found in chloroplasts but not in Cyanobacteria. 0 -333448 cl28628 Reoviridae_Vp9 Reoviridae VP9. This model, broader than related pfam08978, describes proteins VP9 in Coltivirus, and proteins with various designations in the seadornavirus group: VP9 in Banna virus, VP10 in Liao ning virus, and VP11 in Kadipiro virus. 0 -333450 cl28630 PRK15358 N/A. pathogenicity island 2 effector protein SseG; Provisional 0 -333451 cl28631 PRK15355 N/A. This model represents the conserved C-terminal domain of a protein conserved in across species in the bacterial type III secretion apparatus. This protein is designated YscI (Yop proteins translocation protein I) in Yersinia and HrpB (hypersensitivity response and pathogenicity protein B) in plant pathogens such as Pseudomonas syringae. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -333457 cl28637 PHA03175 N/A. US22 family homolog; Provisional 0 -333459 cl28639 Orthopox_F14 Orthopoxvirus F14 protein. hypothetical protein; Provisional 0 -333460 cl28640 PHA02693 N/A. Hypothetical protein; Provisional 0 -333461 cl28641 19 N/A. baseplate subunit; Provisional 0 -333462 cl28642 NAD4L NADH dehydrogenase subunit 4L (NAD4L). NADH dehydrogenase subunit 4L; Provisional 0 -333464 cl28644 PRK09781 N/A. hypothetical protein; Provisional 0 -333465 cl28645 CHIPS Chemotaxis-inhibiting protein CHIPS. chemotaxis-inhibiting protein CHIPS; Reviewed 0 -333468 cl28648 Pox_TAP Viral Trans-Activator Protein. late transcription factor VLTF-1; Provisional 0 -333469 cl28649 PHA03043 N/A. putative virulence factor; Provisional 0 -333472 cl28652 PHA02837 N/A. Toll/IL-receptor-like protein; Provisional 0 -333473 cl28653 PHA02836 N/A. hypothetical protein; Provisional 0 -333476 cl28656 PHA02725 N/A. hypothetical protein; Provisional 0 -355716 cl28658 DUF1406 Protein of unknown function (DUF1406). hypothetical protein; Provisional 0 -333479 cl28659 End_beta_propel Catalytic beta propeller domain of bacteriophage endosialidase. This domain family is found in bacteria and viruses, and is approximately 80 amino acids in length.This domain is the beta barrel domain of bacteriophage endosialidase which represents the one of the two sialic acid binding sites of the enzyme. The domain is nested in the beta propeller domain of the endosialidase enzyme. The endosialidase protein complexes to form homotrimeric molecules. 0 -333481 cl28661 DUF2717 Protein of unknown function (DUF2717). hypothetical protein 0 -333482 cl28662 RepA1_leader Tap RepA1 leader peptide. This protein is a translated leader peptide that actis in the regulation of the expression of the plasmid replication protein RepA in incF2 group plasmids. [Mobile and extrachromosomal element functions, Plasmid functions] 0 -333484 cl28664 Amb_V_allergen Amb V Allergen. Amb V is an Ambrosia sp (ragweed) pollen allergen. Amb t V has been shown to contain a C-terminal helix as the major T cell epitope. Free sulphhydryl groups also play a major role in the T cell recognition of cross-reactivity T cell epitopes within these related allergens. 0 -333485 cl28665 PapG_CBD N/A. PapG, the adhesin of the P-pili, is situated at the tip and is only a minor component of the whole pilus structure. A two-domain structure has been postulated for PapG; a carbohydrate binding N-terminus (this domain) and chaperone binding C-terminus. The carbohydrate-binding domain interacts with the receptor glycan. 0 -333703 cl28883 PA N/A. PA_M28_1_3: Protease-associated (PA) domain, peptidase family M28, subfamily-1, subgroup 3. A subgroup of PA-domain containing proteins belonging to the peptidase family M28. Family M28 contains aminopeptidases and carboxypeptidases, and has co-catalytic zinc ions. The PA domain is an insert domain in a diverse fraction of proteases. The significance of the PA domain to many of the proteins in which it is inserted is undetermined. It may be a protein-protein interaction domain. At peptidase active sites, the PA domain may participate in substrate binding and/or promoting conformational changes, which influence the stability and accessibility of the site to substrate. Proteins into which the PA domain is inserted include the following members of the peptidase family M28: i) prostate-specific membrane antigen (PSMA), ii) yeast aminopeptidase Y, and ii) human TfR (transferrin receptor)1 and human TfR2. The proteins listed above belong to other subgroups; relatively little is known about proteins in this subgroup. 0 -355771 cl28885 RecA-like_NTPases N/A. RadB. The archaeal protein radB shares similarity radA, the archaeal functional homologue to the bacterial RecA. The precise function of radB is unclear. 0 -355772 cl28888 TIM_phosphate_binding N/A. Old yellow enzyme (OYE)-related FMN binding domain, group 5. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. 0 -355773 cl28889 CA_like Cadherin repeat-like domain. This domain is found in a range of enzymes that act on branched substrates - isoamylase, pullulanase and branching enzyme. This family also contains the beta subunit of 5' AMP activated kinase. 0 -333710 cl28890 FYVE_like_SF FYVE domain like superfamily. Protein piccolo, also termed aczonin, is a neuron-specific presynaptic active zone scaffolding protein that mainly interacts with a detergent-resistant cytoskeletal-like subcellular fraction and is involved in the organization of the interplay between neurotransmitter vesicles, the cytoskeleton, and the plasma membrane at synaptic active zones. It binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. It also functions as a presynaptic low-affinity Ca2+ sensor and has been implicated in Ca2+ regulation of neurotransmitter release. Piccolo is a multi-domain protein containing two N-terminal FYVE zinc fingers, a polyproline tract, and a PDZ domain and two C-terminal C2 domains. This family corresponds to the second FYVE domain, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. 0 -333711 cl28891 ParB_N_Srx ParB N-terminal domain and sulfiredoxin protein-related families. This family represents domains related to the N-terminal domain of ParB, a DNA-binding component of the prokaryotic parABS partitioning system, fused to a variety of C-terminal domains, including S-adenosylmethionine-dependent methyltransferase-like domains and DUF4417. parABS contributes to the efficient segregation of chromosomes and low-copy number plasmids to daughter cells during prokaryotic cell division. The process includes the parA (Walker box) ATPase, the ParB DNA-binding protein and a parS cis-acting DNA sites. Binding of ParB to centromere-like parS sites is followed by non-specific binding to DNA ("spreading", which has been implicated in gene silencing in plasmid P1) and oligomerization of additional ParB molecules near the parS sites. It has been proposed that ParB-ParB cross-linking compacts the DNA, binds to parA via the N-terminal region, and leads to parA separating the ParB-parS complexes and the recruitment of the SMC (structural maintenance of chromosomes) complexes. The ParB N-terminal domain of Bacillus subtilis and other species contains a Arginine-rich ParB Box II with residues essential for bridging of the ParB-parS complexes. The arginine-rich ParB Box II consensus (I[VIL]AGERR[FYW]RA[AS] identified in several species is partially conserved with this family and related families. Mutations within the basic columns particularly debilitate spreading from the parS sites and impair SMC recruitment. The C-terminal domain contains a HTH DNA-binding motif and is the primary homo-dimerization domain, and binds to parS DNA sites. Additional homo-dimerization contacts are found along the N-terminal domain, but dimerization of the N-terminus may only occur after concentration at ParB-parS foci. 0 -333712 cl28892 CNF1_CheD_YfiH-like cytotoxic necrotizing factor 1 (CNF1), chemotaxis protein CheD and YfiH (DUF152) are distant homologs. This subfamily contains Rho-activating toxins cytotoxic necrotizing factor 1 (CNF1) and dermonecrotic toxin (DNT) from Bordetella species, as well as Burkholderia Lethal Factor 1 (BLF1, also known as BPSL1549), and similar proteins. CNF1 causes alteration of the host cell actin cytoskeleton and promotes bacterial invasion of blood-brain barrier endothelial cells. E. coli CNF1 constitutively activates host small G proteins such as RhoA and Cdc42 by deamidating a glutamine residue essential for GTP hydrolysis. DNT stimulates the assembly of actin stress fibers and focal adhesions by deamidation/polyamination of a specific glutamine of the small GTPase Rho. CNF1 and DNT are A-B toxins composed of an N-terminal receptor-binding (B) domain and a C-terminal enzymatically active (A) domain; their homology is restricted to the catalytic domains at the C termini of the toxins, suggesting that they share a similar molecular mechanism. BLF1, a toxin that inhibits helicase activity of translation factor eIF4A, is similar to the catalytic domain of Escherichia coli CNF1 (CNF1-C); although CNF1-C and BLF1 show little sequence identity, the active sites have the conserved LSGC (Leu, Ser, Gly, Cys) motif. 0 -333713 cl28893 CpcS_T S- and T-type phycobiliprotein (PBP) lyases. This family contains the S-type phycobiliprotein (PBP) lyase (denoted CpcS/CpcU or CpeS/CpeU). PBP lyases are employed by cyanobacteria, red algae, cryptophytes and glaucophytes for light-harvesting. Pigmentation of light-harvesting phycobiliproteins of cyanobacteria and cryptophytes requires covalent attachment of open-chain tetrapyrrole chromophores, the phycobilins, to the apoproteins. PBP lyases mediate this covalent attachment of phycobilin chromophores to apo-PBPs and also ensure the correct binding of the chromophore with regard to the specific attachment site and stereospecificity. The S-type lyase is distantly related to CpcT and similarly adopts a beta-barrel structure with a modified lipocalin fold. Many members of the CpcS/CpcU family ligate phycocyanobilin (PCB) to a specific cysteine residue in the beta-subunits of phycocyanin (CpcB) or phycoerythrocyanin (PecB) and to a related cysteine residue in the alpha and beta subunits of allophycocyanin (AP); they are typically given the designation of "CpcS" or "CpcU". Other members which attach phycoerythrobilin (PEB) to the beta-subunit of phycoerythrin (PE) are given the designation "CpeS" or "CpeU". In Guillardia theta, a Cryptophyte, which has adopted phycoerythrobilin (PEB) biosynthesis from cyanobacteria, phycobiliprotein lyase has been shown to provide structural requirements for the transfer of this chromophore to the specific cysteine residue of the apophycobiliprotein. 0 -333715 cl28895 EFh_PI-PLC EF-hand motif found in eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) isozymes. PRIP-2, also termed phospholipase C-L2, or phospholipase C-epsilon-2 (PLC-epsilon-2), or inactive phospholipase C-like protein 2 (PLC-L2), is a novel inositol 1,4,5-trisphosphate (InsP3) binding protein that exhibits a relatively ubiquitous expression. It functions as a novel negative regulator of B-cell receptor (BCR) signaling and immune responses. PRIP-2 has a primary structure and domain architecture, incorporating a pleckstrin homology (PH) domain, four atypical EF-hand motifs, a PLC catalytic core domain with highly conserved X- and Y-regions split by a linker sequence, and a C-terminal C2 domain, similar to phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11)-delta isoforms. Due to replacement of critical catalytic residues, PRIP-2 does not have PLC enzymatic activity. 0 -333716 cl28896 EFh_MICU EF-hand, calcium binding motif, found in mitochondrial calcium uptake proteins MICU1, MICU2, MICU3, and similar proteins. MICU3, also termed EF-hand domain-containing family member A2 (EFHA2), is a paralog of MICU1 and notably found in the central nervous system (CNS) and skeletal muscle. At present, the precise molecular function of MICU3 remains unclear. It likely has a role in mitochondrial calcium handling. MICU3 contains an N-terminal mitochondrial targeting sequence (MTS) as well as two evolutionarily conserved canonical Ca2+-binding EF-hands separated by a long stretch of residues predicted to form alpha-helices. 0 -355774 cl28897 7tm_GPCRs seven-transmembrane G protein-coupled receptor superfamily. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. M1 is the dominant mAchR subtype involved in learning and memory. It is linked to synaptic plasticity, neuronal excitability, and neuronal differentiation during early development. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. 0 -333718 cl28898 Peptidase_M48_M56 Peptidases M48 (Ste24 endopeptidase or htpX homolog) and M56 (in MecR1 and BlaR1), integral membrane metallopeptidases. This family contains peptidase family M48 subfamily A-like CaaX prenyl protease 1, most of which are uncharacterized. Some of these contain tetratricopeptide (TPR) repeats at the C-terminus. Proteins in this family contain the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. They are thought to be possibly associated with the endoplasmic reticulum (ER), regardless of whether their genes possess the conventional signal motif (KKXX) in the C-terminal. These proteins putatively remove the C-terminal three residues of farnesylated proteins proteolytically. 0 -355775 cl28899 DEAD-like_helicase_N N-terminal helicase domain of the DEAD-box helicase superfamily. Moloney leukemia virus 10-like protein 1 (Mov10L1) binds Piwi-interacting RNA (piRNA) precursors to initiate piRNA processing. Mov10L1 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. 0 -355777 cl28901 MCM MCM helicase family. archaeal MCM proteins form a homohexameric ring homologous to the eukaryotic Mcm2-7 helicase and also function as the replicative helicase at the replication fork 0 -355778 cl28902 ARID ARID/BRIGHT DNA binding domain family. ARID5B, also called MRF1-like protein or modulator recognition factor 2 (MRF-2), is a DNA-binding protein that directly interacts with plant homeodomain (PHD) finger 2 (PHF2) to form a protein kinase A (PKA)-dependent PHF2-ARID5B histone H3K9Me2 demethylase complex, which is a signal-sensing modulator of histone methylation and gene transcription. It also functions as a transcriptional co-regulator for the transcription factor sex determining region Y (SRY)-box protein 9 (Sox9) and promotes chondrogenesis through histone modification. Moreover, ARID5B is highly expressed in the cardiovascular system and may play essential roles in the phenotypic change of smooth muscle cells (SMCs) through its regulation of SMC differentiation. Its polymorphism has been associated with risk for pediatric acute lymphoblastic leukemia (ALL). ARID5B contains an AT-rich DNA-interacting domain (ARID, also known as BRIGHT), which can bind both the major and minor grooves of its target sequences. 0 -355779 cl28903 BACK BACK (BTB and C-terminal Kelch) domain. RhoBTB3 is an atypical member of the Rho GTPase family of signaling proteins, which is characterized by containing a carboxyl terminal extension that harbors two BTB domains and a BACK domain and is capable of assembling cullin 3-dependent ubiquitin ligase complexes. It is a Golgi-associated Rho-related ATPase that regulates the S/G2 transition of the cell cycle by targeting cyclin E for ubiquitylation. RhoBTB3 is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. It binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. It also promotes proteasomal degradation of Hypoxia-inducible factor alpha (HIFalpha) by facilitating hydroxylation and ubiquitination. 0 -355780 cl28904 PTP_DSP_cys cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily. This uncharacterized subfamily belongs to the plant and fungi atypical dual-specificity phosphatases (PFA-DSPs) group of atypical DSPs that present in plants, fungi, kinetoplastids, and slime molds. They share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The PFA-DSP group is composed of active as well as inactive phosphatases. This unknown subgroup contains the conserved the CxxxxxR catalytic motif present in active cysteine phosphatases. 0 -355781 cl28905 PIN_SF PIN (PilT N terminus) domain: Superfamily. This subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 toxin of the VapBC toxin/antitoxin (TA) system. This family belongs to the PIN_VapC4-5_FitB-like subfamily of the VapC (virulence-associated protein C)-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. M. tuberculosis VapC4 interacts with, and cleaves tRNA44Cys-GCA. M. tuberculosis VapC5 has endonucleolytic activity with RNA, this activity is low with dsRNA, and no activity has been demonstrated on dsDNA. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. 0 -355783 cl28907 ArfGap GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs). The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication. 0 -355786 cl28910 MFS Major Facilitator Superfamily. The bacteriochlorophyll delivery (BCD) family, also called PucC family, is composed of the PucC protein and related proteins including LhaA (also called ORF477 and F1696) and bacteriochlorophyll synthase 44.5 kDa chain (also called ORF428). These proteins are found in photosynthetic organisms. Rhodobacter capsulatus LhaA and PucC are implicated in light-harvesting complex 1 and 2 (LH1 and LH2) assembly. PucC may function to shepherd or sequester LH2 alpha and beta proteins to facilitate proper assembly, as well as deliver bacteriochlorophyll a to nascent LH2 complexes. The BCD family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. 0 -355788 cl28912 LGIC_ECD extracellular domain (ECD) of Cys-loop neurotransmitter-gated ion channels (also known as ligand-gated ion channel (LGIC)). This family contains extracellular domain (ECD) of the rho subunit 3 of type-A gamma-aminobutyric acid receptor (GABAAR), encoded by the GABRR3 gene which maps to a different chromosome to that of GABRR1 and GABRR2. While close proximity of the rho1 and rho2 subunit genes suggests that they emerged via a local duplication event, GABRR3 may have arisen by duplication of a GABRR1/GABRR2 progenitor. This subunit homo-oligomerizes to form GABAA-rho receptors (formerly classified as GABA-rho or GABAc receptor), but does not co-assemble with any of the classical GABAAR subunits. In humans, some individuals contain a variant that is predicted to inactivate this gene product. 0 -355789 cl28913 SIMIBI SIMIBI (signal recognition particle, MinD and BioD)-class NTPases. The signal recognition particle (SRP) mediates the transport to or across the plasma membrane in bacteria and the endoplasmic reticulum in eukaryotes. SRP recognizes N-terminal signal sequences of newly synthesized polypeptides at the ribosome. The SRP-polypeptide complex is then targeted to the membrane by an interaction between SRP and its cognated receptor (SR). In mammals, SRP consists of six protein subunits and a 7SL RNA. One of these subunits is a 54 kd protein (SRP54), which is a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 is a multidomain protein that consists of an N-terminal domain, followed by a central G (GTPase) domain and a C-terminal M domain. 0 -355790 cl28914 CD_CSD CHROMO (CHRromatin Organization Modifier) domains and chromo shadow domains. The chromo shadow domain (CSD) is always found in association with a related N-terminal chromo (CHRromatin Organization MOdifier) domain. CSD domains have only been found in proteins that also possess a chromodomain, while chromodomains can exist in isolation. CSDs are found for example in Drosophila and human heterochromatin protein (HP1) and mammalian modifier 1 and modifier 2. HP1 is a highly conserved non-histone chromosomal protein that is evolutionarily conserved from fission yeast to plants and animals. HP1 has two conserved protein-protein interaction domains, a single N-terminal chromodomain (CD) which can bind to histone proteins via methylated lysine residues, and a related C-terminal chromo shadow domain (CSD) which is responsible for the homodimerization and interaction with a number of chromatin-associated non-histone proteins; a flexible hinge region separates the CD and CSD and may bind nucleic acid. The HP1 CSD, in addition to interacting with various proteins bearing the PXVXL motif, also interacts with a region of histone H3 that bears the similar PXXVXL motif. There are three human homologs of HP1 proteins: HP1alpha (also known as Cbx5), HP1beta (also known as Cbx1), and HP1gamma (also known as Cbx3). The CSD domains of all three human HP1 homologs have similar affinities to the PXXVXL motif of histone H3. 0 -355792 cl28916 HipA-like serine/threonine-protein kinases similar to HipA and CtkA. This family contains type II toxin-antitoxin (TA) system HipA family toxins similar to Shewanella oneidensis HipA, a serine/threonine-protein kinase that phosphorylates Glu-tRNA-ligase (GltX), preventing it from being charged, leading to an increase in uncharged tRNA(Glu). This induces amino acid starvation and the stringent response via RelA/SpoT and increased (p)ppGpp levels, which inhibits replication, transcription, translation and cell wall synthesis, reducing growth and leading to persistence and multidrug resistance. HipA is the toxin component of the HipA-HipB TA module that is a major factor in persistence and bioflim formation; its toxic effect is neutralized by its cognate antitoxin HipB. HipA, with HipB, acts as a a corepressor for transcription of the hipBA promoter. In the Shewanella oneidensis HipAB:DNA promoter complex, HipB forms a dimer that binds the duplex operator DNA, with each HipB monomer interacting with separate HipA monomers. The HipAB component of the complex is composed of two HipA and two HipB subunits. 0 -355793 cl28917 Alpha_kinase Alpha kinase family. The alpha kinase family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional serine/threonine protein kinases. The family contains myosin heavy chain kinases, elongation factor-2 kinases, and bifunctional ion channel kinases. These kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+/Ca2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. The alpha-kinase family was named after the unique mode of substrate recognition by its initial members, the Dictyostelium heavy chain kinases, which targeted protein sequences that adopt an alpha-helical conformation. More recently, alpha-kinases were found to also target residues in non-helical regions. 0 -355795 cl28919 ING Inhibitor of growth (ING) domain family. The ING family includes three yeast orthologs, chromatin modification-related protein YNG1 (Yng1p), YNG2 (Yng2p), and transcriptional regulatory protein PHO23 (Pho23p). Yng1p, also termed ING1 homolog 1, is one of the components of the NuA3 histone acetyltransferase (HAT) complex. Yng2p, also termed ESA1-associated factor 4, or ING1 homolog 2, is a subunit of the NuA4 HAT complex. It plays acritical role in intra-S-phase DNA damage response. Pho23p is part of Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Yng1p and Pho23p inhibit p53-dependent transcription. In contrast, Yng2p has the opposite effect. The related mammalian ING proteins act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal leucine zipper-like (LZL) motif-containing ING domain that binds unmodified H3 tails, and a well-characterized C-terminal plant homeodomain (PHD)-type zinc-finger domain, binding with lysine 4-tri-methylated histone H3 (H3K4me3). Although these two regions can bind histones independently, together they increase the apparent association of the ING for the H3 tail. 0 -355796 cl28920 STAT_DBD DNA-binding domain of Signal Transducer and Activator of Transcription (STAT). This family consists of the DNA-binding domain (DBD) of the STAT6 proteins (Signal Transducer and Activator of Transcription 6, or Signal Transduction And Transcription 6). The DNA binding domain has an Ig-like fold. STAT6 is essential for the functional responses of T helper 2 (Th2) lymphocyte mediated by interleukins IL-4 and IL-13. STAT6 almost exclusively mediates the expression of genes activated by these cytokines; IL-4 signaling regulates the expression of genes involved in immune and anti-inflammatory responses. Abnormal production of IL-4 and IL-13 play important roles in the pathogenesis of asthma where upregulation of the Th2 response mediated by IL-4/IL-13 is a main characteristic. STAT6 has a unique extended transactivation domain, not found in other STATs, through which it recruits p300/CBP and NCoA-1, two coactivators needed for transcriptional activation by IL-4. STAT6 activation is linked to Kaposi's sarcoma-associated herpesvirus (KSHV)-associated cancers such as primary effusion lymphoma, a cancerous proliferation of B cells. Studies show that Meningeal solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) represent a histopathologic spectrum linked by STAT6 nuclear expression and recurrent somatic fusions of the two genes, NGFI-A-binding protein 2 (NAB2) and STAT6 (NAB2-STAT6), similar to their soft tissue counterparts. It is associated with local recurrence and late distance metastasis of brain tumors to extracranial sites. 0 -355797 cl28921 STAT_CCD Coiled-coil domain of Signal Transducer and Activator of Transcription (STAT), also called alpha domain. This family consists of the coiled-coil (alpha) domain of the STAT6 proteins (Signal Transducer and Activator of Transcription 6, or Signal Transduction And Transcription 6). SImilar to STAT3 and STAT5. the coiled-coil domain (CCD) of STAT6 is required for constitutive nuclear localization signals (NLS) function; small deletions within the CCD can abrogate nuclear import. Studies show that the CCD binds to the importin-alpha3 NLS adapter in most cells.STAT6 is essential for the functional responses of T helper 2 (Th2) lymphocyte mediated by interleukins IL-4 and IL-13. STAT6 almost exclusively mediates the expression of genes activated by these cytokines; IL-4 signaling regulates the expression of genes involved in immune and anti-inflammatory responses. Abnormal production of IL-4 and IL-13 play important roles in the pathogenesis of asthma where upregulation of the Th2 response mediated by IL-4/IL-13 is a main characteristic. STAT6 has a unique extended transactivation domain, not found in other STATs, through which it recruits p300/CBP and NCoA-1, two coactivators needed for transcriptional activation by IL-4. STAT6 activation is linked to Kaposi's sarcoma-associated herpesvirus (KSHV)-associated cancers such as primary effusion lymphoma, a cancerous proliferation of B cells. Studies show that Meningeal solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) represent a histopathologic spectrum linked by STAT6 nuclear expression and recurrent somatic fusions of the two genes, NGFI-A-binding protein 2 (NAB2) and STAT6 (NAB2-STAT6), similar to their soft tissue counterparts. It is associated with local recurrence and late distance metastasis of brain tumors to extracranial sites. 0 -355798 cl28922 Ubiquitin_like_fold Beta-grasp ubiquitin-like fold. Ubiquitin-like small archaeal modifier protein 2 (SAMP2) shows a beta-grasp fold of Ub, suggesting that this archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. Several Ub-like structural features such as an N-terminal single lysine residue and di-glycine motif at the C-terminus, spatially isolated, implicate formation of a poly-SAMPylated chainpoly-SAMPylation. SAMP2 can form covalent conjugates with its protein targets through an isopeptide linkage via their C-terminal diglycine motif in a streamlined archaeal E1-dependent pathway. It also forms homo-conjugates through the intermolecular isopeptide bond between the C-terminal Gly and the Lys58 side chain, a feature that likely resembles polyubiquitination. SAMP2 is involved in sulfur transfer during tRNA thiolation much like Urm1. This family also includes uncharacterized proteins such as Methanothermococcus thermolithotrophicus Mth1743, Pyrococcus furiosus PF1061 and others, all closely related to proteins MoaD. 0 -355799 cl28923 PIPKc Phosphatidylinositol phosphate kinase (PIPK) catalytic domain family. PIP5K2C (EC 2.7.1.149), also known as 1-phosphatidylinositol 5-phosphate 4-kinase 2-gamma, or PI5P4Kgamma, or diphosphoinositide kinase 2-gamma, or phosphatidylinositol 5-phosphate 4-kinase type II gamma, or PI(5)P 4-kinase type II gamma, or PIP4KII-gamma, or PIP4K2C, may play an important role in the production of phosphatidylinositol bisphosphate (PIP2) in the endoplasmic reticulum. It contributes to the development and maintenance of epithelial cell functional polarity. It also plays a role in the regulation of the immune system via mTORC1 signaling. Moreover, PIP5K2C is involved in arsenic trioxide (ATO) cytotoxicity. It mediates PIP2 generation required for positioning and assembly of bipolar spindles and alteration of PIP5K2C function by ATO may thus lead to spindle abnormalities. 0 -355802 cl28926 23S_rRNA_IVP 23S rRNA-intervening sequence protein. This family describes a protein of unknown function whose structure is a bundle of four long alpha helices. Some of the first members of this family were found encoded in the (atypically large) intervening sequence (IVS) of Leptospira 23S RNA, a region often present in the rRNA gene and removed during rRNA processing without re-ligation. However, this location is not conserved, and naming this protein as a 23S RNA protein is both confusing and inaccurate. 0 -355803 cl28927 Avd_IVP_like proteins similar to the diversity-generating retroelement protein bAvd. A family of functionally uncharacterized bacterial proteins, some of which are encoded by an atypically large intervening sequence present within some 23S rRNA genes. The distantly related bAvd protein, which also forms a homopentamer of four-helix bundles, has been suggested to interact with nucleic acids and a reverse transcriptase. 0 -355804 cl28928 VirB8_like virulence protein VirB8. This family includes the conjugal transfer protein family TrbF, a family of proteins known to be involved in conjugal transfer. The TrbF protein is thought to compose part of the pilus required for transfer. This domain is similar to the type IV secretion system (T4ASS) component VirB8 and possibly has a similar fold to the nuclear transport factor-2 (NTF-2)-like superfamily. 0 -355805 cl28929 VirB10_like VirB10 and similar proteins form part of core complex in Type IV secretion system (T4SS). This family contains DotG/IcmE (VirB10 homolog) and a component of the type IV secretion system (T4SS), and similar proteins. The Dot/Icm system is a T4SS found in the pathogens Legionella and Coxiella and the conjugative apparatus of IncI plasmids; T4SS is employed by pathogenic bacteria to export virulence DNAs and/or proteins directly from the bacterial cytoplasm into the host cell. Similar to T4SS VirB/D components, the Legionella Dot/Icm secretion apparatus contains a critical five-protein sub-assembly that forms the membrane-spanning 'core-complex' (CC), around which all other components assemble. This transmembrane connection is mediated by protein dimer pairs consisting of two inner membrane proteins, DotF and DotG, each independently associating with DotH/DotC/DotD in the outer membrane. 0 -355809 cl28933 Riboflavin_synthase_like Riboflavin synthase and similar proteins. This domain binds to derivatives of lumazine in some proteins. Some proteins have lost the residues involved in binding lumazine. 0 -355820 cl28944 SerA Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism, General function prediction only]. 0 -355839 cl28963 CysH 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase or related enzyme [Amino acid transport and metabolism, Coenzyme transport and metabolism]. hypothetical protein; Provisional 0 -355840 cl28964 HutI Imidazolonepropionase or related amidohydrolase [Secondary metabolites biosynthesis, transport and catabolism]. amidohydrolase; Provisional 0 -355859 cl28983 PRK15467 N/A. This protein is found within operons which code for polyhedral organelles containing the enzyme ethanolamine ammonia lyase. The function of this gene is unknown, although the presence of an N-terminal GxxGxGK motif implies a GTP-binding site. [Energy metabolism, Amino acids and amines] 0 -355860 cl28984 E_set Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the N or C terminus. This domain is found in a number of bacterial chitinases and similar viral proteins. It is organized into a fibronectin III module domain-like fold, comprising only beta strands. Its function is not known, but it may be involved in interaction with the enzyme substrate, chitin. It is separated by a hinge region from the catalytic domain (pfam00704); this hinge region is probably mobile, allowing the N-terminal domain to have different relative positions in solution. 0 -355862 cl28986 Aldolase_Class_I Class I aldolases. 2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family. DERA belongs to the class I aldolases and catalyzes a reversible aldol reaction between acetaldehyde and glyceraldehyde 3-phosphate to generate 2-deoxyribose 5-phosphate. DERA is unique in catalyzing the aldol reaction between two aldehydes, and its broad substrate specificity confers considerable utility as a biocatalyst, offering an environmentally benign alternative to chiral transition metal catalysis of the asymmetric aldol reaction. 0 -355872 cl28996 PolY Y-family of DNA polymerases. These proteins are involved in UV protection. 0 -355886 cl29010 DNA_alkylation DNA alkylation repair enzyme. Proteins in this family are predicted to be DNA alkylation repair enzymes. The structure of a hypothetical protein in this family shows it to adopt a supercoiled alpha helical structure. 0 -355888 cl29012 RNAP_largest_subunit_C Largest subunit of RNA polymerase (RNAP), C-terminal domain. Archaeal RNA polymerase (RNAP), like bacterial RNAP, is a large multi-subunit complex responsible for the synthesis of all RNAs in the cell. The relative positioning of the RNAP core is highly conserved between archaeal RNAP and the three classes of eukaryotic RNAPs. In archaea, the largest subunit is split into two polypeptides, A' and A'', which are encoded by separate genes in an operon. Sequence alignments reveal that the archaeal A'' subunit corresponds to the C-terminal one-third of the RNAPII largest subunit (Rpb1). In subunit A'', several loops in the jaw domain are shorter. The RNAPII Rpb1 interacts with the second-largest subunit (Rpb2) to form the DNA entry and RNA exit channels in addition to the catalytic center of RNA synthesis. 0 -355891 cl29015 ICL_KPHMT N/A. Intracellular glycerol is usually converted to glycerol-3-phosphate in an ATP-requiring phosphorylation reaction catalyzed by glycerol kinase (GlpK) glycerol-3-phosphate activates the antiterminator GlpP. 0 -355910 cl29034 AAT_I N/A. This domain is found in amino transferases, and other enzymes including cysteine desulphurase EC:4.4.1.-. 0 -355920 cl29044 YkuD_like L,D-transpeptidases/carboxypeptidases similar to Bacillus YkuD. hypothetical protein; Provisional 0 -355922 cl29046 Herpes_glycoH_C Herpesvirus glycoprotein H C-terminal domain. envelope glycoprotein H; Provisional 0 -355925 cl29049 DUF5409 Family of unknown function (DUF5409). hypothetical protein; Provisional 0 -355926 cl29050 DUF1611_N Domain of unknown function (DUF1611_N) Rossmann-like domain. Members of this protein family occur in various Clostridial genomes, always in the context of a short peptide and a radical SAM protein predicted to modify the short peptide. PSI-BLAST analysis suggests a sequence relationship to archaeal proteins designated as subunits of an H+-transporting two-sector ATPase. The modified peptide is likely to be a bacteriocin, and this protein is a candidate to act in either maturation or immunity. 0 -355927 cl29051 Bac_rhamnosid6H Bacterial alpha-L-rhamnosidase 6 hairpin glycosidase domain. This family includes human glycogen branching enzyme AGL. This enzyme contains a number of distinct catalytic activities. It has been shown for the yeast homolog GDB1 that mutations in this region disrupt the enzymes Amylo-alpha-1,6-glucosidase (EC:3.2.1.33). 0 -355929 cl29053 ArenaCapSnatch Arenavirus cap snatching domain. This model describes a shared signature region from an RNA endonuclease region associated with cap-snatching for mRNA production by RNA viruses. This domain usually is part of a multifunctional protein, the L protein responsible for RNA-dependent RNA polymerase activity. Cap-snatching is a viral alternative to synthesizing a eukaryotic-like mRNA cap itself. 0 -355945 cl29069 MASE4 Membrane-associated sensor, integral membrane domain. MASE3 (Membrane-Associated SEnsor) is an integral membrane sensor domain of unknown specificity found in histidine kinases, diguanylate cyclases and protein phosphatases in various bacteria and archaea. 0 -355946 cl29070 Mfa2 Fimbrillin-A associated anchor proteins Mfa1 and Mfa2. This is a family of uncharacterized Bacteroidia sequences. 0 -355951 cl29075 ComP_DUS Type IV minor pilin ComP, DNA uptake sequence receptor. ComP-DUS is the DNA-uptake sequence receptor of pathogenic Proteobacteria. ComP is a type IV minor pilin -site on the minor type IV pilin, C one of three minor (low abundance) pilins in pathogenic Proteobacteria Neisseria species (with PilV and PilX). These modulate Tfp-mediated properties without affecting Tfp biogenesis. ComP plays a prominent role in competence at the level of DNA uptake. Comp is exposed on the surface of Neisseria filaments, and it is this that recognizes homotypic DNA through genus-specific DNA uptake sequence (DUS) motifs. 0 -355952 cl29076 Lys-AminoMut_A D-Lysine 5,6-aminomutase TIM-barrel domain of alpha subunit. OAM_alpha is the 12.8kDa, alpha subunit of d-ornithine 4,5-aminomutase, or OAM, an enzyme that converts d-ornithine to 2,4-diaminopentanoic acid by way of radical propagation from an adenosylcobalamin to a pyridoxal 5'-phosphate cofactor. OAM is an alpha2-beta2 heterodimer comprising two strongly associating subunits. The packing of the alpha subunits against the beta helps to form the substrate and co-factor binding-regions. 0 -355953 cl29077 GH_D Glycoside hydrolases, clan D. This family around 100 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides, Prevotella and Prevotella species. The function of this family remains unknown. 0 -355956 cl29080 Glyco_hydro_32C Glycosyl hydrolases family 32 C terminal. This family consists of uncharacterized proteins around 500 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as Glycosyl hydrolases, but the function of this protein is unknown. 0 -355959 cl29083 Spaetzle Spaetzle. This family of proteins are nerve growth factor-like ligands required in the pathway that establishes the dorsal-ventral pattern of the embryo. They form a cystine knot structure. 0 -355964 cl29088 NAD_binding_11 NAD-binding of NADP-dependent 3-hydroxyisobutyrate dehydrogenase. NADH-dependent gamma-hydroxybutyrate dehydrogenase; Provisional 0 -355965 cl29089 greB N/A. transcription elongation factor regulatory protein; Validated 0 -355966 cl29090 P5CR_dimer Pyrroline-5-carboxylate reductase dimerization. pyrroline-5-carboxylate reductase; Reviewed 0 -355968 cl29092 TPR_20 Tetratricopeptide repeat. This domain is found at the C-terminus of protein kinase G and contains a tetratricopeptide repeat (TPR). 0 -355969 cl29093 SynN N/A. This domain includes syntaxin-like domains including from the Vam3p protein. 0 -355970 cl29094 AFG1_ATPase AFG1-like ATPase. This P-loop motif-containing family of proteins includes AFG1, LACE1 and ZapE. ATPase family gene 1 (AFG1) is a 377 amino acid yeast protein with an ATPase motif typical of the family. LACE1, the mammalian homolog of AFG1, is a mitochondrial integral membrane protein that is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. It has also been demonstrated that LACE1 mediates degradation of nuclear-encoded complex IV subunits COX4 (cytochrome c oxidase 4), COX5A and COX6A, and is required for normal activity of complexes III and IV of the respiratory chain. ZapE is a cell division protein found in Gram-negative bacteria. The bacterial cell division process relies on the assembly, positioning, and constriction of FtsZ ring (the so-called Z-ring), a ring-like network that marks the future site of the septum of bacterial cell division. ZapE is a Z-ring associated protein required for cell division under low-oxygen conditions. It is an ATPase that appears at the constricting Z-ring late in cell division. It reduces the stability of FtsZ polymers in the presence of ATP in vitro. 0 -355975 cl29099 tig N/A. Trigger factor is a ribosome-associated molecular chaperone and is the first chaperone to interact with nascent polypeptide. Trigger factor can bind at the same time as the signal recognition particle (SRP), but is excluded by the SRP receptor (FtsY). The central domain of trigger factor has peptidyl-prolyl cis/trans isomerase activity. This protein is found in a single copy in virtually every bacterial genome. [Protein fate, Protein folding and stabilization] 0 -355976 cl29100 MutL MutL protein. This small family includes, so far, an uncharacterized protein from E. coli O157:H7 and GlmL from Clostridium tetanomorphum and Clostridium cochlearium. GlmL is located between the genes for the two subunits, epsilon (GlmE) and sigma (GlmS), of the coenzyme-B12-dependent glutamate mutase (methylaspartate mutase), the first enzyme in a pathway of glutamate fermentation. Members shows significant sequence similarity to the hydantoinase branch of the hydantoinase/oxoprolinase family (pfam01968). 0 -355981 cl29105 FLgD_tudor FlgD Tudor-like domain. flagellar basal body rod modification protein; Reviewed 0 -355982 cl29106 ACT ACT domain. ACT domains bind to amino acids and regulate associated enzyme domains. 0 -355983 cl29107 Ligase_CoA CoA-ligase. This domain contains the catalytic domain from Succinyl-CoA ligase alpha subunit and other related enzymes. A conserved histidine is involved in phosphoryl transfer. 0 -355986 cl29110 HSDR_N Type I restriction enzyme R protein N-terminus (HSDR_N). This family consists of a number of N terminal regions found in type I restriction enzyme R (HSDR) proteins. Restriction and modification (R/M) systems are found in a wide variety of prokaryotes and are thought to protect the host bacterium from the uptake of foreign DNA. Type I restriction and modification systems are encoded by three genes: hsdR, hsdM, and hsdS. The three polypeptides, HsdR, HsdM, and HsdS, often assemble to give an enzyme (R2M2S1) that modifies hemimethylated DNA and restricts unmethylated DNA. 0 -355987 cl29111 2_5_RNA_ligase2 2'-5' RNA ligase superfamily. Cyclic phosphodiesterase (CPDase) is involved in the tRNA splicing pathway. This protein exhibits a bilobal arrangement of two alpha-beta modules. Two antiparallel helices are found on the outer side of each lobe and frame an antiparallel beta-sheet that is wrapped around an accessible cleft. Moreover, the beta-strands of each lobe interact with the other lobe. The central water-filled cavity houses the enzyme's active site. 0 -355989 cl29113 LRR_RI N/A. Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1). 0 -355990 cl29114 BamD BamD lipoprotein, a component of the beta-barrel assembly machinery. BamD, also called YfiO, is part of the beta-barrel assembly machinery (BAM), which is essential for the folding and insertion of outer membrane proteins (OMPs) in the OM of Gram-negative bacteria. Transmembrane OMPs carry out important functions including nutrient and waste management, cell adhesion, and structural roles. The BAM complex is composed of the beta-barrel OMP BamA (also called Omp85/YaeT) and four lipoproteins BamBCDE. BamD is the only BAM lipoprotein required for viability. Both BamA and BamD are broadly distributed in Gram-negative bacteria, and may constitute the core of the BAM complex. BamD contains five Tetratricopeptide repeats (TPRs). The three TPRs at the N-terminus may participate in interaction with substrates, while the two TPRs in the C-terminus may be involved in binding with other BAM components. 0 -355992 cl29116 Cytochrome_C554 Cytochrome c554 and c-prime. This domain carries up to seven CxxCH repeated sequence motifs, characteristic of multi-haem cytochromes. 0 -355998 cl29122 Rotamase_2 PPIC-type PPIASE domain. Rotamases increase the rate of protein folding by catalyzing the interconversion of cis-proline and trans-proline. 0 -355999 cl29123 Phage_int_SAM_5 Phage integrase SAM-like domain. This domain is found in a variety of phage integrase proteins. 0 -356000 cl29124 toxin_MLD toxin effector region membrane localization domain. This is a short helical bundle domain found associated with the catalytic domain of the TcdB toxin from C. difficile. The function of this domain is unknown, but it may be involved in substrate recognition. 0 -356001 cl29125 MarR_2 MarR family. This family is related to pfam001022 and other transcription regulation families (personal obs: Yeats C). 0 -356004 cl29128 Pectate_lyase_3 Pectate lyase superfamily protein. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 281 and 297 amino acids in length. 0 -356008 cl29132 GspH Type II transport protein GspH. GspH is involved in bacterial type II export systems. Like all pilins, GspH has an N-terminus alpha helix. This helix is followed by nine beta strands forming two beta sheets, one of five antiparallel strands and one of four antiparallel strands. GspH is a minor pseudopilin; it is expressed much less than other pseudopilins in the type II secretion pilus (major pilins). The function and localization of minor pseudo-pilins are still to be fully unraveled. It has been suggested that some minor pseudopilins may assemble either into the base or the tip of pili, or both. They function as initiators or regulators of pilus biogenesis and dynamics, and/or as adaptors between various pseudopilin component and other members of the T2SS. 0 -356010 cl29134 Nup192 Nuclear pore complex scaffold, nucleoporins 186/192/205. This is one of the many peptides that make up the nucleoporin complex (NPC), and is found across eukaryotes. The Nup188 subcomplex (Nic96p-Nup188p-Nup192p-Pom152p) is one of at least six that make up the NPC, and as such is symmetrically localized on both faces of the NPC at the nuclear end, being integrally bound to the C-terminus of Pom34p. 0 -356011 cl29135 HpaB_N 4-hydroxyphenylacetate 3-hydroxylase N terminal. HpaB is part of the 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli. HpaB is part of a heterodimeric enzyme that also requires HpaC. The enzyme is NADH-dependent and uses FAD as the redox chromophore. This family also includes PvcC, which may play a role in one of the proposed hydroxylation steps of pyoverdine chromophore biosynthesis. 0 -356012 cl29136 DUF3313 Protein of unknown function (DUF3313). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 187 and 238 amino acids in length. 0 -356013 cl29137 Trypan_PARP Procyclic acidic repetitive protein (PARP). Mitochondrial function depends on the import of hundreds of different proteins synthesized in the cytosol. Protein import is a multi-step pathway which includes the binding of precursor proteins to surface receptors, translocation of the precursor across one or both mitochondrial membranes, and folding and assembly of the imported protein inside the mitochondrion. Most precursor proteins carry amino-terminal targeting signals, called pre-sequences, and are imported into mitochondria via import complexes located in both the outer and the inner membrane (IM). The IM complex, TIM, is made up of at least two proteins which mediate translocation of proteins into the matrix by removing their signal peptide and another pair of proteins, Tim54 and Tim22, that insert the polytopic proteins, that carry internal targetting information, into the inner membrane. 0 -356015 cl29139 Beta-Casp Beta-Casp domain. The beta-CASP domain is found C terminal to the beta-lactamase domain in pre-mRNA 3'-end-processing endonuclease. The active site of this enzyme is located at the interface of these two domains. 0 -356016 cl29140 DUF2815 Protein of unknown function (DUF2815). single-stranded DNA-binding protein 0 -356017 cl29141 PLN02918 N/A. This model is similar to Pyridox_oxidase from Pfam but is designed to find only true pyridoxamine-phosphate oxidase and to ignore the related protein PhzG involved in phenazine biosynthesis. This protein from E. coli was characterized as a homodimer with two FMN per dimer. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridoxine] 0 -356022 cl29146 NADH_4Fe-4S NADH-ubiquinone oxidoreductase-F iron-sulfur binding region. 0 -356023 cl29147 NADH-G_4Fe-4S_3 NADH-ubiquinone oxidoreductase-G iron-sulfur binding region. 0 -356024 cl29148 Proteasome_A_N Proteasome subunit A N-terminal signature. This domain is conserved in the A subunits of the proteasome complex proteins. 0 -356027 cl29151 PMD Plant mobile domain. Members of this family of functionally uncharacterized domains are found in a set of Arabidopsis thaliana hypothetical proteins. 0 -356029 cl29153 Lip_prot_lig_C Bacterial lipoate protein ligase C-terminus. lipoate-protein ligase A; Provisional 0 -356030 cl29154 ClpB_D2-small C-terminal, D2-small domain, of ClpB protein. This is the C-terminal domain of ClpB protein, referred to as the D2-small domain, and is a mixed alpha-beta structure. Compared with the D1-small domain (included in AAA) it lacks the long coiled-coil insertion, and instead of helix C4 contains a beta-strand (e3) that is part of a three stranded beta-pleated sheet. In Thermophilus the whole protein forms a hexamer with the D1-small and D2-small domains located on the outside of the hexamer, with the long coiled-coil being exposed on the surface. The D2-small domain is essential for oligomerisation, forming a tight interface with the D2-large domain of a neighbouring subunit and thereby providing enough binding energy to stabilise the functional assembly. The domain is associated with two Clp_N at the N-terminus as well as AAA and AAA_2. 0 -356041 cl29165 BHD_3 Rad4 beta-hairpin domain 3. This short domain is found in the Rad4 protein. This domain binds to DNA. 0 -356042 cl29166 RNase_E_G Ribonuclease E/G family. This model describes ribonuclease G (formerly CafA, cytoplasmic axial filament protein A), the N-terminal domain of ribonuclease E in which ribonuclease activity resides, and related proteins. In E. coli, both RNase E and RNase G have been shown to play a role in the maturation of the 5' end of 16S RNA. The C-terminal half of RNase E (excluded from the seed alignment for this model) lacks ribonuclease activity but participates in mRNA degradation by organizing the degradosome. [Transcription, Degradation of RNA] 0 -356043 cl29167 PhageMin_Tail Phage-related minor tail protein. This model represents a reasonably well conserved core region of a family of phage tail proteins. The member from phage TP901-1 was characterized as a tail length tape measure protein in that a shortened form of the protein leads to phage with proportionately shorter tails. [Mobile and extrachromosomal element functions, Prophage functions] 0 -356050 cl29174 MethyTransf_Reg Predicted methyltransferase regulatory domain. Members of this family of domains are found in various prokaryotic methyltransferases, where they regulate the activity of the methyltransferase domain. 0 -356056 cl29180 Potass_KdpF F subunit of K+-transporting ATPase (Potass_KdpF). potassium-transporting ATPase subunit F; Provisional 0 -356057 cl29181 ATG27 Autophagy-related protein 27. The cation-independent mannose-6-phosphate receptor contains 15 copies of a repeat. 0 -356058 cl29182 CCT CCT motif. This short motif is found in a number of plant proteins. It appears to be related to the N-terminal half of the CCT motif. The CCT motif is about 45 amino acids long and contains a putative nuclear localization signal within the second half of the CCT motif. 0 -356059 cl29183 RQC RQC domain. The RQC domain, found only in RecQ family enzymes, is a high affinity G4 DNA binding domain. 0 -356079 cl29203 Alpha-mann_mid Alpha mannosidase middle domain. Members of this entry belong to the glycosyl hydrolase family 38, This domain, which is found in the central region adopts a structure consisting of three alpha helices, in an immunoglobulin/albumin-binding domain-like fold. The domain is predominantly found in the enzyme alpha-mannosidase. 0 -356082 cl29206 NikR_C NikR C terminal nickel binding domain. Members of this protein family occur as part of a system for producing iron-only hydrogenases, dependent on radical SAM proteins HydE and HydG and GTPase HydF. One member of this family, TM_1266 from Thermotoga maritima, has a known crystal structure. The small size, about 80 residues, and a distant relationship to the nickel regulator NikR of the CopG transcriptional regulator family suggest a role as a transcription factor. [Regulatory functions, DNA interactions] 0 -356091 cl29215 LeuA_dimer LeuA allosteric (dimerization) domain. This is the C-terminal regulatory (R) domain of alpha-isopropylmalate synthase, which catalyses the first committed step in the leucine biosynthetic pathway. This domain, is an internally duplicated structure with a novel fold. It comprises two similar units that are arranged such that the two -helices pack together in the centre, crossing at an angle of 34 degrees, sandwiched between the two three-stranded, antiparallel beta-sheets. The overall domain is thus constructed as a beta-alpha-beta three-layer sandwich. 0 -356100 cl29224 PulG Type II secretory pathway, pseudopilin PulG [Cell motility, Intracellular trafficking, secretion, and vesicular transport, Extracellular structures]. This model represents GspG, protein G of the main terminal branch of the general secretion pathway, also called type II secretion. It transports folded proteins across the bacterial outer membrane and is widely distributed in Gram-negative pathogens. [Protein fate, Protein and peptide secretion and trafficking, Cellular processes, Pathogenesis] 0 -356102 cl29226 Cadherin Cadherin domain. Cadherins are glycoproteins involved in Ca2+-mediated cell-cell adhesion. Cadherin domains occur as repeats in the extracellular regions which are thought to mediate cell-cell contact when bound to calcium. 0 -356104 cl29228 PrmA Ribosomal protein L11 methyltransferase (PrmA). bifunctional 3-demethylubiquinone-9 3-methyltransferase/ 2-octaprenyl-6-hydroxy phenol methylase; Provisional 0 -356105 cl29229 Sel1 Sel1 repeat. These represent a subfamily of TPR (tetratricopeptide repeat) sequences. 0 -356106 cl29230 EFP_N Elongation factor P (EF-P) KOW-like domain. elongation factor P; Provisional 0 -356111 cl29235 HisG_C HisG, C-terminal domain. This domain corresponds to the C-terminal third of the HisG protein. It is absent in many lineages. 0 -356112 cl29236 tRNA_SAD Threonyl and Alanyl tRNA synthetase second additional domain. The catalytically active form of threonyl/alanyl tRNA synthetase is a dimer. Within the tRNA synthetase class II dimer, the bound tRNA interacts with both monomers making specific interactions with the catalytic domain, the C-terminal domain, and this SAD domain (the second additional domain). The second additional domain is comprised of a pair of perpendicularly orientated antiparallel beta sheets, of four and three strands, respectively, that surround a central alpha helix that forms the core of the domain. 0 -356113 cl29237 PBP5_C Penicillin-binding protein 5, C-terminal domain. Penicillin-binding protein 5 expressed by E. coli functions as a D-alanyl-D-alanine carboxypeptidase. It is composed of two domains that are oriented at approximately right angles to each other. The N-terminal domain (pfam00768) is the catalytic domain. The C-terminal domain featured in this family is organized into a sandwich of two anti-parallel beta-sheets, and has a relatively hydrophobic surface as compared to the N-terminal domain. Its precise function is unknown; it may mediate interactions with other cell wall-synthesising enzymes, thus allowing the protein to be recruited to areas of active cell wall synthesis. It may also function as a linker domain that positions the active site in the catalytic domain closer to the peptidoglycan layer, to allow it to interact with cell wall peptides. 0 -356115 cl29239 PYNP_C Pyrimidine nucleoside phosphorylase C-terminal domain. This domain is found at the C-terminal end of the large alpha/beta domain making up various pyrimidine nucleoside phosphorylases. It has slightly different conformations in different members of this family. For example, in pyrimidine nucleoside phosphorylase (PYNP) there is an added three-stranded anti-parallel beta sheet as compared to other members of the family, such as E. coli thymidine phosphorylase (TP). The domain contains an alpha/ beta hammerhead fold and residues in this domain seem to be important in formation of the homodimer. 0 -356116 cl29240 Alpha-amyl_C2 Alpha-amylase C-terminal beta-sheet domain. This entry represents the beta-sheet domain that is found in several alpha-amylases, usually at the C-terminus. This domain is organised as a five-stranded anti-parallel beta-sheet. 0 -356117 cl29241 CobW_C Cobalamin synthesis protein cobW C-terminal domain. CobW proteins are generally found proximal to the trimeric cobaltochelatase subunit CobN, which is essential for vitamin B12 (cobalamin) biosynthesis. They contain a P-loop nucleotide-binding loop in the N-terminal domain and a histidine-rich region in the C-terminal portion suggesting a role in metal binding, possibly as an intermediary between the cobalt transport and chelation systems. CobW might be involved in cobalt reduction leading to cobalt(I) corrinoids. This entry represents the C-terminal domain found in CobW, as well as in P47K, a Pseudomonas chlororaphis protein needed for nitrile hydratase expression. 0 -356131 cl29255 DnaB_2 Replication initiation and membrane attachment. This model represents the conserved domain of DnaD, part of Bacillus subtilis replication restart primosome, and of a number of phage-associated proteins. Members, both chromosomal or phage-associated, are found in the Bacillus/Clostridium group of Gram-positive bacteria. [DNA metabolism, DNA replication, recombination, and repair, Mobile and extrachromosomal element functions, Prophage functions] 0 -356132 cl29256 Curlin_rpt Curlin associated repeat. major curlin subunit; Provisional 0 -356136 cl29260 BATS Biotin and Thiamin Synthesis associated domain. Biotin synthase (BioB), , catalyses the last step of the biotin biosynthetic pathway. The reaction consists in the introduction of a sulphur atom into dethiobiotin. BioB functions as a homodimer. Thiamin synthesis if a complex process involving at least six gene products (ThiFSGH, ThiI and ThiJ). Two of the proteins required for the biosynthesis of the thiazole moiety of thiamine (vitamin B(1)) are ThiG and ThiH (this entry) and form a heterodimer. Both of these reactions are thought of involve the binding of co-factors, and both function as dimers.. This domain therefore may be involved in co-factor binding or dimerisation. 0 -356138 cl29262 Hyd_WA Propeller. Probable beta-propeller. 0 -356139 cl29263 FhuF Ferric iron reductase protein FhuF, involved in iron transport [Inorganic ion transport and metabolism]. ferric iron reductase involved in ferric hydroximate transport; Provisional 0 -356141 cl29265 TnpB_IS66 IS66 Orf2 like protein. This protein is found in insertion sequences related to IS66. The function of these proteins is uncertain, but they are probably essential for transposition. 0 -356155 cl29279 MutS_III MutS domain III. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam01624, pfam05188, pfam05192 and pfam00488. The mutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. The aligned region corresponds in part with globular domain IV, which is involved in DNA binding, in Thermus aquaticus MutS as characterized in. 0 -356174 cl29298 DapB_C Dihydrodipicolinate reductase, C-terminus. dihydrodipicolinate reductase; Provisional 0 -356182 cl29306 Bac_GDH Bacterial NAD-glutamate dehydrogenase. glutamate dehydrogenase 2; Provisional 0 -356183 cl29307 BON BON domain. This domain is found in a family of osmotic shock protection proteins. It is also found in some Secretins and a group of potential haemolysins. Its likely function is attachment to phospholipid membranes. 0 -356192 cl29316 Transposase_31 Putative transposase, YhgA-like. putative transposase; Provisional 0 -356193 cl29317 GcpE GcpE protein. 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Reviewed 0 -356194 cl29318 OstA_C Organic solvent tolerance protein. organic solvent tolerance protein; Provisional 0 -356195 cl29319 HA2 Helicase associated domain (HA2). This presumed domain is about 90 amino acid residues in length. It is found is a diverse set of RNA helicases. Its function is unknown, however it seems likely to be involved in nucleic acid binding. 0 -356196 cl29320 KilA-N KilA-N domain. N1R/p28-like protein; Provisional 0 -356197 cl29321 ZipA N/A. This family represents the ZipA C-terminal domain. ZipA is involved in septum formation in bacterial cell division. Its C-terminal domain binds FtsZ, a major component of the bacterial septal ring. The structure of this domain is an alpha-beta fold with three alpha helices and a beta sheet of six antiparallel beta strands. The major loops protruding from the beta sheet surface are thought to form a binding site for FtsZ. 0 -356199 cl29323 TPK_B1_binding Thiamin pyrophosphokinase, vitamin B1 binding domain. Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. The structure of thiamin pyrophosphokinase suggest that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 0 -356203 cl29327 DFP DNA / pantothenate metabolism flavoprotein. phosphopantothenate--cysteine ligase; Validated 0 -356214 cl29338 Ribosomal_L11 N/A. The N-terminal domain of Ribosomal protein L11 adopts an alpha/beta fold and is followed by the RNA binding C-terminal domain. 0 -356220 cl29344 PhnA PhnA domain. 0 -356223 cl29347 FtsQ Cell division protein FtsQ. cell division protein FtsQ; Provisional 0 -356227 cl29351 Hexokinase_2 Hexokinase. hexokinase 0 -356233 cl29357 BK_channel_a Calcium-activated BK potassium channel alpha subunit. This family represents a short region in the middle of largely plant proteins that belong to the TCDB:1.A.1.23.2 family of the voltage-gated ion channel superfamily, eg UniProtKB:Q5H8A6, Q5H8A5 and Q4VY51. 0 -356236 cl29360 B5 tRNA synthetase B5 domain. This domain is found in phenylalanine-tRNA synthetase beta subunits. 0 -356237 cl29361 CorC_HlyC Transporter associated domain. This small domain is found in a family of proteins with the DUF21 domain and two CBS domains with this domain found at the C-terminus of the proteins, the domain is also found at the C terminus of some Na+/H+ antiporters. This domain is also found in CorC that is involved in Magnesium and cobalt efflux. The function of this domain is uncertain but might be involved in modulating transport of ion substrates. 0 -356238 cl29362 CO_deh_flav_C CO dehydrogenase flavoprotein C-terminal domain. 0 -356239 cl29363 FAD_binding_7 FAD binding domain of DNA photolyase. All proteins in this family for which functions are known are DNA-photolyases used for the direct repair of UV irradiation induced DNA damage. Some repair 6-4 photoproducts while others repair cyclobutane pyrimidine dimers. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -356240 cl29364 DPBB_1 Lytic transglycolase. Putative EG45-like domain containing protein 1; Provisional 0 -356241 cl29365 Terminase_6 Terminase-like family. This family represents a group of terminase proteins. 0 -356243 cl29367 CCP_MauG Di-haem cytochrome c peroxidase. DHOR is a family of di-haem oxidoredictases. It carries the two characteristic Cys-X-Y-Cys-His haem-binding motifs. The C-terminal high-potential site functions as an electron transfer centre, and the N-terminal low-potential site corresponds to the peroxidatic centre. Its probable function is as a peroxidase. 0 -356244 cl29368 LPMO_10 Lytic polysaccharide mono-oxygenase, cellulose-degrading. spherodin-like protein; Provisional 0 -356246 cl29370 FAR_C C-terminal domain of fatty acyl CoA reductases. This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. 0 -356247 cl29371 Transposase_21 Transposase family tnp2. This family represents a conserved region approximately 260 residues long within a number of hypothetical proteins of unknown function that seem to be specific to C. elegans. Note that this family contains a number of conserved cysteine and histidine residues. 0 -356248 cl29372 FTCD Formiminotransferase domain. 0 -356268 cl29392 UreE N/A. UreE is a urease accessory protein. Urease pfam00449 hydrolyzes urea into ammonia and carbamic acid. 0 -356271 cl29395 CPSase_L_D3 Carbamoyl-phosphate synthetase large chain, oligomerization domain. Carbamoyl-phosphate synthase catalyses the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. 0 -356272 cl29396 Biotin_carb_C Biotin carboxylase C-terminal domain. Biotin carboxylase is a component of the acetyl-CoA carboxylase multi-component enzyme which catalyses the first committed step in fatty acid synthesis in animals, plants and bacteria. Most of the active site residues reported in reference are in this C-terminal domain. 0 -356288 cl29412 PRK06598 N/A. [Amino acid biosynthesis, Aspartate family] 0 -356290 cl29414 RPEL RPEL repeat. The RPEL repeat is named after four conserved amino acids it contains. The RPEL motif binds to actin. 0 -356292 cl29416 Fe_dep_repr_C Iron dependent repressor, metal binding and dimerization domain. iron dependent repressor 0 -356293 cl29417 Ald_Xan_dh_C2 Molybdopterin-binding domain of aldehyde dehydrogenase. Aldehyde oxidase catalyses the conversion of an aldehyde in the presence of oxygen and water to an acid and hydrogen peroxide. The enzyme is a homodimer, and requires FAD, molybdenum and two 2FE-2S clusters as cofactors. Xanthine dehydrogenase catalyses the hydrogenation of xanthine to urate, and also requires FAD, molybdenum and two 2FE-2S clusters as cofactors. This activity is often found in a bifunctional enzyme with xanthine oxidase activity too. The enzyme can be converted from the dehydrogenase form to the oxidase form irreversibly by proteolysis or reversibly through oxidation of sulphydryl groups. 0 -356294 cl29418 Dak2 DAK2 domain. Two types of dihydroxyacetone kinase (glycerone kinase) are described. In yeast and a few bacteria, e.g. Citrobacter freundii, the enzyme is a single chain that uses ATP as phosphoryl donor and is designated EC 2.7.1.29. By contract, E. coli and many other bacterial species have a multisubunit form (EC 2.7.1.-) with a phosphoprotein donor related to PTS transport proteins. This family represents the subunit homologous to the E. coli YcgS subunit. 0 -356296 cl29420 ERCC4 ERCC4 domain. This entry represents a structural motif found in several DNA repair nucleases, such as Rad1/Mus81/XPF endonucleases, and in ATP-dependent helicases. The XPF/Rad1/Mus81-dependent nuclease family specifically cleaves branched structures generated during DNA repair, replication, and recombination, and is essential for maintaining genome stability. The nuclease domain architecture exhibits remarkable similarity to those of restriction endonucleases. 0 -356298 cl29422 B12-binding_2 B12 binding domain. Cobalamin-dependent methionine synthase is a large modular protein that catalyses methyl transfer from methyltetrahydrofolate (CH3-H4folate) to homocysteine. During the catalytic cycle, it supports three distinct methyl transfer reactions, each involving the cobalamin (vitamin B12) cofactor and a substrate bound to its own functional unit. The cobalamin cofactor plays an essential role in this reaction, accepting the methyl group from CH3-H4folate to form methylcob(III)alamin, and in turn donating the methyl group to homocysteine to generate methionine and cob(I)alamin. Methionine synthase is a large enzyme composed of four structurally and functionally distinct modules: the first two modules bind homocysteine and CH3-H4folate, the third module binds the cobalamin cofactor and the C-terminal module binds S-adenosylmethionine. The cobalamin-binding module is composed of two structurally distinct domains: a 4-helical bundle cap domain (residues 651-740 in the Escherichia coli enzyme) and an alpha/beta B12-binding domain (residues 741-896). The 4-helical bundle forms a cap over the alpha/beta domain, which acts to shield the methyl ligand of cobalamin from solvent. Furthermore, in the conversion to the active conformation of this enzyme, the 4-helical cap rotates to allow the cobalamin cofactor to bind the activation domain. The alpha/beta domain is a common cobalamin-binding motif, whereas the 4-helical bundle domain with its methyl cap is a distinctive feature of methionine synthases. 0 -356303 cl29427 PhzC-PhzF Phenazine biosynthesis-like protein. Diaminopimelate epimerase contains two domains of the same alpha/beta fold, both contained in this family. 0 -356304 cl29428 Poly_export Polysaccharide biosynthesis/export protein. This protein family belongs to the larger set of polysaccharide biosynthesis/export proteins described by pfam02563. Members of this family are variable in either containing of lacking a 78-residue insert, but appear to fall within a single clade, nevertheless, where the regions in which the gene is found encode components of the PEP-CTERM/EpsH proposed exosortase protein sorting system. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] 0 -356305 cl29429 Cyanase_C N/A. Cyanate lyase (also known as cyanase) EC:4.2.1.104 is responsible for the hydrolysis of cyanate, allowing organisms that possess the enzyme to overcome the toxicity of environmental cyanate. This enzyme is composed of two domains, an N-terminal helix-turn-helix and this structurally unique C-terminal domain. 0 -356309 cl29433 Bac_transf Bacterial sugar transferase. This Pfam family represents a conserved region from a number of different bacterial sugar transferases, involved in diverse biosynthesis pathways. 0 -356333 cl29457 NAC NAC domain. nascent polypeptide-associated complex protein; Reviewed 0 -356335 cl29459 Glucosaminidase Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase. Eubacterial enzymes distantly related to eukaryotic lysozymes. 0 -356338 cl29462 AICARFT_IMPCHas AICARFT/IMPCHase bienzyme. This is a family of bifunctional enzymes catalysing the last two steps in de novo purine biosynthesis. The bifunctional enzyme is found in both prokaryotes and eukaryotes. The second last step is catalysed by 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), this enzyme catalyses the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate. The last step is catalysed by IMP (Inosine monophosphate) cyclohydrolase (IMPCHase), cyclizing FAICAR (5-formylaminoimidazole-4-carboxamide ribonucleotide) to IMP. 0 -356344 cl29468 RimM RimM N-terminal domain. 16S rRNA-processing protein RimM; Provisional 0 -356345 cl29469 MgtE Divalent cation transporter. This region is the integral membrane part of the eubacterial MgtE family of magnesium transporters. Related regions are found also in archaebacterial and eukaryotic proteins. All the archaebacterial and eukaryotic examples have two copies of the region. This suggests that the eubacterial examples may act as dimers. Members of this family probably transport Mg2+ or other divalent cations into the cell. The alignment contains two highly conserved aspartates that may be involved in cation binding (Bateman A unpubl.) 0 -356350 cl29474 Flavokinase Riboflavin kinase. Riboflavin is converted into catalytically active cofactors (FAD and FMN) by the actions of riboflavin kinase, which converts it into FMN, and FAD synthetase, which adenylates FMN to FAD. Eukaryotes usually have two separate enzymes, while most prokaryotes have a single bifunctional protein that can carry out both catalyses, although exceptions occur in both cases. While eukaryotic monofunctional riboflavin kinase is orthologous to the bifunctional prokaryotic enzyme. the monofunctional FAD synthetase differs from its prokaryotic counterpart, and is instead related to the PAPS-reductase family. The bacterial FAD synthetase that is part of the bifunctional enzyme has remote similarity to nucleotidyl transferases and, hence, it may be involved in the adenylylation reaction of FAD synthetases. This entry represents riboflavin kinase, which occurs as part of a bifunctional enzyme or a stand-alone enzyme. 0 -356351 cl29475 HrcA HrcA protein C terminal domain. HrcA is found to negatively regulate the transcription of heat shock genes. HrcA contains an amino terminal helix-turn-helix domain, however this corresponds to the carboxy terminal domain. 0 -356358 cl29482 UPF0051 Uncharacterized protein family (UPF0051). This protein, SufD, forms a cytosolic complex SufBCD. This complex enhances the cysteine desulfurase of SufSE. The system, together with SufA, is believed to act in iron-sulfur cluster formation during oxidative stress. SufB and SufD are homologous. Note that SufC belongs to the family of ABC transporter ATP binding proteins, so this protein, encoded by an adjacent gene, has often been annotated as a transporter component. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -356362 cl29486 IlvC Acetohydroxy acid isomeroreductase, catalytic domain. ketol-acid reductoisomerase; Provisional 0 -356366 cl29490 Porphobil_deam Porphobilinogen deaminase, dipyromethane cofactor binding domain. porphobilinogen deaminase; Provisional 0 -356379 cl29503 GreA_GreB Transcription elongation factor, GreA/GreB, C-term. This domain has an FKBP-like fold. 0 -356391 cl29515 NifU NifU-like domain. This is an alignment of the carboxy-terminal domain. This is the only common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown. 0 -356401 cl29525 FliMN_C Type III flagellar switch regulator (C-ring) FliN C-term. flagellar motor switch protein; Validated 0 -356402 cl29526 SecA_PP_bind SecA preprotein cross-linking domain. The SecA ATPase is involved in the insertion and retraction of preproteins through the plasma membrane. This domain has been found to cross-link to preproteins, thought to indicate a role in preprotein binding. The pre-protein cross-linking domain is comprised of two sub domains that are inserted within the ATPase domain. 0 -356403 cl29527 ATase N/A. This domain is a 3 helical bundle. 0 -356405 cl29529 Transgly Transglycosylase. This family is one of the transglycosylases involved in the late stages of peptidoglycan biosynthesis. Members tend to be small, about 240 amino acids in length, and consist almost entirely of a domain described by pfam00912 for transglycosylases. Species with this protein will have several other transglycosylases as well. All species with this protein are Proteobacteria that produce murein (peptidoglycan). [Cell envelope, Biosynthesis and degradation of murein sacculus and peptidoglycan] 0 -356406 cl29530 EF_TS Elongation factor TS. elongation factor Ts 0 -356408 cl29532 Peptidase_M17 N/A. The two associated zinc ions and the active site are entirely enclosed within the C-terminal catalytic domain in leucine aminopeptidase. 0 -356409 cl29533 XPG_I XPG I-region. domain in nucleases 0 -356410 cl29534 Histone_HNS H-NS histone family. 0 -356411 cl29535 HNS Domain in histone-like proteins of HNS family. global DNA-binding transcriptional dual regulator H-NS; Provisional 0 -356422 cl29546 Pumilio Pumilio-family RNA binding domain. Puf repeats (aka PUM-HD, Pumilio homology domain) are necessary and sufficient for sequence specific RNA binding in fly Pumilio and worm FBF-1 and FBF-2. Both proteins function as translational repressors in early embryonic development by binding sequences in the 3' UTR of target mRNAs (e.g. the nanos response element (NRE) in fly Hunchback mRNA, or the point mutation element (PME) in worm fem-3 mRNA). Other proteins that contain Puf domains are also plausible RNA binding proteins. Puf domains usually occur as a tandem repeat of 8 domains. The Pfam model does not necessarily recognize all 8 repeats in all sequences; some sequences appear to have 5 or 6 repeats on initial analysis, but further analysis suggests the presence of additional divergent repeats. Structures of PUF repeat proteins show they consist of a two helix structure. 0 -356425 cl29549 beta_clamp N/A. A dimer of the beta subunit of DNA polymerase beta forms a ring which encircles duplex DNA. Each monomer contains three domains of identical topology and DNA clamp fold. 0 -356431 cl29555 IQ IQ calmodulin-binding motif. Short calmodulin-binding motif containing conserved Ile and Gln residues. 0 -356432 cl29556 Glycos_transf_3 Glycosyl transferase family, a/b domain. anthranilate phosphoribosyltransferase; Provisional 0 -356436 cl29560 SNc Staphylococcal nuclease homologues. 0 -356437 cl29561 EAL N/A. This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues. The EAL domain is a good candidate for a diguanylate phosphodiesterase function. The domain contains many conserved acidic residues that could participate in metal binding and might form the phosphodiesterase active site. 0 -356438 cl29562 Ribosomal_L7_L12 N/A. Ribosomal protein L7/L12. Ribosomal protein L7/L12 refers to the large ribosomal subunit proteins L7 and L12, which are identical except that L7 is acetylated at the N terminus. It is a component of the L7/L12 stalk, which is located at the surface of the ribosome. The stalk base consists of a portion of the 23S rRNA and ribosomal proteins L11 and L10. An extended C-terminal helix of L10 provides the binding site for L7/L12. L7/L12 consists of two domains joined by a flexible hinge, with the helical N-terminal domain (NTD) forming pairs of homodimers that bind to the extended helix of L10. It is the only multimeric ribosomal component, with either four or six copies per ribosome that occur as two or three dimers bound to the L10 helix. L7/L12 is the only ribosomal protein that does not interact directly with rRNA, but instead has indirect interactions through L10. The globular C-terminal domains of L7/L12 are highly mobile. They are exposed to the cytoplasm and contain binding sites for other molecules. Initiation factors, elongation factors, and release factors are known to interact with the L7/L12 stalk during their GTP-dependent cycles. The binding site for the factors EF-Tu and EF-G comprises L7/L12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. Removal of L7/L12 has minimal effect on factor binding and it has been proposed that L7/L12 induces the catalytically active conformation of EF-Tu and EF-G, thereby stimulating the GTPase activity of both factors. In eukaryotes, the proteins that perform the equivalent function to L7/L12 are called P1 and P2, which do not share sequence similarity with L7/L12. However, a bacterial L7/L12 homolog is found in some eukaryotes, in mitochondria and chloroplasts. In archaea, the protein equivalent to L7/L12 is called aL12 or L12p, but it is closer in sequence to P1 and P2 than to L7/L12. 0 -356455 cl29579 HisKA N/A. dimerization and phospho-acceptor domain of histidine kinases. 0 -356460 cl29584 RF-1 RF-1 domain. hypothetical protein; Provisional 0 -356469 cl29593 WD40 N/A. Note that these repeats are permuted with respect to the structural repeats (blades) of the beta propeller domain. 0 -356470 cl29594 PI-PLC-Y Phosphatidylinositol-specific phospholipase C, Y domain. Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. 0 -356471 cl29595 PTS_IIB_glc N/A. PTS_IIB, PTS system, glucose/sucrose specific IIB subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. This family is one of four structurally and functionally distinct group IIB PTS system cytoplasmic enzymes, necessary for the uptake of carbohydrates across the cytoplasmic membrane and their phosphorylation 0 -356474 cl29598 Proton_antipo_M Proton-conducting membrane transporter. This model describes the 14th (based on E. coli) structural gene, N, of bacterial and chloroplast energy-transducing NADH (or NADPH) dehydrogenases. This model does not describe any subunit of the mitochondrial complex I (for which the subunit composition is very different), nor NADH dehydrogenases that are not coupled to ion transport. The Enzyme Commission designation 1.6.5.3, for NADH dehydrogenase (ubiquinone), is applied broadly, perhaps unfortunately, even if the quinone is menaquinone (Thermus, Mycobacterium) or plastoquinone (chloroplast). For chloroplast members, the name NADH-plastoquinone oxidoreductase is used for the complex and this protein is designated as subunit 2 or B. This model also includes a subunit of a related complex in the archaeal methanogen, Methanosarcina mazei, in which F420H2 replaces NADH and 2-hydroxyphenazine replaces the quinone. [Energy metabolism, Electron transport] 0 -356484 cl29608 ZnF_GATA N/A. This domain uses four cysteine residues to coordinate a zinc ion. This domain binds to DNA. Two GATA zinc fingers are found in the GATA transcription factors. However there are several proteins which only contain a single copy of the domain. 0 -356503 cl29627 BglB Beta-glucosidase/6-phospho-beta-glucosidase/beta-galactosidase [Carbohydrate transport and metabolism]. 0 -356504 cl29628 Pyruvate_Kinase N/A. This domain of the is actually a small beta-barrel domain nested within a larger TIM barrel. The active site is found in a cleft between the two domains. 0 -356529 cl29653 Pilin Pilin (bacterial filament). Proteins with only the short N-terminal methylation site are not separated from the noise. The Prosite pattern detects those better. 0 -356530 cl29654 CCP Complement control protein (CCP) modules (aka short consensus repeats SCRs or SUSHI repeats) have been identified in several proteins of the complement system. The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. A missense mutation in seventh CCP domain causes deficiency of the b subunit of factor XIII. 0 -356535 cl29659 AAA ATPase family associated with various cellular activities (AAA). ribulose bisphosphate carboxylase/oxygenase activase -RuBisCO activase (RCA); Provisional 0 -356536 cl29660 Ig_like_ice Ig-like domain. This HMM describes a domain of nearly 200 amino acids, found in up to 14 tandem repeats in the C-terminal region of very large protein, in Vibrio parahaemolyticus and related species. 0 -356539 cl29663 exosort_XrtP exosortase P. 0 -356542 cl29666 FusC_FusB Fusidic acid resistance protein (FusC/FusB). FBP_C is a family from the C terminal end of fibronectin-binding proteins. It forms an extended four-cysteine zinc-finger with a unique structural fold. Fibronectin-binding proteins bind to elongation factor G - EF-G, which is mediated by the zinc-finger binding to the C-terminus of EF-G. FBPs release ribosomes by competing with them for EF-G. 0 -356547 cl29671 PKD_2 PKD-like family. This PKD-like family is found in various Bacteroidetes species. 0 -356550 cl29674 Retrotrans_gag Retrotransposon gag protein. This family consists of uncharacterized proteins around 110 residues in length and is mainly found in various mammalia species. LDOC1, a member of this family and a novel MZF-1-interacting protein, inhibits NF-kappaB activation and relates with cancer and some other diseases. But the specific function of this family is still unknown. 0 -356559 cl29683 sucC N/A. malate--CoA ligase subunit beta; Provisional 0 -356560 cl29684 Citrate_bind ATP citrate lyase citrate-binding. ATP citrate (pro-S)-lyase 0 -356561 cl29685 LisH_2 LisH. Fibroblast growth factor receptor 1 (FGFR1) oncogene partner (FOP) is a centrosomal protein that is involved in anchoring microtubules to subcellular structures. This domain includes a Lis-homology motif. It forms an alpha helical bundle and is involved in dimerization. 0 -356566 cl29690 PSII_BNR Photosynthesis system II assembly factor YCF48. Ycf48-like protein; Provisional 0 -356569 cl29693 Defensin_beta_2 Beta defensin. Big defensins are antimicrobial peptides. They consist of a hydrophobic N-terminal half, which is active against Gram-positive bacteria, and a cationic C-terminal half, which is active against Gram-negative bacteria. The C-terminal half adopts a beta-defensin-like structure. 0 -356572 cl29696 Peptidase_S30 Potyvirus P1 protease. This family is the P1 protein of the Potyviridae polyproteins that is a serine peptidase at the N-terminus. The catalytic triad in the genome polyprotein of ssRNA positive-strand Brome streak mosaic rymovirus, is His-311, Asp-322 and Ser-355. 0 -356579 cl29703 Tad Putative Flp pilus-assembly TadE/G-like. Members of this small, highly hydrophobic protein family occur in a pilus/secretion-like region that usually is next to an uncharacterized DEAH-box helicase, in Actinobacteria. Members show sequence similarity to the TadE-like family described by pfam07811. The function is unknown. [Unknown function, General] 0 -356580 cl29704 Acetyltransf_3 Acetyltransferase (GNAT) domain. This domain catalyzes N-acetyltransferase reactions. 0 -356581 cl29705 CHB_HEX_C_1 Chitobiase/beta-hexosaminidase C-terminal domain. 0 -356586 cl29710 PPR PPR repeat. This family matches additional variants of the PPR repeat that were not captured by the model for pfam01535. The exact function is not known. 0 -356587 cl29711 AAA_10 AAA-like domain. type IV secretion system ATPase VirB4; Provisional 0 -356590 cl29714 PDDEXK_2 PD-(D/E)XK nuclease family transposase. Several lines of evidence suggest that members of this family (loaded as a fragment mode model to find part-length matches) are associated with transposition, inversion, or recombination. Members are found in small numbers of genomes, but in large copy numbers in many of those species, including over 30 full length and fragmentary members in Treponema denticola. The strongest similarities are usually within rather than between species. PSI-BLAST shows similarity to proteins designated as possible transposases, DNA invertases (resolvases), and recombinases. In the oral pathogenic spirochete Treponema denticola, full-length members are often found near transporters or other membrane proteins. This family includes members of the putative transposase family pfam04754. 0 -356594 cl29718 Rhomboid_N Cytoplasmic N-terminal domain of rhomboid serine protease. This is the N-terminal domain of rhomboid protease. 0 -356601 cl29725 KGG Stress-induced bacterial acidophilic repeat motif. This repeat is found in proteins which are expressed under conditions of stress in bacteria. The repeat contains a highly conserved, characteristic sequence motif,KGG, that is also recognized by plants and lower eukaryotes and repeated in their LEA (late embryogenesis abundant) family of proteins, thereby rendering those proteins bacteriostatic. An example of such an LEA family is LEA_5, pfam00477. Further downstream from this motif is a Walker A, nucleotide binding, motif GXXXXGK(S,T), that in YciG of E coli is QSGGNKSGKS. YciG is expressed as part of a three-gene operon, yciGFE, and this operon is induced by stress and is regulated by RpoS, which controls the general stress-response in E coli. YciG was shown to be important for stationary-phase resistance to thermal stress and in particular to acid stress. 0 -356602 cl29726 TolB Periplasmic component of the Tol biopolymer transport system [Intracellular trafficking, secretion, and vesicular transport]. translocation protein TolB; Provisional 0 -356615 cl29739 DUF2341 Domain of unknown function (DUF2341). hypothetical protein 0 -356618 cl29742 Tiny_TM_bacill Protein of unknown function (Tiny_TM_bacill). This model represents a family of hypothetical proteins, half of which are 40 residues or less in length. Members are found only in spore-forming species. A Gly-rich variable region is followed by a strongly conserved, highly hydrophobic region, predicted to form a transmembrane helix, ending with an invariant Gly. The consensus for this stretch is FALLVVFILLIIV. [Hypothetical proteins, Conserved] 0 -356619 cl29743 AbiEi_1 AbiEi antitoxin C-terminal domain. AbiEi_1 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 0 -356620 cl29744 DUF1956 Domain of unknown function (DUF1956). Members of this family are found in various prokaryotic transcriptional regulator proteins. Their exact function has not, as yet, been identified. 0 -356621 cl29745 Phospholip_A2_3 Prokaryotic phospholipase A2. This family consists of several group XII secretory phospholipase A2 precursor (PLA2G12) (EC:3.1.1.4) proteins. Group XII and group V PLA(2)s are thought to participate in helper T cell immune response through release of immediate second signals and generation of downstream eicosanoids. 0 -356622 cl29746 D5_N D5 N terminal like. This domain is found in D5 proteins of DNA viruses and bacteriophage P4 DNA primases phages. 0 -356624 cl29748 ApbA_C Ketopantoate reductase PanE/ApbA C terminal. 2-dehydropantoate 2-reductase; Provisional 0 -356632 cl29756 Mannitol_dh_C Mannitol dehydrogenase C-terminal domain. D-mannonate oxidoreductase; Provisional 0 -356633 cl29757 TBCC Tubulin binding cofactor C. Members of this family are involved in the folding pathway of tubulins and form a beta helix structure. 0 -356634 cl29758 Gryzun Gryzun, putative trafficking through Golgi. Members of this family are involved in Golgi trafficking. 0 -356637 cl29761 DUF1648 Protein of unknown function (DUF1648). Members of this family are hypothetical proteins expressed by either bacterial or archaeal species. Some of these are annotated as being transmembrane proteins, and in fact many of these sequences contain a high proportion of hydrophobic residues. 0 -356638 cl29762 PP2C_C Protein serine/threonine phosphatase 2C, C-terminal domain. Protein phosphatase 2c; Provisional 0 -356640 cl29764 Cathelicidins Cathelicidin. This family represents a conserved region approximately 60 residues long within secreted phosphoprotein 24 (Spp-24), which seems to be restricted to vertebrates. This is a non-collagenous protein found in bone that is related in sequence to the cystatin family of thiol protease inhibitors. This suggests that Spp-24 could function to modulate the thiol protease activities known to be involved in bone turnover. It is also possible that the intact form of Spp-24 found in bone could be a precursor to a biologically active peptide that coordinates an aspect of bone turnover. 0 -356641 cl29765 s48_45 Sexual stage antigen s48/45 domain. This family contains sexual stage s48/45 antigens from Plasmodium (approximately 450 residues long). These are surface proteins expressed by Plasmodium male and female gametes that have been shown to play a conserved and important role in fertilisation. 0 -356642 cl29766 NDUF_B4 NADH-ubiquinone oxidoreductase B15 subunit (NDUFB4). complex I subunit 0 -356645 cl29769 Poxvirus dsDNA Poxvirus. putative alpha aminitin-sensitive protein; Provisional 0 -356648 cl29772 PRK10015 N/A. putative oxidoreductase FixC; Provisional 0 -356650 cl29774 Herpes_UL73 UL73 viral envelope glycoprotein. UL49.5 protein consists of 98 amino acids with a calculated molecular mass of 10,155 Da. It contains putative signal peptide and transmembrane domains but lacks a consensus sequence for N glycosylation. UL49.5 protein is an O-glycosylated structural component of the viral envelope. 0 -356653 cl29777 NPV_P10 Nucleopolyhedrovirus P10 protein. fibrous body protein; Provisional 0 -356657 cl29781 He_PIG Putative Ig domain. Cadherin-homologous domains present in metazoan dystroglycans and alpha/epsilon sarcoglycans, yeast Axl2p and in a very large protein from magnetotactic bacteria. Likely to bind calcium ions. 0 -356658 cl29782 AlaDh_PNT_N Alanine dehydrogenase/PNT, N-terminal domain. Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. 0 -356665 cl29789 FaeA FaeA-like protein. This family represents a number of fimbrial protein transcription regulators found in Gram-negative bacteria. These proteins are thought to facilitate binding of the leucine-rich regulatory protein to regulatory elements, possibly by inhibiting deoxyadenosine methylation of these elements by deoxyadenosine methylase. 0 -356666 cl29790 Herpes_U34 Herpesvirus virion protein U34. nuclear egress membrane protein UL34; Provisional 0 -356671 cl29795 MtrA Tetrahydromethanopterin S-methyltransferase, subunit A. methyltransferase; Provisional 0 -356674 cl29798 RNA_pol_Rpb5_N RNA polymerase Rpb5, N-terminal domain. DNA-directed RNA polymerase II subunit family protein; Provisional 0 -356677 cl29801 Competence Competence protein. The related model ComEC_Rec2 (TIGR00361) describes a set of proteins of ~ 700-800 residues, one each from a number of different species, of which most can become competent for natural transformation with exogenous DNA. The best-studied examples are ComEC from Bacillus subtilis and Rec-2 from Haemophilus influenzae, where the protein appears to form part of the DNA import structure. This model represents a region found in full-length ComEC/Rec2 and shorter homologs of unknown function from large number of additional bacterial species, most of which are not known to become competent for transformation (an exception is Helicobacter pylori). [Unknown function, General] 0 -356678 cl29802 UDPG_MGDP_dh_N UDP-glucose/GDP-mannose dehydrogenase family, NAD binding domain. Enzymes in this family catalyze the NAD-dependent alcohol-to-acid oxidation of nucleotide-linked sugars. Examples include UDP-glucose 6-dehydrogenase (1.1.1.22), GDP-mannose 6-dehydrogenase (1.1.1.132), UDP-N-acetylglucosamine 6-dehydrogenase (1.1.1.136), UDP-N-acetyl-D-galactosaminuronic acid dehydrogenase, and UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase. These enzymes are most often involved in the biosynthesis of polysaccharides and are often found in operons devoted to that purpose. All of these enzymes contain three Pfam domains, pfam03721, pfam00984, and pfam03720 for the N-terminal, central, and C-terminal regions respectively. 0 -356688 cl29812 HpaB 4-hydroxyphenylacetate 3-hydroxylase C terminal. This gene for this monooxygenase is found within apparent operons for the degradation of 4-hydroxyphenylacetic acid in Shigella, Photorhabdus and Pasteurella. The family represented by this model is narrowly limited to gammaproteobacteria to exclude other aromatic hydroxylases involved in various secondary metabolic pathways. Generally, this enzyme acts with the assistance of a small flavin reductase domain protein (HpaC) to provide the cycle the flavin reductant for the reaction. This family of sequences is a member of a larger subfamily of monooxygenases (pfam03241). 0 -356696 cl29820 FDX-ACB Ferredoxin-fold anticodon binding domain. This is the anticodon binding domain found in some phenylalanyl tRNA synthetases. The domain has a ferredoxin fold, consisting of an alpha+beta sandwich with anti-parallel beta-sheets (beta-alpha-beta x2). 0 -356702 cl29826 F1-ATPase_delta mitochondrial ATP synthase delta subunit. Part of the ATP synthase CF(1). These subunits are part of the head unit of the ATP synthase. The subunit is called epsilon in bacteria and delta in mitochondria. In bacteria the delta (D) subunit is equivalent to the mitochondrial Oligomycin sensitive subunit, OSCP (pfam00213). 0 -356718 cl29842 COLIPASE N/A. This is a family of colipase-like proteins. 0 -356723 cl29847 CobN_like CobN subunit of cobaltochelatase, bchH and chlH subunits of magnesium chelatases, and similar proteins. This family contains a domain common to the cobN protein and to magnesium protoporphyrin chelatase. CobN is implicated in the conversion of hydrogenobyrinic acid a,c-diamide to cobyrinic acid. Magnesium protoporphyrin chelatase is involved in chlorophyll biosynthesis. 0 -356724 cl29848 MlaD MlaD protein. Members of this protein family are the MlaD (maintenance of Lipid Asymmetry D) protein of an ABC transport system that seems to remove phospholipid from the outer leaflet of the Gram-negative bacterial outer membrane (OM), leaving only lipopolysaccharide in the outer leaflet. The Mla locus has long been associated with toluene tolerance, consistent with the proposed role in retrograde transport of phospholipid and therefore with maintaining the integrity of the OM as a protective barrier. 0 -356736 cl29860 Papo_T_antigen T-antigen specific domain. Small T antigen; Reviewed 0 -356737 cl29861 MCR_beta Methyl-coenzyme M reductase beta subunit, C-terminal domain. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (pfam02249), 2 beta (this family), and 2 gamma (pfam02240) subunits with two identical nickel porphinoid active sites. The C-terminal domain of MCR beta has an all-alpha fold with buried central helix. 0 -356738 cl29862 CTP-dep_RFKase Domain of unknown function DUF120. riboflavin kinase; Provisional 0 -356740 cl29864 tRNA-synt_1f tRNA synthetases class I (K). lysyl-tRNA synthetase; Reviewed 0 -356743 cl29867 Peptidase_S7 Peptidase S7, Flavivirus NS3 serine protease. This domain has no known function. It is found in various hypothetical proteins and putative lipoproteins from mycoplasmas. It appears to be related to the superfamily of trypsin peptidases and so may have a peptidase function. 0 -356750 cl29874 LIGANc N/A. DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilising either ATP or NAD(+) as a cofactor. This domain is the catalytic adenylation domain. The NAD+ group is covalently attached to this domain at the lysine in the KXDG motif of this domain. This enzyme- adenylate intermediate is an important feature of the proposed catalytic mechanism. 0 -356751 cl29875 Herpes_UL24 Herpes virus proteins UL24 and UL76. nuclear protein UL24; Provisional 0 -356758 cl29882 gcvT N/A. The glycine cleavage system T protein (GcvT) is also known as aminomethyltransferase (EC 2.1.2.10). It works with the H protein (GcvH), the P protein (GcvP), and lipoamide dehydrogenase. The reported sequence of the member from Aquifex aeolicus starts about 50 residues downstream of the start of other members of the family (perhaps in error); it scores below the trusted cutoff. Eukaryotic forms are mitochondrial and have an N-terminal transit peptide. [Energy metabolism, Amino acids and amines] 0 -356759 cl29883 Cation_efflux Cation efflux family. zinc transporter ZitB; Provisional 0 -356761 cl29885 ArfGap Putative GTPase activating protein for Arf. Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs. 0 -356762 cl29886 DUF11 Domain of unknown function DUF11. This model represents the conserved region of about 53 amino acids shared between regions, usually repeated, of proteins from a small number of phylogenetically distant prokaryotes. Examples include a 132-residue region found repeated in three of the five longest proteins of Bacillus anthracis, a 131-residue repeat in a cell wall-anchored protein of Enterococcus faecalis, and a 120-residue repeat in Methanobacterium thermoautotrophicum. A similar region is found in some Chlamydial outer membrane proteins. 0 -356763 cl29887 Apocytochr_F_C Apocytochrome F, C-terminal. apocytochrome f; Reviewed 0 -356769 cl29893 Pectinesterase Pectinesterase. pectinesterase family protein 0 -356770 cl29894 AsnC_trans_reg Lrp/AsnC ligand binding domain. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli) 0 -356771 cl29895 Glyco_hydro_3 Glycosyl hydrolase family 3 N terminal domain. beta-hexosaminidase; Provisional 0 -356777 cl29901 RNB RNB domain. This domain is the catalytic domain of ribonuclease II. 0 -356793 cl29917 RNA_pol_B_RPB2 N/A. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain represents the hybrid binding domain and the wall domain. The hybrid binding domain binds the nascent RNA strand / template DNA strand in the Pol II transcription elongation complex. This domain contains the important structural motifs, switch 3 and the flap loop and binds an active site metal ion. This domain is also involved in binding to Rpb1 and Rpb3. Many of the bacterial members contain large insertions within this domain, as region known as dispensable region 2 (DRII). 0 -356796 cl29920 Chorismate_bind chorismate binding enzyme. Members of this family, aminodeoxychorismate synthase, component I (PabB), were designated para-aminobenzoate synthase component I until it was recognized that PabC, a lyase, completes the pathway of PABA synthesis. This family is closely related to anthranilate synthase component I (trpE), and both act on chorismate. The clade of PabB enzymes represented by this model includes sequences from Gram-positive and alpha and gamma Proteobacteria as well as Chlorobium, Nostoc, Fusobacterium and Arabidopsis. A closely related clade of fungal PabB enzymes is identified by TIGR01823, while another bacterial clade of potential PabB enzymes is more closely related to TrpE (TIGR01824). [Biosynthesis of cofactors, prosthetic groups, and carriers, Folic acid] 0 -356816 cl29940 RbcS Ribulose-1,5-bisphosphate carboxylase small subunit. ribulose-bisphosphate carboxylase small chain 0 -356817 cl29941 Viral_coat Viral coat protein (S domain). The capsid or coat protein of this family is expressed in Nodaviridae, that are ssRNA positive-strand viruses, with no DNA stage. These viruses are the causative agents of viral nervous necrosis in marine fish. 0 -356818 cl29942 DotA Phagosome trafficking protein DotA. Members of this protein family include transfer protein TraY of IncI1 plasmid R64 and DotA (defect in organelle trafficking A) of Legionella pneumophila. 0 -356823 cl29947 VirDNA-topo-I_N Viral DNA topoisomerase I, N-terminal. Members of this family are predominantly found in viral DNA topoisomerase, and assume a beta(2)-alpha-beta-alpha-beta(2) fold, with a left-handed crossover between strands beta2 and beta3. 0 -356833 cl29957 PepX_C X-Pro dipeptidyl-peptidase C-terminal non-catalytic domain. This domain is found at the C-terminus of cocaine esterase CocE, several glutaryl-7-ACA acylases, and the putative diester hydrolase NonD of Streptomyces griseus (all hydrolases). The domain, which is a beta sandwich, is also found in serine peptidases belonging to MEROPS peptidase family S15: Xaa-Pro dipeptidyl-peptidases. Members of this entry, that are not characterised as peptidases, show extensive low-level similarity to the Xaa-Pro dipeptidyl-peptidases. 0 -356835 cl29959 SBP_bac_10 Protein of unknown function (DUF1559). This model describes a region of ~16 residues found typically about 30 residues away from the C-terminus of large numbers of proteins in the Planctomycetes, Lentisphaerae, and Verrucomicrobia, on proteins with a prepilin-type N-terminal cleavage/methylation domain (see TIGR02532). The motif H-X(9)-D-G is nearly invariant. Single genomes may encode over 200 such proteins. 0 -356836 cl29960 SopE_GEF SopE GEF domain. type III secretion protein BopE; Provisional 0 -356840 cl29964 DUF1374 Protein of unknown function (DUF1374). hypothetical protein 0 -356846 cl29970 Phage_antitermQ Phage antitermination protein Q. This family consists of a number of hypothetical proteins from Escherichia coli O157:H7 and Salmonella typhi. The function of this family is unknown. 0 -356847 cl29971 Chordopox_L2 Chordopoxvirus L2 protein. hypothetical protein; Provisional 0 -356849 cl29973 Delta_lysin Delta lysin family. delta-hemolysin; Provisional 0 -356850 cl29974 NinE NINE Protein. prophage protein NinE; Provisional 0 -356851 cl29975 PHA03301 N/A. envelope glycoprotein L; Provisional 0 -356852 cl29976 minC N/A. septum formation inhibitor; Reviewed 0 -356854 cl29978 Pox_F11 Poxvirus F11 protein. hypothetical protein; Provisional 0 -356864 cl29988 CutC CutC family. copper homeostasis protein CutC; Provisional 0 -356868 cl29992 BTAD Bacterial Transcriptional Activation (BTA) domain. Found in the DNRI/REDD/AFSR family of regulators. This region of AFSR, along with the C terminal region, is capable of independently directing actinorhodin production. This family contains TPR repeats. 0 -356870 cl29994 Herpes_ICP4_C Herpesvirus ICP4-like protein C-terminal region. transcriptional regulator ICP4; Provisional 0 -356898 cl30022 SP2 Structural protein 2. This product is encoded by astrovirus ORF2, one of the three astrovirus ORFs (1a, 1b, 2). The 87kD precursor protein undergoes an intracellular cleavage to form a 79kD protein. Subsequently, extracellular trypsin cleavage yields the three proteins forming the infectious virion. 0 -356910 cl30034 DNA_pack_N Probable DNA packing protein, N-terminus. DNA packaging terminase subunit 1; Provisional 0 -356911 cl30035 DNA_pack_C Probable DNA packing protein, C-terminus. DNA packaging terminase subunit 1; Provisional 0 -356913 cl30037 Herpes_gE Alphaherpesvirus glycoprotein E. envelope glycoprotein E; Provisional 0 -356923 cl30047 Marek_A Marek's disease glycoprotein A. envelope glycoprotein C; Provisional 0 -356925 cl30049 Herpes_V23 Herpesvirus VP23 like capsid protein. Capsid triplex subunit 2; Provisional 0 -356926 cl30050 PHA03259 N/A. Capsid triplex subunit 2; Provisional 0 -356927 cl30051 Herpes_gI Alphaherpesvirus glycoprotein I. envelope glycoprotein I; Provisional 0 -356942 cl30066 Stap_Strp_toxin Staphylococcal/Streptococcal toxin, OB-fold domain. 0 -356955 cl30079 OmpA_C-like Peptidoglycan binding domains similar to the C-terminal domain of outer-membrane protein OmpA. The Pfam entry also includes MotB and related proteins which are not included in the Prosite family. 0 -356962 cl30086 Ribosomal_L6 Ribosomal protein L6. 60S ribosomal protein L6; Provisional 0 -356993 cl30117 AA_permease Amino acid permease. 0 -357103 cl30227 Fb_sc_TIGR02171 Fibrobacter succinogenes paralogous family TIGR02171. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldJ is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldJ abolish the gliding phenotype. GldJ is homologous to GldK. This model represents the GldJ homolog in Cytophaga hutchinsonii and several other species which is of shorter architecture than that found in Flavobacterium johnsoniae and is represented by a separate model (TIGR03524). Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 0 -357104 cl30228 HprK_rel_A HprK-related kinase A. A biosynthesis cassette found in Syntrophobacter fumaroxidans MPOB, Chlorobium limicola DSM 245, Methanocella paludicola SANAE, and delta proteobacterium NaphS2 contains two PqqE-like radical SAM/SPASM domain proteins, a PqqD homolog, and a conserved hypothetical protein. These components suggest modification of a ribosomally produced peptide precursor, but the precursor has not been identified. Members of this family are designated ScmC. 0 -357119 cl30243 PLN02172 N/A. Members of this protein family belong to a conserved seven-gene biosynthetic cluster found sparsely in Cyanobacteria, Proteobacteria, and Actinobacteria. Distant homologies to characterized proteins suggest that members are enzymes dependent on a flavinoid cofactor. 0 -357125 cl30249 Fe_III_red_FhuF siderophore-iron reductase FhuF. Members of this protein family are 2Fe-2S cluster binding proteins, found regularly in the context of siderophore transporters. Members are distantly related to FhuF from E. coli, a ferric iron reductase linked to removal of iron from hydroxamate-type siderophores (). [Energy metabolism, Electron transport, Transport and binding proteins, Cations and iron carrying compounds] 0 -357126 cl30250 cyclo_dehyd_2 bacteriocin biosynthesis cyclodehydratase domain. Members of this protein family are found in a three-gene operon in Bacillus anthracis and related Bacillus species, where the other two genes are clearly identified with maturation of a putative thiazole-containing bacteriocin precursor. While there is no detectable pairwise sequence similarity between members of this family and the proposed cyclodehydratases such as SagC of Streptococcus pyogenes (see family TIGR03603), both families show similarity through PSI-BLAST to ThiF, a protein involved in biosynthesis of the thiazole moiety for thiamine biosynthesis. This family, therefore, may contribute to cyclodehydratase function in heterocycle-containing bacteriocin biosyntheses. In Bacillus licheniformis ATCC 14580, the bacteriocin precursor gene is adjacent to the gene for this protein. [Cellular processes, Toxin production and resistance] 0 -357136 cl30260 PRK10992 N/A. Members of this protein family, designated variously as YftE, NorA, DrnN, and NipC, are di-iron proteins involved in the repair of iron-sulfur clusters. Previously assigned names reflect pleiotropic effects of damage from NO or other oxidative stress when this protein is mutated. The suggested name now is RIC, for Repair of Iron Centers. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other] 0 -357139 cl30263 PRK14127 N/A. This model describes a domain found in Bacillus subtilis cell division initiation protein DivIVA, and homologs, toward the N-terminus. It is also found as a repeated domain in certain other proteins, including family TIGR03543. 0 -357140 cl30264 GldK gliding motility-associated lipoprotein GldK. Members of this protein family are exclusive to the Bacteroidetes phylum (previously Cytophaga-Flavobacteria-Bacteroides). GldJ is a lipoprotein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae. Knockouts of GldJ abolish the gliding phenotype. GldJ is homologous to GldK. There is a GldJ homolog in Cytophaga hutchinsonii and several other species that has a different, shorter architecture and is represented by a separate model. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Bacteroidetes with members of this protein family appear to have all of the genes associated with gliding motility. 0 -357141 cl30265 PRK09579 N/A. multidrug efflux system protein AcrB; Provisional 0 -357153 cl30277 PRK12562 N/A. Members of this protein family include the ygeW gene product of Escherichia coli. The function is unknown. Members show homology to ornithine carbamoyltransferase (TIGR00658) and aspartate carbamoyltransferase (carbamoyltransferase), and therefore may belong to the carbamoyltransferases in function. Members often are found in a large, conserved genomic region associated with selenium-dependent molybdenum hydroxylases. 0 -357160 cl30284 Pyr_redox_2 Pyridine nucleotide-disulphide oxidoreductase. Members of this protein family include N-terminal sequence regions of (probable) bifunctional proteins whose C-terminal sequences are SelD, or selenide,water dikinase, the selenium donor protein necessary for selenium incorporation into protein (as selenocysteine), tRNA (as 2-selenouridine), or both. However, some members of this family occur in species that do not show selenium incorporation, and the function of this protein family is unknown. 0 -357161 cl30285 Csf4_U CRISPR/Cas system-associated DinG family helicase Csf4. Members of this family show up near CRISPR repeats in Acidithiobacillus ferrooxidans ATCC 23270, Azoarcus sp. EbN1, and Rhodoferax ferrireducens DSM 15236. In the latter two species, the CRISPR/cas locus is found on a plasmid. This family is one of several characteristic of a type of CRISPR-associated (cas) gene cluster we designate Aferr after A. ferrooxidans, where it is both chromosomal and the only type of cas gene cluster found. The gene is designated csf4 (CRISPR/cas Subtype as in A. ferrooxidans protein 1), as it lies farthest (fourth closest) from the repeats in the A. ferrooxidans genome. 0 -357162 cl30286 PLN00090 N/A. Members of this protein family are the photosystem II reaction center M protein, product of the psbM gene, in Cyanobacteria and their derived organelles in plants. This model resembles pfam05151 but has cutoffs set to avoid false-positive matches to similar (not necessarily homologous) sequences in species that are not photosynthetic. [Energy metabolism, Photosynthesis] 0 -357168 cl30292 PRK15331 N/A. Genes in this family are found in type III secretion operons. LcrH, from Yersinia is believed to have a regulatory function in the low-calcium response of the secretion system. The same protein is also known as SycD (SYC = Specific Yop Chaperone) for its chaperone role. In Pseudomonas, where the homolog is known as PcrH, the chaperone role has been demonstrated and the regulatory role appears to be absent. ScyD/LcrH contains three central tetratricopeptide-like repeats that are predicted to fold into an all-alpha-helical array. 0 -357184 cl30308 LolE ABC-type transport system, involved in lipoprotein release, permease component [Cell wall/membrane/envelope biogenesis]. This model describes the LolC protein, and its paralog LolE found in some species. These proteins are homologous to permease proteins of ABC transporters. In some species, two paralogs occur, designated LolC and LolE. In others, a single form is found and tends to be designated LolC. [Protein fate, Protein and peptide secretion and trafficking] 0 -357206 cl30330 PLN02451 N/A. homoserine kinase; Provisional 0 -357216 cl30340 tolC N/A. Members of this model are outer membrane proteins from the TolC subfamily within the RND (Resistance-Nodulation-cell Division) efflux systems. These proteins, unlike the NodT subfamily, appear not to be lipoproteins. All are believed to participate in type I protein secretion, an ABC transporter system for protein secretion without cleavage of a signal sequence, although they may, like TolC, participate also in the efflux of smaller molecules as well. This family includes the well-documented examples TolC (E. coli), PrtF (Erwinia), and AprF (Pseudomonas aeruginosa). [Protein fate, Protein and peptide secretion and trafficking, Transport and binding proteins, Porins] 0 -357259 cl30383 flgB N/A. flagellar basal body rod protein FlgB; Reviewed 0 -357302 cl30426 caca2 calcium/proton exchanger. [Transport and binding proteins, Cations and iron carrying compounds] 0 -357334 cl30458 MFS_1 Major Facilitator Superfamily. This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 12 membrane-spanning regions. Members with known activity include Bcr (bicyclomycin resistance protein) in E. coli, Flor (chloramphenicol and florfenicol resistance) in Salmonella typhimurium DT104, and CmlA (chloramphenicol resistance) in Pseudomonas sp. plasmid R1033. 0 -357335 cl30459 Cyt_C5_DNA_methylase N/A. All proteins in this family for which functions are known are DNA-cytosine methyltransferases. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] 0 -357347 cl30471 SORL Desulfoferrodoxin, superoxide reductase-like (SORL) domain [Energy production and conversion]. The short N-terminal domain contains four conserved Cys for binding of a ferric iron atom, and is homologous to the small protein desulforedoxin; this domain may also be responsible for dimerization. The remainder of the molecule binds a ferrous iron atom and is similar to neelaredoxin, a monomeric blue non-heme iron protein. The homolog from Treponema pallidum scores between the trusted cutoff for orthology and the noise cutoff. Although essentially a full length homolog, it lacks three of the four Cys residues in the N-terminal domain; the domain may have lost ferric binding ability but may have some conserved structural role such as dimerization, or some new function. This protein is described in some articles as rubredoxin oxidoreductase (rbo), and its gene shares an operon with the rubredoxin gene in Desulfovibrio vulgaris Hildenborough. [Energy metabolism, Electron transport] 0 -357355 cl30479 PRK15103 N/A. This family consists of uncharacterized predicted integral membrane proteins found, so far, only in the Proteobacteria. Of two members in E. coli, one is induced by paraquat and is designated PqiA, paraquat-inducible protein A. [Unknown function, General] 0 -357372 cl30496 GIDA Glucose inhibited division protein A. GidA, the longer of two forms of GidA-related proteins, appears to be present in all complete eubacterial genomes so far, as well as Saccharomyces cerevisiae. A subset of these organisms have a closely related protein. GidA is absent in the Archaea. It appears to act with MnmE, in an alpha2/beta2 heterotetramer, in the 5-carboxymethylaminomethyl modification of uridine 34 in certain tRNAs. The shorter, related protein, previously called gid or gidA(S), is now called TrmFO (see model TIGR00137). [Protein synthesis, tRNA and rRNA base modification] 0 -357415 cl30539 PLN02852 N/A. adrenodoxin reductase; Provisional 0 -357420 cl30544 TOP1Ac N/A. Bacterial DNA topoisomerase I and III, Eukaryotic DNA topoisomeraes III, reverse gyrase alpha subunit 0 -357421 cl30545 PKD N/A. This domain was first identified in the Polycystic kidney disease protein PKD1. This domain has been predicted to contain an Ig-like fold. 0 -357422 cl30546 H2A N/A. histone H2A; Provisional 0 -357435 cl30559 PriA Primosomal protein N' (replication factor Y) - superfamily II helicase [Replication, recombination and repair]. primosome assembly protein PriA; Provisional 0 -357450 cl30574 PRK13596 N/A. NADH dehydrogenase [ubiquinone] flavoprotein 1; Provisional 0 -357454 cl30578 PRK06937 N/A. type III secretion system protein; Validated 0 -357460 cl30584 GCV_T_C Glycine cleavage T-protein C-terminal barrel domain. putative dimethyl sulfoniopropionate demethylase; Reviewed 0 -357482 cl30606 KdpD K+-sensing histidine kinase KdpD [Signal transduction mechanisms]. sensor protein KdpD; Provisional 0 -357489 cl30613 LacZ Beta-galactosidase/beta-glucuronidase [Carbohydrate transport and metabolism]. beta-D-glucuronidase; Provisional 0 -357490 cl30614 FhuE Outer membrane receptor for ferric coprogen and ferric-rhodotorulic acid [Inorganic ion transport and metabolism]. This subfamily model encompasses a wide variety of TonB-dependent outer membrane siderophore receptors. It has no overlap with TonB receptors known to transport other substances, but is likely incomplete due to lack of characterizations. It is likely that genuine siderophore receptors will be identified which score below the noise cutoff to this model at which point the model should be updated. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins] 0 -357493 cl30617 flgD N/A. flagellar basal body rod modification protein; Reviewed 0 -357540 cl30664 NadB Aspartate oxidase [Coenzyme transport and metabolism]. L-aspartate oxidase is the B protein, NadB, of the quinolinate synthetase complex. Quinolinate synthetase makes a precursor of the pyridine nucleotide portion of NAD. This model identifies proteins that cluster as L-aspartate oxidase (a flavoprotein difficult to separate from the set of closely related flavoprotein subunits of succinate dehydrogenase and fumarate reductase) by both UPGMA and neighbor-joining trees. The most distant protein accepted as an L-aspartate oxidase (NadB), that from Pyrococcus horikoshii, not only clusters with other NadB but is just one gene away from NadA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pyridine nucleotides] 0 -357541 cl30665 NuoL NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit [Energy production and conversion, Inorganic ion transport and metabolism]. NADH dehydrogenase subunit 5; Validated 0 -357544 cl30668 PRK14692 N/A. flagellar hook-associated protein FlgL; Validated 0 -357559 cl30683 PRK08241 N/A. RNA polymerase sigma factor SigJ; Provisional 0 -357560 cl30684 PRK06292 N/A. flavoprotein disulfide reductase; Reviewed 0 -357561 cl30685 PRK07502 N/A. arogenate dehydrogenase; Reviewed 0 -357562 cl30686 PLN02487 N/A. phytoene desaturase 0 -357568 cl30692 UbiH 2-polyprenyl-6-methoxyphenol hydroxylase and related FAD-dependent oxidoreductases [Coenzyme transport and metabolism, Energy production and conversion]. hypothetical protein; Provisional 0 -357572 cl30696 TFIIE Transcription initiation factor IIE. 0 -357575 cl30699 Lpd Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component or related enzyme [Energy production and conversion]. The tripeptide glutathione is an important reductant, e.g., for maintaining the cellular thiol/disulfide status and for protecting against reactive oxygen species such as hydrogen peroxide. Glutathione-disulfide reductase regenerates reduced glutathione from oxidized glutathione (glutathione disulfide) + NADPH. This model represents one of two closely related subfamilies of glutathione-disulfide reductase. Both are closely related to trypanothione reductase, and separate models are built so each of the three can describe proteins with conserved function. This model describes glutathione-disulfide reductases of animals, yeast, and a number of animal-resident bacteria. [Energy metabolism, Electron transport] 0 -357581 cl30705 PRK05590 N/A. Members of this protein family have a SWIM, or SEC-C, domain (see pfam02810), a 21-amino acid putative Zn-binding domain that is shared with SecA, plant MuDR transposases, etc. This small protein family of unknown function occurs primarily in marine bacteria. 0 -357584 cl30708 GlgB 1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism]. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides] 0 -357587 cl30711 PRK04233 N/A. hypothetical protein; Provisional 0 -357593 cl30717 InfB Translation initiation factor IF-2, a GTPase [Translation, ribosomal structure and biogenesis]. translation initiation factor IF-2; Validated 0 -357606 cl30730 DAO FAD dependent oxidoreductase. D-amino acid dehydrogenase small subunit; Validated 0 -357607 cl30731 PRK02048 N/A. 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; Validated 0 -357616 cl30740 COG2810 Predicted type IV restriction endonuclease [Defense mechanisms]. 0 -357617 cl30741 YjiN Uncharacterized membrane-anchored protein YjiN, DUF445 family [Function unknown]. 0 -357635 cl30759 PelA Stalled ribosome rescue protein Dom34, pelota family [Translation, ribosomal structure and biogenesis]. peptide chain release factor 1; Provisional 0 -357636 cl30760 AAA ATPases associated with a variety of cellular activities. hypothetical protein; Validated 0 -357641 cl30765 SdhA Succinate dehydrogenase/fumarate reductase, flavoprotein subunit [Energy production and conversion]. succinate dehydrogenase flavoprotein subunit; Reviewed 0 -357649 cl30773 MCP_signal Methyl-accepting chemotaxis protein (MCP), signaling domain. Methyl-accepting chemotaxis proteins (MCPs or chemotaxis receptors) are an integral part of the transmembrane protein complex that controls bacterial chemotaxis, together with the histidine kinase CheA, the receptor-coupling protein CheW, receptor-modification enzymes, and localized phosphatases. MCPs contain a four helix trans membrane region, an N-terminal periplasmic ligand binding domain, and a C-terminal HAMP domain followed by a cytoplasmic signaling domain. This C-terminal signaling domain dimerizes into a four-helix bundle and interacts with CheA through the adaptor protein CheW. 0 -357654 cl30778 MltE Soluble lytic murein transglycosylase and related regulatory proteins (some contain LysM/invasin domains) [Cell wall/membrane/envelope biogenesis]. lytic murein transglycosylase; Provisional 0 -357662 cl30786 FusA Translation elongation factor EF-G, a GTPase [Translation, ribosomal structure and biogenesis]. elongation factor 2; Provisional 0 -357663 cl30787 PhrB Deoxyribodipyrimidine photolyase [Replication, recombination and repair]. deoxyribodipyrimidine photolyase; Provisional 0 -357667 cl30791 FieF Divalent metal cation (Fe/Co/Zn/Cd) transporter [Inorganic ion transport and metabolism]. ferrous iron efflux protein F; Reviewed 0 -357668 cl30792 LysA Diaminopimelate decarboxylase [Amino acid transport and metabolism]. diaminopimelate decarboxylase; Provisional 0 -357681 cl30805 PHA02744 N/A. hypothetical protein; Provisional 0 -357684 cl30808 PHA00368 N/A. virion protein; Provisional 0 -357685 cl30809 PLN03107 N/A. eukaryotic initiation factor 5a; Provisional 0 -357701 cl30825 PLN02893 N/A. cellulose synthase-like protein 0 -357710 cl30834 ND4 N/A. NADH dehydrogenase subunit 4; Provisional 0 -357716 cl30840 PRK09940 N/A. transcriptional regulator SirC; Provisional 0 -357737 cl30861 PRK09915 N/A. multidrug resistance outer membrane protein MdtQ; Provisional 0 -357738 cl30862 PRK10653 N/A. D-allose transporter subunit; Provisional 0 -357741 cl30865 PRK05926 N/A. hypothetical protein; Provisional 0 -357742 cl30866 PRK08158 N/A. type III secretion system protein SsaQ; Validated 0 -357750 cl30874 PHA02699 N/A. Hypothetical protein; Provisional 0 -357752 cl30876 PHA03055 N/A. ORF033 IMV membrane protein; Provisional 0 -357753 cl30877 ATP8 N/A. ATP synthase F0 subunit 8; Provisional 0 -357754 cl30878 PRK13023 N/A. bifunctional preprotein translocase subunit SecD/SecF; Reviewed 0 -357759 cl30883 PHA02984 N/A. hypothetical protein; Provisional 0 -357760 cl30884 PHA02861 N/A. hypothetical protein; Provisional 0 -357761 cl30885 PHA02818 N/A. hypothetical protein; Provisional 0 -365777 cl38901 T3SC_I_like class I type III secretion system (T3SS) chaperones and similar proteins. This YbjN protein family includes Escherichia coli YbjN, Erwinia amylovora AmyR, and similar proteins. YbjN proteins share a class I type III secretion chaperone (T3SC)-like fold with type III secretion system (T3SS) chaperone proteins but appear to function independently of the T3SS. YbjN is an enterobacteria-specific protein. In E. coli, it acts as a sensory transduction regulator that may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions. E. amylovora AmyR, a functionally conserved ortholog of E. coli YbjN, is a stress and virulence associated protein that regulates the ams operon. Ams proteins are required for amylovoran biosynthesis. AmyR may also regulate the Rcs phosphorelay system, an atypical two-component signal transduction (TCST) system present only in Enterobacteriaceae and positively regulates amylovoran biosynthesis by activating the ams operon transcription. 0 -365778 cl38902 YEATS YEATS domain family, chromatin reader proteins. YEATS domain containing proteins, which include Transcription initiation factor TFIID subunits 14 and 14b of Arabidopsis, shown to be part of the TFIID general transcriptional regulator complex in a two-hybrid screen. DNA regulation by chromatin thru histone post-translational modification and other mechanism involves complexes with write, eraser and reader functions. YEATS domains act as readers of the chromatin state, and stimulate transcriptional activity, thru preferential interactions with crotonylated lysines on histones. The YEATS family is named for several family members: 'YNK7', 'ENL', 'AF-9', and 'TFIIF small subunit', and also contains the GAS41 protein. 0 -365779 cl38903 RMtype1_S_TRD-CR_like Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR) and similar domains. The recognition sequences of Campylobacter jejuni RM 2232 S subunit (S.Cje2232P) and Shewanella baltica OS223 S subunit (S.Sba223ORF389P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. Also included in this subfamily is the C-terminal TRD-CR-like sequence-recognition domain of Microcystis aeruginosa putative type I N6-adenine DNA methyltransferase M subunit (M.Mae7806ORF3969P). The recognition sequence of M.Mae7806ORF3969P is undetermined. 0 -365780 cl38904 AldB-like proteins similar to alpha-acetolactate dehydrogenase. alpha-acetolactate decarboxylase (AldB, E.C. 4.1.1.5) converts acetolactate ((2S)-2-hydroxy-2-methyl-3-oxobutanoate) into acetoin ((3R)-3-hydroxybutan-2-one) and CO(2). Acetoin may be secreted by the cells, perhaps in order to control the internal pH. AldB may function as a regulator in valine and leucine biosynthesis and in catalyzing the second step of the 2,3-butanediol pathway. The structure of this domain displays an alpha-beta-beta-alpha four layer topology, with an HxHxxxxxxxxxxH motif (x could be any residue) that coordinates a zinc ion. 0 -365781 cl38905 longin-like Longin-like domains. Trafficking protein particle complex subunit 4 (TRAPPC4), also known as synbindin or TRS23, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic. 0 -365782 cl38906 ATP-synt_Fo_Vo_Ao_c ATP synthase, membrane-bound Fo/Vo/Ao complexes, subunit c. This family includes subunit c of F-ATP synthase (also called ATP synthase F(o) sector subunit c, F-type ATPase subunit c, or F-ATPase subunit c) and similar proteins. It is a proton-translocating subunit of the ATP synthase encoded by gene atpE. 0 -365783 cl38907 SWIB-MDM2 SWIB/MDM2 domain family. BAF60C, also termed SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 (SMARCD3), or 60 kDa BRG-1/Brm-associated factor subunit C, is a core subunit of the SWI/SNF chromatin-remodeling complex that activates the transcription of fatty acid oxidation genes during fasting. It is involved in chromatin remodeling and hepatic lipid metabolism. It is also essential for cardiomyocyte differentiation at the early heart development. Moreover, BAF60C drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Furthermore, BAF60C epigenetically regulates epithelial-mesenchymal transition (EMT) by activating WNT signaling pathways. 0 -365784 cl38908 BTB_POZ BTB (Broad-Complex, Tramtrack and Bric a brac)/POZ (poxvirus and zinc finger) domain superfamily. ZBTB42 is a transcriptional repressor that specifically binds DNA and probably acts by recruiting chromatin remodeling multiprotein complexes. It is enriched in skeletal muscles, especially at the neuromuscular junction. A ZBTB42 mutation has been identified to define a novel lethal congenital contracture syndrome (LCCS6), a lethal autosomal recessive form of arthrogryposis multiplex congenita (AMC). ZBTB42 contains a BTB/POZ domain, a common protein-protein interaction motif of about 100 amino acids. 0 -365785 cl38909 ATP-synt_F1_V1_A1_AB_FliI_N ATP synthase, alpha/beta subunits of F1/V1/A1 complex, flagellum-specific ATPase FliI, N-terminal domain. The alpha (A) subunit of the V1/A1 complexes of V/A-type ATP synthases, N-terminal domain. The V- and A-type family of ATPases are composed of two linked multi-subunit complexes: the V1 or A1 complex contain three copies each of the alpha and beta subunits that form the soluble catalytic core, which is involved in ATP synthesis/hydrolysis, and the Vo or Ao complex that forms the membrane-embedded proton pore. The A-ATP synthase (AoA1-ATPase) is found in archaea and functions like F-ATP synthase. Structurally, however, the A-ATP synthase is more closely related to the V-ATP synthase (vacuolar VoV1-ATPase), which is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. Collectively, the V- and A-type synthases can function in both ATP synthesis and hydrolysis modes. 0 -365786 cl38910 ATP-synt_F1_V1_A1_AB_FliI_C ATP synthase, alpha/beta subunits of F1/V1/A1 complex, flagellum-specific ATPase FliI, C-terminal domain. The C-terminal domain of the flagellum-specific ATPase/type III secretory pathway virulence-related protein. This group of ATPases are responsible for the export of flagellum and virulence-related proteins. The flagellum-specific ATPase FliI is the soluble export component that drives flagellar protein export, and it shows extensive similarity to the alpha and beta subunits of FoF1-ATP synthase. Although they both are proton driven rotary molecular devices, the main function of the bacterial flagellar motor is to rotate the flagellar filament for cell motility. Intracellular pathogens such as Salmonella and Chlamydia also have proteins which are similar to the flagellar-specific ATPase, but function in the secretion of virulence-related proteins via the type III secretory pathway. 0 -365787 cl38911 LGIC_TM transmembrane domain of Cys-loop neurotransmitter-gated ion channels. This family contains transmembrane (TM) domain of zinc-activated ligand-gated ion channel (ZAC). The transmembrane region consists of four transmembrane-spanning alpha-helical segments (M1-M4) that are linked by loops. The intracellular loop that links M1 and M2 determines the ion selectivity of the channel. ZAC displays low sequence similarity to other members in the superfamily, with closest matches to the human serotonin 5-HT3 receptor (5-HT3R) subunits 5-HT3A and 5-HT3B, and nAChR alpha7 subunits that exhibit approximately 15% amino acid sequence identity to ZAC. Expression of ZAC has been detected in human fetal whole brain, spinal cord, pancreas, placenta, prostate, thyroid, trachea, and stomach, as well as in adult hippocampus, striatum, amygdala, and thalamus. ZAC forms an ion channel gated by Zn2+, Cu2+, and H+, and is non-selectively permeable to monovalent cations. However, the role of ZAC in Zn2+, Cu2+, and H+ signaling is as yet unknown. 0 -365788 cl38912 SPOUT_MTase SPOUT superfamily of SAM-dependent RNA methyltransferases. RNA 2'-O ribose methyltransferase catalyzes the methyltransfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of ribose in tRNA or rRNA. It is part of the SpoU family of MTases, a subfamily of the SPOUT methyltransferase superfamily. The SPOUT methyltransferase superfamily is a large class of S-adenosyl-L-methionine (AdoMet or SAM)-dependent RNA MTases which are structurally characterized by a deep trefoil knot. 0 -365789 cl38913 ABC_6TM_exporters Six-transmembrane helical domain of the ATP-binding cassette transporters. ATP-binding cassette sub-family B member 9 is also known as transporter associated with antigen processing, TAP-like protein, TAPL, and ABCB9. It is a half transporter comprises a homodimeric lysosomal peptide transport complex. It belongs to the ABC_6TM_TAP_ABCB8_10_like subgroup of the ABC_6TM exporter family. The ABC_6TM exporter family represents the six transmembrane (TM) helices typically found in the ATP-binding cassette (ABC) transporters that function as exporters, which contain 6 TM helices per subunit (domain), or a total of 12 TM helices for the complete transporter. The ABC exporters are found in both prokaryotes and eukaryotes, where they mediate the cellular secretion of toxic compounds and a various type of lipids. In addition to ABC exporters, ABC transporters include two classes of ABC importers, classified depending on details of their architecture and mechanism. Only the ABC exporters are included in the ABC_6TM exporter family. ABC transporters typically consist of two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs. The sequences and structures of the TMDs are quite varied between the different type of transporters, suggesting chemical diversity of the translocated substrates, whereas NBDs are conserved among all ABC transporters. The two NBDs together bind and hydrolyze ATP, thereby providing the driving force for transport, while the TMDs participate in substrate recognition and translocation across the lipid membrane. However, some ABC genes are organized as half-transporters, which must form either homodimers or heterodimers to form a functional unit. 0 -365790 cl38914 NP-I nucleoside phosphorylase-I family. This subfamily includes both bacterial and plant 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTANs), as well as futalosine nucleosidase and adenosylhopane nucleosidase. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while plant enzymes are highly specific for MTA and are unable to metabolize SAH or show significantly reduced activity towards SAH. MTAN is involved in methionine and S-adenosyl-methionine recycling, polyamine biosynthesis, and bacterial quorum sensing. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family. 0 -365791 cl38915 DEAD-like_helicase_C C-terminal helicase domain of the DEAD-like helicases. ATP-dependent DNA helicase RecG plays a critical role in recombination and DNA repair. RecG helps process Holliday junction intermediates to mature products by catalyzing branch migration. It is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. 0 -365792 cl38916 HK_sensor Sensor domains of Histidine Kinase receptors. Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. 0 -365793 cl38917 Tiki_TraB-like diverse proteins related to the Tiki and TraB protease domains. Tiki is a membrane-associated metalloprotease that inhibits Wnt via the cleavage of its amino terminus, diminishing Wnt's binding to receptors. Wnt is essential in animal development and homeostasis. In xenopus, tiki is critical in head development. In human cells, TIKI inhibits Wnt-signaling, which is important in embryogenesis, homeostasis, and regeneration. Deregulation of WNT contributes to birth defects, cancer and various diseases. TIKI homology domains are part of the TraB family and are related to the Erythromycin esterase, GumN plant pathogens, RtxA toxins, and Campylobacter Jejuni heme-binding, Chan-like proteins. TraB/PrgY are identified in gut bacterium Enterococcus faecalis, but its function has not been well characterized. Plasmid-borne, TraB has been implicated in the regulation of pheromone sensitivity and specificity. Based on homology to TIKI activity, it has been proposed that TraB acts as a metalloprotease in the inactivation of mating pheromone. The TIKI/TraB family has 2 conserved GxxH motifs and conserved glutamate and arginine residues that may be catalytic. 0 -365794 cl38918 Peptidase_M15 Metalloproteases including zinc D-Ala-D-Ala carboxypeptidase, L-Ala-D-Glu peptidase, L,D-carboxypeptidase, bacteriophage endolysins, and related proteins. This family contains D-Ala-D-Ala dipeptidase enzymes which include D-alanyl-D-alanine dipeptidase vanX and Aad, among others. VanX is a Zn2+-dependent enzyme that mediates resistance to the antibiotic vancomycin in Enterococci and other bacteria (both Gram-positive and Gram-negative). It is part of a gene cluster that affects cell-wall biosynthesis. The operon triggers the termination of peptidoglycan precursors by D-Ala-(R)-lactate instead of D-Ala-D-Ala dipeptides. The enzyme is stereospecific, as L-Ala-L-Ala, D-Ala-L-Ala and L-Ala-D-Ala are not substrates. It fasmily includes Lactobacillus Aad peptidase and belongs in the MEROPS peptidase family M15, subfamily D. 0 -365795 cl38919 AfaD_SafA-like AfaD-like family of invasins. This subfamily is composed of Yersinia pestis PsaA, Yersinia enterocolitica MyfA, and similar proteins. PsaA and MyfA are the major subunits of pH 6 antigen (Psa) and Myf fimbrial homopolymers. Psa and Myf specifically recognize beta1-3- or beta1-4-linked galactose in glycosphingolipids, but while Psa also binds phosphatidylcholine, Myf does not. Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells. Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells. During fimbria/pili assembly, polymerization occurs when the N-terminal extension (NTE) of one monomer is inserted into an adjacent monomer, providing the final beta strand or G-strand, to complete the Ig-like fold, in a mechanism called the donor-strand complementation (DSC) or donor-strand exchange (DSE). 0 -365796 cl38920 T3SS_Flik_C_like C-terminal domain of type III secretion proteins FliK, HrpP, YscP, and similar domains. The flagellar hook-length control protein FliK is a soluble cytoplasmic protein that is secreted during flagellar formation. It controls hook elongation by two successive events: by determining hook length and by stopping the supply of hook protein. It contains an N-terminal domain that determines hook length and a C-terminal domain that is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate. 0 -365797 cl38921 HLD_clamp helical lid domain of clamp loader-like AAA+ proteins. Replication factor C (RFC) is five-protein clamp loader complex that forms a stable ATP-dependent complex with the sliding clamp, PCNA, which binds specifically to primed DNA. RFC subunits belong to the clamp loader clade of the AAA+ superfamily. 0 -365798 cl38922 CBD chromo barrel domain of MOF acetyltransferase, and similar proteins. The subgroup includes the chromo barrel domain of NuA4 histone acetyltransferase (HAT) complex catalytic subunit Esa1 (also known as Tas1 and Kat5). Yeast Esa1p acetylates specific histones nonrandomly in H4, H3, and H2A. Esa1 also plays roles in cell cycle progression. In addition, its chromo barrel domain plays a role in the yeast Piccolo NuA4 complex's ability to distinguish between histones and nucleosomes; however, the chromodomain is not required for the Piccolo to bind to nucleosomes. SH3-fold-beta-barrel domains of the chromo-like superfamily include chromodomains, chromo shadow domains, and chromo barrel domains, and are implicated in the recognition of lysine-methylated histone tails and nucleic acids. The chromodomain differs, in that it lacks the first strand of the SH3-fold-beta-barrel. This first strand is altered by insertion in the chromo shadow domains, and chromo barrel domains are typical SH3-fold-beta-barrel domains with sequence similarity to the canonical chromodomain. This subgroup belongs to the MOF-like chromo barrels may be may be auto-inhibited, i.e. they seem to have occluded peptide binding sites. 0 -365799 cl38923 PIN_Mut7-C-like PIN domain at the C-terminus of Caenorhabditis elegans exonuclease Mut-7 and related domains. This Mut7-C-like subgroup of the PIN domain superfamily includes the C-terminal domain of Caenorhabditis elegans Mut-7 (also known as exonuclease 3'-5' domain-containing protein 3 homolog). Mut-7 is involved in RNA interference (RNAi) and transposon silencing in C. elegans. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily, and were originally named for their sequence similarity to the N-terminal domain of an annotated pili biogenesis protein, PilT, a domain fusion between a PIN-domain and a PilT ATPase domain. The structural properties of the PIN domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions; in some members additional metal coordinating residues can be found while some others lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Other PIN domain families are: the FEN-like PIN domain family which includes the PIN domains of Flap endonuclease-1 (FEN1), Exonuclease-1 (EXO1), Mkt1, Gap endonuclease 1 (GEN1), and Xeroderma pigmentosum complementation group G (XPG) nuclease, 5'-3' exonucleases of DNA polymerase I and bacteriophage T4- and T5-5' nucleases; the VapC-like PIN domain family which includes toxins of prokaryotic toxin/antitoxin operons FitAB and VapBC, as well as, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and, rRNA-processing protein Fcf1; the LabA-like PIN domain family which includes the PIN domains of Synechococcus elongatus LabA (low-amplitude and bright); the PRORP-Zc3h12a-like PIN domain family which includes the PIN domains of of RNase P (PRORP), ribonuclease Zc3h12a; and Bacillus subtilis YacP/Rae1-like PIN domains. 0 -333754 pfam00001 7tm_1 7 transmembrane receptor (rhodopsin family). This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which have been considered to be typical members of the rhodopsin superfamily. They share several motifs, mainly the seven transmembrane helices, GCPRs of the rhodopsin superfamily. All opsins bind a chromophore, such as 11-cis-retinal. The function of most opsins other than the photoisomerases is split into two steps: light absorption and G-protein activation. Photoisomerases, on the other hand, are not coupled to G-proteins - they are thought to generate and supply the chromophore that is used by visual opsins. 255 -333755 pfam00002 7tm_2 7 transmembrane receptor (Secretin family). This family is known as Family B, the secretin-receptor family or family 2 of the G-protein-coupled receptors (GCPRs).They have been described in many animal species, but not in plants, fungi or prokaryotes. Three distinct sub-families are recognized. Subfamily B1 contains classical hormone receptors, such as receptors for secretin and glucagon, that are all involved in cAMP-mediated signalling pathways. Subfamily B2 contains receptors with long extracellular N-termini, such as the leukocyte cell-surface antigen CD97; calcium-independent receptors for latrotoxin, and brain-specific angiogenesis inhibitors amongst others. Subfamily B3 includes Methuselah and other Drosophila proteins. Other than the typical seven-transmembrane region, characteristic structural features include an amino-terminal extracellular domain involved in ligand binding, and an intracellular loop (IC3) required for specific G-protein coupling. 244 -333756 pfam00003 7tm_3 7 transmembrane sweet-taste receptor of 3 GCPR. This is a domain of seven transmembrane regions that forms the C-terminus of some subclass 3 G-coupled-protein receptors. It is often associated with a downstream cysteine-rich linker domain, NCD3G pfam07562, which is the human sweet-taste receptor, and the N-terminal domain, ANF_receptor pfam01094. The seven TM regions assemble in such a way as to produce a docking pocket into which such molecules as cyclamate and lactisole have been found to bind and consequently confer the taste of sweetness. 198 -333757 pfam00004 AAA ATPase family associated with various cellular activities (AAA). AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. 130 -333758 pfam00005 ABC_tran ABC transporter. ABC transporters for a large family of proteins responsible for translocation of a variety of compounds across biological membranes. ABC transporters are the largest family of proteins in many completely sequenced bacteria. ABC transporters are composed of two copies of this domain and two copies of a transmembrane domain pfam00664. These four domains may belong to a single polypeptide as in CFTR, or belong in different polypeptide chains. 150 -333759 pfam00006 ATP-synt_ab ATP synthase alpha/beta family, nucleotide-binding domain. This entry includes the ATP synthase alpha and beta subunits, the ATP synthase associated with flagella and the termination factor Rho. 212 -333760 pfam00007 Cys_knot Cystine-knot domain. The family comprises glycoprotein hormones and the C-terminal domain of various extracellular proteins. It is believed to be involved in disulfide-linked dimerization. 105 -333761 pfam00008 EGF EGF-like domain. There is no clear separation between noise and signal. pfam00053 is very similar, but has 8 instead of 6 conserved cysteines. Includes some cytokine receptors. The EGF domain misses the N-terminus regions of the Ca2+ binding EGF domains (this is the main reason of discrepancy between swiss-prot domain start/end and Pfam). The family is hard to model due to many similar but different sub-types of EGF domains. Pfam certainly misses a number of EGF domains. 31 -333762 pfam00009 GTP_EFTU Elongation factor Tu GTP binding domain. This domain contains a P-loop motif, also found in several other families such as pfam00071, pfam00025 and pfam00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains. 187 -333763 pfam00010 HLH Helix-loop-helix DNA-binding domain. 52 -278440 pfam00011 HSP20 Hsp20/alpha crystallin family. Not only do small heat-shock-proteins occur in eukaryotes and prokaryotes but they have also now been shown to occur in cyanobacterial phages as well as their bacterial hosts. 101 -333764 pfam00012 HSP70 Hsp70 protein. Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves repeated cycles of substrate binding and release. Hsp70 activity is ATP dependent. Hsp70 proteins are made up of two regions: the amino terminus is the ATPase domain and the carboxyl terminus is the substrate binding region. 598 -333765 pfam00013 KH_1 KH domain. KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. 64 -333766 pfam00014 Kunitz_BPTI Kunitz/Bovine pancreatic trypsin inhibitor domain. Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. 52 -333767 pfam00015 MCPsignal Methyl-accepting chemotaxis protein (MCP) signalling domain. This domain is thought to transduce the signal to CheA since it is highly conserved in very diverse MCPs. 172 -333768 pfam00016 RuBisCO_large Ribulose bisphosphate carboxylase large chain, catalytic domain. The C-terminal domain of RuBisCO large chain is the catalytic domain adopting a TIM barrel fold. 296 -333769 pfam00017 SH2 SH2 domain. 76 -333770 pfam00018 SH3_1 SH3 domain. SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organisation. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. 47 -333771 pfam00019 TGF_beta Transforming growth factor beta like domain. 103 -333772 pfam00020 TNFR_c6 TNFR/NGFR cysteine-rich region. 38 -333773 pfam00021 UPAR_LY6 u-PAR/Ly-6 domain. This extracellular disulphide bond rich domain is related to pfam00087. 77 -306521 pfam00022 Actin Actin. 367 -333774 pfam00023 Ank Ankyrin repeat. Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. This repeat-domain is a 'membrane-binding' domain of up to 24 repeated units, and it mediates most of the protein's binding activities. Repeats 13-24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO(3) anion exchanger, voltage-gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. The ANK repeats are found to form a contiguous spiral stack such that ion transporters like the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity. 33 -333775 pfam00024 PAN_1 PAN domain. The PAN domain contains a conserved core of three disulphide bridges. In some members of the family there is an additional fourth disulphide bridge the links the N and C termini of the domain. The domain is found in diverse proteins, in some they mediate protein-protein interactions, in others they mediate protein-carbohydrate interactions. 76 -333776 pfam00025 Arf ADP-ribosylation factor family. Pfam combines a number of different Prosite families together 173 -333777 pfam00026 Asp Eukaryotic aspartyl protease. Aspartyl (acid) proteases include pepsins, cathepsins, and renins. Two-domain structure, probably arising from ancestral duplication. This family does not include the retroviral nor retrotransposon proteases (pfam00077), which are much smaller and appear to be homologous to a single domain of the eukaryotic asp proteases. 313 -333778 pfam00027 cNMP_binding Cyclic nucleotide-binding domain. 83 -333779 pfam00028 Cadherin Cadherin domain. 91 -333780 pfam00029 Connexin Connexin. Connexin proteins form gap-junctions between cells. They carry four transmembrane regions, hence why this family now includes Connexin_CCC, which represented the second pair of TMs. 181 -333781 pfam00030 Crystall Beta/Gamma crystallin. The alignment comprises two Greek key motifs since the similarity between them is very low. 82 -333782 pfam00031 Cystatin Cystatin domain. Very diverse family. Attempts to define separate sub-families failed. Typically, either the N-terminal or C-terminal end is very divergent. But splitting into two domains would make very short families. pfam00666 is related to this family but members have not been included. 92 -333783 pfam00032 Cytochrom_B_C Cytochrome b(C-terminal)/b6/petD. 101 -306530 pfam00033 Cytochrome_B Cytochrome b/b6/petB. 189 -333784 pfam00034 Cytochrom_C Cytochrome c. The Pfam entry does not include all Prosite members. The cytochrome 556 and cytochrome c' families are not included. All these are now in a new clan together. The C-terminus of DUF989, pfam06181, has now been merged into this family. 88 -333785 pfam00035 dsrm Double-stranded RNA binding motif. Sequences gathered for seed by HMM_iterative_training Putative motif shared by proteins that bind to dsRNA. At least some DSRM proteins seem to bind to specific RNA targets. Exemplified by Staufen, which is involved in localization of at least five different mRNAs in the early Drosophila embryo. Also by interferon-induced protein kinase in humans, which is part of the cellular response to dsRNA. 64 -333786 pfam00036 EF-hand_1 EF hand. The EF-hands can be divided into two classes: signalling proteins and buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calbindin D9k and do not undergo calcium dependent conformational changes. 27 -333787 pfam00037 Fer4 4Fe-4S binding domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 24 -333788 pfam00038 Filament Intermediate filament protein. 313 -333789 pfam00039 fn1 Fibronectin type I domain. 40 -306537 pfam00040 fn2 Fibronectin type II domain. 42 -333790 pfam00041 fn3 Fibronectin type III domain. 84 -333791 pfam00042 Globin Globin. 108 -333792 pfam00043 GST_C Glutathione S-transferase, C-terminal domain. GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. 93 -333793 pfam00044 Gp_dh_N Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain. GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. N-terminal domain is a Rossmann NAD(P) binding fold. 101 -333794 pfam00045 Hemopexin Hemopexin. Hemopexin is a heme-binding protein that transports heme to the liver. Hemopexin-like repeats occur in vitronectin and some matrix metallopeptidases family (matrixins). The HX repeats of some matrixins bind tissue inhibitor of metallopeptidases (TIMPs). 44 -333795 pfam00046 Homeobox Homeobox domain. 55 -333796 pfam00047 ig Immunoglobulin domain. Members of the immunoglobulin superfamily are found in hundreds of proteins of different functions. Examples include antibodies, the giant muscle kinase titin and receptor tyrosine kinases. Immunoglobulin-like domains may be involved in protein-protein and protein-ligand interactions. 86 -333797 pfam00048 IL8 Small cytokines (intecrine/chemokine), interleukin-8 like. Includes a number of secreted growth factors and interferons involved in mitogenic, chemotactic, and inflammatory activity. Structure contains two highly conserved disulfide bonds. 59 -306545 pfam00049 Insulin Insulin/IGF/Relaxin family. Superfamily includes insulins; relaxins; insulin-like growth factor; and bombyxin. All are secreted regulatory hormones. Disulfide rich, all-alpha fold. Alignment includes B chain, linker (which is processed out of the final product), and A chain. 77 -333798 pfam00050 Kazal_1 Kazal-type serine protease inhibitor domain. Usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors. Kazal domains often occur in tandem arrays. Small alpha+beta fold containing three disulphides. Alignment also includes a single domain from transporters in the OATP/PGT family. 49 -333799 pfam00051 Kringle Kringle domain. Kringle domains have been found in plasminogen, hepatocyte growth factors, prothrombin, and apolipoprotein A. Structure is disulfide-rich, nearly all-beta. 78 -333800 pfam00052 Laminin_B Laminin B (Domain IV). 130 -333801 pfam00053 Laminin_EGF Laminin EGF domain. This family is like pfam00008 but has 8 conserved cysteines instead of six. 49 -333802 pfam00054 Laminin_G_1 Laminin G domain. 131 -333803 pfam00055 Laminin_N Laminin N-terminal (Domain VI). 223 -333804 pfam00056 Ldh_1_N lactate/malate dehydrogenase, NAD binding domain. L-lactate dehydrogenases are metabolic enzymes which catalyze the conversion of L-lactate to pyruvate, the last step in anaerobic glycolysis. L-2-hydroxyisocaproate dehydrogenases are also members of the family. Malate dehydrogenases catalyze the interconversion of malate to oxaloacetate. The enzyme participates in the citric acid cycle. L-lactate dehydrogenase is also found as a lens crystallin in bird and crocodile eyes. N-terminus (this family) is a Rossmann NAD-binding fold. C-terminus is an unusual alpha+beta fold. 140 -333805 pfam00057 Ldl_recept_a Low-density lipoprotein receptor domain class A. 37 -278487 pfam00058 Ldl_recept_b Low-density lipoprotein receptor repeat class B. This domain is also known as the YWTD motif after the most conserved region of the repeat. The YWTD repeat is found in multiple tandem repeats and has been predicted to form a beta-propeller structure. 41 -333806 pfam00059 Lectin_C Lectin C-type domain. This family includes both long and short form C-type 107 -306551 pfam00060 Lig_chan Ligand-gated ion channel. This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. 266 -333807 pfam00061 Lipocalin Lipocalin / cytosolic fatty-acid binding protein family. Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). Alignment subsumes both the lipocalin and fatty acid binding protein signatures from PROSITE. This is supported on structural and functional grounds. The structure is an eight-stranded beta barrel. 143 -333808 pfam00062 Lys C-type lysozyme/alpha-lactalbumin family. Alpha-lactalbumin is the regulatory subunit of lactose synthase, changing the substrate specificity of galactosyltransferase from N-acetylglucosamine to glucose. C-type lysozymes are secreted bacteriolytic enzymes that cleave the peptidoglycan of bacterial cell walls. Structure is a multi-domain, mixed alpha and beta fold, containing four conserved disulfide bonds. 121 -306553 pfam00063 Myosin_head Myosin head (motor domain). 674 -278493 pfam00064 Neur Neuraminidase. Neuraminidases cleave sialic acid residues from glycoproteins. Belong to the sialidase family - but this alignment does not generalize to the other sialidases. Structure is a 6-sheet beta propeller. 466 -333809 pfam00066 Notch LNR domain. The LNR (Lin-12/Notch repeat) domain is found in three tandem copies in Notch related proteins. The structure of the domain has been determined by NMR and was shown to contain three disulphide bonds and coordinate a calcium ion. Three repeats are also found in the PAPP-A peptidase. 34 -333810 pfam00067 p450 Cytochrome P450. Cytochrome P450s are haem-thiolate proteins involved in the oxidative degradation of various compounds. They are particularly well known for their role in the degradation of environmental toxins and mutagens. They can be divided into 4 classes, according to the method by which electrons from NAD(P)H are delivered to the catalytic site. Sequence conservation is relatively low within the family - there are only 3 absolutely conserved residues - but their general topography and structural fold are highly conserved. The conserved core is composed of a coil termed the 'meander', a four-helix bundle, helices J and K, and two sets of beta-sheets. These constitute the haem-binding loop (with an absolutely conserved cysteine that serves as the 5th ligand for the haem iron), the proton-transfer groove and the absolutely conserved EXXR motif in helix K. While prokaryotic P450s are soluble proteins, most eukaryotic P450s are associated with microsomal membranes. their general enzymatic function is to catalyze regiospecific and stereospecific oxidation of non-activated hydrocarbons at physiological temperatures. 458 -333811 pfam00068 Phospholip_A2_1 Phospholipase A2. Phospholipase A2 releases fatty acids from the second carbon group of glycerol. Perhaps the best known members are secreted snake venoms, but also found in secreted pancreatic and membrane-associated forms. Structure is all-alpha, with two core disulfide-linked helices and a calcium-binding loop. This alignment represents the major family of PLA2s. A second minor family, defined by the honeybee venom PLA2 Structure 1POC and related sequences from Gila monsters (Heloderma), is not recognized. This minor family conserves the core helix pair but is substantially different elsewhere. The PROSITE pattern PA2_HIS, specific to the first core helix, recognizes both families. 107 -333812 pfam00069 Pkinase Protein kinase domain. 259 -333813 pfam00070 Pyr_redox Pyridine nucleotide-disulphide oxidoreductase. This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain. 79 -333814 pfam00071 Ras Ras family. Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices. 161 -333815 pfam00072 Response_reg Response regulator receiver domain. This domain receives the signal from the sensor partner in bacterial two-component systems. It is usually found N-terminal to a DNA binding effector domain. 111 -333816 pfam00073 Rhv picornavirus capsid protein. CAUTION: This alignment is very weak. It can not be generated by clustalw. If a representative set is used for a seed, many so-called members are not recognized. The family should probably be split up into sub-families. Capsid proteins of picornaviruses. Picornaviruses are non-enveloped plus-strand ssRNA animal viruses with icosahedral capsids. They include rhinovirus (common cold) and poliovirus. Common structure is an 8-stranded beta sandwich. Variations (one or two extra strands) occur. 169 -333817 pfam00074 RnaseA Pancreatic ribonuclease. Ribonucleases. Members include pancreatic RNAase A and angiogenins. Structure is an alpha+beta fold -- long curved beta sheet and three helices. 116 -333818 pfam00075 RNase_H RNase H. RNase H digests the RNA strand of an RNA/DNA hybrid. Important enzyme in retroviral replication cycle, and often found as a domain associated with reverse transcriptases. Structure is a mixed alpha+beta fold with three a/b/a layers. 139 -333819 pfam00076 RRM_1 RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain). The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C-terminus that has some features characteristic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease. 70 -306563 pfam00077 RVP Retroviral aspartyl protease. Single domain aspartyl proteases from retroviruses, retrotransposons, and badnaviruses (plant dsDNA viruses). These proteases are generally part of a larger polyprotein; usually pol, more rarely gag. Retroviral proteases appear to be homologous to a single domain of the two-domain eukaryotic aspartyl proteases such as pepsins, cathepsins, and renins (pfam00026). 99 -333820 pfam00078 RVT_1 Reverse transcriptase (RNA-dependent DNA polymerase). A reverse transcriptase gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. Reverse transcriptases occur in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and caulimoviruses. 185 -333821 pfam00079 Serpin Serpin (serine protease inhibitor). Structure is a multi-domain fold containing a bundle of helices and a beta sandwich. 369 -333822 pfam00080 Sod_Cu Copper/zinc superoxide dismutase (SODC). superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the copper/zinc-binding family is one. Defects in the human SOD1 gene cause familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Structure is an eight-stranded beta sandwich, similar to the immunoglobulin fold. 130 -333823 pfam00081 Sod_Fe_N Iron/manganese superoxide dismutases, alpha-hairpin domain. superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplasmic Cu/Zn SOD, and a mitochondrial Mn/Fe SOD. N-terminal domain is a long alpha antiparallel hairpin. A small fragment of YTRE_LEPBI matches well - sequencing error? 82 -333824 pfam00082 Peptidase_S8 Subtilase family. Subtilases are a family of serine proteases. They appear to have independently and convergently evolved an Asp/Ser/His catalytic triad, like that found in the trypsin serine proteases (see pfam00089). Structure is an alpha/beta fold containing a 7-stranded parallel beta sheet, order 2314567. 287 -333825 pfam00083 Sugar_tr Sugar (and other) transporter. 446 -333826 pfam00084 Sushi Sushi repeat (SCR repeat). 56 -333827 pfam00085 Thioredoxin Thioredoxin. Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. Some members with only the active site are not separated from the noise. 103 -333828 pfam00086 Thyroglobulin_1 Thyroglobulin type-1 repeat. Thyroglobulin type 1 repeats are thought to be involved in the control of proteolytic degradation. The domain usually contains six conserved cysteines. These form three disulphide bridges. Cysteines 1 pairs with 2, 3 with 4 and 5 with 6. 66 -333829 pfam00087 Toxin_TOLIP Snake toxin and toxin-like protein. This family predominantly includes venomous neurotoxins and cytotoxins from snakes, but also structurally similar (non-snake) toxin-like proteins (TOLIPs) such as Lymphocyte antigen 6D and Ly6/PLAUR domain-containing protein. Snake toxins are short proteins with a compact, disulphide-rich structure. TOLIPs have similar structural features (abundance of spaced cysteine residues, a high frequency of charge residues, a signal peptide for secretion and a compact structure) but, are not associated with a venom gland or poisonous function. They are endogenous animal proteins that are not restricted to poisonous animals. 64 -333830 pfam00088 Trefoil Trefoil (P-type) domain. 40 -333831 pfam00089 Trypsin Trypsin. 219 -306574 pfam00090 TSP_1 Thrombospondin type 1 domain. 49 -333832 pfam00091 Tubulin Tubulin/FtsZ family, GTPase domain. This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases. FtsZ can polymerize into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. 190 -333833 pfam00092 VWA von Willebrand factor type A domain. 173 -278520 pfam00093 VWC von Willebrand factor type C domain. The high cutoff was used to prevent overlap with pfam00094. 57 -306577 pfam00094 VWD von Willebrand factor type D domain. Luciferin monooxygenase from Vargula hilgendorfii contains a vwd domain. Its function is unrelated but the similarity is very strong by several methods. 155 -333834 pfam00095 WAP WAP-type (Whey Acidic Protein) 'four-disulfide core'. WAP belongs to the group of Elafin or elastase-specific inhibitors. 41 -333835 pfam00096 zf-C2H2 Zinc finger, C2H2 type. The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. 23 -333836 pfam00097 zf-C3HC4 Zinc finger, C3HC4 type (RING finger). The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid. Many proteins containing a RING finger play a key role in the ubiquitination pathway. 40 -306581 pfam00098 zf-CCHC Zinc knuckle. The zinc knuckle is a zinc binding motif composed of the the following CX2CX4HX4C where X can be any amino acid. The motifs are mostly from retroviral gag proteins (nucleocapsid). Prototype structure is from HIV. Also contains members involved in eukaryotic gene regulation, such as C. elegans GLH-1. Structure is an 18-residue zinc finger. 18 -333837 pfam00100 Zona_pellucida Zona pellucida-like domain. 244 -333838 pfam00101 RuBisCO_small Ribulose bisphosphate carboxylase, small chain. 97 -333839 pfam00102 Y_phosphatase Protein-tyrosine phosphatase. 233 -306585 pfam00103 Hormone_1 Somatotropin hormone family. 214 -333840 pfam00104 Hormone_recep Ligand-binding domain of nuclear hormone receptor. This all helical domain is involved in binding the hormone in these receptors. 206 -333841 pfam00105 zf-C4 Zinc finger, C4 type (two domains). In nearly all cases, this is the DNA binding domain of a nuclear hormone receptor. The alignment contains two Zinc finger domains that are too dissimilar to be aligned with each other. 68 -333842 pfam00106 adh_short short chain dehydrogenase. This family contains a wide variety of dehydrogenases. 195 -333843 pfam00107 ADH_zinc_N Zinc-binding dehydrogenase. 130 -333844 pfam00108 Thiolase_N Thiolase, N-terminal domain. Thiolase is reported to be structurally related to beta-ketoacyl synthase (pfam00109), and also chalcone synthase. 260 -333845 pfam00109 ketoacyl-synt Beta-ketoacyl synthase, N-terminal domain. The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. The N-terminal domain contains most of the structures involved in dimer formation and also the active site cysteine. 251 -333846 pfam00110 wnt wnt family. Wnt genes have been identified in vertebrates and invertebrates but not in plants, unicellular eukaryotes or prokaryotes. In humans, 19 WNT proteins are known. Because of their insolubility little is known about Wnt protein structure, but all have 23 or 24 Cys residues whose spacing is highly conserved. Signal transduction by Wnt proteins (including the Wnt/beta-catenin, the Wnt/Ca++, and the Wnt/polarity pathway) is mediated by receptors of the Frizzled and LDL-receptor-related protein (LRP) families. 305 -333847 pfam00111 Fer2 2Fe-2S iron-sulfur cluster binding domain. 77 -333848 pfam00112 Peptidase_C1 Papain family cysteine protease. 211 -333849 pfam00113 Enolase_C Enolase, C-terminal TIM barrel domain. 296 -333850 pfam00114 Pilin Pilin (bacterial filament). Proteins with only the short N-terminal methylation site are not separated from the noise. The Prosite pattern detects those better. 108 -333851 pfam00115 COX1 Cytochrome C and Quinol oxidase polypeptide I. 431 -278542 pfam00116 COX2 Cytochrome C oxidase subunit II, periplasmic domain. 120 -333852 pfam00117 GATase Glutamine amidotransferase class-I. 188 -333853 pfam00118 Cpn60_TCP1 TCP-1/cpn60 chaperonin family. This family includes members from the HSP60 chaperone family and the TCP-1 (T-complex protein) family. 488 -333854 pfam00119 ATP-synt_A ATP synthase A chain. 189 -333855 pfam00120 Gln-synt_C Glutamine synthetase, catalytic domain. 334 -333856 pfam00121 TIM Triosephosphate isomerase. 242 -333857 pfam00122 E1-E2_ATPase E1-E2 ATPase. 178 -306603 pfam00123 Hormone_2 Peptide hormone. This family contains glucagon, GIP, secretin and VIP. 27 -333858 pfam00124 Photo_RC Photosynthetic reaction centre protein. 260 -333859 pfam00125 Histone Core histone H2A/H2B/H3/H4. 127 -333860 pfam00126 HTH_1 Bacterial regulatory helix-turn-helix protein, lysR family. 60 -333861 pfam00127 Copper-bind Copper binding proteins, plastocyanin/azurin family. 99 -333862 pfam00128 Alpha-amylase Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain. 333 -333863 pfam00129 MHC_I Class I Histocompatibility antigen, domains alpha 1 and 2. 178 -333864 pfam00130 C1_1 Phorbol esters/diacylglycerol binding domain (C1 domain). This domain is also known as the Protein kinase C conserved region 1 (C1) domain. 51 -333865 pfam00131 Metallothio Metallothionein. 63 -333866 pfam00132 Hexapep Bacterial transferase hexapeptide (six repeats). 30 -306611 pfam00133 tRNA-synt_1 tRNA synthetases class I (I, L, M and V). Other tRNA synthetase sub-families are too dissimilar to be included. 600 -333867 pfam00134 Cyclin_N Cyclin, N-terminal domain. Cyclins regulate cyclin dependent kinases (CDKs). Cyclin-0 (CCNO) is a Uracil-DNA glycosylase that is related to other cyclins. Cyclins contain two domains of similar all-alpha fold, of which this family corresponds with the N-terminal domain. 127 -333868 pfam00135 COesterase Carboxylesterase family. 507 -333869 pfam00136 DNA_pol_B DNA polymerase family B. This region of DNA polymerase B appears to consist of more than one structural domain, possibly including elongation, DNA-binding and dNTP binding activities. 451 -333870 pfam00137 ATP-synt_C ATP synthase subunit C. 60 -333871 pfam00139 Lectin_legB Legume lectin domain. 244 -333872 pfam00140 Sigma70_r1_2 Sigma-70 factor, region 1.2. 34 -333873 pfam00141 peroxidase Peroxidase. 182 -306619 pfam00142 Fer4_NifH 4Fe-4S iron sulfur cluster binding proteins, NifH/frxC family. 271 -306620 pfam00143 Interferon Interferon alpha/beta domain. 160 -333874 pfam00144 Beta-lactamase Beta-lactamase. This family appears to be distantly related to pfam00905 and PF00768 D-alanyl-D-alanine carboxypeptidase. 324 -333875 pfam00145 DNA_methylase C-5 cytosine-specific DNA methylase. 323 -333876 pfam00146 NADHdh NADH dehydrogenase. 306 -278572 pfam00147 Fibrinogen_C Fibrinogen beta and gamma chains, C-terminal globular domain. 221 -333877 pfam00148 Oxidored_nitro Nitrogenase component 1 type Oxidoreductase. 390 -333878 pfam00149 Metallophos Calcineurin-like phosphoesterase. This family includes a diverse range of phosphoesterases, including protein phosphoserine phosphatases, nucleotidases, sphingomyelin phosphodiesterases and 2'-3' cAMP phosphodiesterases as well as nucleases such as bacterial SbcD or yeast MRE11. The most conserved regions in this superfamily centre around the metal chelating residues. 79 -333879 pfam00150 Cellulase Cellulase (glycosyl hydrolase family 5). 264 -333880 pfam00151 Lipase Lipase. 336 -333881 pfam00152 tRNA-synt_2 tRNA synthetases class II (D, K and N). 319 -333882 pfam00153 Mito_carr Mitochondrial carrier protein. 92 -333883 pfam00154 RecA recA bacterial DNA recombination protein. RecA is a DNA-dependent ATPase and functions in DNA repair systems. RecA protein catalyzes an ATP-dependent DNA strand-exchange reaction that is the central step in the repair of dsDNA breaks by homologous recombination. 262 -333884 pfam00155 Aminotran_1_2 Aminotransferase class I and II. 357 -333885 pfam00156 Pribosyltran Phosphoribosyl transferase domain. This family includes a range of diverse phosphoribosyl transferase enzymes. This family includes: Adenine phosphoribosyl-transferase EC:2.4.2.7, Hypoxanthine-guanine-xanthine phosphoribosyl-transferase, Hypoxanthine phosphoribosyl-transferase EC:2.4.2.8. Ribose-phosphate pyrophosphokinase i EC:2.7.6.1. Amidophosphoribosyltransferase EC:2.4.2.14. Orotate phosphoribosyl-transferase EC:2.4.2.10, Uracil phosphoribosyl-transferase EC:2.4.2.9, Xanthine-guanine phosphoribosyl-transferase EC:2.4.2.22. In Arabidopsis, at the very N-terminus of this domain is the P-Loop NTPase domain. 142 -306631 pfam00157 Pou Pou domain - N-terminal to homeobox domain. 69 -333886 pfam00158 Sigma54_activat Sigma-54 interaction domain. 168 -306633 pfam00159 Hormone_3 Pancreatic hormone peptide. 35 -333887 pfam00160 Pro_isomerase Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD. The peptidyl-prolyl cis-trans isomerases, also known as cyclophilins, share this domain of about 109 amino acids. Cyclophilins have been found in all organisms studied so far and catalyze peptidyl-prolyl isomerisation during which the peptide bond preceding proline (the peptidyl-prolyl bond) is stabilized in the cis conformation. Mammalian cyclophilin A (CypA) is a major cellular target for the immunosuppressive drug cyclosporin A (CsA). Other roles for cyclophilins may include chaperone and cell signalling function. 151 -333888 pfam00161 RIP Ribosome inactivating protein. 194 -333889 pfam00162 PGK Phosphoglycerate kinase. 369 -333890 pfam00163 Ribosomal_S4 Ribosomal protein S4/S9 N-terminal domain. This family includes small ribosomal subunit S9 from prokaryotes and S16 from metazoans. This domain is predicted to bind to ribosomal RNA. This domain is composed of four helices in the known structure. However the domain is discontinuous in sequence and the alignment for this family contains only the first three helices. 88 -333891 pfam00164 Ribosom_S12_S23 Ribosomal protein S12/S23. This protein is known as S12 in bacteria and archaea and S23 in eukaryotes. 113 -333892 pfam00165 HTH_AraC Bacterial regulatory helix-turn-helix proteins, AraC family. In the absence of arabinose, the N-terminal arm of AraC binds to the DNA binding domain (pfam00165) and helps to hold the two DNA binding domains in a relative orientation that favours DNA looping. In the presence of arabinose, the arms bind over the arabinose on the dimerization domain, thus freeing the DNA-binding domains. The freed DNA-binding domains are then able to assume a conformation suitable for binding to the adjacent DNA sites that are utilized when AraC activates transcription, and hence AraC ceases looping the DNA when arabinose is added. 36 -333893 pfam00166 Cpn10 Chaperonin 10 Kd subunit. This family contains GroES and Gp31-like chaperonins. Gp31 is a functional co-chaperonin that is required for the folding and assembly of Gp23, a major capsid protein, during phage morphogenesis. 92 -333894 pfam00167 FGF Fibroblast growth factor. Fibroblast growth factors are a family of proteins involved in growth and differentiation in a wide range of contexts. They are found in a wide range of organisms, from nematodes to humans. Most share an internal core region of high similarity, conserved residues in which are involved in binding with their receptors. On binding, they cause dimerization of their tyrosine kinase receptors leading to intracellular signalling. There are currently four known tyrosine kinase receptors for fibroblast growth factors. These receptors can each bind several different members of this family. Members of this family have a beta trefoil structure. Most have N-terminal signal peptides and are secreted. A few lack signal sequences but are secreted anyway; still others also lack the signal peptide but are found on the cell surface and within the extracellular matrix. A third group remain intracellular. They have central roles in development, regulating cell proliferation, migration and differentiation. On the other hand, they are important in tissue repair following injury in adult organisms. 123 -333895 pfam00168 C2 C2 domain. 103 -333896 pfam00169 PH PH domain. PH stands for pleckstrin homology. 103 -333897 pfam00170 bZIP_1 bZIP transcription factor. The Pfam entry includes the basic region and the leucine zipper region. 64 -333898 pfam00171 Aldedh Aldehyde dehydrogenase family. This family of dehydrogenases act on aldehyde substrates. Members use NADP as a cofactor. The family includes the following members: The prototypical members are the aldehyde dehydrogenases EC:1.2.1.3. Succinate-semialdehyde dehydrogenase EC:1.2.1.16. Lactaldehyde dehydrogenase EC:1.2.1.22. Benzaldehyde dehydrogenase EC:1.2.1.28. Methylmalonate-semialdehyde dehydrogenase EC:1.2.1.27. Glyceraldehyde-3-phosphate dehydrogenase EC:1.2.1.9. Delta-1-pyrroline-5-carboxylate dehydrogenase EC: 1.5.1.12. Acetaldehyde dehydrogenase EC:1.2.1.10. Glutamate-5-semialdehyde dehydrogenase EC:1.2.1.41. This family also includes omega crystallin, an eye lens protein from squid and octopus that has little aldehyde dehydrogenase activity. 462 -333899 pfam00172 Zn_clus Fungal Zn(2)-Cys(6) binuclear cluster domain. 39 -306642 pfam00173 Cyt-b5 Cytochrome b5-like Heme/Steroid binding domain. This family includes heme binding domains from a diverse range of proteins. This family also includes proteins that bind to steroids. The family includes progesterone receptors. Many members of this subfamily are membrane anchored by an N-terminal transmembrane alpha helix. This family also includes a domain in some chitin synthases. There is no known ligand for this domain in the chitin synthases. 74 -333900 pfam00174 Oxidored_molyb Oxidoreductase molybdopterin binding domain. This domain is found in a variety of oxidoreductases. This domain binds to a molybdopterin cofactor. Xanthine dehydrogenases, that also bind molybdopterin, have essentially no similarity. 168 -333901 pfam00175 NAD_binding_1 Oxidoreductase NAD-binding domain. Xanthine dehydrogenases, that also bind FAD/NAD, have essentially no similarity. 108 -306645 pfam00176 SNF2_N SNF2 family N-terminal domain. This domain is found in proteins involved in a variety of processes including transcription regulation (e.g., SNF2, STH1, brahma, MOT1), DNA repair (e.g., ERCC6, RAD16, RAD5), DNA recombination (e.g., RAD54), and chromatin unwinding (e.g., ISWI) as well as a variety of other proteins with little functional information (e.g., lodestar, ETL1). 305 -333902 pfam00177 Ribosomal_S7 Ribosomal protein S7p/S5e. This family contains ribosomal protein S7 from prokaryotes and S5 from eukaryotes. 143 -333903 pfam00178 Ets Ets-domain. 80 -333904 pfam00179 UQ_con Ubiquitin-conjugating enzyme. Proteins destined for proteasome-mediated degradation may be ubiquitinated. Ubiquitination follows conjugation of ubiquitin to a conserved cysteine residue of UBC homologs. TSG101 is one of several UBC homologs that lacks this active site cysteine. 139 -333905 pfam00180 Iso_dh Isocitrate/isopropylmalate dehydrogenase. 349 -306650 pfam00181 Ribosomal_L2 Ribosomal Proteins L2, RNA binding domain. 77 -306651 pfam00182 Glyco_hydro_19 Chitinase class I. 232 -333906 pfam00183 HSP90 Hsp90 protein. 516 -306653 pfam00184 Hormone_5 Neurohypophysial hormones, C-terminal Domain. N-terminal Domain is in hormone5 79 -333907 pfam00185 OTCace Aspartate/ornithine carbamoyltransferase, Asp/Orn binding domain. 155 -333908 pfam00186 DHFR_1 Dihydrofolate reductase. 159 -333909 pfam00187 Chitin_bind_1 Chitin recognition protein. 36 -333910 pfam00188 CAP Cysteine-rich secretory protein family. This is a large family of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) that are found in a wide range of organisms, including prokaryotes and non-vertebrate eukaryotes, The nine subfamilies of the mammalian CAP 'super'family include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. Members are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or pro-oncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilisation. The overall protein structural conservation within the CAP 'super'family results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters the target specificity and, thus, the biological consequences. The Ca++-chelating function would fit with the various signalling processes (e.g. the CRISP proteins) that members of this family are involved in, and also the sequence and structural evidence of a conserved pocket containing two histidines and a glutamate. It also may explain how the cysteine-rich venom protein helothermine blocks the Ca++ transporting ryanodine receptors. 117 -333911 pfam00189 Ribosomal_S3_C Ribosomal protein S3, C-terminal domain. This family contains a central domain pfam00013, hence the amino and carboxyl terminal domains are stored separately. This is a minimal carboxyl-terminal domain. Some are much longer. 83 -333912 pfam00190 Cupin_1 Cupin. This family represents the conserved barrel domain of the 'cupin' superfamily ('cupa' is the Latin term for a small barrel). This family contains 11S and 7S plant seed storage proteins, and germins. Plant seed storage proteins provide the major nitrogen source for the developing plant. 145 -333913 pfam00191 Annexin Annexin. This family of annexins also includes giardin that has been shown to function as an annexin. 66 -333914 pfam00193 Xlink Extracellular link domain. 93 -333915 pfam00194 Carb_anhydrase Eukaryotic-type carbonic anhydrase. 249 -306663 pfam00195 Chal_sti_synt_N Chalcone and stilbene synthases, N-terminal domain. The C-terminal domain of Chalcone synthase is reported to be structurally similar to domains in thiolase and beta-ketoacyl synthase. The differences in activity are accounted for by differences in this N-terminal domain. 221 -306664 pfam00196 GerE Bacterial regulatory proteins, luxR family. 57 -333916 pfam00197 Kunitz_legume Trypsin and protease inhibitor. 172 -333917 pfam00198 2-oxoacid_dh 2-oxoacid dehydrogenases acyltransferase (catalytic domain). These proteins contain one to three copies of a lipoyl binding domain followed by the catalytic domain. 231 -333918 pfam00199 Catalase Catalase. 382 -333919 pfam00200 Disintegrin Disintegrin. 74 -278624 pfam00201 UDPGT UDP-glucoronosyl and UDP-glucosyl transferase. 499 -333920 pfam00202 Aminotran_3 Aminotransferase class-III. 400 -333921 pfam00203 Ribosomal_S19 Ribosomal protein S19. 80 -333922 pfam00204 DNA_gyraseB DNA gyrase B. This family represents the second domain of DNA gyrase B which has a ribosomal S5 domain 2-like fold. This family is structurally related to PF01119. 173 -333923 pfam00205 TPP_enzyme_M Thiamine pyrophosphate enzyme, central domain. The central domain of TPP enzymes contains a 2-fold Rossman fold. 136 -333924 pfam00206 Lyase_1 Lyase. 312 -333925 pfam00207 A2M Alpha-2-macroglobulin family. This family includes the C-terminal region of the alpha-2-macroglobulin family. 91 -333926 pfam00208 ELFV_dehydrog Glutamate/Leucine/Phenylalanine/Valine dehydrogenase. 241 -306675 pfam00209 SNF Sodium:neurotransmitter symporter family. These are twelve xTM-containing region transporters. 517 -333927 pfam00210 Ferritin Ferritin-like domain. This family contains ferritins and other ferritin-like proteins such as members of the DPS family and bacterioferritins. 142 -306677 pfam00211 Guanylate_cyc Adenylate and Guanylate cyclase catalytic domain. 183 -333928 pfam00212 ANP Atrial natriuretic peptide. 31 -333929 pfam00213 OSCP ATP synthase delta (OSCP) subunit. The ATP D subunit from E. coli is the same as the OSCP subunit which is this family. The ATP D subunit from metazoa are found in family pfam00401. 171 -333930 pfam00214 Calc_CGRP_IAPP Calcitonin / CGRP / IAPP family. 125 -333931 pfam00215 OMPdecase Orotidine 5'-phosphate decarboxylase / HUMPS family. This family includes Orotidine 5'-phosphate decarboxylase enzymes EC:4.1.1.23 that are involved in the final step of pyrimidine biosynthesis. The family also includes enzymes such as hexulose-6-phosphate synthase. This family appears to be distantly related to pfam00834. 217 -333932 pfam00216 Bac_DNA_binding Bacterial DNA-binding protein. 88 -333933 pfam00217 ATP-gua_Ptrans ATP:guanido phosphotransferase, C-terminal catalytic domain. The substrate binding site is located in the cleft between N and C-terminal domains, but most of the catalytic residues are found in the larger C-terminal domain. 210 -333934 pfam00218 IGPS Indole-3-glycerol phosphate synthase. 253 -333935 pfam00219 IGFBP Insulin-like growth factor binding protein. 55 -278642 pfam00220 Hormone_4 Neurohypophysial hormones, N-terminal Domain. C-terminal is in hormone5 9 -333936 pfam00221 Lyase_aromatic Aromatic amino acid lyase. This family includes proteins with phenylalanine ammonia-lyase, EC:4.3.1.24, histidine ammonia-lyase, EC:4.3.1.3, and tyrosine aminomutase, EC:5.4.3.6, activities. 446 -306687 pfam00223 PsaA_PsaB Photosystem I psaA/psaB protein. 717 -333937 pfam00224 PK Pyruvate kinase, barrel domain. This domain of the is actually a small beta-barrel domain nested within a larger TIM barrel. The active site is found in a cleft between the two domains. 348 -333938 pfam00225 Kinesin Kinesin motor domain. 324 -333939 pfam00226 DnaJ DnaJ domain. DnaJ domains (J-domains) are associated with hsp70 heat-shock system and it is thought that this domain mediates the interaction. DnaJ-domain is therefore part of a chaperone (protein folding) system. The T-antigens, although not in Prosite are confirmed as DnaJ containing domains from literature. 63 -333940 pfam00227 Proteasome Proteasome subunit. The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologs vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria. The second is call beta-proteobacteria proteasome homolog (BPH). 188 -333941 pfam00228 Bowman-Birk_leg Bowman-Birk serine protease inhibitor family. 24 -333942 pfam00229 TNF TNF(tumor Necrosis Factor) family. 126 -333943 pfam00230 MIP Major intrinsic protein. MIP (Major Intrinsic Protein) family proteins exhibit essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. 222 -333944 pfam00231 ATP-synt ATP synthase. 281 -333945 pfam00232 Glyco_hydro_1 Glycosyl hydrolase family 1. 453 -333946 pfam00233 PDEase_I 3'5'-cyclic nucleotide phosphodiesterase. 236 -333947 pfam00234 Tryp_alpha_amyl Protease inhibitor/seed storage/LTP family. This family is composed of trypsin-alpha amylase inhibitors, seed storage proteins and lipid transfer proteins from plants. 71 -333948 pfam00235 Profilin Profilin. 124 -333949 pfam00236 Hormone_6 Glycoprotein hormone. 88 -333950 pfam00237 Ribosomal_L22 Ribosomal protein L22p/L17e. This family includes L22 from prokaryotes and chloroplasts and L17 from eukaryotes. 103 -333951 pfam00238 Ribosomal_L14 Ribosomal protein L14p/L23e. 120 -333952 pfam00239 Resolvase Resolvase, N terminal domain. The N-terminal domain of the resolvase family (this family) contains the active site and the dimer interface. The extended arm at the C-terminus of this domain connects to the C-terminal helix-turn-helix domain of resolvase - see pfam02796. 142 -333953 pfam00240 ubiquitin Ubiquitin family. This family contains a number of ubiquitin-like proteins: SUMO (smt3 homolog), Nedd8, Elongin B, Rub1, and Parkin. A number of them are thought to carry a distinctive five-residue motif termed the proteasome-interacting motif (PIM), which may have a biologically significant role in protein delivery to proteasomes and recruitment of proteasomes to transcription sites. 71 -333954 pfam00241 Cofilin_ADF Cofilin/tropomyosin-type actin-binding protein. Severs actin filaments and binds to actin monomers. 123 -278663 pfam00242 DNA_pol_viral_N DNA polymerase (viral) N-terminal domain. 352 -306704 pfam00243 NGF Nerve growth factor family. 110 -333955 pfam00244 14-3-3 14-3-3 protein. 222 -333956 pfam00245 Alk_phosphatase Alkaline phosphatase. 416 -306707 pfam00246 Peptidase_M14 Zinc carboxypeptidase. 287 -278668 pfam00248 Aldo_ket_red Aldo/keto reductase family. This family includes a number of K+ ion channel beta chain regulatory domains - these are reported to have oxidoreductase activity. 290 -333957 pfam00249 Myb_DNA-binding Myb-like DNA-binding domain. This family contains the DNA binding domains from Myb proteins, as well as the SANT domain family. 47 -333958 pfam00250 Forkhead Forkhead domain. 86 -333959 pfam00251 Glyco_hydro_32N Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. 303 -333960 pfam00252 Ribosomal_L16 Ribosomal protein L16p/L10e. 124 -333961 pfam00253 Ribosomal_S14 Ribosomal protein S14p/S29e. This family includes both ribosomal S14 from prokaryotes and S29 from eukaryotes. 54 -333962 pfam00254 FKBP_C FKBP-type peptidyl-prolyl cis-trans isomerase. 94 -333963 pfam00255 GSHPx Glutathione peroxidase. 108 -306715 pfam00257 Dehydrin Dehydrin. 142 -333964 pfam00258 Flavodoxin_1 Flavodoxin. 141 -278678 pfam00260 Protamine_P1 Protamine P1. 48 -306717 pfam00261 Tropomyosin Tropomyosin. Tropomyosin is an alpha-helical protein that forms a coiled-coil structure of 2 parallel helices containing 2 sets of 7 alternating actin binding sites. The protein is best known for its role in regulating the interaction between actin and myosin in muscle contraction, but is also involved in the organisation and dynamics of the cytoskeleton in non-muscle cells. There are multiple cell-specific isoforms, expressed by alternative promoters and alternative RNA processing of at least four genes. Muscle isoforms of tropomyosin are characterized by having 284 amino acid residues and a highly conserved N-terminal region, whereas non-muscle forms are generally smaller and are heterogeneous in their N-terminal region. 235 -306718 pfam00262 Calreticulin Calreticulin family. 367 -333965 pfam00263 Secretin Bacterial type II and III secretion system protein. 161 -333966 pfam00264 Tyrosinase Common central domain of tyrosinase. This family also contains polyphenol oxidases and some hemocyanins. Binds two copper ions via two sets of three histidines. This family is related to pfam00372. 202 -306721 pfam00265 TK Thymidine kinase. 176 -333967 pfam00266 Aminotran_5 Aminotransferase class-V. This domain is found in amino transferases, and other enzymes including cysteine desulphurase EC:4.4.1.-. 369 -306722 pfam00267 Porin_1 Gram-negative porin. 338 -333968 pfam00268 Ribonuc_red_sm Ribonucleotide reductase, small chain. 277 -306724 pfam00269 SASP Small, acid-soluble spore proteins, alpha/beta type. 57 -333969 pfam00270 DEAD DEAD/DEAH box helicase. Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression. 165 -333970 pfam00271 Helicase_C Helicase conserved C-terminal domain. The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. 111 -333971 pfam00272 Cecropin Cecropin family. 30 -306728 pfam00273 Serum_albumin Serum albumin family. 176 -306729 pfam00274 Glycolytic Fructose-bisphosphate aldolase class-I. 349 -333972 pfam00275 EPSP_synthase EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase). 415 -333973 pfam00276 Ribosomal_L23 Ribosomal protein L23. 86 -306732 pfam00277 SAA Serum amyloid A protein. 101 -333974 pfam00278 Orn_DAP_Arg_deC Pyridoxal-dependent decarboxylase, C-terminal sheet domain. These pyridoxal-dependent decarboxylases act on ornithine, lysine, arginine and related substrates. 342 -333975 pfam00280 potato_inhibit Potato inhibitor I family. 64 -333976 pfam00281 Ribosomal_L5 Ribosomal protein L5. 57 -333977 pfam00282 Pyridoxal_deC Pyridoxal-dependent decarboxylase conserved domain. 375 -333978 pfam00283 Cytochrom_B559 Cytochrome b559, alpha (gene psbE) and beta (gene psbF)subunits. 29 -278701 pfam00284 Cytochrom_B559a Lumenal portion of Cytochrome b559, alpha (gene psbE) subunit. This family is the lumenal portion of cytochrome b559 alpha chain, matches to this family should be accompanied by a match to the pfam00283 family also. The Prosite pattern pattern matches the transmembrane region of the cytochrome b559 alpha and beta subunits. 38 -333979 pfam00285 Citrate_synt Citrate synthase, C-terminal domain. This is the long, C-terminal part of the enzyme. 359 -278703 pfam00286 Flexi_CP Viral coat protein. Family includes coat proteins from Potexviruses and carlaviruses. 138 -333980 pfam00287 Na_K-ATPase Sodium / potassium ATPase beta chain. 271 -333981 pfam00288 GHMP_kinases_N GHMP kinases N terminal domain. This family includes homoserine kinases, galactokinases and mevalonate kinases. 63 -333982 pfam00289 Biotin_carb_N Biotin carboxylase, N-terminal domain. This domain is structurally related to the PreATP-grasp domain. The family contains the N-terminus of biotin carboxylase enzymes, and propionyl-CoA carboxylase A chain. 107 -333983 pfam00290 Trp_syntA Tryptophan synthase alpha chain. 258 -333984 pfam00291 PALP Pyridoxal-phosphate dependent enzyme. Members of this family are all pyridoxal-phosphate dependent enzymes. This family includes: serine dehydratase EC:4.2.1.13 P20132, threonine dehydratase EC:4.2.1.16, tryptophan synthase beta chain EC:4.2.1.20, threonine synthase EC:4.2.99.2, cysteine synthase EC:4.2.99.8 P11096, cystathionine beta-synthase EC:4.2.1.22, 1-aminocyclopropane-1-carboxylate deaminase EC:4.1.99.4. 294 -306741 pfam00292 PAX 'Paired box' domain. 125 -333985 pfam00293 NUDIX NUDIX domain. 126 -333986 pfam00294 PfkB pfkB family carbohydrate kinase. This family includes a variety of carbohydrate and pyrimidine kinases. 296 -306744 pfam00295 Glyco_hydro_28 Glycosyl hydrolases family 28. Glycosyl hydrolase family 28 includes polygalacturonase EC:3.2.1.15 as well as rhamnogalacturonase A(RGase A), EC:3.2.1.-. These enzymes are important in cell wall metabolism. 321 -306745 pfam00296 Bac_luciferase Luciferase-like monooxygenase. 313 -333987 pfam00297 Ribosomal_L3 Ribosomal protein L3. 369 -333988 pfam00298 Ribosomal_L11 Ribosomal protein L11, RNA binding domain. 69 -333989 pfam00299 Squash Squash family serine protease inhibitor. 29 -333990 pfam00300 His_Phos_1 Histidine phosphatase superfamily (branch 1). The histidine phosphatase superfamily is so named because catalysis centers on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches. The larger branch 1 contains a wide variety of catalytic functions, the best known being fructose 2,6-bisphosphatase (found in a bifunctional protein with 2-phosphofructokinase) and cofactor-dependent phosphoglycerate mutase. The latter is an unusual example of a mutase activity in the superfamily: the vast majority of members appear to be phosphatases. The bacterial regulatory protein phosphatase SixA is also in branch 1 and has a minimal, and possible ancestral-like structure, lacking the large domain insertions that contribute to binding of small molecules in branch 1 members. 193 -333991 pfam00301 Rubredoxin Rubredoxin. 47 -333992 pfam00302 CAT Chloramphenicol acetyltransferase. 203 -333993 pfam00303 Thymidylat_synt Thymidylate synthase. This is a family of proteins that are flavin-dependent thymidylate synthases. 264 -278720 pfam00304 Gamma-thionin Gamma-thionin family. 47 -333994 pfam00305 Lipoxygenase Lipoxygenase. 673 -333995 pfam00306 ATP-synt_ab_C ATP synthase alpha/beta chain, C terminal domain. 126 -333996 pfam00307 CH Calponin homology (CH) domain. The CH domain is found in both cytoskeletal proteins and signal transduction proteins. The CH domain is involved in actin binding in some members of the family. However in calponins there is evidence that the CH domain is not involved in its actin binding activity. Most member proteins have from two to four copies of the CH domain, however some proteins such as calponin have only a single copy. 108 -278724 pfam00308 Bac_DnaA Bacterial dnaA protein. 219 -333997 pfam00309 Sigma54_AID Sigma-54 factor, Activator interacting domain (AID). The sigma-54 holoenzyme is an enhancer dependent form of the RNA polymerase. The AID is necessary for activator interaction. In addition, the AID also inhibits transcription initiation in the sigma-54 holoenzyme prior to interaction with the activator. 39 -306755 pfam00310 GATase_2 Glutamine amidotransferases class-II. 420 -333998 pfam00311 PEPcase Phosphoenolpyruvate carboxylase. 796 -333999 pfam00312 Ribosomal_S15 Ribosomal protein S15. 76 -278729 pfam00313 CSD 'Cold-shock' DNA-binding domain. 66 -334000 pfam00314 Thaumatin Thaumatin family. 214 -334001 pfam00316 FBPase Fructose-1-6-bisphosphatase, N-terminal domain. This family represents the N-terminus of this protein family. 189 -334002 pfam00317 Ribonuc_red_lgN Ribonucleotide reductase, all-alpha domain. 79 -334003 pfam00318 Ribosomal_S2 Ribosomal protein S2. 216 -334004 pfam00319 SRF-TF SRF-type transcription factor (DNA-binding and dimerization domain). 47 -334005 pfam00320 GATA GATA zinc finger. This domain uses four cysteine residues to coordinate a zinc ion. This domain binds to DNA. Two GATA zinc fingers are found in the GATA transcription factors. However there are several proteins which only contain a single copy of the domain. 36 -334006 pfam00321 Thionin Plant thionin. 46 -334007 pfam00322 Endothelin Endothelin family. 29 -306766 pfam00323 Defensin_1 Mammalian defensin. 29 -278739 pfam00324 AA_permease Amino acid permease. 467 -278740 pfam00325 Crp Bacterial regulatory proteins, crp family. 32 -278741 pfam00326 Peptidase_S9 Prolyl oligopeptidase family. 213 -334008 pfam00327 Ribosomal_L30 Ribosomal protein L30p/L7e. This family includes prokaryotic L30 and eukaryotic L7. 51 -334009 pfam00328 His_Phos_2 Histidine phosphatase superfamily (branch 2). The histidine phosphatase superfamily is so named because catalysis centers on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches.The smaller branch 2 contains predominantly eukaryotic proteins. The catalytic functions in members include phytase, glucose-1-phosphatase and multiple inositol polyphosphate phosphatase. The in vivo roles of the mammalian acid phosphatases in branch 2 are not fully understood, although activity against lysophosphatidic acid and tyrosine-phosphorylated proteins has been demonstrated. 355 -334010 pfam00329 Complex1_30kDa Respiratory-chain NADH dehydrogenase, 30 Kd subunit. 122 -334011 pfam00330 Aconitase Aconitase family (aconitate hydratase). 459 -334012 pfam00331 Glyco_hydro_10 Glycosyl hydrolase family 10. 303 -334013 pfam00332 Glyco_hydro_17 Glycosyl hydrolases family 17. 309 -334014 pfam00333 Ribosomal_S5 Ribosomal protein S5, N-terminal domain. 65 -334015 pfam00334 NDK Nucleoside diphosphate kinase. 135 -334016 pfam00335 Tetraspannin Tetraspanin family. 179 -278751 pfam00336 DNA_pol_viral_C DNA polymerase (viral) C-terminal domain. 243 -334017 pfam00337 Gal-bind_lectin Galactoside-binding lectin. This family contains galactoside binding lectins. The family also includes enzymes such as human eosinophil lysophospholipase (EC:3.1.1.5). 129 -334018 pfam00338 Ribosomal_S10 Ribosomal protein S10p/S20e. This family includes small ribosomal subunit S10 from prokaryotes and S20 from eukaryotes. 98 -334019 pfam00339 Arrestin_N Arrestin (or S-antigen), N-terminal domain. Ig-like beta-sandwich fold. Scop reports duplication with C-terminal domain. 146 -278755 pfam00340 IL1 Interleukin-1 / 18. This family includes interleukin-1 and interleukin-18. 113 -306779 pfam00341 PDGF PDGF/VEGF domain. 81 -278757 pfam00342 PGI Phosphoglucose isomerase. Phosphoglucose isomerase catalyzes the interconversion of glucose-6-phosphate and fructose-6-phosphate. 487 -334020 pfam00343 Phosphorylase Carbohydrate phosphorylase. The members of this family catalyze the formation of glucose 1-phosphate from one of the following polyglucoses; glycogen, starch, glucan or maltodextrin. 682 -334021 pfam00344 SecY SecY translocase. 324 -306782 pfam00345 PapD_N Pili and flagellar-assembly chaperone, PapD N-terminal domain. C2 domain-like beta-sandwich fold. This domain is the n-terminal part of the PapD chaperone protein for pilus and flagellar assembly. 122 -334022 pfam00346 Complex1_49kDa Respiratory-chain NADH dehydrogenase, 49 Kd subunit. 270 -278762 pfam00347 Ribosomal_L6 Ribosomal protein L6. 78 -334023 pfam00348 polyprenyl_synt Polyprenyl synthetase. 250 -334024 pfam00349 Hexokinase_1 Hexokinase. Hexokinase (EC:2.7.1.1) contains two structurally similar domains represented by this family and pfam03727. Some members of the family have two copies of each of these domains. 193 -334025 pfam00350 Dynamin_N Dynamin family. 167 -306787 pfam00351 Biopterin_H Biopterin-dependent aromatic amino acid hydroxylase. This family includes phenylalanine-4-hydroxylase, the phenylketonuria disease protein. 331 -334026 pfam00352 TBP Transcription factor TFIID (or TATA-binding protein, TBP). 84 -334027 pfam00353 HemolysinCabind Haemolysin-type calcium-binding repeat (2 copies). 18 -278768 pfam00354 Pentaxin Pentaxin family. Pentaxins are also known as pentraxins. 194 -334028 pfam00355 Rieske Rieske [2Fe-2S] domain. The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. 87 -306791 pfam00356 LacI Bacterial regulatory proteins, lacI family. 46 -334029 pfam00357 Integrin_alpha Integrin alpha cytoplasmic region. This family contains the short intracellular region of integrin alpha chains. 15 -334030 pfam00358 PTS_EIIA_1 phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 1. 122 -334031 pfam00359 PTS_EIIA_2 Phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2. 141 -306794 pfam00360 PHY Phytochrome region. Phytochromes are red/far-red photochromic biliprotein photoreceptors which regulate plant development. They are widely represented in both photosynthetic and non-photosynthetic bacteria and are known in a variety of fungi. Although sequence similarities are low, this domain is structurally related to pfam01590, which is generally located immediately N-terminal to this domain. Compared with pfam01590, this domain carries an additional tongue-like hairpin loop between the fifth beta-sheet and the sixth alpha-helix which functions to seal the chromophore pocket and stabilize the photoactivated far-red-absorbing state (Pfr). The tongue carries a conserved PRxSF motif, from which an arginine finger points into the chromophore pocket close to ring D forming a salt bridge with a conserved aspartate residue. 175 -334032 pfam00361 Proton_antipo_M Proton-conducting membrane transporter. This is a family of membrane transporters that inlcudes some 7 of potentially 14-16 TM regions. In many instances the family forms part of complex I that catalyzes the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction. The family in total represents homologs across the phyla. 291 -334033 pfam00362 Integrin_beta Integrin beta chain VWA domain. Integrins have been found in animals and their homologs have also been found in cyanobacteria, probably due to horizontal gene transfer. This domain corresponds to the integrin beta VWA domain. 248 -334034 pfam00363 Casein Casein. 79 -334035 pfam00364 Biotin_lipoyl Biotin-requiring enzyme. This family covers two Prosite entries, the conserved lysine residue binds biotin in one group and lipoic acid in the other. Note that the HMM does not currently recognize the Glycine cleavage system H proteins. 72 -334036 pfam00365 PFK Phosphofructokinase. 274 -334037 pfam00366 Ribosomal_S17 Ribosomal protein S17. 68 -334038 pfam00367 PTS_EIIB phosphotransferase system, EIIB. 32 -334039 pfam00368 HMG-CoA_red Hydroxymethylglutaryl-coenzyme A reductase. The HMG-CoA reductases catalyze the conversion of HMG-CoA to mevalonate, which is the rate-limiting step in the synthesis of isoprenoids like cholesterol. Probably because of the critical role of this enzyme in cholesterol homeostasis, mammalian HMG-CoA reductase is heavily regulated at the transcriptional, translational, and post-translational levels. 369 -334040 pfam00370 FGGY_N FGGY family of carbohydrate kinases, N-terminal domain. This domain adopts a ribonuclease H-like fold and is structurally related to the C-terminal domain. 245 -334041 pfam00372 Hemocyanin_M Hemocyanin, copper containing domain. This family includes arthropod hemocyanins and insect larval storage proteins. 266 -306805 pfam00373 FERM_M FERM central domain. This domain is the central structural domain of the FERM domain. 113 -334042 pfam00374 NiFeSe_Hases Nickel-dependent hydrogenase. 507 -334043 pfam00375 SDF Sodium:dicarboxylate symporter family. 388 -334044 pfam00376 MerR MerR family regulatory protein. 38 -334045 pfam00377 Prion Prion/Doppel alpha-helical domain. The prion protein is thought to be the infectious agent that causes transmissible spongiform encephalopathies, such as scrapie and BSE. It is thought that the prion protein can exist in two different forms: one is the normal cellular protein, and the other is the infectious form which can change the normal prion protein into the infectious form. It has been found that the prion alpha-helical domain is also found in the Doppel protein. 116 -334046 pfam00378 ECH_1 Enoyl-CoA hydratase/isomerase. This family contains a diverse set of enzymes including: enoyl-CoA hydratase, napthoate synthase, carnitate racemase, 3-hydroxybutyryl-CoA dehydratase and dodecanoyl-CoA delta-isomerase. 251 -306811 pfam00379 Chitin_bind_4 Insect cuticle protein. Many insect cuticular proteins include a 35-36 amino acid motif known as the R&R consensus. The extensive conservation of this region led to the suggestion that it functions to bind chitin. Provocatively, it has no sequence similarity to the well-known cysteine-containing chitin-binding domain found in chitinases and some peritrophic membrane proteins. Chitin binding has been shown experimentally for this region. Thus arthropods have two distinct classes of chitin binding proteins, those with the chitin-binding domain found in lectins, chitinases and peritrophic membranes (cysCBD) and those with the cuticular protein chitin-binding domain (non-cysCBD). 52 -334047 pfam00380 Ribosomal_S9 Ribosomal protein S9/S16. This family includes small ribosomal subunit S9 from prokaryotes and S16 from eukaryotes. 121 -334048 pfam00381 PTS-HPr PTS HPr component phosphorylation site. 78 -278794 pfam00382 TFIIB Transcription factor TFIIB repeat. 71 -278795 pfam00383 dCMP_cyt_deam_1 Cytidine and deoxycytidylate deaminase zinc-binding region. 100 -334049 pfam00384 Molybdopterin Molybdopterin oxidoreductase. 345 -334050 pfam00385 Chromo Chromo (CHRromatin Organisation MOdifier) domain. 52 -334051 pfam00386 C1q C1q domain. C1q is a subunit of the C1 enzyme complex that activates the serum complement system. 127 -334052 pfam00387 PI-PLC-Y Phosphatidylinositol-specific phospholipase C, Y domain. This associates with pfam00388 to form a single structural unit. 114 -334053 pfam00388 PI-PLC-X Phosphatidylinositol-specific phospholipase C, X domain. This associates with pfam00387 to form a single structural unit. 145 -334054 pfam00389 2-Hacid_dh D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain. This family represents the largest portion of the catalytic domain of 2-hydroxyacid dehydrogenases as the NAD binding domain is inserted within the structural domain. 312 -306820 pfam00390 malic Malic enzyme, N-terminal domain. 182 -334055 pfam00391 PEP-utilizers PEP-utilising enzyme, mobile domain. This domain is a "swivelling" beta/beta/alpha domain which is thought to be mobile in all proteins known to contain it. 72 -306822 pfam00392 GntR Bacterial regulatory proteins, gntR family. This family of regulatory proteins consists of the N-terminal HTH region of GntR-like bacterial transcription factors. At the C-terminus there is usually an effector-binding/oligomerization domain. The GntR-like proteins include the following sub-families: MocR, YtrR, FadR, AraR, HutC and PlmA, DevA, DasR. Many of these proteins have been shown experimentally to be autoregulatory, enabling the prediction of operator sites and the discovery of cis/trans relationships. The DasR regulator has been shown to be a global regulator of primary metabolism and development in Streptomyces coelicolor. 64 -334056 pfam00393 6PGD 6-phosphogluconate dehydrogenase, C-terminal domain. This family represents the C-terminal all-alpha domain of 6-phosphogluconate dehydrogenase. The domain contains two structural repeats of 5 helices each. 290 -334057 pfam00394 Cu-oxidase Multicopper oxidase. Many of the proteins in this family contain multiple similar copies of this plastocyanin-like domain. 148 -306825 pfam00395 SLH S-layer homology domain. 41 -334058 pfam00396 Granulin Granulin. 42 -334059 pfam00397 WW WW domain. The WW domain is a protein module with two highly conserved tryptophans that binds proline-rich peptide motifs in vitro. 30 -306828 pfam00398 RrnaAD Ribosomal RNA adenine dimethylase. 261 -306829 pfam00399 PIR Yeast PIR protein repeat. 17 -334060 pfam00400 WD40 WD domain, G-beta repeat. 39 -334061 pfam00401 ATP-synt_DE ATP synthase, Delta/Epsilon chain, long alpha-helix domain. Part of the ATP synthase CF(1). These subunits are part of the head unit of the ATP synthase. This subunit is called epsilon in bacteria and delta in mitochondria. In bacteria the delta (D) subunit is equivalent to the mitochondrial Oligomycin sensitive subunit, OSCP (pfam00213). 47 -334062 pfam00402 Calponin Calponin family repeat. 24 -334063 pfam00403 HMA Heavy-metal-associated domain. 58 -306834 pfam00404 Dockerin_1 Dockerin type I repeat. The dockerin repeat is the binding partner of the cohesin domain pfam00963. The cohesin-dockerin interaction is the crucial interaction for complex formation in the cellulosome. The dockerin repeats, each bearing homology to the EF-hand calcium-binding loop bind calcium. 20 -278817 pfam00405 Transferrin Transferrin. 328 -306835 pfam00406 ADK Adenylate kinase. 184 -278819 pfam00407 Bet_v_1 Pathogenesis-related protein Bet v I family. This family is named after Bet v 1, the major birch pollen allergen. This protein belongs to family 10 of plant pathogenesis-related proteins (PR-10), cytoplasmic proteins of 15-17 kd that are wide-spread among dicotyledonous plants. In recent years, a number of diverse plant proteins with low sequence similarity to Bet v 1 was identified. A classification by sequence similarity yielded several subfamilies related to PR-10: - Pathogenesis-related proteins PR-10: These proteins were identified as major tree pollen allergens in birch and related species (hazel, alder), as plant food allergens expressed in high levels in fruits, vegetables and seeds (apple, celery, hazelnut), and as pathogenesis-related proteins whose expression is induced by pathogen infection, wounding, or abiotic stress. Hyp-1, an enzyme involved in the synthesis of the bioactive naphthodianthrone hypericin in St. John's wort (Hypericum perforatum) also belongs to this family. Most of these proteins were found in dicotyledonous plants. In addition, related sequences were identified in monocots and conifers. - Cytokinin-specific binding proteins: These legume proteins bind cytokinin plant hormones. - (S)-Norcoclaurine synthases are enzymes catalyzing the condensation of dopamine and 4-hydroxyphenylacetaldehyde to (S)-norcoclaurine, the first committed step in the biosynthesis of benzylisoquinoline alkaloids such as morphine. -Major latex proteins and ripening-related proteins are proteins of unknown biological function that were first discovered in the latex of opium poppy (Papaver somniferum) and later found to be upregulated during ripening of fruits such as strawberry and cucumber. The occurrence of Bet v 1-related proteins is confined to seed plants with the exception of a cytokinin-binding protein from the moss Physcomitrella patens. 149 -334064 pfam00408 PGM_PMM_IV Phosphoglucomutase/phosphomannomutase, C-terminal domain. 71 -334065 pfam00410 Ribosomal_S8 Ribosomal protein S8. 126 -306838 pfam00411 Ribosomal_S11 Ribosomal protein S11. 109 -334066 pfam00412 LIM LIM domain. This family represents two copies of the LIM structural domain. 57 -334067 pfam00413 Peptidase_M10 Matrixin. The members of this family are enzymes that cleave peptides. These proteases require zinc for catalysis. 159 -278825 pfam00414 MAP1B_neuraxin Neuraxin and MAP1B repeat. 16 -306840 pfam00415 RCC1 Regulator of chromosome condensation (RCC1) repeat. 50 -306841 pfam00416 Ribosomal_S13 Ribosomal protein S13/S18. This family includes ribosomal protein S13 from prokaryotes and S18 from eukaryotes. 127 -306842 pfam00418 Tubulin-binding Tau and MAP protein, tubulin-binding repeat. This family includes the vertebrate proteins MAP2, MAP4 and Tau, as well as other animal homologs. MAP4 is present in many tissues but is usually absent from neurons; MAP2 and Tau are mainly neuronal. Members of this family have the ability to bind to and stabilize microtubules. As a result, they are involved in neuronal migration, supporting dendrite elongation, and regulating microtubules during mitotic metaphase. Note that Tau is involved in neurofibrillary tangle formation in Alzheimer's disease and some other dementias. This family features a C-terminal microtubule binding repeat that contains a conserved KXGS motif. 30 -334068 pfam00419 Fimbrial Fimbrial protein. 149 -334069 pfam00420 Oxidored_q2 NADH-ubiquinone/plastoquinone oxidoreductase chain 4L. 95 -306845 pfam00421 PSII Photosystem II protein. 500 -278832 pfam00423 HN Haemagglutinin-neuraminidase. 539 -278833 pfam00424 REV REV protein (anti-repression trans-activator protein). 90 -306846 pfam00425 Chorismate_bind chorismate binding enzyme. This family includes the catalytic regions of the chorismate binding enzymes anthranilate synthase, isochorismate synthase, aminodeoxychorismate synthase and para-aminobenzoate synthase. 255 -334070 pfam00426 VP4_haemagglut Outer Capsid protein VP4 (Hemagglutinin) Concanavalin-like domain. This entry represents the N-terminal concanavalin-like domain from the VP4 protein of rotavirus C. 203 -306848 pfam00427 PBS_linker_poly Phycobilisome Linker polypeptide. 125 -334071 pfam00428 Ribosomal_60s 60s Acidic ribosomal protein. This family includes archaebacterial L12, eukaryotic P0, P1 and P2. 88 -306850 pfam00429 TLV_coat ENV polyprotein (coat polyprotein). 560 -278838 pfam00430 ATP-synt_B ATP synthase B/B' CF(0). Part of the CF(0) (base unit) of the ATP synthase. The base unit is thought to translocate protons through membrane (inner membrane in mitochondria, thylakoid membrane in plants, cytoplasmic membrane in bacteria). The B subunits are thought to interact with the stalk of the CF(1) subunits. This domain should not be confused with the ab CF(1) proteins (in the head of the ATP synthase) which are found in pfam00006 131 -278839 pfam00431 CUB CUB domain. 110 -306851 pfam00432 Prenyltrans Prenyltransferase and squalene oxidase repeat. 44 -334072 pfam00433 Pkinase_C Protein kinase C terminal domain. 42 -278842 pfam00434 VP7 Glycoprotein VP7. 336 -334073 pfam00435 Spectrin Spectrin repeat. Spectrin repeat-domains are found in several proteins involved in cytoskeletal structure. These include spectrin, alpha-actinin and dystrophin. The sequence repeat used in this family is taken from the structural repeat in reference. The spectrin domain- repeat forms a three helix bundle. The second helix is interrupted by proline in some sequences. The repeats are defined by a characteristic tryptophan (W) residue at position 17 in helix A and a leucine (L) at 2 residues from the carboxyl end of helix C. Although the domain occurs in multiple repeats along sequences, the domains are actually stable on their own - ie they act, biophysically, like domains rather than repeats that along function when aggregated. 104 -334074 pfam00436 SSB Single-strand binding protein family. This family includes single stranded binding proteins and also the primosomal replication protein N (PriB). PriB forms a complex with PriA, PriC and ssDNA. 104 -306855 pfam00437 T2SSE Type II/IV secretion system protein. This family contains both type II and type IV pathway secretion proteins from bacteria. VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. 273 -334075 pfam00438 S-AdoMet_synt_N S-adenosylmethionine synthetase, N-terminal domain. The three domains of S-adenosylmethionine synthetase have the same alpha+beta fold. 99 -306857 pfam00439 Bromodomain Bromodomain. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 84 -334076 pfam00440 TetR_N Bacterial regulatory proteins, tetR family. 47 -334077 pfam00441 Acyl-CoA_dh_1 Acyl-CoA dehydrogenase, C-terminal domain. C-terminal domain of Acyl-CoA dehydrogenase is an all-alpha, four helical up-and-down bundle. 150 -334078 pfam00443 UCH Ubiquitin carboxyl-terminal hydrolase. 305 -334079 pfam00444 Ribosomal_L36 Ribosomal protein L36. 38 -334080 pfam00445 Ribonuclease_T2 Ribonuclease T2 family. 175 -278853 pfam00446 GnRH Gonadotropin-releasing hormone. 10 -334081 pfam00447 HSF_DNA-bind HSF-type DNA-binding. 96 -334082 pfam00448 SRP54 SRP54-type protein, GTPase domain. This family includes relatives of the G-domain of the SRP54 family of proteins. 193 -334083 pfam00449 Urease_alpha Urease alpha-subunit, N-terminal domain. The N-terminal domain is a composite domain and plays a major trimer stabilizing role by contacting the catalytic domain of the symmetry related alpha-subunit. 119 -334084 pfam00450 Peptidase_S10 Serine carboxypeptidase. 415 -278858 pfam00451 Toxin_2 Scorpion short toxin, BmKK2. Members of this family, which are found in various scorpion toxins, confer potassium channel blocking activity. 32 -334085 pfam00452 Bcl-2 Apoptosis regulator proteins, Bcl-2 family. 91 -334086 pfam00453 Ribosomal_L20 Ribosomal protein L20. 104 -306869 pfam00454 PI3_PI4_kinase Phosphatidylinositol 3- and 4-kinase. Some members of this family probably do not have lipid kinase activity and are protein kinases. 241 -278862 pfam00455 DeoRC DeoR C terminal sensor domain. The sensor domains of the DeoR are catalytically inactive versions of the ISOCOT fold, but retain the substrate binding site. DeorC senses diverse sugar derivatives such as deoxyribose nucleoside (DeoR), tagatose phosphate (LacR), galactosamine (AgaR), myo-inositol (Bacillus IolR) and L-ascorbate (UlaR). 160 -334087 pfam00456 Transketolase_N Transketolase, thiamine diphosphate binding domain. This family includes transketolase enzymes EC:2.2.1.1. and also partially matches to 2-oxoisovalerate dehydrogenase beta subunit EC:1.2.4.4. Both these enzymes utilize thiamine pyrophosphate as a cofactor, suggesting there may be common aspects in their mechanism of catalysis. 334 -334088 pfam00457 Glyco_hydro_11 Glycosyl hydrolases family 11. 175 -334089 pfam00458 WHEP-TRS WHEP-TRS domain. 53 -334090 pfam00459 Inositol_P Inositol monophosphatase family. 265 -278867 pfam00460 Flg_bb_rod Flagella basal body rod protein. 31 -334091 pfam00462 Glutaredoxin Glutaredoxin. 60 -278869 pfam00463 ICL Isocitrate lyase family. 526 -278870 pfam00464 SHMT Serine hydroxymethyltransferase. 380 -334092 pfam00465 Fe-ADH Iron-containing alcohol dehydrogenase. 361 -334093 pfam00466 Ribosomal_L10 Ribosomal protein L10. 100 -334094 pfam00467 KOW KOW motif. This family has been extended to coincide with ref. The KOW (Kyprides, Ouzounis, Woese) motif is found in a variety of ribosomal proteins and NusG. 32 -334095 pfam00468 Ribosomal_L34 Ribosomal protein L34. 42 -306876 pfam00469 F-protein Negative factor, (F-Protein) or Nef. Nef protein accelerates virulent progression of AIDS by its interaction with cellular proteins involved in signal transduction and host cell activation. Nef has been shown to bind specifically to a subset of the Src kinase family. 220 -334096 pfam00471 Ribosomal_L33 Ribosomal protein L33. 47 -334097 pfam00472 RF-1 RF-1 domain. This domain is found in peptide chain release factors such as RF-1 and RF-2, and a number of smaller proteins of unknown function. This domain contains the peptidyl-tRNA hydrolase activity. The domain contains a highly conserved motif GGQ, where the glutamine is thought to coordinate the water that mediates the hydrolysis. 110 -334098 pfam00473 CRF Corticotropin-releasing factor family. 38 -109527 pfam00474 SSF Sodium:solute symporter family. 406 -334099 pfam00475 IGPD Imidazoleglycerol-phosphate dehydratase. 144 -334100 pfam00476 DNA_pol_A DNA polymerase family A. 373 -306882 pfam00477 LEA_5 Small hydrophilic plant seed protein. 109 -334101 pfam00478 IMPDH IMP dehydrogenase / GMP reductase domain. This family is involved in biosynthesis of guanosine nucleotide. Members of this family contain a TIM barrel structure. In the inosine monophosphate dehydrogenases 2 CBS domains pfam00571 are inserted in the TIM barrel. This family is a member of the common phosphate binding site TIM barrel family. 462 -334102 pfam00479 G6PD_N Glucose-6-phosphate dehydrogenase, NAD binding domain. 175 -278883 pfam00480 ROK ROK family. 292 -306885 pfam00481 PP2C Protein phosphatase 2C. Protein phosphatase 2C is a Mn++ or Mg++ dependent protein serine/threonine phosphatase. 252 -334103 pfam00482 T2SSF Type II secretion system (T2SS), protein F. The original family covered both the regions found by the current model. The splitting of the family has allowed the related FlaJ_arch (archaeal FlaJ family) to be merged with it. Proteins with this domain in form a platform for the machiney of the Type II secretion system, as well as the Type 4 pili and the archaeal flagella. This domain seems to show some similarity to PF00664 but this may just be due to similarities in the TM helices (personal obs: C Yeats). 119 -306887 pfam00483 NTP_transferase Nucleotidyl transferase. This family includes a wide range of enzymes which transfer nucleotides onto phosphosugars. 243 -334104 pfam00484 Pro_CA Carbonic anhydrase. This family includes carbonic anhydrases as well as a family of non-functional homologs related to YbcF. 155 -278888 pfam00485 PRK Phosphoribulokinase / Uridine kinase family. This family matches three types of P-loop containing kinases: phosphoribulokinases, uridine kinases and bacterial pantothenate kinases(CoaA). Arabidopsis and other organisms have a dual uridine kinase/uracil phosphoribosyltransferase protein where the N-terminal region consists of a UK domain and the C-terminal region of a UPRT domain. 197 -334105 pfam00486 Trans_reg_C Transcriptional regulatory protein, C terminal. 77 -334106 pfam00487 FA_desaturase Fatty acid desaturase. 248 -334107 pfam00488 MutS_V MutS domain V. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam01624, pfam05188, pfam05192 and pfam05190. The mutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. The aligned region corresponds with domain V of Thermus aquaticus MutS, which contains a Walker A motif, and is structurally similar to the ATPase domain of ABC transporters. 188 -334108 pfam00489 IL6 Interleukin-6/G-CSF/MGF family. 184 -334109 pfam00490 ALAD Delta-aminolevulinic acid dehydratase. 297 -334110 pfam00491 Arginase Arginase family. 268 -306894 pfam00493 MCM MCM2/3/5 family. 326 -306895 pfam00494 SQS_PSY Squalene/phytoene synthase. 260 -334111 pfam00496 SBP_bac_5 Bacterial extracellular solute-binding proteins, family 5 Middle. The borders of this family are based on the PDBSum definitions of the domain edges for Salmonella typhimurium oppA. 360 -334112 pfam00497 SBP_bac_3 Bacterial extracellular solute-binding proteins, family 3. 224 -334113 pfam00498 FHA FHA domain. The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. 66 -334114 pfam00499 Oxidored_q3 NADH-ubiquinone/plastoquinone oxidoreductase chain 6. 136 -334115 pfam00500 Late_protein_L1 L1 (late) protein. 497 -334116 pfam00501 AMP-binding AMP-binding enzyme. 361 -306900 pfam00502 Phycobilisome Phycobilisome protein. 155 -306901 pfam00503 G-alpha G-protein alpha subunit. G proteins couple receptors of extracellular signals to intracellular signaling pathways. The G protein alpha subunit binds guanyl nucleotide and is a weak GTPase. A set of residues that are unique to G-alpha as compared to its ancestor the Arf-like family form a ring of residues centered on the nucleotide binding site. A Ggamma is found fused to an inactive Galpha in the Dictyostelium protein gbqA. 317 -334117 pfam00504 Chloroa_b-bind Chlorophyll A-B binding protein. 153 -334118 pfam00505 HMG_box HMG (high mobility group) box. 68 -278907 pfam00506 Flu_NP Influenza virus nucleoprotein. 520 -334119 pfam00507 Oxidored_q4 NADH-ubiquinone/plastoquinone oxidoreductase, chain 3. 94 -278909 pfam00508 PPV_E2_N E2 (early) protein, N terminal. 197 -278910 pfam00509 Hemagglutinin Haemagglutinin. Haemagglutinin from influenza virus causes membrane fusion of the viral membrane with the host membrane. Fusion occurs after the host cell internalizes the virus by endocytosis. The drop of pH causes release of a hydrophobic fusion peptide and a large conformational change leading to membrane fusion. 550 -278911 pfam00510 COX3 Cytochrome c oxidase subunit III. 258 -278912 pfam00511 PPV_E2_C E2 (early) protein, C terminal. 80 -334120 pfam00512 HisKA His Kinase A (phospho-acceptor) domain. dimerization and phospho-acceptor domain of histidine kinases. 63 -278914 pfam00513 Late_protein_L2 Late Protein L2. 514 -334121 pfam00514 Arm Armadillo/beta-catenin-like repeat. Approx. 40 amino acid repeat. Tandem repeats form super-helix of helices that is proposed to mediate interaction of beta-catenin with its ligands. CAUTION: This family does not contain all known armadillo repeats. 41 -334122 pfam00515 TPR_1 Tetratricopeptide repeat. 33 -278917 pfam00516 GP120 Envelope glycoprotein GP120. The entry of HIV requires interaction of viral GP120 with CD4 and a chemokine receptor on the cell surface. 525 -334123 pfam00517 GP41 Retroviral envelope protein. This family includes envelope protein from a variety of retroviruses. It includes the GP41 subunit of the envelope protein complex from human and simian immunodeficiency viruses (HIV and SIV) which mediate membrane fusion during viral entry. The family also includes bovine immunodeficiency virus, feline immunodeficiency virus and Equine infectious anaemia (EIAV). The family also includes the Gp36 protein from mouse mammary tumor virus (MMTV) and human endogenous retroviruses (HERVs). 201 -306907 pfam00518 E6 Early Protein (E6). 108 -278920 pfam00519 PPV_E1_C Papillomavirus helicase. This protein is a DNA helicase that is required for initiation of viral DNA replication. This protein forms a complex with the E2 protein pfam00508. 432 -334124 pfam00520 Ion_trans Ion transport protein. This family contains sodium, potassium and calcium ion channels. This family is 6 transmembrane helices in which the last two helices flank a loop which determines ion selectivity. In some sub-families (e.g. Na channels) the domain is repeated four times, whereas in others (e.g. K channels) the protein forms as a tetramer in the membrane. 237 -334125 pfam00521 DNA_topoisoIV DNA gyrase/topoisomerase IV, subunit A. 423 -278923 pfam00522 VPR VPR/VPX protein. 83 -334126 pfam00523 Fusion_gly Fusion glycoprotein F0. 476 -278925 pfam00524 PPV_E1_N E1 Protein, N terminal domain. 121 -334127 pfam00525 Crystallin Alpha crystallin A chain, N terminal. 52 -306912 pfam00526 Dicty_CTDC Dictyostelium (slime mold) repeat. 23 -278928 pfam00527 E7 E7 protein, Early protein. 92 -334128 pfam00528 BPD_transp_1 Binding-protein-dependent transport system inner membrane component. The alignments cover the most conserved region of the proteins, which is thought to be located in a cytoplasmic loop between two transmembrane domains. The members of this family have a variable number of transmembrane helices. 183 -306914 pfam00529 HlyD HlyD membrane-fusion protein of T1SS. HlyD is a component of the prototypical alpha-haemolysin (HlyA) bacterial type I secretion system, along with the other components HlyB and TolC. HlyD and HlyB are inner-membrane proteins and specific components of the transport apparatus of alpha-haemolysin. HlyD is anchored in the cytoplasmic membrane by a single transmembrane domain and has a large periplasmic domain within the carboxy-terminal 100 amino acids, HlyB and HlyD form a stable complex that binds the recombinant protein bearing a C-terminal HlyA signal sequence and ATP in the cytoplasm. HlyD, HlyB and TolC combine to form the three-component ABC transporter complex that forms a trans-membrane channel or pore through which HlyA can be transferred directly to the extracellular medium. Cutinase has been shown to be transported effectively through this pore. 332 -306915 pfam00530 SRCR Scavenger receptor cysteine-rich domain. These domains are disulphide rich extracellular domains. These domains are found in several extracellular receptors and may be involved in protein-protein interactions. 97 -306916 pfam00531 Death Death domain. 86 -334129 pfam00532 Peripla_BP_1 Periplasmic binding proteins and sugar binding domain of LacI family. This family includes the periplasmic binding proteins, and the LacI family transcriptional regulators. The periplasmic binding proteins are the primary receptors for chemotaxis and transport of many sugar based solutes. The LacI family of proteins consist of transcriptional regulators related to the lac repressor. In this case, generally the sugar binding domain binds a sugar which changes the DNA binding activity of the repressor domain (pfam00356). 280 -334130 pfam00533 BRCT BRCA1 C-terminus (BRCT) domain. The BRCT domain is found predominantly in proteins involved in cell cycle checkpoint functions responsive to DNA damage. The BRCT domain of XRCC1 forms a homodimer in the crystal structure. This suggests that pairs of BRCT domains associate as homo- or heterodimers. BRCT domains are often found as tandem-repeat pairs. Structures of the BRCA1 BRCT domains revealed a basis for a widely utilized head-to-tail BRCT-BRCT oligomerization mode. This conserved tandem BRCT architecture facilitates formation of the canonical BRCT phospho-peptide interaction cleft at a groove between the BRCT domains. Disease associated missense and nonsense mutations in the BRCA1 BRCT domains disrupt peptide binding by directly occluding this peptide binding groove, or by disrupting key conserved BRCT core folding determinants. 77 -334131 pfam00534 Glycos_transf_1 Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. 169 -334132 pfam00535 Glycos_transf_2 Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. 166 -334133 pfam00536 SAM_1 SAM domain (Sterile alpha motif). It has been suggested that SAM is an evolutionarily conserved protein binding domain that is involved in the regulation of numerous developmental processes in diverse eukaryotes. The SAM domain can potentially function as a protein interaction module through its ability to homo- and heterooligomerise with other SAM domains. 64 -334134 pfam00537 Toxin_3 Scorpion toxin-like domain. This family contains both neurotoxins and plant defensins. The mustard trypsin inhibitor, MTI-2, is plant defensin. It is a potent inhibitor of trypsin with no activity towards chymotrypsin. MTI-2 is toxic for Lepidopteran insects, but has low activity against aphids. Brazzein is plant defensin-like protein. It is pH-stable, heat-stable and intensely sweet protein. The scorpion toxin (a neurotoxin) binds to sodium channels and inhibits the activation mechanisms of the channels, thereby blocking neuronal transmission. Scorpion toxins bind to sodium channels and inhibit the activation mechanisms of the channels, thereby blocking neuronal transmission 55 -334135 pfam00538 Linker_histone linker histone H1 and H5 family. Linker histone H1 is an essential component of chromatin structure. H1 links nucleosomes into higher order structures Histone H1 is replaced by histone H5 in some cell types. 73 -306921 pfam00539 Tat Transactivating regulatory protein (Tat). The retroviral Tat protein binds to the Tar RNA. This activates transcriptional initiation and elongation from the LTR promoter. Binding is mediated by an arginine rich region. 64 -249943 pfam00540 Gag_p17 gag gene protein p17 (matrix protein). The matrix protein forms an icosahedral shell associated with the inner membrane of the mature immunodeficiency virus. 140 -306922 pfam00541 Adeno_knob Adenoviral fibre protein (knob domain). Specific attachment of adenovirus is achieved through interactions between host-cell receptors and the adenovirus fibre protein and is mediated by the globular carboxy-terminal domain of the adenovirus fibre protein, termed the carboxy-terminal knob domain. 178 -334136 pfam00542 Ribosomal_L12 Ribosomal protein L7/L12 C-terminal domain. 67 -278943 pfam00543 P-II Nitrogen regulatory protein P-II. P-II modulates the activity of glutamine synthetase. 102 -306924 pfam00544 Pec_lyase_C Pectate lyase. This enzyme forms a right handed beta helix structure. Pectate lyase is an enzyme involved in the maceration and soft rotting of plant tissue. 211 -334137 pfam00545 Ribonuclease ribonuclease. This enzyme hydrolyzes RNA and oligoribonucleotides. 79 -334138 pfam00547 Urease_gamma Urease, gamma subunit. Urease is a nickel-binding enzyme that catalyzes the hydrolysis of urea to carbon dioxide and ammonia. 99 -278947 pfam00548 Peptidase_C3 3C cysteine protease (picornain 3C). Picornaviral proteins are expressed as a single polyprotein which is cleaved by the viral 3C cysteine protease. 174 -334139 pfam00549 Ligase_CoA CoA-ligase. This family includes the CoA ligases Succinyl-CoA synthetase alpha and beta chains, malate CoA ligase and ATP-citrate lyase. Some members of the family utilize ATP others use GTP. 128 -306928 pfam00550 PP-binding Phosphopantetheine attachment site. A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of the anguibactin system regulator AngR has the attachment serine replaced by an alanine. 67 -278950 pfam00551 Formyl_trans_N Formyl transferase. This family includes the following members. Glycinamide ribonucleotide transformylase catalyzes the third step in de novo purine biosynthesis, the transfer of a formyl group to 5'-phosphoribosylglycinamide. Formyltetrahydrofolate deformylase produces formate from formyl- tetrahydrofolate. Methionyl-tRNA formyltransferase transfers a formyl group onto the amino terminus of the acyl moiety of the methionyl aminoacyl-tRNA. Inclusion of the following members is supported by PSI-blast. HOXX_BRAJA (P31907) contains a related domain of unknown function. PRTH_PORGI (P46071) contains a related domain of unknown function. Y09P_MYCTU (Q50721) contains a related domain of unknown function. 181 -306929 pfam00552 IN_DBD_C Integrase DNA binding domain. Integrase mediates integration of a DNA copy of the viral genome into the host chromosome. Integrase is composed of three domains. The amino-terminal domain is a zinc binding domain. The central domain is the catalytic domain pfam00665. This domain is the carboxyl terminal domain that is a non-specific DNA binding domain. 50 -334140 pfam00553 CBM_2 Cellulose binding domain. Two tryptophan residues are involved in cellulose binding. Cellulose binding domain found in bacteria. 101 -334141 pfam00554 RHD_DNA_bind Rel homology DNA-binding domain. Proteins containing the Rel homology domain (RHD) are eukaryotic transcription factors. The RHD is composed of two structural domains. This is the N-terminal DNA-binding domain that is similar to that found in P53. The C-terminal domain has an immunoglobulin-like fold (See pfam16179) that functions as a dimerization domain. 169 -334142 pfam00555 Endotoxin_M delta endotoxin. This family contains insecticidal toxins produced by Bacillus species of bacteria. During spore formation the bacteria produce crystals of this protein. When an insect ingests these proteins they are activated by proteolytic cleavage. The N-terminus is cleaved in all of the proteins and a C terminal extension is cleaved in some members. Once activated the endotoxin binds to the gut epithelium and causes cell lysis leading to death. This activated region of the delta endotoxin is composed of three structural domains. The N-terminal helical domain is involved in membrane insertion and pore formation. The second and third domains are involved in receptor binding. 203 -306932 pfam00556 LHC Antenna complex alpha/beta subunit. 39 -334143 pfam00557 Peptidase_M24 Metallopeptidase family M24. This family contains metallopeptidases. It also contains non-peptidase homologs such as the N terminal domain of Spt16 which is a histone H3-H4 binding module. 205 -109608 pfam00558 Vpu Vpu protein. The Vpu protein contains an N-terminal transmembrane spanning region and a C-terminal cytoplasmic region. The HIV-1 Vpu protein stimulates virus production by enhancing the release of viral particles from infected cells. The VPU protein binds specifically to CD4. 81 -278957 pfam00559 Vif Retroviral Vif (Viral infectivity) protein. Human immunodeficiency virus type 1 (HIV-1) Vif is required for productive infection of T lymphocytes and macrophages. Virions produced in the absence of Vif have abnormal core morphology and those produced in primary T cells carry immature core proteins and low levels of mature capsid. 200 -334144 pfam00560 LRR_1 Leucine Rich Repeat. CAUTION: This Pfam may not find all Leucine Rich Repeats in a protein. Leucine Rich Repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. These repeats are usually involved in protein-protein interactions. Each Leucine Rich Repeat is composed of a beta-alpha unit. These units form elongated non-globular structures. Leucine Rich Repeats are often flanked by cysteine rich domains. 23 -334145 pfam00561 Abhydrolase_1 alpha/beta hydrolase fold. This catalytic domain is found in a very wide range of enzymes. 245 -306936 pfam00562 RNA_pol_Rpb2_6 RNA polymerase Rpb2, domain 6. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain represents the hybrid binding domain and the wall domain. The hybrid binding domain binds the nascent RNA strand / template DNA strand in the Pol II transcription elongation complex. This domain contains the important structural motifs, switch 3 and the flap loop and binds an active site metal ion. This domain is also involved in binding to Rpb1 and Rpb3. Many of the bacterial members contain large insertions within this domain, as region known as dispensable region 2 (DRII). 370 -334146 pfam00563 EAL EAL domain. This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues. The EAL domain is a good candidate for a diguanylate phosphodiesterase function. The domain contains many conserved acidic residues that could participate in metal binding and might form the phosphodiesterase active site. 236 -278962 pfam00564 PB1 PB1 domain. 84 -334147 pfam00565 SNase Staphylococcal nuclease homolog. Present in all three domains of cellular life. Four copies in the transcriptional coactivator p100: these, however, appear to lack the active site residues of Staphylococcal nuclease. Positions 14 (Asp-21), 34 (Arg-35), 39 (Asp-40), 42 (Glu-43) and 110 (Arg-87) [SNase numbering in parentheses] are thought to be involved in substrate-binding and catalysis. 106 -334148 pfam00566 RabGAP-TBC Rab-GTPase-TBC domain. Identification of a TBC domain in GYP6_YEAST and GYP7_YEAST, which are GTPase activator proteins of yeast Ypt6 and Ypt7, implies that these domains are GTPase activator proteins of Rab-like small GTPases. 181 -334149 pfam00567 TUDOR Tudor domain. 113 -144235 pfam00568 WH1 WH1 domain. WASp Homology domain 1 (WH1) domain. WASP is the protein that is defective in Wiskott-Aldrich syndrome (WAS). The majority of point mutations occur within the amino- terminal WH1 domain. The metabotropic glutamate receptors mGluR1alpha and mGluR5 bind a protein called homer, which is a WH1 domain homolog. A subset of WH1 domains has been termed a "EVH1" domain and appear to bind a polyproline motif. 111 -278966 pfam00569 ZZ Zinc finger, ZZ type. Zinc finger present in dystrophin, CBP/p300. ZZ in dystrophin binds calmodulin. Putative zinc finger; binding not yet shown. Four to six cysteine residues in its sequence are responsible for coordinating zinc ions, to reinforce the structure. 45 -334150 pfam00570 HRDC HRDC domain. The HRDC (Helicase and RNase D C-terminal) domain has a putative role in nucleic acid binding. Mutations in the HRDC domain cause human disease. It is interesting to note that the RecQ helicase in Deinococcus radiodurans has three tandem HRDC domains. 68 -334151 pfam00571 CBS CBS domain. CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. 54 -334152 pfam00572 Ribosomal_L13 Ribosomal protein L13. 126 -306944 pfam00573 Ribosomal_L4 Ribosomal protein L4/L1 family. This family includes Ribosomal L4/L1 from eukaryotes and archaebacteria and L4 from eubacteria. L4 from yeast has been shown to bind rRNA. 190 -334153 pfam00574 CLP_protease Clp protease. The Clp protease has an active site catalytic triad. In E. coli Clp protease, ser-111, his-136 and asp-185 form the catalytic triad. Some members have lost active site residues and are therefore inactive, some contain one or two large insertions. 181 -334154 pfam00575 S1 S1 RNA binding domain. The S1 domain occurs in a wide range of RNA associated proteins. It is structurally similar to cold shock protein which binds nucleic acids. The S1 domain has an OB-fold structure. 74 -334155 pfam00576 Transthyretin HIUase/Transthyretin family. This family includes transthyretin that is a thyroid hormone-binding protein that transports thyroxine from the bloodstream to the brain. However, most of the sequences listed in this family do not bind thyroid hormones. They are actually enzymes of the purine catabolism that catalyze the conversion of 5-hydroxyisourate (HIU) to OHCU. HIU hydrolysis is the original function of the family and is conserved from bacteria to mammals; transthyretins arose by gene duplications in the vertebrate lineage. HIUases are distinguished in the alignment from the conserved C-terminal YRGS sequence. 110 -306948 pfam00577 Usher Outer membrane usher protein. In Gram-negative bacteria the biogenesis of fimbriae (or pili) requires a two- component assembly and transport system which is composed of a periplasmic chaperone and an outer membrane protein which has been termed a molecular 'usher'. The usher protein is rather large (from 86 to 100 Kd) and seems to be mainly composed of membrane-spanning beta-sheets, a structure reminiscent of porins. Although the degree of sequence similarity of these proteins is not very high they share a number of characteristics. One of these is the presence of two pairs of cysteines, the first one located in the N-terminal part and the second at the C-terminal extremity that are probably involved in disulphide bonds. The best conserved region is located in the central part of these proteins. 551 -334156 pfam00578 AhpC-TSA AhpC/TSA family. This family contains proteins related to alkyl hydroperoxide reductase (AhpC) and thiol specific antioxidant (TSA). 114 -306950 pfam00579 tRNA-synt_1b tRNA synthetases class I (W and Y). 292 -334157 pfam00580 UvrD-helicase UvrD/REP helicase N-terminal domain. The Rep family helicases are composed of four structural domains. The Rep family function as dimers. REP helicases catalyze ATP dependent unwinding of double stranded DNA to single stranded DNA. Some members have large insertions near to the carboxy-terminus relative to other members of the family. 269 -334158 pfam00581 Rhodanese Rhodanese-like domain. Rhodanese has an internal duplication. This Pfam represents a single copy of this duplicated domain. The domain is found as a single copy in other proteins, including phosphatases and ubiquitin C-terminal hydrolases. 92 -306953 pfam00582 Usp Universal stress protein family. The universal stress protein UspA is a small cytoplasmic bacterial protein whose expression is enhanced when the cell is exposed to stress agents. UspA enhances the rate of cell survival during prolonged exposure to such conditions, and may provide a general "stress endurance" activity. The crystal structure of Haemophilus influenzae UspA reveals an alpha/beta fold similar to that of the Methanococcus jannaschii MJ0577 protein, which binds ATP, though UspA lacks ATP-binding activity. 140 -334159 pfam00583 Acetyltransf_1 Acetyltransferase (GNAT) family. This family contains proteins with N-acetyltransferase functions such as Elp3-related proteins. 116 -334160 pfam00584 SecE SecE/Sec61-gamma subunits of protein translocation complex. SecE is part of the SecYEG complex in bacteria which translocates proteins from the cytoplasm. In eukaryotes the complex, made from Sec61-gamma and Sec61-alpha translocates protein from the cytoplasm to the ER. Archaea have a similar complex. 53 -278982 pfam00585 Thr_dehydrat_C C-terminal regulatory domain of Threonine dehydratase. Threonine dehydratases pfam00291 all contain a carboxy terminal region. This region may have a regulatory role. Some members contain two copies of this region. This family is homologous to the pfam01842 domain. 91 -334161 pfam00586 AIRS AIR synthase related protein, N-terminal domain. This family includes Hydrogen expression/formation protein HypE, AIR synthases EC:6.3.3.1, FGAM synthase EC:6.3.5.3 and selenide, water dikinase EC:2.7.9.3. The N-terminal domain of AIR synthase forms the dimer interface of the protein, and is suggested as a putative ATP binding domain. 109 -278984 pfam00587 tRNA-synt_2b tRNA synthetase class II core domain (G, H, P, S and T). tRNA-synt_2b is a family of largely threonyl-tRNA members. 181 -334162 pfam00588 SpoU_methylase SpoU rRNA Methylase family. This family of proteins probably use S-AdoMet. 142 -334163 pfam00589 Phage_integrase Phage integrase family. Members of this family cleave DNA substrates by a series of staggered cuts, during which the protein becomes covalently linked to the DNA through a catalytic tyrosine residue at the carboxy end of the alignment. The catalytic site residues in CRE recombinase are Arg-173, His-289, Arg-292 and Tyr-324. 167 -334164 pfam00590 TP_methylase Tetrapyrrole (Corrin/Porphyrin) Methylases. This family uses S-AdoMet in the methylation of diverse substrates. This family includes a related group of bacterial proteins of unknown function. This family includes the methylase Dipthine synthase. 209 -334165 pfam00591 Glycos_transf_3 Glycosyl transferase family, a/b domain. This family includes anthranilate phosphoribosyltransferase (TrpD), thymidine phosphorylase. All these proteins can transfer a phosphorylated ribose substrate. 252 -334166 pfam00593 TonB_dep_Rec TonB dependent receptor. This model now only covers the conserved part of the barrel structure. 463 -306960 pfam00594 Gla Vitamin K-dependent carboxylation/gamma-carboxyglutamic (GLA) domain. This domain is responsible for the high-affinity binding of calcium ions. This domain contains post-translational modifications of many glutamate residues by Vitamin K-dependent carboxylation to form gamma-carboxyglutamate (Gla). 41 -334167 pfam00595 PDZ PDZ domain (Also known as DHR or GLGF). PDZ domains are found in diverse signaling proteins. 81 -334168 pfam00596 Aldolase_II Class II Aldolase and Adducin N-terminal domain. This family includes class II aldolases and adducins which have not been ascribed any enzymatic function. 181 -278993 pfam00598 Flu_M1 Influenza Matrix protein (M1). This protein forms a continuous shell on the inner side of the lipid bilayer, but its function is unclear. 156 -278994 pfam00599 Flu_M2 Influenza Matrix protein (M2). This protein spans the viral membrane with an extracellular amino-terminus external and a cytoplasmic carboxy-terminus. 97 -278995 pfam00600 Flu_NS1 Influenza non-structural protein (NS1). NS1 is a homodimeric RNA-binding protein that is required for viral replication. NS1 binds polyA tails of mRNA keeping them in the nucleus. NS1 inhibits pre-mRNA splicing by tightly binding to a specific stem-bulge of U6 snRNA. 216 -278996 pfam00601 Flu_NS2 Influenza non-structural protein (NS2). NS2 may play a role in promoting normal replication of the genomic RNAs by preventing the replication of short-length RNA species. 108 -278997 pfam00602 Flu_PB1 Influenza RNA-dependent RNA polymerase subunit PB1. Two GTP binding sites exist in this protein. 732 -278998 pfam00603 Flu_PA Influenza RNA-dependent RNA polymerase subunit PA. 694 -278999 pfam00604 Flu_PB2 Influenza RNA-dependent RNA polymerase subunit PB2. PB2 can bind 5' end cap structure of RNA. 754 -306962 pfam00605 IRF Interferon regulatory factor transcription factor. This family of transcription factors are important in the regulation of interferons in response to infection by virus and in the regulation of interferon-inducible genes. Three of the five conserved tryptophan residues bind to DNA. 106 -334169 pfam00606 Glycoprotein_B Herpesvirus Glycoprotein B ectodomain. This domain corresponds to the ectodomain of glycoprotein B according to ECOD. 222 -279002 pfam00607 Gag_p24 gag gene protein p24 (core nucleocapsid protein). p24 forms inner protein layer of the nucleocapsid. ELISA tests for p24 is the most commonly used method to demonstrate virus replication both in vivo and in vitro. 201 -306963 pfam00608 Adeno_shaft Adenoviral fibre protein (repeat/shaft region). There is no separation between signal and noise. Specific attachment of adenovirus is achieved through interactions between host-cell receptors and the adenovirus fibre protein and is mediated by the globular carboxy-terminal domain of the adenovirus fibre protein, rather than the 'shaft' region represented by this family. The alignment of this family contains two copies of a fifteen residue repeat found in the 'shaft' region of adenoviral fibre proteins. 34 -306964 pfam00609 DAGK_acc Diacylglycerol kinase accessory domain. Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown. 158 -334170 pfam00610 DEP Domain found in Dishevelled, Egl-10, and Pleckstrin (DEP). The DEP domain is responsible for mediating intracellular protein targeting and regulation of protein stability in the cell. The DEP domain is present in a number of signaling molecules, including Regulator of G protein Signaling (RGS) proteins, and has been implicated in membrane targeting. New findings in yeast, however, demonstrate a major role for a DEP domain in mediating the interaction of an RGS protein to the C-terminal tail of a GPCR, thus placing RGS in close proximity with its substrate G protein alpha subunit. 72 -334171 pfam00611 FCH Fes/CIP4, and EFC/F-BAR homology domain. Alignment extended from. Highly alpha-helical. The cytosolic endocytic adaptor proteins in fungi carry this domain at the N-terminus; several of these have been referred to as muniscin proteins. These N-terminal BAR, N-BAR, and EFC/F-BAR domains are found in proteins that regulate membrane trafficking events by inducing membrane tubulation. The domain dimerizes into a curved structure that binds to liposomes and either senses or induces the curvature of the membrane bilayer to cause biophysical changes to the shape of the bilayer; it also thereby recruits other trafficking factors, such as the GTPase dynamin. Most EFC/F-BAR domain-family members localize to actin-rich structures. 78 -334172 pfam00612 IQ IQ calmodulin-binding motif. Calmodulin-binding motif. 21 -334173 pfam00613 PI3Ka Phosphoinositide 3-kinase family, accessory domain (PIK domain). PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. 185 -279008 pfam00614 PLDc Phospholipase D Active site motif. Phosphatidylcholine-hydrolysing phospholipase D (PLD) isoforms are activated by ADP-ribosylation factors (ARFs). PLD produces phosphatidic acid from phosphatidylcholine, which may be essential for the formation of certain types of transport vesicles or may be constitutive vesicular transport to signal transduction pathways. PC-hydrolysing PLD is a homolog of cardiolipin synthase, phosphatidylserine synthase, bacterial PLDs, and viral proteins. Each of these appears to possess a domain duplication which is apparent by the presence of two motifs containing well-conserved histidine, lysine, and/or asparagine residues which may contribute to the active site. aspartic acid. An E. coli endonuclease (nuc) and similar proteins appear to be PLD homologs but possess only one of these motifs. The profile contained here represents only the putative active site regions, since an accurate multiple alignment of the repeat units has not been achieved. 28 -306968 pfam00615 RGS Regulator of G protein signaling domain. RGS family members are GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. 117 -306969 pfam00616 RasGAP GTPase-activator protein for Ras-like GTPase. All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. 206 -334174 pfam00617 RasGEF RasGEF domain. Guanine nucleotide exchange factor for Ras-like small GTPases. 178 -306971 pfam00618 RasGEF_N RasGEF N-terminal motif. A subset of guanine nucleotide exchange factor for Ras-like small GTPases appear to possess this motif/domain N-terminal to the RasGef (Cdc25-like) domain. 104 -334175 pfam00619 CARD Caspase recruitment domain. Motif contained in proteins involved in apoptotic signaling. Predicted to possess a DEATH (pfam00531) domain-like fold. 85 -334176 pfam00620 RhoGAP RhoGAP domain. GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. 152 -306973 pfam00621 RhoGEF RhoGEF domain. Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. 175 -334177 pfam00622 SPRY SPRY domain. SPRY Domain is named from SPla and the RYanodine Receptor. Domain of unknown function. Distant homologs are domains in butyrophilin/marenostrin/pyrin homologs. 121 -306975 pfam00623 RNA_pol_Rpb1_2 RNA polymerase Rpb1, domain 2. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 2, contains the active site. The invariant motif -NADFDGD- binds the active site magnesium ion. 166 -306976 pfam00624 Flocculin Flocculin repeat. This short repeat is rich in serine and threonine residues. 39 -279019 pfam00625 Guanylate_kin Guanylate kinase. 182 -334178 pfam00626 Gelsolin Gelsolin repeat. 76 -334179 pfam00627 UBA UBA/TS-N domain. This small domain is composed of three alpha helices. This family includes the previously defined UBA and TS-N domains. The UBA-domain (ubiquitin associated domain) is a novel sequence motif found in several proteins having connections to ubiquitin and the ubiquitination pathway. The structure of the UBA domain consists of a compact three helix bundle. This domain is found at the N-terminus of EF-TS hence the name TS-N. The structure of EF-TS is known and this domain is implicated in its interaction with EF-TU. The domain has been found in non EF-TS proteins such as alpha-NAC and MJ0280. 37 -334180 pfam00628 PHD PHD-finger. PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. 51 -334181 pfam00629 MAM MAM domain, meprin/A5/mu. An extracellular domain found in many receptors. The MAM domain along with the associated Ig domain in type IIB receptor protein tyrosine phosphatases forms a structural unit (termed MIg) with a seamless interdomain interface. It plays a major role in homodimerization of the phosphatase ectoprotein and in cell adhesion. MAM is a beta-sandwich consisting of two five-stranded antiparallel beta-sheets rotated away from each other by approx 25 degrees, and plays a similar role in meprin metalloproteinases. 160 -306978 pfam00630 Filamin Filamin/ABP280 repeat. 91 -306979 pfam00631 G-gamma GGL domain. G-protein gamma like domains (GGL) are found in the gamma subunit of the heterotrimeric G protein complex and in regulators of G protein signaling (RGS) proteins. It is also found fused to an inactive Galpha in the Dictyostelium protein gbqA. G-gamma likely shares a common origin with the helical N-terminal unit of G-beta. All organisms that posses a G-beta possess a G-gamma. 68 -306980 pfam00632 HECT HECT-domain (ubiquitin-transferase). The name HECT comes from Homologous to the E6-AP Carboxyl Terminus. 300 -334182 pfam00633 HHH Helix-hairpin-helix motif. The helix-hairpin-helix DNA-binding motif is found to be duplicated in the central domain of RuvA. The HhH domain of DisA, a bacterial checkpoint control protein, is a DNA-binding domain. 28 -306982 pfam00634 BRCA2 BRCA2 repeat. The alignment covers only the most conserved region of the repeat. 32 -334183 pfam00635 Motile_Sperm MSP (Major sperm protein) domain. Major sperm proteins are involved in sperm motility. These proteins oligomerise to form filaments. This family contains many other proteins. 109 -334184 pfam00636 Ribonuclease_3 Ribonuclease III domain. 101 -306985 pfam00637 Clathrin Region in Clathrin and VPS. Each region is about 140 amino acids long. The regions are composed of multiple alpha helical repeats. They occur in the arm region of the Clathrin heavy chain. 137 -334185 pfam00638 Ran_BP1 RanBP1 domain. 122 -334186 pfam00639 Rotamase PPIC-type PPIASE domain. Rotamases increase the rate of protein folding by catalyzing the interconversion of cis-proline and trans-proline. 96 -306988 pfam00640 PID Phosphotyrosine interaction domain (PTB/PID). 133 -279035 pfam00641 zf-RanBP Zn-finger in Ran binding protein and others. 30 -279036 pfam00642 zf-CCCH Zinc finger C-x8-C-x5-C-x3-H type (and similar). 27 -306989 pfam00643 zf-B_box B-box zinc finger. 42 -334187 pfam00644 PARP Poly(ADP-ribose) polymerase catalytic domain. Poly(ADP-ribose) polymerase catalyzes the covalent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other DNA binding proteins, which decreases their affinity for DNA. Poly(ADP-ribose) polymerase is a regulatory component induced by DNA damage. The carboxyl-terminal region is the most highly conserved region of the protein. Experiments have shown that a carboxyl 40 kDa fragment is still catalytically active. 195 -334188 pfam00645 zf-PARP Poly(ADP-ribose) polymerase and DNA-Ligase Zn-finger region. Poly(ADP-ribose) polymerase is an important regulatory component of the cellular response to DNA damage. The amino-terminal region of Poly(ADP-ribose) polymerase consists of two PARP-type zinc fingers. This region acts as a DNA nick sensor. 84 -334189 pfam00646 F-box F-box domain. This domain is approximately 50 amino acids long, and is usually found in the N-terminal half of a variety of proteins. Two motifs that are commonly found associated with the F-box domain are the leucine rich repeats (LRRs; pfam00560 and pfam07723) and the WD repeat (pfam00400). The F-box domain has a role in mediating protein-protein interactions in a variety of contexts, such as polyubiquitination, transcription elongation, centromere binding and translational repression. 48 -334190 pfam00647 EF1G Elongation factor 1 gamma, conserved domain. 105 -334191 pfam00648 Peptidase_C2 Calpain family cysteine protease. 293 -334192 pfam00649 Copper-fist Copper fist DNA binding domain. 38 -334193 pfam00650 CRAL_TRIO CRAL/TRIO domain. 152 -334194 pfam00651 BTB BTB/POZ domain. The BTB (for BR-C, ttk and bab) or POZ (for Pox virus and Zinc finger) domain is present near the N-terminus of a fraction of zinc finger (pfam00096) proteins and in proteins that contain the pfam01344 motif such as Kelch and a family of pox virus proteins. The BTB/POZ domain mediates homomeric dimerization and in some instances heteromeric dimerization. The structure of the dimerized PLZF BTB/POZ domain has been solved and consists of a tightly intertwined homodimer. The central scaffolding of the protein is made up of a cluster of alpha-helices flanked by short beta-sheets at both the top and bottom of the molecule. POZ domains from several zinc finger proteins have been shown to mediate transcriptional repression and to interact with components of histone deacetylase co-repressor complexes including N-CoR and SMRT. The POZ or BTB domain is also known as BR-C/Ttk or ZiN. 108 -334195 pfam00652 Ricin_B_lectin Ricin-type beta-trefoil lectin domain. 124 -334196 pfam00653 BIR Inhibitor of Apoptosis domain. BIR stands for 'Baculovirus Inhibitor of apoptosis protein Repeat'. It is found repeated in inhibitor of apoptosis proteins (IAPs), and in fact it is also known as IAP repeat. These domains characteristically have a number of invariant residues, including 3 conserved cysteines and one conserved histidine that coordinate a zinc ion. They are usually made up of 4-5 alpha helices and a three-stranded beta-sheet. BIR is also found in other proteins known as BIR-domain-containing proteins (BIRPs), such as Survivin. 69 -307000 pfam00654 Voltage_CLC Voltage gated chloride channel. This family of ion channels contains 10 or 12 transmembrane helices. Each protein forms a single pore. It has been shown that some members of this family form homodimers. In terms of primary structure, they are unrelated to known cation channels or other types of anion channels. Three ClC subfamilies are found in animals. ClC-1 is involved in setting and restoring the resting membrane potential of skeletal muscle, while other channels play important parts in solute concentration mechanisms in the kidney. These proteins contain two pfam00571 domains. 344 -334197 pfam00656 Peptidase_C14 Caspase domain. 230 -307002 pfam00657 Lipase_GDSL GDSL-like Lipase/Acylhydrolase. 199 -334198 pfam00658 PABP Poly-adenylate binding protein, unique domain. The region featured in this family is found towards the C-terminus of poly(A)-binding proteins (PABPs). These are eukaryotic proteins that, through their binding of the 3' poly(A) tail on mRNA, have very important roles in the pathways of gene expression. They seem to provide a scaffold on which other proteins can bind and mediate processes such as export, translation and turnover of the transcripts. Moreover, they may act as antagonists to the binding of factors that allow mRNA degradation, regulating mRNA longevity. PABPs are also involved in nuclear transport. PABPs interact with poly(A) tails via RNA-recognition motifs (pfam00076). Note that the PABP C-terminal region is also found in members of the hyperplastic discs protein (HYD) family of ubiquitin ligases that contain HECT domains - these are also included in this family. 68 -307004 pfam00659 POLO_box POLO box duplicated region. 65 -307005 pfam00660 SRP1_TIP1 Seripauperin and TIP1 family. 99 -279054 pfam00661 Matrix Viral matrix protein. Found in Morbillivirus and paramyxovirus, pneumovirus. 340 -334199 pfam00662 Proton_antipo_N NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus. This sub-family represents an amino terminal extension of pfam00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyzes the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane. 58 -307007 pfam00664 ABC_membrane ABC transporter transmembrane region. This family represents a unit of six transmembrane helices. Many members of the ABC transporter family (pfam00005) have two such regions. 270 -334200 pfam00665 rve Integrase core domain. Integrase mediates integration of a DNA copy of the viral genome into the host chromosome. Integrase is composed of three domains. The amino-terminal domain is a zinc binding domain pfam02022. This domain is the central catalytic domain. The carboxyl terminal domain that is a non-specific DNA binding domain pfam00552. The catalytic domain acts as an endonuclease when two nucleotides are removed from the 3' ends of the blunt-ended viral DNA made by reverse transcription. This domain also catalyzes the DNA strand transfer reaction of the 3' ends of the viral DNA to the 5' ends of the integration site. 116 -307009 pfam00666 Cathelicidins Cathelicidin. A novel protein family, showing a conserved proregion and a variable carboxyl-terminal antimicrobial domain. This region shows similarity to cystatins. 101 -334201 pfam00667 FAD_binding_1 FAD binding domain. This domain is found in sulfite reductase, NADPH cytochrome P450 reductase, Nitric oxide synthase and methionine synthase reductase. 221 -334202 pfam00668 Condensation Condensation domain. This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site. 455 -279061 pfam00669 Flagellin_N Bacterial flagellin N-terminal helical region. Flagellins polymerize to form bacterial flagella. This family includes flagellins and hook associated protein 3. Structurally this family forms an extended helix that interacts with pfam00700. 139 -279062 pfam00670 AdoHcyase_NAD S-adenosyl-L-homocysteine hydrolase, NAD binding domain. 162 -334203 pfam00672 HAMP HAMP domain. 47 -334204 pfam00673 Ribosomal_L5_C ribosomal L5P family C-terminus. This region is found associated with pfam00281. 93 -307014 pfam00674 DUP DUP family. This family consists of several yeast proteins of unknown functions. Swiss-prot annotates these as belonging to the DUP family. Several members of this family contain an internal duplication of this region. 94 -334205 pfam00675 Peptidase_M16 Insulinase (Peptidase family M16). 149 -307016 pfam00676 E1_dh Dehydrogenase E1 component. This family uses thiamine pyrophosphate as a cofactor. This family includes pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and 2-oxoisovalerate dehydrogenase. 303 -334206 pfam00677 Lum_binding Lumazine binding domain. This domain binds to derivatives of lumazine in some proteins. Some proteins have lost the residues involved in binding lumazine. 82 -334207 pfam00679 EFG_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold. 89 -279070 pfam00680 RdRP_1 RNA dependent RNA polymerase. 475 -307019 pfam00681 Plectin Plectin repeat. This family includes repeats from plectin, desmoplakin, envoplakin and bullous pemphigoid antigen. 41 -279072 pfam00682 HMGL-like HMGL-like. This family contains a diverse set of enzymes. These include various aldolases and a region of pyruvate carboxylase. 259 -334208 pfam00683 TB TB domain. This domain is also known as the 8 cysteine domain. This family includes the hybrid domains. This cysteine rich repeat is found in TGF binding protein and fibrillin. 42 -334209 pfam00684 DnaJ_CXXCXGXG DnaJ central domain. The central cysteine-rich (CR) domain of DnaJ proteins contains four repeats of the motif CXXCXGXG where X is any amino acid. The isolated cysteine rich domain folds in zinc dependent fashion. Each set of two repeats binds one unit of zinc. Although this domain has been implicated in substrate binding, no evidence of specific interaction between the isolated DNAJ cysteine rich domain and various hydrophobic peptides has been found. 64 -334210 pfam00685 Sulfotransfer_1 Sulfotransferase domain. 253 -307023 pfam00686 CBM_20 Starch binding domain. 96 -334211 pfam00687 Ribosomal_L1 Ribosomal protein L1p/L10e family. This family includes prokaryotic L1 and eukaryotic L10. 197 -307025 pfam00688 TGFb_propeptide TGF-beta propeptide. This propeptide is known as latency associated peptide (LAP) in TGF-beta. LAP is a homodimer which is disulfide linked to TGF-beta binding protein. 239 -307026 pfam00689 Cation_ATPase_C Cation transporting ATPase, C-terminus. Members of this families are involved in Na+/K+, H+/K+, Ca++ and Mg++ transport. This family represents 5 transmembrane helices. 175 -334212 pfam00690 Cation_ATPase_N Cation transporter/ATPase, N-terminus. Members of this families are involved in Na+/K+, H+/K+, Ca++ and Mg++ transport. 69 -279081 pfam00691 OmpA OmpA family. The Pfam entry also includes MotB and related proteins which are not included in the Prosite family. 93 -334213 pfam00692 dUTPase dUTPase. dUTPase hydrolyzes dUTP to dUMP and pyrophosphate. 129 -279083 pfam00693 Herpes_TK Thymidine kinase from herpesvirus. 280 -307028 pfam00694 Aconitase_C Aconitase C-terminal domain. Members of this family usually also match to pfam00330. This domain undergoes conformational change in the enzyme mechanism. 131 -279085 pfam00695 vMSA Major surface antigen from hepadnavirus. 366 -334214 pfam00696 AA_kinase Amino acid kinase family. This family includes kinases that phosphorylate a variety of amino acid substrates, as well as uridylate kinase and carbamate kinase. This family includes: Aspartokinase EC:2.7.2.4. Acetylglutamate kinase EC:2.7.2.8. Glutamate 5-kinase EC:2.7.2.11. Uridylate kinase EC:2.7.4.-. Carbamate kinase EC:2.7.2.2. 232 -307030 pfam00697 PRAI N-(5'phosphoribosyl)anthranilate (PRA) isomerase. 193 -279088 pfam00698 Acyl_transf_1 Acyl transferase domain. 319 -334215 pfam00699 Urease_beta Urease beta subunit. This subunit is known as alpha in Heliobacter. 98 -279090 pfam00700 Flagellin_C Bacterial flagellin C-terminal helical region. Flagellins polymerize to form bacterial flagella. There is some similarity between this family and pfam00669, particularly the motif NRFXSXIXXL. It has been suggested that these two regions associate and this is shown to be correct as structurally this family forms an extended helix that interacts with pfam00700. 86 -279091 pfam00701 DHDPS Dihydrodipicolinate synthetase family. This family has a TIM barrel structure. 289 -334216 pfam00702 Hydrolase haloacid dehalogenase-like hydrolase. This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Pseudomonas sp. (S)-2-haloacid dehalogenase 1. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteristic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. 190 -307033 pfam00703 Glyco_hydro_2 Glycosyl hydrolases family 2. This family contains beta-galactosidase, beta-mannosidase and beta-glucuronidase activities. 108 -334217 pfam00704 Glyco_hydro_18 Glycosyl hydrolases family 18. 259 -279095 pfam00705 PCNA_N Proliferating cell nuclear antigen, N-terminal domain. N-terminal and C-terminal domains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA. 123 -109750 pfam00706 Toxin_4 Anenome neurotoxin. 43 -334218 pfam00707 IF3_C Translation initiation factor IF-3, C-terminal domain. 86 -334219 pfam00708 Acylphosphatase Acylphosphatase. 85 -334220 pfam00709 Adenylsucc_synt Adenylosuccinate synthetase. 384 -307038 pfam00710 Asparaginase Asparaginase, N-terminal. This is the N-terminal domain of this enzyme. 191 -334221 pfam00711 Defensin_beta Beta defensin. The beta defensins are antimicrobial peptides implicated in the resistance of epithelial surfaces to microbial colonisation. 36 -334222 pfam00712 DNA_pol3_beta DNA polymerase III beta subunit, N-terminal domain. A dimer of the beta subunit of DNA polymerase beta forms a ring which encircles duplex DNA. Each monomer contains three domains of identical topology and DNA clamp fold. 121 -307040 pfam00713 Hirudin Hirudin. 64 -307041 pfam00714 IFN-gamma Interferon gamma. 138 -307042 pfam00715 IL2 Interleukin 2. 145 -279105 pfam00716 Peptidase_S21 Assemblin (Peptidase family S21). 336 -334223 pfam00717 Peptidase_S24 Peptidase S24-like. 68 -307044 pfam00718 Polyoma_coat Polyomavirus coat protein. 293 -334224 pfam00719 Pyrophosphatase Inorganic pyrophosphatase. 154 -334225 pfam00720 SSI Subtilisin inhibitor-like. 91 -307047 pfam00721 TMV_coat Virus coat protein (TMV like). This family contains coat proteins from tobamoviruses, hordeiviruses, Tobraviruses, Furoviruses and Potyviruses. 163 -334226 pfam00722 Glyco_hydro_16 Glycosyl hydrolases family 16. 166 -307049 pfam00723 Glyco_hydro_15 Glycosyl hydrolases family 15. In higher organisms this family is represented by phosphorylase kinase subunits. 416 -334227 pfam00724 Oxidored_FMN NADH:flavin oxidoreductase / NADH oxidase family. 342 -307050 pfam00725 3HCDH 3-hydroxyacyl-CoA dehydrogenase, C-terminal domain. This family also includes lambda crystallin. Some proteins include two copies of this domain. 97 -334228 pfam00726 IL10 Interleukin 10. 170 -307051 pfam00727 IL4 Interleukin 4. 114 -307052 pfam00728 Glyco_hydro_20 Glycosyl hydrolase family 20, catalytic domain. This domain has a TIM barrel fold. 348 -279118 pfam00729 Viral_coat Viral coat protein (S domain). 199 -279119 pfam00730 HhH-GPD HhH-GPD superfamily base excision DNA repair protein. This family contains a diverse range of structurally related DNA repair proteins. The superfamily is called the HhH-GPD family after its hallmark Helix-hairpin-helix and Gly/Pro rich loop followed by a conserved aspartate. This includes endonuclease III, EC:4.2.99.18 and MutY an A/G-specific adenine glycosylase, both have a C terminal 4Fe-4S cluster. The family also includes 8-oxoguanine DNA glycosylases. The methyl-CPG binding protein MBD4 also contains a related domain that is a thymine DNA glycosylase. The family also includes DNA-3-methyladenine glycosylase II EC:3.2.2.21 and other members of the AlkA family. 142 -334229 pfam00731 AIRC AIR carboxylase. Members of this family catalyze the decarboxylation of 1-(5-phosphoribosyl)-5-amino-4-imidazole-carboxylate (AIR). This family catalyze the sixth step of de novo purine biosynthesis. Some members of this family contain two copies of this domain. 147 -307054 pfam00732 GMC_oxred_N GMC oxidoreductase. This family of proteins bind FAD as a cofactor. 218 -307055 pfam00733 Asn_synthase Asparagine synthase. This family is always found associated with pfam00310. Members of this family catalyze the conversion of aspartate to asparagine. 245 -334230 pfam00734 CBM_1 Fungal cellulose binding domain. 29 -307057 pfam00735 Septin Septin. Members of this family include CDC3, CDC10, CDC11 and CDC12/Septin. Members of this family bind GTP. As regards the septins, these are polypeptides of 30-65kDa with three characteristic GTPase motifs (G-1, G-3 and G-4) that are similar to those of the Ras family. The G-4 motif is strictly conserved with a unique septin consensus of AKAD. Most septins are thought to have at least one coiled-coil region, which in some cases is necessary for intermolecular interactions that allow septins to polymerize to form rod-shaped complexes. In turn, these are arranged into tandem arrays to form filaments. They are multifunctional proteins, with roles in cytokinesis, sporulation, germ cell development, exocytosis and apoptosis. 273 -334231 pfam00736 EF1_GNE EF-1 guanine nucleotide exchange domain. This family is the guanine nucleotide exchange domain of EF-1 beta and EF-1 delta chains. 84 -307059 pfam00737 PsbH Photosystem II 10 kDa phosphoprotein. This protein is phosphorylated in a light dependent reaction. 51 -307060 pfam00738 Polyhedrin Polyhedrin. These proteins are found in occlusion bodies in various viruses. The polyhedrin protein protects the virus. 232 -109783 pfam00739 X Trans-activation protein X. This protein is found in hepadnaviruses where it is indispensable for replication. 142 -279128 pfam00740 Parvo_coat Parvovirus coat protein VP2. This protein, together with VP1 forms a capsomer. Both of these proteins are formed from the same transcript using alternative splicing. As a result, VP1 and VP2 differ only in the N-terminal region of VP1. VP2 is involved in packaging the viral DNA. 518 -307061 pfam00741 Gas_vesicle Gas vesicle protein. 39 -334232 pfam00742 Homoserine_dh Homoserine dehydrogenase. 178 -109787 pfam00743 FMO-like Flavin-binding monooxygenase-like. This family includes FMO proteins, cyclohexanone mono-oxygenase and a number of different mono-oxygenases. 532 -334233 pfam00745 GlutR_dimer Glutamyl-tRNAGlu reductase, dimerization domain. 96 -334234 pfam00746 Gram_pos_anchor LPXTG cell wall anchor motif. 43 -279133 pfam00747 Viral_DNA_bp ssDNA binding protein. This protein is found in herpesviruses and is needed for replication. 1120 -307065 pfam00748 Calpain_inhib Calpain inhibitor. This region is found multiple times in calpain inhibitor proteins. 133 -279135 pfam00749 tRNA-synt_1c tRNA synthetases class I (E and Q), catalytic domain. Other tRNA synthetase sub-families are too dissimilar to be included. This family includes only glutamyl and glutaminyl tRNA synthetases. In some organisms, a single glutamyl-tRNA synthetase aminoacylates both tRNA(Glu) and tRNA(Gln). 314 -279136 pfam00750 tRNA-synt_1d tRNA synthetases class I (R). Other tRNA synthetase sub-families are too dissimilar to be included. This family includes only arginyl tRNA synthetase. 348 -334235 pfam00751 DM DM DNA binding domain. The DM domain is named after dsx and mab-3. dsx contains a single amino-terminal DM domain, whereas mab-3 contains two amino-terminal domains. The DM domain has a pattern of conserved zinc chelating residues C2H2C4. The dsx DM domain has been shown to dimerize and bind palindromic DNA. 47 -334236 pfam00752 XPG_N XPG N-terminal domain. 100 -334237 pfam00753 Lactamase_B Metallo-beta-lactamase superfamily. 196 -334238 pfam00754 F5_F8_type_C F5/8 type C domain. This domain is also known as the discoidin (DS) domain family. 127 -334239 pfam00755 Carn_acyltransf Choline/Carnitine o-acyltransferase. 575 -334240 pfam00756 Esterase Putative esterase. This family contains Esterase D. However it is not clear if all members of the family have the same function. This family is related to the pfam00135 family. 246 -307072 pfam00757 Furin-like Furin-like cysteine rich region. 143 -307073 pfam00758 EPO_TPO Erythropoietin/thrombopoietin. 159 -334241 pfam00759 Glyco_hydro_9 Glycosyl hydrolase family 9. 328 -279145 pfam00760 Cucumo_coat Cucumovirus coat protein. 205 -250114 pfam00761 Polyoma_coat2 Polyomavirus coat protein. 322 -334242 pfam00762 Ferrochelatase Ferrochelatase. 314 -334243 pfam00763 THF_DHG_CYH Tetrahydrofolate dehydrogenase/cyclohydrolase, catalytic domain. 116 -279148 pfam00764 Arginosuc_synth Arginosuccinate synthase. This family contains a PP-loop motif. 386 -307077 pfam00765 Autoind_synth Autoinducer synthase. 179 -334244 pfam00766 ETF_alpha Electron transfer flavoprotein FAD-binding domain. This domain found at the C-terminus of electron transfer flavoprotein alpha chain and binds to FAD. The fold consists of a five-stranded parallel beta sheet as the core of the domain, flanked by alternating helices. A small part of this domain is donated by the beta chain. 84 -279151 pfam00767 Poty_coat Potyvirus coat protein. 243 -334245 pfam00768 Peptidase_S11 D-alanyl-D-alanine carboxypeptidase. 238 -334246 pfam00769 ERM Ezrin/radixin/moesin family. This family of proteins contain a band 4.1 domain (pfam00373), at their amino terminus. This family represents the rest of these proteins. 243 -279154 pfam00770 Peptidase_C5 Adenovirus endoprotease. This family of adenovirus thiol endoproteases specifically cleave Gly-Ala peptides in viral precursor peptides. 179 -334247 pfam00771 FHIPEP FHIPEP family. 617 -334248 pfam00772 DnaB DnaB-like helicase N terminal domain. The hexameric helicase DnaB unwinds the DNA duplex at the Escherichia coli chromosome replication fork. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerization of the N-terminal domain has been observed and may occur during the enzymatic cycle. This N-terminal domain is required both for interaction with other proteins in the primosome and for DnaB helicase activity. 102 -307082 pfam00773 RNB RNB domain. This domain is the catalytic domain of ribonuclease II. 328 -307083 pfam00775 Dioxygenase_C Dioxygenase. 182 -307084 pfam00777 Glyco_transf_29 Glycosyltransferase family 29 (sialyltransferase). Members of this family belong to glycosyltransferase family 29. 258 -334249 pfam00778 DIX DIX domain. The DIX domain is present in Dishevelled and axin. This domain is involved in homo- and hetero-oligomerization. It is involved in the homo- oligomerization of mouse axin. The axin DIX domain also interacts with the dishevelled DIX domain. The DIX domain has also been called the DAX domain. 77 -334250 pfam00779 BTK BTK motif. Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains. The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. 26 -307087 pfam00780 CNH CNH domain. Domain found in NIK1-like kinase, mouse citron and yeast ROM1, ROM2. Unpublished observations. 268 -307088 pfam00781 DAGK_cat Diacylglycerol kinase catalytic domain. Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The catalytic domain is assumed from the finding of bacterial homologs. YegS is the Escherichia coli protein in this family whose crystal structure reveals an active site in the inter-domain cleft formed by four conserved sequence motifs, revealing a novel metal-binding site. The residues of this site are conserved across the family. 125 -334251 pfam00782 DSPc Dual specificity phosphatase, catalytic domain. Ser/Thr and Tyr protein phosphatases. The enzyme's tertiary fold is highly similar to that of tyrosine-specific phosphatases, except for a "recognition" region. 128 -334252 pfam00784 MyTH4 MyTH4 domain. Domain in myosin and kinesin tails, present twice in myosin-VIIa, and also present in 3 other myosins. 105 -334253 pfam00786 PBD P21-Rho-binding domain. Small domains that bind Cdc42p- and/or Rho-like small GTPases. Also known as the Cdc42/Rac interactive binding (CRIB). 55 -307092 pfam00787 PX PX domain. PX domains bind to phosphoinositides. 109 -307093 pfam00788 RA Ras association (RalGDS/AF-6) domain. RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. 93 -279169 pfam00789 UBX UBX domain. This domain is present in ubiquitin-regulatory proteins and is a general Cdc48-interacting module. 82 -334254 pfam00790 VHS VHS domain. Domain present in VPS-27, Hrs and STAM. 141 -334255 pfam00791 ZU5 ZU5 domain. Domain present in ZO-1 and Unc5-like netrin receptors Domain of unknown function. 98 -334256 pfam00792 PI3K_C2 Phosphoinositide 3-kinase C2. Phosphoinositide 3-kinase region postulated to contain a C2 domain. Outlier of pfam00168 family. 135 -279172 pfam00793 DAHP_synth_1 DAHP synthetase I family. Members of this family catalyze the first step in aromatic amino acid biosynthesis from chorismate. E-coli has three related synthetases, which are inhibited by different aromatic amino acids. This family also includes KDSA which has very similar catalytic activity but is involved in the first step of liposaccharide biosynthesis. The enzyme is also part of the shikimate pathway, EC:2.5.1.54. 271 -307097 pfam00794 PI3K_rbd PI3-kinase family, ras-binding domain. Certain members of the PI3K family possess Ras-binding domains in their N-termini. These regions show some similarity (although not highly significant similarity) to Ras-binding pfam00788 domains (unpublished observation). 107 -334257 pfam00795 CN_hydrolase Carbon-nitrogen hydrolase. This family contains hydrolases that break carbon-nitrogen bonds. The family includes: Nitrilase EC:3.5.5.1, Aliphatic amidase EC:3.5.1.4, Biotidinase EC:3.5.1.12, Beta-ureidopropionase EC:3.5.1.6. Nitrilase-related proteins generally have a conserved E-K-C catalytic triad, and are multimeric alpha-beta-beta-alpha sandwich proteins. 253 -279175 pfam00796 PSI_8 Photosystem I reaction centre subunit VIII. 24 -334258 pfam00797 Acetyltransf_2 N-acetyltransferase. Arylamine N-acetyltransferase (NAT) is a cytosolic enzyme of approximately 30kDa. It facilitates the transfer of an acetyl group from Acetyl Coenzyme A on to a wide range of arylamine, N-hydroxyarylamines and hydrazines. Acetylation of these compounds generally results in inactivation. NAT is found in many species from Mycobacteria (M. tuberculosis, M. smegmatis etc) to man. It was the first enzyme to be observed to have polymorphic activity amongst human individuals. NAT is responsible for the inactivation of Isoniazid (a drug used to treat Tuberculosis) in humans. The NAT protein has also been shown to be involved in the breakdown of folic acid. 240 -279177 pfam00798 Arena_glycoprot Arenavirus glycoprotein. 483 -279178 pfam00799 Gemini_AL1 Geminivirus Rep catalytic domain. The AL1 proteins encodes the replication initiator protein (Rep) of geminiviruses, which is a replicon-specific initiator enzyme and is an essential component of the replisome. For geminivirus Rep protein, this N-terminal region is crucial for origin recognition and DNA cleavage and nucleotidyl transfer. 113 -334259 pfam00800 PDT Prephenate dehydratase. This protein is involved in Phenylalanine biosynthesis. This protein catalyzes the decarboxylation of prephenate to phenylpyruvate. 181 -334260 pfam00801 PKD PKD domain. This domain was first identified in the Polycystic kidney disease protein PKD1. This domain has been predicted to contain an Ig-like fold. 68 -144411 pfam00802 Glycoprotein_G Pneumovirus attachment glycoprotein G. This family includes attachment proteins from respiratory synctial virus. Glycoprotein G has not been shown to have any neuraminidase or hemagglutinin activity. The amino terminus is thought to be cytoplasmic, and the carboxyl terminus extracellular. The extracellular region contains four completely conserved cysteine residues. 263 -279181 pfam00803 3A 3A/RNA2 movement protein family. This family includes movement proteins from various viruses. The 3A protein is found in bromoviruses and Cucumoviruses. The genome of these viruses contain 3 RNA segments. The third segment (RNA 3) contains two proteins, the coat protein and the 3A protein. The function of the 3A protein is uncertain but has been shown to be involved in cell-to- cell movement of the virus. The family also includes movement proteins from Dianthoviruses. 225 -334261 pfam00804 Syntaxin Syntaxin. Syntaxins are the prototype family of SNARE proteins. They usually consist of three main regions - a C-terminal transmembrane region, a central SNARE domain which is characteristic of and conserved in all syntaxins (pfam05739), and an N-terminal domain that is featured in this entry. This domain varies between syntaxin isoforms; in syntaxin 1A it is found as three alpha-helices with a left-handed twist. It may fold back on the SNARE domain to allow the molecule to adopt a 'closed' configuration that prevents formation of the core fusion complex - it thus has an auto-inhibitory role. The function of syntaxins is determined by their localization. They are involved in neuronal exocytosis, ER-Golgi transport and Golgi-endosome transport, for example. They also interact with other proteins as well as those involved in SNARE complexes. These include vesicle coat proteins, Rab GTPases, and tethering factors. 200 -334262 pfam00805 Pentapeptide Pentapeptide repeats (8 copies). These repeats are found in many cyanobacterial proteins. The repeats were first identified in hglK. The function of these repeats is unknown. The structure of this repeat has been predicted to be a beta-helix. The repeat can be approximately described as A(D/N)LXX, where X can be any amino acid. 40 -334263 pfam00806 PUF Pumilio-family RNA binding repeat. Puf repeats (aka PUM-HD, Pumilio homology domain) are necessary and sufficient for sequence specific RNA binding in fly Pumilio and worm FBF-1 and FBF-2. Both proteins function as translational repressors in early embryonic development by binding sequences in the 3' UTR of target mRNAs (e.g. the nanos response element (NRE) in fly Hunchback mRNA, or the point mutation element (PME) in worm fem-3 mRNA). Other proteins that contain Puf domains are also plausible RNA binding proteins. Puf domains usually occur as a tandem repeat of 8 domains. The Pfam model does not necessarily recognize all 8 repeats in all sequences; some sequences appear to have 5 or 6 repeats on initial analysis, but further analysis suggests the presence of additional divergent repeats. Structures of PUF repeat proteins show they consist of a two helix structure. 34 -307103 pfam00807 Apidaecin Apidaecin. These antibacterial peptides are found in bees. These heat-stable, non-helical peptides are active against a wide range of plant-associated bacteria and some human pathogens. The Pfam alignment includes the propeptide and apidaecin sequence. 27 -279185 pfam00808 CBFD_NFYB_HMF Histone-like transcription factor (CBF/NF-Y) and archaeal histone. This family includes archaebacterial histones and histone like transcription factors from eukaryotes. 64 -307104 pfam00809 Pterin_bind Pterin binding enzyme. This family includes a variety of pterin binding enzymes that all adopt a TIM barrel fold. The family includes dihydropteroate synthase EC:2.5.1.15 as well as a group methyltransferase enzymes including methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr) that catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide centre in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. 242 -334264 pfam00810 ER_lumen_recept ER lumen protein retaining receptor. 147 -307106 pfam00811 Ependymin Ependymin. 124 -307107 pfam00812 Ephrin Ephrin. 136 -334265 pfam00813 FliP FliP family. 195 -334266 pfam00814 Peptidase_M22 Glycoprotease family. The Peptidase M22 proteins are part of the HSP70-actin superfamily. The region represented here is an insert into the fold and is not found in the rest of the family (beyond the Peptidase M22 family). Included in this family are the Rhizobial NodU proteins and the HypF regulator. This region also contains the histidine dyad believed to coordinate the metal ion and hence provide catalytic activity. Interestingly the histidines are not well conserved, and there is a lack of experimental evidence to support peptidase activity as a general property of this family. There also appear to be instances of this domain outside of the HSP70-actin superfamily. 270 -334267 pfam00815 Histidinol_dh Histidinol dehydrogenase. 410 -334268 pfam00816 Histone_HNS H-NS histone family. 88 -334269 pfam00817 IMS impB/mucB/samB family. These proteins are involved in UV protection. 148 -307113 pfam00818 Ice_nucleation Ice nucleation protein repeat. 15 -109859 pfam00819 Myotoxins Myotoxin, crotamine. Crotamine is a family of cationic peptides expressed by the venom gland of, for example, Crotalus durissus terrificus. It acts as a cell-penetrating peptide (CPP) and as a potent voltage-gated potassium channel (Kv) inhibitor. 42 -307114 pfam00820 Lipoprotein_1 Borrelia lipoprotein. This family of lipoproteins is found in Borrelia spirochetes. The function of these proteins is uncertain. 259 -334270 pfam00821 PEPCK_C Phosphoenolpyruvate carboxykinase C-terminal P-loop domain. catalyzes the formation of phosphoenolpyruvate by decarboxylation of oxaloacetate. 359 -334271 pfam00822 PMP22_Claudin PMP-22/EMP/MP20/Claudin family. 161 -307116 pfam00823 PPE PPE family. This family named after a PPE motif near to the amino terminus of the domain. The PPE family of proteins all contain an amino-terminal region of about 180 amino acids. The carboxyl terminus of this family are variable, and on the basis of this region fall into at least three groups. The MPTR subgroup has tandem copies of a motif NXGXGNXG. The second subgroup contains a conserved motif at about position 350. The third group are only related in the amino terminal region. The function of these proteins is uncertain but it has been suggested that they may be related to antigenic variation of Mycobacterium tuberculosis. 158 -334272 pfam00825 Ribonuclease_P Ribonuclease P. 108 -307117 pfam00827 Ribosomal_L15e Ribosomal L15. 191 -334273 pfam00828 Ribosomal_L27A Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A. This family includes higher eukaryotic ribosomal 60S L27A, archaeal 50S L18e, prokaryotic 50S L15, fungal mitochondrial L10, plant L27A, mitochondrial L15 and chloroplast L18-3 proteins. 123 -334274 pfam00829 Ribosomal_L21p Ribosomal prokaryotic L21 protein. 100 -334275 pfam00830 Ribosomal_L28 Ribosomal L28 family. The ribosomal 28 family includes L28 proteins from bacteria and chloroplasts. The L24 protein from yeast also contains a region of similarity to prokaryotic L28 proteins. L24 from yeast is also found in the large ribosomal subunit 60 -334276 pfam00831 Ribosomal_L29 Ribosomal L29 protein. 57 -307122 pfam00832 Ribosomal_L39 Ribosomal L39 protein. 42 -334277 pfam00833 Ribosomal_S17e Ribosomal S17. 118 -279207 pfam00834 Ribul_P_3_epim Ribulose-phosphate 3 epimerase family. This enzyme catalyzes the conversion of D-ribulose 5-phosphate into D-xylulose 5-phosphate. 198 -334278 pfam00835 SNAP-25 SNAP-25 family. SNAP-25 (synaptosome-associated protein 25 kDa) proteins are components of SNARE complexes. Members of this family contain a cluster of cysteine residues that can be palmitoylated for membrane attachment. 55 -307125 pfam00836 Stathmin Stathmin family. The Stathmin family of proteins play an important role in the regulation of the microtubule cytoskeleton. They regulate microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. 136 -279210 pfam00837 T4_deiodinase Iodothyronine deiodinase. Iodothyronine deiodinase converts thyroxine (T4) to 3,5,3'-triiodothyronine (T3). 237 -334279 pfam00838 TCTP Translationally controlled tumor protein. 166 -307127 pfam00839 Cys_rich_FGFR Cysteine rich repeat. This cysteine rich repeat contains four cysteines. It is found in multiple copies in a protein that binds to fibroblast growth factors. The repeat is also found in MG160 and E-selectin ligand (ESL-1). 58 -334280 pfam00840 Glyco_hydro_7 Glycosyl hydrolase family 7. 433 -279214 pfam00841 Protamine_P2 Sperm histone P2. This protein also known as protamine P2 can substitute for histones in the chromatin of sperm. The alignment contains both the sequence of the mature P2 protein and its propeptide. 92 -334281 pfam00842 Ala_racemase_C Alanine racemase, C-terminal domain. 123 -334282 pfam00843 Arena_nucleocap Arenavirus nucleocapsid N-terminal domain. This N-terminal domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription. 334 -307130 pfam00844 Gemini_coat Geminivirus coat protein/nuclear export factor BR1 family. It has been shown that the 104 N-terminal amino acids of the maize streak virus coat protein bind DNA non- specifically. This family also includes various geminivirus movement proteins that are nuclear export factors or shuttles. One member BR1 facilitates the export of both ds and ss DNA form the nucleus. 244 -307131 pfam00845 Gemini_BL1 Geminivirus BL1 movement protein. Geminiviruses encode two movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. 276 -279218 pfam00846 Hanta_nucleocap Hantavirus nucleocapsid protein. 429 -334283 pfam00847 AP2 AP2 domain. This 60 amino acid residue domain can bind to DNA and is found in transcription factor proteins. 53 -334284 pfam00848 Ring_hydroxyl_A Ring hydroxylating alpha subunit (catalytic domain). This family is the catalytic domain of aromatic-ring- hydroxylating dioxygenase systems. The active site contains a non-heme ferrous ion coordinated by three ligands. 209 -307134 pfam00849 PseudoU_synth_2 RNA pseudouridylate synthase. Members of this family are involved in modifying bases in RNA molecules. They carry out the conversion of uracil bases to pseudouridine. This family includes RluD, a pseudouridylate synthase that converts specific uracils to pseudouridine in 23S rRNA. RluA from E. coli converts bases in both rRNA and tRNA. 151 -334285 pfam00850 Hist_deacetyl Histone deacetylase domain. Histones can be reversibly acetylated on several lysine residues. Regulation of transcription is caused in part by this mechanism. Histone deacetylases catalyze the removal of the acetyl group. Histone deacetylases are related to other proteins. 300 -279223 pfam00851 Peptidase_C6 Helper component proteinase. This protein is found in genome polyproteins of potyviruses. 440 -307136 pfam00852 Glyco_transf_10 Glycosyltransferase family 10 (fucosyltransferase) C-term. This is the C-terminal domain of a family of fucosyltransferases. This enzyme transfers fucose from GDP-Fucose to GlcNAc in an alpha1,3 linkage. This family is known as glycosyltransferase family 10. The C-terminal domain is the likely binding-region for ADP (manuscript in publication). 171 -307137 pfam00853 Runt Runt domain. 122 -279226 pfam00854 PTR2 POT family. The POT (proton-dependent oligopeptide transport) family all appear to be proton dependent transporters. 392 -334286 pfam00855 PWWP PWWP domain. The PWWP domain is named after a conserved Pro-Trp-Trp-Pro motif. The domain binds to Histone-4 methylated at lysine-20, H4K20me, suggesting that it is methyl-lysine recognition motif. Removal of two conserved aromatic residues in a hydrophobic cavity created by this domain within the full-length protein, Pdp1, abolishes the interaction o f the protein with H4K20me3. In fission yeast, Set9 is the sole enzyme that catalyzes all three states of H4K20me, and Set9-mediated H4K20me is required for efficient recruitment of checkpoint protein Crb2 to sites of DNA damage. The methylation of H4K20 is involved in a diverse array of cellular processes, such as organising higher-order chromatin, maintaining genome stability, and regulating cell-cycle progression. 95 -334287 pfam00856 SET SET domain. SET domains are protein lysine methyltransferase enzymes. SET domains appear to be protein-protein interaction domains. It has been demonstrated that SET domains mediate interactions with a family of proteins that display similarity with dual-specificity phosphatases (dsPTPases). A subset of SET domains have been called PR domains. These domains are divergent in sequence from other SET domains, but also appear to mediate protein-protein interaction. The SET domain consists of two regions known as SET-N and SET-C. SET-C forms an unusual and conserved knot-like structure of probably functional importance. Additionally to SET-N and SET-C, an insert region (SET-I) and flanking regions of high structural variability form part of the overall structure. 116 -334288 pfam00857 Isochorismatase Isochorismatase family. This family are hydrolase enzymes. 173 -334289 pfam00858 ASC Amiloride-sensitive sodium channel. 434 -307142 pfam00859 CTF_NFI CTF/NF-I family transcription modulation region. 293 -279232 pfam00860 Xan_ur_permease Permease family. This family includes permeases for diverse substrates such as xanthine, uracil, and vitamin C. However many members of this family are functionally uncharacterized and may transport other substrates. Members of this family have ten predicted transmembrane helices. 389 -307143 pfam00861 Ribosomal_L18p Ribosomal L18 of archaea, bacteria, mitoch. and chloroplast. This family includes the large subunit ribosomal proteins from bacteria, archaea, the mitochondria and the chloroplast. It does not include the 60S L18 or L5 proteins from Metazoa. 116 -307144 pfam00862 Sucrose_synth Sucrose synthase. Sucrose synthases catalyze the synthesis of sucrose from UDP-glucose and fructose. This family includes the bulk of the sucrose synthase protein. However the carboxyl terminal region of the sucrose synthases belongs to the glycosyl transferase family pfam00534. 541 -279235 pfam00863 Peptidase_C4 Peptidase family C4. This peptidase is present in the nuclear inclusion protein of potyviruses. 243 -307145 pfam00864 P2X_receptor ATP P2X receptor. 366 -307146 pfam00865 Osteopontin Osteopontin. 291 -334290 pfam00866 Ring_hydroxyl_B Ring hydroxylating beta subunit. This subunit has a similar structure to NTF-2 and scytalone dehydratase. 143 -334291 pfam00867 XPG_I XPG I-region. 91 -334292 pfam00868 Transglut_N Transglutaminase family. 117 -334293 pfam00869 Flavi_glycoprot Flavivirus glycoprotein, central and dimerization domains. 300 -307150 pfam00870 P53 P53 DNA-binding domain. This family contains one anomalous member, viz: Zea mays (Q6JAD8). This sequence is identical to human P53 and would appear to be a a human contaminant within the Zea mays sampling effort. 196 -279243 pfam00871 Acetate_kinase Acetokinase family. This family includes acetate kinase, butyrate kinase and 2-methylpropanoate kinase. 387 -307151 pfam00872 Transposase_mut Transposase, Mutator family. 380 -334294 pfam00873 ACR_tran AcrB/AcrD/AcrF family. Members of this family are integral membrane proteins. Some are involved in drug resistance. AcrB cooperates with a membrane fusion protein, AcrA, and an outer membrane channel TolC. The structure shows the AcrB forms a homotrimer. 1010 -279246 pfam00874 PRD PRD domain. The PRD domain (for PTS Regulation Domain), is the phosphorylatable regulatory domain found in bacterial transcriptional antiterminator such as BglG, SacY and LicT, as well as in activators such as MtlR and LevR. The PRD is phosphorylated on one or two conserved histidine residues. PRD-containing proteins are involved in the regulation of catabolic operons in Gram+ and Gram- bacteria and are often characterized by a short N-terminal effector domain that binds to either RNA (CAT-RBD for antiterminators pfam03123) or DNA (for activators), and a duplicated PRD module which is phosphorylated by the sugar phosphotransferase system (PTS) in response to the availability of carbon source. The phosphorylations modify the conformation and stability of the dimeric proteins and thereby the RNA- or DNA-binding activity of the effector domain. The structure of the LicT PRD domains has been solved in both the active (Structure 1h99) and inactive state (Structure 1tlv), revealing massive structural rearrangements upon activation. 90 -334295 pfam00875 DNA_photolyase DNA photolyase. This domain binds a light harvesting cofactor. 164 -334296 pfam00876 Innexin Innexin. This family includes the Drosophila proteins Ogre and shaking-B, and the C. elegans proteins Unc-7 and Unc-9. Members of this family are integral membrane proteins which are involved in the formation of gap junctions. This family has been named the Innexins. 337 -334297 pfam00877 NLPC_P60 NlpC/P60 family. The function of this domain is unknown. It is found in several lipoproteins. 105 -307156 pfam00878 CIMR Cation-independent mannose-6-phosphate receptor repeat. The cation-independent mannose-6-phosphate receptor contains 15 copies of a repeat. 143 -307157 pfam00879 Defensin_propep Defensin propeptide. 51 -334298 pfam00880 Nebulin Nebulin repeat. 26 -307159 pfam00881 Nitroreductase Nitroreductase family. The nitroreductase family comprises a group of FMN- or FAD-dependent and NAD(P)H-dependent enzymes able to metabolize nitrosubstituted compounds. 168 -334299 pfam00882 Zn_dep_PLPC Zinc dependent phospholipase C. 162 -334300 pfam00883 Peptidase_M17 Cytosol aminopeptidase family, catalytic domain. The two associated zinc ions and the active site are entirely enclosed within the C-terminal catalytic domain in leucine aminopeptidase. 299 -334301 pfam00884 Sulfatase Sulfatase. 297 -334302 pfam00885 DMRL_synthase 6,7-dimethyl-8-ribityllumazine synthase. This family includes the beta chain of 6,7-dimethyl-8- ribityllumazine synthase EC:2.5.1.9, an enzyme involved in riboflavin biosynthesis. The family also includes a subfamily of distant archaebacterial proteins that may also have the same function. The family contains a number of different subsets including a family of proteins comprising archaeal lumazine and riboflavin synthases, type I lumazine synthases, and the eubacterial type II lumazine synthases. It has been established that lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. The type I lumazine synthases area active in pentameric or icosahedral quaternary assemblies, whereas the type II are decameric. Brucella, a bacterial genus that causes brucellosis, and other Rhizobiales have an atypical riboflavin metabolic pathway. Brucella spp code for both a type-I and a type-II lumazine synthase, and it has been shown that at least one of these two has to be present in order for Brucella to be viable, showing that in the case of Brucella flavin metabolism is implicated in bacterial virulence. 134 -334303 pfam00886 Ribosomal_S16 Ribosomal protein S16. 62 -334304 pfam00887 ACBP Acyl CoA binding protein. 80 -334305 pfam00888 Cullin Cullin family. 607 -334306 pfam00889 EF_TS Elongation factor TS. 204 -307168 pfam00890 FAD_binding_2 FAD binding domain. This family includes members that bind FAD. This family includes the flavoprotein subunits from succinate and fumarate dehydrogenase, aspartate oxidase and the alpha subunit of adenylylsulphate reductase. 398 -307169 pfam00891 Methyltransf_2 O-methyltransferase. This family includes a range of O-methyltransferases. These enzymes utilize S-adenosyl methionine. 225 -307170 pfam00892 EamA EamA-like transporter family. This family includes many hypothetical membrane proteins of unknown function. Many of the proteins contain two copies of the aligned region. The family used to be known as DUF6. Members of this family usually carry 5+5 transmembrane domains, and this domain attempts to model five of these. 136 -279265 pfam00893 Multi_Drug_Res Small Multidrug Resistance protein. This family is the Small Multidrug Resistance (SMR) family. Several members have been shown to export a range of toxins, including ethidium bromide and quaternary ammonium compounds, through coupling with proton influx. 93 -279266 pfam00894 Luteo_coat Luteovirus coat protein. 138 -279267 pfam00895 ATP-synt_8 ATP synthase protein 8. 54 -279268 pfam00897 Orbi_VP7 Orbivirus inner capsid protein VP7. In BTV, 260 trimers of VP7 are found in the core. The major proteins of the core are VP7 and VP3. VP7 forms an outer layer around VP3. 348 -307171 pfam00898 Orbi_VP2 Orbivirus outer capsid protein VP2. VP2 acts as an anchor for VP1 and VP3. VP2 contains a non-specific DNA and RNA binding domain in the N-terminus. 946 -279270 pfam00899 ThiF ThiF family. This domain is found in ubiquitin activating E1 family and members of the bacterial ThiF/MoeB/HesA family. It is repeated in Ubiquitin-activating enzyme E1. 243 -307172 pfam00900 Ribosomal_S4e Ribosomal family S4e. 75 -279272 pfam00901 Orbi_VP5 Orbivirus outer capsid protein VP5. cryoelectron microscopy indicates that VP5 is a trimer implying that there are 360 copies of VP5 per virion. 507 -334307 pfam00902 TatC Sec-independent protein translocase protein (TatC). The bacterial Tat system has a remarkable ability to transport folded proteins even enzyme complexes across the cytoplasmic membrane. It is structurally and mechanistically similar to the Delta pH-driven thylakoidal protein import pathway. A functional Tat system or Delta pH-dependent pathway requires three integral membrane proteins: TatA/Tha4, TatB/Hcf106 and TatC/cpTatC. The TatC protein is essential for the function of both pathways. It might be involved in twin-arginine signal peptide recognition, protein translocation and proton translocation. Sequence analysis predicts that TatC contains six transmembrane helices (TMHs), and experimental data confirmed that N- and C-termini of TatC or cpTatC are exposed to the cytoplasmic or stromal face of the membrane. The cytoplasmic N-terminus and the first cytoplasmic loop region of the Escherichia coli TatC protein are essential for protein export. At least two TatC molecules co-exist within each Tat translocon. 209 -334308 pfam00903 Glyoxalase Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily. 122 -307175 pfam00904 Involucrin Involucrin repeat. 10 -334309 pfam00905 Transpeptidase Penicillin binding protein transpeptidase domain. The active site serine is conserved in all members of this family. 289 -279277 pfam00906 Hepatitis_core Hepatitis core antigen. The core antigen of hepatitis viruses possesses a carboxyl terminus rich in arginine. On this basis it was predicted that the core antigen would bind DNA. There is some experimental evidence to support this. 273 -307177 pfam00907 T-box T-box. The T-box encodes a 180 amino acid domain that binds to DNA. Genes encoding T-box proteins are found in a wide range of animals, but not in other kingdoms such as plants. Family members are all thought to bind to the DNA consensus sequence TCACACCT. they are found exclusively in the nucleus, and perform DNA-binding and transcriptional activation/repression roles. They are generally required for development of the specific tissues they are expressed in, and mutations in T-box genes are implicated in human conditions such as DiGeorge syndrome and X-linked cleft palate, which feature malformations. 184 -334310 pfam00908 dTDP_sugar_isom dTDP-4-dehydrorhamnose 3,5-epimerase. This family catalyze the isomerisation of dTDP-4-dehydro-6-deoxy -D-glucose with dTDP-4-dehydro-6-deoxy-L-mannose. The EC number of this enzyme is 5.1.3.13. 164 -307179 pfam00909 Ammonium_transp Ammonium Transporter Family. 399 -279280 pfam00910 RNA_helicase RNA helicase. This family includes RNA helicases thought to be involved in duplex unwinding during viral RNA replication. Members of this family are found in a variety of single stranded RNA viruses. 105 -334311 pfam00912 Transgly Transglycosylase. The penicillin-binding proteins are bifunctional proteins consisting of transglycosylase and transpeptidase in the N- and C-terminus respectively. The transglycosylase domain catalyzes the polymerization of murein glycan chains. 177 -307181 pfam00913 Trypan_glycop Trypanosome variant surface glycoprotein (A-type). The trypanosome parasite expresses these proteins to evade the immune response. This family includes a variety of surface proteins such as Trypanosoma brucei VSGs such as expression site associated gene (ESAG) 6 and 7. 365 -307182 pfam00915 Calici_coat Calicivirus coat protein. 288 -279284 pfam00916 Sulfate_transp Sulfate permease family. This family of integral membrane proteins are known as the Sulfate Permease (SulP) family. SulP is a large family found in all domains of life. Although sulfate is a commonly transported ion there are many other activities in this family. See the TCDB description for a comprehensive summary. 379 -334312 pfam00917 MATH MATH domain. This motif has been called the Meprin And TRAF-Homology (MATH) domain. This domain is hugely expanded in the nematode C. elegans. 113 -307183 pfam00918 Gastrin Gastrin/cholecystokinin family. 127 -334313 pfam00919 UPF0004 Uncharacterized protein family UPF0004. This family is the N terminal half of the Prosite family. The C-terminal half has been shown to be related to MiaB proteins. This domain is a nearly always found in conjunction with pfam04055 and pfam01938 although its function is uncertain. 98 -334314 pfam00920 ILVD_EDD Dehydratase family. 517 -307186 pfam00921 Lipoprotein_2 Borrelia lipoprotein. This family of lipoproteins is found in Borrelia spirochetes. The function of these proteins is uncertain. 173 -279290 pfam00922 Phosphoprotein Vesiculovirus phosphoprotein. 257 -334315 pfam00923 TAL_FSA Transaldolase/Fructose-6-phosphate aldolase. Transaldolase (TAL) is an enzyme of the pentose phosphate pathway (PPP) found almost ubiquitously in the three domains of life (Archaea, Bacteria, and Eukarya). TAL shares a high degree of structural similarity and sequence identity with fructose-6-phosphate aldolase (FSA). They both belong to the class I aldolase family. Their protein structures have been revealed. 271 -307188 pfam00924 MS_channel Mechanosensitive ion channel. Two members of this protein family of M. jannaschii have been functionally characterized. Both proteins form mechanosensitive (MS) ion channels upon reconstitution into liposomes and functional examination by the patch-clamp technique. Therefore this family are likely to also be MS channel proteins. 201 -334316 pfam00925 GTP_cyclohydro2 GTP cyclohydrolase II. GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. 126 -334317 pfam00926 DHBP_synthase 3,4-dihydroxy-2-butanone 4-phosphate synthase. 3,4-Dihydroxy-2-butanone 4-phosphate is biosynthesized from ribulose 5-phosphate and serves as the biosynthetic precursor for the xylene ring of riboflavin. Sometimes found as a bifunctional enzyme with pfam00925. 191 -307191 pfam00927 Transglut_C Transglutaminase family, C-terminal ig like domain. 106 -334318 pfam00928 Adap_comp_sub Adaptor complexes medium subunit family. This family also contains members which are coatomer subunits. 259 -279297 pfam00929 RNase_T Exonuclease. This family includes a variety of exonuclease proteins, such as ribonuclease T and the epsilon subunit of DNA polymerase III.; 164 -307193 pfam00930 DPPIV_N Dipeptidyl peptidase IV (DPP IV) N-terminal region. This family is an alignment of the region to the N-terminal side of the active site. The Prosite motif does not correspond to this Pfam entry. 352 -307194 pfam00931 NB-ARC NB-ARC domain. 287 -334319 pfam00932 LTD Lamin Tail Domain. The lamin-tail domain (LTD), which has an immunoglobulin (Ig) fold, is found in Nuclear Lamins, Chlo1887 from Chloroflexus, and several bacterial proteins where it occurs with membrane associated hydrolases of the metallo-beta-lactamase,synaptojanin, and calcineurin-like phosphoesterase superfamilies. 109 -307196 pfam00933 Glyco_hydro_3 Glycosyl hydrolase family 3 N terminal domain. 318 -307197 pfam00934 PE PE family. This family named after a PE motif near to the amino terminus of the domain. The PE family of proteins all contain an amino-terminal region of about 110 amino acids. The carboxyl terminus of this family are variable and fall into several classes. The largest class of PE proteins is the highly repetitive PGRS class which have a high glycine content. The function of these proteins is uncertain but it has been suggested that they may be related to antigenic variation of Mycobacterium tuberculosis. 89 -334320 pfam00935 Ribosomal_L44 Ribosomal protein L44. 76 -307199 pfam00936 BMC BMC domain. Bacterial microcompartments are primitive organelles composed entirely of protein subunits. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. These proteins for hexameric structure. 74 -279305 pfam00937 Corona_nucleoca Coronavirus nucleocapsid protein. 364 -279306 pfam00938 Lipoprotein_3 Lipoprotein. This family of lipoproteins is Mycoplasma specific. 85 -279307 pfam00939 Na_sulph_symp Sodium:sulfate symporter transmembrane region. There are also some members in this family that do not match the Prosite motif, and belong to the subfamily SODIT1. 472 -334321 pfam00940 RNA_pol DNA-dependent RNA polymerase. This is a family of single chain RNA polymerases. 388 -334322 pfam00941 FAD_binding_5 FAD binding domain in molybdopterin dehydrogenase. 169 -307202 pfam00942 CBM_3 Cellulose binding domain. 82 -279311 pfam00943 Alpha_E2_glycop Alphavirus E2 glycoprotein. E2 forms a heterodimer with E1. The virus spikes are made up of 80 trimers of these heterodimers (sindbis virus). 403 -279312 pfam00944 Peptidase_S3 Alphavirus core protein. Also known as coat protein C and capsid protein C. This makes the literature very confusing. Alphaviruses consist of a nucleoprotein core, a lipid membrane which envelopes the core, and glycoprotein spikes protruding from the lipid membrane. 157 -279313 pfam00945 Rhabdo_ncap Rhabdovirus nucleocapsid protein. The Nucleocapsid (N) Protein is said to have a "tight" structure. The carboxyl end of the N-terminal domain possesses an RNA binding domain. Sequence alignments show 2 regions of reasonable conservation, approx. 64-103 and 201-329. A whole functional protein is required for encapsidation to take place. 409 -307203 pfam00946 Mononeg_RNA_pol Mononegavirales RNA dependent RNA polymerase. Members of the Mononegavirales including the Paramyxoviridae, like other non-segmented negative strand RNA viruses, have an RNA-dependent RNA polymerase composed of two subunits, a large protein L and a phosphoprotein P. This is a protein family of the L protein. The L protein confers the RNA polymerase activity on the complex. The P protein acts as a transcription factor. 1014 -279315 pfam00947 Pico_P2A Picornavirus core protein 2A. This protein is a protease, involved in cleavage of the polyprotein. 127 -279316 pfam00948 Flavi_NS1 Flavivirus non-structural Protein NS1. The NS1 protein is well conserved amongst the flaviviruses. It contains 12 cysteines, and undergoes glycosylation in a similar manner to other NS proteins. Mutational analysis has strongly implied a role for NS1 in the early stages of RNA replication. 360 -307204 pfam00949 Peptidase_S7 Peptidase S7, Flavivirus NS3 serine protease. The viral genome is a positive strand RNA that encodes a single polyprotein precursor. Processing of the polyprotein precursor into mature proteins is carried out by the host signal peptidase and by NS3 serine protease, which requires NS2B (pfam01002) as a cofactor. 130 -334323 pfam00950 ABC-3 ABC 3 transport family. 258 -109986 pfam00951 Arteri_Gl Arterivirus GL envelope glycoprotein. Arteriviruses encode 4 envelope proteins, Gl, Gs, M and N. Gl envelope protein, is encoded in ORF5, and is 30- 45 kDa in size. Gl is heterogenously glycosylated with N-acetyllactosamine in a cell-type-specific manner. The Gl glycoprotein expresses the neutralisation determinants. 179 -279319 pfam00952 Bunya_nucleocap Bunyavirus nucleocapsid (N) protein. The bunyaviruses are enveloped viruses with a genome consisting of 3 ssRNA segments (called L, M and S). The nucleocapsid protein is encode on the small (S) genomic RNA. The N protein is the major component of the nucleocapsids. This protein is thought to interact with the L protein, virus RNA and/or other N proteins. 229 -334324 pfam00953 Glycos_transf_4 Glycosyl transferase family 4. 158 -307206 pfam00954 S_locus_glycop S-locus glycoprotein domain. In Brassicaceae, self-incompatible plants have a self/non-self recognition system. This is sporophytically controlled by multiple alleles at a single locus (S). S-locus glycoproteins, as well as S-receptor kinases, are in linkage with the S-alleles. This region is inferred to be a domain due to it having other domains adjacent to it. 111 -334325 pfam00955 HCO3_cotransp HCO3- transporter family. This family contains Band 3 anion exchange proteins that exchange CL-/HCO3-. This family also includes cotransporters of Na+/HCO3-. 494 -334326 pfam00956 NAP Nucleosome assembly protein (NAP). NAP proteins are involved in moving histones into the nucleus, nucleosome assembly and chromatin fluidity. They affect the transcription of many genes. 211 -334327 pfam00957 Synaptobrevin Synaptobrevin. 89 -334328 pfam00958 GMP_synt_C GMP synthase C terminal domain. GMP synthetase is a glutamine amidotransferase from the de novo purine biosynthetic pathway. This family is the C-terminal domain specific to the GMP synthases EC:6.3.5.2. In prokaryotes this domain mediates dimerization. Eukaryotic GMP synthases are monomers. This domain in eukaryotes includes several large insertions that may form globular domains. 92 -334329 pfam00959 Phage_lysozyme Phage lysozyme. This family includes lambda phage lysozyme and E. coli endolysin. 108 -307212 pfam00960 Neocarzinostat Neocarzinostatin family. 103 -334330 pfam00961 LAGLIDADG_1 LAGLIDADG endonuclease. 101 -279329 pfam00962 A_deaminase Adenosine/AMP deaminase. 327 -307214 pfam00963 Cohesin Cohesin domain. Cohesin domains interact with a complementary domain, termed the dockerin domain. The cohesin-dockerin interaction is the crucial interaction for complex formation in the cellulosome. 142 -307215 pfam00964 Elicitin Elicitin. Elicitins form a novel class of plant necrotic proteins which are secreted by Phytophthora and Pythium fungi, parasites of many economically important crops. These proteins induce leaf necrosis in infected plants and elicit an incompatible hypersensitive-like reaction, leading to the development of a systemic acquired resistance against a range of fungal and bacterial plant pathogens. 87 -307216 pfam00965 TIMP Tissue inhibitor of metalloproteinase. Members of this family are common in extracellular regions of vertebrate species 183 -307217 pfam00967 Barwin Barwin family. 116 -334331 pfam00969 MHC_II_beta Class II histocompatibility antigen, beta domain. 75 -334332 pfam00970 FAD_binding_6 Oxidoreductase FAD-binding domain. 99 -250265 pfam00971 EIAV_GP90 EIAV coat protein, gp90. Equine infectious anaemia (EIAV). EIAV belongs to the family Retroviridae. EIAV gp90 is hypervariable in the carboxyl-end region and more stable in the amino-end region. This variability is a pathogenicity factor that allows the evasion of the host's immune response. 385 -279336 pfam00972 Flavi_NS5 Flavivirus RNA-directed RNA polymerase. Flaviviruses produce a polyprotein from the ssRNA genome. This protein is also known as NS5. This RNA-directed RNA polymerase possesses a number of short regions and motifs homologous to other RNA-directed RNA polymerases. 649 -307220 pfam00973 Paramyxo_ncap Paramyxovirus nucleocapsid protein. The nucleocapsid protein is referred to as NP. NP is is the major structural component of the nucleocapsid. The protein is approx. 58 kDa. 2600 NP molecules go to tightly encapsidate the RNA. NP interacts with several other viral encoded proteins, all of which are involved in controlling replication. {NP-NP, NP-P, NP-(PL), and NP-V}. 524 -279337 pfam00974 Rhabdo_glycop Rhabdovirus spike glycoprotein. Frequently abbreviated to G protein. The glycoprotein spike is made up of a trimer of G proteins. Channel formed by glycoprotein spike is thought to function in a similar manner to Influenza virus M2 protein channel, thus allowing a signal to pass across the viral membrane to signal for viral uncoating. 502 -334333 pfam00975 Thioesterase Thioesterase domain. Peptide synthetases are involved in the non-ribosomal synthesis of peptide antibiotics. Next to the operons encoding these enzymes, in almost all cases, are genes that encode proteins that have similarity to the type II fatty acid thioesterases of vertebrates. There are also modules within the peptide synthetases that also share this similarity. With respect to antibiotic production, thioesterases are required for the addition of the last amino acid to the peptide antibiotic, thereby forming a cyclic antibiotic. Thioesterases (non-integrated) have molecular masses of 25-29 kDa. 224 -307222 pfam00976 ACTH_domain Corticotropin ACTH domain. 19 -279340 pfam00977 His_biosynth Histidine biosynthesis protein. Proteins involved in steps 4 and 6 of the histidine biosynthesis pathway are contained in this family. Histidine is formed by several complex and distinct biochemical reactions catalyzed by eight enzymes. The enzymes in this Pfam entry are called His6 and His7 in eukaryotes and HisA and HisF in prokaryotes. The structure of HisA is known to be a TIM barrel fold. In some archaeal HisA proteins the TIM barrel is composed of two tandem repeats of a half barrel. This family belong to the common phosphate binding site TIM barrel family. 229 -250270 pfam00978 RdRP_2 RNA dependent RNA polymerase. This family may represent an RNA dependent RNA polymerase. The family also contains the following proteins: 2A protein from bromoviruses putative RNA dependent RNA polymerase from tobamoviruses Non structural polyprotein from togaviruses 441 -144537 pfam00979 Reovirus_cap Reovirus outer capsid protein, Sigma 3. Sigma 3 is the major outer capsid protein of reovirus. Sigma 3 is encoded by genome segment 4. Sigma 3 binds to double stranded RNA and associates with polypeptide u1 and its cleavage product u1C to form the outer shell of the virion. The Sigma 3 protein possesses a zinc-finger motif and an RNA-binding domain in the N and C termini respectively. This protein is also thought to play a role in pathogenesis. 367 -279341 pfam00980 Rota_Capsid_VP6 Rotavirus major capsid protein VP6. Rotaviruses consist of three concentric protein shells. The intermediate (middle) protein layer consists 260 trimers of VP6. VP6 in the most abundant protein in the virion. VP6 is also involved in virion assembly, and possesses the ability to interact with VP2, VP4 and VP7. 396 -144538 pfam00981 Rota_NS53 Rotavirus RNA-binding Protein 53 (NS53). This protein is also known as NSP1. NS53 is encoded by gene 5. It is made in low levels in the infected cells and is a component of early replication. The protein is known to accumulate on the cytoskeleton of the infected cell. NS53 is an RNA binding protein that contains a characteristic cysteine rich region. 488 -279342 pfam00982 Glyco_transf_20 Glycosyltransferase family 20. Members of this family belong to glycosyl transferase family 20. OtsA (Trehalose-6-phosphate synthase) is homologous to regions in the subunits of yeast trehalose-6-phosphate synthase/phosphate complex,. 470 -279343 pfam00983 Tymo_coat Tymovirus coat protein. 170 -334334 pfam00984 UDPG_MGDP_dh UDP-glucose/GDP-mannose dehydrogenase family, central domain. The UDP-glucose/GDP-mannose dehydrogenaseses are a small group of enzymes which possesses the ability to catalyze the NAD-dependent 2-fold oxidation of an alcohol to an acid without the release of an aldehyde intermediate. 94 -144541 pfam00985 MSA_2 Merozoite Surface Antigen 2 (MSA-2) family. 171 -334335 pfam00986 DNA_gyraseB_C DNA gyrase B subunit, carboxyl terminus. The amino terminus of eukaryotic and prokaryotic DNA topoisomerase II are similar, but they have a different carboxyl terminus. The amino-terminal portion of the DNA gyrase B protein is thought to catalyze the ATP-dependent super-coiling of DNA. See pfam00204. The carboxyl-terminal end supports the complexation with the DNA gyrase A protein and the ATP-independent relaxation. This family also contains Topoisomerase IV. This is a bacterial enzyme that is closely related to DNA gyrase,. 63 -334336 pfam00988 CPSase_sm_chain Carbamoyl-phosphate synthase small chain, CPSase domain. The carbamoyl-phosphate synthase domain is in the amino terminus of protein. Carbamoyl-phosphate synthase catalyzes the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. This important enzyme initiates both the urea cycle and the biosynthesis of arginine and/or pyrimidines. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. The small chain promotes the hydrolysis of glutamine to ammonia, which is used by the large chain to synthesize carbamoyl phosphate. See pfam00289. The small chain has a GATase domain in the carboxyl terminus. See pfam00117. 128 -334337 pfam00989 PAS PAS fold. The PAS fold corresponds to the structural domain that has previously been defined as PAS and PAC motifs. The PAS fold appears in archaea, eubacteria and eukarya. 112 -307227 pfam00990 GGDEF Diguanylate cyclase, GGDEF domain. This domain is found linked to a wide range of non-homologous domains in a variety of bacteria. It has been shown to be homologous to the adenylyl cyclase catalytic domain and has diguanylate cyclase activity. This observation correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. In the WspR protein of Pseudomonas aeruginosa, the GGDEF domain acts as a diguanylate cyclase, Structure 3bre, when the whole molecule appears to form a tetramer consisting of two symmetrically-related dimers representing a biological unit. The active site is the GGD/EF motif, buried in the structure, and the cyclic dimeric guanosine monophosphate (c-di-GMP) bind to the inhibitory-motif RxxD on the surface. The enzyme thus catalyzes the cyclisation of two guanosine triphosphate (GTP) molecules to one c-di-GMP molecule. 160 -307228 pfam00992 Troponin Troponin. Troponin (Tn) contains three subunits, Ca2+ binding (TnC), inhibitory (TnI), and tropomyosin binding (TnT). this Pfam contains members of the TnT subunit. Troponin is a complex of three proteins, Ca2+ binding (TnC), inhibitory (TnI), and tropomyosin binding (TnT). The troponin complex regulates Ca++ induced muscle contraction. This family includes troponin T and troponin I. Troponin I binds to actin and troponin T binds to tropomyosin. 134 -334338 pfam00993 MHC_II_alpha Class II histocompatibility antigen, alpha domain. 79 -307230 pfam00994 MoCF_biosynth Probable molybdopterin binding domain. This domain is found a variety of proteins involved in biosynthesis of molybdopterin cofactor. The domain is presumed to bind molybdopterin. The structure of this domain is known, and it forms an alpha/beta structure. In the known structure of Gephyrin this domain mediates trimerisation. 143 -334339 pfam00995 Sec1 Sec1 family. 528 -307232 pfam00996 GDI GDP dissociation inhibitor. 436 -307233 pfam00997 Casein_kappa Kappa casein. Kappa-casein is a mammalian milk protein involved in a number of important physiological processes. In the gut, the ingested protein is split into an insoluble peptide (para kappa-casein) and a soluble hydrophilic glycopeptide (caseinomacropeptide). Caseinomacropeptide is responsible for increased efficiency of digestion, prevention of neonate hypersensitivity to ingested proteins, and inhibition of gastric pathogens. 160 -334340 pfam00998 RdRP_3 Viral RNA dependent RNA polymerase. This family includes viral RNA dependent RNA polymerase enzymes from hepatitis C virus and various plant viruses. 486 -279355 pfam00999 Na_H_Exchanger Sodium/hydrogen exchanger family. Na/H antiporters are key transporters in maintaining the pH of actively metabolising cells. The molecular mechanisms of antiport are unclear. These antiporters contain 10-12 transmembrane regions (M) at the amino-terminus and a large cytoplasmic region at the carboxyl terminus. The transmembrane regions M3-M12 share identity with other members of the family. The M6 and M7 regions are highly conserved. Thus, this is thought to be the region that is involved in the transport of sodium and hydrogen ions. The cytoplasmic region has little similarity throughout the family. 377 -307235 pfam01000 RNA_pol_A_bac RNA polymerase Rpb3/RpoA insert domain. Members of this family include: alpha subunit from eubacteria alpha subunits from chloroplasts Rpb3 subunits from eukaryotes RpoD subunits from archaeal 117 -110032 pfam01001 HCV_NS4b Hepatitis C virus non-structural protein NS4b. No precise function has been assigned to NS4b. However, it is known that NS4b interacts with NS4a and NS3 to form a large replicase complex to direct the viral RNA replication. 192 -279357 pfam01002 Flavi_NS2B Flavivirus non-structural protein NS2B. Flaviviruses encode a single polyprotein. This is cleaved into three structural and seven non-structural proteins. All, but two, are cleaved by the NS2B-NS3 protease complex. 127 -307236 pfam01003 Flavi_capsid Flavivirus capsid protein C. Flaviviruses are small enveloped viruses with virions comprised of 3 proteins called C, M and E. Multiple copies of the C protein form the nucleocapsid, which contains the ssRNA molecule. 117 -307237 pfam01004 Flavi_M Flavivirus envelope glycoprotein M. Flaviviruses are small enveloped viruses with virions comprised of 3 proteins called C, M and E. The envelope glycoprotein M is made as a precursor, called prM. The precursor portion of the protein is the signal peptide for the proteins entry into the membrane. prM is cleaved to form M in a late-stage cleavage event. Associated with this cleavage is a change in the infectivity and fusion activity of the virus. 74 -279359 pfam01005 Flavi_NS2A Flavivirus non-structural protein NS2A. NS2A is a hydrophobic protein about 25 kDa is size. NS2A is cleaved from NS1 by a membrane bound host protease. NS2A has been found to associate with the dsRNA within the vesicle packages. It has also been found that NS2A associates with the known replicase components and so NS2A has been postulated to be part of this replicase complex. 215 -307238 pfam01006 HCV_NS4a Hepatitis C virus non-structural protein NS4a. NS4a forms an integral part of the NS3 serine protease, as it is required in a number of cases as a cofactor of cleavage. It has also been reported that NS4a interacts with NS4b and NS3 to form a multi-subunit replicase complex. 55 -307239 pfam01007 IRK Inward rectifier potassium channel. 329 -334341 pfam01008 IF-2B Initiation factor 2 subunit family. This family includes initiation factor 2B alpha, beta and delta subunits from eukaryotes, initiation factor 2B subunits 1 and 2 from archaebacteria and some proteins of unknown function from prokaryotes. Initiation factor 2 binds to Met-tRNA, GTP and the small ribosomal subunit. Members of this family have also been characterized as 5-methylthioribose- 1-phosphate isomerases, an enzyme of the methionine salvage pathway. The crystal structure of Ypr118w, a non-essential, low-copy number gene product from Saccharomyces cerevisiae, reveals a dimeric protein with two domains and a putative active site cleft. 276 -279363 pfam01010 Proton_antipo_C NADH-dehyrogenase subunit F, TMs, (complex I) C-terminus. This sub-family represents a carboxyl terminal extension of pfam00361. It includes subunit 5 from chloroplasts, and bacterial subunit L. This sub-family is part of complex I which catalyzes the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane. This family is largely a few TM regions of the F subunit of NADH-Ubiquinone oxidoreductase from plants. The TMs form part of the anti-porter subunit. 244 -307240 pfam01011 PQQ PQQ enzyme repeat. The family represent a single repeat of a beta propeller. This propeller has been found in several enzymes which utilize pyrrolo-quinoline quinone as a prosthetic group. 38 -307241 pfam01012 ETF Electron transfer flavoprotein domain. This family includes the homologous domain shared between the alpha and beta subunits of the electron transfer flavoprotein. 180 -334342 pfam01014 Uricase Uricase. 125 -334343 pfam01015 Ribosomal_S3Ae Ribosomal S3Ae family. 189 -334344 pfam01016 Ribosomal_L27 Ribosomal L27 protein. 79 -334345 pfam01017 STAT_alpha STAT protein, all-alpha domain. STAT proteins (Signal Transducers and Activators of Transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. STAT proteins also include an SH2 domain pfam00017. 179 -334346 pfam01018 GTP1_OBG GTP1/OBG. The N-terminal domain of the GTPase OBG has the OBG fold, which is formed by three glycine-rich regions inserted into a small 8-stranded beta-sandwich these regions form six left-handed collagen-like helices packed and H-bonded together. 155 -307247 pfam01019 G_glu_transpept Gamma-glutamyltranspeptidase. 500 -334347 pfam01020 Ribosomal_L40e Ribosomal L40e family. Bovine L40 has been identified as a secondary RNA binding protein. L40 is fused to a ubiquitin protein. 50 -279373 pfam01021 TYA TYA transposon protein. Ty are yeast transposons. A 5.7kb transcript codes for p3 a fusion protein of TYA and TYB. The TYA protein is analogous to the gag protein of retroviruses. TYA a is cleaved to form 46kd protein which can form mature virion like particles. 98 -279374 pfam01022 HTH_5 Bacterial regulatory protein, arsR family. Members of this family contains a DNA binding 'helix-turn-helix' motif. This family includes other proteins which are not included in the Prosite definition. 47 -307249 pfam01023 S_100 S-100/ICaBP type calcium binding domain. The S-100 domain is a subfamily of the EF-hand calcium binding proteins. 43 -334348 pfam01024 Colicin Colicin pore forming domain. 183 -334349 pfam01025 GrpE GrpE. 165 -307252 pfam01026 TatD_DNase TatD related DNase. This family of proteins are related to a large superfamily of metalloenzymes. TatD, a member of this family has been shown experimentally to be a DNase enzyme. 253 -334350 pfam01027 Bax1-I Inhibitor of apoptosis-promoting Bax1. Programmed cell-death involves a set of Bcl-2 family proteins, some of which inhibit apoptosis (Bcl-2 and Bcl-XL) and some of which promote it (Bax and Bak). Human Bax inhibitor, BI-1, is an evolutionarily conserved integral membrane protein containing multiple membrane-spanning segments predominantly localized to intracellular membranes. It has 6-7 membrane-spanning domains. The C termini of the mammalian BI-1 proteins are comprised of basic amino acids resembling some nuclear targeting sequences, but otherwise the predicted proteins lack motifs that suggest a function. As plant BI-1 appears to localize predominantly to the ER, we hypothesized that plant BI-1 could also regulate cell death triggered by ER stress. BI-1 appears to exert its effect through an interaction with calmodulin. The budding yeast member of this family has been found unexpectedly to encode a BH3 domain-containing protein (Ybh3p) that regulates the mitochondrial pathway of apoptosis in a phylogenetically conserved manner. Examination of the crystal structure of a bacterial member of this family shows that these proteins mediate a calcium leak across the membrane that is pH-dependent. Calcium homoeostasis balances passive calcium leak with active calcium uptake. The structure exists in a pore-closed and pore-open conformation, at pHs of 8 and 6 respectively, and the pore can be opened by intracrystalline transition; together these findings suggest that pH controls the conformational transition. 207 -334351 pfam01028 Topoisom_I Eukaryotic DNA topoisomerase I, catalytic core. Topoisomerase I promotes the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. 228 -334352 pfam01029 NusB NusB family. The NusB protein is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. 125 -334353 pfam01030 Recep_L_domain Receptor L domain. The L domains from these receptors make up the bilobal ligand binding site. Each L domain consists of a single-stranded right hand beta-helix. This Pfam entry is missing the first 50 amino acid residues of the domain. 110 -334354 pfam01031 Dynamin_M Dynamin central region. This region lies between the GTPase domain, see pfam00350, and the pleckstrin homology (PH) domain, see pfam00169. 286 -334355 pfam01032 FecCD FecCD transport family. This is a sub-family of bacterial binding protein-dependent transport systems family. This Pfam entry contains the inner components of this multicomponent transport system. 311 -307259 pfam01033 Somatomedin_B Somatomedin B domain. 40 -307260 pfam01034 Syndecan Syndecan domain. Syndecans are transmembrane heparin sulfate proteoglycans which are implicated in the binding of extracellular matrix components and growth factors. 62 -334356 pfam01035 DNA_binding_1 6-O-methylguanine DNA methyltransferase, DNA binding domain. This domain is a 3 helical bundle. 81 -334357 pfam01036 Bac_rhodopsin Bacteriorhodopsin-like protein. The bacterial opsins are retinal-binding proteins that provide light- dependent ion transport and sensory functions to a family of halophilic bacteria. They are integral membrane proteins believed to contain seven transmembrane (TM) domains, the last of which contains the attachment point for retinal (a conserved lysine). This family also includes distantly related proteins that do not contain the retinal binding lysine and so cannot function as opsins. 222 -307263 pfam01037 AsnC_trans_reg Lrp/AsnC ligand binding domain. The l-leucine-responsive regulatory protein (Lrp/AsnC) family is a family of similar bacterial transcription regulatory proteins. The family is named after two E. coli proteins involved in regulating amino acid metabolism. This entry corresponds to the usually C-terminal regulatory ligand binding domain. Structurally this domain has a dimeric alpha/beta barrel fold. 72 -307264 pfam01039 Carboxyl_trans Carboxyl transferase domain. All of the members in this family are biotin dependent carboxylases. The carboxyl transferase domain carries out the following reaction; transcarboxylation from biotin to an acceptor molecule. There are two recognized types of carboxyl transferase. One of them uses acyl-CoA and the other uses 2-oxoacid as the acceptor molecule of carbon dioxide. All of the members in this family utilize acyl-CoA as the acceptor molecule. 492 -334358 pfam01040 UbiA UbiA prenyltransferase family. 248 -307266 pfam01041 DegT_DnrJ_EryC1 DegT/DnrJ/EryC1/StrS aminotransferase family. The members of this family are probably all pyridoxal-phosphate-dependent aminotransferase enzymes with a variety of molecular functions. The family includes StsA, StsC and StsS. The aminotransferase activity was demonstrated for purified StsC protein as the L-glutamine:scyllo-inosose aminotransferase EC:2.6.1.50, which catalyzes the first amino transfer in the biosynthesis of the streptidine subunit of streptomycin. 357 -279393 pfam01042 Ribonuc_L-PSP Endoribonuclease L-PSP. Endoribonuclease active on single-stranded mRNA. Inhibits protein synthesis by cleavage of mRNA. Previously thought to inhibit protein synthesis initiation. This protein may also be involved in the regulation of purine biosynthesis. YjgF (renamed RidA) family members are enamine/imine deaminases. They hydrolyze reactive intermediates released by PLP-dependent enzymes, including threonine dehydratase. YjgF also prevents inhibition of transaminase B (IlvE) in Salmonella. 118 -334359 pfam01043 SecA_PP_bind SecA preprotein cross-linking domain. The SecA ATPase is involved in the insertion and retraction of preproteins through the plasma membrane. This domain has been found to cross-link to preproteins, thought to indicate a role in preprotein binding. The pre-protein cross-linking domain is comprised of two sub domains that are inserted within the ATPase domain. 105 -279395 pfam01044 Vinculin Vinculin family. 791 -334360 pfam01047 MarR MarR family. The Mar proteins are involved in the multiple antibiotic resistance, a non-specific resistance system. The expression of the mar operon is controlled by a repressor, MarR. A large number of compounds induce transcription of the mar operon. This is thought to be due to the compound binding to MarR, and the resulting complex stops MarR binding to the DNA. With the MarR repression lost, transcription of the operon proceeds. The structure of MarR is known and shows MarR as a dimer with each subunit containing a winged-helix DNA binding motif. 59 -334361 pfam01048 PNP_UDP_1 Phosphorylase superfamily. Members of this family include: purine nucleoside phosphorylase (PNP) Uridine phosphorylase (UdRPase) 5'-methylthioadenosine phosphorylase (MTA phosphorylase) 231 -307269 pfam01049 Cadherin_C Cadherin cytoplasmic region. Cadherins are vital in cell-cell adhesion during tissue differentiation. Cadherins are linked to the cytoskeleton by catenins. Catenins bind to the cytoplasmic tail of the cadherin. Cadherins cluster to form foci of homophilic binding units. A key determinant to the strength of the binding that it is mediated by cadherins is the juxtamembrane region of the cadherin. This region induces clustering and also binds to the protein p120ctn. 150 -307270 pfam01050 MannoseP_isomer Mannose-6-phosphate isomerase. All of the members of this Pfam entry belong to family 2 of the mannose-6-phosphate isomerases. The type II phosphomannose isomerases are bifunctional enzymes. This Pfam entry covers the isomerase domain. The guanosine diphospho-D-mannose pyrophosphorylase domain is in another Pfam entry, see pfam00483. 151 -334362 pfam01051 Rep_3 Initiator Replication protein. This protein is an initiator of plasmid replication. RepB possesses nicking-closing (topoisomerase I) like activity. It is also able to perform a strand transfer reaction on ssDNA that contains its target. This family also includes RepA which is an E.coli protein involved in plasmid replication. The RepA protein binds to DNA repeats that flank the repA gene. 220 -334363 pfam01052 FliMN_C Type III flagellar switch regulator (C-ring) FliN C-term. This family includes the C-terminal region of flagellar motor switch proteins FliN and FliM. It is associated with family FliM, pfam02154 and family FliN_N pfam16973. 73 -307273 pfam01053 Cys_Met_Meta_PP Cys/Met metabolism PLP-dependent enzyme. This family includes enzymes involved in cysteine and methionine metabolism. The following are members: Cystathionine gamma-lyase, Cystathionine gamma-synthase, Cystathionine beta-lyase, Methionine gamma-lyase, OAH/OAS sulfhydrylase, O-succinylhomoserine sulfhydrylase All of these members participate is slightly different reactions. All these enzymes use PLP (pyridoxal-5'-phosphate) as a cofactor. 377 -279403 pfam01054 MMTV_SAg Mouse mammary tumor virus superantigen. The mouse mammary tumor virus (MMTV) is a milk-transmitted type B retrovirus. The superantigen (SAg) is encoded by the long terminal repeat. The SAgs are also called PR73. 312 -334364 pfam01055 Glyco_hydro_31 Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases. 399 -307275 pfam01056 Myc_N Myc amino-terminal region. The myc family belongs to the basic helix-loop-helix leucine zipper class of transcription factors, see pfam00010. Myc forms a heterodimer with Max, and this complex regulates cell growth through direct activation of genes involved in cell replication. Mutations in the C-terminal 20 residues of this domain cause unique changes in the induction of apoptosis, transformation, and G2 arrest. 329 -307276 pfam01057 Parvo_NS1 Parvovirus non-structural protein NS1. This family also contains the NS2 protein. Parvoviruses encode two non-structural proteins, NS1 and NS2. The mRNA for NS2 contains the coding sequence for the first 87 amino acids of NS1, then by an alternative splicing mechanism mRNA from a different reading frame, encoding the last 78 amino acids, makes up the full length of the NS2 mRNA. NS1, is the major non-structural protein. It is essential for DNA replication. It is an 83-kDa nuclear phosphoprotein. It has DNA helicase and ATPase activity. 271 -334365 pfam01058 Oxidored_q6 NADH ubiquinone oxidoreductase, 20 Kd subunit. 126 -279408 pfam01059 Oxidored_q5_N NADH-ubiquinone oxidoreductase chain 4, amino terminus. 110 -307278 pfam01060 TTR-52 Transthyretin-like family. TTR-52 was called family 2 in, and has weak similarity to transthyretin (formerly called pre-albumin) which transports thyroid hormones. The specific function of this protein is as a bridging molecule in apoptosis cross-linking dying cells to phagocytes. TTR-52 bridges by cross-linking surface-exposed phosphatidylserine (PtdSer) on apoptotic cells to the CED-1 receptor, a transmembrane receptor, on phagocytes. TTR-52 has an open beta-barrel-like structure. 79 -334366 pfam01061 ABC2_membrane ABC-2 type transporter. 204 -334367 pfam01062 Bestrophin Bestrophin, RFP-TM, chloride channel. Bestrophin is a 68-kDa basolateral plasma membrane protein expressed in retinal pigment epithelial cells (RPE). It is encoded by the VMD2 gene, which is mutated in Best macular dystrophy, a disease characterized by a depressed light peak in the electrooculogram. VMD2 encodes a 585-amino acid protein with an approximate mass of 68 kDa which has been designated bestrophin. Bestrophin shares homology with the Caenorhabditis elegans RFP gene family, named for the presence of a conserved arginine (R), phenylalanine (F), proline (P), amino acid sequence motif. Bestrophin is a plasma membrane protein, localized to the basolateral surface of RPE cells consistent with a role for bestrophin in the generation or regulation of the EOG light peak. Bestrophin and other RFP family members represent a new class of chloride channels, indicating a direct role for bestrophin in generating the light peak. The VMD2 gene underlying Best disease was shown to represent the first human member of the RFP-TM protein family. More than 97% of the disease-causing mutations are located in the N-terminal RFP-TM domain implying important functional properties. The bestrophins are four-pass transmembrane chloride-channel proteins, and the RFP-TM or bestrophin domain extends from the N-terminus through approximately 350 amino acids and contains all of the TM domains as well as nearly all reported disease causing mutations. Interestingly, the RFP motif is not conserved evolutionarily back beyond Metazoa, neither is it in plant members. 282 -334368 pfam01063 Aminotran_4 Amino-transferase class IV. The D-amino acid transferases (D-AAT) are required by bacteria to catalyze the synthesis of D-glutamic acid and D-alanine, which are essential constituents of bacterial cell wall and are the building block for other D-amino acids. Despite the difference in the structure of the substrates, D-AATs and L-ATTs have strong similarity. 222 -307282 pfam01064 Activin_recp Activin types I and II receptor domain. This Pfam entry consists of both TGF-beta receptor types. This is an alignment of the hydrophilic cysteine-rich ligand-binding domains, Both receptor types, (type I and II) posses a 9 amino acid cysteine box, with the the consensus CCX{4-5}CN. The type I receptors also possess 7 extracellular residues preceding the cysteine box. 79 -334369 pfam01065 Adeno_hexon Hexon, adenovirus major coat protein, N-terminal domain. Hexon is the major coat protein from adenovirus type 2. Hexon forms a homo-trimer. The 240 copies of the hexon trimer are organized so that 12 lie on each of the 20 facets. The central 9 hexons in a facet are cemented together by 12 copies of polypeptide IX. The penton complex, formed by the peripentonal hexons and base hexon (holding in place a fibre), lie at each of the 12 vertices. The N and C-terminal domains adopt the same PNGase F-like fold although they are significantly different in length. 494 -334370 pfam01066 CDP-OH_P_transf CDP-alcohol phosphatidyltransferase. All of these members have the ability to catalyze the displacement of CMP from a CDP-alcohol by a second alcohol with formation of a phosphodiester bond and concomitant breaking of a phosphoride anhydride bond. 54 -334371 pfam01067 Calpain_III Calpain large subunit, domain III. The function of the domain III and I are currently unknown. Domain II is a cysteine protease and domain IV is a calcium binding domain. Calpains are believed to participate in intracellular signaling pathways mediated by calcium ions. 142 -279417 pfam01068 DNA_ligase_A_M ATP dependent DNA ligase domain. This domain belongs to a more diverse superfamily, including pfam01331 and pfam01653. 203 -334372 pfam01070 FMN_dh FMN-dependent dehydrogenase. 348 -307287 pfam01071 GARS_A Phosphoribosylglycinamide synthetase, ATP-grasp (A) domain. Phosphoribosylglycinamide synthetase catalyzes the second step in the de novo biosynthesis of purine. The reaction catalyzed by Phosphoribosylglycinamide synthetase is the ATP- dependent addition of 5-phosphoribosylamine to glycine to form 5'phosphoribosylglycinamide. This domain is related to the ATP-grasp domain of biotin carboxylase/carbamoyl phosphate synthetase (see pfam02786). 194 -279420 pfam01073 3Beta_HSD 3-beta hydroxysteroid dehydrogenase/isomerase family. The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerisation of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones. 280 -334373 pfam01074 Glyco_hydro_38 Glycosyl hydrolases family 38 N-terminal domain. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. 266 -307289 pfam01075 Glyco_transf_9 Glycosyltransferase family 9 (heptosyltransferase). Members of this family belong to glycosyltransferase family 9. Lipopolysaccharide is a major component of the outer leaflet of the outer membrane in Gram-negative bacteria. It is composed of three domains; lipid A, Core oligosaccharide and the O-antigen. All of these enzymes transfer heptose to the lipopolysaccharide core. 247 -307290 pfam01076 Mob_Pre Plasmid recombination enzyme. With some plasmids, recombination can occur in a site specific manner that is independent of RecA. In such cases, the recombination event requires another protein called Pre. Pre is a plasmid recombination enzyme. This protein is also known as Mob (conjugative mobilisation). 195 -334374 pfam01077 NIR_SIR Nitrite and sulphite reductase 4Fe-4S domain. Sulphite and nitrite reductases are vital in the biosynthetic assimilation of sulphur and nitrogen, respectfully. They are also both important for the dissimilation of oxidized anions for energy transduction. 153 -307292 pfam01078 Mg_chelatase Magnesium chelatase, subunit ChlI. Magnesium-chelatase is a three-component enzyme that catalyzes the insertion of Mg2+ into protoporphyrin IX. This is the first unique step in the synthesis of (bacterio)chlorophyll. Due to this, it is thought that Mg-chelatase has an important role in channelling inter- mediates into the (bacterio)chlorophyll branch in response to conditions suitable for photosynthetic growth. ChlI and BchD have molecular weight between 38-42 kDa. 207 -334375 pfam01079 Hint Hint module. This is an alignment of the Hint module in the Hedgehog proteins. It does not include any Inteins which also possess the Hint module. 211 -334376 pfam01080 Presenilin Presenilin. Mutations in presenilin-1 are a major cause of early onset Alzheimer's disease. It has been found that presenilin-1 binds to beta-catenin in-vivo. This family also contains SPE proteins from C.elegans. 405 -334377 pfam01081 Aldolase KDPG and KHG aldolase. This family includes the following members: 4-hydroxy-2-oxoglutarate aldolase (KHG-aldolase) Phospho-2-dehydro-3-deoxygluconate aldolase (KDPG-aldolase) 196 -334378 pfam01082 Cu2_monooxygen Copper type II ascorbate-dependent monooxygenase, N-terminal domain. The N and C-terminal domains of members of this family adopt the same PNGase F-like fold. 129 -307296 pfam01083 Cutinase Cutinase. 173 -334379 pfam01084 Ribosomal_S18 Ribosomal protein S18. 52 -307298 pfam01085 HH_signal Hedgehog amino-terminal signalling domain. For the carboxyl Hint module, see pfam01079. Hedgehog is a family of secreted signal molecules required for embryonic cell differentiation. 146 -334380 pfam01086 Clathrin_lg_ch Clathrin light chain. 232 -307300 pfam01087 GalP_UDP_transf Galactose-1-phosphate uridyl transferase, N-terminal domain. SCOP reports fold duplication with C-terminal domain. Both involved in Zn and Fe binding. 183 -334381 pfam01088 Peptidase_C12 Ubiquitin carboxyl-terminal hydrolase, family 1. 209 -307302 pfam01090 Ribosomal_S19e Ribosomal protein S19e. 137 -307303 pfam01091 PTN_MK_C PTN/MK heparin-binding protein family, C-terminal domain. 58 -334382 pfam01092 Ribosomal_S6e Ribosomal protein S6e. 124 -307305 pfam01093 Clusterin Clusterin. 414 -334383 pfam01094 ANF_receptor Receptor family ligand binding region. This family includes extracellular ligand binding domains of a wide range of receptors. This family also includes the bacterial amino acid binding proteins of known structure. 347 -307307 pfam01095 Pectinesterase Pectinesterase. 298 -334384 pfam01096 TFIIS_C Transcription factor S-II (TFIIS). 39 -279443 pfam01097 Defensin_2 Arthropod defensin. 34 -279444 pfam01098 FTSW_RODA_SPOVE Cell cycle protein. This entry includes the following members; FtsW, RodA, SpoVE 359 -307309 pfam01099 Uteroglobin Uteroglobin family. Uteroglobin is a homodimer of two identical 70 amino acid polypeptides linked by two disulphide bridges. The precise role of uteroglobin has still to be elucidated. 67 -307310 pfam01101 HMG14_17 HMG14 and HMG17. 90 -307311 pfam01102 Glycophorin_A Glycophorin A. 112 -307312 pfam01103 Bac_surface_Ag Surface antigen. This entry includes the following surface antigens; D15 antigen from H.influenzae, OMA87 from P.multocida, OMP85 from N.meningitidis and N.gonorrhoeae. The family also includes a number of eukaryotic proteins that are members of the UPF0140 family. There also appears to be a relationship to pfam03865 (personal obs: C Yeats). In eukaryotes, it appears that these proteins are not surface antigens; S. cerevisiae YNL026W (SAM50) is an essential component of the Sorting and Assembly Machinery (SAM) of the mitochondrial outer membrane. The protein was localized to the mitochondria. 323 -279449 pfam01104 Bunya_NS-S Bunyavirus non-structural protein NS-s. The NS-s protein is encoded by the S RNA. This segment also encodes for the N protein. These two proteins are encoded by overlapping reading frames. 91 -334385 pfam01105 EMP24_GP25L emp24/gp25L/p24 family/GOLD. Members of this family are implicated in bringing cargo forward from the ER and binding to coat proteins by their cytoplasmic domains. This domain corresponds closely to the beta-strand rich GOLD domain described in. The GOLD domain is always found combined with lipid- or membrane-association domains. 181 -334386 pfam01106 NifU NifU-like domain. This is an alignment of the carboxy-terminal domain. This is the only common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown. 65 -279452 pfam01107 MP Viral movement protein (MP). This family includes a variety of movement proteins (MP)s. The MP is necessary for the initial cell-to-cell movement during the early stages of a viral infection. This movement is active, and it is known that the MP interacts with the plasmodesmata and possesses the ability to bind to RNA to achieve its role. This family also includes consists of virus movement proteins from the caulimovirus family. It has been suggested in cauliflower mosaic virus that these proteins mediated viral movement by modifying plasmodesmata and forming tubules in the channel that can accommodate the virus particles and references therein. The family contains a conserved DXR motif that is probably functionally important. 191 -307315 pfam01108 Tissue_fac Tissue factor. This family is found in metazoa, and is very similar to the fibronectin type III domain. The family is found in cytokine receptors, interleukin and interferon receptors and coagulation factor III proteins. It occurs multiple times, as does fn3, family pfam00041. 91 -144630 pfam01109 GM_CSF Granulocyte-macrophage colony-stimulating factor. 122 -307316 pfam01110 CNTF Ciliary neurotrophic factor. 187 -334387 pfam01111 CKS Cyclin-dependent kinase regulatory subunit. 66 -334388 pfam01112 Asparaginase_2 Asparaginase. 307 -334389 pfam01113 DapB_N Dihydrodipicolinate reductase, N-terminus. Dihydrodipicolinate reductase (DapB) reduces the alpha,beta-unsaturated cyclic imine, dihydro-dipicolinate. This reaction is the second committed step in the biosynthesis of L-lysine and its precursor meso-diaminopimelate, which are critical for both protein and cell wall biosynthesis. The N-terminal domain of DapB binds the dinucleotide NADPH. 123 -279458 pfam01114 Colipase Colipase, N-terminal domain. SCOP reports duplication of common fold with Colipase C-terminal domain. 40 -307320 pfam01115 F_actin_cap_B F-actin capping protein, beta subunit. 229 -334390 pfam01116 F_bP_aldolase Fructose-bisphosphate aldolase class-II. 275 -307322 pfam01117 Aerolysin Aerolysin toxin. This family represents the pore forming lobe of aerolysin. 359 -307323 pfam01118 Semialdhyde_dh Semialdehyde dehydrogenase, NAD binding domain. This Pfam entry contains the following members: N-acetyl-glutamine semialdehyde dehydrogenase (AgrC) Aspartate-semialdehyde dehydrogenase 121 -307324 pfam01119 DNA_mis_repair DNA mismatch repair protein, C-terminal domain. This family represents the C-terminal domain of the mutL/hexB/PMS1 family. This domain has a ribosomal S5 domain 2-like fold. 117 -334391 pfam01120 Alpha_L_fucos Alpha-L-fucosidase. 338 -279465 pfam01121 CoaE Dephospho-CoA kinase. This family catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form Coenzyme A EC:2.7.1.24. This enzyme uses ATP in its reaction. 179 -334392 pfam01122 Cobalamin_bind Eukaryotic cobalamin-binding protein. 309 -279467 pfam01123 Stap_Strp_toxin Staphylococcal/Streptococcal toxin, OB-fold domain. 84 -334393 pfam01124 MAPEG MAPEG family. This family is has been called MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism). It includes proteins such as Prostaglandin E synthase. This enzyme catalyzes the synthesis of PGE2 from PGH2 (produced by cyclooxygenase from arachidonic acid). Because of structural similarities in the active sites of FLAP, LTC4 synthase and PGE synthase, substrates for each enzyme can compete with one another and modulate synthetic activity. 128 -334394 pfam01125 G10 G10 protein. 146 -307329 pfam01126 Heme_oxygenase Heme oxygenase. 204 -307330 pfam01127 Sdh_cyt Succinate dehydrogenase/Fumarate reductase transmembrane subunit. This family includes a transmembrane protein from both the Succinate dehydrogenase and Fumarate reductase complexes. 122 -334395 pfam01128 IspD 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase. Members of this family are enzymes which catalyze the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol from cytidine triphosphate and 2-C-methyl-D-erythritol 4-phosphate (MEP). 221 -279473 pfam01129 ART NAD:arginine ADP-ribosyltransferase. 222 -334396 pfam01130 CD36 CD36 family. The CD36 family is thought to be a novel class of scavenger receptors. There is also evidence suggesting a possible role in signal transduction. CD36 is involved in cell adhesion. 454 -334397 pfam01131 Topoisom_bac DNA topoisomerase. This subfamily of topoisomerase is divided on the basis that these enzymes preferentially relax negatively supercoiled DNA, from a 5' phospho- tyrosine linkage in the enzyme-DNA covalent intermediate and has high affinity for single stranded DNA. 409 -334398 pfam01132 EFP Elongation factor P (EF-P) OB domain. 53 -307334 pfam01133 ER Enhancer of rudimentary. Enhancer of rudimentary is a protein of unknown function that is highly conserved in plants and animals. This protein is found to be an enhancer of the rudimentary gene. 97 -250388 pfam01134 GIDA Glucose inhibited division protein A. 391 -250389 pfam01135 PCMT Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PCMT). 205 -307335 pfam01136 Peptidase_U32 Peptidase family U32. 233 -334399 pfam01137 RTC RNA 3'-terminal phosphate cyclase. RNA cyclases are a family of RNA-modifying enzymes that are conserved in all cellular organisms. They catalyze the ATP-dependent conversion of the 3'-phosphate to the 2',3'-cyclic phosphodiester at the end of RNA, in a reaction involving formation of the covalent AMP-cyclase intermediate. The structure of RTC demonstrates that RTCs are comprised two domain. The larger domain contains an insert domain of approximately 100 amino acids. 325 -334400 pfam01138 RNase_PH 3' exoribonuclease family, domain 1. This family includes 3'-5' exoribonucleases. Ribonuclease PH contains a single copy of this domain, and removes nucleotide residues following the -CCA terminus of tRNA. Polyribonucleotide nucleotidyltransferase (PNPase) contains two tandem copies of the domain. PNPase is involved in mRNA degradation in a 3'-5' direction. The exosome is a 3'-5' exoribonuclease complex that is required for 3' processing of the 5.8S rRNA. Three of its five protein components contain a copy of this domain. A hypothetical protein from S. pombe appears to belong to an uncharacterized subfamily. This subfamily is found in both eukaryotes and archaebacteria. 125 -334401 pfam01139 RtcB tRNA-splicing ligase RtcB. This family of RNA ligases (EC:6.5.1.3) join 2',3'-cyclic phosphate and 5'-OH ends. They catalyze the splicing of tRNA and may also participate in tRNA repair and recovery from stress-induced RNA damage. 416 -307339 pfam01140 Gag_MA Matrix protein (MA), p15. The matrix protein, p15, is encoded by the gag gene. MA is involved in pathogenicity. 129 -279483 pfam01141 Gag_p12 Gag polyprotein, inner coat protein p12. The retroviral p12 is a virion structural protein. p12 is proline rich. The function carried out by p12 in assembly and replication is unknown. p12 is associated with pathogenicity of the virus. 85 -307340 pfam01142 TruD tRNA pseudouridine synthase D (TruD). TruD is responsible for synthesis of pseudouridine from uracil-13 in transfer RNAs. The structure of TruD reveals an overall V-shaped molecule which contains an RNA-binding cleft. 408 -334402 pfam01144 CoA_trans Coenzyme A transferase. 216 -307341 pfam01145 Band_7 SPFH domain / Band 7 family. This family has been called SPFH, Band 7 or PHB domain. Recent phylogenetic analysis has shown this domain to be a slipin or Stomatin-like integral membrane domain conserved from protozoa to mammals. 177 -307342 pfam01146 Caveolin Caveolin. All three known Caveolin forms have the FEDVIAEP caveolin 'signature motif' within their hydrophilic N-terminal domain. Caveolin 2 (Cav-2) is co-localized and co-expressed with Cav-1/VIP21, forms heterodimers with it and needs Cav-1 for proper membrane localization. Cav-3 has greater protein sequence similarity to Cav-1 than to Cav-2. Cellular processes caveolins are involved in include vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression. 131 -307343 pfam01147 Crust_neurohorm Crustacean CHH/MIH/GIH neurohormone family. 67 -279489 pfam01148 CTP_transf_1 Cytidylyltransferase family. The members of this family are integral membrane protein cytidylyltransferases. The family includes phosphatidate cytidylyltransferase EC:2.7.7.41 as well as Sec59 from yeast. Sec59 is a dolichol kinase EC:2.7.1.108. 264 -334403 pfam01149 Fapy_DNA_glyco Formamidopyrimidine-DNA glycosylase N-terminal domain. Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the N-terminal domain contains eight beta-strands, forming a beta-sandwich with two alpha-helices parallel to its edges. 116 -334404 pfam01150 GDA1_CD39 GDA1/CD39 (nucleoside phosphatase) family. 416 -307345 pfam01151 ELO GNS1/SUR4 family. Members of this family are involved in long chain fatty acid elongation systems that produce the 26-carbon precursors for ceramide and sphingolipid synthesis. Predicted to be integral membrane proteins, in eukaryotes they are probably located on the endoplasmic reticulum. Yeast ELO3 affects plasma membrane H+-ATPase activity, and may act on a glucose-signaling pathway that controls the expression of several genes that are transcriptionally regulated by glucose such as PMA1. 244 -307346 pfam01152 Bac_globin Bacterial-like globin. This family of heme binding proteins are found mainly in bacteria. However they can also be found in some protozoa and plants as well. 121 -307347 pfam01153 Glypican Glypican. 554 -307348 pfam01154 HMG_CoA_synt_N Hydroxymethylglutaryl-coenzyme A synthase N terminal. 173 -334405 pfam01155 HypA Hydrogenase/urease nickel incorporation, metallochaperone, hypA. HypA is a metallochaperone that binds nickel to bring it safely to its target. The targets for Hypa are the nickel-containing enzymes [Ni,Fe]-hydrogenase and urease. The nickel coordinates with four nitrogens within the protein. The four conserved cysteines towards the C-terminus bind one zinc moiety probably to stabilize the protein fold. 111 -334406 pfam01156 IU_nuc_hydro Inosine-uridine preferring nucleoside hydrolase. 254 -307351 pfam01157 Ribosomal_L21e Ribosomal protein L21e. 93 -334407 pfam01158 Ribosomal_L36e Ribosomal protein L36e. 96 -307353 pfam01159 Ribosomal_L6e Ribosomal protein L6e. 107 -307354 pfam01160 Opiods_neuropep Vertebrate endogenous opioids neuropeptide. 47 -334408 pfam01161 PBP Phosphatidylethanolamine-binding protein. 129 -307356 pfam01163 RIO1 RIO1 family. This is a family of atypical serine kinases which are found in archaea, bacteria and eukaryotes. Activity of Rio1 is vital in Saccharomyces cerevisiae for the processing of ribosomal RNA, as well as for proper cell cycle progression and chromosome maintenance. The structure of RIO1 has been determined. 185 -334409 pfam01165 Ribosomal_S21 Ribosomal protein S21. 51 -334410 pfam01166 TSC22 TSC-22/dip/bun family. 57 -334411 pfam01167 Tub Tub family. 244 -334412 pfam01168 Ala_racemase_N Alanine racemase, N-terminal domain. 217 -334413 pfam01169 UPF0016 Uncharacterized protein family UPF0016. This family contains integral membrane proteins of unknown function. Most members of the family contain two copies of a region that contains an EXGD motif. Each of these regions contains three predicted transmembrane regions. It has been suggested that these proteins are calcium transporters. 75 -279509 pfam01170 UPF0020 Putative RNA methylase family UPF0020. This domain is probably a methylase. It is associated with the THUMP domain that also occurs with RNA modification domains. 184 -279510 pfam01171 ATP_bind_3 PP-loop family. This family of proteins belongs to the PP-loop superfamily. 182 -307362 pfam01172 SBDS Shwachman-Bodian-Diamond syndrome (SBDS) protein. This family is highly conserved in species ranging from archaea to vertebrates and plants. The family contains several Shwachman-Bodian-Diamond syndrome (SBDS) proteins from both mouse and humans. Shwachman-Diamond syndrome is an autosomal recessive disorder with clinical features that include pancreatic exocrine insufficiency, haematological dysfunction and skeletal abnormalities. It is characterized by bone marrow failure and leukemia predisposition. Members of this family play a role in RNA metabolism. In yeast these proteins have been shown to be critical for the release and recycling of the nucleolar shuttling factor Tif6 from pre-60S ribosomes, a key step in 60S maturation and translational activation of ribosomes. This data links defective late 60S subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition. 82 -334414 pfam01174 SNO SNO glutamine amidotransferase family. This family and its amidotransferase domain was first described in. It is predicted that members of this family are involved in the pyridoxine biosynthetic pathway, based on the proximity and co-regulation of the corresponding genes and physical interaction between the members of pfam01174 and pfam01680. 188 -334415 pfam01175 Urocanase Urocanase Rossmann-like domain. 209 -334416 pfam01176 eIF-1a Translation initiation factor 1A / IF-1. This family includes both the eukaryotic translation factor eIF-1A and the bacterial translation initiation factor IF-1. 62 -334417 pfam01177 Asp_Glu_race Asp/Glu/Hydantoin racemase. This family contains aspartate racemase, maleate isomerases EC:5.2.1.1, glutamate racemase, hydantoin racemase and arylmalonate decarboxylase EC:4.1.1.76. 222 -334418 pfam01179 Cu_amine_oxid Copper amine oxidase, enzyme domain. Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70-90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ). This family corresponds to the catalytic domain of the enzyme. 403 -334419 pfam01180 DHO_dh Dihydroorotate dehydrogenase. 290 -334420 pfam01182 Glucosamine_iso Glucosamine-6-phosphate isomerases/6-phosphogluconolactonase. 213 -279518 pfam01183 Glyco_hydro_25 Glycosyl hydrolases family 25. 178 -307369 pfam01184 Grp1_Fun34_YaaH GPR1/FUN34/yaaH family. The Ady2 protein is required for acetate in Saccharomyces cerevisiae, and is probably an acetate transporter. A homolog in Yarrowia lipolytica (GPR1) has a role in acetic acid sensitivity. 207 -334421 pfam01185 Hydrophobin Fungal hydrophobin. 77 -334422 pfam01186 Lysyl_oxidase Lysyl oxidase. 205 -250427 pfam01187 MIF Macrophage migration inhibitory factor (MIF). 114 -279522 pfam01189 Methyltr_RsmB-F 16S rRNA methyltransferase RsmB/F. This is the catalytic core of this SAM-dependent 16S ribosomal methyltransferase RsmB/F enzyme. There is a catalytic cysteine residue at 180 in UniProtKB:Q5SII2, with another highly conserved cysteine at residue 230. It methylates the C(5) position of cytosine 2870 (m5C2870) in 25S rRNA. 199 -334423 pfam01190 Pollen_Ole_e_I Pollen proteins Ole e I like. 93 -334424 pfam01191 RNA_pol_Rpb5_C RNA polymerase Rpb5, C-terminal domain. The assembly domain of Rpb5. The archaeal equivalent to this domain is subunit H. Subunit H lacks the N-terminal domain. 71 -334425 pfam01192 RNA_pol_Rpb6 RNA polymerase Rpb6. Rpb6 is an essential subunit in the eukaryotic polymerases Pol I, II and III. This family also contains the bacterial equivalent to Rpb6, the omega subunit. Rpb6 and omega are structurally conserved and both function in polymerase assembly. 51 -334426 pfam01193 RNA_pol_L RNA polymerase Rpb3/Rpb11 dimerization domain. The two eukaryotic subunits Rpb3 and Rpb11 dimerize to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerization domain of the alpha subunit/Rpb3 is interrupted by an insert domain (pfam01000). Some of the alpha subunits also contain iron-sulphur binding domains (pfam00037). Rpb11 is found as a continuous domain. Members of this family include: alpha subunit from eubacteria, alpha subunits from chloroplasts, Rpb3 subunits from eukaryotes, Rpb11 subunits from eukaryotes, RpoD subunits from archaeal spp, and RpoL subunits from archaeal spp. 130 -334427 pfam01194 RNA_pol_N RNA polymerases N / 8 kDa subunit. 59 -334428 pfam01195 Pept_tRNA_hydro Peptidyl-tRNA hydrolase. 167 -334429 pfam01196 Ribosomal_L17 Ribosomal protein L17. 97 -334430 pfam01197 Ribosomal_L31 Ribosomal protein L31. 65 -307380 pfam01198 Ribosomal_L31e Ribosomal protein L31e. 81 -307381 pfam01199 Ribosomal_L34e Ribosomal protein L34e. 94 -307382 pfam01200 Ribosomal_S28e Ribosomal protein S28e. 64 -334431 pfam01201 Ribosomal_S8e Ribosomal protein S8e. 93 -279535 pfam01202 SKI Shikimate kinase. 159 -334432 pfam01203 T2SSN Type II secretion system (T2SS), protein N. Members of the T2SN family are involved in the Type II protein secretion system. The precise function of these proteins is unknown. 208 -334433 pfam01204 Trehalase Trehalase. Trehalase (EC:3.2.1.28) is known to recycle trehalose to glucose. Trehalose is a physiological hallmark of heat-shock response in yeast and protects of proteins and membranes against a variety of stresses. This family is found in conjunction with pfam07492 in fungi. 506 -334434 pfam01205 UPF0029 Uncharacterized protein family UPF0029. 102 -307387 pfam01206 TusA Sulfurtransferase TusA. This family includes the TusA sulfurtransferases. 69 -307388 pfam01207 Dus Dihydrouridine synthase (Dus). Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archae. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. Dus 1 from Saccharomyces cerevisiae acts on pre-tRNA-Phe, while Dus 2 acts on pre-tRNA-Tyr and pre-tRNA-Leu. Dus 1 is active as a single subunit, requiring NADPH or NADH, and is stimulated by the presence of FAD. Some family members may be targeted to the mitochondria and even have a role in mitochondria. 310 -307389 pfam01208 URO-D Uroporphyrinogen decarboxylase (URO-D). 342 -334435 pfam01209 Ubie_methyltran ubiE/COQ5 methyltransferase family. 232 -307390 pfam01210 NAD_Gly3P_dh_N NAD-dependent glycerol-3-phosphate dehydrogenase N-terminus. NAD-dependent glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the interconversion of dihydroxyacetone phosphate and L-glycerol-3-phosphate. This family represents the N-terminal NAD-binding domain. 158 -334436 pfam01212 Beta_elim_lyase Beta-eliminating lyase. 286 -334437 pfam01213 CAP_N Adenylate cyclase associated (CAP) N terminal. 308 -334438 pfam01214 CK_II_beta Casein kinase II regulatory subunit. 182 -307394 pfam01215 COX5B Cytochrome c oxidase subunit Vb. 128 -307395 pfam01216 Calsequestrin Calsequestrin. 350 -250451 pfam01217 Clat_adaptor_s Clathrin adaptor complex small chain. 142 -334439 pfam01218 Coprogen_oxidas Coproporphyrinogen III oxidase. 294 -334440 pfam01219 DAGK_prokar Prokaryotic diacylglycerol kinase. 102 -334441 pfam01220 DHquinase_II Dehydroquinase class II. 137 -334442 pfam01221 Dynein_light Dynein light chain type 1. 83 -250456 pfam01222 ERG4_ERG24 Ergosterol biosynthesis ERG4/ERG24 family. 429 -334443 pfam01223 Endonuclease_NS DNA/RNA non-specific endonuclease. 218 -307401 pfam01225 Mur_ligase Mur ligase family, catalytic domain. This family contains a number of related ligase enzymes which have EC numbers 6.3.2.*. This family includes: MurC, MurD, MurE, MurF, Mpl, and FolC. MurC, MurD, Mure and MurF catalyze consecutive steps in the synthesis of peptidoglycan. Peptidoglycan consists of a sheet of two sugar derivatives, with one of these N-acetylmuramic acid attaching to a small pentapeptide. The pentapeptide is is made of L-alanine, D-glutamic acid, Meso-diaminopimelic acid and D-alanyl alanine. The peptide moiety is synthesized by successively adding these amino acids to UDP-N-acetylmuramic acid. MurC transfers the L-alanine, MurD transfers the D-glutamate, MurE transfers the diaminopimelic acid, and MurF transfers the D-alanyl alanine. This family also includes Folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate. 82 -334444 pfam01226 Form_Nir_trans Formate/nitrite transporter. 239 -307403 pfam01227 GTP_cyclohydroI GTP cyclohydrolase I. This family includes GTP cyclohydrolase enzymes and a family of related bacterial proteins. 176 -307404 pfam01228 Gly_radical Glycine radical. 106 -279558 pfam01229 Glyco_hydro_39 Glycosyl hydrolases family 39. 486 -334445 pfam01230 HIT HIT domain. 96 -307406 pfam01231 IDO Indoleamine 2,3-dioxygenase. 411 -307407 pfam01232 Mannitol_dh Mannitol dehydrogenase Rossmann domain. 151 -334446 pfam01233 NMT Myristoyl-CoA:protein N-myristoyltransferase, N-terminal domain. The N and C-terminal domains of NMT are structurally similar, each adopting an acyl-CoA N-acyltransferase-like fold. 158 -250464 pfam01234 NNMT_PNMT_TEMT NNMT/PNMT/TEMT family. 261 -334447 pfam01235 Na_Ala_symp Sodium:alanine symporter family. 389 -334448 pfam01237 Oxysterol_BP Oxysterol-binding protein. 360 -250467 pfam01238 PMI_typeI Phosphomannose isomerase type I. This is a family of Phosphomannose isomerase type I enzymes (EC 5.3.1.8). 373 -334449 pfam01239 PPTA Protein prenyltransferase alpha subunit repeat. Both farnesyltransferase (FT) and geranylgeranyltransferase 1 (GGT1) recognize a CaaX motif on their substrates where 'a' stands for preferably aliphatic residues, whereas GGT2 recognizes a completely different motif. Important substrates for FT include, amongst others, many members of the Ras superfamily. GGT1 substrates include some of the other small GTPases and GGT2 substrates include the Rab family. 27 -307412 pfam01241 PSI_PSAK Photosystem I psaG / psaK. 64 -307413 pfam01242 PTPS 6-pyruvoyl tetrahydropterin synthase. 6-Pyruvoyl tetrahydrobiopterin synthase catalyzes the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. The functional enzyme is a hexamer of identical subunits. 121 -334450 pfam01243 Putative_PNPOx Pyridoxamine 5'-phosphate oxidase. Family of domains with putative PNPOx function. Family members were predicted to encode pyridoxamine 5'-phosphate oxidase, based on sequence similarity. However, there is no experimental data to validate the predicted activity and purified proteins, such as yeast YLR456W and its paralogs, do not possess this activity, nor do they bind to flavin mononucleotide (FMN). To date, the only time functional oxidase activity has been experimentally demonstrated is when the sequences contain both pfam01243 and pfam10590. Moreover, some of the family members that contain both domains have been shown to be involved in phenazine biosynthesis. While some molecular function has been experimentally validated for the proteins containing both domains, the role performed by each domain on its own is unknown. 85 -279569 pfam01244 Peptidase_M19 Membrane dipeptidase (Peptidase family M19). 317 -334451 pfam01245 Ribosomal_L19 Ribosomal protein L19. 110 -307416 pfam01246 Ribosomal_L24e Ribosomal protein L24e. 63 -307417 pfam01247 Ribosomal_L35Ae Ribosomal protein L35Ae. 94 -334452 pfam01248 Ribosomal_L7Ae Ribosomal protein L7Ae/L30e/S12e/Gadd45 family. This family includes: Ribosomal L7A from metazoa, Ribosomal L8-A and L8-B from fungi, 30S ribosomal protein HS6 from archaebacteria, 40S ribosomal protein S12 from eukaryotes, Ribosomal protein L30 from eukaryotes and archaebacteria. Gadd45 and MyD118. 95 -307419 pfam01249 Ribosomal_S21e Ribosomal protein S21e. 79 -334453 pfam01250 Ribosomal_S6 Ribosomal protein S6. 89 -334454 pfam01251 Ribosomal_S7e Ribosomal protein S7e. 184 -334455 pfam01252 Peptidase_A8 Signal peptidase (SPase) II. 133 -334456 pfam01253 SUI1 Translation initiation factor SUI1. 77 -279579 pfam01254 TP2 Nuclear transition protein 2. 133 -334457 pfam01255 Prenyltransf Putative undecaprenyl diphosphate synthase. Previously known as uncharacterized protein family UPF0015, a single member of this family has been identified as an undecaprenyl diphosphate synthase. 217 -279581 pfam01256 Carb_kinase Carbohydrate kinase. This family is related to pfam02110 and pfam00294 implying that it also is a carbohydrate kinase. (personal obs Yeats C). 242 -307425 pfam01257 2Fe-2S_thioredx Thioredoxin-like [2Fe-2S] ferredoxin. 145 -334458 pfam01258 zf-dskA_traR Prokaryotic dksA/traR C4-type zinc finger. 36 -334459 pfam01259 SAICAR_synt SAICAR synthetase. Also known as Phosphoribosylaminoimidazole-succinocarboxamide synthase. 229 -307428 pfam01261 AP_endonuc_2 Xylose isomerase-like TIM barrel. This TIM alpha/beta barrel structure is found in xylose isomerase and in endonuclease IV (EC:3.1.21.2). This domain is also found in the N termini of bacterial myo-inositol catabolism proteins. These are involved in the myo-inositol catabolism pathway, and is required for growth on myo-inositol in Rhizobium leguminosarum bv. viciae. 212 -279586 pfam01262 AlaDh_PNT_C Alanine dehydrogenase/PNT, C-terminal domain. This family now also contains the lysine 2-oxoglutarate reductases. 213 -334460 pfam01263 Aldose_epim Aldose 1-epimerase. 294 -334461 pfam01264 Chorismate_synt Chorismate synthase. 346 -307431 pfam01265 Cyto_heme_lyase Cytochrome c/c1 heme lyase. 287 -334462 pfam01266 DAO FAD dependent oxidoreductase. This family includes various FAD dependent oxidoreductases: Glycerol-3-phosphate dehydrogenase EC:1.1.99.5, Sarcosine oxidase beta subunit EC:1.5.3.1, D-alanine oxidase EC:1.4.99.1, D-aspartate oxidase EC:1.4.3.1. 323 -307433 pfam01267 F-actin_cap_A F-actin capping protein alpha subunit. 265 -334463 pfam01268 FTHFS Formate--tetrahydrofolate ligase. 554 -307435 pfam01269 Fibrillarin Fibrillarin. 227 -279594 pfam01270 Glyco_hydro_8 Glycosyl hydrolases family 8. 321 -279595 pfam01271 Granin Granin (chromogranin or secretogranin). 584 -334464 pfam01272 GreA_GreB Transcription elongation factor, GreA/GreB, C-term. This domain has an FKBP-like fold. 77 -307437 pfam01273 LBP_BPI_CETP LBP / BPI / CETP family, N-terminal domain. The N and C terminal domains of the LBP/BPI/CETP family are structurally similar. 164 -334465 pfam01274 Malate_synthase Malate synthase. 523 -334466 pfam01275 Myelin_PLP Myelin proteolipid protein (PLP or lipophilin). 232 -334467 pfam01276 OKR_DC_1 Orn/Lys/Arg decarboxylase, major domain. 417 -334468 pfam01277 Oleosin Oleosin. 113 -307442 pfam01278 Omptin Omptin family. The omptin family is a family of serine proteases. 283 -307443 pfam01279 Parathyroid Parathyroid hormone family. 106 -307444 pfam01280 Ribosomal_L19e Ribosomal protein L19e. 143 -334469 pfam01281 Ribosomal_L9_N Ribosomal protein L9, N-terminal domain. 44 -334470 pfam01282 Ribosomal_S24e Ribosomal protein S24e. 79 -307447 pfam01283 Ribosomal_S26e Ribosomal protein S26e. 101 -334471 pfam01284 MARVEL Membrane-associating domain. MARVEL domain-containing proteins are often found in lipid-associating proteins - such as Occludin and MAL family proteins. It may be part of the machinery of membrane apposition events, such as transport vesicle biogenesis. 135 -307449 pfam01285 TEA TEA/ATTS domain family. 509 -307450 pfam01286 XPA_N XPA protein N-terminal. 32 -334472 pfam01287 eIF-5a Eukaryotic elongation factor 5A hypusine, DNA-binding OB fold. eIF5A, previously thought to be an initiation factor, has been shown to be required for peptide chain elongation in yeast. 69 -334473 pfam01288 HPPK 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK). 127 -334474 pfam01289 Thiol_cytolysin Thiol-activated cytolysin. 353 -334475 pfam01290 Thymosin Thymosin beta-4 family. 39 -250510 pfam01291 LIF_OSM LIF / OSM family. 162 -307455 pfam01292 Ni_hydr_CYTB Prokaryotic cytochrome b561. This family includes cytochrome b561 and related proteins, in addition to the nickel-dependent hydrogenases b-type cytochrome subunit. Cytochrome b561 is a secretory vesicle-specific electron transport protein. It is an integral membrane protein, that binds two heme groups non-covalently. This is a prokaryotic family. Members of the 'eukaryotic cytochrome b561' family can be found in Pfam: PF03188. 180 -307456 pfam01293 PEPCK_ATP Phosphoenolpyruvate carboxykinase. 463 -334476 pfam01294 Ribosomal_L13e Ribosomal protein L13e. 180 -307458 pfam01295 Adenylate_cycl Adenylate cyclase, class-I. 600 -307459 pfam01296 Galanin Galanin. 29 -334477 pfam01297 ZnuA Zinc-uptake complex component A periplasmic. ZnuA includes periplasmic solute binding proteins such as TroA that interacts with an ATP-binding cassette transport system in Treponema pallidum. ZnuA is part of the bacterial zinc-uptake complex ZnuABC, whose components are the following families, ZinT, pfam09223, pfam00950, pfam00005, all of which are regulated by the transcription-regulator family FUR, pfam01475. ZinT acts as a Zn2+-buffering protein that delivers Zn2+ to ZnuA (TroA), a high-affinity zinc-uptake protein. In Gram-negative bacteria the ZnuABC transporter system ensures an adequate import of zinc in Zn2+-poor environments, such as those encountered by pathogens within the infected host. 268 -334478 pfam01298 TbpB_B_D C-lobe and N-lobe beta barrels of Tf-binding protein B. Bacterial lipoproteins represent a large group of specialized membrane proteins that perform a variety of functions including maintenance and stabilization of the cell envelope, protein targeting and transit to the outer membrane, membrane biogenesis, and cell adherence. Pathogenic Gram-negative bacteria within the Neisseriaceae and Pasteurellaceae families rely on a specialized uptake system, characterized by an essential surface receptor complex that acquires iron from host transferrin (Tf) and transports the iron across the outer membrane. They have an iron uptake system composed of surface exposed lipoprotein, Tf-binding protein B (TbpB), and an integral outer-membrane protein, Tf-binding protein A (TbpA), that together function to extract iron from the host iron binding glycoprotein (Tf). TbpB is a bilobed (N and C lobe) lipid-anchored protein with each lobe consisting of an eight-stranded beta barrel flanked by a ###handle### domain made up of four (N lobe) or eight (C lobe) beta strands. TbpB extends from the outer membrane surface by virtue of an N-terminal peptide region that is anchored to the outer membrane by fatty acyl chains on the N-terminal cysteine and is involved in the initial capture of iron-loaded Tf. This domain family is found in C and N lobe eight stranded beta barrel region of TbpB proteins. The eight-stranded barrel domains in N and C lobe draw comparisons to eight-stranded beta barrel outer-membrane protein W (OmpW). However, the barrel domains of TbpB have the hydrophobic residues line the inner surface of the beta barrels to create a stable hydrophobic core. 124 -334479 pfam01299 Lamp Lysosome-associated membrane glycoprotein (Lamp). 314 -334480 pfam01300 Sua5_yciO_yrdC Telomere recombination. This domain has been shown to bind preferentially to dsRNA. The domain is found in SUA5 as well as HypF and YrdC. It has also been shown to be required for telomere recombniation in yeast. 178 -307464 pfam01301 Glyco_hydro_35 Glycosyl hydrolases family 35. 316 -334481 pfam01302 CAP_GLY CAP-Gly domain. Cytoskeleton-associated proteins (CAPs) are involved in the organisation of microtubules and transportation of vesicles and organelles along the cytoskeletal network. A conserved motif, CAP-Gly, has been identified in a number of CAPs, including CLIP-170 and dynactins. The crystal structure of Caenorhabditis elegans F53F4.3 protein CAP-Gly domain was recently solved. The domain contains three beta-strands. The most conserved sequence, GKNDG, is located in two consecutive sharp turns on the surface, forming the entrance to a groove. 65 -307466 pfam01303 Egg_lysin Egg lysin (Sperm-lysin). Egg lysin creates a hole in the envelope of the egg thereby allowing the sperm to pass through the envelope and fuse with the egg. 121 -279626 pfam01304 Gas_vesicle_C Gas vesicles protein GVPc repeated domain. 33 -110319 pfam01306 LacY_symp LacY proton/sugar symporter. This family is closely related to the sugar transporter family. 413 -279627 pfam01307 Plant_vir_prot Plant viral movement protein. This family includes several known plant viral movement proteins from a number of different ssRNA plant virus families including potexviruses, hordeiviruses and carlaviruses. 100 -279628 pfam01308 Chlam_OMP Chlamydia major outer membrane protein. The major outer membrane protein of Chlamydia contains four symmetrically spaced variable domains (VDs I to IV). This protein is believed to be an integral part to the pathogenesis, possibly adhesion. Along with the lipopolysaccharide, the major out membrane protein (MOMP) makes up the surface of the elementary body cell. The MOMP is the protein used to determine the different serotypes. 397 -279629 pfam01309 EAV_GS Equine arteritis virus small envelope glycoprotein. Equine arteritis virus small envelope glycoprotein (Gs) is a class I transmembrane protein which adopts a number of different conformations. 196 -279630 pfam01310 Adeno_PVIII Adenovirus hexon associated protein, protein VIII. See pfam01065. This family represents Hexon. 216 -334482 pfam01311 Bac_export_1 Bacterial export proteins, family 1. This family includes the following members; FliR, MopE, SsaT, YopT, Hrp, HrcT and SpaR All of these members export proteins, that do not possess signal peptides, through the membrane. Although the proteins that these exporters move may be different, the exporters are thought to function in similar ways. 233 -334483 pfam01312 Bac_export_2 FlhB HrpN YscU SpaS Family. This family includes the following members: FlhB, HrpN, YscU, SpaS, HrcU SsaU and YopU. All of these proteins export peptides using the type III secretion system. The peptides exported are quite diverse. 338 -334484 pfam01313 Bac_export_3 Bacterial export proteins, family 3. This family includes the following members; FliQ, MopD, HrcS, Hrp, YopS and SpaQ All of these members export proteins, that do not possess signal peptides, through the membrane. Although the proteins that these exporters move may be different, the exporters are thought to function in similar ways. 73 -334485 pfam01314 AFOR_C Aldehyde ferredoxin oxidoreductase, domains 2 & 3. Aldehyde ferredoxin oxidoreductase (AOR) catalyzes the reversible oxidation of aldehydes to their corresponding carboxylic acids with their accompanying reduction of the redox protein ferredoxin. This family is composed of two structural domains that bind the tungsten cofactor via DXXGL(C/D) motifs. In addition to maintaining specific binding interactions with the cofactor, another role for domains 2 and 3 may be to regulate substrate access to AOR. 382 -334486 pfam01315 Ald_Xan_dh_C Aldehyde oxidase and xanthine dehydrogenase, a/b hammerhead domain. 108 -334487 pfam01316 Arg_repressor Arginine repressor, DNA binding domain. 69 -279637 pfam01318 Bromo_coat Bromovirus coat protein. 187 -334488 pfam01320 Colicin_Pyocin Colicin immunity protein / pyocin immunity protein. 82 -334489 pfam01321 Creatinase_N Creatinase/Prolidase N-terminal domain. This family includes the N-terminal non-catalytic domains from creatinase and prolidase. The exact function of this domain is uncertain. 130 -334490 pfam01322 Cytochrom_C_2 Cytochrome C'. 117 -334491 pfam01323 DSBA DSBA-like thioredoxin domain. This family contains a diverse set of proteins with a thioredoxin-like structure pfam00085. This family also includes 2-hydroxychromene-2-carboxylate (HCCA) isomerase enzymes catalyze one step in prokaryotic polyaromatic hydrocarbon (PAH) catabolic pathways. This family also contains members with functions other than HCCA isomerisation, such as Kappa family GSTs, whose similarity to HCCA isomerases was not previously recognized. Some members have been annotated as dioxygenases, dehydrogenases, or putative glycerol-3-phosphate transfer proteins, but are most likely HCCA isomerase enzymes. 188 -279642 pfam01324 Diphtheria_R Diphtheria toxin, R domain. C-terminal receptor binding (R) domain - binds to cell surface receptor, permitting the toxin to enter the cell by receptor mediated endocytosis. 154 -279643 pfam01325 Fe_dep_repress Iron dependent repressor, N-terminal DNA binding domain. This family includes the Diphtheria toxin repressor. DNA binding is through a helix-turn-helix motif. 58 -334492 pfam01326 PPDK_N Pyruvate phosphate dikinase, PEP/pyruvate binding domain. This enzyme catalyzes the reversible conversion of ATP to AMP, pyrophosphate and phosphoenolpyruvate (PEP). 319 -307477 pfam01327 Pep_deformylase Polypeptide deformylase. 153 -279646 pfam01328 Peroxidase_2 Peroxidase, family 2. The peroxidases in this family do not have similarity to other peroxidases. 296 -334493 pfam01329 Pterin_4a Pterin 4 alpha carbinolamine dehydratase. Pterin 4 alpha carbinolamine dehydratase is also known as DCoH (dimerization cofactor of hepatocyte nuclear factor 1-alpha). 87 -334494 pfam01330 RuvA_N RuvA N terminal domain. The N terminal domain of RuvA has an OB-fold structure. This domain forms the RuvA tetramer contacts. 62 -279649 pfam01331 mRNA_cap_enzyme mRNA capping enzyme, catalytic domain. This family represents the ATP binding catalytic domain of the mRNA capping enzyme. 194 -307480 pfam01333 Apocytochr_F_C Apocytochrome F, C-terminal. This is a sub-family of cytochrome C. See pfam00034. 115 -334495 pfam01335 DED Death effector domain. 77 -334496 pfam01336 tRNA_anti-codon OB-fold nucleic acid binding domain. This family contains OB-fold domains that bind to nucleic acids. The family includes the anti-codon binding domain of lysyl, aspartyl, and asparaginyl -tRNA synthetases (see pfam00152). Aminoacyl-tRNA synthetases catalyze the addition of an amino acid to the appropriate tRNA molecule EC:6.1.1.-. This family also includes part of RecG helicase involved in DNA repair. Replication factor A is a hetero-trimeric complex, that contains a subunit in this family. This domain is also found at the C-terminus of bacterial DNA polymerase III alpha chain. 74 -334497 pfam01337 Barstar Barstar (barnase inhibitor). 84 -307484 pfam01338 Bac_thur_toxin Bacillus thuringiensis toxin. 230 -334498 pfam01339 CheB_methylest CheB methylesterase. 178 -279656 pfam01340 MetJ Met Apo-repressor, MetJ. 97 -334499 pfam01341 Glyco_hydro_6 Glycosyl hydrolases family 6. 303 -334500 pfam01342 SAND SAND domain. The DNA binding activity of two proteins has been mapped to the SAND domain. The conserved KDWK motif is necessary for DNA binding, and it appears to be important for dimerization. This region is also found in the putative transcription factor RegA from the multicellular green alga Volvox cateri. This region of RegA is known as the VARL domain. 74 -334501 pfam01343 Peptidase_S49 Peptidase family S49. 152 -334502 pfam01344 Kelch_1 Kelch motif. The kelch motif was initially discovered in Kelch. In this protein there are six copies of the motif. It has been shown that the ring canal kelch protein is related to Galactose Oxidase for which a structure has been solved. The kelch motif forms a beta sheet. Several of these sheets associate to form a beta propeller structure as found in pfam00064, pfam00400 and pfam00415. 45 -307488 pfam01345 DUF11 Domain of unknown function DUF11. A domain of unknown function found in multiple copies in several archaebacterial proteins. Conserved N-terminal lysine and C-terminal asparagine with central asp/glu suggests that many of these domain may contain an isopeptide bond. 93 -334503 pfam01346 FKBP_N Domain amino terminal to FKBP-type peptidyl-prolyl isomerase. This family is only found at the amino terminus of pfam00254. This domain is of unknown function. 120 -279663 pfam01347 Vitellogenin_N Lipoprotein amino terminal region. This family contains regions from: Vitellogenin, Microsomal triglyceride transfer protein and apolipoprotein B-100. These proteins are all involved in lipid transport. This family contains the LV1n chain from lipovitellin, that contains two structural domains. 582 -279664 pfam01348 Intron_maturas2 Type II intron maturase. Group II introns use intron-encoded reverse transcriptase, maturase and DNA endonuclease activities for site-specific insertion into DNA. Although this type of intron is self splicing in vitro they require a maturase protein for splicing in vivo. It has been shown that a specific region of the aI2 intron is needed for the maturase function. This region was found to be conserved in group II introns and called domain X. 140 -279665 pfam01349 Flavi_NS4B Flavivirus non-structural protein NS4B. Flaviviruses encode a single polyprotein. This is cleaved into three structural and seven non-structural proteins. The NS4B protein is small and poorly conserved among the Flaviviruses. NS4B contains multiple hydrophobic potential membrane spanning regions. NS4B may form membrane components of the viral replication complex and could be involved in membrane localization of NS3 and pfam00972. 248 -279666 pfam01350 Flavi_NS4A Flavivirus non-structural protein NS4A. Flaviviruses encode a single polyprotein. This is cleaved into three structural and seven non-structural proteins. The NS4A protein is small and poorly conserved among the Flaviviruses. NS4A contains multiple hydrophobic potential membrane spanning regions. NS4A has only been found in cells infected by Kunjin virus. 144 -279667 pfam01351 RNase_HII Ribonuclease HII. 199 -334504 pfam01352 KRAB KRAB box. The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation. 42 -307491 pfam01353 GFP Green fluorescent protein. 220 -334505 pfam01355 HIPIP High potential iron-sulfur protein. 65 -110363 pfam01356 A_amylase_inhib Alpha amylase inhibitor. 68 -334506 pfam01357 Pollen_allerg_1 Pollen allergen. This family contains allergens lol PI, PII and PIII from Lolium perenne. 76 -279672 pfam01358 PARP_regulatory Poly A polymerase regulatory subunit. 292 -334507 pfam01359 Transposase_1 Transposase (partial DDE domain). This family includes the mariner transposase. 80 -279673 pfam01361 Tautomerase Tautomerase enzyme. This family includes the enzyme 4-oxalocrotonate tautomerase, which catalyzes the ketonisation of 2-hydroxymuconate to 2-oxo-3-hexenedioate. 60 -334508 pfam01363 FYVE FYVE zinc finger. The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. 66 -307496 pfam01364 Peptidase_C25 Peptidase family C25. 344 -307497 pfam01365 RYDR_ITPR RIH domain. The RIH (RyR and IP3R Homology) domain is an extracellular domain from two types of calcium channels. This region is found in the ryanodine receptor and the inositol-1,4,5-trisphosphate receptor. This domain may form a binding site for IP3. 200 -279677 pfam01366 PRTP Herpesvirus processing and transport protein. The members of this family are associate with capsid intermediates during packaging of the virus. 653 -334509 pfam01367 5_3_exonuc 5'-3' exonuclease, C-terminal SAM fold. 92 -334510 pfam01368 DHH DHH family. It is predicted that this family of proteins all perform a phosphoesterase function. It included the single stranded DNA exonuclease RecJ. 100 -334511 pfam01369 Sec7 Sec7 domain. The Sec7 domain is a guanine-nucleotide-exchange-factor (GEF) for the pfam00025 family. 186 -334512 pfam01370 Epimerase NAD dependent epimerase/dehydratase family. This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. 236 -307502 pfam01371 Trp_repressor Trp repressor protein. This protein binds to tryptophan and represses transcription of the Trp operon. 86 -279683 pfam01372 Melittin Melittin. 26 -307503 pfam01373 Glyco_hydro_14 Glycosyl hydrolase family 14. This family are beta amylases. 402 -307504 pfam01374 Glyco_hydro_46 Glycosyl hydrolase family 46. This family are chitosanase enzymes. 210 -307505 pfam01375 Enterotoxin_a Heat-labile enterotoxin alpha chain. 258 -279687 pfam01376 Enterotoxin_b Heat-labile enterotoxin beta chain. 102 -144825 pfam01378 IgG_binding_B B domain. This domain is found as a tandem repeat in Streptococcal cell surface proteins, such as the IgG binding protein G. 55 -334513 pfam01379 Porphobil_deam Porphobilinogen deaminase, dipyromethane cofactor binding domain. 206 -334514 pfam01380 SIS SIS domain. SIS (Sugar ISomerase) domains are found in many phosphosugar isomerases and phosphosugar binding proteins. SIS domains are also found in proteins that regulate the expression of genes involved in synthesis of phosphosugars. Presumably the SIS domains bind to the end-product of the pathway. 131 -334515 pfam01381 HTH_3 Helix-turn-helix. This large family of DNA binding helix-turn helix proteins includes Cro and CI. Within Neisseria gonorrhoeae NGO_0477, the full protein fold incorporates a helix-turn-helix motif, but the function of this member is unlikely to be that of a DNA-binding regulator, the function of most other members, so is not necessarily characteristic of the whole family. 55 -307508 pfam01382 Avidin Avidin family. 115 -307509 pfam01383 CpcD CpcD/allophycocyanin linker domain. 54 -334516 pfam01384 PHO4 Phosphate transporter family. This family includes PHO-4 from Neurospora crassa which is a is a Na(+)-phosphate symporter. This family also contains the leukaemia virus receptor. 259 -307511 pfam01385 OrfB_IS605 Probable transposase. This family includes IS891, IS1136 and IS1341. DUF1225, pfam06774, has now been merged into this family. 119 -334517 pfam01386 Ribosomal_L25p Ribosomal L25p family. Ribosomal protein L25 is an RNA binding protein, that binds 5S rRNA. This family includes Ctc from B. subtilis, which is induced by stress. 87 -307513 pfam01387 Synuclein Synuclein. There are three types of synucleins in humans, these are called alpha, beta and gamma. Alpha synuclein has been found mutated in families with autosomal dominant Parkinson's disease. A peptide of alpha synuclein has also been found in amyloid plaques in Alzheimer's patients. 118 -334518 pfam01388 ARID ARID/BRIGHT DNA binding domain. This domain is know as ARID for AT-Rich Interaction Domain, and also known as the BRIGHT domain. 84 -307515 pfam01389 OmpA_membrane OmpA-like transmembrane domain. The structure of OmpA transmembrane domain shows that it consists of an eight stranded beta barrel. This family includes some other distantly related outer membrane proteins with low scores. 177 -334519 pfam01390 SEA SEA domain. Domain found in Sea urchin sperm protein, Enterokinase, Agrin (SEA). Proposed function of regulating or binding carbohydrate side chains. Recently a proteolytic activity has been shown for a SEA domain. 106 -189968 pfam01391 Collagen Collagen triple helix repeat (20 copies). Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. 60 -334520 pfam01392 Fz Fz domain. Also known as the CRD (cysteine rich domain), the C6 box in MuSK receptor. This domain of unknown function has been independently identified by several groups. The domain contains 10 conserved cysteines. 110 -334521 pfam01393 Chromo_shadow Chromo shadow domain. This domain is distantly related to pfam00385. This domain is always found in association with a chromo domain. 53 -279702 pfam01394 Clathrin_propel Clathrin propeller repeat. Clathrin is the scaffold protein of the basket-like coat that surrounds coated vesicles. The soluble assembly unit, a triskelion, contains three heavy chains and three light chains in an extended three-legged structure. Each leg contains one heavy and one light chain. The N-terminus of the heavy chain is known as the globular domain, and is composed of seven repeats which form a beta propeller. 37 -334522 pfam01395 PBP_GOBP PBP/GOBP family. The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins which exist in the extracellular fluid surrounding the odorant receptors. This family is composed of pheromone binding proteins (PBP), which are male-specific and associate with pheromone-sensitive neurons and general-odorant binding proteins (GOBP). 105 -307520 pfam01396 zf-C4_Topoisom Topoisomerase DNA binding C4 zinc finger. 39 -334523 pfam01397 Terpene_synth Terpene synthase, N-terminal domain. It has been suggested that this gene family be designated tps (for terpene synthase). It has been split into six subgroups on the basis of phylogeny, called tpsa-tpsf. tpsa includes vetispiridiene synthase, 5-epi- aristolochene synthase, and (+)-delta-cadinene synthase. tpsb includes (-)-limonene synthase. tpsc includes kaurene synthase A. tpsd includes taxadiene synthase, pinene synthase, and myrcene synthase. tpse includes kaurene synthase B. tpsf includes linalool synthase. 185 -279706 pfam01398 JAB JAB1/Mov34/MPN/PAD-1 ubiquitin protease. Members of this family are found in proteasome regulatory subunits, eukaryotic initiation factor 3 (eIF3) subunits and regulators of transcription factors. This family is also known as the MPN domain and PAD-1-like domain, JABP1 domain or JAMM domain. These are metalloenzymes that function as the ubiquitin isopeptidase/ deubiquitinase in the ubiquitin-based signalling and protein turnover pathways in eukaryotes. Versions of the domain in prokaryotic cognates of the ubiquitin-modification pathway are shown to have a similar role, and the archael protein from Haloferax volcanii is found to cleave ubiquitin-like small archaeal modifier proteins (SAMP1/2) from protein conjugates. 117 -334524 pfam01399 PCI PCI domain. This domain has also been called the PINT motif (Proteasome, Int-6, Nip-1 and TRIP-15). 105 -279708 pfam01400 Astacin Astacin (Peptidase family M12A). The members of this family are enzymes that cleave peptides. These proteases require zinc for catalysis. Members of this family contain two conserved disulphide bridges, these are joined 1-4 and 2-3. Members of this family have an amino terminal propeptide which is cleaved to give the active protease domain. All other linked domains are found to the carboxyl terminus of this domain. This family includes: Astacin, a digestive enzyme from Crayfish. Meprin, a multiple domain membrane component that is constructed from a homologous alpha and beta chain. Proteins involved in morphogenesis and Tolloid from drosophila. 192 -307523 pfam01401 Peptidase_M2 Angiotensin-converting enzyme. Members of this family are dipeptidyl carboxydipeptidases (cleave carboxyl dipeptides) and most notably convert angiotensin I to angiotensin II. Many members of this family contain a tandem duplication of the 600 amino acid peptidase domain, both of these are catalytically active. Most members are secreted membrane bound ectoenzymes. 580 -279710 pfam01402 RHH_1 Ribbon-helix-helix protein, copG family. The structure of this protein repressor, which is the shortest reported to date and the first isolated from a plasmid, has a homodimeric ribbon-helix-helix arrangement. The helix-turn-helix-like structure is involved in dimerization and not DNA binding as might have been expected. 39 -334525 pfam01403 Sema Sema domain. The Sema domain occurs in semaphorins, which are a large family of secreted and transmembrane proteins, some of which function as repellent signals during axon guidance. Sema domains also occur in the hepatocyte growth factor receptor and plexin-A3. 345 -334526 pfam01404 Ephrin_lbd Ephrin receptor ligand binding domain. The Eph receptors, which bind to ephrins pfam00812 are a large family of receptor tyrosine kinases. This family represents the amino terminal domain which binds the ephrin ligand. 176 -279713 pfam01405 PsbT Photosystem II reaction centre T protein. The exact function of this protein is unknown. It probably consists of a single transmembrane spanning helix. The Chlamydomonas reinhardtii psbT protein appears to be (i) a novel photosystem II subunit and (ii) required for maintaining optimal photosystem II activity under adverse growth conditions. 29 -279714 pfam01406 tRNA-synt_1e tRNA synthetases class I (C) catalytic domain. This family includes only cysteinyl tRNA synthetases. 301 -279715 pfam01407 Gemini_AL3 Geminivirus AL3 protein. Geminiviruses are small, ssDNA-containing plant viruses. Geminiviruses contain three ORFs (designated AL1, AL2, and AL3) that overlap and are specified by multiple polycistronic mRNAs. The AL3 protein comprises approximately 0.05% of the cellular proteins and is present in the soluble and organelle fractions. AL3 may form oligomers. Immunoprecipitation of AL3 in a baculovirus expression system extracts expressing both AL1 pfam00799 and AL3 showed that the two proteins also complex with each other. The AL3 protein is involved in viral replication. 119 -279716 pfam01408 GFO_IDH_MocA Oxidoreductase family, NAD-binding Rossmann fold. This family of enzymes utilize NADP or NAD. This family is called the GFO/IDH/MOCA family in swiss-prot. 120 -307526 pfam01409 tRNA-synt_2d tRNA synthetases class II core domain (F). Other tRNA synthetase sub-families are too dissimilar to be included. This family includes only phenylalanyl-tRNA synthetases. This is the core catalytic domain. 243 -307527 pfam01410 COLFI Fibrillar collagen C-terminal domain. Found at C-termini of fibrillar collagens: Ephydatia muelleri procollagen EMF1 alpha, vertebrate collagens alpha(1)III, alpha(1)II, alpha(2)V etc. 230 -279719 pfam01411 tRNA-synt_2c tRNA synthetases class II (A). Other tRNA synthetase sub-families are too dissimilar to be included. This family includes only alanyl-tRNA synthetases. 548 -307528 pfam01412 ArfGap Putative GTPase activating protein for Arf. Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs. 117 -334527 pfam01413 C4 C-terminal tandem repeated domain in type 4 procollagen. Duplicated domain in C-terminus of type 4 collagens. Mutations in alpha-5 collagen IV are associated with X-linked Alport syndrome. 105 -334528 pfam01414 DSL Delta serrate ligand. 63 -307531 pfam01415 IL7 Interleukin 7/9 family. IL-7 is a cytokine that acts as a growth factor for early lymphoid cells of both B- and T-cell lineages. IL-9 is a multi-functional cytokine that, although originally described as a T-cell growth factor, its function in T-cell response remains unclear. 119 -334529 pfam01416 PseudoU_synth_1 tRNA pseudouridine synthase. Involved in the formation of pseudouridine at the anticodon stem and loop of transfer-RNAs Pseudouridine is an isomer of uridine (5-(beta-D-ribofuranosyl) uracil, and id the most abundant modified nucleoside found in all cellular RNAs. The TruA-like proteins also exhibit a conserved sequence with a strictly conserved aspartic acid, likely involved in catalysis. 108 -334530 pfam01417 ENTH ENTH domain. The ENTH (Epsin N-terminal homology) domain is found in proteins involved in endocytosis and cytoskeletal machinery. The function of the ENTH domain is unknown. 124 -334531 pfam01418 HTH_6 Helix-turn-helix domain, rpiR family. This domain contains a helix-turn-helix motif. The best characterized member of this family is RpiR, a regulator of the expression of rpiB gene. 77 -307534 pfam01419 Jacalin Jacalin-like lectin domain. Proteins containing this domain are lectins. It is found in 1 to 6 copies in these proteins. The domain is also found in the animal prostatic spermine-binding protein. 134 -279728 pfam01420 Methylase_S Type I restriction modification DNA specificity domain. This domain is also known as the target recognition domain (TRD). Restriction-modification (R-M) systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one heteromeric enzyme complex composed of one DNA specificity subunit (this family), two modification (M) subunits and two restriction (R) subunits. 167 -307535 pfam01421 Reprolysin Reprolysin (M12B) family zinc metalloprotease. The members of this family are enzymes that cleave peptides. These proteases require zinc for catalysis. Members of this family are also known as adamalysins. Most members of this family are snake venom endopeptidases, but there are also some mammalian proteins and fertilin. Fertilin and closely related proteins appear to not have some active site residues and may not be active enzymes. 199 -334532 pfam01422 zf-NF-X1 NF-X1 type zinc finger. This domain is presumed to be a zinc binding domain. The following pattern describes the zinc finger. C-X(1-6)-H-X-C-X3-C(H/C)-X(3-4)-(H/C)-X(1-10)-C Where X can be any amino acid, and numbers in brackets indicate the number of residues. Two position can be either his or cys. The zinc fingers in NFX1 bind to DNA. 19 -334533 pfam01423 LSM LSM domain. The LSM domain contains Sm proteins as well as other related LSM (Like Sm) proteins. The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs. The U6 snRNP binds to the LSM (Like Sm) proteins. Sm proteins are also found in archaebacteria, which do not have any splicing apparatus suggesting a more general role for Sm proteins. All Sm proteins contain a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. This family also includes the bacterial Hfq (host factor Q) proteins. Hfq are also RNA-binding proteins, that form hexameric rings. 65 -334534 pfam01424 R3H R3H domain. The name of the R3H domain comes from the characteristic spacing of the most conserved arginine and histidine residues. The function of the domain is predicted to be binding ssDNA. 60 -279733 pfam01425 Amidase Amidase. 447 -334535 pfam01426 BAH BAH domain. This domain has been called BAH (Bromo adjacent homology) domain and has also been called ELM1 and BAM (Bromo adjacent motif) domain. The function of this domain is unknown but may be involved in protein-protein interaction. 120 -279735 pfam01427 Peptidase_M15 D-ala-D-ala dipeptidase. 199 -334536 pfam01428 zf-AN1 AN1-like Zinc finger. Zinc finger at the C-terminus of An1, a ubiquitin-like protein in Xenopus laevis. The following pattern describes the zinc finger. C-X2-C-X(9-12)-C-X(1-2)-C-X4-C-X2-H-X5-H-X-C Where X can be any amino acid, and numbers in brackets indicate the number of residues. 37 -307541 pfam01429 MBD Methyl-CpG binding domain. The Methyl-CpG binding domain (MBD) binds to DNA that contains one or more symmetrically methylated CpGs. DNA methylation in animals is associated with alterations in chromatin structure and silencing of gene expression. MBD has negligible non-specific affinity for DNA. In vitro foot-printing with MeCP2 showed the MBD can protect a 12 nucleotide region surrounding a methyl CpG pair. MBDs are found in several Methyl-CpG binding proteins and also DNA demethylase. 76 -334537 pfam01430 HSP33 Hsp33 protein. Hsp33 is a molecular chaperone, distinguished from all other known chaperones by its mode of functional regulation. Its activity is redox regulated. Hsp33 is a cytoplasmically localized protein with highly reactive cysteines that respond quickly to changes in the redox environment. Oxidising conditions like H2O2 cause disulfide bonds to form in Hsp33, a process that leads to the activation of its chaperone function. 273 -279739 pfam01431 Peptidase_M13 Peptidase family M13. Mammalian enzymes are typically type-II membrane anchored enzymes which are known, or believed to activate or inactivate oligopeptide (pro)-hormones such as opioid peptides. The family also contains a bacterial member believed to be involved with milk protein cleavage. 205 -307543 pfam01432 Peptidase_M3 Peptidase family M3. This is the Thimet oligopeptidase family, large family of mammalian and bacterial oligopeptidases that cleave medium sized peptides. The group also contains mitochondrial intermediate peptidase which is encoded by nuclear DNA but functions within the mitochondria to remove the leader sequence. 450 -334538 pfam01433 Peptidase_M1 Peptidase family M1 domain. Members of this family are aminopeptidases. The members differ widely in specificity, hydrolysing acidic, basic or neutral N-terminal residues. This family includes leukotriene-A4 hydrolase, this enzyme also has an aminopeptidase activity. 238 -307544 pfam01434 Peptidase_M41 Peptidase family M41. 210 -307545 pfam01435 Peptidase_M48 Peptidase family M48. Peptidase_M48 is the largely extracellular catalytic region of CAAX prenyl protease homologs such as Human FACE-1 protease. These are metallopeptidases, with the characteristic HExxH motif giving the two histidine-zinc-ligands and an adjacent glutamate on the next helix being the third. The whole molecule folds to form a deep groove/cleft into which the substrate can fit. 194 -279744 pfam01436 NHL NHL repeat. The NHL (NCL-1, HT2A and LIN-41) repeat is found in multiple tandem copies. It is about 40 residues long and resembles the WD repeat pfam00400. The repeats have a catalytic activity in Bos taurus PAM, proteolysis has shown that the Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activity is localized to the repeats. The E3 ubiquitin-protein ligase TRIM32 interacts with the activation domain of Tat. This interaction is me diated by the NHL repeats. 28 -334539 pfam01437 PSI Plexin repeat. A cysteine rich repeat found in several different extracellular receptors. The function of the repeat is unknown. Three copies of the repeat are found Plexin. Two copies of the repeat are found in mahogany protein. A related C. elegans protein contains four copies of the repeat. The Met receptor contains a single copy of the repeat. The Pfam alignment shows 6 conserved cysteine residues that may form three conserved disulphide bridges, whereas shows 8 conserved cysteines. The pattern of conservation suggests that cysteines 5 and 7 (that are not absolutely conserved) form a disulphide bridge (Personal observation. A Bateman). 46 -334540 pfam01439 Metallothio_2 Metallothionein. Members of this family are metallothioneins. These proteins are cysteine rich proteins that bind to heavy metals. Members of this family appear to be closest to Class II metallothioneins, seed pfam00131. 82 -279747 pfam01440 Gemini_AL2 Geminivirus AL2 protein. Geminiviruses are small, ssDNA-containing plant viruses. Geminiviruses contain three ORFs (designated AL1, AL2, and AL3) that overlap and are specified by multiple polycistronic mRNAs. The AL2 gene product transactivates expression of TGMV coat protein gene, and BR1 movement protein. 126 -307548 pfam01441 Lipoprotein_6 Lipoprotein. Members of this family are lipoproteins that are probably involved in evasion of the host immune system by pathogens. 163 -307549 pfam01442 Apolipoprotein Apolipoprotein A1/A4/E domain. These proteins contain several 22 residue repeats which form a pair of alpha helices. This family includes: Apolipoprotein A-I. Apolipoprotein A-IV. Apolipoprotein E. 170 -307550 pfam01443 Viral_helicase1 Viral (Superfamily 1) RNA helicase. Helicase activity for this family has been demonstrated and NTPase activity. This helicase has multiple roles at different stages of viral RNA replication, as dissected by mutational analysis. 226 -279751 pfam01445 SH Viral small hydrophobic protein. The SH (small hydrophobic) protein is a membrane protein of uncertain function. 57 -307551 pfam01446 Rep_1 Replication protein. Replication proteins (rep) are involved in plasmid replication. The Rep protein binds to the plasmid DNA and nicks it at the double strand origin (dso) of replication. The 3'-hydroxyl end created is extended by the host DNA replicase, and the 5' end is displaced during synthesis. At the end of one replication round, Rep introduces a second single stranded break at the dso and ligates the ssDNA extremities generating one double-stranded plasmid and one circular ssDNA form. Complementary strand synthesis of the circular ssDNA is usually initiated at the single-stranded origin by the host RNA polymerase. 237 -334541 pfam01447 Peptidase_M4 Thermolysin metallopeptidase, catalytic domain. 144 -334542 pfam01448 ELM2 ELM2 domain. The ELM2 (Egl-27 and MTA1 homology 2) domain is a small domain of unknown function. It is found in the MTA1 protein that is part of the NuRD complex. The domain is usually found to the N-terminus of a myb-like DNA binding domain pfam00249. ELM2 is also found associated with an ARID DNA binding domain pfam01388 in ARID1. This suggests that ELM2 may also be involved in DNA binding, or perhaps is a protein-protein interaction domain. 53 -334543 pfam01450 IlvC Acetohydroxy acid isomeroreductase, catalytic domain. Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. 132 -307555 pfam01451 LMWPc Low molecular weight phosphotyrosine protein phosphatase. 142 -279757 pfam01452 Rota_NSP4 Rotavirus non structural protein. This protein has been called NSP4, NSP5, NS28, and NCVP5. The final steps in the assembly of rotavirus occur in the lumen of the endoplasmic reticulum (ER). Targeting of the immature inner capsid particle (ICP) to this compartment is mediated by the cytoplasmic tail of NSP4, located in the ER membrane. 173 -334544 pfam01453 B_lectin D-mannose binding lectin. These proteins include mannose-specific lectins from plants as well as bacteriocins from bacteria. 100 -334545 pfam01454 MAGE MAGE family. The MAGE (melanoma antigen-encoding gene) family are expressed in a wide variety of tumors but not in normal cells, with the exception of the male germ cells, placenta, and, possibly, cells of the developing embryo. The cellular function of this family is unknown. This family also contains the yeast protein, Nse3. The Nse3 protein is part of the Smc5-6 complex. Nse3 has been demonstrated to be important for meiosis. 200 -334546 pfam01455 HupF_HypC HupF/HypC family. 65 -250634 pfam01456 Mucin Mucin-like glycoprotein. This family of trypanosomal proteins resemble vertebrate mucins. The protein consists of three regions. The N and C terminii are conserved between all members of the family, whereas the central region is not well conserved and contains a large number of threonine residues which can be glycosylated. Indirect evidence suggested that these genes might encode the core protein of parasite mucins, glycoproteins that were proposed to be involved in the interaction with, and invasion of, mammalian host cells. This family contains an N-terminal signal peptide. 143 -279761 pfam01457 Peptidase_M8 Leishmanolysin. 529 -334547 pfam01458 UPF0051 Uncharacterized protein family (UPF0051). 219 -334548 pfam01459 Porin_3 Eukaryotic porin. 270 -279764 pfam01462 LRRNT Leucine rich repeat N-terminal domain. Leucine Rich Repeats pfam00560 are short sequence motifs present in a number of proteins with diverse functions and cellular locations. Leucine Rich Repeats are often flanked by cysteine rich domains. This domain is often found at the N-terminus of tandem leucine rich repeats. 28 -279765 pfam01463 LRRCT Leucine rich repeat C-terminal domain. Leucine Rich Repeats pfam00560 are short sequence motifs present in a number of proteins with diverse functions and cellular locations. Leucine Rich Repeats are often flanked by cysteine rich domains. This domain is often found at the C-terminus of tandem leucine rich repeats. 26 -279766 pfam01464 SLT Transglycosylase SLT domain. This family is distantly related to pfam00062. Members are found in phages, type II, type III and type IV secretion systems. 114 -334549 pfam01465 GRIP GRIP domain. The GRIP (golgin-97, RanBP2alpha,Imh1p and p230/golgin-245) domain is found in many large coiled-coil proteins. It has been shown to be sufficient for targeting to the Golgi. The GRIP domain contains a completely conserved tyrosine residue. At least some of these domains have been shown to bind to GTPase Arl1. 44 -334550 pfam01466 Skp1 Skp1 family, dimerization domain. 48 -334551 pfam01467 CTP_transf_like Cytidylyltransferase-like. This family includes: Cholinephosphate cytidylyltransferase; glycerol-3-phosphate cytidylyltransferase. It also includes putative adenylyltransferases, and FAD synthases. 134 -279770 pfam01468 GA GA module. The GA (protein G-related Albumin-binding) module is composed of three alpha helices. This module is found in a range of bacterial cell surface proteins. The GA module from peptostreptococcal albumin-binding protein shows a strong affinity for albumin. 59 -279771 pfam01469 Pentapeptide_2 Pentapeptide repeats (8 copies). These repeats are found in many mycobacterial proteins. These repeats are most common in the pfam00823 family of proteins, where they are found in the MPTR subfamily of PPE proteins. The function of these repeats is unknown. The repeat can be approximately described as XNXGX, where X can be any amino acid. These repeats are similar to pfam00805, however it is not clear if these two families are structurally related. 39 -279772 pfam01470 Peptidase_C15 Pyroglutamyl peptidase. 203 -334552 pfam01471 PG_binding_1 Putative peptidoglycan binding domain. This domain is composed of three alpha helices. This domain is found at the N or C-terminus of a variety of enzymes involved in bacterial cell wall degradation. This domain may have a general peptidoglycan binding function. This family is found N-terminal to the catalytic domain of matrixins. The domain is found to bind peptidoglycan experimentally. 57 -279774 pfam01472 PUA PUA domain. The PUA domain named after Pseudouridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. It is predicted that the PUA domain is an RNA binding domain. 74 -307565 pfam01473 CW_binding_1 Putative cell wall binding repeat. These repeats are characterized by conserved aromatic residues and glycines are found in multiple tandem copies in a number of proteins. The CW repeat is 20 amino acid residues long. The exact domain boundaries may not be correct. It has been suggested that these repeats in Streptococcus phage Cp-1 lysozyme might be responsible for the specific recognition of choline-containing cell walls. Similar but longer repeats are found in the glucosyltransferases and glucan-binding proteins of oral streptococci and shown to be involved in glucan binding as well as in the related dextransucrases of Leuconostoc mesenteroides. Repeats also occur in toxins of Clostridium difficile and other clostridia, though the ligands are not always known. 19 -334553 pfam01474 DAHP_synth_2 Class-II DAHP synthetase family. Members of this family are aldolase enzymes that catalyze the first step of the shikimate pathway. 437 -279776 pfam01475 FUR Ferric uptake regulator family. This family includes metal ion uptake regulator proteins, that bind to the operator DNA and controls transcription of metal ion-responsive genes. This family is also known as the FUR family. 120 -334554 pfam01476 LysM LysM domain. The LysM (lysin motif) domain is about 40 residues long. It is found in a variety of enzymes involved in bacterial cell wall degradation. This domain may have a general peptidoglycan binding function. The structure of this domain is known. 43 -334555 pfam01477 PLAT PLAT/LH2 domain. This domain is found in a variety of membrane or lipid associated proteins. It is called the PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain or LH2 (Lipoxygenase homology) domain. The known structure of pancreatic lipase shows this domain binds to procolipase pfam01114, which mediates membrane association. So it appears possible that this domain mediates membrane attachment via other protein binding partners. The structure of this domain is known for many members of the family and is composed of a beta sandwich. 116 -334556 pfam01478 Peptidase_A24 Type IV leader peptidase family. Peptidase A24, or the prepilin peptidase as it is also known, processes the N-terminus of the prepilins. The processing is essential for the correct formation of the pseudopili of type IV bacterial protein secretion. The enzyme is found across eubacteria and archaea. 101 -334557 pfam01479 S4 S4 domain. The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. The S4 domain probably mediates binding to RNA. 47 -334558 pfam01480 PWI PWI domain. 70 -307571 pfam01481 Arteri_nucleo Arterivirus nucleocapsid protein. 116 -334559 pfam01483 P_proprotein Proprotein convertase P-domain. A unique feature of the eukaryotic subtilisin-like proprotein convertases is the presence of an additional highly conserved sequence of approximately 150 residues (P domain) located immediately downstream of the catalytic domain. 86 -334560 pfam01484 Col_cuticle_N Nematode cuticle collagen N-terminal domain. The function of this domain is unknown. It is found in the N-terminal region of nematode cuticle collagens, see pfam01391. Cuticle is a tough elastic structure secreted by hypodermal cells and is primarily composed of collagen proteins. 49 -307574 pfam01485 IBR IBR domain, a half RING-finger domain. The IBR (In Between Ring fingers) domain is often found to occur between pairs of ring fingers (pfam00097). This domain has also been called the C6HC domain and DRIL (for double RING finger linked) domain. Proteins that contain two Ring fingers and an IBR domain (these proteins are also termed RBR family proteins) are thought to exist in all eukaryotic organisms. RBR family members play roles in protein quality control and can indirectly regulate transcription. Evidence suggests that RBR proteins are often parts of cullin-containing ubiquitin ligase complexes. The ubiquitin ligase Parkin is an RBR family protein whose mutations are involved in forms of familial Parkinson's disease. 59 -334561 pfam01486 K-box K-box region. The K-box region is commonly found associated with SRF-type transcription factors see pfam00319. The K-box is a possible coiled-coil structure. Possible role in multimer formation. 91 -334562 pfam01487 DHquinase_I Type I 3-dehydroquinase. Type I 3-dehydroquinase, (3-dehydroquinate dehydratase or DHQase.) catalyzes the cis-dehydration of 3-dehydroquinate via a covalent imine intermediate giving dehydroshikimate. Dehydroquinase functions in the shikimate pathway which is involved in the biosynthesis of aromatic amino acids. Type II 3-dehydroquinase catalyzes the trans-dehydration of 3-dehydroshikimate see pfam01220. 225 -307577 pfam01488 Shikimate_DH Shikimate / quinate 5-dehydrogenase. This family contains both shikimate and quinate dehydrogenases. Shikimate 5-dehydrogenase catalyzes the conversion of shikimate to 5-dehydroshikimate. This reaction is part of the shikimate pathway which is involved in the biosynthesis of aromatic amino acids. Quinate 5-dehydrogenase catalyzes the conversion of quinate to 5-dehydroquinate. This reaction is part of the quinate pathway where quinic acid is exploited as a source of carbon in prokaryotes and microbial eukaryotes. Both the shikimate and quinate pathways share two common pathway metabolites 3-dehydroquinate and dehydroshikimate. 136 -279788 pfam01490 Aa_trans Transmembrane amino acid transporter protein. This transmembrane region is found in many amino acid transporters including UNC-47 and MTR. UNC-47 encodes a vesicular amino butyric acid (GABA) transporter, (VGAT). UNC-47 is predicted to have 10 transmembrane domains. MTR is a N system amino acid transporter system protein involved in methyltryptophan resistance. Other members of this family include proline transporters and amino acid permeases. 410 -334563 pfam01491 Frataxin_Cyay Frataxin-like domain. This family contains proteins that have a domain related to the globular C-terminus of Frataxin the protein that is mutated in Friedreich's ataxia. This domain is found in a family of bacterial proteins. The function of this domain is currently unknown. It has been suggested that this family is involved in iron transport. 104 -279790 pfam01492 Gemini_C4 Geminivirus C4 protein. This family consists of the N terminal region of geminivirus C4 or AC4 proteins. In Tomato yellow leaf curl geminivirus (TYLCV) the C4 protein is necessary for efficient spreading of the virus in tomato plants. 84 -334564 pfam01493 GXGXG GXGXG motif. This domain is found in glutamate synthase, tungsten formylmethanofuran dehydrogenase subunit c (FwdC) and molybdenum formylmethanofuran dehydrogenase subunit c (FmdC). A repeated G-XX-G-XXX-G motif is seen in the alignment. 190 -307580 pfam01494 FAD_binding_3 FAD binding domain. This domain is involved in FAD binding in a number of enzymes. 349 -334565 pfam01496 V_ATPase_I V-type ATPase 116kDa subunit family. This family consists of the 116kDa V-type ATPase (vacuolar (H+)-ATPases) subunits, as well as V-type ATP synthase subunit i. The V-type ATPases family are proton pumps that acidify intracellular compartments in eukaryotic cells for example yeast central vacuoles, clathrin-coated and synaptic vesicles. They have important roles in membrane trafficking processes. The 116kDa subunit (subunit a) in the V-type ATPase is part of the V0 functional domain responsible for proton transport. The a subunit is a transmembrane glycoprotein with multiple putative transmembrane helices it has a hydrophilic amino terminal and a hydrophobic carboxy terminal. It has roles in proton transport and assembly of the V-type ATPase complex. This subunit is encoded by two homologous gene in yeast VPH1 and STV1. 765 -334566 pfam01497 Peripla_BP_2 Periplasmic binding protein. This family includes bacterial periplasmic binding proteins. Several of which are involved in iron transport. 236 -307583 pfam01498 HTH_Tnp_Tc3_2 Transposase. Transposase proteins are necessary for efficient DNA transposition. This family includes the amino-terminal region of Tc1, Tc1A, Tc1B and Tc2B transposases of C.elegans. The region encompasses the specific DNA binding and second DNA recognition domains as well as an amino-terminal region of the catalytic domain of Tc3 as described in. Tc3 is a member of the Tc1/mariner family of transposable elements. 72 -279796 pfam01499 Herpes_UL25 Herpesvirus UL25 family. The herpesvirus UL25 gene product is a virion component involved in virus penetration and capsid assembly. The product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. This family includes a number of herpesvirus proteins: EHV-1 36, EBV BVRF1, HCMV UL77, ILTV ORF2, and VZV gene 34. 543 -279797 pfam01500 Keratin_B2 Keratin, high sulfur B2 protein. High sulfur proteins are cysteine-rich proteins synthesized during the differentiation of hair matrix cells, and form hair fibers in association with hair keratin intermediate filaments. This family has been divided up into four regions, with the second region containing 8 copies of a short repeat. This family is also known as B2 or KAP1. 161 -279798 pfam01501 Glyco_transf_8 Glycosyl transferase family 8. This family includes enzymes that transfer sugar residues to donor molecules. Members of this family are involved in lipopolysaccharide biosynthesis and glycogen synthesis. This family includes Lipopolysaccharide galactosyltransferase, lipopolysaccharide glucosyltransferase 1, and glycogenin glucosyltransferase. 252 -334567 pfam01502 PRA-CH Phosphoribosyl-AMP cyclohydrolase. This enzyme catalyzes the third step in the histidine biosynthetic pathway. It requires Zn ions for activity. 74 -334568 pfam01503 PRA-PH Phosphoribosyl-ATP pyrophosphohydrolase. This enzyme catalyzes the second step in the histidine biosynthetic pathway. 83 -334569 pfam01504 PIP5K Phosphatidylinositol-4-phosphate 5-Kinase. This family contains a region from the common kinase core found in the type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K) family as described in. The family consists of various type I, II and III PIP5K enzymes. PIP5K catalyzes the formation of phosphoinositol-4,5-bisphosphate via the phosphorylation of phosphatidylinositol-4-phosphate a precursor in the phosphinositide signaling pathway. 283 -334570 pfam01505 Vault Major Vault Protein repeat. The vault is a ubiquitous and highly conserved ribonucleoprotein particle of approximately 13 mDa of unknown function. This family corresponds to a repeat found in the amino terminal half of the major vault protein. 41 -307588 pfam01506 HCV_NS5a Hepatitis C virus non-structural 5a protein membrane anchor. The molecular function of the non-structural 5a protein is uncertain. The NS5a protein is phosphorylated when expressed in mammalian cells. It is thought to interact with the ds RNA dependent (interferon inducible) kinase PKR. The N-terminal region of the NS5a protein has been used in the construction of the alignment for this family. The C-terminal region has not been included because it is too heterogeneous. 23 -307589 pfam01507 PAPS_reduct Phosphoadenosine phosphosulfate reductase family. This domain is found in phosphoadenosine phosphosulfate (PAPS) reductase enzymes or PAPS sulfotransferase. PAPS reductase is part of the adenine nucleotide alpha hydrolases superfamily also including N type ATP PPases and ATP sulphurylases. The enzyme uses thioredoxin as an electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP). It is also found in NodP nodulation protein P from Rhizobium which has ATP sulfurylase activity (sulfate adenylate transferase). 173 -279805 pfam01508 Paramecium_SA Paramecium surface antigen domain. This domain is a cysteine rich extracellular repeat found in surface antigens of Paramecium. The domain contains 8 cysteine residues. 62 -334571 pfam01509 TruB_N TruB family pseudouridylate synthase (N terminal domain). Members of this family are involved in modifying bases in RNA molecules. They carry out the conversion of uracil bases to pseudouridine. This family includes TruB, a pseudouridylate synthase that specifically converts uracil 55 to pseudouridine in most tRNAs. This family also includes Cbf5p that modifies rRNA. 149 -334572 pfam01510 Amidase_2 N-acetylmuramoyl-L-alanine amidase. This family includes zinc amidases that have N-acetylmuramoyl-L-alanine amidase activity EC:3.5.1.28. This enzyme domain cleaves the amide bond between N-acetylmuramoyl and L-amino acids in bacterial cell walls (preferentially: D-lactyl-L-Ala). The structure is known for the bacteriophage T7 structure and shows that two of the conserved histidines are zinc binding. 126 -334573 pfam01512 Complex1_51K Respiratory-chain NADH dehydrogenase 51 Kd subunit. 150 -279809 pfam01513 NAD_kinase ATP-NAD kinase. Members of this family include ATP-NAD kinases EC:2.7.1.23, which catalyzes the phosphorylation of NAD to NADP utilising ATP and other nucleoside triphosphates as well as inorganic polyphosphate as a source of phosphorus. Also includes NADH kinases EC:2.7.1.86. 285 -334574 pfam01514 YscJ_FliF Secretory protein of YscJ/FliF family. This family includes proteins that are related to the YscJ lipoprotein, and the amino terminus of FliF, the flageller M-ring protein. The members of the YscJ family are thought to be involved in secretion of several proteins. The FliF protein ring is thought to be part of the export apparatus for flageller proteins, based on the similarity to YscJ proteins. 192 -279811 pfam01515 PTA_PTB Phosphate acetyl/butaryl transferase. This family contains both phosphate acetyltransferase and phosphate butaryltransferase. These enzymes catalyze the transfer of an acetyl or butaryl group to orthophosphate. 318 -279812 pfam01516 Orbi_VP6 Orbivirus helicase VP6. The VP6 protein a minor protein in the core of the virion is probably the viral helicase. 324 -279813 pfam01517 HDV_ag Hepatitis delta virus delta antigen. The hepatitis delta virus (HDV) encodes a single protein, the hepatitis delta antigen (HDAg). The central region of this protein has been shown to bind RNA. Several interactions are also mediated by a coiled-coil region at the N-terminus of the protein. 195 -250679 pfam01518 PolyG_pol Sigma NS protein. This viral protein has a poly(C)-dependent poly(G) polymerase activity. 366 -279814 pfam01519 DUF16 Protein of unknown function DUF16. The function of this protein is unknown. It appears to only occur in Mycoplasma pneumoniae. The crystal structure revealed that this domain is composed of two separated homotrimeric coiled-coils. 95 -334575 pfam01520 Amidase_3 N-acetylmuramoyl-L-alanine amidase. This enzyme domain cleaves the amide bond between N-acetylmuramoyl and L-amino acids in bacterial cell walls. 172 -334576 pfam01521 Fe-S_biosyn Iron-sulphur cluster biosynthesis. This family is involved in iron-sulphur cluster biosynthesis. Its members include proteins that are involved in nitrogen fixation such as the HesB and HesB-like proteins. 106 -334577 pfam01522 Polysacc_deac_1 Polysaccharide deacetylase. This domain is found in polysaccharide deacetylase. This family of polysaccharide deacetylases includes NodB (nodulation protein B from Rhizobium) which is a chitooligosaccharide deacetylase. It also includes chitin deacetylase from yeast, and endoxylanases which hydrolyzes glucosidic bonds in xylan. 123 -334578 pfam01523 PmbA_TldD Putative modulator of DNA gyrase. tldD and pmbA were found to suppress mutations in letD and inhibitor of DNA gyrase. Therefore it has been hypothesized that the TldD and PmbA proteins modulate the activity of DNA gyrase. It has also been suggested that PmbA may be involved in secretion. 185 -279819 pfam01524 Gemini_V2 Geminivirus V2 protein. Disruption of the V2 gene in Tomato yellow leaf curl virus (TYLCV) stopped its ability to systemically infect tomato plants, suggesting that the V2 gene product is required for successful infection of the host. 78 -144935 pfam01525 Rota_NS26 Rotavirus NS26. Gene 11 product is a non-structural phosphoprotein designated as NS26. 212 -334579 pfam01526 DDE_Tnp_Tn3 Tn3 transposase DDE domain. This family includes transposases of Tn3, Tn21, Tn1721, Tn2501, Tn3926 transposons from E-coli. The specific binding of the Tn3 transposase to DNA has been demonstrated. Sequence analysis has suggested that the invariant triad of Asp689, Asp765, Glu895 (numbering as in Tn3) may correspond to the D-D-35-E motif previously implicated in the catalysis of numerous transposases. 388 -307599 pfam01527 HTH_Tnp_1 Transposase. Transposase proteins are necessary for efficient DNA transposition. This family consists of various E. coli insertion elements and other bacterial transposases some of which are members of the IS3 family. 74 -279822 pfam01528 Herpes_glycop Herpesvirus glycoprotein M. The herpesvirus glycoprotein M (gM) is an integral membrane protein predicted to contain 8 transmembrane segments. Glycoprotein M is not essential for viral replication. 373 -334580 pfam01529 DHHC DHHC palmitoyltransferase. This entry refers to the DHHC domain, found in DHHC proteins which are palmitoyltransferases. Palmitoylation or, more specifically S-acylation, plays important roles in the regulation of protein localization, stability, and activity. It is a post-translational protein modification that involves the attachment of palmitic acid to Cys residues through a thioester linkage. Protein acyltransferases (PATs), also known as palmitoyltransferases, catalyze this reaction by transferring the palmitoyl group from palmitoyl-CoA to the thiol group of Cys residues. They are characterized by the presence of a 50-residue-long domain called the DHHC domain, which in most but not all cases is also cysteine-rich and gets its name from a highly conserved DHHC signature tetrapeptide (Asp-His-His-Cys). The Cys residue within the DHHC domain forms a stable acyl intermediate and transfers the acyl chain to the Cys residues of a target protein. Some proteins containing a DHHC domain include Drosophila DNZ1 protein, Mouse Abl-philin 2 (Aph2) protein, Mammalian ZDHHC9, Yeast ankyrin repeat-containing protein AKR1, Yeast Erf2 protein, and Arabidopsis thaliana tip growth defective 1. 132 -334581 pfam01530 zf-C2HC Zinc finger, C2HC type. This is a DNA binding zinc finger domain. 29 -250689 pfam01531 Glyco_transf_11 Glycosyl transferase family 11. This family contains several fucosyl transferase enzymes. 298 -307602 pfam01532 Glyco_hydro_47 Glycosyl hydrolase family 47. Members of this family are alpha-mannosidases that catalyze the hydrolysis of the terminal 1,2-linked alpha-D-mannose residues in the oligo-mannose oligosaccharide Man(9)(GlcNAc)(2). 453 -279826 pfam01533 Tospo_nucleocap Tospovirus nucleocapsid protein. The tospovirus genome consists of three linear ssRNA segments, denoted L, M and S complexed with the nucleocapsid protein. The S RNA encodes the nucleocapsid protein and another non-structural protein. 246 -307603 pfam01534 Frizzled Frizzled/Smoothened family membrane region. This family contains the membrane spanning region of frizzled and smoothened receptors. This membrane region is predicted to contain seven transmembrane alpha helices. Proteins related to Drosophila frizzled are receptors for Wnt (mediating the beta-catenin signalling pathway), but also the planar cell polarity (PCP) pathway and the Wnt/calcium pathway. The predominantly alpha-helical Cys-rich ligand-binding region (CRD) of Frizzled is both necessary and sufficient for Wnt binding. The smoothened receptor mediates hedgehog signalling. 311 -307604 pfam01535 PPR PPR repeat. This repeat has no known function. It is about 35 amino acids long and found in up to 18 copies in some proteins. This family appears to be greatly expanded in plants. This repeat occurs in PET309 that may be involved in RNA stabilisation. This domain occurs in crp1 that is involved in RNA processing. This repeat is associated with a predicted plant protein that has a domain organisation similar to the human BRCA1 protein. The repeat has been called PPR. 31 -307605 pfam01536 SAM_decarbox Adenosylmethionine decarboxylase. This is a family of S-adenosylmethionine decarboxylase (SAMDC) proenzymes. In the biosynthesis of polyamines SAMDC produces decarboxylated S-adenosylmethionine, which serves as the aminopropyl moiety necessary for spermidine and spermine biosynthesis from putrescine. The Pfam alignment contains both the alpha and beta chains that are cleaved to form the active enzyme. 325 -307606 pfam01537 Herpes_glycop_D Herpesvirus glycoprotein D/GG/GX domain. This domain is found in several Herpes viruses glycoproteins. This is a family includes glycoprotein-D (gD or gIV) which is common to herpes simplex virus types 1 and 2, as well as equine herpes, bovine herpes and Marek's disease virus. Glycoprotein-D has been found on the viral envelope and the plasma membrane of infected cells. and gD immunisation can produce an immune response to bovine herpes virus (BHV-1). This response is stronger than that of the other major glycoproteins gB (gI) and gC (gIII) in BHV-1. Glycoprotein G (gG)is one of the seven external glycoproteins of HSV1 and HSV2. This family also contains the glycoprotein GX, (gX), initially identified in Pseudorabies virus. 119 -201846 pfam01538 HCV_NS2 Hepatitis C virus non-structural protein NS2. The viral genome is translated into a single polyprotein of about 3000 amino acids. Generation of the mature non-structural proteins relies on the activity of viral proteases. Cleavage at the NS2/NS3 junction is accomplished by a metal-dependent autoprotease encoded within NS2 and the N-terminus of NS3. 195 -110536 pfam01539 HCV_env Hepatitis C virus envelope glycoprotein E1. 190 -110537 pfam01540 Lipoprotein_7 Adhesin lipoprotein. This family consists of the p50 and variable adherence-associated antigen (Vaa) adhesins from Mycoplasma hominis. M. hominis is a mycoplasma associated with human urogenital diseases, pneumonia, and septic arthritis. An adhesin is a cell surface molecule that mediates adhesion to other cells or to the surrounding surface or substrate. The Vaa antigen is a 50-kDa surface lipoprotein that has four tandem repetitive DNA sequences encoding a periodic peptide structure, and is highly immunogenic in the human host. p50 is also a 50-kDa lipoprotein, having three repeats A,B and C, that may be a tetramer of 191-kDa in its native environment. 353 -334582 pfam01541 GIY-YIG GIY-YIG catalytic domain. This domain called GIY-YIG is found in the amino terminal region of excinuclease abc subunit c (uvrC), bacteriophage T4 endonucleases segA, segB, segC, segD and segE; it is also found in putative endonucleases encoded by group I introns of fungi and phage. The structure of I-TevI a GIY-YIG endonuclease, reveals a novel alpha/beta-fold with a central three-stranded antiparallel beta-sheet flanked by three helices. The most conserved and putative catalytic residues are located on a shallow, concave surface and include a metal coordination site. 78 -279832 pfam01542 HCV_core Hepatitis C virus core protein. The viral core protein forms the internal viral coat that encapsidates the genomic RNA and is enveloped in a host cell-derived lipid membrane. The core protein has been shown, by yeast two-hybrid assay to interact with cellular DEAD box helicases. The N-terminus of the core protein is involved in transcriptional repression. 75 -144947 pfam01543 HCV_capsid Hepatitis C virus capsid protein. 121 -307607 pfam01544 CorA CorA-like Mg2+ transporter protein. The CorA transport system is the primary Mg2+ influx system of Salmonella typhimurium and Escherichia coli. CorA is virtually ubiquitous in the Bacteria and Archaea. There are also eukaryotic relatives of this protein. The family includes the MRS2 protein from yeast that is thought to be an RNA splicing protein. However its membership of this family suggests that its effect on splicing is due to altered magnesium levels in the cell. 292 -307608 pfam01545 Cation_efflux Cation efflux family. Members of this family are integral membrane proteins, that are found to increase tolerance to divalent metal ions such as cadmium, zinc, and cobalt. These proteins are thought to be efflux pumps that remove these ions from cells. 189 -334583 pfam01546 Peptidase_M20 Peptidase family M20/M25/M40. This family includes a range of zinc metallopeptidases belonging to several families in the peptidase classification. Family M20 are Glutamate carboxypeptidases. Peptidase family M25 contains X-His dipeptidases. 312 -334584 pfam01547 SBP_bac_1 Bacterial extracellular solute-binding protein. This family also includes the bacterial extracellular solute-binding protein family POTD/POTF. 302 -334585 pfam01548 DEDD_Tnp_IS110 Transposase. Transposase proteins are necessary for efficient DNA transposition. This family includes an amino-terminal region of the pilin gene inverting protein (PIVML) and of members of the IS111A/IS1328/IS1533 family of transposases. The C-terminus is represented by family pfam02371. 155 -279838 pfam01549 ShK ShK domain-like. This domain of is found in several C. elegans proteins. The domain is 30 amino acids long and rich in cysteine residues. There are 6 conserved cysteine positions in the domain that form three disulphide bridges. The domain is found in the potassium channel inhibitor ShK in sea anemone. 37 -334586 pfam01551 Peptidase_M23 Peptidase family M23. Members of this family are zinc metallopeptidases with a range of specificities. The peptidase family M23 is included in this family, these are Gly-Gly endopeptidases. Peptidase family M23 are also endopeptidases. This family also includes some bacterial lipoproteins for which no proteolytic activity has been demonstrated. This family also includes leukocyte cell-derived chemotaxin 2 (LECT2) proteins. LECT2 is a liver-specific protein which is thought to be linked to hepatocyte growth although the exact function of this protein is unknown. 96 -279840 pfam01552 Pico_P2B Picornavirus 2B protein. Poliovirus infection leads to drastic alterations in membrane permeability late during infection. Proteins 2B and 2BC enhance membrane permeability. 101 -279841 pfam01553 Acyltransferase Acyltransferase. This family contains acyltransferases involved in phospholipid biosynthesis and other proteins of unknown function. This family also includes tafazzin, the Barth syndrome gene. 131 -334587 pfam01554 MatE MatE. The MatE domain 161 -334588 pfam01555 N6_N4_Mtase DNA methylase. Members of this family are DNA methylases. The family contains both N-4 cytosine-specific DNA methylases and N-6 Adenine-specific DNA methylases. 221 -334589 pfam01556 DnaJ_C DnaJ C terminal domain. This family consists of the C terminal region of the DnaJ protein. It is always found associated with pfam00226 and pfam00684. DnaJ is a chaperone associated with the Hsp70 heat-shock system involved in protein folding and renaturation after stress. The two C-terminal domains CTDI and CTDII, both incorporated in this family are necessary for maintaining the J-domains in their specific relative positions. Structural analysis of Structure 1nlt shows that PF00684 is nested within this DnaJ C-terminal region. 130 -334590 pfam01557 FAA_hydrolase Fumarylacetoacetate (FAA) hydrolase family. This family consists of fumarylacetoacetate (FAA) hydrolase, or fumarylacetoacetate hydrolase (FAH) and it also includes HHDD isomerase/OPET decarboxylase from E. coli strain W. FAA is the last enzyme in the tyrosine catabolic pathway, it hydrolyzes fumarylacetoacetate into fumarate and acetoacetate which then join the citric acid cycle. Mutations in FAA cause type I tyrosinemia in humans this is an inherited disorder mainly affecting the liver leading to liver cirrhosis, hepatocellular carcinoma, renal tubular damages and neurologic crises amongst other symptoms. The enzymatic defect causes the toxic accumulation of phenylalanine/tyrosine catabolites. The E. coli W enzyme HHDD isomerase/OPET decarboxylase contains two copies of this domain and functions in fourth and fifth steps of the homoprotocatechuate pathway; here it decarboxylates OPET to HHDD and isomerises this to OHED. The final products of this pathway are pyruvic acid and succinic semialdehyde. This family also includes various hydratases and 4-oxalocrotonate decarboxylases which are involved in the bacterial meta-cleavage pathways for degradation of aromatic compounds. 2-hydroxypentadienoic acid hydratase encoded by mhpD in E. coli is involved in the phenylpropionic acid pathway of E. coli and catalyzes the conversion of 2-hydroxy pentadienoate to 4-hydroxy-2-keto-pentanoate and uses a Mn2+ co-factor. OHED hydratase encoded by hpcG in E. coli is involved in the homoprotocatechuic acid (HPC) catabolism. XylI in P. putida is a 4-Oxalocrotonate decarboxylase. 211 -334591 pfam01558 POR Pyruvate ferredoxin/flavodoxin oxidoreductase. This family includes a region of the large protein pyruvate-flavodoxin oxidoreductase and the whole pyruvate ferredoxin oxidoreductase gamma subunit protein. It is not known whether the gamma subunit has a catalytic or regulatory role. Pyruvate oxidoreductase (POR) catalyzes the final step in the fermentation of carbohydrates in anaerobic microorganisms. This involves the oxidative decarboxylation of pyruvate with the participation of thiamine followed by the transfer of an acetyl moiety to coenzyme A for the synthesis of acetyl-CoA. The family also includes pyruvate flavodoxin oxidoreductase as encoded by the nifJ gene in cyanobacterium which is required for growth on molecular nitrogen when iron is limited. 172 -334592 pfam01559 Zein Zein seed storage protein. Zeins are seed storage proteins. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats. 245 -110557 pfam01560 HCV_NS1 Hepatitis C virus non-structural protein E2/NS1. The hypervariable region of the E2/NS1 region of hepatitis C virus varies greatly between viral isolates. E2 is thought to encode a structurally unconstrained envelope protein. 344 -307617 pfam01561 Hanta_G2 Hantavirus glycoprotein G2. The medium (M) genome segment of hantaviruses (family Bunyaviridae) encodes the two virion glycoproteins. G1 and G2, as a precursor protein in the complementary sense RNA. 486 -334593 pfam01562 Pep_M12B_propep Reprolysin family propeptide. This region is the propeptide for members of peptidase family M12B. The propeptide contains a sequence motif similar to the "cysteine switch" of the matrixins. This motif is found at the C-terminus of the alignment but is not well aligned. 125 -307619 pfam01563 Alpha_E3_glycop Alphavirus E3 glycoprotein. This protein is found in some alphaviruses as a virion associated spike protein. 58 -334594 pfam01564 Spermine_synth Spermine/spermidine synthase domain. Spermine and spermidine are polyamines. This family includes spermidine synthase that catalyzes the fifth (last) step in the biosynthesis of spermidine from arginine, and spermine synthase. 179 -334595 pfam01565 FAD_binding_4 FAD binding domain. This family consists of various enzymes that use FAD as a co-factor, most of the enzymes are similar to oxygen oxidoreductase. One of the enzymes Vanillyl-alcohol oxidase (VAO) has a solved structure, the alignment includes the FAD binding site, called the PP-loop, between residues 99-110. The FAD molecule is covalently bound in the known structure, however the residue that links to the FAD is not in the alignment. VAO catalyzes the oxidation of a wide variety of substrates, ranging form aromatic amines to 4-alkylphenols. Other members of this family include D-lactate dehydrogenase, this enzyme catalyzes the conversion of D-lactate to pyruvate using FAD as a co-factor; mitomycin radical oxidase, this enzyme oxidizes the reduced form of mitomycins and is involved in mitomycin resistance. This family includes MurB an UDP-N-acetylenolpyruvoylglucosamine reductase enzyme EC:1.1.1.158. This enzyme is involved in the biosynthesis of peptidoglycan. 137 -334596 pfam01566 Nramp Natural resistance-associated macrophage protein. The natural resistance-associated macrophage protein (NRAMP) family consists of Nramp1, Nramp2, and yeast proteins Smf1 and Smf2. The NRAMP family is a novel family of functional related proteins defined by a conserved hydrophobic core of ten transmembrane domains. This family of membrane proteins are divalent cation transporters. Nramp1 is an integral membrane protein expressed exclusively in cells of the immune system and is recruited to the membrane of a phagosome upon phagocytosis. By controlling divalent cation concentrations Nramp1 may regulate the interphagosomal replication of bacteria. Mutations in Nramp1 may genetically predispose an individual to susceptibility to diseases including leprosy and tuberculosis conversely this might however provide protection form rheumatoid arthritis. Nramp2 is a multiple divalent cation transporter for Fe2+, Mn2+ and Zn2+ amongst others it is expressed at high levels in the intestine; and is major transferrin-independent iron uptake system in mammals. The yeast proteins Smf1 and Smf2 may also transport divalent cations. 355 -279853 pfam01567 Hanta_G1 Hantavirus glycoprotein G1. The medium (M) genome segment of hantaviruses (family Bunyaviridae) encodes the two virion glycoproteins. G1 and G2, as a precursor protein in the complementary sense RNA. 523 -307622 pfam01568 Molydop_binding Molydopterin dinucleotide binding domain. This domain is found in various molybdopterin - containing oxidoreductases and tungsten formylmethanofuran dehydrogenase subunit d (FwdD) and molybdenum formylmethanofuran dehydrogenase subunit (FmdD); where the domain constitutes almost the entire subunit. The formylmethanofuran dehydrogenase catalyzes the first step in methane formation from CO2 in methanogenic archaea and has a molybdopterin dinucleotide cofactor. This domain corresponds to the C-terminal domain IV in dimethyl sulfoxide (DMSO)reductase which interacts with the 2-amino pyrimidone ring of both molybdopterin guanine dinucleotide molecules. 110 -334597 pfam01569 PAP2 PAP2 superfamily. This family includes the enzyme type 2 phosphatidic acid phosphatase (PAP2), Glucose-6-phosphatase EC:3.1.3.9, Phosphatidylglycerophosphatase B EC:3.1.3.27 and bacterial acid phosphatase EC:3.1.3.2. The family also includes a variety of haloperoxidases that function by oxidising halides in the presence of hydrogen peroxide to form the corresponding hypohalous acids. 125 -307624 pfam01570 Flavi_propep Flavivirus polyprotein propeptide. The flaviviruses are small enveloped animal viruses containing a single positive strand genomic RNA. The genome encodes one large ORF a polyprotein which undergos proteolytic processing into mature viral peptide chains. This family consists of a propeptide region of approximately 90 amino acid length. 88 -307625 pfam01571 GCV_T Aminomethyltransferase folate-binding domain. This is a family of glycine cleavage T-proteins, part of the glycine cleavage multienzyme complex (GCV) found in bacteria and the mitochondria of eukaryotes. GCV catalyzes the catabolism of glycine in eukaryotes. The T-protein is an aminomethyl transferase. 254 -279858 pfam01573 Bromo_MP Bromovirus movement protein. 283 -334598 pfam01575 MaoC_dehydratas MaoC like domain. The maoC gene is part of a operon with maoA which is involved in the synthesis of monoamine oxidase. The MaoC protein is found to share similarity with a wide variety of enzymes; estradiol 17 beta-dehydrogenase 4, peroxisomal hydratase-dehydrogenase-epimerase, fatty acid synthase beta subunit. Several bacterial proteins that are composed solely of this domain have (R)-specific enoyl-CoA hydratase activity. This domain is also present in the NodN nodulation protein N. 117 -307627 pfam01576 Myosin_tail_1 Myosin tail. The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. 1081 -250716 pfam01577 Peptidase_S30 Potyvirus P1 protease. The potyviridae family positive stand RNA viruses with genome encoding a polyprotein. members include zucchini yellow mosaic virus, and turnip mosaic viruses which cause considerable losses of crops worldwide. This family consists of a C-terminus region from various plant potyvirus P1 proteins (found at the N-terminus of the polyprotein). The C-terminus of P1 is a serine-type protease responsible for autocatalytic cleavage between P1 and the helper component protease pfam00851. The entire P1 protein may be involved in virus-host interactions. 245 -307628 pfam01578 Cytochrom_C_asm Cytochrome C assembly protein. This family consists of various proteins involved in cytochrome c assembly from mitochondria and bacteria; CycK from Rhizobium, CcmC from E. coli and Paracoccus denitrificans and orf240 from wheat mitochondria. The members of this family are probably integral membrane proteins with six predicted transmembrane helices. It has been proposed that members of this family comprise a membrane component of an ABC (ATP binding cassette) transporter complex. It is also proposed that this transporter is necessary for transport of some component needed for cytochrome c assembly. One member CycK contains a putative heme-binding motif, orf240 also contains a putative heme-binding motif and is a proposed ABC transporter with c-type heme as its proposed substrate. However it seems unlikely that all members of this family transport heme nor c-type apocytochromes because CcmC in the putative CcmABC transporter transports neither. CcmF forms a working module with CcmH and CcmI, CcmFHI, and itself is unlikely to bind haem directly. 211 -334599 pfam01579 DUF19 Domain of unknown function (DUF19). This presumed domain has no known function. It is found in one or two copies in several Caenorhabditis elegans proteins. It is roughly 130 amino acids long. The domain contains 12 conserved cysteines which suggests that the domain is an extracellular domain and that these cysteines form six intradomain disulphide bridges. The GO annotation for this protein indicates that it has a function in nematode larval development and has a positive regulation of growth rate. 154 -279863 pfam01580 FtsK_SpoIIIE FtsK/SpoIIIE family. FtsK has extensive sequence similarity to wide variety of proteins from prokaryotes and plasmids, termed the FtsK/SpoIIIE family. This domain contains a putative ATP binding P-loop motif. It is found in the FtsK cell division protein from E. coli and the stage III sporulation protein E SpoIIIE which has roles in regulation of prespore specific gene expression in B. subtilis. A mutation in FtsK causes a temperature sensitive block in cell division and it is involved in peptidoglycan synthesis or modification. The SpoIIIE protein is implicated in intercellular chromosomal DNA transfer. 219 -110576 pfam01581 FARP FMRFamide related peptide family. The neuroactive peptide Phe-Met-Arg-Phe-NH2 (FMRF-amide) has a variety of effects on both mammalian and invertebrate tissues. 11 -307630 pfam01582 TIR TIR domain. The Toll/interleukin-1 receptor (TIR) homology domain is an intracellular signalling domain found in MyD88, interleukin 1 receptor and the Toll receptor. It contains three highly-conserved regions, and mediates protein-protein interactions between the Toll-like receptors (TLRs) and signal-transduction components. TIR-like motifs are also found in plant proteins thought to be involved in resistance to disease. When activated, TIR domains recruit cytoplasmic adaptor proteins MyD88 and TOLLIP (Toll interacting protein). In turn, these associate with various kinases to set off signalling cascades. 165 -307631 pfam01583 APS_kinase Adenylylsulphate kinase. Enzyme that catalyzes the phosphorylation of adenylylsulphate to 3'-phosphoadenylylsulfate. This domain contains an ATP binding P-loop motif. 154 -279866 pfam01584 CheW CheW-like domain. CheW proteins are part of the chemotaxis signaling mechanism in bacteria. CheW interacts with the methyl accepting chemotaxis proteins (MCPs) and relays signals to CheY, which affects flageller rotation. This family includes CheW and other related proteins that are involved in chemotaxis. The CheW-like regulatory domain in CheA binds to CheW, suggesting that these domains can interact with each other. 138 -334600 pfam01585 G-patch G-patch domain. This domain is found in a number of RNA binding proteins, and is also found in proteins that contain RNA binding domains. This suggests that this domain may have an RNA binding function. This domain has seven highly conserved glycines. 45 -307633 pfam01586 Basic Myogenic Basic domain. This basic domain is found in the MyoD family of muscle specific proteins that control muscle development. The bHLH region of the MyoD family includes the basic domain and the Helix-loop-helix (HLH) motif. The bHLH region mediates specific DNA binding. With 12 residues of the basic domain involved in DNA binding. The basic domain forms an extended alpha helix in the structure. 82 -279869 pfam01588 tRNA_bind Putative tRNA binding domain. This domain is found in prokaryotic methionyl-tRNA synthetases, prokaryotic phenylalanyl tRNA synthetases the yeast GU4 nucleic-binding protein (G4p1 or p42, ARC1), human tyrosyl-tRNA synthetase, and endothelial-monocyte activating polypeptide II. G4p1 binds specifically to tRNA form a complex with methionyl-tRNA synthetases. In human tyrosyl-tRNA synthetase this domain may direct tRNA to the active site of the enzyme. This domain may perform a common function in tRNA aminoacylation. 96 -279870 pfam01589 Alpha_E1_glycop Alphavirus E1 glycoprotein. E1 forms a heterodimer with E2 pfam00943. The virus spikes are made up of 80 trimers of these heterodimers (sindbis virus). 504 -334601 pfam01590 GAF GAF domain. This domain is present in cGMP-specific phosphodiesterases, adenylyl and guanylyl cyclases, phytochromes, FhlA and NifA. Adenylyl and guanylyl cyclases catalyze ATP and GTP to the second messengers cAMP and cGMP, respectively, these products up-regulating catalytic activity by binding to the regulatory GAF domain(s). The opposite hydrolysis reaction is catalyzed by phosphodiesterase. cGMP-dependent 3',5'-cyclic phosphodiesterase catalyzes the conversion of guanosine 3',5'-cyclic phosphate to guanosine 5'-phosphate. Here too, cGMP regulates catalytic activity by GAF-domain binding. Phytochromes are regulatory photoreceptors in plants and bacteria which exist in two thermally-stable states that are reversibly inter-convertible by light: the Pr state absorbs maximally in the red region of the spectrum, while the Pfr state absorbs maximally in the far-red region. This domain is also found in FhlA (formate hydrogen lyase transcriptional activator) and NifA, a transcriptional activator which is required for activation of most Nif operons which are directly involved in nitrogen fixation. NifA interacts with sigma-54. 135 -334602 pfam01591 6PF2K 6-phosphofructo-2-kinase. This enzyme occurs as a bifunctional enzyme with fructose-2,6-bisphosphatase. The bifunctional enzyme catalyzes both the synthesis and degradation of fructose-2,6-bisphosphate, a potent regulator of glycolysis. This enzyme contains a P-loop motif. 219 -334603 pfam01592 NifU_N NifU-like N terminal domain. This domain is found in NifU in combination with pfam01106. This domain is found on isolated in several bacterial species. The nif genes are responsible for nitrogen fixation. However this domain is found in bacteria that do not fix nitrogen, so it may have a broader significance in the cell than nitrogen fixation. These proteins appear to be scaffold proteins for iron-sulfur clusters. 126 -334604 pfam01593 Amino_oxidase Flavin containing amine oxidoreductase. This family consists of various amine oxidases, including maze polyamine oxidase (PAO) and various flavin containing monoamine oxidases (MAO). The aligned region includes the flavin binding site of these enzymes. The family also contains phytoene dehydrogenases and related enzymes. In vertebrates MAO plays an important role regulating the intracellular levels of amines via there oxidation; these include various neurotransmitters, neurotoxins and trace amines. In lower eukaryotes such as aspergillus and in bacteria the main role of amine oxidases is to provide a source of ammonium. PAOs in plants, bacteria and protozoa oxidase spermidine and spermine to an aminobutyral, diaminopropane and hydrogen peroxide and are involved in the catabolism of polyamines. Other members of this family include tryptophan 2-monooxygenase, putrescine oxidase, corticosteroid binding proteins and antibacterial glycoproteins. 444 -279875 pfam01594 AI-2E_transport AI-2E family transporter. This family includes four different proteins from E. coli alone. One of them, YdgG or TqsA, has been shown to mediate transport of the quorum-sensing signal autoinducer 2 (AI-2). It is not clear if TqsA enhances secretion of AI-2 or inhibits AI-2 uptake. By altering the intracellular concentration of AI-2, TqsA affects gene expression in biofilms and biofilm formation. TsqA belongs to the AI-2 exporter (AI-2E) superfamily. 327 -307637 pfam01595 DUF21 Domain of unknown function DUF21. This transmembrane region has no known function. Many of the sequences in this family are annotated as hemolysins, however this is due to a similarity to Brachyspira hyodysenteriae hemolysin C that does not contain this domain. This domain is found in the N-terminus of the proteins adjacent to two intracellular CBS domains pfam00571. 182 -307638 pfam01596 Methyltransf_3 O-methyltransferase. Members of this family are O-methyltransferases. The family includes catechol o-methyltransferase, caffeoyl-CoA O-methyltransferase and a family of bacterial O-methyltransferases that may be involved in antibiotic production. 210 -307639 pfam01597 GCV_H Glycine cleavage H-protein. This is a family of glycine cleavage H-proteins, part of the glycine cleavage multienzyme complex (GCV) found in bacteria and the mitochondria of eukaryotes. GCV catalyzes the catabolism of glycine in eukaryotes. A lipoyl group is attached to a completely conserved lysine residue. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. 122 -334605 pfam01599 Ribosomal_S27 Ribosomal protein S27a. This family of ribosomal proteins consists mainly of the 40S ribosomal protein S27a which is synthesized as a C-terminal extension of ubiquitin (CEP). The S27a domain compromises the C-terminal half of the protein. The synthesis of ribosomal proteins as extensions of ubiquitin promotes their incorporation into nascent ribosomes by a transient metabolic stabilisation and is required for efficient ribosome biogenesis. The ribosomal extension protein S27a contains a basic region that is proposed to form a zinc finger; its fusion gene is proposed as a mechanism to maintain a fixed ratio between ubiquitin necessary for degrading proteins and ribosomes a source of proteins. 43 -279880 pfam01600 Corona_S1 Coronavirus S1 glycoprotein. The coronavirus spike glycoprotein forms the characteristic 'corona' after which the group is named. The Spike glycoprotein is translated as a large polypeptide that is subsequently cleaved to S1 and S2 pfam01601. 513 -279881 pfam01601 Corona_S2 Coronavirus S2 glycoprotein. The coronavirus spike glycoprotein forms the characteristic 'corona' after which the group is named. The Spike glycoprotein is translated as a large polypeptide that is subsequently cleaved to S1 pfam01600 and S2. 601 -307641 pfam01602 Adaptin_N Adaptin N terminal region. This family consists of the N terminal region of various alpha, beta and gamma subunits of the AP-1, AP-2 and AP-3 adaptor protein complexes. The adaptor protein (AP) complexes are involved in the formation of clathrin-coated pits and vesicles. The N-terminal region of the various adaptor proteins (APs) is constant by comparison to the C-terminal which is variable within members of the AP-2 family; and it has been proposed that this constant region interacts with another uniform component of the coated vesicles. 523 -334606 pfam01603 B56 Protein phosphatase 2A regulatory B subunit (B56 family). Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. The ability of this widely distributed heterotrimeric enzyme to act on a diverse array of substrates is largely controlled by the nature of its regulatory B subunit. There are multiple families of B subunits (See also pfam01240), this family is called the B56 family. 405 -250739 pfam01606 Arteri_env Arterivirus envelope protein. This family consists of viral envelope proteins from the arterivirus genus; this includes porcine reproductive and respiratory virus (PRRSV) envelope protein GP3 and lactate dehydrogenase elevating virus (LDV) structural glycoprotein. Arteriviruses consists of positive ssRNA and do not have a DNA stage. 211 -307643 pfam01607 CBM_14 Chitin binding Peritrophin-A domain. This domain is called the Peritrophin-A domain and is found in chitin binding proteins particularly peritrophic matrix proteins of insects and animal chitinases. Copies of the domain are also found in some baculoviruses. Relevant references that describe proteins with this domain include. It is an extracellular domain that contains six conserved cysteines that probably form three disulphide bridges. Chitin binding has been demonstrated for a protein containing only two of these domains. 53 -334607 pfam01608 I_LWEQ I/LWEQ domain. I/LWEQ domains bind to actin. It has been shown that the I/LWEQ domains from mouse talin and yeast Sla2p interact with F-actin. I/LWEQ domains can be placed into four major groups based on sequence similarity: (1) Metazoan talin; (2) Dictyostelium TalA/TalB and SLA110; (3) metazoan Hip1p and (4) yeast Sla2p. The domain has four conserved blocks, the name of the domain is derived from the initial conserved amino acid of each of the four blocks. 147 -334608 pfam01609 DDE_Tnp_1 Transposase DDE domain. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. This family contains transposases for IS4, IS421, IS5377, IS427, IS402, IS1355, IS5, which was original isolated in bacteriophage lambda. 190 -334609 pfam01610 DDE_Tnp_ISL3 Transposase. Transposase proteins are necessary for efficient DNA transposition. Contains transposases for IS204, IS1001, IS1096 and IS1165. 240 -279888 pfam01611 Filo_glycop Filovirus glycoprotein. This family includes an extracellular region from the envelope glycoprotein of Ebola and Marburg viruses. This region is also produced as a separate transcript that gives rise to a non-structural, secreted glycoprotein, which is produced in large amounts and has an unknown function. Processing of this protein may be involved in viral pathogenicity. 395 -334610 pfam01612 DNA_pol_A_exo1 3'-5' exonuclease. This domain is responsible for the 3'-5' exonuclease proofreading activity of E. coli DNA polymerase I (polI) and other enzymes, it catalyzes the hydrolysis of unpaired or mismatched nucleotides. This domain consists of the amino-terminal half of the Klenow fragment in E. coli polI it is also found in the Werner syndrome helicase (WRN), focus forming activity 1 protein (FFA-1) and ribonuclease D (RNase D). Werner syndrome is a human genetic disorder causing premature aging; the WRN protein has helicase activity in the 3'-5' direction. The FFA-1 protein is required for formation of a replication foci and also has helicase activity; it is a homolog of the WRN protein. RNase D is a 3'-5' exonuclease involved in tRNA processing. Also found in this family is the autoantigen PM/Scl thought to be involved in polymyositis-scleroderma overlap syndrome. 173 -307648 pfam01613 Flavin_Reduct Flavin reductase like domain. This is a flavin reductase family consisting of enzymes known to be flavin reductases as well as various oxidoreductase and monooxygenase components. VlmR is a flavin reductase that functions in a two-component enzyme system to provide isobutylamine N-hydroxylase with reduced flavin and may be involved in the synthesis of valanimycin. SnaC is a flavin reductase that provides reduced flavin for the oxidation of pristinamycin IIB to pristinamycin IIA as catalyzed by SnaA, SnaB heterodimer. This flavin reductase region characterized by enzymes of the family is present in the C-terminus of potential FMN proteins from Synechocystis sp. suggesting it is a flavin reductase domain. 151 -334611 pfam01614 IclR Bacterial transcriptional regulator. This family of bacterial transcriptional regulators includes the glycerol operon regulatory protein and acetate operon repressor both of which are members of the iclR family. These proteins have a Helix-Turn-Helix motif at the N-terminus. However this family covers the C-terminal region that may bind to the regulatory substrate (unpublished observation, Bateman A.). 129 -279892 pfam01616 Orbi_NS3 Orbivirus NS3. The function of this Orbivirus non structural protein is uncertain. However it may play a role on release of the virus from infected cells. 193 -307650 pfam01617 Surface_Ag_2 Surface antigen. This family includes a number of bacterial surface antigens expressed on the surface of pathogens. 247 -334612 pfam01618 MotA_ExbB MotA/TolQ/ExbB proton channel family. This family groups together integral membrane proteins that appear to be involved translocation of proteins across a membrane. These proteins are probably proton channels. MotA is an essential component of the flageller motor that uses a proton gradient to generate rotational motion in the flageller. ExbB is part of the TonB-dependent transduction complex. The TonB complex uses the proton gradient across the inner bacterial membrane to transport large molecules across the outer bacterial membrane. 118 -334613 pfam01619 Pro_dh Proline dehydrogenase. 296 -279896 pfam01620 Pollen_allerg_2 Ribonuclease (pollen allergen). This family contains grass pollen proteins of group V. Phleum pratense pollen allergen Phl p 5b has been shown to possess ribonuclease activity. 161 -279897 pfam01621 Fusion_gly_K Cell fusion glycoprotein K. This protein is probably an integral membrane bound glycoprotein that is involved in viral fusion with the host cell. 339 -250753 pfam01623 Carla_C4 Carlavirus putative nucleic acid binding protein. This family of carlavirus nucleic acid binding proteins includes a motif for a potential C-4 type zinc finger this has four highly conserved cysteine residues and is a conserved feature of the carlaviruses 3' terminal ORF. These proteins may function as viral transcriptional regulators. The carlavirus family includes garlic latent virus and potato virus S and M, these viruses are positive strand, ssRNA with no DNA stage. 91 -307653 pfam01624 MutS_I MutS domain I. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam00488, pfam05188, pfam05192 and pfam05190. The MutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. The aligned region corresponds with globular domain I, which is involved in DNA binding, in Thermus aquaticus MutS as characterized in. 113 -334614 pfam01625 PMSR Peptide methionine sulfoxide reductase. This enzyme repairs damaged proteins. Methionine sulfoxide in proteins is reduced to methionine. 147 -334615 pfam01627 Hpt Hpt domain. The histidine-containing phosphotransfer (HPt) domain is a novel protein module with an active histidine residue that mediates phosphotransfer reactions in the two-component signaling systems. A multistep phosphorelay involving the HPt domain has been suggested for these signaling pathways. The crystal structure of the HPt domain of the anaerobic sensor kinase ArcB has been determined. The domain consists of six alpha helices containing a four-helix bundle-folding. The pattern of sequence similarity of the HPt domains of ArcB and components in other signaling systems can be interpreted in light of the three-dimensional structure and supports the conclusion that the HPt domains have a common structural motif both in prokaryotes and eukaryotes. In S. cerevisiae ypd1p this domain has been shown to contain a binding surface for Ssk1p (response regulator receiver domain containing protein pfam00072). 83 -334616 pfam01628 HrcA HrcA protein C terminal domain. HrcA is found to negatively regulate the transcription of heat shock genes. HrcA contains an amino terminal helix-turn-helix domain, however this corresponds to the carboxy terminal domain. 220 -307657 pfam01629 DUF22 Domain of unknown function DUF22. This domain is found in 1 to 3 copies in archaebacterial proteins. The function of the domain is unknown. This family appears to be expanded in Archaeoglobus fulgidus. 106 -307658 pfam01630 Glyco_hydro_56 Hyaluronidase. 327 -334617 pfam01632 Ribosomal_L35p Ribosomal protein L35. 57 -307660 pfam01633 Choline_kinase Choline/ethanolamine kinase. Choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine by the CDP-choline pathway. This alignment covers the protein kinase portion of the protein. The divergence of this family makes it very difficult to create a model that specifically predicts choline/ethanolamine kinases only. However if pfam01633 is also present then it is definitely a member of this family. 211 -334618 pfam01634 HisG ATP phosphoribosyltransferase. 151 -279907 pfam01635 Corona_M Coronavirus M matrix/glycoprotein. This family consists of various coronavirus matrix proteins which are transmembrane glycoproteins. The M protein or E1 glycoprotein is The coronavirus M protein is implicated in virus assembly. The E1 viral membrane protein is required for formation of the viral envelope and is transported via the Golgi complex. 220 -279908 pfam01636 APH Phosphotransferase enzyme family. This family consists of bacterial antibiotic resistance proteins, which confer resistance to various aminoglycosides they include: aminoglycoside 3'-phosphotransferase or kanamycin kinase / neomycin-kanamycin phosphotransferase and streptomycin 3''-kinase or streptomycin 3''-phosphotransferase. The aminoglycoside phosphotransferases inactivate aminoglycoside antibiotics via phosphorylation. This family also includes homoserine kinase. This family is related to fructosamine kinase pfam03881. 239 -307662 pfam01637 ATPase_2 ATPase domain predominantly from Archaea. This family contain a conserved P-loop motif that is involved in binding ATP. There are eukaryote members as well as archaeal members in this family. 224 -334619 pfam01638 HxlR HxlR-like helix-turn-helix. HxlR, a member of this family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis. 91 -279910 pfam01639 v110 Viral family 110. This family of viral proteins is known as the 110 family. The function of members of this family is unknown. The family contains a central cysteine rich region with eight conserved cysteines. Some members of the family contains two copies of the cysteine rich region. 102 -334620 pfam01640 Peptidase_C10 Peptidase C10 family. This family represents just the active peptide part of these proteins. Residues 1-120 are not part of the model as they form the pro-peptide, which before cleavage blocks the active site from the substrate. The catalytic residues of histidine and cysteine are brought close together at the active site by the folding of the active peptide. 186 -334621 pfam01641 SelR SelR domain. Methionine sulfoxide reduction is an important process, by which cells regulate biological processes and cope with oxidative stress. MsrA, a protein involved in the reduction of methionine sulfoxides in proteins, has been known for four decades and has been extensively characterized with respect to structure and function. However, recent studies revealed that MsrA is only specific for methionine-S-sulfoxides. Because oxidized methionines occur in a mixture of R and S isomers in vivo, it was unclear how stereo-specific MsrA could be responsible for the reduction of all protein methionine sulfoxides. It appears that a second methionine sulfoxide reductase, SelR, evolved that is specific for methionine-R-sulfoxides, the activity that is different but complementary to that of MsrA. Thus, these proteins, working together, could reduce both stereoisomers of methionine sulfoxide. This domain is found both in SelR proteins and fused with the peptide methionine sulfoxide reductase enzymatic domain pfam01625. The domain has two conserved cysteine and histidines. The domain binds both selenium and zinc. The final cysteine is found to be replaced by the rare amino acid selenocysteine in some members of the family. This family has methionine-R-sulfoxide reductase activity. 120 -334622 pfam01642 MM_CoA_mutase Methylmalonyl-CoA mutase. The enzyme methylmalonyl-CoA mutase is a member of a class of enzymes that uses coenzyme B12 (adenosylcobalamin) as a cofactor. The enzyme induces the formation of an adenosyl radical from the cofactor. This radical then initiates a free-radical rearrangement of its substrate, succinyl-CoA, to methylmalonyl-CoA. 511 -307666 pfam01643 Acyl-ACP_TE Acyl-ACP thioesterase. This family consists of various acyl-acyl carrier protein (ACP) thioesterases (TE) these terminate fatty acyl group extension via hydrolysing an acyl group on a fatty acid. 245 -334623 pfam01644 Chitin_synth_1 Chitin synthase. This region is found commonly in chitin synthases classes I, II and III. Chitin a linear homopolymer of GlcNAc residues, it is an important component of the cell wall of fungi and is synthesized on the cytoplasmic surface of the cell membrane by membrane bound chitin synthases. 163 -279916 pfam01645 Glu_synthase Conserved region in glutamate synthase. This family represents a region of the glutamate synthase protein. This region is expressed as a separate subunit in the glutamate synthase alpha subunit from archaebacteria, or part of a large multidomain enzyme in other organisms. The aligned region of these proteins contains a putative FMN binding site and Fe-S cluster. 367 -307668 pfam01646 Herpes_UL24 Herpes virus proteins UL24 and UL76. This family consists of various herpes virus proteins; the gene 20 product, U49 protein, UL24 and UL76 proteins and BXRF1. The UL24 gene (product of the 24th ORF) is not essential for virus replication, and mutants with lesions in UL24 show a reduced ability to replicate in tissue culture and have reduced thymidine kinase activity, as the UL24 gene overlaps with thymidine kinase. The family of proteins is involved in viral production, latency, and reactivation. Protein UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems. UL76 interacts with the VWA domain of S5a, the 26S proteasome non-ATPase regulatory subunit 4 (or PSMD4, or Rpn10), forming a complex in the late phase of infection. 176 -334624 pfam01648 ACPS 4'-phosphopantetheinyl transferase superfamily. Members of this family transfers the 4'-phosphopantetheine (4'-PP) moiety from coenzyme A (CoA) to the invariant serine of pfam00550. This post-translational modification renders holo-ACP capable of acyl group activation via thioesterification of the cysteamine thiol of 4'-PP. This superfamily consists of two subtypes: The ACPS type and the Sfp type. The structure of the Sfp type is known, which shows the active site accommodates a magnesium ion. The most highly conserved regions of the alignment are involved in binding the magnesium ion. 104 -334625 pfam01649 Ribosomal_S20p Ribosomal protein S20. Bacterial ribosomal protein S20 interacts with 16S rRNA. 82 -307671 pfam01650 Peptidase_C13 Peptidase C13 family. Members of this family are asparaginyl peptidases. The blood fluke parasite Schistosoma mansoni has at least five Clan CA cysteine peptidases in its digestive tract including cathepsins B (2 isoforms), C, F and L. All have been recombinantly expressed as active enzymes, albeit in various stages of activation. In addition, a Clan CD peptidase, termed asparaginyl endopeptidase or 'legumain' has been identified. This has formerly been characterized as a 'haemoglobinase', but this term is probably incorrect. Two cDNAs have been described for Schistosoma mansoni legumain; one encodes an active enzyme whereas the active site cysteine residue encoded by the second cDNA is substituted by an asparagine residue. Both forms have been recombinantly expressed. 257 -334626 pfam01652 IF4E Eukaryotic initiation factor 4E. 158 -307673 pfam01653 DNA_ligase_aden NAD-dependent DNA ligase adenylation domain. DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilising either ATP or NAD(+) as a cofactor. This domain is the catalytic adenylation domain. The NAD+ group is covalently attached to this domain at the lysine in the KXDG motif of this domain. This enzyme- adenylate intermediate is an important feature of the proposed catalytic mechanism. 317 -334627 pfam01654 Cyt_bd_oxida_I Cytochrome bd terminal oxidase subunit I. This family are the alternative oxidases found in many bacteria which oxidize ubiquinol and reduce oxygen as part of the electron transport chain. This family is the subunit I of the oxidase E. coli has two copies of the oxidase, bo and bd', both of which are represented here In some nitrogen fixing bacteria, e.g. Klebsiella pneumoniae this oxidase is responsible for removing oxygen in microaerobic conditions, making the oxidase required for nitrogen fixation. This subunit binds a single b-haem, through ligands at His186 and Met393 (using SW:P11026 numbering). In addition His19 is a ligand for the haem b found in subunit II 426 -334628 pfam01655 Ribosomal_L32e Ribosomal protein L32. This family includes ribosomal protein L32 from eukaryotes and archaebacteria. 108 -334629 pfam01656 CbiA CobQ/CobB/MinD/ParA nucleotide binding domain. This family consists of various cobyrinic acid a,c-diamide synthases. These include CbiA and CbiP from S.typhimurium, and CobQ from R. capsulatus. These amidases catalyze amidations to various side chains of hydrogenobyrinic acid or cobyrinic acid a,c-diamide in the biosynthesis of cobalamin (vitamin B12) from uroporphyrinogen III. Vitamin B12 is an important cofactor and an essential nutrient for many plants and animals and is primarily produced by bacteria. The family also contains dethiobiotin synthetases as well as the plasmid partitioning proteins of the MinD/ParA family. 228 -334630 pfam01657 Stress-antifung Salt stress response/antifungal. This domain is often found in association with the kinase domains pfam00069 or pfam07714. In many proteins it is duplicated. It contains six conserved cysteines which are involved in disulphide bridges. It has a role in salt stress response and has antifungal activity. 92 -334631 pfam01658 Inos-1-P_synth Myo-inositol-1-phosphate synthase. This is a family of myo-inositol-1-phosphate synthases. Inositol-1-phosphate catalyzes the conversion of glucose-6- phosphate to inositol-1-phosphate, which is then dephosphorylated to inositol. Inositol phosphates play an important role in signal transduction. 107 -279928 pfam01659 Luteo_Vpg Luteovirus putative VPg genome linked protein. This family consists of several putative genome linked proteins. The genomic RNA of luteoviruses are linked to virally encoded genome proteins (VPg). Open reading frame 4 is thought to encode the VPg in Soybean dwarf luteovirus. Luteoviruses have isometric capsids that contain a positive stand ssRNA genome, they have no DNA stage during their replication. 105 -307679 pfam01660 Vmethyltransf Viral methyltransferase. This RNA methyltransferase domain is found in a wide range of ssRNA viruses, including Hordei-, Tobra-, Tobamo-, Bromo-, Clostero- and Caliciviruses. This methyltransferase is involved in mRNA capping. Capping of mRNA enhances its stability. This usually occurs in the nucleus. Therefore, many viruses that replicate in the cytoplasm encode their own. This is a specific guanine-7-methyltransferase domain involved in viral mRNA cap0 synthesis. Specificity for guanine 7 position is shown by NMR in and in vivo role in cap synthesis. Based on secondary structure prediction, the basic fold is believed to be similar to the common AdoMet-dependent methyltransferase fold. A curious feature of this methyltransferase domain is that it together with flanking sequences seems to have guanylyltransferase activity coupled to the methyltransferase activity. The domain is found throughout the so-called Alphavirus superfamily, (including alphaviruses and several other groups). It forms the defining, unique feature of this superfamily. 305 -307680 pfam01661 Macro Macro domain. This domain is an ADP-ribose binding module. It is found in a number of otherwise unrelated proteins. It is found at the C-terminus of the macro-H2A histone protein. This domain is found in the non-structural proteins of several types of ssRNA viruses such as NSP3 from alphaviruses. This domain is also found on its own in a family of proteins from bacteria, archaebacteria and eukaryotes. 116 -334632 pfam01663 Phosphodiest Type I phosphodiesterase / nucleotide pyrophosphatase. This family consists of phosphodiesterases, including human plasma-cell membrane glycoprotein PC-1 / alkaline phosphodiesterase i / nucleotide pyrophosphatase (nppase). These enzymes catalyze the cleavage of phosphodiester and phosphosulfate bonds in NAD, deoxynucleotides and nucleotide sugars. Also in this family is ATX an autotaxin, tumor cell motility-stimulating protein which exhibits type I phosphodiesterases activity. The alignment encompasses the active site. Also present with in this family is 60-kDa Ca2+-ATPase form F. odoratum. 346 -307682 pfam01664 Reo_sigma1 Reovirus viral attachment protein sigma 1. This family consists of the reovirus sigma 1 hemagglutinin, cell attachment protein. This glycoprotein is a minor capsid protein and also determines the serotype-specific humoral immune response. Sigma 1 consist of a fibrous tail and a globular head. The head has important roles in the cell attachment function of sigma 1 and determinant of the type-specific humoral immune response. Reovirus is part of the orthoreovirus group of retroviruses with, a dsRNA genome. Also present in this family is bacteriophage SF6 Lysozyme. 219 -279933 pfam01665 Rota_NSP3 Rotavirus non-structural protein NSP3. This family consist of rotaviral non-structural RNA binding protein 34 (NS34 or NSP3). The NSP3 protein has been shown to bind viral RNA. The NSP3 protein consists of 3 conserved functional domains; a basic region which binds ssRNA, a region containing heptapeptide repeats mediating oligomerization and a leucine zipper motif. NSP3 may play a central role in replication and assembly of genomic RNA structures. Rotaviruses have a dsRNA genome and are a major cause cause of acute gastroenteritis in the young of many species. The rotavirus non-structural protein NSP3 is a sequence-specific RNA binding protein that binds the nonpolyadenylated 3' end of the rotavirus mRNAs. NSP3 also interacts with the translation initiation factor eIF4GI and competes with the poly(A) binding protein. 311 -307683 pfam01666 DX DX module. This domain has no known function. It is found in several C. elegans proteins. The domain contains 6 conserved cysteines that probably form three disulphide bridges. 76 -279935 pfam01667 Ribosomal_S27e Ribosomal protein S27. 55 -334633 pfam01668 SmpB SmpB protein. 142 -307685 pfam01669 Myelin_MBP Myelin basic protein. 147 -307686 pfam01670 Glyco_hydro_12 Glycosyl hydrolase family 12. 207 -279939 pfam01671 ASFV_360 African swine fever virus multigene family 360 protein. The multigene family 360 protein are found within the African swine fever virus (ASF) genome which consist of dsDNA and has similar structural features to the poxyviruses. The biological function of this family is not known. Although African swine fever virus Protein MGF 360-9L is a major structural protein. 215 -307687 pfam01672 Plasmid_parti Putative plasmid partition protein. This family consists of conserved hypothetical proteins from Borrelia burgdorferi the lyme disease spirochaete, some of which are putative plasmid partition proteins. 85 -279941 pfam01673 Herpes_env Herpesvirus putative major envelope glycoprotein. This family consists of probable major envelope glycoproteins from members of the herpesviridae including herpes simplex virus, human cytomegalovirus and varicella-zoster virus. Members of the herpesviridae have a dsDNA genome and do not have a RNA stage during there replication. 526 -334634 pfam01674 Lipase_2 Lipase (class 2). This family consists of hypothetical C. elegans proteins and lipases. Lipases or triacylglycerol acylhydrolases hydrolyze ester bonds in triacylglycerol giving diacylglycerol, monoacylglycerol, glycerol and free fatty acids. Lipase EstA is a extracellular lipase from B. subtilis 168. 218 -307688 pfam01676 Metalloenzyme Metalloenzyme superfamily. This family includes phosphopentomutase and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. This family is also related to pfam00245. The alignment contains the most conserved residues that are probably involved in metal binding and catalysis. 422 -279943 pfam01677 Herpes_UL7 Herpesvirus UL7 like. This family consists of various functionally undefined proteins from the herpesviridae and UL7 from bovine herpes virus. UL7 is not essential for virus replication in cell culture, and is found localized in the cytoplasm of infected cells accumulated around the nucleus but could not be detected in purified virions. Members of the herpesviridae have a dsDNA genome and do not have a RNA stage during there replication. 213 -307689 pfam01678 DAP_epimerase Diaminopimelate epimerase. Diaminopimelate epimerase contains two domains of the same alpha/beta fold, both contained in this family. 119 -334635 pfam01679 Pmp3 Proteolipid membrane potential modulator. Pmp3 is an evolutionarily conserved proteolipid in the plasma membrane which, in S. pombe, is transcriptionally regulated by the Spc1 stress MAPK (mitogen-activated protein kinases) pathway. It functions to modulate the membrane potential, particularly to resist high cellular cation concentration. In eukaryotic organisms, stress-activated mitogen-activated protein kinases play crucial roles in transmitting environmental signals that will regulate gene expression for allowing the cell to adapt to cellular stress. Pmp3-like proteins are highly conserved in bacteria, yeast, nematode and plants. 49 -307691 pfam01680 SOR_SNZ SOR/SNZ family. Members of this family are enzymes involved in a new pathway of pyridoxine/pyridoxal 5-phosphate biosynthesis. This family was formerly known as UPF0019. 204 -307692 pfam01681 C6 C6 domain. This domain of unknown function is found in a hypothetical C. elegans protein. It is presumed to be an extracellular domain. The C6 domain contains six conserved cysteine residues in most copies of the domain. However some copies of the domain are missing cysteine residues 1 and 3 suggesting that these form a disulphide bridge. 89 -334636 pfam01682 DB DB module. This domain has no known function. It is found in several C. elegans proteins. The domain contains 12 conserved cysteines that probably form six disulphide bridges. This domain is found associated with ig pfam00047 and fn3 pfam00041 domains, as well as in some lipases pfam00657. 95 -334637 pfam01683 EB EB module. This domain has no known function. It is found in several C. elegans proteins. The domain contains 8 conserved cysteines that probably form four disulphide bridges. This domain is found associated with kunitz domains pfam00014. 52 -307695 pfam01684 ET ET module. This domain has no known function. It is found in several C. elegans proteins. The domain contains 8-10 conserved cysteines that probably form 4-5 disulphide bridges. By inspection of the conservation of cysteines it looks like cysteines 1,2,3,4,9 and 10 are always present and that sometimes the pair 5 and 8 or the pair 6 and 7 are missing. This suggests that cysteines 5/8 and 6/7 make disulphide bridges. 78 -279951 pfam01686 Adeno_Penton_B Adenovirus penton base protein. This family consists of various adenovirus penton base proteins, from both the Mastadenoviradae having mammalian hosts and the Aviadenoviradae having avian hosts. The penton base is a major structural protein forming part of the penton which consists of a base and a fibre, the pentons hold a morphologically prominent position at the vertex capsomer in the adenovirus particle. In mammalian adenovirus there is only one tail on each base where as in avian adenovirus there are two. 450 -334638 pfam01687 Flavokinase Riboflavin kinase. This family represents the C-terminal region of the bifunctional riboflavin biosynthesis protein known as RibC in Bacillus subtilis. The RibC protein from Bacillus subtilis has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism. This domain is thought to have kinase activity. 122 -279953 pfam01688 Herpes_gI Alphaherpesvirus glycoprotein I. This family consists of glycoprotein I form various members of the alphaherpesvirinae these include herpesvirus, varicella-zoster virus and pseudorabies virus. Glycoprotein I (gI) is important during natural infection, mutants lacking gI produce smaller lesions at the site of infection and show reduced neuronal spread. gI forms a heterodimeric complex with gE; this complex displays Fc receptor activity (binds to the Fc region of immunoglobulin). Glycoproteins are also important in the production of virus-neutralising antibodies and cell mediated immunity. The alphaherpesvirinae have a dsDNA gnome and have no RNA stage during viral replication. 155 -279954 pfam01690 PLRV_ORF5 Potato leaf roll virus readthrough protein. This family consists mainly of the potato leaf roll virus readthrough protein. This is generated via a readthrough of open reading frame 3 a coat protein allowing transcription of open reading frame 5 to give an extended coat protein with a large c-terminal addition or read through domain. The readthrough protein is thought to play a role in the circulative aphid transmission of potato leaf roll virus. Also in the family is open reading frame 6 from beet western yellows virus and potato leaf roll virus both luteovirus and an unknown protein from cucurbit aphid-borne yellows virus a closterovirus. 524 -279955 pfam01691 Adeno_E1B_19K Adenovirus E1B 19K protein / small t-antigen. This family consists of adenovirus E1B 19K protein or small t-antigen. The E1B 19K protein inhibits E1A induced apoptosis and hence prolongs the viability of the host cell. It can also inhibit apoptosis mediated by tumor necrosis factor alpha and Fas antigen. E1B 19K blocks apoptosis by interacting with and inhibiting the p53-inducible and death- promoting Bax protein. The E1B region of adenovirus encodes two proteins E1B 19K the small t-antigen as found in this family and E1B 55K the large t-antigen which is not found in this family; both of these proteins inhibit E1A induced apoptosis. 135 -279956 pfam01692 Paramyxo_C Paramyxovirus non-structural protein C. This family consist of the C proteins (C', C, Y1, Y2) found in Paramyxovirinae; human parainfluenza, and sendai virus. The C proteins effect viral RNA synthesis having both a positive and negative effect during the course of infection. Paramyxovirus have a negative strand ssRNA genome of 15.3kb form which six mRNAs are transcribed, five of these are monocistronic. The P/C mRNA is polycistronic and has two overlapping open reading frames P and C, C encodes the nested C proteins C', C, Y1 and Y2. 204 -334639 pfam01693 Cauli_VI Caulimovirus viroplasmin. This family consists of various caulimovirus viroplasmin proteins. The viroplasmin protein is encoded by gene VI and is the main component of viral inclusion bodies or viroplasms. Inclusions are the site of viral assembly, DNA synthesis and accumulation. Two domains exist within gene VI corresponding approximately to the 5' third and middle third of gene VI, these influence systemic infection in a light-dependent manner. 44 -334640 pfam01694 Rhomboid Rhomboid family. This family contains integral membrane proteins that are related to Drosophila rhomboid protein. Members of this family are found in bacteria and eukaryotes. Rhomboid promotes the cleavage of the membrane-anchored TGF-alpha-like growth factor Spitz, allowing it to activate the Drosophila EGF receptor. Analysis has shown that Rhomboid-1 is an intramembrane serine protease (EC:3.4.21.105). Parasite-encoded rhomboid enzymes are also important for invasion of host cells by Toxoplasma and the malaria parasite. 146 -334641 pfam01695 IstB_IS21 IstB-like ATP binding protein. This protein contains an ATP/GTP binding P-loop motif. It is found associated with IS21 family insertion sequences. The function of this protein is unknown, but it may perform a transposase function. 176 -307700 pfam01696 Adeno_E1B_55K Adenovirus EB1 55K protein / large t-antigen. This family consists of adenovirus E1B 55K protein or large t-antigen. E1B 55K binds p53 the tumor suppressor protein converting it from a transcriptional activator which responds to damaged DNA in to an unregulated repressor of genes with a p53 binding site. This protects the virus against p53 induced host antiviral responses and prevents apoptosis as induced by the adenovirus E1A protein. The E1B region of adenovirus encodes two proteins E1B 55K the large t-antigen as found in this family and E1B 19K pfam01691 the small t-antigen which is not found in this family; both of these proteins inhibit E1A induced apoptosis. This family shows distant similarities to the pectate lyase superfamily. 387 -307701 pfam01697 Glyco_transf_92 Glycosyltransferase family 92. Members of this family act as galactosyltransferases, belonging to glycosyltransferase family 92. The aligned region contains several conserved cysteine residues and several charged residues that may be catalytic residues. This is supported by the inclusion of this family in the GT-A glycosyl transferase superfamily. 250 -334642 pfam01698 LFY_SAM Floricaula / Leafy protein SAM domain. This family consists of various plant development proteins which are homologs of floricaula (FLO) and Leafy (LFY) proteins which are floral meristem identity proteins. Mutations in the sequences of these proteins affect flower and leaf development. LFY proteins have been shown to binds semi-palindromic 19-bp DNA elements through its highly conserved C-terminal DBD. In addition to its well-characterized DBD, LFY possesses a second conserved domain at its amino terminus (LFY-N). This entry represents the SAM domain found in N -terminal of LFY proteins in plants. Crystallographic structure determination of LFY-N shows that LFY-N is a Sterile Alpha Motif (SAM) domain that mediates LFY oligomerization. It allows LFY to bind to regions lacking high-affinity LFYbs (LFY-binding sites) and confers on LFY the ability to access closed chromatin regions. Experiments carried out in plants, revealed that altering the capacity of LFY to oligomerize compromised its floral function and drastically reduced its genome-wide DNA binding. SAM oligomerization has been suggested to have a profound effect on a TF binding landscape by promoting cooperative binding of LFY to DNA, as was proposed for other oligomeric TFs, and it gives LFY access to closed chromatin regions that are notably refractory to TF binding. It has also been suggested that the biochemical properties of the SAM domain are evolutionary conserved in all plant species. 80 -334643 pfam01699 Na_Ca_ex Sodium/calcium exchanger protein. This is a family of sodium/calcium exchanger integral membrane proteins. This family covers the integral membrane regions of the proteins. Sodium/calcium exchangers regulate intracellular Ca2+ concentrations in many cells; cardiac myocytes, epithelial cells, neurons retinal rod photoreceptors and smooth muscle cells. Ca2+ is moved into or out of the cytosol depending on Na+ concentration. In humans and rats there are 3 isoforms; NCX1 NCX2 and NCX3. 148 -279964 pfam01700 Orbi_VP3 Orbivirus VP3 (T2) protein. The orbivirus VP3 protein is part of the virus core and makes a 'subcore' shell made up of 120 copies of the 100K protein. VP3 particles can also bind RNA and are fundamental in the early stages of viral core formation. Also found in the family is structural core protein VP2 from broadhaven virus which is similar to VP3 in bluetongue virus. Orbivirus are part of the larger reoviridae which have a dsRNA genome of 10-12 linear segments; orbivirus found in this family include bluetongue virus and epizootic hemorrhagic disease virus. 888 -307704 pfam01701 PSI_PsaJ Photosystem I reaction centre subunit IX / PsaJ. This family consists of the photosystem I reaction centre subunit IX or PsaJ from various organisms including Synechocystis sp. (strain pcc 6803), Pinus thunbergii (green pine) and Zea mays (maize). PsaJ is a small 4.4kDa, chloroplastal encoded, hydrophobic subunit of the photosystem I reaction complex its function is not yet fully understood. PsaJ can be cross-linked to PsaF and has a single predicted transmembrane domain it has a proposed role in maintaining PsaF in the correct orientation to allow for fast electron transfer from soluble donor proteins to P700+. 37 -334644 pfam01702 TGT Queuine tRNA-ribosyltransferase. This is a family of queuine tRNA-ribosyltransferases EC:2.4.2.29, also known as tRNA-guanine transglycosylase and guanine insertion enzyme. Queuine tRNA-ribosyltransferase modifies tRNAs for asparagine, aspartic acid, histidine and tyrosine with queuine. It catalyzes the exchange of guanine-34 at the wobble position with 7-aminomethyl-7-deazaguanine, and the addition of a cyclopentenediol moiety to 7-aminomethyl-7-deazaguanine-34 tRNA; giving a hypermodified base queuine in the wobble position. The aligned region contains a zinc binding motif C-x-C-x2-C-x29-H, and important tRNA and 7-aminomethyl-7deazaguanine binding residues. 226 -307706 pfam01704 UDPGP UTP--glucose-1-phosphate uridylyltransferase. This family consists of UTP--glucose-1-phosphate uridylyltransferases, EC:2.7.7.9. Also known as UDP-glucose pyrophosphorylase (UDPGP) and Glucose-1-phosphate uridylyltransferase. UTP--glucose-1-phosphate uridylyltransferase catalyzes the interconversion of MgUTP + glucose-1-phosphate and UDP-glucose + MgPPi. UDP-glucose is an important intermediate in mammalian carbohydrate interconversion involved in various metabolic roles depending on tissue type. In Dictyostelium (slime mold) mutants in this enzyme abort the development cycle. Also within the family is UDP-N-acetylglucosamine or AGX1 and two hypothetical proteins from Borrelia burgdorferi the lyme disease spirochaete. 411 -307707 pfam01705 CX CX module. This domain has no known function. It is found in several C. elegans proteins. The domain contains 6 conserved cysteines that probably form three disulphide bridges. 59 -334645 pfam01706 FliG_C FliG C-terminal domain. FliG is a component of the flageller rotor, present in about 25 copies per flagellum. This domain functions specifically in motor rotation. 104 -279970 pfam01707 Peptidase_C9 Peptidase family C9. 202 -307709 pfam01708 Gemini_mov Geminivirus putative movement protein. This family consists of putative movement proteins from Maize streak and wheat dwarf virus. 92 -334646 pfam01709 Transcrip_reg Transcriptional regulator. This is a family of transcriptional regulators. In mammals, it activates the transcription of mitochondrially-encoded COX1. In bacteria, it negatively regulates the quorum-sensing response regulator by binding to its promoter region. 233 -279973 pfam01710 HTH_Tnp_IS630 Transposase. Transposase proteins are necessary for efficient DNA transposition. This family includes insertion sequences from Synechocystis PCC 6803 three of which are characterized as homologous to bacterial IS5- and IS4- and to several members of the IS630-Tc1-mariner superfamily. 119 -279974 pfam01712 dNK Deoxynucleoside kinase. This family consists of various deoxynucleoside kinases cytidine EC:2.7.1.74, guanosine EC:2.7.1.113, adenosine EC:2.7.1.76 and thymidine kinase EC:2.7.1.21 (which also phosphorylates deoxyuridine and deoxycytosine.) These enzymes catalyze the production of deoxynucleotide 5'-monophosphate from a deoxynucleoside. Using ATP and yielding ADP in the process. 201 -334647 pfam01713 Smr Smr domain. This family includes the Smr (Small MutS Related) proteins, and the C-terminal region of the MutS2 protein. It has been suggested that this domain interacts with the MutS1 protein in the case of Smr proteins and with the N-terminal MutS related region of MutS2. This domain exhibits nicking endonuclease activity that might have a role in mismatch repair or genetic recombination. It shows no significant double strand cleavage or exonuclease activity. The full-length human NEDD4-binding protein 2 also has the polynucleotide kinase activity. 76 -334648 pfam01715 IPPT IPP transferase. This is a family of IPP transferases EC:2.5.1.8 also known as tRNA delta(2)-isopentenylpyrophosphate transferase. These enzymes modify both cytoplasmic and mitochondrial tRNAs at A(37) to give isopentenyl A(37). 237 -307713 pfam01716 MSP Manganese-stabilizing protein / photosystem II polypeptide. This family consists of the 33 KDa photosystem II polypeptide from the oxygen evolving complex (OEC) of plants and cyanobacteria. The protein is also known as the manganese-stabilizing protein as it is associated with the manganese complex of the OEC and may provide the ligands for the complex. 240 -279978 pfam01717 Meth_synt_2 Cobalamin-independent synthase, Catalytic domain. This is a family of vitamin-B12 independent methionine synthases or 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferases, EC:2.1.1.14 from bacteria and plants. Plants are the only higher eukaryotes that have the required enzymes for methionine synthesis. This enzyme catalyzes the last step in the production of methionine by transferring a methyl group from 5-methyltetrahydrofolate to homocysteine. The aligned region makes up the carboxy region of the approximately 750 amino acid protein except in some hypothetical archaeal proteins present in the family, where this region corresponds to the entire length. This domain contains the catalytic residues of the enzyme. 323 -279979 pfam01718 Orbi_NS1 Orbivirus non-structural protein NS1, or hydrophobic tubular protein. This family consists of orbivirus non-structural protein NS1, or hydrophobic tubular protein. NS1 has no specific function in virus replication, it is however thought to play a role in transport of mature virus particles from virus inclusion bodies to the cell membrane. Orbivirus are part of the larger reoviridae which have a dsRNA genome of at least 10 segments encoding at least 10 viral proteins; orbivirus found in this family include bluetongue virus, and African horsesickness virus. 548 -334649 pfam01719 Rep_2 Plasmid replication protein. This family consists of various bacterial plasmid replication (Rep) proteins. These proteins are essential for replication of plasmids, the Rep proteins are topoisomerases that nick the positive stand at the plus origin of replication and also at the single-strand conversion sequence. 181 -279981 pfam01721 Bacteriocin_II Class II bacteriocin. The bacteriocins are small peptides that inhibit the growth of various bacteria. Bacteriocins of lactic acid bacteria may inhibit their target cells by permeabilising the cell membrane. 33 -334650 pfam01722 BolA BolA-like protein. This family consist of the morphoprotein BolA from E. coli and its various homologs. In E. coli over expression of this protein causes round morphology and may be involved in switching the cell between elongation and septation systems during cell division. The expression of BolA is growth rate regulated and is induced during the transition into the the stationary phase. BolA is also induced by stress during early stages of growth and may have a general role in stress response. It has also been suggested that BolA can induce the transcription of penicillin binding proteins 6 and 5. 74 -279983 pfam01723 Chorion_1 Chorion protein. This family consists of the chorion superfamily proteins classes A, B, CA, CB and high-cysteine HCB from silk, gypsy and polyphemus moths. The chorion proteins make up the moths egg shell a complex extracellular structure. 169 -334651 pfam01724 DUF29 Domain of unknown function DUF29. This family consists of various hypothetical proteins from cyanobacteria, none of which are functionally described. The aligned region is approximately 120-140 amino acids long corresponding to almost the entire length of the proteins in the family. Structure 3fcn is a small protein that has a novel all-alpha fold. The N-terminal helical hairpin is likely to function as a dimerization module. This protein is a member of PFam family PF01724. The function of this protein is unknown. One protein sequence contains a fusion of this protein and a DnaB domain, suggesting a possible role in DNA helicase activity (hypothetical). Dali hits have low Z and high rmsd, suggesting probably only topological similarities (not functional relevance) (details derived from TOPSAN). The family has several highly conserved sequence motifs, including YD/ExD, DxxNVxEEIE, and CPY/F/W, as well as conserved tryptophans. 136 -334652 pfam01725 Ham1p_like Ham1 family. This family consists of the HAM1 protein and hypothetical archaeal bacterial and C. elegans proteins. HAM1 controls 6-N-hydroxylaminopurine (HAP) sensitivity and mutagenesis in S. cerevisiae. The HAM1 protein protects the cell from HAP, either on the level of deoxynucleoside triphosphate or the DNA level by a yet unidentified set of reactions. 177 -201938 pfam01726 LexA_DNA_bind LexA DNA binding domain. This is the DNA binding domain of the LexA SOS regulon repressor which prevents expression of DNA repair proteins. The aligned region contains a variant form of the helix-turn-helix DNA binding motif. This domain is found associated with pfam00717 the auto-proteolytic domain of LexA EC:3.4.21.88. 63 -334653 pfam01728 FtsJ FtsJ-like methyltransferase. This family consists of FtsJ from various bacterial and archaeal sources FtsJ is a methyltransferase, but actually has no effect on cell division. FtsJ's substrate is the 23S rRNA. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. This family also includes the N-terminus of flaviviral NS5 protein. It has been hypothesized that the N-terminal domain of NS5 is a methyltransferase involved in viral RNA capping. 178 -334654 pfam01729 QRPTase_C Quinolinate phosphoribosyl transferase, C-terminal domain. Quinolinate phosphoribosyl transferase (QPRTase) or nicotinate-nucleotide pyrophosphorylase EC:2.4.2.19 is involved in the de novo synthesis of NAD in both prokaryotes and eukaryotes. It catalyzes the reaction of quinolinic acid with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to give rise to nicotinic acid mononucleotide (NaMN), pyrophosphate and carbon dioxide. The QA substrate is bound between the C-terminal domain of one subunit, and the N-terminal domain of the other. The C-terminal domain has a 7 beta-stranded TIM barrel-like fold. 169 -334655 pfam01730 UreF UreF. This family consists of the Urease accessory protein UreF. The urease enzyme (urea amidohydrolase) hydrolyzes urea into ammonia and carbamic acid. UreF is proposed to modulate the activation process of urease by eliminating the binding of nickel irons to noncarbamylated protein. 147 -334656 pfam01731 Arylesterase Arylesterase. This family consists of arylesterases (Also known as serum paraoxonase) EC:3.1.1.2. These enzymes hydrolyze organophosphorus esters such as paraoxon and are found in the liver and blood. They confer resistance to organophosphate toxicity. Human arylesterase (PON1) is associated with HDL and may protect against LDL oxidation. 86 -307720 pfam01732 DUF31 Putative peptidase (DUF31). This domain has no known function. It is found in various hypothetical proteins and putative lipoproteins from mycoplasmas. It appears to be related to the superfamily of trypsin peptidases and so may have a peptidase function. 347 -250824 pfam01733 Nucleoside_tran Nucleoside transporter. This is a family of nucleoside transporters. In mammalian cells nucleoside transporters transport nucleoside across the plasma membrane and are essential for nucleotide synthesis via the salvage pathways for cells that lack their own de novo synthesis pathways. Also in this family is mouse and human nucleolar protein HNP36, a protein of unknown function; although it has been hypothesized to be a plasma membrane nucleoside transporter. 309 -334657 pfam01734 Patatin Patatin-like phospholipase. This family consists of various patatin glycoproteins from plants. The patatin protein accounts for up to 40% of the total soluble protein in potato tubers. Patatin is a storage protein but it also has the enzymatic activity of lipid acyl hydrolase, catalyzing the cleavage of fatty acids from membrane lipids. Members of this family have been found also in vertebrates. 190 -307722 pfam01735 PLA2_B Lysophospholipase catalytic domain. This family consists of Lysophospholipase / phospholipase B EC:3.1.1.5 and cytosolic phospholipase A2 EC:3.1.4 which also has a C2 domain pfam00168. Phospholipase B enzymes catalyze the release of fatty acids from lysophsopholipids and are capable in vitro of hydrolysing all phospholipids extractable form yeast cells. Cytosolic phospholipase A2 associates with natural membranes in response to physiological increases in Ca2+ and selectively hydrolyzes arachidonyl phospholipids, the aligned region corresponds the the carboxy-terminal Ca2+-independent catalytic domain of the protein as discussed in. 490 -279993 pfam01736 Polyoma_agno Polyomavirus agnoprotein. This family consist of the DNA binding protein or agnoprotein from various polyomaviruses. This protein is highly basic and can bind single stranded and double stranded DNA. Mutations in the agnoprotein produce smaller viral plaques, hence its function is not essential for growth in tissue culture cells but something has slowed in the normal replication cycle. There is also evidence suggesting that the agnogene and agnoprotein act as regulators of structural protein synthesis. 62 -307723 pfam01737 Ycf9 YCF9. This family consists of the hypothetical protein product of the YCF9 gene from chloroplasts and cyanobacteria. These proteins have no known function. 55 -334658 pfam01738 DLH Dienelactone hydrolase family. 213 -334659 pfam01739 CheR CheR methyltransferase, SAM binding domain. CheR proteins are part of the chemotaxis signaling mechanism in bacteria. CheR methylates the chemotaxis receptor at specific glutamate residues. CheR is an S-adenosylmethionine- dependent methyltransferase - the C-terminal domain (this one) binds SAM. 191 -334660 pfam01740 STAS STAS domain. The STAS (after Sulphate Transporter and AntiSigma factor antagonist) domain is found in the C terminal region of Sulphate transporters and bacterial antisigma factor antagonists. It has been suggested that this domain may have a general NTP binding function. 106 -334661 pfam01741 MscL Large-conductance mechanosensitive channel, MscL. 128 -307728 pfam01742 Peptidase_M27 Clostridial neurotoxin zinc protease. These toxins are zinc proteases that block neurotransmitter release by proteolytic cleavage of synaptic proteins such as synaptobrevins, syntaxin and SNAP-25. 418 -280000 pfam01743 PolyA_pol Poly A polymerase head domain. This family includes nucleic acid independent RNA polymerases, such as Poly(A) polymerase, which adds the poly (A) tail to mRNA EC:2.7.7.19. This family also includes the tRNA nucleotidyltransferase that adds the CCA to the 3' of the tRNA EC:2.7.7.25. This family is part of the nucleotidyltransferase superfamily. 126 -307729 pfam01744 GLTT GLTT repeat (6 copies). This short repeat of unknown function is found in multiple copies in several C. elegans proteins. The repeat is five residues long and consists of XGLTT where X can be any amino acid. 27 -280002 pfam01745 IPT Isopentenyl transferase. Isopentenyl transferase / dimethylallyl transferase synthesizes isopentenyladensosine 5'-monophosphate, a cytokinin that induces shoot formation on host plants infected with the Ti plasmid. 232 -280003 pfam01746 tRNA_m1G_MT tRNA (Guanine-1)-methyltransferase. This is a family of tRNA (Guanine-1)-methyltransferases EC:2.1.1.31. In E.coli K12 this enzyme catalyzes the conversion of a guanosine residue to N1-methylguanine in position 37, next to the anticodon, in tRNA. 182 -334662 pfam01747 ATP-sulfurylase ATP-sulfurylase. This domain is the catalytic domain of ATP-sulfurylase or sulfate adenylyltransferase EC:2.7.7.4 some of which are part of a bifunctional polypeptide chain associated with adenosyl phosphosulphate (APS) kinase pfam01583. Both enzymes are required for PAPS (phosphoadenosine-phosphosulfate) synthesis from inorganic sulphate. ATP sulfurylase catalyzes the synthesis of adenosine-phosphosulfate APS from ATP and inorganic sulphate. 213 -334663 pfam01749 IBB Importin beta binding domain. This family consists of the importin alpha (karyopherin alpha), importin beta (karyopherin beta) binding domain. The domain mediates formation of the importin alpha beta complex; required for classical NLS import of proteins into the nucleus, through the nuclear pore complex and across the nuclear envelope. Also in the alignment is the NLS of importin alpha which overlaps with the IBB domain. 77 -280006 pfam01750 HycI Hydrogenase maturation protease. The family consists of hydrogenase maturation proteases. In E. coli HypI the hydrogenase maturation protease is involved in processing of HypE the large subunit of hydrogenases 3, by cleavage of its C-terminal. 130 -334664 pfam01751 Toprim Toprim domain. This is a conserved region from DNA primase. This corresponds to the Toprim domain common to DnaG primases, topoisomerases, OLD family nucleases and RecR proteins. Both DnaG motifs IV and V are present in the alignment, the DxD (V) motif may be involved in Mg2+ binding and mutations to the conserved glutamate (IV) completely abolish DnaG type primase activity. DNA primase EC:2.7.7.6 is a nucleotidyltransferase it synthesizes the oligoribonucleotide primers required for DNA replication on the lagging strand of the replication fork; it can also prime the leading stand and has been implicated in cell division. This family also includes the atypical archaeal A subunit from type II DNA topoisomerases. Type II DNA topoisomerases catalyze the relaxation of DNA supercoiling by causing transient double strand breaks. 90 -307733 pfam01752 Peptidase_M9 Collagenase. This family of enzymes break down collagens. 285 -334665 pfam01753 zf-MYND MYND finger. 39 -334666 pfam01754 zf-A20 A20-like zinc finger. The A20 Zn-finger of bovine/human Rabex5/rabGEF1 is a Ubiquitin Binding Domain. The zinc finger mediates self-association in A20. These fingers also mediate IL-1-induced NF-kappa B activation. 24 -307736 pfam01755 Glyco_transf_25 Glycosyltransferase family 25 (LPS biosynthesis protein). Members of this family belong to Glycosyltransferase family 25 This is a family of glycosyltransferases involved in lipopolysaccharide (LPS) biosynthesis. These enzymes catalyze the transfer of various sugars onto the growing LPS chain during its biosynthesis. 198 -334667 pfam01756 ACOX Acyl-CoA oxidase. This is a family of Acyl-CoA oxidases EC:1.3.3.6. Acyl-coA oxidase converts acyl-CoA into trans-2- enoyl-CoA. 178 -334668 pfam01757 Acyl_transf_3 Acyltransferase family. This family includes a range of acyltransferase enzymes. This domain is found in many as yet uncharacterized C. elegans proteins and it is approximately 300 amino acids long. 325 -307739 pfam01758 SBF Sodium Bile acid symporter family. This family consists of Na+/bile acid co-transporters. These transmembrane proteins function in the liver in the uptake of bile acids from portal blood plasma a process mediated by the co-transport of Na+. Also in the family is ARC3 from S. cerevisiae - this is a putative transmembrane protein involved in resistance to arsenic compounds. 190 -334669 pfam01759 NTR UNC-6/NTR/C345C module. Sequence similarity between netrin UNC-6 and C345C complement protein family members, and hence the existence of the UNC-6 module, was first reported in. Subsequently, many additional members of the family were identified on the basis of sequence similarity between the C-terminal domains of netrins, complement proteins C3, C4, C5, secreted frizzled-related proteins, and type I pro-collagen C-proteinase enhancer proteins (PCOLCEs), which are homologous with the N-terminal domains of tissue inhibitors of metalloproteinases (TIMPs). The TIMPs are classified as a separate family in Pfam (pfam00965). This expanded domain family has been named as the NTR module. 106 -280016 pfam01761 DHQ_synthase 3-dehydroquinate synthase. The 3-dehydroquinate synthase EC:4.6.1.3 domain is present in isolation in various bacterial 3-dehydroquinate synthases and also present as a domain in the pentafunctional AROM polypeptide. 3-dehydroquinate (DHQ) synthase catalyzes the formation of dehydroquinate (DHQ) and orthophosphate from 3-deoxy-D-arabino heptulosonic 7 phosphate. This reaction is part of the shikimate pathway which is involved in the biosynthesis of aromatic amino acids. 258 -250845 pfam01762 Galactosyl_T Galactosyltransferase. This family includes the galactosyltransferases UDP-galactose:2-acetamido-2-deoxy-D-glucose3beta-galactosyltransferase and UDP-Gal:beta-GlcNAc beta 1,3-galactosyltranferase. Specific galactosyltransferases transfer galactose to GlcNAc terminal chains in the synthesis of the lacto-series oligosaccharides types 1 and 2. 196 -280017 pfam01763 Herpes_UL6 Herpesvirus UL6 like. This family consists of various proteins from the herpesviridae that are similar to herpes simplex virus type I UL6 virion protein. UL6 is essential for cleavage and packaging of the viral genome. 563 -334670 pfam01764 Lipase_3 Lipase (class 3). 140 -334671 pfam01765 RRF Ribosome recycling factor. The ribosome recycling factor (RRF / ribosome release factor) dissociates the ribosome from the mRNA after termination of translation, and is essential bacterial growth. Thus ribosomes are "recycled" and ready for another round of protein synthesis. 159 -280020 pfam01766 Birna_VP2 Birnavirus VP2 protein. VP2 is the major structural protein of birnaviruses. The large RNA segment of birnaviruses codes for a polyprotein (N-VP2-VP4-VP3-C). 440 -280021 pfam01767 Birna_VP3 Birnavirus VP3 protein. VP3 is a minor structural component of the virus. The large RNA segment of birnaviruses codes for a polyprotein (N-VP2-VP4-VP3-C). 227 -280022 pfam01768 Birna_VP4 Birnavirus VP4 protein. VP4 is a viral protease. The large RNA segment of birnaviruses codes for a polyprotein (N-VP2-VP4-VP3-C). 259 -334672 pfam01769 MgtE Divalent cation transporter. This region is the integral membrane part of the eubacterial MgtE family of magnesium transporters. Related regions are found also in archaebacterial and eukaryotic proteins. All the archaebacterial and eukaryotic examples have two copies of the region. This suggests that the eubacterial examples may act as dimers. Members of this family probably transport Mg2+ or other divalent cations into the cell. The alignment contains two highly conserved aspartates that may be involved in cation binding (Bateman A unpubl.) 122 -307744 pfam01770 Folate_carrier Reduced folate carrier. The reduced folate carrier (a transmembrane glycoprotein) transports reduced folate into mammalian cells via the carrier mediated mechanism (as opposed to the receptor mediated mechanism) it also transports cytotoxic folate analogues used in chemotherapy, such as methotrexate (MTX). Mammalian cells have an absolute requirement for exogenous folates which are needed for growth, and biosynthesis of macromolecules. 412 -280025 pfam01771 Herpes_alk_exo Herpesvirus alkaline exonuclease. This family includes various alkaline exonucleases from members of the herpesviridae. Alkaline exonuclease appears to have an important role in the replication of herpes simplex virus. 460 -334673 pfam01773 Nucleos_tra2_N Na+ dependent nucleoside transporter N-terminus. This family consists of nucleoside transport proteins. Rat Slc28a2 is a purine-specific Na+-nucleoside cotransporter localized to the bile canalicular membrane. Rat Slc28a1 is a a Na+-dependent nucleoside transporter selective for pyrimidine nucleosides and adenosine it also transports the anti-viral nucleoside analogues AZT and ddC. This alignment covers the N-terminus of this family 74 -334674 pfam01774 UreD UreD urease accessory protein. UreD is a urease accessory protein. Urease pfam00449 hydrolyzes urea into ammonia and carbamic acid. UreD is involved in activation of the urease enzyme via the UreD-UreF-UreG-urease complex and is required for urease nickel metallocenter assembly. See also UreF pfam01730, UreG pfam01495. 165 -307747 pfam01775 Ribosomal_L18A Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A. This family includes: archaeal 50S ribosomal protein L18Ae, often referred to as L20e or LX; fungal 60S ribosomal protein L20; and higher eukaryote 60S ribosomal protein L18A. 60 -334675 pfam01776 Ribosomal_L22e Ribosomal L22e protein family. 99 -334676 pfam01777 Ribosomal_L27e Ribosomal L27e protein family. The N-terminal region of the eukaryotic ribosomal L27 has the KOW motif. C-terminal region is represented by this family. 85 -334677 pfam01778 Ribosomal_L28e Ribosomal L28e protein family. 109 -307751 pfam01779 Ribosomal_L29e Ribosomal L29e protein family. 39 -334678 pfam01780 Ribosomal_L37ae Ribosomal L37ae protein family. This ribosomal protein is found in archaebacteria and eukaryotes. It contains four conserved cysteine residues that may bind to zinc. 85 -334679 pfam01781 Ribosomal_L38e Ribosomal L38e protein family. 67 -334680 pfam01782 RimM RimM N-terminal domain. The RimM protein is essential for efficient processing of 16S rRNA. The RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. This N-terminal domain is found associated with a PRC-barrel domain. 84 -307755 pfam01783 Ribosomal_L32p Ribosomal L32p protein family. 56 -307756 pfam01784 NIF3 NIF3 (NGG1p interacting factor 3). This family contains several NIF3 (NGG1p interacting factor 3) protein homologs. NIF3 interacts with the yeast transcriptional coactivator NGG1p which is part of the ADA complex, the exact function of this interaction is unknown. 239 -250863 pfam01785 Closter_coat Closterovirus coat protein. This family consist of coat proteins from closteroviruses a member of the closteroviridae. The viral coat protein encapsulates and protects the viral genome. Both the large cp1 and smaller cp2 coat protein originate from the same primary transcript. Members of the closteroviridae include Sugar beet yellow virus and Grapevine leafroll-associated virus, closteroviruses have a positive strand ssRNA genome with no DNA stage during replication. 188 -334681 pfam01786 AOX Alternative oxidase. The alternative oxidase is used as a second terminal oxidase in the mitochondria, electrons are transfered directly from reduced ubiquinol to oxygen forming water. This is not coupled to ATP synthesis and is not inhibited by cyanide, this pathway is a single step process. In rice the transcript levels of the alternative oxidase are increased by low temperature. 215 -307758 pfam01787 Ilar_coat Ilarvirus coat protein. This family consists of various coat proteins from the ilarviruses part of the Bromoviridae, members include apple mosaic virus and prune dwarf virus. The ilarvirus coat protein is required to initiate replication of the viral genome in host plants. Members of the Bromoviridae have a positive stand ssRNA genome with no DNA stage in there replication. 204 -307759 pfam01788 PsbJ PsbJ. This family consists of the photosystem II reaction centre protein PsbJ from plants and Cyanobacteria. In Synechocystis sp. PCC 6803 PsbJ regulates the number of photosystem II centers in thylakoid membranes, it is a predicted 4kDa protein with one membrane spanning domain. 39 -334682 pfam01789 PsbP PsbP. This family consists of the 23 kDa subunit of oxygen evolving system of photosystem II or PsbP from various plants (where it is encoded by the nuclear genome) and Cyanobacteria. The 23 KDa PsbP protein is required for PSII to be fully operational in vivo, it increases the affinity of the water oxidation site for Cl- and provides the conditions required for high affinity binding of Ca2+. 155 -334683 pfam01790 LGT Prolipoprotein diacylglyceryl transferase. 238 -280041 pfam01791 DeoC DeoC/LacD family aldolase. This family includes diverse aldolase enzymes. This family includes the enzyme deoxyribose-phosphate aldolase EC:4.1.2.4, which is involved in nucleotide metabolism. The family also includes a group of related bacterial proteins of unknown function. The family also includes tagatose 1,6-diphosphate aldolase (EC:4.1.2.40) is part of the tagatose-6-phosphate pathway of galactose-6-phosphate degradation. 235 -307762 pfam01793 Glyco_transf_15 Glycolipid 2-alpha-mannosyltransferase. This is a family of alpha-1,2 mannosyl-transferases involved in N-linked and O-linked glycosylation of proteins. Some of the enzymes in this family have been shown to be involved in O- and N-linked glycan modifications in the Golgi. 324 -334684 pfam01794 Ferric_reduct Ferric reductase like transmembrane component. This family includes a common region in the transmembrane proteins mammalian cytochrome B-245 heavy chain (gp91-phox), ferric reductase transmembrane component in yeast and respiratory burst oxidase from mouse-ear cress. This may be a family of flavocytochromes capable of moving electrons across the plasma membrane. The Frp1 protein from S. pombe is a ferric reductase component and is required for cell surface ferric reductase activity, mutants in frp1 are deficient in ferric iron uptake. Cytochrome B-245 heavy chain is a FAD-dependent dehydrogenase it is also has electron transferase activity which reduces molecular oxygen to superoxide anion, a precursor in the production of microbicidal oxidants. Mutations in the sequence of cytochrome B-245 heavy chain (gp91-phox) lead to the X-linked chronic granulomatous disease. The bacteriocidal ability of phagocytic cells is reduced and is characterized by the absence of a functional plasma membrane associated NADPH oxidase. The chronic granulomatous disease gene codes for the beta chain of cytochrome B-245 and cytochrome B-245 is missing from patients with the disease. 117 -307764 pfam01795 Methyltransf_5 MraW methylase family. Members of this family are probably SAM dependent methyltransferases based on Escherichia coli RsmH. This family appears to be related to pfam01596. 309 -307765 pfam01796 OB_aCoA_assoc DUF35 OB-fold domain, acyl-CoA-associated. The structure of a DUF35 representative reveals two long N-terminal helices followed by a rubredoxin-like zinc ribbon domain and a C-terminal OB fold domain represented in this entry. OB-folds are frequently found to bind nucleic acids suggesting this domain might bind to DNA or RNA (Topsan http://www.topsan.org/). Genomic context shows it to be adjacent to acyl-CoA transferase (http:/www.microbesonline.org/). 65 -307766 pfam01797 Y1_Tnp Transposase IS200 like. Transposases are needed for efficient transposition of the insertion sequence or transposon DNA. This family includes transposases for IS200 from E. coli. 121 -334685 pfam01798 Nop snoRNA binding domain, fibrillarin. This family consists of various Pre RNA processing ribonucleoproteins. The function of the aligned region is unknown however it may be a common RNA or snoRNA or Nop1p binding domain. Nop5p (Nop58p) from yeast is the protein component of a ribonucleoprotein required for pre-18s rRNA processing and is suggested to function with Nop1p in a snoRNA complex. Nop56p and Nop5p interact with Nop1p and are required for ribosome biogenesis. Prp31p is required for pre-mRNA splicing in S. cerevisiae. Fibrillarin, or Nop, is the catalytic subunit responsible for the methyl transfer reaction of the site-specific 2'-O-methylation of ribosomal and spliceosomal RNA. 229 -334686 pfam01799 Fer2_2 [2Fe-2S] binding domain. 73 -280049 pfam01801 Cytomega_gL Cytomegalovirus glycoprotein L. Glycoprotein L from cytomegalovirus serves a chaperone for the correct folding and surface expression of glycoprotein H (gH). Glycoprotein L is a member of the heterotrimeric gCIII complex of glycoprotein which also includes gH and gO and has an essential role in viral fusion. 211 -280050 pfam01802 Herpes_V23 Herpesvirus VP23 like capsid protein. This family consist of various capsid proteins from members of the herpesviridae. The capsid protein VP23 in herpes simplex virus forms a triplex together with VP19C these fit between and link together adjacent capsomers as formed by VP5 and VP26. VP3 along with the scaffolding proteins helps to form normal capsids by defining the curvature of the shell and size of the particle. 294 -307769 pfam01803 LIM_bind LIM-domain binding protein. The LIM-domain binding protein, binds to the LIM domain pfam00412 of LIM homeodomain proteins which are transcriptional regulators of development. Nuclear LIM interactor (NLI) / LIM domain-binding protein 1 (LDB1) is located in the nuclei of neuronal cells during development, it is co-expressed with Isl1 in early motor neuron differentiation and has a suggested role in the Isl1 dependent development of motor neurons. It is suggested that these proteins act synergistically to enhance transcriptional efficiency by acting as co-factors for LIM homeodomain and Otx class transcription factors both of which have essential roles in development. The Drosophila protein Chip is required for segmentation and activity of a remote wing margin enhancer. Chip is a ubiquitous chromosomal factor required for normal expression of diverse genes at many stages of development. It is suggested that Chip cooperates with different LIM domain proteins and other factors to structurally support remote enhancer-promoter interactions. 235 -334687 pfam01804 Penicil_amidase Penicillin amidase. Penicillin amidase or penicillin acylase EC:3.5.1.11 catalyzes the hydrolysis of benzylpenicillin to phenylacetic acid and 6-aminopenicillanic acid (6-APA) a key intermediate in the the synthesis of penicillins. Also in the family is cephalosporin acylase and aculeacin A acylase which are involved in the synthesis of related peptide antibiotics. 613 -334688 pfam01805 Surp Surp module. This domain is also known as the SWAP domain. SWAP stands for Suppressor-of-White-APricot. It has been suggested that these domains may be RNA binding. 52 -280054 pfam01806 Paramyxo_P Paramyxovirinae P phosphoprotein C-terminal region. The subfamily Paramyxovirinae of the family Paramyxoviridae now contains as main genera the Rubulaviruses, avulaviruses, respiroviruses, Henipavirus-es and morbilliviruses. Protein P is the best characterized, structurally of the replicative complex of N, P and L proteins and consists of two functionally distinct moieties, an N-terminal PNT, and a C-terminal PCT. The P protein is an essential part of the viral RNA polymerase complex formed from the P and L proteins. P protein plays a crucial role in the enzyme by positioning L onto the N/RNA template through an interaction with the C-terminal domain of N. Without P, L is not functional.The C-terminal part of P (PCT) is only functional as an oligomer and forms with L the polymerase complex. PNT is poorly conserved and unstructured in solution while PCT contains the oligomerization domain (PMD) that folds as a homotetrameric coiled coil (40) containing the L binding region and a C-terminal partially folded domain, PX (residues 474 to 568), identified as the nucleocapsid binding site. Interestingly, PX is also expressed as an independent polypeptide in infected cells. PX has a C-subdomain (residues 516 to 568) that consists of three {alpha}-helices arranged in an antiparallel triple-helical bundle linked to an unfolded flexible N-subdomain (residues 474 to 515). 248 -280055 pfam01807 zf-CHC2 CHC2 zinc finger. This domain is principally involved in DNA binding in DNA primases. 95 -334689 pfam01808 AICARFT_IMPCHas AICARFT/IMPCHase bienzyme. This is a family of bifunctional enzymes catalyzing the last two steps in de novo purine biosynthesis. The bifunctional enzyme is found in both prokaryotes and eukaryotes. The second last step is catalyzed by 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase EC:2.1.2.3 (AICARFT), this enzyme catalyzes the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate. This is catalyzed by a pair of C-terminal deaminase fold domains in the protein, where the active site is formed by the dimeric interface of two monomeric units. The last step is catalyzed by the N-terminal IMP (Inosine monophosphate) cyclohydrolase domain EC:3.5.4.10 (IMPCHase), cyclizing FAICAR (5-formylaminoimidazole-4-carboxamide ribonucleotide) to IMP. 305 -334690 pfam01809 Haemolytic Haemolytic domain. This domain has haemolytic activity. It is found in short (73-103 amino acid) proteins and contains three conserved cysteine residues. 67 -280058 pfam01810 LysE LysE type translocator. This family consists of various hypothetical proteins and an l-lysine exporter LysE from Corynebacterium glutamicum which is proposed to be the first of a novel family of translocators. LysE exports l-lysine from the cell into the surrounding medium and is predicted to span the membrane six times. The physiological function of the exporter is to excrete excess l-Lysine as a result of natural flux imbalances or peptide hydrolysis; and also after artificial deregulation of l-Lysine biosynthesis as used by the biotechnology. industry for the production of l-lysine. 193 -280059 pfam01812 5-FTHF_cyc-lig 5-formyltetrahydrofolate cyclo-ligase family. 5-formyltetrahydrofolate cyclo-ligase or methenyl-THF synthetase EC:6.3.3.2 catalyzes the interchange of 5-formyltetrahydrofolate (5-FTHF) to 5-10-methenyltetrahydrofolate, this requires ATP and Mg2+. 5-FTHF is used in chemotherapy where it is clinically known as Leucovorin. 186 -334691 pfam01813 ATP-synt_D ATP synthase subunit D. This is a family of subunit D form various ATP synthases including V-type H+ transporting and Na+ dependent. Subunit D is suggested to be an integral part of the catalytic sector of the V-ATPase. 195 -334692 pfam01814 Hemerythrin Hemerythrin HHE cation binding domain. Iteration of the HHE family found it to be related to Hemerythrin. It also demonstrated that what has been described as a single domain in fact consists of two cation binding domains. Members of this family occur all across nature and are involved in a variety of processes. For instance, in Nereis diversicolor hemerythrin binds Cadmium so as to protect the organism from toxicity. However Hemerythrin is classically described as Oxygen-binding through two attached Fe2+ ions. And the bacterial NorA is a regulator of response to NO, which suggests yet another set-up for its metal ligands. In Staphylococcus aureus the iron-sulfur cluster repair protein ScdA has been noted to be important when the organism switches to living in environments with low oxygen concentrations; perhaps this protein acts as an oxygen store or scavenger. 127 -307776 pfam01815 Rop Rop protein. 57 -250888 pfam01816 LRV Leucine rich repeat variant. The function of this repeat is unknown. It has an unusual structure of two helices. One is an alpha helix, the other is the much rarer 3-10 helix. 26 -334693 pfam01817 CM_2 Chorismate mutase type II. Chorismate mutase EC:5.4.99.5 catalyzes the conversion of chorismate to prephenate in the pathway of tyrosine and phenylalanine biosynthesis. This enzyme is negatively regulated by tyrosine, tryptophan and phenylalanine. 79 -280064 pfam01818 Translat_reg Bacteriophage translational regulator. The translational regulator protein regA is encoded by the T4 bacteriophage and binds to a region of messenger RNA (mRNA) that includes the initiator codon. RegA is unusual in that it represses the translation of about 35 early T4 mRNAs but does not affect nearly 200 other mRNAs. 122 -280065 pfam01819 Levi_coat Levivirus coat protein. The Levivirus coat protein forms the bacteriophage coat that encapsidates the viral RNA. 180 copies of this protein form the virion shell. The MS2 bacteriophage coat protein controls two distinct processes: sequence-specific RNA encapsidation and repression of replicase translation-by binding to an RNA stem-loop structure of 19 nucleotides containing the initiation codon of the replicase gene. The binding of a coat protein dimer to this hairpin shuts off synthesis of the viral replicase, switching the viral replication cycle to virion assembly rather than continued replication. 132 -334694 pfam01820 Dala_Dala_lig_N D-ala D-ala ligase N-terminus. This family represents the N-terminal region of the D-alanine--D-alanine ligase enzyme EC:6.3.2.4 which is thought to be involved in substrate binding. D-Alanine is one of the central molecules of the cross-linking step of peptidoglycan assembly. There are three enzymes involved in the D-alanine branch of peptidoglycan biosynthesis: the pyridoxal phosphate-dependent D-alanine racemase (Alr), the ATP-dependent D-alanine:D-alanine ligase (Ddl), and the ATP-dependent D-alanine:D-alanine-adding enzyme (MurF). This domain is structurally related to the PreATP-grasp domain. 113 -307779 pfam01821 ANATO Anaphylotoxin-like domain. C3a, C4a and C5a anaphylatoxins are protein fragments generated enzymatically in serum during activation of complement molecules C3, C4, and C5. They induce smooth muscle contraction. These fragments are homologous to a three-fold repeat in fibulins. 36 -307780 pfam01822 WSC WSC domain. This domain may be involved in carbohydrate binding. 82 -334695 pfam01823 MACPF MAC/Perforin domain. The membrane-attack complex (MAC) of the complement system forms transmembrane channels. These channels disrupt the phospholipid bilayer of target cells, leading to cell lysis and death. A number of proteins participate in the assembly of the MAC. Freshly activated C5b binds to C6 to form a C5b-6 complex, then to C7 forming the C5b-7 complex. The C5b-7 complex binds to C8, which is composed of three chains (alpha, beta, and gamma), thus forming the C5b-8 complex. C5b-8 subsequently binds to C9 and acts as a catalyst in the polymerization of C9. Active MAC has a subunit composition of C5b-C6-C7-C8-C9{n}. Perforin is a protein found in cytolytic T-cell and killer cells. In the presence of calcium, perforin polymerizes into transmembrane tubules and is capable of lysing, non-specifically, a variety of target cells. There are a number of regions of similarity in the sequences of complement components C6, C7, C8-alpha, C8-beta, C9 and perforin. The X-ray crystal structure of a MACPF domain reveals that it shares a common fold with bacterial cholesterol dependent cytolysins (pfam01289) such as perfringolysin O. Three key pieces of evidence suggests that MACPF domains and CDCs are homologous: Functional similarity (pore formation), conservation of three glycine residues at a hinge in both families and conservation of a complex core fold. 205 -280070 pfam01824 MatK_N MatK/TrnK amino terminal region. The function of this region is unknown. 331 -334696 pfam01825 GPS GPCR proteolysis site, GPS, motif. The GPS motif is found in GPCRs, and is the site for auto-proteolysis, so is thus named, GPS. The GPS motif is a conserved sequence of ~40 amino acids containing canonical cysteine and tryptophan residues, and is the most highly conserved part of the domain. In most, if not all, cell-adhesion GPCRs these undergo autoproteolysis in the GPS between a conserved aliphatic residue (usually a leucine) and a threonine, serine, or cysteine residue. In higher eukaryotes this motif is found embedded in the C-terminal beta-stranded part of a GAIN domain - GPCR-Autoproteolysis INducing (GAIN). The GAIN-GPS domain adopts a fold in which the GPS motif, at the C-terminus, forms five beta-strands that are tightly integrated into the overall GAIN domain. The GPS motif, evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. The GAIN-GPS domain is both necessary and sufficient functionally for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyze peptide bond hydrolysis. In the cell-adhesion GPCRs and PKD proteins, the GPS motif is always located at the end of their long N-terminal extracellular regions, immediately before the first transmembrane helix of the respective protein. 46 -334697 pfam01826 TIL Trypsin Inhibitor like cysteine rich domain. This family contains trypsin inhibitors as well as a domain found in many extracellular proteins. The domain typically contains ten cysteine residues that form five disulphide bonds. The cysteine residues that form the disulphide bonds are 1-7, 2-6, 3-5, 4-10 and 8-9. 55 -334698 pfam01827 FTH FTH domain. This presumed domain is likely to be a protein-protein interaction module. It is found in many proteins from C. elegans. The domain is found associated with the F-box pfam00646. This domain is named FTH after FOG-2 homology domain. 141 -334699 pfam01828 Peptidase_A4 Peptidase A4 family. 204 -307786 pfam01829 Peptidase_A6 Peptidase A6 family. 314 -280076 pfam01830 Peptidase_C7 Peptidase C7 family. 243 -280077 pfam01831 Peptidase_C16 Peptidase C16 family. 249 -334700 pfam01832 Glucosaminidase Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase. This family includes Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase EC:3.2.1.96. As well as the flageller protein J that has been shown to hydrolyze peptidoglycan. 113 -307788 pfam01833 TIG IPT/TIG domain. This family consists of a domain that has an immunoglobulin like fold. These domains are found in cell surface receptors such as Met and Ron as well as in intracellular transcription factors where it is involved in DNA binding. CAUTION: This family does not currently recognize a significant number of members. 85 -334701 pfam01834 XRCC1_N XRCC1 N terminal domain. 146 -307790 pfam01835 A2M_N MG2 domain. This is the MG2 (macroglobulin) domain of alpha-2-macroglobulin. 96 -334702 pfam01837 HcyBio Homocysteine biosynthesis enzyme, sulfur-incorporation. This presumed domain is about is about 360 residues long. The function of this domain is unknown. It is found in some proteins that have two C-terminal CBS pfam00571 domains. There are also proteins that contain two inserted Fe4S domains near the C-terminal end of the domain. The Methanothermobacter thermautotrophicus gene MTH_855 product has been misannotated as an inosine monophosphate dehydrogenase based on the similarity to the CBS domains. Based on genetic analyses in the methanogen Methanosarcina acetivorans, this family is a key component of the metabolic network for sulfide assimilation and trafficking in methanogens. It is essential to a novel, O-acetylhomoserine sulfhydrylase-independent pathway for homocysteine biosynthesis, and may catalyze sulfur incorporation into the side chain of an as yet unidentified amino acid precursor. The DUF39-CBS and DUF39-ferredoxin architectures repeatedly occur together in the genomes of methanogenic Archaea, suggesting they may be of diverged function. This is consistent with a phylogenetic reconstruction of the DUF39 family, which clearly distinguishes the CBS-associated and ferredoxin-associated DUF39s. 351 -334703 pfam01839 FG-GAP FG-GAP repeat. This family contains the extracellular repeat that is found in up to seven copies in alpha integrins. This repeat has been predicted to fold into a beta propeller structure. The repeat is called the FG-GAP repeat after two conserved motifs in the repeat. The FG-GAP repeats are found in the N-terminus of integrin alpha chains, a region that has been shown to be important for ligand binding. A putative Ca2+ binding motif is found in some of the repeats. 36 -307793 pfam01840 TCL1_MTCP1 TCL1/MTCP1 family. Two related oncogenes, TCL-1 and MTCP-1, are overexpressed in T cell prolymphocytic leukaemias as a result of chromosomal rearrangements that involve the translocation of one T cell receptor gene to either chromosome 14q32 or Xq28. This family contains two repeated motifs that form a single globular domain. 118 -334704 pfam01841 Transglut_core Transglutaminase-like superfamily. This family includes animal transglutaminases and other bacterial proteins of unknown function. Sequence conservation in this superfamily primarily involves three motifs that centre around conserved cysteine, histidine, and aspartate residues that form the catalytic triad in the structurally characterized transglutaminase, the human blood clotting factor XIIIa'. On the basis of the experimentally demonstrated activity of the Methanobacterium phage pseudomurein endoisopeptidase, it is proposed that many, if not all, microbial homologs of the transglutaminases are proteases and that the eukaryotic transglutaminases have evolved from an ancestral protease. 108 -334705 pfam01842 ACT ACT domain. This family of domains generally have a regulatory role. ACT domains are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The ACT domain is found in: D-3-phosphoglycerate dehydrogenase EC:1.1.1.95, which is inhibited by serine. Aspartokinase EC:2.7.2.4, which is regulated by lysine. Acetolactate synthase small regulatory subunit, which is inhibited by valine. Phenylalanine-4-hydroxylase EC:1.14.16.1, which is regulated by phenylalanine. Prephenate dehydrogenase EC:4.2.1.51. formyltetrahydrofolate deformylase EC:3.5.1.10, which is activated by methionine and inhibited by glycine. GTP pyrophosphokinase EC:2.7.6.5. 66 -334706 pfam01843 DIL DIL domain. The DIL domain has no known function. 101 -280088 pfam01844 HNH HNH endonuclease. His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity. 47 -334707 pfam01845 CcdB CcdB protein. 99 -334708 pfam01846 FF FF domain. This domain has been predicted to be involved in protein-protein interaction. This domain was recently shown to bind the hyperphosphorylated C-terminal repeat domain of RNA polymerase II, confirming its role in protein-protein interactions. 46 -307799 pfam01847 VHL VHL beta domain. VHL forms a ternary complex with the elonginB and elonginC proteins. This complex binds Cul2, which then is involved in regulation of vascular endothelial growth factor mRNA. 82 -307800 pfam01848 HOK_GEF Hok/gef family. 42 -334709 pfam01849 NAC NAC domain. 54 -334710 pfam01850 PIN PIN domain. 120 -334711 pfam01851 PC_rep Proteasome/cyclosome repeat. 35 -280096 pfam01852 START START domain. 205 -334712 pfam01853 MOZ_SAS MOZ/SAS family. This region of these proteins has been suggested to be homologous to acetyltransferases. 179 -334713 pfam01855 POR_N Pyruvate flavodoxin/ferredoxin oxidoreductase, thiamine diP-bdg. This family includes the N terminal structural domain of the pyruvate ferredoxin oxidoreductase. This domain binds thiamine diphosphate, and along with domains II and IV, is involved in inter subunit contacts. The family also includes pyruvate flavodoxin oxidoreductase as encoded by the nifJ gene in cyanobacterium which is required for growth on molecular nitrogen when iron is limited. 230 -280099 pfam01856 HP_OMP Helicobacter outer membrane protein. This family seems confined to Helicobacter. It is predicted to be an outer membrane protein based on its pattern of alternating hydrophobic amino acids similar to porins. 154 -334714 pfam01857 RB_B Retinoblastoma-associated protein B domain. The crystal structure of the Rb pocket bound to a nine-residue E7 peptide containing the LxCxE motif, shared by other Rb-binding viral and cellular proteins, shows that the LxCxE peptide binds a highly conserved groove on the B domain. The B domain has a cyclin fold. 128 -307805 pfam01858 RB_A Retinoblastoma-associated protein A domain. This domain has the cyclin fold as predicted. 197 -280102 pfam01861 DUF43 Protein of unknown function DUF43. This family includes archaebacterial proteins of unknown function. All the members are 350-400 amino acids long. 243 -307806 pfam01862 PvlArgDC Pyruvoyl-dependent arginine decarboxylase (PvlArgDC). Methanococcus jannaschii contains homologs of most genes required for spermidine polyamine biosynthesis. Yet genomes from neither this organism nor any other euryarchaeon have orthologues of the pyridoxal 5'-phosphate- dependent ornithine or arginine decarboxylase genes, required to produce putrescine. Instead,these organisms have a new class of arginine decarboxylase (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that contains a reactive pyruvoyl group. Although this extremely thermostable enzyme has no significant sequence similarity to previously characterized proteins, conserved active site residues are similar to those of the pyruvoyl-dependent histidine decarboxylase enzyme, and its subunits form a similar (alpha-beta)(3) complex. homologs of PvlArgDC are found in several bacterial genomes, including those of Chlamydia spp., which have no agmatine ureohydrolase enzyme to convert agmatine (decarboxylated arginine) into putrescine. In these intracellular pathogens, PvlArgDC may function analogously to pyruvoyl-dependent histidine decarboxylase; the cells are proposed to import arginine and export agmatine, increasing the pH and affecting the host cell's metabolism. Phylogenetic analysis of Pvl- ArgDC proteins suggests that this gene has been recruited from the euryarchaeal polyamine biosynthetic pathway to function as a degradative enzyme in bacteria. 162 -307807 pfam01863 DUF45 Protein of unknown function DUF45. This protein has no known function. Members are found in some archaebacteria, as well as Helicobacter pylori. The proteins are 190-240 amino acids long, with the C-terminus being the most conserved region, containing three conserved histidines. This motif is similar to that found in Zinc proteases, suggesting that this family may also be proteases. 206 -280105 pfam01864 CarS-like CDP-archaeol synthase. CDP-archaeol synthase functions in the archaeal lipid biosynthetic pathway. It catalyzes the transfer of the nucleotide to its specific archaeal lipid substrate, leading to the formation of a CDP-activated precursor (CDP-archaeol) to which polar head groups are attached. Bacterial members of this family are uncharacterized. 175 -280106 pfam01865 PhoU_div Protein of unknown function DUF47. This family includes prokaryotic proteins of unknown function, as well as a protein annotated as the pit accessory protein from Sinorhizobium meliloti. However, the function of this protein is also unknown (Pit stands for Phosphate transport). It is probably distantly related to pfam01895 (personal obs:Yeats C). 214 -334715 pfam01866 Diphthamide_syn Putative diphthamide synthesis protein. Diphthamide_syn, diphthamide synthase, catalyzes the last amidation step of diphthamide biosynthesis using ammonium and ATP. Human DPH1 is a candidate tumor suppressor gene. DPH2 from yeast, which confers resistance to diphtheria toxin has been found to be involved in diphthamide synthesis. Diphtheria toxin inhibits eukaryotic protein synthesis by ADP-ribosylating diphthamide, a post-translationally modified histidine residue present in EF2. Diphthamide synthase is evolutionarily conserved in eukaryotes. Diphthamide is a post-translationally modified histidine residue found on archaeal and eukaryotic translation elongation factor 2 (eEF-2). 300 -334716 pfam01867 Cas_Cas1 CRISPR associated protein Cas1. Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. This family of proteins corresponds to Cas1, a CRISPR-associated protein. Cas1 may be involved in linking DNA segments to CRISPR. 283 -334717 pfam01868 UPF0086 Domain of unknown function UPF0086. This family consists of several archaeal and eukaryotic proteins. The archaeal proteins are found to be expressed within ribosomal operons and several of the sequences are described as ribonuclease P protein subunit p29 proteins. 83 -280110 pfam01869 BcrAD_BadFG BadF/BadG/BcrA/BcrD ATPase family. This family includes the BadF and BadG proteins that are two subunits of Benzoyl-CoA reductase, that may be involved in ATP hydrolysis. The family also includes an activase subunit from the enzyme 2-hydroxyglutaryl-CoA dehydratase. Aquifex aeolicus aq_278 contains two copies of this region suggesting that the family may structurally dimerize. This family appears to be related to pfam00370. 290 -307811 pfam01870 Hjc Archaeal holliday junction resolvase (hjc). This family of archaebacterial proteins are holliday junction resolvases (hjc gene). The Holliday junction is an essential intermediate of homologous recombination. This protein is the archaeal equivalent of RuvC but is not sequence similar. 91 -334718 pfam01871 AMMECR1 AMMECR1. This family consists of several AMMECR1 as well as several uncharacterized proteins. The contiguous gene deletion syndrome AMME is characterized by Alport syndrome, midface hypoplasia, mental retardation and elliptocytosis and is caused by a deletion in Xq22.3, comprising several genes including COL4A5, FACL4 and AMMECR1. This family contains sequences from several eukaryotic species as well as archaebacteria and it has been suggested that the AMMECR1 protein may have a basic cellular function, potentially in either the transcription, replication, repair or translation machinery. 166 -334719 pfam01872 RibD_C RibD C-terminal domain. The function of this domain is not known, but it is thought to be involved in riboflavin biosynthesis. This domain is found in the C-terminus of RibD/RibG, in combination with pfam00383, as well as in isolation in some archaebacterial proteins. This family appears to be related to pfam00186. 196 -334720 pfam01873 eIF-5_eIF-2B Domain found in IF2B/IF5. This family includes the N-terminus of eIF-5, and the C-terminus of eIF-2 beta. This region corresponds to the whole of the archaebacterial eIF-2 beta homolog. The region contains a putative zinc binding C4 finger. 114 -334721 pfam01874 CitG ATP:dephospho-CoA triphosphoribosyl transferase. The citG gene is found in a gene cluster with citrate lyase subunits. The function of the CitG protein was elucidated as ATP:dephospho-CoA triphosphoribosyl transferase. 268 -280116 pfam01875 Memo Memo-like protein. This family contains members from all branches of life. The molecular function of this protein is unknown, but Memo (mediator of ErbB2-driven cell motility) a human protein is included in this family. It has been suggested that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton. 271 -334722 pfam01876 RNase_P_p30 RNase P subunit p30. This protein is part of the RNase P complex that is involved in tRNA maturation. 202 -334723 pfam01877 RNA_binding RNA binding. PH1010 is composed of five alpha-helices (1-5) and eight beta-strands (1-8) with the following topology: beta-1, alpha-1, beta-2, beta-3, alpha-2, alpha-3, beta-4, beta-5, alpha-4, beta-6, alpha-5, beta-7, beta-8. The first six beta-strands (1-6) form a slightly twisted antiparallel beta-sheet and face five alpha-helices on one side. The last two beta-strands form an antiparallel beta-sheet in the C-terminus. PH1010 forms a characteristic homodimer structure in the crystal. dimerization of the molecule is crucial for function. The structure resembles that of some ribosomal proteins such as the 50S ribosomal protein L5. Although the structure resembles that of the RRM-type RNA-binding domain of the ribosomal L5 protein, the residues involved in RNA-binding in the L5 protein are not conserved in this family. Despite this, these proteins bind to double-stranded RNA in a non-sequence specific manner. 118 -307818 pfam01878 EVE EVE domain. This domain was formerly known as DUF55. Crystal structures have shown that this domain is part of the PUA superfamily. This domain has been named EVE and is thought to be RNA-binding. 146 -334724 pfam01880 Desulfoferrodox Desulfoferrodoxin. Desulfoferrodoxins contains two types of iron: an Fe-S4 site very similar to that found in desulforedoxin from Desulfovibrio gigas and an octahedral coordinated high-spin ferrous site most probably with nitrogen/oxygen-containing ligands. Due to this rather unusual combination of active centers, this novel protein is named desulfoferrodoxin. 97 -334725 pfam01881 Cas_Cas6 CRISPR associated protein Cas6. This group of families is one of several protein families that are always found associated with prokaryotic CRISPRs, themselves a family of clustered regularly interspaced short palindromic repeats, DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. It has been shown that the CRISPRs are virus-derived sequences acquired by the host to enable them to resist viral infection. The Cas proteins from the host use the CRISPRs to mediate an antiviral response. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Cas5 contains an endonuclease motif, whose inactivation leads to loss of resistance, even in the presence of phage-derived spacers. 148 -307821 pfam01882 DUF58 Protein of unknown function DUF58. This family of prokaryotic proteins have no known function. Caldicellulosiruptor saccharolyticus PepX, a protein of unknown function in the family, has been misannotated as alpha-dextrin 6-glucanohydrolase. 86 -334726 pfam01883 FeS_assembly_P Iron-sulfur cluster assembly protein. This family has an alpha/beta topology, with 13 conserved hydrophobic residues at its core and a putative active site containing a highly conserved cysteine. Members of this family are involved in a range of physiological functions. The family includes PaaJ (PhaH) from Pseudomonas putida. PaaJ forms a complex with PaaG (PhaF), PaaI (PhaG) and PaaK (PhaI), which hydroxylates phenylacetic acid to 2-hydroxyphenylacetic acid. It also includes PaaD from Escherichia coli, a member of a multicomponent oxygenase involved in phenylacetyl-CoA hydroxylation. Furthermore, several members of this family are shown to be involved in iron-sulfur (FeS) cluster assembly. Iron-sulfur (FeS) clusters are inorganic co-factors that are are able to transfer electrons and act as catalysts. They are involved in diverse cellular processes including cellular respiration, DNA replication and repair, antibiotic resistance, and dinitrogen fixation. The biogenesis of such clusters from elemental iron and sulfur is an enzymatic process that requires a set of specialized proteins. Proteins containing this domain include the chloroplast protein HCF101 (high chlorophyll fluorescence 101), which has been described as an essential and specific factor for assembly of [4Fe-4S]-cluster-containing protein complexes such as the membrane complex Photosystem I (PSI) and the heterodimeric FTR (ferredoxin-thioredoxin reductase) complex and is involved in the assembly of [4Fe-4S] clusters and their transfer to apoproteins. The mature HCF101 protein contains an N-terminal DUF59 domain as well as eight cysteine residues along the sequence. All cysteine residues are conserved among higher plants, but of the two cysteine residues located in the DUF59 domain only Cys128 is highly conserved##and is present in the highly conserved P-loop domain of the plant HCF101 (CKGGVGKS). SufT protein from Staphylococcus aureus is composed of DUF59 solely and is shown to be involved in the maturation of FeS proteins. Given all this data, it is hypothesized that DUF59 might play a role in FeS cluster assembly. 72 -280124 pfam01884 PcrB PcrB family. This family contains proteins that are related to PcrB. The function of these proteins is unknown. 226 -334727 pfam01885 PTS_2-RNA RNA 2'-phosphotransferase, Tpt1 / KptA family. Tpt1 catalyzes the last step of tRNA splicing in yeast. It transfers the splice junction 2'-phosphate from ligated tRNA to NAD, to produce ADP-ribose 1"-2"-cyclic phosphate. This is presumed to be followed by a transesterification step to release the RNA. The first step of this reaction is similar to that catalyzed by some bacterial toxins. E. coli KptA and mouse Tpt1 are likely to use the same reaction mechanism. 169 -307824 pfam01886 DUF61 Protein of unknown function DUF61. Protein found in Archaebacteria. These proteins have no known function. 123 -334728 pfam01887 SAM_adeno_trans S-adenosyl-l-methionine hydroxide adenosyltransferase. This is a family of proteins, previously known as DUF62, found in archaebacteria and bacteria. The structure of proteins in this family is similar to that of a bacterial fluorinating enzyme. S-adenosyl-l-methionine hydroxide adenosyltransferases utilizes a rigorously conserved amino acid side chain triad (Asp-Arg-His) which may have a role in activating water to hydroxide ion. This family used to be known as DUF62. 253 -334729 pfam01888 CbiD CbiD. CbiD is essential for cobalamin biosynthesis in both S. typhimurium and B. megaterium, no functional role has been ascribed to the protein. The CbiD protein has a putative S-AdoMet binding site. It is possible that CbiD might have the same role as CobF in undertaking the C-1 methylation and deacylation reactions required during the ring contraction process. 259 -307827 pfam01889 DUF63 Membrane protein of unknown function DUF63. Proteins found in Archaebacteria of unknown function. These proteins are probably transmembrane proteins. 270 -334730 pfam01890 CbiG_C Cobalamin synthesis G C-terminus. Members of this family are involved in cobalamin synthesis. The protein encoded by Synechocystis sp.cbiH represents a fusion between cbiH and cbiG. As other multi-functional proteins involved in cobalamin biosynthesis catalyze adjacent steps in the pathway, including CysG, CobL (CbiET), CobIJ and CobA-HemD, it is therefore possible that CbiG catalyzes a reaction step adjacent to CbiH. In the anaerobic pathway such a step could be the formation of a gamma lactone, which is thought to help to mediate the anaerobic ring contraction process. Within the cobalamin synthesis pathway CbiG catalyzes the both the opening of the lactone ring and the extrusion of the two-carbon fragment of cobalt-precorrin-5A from C-20 and its associated methyl group (deacylation) to give cobalt-precorrin-5B. This family is the C-terminal region, and the mid- and N-termival parts are conserved independently in other families. 118 -307829 pfam01891 CbiM Cobalt uptake substrate-specific transmembrane region. This family of proteins forms part of the cobalt-transport complex in prokaryotes, CbiMNQO. CbiMNQO and NikMNQO are the most widespread groups of microbial transporters for cobalt and nickel ions and are unusual uptake systems as they consist of eg two transmembrane components (CbiM and CbiQ), a small membrane-bound component (CbiN) and an ATP-binding protein (CbiO) but no extracytoplasmic solute-binding protein. Similar components constitute the nickel transporters with some variability in the small membrane-bound component, either NikN or NikL, which are not similar to CbiN at the sequence level. CbiM is the substrate-specific component of the complex and is a seven-transmembrane protein. The CbiMNQO and NikMNQO systems form part of the coenzyme B12 biosynthesis pathway. The NikM protein is pfam10670. 197 -307830 pfam01893 UPF0058 Uncharacterized protein family UPF0058. This archaebacterial protein has no known function. 86 -334731 pfam01894 UPF0047 Uncharacterized protein family UPF0047. This family has no known function. The alignment contains a conserved aspartate and histidine that may be functionally important. 116 -334732 pfam01895 PhoU PhoU domain. This family contains phosphate regulatory proteins including PhoU. PhoU proteins are known to play a role in the regulation of phosphate uptake. The PhoU domain is composed of a three helix bundle. The PhoU protein contains two copies of this domain. The domain binds to an iron cluster via its conserved E/DXXXD motif. 86 -307833 pfam01896 DNA_primase_S DNA primase small subunit. DNA primase synthesizes the RNA primers for the Okazaki fragments in lagging strand DNA synthesis. DNA primase is a heterodimer of large and small subunits. This family also includes baculovirus late expression factor 1 or LEF-1 proteins. Baculovirus LEF-1 is a DNA primase enzyme. The family also contains many bacterial DNA primases. 158 -334733 pfam01899 MNHE Na+/H+ ion antiporter subunit. Subunit of a Na+/H+ Prokaryotic antiporter complex. 150 -307835 pfam01900 RNase_P_Rpp14 Rpp14/Pop5 family. tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. This protein is known as Pop5 in eukaryotes. 104 -307836 pfam01901 O_anti_polymase Putative O-antigen polymerase. Archaebacterial proteins of unknown function. Members of this family may be transmembrane proteins. These are potentially O-antigen assembly enzymes, with up to 11 transmembrane regions. 326 -280139 pfam01902 Diphthami_syn_2 Diphthamide synthase. Diphthamide_syn, diphthamide synthase, catalyzes the last amidation step of diphthamide biosynthesis using ammonium and ATP. Diphthamide synthase is evolutionarily conserved in eukaryotes. Diphthamide is a post-translationally modified histidine residue found on archaeal and eukaryotic translation elongation factor 2 (eEF-2). In some members of this family this domain is associated with pfam01042. The enzyme classification is EC:6.3.1.14. 219 -307837 pfam01903 CbiX CbiX. The function of CbiX is uncertain, however it is found in cobalamin biosynthesis operons and so may have a related function. Some CbiX proteins contain a striking histidine-rich region at their C-terminus, which suggests that it might be involved in metal chelation. 106 -334734 pfam01904 DUF72 Protein of unknown function DUF72. The function of this family is unknown. 221 -307839 pfam01905 DevR CRISPR-associated negative auto-regulator DevR/Csa2. This group of families is one of several protein families that are always found associated with prokaryotic CRISPRs, themselves a family of clustered regularly interspaced short palindromic repeats, DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. It has been shown that the CRISPRs are virus-derived sequences acquired by the host to enable them to resist viral infection. The Cas proteins from the host use the CRISPRs to mediate an antiviral response. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Cas5 contains an endonuclease motif, whose inactivation leads to loss of resistance, even in the presence of phage-derived spacers. This family used to be known as DUF73. DevR appears to be negative auto-regulator within the system. 266 -334735 pfam01906 YbjQ_1 Putative heavy-metal-binding. From comparative structural analysis, this family is likely to be a heavy-metal binding domain. The domain oligomerises as a pentamer. The domain is about 100 amino acids long and is found in prokaryotes. 99 -307841 pfam01907 Ribosomal_L37e Ribosomal protein L37e. This family includes ribosomal protein L37 from eukaryotes and archaebacteria. The family contains many conserved cysteines and histidines suggesting that this protein may bind to zinc. 53 -307842 pfam01909 NTP_transf_2 Nucleotidyltransferase domain. Members of this family belong to a large family of nucleotidyltransferases. This family includes kanamycin nucleotidyltransferase (KNTase) which is a plasmid-coded enzyme responsible for some types of bacterial resistance to aminoglycosides. KNTase in-activates antibiotics by catalyzing the addition of a nucleotidyl group onto the drug. 92 -307843 pfam01910 Thiamine_BP Thiamine-binding protein. The crystal structure of two of these members shows that this domain has a ferredoxin like fold and is likely to exists as at least homodimers. Sulphate ions are are located at the dimer interfaces, which are thought to confer additional stability. Although the function of this domain remains to be identified, its structure suggests a role in protein-protein interactions possibly regulated by the binding of small-molecule ligands. Solution of the structure of the hyperthermophilic anaerobic Thermotoga maritima sequence, UniProtKB:Q9WYV6, shows that this has a beta-alpha-beta-beta-alpha-beta ferredoxin-like fold and assembles as a homotetramer. It was possible to identify a pocket in each monmer that bound an unidentified ligand. It was also found that it bound charged thiamine though not hydroxymethyl pyrimidine. It is proposed that it is transporting charged thiamine around the cytoplasm. Under oxidative conditions this bacterium is under stress, and the transcriiptional unit within which this protein is expressed is up-regulated in these conditions, suggesting that the chelation of cytoplasmic thaimine is part of the response mechanism to such oxidatvie stress, which is mediated by this family. 92 -334736 pfam01912 eIF-6 eIF-6 family. This family includes eukaryotic translation initiation factor 6 as well as presumed archaebacterial homologs. 194 -334737 pfam01913 FTR Formylmethanofuran-tetrahydromethanopterin formyltransferase. This enzyme EC:2.3.1.101 is involved in archaebacteria in the formation of methane from carbon dioxide. N-terminal distal lobe of alpha+beta ferredoxin-like fold. SCOP reports fold duplication with C-terminal proximal lobe. 144 -280149 pfam01914 MarC MarC family integral membrane protein. Integral membrane protein family that includes the protein MarC. MarC was thought to be a multiple antibiotic resistance protein. Nevertheless, a study has shown that MarC is not involved in multiple antibiotic resistance. The function of this family is unclear. 203 -334738 pfam01915 Glyco_hydro_3_C Glycosyl hydrolase family 3 C-terminal domain. This domain is involved in catalysis and may be involved in binding beta-glucan. This domain is found associated with pfam00933. 216 -334739 pfam01916 DS Deoxyhypusine synthase. Eukaryotic initiation factor 5A (eIF-5A) contains an unusual amino acid, hypusine [N epsilon-(4-aminobutyl-2-hydroxy)lysine]. The first step in the post-translational formation of hypusine is catalyzed by the enzyme deoxyhypusine synthase (DS) EC:1.1.1.249. The modified version of eIF-5A, and DS, are required for eukaryotic cell proliferation. 285 -307848 pfam01917 Arch_flagellin Archaebacterial flagellin. Members of this family are the proteins that form the flagella in archaebacteria. 160 -334740 pfam01918 Alba Alba. Alba is a novel chromosomal protein that coats archaeal DNA without compacting it. 66 -334741 pfam01920 Prefoldin_2 Prefoldin subunit. This family includes prefoldin subunits that are not detected by pfam02996. 103 -307851 pfam01921 tRNA-synt_1f tRNA synthetases class I (K). This family includes only lysyl tRNA synthetases from prokaryotes. 357 -307852 pfam01922 SRP19 SRP19 protein. The signal recognition particle (SRP) binds to the signal peptide of proteins as they are being translated. The binding of the SRP halts translation and the complex is then transported to the endoplasmic reticulum's cytoplasmic surface. The SRP then aids translocation of the protein through the ER membrane. The SRP is a ribonucleoprotein that is composed of a small RNA and several proteins. One of these proteins is the SRP19 protein (Sec65 in yeast). 94 -334742 pfam01923 Cob_adeno_trans Cobalamin adenosyltransferase. Cobalamin adenosyltransferase This family contains the gene products of PduO and EutT which are both cobalamin adenosyltransferases. PduO is a protein with ATP:cob(I)alamin adenosyltransferase activity. The main role of this protein is the conversion of inactive cobalamins to AdoCbl for 1,2-propanediol degradation.The EutT enzyme appears to be an adenosyl transferase, converting CNB12 to AdoB12. 165 -334743 pfam01924 HypD Hydrogenase formation hypA family. HypD is involved in hydrogenase formation. It contains many possible metal binding residues, which may bind to nickel. Transposon Tn5 insertions into hypD resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas. 349 -307855 pfam01925 TauE Sulfite exporter TauE/SafE. This is a family of integral membrane proteins where the alignment appears to contain two duplicated modules of three transmembrane helices. The proteins are involved in the transport of anions across the cytoplasmic membrane during taurine metabolism as an exporter of sulfoacetate. This family used to be known as DUF81. 235 -334744 pfam01926 MMR_HSR1 50S ribosome-binding GTPase. The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. 112 -334745 pfam01927 Mut7-C Mut7-C RNAse domain. RNAse domain of the PIN fold with an inserted Zinc Ribbon at the C-terminus. 145 -307858 pfam01928 CYTH CYTH domain. These sequences are functionally identified as members of the adenylate cyclase family, which catalyzes the conversion of ATP to 3',5'-cyclic AMP and pyrophosphate. Six distinct non-homologous classes of AC have been identified. The structure of three classes of adenylyl cyclases have been solved. 172 -307859 pfam01929 Ribosomal_L14e Ribosomal protein L14. This family includes the eukaryotic ribosomal protein L14. 75 -334746 pfam01930 Cas_Cas4 Domain of unknown function DUF83. This domain has no known function. The domain contains three conserved cysteines at its C-terminus. 160 -334747 pfam01931 NTPase_I-T Protein of unknown function DUF84. NTPase_I-T is a family of NTPases with supreme activity against ITP and XTP. Active site analysis and structure comparison of YjjX strongly suggested that it is an NTP binding protein with nucleoside triphosphatase activity. YjjX exhibits a mixed alpha-beta fold. 163 -334748 pfam01933 UPF0052 Uncharacterized protein family UPF0052. 249 -307863 pfam01934 DUF86 Protein of unknown function DUF86. The function of members of this family is unknown. 120 -334749 pfam01935 DUF87 Domain of unknown function DUF87. The function of this prokaryotic domain is unknown. It contains several conserved aspartates and histidines that could be metal ligands. 218 -307865 pfam01936 NYN NYN domain. These domains are found in the eukaryotic proteins typified by the Nedd4-binding protein 1 and the bacterial YacP-like proteins (Nedd4-BP1, YacP nucleases; NYN domains). The NYN domain shares a common protein fold with two other previously characterized groups of nucleases, namely the PIN (PilT N-terminal) and FLAP/5' --> 3' exonuclease superfamilies. These proteins share a common set of 4 acidic conserved residues that are predicted to constitute their active site. Based on the conservation of the acidic residues and structural elements Aravind and colleagues suggest that PIN and NYN domains are likely to bind only a single metal ion, unlike the FLAP/5' --> 3' exonuclease superfamily, which binds two metal ions. Based on conserved gene neighborhoods Aravind and colleagues infer that the bacterial members are likely to be components of the processome/degradsome that process tRNAs or ribosomal RNAs. 140 -334750 pfam01937 DUF89 Protein of unknown function DUF89. This family has no known function. 312 -280171 pfam01938 TRAM TRAM domain. This small domain has no known function. However it may perform a nucleic acid binding role (Bateman A. unpublished observation). 59 -280172 pfam01939 NucS Endonuclease NucS. Endonuclease NucS cleaves both 3' and 5' ssDNA extremities of branched DNA structures and it binds to ssDNA. 229 -334751 pfam01940 DUF92 Integral membrane protein DUF92. Members of this family have several predicted transmembrane helices. The function of these prokaryotic proteins is unknown. 242 -307868 pfam01941 AdoMet_Synthase S-adenosylmethionine synthetase (AdoMet synthetase). This family consists of several archaebacterial S-adenosylmethionine synthetase C(AdoMet synthetase or MAT) (EC 2.5.1.6). S-Adenosylmethionine (AdoMet) occupies a central role in the metabolism of all cells. The biological roles of AdoMet include acting as the primary methyl group donor, as a precursor to the polyamines, and as a progenitor of a 5'-deoxyadenosyl radical. S-Adenosylmethionine synthetase catalyzes the only known route of AdoMet biosynthesis. The synthetic process occurs in a unique reaction in which the complete triphosphate chain is displaced from ATP and a sulfonium ion formed. MATs from various organisms contain ~400-amino acid polypeptide chains. 394 -280175 pfam01943 Polysacc_synt Polysaccharide biosynthesis protein. Members of this family are integral membrane proteins. Many members of the family are implicated in production of polysaccharide. The family includes RfbX part of the O antigen biosynthesis operon. The family includes SpoVB from Bacillus subtilis, which is involved in spore cortex biosynthesis. 273 -334752 pfam01944 SpoIIM Stage II sporulation protein M. SpoIIM is on e of four stage II sporulation proteins that is necessary for the forespore inside the mother-cell to be properly internalized through the breakdown of peptidoglycans trapped between the membranes of the septum separating the forespore and the mother-cell. The four proteins working in sequence are SpoIIB, pfam05036, SpoIIM, SpoIIP, pfam07454, and finally SpoIID, pfam08486. D, M and P are in a complex with each other and the complex assembles in a hierarchical manner such that M, which serves as a membrane anchor, recruits P to the septum and P, in turn, recruits D to the septum. 174 -334753 pfam01946 Thi4 Thi4 family. This family includes a putative thiamine biosynthetic enzyme. 232 -307870 pfam01947 DUF98 Protein of unknown function (DUF98). This is a family of uncharacterized proteins. 149 -334754 pfam01948 PyrI Aspartate carbamoyltransferase regulatory chain, allosteric domain. The regulatory chain is involved in allosteric regulation of aspartate carbamoyltransferase. The N-terminal domain has ferredoxin-like fold, and provides the regulatory chain dimerization interface. 93 -307872 pfam01949 DUF99 Protein of unknown function DUF99. The function of this archaebacterial protein family is unknown. 176 -334755 pfam01950 FBPase_3 Fructose-1,6-bisphosphatase. This is a family of bacterial and archaeal fructose-1,6-bisphosphatases (FBPases). FBPase catalyzes the hydrolysis of D-fructose-1,6-bisphosphate (FBP) to D-fructose-6-phosphate (F6P) and orthophosphate and is an essential regulatory enzyme in the glyconeogenic pathway. 361 -334756 pfam01951 Archease Archease protein family (MTH1598/TM1083). This archease family of proteins, has two SHS2 domains, with one inserted into another. It is predicted to be an enzyme. It is predicted to act as a chaperone in DNA/RNA metabolism. 134 -307875 pfam01954 DUF104 Protein of unknown function DUF104. This family includes short archaebacterial proteins of unknown function. Archaeoglobus fulgidus has twelve copies of this protein, with several being clustered together in the genome. 56 -307876 pfam01955 CbiZ Adenosylcobinamide amidohydrolase. This prokaryotic protein family includes CbiZ which converts adenosylcobinamide (AdoCbi) to adenosylcobyric acid (AdoCby), an intermediate of the de novo coenzyme B12 biosynthetic route. 196 -307877 pfam01956 DUF106 Integral membrane protein DUF106. This archaebacterial protein family has no known function. Members are predicted to be integral membrane proteins. 169 -280186 pfam01957 NfeD NfeD-like C-terminal, partner-binding. NfeD-like proteins are widely distributed throughout prokaryotes and are frequently associated with genes encoding stomatin-like proteins (slipins). There appear to be three major groups: an ancestral group with only an N-terminal serine protease domain and this C-terminal beta sheet-rich domain which is structurally very similar to the OB-fold domain, associated with its neighboring slipin cluster; a second major group with an additional middle, membrane-spanning domain, associated in some species with eoslipin and in others with yqfA; a final 'artificial' group which unites truncated forms lacking the protease region and associated with their ancestral gene partner, either yqfA or eoslipin. This NefD, C-terminal, domain appears to be the major one for relating to the associated protein. NfeD homologs are clearly reliant on their conserved gene neighbor which is assumed to be necessary for function, either through direct physical interaction or by functioning in the same pathway, possibly involve with lipid-rafts. 144 -334757 pfam01958 DUF108 Domain of unknown function DUF108. This family has no known function. It is found to compose the complete protein in archaebacteria and a single domain in a large C. elegans protein. 85 -334758 pfam01959 DHQS 3-dehydroquinate synthase II (EC 1.4.1.24). 3-Dehydroquinate synthase II was isolated from the archaeon Methanocaldococcus jannaschii and plays a key role in an alternative pathway for the biosynthesis of 3-dehydroquinate (DHQ), an intermediate of the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme catalyzes a two-step reaction - an oxidative deamination, followed by cyclization. The enzyme converts 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate to 3-dehydroquinate. 355 -334759 pfam01960 ArgJ ArgJ family. Members of the ArgJ family catalyze the first EC:2.3.1.1 and fifth steps EC:2.3.1.35 in arginine biosynthesis. 384 -334760 pfam01963 TraB TraB family. pAD1 is a haemolysin/bacteriocin plasmid originally identified in Enterococcus faecalis DS16. It encodes a mating response to a peptide sex pheromone, cAD1, secreted by recipient bacteria. Once the plasmid pAD1 is acquired, production of the pheromone ceases--a trait related in part to a determinant designated traB. However a related protein is found in C. elegans, suggesting that members of the TraB family have some more general function. This family also includes the bacterial GumN protein. The family has a conserved GXXH motif close to the N-terminus, a conserved glutamate and a conserved arginine that may be catalytic. The family also includes a second conserved GXXH motif near the C-terminus. This family also contains the Tiki proteins that regulate Wnt signalling. 263 -307882 pfam01964 ThiC_Rad_SAM Radical SAM ThiC family. ThiC is found within the thiamine biosynthesis operon. ThiC is involved in pyrimidine biosynthesis. ThiC participates in the formation of 4-Amino-5-hydroxymethyl-2-methylpyrimidine from AIR, an intermediate in the de novo pyrimidine biosynthesis. Thic is a member of the radical SAM superfamily. 419 -334761 pfam01965 DJ-1_PfpI DJ-1/PfpI family. The family includes the protease PfpI. This domain is also found in transcriptional regulators. 165 -334762 pfam01966 HD HD domain. HD domains are metal dependent phosphohydrolases. 111 -334763 pfam01967 MoaC MoaC family. Members of this family are involved in molybdenum cofactor biosynthesis. However their molecular function is not known. 136 -307885 pfam01968 Hydantoinase_A Hydantoinase/oxoprolinase. This family includes the enzymes hydantoinase and oxoprolinase EC:3.5.2.9. Both reactions involve the hydrolysis of 5-membered rings via hydrolysis of their internal imide bonds. 288 -334764 pfam01969 DUF111 Protein of unknown function DUF111. This prokaryotic family has no known function. 375 -334765 pfam01970 TctA Tripartite tricarboxylate transporter TctA family. This family, formerly known as DUF112, is a family of bacterial and archaeal tripartite tricarboxylate transporters of the extracytoplasmic solute binding receptor-dependent transporter group of families, distinct from the ABC and TRAP-T families. TctA is part of the tripartite TctABC system which, as characterized in S. typhimurium, is a secondary carrier that depends for activity on the extracytoplasmic tricarboxylate-binding receptor TctC as well as two integral membrane proteins, TctA and TctB. complete three-component systems are found only in bacteria. TctA is a large transmembrane protein with up to 12 predicted membrane spanning regions in bacteria and up to 11 such in archaea, with the N-terminal within the cytoplasm. TctA is thought to be a permease, and in most other bacteria functions without TctB and TctC molecules. 415 -110924 pfam01972 SDH_sah Serine dehydrogenase proteinase. This family of archaebacterial proteins, formerly known as DUF114, has been found to be a serine dehydrogenase proteinase distantly related to ClpP proteinases that belong to the serine proteinase superfamily. The family has a catalytic triad of Ser, Asp, His residues, which shows an altered residue ordering compared with the ClpP proteinases but similar to that of the carboxypeptidase clan. 286 -334766 pfam01973 MAF_flag10 Protein of unknown function DUF115. This family of archaebacterial proteins has no known function. 172 -307889 pfam01974 tRNA_int_endo tRNA intron endonuclease, catalytic C-terminal domain. Members of this family cleave pre tRNA at the 5' and 3' splice sites to release the intron EC:3.1.27.9. 85 -334767 pfam01975 SurE Survival protein SurE. E. coli cells with the surE gene disrupted are found to survive poorly in stationary phase. It is suggested that SurE may be involved in stress response. Yeast also contains a member of the family. Yarrowia lipolytica PHO2 can complement a mutation in acid phosphatase, suggesting that members of this family could be phosphatases. 186 -334768 pfam01976 DUF116 Protein of unknown function DUF116. This archaebacterial protein has no known function. The protein contains seven conserved cysteines and may also be an integral membrane protein. 152 -334769 pfam01977 UbiD 3-octaprenyl-4-hydroxybenzoate carboxy-lyase. This family has been characterized as 3-octaprenyl-4- hydroxybenzoate carboxy-lyase enzymes. This enzyme catalyzes the third reaction in ubiquinone biosynthesis. For optimal activity the carboxy-lase was shown to require Mn2+. 402 -334770 pfam01978 TrmB Sugar-specific transcriptional regulator TrmB. One member of this family, TrmB, has been shown to be a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter in Thermococcus litoralis. 68 -334771 pfam01979 Amidohydro_1 Amidohydrolase family. This family of enzymes are a a large metal dependent hydrolase superfamily. The family includes Adenine deaminase EC:3.5.4.2 that hydrolyzes adenine to form hypoxanthine and ammonia. Adenine deaminases reaction is important for adenine utilisation as a purine and also as a nitrogen source. This family also includes dihydroorotase and N-acetylglucosamine-6-phosphate deacetylases, EC:3.5.1.25 These enzymes catalyze the reaction N-acetyl-D-glucosamine 6-phosphate + H2O <=> D-glucosamine 6-phosphate + acetate. This family includes the catalytic domain of urease alpha subunit. Dihydroorotases (EC:3.5.2.3) are also included. 329 -334772 pfam01980 UPF0066 Uncharacterized protein family UPF0066. 115 -334773 pfam01981 PTH2 Peptidyl-tRNA hydrolase PTH2. Peptidyl-tRNA hydrolases are enzymes that release tRNAs from peptidyl-tRNA during translation. 108 -307897 pfam01982 CTP-dep_RFKase Domain of unknown function DUF120. This domain is a CTP-dependent riboflavin kinase (RFK), found in archaea, that catalyzes the phosphorylation of riboflavin to form flavin mononucleotide in riboflavin biosynthesis EC:2.7.1.26. Its structure resembles a RIFT barrel, structurally similar to but topologically distinct from bacterial and eukaryotic examples. The N-terminal is a winged helix-turn-helix DNA-binding domain, and the C-terminal half is most similar in sequence to a group of cradle-loop barrels. Archaeoglobus fulgidus RibK has this domain attached to pfam00325. 121 -251014 pfam01983 CofC Guanylyl transferase CofC like. Coenzyme F420 is a hydride carrier cofactor that functions during methanogenesis. This family of proteins represents CofC, a nucleotidyl transferase that is involved in coenzyme F420 biosynthesis. CofC has been shown to catalyze the formation of lactyl-2-diphospho-5'-guanosine from 2-phospho-L-lactate and GTP. 217 -334774 pfam01984 dsDNA_bind Double-stranded DNA-binding domain. This domain is believed to bind double-stranded DNA of 20 bases length. 107 -334775 pfam01985 CRS1_YhbY CRS1 / YhbY (CRM) domain. Escherichia coli YhbY is associated with pre-50S ribosomal subunits, which implies a function in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. A CRM domain containing protein in plant chloroplasts has been shown to function in group I and II intron splicing. In vitro experiments with an isolated maize CRM domain have shown it to have RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. YhbY has a fold similar to that of the C-terminal domain of translation initiation factor 3 (IF3C), which binds to 16S rRNA in the 30S ribosome. 83 -334776 pfam01986 DUF123 Domain of unknown function DUF123. This archaebacterial domain has no known function. It is attached to an endonuclease domain in Methanocaldococcus jannaschii endonuclease III (nth). The domain contains several conserved cysteines and histidines. This suggests that the domain may be a zinc binding nucleic acid interaction domain (Bateman A unpubl.). 96 -334777 pfam01987 AIM24 Mitochondrial biogenesis AIM24. In eukaryotes, this domain is involved in mitochondrial biogenesis. Its function in prokaryotes in unknown. 207 -334778 pfam01988 VIT1 VIT family. This family includes the vacuolar Fe2+/Mn2+ uptake transporter, Ccc1 and the vacuolar iron transporter VIT1. 212 -334779 pfam01989 DUF126 Protein of unknown function DUF126. This archaebacterial protein family has no known function. 75 -334780 pfam01990 ATP-synt_F ATP synthase (F/14-kDa) subunit. This family includes 14-kDa subunit from vATPases, which is in the peripheral catalytic part of the complex. The family also includes archaebacterial ATP synthase subunit F. 89 -280215 pfam01991 vATP-synt_E ATP synthase (E/31 kDa) subunit. This family includes the vacuolar ATP synthase E subunit, as well as the archaebacterial ATP synthase E subunit. 199 -334781 pfam01992 vATP-synt_AC39 ATP synthase (C/AC39) subunit. This family includes the AC39 subunit from vacuolar ATP synthase, and the C subunit from archaebacterial ATP synthase. The family also includes subunit C from the Sodium transporting ATP synthase from Enterococcus hirae. 334 -307906 pfam01993 MTD methylene-5,6,7,8-tetrahydromethanopterin dehydrogenase. This enzyme family is involved in formation of methane from carbon dioxide EC:1.5.99.9. The enzyme requires coenzyme F420. 274 -307907 pfam01994 Trm56 tRNA ribose 2'-O-methyltransferase, aTrm56. This family is an aTrm56 that catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Biochemical assays showed that aTrm56 forms a dimer and prefers the L-shaped tRNA to the lambda form as its substrate. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot for AdoMet binding, and a unique C-terminal beta-hairpin. 119 -307908 pfam01995 DUF128 Domain of unknown function DUF128. This archaebacterial protein family has no known function. The domain is found duplicated in Methanothermobacter thermautotrophicus MTH_1569. Many of these are attached to an N-terminal winged helix domain suggesting these are transcriptional regulators and that this domain has a ligand binding function. 232 -307909 pfam01996 F420_ligase F420-0:Gamma-glutamyl ligase. F420-0:Gamma-glutamyl ligase (EC:6.3.2.-) is an enzyme involved in F420 biosynthesis pathway. It catalyzes the GTP-dependent successive addition of multiple gamma-linked L-glutamates to the L-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F420-0). This reaction produces polyglutamated F420 derivatives. GTP + F420-0 + n L-glutamate -> GDP + phosphate + F420-n 218 -334782 pfam01997 Translin Translin family. Members of this family include Translin, which interacts with DNA and forms a ring around the DNA. This family also includes human TSNAX, which was found to interact with translin with yeast two-hybrid screen. 200 -307911 pfam01998 DUF131 Protein of unknown function DUF131. This archaebacterial protein family has no known function. The proteins are predicted to contain two transmembrane helices. 62 -280223 pfam02001 DUF134 Protein of unknown function DUF134. This family of archaeal proteins has no known function. 98 -280224 pfam02002 TFIIE_alpha TFIIE alpha subunit. The general transcription factor TFIIE has an essential role in eukaryotic transcription initiation together with RNA polymerase II and other general factors. Human TFIIE consists of two subunits TFIIE-alpha and TFIIE-beta and joins the pre-initiation complex after RNA polymerase II and TFIIF. This family consists of the conserved amino terminal region of eukaryotic TFIIE-alpha and proteins from archaebacteria that are presumed to be TFIIE-alpha subunits also Archaeoglobus fulgidus tfe. 105 -280225 pfam02005 TRM N2,N2-dimethylguanosine tRNA methyltransferase. This enzyme EC:2.1.1.32 used S-AdoMet to methylate tRNA. The TRM1 gene of Saccharomyces cerevisiae is necessary for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNAs. The enzyme is found in both eukaryotes and archaebacteria 375 -334783 pfam02006 DUF137 Protein of unknown function DUF137. This family of archaeal proteins has no known function. 176 -280227 pfam02007 MtrH Tetrahydromethanopterin S-methyltransferase MtrH subunit. The enzyme tetrahydromethanopterin S-methyltransferase EC:2.1.1.86 is composed of eight subunits. The enzyme is a membrane- associated enzyme complex which catalyzes an energy-conserving, sodium-ion-translocating step in methanogenesis from hydrogen and carbon dioxide. 299 -251032 pfam02008 zf-CXXC CXXC zinc finger domain. This domain contains eight conserved cysteine residues that bind to two zinc ions. The CXXC domain is found in a variety of chromatin-associated proteins. This domain binds to nonmethyl-CpG dinucleotides. The domain is characterized by two repeats, and shows a peculiar internal duplication in which the second unit is inserted into the first one. Each of these units is characterized by four conserved cysteines, displaying a CXXCXXCX(n)C motif that chelate a Zn+2 ion. The DNA binding interface has been identified by NMR. In eukaryotes, the CXXC domain is found in stramenopiles, plants and metazoans. Plants possess a mono-CXXC domain that is present in distinct chromatin proteins. Structural comparisons show that the mono-CXXC is homologous to the structural-zinc binding domain of medium chain dehydrogenases. 48 -334784 pfam02009 RIFIN Rifin. Plasmodium falciparum is the causative agent of deadly malaria disease. It encodes repetitive interspersed families of polypeptides (RIFINs), which are expressed on the surface of infected erythrocytes. All RIFIN sequences contain the PEXEL motif (a pentameric sequence RxLxE/Q/D, known as the Plasmodium export element) required for correct export and surface expression or host-targeting (HT) signal which plays a central role in the export of proteins into the host cell. It has been reported that PEXEL is preferably located 15-20 amino acids downstream of an N-terminal hydrophobic signal sequence. The RIFIN protein family can be divided into A and B types based on the presence or absence of a 25 amino acid motif located approximately 66 amino acids downstream of the PEXEL motif, with A- and B-types serving different roles in distinct parasite stages. The specific type B RIFIN variant (PF13_0006) is expressed on the surface of free merozoites, internally in developing gametocytes and on the surface of gametes at the point of emerging from activated, mature stage V gametocytes. While type A RIFIN are expressed on the infected erythrocyte surface, potentially contributing to the antigenic variation capacity of the parasite. 318 -307914 pfam02010 REJ REJ domain. The REJ (Receptor for Egg Jelly) domain is found in PKD1 and the sperm receptor for egg jelly. The function of this domain is unknown. The domain is 600 amino acids long so is probably composed of multiple structural domains. There are six completely conserved cysteine residues that may form disulphide bridges. This region contains tandem PKD-like domains. 410 -307915 pfam02011 Glyco_hydro_48 Glycosyl hydrolase family 48. Members of this family are endoglucanase EC:3.2.1.4 and exoglucanase EC:3.2.1.91 enzymes that cleave cellulose or related substrate. 619 -334785 pfam02012 BNR BNR/Asp-box repeat. Members of this family contain multiple BNR (bacterial neuraminidase repeat) repeats or Asp-boxes. The repeats are short, however the repeats are never found closer than 40 residues together suggesting that the repeat is structurally longer. These repeats are found in many glycosyl hydrolases as well as other extracellular proteins of unknown function. 12 -251036 pfam02013 CBM_10 Cellulose or protein binding domain. This domain is found in two distinct sets of proteins with different functions. Those found in aerobic bacteria bind cellulose (or other carbohydrates); but in anaerobic fungi they are protein binding domains, referred to as dockerin domains or docking domains. They are believed to be responsible for the assembly of a multiprotein cellulase/hemicellulase complex, similar to the cellulosome found in certain anaerobic bacteria. 36 -307916 pfam02014 Reeler Reeler domain. 129 -280233 pfam02015 Glyco_hydro_45 Glycosyl hydrolase family 45. 214 -334786 pfam02016 Peptidase_S66 LD-carboxypeptidase. Muramoyl-tetrapeptide carboxypeptidase hydrolyzes a peptide bond between a di-basic amino acid and the C-terminal D-alanine in the tetrapeptide moiety in peptidoglycan. This cleaves the bond between an L- and a D-amino acid. The function of this activity is in murein recycling. This family also includes the microcin c7 self-immunity protein. This family corresponds to Merops family S66. 262 -334787 pfam02017 CIDE-N CIDE-N domain. This domain is found in CAD nuclease and ICAD, the inhibitor of CAD nuclease. The two proteins interact through this domain. 75 -334788 pfam02018 CBM_4_9 Carbohydrate binding domain. This family includes diverse carbohydrate binding domains. 131 -307920 pfam02019 WIF WIF domain. The WIF domain is found in the RYK tyrosine kinase receptors and WIF the Wnt-inhibitory-factor. The domain is extracellular and contains two conserved cysteines that may form a disulphide bridge. This domain is Wnt binding in WIF, and it has been suggested that RYK may also bind to Wnt. The WIF domain is a member of the immunoglobulin superfamily, and it comprises nine beta-strands and two alpha-helices, with two of the beta-strands (6 and 9) interrupted by four and six residues of irregular secondary structure, respectively. Considering that the activity of Wnts depends on the presence of a palmitoylated cysteine residue in their amino-terminal polypeptide segment, Wnt proteins are lipid-modified and can act as stem cell growth factors, it is likely that the WIF domain recognizes and binds to Wnts that have been activated by palmitoylation and that the recognition of palmitoylated Wnts by WIF-1 is effected by its WIF domain rather than by its EGF domains. A strong binding affinity for palmitoylated cysteine residues would further explain the remarkably high affinity of human WIF-1 not only for mammalian Wnts, but also for Wnts from Xenopus and Drosophila. 119 -334789 pfam02020 W2 eIF4-gamma/eIF5/eIF2-epsilon. This domain of unknown function is found at the C-terminus of several translation initiation factors. 78 -334790 pfam02021 UPF0102 Uncharacterized protein family UPF0102. The function of this family is unknown. 92 -307923 pfam02022 Integrase_Zn Integrase Zinc binding domain. Integrase mediates integration of a DNA copy of the viral genome into the host chromosome. Integrase is composed of three domains. This domain is the amino-terminal domain zinc binding domain. The central domain is the catalytic domain pfam00665. The carboxyl terminal domain is a DNA binding domain pfam00552. 37 -334791 pfam02023 SCAN SCAN domain. The SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several pfam00096 proteins. The domain has been shown to be able to mediate homo- and hetero-oligomerization. 89 -307925 pfam02024 Leptin Leptin. 142 -334792 pfam02025 IL5 Interleukin 5. 111 -334793 pfam02026 RyR RyR domain. This domain is called RyR for Ryanodine receptor. The domain is found in four copies in the ryanodine receptor. The function of this domain is unknown. 91 -307928 pfam02027 RolB_RolC RolB/RolC glucosidase family. This family of proteins includes RolB and RolC. RolC releases cytokinins from glucoside conjugates. Whereas RolB hydrolyzes indole glucosides. 184 -307929 pfam02028 BCCT BCCT, betaine/carnitine/choline family transporter. 485 -307930 pfam02029 Caldesmon Caldesmon. 263 -307931 pfam02030 Lipoprotein_8 Hypothetical lipoprotein (MG045 family). This family includes hypothetical lipoproteins, the amino terminal part of this protein is related to pfam01547, a family of solute binding proteins. This suggests this family also has a solute binding function. 493 -280248 pfam02031 Peptidase_M7 Streptomyces extracellular neutral proteinase (M7) family. 133 -334794 pfam02033 RBFA Ribosome-binding factor A. 103 -307933 pfam02035 Coagulin Coagulin. 172 -334795 pfam02036 SCP2 SCP-2 sterol transfer family. This domain is involved in binding sterols. It is found in the SCP2 protein, as well as the C-terminus of the enzyme estradiol 17 beta-dehydrogenase EC:1.1.1.62. The UNC-24 protein contains an SPFH domain pfam01145. 90 -334796 pfam02037 SAP SAP domain. The SAP (after SAF-A/B, Acinus and PIAS) motif is a putative DNA/RNA binding domain found in diverse nuclear and cytoplasmic proteins. 32 -307936 pfam02038 ATP1G1_PLM_MAT8 ATP1G1/PLM/MAT8 family. 46 -307937 pfam02040 ArsB Arsenical pump membrane protein. 423 -280254 pfam02041 Auxin_BP Auxin binding protein. 164 -334797 pfam02042 RWP-RK RWP-RK domain. This domain is named RWP-RK after a conserved motif at the C-terminus of the presumed domain. The domain is found in algal minus dominance proteins as well as plant proteins involved in nitrogen-controlled development. 49 -307939 pfam02043 Bac_chlorC Bacteriochlorophyll C binding protein. 80 -280257 pfam02044 Bombesin Bombesin-like peptide. 14 -334798 pfam02045 CBFB_NFYA CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B. 56 -307941 pfam02046 COX6A Cytochrome c oxidase subunit VIa. 112 -307942 pfam02048 Enterotoxin_ST Heat-stable enterotoxin ST. This family consists of the heat stable enterotoxin ST from Escherichia coli. ST is a small peptide of 18 or 19 amino acid residues produced by enterotoxigenic E. coli and is one of the causes of acute diarrhoea in infants and travellers in developing countries. ST triggers a biological response by binding to a membrane-associated guanylyl cyclase C which is located on intestinal epithelial cell membranes. 54 -334799 pfam02049 FliE Flagellar hook-basal body complex protein FliE. 89 -307944 pfam02050 FliJ Flagellar FliJ protein. 123 -110996 pfam02052 Gallidermin Gallidermin. 52 -251060 pfam02053 Gene66 Gene 66 (IR5) protein. 210 -307945 pfam02055 Glyco_hydro_30 Glycosyl hydrolase family 30 TIM-barrel domain. 348 -280263 pfam02056 Glyco_hydro_4 Family 4 glycosyl hydrolase. 183 -334800 pfam02057 Glyco_hydro_59 Glycosyl hydrolase family 59. 300 -307947 pfam02058 Guanylin Guanylin precursor. 87 -307948 pfam02059 IL3 Interleukin-3. 109 -307949 pfam02060 ISK_Channel Slow voltage-gated potassium channel. 122 -280268 pfam02061 Lambda_CIII Lambda Phage CIII. The CIII protein from bacteriophage lambda is an inhibitor of the FtsH peptidase. 42 -307950 pfam02063 MARCKS MARCKS family. 285 -307951 pfam02064 MAS20 MAS20 protein import receptor. 121 -307952 pfam02065 Melibiase Melibiase. Glycoside hydrolase families GH27, GH31 and GH36 form the glycoside hydrolase clan GH-D. Glycoside hydrolase family 36 can be split into 11 families, GH36A to GH36K. This family includes enzymes from GH36A-B and GH36D-K and from GH27. 347 -280272 pfam02066 Metallothio_11 Metallothionein family 11. 54 -280273 pfam02067 Metallothio_5 Metallothionein family 5. 41 -307953 pfam02068 Metallothio_PEC Plant PEC family metallothionein. 73 -307954 pfam02069 Metallothio_Pro Prokaryotic metallothionein. 51 -307955 pfam02070 NMU Neuromedin U. 25 -307956 pfam02071 NSF Aromatic-di-Alanine (AdAR) repeat. This repeat is found in NSF attachment proteins. Its structure is similar to that found in TPR repeats pfam00515. 12 -307957 pfam02072 Orexin Prepro-orexin. 129 -334801 pfam02073 Peptidase_M29 Thermophilic metalloprotease (M29). 405 -280280 pfam02074 Peptidase_M32 Carboxypeptidase Taq (M32) metallopeptidase. 495 -334802 pfam02075 RuvC Crossover junction endodeoxyribonuclease RuvC. This entry includes endodeoxyribonucleases found in bacteria, such as RuvC. RuvC is a small protein of about 20 kD. It requires and binds a magnesium ion. The structure of E. coli RuvC is a 3-layer alpha-beta sandwich containing a 5-stranded beta-sheet sandwiched between 5 alpha-helices. The Escherichia coli RuvC gene is involved in DNA repair and in the late step of RecE and RecF pathway recombination. RuvC protein (EC:3.1.22.4) cleaves cruciform junctions, which are formed by the extrusion of inverted repeat sequences from a super-coiled plasmid and which are structurally analogous to Holliday junctions, by introducing nicks into strands with the same polarity. The nicks leave a 5'terminal phosphate and a 3'terminal hydroxyl group which are ligated by E. coli or Bacteriophage T4 DNA ligases. Analysis of the cleavage sites suggests that DNA topology rather than a particular sequence determines the cleavage site. RuvC protein also cleaves Holliday junctions that are formed between gapped circular and linear duplex DNA by the function of RecA protein. The active form of RuvC protein is a dimer. This is mechanistically suited for an endonuclease involved in swapping DNA strands at the crossover junctions. It is inferred that RuvC protein is an endonuclease that resolves Holliday structures in vivo. 134 -334803 pfam02076 STE3 Pheromone A receptor. 282 -111019 pfam02077 SURF4 SURF4 family. 267 -307960 pfam02078 Synapsin Synapsin, N-terminal domain. This family is structurally related to the PreATP-grasp domain. 98 -280284 pfam02079 TP1 Nuclear transition protein 1. 51 -307961 pfam02080 TrkA_C TrkA-C domain. This domain is often found next to the pfam02254 domain. The exact function of this domain is unknown. It has been suggested that it may bind an unidentified ligand. The domain is predicted to adopt an all beta structure. 70 -334804 pfam02081 TrpBP Tryptophan RNA-binding attenuator protein. 68 -334805 pfam02082 Rrf2 Transcriptional regulator. This family is related to pfam001022 and other transcription regulation families (personal obs: Yeats C). 83 -280288 pfam02083 Urotensin_II Urotensin II. 12 -251078 pfam02084 Bindin Bindin. 239 -307964 pfam02085 Cytochrom_CIII Class III cytochrome C family. 102 -307965 pfam02086 MethyltransfD12 D12 class N6 adenine-specific DNA methyltransferase. 253 -111029 pfam02087 Nitrophorin Nitrophorin. 178 -145317 pfam02088 Ornatin Ornatin. 41 -307966 pfam02089 Palm_thioest Palmitoyl protein thioesterase. 279 -280292 pfam02090 SPAM Salmonella surface presentation of antigen gene type M protein. 140 -334806 pfam02091 tRNA-synt_2e Glycyl-tRNA synthetase alpha subunit. 275 -334807 pfam02092 tRNA_synt_2f Glycyl-tRNA synthetase beta subunit. 544 -307969 pfam02093 Gag_p30 Gag P30 core shell protein. According to Swiss-Prot annotation this protein is the viral core shell protein. P30 is essential for viral assembly. 208 -307970 pfam02095 Extensin_1 Extensin-like protein repeat. 10 -334808 pfam02096 60KD_IMP 60Kd inner membrane protein. 188 -280298 pfam02097 Filo_VP35 Filoviridae VP35. 342 -334809 pfam02098 His_binding Tick histamine binding protein. 150 -334810 pfam02099 Josephin Josephin. 144 -334811 pfam02100 ODC_AZ Ornithine decarboxylase antizyme. This family consists of ornithine decarboxylase antizyme proteins. The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). 93 -307974 pfam02101 Ocular_alb Ocular albinism type 1 protein. 402 -251087 pfam02102 Peptidase_M35 Deuterolysin metalloprotease (M35) family. 352 -334812 pfam02104 SURF1 SURF1 family. 193 -307976 pfam02106 Fanconi_C Fanconi anaemia group C protein. 551 -334813 pfam02107 FlgH Flagellar L-ring protein. 178 -307978 pfam02108 FliH Flagellar assembly protein FliH. 124 -334814 pfam02109 DAD DAD family. Members of this family are thought to be integral membrane proteins. Some members of this family have been shown to cause apoptosis if mutated, these proteins are known as DAD for defender against death. The family also includes the epsilon subunit of the oligosaccharyltransferase that is involved in N-linked glycosylation. 108 -280307 pfam02110 HK Hydroxyethylthiazole kinase family. 247 -280308 pfam02112 PDEase_II cAMP phosphodiesterases class-II. 339 -334815 pfam02113 Peptidase_S13 D-Ala-D-Ala carboxypeptidase 3 (S13) family. 442 -251094 pfam02114 Phosducin Phosducin. 265 -307981 pfam02115 Rho_GDI RHO protein GDP dissociation inhibitor. 194 -334816 pfam02116 STE2 Fungal pheromone mating factor STE2 GPCR. 276 -111054 pfam02117 7TM_GPCR_Sra Serpentine type 7TM GPCR chemoreceptor Sra. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Sra is part of the Sra superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 328 -307983 pfam02118 Srg Srg family chemoreceptor. 270 -334817 pfam02119 FlgI Flagellar P-ring protein. 343 -334818 pfam02120 Flg_hook Flagellar hook-length control protein FliK. This is the C terminal domain of FliK. FliK controls the length of the flagellar hook by directly measuring the hook length as a molecular ruler. This family also includes YscP of the Yersinia type III secretion system, and equivalent proteins in other pathogenic bacterial type III secretion systems. 79 -307986 pfam02121 IP_trans Phosphatidylinositol transfer protein. Along with the structurally unrelated Sec14p family (found in pfam00650), this family can bind/exchange one molecule of phosphatidylinositol (PI) or phosphatidylcholine (PC) and thus aids their transfer between different membrane compartments. There are three sub-families - all share an N-terminal PITP-like domain, whose sequence is highly conserved. It is described as consisting of three regions. The N-terminal region is thought to bind the lipid and contains two helices and an eight-stranded, mostly antiparallel beta-sheet. An intervening loop region, which is thought to play a role in protein-protein interactions, separates this from the C-terminal region, which exhibits the greatest sequence variation and may be involved in membrane binding. PITP alpha has a 16-fold greater affinity for PI than PC. Together with PITP beta, it is expressed ubiquitously in all tissues. 244 -111059 pfam02122 Peptidase_S39 Peptidase S39. This family contains polyprotein processing endopeptidases from RNA viruses. 203 -280316 pfam02123 RdRP_4 Viral RNA-directed RNA-polymerase. This family includes RNA-dependent RNA polymerase proteins (RdRPs) from Luteovirus, Totivirus and Rotavirus. 465 -280317 pfam02124 Marek_A Marek's disease glycoprotein A. 210 -280318 pfam02126 PTE Phosphotriesterase family. 298 -280319 pfam02127 Peptidase_M18 Aminopeptidase I zinc metalloprotease (M18). 430 -334819 pfam02128 Peptidase_M36 Fungalysin metallopeptidase (M36). 364 -334820 pfam02129 Peptidase_S15 X-Pro dipeptidyl-peptidase (S15 family). 262 -334821 pfam02130 UPF0054 Uncharacterized protein family UPF0054. 138 -334822 pfam02132 RecR RecR protein. 40 -251109 pfam02133 Transp_cyt_pur Permease for cytosine/purines, uracil, thiamine, allantoin. 439 -334823 pfam02135 zf-TAZ TAZ zinc finger. The TAZ2 domain of CBP binds to other transcription factors such as the p53 tumor suppressor protein, E1A oncoprotein, MyoD, and GATA-1. The zinc coordinating motif that is necessary for binding to target DNA sequences consists of HCCC. 62 -307991 pfam02136 NTF2 Nuclear transport factor 2 (NTF2) domain. This family includes the NTF2-like Delta-5-3-ketosteroid isomerase proteins. 115 -334824 pfam02137 A_deamin Adenosine-deaminase (editase) domain. Adenosine deaminases acting on RNA (ADARs) can deaminate adenosine to form inosine. In long double-stranded RNA, this process is non-specific; it occurs site-specifically in RNA transcripts. The former is important in defense against viruses, whereas the latter may affect splicing or untranslated regions. They are primarily nuclear proteins, but a longer isoform of ADAR1 is found predominantly in the cytoplasm. ADARs are derived from the Tad1-like tRNA deaminases that are present across eukaryotes. These in turn belong to the nucleotide/nucleic acid deaminase superfamily and are characterized by a distinct insert between the two conserved cysteines that are involved in binding zinc. 326 -334825 pfam02138 Beach Beige/BEACH domain. 278 -307994 pfam02140 Gal_Lectin Galactose binding lectin domain. 80 -307995 pfam02141 DENN DENN (AEX-3) domain. DENN (after differentially expressed in neoplastic vs normal cells) is a domain which occurs in several proteins involved in Rab- mediated processes or regulation of MAPK signalling pathways. 186 -307996 pfam02142 MGS MGS-like domain. This domain composes the whole protein of methylglyoxal synthetase and the domain is also found in Carbamoyl phosphate synthetase (CPS) where it forms a regulatory domain that binds to the allosteric effector ornithine. This family also includes inosicase. The known structures in this family show a common phosphate binding site. 91 -334826 pfam02144 Rad1 Repair protein Rad1/Rec1/Rad17. 251 -334827 pfam02145 Rap_GAP Rap/ran-GAP. 179 -334828 pfam02146 SIR2 Sir2 family. This region is characteristic of Silent information regulator 2 (Sir2) proteins, or sirtuins. These are protein deacetylases that depend on nicotine adenine dinucleotide (NAD). They are found in many subcellular locations, including the nucleus, cytoplasm and mitochondria. Eukaryotic forms play in important role in the regulation of transcriptional repression. Moreover, they are involved in microtubule organisation and DNA damage repair processes.i 177 -334829 pfam02148 zf-UBP Zn-finger in ubiquitin-hydrolases and other protein. 63 -308000 pfam02149 KA1 Kinase associated domain 1. 44 -280336 pfam02150 RNA_POL_M_15KD RNA polymerases M/15 Kd subunit. 36 -308001 pfam02151 UVR UvrB/uvrC motif. 36 -334830 pfam02152 FolB Dihydroneopterin aldolase. This enzyme EC:4.1.2.25 catalyzes the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the biosynthetic pathway of tetrahydrofolate. 113 -280339 pfam02153 PDH Prephenate dehydrogenase. Members of this family are prephenate dehydrogenases EC:1.3.1.12 involved in tyrosine biosynthesis. 257 -111086 pfam02154 FliM Flagellar motor switch protein FliM. 192 -308003 pfam02155 GCR Glucocorticoid receptor. 371 -308004 pfam02156 Glyco_hydro_26 Glycosyl hydrolase family 26. 309 -280342 pfam02157 Man-6-P_recep Mannose-6-phosphate receptor. This family includes both Cation-dependent and cation independent mannose-6-phosphate receptors. 278 -308005 pfam02158 Neuregulin Neuregulin family. 397 -308006 pfam02159 Oest_recep Oestrogen receptor. 135 -280345 pfam02160 Peptidase_A3 Cauliflower mosaic virus peptidase (A3). 208 -308007 pfam02161 Prog_receptor Progesterone receptor. 564 -145362 pfam02162 XYPPX XYPPX repeat (two copies). This repeat is found in a wide variety of proteins and generally consists of the motif XYPPX where X can be any amino acid. The family includes annexin VII and the carboxy tail of certain rhodopsins. This family also includes plaque matrix proteins, however this motif is embedded in a ten residue repeat in Mytilus edulis adhesive plaque matrix protein FP1. The molecular function of this repeat is unknown. It is also not clear is all the members of this family share a common evolutionary ancestor due to its short length and biased amino acid composition. 15 -308008 pfam02163 Peptidase_M50 Peptidase family M50. 275 -308009 pfam02165 WT1 Wilm's tumor protein. 289 -308010 pfam02166 Androgen_recep Androgen receptor. 501 -308011 pfam02167 Cytochrom_C1 Cytochrome C1 family. 219 -334831 pfam02169 LPP20 LPP20 lipoprotein. This family contains the LPP20 lipoprotein, which is a non-essential class of lipoprotein. 96 -334832 pfam02170 PAZ PAZ domain. This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. 108 -308014 pfam02171 Piwi Piwi domain. This domain is found in the protein Piwi and its relatives. The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteristics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. 296 -280354 pfam02172 KIX KIX domain. CBP and P300 bind to the CREB via a domain known as KIX. The KIX domain of CBP also binds to transactivation domains of other nuclear factors including Myb and Jun. 81 -308015 pfam02173 pKID pKID domain. CBP and P300 bind to the pKID (phosphorylated kinase-inducible-domain) domain of CREB. 41 -308016 pfam02174 IRS PTB domain (IRS-1 type). 97 -111105 pfam02175 7TM_GPCR_Srb Serpentine type 7TM GPCR chemoreceptor Srb. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srb is part of the Sra superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 236 -280357 pfam02176 zf-TRAF TRAF-type zinc finger. 60 -334833 pfam02177 APP_N Amyloid A4 N-terminal heparin-binding. This N-terminal domain of APP, amyloid precursor protein, is the heparin-binding domain of the protein. this region is also responsible for stimulation of neurite outgrowth. The structure reveals both a highly charged basic surface that may interact with glycosaminoglycans in the brain and an abutting hydrophobic surface that is proposed to play an important functional role such as in dimerization or ligand-binding. Structural similarities with cysteine-rich growth factors, taken together with its known growth-promoting properties, suggest the APP N-terminal domain could function as a growth factor in vivo. 95 -308018 pfam02178 AT_hook AT hook motif. At hooks are DNA binding motifs with a preference for A/T rich regions. 13 -334834 pfam02179 BAG BAG domain. Domain present in Hsp70 regulators. 79 -308020 pfam02180 BH4 Bcl-2 homology region 4. 26 -280362 pfam02181 FH2 Formin Homology 2 Domain. 372 -334835 pfam02182 SAD_SRA SAD/SRA domain. The domain goes by several names including SAD, SRA and YDG. It adopts a beta barrel, modified PUA-like, fold that is widely present in eukaryotic chromatin proteins and in bacteria. Versions of this domain are known to bind hemi-methylated CpG dinucleotides and also other 5mC containing dinucleotides. The domain binds DNA by flipping out the methylated cytosine base from the DNA double helix.The conserved tyrosine and aspartate residues and a glycine rich patch are critical for recognition of the flipped out base. Mammalian UHRF1 that contains this domain plays an important role in maintenance of methylation at CpG dinucleotides by recruiting DNMT1 to hemimethylated sites associated with replication forks. The SAD/SRA domain has been combined with other domains involved in the ubiquitin pathway on multiple occasions and such proteins link recognition of DNA methylation to chromatin-protein ubiquitination. The domain is also found in species that lack DNA methylation, such as certain apicomplexans, suggestive of other DNA-binding modes or functions. A highly derived and distinct version of the domain is also found in fungi where it is fused to AlkB-type 2OGFeDO domains. In bacteria, the domain is usually fused or associated with restriction endonucleases, many of which target methylated or hemi-methylated DNA. 147 -334836 pfam02183 HALZ Homeobox associated leucine zipper. 43 -111114 pfam02184 HAT HAT (Half-A-TPR) repeat. The HAT (Half A TPR) repeat is found in several RNA processing proteins. 32 -334837 pfam02185 HR1 Hr1 repeat. The HR1 repeat was first described as a three times repeated homology region of the N-terminal non-catalytic part of protein kinase PRK1(PKN). The first two of these repeats were later shown to bind the small G protein rho known to activate PKN in its GTP-bound form. Similar rho-binding domains also occur in a number of other protein kinases and in the rho-binding proteins rhophilin and rhotekin. Recently, the structure of the N-terminal HR1 repeat complexed with RhoA has been determined by X-ray crystallography. It forms an antiparallel coiled-coil fold termed an ACC finger. 66 -334838 pfam02186 TFIIE_beta TFIIE beta subunit core domain. General transcription factor TFIIE consists of two subunits, TFIIE alpha pfam02002 and TFIIE beta. TFIIE beta has been found to bind to the region where the promoter starts to open to be single-stranded upon transcription initiation by RNA polymerase II. The structure of the DNA binding core region has been solved and has a winged helix fold. 65 -308025 pfam02187 GAS2 Growth-Arrest-Specific Protein 2 Domain. The GAR2 domain is common in plakin family members and Gas2 family members. The GAR domain comprises around 57 amino acids and has been shown to bind to microtubules. 69 -334839 pfam02188 GoLoco GoLoco motif. 20 -308027 pfam02189 ITAM Immunoreceptor tyrosine-based activation motif. 20 -308028 pfam02190 LON_substr_bdg ATP-dependent protease La (LON) substrate-binding domain. This domain has been shown to be part of the PUA superfamily. This domain represents a general protein and polypeptide interaction domain for the ATP-dependent serine peptidase, LON, Peptidase_S16, pfam05362. ATP-dependent Lon proteases are conserved in all living organisms and catalyze rapid turnover of short-lived regulatory proteins and many damaged or denatured proteins. 195 -334840 pfam02191 OLF Olfactomedin-like domain. 243 -308030 pfam02192 PI3K_p85B PI3-kinase family, p85-binding domain. 76 -308031 pfam02194 PXA PXA domain. This domain is associated with PX domains pfam00787. 131 -334841 pfam02195 ParBc ParB-like nuclease domain. 90 -334842 pfam02196 RBD Raf-like Ras-binding domain. 65 -334843 pfam02197 RIIa Regulatory subunit of type II PKA R-subunit. 38 -308034 pfam02198 SAM_PNT Sterile alpha motif (SAM)/Pointed domain. 82 -308035 pfam02199 SapA Saposin A-type domain. 31 -308036 pfam02200 STE STE like transcription factor. 109 -334844 pfam02201 SWIB SWIB/MDM2 domain. This family includes the SWIB domain and the MDM2 domain. The p53-associated protein (MDM2) is an inhibitor of the p53 tumor suppressor gene binding the transactivation domain and down regulating the ability of p53 to activate transcription. This family contains the p53 binding domain of MDM2. 73 -280381 pfam02202 Tachykinin Tachykinin family. 11 -334845 pfam02203 TarH Tar ligand binding domain homolog. 177 -334846 pfam02204 VPS9 Vacuolar sorting protein 9 (VPS9) domain. This domain acts as a GDP-GTP exchange factor (GEF). It activates Rab GTPases by stimulating the release of GDP and allowing GTP to bind. 104 -308040 pfam02205 WH2 WH2 motif. The WH2 motif (for Wiskott Aldrich syndrome homology region 2) has been shown in WASP and Scar1 (mammalian homolog) to be the region that interacts with actin. 28 -334847 pfam02206 WSN Domain of unknown function. 66 -334848 pfam02207 zf-UBR Putative zinc finger in N-recognin (UBR box). This region is found in E3 ubiquitin ligases that recognize N-recognins. 68 -308043 pfam02208 Sorb Sorbin homologous domain. 45 -334849 pfam02209 VHP Villin headpiece domain. 35 -308045 pfam02210 Laminin_G_2 Laminin G domain. This family includes the Thrombospondin N-terminal-like domain, a Laminin G subfamily. 126 -334850 pfam02211 NHase_beta Nitrile hydratase beta subunit. Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit. 218 -334851 pfam02212 GED Dynamin GTPase effector domain. 91 -308048 pfam02213 GYF GYF domain. The GYF domain is named because of the presence of Gly-Tyr-Phe residues. The GYF domain is a proline-binding domain in CD2-binding protein. 49 -308049 pfam02214 BTB_2 BTB/POZ domain. In voltage-gated K+ channels this domain is responsible for subfamily-specific assembly of alpha-subunits into functional tetrameric channels. In KCTD1 this domain functions as a transcriptional repressor. It also mediates homomultimerisation of KCTD1 and interaction of KCTD1 with the transcription factor AP-2-alpha. 93 -334852 pfam02216 B B domain. This family contains the B domain of Staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G. 53 -280395 pfam02217 T_Ag_DNA_bind Origin of replication binding protein. This domain of large T antigen binds to the SV40 origin of DNA replication. 94 -308050 pfam02218 HS1_rep Repeat in HS1/Cortactin. The function of this repeat is unknown. Seven copies are found in cortactin and four copies are found in HS1. The repeats are always found amino terminal to an SH3 domain pfam00018. 36 -280397 pfam02219 MTHFR Methylenetetrahydrofolate reductase. This family includes the 5,10-methylenetetrahydrofolate reductase EC:1.7.99.5 from bacteria and methylenetetrahydrofolate reductase EC: 1.5.1.20 from eukaryotes. The structure for this domain is known to be a TIM barrel. 286 -308051 pfam02221 E1_DerP2_DerF2 ML domain. ML domain - MD-2-related lipid recognition domain. This family consists of proteins from plants, animals and fungi, including dust mite allergen Der P 2. It has been implicate in lipid recognition, particularly in the recognition of pathogen related products. A mutation in Npc2 causes a rare form of Niemann-Pick type C2 disease. This domain has a similar topology to immunoglobulin domains. 127 -280399 pfam02222 ATP-grasp ATP-grasp domain. This family does not contain all known ATP-grasp domain members. This family includes a diverse set of enzymes that possess ATP-dependent carboxylate-amine ligase activity. 169 -280400 pfam02223 Thymidylate_kin Thymidylate kinase. 184 -280401 pfam02224 Cytidylate_kin Cytidylate kinase. Cytidylate kinase EC:2.7.4.14 catalyzes the phosphorylation of cytidine 5'-monophosphate (dCMP) to cytidine 5'-diphosphate (dCDP) in the presence of ATP or GTP. 211 -334853 pfam02225 PA PA domain. The PA (Protease associated) domain is found as an insert domain in diverse proteases. The PA domain is also found in a plant vacuolar sorting receptor and members of the RZF family. It has been suggested that this domain forms a lid-like structure that covers the active site in active proteases, and is involved in protein recognition in vacuolar sorting receptors. 95 -308053 pfam02226 Pico_P1A Picornavirus coat protein (VP4). VP1, VP2, VP3 and VP4 for the basic unit that forms the icosahedral coat of picornaviruses. Five symmetry-related N termini of coat protein VP4 form a ten-stranded, antiparallel beta barrel around the base of the icosahedral fivefold axis. 68 -280404 pfam02228 Gag_p19 Major core protein p19. p19 is a component of the inner protein layer of the viral nucleocapsid. 92 -334854 pfam02229 PC4 Transcriptional Coactivator p15 (PC4). p15 has a bipartite structure composed of an amino-terminal regulatory domain and a carboxy-terminal cryptic DNA-binding domain. The DNA-binding activity of the carboxy-terminal is disguised by the amino-terminal p15 domain. Activity is controlled by protein kinases that target the regulatory domain. 48 -334855 pfam02230 Abhydrolase_2 Phospholipase/Carboxylesterase. This family consists of both phospholipases and carboxylesterases with broad substrate specificity, and is structurally related to alpha/beta hydrolases pfam00561. 217 -280407 pfam02232 Alpha_TIF Alpha trans-inducing protein (Alpha-TIF). Alpha-TIF, a virion protein (VP16), is involved in transcriptional activation of viral immediate early (IE) promoters (alpha genes). Specificity of tegument protein VP16 for IE genes is conferred by the 400 residue N-terminal, the 80 residue C-terminal is responsible for transcriptional activation. 343 -334856 pfam02233 PNTB NAD(P) transhydrogenase beta subunit. This family corresponds to the beta subunit of NADP transhydrogenase in prokaryotes, and either the protein N- or C terminal in eukaryotes. The domain is often found in conjunction with pfam01262. Pyridine nucleotide transhydrogenase catalyzes the reduction of NAD+ to NADPH. A complete loss of activity occurs upon mutation of Gly314 in E. coli. 451 -308056 pfam02234 CDI Cyclin-dependent kinase inhibitor. Cell cycle progression is negatively controlled by cyclin-dependent kinases inhibitors (CDIs). CDIs are involved in cell cycle arrest at the G1 phase. 45 -280410 pfam02236 Viral_DNA_bi Viral DNA-binding protein, all alpha domain. This family represents a domain of the viral DNA- binding protein, a multi functional protein involved in DNA replication and transcription control. 79 -334857 pfam02237 BPL_C Biotin protein ligase C terminal domain. The function of this structural domain is unknown. It is found to the C-terminus of the biotin protein ligase catalytic domain pfam01317. 48 -308057 pfam02238 COX7a Cytochrome c oxidase subunit VII. Cytochrome c oxidase, a 13 sub-unit complex, is the terminal oxidase in the mitochondrial electron transport chain. This family also contains both heart and liver isoforms of cytochrome c oxidase subunit VIIa. 53 -308058 pfam02239 Cytochrom_D1 Cytochrome D1 heme domain. Cytochrome cd1 (nitrite reductase) catalyzes the conversion of nitrite to nitric oxide in the nitrogen cycle. This family represents the d1 heme binding domain of cytochrome cd1, in which His/Tyr side chains ligate the d1 heme iron of the active site in the oxidized state. 368 -308059 pfam02240 MCR_gamma Methyl-coenzyme M reductase gamma subunit. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (pfam02249), 2 beta (pfam02241), and 2 gamma (this family) subunits with two identical nickel porphinoid active sites. 246 -308060 pfam02241 MCR_beta Methyl-coenzyme M reductase beta subunit, C-terminal domain. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (pfam02249), 2 beta (this family), and 2 gamma (pfam02240) subunits with two identical nickel porphinoid active sites. The C-terminal domain of MCR beta has an all-alpha fold with buried central helix. 249 -334858 pfam02244 Propep_M14 Carboxypeptidase activation peptide. Carboxypeptidases are found in abundance in pancreatic secretions. The pro-segment moiety (activation peptide) accounts for up to a quarter of the total length of the peptidase, and is responsible for modulation of folding and activity of the pro-enzyme. 73 -334859 pfam02245 Pur_DNA_glyco Methylpurine-DNA glycosylase (MPG). Methylpurine-DNA glycosylase is a base excision-repair protein. It is responsible for the hydrolysis of the deoxyribose N-glycosidic bond, excising 3-methyladenine and 3-methylguanine from damaged DNA. 176 -308063 pfam02246 B1 Protein L b1 domain. Protein L is a bacterial protein with immunoglobulin (Ig) light chain-binding properties. It contains a number of homologous b1 repeats towards the N-terminus. These repeats have been found to be responsible for the interaction of protein L with Ig light chains. 62 -308064 pfam02247 Como_LCP Large coat protein. This family contains the large coat protein (LCP) of the comoviridae viral family. 369 -251180 pfam02248 Como_SCP Small coat protein. This family contains the small coat protein (SCP) of the comoviridae viral family. 182 -308065 pfam02249 MCR_alpha Methyl-coenzyme M reductase alpha subunit, C-terminal domain. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (this family), 2 beta (pfam02241), and 2 gamma (pfam02240) subunits with two identical nickel porphinoid active sites. The C-terminal domain is comprised of an all-alpha multi-helical bundle. 127 -308066 pfam02250 Orthopox_35kD 35kD major secreted virus protein. This family of orthopoxvirus secreted proteins (also known as T1 and A41) interact with members of both the CC and CXC superfamilies of chemokines. It has been suggested that these secreted proteins modulate leukocyte influx into virus-infected tissues. 224 -334860 pfam02251 PA28_alpha Proteasome activator pa28 alpha subunit. PA28 activator complex (also known as 11s regulator of 20S proteasome) is a ring shaped hexameric structure of alternating alpha and beta subunits. This family represents the alpha subunit. The activator complex binds to the 20S proteasome ana simulates peptidase activity in and ATP-independent manner. 61 -334861 pfam02252 PA28_beta Proteasome activator pa28 beta subunit. PA28 activator complex (also known as 11s regulator of 20S proteasome) is a ring shaped hexameric structure of alternating alpha and beta subunits. This family represents the beta subunit. The activator complex binds to the 20S proteasome ana simulates peptidase activity in and ATP-independent manner. 145 -334862 pfam02253 PLA1 Phospholipase A1. Phospholipase A1 is a bacterial outer membrane bound acyl hydrolase with a broad substrate specificity EC:3.1.1.32. It has been proposed that Ser164 is the active site for Escherichia coli phospholipase A1. 248 -308070 pfam02254 TrkA_N TrkA-N domain. This domain is found in a wide variety of proteins. These protein include potassium channels, phosphoesterases, and various other transporters. This domain binds to NAD. 116 -334863 pfam02255 PTS_IIA PTS system, Lactose/Cellobiose specific IIA subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The lactose/cellobiose-specific family are one of four structurally and functionally distinct group IIA PTS system enzymes. This family of proteins normally function as a homotrimer, stabilized by a centrally located metal ion. Separation into subunits is thought to occur after phosphorylation. 91 -334864 pfam02256 Fe_hyd_SSU Iron hydrogenase small subunit. This family represents the small subunit of the Fe-only hydrogenases EC:1.18.99.1. The subunit is comprised of alternating random coil and alpha helical structures that encompasses the large subunit in a novel protein fold. 51 -334865 pfam02257 RFX_DNA_binding RFX DNA-binding domain. RFX is a regulatory factor which binds to the X box of MHC class II genes and is essential for their expression. The DNA-binding domain of RFX is the central domain of the protein and binds ssDNA as either a monomer or homodimer. It recognize X-boxes (DNA of the sequence 5'-GTNRCC(0-3N)RGYAAC-3', where N is any nucleotide, R is a purine and Y is a pyrimidine) using a highly conserved 76-residue DNA-binding domain (DBD). 77 -280428 pfam02258 SLT_beta Shiga-like toxin beta subunit. This family represents the B subunit of shiga-like toxin (SLT or verotoxin) produced by some strains of E.coli associated with hemorrhagic colitis and hemolytic uremic syndrome. SLT's are composed of one enzymatic A subunit and five cell binding B subunits. 69 -308074 pfam02259 FAT FAT domain. The FAT domain is named after FRAP, ATM and TRRAP. 344 -334866 pfam02260 FATC FATC domain. The FATC domain is named after FRAP, ATM, TRRAP C-terminal. The solution structure of the FATC domain suggests it plays a role in redox-dependent structural and cellular stability. 32 -334867 pfam02261 Asp_decarbox Aspartate decarboxylase. Decarboxylation of aspartate is the major route of beta-alanine production in bacteria, and is catalyzed by the enzyme aspartate decarboxylase EC:4.1.1.11 which requires a pyruvoyl group for its activity. It is synthesized initially as a proenzyme which is then proteolytically cleaved to an alpha (C-terminal) and beta (N-terminal) subunit and a pyruvoyl group. This family contains both chains of aspartate decarboxylase. 115 -308077 pfam02262 Cbl_N CBL proto-oncogene N-terminal domain 1. Cbl is an adaptor protein that binds EGF receptors (or other tyrosine kinases) and SH3 domains, functioning as a negative regulator of many signaling pathways. The N-terminal domain is evolutionarily conserved, and is known to bind to phosphorylated tyrosine residues. Cbl_N is comprised of 3 structural domains of which this is the first - a four helix bundle. 122 -308078 pfam02263 GBP Guanylate-binding protein, N-terminal domain. Transcription of the anti-viral guanylate-binding protein (GBP) is induced by interferon-gamma during macrophage induction. This family contains GBP1 and GPB2, both GTPases capable of binding GTP, GDP and GMP. 260 -334868 pfam02264 LamB LamB porin. Maltoporin (LamB protein) forms a trimeric structure which facilitates the diffusion of maltodextrins across the outer membrane of Gram-negative bacteria. The membrane channel is formed by an antiparallel beta-barrel. 389 -334869 pfam02265 S1-P1_nuclease S1/P1 Nuclease. This family contains both S1 and P1 nucleases (EC:3.1.30.1) which cleave RNA and single stranded DNA with no base specificity. 248 -308081 pfam02267 Rib_hydrolayse ADP-ribosyl cyclase. ADP-ribosyl cyclase EC:3.2.2.5 (also know as cyclic ADP-ribose hydrolase or CD38) synthesizes cyclic-ADP ribose, a second messenger for glucose-induced insulin secretion. 229 -308082 pfam02268 TFIIA_gamma_N Transcription initiation factor IIA, gamma subunit, helical domain. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIA (TFIIA) is a multimeric protein which facilitates the binding of TFIID to the TATA box. The N-terminal domain of the gamma subunit is a 4 helix bundle. 47 -190265 pfam02269 TFIID-18kDa Transcription initiation factor IID, 18kD subunit. This family includes the Spt3 yeast transcription factors and the 18kD subunit from human transcription initiation factor IID (TFIID-18). Determination of the crystal structure reveals an atypical histone fold 93 -308083 pfam02270 TFIIF_beta Transcription initiation factor IIF, beta subunit. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIF (TFIIF) is a tetramer of two beta subunits associate with two alpha subunits which interacts directly with RNA polymerase II. The beta subunit of TFIIF is required for recruitment of RNA polymerase II onto the promoter. 222 -334870 pfam02271 UCR_14kD Ubiquinol-cytochrome C reductase complex 14kD subunit. The ubiquinol-cytochrome C reductase complex (cytochrome bc1 complex) is a respiratory multienzyme complex. This Pfam family represents the 14kD (or VI) subunit of the complex which is not directly involved in electron transfer, but has a role in assembly of the complex. 100 -334871 pfam02272 DHHA1 DHHA1 domain. This domain is often found adjacent to the DHH domain pfam01368 and is called DHHA1 for DHH associated domain. This domain is diagnostic of DHH subfamily 1 members. This domains is also found in alanyl tRNA synthetase, suggesting that this domain may have an RNA binding function. The domain is about 60 residues long and contains a conserved GG motif. 136 -111194 pfam02273 Acyl_transf_2 Acyl transferase. This bacterial family of Acyl transferases (or myristoyl-acp-specific thioesterases) catalyze the first step in the bioluminescent fatty acid reductase system. 294 -334872 pfam02274 Amidinotransf Amidinotransferase. This family contains glycine (EC:2.1.4.1) and inosamine (EC:2.1.4.2) amidinotransferases, enzymes involved in creatine and streptomycin biosynthesis respectively. This family also includes arginine deiminases, EC:3.5.3.6. These enzymes catalyze the reaction: arginine + H2O <=> citrulline + NH3. Also found in this family is the Streptococcus anti tumor glycoprotein. 282 -308087 pfam02275 CBAH Linear amide C-N hydrolases, choloylglycine hydrolase family. This family includes several hydrolases which cleave carbon-nitrogen bonds, other than peptide bonds, in linear amides. These include choloylglycine hydrolase (conjugated bile acid hydrolase, CBAH) EC:3.5.1.24, penicillin acylase EC:3.5.1.11 and acid ceramidase EC:3.5.1.23. This domain forms the alpha-subunit for members from vertebral species, see family NAAA-beta, pfam15508. 316 -334873 pfam02276 CytoC_RC Photosynthetic reaction centre cytochrome C subunit. Photosynthesis in purple bacteria is dependent on light-induced electron transfer in the reaction centre (RC), coupled to the uptake of protons from the cytoplasm. The RC contains a cytochrome molecule which re-reduces the oxidized electron donor. 309 -334874 pfam02277 DBI_PRT Phosphoribosyltransferase. This family of proteins represent the nicotinate-nucleotide- dimethylbenzimidazole phosphoribosyltransferase (NN:DBI PRT) enzymes involved in dimethylbenzimidazole synthesis. This function is essential to de novo cobalamin (vitamin B12) production in bacteria. Nicotinate mononucleotide (NaMN):5,6-dimethylbenzimidazole (DMB) phosphoribosyltransferase (CobT) from Salmonella enterica plays a central role in the synthesis of alpha-ribazole-5'-phosphate, an intermediate for the lower ligand of cobalamin. 330 -334875 pfam02278 Lyase_8 Polysaccharide lyase family 8, super-sandwich domain. This family consists of a group of secreted bacterial lyase enzymes EC:4.2.2.1 capable of acting on hyaluronan and chondroitin in the extracellular matrix of host tissues, contributing to the invasive capacity of the pathogen. 253 -280446 pfam02281 Dimer_Tnp_Tn5 Transposase Tn5 dimerization domain. Transposons are mobile DNA sequences capable of replication and insertion into the chromosome. Typically transposons code for the transposase enzyme, which catalyzes insertion, found between terminal inverted repeats. Tn5 has a unique method of self- regulation in which a truncated version of the transposase enzyme acts as an inhibitor. The catalytic domain of the Tn5 transposon is found in pfam01609. This domain mediates dimerization in the known structure. 106 -280447 pfam02282 Herpes_UL42 DNA polymerase processivity factor (UL42). The DNA polymerase processivity factor (UL42) of herpes simplex virus forms a heterodimer with UL30 to create the viral DNA polymerase complex. UL42 functions to increase the processivity of polymerization and makes little contribution to the catalytic activity of the polymerase. 142 -308091 pfam02283 CobU Cobinamide kinase / cobinamide phosphate guanyltransferase. This family is composed of a group of bifunctional cobalamin biosynthesis enzymes which display cobinamide kinase and cobinamide phosphate guanyltransferase activity. The crystal structure of the enzyme reveals the molecule to be a trimer with a propeller-like shape. 168 -334876 pfam02284 COX5A Cytochrome c oxidase subunit Va. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit Va. 98 -308093 pfam02285 COX8 Cytochrome oxidase c subunit VIII. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIII. 41 -308094 pfam02286 Dehydratase_LU Dehydratase large subunit. This family contains the large subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances. 552 -308095 pfam02287 Dehydratase_SU Dehydratase small subunit. This family contains the small subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances. 128 -308096 pfam02288 Dehydratase_MU Dehydratase medium subunit. This family contains the medium subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances. 110 -334877 pfam02289 MCH Cyclohydrolase (MCH). Methenyl tetrahydromethanopterin cyclohydrolase EC:3.5.4.27 is involved in methanogenesis in bacteria and archaea, producing methane from carbon monoxide or carbon dioxide. 308 -334878 pfam02290 SRP14 Signal recognition particle 14kD protein. The signal recognition particle (SRP) is a multimeric protein involved in targeting secretory proteins to the rough endoplasmic reticulum membrane. SRP14 and SRP9 form a complex essential for SRP RNA binding. 99 -334879 pfam02291 TFIID-31kDa Transcription initiation factor IID, 31kD subunit. This family represents the N-terminus of the 31kD subunit (42kD in drosophila) of transcription initiation factor IID (TAFII31). TAFII31 binds to p53, and is an essential requirement for p53 mediated transcription activation. 122 -334880 pfam02293 AmiS_UreI AmiS/UreI family transporter. This family includes UreI and proton gated urea channel as well as putative amide transporters. 165 -280458 pfam02294 7kD_DNA_binding 7kD DNA-binding domain. This family contains members of the hyper-thermophilic archaebacterium 7kD DNA-binding/endoribonuclease P2 family. There are five 7kD DNA-binding proteins, 7a-7e, found as monomers in the cell. Protein 7e shows the tightest DNA-binding ability. 58 -280459 pfam02295 z-alpha Adenosine deaminase z-alpha domain. This family consists of the N-terminus and thus the z-alpha domain of double-stranded RNA-specific adenosine deaminase (ADAR), an RNA- editing enzyme. The z-alpha domain is a Z-DNA binding domain, and binding of this region to B-DNA has been shown to be disfavoured by steric hindrance. 67 -308101 pfam02296 Alpha_adaptin_C Alpha adaptin AP2, C-terminal domain. Alpha adaptin is a hetero tetramer which regulates clathrin-bud formation. The carboxyl-terminal appendage of the alpha subunit regulates translocation of endocytic accessory proteins to the bud site. 113 -308102 pfam02297 COX6B Cytochrome oxidase c subunit VIb. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of the potentially heme-binding subunit IVb of the oxidase. 65 -280462 pfam02298 Cu_bind_like Plastocyanin-like domain. This family represents a domain found in flowering plants related to the copper binding protein plastocyanin. Some members of this family may not bind copper due to the lack of key residues. 84 -334881 pfam02300 Fumarate_red_C Fumarate reductase subunit C. Fumarate reductase is a membrane-bound flavoenzyme consisting of four subunits, A-B. A and B comprise the membrane-extrinsic catalytic domain and C and D link the catalytic centers to the electron-transport chain. This family consists of the 15kD hydrophobic subunit C. 127 -334882 pfam02301 HORMA HORMA domain. The HORMA (for Hop1p, Rev7p and MAD2) domain has been suggested to recognize chromatin states that result from DNA adducts, double stranded breaks or non-attachment to the spindle and acts as an adaptor that recruits other proteins. MAD2 is a spindle checkpoint protein which prevents progression of the cell cycle upon detection of a defect in mitotic spindle integrity. 207 -334883 pfam02302 PTS_IIB PTS system, Lactose/Cellobiose specific IIB subunit. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The lactose/cellobiose-specific family are one of four structurally and functionally distinct group IIB PTS system cytoplasmic enzymes. The fold of IIB cellobiose shows similar structure to mammalian tyrosine phosphatases. This family also contains the fructose specific IIB subunit. 91 -334884 pfam02303 Phage_DNA_bind Helix-destabilizing protein. This family contains the bacteriophage helix-destabilizing protein, or single-stranded DNA binding protein, required for DNA synthesis. 83 -280467 pfam02304 Phage_B Scaffold protein B. This is a family of proteins from single-stranded DNA bacteriophages. Scaffold proteins B and D are required for procapsid formation. Sixty copies of the internal scaffold protein B are found in the procapsid. 117 -308107 pfam02305 Phage_F Capsid protein (F protein). This is a family of proteins from single-stranded DNA bacteriophages. Protein F is the major capsid component, sixty copies of which are found in the virion. 510 -280468 pfam02306 Phage_G Major spike protein (G protein). This is a family of proteins from single-stranded DNA bacteriophages. Five G proteins, each a tight beta barrel, from twelve surface spikes. 175 -334885 pfam02308 MgtC MgtC family. The MgtC protein is found in an operon with the Mg2+ transporter protein MgtB. The function of MgtC and its homologs is not known. 122 -334886 pfam02309 AUX_IAA AUX/IAA family. Transcription of the AUX/IAA family of genes is rapidly induced by the plant hormone auxin. Some members of this family are longer and contain an N terminal DNA binding domain. The function of this region is uncertain. 184 -334887 pfam02310 B12-binding B12 binding domain. This domain binds to B12 (adenosylcobamide), it is found in several enzymes, such as glutamate mutase, methionine synthase, and methylmalonyl-CoA mutase. It contains a conserved DxHxxGx(41)SxVx(26)GG motif, which is important for B12 binding. 119 -334888 pfam02311 AraC_binding AraC-like ligand binding domain. This family represents the arabinose-binding and dimerization domain of the bacterial gene regulatory protein AraC. The domain is found in conjunction with the helix-turn-helix (HTH) DNA-binding motif pfam00165. This domain is distantly related to the Cupin domain pfam00190. 134 -334889 pfam02312 CBF_beta Core binding factor beta subunit. Core binding factor (CBF) is a heterodimeric transcription factor essential for genetic regulation of hematopoiesis and osteogenesis. The beta subunit enhances DNA-binding ability of the alpha subunit in vitro, and has been show to have a structure related to the OB fold. 164 -308113 pfam02313 Fumarate_red_D Fumarate reductase subunit D. Fumarate reductase is a membrane-bound flavoenzyme consisting of four subunits, A-B. A and B comprise the membrane-extrinsic catalytic domain and C and D link the catalytic centers to the electron-transport chain. This family consists of the 13kD hydrophobic subunit D. 114 -334890 pfam02315 MDH Methanol dehydrogenase beta subunit. Methanol dehydrogenase (MDH) is a bacterial periplasmic quinoprotein that oxidizes methanol to formaldehyde. MDH is a tetramer of two alpha and two beta subunits. This family contains the small beta subunit. 89 -308115 pfam02316 HTH_Tnp_Mu_1 Mu DNA-binding domain. This family consists of MuA-transposase and repressor protein CI. These proteins contain homologous DNA-binding domains at their N-termini which compete for the same DNA site within the Mu bacteriophage genome. 134 -334891 pfam02317 Octopine_DH NAD/NADP octopine/nopaline dehydrogenase, alpha-helical domain. This group of enzymes act on the CH-NH substrate bond using NAD(+) or NADP(+) as an acceptor. The Pfam family consists mainly of octopine and nopaline dehydrogenases from Ti plasmids. 149 -308117 pfam02318 FYVE_2 FYVE-type zinc finger. This FYVE-type zinc finger is found at the N-terminus of effector proteins including rabphilin-3A and regulating synaptic membrane exocytosis protein 2. 118 -334892 pfam02319 E2F_TDP E2F/DP family winged-helix DNA-binding domain. This family contains the transcription factor E2F and its dimerization partners TDP1 and TDP2, which stimulate E2F-dependent transcription. E2F binds to DNA as a homodimer or as a heterodimer in association with TDP1/2, the heterodimer having increased binding efficiency. The crystal structure of an E2F4-DP2-DNA complex shows that the DNA-binding domains of the E2F and DP proteins both have a fold related to the winged-helix DNA-binding motif. Recognition of the central c/gGCGCg/c sequence of the consensus DNA-binding site is symmetric, and amino acids that contact these bases are conserved among all known E2F and DP proteins. 65 -334893 pfam02320 UCR_hinge Ubiquinol-cytochrome C reductase hinge protein. The ubiquinol-cytochrome C reductase complex (cytochrome bc1 complex) is a respiratory multienzyme complex. This Pfam family represents the 'hinge' protein of the complex which is thought to mediate formation of the cytochrome c1 and cytochrome c complex. 64 -308120 pfam02321 OEP Outer membrane efflux protein. The OEP family (Outer membrane efflux protein) form trimeric channels that allow export of a variety of substrates in Gram negative bacteria. Each member of this family is composed of two repeats. The trimeric channel is composed of a 12 stranded all beta sheet barrel that spans the outer membrane, and a long all helical barrel that spans the periplasm. 181 -334894 pfam02322 Cyt_bd_oxida_II Cytochrome bd terminal oxidase subunit II. This family consists of cytochrome bd type terminal oxidases that catalyze quinol-dependent, Na+-independent oxygen uptake. Members of this family are integral membrane proteins and contain a protohaem IX centre B558. One member of the family, Klebsiella pneumoniae CydB, is implicated in having an important role in micro-aerobic nitrogen fixation in the enteric bacterium Klebsiella pneumoniae. The family forms an integral functional unit with subunit I, family Bac_Ubq_Cox, pfam01654. 295 -145463 pfam02323 ELH Egg-laying hormone precursor. This family consists of egg-laying hormone (ELH) precursor and atrial gland peptides form little and California sea hare. The family also includes ovulation prohormone precursor from great pond snail. This family thus represents a conserved gastropoda ovulation and egg production prohormone. Note that many of the proteins present are further cleaved to give individual peptides. Neuropeptidergic bag cells of the marine mollusk Aplysia californica synthesize an egg-laying hormone (ELH) precursor protein which is cleaved to generate several bioactive peptides including ELH, bag cell peptides (BCP) and acidic peptide (AP). 255 -334895 pfam02324 Glyco_hydro_70 Glycosyl hydrolase family 70. Members of this family belong to glycosyl hydrolase family 70 Glucosyltransferases or sucrose 6-glycosyl transferases (GTF-S) catalyze the transfer of D-glucopyramnosyl units from sucrose onto acceptor molecules, EC:2.4.1.5. This family roughly corresponds to the N-terminal catalytic domain of the enzyme. Members of this family also contain the Putative cell wall binding domain pfam01473, which corresponds with the C-terminal glucan-binding domain. 804 -334896 pfam02325 YGGT YGGT family. This family consists of a repeat found in conserved hypothetical integral membrane proteins. The function of this region and the proteins which possess it is unknown. 72 -308123 pfam02326 YMF19 Plant ATP synthase F0. This family corresponds to subunit 8 (YMF19) of the F0 complex of plant and algae mitochondrial F-ATPases (EC:3.6.1.34). 84 -308124 pfam02327 BChl_A Bacteriochlorophyll A protein. Bacteriochlorophyll A protein is involved in the energy transfer system of green photosynthetic bacteria. The protein forms a homotrimer, with each monomer unit containing seven molecules of bacteriochlorophyll A. 352 -280487 pfam02329 HDC Histidine carboxylase PI chain. Histidine carboxylase catalyzes the formation of histamine from histidine. Cleavage of the proenzyme PI chain yields two subunits, alpha and beta, which arrange as a hexamer (alpha beta)6. 293 -334897 pfam02330 MAM33 Mitochondrial glycoprotein. This mitochondrial matrix protein family contains members of the MAM33 family which bind to the globular 'heads' of C1Q. It is thought to be involved in mitochondrial oxidative phosphorylation and in nucleus-mitochondrion interactions. 194 -280489 pfam02331 P35 Apoptosis preventing protein. This viral protein functions to block the host apoptotic response caused by infection by the virus. The apoptosis preventing protein (or early 35kD protein, P35) acts by blocking caspase protease activity. 295 -334898 pfam02332 Phenol_Hydrox Methane/Phenol/Toluene Hydroxylase. Bacterial phenol hydroxylase is a multicomponent enzyme that catabolises phenol and some of its methylated derivatives. This Pfam family contains both the P1 and P3 polypeptides of phenol hydroxylase and the alpha and beta chain of methane hydroxylase protein A. 227 -280491 pfam02333 Phytase Phytase. Phytase is a secreted enzyme which hydrolyzes phytate to release inorganic phosphate. This family appears to represent a novel enzyme that shows phytase activity and has been shown to have a six- bladed propeller folding architecture. 375 -280492 pfam02334 RTP Replication terminator protein. The bacterial replication terminator protein (RTP) plays a role in the termination of DNA replication by impeding replication fork movement. Two RTP dimers bind to the two inverted repeat regions at the termination site. 122 -308127 pfam02335 Cytochrom_C552 Cytochrome c552. Cytochrome c552 (cytochrome c nitrite reductase) is a crucial enzyme in the nitrogen cycle catalyzing the reduction of nitrite to ammonia. The crystal structure of cytochrome c552 reveals it to be a dimer, with with 10 close-packed type c haem groups. 434 -280494 pfam02336 Denso_VP4 Capsid protein VP4. Four different translation initiation sites of the densovirus capsid protein mRNA give rise to four viral proteins, VP1 to VP4. This family represents VP4. 431 -334899 pfam02337 Gag_p10 Retroviral GAG p10 protein. This family consists of various retroviral GAG (core) polyproteins and encompasses the p10 region producing the p10 protein upon proteolytic cleavage of GAG by retroviral protease. The p10 or matrix protein (MA) is associated with the virus envelope glycoproteins in most mammalian retroviruses and may be involved in virus particle assembly, transport and budding. Some of the GAG polyproteins have alternate cleavage sites leading to the production of alternative and longer cleavage products (e.g. p19) the alignment of this family only covers the approximately N-terminal (GAG) 100 amino acid region of homology to p10. 83 -334900 pfam02338 OTU OTU-like cysteine protease. This family is comprised of a group of predicted cysteine proteases, homologous to the Ovarian tumor (OTU) gene in Drosophila. Members include proteins from eukaryotes, viruses and pathogenic bacterium. The conserved cysteine and histidine, and possibly the aspartate, represent the catalytic residues in this putative group of proteases. 126 -111251 pfam02340 PRRSV_Env PRRSV putative envelope protein. This family consists of a conserved probable envelope protein or ORF2 in porcine reproductive and respiratory syndrome virus (PRRSV) also in the family is a minor structural protein from lactate dehydrogenase-elevating virus. 234 -280497 pfam02341 RcbX RbcX protein. The RBCX protein has been identified as having a possible chaperone-like function. The rbcX gene is juxtaposed to and cotranscribed with rbcL and rbcS encoding RuBisCO in Anabaena sp. CA. RbcX has been shown to possess a chaperone-like function assisting correct folding of RuBisCO in E. coli expression studies and is needed for RuBisCO to reach its maximal activity. 100 -334901 pfam02342 TerD TerD domain. The TerD domain is found in TerD family proteins that include the paralogous TerD, TerA, TerE, TerF and TerZ proteins It is found in a stress response operon with TerB and TerC. TerD has a maximum of two calcium-binding sites depending on the conservation of aspartates. It has various fusions to nuclease domains, RNA binding domains, ubiquitin related domains, and metal binding domains. The ter gene products lie at the centre of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing linked to novel pathways. 186 -308130 pfam02343 TRA-1_regulated TRA-1 regulated protein R03H10.4. This family of proteins represents the protein product of the gene R03H10.4 which is located near a sequence that matches the TRA-1 binding consensus. TRA-1 is a transcription factor which controls sexual differentiation in C.elegans. R03H10.4 shows male-enriched reporter gene expression and acts as a direct target of TRA-1 regulation. 128 -308131 pfam02344 Myc-LZ Myc leucine zipper domain. This family consists of the leucine zipper dimerization domain found in both cellular c-Myc proto-oncogenes and viral v-Myc oncogenes. dimerization via the leucine zipper motif with other basic helix-loop-helix-leucine zipper (b/HLH/lz) proteins such as Max is required for efficient DNA binding. The Myc-Max dimer is a transactivating complex activating expression of growth related genes promoting cell proliferation. The dimerization is facilitated via interdigitating leucine residues every 7th position of the alpha helix. Like charge repulsion of adjacent residues in this region perturbs the formation of homodimers with heterodimers being promoted by opposing charge attractions. 31 -280501 pfam02346 Vac_Fusion Chordopoxvirus multifunctional envelope protein A27. This is a family of viral fusion proteins from the chordopoxviruses. The A27L gene product, a 14-kDa Vaccinia Virus protein, has been demonstrated to function as a viral fusion protein mediating cell fusion at endosmomal (low) pH. More recently it has been shown that A27 forms disulfide-linked protein complexes with A26 protein providing an anchor for A26 protein packaging into mature virions. A27 regulates virion-membrane fusion rather than inducing it and is critical for the successful egress of mature virus particles. 56 -280502 pfam02347 GDC-P Glycine cleavage system P-protein. This family consists of Glycine cleavage system P-proteins EC:1.4.4.2 from bacterial, mammalian and plant sources. The P protein is part of the glycine decarboxylase multienzyme complex EC:2.1.2.10 (GDC) also annotated as glycine cleavage system or glycine synthase. GDC consists of four proteins P, H, L and T. The reaction catalyzed by this protein is:- Glycine + lipoylprotein <=> S-aminomethyldihydrolipoylprotein + CO2 428 -308132 pfam02348 CTP_transf_3 Cytidylyltransferase. This family consists of two main Cytidylyltransferase activities: 1) 3-deoxy-manno-octulosonate cytidylyltransferase,, EC:2.7.7.38 catalyzing the reaction:- CTP + 3-deoxy-D-manno-octulosonate <=> diphosphate + CMP-3-deoxy-D-manno-octulosonate, 2) acylneuraminate cytidylyltransferase EC:2.7.7.43, catalyzing the reaction:- CTP + N-acylneuraminate <=> diphosphate + CMP-N-acylneuraminate. NeuAc cytydilyltransferase of Mannheimia haemolytica has been characterized describing kinetics and regulation by substrate charge, energetic charge and amino-sugar demand. 217 -334902 pfam02349 MSG Major surface glycoprotein. This is a novel repeat in Pneumocystis carinii Major surface glycoprotein (MSG) some members of the alignment have up to nine repeats of this family, the repeats containing several conserved cysteines. The MSG of P. carinii is an important protein in host-pathogen interactions. Surface glycoprotein A from Pneumocystis carinii is a main target for the host immune system, this protein is implicated in the attachment of Pneumocystis carinii to the host alveolar epithelial cells, alveolar macrophages, host surfactant and possibly accounts in part for the hypoxia seen in Pneumocystis carinii pneumonia (PCP). 75 -334903 pfam02350 Epimerase_2 UDP-N-acetylglucosamine 2-epimerase. This family consists of UDP-N-acetylglucosamine 2-epimerases EC:5.1.3.14 this enzyme catalyzes the production of UDP-ManNAc from UDP-GlcNAc. Note that some of the enzymes is this family are bifunctional, in these instances Pfam matches only the N-terminal half of the protein suggesting that the additional C-terminal part (when compared to mono-functional members of this family) is responsible for the UPD-N-acetylmannosamine kinase activity of these enzymes. This hypothesis is further supported by the assumption that the C-terminal part of rat Gne is the kinase domain. 346 -334904 pfam02351 GDNF GDNF/GAS1 domain. This cysteine rich domain is found in multiple copies in GNDF and GAS1 proteins. GDNF and neurturin (NTN) receptors are potent survival factors for sympathetic, sensory and central nervous system neurons. GDNF and neurturin promote neuronal survival by signaling through similar multicomponent receptors that consist of a common receptor tyrosine kinase and a member of a GPI-linked family of receptors that determines ligand specificity. 86 -334905 pfam02352 Decorin_bind Decorin binding protein. This family consists of decorin binding proteins from Borrelia. The decorin binding protein of Borrelia burgdorferi the lyme disease spirochetes adheres to the proteoglycan decorin found on collagen fibers. 139 -280508 pfam02353 CMAS Mycolic acid cyclopropane synthetase. This family consist of Cyclopropane-fatty-acyl-phospholipid synthase or CFA synthase EC:2.1.1.79 this enzyme catalyze the reaction: S-adenosyl-L-methionine + phospholipid olefinic fatty acid <=> S-adenosyl-L-homocysteine + phospholipid cyclopropane fatty acid. 272 -334906 pfam02354 Latrophilin Latrophilin Cytoplasmic C-terminal region. This family consists of the cytoplasmic C-terminal region in latrophilin. Latrophilin is a synaptic Ca2+ independent alpha- latrotoxin (LTX) receptor and is a novel member of the secretin family of G-protein coupled receptors that are involved in secretion. Latrophilin mRNA is present only in neuronal tissue. Lactrophillin interacts with G-alpha O. 379 -280510 pfam02355 SecD_SecF Protein export membrane protein. This family consists of various prokaryotic SecD and SecF protein export membrane proteins. This SecD and SecF proteins are part of the multimeric protein export complex comprising SecA, D, E, F, G, Y, and YajC. SecD and SecF are required to maintain a proton motive force. 189 -334907 pfam02357 NusG Transcription termination factor nusG. 97 -280512 pfam02358 Trehalose_PPase Trehalose-phosphatase. This family consist of trehalose-phosphatases EC:3.1.3.12 these enzyme catalyze the de-phosphorylation of trehalose-6-phosphate to trehalose and orthophosphate. The aligned region is present in trehalose-phosphatases and comprises the entire length of the protein it is also found in the C-terminus of trehalose-6-phosphate synthase EC:2.4.1.15 adjacent to the trehalose-6-phosphate synthase domain - pfam00982. It would appear that the two equivalent genes in the E. coli otsBA operon otsA the trehalose-6-phosphate synthase and otsB trehalose-phosphatase (this family) have undergone gene fusion in most eukaryotes. Trehalose is a common disaccharide of bacteria, fungi and invertebrates that appears to play a major role in desiccation tolerance. 233 -334908 pfam02359 CDC48_N Cell division protein 48 (CDC48), N-terminal domain. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the N-terminus. The VAT-N domain found in AAA ATPases pfam00004 is a substrate 185-residue recognition domain. 84 -280514 pfam02361 CbiQ Cobalt transport protein. This family consists of various cobalt transport proteins Most of which are found in Cobalamin (Vitamin B12) biosynthesis operons. In Salmonella the cbiN cbiQ (product CbiQ in this family) and cbiO are likely to form an active cobalt transport system. 216 -334909 pfam02362 B3 B3 DNA binding domain. This is a family of plant transcription factors with various roles in development, the aligned region corresponds to the B3 DNA binding domain, this domain is found in VP1/AB13 transcription factors. Some proteins also have a second AP2 DNA binding domain pfam00847 such as RAV1. 101 -308140 pfam02363 C_tripleX Cysteine rich repeat. This Cysteine repeat C-X3-C-X3-C is repeated in sequences of this family, 34 times in an uncharacterized C. elegans protein. The function of these repeats is unknown as is the function of the proteins in which they occur. Most of the sequences in this family are from C. elegans. 17 -308141 pfam02364 Glucan_synthase 1,3-beta-glucan synthase component. This family consists of various 1,3-beta-glucan synthase components including Gls1, Gls2 and Gls3 from yeast. 1,3-beta-glucan synthase EC:2.4.1.34 also known as callose synthase catalyzes the formation of a beta-1,3-glucan polymer that is a major component of the fungal cell wall. The reaction catalyzed is:- UDP-glucose + {(1,3)-beta-D-glucosyl}(N) <=> UDP + {(1,3)-beta-D-glucosyl}(N+1). 818 -334910 pfam02365 NAM No apical meristem (NAM) protein. This is a family of no apical meristem (NAM) proteins these are plant development proteins. Mutations in NAM result in the failure to develop a shoot apical meristem in petunia embryos. NAM is indicated as having a role in determining positions of meristems and primordial. One member of this family NAP (NAC-like, activated by AP3/PI) is encoded by the target genes of the AP3/PI transcriptional activators and functions in the transition between growth by cell division and cell expansion in stamens and petals. 64 -280519 pfam02366 PMT Dolichyl-phosphate-mannose-protein mannosyltransferase. This is a family of Dolichyl-phosphate-mannose-protein mannosyltransferase proteins EC:2.4.1.109. These proteins are responsible for O-linked glycosylation of proteins, they catalyze the reaction:- Dolichyl phosphate D-mannose + protein <=> dolichyl phosphate + O-D-mannosyl-protein. Also in this family is Drosophila rotated abdomen protein which is a putative mannosyltransferase. This family appears to be distantly related to pfam02516 (A Bateman pers. obs.). This family also contains sequences from ArnTs (4-amino-4-deoxy-L-arabinose lipid A transferase). They catalyze the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria (e.g. Escherichia coli##and##Salmonella typhimurium) to resist killing by antimicrobial peptides such as polymyxins. Members such as undecaprenyl phosphate-alpha-4-amino-4-deoxy-L-arabinose arabinosyl transferase are predicted to have 12 trans-membrane regions. The N-terminal portion of these proteins is hypothesized to have a conserved glycosylation activity which is shared between distantly related oligosaccharyltransferases ArnT and PglB families. 245 -334911 pfam02367 TsaE Threonylcarbamoyl adenosine biosynthesis protein TsaE. This family of proteins is involved in the synthesis of threonylcarbamoyl adenosine (t(6)A). 126 -308144 pfam02368 Big_2 Bacterial Ig-like domain (group 2). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in bacterial and phage surface proteins such as intimins. 77 -280522 pfam02369 Big_1 Bacterial Ig-like domain (group 1). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in bacterial surface proteins such as intimins and invasins involved in pathogenicity. 98 -111279 pfam02370 M M protein repeat. This short repeat is found in multiple copies in bacterial M proteins. The M proteins bind to IgA and are closely associated with virulence. The M protein has been postulated to be a major group A Streptococcal (GAS) virulence factor because of its contribution to the bacterial resistance to opsonophagocytosis. 21 -334912 pfam02371 Transposase_20 Transposase IS116/IS110/IS902 family. Transposases are needed for efficient transposition of the insertion sequence or transposon DNA. This family includes transposases for IS116, IS110 and IS902. This region is often found with pfam01548. The exact function of this region is uncertain. This family contains a HHH motif suggesting a DNA-binding function. 86 -308146 pfam02372 IL15 Interleukin 15. Interleukin-15 (IL-15) is a cytokine that possesses a variety of biological functions, including stimulation and maintenance of cellular immune responses. Structurally these proteins are short-chain 4-helical cytokines. 129 -334913 pfam02373 JmjC JmjC domain, hydroxylase. The JmjC domain belongs to the Cupin superfamily. JmjC-domain proteins may be protein hydroxylases that catalyze a novel histone modification. This is confirmed to be a hydroxylase: the human JmjC protein named Tyw5p unexpectedly acts in the biosynthesis of a hypermodified nucleoside, hydroxy-wybutosine, in tRNA-Phe by catalyzing hydroxylation. 114 -280525 pfam02374 ArsA_ATPase Anion-transporting ATPase. This Pfam family represents a conserved domain, which is sometimes repeated, in an anion-transporting ATPase. The ATPase is involved in the removal of arsenate, antimonite, and arsenate from the cell. 304 -334914 pfam02375 JmjN jmjN domain. 34 -308148 pfam02376 CUT CUT domain. The CUT domain is a DNA-binding motif which can bind independently or in cooperation with the homeodomain, often found downstream of the CUT domain. Multiple copies of the CUT domain can exist in one protein. 77 -308149 pfam02377 Dishevelled Dishevelled specific domain. This domain is specific to the signalling protein dishevelled. The domain is found adjacent to the PDZ domain pfam00595, often in conjunction with DEP (pfam00610) and DIX (pfam00778). Much of it is disordered and yet conserved. 159 -308150 pfam02378 PTS_EIIC Phosphotransferase system, EIIC. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The sugar-specific permease of the PTS consists of three domains (IIA, IIB and IIC). The IIC domain catalyzes the transfer of a phosphoryl group from IIB to the sugar substrate. 315 -308151 pfam02380 Papo_T_antigen T-antigen specific domain. This domain represents a conserved region in papovavirus small and middle T-antigens. It is found as the N-terminal domain in the small T-antigen, and is centrally located in the middle T-antigen. 93 -280530 pfam02381 MraZ MraZ protein, putative antitoxin-like. This small 70 amino acid domain is found duplicated in a family of bacterial proteins. These proteins may be DNA-binding transcription factors (Pers. comm. A Andreeva & A Murzin). It is likely, due to the similarity of fold, that this family acts as a bacterial antitoxin like the MazE antitoxin family. 72 -308152 pfam02382 RTX RTX N-terminal domain. The RTX family of bacterial toxins are a group of cytolysins and cytotoxins. This Pfam family represents the N-terminal domain which is found in association with a glycine-rich repeat domain and hemolysinCabind pfam00353. 644 -334915 pfam02383 Syja_N SacI homology domain. This Pfam family represents a protein domain which shows homology to the yeast protein SacI. The SacI homology domain is most notably found at the amino terminal of the inositol 5'-phosphatase synaptojanin. 293 -280533 pfam02384 N6_Mtase N-6 DNA Methylase. Restriction-modification (R-M) systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The R-M system is a complex containing three polypeptides: M (this family), S (pfam01420), and R. This family consists of N-6 adenine-specific DNA methylase EC:2.1.1.72 from Type I and Type IC restriction systems. These methylases have the same sequence specificity as their corresponding restriction enzymes. 311 -280534 pfam02386 TrkH Cation transport protein. This family consists of various cation transport proteins (Trk) and V-type sodium ATP synthase subunit J or translocating ATPase J EC:3.6.1.34. These proteins are involved in active sodium up-take utilising ATP in the process. TrkH a member of the family from E. coli is a hydrophobic membrane protein and determines the specificity and kinetics of cation transport by the TrK system in E. coli. 491 -280535 pfam02387 IncFII_repA IncFII RepA protein family. This protein is plasmid encoded and found to be essential for plasmid replication. 275 -334916 pfam02388 FemAB FemAB family. The femAB operon codes for two nearly identical approximately 50-kDa proteins involved in the formation of the Staphylococcal pentaglycine interpeptide bridge in peptidoglycan. These proteins are also considered as a factor influencing the level of methicillin resistance. 406 -280537 pfam02389 Cornifin Cornifin (SPRR) family. SPRR genes (formerly SPR) encode a novel class of polypeptides (small proline rich proteins) that are strongly induced during differentiation of human epidermal keratinocytes in vitro and in vivo. The most characteristic feature of the SPRR gene family resides in the structure of the central segments of the encoded polypeptides that are built up from tandemly repeated units of either eight (SPRR1 and SPRR3) or nine (SPRR2) amino acids with the general consensus XKXPEPXX where X is any amino acid. In order to avoid bacterial contamination due to the high polar-nature of the HMM the threshold has been set very high. 135 -334917 pfam02390 Methyltransf_4 Putative methyltransferase. This is a family of putative methyltransferases. The aligned region contains the GXGXG S-AdoMet binding site suggesting a putative methyltransferase activity. 173 -334918 pfam02391 MoaE MoaE protein. This family contains the MoaE protein that is involved in biosynthesis of molybdopterin. Molybdopterin, the universal component of the pterin molybdenum cofactors, contains a dithiolene group serving to bind Mo. Addition of the dithiolene sulfurs to a molybdopterin precursor requires the activity of the converting factor. Converting factor contains the MoaE and MoaD proteins. 112 -308156 pfam02392 Ycf4 Ycf4. This family consists of hypothetical Ycf4 proteins from various chloroplast genomes. It has been suggested that Ycf4 is involved in the assembly and/or stability of the photosystem I complex in chloroplasts. 176 -308157 pfam02393 US22 US22 like. US22 proteins have been found across many animal DNA viruses and some vertebrates. The name sake of this family, US22, is an early nuclear protein that is secreted from cells. The US22 family may have a role in virus replication and pathogenesis. Domain analysis showed that US22 proteins usually contain two copies of conserved modules which is homologous to several other families like SMI1 and SYD (commonly called SUKH superfamily). Bacterial operon analysis revealed that all bacterial SUKH members function as immunity proteins against various toxins. Thus US22 family is predicted to counter diverse anti-viral responses by interacting with specific host proteins. 122 -308158 pfam02394 IL1_propep Interleukin-1 propeptide. The Interleukin-1 cytokines are translated as precursor proteins. The N terminal approx. 115 amino acids form a propeptide that is cleaved off to release the active interleukin-1. 102 -280543 pfam02395 Peptidase_S6 Immunoglobulin A1 protease. This family consists of immunoglobulin A1 protease proteins. The immunoglobulin A1 protease cleaves immunoglobulin IgA and is found in pathogenic bacteria such as Neisseria gonorrhoeae. Not all of the members of this family are IgA proteases, EspP from E. coli O157:H7 cleaves human coagulation factor V and hbp is a hemoglobin protease from E. coli EB1. 784 -334919 pfam02397 Bac_transf Bacterial sugar transferase. This Pfam family represents a conserved region from a number of different bacterial sugar transferases, involved in diverse biosynthesis pathways. 181 -280545 pfam02398 Corona_7 Coronavirus protein 7. This is a family of proteins from coronavirus which may function in viral assembly. 101 -280546 pfam02399 Herpes_ori_bp Origin of replication binding protein. This Pfam family represents the herpesvirus origin of replication binding protein, probably involved in DNA replication. 820 -334920 pfam02401 LYTB LytB protein. The mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in many eubacteria, plants, and the malaria parasite. The LytB gene is involved in the trunk line of the MEP pathway. 270 -308161 pfam02402 Lysis_col Lysis protein. These small bacterial proteins are required for colicin release and partial cell lysis. This family contains lysis proteins for several different forms of colicin. B. subtilis LytA has been included in this family, the similarity is not highly significant, however it is also a short protein, that is involved in secretion of other proteins (Bateman A pers. obs.). This family includes a signal peptide motif and a lipid attachment site. 49 -334921 pfam02403 Seryl_tRNA_N Seryl-tRNA synthetase N-terminal domain. This domain is found associated with the Pfam tRNA synthetase class II domain (pfam00587) and represents the N-terminal domain of seryl-tRNA synthetase. 107 -308163 pfam02404 SCF Stem cell factor. Stem cell factor (SCF) is a homodimer involved in hematopoiesis. SCF binds to and activates the SCF receptor (SCFR), a receptor tyrosine kinase. The crystal structure of human SCF has been resolved and a potential receptor-binding site identified. 274 -334922 pfam02405 MlaE Permease MlaE. MlaE is a permease which in E. coli is a component of the Mla pathway, an ABC transport system that functions to maintain the asymmetry of the outer membrane. In NMB1965 it is involved in L-glutamate import into the cell. In Arabidopsis thaliana TGD1 it is involved in lipid transfer within the cell. 211 -308165 pfam02406 MmoB_DmpM MmoB/DmpM family. This family consists of monooxygenase components such as MmoB methane monooxygenase (EC:1.14.13.25) regulatory protein B. When MmoB is present at low concentration it converts methane monooxygenase from an oxidase to a hydroxylase and stabilizes intermediates required for the activation of dioxygen. Also found in this family is DmpM or Phenol hydroxylase (EC:1.14.13.7) protein component P2, this protein lacks redox co-factors and is required for optimal turnover of Phenol hydroxylase. 85 -280553 pfam02407 Viral_Rep Putative viral replication protein. This is a family of viral ORFs from various plant and animal ssDNA circoviruses. Published evidence to support the annotated function "viral replication associated protein" has not be found. 82 -280554 pfam02408 CUB_2 CUB-like domain. This is a family of hypothetical C. elegans proteins. The aligned region has no known function nor do any of the proteins which possess it. However, this domain is related to the CUB domain. 120 -334923 pfam02410 RsfS Ribosomal silencing factor during starvation. This family is expressed by almost all bacterial and eukaryotic genomes but not by archaea. Its function is to down-regulate protein synthesis under conditions of nutrient shortage, and it does this by binding to protein L14 of the large ribosomal subunit, thus acting as a ribosomal silencing factor (RsfS) by blocking the joining of the ribosomal subunits. This family is structurally homologous to nucleotidyltransferases. 97 -111318 pfam02411 MerT MerT mercuric transport protein. MerT is an mercuric transport integral membrane protein and is responsible for transport of the Hg2+ iron from periplasmic MerP (also part of the transport system) to mercuric reductase (MerE). 116 -308167 pfam02412 TSP_3 Thrombospondin type 3 repeat. The thrombospondin repeat is a short aspartate rich repeat which binds to calcium ions. The repeat was initially identified in thrombospondin proteins that contained 7 of these repeats. The repeat lacks defined secondary structure. 36 -334924 pfam02413 Caudo_TAP Caudovirales tail fibre assembly protein, lambda gpK. This family contains bacterial and phage tail fibre assembly proteins. E.coli contains several members of this family although the function of these proteins is uncertain. Using the lambda phage members as examples, there are both gptfa and gpK tail proteins here. GpK forms part of the TTC or tail-tip complex that is located at the distal end of the tail. TTCs form the platform on which the tail-tube proteins self-assemble and are also the attachment point for fibers or receptor-binding proteins that mediate phage-adsorption to the surface of the host cell. TTC assembly starts with gpJ, which is also known as the central tail fibre and is involved in host-cell adsorption. It is the C-terminus of gpJ that interacts with the lamB receptor on host cells. A number of intermediates including gpK then interact with gpJ during tail morphogenesis. 128 -308168 pfam02414 Borrelia_orfA Borrelia ORF-A. This protein is encoded by an open reading frame in plasmid borne DNA repeats of Borrelia species. This protein is known as ORF-A. The function of this putative protein is unknown. 285 -308169 pfam02415 Chlam_PMP Chlamydia polymorphic membrane protein (Chlamydia_PMP) repeat. This family contains several Chlamydia polymorphic membrane proteins. Chlamydia pneumoniae is an obligate intracellular bacterium and a common human pathogen causing infection of the upper and lower respiratory tract. Common for the Pmps are the tetrapeptide GGA(I/V/L) motif repeated several times in the N-terminal part. The C-terminal half is characterized by conserved tryptophans and a carboxy-terminal phenylalanine. A signal peptide leader sequence is predicted in 20 C. pneumoniae Pmps, which indicates an outer membrane localization. Pmp10 and Pmp11 contain a signal peptidase II cleavage site suggesting lipid modification. The C. pneumoniae pmp genes represent 17.5% of the chlamydia-specific coding capacity and they are all transcribed during chlamydial growth but the function of Pmps remains unknown. This family shows some similarity to pfam05594 and hence is likely to also form a beta-helical structure (personal obs:C Yeats). 19 -280560 pfam02416 MttA_Hcf106 mttA/Hcf106 family. Members of this protein family are involved in a sec independent translocation mechanism. This pathway has been called the DeltapH pathway in chloroplasts. Members of this family in E.coli are involved in export of redox proteins with a "twin arginine" leader motif. 53 -334925 pfam02417 Chromate_transp Chromate transporter. Members of this family probably act as chromate transporters. Members of this family are found in both bacteria and archaebacteria. The proteins are composed of one or two copies of this region. The alignment contains two conserved motifs, FGG and PGP. 164 -308171 pfam02419 PsbL PsbL protein. This family consists of the photosystem II reaction centre protein PsbJ from plants and Cyanobacteria. The function of this small protein is unknown. Interestingly the mRNA for this protein requires a post-transcriptional modification of an ACG triplet to form an AUG initiator codon. 37 -111326 pfam02420 AFP Insect antifreeze protein repeat. This family of extracellular proteins is involved in stopping the formation of ice crystals at low temperatures. The proteins are composed of a 12 residue repeat that forms a structural repeat. The structure of the repeats is a beta helix. Each repeat contains two cys residues that form a disulphide bridge. 12 -334926 pfam02421 FeoB_N Ferrous iron transport protein B. Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N-terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. 156 -308173 pfam02422 Keratin Keratin. This family represents avian keratin proteins, found in feathers, scale and claw. 89 -308174 pfam02423 OCD_Mu_crystall Ornithine cyclodeaminase/mu-crystallin family. This family contains the bacterial Ornithine cyclodeaminase enzyme EC:4.3.1.12, which catalyzes the deamination of ornithine to proline. This family also contains mu-Crystallin the major component of the eye lens in several Australian marsupials, mRNA for this protein has also been found in human retina. 317 -334927 pfam02424 ApbE ApbE family. This prokaryotic family of lipoproteins are related to ApbE from Salmonella typhimurium. ApbE is involved in thiamine synthesis. It acts as an FAD:protein FMN-transferase, catalyzing the attachment of an FMN residue to a threonine residue of a protein via a phosphoester bond in such bacterial flavoproteins. 218 -280567 pfam02425 GBP_PSP Paralytic/GBP/PSP peptide. This family includes insect peptides that are short (23 amino acids) and contain 1 disulphide bridge. The family includes growth-blocking peptide (GBP) of Pseudaletia separata and the paralytic peptides from Manduca sexta, Heliothis virescens, and Spodoptera exigua as well as plasmatocyte-spreading peptide (PSP1). These peptides function to halt metamorphosis from larvae to pupae. 23 -308176 pfam02426 MIase Muconolactone delta-isomerase. This small enzyme forms a homodecameric complex, that catalyzes the third step in the catabolism of catechol to succinate- and acetyl-coa in the beta-ketoadipate pathway EC:5.3.3.4. The protein has a ferredoxin-like fold according to SCOP. 87 -308177 pfam02427 PSI_PsaE Photosystem I reaction centre subunit IV / PsaE. PsaE is a 69 amino acid polypeptide from photosystem I present on the stromal side of the thylakoid membrane. The structure is comprised of a well-defined five-stranded beta-sheet similar to SH3 domains. 59 -308178 pfam02428 Prot_inhib_II Potato type II proteinase inhibitor family. Members of this family are proteinase inhibitors that contain eight cysteines that form four disulphide bridges. The structure of the proteinase-inhibitor complex is known. 51 -308179 pfam02429 PCP Peridinin-chlorophyll A binding protein. Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates. These proteins are composed of two similar repeated domains. These domains constitute a scaffold with pseudo-twofold symmetry surrounding a hydrophobic cavity filled by two lipid, eight peridinin, and two chlorophyll a molecules. 145 -308180 pfam02430 AMA-1 Apical membrane antigen 1. Apical membrane antigen 1 (AMA-1) is a Plasmodium asexual blood-stage antigen. It has been suggested that positive selection operates on the AMA-1 gene in regions coding for antigenic sites. 467 -308181 pfam02431 Chalcone Chalcone-flavanone isomerase. Chalcone-flavanone isomerase is a plant enzyme responsible for the isomerisation of chalcone to naringenin, 4',5,7-trihydroxyflavanone, a key step in the biosynthesis of flavonoids. 203 -334928 pfam02432 Fimbrial_K88 Fimbrial, major and minor subunit. Fimbriae (also know as pili) are polar filaments found on the bacterial surface, allowing colonisation of the host. This family consists of the minor and major fimbrial subunits. 229 -334929 pfam02433 FixO Cytochrome C oxidase, mono-heme subunit/FixO. The bacterial oxidase complex, fixNOPQ or cytochrome cbb3, is thought to be required for respiration in endosymbiosis. FixO is a membrane bound mono-heme constituent of the fixNOPQ complex. 218 -334930 pfam02434 Fringe Fringe-like. The drosophila protein fringe (FNG) is a glucosaminyltransferase that controls the response of the Notch receptor to specific ligands. FNG is localized to the Golgi apparatus (not secreted as previously thought). Modification of Notch occurs through glycosylation by FNG. The xenopus homolog, lunatic fringe, has been implicated in a variety of functions. 248 -308185 pfam02435 Glyco_hydro_68 Levansucrase/Invertase. This Pfam family consists of the glycosyl hydrolase 68 family, including several bacterial levansucrase enzymes, and invertase from zymomonas. 408 -334931 pfam02436 PYC_OADA Conserved carboxylase domain. This domain represents a conserved region in pyruvate carboxylase (PYC), oxaloacetate decarboxylase alpha chain (OADA), and transcarboxylase 5s subunit. The domain is found adjacent to the HMGL-like domain (pfam00682) and often close to the biotin_lipoyl domain (pfam00364) of biotin requiring enzymes. 193 -334932 pfam02437 Ski_Sno SKI/SNO/DAC family. This family contains a presumed domain that is about 100 amino acids long. All members of this family contain a conserved CLPQ motif. The c-ski proto-oncogene has been shown to influence proliferation, morphological transformation and myogenic differentiation. Sno, a Ski proto-oncogene homolog, is expressed in two isoforms and plays a role in the response to proliferation stimuli. Dachshund also contains this domain. It is involved in various aspects of development. 100 -308188 pfam02438 Adeno_100 Late 100kD protein. The late 100kD protein is a non-structural viral protein involved in the transport of hexon from the cytoplasm to the nucleus. 591 -111345 pfam02439 Adeno_E3_CR2 Adenovirus E3 region protein CR2. Early region 3 (E3) of human adenoviruses (Ads) codes for proteins that appear to control viral interactions with the host. This region called CR2 (conserved region 1) is found in Adenovirus type 19 (a subgroup D virus) 49 Kd protein in the E3 region. CR2 is also found in the 20.1 Kd protein of subgroup B adenoviruses. The function of this 50 amino acid region is unknown. 38 -308189 pfam02440 Adeno_E3_CR1 Adenovirus E3 region protein CR1. Early region 3 (E3) of human adenoviruses (Ads) codes for proteins that appear to control viral interactions with the host. This region called CR1 (conserved region 1) is found three times in Adenovirus type 19 (a subgroup D virus) 49 Kd protein in the E3 region. CR1 is also found in the 20.1 Kd protein of subgroup B adenoviruses. The function of this 80 amino acid region is unknown. This region is probably a divergent immunoglobulin domain (A. Bateman pers. observation). 95 -308190 pfam02441 Flavoprotein Flavoprotein. This family contains diverse flavoprotein enzymes. This family includes epidermin biosynthesis protein, EpiD, which has been shown to be a flavoprotein that binds FMN. This enzyme catalyzes the removal of two reducing equivalents from the cysteine residue of the C-terminal meso-lanthionine of epidermin to form a --C==C-- double bond. This family also includes the B chain of dipicolinate synthase a small polar molecule that accumulates to high concentrations in bacterial endospores, and is thought to play a role in spore heat resistance, or the maintenance of heat resistance. dipicolinate synthase catalyzes the formation of dipicolinic acid from dihydroxydipicolinic acid. This family also includes phenyl-acrylic acid decarboxylase (EC:4.1.1.-). 177 -280581 pfam02442 L1R_F9L Lipid membrane protein of large eukaryotic DNA viruses. The four families of large eukaryotic DNA viruses, Poxviridae, Asfarviridae, Iridoviridae, and Phycodnaviridae, referred to collectively as nucleocytoplasmic large DNA viruses or NCLDV, have all been shown to have a lipid membrane, in spite of the major differences in virion structure. The paralogous genes L1R and F9L encode membrane proteins that have a conserved domain architecture, with a single, C-terminal transmembrane helix, and an N-terminal, multiple-disulfide-bonded domain. The conservation of the myristoylated, disulfide-bonded protein L1R/F9L in most of the NCLDV correlates with the conservation of the thiol-disulfide oxidoreductase E10R which, in vaccinia virus, is required for the formation of disulfide bonds in L1R and F9L. 200 -308191 pfam02443 Circo_capsid Circovirus capsid protein. Circoviruses are small circular single stranded viruses. This family is the capsid protein from viruses such as porcine circovirus and beak and feather disease virus. These proteins are about 220 amino acids long. 200 -280583 pfam02444 HEV_ORF1 Hepatitis E virus ORF-2 (Putative capsid protein). The Hepatitis E virus (HEV) genome is a single-stranded, positive-sense RNA molecule of approximately 7.5 kb. Three open reading frames (ORF) were identified within the HEV genome: ORF1 encodes non-structural proteins, ORF2 encodes the putative structural protein(s), and ORF3 encodes a protein of unknown function. ORF2 contains a consensus signal peptide sequence at its amino terminus and a capsid-like region with a high content of basic amino acids similar to that seen with other virus capsid proteins. 114 -334933 pfam02445 NadA Quinolinate synthetase A protein. Quinolinate synthetase catalyzes the second step of the de novo biosynthetic pathway of pyridine nucleotide formation. In particular, quinolinate synthetase is involved in the condensation of dihydroxyacetone phosphate and iminoaspartate to form quinolinic acid. This synthesis requires two enzymes, a FAD-containing "B protein" and an "A protein". 286 -334934 pfam02446 Glyco_hydro_77 4-alpha-glucanotransferase. These enzymes EC:2.4.1.25 transfer a segment of a (1,4)-alpha-D-glucan to a new 4-position in an acceptor, which may be glucose or (1,4)-alpha-D-glucan. 459 -308194 pfam02447 GntP_permease GntP family permease. This is a family of integral membrane permeases that are involved in gluconate uptake. E. coli contains several members of this family including GntU, a low affinity transporter, and GntT, a high affinity transporter. 440 -308195 pfam02448 L71 L71 family. This family of insect proteins are each about 100 amino acids long and have 6 conserved cysteine residues. They all have a predicted signal peptide and are probably excreted. The function of the proteins is unknown. 70 -308196 pfam02449 Glyco_hydro_42 Beta-galactosidase. This group of beta-galactosidase enzymes belong to the glycosyl hydrolase 42 family. The enzyme catalyzes the hydrolysis of terminal, non-reducing terminal beta-D-galactosidase residues. 376 -308197 pfam02450 LCAT Lecithin:cholesterol acyltransferase. Lecithin:cholesterol acyltransferase (LCAT) is involved in extracellular metabolism of plasma lipoproteins, including cholesterol. 383 -308198 pfam02451 Nodulin Nodulin. Nodulin is a plant protein of unknown function. It is induced during nodulation in legume roots after rhizobium infection. 188 -334935 pfam02452 PemK_toxin PemK-like, MazF-like toxin of type II toxin-antitoxin system. PemK is a growth inhibitor in E. coli known to bind to the promoter region of the Pem operon, auto-regulating synthesis. This family represents the toxin molecule of a typical bacterial toxin-antitoxin system pairing. The family includes a number of different toxins, such as MazF, Kid, PemK, ChpA, ChpB and ChpAK. 108 -334936 pfam02453 Reticulon Reticulon. Reticulon, also know as neuroendocrine-specific protein (NSP), is a protein of unknown function which associates with the endoplasmic reticulum. This family represents the C-terminal domain of the three reticulon isoforms and their homologs. 157 -111360 pfam02454 Sigma_1s Sigma 1s protein. The reoviral gene S1 encodes for haemagglutinin (sigma 1 protein), an outer capsid protein and a major factor in determining virus-host cell interactions. Sigma 1s is one of two translation products of the S1 gene. 116 -308201 pfam02455 Hex_IIIa Hexon-associated protein (IIIa). The major capsid protein of the adenovirus strain is also known as a hexon. This is a family of hexon-associated proteins (protein IIIa). 539 -280594 pfam02456 Adeno_IVa2 Adenovirus IVa2 protein. IVa2 protein can interact with the adenoviral packaging signal and that this interaction involves DNA sequences that have previously been demonstrated to be required for packaging. During the course of lytic infection, the adenovirus major late promoter (MLP) is induced to high levels after replication of viral DNA has started. IVa2 is a transcriptional activator of the major late promoter. 370 -334937 pfam02457 DisA_N DisA bacterial checkpoint controller nucleotide-binding. The DisA protein is a bacterial checkpoint protein that dimerizes into an octameric complex. The protein consists of three distinct domains. This domain is the first and is a globular, nucleotide-binding region; the next 146-289 residues constitute the DisA-linker family, pfam10635, that consists of an elongated bundle of three alpha helices (alpha-6, alpha-10, and alpha-11), one side of which carries an additional three helices (alpha7-9), which thus forms a spine like-linker between domains 1 and 3. The C-terminal residues, of domain 3, are represented by family HHH, pfam00633, the specific DNA-binding domain. The octameric complex thus has structurally linked nucleotide-binding and DNA-binding HhH domains and the nucleotide-binding domains are bound to a cyclic di-adenosine phosphate such that DisA is a specific di-adenylate cyclase. The di-adenylate cyclase activity is strongly suppressed by binding to branched DNA, but not to duplex or single-stranded DNA, suggesting a role for DisA as a monitor of the presence of stalled replication forks or recombination intermediates via DNA structure-modulated c-di-AMP synthesis. 114 -280596 pfam02458 Transferase Transferase family. This family includes a number of transferase enzymes. These include anthranilate N-hydroxycinnamoyl/benzoyltransferase that catalyzes the first committed reaction of phytoalexin biosynthesis. Deacetylvindoline 4-O-acetyltransferase EC:2.3.1.107 catalyzes the last step in vindoline biosynthesis is also a member of this family. The motif HXXXD is probably part of the active site. The family also includes trichothecene 3-O-acetyltransferase. 434 -280597 pfam02459 Adeno_terminal Adenoviral DNA terminal protein. This protein is covalently attached to the terminii of replicating DNA in vivo. 543 -308203 pfam02460 Patched Patched family. The transmembrane protein Patched is a receptor for the morphogene Sonic Hedgehog. This protein associates with the smoothened protein to transduce hedgehog signals. 793 -308204 pfam02461 AMO Ammonia monooxygenase. Ammonia monooxygenase plays a key role in the nitrogen cycle and degrades a wide range of hydrocarbons and halogenated hydrocarbons. 235 -308205 pfam02462 Opacity Opacity family porin protein. Pathogenic Neisseria spp. possess a repertoire of phase-variable Opacity proteins that mediate various pathogen--host cell interactions. These proteins are integral membrane proteins related to other porins. 126 -308206 pfam02463 SMC_N RecF/RecN/SMC N terminal domain. This domain is found at the N-terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. 1162 -334938 pfam02464 CinA Competence-damaged protein. CinA is the first gene in the competence-inducible (cin) operon, and is thought to be specifically required at some stage in the process of transformation. This Pfam family consists of putative competence-damaged proteins from the cin operon. Some members of this family have nicotinamide mononucleotide (NMN) deamidase activity. 155 -334939 pfam02465 FliD_N Flagellar hook-associated protein 2 N-terminus. The flagellar hook-associated protein 2 (HAP2 or FliD) forms the distal end of the flagella, and plays a role in mucin specific adhesion of the bacteria. This alignment covers the N-terminal region of this family of proteins. 97 -334940 pfam02466 Tim17 Tim17/Tim22/Tim23/Pmp24 family. The pre-protein translocase of the mitochondrial outer membrane (Tom) allows the import of pre-proteins from the cytoplasm. Tom forms a complex with a number of proteins, including Tim17. Tim17 and Tim23 are thought to form the translocation channel of the inner membrane. This family includes Tim17, Tim22 and Tim23. This family also includes Pmp24 a peroxisomal protein. The involvement of this domain in the targeting of PMP24 remains to be proved. PMP24 was known as Pmp27 in. 104 -308210 pfam02467 Whib Transcription factor WhiB. WhiB is a putative transcription factor in Actinobacteria, required for differentiation and sporulation. 65 -280606 pfam02468 PsbN Photosystem II reaction centre N protein (psbN). This is a family of small proteins encoded on the chloroplast genome. psbN is involved in photosystem II during photosynthesis, but its exact role is unknown. 43 -308211 pfam02469 Fasciclin Fasciclin domain. This extracellular domain is found repeated four times in grasshopper fasciclin I as well as in proteins from mammals, sea urchins, plants, yeast and bacteria. 123 -308212 pfam02470 MlaD MlaD protein. This family of proteins contains MlaD, which is a component of the Mla pathway, an ABC transport system that functions to maintain the asymmetry of the outer membrane. The family also contains the mce (mammalian cell entry) proteins from Mycobacterium tuberculosis. The archetype (Rv0169), was isolated as being necessary for colonisation of, and survival within, the macrophage. This family contains proteins of unknown function from other bacteria. 81 -280609 pfam02471 OspE Borrelia outer surface protein E. This is a family of outer surface proteins (Osp) from the Borrelia spirochete. The family includes OspE, and OspEF-related proteins (Erp). These proteins are coded for on different circular plasmids in the Borrelia genome. 107 -308213 pfam02472 ExbD Biopolymer transport protein ExbD/TolR. This group of proteins are membrane bound transport proteins essential for ferric ion uptake in bacteria. The Pfam family consists of ExbD, and TolR which are involved in TonB-dependent transport of various receptor bound substrates including colicins. 128 -280611 pfam02474 NodA Nodulation protein A (NodA). Rhizobia nodulation (nod) genes control the biosynthesis of Nod factors required for infection and nodulation of their legume hosts. Nodulation protein A (NodA) is a N-acetyltransferase involved in production of Nod factors that stimulate mitosis in various plant protoplasts. 195 -280612 pfam02475 Met_10 Met-10+ like-protein. The methionine-10 mutant allele of N. crassa codes for a protein of unknown function. However, homologous proteins have been found in yeast, suggesting this protein may be involved in methionine biosynthesis, transport and/or utilisation. 198 -280613 pfam02476 US2 US2 family. This is a family of unique short (US) region proteins from the herpesvirus strain. The US2 family have no known function. 124 -280614 pfam02477 Nairo_nucleo Nucleocapsid N protein. The nucleoprotein of the ssRNA negative-strand Nairovirus is an internal part of the virus particle. 443 -280615 pfam02478 Pneumo_phosprot Pneumovirus phosphoprotein. This family represents the phosphoprotein of Paramyxoviridae, a putative RNA polymerase alpha subunit that may function in template binding. 286 -280616 pfam02479 Herpes_IE68 Herpesvirus immediate early protein. This regulatory protein is expressed from an immediate early gene in the cell cycle of herpesvirus. The protein is known by various names including IE-68, US1, ICP22 and IR4. 132 -280617 pfam02480 Herpes_gE Alphaherpesvirus glycoprotein E. Glycoprotein E (gE) of Alphaherpesvirus forms a complex with glycoprotein I (gI) (pfam01688), functioning as an immunoglobulin G (IgG) Fc binding protein. gE is involved in virus spread but is not essential for propagation. 432 -308214 pfam02481 DNA_processg_A DNA recombination-mediator protein A. The SMF family, of DNA processing chain A, dprA, are a group of bacterial proteins. In H. pylori, dprA is required for natural chromosomal and plasmid transformation. It has now been shown that DprA is found to bind cooperatively to single-stranded DNA (ssDNA) and to interact with RecA. In the process, DprA-RecA-ssDNA filaments are produced and these filaments catalyze the homology-dependent formation of joint molecules. While the E.coli SSB protein limits access of RecA to ssDNA, DprA alleviates this barrier. It is proposed that DprA is a new member of the recombination-mediator protein family, dedicated to natural bacterial transformation. 210 -334941 pfam02482 Ribosomal_S30AE Sigma 54 modulation protein / S30EA ribosomal protein. This Pfam family contains the sigma-54 modulation protein family and the S30AE family of ribosomal proteins which includes the light- repressed protein (lrtA). 91 -280620 pfam02484 Rhabdo_NV Rhabdovirus Non-virion protein. Infectious hematopoietic necrosis virus (IHNV) is a member of the family Rhabdoviridae. The non-virion protein (NV) is coded for by one of the six genes of the IHNV genome, but is absent in vesiculovirus -like rhabdovirus. 111 -334942 pfam02485 Branch Core-2/I-Branching enzyme. This is a family of two different beta-1,6-N-acetylglucosaminyltransferase enzymes, I-branching enzyme and core-2 branching enzyme. I-branching enzyme is responsible for the production of the blood group I-antigen during embryonic development. Core-2 branching enzyme forms crucial side-chain branches in O-glycans. This is a fmmily of glycosyl-transferases that are Type II membrane proteins that are found in the endoplasmic reticulum (ER) and Golgi apparatus. 249 -334943 pfam02486 Rep_trans Replication initiation factor. Plasmid replication is initiated by the replication initiation factor (REP). This family represents a probable topoisomerase that makes a sequence-specific single-stranded nick in the plasmid DNA at the origin of replication. Human proteins also belong to this family, including myelin transcription factor 2 and cerebrin-50. 199 -334944 pfam02487 CLN3 CLN3 protein. This is a family of proteins from the CLN3 gene. A mis-sense mutation of glutamic acid (E) to lysine (K) at position 295 in the human protein has been implicated in Juvenile neuronal ceroid lipofuscinosis (Batten disease). Batten disease is characterized by the accumulation of autofluorescent material in the lysosomes of most cells. Members of this family are transmembrane proteins functional in pre-vacuolar compartments. The protein in Sch.pombe is found to be localized to the vacuolar membrane, and a lack of functional protein clearly affects the size and pH of the vacuole. Thus the protein is necessary for vacuolar homeostasis. It is important for localization of late endosomal/lysosomal compartments, and it interacts with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. 339 -280624 pfam02488 EMA Merozoite Antigen. This family represents the immunodominant surface antigen of Theileria parasites including equi merozoite antigen-1 (EMA-1) and equi merozoite antigen-2 (EMA-2). The protein shows variation at a putative glycosylation site, a potential mechanism for host immune response evasion. 250 -334945 pfam02489 Herpes_glycop_H Herpesvirus glycoprotein H main domain. Herpesvirus glycoprotein H (gH) is a virion associated envelope glycoprotein. Complex formation between gH and gL has been demonstrated in both virions and infected cells. 498 -334946 pfam02491 SHS2_FTSA SHS2 domain inserted in FTSA. FtsA is essential for bacterial cell division, and co-localizes to the septal ring with FtsZ. The SHS2 domain is inserted in to the RNAseH fold of FtsA, and is involved in protein-protein interaction. 77 -280627 pfam02492 cobW CobW/HypB/UreG, nucleotide-binding domain. This domain is found in HypB, a hydrogenase expression / formation protein, and UreG a urease accessory protein. Both these proteins contain a P-loop nucleotide binding motif. HypB has GTPase activity and is a guanine nucleotide binding protein. It is not known whether UreG binds GTP or some other nucleotide. Both enzymes are involved in nickel binding. HypB can store nickel and is required for nickel dependent hydrogenase expression. UreG is required for functional incorporation of the urease nickel metallocenter. GTP hydrolysis may required by these proteins for nickel incorporation into other nickel proteins. This family of domains also contains P47K, a Pseudomonas chlororaphis protein needed for nitrile hydratase expression, and the cobW gene product, which may be involved in cobalamin biosynthesis in Pseudomonas denitrificans. 179 -308220 pfam02493 MORN MORN repeat. The MORN (Membrane Occupation and Recognition Nexus) repeat is found in multiple copies in several proteins including junctophilins (see Takeshima et al. Mol. Cell 2000;6:11-22). A MORN-repeat protein has been identified in the parasite Toxoplasma gondiis a dynamic component of cell division apparatus in Toxoplasma gondii. It has been hypothesized to functions as a linker protein between certain membrane regions and the parasite's cytoskeleton. 23 -280629 pfam02494 HYR HYR domain. This domain is known as the HYR (Hyalin Repeat) domain, after the protein hyalin that is composed exclusively of this repeat. This domain probably corresponds to a new superfamily in the immunoglobulin fold. The function of this domain is uncertain it may be involved in cell adhesion. 81 -308221 pfam02495 7kD_coat 7kD viral coat protein. This family consists of a 7kD coat protein from carlavirus and potexvirus. 59 -308222 pfam02496 ABA_WDS ABA/WDS induced protein. This is a family of plant proteins induced by water deficit stress (WDS), or abscisic acid (ABA) stress and ripening. 78 -111400 pfam02497 Arteri_GP4 Arterivirus glycoprotein. This is a family of structural glycoproteins from arterivirus that corresponds to open reading frame 4 (ORF4) of the virus. 178 -334947 pfam02498 Bro-N BRO family, N-terminal domain. This family includes the N-terminus of baculovirus BRO and ALI motif proteins. The function of BRO proteins is unknown. It has been suggested that BRO-A and BRO-C are DNA binding proteins that influence host DNA replication and/or transcription. This Pfam domain does not include the characteristic invariant alanine, leucine, isoleucine motif of the ALI proteins. 96 -280633 pfam02499 DNA_pack_C Probable DNA packing protein, C-terminus. This family includes proteins that are probably involved in DNA packing in herpesvirus. This domain is found at the C-terminus of the protein. 348 -280634 pfam02500 DNA_pack_N Probable DNA packing protein, N-terminus. This family includes proteins that are probably involved in DNA packing in herpesvirus. This domain is normally found at the N-terminus of the protein. 277 -334948 pfam02501 T2SSI Type II secretion system (T2SS), protein I. The Type II secretion system, also called Secretion-dependent pathway (SDP), is responsible for the transport of proteins across the outer membrane first exported to the periplasm by the Sec or Tat translocon in Gram-negative (diderm) bacteria. As members of the T2SJ family, members of the T2SI family are pseudopilins containing prepilin signal sequences. 78 -334949 pfam02502 LacAB_rpiB Ribose/Galactose Isomerase. This family of proteins contains the sugar isomerase enzymes ribose 5-phosphate isomerase B (rpiB), galactose isomerase subunit A (LacA) and galactose isomerase subunit B (LacB). 134 -334950 pfam02503 PP_kinase Polyphosphate kinase middle domain. Polyphosphate kinase (Ppk) catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate molecules. 196 -308227 pfam02504 FA_synthesis Fatty acid synthesis protein. The plsX gene is part of the bacterial fab gene cluster which encodes several key fatty acid biosynthetic enzymes. The exact function of the plsX protein in fatty acid synthesis is unknown. 322 -308228 pfam02505 MCR_D Methyl-coenzyme M reductase operon protein D. Methyl coenzyme M reductase (MCR) catalyzes the final step in methanogenesis. MCR is composed of three subunits, alpha (pfam02249), beta (pfam02241) and gamma (pfam02240). Genes encoding the beta (mcrB) and gamma (mcrG) subunits are separated by two open reading frames coding for two proteins C and D. The function of proteins C and D (this family) is unknown. 142 -308229 pfam02507 PSI_PsaF Photosystem I reaction centre subunit III. Photosystem I (PSI) is an integral membrane protein complex that uses light energy to mediate electron transfer from plastocyanin to ferredoxin. Subunit III (or PSI-F) is one of at least 14 different subunits that compose the PSI complex. 168 -334951 pfam02508 Rnf-Nqr Rnf-Nqr subunit, membrane protein. This is a family of integral membrane proteins including Rhodobacter-specific nitrogen fixation (rnf) proteins RnfA and RnfE and Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) subunits NqrD and NqrE. 180 -280642 pfam02509 Rota_NS35 Rotavirus non-structural protein 35. Rotavirus non-structural protein 35 (NS35) is a basic protein which possesses RNA-binding activity and is essential for genome replication. 317 -280643 pfam02510 SPAN Surface presentation of antigens protein. Surface presentation of antigens protein (SPAN), also know as invasion protein invJ, is a Salmonella secretory pathway protein involved in presentation of determinants required for mammalian host cell invasion. 336 -334952 pfam02511 Thy1 Thymidylate synthase complementing protein. Thymidylate synthase complementing protein (Thy1) complements the thymidine growth requirement of the organisms in which it is found, but shows no homology to thymidylate synthase. The bacterial members of this family at least are flavin-dependent thymidylate synthases. 185 -280645 pfam02512 UK Virulence determinant. The UK protein is an African swine fever virus (ASFV) protein that is highly conserved amongst strains, and is an important viral virulence determinant for domestic pigs. 96 -334953 pfam02513 Spin-Ssty Spin/Ssty Family. Spindlin (Spin) is a novel maternal transcript present in the unfertilized egg and early embryo. The Y-linked spermiogenesis -specific transcript (Ssty) is also expressed during gametogenesis and forms part of this Pfam family. Members of this family contain three copies of this 50 residue repeat. The repeat is predicted to contain four beta strands. 49 -308233 pfam02514 CobN-Mg_chel CobN/Magnesium Chelatase. This family contains a domain common to the cobN protein and to magnesium protoporphyrin chelatase. CobN is implicated in the conversion of hydrogenobyrinic acid a,c-diamide to cobyrinic acid. Magnesium protoporphyrin chelatase is involved in chlorophyll biosynthesis. 1040 -308234 pfam02515 CoA_transf_3 CoA-transferase family III. CoA-transferases are found in organisms from all lines of descent. Most of these enzymes belong to two well-known enzyme families, but recent work on unusual biochemical pathways of anaerobic bacteria has revealed the existence of a third family of CoA-transferases. The members of this enzyme family differ in sequence and reaction mechanism from CoA-transferases of the other families. Currently known enzymes of the new family are a formyl-CoA: oxalate CoA-transferase, a succinyl-CoA: (R)-benzylsuccinate CoA-transferase, an (E)-cinnamoyl-CoA: (R)-phenyllactate CoA-transferase, and a butyrobetainyl-CoA: (R)-carnitine CoA-transferase. In addition, a large number of proteins of unknown or differently annotated function from Bacteria, Archaea and Eukarya apparently belong to this enzyme family. Properties and reaction mechanisms of the CoA-transferases of family III are described and compared to those of the previously known CoA-transferases. 368 -280649 pfam02516 STT3 Oligosaccharyl transferase STT3 subunit. This family consists of the oligosaccharyl transferase STT3 subunit and related proteins. The STT3 subunit is part of the oligosaccharyl transferase (OTase) complex of proteins and is required for its activity. In eukaryotes, OTase transfers a lipid-linked core-oligosaccharide to selected asparagine residues in the ER. In the archaea STT3 occurs alone, rather than in an OTase complex, and is required for N-glycosylation of asparagines. 478 -334954 pfam02517 Abi CAAX protease self-immunity. Members of this family are probably proteases (after a isoprenyl group is attached to the Cys residue in the C-terminal CAAX motif of a protein to attach it to the membrane, the AAX tripeptide being removed by one of the CAAX prenyl proteases). The family contains the CAAX prenyl protease. The proteins contain a highly conserved Glu-Glu motif at the amino end of the alignment. The alignment also contains two histidine residues that may be involved in zinc binding. While they are involved in membrane anchoring of proteins in eukaryotes, little is known about their function in prokaryotes. In some known bacteriocin loci, Abi genes have been found downstream of bacteriocin structural genes where they are probably involved in self-immunity. Investigation of the bacteriocin-like loci in the Gram positive bacteria locus from Lactobacillus sakei 23K confirmed that the bacteriocin-like genes (sak23Kalphabeta) exhibited antimicrobial activity when expressed in a heterologous host and that the associated Abi gene (sak23Ki) conferred immunity against the cognate bacteriocin. Interestingly, the immunity genes from three similar systems conferred a high degree of cross-immunity against each other's bacteriocins, suggesting the recognition of a common receptor. Site-directed mutagenesis demonstrated that the conserved motifs constituting the putative proteolytic active site of the Abi proteins are essential for the immunity function of Sak23Ki - thus a new concept in self-immunity. 78 -334955 pfam02518 HATPase_c Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase. This family represents the structurally related ATPase domains of histidine kinase, DNA gyrase B and HSP90. 110 -334956 pfam02519 Auxin_inducible Auxin responsive protein. This family consists of the protein products of the ARG7 auxin responsive genes family none of which have any identified functional role. 96 -308238 pfam02520 DUF148 Domain of unknown function DUF148. This domain has no known function nor do any of the proteins that possess it. In one member of this family the aligned region is repeated twice. 106 -334957 pfam02521 HP_OMP_2 Putative outer membrane protein. This family consists of putative outer membrane proteins from Helicobacter pylori (campylobacter pylori). 442 -334958 pfam02522 Antibiotic_NAT Aminoglycoside 3-N-acetyltransferase. This family consists of bacterial aminoglycoside 3-N-acetyltransferases EC:2.3.1.81, these catalyze the reaction: Acetyl-Co + a 2-deoxystreptamine antibiotic <=> CoA + N3'-acetyl-2-deoxystreptamine antibiotic. The enzyme can use a range of antibiotics with 2-deoxystreptamine rings as acceptor for its acetyltransferase activity, this inactivates and confers resistance to gentamicin, kanamycin, tobramycin, neomycin and apramycin amongst others. 228 -280656 pfam02524 KID KID repeat. This is family contains the KID repeat as found in Borrelia spirochete RepA / Rep+ proteins. The function of these proteins is unknown. RepA and related Borrelia proteins have been suggested to play an important genus-wide role in the biology of the Borrelia. 11 -334959 pfam02525 Flavodoxin_2 Flavodoxin-like fold. This family consists of a domain with a flavodoxin-like fold. The family includes bacterial and eukaryotic NAD(P)H dehydrogenase (quinone) EC:1.6.99.2. These enzymes catalyze the NAD(P)H-dependent two-electron reductions of quinones and protect cells against damage by free radicals and reactive oxygen species. This enzyme uses a FAD co-factor. The equation for this reaction is:- NAD(P)H + acceptor <=> NAD(P)(+) + reduced acceptor. This enzyme is also involved in the bioactivation of prodrugs used in chemotherapy. The family also includes acyl carrier protein phosphodiesterase EC:3.1.4.14. This enzyme converts holo-ACP to apo-ACP by hydrolytic cleavage of the phosphopantetheine residue from ACP. This family is related to pfam03358 and pfam00258. 188 -280658 pfam02526 GBP_repeat Glycophorin-binding protein. This family contains glycophorin binding proteins from P. falciparum the malarial parasite. Glycophorin is a cell surface protein of erythrocytes. The Glycophorin binding protein contains a tandem 38 residue repeat. In Plasmodium falciparum GBP the repeat occurs 11 times. 38 -280659 pfam02527 GidB rRNA small subunit methyltransferase G. This is a family of bacterial glucose inhibited division proteins these are probably involved in the regulation of cell devision. GidB has been shown to be a methyltransferase G specific to the rRNA small subunit. Previously identified as a glucose-inhibited division protein B that appears to be present and in a single copy in all complete eubacterial genomes so far sequenced. GidB specifically methylates the N7 position of a guanosine in 16S rRNA. 184 -308242 pfam02529 PetG Cytochrome B6-F complex subunit 5. This family consists of cytochrome B6-F complex subunit 5 (PetG). The cytochrome bf complex found in green plants, eukaryotic algae and cyanobacteria, connects photosystem I to photosystem II in the electron transport chain, functioning as a plastoquinol:plastocyanin/cytochrome c6 oxidoreductase. PetG or subunit 5 is associated with the bf complex and the absence of PetG affects either the assembly or stability of the cytochrome bf complex in Chlamydomonas reinhardtii. 36 -308243 pfam02530 Porin_2 Porin subfamily. This family consists of porins from the alpha subdivision of Proteobacteria the members of this family are related to pfam00267. The porins form large aqueous channels in the cell membrane allowing the selective entry of hydrophilic compounds this so called 'molecular sieve' is found in the cell walls of gram negative bacteria. 355 -308244 pfam02531 PsaD PsaD. This family consists of PsaD from plants and cyanobacteria. PsaD is an extrinsic polypeptide of photosystem I (PSI) and is required for native assembly of PSI reaction clusters and is implicated in the electrostatic binding of ferredoxin within the reaction centre. PsaD forms a dimer in solution which is bound by PsaE however PsaD is monomeric in its native complexed PSI environment. 134 -308245 pfam02532 PsbI Photosystem II reaction centre I protein (PSII 4.8 kDa protein). This family consists of various Photosystem II (PSII) reaction centre I proteins or PSII 4.8 kDa proteins, PsbI, from the chloroplast genome of many plants and Cyanobacteria. PsbI is a small, integral membrane component of PSII the role of which is not clear. Synechocystis mutants lacking PsbI have 20-30% loss of PSII activity however the PSII complex is not destabilized. 36 -308246 pfam02533 PsbK Photosystem II 4 kDa reaction centre component. This family consists of various photosystem II 4 kDa reaction centre components (PsbK) from plant and Cyanobacteria. The photosystem II reaction centre is responsible for catalyzing the core photosynthesis reaction the light-induced splitting of water and the consequential release of dioxygen. In C. reinhardtii the psbK product is required for the stable assembly and/or stability of the photosystem II complex. 41 -308247 pfam02534 T4SS-DNA_transf Type IV secretory system Conjugative DNA transfer. These proteins contain a P-loop and walker-B site for nucleotide binding. TraG is essential for DNA transfer in bacterial conjugation. These proteins are thought to mediate interactions between the DNA-processing (Dtr) and the mating pair formation (Mpf) systems. The C-terminus of this domain interacts with the relaxosome component TraM via the latter's tetramerisation domain. TraD is a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. The family contains a number of different DNA transfer proteins. 467 -308248 pfam02535 Zip ZIP Zinc transporter. The ZIP family consists of zinc transport proteins and many putative metal transporters. The main contribution to this family is from the Arabidopsis thaliana ZIP protein family these proteins are responsible for zinc uptake in the plant. Also found within this family are C. elegans proteins of unknown function which are annotated as being similar to human growth arrest inducible gene product, although this protein in not found within this family. 325 -334960 pfam02536 mTERF mTERF. This family contains one sequence of known function Human mitochondrial transcription termination factor (mTERF) the rest of the family consists of hypothetical proteins none of which have any functional information. mTERF is a multizipper protein possessing three putative leucine zippers one of which is bipartite. The protein binds DNA as a monomer. The leucine zippers are not implicated in a dimerization role as in other leucine zippers. 308 -334961 pfam02537 CRCB CrcB-like protein, Camphor Resistance (CrcB). CRCB is a family of bacterial integral membrane proteins with four TMs.. Over expression in E. coli also leads to camphor resistance. 110 -334962 pfam02538 Hydantoinase_B Hydantoinase B/oxoprolinase. This family includes N-methylhydaintoinase B which converts hydantoin to N-carbamyl-amino acids, and 5-oxoprolinase EC:3.5.2.9 which catalyzes the formation of L-glutamate from 5-oxo-L-proline. These enzymes are part of the oxoprolinase family and are related to pfam01968. 515 -280670 pfam02540 NAD_synthase NAD synthase. NAD synthase (EC:6.3.5.1) is involved in the de novo synthesis of NAD and is induced by stress factors such as heat shock and glucose limitation. 241 -280671 pfam02541 Ppx-GppA Ppx/GppA phosphatase family. This family consists of the N-terminal region of exopolyphosphatase (Ppx) EC:3.6.1.11 and guanosine pentaphosphate phospho-hydrolase (GppA) EC:3.6.1.40. 285 -334963 pfam02542 YgbB YgbB family. The ygbB protein is a putative enzyme of deoxy-xylulose pathway (terpenoid biosynthesis). 155 -280673 pfam02543 Carbam_trans_N Carbamoyltransferase N-terminus. This domain is found in NodU from Rhizobium, CmcH from Nocardia lactamdurans and the bifunctional carbamoyltransferase TobZ from Streptoalloteichus tenebrarius. NodU a Rhizobium nodulation protein involved in the synthesis of nodulation factors has 6-O-carbamoyltransferase-like activity. CmcH is involved in cephamycin (antibiotic) biosynthesis and has 3-hydroxymethylcephem carbamoyltransferase activity, EC:2.1.3.7 catalyzing the reaction: Carbamoyl phosphate + 3-hydroxymethylceph-3-EM-4-carboxylate <=> phosphate + 3-carbamoyloxymethylcephem. TobZ functions as an ATP carbamoyltransferase and tobramycin carbamoyltransferase. These proteins contain two domains, this is the larger, N-terminal, domain. 336 -251363 pfam02544 Steroid_dh 3-oxo-5-alpha-steroid 4-dehydrogenase. This family consists of 3-oxo-5-alpha-steroid 4-dehydrogenases, EC:1.3.99.5 Also known as Steroid 5-alpha-reductase, the reaction catalyzed by this enzyme is: 3-oxo-5-alpha-steroid + acceptor <=> 3-oxo-delta(4)-steroid + reduced acceptor. The Steroid 5-alpha-reductase enzyme is responsible for the formation of dihydrotestosterone, this hormone promotes the differentiation of male external genitalia and the prostate during fetal development. In humans mutations in this enzyme can cause a form of male pseudohermaphorditism in which the external genitalia and prostate fail to develop normally. A related enzyme is also found in plants is DET2, a steroid reductase from Arabidopsis. Mutations in this enzyme cause defects in light-regulated development. 150 -334964 pfam02545 Maf Maf-like protein. Maf is a putative inhibitor of septum formation in eukaryotes, bacteria, and archaea. 178 -334965 pfam02547 Queuosine_synth Queuosine biosynthesis protein. Queuosine (Q) biosynthesis protein, or S-adenosylmethionine:tRNA -ribosyltransferase-isomerase, is required for the synthesis of the queuosine precursor (oQ). It catalyzes the transfer and isomerisation of the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to form epoxyqueuosine (oQ-tRNA). Q is a hypermodified nucleoside usually found at the first position of the anticodon of asparagine, aspartate, histidine, and tyrosine tRNAs. In Streptococcus gordonii, QueA has been shown to play a role in the regulation of arginine deiminase genes. 271 -334966 pfam02548 Pantoate_transf Ketopantoate hydroxymethyltransferase. Ketopantoate hydroxymethyltransferase (EC:2.1.2.11) is the first enzyme in the pantothenate biosynthesis pathway. 259 -251367 pfam02550 AcetylCoA_hydro Acetyl-CoA hydrolase/transferase N-terminal domain. This family contains several enzymes which take part in pathways involving acetyl-CoA. Acetyl-CoA hydrolase EC:3.1.2.1 catalyzes the formation of acetate from acetyl-CoA, CoA transferase (CAT1) EC:2.8.3.- produces succinyl-CoA, and acetate-CoA transferase EC:2.8.3.8 utilizes acyl-CoA and acetate to form acetyl-CoA. 198 -308256 pfam02551 Acyl_CoA_thio Acyl-CoA thioesterase. This family represents the thioesterase II domain. Two copies of this domain are found in a number of acyl-CoA thioesterases. 132 -251369 pfam02552 CO_dh CO dehydrogenase beta subunit/acetyl-CoA synthase epsilon subunit. This family consists of Carbon monoxide dehydrogenase I/II beta subunit EC:1.2.99.2 and acetyl-CoA synthase epsilon subunit. Carbon monoxide beta subunit catalyzes the reaction: CO + H2O + acceptor <=> CO2 + reduced acceptor. 168 -308257 pfam02553 CbiN Cobalt transport protein component CbiN. CbiN is part of the active cobalt transport system involved in uptake of cobalt in to the cell involved with cobalamin biosynthesis (vitamin B12). It has been suggested that CbiN may function as the periplasmic binding protein component of the active cobalt transport system. 63 -308258 pfam02554 CstA Carbon starvation protein CstA. This family consists of Carbon starvation protein CstA a predicted membrane protein. It has been suggested that CstA is involved in peptide utilisation. 377 -334967 pfam02556 SecB Preprotein translocase subunit SecB. This family consists of preprotein translocase subunit SecB. SecB is required for the normal export of envelope proteins out of the cell cytoplasm. 140 -308260 pfam02557 VanY D-alanyl-D-alanine carboxypeptidase. 130 -308261 pfam02558 ApbA Ketopantoate reductase PanE/ApbA. This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalyzed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyzes the NADPH reduction of ketopantoic acid to pantoic acid in the alternative pyrimidine biosynthetic (APB) pathway. ApbA and PanE are allelic. ApbA, the ketopantoate reductase enzyme is required for the synthesis of thiamine via the APB biosynthetic pathway. 150 -334968 pfam02559 CarD_CdnL_TRCF CarD-like/TRCF domain. CarD is a Myxococcus xanthus protein required for the activation of light- and starvation-inducible genes. This family includes the presumed N-terminal domain, CdnL. CarD interacts with the zinc-binding protein CarG to form a complex that regulates multiple processes in Myxococcus xanthus. This family also includes a domain to the N-terminal side of the DEAD helicase of TRCF (transcription-repair-coupling factor) proteins. TRCF displaces RNA polymerase stalled at a lesion, binds to the damage recognition protein UvrA, and increases the template strand repair rate during transcription. This domain is involved in binding to the stalled RNA polymerase. The family includes members otherwise referred to as CdnL, for CarD N-terminal like, whichdiffer functionally from CarD. The TRCF domain mentioned above is the RNA polymerase-interacting domain or RID. 89 -334969 pfam02560 Cyanate_lyase Cyanate lyase C-terminal domain. Cyanate lyase (also known as cyanase) EC:4.2.1.104 is responsible for the hydrolysis of cyanate, allowing organisms that possess the enzyme to overcome the toxicity of environmental cyanate. This enzyme is composed of two domains, an N-terminal helix-turn-helix and this structurally unique C-terminal domain. 65 -334970 pfam02561 FliS Flagellar protein FliS. FliS is coded for by the FliD operon and is transcribed in conjunction with FliD and FliT, however this protein has no known function. 114 -334971 pfam02562 PhoH PhoH-like protein. PhoH is a cytoplasmic protein and predicted ATPase that is induced by phosphate starvation. 205 -334972 pfam02563 Poly_export Polysaccharide biosynthesis/export protein. This is a family of periplasmic proteins involved in polysaccharide biosynthesis and/or export. 74 -308267 pfam02565 RecO_C Recombination protein O C terminal. Recombination protein O (RecO) is involved in DNA repair and pfam00470 pathway recombination. 156 -308268 pfam02566 OsmC OsmC-like protein. Osmotically inducible protein C (OsmC) is a stress -induced protein found in E. Coli. This family also contains a organic hydroperoxide detoxification protein that has a novel pattern of oxidative stress regulation. 99 -334973 pfam02567 PhzC-PhzF Phenazine biosynthesis-like protein. PhzC/PhzF is involved in dimerization of two 2,3-dihydro-3-oxo-anthranilic acid molecules to create PCA by P. fluorescens. This family also contains uncharacterized Mycobacterial proteins, though there is no significant sequence similarity to pfam00303 members. This family appears to be distantly related to pfam01678, including containing a weak internal duplication. However members of this family do not contain the conserved cysteines that are hypothesized to be active site residues (Bateman A pers obs). 280 -280691 pfam02568 ThiI Thiamine biosynthesis protein (ThiI). ThiI is required for thiazole synthesis, required for thiamine biosynthesis. 197 -334974 pfam02569 Pantoate_ligase Pantoate-beta-alanine ligase. Pantoate-beta-alanine ligase, also know as pantothenate synthase, (EC:6.3.2.1) catalyzes the formation of pantothenate from pantoate and alanine. 267 -334975 pfam02570 CbiC Precorrin-8X methylmutase. This is a family Precorrin-8X methylmutases also known as Precorrin isomerase, CbiC/CobH, EC:5.4.1.2. This enzyme catalyzes the reaction: Precorrin-8X <=> hydrogenobyrinate. This enzyme is part of the Cobalamin (vitamin B12) biosynthetic pathway and catalyzes a methyl rearrangement. 195 -334976 pfam02571 CbiJ Precorrin-6x reductase CbiJ/CobK. This family consists of Precorrin-6x reductase EC:1.3.1.54. This enzyme catalyzes the reaction: precorrin-6Y + NADP(+) <=> precorrin-6X + NADPH. CbiJ and CobK both catalyze the reduction of macocycle in the colbalmin biosynthesis pathway. 248 -334977 pfam02572 CobA_CobO_BtuR ATP:corrinoid adenosyltransferase BtuR/CobO/CobP. This family consists of the BtuR, CobO, CobP proteins all of which are Cob(I)alamin adenosyltransferase, EC:2.5.1.17, involved in cobalamin (vitamin B12) biosynthesis. These enzymes catalyze the adenosylation reaction: ATP + cob(I)alamin + H2O <=> phosphate + diphosphate + adenosylcobalamin. 167 -334978 pfam02574 S-methyl_trans Homocysteine S-methyltransferase. This is a family of related homocysteine S-methyltransferases enzymes: 5-methyltetrahydrofolate--homocysteine S-methyltransferases also known EC:2.1.1.13; Betaine--homocysteine S-methyltransferase (vitamin B12 dependent), EC:2.1.1.5; and Homocysteine S-methyltransferase, EC:2.1.1.10,. 278 -334979 pfam02575 YbaB_DNA_bd YbaB/EbfC DNA-binding family. This is a family of DNA-binding proteins. Members of this family form homodimers which bind DNA via a tweezer-like structure. The conformation of the DNA is changed when bound to these proteins. In bacteria, these proteins may play a role in DNA replication-recovery following DNA damage. 89 -334980 pfam02576 DUF150 RimP N-terminal domain. This family represents the N-terminal domain from RimP. 73 -334981 pfam02577 DNase-RNase Bifunctional nuclease. This family is a bifunctional nuclease, with both DNase and RNase activity. It forms a wedge-shaped dimer, with each monomer being triangular in shape. A large groove at the thick end of the wedge contains a possible active site. 126 -334982 pfam02578 Cu-oxidase_4 Multi-copper polyphenol oxidoreductase laccase. Laccases are multi-copper oxidoreductases able to oxidize a wide variety of phenolic and non-phenolic compounds and are widely distributed among both prokaryotes and eukaryotes. There are two main active catalytic sites with conserved histidines that are capable of binding four copper atoms. 218 -308277 pfam02579 Nitro_FeMo-Co Dinitrogenase iron-molybdenum cofactor. This family contains several NIF (B, Y and X) proteins which are iron-molybdenum cofactors (FeMo-co) in the dinitrogenase enzyme which catalyzes the reduction of dinitrogen to ammonium. Dinitrogenase is a hetero-tetrameric (alpha(2)beta(2)) enzyme which contains the iron-molybdenum cofactor (FeMo-co) at its active site. 93 -334983 pfam02580 Tyr_Deacylase D-Tyr-tRNA(Tyr) deacylase. This family comprises of several D-Tyr-tRNA(Tyr) deacylase proteins. Cell growth inhibition by several d-amino acids can be explained by an in vivo production of d-aminoacyl-tRNA molecules. Escherichia coli and yeast cells express an enzyme, d-Tyr-tRNA(Tyr) deacylase, capable of recycling such d-aminoacyl-tRNA molecules into free tRNA and d-amino acid. Accordingly, upon inactivation of the genes of the above deacylases, the toxicity of d-amino acids increases. Orthologues of the deacylase are found in many cells. 143 -280703 pfam02581 TMP-TENI Thiamine monophosphate synthase. Thiamine monophosphate synthase (TMP) (EC:2.5.1.3) catalyzes the substitution of the pyrophosphate of 2-methyl-4-amino-5- hydroxymethylpyrimidine pyrophosphate by 4-methyl-5- (beta-hydroxyethyl)thiazole phosphate to yield thiamine phosphate. This Pfam family also includes the regulatory protein TENI, a protein from Bacillus subtilis that regulates the production of several extracellular enzymes by reducing alkaline protease production. While TenI shows high sequence similarity with thiamin phosphate synthase, the purified protein has no thiamin phosphate synthase activity. Instead, it is a thiazole tautomerase. 180 -334984 pfam02582 DUF155 Uncharacterized ACR, YagE family COG1723. 174 -334985 pfam02583 Trns_repr_metal Metal-sensitive transcriptional repressor. This is a family of metal-sensitive repressors, involved in resistance to metal ions. Members of this family bind copper, nickel or cobalt ions via conserved cysteine and histidine residues. In the absence of metal ions, these proteins bind to promoter regions and repress transcription. When bound to metal ions they are unable to bind DNA, leading to transcriptional derepression. 78 -308281 pfam02585 PIG-L GlcNAc-PI de-N-acetylase. Members of this family are related to PIG-L an N-acetylglucosaminylphosphatidylinositol de-N-acetylase (EC:3.5.1.89) that catalyzes the second step in GPI biosynthesis. 125 -334986 pfam02586 SRAP SOS response associated peptidase (SRAP). The SRAP family functions as a DNA-associated autoproteolytic switch that recruits diverse repair enzymes onto DNA damage. We propose that the human protein Q96FZ2:UniProtKB, the eukaryotic member of the SRAP family, which has been recently shown to bind specifically to DNA with 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, is a sensor for these oxidized bases generated by the TET (tetrahedral aminopeptidase of the M42 family) enzymes from methylcytosine. Hence, its autoproteolytic activity might help it act as a switch that recruits DNA repair enzymes to remove these oxidized methylcytosine species as part of the DNA demethylation pathway downstream of the TET enzymes. 213 -334987 pfam02588 YitT_membrane Uncharacterized 5xTM membrane BCR, YitT family COG1284. This is probably a bacterial ABC transporter permease (personal obs:Yeats C). 206 -308284 pfam02589 LUD_dom LUD domain. This entry represents a domain found in lactate utilization proteins B (LutB) and C (LutC), as well as several uncharacterized proteins. LutB and LutC are encoded by th conserved LutABC operon in bacteria. They are involved in lactate utilization and is implicated in the oxidative conversion of L-lactate into pyruvate 188 -334988 pfam02590 SPOUT_MTase Predicted SPOUT methyltransferase. This family of proteins are predicted to be SPOUT methyltransferases. 151 -334989 pfam02591 zf-RING_7 C4-type zinc ribbon domain. Zn-ribbon_9 is a Zn-ribbon domain rich in aromatic and positively charged amino acid residues. This C-terminal Zn-ribbon domain consists of two beta-strands acting as a scaffold for the two Zn knuckles. Both pairs of cysteines making up the two Zn knuckles are situated at highly conserved sharp beta-turns, an arrangement that facilitates the tetrahedral coordination of the divalent Zn ion. The two Zn-knuckle cysteine motifs are separated by 20 residues, 9 of which form an alpha-helix (helix 4).Structural modelling suggests this domain may bind nucleic acids. The domain appears to bind flaA-mRNA, thus contributing to flagellum formation and motility. 33 -334990 pfam02592 Vut_1 Putative vitamin uptake transporter. 161 -308288 pfam02593 DUF166 Domain of unknown function. This family catalyzes the synthesis of thymidine monophosphate (dTMP) from deoxyuridine monophosphate (dUMP). The physiological co-substrate has not yet been identified. Previous designation of this famliy as being thymidylate synthase from one paper, PMID:10436953, has been shown to be erroneous. The proteins are uncharacterized. 218 -334991 pfam02594 DUF167 Uncharacterized ACR, YggU family COG1872. 72 -334992 pfam02595 Gly_kinase Glycerate kinase family. This is family of Glycerate kinases. 330 -334993 pfam02596 DUF169 Uncharacterized ArCR, COG2043. 211 -334994 pfam02597 ThiS ThiS family. ThiS (thiaminS) is a 66 aa protein involved in sulphur transfer. ThiS is coded in the thiCEFSGH operon in E. coli. This family of proteins have two conserved Glycines at the COOH terminus. Thiocarboxylate is formed at the last G in the activation process. Sulphur is transferred from ThiI to ThiS in a reaction catalyzed by IscS. MoaD, a protein involved sulphur transfer in molybdopterin synthesis, is about the same length and shows limited sequence similarity to ThiS. Both have the conserved GG at the COOH end. 76 -334995 pfam02598 Methyltrn_RNA_3 Putative RNA methyltransferase. This family has a TIM barrel-like fold with a deep C-terminal trefoil knot. The arrangement of its hydrophilic and hydrophobic surfaces are opposite to that of the classic TIM barrel proteins. It is likely to bind RNA, and may function as a methyltransferase. 288 -334996 pfam02599 CsrA Global regulator protein family. This is a family of global regulator proteins. This protein is a RNA-binding protein and a global regulator of carbohydrate metabolism genes facilitating mRNA decay. In E. coli CsrA binds the CsrB RNA molecule to form the Csr regulatory system which has a strong negative regulatory effect on glycogen biosynthesis, glyconeogenesis and glycogen catabolism and a positive regulatory effect on glycolysis. In other bacteria such as Erwinia caratovara RmsA has been shown to regulate the production of virulence determinants, such extracellular enzymes. RmsA binds to RmsB regulatory RNA. 50 -334997 pfam02600 DsbB Disulfide bond formation protein DsbB. This family consists of disulfide bond formation protein DsbB from bacteria. The DsbB protein oxidizes the periplasmic protein DsbA which in turn oxidizes cysteines in other periplasmic proteins in order to make disulfide bonds. DsbB acts as a redox potential transducer across the cytoplasmic membrane and is an integral membrane protein. DsbB posses six cysteines four of which are necessary for it proper function in vivo. 148 -334998 pfam02601 Exonuc_VII_L Exonuclease VII, large subunit. This family consist of exonuclease VII, large subunit EC:3.1.11.6 This enzyme catalyzes exonucleolytic cleavage in either 5'->3' or 3'->5' direction to yield 5'-phosphomononucleotides. This exonuclease VII enzyme is composed of one large subunit and 4 small ones. 289 -308297 pfam02602 HEM4 Uroporphyrinogen-III synthase HemD. This family consists of uroporphyrinogen-III synthase HemD EC:4.2.1.75 also known as Hydroxymethylbilane hydrolyase (cyclizing) from eukaryotes, bacteria and archaea. This enzyme catalyzes the reaction: Hydroxymethylbilane <=> uroporphyrinogen-III + H(2)O. Some members of this family are multi-functional proteins possessing other enzyme activities related to porphyrin biosynthesis, such as HemD with pfam00590, however the aligned region corresponds with the uroporphyrinogen-III synthase EC:4.2.1.75 activity only. Uroporphyrinogen-III synthase is the fourth enzyme in the heme pathway. Mutant forms of the Uroporphyrinogen-III synthase gene cause congenital erythropoietic porphyria in humans a recessive inborn error of metabolism also known as Gunther disease. 230 -334999 pfam02603 Hpr_kinase_N HPr Serine kinase N-terminus. This family represents the N-terminal region of Hpr Serine/threonine kinase PtsK. This kinase is the sensor in a multicomponent phospho-relay system in control of carbon catabolic repression in bacteria. This kinase in unusual in that it recognizes the tertiary structure of its target and is a member of a novel family unrelated to any previously described protein phosphorylating enzymes. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The blades are formed by two N-terminal domains each, and the compact central hub assembles the C-terminal kinase domains. 123 -308299 pfam02604 PhdYeFM_antitox Antitoxin Phd_YefM, type II toxin-antitoxin system. Members of this family act as antitoxins in type II toxin-antitoxin systems. When bound to their toxin partners, they can bind DNA via the N-terminus and repress the expression of operons containing genes encoding the toxin and the antitoxin. This domain complexes with Txe toxins containing pfam06769, Fic/DOC toxins containing pfam02661 and YafO toxins containing pfam13957. 67 -308300 pfam02605 PsaL Photosystem I reaction centre subunit XI. This family consists of the photosystem I reaction centre subunit XI, PsaL, from plants and bacteria. PsaL is one of the smaller subunits in photosystem I with only two transmembrane alpha helices and interacts closely with PsaI. 144 -335000 pfam02606 LpxK Tetraacyldisaccharide-1-P 4'-kinase. This family consists of tetraacyldisaccharide-1-P 4'-kinase also known as Lipid-A 4'-kinase or Lipid A biosynthesis protein LpxK, EC:2.7.1.130. This enzyme catalyzes the reaction: ATP + 2,3-bis(3-hydroxytetradecanoyl)-D -glucosaminyl-(beta-D-1,6)-2,3-bis(3-hydroxytetradecanoyl)-D-glu cosam inyl beta-phosphate <=> ADP + 2,3,2',3'-tetrakis(3-hydroxytetradecanoyl)-D- glucosaminyl-1,6-beta-D-glucosamine 1,4'-bisphosphate. This enzyme is involved in the synthesis of lipid A portion of the bacterial lipopolysaccharide layer (LPS). The family contains a P-loop motif at the N-terminus. 321 -335001 pfam02607 B12-binding_2 B12 binding domain. This B12 binding domain is found in methionine synthase EC:2.1.1.13, and other shorter proteins that bind to B12. This domain is always found to the N-terminus of pfam02310. The structure of this domain is known, it is a 4 helix bundle. Many of the conserved residues in this domain are involved in B12 binding, such as those in the MXXVG motif. 68 -335002 pfam02608 Bmp ABC transporter substrate-binding protein PnrA-like. Proteins containing this domain were originally annotated as basic membrane lipoproteins. However, several proteins containing this domain were later predicted as ABC transporter substrate-binding proteins, such as PnrA (also known as TmpC or TP0319) and RfuA (also known as Tpn38 or TP0298) from Treponema pallidum. RfuA transports purine nucleosides, while RfuA transports riboflavin. Proteins containing this domain also include Med from Bacillus subtilis. Med was annotated as a transcriptional activator protein that regulates comK. This domain can also found at the N-terminus of glutamate receptor-like proteins from Dictyostelium (slime mold). 301 -335003 pfam02609 Exonuc_VII_S Exonuclease VII small subunit. This family consist of exonuclease VII, small subunit EC:3.1.11.6 This enzyme catalyzes exonucleolytic cleavage in either 5'->3' or 3'->5' direction to yield 5'-phosphomononucleotides. This exonuclease VII enzyme is composed of one large subunit and 4 small ones. 52 -308304 pfam02610 Arabinose_Isome L-arabinose isomerase. This is a family of L-arabinose isomerases, AraA, EC:5.3.1.4. These enzymes catalyze the reaction: L-arabinose <=> L-ribulose. This reaction is the first step in the pathway of L-arabinose utilisation as a carbon source after entering the cell L-arabinose is converted into L-ribulose by the L-arabinose isomerases enzyme. 355 -335004 pfam02611 CDH CDP-diacylglycerol pyrophosphatase. This is a family of CDP-diacylglycerol pyrophosphatases, EC:3.6.1.26. This enzyme catalyzes the reaction CDP-diacylglycerol + H2O <=> CMP + phosphatidate. 224 -335005 pfam02613 Nitrate_red_del Nitrate reductase delta subunit. This family is the delta subunit of the nitrate reductase enzyme, The delta subunit is not part of the nitrate reductase enzyme but is most likely needed for assembly of the multi-subunit enzyme complex. In the absence of the delta subunit the core alpha beta enzyme complex is unstable. The delta subunit is essential for enzyme activity in vivo and in vitro. The nitrate reductase enzyme, EC:1.7.99.4 catalyze the conversion of nitrite to nitrate via the reduction of an acceptor. The nitrate reductase enzyme is composed of three subunits. Nitrate is the most widely used alternative electron acceptor after oxygen. This family also now contains the family TorD, a family of cytoplasmic chaperone proteins; like many prokaryotic molybdoenzymes, the TMAO reductase (TorA) of Escherichia coli requires the insertion of a bis(molybdopterin guanine dinucleotide) molybdenum (bis(MGD)Mo) cofactor in its catalytic site to be active and translocated to the periplasm. The TorD chaperone increases apoTorA activation up to four-fold, allowing maturation of most of the apoprotein. Therefore TorD is involved in the first step of TorA maturation to make it competent to receive the cofactor. 136 -335006 pfam02614 UxaC Glucuronate isomerase. This is a family of Glucuronate isomerases also known as D-glucuronate isomerase, uronic isomerase, uronate isomerase, or uronic acid isomerase, EC:5.3.1.12. This enzyme catalyzes the reactions: D-glucuronate <=> D-fructuronate and D-galacturonate <=> D-tagaturonate. It is not however clear where the experimental evidence for this functional assignment came from and thus this family has no literature reference. 464 -335007 pfam02615 Ldh_2 Malate/L-lactate dehydrogenase. This family consists of bacterial and archaeal Malate/L-lactate dehydrogenase. L-lactate dehydrogenase, EC:1.1.1.27, catalyzes the reaction (S)-lactate + NAD(+) <=> pyruvate + NADH. Malate dehydrogenase, EC:1.1.1.37 and EC:1.1.1.82, catalyzes the reactions: (S)-malate + NAD(+) <=> oxaloacetate + NADH, and (S)-malate + NADP(+) <=> oxaloacetate + NADPH respectively. 329 -280735 pfam02616 SMC_ScpA Segregation and condensation protein ScpA. This is a family of proteins that from part of the condensin complex that regulates chromosome segregation. This is the A subunit, which binds to the ScpB subunit, pfam04079, and SMC, pfam02463, to participate in chromosomal partition during cell division. The condensin complex pulls DNA away from the mid-cell into both cell halves. These proteins are part of the Kleisin superfamily. 225 -335008 pfam02617 ClpS ATP-dependent Clp protease adaptor protein ClpS. In the bacterial cytosol, ATP-dependent protein degradation is performed by several different chaperone-protease pairs, including ClpAP. ClpS directly influences the ClpAP machine by binding to the N-terminal domain of the chaperone ClpA. The degradation of ClpAP substrates, both SsrA-tagged proteins and ClpA itself, is specifically inhibited by ClpS. ClpS modifies ClpA substrate specificity, potentially redirecting degradation by ClpAP toward aggregated proteins. 80 -335009 pfam02618 YceG YceG-like family. This family of proteins is found in bacteria. Proteins in this family are typically between 332 and 389 amino acids in length. This family was previously incorrectly annotated and names as aminodeoxychorismate lyase. The structure of YceG was solved by X-ray crystallography. 246 -335010 pfam02620 DUF177 Uncharacterized ACR, COG1399. This family is nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, mutantional analysis in bacteria have not established a function. In contrast, mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize, the mutant embryos arrest at an early transition stage.It has been suggested that family members specifically affect 23S rRNA accumulation in plastids as well as bacteria. 118 -308312 pfam02621 VitK2_biosynth Menaquinone biosynthesis. This family includes two enzymes which are involved in menaquinone biosynthesis. One which catalyzes the conversion of cyclic de-hypoxanthine futalosine to 1,4-dihydroxy-6-naphthoate, and one which may be involved in the conversion of chorismate to futalosine. These enzymes comprise two domains with alpha/beta structures, a large domain and a small domain. A pocket between the two domains may form the active site, a conserved histidine located within this pocket could be the catalytic base. 254 -335011 pfam02622 DUF179 Uncharacterized ACR, COG1678. 159 -335012 pfam02623 FliW FliW protein. The protein BSU35380 from Bacillus subtilis (renamed FliW) was characterized as being a flagellar assembly factor. Experimental characterization was also carried out in Treponema pallidum (TP0658). In Campylobacter jejuni, Cj1075 has been shown to be involved in motility and flagellin biosynthesis. The two paralogues in Helicobacter pylori (HP1154 and HP1377) were found to be able to bind to flagellin. FliW proteins are involved in flagellar assembly. FliW is part of a three-part feedback loop: in Bacillus subtilis FliW inhibits CsrA (an RNA-binding protein) which inhibits FliC translation; hence FliW is required for FliC (flagellin) production. 120 -335013 pfam02624 YcaO YcaO cyclodehydratase, ATP-ad Mg2+-binding. YcaO is an ATP- an Mg2+-binding protein involved in the peptidic biosynthesis of azoline. There three motifs involved in the binding are, in UniProtKB:P75838, 71-79: Sx3ExxER, 184-203: Sx6Ex3Qx3ExxER, and 286-290: RxxxE. Three slightly different functional families are represented in this family, proteins involved in TOMM (thiazole/oxazole-modified microcin) biogenesis, non-TOMM proteins such as UniProtKB:P75838, and TfuA-associated non-TOMM proteins involved in trifolitoxin biosynthesis. UniProtKB:P75838 hydrolyzes ATP to AMP and pyrophosphate. 318 -335014 pfam02625 XdhC_CoxI XdhC and CoxI family. This domain is often found in association with an NAD-binding region, related to TrkA-N (pfam02254; personal obs:C. Yeats). XdhC is believed to be involved in the attachment of molybdenum to Xanthine Dehydrogenase. 66 -335015 pfam02626 CT_A_B Carboxyltransferase domain, subdomain A and B. Urea carboxylase (UC) catalyzes a two-step, ATP- and biotin-dependent carboxylation reaction of urea. It is composed of biotin carboxylase (BC), carboxyltransferase (CT), and biotin carboxyl carrier protein (BCCP) domains. The CT domain of UC consists of four subdomains, named A, B, C and D. This domain covers the A and B subdomains of the CT domain. This domain covers the whole length of KipA (kinase A) from Bacillus subtilis. It can also be found in S. cerevisiae urea amidolyase Dur1,2, which is a multifunctional biotin-dependent enzyme with domains for urea carboxylase and allophanate (urea carboxylate) hydrolase activity. 260 -308318 pfam02627 CMD Carboxymuconolactone decarboxylase family. Carboxymuconolactone decarboxylase (CMD) EC:4.1.1.44 is involved in protocatechuate catabolism. In some bacteria a gene fusion event leads to expression of CMD with a hydrolase involved in the same pathway. In these bifunctional proteins CMD represents the C-terminal domain, pfam00561 represents the N-terminal domain. 84 -308319 pfam02628 COX15-CtaA Cytochrome oxidase assembly protein. This is a family of integral membrane proteins. CtaA is required for cytochrome aa3 oxidase assembly in Bacillus subtilis. COX15 is required for cytochrome c oxidase assembly in yeast. 322 -308320 pfam02629 CoA_binding CoA binding domain. This domain has a Rossmann fold and is found in a number of proteins including succinyl CoA synthetases, malate and ATP-citrate ligases. 96 -251433 pfam02630 SCO1-SenC SCO1/SenC. This family is involved in biogenesis of respiratory and photosynthetic systems. SCO1 is required for a post-translational step in the accumulation of subunits COXI and COXII of cytochrome c oxidase. SenC is required for optimal cytochrome c oxidase activity and maximal induction of genes encoding the light-harvesting and reaction centre complexes of R. capsulatus. 159 -335016 pfam02631 RecX RecX family. RecX is a putative bacterial regulatory protein. The gene encoding RecX is found downstream of recA, and is thought to interact with the RecA protein. 118 -335017 pfam02632 BioY BioY family. A number of bacterial genes are involved in bioconversion of pimelate into dethiobiotin. BioY is a component of the BioMNY transport system involved in biotin uptake in prokaryotes. 137 -335018 pfam02633 Creatininase Creatinine amidohydrolase. Creatinine amidohydrolase (EC:3.5.2.10), or creatininase, catalyzes the hydrolysis of creatinine to creatine. 184 -308324 pfam02634 FdhD-NarQ FdhD/NarQ family. A pan-bacterial lineage of proteins. Nitrate assimilation protein, NarQ, and FdhD are required for formate dehydrogenase activity. Structurally, they possess a deaminase fold with a characteristic binding pocket, suggesting that they might bind a nucleotide or related molecule allosterically to regulate the formate dehydrogenase catalytic subunit. 235 -335019 pfam02635 DrsE DsrE/DsrF-like family. DsrE is a small soluble protein involved in intracellular sulfur reduction. This family also includes DsrF. 118 -308326 pfam02636 Methyltransf_28 Putative S-adenosyl-L-methionine-dependent methyltransferase. This family is a putative S-adenosyl-L-methionine (SAM)-dependent methyltransferase. In eukaryotes it plays a role in mitochondrial complex I activity. 244 -335020 pfam02637 GatB_Yqey GatB domain. This domain is found in GatB. It is about 140 amino acid residues long. This domain is found at the C-terminus of GatB, which transamidates Glu-tRNA to Gln-tRNA. 148 -251441 pfam02638 GHL10 Glycosyl hydrolase-like 10. This is family of bacterial glycosyl-hydrolase-like proteins falling into the family GHL10 as described above,. 311 -308328 pfam02639 DUF188 Uncharacterized BCR, YaiI/YqxD family COG1671. 130 -335021 pfam02641 DUF190 Uncharacterized ACR, COG1993. 97 -335022 pfam02643 DUF192 Uncharacterized ACR, COG1430. Two structures have been solved for members of this large (>500 members) family of bacterial proteins present mostly in environmental bacteria and metagenomes (distant homologs are also present in several Plasmodium species). TOPSAN analysis for Structure 3pjy shows that there is much similarity with the other solved structure, Structure 3m7a, solved for UniProt:Q2GA55 (Saro_0823), a homolog of Thermotoga maritima TM1668, UniProt:Q9X1Z6., The homolog in Caulobacter crescentus (CC1388), UniProt:Q9A8G6, is associated with CspD, a cold shock protein (CC1387), UniProt:Q9A8G7. However, the genomic context of UniProt:Q2GA55 is most conserved with a putative xylose isomerase, suggesting a possible role in extracellular sugar processing. Saro_0821, UniProt:Q2GA57, is annotated as an AMP-dependent synthetase and ligase. Structure 3m7a structure corresponds to the C-terminal (27-165) fragment of the YP_496102 (Saro_0823) protein and it is structurally unique, as the best hits from Dali have a Z-score of 3.8 (1nt0, 2j1t, 3kq4) and it is thus a likely candidate for a new fold. Interestingly, many of the top Dali hits are involved in sugar metabolism. There are no obvious active site-like cavities on the protein surface of 3m7a (http://www.topsan.org/Proteins/JCSG/). 103 -308331 pfam02645 DegV Uncharacterized protein, DegV family COG1307. The structure of this protein revealed a bound fatty-acid molecule in a pocket between the two protein domains. The structure indicates that this family has the molecular function of fatty-acid binding and may play a role in the cellular functions of fatty acid transport or metabolism. 280 -335023 pfam02646 RmuC RmuC family. This family contains several bacterial RmuC DNA recombination proteins. The function of the RMUC protein is unknown but it is suspected that it is either a structural protein that protects DNA against nuclease action, or is itself involved in DNA cleavage at the regions of DNA secondary structures 285 -335024 pfam02649 GCHY-1 Type I GTP cyclohydrolase folE2. This is a family of prokaryotic proteins with type I GTP cyclohydrolase activity. GTP cyclohydrolase I is the first enzyme of the de novo tetrahydrofolate biosynthetic pathway present in bacteria, fungi, and plants, and encoded in Escherichia coli by the folE gene; it is also the first enzyme of the biopterin (BH4) pathway in Homo sapiens. The invariate, highly conserved glutamate residue at position 216 in Neisseria gonorrhoeae FolE2 is likely to be the substrate ligand and the metal ligand is likely to be the cysteine at position 147. The enzyme is Zinc 2+ dependent. 261 -335025 pfam02650 HTH_WhiA WhiA C-terminal HTH domain. This domain is found at the C-terminus of the sporulation regulator WhiA. It is predicted to form a DNA-binding helix-turn-helix structure. The WhiA protein also contains two N-terminal domains that are distant homologs of LAGLIDADG homing endonucleases. 81 -280762 pfam02652 Lactate_perm L-lactate permease. L-lactate permease is an integral membrane protein probably involved in L-lactate transport. 522 -280763 pfam02653 BPD_transp_2 Branched-chain amino acid transport system / permease component. This is a large family mainly comprising high-affinity branched-chain amino acid transporter proteins such as E. coli LivH and LivM, both of which are form the LIV-I transport system. Also found with in this family are proteins from the galactose transport system permease and a ribose transport system. 267 -335026 pfam02654 CobS Cobalamin-5-phosphate synthase. This is family of Colbalmin-5-phosphate synthases, CobS, from bacteria. The CobS enzyme catalyzes the synthesis of AdoCbl-5'-p from AdoCbi-GDP and alpha-ribazole-5'-P. This enzyme is involved in the cobalamin (vitamin B12) biosynthesis pathway in particular the nucleotide loop assembly stage in conjunction with CobC, CobU and CobT. 216 -280765 pfam02655 ATP-grasp_3 ATP-grasp domain. No functional information or experimental verification of function is known in this family. This family appears to be an ATP-grasp domain (Pers. obs. A Bateman). 160 -335027 pfam02656 DUF202 Domain of unknown function (DUF202). This family consists of hypothetical proteins some of which are putative membrane proteins. No functional information or experimental verification of function is known. This domain is around 100 amino acids long. 68 -335028 pfam02657 SufE Fe-S metabolism associated domain. This family consists of the SufE-related proteins. These have been implicated in Fe-S metabolism and export). 122 -308338 pfam02659 Mntp Putative manganese efflux pump. MntP is a family of bacterial proteins with a signal peptide and four transmembrane domains. It is a putative manganese efflux pump, since deletion of the gene leads to profound manganese sensitivity and elevated intracellular manganese levels in bacteria. Manganese is a highly important trace nutrient for organisms from bacteria to humans, and acts as an important element in the defense against oxidative stress and as an enzyme cofactor. 152 -335029 pfam02660 G3P_acyltransf Glycerol-3-phosphate acyltransferase. This family of enzymes catalyzes the transfer of an acyl group from acyl-ACP to glycerol-3-phosphate to form lysophosphatidic acid. 174 -335030 pfam02661 Fic Fic/DOC family. This family consists of the Fic (filamentation induced by cAMP) protein and doc (death on curing). The Fic protein is involved in cell division and is suggested to be involved in the synthesis of PAB or folate, indicating that the Fic protein and cAMP are involved in a regulatory mechanism of cell division via folate metabolism. This family contains a central conserved motif HPFXXGNG in most members. The exact molecular function of these proteins is uncertain. P1 lysogens of Escherichia coli carry the prophage as a stable low copy number plasmid. The frequency with which viable cells cured of prophage are produced is about 10(-5) per cell per generation. A significant part of this remarkable stability can be attributed to a plasmid-encoded mechanism that causes death of cells that have lost P1. In other words, the lysogenic cells appear to be addicted to the presence of the prophage. The plasmid withdrawal response depends on a gene named doc (death on curing) that is represented by this family. Doc induces a reversible growth arrest of E. coli cells by targetting the protein synthesis machinery. Doc hosts the C-terminal domain of its antitoxin partner Phd (prevents host death) through fold complementation, a domain that is intrinsically disordered in solution but that folds into an alpha-helix on binding to Doc.This domain forms complexes with Phd antitoxins containing pfam02604. 95 -308341 pfam02662 FlpD Methyl-viologen-reducing hydrogenase, delta subunit. This family consist of methyl-viologen-reducing hydrogenase, delta subunit / heterodisulphide reductase. No specific functions have been assigned to this subunit. The aligned region corresponds to almost the entire delta chain sequence and contains 4 conserved cysteine residues. However, in two Archaeoglobus sequences this region corresponds to only the C-terminus of these proteins. 123 -335031 pfam02663 FmdE FmdE, Molybdenum formylmethanofuran dehydrogenase operon. This entry represents the FmdE protein that is encode by the molybdenum formylmethanofuran dehydrogenase operon. FmdE does not co-purify with the molybdenum isozyme that is formed by FmdC and FmdB. The domain is typically found as a single copy, but is repeated in some sequence two to three times. It is also common place to find this domain co-occurs with a zinc-beta ribbon domain, suggesting that is may bind nucleic acid and be involved in transcription regulation. 91 -335032 pfam02664 LuxS S-Ribosylhomocysteinase (LuxS). This family consists of the LuxS protein involved in autoinducer AI2 synthesis and its hypothetical relatives. S-ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum sensing molecule. 148 -335033 pfam02665 Nitrate_red_gam Nitrate reductase gamma subunit. This family is the gamma subunit of the nitrate reductase enzyme, the gamma subunit is a b-type cytochrome that receives electrons from the quinone pool. It then transfers these via the iron-sulfur clusters of the beta subunit to the molybdenum cofactor found in the alpha subunit. The nitrate reductase enzyme, EC:1.7.99.4 catalyzes the conversion of nitrite to nitrate via the reduction of an acceptor. The nitrate reductase enzyme is composed of three subunits. Nitrate is the most widely used alternative electron acceptor after oxygen. 219 -308345 pfam02666 PS_Dcarbxylase Phosphatidylserine decarboxylase. This is a family of phosphatidylserine decarboxylases, EC:4.1.1.65. These enzymes catalyze the reaction: Phosphatidyl-L-serine <=> phosphatidylethanolamine + CO2. Phosphatidylserine decarboxylase plays a central role in the biosynthesis of aminophospholipids by converting phosphatidylserine to phosphatidylethanolamine. 198 -280776 pfam02667 SCFA_trans Short chain fatty acid transporter. This family consists of two sequences annotated as short chain fatty acid transporters, however, there are no references giving details of experimental characterization of this function. 453 -335034 pfam02668 TauD Taurine catabolism dioxygenase TauD, TfdA family. This family consists of taurine catabolism dioxygenases of the TauD, TfdA family. TauD from E. coli is a alpha-ketoglutarate-dependent taurine dioxygenase. This enzyme catalyzes the oxygenolytic release of sulfite from taurine. TfdA from Burkholderia sp. is a 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase. TfdA from Alcaligenes eutrophus JMP134 is a 2,4-dichlorophenoxyacetate monooxygenase. Also included are gamma-Butyrobetaine hydroxylase enzymes EC:1.14.11.1. 265 -335035 pfam02669 KdpC K+-transporting ATPase, c chain. This family consists of K+-transporting ATPase, c chain, KdpC. KdpC forms strong interactions with the KdpA subunit, serving to assemble and stabilize the Kdp complex. It has been suggested that KdpC could be one of the connecting links between the energy providing subunit KdpB and the K+-transporting subunit KdpA. The K+ transport system actively transports K+ ions via ATP hydrolysis. 179 -335036 pfam02670 DXP_reductoisom 1-deoxy-D-xylulose 5-phosphate reductoisomerase. This is a family of 1-deoxy-D-xylulose 5-phosphate reductoisomerases. This enzyme catalyzes the formation of 2-C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose-5-phosphate in the presence of NADPH. This reaction is part of the terpenoid biosynthesis pathway. 129 -335037 pfam02671 PAH Paired amphipathic helix repeat. This family contains the paired amphipathic helix repeat. The family contains the yeast SIN3 gene (also known as SDI1) that is a negative regulator of the yeast HO gene. This repeat may be distantly related to the helix-loop-helix motif, which mediate protein-protein interactions. 45 -335038 pfam02672 CP12 CP12 domain. The function of this domain is unknown, it does contain three conserved cysteines and a histidine, that suggests this may be a zinc binding domain (Bateman A pers. observation). This domain is found associated with CBS domains in some proteins pfam00571. 68 -335039 pfam02673 BacA Bacitracin resistance protein BacA. Bacitracin resistance protein (BacA) is a putative undecaprenol kinase. BacA confers resistance to bacitracin, probably by phosphorylation of undecaprenol. More recent studies show that BacA has undecaprenyl pyrophosphate phosphatase activity. Undecaprenyl phosphate is a key lipid intermediate involved in the synthesis of various bacterial cell wall polymers. Bacitracin, a mixture of related cyclic polypeptide antibiotics, is used to treat surface tissue infections. Its primary mode of action is the inhibition of bacterial cell wall synthesis through sequestration of the essential carrier lipid undecaprenyl pyrophosphate, C55-PP, resulting in the loss of cell integrity and lysis. The characteristic phosphatase sequence-motif in this family is likely to be the PGxSRSGG, compared with the PSGH of the PAP family of phosphatases. 260 -335040 pfam02674 Colicin_V Colicin V production protein. Colicin V production protein is required in E. Coli for colicin V production from plasmid pColV-K30. This protein is coded for in the purF operon. 145 -335041 pfam02675 AdoMet_dc S-adenosylmethionine decarboxylase. This family contains several S-adenosylmethionine decarboxylase proteins from bacterial and archaebacterial species. S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme in the biosynthesis of spermidine and spermine, is first synthesized as a proenzyme, which is cleaved post translationally to form alpha and beta subunits. The alpha subunit contains a covalently bound pyruvoyl group derived from serine that is essential for activity. 95 -335042 pfam02676 TYW3 Methyltransferase TYW3. The methyltransferase TYW3 (tRNA-yW- synthesising protein 3) has been identified in yeast to be involved in wybutosine (yW) biosynthesis. yW is a complexly modified guanosine residue that contains a tricyclic base and is found at the 3' position adjacent the anticodon of phenylalanine tRNA. TYW3 is an N-4 methylase that methylates yW-86 to yield yW-72 in an Ado-Met-dependent manner. 198 -335043 pfam02677 DUF208 Uncharacterized BCR, COG1636. 175 -335044 pfam02678 Pirin Pirin. This family consists of Pirin proteins from both eukaryotes and prokaryotes. The function of Pirin is unknown but the gene coding for this protein is known to be expressed in all tissues in the human body although it is expressed most strongly in the liver and heart. Pirin is known to be a nuclear protein, exclusively localized within the nucleoplasma and predominantly concentrated within dot-like subnuclear structures. A tomato homolog of human Pirin has been found to be induced during programmed cell death. Human Pirin interacts with Bcl-3 and NFI and hence is probably involved in the regulation of DNA transcription and replication. It appears to be an Fe(II)-containing member of the Cupin superfamily. 102 -308356 pfam02679 ComA (2R)-phospho-3-sulfolactate synthase (ComA). In methanobacteria (2R)-phospho-3-sulfolactate synthase (ComA) catalyzes the first step of the biosynthesis of coenzyme M from phosphoenolpyruvate (P-enolpyruvate). This novel enzyme catalyzes the stereospecific Michael addition of sulfite to P-enolpyruvate, forming L-2-phospho-3-sulfolactate (PSL). It is suggested that the ComA-catalyzed reaction is analogous to those reactions catalyzed by beta-elimination enzymes that proceed through an enolate intermediate. 238 -335045 pfam02680 DUF211 Uncharacterized ArCR, COG1888. 89 -308358 pfam02681 DUF212 Divergent PAP2 family. This family is related to the pfam01569 family (personal obs: C Yeats). 126 -335046 pfam02682 CT_C_D Carboxyltransferase domain, subdomain C and D. Urea carboxylase (UC) catalyzes a two-step, ATP- and biotin-dependent carboxylation reaction of urea. It is composed of biotin carboxylase (BC), carboxyltransferase (CT), and biotin carboxyl carrier protein (BCCP) domains. The CT domain of UC consists of four subdomains, named A, B, C and D. This domain covers the C and D subdomains of the CT domain. This domain covers the whole length of kipI (kinase A inhibitor) from Bacillus subtilis. It can also be found in S. cerevisiae urea amidolyase Dur1,2, which is a multifunctional biotin-dependent enzyme with domains for urea carboxylase and allophanate (urea carboxylate) hydrolase activity. 201 -280792 pfam02683 DsbD Cytochrome C biogenesis protein transmembrane region. This family consists of the transmembrane (i.e. non-catalytic) region of Cytochrome C biogenesis proteins also known as disulphide interchange proteins. These proteins posses a protein disulphide isomerase like domain that is not found within the aligned region of this family. 213 -280793 pfam02684 LpxB Lipid-A-disaccharide synthetase. This is a family of lipid-A-disaccharide synthetases, EC:2.4.2.128. These enzymes catalyze the reaction: UDP-2,3-bis(3-hydroxytetradecanoyl) glucosamine + 2,3-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate <=> UDP + 2,3-bis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6 -beta-D-2,3-bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate. These enzymes catalyze the fist disaccharide step in the synthesis of lipid-A-disaccharide. 374 -280794 pfam02685 Glucokinase Glucokinase. This is a family of glucokinases or glucose kinases EC:2.7.1.2. These enzymes phosphorylate glucose using ATP as a donor to give glucose-6-phosphate and ADP. 315 -335047 pfam02686 Glu-tRNAGln Glu-tRNAGln amidotransferase C subunit. This is a family of Glu-tRNAGln amidotransferase C subunits. The Glu-tRNA Gln amidotransferase enzyme itself is an important translational fidelity mechanism replacing incorrectly charged Glu-tRNAGln with the correct Gln-tRANGln via transmidation of the misacylated Glu-tRNAGln. This activity supplements the lack of glutaminyl-tRNA synthetase activity in gram-positive eubacterteria, cyanobacteria, Archaea, and organelles. 69 -335048 pfam02687 FtsX FtsX-like permease family. This is a family of predicted permeases and hypothetical transmembrane proteins. Buchnera aphidicola LolC has been shown to transport lipids targeted to the outer membrane across the inner membrane. Both LolC and Streptococcus cristatus TptD have been shown to require ATP. This region contains three transmembrane helices. 96 -280797 pfam02689 Herpes_Helicase Helicase. This family consists of Helicases from the Herpes viruses. Helicases are responsible for the unwinding of DNA and are essential for replication and completion of the viral life cycle. 809 -335049 pfam02690 Na_Pi_cotrans Na+/Pi-cotransporter. This is a family of mainly mammalian type II renal Na+/Pi-cotransporters with other related sequences from lower eukaryotes and bacteria some of which are also Na+/Pi-cotransporters. In the kidney the type II renal Na+/Pi-cotransporters protein allows re-absorption of filtered Pi in the proximal tubule. 136 -111576 pfam02691 VacA Vacuolating cyotoxin. This family consists of Vacuolating cyotoxin proteins form Proteobacteria. These proteins are an important virulence determinate in H. pylori and induce cytoplasmic vacuolation in a variety of mammalian cell lines. 1002 -111577 pfam02694 UPF0060 Uncharacterized BCR, YnfA/UPF0060 family. 107 -335050 pfam02696 UPF0061 Uncharacterized ACR, YdiU/UPF0061 family. 460 -335051 pfam02697 VAPB_antitox Putative antitoxin. Proteins in this family are possibly the antitoxin component of a VAPBC-like toxin-antitoxin (TA) module, which is widespread in the in both archaea and bacteria. 69 -335052 pfam02698 DUF218 DUF218 domain. This large family of proteins contains several highly conserved charged amino acids, suggesting this may be an enzymatic domain (Bateman A pers. obs). The family includes SanA, which is involved in Vancomycin resistance. This protein may be involved in murein synthesis. 140 -335053 pfam02699 YajC Preprotein translocase subunit. See. 74 -335054 pfam02700 PurS Phosphoribosylformylglycinamidine (FGAM) synthase. This family forms a component of the de novo purine biosynthesis pathway. 77 -308368 pfam02701 zf-Dof Dof domain, zinc finger. The Dof domain is a zinc finger DNA-binding domain, that shows resemblance to the Cys2 zinc finger. 57 -335055 pfam02702 KdpD Osmosensitive K+ channel His kinase sensor domain. This is a family of KdpD sensor kinase proteins that regulate the kdpFABC operon responsible for potassium transport. The aligned region corresponds to the N-terminal cytoplasmic part of the protein which may be the sensor domain responsible for sensing turgor pressure. 210 -308370 pfam02703 Adeno_E1A Early E1A protein. This is a family of adenovirus early E1A proteins. The E1A protein is 32 kDa it can however be cleaved to yield the 28 kDa protein. The E1A protein is responsible for the transcriptional activation of the early genes with in the viral genome at the start of the infection process as well as some cellular genes. 289 -335056 pfam02704 GASA Gibberellin regulated protein. This is the GASA gibberellin regulated cysteine rich protein family. The expression of these proteins is up-regulated by the plant hormone gibberellin, most of these proteins have some role in plant development. There are 12 cysteine residues conserved within the alignment giving the potential for these proteins to posses 6 disulphide bonds. 60 -308372 pfam02705 K_trans K+ potassium transporter. This is a family of K+ potassium transporters that are conserved across phyla, having both bacterial (KUP), yeast (HAK), and plant (AtKT) sequences as members. 534 -335057 pfam02706 Wzz Chain length determinant protein. This family includes proteins involved in lipopolysaccharide (lps) biosynthesis. This family comprises the whole length of chain length determinant protein (or wzz protein) that confers a modal distribution of chain length on the O-antigen component of lps. This region is also found as part of bacterial tyrosine kinases. 74 -280810 pfam02707 MOSP_N Major Outer Sheath Protein N-terminal region. This is a family of spirochete major outer sheath protein N-terminal regions. These proteins are present on the bacterial cell surface. In T. denticola the major outer sheath protein (Msp) binds immobilised laminin and fibronectin supporting the hypothesis that Msp mediates the extracellular matrix binding activity of T. denticola. 196 -335058 pfam02709 Glyco_transf_7C N-terminal domain of galactosyltransferase. This is the N-terminal domain of a family of galactosyltransferases from a wide range of Metazoa with three related galactosyltransferases activities, all three of which are possessed by one sequence in some cases. EC:2.4.1.90, N-acetyllactosamine synthase; EC:2.4.1.38, Beta-N-acetylglucosaminyl-glycopeptide beta-1,4- galactosyltransferase; and EC:2.4.1.22 Lactose synthase. Note that N-acetyllactosamine synthase is a component of Lactose synthase along with alpha-lactalbumin, in the absence of alpha-lactalbumin EC:2.4.1.90 is the catalyzed reaction. 77 -280812 pfam02710 Hema_HEFG Hemagglutinin domain of haemagglutinin-esterase-fusion glycoprotein. 155 -308375 pfam02711 Pap_E4 E4 protein. This is is a family of Papillomavirus proteins, E4, coded for by ORF4. A splice variant, E1--E4, exists but neither the function of E4 or E1--E4 is known. 94 -308376 pfam02713 DUF220 Domain of unknown function DUF220. This is family consists of a region in several Arabidopsis thaliana hypothetical proteins none of which have any known function. The aligned region contains two cysteine residues. 73 -308377 pfam02714 RSN1_7TM Calcium-dependent channel, 7TM region, putative phosphate. RSN1_7TM is the seven transmembrane domain region of putative phosphate transporter. The family is the 7TM region of osmosensitive calcium-permeable cation channels. 273 -308378 pfam02718 Herpes_UL31 Herpesvirus UL31-like protein. This is a family of Herpesvirus proteins including UL31, UL53, and the product of ORF 69 in some strains. The proteins in this family have no known function. 251 -308379 pfam02719 Polysacc_synt_2 Polysaccharide biosynthesis protein. This is a family of diverse bacterial polysaccharide biosynthesis proteins including the CapD protein, WalL protein, mannosyl-transferase, and several putative epimerases (e.g. WbiI). 284 -308380 pfam02720 DUF222 Domain of unknown function (DUF222). This family is often found associated to the N-terminus of the HNH endonuclease domain pfam01844. The function of this domain is uncertain. This family has been called the 13E12 repeat family. 301 -145722 pfam02721 DUF223 Domain of unknown function DUF223. 95 -280819 pfam02722 MOSP_C Major Outer Sheath Protein C-terminal domain. This is a family of spirochete major outer sheath protein C-terminal regions. These proteins are present on the bacterial cell surface. In T. denticola the major outer sheath protein (Msp) binds immobilised laminin and fibronectin supporting the hypothesis that Msp mediates the extracellular matrix binding activity of T. denticola. This domain forms an amphipathic beta rich structure with channel forming activity. 205 -280820 pfam02723 NS3_envE Non-structural protein NS3/Small envelope protein E. This is a family of small non-structural proteins, well conserved among Coronavirus strains. This protein is also found in murine hepatitis virus as small envelope protein E. 75 -335059 pfam02724 CDC45 CDC45-like protein. CDC45 is an essential gene required for initiation of DNA replication in S. cerevisiae, forming a complex with MCM5/CDC46. homologs of CDC45 have been identified in human, mouse and smut fungus, among others. 605 -280822 pfam02725 Paramyxo_NS_C Non-structural protein C. This family consists of the polymerase accessory protein C from members of the paramyxoviridae. 164 -335060 pfam02727 Cu_amine_oxidN2 Copper amine oxidase, N2 domain. This domain is the first or second structural domain in copper amine oxidases, it is known as the N2 domain. Its function is uncertain. The catalytic domain can be found in pfam01179. Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70-90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ). 87 -308383 pfam02728 Cu_amine_oxidN3 Copper amine oxidase, N3 domain. This domain is the second or third structural domain in copper amine oxidases, it is known as the N3 domain. Its function is uncertain. The catalytic domain can be found in pfam01179. Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70-90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ). 101 -335061 pfam02729 OTCace_N Aspartate/ornithine carbamoyltransferase, carbamoyl-P binding domain. 142 -335062 pfam02730 AFOR_N Aldehyde ferredoxin oxidoreductase, N-terminal domain. Aldehyde ferredoxin oxidoreductase (AOR) catalyzes the reversible oxidation of aldehydes to their corresponding carboxylic acids with their accompanying reduction of the redox protein ferredoxin. This domain interacts with the tungsten cofactor. 199 -335063 pfam02731 SKIP_SNW SKIP/SNW domain. This domain is found in chromatin proteins. 154 -335064 pfam02732 ERCC4 ERCC4 domain. This domain is a family of nucleases. The family includes EME1 which is an essential component of a Holliday junction resolvase. EME1 interacts with MUS81 to form a DNA structure-specific endonuclease. 140 -335065 pfam02733 Dak1 Dak1 domain. This is the kinase domain of the dihydroxyacetone kinase family EC:2.7.1.29. 311 -335066 pfam02734 Dak2 DAK2 domain. This domain is the predicted phosphatase domain of the dihydroxyacetone kinase family. 174 -335067 pfam02735 Ku Ku70/Ku80 beta-barrel domain. The Ku heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. This is the central DNA-binding beta-barrel domain. This domain is found in both the Ku70 and Ku80 proteins that form a DNA binding heterodimer. 195 -335068 pfam02736 Myosin_N Myosin N-terminal SH3-like domain. This domain has an SH3-like fold. It is found at the N-terminus of many but not all myosins. The function of this domain is unknown. 39 -308392 pfam02737 3HCDH_N 3-hydroxyacyl-CoA dehydrogenase, NAD binding domain. This family also includes lambda crystallin. 180 -335069 pfam02738 Ald_Xan_dh_C2 Molybdopterin-binding domain of aldehyde dehydrogenase. 546 -335070 pfam02739 5_3_exonuc_N 5'-3' exonuclease, N-terminal resolvase-like domain. 164 -308395 pfam02740 Colipase_C Colipase, C-terminal domain. SCOP reports duplication of common fold with Colipase N-terminal domain. 43 -308396 pfam02741 FTR_C FTR, proximal lobe. The FTR (Formylmethanofuran--tetrahydromethanopterin formyltransferase) enzyme EC:2.3.1.101 is involved in archaebacteria in the formation of methane from carbon dioxide. C-terminal proximal lobe of alpha+beta ferredoxin-like fold. SCOP reports fold duplication with N-terminal distal lobe. 149 -335071 pfam02742 Fe_dep_repr_C Iron dependent repressor, metal binding and dimerization domain. This family includes the Diphtheria toxin repressor. 70 -308398 pfam02743 dCache_1 Cache domain. Double cache domain 1 covers the last three strands from the membrane distal PAS-like domain, the first two strands of the membrane proximal domain, and the connecting elements between the two domains. 195 -280840 pfam02744 GalP_UDP_tr_C Galactose-1-phosphate uridyl transferase, C-terminal domain. SCOP reports fold duplication with N-terminal domain. Both involved in Zn and Fe binding. 166 -308399 pfam02745 MCR_alpha_N Methyl-coenzyme M reductase alpha subunit, N-terminal domain. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (this family), 2 beta (pfam02241), and 2 gamma (pfam02240) subunits with two identical nickel porphinoid active sites. The N-terminal domain has a ferredoxin-like fold. 270 -308400 pfam02746 MR_MLE_N Mandelate racemase / muconate lactonizing enzyme, N-terminal domain. SCOP reports fold similarity with enolase N-terminal domain. 117 -280843 pfam02747 PCNA_C Proliferating cell nuclear antigen, C-terminal domain. N-terminal and C-terminal domains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA. 128 -335072 pfam02748 PyrI_C Aspartate carbamoyltransferase regulatory chain, metal binding domain. The regulatory chain is involved in allosteric regulation of aspartate carbamoyltransferase. The C-terminal metal binding domain has a rubredoxin-like fold and provides the interface with the catalytic chain. 48 -335073 pfam02749 QRPTase_N Quinolinate phosphoribosyl transferase, N-terminal domain. Quinolinate phosphoribosyl transferase (QPRTase) or nicotinate-nucleotide pyrophosphorylase EC:2.4.2.19 is involved in the de novo synthesis of NAD in both prokaryotes and eukaryotes. It catalyzes the reaction of quinolinic acid with 5-phosphoribosyl-1-pyrophosphate (PRPP) in the presence of Mg2+ to give rise to nicotinic acid mononucleotide (NaMN), pyrophosphate and carbon dioxide. The QA substrate is bound between the C-terminal domain of one subunit, and the N-terminal domain of the other. The N-terminal domain has an alpha/beta hammerhead fold. 88 -308403 pfam02750 Synapsin_C Synapsin, ATP binding domain. Ca dependent ATP binding in this ATP grasp fold. Function unknown. 203 -335074 pfam02751 TFIIA_gamma_C Transcription initiation factor IIA, gamma subunit. Accurate transcription in vivo requires at least six general transcription initiation factors, in addition to RNA polymerase II. Transcription initiation factor IIA (TFIIA) is a multimeric protein which facilitates the binding of TFIID to the TATA box. The C-terminal domain of the gamma subunit is a 12 stranded beta-barrel. 49 -308405 pfam02752 Arrestin_C Arrestin (or S-antigen), C-terminal domain. Ig-like beta-sandwich fold. Scop reports duplication with N-terminal domain. 137 -335075 pfam02753 PapD_C Pili assembly chaperone PapD, C-terminal domain. Ig-like beta-sandwich fold. This domain is the C-terminal part of the pilus and flagellar-assembly chaperone protein PapD. 63 -308407 pfam02754 CCG Cysteine-rich domain. The key element of this family is the CX31-38CCX33-34CXXC sequence motif normally found at the C-terminus in archaeal and bacterial Hdr-like proteins. There may be one or two copies, and the motif is probably an iron-sulfur binding cluster. In some instances one of the cysteines is replaced by an aspartate, and aspartate can in principle also function as a ligand of an iron-sulfur cluster. The family includes a subunit from heterodisulphide reductase and a subunit from glycolate oxidase and glycerol-3-phosphate dehydrogenase. 85 -335076 pfam02755 RPEL RPEL repeat. The RPEL repeat is named after four conserved amino acids it contains. The RPEL motif binds to actin. 23 -308409 pfam02756 GYR GYR motif. The GYR motif is found in several drosophila proteins. Its function is unknown, however the presence of completely conserved tyrosine residues may suggest it could be a substrate for tyrosine kinases. 18 -308410 pfam02757 YLP YLP motif. The YLP motif is found in several drosophila proteins. Its function is unknown, however the presence of completely conserved tyrosine residues and its presence in human ERBB4 may suggest it could be a substrate for tyrosine kinases. 9 -335077 pfam02758 PYRIN PAAD/DAPIN/Pyrin domain. This domain is predicted to contain 6 alpha helices and to have the same fold as the pfam00531 domain. This similarity may mean that this is a protein-protein interaction domain. 75 -308412 pfam02759 RUN RUN domain. This domain is present in several proteins that are linked to the functions of GTPases in the Rap and Rab families. They could hence play important roles in multiple Ras-like GTPase signalling pathways. The domain is comprises six conserved regions, which in some proteins have considerable insertions between them. The domain core is thought to take up a predominantly alpha fold, with basic amino acids in regions A and D possibly playing a functional role in interactions with Ras GTPases. 129 -335078 pfam02760 HIN HIN-200/IF120x domain. This domain has no known function. It is found in one or two copies per protein, and is found associated with the PAAD/DAPIN domain pfam02758. 168 -335079 pfam02761 Cbl_N2 CBL proto-oncogene N-terminus, EF hand-like domain. Cbl is an adaptor protein that binds EGF receptors (or other tyrosine kinases) and SH3 domains, functioning as a negative regulator of many signaling pathways. The N-terminal domain is evolutionarily conserved, and is known to bind to phosphorylated tyrosine residues. The so called N-terminal domain is actually 3 structural domains, of which this is the central EF hand domain. 84 -335080 pfam02762 Cbl_N3 CBL proto-oncogene N-terminus, SH2-like domain. Cbl is an adaptor protein that binds EGF receptors (or other tyrosine kinases) and SH3 domains, functioning as a negative regulator of many signaling pathways. The N-terminal domain is evolutionarily conserved, and is known to bind to phosphorylated tyrosine residues. The so called N-terminal domain is actually 3 structural domains, of which this is the C-terminal SH2 domain. 80 -280859 pfam02763 Diphtheria_C Diphtheria toxin, C domain. N-terminal catalytic (C) domain - blocks protein synthesis by transfer of ADP-ribose from NAD to a diphthamide residue of EF-2. 187 -280860 pfam02764 Diphtheria_T Diphtheria toxin, T domain. Central domain of diphtheria toxin is the translocation (T) domain. pH induced conformational change in this domain triggers insertion into the endosomal membrane and facilitates the transfer of the catalytic domain into the cytoplasm. 180 -308416 pfam02765 POT1 Telomeric single stranded DNA binding POT1/CDC13. This domain binds single stranded telomeric DNA and adopts an OB fold. It includes the proteins POT1 and CDC13 which have been shown to regulate telomere length, replication and capping. POT1 is one component of the shelterin complex that protects telomere-ends from attack by DNA-repair mechanisms. 140 -308417 pfam02767 DNA_pol3_beta_2 DNA polymerase III beta subunit, central domain. A dimer of the beta subunit of DNA polymerase beta forms a ring which encircles duplex DNA. Each monomer contains three domains of identical topology and DNA clamp fold. 115 -280863 pfam02768 DNA_pol3_beta_3 DNA polymerase III beta subunit, C-terminal domain. A dimer of the beta subunit of DNA polymerase beta forms a ring which encircles duplex DNA. Each monomer contains three domains of identical topology and DNA clamp fold. 118 -308418 pfam02769 AIRS_C AIR synthase related protein, C-terminal domain. This family includes Hydrogen expression/formation protein HypE, AIR synthases EC:6.3.3.1, FGAM synthase EC:6.3.5.3 and selenide, water dikinase EC:2.7.9.3. The function of the C-terminal domain of AIR synthase is unclear, but the cleft formed between N and C domains is postulated as a sulphate binding site. 152 -308419 pfam02770 Acyl-CoA_dh_M Acyl-CoA dehydrogenase, middle domain. Central domain of Acyl-CoA dehydrogenase has a beta-barrel fold. 95 -335081 pfam02771 Acyl-CoA_dh_N Acyl-CoA dehydrogenase, N-terminal domain. The N-terminal domain of Acyl-CoA dehydrogenase is an all-alpha domain. 112 -335082 pfam02772 S-AdoMet_synt_M S-adenosylmethionine synthetase, central domain. The three domains of S-adenosylmethionine synthetase have the same alpha+beta fold. 117 -335083 pfam02773 S-AdoMet_synt_C S-adenosylmethionine synthetase, C-terminal domain. The three domains of S-adenosylmethionine synthetase have the same alpha+beta fold. 138 -335084 pfam02774 Semialdhyde_dhC Semialdehyde dehydrogenase, dimerization domain. This Pfam entry contains the following members: N-acetyl-glutamine semialdehyde dehydrogenase (AgrC) Aspartate-semialdehyde dehydrogenase. 165 -335085 pfam02775 TPP_enzyme_C Thiamine pyrophosphate enzyme, C-terminal TPP binding domain. 151 -308425 pfam02776 TPP_enzyme_N Thiamine pyrophosphate enzyme, N-terminal TPP binding domain. 169 -335086 pfam02777 Sod_Fe_C Iron/manganese superoxide dismutases, C-terminal domain. superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and molecular oxygen. Three evolutionarily distinct families of SODs are known, of which the Mn/Fe-binding family is one. In humans, there is a cytoplasmic Cu/Zn SOD, and a mitochondrial Mn/Fe SOD. C-terminal domain is a mixed alpha/beta fold. 102 -308427 pfam02778 tRNA_int_endo_N tRNA intron endonuclease, N-terminal domain. Members of this family cleave pre tRNA at the 5' and 3' splice sites to release the intron EC:3.1.27.9. 67 -335087 pfam02779 Transket_pyr Transketolase, pyrimidine binding domain. This family includes transketolase enzymes, pyruvate dehydrogenases, and branched chain alpha-keto acid decarboxylases. 173 -335088 pfam02780 Transketolase_C Transketolase, C-terminal domain. The C-terminal domain of transketolase has been proposed as a regulatory molecule binding site. 124 -335089 pfam02781 G6PD_C Glucose-6-phosphate dehydrogenase, C-terminal domain. 289 -308430 pfam02782 FGGY_C FGGY family of carbohydrate kinases, C-terminal domain. This domain adopts a ribonuclease H-like fold and is structurally related to the N-terminal domain. 198 -308431 pfam02783 MCR_beta_N Methyl-coenzyme M reductase beta subunit, N-terminal domain. Methyl-coenzyme M reductase (MCR) is the enzyme responsible for microbial formation of methane. It is a hexamer composed of 2 alpha (pfam02249), 2 beta (this family), and 2 gamma (pfam02240) subunits with two identical nickel porphinoid active sites. The N-terminal domain has an alpha/beta ferredoxin-like fold. 182 -335090 pfam02784 Orn_Arg_deC_N Pyridoxal-dependent decarboxylase, pyridoxal binding domain. These pyridoxal-dependent decarboxylases acting on ornithine, lysine, arginine and related substrates This domain has a TIM barrel fold. 241 -335091 pfam02785 Biotin_carb_C Biotin carboxylase C-terminal domain. Biotin carboxylase is a component of the acetyl-CoA carboxylase multi-component enzyme which catalyzes the first committed step in fatty acid synthesis in animals, plants and bacteria. Most of the active site residues reported in reference are in this C-terminal domain. 108 -280881 pfam02786 CPSase_L_D2 Carbamoyl-phosphate synthase L chain, ATP binding domain. Carbamoyl-phosphate synthase catalyzes the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. This important enzyme initiates both the urea cycle and the biosynthesis of arginine and/or pyrimidines. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. The small chain promotes the hydrolysis of glutamine to ammonia, which is used by the large chain to synthesize carbamoyl phosphate. See pfam00988. The small chain has a GATase domain in the carboxyl terminus. See pfam00117. The ATP binding domain (this one) has an ATP-grasp fold. 209 -335092 pfam02787 CPSase_L_D3 Carbamoyl-phosphate synthetase large chain, oligomerization domain. Carbamoyl-phosphate synthase catalyzes the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. 121 -308435 pfam02788 RuBisCO_large_N Ribulose bisphosphate carboxylase large chain, N-terminal domain. The N-terminal domain of RuBisCO large chain adopts a ferredoxin-like fold. 119 -308436 pfam02789 Peptidase_M17_N Cytosol aminopeptidase family, N-terminal domain. 127 -280885 pfam02790 COX2_TM Cytochrome C oxidase subunit II, transmembrane domain. The N-terminal domain of cytochrome C oxidase contains two transmembrane alpha-helices. 88 -335093 pfam02791 DDT DDT domain. The DDT domain is named after (DNA binding homeobox and Different Transcription factors) and is approximately 60 residues in length. Along with the WHIM motifs, it comprises an entirely alpha helical module found in diverse eukaryotic chromatin proteins. Based on the structure of Ioc3, this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. In particular, the DDT domain, in combination with the WHIM1 and WHIM2 motifs form the SLIDE domain binding pocket. 57 -308438 pfam02792 Mago_nashi Mago nashi protein. This family was originally identified in Drosophila and called mago nashi, it is a strict maternal effect, grandchildless-like, gene. The human homolog has been shown to interact with an RNA binding protein. An RNAi knockout of the C. elegans homolog causes masculinization of the germ line (Mog phenotype) hermaphrodites, suggesting it is involved in hermaphrodite germ-line sex determination. Mago nashi has been found to be part of the exon-exon junction complex that binds 20 nucleotides upstream of exon-exon junctions. 141 -335094 pfam02793 HRM Hormone receptor domain. This extracellular domain contains four conserved cysteines that probably for disulphide bridges. The domain is found in a variety of hormone receptors. It may be a ligand binding domain. 64 -308440 pfam02794 HlyC RTX toxin acyltransferase family. Members of this family are enzymes EC:2.3.1.-. involved in fatty acylation of the protoxins (HlyA) at lysine residues, thereby converting them to the active toxin. Acyl-acyl carrier protein (ACP) is the essential acyl donor. This family show a number of conserved residues that are possible candidates for participation in acyl transfer. Site-directed mutagenesis of the single conserved histidine residue in Escherichia coli HlyC resulted in complete inactivation of the enzyme. 124 -335095 pfam02796 HTH_7 Helix-turn-helix domain of resolvase. 45 -308442 pfam02797 Chal_sti_synt_C Chalcone and stilbene synthases, C-terminal domain. This domain of chalcone synthase is reported to be structurally similar to domains in thiolase and beta-ketoacyl synthase. The differences in activity are accounted for by differences in the N-terminal domain. 150 -335096 pfam02798 GST_N Glutathione S-transferase, N-terminal domain. Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain. 76 -335097 pfam02799 NMT_C Myristoyl-CoA:protein N-myristoyltransferase, C-terminal domain. The N and C-terminal domains of NMT are structurally similar, each adopting an acyl-CoA N-acyltransferase-like fold. 188 -308445 pfam02800 Gp_dh_C Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain. GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. C-terminal domain is a mixed alpha/antiparallel beta fold. 158 -308446 pfam02801 Ketoacyl-synt_C Beta-ketoacyl synthase, C-terminal domain. The structure of beta-ketoacyl synthase is similar to that of the thiolase family (pfam00108) and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. 118 -280896 pfam02803 Thiolase_C Thiolase, C-terminal domain. Thiolase is reported to be structurally related to beta-ketoacyl synthase (pfam00109), and also chalcone synthase. 123 -335098 pfam02805 Ada_Zn_binding Metal binding domain of Ada. The Escherichia coli Ada protein repairs O6-methylguanine residues and methyl phosphotriesters in DNA by direct transfer of the methyl group to a cysteine residue. This domain contains four conserved cysteines that form a zinc binding site. One of these cysteines is a methyl group acceptor. The methylated domain can then specifically bind to the ada box on a DNA duplex. 62 -335099 pfam02806 Alpha-amylase_C Alpha amylase, C-terminal all-beta domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain. 96 -335100 pfam02807 ATP-gua_PtransN ATP:guanido phosphotransferase, N-terminal domain. The N-terminal domain has an all-alpha fold. 67 -335101 pfam02809 UIM Ubiquitin interaction motif. This motif is called the ubiquitin interaction motif. One of the proteins containing this motif is a receptor for poly-ubiquitination chains for the proteasome. This motif has a pattern of conservation characteristic of an alpha helix. 17 -335102 pfam02810 SEC-C SEC-C motif. The SEC-C motif found in the C-terminus of the SecA protein, in the middle of some SWI2 ATPases and also solo in several proteins. The motif is predicted to chelate zinc with the CXC and C[HC] pairs that constitute the most conserved feature of the motif. It is predicted to be a potential nucleic acid binding domain. 19 -335103 pfam02811 PHP PHP domain. The PHP (Polymerase and Histidinol Phosphatase) domain is a putative phosphoesterase domain. 164 -335104 pfam02812 ELFV_dehydrog_N Glu/Leu/Phe/Val dehydrogenase, dimerization domain. 129 -280904 pfam02813 Retro_M Retroviral M domain. Retroviruses contain a small protein, MA (matrix), which forms a protein lining immediately beneath the phospholipid membrane of the mature virus particle. MA is located in the N-terminal region of the Gag precursor polyprotein. The N-terminal segment of MA proteins directs the Gag protein to the plasma membrane where budding takes place, and has been called the M domain. This domain forms an alpha helical bundle structure. 86 -335105 pfam02814 UreE_N UreE urease accessory protein, N-terminal domain. UreE is a urease accessory protein. Urease pfam00449 hydrolyzes urea into ammonia and carbamic acid. 55 -335106 pfam02815 MIR MIR domain. The MIR (protein mannosyltransferase, IP3R and RyR) domain is a domain that may have a ligand transferase function. 185 -335107 pfam02816 Alpha_kinase Alpha-kinase family. This family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional kinases. The family contains myosin heavy chain kinases and Elongation Factor-2 kinase and a bifunctional ion channel. This family is known as the alpha-kinase family. The structure of the kinase domain revealed unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. 184 -335108 pfam02817 E3_binding e3 binding domain. This family represents a small domain of the E2 subunit of 2-oxo-acid dehydrogenases responsible for the binding of the E3 subunit. 35 -335109 pfam02818 PPAK PPAK motif. These motifs are found in the PEVK region of titin. 27 -111689 pfam02819 Toxin_9 Spider toxin. This family of spider neurotoxins are thought to be calcium ion channel inhibitors. 43 -335110 pfam02820 MBT mbt repeat. The function of this repeat is unknown, but is found in a number of nuclear proteins such as drosophila sex comb on midleg protein. The repeat is found in up to four copies. The repeat contains a completely conserved glutamate at its amino terminus that may be important for function. 65 -308460 pfam02821 Staphylokinase Staphylokinase/Streptokinase family. 117 -335111 pfam02822 Antistasin Antistasin family. Members of this family are inhibitors of trypsin family proteases. This domain is highly disulphide bonded. The domain is also found in some large extracellular proteins in multiple copies. 26 -308462 pfam02823 ATP-synt_DE_N ATP synthase, Delta/Epsilon chain, beta-sandwich domain. Part of the ATP synthase CF(1). These subunits are part of the head unit of the ATP synthase. The subunit is called epsilon in bacteria and delta in mitochondria. In bacteria the delta (D) subunit is equivalent to the mitochondrial Oligomycin sensitive subunit, OSCP (pfam00213). 80 -335112 pfam02824 TGS TGS domain. The TGS domain is named after ThrRS, GTPase, and SpoT. Interestingly, TGS domain was detected also at the amino terminus of the uridine kinase from the spirochaete Treponema pallidum (but not any other organism, including the related spirochaete Borrelia burgdorferi). TGS is a small domain that consists of ~50 amino acid residues and is predicted to possess a predominantly beta-sheet structure. There is no direct information on the functions of the TGS domain, but its presence in two types of regulatory proteins (the GTPases and guanosine polyphosphate phosphohydrolases/synthetases) suggests a ligand (most likely nucleotide)-binding, regulatory role. 60 -335113 pfam02825 WWE WWE domain. The WWE domain is named after three of its conserved residues and is predicted to mediate specific protein- protein interactions in ubiquitin and ADP ribose conjugation systems. 67 -335114 pfam02826 2-Hacid_dh_C D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain. This domain is inserted into the catalytic domain, the large dehydrogenase and D-lactate dehydrogenase families in SCOP. N-terminal portion of which is represented by family pfam00389. 176 -308466 pfam02827 PKI cAMP-dependent protein kinase inhibitor. Members of this family are extremely potent competitive inhibitors of camp-dependent protein kinase activity. These proteins interact with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains. 69 -335115 pfam02828 L27 L27 domain. The L27 domain is found in receptor targeting proteins Lin-2 and Lin-7. 52 -335116 pfam02829 3H 3H domain. This domain is predicted to be a small molecule binding domain, based on its occurrence with other domains. The domain is named after its three conserved histidine residues. 97 -308469 pfam02830 V4R V4R domain. The V4R (vinyl 4 reductase) domain is a predicted small molecular binding domain, that may bind to hydrocarbons. 62 -280921 pfam02831 gpW gpW. gpW is a 68 residue protein known to be present in phage particles. Extracts of phage-infected cells lacking gpW contain DNA-filled heads, and active tails, but no infectious virions. gpW is required for the addition of gpFII to the head, which is, in turn, required for the attachment of tails. Since gpFII and tails are known to be attached at the connector, gpW is also likely to assemble at this site. The addition of gpW to filled heads increases the DNase resistance of the packaged DNA, suggesting that gpW either forms a plug at the connector to prevent ejection of the DNA, or binds directly to the DNA. The large number of positively charged residues in gpW (its calculated pI is 10.8) is consistent with a role in DNA interaction. 59 -280922 pfam02832 Flavi_glycop_C Flavivirus glycoprotein, immunoglobulin-like domain. 97 -335117 pfam02833 DHHA2 DHHA2 domain. This domain is often found adjacent to the DHH domain pfam01368 and is called DHHA2 for DHH associated domain. This domain is diagnostic of DHH subfamily 2 members. The domain is about 120 residues long and contains a conserved DXK motif at its amino terminus. 123 -335118 pfam02834 LigT_PEase LigT like Phosphoesterase. Members of this family are bacterial and archaeal RNA ligases that are able to ligate tRNA half molecules containing 2',3'-cyclic phosphate and 5' hydroxyl termini to products containing the 2',5' phosphodiester linkage. Each member of this family contains an internal duplication, each of which contains an HXTX motif that defines the family. The structure of a related protein is known. They belong to the 2H phosphoesterase superfamily. They share a common active site, characterized by two conserved histidines, with vertebrate myelin-associated 2',3' phosphodiesterases, plant Arabidopsis thaliana CPDases and several several bacteria and virus proteins. 87 -280925 pfam02836 Glyco_hydro_2_C Glycosyl hydrolases family 2, TIM barrel domain. This family contains beta-galactosidase, beta-mannosidase and beta-glucuronidase activities. 302 -308472 pfam02837 Glyco_hydro_2_N Glycosyl hydrolases family 2, sugar binding domain. This family contains beta-galactosidase, beta-mannosidase and beta-glucuronidase activities and has a jelly-roll fold. The domain binds the sugar moiety during the sugar-hydrolysis reaction. 169 -335119 pfam02838 Glyco_hydro_20b Glycosyl hydrolase family 20, domain 2. This domain has a zincin-like fold. 122 -335120 pfam02839 CBM_5_12 Carbohydrate binding domain. This short domain is found in many different glycosyl hydrolase enzymes and is presumed to have a carbohydrate binding function. The domain has six aromatic groups that may be important for binding. 25 -335121 pfam02840 Prp18 Prp18 domain. The splicing factor Prp18 is required for the second step of pre-mRNA splicing. The structure of a large fragment of the Saccharomyces cerevisiae Prp18 is known. This fragment is fully active in yeast splicing in vitro and includes the sequences of Prp18 that have been evolutionarily conserved. The core structure consists of five alpha-helices that adopt a novel fold. The most highly conserved region of Prp18, a nearly invariant stretch of 19 aa, forms part of a loop between two alpha-helices and may interact with the U5 small nuclear ribonucleoprotein particles. 137 -308475 pfam02841 GBP_C Guanylate-binding protein, C-terminal domain. Transcription of the anti-viral guanylate-binding protein (GBP) is induced by interferon-gamma during macrophage induction. This family contains GBP1 and GPB2, both GTPases capable of binding GTP, GDP and GMP. 297 -335122 pfam02843 GARS_C Phosphoribosylglycinamide synthetase, C domain. Phosphoribosylglycinamide synthetase catalyzes the second step in the de novo biosynthesis of purine. The reaction catalyzed by Phosphoribosylglycinamide synthetase is the ATP- dependent addition of 5-phosphoribosylamine to glycine to form 5'phosphoribosylglycinamide. This domain is related to the C-terminal domain of biotin carboxylase/carbamoyl phosphate synthetase (see pfam02787). 92 -335123 pfam02844 GARS_N Phosphoribosylglycinamide synthetase, N domain. Phosphoribosylglycinamide synthetase catalyzes the second step in the de novo biosynthesis of purine. The reaction catalyzed by Phosphoribosylglycinamide synthetase is the ATP- dependent addition of 5-phosphoribosylamine to glycine to form 5'phosphoribosylglycinamide. This domain is related to the N-terminal domain of biotin carboxylase/carbamoyl phosphate synthetase (see pfam00289). This domain is structurally related to the PreATP-grasp domain. 101 -335124 pfam02845 CUE CUE domain. CUE domains have been shown to bind ubiquitin. It has been suggested that CUE domains are related to pfam00627 and this has been confirmed by the structure of the domain. CUE domains also occur in two protein of the IL-1 signal transduction pathway, tollip and TAB2. 42 -335125 pfam02847 MA3 MA3 domain. Domain in DAP-5, eIF4G, MA-3 and other proteins. Highly alpha-helical. May contain repeats and/or regions similar to MIF4G domains. 113 -335126 pfam02852 Pyr_redox_dim Pyridine nucleotide-disulphide oxidoreductase, dimerization domain. This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. 109 -280935 pfam02854 MIF4G MIF4G domain. MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. 204 -335127 pfam02861 Clp_N Clp amino terminal domain, pathogenicity island component. This short domain is found in one or two copies at the amino terminus of ClpA and ClpB proteins from bacteria and eukaryotes. The function of these domains is uncertain but they may form a protein binding site. In many bacterial species, including E.coli, this region represents the N-terminus of one of the key components of the pathogenicity island complex that injects toxin from one bacterium into another. 53 -335128 pfam02862 DDHD DDHD domain. The DDHD domain is 180 residues long and contains four conserved residues that may form a metal binding site. The domain is named after these four residues. This pattern of conservation of metal binding residues is often seen in phosphoesterase domains. This domain is found in retinal degeneration B proteins, as well as a family of probable phospholipases. It has been shown that this domain is found in a longer C terminal region that binds to PYK2 tyrosine kinase. These proteins have been called N-terminal domain-interacting receptor (Nir1, Nir2 and Nir3). This suggests that this region is involved in functionally important interactions in other members of this family. 241 -335129 pfam02863 Arg_repressor_C Arginine repressor, C-terminal domain. 68 -308483 pfam02864 STAT_bind STAT protein, DNA binding domain. STAT proteins (Signal Transducers and Activators of Transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. This family represents the DNA binding domain of STAT, which has an ig-like fold. STAT proteins also include an SH2 domain pfam00017. 246 -335130 pfam02865 STAT_int STAT protein, protein interaction domain. STAT proteins (Signal Transducers and Activators of Transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. STAT proteins also include an SH2 domain pfam00017. 122 -280941 pfam02866 Ldh_1_C lactate/malate dehydrogenase, alpha/beta C-terminal domain. L-lactate dehydrogenases are metabolic enzymes which catalyze the conversion of L-lactate to pyruvate, the last step in anaerobic glycolysis. L-2-hydroxyisocaproate dehydrogenases are also members of the family. Malate dehydrogenases catalyze the interconversion of malate to oxaloacetate. The enzyme participates in the citric acid cycle. L-lactate dehydrogenase is also found as a lens crystallin in bird and crocodile eyes. 173 -335131 pfam02867 Ribonuc_red_lgC Ribonucleotide reductase, barrel domain. 522 -308486 pfam02868 Peptidase_M4_C Thermolysin metallopeptidase, alpha-helical domain. 167 -308487 pfam02870 Methyltransf_1N 6-O-methylguanine DNA methyltransferase, ribonuclease-like domain. 77 -308488 pfam02872 5_nucleotid_C 5'-nucleotidase, C-terminal domain. 153 -335132 pfam02873 MurB_C UDP-N-acetylenolpyruvoylglucosamine reductase, C-terminal domain. Members of this family are UDP-N-acetylenolpyruvoylglucosamine reductase enzymes EC:1.1.1.158. This enzyme is involved in the biosynthesis of peptidoglycan. 99 -335133 pfam02874 ATP-synt_ab_N ATP synthase alpha/beta family, beta-barrel domain. This family includes the ATP synthase alpha and beta subunits the ATP synthase associated with flagella. 69 -308491 pfam02875 Mur_ligase_C Mur ligase family, glutamate ligase domain. This family contains a number of related ligase enzymes which have EC numbers 6.3.2.*. This family includes: MurC, MurD, MurE, MurF, Mpl, and FolC. MurC, MurD, Mure and MurF catalyze consecutive steps in the synthesis of peptidoglycan. Peptidoglycan consists of a sheet of two sugar derivatives, with one of these N-acetylmuramic acid attaching to a small pentapeptide. The pentapeptide is is made of L-alanine, D-glutamic acid, Meso-diaminopimelic acid and D-alanyl alanine. The peptide moiety is synthesized by successively adding these amino acids to UDP-N-acetylmuramic acid. MurC transfers the L-alanine, MurD transfers the D-glutamate, MurE transfers the diaminopimelic acid, and MurF transfers the D-alanyl alanine. This family also includes Folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate. 87 -280949 pfam02876 Stap_Strp_tox_C Staphylococcal/Streptococcal toxin, beta-grasp domain. 101 -335134 pfam02877 PARP_reg Poly(ADP-ribose) polymerase, regulatory domain. Poly(ADP-ribose) polymerase catalyzes the covalent attachment of ADP-ribose units from NAD+ to itself and to a limited number of other DNA binding proteins, which decreases their affinity for DNA. Poly(ADP-ribose) polymerase is a regulatory component induced by DNA damage. The carboxyl-terminal region is the most highly conserved region of the protein. Experiments have shown that a carboxyl 40 kDa fragment is still catalytically active. 136 -308493 pfam02878 PGM_PMM_I Phosphoglucomutase/phosphomannomutase, alpha/beta/alpha domain I. 138 -335135 pfam02879 PGM_PMM_II Phosphoglucomutase/phosphomannomutase, alpha/beta/alpha domain II. 102 -335136 pfam02880 PGM_PMM_III Phosphoglucomutase/phosphomannomutase, alpha/beta/alpha domain III. 113 -335137 pfam02881 SRP54_N SRP54-type protein, helical bundle domain. 74 -308497 pfam02882 THF_DHG_CYH_C Tetrahydrofolate dehydrogenase/cyclohydrolase, NAD(P)-binding domain. 160 -335138 pfam02883 Alpha_adaptinC2 Adaptin C-terminal domain. Alpha adaptin is a heterotetramer which regulates clathrin-bud formation. The carboxyl-terminal appendage of the alpha subunit regulates translocation of endocytic accessory proteins to the bud site. This ig-fold domain is found in alpha, beta and gamma adaptins. 112 -335139 pfam02884 Lyase_8_C Polysaccharide lyase family 8, C-terminal beta-sandwich domain. This family consists of a group of secreted bacterial lyase enzymes EC:4.2.2.1 capable of acting on hyaluronan and chondroitin in the extracellular matrix of host tissues, contributing to the invasive capacity of the pathogen. 66 -335140 pfam02885 Glycos_trans_3N Glycosyl transferase family, helical bundle domain. This family includes anthranilate phosphoribosyltransferase (TrpD), thymidine phosphorylase. All these proteins can transfer a phosphorylated ribose substrate. 62 -280959 pfam02886 LBP_BPI_CETP_C LBP / BPI / CETP family, C-terminal domain. The N and C terminal domains of the LBP/BPI/CETP family are structurally similar. 238 -335141 pfam02887 PK_C Pyruvate kinase, alpha/beta domain. As well as being found in pyruvate kinase this family is found as an isolated domain in some bacterial proteins. 114 -308502 pfam02888 CaMBD Calmodulin binding domain. Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through this the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. The structure of this domain complexed with CaM is known. This domain forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. 73 -308503 pfam02889 Sec63 Sec63 Brl domain. This domain (also known as the Brl domain) is required for assembly of functional endoplasmic reticulum translocons. 307 -308504 pfam02890 DUF226 Borrelia family of unknown function DUF226. This family of proteins are found in Borrelia. The proteins are about 190 amino acids long and have no known function. 139 -308505 pfam02891 zf-MIZ MIZ/SP-RING zinc finger. This domain has SUMO (small ubiquitin-like modifier) ligase activity and is involved in DNA repair and chromosome organisation. 50 -335142 pfam02892 zf-BED BED zinc finger. 43 -308507 pfam02893 GRAM GRAM domain. The GRAM domain is found in in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Note the alignment is lacking the last two beta strands and alpha helix. 106 -280967 pfam02894 GFO_IDH_MocA_C Oxidoreductase family, C-terminal alpha/beta domain. This family of enzymes utilize NADP or NAD. This family is called the GFO/IDH/MOCA family in swiss-prot. 114 -308508 pfam02895 H-kinase_dim Signal transducing histidine kinase, homodimeric domain. This helical bundle domain is the homodimer interface of the signal transducing histidine kinase family. 67 -335143 pfam02896 PEP-utilizers_C PEP-utilising enzyme, TIM barrel domain. 292 -308509 pfam02897 Peptidase_S9_N Prolyl oligopeptidase, N-terminal beta-propeller domain. This unusual 7-stranded beta-propeller domain protects the catalytic triad of prolyl oligopeptidase (see pfam00326), excluding larger peptides and proteins from proteolysis in the cytosol. 414 -335144 pfam02898 NO_synthase Nitric oxide synthase, oxygenase domain. 361 -308511 pfam02899 Phage_int_SAM_1 Phage integrase, N-terminal SAM-like domain. 84 -335145 pfam02900 LigB Catalytic LigB subunit of aromatic ring-opening dioxygenase. 260 -335146 pfam02901 PFL-like Pyruvate formate lyase-like. This family of enzymes includes pyruvate formate lyase, choline trimethylamine lyase, glycerol dehydratase, 4-hydroxyphenylacetate decarboxylase, and benzylsuccinate synthase. 644 -308514 pfam02902 Peptidase_C48 Ulp1 protease family, C-terminal catalytic domain. This domain contains the catalytic triad Cys-His-Asn. 203 -335147 pfam02903 Alpha-amylase_N Alpha amylase, N-terminal ig-like domain. 120 -308516 pfam02905 EBV-NA1 Epstein Barr virus nuclear antigen-1, DNA-binding domain. This domain has a ferredoxin-like fold. 141 -308517 pfam02906 Fe_hyd_lg_C Iron only hydrogenase large subunit, C-terminal domain. 277 -111760 pfam02907 Peptidase_S29 Hepatitis C virus NS3 protease. Hepatitis C virus NS3 protein is a serine protease which has a trypsin-like fold. The non-structural (NS) protein NS3 is one of the NS proteins involved in replication of the HCV genome. NS2-3 proteinase, a zinc-dependent enzyme, performs a single proteolytic cut to release the N-terminus of NS3. The action of NS3 proteinase (NS3P), which resides in the N-terminal one-third of the NS3 protein, then yields all remaining non-structural proteins. The C-terminal two-thirds of the NS3 protein contain a helicase. The functional relationship between the proteinase and helicase domains is unknown. NS3 has a structural zinc-binding site and requires cofactor NS4A. 149 -335148 pfam02909 TetR_C Tetracyclin repressor, C-terminal all-alpha domain. 144 -335149 pfam02910 Succ_DH_flav_C Fumarate reductase flavoprotein C-term. This family contains fumarate reductases, succinate dehydrogenases and L-aspartate oxidases. 129 -335150 pfam02911 Formyl_trans_C Formyl transferase, C-terminal domain. 97 -335151 pfam02912 Phe_tRNA-synt_N Aminoacyl tRNA synthetase class II, N-terminal domain. 67 -280983 pfam02913 FAD-oxidase_C FAD linked oxidases, C-terminal domain. This domain has a ferredoxin-like fold. 247 -251616 pfam02914 DDE_2 Bacteriophage Mu transposase. 221 -308522 pfam02915 Rubrerythrin Rubrerythrin. This domain has a ferritin-like fold. 137 -335152 pfam02916 DNA_PPF DNA polymerase processivity factor. 116 -111768 pfam02917 Pertussis_S1 Pertussis toxin, subunit 1. 239 -280986 pfam02918 Pertussis_S2S3 Pertussis toxin, subunit 2 and 3, C-terminal domain. 109 -335153 pfam02919 Topoisom_I_N Eukaryotic DNA topoisomerase I, DNA binding fragment. Topoisomerase I promotes the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. This family may be more than one structural domain. 213 -308524 pfam02920 Integrase_DNA DNA binding domain of tn916 integrase. 58 -335154 pfam02921 UCR_TM Ubiquinol cytochrome reductase transmembrane region. Each subunit of the cytochrome bc1 complex provides a single helix (this family) to make up the transmembrane region of the complex. 66 -308526 pfam02922 CBM_48 Carbohydrate-binding module 48 (Isoamylase N-terminal domain). This domain is found in a range of enzymes that act on branched substrates - isoamylase, pullulanase and branching enzyme. This family also contains the beta subunit of 5' AMP activated kinase. 79 -280991 pfam02923 BamHI Restriction endonuclease BamHI. 157 -308527 pfam02924 HDPD Bacteriophage lambda head decoration protein D. 114 -280993 pfam02925 gpD Bacteriophage scaffolding protein D. 141 -335155 pfam02926 THUMP THUMP domain. The THUMP domain is named after after thiouridine synthases, methylases and PSUSs. The THUMP domain consists of about 110 amino acid residues. The structure of ThiI reveals that the THUMP has a fold unlike that of previously characterized RNA-binding domains. It is predicted that this domain is an RNA-binding domain The THUMP domain probably functions by delivering a variety of RNA modification enzymes to their targets. 144 -308529 pfam02927 CelD_N Cellulase N-terminal ig-like domain. 84 -335156 pfam02928 zf-C5HC2 C5HC2 zinc finger. Predicted zinc finger with eight potential zinc ligand binding residues. This domain is found in Jumonji. This domain may have a DNA binding function. 52 -335157 pfam02929 Bgal_small_N Beta galactosidase small chain. This domain comprises the small chain of dimeric beta-galactosidases EC:3.2.1.23. This domain is also found in single chain beta-galactosidase. 212 -335158 pfam02931 Neur_chan_LBD Neurotransmitter-gated ion-channel ligand binding domain. This family is the extracellular ligand binding domain of these ion channels. This domain forms a pentameric arrangement in the known structure. 215 -308533 pfam02932 Neur_chan_memb Neurotransmitter-gated ion-channel transmembrane region. This family includes the four transmembrane helices that form the ion channel. 232 -335159 pfam02933 CDC48_2 Cell division protein 48 (CDC48), domain 2. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the C-terminus. The VAT-N domain found in AAA ATPases pfam00004 is a substrate 185-residue recognition domain. 63 -335160 pfam02934 GatB_N GatB/GatE catalytic domain. This domain is found in the GatB and GatE proteins. 283 -335161 pfam02935 COX7C Cytochrome c oxidase subunit VIIc. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIIc. The yeast member of this family is called COX VIII. 57 -335162 pfam02936 COX4 Cytochrome c oxidase subunit IV. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit IV. The Dictyostelium member of this family is called COX VI. The yeast protein MTC3 appears to be the yeast COX IV subunit. 132 -335163 pfam02937 COX6C Cytochrome c oxidase subunit VIc. Cytochrome c oxidase, a 13 sub-unit complex, EC:1.9.3.1 is the terminal oxidase in the mitochondrial electron transport chain. This family is composed of cytochrome c oxidase subunit VIc. 70 -281005 pfam02938 GAD GAD domain. This domain is found in some members of the GatB and aspartyl tRNA synthetases. 94 -335164 pfam02939 UcrQ UcrQ family. The ubiquinol-cytochrome C reductase complex (cytochrome bc1 complex) is a respiratory multienzyme complex. This family represents the 9.5 kDa subunit of the complex. 77 -281007 pfam02940 mRNA_triPase mRNA capping enzyme, beta chain. The beta chain of mRNA capping enzyme has triphosphatase activity. The function of the capping enzyme also depends on the guanylyltransferase activity conferred by the alpha chain (see pfam01331) 221 -308540 pfam02941 FeThRed_A Ferredoxin thioredoxin reductase variable alpha chain. 67 -281009 pfam02942 Flu_B_NS1 Influenza B non-structural protein (NS1). A specific region of the influenza B virus NS1 protein, which includes part of its effector domain, blocks the covalent linkage of ISG15 to its target proteins both in vitro and in infected cells. Of the several hundred proteins induced by interferon (IFN) alpha/beta, the ubiquitin-like ISG15 protein is one of the most predominant. Influenza A virus employs a different strategy: its NS1 protein does not bind the ISG15 protein, but little or no ISG15 protein is produced during infection. 247 -335165 pfam02943 FeThRed_B Ferredoxin thioredoxin reductase catalytic beta chain. 106 -308542 pfam02944 BESS BESS motif. The BESS motif is named after the proteins in which it is found (BEAF, Suvar(3)7 and Stonewall). The motif is 40 amino acid residues long and is composed of two predicted alpha helices. Based on the protein in which it is found and the presence of conserved positively charged residues it is predicted to be a DNA binding domain. This domain appears to be specific to drosophila. 35 -308543 pfam02945 Endonuclease_7 Recombination endonuclease VII. 82 -308544 pfam02946 GTF2I GTF2I-like repeat. This region of sequence similarity is found up to six times in a variety of proteins including GTF2I. It has been suggested that this may be a DNA binding domain. 73 -281014 pfam02947 Flt3_lig flt3 ligand. The flt3 ligand is a short chain cytokine with a 4 helical bundle fold. 131 -308545 pfam02948 Amelogenin Amelogenin. Amelogenins play a role in biomineralisation. They seem to regulate the formation of crystallites during the secretory stage of tooth enamel development. thought to play a major role in the structural organisation and mineralisation of developing enamel. They are found in the extracellular matrix. Mutations in X-chromosomal amelogenin can cause Amelogenesis imperfecta. 173 -251636 pfam02949 7tm_6 7tm Odorant receptor. This family is composed of 7 transmembrane receptors, that are probably drosophila odorant receptors. 313 -308546 pfam02950 Conotoxin Conotoxin. Conotoxins are small snail toxins that block ion channels. 74 -335166 pfam02951 GSH-S_N Prokaryotic glutathione synthetase, N-terminal domain. 116 -335167 pfam02952 Fucose_iso_C L-fucose isomerase, C-terminal domain. 142 -335168 pfam02953 zf-Tim10_DDP Tim10/DDP family zinc finger. Putative zinc binding domain with four conserved cysteine residues. This domain is found in the human disease protein TIMM8A. Members of this family such as Tim9 and Tim10 are involved in mitochondrial protein import. Members of this family seem to be localized to the mitochondrial intermembrane space. 62 -281020 pfam02954 HTH_8 Bacterial regulatory protein, Fis family. 40 -308550 pfam02955 GSH-S_ATP Prokaryotic glutathione synthetase, ATP-grasp domain. 175 -281022 pfam02956 TT_ORF1 TT viral orf 1. TT virus (TTV), isolated initially from a Japanese patient with hepatitis of unknown aetiology, has since been found to infect both healthy and diseased individuals and numerous prevalence studies have raised questions about its role in unexplained hepatitis. ORF1 is a large 750 residue protein. The N-terminal half of this protein corresponds to the capsid protein. 525 -251643 pfam02957 TT_ORF2 TT viral ORF2. TT virus (TTV), isolated initially from a Japanese patient with hepatitis of unknown aetiology, has since been found to infect both healthy and diseased individuals, and numerous prevalence studies have raised questions about its role in unexplained hepatitis. ORF2 is a 150 residue protein. This family also includes the VP2 protein from the chicken anaemia virus which is a gyrovirus. Gyroviruses are small circular single stranded viruses. The proteins contain a set of conserved cysteine and histidine residues suggesting a zinc binding domain. 103 -308551 pfam02958 EcKinase Ecdysteroid kinase. This family includes ecdysteroid 22-kinase, an enzyme responsible for the phosphorylation of ecdysteroids (insect growth and moulting hormones) at C-22, to form physiologically inactive ecdysteroid 22-phosphates. 293 -281024 pfam02959 Tax HTLV Tax. Human T-cell leukaemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukaemia (ATL), as well as for tropical spastic paraparesis (TSP) and HTLV-I associate myelopathy (HAM). A biological understanding of the involvement of HTLV-I and in ATL has focused significantly on the workings of the virally-encoded 40 kDa phospho-oncoprotein, Tax. Tax is a transcriptional activator. Its ability to modulate the expression and function of many cellular genes has been reasoned to be a major contributory mechanism explaining HTLV-I-mediated transformation of cells. In activating cellular gene expression, Tax impinges upon several cellular signal-transduction pathways, including those for CREB/ATF and NF-kappaB. 222 -281025 pfam02960 K1 K1 glycoprotein. 120 -308552 pfam02961 BAF Barrier to autointegration factor. The BAF protein has a SAM-domain-like bundle of orthogonally packed alpha-hairpins - one classic and one pseudo helix-hairpin-helix motif. The protein is involved in the prevention of retroviral DNA integration. 86 -281027 pfam02962 CHMI 5-carboxymethyl-2-hydroxymuconate isomerase. 125 -335169 pfam02963 EcoRI Restriction endonuclease EcoRI. 257 -281029 pfam02964 MeMO_Hyd_G Methane monooxygenase, hydrolase gamma chain. 161 -335170 pfam02965 Met_synt_B12 Vitamin B12 dependent methionine synthase, activation domain. 273 -308554 pfam02966 DIM1 Mitosis protein DIM1. 133 -281032 pfam02969 TAF TATA box binding protein associated factor (TAF). TAF proteins adopt a histone-like fold. 66 -335171 pfam02970 TBCA Tubulin binding cofactor A. 84 -335172 pfam02971 FTCD Formiminotransferase domain. 144 -145886 pfam02972 Phycoerythr_ab Phycoerythrin, alpha/beta chain. This family represents the non-globular alpha and beta chain components of phycoerythrin. The structure is a long beta-hairpin and a single alpha-helix. 57 -281035 pfam02973 Sialidase Sialidase, N-terminal domain. 188 -335173 pfam02974 Inh Protease inhibitor Inh. The Inh inhibitor is secreted into the periplasm where its presumed physiological function is to protect periplasmic proteins against the action of secreted proteases. A range of proteases including A, B and C from E. chrysanthemi, alkaline protease from Pseudomonas aeruginosa and the 50 kDa protease from Serratia marcescens are inhibited. 95 -335174 pfam02975 Me-amine-dh_L Methylamine dehydrogenase, L chain. 113 -335175 pfam02976 MutH DNA mismatch repair enzyme MutH. 103 -251652 pfam02977 CarbpepA_inh Carboxypeptidase A inhibitor. 40 -335176 pfam02978 SRP_SPB Signal peptide binding domain. 95 -335177 pfam02979 NHase_alpha Nitrile hydratase, alpha chain. 178 -308562 pfam02980 FokI_C Restriction endonuclease FokI, catalytic domain. 136 -281042 pfam02981 FokI_N Restriction endonuclease FokI, recognition domain. 135 -202497 pfam02982 Scytalone_dh Scytalone dehydratase. Scytalone dehydratases are structurally related to the NTF2 family (see pfam02136). 160 -308563 pfam02983 Pro_Al_protease Alpha-lytic protease prodomain. 57 -335178 pfam02984 Cyclin_C Cyclin, C-terminal domain. Cyclins regulate cyclin dependent kinases (CDKs). Human CCNO is a Uracil-DNA glycosylase that is related to other cyclins. Cyclins contain two domains of similar all-alpha fold, of which this family corresponds with the C-terminal domain. 119 -335179 pfam02985 HEAT HEAT repeat. The HEAT repeat family is related to armadillo/beta-catenin-like repeats (see pfam00514). 31 -308566 pfam02986 Fn_bind Fibronectin binding repeat. The ability of bacteria to bind fibronectin is thought to enable the colonisation of wound tissue and blood clots. The fibronectin binding repeat is found in bacterial fibronectin binding proteins and serum opacity factor. Bacterial fibronectin binding proteins are surface proteins that covalently link to the bacterial cell wall, mediate adherence of the bacteria to host cells and trigger the fibronectin/integrin-mediated uptake of bacteria by host cells. Each fibronectin binding repeat is an array of short motifs that bind to fibronectin type I domains. Fibronectin binding repeats are natively unfolded in the absence of fibronectin and are thought to adopt a well-defined conformation (tandem beta-zipper) upon binding. 33 -111833 pfam02987 LEA_4 Late embryogenesis abundant protein. Different types of LEA proteins are expressed at different stages of late embryogenesis in higher plant seed embryos and under conditions of dehydration stress. The function of these proteins is unknown. 44 -190495 pfam02988 PLA2_inh Phospholipase A2 inhibitor. 83 -281047 pfam02989 DUF228 Lyme disease proteins of unknown function. 182 -335180 pfam02990 EMP70 Endomembrane protein 70. 512 -281049 pfam02991 Atg8 Autophagy protein Atg8 ubiquitin like. Light chain 3 is proposed to function primarily as a subunit of microtubule associated proteins 1A and 1B and that its expression may regulate microtubule binding activity. Autophagy is generally known as a process involved in the degradation of bulk cytoplasmic components that are non-specifically sequestered into an autophagosome, where they are sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. The yeast proteins are involved in the autophagosome, and Atg8 binds Atg19, via its N-terminus and the C-terminus of Atg19. 104 -335181 pfam02992 Transposase_21 Transposase family tnp2. 211 -281051 pfam02993 MCPVI Minor capsid protein VI. This minor capsid protein may act as a link between the external capsid and the internal DNA-protein core. The C-terminal 11 residues may function as a protease cofactor leading to enzyme activation. 225 -335182 pfam02994 Transposase_22 L1 transposable element RBD-like domain. This entry represents the RBD-like domain. 98 -308570 pfam02995 DUF229 Protein of unknown function (DUF229). Members of this family are uncharacterized. They are 500-1200 amino acids in length and share a long region conservation that probably corresponds to several domains. The Go annotation for the protein indicates that it is involved in nematode larval development and has a positive regulation on growth rate. 496 -281054 pfam02996 Prefoldin Prefoldin subunit. This family comprises of several prefoldin subunits. The biogenesis of the cytoskeletal proteins actin and tubulin involves interaction of nascent chains of each of the two proteins with the oligomeric protein prefoldin (PFD) and their subsequent transfer to the cytosolic chaperonin CCT (chaperonin containing TCP-1). Electron microscopy shows that eukaryotic PFD, which has a similar structure to its archaeal counterpart, interacts with unfolded actin along the tips of its projecting arms. In its PFD-bound state, actin seems to acquire a conformation similar to that adopted when it is bound to CCT. 118 -111843 pfam02998 Lentiviral_Tat Lentiviral Tat protein. This family contains retroviral transactivating (Tat) proteins, from a variety of Lentiviruses. 86 -308571 pfam02999 Borrelia_orfD Borrelia orf-D family. Borrelia burgdorferi supercoiled plasmids encode multicopy tandem open reading frames called Orf-A, Orf-B, Orf-C and Orf-D. This family corresponds to Orf-D. The putative product of this gene has no known function. 100 -335183 pfam03000 NPH3 NPH3 family. Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in NPH3 disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay. 202 -308573 pfam03002 Somatostatin Somatostatin/Cortistatin family. Members of this family are hormones. Somatostatin inhibits the release of somatotropin. Cortistatin is a peptide that is related to the Somatostatins that is found to depresses neuronal electrical activity but, unlike somatostatin, induces low-frequency waves in the cerebral cortex and antagonises the effects of acetylcholine on hippocampal and cortical measures of excitability. 18 -281058 pfam03003 Pox_G9-A16 Pox virus entry-fusion-complex G9/A16. Pox_G9-A16 is a family of two of the eight entry-fusion complex proteins of pox viruses. the viral fusion proteins are components of the mature virion, MV, membrane. Extracellular enveloped virions (EVs), the infecting particles are MVs with an additional membrane that is opened or removed prior to the fusion of the MV and cell membrane during virus entry. G9 and A16 interact closely with each other and each is required for membrane fusion and virus entry as well as for interaction with A56/K2. 128 -308574 pfam03004 Transposase_24 Plant transposase (Ptta/En/Spm family). Transposase proteins are necessary for efficient DNA transposition. This family includes various plant transposases from the Ptta and En/Spm families. 137 -335184 pfam03006 HlyIII Haemolysin-III related. Members of this family are integral membrane proteins. This family includes a protein with hemolytic activity from Bacillus cereus. It has been proposed that YOL002c encodes a Saccharomyces cerevisiae protein that plays a key role in metabolic pathways that regulate lipid and phosphate metabolism. In eukaryotes, members are seven-transmembrane pass molecules found to encode functional receptors with a broad range of apparent ligand specificities, including progestin and adipoQ receptors, and hence have been named PAQR proteins. The mammalian members include progesterone binding proteins. Unlike the case with GPCR receptor proteins, the evolutionary ancestry of the members of this family can be traced back to the Archaea. This family belongs to the CREST superfamily, which are distantly related to GPCRs. 223 -281060 pfam03007 WES_acyltransf Wax ester synthase-like Acyl-CoA acyltransferase domain. This domain is found in wax ester synthase genes. In these proteins this domain catalyzes the CoA dependent acyltransferase reaction with fatty alcohols to form wax esters. 261 -335185 pfam03008 DUF234 Archaea bacterial proteins of unknown function. 96 -335186 pfam03009 GDPD Glycerophosphoryl diester phosphodiesterase family. E. coli has two sequence related isozymes of glycerophosphoryl diester phosphodiesterase (GDPD) - periplasmic and cytosolic. This family also includes agrocinopine synthase, the similarity to GDPD has been noted. This family appears to have weak but not significant matches to mammalian phospholipase C pfam00388, which suggests that this family may adopt a TIM barrel fold. 242 -281063 pfam03010 GP4 GP4. GP4 is a minor membrane-associated glycoproteins. This family contains envelope protein GP4 from equine arteritis virus. 152 -281064 pfam03011 PFEMP PFEMP DBL domain. PfEMP1 (Plasmodium falciparum erythrocyte membrane protein) has been identified as the rosetting ligand of the malaria parasite P. falciparum. Rosetting is the adhesion of infected erythrocytes with uninfected erythrocytes in the vasculature of the infected organ, and is associated with severe malaria. PfEMP1 interacts with Complement Receptor One on uninfected erythrocytes to form rosettes. The extreme variation within these proteins and the grouping of var genes implies that var gene recombination preferentially occurs within var gene groups. These groups reflect a functional diversification that has evolved to cope with the varying conditions of transmission and host immune response met by the parasite. A recombination hotspot was uncovered between Duffy-binding-like (DBL) subdomains. Solution of the crystal structure of the N-terminal and first DBL region of PfEMP1 from the VarO variant of the PfEMP1 protein is found to be directly implicated in rosetting as the heparin-binding site. 154 -308578 pfam03012 PP_M1 Phosphoprotein. This family includes the M1 phosphoprotein non-structural RNA polymerase alpha subunit, which is thought to be a component of the active polymerase, and may be involved in template binding. 296 -308579 pfam03013 Pyr_excise Pyrimidine dimer DNA glycosylase. Pyrimidine dimer DNA glycosylases excise pyrimidine dimers by hydrolysis of the glycosylic bond of the 5' pyrimidine, followed by the intra-pyrimidine phosphodiester bond. Pyrimidine dimers are the major UV-lesions of DNA. 121 -281067 pfam03014 SP2 Structural protein 2. This family represents structural protein 2 of the hepatitis E virus. The high basic amino acid content of this protein has lead to the suggestion of a role in viral genomic RNA encapsidation. 619 -335187 pfam03015 Sterile Male sterility protein. This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. 92 -335188 pfam03016 Exostosin Exostosin family. The EXT family is a family of tumor suppressor genes. Mutations of EXT1 on 8q24.1, EXT2 on 11p11-13, and EXT3 on 19p have been associated with the autosomal dominant disorder known as hereditary multiple exostoses (HME). This is the most common known skeletal dysplasia. The chromosomal locations of other EXT genes suggest association with other forms of neoplasia. EXT1 and EXT2 have both been shown to encode a heparan sulphate polymerase with both D-glucuronyl (GlcA) and N-acetyl-D-glucosaminoglycan (GlcNAC) transferase activities. The nature of the defect in heparan sulphate biosynthesis in HME is unclear. 287 -335189 pfam03017 Transposase_23 TNP1/EN/SPM transposase. 66 -335190 pfam03018 Dirigent Dirigent-like protein. This family contains a number of proteins which are induced during disease response in plants. Members of this family are involved in lignification. 146 -335191 pfam03020 LEM LEM domain. The LEM domain is 50 residues long and is composed of two parallel alpha helices. This domain is found in inner nuclear membrane proteins. It is called the LEM domain after LAP2, Emerin, and Man1. 40 -281073 pfam03021 CM2 Influenza C virus M2 protein. Influenza C virus M1 protein is encoded by a spliced mRNA. The unspliced mRNA is also found in small quantities and can encode the protein represented by this family. 139 -308585 pfam03022 MRJP Major royal jelly protein. Royal jelly is the food of queen bee larvae, and is responsible for the high reproductive ability of the queen. Major royal jelly proteins make up around 90% of larval jelly proteins. This family also the sequence-related yellow protein of drosophila which controls pigmentation of the adult cuticle and larval mouth parts. 288 -281075 pfam03023 MVIN MviN-like protein. Deletion of the mviN virulence gene in Salmonella enterica serovar. Typhimurium greatly reduces virulence in a mouse model of typhoid-like disease. Open reading frames encoding homologs of MviN have since been identified in a variety of bacteria, including pathogens and non-pathogens and plant-symbionts. In the nitrogen-fixing symbiont Rhizobium tropici, mviN is required for motility. The MviM protein is predicted to be membrane-associated. 451 -308586 pfam03024 Folate_rec Folate receptor family. This family includes the folate receptor which binds to folate and reduced folic acid derivatives and mediates delivery of 5-methyltetrahydrofolate to the interior of cells. These proteins are attached to the membrane by a GPI-anchor. The proteins contain 16 conserved cysteines that form eight disulphide bridges. 172 -145918 pfam03025 Papilloma_E5 Papillomavirus E5. The E5 protein from papillomaviruses is about 80 amino acids long. The proteins are contain three regions that are predicted to be transmembrane alpha helices. The function of this protein is unknown. 72 -281077 pfam03026 CM1 Influenza C virus M1 protein. This family represents the matrix 1 protein of influenza C virus. The protein is the product of a spliced mRNA. Small quantities of the unspliced mRNA are found in the cell additionally encoding the M2 protein (see pfam03021). 235 -335192 pfam03028 Dynein_heavy Dynein heavy chain and region D6 of dynein motor. This family represents the C-terminal region of dynein heavy chain. The chain also contains ATPase activity and microtubule binding ability and acts as a motor for the movement of organelles and vesicles along microtubules. Dynein is also involved in cilia and flagella movement. The dynein subunit consists of at least two heavy chains and a number of intermediate and light chains. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This C-terminal domain carries the D6 region of the dynein motor where the P-loop has been lost in evolution but the general structure of a potential ATP binding site appears to be retained. 687 -308588 pfam03029 ATP_bind_1 Conserved hypothetical ATP binding protein. Members of this family are found in a range of archaea and eukaryotes and have hypothesized ATP binding activity. 236 -335193 pfam03030 H_PPase Inorganic H+ pyrophosphatase. The H+ pyrophosphatase is an transmembrane proton pump involved in establishing the H+ electrochemical potential difference between the vacuole lumen and the cell cytosol. Vacuolar-type H(+)-translocating inorganic pyrophosphatases have long been considered to be restricted to plants and to a few species of photo-trophic bacteria. However, in recent investigations, these pyrophosphatases have been found in organisms as disparate as thermophilic Archaea and parasitic protists. 639 -308590 pfam03031 NIF NLI interacting factor-like phosphatase. This family contains a number of NLI interacting factor isoforms and also an N-terminal regions of RNA polymerase II CTC phosphatase and FCP1 serine phosphatase. This region has been identified as the minimal phosphatase domain. 160 -281082 pfam03032 FSAP_sig_propep Frog skin active peptide family signal and propeptide. This family contains a number of defense peptides secreted from the skin of amphibians, including the opiate-like dermorphins and deltorphins, and the antimicrobial dermoseptins and temporins. The alignment for this family consists of the signal peptide and propeptide regions and does not include the active peptides. 46 -281083 pfam03033 Glyco_transf_28 Glycosyltransferase family 28 N-terminal domain. The glycosyltransferase family 28 includes monogalactosyldiacylglycerol synthase (EC 2.4.1.46) and UDP-N-acetylglucosamine transferase (EC 2.4.1.-). This N-terminal domain contains the acceptor binding site and likely membrane association site. This family also contains a large number of proteins that probably have quite distinct activities. 139 -335194 pfam03034 PSS Phosphatidyl serine synthase. Phosphatidyl serine synthase is also known as serine exchange enzyme. This family represents eukaryotic PSS I and II which are membrane bound proteins which catalyzes the replacement of the head group of a phospholipid (phosphotidylcholine or phosphotidylethanolamine) by L-serine. 272 -308592 pfam03035 RNA_capsid Calicivirus putative RNA polymerase/capsid protein. 226 -308593 pfam03036 Perilipin Perilipin family. The perilipin family includes lipid droplet-associated protein (perilipin) and adipose differentiation-related protein (adipophilin). 389 -281087 pfam03037 KMP11 Kinetoplastid membrane protein 11. Kinetoplastid membrane protein 11 is a major cell surface glycoprotein of the parasite Leishmania donovani. 90 -281088 pfam03038 Herpes_UL95 UL95 family. Members of this family, found in several herpesviruses, include EBV BGLF3 and other UL95 proteins (e.g. HCMV UL95, HVS-1 34, HSV6 U67). Their function is unknown. 319 -308594 pfam03039 IL12 Interleukin-12 alpha subunit. Interleukin 12 (IL-12) is a disulphide-bonded heterodimer consisting of a 35kDa alpha subunit and a 40kDa beta subunit. It is involved in the stimulation and maintenance of Th1 cellular immune responses, including the normal host defense against various intracellular pathogens, such as Leishmania, Toxoplasma, measles virus and HIV. IL-12 also has an important role in pathological Th1 responses, such as in inflammatory bowel disease and multiple sclerosis. Suppression of IL-12 activity in such diseases may have therapeutic benefit. On the other hand, administration of recombinant IL-12 may have therapeutic benefit in conditions associated with pathological Th2 responses. 214 -308595 pfam03040 CemA CemA family. Members of this family are probable integral membrane proteins. Their molecular function is unknown. CemA proteins are found in the inner envelope membrane of chloroplasts but not in the thylakoid membrane. A cyanobacterial member of this family has been implicated in CO2 transport, but is probably not a CO2 transporter itself. They are predicted to be haem-binding however this has not been proven experimentally. 228 -281091 pfam03041 Baculo_LEF-2 lef-2. The lef-2 gene (for late expression factor 2) from baculovirus is required for expression of late genes. This gene has been shown to be specifically required for expression from the vp39 and polh promoters. LEF-1 is a DNA primase and there is some evidence to suggest that LEF-2 may bind to both DNA and LEF-1. 184 -281092 pfam03042 Birna_VP5 Birnavirus VP5 protein. Birnaviruses are ds RNA viruses. Non structural protein VP5 is found in RNA segment A. The function of this small viral protein is unknown. The proteins are about 150 amino acids long and contain several conserved histidines and cysteines that might form a zinc binding site (Bateman A pers. obs.). 139 -281093 pfam03043 Herpes_UL87 Herpesvirus UL87 family. Members of this family are functionally uncharacterized. This family groups together EBV BcRF1, HSV-6 U58, HVS-1 24 and HCMV UL87. The proteins range from 575 to 950 amino acids in length. 523 -281094 pfam03044 Herpes_UL16 Herpesvirus UL16/UL94 family. This family groups together HSV-1 UL16, HSV-6 ORF11R, EHV-1 46, HCMV UL94, EBV BGLF2 and VZV 44. UL16 protein may play a role in capsid maturation including DNA packaging/cleavage. In immunofluorescence studies, UL16 was localized to the nucleus of infected cells in areas containing high concentrations of HSV capsid proteins. These nuclear compartments have been described previously as viral assemblons and are distinct from compartments containing replicating DNA. localization within assemblons argues for a role of UL16 encoded protein in capsid assembly or maturation. 328 -335195 pfam03045 DAN DAN domain. This domain contains 9 conserved cysteines and is extracellular. Therefore the cysteines may form disulphide bridges. This family of proteins has been termed the DAN family after the first member to be reported. This family includes DAN, Cerberus and Gremlin. The gremlin protein is an antagonist of bone morphogenetic protein signaling. It is postulated that all members of this family antagonise different TGF beta pfam00019 ligands. Recent work shows that the DAN protein is not an efficient antagonist of BMP-2/4 class signals, we found that DAN was able to interact with GDF-5 in a frog embryo assay, suggesting that DAN may regulate signaling by the GDF-5/6/7 class of BMPs in vivo. 109 -335196 pfam03047 ComC COMC family. This family consists exclusively of streptococcal competence stimulating peptide precursors, which are generally up to 50 amino acid residues long. In all the members of this family, the leader sequence is cleaved after two conserved glycine residues; thus the leader sequence is of the double- glycine type. Competence stimulating peptides (CSP) are small (less than 25 amino acid residues) cationic peptides. The N-terminal amino acid residue is negatively charged, either glutamate or aspartate. The C-terminal end is positively charged. The third residue is also positively charged: a highly conserved arginine. A few COMC proteins and their precursors (not included in this family) do not fully follow the above description. In particular: the leader sequence in the CSP precursor from Streptococcus sanguis NCTC 7863 is not of the double-glycine type; the CSP from Streptococcus gordonii NCTC 3165 does not have a negatively charged N-terminus residue and has a lysine instead of arginine at the third position. Functionally, CSP act as pheromones, stimulating competence for genetic transformation in streptococci. In streptococci, the (CSP mediated) competence response requires exponential cell growth at a critical density, a relatively simple requirement when compared to the stationary-phase requirement of Haemophilus, or the late-logarithmic- phase of Bacillus. All bacteria induced to competence by a particular CSP are said to belong to the same pherotype, because each CSP is recognized by a specific receptor (the signalling domain of a histidine kinase ComD). Pherotypes are not necessarily species-specific. In addition, an organism may change pherotype. There are two possible mechanisms for pherotype switching: horizontal gene transfer, and accumulation of point mutations. The biological significance of pherotypes and pherotype switching is not definitively determined. Pherotype switching occurs frequently enough in naturally competent streptococci to suggest that it may be an important contributor to genetic exchange between different bacterial species. The family Antibacterial16, streptolysins from group A streptococci, has been merged into this family. 31 -281097 pfam03048 Herpes_UL92 UL92 family. Members of this family, found in several herpesviruses, include EBV BDLF4, HCMV UL92, HHV8 31, HSV6 U63. Their function is unknown. The N-terminus of this protein contains 6 conserved cysteines and histidines that might form a zinc binding domain (A Bateman pers. obs.). 189 -281098 pfam03049 Herpes_UL79 UL79 family. Members of this family are functionally uncharacterized proteins from herpesviruses. This family groups together HSV-6 U52, HVS-1 18 and HCMV UL79. 254 -335197 pfam03050 DDE_Tnp_IS66 Transposase IS66 family. Transposase proteins are necessary for efficient DNA transposition. This family includes IS66 from Agrobacterium tumefaciens. 280 -281100 pfam03051 Peptidase_C1_2 Peptidase C1-like family. This family is closely related to the Peptidase_C1 family pfam00112, containing several prokaryotic and eukaryotic aminopeptidases and bleomycin hydrolases. 438 -308597 pfam03052 Adeno_52K Adenoviral protein L1 52/55-kDa. The adenoviral protein L1 52/55-kDa is expressed in both the early and late stages of infection which suggests that it could play multiple roles in the viral life cycle. The L1 52/55 kDa protein interacts with the viral IVa2 protein and is required for DNA packaging. L1 53/55-kDa is required to mediate stable association between the viral DNA and empty capsid. 198 -251695 pfam03053 Corona_NS3b ORF3b coronavirus protein. Members of this family are non-structural proteins, approximately 250 amino acid residues long. They are found in transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) isolates. These proteins are found on the same mRNA as another product, designated ORF3a. While ORF3a/b has been implicated in TGEV and PRCV pathogenesis, its precise role remains unclear. 226 -281101 pfam03054 tRNA_Me_trans tRNA methyl transferase. This family represents tRNA(5-methylaminomethyl-2-thiouridine)-methyltransferase which is involved in the biosynthesis of the modified nucleoside 5-methylaminomethyl-2-thiouridine present in the wobble position of some tRNAs. 353 -335198 pfam03055 RPE65 Retinal pigment epithelial membrane protein. This family represents a retinal pigment epithelial membrane receptor which is abundantly expressed in retinal pigment epithelium, and binds plasma retinal binding protein. The family also includes the sequence related neoxanthin cleavage enzyme in plants and lignostilbene-alpha,beta-dioxygenase in bacteria. 397 -308599 pfam03057 DUF236 DUF236 repeat. This family represents a short repeat region found a number of C. elegans proteins of unknown function. 31 -251699 pfam03058 Sar8_2 Sar8.2 family. Members of this family are found in Solanaceae plants, a taxonomic group (family) that includes pepper and tobacco plant species. Synthesis of these proteins is induced by tobacco mosaic virus (TMV) and salicylic acid; indeed they are thought to be involved in the development of systemic acquired resistance (SAR) after an initial hypersensitive response to microbial infection. SAR is characterized by long-lasting resistance to infection by a wide range of pathogens, extending to plant tissues distant from the initial infection site. 85 -308600 pfam03059 NAS Nicotianamine synthase protein. Nicotianamine synthase EC:2.5.1.43 catalyzes the trimerisation of S-adenosylmethionine to yield one molecule of nicotianamine. Nicotianamine has an important role in plant iron uptake mechanisms. Plants adopt two strategies (termed I and II) of iron acquisition. Strategy I is adopted by all higher plants except graminaceous plants, which adopt strategy II. In strategy I plants, the role of nicotianamine is not fully determined: possible roles include the formation of more stable complexes with ferrous than with ferric ion, which might serve as a sensor of the physiological status of iron within a plant, or which might be involved in the transport of iron. In strategy II (graminaceous) plants, nicotianamine is the key intermediate (and nicotianamine synthase the key enzyme) in the synthesis of the mugineic family (the only known family in plants) of phytosiderophores. Phytosiderophores are iron chelators whose secretion by the roots is greatly increased in instances of iron deficiency. The 3D structures of five example NAS from Methanothermobacter thermautotrophicus reveal the monomer to consist of a five-helical bundle N-terminal domain on top of a classic Rossmann fold C-terminal domain. The N-terminal domain is unique to the NAS family, whereas the C-terminal domain is homologous to the class I family of SAM-dependent methyltransferases. An active site is created at the interface of the two domains, at the rim of a large cavity that corresponds to the nucleotide binding site such as is found in other proteins adopting a Rossmann fold. 276 -308601 pfam03060 NMO Nitronate monooxygenase. Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane dioxygenase (NPD) (EC:1.13.11.32), is an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and, in the case of the enzyme from Neurospora crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite. Previously classified as 2-nitropropane dioxygenase, but it is now recognized that this was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Active towards linear alkyl nitronates of lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The enzyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity. One atom of oxygen is incorporated into the carbonyl group of the aldehyde product. The reaction appears to involve the formation of an enzyme-bound nitronate radical and an a-peroxynitroethane species, which then decomposes, either in the active site of the enzyme or after release, to acetaldehyde and nitrite. 330 -335199 pfam03061 4HBT Thioesterase superfamily. This family contains a wide variety of enzymes, principally thioesterases. This family includes 4HBT (EC 3.1.2.23) which catalyzes the final step in the biosynthesis of 4-hydroxybenzoate from 4-chlorobenzoate in the soil dwelling microbe Pseudomonas CBS-3. This family includes various cytosolic long-chain acyl-CoA thioester hydrolases. Long-chain acyl-CoA hydrolases hydrolyze palmitoyl-CoA to CoA and palmitate, they also catalyze the hydrolysis of other long chain fatty acyl-CoA thioesters. 79 -281107 pfam03062 MBOAT MBOAT, membrane-bound O-acyltransferase family. The MBOAT (membrane bound O-acyl transferase) family of membrane proteins contains a variety of acyltransferase enzymes. A conserved histidine has been suggested to be the active site residue. 334 -335200 pfam03063 Prismane Prismane/CO dehydrogenase family. This family includes both hybrid-cluster proteins and the beta chain of carbon monoxide dehydrogenase. The hybrid-cluster proteins contain two Fe/S centers - a [4Fe-4S] cubane cluster, and a hybrid [4Fe-2S-2O] cluster. The physiological role of this protein is as yet unknown, although a role in nitrate/nitrite respiration has been suggested. The prismane protein from Escherichia coli was shown to contain hydroxylamine reductase activity (NH2OH + 2e + 2 H+ -> NH3 + H2O). This activity is rather low. Hydroxylamine reductase activity was also found in CO-dehydrogenase in which the active site Ni was replaced by Fe. The CO dehydrogenase contains a Ni-3Fe-2S-3O centre. 537 -281109 pfam03064 U79_P34 HSV U79 / HCMV P34. This family represents herpes virus protein U79 and cytomegalovirus early phosphoprotein P34 (UL112). 228 -308604 pfam03065 Glyco_hydro_57 Glycosyl hydrolase family 57. This family includes alpha-amylase (EC:3.2.1.1), 4--glucanotransferase (EC:2.4.1.-) and amylopullulanase enzymes. 313 -308605 pfam03066 Nucleoplasmin Nucleoplasmin/nucleophosmin domain. Nucleoplasmins are also known as chromatin decondensation proteins. They bind to core histones and transfer DNA to them in a reaction that requires ATP. This is thought to play a role in the assembly of regular nucleosomal arrays. 101 -335201 pfam03067 LPMO_10 Lytic polysaccharide mono-oxygenase, cellulose-degrading. This domain is found associated with a wide variety of cellulose binding domains. This is a family of two very closely related proteins that together act as both a C1- and a C4-oxidising lytic polysaccharide mono-oxygenase, degrading cellulose. This domain is also found in baculoviral spheroidins and spindolins, protein of unknown function. 167 -335202 pfam03068 PAD Protein-arginine deiminase (PAD). Members of this family are found in mammals. In the presence of calcium ions, PAD enzymes EC:3.5.3.15 catalyze the post-translational modification reaction responsible for the formation of citrulline residues: Protein L-arginine + H2O <=> Protein L-citrulline + NH3. Several types are recognized (and included in the family) on the basis of molecular mass, substrate specificity, and tissue localization. The expression of type I PAD is known to be under the control of oestrogen. 383 -308608 pfam03069 FmdA_AmdA Acetamidase/Formamidase family. This family includes amidohydrolases of formamide EC:3.5.1.49 and acetamide. Methylophilus methylotrophus FmdA forms a homotrimer suggesting all the members of this family also do. 298 -335203 pfam03070 TENA_THI-4 TENA/THI-4/PQQC family. Members of this family are found in all the three major phyla of life: archaebacteria, eubacteria, and eukaryotes. In Bacillus subtilis, TENA is one of a number of proteins that enhance the expression of extracellular enzymes, such as alkaline protease, neutral protease and levansucrase. The THI-4 protein, which is involved in thiamine biosynthesis, is also a member of this family. The C-terminal part of these proteins consistently show significant sequence similarity to TENA proteins. This similarity was first noted with the Neurospora crassa THI-4. This family includes bacterial coenzyme PQQ synthesis protein C or PQQC proteins. Pyrroloquinoline quinone (PQQ) is the prosthetic group of several bacterial enzymes,including methanol dehydrogenase of methylotrophs and the glucose dehydrogenase of a number of bacteria. PQQC has been found to be required in the synthesis of PQQ but its function is unclear. The exact molecular function of members of this family is uncertain. 210 -281116 pfam03071 GNT-I GNT-I family. Alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (GNT-I, GLCNAC-T I) EC:2.4.1.101 transfers N-acetyl-D-glucosamine from UDP to high-mannose glycoprotein N-oligosaccharide. This is an essential step in the synthesis of complex or hybrid-type N-linked oligosaccharides. The enzyme is an integral membrane protein localized to the Golgi apparatus, and is probably distributed in all tissues. The catalytic domain is located at the C-terminus. 434 -281117 pfam03072 DUF237 MG032/MG096/MG288 family 1. This family consists entirely of mycoplasmal proteins. Their function is unknown. Another related family, pfam03086, also consists entirely of mycoplasmal proteins of the MG032/MG096/MG288 family. Some proteins are included in both families, but of course differ in the aligned residues. 137 -335204 pfam03073 TspO_MBR TspO/MBR family. Tryptophan-rich sensory protein (TspO) is an integral membrane protein that acts as a negative regulator of the expression of specific photosynthesis genes in response to oxygen/light. It is involved in the efflux of porphyrin intermediates from the cell. This reduces the activity of coproporphyrinogen III oxidase, which is thought to lead to the accumulation of a putative repressor molecule that inhibits the expression of specific photosynthesis genes. Several conserved aromatic residues are necessary for TspO function: they are thought to be involved in binding porphyrin intermediates. In, the rat mitochondrial peripheral benzodiazepine receptor (MBR) was shown to not only retain its structure within a bacterial outer membrane, but also to be able to functionally substitute for TspO in TspO- mutants, and to act in a similar manner to TspO in its in situ location: the outer mitochondrial membrane. The biological significance of MBR remains unclear, however. It is thought to be involved in a variety of cellular functions, including cholesterol transport in steroidogenic tissues. 142 -335205 pfam03074 GCS Glutamate-cysteine ligase. This family represents the catalytic subunit of glutamate-cysteine ligase (E.C. 6.3.2.2), also known as gamma-glutamylcysteine synthetase (GCS). This enzyme catalyzes the rate limiting step in the biosynthesis of glutathione. The eukaryotic enzyme is a dimer of a heavy chain and a light chain with all the catalytic activity exhibited by the heavy chain (this family). 360 -281120 pfam03076 GP3 Equine arteritis virus GP3. This protein is encoded by ORF3 of equine arteritis virus. The function is unknown. 160 -281121 pfam03077 VacA2 Putative vacuolating cytotoxin. This family contains a number of Helicobacter outer membrane proteins with multiple copies of this small conserved region. 58 -251715 pfam03078 ATHILA ATHILA ORF-1 family. ATHILA is a group of Arabidopsis thaliana retrotransposons belonging to the Ty3/gypsy family of the long terminal repeat (LTR) class of eukaryotic retrotransposons. The central region of ATHILA retrotransposons contains two or three open reading frames (ORFs). This family represents the ORF1 product. The function of ORF1 is unknown. 456 -281122 pfam03079 ARD ARD/ARD' family. The two acireductone dioxygenase enzymes (ARD and ARD', previously known as E-2 and E-2') from Klebsiella pneumoniae share the same amino acid sequence, but bind different metal ions: ARD binds Ni2+, ARD' binds Fe2+. ARD and ARD' can be experimentally interconverted by removal of the bound metal ion and reconstitution with the appropriate metal ion. The two enzymes share the same substrate, 1,2-dihydroxy-3-keto-5-(methylthio)pentene, but yield different products. ARD' yields the alpha-keto precursor of methionine (and formate), thus forming part of the ubiquitous methionine salvage pathway that converts 5'-methylthioadenosine (MTA) to methionine. This pathway is responsible for the tight control of the concentration of MTA, which is a powerful inhibitor of polyamine biosynthesis and transmethylation reactions. ARD yields methylthiopropanoate, carbon monoxide and formate, and thus prevents the conversion of MTA to methionine. The role of the ARD catalyzed reaction is unclear: methylthiopropanoate is cytotoxic, and carbon monoxide can activate guanylyl cyclase, leading to increased intracellular cGMP levels. This family also contains other members, whose functions are not well characterized. 157 -335206 pfam03080 Neprosin Neprosin. Pitcher plants are insectivorous and secrete a digestive fluid into the pitcher. This fluid contains a mixture of enzymes including peptidases. One of these is neprosin, characterized from the pitcher plant Nepenthes ventrata. This peptidase is of unknown catalytic type and is unaffected by standard peptidase inhibitors. Unusually, activity is directed towards prolyl bonds, but unlike most peptidase that cleave after proline, there is no restriction on sequence length or position of the proline residue. The peptidase is secreted and is presumed to possess an N-terminal activation peptide. The neprosin domain corresponds to the mature peptidase. It is not known if other proteins with this domain are peptidases. 224 -335207 pfam03081 Exo70 Exo70 exocyst complex subunit. The Exo70 protein forms one subunit of the exocyst complex. First discovered in S. cerevisiae, Exo70 and other exocyst proteins have been observed in several other eukaryotes, including humans. In S. cerevisiae, the exocyst complex is involved in the late stages of exocytosis, and is localized at the tip of the bud, the major site of exocytosis in yeast. Exo70 interacts with the Rho3 GTPase. This interaction mediates one of the three known functions of Rho3 in cell polarity: vesicle docking and fusion with the plasma membrane (the other two functions are regulation of actin polarity and transport of exocytic vesicles from the mother cell to the bud). In humans, the functions of Exo70 and the exocyst complex are less well characterized: Exo70 is expressed in several tissues and is thought to also be involved in exocytosis. 368 -281125 pfam03082 MAGSP Male accessory gland secretory protein. The accessory gland of male insects is a genital tissue that secretes many components of the ejaculatory fluid, some of which affect the female's receptivity to courtship and her rate of oviposition. This protein is expressed exclusively in the male accessory glands of adult Drosophila melanogaster. The proteins are transferred to the female fly during copulation and are rapidly altered in the female genital tract. 267 -281126 pfam03083 MtN3_slv Sugar efflux transporter for intercellular exchange. This family includes proteins such as drosophila saliva, MtN3 involved in root nodule development and a protein involved in activation and expression of recombination activation genes (RAGs). Although the molecular function of these proteins is unknown, they are almost certainly transmembrane proteins. This family contains a region of two transmembrane helices that is found in two copies in most members of the family. This family also contains specific sugar efflux transporters that are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. In many organisims it meditaes gluose transport; in Arabidopsis it is necessary for pollen viability; and two of the rice homologs are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. 87 -335208 pfam03084 Sigma_1_2 Reoviral Sigma1/Sigma2 family. Reoviruses are double-stranded RNA viruses. They lack a membrane envelope and their capsid is organized in two concentric icosahedral layers: an inner core and an outer capsid layer. The sigma1 protein is found in the outer capsid, and the sigma2 protein is found in the core. There are four other kinds of protein (besides sigma2) in the core, termed lambda 1-3, mu2. Interactions between sigma2 and lambda 1 and lambda 3 are thought to initiate core formation, followed by mu2 and lambda2. Sigma1 is a trimeric protein, and is positioned at the 12 vertices of the icosahedral outer capsid layer. Its N-terminal fibrous tail, arranged as a triple coiled coil, anchors it in the virion, and a C-terminal globular head interacts with the cellular receptor. These two parts form by separate trimerisation events. The N-terminal fibrous tail forms on the polysome, without the involvement of ATP or chaperones. The post- translational assembly of the C-terminal globular head involves the chaperone activity of Hsp90, which is associated with phosphorylation of Hsp90 during the process. Sigma1 protein acts as a cell attachment protein, and determines viral virulence, pathways of spread, and tropism. Junctional adhesion molecule has been identified as a receptor for sigma1. In type 3 reoviruses, a small region, predicted to form a beta sheet, in the N-terminal tail was found to bind target cell surface sialic acid (i.e. sialic acid acts as a co-receptor) and promote apoptosis. The sigma1 protein also binds to the lambda2 core protein. 406 -281128 pfam03085 RAP-1 Rhoptry-associated protein 1 (RAP-1). Members of this family are found in Babesia species. Though not in this Pfam family, rhoptry-associated proteins are also found in Plasmodium falciparum. Indeed, animal infection with Babesia may produce a pattern similar to human malaria. Rhoptry organelles form part of the apical complex in apicomplexan parasites. Rhoptry-associated proteins are antigenic, and generate partially protective immune responses in infected mammals. Thus RAPs are among the targeted vaccine antigens for babesial (and malarial) parasites. However, RAP-1 proteins are encoded by by a multigene family; thus RAP-1 proteins are polymorphic, with B and T cell epitopes that are conserved among strains, but not across species. Antibodies to Babesia RAP-1 may also be helpful in the serological detection of Babesia infections. 241 -281129 pfam03086 DUF240 MG032/MG096/MG288 family 2. This family consists entirely of mycoplasmal proteins. Their function is unknown. Another related family, pfam03072, also consists entirely of mycoplasmal proteins of the MG032/MG096/MG288 family. Some proteins are included in both families, but of course differ in the aligned residues. 119 -335209 pfam03087 DUF241 Arabidopsis protein of unknown function. This family represents a number of Arabidopsis proteins. Their functions are unknown. 216 -281131 pfam03088 Str_synth Strictosidine synthase. Strictosidine synthase (E.C. 4.3.3.2) is a key enzyme in alkaloid biosynthesis. It catalyzes the condensation of tryptamine with secologanin to form strictosidine. 89 -308614 pfam03089 RAG2 Recombination activating protein 2. V-D-J recombination is the combinatorial process by which the huge range of immunoglobulin and T cell binding specificity is generated from a limited amount of genetic material. This process is synergistically activated by RAG1 and RAG2 in developing lymphocytes. Defects in RAG2 in humans are a cause of severe combined immunodeficiency B cell negative and Omenn syndrome. 337 -335210 pfam03090 Replicase Replicase family. This is a family of bacterial plasmid DNA replication initiator proteins. Pfam: PF01051 is a similar family. These RepA proteins exist as monomers and dimers in equilibrium: monomers bind directly to repeated DNA sequences and thus activate replication; dimers repress repA transcription by binding an inversely repeated DNA operator. Dimer dissociation can occur spontaneously or be mediated by Hsp70 chaperones. 129 -335211 pfam03091 CutA1 CutA1 divalent ion tolerance protein. Several gene loci with a possible involvement in cellular tolerance to copper have been identified. One such locus in eubacteria and archaebacteria, cutA, is thought to be involved in cellular tolerance to a wide variety of divalent cations other than copper. The cutA locus consists of two operons, of one and two genes. The CutA1 protein is a cytoplasmic protein, encoded by the single-gene operon and has been linked to divalent cation tolerance. It has no recognized structural motifs. This family also contains putative proteins from eukaryotes (human and Drosophila). 98 -308617 pfam03092 BT1 BT1 family. Members of this family are transmembrane proteins. Several are Leishmania putative proteins that are thought to be pteridine transporters. One such protein, previously termed (and still annotated as) ORFG, was shown to encode a biopterin transport protein using null mutants, thus being subsequently renamed BT1. The significant similarity of ORFG/BT1 to Trypanosoma brucei ESAG10 (a putative transmembrane protein and another member of this family) was previously noted. This family also contains five putative Arabidopsis thaliana proteins of unknown function. In addition, it also contains two predicted prokaryotic proteins (from the cyanobacteria Synechocystis and Synechococcus). 432 -308618 pfam03094 Mlo Mlo family. A family of plant integral membrane proteins, first discovered in barley. Mutants lacking wild-type Mlo proteins show broad spectrum resistance to the powdery mildew fungus, and dysregulated cell death control, with spontaneous cell death in response to developmental or abiotic stimuli. Thus wild-type Mlo proteins are thought to be inhibitors of cell death whose deficiency lowers the threshold required to trigger the cascade of events that result in plant cell death. Mlo proteins are localized in the plasma membrane and possess seven transmembrane regions; thus the Mlo family is the only major higher plant family to possess 7 transmembrane domains. It has been suggested that Mlo proteins function as G-protein coupled receptors in plants; however the molecular and biological functions of Mlo proteins remain to be fully determined. 468 -335212 pfam03095 PTPA Phosphotyrosyl phosphate activator (PTPA) protein. Phosphotyrosyl phosphatase activator (PTPA) proteins stimulate the phosphotyrosyl phosphatase (PTPase) activity of the dimeric form of protein phosphatase 2A (PP2A). PTPase activity in PP2A (in vitro) is relatively low when compared to the better recognized phosphoserine/ threonine protein phosphorylase activity. The specific biological role of PTPA is unknown, Basal expression of PTPA depends on the activity of a ubiquitous transcription factor, Yin Yang 1 (YY1). The tumor suppressor protein p53 can inhibit PTPA expression through an unknown mechanism that negatively controls YY1. 291 -335213 pfam03096 Ndr Ndr family. This family consists of proteins from different gene families: Ndr1/RTP/Drg1, Ndr2, and Ndr3. Their similarity was previously noted. The precise molecular and cellular function of members of this family is still unknown. Yet, they are known to be involved in cellular differentiation events. The Ndr1 group was the first to be discovered. Their expression is repressed by the proto-oncogenes N-myc and c-myc, and in line with this observation, Ndr1 protein expression is down-regulated in neoplastic cells, and is reactivated when differentiation is induced by chemicals such as retinoic acid. Ndr2 and Ndr3 expression is not under the control of N-myc or c-myc. Ndr1 expression is also activated by several chemicals: tunicamycin and homocysteine induce Ndr1 in human umbilical endothelial cells; nickel induces Ndr1 in several cell types. Members of this family are found in wide variety of multicellular eukaryotes, including an Ndr1 type protein in Helianthus annuus (sunflower), known as Sf21. Interestingly, the highest scoring matches in the noise are all alpha/beta hydrolases pfam00561, suggesting that this family may have an enzymatic function (Bateman A pers. obs.). 284 -335214 pfam03097 BRO1 BRO1-like domain. This domain is found in a number proteins including Rhophilin and BRO1. It is known to have a role in endosomal targeting. ESCRT-III subunit Snf7 binds to a conserved hydrophobic patch in the BRO1 domain that is required for protein complex formation and for the protein-sorting function of BRO1. 374 -335215 pfam03098 An_peroxidase Animal haem peroxidase. 528 -308622 pfam03099 BPL_LplA_LipB Biotin/lipoate A/B protein ligase family. This family includes biotin protein ligase, lipoate-protein ligase A and B. Biotin is covalently attached at the active site of certain enzymes that transfer carbon dioxide from bicarbonate to organic acids to form cellular metabolites. Biotin protein ligase (BPL) is the enzyme responsible for attaching biotin to a specific lysine at the active site of biotin enzymes. Each organism probably has only one BPL. Biotin attachment is a two step reaction that results in the formation of an amide linkage between the carboxyl group of biotin and the epsilon-amino group of the modified lysine. Lipoate-protein ligase A (LPLA) catalyzes the formation of an amide linkage between lipoic acid and a specific lysine residue in lipoate dependent enzymes. The unusual biosynthesis pathway of lipoic acid is mechanistically intertwined with attachment of the cofactor. 129 -335216 pfam03100 CcmE CcmE. CcmE is the product of one of a cluster of Ccm genes that are necessary for cytochrome c biosynthesis in eubacteria. Expression of these proteins is induced when the organisms are grown under anaerobic conditions with nitrate or nitrite as the final electron acceptor. 129 -335217 pfam03101 FAR1 FAR1 DNA-binding domain. This domain contains a WRKY like fold and is therefore most likely a zinc binding DNA-binding domain. 90 -335218 pfam03102 NeuB NeuB family. NeuB is the prokaryotic N-acetylneuraminic acid (Neu5Ac) synthase. It catalyzes the direct formation of Neu5Ac (the most common sialic acid) by condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc). This reaction has only been observed in prokaryotes; eukaryotes synthesize the 9-phosphate form, Neu5Ac-9-P, and utilize ManNAc-6-P instead of ManNAc. Such eukaryotic enzymes are not present in this family. This family also contains SpsE spore coat polysaccharide biosynthesis proteins. 240 -335219 pfam03103 DUF243 Domain of unknown function (DUF243). This family of uncharacterized proteins is only found in fly proteins. It is found associated with YLP motifs pfam02757 in some proteins. 98 -335220 pfam03104 DNA_pol_B_exo1 DNA polymerase family B, exonuclease domain. This domain has 3' to 5' exonuclease activity and adopts a ribonuclease H type fold. 333 -335221 pfam03105 SPX SPX domain. We have named this region the SPX domain after SYG1, Pho81 and XPR1. This 180 residue long domain is found at the amino terminus of a variety of proteins. In the yeast protein SYG1, the N-terminus directly binds to the G-protein beta subunit and inhibits transduction of the mating pheromone signal. Similarly, the N-terminus of the human XPR1 protein binds directly to the beta subunit of the G-protein heterotrimer leading to increased production of cAMP. These findings suggest that all the members of this family are involved in G-protein associated signal transduction. The N-termini of several proteins involved in the regulation of phosphate transport, including the putative phosphate level sensors PHO81 from Saccharomyces cerevisiae and NUC-2 from Neurospora crassa, are also members of this family. The SPX domain of S. cerevisiae low-affinity phosphate transporters Pho87 and Pho90 auto-regulates uptake and prevents efflux. This SPX dependent inhibition is mediated by the physical interaction with Spl2 NUC-2 contains several ankyrin repeats pfam00023. Several members of this family are annotated as XPR1 proteins: the xenotropic and polytropic retrovirus receptor confers susceptibility to infection with murine xenotropic and polytropic leukaemia viruses (MLV). Infection by these retroviruses can inhibit XPR1-mediated cAMP signalling and result in cell toxicity and death. The similarity between SYG1, phosphate regulators and XPR1 sequences has been previously noted, as has the additional similarity to several predicted proteins, of unknown function, from Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae, and many other diverse organisms. In addition, given the similarities between XPR1 and SYG1 and phosphate regulatory proteins, it has been proposed that XPR1 might be involved in G-protein associated signal transduction and may itself function as a phosphate sensor. 338 -335222 pfam03106 WRKY WRKY DNA -binding domain. 56 -335223 pfam03107 C1_2 C1 domain. This short domain is rich in cysteines and histidines. The pattern of conservation is similar to that found in pfam00130, therefore we have termed this domain DC1 for divergent C1 domain. This domain probably also binds to two zinc ions. The function of proteins with this domain is uncertain, however this domain may bind to molecules such as diacylglycerol (A Bateman pers. obs.). This family are found in plant proteins. 48 -335224 pfam03108 DBD_Tnp_Mut MuDR family transposase. This region is found in plant proteins that are presumed to be the transposases for Mutator transposable elements. These transposons contain two ORFs. The molecular function of this region is unknown. 65 -281150 pfam03109 ABC1 ABC1 family. This family includes ABC1 from yeast and AarF from E. coli. These proteins have a nuclear or mitochondrial subcellular location in eukaryotes. The exact molecular functions of these proteins is not clear, however yeast ABC1 suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex and E. coli AarF is required for ubiquinone production. It has been suggested that members of the ABC1 family are novel chaperonins. These proteins are unrelated to the ABC transporter proteins. 117 -308631 pfam03110 SBP SBP domain. SBP domains (for SQUAMOSA-pROMOTER BINDING PROTEIN) are found in plant proteins. It is a sequence specific DNA-binding domain. Members of family probably function as transcription factors involved in the control of early flower development. The domain contains 10 conserved cysteine and histidine residues that probably are zinc ligands. 75 -281152 pfam03112 DUF244 Uncharacterized protein family (ORF7) DUF. Several members of this family are Borrelia burgdorferi plasmid proteins of uncharacterized function. 161 -281153 pfam03113 RSV_NS2 Respiratory synctial virus non-structural protein NS2. The molecular structure and function of the NS2 protein is not known. However, mutants lacking the NS2 grow at slower rates when compared to the wild-type. Nevertheless, NS2 is not essential for viral replication. 124 -281154 pfam03114 BAR BAR domain. BAR domains are dimerization, lipid binding and curvature sensing modules found in many different protein families. A BAR domain with an additional N-terminal amphipathic helix (an N-BAR) can drive membrane curvature. These N-BAR domains are found in amphiphysin, endophilin, BRAP and Nadrin. BAR domains are also frequently found alongside domains that determine lipid specificity, like pfam00169 and pfam00787 domains in beta centaurins and sorting nexins respectively. 234 -281155 pfam03115 Astro_capsid_N Astrovirus capsid protein precursor. This product is encoded by astrovirus ORF2, one of the three astrovirus ORFs (1a, 1b, 2). The 87kD precursor protein undergoes an intracellular cleavage to form a 79kD protein. Subsequently, extracellular trypsin cleavage yields the three proteins forming the infectious virion. 416 -335225 pfam03116 NQR2_RnfD_RnfE NQR2, RnfD, RnfE family. This family of bacterial proteins includes a sodium-translocating NADH-ubiquinone oxidoreductase (i.e. a respiration linked sodium pump). In Vibrio cholerae, it negatively regulates the expression of virulence factors through inhibiting (by an unknown mechanism) the transcription of the transcriptional activator ToxT. The family also includes proteins involved in nitrogen fixation, RnfD and RnfE. The similarity of these proteins to NADH-ubiquinone oxidoreductases was previously noted. 309 -281157 pfam03117 Herpes_UL49_1 UL49 family. Members of this family, found in several herpesviruses, include EBV BFRF2 and other UL49 proteins (e.g. HCMVA UL49, HSV6 U33). There are eight conserved cysteine residues in this alignment, all lying towards the C-terminus. Their function is unknown. 243 -335226 pfam03118 RNA_pol_A_CTD Bacterial RNA polymerase, alpha chain C terminal domain. The alpha subunit of RNA polymerase consists of two independently folded domains, referred to as amino-terminal and carboxyl terminal domains. The amino terminal domain is involved in the interaction with the other subunits of the RNA polymerase. The carboxyl-terminal domain interacts with the DNA and activators. The amino acid sequence of the alpha subunit is conserved in prokaryotic and chloroplast RNA polymerases. There are three regions of particularly strong conservation, two in the amino-terminal and one in the carboxyl- terminal. 66 -335227 pfam03119 DNA_ligase_ZBD NAD-dependent DNA ligase C4 zinc finger domain. DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilising either ATP or NAD(+) as a cofactor. This family is a small zinc binding motif that is presumably DNA binding. IT is found only in NAD dependent DNA ligases. 25 -335228 pfam03120 DNA_ligase_OB NAD-dependent DNA ligase OB-fold domain. DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilising either ATP or NAD(+) as a cofactor. This family is a small domain found after the adenylation domain pfam01653 in NAD dependent ligases. OB-fold domains generally are involved in nucleic acid binding. 79 -281161 pfam03121 Herpes_UL52 Herpesviridae UL52/UL70 DNA primase. Herpes simplex virus type 1 DNA replication in host cells is known to be mediated by seven viral-encoded proteins, three of which form a heterotrimeric DNA helicase-primase complex. This complex consists of UL5, UL8, and UL52 subunits. Heterodimers consisting of UL5 and UL52 have been shown to retain both helicase and primase activities. Nevertheless, UL8 is still essential for replication: though it lacks any DNA binding or catalytic activities, it is involved in the transport of UL5-UL52 and it also interacts with other replication proteins. The molecular mechanisms of the UL5-UL52 catalytic activities are not known. While UL5 is associated with DNA helicase activity and UL52 with DNA primase activity, the helicase activity requires the interaction of UL5 and UL52. It is not known if the primase activity can be maintained by UL52 alone. The region encompassed by residues 610-636 of HSV1 UL52 is thought to contain a divalent metal cation binding motif. Indeed, this region contains several aspartate and glutamate residues that might be involved in divalent cation binding. The biological significance of UL52-UL8 interaction is not known. Yeast two-hybrid analysis together with immunoprecipitation experiments have shown that the HSV1 UL52 region between residues 366-914 is essential for this interaction, while the first 349 N-terminal residues are dispensable. This family also includes protein UL70 from cytomegalovirus (CMV, a subgroup of the Herpesviridae) strains, which, by analogy with UL52, is thought to have DNA primase activity. Indeed, CMV strains also possess a DNA helicase-primase complex, the other subunits being protein UL105 (with known similarity to HSV1 UL5) and protein UL102. 75 -281162 pfam03122 Herpes_MCP Herpes virus major capsid protein. This family represents the major capsid protein (MCP) of herpes viruses. The capsid shell consists of 150 MCP hexamers and 12 MCP pentamers. One pentamer is found at each of the 12 apices of the icosahedral shell, and the hexamers form the edges and 20 faces. 1368 -335229 pfam03123 CAT_RBD CAT RNA binding domain. This RNA binding domain is found at the amino terminus of transcriptional antitermination proteins such as BglG, SacY and LicT. These proteins control the expression of sugar metabolising operons in Gram+ and Gram- bacteria. This domain has been called the CAT (Co-AntiTerminator) domain. It binds as a dimer to short Ribonucleotidic Anti-Terminator (RAT) hairpin, each monomer interacting symmetrically with both strands of the RAT hairpin. In the full-length protein, CAT is followed by two phosphorylatable PTS regulation domains (pfam00874) that modulate the RNA binding activity of CAT. Upon activation, the dimeric proteins bind to RAT targets in the nascent mRNA, thereby preventing abortive dissociation of the RNA polymerase from the DNA template. 56 -335230 pfam03124 EXS EXS family. We have named this region the EXS family after (ERD1, XPR1, and SYG1). This family includes C-terminus portions from the SYG1 G-protein associated signal transduction protein from Saccharomyces cerevisiae, and sequences that are thought to be murine leukaemia virus (MLV) receptors (XPR1). N-terminus portions from these proteins are aligned in the SPX pfam03105 family. The previously noted similarity between SYG1 and MLV receptors over their whole sequences is thus borne out in pfam03105 and this family. While the N-termini aligned in pfam03105 are thought to be involved in signal transduction, the role of the C-terminus sequences aligned in this family is not known. This region of similarity contains several predicted transmembrane helices. This family also includes the ERD1 (ERD: ER retention defective) yeast proteins. ERD1 proteins are involved in the localization of endogenous endoplasmic reticulum (ER) proteins. erd1 null mutants secrete such proteins even though they possess the C-terminal HDEL ER lumen localization label sequence. In addition, null mutants also exhibit defects in the Golgi-dependent processing of several glycoproteins, which led to the suggestion that the sorting of luminal ER proteins actually occurs in the Golgi, with subsequent return of these proteins to the ER via `salvage' vesicles. 330 -251743 pfam03125 Sre C. elegans Sre G protein-coupled chemoreceptor. Caenorhabditis elegans Sre proteins are candidate chemosensory receptors. There are four main recognized groups of such receptors: Odr-10, Sra, Sro, and Srg. Sre (this family), Sra pfam02117 and Srb pfam02175 comprise the Sra group. All of the above receptors are thought to be G protein-coupled seven transmembrane domain proteins. The existence of several different chemosensory receptors underlies the fact that in spite of having only 20-30 chemosensory neurones, C. elegans detects hundreds of different chemicals, with the ability to discern individual chemicals among combinations. 363 -335231 pfam03126 Plus-3 Plus-3 domain. This domain is about 90 residues in length and is often found associated with the pfam02213 domain. The function of this domain is uncertain. It is possible that this domain is involved in DNA binding as it has three conserved positively charged residues, hence this domain has been named the plus-3 domain. It is found in yeast Rtf1 which may be a transcription elongation factor. 103 -335232 pfam03127 GAT GAT domain. The GAT domain is responsible for binding of GGA proteins to several members of the ARF family including ARF1 and ARF3. The GAT domain stabilizes membrane bound ARF1 in its GTP bound state, by interfering with GAP proteins. 75 -308640 pfam03128 CXCXC CXCXC repeat. This repeat contains the conserved pattern CXCXC where X can be any amino acid. The repeat is found in up to five copies in Vascular endothelial growth factor C. In the salivary glands of the dipteran Chironomus tentans, a specific messenger ribonucleoprotein (mRNP) particle, the Balbiani ring (BR) granule, can be visualised during its assembly on the gene and during its nucleocytoplasmic transport. This repeat is found over 70 copies in the balbiani ring protein 3. It is also found in some silk proteins. 13 -281168 pfam03129 HGTP_anticodon Anticodon binding domain. This domain is found in histidyl, glycyl, threonyl and prolyl tRNA synthetases it is probably the anticodon binding domain. 91 -308641 pfam03130 HEAT_PBS PBS lyase HEAT-like repeat. This family contains a short bi-helical repeat that is related to pfam02985. Cyanobacteria and red algae harvest light energy using macromolecular complexes known as phycobilisomes (PBS), peripherally attached to the photosynthetic membrane. The major components of PBS are the phycobiliproteins. These heterodimeric proteins are covalently attached to phycobilins: open-chain tetrapyrrole chromophores, which function as the photosynthetic light-harvesting pigments. Phycobiliproteins differ in sequence and in the nature and number of attached phycobilins to each of their subunits. This family includes the lyase enzymes that specifically attach particular phycobilins to apophycobiliprotein subunits. The most comprehensively studied of these is the CpcE/F lyase, which attaches phycocyanobilin (PCB) to the alpha subunit of apophycocyanin. Similarly, MpeU/V attaches phycoerythrobilin to phycoerythrin II, while CpeY/Z is thought to be involved in phycoerythrobilin (PEB) attachment to phycoerythrin (PE) I (PEs I and II differ in sequence and in the number of attached molecules of PEB: PE I has five, PE II has six). All the reactions of the above lyases involve an apoprotein cysteine SH addition to a terminal delta 3,3'-double bond. Such a reaction is not possible in the case of phycoviolobilin (PVB), the phycobilin of alpha-phycoerythrocyanin (alpha-PEC). It is thought that in this case, PCB, not PVB, is first added to apo-alpha-PEC, and is then isomerised to PVB. The addition reaction has been shown to occur in the presence of either of the components of alpha-PEC-PVB lyase PecE or PecF (or both). The isomerisation reaction occurs only when both PecE and PecF components are present, i.e. the PecE/F phycobiliprotein lyase is also a phycobilin isomerase. Another member of this family is the NblB protein, whose similarity to the phycobiliprotein lyases was previously noted. This constitutively expressed protein is not known to have any lyase activity. It is thought to be involved in the coordination of PBS degradation with environmental nutrient limitation. It has been suggested that the similarity of NblB to the phycobiliprotein lyases is due to the ability to bind tetrapyrrole phycobilins via the common repeated motif. 27 -335233 pfam03131 bZIP_Maf bZIP Maf transcription factor. Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer. 92 -281171 pfam03133 TTL Tubulin-tyrosine ligase family. Tubulins and microtubules are subjected to several post-translational modifications of which the reversible detyrosination/tyrosination of the carboxy-terminal end of most alpha-tubulins has been extensively analysed. This modification cycle involves a specific carboxypeptidase and the activity of the tubulin-tyrosine ligase (TTL). The true physiological function of TTL has so far not been established. Tubulin-tyrosine ligase (TTL) catalyzes the ATP-dependent post-translational addition of a tyrosine to the carboxy terminal end of detyrosinated alpha-tubulin. In normally cycling cells, the tyrosinated form of tubulin predominates. However, in breast cancer cells, the detyrosinated form frequently predominates, with a correlation to tumor aggressiveness. On the other hand, 3-nitrotyrosine has been shown to be incorporated, by TTL, into the carboxy terminal end of detyrosinated alpha-tubulin. This reaction is not reversible by the carboxypeptidase enzyme. Cells cultured in 3-nitrotyrosine rich medium showed evidence of altered microtubule structure and function, including altered cell morphology, epithelial barrier dysfunction, and apoptosis. Bacterial homologs of TTL are predicted to form peptide tags. Some of these are fused to a 2-oxoglutarate Fe(II)-dependent dioxygenase domain. 291 -335234 pfam03134 TB2_DP1_HVA22 TB2/DP1, HVA22 family. This family includes members from a wide variety of eukaryotes. It includes the TB2/DP1 (deleted in polyposis) protein, which in humans is deleted in severe forms of familial adenomatous polyposis, an autosomal dominant oncological inherited disease. The family also includes the plant protein of known similarity to TB2/DP1, the HVA22 abscisic acid-induced protein, which is thought to be a regulatory protein. 77 -308644 pfam03135 CagE_TrbE_VirB CagE, TrbE, VirB family, component of type IV transporter system. This family includes the Helicobacter pylori protein CagE, which together with other proteins from the cag pathogenicity island (PAI), encodes a type IV transporter secretion system. The precise role of CagE is not known, but studies in animal models have shown that it is essential for pathogenesis in Helicobacter pylori induced gastritis and peptic ulceration. Indeed, the expression of the cag PAI has been shown to be essential for stimulating human gastric epithelial cell apoptosis in vitro. Similar type IV transport systems are also found in other bacteria. This family includes the TrbE and VirB proteins from the respective trb and Vir conjugal transfer systems in Agrobacterium tumefaciens. homologs of VirB proteins from other species are also members of this family, e.g. VirB from Brucella suis. 203 -308645 pfam03136 Pup_ligase Pup-ligase protein. Pupylation is a novel protein modification system found in some bacteria. This family of proteins are the enzyme that can conjugate proteins of the Pup family to lysine residues in target proteins marking them for degradation. The archetypal protein in this family is PafA (proteasome accessory factor) from Mycobacterium tuberculosis. It has been suggested that these proteins are related to gamma-glutamyl-cysteine synthetases. 405 -335235 pfam03137 OATP Organic Anion Transporter Polypeptide (OATP) family. This family consists of several eukaryotic Organic-Anion-Transporting Polypeptides (OATPs). Several have been identified mostly in human and rat. Different OATPs vary in tissue distribution and substrate specificity. Since the numbering of different OATPs in particular species was based originally on the order of discovery, similarly numbered OATPs in humans and rats did not necessarily correspond in function, tissue distribution and substrate specificity (in spite of the name, some OATPs also transport organic cations and neutral molecules). Thus, Tamai et al. initiated the current scheme of using digits for rat OATPs and letters for human ones. Prostaglandin transporter (PGT) proteins are also considered to be OATP family members. In addition, the methotrexate transporter OATK is closely related to OATPs. This family also includes several predicted proteins from Caenorhabditis elegans and Drosophila melanogaster. This similarity was not previously noted. Note: Members of this family are described (in the Swiss-Prot database) as belonging to the SLC21 family of transporters. 525 -308647 pfam03139 AnfG_VnfG Vanadium/alternative nitrogenase delta subunit. The nitrogenase complex EC:1.18.6.1 catalyzes the conversion of molecular nitrogen to ammonia (nitrogen fixation) as follows: 8 reduced ferredoxin + 8 H(+) + N(2) + 16 ATP <=> 8 oxidized ferredoxin + 2 NH(3) + 16 ADP + 16 phosphate. The complex is hexameric, consisting of 2 alpha, 2 beta, and 2 delta subunits. This family represents the delta subunit of a group of nitrogenases that do not utilize molybdenum (Mo) as a cofactor, but instead use either vanadium (V nitrogenases), or iron (alternative nitrogenases). V nitrogenases are encoded by vnf operons, and alternative nitrogenases by anf operons. The delta subunits are VnfG and AnfG, respectively. 111 -335236 pfam03140 DUF247 Plant protein of unknown function. The function of the plant proteins constituting this family is unknown. 346 -335237 pfam03141 Methyltransf_29 Putative S-adenosyl-L-methionine-dependent methyltransferase. This family is a putative S-adenosyl-L-methionine (SAM)-dependent methyltransferase. 506 -308649 pfam03142 Chitin_synth_2 Chitin synthase. Members of this family are fungal chitin synthase EC:2.4.1.16 enzymes. They catalyze chitin synthesis as follows: UDP-N-acetyl-D-glucosamine + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N) <=> UDP + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N+1). 527 -308650 pfam03143 GTP_EFTU_D3 Elongation factor Tu C-terminal domain. Elongation factor Tu consists of three structural domains, this is the third domain. This domain adopts a beta barrel structure. This the third domain is involved in binding to both charged tRNA and binding to EF-Ts pfam00889. 107 -335238 pfam03144 GTP_EFTU_D2 Elongation factor Tu domain 2. Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA. This domain is also found in other proteins such as elongation factor G and translation initiation factor IF-2. This domain is structurally related to pfam03143, and in fact has weak sequence matches to this domain. 68 -335239 pfam03145 Sina Seven in absentia protein family. The seven in absentia (sina) gene was first identified in Drosophila. The Drosophila Sina protein is essential for the determination of the R7 pathway in photoreceptor cell development: the loss of functional Sina results in the transformation of the R7 precursor cell to a non- neuronal cell type. The Sina protein contains an N-terminal RING finger domain pfam00097. Through this domain, Sina binds E2 ubiquitin-conjugating enzymes (UbcD1) Sina also interacts with Tramtrack (TTK88) via PHYL. Tramtrack is a transcriptional repressor that blocks photoreceptor determination, while PHYL down-regulates the activity of TTK88. In turn, the activity of PHYL requires the activation of the Sevenless receptor tyrosine kinase, a process essential for R7 determination. It is thought that thus Sina targets TTK88 for degradation, therefore promoting the R7 pathway. Murine and human homologs of Sina have also been identified. The human homolog Siah-1 also binds E2 enzymes (UbcH5) and through a series of physical interactions, targets beta-catenin for ubiquitin degradation. Siah-1 expression is enhanced by p53, itself promoted by DNA damage. Thus this pathway links DNA damage to beta-catenin degradation. Sina proteins, therefore, physically interact with a variety of proteins. The N-terminal RING finger domain that binds ubiquitin conjugating enzymes is described in pfam00097, and does not form part of the alignment for this family. The remainder C-terminal part is involved in interactions with other proteins, and is included in this alignment. In addition to the Drosophila protein and mammalian homologs, whose similarity was noted previously, this family also includes putative homologs from Caenorhabditis elegans, Arabidopsis thaliana. 197 -308653 pfam03146 NtA Agrin NtA domain. Agrin is a multidomain heparan sulphate proteoglycan, that is a key organizer for the induction of postsynaptic specialisations at the neuromuscular junction. Binding of agrin to basement membranes requires the amino terminal (NtA) domain. This region mediates high affinity interaction with the coiled-coil domain of laminins. The binding of agrin to laminins via the NtA domain is subject to tissue-specific regulation. The NtA domain-containing form of agrin is expressed in non-neuronal cells or in neurons that project to non-neuronal cell such as motor neurons. The structure of this domain is an OB-fold. 109 -308654 pfam03147 FDX-ACB Ferredoxin-fold anticodon binding domain. This is the anticodon binding domain found in some phenylalanyl tRNA synthetases. The domain has a ferredoxin fold. 94 -335240 pfam03148 Tektin Tektin family. Tektins are cytoskeletal proteins. They have been demonstrated in such cellular sites as centrioles, basal bodies, and along ciliary and flagellar doublet microtubules. Tektins form unique protofilaments, organized as longitudinal polymers of tektin heterodimers with axial periodicity matching tubulin. Tektin polypeptides consist of several alpha-helical regions that are predicted to form coiled coils. Indeed, tektins share considerable structural similarities with intermediate filament proteins. Possible functional roles for tektins are: stabilisation of tubulin protofilaments; attachment of A and B-tubules in ciliary/flagellar microtubule doublets and C-tubules in centrioles; binding of axonemal components. 380 -335241 pfam03150 CCP_MauG Di-haem cytochrome c peroxidase. This is a family of distinct cytochrome c peroxidases (CCPs) that contain two haem groups. Similar to other cytochrome c peroxidases, they reduce hydrogen peroxide to water using c-type haem as an oxidisable substrate. However, since they possess two, instead of one, haem prosthetic groups, bacterial CCPs reduce hydrogen peroxide without the need to generate semi-stable free radicals. The two haem groups have significantly different redox potentials. The high potential (+320 mV) haem feeds electrons from electron shuttle proteins to the low potential (-330 mV) haem, where peroxide is reduced (indeed, the low potential site is known as the peroxidatic site). The CCP protein itself is structured into two domains, each containing one c-type haem group, with a calcium-binding site at the domain interface. This family also includes MauG proteins, whose similarity to di-haem CCP was previously recognized. 149 -308657 pfam03151 TPT Triose-phosphate Transporter family. This family includes transporters with a specificity for triose phosphate. 290 -335242 pfam03152 UFD1 Ubiquitin fusion degradation protein UFD1. Post-translational ubiquitin-protein conjugates are recognized for degradation by the ubiquitin fusion degradation (UFD) pathway. Several proteins involved in this pathway have been identified. This family includes UFD1, a 40kD protein that is essential for vegetative cell viability. The human UFD1 gene is expressed at high levels during embryogenesis, especially in the eyes and in the inner ear primordia and is thought to be important in the determination of ectoderm-derived structures, including neural crest cells. In addition, this gene is deleted in the CATCH-22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate and hypocalcaemia with deletions on chromosome 22) syndrome. This clinical syndrome is associated with a variety of developmental defects, all characterized by microdeletions on 22q11.2. Two such developmental defects are the DiGeorge syndrome OMIM:188400, and the velo-cardio- facial syndrome OMIM:145410. Several of the abnormalities associated with these conditions are thought to be due to defective neural crest cell differentiation. 172 -308659 pfam03153 TFIIA Transcription factor IIA, alpha/beta subunit. Transcription initiation factor IIA (TFIIA) is a heterotrimer, the three subunits being known as alpha, beta, and gamma, in order of molecular weight. The N and C-terminal domains of the gamma subunit are represented in pfam02268 and pfam02751, respectively. This family represents the precursor that yields both the alpha and beta subunits. The TFIIA heterotrimer is an essential general transcription initiation factor for the expression of genes transcribed by RNA polymerase II. Together with TFIID, TFIIA binds to the promoter region; this is the first step in the formation of a pre-initiation complex (PIC). Binding of the rest of the transcription machinery follows this step. After initiation, the PIC does not completely dissociate from the promoter. Some components, including TFIIA, remain attached and re-initiate a subsequent round of transcription. 228 -335243 pfam03154 Atrophin-1 Atrophin-1 family. Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteristic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. 980 -308661 pfam03155 Alg6_Alg8 ALG6, ALG8 glycosyltransferase family. N-linked (asparagine-linked) glycosylation of proteins is mediated by a highly conserved pathway in eukaryotes, in which a lipid (dolichol phosphate)-linked oligosaccharide is assembled at the endoplasmic reticulum membrane prior to the transfer of the oligosaccharide moiety to the target asparagine residues. This oligosaccharide is composed of Glc(3)Man(9)GlcNAc(2). The addition of the three glucose residues is the final series of steps in the synthesis of the oligosaccharide precursor. Alg6 transfers the first glucose residue, and Alg8 transfers the second one. In the human alg6 gene, a C->T transition, which causes Ala333 to be replaced with Val, has been identified as the cause of a congenital disorder of glycosylation, designated as type Ic OMIM:603147. 461 -281191 pfam03157 Glutenin_hmw High molecular weight glutenin subunit. Members of this family include high molecular weight subunits of glutenin. This group of gluten proteins is thought to be largely responsible for the elastic properties of gluten, and hence, doughs. Indeed, glutenin high molecular weight subunits are classified as elastomeric proteins, because the glutenin network can withstand significant deformations without breaking, and return to the original conformation when the stress is removed. Elastomeric proteins differ considerably in amino acid sequence, but they are all polymers whose subunits consist of elastomeric domains, composed of repeated motifs, and non-elastic domains that mediate cross-linking between the subunits. The elastomeric domain motifs are all rich in glycine residues in addition to other hydrophobic residues. High molecular weight glutenin subunits have an extensive central elastomeric domain, flanked by two terminal non-elastic domains that form disulphide cross-links. The central elastomeric domain is characterized by the following three repeated motifs: PGQGQQ, GYYPTS[P/L]QQ, GQQ. It possesses overlapping beta-turns within and between the repeated motifs, and assumes a regular helical secondary structure with a diameter of approx. 1.9 nm and a pitch of approx. 1.5 nm. 772 -281192 pfam03158 DUF249 Multigene family 530 protein. Members of this family are multigene family 530 proteins from African swine fever viruses. These proteins may be involved in promoting survival of infected macrophages. 192 -335244 pfam03159 XRN_N XRN 5'-3' exonuclease N-terminus. This family aligns residues towards the N-terminus of several proteins with multiple functions. The members of this family all appear to possess 5'-3' exonuclease activity EC:3.1.11.-. Thus, the aligned region may be necessary for 5' to 3' exonuclease function. The family also contains several Xrn1 and Xrn2 proteins. The 5'-3' exoribonucleases Xrn1p and Xrn2p/Rat1p function in the degradation and processing of several classes of RNA in Saccharomyces cerevisiae. Xrn1p is the main enzyme catalyzing cytoplasmic mRNA degradation in multiple decay pathways, whereas Xrn2p/Rat1p functions in the processing of rRNAs and small nucleolar RNAs (snoRNAs) in the nucleus. 235 -308663 pfam03160 Calx-beta Calx-beta domain. 91 -335245 pfam03161 LAGLIDADG_2 LAGLIDADG DNA endonuclease family. This is a family of site-specific DNA endonucleases encoded by DNA mobile elements. Similar to pfam00961, the members of this family are also LAGLIDADG endonucleases. 169 -111998 pfam03162 Y_phosphatase2 Tyrosine phosphatase family. This family is closely related to the pfam00102 and pfam00782 families. 150 -308665 pfam03164 Mon1 Trafficking protein Mon1. Members of this family have been called SAND proteins although these proteins do not contain a SAND domain. In Saccharomyces cerevisiae a protein complex of Mon1 and Ccz1 functions with the small GTPase Ypt7 to mediate vesicle trafficking to the vacuole. The Mon1/Ccz1 complex is conserved in eukaryotic evolution and members of this family (previously known as DUF254) are distant homologs to domains of known structure that assemble into cargo vesicle adapter (AP) complexes. describes orthologues in Fugu rubripes. 400 -308666 pfam03165 MH1 MH1 domain. The MH1 (MAD homology 1) domain is found at the amino terminus of MAD related proteins such as Smads. This domain is separated from the MH2 domain by a non-conserved linker region. The crystal structure of the MH1 domain shows that a highly conserved 11 residue beta hairpin is used to bind the DNA consensus sequence GNCN in the major groove, shown to be vital for the transcriptional activation of target genes. Not all examples of MH1 can bind to DNA however. Smad2 cannot bind DNA and has a large insertion within the hairpin that presumably abolishes DNA binding. A basic helix (H2) in MH1 with the nuclear localization signal KKLKK has been shown to be essential for Smad3 nuclear import. Smads also use the MH1 domain to interact with transcription factors such as Jun, TFE3, Sp1, and Runx. 103 -335246 pfam03166 MH2 MH2 domain. This is the MH2 (MAD homology 2) domain found at the carboxy terminus of MAD related proteins such as Smads. This domain is separated from the MH1 domain by a non-conserved linker region. The MH2 domain mediates interaction with a wide variety of proteins and provides specificity and selectivity to Smad function and also is critical for mediating interactions in Smad oligomers. Unlike MH1, MH2 does not bind DNA. The well-studied MH2 domain of Smad4 is composed of five alpha helices and three loops enclosing a beta sandwich. Smads are involved in the propagation of TGF-beta signals by direct association with the TGF-beta receptor kinase which phosphorylates the last two Ser of a conserved 'SSXS' motif located at the C-terminus of MH2. 131 -335247 pfam03167 UDG Uracil DNA glycosylase superfamily. 149 -335248 pfam03168 LEA_2 Late embryogenesis abundant protein. Different types of LEA proteins are expressed at different stages of late embryogenesis in higher plant seed embryos and under conditions of dehydration stress. The function of these proteins is unknown. This family represents a group of LEA proteins that appear to be distinct from those in pfam02987. The family DUF1511, pfam07427, has now been merged into this family. 98 -308670 pfam03169 OPT OPT oligopeptide transporter protein. The OPT family of oligopeptide transporters is distinct from the ABC pfam00005 and PTR pfam00854 transporter families. OPT transporters were first recognized in fungi (Candida albicans and Schizosaccharomyces pombe), but this alignment also includes orthologues from Arabidopsis thaliana. OPT transporters are thought to have 12-14 transmembrane domains and contain the following motif: SPYxEVRxxVxxxDDP. 614 -335249 pfam03170 BcsB Bacterial cellulose synthase subunit. This family includes bacterial proteins involved in cellulose synthesis. Cellulose synthesis has been identified in several bacteria. In Agrobacterium tumefaciens, for instance, cellulose has a pathogenic role: it allows the bacteria to bind tightly to their host plant cells. While several enzymatic steps are involved in cellulose synthesis, potentially the only step unique to this pathway is that catalyzed by cellulose synthase. This enzyme is a multi subunit complex. This family encodes a subunit that is thought to bind the positive effector cyclic di-GMP. This subunit is found in several different bacterial cellulose synthase enzymes. The first recognized sequence for this subunit is BcsB. In the AcsII cellulose synthase, this subunit and the subunit corresponding to BcsA are found in the same protein. Indeed, this alignment only includes the C-terminal half of the AcsAII synthase, which corresponds to BcsB. 606 -308672 pfam03171 2OG-FeII_Oxy 2OG-Fe(II) oxygenase superfamily. This family contains members of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily. This family includes the C-terminal of prolyl 4-hydroxylase alpha subunit. The holoenzyme has the activity EC:1.14.11.2 catalyzing the reaction: Procollagen L-proline + 2-oxoglutarate + O2 <=> procollagen trans- 4-hydroxy-L-proline + succinate + CO2. The full enzyme consists of a alpha2 beta2 complex with the alpha subunit contributing most of the parts of the active site. The family also includes lysyl hydrolases, isopenicillin synthases and AlkB. 102 -335250 pfam03172 HSR HSR domain. The Sp100 protein is a constituent of nuclear domains, also known as nuclear dots (NDs). An ND-targeting region that coincides with a homodimerization domain was mapped in Sp100. Sequences similar to the Sp100 homodimerization/ND-targeting region occur in several other proteins and constitute a novel protein motif, termed HSR domain (for homogeneously-staining region). The HSR domain has also been named ASS (AIRE, Sp-100 and Sp140). This domain is usually found at the amino terminus of proteins that contain a SAND domain pfam01342. 99 -335251 pfam03173 CHB_HEX Putative carbohydrate binding domain. This domain represents the N terminal domain in chitobiases and beta-hexosaminidases EC:3.2.1.52. It is composed of a beta sandwich structure that is similar in structure to the cellulose binding domain of cellulase from Cellulomonas fimi. This suggests that this may be a carbohydrate binding domain. 158 -308675 pfam03174 CHB_HEX_C Chitobiase/beta-hexosaminidase C-terminal domain. This short domain represents the C terminal domain in chitobiases and beta-hexosaminidases EC:3.2.1.52. It is composed of a beta sandwich structure. The function of this domain is unknown. 76 -281206 pfam03175 DNA_pol_B_2 DNA polymerase type B, organellar and viral. Like pfam00136, members of this family are also DNA polymerase type B proteins. Those included here are found in plant and fungal mitochondria, and in viruses. 455 -308676 pfam03176 MMPL MMPL family. Members of this family are putative integral membrane proteins from bacteria. Several of the members are mycobacterial proteins. Many of the proteins contain two copies of this aligned region. The function of these proteins is not known, although it has been suggested that they may be involved in lipid transport. 332 -308677 pfam03177 Nucleoporin_C Non-repetitive/WGA-negative nucleoporin C-terminal. This is the C-termainl half of a family of nucleoporin proteins. Nucleoporins are the main components of the nuclear pore complex in eukaryotic cells, and mediate bidirectional nucleocytoplasmic transport, especially of mRNA and proteins. Two nucleoporin classes are known: one is characterized by the FG repeat pfam03093; the other is represented by this family, and lacks any repeats. RNA undergoing nuclear export first encounters the basket of the nuclear pore and many nucleoporins are accessible on the basket side of the pore. 517 -335252 pfam03178 CPSF_A CPSF A subunit region. This family includes a region that lies towards the C-terminus of the cleavage and polyadenylation specificity factor (CPSF) A (160 kDa) subunit. CPSF is involved in mRNA polyadenylation and binds the AAUAAA conserved sequence in pre-mRNA. CPSF has also been found to be necessary for splicing of single-intron pre-mRNAs. The function of the aligned region is unknown but may be involved in RNA/DNA binding. 308 -308679 pfam03179 V-ATPase_G Vacuolar (H+)-ATPase G subunit. This family represents the eukaryotic vacuolar (H+)-ATPase (V-ATPase) G subunit. V-ATPases generate an acidic environment in several intracellular compartments. Correspondingly, they are found as membrane-attached proteins in several organelles. They are also found in the plasma membranes of some specialized cells. V-ATPases consist of peripheral (V1) and membrane integral (V0) heteromultimeric complexes. The G subunit is part of the V1 subunit, but is also thought to be strongly attached to the V0 complex. It may be involved in the coupling of ATP degradation to H+ translocation. 105 -281211 pfam03180 Lipoprotein_9 NLPA lipoprotein. This family of bacterial lipoproteins contains several antigenic members, that may be involved in bacterial virulence. Their precise function is unknown. However they are probably distantly related to pfam00497 which are solute binding proteins. 236 -335253 pfam03181 BURP BURP domain. The BURP domain is found at the C-terminus of several different plant proteins. It was named after the proteins in which it was first identified: the BNM2 clone-derived protein from Brassica napus; USPs and USP-like proteins; RD22 from Arabidopsis thaliana; and PG1beta from Lycopersicon esculentum. This domain is around 230 amino acid residues long. It possesses the following conserved features: two phenylalanine residues at its N-terminus; two cysteine residues; and four repeated cysteine-histidine motifs, arranged as: CH-X(10)-CH-X(25-27)-CH-X(25-26)-CH, where X can be any amino acid. The function of this domain is unknown. 213 -112017 pfam03183 Borrelia_rep Borrelia repeat protein. 18 -308681 pfam03184 DDE_1 DDE superfamily endonuclease. This family of proteins are related to pfam00665 and are probably endonucleases of the DDE superfamily. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. Interestingly this family also includes the CENP-B protein. This domain in that protein appears to have lost the metal binding residues and is unlikely to have endonuclease activity. Centromere Protein B (CENP-B) is a DNA-binding protein localized to the centromere. 177 -308682 pfam03185 CaKB Calcium-activated potassium channel, beta subunit. 194 -335254 pfam03186 CobD_Cbib CobD/Cbib protein. This family includes CobD proteins from a number of bacteria, in Salmonella this protein is called Cbib. Salmonella CobD is a different protein. This protein is involved in cobalamin biosynthesis and is probably an enzyme responsible for the conversion of adenosylcobyric acid to adenosylcobinamide or adenosylcobinamide phosphate. 279 -281216 pfam03187 Corona_I Corona nucleocapsid I protein. 207 -335255 pfam03188 Cytochrom_B561 Eukaryotic cytochrome b561. Cytochrome b561 is a secretory vesicle-specific electron transport protein. It is an integral membrane protein, that binds two heme groups non-covalently. This is a eukaryotic family. Members of the 'prokaryotic cytochrome b561' family can be found in Pfam: PF01292. 137 -335256 pfam03189 Otopetrin Otopetrin. 430 -308686 pfam03190 Thioredox_DsbH Protein of unknown function, DUF255. 163 -308687 pfam03192 DUF257 Pyrococcus protein of unknown function, DUF257. 207 -335257 pfam03193 RsgA_GTPase RsgA GTPase. RsgA (also known as EngC and YjeQ) represents a protein family whose members are broadly conserved in bacteria and are indispensable for growth. The GTPase domain of RsgA is very similar to several P-loop GTPases, but differs in having a circular permutation of the GTPase structure described by a G4-G1-G3 pattern. 174 -335258 pfam03194 LUC7 LUC7 N_terminus. This family contains the N terminal region of several LUC7 protein homologs and only contains eukaryotic proteins. LUC7 has been shown to be a U1 snRNA associated protein with a role in splice site recognition. The family also contains human and mouse LUC7 like (LUC7L) proteins and human cisplatin resistance-associated overexpressed protein (CROP). 241 -335259 pfam03195 LOB Lateral organ boundaries (LOB) domain. The lateral organ boundaries (LOB) gene encodes a plant-specific protein of unknown function that is expressed at the adaxial base of initiating lateral organs. The N-terminal of the LOB protein contains an approximately 100-amino acid conserved domain (the LOB domain) that is present in 42 other Arabidopsis thaliana proteins as well as in proteins from a variety of other plant species. The LOB domain contains conserved blocks of amino acids that identify the LOB domain (LBD) gene family. In particular, a conserved C-x(2)-C-x(6)-C-x(3)-C motif, which is the defining feature of the LOB domain, is present in all LBD proteins. 99 -281224 pfam03196 DUF261 Protein of unknown function, DUF261. 137 -281225 pfam03197 FRD2 Bacteriophage FRD2 protein. 103 -335260 pfam03198 Glyco_hydro_72 Glucanosyltransferase. This is a family of glycosylphosphatidylinositol-anchored beta(1-3)glucanosyltransferases. The active site residues in the Aspergillus fumigatus example are the two glutamate residues at 160 and 261. 314 -335261 pfam03199 GSH_synthase Eukaryotic glutathione synthase. 102 -308692 pfam03200 Glyco_hydro_63 Glycosyl hydrolase family 63 C-terminal domain. This is a family of eukaryotic enzymes belonging to glycosyl hydrolase family 63. They catalyze the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2). Mannosyl oligosaccharide glucosidase EC:3.2.1.106 is the first enzyme in the N-linked oligosaccharide processing pathway. This family represents the C-terminal catalytic domain. 494 -308693 pfam03201 HMD H2-forming N5,N10-methylene-tetrahydromethanopterin dehydrogenase. 96 -308694 pfam03202 Lipoprotein_10 Putative mycoplasma lipoprotein, C-terminal region. 126 -335262 pfam03203 MerC MerC mercury resistance protein. 105 -335263 pfam03205 MobB Molybdopterin guanine dinucleotide synthesis protein B. This protein contains a P-loop. 131 -308697 pfam03206 NifW Nitrogen fixation protein NifW. Nitrogenase is a complex metalloenzyme composed of two proteins designated the Fe-protein and the MoFe-protein. Apart from these two proteins, a number of accessory proteins are essential for the maturation and assembly of nitrogenase. Even though experimental evidence suggests that these accessory proteins are required for nitrogenase activity, the exact roles played by many of these proteins in the functions of nitrogenase are unclear. Using yeast two-hybrid screening it has been shown that NifW can interact with itself as well as NifZ. 99 -308698 pfam03207 OspD Borrelia outer surface protein D (OspD). 254 -335264 pfam03208 PRA1 PRA1 family protein. This family includes the PRA1 (Prenylated rab acceptor) protein which is a Rab guanine dissociation inhibitor (GDI) displacement factor. This family also includes the glutamate transporter EAAC1 interacting protein GTRAP3-18. 141 -308700 pfam03209 PUCC PUCC protein. This protein is required for high-level transcription of the PUC operon. 401 -281237 pfam03210 Paramyx_P_V_C Paramyxovirus P/V phosphoprotein C-terminal. Paramyxoviridae P genes are able to generate more than one product, using alternative reading frames and RNA editing. The P gene encodes the structural phosphoprotein P. In addition, it encodes several non-structural proteins present in the infected cell but not in the virus particle. This family includes phosphoprotein P and the non-structural phosphoprotein V from different paramyxoviruses. Phosphoprotein P is essential for the activity of the RNA polymerase complex which it forms with another subunit, L pfam00946. Although all the catalytic activities of the polymerase are associated with the L subunit, its function requires specific interactions with phosphoprotein P. The P and V phosphoproteins are amino co-terminal, but diverge at their C-termini. This difference is generated by an RNA-editing mechanism in which one or two non-templated G residues are inserted into P-gene-derived mRNA. In measles virus and Sendai virus, one G residue is inserted and the edited transcript encodes the V protein. In mumps, simian virus type 5 and Newcastle disease virus, two G residues are inserted, and the edited transcript codes for the P protein. Being phosphoproteins, both P and V are rich in serine and threonine residues over their whole lengths. In addition, the V proteins are rich in cysteine residues at the C-termini. This C-terminal region of the P phosphoprotein is likely to be the nucleocapsid-binding domain, and is found to be intrinsically disordered and thus liable to induced folding. 154 -335265 pfam03211 Pectate_lyase Pectate lyase. 195 -308702 pfam03212 Pertactin Pertactin. 121 -281240 pfam03213 Pox_P35 Poxvirus P35 protein. 323 -308703 pfam03214 RGP Reversibly glycosylated polypeptide. 340 -251803 pfam03215 Rad17 Rad17 cell cycle checkpoint protein. 517 -281242 pfam03216 Rhabdo_ncap_2 Rhabdovirus nucleoprotein. 357 -335266 pfam03217 SLAP SLAP domain. This short domain is found in a variety of bacterial cell surface proteins. The domain is about 60 residues in length (although previously defined as 2 copies of this domain). It usually occurs in tandem pairs. It may be distantly related to the SH3 domain. 53 -308704 pfam03219 TLC TLC ATP/ADP transporter. 491 -281245 pfam03220 Tombus_P19 Tombusvirus P19 core protein. 171 -308705 pfam03221 HTH_Tnp_Tc5 Tc5 transposase DNA-binding domain. 62 -308706 pfam03222 Trp_Tyr_perm Tryptophan/tyrosine permease family. 393 -308707 pfam03223 V-ATPase_C V-ATPase subunit C. 367 -308708 pfam03224 V-ATPase_H_N V-ATPase subunit H. The yeast Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying organelles. It functions as an ATP dependent proton pump that transports protons across a lipid bilayer. This domain corresponds to the N terminal domain of the H subunit of V-ATPase. The N-terminal domain is required for the activation of the complex whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation. 311 -251809 pfam03225 Viral_Hsp90 Viral heat shock protein Hsp90 homolog. 511 -335267 pfam03226 Yippee-Mis18 Yippee zinc-binding/DNA-binding /Mis18, centromere assembly. This family includes both Yippee-type proteins and Mis18 kinetochore proteins. Yippee are putative zinc-binding/DNA-binding proteins. Mis18 are proteins involved in the priming of centromeres for recruiting CENP-A. Mis18-alpha and beta form part of a small complex with Mis18-binding protein. Mis18-alpha is found to interact with DNA de-methylases through a Leu-rich region located at its carboxyl terminus. This entry also includes the CULT domain proteins such as Cereblon. 105 -335268 pfam03227 GILT Gamma interferon inducible lysosomal thiol reductase (GILT). This family includes the two characterized human gamma-interferon-inducible lysosomal thiol reductase (GILT) sequences. It also contains several other eukaryotic putative proteins with similarity to GILT. The aligned region contains three conserved cysteine residues. In addition, the two GILT sequences possess a C-X(2)-C motif that is shared by some of the other sequences in the family. This motif is thought to be associated with disulphide bond reduction. 105 -281252 pfam03228 Adeno_VII Adenoviral core protein VII. The function of this protein is unknown. It has a conserved amino terminus of 50 residues followed by a positively charged tail, suggesting it may interact with nucleic acid. The major core protein of the adenovirus, protein VII, was found to be associated with viral DNA throughout infection. The precursor to protein VII were shown to be in vivo and in vitro acceptors of ADP-ribose. The ADP-ribosylated core proteins were assembled into mature virus particles. ADP-ribosylation of adenovirus core proteins may have a role in virus decapsidation. 142 -251813 pfam03229 Alpha_GJ Alphavirus glycoprotein J. 126 -335269 pfam03230 Antirestrict Antirestriction protein. This family includes various protein that are involved in antirestriction. The ArdB protein efficiently inhibits restriction by members of the three known families of type I systems of E. coli. 92 -251815 pfam03231 Bunya_NS-S_2 Bunyavirus non-structural protein NS-S. This family represents the Bunyavirus NS-S family. Bunyavirus has three genomic segments: small (S), middle-sized (M), and large (L). The S segment encodes the nucleocapsid and a non-structural protein. The M segment codes for two glycoproteins, G1 and G2, and another non-structural protein (NSm). The L segment codes for an RNA polymerase. 444 -335270 pfam03232 COQ7 Ubiquinone biosynthesis protein COQ7. Members of this family contain two repeats of about 90 amino acids, that contains two conserved motifs. One of these DXEXXH may be part of an enzyme active site. 172 -251817 pfam03233 Cauli_AT Aphid transmission protein. This protein is found in various caulimoviruses. It codes for an 18 kDa protein (PII), which is dispensable for infection but which is required for aphid transmission of the virus. This protein interacts with the PIII protein. 163 -308713 pfam03234 CDC37_N Cdc37 N terminal kinase binding. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domain corresponds to the N terminal domain which binds predominantly to protein kinases and is found N terminal to the Hsp (Heat shocked protein) 90-binding domain pfam08565. Expression of a construct consisting of only the N-terminal domain of Saccharomyces pombe Cdc37 results in cellular viability. This indicates that interactions with the cochaperone Hsp90 may not be essential for Cdc37 function. 122 -308714 pfam03235 DUF262 Protein of unknown function DUF262. 180 -335271 pfam03237 Terminase_6 Terminase-like family. This family represents a group of terminase proteins. 215 -281258 pfam03238 ESAG1 ESAG protein. Expression-site-associated gene (ESAG) proteins are thought to be involved in VSG activation. This family includes ESAG 117A as well as ESAG IM. 227 -251822 pfam03239 FTR1 Iron permease FTR1 family. 284 -308716 pfam03241 HpaB 4-hydroxyphenylacetate 3-hydroxylase C terminal. HpaB encodes part of the 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli. HpaB is part of a heterodimeric enzyme that also requires HpaC. The enzyme is NADH-dependent and uses FAD as the redox chromophore. This family also includes PvcC may play a role in one of the proposed hydroxylation steps of pyoverdine chromophore biosynthesis. 196 -335272 pfam03242 LEA_3 Late embryogenesis abundant protein. Members of this family are similar to late embryogenesis abundant proteins. Members of the family have been isolated in a number of different screens. However, the molecular function of these proteins remains obscure. 93 -335273 pfam03243 MerB Alkylmercury lyase. Alkylmercury lyase (EC:4.99.1.2) cleaves the carbon-mercury bond of organomercurials such as phenylmercuric acetate. 117 -308719 pfam03244 PSI_PsaH Photosystem I reaction centre subunit VI. Photosystem I (PSI) is an integral membrane protein complex that uses light energy to mediate electron transfer from plastocyanin to ferredoxin. 138 -281263 pfam03245 Phage_lysis Bacteriophage Rz lysis protein. This protein is involved in host lysis. This family is not considered to be a peptidase according to the MEROPs database. This family Rz and the Rz1 protein (pfam06085) represent a unique example of two genes located in different reading frames in the same nucleotide sequence, which encode different proteins that are both required in the same physiological pathway. 125 -308720 pfam03246 Pneumo_ncap Pneumovirus nucleocapsid protein. 390 -308721 pfam03247 Prothymosin Prothymosin/parathymosin family. Prothymosin alpha and parathymosin are two ubiquitous small acidic nuclear proteins that are thought to be involved in cell cycle progression, proliferation, and cell differentiation. 111 -335274 pfam03248 Rer1 Rer1 family. RER1 family protein are involved in involved in the retrieval of some endoplasmic reticulum membrane proteins from the early golgi compartment. The C-terminus of yeast Rer1p interacts with a coatomer complex. 168 -281267 pfam03249 TSA Type specific antigen. There are several antigenic variants in Rickettsia tsutsugamushi, and a type-specific antigen (TSA) of 56-kilodaltons located on the rickettsial surface is responsible for the variation. TSA proteins are probably integral membrane proteins. 510 -335275 pfam03250 Tropomodulin Tropomodulin. Tropomodulin is a novel tropomyosin regulatory protein that binds to the end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin along actin filaments. Limited proteolysis shows this protein is composed of two domains. The amino terminal domain contains the tropomyosin binding function. 140 -281269 pfam03251 Tymo_45kd_70kd Tymovirus 45/70Kd protein. Tymoviruses are single stranded RNA viruses. This family includes a protein of unknown function that has been named based on its molecular weight. Tymoviruses such as the ononis yellow mosaic tymovirus encode only three proteins. Of these two are overlapping this protein overlaps a larger ORF that is thought to be the polymerase. 468 -281270 pfam03252 Herpes_UL21 Herpesvirus UL21. The UL21 protein appears to be a dispensable component in herpesviruses. 524 -335276 pfam03253 UT Urea transporter. Members of this family transport urea across membranes. The family includes a bacterial homolog. 291 -308725 pfam03254 XG_FTase Xyloglucan fucosyltransferase. Plant cell walls are crucial for development, signal transduction, and disease resistance in plants. Cell walls are made of cellulose, hemicelluloses, and pectins. Xyloglucan (XG), the principal load-bearing hemicellulose of dicotyledonous plants, has a terminal fucosyl residue. This fucosyltransferase adds this residue. 465 -335277 pfam03255 ACCA Acetyl co-enzyme A carboxylase carboxyltransferase alpha subunit. Acetyl co-enzyme A carboxylase carboxyltransferase is composed of an alpha and beta subunit. 144 -308727 pfam03256 ANAPC10 Anaphase-promoting complex, subunit 10 (APC10). 185 -281275 pfam03257 Adhesin_P1 Mycoplasma adhesin P1. This family corresponds to a short 100 residue region found in adhesins from Mycoplasmas. 91 -281276 pfam03258 Baculo_FP Baculovirus FP protein. The FP protein is missing in baculovirus (Few Polyhedra) mutants. 214 -308728 pfam03259 Robl_LC7 Roadblock/LC7 domain. This family includes proteins that are about 100 amino acids long and have been shown to be related. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions. This family also includes Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus, a protein involved in gliding motility. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role. 89 -308729 pfam03260 Lipoprotein_11 Lepidopteran low molecular weight (30 kD) lipoprotein. 249 -308730 pfam03261 CDK5_activator Cyclin-dependent kinase 5 activator protein. 348 -281280 pfam03262 Corona_6B_7B Coronavirus 6B/7B protein. 206 -281281 pfam03263 Cucumo_2B Cucumovirus protein 2B. This protein may be a viral movement protein. 105 -308731 pfam03264 Cytochrom_NNT NapC/NirT cytochrome c family, N-terminal region. Within the NapC/NirT family of cytochrome c proteins, some members, such as NapC and NirT, bind four haem groups, while others, such as TorC, bind five haems. This family aligns the common N-terminal region that contains four haem-binding C-X(2)-CH motifs. 174 -308732 pfam03265 DNase_II Deoxyribonuclease II. 316 -308733 pfam03266 NTPase_1 NTPase. This domain is found across all species from bacteria to human, and the function was determined first in a hyperthermophilic bacterium to be an NTPase. The structure of one member-sequence represents a variation of the RecA fold, and implies that the function might be that of a DNA/RNA modifying enzyme. The sequence carries both a Walker A and Walker B motif which together are characteristic of ATPases or GTPases. The protein exhibits an increased expression profile in human liver cholangiocarcinoma when compared to normal tissue. 168 -308734 pfam03268 DUF267 Caenorhabditis protein of unknown function, DUF267. 353 -308735 pfam03269 DUF268 Caenorhabditis protein of unknown function, DUF268. 176 -335278 pfam03270 DUF269 Protein of unknown function, DUF269. Members of this family may be involved in nitrogen fixation, since they are found within nitrogen fixation operons. 121 -335279 pfam03271 EB1 EB1-like C-terminal motif. This motif is found at the C-terminus of proteins that are related to the EB1 protein. The EB1 proteins contain an N-terminal CH domain pfam00307. The human EB1 protein was originally discovered as a protein interacting with the C-terminus of the APC protein. This interaction is often disrupted in colon cancer, due to deletions affecting the APC C-terminus. Several EB1 orthologues are also included in this family. The interaction between EB1 and APC has been shown to have a potent synergistic effect on microtubule polymerization. Neither of EB1 or APC alone has this effect. It is thought that EB1 targets APC to the + ends of microtubules, where APC promotes microtubule polymerization. This process is regulated by APC phosphorylation by Cdc2, which disrupts APC-EB1 binding. Human EB1 protein can functionally substitute for the yeast EB1 homolog Mal3. In addition, Mal3 can substitute for human EB1 in promoting microtubule polymerization with APC. 40 -308738 pfam03272 Mucin_bdg Putative mucin or carbohydrate-binding module. This family is the putative binding domain for the substrates of enhancin, and other similar metallopeptidases. This is not the enzymically active, peptidase, part of the proteins - see pfam13402. 116 -281290 pfam03273 Baculo_gp64 Baculovirus gp64 envelope glycoprotein family. This family includes the gp64 glycoprotein from baculovirus as well as other viruses. 534 -281291 pfam03274 Foamy_BEL Foamy virus BEL 1/2 protein. 301 -308739 pfam03275 GLF UDP-galactopyranose mutase. 204 -281293 pfam03276 Gag_spuma Spumavirus gag protein. 614 -281294 pfam03277 Herpes_UL4 Herpesvirus UL4 family. 187 -281295 pfam03278 IpaB_EvcA IpaB/EvcA family. This family includes IpaB, which is an invasion plasmid antigen from Shigella, as well as EvcA from E. coli. Members of this family seem to be involved in pathogenicity of some enterobacteria. However the exact function of this component is not clear. 144 -281296 pfam03279 Lip_A_acyltrans Bacterial lipid A biosynthesis acyltransferase. 294 -335280 pfam03280 Lipase_chap Proteobacterial lipase chaperone protein. 192 -308741 pfam03281 Mab-21 Mab-21 protein. This family contains Mab-21 and Mab-21 like proteins. In C. elegans these proteins are required for several aspects of embryonic development. 249 -335281 pfam03283 PAE Pectinacetylesterase. 352 -308743 pfam03284 PHZA_PHZB Phenazine biosynthesis protein A/B. 153 -308744 pfam03285 Paralemmin Paralemmin. 312 -281302 pfam03286 Pox_Ag35 Pox virus Ag35 surface protein. 196 -308745 pfam03287 Pox_C7_F8A Poxvirus C7/F8A protein. 147 -335282 pfam03288 Pox_D5 Poxvirus D5 protein-like. This family includes D5 from Poxviruses which is necessary for viral DNA replication, and is a nucleic acid independent nucleoside triphosphatase. Members of this family are also found outside of poxviruses. This domain is a DNA-binding winged HTH domain. 85 -281305 pfam03289 Pox_I1 Poxvirus protein I1. 307 -281306 pfam03290 Peptidase_C57 Vaccinia virus I7 processing peptidase. 425 -281307 pfam03291 Pox_MCEL mRNA capping enzyme. This family of enzymes are related to pfam03919. 332 -281308 pfam03292 Pox_P4B Poxvirus P4B major core protein. 657 -281309 pfam03293 Pox_RNA_pol Poxvirus DNA-directed RNA polymerase, 18 kD subunit. 160 -281310 pfam03294 Pox_Rap94 RNA polymerase-associated transcription specificity factor, Rap94. 796 -281311 pfam03295 Pox_TAA1 Poxvirus trans-activator protein A1 C-terminal. 63 -281312 pfam03296 Pox_polyA_pol Poxvirus poly(A) polymerase nucleotidyltransferase domain. 147 -335283 pfam03297 Ribosomal_S25 S25 ribosomal protein. 101 -308748 pfam03298 Stanniocalcin Stanniocalcin family. 200 -308749 pfam03299 TF_AP-2 Transcription factor AP-2. 196 -281316 pfam03300 Tenui_NS4 Tenuivirus non-structural, movement protein NS4. 282 -281317 pfam03301 Trp_dioxygenase Tryptophan 2,3-dioxygenase. 346 -146106 pfam03302 VSP Giardia variant-specific surface protein. 397 -281318 pfam03303 WTF WTF protein. This is a family of hypothetical Schizosaccharomyces pombe proteins. Their function is unknown. 237 -308750 pfam03304 Mlp Mlp lipoprotein family. The Mlp (for Multicopy Lipoprotein) family of lipoproteins is found in Borrelia species. This family were previously known as 2.9 lipoprotein genes. These surface expressed genes may represent new candidate vaccinogens for Lyme disease. Members of this family generally are downstream of four ORFs called A,B,C and D that are involved in hemolytic activity. 121 -308751 pfam03305 Lipoprotein_X Mycoplasma MG185/MG260 protein. Most of the aligned regions in this family are found towards the middle of the member proteins. 184 -335284 pfam03306 AAL_decarboxy Alpha-acetolactate decarboxylase. 219 -281322 pfam03307 Adeno_E3_15_3 Adenovirus 15.3kD protein in E3 region. 117 -281323 pfam03308 ArgK ArgK protein. The ArgK protein acts as an ATPase enzyme and as a kinase, and phosphorylates periplasmic binding proteins involved in the LAO (lysine, arginine, ornithine)/AO transport systems. 272 -335285 pfam03309 Pan_kinase Type III pantothenate kinase. Type III pantothenate kinase catalyzes the phosphorylation of pantothenate (Pan), the first step in the universal pathway of CoA biosynthesis. 205 -251863 pfam03310 Cauli_DNA-bind Caulimovirus DNA-binding protein. 121 -308754 pfam03311 Cornichon Cornichon protein. 122 -308755 pfam03312 DUF272 Protein of unknown function (DUF272). This family of proteins is restricted to C.elegans and has no known function. The protein contains a ubiquitin fold. The GO annotation for the protein indicates that it has a function in nematode larval development. 123 -335286 pfam03313 SDH_alpha Serine dehydratase alpha chain. L-serine dehydratase (EC:4.2.1.13) is a found as a heterodimer of alpha and beta chain or as a fusion of the two chains in a single protein. This enzyme catalyzes the deamination of serine to form pyruvate. This enzyme is part of the gluconeogenesis pathway. 258 -308757 pfam03314 DUF273 Protein of unknown function, DUF273. 219 -335287 pfam03315 SDH_beta Serine dehydratase beta chain. L-serine dehydratase (EC:4.2.1.13) is a found as a heterodimer of alpha and beta chain or as a fusion of the two chains in a single protein. This enzyme catalyzes the deamination of serine to form pyruvate. This enzyme is part of the gluconeogenesis pathway. 146 -335288 pfam03317 ELF ELF protein. This is a family of hypothetical proteins from cereal crops. 123 -308759 pfam03318 ETX_MTX2 Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2. This family appears to be distantly related to pfam01117. 222 -308760 pfam03319 EutN_CcmL Ethanolamine utilisation protein EutN/carboxysome. The crystal structure of EutN contains a central five-stranded beta-barrel, with an alpha-helix at the open end of this barrel (Structure 2HD3). The structure also contains three additional beta-strands, which help the formation of a tight hexamer, with a hole in the center. this suggests that EutN forms a pore, with an opening of 26 Angstrom in diameter on one face and 14 Angstrom on the other face. EutN is involved in the cobalamin-dependent degradation of ethanolamine. 83 -335289 pfam03320 FBPase_glpX Bacterial fructose-1,6-bisphosphatase, glpX-encoded. 307 -335290 pfam03321 GH3 GH3 auxin-responsive promoter. 529 -335291 pfam03323 GerA Bacillus/Clostridium GerA spore germination protein. 468 -281336 pfam03324 Herpes_HEPA Herpesvirus DNA helicase/primase complex associated protein. This family includes HSV UL8, EHV-1 54, VZV 52 AND HCMV 102. 91 -281337 pfam03325 Herpes_PAP Herpesvirus polymerase accessory protein. The same proteins are also known as polymerase processivity factors. 318 -308764 pfam03326 Herpes_TAF50 Herpesvirus transcription activation factor (transactivator). This family includes EBV BRLF1 and similar ORF 50 proteins from other herpesviruses. 568 -281339 pfam03327 Herpes_VP19C Herpesvirus capsid shell protein VP19C. 263 -335292 pfam03328 HpcH_HpaI HpcH/HpaI aldolase/citrate lyase family. This family includes 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase and 4-hydroxy-2-oxovalerate aldolase. 221 -335293 pfam03330 DPBB_1 Lytic transglycolase. Rare lipoprotein A (RlpA) contains a conserved region that has the double-psi beta-barrel (DPBB) fold. The function of RlpA is not well understood, but it has been shown to act as a prc mutant suppressor in Escherichia coli. The DPBB fold is often an enzymatic domain. The members of this family are quite diverse, and if catalytic this family may contain several different functions. Another example of this domain is found in the N-terminus of pollen allergen. Recent studies show that the full-length RlpA protein from Pseudomonas Aeruginosa is an outer membrane protein that is a lytic transglycolase with specificity for peptidoglycan lacking stem peptides. Residue D157 in UniProtKB:Q9X6V6 is critical for lytic activity. 81 -335294 pfam03331 LpxC UDP-3-O-acyl N-acetylglycosamine deacetylase. The enzymes in this family catalyze the second step in the biosynthetic pathway for lipid A. 269 -281343 pfam03332 PMM Eukaryotic phosphomannomutase. This enzyme EC:5.4.2.8 is involved in the synthesis of the GDP-mannose and dolichol-phosphate-mannose required for a number of critical mannosyl transfer reactions. 219 -308768 pfam03333 PapB Adhesin biosynthesis transcription regulatory protein. This family includes PapB, DaaA, FanA, FanB, and AfaA. 91 -335295 pfam03334 PhaG_MnhG_YufB Na+/H+ antiporter subunit. This family includes PhaG from Rhizobium meliloti, MnhG from Staphylococcus aureus, YufB from Bacillus subtilis. 80 -335296 pfam03335 Phage_fiber Phage tail fibre repeat. 14 -281347 pfam03336 Pox_C4_C10 Poxvirus C4/C10 protein. 322 -281348 pfam03337 Pox_F12L Poxvirus F12L protein. 649 -281349 pfam03338 Pox_J1 Poxvirus J1 protein. 145 -281350 pfam03339 Pox_L3_FP4 Poxvirus L3/FP4 protein. 316 -281351 pfam03340 Pox_Rif Poxvirus rifampicin resistance protein. 542 -281352 pfam03341 Pox_mRNA-cap Poxvirus mRNA capping enzyme, small subunit. The small subunit of the poxvirus mRNA capping enzyme has been found to have a structure which suggests that it started life as an RNA cap 2-prime O-methyltransferase. It has subsequently evolved to a catalytically inactive form that has been retained in order to help stabilize the large subunit, D1, and to enhance its methyltransferase activity through an allosteric mechanism. 286 -281353 pfam03342 Rhabdo_M1 Rhabdovirus M1 matrix protein (M1 polymerase-associated protein). 227 -308770 pfam03343 SART-1 SART-1 family. SART-1 is a protein involved in cell cycle arrest and pre-mRNA splicing. It has been shown to be a component of U4/U6 x U5 tri-snRNP complex in human, Schizosaccharomyces pombe and Saccharomyces cerevisiae. SART-1 is a known tumor antigen in a range of cancers recognized by T cells. 581 -308771 pfam03344 Daxx Daxx N-terminal Rassf1C-interacting domain. The Daxx protein (also known as the Fas-binding protein) is thought to play a role in apoptosis. Daxx forms a complex with Axin. Remodelling of the family to a short domain based on the Structure 2kzs structure gives a more representative family. DAXX is a scaffold protein shown to play diverse roles in transcription and cell cycle regulation. This N-terminal domain folds into a left-handed four-helix bundle (H1, H2, H4, H5) that binds to the N-terminal residues of the tumor-suppressor Rassf1C. 99 -335297 pfam03345 DDOST_48kD Oligosaccharyltransferase 48 kDa subunit beta. Members of this family are involved in asparagine-linked protein glycosylation. In particular, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST), also known as oligosaccharyltransferase EC:2.4.1.119, transfers the high-mannose sugar GlcNAc(2)-Man(9)-Glc(3) from a dolichol-linked donor to an asparagine acceptor in a consensus Asn-X-Ser/Thr motif. In most eukaryotes, the DDOST complex is composed of three subunits, which in humans are described as a 48kD subunit, ribophorin I, and ribophorin II. However, the yeast DDOST appears to consist of six subunits (alpha, beta, gamma, delta, epsilon, zeta). The yeast beta subunit is a 45kD polypeptide, previously discovered as the Wbp1 protein, with known sequence similarity to the human 48kD subunit and the other orthologues. This family includes the 48kD-like subunits from several eukaryotes; it also includes the yeast DDOST beta subunit Wbp1. 415 -281357 pfam03347 TDH Vibrio thermostable direct hemolysin. 165 -308773 pfam03348 Serinc Serine incorporator (Serinc). This is a family of eukaryotic membrane proteins which incorporate serine into membranes and facilitate the synthesis of the serine-derived lipids phosphatidylserine and sphingolipid. Members of this family contain 11 transmembrane domains and form intracellular complexes with key enzymes involved in serine and sphingolipid biosynthesis. 381 -308774 pfam03349 Toluene_X Outer membrane protein transport protein (OMPP1/FadL/TodX). This family includes TodX from Pseudomonas putida F1 and TbuX from Ralstonia pickettii PKO1. These are membrane proteins of uncertain function that are involved in toluene catabolism. Related proteins involved in the degradation of similar aromatic hydrocarbons are also in this family, such as CymD. This family also includes FadL involved in translocation of long-chain fatty acids across the outer membrane. It is also a receptor for the bacteriophage T2. 419 -335298 pfam03350 UPF0114 Uncharacterized protein family, UPF0114. 120 -308776 pfam03351 DOMON DOMON domain. The DOMON (named after dopamine beta-monooxygenase N-terminal) domain is 110-125 residues long. It is predicted to form an all beta fold with up to 11 strands and is secreted to the extracellular compartment. The beta-strand folding produces a hydrophobic pocket which appears to bind soluble haem. This is consistent with the predominant architectures where the protein is associated with cytochromes or enzymatic domains whose activity involves redox or electron transfer reactions potentially as a direct participant in the electron transfer process. The DOMON domain superfamily, of which this is just one member, shows (1) multiple hydrophobic residues that contribute to the hydrophobic core of the strands of the beta-sandwich, and small residues found at the boundaries of strands and loops, (2) a strongly conserved charged residue (usually arginine/lysine) at the end of strand 9, which possibly stabilizes the loop between 9 and 10, and (3) a polar residue (usually histidine, lysine or arginine), that interacts or coordinates with ligands. The suggested superfamily includes both haem- and sugar-binding members: the haem-binding families being the ethyl-Benzoate dehydrogenase family EB_dh, pfam09459, the cellobiose dehydrogenase family CBDH and this family, and the sugar-binding families being the xylanases, CBM_4_9, pfam02018. The common feature of the superfamily is the 11-beta-strand structure, although the first and eleventh strands are not well conserved either within families or between families. 119 -335299 pfam03352 Adenine_glyco Methyladenine glycosylase. The DNA-3-methyladenine glycosylase I is constitutively expressed and is specific for the alkylated 3-methyladenine DNA. 177 -281363 pfam03353 Lin-8 Ras-mediated vulval-induction antagonist. LIN-8 is a nuclear protein, present at the sites of transcriptional repressor complexes, which interacts with LIN-35 Rb. Lin35 Rb is a product of the class B synMuv gene lin-35 which silences genes required for vulval specification through chromatin modification and remodelling. The biological role of the interaction has not yet been determined however predictions have been made. The interaction shows that class A synMuv genes control vulval induction through the transcriptional regulation of gene expression. LIN-8 normally functions as part of a protein complex however when the complex is absent, other family members can partially replace LIN-8 activity. 301 -281364 pfam03354 Terminase_1 Phage Terminase. The majority of the members of this family are bacteriophage proteins, several of which are thought to be terminase large subunit proteins. There are also a number of bacterial proteins of unknown function. 466 -146143 pfam03355 Pox_TAP Viral Trans-Activator Protein. These proteins function as a trans-activator of viral late genes. 260 -281365 pfam03356 Pox_LP_H2 Viral late protein H2. All Members of this family show similarity to the vaccinia virus late protein H2. This protein is often referred to by its gene name of H2R. Members from this family all belong to the viral taxon Poxviridae. 188 -308778 pfam03357 Snf7 Snf7. This family of proteins are involved in protein sorting and transport from the endosome to the vacuole/lysosome in eukaryotic cells. Vacuoles/lysosomes play an important role in the degradation of both lipids and cellular proteins. In order to perform this degradative function, vacuoles/lysosomes contain numerous hydrolases which have been transported in the form of inactive precursors via the biosynthetic pathway and are proteolytically activated upon delivery to the vacuole/lysosome. The delivery of transmembrane proteins, such as activated cell surface receptors to the lumen of the vacuole/lysosome, either for degradation/downregulation, or in the case of hydrolases, for proper localization, requires the formation of multivesicular bodies (MVBs). These late endosomal structures are formed by invaginating and budding of the limiting membrane into the lumen of the compartment. During this process, a subset of the endosomal membrane proteins is sorted into the forming vesicles. Mature MVBs fuse with the vacuole/lysosome, thereby releasing cargo containing vesicles into its hydrolytic lumen for degradation. Endosomal proteins that are not sorted into the intralumenal MVB vesicles are either recycled back to the plasma membrane or Golgi complex, or remain in the limiting membrane of the MVB and are thereby transported to the limiting membrane of the vacuole/lysosome as a consequence of fusion. Therefore, the MVB sorting pathway plays a critical role in the decision between recycling and degradation of membrane proteins. A few archaeal sequences are also present within this family. 170 -335300 pfam03358 FMN_red NADPH-dependent FMN reductase. 149 -308780 pfam03359 GKAP Guanylate-kinase-associated protein (GKAP) protein. 345 -335301 pfam03360 Glyco_transf_43 Glycosyltransferase family 43. 205 -281370 pfam03361 Herpes_IE2_3 Herpes virus intermediate/early protein 2/3. These viral sequences are similar to UL117 protein of human and chimpanzee cytomegalovirus, and to intermediate/early proteins 2 and 3 of certain herpes viruses. UL117 is thought to be a glycoprotein that is expressed at early and late times after infection. This region is close to the C-terminus of the protein and may be a transmembrane region. 162 -281371 pfam03362 Herpes_UL47 Herpesvirus UL47 protein. 448 -281372 pfam03363 Herpes_LP Herpesvirus leader protein. 174 -308782 pfam03364 Polyketide_cyc Polyketide cyclase / dehydrase and lipid transport. This family contains polyketide cylcases/dehydrases which are enzymes involved in polyketide synthesis. The family also includes proteins which are involved in the binding/transport of lipids. 127 -335302 pfam03366 YEATS YEATS family. We have named this family the YEATS family, after `YNK7', `ENL', `AF-9', and `TFIIF small subunit'. This family also contains the GAS41 protein. All these proteins are thought to have a transcription stimulatory activity 84 -335303 pfam03367 zf-ZPR1 ZPR1 zinc-finger domain. The zinc-finger protein ZPR1 is ubiquitous among eukaryotes. It is indeed known to be an essential protein in yeast. In quiescent cells, ZPR1 is localized to the cytoplasm. But in proliferating cells treated with EGF or with other mitogens, ZPR1 accumulates in the nucleolus. ZPR1 interacts with the cytoplasmic domain of the inactive EGF receptor (EGFR) and is thought to inhibit the basal protein tyrosine kinase activity of EGFR. This interaction is disrupted when cells are treated with EGF, though by themselves, inactive EGFRs are not sufficient to sequester ZPR1 to the cytoplasm. Upon stimulation by EGF, ZPR1 directly binds the eukaryotic translation elongation factor-1alpha (eEF-1alpha) to form ZPR1/eEF-1alpha complexes. These move into the nucleus, localising particularly at the nucleolus. Indeed, the interaction between ZPR1 and eEF-1alpha has been shown to be essential for normal cellular proliferation, and ZPR1 is thought to be involved in pre-ribosomal RNA expression. The ZPR1 domain consists of an elongation initiation factor 2-like zinc finger and a double-stranded beta helix with a helical hairpin insertion. ZPR1 binds preferentially to GDP-bound eEF1A but does not directly influence the kinetics of nucleotide exchange or GTP hydrolysis. The alignment for this family shows a domain of which there are two copies in ZPR1 proteins. This family also includes several hypothetical archaeal proteins (from both Crenarchaeota and Euryarchaeota), which only contain one copy of the aligned region. This similarity between ZPR1 and archaeal proteins was not previously noted. 155 -335304 pfam03368 Dicer_dimer Dicer dimerization domain. This domain is found in members of the Dicer protein family which function in RNA interference, an evolutionarily conserved mechanism for gene silencing using double-stranded RNA (dsRNA) molecules. It is essential for the activity of Dicer. It is a divergent double stranded RNA-binding domain. The N-terminal alpha helix of this domain is in a different orientation to that found in canonical dsRNA-binding domains. This results in a change of charge distribution at the potential dsRNA-binding surface and in the N- and C-termini of the domain being in close proximity. This domain has weak dsRNA-binding activity. It mediates heterodimerization of Dicer proteins with their respective protein partners. 89 -281377 pfam03369 Herpes_UL3 Herpesvirus UL3 protein. 135 -308786 pfam03370 CBM_21 Carbohydrate/starch-binding module (family 21). This family consists of several eukaryotic proteins that are thought to be involved in the regulation of glycogen metabolism. For instance, the mouse PTG protein has been shown to interact with glycogen synthase, phosphorylase kinase, phosphorylase a: these three enzymes have key roles in the regulation of glycogen metabolism. PTG also binds the catalytic subunit of protein phosphatase 1 (PP1C) and localizes it to glycogen. Subsets of similar interactions have been observed with several other members of this family, such as the yeast PIG1, PIG2, GAC1 and GIP2 proteins. While the precise function of these proteins is not known, they may serve a scaffold function, bringing together the key enzymes in glycogen metabolism. This family is a carbohydrate binding domain. 112 -335305 pfam03371 PRP38 PRP38 family. Members of this family are related to the pre mRNA splicing factor PRP38 from yeast. Therefore all the members of this family could be involved in splicing. This conserved region could be involved in RNA binding. The putative domain is about 180 amino acids in length. PRP38 is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. 166 -335306 pfam03372 Exo_endo_phos Endonuclease/Exonuclease/phosphatase family. This large family of proteins includes magnesium dependent endonucleases and a large number of phosphatases involved in intracellular signalling. This family includes: AP endonuclease proteins EC:4.2.99.18, DNase I proteins EC:3.1.21.1, Synaptojanin an inositol-1,4,5-trisphosphate phosphatase EC:3.1.3.56, Sphingomyelinase EC:3.1.4.12, and Nocturnin. 221 -281381 pfam03373 Octapeptide Octapeptide repeat. This octapeptide repeat is found in several bacterial proteins. The function of this repeat is unknown. 8 -335307 pfam03374 ANT Phage antirepressor protein KilAC domain. This domain was called the KilAC domain by Iyer and colleagues. 105 -281383 pfam03376 Adeno_E3B Adenovirus E3B protein. 67 -308790 pfam03377 TAL_effector TAL effector repeat. The proteins in this family bind to DNA. Each repeat binds to a base pair in a predictable way. The structure shows that each repeat is composed of two alpha helices. 33 -308791 pfam03378 CAS_CSE1 CAS/CSE protein, C-terminus. Mammalian cellular apoptosis susceptibility (CAS) proteins are homologous to the yeast chromosome-segregation protein, CSE1. This family aligns the C-terminal halves (approximately). CAS is involved in both cellular apoptosis and proliferation. Apoptosis is inhibited in CAS-depleted cells, while the expression of CAS correlates to the degree of cellular proliferation. Like CSE1, it is essential for the mitotic checkpoint in the cell cycle (CAS depletion blocks the cell in the G2 phase), and has been shown to be associated with the microtubule network and the mitotic spindle, as is the protein MEK, which is thought to regulate the intracellular localization (predominantly nuclear vs. predominantly cytosolic) of CAS. In the nucleus, CAS acts as a nuclear transport factor in the importin pathway. The importin pathway mediates the nuclear transport of several proteins that are necessary for mitosis and further progression. CAS is therefore thought to affect the cell cycle through its effect on the nuclear transport of these proteins. Since apoptosis also requires the nuclear import of several proteins (such as P53 and transcription factors), it has been suggested that CAS also enables apoptosis by facilitating the nuclear import of at least a subset of these essential proteins. 435 -281385 pfam03379 CcmB CcmB protein. CcmB is the product of one of a cluster of Ccm genes that are necessary for cytochrome c biosynthesis in eubacteria. Expression of these proteins is induced when the organisms are grown under anaerobic conditions with nitrate or nitrite as the final electron acceptor. CcmB is required for the export of haem to the periplasm. 215 -308792 pfam03380 DUF282 Caenorhabditis protein of unknown function, DUF282. 38 -335308 pfam03381 CDC50 LEM3 (ligand-effect modulator 3) family / CDC50 family. Members of this family have been predicted to contain transmembrane helices. The family member LEM3 is a ligand-effect modulator, mutation of which increases glucocorticoid receptor activity in response to dexamethasone and also confers increased activity on other intracellular receptors including the progesterone, oestrogen and mineralocorticoid receptors. LEM3 is thought to affect a downstream step in the glucocorticoid receptor pathway. Factors that modulate ligand responsiveness are likely to contribute to the context-specific actions of the glucocorticoid receptor in mammalian cells. The products of genes YNR048w, YNL323w, and YCR094w (CDC50) show redundancy of function and are involved in regulation of transcription via CDC39. CDC39 (also known as NOT1) is normally a negative regulator of transcription either by affecting the general RNA polymerase II machinery or by altering chromatin structure. One function of CDC39 is to block activation of the mating response pathway in the absence of pheromone, and mutation causes arrest in G1 by activation of the pathway. It may be that the cold-sensitive arrest in G1 noticed in CDC50 mutants may be due to inactivation of CDC39. The effects of LEM3 on glucocorticoid receptor activity may also be due to effects on transcription via CDC39. 277 -308794 pfam03382 DUF285 Mycoplasma protein of unknown function, DUF285. This region appears distantly related to leucine rich repeats. 120 -251914 pfam03383 Serpentine_r_xa Caenorhabditis serpentine receptor-like protein, class xa. This family contains various Caenorhabditis proteins, some of which are annotated as being serpentine receptors, mainly of the xa class. 153 -146165 pfam03384 DUF287 Drosophila protein of unknown function, DUF287. 55 -308795 pfam03385 STELLO STELLO glycosyltransferases. This domain family is found in Metazoa and in Virdiplantae. Two of the family members are characterized in Arabidopsis thaliana and named STELLO1 (STL1) and STELLO2 (STL2) respectively. They are Golgi-localized proteins that can interact with CesAs (cellulose synthase A) and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. STL homologs are present throughout the plant kingdom, but STL proteins are distinct from distantly related proteins in nematodes, fungi and molluscs. 388 -308796 pfam03386 ENOD93 Early nodulin 93 ENOD93 protein. 78 -281391 pfam03387 Herpes_UL46 Herpesvirus UL46 protein. 435 -335309 pfam03388 Lectin_leg-like Legume-like lectin family. Lectins are structurally diverse proteins that bind to specific carbohydrates. This family includes the VIP36 and ERGIC-53 lectins. These two proteins were the first recognized members of a family of animal lectins similar (19-24%) to the leguminous plant lectins. The alignment for this family aligns residues lying towards the N-terminus, where the similarity of VIP36 and ERGIC-53 is greatest. However, while Fiedler and Simons identified these proteins as a new family of animal lectins, our alignment also includes yeast sequences. ERGIC-53 is a 53kD protein, localized to the intermediate region between the endoplasmic reticulum and the Golgi apparatus (ER-Golgi-Intermediate Compartment, ERGIC). It was identified as a calcium-dependent, mannose-specific lectin. Its dysfunction has been associated with combined factors V and VIII deficiency OMIM:227300 OMIM:601567, suggesting an important and substrate-specific role for ERGIC-53 in the glycoprotein- secreting pathway. 226 -308797 pfam03389 MobA_MobL MobA/MobL family. This family includes of the MobA protein from the E. coli plasmid RSF1010, and the MobL protein from the Thiobacillus ferrooxidans plasmid PTF1. These sequences are mobilisation proteins, which are essential for specific plasmid transfer. 221 -308798 pfam03390 2HCT 2-hydroxycarboxylate transporter family. The 2-hydroxycarboxylate transporter family is a family of secondary transporters found exclusively in the bacterial kingdom. They function in the metabolism of the di- and tricarboxylates malate and citrate, mostly in fermentative pathways involving decarboxylation of malate or oxaloacetate. 414 -251920 pfam03391 Nepo_coat Nepovirus coat protein, central domain. The members of this family are derived from nepoviruses. Together with comoviruses and picornaviruses, nepoviruses are classified in the picornavirus superfamily of plus strand single-stranded RNA viruses. This family aligns several nepovirus coat protein sequences. In several cases, this is found at the C-terminus of the RNA2-encoded viral polyprotein. The coat protein consists of three trapezoid-shaped beta-barrel domains, and forms a pseudo T = 3 icosahedral capsid structure. 167 -335310 pfam03392 OS-D Insect pheromone-binding family, A10/OS-D. 93 -308800 pfam03393 Pneumo_matrix Pneumovirus matrix protein. 252 -281397 pfam03394 Pox_E8 Poxvirus E8 protein. 238 -281398 pfam03395 Pox_P4A Poxvirus P4A protein. 882 -281399 pfam03396 Pox_RNA_pol_35 Poxvirus DNA-directed RNA polymerase, 35 kD subunit. 293 -281400 pfam03397 Rhabdo_matrix Rhabdovirus matrix protein. 168 -335311 pfam03398 Ist1 Regulator of Vps4 activity in the MVB pathway. ESCRT-I, -II, and -III are endosomal sorting complexes required for transporting proteins and carry out cargo sorting and vesicle formation in the multivesicular bodies, MVBs, pathway. These complexes are transiently recruited from the cytoplasm to the endosomal membrane where they bind transmembrane proteins previously marked for degradation by mono-ubiquitination. Assembly of ESCRT-III, a complex composed of at least four subunits (Vps2, Vps24, Vps20, Snf7), is intimately linked with MVB vesicle formation, its disassembly being an essential step in the MVB vesicle formation, a reaction that is carried out by Vps4, an AAA-type ATPase. The family Ist1 is a regulator of Vps4 activity; by interacting with Did2 and Vps4, Ist1 appears to regulate the recruitment and oligomerization of Vps4. Together Ist1, Did2, and Vta1 form a network of interconnected regulatory proteins that modulate Vps4 activity, thereby regulating the flow of cargo through the MVB pathway. 163 -335312 pfam03399 SAC3_GANP SAC3/GANP family. This family includes diverse proteins involved in large complexes. The alignment contains one highly conserved negatively charged residue and one highly conserved positively charged residue that are probably important for the function of these proteins. The family includes the yeast nuclear export factor Sac3, and mammalian GANP/MCM3-associated proteins, which facilitate the nuclear localization of MCM3, a protein that associates with chromatin in the G1 phase of the cell-cycle. 293 -281403 pfam03400 DDE_Tnp_IS1 IS1 transposase. Transposase proteins are necessary for efficient DNA transposition. This family represents bacterial IS1 transposases. 131 -281404 pfam03401 TctC Tripartite tricarboxylate transporter family receptor. These probable extra-cytoplasmic solute receptors are strongly overrepresented in several beta-proteobacteria. This family, formerly known as Bug - Bordetella uptake gene (bug) product - is a family of bacterial tripartite tricarboxylate receptors of the extracytoplasmic solute binding receptor-dependent transporter group of families, distinct from the ABC and TRAP-T families. The TctABC system has been characterized in S. typhimurium, and TctC is the extracytoplasmic tricarboxylate-binding receptor which binds the transporters TctA and TctB, two integral membrane proteins. Complete three-component systems are found only in bacteria. 273 -112227 pfam03402 V1R Vomeronasal organ pheromone receptor family, V1R. This family represents one of two known vomeronasal organ receptor families, the V1R family. 265 -335313 pfam03403 PAF-AH_p_II Platelet-activating factor acetylhydrolase, isoform II. Platelet-activating factor acetylhydrolase (PAF-AH) is a subfamily of phospholipases A2, responsible for inactivation of platelet-activating factor through cleavage of an acetyl group. Three known PAF-AHs are the brain heterotrimeric PAF-AH Ib, whose catalytic beta and gamma subunits are aligned in pfam02266, the extracellular, plasma PAF-AH (pPAF-AH), and the intracellular PAF-AH isoform II (PAF-AH II). This family aligns pPAF-AH and PAF-AH II, whose similarity was previously noted. 372 -335314 pfam03404 Mo-co_dimer Mo-co oxidoreductase dimerization domain. This domain is found in molybdopterin cofactor (Mo-co) oxidoreductases. It is involved in dimer formation, and has an Ig-fold structure. 137 -308804 pfam03405 FA_desaturase_2 Fatty acid desaturase. 319 -308805 pfam03406 Phage_fiber_2 Phage tail fibre repeat. This repeat is found in the tail fibers of phage. For example protein K. The repeats are about 40 residues long. 38 -335315 pfam03407 Nucleotid_trans Nucleotide-diphospho-sugar transferase. Proteins in this family have been been predicted to be nucleotide-diphospho-sugar transferases. 208 -281409 pfam03408 Foamy_virus_ENV Foamy virus envelope protein. Expression of the envelope (Env) glycoprotein is essential for viral particle egress. This feature is unique to the Spumavirinae, a subclass of the Retroviridae. 984 -308807 pfam03409 Glycoprotein Transmembrane glycoprotein. This family of proteins has some GO annotations for positive regulation of growth rate and nematode larval development. This is probably a family of membrane glycoproteins. 351 -281411 pfam03410 Peptidase_M44 Metallopeptidase from vaccinia pox. This is a family of Poxviridae metalloendopeptidases. The members were often originally named as G1 proteins. The family carries three zinc-binding ligands and a catalytic glutamate. The first two zinc ligands are histidine residues, found together with the catalytic glutamate in a HXXEH motif, an inverse of the classical metallopeptidase motif, HEXXH. The third zinc ligand is a glutamate C-terminal to the HXXEH motif within a motif ELENEY (see MEROPS). 596 -335316 pfam03411 Peptidase_M74 Penicillin-insensitive murein endopeptidase. 238 -308809 pfam03412 Peptidase_C39 Peptidase C39 family. Lantibiotic and non-lantibiotic bacteriocins are synthesized as precursor peptides containing N-terminal extensions (leader peptides) which are cleaved off during maturation. Most non-lantibiotics and also some lantibiotics have leader peptides of the so-called double-glycine type. These leader peptides share consensus sequences and also a common processing site with two conserved glycine residues in positions -1 and -2. The double- glycine-type leader peptides are unrelated to the N-terminal signal sequences which direct proteins across the cytoplasmic membrane via the sec pathway. Their processing sites are also different from typical signal peptidase cleavage sites, suggesting that a different processing enzyme is involved. Peptide bacteriocins are exported across the cytoplasmic membrane by a dedicated ATP-binding cassette (ABC) transporter. The ABC transporter is the maturation protease and its proteolytic domain resides in the N-terminal part of the protein. This peptidase domain is found in a wide range of ABC transporters, however the presumed catalytic cysteine and histidine are not conserved in all members of this family. 133 -335317 pfam03413 PepSY Peptidase propeptide and YPEB domain. This region is likely to have an protease inhibitory function (personal obs:C Yeats). This model is likely to miss some members of this family as the separation from signal to noise is not clear. The name is derived from Peptidase & Bacillus subtilis YPEB. 58 -308811 pfam03414 Glyco_transf_6 Glycosyltransferase family 6. 289 -281416 pfam03415 Peptidase_C11 Clostripain family. 359 -335318 pfam03416 Peptidase_C54 Peptidase family C54. 265 -281418 pfam03417 AAT Acyl-coenzyme A:6-aminopenicillanic acid acyl-transferase. 220 -308813 pfam03418 Peptidase_A25 Germination protease. 353 -308814 pfam03419 Peptidase_U4 Sporulation factor SpoIIGA. 286 -281421 pfam03420 Peptidase_S77 Prohead core protein serine protease. 198 -335319 pfam03421 Acetyltransf_14 YopJ Serine/Threonine acetyltransferase. The Yersinia effector YopJ inhibits the innate immune response by blocking MAP kinase and NFkappaB signaling pathways. YopJ is a serine/threonine acetyltransferase which regulates signalling pathways by blocking phosphorylation. Specifically, YopJ has been shown to block phosphorylation of active site residues. It has also been shown that YopJ acetyltransferase is activated by eukaryotic host cell inositol hexakisphosphate. This family was previously incorrectly annotated in Pfam as being a peptidase family. 174 -308816 pfam03422 CBM_6 Carbohydrate binding module (family 6). 125 -281424 pfam03423 CBM_25 Carbohydrate binding domain (family 25). 106 -335320 pfam03424 CBM_17_28 Carbohydrate binding domain (family 17/28). 203 -308818 pfam03425 CBM_11 Carbohydrate binding domain (family 11). 175 -281427 pfam03426 CBM_15 Carbohydrate binding domain (family 15). 149 -112252 pfam03427 CBM_19 Carbohydrate binding domain (family 19). 61 -335321 pfam03428 RP-C Replication protein C N-terminal domain. Replication protein C is involved in the early stages of viral DNA replication. 174 -308820 pfam03429 MSP1b Major surface protein 1B. The major surface protein (MSP1) of the cattle pathogen Anaplasma is a heterodimer comprised of MSP1a and MSP1b. This family is the MSP1b chain. There MSP1 proteins are putative adhesins for bovine erythrocytes. 760 -281430 pfam03430 TATR Trans-activating transcriptional regulator. This family of trans-activating transcriptional regulator (TATR), also known as intermediate early protein 1, are common to the Nucleopolyhedroviruses. 575 -308821 pfam03431 RNA_replicase_B RNA replicase, beta-chain. This family is of Leviviridae RNA replicases. The replicase is also known as RNA dependent RNA polymerase. 539 -308822 pfam03432 Relaxase Relaxase/Mobilisation nuclease domain. Relaxases/mobilisation proteins are required for the horizontal transfer of genetic information contained on plasmids that occurs during bacterial conjugation. The relaxase, in conjunction with several auxiliary proteins, forms the relaxation complex or relaxosome. Relaxases nick duplex DNA in a specific manner by catalyzing trans-esterification. 241 -308823 pfam03433 EspA EspA-like secreted protein. EspA is the prototypical member of this family. EspA, together with EspB, EspD and Tir are exported by a type III secretion system. These proteins are essential for attaching and effacing lesion formation. EspA is a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. 180 -308824 pfam03434 DUF276 DUF276. This family is specific to Borrelia burgdorferi. The protein is encoded on extra-chromosomal DNA. This domain has no known function. 291 -308825 pfam03435 Sacchrp_dh_NADP Saccharopine dehydrogenase NADP binding domain. This family contains the NADP binding domain of saccharopine dehydrogenase. In some organisms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. 120 -308826 pfam03436 DUF281 Domain of unknown function (DUF281). This family of worm domain has no known function. The boundaries of the presumed domain are rather uncertain. 55 -281436 pfam03437 BtpA BtpA family. The BtpA protein is tightly associated with the thylakoid membranes, where it stabilizes the reaction centre proteins of photosystem I. 254 -281437 pfam03438 Pneumo_NS1 Pneumovirus NS1 protein. This non-structural protein is one of two found in pneumoviruses. The protein is about 140 amino acids in length. The NS1 protein appears to be important for efficient replication but not essential. The NS1 protein has been shown by yeast two-hybrid to interact with the viral P protein. This protein is also known as the 1C protein. It has also been shown that NS1 can potently inhibit transcription and RNA replication. 136 -335322 pfam03439 Spt5-NGN Early transcription elongation factor of RNA pol II, NGN section. Spt5p and prokaryotic NusG are shown to contain a novel 'NGN' domain. The combined NGN and KOW motif regions of Spt5 form the binding domain with Spt4. Spt5 complexes with Spt4 as a 1:1 heterodimer snf this Spt5-Spt4 complex regulates early transcription elongation by RNA polymerase II and has an imputed role in pre-mRNA processing via its physical association with mRNA capping enzymes. The Schizosaccharomyces pombe core Spt5-Spt4 complex is a heterodimer bearing a trypsin-resistant Spt4-binding domain within the Spt5 subunit. 83 -308828 pfam03440 APT Aerolysin/Pertussis toxin (APT) domain. This family represents the N-terminal domain of aerolysin and pertussis toxin and has a type-C lectin like fold. 86 -335323 pfam03441 FAD_binding_7 FAD binding domain of DNA photolyase. 201 -308830 pfam03442 CBM_X2 Carbohydrate binding domain X2. This domain binds to cellulose and to bacterial cell walls. It is found in glycosyl hydrolases and in scaffolding proteins of cellulosomes (multiprotein glycosyl hydrolase complexes). In the cellulosome it may aid cellulose degradation by anchoring the cellulosome to the bacterial cell wall and by binding it to its substrate. This domain has an Ig-like fold. 83 -335324 pfam03443 Glyco_hydro_61 Glycosyl hydrolase family 61. Although weak endoglucanase activity has been demonstrated in several members of this family, they lack the clustered conserved catalytic acidic amino acids present in most glycoside hydrolases. Many members of this family lack measurable cellulase activity on their own, but enhance the activity of other cellulolytic enzymes. They are therefore unlikely to be true glycoside hydrolases. The subsrate-binding surface of this family is a flat Ig-like fold. 204 -281443 pfam03444 HrcA_DNA-bdg Winged helix-turn-helix transcription repressor, HrcA DNA-binding. This domain is always found with a pair of CBS domains pfam00571. 79 -308832 pfam03445 DUF294 Putative nucleotidyltransferase DUF294. This domain is found associated with pfam00571. This region is uncharacterized, however it seems to be similar to pfam01909, conserving the DXD motif. This strongly suggests that members of this family are also nucleotidyltransferases (Bateman A pers. obs.). 138 -335325 pfam03446 NAD_binding_2 NAD binding domain of 6-phosphogluconate dehydrogenase. The NAD binding domain of 6-phosphogluconate dehydrogenase adopts a Rossmann fold. 159 -281446 pfam03447 NAD_binding_3 Homoserine dehydrogenase, NAD binding domain. This domain adopts a Rossmann NAD binding fold. The C-terminal domain of homoserine dehydrogenase contributes a single helix to this structural domain, which is not included in the Pfam model. 116 -335326 pfam03448 MgtE_N MgtE intracellular N domain. This domain is found at the N-terminus of eubacterial magnesium transporters of the MgtE family pfam01769. This domain is an intracellular domain that has an alpha-helical structure. The crystal structure of the MgtE transporter shows two of 5 magnesium ions are in the interface between the N domain and the CBS domains. In the absence of magnesium there is a large shift between the N and CBS domains. 102 -335327 pfam03449 GreA_GreB_N Transcription elongation factor, N-terminal. This domain adopts a long alpha-hairpin structure. 71 -335328 pfam03450 CO_deh_flav_C CO dehydrogenase flavoprotein C-terminal domain. 103 -308837 pfam03451 HELP HELP motif. The founding member of the EMAP protein family is the 75 kDa Echinoderm Microtubule-Associated Protein, so-named for its abundance in sea urchin, sand dollar and starfish eggs. The Hydrophobic EMAP-Like Protein (HELP) motif was identified initially in the human EMAP-Like Protein 2 (EML2) and subsequently in the entire EMAP Protein family. The HELP motif is approximately 60-70 amino acids in length and is conserved amongst metazoans. Although the HELP motif is hydrophobic, there is no evidence that EMAP-Like Proteins are membrane-associated. All members of the EMAP-Like Protein family, identified to-date, are constructed with an amino terminal HELP motif followed by a WD domain. In C. elegans, EMAP-Like Protein-1 (ELP-1) is required for touch sensation indicating that ELP-1 may play a role in mechanosensation. The localization of ELP-1 to microtubules and adhesion sites implies that ELP-1 may transmit forces between the body surface and the touch receptor neurons. 73 -335329 pfam03452 Anp1 Anp1. The members of this family (Anp1, Van1 and Mnn9) are membrane proteins required for proper Golgi function. These proteins co-localize within the cis Golgi, and that they are physically associated in two distinct complexes. 265 -335330 pfam03453 MoeA_N MoeA N-terminal region (domain I and II). This family contains two structural domains. One of these contains the conserved DGXA motif. This region is found in proteins involved in biosynthesis of molybdopterin cofactor however the exact molecular function of this region is uncertain. 144 -308840 pfam03454 MoeA_C MoeA C-terminal region (domain IV). This domain is found in proteins involved in biosynthesis of molybdopterin cofactor however the exact molecular function of this domain is uncertain. The structure of this domain is known and forms an incomplete beta barrel. 72 -335331 pfam03455 dDENN dDENN domain. This region is always found associated with pfam02141. It is predicted to form a globular domain. Although not statistically supported it has been suggested that this domain may be similar to members of the Rho/Rac/Cdc42 GEF family. This N-terminal region of DENN folds into a longin module, consisting of a central antiparallel beta-sheet layered between helix H1 and helices H2 and H3 (strands S1-S5). Rab35 interacts with dDENN via residues in helix 1 and in the loop S3-S4. 50 -335332 pfam03456 uDENN uDENN domain. This region is always found associated with pfam02141. It is predicted to form an all beta domain. 62 -308843 pfam03457 HA Helicase associated domain. This short domain is found in multiple copies in bacterial helicase proteins. The domain is predicted to contain 3 alpha helices. The function of this domain may be to bind nucleic acid. 64 -335333 pfam03458 UPF0126 UPF0126 domain. Domain always found as pair in bacterial membrane proteins of unknown function. This domain contains three transmembrane helices. The conserved glycines are suggestive of an ion channel (C. Yeats unpublished obs.). 74 -281458 pfam03459 TOBE TOBE domain. The TOBE domain (Transport-associated OB) always occurs as a dimer as the C-terminal strand of each domain is supplied by the partner. Probably involved in the recognition of small ligands such as molybdenum and sulfate. Found in ABC transporters immediately after the ATPase domain. 61 -335334 pfam03460 NIR_SIR_ferr Nitrite/Sulfite reductase ferredoxin-like half domain. Sulfite and Nitrite reductases are key to both biosynthetic assimilation of sulfur and nitrogen and dissimilation of oxidized anions for energy transduction. Two copies of this repeat are found in Nitrite and Sulfite reductases and form a single structural domain. 67 -335335 pfam03461 TRCF TRCF domain. 93 -335336 pfam03462 PCRF PCRF domain. This domain is found in peptide chain release factors. 180 -335337 pfam03463 eRF1_1 eRF1 domain 1. The release factor eRF1 terminates protein biosynthesis by recognising stop codons at the A site of the ribosome and stimulating peptidyl-tRNA bond hydrolysis at the peptidyl transferase centre. The crystal structure of human eRF1 is known. The overall shape and dimensions of eRF1 resemble a tRNA molecule with domains 1, 2, and 3 of eRF1 corresponding to the anticodon loop, aminoacyl acceptor stem, and T stem of a tRNA molecule, respectively. The position of the essential GGQ motif at an exposed tip of domain 2 suggests that the Gln residue coordinates a water molecule to mediate the hydrolytic activity at the peptidyl transferase centre. A conserved groove on domain 1, 80 A from the GGQ motif, is proposed to form the codon recognition site. This family also includes other proteins for which the precise molecular function is unknown. Many of them are from Archaebacteria. These proteins may also be involved in translation termination but this awaits experimental verification. 127 -308849 pfam03464 eRF1_2 eRF1 domain 2. The release factor eRF1 terminates protein biosynthesis by recognising stop codons at the A site of the ribosome and stimulating peptidyl-tRNA bond hydrolysis at the peptidyl transferase centre. The crystal structure of human eRF1 is known. The overall shape and dimensions of eRF1 resemble a tRNA molecule with domains 1, 2, and 3 of eRF1 corresponding to the anticodon loop, aminoacyl acceptor stem, and T stem of a tRNA molecule, respectively. The position of the essential GGQ motif at an exposed tip of domain 2 suggests that the Gln residue coordinates a water molecule to mediate the hydrolytic activity at the peptidyl transferase centre. A conserved groove on domain 1, 80 A from the GGQ motif, is proposed to form the codon recognition site. This family also includes other proteins for which the precise molecular function is unknown. Many of them are from Archaebacteria. These proteins may also be involved in translation termination but this awaits experimental verification. 133 -335338 pfam03465 eRF1_3 eRF1 domain 3. The release factor eRF1 terminates protein biosynthesis by recognising stop codons at the A site of the ribosome and stimulating peptidyl-tRNA bond hydrolysis at the peptidyl transferase centre. The crystal structure of human eRF1 is known. The overall shape and dimensions of eRF1 resemble a tRNA molecule with domains 1, 2, and 3 of eRF1 corresponding to the anticodon loop, aminoacyl acceptor stem, and T stem of a tRNA molecule, respectively. The position of the essential GGQ motif at an exposed tip of domain 2 suggests that the Gln residue coordinates a water molecule to mediate the hydrolytic activity at the peptidyl transferase centre. A conserved groove on domain 1, 80 A from the GGQ motif, is proposed to form the codon recognition site. This family also includes other proteins for which the precise molecular function is unknown. Many of them are from Archaebacteria. These proteins may also be involved in translation termination but this awaits experimental verification. 99 -335339 pfam03466 LysR_substrate LysR substrate binding domain. The structure of this domain is known and is similar to the periplasmic binding proteins. 205 -335340 pfam03467 Smg4_UPF3 Smg-4/UPF3 family. This family contains proteins that are involved in nonsense mediated mRNA decay. A process that is triggered by premature stop codons in mRNA. The family includes Smg-4 and UPF3. 166 -335341 pfam03468 XS XS domain. The XS (rice gene X and SGS3) domain is found in a family of plant proteins including gene X and SGS3. SGS3 is thought to be involved in post-transcriptional gene silencing (PTGS). This domain contains a conserved aspartate residue that may be functionally important. The XS domain has recently been predicted to possess an RRM-like RNA-binding domain by fold recognition. 112 -335342 pfam03469 XH XH domain. The XH (rice gene X Homology) domain is found in a family of plant proteins including gene X. The molecular function of these proteins is unknown. However these proteins usually contain an XS domain that is also found in the PTGS protein SGS3. This domain contains a conserved glutamate residue that may be functionally important. 131 -251981 pfam03470 zf-XS XS zinc finger domain. This domain is a putative nucleic acid binding zinc finger found in proteins that also contain an XS domain. 43 -335343 pfam03471 CorC_HlyC Transporter associated domain. This small domain is found in a family of proteins with the pfam01595 domain and two CBS domains with this domain found at the C-terminus of the proteins, the domain is also found at the C-terminus of some Na+/H+ antiporters. This domain is also found in CorC that is involved in Magnesium and cobalt efflux. The function of this domain is uncertain but might be involved in modulating transport of ion substrates. 79 -335344 pfam03472 Autoind_bind Autoinducer binding domain. This domain is found a a large family of transcriptional regulators. This domain specifically binds to autoinducer molecules. 148 -335345 pfam03473 MOSC MOSC domain. The MOSC (MOCO sulfurase C-terminal) domain is a superfamily of beta-strand-rich domains identified in the molybdenum cofactor sulfurase and several other proteins from both prokaryotes and eukaryotes. These MOSC domains contain an absolutely conserved cysteine and occur either as stand-alone forms or fused to other domains such as NifS-like catalytic domain in Molybdenum cofactor sulfurase. The MOSC domain is predicted to be a sulfur-carrier domain that receives sulfur abstracted by the pyridoxal phosphate-dependent NifS-like enzymes, on its conserved cysteine, and delivers it for the formation of diverse sulfur-metal clusters. 118 -335346 pfam03474 DMA DMRTA motif. This region is found to the C-terminus of the pfam00751. DM-domain proteins with this motif are known as DMRTA proteins. The function of this region is unknown. 36 -335347 pfam03475 3-alpha 3-alpha domain. This small triple helical domain has been predicted to assume a topology similar to helix-turn-helix domains. These domains are found at the C-terminus of proteins related to Escherichia coli YiiM. 44 -281474 pfam03476 MOSC_N MOSC N-terminal beta barrel domain. This domain is found to the N-terminus of pfam03473. The function of this domain is unknown, however it is predicted to adopt a beta barrel fold. 118 -335348 pfam03477 ATP-cone ATP cone domain. 86 -335349 pfam03478 DUF295 Protein of unknown function (DUF295). This family of proteins are found in plants. The function of the proteins is unknown. 49 -335350 pfam03479 DUF296 Domain of unknown function (DUF296). This putative domain is found in proteins that contain AT-hook motifs pfam02178, which strongly suggests a DNA-binding function for the proteins as a whole. There are three highly conserved histidine residues, eg at 117, 119 and 133 in Reut_B5223, which should be a structurally conserved metal-binding unit, based on structural comparison with known metal-binding structures. The proteins should work as trimers. 113 -335351 pfam03480 DctP Bacterial extracellular solute-binding protein, family 7. This family of proteins is involved in binding extracellular solutes for transport across the bacterial cytoplasmic membrane. This family includes DctP, a C4-dicarboxylate-binding protein and the sialic acid-binding protein SiaP. The structure of the SiaP receptor has revealed an overall topology similar to ATP binding cassette ESR (extracytoplasmic solute receptors) proteins. Upon binding of sialic acid, SiaP undergoes domain closure about a hinge region and kinking of an alpha-helix hinge component. 285 -335352 pfam03481 SUA5 Putative GTP-binding controlling metal-binding. Structural investigation of this domain suggests that it might be a GTP-binding region that regulates metal binding and involves hydrolysis of ATP to AMP. It is found to the C-terminus of pfam01300. 76 -281480 pfam03482 SIC sic protein repeat. Serotype M1 group A Streptococcus strains cause epidemic waves of human infections. This 30 aa repeat occurs in the sic protein, an extracellular protein (streptococcal inhibitor of complement) that inhibits human complement. 30 -335353 pfam03483 B3_4 B3/4 domain. This domain is found in tRNA synthetase beta subunits as well as in some non tRNA synthetase proteins. 174 -335354 pfam03484 B5 tRNA synthetase B5 domain. This domain is found in phenylalanine-tRNA synthetase beta subunits. 67 -335355 pfam03485 Arg_tRNA_synt_N Arginyl tRNA synthetase N terminal domain. This domain is found at the amino terminus of Arginyl tRNA synthetase, also called additional domain 1 (Add-1). It is about 140 residues long and it has been suggested that this domain will be involved in tRNA recognition. 82 -281484 pfam03486 HI0933_like HI0933-like protein. 405 -308867 pfam03487 IL13 Interleukin-13. 110 -112313 pfam03488 Ins_beta Nematode insulin-related peptide beta type. 48 -335356 pfam03489 SapB_2 Saposin-like type B, region 2. 34 -335357 pfam03490 Varsurf_PPLC Variant-surface-glycoprotein phospholipase C. 51 -281488 pfam03491 5HT_transport_N Serotonin (5-HT) neurotransmitter transporter, N-terminus. This short domain lies at the very N-terminus of many serotonin and other transporter proteins, eg SNF, pfam00209. 41 -335358 pfam03492 Methyltransf_7 SAM dependent carboxyl methyltransferase. This family of plant methyltransferases contains enzymes that act on a variety of substrates including salicylic acid, jasmonic acid and 7-Methylxanthine. Caffeine is synthesized through sequential three-step methylation of xanthine derivatives at positions 7-N, 3-N, and 1-N. The protein 7-methylxanthine methyltransferase (designated as CaMXMT) catalyzes the second step to produce theobromine. 330 -335359 pfam03493 BK_channel_a Calcium-activated BK potassium channel alpha subunit. 91 -308871 pfam03494 Beta-APP Beta-amyloid peptide (beta-APP). 39 -335360 pfam03495 Binary_toxB Clostridial binary toxin B/anthrax toxin PA Ca-binding domain. This domain is a calcium binding domain in the anthrax toxin protective antigen. 82 -308872 pfam03496 ADPrib_exo_Tox ADP-ribosyltransferase exoenzyme. This is a family of bacterial and viral bi-glutamic acid ADP-ribosyltransferases, where, in Aeromonas salmonicida AexT, E403 is the catalytic residue and E401 contributes to the transfer of ADP-ribose to the target protein. In clostridial species it is actin that is being ADP-ribosylated; this result is lethal and dermonecrotic in infected mammals. 199 -281494 pfam03497 Anthrax_toxA Anthrax toxin LF subunit. 174 -308873 pfam03498 CDtoxinA Cytolethal distending toxin A/C domain. 148 -281496 pfam03500 Cellsynth_D Cellulose synthase subunit D. 144 -308874 pfam03501 S10_plectin Plectin/S10 domain. This presumed domain is found at the N-terminus of some isoforms of the cytoskeletal muscle protein plectin as well as the ribosomal S10 protein. This domain may be involved in RNA binding. 92 -308875 pfam03502 Channel_Tsx Nucleoside-specific channel-forming protein, Tsx. 242 -308876 pfam03503 Chlam_OMP3 Chlamydia cysteine-rich outer membrane protein 3. 54 -281500 pfam03504 Chlam_OMP6 Chlamydia cysteine-rich outer membrane protein 6. 91 -308877 pfam03505 Clenterotox Clostridium enterotoxin. 197 -281501 pfam03506 Flu_C_NS1 Influenza C non-structural protein (NS1). The influenza C virus genome consists of seven single-stranded RNA segments. The shortest RNA segment encodes a 286 amino acid non-structural protein NS1. This protein contains 6 conserved cysteines that may be functionally important, perhaps binding to a metal ion. 162 -281502 pfam03507 CagA CagA exotoxin. 190 -308878 pfam03508 Connexin43 Gap junction alpha-1 protein (Cx43). 20 -308879 pfam03509 Connexin50 Gap junction alpha-8 protein (Cx50). 64 -281505 pfam03510 Peptidase_C24 2C endopeptidase (C24) cysteine protease family. 105 -308880 pfam03511 Fanconi_A Fanconi anaemia group A protein. 63 -308881 pfam03512 Glyco_hydro_52 Glycosyl hydrolase family 52. 416 -281508 pfam03513 Cloacin_immun Cloacin immunity protein. 80 -335361 pfam03514 GRAS GRAS domain family. Proteins in the GRAS (GAI, RGA, SCR) family are known as major players in gibberellin (GA) signaling, which regulates various aspects of plant growth and development. Mutation of the SCARECROW (SCR) gene results in a radial pattern defect, loss of a ground tissue layer, in the root. The PAT1 protein is involved in phytochrome A signal transduction. A sequence, structure and evolutionary analysis showed that the GRAS family emerged in bacteria and belongs to the Rossmann-fold, AdoMET (SAM)-dependent methyltransferase superfamily. All bacterial, and a subset of plant GRAS proteins, are predicted to be active and function as small-molecule methylases. Several plant GRAS proteins lack one or more AdoMet (SAM)-binding residues while preserving their substrate-binding residues. Although GRAS proteins are implicated to function as transcriptional factors, the above analysis suggests that they instead might either modify or bind small molecules. 365 -335362 pfam03515 Cloacin Colicin-like bacteriocin tRNase domain. The C-terminal region of colicin-like bacteriocins is either a pore-forming or an endonuclease-like domain. Cloacin and Pyocins have similar structures and activities to the colicins from E coli and the klebicins from Klebsiella spp. Colicins E5 and D cleave the anticodon loops of distinct tRNAs of Escherichia coli both in vivo and in vitro. The full-length molecule has an N-terminal translocation domain and a middle, double alpha-helical region which is receptor-binding. 272 -308883 pfam03516 Filaggrin Filaggrin. 56 -335363 pfam03517 Voldacs Regulator of volume decrease after cellular swelling. ICln is a ubiquitously expressed multi-functional protein that plays a critical role in regulating volume decrease in cells after cellular swelling. In plants, ICln induces Cl- currents, thus regulating Cl- homoeostasis in eukaryotes. Structurally, the fold resembles a pleckstrin homology fold, on of whose roles is to recruit and tether their host protein to the cell membrane; and although the surface charges of the ICln fold are not equivalent to those of the PH domain, ICln can be phosphorylated in vitro and the PH-nature of the domain may be the part involving it in the transposition from cytosol to cell membrane during cytotonic swelling. 139 -335364 pfam03519 Invas_SpaK Invasion protein B family. 78 -308886 pfam03520 KCNQ_channel KCNQ voltage-gated potassium channel. This family matches to the C-terminal tail of KCNQ type potassium channels. 189 -308887 pfam03521 Kv2channel Kv2 voltage-gated K+ channel. 288 -335365 pfam03522 SLC12 Solute carrier family 12. 354 -308889 pfam03523 Macscav_rec Macrophage scavenger receptor. 49 -335366 pfam03524 CagX Conjugal transfer protein. This family includes type IV secretion system CagX conjugation protein. Other members of this family are involved in conjugal transfer to plant cells of T-DNA. 203 -281518 pfam03525 Meiotic_rec114 Meiotic recombination protein rec114. 328 -112349 pfam03526 Microcin Colicin E1 (microcin) immunity protein. 55 -335367 pfam03527 RHS RHS protein. 38 -308892 pfam03528 Rabaptin Rabaptin. 487 -308893 pfam03529 TF_Otx Otx1 transcription factor. 92 -335368 pfam03530 SK_channel Calcium-activated SK potassium channel. 109 -335369 pfam03531 SSrecog Structure-specific recognition protein (SSRP1). SSRP1 has been implicated in transcriptional initiation and elongation and in DNA replication and repair. This domain belongs to the Pleckstrin homology fold superfamily. 69 -281524 pfam03532 OMS28_porin OMS28 porin. 253 -308896 pfam03533 SPO11_like SPO11 homolog. 43 -308897 pfam03534 SpvB Salmonella virulence plasmid 65kDa B protein. 285 -308898 pfam03535 Paxillin Paxillin family. Paxillin is a multi-domain protein that localizes in cultured cells primarily to sites of cell adhesion to the extracellular matrix (ECM) called focal adhesions. The family here represents the N-terminal regions with the proline-rich part as well as the Paxillin part. Focal adhesions form a structural link between the ECM and the actin cytoskeleton and are also important sites of signal transduction; their components propagate signals arising from the activation of integrins following their engagement with ECM proteins, such as fibronectin, collagen and laminin. Importantly, focal adhesion proteins including paxillin also serve as a point of convergence for signals resulting from stimulation of various classes of growth factor receptor. 185 -281528 pfam03536 VRP3 Salmonella virulence-associated 28kDa protein. 218 -335370 pfam03537 Glyco_hydro_114 Glycoside-hydrolase family GH114. This family is recognized as a glycosyl-hydrolase family, number 114. It is endo-alpha-1,4-polygalactosaminidase, a rare enzyme. It is proposed to be TIM-barrel, the most common structure amongst the catalytic domains of glycosyl-hydrolases. 221 -281530 pfam03538 VRP1 Salmonella virulence plasmid 28.1kDa A protein. 311 -112362 pfam03539 Spuma_A9PTase Spumavirus aspartic protease (A9). 163 -335371 pfam03540 TFIID_30kDa Transcription initiation factor TFIID 23-30kDa subunit. 49 -335372 pfam03542 Tuberin Tuberin. Tuberous sclerosis complex (TSC) is an autosomal dominant disorder and is characterized by the presence of hamartomas in many organs, such as brain, skin, heart, lung, and kidney. It is caused by mutation either TSC1 or TSC2 tumor suppressor gene. The TSC2 gene codes for tuberin and interacts with hamartin pfam04388, containing two coiled-coil regions, which have been shown to mediate binding to tuberin. These two proteins function within the same pathway(s) regulating cell cycle, cell growth, adhesion, and vesicular trafficking. 352 -308902 pfam03543 Peptidase_C58 Yersinia/Haemophilus virulence surface antigen. 203 -281534 pfam03544 TonB_C Gram-negative bacterial TonB protein C-terminal. The TonB_C domain is the well-characterized C-terminal region of the TonB receptor molecule. This protein is bound to an inner membrane-bound protein ExbB via a globular domain and has a flexible middle region that is likely to help in positioning the C-terminal domain into the iron-transporter barrel in the outer membrane. TonB_C interacts with the N-terminal TonB box of the outer membrane transporter that binds the Fe3+-siderophore complex. The barrel of the transporter, consisting of 22 beta-sheets and an inside plug, binds the iron complex in the barrel entrance. 79 -281535 pfam03545 YopE Yersinia virulence determinant (YopE). 70 -335373 pfam03546 Treacle Treacher Collins syndrome protein Treacle. 522 -308904 pfam03547 Mem_trans Membrane transport protein. This family includes auxin efflux carrier proteins and other transporter proteins from all domains of life. 341 -308905 pfam03548 LolA Outer membrane lipoprotein carrier protein LolA. 165 -308906 pfam03549 Tir_receptor_M Translocated intimin receptor (Tir) intimin-binding domain. Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border. The bacterial outer membrane adhesin, intimin, is necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria translocate their own receptor for intimin, Tir, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. This family represents the Tir intimin-binding domain (Tir IBD) which is needed to bind intimin and support the predicted topology for Tir, with both N- and C-terminal regions in the mammalian cell cytosol. 65 -335374 pfam03550 LolB Outer membrane lipoprotein LolB. 149 -308908 pfam03551 PadR Transcriptional regulator PadR-like family. Members of this family are transcriptional regulators that appear to be related to the pfam01047 family. This family includes PadR, a protein that is involved in negative regulation of phenolic acid metabolism. 74 -281541 pfam03552 Cellulose_synt Cellulose synthase. Cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues, is the major component of wood and thus paper, and is synthesized by plants, most algae, some bacteria and fungi, and even some animals. The genes that synthesize cellulose in higher plants differ greatly from the well-characterized genes found in Acetobacter and Agrobacterium sp. More correctly designated as 'cellulose synthase catalytic subunits', plant cellulose synthase (CesA) proteins are integral membrane proteins, approximately 1,000 amino acids in length. There are a number of highly conserved residues, including several motifs shown to be necessary for processive glycosyltransferase activity. 715 -281542 pfam03553 Na_H_antiporter Na+/H+ antiporter family. This family includes integral membrane proteins, some of which are NA+/H+ antiporters. 303 -281543 pfam03554 Herpes_UL73 UL73 viral envelope glycoprotein. This family groups together the viral proteins BLRF1, U46, 53, and UL73. The UL73-like envelope glycoproteins, which associates in a high molecular mass complex with its counterpart, gM, induce neutralising antibody responses in the host. These glycoprotein are highly polymorphic, particularly in the N-terminal region. 74 -281544 pfam03555 Flu_C_NS2 Influenza C non-structural protein (NS2). The influenza C virus genome consists of seven single-stranded RNA segments. The shortest RNA segment encodes a 286 amino acid non-structural protein NS1 pfam03506 as well as the NS2 protein. The NS2 protein is only about 60 amino acids in length and of unknown function. 57 -335375 pfam03556 Cullin_binding Cullin binding. This domain binds to cullins and to Rbx-1, components of an E3 ubiquitin ligase complex for neddylation. Neddylation is the process by which the C-terminal glycine of the ubiquitin-like protein Nedd8 is covalently linked to lysine residues in a protein through an isopeptide bond. The structure of this domain is composed entirely of alpha helices. 114 -281546 pfam03557 Bunya_G1 Bunyavirus glycoprotein G1. Bunyavirus has three genomic segments: small (S), middle-sized (M), and large (L). The S segment encodes the nucleocapsid and a non-structural protein. The M segment codes for two glycoproteins, G1 and G2, and another non-structural protein (NSm). The L segment codes for an RNA polymerase. This family contains the G1 glycoprotein which is the viral attachment protein. 879 -281547 pfam03558 TBSV_P22 TBSV core protein P21/P22. This protein is required for cell-to-cell movement in plants. Furthermore, the membrane-associated protein is dispensable for both replication and transcription. 188 -335376 pfam03559 Hexose_dehydrat NDP-hexose 2,3-dehydratase. This family includes a range of proteins from antibiotic production pathways. The family includes gra-ORF27 product that probably functions at an early step, most likely as a dTDP-4-keto-6- deoxyglucose-2,3-dehydratase. Its homologs include dnmT from the daunorubicin biosynthetic gene cluster in S. peucetius, a similar gene from the daunomycin biosynthetic cluster in Streptomyces sp. strain C5, eryBVI from the erythromycin cluster in S. erythraea and snoH from the nogalamycin cluster in S. nogalater. The proteins in this family are composed of two copies of a 200 amino acid long unit that may be a structural domain. 203 -308911 pfam03561 Allantoicase Allantoicase repeat. This family is found in pairs in Allantoicases, forming the majority of the protein. These proteins allow the use of purines as secondary nitrogen sources in nitrogen-limiting conditions through the reaction: allantoate + H(2)0 = (-)-ureidoglycolate + urea. 140 -335377 pfam03562 MltA MltA specific insert domain. This beta barrel domain is found inserted in the MltA a murein degrading transglycosylase enzyme. This domain may be involved in peptidoglycan binding. 228 -281551 pfam03563 Bunya_G2 Bunyavirus glycoprotein G2. Bunyavirus has three genomic segments: small (S), middle-sized (M), and large (L). The S segment encodes the nucleocapsid and a non-structural protein. The M segment codes for two glycoproteins, G1 and G2, and another non-structural protein (NSm). The L segment codes for an RNA polymerase. This family contains the G2 glycoprotein which interacts with the pfam03557 G1 glycoprotein. 285 -281552 pfam03564 DUF1759 Protein of unknown function (DUF1759). This is a family of proteins of unknown function. Most of the members are gag-polyproteins. 148 -281553 pfam03566 Peptidase_A21 Peptidase family A21. 574 -335378 pfam03567 Sulfotransfer_2 Sulfotransferase family. This family includes a variety of sulfotransferase enzymes. Chondroitin 6-sulfotransferase catalyzes the transfer of sulfate to position 6 of the N-acetylgalactosamine residue of chondroitin. This family also includes Heparan sulfate 2-O-sulfotransferase (HS2ST) and Heparan sulfate 6-sulfotransferase (HS6ST). Heparan sulfate (HS) is a co-receptor for a number of growth factors, morphogens, and adhesion proteins. HS biosynthetic modifications may determine the strength and outcome of HS-ligand interactions. Mice that lack HS2ST undergo developmental failure only after midgestation,the most dramatic effect being the complete failure of kidney development. Heparan sulphate 6- O -sulfotransferase (HS6ST) catalyzes the transfer of sulphate from adenosine 3'-phosphate, 5'-phosphosulphate to the 6th position of the N -sulphoglucosamine residue in heparan sulphate. 232 -335379 pfam03568 Peptidase_C50 Peptidase family C50. 394 -281556 pfam03569 Peptidase_C8 Peptidase family C8. 208 -335380 pfam03571 Peptidase_M49 Peptidase family M49. 545 -308916 pfam03572 Peptidase_S41 Peptidase family S41. 165 -335381 pfam03573 OprD outer membrane porin, OprD family. This family includes outer membrane proteins related to OprD. OprD has been described as a serine type peptidase. However the proposed catalytic residues are not conserved suggesting that many of these proteins are not peptidases. 392 -281560 pfam03574 Peptidase_S48 Peptidase family S48. 149 -281561 pfam03575 Peptidase_S51 Peptidase family S51. 204 -335382 pfam03576 Peptidase_S58 Peptidase family S58. 309 -335383 pfam03577 Peptidase_C69 Peptidase family C69. 401 -335384 pfam03578 HGWP HGWP repeat. This short (30 amino acids) repeat is found in a number of plant proteins. It contains a conserved HGWP motif, hence its name. The function of these proteins is unknown. 28 -281565 pfam03579 SHP Small hydrophobic protein. The small hydrophobic integral membrane protein, SH (previously designated 1A) is found to have a variety of glycosylated forms. This protein is a component of the mature virion. 64 -281566 pfam03580 Herpes_UL14 Herpesvirus UL14-like protein. This is a family of Herpesvirus proteins including UL14. UL14 protein is a minor component of the virion tegument and is expressed late in infection. UL14 protein can influence the intracellular localization patterns of a number of proteins belonging to the capsid or the DNA encapsidation machinery. 146 -281567 pfam03581 Herpes_UL33 Herpesvirus UL33-like protein. This is a family of Herpesvirus proteins including UL33 and UL51. The proteins in this family are involved in packaging viral DNA. 72 -281568 pfam03583 LIP Secretory lipase. These lipases are expressed and secreted during the infection cycle of these pathogens. In particular, C. albicans has a large number of different lipases, possibly reflecting broad lipolytic activity, which may contribute to the persistence and virulence of C. albicans in human tissue. 291 -281569 pfam03584 Herpes_ICP4_N Herpesvirus ICP4-like protein N-terminal region. The immediate-early protein ICP4 (infected-cell polypeptide 4) is required for efficient transcription of early and late viral genes and is thus essential for productive infection. ICP4 is a large phosphoprotein that binds DNA in a sequence specific manner as a homodimer. ICP4 represses transcription from LAT, ICP4 and ORF-P that have high-affinity a ICP4 binding site that spans the transcription initiation site. ICP4 proteins have two highly conserved regions, this family contains the N-terminal region that contains sites for DNA binding and homodimerization. 173 -281570 pfam03585 Herpes_ICP4_C Herpesvirus ICP4-like protein C-terminal region. The immediate-early protein ICP4 (infected-cell polypeptide 4) is required for efficient transcription of early and late viral genes and is thus essential for productive infection. ICP4 is a large phosphoprotein that binds DNA in a sequence specific manner as a homodimer. ICP4 represses transcription from LAT, ICP4 and ORF-P that have high-affinity a ICP4 binding site that spans the transcription initiation site. ICP4 proteins have two highly conserved regions, this family contains the C-terminal region that probably acts as an enhancer for the N-terminal region. 444 -281571 pfam03586 Herpes_UL36 Herpesvirus UL36 tegument protein. The UL36 open reading frame (ORF) encodes the largest herpes simplex virus type 1 (HSV-1) protein, a 270-kDa polypeptide designated VP1/2, which is also a component of the virion tegument. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. This family only covers a small central part of this large protein. 251 -335385 pfam03587 EMG1 EMG1/NEP1 methyltransferase. Members of this family are essential for 40S ribosomal biogenesis. The structure of EMG1 has revealed that it is a novel member of the superfamily of alpha/beta knot fold methyltransferases. 197 -335386 pfam03588 Leu_Phe_trans Leucyl/phenylalanyl-tRNA protein transferase. 171 -335387 pfam03589 Antiterm Antitermination protein. 87 -335388 pfam03590 AsnA Aspartate-ammonia ligase. 228 -335389 pfam03591 AzlC AzlC protein. 136 -308924 pfam03592 Terminase_2 Terminase small subunit. Packaging of double-stranded viral DNA concatemers requires interaction of the prohead with virus DNA. This process is mediated by a phage-encoded DNA recognition and terminase protein. The terminase enzymes described so far, which are hetero-oligomers composed of a small and a large subunit, do not have a significant level of sequence homology. The small terminase subunit is thought to form a nucleoprotein structure that helps to position the terminase large subunit at the packaging initiation site. 137 -281578 pfam03594 BenE Benzoate membrane transport protein. 378 -335390 pfam03595 SLAC1 Voltage-dependent anion channel. This family of transporters has ten alpha helical transmembrane segments. The structure of a bacterial homolog of SLAC1 shows it to have a trimeric arrangement. The pore is composed of five helices with a conserved Phe residue involved in gating. One homolog, Mae1 from the yeast Schizosaccharomyces pombe, functions as a malate uptake transporter; another, Ssu1 from Saccharomyces cerevisiae and other fungi including Aspergillus fumigatus, is characterized as a sulfite efflux pump; and TehA from Escherichia coli is identified as a tellurite resistance protein by virtue of its association in the tehA/tehB operon. In plants, this family is found in the stomatal guard cells functioning as an anion-transporting pore. Many homologs are incorrectly annotated as tellurite resistance or dicarboxylate transporter (TDT) proteins. 324 -281580 pfam03596 Cad Cadmium resistance transporter. 192 -335391 pfam03597 FixS Cytochrome oxidase maturation protein cbb3-type. 44 -308927 pfam03598 CdhC CO dehydrogenase/acetyl-CoA synthase complex beta subunit. 155 -252048 pfam03599 CdhD CO dehydrogenase/acetyl-CoA synthase delta subunit. 384 -335392 pfam03600 CitMHS Citrate transporter. 299 -281584 pfam03601 Cons_hypoth698 Conserved hypothetical protein 698. 303 -281585 pfam03602 Cons_hypoth95 Conserved hypothetical protein 95. 179 -335393 pfam03603 DNA_III_psi DNA polymerase III psi subunit. 123 -335394 pfam03604 DNA_RNApol_7kD DNA directed RNA polymerase, 7 kDa subunit. 32 -335395 pfam03605 DcuA_DcuB Anaerobic c4-dicarboxylate membrane transporter. 366 -281589 pfam03606 DcuC C4-dicarboxylate anaerobic carrier. 452 -335396 pfam03607 DCX Doublecortin. 55 -308932 pfam03608 EII-GUT PTS system enzyme II sorbitol-specific factor. 162 -335397 pfam03609 EII-Sor PTS system sorbose-specific iic component. 233 -335398 pfam03610 EIIA-man PTS system fructose IIA component. 114 -335399 pfam03611 EIIC-GAT PTS system sugar-specific permease component. This family includes bacterial transmembrane proteins with a putative sugar-specific permease function, including and analogous to the IIC component of the PTS system. It has been suggested that this permease may form part of an L-ascorbate utilisation pathway, with proposed specificity for 3-keto-L-gulonate (formed by hydrolysis of L-ascorbate). This family includes the IIC component of the galactitol specific GAT family PTS system. 393 -308936 pfam03612 EIIBC-GUT_N Sorbitol phosphotransferase enzyme II N-terminus. 184 -335400 pfam03613 EIID-AGA PTS system mannose/fructose/sorbose family IID component. 263 -281597 pfam03614 Flag1_repress Repressor of phase-1 flagellin. 170 -281598 pfam03615 GCM GCM motif protein. 140 -308938 pfam03616 Glt_symporter Sodium/glutamate symporter. 368 -281600 pfam03617 IBV_3A IBV 3A protein. The gene product of gene 3 from Avian infectious bronchitis virus. Currently, the function of this protein remains unknown. 57 -335401 pfam03618 Kinase-PPPase Kinase/pyrophosphorylase. This family of regulatory proteins has ADP-dependent kinase and inorganic phosphate-dependent pyrophosphorylase activity. 256 -335402 pfam03619 Solute_trans_a Organic solute transporter Ostalpha. This family is a transmembrane organic solute transport protein. In vertebrates these proteins form a complex with Ostbeta, and function as bile transporters. In plants they may transport brassinosteroid-like compounds and act as regulators of cell death. 260 -281603 pfam03620 IBV_3C IBV 3C protein. Product of ORF 3C from Avian infectious bronchitis virus (IBV). Currently, the function of this protein remains unknown. 92 -335403 pfam03621 MbtH MbtH-like protein. This domain is found in the MbtH protein as well as at the N-terminus of the antibiotic synthesis protein NIKP1. MbtH and its homologs were first noted in gene clusters involved in non-ribosomal peptides and other secondary metabolites by Quadri et al. This domain is about 70 amino acids long and contains 3 fully conserved tryptophan residues. The structure of the PA2412 protein shows it adopts a beta-beta-beta-alpha-alpha topology with the short C-terminal helix forming the tip of an overall arrowhead shape. MbtH proteins have been shown to be required for the synthesis of antibiotics, siderophores and glycopeptidolipids. 53 -281605 pfam03622 IBV_3B IBV 3B protein. Product of ORF 3B from Avian infectious bronchitis virus (IBV). Currently, the function of this protein remains unknown. 64 -308942 pfam03623 Focal_AT Focal adhesion targeting region. Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localising FAK to focal adhesions. The crystal structure of FAT shows it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. 130 -308943 pfam03625 DUF302 Domain of unknown function DUF302. Domain is found in an undescribed set of proteins. Normally occurs uniquely within a sequence, but is found as a tandem repeat. Shows interesting phylogenetic distribution with majority of examples in bacteria and archaea, but also in in D.melanogaster. 63 -335404 pfam03626 COX4_pro Prokaryotic Cytochrome C oxidase subunit IV. Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. This family is composed of cytochrome c oxidase subunit 4 from prokaryotes. 73 -112444 pfam03627 PapG_N PapG carbohydrate binding domain. PapG, the adhesin of the P-pili, is situated at the tip and is only a minor component of the whole pilus structure. A two-domain structure has been postulated for PapG; a carbohydrate binding N-terminus (this domain) and chaperone binding C-terminus. The carbohydrate-binding domain interacts with the receptor glycan. 226 -190694 pfam03628 PapG_C PapG chaperone-binding domain. PapG, the adhesin of the P-pili, is situated at the tip and is only a minor component of the whole pilus structure. A two-domain structure has been postulated for PapG; a carbohydrate binding N-terminus and chaperone binding C-terminus (this domain). The chaperone-binding domain is highly conserved, and is essential for the correct assembly of the pili structure when aided by the chaperone molecule PapD. 108 -335405 pfam03629 SASA Carbohydrate esterase, sialic acid-specific acetylesterase. The catalytic triad of this esterase enzyme comprises residues Ser127, His403 and Asp391 in UniProtKB:P70665. 225 -335406 pfam03630 Fumble Fumble. Fumble is required for cell division in Drosophila. Mutants lacking fumble exhibit abnormalities in bipolar spindle organisation, chromosome segregation, and contractile ring formation. Analyses have demonstrated that encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. A role of fumble in membrane synthesis has been proposed. 322 -335407 pfam03631 Virul_fac_BrkB Virulence factor BrkB. This family acts as a virulence factor. In Bordetella pertussis, BrkB is essential for resistance to complement-dependent killing by serum. This family was originally predicted to be ribonuclease BN, but this prediction has since been shown to be incorrect. 257 -281612 pfam03632 Glyco_hydro_65m Glycosyl hydrolase family 65 central catalytic domain. This family of glycosyl hydrolases contains vacuolar acid trehalase and maltose phosphorylase.Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose. The central domain is the catalytic domain, which binds a phosphate ion that is proximal the the highly conserved Glu. The arrangement of the phosphate and the glutamate is thought to cause nucleophilic attack on the anomeric carbon atom. The catalytic domain also forms the majority of the dimerization interface. 387 -335408 pfam03633 Glyco_hydro_65C Glycosyl hydrolase family 65, C-terminal domain. This family of glycosyl hydrolases contains vacuolar acid trehalase and maltose phosphorylase.Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose. The C-terminal domain forms a two layered jelly roll motif. This domain is situated at the base of the catalytic domain, however its function remains unknown. 44 -335409 pfam03634 TCP TCP family transcription factor. This is a family of TCP plant transcription factors. TCP proteins were named after the first characterized members (TB1, CYC and PCFs) and they are involved in multiple developmental control pathways. This region contains a DNA binding basic-Helix-Loop-Helix (bHLP) structure. 98 -335410 pfam03635 Vps35 Vacuolar protein sorting-associated protein 35. Vacuolar protein sorting-associated protein (Vps) 35 is one of around 50 proteins involved in protein trafficking. In particular, Vps35 assembles into a retromer complex with at least four other proteins Vps5, Vps17, Vps26 and Vps29. Vps35 contains a central region of weaker sequence similarity, thought to indicate the presence of at least three domains. 746 -335411 pfam03636 Glyco_hydro_65N Glycosyl hydrolase family 65, N-terminal domain. This family of glycosyl hydrolases contains vacuolar acid trehalase and maltose phosphorylase.Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose. This domain is believed to be essential for catalytic activity although its precise function remains unknown. 242 -335412 pfam03637 Mob1_phocein Mob1/phocein family. Mob1 is an essential Saccharomyces cerevisiae protein, identified from a two-hybrid screen, that binds Mps1p, a protein kinase essential for spindle pole body duplication and mitotic checkpoint regulation. Mob1 contains no known structural motifs; however MOB1 is a member of a conserved gene family and shares sequence similarity with a nonessential yeast gene, MOB2. Mob1 is a phosphoprotein in vivo and a substrate for the Mps1p kinase in vitro. Conditional alleles of MOB1 cause a late nuclear division arrest at restrictive temperature. This family also includes phocein, a rat protein that by yeast two hybrid interacts with striatin. 170 -335413 pfam03638 TCR Tesmin/TSO1-like CXC domain, cysteine-rich domain. This family includes proteins that have two copies of a cysteine rich motif as follows: C-X-C-X4-C-X3-YC-X-C-X6-C-X3-C-X-C-X2-C. The family includes Tesmin and TSO1. This family is called a CXC domain in. 36 -308954 pfam03639 Glyco_hydro_81 Glycosyl hydrolase family 81. Family of eukaryotic beta-1,3-glucanases. Within the Aspergillus fumigatus protein ENGL1, two perfectly conserved Glu residues (E550 or E554) have been proposed as putative nucleophiles of the active site of the Engl1 endoglucanase, while the proton donor would be D475. The endo-beta-1,3-glucanase activity is essential for efficient spore release. 680 -335414 pfam03640 Lipoprotein_15 Secreted repeat of unknown function. This family occurs as tandem repeats in a set of lipoproteins. The alignment contains a Y-X4-D motif. 44 -281621 pfam03641 Lysine_decarbox Possible lysine decarboxylase. The members of this family share a highly conserved motif PGGXGTXXE that is probably functionally important. This family includes proteins annotated as lysine decarboxylases, although the evidence for this is not clear. 130 -281622 pfam03642 MAP MAP domain. This presumed 110 amino acid residue domain is found in multiple copies in MAP (MHC class II analogue protein). The protein has been found in a wide range of extracellular matrix proteins. 87 -146336 pfam03643 Vps26 Vacuolar protein sorting-associated protein 26. Vacuolar protein sorting-associated protein (Vps) 26 is one of around 50 proteins involved in protein trafficking. In particular, Vps26 assembles into a retromer complex with at least four other proteins Vps5, Vps17, Vps29 and Vps35. This family also contains Down syndrome critical region 3/A. 275 -335415 pfam03644 Glyco_hydro_85 Glycosyl hydrolase family 85. Family of endo-beta-N-acetylglucosaminidases. These enzymes work on a broad spectrum of substrates. 276 -335416 pfam03645 Tctex-1 Tctex-1 family. Tctex-1 is a dynein light chain. It has been shown that Tctex-1 can bind to the cytoplasmic tail of rhodopsin. C-terminal rhodopsin mutations responsible for retinitis pigmentosa inhibit this interaction. 97 -335417 pfam03646 FlaG FlaG protein. Although important for flagella the exact function of this protein is unknown. 98 -335418 pfam03647 Tmemb_14 Transmembrane proteins 14C. This family of short membrane proteins are as yet uncharacterized. 89 -281627 pfam03648 Glyco_hydro_67N Glycosyl hydrolase family 67 N-terminus. Alpha-glucuronidases, components of an ensemble of enzymes central to the recycling of photosynthetic biomass, remove the alpha-1,2 linked 4-O-methyl glucuronic acid from xylans. This family represents the N-terminal region of alpha-glucuronidase. The N-terminal domain forms a two-layer sandwich, each layer being formed by a beta sheet of five strands. A further two helices form part of the interface with the central, catalytic, module (pfam07488). 122 -335419 pfam03649 UPF0014 Uncharacterized protein family (UPF0014). 241 -308961 pfam03650 MPC Uncharacterized protein family (UPF0041). 110 -335420 pfam03652 RuvX Holliday junction resolvase. This family of nucleases resolves the Holliday junction intermediates in genetic recombination. 134 -308963 pfam03653 UPF0093 Uncharacterized protein family (UPF0093). 146 -252088 pfam03656 Pam16 Pam16. The Pam16 protein is the fifth essential subunit of the pre-sequence translocase-associated protein import motor (PAM). In Saccharomyces cerevisiae, Pam16 is required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 has a degenerate J domain. J-domain proteins play important regulatory roles as co-chaperones, recruiting Hsp70 partners and accelerating the ATP-hydrolysis step of the chaperone cycle. Pam16's J-like domain strongly interacts with Pam18's J domain, leading to a productive interaction of Pam18 with mtHsp70 at the mitochondria import channel. Pam18 stimulates the ATPase activity of mtHsp70. 127 -281632 pfam03657 UPF0113 Uncharacterized protein family (UPF0113). 159 -335421 pfam03658 Ub-RnfH RnfH family Ubiquitin. A member of the RnfH family of the ubiquitin superfamily. Members of this family strongly co-occur in two distinct gene neighborhood contexts. In one it is associated with a START domain protein, a membrane protein SmpA and the transfer mRNA binding protein SmpB. This association suggests a possible role in the SmpB-tmRNA-based tagging and degadation system of bacteria, which is interesting given that other members of the ubiquitin system are analogously involved in protein-tagging and degradation across eukaryotes and various prokaryotes. The second context in which the RnfH genes are present is in a membrane associated complex involved in transporting electrons for various reductive reactions such as nitrogen fixation. 83 -308965 pfam03659 Glyco_hydro_71 Glycosyl hydrolase family 71. Family of alpha-1,3-glucanases. 372 -308966 pfam03660 PHF5 PHF5-like protein. This family of proteins the superfamily of PHD-finger proteins. At least one example, from mouse, may act as a chromatin-associated protein. The S. pombe ini1 gene is essential, required for splicing. It is localized in the nucleus, but not detected in the nucleolus and can be complemented by human ini1. 103 -335422 pfam03661 UPF0121 Uncharacterized protein family (UPF0121). Uncharacterized integral membrane protein family. 240 -308968 pfam03662 Glyco_hydro_79n Glycosyl hydrolase family 79, N-terminal domain. Family of endo-beta-N-glucuronidase, or heparanase. Heparan sulfate proteoglycans (HSPGs) play a key role in the self- assembly, insolubility and barrier properties of basement membranes and extracellular matrices. Hence, cleavage of heparan sulfate (HS) affects the integrity and functional state of tissues and thereby fundamental normal and pathological phenomena involving cell migration and response to changes in the extracellular micro-environment. Heparanase degrades HS at specific intra-chain sites. The enzyme is synthesized as a latent approximately 65 kDa protein that is processed at the N-terminus into a highly active approximately 50 kDa form. Experimental evidence suggests that heparanase may facilitate both tumor cell invasion and neovascularization, both critical steps in cancer progression. The enzyme is also involved in cell migration associated with inflammation and autoimmunity. 318 -308969 pfam03663 Glyco_hydro_76 Glycosyl hydrolase family 76. Family of alpha-1,6-mannanases. 348 -281639 pfam03664 Glyco_hydro_62 Glycosyl hydrolase family 62. Family of alpha -L-arabinofuranosidase (EC 3.2.1.55). This enzyme hydrolyzed aryl alpha-L-arabinofuranosides and cleaves arabinosyl side chains from arabinoxylan and arabinan. 272 -335423 pfam03665 UPF0172 Uncharacterized protein family (UPF0172). In Chlamydomonas reinhardtii the protein TLA1 (truncated light-harvesting chlorophyll antenna size) apparently regulates genes that define the chlorophyll-a antenna size in the photosynthetic apparatus. This family was formerly known as UPF0172. 186 -335424 pfam03666 NPR3 Nitrogen Permease regulator of amino acid transport activity 3. This family, also known in yeasts as Rmd11, complexes with NPR2, pfam06218. This complex heterodimer is responsible for inactivating TORC1. an evolutionarily conserved protein complex that controls cell size via nutritional input signals, specifically, in response to amino acid starvation. 409 -112483 pfam03668 ATP_bind_2 P-loop ATPase protein family. This family contains an ATP-binding site and could be an ATPase (personal obs:C Yeats). 284 -335425 pfam03669 UPF0139 Uncharacterized protein family (UPF0139). 97 -112485 pfam03670 UPF0184 Uncharacterized protein family (UPF0184). 83 -308973 pfam03671 Ufm1 Ubiquitin fold modifier 1 protein. This is a family of short ubiquitin-like proteins, that is like neither type-1 or type-2. It is a ubiquitin-fold modifier 1 (Ufm1) that is synthesized in a precursor form of 85 amino-acid residues. In humans the enzyme for Ufm1 is Uba5 and the conjugating enzyme is Ufc1. Prior to activation by Uba5 the extra two amino acids at the C-terminal region of the human pro-Ufm1 protein are removed to expose Gly whose residue is necessary for conjugation to target molecule(s). The mature Ufm1 is conjugated to yet unidentified endogenous proteins. While Ubiquitin and many Ubls possess the conserved C-terminal di-glycine that is adenylated by each specific E1 or E1-like enzyme, respectively, in an ATP-dependent manner, Ufm1(1-83) possesses a single glycine at its C-terminus, which is followed by a Ser-Cys dipeptide in the precursor form of Ufm1. The C-terminally processed Ufm1(1-83) is specifically activated by Uba5, an E1-like enzyme, and then transferred to its cognate Ufc1, an E2-like enzyme. 75 -308974 pfam03672 UPF0154 Uncharacterized protein family (UPF0154). This family contains a set of short bacterial proteins of unknown function. 60 -308975 pfam03673 UPF0128 Uncharacterized protein family (UPF0128). The members of this family are about 240 amino acids in length. The proteins are as yet uncharacterized. 221 -335426 pfam03676 UPF0183 Uncharacterized protein family (UPF0183). This family of proteins includes Lin-10 from C. elegans. 395 -281647 pfam03677 UPF0137 Uncharacterized protein family (UPF0137). This family includes GP6-D a virulence plasmid encoded protein. 237 -308977 pfam03678 Adeno_hexon_C Hexon, adenovirus major coat protein, C-terminal domain. Hexon is the major coat protein from adenovirus type 2. Hexon forms a homo-trimer. The 240 copies of the hexon trimer are organized so that 12 lie on each of the 20 facets. The central 9 hexons in a facet are cemented together by 12 copies of polypeptide IX. The penton complex, formed by the peripentonal hexons and base hexon (holding in place a fibre), lie at each of the 12 vertices. The N and C-terminal domains adopt the same PNGase F-like fold although they are significantly different in length. 241 -308978 pfam03682 UPF0158 Uncharacterized protein family (UPF0158). 157 -308979 pfam03683 UPF0175 Uncharacterized protein family (UPF0175). This family contains small proteins of unknown function. 75 -308980 pfam03684 UPF0179 Uncharacterized protein family (UPF0179). The function of this family is unknown, however the proteins contain two cysteine clusters that may be iron sulphur redox centers. 139 -308981 pfam03685 UPF0147 Uncharacterized protein family (UPF0147). This family of small proteins have no known function. 81 -281653 pfam03686 UPF0146 Uncharacterized protein family (UPF0146). The function of this family of proteins is unknown. 129 -281654 pfam03687 UPF0164 Uncharacterized protein family (UPF0164). This family of uncharacterized proteins are only found in Treponema pallidum. These proteins belong to the membrane beta barrel superfamily. 326 -146364 pfam03688 Nepo_coat_C Nepovirus coat protein, C-terminal domain. The members of this family are derived from nepoviruses. Together with comoviruses and picornaviruses, nepoviruses are classified in the picornavirus superfamily of plus strand single-stranded RNA viruses. This family aligns several nepovirus coat protein sequences. In several cases, this is found at the C-terminus of the RNA2-encoded viral polyprotein. The coat protein consists of three trapezoid-shaped beta-barrel domains, and forms a pseudo T = 3 icosahedral capsid structure. 163 -308982 pfam03689 Nepo_coat_N Nepovirus coat protein, N-terminal domain. The members of this family are derived from nepoviruses. Together with comoviruses and picornaviruses, nepoviruses are classified in the picornavirus superfamily of plus strand single-stranded RNA viruses. This family aligns several nepovirus coat protein sequences. In several cases, this is found at the C-terminus of the RNA2-encoded viral polyprotein. The coat protein consists of three trapezoid-shaped beta-barrel domains, and forms a pseudo T = 3 icosahedral capsid structure. 91 -335427 pfam03690 UPF0160 Uncharacterized protein family (UPF0160). This family of proteins contains a large number of metal binding residues. The patterns are suggestive of a phosphoesterase function. The conserved DHH motif may mean this family is related to pfam01368. 314 -335428 pfam03691 UPF0167 Uncharacterized protein family (UPF0167). The proteins in this family are about 200 amino acids long and each contain 3 CXXC motifs. 174 -308985 pfam03692 CxxCxxCC Putative zinc- or iron-chelating domain. This family of proteins contains 8 conserved cysteines. It has in the past been annotated as being one of the complex of proteins of the flagellar Fli complex. However this was due to a mis-annotation of the original Salmonella LT2 Genbank entry of 'fliB'. With all its conserved cysteines it is possibly a domain that chelates iron or zinc ions. 85 -281658 pfam03693 ParD_antitoxin Bacterial antitoxin of ParD toxin-antitoxin type II system and RHH. ParD is the antitoxin of a bacterial toxin-antitoxin gene pair. The cognate toxin is ParE in, pfam05016. The family contains several related antitoxins from Cyanobacteria, Proteobacteria and Actinobacteria. Antitoxins of this class carry an N-terminal ribbon-helix-helix domain, RHH, that is highly conserved across all type II bacterial antitoxins, which dimerizes with the RHH domain of a second VapB molecule. A hinge section follows the RHH, with an additional pair of flexible alpha helices at the C-terminus. This C-terminus is the toxin-binding region of the dimer, and so is specific to the cognate toxin, whereas the RHH domain has the specific function of lying across the RNA-binding groove of the toxin dimer and inactivating the active-site - a more general function of all type II antitoxins. 80 -335429 pfam03694 Erg28 Erg28 like protein. This is a family of integral membrane proteins, which may contain four transmembrane helices. Members of this family are thought to be involved in sterol C-4 demethylation. In S. cerevisiae they may tether Erg26p (sterol dehydrogenase/decarboxylase) and Erg27p (3-ketoreductase) to the endoplasmic reticulum or may facilitate interaction between these proteins. The family contains a conserved arginine and histidine that may be functionally important. 110 -335430 pfam03695 UPF0149 Uncharacterized protein family (UPF0149). The protein in this family are about 190 amino acids long. The function of these proteins is unknown. 172 -308988 pfam03698 UPF0180 Uncharacterized protein family (UPF0180). The members of this family are small uncharacterized proteins. 74 -308989 pfam03699 UPF0182 Uncharacterized protein family (UPF0182). This family contains uncharacterized integral membrane proteins. 765 -308990 pfam03700 Sorting_nexin Sorting nexin, N-terminal domain. These proteins bins to the cytoplasmic domain of plasma membrane receptors. and are involved in endocytic protein trafficking. The N-terminal domain appears to be specific to sorting nexins 1 and 2. 85 -335431 pfam03701 UPF0181 Uncharacterized protein family (UPF0181). This family contains small proteins of about 50 amino acids of unknown function. The family includes YoaH. 50 -281665 pfam03702 AnmK Anhydro-N-acetylmuramic acid kinase. Anhydro-N-acetylmuramic acid kinase catalyzes the specific phosphorylation of 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) with the simultaneous cleavage of the 1,6-anhydro ring, generating MurNAc-6-P. It is also required for the utilization of anhMurNAc, either imported from the medium, or derived from its own cell wall murein, and in so doing plays a role in cell wall recycling. 364 -335432 pfam03703 bPH_2 Bacterial PH domain. Domain found in uncharacterized family of membrane proteins. 1-3 copies found in each protein, with each copy flanked by transmembrane helices. Members of this family have a PH domain like structure. 79 -281667 pfam03704 BTAD Bacterial transcriptional activator domain. Found in the DNRI/REDD/AFSR family of regulators. This region of AFSR, along with the C terminal region, is capable of independently directing actinorhodin production. This family contains TPR repeats. 146 -335433 pfam03705 CheR_N CheR methyltransferase, all-alpha domain. CheR proteins are part of the chemotaxis signaling mechanism in bacteria. CheR methylates the chemotaxis receptor at specific glutamate residues. CheR is an S-adenosylmethionine- dependent methyltransferase. 53 -308994 pfam03706 LPG_synthase_TM Lysylphosphatidylglycerol synthase TM region. LPG_synthase_TM is the N-terminal region of this family of bacterial phosphatidylglycerol lysyltransferases. The function of the family is to add lysyl groups to membrane lipids, and this region is the transmembrane domain of 7xTMs. In order to counteract attack by membrane-damaging external cationic antimicrobial molecules - from host immune systems, bacteriocins, defencins, etc - bacteria modify their anionic membrane phosphatidylglycerol with positively-charged L-lysine; this results in repulsion of the foreign cationic peptides. 300 -335434 pfam03707 MHYT Bacterial signalling protein N terminal repeat. Found as an N terminal triplet tandem repeat in bacterial signalling proteins. Family includes CoxC and CoxH from P.carboxydovorans. Each repeat contains two transmembrane helices. Domain is also described as the MHYT domain. 54 -281671 pfam03708 Avian_gp85 Avian retrovirus envelope protein, gp85. Family of a vain specific viral glycoproteins that forms a receptor-binding gp85 polypeptide that is linked through disulfide to a membrane-spanning gp37 spike. Gp85 confers a high degree of subgroup specificity for interaction with distinct cell receptors. 246 -335435 pfam03709 OKR_DC_1_N Orn/Lys/Arg decarboxylase, N-terminal domain. This domain has a flavodoxin-like fold, and is termed the "wing" domain because of its position in the overall 3D structure. 111 -281673 pfam03710 GlnE Glutamate-ammonia ligase adenylyltransferase. Conserved repeated domain found in GlnE proteins. These proteins adenylate and deadenylate glutamine synthases: ATP + {L-Glutamate:ammonia ligase (ADP-forming)} = Diphosphate + Adenylyl-{L-Glutamate:Ammonia ligase (ADP-forming)}. The family is related to the pfam01909 domain. 250 -335436 pfam03711 OKR_DC_1_C Orn/Lys/Arg decarboxylase, C-terminal domain. 130 -335437 pfam03712 Cu2_monoox_C Copper type II ascorbate-dependent monooxygenase, C-terminal domain. The N and C-terminal domains of members of this family adopt the same PNGase F-like fold. 157 -308999 pfam03713 DUF305 Domain of unknown function (DUF305). Domain found in small family of bacterial secreted proteins with no known function. Also found in Paramecium bursaria chlorella virus 1. This domain is short and found in one or two copies. The domain has a conserved HH motif that may be functionally important. This domain belongs to the ferritin superfamily. It contains two sequence similar repeats each of which is composed of two alpha helices. 151 -335438 pfam03714 PUD Bacterial pullanase-associated domain. Domain is found in pullanase - carbohydrate de-branching - proteins. It is found both to the N or the C terminii of of the alpha-amylase active site region. This domain contains several conserved aromatic residues that are suggestive of a carbohydrate binding function. 99 -309001 pfam03715 Noc2 Noc2p family. At least one member, Noc2p from yeast, is required for a late step in 60S subunit export from the nucleus. It has also been shown to co-precipitate with Nug1p, a nuclear GTPase also required for ribosome nucleus export. This family was formerly known as UPF0120. 297 -202737 pfam03716 WCCH WCCH motif. The WCCH motif is found in a retrotransposons and Gemini viruses. A specific function has not been associated to this motif. 25 -335439 pfam03717 PBP_dimer Penicillin-binding Protein dimerization domain. This domain is found at the N-terminus of Class B High Molecular Weight Penicillin-Binding Proteins. Its function has not been precisely defined, but is strongly implicated in PBP polymerization. The domain forms a largely disordered 'sugar tongs' structure. 180 -335440 pfam03718 Glyco_hydro_49 Glycosyl hydrolase family 49. Family of dextranase (EC 3.2.1.11) and isopullulanase (EC 3.2.1.57). Dextranase hydrolyzes alpha-1,6-glycosidic bonds in dextran polymers. This domain corresponds to the C-terminal pectate lyase like domain. 118 -335441 pfam03719 Ribosomal_S5_C Ribosomal protein S5, C-terminal domain. 71 -309004 pfam03720 UDPG_MGDP_dh_C UDP-glucose/GDP-mannose dehydrogenase family, UDP binding domain. The UDP-glucose/GDP-mannose dehydrogenaseses are a small group of enzymes which possesses the ability to catalyze the NAD-dependent 2-fold oxidation of an alcohol to an acid without the release of an aldehyde intermediate. 103 -309005 pfam03721 UDPG_MGDP_dh_N UDP-glucose/GDP-mannose dehydrogenase family, NAD binding domain. The UDP-glucose/GDP-mannose dehydrogenaseses are a small group of enzymes which possesses the ability to catalyze the NAD-dependent 2-fold oxidation of an alcohol to an acid without the release of an aldehyde intermediate. 186 -335442 pfam03722 Hemocyanin_N Hemocyanin, all-alpha domain. This family includes arthropod hemocyanins and insect larval storage proteins. 116 -335443 pfam03723 Hemocyanin_C Hemocyanin, ig-like domain. This family includes arthropod hemocyanins and insect larval storage proteins. 243 -309008 pfam03724 META META domain. Small domain family found in proteins of of unknown function. Some are secreted and implicated in motility in bacteria. Also occurs in Leishmania spp. as an essential gene. Over-expression in L.amazonensis increases virulence. A pair of cysteine residues show correlated conservation, suggesting that they form a disulphide bond. 109 -309009 pfam03725 RNase_PH_C 3' exoribonuclease family, domain 2. This family includes 3'-5' exoribonucleases. Ribonuclease PH contains a single copy of this domain, and removes nucleotide residues following the -CCA terminus of tRNA. Polyribonucleotide nucleotidyltransferase (PNPase) contains two tandem copies of the domain. PNPase is involved in mRNA degradation in a 3'-5' direction. The exosome is a 3'-5' exoribonuclease complex that is required for 3' processing of the 5.8S rRNA. Three of its five protein components contain a copy of this domain. A hypothetical protein from S. pombe appears to belong to an uncharacterized subfamily. This subfamily is found in both eukaryotes and archaebacteria. 67 -335444 pfam03726 PNPase Polyribonucleotide nucleotidyltransferase, RNA binding domain. This family contains the RNA binding domain of Polyribonucleotide nucleotidyltransferase (PNPase) PNPase is involved in mRNA degradation in a 3'-5' direction. 80 -335445 pfam03727 Hexokinase_2 Hexokinase. Hexokinase (EC:2.7.1.1) contains two structurally similar domains represented by this family and pfam00349. Some members of the family have two copies of each of these domains. 238 -281690 pfam03728 Viral_DNA_Zn_bi Viral DNA-binding protein, zinc binding domain. This family represents the zinc binding domain of the viral DNA- binding protein, a multi functional protein involved in DNA replication and transcription control. Two copies of this domain are found at the C-terminus of many members of the family. 94 -309011 pfam03729 DUF308 Short repeat of unknown function (DUF308). Family of short repeats that occurs in a limited number of membrane proteins. It may divide further in short repeats of around 7-10 residues of the pattern G-#-X(2)-#(2)-X (#=hydrophobic). 73 -309012 pfam03730 Ku_C Ku70/Ku80 C-terminal arm. The Ku heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. This is the C terminal arm. This alpha helical region embraces the beta-barrel domain pfam02735 of the opposite subunit. 88 -309013 pfam03731 Ku_N Ku70/Ku80 N-terminal alpha/beta domain. The Ku heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. This is the amino terminal alpha/beta domain. This domain only makes a small contribution to the dimer interface. The domain comprises a six stranded beta sheet of the Rossman fold. 222 -309014 pfam03732 Retrotrans_gag Retrotransposon gag protein. Gag or Capsid-like proteins from LTR retrotransposons. There is a central motif QGXXEXXXXXFXXLXXH that is common to Retroviridae gag-proteins, but is poorly conserved. 97 -335446 pfam03733 YccF Inner membrane component domain. Domain occurs as one or more copies in bacterial and eukaryotic proteins. These are membrane proteins of four TM regions, two appearing in each of the two copies when both are present. Many of the latter members also carry the sodium/calcium exchanger protein family pfam01699, which have multipass membrane regions. 51 -335447 pfam03734 YkuD L,D-transpeptidase catalytic domain. This family of proteins are found in a range of bacteria. It has been shown that this domain can act as an L,D-transpeptidase that gives rise to an alternative pathway for peptidoglycan cross-linking. This gives bacteria resistance to beta-lactam antibiotics that inhibit PBPs which usually carry out the cross-linking reaction. The conserved region contains a conserved histidine and cysteine, with the cysteine thought to be an active site residue. Several members of this family contain peptidoglycan binding domains. The molecular structure of YkuD protein shows this domain has a novel tertiary fold consisting of a beta-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two beta-sheets form a cradle capped by an alpha-helix. This family was formerly called the ErfK/YbiS/YcfS/YnhG family, but is now named after the first protein of known structure. 126 -335448 pfam03735 ENT ENT domain. This presumed domain is named after Emsy N-terminus (ENT). Emsy is a protein that is amplified in breast cancer and interacts with BRCA2. The N-terminus of this protein is found to be similar to other vertebrate and plant proteins of unknown function. This domain has a completely conserved histidine residue that may be functionally important. 68 -309018 pfam03736 EPTP EPTP domain. Mutations in the LGI/Epitempin gene can result in a special form of epilepsy, autosomal dominant lateral temporal epilepsy. The Epitempin protein contains a large repeat in its C terminal section. The architecture and structural features of this repeat make it a likely member 7-bladed beta-propeller fold. 43 -335449 pfam03737 RraA-like Aldolase/RraA. Members of this family include regulator of ribonuclease E activity A (RraA) and 4-hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy- 4-hydroxy-2-oxoadipate (CHA) aldolase, also known as RraA-like protein. RraA acts as a trans-acting modulator of RNA turnover, binding essential endonuclease RNase E and inhibiting RNA processing. RraA-like proteins seem to contain aldolase and/or decarboxylase activity either in place of or in addition to the RNase E inhibitor functions. 147 -335450 pfam03738 GSP_synth Glutathionylspermidine synthase preATP-grasp. This region contains the Glutathionylspermidine synthase enzymatic activity EC:6.3.1.8. This is the C-terminal region in bi-enzymes. Glutathionylspermidine (GSP) synthetases of Trypanosomatidae and Escherichia coli couple hydrolysis of ATP (to ADP and Pi) with formation of an amide bond between spermidine and the glycine carboxylate of glutathione (gamma-Glu-Cys-Gly). In the pathogenic trypanosomatids, this reaction is the penultimate step in the biosynthesis of the antioxidant metabolite, trypanothione (N1,N8-bis-(glutathionyl)spermidine), and is a target for drug design. This region, the pre-ATP grasp region, probably carries the substrate-binding site. 374 -309021 pfam03739 YjgP_YjgQ Predicted permease YjgP/YjgQ family. Members of this family are predicted integral membrane proteins of unknown function. They are about 350 amino acids long and contain about 6 transmembrane regions. They are predicted to be permeases although there is no verification of this. 352 -335451 pfam03740 PdxJ Pyridoxal phosphate biosynthesis protein PdxJ. Members of this family belong to the PdxJ family that catalyzes the condensation of 1-deoxy-d-xylulose-5-phosphate (DXP) and 1-amino-3-oxo-4-(phosphohydroxy)propan-2-one to form pyridoxine 5'-phosphate (PNP). This reaction is involved in de novo synthesis of pyridoxine (vitamin B6) and pyridoxal phosphate. 234 -309023 pfam03741 TerC Integral membrane protein TerC family. This family contains a number of integral membrane proteins that also contains the TerC protein. TerC has been implicated in resistance to tellurium. This protein may be involved in efflux of tellurium ions. The tellurite-resistant Escherichia coli strain KL53 was found during testing of the group of clinical isolates for antibiotics and heavy metal ion resistance. Determinant of the tellurite resistance of the strain was located on a large conjugative plasmid. Analyses showed, the genes terB, terC, terD and terE are essential for conservation of the resistance. The members of the family contain a number of conserved aspartates that could be involved in binding to metal ions. 179 -309024 pfam03742 PetN PetN. PetN is a small hydrophobic protein, crucial for cytochrome b6-f complex assembly and/or stability. 29 -335452 pfam03743 TrbI Bacterial conjugation TrbI-like protein. Although not essential for conjugation, the TrbI protein greatly increase the conjugational efficiency. 186 -335453 pfam03744 BioW 6-carboxyhexanoate--CoA ligase. This family contains the enzyme 6-carboxyhexanoate--CoA ligase EC:6.2.1.14. This enzyme is involved in the first step of biotin synthesis, where it converts pimelate into pimeloyl-CoA. The enzyme requires magnesium as a cofactor and forms a homodimer. 238 -335454 pfam03745 DUF309 Domain of unknown function (DUF309). This domain is found in eubacterial and archaebacterial proteins of unknown function. The proteins contain a motif HXXXEXX(W/Y) where X can be any amino acid. This motif is likely to be functionally important and may be involved in metal binding. 58 -335455 pfam03746 LamB_YcsF LamB/YcsF family. This family includes LamB. The lam locus of Aspergillus nidulans consists of two divergently transcribed genes, lamA and lamB, involved in the utilisation of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. The exact molecular function of the proteins in this family is unknown. 238 -335456 pfam03747 ADP_ribosyl_GH ADP-ribosylglycohydrolase. This family includes enzymes that ADP-ribosylations, for example ADP-ribosylarginine hydrolase EC:3.2.2.19 cleaves ADP-ribose-L-arginine. The family also includes dinitrogenase reductase activating glycohydrolase. Most surprisingly the family also includes jellyfish crystallins, these proteins appear to have lost the presumed active site residues. 189 -335457 pfam03748 FliL Flagellar basal body-associated protein FliL. This FliL protein controls the rotational direction of the flagella during chemotaxis. FliL is a cytoplasmic membrane protein associated with the basal body. 95 -335458 pfam03749 SfsA Sugar fermentation stimulation protein. This family contains Sugar fermentation stimulation proteins. Which is probably a regulatory factor involved in maltose metabolism. SfsA has been shown to bind DNA and it contains a helix-turn-helix motif that probably binds DNA at its C-terminus. 207 -335459 pfam03750 Csm2_III-A Csm2 Type III-A. Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-associated) proteins. This entry represents Csm2 Type III-A, a family of Cas proteins also known as TM1810/Csm2. 112 -309033 pfam03752 ALF Short repeats of unknown function. This set of repeats is found in a small family of secreted proteins of no known function, though they are possibly involved in signal transduction. ALF stands for Alanine-rich (AL) - conserved Phenylalanine (F). 41 -281713 pfam03753 HHV6-IE Human herpesvirus 6 immediate early protein. The proteins in this family are poorly characterized, but an investigation has indicated that the immediate early protein is required the down-regulation of MHC class I expression in dendritic cells. Human herpesvirus 6 immediate early protein is also referred to as U90. 993 -281714 pfam03754 DUF313 Domain of unknown function (DUF313). Family of proteins from Arabidopsis thaliana with uncharacterized function. 113 -335460 pfam03755 YicC_N YicC-like family, N-terminal region. Family of bacterial proteins. Although poorly characterized, the members of this protein family have been demonstrated to play a role in stationary phase survival. These proteins are not essential during stationary phase. 155 -309035 pfam03756 AfsA A-factor biosynthesis hotdog domain. The AfsA family are key enzymes in A-factor biosynthesis, which is essential for streptomycin production and resistance. This domain is distantly related to the thioester dehydratase FabZ family and therefore has a HotDog domain. 133 -309036 pfam03759 PRONE PRONE (Plant-specific Rop nucleotide exchanger). This is a functional guanine exchange factor (GEF) of plant Rho GTPase. 361 -335461 pfam03760 LEA_1 Late embryogenesis abundant (LEA) group 1. Family members are conserved along the entire coding region, especially within the hydrophobic internal 20 amino acid motif, which may be repeated. 71 -309038 pfam03761 DUF316 Chymotrypsin family Peptidase-S1. This is a family of trypsin-6 part of the chymotrypsin family S21, ie a serine peptidase. The C. elegans sequence UniProt:O01566 is trypsin-6: all the active site residues are present (His90, Asp168, Ser267). 281 -309039 pfam03762 VOMI Vitelline membrane outer layer protein I (VOMI). VOMI binds tightly to ovomucin fibrils of the egg yolk membrane. The structure that consists of three beta-sheets forming Greek key motifs, which are related by an internal pseudo three-fold symmetry. Furthermore, the structure of VOMI has strong similarity to the structure of the delta-endotoxin, as well as a carbohydrate-binding site in the top region of the common fold. 166 -335462 pfam03763 Remorin_C Remorin, C-terminal region. Remorins are plant-specific plasma membrane-associated proteins. In tobacco remorin co-purifies with lipid rafts. Most remorins have a variable, proline-rich N-half and a more conserved C-half that is predicted to form coiled coils. Consistent with this, circular dichroism studies have demonstrated that much of the protein is alpha-helical. Remorins exist in plasma membrane preparations as oligomeric structures and form filaments in vitro. The proteins can bind polyanions including the extracellular matrix component oligogalacturonic acid (OGA). In vitro, remorin in plasma membrane preparations is phosphorylated (principally on threonine residues) in the presence of OGA and thus co-purifies with a protein kinases(s). The biological functions of remorins are unknown but roles as components of the membrane/cytoskeleton are possible. 106 -281721 pfam03764 EFG_IV Elongation factor G, domain IV. This domain is found in elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold. 120 -335463 pfam03765 CRAL_TRIO_N CRAL/TRIO, N-terminal domain. This all-alpha domain is found to the N-terminus of pfam00650. 52 -309042 pfam03766 Remorin_N Remorin, N-terminal region. Remorins are plant-specific plasma membrane-associated proteins. In tobacco remorin co-purifies with lipid rafts. Most remorins have a variable, proline-rich C-half and a more conserved N-half that is predicted to form coiled coils. Consistent with this, circular dichroism studies have demonstrated that much of the protein is alpha-helical. Remorins exist in plasma membrane preparations as oligomeric structures and form filaments in vitro. The proteins can bind polyanions including the extracellular matrix component oligogalacturonic acid (OGA). In vitro, remorin in plasma membrane preparations is phosphorylated (principally on threonine residues) in the presence of OGA and thus co-purifies with a protein kinases(s). The biological functions of remorins are unknown but roles as components of the membrane/cytoskeleton are possible. 54 -309043 pfam03767 Acid_phosphat_B HAD superfamily, subfamily IIIB (Acid phosphatase). This family proteins includes acid phosphatases and a number of vegetative storage proteins. 211 -309044 pfam03768 Attacin_N Attacin, N-terminal region. This family includes attacin and sarcotoxin, but not diptericin (which share similarity to the C-terminal region of attacin). All members of this family are insect antibacterial proteins which are induced by the fat body and subsequently released into secreted into the hemolymph where they act synergistically to kill the invading microorganism. 64 -309045 pfam03769 Attacin_C Attacin, C-terminal region. This family includes attacin, sarcotoxin and diptericin. All members of this family are insect antibacterial proteins which are induced by the fat body and subsequently released into secreted into the hemolymph where they act synergistically to kill the invading microorganism. 120 -335464 pfam03770 IPK Inositol polyphosphate kinase. ArgRIII has has been demonstrated to be an inositol polyphosphate kinase. 189 -309047 pfam03771 SPDY Domain of unknown function (DUF317). This a sequence family found in a set of bacterial proteins with no known function. This domain is currently only found in streptomyces bacteria. Most proteins contain two copies of this domain. 59 -309048 pfam03772 Competence Competence protein. Members of this family are integral membrane proteins with 6 predicted transmembrane helices. Some members of this family have been shown to be essential for bacterial competence in uptake of extracellular DNA. These proteins may transport DNA across the cell membrane. These proteins contain a highly conserved motif in the amino terminal transmembrane region that has two histidines that may form a metal binding site. 271 -281730 pfam03773 ArsP_1 Predicted permease. This family of integral membrane proteins are predicted to be permeases of unknown specificity. 316 -335465 pfam03775 MinC_C Septum formation inhibitor MinC, C-terminal domain. In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. MinC is an oligomer, probably a dimer. The C terminal half of MinC is the most conserved and interacts with MinD. The N terminal half is thought interact with FtsZ. 95 -335466 pfam03776 MinE Septum formation topological specificity factor MinE. The E. coli minicell locus was shown to code for three gene products (MinC, MinD, and MinE) whose coordinate action is required for proper placement of the division septum. The minE gene codes for a topological specificity factor that, in wild-type cells, prevents the division inhibitor from acting at internal division sites while permitting it to block septation at polar sites. 67 -309051 pfam03777 DUF320 Small secreted domain (DUF320). Small domain found in a family of secreted streptomyces proteins. It occurs singly or as a pair. Many of the domains have two cysteines that may form a disulphide bridge. 55 -112584 pfam03778 DUF321 Protein of unknown function (DUF321). This family may be related to the FARP (FMRFamide) family, pfam01581. Currently this repeat was only detectable in Arabidopsis thaliana. 20 -335467 pfam03779 SPW SPW repeat. A short repeat found in a small family of membrane-bound proteins. This repeat contains a conserved SPW motif in the first of two transmembrane helices. 45 -335468 pfam03780 Asp23 Asp23 family, cell envelope-related function. The alkaline shock protein Asp23 was identified as an alkaline shock protein that was expressed in a sigmaB-dependent manner in Staphylococcus aureus. Following an alkaline shock Asp23 accumulates in the soluble protein fraction of the S. aureus cell. Asp23 is one of the most abundant proteins in the cytosolic protein fraction of stationary S. aureus cells, with a copy-number of >25000 per cell. A second Asp23-family protein, AmaP, which is encoded within the asp23-operon, is required to localize Asp23 to the cell membrane. The overall function for the family is thus a cell envelope-related one in Gram-positive bacteria. 108 -335469 pfam03781 FGE-sulfatase Sulfatase-modifying factor enzyme 1. This domain is found in eukaryotic proteins required for post-translational sulfatase modification (SUMF1). These proteins are associated with the rare disorder multiple sulfatase deficiency (MSD). The protein product of the SUMF1 gene is FGE, formylglycine (FGly),-generating enzyme, which is a sulfatase. Sulfatases are enzymes essential for degradation and remodelling of sulfate esters, and formylglycine (FGly), the key catalytic in the active site, is unique to sulfatases. FGE is localized to the endoplasmic reticulum (ER) and interacts with and modifies the unfolded form of newly synthesized sulfatases. FGE is a single-domain monomer with a surprising paucity of secondary structure that adopts a unique fold which is stabilized by two Ca2+ ions. The effect of all mutations found in MSD patients is explained by the FGE structure, providing a molecular basis for MSD. A redox-active disulfide bond is present in the active site of FGE. An oxidized cysteine residue, possibly cysteine sulfenic acid, has been detected that may allow formulation of a structure-based mechanism for FGly formation from cysteine residues in all sulfatases. In Mycobacteria and Treponema denticola this enzyme functions as an iron(II)-dependent oxidoreductase. 257 -335470 pfam03782 AMOP AMOP domain. This domain may have a role in cell adhesion. It is called the AMOP domain after Adhesion associated domain in MUC4 and Other Proteins. This domain is extracellular and contains a number of cysteines that probably form disulphide bridges. 143 -335471 pfam03783 CsgG Curli production assembly/transport component CsgG. CsgG is an outer membrane-located lipoprotein that is highly resistant to protease digestion. During curli assembly, an adhesive surface fibre, CsgG is required to maintain the stability of CsgA and CsgB. 208 -202766 pfam03784 Cyclotide Cyclotide family. This family contains a set of cyclic peptides with a variety of activities. The structure consists of a distorted triple-stranded beta-sheet and a cysteine-knot arrangement of the disulfide bonds. Cyclotides can be separated into two subfamilies, namely bracelet and moebius. The bracelet cyclotide subfamily tends to contain a larger number of positively charged residues and has a bracelet-like circularisation of the backbone. The moebius cyclotide subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. 28 -281739 pfam03785 Peptidase_C25_C Peptidase family C25, C terminal ig-like domain. 74 -281740 pfam03786 UxuA D-mannonate dehydratase (UxuA). UxuA (this family) and UxuB are required for hexuronate degradation. 351 -335472 pfam03787 RAMPs RAMP superfamily. The molecular function of these proteins is not yet known. However, they have been identified and called the RAMP (Repair Associated Mysterious Proteins) superfamily. The members of this family have no known function they are around 300 amino acids in length and have several conserved motifs. 189 -335473 pfam03788 LrgA LrgA family. This family is uncharacterized. It contains the protein LrgA that has been hypothesized to export murein hydrolases. 94 -335474 pfam03789 ELK ELK domain. This domain is required for the nuclear localization of these proteins. All of these proteins are members of the Tale/Knox homeodomain family, a subfamily within homeobox pfam00046. 22 -335475 pfam03790 KNOX1 KNOX1 domain. The MEINOX region is comprised of two domains, KNOX1 and KNOX2. KNOX1 plays a role in suppressing target gene expression. KNOX2, essential for function, is thought to be necessary for homo-dimerization. 40 -335476 pfam03791 KNOX2 KNOX2 domain. The MEINOX region is comprised of two domains, KNOX1 and KNOX2. KNOX1 plays a role in suppressing target gene expression. KNOX2, essential for function, is thought to be necessary for homo-dimerization. 48 -309062 pfam03792 PBC PBC domain. The PBC domain is a member of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. 182 -335477 pfam03793 PASTA PASTA domain. This domain is found at the C termini of several Penicillin-binding proteins and bacterial serine/threonine kinases. It binds the beta-lactam stem, which implicates it in sensing D-alanyl-D-alanine - the PBP transpeptidase substrate. It is a small globular fold consisting of 3 beta-sheets and an alpha-helix. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 63 -309064 pfam03795 YCII YCII-related domain. The majority of proteins in this family consist of a single copy of this domain, though it is also found as a repeat. A strongly conserved histidine and a aspartate suggest that the domain has an enzymatic function. This family also now includes the family formerly known as the DGPF domain (COG3795). Although its function is unknown it is found fused to a sigma-70 factor family domain in CC_1329. Suggesting that this domain plays a role in transcription initiation (Bateman A per. obs.). This domain is named after the most conserved motif in the alignment. 94 -335478 pfam03796 DnaB_C DnaB-like helicase C terminal domain. The hexameric helicase DnaB unwinds the DNA duplex at the Escherichia coli chromosome replication fork. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerization of the N-terminal domain has been observed and may occur during the enzymatic cycle. This C-terminal domain contains an ATP-binding site and is therefore probably the site of ATP hydrolysis. 255 -335479 pfam03797 Autotransporter Autotransporter beta-domain. Secretion of protein products occurs by a number of different pathways in bacteria. One of these pathways known as the type V pathway was first described for the IgA1 protease. The protein component that mediates secretion through the outer membrane is contained within the secreted protein itself, hence the proteins secreted in this way are called autotransporters. This family corresponds to the presumed integral membrane beta-barrel domain that transports the protein. This domain is found at the C-terminus of the proteins it occurs in. The N-terminus contains the variable passenger domain that is translocated across the membrane. Once the passenger domain is exported it is cleaved auto-catalytically in some proteins, in others a different protease is used and in some cases no cleavage occurs. 249 -335480 pfam03798 TRAM_LAG1_CLN8 TLC domain. 200 -335481 pfam03799 FtsQ Cell division protein FtsQ. FtsQ is one of several cell division proteins. FtsQ interacts with other Fts proteins, reviewed in. The precise function of FtsQ is unknown. 112 -335482 pfam03800 Nuf2 Nuf2 family. Members of this family are components of the mitotic spindle. It has been shown that Nuf2 from yeast is part of a complex called the Ndc80p complex. This complex is thought to bind to the microtubules of the spindle. An arabidopsis protein has been included in this family that has previously not been identified as a member of this family. The match is not strong, but in common with other members of this family contains coiled-coil to the C-terminus of this region. 137 -335483 pfam03801 Ndc80_HEC HEC/Ndc80p family. Members of this family are components of the mitotic spindle. It has been shown that Ndc80/HEC from yeast is part of a complex called the Ndc80p complex. This complex is thought to bind to the microtubules of the spindle. 153 -335484 pfam03802 CitX Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase. 165 -252175 pfam03803 Scramblase Scramblase. Scramblase is palmitoylated and contains a potential protein kinase C phosphorylation site. Scramblase exhibits Ca2+-activated phospholipid scrambling activity in vitro. There are also possible SH3 and WW binding motifs. Scramblase is involved in the redistribution of phospholipids after cell activation or injury. 221 -281756 pfam03804 DUF325 Viral domain of unknown function. 73 -309072 pfam03805 CLAG Cytoadherence-linked asexual protein. Clag (cytoadherence linked asexual gene) is a malaria surface protein which has been shown to be involved in the binding of Plasmodium falciparum infected erythrocytes to host endothelial cells, a process termed cytoadherence. The cytoadherence phenomenon is associated with the sequestration of infected erythrocytes in the blood vessels of the brain, cerebral malaria. Clag is a multi-gene family in Plasmodium falciparum with at least 9 members identified to date. Orthologous proteins in the rodent malaria species Plasmodium chabaudi (Lawson D Unpubl. obs.) suggest that the gene family is found in other malaria species and may play a more generic role in cytoadherence. 1286 -281758 pfam03806 ABG_transport AbgT putative transporter family. 502 -281759 pfam03807 F420_oxidored NADP oxidoreductase coenzyme F420-dependent. 92 -335485 pfam03808 Glyco_tran_WecB Glycosyl transferase WecB/TagA/CpsF family. 168 -335486 pfam03810 IBN_N Importin-beta N-terminal domain. 71 -281762 pfam03811 Zn_Tnp_IS1 InsA N-terminal domain. This appears to be a short zinc binding domain found in IS1 InsA family protein. It is found at the N-terminus of the protein and may be a DNA-binding domain. 35 -335487 pfam03812 KdgT 2-keto-3-deoxygluconate permease. 296 -335488 pfam03813 Nrap Nrap protein domain 1. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. This domain has a nucleotidyltransferase structure. 147 -335489 pfam03814 KdpA Potassium-transporting ATPase A subunit. 550 -309078 pfam03815 LCCL LCCL domain. 96 -309079 pfam03816 LytR_cpsA_psr Cell envelope-related transcriptional attenuator domain. 149 -335490 pfam03817 MadL Malonate transporter MadL subunit. 117 -335491 pfam03818 MadM Malonate/sodium symporter MadM subunit. 59 -281770 pfam03819 MazG MazG nucleotide pyrophosphohydrolase domain. This domain is about 100 amino acid residues in length. It is found in the MazG protein from E. coli. It contains four conserved negatively charged residues that probably form an active site or metal binding site. This domain is found in isolation in some proteins as well as associated with pfam00590. This domain is clearly related to pfam01503 another pyrophosphohydrolase involved in histidine biosynthesis. This family may be structurally related to the NUDIX domain pfam00293 (Bateman A pers. obs.). 74 -309082 pfam03820 Mtc Tricarboxylate carrier. 313 -309083 pfam03821 Mtp Golgi 4-transmembrane spanning transporter. 230 -335492 pfam03822 NAF NAF domain. 55 -309085 pfam03823 Neurokinin_B Neurokinin B. 57 -309086 pfam03824 NicO High-affinity nickel-transport protein. High affinity nickel transporters involved in the incorporation of nickel into H2-uptake hydrogenase and urease enzymes. Essential for the expression of catalytically active hydrogenase and urease. Ion uptake is dependent on proton motive force. HoxN in Alcaligenes eutrophus is thought to be an integral membrane protein with seven transmembrane helices. The family also includes a cobalt transporter. 282 -281776 pfam03825 Nuc_H_symport Nucleoside H+ symporter. 400 -309087 pfam03826 OAR OAR domain. 19 -309088 pfam03827 Orexin_rec2 Orexin receptor type 2. 58 -335493 pfam03828 PAP_assoc Cid1 family poly A polymerase. This domain is found in poly(A) polymerases and has been shown to have polynucleotide adenylyltransferase activity. Proteins in this family have been located to both the nucleus and the cytoplasm. 60 -309090 pfam03829 PTSIIA_gutA PTS system glucitol/sorbitol-specific IIA component. 113 -335494 pfam03830 PTSIIB_sorb PTS system sorbose subfamily IIB component. 148 -335495 pfam03831 PhnA PhnA domain. 69 -309093 pfam03832 WSK WSK motif. This short motif is names after three conserved residues found in a WXSXK motif in protein kinase A anchoring proteins. 28 -309094 pfam03833 PolC_DP2 DNA polymerase II large subunit DP2. 864 -309095 pfam03834 Rad10 Binding domain of DNA repair protein Ercc1 (rad10/Swi10). Ercc1 and XPF (xeroderma pigmentosum group F-complementing protein) are two structure-specific endonucleases of a class of seven containing an ERCC4 domain. Together they form an obligate complex that functions primarily in nucleotide excision repair (NER), a versatile pathway able to detect and remove a variety of DNA lesions induced by UV light and environmental carcinogens, and secondarily in DNA interstrand cross-link repair and telomere maintenance. This domain in fact binds simultaneously to both XPF and single-stranded DNA; this ternary complex explains the important role of Ercc1 in targeting its catalytic XPF partner to the NER pre-incision complex. 114 -281786 pfam03835 Rad4 Rad4 transglutaminase-like domain. 144 -335496 pfam03836 RasGAP_C RasGAP C-terminus. This domain can be found in the C-terminus of the IQGAP family members, including human IQGAP1/2/3, S. cerevisiae Iqg1 and S. pombe Rng2. Some members function in cytoskeletal remodelling. Human IQGAP1 is a scaffolding protein that can assemble multi-protein complexes involved in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. IQGAP1 is also a regulator of the MAPK and Wnt/beta-catenin signaling pathways.Iqg1 and Rng2 are required for actomyosin ring construction during cytokinesis. 136 -335497 pfam03837 RecT RecT family. The DNA single-strand annealing proteins (SSAPs), such as RecT, Red-beta, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. This family includes proteins related to RecT. 192 -309098 pfam03838 RecU Recombination protein U. 160 -309099 pfam03839 Sec62 Translocation protein Sec62. 213 -335498 pfam03840 SecG Preprotein translocase SecG subunit. 69 -309101 pfam03841 SelA L-seryl-tRNA selenium transferase. 367 -146463 pfam03842 Silic_transp Silicon transporter. 513 -335499 pfam03843 Slp Outer membrane lipoprotein Slp family. 153 -281794 pfam03845 Spore_permease Spore germination protein. 321 -335500 pfam03846 SulA Cell division inhibitor SulA. 111 -112650 pfam03847 TFIID_20kDa Transcription initiation factor TFIID subunit A. 67 -281796 pfam03848 TehB Tellurite resistance protein TehB. 193 -335501 pfam03849 Tfb2 Transcription factor Tfb2. 357 -309105 pfam03850 Tfb4 Transcription factor Tfb4. This family appears to be distantly related to the VWA domain. 270 -252205 pfam03851 UvdE UV-endonuclease UvdE. 275 -281799 pfam03852 Vsr DNA mismatch endonuclease Vsr. 74 -281800 pfam03853 YjeF_N YjeF-related protein N-terminus. YjeF-N domain is a novel version of the Rossmann fold with a set of catalytic residues and structural features that are different from the conventional dehydrogenases. YjeF-N domain is fused to Ribokinases in bacteria (YjeF), where they may be phosphatases, and to divergent Sm and the FDF domain in eukaryotes (Dcp3p and FLJ21128), where they may be involved in decapping and catalyze hydrolytic RNA-processing reactions. 168 -281801 pfam03854 zf-P11 P-11 zinc finger. 50 -281802 pfam03855 M-factor M-factor. The M-factor is a pheromone produce upon nitrogen starvation. The production of M-factor is increased by the pheromone signal. The protein undergoes post-translational modification, to remove the C-terminal signal peptide, the carboxy-terminal cysteine residue is carboxy-methylated and S-alkylated, with a farnesyl residue. 43 -335502 pfam03856 SUN Beta-glucosidase (SUN family). Members of this family include Nca3, Sun4 and Sim1. This is a family of yeast proteins, involved in a diverse set of functions (DNA replication, aging, mitochondrial biogenesis and cell septation). BGLA from Candida wickerhamii has been characterized as a Beta-glucosidase EC:3.2.1.21. 244 -309107 pfam03857 Colicin_im Colicin immunity protein. Colicin immunity proteins are plasmid-encoded proteins necessary for protecting the cell against colicins. Colicins are toxins released by bacteria during times of stress. 138 -309108 pfam03858 Crust_neuro_H Crustacean neurohormone H. These proteins are referred to as precursor-related peptides as they are typically co-transcribed and translated with the CHH neurohormone (pfam01147). However, in some species this neuropeptide is synthesized as a separate protein. Furthermore, neurohormone H can undergo proteolysis to give rise to 5 different neuropeptides. 39 -335503 pfam03859 CG-1 CG-1 domain. CG-1 domains are highly conserved domains of about 130 amino-acid residues containing a predicted bipartite NLS and named after a partial cDNA clone isolated from parsley encoding a sequence-specific DNA-binding protein. CG-1 domains are associated with CAMTA proteins (for CAlModulin -binding Transcription Activator) that are transcription factors containing a calmodulin -binding domain and ankyrins (ANK) motifs. 116 -335504 pfam03860 DUF326 Domain of Unknown Function (DUF326). This family is a small cysteine-rich repeat. The cysteines mostly follow a C-X(2)-C-X(3)-C-X(2)-C-X(3) pattern, though they often appear at other positions in the repeat as well. 21 -335505 pfam03861 ANTAR ANTAR domain. ANTAR (AmiR and NasR transcription antitermination regulators) is an RNA-binding domain found in bacterial transcription antitermination regulatory proteins. The majority of the domain consists of a coiled-coil. 49 -335506 pfam03862 SpoVAC_SpoVAEB SpoVAC/SpoVAEB sporulation membrane protein. Members of this family are all transcribed from the spoVA operon. Bacillus and Clostridium are two well studied endospore forming bacteria. Spore formation provides a resistance mechanism in response to extreme or unfavourable environmental conditions such as heat, radiation, and chemical agents or nutrient deprivation. The reverse process termed germination takes place where spores develop into growing cells in response to nutrient availability or stress reduction. Nutrient germinant receptors (GRs) and the SpoVA proteins are important players in the germination process. In B.###subtilis the SpoVAC and SpoVAEB, belonging to this domain family, are predicted to be membrane proteins, with two to five membrane spanning. Biophysical and biochemical studies suggest that SpoVAC acts as a mechano-sensitive channel with properties that would allow the release of Ca-DPA (dipicolinic acid) and amino acids during germination of the spore. The release of Ca-DPA is a crucial event during spore germination. When expressed in E.###coli SpoVAC provides protection against osmotic downshift. Furthermore, SpoVAC acts as channel that facilitates the efflux down the concentration gradient of osmolytes up to a mass of at least 600 Da. Another conserved SpoVA protein in all spore-forming bacteria is SpoVAEb, which appears to be an integral membrane protein with no known function. 111 -281809 pfam03863 Phage_mat-A Phage maturation protein. 446 -309113 pfam03864 Phage_cap_E Phage major capsid protein E. Major capsid protein E is involved with the stabilisation of the condensed form of the DNA molecule in phage heads. 332 -335507 pfam03865 ShlB Haemolysin secretion/activation protein ShlB/FhaC/HecB. This family represents a group of sequences that are related to ShlB from Serratia marcescens. ShlB is an outer membrane protein pore involved in the Type Vb or Two-partner secretion system where it is functions to secrete and activate the haemolysin ShlA. The activation of ShlA occurs during secretion when ShlB imposes a conformational change in the inactive haemolysin to form the active protein. 316 -146478 pfam03866 HAP Hydrophobic abundant protein (HAP). Expression of HAP is thought to be developmentally regulated and possibly involved in spherule cell wall formation. 167 -309114 pfam03867 FTZ Fushi tarazu (FTZ), N-terminal region. This region contains the important motif (LXXLL) necessary for the interaction of FTZ with the nuclear receptor FTZ-F1. FTZ is thought to represents a category of LXXLL motif-dependent co-activators for nuclear receptors. 276 -335508 pfam03868 Ribosomal_L6e_N Ribosomal protein L6, N-terminal domain. 59 -281814 pfam03869 Arc Arc-like DNA binding domain. Arc repressor act by he cooperative binding of two Arc repressor dimers to a 21-base-pair operator site. Each Arc dimer uses an antiparallel beta-sheet to recognize bases in the major groove. 50 -335509 pfam03870 RNA_pol_Rpb8 RNA polymerase Rpb8. Rpb8 is a subunit common to the three yeast RNA polymerases, pol I, II and III. Rpb8 interacts with the largest subunit Rpb1, and with Rpb3 and Rpb11, two smaller subunits. 137 -309117 pfam03871 RNA_pol_Rpb5_N RNA polymerase Rpb5, N-terminal domain. Rpb5 has a bipartite structure which includes a eukaryote-specific N-terminal domain and a C-terminal domain resembling the archaeal RNAP subunit H. The N-terminal domain is involved in DNA binding and is part of the jaw module in the RNA pol II structure. This module is important for positioning the downstream DNA. 88 -335510 pfam03872 RseA_N Anti sigma-E protein RseA, N-terminal domain. Sigma-E is important for the induction of proteins involved in heat shock response. RseA binds sigma-E via its N-terminal domain, sequestering sigma-E and preventing transcription from heat-shock promoters. The C-terminal domain is located in the periplasm, and may interact with other protein that signal periplasmic stress. 87 -335511 pfam03873 RseA_C Anti sigma-E protein RseA, C-terminal domain. Sigma-E is important for the induction of proteins involved in heat shock response. RseA binds sigma-E via its N-terminal domain, sequestering sigma-E and preventing transcription from heat-shock promoters. The C-terminal domain is located in the periplasm, and may interact with other protein that signal periplasmic stress. 54 -335512 pfam03874 RNA_pol_Rpb4 RNA polymerase Rpb4. This family includes the Rpb4 protein. This family also includes C17 (aka CGRP-RCP) is an essential subunit of RNA polymerase III. C17 forms a subcomplex with C25 which is likely to be the counterpart of subcomplex Rpb4/7 in Pol II. 115 -281820 pfam03875 Statherin Statherin. Statherin functions biologically to inhibit the nucleation and growth of calcium phosphate minerals. The N-terminus of statherin is highly charge, the glutamic acids of which have been shown to be important in the recognition hydroxyapatite. 41 -335513 pfam03876 SHS2_Rpb7-N SHS2 domain found in N-terminus of Rpb7p/Rpc25p/MJ0397. Rpb7 bind to Rpb4 to form a heterodimer. This complex is thought to interact with the nascent RNA strand during RNA polymerase II elongation. This family includes the homologs from RNA polymerase I and III. In RNA polymerase I, Rpa43 is at least one of the subunits contacted by the transcription factor TIF-IA. The N-terminus of Rpb7p/Rpc25p/MJ0397 has a SHS2 domain that is involved in protein-protein interaction. 69 -335514 pfam03878 YIF1 YIF1. YIF1 (Yip1 interacting factor) is an integral membrane protein that is required for membrane fusion of ER derived vesicles. It also plays a role in the biogenesis of ER derived COPII transport vesicles. 241 -309123 pfam03879 Cgr1 Cgr1 family. Members of this family are coiled-coil proteins that are involved in pre-rRNA processing. 106 -335515 pfam03880 DbpA DbpA RNA binding domain. This RNA binding domain is found at the C-terminus of a number of DEAD helicase proteins. It is sufficient to confer specificity for hairpin 92 of 23S rRNA, which is part of the ribosomal A-site. However, several members of this family lack specificity for 23S rRNA. These can proteins can generally be distinguished by a basic region that extends beyond this domain [Karl Kossen, unpublished data]. 72 -335516 pfam03881 Fructosamin_kin Fructosamine kinase. This family includes eukaryotic fructosamine-3-kinase enzymes. The family also includes bacterial members that have not been characterized but probably have a similar or identical function. 287 -309126 pfam03882 KicB MukF winged-helix domain. The kicA and kicB genes are found upstream of mukB. It has been suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid. 115 -335517 pfam03883 H2O2_YaaD Peroxide stress protein YaaA. YaaA is a key element of the stress response to H2O2. It acts by reducing the level of intracellular iron levels after peroxide stress, thereby attenuating the Fenton reaction and the DNA damage that this would cause. The molecular mechanism of action is not known. 231 -335518 pfam03884 YacG DNA gyrase inhibitor YacG. YacG inhibits all the catalytic activities of DNA gyrase by preventing its interaction with DNA. It acts by binding directly to the C-terminal domain of GyrB, which probably disrupts DNA binding by the gyrase. YacG has been shown to bind zinc and contains the structural motifs typical of zinc-binding proteins. The conserved four cysteine motif in this protein (-C-X(2)-C-X(15)-C-X(3)-C-) is not found in other zinc-binding proteins with known structures. 49 -335519 pfam03885 DUF327 Protein of unknown function (DUF327). The proteins in this family are around 140-170 residues in length. The proteins contain many conserved residues. with the most conserved motifs found in the central and C-terminal region. The function of these proteins is unknown. 140 -309130 pfam03886 ABC_trans_aux ABC-type transport auxiliary lipoprotein component. ABC_trans_aux is a family of bacterial proteins that act as auxiliarires to the ABC-transporter in the gamma-hexachlorocyclohexane uptake permease system in Sphingobium japonicum. Gamma-hexachlorocyclohexane, or Lindane, can be used as the sole source of carbon in S.japonicum in aerobic conditions. Lindane is an insecticide. 155 -309131 pfam03887 YfbU YfbU domain. This presumed domain is about 160 residues long. It is found in archaebacteria and eubacteria. In Corynebacterium glutamicum Ycg4L it is associated with a helix-turn-helix domain. This suggests that this may be a ligand binding domain. 163 -335520 pfam03888 MucB_RseB MucB/RseB N-terminal domain. Members of this family are regulators of the anti-sigma E protein RseD. 178 -309133 pfam03889 DUF331 Domain of unknown function. Members of this family are uncharacterized proteins from a number of bacterial species. The proteins range in size from 50-70 residues. 38 -335521 pfam03891 DUF333 Domain of unknown function (DUF333). This small domain of about 70 residues is found in a number of bacterial proteins. It is found at the N-terminus the of AF_1947 protein. The proteins containing this domain are uncharacterized. 46 -309135 pfam03892 NapB Nitrate reductase cytochrome c-type subunit (NapB). The napB gene encodes a dihaem cytochrome c, the small subunit of a heterodimeric periplasmic nitrate reductase. 122 -309136 pfam03893 Lipase3_N Lipase 3 N-terminal region. N terminal region to pfam01764, found on a subset of Lipase 3 containing proteins. 76 -335522 pfam03894 XFP D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase. Bacterial enzyme splits fructose-6-P and/or xylulose-5-P with the aid of inorganic phosphate into either acetyl-P and erythrose-4-P and/or acetyl-P and glyeraldehyde-3-P EC:4.1.2.9, EC:4.1.2.22. This family is distantly related to transketolases e.g. pfam02779. 176 -335523 pfam03895 YadA_anchor YadA-like membrane anchor domain. This region represents the C-terminal 120 amino acids of a family of surface-exposed bacterial proteins. YadA, an adhesin from Yersinia, was the first member of this family to be characterized. UspA2 from Moraxella was second. The Eib immunoglobulin-binding proteins from E. coli were third, followed by the DsrA proteins of Haemophilus ducreyi and others. These proteins are homologous at their C-terminal and have predicted signal sequences, but they diverge elsewhere. The C-terminal 9 amino acids, consisting of alternating hydrophobic amino acids ending in F or W, comprise a targeting motif for the outer membrane of the Gram negative cell envelope. This region is important for oligomerization. 60 -309139 pfam03896 TRAP_alpha Translocon-associated protein (TRAP), alpha subunit. The alpha-subunit of the TRAP complex (TRAP alpha) is a single-spanning membrane protein of the endoplasmic reticulum (ER) which is found in proximity of nascent polypeptide chains translocating across the membrane. 269 -146498 pfam03898 TNV_CP Satellite tobacco necrosis virus coat protein. 198 -335524 pfam03899 ATP-synt_I ATP synthase I chain. The atp operon of alkaliphilic Bacillus pseudofirmus OF4, as in most prokaryotes, contains the eight structural genes for the F-ATPase (ATP synthase), which are preceded by an atpI gene that encodes a membrane protein with 2 TMSs. A tenth gene, atpZ, has been found in this operon, which is upstream of and overlapping with atpI. AtpI is a Ca2+/Mg2+ transporter. 99 -281841 pfam03900 Porphobil_deamC Porphobilinogen deaminase, C-terminal domain. 72 -281842 pfam03901 Glyco_transf_22 Alg9-like mannosyltransferase family. Members of this family are mannosyltransferase enzymes. At least some members are localized in endoplasmic reticulum and involved in GPI anchor biosynthesis. 414 -281843 pfam03902 Gal4_dimer Gal4-like dimerization domain. 44 -281844 pfam03903 Phage_T4_gp36 Phage T4 tail fibre. 221 -112704 pfam03904 DUF334 Domain of unknown function (DUF334). Staphylococcus aureus plasmid proteins with no characterized function. 229 -146503 pfam03905 Corona_NS4 Coronavirus non-structural protein NS4. 45 -281845 pfam03906 Phage_T7_tail Phage T7 tail fibre protein. The bacteriophage T7 tail complex consists of a conical tail-tube surrounded by six kinked tail-fibers, which are oligomers of the viral protein gp17. 157 -309141 pfam03907 Spo7 Spo7-like protein. S. cerevisiae Spo7 has an unknown function, but has a role in formation of a spherical nucleus and meiotic division. 201 -112708 pfam03908 Sec20 Sec20. Sec20 is a membrane glycoprotein associated with secretory pathway. 92 -335525 pfam03909 BSD BSD domain. This domain contains a distinctive -FW- motif. It is found in a family of eukaryotic transcription factors as well as a set of proteins of unknown function. 58 -309143 pfam03910 Adeno_PV Adenovirus minor core protein PV. 355 -335526 pfam03911 Sec61_beta Sec61beta family. This family consists of homologs of Sec61beta - a component of the Sec61/SecYEG protein secretory system. The domain is found in eukaryotes and archaea and is possibly homologous to the bacterial SecG. It consists of a single putative transmembrane helix, preceded by a short stretch containing various charged residues; this arrangement may help determine orientation in the cell membrane. 41 -309145 pfam03912 Psb28 Psb28 protein. Psb28 is a 13 kDa soluble protein that is directly assembled in dimeric PSII supercomplexes. The negatively charged N-terminal region is essential for this process. This protein was formerly known as PsbW, but PsbW is now reserved for pfam07123. 106 -112713 pfam03913 Amb_V_allergen Amb V Allergen. 44 -335527 pfam03914 CBF CBF/Mak21 family. 157 -335528 pfam03915 AIP3 Actin interacting protein 3. 407 -309148 pfam03916 NrfD Polysulphide reductase, NrfD. NrfD is an integral transmembrane protein with loops in both the periplasm and the cytoplasm. NrfD is thought to participate in the transfer of electrons, from the quinone pool into the terminal components of the Nrf pathway. 313 -309149 pfam03917 GSH_synth_ATP Eukaryotic glutathione synthase, ATP binding domain. 458 -335529 pfam03918 CcmH Cytochrome C biogenesis protein. Members of this family include NrfF, CcmH, CycL, Ccl2. 140 -335530 pfam03919 mRNA_cap_C mRNA capping enzyme, C-terminal domain. 104 -309152 pfam03920 TLE_N Groucho/TLE N-terminal Q-rich domain. The N-terminal domain of the Grouch/TLE co-repressor proteins are involved in oligomerization. 130 -252248 pfam03921 ICAM_N Intercellular adhesion molecule (ICAM), N-terminal domain. ICAMs normally functions to promote intercellular adhesion and signalling. However, The N-terminal domain of the receptor binds to the rhinovirus 'canyon' surrounding the icosahedral 5-fold axes, during the viral attachment process. This family is a family that is part of the Ig superfamily and is therefore related to the family ig (pfam00047). 86 -335531 pfam03922 OmpW OmpW family. This family includes outer membrane protein W (OmpW) proteins from a variety of bacterial species. This protein may form the receptor for S4 colicins in E. coli. 189 -335532 pfam03923 Lipoprotein_16 Uncharacterized lipoprotein. The function of this presumed lipoprotein is unknown. The family includes E. coli YajG. 147 -335533 pfam03924 CHASE CHASE domain. This domain is found in the extracellular portion of receptor-like proteins - such as serine/threonine kinases and adenylyl cyclases. Predicted to be a ligand binding domain. 182 -335534 pfam03925 SeqA SeqA protein C-terminal domain. The binding of SeqA protein to hemimethylated GATC sequences is important in the negative modulation of chromosomal initiation at oriC, and in the formation of SeqA foci necessary for Escherichia coli chromosome segregation. SeqA tetramers are able to aggregate or multimerize in a reversible, concentration-dependent manner. Apart from its function in the control of DNA replication, SeqA may also be a specific transcription factor. 110 -335535 pfam03927 NapD NapD protein. Uncharacterized protein involved in formation of periplasmic nitrate reductase. 71 -335536 pfam03928 Haem_degrading Haem-degrading. Haem_bdg is a bacterial protein that is up-regulated in response to haemin- and peroxide-based oxidative stress. It interacts with the SenS/SenR two-component signal transduction system. Iron binds to surface-exposed lysine residues of an octomeric assembly of the protein. 125 -335537 pfam03929 PepSY_TM PepSY-associated TM region. The PepSY_TM family is so named because it is an alignment of up to five transmembranes helices found in bacterial species some of which carry a nested PepSY domain, pfam03413. 356 -281864 pfam03930 Flp_N Recombinase Flp protein N-terminus. 82 -281865 pfam03931 Skp1_POZ Skp1 family, tetramerisation domain. 60 -281866 pfam03932 CutC CutC family. Copper transport in Escherichia coli is mediated by the products of at least six genes, cutA, cutB, cutC, cutD, cutE, and cutF. A mutation in one or more of these genes results in an increased copper sensitivity. Members of this family are between 200 and 300 amino acids in length are found in both eukaryotes and bacteria. 201 -335538 pfam03934 T2SSK Type II secretion system (T2SS), protein K. Members of this family are involved in the Type II protein secretion system. The T2SK family includes proteins such as ExeK, PulK, OutX and XcpX. 278 -309161 pfam03935 SKN1 Beta-glucan synthesis-associated protein (SKN1). This family consists of the beta-glucan synthesis-associated proteins KRE6 and SKN1. Beta1,6-Glucan is a key component of the yeast cell wall, interconnecting cell wall proteins, beta1,3-glucan, and chitin. It has been postulated that the synthesis of beta1,6-glucan begins in the endoplasmic reticulum with the formation of protein-bound primer structures and that these primer structures are extended in the Golgi complex by two putative glucosyltransferases that are functionally redundant, Kre6 and Skn1. This is followed by maturation steps at the cell surface and by coupling to other cell wall macromolecules. 505 -335539 pfam03936 Terpene_synth_C Terpene synthase family, metal binding domain. It has been suggested that this gene family be designated tps (for terpene synthase). It has been split into six subgroups on the basis of phylogeny, called tpsa-tpsf. tpsa includes vetispiridiene synthase, 5-epi- aristolochene synthase, and (+)-delta-cadinene synthase. tpsb includes (-)-limonene synthase. tpsc includes kaurene synthase A. tpsd includes taxadiene synthase, pinene synthase, and myrcene synthase. tpse includes kaurene synthase B. tpsf includes linalool synthase. 266 -335540 pfam03937 Sdh5 Flavinator of succinate dehydrogenase. This family includes the highly conserved mitochondrial and bacterial proteins Sdh5/SDHAF2/SdhE. Both yeast and human Sdh5/SDHAF2 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Mutational inactivation of Sdh5 confers tumor susceptibility in humans. Bacterial homologs of Sdh5, termed SdhE, are functionally conserved being required for the flavinylation of SdhA and succinate dehydrogenase activity. Like Sdh5, SdhE interacts with SdhA. Furthermore, SdhE was characterized as a FAD co-factor chaperone that directly binds FAD to facilitate the flavinylation of SdhA. Phylogenetic analysis demonstrates that SdhE/Sdh5 proteins evolved only once in an ancestral alpha-proteobacteria prior to the evolution of the mitochondria and now remain in subsequent descendants including eukaryotic mitochondria and the alpha, beta and gamma proteobacteria. This family was previously annotated in Pfam as being a divergent TPR repeat but structural evidence has indicated this is not true. The E. coli protein, YgfY also acts as the antitoxin to the membrane-bound toxin family Cpta, pfam13166, whose E. coli member YgfX, expressed from the same operon as YgfY. 73 -335541 pfam03938 OmpH Outer membrane protein (OmpH-like). This family includes outer membrane proteins such as OmpH among others. Skp (OmpH) has been characterized as a molecular chaperone that interacts with unfolded proteins as they emerge in the periplasm from the Sec translocation machinery. 154 -335542 pfam03939 Ribosomal_L23eN Ribosomal protein L23, N-terminal domain. The N-terminal domain appears to be specific to the eukaryotic ribosomal proteins L25, L23, and L23a. 48 -281873 pfam03940 MSSP Male specific sperm protein. This family of drosophila proteins are typified by the repetitive motif C-G-P. 51 -335543 pfam03941 INCENP_ARK-bind Inner centromere protein, ARK binding region. This region of the inner centromere protein has been found to be necessary and sufficient for binding to aurora-related kinase. This interaction has been implicated in the coordination of chromosome segregation with cell division in yeast. 53 -335544 pfam03942 DTW DTW domain. This presumed domain is found in bacterial and eukaryotic proteins. Its function is unknown. The domain contains multiple conserved motifs including a DTXW motif that this domain has been named after. 194 -335545 pfam03943 TAP_C TAP C-terminal domain. The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for nuclear export of mRNA. Tap has a modular structure, and its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling. The structure of the C-terminal domain is composed of four helices. The structure is related to the UBA domain. 49 -335546 pfam03944 Endotoxin_C delta endotoxin. This family contains insecticidal toxins produced by Bacillus species of bacteria. During spore formation the bacteria produce crystals of this protein. When an insect ingests these proteins they are activated by proteolytic cleavage. The N-terminus is cleaved in all of the proteins and a C terminal extension is cleaved in some members. Once activated the endotoxin binds to the gut epithelium and causes cell lysis leading to death. This activated region of the delta endotoxin is composed of three structural domains. The N-terminal helical domain is involved in membrane insertion and pore formation. The second and third domains are involved in receptor binding. 142 -281878 pfam03945 Endotoxin_N delta endotoxin, N-terminal domain. This family contains insecticidal toxins produced by Bacillus species of bacteria. During spore formation the bacteria produce crystals of this protein. When an insect ingests these proteins they are activated by proteolytic cleavage. The N-terminus is cleaved in all of the proteins and a C terminal extension is cleaved in some members. Once activated the endotoxin binds to the gut epithelium and causes cell lysis leading to death. This activated region of the delta endotoxin is composed of three structural domains. The N-terminal helical domain is involved in membrane insertion and pore formation. The second and third domains are involved in receptor binding. 218 -335547 pfam03946 Ribosomal_L11_N Ribosomal protein L11, N-terminal domain. The N-terminal domain of Ribosomal protein L11 adopts an alpha/beta fold and is followed by the RNA binding C-terminal domain. 57 -335548 pfam03947 Ribosomal_L2_C Ribosomal Proteins L2, C-terminal domain. 126 -335549 pfam03948 Ribosomal_L9_C Ribosomal protein L9, C-terminal domain. 85 -309173 pfam03949 Malic_M Malic enzyme, NAD binding domain. 256 -335550 pfam03950 tRNA-synt_1c_C tRNA synthetases class I (E and Q), anti-codon binding domain. Other tRNA synthetase sub-families are too dissimilar to be included. This family includes only glutamyl and glutaminyl tRNA synthetases. In some organisms, a single glutamyl-tRNA synthetase aminoacylates both tRNA(Glu) and tRNA(Gln). 174 -335551 pfam03951 Gln-synt_N Glutamine synthetase, beta-Grasp domain. 82 -335552 pfam03952 Enolase_N Enolase, N-terminal domain. 131 -309177 pfam03953 Tubulin_C Tubulin C-terminal domain. This family includes the tubulin alpha, beta and gamma chains. Members of this family are involved in polymer formation. Tubulins are GTPases. FtsZ can polymerize into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. Tubulin is the major component of microtubules. (The FtsZ GTPases have been split into their won family). 125 -309178 pfam03954 Lectin_N Hepatic lectin, N-terminal domain. 129 -281888 pfam03955 Adeno_PIX Adenovirus hexon-associated protein (IX). Hexon (PF01065) is the major coat protein from adenovirus type 2. Hexon forms a homo-trimer. The 240 copies of the hexon trimer are organized so that 12 lie on each of the 20 facets. The central 9 hexons in a facet are cemented together by 12 copies of polypeptide IX. 110 -335553 pfam03956 Lys_export Lysine exporter LysO. Members of this family contain a conserved core of four predicted transmembrane segments. Some members have an additional pair of N-terminal transmembrane helices. This family includes lysine exporter LysO (YbjE) from E. coli. 190 -309180 pfam03957 Jun Jun-like transcription factor. 223 -335554 pfam03958 Secretin_N Bacterial type II/III secretion system short domain. This is a short, often repeated, domain found in bacterial type II/III secretory system proteins. All previous NolW-like domains fall into this family. 63 -309182 pfam03959 FSH1 Serine hydrolase (FSH1). This is a family of serine hydrolases. 211 -309183 pfam03960 ArsC ArsC family. This family is related to glutaredoxins pfam00462. 109 -335555 pfam03961 FapA Flagellar Assembly Protein A. Members of this family include FapA (flagellar assembly protein A), found in Vibrio vulnificus. The synthesis of flagella allows bacteria to respond to chemotaxis by facilitating motility. Studies examining the role of FapA show that the loss or delocalization of FapA results in a complete failure of the flagellar biosynthesis and motility in response to glucose mediated chemotaxis. The polar localization of FapA is required for flagellar synthesis, and dephosphorylated EIIAGlc (Glucose-permease IIA component) inhibited the polar localization of FapA through direct interaction. 451 -335556 pfam03962 Mnd1 Mnd1 family. This family of proteins includes MND1 from S. cerevisiae. The mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. 187 -309186 pfam03963 FlgD Flagellar hook capping protein - N-terminal region. FlgD is known to be absolutely required for hook assembly, yet it has not been detected in the mature flagellum. It appears to act as a hook-capping protein to enable assembly of hook protein subunits. FlgD regulates the assembly of the hook cap structure to prevent leakage of hook monomers into the medium and hook monomer polymerization and also plays a role in determination of the correct hook length, with the help of the FliK protein. This family represents the N-terminal conserved region of FlgD. A recent crystal structure showed that this region was likely to be flexible and was cleaved off during crystallisation. 75 -281897 pfam03964 Chorion_2 Chorion family 2. The chorion genes of Drosophila are amplified in response to developmental signals in the follicle cells of the ovary. 103 -335557 pfam03965 Penicillinase_R Penicillinase repressor. The penicillinase repressor negatively regulates expression of the penicillinase gene. The N-terminal region of this protein is involved in operator recognition, while the C-terminal is responsible for dimerization of the protein. 115 -335558 pfam03966 Trm112p Trm112p-like protein. The function of this family is uncertain. The bacterial members are about 60-70 amino acids in length and the eukaryotic examples are about 120 amino acids in length. The C-terminus contains the strongest conservation. Trm112p is required for tRNA methylation in S. cerevisiae and is found in complexes with 2 tRNA methylases (TRM9 and TRM11) also with putative methyltransferase YDR140W. The zinc-finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast. The crystal structure of Ynr046w has been determined to 1.7 A resolution. It comprises a zinc-binding domain built from both the N- and C-terminal sequences and an inserted domain, absent from bacterial and archaeal orthologs of the protein, composed of three alpha-helices. 48 -309189 pfam03967 PRCH Photosynthetic reaction centre, H-chain N-terminal region. The family corresponds the N-terminal cytoplasmic domain. 132 -281901 pfam03968 OstA OstA-like protein. This family of proteins are mostly uncharacterized. However the family does include E. coli OstA that has been characterized as an organic solvent tolerance protein. 113 -281902 pfam03969 AFG1_ATPase AFG1-like ATPase. This P-loop motif-containing family of proteins includes AFG1, LACE1 and ZapE. ATPase family gene 1 (AFG1) is a 377 amino acid yeast protein with an ATPase motif typical of the family. LACE1, the mammalian homolog of AFG1, is a mitochondrial integral membrane protein that is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. It has also been demonstrated that LACE1 mediates degradation of nuclear-encoded complex IV subunits COX4 (cytochrome c oxidase 4), COX5A and COX6A, and is required for normal activity of complexes III and IV of the respiratory chain. ZapE is a cell division protein found in Gram-negative bacteria. The bacterial cell division process relies on the assembly, positioning, and constriction of FtsZ ring (the so-called Z-ring), a ring-like network that marks the future site of the septum of bacterial cell division. ZapE is a Z-ring associated protein required for cell division under low-oxygen conditions. It is an ATPase that appears at the constricting Z-ring late in cell division. It reduces the stability of FtsZ polymers in the presence of ATP in vitro. 361 -281903 pfam03970 Herpes_UL37_1 Herpesvirus UL37 tegument protein. UL37 interacts with UL36, which is thought to be an important early step in tegumentation during virion morphogenesis in the cytoplasm. 267 -335559 pfam03971 IDH Monomeric isocitrate dehydrogenase. NADP(+)-dependent isocitrate dehydrogenase (ICD) is an important enzyme of the intermediary metabolism, as it controls the carbon flux within the citric acid cycle and supplies the cell with 2-oxoglutarate EC:1.1.1.42 and NADPH for biosynthetic purposes. 734 -335560 pfam03972 MmgE_PrpD MmgE/PrpD family. This family includes 2-methylcitrate dehydratase EC:4.2.1.79 (PrpD) that is required for propionate catabolism. It catalyzes the third step of the 2-methylcitric acid cycle. 429 -252288 pfam03973 Triabin Triabin. Triabin is a serine-protease inhibitor with a calycin fold. 147 -335561 pfam03974 Ecotin Ecotin. Ecotin is a broad range serine protease inhibitor, which forms homodimers. The C-terminal region contains the dimerization motif. Interestingly, the binding sites show a fluidity of protein contacts binding sites show a fluidity of protein contacts derived from ecotin's innate flexibility in fitting itself to proteases while. 123 -335562 pfam03975 CheD CheD chemotactic sensory transduction. This chemotaxis protein stimulates methylation of MCP proteins. The chemotaxis machinery of Bacillus subtilis is similar to that of the well characterized system of Escherichia coli. However, B. subtilis contains several chemotaxis genes not found in the E. coli genome, such as CheC and CheD, indicating that the B. subtilis chemotactic system is more complex. CheD plays an important role in chemotactic sensory transduction for many organisms. CheD deamidates other B. subtilis chemoreceptors including McpB and McpC. Deamidation by CheD is required for B. subtilis chemoreceptors to effectively transduce signals to the CheA kinase. The structure of a complex between the signal-terminating phosphatase, CheC, and the receptor-modifying deamidase, CheD, reveals how CheC mimics receptor substrates to inhibit CheD and how CheD stimulates CheC phosphatase activity. CheD resembles other cysteine deamidases from bacterial pathogens that inactivate host Rho-GTPases. Phospho-CheY, the intracellular signal and CheC target, stabilizes the CheC-CheD complex and reduces availability of CheD. A model is proposed whereby CheC acts as a CheY-P-induced regulator of CheD; CheY-P would cause CheC to sequester CheD from the chemoreceptors, inducing adaptation of the chemotaxis system. 107 -112775 pfam03976 PPK2 Polyphosphate kinase 2 (PPK2). Inorganic polyphosphate (polyP) plays a role in metabolism and regulation and has been proposed to serve as a energy source in a pre-ATP world. In prokaryotes, the synthesis and utilisation of polyP are catalyzed by PPK1, PPK2 and polyphosphatases. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. The structure of PPK2 from Pseudomonas aeruginosa has revealed a a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases. 229 -335563 pfam03977 OAD_beta Na+-transporting oxaloacetate decarboxylase beta subunit. Members of this family are integral membrane proteins. The decarboxylation reactions they catalyze are coupled to the vectorial transport of Na+ across the cytoplasmic membrane, thereby creating a sodium ion motive force that is used for ATP synthesis. 347 -309195 pfam03978 Borrelia_REV Borrelia burgdorferi REV protein. This family consists of several REV proteins from Borrelia burgdorferi (Lyme disease spirochete). The function of REV is unknown although it known that gene is induced during the ingesting of host blood suggesting a role in the metabolic activation of borreliae to adapt to physiological stimuli. 157 -335564 pfam03979 Sigma70_r1_1 Sigma-70 factor, region 1.1. Region 1.1 modulates DNA binding by region 2 and 4 when sigma is unbound by the core RNA polymerase. Region 1.1 is also involved in promoter binding 65 -335565 pfam03980 Nnf1 Nnf1. NNF1 is an essential yeast gene that is necessary for chromosome segregation. It is associated with the spindle poles and forms part of a kinetochore subcomplex called MIND. 103 -309198 pfam03981 Ubiq_cyt_C_chap Ubiquinol-cytochrome C chaperone. 140 -112781 pfam03982 DAGAT Diacylglycerol acyltransferase. The terminal step of triacylglycerol (TAG) formation is catalyzed by the enzyme diacylglycerol acyltransferase (DAGAT). 297 -309199 pfam03983 SHD1 SLA1 homology domain 1, SHD1. NPFXD peptides specifically interact with the SHD1 domain. NPFXD is a clathrin-facilitated endocytic targeting signal. NPFXD was originally discovered in the cytoplasmic domain of the furin-like protease Kex2p. Sla1 is thought to function as an endocytic adaptor. 67 -309200 pfam03984 DUF346 Repeat of unknown function (DUF346). This repeat was found as seven tandem copies in one protein. It is predicted to be composed of beta-strands. Thus it is likely that it forms a beta-propeller structure. It is found in association with BNR repeats, which also form a beta-propeller. 36 -309201 pfam03985 Paf1 Paf1. Members of this family are components of the RNA polymerase II associated Paf1 complex. The Paf1 complex functions during the elongation phase of transcription in conjunction with Spt4-Spt5 and Spt16-Pob3i. 421 -335566 pfam03986 Autophagy_N Autophagocytosis associated protein (Atg3), N-terminal domain. Autophagocytosis is a starvation-induced process responsible for transport of cytoplasmic proteins to the lysosome/vacuole. Atg3 is a ubiquitin like modifier that is topologically similar to the canonical E2 enzyme. It catalyzes the conjugation of Atg8 and phosphatidylethanolamine. 125 -335567 pfam03987 Autophagy_act_C Autophagocytosis associated protein, active-site domain. Autophagocytosis is a starvation-induced process responsible for transport of cytoplasmic proteins to the vacuole. The cysteine residue within the HPC motif is the putative active-site residue for recognition of the Apg5 subunit of the autophagosome complex. 61 -309204 pfam03988 DUF347 Repeat of Unknown Function (DUF347). This repeat is found as four tandem repeats in a family of bacterial membrane proteins. Each repeat contains two transmembrane regions and a conserved tryptophan. 50 -309205 pfam03989 DNA_gyraseA_C DNA gyrase C-terminal domain, beta-propeller. This repeat is found as 6 tandem copies at the C-termini of GyrA and ParC DNA gyrases. It is predicted to form 4 beta strands and to probably form a beta-propeller structure. This region has been shown to bind DNA non-specifically and may stabilize the DNA-topoisomerase complex. 48 -309206 pfam03990 DUF348 Domain of unknown function (DUF348). This domain normally occurs as tandem repeats; however it is found as a single copy in the S. cerevisiae DNA-binding nuclear protein YCR593. This protein is involved in sporulation part of the SET3C complex, which is required to repress early/middle sporulation genes during meiosis. The bacterial proteins are likely to be involved in a cell wall function as they are found in conjunction with the pfam07501 domain, which is involved in various cell surface processes. 41 -112790 pfam03991 Prion_octapep Copper binding octapeptide repeat. This repeat is found at the amino terminus of prion proteins. It has been shown to bind to copper. 8 -309207 pfam03992 ABM Antibiotic biosynthesis monooxygenase. This domain is found in monooxygenases involved in the biosynthesis of several antibiotics by Streptomyces species. It's occurrence as a repeat in Streptomyces coelicolor SCO1909 is suggestive that the other proteins function as multimers. There is also a conserved histidine which is likely to be an active site residue. 77 -335568 pfam03993 DUF349 Domain of Unknown Function (DUF349). This domain is found singly or as up to five tandem repeats in a small set of bacterial proteins. There are two or three alpha-helices, and possibly a beta-strand. 73 -335569 pfam03994 DUF350 Domain of Unknown Function (DUF350). This domain occurs in a small set of of bacterial proteins. It has two transmembrane regions, and often occurs as tandem repeats. The are no conserved catalytic residues. 54 -309210 pfam03995 Inhibitor_I36 Peptidase inhibitor family I36. This domain is currently only found in a small set of S. coelicolor secreted proteins. There are four conserved cysteines that probably form two disulphide bonds. Proteins 2SCK31.15C and SCO3675 also have probable beta-propellers at their C-termini. This family includes Streptomyces nigrescens SmpI, a known peptidase inhibitor of known structure. This protein has a crystallin like fold pfam00030 and is distantly related by sequence. It is not known whether other members of this family are peptidase inhibitors. 71 -281925 pfam03996 Hema_esterase Hemagglutinin esterase. 384 -309211 pfam03997 VPS28 VPS28 protein. 186 -335570 pfam03998 Utp11 Utp11 protein. This protein is found to be part of a large ribonucleoprotein complex containing the U3 snoRNA. Depletion of the Utp proteins impedes production of the 18S rRNA, indicating that they are part of the active pre-rRNA processing complex. This large RNP complex has been termed the small subunit (SSU) processome. 238 -309213 pfam03999 MAP65_ASE1 Microtubule associated protein (MAP65/ASE1 family). 582 -335571 pfam04000 Sas10_Utp3 Sas10/Utp3/C1D family. This family contains Utp3 and LCP5 which are components of the U3 ribonucleoprotein complex. It also includes the human C1D protein and Saccharomyces cerevisiae YHR081W (rrp47), an exosome-associated protein required for the 3' processing of stable RNAs, and Sas10 which has been identified as a regulator of chromatin silencing. This family also includes the human protein Neuroguidin an initiation factor 4E (eIF4E) binding protein. 76 -309215 pfam04001 Vhr1 Transcription factor Vhr1. Vhr1 is a transcription factor which regulates the biotin-dependent expression of transporters VHT1 and BIO5. 91 -335572 pfam04002 RadC RadC-like JAB domain. A family of proteins present widely across the bacteria. This family was named initially with reference to the E. coli radC102 mutation which suggested that RadC was involved in repair of DNA lesions. However the relevant mutation has subsequently been shown to be in recG, where radC is in fact an allele of recG. In addition, a personal communication from Claverys, J-P, et al, indicates a total failure of all attempts to characterize a radiation-related function for RadC in Streptococcus pneumoniae, suggesting that it is not involved in repair of DNA lesions, in recombination during transformation, in gene conversion, nor in mismatch repair. Computational analysis, however, provides a possible function. The RadC-like family belong to the JAB superfamily of metalloproteins. The domain shows fusions to an N-terminal Helix-hairpin-Helix (HhH) domain in most instances. Other domain combinations include fusions to the anti-restriction module ArdC, the DinG/RAD3-like superfamily II helicases and the DNAG-like primase. In some bacteria, closely related DinG/Rad3- like superfamily II helicases are fused to a 3'-5' exonuclease in the same position as the RadC-like JAB domain. These conserved domain associations lead to the hypothesis that the RadC-like JAB domains might function as a nuclease. 112 -335573 pfam04003 Utp12 Dip2/Utp12 Family. This domain is found at the C-terminus of proteins containing WD40 repeats. These proteins are part of the U3 ribonucleoprotein the yeast protein is called Utp12 or DIP2. 106 -335574 pfam04004 Leo1 Leo1-like protein. Members of this family are part of the Paf1/RNA polymerase II complex. The Paf1 complex probably functions during the elongation phase of transcription. The Leo1 subunit of the yeast Paf1-complex binds RNA and contributes to complex recruitment. The subunit acts by co-ordinating co-transcriptional chromain modifications and helping recruitment of mRNA 3prime-end processing factors. 160 -309219 pfam04005 Hus1 Hus1-like protein. Hus1, Rad1, and Rad9 are three evolutionarily conserved proteins required for checkpoint control in fission yeast. These proteins are known to form a stable complex in vivo. Hus1-Rad1-Rad9 complex may form a PCNA-like ring structure, and could function as a sliding clamp during checkpoint control. 288 -309220 pfam04006 Mpp10 Mpp10 protein. This family includes proteins related to Mpp10 (M phase phosphoprotein 10). The U3 small nucleolar ribonucleoprotein (snoRNP) is required for three cleavage events that generate the mature 18S rRNA from the pre-rRNA. In Saccharomyces cerevisiae, depletion of Mpp10, a U3 snoRNP-specific protein, halts 18S rRNA production and impairs cleavage at the three U3 snoRNP-dependent sites. 572 -281936 pfam04007 DUF354 Protein of unknown function (DUF354). Members of this family are around 350 amino acids in length. They are found in archaebacteria and have no known function. 349 -335575 pfam04008 Adenosine_kin Adenosine specific kinase. The structure of a member of this family from the hyperthermophilic archaeon Pyrobaculum aerophilum contains a modified histidine residue which is interpreted as stable phosphorylation. In vitro binding studies confirmed that adenosine and AMP but not ADP or ATP bind to the protein. 154 -309222 pfam04009 DUF356 Protein of unknown function (DUF356). Members of this family are around 120 amino acids in length and are found in some archaebacteria. The function of this family is unknown. However it contains a conserved motif IHPPAH that may be involved in its function. 106 -309223 pfam04010 DUF357 Protein of unknown function (DUF357). Members of this family are short (less than 100 amino acid) proteins found in archaebacteria. The function of these proteins is unknown. 73 -335576 pfam04011 LemA LemA family. The members of this family are related to the LemA protein. LemA contains an amino terminal predicted transmembrane helix. It has been predicted that the small amino terminus is extracellular. The exact molecular function of this protein is uncertain. 178 -281941 pfam04012 PspA_IM30 PspA/IM30 family. This family includes PspA a protein that suppresses sigma54-dependent transcription. The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homolog in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. It has been shown that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. 218 -281942 pfam04013 Methyltrn_RNA_2 Putative SAM-dependent RNA methyltransferase. This family is likely to be an S-adenosyl-L-methionine (SAM)-dependent RNA methyltransferase. It is responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. 198 -309225 pfam04014 MazE_antitoxin Antidote-toxin recognition MazE, bacterial antitoxin. AbrB-like is a family of small proteins that operate in conjunction with a cognate toxin molecule. The commonly attributed role of toxin-antitoxin systems is to maintain low-copy number plasmids from one generation to the next. Such gene-pairs are also found on chromosomes and to be associated with a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. This family includes proteins from a number of different pairings, eg MazE, AbrB, VapB, PhoU, PemI-like and SpoVT. MazE is the antidote to the toxin MazF of E. coli. MazE-MazF in E. coli is a regulated prokaryotic chromosomal addiction module. MazE antidote is degraded by the ClpPA protease of the bacterial proteasome. MazE-MazF is thought to play a role in programmed cell death when cells suffer nutrient deprivation, and MazE-MazF modules have also been implicated in the bacteriostatic effects of other addiction modules. 44 -335577 pfam04015 DUF362 Domain of unknown function (DUF362). Domain that is sometimes present in iron-sulphur proteins. 201 -335578 pfam04016 DUF364 Putative heavy-metal chelation. This domain of unknown function has a PLP-dependent transferase-like fold. Its genomic context suggests that it may have a role in anaerobic vitamin B12 biosynthesis. This domain is often found at the C-terminus of proteins containing DUF4213, pfam13938. The structure of UnioProtKB:B8FUJ5, Structure 3l5o, suggests that the protein has an enolase N-terminal-like fold and this Rossmann-like C-terminal domain. Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The protein may be playing a role in heavy-metal chelation. 146 -309228 pfam04017 DUF366 Domain of unknown function (DUF366). Archaeal domain of unknown function. 182 -335579 pfam04018 DUF368 Domain of unknown function (DUF368). Predicted transmembrane domain of unknown function. Family members have between 6 and 9 predicted transmembrane segments. 235 -309230 pfam04019 DUF359 Protein of unknown function (DUF359). This family of archaebacterial proteins are about 170 amino acids in length. They have no known function. The most conserved portion of the protein contains the sequence GEEDL that may be important for its function. 122 -335580 pfam04020 Phage_holin_4_2 Mycobacterial 4 TMS phage holin, superfamily IV. These proteins are predicted transmembrane proteins with probably four transmembrane spans. The 1.E.40 is represented by the mycobacterial 4 phage holin, but it also contains many cyanobacterial. proteobacterial and firmicute proteins. Holins are encoded within the genomes of Gram-positive and Gram-negative bacteria as well as in those of the bacteriophage of these organisms. The primary function of holins appears to be transport of murein hydrolases across the cytoplasmic membrane to the cell wall where these enzymes hydrolyze the cell wall polymer as a prelude to cell lysis. When chromosomally encoded the enzymes are therefore autolysins. Holins may also facilitate leakage of electrolytes and nutrients from the cell cytoplasm, thereby promoting cell death. Some may catalyze export of nucleases. 105 -309232 pfam04021 Class_IIIsignal Class III signal peptide. This family of archaeal proteins contains. an amino terminal motif QXSXEXXXL that has been suggested to be part of a class III signal sequence. With the Q being the +1 residue of the signal peptidase cleavage site. Two members of this family are cleaved by a type IV pilin-like signal peptidase. 27 -281951 pfam04022 Staphylcoagulse Staphylocoagulase repeat. 27 -335581 pfam04023 FeoA FeoA domain. This family includes FeoA a small protein, probably involved in Fe2+ transport. This presumed short domain is also found at the C-terminus of a variety of metal dependent transcriptional regulators. This suggests that this domain may be metal-binding. In most cases this is likely to be either iron or manganese. 74 -335582 pfam04024 PspC PspC domain. This family includes Phage shock protein C (PspC) that is thought to be a transcriptional regulator. The presumed domain is 60 amino acid residues in length. 57 -335583 pfam04025 DUF370 Domain of unknown function (DUF370). Bacterial domain of unknown function. 73 -309236 pfam04026 SpoVG SpoVG. Stage V sporulation protein G. Essential for sporulation and specific to stage V sporulation in Bacillus megaterium and subtilis. In B. subtilis, expression decreases after 30-60 minutes of cold shock. 81 -309237 pfam04027 DUF371 Domain of unknown function (DUF371). Archaeal domain of unknown function. 133 -335584 pfam04028 DUF374 Domain of unknown function (DUF374). Bacterial domain of unknown function. 69 -335585 pfam04029 2-ph_phosp 2-phosphosulpholactate phosphatase. Thought to catalyze 2-phosphosulpholactate = sulpholactate + phosphate. Probable magnesium cofactor. Involved in the second step of coenzyme M biosynthesis. Inhibited by vanadate in Methanococcus jannaschii. Also known as the ComB family. 220 -281959 pfam04030 ALO D-arabinono-1,4-lactone oxidase. This domain is specific to D-arabinono-1,4-lactone oxidase EC:1.1.3.-, which is involved in the final step of the D-erythroascorbic acid biosynthesis pathway. 259 -309240 pfam04031 Las1 Las1-like. Las1 is an essential nuclear protein involved in cell morphogenesis and cell surface growth. 149 -335586 pfam04032 Rpr2 RNAse P Rpr2/Rpp21/SNM1 subunit domain. This family contains a ribonuclease P subunit of humans and yeast. Other members of the family include the probable archaeal homologs. This family includes SNM1. It is a subunit of RNase MRP (mitochondrial RNA processing), a ribonucleoprotein endoribonuclease that has roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 is an RNA binding protein that binds the MRP RNA specifically. This subunit possibly binds the precursor tRNA. 82 -309242 pfam04033 DUF365 Domain of unknown function (DUF365). Archaeal domain of unknown function. 96 -335587 pfam04034 Ribo_biogen_C Ribosome biogenesis protein, C-terminal. This family represents the C-terminal domain of some putative ribosome biogenesis proteins in archaea. It has also been identified in the eukaryotic protein Tsr3, which is involved in ribosomal RNA biogenesis. 125 -309244 pfam04037 DUF382 Domain of unknown function (DUF382). This domain is specific to the human splicing factor 3b subunit 2 and it's orthologues. Splicing factor 3b subunit 2 or SAP145 is a suppressor of U2 snRNA mutations. Pre-mRNA splicing is catalyzed by a large ribonucleoprotein complex called the spliceosome. Spliceosomes are multi-component enzymes that catalyze pre-mRNA splicing and form step-wise by the ordered interaction of UsnRNPs and non-snRNP proteins with short conserved regions of the pre-mRNA at the 5' and 3' splice sites and branch site. 127 -309245 pfam04038 DHNA Dihydroneopterin aldolase. 108 -335588 pfam04039 MnhB Domain related to MnhB subunit of Na+/H+ antiporter. Possible subunit of Na+/H+ antiporter,. Predicted integral membrane protein, usually four transmembrane regions in this domain. Often found in bacterial NADH dehydrogenase subunit. 124 -335589 pfam04041 Glyco_hydro_130 beta-1,4-mannooligosaccharide phosphorylase. This is a family of glycosyl-hydrolases of the CAZy GH130 family. Several have been characterized as mannosylglucose phosphorylase. This enzyme is part of the mannan catalytic pathway and feeds into the glycolysis cycle. Specifically it catalyzes the reversible phosphorolysis of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine. This family was noted to belong to the Beta fructosidase superfamily in. 315 -309247 pfam04042 DNA_pol_E_B DNA polymerase alpha/epsilon subunit B. This family contains a number of DNA polymerase subunits. The B subunit of the DNA polymerase alpha plays an essential role at the initial stage of DNA replication in S. cerevisiae and is phosphorylated in a cell cycle-dependent manner. DNA polymerase epsilon is essential for cell viability and chromosomal DNA replication in budding yeast. In addition, DNA polymerase epsilon may be involved in DNA repair and cell-cycle checkpoint control. The enzyme consists of at least four subunits in mammalian cells as well as in yeast. The largest subunit of DNA polymerase epsilon is responsible for polymerase epsilon is responsible for polymerase activity. In mouse, the DNA polymerase epsilon subunit B is the second largest subunit of the DNA polymerase. A part of the N-terminal was found to be responsible for the interaction with SAP18. Experimental evidence suggests that this subunit may recruit histone deacetylase to the replication fork to modify the chromatin structure. 209 -335590 pfam04043 PMEI Plant invertase/pectin methylesterase inhibitor. This domain inhibits pectin methylesterases (PMEs) and invertases through formation of a non-covalent 1:1 complex. It has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. It has been observed that it is often expressed as a large inactive preprotein. It is also found at the N-termini of PMEs predicted from DNA sequences (personal obs:C Yeats), suggesting that both PMEs and their inhibitor are expressed as a single polyprotein and subsequently processed. It has two disulphide bridges and is mainly alpha-helical. 147 -309249 pfam04045 P34-Arc Arp2/3 complex, 34 kD subunit p34-Arc. Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc. This family represents the p34-Arc subunit. 238 -335591 pfam04046 PSP PSP. Proline rich domain found in numerous spliceosome associated proteins. 45 -281972 pfam04048 Sec8_exocyst Sec8 exocyst complex component specific domain. 142 -309251 pfam04049 ANAPC8 Anaphase promoting complex subunit 8 / Cdc23. The anaphase-promoting complex is composed of eight protein subunits, including BimE (APC1), CDC27 (APC3), CDC16 (APC6), and CDC23 (APC8). 140 -335592 pfam04050 Upf2 Up-frameshift suppressor 2. Transcripts harbouring premature signals for translation termination are recognized and rapidly degraded by eukaryotic cells through a pathway known as nonsense-mediated mRNA decay. In Saccharomyces cerevisiae, three trans-acting factors (Upf1 to Upf3) are required for nonsense-mediated mRNA decay. 133 -335593 pfam04051 TRAPP Transport protein particle (TRAPP) component. TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. TRAPP is a large multimeric protein that contains at least 10 subunits. This family contains many TRAPP family proteins. The Bet3 subunit is one of the better characterized TRAPP proteins and has a dimeric structure with hydrophobic channels. The channel entrances are located on a putative membrane-interacting surface that is distinctively flat, wide and decorated with positively charged residues. Bet3 is proposed to localize TRAPP to the Golgi. 141 -309254 pfam04052 TolB_N TolB amino-terminal domain. TolB is an essential periplasmic component of the tol-dependent translocation system. This function of this amino terminal domain is uncertain. 105 -309255 pfam04053 Coatomer_WDAD Coatomer WD associated region. This region is composed of WD40 repeats. 436 -335594 pfam04054 Not1 CCR4-Not complex component, Not1. The Ccr4-Not complex is a global regulator of transcription that affects genes positively and negatively and is thought to regulate transcription factor TFIID. 362 -335595 pfam04055 Radical_SAM Radical SAM superfamily. Radical SAM proteins catalyze diverse reactions, including unusual methylations, isomerisation, sulphur insertion, ring formation, anaerobic oxidation and protein radical formation. 154 -309257 pfam04056 Ssl1 Ssl1-like. Ssl1-like proteins are 40kDa subunits of the Transcription factor II H complex. 178 -281980 pfam04057 Rep-A_N Replication factor-A protein 1, N-terminal domain. 99 -112856 pfam04059 RRM_2 RNA recognition motif 2. 97 -335596 pfam04060 FeS Putative Fe-S cluster. This family includes a domain with four conserved cysteines that probably form an Fe-S redox cluster. 33 -309259 pfam04061 ORMDL ORMDL family. Evidence form suggests that ORMDLs are involved in protein folding in the ER. Orm proteins have been identified as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. This novel and conserved protein complex, has been termed the SPOTS complex (serine palmitoyltransferase, Orm1/2, Tsc3, and Sac1). 135 -335597 pfam04062 P21-Arc ARP2/3 complex ARPC3 (21 kDa) subunit. The seven component ARP2/3 actin-organising complex is involved in actin assembly and function. 174 -335598 pfam04063 DUF383 Domain of unknown function (DUF383). 186 -335599 pfam04064 DUF384 Domain of unknown function (DUF384). 54 -335600 pfam04065 Not3 Not1 N-terminal domain, CCR4-Not complex component. 229 -335601 pfam04066 MrpF_PhaF Multiple resistance and pH regulation protein F (MrpF / PhaF). Members of the PhaF / MrpF family are predicted to be an integral membrane proteins with three transmembrane regions, involved in regulation of pH. PhaF is part of a potassium efflux system involved in pH regulation. It is also involved in symbiosis in Rhizobium meliloti. MrpF is part of a Na+/H+ antiporter complex, also involved in pH homeostasis. MrpF is thought to be an efflux system for Na+ and cholate. The Mrp system in Bacilli may also have primary energisation capacities. 51 -335602 pfam04068 RLI Possible Fer4-like domain in RNase L inhibitor, RLI. Possible metal-binding domain in endoribonuclease RNase L inhibitor. Found at the N-terminal end of RNase L inhibitor proteins, adjacent to the 4Fe-4S binding domain, fer4, pfam00037. Also often found adjacent to the DUF367 domain pfam04034 in uncharacterized proteins. The RNase L system plays a major role in the anti-viral and anti-proliferative activities of interferons, and could possibly play a more general role in the regulation of RNA stability in mammalian cells. Inhibitory activity requires concentration-dependent association of RLI with RNase L. 35 -335603 pfam04069 OpuAC Substrate binding domain of ABC-type glycine betaine transport system. Part of a high affinity multicomponent binding-protein-dependent transport system involved in bacterial osmoregulation. This domain is often fused to the permease component of the transporter complex. Family members are often integral membrane proteins or predicted to be attached to the membrane by a lipid anchor. Glycine betaine is involved in protection from high osmolarity environments for example in Bacillus subtilis. The family member OpuBC is closely related, and involved in choline transport. Choline is necessary for the biosynthesis of glycine betaine. L-carnitine is important for osmoregulation in Listeria monocytogenes. Family also contains proteins binding l-proline (ProX), histidine (HisX) and taurine (TauA). 258 -335604 pfam04070 DUF378 Domain of unknown function (DUF378). Predicted transmembrane domain of unknown function. The majority of the family have two predicted transmembrane regions. 59 -309268 pfam04071 zf-like Cysteine-rich small domain. Probable metal-binding domain. 80 -335605 pfam04072 LCM Leucine carboxyl methyltransferase. Family of leucine carboxyl methyltransferases EC:2.1.1.-. This family may need divides a the full alignment contains a significantly shorter mouse sequence. 175 -309270 pfam04073 tRNA_edit Aminoacyl-tRNA editing domain. This domain is found either on its own or in association with the tRNA synthetase class II core domain (pfam00587). It is involved in the tRNA editing of mis-charged tRNAs including Cys-tRNA(Pro), Cys-tRNA(Cys), Ala-tRNA(Pro). The structure of this domain shows a novel fold. 123 -335606 pfam04074 DUF386 Domain of unknown function (DUF386). This family consists of conserved hypothetical proteins, typically about 150 amino acids in length, with no known function. 144 -281995 pfam04075 F420H2_quin_red F420H(2)-dependent quinone reductase. This family of proteins is found in the genera Mycobacterium and Streptomyces. Member protein Rv3547 has been characterized as a deazaflavin-dependent nitroreductase. Rv1558 is an F420H(2)-dependent quinone reductase involved in oxidative stress protection. 129 -281996 pfam04076 BOF Bacterial OB fold (BOF) protein. Proteins in this family form an OB-fold. Analysis of the predicted binding site of BOF family proteins implies that they lack nucleic acid-binding properties. They contain an predicted N-terminal signal peptide which indicates that they localize in the periplasm where they may function to bind proteins, small molecules, or other typical OB-fold ligands. As hypothesized for the distantly related OB-fold containing bacterial enterotoxins, the loss of nucleotide-binding function and the rapid evolution of the BOF ligand-binding site may be associated with the presence of BOF proteins in mobile genetic elements and their potential role in bacterial pathogenicity. 103 -335607 pfam04077 DsrH DsrH like protein. DsrH is involved in oxidation of intracellular sulphur in the phototrophic sulphur bacterium Chromatium vinosum D. 87 -335608 pfam04078 Rcd1 Cell differentiation family, Rcd1-like. Two of the members in this family have been characterized as being involved in regulation of Ste11 regulated sex genes. Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic acid-induced cell differentiation. 259 -335609 pfam04079 SMC_ScpB Segregation and condensation complex subunit ScpB. This is a family of prokaryotic proteins that form one of the subunits, ScpB, of the segregation and condensation complex, condensin, that plays a key role in the maintenance of the chromosome. In prokaryotes the complex consists of three proteins, SMC, ScpA (kleisin) and ScpB. ScpB dimerizes and binds to ScpA. As originally predicted, ScpB is structurally a winged-helix at both its N- and C-terminal halves. IN Bacillus subtilis,one Smc dimer is bridged by a single ScpAB to generate asymmetric tripartite rings analogous to eukaryotic SMC complex ring-shaped assemblies. 160 -335610 pfam04080 Per1 Per1-like family. PER1 is required for GPI-phospholipase A2 activity and is involved in lipid remodelling of GPI-anchored proteins. PER1 is part of the CREST superfamily. 251 -309276 pfam04081 DNA_pol_delta_4 DNA polymerase delta, subunit 4. 131 -309277 pfam04082 Fungal_trans Fungal specific transcription factor domain. 262 -309278 pfam04083 Abhydro_lipase Partial alpha/beta-hydrolase lipase region. This family corresponds to a N-terminal part of an alpha/beta hydrolase domain. 63 -335611 pfam04084 ORC2 Origin recognition complex subunit 2. All DNA replication initiation is driven by a single conserved eukaryotic initiator complex termed he origin recognition complex (ORC). The ORC is a six protein complex. The function of ORC is reviewed in. 321 -335612 pfam04085 MreC rod shape-determining protein MreC. MreC (murein formation C) is involved in the rod shape determination in E. coli, and more generally in cell shape determination of bacteria whether or not they are rod-shaped. 102 -335613 pfam04086 SRP-alpha_N Signal recognition particle, alpha subunit, N-terminal. SRP is a complex of six distinct polypeptides and a 7S RNA that is essential for transferring nascent polypeptide chains that are destined for export from the cell to the translocation apparatus of the endoplasmic reticulum (ER) membrane. SRP binds hydrophobic signal sequences as they emerge from the ribosome, and arrests translation. 263 -335614 pfam04087 DUF389 Domain of unknown function (DUF389). Family of hypothetical bacterial proteins with an undetermined function. 137 -309283 pfam04088 Peroxin-13_N Peroxin 13, N-terminal region. Both termini of the Peroxin-13 are oriented to the cytosol. Peroxin-13 is required for peroxisomal association of peroxin-14. 136 -335615 pfam04089 BRICHOS BRICHOS domain. The BRICHOS domain is about 100 amino acids long. It is found in a variety of proteins implicated in dementia, respiratory distress and cancer. Its exact function is unknown; roles that have been proposed for it include (a) in targeting of the protein to the secretory pathway, (b) intramolecular chaperone-like function, and (c) assisting the specialized intracellular protease processing system. This C-terminal domain is embedded in the endoplasmic reticulum lumen, and binds to the N-terminal, transmembrane, SP_C, pfam08999, provided that it is in non-helical conformation. Thus the Brichos domain of proSP-C is a chaperone that induces alpha-helix formation of an aggregation-prone TM region. 88 -335616 pfam04090 RNA_pol_I_TF RNA polymerase I specific initiation factor. 192 -309285 pfam04091 Sec15 Exocyst complex subunit Sec15-like. 304 -335617 pfam04092 SAG SRS domain. Toxoplasma gondii is a persistent protozoan parasite capable of infecting almost any warm-blooded vertebrate. The surface of Toxoplasma is coated with a family of developmentally regulated glycosylphosphatidylinositol (GPI)-linked proteins (SRSs), of which SAG1 is the prototypic member. SRS proteins mediate attachment to host cells and interface with the host immune response to regulate the virulence of the parasite. SAG1 is composed of two disulphide linked SRS domains. These have 6 cysteines that form 1-6,2-5 and 3-4 pairings. The structure of the immunodominant SAG1 antigen reveals a homodimeric configuration. The SRS domain is found in a single copy in the SAG2 proteins. This family of surface antigens are found in other apicomplexans. 122 -282013 pfam04093 MreD rod shape-determining protein MreD. MreD (murein formation D) is involved in the rod shape determination in E. coli, and more generally in cell shape determination of bacteria whether or not they are rod-shaped. 160 -282014 pfam04094 DUF390 Protein of unknown function (DUF390). This is a family of long proteins currently only found in the rice genome. They have no known function. However they may be some kind of transposable element. 859 -335618 pfam04095 NAPRTase Nicotinate phosphoribosyltransferase (NAPRTase) family. Nicotinate phosphoribosyltransferase (EC:2.4.2.11) is the rate limiting enzyme that catalyzes the first reaction in the NAD salvage synthesis. This family also includes Pre-B cell enhancing factor that is a cytokine. This family is related to Quinolinate phosphoribosyltransferase pfam01729. 234 -335619 pfam04096 Nucleoporin2 Nucleoporin autopeptidase. 139 -335620 pfam04097 Nic96 Nup93/Nic96. Nup93/Nic96 is a component of the nuclear pore complex. It is required for the correct assembly of the nuclear pore complex. In Saccharomyces cerevisiae, Nic96 has been shown to be involved in the distribution and cellular concentration of the GTPase Gsp1. The structure of Nic96 has revealed a mostly alpha helical structure. 594 -309289 pfam04098 Rad52_Rad22 Rad52/22 family double-strand break repair protein. The DNA single-strand annealing proteins (SSAPs), such as RecT, Red-beta, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. This family includes proteins related to Rad52. These proteins contain two helix-hairpin-helix motifs. 140 -282019 pfam04099 Sybindin Sybindin-like family. Sybindin is a physiological syndecan-2 ligand on dendritic spines, the small protrusions on the surface of dendrites that receive the vast majority of excitatory synapses. 134 -282020 pfam04100 Vps53_N Vps53-like, N-terminal. Vps53 complexes with Vps52 and Vps54 to form a multi- subunit complex involved in regulating membrane trafficking events. 374 -282021 pfam04101 Glyco_tran_28_C Glycosyltransferase family 28 C-terminal domain. The glycosyltransferase family 28 includes monogalactosyldiacylglycerol synthase (EC 2.4.1.46) and UDP-N-acetylglucosamine transferase (EC 2.4.1.-). Structural analysis suggests the C-terminal domain contains the UDP-GlcNAc binding site. 166 -335621 pfam04102 SlyX SlyX. The SlyX protein has no known function. It is short less than 80 amino acids and is found close to the slyD gene. The SlyX protein has a conserved PPH(Y/W) motif at its C-terminus. The protein may be a coiled-coil structure. 65 -309291 pfam04103 CD20 CD20-like family. This family includes the CD20 protein and the beta subunit of the high affinity receptor for IgE Fc. The high affinity receptor for IgE is a tetrameric structure consisting of a single IgE-binding alpha subunit, a single beta subunit, and two disulfide-linked gamma subunits. The alpha subunit of Fc epsilon RI and most Fc receptors are homologous members of the Ig superfamily. By contrast, the beta and gamma subunits from Fc epsilon RI are not homologous to the Ig superfamily. Both molecules have four putative transmembrane segments and a probably topology where both amino- and carboxy termini protrude into the cytoplasm. This family also includes LR8 like proteins from humans, mice and rats. The function of the human LR8 protein is unknown although it is known to be strongly expressed in the lung fibroblasts. This family also includes sarcospan is a transmembrane component of dystrophin-associated glycoprotein. Loss of the sarcoglycan complex and sarcospan alone is sufficient to cause muscular dystrophy. The role of the sarcoglycan complex and sarcospan is thought to be to strengthen the dystrophin axis connecting the basement membrane with the cytoskeleton. 156 -282024 pfam04104 DNA_primase_lrg Eukaryotic and archaeal DNA primase, large subunit. DNA primase is the polymerase that synthesizes small RNA primers for the Okazaki fragments made during discontinuous DNA replication. DNA primase is a heterodimer of two subunits, the small subunit Pri1 (48 kDa in yeast), and the large subunit Pri2 (58 kDa in the yeast S. cerevisiae). The large subunit of DNA primase forms interactions with the small subunit and the structure implicates that it is not directly involved in catalysis, but plays roles in correctly positioning the primase/DNA complex, and in the transfer of RNA to DNA polymerase. 217 -309292 pfam04106 APG5 Autophagy protein Apg5. Apg5 is directly required for the import of aminopeptidase I via the cytoplasm-to-vacuole targeting pathway. 191 -282026 pfam04107 GCS2 Glutamate-cysteine ligase family 2(GCS2). Also known as gamma-glutamylcysteine synthetase and gamma-ECS (EC:6.3.2.2). This enzyme catalyzes the first and rate limiting step in de novo glutathione biosynthesis. Members of this family are found in archaea, bacteria and plants. May and Leaver discuss the possible evolutionary origins of glutamate-cysteine ligase enzymes in different organisms and suggest that it evolved independently in different eukaryotes, from an ancestral bacterial enzyme. They also state that Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast and Escherichia coli homologs. In plants, there are separate cytosolic and chloroplast forms of the enzyme. 289 -309293 pfam04108 APG17 Autophagy protein Apg17. Apg17 is required for activating Apg1 protein kinases. 391 -335622 pfam04109 APG9 Autophagy protein Apg9. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Autophagy is a bulk degradation process induced by starvation in eukaryotic cells. Apg9 plays a direct role in the formation of the cytoplasm to vacuole targeting and autophagic vesicles, possibly serving as a marker for a specialized compartment essential for these vesicle-mediated alternative targeting pathways. 358 -252381 pfam04110 APG12 Ubiquitin-like autophagy protein Apg12. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Autophagy is a bulk degradation process induced by starvation in eukaryotic cells. The Apg12 system is one of the ubiquitin-like protein conjugation systems conserved in eukaryotes. It was first discovered in yeast during systematic analyses of the apg mutants defective in autophagy. Covalent attachment of Apg12-Apg5 is essential for autophagy. 87 -335623 pfam04111 APG6 Autophagy protein Apg6. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Autophagy is a bulk degradation process induced by starvation in eukaryotic cells. Apg6/Vps30p has two distinct functions in the autophagic process, either associated with the membrane or in a retrieval step of the carboxypeptidase Y sorting pathway. 307 -335624 pfam04112 Mak10 Mak10 subunit, NatC N(alpha)-terminal acetyltransferase. NatC N(alpha)-terminal acetyltransferases contains Mak10p, Mak31p and Mak3p subunits. All three subunits are associated with each other to form the active complex. 161 -309297 pfam04113 Gpi16 Gpi16 subunit, GPI transamidase component. GPI (glycosyl phosphatidyl inositol) transamidase is a multi-protein complex. Gpi16, Gpi8 and Gaa1 for a sub-complex of the GPI transamidase. GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. Gpi16 is an essential N-glycosylated transmembrane glycoprotein. Gpi16 is largely found on the lumenal side of the ER. It has a single C-terminal transmembrane domain and a small C-terminal, cytosolic extension with an ER retrieval motif. 561 -335625 pfam04114 Gaa1 Gaa1-like, GPI transamidase component. GPI (glycosyl phosphatidyl inositol) transamidase is a multi-protein complex. Gpi16, Gpi8 and Gaa1 for a sub-complex of the GPI transamidase. GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. 489 -309299 pfam04115 Ureidogly_lyase Ureidoglycolate lyase. Ureidoglycolate lyase (EC:4.3.2.3) is one of the enzymes that acts upon ureidoglycolate, an intermediate of purine catabolism, releasing urea. The enzyme has in the past been wrongly assigned to EC:3.5.3.19, enzymes which release ammonia from ureidoglycolate. 162 -309300 pfam04116 FA_hydroxylase Fatty acid hydroxylase superfamily. This superfamily includes fatty acid and carotene hydroxylases and sterol desaturases. Beta-carotene hydroxylase is involved in zeaxanthin synthesis by hydroxylating beta-carotene, but the enzyme may be involved in other pathways. This family includes C-5 sterol desaturase and C-4 sterol methyl oxidase. Members of this family are involved in cholesterol biosynthesis and biosynthesis a plant cuticular wax. These enzymes contain two copies of a HXHH motif. Members of this family are integral membrane proteins. 134 -335626 pfam04117 Mpv17_PMP22 Mpv17 / PMP22 family. The 22-kDa peroxisomal membrane protein (PMP22) is a major component of peroxisomal membranes. PMP22 seems to be involved in pore forming activity and may contribute to the unspecific permeability of the organelle membrane. PMP22 is synthesized on free cytosolic ribosomes and then directed to the peroxisome membrane by specific targeting information. Mpv17 is a closely related peroxisomal protein. In mouse, the Mpv17 protein is involved in the development of early-onset glomerulosclerosis. More recently a homolog of Mpv17 in S. cerevisiae has been been found to be an integral membrane protein of the inner mitochondrial membrane where it has been proposed to have a role in ethanol metabolism and tolerance during heat-shock. Defects in MPV17 is associated with mitochondrial DNA depletion syndrome (MDDS) and Navajo neurohepatopathy (NNH). MDDS is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA (mtDNA) copy number. Primary mtDNA depletion is inherited as an autosomal recessive trait and may affect single organs, typically muscle or liver, or multiple tissues. Individuals with the hepatocerebral form of mitochondrial DNA depletion syndrome have early progressive liver failure and neurologic abnormalities, hypoglycemia, and increased lactate in body fluids. NNH is an autosomal recessive disease that is prevalent among Navajo children in the South Western states of America. The major clinical features are hepatopathy, peripheral neuropathy, corneal anesthesia and scarring, acral mutilation, cerebral leukoencephalopathy, failure to thrive, and recurrent metabolic acidosis with intercurrent infections. Infantile, childhood, and classic forms of NNH have been described. Mitochondrial DNA depletion was detected in the livers of patients, suggesting a primary defect in mtDNA maintenance. 62 -335627 pfam04118 Dopey_N Dopey, N-terminal. DopA is the founding member of the Dopey family and is required for correct cell morphology and spatiotemporal organisation of multicellular structures in the filamentous fungus Aspergillus nidulans. DopA homologs are found in mammals. S. cerevisiae DOP1 is essential for viability and, affects cellular morphogenesis. 300 -309303 pfam04119 HSP9_HSP12 Heat shock protein 9/12. These heat shock proteins (Hsp9 and Hsp12) are strongly expressed, an increase of 100 fold, upon entry into stationary phase in yeast. 59 -335628 pfam04120 Iron_permease Low affinity iron permease. 128 -335629 pfam04121 Nup84_Nup100 Nuclear pore protein 84 / 107. Nup84p forms a complex with five proteins, of which Nup120p, Nup85p, Sec13p, and a Sec13p homologs. This Nup84p complex in conjunction with Sec13-type proteins is required for correct nuclear pore biogenesis. 695 -309306 pfam04122 CW_binding_2 Putative cell wall binding repeat 2. This repeat is found in multiple tandem copies in proteins including amidase enhancers and adhesins. 82 -309307 pfam04123 DUF373 Domain of unknown function (DUF373). Archaeal domain of unknown function. Predicted to be an integral membrane protein with six transmembrane regions. 336 -252394 pfam04124 Dor1 Dor1-like family. Dor1 is involved in vesicle targeting to the yeast Golgi apparatus and complexes with a number of other trafficking proteins, which include Sec34 and Sec35. 339 -309308 pfam04126 Cyclophil_like Cyclophilin-like. This domain has a cyclophilin-like fold, consisting of an eight-stranded beta-barrel with an alpha helix located between the beta-2 and beta-3 strands and a 310 helix located between the beta-7 and beta-8 strands. The catalytic site found in human cyclophilin is not conserved in this domain, suggesting a different function for this domain. 119 -335630 pfam04127 DFP DNA / pantothenate metabolism flavoprotein. The DNA/pantothenate metabolism flavoprotein (EC:4.1.1.36) affects synthesis of DNA, and pantothenate metabolism. 183 -282044 pfam04129 Vps52 Vps52 / Sac2 family. Vps52 complexes with Vps53 and Vps54 to form a multi- subunit complex involved in regulating membrane trafficking events. 508 -335631 pfam04130 Spc97_Spc98 Spc97 / Spc98 family. The spindle pole body (SPB) functions as the microtubule-organising centre in yeast. Members of this family are spindle pole body (SBP) components such as Spc97 and Spc98 that form a complex with gamma-tubulin. This family of proteins includes the grip motif 1 and grip moti 2. Members of this family all form components of the gamma-tubulin complex, GCP. 468 -335632 pfam04131 NanE Putative N-acetylmannosamine-6-phosphate epimerase. This family represents a putative ManNAc-6-P-to-GlcNAc-6P epimerase in the N-acetylmannosamine (ManNAc) utilisation pathway found mainly in pathogenic bacteria. 192 -309311 pfam04133 Vps55 Vacuolar protein sorting 55. Vps55 is involved in the secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y, but not the trafficking of the membrane-bound vacuolar alkaline phosphatase. Both Vps55 and obesity receptor gene-related protein are important for functioning membrane trafficking to the vacuole/lysosome of eukaryotic cells. 119 -309312 pfam04134 DUF393 Protein of unknown function, DUF393. Members of this family have two highly conserved cysteine residues near their N-terminus. The function of these proteins is unknown. 112 -309313 pfam04135 Nop10p Nucleolar RNA-binding protein, Nop10p family. Nop10p is a nucleolar protein that is specifically associated with H/ACA snoRNAs. It is essential for normal 18S rRNA production and rRNA pseudouridylation by the ribonucleoprotein particles containing H/ACA snoRNAs (H/ACA snoRNPs). Nop10p is probably necessary for the stability of these RNPs. 49 -335633 pfam04136 Sec34 Sec34-like family. Sec34 and Sec35 form a sub-complex, in a seven protein complex that includes Dor1 (pfam04124). This complex is thought to be important for tethering vesicles to the Golgi. 146 -335634 pfam04137 ERO1 Endoplasmic Reticulum Oxidoreductin 1 (ERO1). Members of this family are required for the formation of disulphide bonds in the ER. 340 -309316 pfam04138 GtrA GtrA-like protein. Members of this family are predicted to be integral membrane proteins with three or four transmembrane spans. They are involved in the synthesis of cell surface polysaccharides. The GtrA family are a subset of this family. GtrA is predicted to be an integral membrane protein with 4 transmembrane spans. It is involved is in O antigen modification by Shigella flexneri bacteriophage X (SfX), but does not determine the specificity of glucosylation. Its function remains unknown, but it may play a role in translocation of undecaprenyl phosphate linked glucose (UndP-Glc) across the cytoplasmic membrane. Another member of this family is a DTDP-glucose-4-keto-6-deoxy-D-glucose reductase, which catalyzes the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-D-fucose, which is involved in the biosynthesis of the serotype-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans Y4 (serotype b). This family also includes the teichoic acid glycosylation protein, GtcA, which is a serotype-specific protein in some Listeria innocua and monocytogenes strains. Its exact function is not known, but it is essential for decoration of cell wall teichoic acids with glucose and galactose. 117 -309317 pfam04139 Rad9 Rad9. Rad9 is required for transient cell-cycle arrests and transcriptional induction of DNA repair in response to DNA damage. It contains a Bcl-2 homology domain 3 (BH3). 250 -309318 pfam04140 ICMT Isoprenylcysteine carboxyl methyltransferase (ICMT) family. The isoprenylcysteine o-methyltransferase (EC:2.1.1.100) family carry out carboxyl methylation of cleaved eukaryotic proteins that terminate in a CaaX motif. In Saccharomyces cerevisiae this methylation is carried out by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology. 94 -282054 pfam04142 Nuc_sug_transp Nucleotide-sugar transporter. This family of membrane proteins transport nucleotide sugars from the cytoplasm into Golgi vesicles. SSLC35A1 transports CMP-sialic acid, SLC35A2 transports UDP-galactose and SLC35A3 transports UDP-GlcNAc. 315 -309319 pfam04143 Sulf_transp Sulphur transport. This is an integral membrane protein. It is predicted to have a function in the transport of sulphur-containing molecules. It contains several conserved glycines and an invariant cysteine that is probably an important functional residue. 310 -335635 pfam04144 SCAMP SCAMP family. In vertebrates, secretory carrier membrane proteins (SCAMPs) 1-3 constitute a family of putative membrane-trafficking proteins composed of cytoplasmic N-terminal sequences with NPF repeats, four central transmembrane regions (TMRs), and a cytoplasmic tail. SCAMPs probably function in endocytosis by recruiting EH-domain proteins to the N-terminal NPF repeats but may have additional functions mediated by their other sequences. 171 -335636 pfam04145 Ctr Ctr copper transporter family. The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high-affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. A series of clustered methionine residues in the hydrophilic extracellular domain, and an MXXXM motif in the second transmembrane domain, are important for copper uptake. These methionine probably coordinate copper during the process of metal transport. 146 -335637 pfam04146 YTH YT521-B-like domain. A protein of the YTH family has been shown to selectively remove transcripts of meiosis-specific genes expressed in mitotic cells. It has been speculated that in higher eukaryotic YTH-family members may be involved in similar mechanisms to suppress gene regulation during gametogenesis or general silencing. The rat protein YT521-B is a tyrosine-phosphorylated nuclear protein, that interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. The YTH domain has been identified as part of the PUA superfamily. 135 -309323 pfam04147 Nop14 Nop14-like family. Emg1 and Nop14 are novel proteins whose interaction is required for the maturation of the 18S rRNA and for 40S ribosome production. 845 -309324 pfam04148 Erv26 Transmembrane adaptor Erv26. Erv26 is an integral membrane protein that is packed into COPII vesicles and cycles between the ER and Golgi compartments. It directs pro-alkaline phosphatase into endoplasmic reticulum-derived COPII transport vesicles. 202 -309325 pfam04149 DUF397 Domain of unknown function (DUF397). The function of this family is unknown. 52 -309326 pfam04151 PPC Bacterial pre-peptidase C-terminal domain. This domain is normally found at the C-terminus of secreted bacterial peptidases. They are not present in the active peptidase. It is possible that they fulfill a similar role to the PKD (pfam00801) domain, which also are found in this context. Visual analysis suggests that PKD and PPC are distantly related (personal obs:Bateman A, Yeats C). 68 -335638 pfam04152 Mre11_DNA_bind Mre11 DNA-binding presumed domain. The Mre11 complex is a multi-subunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2, and is involved in checkpoint signalling and DNA replication. Mre11 has an intrinsic DNA-binding activity that is stimulated by Rad50 on its own or in combination with Nbs1. 174 -335639 pfam04153 NOT2_3_5 NOT2 / NOT3 / NOT5 family. NOT1, NOT2, NOT3, NOT4 and NOT5 form a nuclear complex that negatively regulates the basal and activated transcription of many genes. This family includes NOT2, NOT3 and NOT5. 123 -335640 pfam04155 Ground-like Ground-like domain. This family consists of the ground-like domain and is specific to C.elegans. It has been proposed that the ground-like domain containing proteins may bind and modulate the activity of Patched-like membrane molecules, reminiscent of the modulating activities of neuropeptides. 72 -309330 pfam04156 IncA IncA protein. Chlamydia trachomatis is an obligate intracellular bacterium that develops within a parasitophorous vacuole termed an inclusion. The inclusion is non-fusogenic with lysosomes but intercepts lipids from a host cell exocytic pathway. Initiation of chlamydial development is concurrent with modification of the inclusion membrane by a set of C. trachomatis-encoded proteins collectively designated Incs. One of these Incs, IncA, is functionally associated with the homotypic fusion of inclusions. This family probably includes members of the wider Inc family rather than just IncA. Members are usually either 2 or 4TM proteins. 187 -335641 pfam04157 EAP30 EAP30/Vps36 family. This family includes EAP30 as well as the Vps36 protein. Vps36 is involved in Golgi to endosome trafficking. EAP30 is a subunit of the ELL complex. The ELL is an 80-kDa RNA polymerase II transcription factor. ELL interacts with three other proteins to form the complex known as ELL complex. The ELL complex is capable of increasing that catalytic rate of transcription elongation, but is unable to repress initiation of transcription by RNA polymerase II as is the case of ELL. EAP30 is thought to lead to the derepression of ELL's transcriptional inhibitory activity. 212 -335642 pfam04158 Sof1 Sof1-like domain. Sof1 is essential for cell growth and is a component of the nucleolar rRNA processing machinery. 83 -282069 pfam04159 NB NB glycoprotein. The NB glycoprotein is found in Influenza type B virus. Its function is unknown. 100 -282070 pfam04160 Borrelia_orfX Orf-X protein. This short protein has no known function and is found in Jaagsiekte sheep retrovirus. Jaagsiekte sheep retrovirus (JSRV) is the etiological agent of a contagious lung tumor of sheep known as sheep pulmonary adenomatosis. JSRV exhibits a simple genetic organisation, characteristic of the type D and type B retroviruses, with the canonical retroviral sequences gag, pro, pol and env encoding the structural proteins of the virion. An additional open reading frame (orf-x), of approximately 500 bp overlapping pol. 154 -335643 pfam04161 Arv1 Arv1-like family. Arv1 is a transmembrane protein with potential zinc-binding motifs. ARV1 is a novel mediator of eukaryotic sterol homeostasis. 203 -282072 pfam04162 Gyro_capsid Gyrovirus capsid protein (VP1). Gyroviruses are small circular single stranded viruses. This family includes the VP1 protein from the chicken anaemia virus which is the viral capsid protein. 449 -282073 pfam04163 Tht1 Tht1-like nuclear fusion protein. 595 -282074 pfam04165 DUF401 Protein of unknown function (DUF401). Members if this family are predicted to have 10 transmembrane regions. 393 -335644 pfam04166 PdxA Pyridoxal phosphate biosynthetic protein PdxA. In Escherichia coli the coenzyme pyridoxal 5'-phosphate is synthesized de novo by a pathway that is thought to involve the condensation of 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose, catalyzed by the enzymes PdxA and PdxJ, to form either pyridoxine (vitamin B6) or pyridoxine 5'-phosphate. 249 -309335 pfam04167 DUF402 Protein of unknown function (DUF402). Family member FomD is a predicted protein from a fosfomycin biosynthesis gene cluster in Streptomyces wedmorensis. Its function is unknown. 68 -335645 pfam04168 Alpha-E A predicted alpha-helical domain with a conserved ER motif. An uncharacterized alpha helical domain containing a highly conserved ER motif and typically found as a tandem duplication. Contextual analysis suggests that it functions in a distinct peptide synthesis/modification system comprising of a transglutaminase, a peptidase of the NTN-hydrolase superfamily, an active and inactive circularly permuted ATP-grasp domains and a transglutaminase fused N-terminal to a circularly permuted COOH-NH2 ligase domain. 304 -335646 pfam04170 NlpE NlpE N-terminal domain. This family represents a bacterial outer membrane lipoprotein that is necessary for signalling by the Cpx pathway. This pathway responds to cell envelope disturbances and increases the expression of periplasmic protein folding and degradation factors. While the molecular function of the NlpE protein is unknown, it may be involved in detecting bacterial adhesion to abiotic surfaces. In Escherichia coli and Salmonella typhi, NlpE is also known to confer copper tolerance in copper-sensitive strains of Escherichia coli, and may be involved in copper efflux and delivery of copper to copper-dependent enzymes. 85 -335647 pfam04172 LrgB LrgB-like family. The two products of the lrgAB operon are potential membrane proteins, and LrgA and LrgB are both thought to control of murein hydrolase activity and penicillin tolerance. 206 -282080 pfam04173 DoxD TQO small subunit DoxD. DoxD is a subunit of the terminal quinol oxidase present in the plasma membrane of Acidianus ambivalens, with calculated molecular mass of 20.4 kDa. Thiosulphate:quinone oxidoreductase (TQO) is one of the early steps in elemental sulphur oxidation. A novel TQO enzyme was purified from the thermo-acidophilic archaeon Acidianus ambivalens and shown to consist of a large subunit (DoxD) and a smaller subunit (DoxA). The DoxD- and DoxA-like two subunits are fused together in a single polypeptide in BT_0515. 167 -309339 pfam04174 CP_ATPgrasp_1 A circularly permuted ATPgrasp. An ATP-grasp family that is present both as catalytically active and inactive versions. Contextual analysis suggests that it functions in a distinct peptide synthesis/modification system that additionally contains a transglutaminase, an NTN-hydrolase, the Alpha-E domain, and a transglutaminase fused N-terminal to a circularly permuted COOH-NH2 ligase. The inactive forms are often fused N-terminal to the Alpha-E domain. 332 -335648 pfam04175 DUF406 Protein of unknown function (DUF406). Members of this family appear to be found only in gamma proteobacteria. The function of this protein family is undetermined. Solution of the structures of the two members of this family investigated bear some resemblance to that of the single domain enzyme pterin-4a-carbinolamine dehydratase, PDC. Although the residues of PCDs involved in binding of metabolite are not conserved in the two structures under study, they do correspond to a surface-region structurally aligned with residues that are highly conserved, eg Glu 89, suggesting that this region is also involved in binding of a ligand, thereby possibly constituting a catalytic site of a yet uncharacterized enzyme specific for gamma proteobacteria. 92 -335649 pfam04176 TIP41 TIP41-like family. The TOR signalling pathway activates a cell-growth program in response to nutrients. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. 170 -335650 pfam04177 TAP42 TAP42-like family. The TOR signalling pathway activates a cell-growth program in response to nutrients. TIP41 (pfam04176) interacts with TAP42 and negatively regulates the TOR signaling pathway. 311 -335651 pfam04178 Got1 Got1/Sft2-like family. Traffic through the yeast Golgi complex depends on a member of the syntaxin family of SNARE proteins, Sed5, present in early Golgi cisternae. Got1 is thought to facilitate Sed5-dependent fusion events. This is a family of sequences derived from eukaryotic proteins. They are similar to a region of a SNARE-like protein required for traffic through the Golgi complex, SFT2 protein. This is a conserved protein with four putative transmembrane helices, thought to be involved in vesicular transport in later Golgi compartments. 114 -335652 pfam04179 Init_tRNA_PT Rit1 DUSP-like domain. This enzyme (EC:2.4.2.-) modifies exclusively the initiator tRNA in position 64 using 5'-phosphoribosyl-1'-pyrophosphate as the modification donor. As the initiator tRNA participates both in the initiation and elongation of translation, the 2'-O-ribosyl phosphate modification discriminates the initiator tRNAs from the elongator tRNAs. This C-terminal domain shows similarity to dual specificity phosphatases. 110 -335653 pfam04180 LTV Low temperature viability protein. The low-temperature viability protein LTV1 is involved in ribosome biogenesis 40S subunit production. 390 -335654 pfam04181 RPAP2_Rtr1 Rtr1/RPAP2 family. This family includes the human RPAP2 (RNAP II associated polypeptide) protein and the yeast Rtr1 protein. It has been suggested that this family of proteins are regulators of core RNA polymerase II function. 75 -309347 pfam04182 B-block_TFIIIC B-block binding subunit of TFIIIC. Yeast transcription factor IIIC (TFIIIC) is a multi-subunit protein complex that interacts with two control elements of class III promoters called the A and B blocks. This family represents the subunit within TFIIIC involved in B-block binding. 75 -335655 pfam04183 IucA_IucC IucA / IucC family. IucA and IucC catalyze discrete steps in biosynthesis of the siderophore aerobactin from N epsilon-acetyl-N epsilon-hydroxylysine and citrate. This family represents the N-terminal region. The C-terminal region appears to be related to iron transporter proteins. 207 -309349 pfam04184 ST7 ST7 protein. The ST7 (for suppression of tumorigenicity 7) protein is thought to be a tumor suppressor gene. The molecular function of this protein is uncertain. 531 -309350 pfam04185 Phosphoesterase Phosphoesterase family. This family includes both bacterial phospholipase C enzymes EC:3.1.4.3, but also eukaryotic acid phosphatases EC:3.1.3.2. 348 -335656 pfam04186 FxsA FxsA cytoplasmic membrane protein. This is a bacterial family of cytoplasmic membrane proteins. It includes two transmembrane regions. The molecular function of FxsA is unknown, but in Escherichia coli its over-expression has been shown to alleviate the exclusion of phage T7 in those cells with an F plasmid. 109 -335657 pfam04187 Cofac_haem_bdg Haem-binding uptake, Tiki superfamily, ChaN. This is a family of putative bacterial lipoproteins necessary for the uptake of haem-iron. The structure of UniProtKB:Q0PBW2, Structure 2g5g, comprises a large parallel beta-sheet with flanking alpha-helices and a smaller domain consisting of alpha-helices. Two cofacial haem groups (~3.5 Angstom apart with an inter-iron distance of 4.4 Angstrom) bind in a pocket formed by a dimer of two ChaN monomers. 205 -282094 pfam04188 Mannosyl_trans2 Mannosyltransferase (PIG-V). This is a family of eukaryotic ER membrane proteins that are involved in the synthesis of glycosylphosphatidylinositol (GPI), a glycolipid that anchors many proteins to the eukaryotic cell surface. Proteins in this family are involved in transferring the second mannose in the biosynthetic pathway of GPI. 439 -335658 pfam04189 Gcd10p Gcd10p family. eIF-3 is a multi-subunit complex that stimulates translation initiation in vitro at several different steps. This family corresponds to the gamma subunit if eIF3. The Yeast protein Gcd10p has also been shown to be part of a complex with the methyltransferase Gcd14p that is involved in modifying tRNA. 289 -335659 pfam04190 DUF410 Protein of unknown function (DUF410). This family of proteins is from Caenorhabditis elegans and has no known function. The protein has some GO references indicating that the protein has a positive regulation of growth rate and is involved in nematode larval development. 251 -309355 pfam04191 PEMT Phospholipid methyltransferase. The S. cerevisiae phospholipid methyltransferase (EC:2.1.1.16) has a broad substrate specificity of unsaturated phospholipids. 106 -335660 pfam04192 Utp21 Utp21 specific WD40 associated putative domain. Utp21 is a subunit of U3 snoRNP, which is essential for synthesis of 18S rRNA. 229 -309357 pfam04193 PQ-loop PQ loop repeat. Members of this family are all membrane bound proteins possessing a pair of repeats each spanning two transmembrane helices connected by a loop. The PQ motif found on loop 2 is critical for the localization of cystinosin to lysosomes. However, the PQ motif appears not to be a general lysosome-targeting motif. It is thought likely to possess a more general function. Most probably this involves a glutamine residue. Family members are membrane transporters since two members, cystinosin and PQLC2, transport cystine and cationic amino acids, respectively, across the lysosomal membrane. The 2nd PQ-loop of cystinosin hosts the substrate-coupled H+ binding site underlying its H+ symport mechanism, suggesting that PQ-loop repeats have functional significance. It is thus likely that PQ-loop-containing proteins act as a family of membrane transporters. Some transport cystine and cationic amino acids, respectively, across the lysosomal membrane. Others transport lysine and or arginine across the lysosomal membrane in order to maintain the acidic homoeostasis. 59 -335661 pfam04194 PDCD2_C Programmed cell death protein 2, C-terminal putative domain. 117 -335662 pfam04195 Transposase_28 Putative gypsy type transposon. This family of plant genes are thought to be related to gypsy type transposons. 169 -282102 pfam04196 Bunya_RdRp Bunyavirus RNA dependent RNA polymerase. The bunyaviruses are enveloped viruses with a genome consisting of 3 ssRNA segments (called L, M and S). The nucleocapsid protein is encode on the small (S) genomic RNA. The L segment codes for an RNA polymerase. This family contains the RNA dependent RNA polymerase on the L segment. 739 -282103 pfam04197 Birna_RdRp Birnavirus RNA dependent RNA polymerase (VP1). Birnaviruses are dsRNA viruses. This family corresponds to the RNA dependent RNA polymerase. This protein is also known as VP1. All of the birnavirus VP1 proteins contain conserved RdRp motifs that reside in the catalytic "palm" domain of all classes of polymerases. However, the birnavirus RdRps lack the highly conserved Gly-Asp-Asp (GDD) sequence, a component of the proposed catalytic site of this enzyme family that exists in the conserved motif VI of the palm domain of other RdRps. 802 -309359 pfam04198 Sugar-bind Putative sugar-binding domain. This probable domain is found in bacterial transcriptional regulators such as DeoR and SorC. These proteins have an amino-terminal helix-turn-helix pfam00325 that binds to DNA. This domain is probably the ligand regulator binding region. SorC is regulated by sorbose and other members of this family are likely to be regulated by other sugar substrates. 256 -335663 pfam04199 Cyclase Putative cyclase. Proteins in this family are thought to be cyclase enzymes. They are found in proteins involved in antibiotic synthesis. However they are also found in organisms that do not make antibiotics pointing to a wider role for these proteins. The proteins contain a conserved motif HXGTHXDXPXH that is likely to form part of the active site. 161 -309361 pfam04200 Lipoprotein_17 Lipoprotein associated domain. This presumed domain is about 100 amino acids in length. It is found in lipoprotein of unknown function and is greatly expanded in Mycoplasma pulmonis. The domain is found in up to five copies in some proteins. This family also includes the Mycoplasma arthritidis MAA2 variable surface protein. MAA2 is implicated in in cytoadherence and virulence and has been shown to exhibit both size and phase variability. 84 -309362 pfam04201 TPD52 tumor protein D52 family. The hD52 gene was originally identified through its elevated expression level in human breast carcinoma. Cloning of D52 homologs from other species has indicated that D52 may play roles in calcium-mediated signal transduction and cell proliferation. Two human homologs of hD52, hD53 and hD54, have also been identified, demonstrating the existence of a novel gene/protein family. These proteins have an amino terminal coiled-coil that allows members to form homo- and heterodimers with each other. 157 -112992 pfam04202 Mfp-3 Foot protein 3. Mytilus foot protein-3 (Mfp-3) is a highly polymorphic protein family located in the byssal adhesive plaques of blue mussels. 71 -309363 pfam04203 Sortase Sortase family. The founder member of this family is S.aureus sortase, a transpeptidase that attaches surface proteins by the threonine of an LPXTG motif to the cell wall. 123 -335664 pfam04204 HTS Homoserine O-succinyltransferase. 298 -335665 pfam04205 FMN_bind FMN-binding domain. This conserved region includes the FMN-binding site of the NqrC protein as well as the NosR and NirI regulatory proteins. 35 -309366 pfam04206 MtrE Tetrahydromethanopterin S-methyltransferase, subunit E. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 271 -309367 pfam04207 MtrD Tetrahydromethanopterin S-methyltransferase, subunit D. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 216 -309368 pfam04208 MtrA Tetrahydromethanopterin S-methyltransferase, subunit A. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 171 -282114 pfam04209 HgmA homogentisate 1,2-dioxygenase. Homogentisate dioxygenase cleaves the aromatic ring during the metabolic degradation of Phe and Tyr. Homogentisate dioxygenase deficiency causes alkaptonuria. The structure of homogentisate dioxygenase shows that the enzyme forms a hexamer arrangement comprised of a dimer of trimers. The active site iron ion is coordinated near the interface between the trimers. 424 -309369 pfam04210 MtrG Tetrahydromethanopterin S-methyltransferase, subunit G. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 64 -309370 pfam04211 MtrC Tetrahydromethanopterin S-methyltransferase, subunit C. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 265 -335666 pfam04212 MIT MIT (microtubule interacting and transport) domain. The MIT domain forms an asymmetric three-helix bundle and binds ESCRT-III (endosomal sorting complexes required for transport) substrates. 65 -309372 pfam04213 HtaA Htaa. This domain is found in HtaA, a secreted protein implicated in iron acquisition and transport. 159 -335667 pfam04214 DUF411 Protein of unknown function, DUF. The function of the members of this bacterial protein family is unknown. Some members may be involved in conferring cation resistance. 68 -335668 pfam04216 FdhE Protein involved in formate dehydrogenase formation. The function of these proteins is unknown. They may possibly be involved in the formation of formate dehydrogenase. 280 -335669 pfam04217 DUF412 Protein of unknown function, DUF412. This family consists of bacterial proteins, including yfbV from E. coli. YfbV is a membrane protien involved in insulating the chromosome from the TerR macrodomain. 133 -282122 pfam04218 CENP-B_N CENP-B N-terminal DNA-binding domain. Centromere Protein B (CENP-B) is a DNA-binding protein localized to the centromere. Within the N-terminal 125 residues, there is a DNA-binding region, which binds to a corresponding 17bp CENP-B box sequence. CENP-B dimers either bind two separate DNA molecules or alternatively, they may bind two CENP-B boxes on one DNA molecule, with the intervening stretch of DNA forming a loop structure. The CENP-B DNA-binding domain consists of two repeating domains, RP1 and RP2. This family corresponds to RP1 has been shown to consist of four helices in a helix-turn-helix structure. 53 -335670 pfam04219 DUF413 Protein of unknown function, DUF. 90 -335671 pfam04220 YihI Der GTPase activator (YihI). YihI activates the GTPase activity of Der, a 50S ribosomal subunit stability factor. The stimulation is specific to Der as YihI does not stimulate the GTPase activity of Era or ObgE. The interaction of YihI with Der requires only the C-terminal 78 amino acids of YihI. A yihI deletion mutant is viable and shows a shorter lag period, but the same post-lag growth rate as a wild-type strain. yihI is expressed during the lag period. Overexpression of yihI inhibits cell growth and biogenesis of the 50S ribosomal subunit. YihI is an unusual, highly hydrophilic protein with an uneven distribution of charged residues, resulting in an N-terminal region with high pI and a C-terminal region with low pI. 156 -335672 pfam04221 RelB RelB antitoxin. RelE and RelB form a toxin-antitoxin system. RelE represses translation, probably through binding ribosomes. RelB stably binds RelE, presumably deactivating it. 83 -335673 pfam04222 DUF416 Protein of unknown function (DUF416). This is a bacterial protein family of unknown function. Proteins in this family adopt an alpha helical structure. Genome context analysis has suggested a high probability of a functional association with histidine kinases, which implicates proteins in this family to play a role in signalling (information from TOPSAN 2Q9R). 183 -113013 pfam04223 CitF Citrate lyase, alpha subunit (CitF). In citrate-utilising prokaryotes, citrate lyase EC:4.1.3.6 cleaves intracellular citrate into acetate and oxaloacetate, and is organized as a functional complex consisting of alpha, beta, and gamma subunits. The gamma subunit serves as an acyl carrier protein (ACP), and has a 2'-(5''-phosphoribosyl)-3'-dephospho-CoA prosthetic group. The citrate lyase is active only if this prosthetic group is acetylated; this acetylation is catalyzed by an acetate:SH-citrate lyase ligase. The alpha subunit substitutes citryl for the acetyl group to form citryl-S-ACP. The beta subunit completes the reaction by cleaving the citryl to yield oxaloacetate and (regenerated) acetyl-S-ACP. This family represents the alpha subunit EC:2.8.3.10. 466 -282127 pfam04224 DUF417 Protein of unknown function, DUF417. This family of uncharacterized proteins appears to be restricted to proteobacteria. 175 -282128 pfam04225 OapA Opacity-associated protein A LysM-like domain. This family includes the Haemophilus influenzae opacity-associated protein. This protein is required for efficient nasopharyngeal mucosal colonisation, and its expression is associated with a distinctive transparent colony phenotype. OapA is thought to be a secreted protein, and its expression exhibits high-frequency phase variation. This is a LysM-like domain. 84 -309379 pfam04226 Transgly_assoc Transglycosylase associated protein. Bacterial protein, predicted to be an integral membrane protein. Some family members have been annotated as transglycosylase associated proteins, but no experimental evidence is provided. This family was annotated based on the information found for Escherichia coli YmgE. 49 -335674 pfam04227 Indigoidine_A Indigoidine synthase A like protein. Indigoidine is a blue pigment synthesized by Erwinia chrysanthemi implicated in pathogenicity and protection from oxidative stress. IdgA is involved in indigoidine biosynthesis, but its specific function is unknown. The recommended name for this protein is now pseudouridine-5'-phosphate glycosidase. 291 -282131 pfam04228 Zn_peptidase Putative neutral zinc metallopeptidase. Members of this family have a predicted zinc binding motif characteristic of neutral zinc metallopeptidases (Prosite:PDOC00129). 290 -335675 pfam04229 GrpB GrpB protein. This family has been suggested to belong to the nucleotidyltransferase superfamily. It occurs at the C-terminus of dephospho-CoA kinase (CoaE) in a number of cases, where it plays a role in the proper folding of the enzyme. 160 -335676 pfam04230 PS_pyruv_trans Polysaccharide pyruvyl transferase. Pyruvyl-transferases involved in peptidoglycan-associated polymer biosynthesis. CsaB in Bacillus anthracis is necessary for the non-covalent anchoring of proteins containing an SLH (S-layer homology) domain to peptidoglycan-associated pyruvylated polysaccharides. WcaK and AmsJ are involved in the biosynthesis of colanic acid in Escherichia coli and of amylovoran in Erwinia amylovora. 275 -282134 pfam04231 Endonuclease_1 Endonuclease I. Bacterial periplasmic or secreted endonuclease I (EC:3.1.21.1) E. coli endonuclease I (EndoI) is a sequence independent endonuclease located in the periplasm. It is inhibited by different RNA species. It is thought to normally generate double strand breaks in DNA, except in the presence of high salt concentrations and RNA, when it generates single strand breaks in DNA. Its biological role is unknown. Other family members are known to be extracellular. This family also includes a non-specific, Mg2+ activated ribonuclease precursor. 231 -335677 pfam04232 SpoVS Stage V sporulation protein S (SpoVS). In Bacillus subtilis this protein interferes with sporulation at an early stage and this inhibitory effect is overcome by SpoIIB and SpoVG. SpoVS seems to play a positive role in allowing progression beyond stage V of sporulation. Null mutations in the spoVS gene block sporulation at stage V, impairing the development of heat resistance and coat assembly. 82 -309383 pfam04233 Phage_Mu_F Phage Mu protein F like protein. Members of this family are found in double-stranded DNA bacteriophages, and in some bacteria. A member of this family is required for viral head morphogenesis in bacteriophage SPP1. This family is possibly a minor head protein. This family may be related to the family TT_ORF1 (pfam02956). 110 -335678 pfam04234 CopC CopC domain. CopC is a bacterial blue copper protein that binds 1 atom of copper per protein molecule. Along with CopA, CopC mediates copper resistance by sequestration of copper in the periplasm. 93 -335679 pfam04235 DUF418 Protein of unknown function (DUF418). Probable integral membrane protein. 163 -309386 pfam04236 Transp_Tc5_C Tc5 transposase C-terminal domain. This family corresponds to a C-terminal cysteine rich region that probably binds to a metal ion and could be DNA binding (pers. obs. A Bateman). 64 -335680 pfam04237 YjbR YjbR. YjbR has a CyaY-like fold. 89 -309388 pfam04238 DUF420 Protein of unknown function (DUF420). Predicted membrane protein with four transmembrane helices. 129 -335681 pfam04239 DUF421 Protein of unknown function (DUF421). YDFR family 109 -309390 pfam04240 Caroten_synth Carotenoid biosynthesis protein. The representative member of this family is CruF, a C50 carotenoid 2',3'-hydratase involved in the synthesis of the C50 carotenoid bacterioruberin in the halophilic archaeon Haloarcula japonica. 212 -335682 pfam04241 DUF423 Protein of unknown function (DUF423). This family of proteins with unknown function is a possible integral membrane protein from Caenorhabditis elegans. This family of proteins has GO references indicating the protein is involved in nematode larval development and is a positive regulator of growth rate. 84 -309392 pfam04242 DUF424 Protein of unknown function (DUF424). This is a family of uncharacterized proteins. 92 -335683 pfam04244 DPRP Deoxyribodipyrimidine photo-lyase-related protein. This family appears to be related to pfam00875. 221 -335684 pfam04245 NA37 37-kD nucleoid-associated bacterial protein. 307 -335685 pfam04246 RseC_MucC Positive regulator of sigma(E), RseC/MucC. This bacterial family of integral membrane proteins represents a positive regulator of the sigma(E) transcription factor, namely RseC/MucC. The sigma(E) transcription factor is up-regulated by cell envelope protein misfolding, and regulates the expression of genes that are collectively termed ECF (devoted to Extra-Cellular Functions). In Pseudomonas aeruginosa, de-repression of sigma(E) is associated with the alginate-overproducing phenotype characteristic of chronic respiratory tract colonisation in cystic fibrosis patients. The mechanism by which RseC/MucC positively regulates the sigma(E) transcription factor is unknown. RseC is also thought to have a role in thiamine biosynthesis in Salmonella typhimurium. In addition, this family also includes an N-terminal part of RnfF, a Rhodobacter capsulatus protein, of unknown function, that is essential for nitrogen fixation. This protein also contains an ApbE domain pfam02424, which is itself involved in thiamine biosynthesis. 130 -335686 pfam04247 SirB Invasion gene expression up-regulator, SirB. SirB up-regulates Salmonella typhimurium invasion gene transcription. It is, however, not essential for the expression of these genes. Its function is unknown. 120 -335687 pfam04248 NTP_transf_9 Domain of unknown function (DUF427). This domain contains a beta-tent fold. 93 -309398 pfam04250 DUF429 Protein of unknown function (DUF429). 201 -309399 pfam04252 RNA_Me_trans Predicted SAM-dependent RNA methyltransferase. This family of proteins are predicted to be alpha/beta-knot SAM-dependent RNA methyltransferases. 200 -335688 pfam04253 TFR_dimer Transferrin receptor-like dimerization domain. This domain is involved in dimerization of the transferrin receptor as shown in its crystal structure. 116 -309401 pfam04254 DUF432 Protein of unknown function (DUF432). Archaeal protein of unknown function. 120 -335689 pfam04255 DUF433 Protein of unknown function (DUF433). 55 -309403 pfam04256 DUF434 Protein of unknown function (DUF434). 56 -335690 pfam04257 Exonuc_V_gamma Exodeoxyribonuclease V, gamma subunit. The Exodeoxyribonuclease V enzyme is a multi-subunit enzyme comprised of the proteins RecB, RecC (this family) and RecD. This enzyme plays an important role in homologous genetic recombination, repair of double strand DNA breaks resistance to UV irradiation and chemical DNA-damage. The enzyme (EC:3.1.11.5) catalyzes ssDNA or dsDNA-dependent ATP hydrolysis, hydrolysis of ssDNA or dsDNA and unwinding of dsDNA. This family consists of two AAA domains. 758 -282158 pfam04258 Peptidase_A22B Signal peptide peptidase. The members of this family are membrane proteins. In some proteins this region is found associated with pfam02225. This family corresponds with Merops subfamily A22B, the type example of which is signal peptide peptidase. There is a sequence-similarity relationship with pfam01080. 286 -309405 pfam04259 SASP_gamma Small, acid-soluble spore protein, gamma-type. The SASP family is a family of small, glutamine and asparagine-rich peptides that store amino acids in the spores of Bacillus subtilis and related bacteria. 84 -335691 pfam04260 DUF436 Protein of unknown function (DUF436). Family of bacterial proteins with undetermined function. 170 -282161 pfam04261 Dyp_perox Dyp-type peroxidase family. This family of dye-decolourising peroxidases lack a typical heme-binding region. 315 -335692 pfam04262 Glu_cys_ligase Glutamate-cysteine ligase. Family of bacterial f glutamate-cysteine ligases (EC:6.3.2.2) that carry out the first step of the glutathione biosynthesis pathway. 372 -335693 pfam04263 TPK_catalytic Thiamin pyrophosphokinase, catalytic domain. Family of thiamin pyrophosphokinase (EC:2.7.6.2). Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. The structure of thiamin pyrophosphokinase suggest that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 112 -335694 pfam04264 YceI YceI-like domain. E. coli YceI is a base-induced periplasmic protein. The recent structure of a member of this family shows that it binds to poly-isoprenoid. The structure consists of an extended, eight-stranded, antiparallel beta-barrel that resembles the lipocalin fold. 156 -335695 pfam04265 TPK_B1_binding Thiamin pyrophosphokinase, vitamin B1 binding domain. Family of thiamin pyrophosphokinase (EC:2.7.6.2). Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. The structure of thiamin pyrophosphokinase suggest that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 66 -335696 pfam04266 ASCH ASCH domain. The ASCH domain adopts a beta-barrel fold similar to the pfam01472 domain. It is thought to function as an RNA-binding domain during coactivation, RNA-processing and possibly during prokaryotic translation regulation. 100 -335697 pfam04267 SoxD Sarcosine oxidase, delta subunit family. Sarcosine oxidase is a hetero-tetrameric enzyme that contains both covalently bound FMN and non-covalently bound FAD and NAD(+). This enzyme catalyzes the oxidative demethylation of sarcosine to yield glycine, H2O2, and 5,10-CH2-tetrahydrofolate (H4folate) in a reaction requiring H4folate and O2. 82 -282168 pfam04268 SoxG Sarcosine oxidase, gamma subunit family. Sarcosine oxidase is a hetero-tetrameric enzyme that contains both covalently bound FMN and non-covalently bound FAD and NAD(+). This enzyme catalyzes the oxidative demethylation of sarcosine to yield glycine, H2O2, and 5,10-CH2-tetrahydrofolate (H4folate) in a reaction requiring H4folate and O2. 148 -335698 pfam04269 DUF440 Protein of unknown function, DUF440. This family consists of uncharacterized bacterial proteins. 100 -335699 pfam04270 Strep_his_triad Streptococcal histidine triad protein. All members of this family are proteins from Streptococcal species. The proteins are characterized by having a HxxHxH motif that usually occurs multiple times throughout the protein. The histidine triad is predicted to bind metal cations, in particular Zn2+. The zinc is transferred, on the surface of the streptococcus from the Strep_his_triad protein, a zinc scavenger, to apo-ADCAII, a cell-surface lipoprotein transporter that leads to Zn2+ uptake into the bacterium. 51 -309415 pfam04272 Phospholamban Phospholamban. The regulation of calcium levels across the membrane of the sarcoplasmic reticulum involves the interplay of many membrane proteins. Phospholamban is a 52 residue integral membrane protein that is involved in reversibly inhibiting the Ca(2+) pump and regulating the flow of Ca ions across the sarcoplasmic reticulum membrane during muscle contraction and relaxation. Phospholamban is thought to form a pentamer in the membrane. 52 -282172 pfam04273 DUF442 Putative phosphatase (DUF442). Although this domain is uncharacterized it seems likely that it performs a phosphatase function. 110 -309416 pfam04275 P-mevalo_kinase Phosphomevalonate kinase. Phosphomevalonate kinase (EC:2.7.4.2) catalyzes the phosphorylation of 5-phosphomevalonate into 5-diphosphomevalonate, an essential step in isoprenoid biosynthesis via the mevalonate pathway. This family represents the animal type of the enzyme. The other is the ERG8 type, found in plants and fungi, and some bacteria (see pfam00288). 113 -335700 pfam04276 DUF443 Protein of unknown function (DUF443). Family of uncharacterized proteins. 203 -335701 pfam04277 OAD_gamma Oxaloacetate decarboxylase, gamma chain. 74 -309419 pfam04278 Tic22 Tic22-like family. The preprotein translocation at the inner envelope membrane of chloroplasts so far involves five proteins: Tic110, Tic55, Tic40, Tic22 (this family) and Tic20. The molecular function of these proteins has not yet been established. 242 -309420 pfam04279 IspA Intracellular septation protein A. 176 -309421 pfam04280 Tim44 Tim44-like domain. Tim44 is an essential component of the machinery that mediates the translocation of nuclear-encoded proteins across the mitochondrial inner membrane. Tim44 is thought to bind phospholipids of the mitochondrial inner membrane both by electrostatic interactions and by penetrating the polar head group region. This family includes the C-terminal region of Tim44 that has been shown to form a stable proteolytic fragment in yeast. This region is also found in a set of smaller bacterial proteins. The molecular function of the bacterial members of this family is unknown but transport seems likely. The crystal structure of the C terminal of Tim44 has revealed a large hydrophobic pocket which might play an important role in interacting with the acyl chains of lipid molecules in the mitochondrial membrane. 146 -309422 pfam04281 Tom22 Mitochondrial import receptor subunit Tom22. The mitochondrial protein translocase family, which is responsible for movement of nuclear encoded pre-proteins into mitochondria, is very complex with at least 19 components. These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family represents the Tom22 proteins. The N terminal region of Tom22 has been shown to have chaperone-like activity, and the C terminal region faces the intermembrane face. 136 -309423 pfam04282 DUF438 Family of unknown function (DUF438). 67 -309424 pfam04283 CheF-arch Chemotaxis signal transduction system protein F from archaea. This is a family of proteins that are archaea-specific components of the bacterial-like chemotaxis signal transduction system of archaea. In H. salinarum, the CheF proteins interact with the chemotaxis proteins CheY, CheD and CheC2 as well as the flagella-accessory proteins FlaCE and FlaD, and are essential for any tactic response. CheF probably functions at the interface between the bacterial-like chemotaxis signal transduction system and the archaeal flagellar apparatus. 217 -335702 pfam04284 DUF441 Protein of unknown function (DUF441). Predicted to be an integral membrane protein. 139 -335703 pfam04285 DUF444 Protein of unknown function (DUF444). Bacterial protein of unknown function. One family member is predicted to contain a von Willebrand factor (vWF) type A domain (Smart:VWA). 410 -309427 pfam04286 DUF445 Protein of unknown function (DUF445). Predicted to be a membrane protein. 368 -335704 pfam04287 DUF446 tRNA pseudouridine synthase C. This family is suggested to be the catalytic domain of tRNA pseudouridine synthase C by association. The structure has been solved for one member, as Structure 2HGK, which by inference is designated in this way. 97 -335705 pfam04288 MukE MukE-like family. Bacterial protein involved in chromosome partitioning, MukE 228 -309430 pfam04289 DUF447 Protein of unknown function (DUF447). Archaeal protein of unknown function. A fungal member UniProtKB:M2LN89 is clearly a Flavine-reductase enzyme by homology, and UniProtKB:O28442 has been shown to bind riboflavin 5'-phosphate (unpublished structural Xray analysis). 173 -309431 pfam04290 DctQ Tripartite ATP-independent periplasmic transporters, DctQ component. The function of the members of this family is unknown, but DctQ homologs are invariably found in the tripartite ATP-independent periplasmic transporters. 133 -335706 pfam04293 SpoVR SpoVR like protein. Bacillus subtilis stage V sporulation protein R is involved in spore cortex formation. Little is known about cortex biosynthesis, except that it depends on several sigma E controlled genes, including spoVR. 419 -309433 pfam04294 VanW VanW like protein. Family members include vancomycin resistance protein W (VanW). Genes encoding members of this family have been found in vancomycin resistance gene clusters vanB and vanG. The function of VanW is unknown. 130 -335707 pfam04295 GD_AH_C D-galactarate dehydratase / Altronate hydrolase, C-terminus. Family members include the C termini of D-galactarate dehydratase (EC:4.2.1.42) which is thought to catalyze the reaction D-galactarate = 5-keto-4-deoxy-D-glucarate + H2O, and altronate hydrolase (altronic acid hydratase, EC:4.2.1.7), which catalyzes D-altronate = 2-keto-2-deoxygluconate + H2O. As purified, both enzymes are catalytically inactive in the absence of added Fe2+, Mn2+, and beta-mercaptoethanol. Synergistic activation of altronate hydrolase activity is seen in the presence of both iron and manganese ions, suggesting that the enzyme may have two ion binding sites. Mn2+ appears to be part of the enzyme active centre, but the function of the single bound Fe2+ ion is unknown. The hydratase has no Fe-S core. 393 -335708 pfam04296 DUF448 Protein of unknown function (DUF448). 75 -282193 pfam04297 UPF0122 Putative helix-turn-helix protein, YlxM / p13 like. Members of this family are predicted to contain a helix-turn-helix motif, for example residues 37-55 in Mycoplasma mycoides p13. Genes encoding family members are often part of operons that encode components of the SRP pathway, and this protein may regulate the expression of an operon related to the SRP pathway. 98 -335709 pfam04298 Zn_peptidase_2 Putative neutral zinc metallopeptidase. Zinc metallopeptidase zinc binding regions have been predicted in some family members by a pattern match (Prosite:PS00142), of the characteristic HEXXH motif. 212 -335710 pfam04299 FMN_bind_2 Putative FMN-binding domain. In Bacillus subtilis, family member PAI 2/ORF-2 was found to be essential for growth. The SUPERFAMILY database finds that this domain is related to FMN-binding domains, suggesting this protein is also FMN-binding. 167 -309438 pfam04300 FBA F-box associated region. Members of this family are associated with F-box domains, hence the name FBA. This domain is probably involved in binding other proteins that will be targeted for ubiquitination. FBXO2 is involved in binding to N-glycosylated proteins. 175 -113085 pfam04301 DUF452 Protein of unknown function (DUF452). 213 -218016 pfam04303 PrpF PrpF protein. PrpF is a protein found in the 2-methylcitrate pathway. It is structurally similar to DAP epimerase and proline racemase. This protein is likely to acts to isomerise trans-aconitate to cis-aconitate. 371 -335711 pfam04304 DUF454 Protein of unknown function (DUF454). Predicted membrane protein. 115 -335712 pfam04305 DUF455 Protein of unknown function (DUF455). 244 -335713 pfam04306 DUF456 Protein of unknown function (DUF456). This family is a putative membrane protein that contains glycine zipper motifs. 135 -309442 pfam04307 YdjM LexA-binding, inner membrane-associated putative hydrolase. YdjM is a family of putative LexA-binding proteins. Members are predicted to be membrane-bound metal-dependent hydrolases that may be acting as phospholipases. It is a member of the SOS network, that rescues cells from UV and other DNA-damage. Expression of YdjM is regulated by LexA. 173 -335714 pfam04308 RNaseH_like Ribonuclease H-like. RNaseH_like is a family of uncharacterized eubacterial proteins that are distant homologs of Ribonuclease H-like. The family maintains all the core secondary structure elements of the RNase H-like fold and shares several conserved, presumably active site residues with RNase HI. This finding suggests that it functions as a nuclease. 143 -335715 pfam04309 G3P_antiterm Glycerol-3-phosphate responsive antiterminator. Intracellular glycerol is usually converted to glycerol-3-phosphate in an ATP-requiring phosphorylation reaction catalyzed by glycerol kinase (GlpK) glycerol-3-phosphate activates the antiterminator GlpP. 173 -282203 pfam04310 MukB MukB N-terminal. This family represents the N-terminal region of MukB, one of a group of bacterial proteins essential for the movement of nucleoids from mid-cell towards the cell quarters (i.e. chromosome partitioning). The structure of the N-terminal domain consists of an antiparallel six-stranded beta sheet surrounded by one helix on one side and by five helices on the other side. It contains an exposed Walker A loop in an unexpected helix-loop-helix motif (in other proteins, Walker A motifs generally adopt a P loop conformation as part of a strand-loop-helix motif embedded in a conserved topology of alternating helices and (parallel) beta strands). 226 -335716 pfam04311 DUF459 Protein of unknown function (DUF459). Putative periplasmic protein. 275 -309445 pfam04312 DUF460 Protein of unknown function (DUF460). Archaeal protein of unknown function. 135 -335717 pfam04313 HSDR_N Type I restriction enzyme R protein N-terminus (HSDR_N). This family consists of a number of N terminal regions found in type I restriction enzyme R (HSDR) proteins. Restriction and modification (R/M) systems are found in a wide variety of prokaryotes and are thought to protect the host bacterium from the uptake of foreign DNA. Type I restriction and modification systems are encoded by three genes: hsdR, hsdM, and hsdS. The three polypeptides, HsdR, HsdM, and HsdS, often assemble to give an enzyme (R2M2S1) that modifies hemimethylated DNA and restricts unmethylated DNA. 121 -335718 pfam04314 PCuAC Copper chaperone PCu(A)C. PCu(A)C is a periplasmic copper chaperone. Its role may be to capture and transfer copper to two other copper chaperones, PrrC and Cox11, which in turn deliver Cu(I) to cytochrome c oxidase. 108 -335719 pfam04315 EpmC Elongation factor P hydroxylase. This family catalyzes the final step in the elongation factor P modification pathway. It hydroxylates Lys-34 of elongation factor P. Members of this family have a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. 162 -335720 pfam04316 FlgM Anti-sigma-28 factor, FlgM. FlgM binds and inhibits the activity of the transcription factor sigma 28. Inhibition of sigma 28 prevents the expression of genes from flagellar transcriptional class 3, which include genes for the filament and chemotaxis. Correctly assembled basal body-hook structures export FlgM, relieving inhibition of sigma 28 and allowing expression of class 3 genes. NMR studies show that free FlgM is mostly unfolded, which may facilitate its export. The C terminal half of FlgM adopts a tertiary structure when it binds to sigma 28. All mutations in FlgM that prevent sigma 28 inhibition affect the C-terminal domain and is the region thought to constitute the binding domain. A minimal binding domain has been identified between Glu 64 and Arg 88 in Salmonella typhimurium. The N-terminal portion remains unstructured and may be necessary for recognition by the export machinery. 54 -335721 pfam04317 DUF463 YcjX-like family, DUF463. These proteins possess a P-loop motif. 442 -282211 pfam04318 DUF468 Protein of unknown function (DUF468). These conserved ORFs probably are probably not translated into protein [Personal communication, Val Wood]. 84 -335722 pfam04319 NifZ NifZ domain. This short protein is found in the nif (nitrogen fixation) operon. Its function is unknown but is probably involved in nitrogen fixation or regulating some component of this process. This 75 residue region is presumed to be a domain. It is found in isolation in some members and in the amino terminal half of the longer NifZ proteins. 70 -335723 pfam04320 DUF469 Protein with unknown function (DUF469). Family of bacteria protein with no known function. 101 -309453 pfam04321 RmlD_sub_bind RmlD substrate binding domain. L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesized by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide. 283 -309454 pfam04322 DUF473 Protein of unknown function (DUF473). Family of uncharacterized Archaeal proteins. 118 -335724 pfam04324 Fer2_BFD BFD-like [2Fe-2S] binding domain. The two Fe ions are each coordinated by two conserved cysteine residues. This domain occurs alone in small proteins such as Bacterioferritin-associated ferredoxin (BFD). The function of BFD is not known, but it may may be a general redox and/or regulatory component involved in the iron storage or mobilisation functions of bacterioferritin in bacteria. This domain is also found in nitrate reductase proteins in association with Nitrite and sulphite reductase 4Fe-4S domain (pfam01077), Nitrite/Sulfite reductase ferredoxin-like half domain (pfam03460) and Pyridine nucleotide-disulphide oxidoreductase (pfam00070). It is also found in NifU nitrogen fixation proteins, in association with NifU-like N terminal domain (pfam01592) and NifU-like domain (pfam01106). 51 -335725 pfam04325 DUF465 Protein of unknown function (DUF465). Family members are found in small bacterial proteins, and also in the heavy chains of eukaryotic myosin and kinesin, C terminal of the motor domain (Myosin pfam00063, Kinesin pfam00225). Members of this family may form coiled coil structures. 45 -309457 pfam04326 AlbA_2 Putative DNA-binding domain. This family belongs to the AlbA clan of DNA-binding domains. 116 -335726 pfam04327 Peptidase_Prp Cysteine protease Prp. This is a family of cysteine protease that are found to cleave the N-terminus extension of ribosomal subunit L27 in eubacteria. Proteins in this family are distinguished by a pair of invariant histidine and cysteine residues with conserved spacing that form the classic catalytic dyad of a cysteine protease. 102 -335727 pfam04328 Sel_put Selenoprotein, putative. This entry includes a group of putative selenoproteins from Proteobacteria, Actinobacteria and Firmicutes. The invariant cysteine at the C-terminus is encoded by a TGA Sec codon in some Epsilonproteobacteria, suggesting a redox activity for the protein. 61 -309460 pfam04332 DUF475 Protein of unknown function (DUF475). Predicted to be an integral membrane protein with multiple membrane spans. 296 -335728 pfam04333 MlaA MlaA lipoprotein. MlaA is a component of the Mla pathway, an ABC transport system that functions to maintain the asymmetry of the outer membrane. MlaA is required for the intercellular spreading of Shigella flexneri. It is attached to the outer membrane by a lipid anchor. 193 -113117 pfam04334 DUF478 Protein of unknown function (DUF478). This family contains uncharacterized protein encoded on Trypanosoma kinetoplast minicircles. 68 -309462 pfam04335 VirB8 VirB8 protein. VirB8 is a bacterial virulence protein with cytoplasmic, transmembrane, and periplasmic regions. It is thought that it is a primary constituent of a DNA transporter. The periplasmic region interacts with VirB9, VirB10, and itself. This family also includes the conjugal transfer protein family TrbF, a family of proteins known to be involved in conjugal transfer. The TrbF protein is thought to compose part of the pilus required for transfer. This domain has a similar fold to the NTF2 protein. 205 -335729 pfam04336 ACP_PD Acyl carrier protein phosphodiesterase. YajB, now renamed acpH, encodes an ACP hydrolase that converts holo-ACP to apo-ACP by hydrolytic cleavage of the phosphopantetheine prosthetic group from ACP. 105 -335730 pfam04337 DUF480 Protein of unknown function, DUF480. This family consists of several proteins of uncharacterized function. 148 -335731 pfam04338 DUF481 Protein of unknown function, DUF481. This family includes several proteins of uncharacterized function. 211 -309466 pfam04339 FemAB_like Peptidogalycan biosysnthesis/recognition. FemAB_like is a family of both baterial and Viridiplantae proteins with responsibility for building interpeptide bridges in peptidoglycan. Such a function is feasible for bacteria but less likely for the plant members of this family. Perhaps the plant-members are using homologous proteins to recognize bacterial peptidoglcans as part of their innate immune system. 369 -282228 pfam04340 DUF484 Protein of unknown function, DUF484. This family consists of several proteins of uncharacterized function. 219 -335732 pfam04341 DUF485 Protein of unknown function, DUF485. This family includes several putative integral membrane proteins. 89 -335733 pfam04342 DMT_6 Putative member of DMT superfamily (DUF486). This family contains several proteins of uncharacterized function. The family is represented in the Transport classification database as 2.A.7.34, though the exact nature of what is transported is not known. 104 -335734 pfam04343 DUF488 Protein of unknown function, DUF488. This family includes several proteins of uncharacterized function. 123 -335735 pfam04344 CheZ Chemotaxis phosphatase, CheZ. This family represents the bacterial chemotaxis phosphatase, CheZ. This protein forms a dimer characterized by a long four-helix bundle, composed of two helices from each monomer. CheZ dephosphorylates CheY in a reaction that is essential to maintain a continuous chemotactic response to environmental changes. It is thought that CheZ's conserved residue Gln 147 orientates a water molecule for nucleophilic attack at the CheY active site. 202 -113128 pfam04345 Chor_lyase Chorismate lyase. Chorismate lyase catalyzes the first step in ubiquinone synthesis, i.e. the removal of pyruvate from chorismate, to yield 4-hydroxybenzoate. 168 -309471 pfam04346 EutH Ethanolamine utilisation protein, EutH. EutH is a bacterial membrane protein whose molecular function is unknown. It has been suggested that it may act as an ethanolamine transporter, responsible for carrying ethanolamine from the periplasm to the cytoplasm. 351 -335736 pfam04347 FliO Flagellar biosynthesis protein, FliO. FliO is an essential component of the flagellum-specific protein export apparatus. It is an integral membrane protein. Its precise molecular function is unknown. 89 -282235 pfam04348 LppC LppC putative lipoprotein. This family includes several bacterial outer membrane antigens, whose molecular function is unknown. 532 -335737 pfam04349 MdoG Periplasmic glucan biosynthesis protein, MdoG. This family represents MdoG, a protein that is necessary for the synthesis of periplasmic glucans. The function of MdoG remains unknown. It has been suggested that it may catalyze the addition of branches to a linear glucan backbone. 469 -309474 pfam04350 PilO Pilus assembly protein, PilO. PilO proteins are involved in the assembly of pilin. However, the precise function of this family of proteins is not known. 145 -335738 pfam04351 PilP Pilus assembly protein, PilP. The PilP family are periplasmic proteins involved in the biogenesis of type IV pili. 147 -335739 pfam04352 ProQ ProQ/FINO family. This family includes ProQ, which is required for full activation of the osmoprotectant transporter, ProP, in Escherichia coli. This family includes several bacterial fertility inhibition (FINO) proteins. The conjugative transfer of F-like plasmids is repressed by FinO, an RNA binding protein. FinO interacts with the F-plasmid encoded traJ mRNA and its antisense RNA, FinP, stabilizing FinP against endonucleolytic degradation and facilitating sense-antisense RNA recognition. ProQ operates as an RNA-chaperone, binding RNA and bringing about both RNA strand-exchange and RNA duplexing. This suggests that in fact it does not regulate ProP transcription but rather regulates ProP translation through activity as an RNA-binding protein. 104 -335740 pfam04353 Rsd_AlgQ Regulator of RNA polymerase sigma(70) subunit, Rsd/AlgQ. This family includes bacterial transcriptional regulators that are thought to act through an interaction with the conserved region 4 of the sigma(70) subunit of RNA polymerase. The Pseudomonas aeruginosa homolog, AlgQ, positively regulates virulence gene expression and is associated with the mucoid phenotype observed in Pseudomonas aeruginosa isolates from cystic fibrosis patients. 148 -335741 pfam04354 ZipA_C ZipA, C-terminal FtsZ-binding domain. This family represents the ZipA C-terminal domain. ZipA is involved in septum formation in bacterial cell division. Its C-terminal domain binds FtsZ, a major component of the bacterial septal ring. The structure of this domain is an alpha-beta fold with three alpha helices and a beta sheet of six antiparallel beta strands. The major loops protruding from the beta sheet surface are thought to form a binding site for FtsZ. 126 -335742 pfam04355 SmpA_OmlA SmpA / OmlA family. Lipoprotein Bacterial outer membrane lipoprotein, possibly involved in in maintaining the structural integrity of the cell envelope. Lipid attachment site is a conserved N terminal cysteine residue. Sometimes found adjacent to the OmpA domain (pfam00691). 70 -335743 pfam04356 DUF489 Protein of unknown function (DUF489). Protein of unknown function, cotranscribed with purB in Escherichia coli, but with function unrelated to purine biosynthesis. 190 -309481 pfam04357 TamB TamB, inner membrane protein subunit of TAM complex. TamB is an integral inner membrane protein that forms a complex - the translocation and assembly module or TAM - with the outer membrane protein, TamA. TAM is responsible for the efficient secretion of the adhesin protein Ag43 in E.coli K-12. 380 -335744 pfam04358 DsrC DsrC like protein. Family member DsvC has been observed to co-purify with Desulfovibrio vulgaris dissimilatory sulfite reductase, and many members of this family are annotated as the third (gamma) subunit of dissimilatory sulphite reductase. However, this protein appears to be only loosely associated to the sulfite reductase, which suggests that DsrC may not be an integral part of the dissimilatory sulphite reductase. Members of this family are found in organisms such as E. coli and H. influenzae which do not contain dissimilatory sulphite reductases but can synthesize assimilatory sirohaem sulphite and nitrite reductases. It is speculated that DsrC may be involved in the assembly, folding or stabilisation of sirohaem proteins. The strictly conserved cysteine in the C-terminus suggests that DsrC may have a catalytic function in the metabolism of sulphur compounds. 103 -335745 pfam04359 DUF493 Protein of unknown function (DUF493). This domain is likely to act in a regulatory capacity like pfam01842 domains. This domain has a remarkable property in that the C-terminal residue of every protein in the family lies up in the alignment. This suggests that the C-terminal residue plays some important functional role (Bateman A pers obs). 82 -309484 pfam04360 Serglycin Serglycin. Serglycin is the most prevalent proteoglycan produced in haemopoietic cells. Serglycin is a proteinase resistant secretory granule proteoglycan. 148 -335746 pfam04361 DUF494 Protein of unknown function (DUF494). Members of this family of uncharacterized proteins are often named Smg. 152 -335747 pfam04362 Iron_traffic Bacterial Fe(2+) trafficking. This is a family of bacterial Fe(2+) trafficking proteins. 87 -309487 pfam04363 DUF496 Protein of unknown function (DUF496). 93 -335748 pfam04364 DNA_pol3_chi DNA polymerase III chi subunit, HolC. The DNA polymerase III holoenzyme (EC:2.7.7.7) is the polymerase responsible for the replication of the Escherichia coli chromosome. The holoenzyme is composed of the DNA polymerase III core, the sliding clamp, and the DnaX clamp loading complex. The DnaX complex contains either either the tau or gamma product of gene dnax, complexed to delta.delta' and to chi psi. Chi forms a 1:1 heterodimer with psi. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta' allowing a functional clamp-loading complex to form at physiological subunit concentrations. Psi is responsible for the interaction with DnaX (gamma/tau), but psi is insoluble unless it is in a complex with chi. 131 -335749 pfam04365 BrnT_toxin Ribonuclease toxin, BrnT, of type II toxin-antitoxin system. BrnT is a ribonuclease toxin of a type II toxin-antitoxin system that exhibits a RelE-like fold. The antitoxin that neutralizes this toxin is pfam14384. BrnT is found in bacteria, archaea, bacteriophage, and plasmids. BrnT-BrnA forms a 2:2 tetrameric complex and autoregulates its own expression, which is induced by a number of different environmental stresses. Expression of BrnT alone results in cessation of bacterial growth which can be rescued after subsequent expression of BrnA. 78 -335750 pfam04366 Ysc84 Las17-binding protein actin regulator. Ysc84 is a family of Las17-binding proteins found in metazoa. Together, Las17 and Ysc84 are essential for proper polymerization of actin; Ysc84 is able to bind to and stabilize the actin dimer presented by Las17 and thereby promote polymerization. An active actin cytoskeleton is necessary for adequate endocytosis. (pfam00018), or a FYVE zinc finger (pfam01363). 125 -335751 pfam04367 DUF502 Protein of unknown function (DUF502). Predicted to be an integral membrane protein. 106 -335752 pfam04368 DUF507 Protein of unknown function (DUF507). Bacterial protein of unknown function. 182 -113152 pfam04369 Lactococcin Lactococcin-like family. Family of bacteriocins from lactic acid bacteria. 60 -282256 pfam04370 DUF508 Domain of unknown function (DUF508). This is a family of uncharacterized proteins from C. elegans. 135 -335753 pfam04371 PAD_porph Porphyromonas-type peptidyl-arginine deiminase. Peptidyl-arginine deiminase (PAD) enzymes catalyze the deimination of the guanidino group from carboxy-terminal arginine residues of various peptides to produce ammonia. PAD from Porphyromonas gingivalis (PPAD) appears to be evolutionarily unrelated to mammalian PAD (pfam03068), which is a metalloenzyme. PPAD is thought to belong to the same superfamily as aminotransferase and arginine deiminase, and to form an alpha/beta propeller structure. This family has previously been named PPADH (Porphyromonas peptidyl-arginine deiminase homologs). The predicted catalytic residues in PPAD are Asp130, Asp187, His236, Asp238 and Cys351. These are absolutely conserved with the exception of Asp187 which is absent in two family members. PPAD is also able to catalyze the deimination of free L-arginine, but has primarily peptidyl-arginine specificity. It may have a FMN cofactor. 326 -335754 pfam04375 HemX HemX, putative uroporphyrinogen-III C-methyltransferase. This is a family of bacterial putative uroporphyrinogen-III C-methyltransferase proteins. It forms one of the members of a complex of proteins involved in the biogenesis of the inner membrane in E.coli. Uroporphorphyrin-III C-methyltransferase (HemX) is a single spanning inner membrane protein that regulates the activity of NAD(P)H:glutamyl-tRNA reductase (HemA) in the tetrapyrrole biosynthesis pathway. 338 -335755 pfam04376 ATE_N Arginine-tRNA-protein transferase, N-terminus. This family represents the N terminal region of the enzyme arginine-tRNA-protein transferase (EC 2.3.2.8), which catalyzes the post-translational conjugation of arginine to the N-terminus of a protein. In eukaryotes, this functions as part of the N-end rule pathway of protein degradation by conjugating a de-stabilizing amino acid to the amino terminal aspartate or glutamate of a protein, targeting the protein for ubiquitin-dependent proteolysis. N terminal cysteine is sometimes modified. In S cerevisiae, Cys20, 23, 94 and/or 95 are thought to be important for activity. Of these, only Cys 94 appears to be completely conserved in this family. 71 -335756 pfam04377 ATE_C Arginine-tRNA-protein transferase, C-terminus. This family represents the C terminal region of the enzyme arginine-tRNA-protein transferase (EC 2.3.2.8), which catalyzes the post-translational conjugation of arginine to the N-terminus of a protein. In eukaryotes, this functions as part of the N-end rule pathway of protein degradation by conjugating a destabilizing amino acid to the amino terminal aspartate or glutamate of a protein, targeting the protein for ubiquitin-dependent proteolysis. N terminal cysteine is sometimes modified. 121 -282261 pfam04378 RsmJ Ribosomal RNA large subunit methyltransferase D, RlmJ. RlmJ is ribosomal RNA large subunit methyltransferase J is required for full methylation of 23S ribosomal RNA (rRNA) during ribosome biogenesis. The ribosomal RNA of E. coli carries 24 residues that require methylation, and this methyltransferase is the last to be described, that modifies A2030. RlmJ displays a variant of the Rossmann-like methyltransferase (MTase) fold with an inserted helical subdomain. On binding cofactor and substrate a large shift of the N-terminal motif X tail is induced in order to make it cover the cofactor-binding site and to trigger active-site changes in motifs IV and VIII. 245 -335757 pfam04379 DUF525 ApaG domain. Members of this family include the bacterial protein ApaG and the C termini of some F-box proteins (pfam00646). F-box proteins contain a carboxyl-terminal domain that interacts with protein substrates, so this family may be involved in protein-protein interaction. The function of ApaG proteins is unknown, but mutations in the Salmonella typhimurium ApaG homolog corD gives a phenotype of low-level cobalt resistance and decreased magnesium efflux by effects on the CorA magnesium transport system. 87 -335758 pfam04380 BMFP Membrane fusogenic activity. BMFP consists of two structural domains, a coiled-coil C-terminal domain via which the protein self-associates as a trimer, and an N-terminal domain disordered at neutral pH but adopting an amphipathic alpha-helical structure in the presence of phospholipid vesicles, high ionic strength, acidic pH or SDS. BMFP interacts with phospholipid vesicles though the predicted amphipathic alpha-helix induced in the N-terminal half of the protein and promotes aggregation and fusion of vesicles in vitro. 70 -335759 pfam04381 RdgC Putative exonuclease, RdgC. Members of the RdgC family may have exonuclease activity. RdgC is required for efficient pilin variation in Neisseria gonorrhoeae, suggesting that it may be involved in recombination reactions. In Escherichia coli, RdgC is required for growth in recombination-deficient exonuclease-depleted strains. Under these conditions, RdgC may act as an exonuclease to remove collapsed replication forks, in the absence of the normal repair mechanisms. 297 -309500 pfam04382 SAB SAB domain. This presumed domain is found in proteins containing FERM domains pfam00373. This domain is found to bind to both spectrin and actin, hence the name SAB (Spectrin and Actin Binding) domain. 47 -335760 pfam04383 KilA-N KilA-N domain. The amino-terminal module of the D6R/N1R proteins defines a novel, conserved DNA-binding domain (the KilA-N domain) that is found in a wide range of proteins of large bacterial and eukaryotic DNA viruses. The KilA-N domain family also includes the previously defined APSES domain. The KilA-N and APSES domains may also share a common fold with the nucleic acid-binding modules of the LAGLIDADG nucleases and the amino-terminal domains of the tRNA endonuclease. 106 -335761 pfam04384 Fe-S_assembly Iron-sulphur cluster assembly. This family of proteins is likely to be involved in the assembly of iron-sulphur clusters. It may function as an adaptor protein. In Escherichia coli IscX forms part of the isc operon, which encodes genes involved in iron-sulphur cluster assembly. Its structure is entirely alpha helical, and it contains a modified wing-helix structure, usually found in DNA-binding proteins. It binds to Fe2+ and Fe3+ ions and to the cysteine desulfurase IscS, the same surface of the protein is involved in both binding to iron and to IscS. 63 -252557 pfam04385 FAINT Domain of unknown function, DUF529. This family represents a repeated region found in several Theileria parva proteins. The repeat is normally about 70 residues long and contains a conserved aromatic residue in the middle. 78 -335762 pfam04386 SspB Stringent starvation protein B. Escherichia coli stringent starvation protein B (SspB), is thought to enhance the specificity of degradation of tmRNA-tagged proteins by the ClpXP protease. The tmRNA tag, also known as ssrA, is an 11-aa peptide added to the C-terminus of proteins stalled during translation, targets proteins for degradation by ClpXP and ClpAP. SspB a cytoplasmic protein that specifically binds to residues 1-4 and 7 of the tag. Binding of SspB enhances degradation of tagged proteins by ClpX, and masks sequence elements important for ClpA interactions, inhibiting degradation by ClpA. However, more recent work has cast doubt on the importance of SspB in wild-type cells. SspB is encoded in an operon whose synthesis is stimulated by carbon, amino acid, and phosphate starvation. SspB may play a special role during nutrient stress, for example by ensuring rapid degradation of the products of stalled translation, without causing a global increase in degradation of all ClpXP substrates. 114 -335763 pfam04387 PTPLA Protein tyrosine phosphatase-like protein, PTPLA. This family includes the mammalian protein tyrosine phosphatase-like protein, PTPLA. A significant variation of PTPLA from other protein tyrosine phosphatases is the presence of proline instead of catalytic arginine at the active site. It is thought that PTPLA proteins have a role in the development, differentiation, and maintenance of a number of tissue types. 162 -309505 pfam04388 Hamartin Hamartin protein. This family includes the hamartin protein which is thought to function as a tumor suppressor. The hamartin protein interacts with the tuberin protein pfam03542. Tuberous sclerosis complex (TSC) is an autosomal dominant disorder and is characterized by the presence of hamartomas in many organs, such as brain, skin, heart, lung, and kidney. It is caused by mutation either TSC1 or TSC2 tumor suppressor gene. TSC1 encodes a protein, hamartin, containing two coiled-coil regions, which have been shown to mediate binding to tuberin. The TSC2 gene codes for tuberin pfam03542. These two proteins function within the same pathway(s) regulating cell cycle, cell growth, adhesion, and vesicular trafficking. 726 -335764 pfam04389 Peptidase_M28 Peptidase family M28. 194 -335765 pfam04390 LptE Lipopolysaccharide-assembly. LptE (formerly known as RplB) is involved in lipopolysaccharide-assembly on the outer membrane of Gram-negative organisms. The lipopolysaccharide component of the outer bacterial membrane is transported from its source of origin to the outer membrane by a set of proteins constituting a transport machinery that is made up of LptA, LptB, LptC, LptD, LptE. LptD appears to be anchored in the outer membrane, and LptE forms a complex with it. This part of the machinery complex is involved in the assembly of lipopolysaccharide in the outer leaflet of the outer membrane. 84 -335766 pfam04391 DUF533 Protein of unknown function (DUF533). Some family members may be secreted or integral membrane proteins. 179 -282274 pfam04392 ABC_sub_bind ABC transporter substrate binding protein. This family contains many hypothetical proteins and some ABC transporter substrate binding proteins. 293 -335767 pfam04393 DUF535 Protein of unknown function (DUF535). Family member Shigella flexneri VirK is a virulence protein required for the expression, or correct membrane localization of IcsA (VirG) on the bacterial cell surface,. This family also includes Pasteurella haemolytica lapB, which is thought to be membrane-associated. 280 -282276 pfam04394 DUF536 Protein of unknown function, DUF536. This family aligns the C-terminal region from several bacterial proteins of unknown function that may be involved in a theta-type replication mechanism. 43 -282277 pfam04395 Poxvirus_B22R Poxvirus B22R protein. This is highly conserved C-rich, central region of poxvirus proteins from eg, Fowlpox virus, Myxoma virus, Lumpy skin disease, Variola virus and other members of the Poxviridae family of double-stranded, no-RNA stage poxviruses. There are three pairs of conserved cysteine residues. 204 -335768 pfam04397 LytTR LytTr DNA-binding domain. This domain is found in a variety of bacterial transcriptional regulators. The domain binds to a specific DNA sequence pattern. 98 -335769 pfam04398 DUF538 Protein of unknown function, DUF538. This family consists of several plant proteins of unknown function. 106 -335770 pfam04399 Glutaredoxin2_C Glutaredoxin 2, C terminal domain. Glutaredoxins are a multifunctional family of glutathione-dependent disulphide oxidoreductases. Unlike other glutaredoxins, glutaredoxin 2 (Grx2) cannot reduce ribonucleotide reductase. Grx2 has significantly higher catalytic activity in the reduction of mixed disulphides with glutathione (GSH) compared with other glutaredoxins. The active site residues (Cys9-Pro10-Tyr11-Cys12, in Escherichia coli Grx2), which are found at the interface between the N- and C-terminal domains are identical to other glutaredoxins, but there is no other similarity between glutaredoxin 2 and other glutaredoxins. Grx2 is structurally similar to glutathione-S-transferases (GST), but there is no obvious sequence similarity. The inter-domain contacts are mainly hydrophobic, suggesting that the two domains are unlikely to be stable on their own. Both domains are needed for correct folding and activity of Grx2. It is thought that the primary function of Grx2 is to catalyze reversible glutathionylation of proteins with GSH in cellular redox regulation including the response to oxidative stress. 130 -309512 pfam04400 NqrM (Na+)-NQR maturation NqrM. The NqrM gene is often found adjacent to the nqr operons that encode (Na+)-NQR subunits. It is involved in the maturation of (Na+) translocating NADH:quinone oxidoreductase in proteobacteria. The four conserved Cys residues found in NqrM are required for (Na+)- NQR maturation and may serve as ligands for a metal ion or metal cluster used to build up the (Na+)-NQR molecule. 41 -335771 pfam04402 SIMPL Protein of unknown function (DUF541). Members of this family have so far been found in bacteria and mouse SwissProt or TrEMBL entries. However possible family members have also been identified in translated rat (Genbank:AW144450) and human (Genbank:AI478629) ESTs. A mouse family member has been named SIMPL (signalling molecule that associates with mouse pelle-like kinase). SIMPL appears to facilitate and/or regulate complex formation between IRAK/mPLK (IL-1 receptor-associated kinase) and IKK (inhibitor of kappa-B kinase) containing complexes, and thus regulate NF-kappa-B activity. Separate experiments demonstrate that a mouse family member (named LaXp180) binds the Listeria monocytogenes surface protein ActA, which is a virulence factor that induces actin polymerization. It may also bind stathmin, a protein involved in signal transduction and in the regulation of microtubule dynamics. In bacteria its function is unknown, but it is thought to be located in the periplasm or outer membrane. 118 -335772 pfam04403 PqiA Paraquat-inducible protein A. Paraquat is a superoxide radical-generating agent. The promoter for the pqiA gene is also inducible by other known superoxide generators. This is predicted to be a family of integral membrane proteins, possibly located in the inner membrane. This family is related to NADH dehydrogenase subunit 2 (pfam00361). 155 -309515 pfam04404 ERF ERF superfamily. The DNA single-strand annealing proteins (SSAPs), such as RecT, Red-beta, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. This family includes proteins related to ERF. 151 -335773 pfam04405 ScdA_N Domain of Unknown function (DUF542). This domain is always found in conjunction with the HHE domain (pfam03794) at the N-terminus. 55 -335774 pfam04406 TP6A_N Type IIB DNA topoisomerase. Type II DNA topoisomerases are ubiquitous enzymes that catalyze the ATP-dependent transport of one DNA duplex through a second DNA segment via a transient double-strand break. Type II DNA topoisomerases are now subdivided into two sub-families, type IIA and IIB DNA topoisomerases. TP6A_N is present in type IIB topoisomerase and is thought to be involved in DNA binding owing to its sequence similarity to E. coli catabolite activator protein (CAP). 59 -309518 pfam04407 DUF531 Protein of unknown function (DUF531). Family of hypothetical archaeal proteins. 170 -335775 pfam04408 HA2 Helicase associated domain (HA2). This presumed domain is about 90 amino acid residues in length. It is found is a diverse set of RNA helicases. Its function is unknown, however it seems likely to be involved in nucleic acid binding. 60 -282289 pfam04409 DUF530 Protein of unknown function (DUF530). Family of hypothetical archaeal proteins. 521 -335776 pfam04410 Gar1 Gar1/Naf1 RNA binding region. Gar1 is a small nucleolar RNP that is required for pre-mRNA processing and pseudouridylation. It is co-immunoprecipitated with the H/ACA families of snoRNAs. This family represents the conserved central region of Gar1. This region is necessary and sufficient for normal cell growth, and specifically binds two snoRNAs snR10 and snR30. This region is also necessary for nucleolar targeting, and it is thought that the protein is co-transported to the nucleolus as part of a nucleoprotein complex. In humans, Gar1 is also component of telomerase in vivo. Naf1 is an essential protein that plays a role in ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis, and is homologous to Gar1. 150 -309521 pfam04411 PDDEXK_7 PD-(D/E)XK nuclease superfamily. This domain has been identified as a member of the PD-(D/E)XK nuclease superfamily through transitive meta profile searches. The domain has two additional beta-strands inserted to the core fold after the first core alpha-helix. It has been speculated that it could function as s methylation-dependent restriction. The domain has two additional beta-strands inserted into the core fold after the first core alpha-helix. The PD-(D/E)XK signature is clearly conserved corresponding to an invariant PD (motif II) and DAK (motif III) motifs. There is also a conserved glutamic acid in motif I that is most likely to be involved in metal ion binding. The second core alpha-helix contains an invariant MHXYRD motif. It has been speculated that it could function as s methylation-dependent restriction enzyme. 161 -335777 pfam04412 DUF521 Protein of unknown function (DUF521). Family of hypothetical proteins. 393 -335778 pfam04413 Glycos_transf_N 3-Deoxy-D-manno-octulosonic-acid transferase (kdotransferase). Members of this family transfer activated sugars to a variety of substrates, including glycogen, fructose-6-phosphate and lipopolysaccharides. Members of the family transfer UDP, ADP, GDP or CMP linked sugars. The Glycos_transf_N region is flanked at the N-terminus by a signal peptide and at the C-terminus by Glycos_transf_1 (pfam00534). The eukaryotic glycogen synthases may be distant members of this bacterial family. 176 -335779 pfam04414 tRNA_deacylase D-aminoacyl-tRNA deacylase. Several aminoacyl-tRNA synthetases have the ability to transfer the D-isomer of their amino acid onto their cognate tRNA. D-aminoacyl-tRNA deacylases hydrolyze the ester bond between the polynucleotide and the D-amino acid, thereby preventing the accumulation of such mis-acylated and metabolically inactive tRNA molecules. 200 -282295 pfam04415 DUF515 Protein of unknown function (DUF515). Family of hypothetical Archaeal proteins. 449 -335780 pfam04417 DUF501 Protein of unknown function (DUF501). Family of uncharacterized bacterial proteins. 138 -309526 pfam04418 DUF543 Domain of unknown function (DUF543). This family of short eukaryotic proteins has no known function. Most of the members of this family are only 80 amino acid residues long. However the Arabidopsis homolog is over 300 residues long. The presumed domain contains a conserved amino terminal cysteine and a conserved motif GXGXGXG in the carboxy terminal half that may be functionally important. 74 -309527 pfam04419 4F5 4F5 protein family. Members of this family are short proteins that are rich in aspartate, glutamate, lysine and arginine. Although the function of these proteins is unknown, they are found to be ubiquitously expressed. 38 -309528 pfam04420 CHD5 CHD5-like protein. Members of this family are probably coiled-coil proteins that are similar to the CHD5 (Congenital heart disease 5) protein. In Saccharomyces cerevisiae this protein localizes to the ER and is thought to play a homeostatic role. 158 -309529 pfam04421 Mss4 Mss4 protein. 86 -335781 pfam04422 FrhB_FdhB_N Coenzyme F420 hydrogenase/dehydrogenase, beta subunit N-term. Coenzyme F420 hydrogenase (EC:1.12.99.1) reduces the low-potential two-electron acceptor coenzyme F420. This family contains the N termini of F420 hydrogenase and dehydrogenase beta subunits,. The N-terminus of Methanobacterium formicicum formate dehydrogenase beta chain (EC:1.2.1.2) is also a member of this family. This region is often found in association with the 4Fe-4S binding domain, fer4 (pfam00037). 79 -309531 pfam04423 Rad50_zn_hook Rad50 zinc hook motif. The Mre11 complex (Mre11 Rad50 Nbs1) is central to chromosomal maintenance and functions in homologous recombination, telomere maintenance and sister chromatid association. The Rad50 coiled-coil region contains a dimer interface at the apex of the coiled coils in which pairs of conserved Cys-X-X-Cys motifs form interlocking hooks that bind one Zn ion. This alignment includes the zinc hook motif and a short stretch of coiled-coil on either side. 49 -335782 pfam04424 MINDY_DUB MINDY deubiquitinase. This entry represents a group of deubiquitinating (DUB) enzymes known as the MINDY family (MIU-containing novel DUB). Ubiquitin (Ub) is released one molecule at a time from the distal end of proteins with Lys48-linked polyubiquitin chains. Long polyubiquitin chains are preferred. The catalytic Cys and His residues have been identified by site-directed mutagenesis, as has the Gln that participates in formation of the oxyanion hole during catalysis. Despite the structural similarity to papain-like cysteine peptidases, a residue corresponding to the Asn that orientates the imidazolium ring of the catalytic His has not been identified. Members of the MINDY family of DUBs contain an MIU (motif interacting with Ub) motif, which is a helical motif that binds mono-Ub. 111 -309533 pfam04425 Bul1_N Bul1 N-terminus. This family contains the N-terminus of Saccharomyces cerevisiae Bul1. Bul1 binds the ubiquitin ligase Rsp5, via an N terminal PPSY motif. The complex containing Bul1 and Rsp5 is involved in intracellular trafficking of the general amino acid permease Gap1, degradation of Rog1 in cooperation with Bul2 and GSK-3, and mitochondrial inheritance. Bul1 may contain HEAT repeats. 449 -309534 pfam04426 Bul1_C Bul1 C-terminus. This family contains the C-terminus of Saccharomyces cerevisiae Bul1. Bul1 binds the ubiquitin ligase Rsp5, via an N terminal PPSY motif. The complex containing Bul1 and Rsp5 is involved in intracellular trafficking of the general amino acid permease Gap1, degradation of Rog1 in cooperation with Bul2 and GSK-3, and mitochondrial inheritance. Bul1 may contain HEAT repeats. 271 -335783 pfam04427 Brix Brix domain. 174 -282307 pfam04428 Choline_kin_N Choline kinase N-terminus. Found N terminal to choline/ethanolamine kinase regions (pfam01633) in some plant and fungal choline kinase enzymes (EC:2.7.1.32). This region is only found in some members of the choline kinase family, and is therefore unlikely to contribute to catalysis. 51 -335784 pfam04430 DUF498 Protein of unknown function (DUF498/DUF598). This is a large family of uncharacterized proteins found in all domains of life. The structure shows a novel fold with three beta sheets. A dimeric form is found in the crystal structure. It was suggested that the cleft in between the two monomers might bing nucleic acid. 105 -335785 pfam04431 Pec_lyase_N Pectate lyase, N-terminus. This region is found N terminal to the pectate lyase domain (pfam00544) in some plant pectate lyase enzymes. 52 -335786 pfam04432 FrhB_FdhB_C Coenzyme F420 hydrogenase/dehydrogenase, beta subunit C-terminus. Coenzyme F420 hydrogenase (EC:1.12.99.1) reduces the low-potential two-electron acceptor coenzyme F420. This family contains the C termini of F420 hydrogenase and dehydrogenase beta subunits,. The N-terminus of Methanobacterium formicicum formate dehydrogenase beta chain (EC:1.2.1.2) is also a member of this family. This region is often found in association with the 4Fe-4S binding domain, fer4 (pfam00037). 149 -335787 pfam04433 SWIRM SWIRM domain. This SWIRM domain is a small alpha-helical domain of about 85 amino acid residues found in chromosomal proteins. It contains a helix-turn helix motif and binds to DNA. 75 -309540 pfam04434 SWIM SWIM zinc finger. This domain is found in bacterial, archaeal and eukaryotic proteins. It is predicted to be organized into two N-terminal beta-strands and a C-terminal alpha helix, thus possibly adopting a fold similar to that of the C2H2 zinc finger (pfam00096). SWIM is thought to be a versatile domain that can interact with DNA or proteins in different contexts. 38 -309541 pfam04435 SPK Domain of unknown function (DUF545). Family of uncharacterized C. elegans proteins. The region represented by this family can is found to be repeated up to four time in some proteins. 104 -309542 pfam04437 RINT1_TIP1 RINT-1 / TIP-1 family. This family includes RINT-1, a Rad50 interacting protein which participates in radiation induced checkpoint control, as well as the TIP-1 protein from yeast that seems to be involved in a complex with Sec20p that is required for Golgi transport. 495 -335788 pfam04438 zf-HIT HIT zinc finger. This presumed zinc finger contains up to 6 cysteine residues that could coordinate zinc. The domain is named after the HIT protein. This domain is also found in the Thyroid receptor interacting protein 3 (TRIP-3) that specifically interact with the ligand binding domain of the thyroid receptor. 30 -335789 pfam04439 Adenyl_transf Streptomycin adenylyltransferase. Also known as Aminoglycoside 6- adenylyltransferase (EC:2.7.7.-), this protein confers resistance to aminoglycoside antibiotics. 278 -309545 pfam04440 Dysbindin Dysbindin (Dystrobrevin binding protein 1). Dysbindin is an evolutionary conserved 40-kDa coiled-coil-containing protein that binds to alpha- and beta-dystrobrevin in muscle and brain. Dystrophin and alpha-dystrobrevin are co-immunoprecipitated with dysbindin, indicating that dysbindin is DPC-associated in muscle. Dysbindin co-localizes with alpha-dystrobrevin at the sarcolemma and is up-regulated in dystrophin-deficient muscle. In the brain, dysbindin is found primarily in axon bundles and especially in certain axon terminals, notably mossy fibre synaptic terminals in the cerebellum and hippocampus. Dysbindin may have implications for the molecular pathology of Duchenne muscular dystrophy and may provide an alternative route for anchoring dystrobrevin and the DPC to the muscle membrane. Genetic variation in the human dysbindin gene is also thought to be associated with Schizophrenia. 144 -282317 pfam04441 Pox_VERT_large Poxvirus early transcription factor (VETF), large subunit. The poxvirus early transcription factor (VETF), in addition to the viral RNA polymerase, is required for efficient transcription of early genes in vitro. VETF is a heterodimeric protein that binds specifically to early gene promoters. The heterodimer is comprised of an 82 kDa (this family) subunit and a 70 kDa subunit. 697 -335790 pfam04442 CtaG_Cox11 Cytochrome c oxidase assembly protein CtaG/Cox11. Cytochrome c oxidase assembly protein is essential for the assembly of functional cytochrome oxidase protein. In eukaryotes it is an integral protein of the mitochondrial inner membrane. Cox11 is essential for the insertion of Cu(I) ions to form the CuB site. This is essential for the stability of other structures in subunit I, for example haems a and a3, and the magnesium/manganese centre. Cox11 is probably only required in sub-stoichiometric amounts relative to the structural units. The C terminal region of the protein is known to form a dimer. Each monomer coordinates one Cu(I) ion via three conserved cysteine residues (111, 208 and 210) in Saccharomyces cerevisiae. Met 224 is also thought to play a role in copper transfer or stabilizing the copper site. 146 -282319 pfam04443 LuxE Acyl-protein synthetase, LuxE. LuxE is an acyl-protein synthetase found in bioluminescent bacteria. LuxE catalyzes the formation of an acyl-protein thioester from a fatty acid and a protein. This is the second step in the bioluminescent fatty acid reduction system, which converts tetradecanoic acid to the aldehyde substrate of the luciferase-catalyzed bioluminescence reaction A conserved cysteine found at position 364 in Photobacterium phosphoreum LuxE is thought to be acylated during the transfer of the acyl group from the synthetase subunit to the reductase. The carboxyl terminal of the synthetase is though to act as a flexible arm to transfer acyl groups between the sites of activation and reduction. This family also includes Vibrio cholerae RBFN protein, which is involved in the biosynthesis of the O-antigen component 3-deoxy-L-glycero-tetronic acid. 386 -335791 pfam04444 Dioxygenase_N Catechol dioxygenase N-terminus. This family consists of the N termini of catechol, chlorocatechol or hydroxyquinol 1,2-dioxygenase proteins. This region is always found adjacent to the dioxygenase domain (pfam00775). 75 -309548 pfam04445 SAM_MT Putative SAM-dependent methyltransferase. This is a family of putative SAM-dependent methyltransferases. 230 -309549 pfam04446 Thg1 tRNAHis guanylyltransferase. The Thg1 protein from Saccharomyces cerevisiae is responsible for adding a GMP residue to the 5' end of tRNA His. The catalytic domain Thg1 contains a RRM (ferredoxin) fold palm domain, just like the viral RNA-dependent RNA polymerases, reverse transcriptases, family A and B DNA polymerases, adenylyl cyclases, diguanylate cyclases (GGDEF domain) and the predicted polymerase of the CRISPR system. Thg1 possesses an active site with three acidic residues that chelate Mg++ cations. Thg1 catalyzes polymerization similar to the 5'-3' polymerases. 127 -335792 pfam04447 DUF550 Protein of unknown function (DUF550). This family is found in a range of Proteobacteria and a few P-22 dsDNA virus particles. The function is currently not known. 97 -335793 pfam04448 DUF551 Protein of unknown function (DUF551). This family represents the carboxy terminus of a protein of unknown function, found in dsDNA viruses with no RNA stage, including bacteriophages lambda and P22, and also in some Escherichia coli prophages. 66 -335794 pfam04449 Fimbrial_CS1 CS1 type fimbrial major subunit. Fimbriae, also known as pili, form filaments radiating from the surface of the bacterium to a length of 0.5-1.5 micrometres. They enable the cell to colonise host epithelia. This family constitutes the major subunits of CS1 like pili, including CS2 and CFA1 from Escherichia coli, and also the Cable type II pilin major subunit from Burkholderia cepacia. The major subunit of CS1 pili is called CooA. Periplasmic CooA is mostly complexed with the assembly protein CooB. In addition, a small pool of CooA multimers, and CooA-CooD complexes exists, but the functional significance is unknown. A member of this family has also been identified in Salmonella typhi and Salmonella enterica. 138 -335795 pfam04450 BSP Peptidase of plants and bacteria. These basic secretory proteins (BSPs) are believed to be part of the plants defense mechanism against pathogens. 203 -282327 pfam04451 Capsid_NCLDV Large eukaryotic DNA virus major capsid protein. This family includes the major capsid protein of iridoviruses, chlorella virus and Spodoptera ascovirus, which are all dsDNA viruses with no RNA stage. This is the most abundant structural protein and can account for up to 45% of virion protein. In Chlorella virus PBCV-1 the major capsid protein is a glycoprotein. The four families of large eukaryotic DNA viruses, Poxviridae, Asfarviridae, Iridoviridae, and Phycodnaviridae, are referred to collectively as nucleocytoplasmic large DNA viruses or NCLDV. The virions of different NCLDV have dramatically different structures. The major capsid proteins of iridoviruses and phycodnaviruses, both of which have icosahedral capsids surrounding an inner lipid membrane, showed a high level of sequence conservation. A more limited, but statistically significant sequence similarity was observed between these proteins and the major capsid protein (p72) of ASFV, which also has an icosahedral capsid. It was surprising, however, to find that all of these proteins shared a conserved domain with the poxvirus protein D13L, which is an integral virion component thought to form a scaffold for the formation of viral crescents and immature virion. 192 -309554 pfam04452 Methyltrans_RNA RNA methyltransferase. RNA methyltransferases modify nucleotides during ribosomal RNA maturation in a site-specific manner. The Escherichia coli member is specific for U1498 methylation. 221 -335796 pfam04453 OstA_C Organic solvent tolerance protein. Family involved in organic solvent tolerance in bacteria. The region contains several highly conserved, potentially catalytic, residues. 384 -335797 pfam04454 Linocin_M18 Encapsulating protein for peroxidase. The Linocin_M18 is found in eubacteria and archaea. These proteins, referred to as encapsulins, form nanocompartments within the bacterium which contain ferritin-like proteins or peroxidases, enzymes involved in oxidative-stress response. These enzymes are targeted to the interior of encapsulins via unique C-terminal extensions. 253 -335798 pfam04455 Saccharop_dh_N LOR/SDH bifunctional enzyme conserved region. Lysine-oxoglutarate reductase/Saccharopine dehydrogenase (LOR/SDH) is a bifunctional enzyme. This conserved region is commonly found immediately N-terminal to Saccharop_dh (pfam03435) in eukaryotes. 92 -335799 pfam04456 DUF503 Protein of unknown function (DUF503). Family of hypothetical bacterial proteins. 82 -309559 pfam04457 DUF504 Protein of unknown function (DUF504). Family of uncharacterized proteins. 54 -309560 pfam04458 DUF505 Protein of unknown function (DUF505). Family of uncharacterized prokaryotic proteins. 618 -309561 pfam04459 DUF512 Protein of unknown function (DUF512). Family of uncharacterized prokaryotic proteins. 202 -335800 pfam04461 DUF520 Protein of unknown function (DUF520). Family of uncharacterized proteins. 161 -335801 pfam04463 DUF523 Protein of unknown function (DUF523). Family of uncharacterized bacterial proteins. 141 -282338 pfam04464 Glyphos_transf CDP-Glycerol:Poly(glycerophosphate) glycerophosphotransferase. Wall-associated teichoic acids are a heterogeneous class of phosphate-rich polymers that are covalently linked to the cell wall peptidoglycan of gram-positive bacteria. They consist of a main chain of phosphodiester-linked polyols and/or sugar moieties attached to peptidoglycan via a linkage unit. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase is responsible for the polymerization of the main chain of the teichoic acid by sequential transfer of glycerol-phosphate units from CDP-glycerol to the linkage unit lipid. 360 -282339 pfam04465 DUF499 Protein of unknown function (DUF499). Family of uncharacterized hypothetical prokaryotic proteins. 1017 -335802 pfam04466 Terminase_3 Phage terminase large subunit. Initiation of packaging of double-stranded viral DNA involves the specific interaction of the prohead with viral DNA in a process mediated by a phage-encoded terminase protein. The terminase enzymes are usually hetero-oligomers composed of a small and a large subunit. This region is found on the large subunit and possess an endonuclease and ATPase activity that require Mg2+ and a neutral or slightly basic reaction. This region is also found in bacterial sequences. 201 -309564 pfam04467 DUF483 Protein of unknown function (DUF483). Family of uncharacterized prokaryotic proteins. 119 -335803 pfam04468 PSP1 PSP1 C-terminal conserved region. This region is present in both eukaryotes and eubacteria. The yeast PSP1 protein is involved in suppressing mutations in the DNA polymerase alpha subunit in yeast. 86 -335804 pfam04471 Mrr_cat Restriction endonuclease. Prokaryotic family found in type II restriction enzymes containing the hallmark (D/E)-(D/E)XK active site. Presence of catalytic residues implicates this region in the enzymatic cleavage of DNA. 115 -335805 pfam04472 SepF Cell division protein SepF. SepF accumulates at the cell division site in an FtsZ-dependent manner and is required for proper septum formation. Mutants are viable but the formation of the septum is much slower and occurs with a very abnormal morphology. This family also includes archaeal related proteins of unknown function. 71 -282345 pfam04473 DUF553 Transglutaminase-like domain. This family of uncharacterized archaeal proteins are related to Transglutaminase-like domains. This family has previously been called DUF553 and UPF0252. 140 -335806 pfam04474 DUF554 Protein of unknown function (DUF554). Family of uncharacterized prokaryotic proteins. Multiple predicted transmembrane regions suggest that the region is membrane associated. 221 -309569 pfam04475 DUF555 Protein of unknown function (DUF555). Family of uncharacterized, hypothetical archaeal proteins. 101 -335807 pfam04476 4HFCP_synth 4-HFC-P synthase. (5-formylfuran-3-yl)methyl phosphate synthase, also known as 4-HFC-P synthase, is involved in the production of methanofuran. This family has a classical TIM-barrel structure whose biological unit is a homohexamer. 228 -282349 pfam04478 Mid2 Mid2 like cell wall stress sensor. This family represents a region near the C-terminus of Mid2, which contains a transmembrane region. The remainder of the protein sequence is serine-rich and of low complexity, and is therefore impossible to align accurately. Mid2 is thought to act as a mechanosensor of cell wall stress. The C-terminal cytoplasmic region of Mid2 is known to interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1, which is part of the cell wall integrity signalling pathway. 139 -335808 pfam04479 RTA1 RTA1 like protein. This family is comprised of fungal proteins with multiple transmembrane regions. RTA1 is involved in resistance to 7-aminocholesterol, while RTM1 confers resistance to an an unknown toxic chemical in molasses. These proteins may bind to the toxic substance, and thus prevent toxicity. They are not thought to be involved in the efflux of xenobiotics. 213 -282351 pfam04480 DUF559 Protein of unknown function (DUF559). 95 -113257 pfam04481 DUF561 Protein of unknown function (DUF561). Protein of unknown function found in a cyanobacterium, and the chloroplasts of algae. 243 -309572 pfam04483 DUF565 Protein of unknown function (DUF565). Predicted transmembrane protein found in plants, chloroplasts and cyanobacteria. This family is also known as YCF20. 57 -335809 pfam04484 QWRF QWRF family. AUG8 belongs to the plant QWRF motif-containing protein family, which also includes microtubule-associated protein ENDOSPERM DEFECTIVE 1 and SNOWY COTYLEDON 3. AUG8 binds the microtubule plus-end and participates in the reorientation of microtubules in hypocotyls (the stem of a germinating seedling). 303 -309574 pfam04485 NblA Phycobilisome degradation protein nblA. In the cyanobacterium Synechococcus PCC 7942, nblA triggers degradation of light-harvesting phycobiliproteins in response to deprivation nutrients including nitrogen, phosphorus and sulphur. The mechanism of nblA function is not known, but it has been hypothesized that nblA may act by disrupting phycobilisome structure, activating a protease or tagging phycobiliproteins for proteolysis. Members of this family have also been identified in the chloroplasts of some red algae. 50 -309575 pfam04486 SchA_CurD SchA/CurD like domain. Members of this family have only been identified in species of the Streptomyces genus. Two family members are known to be part of gene clusters involved in the synthesis of polyketide-based spore pigments, homologous to clusters involved in the synthesis of polyketide antibiotics. The function of this protein is unknown, but it has been speculated to contain a NAD(P) binding site. Many of these proteins contain two copies of this presumed domain. 112 -309576 pfam04487 CITED CITED. CITED, CBP/p300-interacting transactivator with ED-rich tail, are characterized by a conserved 32-amino acid sequence at the C-terminus. CITED proteins do not bind DNA directly and are thought to function as transcriptional co-activators. 211 -309577 pfam04488 Gly_transf_sug Glycosyltransferase sugar-binding region containing DXD motif. The DXD motif is a short conserved motif found in many families of glycosyltransferases, which add a range of different sugars to other sugars, phosphates and proteins. DXD-containing glycosyltransferases all use nucleoside diphosphate sugars as donors and require divalent cations, usually manganese. The DXD motif is expected to play a carbohydrate binding role in sugar-nucleoside diphosphate and manganese dependent glycosyltransferases. 93 -282358 pfam04489 DUF570 Protein of unknown function (DUF570). Protein of unknown function, found in herpesvirus and cytomegalovirus. 456 -282359 pfam04490 Pox_T4_C Poxvirus T4 protein, C-terminus. This family of poxvirus proteins are thought to be retained in the endoplasmic reticulum. M-T4 of myxoma virus is thought to protect infected lymphocytes from apoptosis and modulate the inflammatory response to virus infection. 146 -282360 pfam04491 Pox_T4_N Poxvirus T4 protein, N-terminus. This family of poxvirus proteins are thought to be secreted or retained in the endoplasmic reticulum if the protein also contains an additional C terminal region (pfam04490). M-T4 of myxoma virus is thought to protect infected lymphocytes from apoptosis and modulate the inflammatory response to virus infection. 46 -335810 pfam04492 Phage_rep_O Bacteriophage replication protein O. Replication protein O is necessary for the initiation of bacteriophage DNA replication. Protein O interacts with the lambda replication origin, and also with replication protein P to form an oligomer. It is speculated that the N-terminal half interacts with the replication origin while the C terminal half mediates protein-protein interaction. 92 -335811 pfam04493 Endonuclease_5 Endonuclease V. Endonuclease V is specific for single-stranded DNA or for duplex DNA that contains uracil or that is damaged by a variety of agents. 193 -335812 pfam04494 TFIID_NTD2 WD40 associated region in TFIID subunit, NTD2 domain. This region is an all-alpha domain associated with the WD40 helical bundle of the TAF5 subunit of transcription factor TFIID. The domain has distant structural similarity to RNA polymerase II CTD interacting factors. It contains several conserved clefts that are likely to be critical for TFIID complex assembly. The TAF5 subunit is present twice in the TFIID complex and is critical for the function and assembly of the complex, and the NTD2 and N-terminal domain is crucial for homodimerization. 126 -309581 pfam04495 GRASP55_65 GRASP55/65 PDZ-like domain. GRASP55 (Golgi re-assembly stacking protein of 55 kDa) and GRASP65 (a 65 kDa) protein are highly homologous. GRASP55 is a component of the Golgi stacking machinery. GRASP65, an N-ethylmaleimide- sensitive membrane protein required for the stacking of Golgi cisternae in a cell-free system. This region appears to be related to the PDZ domain. 138 -282365 pfam04496 Herpes_UL35 Herpesvirus UL35 family. UL35 represents a true late gene which encodes a 12-kDa capsid protein. 109 -282366 pfam04497 Pox_E2-like Poxviridae protein. This family of proteins is restricted to Poxviridae. It contains a number of differently named uncharacterized proteins. 729 -282367 pfam04498 Pox_VP8_L4R Poxvirus nucleic acid binding protein VP8/L4R. The 25 kDa product of Vaccinia virus gene L4R is also known as VP8. VP8 is found in the cores of Vaccinia virions and is essential for the formation of transcriptionally competent viral particles. It binds both single stranded and double stranded DNA and RNA with similar affinities. Binding is thought to involve cooperative interactions between protein subunits. The protein is proteolytically cleaved during viral assembly at an Ala-Gly-Ala site. Possible roles for VP8 include packaging and maintaining the DNA genome in a transcribable configuration; binding ssDNA during transcription initiation; and cooperation with I8R protein to unwind early promoter regions. VP8 may also function in either transcription elongation or release of mRNA molecules from viral particles. 217 -309582 pfam04499 SAPS SIT4 phosphatase-associated protein. This family includes a conserved region from a group of yeast proteins that associate with the SIT4 phosphatase. This association is required for SIT4's role in G1 cyclin transcription and for bud formation. This family also includes homologous regions from other eukaryotes. 387 -309583 pfam04500 FLYWCH FLYWCH zinc finger domain. Mutations in the mod(mdg4) gene have effects on variegation (PEV), the properties of insulator sequences, correct path-finding of growing nerve cells, meiotic pairing of chromosomes, and apoptosis. The occurrence of FLYWCH motifs in mod(mdg4) gene product and other proteins is discussed in. 62 -282370 pfam04501 Baculo_VP39 Baculovirus major capsid protein VP39. This family constitutes the 39 kDa major capsid protein of the Baculoviridae. 307 -335813 pfam04502 DUF572 Family of unknown function (DUF572). Family of eukaryotic proteins with undetermined function. 239 -335814 pfam04503 SSDP Single-stranded DNA binding protein, SSDP. This is a family of eukaryotic single-stranded DNA binding proteins with specificity to a pyrimidine-rich element found in the promoter region of the alpha2(I) collagen gene. 293 -335815 pfam04504 DUF573 Protein of unknown function, DUF573. 89 -309587 pfam04505 CD225 Interferon-induced transmembrane protein. This family includes the human leukocyte antigen CD225, which is an interferon inducible transmembrane protein, and is associated with interferon induced cell growth suppression. 68 -309588 pfam04506 Rft-1 Rft protein. 511 -282376 pfam04507 DUF576 Csa1 family. This family contains several uncharacterized staphylococcal proteins. These proteins have been called conserved staphylococcal antigens (Csa). 234 -282377 pfam04508 Pox_A_type_inc Viral A-type inclusion protein repeat. The repeat is found in the A-type inclusion protein of the Poxvirus family. 22 -309589 pfam04509 CheC CheC-like family. The restoration of pre-stimulus levels of the chemotactic response regulator, CheY-P, is important for allowing bacteria to respond to new environmental stimuli. The members of this family, CheC, CheX, CheA and FliY are CheY-P phosphatase. CheC appears to be primarily involved in restoring normal CheY-P levels, whereas FliY seems to act on CheY-P constitutively. CheD enhances the activity of CheC 5-fold, which is normally relatively low. In some cases, the region represented by this entry is present as multiple copies. 38 -309590 pfam04510 DUF577 Family of unknown function (DUF577). Family of Arabidopsis thaliana proteins. Many of these members contain a repeated region. 172 -335816 pfam04511 DER1 Der1-like family. The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilisation of two different substrates for this process. The mutant classes were called 'der' for 'degradation in the ER'. DER1 was cloned by complementation of the der1-2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. Interestingly this family seems distantly related to the Rhomboid family of membrane peptidases. Suggesting that this family may also mediate degradation of misfolded proteins (Bateman A pers. obs.). 191 -282381 pfam04512 Baculo_PEP_N Baculovirus polyhedron envelope protein, PEP, N-terminus. Polyhedra are large crystalline occlusion bodies containing nucleopolyhedrovirus virions, and surrounded by an electron-dense structure called the polyhedron envelope or polyhedron calyx. The polyhedron envelope (associated) protein PEP is thought to be an integral part of the polyhedron envelope. PEP is concentrated at the surface of polyhedra, and is thought to be important for the proper formation of the periphery of polyhedra. It is thought that PEP may stabilize polyhedra and protect them from fusion or aggregation. 97 -309591 pfam04513 Baculo_PEP_C Baculovirus polyhedron envelope protein, PEP, C-terminus. Polyhedra are large crystalline occlusion bodies containing nucleopolyhedrovirus virions, and surrounded by an electron-dense structure called the polyhedron envelope or polyhedron calyx. The polyhedron envelope (associated) protein PEP is thought to be an integral part of the polyhedron envelope. PEP is concentrated at the surface of polyhedra, and is thought to be important for the proper formation of the periphery of polyhedra. It is thought that PEP may stabilize polyhedra and protect them from fusion or aggregation. 140 -282383 pfam04514 BTV_NS2 Bluetongue virus non-structural protein NS2. This family includes NS2 proteins from other members of the Orbivirus genus. NS2 is a non-specific single-stranded RNA-binding protein that forms large homomultimers and accumulates in viral inclusion bodies of infected cells. Three RNA binding regions have been identified in Bluetongue virus serotype 17 at residues 2-11, 153-166 and 274-286. NS2 multimers also possess nucleotidyl phosphatase activity. The precise function of NS2 is not known, but it may be involved in the transport and condensation of viral mRNAs. 349 -335817 pfam04515 Choline_transpo Plasma-membrane choline transporter. This family represents a high-affinity plasma-membrane choline transporter in C.elegans which is thought to be rate-limiting for ACh synthesis in cholinergic nerve terminals. 321 -309593 pfam04516 CP2 CP2 transcription factor. This family represents a conserved region in the CP2 transcription factor family. 223 -282386 pfam04517 Microvir_lysis Microvirus lysis protein (E), C-terminus. E protein causes host cell lysis by inhibiting MraY, a peptidoglycan biosynthesis enzyme. This leads to cell wall failure at septation. The N terminal transmembrane region matches the signal peptide model and must be omitted from the family. 42 -309594 pfam04518 Effector_1 Effector from type III secretion system. This is a family of effector proteins which are secreted by the type III secretion system. The precise function of this family is unknown. 352 -335818 pfam04519 Bactofilin Polymer-forming cytoskeletal. This is a family of bactofilins, a functionally diverse class of cytoskeletal, polymer-forming, proteins that is widely conserved among bacteria. In the example species C. crescentus, two bactofilins assemble into a membrane-associated laminar structure that shows cell-cycle-dependent polar localization and acts as a platform for the recruitment of a cell wall biosynthetic enzyme involved in polar morphogenesis. Bactofilins display distinct subcellular distributions and dynamics in different bacterial species, suggesting that they are versatile structural elements that have adopted a range of different cellular functions. 89 -335819 pfam04520 Senescence_reg Senescence regulator. This protein regulates the expression of proteins associated with leaf senescence in plants. 170 -282390 pfam04521 Viral_P18 ssRNA positive strand viral 18kD cysteine rich protein. 137 -282391 pfam04522 DUF585 Protein of unknown function (DUF585). This region represents the N-terminus of bromovirus 2a protein, and is always found N terminal to a predicted RNA-dependent RNA polymerase region (pfam00978). 234 -282392 pfam04523 Herpes_U30 Herpes virus tegument protein U30. This family is named after the human herpesvirus protein, but has been characterized in cytomegalovirus as UL47. Cytomegalovirus UL47 is a component of the tegument, which is a protein layer surrounding the viral capsid. UL47 co-precipitates with UL48 and UL69 tegument proteins, and the major capsid protein UL86. A UL47-containing complex is thought to be involved in the release of viral DNA from the disassembling virus particle. 906 -309597 pfam04525 LOR LURP-one-related. The structure of this family has been solved. It comprises a 12-stranded beta barrel with a central C-terminal alpha helix. This helix is thought to be a transmembrane helix. It is structurally similar to the C-terminal domain of the Tubby protein. In plants it plays a role in defense against pathogens. 186 -335820 pfam04526 DUF568 Protein of unknown function (DUF568). Family of uncharacterized plant proteins. 98 -309599 pfam04527 Retinin_C Drosophila Retinin like protein. Family of Drosophila proteins related to the C-terminal region of the Drosophila Retinin protein. Conserved region is found towards the C-terminus of the member proteins. 63 -282396 pfam04528 Adeno_E4_34 Adenovirus early E4 34 kDa protein conserved region. Conserved region found in the Adenovirus E4 34 kDa protein. 145 -309600 pfam04529 Herpes_U59 Herpesvirus U59 protein. The proteins in this family have no known function. Cytomegalovirus UL88 is also a member of this family. 365 -282398 pfam04530 Viral_Beta_CD Viral Beta C/D like family. Family of ssRNA positive-strand viral proteins. Conserved region found in the Beta C and Beta D transcripts. 123 -309601 pfam04531 Phage_holin_1 Bacteriophage holin. This family of holins is found in several staphylococcal and streptococcal bacteriophages. Holins are a diverse family of proteins that cause bacterial membrane lysis during late-protein synthesis. It is thought that the temporal precision of holin-mediated lysis may occur through the buildup of a holin oligomer which causes the lysis. 82 -282400 pfam04532 DUF587 Protein of unknown function (DUF587). This family consists of the N termini of some human herpesvirus U58 proteins, and some cytomegalovirus UL87 proteins. This region is always found N terminal to the Pfam family UL87 (pfam03043), which has no known function. 227 -282401 pfam04533 Herpes_U44 Herpes virus U44 protein. This is a family of proteins from dsDNA beta-herpesvirinae and gamma-herpesvirinae viruses. The function is not known, and the proteins are named variously as U44, BSRF1, UL71, and M71. The family BSRF1 has been merged into this. 202 -282402 pfam04534 Herpes_UL56 Herpesvirus UL56 protein. In herpes simplex virus type 2, UL56 is thought to be a tail-anchored type II membrane protein involved in vesicular trafficking. The C terminal hydrophobic region is required for association with the cytoplasmic membrane, and the N terminal proline-rich region is important for the translocation of UL56 to the Golgi apparatus and cytoplasmic vesicles. 197 -309602 pfam04535 DUF588 Domain of unknown function (DUF588). This family of plant proteins contains a domain that may have a catalytic activity. It has a conserved arginine and aspartate that could form an active site. These proteins are predicted to contain 3 or 4 transmembrane helices. 149 -335821 pfam04536 TPM_phosphatase TPM domain. This family was first named TPM domain after its founding proteins: TLP18.3, Psb32 and MOLO-1. In Arabidopsis, this domain is called the thylakoid acid phosphatase -TAP - domain and has a Rossmann-like fold. In plants, the family resides in the thylakoid lumen attached to the outer membrane of the chloroplast/plastid. It is active in the photosystem II. 125 -282405 pfam04537 Herpes_UL55 Herpesvirus UL55 protein. In infected cells, UL55 is associated with the nuclear matrix, and found adjacent to compartments containing the capsid protein ICP35. UL55 was not detected in assembled virions. It is thought that UL55 may play a role in virion assembly or maturation. 164 -309604 pfam04538 BEX Brain expressed X-linked like family. This is a family of transcription elongation factors which includes those referred to as Bex proteins as well as those named TCEAL7. Bex1 was shown to be a novel link between neurotrophin signalling, the cell cycle, and neuronal differentiation, suggesting it might function by coordinating internal cellular states with the ability of cells to respond to external signals. TCEAL7 has been shown negatively to regulate the NF-kappaB pathway, hence being important in ovarian cancer as it one of the genes frequently downregulated in this cancer. A closely related protein, TFIIS/TCEA, found in pfam07500 is involved in transcription elongation and transcript fidelity. TFIIS/TCEA promotes 3' endoribonuclease activity of RNA polymerase II (pol II) and allows pol II to bypass transcript pause or 'arrest' during elongation process. It is thus possible that BEX is also acting in this way. 101 -335822 pfam04539 Sigma70_r3 Sigma-70 region 3. Region 3 forms a discrete compact three helical domain within the sigma-factor. Region is not normally involved in the recognition of promoter DNA, but as some specific bacterial promoters containing an extended -10 promoter element, residues within region 3 play an important role. Region 3 primarily is involved in binding the core RNA polymerase in the holoenzyme. 78 -282408 pfam04540 Herpes_UL51 Herpesvirus UL51 protein. UL51 protein is a virion protein. In pseudorabies virus, UL51 was identified as a component of the capsid. In herpes simplex virus type 1 there is evidence for post-translational modification of UL51. 158 -309606 pfam04541 Herpes_U34 Herpesvirus virion protein U34. The virion proteins in this family include membrane phosphoprotein-like proteins such as UL34, Epstein-Barr and R50, from dsDNA viruses, no RNA stage, Herpesvirales. The family Herpes_BFRF1, pfam05900, has been merged in. 182 -335823 pfam04542 Sigma70_r2 Sigma-70 region 2. Region 2 of sigma-70 is the most conserved region of the entire protein. All members of this class of sigma-factor contain region 2. The high conservation is due to region 2 containing both the -10 promoter recognition helix and the primary core RNA polymerase binding determinant. The core binding helix, interacts with the clamp domain of the largest polymerase subunit, beta prime. The aromatic residues of the recognition helix, found at the C-terminus of this domain are though to mediate strand separation, thereby allowing transcription initiation. 71 -282411 pfam04544 Herpes_UL20 Herpesvirus egress protein UL20. UL20 is predicted to be a transmembrane protein with multiple membrane spans. It is involved in the trans-cellular transport of enveloped virions, and is therefore important for viral egress. However, UL20 operates in different cellular compartments and different stages of egress in pseudorabies virus and herpes simplex virus. This is thought to be due to differences in egress pathways between these two viruses. 179 -335824 pfam04545 Sigma70_r4 Sigma-70, region 4. Region 4 of sigma-70 like sigma-factors are involved in binding to the -35 promoter element via a helix-turn-helix motif. Due to the way Pfam works, the threshold has been set artificially high to prevent overlaps with other helix-turn-helix families. Therefore there are many false negatives. 50 -335825 pfam04546 Sigma70_ner Sigma-70, non-essential region. The domain is found in the primary vegetative sigma factor. The function of this domain is unclear and can be removed without loss of function. 204 -335826 pfam04547 Anoctamin Calcium-activated chloride channel. The family carries eight putative transmembrane domains, and, although it has no similarity to other known channel proteins, it is clearly a calcium-activated ionic channel. It is expressed in various secretory epithelia, the retina and sensory neurons, and mediates receptor-activated chloride currents in diverse physiological processes. 410 -335827 pfam04548 AIG1 AIG1 family. Arabidopsis protein AIG1 appears to be involved in plant resistance to bacteria. 205 -309612 pfam04549 CD47 CD47 transmembrane region. This family represents the transmembrane region of CD47 leukocyte antigen. 147 -335828 pfam04550 Phage_holin_3_2 Phage holin family 2. Holins are a diverse family of proteins that cause bacterial membrane lysis during late-protein synthesis. It is thought that the temporal precision of holin-mediated lysis may occur through the buildup of a holin oligomer which causes the lysis. 86 -335829 pfam04551 GcpE GcpE protein. In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. GcpE gene of Escherichia coli is involved in this pathway. 343 -309615 pfam04552 Sigma54_DBD Sigma-54, DNA binding domain. This DNA binding domain is based on peptide fragmentation data. This domain is proximal to DNA in the promoter/holoenzyme complex. Furthermore this region contains a putative helix-turn-helix motif. At the C-terminus, there is a highly conserved region known as the RpoN box and is the signature of the sigma-54 proteins. 159 -335830 pfam04553 Tis11B_N Tis11B like protein, N-terminus. Members of this family always contain a tandem repeat of CCCH zinc fingers pfam00642. Tis11B, Tis11D and their homologs are thought to be regulatory proteins involved in the response to growth factors. The function of the N-terminus is unknown. 103 -252669 pfam04554 Extensin_2 Extensin-like region. 57 -309617 pfam04555 XhoI Restriction endonuclease XhoI. This family consists of type II restriction enzymes (EC:3.1.21.4) that recognize the double-stranded sequence CTCGAG and cleave after C-1. 191 -335831 pfam04556 DpnII DpnII restriction endonuclease. Members of this family are type II restriction enzymes (EC:3.1.21.4). They recognize the double-stranded unmethylated sequence GATC and cleave before G-1. http://rebase.neb.com/rebase/enz/DpnII.html 278 -309619 pfam04557 tRNA_synt_1c_R2 Glutaminyl-tRNA synthetase, non-specific RNA binding region part 2. This is a region found N terminal to the catalytic domain of glutaminyl-tRNA synthetase (EC 6.1.1.18) in eukaryotes but not in Escherichia coli. This region is thought to bind RNA in a non-specific manner, enhancing interactions between the tRNA and enzyme, but is not essential for enzyme function. 94 -335832 pfam04558 tRNA_synt_1c_R1 Glutaminyl-tRNA synthetase, non-specific RNA binding region part 1. This is a region found N terminal to the catalytic domain of glutaminyl-tRNA synthetase (EC 6.1.1.18) in eukaryotes but not in Escherichia coli. This region is thought to bind RNA in a non-specific manner, enhancing interactions between the tRNA and enzyme, but is not essential for enzyme function. 155 -309621 pfam04559 Herpes_UL17 Herpesvirus UL17 protein. UL17 protein is required for DNA cleavage and packaging in herpes viruses. It has been shown to associate with immature B-type capsids, and is required for the the localization of capsids and capsid proteins to the intranuclear sites where viral DNA is cleaved and packaged. In the virion, UL17 is a component of the tegument, which is a protein layer surrounding the viral capsid. 496 -335833 pfam04560 RNA_pol_Rpb2_7 RNA polymerase Rpb2, domain 7. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Rpb2 is the second largest subunit of the RNA polymerase. This domain comprised of the structural domains anchor and clamp. The clamp region (C-terminal) contains a zinc-binding motif. The clamp region is named due to its interaction with the clamp domain found in Rpb1. The domain also contains a region termed "switch 4". The switches within the polymerase are thought to signal different stages of transcription. 86 -309623 pfam04561 RNA_pol_Rpb2_2 RNA polymerase Rpb2, domain 2. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Rpb2 is the second largest subunit of the RNA polymerase. This domain forms one of the two distinctive lobes of the Rpb2 structure. This domain is also known as the lobe domain. DNA has been demonstrated to bind to the concave surface of the lobe domain, and plays a role in maintaining the transcription bubble. Many of the bacterial members contain large insertions within this domain, as region known as dispensable region 1 (DRI). 185 -309624 pfam04562 Dicty_spore_N Dictyostelium spore coat protein, N-terminus. The Dictyostelium spore coat is a polarised extracellular matrix composed of glycoproteins and cellulose. Four of the major coat glycoproteins exist as a multi-protein complex within the prespore vesicles before secretion. Of these, SP96 and SP70 are members of this family. The presence of SP96 and SP70 in the complex is necessary for the cellulose binding activity of the complex, which is in turn necessary for normal spore coat assembly. The function of this region of these proteins is not known. 114 -335834 pfam04563 RNA_pol_Rpb2_1 RNA polymerase beta subunit. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain forms one of the two distinctive lobes of the Rpb2 structure. This domain is also known as the protrusion domain. The other lobe (pfam04561) is nested within this domain. 395 -252675 pfam04564 U-box U-box domain. This domain is related to the Ring finger pfam00097 but lacks the zinc binding residues. 73 -335835 pfam04565 RNA_pol_Rpb2_3 RNA polymerase Rpb2, domain 3. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Domain 3, s also known as the fork domain and is proximal to catalytic site. 67 -335836 pfam04566 RNA_pol_Rpb2_4 RNA polymerase Rpb2, domain 4. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Domain 4, is also known as the external 2 domain. 62 -335837 pfam04567 RNA_pol_Rpb2_5 RNA polymerase Rpb2, domain 5. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). Domain 5, is also known as the external 2 domain. 52 -309628 pfam04568 IATP Mitochondrial ATPase inhibitor, IATP. ATP synthase inhibitor prevents the enzyme from switching to ATP hydrolysis during collapse of the electrochemical gradient, for example during oxygen deprivation ATP synthase inhibitor forms a one to one complex with the F1 ATPase, possibly by binding at the alpha-beta interface. It is thought to inhibit ATP synthesis by preventing the release of ATP. The minimum inhibitory region for bovine inhibitor is from residues 39 to 72. The inhibitor has two oligomeric states, dimer (the active state) and tetramer. At low pH, the inhibitor forms a dimer via antiparallel coiled coil interactions between the C terminal regions of two monomers. At high pH, the inhibitor forms tetramers and higher oligomers by coiled coil interactions involving the N-terminus and inhibitory region, thus preventing the inhibitory activity. 96 -335838 pfam04569 DUF591 Protein of unknown function. This family represents a conserved region in a number of uncharacterized plant proteins. 21 -335839 pfam04570 zf-FLZ zinc-finger of the FCS-type, C2-C2. zf-FLZ is a FCS-like zinc-finger domain found in higher plants. It is bryophitic in origin. It carries a zf-FCS-like C2-C2 zinc finger, consisting of a consensus cysteine-signature sequence with conserved phenyl alanine and serine residue associated with a third cysteine. It acts as a protein-protein interaction module. 53 -335840 pfam04571 Lipin_N lipin, N-terminal conserved region. Mutations in the lipin gene lead to fatty liver dystrophy in mice. The protein has been shown to be phosphorylated by the TOR Ser/Thr protein kinases in response to insulin stimulation. The conserved region is found at the N-terminus of the member proteins. 103 -335841 pfam04572 Gb3_synth Alpha 1,4-glycosyltransferase conserved region. The glycosphingolipids (GSL) form part of eukaryotic cell membranes. They consist of a hydrophilic carbohydrate moiety linked to a hydrophobic ceramide tail embedded within the lipid bilayer of the membrane. Lactosylceramide, Gal1,4Glc1Cer (LacCer), is the common synthetic precursor to the majority of GSL found in vertebrates. Alpha 1.4-glycosyltransferases utilize UDP donors and transfer the sugar to a beta-linked acceptor. This region appears to be confined to higher eukaryotes. No function has been yet assigned to this region. 125 -309632 pfam04573 SPC22 Signal peptidase subunit. Translocation of polypeptide chains across the endoplasmic reticulum membrane is triggered by signal sequences. During translocation of the nascent chain through the membrane, the signal sequence of most secretory and membrane proteins is cleaved off. Cleavage occurs by the signal peptidase complex (SPC) which consists of four subunits in yeast and five in mammals. This family is common to yeast and mammals. 169 -309633 pfam04574 DUF592 Protein of unknown function (DUF592). This region is found in some SIR2 family proteins (pfam02146). 153 -309634 pfam04575 DUF560 Protein of unknown function (DUF560). Family of hypothetical bacterial proteins. 286 -335842 pfam04576 Zein-binding Zein-binding. This domain binds to zein proteins, pfam01559. Zein proteins are seed storage proteins. 92 -335843 pfam04577 DUF563 Protein of unknown function (DUF563). Family of uncharacterized proteins. 205 -335844 pfam04578 DUF594 Protein of unknown function, DUF594. 55 -309638 pfam04579 Keratin_matx Keratin, high-sulphur matrix protein. Family of Keratin, high-sulfur matrix proteins. The keratin products of mammalian epidermal derivatives such as wool and hair consist of microfibrils embedded in a rigid matrix of other proteins. The matrix proteins include the high-sulphur and high-tyrosine keratins, having molecular weights of 6-20 kDa, whereas microfibrils contain the larger, low-sulphur keratins (40-56 kDa). 96 -282445 pfam04580 Pox_D3 Chordopoxvirinae D3 protein. Chordopoxvirinae D3 protein conserved region. Region occupies entire length of D3 protein. 248 -113356 pfam04582 Reo_sigmaC Reovirus sigma C capsid protein. 326 -309639 pfam04583 Baculo_p74 Baculoviridae p74 conserved region. Baculoviruses are distinct from other virus families in that there are two viral phenotypes: budded virus (BV) and occlusion-derived virus (ODV). BVs disseminate viral infection throughout the tissues of the host and ODVs transmit baculovirus between insect hosts. GFP tagging experiments implicate p74 as an ODV envelope protein. 217 -282447 pfam04584 Pox_A28 Poxvirus A28 family. Family of conserved Poxvirus A28 family proteins. Conserved region spans entire protein in the majority of family members. 140 -309640 pfam04586 Peptidase_S78 Caudovirus prohead serine protease. Family of Caudovirus prohead serine proteases also found in a number of bacteria possibly as the result of horizontal transfer. 160 -309641 pfam04587 ADP_PFK_GK ADP-specific Phosphofructokinase/Glucokinase conserved region. In archaea a novel type of glycolytic pathway exists that is deviant from the classical Embden-Meyerhof pathway. This pathway utilizes two novel proteins: an ADP-dependent Glucokinase and an ADP-dependent Phosphofructokinase. This conserved region is present at the C-terminal of both these proteins. Interestingly this family contains sequences from higher eukaryotes.. 429 -335845 pfam04588 HIG_1_N Hypoxia induced protein conserved region. This family is found in proteins thought to be involved in the response to hypoxia. Family members mostly come from diverse eukaryotic organisms however eubacterial members have been identified. This region is found at the N-terminus of the member proteins which are predicted to be transmembrane. 48 -309643 pfam04589 RFX1_trans_act RFX1 transcription activation region. The RFX family is a family of winged-helix DNA binding proteins. RFX1 is a regulatory factor essential for expression of MHC class II genes. This region is to found N terminal to the RFX DNA binding region (pfam02257) in some mammalian RFX proteins, and is thought to activate transcription when associated with DNA. Deletion analysis has identified the region 233-351 in human RFX1 as being required for maximal activation. 162 -309644 pfam04591 DUF596 Protein of unknown function, DUF596. This family contains several uncharacterized proteins. 67 -335846 pfam04592 SelP_N Selenoprotein P, N terminal region. SelP is the only known eukaryotic selenoprotein that contains multiple selenocysteine (Sec) residues, and accounts for more than 50% of the selenium content of rat and human plasma. It is thought to be glycosylated. SelP may have antioxidant properties. It can attach to epithelial cells, and may protect vascular endothelial cells against peroxynitrite toxicity. The high selenium content of SelP suggests that it may be involved in selenium intercellular transport or storage. The promoter structure of bovine SelP suggest that it may be involved in countering heavy metal intoxication, and may also have a developmental function. The N-terminal region of SelP can exist independently of the C terminal region. Zebrafish selenoprotein Pb lacks the C terminal Sec-rich region, and a protein encoded by the rat SelP gene and lacking this region has also been reported. N-terminal region contains a conserved SecxxCys motif, which is similar to the CysxxCys found in thioredoxins. It is speculated that the N terminal region may adopt a thioredoxin fold and catalyze redox reactions. The N-terminal region also contains a His-rich region, which is thought to mediate heparin binding. Binding to heparan proteoglycans could account for the membrane binding properties of SelP. The function of the bacterial members of this family is uncharacterized. 233 -335847 pfam04593 SelP_C Selenoprotein P, C terminal region. SelP is the only known eukaryotic selenoprotein that contains multiple selenocysteine (Sec) residues, and accounts for more than 50% of the selenium content of rat and human plasma. It is thought to be glycosylated. SelP may have antioxidant properties. It can attach to epithelial cells, and may protect vascular endothelial cells against peroxynitrite toxicity. The high selenium content of SelP suggests that it may be involved in selenium intercellular transport or storage. The promoter structure of bovine SelP suggest that it may be involved in countering heavy metal intoxication, and may also have a developmental function. The N terminal region always contains one Sec residue, and this is separated from the C terminal region (9-16 sec residues) by a histidine-rich sequence. The large number of Sec residues in the C-terminal portion of SelP suggest CC that it may be involved in selenium transport or storage. However, it is also possible that this region has a redox function. 133 -252691 pfam04595 Pox_I6 Poxvirus I6-like family. This family includes I6 proteins as well as the related F5L proteins. 320 -282455 pfam04596 Pox_F15 Poxvirus protein F15. 136 -335848 pfam04597 Ribophorin_I Ribophorin I. Ribophorin I is an essential subunit of oligosaccharyltransferase (OST), which is also known as Dolichyl-diphosphooligosaccharide--protein glycosyltransferase, (EC:2.4.1.119). OST catalyzes the transfer of an oligosaccharide from dolichol pyrophosphate to selected asparagine residues of nascent polypeptides as they are translocated into the lumen of the rough endoplasmic reticulum. Ribophorin I and OST48 are though to be responsible for OST catalytic activity. Both yeast and mammalian proteins are glycosylated but the sites are not conserved. Glycosylation may contribute towards general solubility but is unlikely to be involved in a specific biochemical function Most family members are predicted to have a transmembrane helix at the C-terminus of this region. 428 -309647 pfam04598 Gasdermin Gasdermin family. The precise function of this protein is unknown. A deletion/insertion mutation is associated with an autosomal dominant non-syndromic hearing impairment form. In addition, this protein has also been found to contribute to acquired etoposide resistance in melanoma cells. This family also includes the gasdermin protein 458 -282458 pfam04599 Pox_G5 Poxvirus G5 protein. This protein has been predicted to be related to the FEN-1 endonuclease. 425 -282459 pfam04601 DUF569 Domain of unknown function (DUF569). Family of hypothetical proteins. Some family members contain a two copies of the domain. 142 -335849 pfam04602 Arabinose_trans Mycobacterial cell wall arabinan synthesis protein. Arabinosyltransferase is involved in arabinogalactan (AG) biosynthesis pathway in mycobacteria. AG is a component of the macromolecular assembly of the mycolyl-AG-peptidoglycan complex of the cell wall. This enzyme has important clinical applications as it is believed to be the target of the antimycobacterial drug Ethambutol. 636 -335850 pfam04603 Mog1 Ran-interacting Mog1 protein. Segregation of nuclear and cytoplasmic processes facilitates regulation of many eukaryotic cellular functions such as gene expression and cell cycle progression. Trafficking through the nuclear pore requires a number of highly conserved soluble factors that escort macromolecular substrates into and out of the nucleus. The Mog1 protein has been shown to interact with RanGTP which stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. The human homolog of Mog1 is thought to be alternatively spliced. 133 -309650 pfam04604 L_biotic_typeA Type-A lantibiotic. Lantibiotics are antibiotic peptides distinguished by the presence of the rare thioether amino acids lanthionine and/or methyl-lanthionine. They are produced by Gram-positive bacteria as gene-encoded precursor peptides and undergo post-translational modification to generate the mature peptide. Based on their structural and functional features lantibiotics are currently divided into two major groups: the flexible amphiphilic type-A and the rather rigid and globular type-B. Type-A lantibiotics act primarily by pore formation in the bacterial membrane by a mechanism involving the interaction with specific docking molecules such as the membrane precursor lipid II. 50 -309651 pfam04606 Ogr_Delta Ogr/Delta-like zinc finger. This is a viral family of phage zinc-binding transcriptional activators, which also contains cryptic members in some bacterial genomes. The P4 phage delta protein contains two such domains attached covalently, while the P2 phage Ogr proteins possess one domain but function as dimers. All the members of this family have the following consensus sequence: C-X(2)-C-X(3)-A-(X)2-R-X(15)-C-X(4)-C-X(3)-F. This family also includes zinc fingers in recombinase proteins. 47 -335851 pfam04607 RelA_SpoT Region found in RelA / SpoT proteins. This region of unknown function is found in RelA and SpoT of Escherichia coli, and their homologs in plants and in other eubacteria. RelA is a guanosine 3',5'-bis-pyrophosphate (ppGpp) synthetase (EC:2.7.6.5) while SpoT is thought to be a bifunctional enzyme catalyzing both ppGpp synthesis and degradation (ppGpp 3'-pyrophosphohydrolase, (EC:3.1.7.2)). This region is often found in association with HD (pfam01966), a metal-dependent phosphohydrolase, TGS (pfam02824) which is a possible nucleotide-binding region, and the ACT regulatory domain (pfam01842). 110 -309653 pfam04608 PgpA Phosphatidylglycerophosphatase A. This family represents a family of bacterial phosphatidylglycerophosphatases (EC:3.1.3.27), known as PgpA. It appears that bacteria possess several phosphatidylglycerophosphatases, and thus, PgpA is not essential in Escherichia coli. 144 -309654 pfam04609 MCR_C Methyl-coenzyme M reductase operon protein C. Methyl coenzyme M reductase (MCR) catalyzes the final step in methanogenesis. MCR is composed of three subunits, alpha (pfam02249), beta (pfam02241) and gamma (pfam02240). Genes encoding the beta (mcrB) and gamma (mcrG) subunits are separated by two open reading frames coding for two proteins C and D. The function of proteins C and D (this family) is unknown. This family nowalso includes family MtrC_related, 270 -335852 pfam04610 TrbL TrbL/VirB6 plasmid conjugal transfer protein. 214 -282467 pfam04611 AalphaY_MDB Mating type protein A alpha Y mating type dependent binding region. This region is important for the mating type dependent binding of Y protein to the A alpha Z protein of another mating type in Schizophyllum commune. 145 -335853 pfam04612 T2SSM Type II secretion system (T2SS), protein M. This family of membrane proteins consists of Type II secretion system protein M sequences from several Gram-negative (diderm) bacteria. The precise function of these proteins is unknown, though in Vibrio cholerae, the T2SM (EpsM) protein interacts with the T2SL (EpsL) protein, and also forms homodimers. 160 -335854 pfam04613 LpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase, LpxD. UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase (EC 2.3.1.-) catalyzes an early step in lipid A biosynthesis: UDP-3-O-(3-hydroxytetradecanoyl)glucosamine + (R)-3-hydroxytetradecanoyl- [acyl carrier protein] -> UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine + [acyl carrier protein]. Members of this family also contain a hexapeptide repeat (pfam00132). This family constitutes the non-repeating region of LPXD proteins. 70 -309658 pfam04614 Pex19 Pex19 protein family. 239 -309659 pfam04615 Utp14 Utp14 protein. This protein is found to be part of a large ribonucleoprotein complex containing the U3 snoRNA. Depletion of the Utp proteins impedes production of the 18S rRNA, indicating that they are part of the active pre-rRNA processing complex. This large RNP complex has been termed the small subunit (SSU) processome. 666 -335855 pfam04616 Glyco_hydro_43 Glycosyl hydrolases family 43. The glycosyl hydrolase family 43 contains members that are arabinanases. Arabinanases hydrolyze the alpha-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans. The structure of arabinanase Arb43A from Cellvibrio japonicus reveals a five-bladed beta-propeller fold. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. 288 -309661 pfam04617 Hox9_act Hox9 activation region. This family constitutes the N termini of the paralogous homeobox proteins HoxA9, HoxB9, HoxC9 and HoxD9. The N terminal region is found to act as a transcription activation region. Btg1 and Btg2 - the B-cell translocation gene products - may function as cofactors for Hoxb9-mediated transcription. The Btg proteins modulate Hoxb9 transcriptional activity by recruiting a multiprotein Ccr4-like complex. 178 -335856 pfam04618 HD-ZIP_N HD-ZIP protein N-terminus. This family consists of the N termini of plant homeobox-leucine zipper proteins. Its function is unknown. 104 -309663 pfam04619 Adhesin_Dr Dr-family adhesin. This family of adhesins bind to the Dr blood group antigen component of decay-accelerating factor. This mediates adherence of uropathogenic Escherichia coli to the urinary tract. This family contains both fimbriated and afimbriated adherence structures. This protein also confers the phenotype of mannose-resistant hemagglutination, which can be inhibited by chloramphenicol. The N terminal portion of the protein is though to be responsible for chloramphenicol sensitivity. 139 -309664 pfam04620 FlaA Flagellar filament outer layer protein Flaa. Periplasmic flagella are the organelles of spirochete mobility, and are structurally different from the flagella of other motile bacteria. They reside inside the cell within the periplasmic space, and confer mobility in viscous gel-like media such connective tissue. The flagella are composed of an outer sheath of FlaA proteins and a core filament of FlaB proteins. Each species usually has several FlaA protein species. 230 -309665 pfam04621 ETS_PEA3_N PEA3 subfamily ETS-domain transcription factor N terminal domain. The N-terminus of the PEA3 transcription factors is implicated in transactivation and in inhibition of DNA binding. Transactivation is potentiated by activation of the Ras/MAP kinase and protein kinase A signalling cascades. The N terminal region contains conserved MAP kinase phosphorylation sites. 328 -335857 pfam04622 ERG2_Sigma1R ERG2 and Sigma1 receptor like protein. This family consists of the fungal C-8 sterol isomerase and mammalian sigma1 receptor. C-8 sterol isomerase (delta-8--delta-7 sterol isomerase), catalyzes a reaction in ergosterol biosynthesis, which results in unsaturation at C-7 in the B ring of sterols. Sigma 1 receptor is a low molecular mass mammalian protein located in the endoplasmic reticulum, which interacts with endogenous steroid hormones, such as progesterone and testosterone. It also binds the sigma ligands, which are are a set of chemically unrelated drugs including haloperidol, pentazocine, and ditolylguanidine. Sigma1 effectors are not well understood, but sigma1 agonists have been observed to affect NMDA receptor function, the alpha-adrenergic system and opioid analgesia. 193 -113396 pfam04623 Adeno_E1B_55K_N Adenovirus E1B protein N-terminus. This family constitutes the amino termini of E1B 55 kDa (pfam01696). E1B 55K binds p53 the tumor suppressor protein converting it from a transcriptional activator which responds to damaged DNA in to an unregulated repressor of genes with a p53 binding site. This protects the virus against p53 induced host antiviral responses and prevents apoptosis as induced by the by the adenovirus E1A protein. The role of the N-terminus in the function of E1B is not known. 71 -309667 pfam04624 Dec-1 Dec-1 repeat. The defective chorion-1 gene (dec-1) in Drosophila encodes follicle cell proteins necessary for proper eggshell assembly. Multiple products of the dec-1 gene are formed by alternative RNA splicing and proteolytic processing. Cleavage products include S80 (80 kDa) which is incorporated into the eggshell, and further proteolysis of S80 gives S60 (60 kDa). This repeat is usually found in 12 copies in the central region of the protein. Its function is unknown. Length polymorphisms of Dec-1 have been observed in wild-type strains, and are caused by changes in the numbers of the first five repeats. 27 -282479 pfam04625 DEC-1_N DEC-1 protein, N-terminal region. The defective chorion-1 gene (dec-1) in Drosophila encodes follicle cell proteins necessary for proper eggshell assembly. Multiple products of the dec-1 gene are formed by alternative RNA splicing and proteolytic processing. Cleavage products include S80 (80 kDa) which is incorporated into the eggshell, and further proteolysis of S80 gives S60 (60 kDa). 403 -282480 pfam04626 DEC-1_C Dec-1 protein, C terminal region. The defective chorion-1 gene (dec-1) in Drosophila encodes follicle cell proteins necessary for proper eggshell assembly. Multiple products of the dec-1 gene are formed by alternative RNA splicing and proteolytic processing. Cleavage products include S80 (80 kDa) which is incorporated into the eggshell, and further proteolysis of S80 gives S60 (60 kDa). Alternative splicing generates different carboxyl terminal ends in different protein isoforms, so this is region is the most C terminal region that is present in the main isoforms. 131 -335858 pfam04627 ATP-synt_Eps Mitochondrial ATP synthase epsilon chain. This family constitutes the mitochondrial ATP synthase epsilon subunit. This is not to be confused with the bacterial epsilon subunit, which is homologous to the mitochondrial delta subunit (pfam00401 and pfam02823) The epsilon subunit is located in the extrinsic membrane section F1, which is the catalytic site of ATP synthesis. The epsilon subunit was not well ordered in the crystal structure of bovine F1, but it is known to be located in the stalk region of F1. E subunit is thought to be involved in the regulation of ATP synthase, since a null mutation increased oligomycin sensitivity and decreased inhibition by inhibitor protein IF1. 49 -335859 pfam04628 Sedlin_N Sedlin, N-terminal conserved region. Mutations in this protein are associated with the X-linked spondyloepiphyseal dysplasia tarda syndrome (OMIM:313400). This family represents an N-terminal conserved region. 129 -309670 pfam04629 ICA69 Islet cell autoantigen ICA69, C-terminal domain. This family includes a 69 kD protein which has been identified as an islet cell autoantigen in type I diabetes mellitus. Its precise function is unknown. 198 -309671 pfam04630 Phage_TTP_1 Phage tail tube protein. This is a family of phage tail tube proteins from Myoviridae. 199 -282484 pfam04631 PIF2 Per os infectivity factor 2. This family includes several hypothetical baculoviral proteins, with predicted molecular weights of approximately 44 kD. Family members include per os infectivity factor 2 (PIF2). PIF2 forms a stable complex with PIF1, PIF3, PIF4 which is essential for oral infectivity of Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) in insect larvae, and P74 is also associated with this complex. 372 -309672 pfam04632 FUSC Fusaric acid resistance protein family. This family includes a conserved region found in two proteins associated with fusaric acid resistance, FusC from Burkholderia cepacia and fdt-2 from Klebsiella oxytoca. These proteins are likely to be membrane transporter proteins. 654 -282486 pfam04633 Herpes_BMRF2 Herpesvirus BMRF2 protein. 349 -309673 pfam04634 DUF600 Protein of unknown function, DUF600. This conserved region is found in several uncharacterized proteins from Gram positive bacteria. 144 -309674 pfam04636 PA26 PA26 p53-induced protein (sestrin). PA26 is a p53-inducible protein. Its function is unknown. It has similarity to pfam04636 in its N-terminus. 436 -282489 pfam04637 Herpes_pp85 Herpesvirus phosphoprotein 85 (HHV6-7 U14/HCMV UL25). This family includes UL25 proteins from HCMV, as well as U14 proteins from HHV 6 and HHV7. These 85 kD phosphoproteins appear to act as structural antigens, but their precise function is otherwise unknown. 542 -282490 pfam04639 Baculo_E56 Baculoviral E56 protein, specific to ODV envelope. This family represents the E56 protein, which is localizes to the occlusion derived virus (ODV) envelope, but not to the budded virus (BV) envelope. 293 -335860 pfam04640 PLATZ PLATZ transcription factor. Plant AT-rich sequence and zinc-binding proteins (PLATZ) are zinc dependant DNA binding proteins. They bind to AT rich sequences and functions in transcriptional repression. 73 -309676 pfam04641 Rtf2 Rtf2 RING-finger. It is vital for effective cell-replication that replication is not stalled at any point by, for instance, damaged bases. Replication termination factor 2 (Rtf2) stabilizes the replication fork stalled at the site-specific replication barrier RTS1 by preventing replication restart until completion of DNA synthesis by a converging replication fork initiated at a flanking origin. The RTS1 element terminates replication forks that are moving in the cen2-distal direction while allowing forks moving in the cen2-proximal direction to pass through the region. Rtf2 contains a C2HC2 motif related to the C3HC4 RING-finger motif, and would appear to fold up, creating a RING finger-like structure but forming only one functional Zn2+ ion-binding site. This domain is also found at the N-terminus of peptidyl-prolyl cis-trans isomerase 4, a divergent cyclophilin family. 256 -282493 pfam04642 DUF601 Protein of unknown function, DUF601. This family represents a conserved region found in several uncharacterized plant proteins. 327 -309677 pfam04643 Motilin_assoc Motilin/ghrelin-associated peptide. This family represents a peptide sequence that lies C-terminal to motilin/ghrelin on the respective precursor peptide. Its function is unknown. 59 -309678 pfam04644 Motilin_ghrelin Motilin/ghrelin. Motilin is a gastrointestinal regulatory polypeptide produced by motilin cells in the duodenal epithelium. It is released into the general circulation at about 100-min intervals during the inter-digestive state and is the most important factor in controlling the inter-digestive migrating contractions. Motilin also stimulates endogenous release of the endocrine pancreas. This family also includes ghrelin, a growth hormone secretagogue synthesized by endocrine cells in the stomach. Ghrelin stimulates growth hormone secretagogue receptors in the pituitary. These receptors are distinct from the growth hormone-releasing hormone receptors, and thus provide a means of controlling pituitary growth hormone release by the gastrointestinal system. 27 -282496 pfam04645 DUF603 Protein of unknown function, DUF603. This family includes several uncharacterized proteins from Borrelia species. 181 -335861 pfam04646 DUF604 Protein of unknown function, DUF604. This family includes a conserved region found in several uncharacterized plant proteins. 255 -309680 pfam04647 AgrB Accessory gene regulator B. The arg locus consists of two transcripts: RNAII and RNAIII. RNAII encodes four genes (agrA, B, C, and D) whose gene products assemble a quorum sensing system. AgrB and AgrD are essential for the production of the autoinducing peptide which functions as a signal for quorum sensing. AgrB is a transmembrane protein. 183 -309681 pfam04648 MF_alpha Yeast mating factor alpha hormone. The hormone is excreted into the culture medium by haploid cells of the alpha mating type and acts on cells of the opposite mating type (type A). It inhibits DNA synthesis in type A cells synchronising them with type alpha, and so mediates the conjugation process. 13 -68229 pfam04649 VlpA_repeat Mycoplasma hyorhinis VlpA repeat. This repeat is found in the extracellular (C-terminal) region of the variant surface antigen A (VlpA) of Mycoplasma hyorhinis. Mutations that change the number of repeats in the protein are involved in antigenic variation and immune evasion of this swine pathogen. 13 -335862 pfam04650 YSIRK_signal YSIRK type signal peptide. Many surface proteins found in Streptococcus, Staphylococcus, and related lineages share apparently homologous signal sequences. A motif resembling [YF]SIRKxxxGxxS[VIA] appears at the start of the transmembrane domain. The GxxS motif appears perfectly conserved, suggesting a specific function and not just homology. There is a strong correlation between proteins carrying this region at the N-terminus and those carrying the Gram-positive anchor domain with the LPXTG sortase processing site at the C-terminus. 25 -282501 pfam04651 Pox_A12 Poxvirus A12 protein. 183 -309683 pfam04652 Vta1 Vta1 like. Vta1 (VPS20-associated protein 1) is a positive regulator of Vps4. Vps4 is an ATPase that is required in the multivesicular body (MVB) sorting pathway to dissociate the endosomal sorting complex required for transport (ESCRT). Vta1 promotes correct assembly of Vps4 and stimulates its ATPase activity through its conserved Vta1/SBP1/LIP5 region. 133 -335863 pfam04654 DUF599 Protein of unknown function, DUF599. This family includes several uncharacterized proteins. 206 -309685 pfam04655 APH_6_hur Aminoglycoside/hydroxyurea antibiotic resistance kinase. The aminoglycoside phosphotransferases achieve inactivation of their antibiotic substrates by phosphorylation utilising ATP. Likewise hydroxyurea is inactivated by phosphorylation of the hydroxy group in the hydroxylamine moiety. 252 -282505 pfam04656 Pox_E6 Pox virus E6 protein. Family of pox virus E6 proteins. 566 -309686 pfam04657 DMT_YdcZ Putative inner membrane exporter, YdcZ. DMT_YdcZ is a family of putative inner membrane exporters from both Gram-positive and Gram-negative bacteria. 139 -309687 pfam04658 TAFII55_N TAFII55 protein conserved region. The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. TAFII55 binds to TAFII250 and inhibits it acetyltransferase activity. The exact role of TAFII55 is currently unknown. The conserved region is situated towards the N-terminus of the protein. 157 -309688 pfam04659 Arch_fla_DE Archaeal flagella protein. Family of archaeal flaD and flaE proteins. Conserved region found at N-terminus of flaE but towards the C-terminus of flaD. 94 -282509 pfam04660 Nanovirus_coat Nanovirus coat protein. Family of conserved Nanoviral coat proteins. 177 -282510 pfam04661 Pox_I3 Poxvirus I3 ssDNA-binding protein. 257 -252728 pfam04662 Luteo_PO Luteovirus P0 protein. This family of proteins may be involved in suppression of PTGS a plant defense mechanism. 208 -309689 pfam04663 Phenol_monoox Phenol hydroxylase conserved region. Under aerobic conditions, phenol is usually hydroxylated to catechol and degraded via the meta or ortho pathways. Two types of phenol hydroxylase are known: one is a multi-component enzyme the other is a single-component monooxygenase. This region is found in both types of enzymes. 66 -309690 pfam04664 OGFr_N Opioid growth factor receptor (OGFr) conserved region. Opioid peptides act as growth factors in neural and non-neural cells and tissues, in addition to serving in neurotransmission/neuromodulation in the nervous system. The Opioid growth factor receptor is an integral membrane protein associated with the nucleus. The conserved region is situated at the N-terminus of the member proteins with a series of imperfect repeats lying immediately to its C-terminus. 208 -282513 pfam04665 Pox_A32 Poxvirus A32 protein. The A32 protein is thought to be involved in viral DNA packaging. 241 -309691 pfam04666 Glyco_transf_54 N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region. The complex-type of oligosaccharides are synthesized through elongation by glycosyltransferases after trimming of the precursor oligosaccharides transferred to proteins in the endoplasmic reticulum. N-Acetylglucosaminyltransferases (GnTs) take part in the formation of branches in the biosynthesis of complex-type sugar chains. In vertebrates, six GnTs, designated as GnT-I to -VI, which catalyze the transfer of GlcNAc to the core mannose residues of Asn-linked sugar chains, have been identified. GnT-IV (EC:2.4.1.145) catalyzes the transfer of GlcNAc from UDP-GlcNAc to the GlcNAc1-2Man1-3 arm of core oligosaccharide [Gn2(22)core oligosaccharide] and forms GlcNAc1-4(GlcNAc1-2)Man1-3 structure on the core oligosaccharide (Gn3(2,4,2)core oligosaccharide). In some members the conserved region occupies all but the very for N-terminal, where there is a signal sequence on all members. For other members the conserved region does not occupy the entire protein but is still to the N-terminus of the protein. 278 -309692 pfam04667 Endosulfine cAMP-regulated phosphoprotein/endosulfine conserved region. Conserved region found in both cAMP-regulated phosphoprotein 19 (ARPP-19) and Alpha/Beta endosulfine. No function has yet been assigned to ARPP-19. Endosulfine is the endogenous ligand for the ATP-dependent potassium (K ATP) channels which occupy a key position in the control of insulin release from the pancreatic beta cell by coupling cell polarity to metabolism. In both cases the region occupies the majority of the protein. 79 -309693 pfam04668 Tsg Twisted gastrulation (Tsg) protein conserved region. Tsg was identified in Drosophila as being required to specify the dorsal-most structures in the embryo, for example amnioserosa. Biochemical experiments have revealed three key properties of Tsg: it can synergistically inhibit Dpp/BMP action in both Drosophila and vertebrates by forming a tripartite complete between itself, SOG/chordin and a BMP ligand; Tsg seems to enhance the Tld/BMP-1-mediated cleavage rate of SOG/chordin and may change the preference of site utilisation; Tsg can promote the dissociation of chordin cysteine-rich-containing fragments from the ligand to inhibit BMP signalling. 130 -309694 pfam04669 Polysacc_synt_4 Polysaccharide biosynthesis. This family of proteins plays a role in xylan biosynthesis in plant cell walls. The precise role of IRX15/IRX15-L in xylan biosynthesis is unknown. Glucuronoxylan methyltransferase (GXMT) catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1 specifically transfers the methyl group from S-adenosyl-l-methionine to O-4 of alpha-d-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. The function of members of this family in animals and fungi is not known. 177 -309695 pfam04670 Gtr1_RagA Gtr1/RagA G protein conserved region. GTR1 was first identified in S. cerevisiae as a suppressor of a mutation in RCC1. Biochemical analysis revealed that Gtr1 is in fact a G protein of the Ras family. The RagA/B proteins are the human homologs of Gtr1. Included in this family is the human Rag C, a novel protein that has been shown to interact with RagA/B. 233 -309696 pfam04671 Ag332 Erythrocyte membrane-associated giant protein antigen 332. To date many different Plasmodium antigens recognized by the hyperimmune system human sera have been cloned, sequenced and characterized. The majority contain tandemly repeated amino acid sequences which make up a considerable portion of the protein sequence. It has been suggested that these repeat-containing antigens may provide an immunological 'smokescreen' to the parasite in order to evade the human immune system. This repeat is found exclusively in the Plasmodium falciparum Ag332 protein and occupies most of its length. 21 -252734 pfam04672 Methyltransf_19 S-adenosyl methyltransferase. This family contains a SAM (S-adenosyl methyltransferase) domain, with a central beta sheet with 3 alpha-helices on both sides. Crystal packing analysis of the structure Structure 3giw suggests that a monomer is the solution state oligomeric form. An unidentified ligand (UNL, cyan) was found at the putative active site surrounded by the residues His57, His170, Phe171, Tyr216 and Met22. The UNL is likely to be a phenylalanine or phenylalanine-like molecule. (details derived from TOPSAN). 268 -309697 pfam04673 Cyclase_polyket Polyketide synthesis cyclase. This family represents a number of cyclases involved in polyketide synthesis in a number of actinobacterial species. 104 -335864 pfam04674 Phi_1 Phosphate-induced protein 1 conserved region. Family of conserved plant proteins. Conserved region identified in a phosphate-induced protein of unknown function. 266 -335865 pfam04675 DNA_ligase_A_N DNA ligase N-terminus. This region is found in many but not all ATP-dependent DNA ligase enzymes (EC:6.5.1.1). It is thought to be involved in DNA binding and in catalysis. In human DNA ligase I, and in Saccharomyces cerevisiae, this region was necessary for catalysis, and separated from the amino terminus by targeting elements. In vaccinia virus this region was not essential for catalysis, but deletion decreases the affinity for nicked DNA and decreased the rate of strand joining at a step subsequent to enzyme-adenylate formation. 168 -335866 pfam04676 CwfJ_C_2 Protein similar to CwfJ C-terminus 2. This region is found in the N-terminus of Schizosaccharomyces pombe protein CwfJ. CwfJ is part of the Cdc5p complex involved in mRNA splicing. 94 -309701 pfam04677 CwfJ_C_1 Protein similar to CwfJ C-terminus 1. This region is found in the N-terminus of Schizosaccharomyces pombe protein CwfJ. CwfJ is part of the Cdc5p complex involved in mRNA splicing. 122 -335867 pfam04678 MCU Mitochondrial calcium uniporter. MCU functions with MICU1, an essential gatekeeper component of calcium-channel transport, to facilitate Ca2+ uptake into the mitochondrion. 175 -309703 pfam04679 DNA_ligase_A_C ATP dependent DNA ligase C terminal region. This region is found in many but not all ATP-dependent DNA ligase enzymes (EC:6.5.1.1). It is thought to constitute part of the catalytic core of ATP dependent DNA ligase. 94 -282527 pfam04680 OGFr_III Opioid growth factor receptor repeat. Proline-rich repeat found only in a human opioid growth factor receptor. 20 -113449 pfam04681 Bys1 Blastomyces yeast-phase-specific protein. The molecular function of this protein is not known. Its expression is specific to the high temperature, unicellular yeast morphology (as opposed to the lower temperature, multicellular mycelium form). 155 -282528 pfam04682 Herpes_BTRF1 Herpesvirus BTRF1 protein conserved region. Herpesvirus protein. 258 -335868 pfam04683 Proteasom_Rpn13 Proteasome complex subunit Rpn13 ubiquitin receptor. This family was thought originally to be involved in cell-adhesion, but the members are now known to be proteasome subunit Rpn13, a novel ubiquitin receptor. The 26S proteasome is a huge macromolecular protein-degradation machine consisting of a proteolytically active 20S core, in the form of four disc-like proteins, and one or two 19S regulatory particles. The regulatory particle(s) sit on the top and or bottom of the core, de-ubiquitinate the substrate peptides, unfold them and guide them into the narrow channel through the centre of the core. Rpn13 and its homologs dock onto the regulatory particle through the N-terminal region which binds Rpn2. The C-terminal part of the domain binds de-ubiquitinating enzyme Uch37/UCHL5 and enhances its isopeptidase activity. Rpn13 binds ubiquitin via a conserved amino-terminal region called the pleckstrin-like receptor for ubiquitin, termed Pru, domain. The domain forms two contiguous anti-parallel beta-sheets with a configuration similar to the pleckstrin-homology domain (PHD) fold. Rpn13's ability to bind ubiquitin and the proteasome subunit Rpn2/S1 simultaneously supports evidence of its role as a ubiquitin receptor. Finally, when complexed to di-ubiquitin, via the Pru, and Uch37 via the C-terminal part, it frees up the distal ubiquitin for de-ubiquitination by the Uch37. 85 -282530 pfam04684 BAF1_ABF1 BAF1 / ABF1 chromatin reorganising factor. ABF1 is a sequence-specific DNA binding protein involved in transcription activation, gene silencing and initiation of DNA replication. ABF1 is known to remodel chromatin, and it is proposed that it mediates its effects on transcription and gene expression by modifying local chromatin architecture. These functions require a conserved stretch of 20 amino acids in the C-terminal region of ABF1 (amino acids 639 to 662 in the S. cerevisiae protein). The N-terminal two thirds of the protein are necessary for DNA binding, and the N-terminus (amino acids 9 to 91 in S. cerevisiae) is thought to contain a novel zinc-finger motif which may stabilize the protein structure. 494 -309705 pfam04685 DUF608 Glycosyl-hydrolase family 116, catalytic region. This represents a family of archaeal, bacterial and eukaryotic glycosyl hydrolases, that belong to superfamily GH116. The primary catabolic pathway for glucosylceramide is catalysis by the lysosomal enzyme glucocerebrosidase. In higher eukaryotes, glucosylceramide is the precursor of glycosphingolipids, a complex group of ubiquitous membrane lipids. Mutations in the human protein cause motor-neurone defects in hereditary spastic paraplegia. The catalytic nucleophile, identified in UniProtKB:Q97YG8_SULSO, is a glutamine-335, with the likely acid/base at Asp-442 and the aspartates at Asp-406 and Asp-458 residues also playing a role in the catalysis of glucosides and xylosides that are beta-bound to hydrophobic groups. The family is defined as GH116, which presently includes enzymes with beta-glucosidase, EC:3.2.1.21, beta-xylosidase, EC:3.2.1.37, and glucocerebrosidase EC:3.2.1.45 activity. 362 -309706 pfam04686 SsgA Streptomyces sporulation and cell division protein, SsgA. The precise function of SsgA is unknown. It has been found to be essential for spore formation, and to stimulate cell division. 97 -282533 pfam04687 Microvir_H Microvirus H protein (pilot protein). A single molecule of H protein is found on each of the 12 spikes on the microvirus shell. H is involved in the ejection of the phage DNA, and at least one copy is injected into the host's periplasmic space along with the ssDNA viral genome. Part of H is thought to lie outside the shell, where it recognizes lipopolysaccharide from virus-sensitive strains. Part of H may lie within the capsid, since mutations in H can influence the DNA ejection mechanism by affecting the DNA-protein interactions. H may span the capsid through the hydrophilic channels formed by G proteins. Elucidation of the DNA-ejection mechanism from the crystal structure of part of the H protein shows that this tail-less icosahedral, single-stranded DNA phiX174-like coliphage bacteriophage requires H as a pilot protein for its DNA-delivery. H oligomerises to form a tube the function of which seems to be the delivery of the DNA genome across the host's periplasmic space into the host cytoplasm. The tube is constructed of ten alpha-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. The tube spans the periplasmic space and is present while the genome is being delivered into the host cell's cytoplasm. 310 -309707 pfam04688 Holin_SPP1 SPP1 phage holin. This family constitutes holin proteins from the dsDNA Siphidoviridae group bacteriophages with two transmembrane segments. Most bacteriophages require an endolysin and a holin for host lysis. During late gene expression, holins accumulate and oligomerise in the host cell membrane. They then suddenly trigger to permeablise the membrane, which causes lysis by allowing endolysin to attach the peptidoglycan. There are thought to be at least 35 different families of holin genes. 74 -282535 pfam04689 S1FA DNA binding protein S1FA. S1FA is a DNA-binding protein found in plants that specifically recognizes the negative promoter element S1F. 66 -309708 pfam04690 YABBY YABBY protein. YABBY proteins are a group of plant-specific transcription involved in the specification of abaxial polarity in lateral organs. 159 -309709 pfam04691 ApoC-I Apolipoprotein C-I (ApoC-1). Apolipoprotein C-I (ApoC-1) is a water-soluble protein component of plasma lipoprotein. It solubalises lipids and regulates lipid metabolism. ApoC-1 transfers among HDL (high density lipoprotein), VLDL (very low-density lipoprotein) and chylomicrons. ApoC-1 activates lecithin:choline acetyltransferase (LCAT), inhibits cholesteryl ester transfer protein, can inhibit hepatic lipase and phospholipase 2 and can stimulate cell growth. ApoC-1 delays the clearance of beta-VLDL by inhibiting its uptake via the LDL receptor-related pathway. ApoC-1 has been implicated in hypertriglyceridemia, and Alzheimer's disease. 60 -309710 pfam04692 PDGF_N Platelet-derived growth factor, N terminal region. This family consists of the amino terminal regions of platelet-derived growth factor (PDGF, pfam00341) A and B chains. 77 -147046 pfam04693 DDE_Tnp_2 Archaeal putative transposase ISC1217. 327 -282539 pfam04694 Corona_3 Coronavirus ORF3 protein. 59 -335869 pfam04695 Pex14_N Peroxisomal membrane anchor protein (Pex14p) conserved region. Family of peroxisomal membrane anchor proteins which bind the PTS1 (peroxisomal targeting signal) receptor and are required for the import of PTS1-containing proteins into peroxisomes. Loss of functional Pex14p results in defects in both the PTS1 and PTS2-dependent import pathways. Deletion analysis of this conserved region implicates it in selective peroxisome degradation. In the majority of members this region is situated at the N-terminus of the protein. 147 -309712 pfam04696 Pinin_SDK_memA pinin/SDK/memA/ protein conserved region. Members of this family have very varied localizations within the eukaryotic cell. pinin is known to localize at the desmosomes and is implicated in anchoring intermediate filaments to the desmosomal plaque. SDK2/3 is a dynamically localized nuclear protein thought to be involved in modulation of alternative pre-mRNA splicing. memA is a tumor marker preferentially expressed in human melanoma cell lines. A common feature of the members of this family is that they may all participate in regulating protein-protein interactions. 130 -309713 pfam04697 Pinin_SDK_N pinin/SDK conserved region. SDK2/3 is localized in nuclear speckles where as pinin is known to localize at the desmosomes where it is thought to be involved in anchoring intermediate filaments to the desmosomal plaque. The role of SDK2/3 in the nucleus is thought to be concerned with modulation of alternative pre-mRNA splicing. pinin has also been implicated as a tumor suppressor. The conserved region is found at the N-terminus of the member proteins. 132 -309714 pfam04698 Rab_eff_C Rab effector MyRIP/melanophilin C-terminus. This domain is found at the C-terminus of the Rab effector proteins MyRIP and melanophilin. 717 -335870 pfam04699 P16-Arc ARP2/3 complex 16 kDa subunit (p16-Arc). The Arp2/3 protein complex has been implicated in the control of actin polymerization. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc. The precise function of p16-Arc is currently unknown. Its structure consists of a single domain containing a bundle of seven alpha helices. 145 -282545 pfam04700 Baculo_gp41 Structural glycoprotein p40/gp41 conserved region. Family of viral structural glycoproteins. 185 -282546 pfam04701 Pox_D2 Pox virus D2 protein. 139 -252749 pfam04702 Vicilin_N Vicilin N terminal region. This region is found in plant seed storage proteins, N-terminal to the Cupin domain (pfam00190). In Macadamia integrifolia, this region is processed into peptides of approximately 50 amino acids containing a C-X-X-X-C-(10-12)X-C-X-X-X-C motif. These peptides exhibit antimicrobial activity in vitro. 147 -309716 pfam04703 FaeA FaeA-like protein. This family represents a number of fimbrial protein transcription regulators found in Gram-negative bacteria. These proteins are thought to facilitate binding of the leucine-rich regulatory protein to regulatory elements, possibly by inhibiting deoxyadenosine methylation of these elements by deoxyadenosine methylase. 61 -309717 pfam04704 Zfx_Zfy_act Zfx / Zfy transcription activation region. Zfx and Zfy are transcription factors implicated in mammalian sex determination. This region is found N terminal to multiple copies of a C2H2 Zinc finger (pfam00096). This region has been shown to activate transcription when fused to a GAL4 DNA binding domain. 330 -309718 pfam04705 TSNR_N Thiostrepton-resistance methylase, N-terminus. This region is found in some members of the SpoU-type rRNA methylase family (pfam00588). 110 -309719 pfam04706 Dickkopf_N Dickkopf N-terminal cysteine-rich region. Dickkopf proteins are a class of Wnt antagonists. They possess two conserved cysteine-rich regions. This family represents the N-terminal one. The C-terminal region has been found to share significant sequence similarity to the colipase fold, pfam01114, pfam02740. 50 -309720 pfam04707 PRELI PRELI-like family. This family includes a conserved region found in the PRELI protein and yeast YLR168C gene MSF1 product. The function of this protein is unknown, though it is thought to be involved in intra-mitochondrial protein sorting. This region is also found in a number of other eukaryotic proteins. 157 -282551 pfam04708 Pox_F16 Poxvirus F16 protein. 215 -309721 pfam04709 AMH_N Anti-Mullerian hormone, N terminal region. Anti-Mullerian hormone, AMH is a signalling molecule involved in male and female sexual differentiation. Defects in synthesis or action of AMH cause persistent Mullerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism. This family represents the N terminal part of the protein, which is not thought to be essential for activity. AMH contains a TGF-beta domain (pfam00019), at the C-terminus. 374 -335871 pfam04710 Pellino Pellino. Pellino is involved in Toll-like signalling pathways, and associates with the kinase domain of the Pelle Ser/Thr kinase. 410 -309723 pfam04711 ApoA-II Apolipoprotein A-II (ApoA-II). Apolipoprotein A-II (ApoA-II) is the second major apolipoprotein of high density lipoprotein in human plasma. Mature ApoA-II is present as a dimer of two 77-amino acid chains joined by a disulphide bridge. ApoA-II regulates many steps in HDL metabolism, and its role in coronary heart disease is unclear. In bovine serum, the ApoA-II homolog is present in almost free form. Bovine ApoA-II shows antimicrobial activity against Escherichia coli and yeasts in phosphate buffered saline (PBS). 75 -309724 pfam04712 Radial_spoke Radial spokehead-like protein. This family includes the radial spoke head proteins RSP4 and RSP6 from Chlamydomonas reinhardtii, and several eukaryotic homologs, including mammalian RSHL1, the protein product of a familial ciliary dyskinesia candidate gene. 493 -282556 pfam04713 Pox_I5 Poxvirus protein I5. 75 -309725 pfam04714 BCL_N BCL7, N-terminal conserver region. Members of the BCL family have significant sequence similarity at their N-terminus, represented in this family. The function of BCL7 proteins is unknown. They may be involved in early development. In addition, BCL7B is commonly hemizygously deleted in patients with Williams syndrome. 48 -309726 pfam04715 Anth_synt_I_N Anthranilate synthase component I, N terminal region. Anthranilate synthase (EC:4.1.3.27) catalyzes the first step in the biosynthesis of tryptophan. Component I catalyzes the formation of anthranilate using ammonia and chorismate. The catalytic site lies in the adjacent region, described in the chorismate binding enzyme family (pfam00425). This region is involved in feedback inhibition by tryptophan. This family also contains a region of Para-aminobenzoate synthase component I (EC 4.1.3.-). 140 -335872 pfam04716 ETC_C1_NDUFA5 ETC complex I subunit conserved region. Family of eukaryotic NADH-ubiquinone oxidoreductase subunits (EC:1.6.5.3) (EC:1.6.99.3) from complex I of the electron transport chain initially identified in Neurospora crassa as a 29.9 kDa protein. The conserved region is found at the N-terminus of the member proteins. 67 -309728 pfam04717 Phage_base_V Type VI secretion system, phage-baseplate injector. Family of bacterial and phage baseplate assembly proteins responsible for forming the small spike at the end of the tail or bacterial pathogenic needle-shaft. 112 -335873 pfam04718 ATP-synt_G Mitochondrial ATP synthase g subunit. The Fo sector of the ATP synthase is a membrane bound complex which mediates proton transport. It is composed of nine different polypeptide subunits (a, b, c, d, e, f, g F6, A6L). The function of subunit g is currently unknown. The conserved region covers all but the very N-terminus of the member sequences. No prokaryotic members have been identified thus far. 93 -335874 pfam04719 TAFII28 hTAFII28-like protein conserved region. The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. The conserved region is found at the C-terminal of most member proteins. The crystal structure of hTAFII28 with hTAFII18 shows that this region is involved in the binding of these two subunits. The conserved region contains four alpha helices and three loops arranged as in histone H3. 85 -335875 pfam04720 PDDEXK_6 PDDEXK-like family of unknown function. PDDEXK_6 is a family of plant proteins that are distant homologs of the PD-(D/E)XK nuclease superfamily. The core structure is retained, as alpha-beta-beta-beta-alpha-beta. It retains the characteristic PDDEXK motifs II and III in modified forms - xDxxx motif located in the second core beta-strand, where x is any hydrophobic residue, and a D/E)X(D/N/S/C/G) pattern. The missing positively charged residue in motif III is possibly replaced by a conserved arginine in motif IV located in the proceeding alpha-helix. The family is not in general fused with any other domains, so its function cannot be predicted. 214 -309732 pfam04721 PAW PNGase C-terminal domain, mannose-binding module PAW. The PAW domain is found at the C-terminus of PGNase, or peptide-N-glycanase, enzymes. It was named for 'domain present in PNGases and other worm proteins'. PNGase catalyzes the deglycosylation of several misfolded N-linked glycoproteins by cleaving off the bulky glycan chain before these proteins are degraded by the proteasome. PNGase specifically acts on the unfolded form of high-mannose type N-glycosylated proteins, and this domain appears to be the mannose-binding domain, which contributes to the oligosaccharide-binding specificity of PNGase. 185 -309733 pfam04722 Ssu72 Ssu72-like protein. The highly conserved and essential protein Ssu72 has intrinsic phosphatase activity and plays an essential role in the transcription cycle. Ssu72 was originally identified in a yeast genetic screen as enhancer of a defect caused by a mutation in the transcription initiation factor TFIIB. It binds to TFIIB and is also involved in mRNA elongation. Ssu72 is further involved in both poly(A) dependent and independent termination. It is a subunit of the yeast cleavage and polyadenylation factor (CPF), which is part of the machinery for mRNA 3'-end formation. Ssu72 is also essential for transcription termination of snRNAs. 189 -309734 pfam04723 GRDA Glycine reductase complex selenoprotein A. Found in clostridia, this protein contains one active site selenocysteine and catalyzes the reductive deamination of glycine, which is coupled to the esterification of orthophosphate resulting in the formation of ATP. A member of this family may also exist in Treponema denticola. 147 -309735 pfam04724 Glyco_transf_17 Glycosyltransferase family 17. This family represents beta-1,4-mannosyl-glycoprotein beta-1,4-N-acetylglucosaminyltransferase (EC:2.4.1.144). This enzyme transfers the bisecting GlcNAc to the core mannose of complex N-glycans. The addition of this residue is regulated during development and has functional consequences for receptor signalling, cell adhesion, and tumor progression. 349 -309736 pfam04725 PsbR Photosystem II 10 kDa polypeptide PsbR. This protein is associated with the oxygen-evolving complex of photosystem II. Its function in photosynthesis is not known. The C-terminal hydrophobic region functions as a thylakoid transfer signal but is not removed. 98 -282569 pfam04726 Microvir_J Microvirus J protein. This small protein is involved in DNA packaging, interacting with DNA via its hydrophobic carboxyl terminus. In bacteriophage phi-X174, J is present in 60 copies, and forms an S-shaped polypeptide chain without any secondary structure. It is thought to interact with DNA through simple charge interactions. 37 -335876 pfam04727 ELMO_CED12 ELMO/CED-12 family. This family represents a conserved domain which is found in a number of eukaryotic proteins including CED-12, ELMO I and ELMO II. ELMO1 is a component of signalling pathways that regulate phagocytosis and cell migration and is the mammalian orthologue of the C. elegans gene, ced-12. CED-12 is required for the engulfment of dying cells and cell migration. In mammalian cells, ELMO1 interacts with Dock180 as part of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. ELMO1 is ubiquitously expressed, although its expression is highest in the spleen, an organ rich in immune cells. ELMO1 has a PH domain and a polyproline sequence motif at its C-terminus which are not present in this alignment. 164 -335877 pfam04728 LPP Lipoprotein leucine-zipper. This is leucine-zipper is found in the enterobacterial outer membrane lipoprotein LPP. It is likely that this domain oligomerises and is involved in protein-protein interactions. As such it is a bundle of alpha-helical coiled-coils, which are known to play key roles in mediating specific protein-protein interactions for in molecular recognition and the assembly of multi-protein complexes. 52 -335878 pfam04729 ASF1_hist_chap ASF1 like histone chaperone. This family includes the yeast and human ASF1 protein. These proteins have histone chaperone activity. ASF1 participates in both the replication-dependent and replication-independent pathways. The structure three-dimensional has been determined as a a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. 154 -282573 pfam04730 Agro_virD5 Agrobacterium VirD5 protein. The virD operon in Agrobacterium encodes a site-specific endonuclease, and a number of other poorly characterized products. This family represents the VirD5 protein. 757 -309740 pfam04731 Caudal_act Caudal like protein activation region. This family consists of the amino termini of proteins belonging to the caudal-related homeobox protein family. This region is thought to mediate transcription activation. The level of activation caused by mouse Cdx2 is affected by phosphorylation at serine 60 via the mitogen-activated protein kinase pathway. Caudal family proteins are involved in the transcriptional regulation of multiple genes expressed in the intestinal epithelium, and are important in differentiation and maintenance of the intestinal epithelial lining. Caudal proteins always have a homeobox DNA binding domain (pfam00046). 127 -309741 pfam04732 Filament_head Intermediate filament head (DNA binding) region. This family represents the N-terminal head region of intermediate filaments. Intermediate filament heads bind DNA. Vimentin heads are able to alter nuclear architecture and chromatin distribution, and the liberation of heads by HIV-1 protease liberates may play an important role in HIV-1 associated cytopathogenesis and carcinogenesis. Phosphorylation of the head region can affect filament stability. The head has been shown to interaction with the rod domain of the same protein. 83 -252768 pfam04733 Coatomer_E Coatomer epsilon subunit. This family represents the epsilon subunit of the coatomer complex, which is involved in the regulation of intracellular protein trafficking between the endoplasmic reticulum and the Golgi complex. 288 -335879 pfam04734 Ceramidase_alk Neutral/alkaline non-lysosomal ceramidase, N-terminal. This family represents N-terminal domain of a group of neutral/alkaline ceramidases found in both bacteria and eukaryotes. The EC classification is EC:3.5.1.23. The enzyme hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. This N-terminal domain carries two metal-binding sites, the first for Zn2+ residing within the domain, and the second, for Mg2+/Ca2+ lying at the interface between the two domains. 506 -282577 pfam04735 Baculo_helicase Baculovirus DNA helicase. 1307 -282578 pfam04736 Eclosion Eclosion hormone. Eclosion hormone is an insect neuropeptide that triggers the performance of ecdysis behaviour, which causes shedding of the old cuticle at the end of a molt,. 61 -309743 pfam04738 Lant_dehydr_N Lantibiotic dehydratase, C-terminus. Lantibiotics are ribosomally synthesized antimicrobial agents derived from ribosomally synthesized peptides. They are produced by bacteria of the Firmicutes phylum, and include mutacin, subtilin, and nisin. Lantibiotic peptides contain thioether bridges termed lanthionines that are thought to be generated by dehydration of serine and threonine residues followed by addition of cysteine residues. This family constitutes the N-terminus of the enzyme proposed to catalyze the dehydration step, via glutamylation of the substrate during lantibiotic biosynthesis. The enzyme dehydrates Ser/Thr residues in the precursor by glutamylation. 647 -309744 pfam04739 AMPKBI 5'-AMP-activated protein kinase beta subunit, interaction domain. This region is found in the beta subunit of the 5'-AMP-activated protein kinase complex, and its yeast homologs Sip1, Sip2 and Gal83, which are found in the SNF1 kinase complex. This region is sufficient for interaction of this subunit with the kinase complex, but is not solely responsible for the interaction, and the interaction partner is not known. The isoamylase N-terminal domain (pfam02922) is sometimes found in proteins belonging to this family. 69 -309745 pfam04740 LXG LXG domain of WXG superfamily. This domain is present is the N-terminal region of a group of polymorphic toxin proteins in bacteria. It is predicted to use Type VII secretion pathway to mediate export of bacterial toxins. 202 -282582 pfam04741 InvH InvH outer membrane lipoprotein. This family represents the Salmonella outer membrane lipoprotein InvH. The molecular function of this protein is unknown, but it is required for the localization to outer membrane of InvG, which is involved in a type III secretion apparatus mediating host cell invasion. 147 -335880 pfam04744 Monooxygenase_B Monooxygenase subunit B protein. Family of membrane associated monooxygenases (EC 1.13.12.-) which utilize O(2) to oxidize their substrate. Family members include both ammonia and methane monooxygenases involved in the oxidation of their respective substrates. These enzymes are multi-subunit complexes. This family represents the B subunit of the enzyme; the A subunit is thought to contain the active site.. 380 -282584 pfam04745 Pox_A8 VITF-3 subunit protein. Family of Chordopoxvirus proteins composing one of the two subunits that make up VITF-3, a virally encoded complex necessary for intermediate stage transcription. 289 -113513 pfam04746 DUF575 Protein of unknown function (DUF575). Family of uncharacterized proteins. Contains several chlamydial members. 101 -282585 pfam04747 DUF612 Protein of unknown function, DUF612. This family includes several uncharacterized proteins from Caenorhabditis elegans. 511 -335881 pfam04748 Polysacc_deac_2 Divergent polysaccharide deacetylase. This family is divergently related to pfam01522 (personal obs:Yeats C). 215 -335882 pfam04749 PLAC8 PLAC8 family. This family includes the Placenta-specific gene 8 protein. 103 -309749 pfam04750 Far-17a_AIG1 FAR-17a/AIG1-like protein. This family includes the hamster androgen-induced FAR-17a protein, and its human homolog, the AIG1 protein. The function of these proteins is unknown. This family also includes homologous regions from a number of other metazoan proteins. 206 -335883 pfam04751 DUF615 Protein of unknown function (DUF615). This family of bacterial proteins has no known function. 134 -335884 pfam04752 ChaC ChaC-like protein. The ChaC family of proteins function as gamma-glutamyl cyclotransferases acting specifically to degrade glutathione but not other gamma-glutamyl peptides. It is is conversed across all phyla and represents a new pathway for glutathione degradation in living cells. 177 -282591 pfam04753 Corona_NS2 Coronavirus non-structural protein NS2. 105 -335885 pfam04754 Transposase_31 Putative transposase, YhgA-like. This family of putative transposases includes the YhgA sequence from Escherichia coli and several prokaryotic homologs. 202 -309752 pfam04755 PAP_fibrillin PAP_fibrillin. This family identifies a conserved region found in a number of plastid lipid-associated proteins (PAPs), and in a number of putative fibrillin proteins. 196 -309753 pfam04756 OST3_OST6 OST3 / OST6 family, transporter family. The proteins in this family are part of a complex of eight ER proteins that transfers core oligosaccharide from dolichol carrier to Asn-X-Ser/Thr motifs. This family includes both OST3 and OST6, each of which contains four predicted transmembrane helices. Disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation. These proteins are also thought to be novel Mg2+ transporters. 294 -309754 pfam04757 Pex2_Pex12 Pex2 / Pex12 amino terminal region. This region is found at the N terminal of a number of known and predicted peroxins including Pex2, Pex10 and Pex12. This conserved region is usually associated with a C terminal ring finger (pfam00097) domain. 203 -309755 pfam04758 Ribosomal_S30 Ribosomal protein S30. 58 -335886 pfam04759 DUF617 Protein of unknown function, DUF617. This family represents a conserved region in a number of uncharacterized plant proteins. 160 -335887 pfam04760 IF2_N Translation initiation factor IF-2, N-terminal region. This conserved feature at the N-terminus of bacterial translation initiation factor IF2 has recently had its structure solved. It shows structural similarity to the tRNA anticodon Stem Contact Fold domains of the methionyl-tRNA and glutaminyl-tRNA synthetases, and a similar fold is also found in the B5 domain of the phenylalanine-tRNA synthetase. 52 -282599 pfam04761 Phage_Treg Lactococcus bacteriophage putative transcription regulator. This family represents a number of putative transcription repressor proteins found in several Lactococcus bacteriophages. Horizontal transfer may account for the presence of similar proteins in Lactococcus. 61 -309758 pfam04762 IKI3 IKI3 family. Members of this family are components of the elongator multi-subunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. This region contains WD40 like repeats. 877 -309759 pfam04763 DUF562 Protein of unknown function (DUF562). Family of uncharacterized proteins. 146 -252787 pfam04764 DUF613 Protein of unknown function (DUF613). Family of chloroplast proteins of unknown function. Some members have two copies of the conserved region. 120 -309760 pfam04765 DUF616 Protein of unknown function (DUF616). Family of uncharacterized proteins. 303 -309761 pfam04766 Baculo_p26 Nucleopolyhedrovirus p26 protein. Family of Baculovirus p26 proteins. 234 -282602 pfam04767 Pox_F17 DNA-binding 11 kDa phosphoprotein. Family of poxvirus proteins required for virus morphogenesis. Protein function necessary for proteolytic processing of the major viral structural proteins, P4a and P4b. 93 -309762 pfam04768 NAT NAT, N-acetyltransferase, of N-acetylglutamate synthase. This is the C-terminal NAT or N-acetyltransferase domain of bifunctional N-acetylglutamate synthase/kinases. It catalyzes the first two steps in arginine biosynthesis. This domain contains the putative NAGS - N-acetylglutamate synthase - active site. It is found at the C-terminus of Neurospora crassa acetylglutamate synthase - amino-acid acetyltransferase, EC: 2.3.1.1. It is also found C-terminal to the amino acid kinase region (pfam00696) in some fungal acetylglutamate kinase enzymes. it stabilizes the yeast NAGK, N-acetyl-L-glutamate kinase, slows catalysis and modulates feed-back inhibition by arginine. This domain is found to be the N-acetyltransferase (NAT) domain, and it has a typical GCN5-related NAT fold and a site that catalyzes NAG synthesis which is located >25 Angstrom away from the L-arginine binding site in the N-temrinal domain pfam00696. 168 -335888 pfam04769 MATalpha_HMGbox Mating-type protein MAT alpha 1 HMG-box. This family includes Saccharomyces cerevisiae mating type protein alpha 1. Mat alpha 1 is a transcription activator which activates mating-type alpha-specific genes. MAT alpha 1 and MCM 1 bind cooperatively to PQ elements upstream of alpha-specific genes. Alpha 1 interacts in vivo with STE12, linking expression of alpha-specific genes to the alpha-pheromone (pfam04648) response pathway. In silico modelling of the MAT_Alpha1 domain indicates that its best scoring templates were structures of HMG-box proteins, and DOI: 10.4236/ojbiphy.2013.31001. Phylogenetic analysis suggests that the MAT_Alpha1 domain diverged from the MATA_HMG-box subfamily. The name of MATalpha_HMG-box was proposed for the MAT_alpha1 domain. 178 -335889 pfam04770 ZF-HD_dimer ZF-HD protein dimerization region. This family of proteins has are plant transcription factors, and have been named ZF-HD for zinc finger homeodomain proteins, on the basis of similarity to proteins of known structure. This region is thought to be involved in the formation of homo and heterodimers, and may form a zinc finger. 55 -282606 pfam04771 CAV_VP3 Chicken anaemia virus VP-3 protein. This protein is found in the nucleus of infected cells and may act as a transcriptional regulator. It induces apoptosis, and is also known as apoptin. 121 -282607 pfam04772 Flu_B_M2 Influenza B matrix protein 2 (BM2). M2 is synthesized in the late phase of infection and incorporated into the virion. It may be phosphorylated in vivo. The function of BM2 is unknown. 109 -335890 pfam04773 FecR FecR protein. FecR is involved in regulation of iron dicitrate transport. In the absence of citrate FecR inactivates FecI. FecR is probably a sensor that recognizes iron dicitrate in the periplasm. 96 -335891 pfam04774 HABP4_PAI-RBP1 Hyaluronan / mRNA binding family. This family includes the HABP4 family of hyaluronan-binding proteins, and the PAI-1 mRNA-binding protein, PAI-RBP1. HABP4 has been observed to bind hyaluronan (a glucosaminoglycan), but it is not known whether this is its primary role in vivo. It has also been observed to bind RNA, but with a lower affinity than that for hyaluronan. PAI-1 mRNA-binding protein specifically binds the mRNA of type-1 plasminogen activator inhibitor (PAI-1), and is thought to be involved in regulation of mRNA stability. However, in both cases, the sequence motifs predicted to be important for ligand binding are not conserved throughout the family, so it is not known whether members of this family share a common function. 108 -335892 pfam04775 Bile_Hydr_Trans Acyl-CoA thioester hydrolase/BAAT N-terminal region. This family consists of the amino termini of acyl-CoA thioester hydrolase and bile acid-CoA:amino acid N-acetyltransferase (BAAT). This region is not thought to contain the active site of either enzyme. Thioesterase isoforms have been identified in peroxisomes, cytoplasm and mitochondria, where they are thought to have distinct functions in lipid metabolism. For example, in peroxisomes, the hydrolase acts on bile-CoA esters. 121 -309768 pfam04776 protein_MS5 Protein MS5. Proteins are known only from species of Brassicaceae. Protein MS5 is essential for pairing of homologs during early prophase stage of meiosis but not necessary for the initiation of DNA double-strand breaks. 119 -335893 pfam04777 Evr1_Alr Erv1 / Alr family. Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Erv1p of Saccharomyces cerevisiae mitochondria is required for the maturation of Fe/S proteins in the cytosol. The ALR (augmenter of liver regeneration) represents a mammalian orthologue of yeast Erv1p. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane an d it thought to operate downstream of the mitochondrial ABC transporter. 92 -309770 pfam04778 LMP LMP repeated region. This family consists of a repeated sequence element found in the LMP group of surface-located membrane proteins of Mycoplasma hominis. The the number of repeats in the protein affects the tendency of cells to spontaneously aggregate. Agglutination may be an important factor in colonisation. Non-agglutinating microorganisms might easily be distributed whereas aggregation might provide a better chance to avoid an antibody response since some of the epitopes may be buried. 154 -309771 pfam04780 DUF629 Protein of unknown function (DUF629). This family represents a region of several plant proteins of unknown function. A C2H2 zinc finger is predicted in this region in some family members, but the spacing between the cysteine residues is not conserved throughout the family. 465 -309772 pfam04781 DUF627 Protein of unknown function (DUF627). This family represents the N-terminal region of several plant proteins of unknown function. 108 -335894 pfam04782 DUF632 Protein of unknown function (DUF632). This plant protein may be a leucine zipper, but there is no experimental evidence for this. 305 -335895 pfam04783 DUF630 Protein of unknown function (DUF630). This region is sometimes found at the N-terminus of putative plant bZIP proteins. Its function is not known. Structural modelling suggests this domain may bind nucleic acids. 59 -335896 pfam04784 DUF547 Protein of unknown function, DUF547. Family of uncharacterized proteins from C. elegans and A. thaliana. 108 -282619 pfam04785 Rhabdo_M2 Rhabdovirus matrix protein M2. M protein is involved in condensing and targeting the ribonucleoprotein (RNP) coil to the plasma membrane. M interacts specifically with the transmembrane spike protein (G) is important for the incorporation of G protein into budding virions. 202 -282620 pfam04786 Baculo_DNA_bind ssDNA binding protein. Family of Baculovirus ssDNA binding proteins. 248 -282621 pfam04787 Pox_H7 Late protein H7. Family of poxvirus late H7 proteins. 143 -335897 pfam04788 DUF620 Protein of unknown function (DUF620). Family of uncharacterized proteins. 243 -309777 pfam04789 DUF621 Protein of unknown function (DUF621). Family of uncharacterized proteins. Some are annotated as having possible G-protein-coupled receptor-like activity. 300 -335898 pfam04790 Sarcoglycan_1 Sarcoglycan complex subunit protein. The dystrophin glycoprotein complex (DGC) is a membrane-spanning complex that links the interior cytoskeleton to the extracellular matrix in muscle. The sarcoglycan complex is a subcomplex within the DGC and is composed of several muscle-specific, transmembrane proteins (alpha-, beta-, gamma-, delta- and zeta-sarcoglycan). The sarcoglycans are asparagine-linked glycosylated proteins with single transmembrane domains. This family contains beta, gamma and delta members. 253 -335899 pfam04791 LMBR1 LMBR1-like membrane protein. Members of this family are integral membrane proteins that are around 500 residues in length. LMBR1 is not involved in preaxial polydactyly, as originally thought. Vertebrate members of this family may play a role in limb development. A member of this family has been shown to be a lipocalin membrane receptor 464 -282626 pfam04792 LcrV V antigen (LcrV) protein. Yersinia pestis, the aetiologic agent of plague, secretes a set of environmentally regulated, plasmid pCD1-encoded virulence proteins termed Yops and V antigen (LcrV) by a type III secretion mechanism. LcrV is a multifunctional protein that has been shown to act at the level of secretion control by binding the Ysc inner-gate protein LcrG and to modulate the host immune response by altering cytokine production. LcrV is also necessary for full induction of low-calcium response (LCR) stimulon virulence gene transcription. Family members are not confined to Yersinia pestis. 298 -282627 pfam04793 Herpes_BBRF1 BRRF1-like protein. Family of herpesvirus proteins including Epstein-barr virus protein BBRF1. 281 -335900 pfam04794 YdjC YdjC-like protein. Family of YdjC-like proteins. This region is possibly involved in the the cleavage of cellobiose-phosphate. 180 -309781 pfam04795 PAPA-1 PAPA-1-like conserved region. Family of proteins with a conserved region found in PAPA-1, a PAP-1 binding protein. 86 -309782 pfam04796 RepA_C Plasmid encoded RepA protein. Family of plasmid encoded proteins involved in plasmid replication. The role of RepA in the replication process is not clearly understood. 161 -309783 pfam04797 Herpes_ORF11 Herpesvirus dUTPase protein. This family of proteins are found in Herpesvirus proteins. This family includes proteins called ORF10 and ORF11 amongst others. However, these proteins seem to be related to other dUTPases pfam00692 suggesting that these proteins are also dUTPases (Bateman A pers. obs.). 372 -282632 pfam04798 Baculo_19 Baculovirus 19 kDa protein conserved region. Family of Baculovirus proteins of approximate mass 19 kDa. 143 -309784 pfam04799 Fzo_mitofusin fzo-like conserved region. Family of putative transmembrane GTPase. The fzo protein is a mediator of mitochondrial fusion. This conserved region is also found in the human mitofusin protein. 161 -335901 pfam04800 ETC_C1_NDUFA4 ETC complex I subunit conserved region. Family of pankaryotic NADH-ubiquinone oxidoreductase subunits (EC:1.6.5.3) (EC:1.6.99.3) from complex I of the electron transport chain initially identified in Neurospora crassa as a 21 kDa protein. 94 -309786 pfam04801 Sin_N Sin-like protein conserved region. Family of higher eukaryotic proteins. SIN was identified as a protein that interacts specifically with SXL (sex lethal) in a yeast two-hybrid assay. The interaction is mediated by one of the SXL RNA binding domains. 418 -335902 pfam04802 SMK-1 Component of IIS longevity pathway SMK-1. SMK-1 is a component of the IIs longevity pathway which regulates aging in C.elegans. Specifically, SMK-1 influences DAF-16-dependant regulation of the aging process by regulating the transcriptional specificity of DAF-16 activity. SMK-1 plays a role in longevity by modulating the transcriptional specificity of DAF-16. 191 -309788 pfam04803 Cor1 Cor1/Xlr/Xmr conserved region. Cor1 is a component of the chromosome core in the meiotic prophase chromosomes. Xlr is a lymphoid cell specific protein. Xlm is abundantly transcribed in testis in a tissue-specific and developmentally regulated manner. The protein is located in the nuclei of spermatocytes, early in the prophase of the first meiotic division, and later becomes concentrated in the XY nuclear subregion where it is in particular associated with the axes of sex chromosomes. 124 -282638 pfam04805 Pox_E10 E10-like protein conserved region. Family of poxvirus proteins. 69 -309789 pfam04806 EspF EspF protein repeat. The enteropathogenic Escherichia coli EspF secreted protein induces host cell apoptosis. Its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins. 47 -147122 pfam04807 Gemini_AC4_5 Geminivirus AC4/5 conserved region. 33 -113574 pfam04808 CTV_P23 Citrus tristeza virus (CTV) P23 protein. This family consists of protein P23 from the citrus tristeza virus, which is a member of the Closteroviridae. CTV viruses produce more positive than negative RNA strands, and P23 controls this asymmetrical RNA accumulation. Amino acids 42-180 are essential for function and are thought to contain RNA-binding and zinc finger domains. 209 -335903 pfam04809 HupH_C HupH hydrogenase expression protein, C-terminal conserved region. This family represents a C-terminal conserved region found in these bacterial proteins necessary for hydrogenase synthesis. Their precise function is unknown. 98 -335904 pfam04810 zf-Sec23_Sec24 Sec23/Sec24 zinc finger. COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. This domain is found to be zinc binding domain. 38 -335905 pfam04811 Sec23_trunk Sec23/Sec24 trunk domain. COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. This domain is known as the trunk domain and has an alpha/beta vWA fold and forms the dimer interface. 241 -335906 pfam04812 HNF-1B_C Hepatocyte nuclear factor 1 (HNF-1), beta isoform C-terminus. This family consists of a region found within the alpha isoform and at the C-terminus of the beta isoform of the homeobox-containing transcription factor of HNF-1. Different isoforms of HNF-1 are generated by the differential use of polyadenylation sites and by alternative splicing. The C-terminal region of HNF-1 is responsible for the activation of transcription. Mutations and polymorphisms in HNF-1 cause the type 3 form of maturity-onset diabetes of the young (MODY3). 258 -282644 pfam04813 HNF-1A_C Hepatocyte nuclear factor 1 (HNF-1), alpha isoform C-terminus. This family consists of an alternative C-terminus of homeobox-containing transcription factor HNF-1, found in the HNF-1A isoform. Different isoforms of HNF-1 are generated by the differential use of polyadenylation sites and by alternative splicing. The C-terminal region of HNF-1 is responsible for the activation of transcription, and HNF-1A, which has this C-terminal extension, transactivates less well than the B and C isoforms. Mutations and polymorphisms in HNF-1 cause the type 3 form of maturity-onset diabetes of the young (MODY3). 89 -335907 pfam04814 HNF-1_N Hepatocyte nuclear factor 1 (HNF-1), N-terminus. This family consists of the N-terminus of homeobox-containing transcription factor HNF-1. This region contains a dimerization sequence and an acidic region that may be involved in transcription activation. Mutations and the common Ala/Val 98 polymorphism in HNF-1 cause the type 3 form of maturity-onset diabetes of the young (MODY3). 192 -335908 pfam04815 Sec23_helical Sec23/Sec24 helical domain. COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. This domain is composed of five alpha helices. 99 -282647 pfam04816 TrmK tRNA (adenine(22)-N(1))-methyltransferase. tRNA_MT is a family of bacterial tRNA (adenine(22)-N(1))-methyltransferase enzymes with a Rossmann-like fold. This enzyme carries out the function of N1-adenosine methylation at position 22 of bacterial tRNA. 205 -113583 pfam04817 Umbravirus_LDM Umbravirus long distance movement (LDM) family. The long distance movement protein of Umbraviruses mediates the movement of viral RNA through the phloem of infected plants. 231 -335909 pfam04818 CTD_bind RNA polymerase II-binding domain. This domain binds to the phosphorylated C-terminal domain (CTD) of RNA polymerase II. 63 -309796 pfam04819 DUF716 Family of unknown function (DUF716). This family is equally distributed in both metazoa and plants. Annotation associated with a Nicotiana tabacum mRNA suggest that it may be involved in response to viral attack in plants. However, no clear function has been assigned to this family. 132 -335910 pfam04820 Trp_halogenase Tryptophan halogenase. Tryptophan halogenase catalyzes the chlorination of tryptophan to form 7-chlorotryptophan. This is the first step in the biosynthesis of pyrrolnitrin, an antibiotic with broad-spectrum anti-fungal activity. Tryptophan halogenase is NADH-dependent. 457 -335911 pfam04821 TIMELESS Timeless protein. The timeless gene in Drosophila melanogaster and its homologs in a number of other insects and mammals (including human) are involved in circadian rhythm control. This family includes a related proteins from a number of fungal species. 270 -309799 pfam04822 Takusan Takusan. This domain is named takusan, which is a Japanese word meaning 'many'. Members of this family regulate synaptic activity. 85 -309800 pfam04823 Herpes_UL49_2 Herpesvirus UL49 tegument protein. 82 -335912 pfam04824 Rad21_Rec8 Conserved region of Rad21 / Rec8 like protein. This family represents a conserved region found in eukaryotic cohesins of the Rad21, Rec8 and Scc1 families. Members of this family mediate sister chromatid cohesion during mitosis and meiosis, as part of the cohesin complex. Cohesion is necessary for homologous recombination (including double-strand break repair) and correct chromatid segregation. These proteins may also be involved in chromosome condensation. Dissociation at the metaphase to anaphase transition causes loss of cohesion and chromatid segregation. 55 -335913 pfam04825 Rad21_Rec8_N N-terminus of Rad21 / Rec8 like protein. This family represents a conserved N-terminal region found in eukaryotic cohesins of the Rad21, Rec8 and Scc1 families. Members of this family mediate sister chromatid cohesion during mitosis and meiosis, as part of the cohesin complex. Cohesion is necessary for homologous recombination (including double-strand break repair) and correct chromatid segregation. These proteins may also be involved in chromosome condensation. Dissociation at the metaphase to anaphase transition causes loss of cohesion and chromatid segregation. 97 -309802 pfam04826 Arm_2 Armadillo-like. This domain contains armadillo-like repeats. Proteins containing this domain interact with numerous other proteins, through these interactions they are involved in a wide variety of processes including carcinogenesis, control of cellular ageing and survival, regulation of circadian rhythm and lysosomal sorting of G protein-coupled receptors. 252 -203098 pfam04827 Plant_tran Plant transposon protein. This family contains plant transposases which are putative members of the PIF / Ping-Pong family. 205 -309803 pfam04828 GFA Glutathione-dependent formaldehyde-activating enzyme. The GFA enzyme catalyzes the first step in the detoxification of formaldehyde. This domain has a beta-tent fold. 93 -309804 pfam04829 PT-VENN Pre-toxin domain with VENN motif. This family represents a conserved region found in many bacterial porlymorphic toxins which is located before the C-terminal toxin modules. 52 -309805 pfam04830 DUF637 Possible hemagglutinin (DUF637). This family represents a conserved region found in a bacterial protein which may be a hemagglutinin or hemolysin. 169 -335914 pfam04831 Popeye Popeye protein conserved region. The function of Popeye proteins is not well understood. They are predominantly expressed in cardiac and skeletal muscle. This family represents a conserved region which includes three potential transmembrane domains. 226 -309807 pfam04832 SOUL SOUL heme-binding protein. This family represents a group of putative heme-binding proteins. Our family includes archaeal and bacterial homologs. 164 -335915 pfam04833 COBRA COBRA-like protein. Family of plant proteins are designated COBRA-like (COBL) proteins. The 12 Arabidopsis members of the family are all GPI-liked. Some members of this family are annotated as phytochelatin synthase, but these annotations are incorrect. 165 -309809 pfam04834 Adeno_E3_14_5 Early E3 14.5 kDa protein. The E3B 14.5 kDa was first identified in Human adenovirus type 5. It is an integral membrane protein oriented with its C-terminus in the cytoplasm. It functions to down-regulate the epidermal growth factor receptor and prevent tumor necrosis factor cytolysis. It achieves this through the interaction with E3 10.4 kDa protein. 100 -282664 pfam04835 Pox_A9 A9 protein conserved region. Family of Chordopoxvirus A9 proteins. 53 -309810 pfam04836 IFRD_C Interferon-related protein conserved region. Family of proteins thought to be involved in regulating gene activity in the proliferative and/or differentiative pathways induced by NGF. 51 -113603 pfam04837 MbeB_N MbeB-like, N-term conserved region. This family represents an N-terminal conserved region of MbeB/MobB proteins. These proteins are essential for specific plasmid transfer. 52 -282666 pfam04838 Baculo_LEF5 Baculoviridae late expression factor 5. 156 -282667 pfam04839 PSRP-3_Ycf65 Plastid and cyanobacterial ribosomal protein (PSRP-3 / Ycf65). This small acidic protein is found in 30S ribosomal subunit of cyanobacteria and plant plastids. In plants it has been named plastid-specific ribosomal protein 3 (PSRP-3), and in cyanobacteria it is named Ycf65. Plastid-specific ribosomal proteins may mediate the effects of nuclear factors on plastid translation. The acidic PSRPs are thought to contribute to protein-protein interactions in the 30S subunit, and are not thought to bind RNA. 47 -282668 pfam04840 Vps16_C Vps16, C-terminal region. This protein forms part of the Class C vacuolar protein sorting (Vps) complex. Vps16 is essential for vacuolar protein sorting, which is essential for viability in plants, but not yeast. The Class C Vps complex is required for SNARE-mediated membrane fusion at the lysosome-like yeast vacuole. It is thought to play essential roles in membrane docking and fusion at the Golgi-to-endosome and endosome-to-vacuole stages of transport. The role of VPS16 in this complex is not known. 320 -252829 pfam04841 Vps16_N Vps16, N-terminal region. This protein forms part of the Class C vacuolar protein sorting (Vps) complex. Vps16 is essential for vacuolar protein sorting, which is essential for viability in plants, but not yeast. The Class C Vps complex is required for SNARE-mediated membrane fusion at the lysosome-like yeast vacuole. It is thought to play essential roles in membrane docking and fusion at the Golgi-to-endosome and endosome-to-vacuole stages of transport. The role of VPS16 in this complex is not known. 408 -309811 pfam04842 DUF639 Plant protein of unknown function (DUF639). Plant protein of unknown function. 229 -309812 pfam04843 Herpes_teg_N Herpesvirus tegument protein, N-terminal conserved region. 183 -335916 pfam04844 Ovate Transcriptional repressor, ovate. This is a family of transcriptional repressors. In plants, these proteins are important regulators of growth and development. 58 -282672 pfam04845 PurA PurA ssDNA and RNA-binding protein. This family represents most of the length of the protein. 219 -282673 pfam04846 Herpes_pp38 Herpesvirus pp38 phosphoprotein. This protein represents a conserved region found in most herpesvirus pp38 phosphoproteins. 63 -282674 pfam04847 Calcipressin Calcipressin. Calcipressin is also known as calcineurin-binding protein, since it inhibits calcineurin-mediated transcriptional modulation by binding to calcineurin's catalytic domain. 183 -282675 pfam04848 Pox_A22 Poxvirus A22 protein. 143 -335917 pfam04849 HAP1_N HAP1 N-terminal conserved region. This family represents an N-terminal conserved region found in several huntingtin-associated protein 1 (HAP1) homologs. HAP1 binds to huntingtin in a polyglutamine repeat-length-dependent manner. However, its possible role in the pathogenesis of Huntington's disease is unclear. This family also includes a similar N-terminal conserved region from hypothetical protein products of ALS2CR3 genes found in the human juvenile amyotrophic lateral sclerosis critical region 2q33-2q34. 304 -282677 pfam04850 Baculo_E66 Baculovirus E66 occlusion-derived virus envelope protein. 387 -309815 pfam04851 ResIII Type III restriction enzyme, res subunit. 162 -335918 pfam04852 DUF640 Protein of unknown function (DUF640). This family represents a conserved region found in plant proteins including Resistance protein-like protein. 126 -335919 pfam04854 DUF624 Protein of unknown function, DUF624. This family includes several uncharacterized bacterial proteins. 76 -309818 pfam04855 SNF5 SNF5 / SMARCB1 / INI1. SNF5 is a component of the yeast SWI/SNF complex, which is an ATP-dependent nucleosome-remodelling complex that regulates the transcription of a subset of yeast genes. SNF5 is a key component of all SWI/SNF-class complexes characterized so far. This family consists of the conserved region of SNF5, including a direct repeat motif. SNF5 is essential for the assembly promoter targeting and chromatin remodelling activity of the SWI-SNF complex. SNF5 is also known as SMARCB1, for SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily b, member 1, and also INI1 for integrase interactor 1. Loss-of function mutations in SNF5 are thought to contribute to oncogenesis in malignant rhabdoid tumors (MRTs). 156 -282682 pfam04856 Securin Securin sister-chromatid separation inhibitor. Securin is also known as pituitary tumor-transforming gene product. Over-expression of securin is associated with a number of tumors, and it has been proposed that this may be due to erroneous chromatid separation leading to chromosome gain or loss. 214 -335920 pfam04857 CAF1 CAF1 family ribonuclease. The major pathways of mRNA turnover in eukaryotes initiate with shortening of the polyA tail. CAF1 encodes a critical component of the major cytoplasmic deadenylase in yeast. Both Caf1p is required for normal mRNA deadenylation in vivo and localizes to the cytoplasm. Caf1p copurifies with a Ccr4p-dependent polyA-specific exonuclease activity. Some members of this family include and inserted RNA binding domain pfam01424. This family of proteins is related to other exonucleases pfam00929 (Bateman A pers. obs.). The crystal structure of Saccharomyces cerevisiae Pop2 has been resolved at 2.3 Angstrom resolution. 371 -309820 pfam04858 TH1 TH1 protein. TH1 is a highly conserved but uncharacterized metazoan protein. No homolog has been identified in Caenorhabditis elegans. TH1 binds specifically to A-Raf kinase. 577 -335921 pfam04859 DUF641 Plant protein of unknown function (DUF641). Plant protein of unknown function. 127 -335922 pfam04860 Phage_portal Phage portal protein. Bacteriophage portal proteins form a dodecamer and is located at a five-fold vertex of the viral capsid. The portal complex forms a channel through which the viral DNA is packaged into the capsid, and exits during infection. The portal protein is though to rotate during DNA packaging. Portal proteins from different phage show little sequence homology, so this family does not represent all portal proteins. 272 -335923 pfam04862 DUF642 Protein of unknown function (DUF642). This family represents a duplicated conserved region found in a number of uncharacterized plant proteins, potentially in the stem. There is a conserved CGP sequence motif. 157 -309824 pfam04863 EGF_alliinase Alliinase EGF-like domain. Allicin is a thiosulphinate that gives rise to dithiines, allyl sulphides and ajoenes, the three groups of active compounds in Allium species. Allicin is synthesized from sulfoxide cysteine derivatives by alliinase (EC:4.4.1.4), whose C-S lyase activity cleaves C(beta)-S(gamma) bonds. It is thought that this enzyme forms part of a primitive plant defense system. This family represents the N-terminal EGF-like domain. 51 -252841 pfam04864 Alliinase_C Allinase. Allicin is a thiosulphinate that gives rise to dithiines, allyl sulphides and ajoenes, the three groups of active compounds in Allium species. Allicin is synthesized from sulfoxide cysteine derivatives by alliinase (EC:4.4.1.4), whose C-S lyase activity cleaves C(beta)-S(gamma) bonds. It is thought that this enzyme forms part of a primitive plant defense system. 363 -309825 pfam04865 Baseplate_J Baseplate J-like protein. The P2 bacteriophage J protein lies at the edge of the baseplate. This family also includes a number of bacterial homologs, which are thought to have been horizontally transferred. 253 -282690 pfam04866 Rota_NS6 Rotavirus non-structural protein 6. 92 -282691 pfam04867 DUF643 Protein of unknown function (DUF643). Protein of unknown function found in Borrelia burgdorferi, the Lyme disease spirochete. 114 -309826 pfam04868 PDE6_gamma Retinal cGMP phosphodiesterase, gamma subunit. Retinal rod and cone cGMP phosphodiesterases function as the effector enzymes in the vertebrate visual transduction cascade. This family represents the inhibitory gamma subunit, which is also expressed outside retinal tissues and has been shown to interact with the G-protein-coupled receptor kinase 2 signalling system to regulate the epidermal growth factor- and thrombin-dependent stimulation of p42/p44 mitogen-activated protein kinase in human embryonic kidney 293 cells. 82 -335924 pfam04869 Uso1_p115_head Uso1 / p115 like vesicle tethering protein, head region. Also known as General vesicular transport factor, Transcytosis associated protein (TAP) and Vesicle docking protein, this myosin-shaped molecule consists of an N-terminal globular head region, a coiled-coil tail which mediates dimerization, and a short C-terminal acidic region. p115 tethers COP1 vesicles to the Golgi by binding the coiled coil proteins giantin (on the vesicles) and GM130 (on the Golgi), via its C-terminal acidic region. It is required for intercisternal transport in the golgi stack. This family consists of part of the head region. The head region is highly conserved, but its function is unknown. It does not seem to be essential for vesicle tethering. The N-terminal part of the head region, not within this family, contains context-detected Armadillo/beta-catenin-like repeats (pfam00514). 306 -309828 pfam04870 Moulting_cycle Moulting cycle. This family of proteins plays a role in the moulting cycle of nematodes, which involves the synthesis of a new collagen-rich cuticle underneath the existing cuticle and the subsequent removal of the old cuticle. 337 -335925 pfam04871 Uso1_p115_C Uso1 / p115 like vesicle tethering protein, C terminal region. Also known as General vesicular transport factor, Transcytosis associate protein (TAP) and Vesicle docking protein, this myosin-shaped molecule consists of an N-terminal globular head region, a coiled-coil tail which mediates dimerization, and a short C-terminal acidic region. p115 tethers COP1 vesicles to the Golgi by binding the coiled coil proteins giantin (on the vesicles) and GM130 (on the Golgi), via its C-terminal acidic region. It is required for intercisternal transport in the golgi stack. This family consists of the acidic C-terminus, which binds to the golgins giantin and GM130. p115 is thought to juxtapose two membranes by binding giantin with one acidic region, and GM130 with another. 126 -282696 pfam04872 Pox_L5 Poxvirus L5 protein family. This family includes variola (smallpox) and vaccinia virus L5 proteins. However, not all proteins in this family are called L5. L5 is thought to contain a metal-binding region. 79 -309830 pfam04873 EIN3 Ethylene insensitive 3. Ethylene insensitive 3 (EIN3) proteins are a family of plant DNA-binding proteins that regulate transcription in response to the gaseous plant hormone ethylene, and are essential for ethylene-mediated responses including the triple response, cell growth inhibition, and accelerated senescence. 250 -335926 pfam04874 Mak16 Mak16 protein C-terminal region. The precise function of this eukaryotic protein family is unknown. The yeast orthologues have been implicated in cell cycle progression and biogenesis of 60S ribosomal subunits. The Schistosoma mansoni Mak16 has been shown to target protein transport to the nucleolus. 97 -282699 pfam04875 DUF645 Protein of unknown function, DUF645. This family includes several uncharacterized proteins from Vibrio cholerae. There is some doubt regarding the existence of these proteins, they are encoded by open reading frames contained within a repeated region in the Vibrio superintegron. 59 -282700 pfam04876 Tenui_NCP Tenuivirus major non-capsid protein. This protein of unknown function accumulates in large amounts in tenuivirus infected cells. It is found in all forms of the inclusion bodies that are formed after infection. 173 -309832 pfam04877 Hairpins HrpZ. HrpZ from the plant pathogen Pseudomonas syringae binds to lipid bilayers and forms a cation-conducting pore in vivo. This pore-forming activity may allow nutrient release or delivery of virulence factors during bacterial colonisation of host plants. The family of hairpinN proteins, Harpin, has been merged into this family. HrpN is a virulence determinant which elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. 277 -282702 pfam04878 Baculo_p48 Baculovirus P48 protein. 370 -335927 pfam04879 Molybdop_Fe4S4 Molybdopterin oxidoreductase Fe4S4 domain. This domain is found in formate dehydrogenase H for which the structure is known. This first domain (residues 1 to 60) of Structure 1aa6 is an Fe4S4 cluster just below the protein surface. 55 -309833 pfam04880 NUDE_C NUDE protein, C-terminal conserved region. This family represents the C-terminal conserved region of the NUDE proteins. NUDE proteins are involved in nuclear migration. 170 -282705 pfam04881 Adeno_GP19K Adenovirus GP19K. This 19 kDa glycoprotein binds the major histocompatibility (MHC) class I antigens in the endoplasmic reticulum (ER). The ER retention signal at the C-terminus of GP19K causes retention of the complex in the ER, preventing lysis of the cell by cytotoxic T lymphocytes. 132 -335928 pfam04882 Peroxin-3 Peroxin-3. Peroxin-3 is a peroxisomal protein. It is thought to be involve in membrane vesicle assembly prior to the translocation of matrix proteins. 449 -309835 pfam04883 HK97-gp10_like Bacteriophage HK97-gp10, putative tail-component. This family of proteins is found in the caudovirales. It may be a tail component. 79 -335929 pfam04884 DUF647 Vitamin B6 photo-protection and homoeostasis. In plants, this domain plays a role in auxin-transport, plant growth and development and appears to be expressed by all cells in the plant as well as in plastids. The family has been shown to play a role in vitamin B6 photo-protection and homoeostasis in plants. 240 -309837 pfam04885 Stig1 Stigma-specific protein, Stig1. This family represents the Stig1 cysteine rich plant protein. The STIG1 gene is developmentally regulated and expressed specifically in the stigmatic secretory zone. 132 -282710 pfam04886 PT PT repeat. This short repeat is composed on the tetrapeptide XPTX. This repeat is found in a variety of proteins, however it is not clear if these repeats are homologous to each other. The alignment represents nine copies of this repeat. 36 -282711 pfam04887 Pox_M2 Poxvirus M2 protein. This family includes M2 protein from variola virus. The function of this protein is not known. 196 -335930 pfam04888 SseC Secretion system effector C (SseC) like family. SseC is a secreted protein that forms a complex together with SecB and SecD on the surface of Salmonella. All these proteins are secreted by the type III secretion system. Many mucosal pathogens use type III secretion systems for the injection of effector proteins into target cells. SecB, SseC and SecD are inserted into the target cell membrane. where they form a small pore or translocon. In addition to SseC, this family includes the bacterial secreted proteins PopB, PepB, YopB and EspD which are thought to be directly involved in pore formation, and type III secretion system translocon. 318 -309839 pfam04889 Cwf_Cwc_15 Cwf15/Cwc15 cell cycle control protein. This family represents Cwf15/Cwc15 (from Schizosaccharomyces pombe and Saccharomyces cerevisiae respectively) and their homologs. The function of these proteins is unknown, but they form part of the spliceosome and are thus thought to be involved in mRNA splicing. 238 -309840 pfam04890 DUF648 Family of unknown function (DUF648). Family of hypothetical Chlamydia proteins. This family may well comprise of two domains, as some members only match the N-terminus. 289 -309841 pfam04891 NifQ NifQ. NifQ is involved in early stages of the biosynthesis of the iron-molybdenum cofactor (FeMo-co), which is an integral part of the active site of dinitrogenase. The conserved C-terminal cysteine residues may be involved in metal binding. 160 -309842 pfam04892 VanZ VanZ like family. This family contains several examples of the VanZ protein, but also contains examples of phosphotransbutyrylases. 85 -309843 pfam04893 Yip1 Yip1 domain. The Yip1 integral membrane domain contains four transmembrane alpha helices. The domain is characterized by the motifs DLYGP and GY. The Yip1 protein is a golgi protein involved in vesicular transport that interacts with GTPases. 170 -309844 pfam04894 Nre_N Archaeal Nre, N-terminal. This conserved region is found in the N-terminal region of archaeal Nre proteins. While most archaeal organisms encode only a single Nre protein, some encode two, NreA and NreB. 269 -309845 pfam04895 Nre_C Archaeal Nre, C-terminal. This conserved region is found in the C-terminal region of archaeal Nre proteins. While most archaeal organisms encode only a single Nre protein, some encode two, NreA and NreB. 110 -309846 pfam04896 AmoC Ammonia monooxygenase/methane monooxygenase, subunit C. Ammonia monooxygenase plays a key role in the nitrogen cycle and degrades a wide range of hydrocarbons and halogenated hydrocarbons. This family represents the AmoC subunit. It also includes the particulate methane monooxygenase subunit PmoC from methanotrophic bacteria. 229 -335931 pfam04898 Glu_syn_central Glutamate synthase central domain. The central domain of glutamate synthase connects the amino terminal amidotransferase domain with the FMN-binding domain and has an alpha / beta overall topology. This domain appears to be a rudimentary form of the FMN-binding TIM barrel according to SCOP. 281 -113664 pfam04899 MbeD_MobD MbeD/MobD like. The MbeD and MobD proteins are plasmid encoded, and are involved in the plasmids mobilisation and transfer in the presence of conjugative plasmids. 70 -335932 pfam04900 Fcf1 Fcf1. Fcf1 is a nucleolar protein involved in pre-rRNA processing. Depletion of yeast Fcf1 and Fcf2 leads to a decrease in synthesis of the 18S rRNA and results in a deficit in 40S ribosomal subunits. 98 -309849 pfam04901 RAMP Receptor activity modifying family. The calcitonin-receptor-like receptor can function as either a calcitonin-gene-related peptide or an adrenomedullin receptor. The receptors function is modified by receptor-activity-modifying protein or RAMP. RAMPs are single-transmembrane-domain proteins. 109 -309850 pfam04902 Nab1 Conserved region in Nab1. Nab1 and Nab2 are co-repressors that specifically interact with and repress transcription mediated by the three members of the NGFI-A (Egr-1, Krox24, zif/268) family of transcription factors. This C-terminal region is found only in the Nab1 subfamily. 178 -282724 pfam04904 NCD1 NAB conserved region 1 (NCD1). Nab1 and Nab2 are co-repressors that specifically interact with and repress transcription mediated by the three members of the NGFI-A (Egr-1, Krox24, zif/268) family of transcription factors. This region consists of the N-terminal NAB conserved region 1, which interacts with the EGR1 inhibitory domain (R1). It may also mediate multimerisation. 78 -335933 pfam04905 NCD2 NAB conserved region 2 (NCD2). Nab1 and Nab2 are co-repressors that specifically interact with and repress transcription mediated by the three members of the NGFI-A (Egr-1, Krox24, zif/268) family of transcription factors. This family consists of NAB conserved region 2, near the C-terminus of the protein. It is necessary for transcriptional repression by the Nab proteins. It is also required for transcription activation by Nab proteins at Nab-activated promoters. 124 -309852 pfam04906 Tweety Tweety. The tweety (tty) gene has not been characterized at the protein level. However, it is thought to form a membrane protein with five potential membrane-spanning regions. A number of potential functions have been suggested in. 406 -252868 pfam04908 SH3BGR SH3-binding, glutamic acid-rich protein. 92 -309853 pfam04909 Amidohydro_2 Amidohydrolase. These proteins are amidohydrolases that are related to pfam01979. 286 -335934 pfam04910 Tcf25 Transcriptional repressor TCF25. Members of this family are transcriptional repressors. They may act by increasing histone deacetylase activity at promoter regions. 334 -309855 pfam04911 ATP-synt_J ATP synthase j chain. 51 -335935 pfam04912 Dynamitin Dynamitin. Dynamitin is a subunit of the microtubule-dependent motor complex and in implicated in cell adhesion by binding to macrophage-enriched myristoylated alanine-rice C kinase substrate (MacMARCKS). 373 -282731 pfam04913 Baculo_Y142 Baculovirus Y142 protein. This domain family is found in Baculovirus proteins including protein AC142, which is expressed in the cytoplasm and nucleus throughout infection. It is required for nucleocapsid envelopment in the budding virus to form the occlusion-derived virus and subsequent embedding of virions into polyhedra. 440 -335936 pfam04914 DltD DltD protein. DltD is and integral membrane protein involved in the biosynthesis of D-alanyl-lipoteichoic acid. This is important in controlling the net ionic charge in lipoteichoic acid (LTA). This family is found in bacteria of the Bacillus/Clostridium group. DltD binds Dcp and ligates it with D-alanine. DltD does not ligate acyl carrier protein (ACP) with D-alanine. It also has thioesterase activity for mischarged D-alanyl-acyl carrier protein (ACP). DltD is thought to be responsible for discriminating between Dcp involved in the D-alanylation of LTA, and ACP involved in fatty acid biosynthesis. 348 -309859 pfam04916 Phospholip_B Phospholipase B. Phospholipase B (PLB) catalyzes the hydrolytic cleavage of both acylester bonds of glycerophospholipids. This family of PLB enzymes has been identified in mammals, flies and nematodes but not in yeast. In Drosophila this protein was named LAMA for laminin ancestor since it is expressed in the neuronal and glial precursors that surround the lamina. 528 -309860 pfam04917 Shufflon_N Bacterial shufflon protein, N-terminal constant region. This family represents the high-similarity N-terminal 'constant region' shared by shufflon proteins. 324 -282736 pfam04919 DUF655 Protein of unknown function (DUF655). This family includes several uncharacterized archaeal proteins. This protein appears to contain two HHH motifs. 181 -282737 pfam04920 DUF656 Family of unknown function (DUF656). A family of hypothetical proteins from Beet necrotic yellow vein virus. 126 -335937 pfam04921 XAP5 XAP5, circadian clock regulator. This protein is found in a wide range of eukaryotes. It is a nuclear protein and is suggested to be DNA binding. In plants, this family is essential for correct circadian clock functioning by acting as a light-quality regulator coordinating the activities of blue and red light signalling pathways during plant growth - inhibiting growth in red light but promoting growth in blue light. 232 -335938 pfam04922 DIE2_ALG10 DIE2/ALG10 family. The ALG10 protein from Saccharomyces cerevisiae encodes the alpha-1,2 glucosyltransferase of the endoplasmic reticulum. This protein has been characterized in rat as potassium channel regulator 1. 301 -335939 pfam04923 Ninjurin Ninjurin. Ninjurin (nerve injury-induced protein) is involved in nerve regeneration and in the formation and function in some tissues. 101 -282741 pfam04924 Pox_A6 Poxvirus A6 protein. 370 -335940 pfam04925 SHQ1 SHQ1 protein. S. cerevisiae SHQ1 protein is required for SnoRNAs of the box H/ACA Quantitative accumulation (unpublished). 175 -309866 pfam04926 PAP_RNA-bind Poly(A) polymerase predicted RNA binding domain. Based on its similarity structurally to the RNA recognition motif this domain is thought to be RNA binding. 168 -335941 pfam04927 SMP Seed maturation protein. Plant seed maturation protein. 59 -335942 pfam04928 PAP_central Poly(A) polymerase central domain. The central domain of Poly(A) polymerase shares structural similarity with the allosteric activity domain of ribonucleotide reductase R1, which comprises a four-helix bundle and a three-stranded mixed beta- sheet. Even though the two enzymes bind ATP, the ATP-recognition motifs are different. 345 -282746 pfam04929 Herpes_DNAp_acc Herpes DNA replication accessory factor. Replicative DNA polymerases are capable of polymerising tens of thousands of nucleotides without dissociating from their DNA templates. The high processivity of these polymerases is dependent upon accessory proteins that bind to the catalytic subunit of the polymerase or to the substrate. The Epstein-Barr virus (EBV) BMRF1 protein is an essential component of the viral DNA polymerase and is absolutely required for lytic virus replication. BMRF1 is also a transactivator. This family is predicted to have a UL42 like structure. 400 -335943 pfam04930 FUN14 FUN14 family. This family of short proteins are found in eukaryotes and some archaea. Although the function of these proteins is not known they may contain transmembrane helices. 93 -335944 pfam04931 DNA_pol_phi DNA polymerase phi. This family includes the fifth essential DNA polymerase in yeast EC:2.7.7.7. Pol5p is localized exclusively to the nucleolus and binds near or at the enhancer region of rRNA-encoding DNA repeating units. 759 -335945 pfam04932 Wzy_C O-Antigen ligase. This group of bacterial proteins is involved in the synthesis of O-antigen, a lipopolysaccharide found in the outer membrane in gram-negative bacteria. This family includes O-antigen ligases such as E. coli RfaL. 148 -309872 pfam04934 Med6 MED6 mediator sub complex component. Component of RNA polymerase II holoenzyme and mediator sub complex. 133 -335946 pfam04935 SURF6 Surfeit locus protein 6. The surfeit locus protein SURF-6 is shown to be a component of the nucleolar matrix and has a strong binding capacity for nucleic acids. 195 -282752 pfam04936 DUF658 Protein of unknown function (DUF658). Protein of unknown function found in Lactococcus lactis bacteriophages. 186 -335947 pfam04937 DUF659 Protein of unknown function (DUF 659). Transposase-like protein with no known function. 152 -335948 pfam04938 SIP1 Survival motor neuron (SMN) interacting protein 1 (SIP1). Survival motor neuron (SMN) interacting protein 1 (SIP1) interacts with SMN protein and plays a crucial role in the biogenesis of spliceosomes. There is evidence that the protein is linked to spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis(ALS) in humans. 177 -335949 pfam04939 RRS1 Ribosome biogenesis regulatory protein (RRS1). This family consists of several eukaryotic ribosome biogenesis regulatory (RRS1) proteins. RRS1 is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly in Saccharomyces cerevisiae. 162 -335950 pfam04940 BLUF Sensors of blue-light using FAD. The BLUF domain has been shown to bind FAD in the AppA protein. AppA is involved in the repression of photosynthesis genes in response to blue-light. 91 -282757 pfam04941 LEF-8 Late expression factor 8 (LEF-8). Late expression factor 8 (LEF-8) is one of the primary components of RNA polymerase produced by polyhedrosis viruses. LEF-8 shows homology to the second largest subunit of prokaryotic DNA-directed RNA polymerase. 730 -282758 pfam04942 CC CC domain. This short domain contains four conserved cysteines that probably for two disulphide bonds. The domain is named after the characteristic CC motif. 34 -282759 pfam04943 Pox_F11 Poxvirus F11 protein. The protein F11 is an early virus protein. 409 -309878 pfam04945 YHS YHS domain. This short presumed domain is about 50 amino acid residues long. It often contains two cysteines that may be functionally important. This domain is found in copper transporting ATPases, some phenol hydroxylases and in a set of uncharacterized membrane proteins. This domain is named after three of the most conserved amino acids it contains. The domain may be metal binding, possibly copper ions. This domain is duplicated in some copper transporting ATPases. 48 -282761 pfam04947 Pox_VLTF3 Poxvirus Late Transcription Factor VLTF3 like. Members of this family are approximately 26 KDa, and are involved in trans-activator of late transcription. 168 -282762 pfam04948 Pox_A51 Poxvirus A51 protein. 337 -309879 pfam04949 Transcrip_act Transcriptional activator. This family of proteins may act as a transcriptional activator. It plays a role in stress response in plants. 154 -335951 pfam04950 RIBIOP_C 40S ribosome biogenesis protein Tsr1 and BMS1 C-terminal. RIBIOP_C is a family of eukaryotic proteins from the C-terminus of pre-rRNA-processing protein or ribosome biogenesis proteins BMS1 and TSR1. These proteins act, in the nucleolus, as a molecular switch during maturation of the 40S ribosomal subunit. This domain, domain IV of translation elongation factor selb, adopts the same fold as translation proteins such as domain II of GTP-elongation factor Tu proteins. 291 -335952 pfam04951 Peptidase_M55 D-aminopeptidase. Bacillus subtilis DppA is a binuclear zinc-dependent, D-specific aminopeptidase. The structure reveals that DppA is a new example of a 'self-compartmentalising protease', a family of proteolytic complexes. Proteasomes are the most extensively studied representatives of this family. The DppA enzyme is composed of identical 30 kDa subunits organized in a decamer with 52 point-group symmetry. A 20 A wide channel runs through the complex, giving access to a central chamber holding the active sites. The structure shows DppA to be a prototype of a new family of metalloaminopeptidases characterized by the SXDXEG key sequence. The only known substrates are D-ala-D-ala and D-ala-gly-gly. 263 -335953 pfam04952 AstE_AspA Succinylglutamate desuccinylase / Aspartoacylase family. This family includes Succinylglutamate desuccinylase EC:3.1.-.- that catalyzes the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway. The family also include aspartoacylase EC:3.5.1.15 which cleaves acylaspartate into a fatty acid and aspartate. Mutations in human ASPA lead to Canavan disease disease. This family is probably structurally related to pfam00246 (Bateman A pers. obs.). 284 -335954 pfam04954 SIP Siderophore-interacting protein. 118 -309884 pfam04955 HupE_UreJ HupE / UreJ protein. This family of proteins are hydrogenase / urease accessory proteins. The alignment contains many conserved histidines that are likely to be involved in nickel binding. The members usually have five membrane-spanning regions. 179 -309885 pfam04956 TrbC TrbC/VIRB2 family. Conjugal transfer protein, TrbC has been identified as a subunit of the pilus precursor in bacteria. The protein undergoes three processing steps before gaining its mature cyclic structure. This family also contains several VIRB2 type IV secretion proteins. The virB2 gene encodes a putative type IV secretion system and is known to be a pathogenicity factor in Bartonella species. 99 -335955 pfam04957 RMF Ribosome modulation factor. This protein associates with 70s ribosomes and converts them to a dimeric form (100S ribosomes) which appear during the transition from the exponential growth phase to the stationary phase of Escherichia coli cells. 51 -335956 pfam04958 AstA Arginine N-succinyltransferase beta subunit. Arginine N-succinyltransferase EC:2.3.1.109 catalyzes the transfer of succinyl-CoA to arginine to produce succinyl-arginine. This is the first step in arginine catabolism by the arginine succinyltransferase pathway. 335 -309888 pfam04959 ARS2 Arsenite-resistance protein 2. Arsenite is a carcinogenic compound which can act as a co-mutagen by inhibiting DNA repair. Arsenite-resistance protein 2 is thought to play a role in arsenite resistance. 195 -335957 pfam04960 Glutaminase Glutaminase. This family of enzymes deaminates glutamine to glutamate EC:3.5.1.2. 285 -335958 pfam04961 FTCD_C Formiminotransferase-cyclodeaminase. Members of this family are thought to be Formiminotransferase- cyclodeaminase enzymes EC:4.3.1.4. This domain is found in the C-terminus of the bifunctional animal members of the family. 174 -335959 pfam04962 KduI KduI/IolB family. This family includes the 5-keto 4-deoxyuronate isomerase enzyme EC:5.3.1.17 that is involved in pectin degradation. This family aldo includes bacterial Myo-inositol catabolism (IolB) proteins. The Bacillus subtilis inositol operon (iolABCDEFGHIJ) is involved in myo-inositol catabolism. Glucose repression of the iol operon induced by inositol is exerted through catabolite repression mediated by CcpA and the iol induction system mediated by IolR. The exact function of IolB is unknown. Members of this family possess a Cupin like structure. 257 -335960 pfam04963 Sigma54_CBD Sigma-54 factor, core binding domain. This domain makes a direct interaction with the core RNA polymerase, to form an enhancer dependent holoenzyme. The centre of this domain contains a very weak similarity to a helix-turn-helix motif which may represent the other DNA binding domain. 182 -309893 pfam04964 Flp_Fap Flp/Fap pilin component. 46 -335961 pfam04965 GPW_gp25 Gene 25-like lysozyme. This family includes the phage protein Gene 25 from T4 which is a structural component of the outer wedge of the baseplate that has acidic lysozyme activity. The family also includes relatives from bacteria that are also presumably lysozymes. 92 -335962 pfam04966 OprB Carbohydrate-selective porin, OprB family. 373 -282780 pfam04967 HTH_10 HTH DNA binding domain. 53 -309895 pfam04968 CHORD CHORD. CHORD represents a Zn binding domain. Silencing of the C. elegans CHORD-containing gene results in semisterility and embryo lethality, suggesting an essential function of the wild-type gene in nematode development. 62 -309896 pfam04969 CS CS domain. The CS and CHORD (pfam04968) are fused into a single polypeptide chain in metazoans but are found in separate proteins in plants; this is thought to be indicative of an interaction between CS and CHORD. It has been suggested that the CS domain is a binding module for HSP90, implying that CS domain-containing proteins are involved in recruiting heat shock proteins to multiprotein assemblies. Two CS domains are found at the N-terminus of Ubiquitin carboxyl-terminal hydrolase 19 (USP19), these domains may play a role in the interaction of USP19 with cellular inhibitor of apoptosis 2. 76 -309897 pfam04970 LRAT Lecithin retinol acyltransferase. The full-length members of this family, are representatives of a novel class II tumor-suppressor family, designated as H-REV107-like. This domain is the catalytic N-terminal proline-rich region of the protein. The downstream region is a putative C-terminal transmembrane domain which is found to be crucial for cellular localization, but not necessary for the enzyme activity. H-REV107-like proteins are homologous to lecithin retinol acyltransferase (LRAT), an enzyme that catalyzes the transfer of the sn-1 acyl group of phosphatidylcholine to all-trans-retinol and forming a retinyl ester. 106 -282784 pfam04971 Phage_holin_2_1 Bacteriophage P21 holin S. Phage_holin_2_1 is a family of small hydrophobic holin proteins with one or more transmembrane domains. Members of this family fall into the holin superfamily II, and Phage 21 S holin is the prototype for this superfamily. It has two transmembrane segments with both the N- and C-termini on the cytoplasmic side of the inner membrane in E. coli. Holins are a diverse family of proteins that cause bacterial membrane lysis during late-protein synthesis. It is thought that the temporal precision of holin-mediated lysis may occur through the build up of a holin oligomer which causes the lysis. 68 -335963 pfam04972 BON BON domain. This domain is found in a family of osmotic shock protection proteins. It is also found in some Secretins and a group of potential haemolysins. Its likely function is attachment to phospholipid membranes. 66 -335964 pfam04973 NMN_transporter Nicotinamide mononucleotide transporter. Members of this family are integral membrane proteins that are involved in transport of nicotinamide mononucleotide. 178 -113736 pfam04976 DmsC DMSO reductase anchor subunit (DmsC). The terminal electron transfer enzyme Me2SO reductase of Escherichia coli is a heterotrimeric enzyme composed of a membrane extrinsic catalytic dimer (DmsAB) and a membrane intrinsic polytopic anchor subunit (DmsC). 276 -309900 pfam04977 DivIC Septum formation initiator. DivIC from B. subtilis is necessary for both vegetative and sporulation septum formation. These proteins are mainly composed of an amino terminal coiled-coil. 80 -309901 pfam04978 DUF664 Protein of unknown function (DUF664). This family is commonly found in Streptomyces coelicolor and is of unknown function. These proteins contain several conserved histidines at their N-terminus that may form a metal binding site. 150 -335965 pfam04979 IPP-2 Protein phosphatase inhibitor 2 (IPP-2). Protein phosphotase inhibitor 2 (IPP-2) is a phosphoprotein conserved among all eukaryotes, and it appears in both the nucleus and cytoplasm of tissue culture cells. 125 -335966 pfam04981 NMD3 NMD3 family. The NMD3 protein is involved in nonsense mediated mRNA decay. This amino terminal region contains four conserved CXXC motifs that could be metal binding. NMD3 is involved in export of the 60S ribosomal subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. 241 -335967 pfam04982 HPP HPP family. These proteins are integral membrane proteins with four transmembrane spanning helices. The most conserved region of the alignment is a motif HPP. The function of these proteins is uncertain but they may be transporters. 122 -309905 pfam04983 RNA_pol_Rpb1_3 RNA polymerase Rpb1, domain 3. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 3, represents the pore domain. The 3' end of RNA is positioned close to this domain. The pore delimited by this domain is thought to act as a channel through which nucleotides enter the active site and/or where the 3' end of the RNA may be extruded during back-tracking. 161 -335968 pfam04984 Phage_sheath_1 Phage tail sheath protein subtilisin-like domain. This entry represents the second domain in a variety of phage tail sheath proteins. According to ECOD this domain has a subtilisin-like structure. 156 -309907 pfam04985 Phage_tube Phage tail tube protein FII. The major structural components of the contractile tail of bacteriophage P2 are proteins FI and FII, which are believed to be the tail sheath and tube proteins, respectively. 161 -335969 pfam04986 Y2_Tnp Putative transposase. Transposases are needed for efficient transposition of the insertion sequence or transposon DNA. This family includes transposases IS1294 and IS801. This is a rolling-circle transposase. 183 -335970 pfam04987 PigN Phosphatidylinositolglycan class N (PIG-N). Phosphatidylinositolglycan class N (PIG-N) is a mammalian homolog of the yeast protein MCD4P and is expressed in the endoplasmic reticulum. PIG-N is essential for glycosylphosphatidylinositol anchor synthesis. Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. 446 -309910 pfam04988 AKAP95 A-kinase anchoring protein 95 (AKAP95). A-kinase (or PKA)-anchoring protein AKAP95 is implicated in mitotic chromosome condensation by acting as a targeting molecule for the condensin complex. The protein contains two zinc fingers which are thought to mediate the binding of AKAP95 to DNA. 164 -309911 pfam04989 CmcI Cephalosporin hydroxylase. Members of this family are about 220 amino acids long. The CmcI protein is presumed to represent the cephalosporin-7--hydroxylase. However this has not been experimentally verified. 205 -335971 pfam04990 RNA_pol_Rpb1_7 RNA polymerase Rpb1, domain 7. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 7, represents a mobile module of the RNA polymerase. Domain 7 forms a substantial interaction with the lobe domain of Rpb2 (pfam04561). 136 -335972 pfam04991 LicD LicD family. The LICD family of proteins show high sequence similarity and are involved in phosphorylcholine metabolism. There is evidence to show that LicD2 mutants have a reduced ability to take up choline, have decreased ability to adhere to host cells and are less virulent. These proteins are part of the nucleotidyltransferase superfamily. 225 -335973 pfam04992 RNA_pol_Rpb1_6 RNA polymerase Rpb1, domain 6. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 6, represents a mobile module of the RNA polymerase. Domain 6 forms part of the shelf module. This family appears to be specific to the largest subunit of RNA polymerase II. 188 -335974 pfam04993 TfoX_N TfoX N-terminal domain. TfoX may play a key role in the development of genetic competence by regulating the expression of late competence-specific genes. This family corresponds to the N-terminal presumed domain of TfoX. The domain is found as an isolated domain in some proteins suggesting this is an autonomous domain. 93 -309916 pfam04994 TfoX_C TfoX C-terminal domain. TfoX may play a key role in the development of genetic competence by regulating the expression of late competence-specific genes. This family corresponds to the C-terminal presumed domain of TfoX. The domain is found associated with pfam00383 in Neisseria meningitidis TadA. It is also found as an isolated domain in some proteins suggesting this is an autonomous domain. 78 -335975 pfam04995 CcmD Heme exporter protein D (CcmD). The CcmD protein is part of a C-type cytochrome biogenesis operon. The exact function of this protein is uncertain. It has been proposed that CcmC, CcmD and CcmE interact directly with each other, establishing a cytoplasm to periplasm haem delivery pathway for cytochrome c maturation. These proteins contain a predicted transmembrane helix. 44 -335976 pfam04996 AstB Succinylarginine dihydrolase. This enzyme transforms N(2)-succinylglutamate into succinate and glutamate. This is the fifth and last step in arginine catabolism by the arginine succinyltransferase pathway. 441 -309919 pfam04997 RNA_pol_Rpb1_1 RNA polymerase Rpb1, domain 1. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 1, represents the clamp domain, which a mobile domain involved in positioning the DNA, maintenance of the transcription bubble and positioning of the nascent RNA strand. 320 -309920 pfam04998 RNA_pol_Rpb1_5 RNA polymerase Rpb1, domain 5. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 5, represents the discontinuous cleft domain that is required to from the central cleft or channel where the DNA is bound. 516 -335977 pfam04999 FtsL Cell division protein FtsL. In Escherichia coli, nine gene products are known to be essential for assembly of the division septum. One of these, FtsL, is a bitopic membrane protein whose precise function is not understood. It has been proposed that FtsL interacts with the DivIC protein pfam04977, however this interaction may be indirect. 97 -309922 pfam05000 RNA_pol_Rpb1_4 RNA polymerase Rpb1, domain 4. RNA polymerases catalyze the DNA dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 4, represents the funnel domain. The funnel contain the binding site for some elongation factors. 108 -309923 pfam05001 RNA_pol_Rpb1_R RNA polymerase Rpb1 C-terminal repeat. The repetitive C-terminal domain (CTD) of Rpb1 (RNA polymerase Pol II) plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. 12 -335978 pfam05002 SGS SGS domain. This domain was thought to be unique to the SGT1-like proteins, but is also found in calcyclin binding proteins. 82 -335979 pfam05003 DUF668 Protein of unknown function (DUF668). Uncharacterized plant protein. 88 -309926 pfam05004 IFRD Interferon-related developmental regulator (IFRD). Interferon-related developmental regulator (IFRD1) is the human homolog of the rat early response protein PC4 and its murine homolog TIS7. The exact function of IFRD1 is unknown but it has been shown that PC4 is necessary to muscle differentiation and that it might have a role in signal transduction. This family also contains IFRD2 and its murine equivalent SKMc15 which are highly expressed soon after gastrulation and in the hepatic primordium, suggesting an involvement in early hematopoiesis. 312 -309927 pfam05005 Ocnus Janus/Ocnus family (Ocnus). This family is comprised of the Ocnus, Janus-A and Janus-B proteins. These proteins have been found to be testes specific in Drosophila melanogaster. 102 -282815 pfam05006 PIF3 Per os infectivity factor 3. This family contains viral proteins and includes Baculovirus Per os infectivity factor 3 (PIF3). PIF3 forms a complex on the occlusion-derived virus surface with PIF1, PIF2, and P74 which has an essential function in the initial stages of baculovirus oral infection. 149 -252941 pfam05007 Mannosyl_trans Mannosyltransferase (PIG-M). PIG-M has a DXD motif. The DXD motif is found in many glycosyltransferases that utilize nucleotide sugars. It is thought that the motif is involved in the binding of a manganese ion that is required for association of the enzymes with nucleotide sugar substrates. 259 -309928 pfam05008 V-SNARE Vesicle transport v-SNARE protein N-terminus. V-SNARE proteins are required for protein traffic between eukaryotic organelles. The v-SNAREs on transport vesicles interact with t-SNAREs on target membranes in order to facilitate this. This domain is the N-terminal half of the V-Snare proteins. 79 -282817 pfam05009 EBV-NA3 Epstein-Barr virus nuclear antigen 3 (EBNA-3). This family contains EBNA-3A, -3B, and -3C which are latent infection nuclear proteins important for Epstein-Barr virus (EBV)-induced B-cell immortalisation and the immune response to EBV infection. 254 -309929 pfam05010 TACC Transforming acidic coiled-coil-containing protein (TACC). This family contains the proteins TACC 1, 2 and 3 the genes for which are found concentrated in the centrosomes of eukaryotic and may play a conserved role in organising centrosomal microtubules. The human TACC proteins have been linked to cancer and TACC2 has been identified as a possible tumor suppressor (AZU-1). The functional homolog (Alp7) in Schizosaccharomyces pombe has been shown to be required for organisation of bipolar spindles. 201 -335980 pfam05011 DBR1 Lariat debranching enzyme, C-terminal domain. This presumed domain is found at the C-terminus of lariat debranching enzyme. This domain is always found in association with pfam00149. 137 -335981 pfam05013 FGase N-formylglutamate amidohydrolase. Formylglutamate amidohydrolase (FGase) catalyzes the terminal reaction in the five-step pathway for histidine utilisation in Pseudomonas putida. By this action, N-formyl-L-glutamate (FG) is hydrolyzed to produce L-glutamate plus formate. 181 -309932 pfam05014 Nuc_deoxyrib_tr Nucleoside 2-deoxyribosyltransferase. Nucleoside 2-deoxyribosyltransferase EC:2.4.2.6 catalyzes the cleavage of the glycosidic bonds of 2`-deoxyribonucleosides. 129 -282822 pfam05015 HigB-like_toxin RelE-like toxin of type II toxin-antitoxin system HigB. This family carries several different examples of type II bacterial toxins of toxin-antitoxin systems including many HigB-like ones. The fold is referred to as the RelE/YoeB/Txe/Yeeu fold suggesting all examples of these are present in this family. Several plasmids with proteic killer gene-systems have been reported. All of them encode a stable toxin and an unstable antidote. Upon loss of the plasmid, the less stable inhibitor is inactivated more rapidly than the toxin, allowing the toxin to be activated. The activation of these systems results in cell filamentation and cessation of viable cell production. It has been verified that both the stable killer and the unstable inhibitor of the systems are short polypeptides. This family corresponds to the toxin. 93 -335982 pfam05016 ParE_toxin ParE toxin of type II toxin-antitoxin system, parDE. ParE is the toxin family of a type II toxin-antitoxin family. It is toxic towards DNA gyrase, but is neutralized by the antitoxin ParD. The family also encompasses RelE/ParE described in. 87 -335983 pfam05017 TMP TMP repeat. This short repeat consists of the motif WXXh where X can be any residue and h is a hydrophobic residue. The repeat is name TMP after its occurrence in the tape measure protein (TMP). Tape measure protein is a component of phage tail and probably forms a beta-helix. Truncated forms of TMP lead to shortened tail fibers. This repeat is also found in non-phage proteins where it may play a structural role. 11 -309935 pfam05018 DUF667 Protein of unknown function (DUF667). This family of proteins are highly conserved in eukaryotes. Some proteins in the family are annotated as transcription factors. However, there is currently no support for this in the literature. 180 -309936 pfam05019 Coq4 Coenzyme Q (ubiquinone) biosynthesis protein Coq4. Coq4p was shown to peripherally associate with the matrix face of the mitochondrial inner membrane. The putative mitochondrial- targeting sequence present at the amino-terminus of the polypeptide efficiently imported it to mitochondria. The function of Coq4p is unknown, although its presence is required to maintain a steady-state level of Coq7p, another component of the Q biosynthetic pathway. The overall structure of Coq4 is alpha helical and shows resemblance to haemoglobin/myoglobin (information from TOPSAN). 213 -335984 pfam05020 zf-NPL4 NPL4 family, putative zinc binding region. The HRD4 gene was identical to NPL4, a gene previously implicated in nuclear transport. Using a diverse set of substrates and direct ubiquitination assays, analysis revealed that HRD4/NPL4 is required for a poorly characterized step in ER-associated degradation after ubiquitination of target proteins but before their recognition by the 26S proteasome. This region of the protein contains possibly two zinc binding motifs (Bateman A pers. obs.). Npl4p physically associates with Cdc48p via Ufd1p to form a Cdc48p-Ufd1p-Npl4p complex. The Cdc48-Ufd1-Npl4 complex functions in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for processive degradation or even more specific processing. 145 -309938 pfam05021 NPL4 NPL4 family. The HRD4 gene was identical to NPL4, a gene previously implicated in nuclear transport. Using a diverse set of substrates and direct ubiquitination assays, analysis revealed that HRD4/NPL4 is required for a poorly characterized step in ER-associated degradation after ubiquitination of target proteins but before their recognition by the 26S proteasome. Npl4p physically associates with Cdc48p via Ufd1p to form a Cdc48p-Ufd1p-Npl4p complex. The Cdc48-Ufd1-Npl4 complex functions in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for processive degradation or even more specific processing. 308 -309939 pfam05022 SRP40_C SRP40, C-terminal domain. This presumed domain is found at the C-terminus of the S. cerevisiae SRP40 protein and its homologs. SRP40/nopp40 is a chaperone involved in nucleocytoplasmic transport. SRP40 is also a suppressor of mutant AC40 subunit of RNA polymerase I and III. 70 -335985 pfam05023 Phytochelatin Phytochelatin synthase. Phytochelatin synthase is the enzyme responsible for the synthesis of heavy-metal-binding peptides (phytochelatins) from glutathione and related thiols. The crystal structure of a member of this family shows it to possess a papain fold. The enzyme catalyzes the deglycination of a GSH donor molecule. The enzyme contains a catalytic triad of cysteine, histidine and aspartate residues. 208 -309941 pfam05024 Gpi1 N-acetylglucosaminyl transferase component (Gpi1). Glycosylphosphatidylinositol (GPI) represents an important anchoring molecule for cell surface proteins.The first step in its synthesis is the transfer of N-acetylglucosamine (GlcNAc) from UDP-N-acetylglucosamine to phosphatidylinositol (PI). This chemically simple step is genetically complex because three or four genes are required in both yeast (GPI1, GPI2 and GPI3) and mammals (GPI1, PIG A, PIG H and PIG C), respectively. 187 -335986 pfam05025 RbsD_FucU RbsD / FucU transport protein family. The Escherichia coli high-affinity ribose-transport system consists of six proteins encoded by the rbs operon (rbsD, rbsA, rbsC, rbsB, rbsK and rbsR). Of the six components, RbsD is the only one whose function is unknown although it is thought that it somehow plays a critical role in PtsG-mediated ribose transport. This family also includes FucU a protein from the fucose biosynthesis operon that is presumably also involved in fucose transport by similarity to RbsD. 132 -335987 pfam05026 DCP2 Dcp2, box A domain. This domain is always found to the amino terminal side of pfam00293. This domain is specific to mRNA decapping protein 2 and this region has been termed Box A. Removal of the cap structure is catalyzed by the Dcp1-Dcp2 complex. 83 -309944 pfam05028 PARG_cat Poly (ADP-ribose) glycohydrolase (PARG). Poly(ADP-ribose) glycohydrolase (PARG), is a ubiquitously expressed exo- and endoglycohydrolase which mediates oxidative and excitotoxic neuronal death. 329 -252956 pfam05029 TIMELESS_C Timeless protein C terminal region. The timeless (tim) gene is essential for circadian function in Drosophila. Putative homologs of Drosophila tim have been identified in both mice and humans (mTim and hTIM, respectively). Mammalian TIM is not the true orthologue of Drosophila TIM, but is the likely orthologue of a fly gene, timeout (also called tim-2). mTim has been shown to be essential for embryonic development, but does not have substantiated circadian function. Some family members contain a SANT domain in this region. 507 -335988 pfam05030 SSXT SSXT protein (N-terminal region). The SSXT or SS18 protein is involved in synovial sarcoma in humans. A SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18) (p11;q11) is characteristic of synovial sarcomas. This translocation fuses the SSXT (SYT) gene from chromosome 18 to either of two homologous genes at Xp11, SSX1 or SSX2. 60 -335989 pfam05031 NEAT Iron Transport-associated domain. NEAT domains are heme and/or hemoprotein-binding modules highly conserved in secondary structure. They have roles in hemoprotein binding, heme extraction and heme transfer 115 -335990 pfam05032 Spo12 Spo12 family. This family of proteins includes Spo12 from S. cerevisiae. The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. Spo12 is a nuclear protein. Spo12 is a component of the FEAR (Cdc fourteen early anaphase release) regulatory network, that promotes Cdc14 release from the nucleolus during early anaphase. The FEAR network is comprised of the polo kinase Cdc5, the separase Esp1, the kinetochore-associated protein Slk19, and Spo12. 33 -335991 pfam05033 Pre-SET Pre-SET motif. This protein motif is a zinc binding motif. It contains 9 conserved cysteines that coordinate three zinc ions. It is thought that this region plays a structural role in stabilizing SET domains. 101 -309949 pfam05034 MAAL_N Methylaspartate ammonia-lyase N-terminus. Methylaspartate ammonia-lyase EC:4.3.1.2 catalyzes the second step of fermentation of glutamate. It is a homodimer. This family represents the N-terminal region of Methylaspartate ammonia-lyase. This domain is structurally related to pfam03952. This domain is associated with the catalytic domain pfam07476. 160 -335992 pfam05035 DGOK 2-keto-3-deoxy-galactonokinase. 2-keto-3-deoxy-galactonokinase EC:2.7.1.58 catalyzes the second step in D-galactonate degradation. 284 -335993 pfam05036 SPOR Sporulation related domain. This 70 residue domain is composed of two 35 residue repeats found in proteins involved in sporulation and cell division such as FtsN, DedD, and CwlM. This domain is involved in binding peptidoglycan. Two tandem repeats fold into a pseudo-2-fold symmetric single-domain structure containing numerous contacts between the repeats. FtsN is an essential cell division protein with a simple bitopic topology, a short N-terminal cytoplasmic segment fused to a large carboxy periplasmic domain through a single transmembrane domain. These repeats lay at the periplasmic C-terminus. FtsN localizes to the septum ring complex. 74 -309952 pfam05037 DUF669 Protein of unknown function (DUF669). Members of this family are found in various phage proteins. 129 -309953 pfam05038 Cytochrom_B558a Cytochrome Cytochrome b558 alpha-subunit. Cytochrome b-245 light chain (p22-phox) is one of the key electron transfer elements of the NADPH oxidase in phagocytes. 177 -309954 pfam05039 Agouti Agouti protein. The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. A highly homologous protein agouti signal protein (ASIP)is present in humans and is expressed at highest levels in adipose tissue where it may play a role in energy homeostasis and possibly human pigmentation. 87 -335994 pfam05041 Pecanex_C Pecanex protein (C-terminus). This family consists of C terminal region of the pecanex protein homologs. The pecanex protein is a maternal-effect neurogenic gene found in Drosophila. 227 -335995 pfam05042 Caleosin Caleosin related protein. This family contains plant proteins related to caleosin. Caleosins contain calcium-binding domains and have an oleosin-like association with lipid bodies. Caleosins are present at relatively low levels and are mainly bound to microsomal membrane fractions at the early stages of seed development. As the seeds mature, overall levels of caleosins increased dramatically and they were associated almost exclusively with storage lipid bodies. This family is probably related to EF hands pfam00036. 169 -282847 pfam05043 Mga Mga helix-turn-helix domain. M regulator protein trans-acting positive regulator (Mga) is a DNA-binding protein that activates the expression of several important virulence genes in group A streptococcus in response to changing environmental conditions. This domain is found in the centre of the Mga proteins. This family also contains a number of bacterial RofA transcriptional regulators that seem to be largely restricted to streptococci. These proteins have been shown to regulate the expression of important bacterial adhesins. This is presumably a DNA-binding domain. 87 -309957 pfam05044 HPD Homeo-prospero domain. Prospero is a large drosophila transcription factor protein that is expressed in all neural lineages of drosophila embryos. It is needed for correct expression of several neural proteins and in determining the cell fates of neural stem cells. homologs of prospero are found in a wide range of animals including humans with the highest level of similarity being found in the C-terminal 160 amino acids. This region was identified as containing an atypical homeobox domain followed by a prospero domain. However, the structure shows that these two regions form a single stable structural domain as defined here. This homeo-prospero domain binds to DNA. 152 -335996 pfam05045 RgpF Rhamnan synthesis protein F. This family consists of a group of proteins which are related to the Streptococcus rhamnose-glucose polysaccharide assembly protein (RgpF). Rhamnan backbones are found in several O polysaccharides of phytopathogenic bacteria and are regarded as pathogenic factors. 496 -335997 pfam05046 Img2 Mitochondrial large subunit ribosomal protein (Img2). This family of proteins have been identified as part of the mitochondrial large ribosomal subunit in yeast. 80 -335998 pfam05047 L51_S25_CI-B8 Mitochondrial ribosomal protein L51 / S25 / CI-B8 domain. The proteins in this family are located in the mitochondrion. The family includes ribosomal protein L51, and S25. This family also includes mitochondrial NADH-ubiquinone oxidoreductase B8 subunit (CI-B8) EC:1.6.5.3. It is not known whether all members of this family form part of the NADH-ubiquinone oxidoreductase and whether they are also all ribosomal proteins. Structurally related to thioredoxin-fold. 51 -309961 pfam05048 NosD Periplasmic copper-binding protein (NosD). NosD is a periplasmic protein which is thought to insert copper into the exported reductase apoenzyme (NosZ). This region forms a parallel beta helix domain. 235 -309962 pfam05049 IIGP Interferon-inducible GTPase (IIGP). Interferon-inducible GTPase (IIGP) is thought to play a role in in intracellular defense. IIGP is predominantly associated with the Golgi apparatus and also localizes to the endoplasmic reticulum and exerts a distinct role in IFN-induced intracellular membrane trafficking or processing. 375 -335999 pfam05050 Methyltransf_21 Methyltransferase FkbM domain. This family has members from bacteria to human, and appears to be a methyltransferase. 168 -309964 pfam05051 COX17 Cytochrome C oxidase copper chaperone (COX17). Cox17 is essential for the assembly of functional cytochrome c oxidase (CCO) and for delivery of copper ions to the mitochondrion for insertion into the enzyme in yeast. The structure of Cox17 shows the protein to have an unstructured N-terminal region followed by two helices and several unstructured C-terminal residues. The Cu(I) binding site has been modelled as two-coordinate with ligation by conserved residues Cys23 and Cys26. 47 -309965 pfam05052 MerE MerE protein. The prokaryotic MerE (or URF-1) protein is part of the mercury resistance operon. The protein is thought not to have any direct role in conferring mercury resistance to the organism but may be a mercury resistance transposon. 75 -309966 pfam05053 Menin Menin. MEN1, the gene responsible for multiple endocrine neoplasia type 1, is a tumor suppressor gene that encodes a protein called Menin which may be an atypical GTPase stimulated by nm23. 618 -282858 pfam05054 AcMNPV_Ac109 Autographa californica nuclear polyhedrosis virus (AcMNPV) protein. This domain family is found in viral proteins such as Ac109 from Autographa californica nuclear polyhedrosis virus (AcMNPV). The gene (Orf1090) is essential and transcribed late in virus assembly, and protein AC109 has been shown to be important for the transport of the budded virion to the host nucleus. In mutants lacking the AC109 gene, virions are unable to enter the nucleus and remain in the cytoplasm. Although addition of AC109 allowed virions to enter the nucleus, the occlusion bodies were empty, indicating that AC109 is also important for the production of infectious budded virus. The exact function of this domain family remains unknown. 418 -252976 pfam05055 DUF677 Protein of unknown function (DUF677). This family consists of AT14A like proteins from Arabidopsis thaliana. At14a has a small domain that has sequence similarities to integrins from fungi, insects and humans. Transcripts of At14a are found in all Arabidopsis tissues and localizes partly to the plasma membrane. 336 -336000 pfam05056 DUF674 Protein of unknown function (DUF674). This family is found in Arabidopsis thaliana and contains several uncharacterized proteins. 453 -309968 pfam05057 DUF676 Putative serine esterase (DUF676). This family of proteins are probably serine esterase type enzymes with an alpha/beta hydrolase fold. 212 -282861 pfam05058 ActA ActA Protein. The ActA family is found in Listeria and is associated with motility. ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm of the host cell. 633 -282862 pfam05059 Orbi_VP4 Orbivirus VP4 core protein. Orbiviruses are double stranded RNA retroviruses of which the bluetongue virus is a member. The core of bluetongue virus (BTV) is a multienzyme complex composed of two major proteins (VP7 and VP3) and three minor proteins (VP1, VP4 and VP6) in addition to the viral genome. VP4 has been shown to perform all RNA capping activities and has both methyltransferase type 1 and type 2 activities associated with it. 640 -309969 pfam05060 MGAT2 N-acetylglucosaminyltransferase II (MGAT2). UDP-N-acetyl-D-glucosamine:alpha-6-D-mannoside beta-1,2-N- acetylglucosaminyltransferase II (EC 2.4.1.143) (GnT II/MGAT2) is a Golgi resident enzyme that catalyzes an essential step in the biosynthetic pathway leading from high mannose to complex N-linked oligosaccharides. Mutations in the MGAT2 gene lead to congenital disorder of glycosylation (CDG IIa). CDG IIa patients have an increased bleeding tendency, unrelated to coagulation factors. 349 -282864 pfam05061 Pox_A11 Poxvirus A11 Protein. Family of conserved Chordopoxvirinae A11 family proteins. Conserved region spans entire protein in the majority of family members. 315 -309970 pfam05062 RICH RICH domain. This presumed domain is about 85 residues in length and very rich in charged residues, hence the name RICH (Rich In CHarged residues). It is found in secreted proteins such as PspC, SpsA and IgA FC receptor from Streptococcus agalactiae. This domain could be involved in bacterial adherence or cell wall binding. 81 -309971 pfam05063 MT-A70 MT-A70. MT-A70 is the S-adenosylmethionine-binding subunit of human mRNA:m6A methyl-transferase (MTase), an enzyme that sequence-specifically methylates adenines in pre-mRNAs. 173 -309972 pfam05064 Nsp1_C Nsp1-like C-terminal region. This family probably forms a coiled-coil. This important region of Nsp1 is involved in binding Nup82. 114 -336001 pfam05065 Phage_capsid Phage capsid family. Family of bacteriophage hypothetical proteins and capsid proteins. 279 -309974 pfam05066 HARE-HTH HB1, ASXL, restriction endonuclease HTH domain. A winged helix-turn-helix domain present in the plant HB1, vertebrate ASXL, the H. pylori restriction endonuclease HpyAIII(HgrA), the RNA polymerase delta subunit(RpoE) of Gram positive bacteria and several restriction endonucleases. The domain is distinguished by the presence of a conserved one-turn helix between helix-3 and the preceding conserved turn. Its diverse architectures in eukaryotic species with extensive gene body methylation is suggestive of a chromatin function. The genetic interaction of the HARE-HTH containing ASXL with the methyl cytosine hydroxylating Tet2 protein is suggestive of a role for the domain in discriminating sequences with DNA modifications such as hmC. Bacterial versions include fusions to diverse restriction endonucleases, and a DNA glycosylase where it may play a similar role in detecting modified DNA. Certain bacterial version of the HARE-HTH domain show fusions to the helix-hairpin-helix domain of the RNA polymerase alpha subunit and the HTH domains found in regions 3 and 4 of the sigma factors. These versions are predicted to function as a novel inhibitor of the binding of RNA polymerase to transcription start sites, similar to the Bacillus delta protein. 72 -252986 pfam05067 Mn_catalase Manganese containing catalase. Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Two families of catalases are known, one having a heme cofactor, and this family that is a structurally distinct family containing non-heme manganese. 283 -336002 pfam05068 MtlR Mannitol repressor. The mannitol operon of Escherichia coli, encoding the mannitol-specific enzyme II of the phosphotransferase system (MtlA) and mannitol phosphate dehydrogenase (MtlD) contains an additional downstream open reading frame which encodes the mannitol repressor (MtlR). 162 -309976 pfam05069 Phage_tail_S Phage virion morphogenesis family. Protein S of phage P2 is thought to be involved in tail completion and stable head joining. 148 -336003 pfam05071 NDUFA12 NADH ubiquinone oxidoreductase subunit NDUFA12. This family contains the 17.2 kD subunit of complex I (NDUFA12) and its homologs. The family also contains a second related eukaryotic protein of unknown function. 92 -282873 pfam05072 Herpes_UL43 Herpesvirus UL43 protein. UL43 genes are expressed with true-late (gamma2) kinetics and have been identified as a virion tegument component. 373 -309978 pfam05073 Baculo_p24 Baculovirus P24 capsid protein. Baculovirus P24 is associated with nucleocapsids of budded and polyhedra-derived virions. 165 -309979 pfam05075 DUF684 Protein of unknown function (DUF684). This family contains several uncharacterized proteins from Caenorhabditis elegans. The GO annotation suggests that the protein is involved in nematode larval development and has a positive regulation on growth rate. 338 -336004 pfam05076 SUFU Suppressor of fused protein (SUFU). SUFU, encoding the human orthologue of Drosophila suppressor of fused, appears to have a conserved role in the repression of Hedgehog signaling. SUFU exerts its repressor role by physically interacting with GLI proteins in both the cytoplasm and the nucleus. SUFU has been found to be a tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway. Genomic contextual analysis of bacterial SUFU versions revealed that they are immunity proteins against diverse nuclease toxins in polymorphic toxin systems. 170 -282877 pfam05077 DUF678 Protein of unknown function (DUF678). This family contains several poxvirus proteins of unknown function. 73 -336005 pfam05078 DUF679 Protein of unknown function (DUF679). This family contains several uncharacterized plant proteins. 163 -252995 pfam05079 DUF680 Protein of unknown function (DUF680). This family contains several uncharacterized proteins which seem to be found exclusively in Rhizobium loti. 53 -113835 pfam05080 DUF681 Protein of unknown function (DUF681). This family contains several uncharacterized beak and feather disease virus proteins. 101 -282879 pfam05081 DUF682 Protein of unknown function (DUF682). This family consists if several uncharacterized baculovirus proteins. 157 -309982 pfam05082 Rop-like Rop-like. This family contains several uncharacterized bacterial proteins. These proteins are found in nitrogen fixation operons so are likely to play some role in this process. They consist of two alpha helices which are joined by a four residue linker. The helices form an antiparallel bundle and cross towards their termini. They are likely to form a rod-like dimer. They have structural similarity to the regulatory protein Rop, pfam01815. 60 -309983 pfam05083 LST1 LST-1 protein. B144/LST1 is a gene encoded in the human major histocompatibility complex that produces multiple forms of alternatively spliced mRNA and encodes peptides fewer than 100 amino acids in length. B144/LST1 is strongly expressed in dendritic cells. Transfection of B144/LST1 into a variety of cells induces morphologic changes including the production of long, thin filopodia. 78 -336006 pfam05084 GRA6 Granule antigen protein (GRA6). This family contains the granule antigen protein GRA6 which is found in the parasitic protozoa Toxoplasma gondii and Neospora caninum. GRA6 protein plays an important role in the antigenicity and pathogenicity in these organisms. 215 -282883 pfam05085 DUF685 Protein of unknown function (DUF685). This family consists of several uncharacterized proteins from Borrelia burgdorferi (Lyme disease spirochete). There is some evidence to suggest that the proteins may be outer surface proteins. 265 -252996 pfam05086 Dicty_REP Dictyostelium (Slime Mold) REP protein. This family consists of REP proteins from Dictyostelium (Slime molds). REP protein is likely involved in transcription regulation and control of DNA replication, specifically amplification of plasmid at low copy numbers. The formation of homomultimers may be required for their regulatory activity. 910 -282884 pfam05087 Rota_VP2 Rotavirus VP2 protein. Rotavirus particles consist of three concentric proteinaceous capsid layers. The innermost capsid (core) is made of VP2. The genomic RNA and the two minor proteins VP1 and VP3 are encapsidated within this layer. The N-terminus of rotavirus VP2 is necessary for the encapsidation of VP1 and VP3. 882 -336007 pfam05088 Bac_GDH Bacterial NAD-glutamate dehydrogenase. This family consists of several bacterial proteins which are closely related to NAD-glutamate dehydrogenase found in Streptomyces clavuligerus. Glutamate dehydrogenases (GDHs) are a broadly distributed group of enzymes that catalyze the reversible oxidative deamination of glutamate to ketoglutarate and ammonia. 1528 -336008 pfam05089 NAGLU Alpha-N-acetylglucosaminidase (NAGLU) tim-barrel domain. Alpha-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. Mutations on the alpha-N-acetylglucosaminidase (NAGLU) gene can lead to Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) characterized by neurological dysfunction but relatively mild somatic manifestations. The structure shows that the enzyme is composed of three domains. This central domain has a tim barrel fold. 333 -309986 pfam05090 VKG_Carbox Vitamin K-dependent gamma-carboxylase. Using reduced vitamin K, oxygen, and carbon dioxide, gamma-glutamyl carboxylase post-translationally modifies certain glutamates by adding carbon dioxide to the gamma position of those amino acids. In vertebrates, the modification of glutamate residues of target proteins is facilitated by an interaction between a propeptide present on target proteins and the gamma-glutamyl carboxylase. 430 -336009 pfam05091 eIF-3_zeta Eukaryotic translation initiation factor 3 subunit 7 (eIF-3). This family is made up of eukaryotic translation initiation factor 3 subunit 7 (eIF-3 zeta/eIF3 p66/eIF3d). Eukaryotic initiation factor 3 is a multi-subunit complex that is required for binding of mRNA to 40 S ribosomal subunits, stabilisation of ternary complex binding to 40 S subunits, and dissociation of 40 and 60 S subunits. These functions and the complex nature of eIF3 suggest multiple interactions with many components of the translational machinery. The gene coding for the protein has been implicated in cancer in mammals. 519 -282889 pfam05092 PIF Per os infectivity. This is a family of dsDNA Baculovirus proteins. It is required for the infectivity of the OBs or occlusion bodies. It is a structural protein of the ODV envelope required only in the first steps of per os larva infection, as viruses being produced in cells expressing the gene for this protein but not containing it in their genomes are able to produce successful infections. Baculoviruses are large DNA viruses that infect arthropods, mainly members of the order Lepidoptera. In their life cycle, they produce two kinds of particles, a budded, non-occluded virus (BV), which buds out of the infected cell and is responsible for the cell-to-cell transmission of the virus, and an occluded form, the occlusion body (OB), which is responsible for protecting the virus between encounters with larvae. A variable number of virions are included in the para-crystalline structure of the OB, mainly constituted by the virus-encoded polyhedrin protein; these virions are called occlusion body-derived virions or ODVs. 519 -309988 pfam05093 CIAPIN1 Cytokine-induced anti-apoptosis inhibitor 1, Fe-S biogenesis. Anamorsin, subsequently named CIAPIN1 for cytokine-induced anti-apoptosis inhibitor 1, in humans is the homolog of yeast Dre2, a conserved soluble eukaryotic Fe-S cluster protein, that functions in cytosolic Fe-S protein biogenesis. It is found in both the cytoplasm and in the mitochondrial intermembrane space (IMS). CIAPIN1 is found to be up-regulated in hepatocellular cancer, is considered to be a downstream effector of the receptor tyrosine kinase-Ras signalling pathway, and is essential in mouse definitive haematopoiesis. Dre2 has been found to interact with the yeast reductase Tah18, forming a tight cytosolic complex implicated in the response to high levels of oxidative stress. 99 -282891 pfam05094 LEF-9 Late expression factor 9 (LEF-9). Late expression factor 9 (LEF-9) is one of the primary components of RNA polymerase produced by baculoviruses. LEF-9 is homologous to the largest beta-subunit of prokaryotic DNA-directed RNA polymerase. 493 -309989 pfam05095 DUF687 Protein of unknown function (DUF687). This family contains several uncharacterized Chlamydia proteins. 537 -336010 pfam05096 Glu_cyclase_2 Glutamine cyclotransferase. This family of enzymes EC:2.3.2.5 catalyze the cyclization of free L-glutamine and N-terminal glutaminyl residues in proteins to pyroglutamate (5-oxoproline) and pyroglutamyl residues respectively. This family includes plant and bacterial enzymes and seems unrelated to the mammalian enzymes. 240 -253004 pfam05097 DUF688 Protein of unknown function (DUF688). This family contains several uncharacterized proteins found in Arabidopsis thaliana. 446 -282893 pfam05098 LEF-4 Late expression factor 4 (LEF-4). Late expression factor 4 (LEF-4) is one of the Baculovirus late expression factor proteins. LEF-4 carries out all the enzymatic functions related to mRNA capping. 471 -309991 pfam05099 TerB Tellurite resistance protein TerB. This family contains the TerB tellurite resistance proteins from a a number of bacteria. 142 -282895 pfam05100 Phage_tail_L Phage minor tail protein L. 206 -336011 pfam05101 VirB3 Type IV secretory pathway, VirB3-like protein. This family includes the Type IV secretory pathway VirB3 protein, that is found associated with bacterial inner and outer membranes. The family also includes the conjugal transfer protein TrbD family that contains a nucleotide binding motif and may provide energy for the export of DNA or the export of other Trb proteins. 82 -309993 pfam05102 Holin_BlyA holin, BlyA family. BlyA, a small holin found in Borrelia circular plasmids that is encoded by a prophage. BlyA contains two largely hydrophobic helices and a highly charged C-terminus and has two transmembrane segments. 61 -309994 pfam05103 DivIVA DivIVA protein. The Bacillus subtilis divIVA1 mutation causes misplacement of the septum during cell division, resulting in the formation of small, circular, anucleate mini-cells. Inactivation of divIVA produces a mini-cell phenotype, whereas overproduction of DivIVA results in a filamentation phenotype. These proteins appear to contain coiled-coils. 131 -309995 pfam05104 Rib_recp_KP_reg Ribosome receptor lysine/proline rich region. This highly conserved region is found towards the C-terminus of the transmembrane domain. The function is unclear. 162 -336012 pfam05105 Phage_holin_4_1 Bacteriophage holin family. Phage holins and lytic enzymes are both necessary for bacterial lysis and virus dissemination. This family also includes TcdE/UtxA involved in toxin secretion in Clostridium difficile. The 1.E.10 family is represented by Bacillus subtilis phi29 holin; 1.E.16 represents the Cph1 holin; and the 1.E.19 family is represented by the Clostridium difficile TcdE holin. Toxigenic strains of C. difficile produce two large toxins (TcdA and TcdB) encoded within a pathogenicity locus. tcdE, encoded between tcdA and tcdB, encodes a 166 aa protein which causes death to E. coli when expressed, and the structure of TcdE resembles holins. TcdE acts on the bacterial membrane. Since TcdA and TcdB lack signal peptides, they may be released via TcdE either prior to or subsequent to cell lysis. 108 -336013 pfam05106 Phage_holin_3_1 Phage holin family (Lysis protein S). This family represents one of a large number of mutually dissimilar families of phage holins. Holins act against the host cell membrane to allow lytic enzymes of the phage to reach the bacterial cell wall. This family includes the product of the S gene of phage lambda. 98 -336014 pfam05107 Cas_Cas7 CRISPR-associated protein Cas7. CRISPR-associated protein Cas7 is one of the components of the type I-B cascade-like antiviral defense complex. In Haloferax volcanii, Cas5, Cas6 and Cas7 form a small complex that aids the stability of CRISPR-derived RNA. 252 -309999 pfam05108 T7SS_ESX1_EccB Type VII secretion system ESX-1, transport TM domain B. EccB is a family of largely Gram-positive bacterial transmembrane componenets of the type VII secretion system characterized in Mycobacterium tuberculosis, systems ESX1-5. Translocation of virulent peptides through the membranes is thought to be mediated via a complex that includes EccB, EccC, EccD, EccE, and MycP. EccB, EccC, EccD, and EccE form a stable complex in the mycobacterial cell envelope. 398 -282904 pfam05109 Herpes_BLLF1 Herpes virus major outer envelope glycoprotein (BLLF1). This family consists of the BLLF1 viral late glycoprotein, also termed gp350/220. It is the most abundantly expressed glycoprotein in the viral envelope of the Herpesviruses and is the major antigen responsible for stimulating the production of neutralising antibodies in vivo. 886 -310000 pfam05110 AF-4 AF-4 proto-oncoprotein. This family consists of AF4 (Proto-oncogene AF4) and FMR2 (Fragile X E mental retardation syndrome) nuclear proteins. These proteins have been linked to human diseases such as acute lymphoblastic leukaemia and mental retardation. The family also contains a Drosophila AF4 protein homolog Lilliputian which contains an AT-hook domain. Lilliputian represents a novel pair-rule gene that acts in cytoskeleton regulation, segmentation and morphogenesis in Drosophila. 1142 -282906 pfam05111 Amelin Ameloblastin precursor (Amelin). This family consists of several mammalian Ameloblastin precursor (Amelin) proteins. Matrix proteins of tooth enamel consist mainly of amelogenin but also of non-amelogenin proteins, which, although their volumetric percentage is low, have an important role in enamel mineralisation. One of the non-amelogenin proteins is ameloblastin, also known as amelin and sheathlin. Ameloblastin (AMBN) is one of the enamel sheath proteins which is though to have a role in determining the prismatic structure of growing enamel crystals. 417 -282907 pfam05112 Baculo_p47 Baculovirus P47 protein. This family consists of several Baculovirus P47 proteins which is one of the primary components of Baculovirus encoded RNA polymerase, which initiates transcription from late and very late promoters. 306 -310001 pfam05113 DUF693 Protein of unknown function (DUF693). This family consists of several uncharacterized proteins from Borrelia burgdorferi (Lyme disease spirochete). 313 -336015 pfam05114 DUF692 Protein of unknown function (DUF692). This family consists of several uncharacterized bacterial proteins. 263 -282910 pfam05115 PetL Cytochrome B6-F complex subunit VI (PetL). This family consists of several Cytochrome B6-F complex subunit VI (PetL) proteins found in several plant species. PetL is one of the small subunits which make up The cytochrome b(6)f complex. PetL is strictly required neither for the accumulation nor for the function of cytochrome b6f; in its absence, however, the complex becomes unstable in vivo in aging cells and labile in vitro. It has been suggested that the N-terminus of the protein is likely to lie in the thylakoid lumen. 31 -310003 pfam05116 S6PP Sucrose-6F-phosphate phosphohydrolase. This family consists of Sucrose-6F-phosphate phosphohydrolase proteins found in plants and cyanobacteria. Sucrose-6(F)-phosphate phosphohydrolase catalyzes the final step in the pathway of sucrose biosynthesis. 246 -336016 pfam05117 DUF695 Family of unknown function (DUF695). Family of uncharacterized bacterial proteins. 129 -336017 pfam05118 Asp_Arg_Hydrox Aspartyl/Asparaginyl beta-hydroxylase. Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyze oxidative reactions in a range of metabolic processes. Proline 3-hydroxylase hydroxylates proline at position 3, the first of a 2-OG oxygenase catalyzing oxidation of a free alpha-amino acid. The structure of proline 3-hydroxylase contains the conserved motifs present in other 2-OG oxygenases including a jelly roll strand core and residues binding iron and 2-oxoglutarate, consistent with divergent evolution within the extended family. This family represent the arginine, asparagine and proline hydroxylases. The aspartyl/asparaginyl beta-hydroxylase (EC:1.14.11.16) specifically hydroxylates one aspartic or asparagine residue in certain epidermal growth factor-like domains of a number of proteins. 153 -336018 pfam05119 Terminase_4 Phage terminase, small subunit. 92 -310007 pfam05120 GvpG Gas vesicle protein G. These proteins are involved in the formation of gas vesicles. 80 -310008 pfam05121 GvpK Gas vesicle protein K. These proteins are involved in the formation of gas vesicles. 81 -310009 pfam05122 SpdB Mobile element transfer protein. This proteins are involved in transferring a group of integrating conjugative DNA elements, such as pSAM2 from Streptomyces ambofaciens. Their precise role is not known. 50 -310010 pfam05123 S_layer_N S-layer like family, N-terminal region. 280 -310011 pfam05124 S_layer_C S-layer like family, C-terminal region. 221 -336019 pfam05125 Phage_cap_P2 Phage major capsid protein, P2 family. 321 -310013 pfam05127 Helicase_RecD Helicase. This domain contains a P-loop (Walker A) motif, suggesting that it has ATPase activity, and a Walker B motif. In tRNA(Met) cytidine acetyltransferase (TmcA) it may function as an RNA helicase motor (driven by ATP hydrolysis) which delivers the wobble base to the active centre of the GCN5-related N-acetyltransferase (GNAT) domain. It is found in the bacterial exodeoxyribonuclease V alpha chain (RecD), which has 5'-3' helicase activity. It is structurally similar to the motor domain 1A in other SF1 helicases. 175 -310014 pfam05128 DUF697 Domain of unknown function (DUF697). Family of bacterial hypothetical proteins that is sometimes associated with GTPase domains. 162 -336020 pfam05129 Elf1 Transcription elongation factor Elf1 like. This family of short proteins contains a putative zinc binding domain with four conserved cysteines. ELF1 has been identified as a transcription elongation factor in Saccharomyces cerevisiae. 73 -336021 pfam05130 FlgN FlgN protein. This family includes the FlgN protein and export chaperone involved in flagellar synthesis. 136 -336022 pfam05131 Pep3_Vps18 Pep3/Vps18/deep orange family. This region is found in a number of protein identified as involved in golgi function and vacuolar sorting. The molecular function of this region is unknown. The members of this family contain a C-terminal ring finger domain. 149 -336023 pfam05132 RNA_pol_Rpc4 RNA polymerase III RPC4. Specific subunit for Pol III, the tRNA specific polymerase. 124 -310019 pfam05133 Phage_prot_Gp6 Phage portal protein, SPP1 Gp6-like. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage head (capsid) and the tail proteins. During SPP1 morphogenesis, Gp6 participates in the procapsid assembly reaction. This family also includes the old Pfam family Phage_min_cap (PF05126). 416 -282928 pfam05134 T2SSL Type II secretion system (T2SS), protein L. This family consists of Type II secretion system protein L sequences from several Gram-negative (diderm) bacteria. The Type II secretion system, also called Secretion-dependent pathway (SDP), is responsible for extracellular secretion of a number of different proteins, including proteases and toxins. This pathway supports secretion of proteins across the cell envelope in two distinct steps, in which the second step, involving translocation through the outer membrane, is assisted by at least 13 different gene products. T2SL is predicted to contain a large cytoplasmic domain represented by this family and has been shown to interact with the autophosphorylating cytoplasmic membrane protein T2SE. It is thought that the tri-molecular complex of T2SL, T2SE (pfam00437) and T2SM (pfam04612) might be involved in regulating the opening and closing of the secretion pore and/or transducing energy to the site of outer membrane translocation. 230 -336024 pfam05135 Phage_connect_1 Phage gp6-like head-tail connector protein. This family of proteins contain head-tail connector proteins related to gp6 from bacteriophage HK97. A structure of this protein shows similarity to gp15 a well characterized connector component of bacteriophage SPP1. 91 -310021 pfam05136 Phage_portal_2 Phage portal protein, lambda family. This protein forms a hole, or portal, that enables DNA passage during packaging and ejection. It also forms the junction between the phage capsid and the tail proteins. 349 -336025 pfam05137 PilN Fimbrial assembly protein (PilN). 77 -310023 pfam05138 PaaA_PaaC Phenylacetic acid catabolic protein. This family includes proteins such as PaaA and PaaC that are part of a catabolic pathway of phenylacetic acid. These proteins may form part of a dioxygenase complex. 258 -336026 pfam05139 Erythro_esteras Erythromycin esterase. This family includes erythromycin esterase enzymes that confer resistance to the erythromycin antibiotic. 356 -336027 pfam05140 ResB ResB-like family. This family includes both ResB and cytochrome c biogenesis proteins. Mutations in ResB indicate that they are essential for growth. ResB is predicted to be a transmembrane protein. 439 -310026 pfam05141 DIT1_PvcA Pyoverdine/dityrosine biosynthesis protein. DIT1 is involved in synthesising dityrosine. Dityrosine is a sporulation-specific component of the yeast ascospore wall that is essential for the resistance of the spores to adverse environmental conditions. Pyoverdine biosynthesis protein PvcA is involved in the biosynthesis of pyoverdine, a cyclized isocyano derivative of tyrosine. It has a modified Rossmann fold. 271 -336028 pfam05142 DUF702 Domain of unknown function (DUF702). Members of this family are found in various putative zinc finger proteins. 155 -310028 pfam05144 Phage_CRI Phage replication protein CRI. The phage replication protein CRI, is also known as Gene II, is essential for DNA replication. 235 -336029 pfam05145 AbrB Transition state regulatory protein AbrB. Bacillus subtilis respond to a multitude of environmental stimuli by using transcription factors called transition state regulators (TSRs). They play an essential role in cell survival by regulating spore formation, competence, and biofilm development. AbrB is one of the most known TSRs, acting as a pleotropic regulator for over 60 different genes where it directly binds to their promoter or regulatory regions. Many other genes are indirectly controlled by AbrB since it is a regulator of other regulatory proteins, including ScoC, Abh, SinR and SigH. Hence, AbrB is considered a global regulatory protein controlling processes such as Bacillus subtilis growth and cell division as well as production of extracellular degradative enzymes, nitrogen utilization and amino acid metabolism, motility, synthesis of antibiotics and their resistant determinants, development of competence, transport systems, oxidative stress response, phosphate metabolism, cell surface components and sporulation. AbrB is a tetramer consisting of identical 94 residue monomers. Its DNA-binding function resides solely in the N-terminal domain (AbrBN) of 53 residues. Although it does not recognize a well-defined DNA base-pairing sequence, instead, it appears to target a very weak pseudo consensus nucleotide sequence, TGGNA-5bp-TGGNA, which allows it to be rather promiscuous in binding. The N-terminal domains of very similar sequences are present in two more Bacillus subtilis proteins, Abh and SpoVT. Mutagenesis studies suggest that the role of the C-terminal domain is in forming multimers. 312 -336030 pfam05147 LANC_like Lanthionine synthetase C-like protein. Lanthionines are thioether bridges that are putatively generated by dehydration of Ser and Thr residues followed by addition of cysteine residues within the peptide. This family contains the lanthionine synthetase C-like proteins 1 and 2 which are related to the bacterial lanthionine synthetase components C (LanC). LANCL1 (P40 seven-transmembrane-domain protein) and LANCL2 (testes-specific adriamycin sensitivity protein) are thought to be peptide-modifying enzyme components in eukaryotic cells. Both proteins are produced in large quantities in the brain and testes and may have role in the immune surveillance of these organs. Lanthionines are found in lantibiotics, which are peptide-derived, post-translationally modified antimicrobials produced by several bacterial strains. This region contains seven internal repeats. 347 -253044 pfam05148 Methyltransf_8 Hypothetical methyltransferase. This family consists of several uncharacterized eukaryotic proteins which are related to methyltransferases pfam01209. 214 -336031 pfam05149 Flagellar_rod Paraflagellar rod protein. This family consists of several eukaryotic paraflagellar rod component proteins. The eukaryotic flagellum represents one of the most complex macromolecular structures found in any organism and contains more than 250 proteins. In addition to its locomotive role, the flagellum is probably involved in nutrient uptake since receptors for host low-density lipoproteins are localized on the flagellar membrane as well as on the flagellar pocket membrane. 287 -282941 pfam05150 Legionella_OMP Legionella pneumophila major outer membrane protein precursor. This family consists of major outer membrane protein precursors from Legionella pneumophila. 288 -336032 pfam05151 PsbM Photosystem II reaction centre M protein (PsbM). This family consists of several Photosystem II reaction centre M proteins (PsbM) from plants and cyanobacteria. During the photosynthetic light reactions in the thylakoid membranes of cyanobacteria, algae, and plants, photosystem II (PSII), a multi-subunit membrane protein complex, catalyzes oxidation of water to molecular oxygen and reduction of plastoquinon. 31 -282943 pfam05152 DUF705 Protein of unknown function (DUF705). This family contains several uncharacterized Baculovirus proteins. 302 -336033 pfam05153 MIOX Myo-inositol oxygenase. MIOX is the enzyme myo-inositol oxygenase. It catalyzes the first committed step in the glucuronate-xylulose pathway, It is a di-iron oxygenase with a key role in inositol metabolism. The structure reveals a monomeric, single-domain protein with a mostly helical fold that is distantly related to the diverse HD domain superfamily. The structural core is of five alpha-helices that contribute six ligands, four His and two Asp, to the di-iron centre where the two iron atoms are bridged by a putative hydroxide ion and one of the Asp ligands. The substrate is myo-inositol is bound in a terminal substrate-binding mode to a di-iron cluster. Within the structure are two additional proteinous lids that cover and shield the enzyme's active site. 249 -310034 pfam05154 TM2 TM2 domain. This family is composed of a pair of transmembrane alpha helices connected by a short linker. The function of this domain is unknown, however it occurs in a wide range or protein contexts. 50 -282946 pfam05155 Phage_X Phage X family. This family is the product of Gene X. The function of this protein is unknown. 88 -336034 pfam05157 T2SSE_N Type II secretion system (T2SS), protein E, N-terminal domain. This domain is found at the N-terminus of members of the Type II secretion system protein E. Proteins in this subfamily are typically involved in Type 4 pilus biogenesis, though some are involved in other processes; for instance aggregation in Myxococcus xanthus. The structure of this domain is now known. 109 -310036 pfam05158 RNA_pol_Rpc34 RNA polymerase Rpc34 subunit. Subunit specific to RNA Pol III, the tRNA specific polymerase. The C34 subunit of yeast RNA Pol III is part of a subcomplex of three subunits which have no counterpart in the other two nuclear RNA polymerases. This subunit interacts with TFIIIB70 and is therefore participates in Pol III recruitment. 317 -282949 pfam05159 Capsule_synth Capsule polysaccharide biosynthesis protein. This family includes export proteins involved in capsule polysaccharide biosynthesis, such as KpsS and LipB. 310 -336035 pfam05160 DSS1_SEM1 DSS1/SEM1 family. This family contains the breast cancer tumor suppressor BRCA2-interacting protein DSS1 and its homolog SEM1, both of which are short acidic proteins. DSS1 has been shown to be a conserved component of the Rae1 mediated mRNA export pathway in Schizosaccharomyces pombe. 52 -336036 pfam05161 MOFRL MOFRL family. MOFRL(multi-organism fragment with rich Leucine) family exists in bacteria and eukaryotes. The function of this domain is not clear, although it exists in some putative enzymes such as reductases and kinases. 106 -310039 pfam05162 Ribosomal_L41 Ribosomal protein L41. 24 -253054 pfam05163 DinB DinB family. DNA damage-inducible (din) genes in Bacillus subtilis are coordinately regulated and together compose a global regulatory network that has been termed the SOS-like or SOB regulon. This family includes DinB from B. subtilis. 164 -336037 pfam05164 ZapA Cell division protein ZapA. ZapA is a cell division protein which interacts with FtsZ. FtsZ is part of a mid-cell cytokinetic structure termed the Z-ring that recruits a hierarchy of fission related proteins early in the bacterial cell cycle. The interaction of FtsZ with ZapA drives its polymerization and promotes FtsZ filament bundling thereby contributing to the spatio-temporal tuning of the Z-ring. 85 -147379 pfam05165 GCH_III GTP cyclohydrolase III. GTP cyclohydrolase (GCH) III from Methanocaldococcus jannaschi catalyzes the conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy). The reaction requires two bound magnesium ions for the catalysis and is activated by monovalent cations such as potassium and ammonium. The enzyme is a tetramer of identical subunits; each monomer is composed of an N- and a C-terminal domain that adopt nearly superimposible structures, suggesting that the protein has arisen by gene duplication. The family is found in archaea and bacteria. 246 -336038 pfam05166 YcgL YcgL domain. This family of proteins formerly called DUF709 includes the E. coli gene ycgL. homologs of YcgL are found in gammaproteobacteria. The structure of this protein shows a novel alpha/beta/alpha sandwich structure. 73 -310042 pfam05167 DUF711 Uncharacterized ACR (DUF711). The proteins in this family are functionally uncharacterized. The proteins are around 450 amino acids long. It is likely that this family represents a group of glycerol-3-phosphate dehydrogenases. 404 -310043 pfam05168 HEPN HEPN domain. 118 -282957 pfam05170 AsmA AsmA family. The AsmA gene, whose product is involved in the assembly of outer membrane proteins in Escherichia coli. AsmA mutations were isolated as extragenic suppressors of an OmpF assembly mutant. AsmA may have a role in LPS biogenesis. 608 -310044 pfam05171 HemS Haemin-degrading HemS.ChuX domain. The Yersinia enterocolitica O:8 periplasmic binding-protein- dependent transport system consisted of four proteins: the periplasmic haemin-binding protein HemT, the haemin permease protein HemU, the ATP-binding hydrophilic protein HemV and the haemin-degrading protein HemS (this family). The structure for HemS has been solved and consists of a tandem repeat of this domain. 128 -113924 pfam05172 Nup35_RRM Nup53/35/40-type RNA recognition motif. Members of this family belong to the nucleor pore complex, NPC, the only gateway between the nucleus and the cytoplasm. The NPC consists of several subcomplexes each one of which is made up of multiple copies of several individual Nup, Nic or Sec protein subunits. In yeast, this Nup or nucleoporin subunit is numbered Nup53, Nup40 in Schizo. pombe and in vertebrates as Nup35. This subunit forms part of the inner ring within the membrane and interacts directly with Nup-Ndc1, considered to be an anchor for the NPC in the pore membrane. This region of the Nup is the RNA-recognition region. 87 -336039 pfam05173 DapB_C Dihydrodipicolinate reductase, C-terminus. Dihydrodipicolinate reductase (DapB) reduces the alpha,beta-unsaturated cyclic imine, dihydro-dipicolinate. This reaction is the second committed step in the biosynthesis of L-lysine and its precursor meso-diaminopimelate, which are critical for both protein and cell wall biosynthesis. The C-terminal domain of DapB has been proposed to be the substrate- binding domain. 136 -282960 pfam05174 CDRN Cysteine-rich D. radiodurans N-terminus. This domain is found individually and at the N-terminus of a few multi-domain proteins. 51 -282961 pfam05175 MTS Methyltransferase small domain. This domain is found in ribosomal RNA small subunit methyltransferase C as well as other methyltransferases. 169 -310046 pfam05176 ATP-synt_10 ATP10 protein. ATP 10 is essential for the assembly of a functional mitochondrial ATPase complex. 245 -310047 pfam05177 RCSD RCSD region. Proteins contain this region include C.elegans UNC-89. This region is found repeated in UNC-89 and shows conservation in prolines, lysines and glutamic acids. Proteins with RCSD are involved in muscle M-line assembly, but the function of this region RCSD is not clear. 101 -310048 pfam05178 Kri1 KRI1-like family. The yeast member of this family (Kri1p) is found to be required for 40S ribosome biogenesis in the nucleolus. 101 -336040 pfam05179 CDC73_C RNA pol II accessory factor, Cdc73 family, C-terminal. CDC73 is an RNA polymerase II accessory factor, and forms part of the Paf1 complex that has roles in post-initiation events. More specifically, crystal structure analysis shows the C-terminus to be a Ras-like domain that adopts a fold that is highly similar to GTPases of the Ras superfamily. The canonical nucleotide binding pocket is altered in CDC73, and there is no nucleotide ligand, but it contributes to histone methylation and Paf1C recruitment to active genes. Thus together with Rtf1 it combines to couple the Paf1 complex to elongating polymerase. The family has been added to the P-loop clan on the basis of the topology of the b-stranded core, and its similarity to Ras. 154 -336041 pfam05180 zf-DNL DNL zinc finger. The domain is named after a short C-terminal motif of D(N/H)L. This domain is a novel zinc-finger protein essential for protein import into mitochondria. 62 -310051 pfam05181 XPA_C XPA protein C-terminus. 51 -336042 pfam05182 Fip1 Fip1 motif. This short motif is about 40 amino acids in length. In the Fip1 protein that is a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. This region of Fip1 is needed for the interaction with the Th1 subunit of the complex and for specific polyadenylation of the cleaved mRNA precursor. 43 -336043 pfam05183 RdRP RNA dependent RNA polymerase. This family of proteins are eukaryotic RNA dependent RNA polymerases. These proteins are involved in post transcriptional gene silencing where they are thought to amplify dsRNA templates. 532 -336044 pfam05184 SapB_1 Saposin-like type B, region 1. 38 -336045 pfam05185 PRMT5 PRMT5 arginine-N-methyltransferase. The human homolog of yeast Skb1 (Shk1 kinase-binding protein 1) is PRMT5, an arginine-N-methyltransferase. These proteins appear to be key mitotic regulators. They play a role in Jak signalling in higher eukaryotes. 170 -310056 pfam05186 Dpy-30 Dpy-30 motif. This motif is found in a wide variety of domain contexts. It is found in the Dpy-30 proteins hence the motifs name. It is about 40 residues long and is probably formed of two alpha-helices. It may be a dimerization motif analogous to pfam02197 (Bateman A pers obs). 42 -310057 pfam05187 ETF_QO Electron transfer flavoprotein-ubiquinone oxidoreductase, 4Fe-4S. Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) in the inner mitochondrial membrane accepts electrons from electron-transfer flavoprotein which is located in the mitochondrial matrix and reduces ubiquinone in the mitochondrial membrane. The two redox centers in the protein, FAD and a [4Fe4S] cluster, are present in a 64-kDa monomer. 103 -336046 pfam05188 MutS_II MutS domain II. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam00488, pfam01624, pfam05192 and pfam05190. The MutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. This domain corresponds to domain II in Thermus aquaticus MutS and has similarity resembles RNAse-H-like domains (see pfam00075). 129 -336047 pfam05189 RTC_insert RNA 3'-terminal phosphate cyclase (RTC), insert domain. RNA cyclases are a family of RNA-modifying enzymes that are conserved in all cellular organisms. They catalyze the ATP-dependent conversion of the 3'-phosphate to the 2',3'-cyclic phosphodiester at the end of RNA, in a reaction involving formation of the covalent AMP-cyclase intermediate. The structure of RTC demonstrates that RTCs are comprised two domain. The larger domain contains an insert domain of approximately 100 amino acids. 102 -336048 pfam05190 MutS_IV MutS family domain IV. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam01624, pfam05188, pfam05192 and pfam00488. The mutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. The aligned region corresponds in part with globular domain IV, which is involved in DNA binding, in Thermus aquaticus MutS as characterized in. 92 -336049 pfam05191 ADK_lid Adenylate kinase, active site lid. Comparisons of adenylate kinases have revealed a particular divergence in the active site lid. In some organisms, particularly the Gram-positive bacteria, residues in the lid domain have been mutated to cysteines and these cysteine residues are responsible for the binding of a zinc ion. The bound zinc ion in the lid domain, is clearly structurally homologous to Zinc-finger domains. However, it is unclear whether the adenylate kinase lid is a novel zinc-finger DNA/RNA binding domain, or that the lid bound zinc serves a purely structural function. 36 -336050 pfam05192 MutS_III MutS domain III. This domain is found in proteins of the MutS family (DNA mismatch repair proteins) and is found associated with pfam00488, pfam05188, pfam01624 and pfam05190. The MutS family of proteins is named after the Salmonella typhimurium MutS protein involved in mismatch repair; other members of the family included the eukaryotic MSH 1,2,3, 4,5 and 6 proteins. These have various roles in DNA repair and recombination. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein. The aligned region corresponds with domain III, which is central to the structure of Thermus aquaticus MutS as characterized in. 288 -336051 pfam05193 Peptidase_M16_C Peptidase M16 inactive domain. Peptidase M16 consists of two structurally related domains. One is the active peptidase, whereas the other is inactive. The two domains hold the substrate like a clamp. 181 -336052 pfam05194 UreE_C UreE urease accessory protein, C-terminal domain. UreE is a urease accessory protein. Urease pfam00449 hydrolyzes urea into ammonia and carbamic acid. The C-terminal region of members of this family contains a His rich Nickel binding site. 84 -336053 pfam05195 AMP_N Aminopeptidase P, N-terminal domain. This domain is structurally very similar to the creatinase N-terminal domain (pfam01321). However, little or no sequence similarity exists between the two families. 121 -310066 pfam05196 PTN_MK_N PTN/MK heparin-binding protein family, N-terminal domain. 57 -336054 pfam05197 TRIC TRIC channel. TRIC (trimeric intracellular cation) channels are differentially expressed in intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. 184 -336055 pfam05198 IF3_N Translation initiation factor IF-3, N-terminal domain. 68 -310069 pfam05199 GMC_oxred_C GMC oxidoreductase. This domain found associated with pfam00732. 142 -336056 pfam05201 GlutR_N Glutamyl-tRNAGlu reductase, N-terminal domain. 109 -282986 pfam05202 Flp_C Recombinase Flp protein. 243 -336057 pfam05203 Hom_end_hint Hom_end-associated Hint. Homing endonucleases are encoded by mobile DNA elements that are found inserted within host genes in all domains of life. The crystal structure of the homing nuclease PI-Sce revealed two domains: an endonucleolytic centre resembling the C-terminal domain of Drosophila melanogaster Hedgehog protein, and a second domain containing the protein-splicing active site. This Domain corresponds to the latter protein-splicing domain. 446 -310072 pfam05204 Hom_end Homing endonuclease. Homing endonucleases are encoded by mobile DNA elements that are found inserted within host genes in all domains of life. 109 -310073 pfam05205 COMPASS-Shg1 COMPASS (Complex proteins associated with Set1p) component shg1. The Shg1 subunit is one of the eight subunits of the COMPASS complex, complex associated with SET1, conserved in yeasts and in other eukaryotes up to humans. It is associated with the region of the Set1 protein that is N-terminal to the C-terminus, ie Set1-560-900. The function of Shg1 seems to be to slightly inhibit histone 3 lysine 4 (H3K4) di- and tri-methylation, and it is a pioneer protein. The COMPASS complex functions to methylate the fourth lysine of Histone 3 and for silencing of genes close to the telomeres of chromosomes. 100 -336058 pfam05206 TRM13 Methyltransferase TRM13. This is a family of eukaryotic proteins which are responsible for 2'-O-methylation of tRNA at position 4. TRM13 shows no sequence similarity to other known methyltransferases. 251 -336059 pfam05207 zf-CSL CSL zinc finger. This is a zinc binding motif which contains four cysteine residues which chelate zinc. This domain is often found associated with a pfam00226 domain. This domain is named after the conserved motif of the final cysteine. 55 -310076 pfam05208 ALG3 ALG3 protein. The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl pyrophosphate. Whereas early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9GlcNAc2-PP-Dol on the lumenal side use Dol-P-Man. ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. 344 -282993 pfam05209 MinC_N Septum formation inhibitor MinC, N-terminal domain. In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. MinC is an oligomer, probably a dimer. The C terminal half of MinC is the most conserved and interacts with MinD. The N terminal half is thought to interact with FtsZ. 104 -336060 pfam05210 Sprouty Sprouty protein (Spry). This family consists of eukaryotic Sprouty protein homologs. Sprouty proteins have been revealed as inhibitors of the Ras/mitogen-activated protein kinase (MAPK) cascade, a pathway crucial for developmental processes initiated by activation of various receptor tyrosine kinases. The sprouty gene has found to be expressed in the the brain, cochlea, nasal organs, teeth, salivary gland, lungs, digestive tract, kidneys and limb buds in mice. 95 -336061 pfam05211 NLBH Neuraminyllactose-binding hemagglutinin precursor (NLBH). This family is comprised of several flagellar sheath adhesin proteins also called neuraminyllactose-binding hemagglutinin precursor (NLBH) or N-acetylneuraminyllactose-binding fibrillar hemagglutinin receptor-binding subunits. NLBH is found exclusively in Helicobacter which are gut colonising bacteria and bind to sialic acid rich macromolecules present on the gastric epithelium. 247 -336062 pfam05212 DUF707 Protein of unknown function (DUF707). This family consists of several uncharacterized proteins from Arabidopsis thaliana. 298 -282997 pfam05213 Corona_NS2A Coronavirus NS2A protein. This family contains a number of corona virus non-structural proteins of unknown function. The family also includes a polymerase protein fragment from Berne virus and does not seem to be related to the pfam04753 Coronavirus NS2 family. This family is part of the 2H phosphoesterase superfamily. 267 -282998 pfam05214 Baculo_p33 Baculovirus P33. This family consists of a series of Baculovirus P33 protein homologs of unknown function. 247 -253093 pfam05215 Spiralin Spiralin. This family consists of Spiralin proteins found in spiroplasma bacteria. Spiroplasmas are helically shaped pathogenic bacteria related to the mycoplasmas. The surface of spiroplasma bacteria is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown although its cellular function is thought to be a structural and mechanical one rather than a catalytic one. 239 -336063 pfam05216 UNC-50 UNC-50 family. Gmh1p from S. cerevisiae is located in the Golgi membrane and interacts with ARF exchange factors. 223 -310081 pfam05217 STOP STOP protein. Neurons contain abundant subsets of highly stable microtubules that resist de-polymerising conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally knowledge of STOPs function and properties may help in the treatment of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects. 35 -310082 pfam05218 DUF713 Protein of unknown function (DUF713). This family contains several proteins of unknown function from C.elegans. The GO annotation suggests that this protein is involved in nematode development and has a positive regulation on growth rate. 185 -253097 pfam05219 DREV DREV methyltransferase. This family contains DREV protein homologs from several eukaryotes. The function of this protein is unknown. However, these proteins appear to be related to other methyltransferases (Bateman A pers obs). 265 -283002 pfam05220 MgpC MgpC protein precursor. This family contains several Mycoplasma MgpC like-proteins. 226 -336064 pfam05221 AdoHcyase S-adenosyl-L-homocysteine hydrolase. 457 -310084 pfam05222 AlaDh_PNT_N Alanine dehydrogenase/PNT, N-terminal domain. This family now also contains the lysine 2-oxoglutarate reductases. 135 -310085 pfam05223 MecA_N NTF2-like N-terminal transpeptidase domain. The structure of this domain from MecA is known and is found to be similar to that found in NTF2 pfam02136. This domain seems unlikely to have an enzymatic function, and its role remains unknown. 117 -310086 pfam05224 NDT80_PhoG NDT80 / PhoG like DNA-binding family. This family includes the DNA-binding region of NDT80 as well as PhoG and its homologs. The family contains VIB-1. VIB-1 is thought to be a regulator of conidiation in Neurospora crassa and shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. It has been found that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity. 180 -283007 pfam05225 HTH_psq helix-turn-helix, Psq domain. This DNA-binding motif is found in four copies in the pipsqueak protein of Drosophila melanogaster. In pipsqueak this domain binds to GAGA sequence. 45 -336065 pfam05226 CHASE2 CHASE2 domain. CHASE2 is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in bacteria. Specifically, CHASE2 domains are found in histidine kinases, adenylate cyclases, serine/threonine kinases and predicted diguanylate cyclases/phosphodiesterases. Environmental factors that are recognized by CHASE2 domains are not known at this time. 235 -336066 pfam05227 CHASE3 CHASE3 domain. CHASE3 is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in bacteria. Specifically, CHASE3 domains are found in histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins and predicted diguanylate cyclases/phosphodiesterases. Environmental factors that are recognized by CHASE3 domains are not known at this time. 138 -336067 pfam05228 CHASE4 CHASE4 domain. CHASE4. This is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in prokaryotes. Specifically, CHASE4 domains are found in histidine kinases in Archaea and in predicted diguanylate cyclases/phosphodiesterases in Bacteria. Environmental factors that are recognized by CHASE4 domains are not known at this time. 141 -310090 pfam05229 SCPU Spore Coat Protein U domain. This domain is found in a bacterial family of spore coat proteins, as well as a family of secreted pili proteins involved in motility and biofilm formation. This family is distantly related to fimbrial proteins. 138 -310091 pfam05230 MASE2 MASE2 domain. Predicted integral membrane sensory domain found in histidine kinases, diguanylate cyclases and other bacterial signaling proteins. 89 -283013 pfam05231 MASE1 MASE1. Predicted integral membrane sensory domain found in histidine kinases, diguanylate cyclases and other bacterial signaling proteins. This entry also includes members of the 8 transmembrane UhpB type (8TMR-UT) domain family. 299 -336068 pfam05232 BTP Chlorhexidine efflux transporter. This family represents a conserved pair of two transmembrane alpha-helices. All members carry the two pairs of TMs. BTP is a form of drug efflux pump, that actively tranports chlorhexidine out of the cell. Chlorhexidine, a bisbiguanide antimicrobial agent, is commonly used as an antiseptic and disinfectant in hospitals, and there is an increasing problem with resistance to it in some pathogenic bacteria. BTP is localized in the cytoplasmic membrane. 63 -336069 pfam05233 PHB_acc PHB accumulation regulatory domain. The proteins this domain is found in are typically involved in regulating polymer accumulation in bacteria, particularly poly-beta-hydroxybutyrate (PHB). The N-terminal region is likely to be the DNA-binding domain (pfam07879) while this domain probably binds PHB (personal obs:C Yeats). 40 -113985 pfam05234 UAF_Rrn10 UAF complex subunit Rrn10. The protein Rrn10 has been identified as a component of the Upstream Activating Factor (UAF), an RNA polymerase I (pol I) specific transcription stimulatory factor 122 -336070 pfam05235 CHAD CHAD domain. The CHAD domain is an alpha-helical domain functionally associated with the pfam01928 domains. It has conserved histidines that may chelate metals. 153 -336071 pfam05236 TAF4 Transcription initiation factor TFIID component TAF4 family. This region of similarity is found in Transcription initiation factor TFIID component TAF4. 258 -336072 pfam05238 CENP-N Kinetochore protein CHL4 like. CHL4 is a protein involved in chromosome segregation. It is a component of the central kinetochore which mediates the attachment of the centromere to the mitotic spindle. CENP-N is one of the components that assembles onto the CENP-A-nucleosome-associated (NAC) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENP-A-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. 406 -336073 pfam05239 PRC PRC-barrel domain. The PRC-barrel is an all beta barrel domain found in photosystem reaction centre subunit H of the purple bacteria and RNA metabolism proteins of the RimM group. PRC-barrels are approximately 80 residues long, and found widely represented in bacteria, archaea and plants. This domain is also present at the carboxyl terminus of the pan-bacterial protein RimM, which is involved in ribosomal maturation and processing of 16S rRNA. A family of small proteins conserved in all known euryarchaea are composed entirely of a single stand-alone copy of the domain. 70 -310098 pfam05240 APOBEC_C APOBEC-like C-terminal domain. This domain is found at the C-termini of the Apolipoprotein B mRNA editing enzyme. 78 -336074 pfam05241 EBP Emopamil binding protein. Emopamil binding protein (EBP) is as a gene that encodes a non-glycosylated type I integral membrane protein of endoplasmic reticulum and shows high level expression in epithelial tissues. The EBP protein has emopamil binding domains, including the sterol acceptor site and the catalytic centre, which show Delta8-Delta7 sterol isomerase activity. Human sterol isomerase, a homolog of mouse EBP, is suggested not only to play a role in cholesterol biosynthesis, but also to affect lipoprotein internalisation. In humans, mutations of EBP are known to cause the genetic disorder of X-linked dominant chondrodysplasia punctata (CDPX2). This syndrome of humans is lethal in most males, and affected females display asymmetric hyperkeratotic skin and skeletal abnormalities. 179 -310100 pfam05242 GLYCAM-1 Glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1). This family consists of the lactophorin precursors proteose peptone component 3 (PP3) and glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1). GlyCAM-1 functions as a ligand for L-selectin, a saccharide-binding protein on the surface of circulating leukocytes, and mediates the trafficking of blood-born lymphocytes into secondary lymph nodes. In this context, sulphatation of the carbohydrates of GlyCAM-1 has been shown to be a critical structural requirement to be recognized by L-selectin. GlyCAM-1 is also expressed in pregnant and lactating mammary glands of mouse and in an unknown site in the lung, in the bovine uterus and rat cochlea. 135 -113995 pfam05244 Brucella_OMP2 Brucella outer membrane protein 2. This family consists of several outer membrane proteins (2a and 2b) from brucella bacteria. Brucellae are Gram-negative, facultative intracellular bacteria that can infect many species of animals and man. 240 -283023 pfam05246 DUF735 Protein of unknown function (DUF735). This family consists of several uncharacterized Borrelia burgdorferi (Lyme disease spirochete) proteins of unknown function. 211 -336075 pfam05247 FlhD Flagellar transcriptional activator (FlhD). This family consists of several bacterial flagellar transcriptional activator (FlhD) proteins. FlhD combines with FlhC to form a regulatory complex in E. coli, this complex has been shown to be a global regulator involved in many cellular processes as well as a flagellar transcriptional activator. 99 -310102 pfam05248 Adeno_E3A Adenovirus E3A. 104 -310103 pfam05250 UPF0193 Uncharacterized protein family (UPF0193). This family of proteins is functionally uncharacterized. 210 -336076 pfam05251 Ost5 Oligosaccharyltransferase subunit 5. Eukaryotic N-glycosylation is catalyzed in the ER lumen, where the enzyme oligosaccharyltransferase (OTase) transfers donor glycans from a dolichol pyrophosphate (DolP) carrier (Lipid-linked oligosaccharide; LLO) to polypeptides. The yeast OTase is a hetero-oligomeric complex composed of essential (Ost1, Ost2, Wbp1, Stt3, and Swp1) and nonessential (Ost3, Ost4, Ost5, and Ost6) subunits. This domain family is found in Ost5. The precise function of this subunit is not known, however Ost5 appears to form a sub-complex with Ost1, and this sub-complex associates with the catalytic Stt3 subunit of OTase. Down regulation of Ost5 resulted in a limited effect on glycosylation and no effect on the stability of Ost1 or Stt3 subunits. 73 -336077 pfam05253 zf-U11-48K U11-48K-like CHHC zinc finger. This zinc binding domain has four conserved zinc chelating residues in a CHHC pattern. This domain is predicted to have an RNA-binding function. 25 -336078 pfam05254 UPF0203 Uncharacterized protein family (UPF0203). This family of proteins is functionally uncharacterized. 64 -310107 pfam05255 UPF0220 Uncharacterized protein family (UPF0220). This family of proteins is functionally uncharacterized. 166 -336079 pfam05256 UPF0223 Uncharacterized protein family (UPF0223). This family of proteins is functionally uncharacterized. 74 -336080 pfam05257 CHAP CHAP domain. This domain corresponds to an amidase function. Many of these proteins are involved in cell wall metabolism of bacteria. This domain is found at the N-terminus of Escherichia coli gss, where it functions as a glutathionylspermidine amidase EC:3.5.1.78. This domain is found to be the catalytic domain of PlyCA. CHAP is the amidase domain of bifunctional Escherichia coli glutathionylspermidine synthetase/amidase, and it catalyzes the hydrolysis of Gsp (glutathionylspermidine) into glutathione and spermidine. 84 -336081 pfam05258 DUF721 Protein of unknown function (DUF721). This family contains several actinomycete proteins of unknown function. 88 -283034 pfam05259 Herpes_UL1 Herpesvirus glycoprotein L. This family consists of several herpesvirus glycoprotein L or UL1 proteins. Glycoprotein L is known to form a complex with glycoprotein H but the function of this complex is poorly understood. 103 -310111 pfam05261 Tra_M TraM protein, DNA-binding. The TraM protein is an essential part of the DNA transfer machinery of the conjugative resistance plasmid R1 (IncFII). On the basis of mutational analyses, it was shown that the essential transfer protein TraM has at least two functions. First, a functional TraM protein was found to be required for normal levels of transfer gene expression. Second, experimental evidence was obtained that TraM stimulates efficient site-specific single-stranded DNA cleavage at the oriT, in vivo. Furthermore, a specific interaction of the cytoplasmic TraM protein with the membrane protein TraD was demonstrated, suggesting that the TraM protein creates a physical link between the relaxosomal nucleoprotein complex and the membrane-bound DNA transfer apparatus. 126 -114011 pfam05262 Borrelia_P83 Borrelia P83/100 protein. This family consists of several Borrelia P83/P100 antigen proteins. 489 -283036 pfam05263 DUF722 Protein of unknown function (DUF722). This family contains several bacteriophage proteins of unknown function. 129 -310112 pfam05264 CfAFP Choristoneura fumiferana antifreeze protein (CfAFP). This family consists of several antifreeze proteins from the insect Choristoneura fumiferana (Spruce budworm). Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) are present in many organisms that must survive sub-zero temperatures. These proteins bind to seed ice crystals and inhibit their growth through an adsorption-inhibition mechanism. 137 -283037 pfam05265 DUF723 Protein of unknown function (DUF723). This family contains several uncharacterized proteins from Neisseria meningitidis. These proteins may have a role in DNA-binding. 60 -336082 pfam05266 DUF724 Protein of unknown function (DUF724). This family contains several uncharacterized proteins found in Arabidopsis thaliana and other plants. This region is often found associated with Agenet domains and may contain coiled-coil. 188 -310114 pfam05267 DUF725 Protein of unknown function (DUF725). This family contains several Drosophila proteins of unknown function. 121 -147458 pfam05268 GP38 Phage tail fibre adhesin Gp38. This family contains several Gp38 proteins from T-even-like phages. Gp38, together with a second phage protein, gp57, catalyzes the organisation of gp37 but is absent from the phage particle. Gp37 is responsible for receptor recognition. 261 -336083 pfam05269 Phage_CII Bacteriophage CII protein. This family consists of several phage CII regulatory proteins. CII plays a key role in the lysis-lysogeny decision in bacteriophage lambda and related phages. 91 -336084 pfam05270 AbfB Alpha-L-arabinofuranosidase B (ABFB) domain. This family consists of several fungal alpha-L-arabinofuranosidase B proteins. L-Arabinose is a constituent of plant-cell-wall poly-saccharides. It is found in a polymeric form in L-arabinan, in which the backbone is formed by 1,5-a- linked l-arabinose residues that can be branched via 1,2-a- and 1,3-a-linked l-arabinofuranose side chains. AbfB hydrolyzes 1,5-a, 1,3-a and 1,2-a linkages in both oligosaccharides and polysaccharides, which contain terminal non-reducing l-arabinofuranoses in side chains. 138 -147459 pfam05271 Tobravirus_2B Tobravirus 2B protein. This family consists of several tobravirus 2B proteins. It is known that the 2B protein is required for transmission by both Paratrichodorus pachydermus and P. anemones nematodes. 117 -283041 pfam05272 VirE Virulence-associated protein E. This family contains several bacterial virulence-associated protein E like proteins. These proteins contain a P-loop motif. 198 -283042 pfam05273 Pox_RNA_Pol_22 Poxvirus RNA polymerase 22 kDa subunit. This family consists of several poxvirus DNA-dependent RNA polymerase 22 kDa subunits. 184 -283043 pfam05274 Baculo_E25 Occlusion-derived virus envelope protein E25. This family consists of several nucleopolyhedrovirus occlusion-derived virus envelope E25 proteins. 190 -336085 pfam05275 CopB Copper resistance protein B precursor (CopB). This family consists of several bacterial copper resistance proteins. Copper is essential and serves as cofactor for more than 30 enzymes yet a surplus of copper is toxic and leads to radical formation and oxidation of biomolecules. Therefore, copper homeostasis is a key requisite for every organism. CopB serves to extrude copper when it approaches toxic levels. 206 -336086 pfam05276 SH3BP5 SH3 domain-binding protein 5 (SH3BP5). This family consists of several eukaryotic SH3 domain-binding protein 5 or c-Jun N-terminal kinase (JNK)-interacting proteins (SH3BP5 or Sab). Sab binds to and serves as a substrate for JNK in vitro, and has been found to interact with the Src homology 3 (SH3) domain of Bruton's tyrosine kinase (Btk). Inspection of the sequence of Sab reveals the presence of two putative mitogen-activated protein kinase interaction motifs (KIMs) similar to that found in the JNK docking domain of the c-Jun transcription factor, and four potential serine-proline JNK phosphorylation sites in the C-terminal half of the molecule. 230 -283046 pfam05277 DUF726 Protein of unknown function (DUF726). This family consists of several uncharacterized eukaryotic proteins. 341 -253129 pfam05278 PEARLI-4 Arabidopsis phospholipase-like protein (PEARLI 4). This family contains several phospholipase-like proteins from Arabidopsis thaliana which are homologous to PEARLI 4. 234 -191249 pfam05279 Asp-B-Hydro_N Aspartyl beta-hydroxylase N-terminal region. This family includes the N-terminal regions of the junctin, junctate and aspartyl beta-hydroxylase proteins. Junctate is an integral ER/SR membrane calcium binding protein, which comes from an alternatively spliced form of the same gene that generates aspartyl beta-hydroxylase and junctin. Aspartyl beta-hydroxylase catalyzes the post-translational hydroxylation of aspartic acid or asparagine residues contained within epidermal growth factor (EGF) domains of proteins. 240 -336087 pfam05280 FlhC Flagellar transcriptional activator (FlhC). This family consists of several bacterial flagellar transcriptional activator (FlhC) proteins. FlhC combines with FlhD to form a regulatory complex in E. coli, this complex has been shown to be a global regulator involved in many cellular processes as well as a flagellar transcriptional activator. 171 -310120 pfam05281 Secretogranin_V Neuroendocrine protein 7B2 precursor (Secretogranin V). The neuroendocrine protein 7B2 has a critical role in the proteolytic conversion and activation of proPC2, the enzyme responsible for the proteolytic conversion of many peptide hormone precursors. The 7B2 protein acts as an intracellular binding protein for proPC2, facilitates its maturation, and is required for its enzymatic activity. Processing of many important peptide precursors does not occur in 7B2 nulls. 7B2 null mice exhibit a unique form of Cushing's disease with many atypical symptoms, such as hypoglycemia. 227 -310121 pfam05282 AAR2 AAR2 protein. This family consists of several eukaryotic AAR2-like proteins. The yeast protein AAR2 is involved in splicing pre-mRNA of the a1 cistron and other genes that are important for cell growth. 353 -310122 pfam05283 MGC-24 Multi-glycosylated core protein 24 (MGC-24), sialomucin. This family consists of several MGC-24 (or Cd164 antigen) proteins from eukaryotic organisms. MGC-24/CD164 is a sialomucin expressed in many normal and cancerous tissues. In humans, soluble and transmembrane forms of MGC-24 are produced by alternative splicing. 140 -336088 pfam05284 DUF736 Protein of unknown function (DUF736). This family consists of several uncharacterized bacterial proteins of unknown function. 100 -336089 pfam05285 SDA1 SDA1. This family consists of several SDA1 protein homologs. SDA1 is a Saccharomyces cerevisiae protein which is involved in the control of the actin cytoskeleton. The protein is essential for cell viability and is localized in the nucleus. 328 -283053 pfam05287 PMG PMG protein. This family consists of several mouse anagen-specific protein mKAP13 (PMG1 and PMG2). PMG1 and 2 contain characteristic repeats reminiscent of the keratin-associated proteins (KAPs). Both genes are expressed in growing hair follicles in skin as well as in sebaceous and eccrine sweat glands. Interestingly, expression is also detected in the mammary epithelium where it is limited to the onset of the pubertal growth phase and is independent of ovarian hormones. Their broad, developmentally controlled expression pattern, together with their unique amino acid composition, demonstrate that pmg-1 and pmg-2 constitute a novel KAP gene family participating in the differentiation of all epithelial cells forming the epidermal appendages. 180 -283054 pfam05288 Pox_A3L Poxvirus A3L Protein. This family consists of several poxvirus A3L or A2_5L proteins. 70 -283055 pfam05289 BLYB Borrelia hemolysin accessory protein. This family consists of several borrelia hemolysin accessory proteins (BLYB). BLYB was thought to be an accessory protein, which was proposed to comprise a hemolysis system but it is now thought that BlyA and BlyB function instead as a prophage-encoded holin or holin-like system. 105 -310125 pfam05290 Baculo_IE-1 Baculovirus immediate-early protein (IE-0). The Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) ie-1 gene product (IE-1) is thought to play a central role in stimulating early viral transcription. IE-1 has been demonstrated to activate several early viral gene promoters and to negatively regulate the promoters of two other AcMNPV regulatory genes, ie-0 and ie-2. It is thought that that IE-1 negatively regulates the expression of certain genes by binding directly, or as part of a complex, to promoter regions containing a specific IE-1-binding motif (5'-ACBYGTAA-3') near their mRNA start sites. 141 -336090 pfam05291 Bystin Bystin. Trophinin and tastin form a cell adhesion molecule complex that potentially mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of implantation. Trophinin and tastin bind to an intermediary cytoplasmic protein called bystin. Bystin may be involved in implantation and trophoblast invasion because bystin is found with trophinin and tastin in the cells at human implantation sites and also in the intermediate trophoblasts at invasion front in the placenta from early pregnancy. This family also includes the yeast protein ENP1. ENP1 is an essential protein in Saccharomyces cerevisiae and is localized in the nucleus. It is thought that ENP1 plays a direct role in the early steps of rRNA processing as enp1 defective yeast cannot synthesize 20S pre-rRNA and hence 18S rRNA, which leads to reduced formation of 40S ribosomal subunits. 289 -336091 pfam05292 MCD Malonyl-CoA decarboxylase C-terminal domain. This family consists of several eukaryotic malonyl-CoA decarboxylase (MLYCD) proteins. Malonyl-CoA, in addition to being an intermediate in the de novo synthesis of fatty acids, is an inhibitor of carnitine palmitoyltransferase I, the enzyme that regulates the transfer of long-chain fatty acyl-CoA into mitochondria, where they are oxidized. After exercise, malonyl-CoA decarboxylase participates with acetyl-CoA carboxylase in regulating the concentration of malonyl-CoA in liver and adipose tissue, as well as in muscle. Malonyl-CoA decarboxylase is regulated by AMP-activated protein kinase (AMPK). 244 -114041 pfam05293 ASFV_L11L African swine fever virus (ASFV) L11L protein. L11L is an integral membrane protein of the African swine fever virus (ASFV) which is expressed late in the virus replication cycle. The protein is thought to be non-essential for growth in vitro and for virus virulence in domestic swine. 78 -253137 pfam05294 Toxin_5 Scorpion short toxin. This family contains various secreted scorpion short toxins and seems to be unrelated to pfam00451. 32 -253138 pfam05295 Luciferase_N Luciferase/LBP N-terminal domain. This family consists of a presumed N-terminal domain that is conserved between dinoflagellate luciferase and luciferin binding proteins. Luciferase is involved in catalyzing the light emitting reaction in bioluminescence and luciferin binding protein (LBP) is known to bind to luciferin (the substrate for luciferase) to stop it reacting with the enzyme and therefore switching off the bioluminescence function. The expression of these two proteins is controlled by a circadian clock at the translational level, with synthesis and degradation occurring on a daily basis. However This domain is not the catalytic part of the protein. It has been suggested that this region may mediate an interaction between LBP and Luciferase or their association with the vacuolar membrane. 82 -283059 pfam05296 TAS2R Taste receptor protein (TAS2R). This family consists of several forms of eukaryotic taste receptor proteins (TAS2Rs). TAS2Rs are G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia in humans and mice, and are organized in the genome in clusters. The proteins are genetically linked to loci that influence bitter perception in mice and humans. 303 -283060 pfam05297 Herpes_LMP1 Herpesvirus latent membrane protein 1 (LMP1). This family consists of several latent membrane protein 1 or LMP1s mostly from Epstein-Barr virus. LMP1 of EBV is a 62-65 kDa plasma membrane protein possessing six membrane spanning regions, a short cytoplasmic N-terminus and a long cytoplasmic carboxy tail of 200 amino acids. EBV latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation and has been associated with several cases of malignancies. EBV-like viruses in Cynomolgus monkeys (Macaca fascicularis) have been associated with high lymphoma rates in immunosuppressed monkeys 386 -114046 pfam05298 Bombinin Bombinin. This family consists of Bombinin and Maximin proteins from Bombina maxima (Chinese red belly toad). Two groups of antimicrobial peptides have been isolated from skin secretions of Bombina maxima. Peptides in the first group, named maximins 1, 2, 3, 4 and 5, are structurally related to bombinin-like peptides (BLPs). Unlike BLPs, sequence variations in maximins occurred all through the molecules. In addition to the potent antimicrobial activity, cytotoxicity against tumor cells and spermicidal action of maximins, maximin 3 possessed a significant anti-HIV activity. Maximins 1 and 3 have been found to be toxic to mice. Peptides in the second group, termed maximins H1, H2, H3 and H4, are homologous with bombinin H peptides. 141 -336092 pfam05299 Peptidase_M61 M61 glycyl aminopeptidase. Glycyl aminopeptidase is an unusual peptidase in that it has a preference for substrates with an N-terminal glycine or alanine. These proteins are found in Bacteria and in Archaea. 115 -310129 pfam05300 DUF737 Protein of unknown function (DUF737). This family consists of several uncharacterized mammalian proteins of unknown function. 169 -336093 pfam05301 Acetyltransf_16 GNAT acetyltransferase, Mec-17. Mec-17 is the protein product of one of the 18 genes required for the development and function of the touch receptor neuron for gentle touch. Mec-17 is specifically required for maintaining the differentiation of the touch receptor. The family shares all the residue-motifs characteristic of Gcn5-related acetyl-transferases, though the exact unction is still unknown. 174 -310131 pfam05302 DUF720 Protein of unknown function (DUF720). This family consists of several uncharacterized Chlamydia proteins of unknown function. 128 -310132 pfam05303 DUF727 Protein of unknown function (DUF727). This family consists of several uncharacterized eukaryotic proteins of unknown function. 105 -283066 pfam05304 DUF728 Protein of unknown function (DUF728). This family consists of several uncharacterized tobravirus proteins of unknown function. 139 -310133 pfam05305 DUF732 Protein of unknown function (DUF732). This family consists of several uncharacterized Mycobacterium tuberculosis and leprae proteins of unknown function. 92 -310134 pfam05306 DUF733 Protein of unknown function (DUF733). This family consists of several uncharacterized Drosophila melanogaster proteins of unknown function. 85 -310135 pfam05307 Bundlin Bundlin. This family consists of several bundlin proteins from E. coli. Bundlin is a type IV pilin protein that is the only known structural component of enteropathogenic Escherichia coli bundle-forming pili (BFP). BFP play a role in virulence, antigenicity, autoaggregation, and localized adherence to epithelial cells. These proteins contain an N-terminal methylation motif. 60 -310136 pfam05308 Mito_fiss_reg Mitochondrial fission regulator. In eukaryotes, this family of proteins induces mitochondrial fission. 242 -310137 pfam05309 TraE TraE protein. This family consists of several bacterial sex pilus assembly and synthesis proteins (TraE). Conjugal transfer of plasmids from donor to recipient cells is a complex process in which a cell-to-cell contact plays a key role. Many genes encoded by self-transmissible plasmids are required for various processes of conjugation, including pilus formation, stabilisation of mating pairs, conjugative DNA metabolism, surface exclusion and regulation of transfer gene expression. The exact function of the TraE protein is unknown. 182 -191255 pfam05310 Tenui_NS3 Tenuivirus movement protein. This family of ssRNA negative-strand crop plant tenuivirus proteins appears to combine PV2, NS2, NS3, and PV3 proteins. Plant viruses encode specific proteins known as movement proteins (MPs) to control their spread through plasmodesmata (PD) in walls between cells as well as from leaf to leaf via vascular-dependent transport. During this movement process, the virally encoded MPs interact with viral genomes for transport from the viral replication sites to the PDs in the walls of infected cells along the cytoskeleton and/or endoplasmic reticulum (ER) network. The virus is then thought to move through the PDs in the form of MP-associated ribonucleoprotein complexes or as virions. The NS3 protein appears to function as an RNA silencing suppressor. 186 -253146 pfam05311 Baculo_PP31 Baculovirus 33KDa late protein (PP31). Autographa californica nuclear polyhedrosis virus (AcMNPV) pp31 is a nuclear phosphoprotein that accumulates in the virogenic stroma, which is the viral replication centre in the infected-cell nucleus, binds to DNA, and serves as a late expression factor. 267 -283071 pfam05313 Pox_P21 Poxvirus P21 membrane protein. The P21 membrane protein of vaccinia virus, encoded by the A17L (or A18L) gene, has been reported to localize on the inner of the two membranes of the intracellular mature virus (IMV). It has also been shown that P21 acts as a membrane anchor for the externally located fusion protein P14 (A27L gene). 189 -283072 pfam05314 Baculo_ODV-E27 Baculovirus occlusion-derived virus envelope protein EC27. This family consists of several baculovirus occlusion-derived virus envelope proteins (EC27 or E27). The ODV-E27 protein has distinct functional characteristics compared to cellular and viral cyclins. Depending on the cdk protein, and perhaps other viral or cellular proteins yet to be described, the kinase-EC27 complex may have either cyclin B- or D-like activity. 295 -283073 pfam05315 ICEA ICEA Protein. This family consists of several ICEA proteins from Helicobacter pylori. Helicobacter pylori infection causes gastritis and peptic ulcer disease, and is classified as a definite carcinogen of gastric cancer. ICEA1 is speculated to be associated with peptic ulcer disease. 218 -283074 pfam05316 VAR1 Mitochondrial ribosomal protein (VAR1). This family consists of the yeast mitochondrial ribosomal proteins VAR1. Mitochondria possess their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. In yeast the two ribosomal RNAs and a single ribosomal protein, VAR1, are products of mitochondrial genes, and the remaining approximately 80 ribosomal proteins are encoded in the nucleus. VAR1 along with 15S rRNA are necessary for the formation of mature 37S subunits. 337 -310138 pfam05317 Thermopsin Thermopsin. This family consists of several thermopsin proteins from archaebacteria. Thermopsin is a thermostable acid protease which is capable of hydrolysing the following bonds: Leu-Val, Leu-Tyr, Phe-Phe, Phe-Tyr, and Tyr-Thr. The specificity of thermopsin is therefore similar to that of pepsin, that is, it prefers large hydrophobic residues at both sides of the scissile bond. 253 -253150 pfam05318 Tombus_movement Tombusvirus movement protein. This family consists of several Tombusvirus movement proteins. These proteins allow the virus to move from cell-to-cell and allow host-specific systemic spread. 68 -283076 pfam05320 Pox_RNA_Pol_19 Poxvirus DNA-directed RNA polymerase 19 kDa subunit. This family contains several DNA-directed RNA polymerase 19 kDa polypeptides. The Poxvirus DNA-directed RNA polymerase (EC: 2.7.7.6) catalyzes DNA-template-directed extension of the 3'-end of an RNA strand by one nucleotide at a time. 164 -310139 pfam05321 HHA Haemolysin expression modulating protein. This family consists of haemolysin expression modulating protein (HHA) homologs. YmoA and Hha are highly similar bacterial proteins downregulating gene expression in Yersinia enterocolitica and Escherichia coli, respectively. 57 -283078 pfam05322 NinE NINE Protein. This family consists of NINE proteins from several bacteriophages and from E. coli. 58 -283079 pfam05323 Pox_A21 Poxvirus A21 Protein. This family consists of several poxvirus A21 proteins. 111 -310140 pfam05324 Sperm_Ag_HE2 Sperm antigen HE2. This family consists of several variants of the human and chimpanzee sperm antigen proteins (HE2 and EP2 respectively). The EP2 gene codes for a family of androgen-dependent, epididymis-specific secretory proteins.The EP2 gene uses alternative promoters and differential splicing to produce a family of variant messages. The translated putative protein variants differ significantly from each other. Some of these putative proteins have similarity to beta-defensins, a family of antimicrobial peptides. 67 -114071 pfam05325 DUF730 Protein of unknown function (DUF730). This family consists of several uncharacterized Arabidopsis thaliana proteins of unknown function. 122 -310141 pfam05326 SVA Seminal vesicle autoantigen (SVA). This family consists of seminal vesicle autoantigen and prolactin-inducible (PIP) proteins. Seminal vesicle autoantigen (SVA) is specifically present in the seminal plasma of mice. This 19-kDa secretory glycoprotein suppresses the motility of spermatozoa by interacting with phospholipid. PIP, has several known functions. In saliva, this protein plays a role in host defense by binding to microorganisms such as Streptococcus. PIP is an aspartyl proteinase and it acts as a factor capable of suppressing T-cell apoptosis through its interaction with CD4. 124 -336094 pfam05327 RRN3 RNA polymerase I specific transcription initiation factor RRN3. This family consists of several eukaryotic proteins which are homologous to the yeast RRN3 protein. RRN3 is one of the RRN genes specifically required for the transcription of rDNA by RNA polymerase I (Pol I) in Saccharomyces cerevisiae. 499 -310143 pfam05328 CybS CybS, succinate dehydrogenase cytochrome B small subunit. This family consists of several eukaryotic succinate dehydrogenase [ubiquinone] cytochrome B small subunit, mitochondrial precursor (CybS) proteins. SDHD encodes the small subunit (cybS) of cytochrome b in succinate-ubiquinone oxidoreductase (mitochondrial complex II). Mitochondrial complex II is involved in the Krebs cycle and in the aerobic electron transport chain. It contains four proteins. The catalytic core consists of a flavoprotein and an iron-sulfur protein; these proteins are anchored to the mitochondrial inner membrane by the large subunit of cytochrome b (cybL) and cybS, which together comprise the heme-protein cytochrome b. Mutations in the SDHD gene can lead to hereditary paraganglioma, characterized by the development of benign, vascularised tumors in the head and neck. 133 -283084 pfam05331 DUF742 Protein of unknown function (DUF742). This family consists of several uncharacterized Streptomyces proteins as well as one from Mycobacterium tuberculosis. The function of these proteins is unknown. 114 -283085 pfam05332 DUF743 Protein of unknown function (DUF743). This family consists of several uncharacterized Calicivirus proteins of unknown function. 113 -310144 pfam05334 DUF719 Protein of unknown function (DUF719). This family consists of several eukaryotic proteins of unknown function. 182 -336095 pfam05335 DUF745 Protein of unknown function (DUF745). This family consists of several uncharacterized Drosophila melanogaster proteins of unknown function. 180 -336096 pfam05336 rhaM L-rhamnose mutarotase. This family contains L-rhamnose mutarotase which is a glycosyl hydrolase that converts the monosaccharide L-rhamnopyranose from the alpha to the beta stereoisomer. In Escherichia coli this enzyme is the product of the rhaM gene (also known as yiiL). The tertiary structure has been solved, in complex with L-rhamnose, and the catalytic mechanism determined. His22 is the proton donor. The enzyme naturally exists as a dimer. 100 -310147 pfam05337 CSF-1 Macrophage colony stimulating factor-1 (CSF-1). Colony stimulating factor 1 (CSF-1) is a homodimeric polypeptide growth factor whose primary function is to regulate the survival, proliferation, differentiation, and function of cells of the mononuclear phagocytic lineage. This lineage includes mononuclear phagocytic precursors, blood monocytes, tissue macrophages, osteoclasts, and microglia of the brain, all of which possess cell surface receptors for CSF-1. The protein has also been linked with male fertility and mutations in the Csf-1 gene have been found to cause osteopetrosis and failure of tooth eruption. Structurally these are short-chain 4-helical cytokines. 140 -283089 pfam05338 DUF717 Protein of unknown function (DUF717). This family consists of several herpesvirus proteins of unknown function. 55 -283090 pfam05339 DUF739 Protein of unknown function (DUF739). This family contains several bacteriophage proteins. Some of the proteins in this family have been labeled putative cro repressor proteins. 69 -336097 pfam05340 DUF740 Protein of unknown function (DUF740). This family consists of several uncharacterized plant proteins of unknown function. 615 -283092 pfam05341 PIF6 Per os infectivity factor 6. Family members include Autographa californica nuclear polyhedrosis virus (AcMNPV) Orf68 (also known as per os infectivity factor 6, PIF6 or ac68). PIF6 is present in both the budded virus (BV) and the occluded-derived virus (ODV). The ac68 gene overlaps the lef3 gene which encodes the single-stranded DNA binding protein, and knockout experiments of ac68 have to ensure that a functional lef3 gene is present. In ac68KO experiments, viral DNA replication and BV levels were unaffected as were mortality rates if caterpillars were injected with BV directly into the hemolymph bypassing the gut. However, in oral bioassays the ac68KO occlusion bodies failed to kill larvae, indicating that PIF6 is a per os infectivity factor. 105 -283093 pfam05342 Peptidase_M26_N M26 IgA1-specific Metallo-endopeptidase N-terminal region. These peptidases, which cleave mammalian IgA, are found in Gram-positive bacteria. Often found associated with pfam00746, they may be attached to the cell wall. 252 -336098 pfam05343 Peptidase_M42 M42 glutamyl aminopeptidase. These peptidases are found in Archaea and Bacteria. The example in Lactococcus lactis, PepA, aids growth on milk. Pyrococcus horikoshii contain a thermostable de-blocking aminopeptidase member of this family used commercially for N-terminal protein sequencing. 292 -283095 pfam05344 DUF746 Domain of Unknown Function (DUF746). This is a short conserved region found in some transposons. Structural modelling suggests this domain may bind nucleic acids. 64 -310150 pfam05345 He_PIG Putative Ig domain. This alignment represents the conserved core region of ~90 residue repeat found in several haemagglutinins and other cell surface proteins. Sequence similarities to (pfam02494) and (pfam00801) suggest an Ig-like fold (personal obs:C. Yeats). So this family may be similar in function to the (pfam02639) and (pfam02638) domains. This domain is also found in the WisP family of proteins of Tropheryma whipplei. 49 -310151 pfam05346 DUF747 Eukaryotic membrane protein family. This family is a family of eukaryotic membrane proteins. It was previously annotated as including a putative receptor for human cytomegalovirus gH but this has has since been disputed. Analysis of the mouse Tapt1 protein (transmembrane anterior posterior transformation 1) has shown it to be involved in patterning of the vertebrate axial skeleton. 312 -336099 pfam05347 Complex1_LYR Complex 1 protein (LYR family). Proteins in this family include an accessory subunit of the higher eukaryotic NADH dehydrogenase complex. In Saccharomyces cerevisiae, the Isd11 protein has been shown to play a role in Fe/S cluster biogenesis in mitochondria. We have named this family LYR after a highly conserved tripeptide motif close to the N-terminus of these proteins. 59 -310153 pfam05348 UMP1 Proteasome maturation factor UMP1. UMP1 is a short-lived chaperone present in the precursor form of the 20S proteasome and absent in the mature complex. UMP1 is required for the correct assembly and enzymatic activation of the proteasome. UMP1 seems to be degraded by the proteasome upon its formation 116 -310154 pfam05349 GATA-N GATA-type transcription activator, N-terminal. GATA transcription factors mediate cell differentiation in a diverse range of tissues. Mutation are often associated with certain congenital human disorders. The six classical vertebrate GATA proteins, GATA-1 to GATA-6, are highly homologous and have two tandem zinc fingers. The classical GATA transcription factors function transcription activators. In lower metazoans GATA proteins carry a single canonical zinc finger. This family represents the N-terminal domain of the family of GATA transcription activators. 178 -310155 pfam05350 GSK-3_bind Glycogen synthase kinase-3 binding. Glycogen synthase kinase-3 (GSK-3) sequentially phosphorylates four serine residues on glycogen synthase (GS), in the sequence SxxxSxxxSxxx-SxxxS(p), by recognising and phosphorylating the first serine in the sequence motif SxxxS(P) (where S(p) represents a phosphoserine). Interaction of GSK-3 with a peptide derived from GSK-3 binding protein (this family) prevents GSK-3 interaction with Axin. This interaction thereby inhibits the Axin-dependent phosphorylation of beta-catenin by GSK-3. 237 -310156 pfam05351 GMP_PDE_delta GMP-PDE, delta subunit. GMP-PDE delta subunit was originally identified as a fourth subunit of rod-specific cGMP phosphodiesterase (PDE)(EC:3.1.4.35). The precise function of PDE delta subunit in the rod specific GMP-PDE complex is unclear. In addition, PDE delta subunit is not confined to photoreceptor cells but is widely distributed in different tissues. PDE delta subunit is thought to be a specific soluble transport factor for certain prenylated proteins and Arl2-GTP a regulator of PDE-mediated transport. 156 -147504 pfam05352 Phage_connector Phage Connector (GP10). The head-tail connector of bacteriophage 29 is composed of 12 36 kDa subunits with 12 fold symmetry. It is the central component of a rotary motor that packages the genomic dsDNA into pre-formed proheads. This motor consists of the head-tail connector, surrounded by a 29-encoded, 174-base, RNA and a viral ATPase protein. 281 -310157 pfam05353 Atracotoxin Delta Atracotoxin. Delta atracotoxin produces potentially fatal neurotoxic symptoms in primates by slowing he inactivation of voltage-gated sodium channels. The structure of atracotoxin comprises a core beta region containing a triple-stranded a thumb-like extension protruding from the beta region and a C-terminal helix. The beta region contains a cystine knot motif, a feature seen in other neurotoxic polypeptides. 42 -283102 pfam05354 Phage_attach Phage Head-Tail Attachment. The phage head-tail attachment protein is required for the joining of phage heads and tails at the last step of morphogenesis. 117 -310158 pfam05355 Apo-CII Apolipoprotein C-II. Apolipoprotein C-II (ApoC-II) is the major activator of lipoprotein lipase, a key enzyme in the regulation of triglyceride levels in human serum. 76 -147508 pfam05356 Phage_Coat_B Phage Coat protein B. The major coat protein in the capsid of filamentous bacteriophage forms a helical assembly of about 7000 identical protomers, with each protomer comprised of 46 amino acid, after the cleavage of the signal peptide. Each protomer forms a slightly curved helix that combine to form a tubular structure that encapsulates the viral DNA. 83 -283104 pfam05357 Phage_Coat_A Phage Coat Protein A. Infection of Escherichia coli by filamentous bacteriophages is mediated by the minor phage coat protein A and involves two distinct cellular receptors, the F' pilus and the periplasmic protein TolA. These two receptors are contacted in a sequential manner, such that binding of TolA by the extreme N-terminal domain is conditional on a primary interaction of the second coat protein A domain with the F' pilus. 63 -283105 pfam05358 DicB DicB protein. DicB is part of the dic operon, which resides on cryptic prophage Kim. Under normal conditions, expression of dicB is actively repressed. When expression is induced, however, cell division rapidly ceases, and this division block is dependent on MinC with which it interacts. 62 -336100 pfam05359 DUF748 Domain of Unknown Function (DUF748). 152 -336101 pfam05360 YiaAB yiaA/B two helix domain. This domain consists of two transmembrane helices and a conserved linking section. 53 -283108 pfam05361 PP1_inhibitor PKC-activated protein phosphatase-1 inhibitor. Contractility of vascular smooth muscle depends on phosphorylation of myosin light chains, and is modulated by hormonal control of myosin phosphatase activity. Signaling pathways activate kinases such as PKC or Rho-dependent kinases that phosphorylate the myosin phosphatase inhibitor protein called CPI-17. Phosphorylation of CPI-17 at Thr-38 enhances its inhibitory potency 1000-fold, creating a molecular switch for regulating contraction. 137 -336102 pfam05362 Lon_C Lon protease (S16) C-terminal proteolytic domain. The Lon serine proteases must hydrolyze ATP to degrade protein substrates. In Escherichia coli, these proteases are involved in turnover of intracellular proteins, including abnormal proteins following heat-shock. The active site for protease activity resides in a C-terminal domain. The Lon proteases are classified as family S16 in Merops. 205 -283110 pfam05363 Herpes_US12 Herpesvirus US12 family. US12 a key factor in the evasion of cellular immune response against HSV-infected cells. Specific inhibition of the transporter associated with antigen processing (TAP) by US12 prevents peptide transport into the endoplasmic reticulum and subsequent loading of major histocompatibility complex (MHC) class I molecules. US12 is comprised of three helices and is associated with cellular membranes. 86 -283111 pfam05364 SecIII_SopE_N Salmonella type III secretion SopE effector N-terminus. Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. SopE, one of these toxins, can activate Cdc42 in a Dbl-like fashion via its C-terminal GEP domain pfam07487. This family represents the N-terminal region of SopE. The function of this domain is unknown. 74 -336103 pfam05365 UCR_UQCRX_QCR9 Ubiquinol-cytochrome C reductase, UQCRX/QCR9 like. The UQCRX/QCR9 protein is the 9/10 subunit of complex III, encoding a protein of about 7-kDa. Deletion of QCR9 results in the inability of cells to grow on grow on-fermentable carbon source n yeast. 52 -310163 pfam05366 Sarcolipin Sarcolipin. Sarcolipin is a 31 amino acid integral membrane protein that regulates Ca-ATPase activity in skeletal muscle. 31 -310164 pfam05367 Phage_endo_I Phage endonuclease I. The bacteriophage endonuclease I is a nuclease that is selective for the structure of the four-way Holliday DNA junction. 149 -310165 pfam05368 NmrA NmrA-like family. NmrA is a negative transcriptional regulator involved in the post-translational modification of the transcription factor AreA. NmrA is part of a system controlling nitrogen metabolite repression in fungi. This family only contains a few sequences as iteration results in significant matches to other Rossmann fold families. 236 -310166 pfam05369 MtmB Monomethylamine methyltransferase MtmB. Monomethylamine methyltransferase of the archaebacterium Methanosarcina barkeri contains a novel amino acid, pyrrolysine, encoded by the termination codon UAG. The structure reveals a homohexamer comprised of individual subunits with a TIM barrel fold. 450 -310167 pfam05370 DUF749 Domain of unknown function (DUF749). Archaeal domain of unknown function. This domain has been solved as part of a structural genomics project and comprises of segregated helical and anti-parallel beta sheet regions. 87 -253168 pfam05371 Phage_Coat_Gp8 Phage major coat protein, Gp8. Class I phage major coat protein Gp8 or B. The coat protein is largely alpha-helix with a slight curve. 50 -283118 pfam05372 Delta_lysin Delta lysin family. Delta-lysin is a 26 amino acid, hemolytic peptide toxin secreted by Staphylococcus aureus. It is thought that delta-toxin forms an amphipathic helix upon binding to lipid bilayers. The precise mode of action of delta-lysis is unclear. 25 -283119 pfam05373 Pro_3_hydrox_C L-proline 3-hydroxylase, C-terminal. Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyze oxidative reactions in a range of metabolic processes. Proline 3-hydroxylase hydroxylates proline at position 3, the first of a 2-OG oxygenase catalyzing oxidation of a free alpha-amino acid. The structure contains conserved motifs present in other 2-OG oxygenases including a jelly roll strand core and residues binding iron and 2-oxoglutarate, consistent with divergent evolution within the extended family. The structure differs significantly from many other 2-OG oxygenases in possessing a discrete C-terminal helical domain. 99 -310168 pfam05374 Mu-conotoxin Mu-Conotoxin. Mu-conotoxins are peptide inhibitors of voltage-sensitive sodium channels. 22 -253170 pfam05375 Pacifastin_I Pacifastin inhibitor (LCMII). Structures of members of this family show that they are comprised of a triple-stranded antiparallel beta-sheet connected by three disulfide bridges, which defines this as a novel family of serine protease inhibitors. 40 -310169 pfam05377 FlaC_arch Flagella accessory protein C (FlaC). Although archaeal flagella appear superficially similar to those of bacteria, they are quite distinct. In several archaea, the flagellin genes are followed immediately by the flagellar accessory genes flaCDEFGHIJ. The gene products may have a role in translocation, secretion, or assembly of the flagellum. FlaC is a protein whose exact role is unknown but it has been shown to be membrane-associated (by immuno-blotting fractionated cells). 55 -310170 pfam05378 Hydant_A_N Hydantoinase/oxoprolinase N-terminal region. This family is found at the N-terminus of the pfam01968 family. 176 -283122 pfam05379 Peptidase_C23 Carlavirus endopeptidase. A peptidase involved in auto-proteolysis of a polyprotein from the plant pathogen blueberry scorch carlavirus (BBScV). Corresponds to Merops family C23. 88 -336104 pfam05380 Peptidase_A17 Pao retrotransposon peptidase. Corresponds to Merops family A17. These proteins are homologous to aspartic proteinases encoded by retroposons and retroviruses. 162 -283124 pfam05381 Peptidase_C21 Tymovirus endopeptidase. Corresponds to Merops family C21. The best-studied plant alpha-like virus proteolytic enzyme is the proteinase of turnip yellow mosaic virus (TYMV). The TYMV replicase protein undergoes auto-cleavage to yield two products. The auto-peptidase activity has been mapped to the central part of this polyprotein. 105 -283125 pfam05382 Amidase_5 Bacteriophage peptidoglycan hydrolase. At least one of the members of this family, the Pal protein from the pneumococcal bacteriophage Dp-1 has been shown to be a N-acetylmuramoyl-L-alanine amidase. According to the known modular structure of this and other peptidoglycan hydrolases from the pneumococcal system, the active site should reside at the N-terminal domain whereas the C-terminal domain binds to the choline residues of the cell wall teichoic acids. This family appears to be related to pfam00877. 142 -336105 pfam05383 La La domain. This presumed domain is found at the N-terminus of La RNA-binding proteins as well as other proteins. The function of this region is uncertain. 57 -310173 pfam05384 DegS Sensor protein DegS. This is small family of Bacillus DegS proteins. The DegS-DegU two-component regulatory system of Bacillus subtilis controls various processes that characterize the transition from the exponential to the stationary growth phase, including the induction of extracellular degradative enzymes, expression of late competence genes and down-regulation of the sigma D regulon. The family also contains one sequence from Thermoanaerobacter tengcongensis which is described as a sensory transduction histidine kinase. 159 -283128 pfam05385 Adeno_E4 Mastadenovirus early E4 13 kDa protein. This family consists of human and simian mastadenovirus early E4 13 kDa proteins. Human adenovirus type 9 (Ad9) is unique in eliciting exclusively estrogen-dependent mammary tumors in rats and in not requiring viral E1 region transforming genes for tumorigenicity. E4 codes for an oncoprotein essential for tumorigenesis by Ad9. 108 -310174 pfam05386 TEP1_N TEP1 N-terminal domain. This short sequence region is found in four copies at the N-terminus of the TEP1 telomerase component. The functional significance of the region is uncertain. However the conservation of two histidines and a cysteine suggests it is a potential zinc binding domain. 29 -310175 pfam05387 Chorion_3 Chorion family 3. This family consists of several Drosophila chorion proteins S36 and S38. The chorion genes of Drosophila are amplified in response to developmental signals in the follicle cells of the ovary. 277 -310176 pfam05388 Carbpep_Y_N Carboxypeptidase Y pro-peptide. This family is found at the N-terminus of several carboxypeptidase Y proteins and contains a signal peptide and pro-peptide regions. 126 -336106 pfam05389 MecA Negative regulator of genetic competence (MecA). This family contains several bacterial MecA proteins. The development of competence in Bacillus subtilis is regulated by growth conditions and several regulatory genes. In complex media competence development is poor, and there is little or no expression of late competence genes. Mec mutations permit competence development and late competence gene expression in complex media, bypassing the requirements for many of the competence regulatory genes. The mecA gene product acts negatively in the development of competence. Null mutations in mecA allow expression of a late competence gene comG, under conditions where it is not normally expressed, including in complex media and in cells mutant for several competence regulatory genes. Overexpression of MecA inhibits comG transcription. 166 -310178 pfam05390 KRE9 Yeast cell wall synthesis protein KRE9/KNH1. This family contains several KRE9 and KNH1 proteins which are involved in encoding cell surface O glycoproteins, which are required for beta -1,6-glucan synthesis in yeast. 101 -310179 pfam05391 Lsm_interact Lsm interaction motif. This short motif is found at the C-terminus of Prp24 proteins and probably interacts with the Lsm proteins to promote U4/U6 formation. 19 -310180 pfam05392 COX7B Cytochrome C oxidase chain VIIB. 78 -283135 pfam05393 Hum_adeno_E3A Human adenovirus early E3A glycoprotein. This family consists of several early glycoproteins from human adenoviruses. 102 -310181 pfam05394 AvrB_AvrC Avirulence protein. This family consists of several avirulence proteins from Pseudomonas syringae and Xanthomonas campestris. 326 -310182 pfam05395 DARPP-32 Protein phosphatase inhibitor 1/DARPP-32. This family consists of several mammalian protein phosphatase inhibitor 1 (IPP-1) and dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) proteins. Protein phosphatase inhibitor-1 is involved in signal transduction and is an endogenous inhibitor of protein phosphatase-1. It has been demonstrated that DARPP-32, if phosphorylated, can inhibit protein-phosphatase-1. DARPP-32 has a key role in many neurotransmitter pathways throughout the brain and has been shown to be involved in controlling receptors, ion channels and other physiological factors including the brain's response to drugs of abuse, such as cocaine, opiates and nicotine. DARPP-32 is reciprocally regulated by the two neurotransmitters that are most often implicated in schizophrenia - dopamine and glutamate. Dopamine activates DARPP-32 through the D1 receptor pathway and disables DARPP-32 through the D2 receptor. Glutamate, acting through the N-methyl-d-aspartate receptor, renders DARPP-32 inactive. A mutant form of DARPP-32 has been linked with gastric cancers. 136 -147533 pfam05396 Phage_T7_Capsid Phage T7 capsid assembly protein. 123 -336107 pfam05397 Med15_fungi Mediator complex subunit 15. GAL11 or MED15 is one of the up to 32 or subunits of the Mediator complex which is found from fungi to humans. The Mediator complex interacts with RNA polymerase II and other general transcription factors to form the RNA polymerase II holoenzyme, thereby affecting transcription through targetting of activators and repressors. This family is found in fungi and the small metazoan starlet anemone. 112 -310184 pfam05398 PufQ PufQ cytochrome subunit. This family consists of bacterial PufQ proteins. PufQ id required for bacteriochlorophyll biosynthesis serving a regulatory function in the formation of photosynthetic complexes. 74 -310185 pfam05399 EVI2A Ectropic viral integration site 2A protein (EVI2A). This family contains several mammalian ectropic viral integration site 2A (EVI2A) proteins. The function of this protein is unknown although it is thought to be a membrane protein and may function as an oncogene in retrovirus induced myeloid tumors. 232 -336108 pfam05400 FliT Flagellar protein FliT. This family contains several bacterial flagellar FliT proteins. The flagellar proteins FlgN and FliT have been proposed to act as substrate specific export chaperones, facilitating incorporation of the enterobacterial hook-associated axial proteins (HAPs) FlgK/FlgL and FliD into the growing flagellum. In Salmonella typhimurium flgN and fliT mutants, the export of target HAPs is reduced, concomitant with loss of unincorporated flagellin into the surrounding medium. 85 -283141 pfam05401 NodS Nodulation protein S (NodS). This family consists of nodulation S (NodS) proteins. The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. NodS is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase involved in N methylation of LCOs. NodS uses N-deacetylated chitooligosaccharides, the products of the NodBC proteins, as its methyl acceptors. 201 -336109 pfam05402 PqqD Coenzyme PQQ synthesis protein D (PqqD). This family contains several bacterial coenzyme PQQ synthesis protein D (PqqD) sequences. This protein is required for coenzyme pyrrolo-quinoline-quinone (PQQ) biosynthesis. 65 -253181 pfam05403 Plasmodium_HRP Plasmodium histidine-rich protein (HRPII/III). This family consists of several histidine-rich protein II and III sequence from Plasmodium falciparum. 218 -310188 pfam05404 TRAP-delta Translocon-associated protein, delta subunit precursor (TRAP-delta). This family consists of several eukaryotic translocon-associated protein, delta subunit precursors (TRAP-delta or SSR-delta). The exact function of this protein is unknown. 162 -336110 pfam05405 Mt_ATP-synt_B Mitochondrial ATP synthase B chain precursor (ATP-synt_B). The Fo sector of the ATP synthase is a membrane bound complex which mediates proton transport. It is composed of nine different polypeptide subunits (a, b, c, d, e, f, g F6, A6L). 163 -310189 pfam05406 WGR WGR domain. This domain is found in a variety of polyA polymerases as well as the E. coli molybdate metabolism regulator and other proteins of unknown function. I have called this domain WGR after the most conserved central motif of the domain. The domain is found in isolation in proteins such as Rhizobium radiobacter Ych and is between 70 and 80 residues in length. I propose that this may be a nucleic acid binding domain. 79 -283146 pfam05407 Peptidase_C27 Rubella virus endopeptidase. Corresponds to Merops family C27. Required for processing of the rubella virus replication protein. 166 -283147 pfam05408 Peptidase_C28 Foot-and-mouth virus L-proteinase. Corresponds to Merops family C28. Protein fold of the peptidase unit for members of this family resembles that of papain. The leader proteinase of foot and mouth disease virus (FMDV) cleaves itself from the growing polyprotein and also cleaves the host translation initiation factor 4GI (eIF4G), thus inhibiting 5'-cap dependent translation. 201 -283148 pfam05409 Peptidase_C30 Coronavirus endopeptidase C30. Corresponds to Merops family C30. These peptidases are involved in viral polyprotein processing in replication. 274 -147544 pfam05410 Peptidase_C31 Porcine arterivirus-type cysteine proteinase alpha. Corresponds to Merops family C31. These peptidases are involved in viral polyprotein processing in replication. 105 -191270 pfam05411 Peptidase_C32 Equine arteritis virus putative proteinase. These proteins are characterized by a region that has been proposed to have peptidase activity involved in viral polyprotein processing in replication. 127 -114153 pfam05412 Peptidase_C33 Equine arterivirus Nsp2-type cysteine proteinase. Corresponds to Merops family C33. These peptidases are involved in viral polyprotein processing in replication. 108 -147545 pfam05413 Peptidase_C34 Putative closterovirus papain-like endopeptidase. Corresponds to Merops family C34. Putative closterovirus papain-like endopeptidase from the apple chlorotic leaf spot closterovirus. 92 -283149 pfam05414 DUF1717 Viral domain of unknown function (DUF1717). This domain is found in viral proteins of unknown function. 78 -283150 pfam05415 Peptidase_C36 Beet necrotic yellow vein furovirus-type papain-like endopeptidase. Corresponds to Merops family C36. This protease involved in processing the viral polyprotein. 104 -253185 pfam05416 Peptidase_C37 Southampton virus-type processing peptidase. Corresponds to Merops family C37. Norwalk-like viruses (NLVs), including the Southampton virus, cause acute non-bacterial gastroenteritis in humans. The NLV genome encodes three open reading frames (ORFs). ORF1 encodes a polyprotein, which is processed by the viral protease into six proteins. 535 -283151 pfam05417 Peptidase_C41 Hepatitis E cysteine protease. Corresponds to MEROPs family C41. This papain-like protease cleaves the viral polyprotein encoded by ORF1 of the hepatitis E virus (HEV). 161 -283152 pfam05418 Apo-VLDL-II Apovitellenin I (Apo-VLDL-II). This family consists of several avian apovitellenin I sequences. As part of the avian reproductive effort, large quantities of triglyceride-rich very-low-density lipoprotein (VLDL) particles are transported by receptor-mediated endocytosis into the female germ cells. Although the oocytes are surrounded by a layer of granulosa cells harbouring high levels of active lipoprotein lipase, non-lipolysed VLDL is transported into the yolk. This is because VLDL particles from laying chickens are protected from lipolysis by apolipoprotein (apo)-VLDL-II, a potent dimeric lipoprotein lipase inhibitor. Apo-VLDL-II is produced in the liver and secreted into the blood stream when induced by estrogen production in female birds. 79 -310190 pfam05419 GUN4 GUN4-like. In Arabidopsis, GUN4 is required for the functioning of the plastid mediated repression of nuclear transcription that is involved in controlling the levels of magnesium- protoporphyrin IX. GUN4 binds the product and substrate of Mg-chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. GUN4 is thought to participates in plastid-to-nucleus signaling by regulating magnesium-protoporphyrin IX synthesis or trafficking. 138 -336111 pfam05420 BCSC_C Cellulose synthase operon protein C C-terminus (BCSC_C). This family contains the C-terminal regions of several bacterial cellulose synthase operon C (BCSC) proteins. BCSC is involved in cellulose synthesis although the exact function of this protein is unknown. 338 -310192 pfam05421 DUF751 Protein of unknown function (DUF751). This family contains several plant, cyanobacterial and algal proteins of unknown function. The family is exclusively found in phototrophic organisms and may therefore play a role in photosynthesis (personal obs:Moxon SJ). 60 -310193 pfam05422 SIN1 Stress-activated map kinase interacting protein 1 (SIN1). SIN1 is the N-terminus of stress-activated map kinase interacting protein 1 (MAPKAP1 OR SIN1) sequences. This domain is likely to be the Ras-binding domain. The fission yeast Sty1/Spc1 mitogen-activated protein (MAP) kinase is a member of the eukaryotic stress-activated MAP kinase (SAPK) family. Sin1 interacts with Sty1/Spc1. Cells lacking Sin1 display many, but not all, of the phenotypes of cells lacking the Sty1/Spc1 MAP kinase including sterility, multiple stress sensitivity and a cell-cycle delay. Sin1 is phosphorylated after stress but this is not Sty1/Spc1-dependent. The separate CRIM and PH, pleckstrin-homology domains of the full-length SIN1 proteins have been separated into distinct families. 140 -283157 pfam05423 Mycobact_memb Mycobacterium membrane protein. This family contains several membrane proteins from Mycobacterium species. 138 -336112 pfam05424 Duffy_binding Duffy binding domain. This domain is found in Plasmodium Duffy binding proteins. Plasmodium vivax and Plasmodium knowlesi merozoites invade human erythrocytes that express Duffy blood group surface determinants. The Duffy receptor family is localized in micronemes, an organelle found in all organisms of the phylum Apicomplexa. This family is closely associated on PfEMP1 proteins with PFEMP, pfam03011. 187 -336113 pfam05425 CopD Copper resistance protein D. Copper sequestering activity displayed by some bacteria is determined by copper-binding protein products of the copper resistance operon (cop). CopD, together with CopC, perform copper uptake into the cytoplasm. 98 -310196 pfam05426 Alginate_lyase Alginate lyase. This family contains several bacterial alginate lyase proteins. Alginate is a family of 1-4-linked copolymers of beta -D-mannuronic acid (M) and alpha -L-guluronic acid (G). It is produced by brown algae and by some bacteria belonging to the genera Azotobacter and Pseudomonas. Alginate lyases catalyze the depolymerization of alginates by beta -elimination, generating a molecule containing 4-deoxy-L-erythro-hex-4-enepyranosyluronate at the nonreducing end. This family adopts an all alpha fold. 275 -310197 pfam05427 FIBP Acidic fibroblast growth factor binding (FIBP). Acidic fibroblast growth factor (aFGF) intracellular binding protein (FIBP) is a protein found mainly in the nucleus that is thought to be involved in the intracellular function of aFGF. 360 -310198 pfam05428 CRF-BP Corticotropin-releasing factor binding protein (CRF-BP). This family consists of several eukaryotic corticotropin-releasing factor binding proteins (CRF-BP or CRH-BP). Corticotropin-releasing hormone (CRH) plays multiple roles in vertebrate species. In mammals, it is the major hypothalamic releasing factor for pituitary adrenocorticotropin secretion, and is a neurotransmitter or neuromodulator at other sites in the central nervous system. In non-mammalian vertebrates, CRH not only acts as a neurotransmitter and hypophysiotropin, it also acts as a potent thyrotropin-releasing factor, allowing CRH to regulate both the adrenal and thyroid axes, especially in development. CRH-BP is thought to play an inhibitory role in which it binds CRH and other CRH-like ligands and prevents the activation of CRH receptors. There is however evidence that CRH-BP may also exhibit diverse extra and intracellular roles in a cell specific fashion and at specific times in development. 307 -283163 pfam05430 Methyltransf_30 S-adenosyl-L-methionine-dependent methyltransferase. This family is a S-adenosyl-L-methionine (SAM)-dependent methyltransferase. It is often found in association with pfam01266, where it is responsible for catalyzing the transfer of a methyl group from S-adenosyl-L-methionine to 5-aminomethyl-2-thiouridine to form 5-methylaminomethyl-2-thiouridine. 124 -310199 pfam05431 Toxin_10 Insecticidal Crystal Toxin, P42. Family of Bacillus insecticidal crystal toxins. Strains of Bacillus that have this insecticidal activity use a binary toxin comprised of two proteins, P51 and P42 (this family). Members of this family are highly conserved between strains of different serotypes and phage groups. 169 -310200 pfam05432 BSP_II Bone sialoprotein II (BSP-II). Bone sialoprotein (BSP) is a major structural protein of the bone matrix that is specifically expressed by fully-differentiated osteoblasts. The expression of bone sialoprotein (BSP) is normally restricted to mineralised connective tissues of bones and teeth where it has been associated with mineral crystal formation. However, it has been found that ectopic expression of BSP occurs in various lesions, including oral and extraoral carcinomas, in which it has been associated with the formation of microcrystalline deposits and the metastasis of cancer cells to bone. 300 -336114 pfam05433 Rick_17kDa_Anti Glycine zipper 2TM domain. This family includes a putative two transmembrane alpha-helical region that contains glycine zipper motifs. This family includes several Rickettsia genus specific 17 kDa surface antigen proteins. 42 -310202 pfam05434 Tmemb_9 TMEM9. This family contains several eukaryotic transmembrane proteins which are homologous to human transmembrane protein 9. The TMEM9 gene encodes a 183 amino-acid protein that contains an N-terminal signal peptide, a single transmembrane region, three potential N-glycosylation sites and three conserved cys-rich domains in the N-terminus, but no known functional domains. The protein is highly conserved between species from Caenorhabditis elegans to man and belongs to a novel family of transmembrane proteins. The exact function of TMEM9 is unknown although it has been found to be widely expressed and localized to the late endosomes and lysosomes. Members of this family contain pfam03128 repeats in their N-terminal region. 143 -310203 pfam05435 Phi-29_GP3 Phi-29 DNA terminal protein GP3. This family consists of DNA terminal protein GP3 sequences from Phi-29 like bacteriophages. DNA terminal protein GP3 is linked to the 5' ends of both strands of the genome through a phosphodiester bond between the beta-hydroxyl group of a serine residue and the 5'-phosphate of the terminal deoxyadenylate. This protein is essential for DNA replication and is involved in the priming of DNA elongation. 266 -310204 pfam05436 MF_alpha_N Mating factor alpha precursor N-terminus. This family contains the N-terminal regions of the Saccharomyces mating factor alpha precursor protein. All proteins in this family contain one or more copies pfam04648 further toward their C-terminus. 86 -310205 pfam05437 AzlD Branched-chain amino acid transport protein (AzlD). This family consists of a number of bacterial and archaeal branched-chain amino acid transport proteins. AzlD is known to be involved in conferring resistance to 4-azaleucine although its exact role is uncertain. 99 -310206 pfam05438 TRH Thyrotropin-releasing hormone (TRH). This family consists of several thyrotropin-releasing hormone (TRH) proteins. Thyrotropin-Releasing Hormone (TRH; pyroGlu-His-Pro-NH2), originally isolated as a hypothalamic neuropeptide hormone, most likely acts also as a neuromodulator and/or neurotransmitter in the central nervous system (CNS). This interpretation is supported by the identification of a peptidase localized on the surface of neuronal cells which has been termed TRH-degrading ectoenzyme (TRH-DE) since it selectively inactivates TRH. TRH has been used clinically for the treatment of spinocerebellar degeneration and disturbance of consciousness in humans. 219 -310207 pfam05439 JTB Jumping translocation breakpoint protein (JTB). This family contains several jumping translocation breakpoint proteins or JTBs. Jumping translocation (JT) is an unbalanced translocation that comprises amplified chromosomal segments jumping to various telomeres. JTB, located at 1q21, has been found to fuse with the telomeric repeats of acceptor telomeres in a case of JT. hJTB (human JTB) encodes a trans-membrane protein that is highly conserved among divergent eukaryotic species. JT results in a hJTB truncation, which potentially produces an hJTB product devoid of the trans-membrane domain. hJTB is located in a gene-rich region at 1q21, called EDC (Epidermal Differentiation Complex). JTB has also been implicated in prostatic carcinomas. 110 -310208 pfam05440 MtrB Tetrahydromethanopterin S-methyltransferase subunit B. The N5-methyltetrahydromethanopterin: coenzyme M (EC:2.1.1.86) of Methanosarcina mazei Go1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. 89 -336115 pfam05443 ROS_MUCR ROS/MUCR transcriptional regulator protein. This family consists of several ROS/MUCR transcriptional regulator proteins. The ros chromosomal gene is present in octopine and nopaline strains of Agrobacterium tumefaciens as well as in Rhizobium meliloti. This gene encodes a 15.5-kDa protein that specifically represses the virC and virD operons in the virulence region of the Ti plasmid and is necessary for succinoglycan production. Sinorhizobium meliloti can produce two types of acidic exopolysaccharides, succinoglycan and galactoglucan, that are interchangeable for infection of alfalfa nodules. MucR from Sinorhizobium meliloti acts as a transcriptional repressor that blocks the expression of the exp genes responsible for galactoglucan production therefore allowing the exclusive production of succinoglycan. 116 -310210 pfam05444 DUF753 Protein of unknown function (DUF753). This family contains sequences with are repeated in several uncharacterized proteins from Drosophila melanogaster. 149 -283176 pfam05445 Pox_ser-thr_kin Poxvirus serine/threonine protein kinase. 434 -336116 pfam05448 AXE1 Acetyl xylan esterase (AXE1). This family consists of several bacterial acetyl xylan esterase proteins. Acetyl xylan esterases are enzymes that hydrolyze the ester linkages of the acetyl groups in position 2 and/or 3 of the xylose moieties of natural acetylated xylan from hardwood. These enzymes are one of the accessory enzymes which are part of the xylanolytic system, together with xylanases, beta-xylosidases, alpha-arabinofuranosidases and methylglucuronidases; these are all required for the complete hydrolysis of xylan. 316 -336117 pfam05449 Phage_holin_3_7 Putative 3TM holin, Phage_holin_3. This is a family of putative proteobacterial phage three-transmembrane-domain holins. 80 -310213 pfam05450 Nicastrin Nicastrin. Nicastrin and presenilin are two major components of the gamma-secretase complex, which executes the intramembrane proteolysis of type I integral membrane proteins such as the amyloid precursor protein (APP) and Notch. Nicastrin is synthesized in fibroblasts and neurons as an endoglycosidase-H-sensitive glycosylated precursor protein (immature nicastrin) and is then modified by complex glycosylation in the Golgi apparatus and by sialylation in the trans-Golgi network (mature nicastrin). A region featured in this family has a fold similar to human transferrin receptor (TfR) and a bacterial aminopeptidase. It is implicated in the pathogenesis of Alzheimer's disease. 227 -283180 pfam05451 Phytoreo_Pns Phytoreovirus nonstructural protein Pns10/11. This family consists of Phytoreovirus nonstructural proteins Pns10 and Pns11. Genome segment S11 of rice gall dwarf virus (RGDV), a member of Phytoreovirus encodes a putative protein of 40 kDa that exhibits approximately 37% homology at the amino acid level to the nonstructural proteins Pns10 of rice dwarf and wound tumor viruses, which are other members of Phytoreovirus. 359 -147565 pfam05452 Clavanin Clavanin. This family consists of clavanin proteins from the haemocytes of the invertebrate Styela clava, a solitary tunicate. The family is made up of four alpha-helical antimicrobial peptides, clavanins A, B, C and D. The tunicate peptides resemble magainins in size, primary sequence and antibacterial activity. Synthetic clavanin A displays comparable antimicrobial activity to magainins and cecropins. The presence of alpha-helical antimicrobial peptides in the haemocytes of a urochordate suggests that such peptides are primeval effectors of innate immunity in the vertebrate lineage. 80 -147566 pfam05453 Toxin_6 BmTXKS1/BmP02 toxin family. This family consists of toxin-like peptides that are isolated from the venom of Buthus martensii Karsch scorpion. The precursor consists of 60 amino acid residues, with a putative signal peptide of 28 residues and an extra residue, and a mature peptide of 31 residues with an amidated C-terminal. The peptides share close homology with other scorpion K+ channel toxins and should present a common three-dimensional fold - the Cysteine -stabilized alphabeta (CSalphabeta) motif. This family acts by blocking small conductance calcium activated potassium ion channels in their victim. 28 -310214 pfam05454 DAG1 Dystroglycan (Dystrophin-associated glycoprotein 1). Dystroglycan is one of the dystrophin-associated glycoproteins, which is encoded by a 5.5 kb transcript in human. The protein product is cleaved into two non-covalently associated subunits, [alpha] (N-terminal) and [beta] (C-terminal). In skeletal muscle the dystroglycan complex works as a transmembrane linkage between the extracellular matrix and the cytoskeleton. [alpha]-dystroglycan is extracellular and binds to merosin ([alpha]-2 laminin) in the basement membrane, while [beta]-dystroglycan is a transmembrane protein and binds to dystrophin, which is a large rod-like cytoskeletal protein, absent in Duchenne muscular dystrophy patients. Dystrophin binds to intracellular actin cables. In this way, the dystroglycan complex, which links the extracellular matrix to the intracellular actin cables, is thought to provide structural integrity in muscle tissues. The dystroglycan complex is also known to serve as an agrin receptor in muscle, where it may regulate agrin-induced acetylcholine receptor clustering at the neuromuscular junction. There is also evidence which suggests the function of dystroglycan as a part of the signal transduction pathway because it is shown that Grb2, a mediator of the Ras-related signal pathway, can interact with the cytoplasmic domain of dystroglycan. In general, aberrant expression of dystrophin-associated protein complex underlies the pathogenesis of Duchenne muscular dystrophy, Becker muscular dystrophy and severe childhood autosomal recessive muscular dystrophy. Interestingly, no genetic disease has been described for either [alpha]- or [beta]-dystroglycan. Dystroglycan is widely distributed in non-muscle tissues as well as in muscle tissues. During epithelial morphogenesis of kidney, the dystroglycan complex is shown to act as a receptor for the basement membrane. Dystroglycan expression in mouse brain and neural retina has also been reported. However, the physiological role of dystroglycan in non-muscle tissues has remained unclear. 290 -310215 pfam05455 GvpH GvpH. This family consists of archaeal GvpH proteins which are thought to be involved in gas vesicle synthesis. 177 -310216 pfam05456 eIF_4EBP Eukaryotic translation initiation factor 4E binding protein (EIF4EBP). This family consists of several eukaryotic translation initiation factor 4E binding proteins (EIF4EBP1,2 and 3). Translation initiation in eukaryotes is mediated by the cap structure (m7GpppN, where N is any nucleotide) present at the 5' end of all cellular mRNAs, except organellar. The cap is recognized by eukaryotic initiation factor 4F (eIF4F), which consists of three polypeptides, including eIF4E, the cap-binding protein subunit. The interaction of the cap with eIF4E facilitates the binding of the ribosome to the mRNA. eIF4E activity is regulated in part by translational repressors, 4E-BP1, 4E-BP2 and 4E-BP3 which bind to it and prevent its assembly into eIF4F. 106 -283184 pfam05458 Siva Cd27 binding protein (Siva). Siva binds to the CD27 cytoplasmic tail. It has a DD homology region, a box-B-like ring finger, and a zinc finger-like domain. Overexpression of Siva in various cell lines induces apoptosis, suggesting an important role for Siva in the CD27-transduced apoptotic pathway. Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis. Indeed, the unique amphipathic helical region (SAH) present in Siva-1 is required for its binding to BCL-X(L) and sensitising cells to UV radiation. Natural complexes of Siva-1/BCL-X(L) are detected in HUT78 and murine thymocyte, suggesting a potential role for Siva-1 in regulating T cell homeostasis. This family contains both Siva-1 and the shorter Siva-2 lacking the sequence coded by exon 2. It has been suggested that Siva-2 could regulate the function of Siva-1. 173 -310217 pfam05459 Herpes_UL69 Herpesvirus transcriptional regulator family. This family includes UL69 and IE63 that are transcriptional regulator proteins. 214 -336118 pfam05460 ORC6 Origin recognition complex subunit 6 (ORC6). This family consists of several eukaryotic origin recognition complex subunit 6 (ORC6) proteins. Despite differences in their structure and sequences among eukaryotic replicators, ORC is a conserved feature of replication initiation in all eukaryotes. ORC-related genes have been identified in organisms ranging from S. pombe to plants to humans. All DNA replication initiation is driven by a single conserved eukaryotic initiator complex termed he origin recognition complex (ORC). The ORC is a six protein complex. The function of ORC is reviewed in. 288 -310219 pfam05461 ApoL Apolipoprotein L. Apo L belongs to the high density lipoprotein family that plays a central role in cholesterol transport. The cholesterol content of membranes is important in cellular processes such as modulating gene transcription and signal transduction both in the adult brain and during neurodevelopment. There are six apo L genes located in close proximity to each other on chromosome 22q12 in humans. 22q12 is a confirmed high-susceptibility locus for schizophrenia and close to the region associated with velocardiofacial syndrome that includes symptoms of schizophrenia. 299 -283188 pfam05462 Dicty_CAR Slime mold cyclic AMP receptor. This family consists of cyclic AMP receptor (CAR) proteins from slime molds. CAR proteins are responsible for controlling development in Dictyostelium discoideum. 305 -253205 pfam05463 Sclerostin Sclerostin (SOST). This family contains several mammalian sclerostin (SOST) proteins. SOST is thought to suppress bone formation. Mutations of the SOST gene lead to sclerosteosis, a progressive sclerosing bone dysplasia with an autosomal recessive mode of inheritance. Radiologically, it is characterized by a generalized hyperostosis and sclerosis leading to a markedly thickened and sclerotic skull, with mandible, ribs, clavicles and all long bones also being affected. Due to narrowing of the foramina of the cranial nerves, facial nerve palsy, hearing loss and atrophy of the optic nerves can occur. Sclerosteosis is clinically and radiologically very similar to van Buchem disease, mainly differentiated by hand malformations and a large stature in sclerosteosis patients. 198 -283189 pfam05464 Phi-29_GP4 Phi-29-like late genes activator (early protein GP4). This family consists of phi-29-like late genes activator (or early protein GP4). This protein is thought to be a positive regulator of late transcription and may function as a sigma like component of the host RNA polymerase. 123 -310220 pfam05465 Halo_GVPC Halobacterial gas vesicle protein C (GVPC) repeat. This family consists of Halobacterium gas vesicle protein C sequences which are thought to confer stability to the gas vesicle membranes. 32 -310221 pfam05466 BASP1 Brain acid soluble protein 1 (BASP1 protein). This family consists of several brain acid soluble protein 1 (BASP1) or neuronal axonal membrane protein NAP-22. The BASP1 is a neuron enriched Ca(2+)-dependent calmodulin-binding protein of unknown function. 238 -283192 pfam05467 Herpes_U47 Herpesvirus glycoprotein U47. 677 -283193 pfam05470 eIF-3c_N Eukaryotic translation initiation factor 3 subunit 8 N-terminus. The largest of the mammalian translation initiation factors, eIF3, consists of at least eight subunits ranging in mass from 35 to 170 kDa. eIF3 binds to the 40 S ribosome in an early step of translation initiation and promotes the binding of methionyl-tRNAi and mRNA. 544 -336119 pfam05472 Ter DNA replicatioN-terminus site-binding protein (Ter protein). This family contains several bacterial Ter proteins. The Ter protein specifically binds to DNA replicatioN-terminus sites on the host and plasmid genome and then blocks progress of the DNA replication fork. 296 -310223 pfam05473 UL45 UL45 protein, carbohydrate-binding C-type lectin-like. This family consists of several UL45 proteins. The herpes simplex virus UL45 gene encodes an 18 kDa virion envelope protein whose function remains unknown. It has been suggested that the 18 kDa UL45 gene product is required for efficient growth in the central nervous system at low doses and may play an important role under the conditions of a naturally acquired infection. This family also contains several Varicellovirus UL45 or gene 15 proteins. The Equine herpesvirus 1 UL45 protein represents a type II membrane glycoprotein which has been found to be non-essential for EHV-1 growth in vitro but deletion reduces the viruses' replication efficiency. Studies have shown that UL45 has a C-type lectin-like fold, suggesting that it might have a carbohydrate-binding function. 191 -283196 pfam05474 Semenogelin Semenogelin. This family consists of several mammalian semenogelin (I and II) proteins. Freshly ejaculated human semen has the appearance of a loose gel in which the predominant structural protein components are the seminal vesicle secreted semenogelins (Sg). 582 -310224 pfam05475 Chlam_vir Pgp3 C-terminal domain. This family consists of Chlamydia virulence proteins which are thought to be required for growth within mammalian cells. The C-terminal domain shows distant homology to the TNF superfamily. 146 -283198 pfam05476 PET122 PET122. The nuclear PET122 gene of S. cerevisiae encodes a mitochondrial-localized protein that activates initiation of translation of the mitochondrial mRNA from the COX3 gene, which encodes subunit III of cytochrome c oxidase. 258 -310225 pfam05477 SURF2 Surfeit locus protein 2 (SURF2). Surfeit locus protein 2 is part of a group of at least six sequence unrelated genes (Surf-1 to Surf-6). The six Surfeit genes have been classified as housekeeping genes, being expressed in all tissue types tested and not containing a TATA box in their promoter region. The exact function of SURF2 is unknown. 223 -310226 pfam05478 Prominin Prominin. The prominins are an emerging family of proteins that among the multispan membrane proteins display a novel topology. Mouse prominin and human prominin (mouse)-like 1 (PROML1) are predicted to contain five membrane spanning domains, with an N-terminal domain exposed to the extracellular space followed by four, alternating small cytoplasmic and large extracellular, loops and a cytoplasmic C-terminal domain. The exact function of prominin is unknown although in humans defects in PROM1, the gene coding for prominin, cause retinal degeneration. 799 -310227 pfam05479 PsaN Photosystem I reaction centre subunit N (PSAN or PSI-N). This family contains several Photosystem I reaction centre subunit N (PSI-N) proteins. The protein has no known function although it is localized in the thylakoid lumen. PSI-N is a small extrinsic subunit at the lumen side and is very likely involved in the docking of plastocyanin. 129 -310228 pfam05480 Staph_haemo Staphylococcus haemolytic protein. This family consists of several different short Staphylococcal proteins, it contains SLUSH A, B and C proteins as well as haemolysin and gonococcal growth inhibitor. Some strains of the coagulase-negative Staphylococcus lugdunensis produce a synergistic hemolytic activity (SLUSH), phenotypically similar to the delta-hemolysin of S. aureus. Gonococcal growth inhibitor from Staphylococcus act on the cytoplasmic membrane of the gonococcal cell causing cytoplasmic leakage and, eventually, death. 41 -336120 pfam05481 Myco_19_kDa Mycobacterium 19 kDa lipoprotein antigen. Most of the antigens of Mycobacterium leprae and M. tuberculosis that have been identified are members of stress protein families, which are highly conserved throughout many diverse species. Of the M. leprae and M. tuberculosis antigens identified by monoclonal antibodies, all except the 18-kDa M. leprae antigen and the 19-kDa M. tuberculosis antigen are strongly cross-reactive between these two species and are coded within very similar genes. 116 -310230 pfam05482 Serendipity_A Serendipity locus alpha protein (SRY-A). The Drosophila serendipity alpha (sry alpha) gene is specifically transcribed at the blastoderm stage, from nuclear cycle 11 to the onset of gastrulation, in all somatic nuclei. SRY-A is required for the cellularisation of the embryo and is involved in the localization of the actin filaments just prior to and during plasma membrane invagination. 542 -114219 pfam05483 SCP-1 Synaptonemal complex protein 1 (SCP-1). Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. 787 -310231 pfam05484 LRV_FeS LRV protein FeS4 cluster. This Iron sulphur cluster is found at the N-terminus of some proteins containing pfam01816 repeats. 49 -336121 pfam05485 THAP THAP domain. The THAP domain is a putative DNA-binding domain (DBD) and probably also binds a zinc ion. It features the conserved C2CH architecture (consensus sequence: Cys - 2-4 residues - Cys - 35-50 residues - Cys - 2 residues - His). Other universal features include the location of the domain at the N-termini of proteins, its size of about 90 residues, a C-terminal AVPTIF box and several other conserved residues. Orthologues of the human THAP domain have been identified in other vertebrates and probably worms and flies, but not in other eukaryotes or any prokaryotes. 79 -336122 pfam05486 SRP9-21 Signal recognition particle 9 kDa protein (SRP9). This family consists of several eukaryotic SRP9 proteins. SRP9 together with the Alu-homologous region of 7SL RNA and SRP14 comprise the "Alu domain" of SRP, which mediates pausing of synthesis of ribosome associated nascent polypeptides that have been engaged by the targeting domain of SRP. This family also contains the homologous fungal SRP21. 82 -336123 pfam05488 PAAR_motif PAAR motif. This motif is found usually in pairs in a family of bacterial membrane proteins. It is also found as a triplet of tandem repeats comprising the entire length in a another family of hypothetical proteins. 72 -283209 pfam05489 Phage_tail_X Phage Tail Protein X. This domain is found in a family of phage tail proteins. Visual analysis suggests that it is related to pfam01476 (personal obs: C Yeats). The functional annotation of family members further confirms this hypothesis. 60 -336124 pfam05491 RuvB_C Holliday junction DNA helicase ruvB C-terminus. The RuvB protein makes up part of the RuvABC revolvasome which catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. Branch migration is catalyzed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein. This family consists of the C-terminal region of the RuvB protein which is thought to be helicase DNA-binding domain. 75 -336125 pfam05493 ATP_synt_H ATP synthase subunit H. ATP synthase subunit H is an extremely hydrophobic of approximately 9 kDa. This subunit may be required for assembly of vacuolar ATPase. 59 -336126 pfam05494 MlaC MlaC protein. MlaC is a component of the Mla pathway, an ABC transport system that functions to maintain the asymmetry of the outer membrane. This family of proteins is involved in toluene tolerance, which is mediated by increased cell membrane rigidity resulting from changes in fatty acid and phospholipid compositions, exclusion of toluene from the cell membrane, and removal of intracellular toluene by degradation. Many proteins are involved in these processes. 165 -336127 pfam05495 zf-CHY CHY zinc finger. This family of domains are likely to bind to zinc ions. They contain many conserved cysteine and histidine residues. We have named this domain after the N-terminal motif CXHY. This domain can be found in isolation in some proteins, but is also often associated with pfam00097. One of the proteins in this family is a mitochondrial intermembrane space protein called Hot13. This protein is involved in the assembly of small TIM complexes. 75 -310239 pfam05496 RuvB_N Holliday junction DNA helicase ruvB N-terminus. The RuvB protein makes up part of the RuvABC revolvasome which catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. Branch migration is catalyzed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein. This family contains the N-terminal region of the protein. 234 -336128 pfam05497 Destabilase Destabilase. Destabilase is an endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. 117 -310241 pfam05498 RALF Rapid ALkalinization Factor (RALF). RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. 65 -336129 pfam05499 DMAP1 DNA methyltransferase 1-associated protein 1 (DMAP1). DNA methylation can contribute to transcriptional silencing through several transcriptionally repressive complexes, which include methyl-CpG binding domain proteins (MBDs) and histone deacetylases (HDACs). The chief enzyme that maintains mammalian DNA methylation, DNMT1, can also establish a repressive transcription complex. The non-catalytic amino terminus of DNMT1 binds to HDAC2 and DMAP1 (for DNMT1 associated protein), and can mediate transcriptional repression. DMAP1 has intrinsic transcription repressive activity, and binds to the transcriptional co-repressor TSG101. DMAP1 is targeted to replication foci through interaction with the far N-terminus of DNMT1 throughout S phase, whereas HDAC2 joins DNMT1 and DMAP1 only during late S phase, providing a platform for how histones may become deacetylated in heterochromatin following replication. 163 -310243 pfam05501 DUF755 Domain of unknown function (DUF755). This family is predominated by ORFs from Circoviridae. The function of this family remains to be determined. 122 -310244 pfam05502 Dynactin_p62 Dynactin p62 family. Dynactin is a multi-subunit complex and a required cofactor for most, or all, of the cellular processes powered by the microtubule-based motor cytoplasmic dynein. p62 binds directly to the Arp1 subunit of dynactin. 467 -283219 pfam05503 Pox_G7 Poxvirus G7-like. 367 -336130 pfam05504 Spore_GerAC Spore germination B3/ GerAC like, C-terminal. The GerAC protein of the Bacillus subtilis spore is required for the germination response to L-alanine. Members of this family are thought to be located in the inner spore membrane. Although the function of this family is unclear, they are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response. 167 -283221 pfam05505 Ebola_NP Ebola nucleoprotein. This family consists of Ebola and Marburg virus nucleoproteins. These proteins are responsible for encapsidation of genomic RNA. It has been found that nucleoprotein DNA vaccines can offer protection from the virus. 753 -336131 pfam05506 DUF756 Domain of unknown function (DUF756). This domain is found, normally as a tandem repeat, at the C-terminus of bacterial phospholipase C proteins. 88 -336132 pfam05507 MAGP Microfibril-associated glycoprotein (MAGP). This family consists of several mammalian microfibril-associated glycoprotein (MAGP) 1 and 2 proteins. MAGP1 and 2 are components of elastic fibers. MAGP-1 has been proposed to bind a C-terminal region of tropoelastin, the soluble precursor of elastin. MAGP-2 was found to interact with fibrillin-1 and -2, as well as fibulin-1, another component of elastic fibers this suggests that MAGP-2 may be important in the assembly of microfibrils. 131 -310248 pfam05508 Ran-binding RanGTP-binding protein. The small Ras-like GTPase Ran plays an essential role in the transport of macromolecules in and out of the nucleus and has been implicated in spindle and nuclear envelope formation during mitosis in higher eukaryotes. The S. cerevisiae ORF YGL164c encoding a novel RanGTP-binding protein, termed Yrb30p was identified. The protein competes with yeast RanBP1 (Yrb1p) for binding to the GTP-bound form of yeast Ran (Gsp1p) and is, like Yrb1p, able to form trimeric complexes with RanGTP and some of the karyopherins. 308 -336133 pfam05509 TraY TraY domain. This family consists of several enterobacterial TraY proteins. TraY is involved in bacterial conjugation where it is required for efficient nick formation in the F plasmid. These proteins have a ribbon-helix-helix fold and are likely to be DNA-binding proteins. 49 -310250 pfam05510 Sarcoglycan_2 Sarcoglycan alpha/epsilon. Sarcoglycans are a subcomplex of transmembrane proteins which are part of the dystrophin-glycoprotein complex. They are expressed in the skeletal, cardiac and smooth muscle. Although numerous studies have been conducted on the sarcoglycan subcomplex in skeletal and cardiac muscle, the manner of the distribution and localization of these proteins along the nonjunctional sarcolemma is not clear. This family contains alpha and epsilon members. 384 -336134 pfam05511 ATP-synt_F6 Mitochondrial ATP synthase coupling factor 6. Coupling factor 6 (F6) is a component of mitochondrial ATP synthase which is required for the interactions of the catalytic and proton-translocating segments. 96 -310252 pfam05512 AWPM-19 AWPM-19-like family. Members of this family are 19 kDa membrane proteins. The levels of the plant protein AWPM-19 increase dramatically when there is an increase level of abscisic acid. The increase presence of this protein leads to greater tolerance of freezing. 142 -283228 pfam05513 TraA TraA. Conjugative transfer of a bacteriocin plasmid, pPD1, of Enterococcus faecalis is induced in response to a peptide sex pheromone, cPD1, secreted from plasmid-free recipient cells. cPD1 is taken up by a pPD1 donor cell and binds to an intracellular receptor, TraA. Once a recipient cell acquires pPD1, it starts to produce an inhibitor of cPD1, termed iPD1, which functions as a TraA antagonist and blocks self-induction in donor cells. TraA transduces the signal of cPD1 to the mating response. 120 -283229 pfam05514 HR_lesion HR-like lesion-inducing. Family of plant proteins that are associated with the hypersensitive response (HR) pathway of defense against plant pathogens. 138 -283230 pfam05515 Viral_NABP Viral nucleic acid binding. This family is common to ssRNA positive-strand viruses and are commonly described as nucleic acid binding proteins (NABP). 190 -310253 pfam05517 p25-alpha p25-alpha. This family encodes a 25 kDa protein that is phosphorylated by a Ser/Thr-Pro kinase. It has been described as a brain specific protein, but it is found in Tetrahymena thermophila. 155 -253234 pfam05518 Totivirus_coat Totivirus coat protein. 753 -114252 pfam05520 Citrus_P18 Citrus tristeza virus P18 protein. 167 -336135 pfam05521 Phage_H_T_join Phage head-tail joining protein. 96 -114254 pfam05522 Metallothio_6 Metallothionein. This family consists of metallothioneins from several worm and sea urchin species. Metallothioneins are low molecular weight, cysteine rich proteins known to be involved in heavy metal detoxification and homeostasis. 65 -310255 pfam05523 FdtA WxcM-like, C-terminal. This family includes FdtA from Aneurinibacillus thermoaerophilus, which has been characterized as a dtdp-6-deoxy-3,4-keto-hexulose isomerase. It also includes WxcM from Xanthomonas campestris (pv. campestris). 129 -336136 pfam05524 PEP-utilizers_N PEP-utilising enzyme, N-terminal. 117 -283235 pfam05525 Branch_AA_trans Branched-chain amino acid transport protein. This family consists of several bacterial branched-chain amino acid transport proteins which are responsible for the transport of leucine, isoleucine and valine via proton motive force. 429 -310257 pfam05526 R_equi_Vir Rhodococcus equi virulence-associated protein. This family consists of several virulence-associated proteins from Rhodococcus equi. Rhodococcus equi is an important pulmonary pathogen of foals and is increasingly isolated from pneumonic infections and other infections in human immunodeficiency virus (HIV)-infected patients. Isolates from foals possess a large virulence plasmid, varying in size from 80 to 90 kb. Isolates lacking the plasmid are avirulent to foals. Little is known about the function of the plasmid apart from its encoding a virulence associated surface proteins. 177 -336137 pfam05527 DUF758 Domain of unknown function (DUF758). Family of eukaryotic proteins with unknown function, which are induced by tumor necrosis factor. 179 -283238 pfam05528 Coronavirus_5 Coronavirus gene 5 protein. Infectious bronchitis virus (IBV), a member of Coronaviridae family, has a single-stranded positive-sense RNA genome, which is 27 kb in length. Gene 5 contains two (5a and 5b) open reading frames. The function of the 5a and 5b proteins is unknown. 82 -310259 pfam05529 Bap31 B-cell receptor-associated protein 31-like. Bap31 is a polytopic integral protein of the endoplasmic reticulum membrane and a substrate of caspase-8. Bap31 is cleaved within its cytosolic domain, generating pro-apoptotic p20 Bap31. 191 -310260 pfam05531 NPV_P10 Nucleopolyhedrovirus P10 protein. This family consists of several nucleopolyhedrovirus P10 proteins which are thought to be involved in the morphogenesis of the polyhedra. 76 -283241 pfam05532 CsbD CsbD-like. CsbD is a bacterial general stress response protein. It's expression is mediated by sigma-B, an alternative sigma factor. The role of CsbD in stress response is unclear. 53 -114264 pfam05533 Peptidase_C42 Beet yellows virus-type papain-like endopeptidase C42. Members of the Closteroviridae and Potyviridae families of plant positive-strand RNA viruses encode one or two papain-like leader proteinases, belonging to Merops peptidase family C42. 88 -310261 pfam05534 HicB HicB family. This family consists of several bacterial HicB related proteins. The function of HicB is unknown although it is thought to be involved in pilus formation. It has been speculated that HicB performs a function antagonistic to that of pili and yet is necessary for invasion of certain niches. 51 -310262 pfam05535 Chromadorea_ALT Chromadorea ALT protein. This family consists of several ALT protein homologs found in nematodes. Lymphatic filariasis is a major tropical disease caused by the mosquito borne nematodes Brugia and Wuchereria. About 120 million people are infected and at risk of lymphatic pathology such as acute lymphangitis and elephantiasis. Expression of alt-1 and alt-2 is initiated midway through development in the mosquito, peaking in the infective larva and declining sharply following entry into the host. ALT-1 and the closely related ALT-2 have been found to be strong candidates for a future vaccine against human filariasis. 75 -336138 pfam05536 Neurochondrin Neurochondrin. This family contains several eukaryotic neurochondrin proteins. Neurochondrin induces hydroxyapatite resorptive activity in bone marrow cells resistant to bafilomycin A1, an inhibitor of macrophage- and osteoclast-mediated resorption. Expression of the gene is localized to chondrocyte, osteoblast, and osteocyte in the bone and to the hippocampus and Purkinje cell layer of cerebellum in the brain. 605 -283245 pfam05537 DUF759 Borrelia burgdorferi protein of unknown function (DUF759). This family consists of several uncharacterized proteins from the Lyme disease spirochete Borrelia burgdorferi. 429 -310263 pfam05538 Campylo_MOMP Campylobacter major outer membrane protein. This family consists of Campylobacter major outer membrane proteins. The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. 426 -114270 pfam05539 Pneumo_att_G Pneumovirinae attachment membrane glycoprotein G. 408 -310264 pfam05540 Serpulina_VSP Serpulina hyodysenteriae variable surface protein. This family consists of several variable surface proteins from Serpulina hyodysenteriae. 378 -253243 pfam05541 Spheroidin Entomopoxvirus spheroidin protein. Entomopoxviruses (EPVs) are large (300-400 nm) oval-shaped viruses replicating in the cytoplasm of their insect host cells. At the end of their replicative cycle EPVs virions are occluded in a highly expressed protein called spheroidin. This protein forms large (5-20 mm long) oval-shaped occlusion bodies (OBs) called spherules. The infectious cycle of EPVs begins with the ingestion by the insect host of the spherules, their dissolution by the alkaline reducing conditions of the midgut fluid and the release of virions in the midgut lumen. The infective particles first replicate in midgut epithelial cells, then pass the gut barrier to colonise the internal tissues, mainly the fat body cells. Whilst spheroidin has been demonstrated to be non-essential for viral replication, it plays an essential role in the natural biological cycle of the virus in protecting virions from adverse environmental conditions (e.g. UV degradation) and thus improving transmission efficacy. In this respect, spheroidins are functionally similar to polyhedrins of baculoviruses or cypoviruses. 943 -336139 pfam05542 DUF760 Protein of unknown function (DUF760). This family contains several uncharacterized plant proteins. 83 -283249 pfam05543 Peptidase_C47 Staphopain peptidase C47. Staphopains are one of four major families of proteinases secreted by the Gram-positive Staphylococcus aureus. These staphylococcal cysteine proteases are secreted as preproenzymes that are proteolytically cleaved to generate the mature enzyme. 174 -336140 pfam05544 Pro_racemase Proline racemase. This family consists of proline racemase (EC 5.1.1.4) proteins which catalyze the interconversion of L- and D-proline in bacteria. This family also contains several similar eukaryotic proteins including Trypanosoma cruzi PA45-A, a protein with B-cell mitogenic properties which has been characterized as a co-factor-independent proline racemase. 325 -336141 pfam05545 FixQ Cbb3-type cytochrome oxidase component FixQ. This family consists of several Cbb3-type cytochrome oxidase components (FixQ/CcoQ). FixQ is found in nitrogen fixing bacteria. Since nitrogen fixation is an energy-consuming process, effective symbioses depend on operation of a respiratory chain with a high affinity for O2, closely coupled to ATP production. This requirement is fulfilled by a special three-subunit terminal oxidase (cytochrome terminal oxidase cbb3), which was first identified in Bradyrhizobium japonicum as the product of the fixNOQP operon. 49 -336142 pfam05546 She9_MDM33 She9 / Mdm33 family. Members of this family are mitochondrial inner membrane proteins with a role in inner mitochondrial membrane organisation and biogenesis. 198 -310269 pfam05547 Peptidase_M6 Immune inhibitor A peptidase M6. The insect pathogenic Gram-positive Bacillus thuringiensis secretes immune inhibitor A, a metallopeptidase, which specifically cleaves host antibacterial proteins. A homolog of immune inhibitor A, PrtV, has been identified in the Gram-negative human pathogen Vibrio cholerae. 643 -336143 pfam05548 Peptidase_M11 Gametolysin peptidase M11. In the unicellular biflagellated alga, Chlamydomonas reinhardtii, gametolysin, a zinc-containing metallo-protease, is responsible for the degradation of the cell wall. homologs of gametolysin have also been reported in the simple multicellular organism, Volvox. 303 -253247 pfam05549 Allexi_40kDa Allexivirus 40kDa protein. 271 -283255 pfam05550 Peptidase_C53 Pestivirus Npro endopeptidase C53. Unique to pestiviruses, the N-terminal protein encoded by the bovine viral diarrhoea virus genome is a cysteine protease (Npro) responsible for a self-cleavage that releases the N-terminus of the core protein. This unique protease is dispensable for viral replication, and its coding region can be replaced by a ubiquitin gene directly fused in frame to the core. 168 -283256 pfam05551 zf-His_Me_endon Zinc-binding loop region of homing endonuclease. This domain is the short zinc-binding loops region of a number of much longer chain homing endonucleases. Such loops are probably stabilized by the zinc and may be viewed as small but separate domains. The common structural feature of these domains is that at least three zinc ligands lie very close to each other in the sequence and are not incorporated into regular secondary structural elements. The biological roles played by these small zinc-binding domains are presently unknown. 124 -336144 pfam05552 TM_helix Conserved TM helix. This alignment represents a conserved transmembrane helix as well as some flanking sequence. It is often found in association with pfam00924. 49 -310271 pfam05553 DUF761 Cotton fibre expressed protein. This family consists of several plant proteins of unknown function. Three of the sequences (from Gossypium hirsutum) in this family are described as cotton fibre expressed proteins. The remaining sequences, found in Arabidopsis thaliana, are uncharacterized. 35 -147629 pfam05554 Novirhabdo_Nv Viral hemorrhagic septicemia virus non-virion protein. This family consists of several viral hemorrhagic septicemia virus non-virion (Nv) proteins. The NV protein is a nonstructural protein absent from mature virions although it is present in infected cells. The function of this protein is unknown. 122 -283259 pfam05555 DUF762 Coxiella burnetii protein of unknown function (DUF762). This family consists several of several uncharacterized proteins from the bacterium Coxiella burnetii. Coxiella burnetii is the causative agent of the Q fever disease. 244 -310272 pfam05556 Calsarcin Calcineurin-binding protein (Calsarcin). This family consists of several mammalian calcineurin-binding proteins. The calcium- and calmodulin-dependent protein phosphatase calcineurin has been implicated in the transduction of signals that control the hypertrophy of cardiac muscle and slow fibre gene expression in skeletal muscle. Calsarcin-1 and calsarcin-2 are expressed in developing cardiac and skeletal muscle during embryogenesis, but calsarcin-1 is expressed specifically in adult cardiac and slow-twitch skeletal muscle, whereas calsarcin-2 is restricted to fast skeletal muscle. Calsarcins represent a novel family of sarcomeric proteins that link calcineurin with the contractile apparatus, thereby potentially coupling muscle activity to calcineurin activation. Calsarcin-3, is expressed specifically in skeletal muscle and is enriched in fast-twitch muscle fibers. Like calsarcin-1 and calsarcin-2, calsarcin-3 interacts with calcineurin, and the Z-disc proteins alpha-actinin, gamma-filamin, and telethonin. 229 -310273 pfam05557 MAD Mitotic checkpoint protein. This family consists of several eukaryotic mitotic checkpoint (Mitotic arrest deficient or MAD) proteins. The mitotic spindle checkpoint monitors proper attachment of the bipolar spindle to the kinetochores of aligned sister chromatids and causes a cell cycle arrest in prometaphase when failures occur. Multiple components of the mitotic spindle checkpoint have been identified in yeast and higher eukaryotes. In S.cerevisiae, the existence of a Mad1-dependent complex containing Mad2, Mad3, Bub3 and Cdc20 has been demonstrated. 660 -310274 pfam05558 DREPP DREPP plasma membrane polypeptide. This family contains several plant plasma membrane proteins termed DREPPs as they are developmentally regulated plasma membrane polypeptides. 206 -310275 pfam05559 DUF763 Protein of unknown function (DUF763). This family consists of several uncharacterized bacterial and archaeal proteins of unknown function. 315 -114291 pfam05560 Bt_P21 Bacillus thuringiensis P21 molecular chaperone protein. This family contains several Bacillus thuringiensis P21 proteins. These proteins are thought to be molecular chaperones and have mosquitocidal properties. 182 -310276 pfam05561 DUF764 Borrelia burgdorferi protein of unknown function (DUF764). This family consists of proteins of unknown function from Borrelia burgdorferi (Lyme disease spirochete). 182 -310277 pfam05562 WCOR413 Cold acclimation protein WCOR413. This family consists of several WCOR413-like plant cold acclimation proteins. 181 -336145 pfam05563 SpvD Salmonella plasmid virulence protein SpvD. This family consists of several SpvD plasmid virulence proteins from different Salmonella species. The structure of the protein from Salmonella typhimurium has been solved and shows a papain-like fold, with a predicted catalytic triad of Cys73, His162 and Asp182. The protein has been shown to have deubiquitinating-like activity, releasing aminoluciferin (AML) from Ub-AML. 216 -336146 pfam05564 Auxin_repressed Dormancy/auxin associated protein. This family contains several plant dormancy-associated and auxin-repressed proteins the function of which are poorly understood. 115 -310279 pfam05565 Sipho_Gp157 Siphovirus Gp157. This family contains both viral and bacterial proteins which are related to the Gp157 protein of the Streptococcus thermophilus SFi bacteriophages. It is thought that bacteria possessing the gene coding for this protein have an increased resistance to the bacteriophage. 161 -283269 pfam05566 Pox_vIL-18BP Orthopoxvirus interleukin 18 binding protein. Interleukin-18 (IL-18) is a proinflammatory cytokine that plays a key role in the activation of natural killer and T helper 1 cell responses principally by inducing interferon-gamma (IFN-gamma). Several poxvirus genes encode proteins with sequence similarity to IL-18BPs. It has been shown that vaccinia, ectromelia and cowpox viruses secrete from infected cells a soluble IL-18BP (vIL-18BP) that may modulate the host antiviral response. The expression of vIL-18BPs by distinct poxvirus genera that cause local or general viral dissemination, or persistent or acute infections in the host, emphasises the importance of IL-18 in response to viral infections. 126 -283270 pfam05567 Neisseria_PilC Neisseria PilC beta-propeller domain. This family consists of several PilC protein sequences from Neisseria gonorrhoeae and N. meningitidis. PilC is a phase-variable protein associated with pilus-mediated adherence of pathogenic Neisseria to target cells. This domain has been shown to adopt a beta-propeller structure. 411 -114299 pfam05568 ASFV_J13L African swine fever virus J13L protein. This family consists of several African swine fever virus J13L proteins. 189 -310280 pfam05569 Peptidase_M56 BlaR1 peptidase M56. Production of beta-Lactamase and penicillin-binding protein 2a (which mediate staphylococcal resistance to beta-lactam antibiotics) is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. homologs to this peptidase domain, which corresponds to Merops family M56, are also found in a number of other bacterial genome sequences. 299 -114301 pfam05570 DUF765 Circovirus protein of unknown function (DUF765). This family consists of several short (27-30aa) porcine and bovine circovirus ORF6 proteins of unknown function. 29 -310281 pfam05571 DUF766 Protein of unknown function (DUF766). This family consists of several eukaryotic proteins of unknown function. 290 -310282 pfam05572 Peptidase_M43 Pregnancy-associated plasma protein-A. Pregnancy-associated plasma protein A (PAPP-A) is a metallo-protease belonging to Merops family M43. It cleaves insulin-like growth factor (IGF) binding protein-4 (IGFBP-4), causing a dramatic reduction in its affinity for IGF-I and -II. Through this mechanism, PAPP-A is a regulator of IGF bioactivity in several systems, including the human ovary and the cardiovascular system. 150 -336147 pfam05573 NosL NosL. NosL is one of the accessory proteins of the nos (nitrous oxide reductase) gene cluster. NosL is a monomeric protein of 18,540 MW that specifically and stoichiometrically binds Cu(I). The copper ion in NosL is ligated by a Cys residue, and one Met and one His are thought to serve as the other ligands. It is possible that NosL is a copper chaperone involved in metallo-centre assembly. 149 -114305 pfam05575 V_cholerae_RfbT Vibrio cholerae RfbT protein. This family consists of several RfbT proteins from Vibrio cholerae. It has been found that genetic alteration of the rfbT gene is responsible for serotype conversion of Vibrio cholerae O1 and determines the difference between the Ogawa and Inaba serotypes, in that the presence of rfbT is sufficient for Inaba-to-Ogawa serotype conversion. 286 -283275 pfam05576 Peptidase_S37 PS-10 peptidase S37. These serine proteases have been found in Streptomyces species. 448 -310284 pfam05577 Peptidase_S28 Serine carboxypeptidase S28. These serine proteases include several eukaryotic enzymes such as lysosomal Pro-X carboxypeptidase, dipeptidyl-peptidase II, and thymus-specific serine peptidase. 434 -283276 pfam05578 Peptidase_S31 Pestivirus NS3 polyprotein peptidase S31. These serine peptidases are involved in processing of the flavivirus polyprotein. 211 -253263 pfam05579 Peptidase_S32 Equine arteritis virus serine endopeptidase S32. Serine peptidases involved in processing nidovirus polyprotein. 297 -310285 pfam05580 Peptidase_S55 SpoIVB peptidase S55. The protein SpoIVB plays a key role in signalling in the final sigma-K checkpoint of Bacillus subtilis. 206 -310286 pfam05582 Peptidase_U57 YabG peptidase U57. YabG is a protease involved in the proteolysis and maturation of SpoIVA and YrbA proteins, conserved with the cortex and/or coat assembly by Bacillus subtilis. 279 -283279 pfam05584 Sulfolobus_pRN Sulfolobus plasmid regulatory protein. This family consists of several plasmid regulatory proteins from the extreme thermophilic and acidophilic archaea Sulfolobus. 72 -147642 pfam05585 DUF1758 Putative peptidase (DUF1758). This is a family of nematode proteins of unknown function. However, it seems likely that these proteins act as aspartic peptidases. 164 -310287 pfam05586 Ant_C Anthrax receptor C-terminus region. This region is found in the putatively cytoplasmic C-terminus of the anthrax receptor. 93 -310288 pfam05587 Anth_Ig Anthrax receptor extracellular domain. This region is found in the putatively extracellular N-terminal half of the anthrax receptor. It is probably part of the Ig superfamily and most closely related to pfam01833 (personal obs: C Yeats). 102 -283282 pfam05588 Botulinum_HA-17 Clostridium botulinum HA-17 domain. This family consists of several Clostridium botulinum hemagglutinin (HA) subcomponents. Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). 145 -283283 pfam05589 DUF768 Protein of unknown function (DUF768). This family consists of several uncharacterized hypothetical proteins from Rhizobium loti. 63 -283284 pfam05590 DUF769 Xylella fastidiosa protein of unknown function (DUF769). This family consists of several uncharacterized hypothetical proteins of unknown function from Xylella fastidiosa, the organism that causes Pierce's disease in plants. 259 -336148 pfam05591 T6SS_VipA Type VI secretion system, VipA, VC_A0107 or Hcp2. VipA is a family of Gram-negative bacterial proteins that form part of the type VI pathogenic secretion system. Members have been variously defined as VC_A0107 family, Hcp2 and VipA, for ClpV-interacting proteins. VipB and VipA proteins interact very closely to form the shaft of the pathogenic penetrating needle system. 153 -336149 pfam05592 Bac_rhamnosid Bacterial alpha-L-rhamnosidase concanavalin-like domain. This family consists of bacterial rhamnosidase A and B enzymes. L-Rhamnose is abundant in biomass as a common constituent of glycolipids and glycosides, such as plant pigments, pectic polysaccharides, gums or biosurfactants. Some rhamnosides are important bioactive compounds. For example, terpenyl glycosides, the glycosidic precursor of aromatic terpenoids, act as important flavouring substances in grapes. Other rhamnosides act as cytotoxic rhamnosylated terpenoids, as signal substances in plants or play a role in the antigenicity of pathogenic bacteria. 102 -310291 pfam05593 RHS_repeat RHS Repeat. RHS proteins contain extended repeat regions. These repeats often appear to be involved in ligand binding. Note that this model may not find all the repeats in a protein and that it covers two RHS repeats. The 3D structure of an RHS-repeat-containing protein (the B and C components of an ABC toxin complex) has been determined. The RHS repeats form an extended strip of beta-sheet that spirals around to form a hollow shell, encapsulating the variable C-terminal domain. 38 -310292 pfam05594 Fil_haemagg Haemagluttinin repeat. This highly divergent repeat occurs in number of proteins implicated in cell aggregation. The Pfam alignment probably contains three such repeats (personal obs: C Yeats). These are likely to have a beta-helical structure. 69 -283289 pfam05595 DUF771 Domain of unknown function (DUF771). Family of uncharacterized ORFs found in Bacteriophage and Lactococcus lactis. 90 -283290 pfam05596 Taeniidae_ag Taeniidae antigen. This family consists of several antigen proteins from Taenia and Echinococcus (tapeworm) species. 64 -336150 pfam05597 Phasin Poly(hydroxyalcanoate) granule associated protein (phasin). Polyhydroxyalkanoates (PHAs) are storage polyesters synthesized by various bacteria as intracellular carbon and energy reserve material. PHAs are accumulated as water-insoluble inclusions within the cells. This family consists of the phasins PhaF and PhaI which act as a transcriptional regulator of PHA biosynthesis genes. PhaF has been proposed to repress expression of the phaC1 gene and the phaIF operon. 126 -336151 pfam05598 DUF772 Transposase domain (DUF772). This presumed domain is found at the N-terminus of many proteins found in transposons. 73 -191311 pfam05599 Deltaretro_Tax Deltaretrovirus Tax protein. This family consists of Rex/Tax proteins from human and simian T-cell leukaemia viruses. The exact function of these proteins is unknown. Tax is the viral transactivator; is it a nuclear phosphoprotein that interacts with CREB, coactivator CBP/p300 and PCAF to form a multiprotein complex, which activates viral LTR and stimulates virus expression. Tax is also involved in deregulated expression of numerous cellular genes leading to T-cell leukaemia. Rex is a nucleolar post transcriptional regulator that facilitates export to the cytoplasm of viral RNA not or incompletely spliced [personal communication, Dr. S Nicot]. 87 -310295 pfam05600 DUF773 Protein of unknown function (DUF773). This family contains several eukaryotic sequences which are thought to be CDK5 activator-binding proteins, however, the function of this family is unknown. 504 -336152 pfam05602 CLPTM1 Cleft lip and palate transmembrane protein 1 (CLPTM1). This family consists of several eukaryotic cleft lip and palate transmembrane protein 1 sequences. Cleft lip with or without cleft palate is a common birth defect that is genetically complex. The nonsyndromic forms have been studied genetically using linkage and candidate-gene association studies with only partial success in defining the loci responsible for orofacial clefting. CLPTM1 encodes a transmembrane protein and has strong homology to two Caenorhabditis elegans genes, suggesting that CLPTM1 may belong to a new gene family. This family also contains the human cisplatin resistance related protein CRR9p which is associated with CDDP-induced apoptosis. 430 -310297 pfam05603 DUF775 Protein of unknown function (DUF775). This family consists of several eukaryotic proteins of unknown function. 197 -310298 pfam05604 DUF776 Protein of unknown function (DUF776). This family consists of several highly related mouse and human proteins of unknown function. 176 -336153 pfam05605 zf-Di19 Drought induced 19 protein (Di19), zinc-binding. This family consists of several drought induced 19 (Di19) like proteins. Di19 has been found to be strongly expressed in both the roots and leaves of Arabidopsis thaliana during progressive drought. This domain is a zinc-binding domain. 52 -310300 pfam05606 DUF777 Borrelia burgdorferi protein of unknown function (DUF777). This family consists of several hypothetical proteins of unknown function from Borrelia burgdorferi (Lyme disease spirochete). 181 -310301 pfam05608 DUF778 Protein of unknown function (DUF778). This family consists of several eukaryotic proteins of unknown function. 136 -310302 pfam05609 LAP1C Lamina-associated polypeptide 1C (LAP1C). This family contains rat LAP1C proteins and several uncharacterized highly related sequences from both mice and humans. LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. LAP1s bind to both A- and B-type lamins and have a putative role in the membrane attachment and assembly of the nuclear lamina. 452 -336154 pfam05610 DUF779 Protein of unknown function (DUF779). This family consists of several bacterial proteins of unknown function. 94 -283302 pfam05611 DUF780 Caenorhabditis elegans protein of unknown function (DUF780). This family consists of several short C. elegans proteins of unknown function. 72 -336155 pfam05612 Leg1 Leg1. Protein liver-enriched gene 1 (Leg1) has been suggested to function as a novel secreted regulator for the liver development. 330 -283304 pfam05613 Herpes_U15 Human herpesvirus U15 protein. 110 -114342 pfam05614 DUF782 Circovirus protein of unknown function (DUF782). This family consists of porcine and bovine circovirus proteins of unknown function. 104 -336156 pfam05615 THOC7 Tho complex subunit 7. The Tho complex is involved in transcription elongation and mRNA export from the nucleus. 135 -283306 pfam05616 Neisseria_TspB Neisseria meningitidis TspB protein. This family consists of several Neisseria meningitidis TspB virulence factor proteins. 517 -310306 pfam05617 Prolamin_like Prolamin-like. Prolamin_like (in which DUF784 and DUF1278 have been merged) is found to be expressed in the plant embryo sac and to be regulated by the Myb98 transcription factor. Computational analysis has revealed that members are homologous to the plant prolamin superfamily (Protease inhibitor-seed storage-LTP family, pfam00234). In contrast to typical prolamin members that have eight conserved Cys residues forming four pairs of disulfide bonds, this domain contains only six conserved Cys residues that may form three pairs of disulfide bonds. The domain may have a potential function in lipid transfer or protection during plant embryo sac development and reproduction. 72 -283308 pfam05618 Zn_protease Putative ATP-dependant zinc protease. Proteins in this family are annotated as being ATP-dependant zinc proteases. 138 -310307 pfam05619 DUF787 Borrelia burgdorferi protein of unknown function (DUF787). This family consists of several hypothetical proteins of unknown function from Borrelia burgdorferi (Lyme disease spirochete). 369 -336157 pfam05620 DUF788 Protein of unknown function (DUF788). This family consists of several eukaryotic proteins of unknown function. 167 -336158 pfam05621 TniB Bacterial TniB protein. This family consists of several bacterial TniB NTP-binding proteins. TniB is a probable ATP-binding protein which is involved in Tn5053 mercury resistance transposition. 252 -336159 pfam05622 HOOK HOOK protein. This family consists of several HOOK1, 2 and 3 proteins from different eukaryotic organisms. The different members of the human gene family are HOOK1, HOOK2 and HOOK3. Different domains have been identified in the three human HOOK proteins, and it was demonstrated that the highly conserved NH2-domain mediates attachment to microtubules, whereas the central coiled-coil motif mediates homodimerization and the more divergent C-terminal domains are involved in binding to specific organelles (organelle-binding domains). It has been demonstrated that endogenous HOOK3 binds to Golgi membranes, whereas both HOOK1 and HOOK2 are localized to discrete but unidentified cellular structures. In mice the Hook1 gene is predominantly expressed in the testis. Hook1 function is necessary for the correct positioning of microtubular structures within the haploid germ cell. Disruption of Hook1 function in mice causes abnormal sperm head shape and fragile attachment of the flagellum to the sperm head. 701 -336160 pfam05623 DUF789 Protein of unknown function (DUF789). This family consists of several plant proteins of unknown function. 303 -310312 pfam05624 LSR Lipolysis stimulated receptor (LSR). The lipolysis-stimulated receptor (LSR) is a lipoprotein receptor primarily expressed in the liver and activated by free fatty acids. It is thought to be involved in the clearance of triglyceride-rich lipoproteins, and has been shown in mice to be critical for liver and embryonic development. 48 -310313 pfam05625 PAXNEB PAXNEB protein. PAXNEB or PAX6 neighbor is found in several eukaryotic organisms. PAXNED is an RNA polymerase II Elongator protein subunit. It is part of the HAP subcomplex of Elongator, which is a six-subunit component of the RNA polymerase II holoenzyme. The HAP subcomplex is required for Elongator structural integrity and histone acetyltransferase activity. This protein family has a P-loop motif. However its sequence has degraded in many members of the family. 356 -310314 pfam05626 DUF790 Protein of unknown function (DUF790). This family consists of several hypothetical archaeal proteins of unknown function. 386 -336161 pfam05627 AvrRpt-cleavage Cleavage site for pathogenic type III effector avirulence factor Avr. This domain is conserved in small families of otherwise unrelated proteins in both mono-cots and di-cots, suggesting that it has a conserved, plant-specific function. It is found both in the plant RIN4 (resistance R membrane-bound host-target protein) where it appears to contribute to the binding of the protein to both RCS (AvrRpt2 auto-cleavage site) and AvrB, the virulence factor from the infecting bacterium. The cleavage site for the AvrRpt2 avirulence protein would appear to be the sequence motifs VPQFGDW and LPKFGEW, both of which are highly conserved within the domain. 36 -310316 pfam05628 Borrelia_P13 Borrelia membrane protein P13. This family consists of P13 proteins from Borrelia species. P13 is a 13kDa integral membrane protein which is post-translationally processed at both ends and modified by an unknown mechanism. 138 -283319 pfam05629 Nanovirus_C8 Nanovirus component 8 (C8) protein. This family consists of a group of 17.4 kDa nanovirus proteins which are highly related to the faba bean necrotic yellows virus component 8 protein whose function is unknown. 154 -336162 pfam05630 NPP1 Necrosis inducing protein (NPP1). This family consists of several NPP1 like necrosis inducing proteins from oomycetes, fungi and bacteria. Infiltration of NPP1 into leaves of Arabidopsis thaliana plants result in transcript accumulation of pathogenesis-related (PR) genes, production of ROS and ethylene, callose apposition, and HR-like cell death. 198 -283321 pfam05631 MFS_5 Sugar-tranasporters, 12 TM. MFS_5 is a family of sugar-transporters from both prokaryotes and eukaryotes. 356 -310318 pfam05632 DUF792 Borrelia burgdorferi protein of unknown function (DUF792). This family consists of several hypothetical proteins from the Lyme disease spirochete Borrelia burgdorferi. 208 -283323 pfam05633 BPS1 Protein BYPASS1-related. This family consists of several plant proteins and includes BYPASS1, which is required for normal root and shoot development. This protein prevents constitutive production of a root mobile carotenoid-derived signaling compound that is capable of arresting shoot and leaf development. 386 -310319 pfam05634 APO_RNA-bind APO RNA-binding. This domain contains conserved cysteine and histidine residues. It resembles zinc fingers, and binds to zinc. This domain functions as an RNA-binding domain. 194 -336163 pfam05635 23S_rRNA_IVP 23S rRNA-intervening sequence protein. This family consists of bacterial proteins encoded within an intervening sequence present within some 23S rRNA genes. It folds into an anti-parallel four-helix bundle and forms homopentamers. 106 -336164 pfam05636 HIGH_NTase1 HIGH Nucleotidyl Transferase. This family consists of HIGH Nucleotidyl Transferases 379 -203296 pfam05637 Glyco_transf_34 galactosyl transferase GMA12/MNN10 family. This family contains a number of glycosyltransferase enzymes that contain a DXD motif. This family includes a number of C. elegans homologs where the DXD is replaced by DXH. Some members of this family are included in glycosyltransferase family 34. 239 -336165 pfam05638 T6SS_HCP Type VI secretion system effector, Hcp. HCP is a family of proteins which are expressed in up to 1000 copies in Gram-negative bacteria. Together these copies aggregate into a needle-like shaft or tube that will penetrate other bacteria via a puncturing protein attached to its head. Initially Hcp forms a hexameric structure with a central channel of 40 Angstroms. These hexamers pile up one on top of each other forming nanotubes resembling the gp19 tail phage tube. 123 -310323 pfam05639 Pup Pup-like protein. This family consists of several short bacterial proteins formely known as (DUF797). It was recently shown that Mycobacterium tuberculosis contains a small protein, Pup (Rv2111c), that is covalently conjugated to the e-NH2 groups of lysines on several target proteins (pupylation) such as the malonyl CoA acyl carrier protein (FabD). Pupylation of FabD was shown to result in its recruitment to the mycobacterial proteasome and subsequent degradation analogous to eukaryotic ubiquitin-conjugated proteins. Searches recovered Pup orthologs in all major actinobacteria lineages including the basal bifidobacteria and also sporadically in certain other bacterial lineages. The Pup proteins were all between 50-90 residues in length and a multiple alignment shows that they all contain a conserved motif with a G [EQ] signature at the C-terminus. Thus, all of them are suitable for conjugation via the terminal glutamate or the deamidated glutamine (as shown in the case of the Mycobacterium Pup). The conserved globular core of Pup is predicted to form a bihelical unit with the extreme C-terminal 6-7 residues forming a tail in the extended conformation. Thus, Pup is structurally unrelated to the ubiquitin fold and has convergently evolved the function of protein modifier. 64 -336166 pfam05640 NKAIN Na,K-Atpase Interacting protein. NKAIN (Na,K-Atpase INteracting) proteins are a family of evolutionary conserved transmembrane proteins that localize to neurons, that are critical for neuronal function, and that interact with the beta subunits, beta1 in vertebrates and beta in Drosophila, of Na,K-ATPase. NKAINs have highly conserved trans-membrane domains but otherwise no other characterized domains. NKAINs may function as subunits of pore or channel structures in neurons or they may affect the function of other membrane proteins. They are likely to function within the membrane bilayer. 196 -336167 pfam05641 Agenet Agenet domain. This domain is related to the TUDOR domain pfam00567. The function of the agenet domain is unknown. This family now matches both the two Agenet domains in the FMR proteins. 61 -253298 pfam05642 Sporozoite_P67 Sporozoite P67 surface antigen. This family consists of several Theileria P67 surface antigens. A stage specific surface antigen of Theileria parva, p67, is the basis for the development of an anti-sporozoite vaccine for the control of East Coast fever (ECF) in cattle. The antigen has been shown to contain five distinct linear peptide sequences recognized by sporozoite-neutralising murine monoclonal antibodies. 727 -310326 pfam05643 DUF799 Putative bacterial lipoprotein (DUF799). This family consists of several bacterial proteins of unknown function. Some of the family members are described as putative lipoproteins. 200 -310327 pfam05644 Miff Mitochondrial and peroxisomal fission factor Mff. This protein has a role in mitochondrial and peroxisomal fission. 254 -336168 pfam05645 RNA_pol_Rpc82 RNA polymerase III subunit RPC82. This family consists of several DNA-directed RNA polymerase III polypeptides which are related to the Saccharomyces cerevisiae RPC82 protein. RNA polymerase C (III) promotes the transcription of tRNA and 5S RNA genes. In Saccharomyces cerevisiae, the enzyme is composed of 15 subunits, ranging from 160 to about 10 kDa. 232 -310328 pfam05647 Epiglycanin_TR Tandem-repeating region of mucin, epiglycanin-like. The unusual mucin, epiglycanin, is membrane-bound at the C-terminus but has a long region of this tandem-repeat at the N-terminus. It was the first mucin identified to be associated with the malignant behaviour of carcinoma cells. Mouse Muc21/epiglycanin is thought to be a highly glycosylated molecule, which makes it likely that its function is dependent on its glycoforms. Cells expressing Muc21 are significantly less adherent to each other and to extracellular matrix components than control cells, and this loss of adhesion is mediated by the TR portion of Muc21. This family also now contains the repeat that was the C. elegans protein of unknown function (DUF801). 66 -310329 pfam05648 PEX11 Peroxisomal biogenesis factor 11 (PEX11). This family consists of several peroxisomal biogenesis factor 11 (PEX11) proteins from several eukaryotic species. The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. 221 -336169 pfam05649 Peptidase_M13_N Peptidase family M13. M13 peptidases are well-studied proteases found in a wide range of organisms including mammals and bacteria. In mammals they participate in processes such as cardiovascular development, blood-pressure regulation, nervous control of respiration, and regulation of the function of neuropeptides in the central nervous system. In bacteria they may be used for digestion of milk. 380 -336170 pfam05650 DUF802 Domain of unknown function (DUF802). This region is found as two or more repeats in a small number of hypothetical proteins. 53 -310332 pfam05651 Diacid_rec Putative sugar diacid recognition. This region is found in several proteins characterized as carbohydrate diacid regulators. An HTH DNA-binding motif is found at the C-terminus of these proteins suggesting that this region includes the sugar recognition region. 129 -336171 pfam05652 DcpS Scavenger mRNA decapping enzyme (DcpS) N-terminal. This family consists of several scavenger mRNA decapping enzymes (DcpS) and is the N-terminal domain of these proteins. DcpS is a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. 103 -283340 pfam05653 Mg_trans_NIPA Magnesium transporter NIPA. NIPA (nonimprinted in Prader-Willi/Angelman syndrome) is a family of integral membrane proteins which function as magnesium transporters. 295 -283341 pfam05655 AvrD Pseudomonas avirulence D protein (AvrD). This family consists of several avirulence D (AvrD) proteins primarily found in Pseudomonas syringae. 329 -336172 pfam05656 DUF805 Protein of unknown function (DUF805). This family consists of several bacterial proteins of unknown function. 112 -283343 pfam05657 DUF806 Protein of unknown function (DUF806). This family consists of several Siphovirus and Lactococcus proteins of unknown function. The viral sequences are thought to be tail component proteins. 121 -336173 pfam05658 YadA_head Head domain of trimeric autotransporter adhesin. This seven residue repeat makes up the majority sequence of a family of bacterial haemagglutinins and invasins. The representative alignment contains four repeats. 25 -310336 pfam05659 RPW8 Arabidopsis broad-spectrum mildew resistance protein RPW8. This family consists of several broad-spectrum mildew resistance proteins from Arabidopsis thaliana. Plant disease resistance (R) genes control the recognition of specific pathogens and activate subsequent defense responses. The Arabidopsis thaliana locus Resistance To Powdery Mildew 8 (RPW8) contains two naturally polymorphic, dominant R genes, RPW8.1 and RPW8.2, which individually control resistance to a broad range of powdery mildew pathogens. They induce localized, salicylic acid-dependent defenses similar to those induced by R genes that control specific resistance. Apparently, broad-spectrum resistance mediated by RPW8 uses the same mechanisms as specific resistance. 139 -283346 pfam05660 DUF807 Coxiella burnetii protein of unknown function (DUF807). This family consists of several proteins of unknown function from Coxiella burnetii (the causative agent of a zoonotic disease called Q fever). 142 -336174 pfam05661 DUF808 Protein of unknown function (DUF808). This family consists of several bacterial proteins of unknown function. 294 -336175 pfam05662 YadA_stalk Coiled stalk of trimeric autotransporter adhesin. This short motif is found in invasins and haemagglutinins, normally associated with (pfam05658). 43 -147685 pfam05663 DUF809 Protein of unknown function (DUF809). This family consists of several proteins of unknown function Raphanus sativus (Radish) and Brassica napus (Rape). 138 -336176 pfam05664 DUF810 Plant family of unknown function (DUF810). This family is found in plant-symbionts and pathogens of the alpha-, beta- and gamma-Proteobacteria, but is not known in any other organism. It represents a candidate family for involvement in interactions with plants, or it may at least play a role in plant-associated lifestyles. 672 -310340 pfam05666 Fels1 Fels-1 Prophage Protein-like. 43 -336177 pfam05667 DUF812 Protein of unknown function (DUF812). This family consists of several eukaryotic proteins of unknown function. 590 -310342 pfam05669 Med31 SOH1. The family consists of Saccharomyces cerevisiae SOH1 homologs. SOH1 is responsible for the repression of temperature sensitive growth of the HPR1 mutant and has been found to be a component of the RNA polymerase II transcription complex. SOH1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the SOH1 protein may serve to couple these two processes. 93 -336178 pfam05670 DUF814 Domain of unknown function (DUF814). This domain occurs in proteins that have been annotated as Fibronectin/fibrinogen binding protein by similarity. This annotation comes from Bacillus subtilis YloA, where the N-terminal region is involved in this activity. Hence the activity of this C-terminal domain is unknown. This domain contains a conserved motif D/E-X-W/Y-X-H that may be functionally important. 90 -310344 pfam05671 GETHR GETHR pentapeptide repeat (5 copies). This pentapeptide repeat is found mainly in C. elegans. The most conserved amino acid at each position leads to its name GETHR (Bateman A unpublished obs.). The family also includes a divergent repeat in a microneme protein. The function of this repeat is unknown. 25 -336179 pfam05672 MAP7 MAP7 (E-MAP-115) family. The organisation of microtubules varies with the cell type and is presumably controlled by tissue-specific microtubule-associated proteins (MAPs). The 115-kDa epithelial MAP (E-MAP-115/MAP7) has been identified as a microtubule-stabilizing protein predominantly expressed in cell lines of epithelial origin. The binding of this microtubule associated protein is nucleotide independent. 161 -310346 pfam05673 DUF815 Protein of unknown function (DUF815). This family consists of several bacterial proteins of unknown function. 250 -283357 pfam05674 DUF816 Baculovirus protein of unknown function (DUF816). This family includes proteins that are about 200 amino acids in length. The proteins are all from baculoviruses. This family includes ORF107 from Orgyia pseudotsugata multicapsid polyhedrosis virus (OpMNPV) and a variety of other numbered ORF proteins, such as ORF52, ORF140. The function of these proteins is unknown. 176 -336180 pfam05675 DUF817 Protein of unknown function (DUF817). This family consists of several bacterial proteins of unknown function. 234 -336181 pfam05676 NDUF_B7 NADH-ubiquinone oxidoreductase B18 subunit (NDUFB7). This family consists of several NADH-ubiquinone oxidoreductase B18 subunit proteins from different eukaryotic organisms. Oxidative phosphorylation is the well-characterized process in which ATP, the principal carrier of chemical energy of individual cells, is produced due to a mitochondrial proton gradient formed by the transfer of electrons from NADH and FADH2 to molecular oxygen. The oxidative phosphorylation (OXPHOS) system is located in the mitochondrial inner membrane and consists of five multi-subunit enzyme complexes and two small electron carriers: coenzyme Q10 and cytochrome C. At least 70 structural proteins involved in the formation of the whole OXPHOS system are encoded by nuclear genes, whereas 13 structural proteins are encoded by the mitochondrial genome. Deficiency of NADH ubiquinone oxidoreductase, the first enzyme complex of the mitochondrial respiratory chain, is one of the most frequent causes of human mitochondrial encephalomyopathies. 61 -253315 pfam05677 DUF818 Chlamydia CHLPS protein (DUF818). This family consists of several Chlamydia CHLPS proteins, the function of which are unknown. 364 -336182 pfam05678 VQ VQ motif. This short motif is found in a variety of plant proteins. These proteins vary greatly in length and are mostly composed of low complexity regions. They all conserve a short motif FXhVQChTG, where X is any amino acid and h is a hydrophobic amino acid. The function of this motif is uncertain, however one protein in this family has been found to bind the SigA sigma factor. It would seem plausible that this motif is needed for this activity and that this whole family might be involved in modulating plastid sigma factors (Bateman A pers. obs.). 28 -336183 pfam05679 CHGN Chondroitin N-acetylgalactosaminyltransferase. 499 -310351 pfam05680 ATP-synt_E ATP synthase E chain. This family consists of several ATP synthase E chain sequences which are components of the CF(0) subunit. 83 -336184 pfam05681 Fumerase Fumarate hydratase (Fumerase). This family consists of several bacterial fumarate hydratase proteins FumA and FumB. Fumarase, or fumarate hydratase (EC 4.2.1.2), is a component of the citric acid cycle. In facultative anaerobes such as Escherichia coli, fumarase also engages in the reductive pathway from oxaloacetate to succinate during anaerobic growth. Three fumarases, FumA, FumB, and FumC, have been reported in E. coli. fumA and fumB genes are homologous and encode products of identical sizes which form thermolabile dimers of Mr 120,000. FumA and FumB are class I enzymes and are members of the iron-dependent hydrolases, which include aconitase and malate hydratase. The active FumA contains a 4Fe-4S centre, and it can be inactivated upon oxidation to give a 3Fe-4S centre. 268 -336185 pfam05683 Fumerase_C Fumarase C-terminus. This family consists of the C terminal region of several bacterial fumarate hydratase proteins (FumA and FumB). Fumarase, or fumarate hydratase (EC 4.2.1.2), is a component of the citric acid cycle. In facultative anaerobes such as Escherichia coli, fumarase also engages in the reductive pathway from oxaloacetate to succinate during anaerobic growth. 204 -114410 pfam05684 DUF819 Protein of unknown function (DUF819). This family contains proteins of unknown function from archaeal, bacterial and plant species. 379 -283365 pfam05685 Uma2 Putative restriction endonuclease. This family consists of hypothetical proteins that are greatly expanded in cyanobacteria. The proteins are found sporadically in other bacteria. A small number of member proteins also contain pfam02861 domains that are involved in protein interactions. Solutions of several structures for members of this family show that it is likely to be acting as an endonuclease. 168 -310354 pfam05686 Glyco_transf_90 Glycosyl transferase family 90. This family of glycosyl transferases are specifically (mannosyl) glucuronoxylomannan/galactoxylomannan -beta 1,2-xylosyltransferases, EC:2.4.2.-. 396 -310355 pfam05687 BES1_N BES1/BZR1 plant transcription factor, N-terminal. This family consists of the N terminal regions of several plant transcription factors. It is classified as BES1/BZR1, a plant-specific transcription factor that cooperates with transcription factors such as BIM1 to regulate brassinosteroid-induced genes. 141 -283368 pfam05688 DUF824 Salmonella repeat of unknown function (DUF824). This family consists of several repeated sequences of around 45 residues. 46 -310356 pfam05689 DUF823 Salmonella repeat of unknown function (DUF823). This family consists of a series of repeated sequences (of around 180 residues) which are found in Salmonella typhimurium and Salmonella typhi. Sequences from this family are almost always found with pfam05688. 184 -336186 pfam05690 ThiG Thiazole biosynthesis protein ThiG. This family consists of several bacterial thiazole biosynthesis protein G sequences. ThiG, together with ThiF and ThiH, is proposed to be involved in the synthesis of 4-methyl-5-(b-hydroxyethyl)thiazole (THZ) which is an intermediate in the thiazole production pathway. This family also includes triosephosphate isomerase and pyridoxal 5'-phosphate synthase subunit PdxS. 247 -283371 pfam05691 Raffinose_syn Raffinose synthase or seed imbibition protein Sip1. This family consists of several raffinose synthase proteins, also known as seed imbibition (Sip1) proteins. Raffinose (O-alpha- D-galactopyranosyl- (1-->6)- O-alpha- D-glucopyranosyl-(1<-->2)- O-beta- D-fructofuranoside) is a widespread oligosaccharide in plant seeds and other tissues. Raffinose synthase (EC:2.4.1.82) is the key enzyme that channels sucrose into the raffinose oligosaccharide pathway. Raffinose family oligosaccharides (RFOs) are ubiquitous in plant seeds and are thought to play critical roles in the acquisition of tolerance to desiccation and seed longevity. Raffinose synthases are alkaline alpha-galactosidases and are solely responsible for RFO breakdown in germinating maize seeds, whereas acidic galactosidases appear to have other functions. Glycoside hydrolase family 36 can be split into 11 families, GH36A to GH36K. This family includes enzymes from GH36C. 749 -336187 pfam05692 Myco_haema Mycoplasma haemagglutinin. This family consists of several haemagglutinin sequences from Mycoplasma synoviae and Mycoplasma gallisepticum. The major plasma membrane proteins, pMGAs, of Mycoplasma gallisepticum are cell adhesin (hemagglutinin) molecules. It has been shown that the genetic determinants that code for the haemagglutinins are organized into a large family of genes and that only one of these genes is predominately expressed in any given strain. 424 -283373 pfam05693 Glycogen_syn Glycogen synthase. This family consists of the eukaryotic glycogen synthase proteins GYS1, GYS2 and GYS3. Glycogen synthase (GS) is the enzyme responsible for the synthesis of -1,4-linked glucose chains in glycogen. It is the rate limiting enzyme in the synthesis of the polysaccharide, and its activity is highly regulated through phosphorylation at multiple sites and also by allosteric effectors, mainly glucose 6-phosphate (G6P). 639 -310358 pfam05694 SBP56 56kDa selenium binding protein (SBP56). This family consists of several eukaryotic selenium binding proteins as well as three sequences from archaea. The exact function of this protein is unknown although it is thought that SBP56 participates in late stages of intra-Golgi protein transport. The Lotus japonicus homolog of SBP56, LjSBP is thought to have more than one physiological role and can be implicated in controlling the oxidation/reduction status of target proteins, in vesicular Golgi transport. 454 -283375 pfam05695 DUF825 Plant protein of unknown function (DUF825). This family consists of several plant proteins greater than 1000 residues in length. The function of this family is unknown. 1486 -283376 pfam05696 DUF826 Protein of unknown function (DUF826). This family consists of several enterobacterial and siphoviral sequences of unknown function. 75 -336188 pfam05697 Trigger_N Bacterial trigger factor protein (TF). In the E. coli cytosol, a fraction of the newly synthesized proteins requires the activity of molecular chaperones for folding to the native state. The major chaperones implicated in this folding process are the ribosome-associated Trigger Factor (TF), and the DnaK and GroEL chaperones with their respective co-chaperones. Trigger Factor is an ATP-independent chaperone and displays chaperone and peptidyl-prolyl-cis-trans-isomerase (PPIase) activities in vitro. It is composed of at least three domains, an N-terminal domain which mediates association with the large ribosomal subunit, a central substrate binding and PPIase domain with homology to FKBP proteins, and a C-terminal domain of unknown function. The positioning of TF at the peptide exit channel, together with its ability to interact with nascent chains as short as 57 residues renders TF a prime candidate for being the first chaperone that binds to the nascent polypeptide chains. This family represents the N-terminal region of the protein. 145 -310360 pfam05698 Trigger_C Bacterial trigger factor protein (TF) C-terminus. In the E. coli cytosol, a fraction of the newly synthesized proteins requires the activity of molecular chaperones for folding to the native state. The major chaperones implicated in this folding process are the ribosome-associated Trigger Factor (TF), and the DnaK and GroEL chaperones with their respective co-chaperones. Trigger Factor is an ATP-independent chaperone and displays chaperone and peptidyl-prolyl-cis-trans-isomerase (PPIase) activities in vitro. It is composed of at least three domains, an N-terminal domain which mediates association with the large ribosomal subunit, a central substrate binding and PPIase domain with homology to FKBP proteins, and a C-terminal domain of unknown function. The positioning of TF at the peptide exit channel, together with its ability to interact with nascent chains as short as 57 residues renders TF a prime candidate for being the first chaperone that binds to the nascent polypeptide chains. This family represents the C-terminal region of the protein. 162 -336189 pfam05699 Dimer_Tnp_hAT hAT family C-terminal dimerization region. This dimerization region is found at the C-terminus of the transposases of elements belonging to the Activator superfamily (hAT element superfamily). The isolated dimerization region forms extremely stable dimers in vitro. 82 -310362 pfam05700 BCAS2 Breast carcinoma amplified sequence 2 (BCAS2). This family consists of several eukaryotic sequences of unknown function. The mammalian members of this family are annotated as breast carcinoma amplified sequence 2 (BCAS2) proteins. BCAS2 is a putative spliceosome associated protein. 204 -336190 pfam05701 WEMBL Weak chloroplast movement under blue light. WEMBL consists of several plant proteins required for the chloroplast avoidance response under high intensity blue light. This avoidance response consists in the relocation of chloroplasts on the anticlinal side of exposed cells. Acts in association with PMI2 to maintain the velocity of chloroplast photo-relocation movement via the regulation of cp-actin filaments. Thus several member-sequences are described as "myosin heavy chain-like". 560 -310364 pfam05702 Herpes_UL49_5 Herpesvirus UL49.5 envelope/tegument protein. UL49.5 protein consists of 98 amino acids with a calculated molecular mass of 10,155 Da. It contains putative signal peptide and transmembrane domains but lacks a consensus sequence for N glycosylation. UL49.5 protein is an O-glycosylated structural component of the viral envelope. 98 -336191 pfam05703 Auxin_canalis Auxin canalisation. This domain is frequently found at the N-terminus of proteins containing pfam08458 at the C-terminus. It is a component of the auto-regulatory loop which enables auxin canalisation by recruitment of the PIN1 auxin efflux protein to the cell membrane. 251 -310366 pfam05704 Caps_synth Capsular polysaccharide synthesis protein. This family consists of several capsular polysaccharide proteins. Capsular polysaccharide (CPS) is a major virulence factor in Streptococcus pneumoniae. 279 -310367 pfam05705 DUF829 Eukaryotic protein of unknown function (DUF829). This family consists of several uncharacterized eukaryotic proteins. 240 -203311 pfam05706 CDKN3 Cyclin-dependent kinase inhibitor 3 (CDKN3). This family consists of cyclin-dependent kinase inhibitor 3 or kinase associated phosphatase proteins from several mammalian species. The cyclin-dependent kinase (Cdk)-associated protein phosphatase (KAP) is a human dual specificity protein phosphatase that dephosphorylates Cdk2 on threonine 160 in a cyclin-dependent manner. 168 -283385 pfam05707 Zot Zonular occludens toxin (Zot). This family consists of bacterial and viral proteins which are very similar to the Zonular occludens toxin (Zot). Zot is elaborated by bacteriophages present in toxigenic strains of Vibrio cholerae. Zot is a single polypeptide chain of 44.8 kDa, with the ability to reversibly alter intestinal epithelial tight junctions, allowing the passage of macromolecules through mucosal barriers. 195 -310368 pfam05708 Peptidase_C92 Permuted papain-like amidase enzyme, YaeF/YiiX, C92 family. Amidase_YiiX is a family of permuted papain-like amidases. It has amidase specificity for the amide bond between a lipid and an amino acid (or peptide). From the structure, a tetramer, each monomer is made up of a layered alpha-beta fold with a central, 6-stranded, antiparallel beta-sheet that is protected by helices on either side. The catalytic Cys154 in UniProtKB:Q74NK7, Structure 3kw0, is located on the N-terminus of helix alphaF. The two additional helices located above Cys154 contribute to the formation of the active site, where the lysine ligand is bound. 164 -310369 pfam05709 Sipho_tail Phage tail protein. This family consists of several Siphovirus and other phage tail component proteins as well as some bacterial proteins of unknown function. 257 -283388 pfam05710 Coiled Coiled coil. This region is found in a group of Dictyostelium discoideum proteins. It is likely to form a coiled-coil. Some of the proteins are regulated by cyclic AMP and are expressed late in development. 90 -310370 pfam05711 TylF Macrocin-O-methyltransferase (TylF). This family consists of bacterial macrocin O-methyltransferase (TylF) proteins. TylF is responsible for the methylation of macrocin to produce tylosin. Tylosin is a macrolide antibiotic used in veterinary medicine to treat infections caused by Gram-positive bacteria and as an animal growth promoter in the swine industry. It is produced by several Streptomyces species. As with other macrolides, the antibiotic activity of tylosin is due to the inhibition of protein biosynthesis by a mechanism that involves the binding of tylosin to the ribosome, preventing the formation of the mRNA-aminoacyl-tRNA-ribosome complex. The structure of one representative sequence from this family, NovP, shows it to be an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic. It is likely that the key structural features of NovP are common to the rest of the family and include: a helical 'lid' region that gates access to the co-substrate binding pocket and an active centre that contains a 3-Asp putative metal binding site. A further conserved Asp probably acts as the general base that initiates the reaction by de-protonating the 4-OH group of the noviose unit. 248 -310371 pfam05712 MRG MRG. This family consists of three different eukaryotic proteins (mortality factor 4 (MORF4/MRG15), male-specific lethal 3(MSL-3) and ESA1-associated factor 3(EAF3)). It is thought that the MRG family is involved in transcriptional regulation via histone acetylation. It contains 2 chromo domains and a leucine zipper motif. 184 -336192 pfam05713 MobC Bacterial mobilisation protein (MobC). This family consists of several bacterial MobC-like, mobilisation proteins. MobC proteins belong to the group of relaxases. Together with MobA and MobB they bind to a single cis-active site of a mobilising plasmid, the origin of transfer (oriT) region. The absence of MobC has several different effects on oriT DNA. Site- and strand-specific nicking by MobA protein is severely reduced, accounting for the lower frequency of mobilisation. The localized DNA strand separation required for this nicking is less affected, but becomes more sensitive to the level of active DNA gyrase in the cell. In addition, strand separation is not efficiently extended through the region containing the nick site. These effects suggest a model in which MobC acts as a molecular wedge for the relaxosome-induced melting of oriT DNA. The effect of MobC on strand separation may be partially complemented by the helical distortion induced by supercoiling. However, MobC extends the melted region through the nick site, thus providing the single-stranded substrate required for cleavage by MobA. 43 -310373 pfam05714 Borrelia_lipo_1 Borrelia burgdorferi virulent strain associated lipoprotein. This family consists of several virulent strain associated lipoproteins from the Lyme disease spirochete Borrelia burgdorferi. 200 -336193 pfam05715 zf-piccolo Piccolo Zn-finger. This (predicted) Zinc finger is found in the bassoon and piccolo proteins. There are eight conserved cysteines, suggesting that it coordinates two zinc ligands. 59 -310375 pfam05716 AKAP_110 A-kinase anchor protein 110 kDa (AKAP 110). This family consists of several mammalian protein kinase A anchoring protein 3 (PRKA3) or A-kinase anchor protein 110 kDa (AKAP 110) sequences. Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. PKA anchoring is a key biochemical mechanism controlling motility. AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. 690 -336194 pfam05717 TnpB_IS66 IS66 Orf2 like protein. This protein is found in insertion sequences related to IS66. The function of these proteins is uncertain, but they are probably essential for transposition. 100 -283396 pfam05718 Pox_int_trans Poxvirus intermediate transcription factor. This family consists of several highly related Poxvirus sequences which are thought to be intermediate transcription factors. 382 -310377 pfam05719 GPP34 Golgi phosphoprotein 3 (GPP34). This family consists of several eukaryotic GPP34 like proteins. GPP34 localizes to the Golgi complex and is conserved from yeast to humans. The cytosolic-ally exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking. 195 -283398 pfam05720 Dicty_CAD Cell-cell adhesion domain. This family is based on a group of Dictyostelium discoideum proteins that are essential in early development. csbA and csbB are located on the cell surface and mediate cell-cell adhesion. 75 -336195 pfam05721 PhyH Phytanoyl-CoA dioxygenase (PhyH). This family is made up of several eukaryotic phytanoyl-CoA dioxygenase (PhyH) proteins, ectoine hydroxylases and a number of bacterial deoxygenases. PhyH is a peroxisomal enzyme catalyzing the first step of phytanic acid alpha-oxidation. PhyH deficiency causes Refsum's disease (RD) which is an inherited neurological syndrome biochemically characterized by the accumulation of phytanic acid in plasma and tissues. 206 -114448 pfam05722 Ustilago_mating Ustilago B locus mating-type protein. This family consists of several Ustilago mating-type proteins. The b locus of the phytopathogenic fungus Ustilago maydis encodes a multiallelic recognition function that controls the ability of the fungus to form a dikaryon and complete the sexual stage of the life cycle. The b locus has at least 25 alleles and any combination of two different alleles, brought together by mating between haploid cells, allows the fungus to cause disease and undergo sexual development within the plant. 239 -310379 pfam05724 TPMT Thiopurine S-methyltransferase (TPMT). This family consists of thiopurine S-methyltransferase proteins from both eukaryotes and prokaryotes. Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that catalyzes S-methylation of aromatic and heterocyclic sulfhydryl compounds, including anticancer and immunosuppressive thiopurines. 216 -191356 pfam05725 FNIP FNIP Repeat. This repeat is approximately 22 residues long and is only found in Dictyostelium discoideum. It appears to be related to pfam00560 (personal obs:C Yeats). The alignment consists of two tandem repeats. It is termed the FNIP repeat after the pattern of conserved residues. 44 -336196 pfam05726 Pirin_C Pirin C-terminal cupin domain. This region is found the C-terminal half of the Pirin protein. 103 -283402 pfam05727 UPF0228 Uncharacterized protein family (UPF0228). This small family of proteins is currently restricted Methanosarcina species. Members of this family are about 200 residues in length, except for MA_2565 that has two copies of this region. Although the function of this region is unknown the pattern of conservation suggests that this may be an enzyme, including multiple conserved aspartate and glutamate residues (Bateman A. pers. obs.). The most conserved motif in these proteins is NEL/MEXNE/D, where X can be any amino acid, which is found at the C-terminus of these proteins. 124 -283403 pfam05728 UPF0227 Uncharacterized protein family (UPF0227). Despite being classed as uncharacterized proteins, the members of this family are almost certainly enzymes that are distantly related to the pfam00561. 187 -310381 pfam05729 NACHT NACHT domain. This NTPase domain is found in apoptosis proteins as well as those involved in MHC transcription activation. This family is closely related to pfam00931. 166 -336197 pfam05730 CFEM CFEM domain. This fungal specific cysteine rich domain is found in some proteins with proposed roles in fungal pathogenesis. The structure of the CFEM domain containing protein 'Surface antigen protein 2' from Candida albicans has been solved. 66 -310383 pfam05731 TROVE TROVE domain. This presumed domain is found in TEP1 and Ro60 proteins, that are RNA-binding components of Telomerase, Ro and Vault RNPs. This domain has been named TROVE, (after Telomerase, Ro and Vault). This domain is probably RNA-binding. 339 -253356 pfam05732 RepL Firmicute plasmid replication protein (RepL). This family consists of Firmicute RepL proteins which are involved in plasmid replication. 165 -310384 pfam05733 Tenui_N Tenuivirus/Phlebovirus nucleocapsid protein. This family consists of several Tenuivirus and Phlebovirus nucleocapsid proteins. These are ssRNA viruses. 224 -283407 pfam05734 DUF832 Herpesvirus protein of unknown function (DUF832). This family consists of several herpesvirus proteins of unknown function. 228 -336198 pfam05735 TSP_C Thrombospondin C-terminal region. This region is found at the C-terminus of thrombospondin and related proteins. 198 -310386 pfam05736 OprF OprF membrane domain. This domain represents the presumed membrane spanning region of the OprF proteins. This region is involved in channel formation and is thought to form an 8-stranded beta-barrel. 156 -283410 pfam05737 Collagen_bind Collagen binding domain. The domain fold is a jelly-roll, composed of two antiparallel beta-sheets and two short alpha-helices. A groove on beta-sheet I exhibited the best surface complementarity to the collagen. This site partially overlaps with the peptide sequence previously shown to be critical for collagen binding. Recombinant proteins containing single amino acid mutations designed to disrupt the surface of the putative binding site exhibited significantly lower affinities for collagen. 129 -336199 pfam05738 Cna_B Cna protein B-type domain. This domain is found in Staphylococcus aureus collagen-binding surface protein. The structure of the repetitive B-region has been solved and forms a beta sandwich structure. 88 -336200 pfam05739 SNARE SNARE domain. Most if not all vesicular membrane fusion events in eukaryotic cells are believed to be mediated by a conserved fusion machinery, the SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors] machinery. The SNARE domain is thought to act as a protein-protein interaction module in the assembly of a SNARE protein complex. 52 -336201 pfam05741 zf-nanos Nanos RNA binding domain. This family consists of several conserved novel zinc finger domains found in the eukaryotic proteins Nanos and Xcat-2. In Drosophila melanogaster, Nanos functions as a localized determinant of posterior pattern. Nanos RNA is localized to the posterior pole of the maturing egg cell and encodes a protein that emanates from this localized source. Nanos acts as a translational repressor and thereby establishes a gradient of the morphogen Hunchback. Xcat-2 is found in the vegetal cortical region and is inherited by the vegetal blasomeres during development, and is degraded very early in development. The localized and maternally restricted expression of Xcat-2 RNA suggests a role for its protein in setting up regional differences in gene expression that occur early in development. 53 -336202 pfam05742 TANGO2 Transport and Golgi organisation 2. In eukaryotes this family is predicted to play a role in protein secretion and Golgi organisation. In plants this family includes Solanum habrochaites Cwp, which is involved in water permeability in the cuticles of fruit. Mouse Tango2 has been found to be expressed during early embryogenesis in mice. This protein contains a conserved NRDE motif. This gene has been characterized in Drosophila melanogaster and named as transport and Golgi organisation 2, hence the name Tango2. 252 -310391 pfam05743 UEV UEV domain. This family includes the eukaryotic tumor susceptibility gene 101 protein (TSG101). Altered transcripts of this gene have been detected in sporadic breast cancers and many other human malignancies. However, the involvement of this gene in neoplastic transformation and tumorigenesis is still elusive. TSG101 is required for normal cell function of embryonic and adult tissues but that this gene is not a tumor suppressor for sporadic forms of breast cancer. This family is related to the ubiquitin conjugating enzymes. 119 -283416 pfam05744 Benyvirus_P25 Benyvirus P25/P26 protein. This family consists of P25 and P26 proteins from the beet necrotic yellow vein viruses. 240 -336203 pfam05745 CRPA Chlamydia 15 kDa cysteine-rich outer membrane protein (CRPA). This family consists of several Chlamydia 15 kDa cysteine-rich outer membrane proteins which are associated with differentiation of reticulate bodies (RBs) into elementary bodies (EBs). 150 -336204 pfam05746 DALR_1 DALR anticodon binding domain. This all alpha helical domain is the anticodon binding domain in Arginyl and glycyl tRNA synthetase. This domain is known as the DALR domain after characteristic conserved amino acids. 115 -283418 pfam05748 Rubella_E1 Rubella membrane glycoprotein E1. Rubella virus (RV), the sole member of the genus Rubivirus within the family Togaviridae, is a small enveloped, positive strand RNA virus. The nucleocapsid consists of 40S genomic RNA and a single species of capsid protein which is enveloped within a host-derived lipid bilayer containing two viral glycoproteins, E1 (58 kDa) and E2 (42-46 kDa). In virus infected cells, RV matures by budding either at the plasma membrane, or at the internal membranes depending on the cell type and enters adjacent uninfected cells by a membrane fusion process in the endosome, directed by E1-E2 heterodimers. The heterodimer formation is crucial for E1 transport out of the endoplasmic reticulum to the Golgi and plasma membrane. In RV E1, a cysteine at position 82 is crucial for the E1-E2 heterodimer formation and cell surface expression of the two proteins. The E1 has been shown to be a type 1 membrane protein, rich in cysteine residues with extensive intramolecular disulfide bonds. 496 -283419 pfam05749 Rubella_E2 Rubella membrane glycoprotein E2. Rubella virus (RV), the sole member of the genus Rubivirus within the family Togaviridae, is a small enveloped, positive strand RNA virus. The nucleocapsid consists of 40S genomic RNA and a single species of capsid protein which is enveloped within a host-derived lipid bilayer containing two viral glycoproteins, E1 (58 kDa) and E2 (42-46 kDa). In virus infected cells, RV matures by budding either at the plasma membrane, or at the internal membranes depending on the cell type and enters adjacent uninfected cells by a membrane fusion process in the endosome, directed by E1-E2 heterodimers. The heterodimer formation is crucial for E1 transport out of the endoplasmic reticulum to the Golgi and plasma membrane. In RV E1, a cysteine at position 82 is crucial for the E1-E2 heterodimer formation and cell surface expression of the two proteins. 267 -283420 pfam05750 Rubella_Capsid Rubella capsid protein. Rubella virus is an enveloped positive-strand RNA virus of the family Togaviridae. Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. It has been discovered that capsid phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent non-specific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs. 300 -310393 pfam05751 FixH FixH. This family consists of several Rhizobium FixH like proteins. It has been suggested that suggested that the four proteins FixG, FixH, FixI, and FixS may participate in a membrane-bound complex coupling the FixI cation pump with a redox process catalyzed by FixG. 150 -283422 pfam05752 Calici_MSP Calicivirus minor structural protein. This family consists of minor structural proteins largely from human calicivirus isolates. Human calicivirus causes gastroenteritis. The function of this family is unknown. 165 -310394 pfam05753 TRAP_beta Translocon-associated protein beta (TRAPB). This family consists of several eukaryotic translocon-associated protein beta (TRAPB) or signal sequence receptor beta subunit (SSR-beta) proteins. The normal translocation of nascent polypeptides into the lumen of the endoplasmic reticulum (ER) is thought to be aided in part by a translocon-associated protein (TRAP) complex consisting of 4 protein subunits. The association of mature proteins with the ER and Golgi, or other intracellular locales, such as lysosomes, depends on the initial targeting of the nascent polypeptide to the ER membrane. A similar scenario must also exist for proteins destined for secretion. 178 -336205 pfam05754 DUF834 Domain of unknown function (DUF834). This short presumed domain is found in a large number of hypothetical plant proteins. The domain is quite rich in conserved glycine residues. It occurs in some putative transposons but currently has no known function. 51 -310395 pfam05755 REF Rubber elongation factor protein (REF). This family consists of the highly related rubber elongation factor (REF), small rubber particle protein (SRPP) and stress-related protein (SRP) sequences. REF and SRPP are released from the rubber particle membrane into the cytosol during osmotic lysis of the sedimentable organelles (lutoids). The exact function of this family is unknown. 203 -283426 pfam05756 S-antigen S-antigen protein. S-antigens are heat stable proteins that are found in the blood of individuals infected with malaria. 93 -310396 pfam05757 PsbQ Oxygen evolving enhancer protein 3 (PsbQ). This family consists of the plant specific oxygen evolving enhancer protein 3 (PsbQ). Photosystem II (PSII)1 is a pigment-protein complex, which consists of at least 25 different protein subunits, at present denoted PsbA-Z according to the genes that encode them. PsbQ plays an important role in the lumenal oxygen-evolving activity of PSII from higher plants and green algae. 198 -283428 pfam05758 Ycf1 Ycf1. The chloroplast genomes of most higher plants contain two giant open reading frames designated ycf1 and ycf2. Although the function of Ycf1 is unknown, it is known to be an essential gene. 944 -310397 pfam05760 IER Immediate early response protein (IER). This family consists of several eukaryotic immediate early response (IER) 2 and 5 proteins. The role of IER5 is unclear although it play an important role in mediating the cellular response to mitogenic signals. Again, little is known about the function of IER2 although it is thought to play a role in mediating the cellular responses to a variety of extracellular signals. 303 -336206 pfam05761 5_nucleotid 5' nucleotidase family. This family of eukaryotic proteins includes 5' nucleotidase enzymes, such as purine 5'-nucleotidase EC:3.1.3.5. 435 -283431 pfam05762 VWA_CoxE VWA domain containing CoxE-like protein. This family is annotated by SMART as containing a VWA (von Willebrand factor type A) domain. The exact function of this family is unknown. It is found as part of a CO oxidising (Cox) system operon is several bacteria. 223 -310399 pfam05763 DUF835 Protein of unknown function (DUF835). The members of this archaebacterial protein family are around 250-300 amino acid residues in length. The function of these proteins is not known. 136 -336207 pfam05764 YL1 YL1 nuclear protein. The proteins in this family are designated YL1. These proteins have been shown to be DNA-binding and may be a transcription factor. 236 -283434 pfam05766 NinG Bacteriophage Lambda NinG protein. NinG or Rap is involved in recombination. Rap (recombination adept with plasmid) increases lambda-by-plasmid recombination catalyzed by Escherichia coli's RecBCD pathway. 186 -283435 pfam05767 Pox_A14 Poxvirus virion envelope protein A14. This family consists of several Poxvirus virion envelope protein A14 like sequences. A14 is a component of the virion membrane and has been found to be an H1 phosphatase substrate in vivo and in vitro. A14 is hyperphosphorylated on serine residues in the absence of H1 expression. 93 -283436 pfam05768 DUF836 Glutaredoxin-like domain (DUF836). These proteins are related to the pfam00462 family. 80 -336208 pfam05769 SIKE SIKE family. This family consists of several eukaryotic proteins. Suppressor of IKBKE 1 (SIKE) is a physiological suppressor of IKK-epsilon and TBK1, which are two IKK-related kinases involved in virus- and TLR3-triggered activation of interferon regulatory factor 3 (IRF-3). Other members of this family are circulating cathodic antigen (CCA), found in Schistosoma mansoni (Blood fluke), and FGFR1 oncogene partner 2, which may be involved in wound healing pathway. 180 -253378 pfam05770 Ins134_P3_kin Inositol 1, 3, 4-trisphosphate 5/6-kinase. This family consists of several inositol 1, 3, 4-trisphosphate 5/6-kinase proteins. Inositol 1,3,4-trisphosphate is at a branch point in inositol phosphate metabolism. It is dephosphorylated by specific phosphatases to either inositol 3,4-bisphosphate or inositol 1,3-bisphosphate. Alternatively, it is phosphorylated to inositol 1,3,4,6-tetrakisphosphate or inositol 1,3,4,5-tetrakisphosphate by inositol trisphosphate 5/6-kinase. 307 -283438 pfam05771 Pox_A31 Poxvirus A31 protein. 113 -310402 pfam05772 NinB NinB protein. The ninR region of phage lambda contains two recombination genes, orf (ninB) and rap (ninG), that have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage lambda. NinB binds to single-stranded DNA. 121 -310403 pfam05773 RWD RWD domain. This domain was identified in WD40 repeat proteins and Ring finger domain proteins. The function of this domain is unknown. GCN2 is the alpha-subunit of the only translation initiation factor (eIF2 alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices. 110 -283441 pfam05774 Herpes_heli_pri Herpesvirus helicase-primase complex component. This family consists of several helicase-primase complex components from the Gammaherpesviruses. 127 -283442 pfam05775 AfaD Enterobacteria AfaD invasin protein. This family consists of several AfaD and related proteins from Escherichia coli and Salmonella bacteria. The afa gene clusters encode an afimbrial adhesive sheath produced by Escherichia coli. The adhesive sheath is composed of two proteins, AfaD and AfaE, which are independently exposed at the bacterial cell surface. AfaE is required for bacterial adhesion to HeLa cells and AfaD for the uptake of adherent bacteria into these cells. 105 -147756 pfam05776 Papilloma_E5A Papillomavirus E5A protein. Human papillomaviruses (HPVs) are epitheliotropic viruses, and their life cycle is intimately linked to the stratification and differentiation state of the host epithelial tissues. The kinetics of E5a protein expression during the complete viral life cycle has been studied and the highest level was found to be coincidental with the onset of virion morphogenesis. 91 -283443 pfam05777 Acp26Ab Drosophila accessory gland-specific peptide 26Ab (Acp26Ab). This family consists of accessory gland-specific 26Ab peptides or male accessory gland secretory protein 355B from different Drosophila species. Drosophila males, like males of most other insects, transfer a group of specific proteins (Acp26Ab and Acp26Aa in Drosophila) to the females during mating. These proteins are produced primarily in the accessory gland and are likely to influence the female's reproduction. 90 -310404 pfam05778 Apo-CIII Apolipoprotein CIII (Apo-CIII). This family consists of several mammalian apolipoprotein CIII (Apo-CIII) sequences. Apolipoprotein C-III is a 79-residue glycoprotein. It is synthesized in the intestine and liver as part of the very low density lipoprotein (VLDL) and the high density lipoprotein (HDL) particles. Owing to its positive correlation with plasma triglyceride (Tg) levels, Apo-CIII is suggested to play a role in Tg metabolism and is therefore of interest regarding atherosclerosis. However, unlike other apolipoproteins such as Apo-AI, Apo E or CII for which many naturally occurring mutations are known, the structure-function relationships of apo C-III remains a subject of debate. One possibility is that apo C-III inhibits lipoprotein lipase (LPL) activity, as shown by in vitro experiments. Another suggestion, is that elevated levels of Apo-CIII displace other apolipoproteins at the lipoprotein surface, modifying their clearance from plasma. 68 -310405 pfam05781 MRVI1 MRVI1 protein. This family consists of mammalian MRVI1 proteins which are related to the lymphoid-restricted membrane protein (JAW1) and the IP3 receptor associated cGMP kinase substrates A and B (IRAGA and IRAGB). The function of MRVI1 is unknown although mutations in the Mrvi1 gene induces myeloid leukaemia by altering the expression of a gene important for myeloid cell growth and/or differentiation so it has been speculated that Mrvi1 is a tumor suppressor gene. IRAG is very similar in sequence to MRVI1 and is an essential NO/cGKI-dependent regulator of IP3-induced calcium release. Activation of cGKI decreases IP3-stimulated elevations in intracellular calcium, induces smooth muscle relaxation and contributes to the antiproliferative and pro-apoptotic effects of NO/cGMP. Jaw1 is a member of a class of proteins with COOH-terminal hydrophobic membrane anchors and is structurally similar to proteins involved in vesicle targeting and fusion. This suggests that the function and/or the structure of the ER in lymphocytes may be modified by lymphoid-restricted resident ER proteins. 533 -310406 pfam05782 ECM1 Extracellular matrix protein 1 (ECM1). This family consists of several eukaryotic extracellular matrix protein 1 (ECM1) sequences. ECM1 has been shown to regulate endochondral bone formation, stimulate the proliferation of endothelial cells and induce angiogenesis. Mutations in the ECM1 gene can cause lipoid proteinosis, a disorder which causes generalized thickening of skin, mucosae and certain viscera. Classical features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. 558 -310407 pfam05783 DLIC Dynein light intermediate chain (DLIC). This family consists of several eukaryotic dynein light intermediate chain proteins. The light intermediate chains (LICs) of cytoplasmic dynein consist of multiple isoforms, which undergo post-translational modification to produce a large number of species. DLIC1 is known to be involved in assembly, organisation, and function of centrosomes and mitotic spindles when bound to pericentrin. DLIC2 is a subunit of cytoplasmic dynein 2 that may play a role in maintaining Golgi organisation by binding cytoplasmic dynein 2 to its Golgi-associated cargo. 471 -283448 pfam05784 Herpes_UL82_83 Betaherpesvirus UL82/83 protein N-terminus. This family represents the N terminal region of the Betaherpesvirus UL82 and UL83 proteins. As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. Human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favourable for viral replication. The protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase. 343 -283449 pfam05785 CNF1 Rho-activating domain of cytotoxic necrotizing factor. This family consists of several bacterial cytotoxic necrotizing factor proteins as well as related dermonecrotic toxin (DNT) from Bordetella species. Cytotoxic necrotizing factor 1 (CNF1) causes necrosis of rabbit skin and re-organisation of the actin cytoskeleton in cultured cells. Bordetella dermonecrotic toxin (DNT) stimulates the assembly of actin stress fibers and focal adhesions by deamidating or polyaminating Gln63 of the small GTPase Rho. DNT is an A-B toxin which is composed of an N-terminal receptor-binding (B) domain and a C-terminal enzymatically active (A) domain. 286 -310408 pfam05786 Cnd2 Condensin complex subunit 2. This family consists of several Barren protein homologs from several eukaryotic organisms. In Drosophila Barren (barr) is required for sister-chromatid segregation in mitosis. barr encodes a novel protein that is present in proliferating cells and has homologs in yeast and human. Mitotic defects in barr embryos become apparent during cycle 16, resulting in a loss of PNS and CNS neurons. Centromeres move apart at the metaphase-anaphase transition and Cyclin B is degraded, but sister chromatids remain connected, resulting in chromatin bridging. Barren protein localizes to chromatin throughout mitosis. Colocalization and biochemical experiments indicate that Barren associates with Topoisomerase II throughout mitosis and alters the activity of Topoisomerase II. It has been suggested that this association is required for proper chromosomal segregation by facilitating the decatenation of chromatids at anaphase. This family forms one of the three non-structural maintenance of chromosomes (SMC) subunits of the mitotic condensation complex along with Cnd1 and Cnd3. 669 -253386 pfam05787 DUF839 Bacterial protein of unknown function (DUF839). This family consists of several bacterial proteins of unknown function that contain a predicted beta-propeller repeats. 515 -283451 pfam05788 Orbi_VP1 Orbivirus RNA-dependent RNA polymerase (VP1). This family consists of the RNA-dependent RNA polymerase protein VP1 from the Orbiviruses. VP1 may have both enzymatic and structural roles in the virus life cycle. 1297 -283452 pfam05789 Baculo_VP1054 Baculovirus VP1054 protein. This family consists of several VP1054 proteins from the Baculoviruses. VP1054 is a virus structural protein required for nucleocapsid assembly. 379 -283453 pfam05790 C2-set Immunoglobulin C2-set domain. 80 -336209 pfam05791 Bacillus_HBL Bacillus haemolytic enterotoxin (HBL). This family consists of several Bacillus haemolytic enterotoxins (HblC, HblD, HblA, NheA, and NheB) which can cause food poisoning in humans. 176 -336210 pfam05792 Candida_ALS Candida agglutinin-like (ALS). This family consists of several agglutinin-like proteins from different Candida species. ALS genes of Candida albicans encode a family of cell-surface glycoproteins with a three-domain structure. Each Als protein has a relatively conserved N-terminal domain, a central domain consisting of a tandemly repeated motif of variable number, and a serine-threonine-rich C-terminal domain that is relatively variable across the family. The ALS family exhibits several types of variability that indicate the importance of considering strain and allelic differences when studying ALS genes and their encoded proteins. Fungal adhesins, which include sexual agglutinins, virulence factors, and flocculins, are surface proteins that mediate cell-cell and cell-environment interactions. It is possible that both the serine/threonine-rich domain and the cysteine residues in the C-terminal and DIPSY pfam11763 participate in anchoring the terminal domains inside the wall, so that only the inner part of Map4p, including the repeat region, is sticking out as a fold-back loop then able to act in adhesing. 33 -310411 pfam05793 TFIIF_alpha Transcription initiation factor IIF, alpha subunit (TFIIF-alpha). Transcription initiation factor IIF, alpha subunit (TFIIF-alpha) or RNA polymerase II-associating protein 74 (RAP74) is the large subunit of transcription factor IIF (TFIIF), which is essential for accurate initiation and stimulates elongation by RNA polymerase II. 528 -336211 pfam05794 Tcp11 T-complex protein 11. This family consists of several eukaryotic T-complex protein 11 (Tcp11) related sequences. Tcp11 is only expressed in fertile adult mammalian testes and is thought to be important in sperm function and fertility. The family also contains the yeast Sok1 protein which is known to suppress cyclic AMP-dependent protein kinase mutants. 425 -310413 pfam05795 Plasmodium_Vir Plasmodium vivax Vir protein. This family consists of several Vir proteins specific to Plasmodium vivax. The vir genes are present at about 600-1,000 copies per haploid genome and encode proteins that are immunovariant in natural infections, indicating that they may have a functional role in establishing chronic infection through antigenic variation. 371 -283458 pfam05796 Chordopox_G2 Chordopoxvirus protein G2. This family consists of several Chordopoxvirus isatin-beta-thiosemicarbazone dependent protein (protein G2) sequences. Inactivation of the gene coding for this protein renders the virus dependent upon isatin-beta-thiosemicarbazone (IBT) for growth. 215 -283459 pfam05797 Rep_4 Yeast trans-acting factor (REP1/REP2). This family consists of the yeast trans-acting factor B and C (REP1 and 2) proteins. The yeast plasmid stability system consists of two plasmid-coded proteins, Rep1 and Rep2, and a cis-acting locus, STB. The Rep proteins show both self- and cross-interactions in vivo and in vitro, and bind to the STB DNA with assistance from host factor(s). Within the yeast nucleus, the Rep1 and Rep2 proteins tightly associate with STB-containing plasmids into well organized plasmid foci that form a cohesive unit in partitioning. It is generally accepted that the protein-protein and DNA-protein interactions engendered by the Rep-STB system are central to plasmid partitioning. Point mutations in Rep1 that knock out interaction with Rep2 or with STB simultaneously block the ability of these Rep1 variants to support plasmid stability. 369 -283460 pfam05798 Phage_FRD3 Bacteriophage FRD3 protein. This family consists of bacteriophage FRD3 proteins. 75 -310414 pfam05800 GvpO Gas vesicle synthesis protein GvpO. This family consists of archaeal GvpO proteins which are required for gas vesicle synthesis. The family also contains two related sequences from Streptomyces coelicolor. 94 -283462 pfam05801 DUF840 Lagovirus protein of unknown function (DUF840). This family consists of several Lagovirus sequences of unknown function, largely from rabbit hemorrhagic disease virus. 113 -310415 pfam05802 EspB Enterobacterial EspB protein. EspB is a type-III-secreted pore-forming protein of enteropathogenic Escherichia coli (EPEC) which is essential for EPEC pathogenesis. EspB is also found in Citrobacter rodentium. 317 -283464 pfam05803 Chordopox_L2 Chordopoxvirus L2 protein. This family consists of several Chordopoxvirus L2 proteins. 79 -253396 pfam05804 KAP Kinesin-associated protein (KAP). This family consists of several eukaryotic kinesin-associated (KAP) proteins. Kinesins are intracellular multimeric transport motor proteins that move cellular cargo on microtubule tracks. It has been shown that the sea urchin KRP85/95 holoenzyme associates with a KAP115 non-motor protein, forming a heterotrimeric complex in vitro, called the Kinesin-II. 708 -310416 pfam05805 L6_membrane L6 membrane protein. This family consists of several eukaryotic L6 membrane proteins. L6, IL-TMP, and TM4SF5 are cell surface proteins predicted to have four transmembrane domains. Previous sequence analysis led to their assignment as members of the tetraspanin superfamily it has now been found that that they are not significantly related to genuine tetraspanins, but instead constitute their own L6 family. Several members of this family have been implicated in human cancer. 192 -310417 pfam05806 Noggin Noggin. This family consists of the eukaryotic Noggin proteins. Noggin is a glycoprotein that binds bone morphogenetic proteins (BMPs) selectively and, when added to osteoblasts, it opposes the effects of BMPs. It has been found that noggin arrests the differentiation of stromal cells, preventing cellular maturation. 212 -310418 pfam05808 Podoplanin Podoplanin. This family consists of several mammalian podoplanin like proteins which are thought to control specifically the unique shape of podocytes. 162 -283468 pfam05810 NinF NinF protein. This family consists of several bacteriophage NinF proteins as well as related sequences from E. coli. 59 -310419 pfam05811 DUF842 Eukaryotic protein of unknown function (DUF842). This family consists of a number of conserved eukaryotic proteins of unknown function. The sequences carry three sets of CxxxC motifs, which might suggest a type of zinc-finger formation. 126 -283470 pfam05812 Herpes_BLRF2 Herpesvirus BLRF2 protein. This family consists of several Herpesvirus BLRF2 proteins. 119 -283471 pfam05813 Orthopox_F7 Orthopoxvirus F7 protein. 80 -114536 pfam05814 Ac76 Orf76 (Ac76). This family consists mainly of baculovirus proteins. Family members include Autographa californica multiple nucleopolyhedrovirus (AcMNPV), protein AC76. Ac76 has been shown to be involved in intranuclear microvesicle formation. Functional studies suggest that ac76 is essential for both BV (budded virus) and ODV (occlusion-derived virus) development but is not required for viral DNA synthesis. 83 -283472 pfam05815 DUF844 Baculovirus protein of unknown function (DUF844). This family consists of several Baculovirus sequences of between 350 and 380 residues long. The family has no known function. 377 -310420 pfam05816 TelA Toxic anion resistance protein (TelA). This family consists of several prokaryotic TelA like proteins. TelA and KlA are associated with tellurite resistance and plasmid fertility inhibition. 331 -310421 pfam05817 Ribophorin_II Oligosaccharyltransferase subunit Ribophorin II. This family contains eukaryotic Ribophorin II (RPN2) proteins. The mammalian oligosaccharyltransferase (OST) is a protein complex that effects the cotranslational N-glycosylation of newly synthesized polypeptides, and is composed of the following proteins: ribophorins I and II (RI and RII), OST48, and Dadl, N33/IAP, OST4, STT3. The family also includes the SWP1 protein from yeast. In yeast the oligosaccharyltransferase complex is composed 7 or 8 subunits, SWP1, being one of them. 632 -336212 pfam05818 TraT Enterobacterial TraT complement resistance protein. The traT gene is one of the F factor transfer genes and encodes an outer membrane protein which is involved in interactions between an Escherichia coli and its surroundings. 214 -283476 pfam05819 NolX NolX protein. This family consists of Rhizobium NolX and Xanthomonas HrpF proteins. The interaction between the plant pathogen Xanthomonas campestris pv. vesicatoria and its host plants is controlled by hrp genes (hypersensitive reaction and pathogenicity), which encode a type III protein secretion system. Among type III-secreted proteins are avirulence proteins, effectors involved in the induction of plant defense reactions. HrpF is dispensable for protein secretion but required for AvrBs3 recognition in planta, is thought to function as a translocator of effector proteins into the host cell. NolX, a soybean cultivar specificity protein, is secreted by a type III secretion system (TTSS) and shows homology to HrpF of the plant pathogen Xanthomonas campestris pv. vesicatoria. It is not known whether NolX functions at the bacterium-plant interface or acts inside the host cell. NolX is expressed in planta only during the early stages of nodule development. 709 -336213 pfam05820 Ac81 Baculoviridae AC81. This family consists of several highly related Baculovirus proteins and includes Autographa californica multiple nucleopolyhedrovirus (AcMNPV) protein AC81, which is required for nucleocapsid envelopment. Ac81 contains a functional hydrophobic transmembrane (TM) domain, whose deletion resulted in a phenotype similar to that of Ac81 knockout. 177 -310423 pfam05821 NDUF_B8 NADH-ubiquinone oxidoreductase ASHI subunit (CI-ASHI or NDUFB8). This family consists of several eukaryotic NADH-ubiquinone oxidoreductase ASHI subunit (CI-ASHI) proteins. NADH:ubiquinone oxidoreductase (complex I) is an extremely complicated multiprotein complex located in the inner mitochondrial membrane. Its main function is the transport of electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. Human complex I appears to consist of 41 subunits. 167 -310424 pfam05822 UMPH-1 Pyrimidine 5'-nucleotidase (UMPH-1). This family consists of several eukaryotic pyrimidine 5'-nucleotidase proteins. P5'N-1, also known as uridine monophosphate hydrolase-1 (UMPH-1), is a member of a large functional group of enzymes, characterized by the ability to dephosphorylate nucleic acids. P5'N-1 catalyzes the dephosphorylation of pyrimidine nucleoside monophosphates to the corresponding nucleosides. Deficiencies in this proteins function can lead to several different disorders in humans. 246 -310425 pfam05823 Gp-FAR-1 Nematode fatty acid retinoid binding protein (Gp-FAR-1). Parasitic nematodes produce at least two structurally novel classes of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant or animal hosts and thus represent potential targets for new nematicides. Gp-FAR-1 is a member of the nematode-specific fatty-acid- and retinol-binding (FAR) family of proteins but localizes to the surface of the organism, placing it in a strategic position for interaction with the host. Gp-FAR-1 functions as a broad-spectrum retinol- and fatty-acid-binding protein, and it is thought that it is involved in the evasion of primary host plant defense systems. 142 -310426 pfam05824 Pro-MCH Pro-melanin-concentrating hormone (Pro-MCH). This family consists of several mammalian pro-melanin-concentrating hormone (Pro-MCH) 1 and 2 proteins. Melanin-concentrating hormone (MCH) is a 19 amino acid cyclic peptide that was first isolated from the pituitary of teleost fish. It is produced from pro-MCH that encodes, in addition to MCH, NEI, and a putative peptide, NGE. In lower vertebrates, MCH acts to regulate skin colour by antagonising the melanin-dispersing actions of small alpha, Greek-melanocyte stimulating hormone (small alpha, Greek-MSH). In mammals, MCH serves as a neuropeptide and is found in many regions of the brain and especially the hypothalamus. It affects many types of behaviours such as appetite, sexual receptivity, aggression, and anxiety. MCH also stimulates the release of luteinising hormone. 84 -283482 pfam05825 PSP94 Beta-microseminoprotein (PSP-94). This family consists of the mammalian specific protein beta-microseminoprotein. Prostatic secretory protein of 94 amino acids (PSP94), also called beta-microseminoprotein, is a small, nonglycosylated protein, rich in cysteine residues. It was first isolated as a major protein from human seminal plasma. The exact function of this protein is unknown. 94 -336214 pfam05826 Phospholip_A2_2 Phospholipase A2. This family consists of several phospholipase A2 like proteins mostly from insects. 95 -336215 pfam05827 ATP-synt_S1 Vacuolar ATP synthase subunit S1 (ATP6S1). This family consists of eukaryotic vacuolar ATP synthase subunit S1 proteins. The threshold is set high to avoid the inclusion of BIG1 ER integral membrane proteins which are involved in cell wall organisation and biogenesis. 144 -310429 pfam05829 Adeno_PX Adenovirus late L2 mu core protein (Protein X). This family consists of several Adenovirus late L2 mu core protein or Protein X sequences. 41 -283486 pfam05830 NodZ Nodulation protein Z (NodZ). The nodulation genes of Rhizobia are regulated by the nodD gene product in response to host-produced flavonoids and appear to encode enzymes involved in the production of a lipo-chitose signal molecule required for infection and nodule formation. NodZ is required for the addition of a 2-O-methylfucose residue to the terminal reducing N-acetylglucosamine of the nodulation signal. This substitution is essential for the biological activity of this molecule. Mutations in nodZ result in defective nodulation. nodZ represents a unique nodulation gene that is not under the control of NodD and yet is essential for the synthesis of an active nodulation signal. 320 -310430 pfam05831 GAGE GAGE protein. This family consists of several GAGE and XAGE proteins which are found exclusively in humans. The function of this family is unknown although they have been implicated in human cancers. 107 -336216 pfam05832 DUF846 Eukaryotic protein of unknown function (DUF846). This family consists of several of unknown function from a variety of eukaryotic organisms. 139 -336217 pfam05833 FbpA Fibronectin-binding protein A N-terminus (FbpA). This family consists of the N-terminal region of the prokaryotic fibronectin-binding protein. Fibronectin binding is considered to be an important virulence factor in streptococcal infections. Fibronectin is a dimeric glycoprotein that is present in a soluble form in plasma and extracellular fluids; it is also present in a fibrillar form on cell surfaces. Both the soluble and cellular forms of fibronectin may be incorporated into the extracellular tissue matrix. While fibronectin has critical roles in eukaryotic cellular processes, such as adhesion, migration and differentiation, it is also a substrate for the attachment of bacteria. The binding of pathogenic Streptococcus pyogenes and Staphylococcus aureus to epithelial cells via fibronectin facilitates their internalisation and systemic spread within the host. 452 -310433 pfam05834 Lycopene_cycl Lycopene cyclase protein. This family consists of lycopene beta and epsilon cyclase proteins. Carotenoids with cyclic end groups are essential components of the photosynthetic membranes in all plants, algae, and cyanobacteria. These lipid-soluble compounds protect against photo-oxidation, harvest light for photosynthesis, and dissipate excess light energy absorbed by the antenna pigments. The cyclisation of lycopene (psi, psi-carotene) is a key branch point in the pathway of carotenoid biosynthesis. Two types of cyclic end groups are found in higher plant carotenoids: the beta and epsilon rings. Carotenoids with two beta rings are ubiquitous, and those with one beta and one epsilon ring are common; however, carotenoids with two epsilon rings are rare. 380 -310434 pfam05835 Synaphin Synaphin protein. This family consists of several eukaryotic synaphin 1 and 2 proteins. Synaphin/complexin is a cytosolic protein that preferentially binds to syntaxin within the SNARE complex. Synaphin promotes SNAREs to form precomplexes that oligomerise into higher order structures. A peptide from the central, syntaxin binding domain of synaphin competitively inhibits these two proteins from interacting and prevents SNARE complexes from oligomerising. It is thought that oligomerization of SNARE complexes into a higher order structure creates a SNARE scaffold for efficient, regulated fusion of synaptic vesicles. Synaphin promotes neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion. 142 -283492 pfam05836 Chorion_S16 Chorion protein S16. This family consists of several examples of the fruit fly specific chorion protein S16. The chorion genes of Drosophila are amplified in response to developmental signals in the follicle cells of the ovary. 108 -336218 pfam05837 CENP-H Centromere protein H (CENP-H). This family consists of several eukaryotic centromere protein H (CENP-H) sequences. Macromolecular centromere-kinetochore complex plays a critical role in sister chromatid separation, but its complete protein composition as well as its precise dynamic function during mitosis has not yet been clearly determined. CENP-H contains a coiled-coil structure and a nuclear localization signal. CENP-H is specifically and constitutively localized in kinetochores throughout the cell cycle. CENP-H may play a role in kinetochore organisation and function throughout the cell cycle. This the C-terminus of the region, which is conserved from fungi to humans. 113 -336219 pfam05838 Glyco_hydro_108 Glycosyl hydrolase 108. This family acts as a lysozyme (N-acetylmuramidase), EC:3.2.1.17. It contains a conserved EGGY motif near the N-terminus, the glutamic acid within this motif is essential for catalytic activity. In bacteria, it may activate the secretion of large proteins via the breaking and rearrangement of the peptidoglycan layer during secretion. It is frequently found at the N-terminus of proteins containing a C-terminal pfam09374 domain. 79 -310437 pfam05839 Apc13p Apc13p protein. The anaphase-promoting complex (APC) is a conserved multi-subunit ubiquitin ligase required for the degradation of key cell cycle regulators Members of this family are components of the anaphase-promoting complex homologous to Apc13p. 89 -336220 pfam05840 Phage_GPA Bacteriophage replication gene A protein (GPA). This family consists of a group of bacteriophage replication gene A protein (GPA) like sequences from both viruses and bacteria. The members of this family are likely to be endonucleases. 321 -310438 pfam05841 Apc15p Apc15p protein. The anaphase-promoting complex (APC) is a conserved multi-subunit ubiquitin ligase required for the degradation of key cell cycle regulators Members of this family are components of the anaphase-promoting complex homologous to Apc15p. 121 -191385 pfam05842 Euplotes_phero Euplotes octocarinatus mating pheromone protein. This family consists of several mating pheromone proteins from Euplotes octocarinatus. Cells of the ten mating types of the ciliate Euplotes octocarinatus communicate by pheromones before they enter conjugation. The pheromones induce homotypic pairing when applied to mating types that do not secrete the same pheromone(s). Heterotypic pairs (i.e., those between cells of different mating types) are formed only when both mating types in a mixture secrete a pheromone that the other does not. The genetics of mating types is based on four codominant mating type alleles, each allele determining production of a different pheromone. The pheromones not only induce pair formation but also attract cells. 135 -310439 pfam05843 Suf Suppressor of forked protein (Suf). This family consists of several eukaryotic suppressor of forked (Suf) like proteins. The Drosophila melanogaster Suppressor of forked [Su(f)] protein shares homology with the yeast RNA14 protein and the 77-kDa subunit of human cleavage stimulation factor, which are proteins involved in mRNA 3' end formation. This suggests a role for Su(f) in mRNA 3' end formation in Drosophila. The su(f) gene produces three transcripts; two of them are polyadenylated at the end of the transcription unit, and one is a truncated transcript, polyadenylated in intron 4. It is thought that su(f) plays a role in the regulation of poly(A) site utilisation and an important role of the GU-rich sequence for this regulation to occur. 290 -283498 pfam05844 YopD YopD protein. This family consists of several bacterial YopD like proteins. Virulent Yersinia species harbour a common plasmid that encodes essential virulence determinants (Yersinia outer proteins [Yops]), which are regulated by the extracellular stimuli Ca2+ and temperature. YopD is thought to be a possible transmembrane protein and contains an amphipathic alpha-helix in its carboxy terminus. 292 -336221 pfam05845 PhnH Bacterial phosphonate metabolism protein (PhnH). This family consists of several bacterial PhnH sequences which are known to be involved in phosphonate metabolism. 184 -283500 pfam05846 Chordopox_A15 Chordopoxvirus A15 protein. This family consists of several Chordopoxvirus A15 like sequences. 90 -283501 pfam05847 Baculo_LEF-3 Nucleopolyhedrovirus late expression factor 3 (LEF-3). This family consists of LEF-3 Nucleopolyhedrovirus late expression factor 3 (LEF-3) sequences which are known to be ssDNA-binding proteins. Alkaline nuclease (AN) and LEF-3 may participate in homologous recombination of the baculovirus genome in a manner similar to that of exonuclease (Redalpha) and DNA-binding protein (Redbeta) of the Red-mediated homologous recombination system of bacteriophage lambda. LEF-3 is essential for transporting the putative baculovirus helicase protein P143 into the nucleus where they function together during viral DNA replication. LEF-3 and other proteins have been shown to bind to closely linked sites on viral chromatin in vivo, suggesting that they may form part of the baculovirus replisome. 364 -336222 pfam05848 CtsR Firmicute transcriptional repressor of class III stress genes (CtsR). This family consists of several Firmicute transcriptional repressor of class III stress genes (CtsR) proteins. CtsR of L. monocytogenes negatively regulates the clpC, clpP and clpE genes belonging to the CtsR regulon. 143 -283503 pfam05849 L-fibroin Fibroin light chain (L-fibroin). This family consists of several moth fibroin light chain (L-fibroin) proteins. Fibroin of the silkworm, Bombyx mori, is secreted into the lumen of posterior silk gland (PSG) from the surrounding PSG cells as a molecular complex consisting of a heavy (H)-chain of approximately 350 kDa, a light (L)-chain of 25 kDa and a P25 of about 27 kDa. The H- and L-chains are disulfide-linked but P25 is associated with the H-L complex by non-covalent force. 245 -147807 pfam05851 Lentivirus_VIF Lentivirus virion infectivity factor (VIF). This family consists of several feline specific Lentivirus virion infectivity factor (VIF) proteins. VIF is essential for productive FIV infection of host target cells in vitro. 250 -283504 pfam05852 DUF848 Gammaherpesvirus protein of unknown function (DUF848). This family consists of several uncharacterized proteins from the Gammaherpesvirinae. 145 -336223 pfam05853 BKACE beta-keto acid cleavage enzyme. BKACE, beta-keto acid cleavage enzyme plays, a role in lysine degradation. In certain instances it catalyzes the conversion of 3-keto-5-aminohexanoate and acetyl-CoA into acetoacetate and 3-aminobutyryl-CoA. The family is found to have at least 14 slightly different potential new enzymatic activities, all of which can therefore be designated as beta-keto acid cleavage enzymes. 273 -310443 pfam05854 MC1 Non-histone chromosomal protein MC1. This family consists of archaeal chromosomal protein MC1 sequences which protect DNA against thermal denaturation. 90 -310444 pfam05856 ARPC4 ARP2/3 complex 20 kDa subunit (ARPC4). This family consists of several eukaryotic ARP2/3 complex 20 kDa subunit (P20-ARC) proteins. The Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3 it has been suggested that the complex promotes actin assembly in lamellipodia and may participate in lamellipodial protrusion. 166 -310445 pfam05857 TraX TraX protein. This family consists of several bacterial TraX proteins. TraX is responsible for the amino-terminal acetylation of F-pilin subunits. 216 -147812 pfam05858 BIV_Env Bovine immunodeficiency virus surface protein (SU). The bovine lentivirus also known as the bovine immunodeficiency-like virus (BIV) has conserved and hypervariable regions in the surface envelope gene. This family corresponds to the SU surface protein. 548 -336224 pfam05859 Mis12 Mis12 protein. Kinetochores are the chromosomal sites for spindle interaction and play a vital role in chromosome segregation. Fission yeast kinetochore protein Mis12, is required for correct spindle morphogenesis, determining metaphase spindle length. Thirty-five to sixty percent extension of metaphase spindle length takes place in Mis12 mutants. It has been shown that Mis12 genetically interacts with Mal2, another inner centromere core complex protein in S. pombe. 132 -336225 pfam05860 Haemagg_act haemagglutination activity domain. This domain is suggested to be a carbohydrate- dependent haemagglutination activity site. It is found in a range of haemagglutinins and haemolysins. 117 -336226 pfam05861 PhnI Bacterial phosphonate metabolism protein (PhnI). This family consists of several Proteobacterial phosphonate metabolism protein (PhnI) sequences. Bacteria that use phosphonates as a phosphorus source must be able to break the stable carbon-phosphorus bond. In Escherichia coli phosphonates are broken down by a C-P lyase that has a broad substrate specificity. The genes for phosphonate uptake and degradation in E. coli are organized in an operon of 14 genes, named phnC to phnP. Three gene products (PhnC, PhnD and PhnE) comprise a binding protein-dependent phosphonate transporter, which also transports phosphate, phosphite, and certain phosphate esters such as phosphoserine; two gene products (PhnF and PhnO) may have a role in gene regulation; and nine gene products (PhnG, PhnH, PhnI, PhnJ, PhnK, PhnL, PhnM, PhnN, and PhnP) probably comprise a membrane-associated C-P lyase enzyme complex. 353 -147815 pfam05862 IceA2 Helicobacter pylori IceA2 protein. This family consists of several Helicobacter pylori specific IceA2 proteins. The function of this family is unknown. 59 -283512 pfam05864 Chordopox_RPO7 Chordopoxvirus DNA-directed RNA polymerase 7 kDa polypeptide (RPO7). This family consists of several Chordopoxvirus DNA-directed RNA polymerase 7 kDa polypeptide sequences. DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA. 63 -310449 pfam05865 Cypo_polyhedrin Cypovirus polyhedrin protein. This family consists of several Cypovirus polyhedrin protein. Polyhedrin is known to form a crystalline matrix (polyhedra) in infected insect cells. 248 -336227 pfam05866 RusA Endodeoxyribonuclease RusA. This family consists of several bacterial and phage Holliday junction resolvase (RusA) like proteins. The RusA protein of Escherichia coli is an endonuclease that can resolve Holliday intermediates and correct the defects in genetic recombination and DNA repair associated with inactivation of RuvAB or RuvC. 115 -310451 pfam05867 DUF851 Protein of unknown function (DUF851). 240 -114586 pfam05868 Rotavirus_VP7 Rotavirus major outer capsid protein VP7. This family consists of several Rotavirus major outer capsid protein VP7 sequences. The rotavirus capsid is composed of three concentric protein layers. Proteins VP4 and VP7 comprise the outer layer. VP4 forms spikes and is the viral attachment protein. VP7 is a glycoprotein and the major constituent of the outer protein layer. 249 -310452 pfam05869 Dam DNA N-6-adenine-methyltransferase (Dam). This family consists of several bacterial and phage DNA N-6-adenine-methyltransferase (Dam) like sequences. 172 -310453 pfam05870 PA_decarbox Phenolic acid decarboxylase (PAD). This family consists of several bacterial phenolic acid decarboxylase proteins. Phenolic acids, also called substituted cinnamic acids, are important lignin-related aromatic acids and natural constituents of plant cell walls. These acids (particularly ferulic, p-coumaric, and caffeic acids) bind the complex lignin polymer to the hemicellulose and cellulose in plants. The Phenolic acid decarboxylase (PAD) gene (pad) is transcriptionally regulated by p-coumaric, ferulic, or caffeic acid; these three acids are the three substrates of PAD. 158 -310454 pfam05871 ESCRT-II ESCRT-II complex subunit. This family of conserved eukaryotic proteins are subunits of the endosome associated complex ESCRT-II which recruits transport machinery for protein sorting at the multivesicular body (MVB). This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo. 139 -283518 pfam05872 DUF853 Bacterial protein of unknown function (DUF853). This family consists of several bacterial proteins of unknown function. BMEI1370 is thought to be an ATPase. 503 -310455 pfam05873 Mt_ATP-synt_D ATP synthase D chain, mitochondrial (ATP5H). This family consists of several ATP synthase D chain, mitochondrial (ATP5H) proteins. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts. 154 -283520 pfam05874 PBAN Pheromone biosynthesis activating neuropeptide (PBAN). This family consists of several moth pheromone biosynthesis activating neuropeptide (PBAN) sequences. Female moths produce and release species specific sex pheromones to attract males for mating. Pheromone biosynthesis is hormonally regulated by the Pheromone Biosynthesis Activating Neuropeptide (PBAN) which is biosynthesized in the subesophageal ganglion (SOG). 190 -336228 pfam05875 Ceramidase Ceramidase. This family consists of several ceramidases. Ceramidases are enzymes involved in regulating cellular levels of ceramides, sphingoid bases, and their phosphates, EC:3.5.1.23. This family belongs to the CREST superfamily, which are distantly related to the GPCRs. 258 -310457 pfam05876 Terminase_GpA Phage terminase large subunit (GpA). This family consists of several phage terminase large subunit proteins as well as related sequences from several bacterial species. The DNA packaging enzyme of bacteriophage lambda, terminase, is a heteromultimer composed of a small subunit, gpNu1, and a large subunit, gpA, products of the Nu1 and A genes, respectively. Terminase is involved in the site-specific binding and cutting of the DNA in the initial stages of packaging. It is now known that gpA is actively involved in late stages of packaging, including DNA translocation, and that this enzyme contains separate functional domains for its early and late packaging activities. 557 -283523 pfam05878 Phyto_Pns9_10 Phytoreovirus nonstructural protein Pns9/Pns10. This family consists of the Phytoreovirus nonstructural proteins Pns9 and Pns10. The function of this family is unknown. 344 -310458 pfam05879 RHD3 Root hair defective 3 GTP-binding protein (RHD3). This family consists of several eukaryotic root hair defective 3 like GTP-binding proteins. It has been speculated that the RHD3 protein is a member of a novel class of GTP-binding proteins that is widespread in eukaryotes and required for regulated cell enlargement. The family also contains the homologous yeast synthetic enhancement of YOP1 (SEY1) protein which is involved in membrane trafficking. 639 -283524 pfam05880 Fiji_64_capsid Fijivirus 64 kDa capsid protein. This family consists of several Fijivirus 64 kDa capsid proteins. 554 -310459 pfam05881 CNPase 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP or CNPase). This family consists of the eukaryotic protein 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP). 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) is one of the earliest myelin-related proteins expressed in differentiating oligodendrocytes and Schwann cells. CNP is abundant in the central nervous system and in oligodendrocytes. This protein is also found in mammalian photoreceptor cells, testis and lymphocytes. Although the biological function of CNP is unknown, it is thought to play a significant role in the formation of the myelin sheath, where it comprises 4% of total protein. CNP selectively cleaves 2',3'-cyclic nucleotides to produce 2'-nucleotides in vitro. Although physiologically relevant substrates with 2',3'-cyclic termini are still unknown, numerous cyclic phosphate containing RNAs occur transiently within eukaryotic cells. Other known protein families capable of hydrolysing 2',3'-cyclic nucleotides include tRNA ligases and plant cyclic phosphodiesterases. The catalytic domains from all these proteins contain two tetra-peptide motifs H-X-T/S-X, where X is usually a hydrophobic residue. Mutation of either histidine in CNP abolishes enzymatic activity. CNPases belong to the 2H phosphoesterase superfamily. They share a common active site, characterized by two conserved histidines, with the bacterial tRNA-ligating enzyme LigT, vertebrate myelin-associated 2',3' phosphodiesterases, plant Arabidopsis thaliana CPDases and several several bacteria and virus proteins. 212 -283526 pfam05883 Baculo_RING Baculovirus U-box/Ring-like domain. This family consists of several Baculovirus proteins of around 130 residues in length. The function of this family is unknown, but it appears to be related to the U-box and ring finger domain by profile-profile comparison. 138 -310460 pfam05884 ZYG-11_interact Interactor of ZYG-11. This family of proteins represents the protein product of the gene W03D8.9 which has been identified as an interactor of ZYG-11. ZYG-11 is the substrate-recognition subunit for a CUL-2 based complex that regulates cell division and embryonic development. 295 -283528 pfam05886 Orthopox_F8 Orthopoxvirus F8 protein. This family consists of several Orthopoxvirus F8 proteins. The function of this family is unknown. 65 -114603 pfam05887 Trypan_PARP Procyclic acidic repetitive protein (PARP). This family consists of several Trypanosoma brucei procyclic acidic repetitive protein (PARP) like sequences. The procyclic acidic repetitive protein (parp) genes of Trypanosoma brucei encode a small family of abundant surface proteins whose expression is restricted to the procyclic form of the parasite. They are found at two unlinked loci, parpA and parpB; transcription of both loci is developmentally regulated. 145 -336229 pfam05889 SepSecS O-phosphoseryl-tRNA(Sec) selenium transferase, SepSecS. Early annotation suggested this family, SepSecS, of several eukaryotic and archaeal proteins, was involved in antigen-antibodies responses in the liver and pancreas. Structural studies show that the family is O-phosphoseryl-tRNA(Sec) selenium transferase, an enzyme involved in the synthesis of the amino acid selenocysteine (Sec). Sec is the only amino acid whose biosynthesis occurs on its cognate transfer RNA (tRNA). SepSecS catalyzes the final step in the formation of the amino acid. The early observation that autoantibodies isolated from patients with type I autoimmune hepatitis targeted a ribonucleoprotein complex containing tRNASec led to the identification and characterization of the archaeal and the human SepSecS. SepSecS forms its own branch in the family of fold-type I pyridoxal phosphate (PLP) enzymes that goes back to the last universal common ancestor which explains why the archaeal sequences spcS and MK0229 are annotated as being pyridoxal phosphate-dependent enzymes. 386 -336230 pfam05890 Ebp2 Eukaryotic rRNA processing protein EBP2. This family consists of several Eukaryotic rRNA processing protein EBP2 sequences. Ebp2p is required for the maturation of 25S rRNA and 60S subunit assembly. Ebp2p may be one of the target proteins of Rrs1p for executing the signal to regulate ribosome biogenesis. This family also plays a role in chromosome segregation. 270 -283530 pfam05891 Methyltransf_PK AdoMet dependent proline di-methyltransferase. This protein is expressed in the tail neuron PVT and in uterine cells in C. elegans [worm-base]. In Saccharomyces cerevisiae this is AdoMet dependent proline di-methyltransferase. This enzyme catalyzes the di-methylation of ribosomal proteins Rpl12 and Rps25 at N-terminal proline residues. The methyltransferases described here specifically recognize the N-terminal X-Pro-Lys sequence motif, and they may account for nearly all previously described eukaryotic protein N-terminal methylation reactions. A number of other yeast and human proteins also share the recognition motif and may be similarly modified. As with other methyltransferases, this family carries the characteristic GxGxG motif. 217 -283531 pfam05892 Tricho_coat Trichovirus coat protein. This family consists of several coat proteins which are specific to the ssRNA positive-strand, no DNA stage viruses such as the Trichovirus and Vitivirus. 195 -310462 pfam05893 LuxC Acyl-CoA reductase (LuxC). This family consists of several bacterial Acyl-CoA reductase (LuxC) proteins. The channelling of fatty acids into the fatty aldehyde substrate for the bacterial bioluminescence reaction is catalyzed by a fatty acid reductase multienzyme complex, which channels fatty acids through the thioesterase (LuxD), synthetase (LuxE) and reductase (LuxC) components. 405 -336231 pfam05894 Podovirus_Gp16 Podovirus DNA encapsidation protein (Gp16). This family consists of several DNA encapsidation protein (Gp16) sequences from the phi-29-like viruses. Gene product 16 catalyzes the in vivo and in vitro genome-encapsidation reaction. 331 -310464 pfam05895 DUF859 Siphovirus protein of unknown function (DUF859). This family consists of several uncharacterized proteins from the Siphoviruses as well as one bacterial sequence. Some of the members of this family are described as putative minor structural proteins. 626 -310465 pfam05896 NQRA Na(+)-translocating NADH-quinone reductase subunit A (NQRA). This family consists of several bacterial Na(+)-translocating NADH-quinone reductase subunit A (NQRA) proteins. The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. 257 -336232 pfam05899 Cupin_3 Protein of unknown function (DUF861). This family consists of several proteins which seem to be specific to plants and bacteria. The function of this family is unknown. 74 -336233 pfam05901 Excalibur Excalibur calcium-binding domain. Extracellular Ca2+-dependent nuclease YokF from Bacillus subtilis and several other surface-exposed proteins from diverse bacteria are encoded in the genomes in two paralogous forms that differ by a ~45 amino acid fragment, which comprises a novel conserved domain. Sequence analysis of this domain revealed a conserved DxDxDGxxCE motif, which is strikingly similar to the Ca2+-binding loop of the calmodulin-like EF-hand domains, suggesting an evolutionary relationship between them. Functions of many of the other proteins in which the novel domain, named Excalibur (extracellular calcium-binding region), is found, as well as a structural model of its conserved motif are consistent with the notion that the Excalibur domain binds calcium. This domain is but one more example of the diversity of structural contexts surrounding the EF-hand-like calcium-binding loop in bacteria. This loop is thus more widespread than hitherto recognized and the evolution of EF-hand-like domains is probably more complex than previously appreciated. 36 -336234 pfam05902 4_1_CTD 4.1 protein C-terminal domain (CTD). At the C-terminus of all known 4.1 proteins is a sequence domain unique to these proteins, known as the C-terminal domain (CTD). Mammalian CTDs are associated with a growing number of protein-protein interactions, although such activities have yet to be associated with invertebrate CTDs. Mammalian CTDs are generally defined by sequence alignment as encoded by exons 18-21. Comparison of known vertebrate 4.1 proteins with invertebrate 4.1 proteins indicates that mammalian 4.1 exon 19 represents a vertebrate adaptation that extends the sequence of the CTD with a Ser/Thr-rich sequence. The CTD was first described as a 22/24-kDa domain by chymotryptic digestion of erythrocyte 4.1 (4.1R). CTD is thought to represent an independent folding structure which has gained function since the divergence of vertebrates from invertebrates. 106 -336235 pfam05903 Peptidase_C97 PPPDE putative peptidase domain. The PPPDE superfamily (after Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes), consists of predicted thiol peptidases with a circularly permuted papain-like fold. The inference of the likely DUB function of the PPPDE superfamily proteins is based on the fusions of the catalytic domain to Ub-binding PUG (PUB)/UBA domains and a novel alpha-helical Ub-associated domain (the PUL domain, after PLAP, Ufd3p and Lub1p). 146 -336236 pfam05904 DUF863 Plant protein of unknown function (DUF863). This family consists of a number of hypothetical proteins from Arabidopsis thaliana and Oryza sativa. The function of this family is unknown. 899 -114618 pfam05906 DUF865 Herpesvirus-7 repeat of unknown function (DUF865). This family consists of a series of 12 repeats of 35 amino acids in length which are found exclusively in Herpesvirus-7. The function of this family is unknown. 35 -336237 pfam05907 DUF866 Eukaryotic protein of unknown function (DUF866). This family consists of a number of hypothetical eukaryotic proteins of unknown function with an average length of around 165 residues. 149 -310471 pfam05908 Gamma_PGA_hydro Poly-gamma-glutamate hydrolase. This family consists of a number of bacterial and phage proteins that function as gamma-PGA hydrolase enzymes. Structurally the protein in this family adopted an open alpha/beta mixed core structure with a seven-stranded parallel/anti-parallel beta-sheet. This structure shows similarity to mammalian carboxypeptidase A and related enzymes. 191 -310472 pfam05910 DUF868 Plant protein of unknown function (DUF868). This family consists of several hypothetical proteins from Arabidopsis thaliana and Oryza sativa. The function of this family is unknown. 265 -336238 pfam05911 FPP Filament-like plant protein, long coiled-coil. FPP is a family of long coiled-coil plant proteins that are filament-like. It interacts with the nuclear envelope-associated protein, MAF1, the WPP family pfam13943. 693 -310474 pfam05912 DUF870 Caenorhabditis elegans protein of unknown function (DUF870). This family consists of a number of hypothetical proteins which seem to be specific to Caenorhabditis elegans. The function of this family is unknown. 111 -336239 pfam05913 DUF871 Bacterial protein of unknown function (DUF871). This family consists of several conserved hypothetical proteins from bacteria and archaea. The function of this family is unknown. 353 -336240 pfam05914 RIB43A RIB43A. This family consists of several RIB43A-like eukaryotic proteins. Ciliary and flagellar microtubules contain a specialized set of protofilaments, termed ribbons, that are composed of tubulin and several associated proteins. RIB43A was first characterized in the unicellular biflagellate, Chlamydomonas reinhardtii although highly related sequences are present in several higher eukaryotes including humans. The function of this protein is unknown although the structure of RIB43A and its association with the specialized protofilament ribbons and with basal bodies is relevant to the proposed role of ribbons in forming and stabilizing doublet and triplet microtubules and in organising their three-dimensional structure. Human RIB43A homologs could represent a structural requirement in centriole replication in dividing cells. 376 -310477 pfam05915 DUF872 Eukaryotic protein of unknown function (DUF872). This family consists of several uncharacterized eukaryotic proteins. The function of this family is unknown. 115 -336241 pfam05916 Sld5 GINS complex protein. The eukaryotic GINS complex is essential for the initiation and elongation phases of DNA replication. It consists of four paralogous protein subunits (Sld5, Psf1, Psf2 and Psf3), all of which are included in this family. The GINS complex is conserved from yeast to humans, and has been shown in human to bind directly to DNA primase. 103 -283549 pfam05917 DUF874 Helicobacter pylori protein of unknown function (DUF874). This family consists of several hypothetical proteins specific to Helicobacter pylori. The function of this family is unknown. 398 -310479 pfam05918 API5 Apoptosis inhibitory protein 5 (API5). This family consists of apoptosis inhibitory protein 5 (API5) sequences from several organisms. Apoptosis or programmed cell death is a physiological form of cell death that occurs in embryonic development and organ formation. It is characterized by biochemical and morphological changes such as DNA fragmentation and cell volume shrinkage. API5 is an anti apoptosis gene located in human chromosome 11, whose expression prevents the programmed cell death that occurs upon the deprivation of growth factors. 523 -253459 pfam05919 Mitovir_RNA_pol Mitovirus RNA-dependent RNA polymerase. This family consists of several Mitovirus RNA-dependent RNA polymerase proteins. The family also contains fragment matches in the mitochondria of Arabidopsis thaliana. 495 -310480 pfam05920 Homeobox_KN Homeobox KN domain. This is a homeobox transcription factor KN domain conserved from fungi to human and plants. They were first identified as TALE homeobox genes in eukaryotes, (including KNOX and MEIS genes). They have been recently classified. 40 -336242 pfam05922 Inhibitor_I9 Peptidase inhibitor I9. This family includes the proteinase B inhibitor from Saccharomyces cerevisiae and the activation peptides from peptidases of the subtilisin family. The subtilisin propeptides are known to function as molecular chaperones, assisting in the folding of the mature peptidase, but have also been shown to act as 'temporary inhibitors'. 79 -336243 pfam05923 APC_r APC repeat. This short region is found repeated in the mid region of the adenomatous polyposis proteins (APCs). In the human protein many cancer-linked SNPs are found near the first three occurrences of the motif. These repeats bind beta-catenin. 24 -336244 pfam05924 SAMP SAMP Motif. This short region is found repeated in the mid region of the adenomatous polyposis proteins (APCs). This motif binds axin. 22 -283555 pfam05925 IpgD Enterobacterial virulence protein IpgD. This family consists of several enterobacterial IpgD like virulence factor proteins. In the Gram-negative pathogen Shigella flexneri, the virulence factor IpgD is translocated directly into eukaryotic cells and acts as a potent inositol 4-phosphatase that specifically dephosphorylates phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] into phosphatidylinositol 5-monophosphate [PtdIns(5)P] that then accumulates. Transformation of PtdIns(4,5)P(2) into PtdIns(5)P by IpgD is responsible for dramatic morphological changes of the host cell, leading to a decrease in membrane tether force associated with membrane blebbing and actin filament remodelling. 580 -336245 pfam05926 Phage_GPL Phage head completion protein (GPL). This family consists of several phage head completion protein (GPL) as well as related bacterial sequences. Members of this family allow the completion of filled heads by rendering newly packaged DNA in the heads resistant to DNase. The protein is thought to bind to DNA filled capsids. 139 -147854 pfam05927 Penaeidin Penaeidin. This family consists of several isoforms of the penaeidin protein which is specific to shrimps. Penaeidins, a unique family of antimicrobial peptides (AMPs) with both proline and cysteine-rich domains, were initially identified in the hemolymph of the Pacific white shrimp, Litopenaeus vannamei. 73 -114639 pfam05928 Zea_mays_MuDR Zea mays MURB-like protein (MuDR). This family consists of several Zea mays specific MURB-like proteins. The transposition of Mu elements underlying Mutator activity in maize requires a transcriptionally active MuDR element. Despite variation in MuDR copy number and RNA levels in Mutator lines, transposition events are consistently late in plant development, and Mu excision frequencies are similar. 207 -336246 pfam05929 Phage_GPO Phage capsid scaffolding protein (GPO) serine peptidase. This family consists of several bacteriophage capsid scaffolding proteins (GPO) and some related bacterial sequences. GPO is thought to function in both the assembly of proheads and the cleavage of GPN. The family is found to function as a serine peptidase, with a conserved Asp, His and Ser catalytic triad, as in subtilisin, and as represented in MEROPS:S73. The family includes capsid assembly scaffolding protein from Enterobacteria phage P2 which cleaves itself and then becomes the scaffold protein upon which the bacteriophage prohead is built - a mechanism quite common amongst phages. 270 -283558 pfam05930 Phage_AlpA Prophage CP4-57 regulatory protein (AlpA). This family consists of several short bacterial and phage proteins which are related to the E. coli protein AlpA. AlpA suppress two phenotypes of a delta lon protease mutant, overproduction of capsular polysaccharide and sensitivity to UV light. Several of the sequences in this family are thought to be DNA-binding proteins. 51 -283559 pfam05931 AgrD Staphylococcal AgrD protein. This family consists of several AgrD proteins from many Staphylococcus species. The agr locus was initially described in Staphylococcus aureus as an element controlling the production of exoproteins implicated in virulence. Its pattern of action has been shown to be complex, upregulating certain extracellular toxins and enzymes expressed post-exponentially and repressing some exponential-phase surface components. AgrD encodes the precursor of the autoinducing peptide (AIP).The AIP derived from AgrD by the action of AgrB interacts with AgrC in the membrane to activate AgrA, which upregulates transcription both from promoter P2, amplifying the response, and from P3, initiating the production of a novel effector: RNAIII. In S. aureus, delta-hemolysin is the only translation product of RNA III and is not involved in the regulatory functions of the transcript, which is therefore the primary agent for modulating the expression of other operons controlled by agr. 45 -336247 pfam05932 CesT Tir chaperone protein (CesT) family. This family consists of a number of bacterial sequences which are highly similar to the Tir chaperone protein in E. Coli. In many Gram-negative bacteria, a key indicator of pathogenic potential is the possession of a specialized type III secretion system, which is utilized to deliver virulence effector proteins directly into the host cell cytosol. Many of the proteins secreted from such systems require small cytosolic chaperones to maintain the secreted substrates in a secretion-competent state. CesT serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. This family also contains several DspF and related sequences from several plant pathogenic bacteria. The "disease-specific" (dsp) region next to the hrp gene cluster of Erwinia amylovora is required for pathogenicity but not for elicitation of the hypersensitive reaction. DspF and AvrF are small (16 kDa and 14 kDa) and acidic with predicted amphipathic alpha helices in their C termini; they resemble chaperones for virulence factors secreted by type III secretion systems of animal pathogens. 118 -283561 pfam05933 Fun_ATP-synt_8 Fungal ATP synthase protein 8 (A6L). This family consists of fungus specific ATP synthase protein 8 (EC:3.6.3.14). The family may be related to the ATP synthase protein 8 found in other eukaryotes pfam00895. 48 -310487 pfam05934 MCLC Mid-1-related chloride channel (MCLC). This family consists of several mid-1-related chloride channels. mid-1-related chloride channel (MCLC) proteins function as a chloride channel when incorporated in the planar lipid bilayer. 549 -336248 pfam05935 Arylsulfotrans Arylsulfotransferase (ASST). This family consists of several bacterial Arylsulfotransferase proteins. Arylsulfotransferase (ASST) transfers a sulfate group from phenolic sulfate esters to a phenolic acceptor substrate. 356 -336249 pfam05936 T6SS_VasE Bacterial Type VI secretion, VC_A0110, EvfL, ImpJ, VasE. T6SS_VasE is a family of of bacterial proteins that are essential for the type VI pathogenic secretion system, although the exact function of this particular component of the system is still not known. 423 -336250 pfam05937 EB1_binding EB-1 Binding Domain. This region, found at the C-terminus of the APC proteins, binds the microtubule-associating protein EB-1. At the C-terminus of the alignment is also a pfam00595 binding domain. A short motif in the middle of the region appears to be found in the APC2 proteins. 174 -336251 pfam05938 Self-incomp_S1 Plant self-incompatibility protein S1. This family consists of a series of plant proteins which are related to the Papaver rhoeas S1 self-incompatibility protein. Self incompatibility (SI) is the single most important outbreeding device found in angiosperms and is a mechanism that regulates the acceptance or rejection of pollen. S1 is known to exhibit specific pollen-inhibitory properties. 94 -336252 pfam05939 Phage_min_tail Phage minor tail protein. This family consists of a series of phage minor tail proteins and related sequences from several bacterial species. 107 -336253 pfam05940 NnrS NnrS protein. This family consists of several bacterial NnrS like proteins. NnrS is a putative heme-Cu protein (NnrS) and a member of the short-chain dehydrogenase family. Expression of nnrS is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including nirK and nor. NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase. 368 -283569 pfam05941 Chordopox_A20R Chordopoxvirus A20R protein. This family consists of several Chordopoxvirus A20R proteins. The A20R protein is required for DNA replication, is associated with the processive form of the viral DNA polymerase, and directly interacts with the viral proteins encoded by the D4R, D5R, and H5R open reading frames. A20R may contribute to the assembly or stability of the multiprotein DNA replication complex. 335 -310494 pfam05942 PaREP1 Archaeal PaREP1/PaREP8 family. This family consists of several archaeal PaREP1 and PaREP8 proteins the function of this family is unknown. 115 -336254 pfam05943 VipB Type VI secretion protein, EvpB/VC_A0108, tail sheath. EvpB is a family of Gram-negative probable type VI secretion system components of the tail sheath. They have been known as COG:COG3517. These sheath-components, of which there are many copies in the sheath, are also variously referred to as VipA/VipB and TssB/TssC. On contact with another bacterial cell the sheath contracts and pushes the puncturing device and tube through the cell envelope and punches the target bacterial cell. 421 -336255 pfam05944 Phage_term_smal Phage small terminase subunit. This family consists of several phage small terminase subunit proteins as well as some related bacterial sequences. 129 -283573 pfam05946 TcpA Toxin-coregulated pilus subunit TcpA. This family consists of toxin-coregulated pilus subunit (TcpA) proteins from Vibrio cholerae and related sequences. The major virulence factors of toxigenic Vibrio cholerae are cholera toxin (CT), which is encoded by a lysogenic bacteriophage (CTXPhi), and toxin-coregulated pilus (TCP), an essential colonisation factor which is also the receptor for CTXPhi. The genes for the biosynthesis of TCP are part of a larger genetic element known as the TCP pathogenicity island. 130 -336256 pfam05947 T6SS_TssF Type VI secretion system, TssF. This is a family of Gram-negative bacterial proteins that form part of the type VI pathogenicity secretion system (T6SS), including TssF. TssF is homologs to phage tail proteins and is required for proper assembly of the Hcp tube (the T6SS inner tube) in bacteria. 596 -310498 pfam05949 DUF881 Bacterial protein of unknown function (DUF881). This family consists of a series of hypothetical bacterial proteins. One of the family members YlxW from Bacillus subtilis is thought to be involved in cell division and sporulation. 142 -283576 pfam05950 Orthopox_A36R Orthopoxvirus A36R protein. This family consists of several Orthopoxvirus A36R proteins. The A36R protein is predicted to be a type Ib membrane protein. 158 -283577 pfam05951 Peptidase_M15_2 Bacterial protein of unknown function (DUF882). This family consists of a series of hypothetical bacterial proteins of unknown function. 153 -283578 pfam05952 ComX Bacillus competence pheromone ComX. Natural genetic competence in Bacillus subtilis is controlled by quorum-sensing (QS). The ComP- ComA two-component system detects the signalling molecule ComX, and this signal is transduced by a conserved phosphotransfer mechanism. ComX is synthesized as an inactive precursor and is then cleaved and modified by ComQ before export to the extracellular environment. 53 -283579 pfam05953 Allatostatin Allatostatin. This family consists of allatostatins, bombystatins, helicostatins, cydiastatins and schistostatin from several insect species. Allatostatins (ASTs) of the Tyr/Phe-Xaa-Phe-Gly Leu/Ile-NH2 family are a group of insect neuropeptides that inhibit juvenile hormone biosynthesis by the corpora allata. 11 -336257 pfam05954 Phage_GPD Phage late control gene D protein (GPD). This family includes a number of phage late control gene D proteins and related bacterial sequences. This family also includes Bacteriophage Mu P proteins and related sequences. 304 -310500 pfam05955 Herpes_gp2 Equine herpesvirus glycoprotein gp2. This family consists of a number of glycoprotein gp2 sequences from equine herpesviruses. 226 -310501 pfam05956 APC_basic APC basic domain. This region of the APC family of proteins is known as the basic domain. It contains a high proportion of positively charged amino acids and interacts with microtubules. 340 -310502 pfam05957 DUF883 Bacterial protein of unknown function (DUF883). This family consists of several hypothetical bacterial proteins of unknown function. 93 -310503 pfam05958 tRNA_U5-meth_tr tRNA (Uracil-5-)-methyltransferase. This family consists of (Uracil-5-)-methyltransferases EC:2.1.1.35 from bacteria, archaea and eukaryotes. A 5-methyluridine (m(5)U) residue at position 54 is a conserved feature of bacterial and eukaryotic tRNAs. The methylation of U54 is catalyzed by the tRNA(m5U54)methyltransferase, which in Saccharomyces cerevisiae is encoded by the nonessential TRM2 gene. It is thought that tRNA modification enzymes might have a role in tRNA maturation not necessarily linked to their known catalytic activity. 357 -283584 pfam05959 DUF884 Nucleopolyhedrovirus protein of unknown function (DUF884). This family consists of several hypothetical Nucleopolyhedrovirus proteins of unknown function. 194 -336258 pfam05960 DUF885 Bacterial protein of unknown function (DUF885). This family consists of several hypothetical bacterial proteins several of which are putative membrane proteins. 529 -283586 pfam05961 Chordopox_A13L Chordopoxvirus A13L protein. This family consists of A13L proteins from the Chordopoxviruses. A13L or p8 is one of the three most abundant membrane proteins of the intracellular mature Vaccinia virus. 69 -336259 pfam05962 HutD HutD. HutD from Pseudomonas fluorescens SBW25 is a component of the histidine uptake and utilisation operon. HutD is operonic with the well characterized repressor protein HutC. Genetic analysis using transcriptional fusions (lacZ) and deletion mutants shows that hutD is necessary to maintain fitness in environments replete with histidine. Evidence outlined by Zhang & Rainey (2007) suggests that HutD functions as a governor that sets an upper bound on the level of hut operon transcription. The mechanistic basis is unknown, but in silico molecular docking studies based on the crystal structure of PA5104 (HutD from Pseudomonas aeruginosa) show that urocanate (the first breakdown product of histidine) docks with the active site of HutD. 180 -283588 pfam05963 Cytomega_US3 Cytomegalovirus US3 protein. US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. 212 -336260 pfam05964 FYRN F/Y-rich N-terminus. This region is normally found in the trithorax/ALL1 family proteins. It is similar to SMART:SM00541. 51 -336261 pfam05965 FYRC F/Y rich C-terminus. This region is normally found in the trithorax/ALL1 family proteins. It is similar to SMART:SM00542. 83 -283591 pfam05966 Chordopox_A33R Chordopoxvirus A33R protein. This family consists of several Chordopoxvirus A33R proteins. A33R plays a role in promoting Ab-resistant cell-to-cell spread of virus and interacts with A36R to incorporate the protein into the outer membrane of intracellular enveloped virions (IEV). 184 -310508 pfam05968 Bacillus_PapR Bacillus PapR protein. This family consists of the Bacillus species specific PapR protein. The papR gene belongs to the PlcR regulon and is located 70 bp downstream from plcR. It encodes a 48-amino-acid peptide. Disruption of the papR gene abolishes expression of the PlcR regulon, resulting in a large decrease in haemolysis and virulence in insect larvae. A processed form of PapR activates the PlcR regulon by allowing PlcR to bind to its DNA target. This activating mechanism is strain specific. 48 -283593 pfam05969 PSII_Ycf12 Photosystem II complex subunit Ycf12. Ycf12 has been identified as a core subunit in the photosystem II (PSII) complex. PsbZ has been shown to be required for the association of PsbK and Ycf12 with PSII. 32 -310509 pfam05970 PIF1 PIF1-like helicase. This family includes homologs of the PIF1 helicase, which inhibits telomerase activity and is cell cycle regulated. This family includes a large number of largely uncharacterized plant proteins. This family includes a P-loop motif that is involved in nucleotide binding. 360 -283594 pfam05971 Methyltransf_10 Protein of unknown function (DUF890). This family consists of several conserved hypothetical proteins from both eukaryotes and prokaryotes. The function of this family is unknown. 254 -283595 pfam05972 APC_15aa APC 15 residue motif. This motif, known as the 15 aa repeat, is found in the APC protein family. They are involved in binding beta-catenin along with the pfam05923 repeats. Many human cancer mutations map to the region around these motifs, and may be involved in disrupting their binding of beta-catenin. 15 -310510 pfam05973 Gp49 Phage derived protein Gp49-like (DUF891). This family consists of hypothetical bacterial proteins of unknown function as well as phage Gp49 proteins. 90 -310511 pfam05974 DUF892 Domain of unknown function (DUF892). This family consists of several hypothetical bacterial proteins of unknown function. 156 -310512 pfam05975 EcsB Bacterial ABC transporter protein EcsB. This family consists of several bacterial ABC transporter proteins which are homologous to the EcsB protein of Bacillus subtilis. EcsB is thought to encode a hydrophobic protein with six membrane-spanning helices in a pattern found in other hydrophobic components of ABC transporters. 382 -283599 pfam05977 MFS_3 Transmembrane secretion effector. This is a family of transport proteins. Members of this family include a protein responsible for the secretion of the ferric chelator, enterobactin, and a protein involved in antibiotic resistance. 521 -310513 pfam05978 UNC-93 Ion channel regulatory protein UNC-93. This family of proteins is a component of a multi-subunit protein complex which is involved in the coordination of muscle contraction. UNC-93 is most likely an ion channel regulatory protein. 157 -310514 pfam05979 DUF896 Bacterial protein of unknown function (DUF896). In B. subtilis, one small SOS response operon under the control of LexA, the yneA operon, is comprised of three genes: yneA, yneB, and ynzC. This family consists of several short, hypothetical bacterial proteins of unknown function. These proteins are mainly found in gram-positive firmicutes. Structures show that the N-terminus is composed of two alpha helices forming a helix-loop-helix motif. The structure of ynzC from B. subtilis forms a trimeric complex. Structural modelling suggests this domain may bind nucleic acids. This family is also known as UPF0291. 62 -310515 pfam05980 Toxin_7 Toxin 7. This family consists of several short spider neurotoxin proteins including many from the Funnel-web spider. 34 -336262 pfam05981 CreA CreA protein. This family consists of several bacterial CreA proteins, the function of which is unknown. 119 -336263 pfam05982 Sbt_1 Na+-dependent bicarbonate transporter superfamily. Family of bacterial proteins that are likely to be part of the Na(+)-dependent bicarbonate transporter (sbt) family. Members carry 10TMS in a 5+5 duplicated structure. The loop between helices 5 and 6 in Synechocystis PCC6803 is likely to be the location for regulatory mechanisms governing the activation of the transporter. 311 -336264 pfam05983 Med7 MED7 protein. This family consists of several eukaryotic proteins which are homologs of the yeast MED7 protein. Activation of gene transcription in metazoans is a multi-step process that is triggered by factors that recognize transcriptional enhancer sites in DNA. These factors work with co-activators such as MED7 to direct transcriptional initiation by the RNA polymerase II apparatus. 163 -283605 pfam05984 Cytomega_UL20A Cytomegalovirus UL20A protein. This family consists of several Cytomegalovirus UL20A proteins. UL20A is thought to be a glycoprotein. 103 -336265 pfam05985 EutC Ethanolamine ammonia-lyase light chain (EutC). This family consists of several bacterial ethanolamine ammonia-lyase light chain (EutC) EC:4.3.1.7 sequences. Ethanolamine ammonia-lyase is a bacterial enzyme that catalyzes the adenosylcobalamin-dependent conversion of certain vicinal amino alcohols to oxo compounds and ammonia. 232 -310520 pfam05986 ADAM_spacer1 ADAM-TS Spacer 1. This family represents the Spacer-1 region from the ADAM-TS family of metalloproteinases. 114 -336266 pfam05987 DUF898 Bacterial protein of unknown function (DUF898). This family consists of several bacterial proteins of unknown function. Some of the family members are described as putative membrane proteins. 336 -310522 pfam05988 DUF899 Bacterial protein of unknown function (DUF899). This family consists of several uncharacterized bacterial proteins of unknown function. 225 -283610 pfam05989 Chordopox_A35R Chordopoxvirus A35R protein. This family consists of several Chordopoxvirus sequences homologous to the Vaccinia virus A35R protein. The function of this family is unknown. 172 -310523 pfam05990 DUF900 Alpha/beta hydrolase of unknown function (DUF900). This family consists of several hypothetical proteins of unknown function mostly found in Rhizobium species. Members of this family have an alpha/beta hydrolase fold. 230 -310524 pfam05991 NYN_YacP YacP-like NYN domain. This family consists of bacterial proteins related to YacP. This family is uncharacterized functionally, but it has been suggested that these proteins are nucleases due to them containing a NYN domain. NYN (for N4BP1, YacP-like Nuclease) domains were discovered by Anantharaman and Aravind. Based on gene neighborhoods it was suggested that the bacterial YacP proteins interact with the Ribonuclease III and TrmH methylase in a processome complex that catalyzes the maturation of rRNA and tRNA. 166 -283613 pfam05992 SbmA_BacA SbmA/BacA-like family. The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcins and bleomycin. This family is likely to be a subfamily of the ABC transporter family. 315 -283614 pfam05993 Reovirus_M2 Reovirus major virion structural protein Mu-1/Mu-1C (M2). This family consists of several Reovirus major virion structural protein Mu-1/Mu-1C (M2) sequences. This family is family is thought to play a role in host cell membrane penetration. 647 -310525 pfam05994 FragX_IP Cytoplasmic Fragile-X interacting family. CYFIP1/2 (Cytoplasmic fragile X mental retardation interacting protein) like proteins for a highly conserved protein family. The function of CYFIPs is unclear, but CYFIP interaction with fragile X mental retardation interacting protein (FMRP) involves the domain of FMRP which also mediating homo- and heteromerization. 840 -283616 pfam05995 CDO_I Cysteine dioxygenase type I. Cysteine dioxygenase type I (EC:1.13.11.20) converts cysteine to cysteinesulphinic acid and is the rate-limiting step in sulphate production. 169 -310526 pfam05996 Fe_bilin_red Ferredoxin-dependent bilin reductase. This family consists of several different but closely related proteins which include phycocyanobilin:ferredoxin oxidoreductase EC:1.3.7.5 (PcyA), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase EC:1.3.7.2 (PebA) and phycoerythrobilin:ferredoxin oxidoreductase EC:1.3.7.3 (PebB). Phytobilins are linear tetrapyrrole precursors of the light-harvesting prosthetic groups of the phytochrome photoreceptors of plants and the phycobiliprotein photosynthetic antennae of cyanobacteria, red algae, and cryptomonads. It is known that that phytobilins are synthesized from heme via the intermediary of biliverdin IX alpha (BV), which is reduced subsequently by ferredoxin-dependent bilin reductases with different double-bond specificities. 227 -336267 pfam05997 Nop52 Nucleolar protein,Nop52. Nop52 believed to be involved in the generation of 28S rRNA. 206 -283619 pfam05999 Herpes_U5 Herpesvirus U5-like family. This family of Herpesvirus includes U4, U5 and UL27. 488 -336268 pfam06001 DUF902 Domain of Unknown Function (DUF902). This domain of unknown function is found in several transcriptional co-activators including the CREB-binding protein, which is an acetyltransferase that acetylates histones, giving a specific tag for transcriptional activation. This short domain is found to the C-terminus of bromodomains. The 40 residue domain contains four conserved cysteines suggesting that it may be stabilized by a zinc ion. In CREB this domain is to the N-terminus of another zinc binding PHD domain. 40 -310528 pfam06002 CST-I Alpha-2,3-sialyltransferase (CST-I). This family consists of several alpha-2,3-sialyltransferase (CST-I) proteins largely found in Campylobacter jejuni. 293 -310529 pfam06003 SMN Survival motor neuron protein (SMN). This family consists of several eukaryotic survival motor neuron (SMN) proteins. The Survival of Motor Neurons (SMN) protein, the product of the spinal muscular atrophy-determining gene, is part of a large macromolecular complex (SMN complex) that functions in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). The SMN complex functions as a specificity factor essential for the efficient assembly of Sm proteins on U snRNAs and likely protects cells from illicit, and potentially deleterious, non-specific binding of Sm proteins to RNAs. 263 -336269 pfam06004 DUF903 Bacterial protein of unknown function (DUF903). This family consists of several small bacterial proteins several of which are classified as putative lipoproteins. The function of this family is unknown. 45 -336270 pfam06005 ZapB Cell division protein ZapB. ZapB is a non-essential, abundant cell division factor that is required for proper Z-ring formation. 71 -310532 pfam06006 DUF905 Bacterial protein of unknown function (DUF905). This family consists of several short hypothetical Enterobacteria proteins of unknown function. Structural analysis of the surface features of the protein YvyC has revealed a single cluster of highly conserved residues on the surface. Additionally, these residues fall into two groups which lie within the two largest of the three cavities identified over the surface. The conclusion from this is that these two cavities with, Leu 58, Glu 75, Ile 82, and Glu 83 and Pro 86, conserved, are likely to be important for the molecular function and reflect the cavities found on the surface of the FlaG proteins in pfam03646. 69 -310533 pfam06007 PhnJ Phosphonate metabolism protein PhnJ. This family consists of several bacterial phosphonate metabolism (PhnJ) sequences. The exact role that PhnJ plays in phosphonate utilisation is unknown. 273 -310534 pfam06008 Laminin_I Laminin Domain I. coiled-coil structure. It has been suggested that the domains I and II from laminin A, B1 and B2 may come together to form a triple helical coiled-coil structure. 258 -283628 pfam06009 Laminin_II Laminin Domain II. It has been suggested that the domains I and II from laminin A, B1 and B2 may come together to form a triple helical coiled-coil structure. 138 -336271 pfam06011 TRP Transient receptor potential (TRP) ion channel. This family of proteins are transient receptor potential (TRP) ion channels. They are essential for cellular viability and are involved in cell growth and cell wall synthesis. The genes for these proteins are homologous to polycystic kidney disease related ion channel genes. 394 -336272 pfam06012 DUF908 Domain of Unknown Function (DUF908). 346 -310537 pfam06013 WXG100 Proteins of 100 residues with WXG. ESAT-6 is a small protein appears to be of fundamental importance in virulence and protective immunity in Mycobacterium tuberculosis. homologs have been detected in other Gram-positive bacterial species. It may represent a novel secretion system potentially driven by the pfam01580 domains in the YukA-like proteins. 85 -310538 pfam06014 DUF910 Bacterial protein of unknown function (DUF910). This family consists of several short bacterial proteins of unknown function. 61 -283633 pfam06015 Chordopox_A30L Chordopoxvirus A30L protein. This family consists of several short Chordopoxvirus proteins which are homologous to the A30L protein of Vaccinia virus. The vaccinia virus A30L protein is required for the association of electron-dense, granular, proteinaceous material with the concave surfaces of crescent membranes, an early step in viral morphogenesis. A30L is known to interact with the G7L protein and it has been shown that the stability of each is dependent on its association with the other. 71 -283634 pfam06016 Reovirus_L2 Reovirus core-spike protein lambda-2 (L2). This family consists of several Reovirus core-spike protein lambda-2 (L2) sequences. The reovirus L2 genome segment encodes the core spike protein lambda-2, which mediates enzymatic reactions in 5' capping of the viral plus-strand transcripts. 1297 -336273 pfam06017 Myosin_TH1 Unconventional myosin tail, actin- and lipid-binding. Unconventional myosins, ie those that are not found in muscle, have the common, classical-type head domain, sometimes a neck with the IQ calmodulin-binding motifs, and then non-standard tails. These tails determine the subcellular localization of the unconventional myosins and also help determine their individual functions. The family carries several different unconventional myosins, eg. Myo1f is expressed mainly in immune cells as well as in the inner ear where it can be associated with deafness, Myo1d has a lipid-binding module in their tail and is implicated in endosome vesicle recycling in epithelial cells. Myo1a, b, c and g from various eukaryotes are also found in this family. 191 -283636 pfam06018 CodY CodY GAF-like domain. This domain is a GAF-like domain found at the N-terminus of several bacterial GTP-sensing transcriptional pleiotropic repressor CodY proteins. Presumably this domain is involved in GTP binding. CodY has been found to repress the dipeptide transport operon (dpp) of Bacillus subtilis in nutrient-rich conditions. The CodY protein also has a repressor effect on many genes in Lactococcus lactis during growth in milk. 177 -147919 pfam06019 Phage_30_8 Phage GP30.8 protein. This family consists of several GP30.8 proteins from the T4-like phages. The function of this family is unknown. 124 -310540 pfam06020 Roughex Drosophila roughex protein. This family consists of several roughex (RUX) proteins specific to Drosophila species. Roughex can influence the intracellular distribution of cyclin A and is therefore defined as a distinct and specialized cell cycle inhibitor for cyclin A-dependent kinase activity. Rux is though to regulate the metaphase to anaphase transition during development. 379 -310541 pfam06021 Gly_acyl_tr_N Aralkyl acyl-CoA:amino acid N-acyltransferase. This family consists of several mammalian specific aralkyl acyl-CoA:amino acid N-acyltransferase (glycine N-acyltransferase) proteins EC:2.3.1.13. 194 -283639 pfam06022 Cir_Bir_Yir Plasmodium variant antigen protein Cir/Yir/Bir. This family consists of several Cir, Yir and Bir proteins from the Plasmodium species P.chabaudi, P.yoelii and P.berghei. 257 -283640 pfam06023 Csa1 CRISPR-associated exonuclease Csa1. CRISPR (clustered regularly interspaced short palindromic repeats) elements and cas (CRISPR-associated) genes are widespread in Bacteria and Archaea. The CRISPR/Cas system operates as a defense mechanism against mobile genetic elements (i.e., viruses or plasmids). Csa1 is part of the archaeal subtype I-A system. Cas1 has not yet been enzymatically characterized. 292 -310542 pfam06024 Orf78 Orf78 (ac78). Family members include Autographa californica nuclear polyhedrosis virus (AcMNPV), AC78 or Orf78. AC78 is a late gene in the viral life cycle and encodes an envelope structural protein that plays an essential role in embedding the occlusion-derived virus (ODV) in the occlusion body. Although AC78 is not essential for budding virus formation or nucleocapsid assembly and ODV formation, number are significantly reduced if the gene is knocked-out. 101 -336274 pfam06025 DUF913 Domain of Unknown Function (DUF913). Members of this family are found in various ubiquitin protein ligases. 361 -336275 pfam06026 Rib_5-P_isom_A Ribose 5-phosphate isomerase A (phosphoriboisomerase A). This family consists of several ribose 5-phosphate isomerase A or phosphoriboisomerase A (EC:5.3.1.6) from bacteria, eukaryotes and archaea. 170 -283644 pfam06027 SLC35F Solute carrier family 35. This is a family of putative solute carrier proteins from eukaryotes. 299 -283645 pfam06028 DUF915 Alpha/beta hydrolase of unknown function (DUF915). This family consists of several bacterial proteins of unknown function. Members of this family have an alpha/beta hydrolase fold. 253 -310545 pfam06029 AlkA_N AlkA N-terminal domain. 118 -310546 pfam06030 DUF916 Bacterial protein of unknown function (DUF916). This family consists of several hypothetical bacterial proteins of unknown function. 118 -310547 pfam06031 SERTA SERTA motif. This family consists of a novel motif designated as SERTA (for SEI-1, RBT1, and TARA), corresponding to the largest conserved region among TRIP-Br proteins. The function of this motif is uncertain, but the CDK4-interacting segment of p34SEI-1 (amino acid residues 44-161) includes most of the SERTA motif. 36 -310548 pfam06032 DUF917 Protein of unknown function (DUF917). This family consists of hypothetical bacterial and archaeal proteins of unknown function. 350 -283650 pfam06033 DUF918 Nucleopolyhedrovirus protein of unknown function (DUF918). This family consists of several Nucleopolyhedrovirus proteins with no known function. 152 -114740 pfam06034 DUF919 Nucleopolyhedrovirus protein of unknown function (DUF919). This family consists of several short Nucleopolyhedrovirus proteins of unknown function. 62 -336276 pfam06035 Peptidase_C93 Bacterial transglutaminase-like cysteine proteinase BTLCP. Members of this family are predicted to be bacterial transglutaminase-like cysteine proteinases. They contain a conserved Cys-His-Asp catalytic triad. Their structure is predicted to be similar to that of Salmonella typhimurium N-hydroxyarylamine O-acetyltransferase, in pfam00797, however they lack the sub-domain which is important for arylamine recognition. 161 -336277 pfam06037 DUF922 Bacterial protein of unknown function (DUF922). This family of proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. 160 -336278 pfam06039 Mqo Malate:quinone oxidoreductase (Mqo). This family consists of several bacterial Malate:quinone oxidoreductase (Mqo) proteins (EC:1.1.99.16). Mqo takes part in the citric acid cycle. It oxidizes L-malate to oxaloacetate and donates electrons to ubiquinone-1 and other artificial acceptors or, via the electron transfer chain, to oxygen. NAD is not an acceptor and the natural direct acceptor for the enzyme is most likely a quinone. The enzyme is therefore called malate:quinone oxidoreductase, abbreviated to Mqo. Mqo is a peripheral membrane protein and can be released from the membrane by addition of chelators. 489 -253527 pfam06040 Adeno_E3 Adenovirus E3 protein. This family consists of several Adenovirus E3 proteins. The E3 protein does not seem to be essential for virus replication in cultured cells suggesting that the protein may function in virus-host interactions. 126 -336279 pfam06041 DUF924 Bacterial protein of unknown function (DUF924). This family consists of several hypothetical bacterial proteins of unknown function. Structurally, this family resembles TPR-like repeats. 185 -336280 pfam06042 NTP_transf_6 Nucleotidyltransferase. This family consists of several hypothetical bacterial proteins of unknown function. This family was recently identified as belonging to the nucleotidyltransferase superfamily. 157 -283656 pfam06043 Reo_P9 Reovirus P9-like family. 334 -283657 pfam06044 DpnI Dam-replacing family. Dam-replacing protein (DRP) is an restriction endonuclease that is flanked by pseudo-transposable small repeat elements. The replacement of Dam-methylase by DRP allows phase variation through slippage-like mechanisms in several pathogenic isolates of Neisseria meningitidis. 253 -283658 pfam06045 Rhamnogal_lyase Rhamnogalacturonate lyase family. Rhamnogalacturonate lyase (EC:4.2.2.-) degrades the rhamnogalacturonan I (RG-I) backbone of pectin. This family contains mainly members from plants, but also contains the plant pathogen Erwinia chrysanthemi. 211 -336281 pfam06046 Sec6 Exocyst complex component Sec6. Sec6 is a component of the multiprotein exocyst complex. Sec6 interacts with Sec8, Sec10 and Exo70.These exocyst proteins localize to regions of active exocytosis-at the growing ends of interphase cells and in the medial region of cells undergoing cytokinesis-in an F-actin-dependent and exocytosis- independent manner. 563 -310555 pfam06047 SynMuv_product Ras-induced vulval development antagonist. This family is from synthetic multi-vulval genes which encode chromatin-associated proteins involved in transcriptional repression. This protein has a role in antagonising Ras-induced vulval development. 101 -336282 pfam06048 DUF927 Domain of unknown function (DUF927). Family of bacterial proteins of unknown function. The C-terminal half of this family contains a P-loop motif. The N-terminal domain appears to have a unique fold, which contains three Helices and two strands. Structural analyses show that helicases containing this domain form a hexameric ring with a positively charged central pore threading a single DNA strand through suggestive of a replicative function for this helicase. 286 -310557 pfam06049 LSPR Coagulation Factor V LSPD Repeat. These repeats are found in coagulation factor V (five). The name LSPD derives from the conserved residues in the middle of the repeat.They occur in the B domain, which is cleaved prior to activation of the protein. It has been suggested that domain B bring domains A and C together for activation. 9 -336283 pfam06050 HGD-D 2-hydroxyglutaryl-CoA dehydratase, D-component. Degradation of glutamate via the hydroxyglutarate pathway involves the syn-elimination of water from 2-hydroxyglutaryl-CoA. This anaerobic process is catalyzed by 2-hydroxyglutaryl-CoA dehydratase, an enzyme with two components (A and D) that reversibly associate during reaction cycles. This component contains one non-reducible [4Fe-4S]2+ cluster and a reduced riboflavin 5'-monophosphate. 337 -310559 pfam06051 DUF928 Domain of Unknown Function (DUF928). Family of uncharacterized bacterial protein. 185 -283665 pfam06052 3-HAO 3-hydroxyanthranilic acid dioxygenase. In eukaryotes 3-hydroxyanthranilic acid dioxygenase (EC:1.13.11.6) is part of the kynurenine pathway for the degradation of tryptophan and the biosynthesis of nicotinic acid.The prokaryotic homolog is involved in the 2-nitrobenzoate degradation pathway. 151 -253538 pfam06053 DUF929 Domain of unknown function (DUF929). Family of proteins from the archaeon Sulfolobus, with undetermined function. 249 -283666 pfam06054 CoiA Competence protein CoiA-like family. Many of the members of this family are described as transcription factors. CoiA falls within a competence-specific operon in Streptococcus. CoiA is an uncharacterized protein. 377 -336284 pfam06055 ExoD Exopolysaccharide synthesis, ExoD. Among the bacterial genes required for nodule invasion are the exo genes. These genes are involved in the production of an extracellular polysaccharide. Mutations in the exoD result in altered exopolysaccharide production and defects in nodule invasion. 174 -310561 pfam06056 Terminase_5 Putative ATPase subunit of terminase (gpP-like). This family of proteins are annotated as ATPase subunits of phage terminase after. Terminases are viral proteins that are involved in packaging viral DNA into the capsid. 58 -310562 pfam06057 VirJ Bacterial virulence protein (VirJ). This family consists of several bacterial VirJ virulence proteins. VirJ is thought to be involved in the type IV secretion system. It is thought that the substrate proteins localized to the periplasm may associate with the pilus in a manner that is mediated by VirJ, and suggest a two-step process for type IV secretion in Agrobacterium. 191 -336285 pfam06058 DCP1 Dcp1-like decapping family. An essential step in mRNA turnover is decapping. In yeast, two proteins have been identified that are essential for decapping, Dcp1 (this family) and Dcp2 (pfam05026). The precise role of these proteins in the decapping reaction have not been established. Evidence suggests that the Dcp1 may enhance the function of Dcp2. 109 -336286 pfam06059 DUF930 Domain of Unknown Function (DUF930). Family of bacterial proteins with undetermined function. All bacteria in this family are from the Rhizobiales order. 99 -310565 pfam06060 Mesothelin Pre-pro-megakaryocyte potentiating factor precursor (Mesothelin). This family consists of several mammalian pre-pro-megakaryocyte potentiating factor precursor (MPF) or mesothelin proteins. Mesothelin is a glycosylphosphatidylinositol-linked glycoprotein highly expressed in mesothelial cells, mesotheliomas, and ovarian cancer, but the biological function of the protein is not known. 623 -310566 pfam06061 Baculo_ME53 Baculoviridae ME53. ME53 is one of the major early-transcribed genes. The ME53 protein is reported to contain a putative zinc finger motif. 339 -336287 pfam06062 UPF0231 Uncharacterized protein family (UPF0231). Family of uncharacterized Proteobacteria proteins. 121 -283675 pfam06064 Gam Host-nuclease inhibitor protein Gam. The Gam protein inhibits RecBCD nuclease and is found in both bacteria and bacteriophage. 98 -310568 pfam06066 SepZ SepZ. SepZ is a component of the type III secretion system use in bacteria. SepZ is a gene within the enterocyte effacement locus. SepZ mutants exhibit reduced invasion efficiency and lack of tyrosine phosphorylation of Hp90. 99 -336288 pfam06067 DUF932 Domain of unknown function (DUF932). Family of prokaryotic proteins with unknown function. Contains a number of highly conserved polar residues that could suggest an enzymatic activity. 226 -283678 pfam06068 TIP49 TIP49 C-terminus. This family consists of the C-terminal region of several eukaryotic and archaeal RuvB-like 1 (Pontin or TIP49a) and RuvB-like 2 (Reptin or TIP49b) proteins. The N-terminal domain contains the pfam00004 domain. In zebrafish, the liebeskummer (lik) mutation, causes development of hyperplastic embryonic hearts. lik encodes Reptin, a component of a DNA-stimulated ATPase complex. Beta-catenin and Pontin, a DNA-stimulated ATPase that is often part of complexes with Reptin, are in the same genetic pathways. The Reptin/Pontin ratio serves to regulate heart growth during development, at least in part via the beta-catenin pathway. TBP-interacting protein 49 (TIP49) was originally identified as a TBP-binding protein, and two related proteins are encoded by individual genes, tip49a and b. Although the function of this gene family has not been elucidated, they are supposed to play a critical role in nuclear events because they interact with various kinds of nuclear factors and have DNA helicase activities.TIP49a has been suggested to act as an autoantigen in some patients with autoimmune diseases. 395 -310570 pfam06069 PerC PerC transcriptional activator. PerC is a transcriptional activator of EaeA/BfpA expression in enteropathogenic bacteria. 90 -283680 pfam06070 Herpes_UL32 Herpesvirus large structural phosphoprotein UL32. The large phosphorylated protein (UL32-like) of herpes viruses is the polypeptide most frequently reactive in immuno-blotting analyses with antisera when compared with other viral proteins. 1037 -336289 pfam06071 YchF-GTPase_C Protein of unknown function (DUF933). This domain is found at the C-terminus of the YchF GTP-binding protein and is possibly related to the ubiquitin-like and MoaD/ThiS superfamilies. 84 -283682 pfam06072 Herpes_US9 Alphaherpesvirus tegument protein US9. This family consists of several US9 and related proteins from the Alphaherpesviruses. The function of the US9 protein is unknown although in Bovine herpesvirus 5 Us9 is essential for the anterograde spread of the virus from the olfactory mucosa to the bulb. 61 -336290 pfam06073 DUF934 Bacterial protein of unknown function (DUF934). This family consists of several bacterial proteins of unknown function. One of the members of this family BMEI1764 is thought to be an oxidoreductase. 103 -310573 pfam06074 DUF935 Protein of unknown function (DUF935). This family consists of several bacterial proteins of unknown function as well as the Bacteriophage Mu gp29 protein. 510 -336291 pfam06075 DUF936 Plant protein of unknown function (DUF936). This family consists of several hypothetical proteins from Arabidopsis thaliana and Oryza sativa. The function of this family is unknown. 488 -114778 pfam06076 Orthopox_F14 Orthopoxvirus F14 protein. This family consists of several short Orthopoxvirus F14 proteins. The function of this protein is unknown. 73 -310575 pfam06078 DUF937 Bacterial protein of unknown function (DUF937). This family consists of several hypothetical bacterial proteins of unknown function. 109 -336292 pfam06079 Apyrase Apyrase. This family consists of several eukaryotic apyrase proteins (EC:3.6.1.5). The salivary apyrases of blood-feeding arthropods are nucleotide hydrolysing enzymes implicated in the inhibition of host platelet aggregation through the hydrolysis of extracellular adenosine diphosphate.. 287 -253548 pfam06080 DUF938 Protein of unknown function (DUF938). This family consists of several hypothetical proteins from both prokaryotes and eukaryotes. The function of this family is unknown. 201 -283688 pfam06081 ArAE_1 Aromatic acid exporter family member 1. This family consists of bacterial proteins with three transmembrane regions that are purported to be aromatic acid exporters. 141 -336293 pfam06082 YjbH Exopolysaccharide biosynthesis protein YbjH. YjbH is a family of Gram-negative beta-barrel outer-membrane lipoproteins that act as putative porins. YbjH is one of four gene-products expressed from an operon, yjbEFGH, which is regulated by the Rcs phosphorelay in a RcsA-dependent manner, similar to that of other exopolysaccharide biosynthetic pathways. It is highly possible that the yjbEFGH operon encodes a system involved in EPS secretion since none of the products is predicted to have enzymic activity, the products are all secreted and YbjH and F are predicted to be beta-barrel lipoproteins similar to porins. It may be that the operon products play some role in biofilm formation and/or matrix production. 623 -310578 pfam06083 IL17 Interleukin-17. IL-17 is a potent proinflammatory cytokine produced by activated memory T cells. The IL-17 family is thought to represent a distinct signaling system that appears to have been highly conserved across vertebrate evolution. 81 -283691 pfam06084 Cytomega_TRL10 Cytomegalovirus TRL10 protein. This family consists of several Cytomegalovirus TRL10 proteins. TRL10 represents a structural component of the virus particle and like the other HCMV envelope glycoproteins, is present in a disulfide-linked complex. 149 -310579 pfam06085 Rz1 Lipoprotein Rz1 precursor. This family consists of several bacteria and phage lipoprotein Rz1 precursors. Rz1 is a proline-rich lipoprotein from bacteriophage lambda which is known to have fusogenic properties. Rz1-induced liposome fusion is thought to be mediated primarily by the generation of local perturbation in the bilayer lipid membrane and to a lesser extent by electrostatic forces. This family Rz1 and the Rz protein Rz (pfam03245) represent a unique example of two genes located in different reading frames in the same nucleotide sequence, which encode different proteins that are both required in the same physiological pathway. 42 -283693 pfam06086 Pox_A30L_A26L Orthopoxvirus A26L/A30L protein. This family consists of several Orthopoxvirus A26L and A30L proteins. The Vaccinia A30L gene is regulated by a late promoter and encodes a protein of approximately 9 kDa. It is thought that the A30L protein is needed for vaccinia virus morphogenesis, specifically the association of the dense viroplasm with viral membranes. 220 -336294 pfam06087 Tyr-DNA_phospho Tyrosyl-DNA phosphodiesterase. Covalent intermediates between topoisomerase I and DNA can become dead-end complexes that lead to cell death. Tyrosyl-DNA phosphodiesterase can hydrolyze the bond between topoisomerase I and DNA. 419 -310581 pfam06088 TLP-20 Nucleopolyhedrovirus telokin-like protein-20 (TLP20). This family consists of several Nucleopolyhedrovirus telokin-like protein-20 (TLP20) sequences. The function of this family is unknown but TLP20 is known to shares some antigenic similarities to the smooth muscle protein telokin although the amino acid sequence shows no homologies to telokin. 162 -336295 pfam06089 Asparaginase_II L-asparaginase II. This family consists of several bacterial L-asparaginase II proteins. L-asparaginase (EC:3.5.1.1) catalyzes the hydrolysis of L-asparagine to L-aspartate and ammonium. Rhizobium etli possesses two asparaginases: asparaginase I, which is thermostable and constitutive, and asparaginase II, which is thermolabile, induced by asparagine and repressed by the carbon source. 320 -310583 pfam06090 Ins_P5_2-kin Inositol-pentakisphosphate 2-kinase. This is a family of inositol-pentakisphosphate 2-kinases (EC 2.7.1.158) (also known as inositol 1,3,4,5,6-pentakisphosphate 2-kinase, Ins(1,3,4,5,6)P5 2-kinase) and InsP5 2-kinase). This enzyme phosphorylates Ins(1,3,4,5,6)P5 to form Ins(1,2,3,4,5,6)P6 (also known as InsP6 or phytate). InsP6 is involved in many processes such as mRNA export, nonhomologous end-joining, endocytosis and ion channel regulation. 273 -336296 pfam06092 DUF943 Enterobacterial putative membrane protein (DUF943). This family consists of several hypothetical putative membrane proteins from Escherichia coli, Yersinia pestis and Salmonella typhi. 151 -310585 pfam06093 Spt4 Spt4/RpoE2 zinc finger. This family consists of several eukaryotic transcription elongation Spt4 proteins as well as archaebacterial RpoE2. Three transcription-elongation factors Spt4, Spt5, and Spt6 are conserved among eukaryotes and are essential for transcription via the modulation of chromatin structure. Spt4 and Spt5 are tightly associated in a complex, while the physical association of the Spt4-Spt5 complex with Spt6 is considerably weaker. It has been demonstrated that Spt4, Spt5, and Spt6 play roles in transcription elongation in both yeast and humans including a role in activation by Tat. It is known that Spt4, Spt5, and Spt6 are general transcription-elongation factors, controlling transcription both positively and negatively in important regulatory and developmental roles. RpoE2 is one of 13 subunits in the archaeal RNA polymerase. These proteins contain a C4-type zinc finger, and the structure has been solved in. The structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4, and the complex binds to and travels along the elongating RNA polymerase. The Spt4-Spt5 complex is likely to be an ancient, core component of the transcription elongation machinery. 77 -336297 pfam06094 GGACT Gamma-glutamyl cyclotransferase, AIG2-like. GGACT, gamma-glutamylamine cyclotransferase, is a ubiquitous enzyme found in bacteria, plants, and metazoans from Dictyostelium through to humans. It converts gamma-glutamylamines to free amines and 5-oxoproline. 113 -283700 pfam06096 Baculo_8kDa Baculoviridae 8.2 KDa protein. Family of proteins from various Baculoviruses with undetermined function. 65 -336298 pfam06097 DUF945 Bacterial protein of unknown function (DUF945). This family consists of several hypothetical bacterial proteins of unknown function. 459 -336299 pfam06098 Radial_spoke_3 Radial spoke protein 3. This family consists of several radial spoke protein 3 (RSP3) sequences. Eukaryotic cilia and flagella present in diverse types of cells perform motile, sensory, and developmental functions in organisms from protists to humans. They are centred by precisely organized, microtubule-based structures, the axonemes. The axoneme consists of two central singlet microtubules, called the central pair, and nine outer doublet microtubules. These structures are well-conserved during evolution. The outer doublet microtubules, each composed of A and B sub-fibers, are connected to each other by nexin links, while the central pair is held at the centre of the axoneme by radial spokes. The radial spokes are T-shaped structures extending from the A-tubule of each outer doublet microtubule to the centre of the axoneme. Radial spoke protein 3 (RSP3), is present at the proximal end of the spoke stalk and helps in anchoring the radial spoke to the outer doublet. It is thought that radial spokes regulate the activity of inner arm dynein through protein phosphorylation and dephosphorylation. 284 -310589 pfam06099 Phenol_hyd_sub Phenol hydroxylase subunit. This family consists of several bacterial phenol hydroxylase subunit proteins which are part of a multicomponent phenol hydroxylase. Some bacteria can utilize phenol or some of its methylated derivatives as their sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via the meta-cleavage pathway into TCA cycle intermediates. 56 -310590 pfam06100 MCRA MCRA family. The MCRA (myosin-cross-reactive antigen) family of proteins were thought to have structural features in common with the beta chain of the class II antigens, as well as myosin, and may play an important role in the pathogenesis. More recent work shows that these proteins act as hydratase enzymes that convert linoleic acid and oleic acid to their respective 10-hydroxy derivatives. It has been suggested that MCRA proteins catalyze the first step in conjugated linoleic acid production. Proteins in this family act in an FAD dependent manner. The structure of a fatty acid double-bond hydratase from Lactobacillus acidophilus has been recently solved showing four structural domains. 489 -336300 pfam06101 Vps62 Vacuolar protein sorting-associated protein 62. Vps62 is a vacuolar protein sorting (VPS) protein required for cytoplasm to vacuole targeting of proteins. 539 -336301 pfam06102 RRP36 rRNA biogenesis protein RRP36. RRP36 is involved in the early processing steps of the pre-rRNA. 158 -336302 pfam06103 DUF948 Bacterial protein of unknown function (DUF948). This family consists of bacterial sequences several of which are thought to be general stress proteins. 83 -310594 pfam06105 Aph-1 Aph-1 protein. This family consists of several eukaryotic Aph-1 proteins.Gamma-secretase catalyzes the intramembrane proteolysis of Notch, beta-amyloid precursor protein, and other substrates as part of a new signaling paradigm and as a key step in the pathogenesis of Alzheimer's disease. It is thought that the presenilin heterodimer comprises the catalytic site and that a highly glycosylated form of nicastrin associates with it. Aph-1 and Pen-2, two membrane proteins genetically linked to gamma-secretase, associate directly with presenilin and nicastrin in the active protease complex. Co-expression of all four proteins leads to marked increases in presenilin heterodimers, full glycosylation of nicastrin, and enhanced gamma-secretase activity. 224 -283709 pfam06106 SAUGI S. aureus uracil DNA glycosylase inhibitor. Uracil-DNA glycosylase inhibitors, are DNA mimic proteins that prevent the DNA binding sites of UDGs (Uracil DNA glycosylase) from interacting with their DNA substrate. SSP0047 (SAUGI; for Staphylococcus aureus uracil-DNA glycosylase inhibitor) acts as a uracil-DNA glycosylase inhibitor that breaks the uracil-removing activity of S. aureus uracil-DNA glycosylase (SAUDG) pfam03167. The SAUGI/SAUDG complex has been determined, and shows that SAUGI binds to the SAUDG DNA binding region via several strong interactions, by using a hydrophobic pocket to hold SAUDG's protruding residue (i.e. SAUDG Leu184, E. coli UDG Leu191 and B. subtilis UDG Phe191). By binding to SAUDG in this way, SAUGI thus prevents SAUDG from binding to its DNA substrate and performing DNA repair activity. 111 -336303 pfam06107 DUF951 Bacterial protein of unknown function (DUF951). This family consists of several short hypothetical bacterial proteins of unknown function. Structural modelling suggests this domain may bind nucleic acids. 55 -336304 pfam06108 DUF952 Protein of unknown function (DUF952). This family consists of several hypothetical bacterial and plant proteins of unknown function. 83 -336305 pfam06109 HlyE Haemolysin E (HlyE). This family consists of several enterobacterial haemolysin (HlyE) proteins.Hemolysin E (HlyE) is a novel pore-forming toxin of Escherichia coli, Salmonella typhi, and Shigella flexneri. HlyE is unrelated to the well characterized pore-forming E. coli hemolysins of the RTX family, haemolysin A (HlyA), and the enterohaemolysin encoded by the plasmid borne ehxA gene of E. coli 0157. However, it is evident that expression of HlyE in the absence of the RTX toxins is sufficient to give a hemolytic phenotype in E. coli. HlyE is a protein of 34 kDa that is expressed during anaerobic growth of E. coli. Anaerobic expression is controlled by the transcription factor, FNR, such that, upon ingestion and entry into the anaerobic mammalian intestine, HlyE is produced and may then contribute to the colonisation of the host. 290 -283713 pfam06110 DUF953 Eukaryotic protein of unknown function (DUF953). This family consists of several hypothetical eukaryotic proteins of unknown function. 119 -310597 pfam06112 Herpes_capsid Gammaherpesvirus capsid protein. This family consists of several Gammaherpesvirus capsid proteins. The exact function of this family is unknown. 169 -310598 pfam06113 BRE Brain and reproductive organ-expressed protein (BRE). This family consists of several eukaryotic brain and reproductive organ-expressed (BRE) proteins. BRE is a putative stress-modulating gene, found able to down-regulate TNF-alpha-induced-NF-kappaB activation upon over expression. A total of six isoforms are produced by alternative splicing predominantly at either end of the gene.Compared to normal cells, immortalised human cell lines uniformly express higher levels of BRE. Peripheral blood monocytes respond to LPS by down-regulating the expression of all the BRE isoforms.It is thought that the function of BRE and its isoforms is to regulate peroxisomal activities. 320 -310599 pfam06114 Peptidase_M78 IrrE N-terminal-like domain. This entry includes the catalytic domain of the protein ImmA, which is a metallopeptidase containing an HEXXH zinc-binding motif from peptidase family M78. ImmA is encoded on a conjugative transposon. Conjugating bacteria are able to transfer conjugative transposons that can, for example, confer resistance to antibiotics. The transposon is integrated into the chromosome, but during conjugation excises itself and then moves to the recipient bacterium and re-integrate into its chromosome. Typically a conjugative tranposon encodes only the proteins required for this activity and the proteins that regulate it. During exponential growth, the ICEBs1 transposon of Bacillus subtilis is inactivated by the immunity repressor protein ImmR, which is encoded by the transposon and represses the genes for excision and transfer. Cleavage of ImmR relaxes repression and allows transfer of the transposon. ImmA has been shown to be essential for the cleavage of ImmR. This domain is also found in in metalloprotease IrrE, a central regulator of DNA damage repair in Deinococcaceae, HTH-type transcriptional regulators RamB and PrpC. 122 -336306 pfam06115 DUF956 Domain of unknown function (DUF956). Family of bacterial sequences with undetermined function. 117 -283718 pfam06116 RinB Transcriptional activator RinB. This family consists of several Staphylococcus aureus bacteriophage RinB proteins and related sequences from their host. The int gene of staphylococcal bacteriophage phi 11 is the only viral gene responsible for the integrative recombination of phi 11. rinA and rinB, are both required to activate expression of the int gene. 51 -283719 pfam06117 DUF957 Enterobacterial protein of unknown function (DUF957). This family consists of several hypothetical proteins from Escherichia coli, Salmonella typhi, Shigella flexneri and Proteus vulgaris. The function of this family is unknown. 62 -336307 pfam06119 NIDO Nidogen-like. This is a nidogen-like domain (NIDO) domain and is an extracellular domain found in nidogen and hypothetical proteins of unknown function. 89 -283721 pfam06120 Phage_HK97_TLTM Tail length tape measure protein. This family consists of the tail length tape measure protein from bacteriophage HK97 and related sequences from Escherichia coli O157:H7. 288 -310602 pfam06121 DUF959 Domain of Unknown Function (DUF959). This N-terminal domain is not expressed in the 'Short' isoform of Collagen A. 203 -336308 pfam06122 TraH Conjugative relaxosome accessory transposon protein. The TraH protein is thought to be a relaxosome accessory component, also necessary for transfer but not for H-pilus synthesis within the conjugative transposon. 355 -336309 pfam06123 CreD Inner membrane protein CreD. This family consists of several bacterial CreD or Cet inner membrane proteins. Dominant mutations of the cet gene of Escherichia coli result in tolerance to colicin E2 and increased amounts of an inner membrane protein with an Mr of 42,000. The cet gene is shown to be in the same operon as the phoM gene, which is required in a phoR background for expression of the structural gene for alkaline phosphatase, phoA. Although the Cet protein is not required for phoA expression, it has been suggested that the Cet protein has an enhancing effect on the transcription of phoA. 429 -336310 pfam06124 DUF960 Staphylococcal protein of unknown function (DUF960). This family consists of several hypothetical proteins from several species of Staphylococcus. The function of this family is unknown. 94 -310606 pfam06125 DUF961 Bacterial protein of unknown function (DUF961). This family consists of several hypothetical bacterial proteins of unknown function. 96 -147993 pfam06126 Herpes_LAMP2 Herpesvirus Latent membrane protein 2. Family of Kaposi's sarcoma-associated herpesvirus (HHV8) latent membrane protein. 510 -336311 pfam06127 DUF962 Protein of unknown function (DUF962). This family consists of several eukaryotic and prokaryotic proteins of unknown function. The yeast protein YGL010W has been found to be non-essential for cell growth. 95 -283728 pfam06128 Shigella_OspC Shigella flexneri OspC protein. This family consists of the Shigella flexneri specific protein OspC. The function of this family is unknown but it is thought that Osp proteins may be involved in post invasion events related to virulence. Since bacterial pathogens adapt to multiple environments during the course of infecting a host, it has been proposed that Shigella evolved a mechanism to take advantage of a unique intracellular cue, which is mediated through MxiE, to express proteins when the organism reaches the eukaryotic cytosol. 292 -283729 pfam06129 Chordopox_G3 Chordopoxvirus G3 protein. This family consists of several Chordopoxvirus specific G3 proteins. The function of this family is unknown. 108 -336312 pfam06130 PTAC Phosphate propanoyltransferase. This family includes phosphotransacylases (PTACs) required for the degradation of 1,2-propanediol (1,2-PD). 66 -283731 pfam06131 DUF963 Schizosaccharomyces pombe repeat of unknown function (DUF963). This family consists of a series of repeated sequences from one hypothetical protein found in Schizosaccharomyces pombe. The function of this family is unknown. 36 -336313 pfam06133 Com_YlbF Control of competence regulator ComK, YlbF/YmcA. YlbF Is a family of short Gram-positive and archaeal proteins that includes both YlbF and YmcA which may interact synergistically. The family is necessary for correct biofilm formation, as null mutants of ymcA and ylbF fail to form pellicles at air-liquid interfaces and grow on solid media as smooth, undifferentiated colonies. During development, YmcA, YlbF and YaaT, family PSPI, pfam04468, interact directly with one another forming a stable ternary complex, in vitro. All three proteins are required for competence, sporulation and the formation of biofilms. The YmcA-YlbF-YaaT complex affects the phosphotransfer between Spo0F and Spo0B, thus accelerating the production of Spo0A~P. The three processes of biofilm formation, mature spore formation and competence all require the active, phosphorylated form of Spo0A, as Spo0A-P. 104 -283733 pfam06134 RhaA L-rhamnose isomerase (RhaA). This family consists of several bacterial L-rhamnose isomerase proteins (EC:5.3.1.14). 417 -336314 pfam06135 IreB-like IreB family regulatory phosphoprotein. IreB (EF1202) was characterized in Enterococcus faecalis as a small protein, well-conserved in the Firmicutes. It belongs to a system that includes the Ser/Thr protein kinase IreK, and phosphatase IreP, undergoes phosphorylation on threonine residues, and is involved in regulating cephalosporin resistance. This family was previously named DUF965 by Pfam model pfam06135. 77 -310611 pfam06136 DUF966 Domain of unknown function (DUF966). Family of plant proteins with unknown function. 364 -283736 pfam06138 Chordopox_E11 Chordopoxvirus E11 protein. This family consists of several Chordopoxvirus E11 proteins. The E11 gene of vaccinia virus encodes a 15-kDa polypeptide. Mutations in the E11 gene makes the virus temperature-sensitive due to either the fact that virus infectivity requires a threshold level of active E11 protein or that E11 function is conditionally essential. 126 -283737 pfam06139 BphX BphX-like. Family of bacterial proteins located in the phenyl dioxygenase (bph) operon. The function of this family is unknown. 133 -310612 pfam06140 Ifi-6-16 Interferon-induced 6-16 family. 77 -310613 pfam06141 Phage_tail_U Phage minor tail protein U. Tail fibre component U of bacteriophage. 131 -114838 pfam06143 Baculo_11_kDa Baculovirus 11 kDa family. Family of uncharacterized Baculovirus proteins that are all about 11 kDa in size. 84 -336315 pfam06144 DNA_pol3_delta DNA polymerase III, delta subunit. DNA polymerase III, delta subunit (EC 2.7.7.7) is required for, along with delta' subunit, the assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. The delta subunit is also known as HolA. 163 -148007 pfam06145 Corona_NS1 Coronavirus nonstructural protein NS1. Bovine coronavirus NS1 encodes a 4.9 kDa protein. 29 -336316 pfam06146 PsiE Phosphate-starvation-inducible E. Phosphate-starvation-inducible E (PsiE) expression is under direct positive and negative control by PhoB and cAMP-CRP, respectively. The function of PsiE remains to be determined. 68 -310615 pfam06147 DUF968 Protein of unknown function (DUF968). Family of uncharacterized prophage proteins found in Gammaproteobacteria. These may be HNH-nucleases, as there are several conserved cysteines and histidines. 200 -310616 pfam06148 COG2 COG (conserved oligomeric Golgi) complex component, COG2. The COG complex comprises eight proteins COG1-8. The COG complex plays critical roles in Golgi structure and function. The proposed function of the complex is to mediate the initial physical contact between transport vesicles and their membrane targets. A comparable role in tethering vesicles has been suggested for at least six additional large multisubunit complexes, including the exocyst, a complex that mediates trafficking to the plasma membrane. COG2 structure reveals a six-helix bundle with few conserved surface features but a general resemblance to recently determined crystal structures of four different exocyst subunits. These bundles inCOG2 may act as platforms for interaction with other trafficing proteins including SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) and Rabs. 133 -310617 pfam06149 DUF969 Protein of unknown function (DUF969). Family of uncharacterized bacterial membrane proteins. 216 -336317 pfam06150 ChaB ChaB. This family of proteins contain a conserved 60 residue region. This protein is known as ChaB in E. coli and is found next to ChaA which is a cation transporter protein. ChaB may be regulate ChaA function in some way. 60 -336318 pfam06151 Trehalose_recp Trehalose receptor. In Drosophila, taste is perceived by gustatory neurons located in sensilla distributed on several different appendages throughout the body of the animal. This family represents the taste receptor sensitive to trehalose. 411 -310619 pfam06152 Phage_min_cap2 Phage minor capsid protein 2. Family of related phage minor capsid proteins. 357 -283747 pfam06153 CdAMP_rec Cyclic-di-AMP receptor. CdAMP is a family of bacterial cyclic-di-AMP receptor proteins. Cyclic-di-AMP (c-di-AMP) is a bacterial secondary messenger involved in various processes, including sensing of DNA-integrity, cell wall metabolism and potassium transport. CdAMP_rec has a ferredoxin-like fold and is structurally related to Pii-signal transduction proteins. 109 -310620 pfam06154 CbeA_antitoxin CbeA_antitoxin, type IV, cytoskeleton bundling-enhancing factor A. CbeA_antitoxin is a family of cognate antitoxins to the CbtA toxins that act by inhibiting the polymerization of cytoskeletal proteins, see pfam06755. These are classified as a type IV toxin-antitoxin system. The family includes three proteins from E. coli YagB, YeeU and YfjZ, which act not by forming a complex with CbtA but through acting as antagonists to the CbtA toxicity, by stabilizing the CbtA target proteins. For example, YeeU binds directly to both MreB and FtsZ and enhances the bundling of their filaments in vitro. YeeU is also able to neutralize the toxicity caused by other MreB and FtsZ inhibitors, such as A22 [S-(3, 4-dichlorobenzyl)isothiourea] for MreB, and SulA and DicB for FtsZ. Thus CbeA, for cytoskeleton bundling-enhancing factor A, is proposed as a general name for all of these antitoxin proteins. 101 -336319 pfam06155 DUF971 Protein of unknown function (DUF971). This family consists of several short bacterial proteins and one sequence from Oryza sativa. The function of this family is unknown. 84 -336320 pfam06156 YabB Initiation control protein YabA. YabA is involved in initiation control of chromosome replication. It interacts with both DnaA and DnaN, acting as a bridge between these two proteins. 105 -283751 pfam06157 DUF973 Protein of unknown function (DUF973). This family consists of several hypothetical archaeal proteins of unknown function. 309 -336321 pfam06159 DUF974 Protein of unknown function (DUF974). Family of uncharacterized eukaryotic proteins. 238 -336322 pfam06160 EzrA Septation ring formation regulator, EzrA. During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. EzrA modulates the frequency and position of FtsZ ring formation. 556 -283754 pfam06161 DUF975 Protein of unknown function (DUF975). Family of uncharacterized bacterial proteins. 244 -310625 pfam06162 PgaPase_1 Putative pyroglutamyl peptidase PgaPase_1. PgaPase_1 is a family of functionally diverse Caenorhabditis proteins. The family is homologous to the cysteine-peptidases, but lack of a strictly conserved Glu-Cys-His catalytic triad or pGlu binding site implies that it has other functions that could have resulted in a change in reaction-specificity or even of catalytic activity. 166 -310626 pfam06163 DUF977 Bacterial protein of unknown function (DUF977). This family consists of several hypothetical bacterial proteins from Escherichia coli and Salmonella typhi. The function of this family is unknown. 134 -336323 pfam06165 Glyco_transf_36 Glycosyltransferase family 36. The glycosyltransferase family 36 includes cellobiose phosphorylase (EC:2.4.1.20), cellodextrin phosphorylase (EC:2.4.1.49), chitobiose phosphorylase (EC:2.4.1.-). Many members of this family contain two copies of this domain. 245 -310628 pfam06166 DUF979 Protein of unknown function (DUF979). This family consists of several putative bacterial membrane proteins. The function of this family is unclear. 304 -336324 pfam06167 Peptidase_M90 Glucose-regulated metallo-peptidase M90. MtfA (earlier known as YeeI) is a transcription factor A that binds Mlc (make large colonies), itself a repressor of glucose and hence a protein important in regulation of the phosphoenolpyruvate:glucose-phosphotransferase (ptsG) system, the major glucose transporter in E.coli. Mlc is a repressor of ptsG, and MtfA is found to bind and inactivate Mlc with high affinity. The membrane-bound protein EIICBGlc encoded by the ptsG gene is the major glucose transporter in Escherichia coli. MtfA is found to be a glucose-regulated peptidase, whose activity is regulated by binding to Mlc available in the cytoplasm, which in turn has been released from EIICBGlc during times when no glucose is taken up. A physiologically relevant target for this peptidase is not yet known. 243 -310630 pfam06168 DUF981 Protein of unknown function (DUF981). Family of uncharacterized proteins found in bacteria and archaea. 181 -336325 pfam06169 DUF982 Protein of unknown function (DUF982). This family consists of several hypothetical proteins from Rhizobium meliloti, Rhizobium loti and Agrobacterium tumefaciens. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 71 -336326 pfam06170 DUF983 Protein of unknown function (DUF983). This family consists of several bacterial proteins of unknown function. 83 -336327 pfam06172 Cupin_5 Cupin superfamily (DUF985). Family of uncharacterized proteins found in bacteria and eukaryotes that belongs to the Cupin superfamily. 134 -336328 pfam06173 DUF986 Protein of unknown function (DUF986). This family consists of several bacterial putative membrane proteins of unknown function. 145 -336329 pfam06174 DUF987 Protein of unknown function (DUF987). Family of bacterial proteins that are related to the hypothetical protein yeeT. 65 -114868 pfam06175 MiaE tRNA-(MS[2]IO[6]A)-hydroxylase (MiaE). This family consists of several bacterial tRNA-(MS[2]IO[6]A)-hydroxylase (MiaE) proteins. The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present at position 37 (3' of the anticodon) of tRNAs that read codons beginning with U except tRNA(I,V Ser) in Escherichia coli. Salmonella typhimurium 2-methylthio-cis-ribozeatin (ms2io6A) is found in tRNA, probably in the corresponding species that have ms2i6A in E. coli. The miaE gene is absent in E. coli, a finding consistent with the absence of the hydroxylated derivative of ms2i6A in this species. 199 -283765 pfam06176 WaaY Lipopolysaccharide core biosynthesis protein (WaaY). This family consists of several bacterial lipopolysaccharide core biosynthesis proteins (WaaY or RfaY). The waaY, waaQ, and waaP genes are located in the central operon of the waa (formerly rfa) locus on the chromosome of Escherichia coli. This locus contains genes whose products are involved in the assembly of the core region of the lipopolysaccharide molecule. WaaY is the enzyme that phosphorylates HepII in this system. 229 -336330 pfam06177 QueT QueT transporter. This family includes the queT gene encoding a hypothetical integral membrane protein with 5 predicted transmembrane regions. The queT genes in Firmicutes are often preceded by the PreQ1 (7-aminomethyl-7-deazaguanine) riboswitches of two distinct classes, suggesting involvement of the QueT transporters in uptake of a queuosine biosynthetic intermediate. 143 -283767 pfam06178 KdgM Oligogalacturonate-specific porin protein (KdgM). This family consists of several bacterial proteins which are homologous to the oligogalacturonate-specific porin protein KdgM from Erwinia chrysanthemi. The phytopathogenic Gram-negative bacteria Erwinia chrysanthemi secretes pectinases, which are able to degrade the pectic polymers of plant cell walls, and uses the degradation products as a carbon source for growth. KdgM is a major outer membrane protein, whose synthesis is strongly induced in the presence of pectic derivatives. KdgM behaves like a voltage-dependent porin that is slightly selective for anions and that exhibits fast block in the presence of trigalacturonate. In contrast to most porins, KdgM seems to be monomeric. 215 -310637 pfam06179 Med22 Surfeit locus protein 5 subunit 22 of Mediator complex. This family consists of several eukaryotic Surfeit locus protein 5 (SURF5) sequences. The human Surfeit locus has been mapped on chromosome 9q34.1. The locus includes six tightly clustered housekeeping genes (Surf1-6), and the gene organisation is similar in human, mouse and chicken Surfeit locus. The Med22 subunit of Mediator complex is part of the essential core head region. 105 -283769 pfam06180 CbiK Cobalt chelatase (CbiK). This family consists of several bacterial cobalt chelatase (CbiK) proteins (EC:4.99.1.-). 261 -336331 pfam06181 Urate_ox_N Urate oxidase N-terminal. Cytochrome c urate oxidase (Uox) PuuD is involved in purine degradation. In contrast with soluble Uox it is a membrane protein with an 8-helix transmembrane N-terminal domain and a C-terminal cytochrome c. 295 -253605 pfam06182 ABC2_membrane_6 ABC-2 family transporter protein. This family acts as the transmembrane domain (TMD) of ABC transporters. The family includes proteins responsible for the transport of herbicides. 229 -336332 pfam06183 DinI DinI-like family. This family of short proteins includes DNA-damage-inducible protein I (DinI) and related proteins. The SOS response, a set of cellular phenomena exhibited by eubacteria, is initiated by various causes that include DNA damage-induced replication arrest, and is positively regulated by the co- protease activity of RecA. Escherichia coli DinI, a LexA-regulated SOS gene product, shuts off the initiation of the SOS response when overexpressed in vivo. Biochemical and genetic studies indicated that DinI physically interacts with RecA to inhibit its co-protease activity. The structure of DinI is known. 63 -310640 pfam06184 Potex_coat Potexvirus coat protein. This family consists of several Potexvirus coat proteins. 153 -336333 pfam06185 YecM YecM protein. This family consists of several bacterial YecM proteins of unknown function. 179 -336334 pfam06186 DUF992 Protein of unknown function (DUF992). This family consists of several hypothetical bacterial proteins of unknown function. 143 -336335 pfam06187 DUF993 Protein of unknown function (DUF993). This family consists of several hypothetical bacterial proteins of unknown function. 381 -283775 pfam06188 HrpE HrpE/YscL/FliH and V-type ATPase subunit E. This is a prokaryotic family that contains proteins of the FliH and HrpE/YscL family. These proteins are involved in type III secretion, which is the process that drives flagellar biosynthesis and mediates bacterial-eukaryotic interactions. This family also V-type ATPase subunit E. This subunit appears to form a tight interaction with subunit G in the F0 complex. Subunits E and G may act together as stators to prevent certain subunits from rotating with the central rotary element. pfam01991 also contains V-type ATPase subunit E proteins. 187 -336336 pfam06189 5-nucleotidase 5'-nucleotidase. This family consists of both eukaryotic and prokaryotic 5'-nucleotidase sequences (EC:3.1.3.5). 262 -336337 pfam06191 DUF995 Protein of unknown function (DUF995). Family of uncharacterized Proteobacteria proteins. 140 -283778 pfam06193 Orthopox_A5L Orthopoxvirus A5L protein-like. This family includes several Orthopoxvirus A5L proteins. The vaccinia virus WR A5L open reading frame (corresponding to open reading frame A4L in vaccinia virus Copenhagen) encodes an immunodominant late protein found in the core of the vaccinia virion. The A5 protein appears to be required for the immature virion to form the brick-shaped intracellular mature virion. 216 -283779 pfam06194 Phage_Orf51 Phage Conserved Open Reading Frame 51. Family of conserved bacteriophage open reading frames. 80 -310646 pfam06195 DUF996 Protein of unknown function (DUF996). Family of uncharacterized bacterial and archaeal proteins. 135 -336338 pfam06196 DUF997 Protein of unknown function (DUF997). Family of predicted bacterial membrane protein with unknown function. 76 -310648 pfam06197 DUF998 Protein of unknown function (DUF998). Family of conserved archaeal proteins. 183 -114890 pfam06198 DUF999 Protein of unknown function (DUF999). Family of conserved Schizosaccharomyces pombe proteins with unknown function. 143 -310649 pfam06199 Phage_tail_2 Phage tail tube protein. characterized members are major tail tube proteins from various phages, including lactococcal temperate bacteriophage TP901-1. 134 -336339 pfam06200 tify tify domain. This short possible domain is found in a variety of plant transcription factors that contain GATA domains as well as other motifs. Although previously known as the Zim domain this is now called the tify domain after its most conserved amino acids. TIFY proteins can be further classified into two groups depending on the presence (group I) or absence (group II) of a C2C2-GATA domain. Functional annotation of these proteins is still poor, but several screens revealed a link between TIFY proteins of group II and jasmonic acid-related stress response. 34 -336340 pfam06201 PITH PITH domain. This family was formerly known as DUF1000. The full-length, Txnl1, protein which is a probable component of the 26S proteasome, uses its C-terminal, PITH, domain to associate specifically with the 26S proteasome. PITH derives from proteasome-interacting thioredoxin domain. 147 -283786 pfam06202 GDE_C Amylo-alpha-1,6-glucosidase. This family includes human glycogen branching enzyme AGL. This enzyme contains a number of distinct catalytic activities. It has been shown for the yeast homolog GDB1 that mutations in this region disrupt the enzymes Amylo-alpha-1,6-glucosidase (EC:3.2.1.33). 374 -336341 pfam06203 CCT CCT motif. This short motif is found in a number of plant proteins. It is rich in basic amino acids and has been called a CCT motif after Co, Col and Toc1. The CCT motif is about 45 amino acids long and contains a putative nuclear localization signal within the second half of the CCT motif. Toc1 mutants have been identified in this region. 44 -310653 pfam06206 CpeT CpeT/CpcT family (DUF1001). This family consists of proteins of proteins belonging to the CpeT/CpcT family. These proteins are around 200 amino acids in length. The proteins contain a conserved motif PYR in the amino terminal half of the protein that may be functionally important. The species distribution of the family is interesting. So far it is restricted to cyanobacteria, cryptomonads and plants. It has been shown that CpcT encodes a bilin lyase responsible for attachment of phycocyanobilin to the beta subunit of phycocyanin. 179 -336342 pfam06207 DUF1002 Protein of unknown function (DUF1002). This protein family has no known function. Its members are about 300 amino acids in length. It has so far been detected in Firmicute bacteria and some archaebacteria. 221 -283790 pfam06208 BDV_G Borna disease virus G protein. This family consists of Borna disease virus G glycoprotein sequences. Borna disease virus (BDV) infection produces a variety of clinical diseases, from behavioural illnesses to classical fatal encephalitis. G protein is important for viral entry into the host cell. 503 -310655 pfam06209 COBRA1 Cofactor of BRCA1 (COBRA1). This family consists of several cofactor of BRCA1 (COBRA1) like proteins. It is thought that COBRA1 along with BRCA1 is involved in chromatin unfolding. COBRA1 is recruited to the chromosome site by the first BRCT repeat of BRCA1, and is itself sufficient to induce chromatin unfolding. BRCA1 mutations that enhance chromatin unfolding also increase its affinity for, and recruitment of, COBRA1. It is thought that that reorganisation of higher levels of chromatin structure is an important regulated step in BRCA1-mediated nuclear functions. 473 -336343 pfam06210 DUF1003 Protein of unknown function (DUF1003). This family consists of several hypothetical bacterial proteins of unknown function. 101 -283793 pfam06211 BAMBI BMP and activin membrane-bound inhibitor (BAMBI) N-terminal domain. This family consists of several eukaryotic BMP and activin membrane-bound inhibitor (BAMBI) proteins. Members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation. BAMBI is related to TGF-beta-family type I receptors but lacks an intracellular kinase domain. BAMBI is co-expressed with the ventralising morphogen BMP4 during Xenopus embryogenesis and requires BMP signalling for its expression. The protein stably associates with TGF-beta-family receptors and inhibits BMP and activin as well as TGF-beta signalling. 107 -336344 pfam06212 GRIM-19 GRIM-19 protein. This family consists of several eukaryotic gene associated with retinoic-interferon-induced mortality 19 (GRIM-19) proteins. GRIM-19, was reported to encode a small protein primarily distributed in the nucleus and was able to promote cell death induced by IFN-# and RA. A bovine homolog of GRIM-19 was co-purified with mitochondrial NADH:ubiquinone oxidoreductase (complex I) in bovine heart. Therefore, its exact cellular localization and function are unclear. It has now been discovered that GRIM-19 is a specific interacting protein which negatively regulates Stat3 activity. 131 -336345 pfam06213 CobT Cobalamin biosynthesis protein CobT. This family consists of several bacterial cobalamin biosynthesis (CobT) proteins. CobT is involved in the transformation of precorrin-3 into cobyrinic acid. 274 -310659 pfam06214 SLAM Signaling lymphocytic activation molecule (SLAM) protein. This family consists of several mammalian signaling lymphocytic activation molecule (SLAM) proteins. Optimal T cell activation and expansion require engagement of the TCR plus co-stimulatory signals delivered through accessory molecules. SLAM, a 70-kDa co-stimulatory molecule belonging to the Ig superfamily, is defined as a human cell surface molecule that mediates CD28-independent proliferation of human T cells and IFN-gamma production by human Th1 and Th2 clones. SLAM has also been recognized as a receptor for measles virus. 125 -283797 pfam06215 ISAV_HA Infectious salmon anaemia virus haemagglutinin. This family consists of several infectious salmon anaemia virus haemagglutinin proteins. Infectious salmon anaemia virus (ISAV), an orthomyxovirus-like virus, is an important fish pathogen in marine aquaculture. 394 -283798 pfam06216 RTBV_P46 Rice tungro bacilliform virus P46 protein. This family consists of several Rice tungro bacilliform virus P46 proteins. The function of this family is unknown. 389 -310660 pfam06217 GAGA_bind GAGA binding protein-like family. This family includes gbp a protein from Soybean that binds to GAGA element dinucleotide repeat DNA. It seems likely that the this domain mediates DNA binding. This putative domain contains several conserved cysteines and a histidine suggesting this may be a zinc-binding DNA interaction domain. 282 -310661 pfam06218 NPR2 Nitrogen permease regulator 2. This family of regulators are involved in post-translational control of nitrogen permease. 437 -310662 pfam06219 DUF1005 Protein of unknown function (DUF1005). Family of plant proteins with undetermined function. 430 -310663 pfam06220 zf-U1 U1 zinc finger. This family consists of several U1 small nuclear ribonucleoprotein C (U1-C) proteins. The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator. This domain is probably a zinc-binding. It is found in multiple copies in some members of the family. 38 -310664 pfam06221 zf-C2HC5 Putative zinc finger motif, C2HC5-type. This zinc finger appears to be common in activating signal cointegrator 1/thyroid receptor interacting protein 4. 54 -310665 pfam06222 Phage_TAC_1 Phage tail assembly chaperone. 126 -283804 pfam06223 Phage_tail_T Minor tail protein T. Minor tail protein T is located at the distal end and is involved in the assembly of the initiator complex for tail polymerization. 100 -336346 pfam06224 HTH_42 Winged helix DNA-binding domain. This family contains two copies of a winged helix domain. 320 -336347 pfam06226 DUF1007 Protein of unknown function (DUF1007). Family of conserved bacterial proteins with unknown function. 208 -310668 pfam06227 Poxvirus dsDNA Poxvirus. This is a family of dsDNA viruses, with no RNA stage, Poxvirus proteins. 145 -336348 pfam06228 ChuX_HutX Haem utilisation ChuX/HutX. This family is found within haem utilisation operons. It has a similar structure to that of pfam05171. pfam05171 usually occurs as a duplicated domain, but this domain occurs as a single domain and forms a dimer. The organisation of the dimer is very similar to that of the duplicated pfam05171 domains. It binds haem via conserved histidines. 127 -283809 pfam06229 FRG1 FRG1-like domain. The human FRG1 gene maps to human chromosome 4q35 and has been identified as a candidate for facioscapulohumeral muscular dystrophy. Currently, the function of FRG1 is unknown. 189 -336349 pfam06230 DUF1009 Protein of unknown function (DUF1009). Family of uncharacterized bacterial proteins. 209 -283811 pfam06231 DUF1010 Protein of unknown function (DUF1010). Family of plasmid encoded proteins with unknown function. 81 -310671 pfam06232 ATS3 Embryo-specific protein 3, (ATS3). This is a family of plant seed-specific proteins identified in Arabidopsis thaliana (Mouse-ear cress). ATS3 (Arabidopsis thaliana seed gene 3) is expressed in a pattern similar to the Arabidopsis seed storage protein genes. 125 -310672 pfam06233 Usg Usg-like family. Family of bacterial proteins, referred to as Usg. Usg is found in the same operon as trpF, trpB, and trpA and is expressed in a coupled transcription-translation system. 78 -310673 pfam06234 TmoB Toluene-4-monooxygenase system protein B (TmoB). This family consists of several Toluene-4-monooxygenase system protein B (TmoB) sequences. Pseudomonas mendocina KR1 metabolizes toluene as a carbon source. The initial step of the pathway is hydroxylation of toluene to form p-cresol by a multicomponent toluene-4-monooxygenase (T4MO) system. TmoB adopts a ubiquitin fold. Although TmoB is a component of the T4MO system, its precise role remains unclear. 78 -148066 pfam06235 NAD4L NADH dehydrogenase subunit 4L (NAD4L). This family consists of NADH dehydrogenase subunit 4L (NAD4L) proteins from the mitochondria of several parasitic flatworms. 86 -310674 pfam06236 MelC1 Tyrosinase co-factor MelC1. This family consists of several tyrosinase co-factor MELC1 proteins from a number of Streptomyces species. The melanin operon (melC) of Streptomyces antibioticus contains two genes, melC1 and melC2 (apotyrosinase). It is thought that MelC1 forms a transient binary complex with the downstream apotyrosinase MelC2 to facilitate the incorporation of copper ion and the secretion of tyrosinase indicating that MelC1 is a chaperone for the apotyrosinase MelC2. 114 -310675 pfam06237 DUF1011 Protein of unknown function (DUF1011). Family of uncharacterized eukaryotic proteins. 99 -283817 pfam06238 Borrelia_lipo_2 Borrelia burgdorferi BBR25 lipoprotein. This family consists of a number of lipoproteins from the Lyme disease spirochete Borrelia burgdorferi. 111 -310676 pfam06239 ECSIT Evolutionarily conserved signalling intermediate in Toll pathway. Activation of NF-kappaB as a consequence of signaling through the Toll and IL-1 receptors is a major element of innate immune responses. ECSIT plays an important role in signalling to NF-kappaB, functioning as the intermediate in the signaling pathways between TRAF-6 and MEKK-1. 219 -283819 pfam06240 COXG Carbon monoxide dehydrogenase subunit G (CoxG). The CO dehydrogenase structural genes coxMSL are flanked by nine accessory genes arranged as the cox gene cluster. The cox genes are specifically and coordinately transcribed under chemolithoautotrophic conditions in the presence of CO as carbon and energy source. 140 -310677 pfam06241 Castor_Poll_mid Castor and Pollux, part of voltage-gated ion channel. This family represents a short region in the middle of largely plant proteins that belong to the TCDB:1.A.1.23.2 family of the voltage-gated ion channel superfamily, eg UniProtKB:Q5H8A6, Q5H8A5 and Q4VY51. 104 -336350 pfam06242 DUF1013 Protein of unknown function (DUF1013). Family of uncharacterized proteins found in Proteobacteria. 138 -310679 pfam06243 PaaB Phenylacetic acid degradation B. Phenylacetic acid degradation protein B (PaaB) is thought to be part of a multicomponent oxygenase involved in phenylacetyl-CoA hydroxylation. 88 -336351 pfam06244 Ccdc124 Coiled-coil domain-containing protein 124. Ccdc124 is a centrosome and midbody protein involved in cytokinesis. 119 -336352 pfam06245 DUF1015 Protein of unknown function (DUF1015). Family of proteins with unknown function found in archaea and bacteria. 412 -310682 pfam06246 Isy1 Isy1-like splicing family. Isy1 protein is important in the optimisation of splicing. 249 -310683 pfam06247 Plasmod_Pvs28 Pvs28 EGF domain. This family consists of several ookinete surface proteins (Pvs28) from several species of Plasmodium. Pvs25 and Pvs28 are expressed on the surface of ookinetes. These proteins are potential candidates for vaccine and induce antibodies that block the infectivity of Plasmodium vivax in immunised animals. The structure of this protein shows it is composed of four EGF domains. 41 -310684 pfam06248 Zw10 Centromere/kinetochore Zw10. Zw10 and rough deal proteins are both required for correct metaphase check-pointing during mitosis. These proteins bind to the centromere/kinetochore. 599 -114941 pfam06249 EutQ Ethanolamine utilisation protein EutQ. The eut operon of Salmonella typhimurium encodes proteins involved in the cobalamin-dependent degradation of ethanolamine. The role of EutQ in this process is unclear. 152 -336353 pfam06250 DUF1016 Protein of unknown function (DUF1016). Family of uncharacterized proteins found in viruses, archaea and bacteria. 310 -283829 pfam06251 Caps_synth_GfcC Capsule biosynthesis GfcC. Many bacteria are covered in a layer of surface-associated polysaccharide called the capsule. These capsules can be divided into four groups depending upon the organisation of genes responsible for capsule assembly, the assembly pathway and regulation. This family plays a role in group 4 capsule biosynthesis. These proteins have a beta-grasp fold. Two beta-grasp domains, D2 and D3, are arranged in tandem. There is a C-terminal amphipathic helix which packs against D3. A helical hairpin insert in D2 binds to D3 and constrains its position, a conserved arginine residue at the end of this hairpin is essential for structural integrity. 226 -310686 pfam06252 DUF1018 Protein of unknown function (DUF1018). This family consists of several bacterial and phage proteins of unknown function. 118 -310687 pfam06253 MTTB Trimethylamine methyltransferase (MTTB). This family consists of several trimethylamine methyltransferase (MTTB) (EC:2.1.1.-) proteins from numerous Rhizobium and Methanosarcina species. 491 -310688 pfam06254 YdaT_toxin Putative bacterial toxin ydaT. YdaT_toxin is a family of putative bacterial toxins that are neutralized by the putative antitoxin YdaS, UniProtKB:P76063, family pfam144549. 80 -283833 pfam06255 MafB Neisseria toxin MafB. MafB constitutes a family of secreted toxins in pathogenic Neisseria species, probably involved in interbacterial competition. Genes immediately downstream of mafB encode a specific immunity protein (MafI). MafB proteins exhibit a signal peptide sequence, a N-terminal conserved domain and a C-terminal variable region. Toxic domains identified at the C-terminus include pfam15542, pfam14437, pfam15524, and pfam14436. 312 -283834 pfam06256 Nucleo_LEF-12 Nucleopolyhedrovirus LEF-12 protein. This family consists of several Nucleopolyhedrovirus late expression factor-12 (LEF-12) proteins. The function of this family is unknown. 173 -336354 pfam06257 VEG Biofilm formation stimulator VEG. VEG is a family that is highly conserved among Gram-positive bacteria. It stimulates biofilm formation through inducing transcription of the tapA-sipW-tasA operon. The products of this operon are resposible for production of the amyloid fibre (TasA) component of the biofilm. Veg or a Veg-induced protein acts as an antirepressor of SinR - part of the major overall biofilm transcriptional control system - to regulate and stimulate biofilm formation. Veg is transcribed at high levels during both exponential growth and sporulation. 62 -310690 pfam06258 Mito_fiss_Elm1 Mitochondrial fission ELM1. In plants, this family is involved in mitochondrial fission. It binds to dynamin-related proteins and plays a role in their relocation from the cytosol to mitochondrial fission sites. Its function in bacteria is unknown. 302 -283837 pfam06259 Abhydrolase_8 Alpha/beta hydrolase. Members of this family are predicted to have an alpha/beta hydrolase fold. They contain a predicted Ser-His-Asp catalytic triad, in which the serine is likely to act as a nucleophile. 178 -283838 pfam06260 DUF1024 Protein of unknown function (DUF1024). This family consists of several hypothetical Staphylococcus aureus and Staphylococcus aureus phage phi proteins. The function of this family is unknown. 82 -310691 pfam06261 LktC Actinobacillus actinomycetemcomitans leukotoxin activator LktC. This family consists of several Actinobacillus actinomycetemcomitans leukotoxin activator (LktC) proteins. Actinobacillus actinomycetemcomitans is a Gram-negative bacterium that has been implicated in the etiology of several forms of periodontitis, especially localized juvenile periodontitis. LktC along with LktB and LktD are thought to be required for activation and localization of the leukotoxin. 149 -336355 pfam06262 Zincin_1 Zincin-like metallopeptidase. This family of proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. The structure of this family is a minimal version of the metalloprotease fold (Structure 3E11). 95 -336356 pfam06265 DUF1027 Protein of unknown function (DUF1027). This family consists of several hypothetical bacterial proteins of unknown function. 84 -336357 pfam06266 HrpF HrpF protein. The species Pseudomonas syringae encompasses plant pathogens with differing host specificities and corresponding pathovar designations. P. syringae requires the Hrp (type III protein secretion) system, encoded by a 25-kb cluster of hrp and hrc genes, in order to elicit the hypersensitive response (HR) in nonhosts or to be pathogenic in hosts. The exact function of HrpF is unknown but the protein is needed for pathogenicity. 74 -336358 pfam06267 DUF1028 Family of unknown function (DUF1028). Family of bacterial and archaeal proteins with unknown function. Some members are associated with a C-terminal peptidoglycan binding domain. So perhaps this could be an enzyme involved in peptidoglycan metabolism. 191 -310696 pfam06268 Fascin Fascin domain. This family consists of several eukaryotic fascin or singed proteins. The fascins are a structurally unique and evolutionarily conserved group of actin cross-linking proteins. Fascins function in the organisation of two major forms of actin-based structures: dynamic, cortical cell protrusions and cytoplasmic microfilament bundles. The cortical structures, which include filopodia, spikes, lamellipodial ribs, oocyte microvilli and the dendrites of dendritic cells, have roles in cell-matrix adhesion, cell interactions and cell migration, whereas the cytoplasmic actin bundles appear to participate in cell architecture. Dictyostelium hisactophilin, another actin-binding protein, is a submembranous pH sensor that signals slight changes of the H+ concentration to actin by inducing actin polymerization and binding to microfilaments only at pH values below seven. Members of this family are histidine rich, typically contain the repeated motif of HHXH. 111 -283844 pfam06269 DUF1029 Protein of unknown function (DUF1029). This family consists of several short Chordopoxvirus proteins of unknown function. 53 -114962 pfam06270 DUF1030 Protein of unknown function (DUF1030). This family consists of several short Circovirus proteins of unknown function. 53 -336359 pfam06271 RDD RDD family. This family of proteins contain three highly conserved amino acids: one arginine and two aspartates, hence the name of RDD family. This region contains two predicted transmembrane regions. The arginine occurs at the N-terminus of the first helix and the first aspartate occurs in the middle of this helix. The molecular function of this region is unknown. However this region may be involved in transport of an as yet unknown set of ligands (Bateman A pers. obs.). 136 -310698 pfam06273 eIF-4B Plant specific eukaryotic initiation factor 4B. This family consists of several plant specific eukaryotic initiation factor 4B proteins. 502 -114966 pfam06275 DUF1031 Protein of unknown function (DUF1031). This family consists of several Lactococcus lactis bacteriophage and Lactococcus lactis proteins of unknown function. 80 -336360 pfam06276 FhuF Ferric iron reductase FhuF-like transporter. This family consists of several bacterial ferric iron reductase protein (FhuF) sequences. FhuF is involved in the reduction of ferric iron in cytoplasmic ferrioxamine B. This family also includes the IucA and IucC proteins. 112 -310700 pfam06277 EutA Ethanolamine utilisation protein EutA. This family consists of several bacterial EutA ethanolamine utilisation proteins. The EutA protein is thought to protect the lyase (EutBC) from inhibition by CNB12. 475 -310701 pfam06278 CNDH2_N Condensin II complex subunit CAP-H2 or CNDH2, N-terminal. CNDH2_N is the N-terminal domain of the H2 subunit of the condensing II complex, found in eukaryotes but not in fungi. Eukaryotes carry at least two condensin complexes, I and II, each made up of five subunits. The functions of the two complexes are collaborative but non-overlapping. CI appears to be functional in G2 phase in the cytoplasm beginning the process of chromosomal lateral compaction while the CII is concentrated in the nucleus, possibly to counteract the activity of cohesion at this stage. In prophase, CII contributes to axial shortening of chromatids while CI continues to bring about lateral chromatid compaction, during which time the sister chromatids are joined centrally by cohesins. There appears to be just one condensin complex in fungi. CI and CII each contain SMC2 and SMC4 (structural maintenance of chromosomes) subunits, then CI has non-SMC CAP-D2 (CND1), CAP-G (CND3), and CAP-H (CND2). CII has, in addition to the two SMCs, CAP-D3, CAPG2 and CAP-H2. All four of the CAP-D and CAP-G subunits have degenerate HEAT repeats, whereas the CAP-H are kleisins or SMC-interacting proteins (ie they bind directly to the SMC subunits in the complex). The SMC molecules are each long with a small hinge-like knob at the free end of a longish strand, articulating with each other at the hinge. Each strand ends in a knob-like head that binds to one or other end of the CAP-H subunit. The HEAT-repeat containing D and G subunits bind side-by-side between the ends of the H subunit. Activity of the various parts of the complex seem to be triggered by extensive phosphorylations, eg, entry of the complex, in Sch.pombe, into the nucleus during mitosis is promoted by Cdk1 phosphorylation of SMC4/Cut3; and it has been shown that Cdk1 phosphorylates CAP-D3 at Thr1415 in He-La cells thus promoting early stage chromosomal condensation by CII. 112 -336361 pfam06279 DUF1033 Protein of unknown function (DUF1033). This family consists of several hypothetical bacterial proteins. Many of the sequences in this family are annotated as putative DNA binding proteins but the function of this family is unknown. 117 -336362 pfam06280 fn3_5 Fn3-like domain. Fn3_5 is an fn3-like domain which is frequently found as the first of three on streptococcal C5a peptidase (SCP), a highly specific protease and adhesin/invasin. The family is found in conjunction with pfam00082, pfam02225 and pfam00746. 111 -253656 pfam06281 DUF1035 Protein of unknown function (DUF1035). This family consists of several Sulfolobus and Sulfolobus virus proteins of unknown function. 73 -336363 pfam06282 DUF1036 Protein of unknown function (DUF1036). This family consists of several hypothetical bacterial proteins of unknown function. 112 -336364 pfam06283 ThuA Trehalose utilisation. This family consists of several bacterial ThuA like proteins. ThuA appears to be involved in utilisation of trehalose. The thuA and thuB genes form part of the trehalose/sucrose transport operon thuEFGKAB, which is located on the pSymB megaplasmid. The thuA and thuB genes are induced in vitro by trehalose but not by sucrose and the extent of its induction depends on the concentration of trehalose available in the medium. 211 -283854 pfam06284 Cytomega_UL84 Cytomegalovirus UL84 protein. This family consists of several Cytomegalovirus UL84 proteins. The open reading frame UL84 of human cytomegalovirus encodes a multifunctional regulatory protein which is required for viral DNA replication and binds with high affinity to the immediate-early transactivator IE2-p86. 586 -253659 pfam06286 Coleoptericin Coleoptericin. This family consists of several insect Coleoptericin, Acaloleptin, Holotricin and Rhinocerosin proteins which are all known to be antibacterial proteins. 143 -283855 pfam06287 DUF1039 Protein of unknown function (DUF1039). This family consists of several hypothetical bacterial proteins from Escherichia coli and Citrobacter rodentium. The function of this family is unknown. 65 -336365 pfam06288 DUF1040 Protein of unknown function (DUF1040). This family consists of several bacterial YihD proteins of unknown function. 86 -336366 pfam06289 FlbD Flagellar protein (FlbD). This family consists of several bacterial FlbD flagellar proteins. The exact function of this family is unknown. 59 -310708 pfam06290 PsiB Plasmid SOS inhibition protein (PsiB). This family consists of several plasmid SOS inhibition protein (PsiB) sequences. 140 -336367 pfam06291 Lambda_Bor Bor protein. This family consists of several Bacteriophage lambda Bor and Escherichia coli Iss proteins. Expression of bor significantly increases the survival of the Escherichia coli host cell in animal serum. This property is a well known bacterial virulence determinant indeed, bor and its adjacent sequences are highly homologous to the iss serum resistance locus of the plasmid ColV2-K94, which confers virulence in animals. It has been suggested that lysogeny may generally have a role in bacterial survival in animal hosts, and perhaps in pathogenesis. 76 -310709 pfam06292 DUF1041 Domain of Unknown Function (DUF1041). This family consists of several eukaryotic domains of unknown function. Members of this family are often found in tandem repeats and co-occur with pfam00168, pfam00130 and pfam00169 domains. 107 -283861 pfam06293 Kdo Lipopolysaccharide kinase (Kdo/WaaP) family. These lipopolysaccharide kinases are related to protein kinases pfam00069. This family includes waaP (rfaP) gene product is required for the addition of phosphate to O-4 of the first heptose residue of the lipopolysaccharide (LPS) inner core region. It has previously been shown that WaaP is necessary for resistance to hydrophobic and polycationic antimicrobials in E. coli and that it is required for virulence in invasive strains of S. enterica. 207 -336368 pfam06294 CH_2 CH-like domain in sperm protein. Spef is a region of sperm flagellar proteins. It probably exerts a role in spermatogenesis in that the protein is expressed predominantly in adult tissue. It is present in the tails of developing and epididymal sperm internal to the fibrous sheath and around the dense outer fibers of the sperm flagellum. The amino-terminal domain (residues 1-110) shows a possible calponin homology (CH) domain; however Spef does not bind actin directly under in vitro conditions, so the function of the amino-terminal calponin-like domain is unclear. Transcription aberrations leading to a truncated protein result in immotile sperm. 88 -310711 pfam06295 DUF1043 Protein of unknown function (DUF1043). This family consists of several hypothetical bacterial proteins of unknown function. 123 -310712 pfam06296 RelE RelE toxin of RelE / RelB toxin-antitoxin system. RelE is a family of Gram-negative bacterial antitoxins of the RelE/RelB toxin-antitoxin system. Its cognate antitoxin is family RelB, pfam04221. 120 -310713 pfam06297 PET PET Domain. This domain is suggested to be involved in protein-protein interactions. The family is found in conjunction with pfam00412. 85 -310714 pfam06298 PsbY Photosystem II protein Y (PsbY). This family consists of several bacterial and plant photosystem II protein Y (PsbY) sequences. PsbY is a manganese-binding protein that has an L-arginine metabolising enzyme activity. 33 -336369 pfam06299 DUF1045 Protein of unknown function (DUF1045). This family consists of several hypothetical proteins from Agrobacterium, Rhizobium and Brucella species. The function of this family is unknown. 159 -283868 pfam06300 Tsp45I Tsp45I type II restriction enzyme. This family consists of several type II restriction enzymes. 260 -310716 pfam06301 Lambda_Kil Bacteriophage lambda Kil protein. This family consists of several Bacteriophage lambda Kil protein like sequences from both phages and bacteria. Induction of a lambda prophage causes the death of the host cell even in the absence of phage replication and lytic functions due to expression of the lambda kil gene. 42 -336370 pfam06303 MatP MatP N-terminal domain. This family, many of whose members are YcbG, organizes the macrodomain Ter of the chromosome of bacteria such as E coli. In these bacteria, insulated macrodomains influence the segregation of sister chromatids and the mobility of chromosomal DNA. Organisation of the Terminus region (Ter) into a macrodomain relies on the presence of a 13 bp motif called matS repeated 23 times in the 800-kb-long domain. MatS sites are the main targets in the E. coli chromosome of YcbG or MatP (macrodomain Ter protein). MatP accumulates in the cell as a discrete focus that co-localizes with the Ter macrodomain. The effects of MatP inactivation reveal its role as the main organizer of the Ter macrodomain: in the absence of MatP, DNA is less compacted, the mobility of markers is increased, and segregation of the Ter macrodomain occurs early in the cell cycle. A specific organisational system is required in the Terminus region for bacterial chromosome management during the cell cycle. This entry represents the N-terminal domain of MatP. 84 -310717 pfam06304 DUF1048 Protein of unknown function (DUF1048). This family consists of several hypothetical bacterial proteins of unknown function. 103 -336371 pfam06305 LapA_dom Lipopolysaccharide assembly protein A domain. This family includes a domain found in lipopolysaccharide assembly protein A (LapA). LapA functions along with LapB in the assembly of lipopolysaccharide (LPS). Domains in this family are also found in some uncharacterized bacterial proteins. 63 -114995 pfam06306 CgtA Beta-1,4-N-acetylgalactosaminyltransferase (CgtA). This family consists of several beta-1,4-N-acetylgalactosaminyltransferase proteins from Campylobacter jejuni. 347 -253668 pfam06307 Herpes_IR6 Herpesvirus IR6 protein. This family consists of several Herpesvirus IR6 proteins. The equine herpesvirus 1 (EHV-1) IR6 protein forms typical rod-like structures in infected cells, influences virus growth at elevated temperatures, and determines the virulence of EHV-1 Rac strains. 214 -283873 pfam06308 ErmC 23S rRNA methylase leader peptide (ErmC). This family consists of several very short bacterial 23S rRNA methylase leader peptide (ErmC) sequences. ermC confers resistance to macrolide-lincosamide streptogramin B antibiotics by specifying a ribosomal RNA methylase, which results in decreased ribosomal affinity for these antibiotics. ermC expression is induced by exposure to erythromycin. 31 -148114 pfam06309 Torsin Torsin. This family consists of several eukaryotic torsin proteins. Torsion dystonia is an autosomal dominant movement disorder characterized by involuntary, repetitive muscle contractions and twisted postures. The most severe early-onset form of dystonia has been linked to mutations in the human DYT1 (TOR1A) gene encoding a protein termed torsinA. While causative genetic alterations have been identified, the function of torsin proteins and the molecular mechanism underlying dystonia remain unknown. Phylogenetic analysis of the torsin protein family indicates these proteins share distant sequence similarity with the large and diverse family of (pfam00004) proteins. It has been suggested that torsins play a role in effectively managing protein folding and that possible breakdown in a neuroprotective mechanism that is, in part, mediated by torsins may be responsible for the neuronal dysfunction associated with dystonia. 127 -336372 pfam06311 NumbF NUMB domain. This presumed domain is found in the Numb family of proteins adjacent to the PTB domain.. 92 -310720 pfam06312 Neurexophilin Neurexophilin. This family consists of mammalian neurexophilin proteins. Mammalian brains contain four different neurexophilin proteins. Neurexophilins form a family of related glycoproteins that are proteolytically processed after synthesis and bind to alpha-neurexins. The structure and characteristics of neurexophilins indicate that they function as neuropeptides that may signal via alpha-neurexins. 202 -310721 pfam06313 ACP53EA Drosophila ACP53EA protein. This family consists of several Drosophila ACP53EA accessory gland (seminal) proteins. 90 -336373 pfam06314 ADC Acetoacetate decarboxylase (ADC). This family consists of several acetoacetate decarboxylase (ADC) proteins (EC:4.1.1.4). 239 -336374 pfam06315 AceK Isocitrate dehydrogenase kinase/phosphatase (AceK). This family consists of several bacterial isocitrate dehydrogenase kinase/phosphatase (AceK) proteins (EC:2.7.1.116). 560 -115004 pfam06316 Ail_Lom Enterobacterial Ail/Lom protein. This family consists of several bacterial and phage Ail/Lom-like proteins. The Yersinia enterocolitica Ail protein is a known virulence factor. Proteins in this family are predicted to consist of eight transmembrane beta-sheets and four cell surface-exposed loops. It is thought that Ail directly promotes invasion and loop 2 contains an active site, perhaps a receptor-binding domain. The phage protein Lom is expressed during lysogeny, and encode host-cell envelope proteins. Lom is found in the bacterial outer membrane, and is homologous to virulence proteins of two other enterobacterial genera. It has been suggested that lysogeny may generally have a role in bacterial survival in animal hosts, and perhaps in pathogenesis. 199 -336375 pfam06317 Arena_RNA_pol Arenavirus RNA polymerase. This family consists of several Arenavirus RNA polymerase proteins (EC:2.7.7.48). 2046 -336376 pfam06319 MmcB-like DNA repair protein MmcB-like. This family includes Caulobacter MmcB (CCNA_03580), which is involved in DNA repair. It has been proposed to be an endonuclease that creates the substrate for translesion synthesis. 148 -336377 pfam06320 GCN5L1 GCN5-like protein 1 (GCN5L1). This family consists of several eukaryotic GCN5-like protein 1 (GCN5L1) sequences. The function of this family is unknown. 114 -336378 pfam06321 P_gingi_FimA Major fimbrial subunit protein (FimA). This family consists of several Porphyromonas gingivalis major fimbrial subunit protein (FimA) sequences. Fimbriae of Porphyromonas gingivalis, a periodontopathogen, play an important role in its adhesion to and invasion of host cells. The fimA genes encoding fimbrillin (FimA), a subunit protein of fimbriae, have been classified into five types, types I to V, based on nucleotide sequences. It has been found that type II FimA can bind to epithelial cells most efficiently through specific host receptors. Human dental plaque is a multispecies microbial biofilm that is associated with two common oral diseases, dental caries and periodontal disease. There is an inter-species contact-dependent communication system between P. gingivalis and S. cristatus that involces the Arc-A enzyme. 263 -283883 pfam06322 Phage_NinH Phage NinH protein. This family consists of several phage NinH proteins. The function of this family is unknown. 60 -310727 pfam06323 Phage_antiter_Q Phage antitermination protein Q. This family consists of several phage antitermination protein Q and related bacterial sequences. Phage 82 gene Q encodes a phage-specific positive regulator of late gene expression, thought, by analogy to the corresponding gene of phage lambda, to be a transcription antiterminator. 221 -283885 pfam06324 Pigment_DH Pigment-dispersing hormone (PDH). This family consists of several eukaryotic pigment-dispersing hormone (PDH) proteins. The pigment-dispersing hormone (PDH) is produced in the eyestalks of Crustacea where it induces light-adapting movements of pigment in the compound eye and regulates the pigment dispersion in the chromatophores. 18 -283886 pfam06325 PrmA Ribosomal protein L11 methyltransferase (PrmA). This family consists of several Ribosomal protein L11 methyltransferase (EC:2.1.1.-) sequences. 295 -283887 pfam06326 Vesiculo_matrix Vesiculovirus matrix protein. This family consists of several Vesiculovirus matrix proteins. The matrix (M) protein of vesicular stomatitis virus (VSV) expressed in the absence of other viral components causes many of the cytopathic effects of VSV, including an inhibition of host gene expression and the induction of cell rounding. It has been shown that M protein also induces apoptosis in the absence of other viral components. It is thought that the activation of apoptotic pathways causes the inhibition of host gene expression and cell rounding by M protein. 240 -310728 pfam06327 DUF1053 Domain of Unknown Function (DUF1053). This domain is found in Adenylate cyclases. 100 -310729 pfam06328 Lep_receptor_Ig Ig-like C2-type domain. This domain is a ligand-binding immunoglobulin-like domain. The two cysteine residues form a disulphide bridge. 86 -310730 pfam06330 TRI5 Trichodiene synthase (TRI5). This family consists of several fungal trichodiene synthase proteins (EC:4.2.3.6). TRI5 encodes the enzyme trichodiene synthase, which has been shown to catalyze the first step in the trichothecene pathways of Fusarium and Trichothecium species. 353 -310731 pfam06331 Tfb5 Transcription factor TFIIH complex subunit Tfb5. This family is a component of the general transcription and DNA repair factor IIH. TFB5 has been shown to be required for efficient recruitment of TFIIH to a promoter. 66 -336379 pfam06333 Med13_C Mediator complex subunit 13 C-terminal. Mediator is a large complex of up to 33 proteins that is conserved from plants through fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Med13 is part of the ancillary kinase module, together with Med12, CDK8 and CycC, which in yeast is implicated in transcriptional repression, though most of this activity is likely attributable to the CDK8 kinase. The large Med12 and Med13 proteins are required for specific developmental processes in Drosophila, zebrafish, and Caenorhabditis elegans but their biochemical functions are not understood. 402 -283893 pfam06334 Orthopox_A47 Orthopoxvirus A47 protein. This family consists of several Orthopoxvirus A47 proteins. The function of this family is unknown. 244 -310733 pfam06335 DUF1054 Protein of unknown function (DUF1054). This family consists of several hypothetical bacterial proteins of unknown function. 198 -283895 pfam06336 Corona_5a Coronavirus 5a protein. This family consists of several Coronavirus 5a proteins. The function of this family is unknown. 64 -310734 pfam06337 DUSP DUSP domain. The DUSP (domain present in ubiquitin-specific protease) domain is found at the N-terminus of Ubiquitin-specific proteases. The structure of this domain has been solved. Its tripod-like structure consists of a 3-fold alpha-helical bundle supporting a triple-stranded anti-parallel beta-sheet. 83 -310735 pfam06338 ComK ComK protein. This family consists of several bacterial ComK proteins. The ComK protein of Bacillus subtilis positively regulates the transcription of several late competence genes as well as comK itself. It has been found that ClpX plays an important role in the regulation of ComK at the post-transcriptional level. 153 -336380 pfam06339 Ectoine_synth Ectoine synthase. This family consists of several bacterial ectoine synthase proteins. The ectABC genes encode the diaminobutyric acid acetyltransferase (EctA), the diaminobutyric acid aminotransferase (EctB), and the ectoine synthase (EctC). Together these proteins constitute the ectoine biosynthetic pathway. 127 -283899 pfam06340 TcpF Vibrio cholerae toxin co-regulated pilus biosynthesis protein F. This family consists of several Vibrio cholerae toxin co-regulated pilus biosynthesis protein F (TcpF) sequences. TcpF is known to be a secreted virulence protein but its exact function is unknown. 317 -283900 pfam06341 DUF1056 Protein of unknown function (DUF1056). This family consists of several putative head-tail joining bacteriophage proteins. 63 -115027 pfam06342 DUF1057 Alpha/beta hydrolase of unknown function (DUF1057). This family consists of several Caenorhabditis elegans specific proteins of unknown function. Members of this family have an alpha/beta hydrolase fold. 297 -283901 pfam06344 Parecho_VpG Parechovirus Genome-linked protein. This family is of the Parechovirus genome-linked protein Vpg type P3B. 20 -283902 pfam06345 Drf_DAD DRF Autoregulatory Domain. This motif is found in Diaphanous-related formins. It binds the N-terminal GTPase-binding domain; this link is broken when GTP-bound Rho binds to the GBD and activates the protein. The addition of DAD to mammalian cells induces actin filament formation, stabilizes microtubules, and activates serum-response mediated transcription. 15 -283903 pfam06346 Drf_FH1 Formin Homology Region 1. This region is found in some of the Diaphanous related formins (Drfs). It consists of low complexity repeats of around 12 residues. 152 -310737 pfam06347 SH3_4 Bacterial SH3 domain. This family consists of several hypothetical bacterial proteins of unknown function. These are composed of SH3-like domains. 56 -336381 pfam06348 DUF1059 Protein of unknown function (DUF1059). This family consists of several short hypothetical archaeal proteins of unknown function. 56 -310739 pfam06350 HSL_N Hormone-sensitive lipase (HSL) N-terminus. This family consists of several mammalian hormone-sensitive lipase (HSL) proteins (EC:3.1.1.-). Hormone-sensitive lipase, a key enzyme in fatty acid mobilisation, overall energy homeostasis, and possibly steroidogenesis, is acutely controlled through reversible phosphorylation by catecholamines and insulin. 305 -310740 pfam06351 Allene_ox_cyc Allene oxide cyclase. This family consists of several plant specific allene oxide cyclase proteins (EC:5.3.99.6). The allene oxide cyclase (AOC)-catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. 170 -336382 pfam06353 DUF1062 Protein of unknown function (DUF1062). This family consists of several hypothetical bacterial proteins of unknown function. 133 -310742 pfam06355 Aegerolysin Aegerolysin. This family consists of several bacterial and fungal Aegerolysin-like proteins. It has been found that aegerolysin and ostreolysin are expressed during formation of primordia and fruiting bodies. It has been suggested that these haemolysins play an important role in initial phase of fungal fruiting. The bacterial members of this family are expressed during sporulation. Ostreolysin was found cytolytic to various erythrocytes and tumor cells. It forms transmembrane pores 4 nm in diameter. The activity is inhibited by total membrane lipids, and modulated by lysophosphatides. The potential use of aegerolysins is reviewed with special emphasis on their properties which would allow their use in therapeutics. Aegerolysin is part of the pleurotolysin pore-forming (Pleurotolysin) transporter superfamily. Member proteins assemble into a transmembrane pore complex. 131 -283910 pfam06356 DUF1064 Protein of unknown function (DUF1064). This family consists of several phage and bacterial proteins of unknown function. 117 -253691 pfam06357 Omega-toxin Omega-atracotoxin. This family consists of several Hadronyche versuta (Blue mountains funnel-web spider) specific omega-atracotoxin proteins. Omega-Atracotoxin-Hv1a is an insect-specific neurotoxin whose phylogenetic specificity derives from its ability to antagonise insect, but not vertebrate, voltage-gated calcium channels. Two spatially proximal residues, Asn(27) and Arg(35), form a contiguous molecular surface that is essential for toxin activity. It has been proposed that this surface of the beta-hairpin is a key site for interaction of the toxin with insect calcium channels. 37 -283911 pfam06358 DUF1065 Protein of unknown function (DUF1065). This family consists of several Benyvirus proteins of unknown function. 111 -310743 pfam06360 E_raikovi_mat Euplotes raikovi mating pheromone. This family consists of several Euplotes raikovi mating pheromone proteins. Diffusible polypeptide pheromones, which distinguish otherwise morphologically identical vegetative cell types from one another, are produced by some species of ciliates. In the marine sand-dwelling protozoan ciliate Euplotes raikovi, pheromone molecules promote the vegetative reproduction (mitogenic proliferation or growth) of the same cells from which they originate. As, understandably, such autocrine pheromone activity is primary to that of targeting and inducing a foreign cell to mate (paracrine functions), this finding provides an example of how the original function of a molecule can be obscured during evolution by the acquisition of a new one. 33 -283912 pfam06361 RTBV_P12 Rice tungro bacilliform virus P12 protein. This family consists of several Rice tungro bacilliform virus P12 proteins. The function of this family is unknown. 110 -115044 pfam06362 DUF1067 Protein of unknown function (DUF1067). This family consists of several hypothetical Mycobacterium leprae specific proteins. The function of this family is unknown. 97 -283913 pfam06363 Picorna_P3A Picornaviridae P3A protein. This family consists of the P3A protein of picornaviridae. P3A has been identified as a genome-linked protein (VPg) and is involved in replication. 100 -310744 pfam06364 DUF1068 Protein of unknown function (DUF1068). This family consists of several hypothetical plant proteins from Arabidopsis thaliana and Oryza sativa. The function of this family is unknown. 165 -310745 pfam06365 CD34_antigen CD34/Podocalyxin family. This family consists of several mammalian CD34 antigen proteins. The CD34 antigen is a human leukocyte membrane protein expressed specifically by lymphohematopoietic progenitor cells. CD34 is a phosphoprotein. Activation of protein kinase C (PKC) has been found to enhance CD34 phosphorylation. This family contains several eukaryotic podocalyxin proteins. Podocalyxin is a major membrane protein of the glomerular epithelium and is thought to be involved in maintenance of the architecture of the foot processes and filtration slits characteristic of this unique epithelium by virtue of its high negative charge. Podocalyxin functions as an anti-adhesin that maintains an open filtration pathway between neighboring foot processes in the glomerular epithelium by charge repulsion. 210 -336383 pfam06366 FlhE Flagellar protein FlhE. This family consists of several Enterobacterial FlhE flagellar proteins. The exact function of this family is unknown. 106 -336384 pfam06367 Drf_FH3 Diaphanous FH3 Domain. This region is found in the Formin-like and and diaphanous proteins. 195 -310748 pfam06368 Met_asp_mut_E Methylaspartate mutase E chain (MutE). This family consists of several methylaspartate mutase E chain proteins (EC:5.4.99.1). Glutamate mutase catalyzes the first step in the fermentation of glutamate by Clostridium tetanomorphum. This is an unusual isomerisation in which L-glutamate is converted to threo-beta-methyl L-aspartate. 441 -310749 pfam06369 Anemone_cytotox Sea anemone cytotoxic protein. Sea anemones are a rich source of cytotoxic proteins. Cytolysins comprise a group of more than 30 highly basic proteins with molecular masses of about 20 kDa. Cytolysins isolated from the sea anemone, Heteractis magnifica, include magnificalysin I (HMg I), magnificalysin II (HMg II) and Heteractis magnifica toxin (HMgtxn). These are highly homologous at their N-terminals. HMg I and II have molecular masses of approximately 19 kDa, and pI values of 9.4 and 10.0, respectively. Cytolysins isolated from other sea anemones Actinia tenebrosa (Tenebrosin-C, TN-C), Actinia equina (Equinatoxin, EqT) and Stichodactyla helianthus (ShC) exhibit pore-forming, haemolytic, cytotoxic, and heart stimulatory activities. 176 -191504 pfam06370 DUF1069 Protein of unknown function (DUF1069). This family consists of several Maize streak virus 21.7 kDa proteins. The function of this family is unknown. 206 -310750 pfam06371 Drf_GBD Diaphanous GTPase-binding Domain. This domain is bound to by GTP-attached Rho proteins, leading to activation of the Drf protein. 190 -148150 pfam06372 Gemin6 Gemin6 protein. This family consists of several mammalian Gemin6 proteins. The exact function of Gemin6 is unknown but it has been found to form part of the pfam06003 complex. The SMN complex plays a key role in the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and other ribonucleoprotein particles. 169 -310751 pfam06373 CART Cocaine and amphetamine regulated transcript protein (CART). This family consists of several cocaine and amphetamine regulated transcript type I protein (CART) sequences. Cocaine and amphetamine regulated transcript (CART) peptide has been shown to be an anorectic peptide that inhibits both normal and starvation-induced feeding and completely blocks the feeding response induced by neuropeptide Y and regulated by leptin in the hypothalamus. The C-terminal part containing the three disulfide bridges is the biologically active part of the molecule affecting food intake. The solution structure of the active part of CART has a fold equivalent to other functionally distinct small proteins. CART consists mainly of turns and loops spanned by a compact framework composed by a few small stretches of antiparallel beta-sheet common to cystine knots. 70 -336385 pfam06374 NDUF_C2 NADH-ubiquinone oxidoreductase subunit b14.5b (NDUFC2). This family consists of several NADH-ubiquinone oxidoreductase subunit b14.5b proteins (EC:1.6.5.3). 112 -310753 pfam06375 AP3D1 AP-3 complex subunit delta-1. AP-3 complex subunit delta-1 (AP3D1) is part of the AP-3 complex, an adaptor-related complex which is not clathrin- associated. The complex is associated with the Golgi region as well as more peripheral structures. AP3D1 is required for efficient transport of VSV-G (vesicular stomatitis virus glycoprotein) from the trans-Golgi network to the cell surface. 158 -310754 pfam06376 AGP Arabinogalactan peptide. This entry represents the arabinogalactan peptide family found in plants. 36 -310755 pfam06377 Adipokin_hormo Adipokinetic hormone. This family consists of several insect adipokinetic hormone as well as the related crustacean red pigment concentrating hormone. Flight activity of insects comprises one of the most intense biochemical processes known in nature, and therefore provides an attractive model system to study the hormonal regulation of metabolism during physical exercise. In long-distance flying insects, such as the migratory locust, both carbohydrate and lipid reserves are utilized as fuels for sustained flight activity. The mobilization of these energy stores in Locusta migratoria is mediated by three structurally related adipokinetic hormones (AKHs), which are all capable of stimulating the release of both carbohydrates and lipids from the fat body. 47 -310756 pfam06378 DUF1071 Protein of unknown function (DUF1071). This family consists of several hypothetical bacterial and phage proteins of unknown function. 143 -115061 pfam06379 RhaT L-rhamnose-proton symport protein (RhaT). This family consists of several bacterial L-rhamnose-proton symport protein (RhaT) sequences. 344 -148156 pfam06380 DUF1072 Protein of unknown function (DUF1072). This family consists of several Barley yellow dwarf virus proteins of unknown function. 39 -336386 pfam06381 DUF1073 Protein of unknown function (DUF1073). This family consists of several hypothetical bacterial proteins. The function of this family is unknown. 350 -283927 pfam06382 DUF1074 Protein of unknown function (DUF1074). This family consists of several proteins which appear to be specific to Drosophila melanogaster. The function of this family is unknown. 125 -283928 pfam06384 ICAT Beta-catenin-interacting protein ICAT. This family consists of several eukaryotic beta-catenin-interacting (ICAT) proteins. Beta-catenin is a multifunctional protein involved in both cell adhesion and transcriptional activation. Transcription mediated by the beta-catenin/Tcf complex is involved in embryological development and is upregulated in various cancers. ICAT selectively inhibits beta-catenin/Tcf binding in vivo, without disrupting beta-catenin/cadherin interactions. 76 -283929 pfam06385 Baculo_LEF-11 Baculovirus LEF-11 protein. This family consists of several Baculovirus LEF-11 proteins. The exact function of this family is unknown although it has been shown that LEF-11 is required for viral DNA replication during the infection cycle. 93 -310758 pfam06386 GvpL_GvpF Gas vesicle synthesis protein GvpL/GvpF. This family consists of several bacterial and archaeal gas vesicle synthesis protein (GvpL/GvpF) sequences. The exact function of this family is unknown. 198 -310759 pfam06387 Calcyon D1 dopamine receptor-interacting protein (calcyon). This family consists of several D1 dopamine receptor-interacting (calcyon) proteins. D1/D5 dopamine receptors in the basal ganglia, hippocampus, and cerebral cortex modulate motor, reward, and cognitive behaviour. D1-like dopamine receptors likely modulate neocortical and hippocampal neuronal excitability and synaptic function via Ca(2+) as well as cAMP-dependent signaling. Defective calcyon proteins have been implicated in both attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. 181 -310760 pfam06388 DUF1075 Protein of unknown function (DUF1075). This family consists of several eukaryotic proteins of unknown function. 134 -283933 pfam06389 Filo_VP24 Filovirus membrane-associated protein VP24. This family consists of several membrane-associated protein VP24 sequences from a variety of Ebola and Marburg viruses. The VP24 protein of Ebola virus is believed to be a secondary matrix protein and minor component of virions. VP24 possesses structural features commonly associated with viral matrix proteins and that VP24 may have a role in virus assembly and budding. 227 -115071 pfam06390 NESP55 Neuroendocrine-specific golgi protein P55 (NESP55). This family consists of several mammalian neuroendocrine-specific golgi protein P55 (NESP55) sequences. NESP55 is a novel member of the chromogranin family and is a soluble, acidic, heat-stable secretory protein that is expressed exclusively in endocrine and nervous tissues, although less widely than chromogranins. 261 -336387 pfam06391 MAT1 CDK-activating kinase assembly factor MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase (CAK), which interacts with the transcription factor TFIIH. The domain found to the N-terminal side of this domain is a C3HC4 RING finger. 197 -310762 pfam06392 Asr Acid shock protein repeat. The Asr protein is synthesized as a precursor and the cleavage is essential for moderate to high acid tolerance. 19 -310763 pfam06393 BID BH3 interacting domain (BID). BID is a member of the BCL-2 superfamily of proteins are key regulators of programmed cell death, hence this family is related to pfam00452. BID is a pro-apoptotic member of the Bcl-2 superfamily and as such posses the ability to target intracellular membranes and contains the BH3 death domain. The activity of BID is regulated by a Caspase 8-mediated cleavage event, exposing the BH3 domain and significantly changing the surface charge and hydrophobicity, which causes a change of cellular localization. 191 -310764 pfam06394 Pepsin-I3 Pepsin inhibitor-3-like repeated domain. Pepsin inhibitor-3 consisting of two domains, each comprising an antiparallel beta-sheet flanked by an alpha-helix. In the enzyme-inhibitor complex, the N-terminal beta-strand of PI-3 pairs with one strand of the active site flap region of pepsin. The two domains are tandem repeats of sequence, and has therefore been termed repeated domain. 74 -310765 pfam06395 CDC24 CDC24 Calponin. Is a calponin homology domain. 89 -310766 pfam06396 AGTRAP Angiotensin II, type I receptor-associated protein (AGTRAP). This family consists of several angiotensin II, type I receptor-associated protein (AGTRAP) sequences. AGTRAP is known to interact specifically with the carboxyl-terminal cytoplasmic region of the angiotensin II type 1 (AT(1)) receptor to regulate different aspects of AT(1) receptor physiology. The function of this family is unclear. 146 -283940 pfam06397 Desulfoferrod_N Desulfoferrodoxin, N-terminal domain. Most members of this family are small (approximately 36 amino acids) proteins that from homodimeric complexes. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulphur atoms This family has a similar fold to the rubredoxin metal binding domain. It is also found as the N-terminal domain of desulfoferrodoxin, see (pfam01880). 36 -310767 pfam06398 Pex24p Integral peroxisomal membrane peroxin. Peroxisomes play diverse roles in the cell, compartmentalising many activities related to lipid metabolism and functioning in the decomposition of toxic hydrogen peroxide. Sequence similarity was identified between two hypothetical proteins and the peroxin integral membrane protein Pex24p. 369 -310768 pfam06399 GFRP GTP cyclohydrolase I feedback regulatory protein (GFRP). Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in via feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by the regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). 81 -310769 pfam06400 Alpha-2-MRAP_N Alpha-2-macroglobulin RAP, N-terminal domain. The alpha-2-macroglobulin receptor-associated protein (RAP) is a intracellular glycoprotein that binds to the 2-macroglobulin receptor and other members of the low density lipoprotein receptor family. The protein inhibits binding of all currently known ligands of these receptors. The N-terminal domain is predominately alpha helical. Two different studies have provided conflicted domain boundaries. 122 -310770 pfam06401 Alpha-2-MRAP_C Alpha-2-macroglobulin RAP, C-terminal domain. The alpha-2-macroglobulin receptor-associated protein (RAP) is a intracellular glycoprotein that binds to the 2-macroglobulin receptor and other members of the low density lipoprotein receptor family. The protein inhibits binding of all currently known ligands of these receptors. Two different studies have provided conflicted domain boundaries. 209 -115083 pfam06403 Lamprin Lamprin. This family consists of several lamprin proteins from the Sea lamprey Petromyzon marinus. Lamprin, an insoluble non-collagen, non-elastin protein, is the major connective tissue component of the fibrillar extracellular matrix of lamprey annular cartilage. Although not generally homologous to any other protein, soluble lamprins contain a tandemly repeated peptide sequence (GGLGY) which is present in both silkmoth chorion proteins and spider dragline silk. Strong homologies to this repeat sequence are also present in several mammalian and avian elastins. It is thought that these proteins share a structural motif which promotes self-aggregation and fibril formation in proteins through interdigitation of hydrophobic side chains in beta-sheet/beta-turn structures, a motif that has been preserved in recognisable form over several hundred million years of evolution. 138 -310771 pfam06404 PSK Phytosulfokine precursor protein (PSK). This family consists of several plant specific phytosulfokine precursor proteins. Phytosulfokines, are active as either a pentapeptide or a C-terminally truncated tetrapeptide. These compounds were first isolated because of their ability to stimulate cell division in somatic embryo cultures of Asparagus officinalis. 84 -336388 pfam06405 RCC_reductase Red chlorophyll catabolite reductase (RCC reductase). This family consists of several red chlorophyll catabolite reductase (RCC reductase) proteins. Red chlorophyll catabolite (RCC) reductase (RCCR) and pheophorbide (Pheide) a oxygenase (PaO) catalyze the key reaction of chlorophyll catabolism, porphyrin macrocycle cleavage of Pheide a to a primary fluorescent catabolite (pFCC). 253 -310773 pfam06406 StbA StbA protein. This family consists of several bacterial StbA plasmid stability proteins. 317 -283948 pfam06407 BDV_P40 Borna disease virus P40 protein. This family consists of several Borna disease virus P40 proteins. Borna disease (BD) is a persistent viral infection of the central nervous system caused by the single-negative-strand, nonsegmented RNA Borna disease virus (BDV). P40 is known to be a nucleoprotein. 370 -310774 pfam06409 NPIP Nuclear pore complex interacting protein (NPIP). This family consists of a series of primate specific nuclear pore complex interacting protein (NPIP) sequences. The function of this family is unknown but is well conserved from African apes to humans. 200 -336389 pfam06411 HdeA HdeA/HdeB family. HdeA (hns-dependent expression protein A) is a single domain alpha-helical protein localized in the periplasmic space. HdeA is involved in acid resistance essential for infectivity of enteric bacterial pathogens. Functional studies demonstrate that HdeA is activated by a dimer-to-monomer transition at acidic pH, leading to suppression of aggregation by acid-denatured proteins. The gene encoding HdeA was initially identified as part of an operon regulated by the nucleoid protein H-NS. This family also contains HdeB. 91 -336390 pfam06412 TraD Conjugal transfer protein TraD. This family contains bacterial TraD conjugal transfer proteins. Mutations in the TraD gene result in loss of transfer. 61 -310777 pfam06413 Neugrin Neugrin. This family consists of several mouse and human neugrin proteins. Neugrin and m-neugrin are mainly expressed in neurons in the nervous system, and are thought to play an important role in the process of neuronal differentiation. 225 -336391 pfam06414 Zeta_toxin Zeta toxin. This family consists of several bacterial zeta toxin proteins. Zeta toxin is thought to be part of a postregulational killing system in bacteria. It relies on antitoxin/toxin systems that secure stable inheritance of low and medium copy number plasmids during cell division and kill cells that have lost the plasmid. 196 -336392 pfam06415 iPGM_N BPG-independent PGAM N-terminus (iPGM_N). This family represents the N-terminal region of the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (or phosphoglyceromutase or BPG-independent PGAM) protein (EC:5.4.2.1). The family is found in conjunction with pfam01676 (located in the C-terminal region of the protein). 216 -310780 pfam06416 T3SS_NleG Effector protein NleG. Many bacterial pathogens deliver effector proteins into host cells via a type III secretion system. These effector proteins then alter the host cell's biology in ways that are advantageous to the pathogen. The NleG protein and its homologs form the largest family of effector proteins in the enterohemorrhagic Escherichia coli O157:H7, with 14 members identified in the Sakai strain alone. 113 -336393 pfam06417 DUF1077 Protein of unknown function (DUF1077). This family consists of several hypothetical eukaryotic proteins of unknown function. 118 -336394 pfam06418 CTP_synth_N CTP synthase N-terminus. This family consists of the N-terminal region of the CTP synthase protein (EC:6.3.4.2). This family is found in conjunction with pfam00117 located in the C-terminal region of the protein. CTP synthase catalyzes the synthesis of CTP from UTP by amination of the pyrimidine ring at the 4-position. 265 -310783 pfam06419 COG6 Conserved oligomeric complex COG6. COG6 is a component of the conserved oligomeric golgi complex, which is composed of eight different subunits and is required for normal golgi morphology and localization. 605 -336395 pfam06420 Mgm101p Mitochondrial genome maintenance MGM101. The mgm101 gene was identified as essential for maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Based on its DNA-binding activity, and experimental work with a temperature-sensitive mgm101 mutant, it has been proposed that the mgm101 gene product performs an essential function in the repair of oxidatively damaged mitochondrial DNA. 167 -336396 pfam06421 LepA_C GTP-binding protein LepA C-terminus. This family consists of the C-terminal region of several pro- and eukaryotic GTP-binding LepA proteins. 106 -336397 pfam06422 PDR_CDR CDR ABC transporter. Corresponds to a region of the PDR/CDR subgroup of ABC transporters comprising extracellular loop 3, transmembrane segment 6 and linker region. 92 -336398 pfam06423 GWT1 GWT1. Glycosylphosphatidylinositol (GPI) is a conserved post-translational modification to anchor cell surface proteins to plasma membrane in eukaryotes. GWT1 is involved in GPI anchor biosynthesis; it is required for inositol acylation in yeast. 140 -336399 pfam06424 PRP1_N PRP1 splicing factor, N-terminal. This domain is specific to the N-terminal part of the prp1 splicing factor, which is involved in mRNA splicing (and possibly also poly(A)+ RNA nuclear export and cell cycle progression). This domain is specific to the N-terminus of the RNA splicing factor encoded by prp1. It is involved in mRNA splicing and possibly also poly(A)and RNA nuclear export and cell cycle progression. 152 -336400 pfam06426 SATase_N Serine acetyltransferase, N-terminal. The N-terminal domain of serine acetyltransferase has a sequence that is conserved in plants and bacteria. 104 -336401 pfam06427 UDP-g_GGTase UDP-glucose:Glycoprotein Glucosyltransferase. UDP-g_GGTase is an important, central component of the QC system in the ER for checking that glycoproteins are folded correctly. This QC prevents incorrectly folded glycoproteins from leaving the ER. 1112 -336402 pfam06428 Sec2p GDP/GTP exchange factor Sec2p. In Saccharomyces cerevisiae, Sec2p is a GDP/GTP exchange factor for Sec4p, which is required for vesicular transport at the post-Golgi stage of yeast secretion. 91 -336403 pfam06429 Flg_bbr_C Flagellar basal body rod FlgEFG protein C-terminal. This family consists of a number of C-terminal domains of unknown function. This domain seems to be specific to flagellar basal-body rod and flagellar hook proteins in which pfam00460 is often present at the extreme N-terminus. 74 -336404 pfam06430 L_lactis_RepB_C Lactococcus lactis RepB C-terminus. This family consists of the C-terminal region of RepB proteins from Lactococcus lactis (See pfam01051). 122 -283968 pfam06431 Polyoma_lg_T_C Polyomavirus large T antigen C-terminus. 417 -310793 pfam06432 GPI2 Phosphatidylinositol N-acetylglucosaminyltransferase. Glycosylphosphatidylinositol (GPI) represents an important anchoring molecule for cell surface proteins. The first step in its synthesis is the transfer of N-acetylglucosamine (GlcNAc) from UDP-N-acetylglucosamine to phosphatidylinositol (PI). This step involves products of three or four genes in both yeast (GPI1, GPI2 and GPI3) and mammals (GPI1, PIG A, PIG H and PIG C), respectively. 267 -283970 pfam06433 Me-amine-dh_H Methylamine dehydrogenase heavy chain (MADH). Methylamine dehydrogenase (EC:1.4.99.3) a periplasmic quinoprotein found in several methyltrophic bacteria. Induced when grown on methylamine as a carbon source MADH catalyzes the oxidative deamination of amines to there corresponding aldehydes. MADH is a hetero- tetramer, comprised of two heavy chains (H) and two light chains (L). The H-chain forms a beta-propeller like structure. 342 -336405 pfam06434 Aconitase_2_N Aconitate hydratase 2 N-terminus. This family represents the N-terminal region of several bacterial Aconitate hydratase 2 proteins and is found in conjunction with pfam00330. 204 -283972 pfam06435 DUF1079 Repeat of unknown function (DUF1079). This family consists of several repeats of 31 residues in length and seems to be exclusive to Moraxella catarrhalis UspA proteins. The UspA1 and UspA2 proteins of Moraxella catarrhalis are structurally related and are exposed on the bacterial cell surface where can function adhesins. This family is commonly found with the pfam03895 family. 31 -283973 pfam06436 Pneumovirus_M2 Pneumovirus matrix protein 2 (M2). This family consists of several Pneumovirus matrix glycoprotein M2 sequences. This family functions as a transcription processivity factor that is essential for virus replication. 155 -310795 pfam06437 ISN1 IMP-specific 5'-nucleotidase. The Saccharomyces cerevisiae ISN1 (YOR155c) gene encodes an IMP-specific 5'-nucleotidase, which catalyzes degradation of IMP to inosine as part of the purine salvage pathway. 408 -336406 pfam06438 HasA Heme-binding protein A (HasA). Free iron is limited in vertebrate hosts, thus an alternative to siderophores has been developed by pathogenic bacteria to access host iron bound in protein complexes. HasA is a secreted hemophore that has the ability to obtain iron from hemoglobin. Once bound to HasA, the heme is shuttled to the receptor HasR, which releases the heme into the bacterium. 207 -310797 pfam06439 DUF1080 Domain of Unknown Function (DUF1080). This family has structural similarity to an endo-1,3-1,4-beta glucanase belonging to glycoside hydrolase family 16. However, the structure surrounding the active site differs from that of the endo-1,3-1,4-beta glucanase. 182 -336407 pfam06440 DNA_pol3_theta DNA polymerase III, theta subunit. DNA polymerase III (EC 2.7.7.7) is comprised of three tightly associated subunits, alpha, epsilon and theta. This family contains the theta subunit. The structure of the theta subunit shows that the N-terminal two thirds is comprised of three helices while the C-terminal third is disordered. The function of the theta subunit is poorly understood, but the interaction of the theta subunit with the epsilon subunit is thought to enhance the 3' to 5' exonucleolytic proofreading activity of epsilon. 68 -336408 pfam06441 EHN Epoxide hydrolase N-terminus. This family represents the N-terminal region of the eukaryotic epoxide hydrolase protein. Epoxide hydrolases (EC:3.3.2.3) comprise a group of functionally related enzymes that catalyze the addition of water to oxirane compounds (epoxides), thereby usually generating vicinal trans-diols. EHs have been found in all types of living organisms, including mammals, invertebrates, plants, fungi and bacteria. In animals, the major interest in EH is directed towards their detoxification capacity for epoxides since they are important safeguards against the cytotoxic and genotoxic potential of oxirane derivatives that are often reactive electrophiles because of the high tension of the three-membered ring system and the strong polarization of the C--O bonds. This is of significant relevance because epoxides are frequent intermediary metabolites which arise during the biotransformation of foreign compounds. This family is often found in conjunction with pfam00561. 106 -310800 pfam06442 DHFR_2 R67 dihydrofolate reductase. R67 dihydrofolate reductase is a plasmid encoded enzyme that provides resistance to the antibacterial drug trimethoprim. The R67 dihydrofolate reductase does not share significant similarity to the chromosomal encoded dihydrofolate reductase. 78 -115120 pfam06443 SEF14_adhesin SEF14-like adhesin. Family of enterotoxigenic bacterial adhesins. 165 -283979 pfam06444 NADH_dehy_S2_C NADH dehydrogenase subunit 2 C-terminus. This family consists of the C-terminal region specific to the eukaryotic NADH dehydrogenase subunit 2 protein and is found in conjunction with pfam00361. 51 -336409 pfam06445 GyrI-like GyrI-like small molecule binding domain. This family contains the small molecule binding domain of a number of different bacterial transcription activators. This family also contains DNA gyrase inhibitors. The GyrI superfamily contains a diad of the SHS2 module, adapted for small-molecule binding. The GyrI superfamily includes a family of secreted forms that is found only in animals and the bacterial pathogen Leptospira. 153 -310802 pfam06446 Hepcidin Hepcidin. Hepcidin is a antibacterial and antifungal protein expressed in the liver and is also a signaling molecule in iron metabolism. The hepcidin protein is cysteine-rich and forms a distorted beta-sheet with an unusual disulphide bond found at the turn of the hairpin. 53 -336410 pfam06448 DUF1081 Domain of Unknown Function (DUF1081). This region is found in Apolipophorin proteins. 102 -283983 pfam06449 DUF1082 Mitochondrial domain of unknown function (DUF1082). This family consists of the C-terminal region of several plant mitochondria specific proteins. The function of this family is unknown. This family is found in conjunction with pfam02326. 48 -283984 pfam06450 NhaB Bacterial Na+/H+ antiporter B (NhaB). This family consists of several bacterial Na+/H+ antiporter B (NhaB) proteins. The exact function of this family is unknown. 515 -283985 pfam06451 Moricin Moricin. Moricin is a antibacterial peptide that is highly basic. The structure of moricin reveals that it is comprised of a long alpha-helix. The N-terminus of the helix is amphipathic, and the C-terminus of the helix is predominately hydrophobic. The amphipathic N-terminal segment of the alpha- helix is mainly responsible for the increase in permeability of the bacterial membrane which kills the bacteria. 41 -336411 pfam06452 CBM9_1 Carbohydrate family 9 binding domain-like. CBM9_1 is a C-terminal domain on bacterial xylanase proteins, and it is tandemly repeated in a number of family-members. The CBM9 module binds to amorphous and crystalline cellulose and a range of soluble di- and monosaccharides as well as to cello- and xylo- oligomers of different degrees of polymerization. Comparison of the glucose and cellobiose complexes during crystallisation reveals surprising differences in binding of these two substrates by CBM9-2. Cellobiose was found to bind in a distinct orientation from glucose, while still maintaining optimal stacking and electrostatic interactions with the reducing end sugar. 179 -115129 pfam06453 LT-IIB Type II heat-labile enterotoxin, B subunit (LT-IIB). Family of B subunits from the type II heat-labile enterotoxin. The B subunits form a pentameric ring, which interacts with one A subunit. Thus, the structural arrangement of type I and type II heat-labile enterotoxins are very similar. 122 -310805 pfam06454 DUF1084 Protein of unknown function (DUF1084). This family consists of several hypothetical plant specific proteins of unknown function. 271 -310806 pfam06455 NADH5_C NADH dehydrogenase subunit 5 C-terminus. This family represents the C-terminal region of several NADH dehydrogenase subunit 5 proteins and is found in conjunction with pfam00361 and pfam00662. 181 -253740 pfam06456 Arfaptin Arfaptin-like domain. Arfaptin interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. The structure of arfaptin shows that upon binding to a small GTPase, arfaptin forms an elongated, crescent-shaped dimer of three-helix coiled-coils. The N-terminal region of ICA69 is similar to arfaptin. 207 -115133 pfam06457 Ectatomin Ectatomin. Ectatomin is a toxic component from the Ectatomma tuberculatum ant venom. It is comprised of two subunits, A and B, which are homologous. The structure of ectatomin reveals that each subunit is comprised of two helices and a connecting hinge region, the forms a hairpin structure that is stabilized by disulphide bridges. The two hinges are connected by a disulphide bond. 34 -336412 pfam06458 MucBP MucBP domain. The MucBP (MUCin-Binding Protein) domain is found in a wide variety of bacterial proteins, in several repeats. The domain is found in bacterial peptidoglycan bound proteins and is often found in conjunction with pfam00746 and pfam00560. 61 -336413 pfam06459 RR_TM4-6 Ryanodine Receptor TM 4-6. This region covers TM regions 4-6 of the ryanodine receptor 1 family. 279 -283991 pfam06460 NSP13 Coronavirus NSP13. This family covers the NSP13 region of the coronavirus polyprotein. This protein has the predicted function of an mRNA cap-1 methyltransferase function. 297 -310809 pfam06461 DUF1086 Domain of Unknown Function (DUF1086). This family consists of several eukaryotic domains of unknown function which are present in chromodomain helicase DNA binding proteins. This domain is often found in conjunction with pfam00176, pfam00271, pfam06465, pfam00385 and pfam00628. 138 -336414 pfam06462 Hyd_WA Propeller. Probable beta-propeller. 29 -310811 pfam06463 Mob_synth_C Molybdenum Cofactor Synthesis C. This region contains two iron-sulphur (3Fe-4S) binding sites. Mutations in this region of human MOCS1 cause MOCOD (Molybdenum Co-Factor Deficiency) type A. 127 -283995 pfam06464 DMAP_binding DMAP1-binding Domain. This domain binds DMAP1, a transcriptional co-repressor. 104 -336415 pfam06465 DUF1087 Domain of Unknown Function (DUF1087). Members of this family are found in various chromatin remodelling factors and transposases. Their exact function is, as yet, unknown. 61 -336416 pfam06466 PCAF_N PCAF (P300/CBP-associated factor) N-terminal domain. This region is spliced out of human KAT2A isoform 2. It is predicted to be of a mixed alpha/beta fold - though predominantly helical. 247 -310814 pfam06467 zf-FCS MYM-type Zinc finger with FCS sequence motif. MYM-type zinc fingers were identified in MYM family proteins. Human protein ZMYM3 is involved in a chromosomal translocation and may be responsible for X-linked retardation in XQ13.1. ZMYM2 is also involved in disease. In myeloproliferative disorders it is fused to FGF receptor 1; in atypical myeloproliferative disorders it is rearranged. Members of the family generally are involved in development. This Zn-finger domain functions as a transcriptional trans-activator of late vaccinia viral genes, and orthologues are also found in all nucleocytoplasmic large DNA viruses, NCLDV. This domain is also found fused to the C termini of recombinases from certain prokaryotic transposons. 40 -310815 pfam06468 Spond_N Spondin_N. This conserved region is found at the in the N-terminal half of several Spondin proteins. Spondins are involved in patterning axonal growth trajectory through either inhibiting or promoting adhesion of embryonic nerve cells. 185 -310816 pfam06469 DUF1088 Domain of Unknown Function (DUF1088). This family is found in the neurobeachins. The function of this region is not known. 168 -336417 pfam06470 SMC_hinge SMC proteins Flexible Hinge Domain. This family represents the hinge region of the SMC (Structural Maintenance of Chromosomes) family of proteins. The hinge region is responsible for formation of the DNA interacting dimer. It is also possible that the precise structure of it is an essential determinant of the specificity of the DNA-protein interaction. 117 -284002 pfam06471 NSP11 NSP11. This region of coronavirus polyproteins encodes the NSP11 protein. 583 -284003 pfam06472 ABC_membrane_2 ABC transporter transmembrane region 2. This domain covers the transmembrane of a small family of ABC transporters and shares sequence similarity with pfam00664. Mutations in this domain in ABCD3 are believed responsible for Zellweger Syndrome-2; mutations in ABCD1 are responsible for recessive X-linked adrenoleukodystrophy. A Saccharomyces cerevisiae homolog is involved in the import of long-chain fatty acids. 280 -310818 pfam06473 FGF-BP1 FGF binding protein 1 (FGF-BP1). This family consists of several mammalian FGF binding protein 1. Fibroblast growth factors (FGFs) play important roles during fetal and embryonic development. Fibroblast growth factor-binding protein (FGF-BP) 1 is a secreted protein that can bind fibroblast growth factors (FGFs) 1 and 2. 218 -284005 pfam06474 MLTD_N MltD lipid attachment motif. This short motif is a lipid attachment site. 34 -336418 pfam06475 Glycolipid_bind Putative glycolipid-binding. This family has a novel fold known as a spiral beta-roll, consisting of a 15-stranded beta sheet wrapped around a single alpha helix. It forms dimers. It has some structural similarity to the E. coli lipoprotein localization factors LolA and LolB. Its structure suggests that it may have a role in glycolipid binding. Its genomic context supports a role in glycolipid metabolism. 178 -336419 pfam06476 DUF1090 Protein of unknown function (DUF1090). This family consists of several bacterial proteins of unknown function and is known as YqjC in E. coli. 109 -310821 pfam06477 DUF1091 Protein of unknown function (DUF1091). This is a family of uncharacterized proteins. Based on its distant similarity to pfam02221 and conserved pattern of cysteine residues it is possible that these domains are also lipid binding. 83 -284009 pfam06478 Corona_RPol_N Coronavirus RPol N-terminus. This family covers the N-terminal region of the coronavirus RNA-directed RNA Polymerase. 350 -310822 pfam06479 Ribonuc_2-5A Ribonuclease 2-5A. This domain is a endoribonuclease. Specifically it cleaves an intron from Hac1 mRNA in humans, which causes it to be much more efficiently translated. 127 -336420 pfam06480 FtsH_ext FtsH Extracellular. This domain is found in the FtsH family of proteins. FtsH is the only membrane-bound ATP-dependent protease universally conserved in prokaryotes. It only efficiently degrades proteins that have a low thermodynamic stability - e.g. it lacks robust unfoldase activity. This feature may be key and implies that this could be a criterion for degrading a protein. In Oenococcus oeni FtsH is involved in protection against environmental stress, and shows increased expression under heat or osmotic stress. These two lines of evidence suggest that it is a fundamental prokaryotic self-protection mechanism that checks if proteins are correctly folded (personal obs: Yeats C). The precise function of this N-terminal region is unclear. 103 -336421 pfam06481 COX_ARM COX Aromatic Rich Motif. COX2 (Cytochrome O ubiquinol OXidase 2) is a major component of the respiratory complex during vegetative growth. It transfers electrons from a quinol to the binuclear centre of the catalytic subunit 1. The function of this region is not known. 46 -336422 pfam06482 Endostatin Collagenase NC10 and Endostatin. NC10 stands for Non-helical region 10 and is taken from COL15A1. A mutation in this region in COL18A1 is associated with an increased risk of prostate cancer. This domain is cleaved from the precursor and forms endostatin. Endostatin is a key tumor suppressor and has been used highly successfully to treat cancer. It is a potent angiogenesis inhibitor. Endostatin also binds a zinc ion near the N-terminus; this is likely to be of structural rather than functional importance according to. 169 -310826 pfam06483 ChiC Chitinase C. This ~170 aa region is found at the C-terminus of pfam00704. 169 -310827 pfam06484 Ten_N Teneurin Intracellular Region. This family is found in the intracellular N-terminal region of the Teneurin family of proteins. These proteins are 'pair-rule' genes and are involved in tissue patterning, specifically probably neural patterning. The intracellular domain is cleaved in response to homophilic interaction of the extracellular domain, and translocates to the nucleus. Here it probably carries out to some transcriptional regulatory activity. The length of this region and the conservation suggests that there may be two structural domains here (personal obs:C Yeats). 369 -310828 pfam06485 DUF1092 Protein of unknown function (DUF1092). This family consists of several hypothetical proteins of unknown function all from photosynthetic organisms including plants and cyanobacteria. 269 -310829 pfam06486 DUF1093 Protein of unknown function (DUF1093). This family consists of several hypothetical bacterial proteins of unknown function. 81 -336423 pfam06487 SAP18 Sin3 associated polypeptide p18 (SAP18). This family consists of several eukaryotic Sin3 associated polypeptide p18 (SAP18) sequences. SAP18 is known to be a component of the Sin3-containing complex which is responsible for the repression of transcription via the modification of histone polypeptides. SAP18 is also present in the ASAP complex which is thought to be involved in the regulation of splicing during the execution of programmed cell death. 118 -115164 pfam06488 L_lac_phage_MSP Phage tail tube protein. This is a family of Siphoviridae phage tail tube proteins including several from Lactococcus lactis. 301 -310831 pfam06489 Orthopox_A49R Orthopoxvirus A49R protein. This family consists of several Orthopoxvirus A49R proteins. The function of this family is unknown. 150 -336424 pfam06490 FleQ Flagellar regulatory protein FleQ. This domain is found at the N-terminus of a subset of sigma54-dependent transcriptional activators that are involved in regulation of flagellar motility e.g. FleQ in Pseudomonas aeruginosa. It is clearly related to pfam00072, but lacks the conserved aspartate residue that undergoes phosphorylation in the classic two-component system response regulator (pfam00072). 109 -310833 pfam06491 Disulph_isomer Disulphide isomerase. This family of proteins has disulphide isomerase activity, EC:5.3.4.1. It has a similar fold to thioredoxin, with an alpha-beta-alpha-beta-alpha-beta-beta-alpha topology. It has a conserved CGC motif in the loop immediately downstream of the first beta strand. This motif is essential for activity. 134 -284022 pfam06493 DUF1096 Protein of unknown function (DUF1096). This family represents the N-terminal region of several proteins found in C. elegans. The family is often found with pfam02363. 53 -253769 pfam06495 Transformer Fruit fly transformer protein. This family consists of transformer proteins from several Drosophila species and also from Ceratitis capitata (Mediterranean fruit fly). The transformer locus (tra) produces an RNA processing protein that alternatively splices the doublesex pre-mRNA in the sex determination hierarchy of Drosophila melanogaster. 182 -336425 pfam06496 DUF1097 Protein of unknown function (DUF1097). This family consists of several bacterial putative membrane proteins. 139 -284024 pfam06497 DUF1098 Protein of unknown function (DUF1098). This family consists of several hypothetical Baculovirus proteins of unknown function. 99 -284025 pfam06500 DUF1100 Alpha/beta hydrolase of unknown function (DUF1100). This family consists of several hypothetical bacterial proteins of unknown function. Members of this family have an alpha/beta hydrolase fold. 410 -253772 pfam06501 Herpes_U55 Human herpesvirus U55 protein. This family consists of several human herpesvirus U55 proteins. The function of this family is unknown. 432 -115174 pfam06502 Equine_IAV_S2 Equine infectious anaemia virus S2 protein. This family consists of several equine infectious anaemia virus S2 proteins. The function of this family is unknown. 67 -284026 pfam06503 DUF1101 Protein of unknown function (DUF1101). This family consists of several hypothetical Fijivirus proteins of unknown function. 360 -284027 pfam06504 RepC Replication protein C (RepC). This family consists of several bacterial replication protein C (RepC) sequences. 273 -336426 pfam06505 XylR_N Activator of aromatic catabolism. This domain is found at the N-terminus of a subset of sigma54-dependent transcriptional activators in several proteobacteria, including activators of phenol degradation such as XylR. It is found adjacent to pfam02830. 100 -336427 pfam06506 PrpR_N Propionate catabolism activator. This domain is found at the N-terminus of several sigma54- dependent transcriptional activators including PrpR, which activates catabolism of propionate. 165 -336428 pfam06507 Auxin_resp Auxin response factor. A conserved region of auxin-responsive transcription factors. 83 -284031 pfam06508 QueC Queuosine biosynthesis protein QueC. This family of proteins participate in the biosynthesis of 7-carboxy-7-deazaguanine. They catalyze the conversion of 7-deaza-7-carboxyguanine to preQ0. 211 -310838 pfam06510 DUF1102 Protein of unknown function (DUF1102). This family consists of several hypothetical archaeal proteins of unknown function. 132 -284033 pfam06511 IpaD Invasion plasmid antigen IpaD. This family consists of several invasion plasmid antigen IpaD proteins. Entry of Shigella flexneri into epithelial cells and lysis of the phagosome involve the IpaB, IpaC, and IpaD proteins, which are secreted by type III secretion machinery. 355 -336429 pfam06512 Na_trans_assoc Sodium ion transport-associated. Members of this family contain a region found exclusively in eukaryotic sodium channels or their subunits, many of which are voltage-gated. Members very often also contain between one and four copies of pfam00520 and, less often, one copy of pfam00612. 191 -115185 pfam06513 DUF1103 Repeat of unknown function (DUF1103). This family consists of several repeats of around 30 residues in length which are found specifically in mature-parasite-infected erythrocyte surface antigen proteins from Plasmodium falciparum. This family often found in conjunction with pfam00226. 215 -284035 pfam06514 PsbU Photosystem II 12 kDa extrinsic protein (PsbU). This family consists of several photosystem II 12 kDa extrinsic protein (PsbU) proteins from cyanobacteria and algae. PsbU is an extrinsic protein of the photosystem II complex of cyanobacteria and red algae. PsbU is known to stabilize the oxygen-evolving machinery of the photosystem II complex against heat-induced inactivation. This family appears to be related to the Helix-hairpin-helix domain. 93 -115187 pfam06515 BDV_P10 Borna disease virus P10 protein. This family consists of several Borna disease virus P10 (or X) proteins. Borna disease virus (BDV) is unique among the non-segmented negative-strand RNA viruses of animals and man because it transcribes and replicates its genome in the nucleus of the infected cell. It has been suggested that the p10 protein plays a role in viral RNA synthesis or ribonucleoprotein transport. 87 -336430 pfam06516 NUP Purine nucleoside permease (NUP). This family consists of several purine nucleoside permease from both bacteria and fungi. 305 -284037 pfam06517 Orthopox_A43R Orthopoxvirus A43R protein. This family consists of several Orthopoxvirus A43R proteins. The function of this family is unknown. 195 -336431 pfam06518 DUF1104 Protein of unknown function (DUF1104). This family consists of several hypothetical proteins of unknown function which appear to be found largely in Helicobacter pylori. 92 -310841 pfam06519 TolA TolA C-terminal. This family consists of several bacterial TolA proteins as well as two eukaryotic proteins of unknown function. Tol proteins are involved in the translocation of group A colicins. Colicins are bacterial protein toxins, which are active against Escherichia coli and other related species (See pfam01024). TolA is anchored to the cytoplasmic membrane by a single membrane spanning segment near the N-terminus, leaving most of the protein exposed to the periplasm. 96 -310842 pfam06521 PAR1 PAR1 protein. This family consists of several plant specific PAR1 proteins from Nicotiana tabacum and Arabidopsis thaliana. The function of this family is unknown. 156 -336432 pfam06522 B12D NADH-ubiquinone reductase complex 1 MLRQ subunit. The MLRQ subunit of mitochondrial NADH-ubiquinone reductase complex I is nuclear and is found in plants, insects, fungi and higher metazoans. It appears to act within the membrane and, in mammals, is highly expressed in muscle and neural tissue, indicative of a role in ATP generation. 69 -115195 pfam06523 DUF1106 Protein of unknown function (DUF1106). This family consists of several hypothetical bacterial proteins found in Escherichia coli and Citrobacter rodentium. The function of this family is unknown. 91 -310844 pfam06524 NOA36 NOA36 protein. This family consists of several NOA36 proteins which contain 29 highly conserved cysteine residues. The function of this protein is unknown. 307 -310845 pfam06525 SoxE Sulfocyanin (SoxE) domain. This family consists of several archaeal sulfocyanin (or blue copper protein) sequences from a number of Sulfolobus species. 149 -310846 pfam06526 DUF1107 Protein of unknown function (DUF1107). This family consists of several short, hypothetical bacterial proteins of unknown function. 63 -310847 pfam06527 TniQ TniQ. This family consists of several bacterial TniQ proteins. TniQ along with TniA and B is involved in the transposition of the mercury-resistance transposon Tn5053 which carries the mer operon. It has been suggested that the tni genes are involved in the dissemination of integrons. 142 -310848 pfam06528 Phage_P2_GpE Phage P2 GpE. This family consists of several phage and bacterial proteins which are closely related to the GpE tail protein from Phage P2. 37 -310849 pfam06529 Vert_IL3-reg_TF Vertebrate interleukin-3 regulated transcription factor. This family includes vertebrate transcription factors, some of which are regulated by IL-3/adenovirus E4 promoter binding protein. Others were found to strongly repress transcription in a DNA-binding-site-dependent manner. 332 -284048 pfam06530 Phage_antitermQ Phage antitermination protein Q. This family consists of several phage antitermination protein Q and related bacterial sequences. Antiterminator proteins control gene expression by recognising control signals near the promoter and preventing transcriptional termination which would otherwise occur at sites that may be a long way downstream. 126 -284049 pfam06531 DUF1108 Protein of unknown function (DUF1108). This family consists of several bacterial proteins from Staphylococcus aureus as well as a number of phage proteins. The function of this family is unknown. 84 -336433 pfam06532 DUF1109 Protein of unknown function (DUF1109). This family consists of several hypothetical bacterial proteins of unknown function. 204 -310851 pfam06533 DUF1110 Protein of unknown function (DUF1110). This family consists of hypothetical proteins specific to Oryza sativa. One sequence appears to be tandemly repeated. 186 -310852 pfam06534 RGM_C Repulsive guidance molecule (RGM) C-terminus. This family consists of several mammalian and one bird sequence from Gallus gallus (Chicken). This family represents the C-terminal region of several sequences but in others it represents the full protein. All of the mammalian proteins are hypothetical and have no known function but RGMA from chicken is annotated as being a repulsive guidance molecule (RGM). RGM is a GPI-linked axon guidance molecule of the retinotectal system. RGM is repulsive for a subset of axons, those from the temporal half of the retina. Temporal retinal axons invade the anterior optic tectum in a superficial layer, and encounter RGM expressed in a gradient with increasing concentration along the anterior-posterior axis. Temporal axons are able to receive posterior-dependent information by sensing gradients or concentrations of guidance cues. Thus, RGM is likely to provide positional information for temporal axons invading the optic tectum in the stratum opticum. 170 -310853 pfam06535 RGM_N Repulsive guidance molecule (RGM) N-terminus. This family consists of the N-terminal region of several mammalian and one bird sequence from Gallus gallus (Chicken). All of the mammalian proteins are hypothetical and have no known function but RGMA from chicken is annotated as being a repulsive guidance molecule (RGM). RGM is a GPI-linked axon guidance molecule of the retinotectal system. RGM is repulsive for a subset of axons, those from the temporal half of the retina. Temporal retinal axons invade the anterior optic tectum in a superficial layer, and encounter RGM expressed in a gradient with increasing concentration along the anterior-posterior axis. Temporal axons are able to receive posterior-dependent information by sensing gradients or concentrations of guidance cues. Thus, RGM is likely to provide positional information for temporal axons invading the optic tectum in the stratum opticum. 164 -310854 pfam06536 Av_adeno_fibre Avian adenovirus fibre, N-terminal. This family is the N-terminal region of avian adenovirus fibre proteins; the domain is frequently found repeated several times along the fibre. These fibers have been linked to variations in virulence. Avian adenoviruses possess penton capsomers that consist of a pentameric base associated with two fibers. 139 -310855 pfam06537 DHOR Di-haem oxidoreductase, putative peroxidase. DHOR is a family of di-haem oxidoredictases. It carries the two characteristic Cys-X-Y-Cys-His haem-binding motifs. The C-terminal high-potential site functions as an electron transfer centre, and the N-terminal low-potential site corresponds to the peroxidatic centre. Its probable function is as a peroxidase. 495 -310856 pfam06540 GMAP Galanin message associated peptide (GMAP). This family consists of several galanin message associated peptides. In rat preprogalanin, galanin is C-terminally flanked by a 60 amino acid long peptide: galanin message-associated peptide (GMAP). GMAP sequences in different species show high degree of homology, but the biological function of this family is unknown. 58 -310857 pfam06541 ABC_trans_CmpB Putative ABC-transporter type IV. CmpB is a family of membrane proteins that are likely to be part of a two-component type IV ABC-transporter system. Families can transport multiple drugs including ethidium and fluoroquinolones. UniProtKB:Q83XH0 is a member of TCDB family 3.A.1.121.4. 149 -310858 pfam06542 PHA-1 Regulator protein PHA-1. This family represents the protein product of the gene pha-1 which coordinates with lin-35 Rb during animal development. The protein is expressed during embryonic development and functions in the cytoplasm. PHA-1 acts in a parallel pathway with UBC-18 to regulate the activity of a common cellular target. 400 -284059 pfam06543 Lac_bphage_repr Lactococcus bacteriophage repressor. This family represents the C-terminus of Lactococcus bacteriophage repressor proteins. 49 -336434 pfam06544 DUF1115 Protein of unknown function (DUF1115). This family represents the C-terminus of hypothetical eukaryotic proteins of unknown function. 79 -336435 pfam06545 DUF1116 Protein of unknown function (DUF1116). This family contains hypothetical bacterial proteins of unknown function. 215 -310861 pfam06546 Vert_HS_TF Vertebrate heat shock transcription factor. This family represents the C-terminal region of vertebrate heat shock transcription factors. Heat shock transcription factors regulate the expression of heat shock proteins - a set of proteins that protect the cell from damage caused by stress and aid the cell's recovery after the removal of stress. This C-terminal region is found with the N-terminal pfam00447, and may contain a three-stranded coiled-coil trimerisation domain and a CE2 regulatory region, the latter of which is involved in sustained heat shock response. 264 -310862 pfam06547 DUF1117 Protein of unknown function (DUF1117). This family represents the C-terminus of a number of hypothetical plant proteins. 110 -310863 pfam06549 DUF1118 Protein of unknown function (DUF1118). This family consists of several hypothetical plant proteins of unknown function. 115 -284066 pfam06550 SPP Signal-peptide peptidase, presenilin aspartyl protease. SPP is a family of signal-peptide aspartyl proteases. The family carries the characteristic catalytic aspartate GXGD motif, and members are integral membrane peptidases of the presenilin-type with nine transmembrane regions. UniProtKB:Q18K19 is part of the TCDB family 1.A.54.3.4, the presenilin er Ca(2+) leak channel (presenilin). 283 -284067 pfam06551 DUF1120 Protein of unknown function (DUF1120). This family consists of several hypothetical bacterial proteins of unknown function. 116 -284068 pfam06552 TOM20_plant Plant specific mitochondrial import receptor subunit TOM20. This family consists of several plant specific mitochondrial import receptor subunit TOM20 (translocase of outer membrane 20 kDa subunit) proteins. Most mitochondrial proteins are encoded by the nuclear genome, and are synthesized in the cytosol. TOM20 is a general import receptor that binds to mitochondrial pre-sequences in the early step of protein import into the mitochondria. 187 -336436 pfam06553 BNIP3 BNIP3. This family consists of several mammalian specific BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 or BNIP3 sequences. BNIP3 belongs to the Bcl-2 homology 3 (BH3)-only family, a Bcl-2-related family possessing an atypical Bcl-2 homology 3 (BH3) domain, which regulates PCD from mitochondrial sites by selective Bcl-2/Bcl-XL interactions. BNIP3 family members contain a C-terminal transmembrane domain that is required for their mitochondrial localization, homodimerization, as well as regulation of their pro-apoptotic activities. BNIP3-mediated apoptosis has been reported to be independent of caspase activation and cytochrome c release and is characterized by early plasma membrane and mitochondrial damage, prior to the appearance of chromatin condensation or DNA fragmentation. 180 -310865 pfam06554 Olfactory_mark Olfactory marker protein. This family consists of several olfactory marker proteins. Expression of the olfactory marker protein (OMP) is highly restricted to mature olfactory receptor neurons in virtually all vertebrate species from fish to man. 150 -284071 pfam06556 ASFV_p27 IAP-like protein p27 C-terminus. This family represents the C-terminal region of the African swine fever virus IAP-like protein p27. This family is found in conjunction with pfam00653. It has been suggested that the family may be a host range gene involved in aspects of infection in the arthropod host, ticks of the genus Ornithodoros. 131 -310866 pfam06557 DUF1122 Protein of unknown function (DUF1122). This family consists of several hypothetical archaeal and bacterial proteins of unknown function. 162 -336437 pfam06558 SecM Secretion monitor precursor protein (SecM). This family consists of several bacterial Secretion monitor precursor (SecM) proteins. SecM is known to regulate SecA expression. The eubacterial protein secretion machinery consists of a number of soluble and membrane associated components. One critical element is SecA ATPase, which acts as a molecular motor to promote protein secretion at translocation sites that consist of SecYE, the SecA receptor, and SecG and SecDFyajC proteins, which regulate SecA membrane cycling. 146 -336438 pfam06559 DCD 2'-deoxycytidine 5'-triphosphate deaminase (DCD). This family consists of several bacterial 2'-deoxycytidine 5'-triphosphate deaminase proteins (EC:3.5.4.13). 359 -284075 pfam06560 GPI Glucose-6-phosphate isomerase (GPI). This family consists of several bacterial and archaeal glucose-6-phosphate isomerase (GPI) proteins (EC:5.3.1.9). 177 -284076 pfam06563 DUF1125 Protein of unknown function (DUF1125). This family consists of several short Lactococcus lactis and bacteriophage proteins. The function of this family is unknown. 55 -310869 pfam06564 CBP_BcsQ Cellulose biosynthesis protein BcsQ. This is a family of bacterial proteins involved in cellulose biosynthesis. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). A second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The family does contain a P-loop sequence motif suggesting a nucleotide binding function, but this has not been confirmed. 234 -336439 pfam06565 DUF1126 DUF1126 PH-like domain. The structure of this domain shows that it has a PH-like fold. 102 -310871 pfam06566 Chon_Sulph_att Chondroitin sulphate attachment domain. This family represents the chondroitin sulphate attachment domain of vertebrate neural transmembrane proteoglycans that contain EGF modules. Evidence has been accumulated to support the idea that neural proteoglycans are involved in various cellular events including mitogenesis, differentiation, axonal outgrowth and synaptogenesis. This domain contains several potential sites of chondroitin sulphate attachment, as well as potential sites of N-linked glycosylation. 249 -284080 pfam06567 Neural_ProG_Cyt Neural chondroitin sulphate proteoglycan cytoplasmic domain. This family represents the C-terminal cytoplasmic domain of vertebrate neural chondroitin sulphate proteoglycans that contain EGF modules. Evidence has been accumulated to support the idea that neural proteoglycans are involved in various cellular events including mitogenesis, differentiation, axonal outgrowth and synaptogenesis. This domain contains a number of potential sites of phosphorylation by protein kinase C. 120 -336440 pfam06568 DUF1127 Domain of unknown function (DUF1127). This family is found in several hypothetical bacterial proteins. In some cases it represents it represents the C-terminal region whereas in others it represents the whole sequence. 35 -310873 pfam06569 DUF1128 Protein of unknown function (DUF1128). This family consists of several short, hypothetical bacterial proteins of unknown function. 70 -336441 pfam06570 DUF1129 Protein of unknown function (DUF1129). This family consists of several hypothetical bacterial proteins of unknown function. 200 -336442 pfam06572 DUF1131 Protein of unknown function (DUF1131). This family consists of several hypothetical bacterial proteins of unknown function. 169 -310876 pfam06573 Churchill Churchill protein. This family consists of several eukaryotic Churchill proteins. This protein contains a novel zinc binding region that mediates FGF signaling during neural development (unpublished obs Sheng G and Stern C). 111 -310877 pfam06574 FAD_syn FAD synthetase. This family corresponds to the N terminal domain of the bifunctional enzyme riboflavin kinase / FAD synthetase. These enzymes have both ATP:riboflavin 5'-phospho transferase and ATP:FMN-adenylyltransferase activity. They catalyze the 5'-phosphorylation of riboflavin to FMN and the adenylylation of FMN to FAD. This domain is thought to have the flavin mononucleotide (FMN) adenylyltransferase activity. 158 -284087 pfam06575 DUF1132 Protein of unknown function (DUF1132). This family consists of several hypothetical proteins from Neisseria meningitidis. The function of this family is unknown. 101 -148278 pfam06576 DUF1133 Protein of unknown function (DUF1133). This family consists of a number of hypothetical proteins from Escherichia coli O157:H7 and Salmonella typhi. The function of this family is unknown. 176 -336443 pfam06577 DUF1134 Protein of unknown function (DUF1134). This family consists of several hypothetical bacterial proteins of unknown function. 159 -284089 pfam06578 YscK YOP proteins translocation protein K (YscK). This family consists of several YscK proteins. The function of this protein is unknown but it belongs to an operon involved in the secretion of Yop proteins across bacterial membranes. 209 -310879 pfam06579 Ly-6_related Caenorhabditis elegans ly-6-related protein. This family consists of several Caenorhabditis elegans specific ly-6-related HOT and ODR proteins. These proteins are involved in the olfactory system. Odr-2 mutants are known to be defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins. 124 -336444 pfam06580 His_kinase Histidine kinase. This family represents a region within bacterial histidine kinase enzymes. Two-component signal transduction systems such as those mediated by histidine kinase are integral parts of bacterial cellular regulatory processes, and are used to regulate the expression of genes involved in virulence. Members of this family often contain pfam02518 and/or pfam00672. 80 -336445 pfam06581 p31comet Mad1 and Cdc20-bound-Mad2 binding. This family is involved in the cell-cycle surveillance mechanism called the spindle checkpoint. This mechanism monitors the proper bipolar attachment of sister chromatids to spindle microtubules and ensures the fidelity of chromosome segregation during mitosis. A key player in mitosis is Mad2, and Mad2 exhibits an unusual two-state behaviour. A Mad1-Mad2 core complex recruits cytosolic Mad2 to kinetochores through Mad2 dimerization and converts Mad2 to a conformer amenable to Cdc20 binding. p31comet inactivates the checkpoint by binding to Mad1- or Cdc20-bound Mad2 in such a way as to stop Mad2 activation and to promote the dissociation of the Mad2-Cdc20 complex. 265 -336446 pfam06582 DUF1136 Repeat of unknown function (DUF1136). This family consists of several eukaryote specific repeats of unknown function. This repeat seems to always be found with pfam00047. 27 -310883 pfam06583 Neogenin_C Neogenin C-terminus. This family represents the C-terminus of eukaryotic neogenin precursor proteins, which contains several potential phosphorylation sites. Neogenin is a member of the N-CAM family of cell adhesion molecules (and therefore contains multiple copies of pfam00047 and pfam00041) and is closely related to the DCC tumor suppressor gene product - these proteins may play an integral role in regulating differentiation programmes and/or cell migration events within many adult and embryonic tissues. 292 -310884 pfam06584 DIRP DIRP. DIRP (Domain in Rb-related Pathway) is postulated to be involved in the Rb-related pathway, which is encoded by multiple eukaryotic genomes and is present in proteins including lin-9 of Caenorhabditis elegans, aly of fruit fly and mustard weed. Studies of lin-9 and aly of fruit fly proteins containing DIRP suggest that this domain might be involved in development. Aly, lin-9, act in parallel to, or downstream of, activation of MAPK by the RTK-Ras signalling pathway. 106 -336447 pfam06585 JHBP Haemolymph juvenile hormone binding protein (JHBP). This family consists of several insect-specific haemolymph juvenile hormone binding proteins (JHBP). Juvenile hormone regulates embryogenesis, maintains the status quo of larval development and stimulates reproductive maturation in the adult insect. JH is transported from the sites of its synthesis to target tissues by a haemolymph carrier called juvenile hormone-binding protein (JHBP). JHBP protects the JH molecules from hydrolysis by non-specific esterases present in the insect haemolymph. The crystal structure of the JHBP from Galleria mellonella shows an unusual fold consisting of a long alpha-helix wrapped in a much curved antiparallel beta-sheet. The folding pattern for this structure closely resembles that found in some tandem-repeat mammalian lipid-binding and bactericidal permeability-increasing proteins, with a similar organisation of the major cavity and a disulfide bond linking the long helix and the beta-sheet. It would appear that JHBP forms two cavities, only one of which, the one near the N- and C-termini, binds the hormone; binding induces a conformational change, of unknown significance. This family now includes DUF233, pfam03027. 239 -310886 pfam06586 TraK TraK protein. This family consists of several TraK proteins from Escherichia coli, Salmonella typhi and Salmonella typhimurium. TraK is known to be essential for pilus assembly but its exact role in this process is unknown. 221 -310887 pfam06587 DUF1137 Protein of unknown function (DUF1137). This family consists of several hypothetical proteins specific to Chlamydia species. The function of this family is unknown. 160 -284099 pfam06588 Muskelin_N Muskelin N-terminus. This family represents the N-terminal region of muskelin and is found in conjunction with several pfam01344 repeats. Muskelin is an intracellular, kelch repeat protein that is needed in cell-spreading responses to the matrix adhesion molecule, thrombospondin-1. 197 -336448 pfam06589 CRA Circumsporozoite-related antigen (CRA). This family consists of several circumsporozoite-related antigen (CRA) or exported protein-1 (EXP1) sequences found specifically in Plasmodium species. The function of this family is unknown. 127 -115260 pfam06590 PerB PerB protein. This family consists of several PerB or BfpV proteins found specifically in Escherichia coli. PerB is thought to play a role in regulating the expression of BfpA. 129 -148289 pfam06591 Phage_T4_Ndd T4-like phage nuclear disruption protein (Ndd). This family consists of several nuclear disruption (Ndd) proteins from T4-like phages. Early in a bacteriophage T4 infection, the phage ndd gene causes the rapid destruction of the structure of the Escherichia coli nucleoid. The targets of Ndd action may be the chromosomal sequences that determine the structure of the nucleoid. 154 -336449 pfam06592 DUF1138 Protein of unknown function (DUF1138). This family consists of several hypothetical short plant proteins from Arabidopsis thaliana and Oryza sativa. The function of this family is unknown. 73 -284102 pfam06593 RBDV_coat Raspberry bushy dwarf virus coat protein. This family consists of several Raspberry bushy dwarf virus coat proteins. 274 -336450 pfam06594 HCBP_related Haemolysin-type calcium binding protein related domain. This family consists of a number of bacteria specific domains which are found in haemolysin-type calcium binding proteins. This family is found in conjunction with pfam00353 and is often found in multiple copies. 41 -284104 pfam06595 BDV_P24 Borna disease virus P24 protein. This family consists of several Borna disease virus (BDV) P24 proteins. The function of this family is unknown. 201 -336451 pfam06596 PsbX Photosystem II reaction centre X protein (PsbX). This family consists of several photosystem II reaction centre X protein (PsbX) sequences from both prokaryotes and eukaryotes. 38 -336452 pfam06597 Clostridium_P47 Clostridium P-47 protein. This family consists of several P-47 proteins from various Clostridium species as well as two related sequences from Pseudomonas putida. The function of this family is unknown. 468 -253815 pfam06598 Chlorovi_GP_rpt Chlorovirus glycoprotein repeat. This family consists of s number of repeats found in Chlorovirus glycoproteins. The function of this family is unknown. 34 -115269 pfam06599 DUF1139 Protein of unknown function (DUF1139). This family consists of several hypothetical Fijivirus proteins of unknown function. 309 -284107 pfam06600 DUF1140 Protein of unknown function (DUF1140). This family consists of several short, hypothetical phage and bacterial proteins. The function of this family is unknown. 99 -284108 pfam06601 Orthopox_F6 Orthopoxvirus F6 protein. This family consists of several Orthopoxvirus F6L proteins the function of which are unknown. 72 -336453 pfam06602 Myotub-related Myotubularin-like phosphatase domain. This family represents the phosphatase domain within eukaryotic myotubularin-related proteins. Myotubularin is a dual-specific lipid phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bi-phosphate. Mutations in gene encoding myotubularin-related proteins have been associated with disease. 337 -336454 pfam06603 UpxZ UpxZ family of transcription anti-terminator antagonists. The UpxZ family of proteins acts to inhibit transcription of heterologous capsular polysaccharide loci in Bacteroides species by interfering with the action of the UpxY family of transcription anti-terminators. As antagonists of polysaccharide locus-specific UpxY transcription anti-terminators, the UpxZ proteins exert a hierarchical level of regulation, insuring that only one of the multiple phase-variable capsular polysaccharide loci per cell characteristic of this genus is transcribed at a time. 104 -310893 pfam06605 Prophage_tail Prophage endopeptidase tail. This family is of prophage tail proteins that are probably acting as endopeptidases. 303 -148298 pfam06607 Prokineticin Prokineticin. This family consists of several prokineticin proteins and related BM8 sequences. The suprachiasmatic nucleus (SCN) controls the circadian rhythm of physiological and behavioural processes in mammals. It has been shown that prokineticin 2 (PK2), a cysteine-rich secreted protein, functions as an output molecule from the SCN circadian clock. PK2 messenger RNA is rhythmically expressed in the SCN, and the phase of PK2 rhythm is responsive to light entrainment. Molecular and genetic studies have revealed that PK2 is a gene that is controlled by a circadian clock. 97 -284112 pfam06608 DUF1143 Protein of unknown function (DUF1143). This family consists of several hypothetical mammalian proteins (from mouse and human). The function of this family is unknown. 148 -115279 pfam06609 TRI12 Fungal trichothecene efflux pump (TRI12). This family consists of several fungal specific trichothecene efflux pump proteins. Many of the genes involved in trichothecene toxin biosynthesis in Fusarium sporotrichioides are present within a gene cluster.It has been suggested that TRI12 may play a role in F. sporotrichioides self-protection against trichothecenes. 598 -310894 pfam06610 AlaE L-alanine exporter. AlaE is a family of Gram-negative amino-acid transporters. It is not entirely clear why bacteria export metabolites but recent studies have shown that many excrete alanine. AlaE is likely to be the exporter protein for L-alanine. UniProtKB:A8ANM6, UniProt:G4R961 and UniProt:H5SVY7 are classified as putative alanine exporters. 141 -336455 pfam06611 DUF1145 Protein of unknown function (DUF1145). This family consists of several hypothetical bacterial proteins of unknown function. 56 -310896 pfam06612 DUF1146 Protein of unknown function (DUF1146). This family consists of several hypothetical bacterial proteins of unknown function. 48 -310897 pfam06613 KorB_C KorB C-terminal beta-barrel domain. This family consists of several KorB transcriptional repressor proteins. The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. This beta-barrel domain is found at the C-terminus of KorB. 58 -310898 pfam06614 Neuromodulin Neuromodulin. This family consists of several neuromodulin (Axonal membrane protein GAP-43) sequences and is found in conjunction with pfam00612. GAP-43 is a neuronal calmodulin-binding phosphoprotein that is concentrated in growth cones and pre-synaptic terminals. 175 -115285 pfam06615 DUF1147 Protein of unknown function (DUF1147). This family consists of several short Circovirus proteins of unknown function. 59 -310899 pfam06616 BsuBI_PstI_RE BsuBI/PstI restriction endonuclease C-terminus. This family represents the C-terminus of bacterial enzymes similar to type II restriction endonucleases BsuBI and PstI (EC:3.1.21.4). The enzymes of the BsuBI restriction/modification (R/M) system recognize the target sequence 5'CTGCAG and are functionally identical with those of the PstI R/M system. 304 -310900 pfam06617 M-inducer_phosp M-phase inducer phosphatase. This family represents a region within eukaryotic M-phase inducer phosphatases (EC:3.1.3.48), which also contain the pfam00581 domain. These proteins are involved in the control of mitosis. 268 -115288 pfam06618 DUF1148 Protein of unknown function (DUF1148). This family consists of several Maize streak virus proteins of unknown function. 114 -310901 pfam06619 DUF1149 Protein of unknown function (DUF1149). This family consists of several hypothetical bacterial proteins of unknown function. 122 -310902 pfam06620 DUF1150 Protein of unknown function (DUF1150). This family consists of several hypothetical bacterial proteins of unknown function. 76 -310903 pfam06621 SIM_C Single-minded protein C-terminus. This family represents the C-terminal region of the eukaryotic single-minded (SIM) protein. Drosophila single-minded acts as a positive master gene regulator in central nervous system midline formation. There are two homologs in mammals: SIM1 and SIM2, which are members of the basic-helix-loop-helix PAS family of transcription factors. SIM1 and SIM2 are novel heterodimerization partners for ARNT in vitro, and they may function both as positive and negative transcriptional regulators in vivo, during embryogenesis and in the adult organism. SIM2 is thought to contribute to some specific Down syndrome phenotypes. This family is found in conjunction with a pfam00989 domain and associated pfam00785 motif. 292 -115292 pfam06622 SepQ SepQ protein. This family consists of several enterobacterial SepQ proteins from Escherichia coli and Citrobacter rodentium. The function of this family is unclear. 305 -310904 pfam06623 MHC_I_C MHC_I C-terminus. This family represents the C-terminal region of the MHC class I antigen. The family is found in conjunction with pfam00129 and pfam00047. 27 -310905 pfam06624 RAMP4 Ribosome associated membrane protein RAMP4. This family consists of several ribosome associated membrane protein RAMP4 (or SERP1) sequences. Stabilisation of membrane proteins in response to stress involves the concerted action of a rescue unit in the ER membrane comprised of SERP1/RAMP4, other components of the translocon, and molecular chaperones in the ER. 57 -336456 pfam06625 DUF1151 Protein of unknown function (DUF1151). This family consists of several hypothetical eukaryotic proteins of unknown function. 114 -310907 pfam06626 DUF1152 Protein of unknown function (DUF1152). This family consists of several hypothetical archaeal proteins of unknown function. 294 -310908 pfam06627 DUF1153 Protein of unknown function (DUF1153). This family consists of several short, hypothetical bacterial proteins of unknown function. 86 -336457 pfam06628 Catalase-rel Catalase-related immune-responsive. This family represents a small conserved region within catalase enzymes (EC:1.11.1.6). All members also contain the Catalase family, pfam00199 domain. Catalase decomposes hydrogen peroxide into water and oxygen, serving to protect cells from its toxic effects. This domain carries the immune-responsive amphipathic octa-peptide that is recognized by T cells. 61 -336458 pfam06629 MipA MltA-interacting protein MipA. This family consists of several bacterial MltA-interacting protein (MipA) like sequences. As well as interacting with the membrane-bound lytic transglycosylase MltA, MipA is known to bind to PBP1B, a bifunctional murein transglycosylase/transpeptidase. MipA is considered to be a structural protein mediating the assembly of MltA to PBP1B into a complex. 221 -284130 pfam06630 Exonuc_VIII Enterobacterial exodeoxyribonuclease VIII. This family consists of several Enterobacterial exodeoxyribonuclease VIII proteins. 203 -336459 pfam06631 DUF1154 Protein of unknown function (DUF1154). This family represents a small conserved region of unknown function within eukaryotic phospholipase C (EC:3.1.4.3). All members also contain pfam00387 and pfam00388. 45 -310912 pfam06632 XRCC4 DNA double-strand break repair and V(D)J recombination protein XRCC4. This family consists of several eukaryotic DNA double-strand break repair and V(D)J recombination protein XRCC4 sequences. In the non-homologous end joining pathway of DNA double-strand break repair, the ligation step is catalyzed by a complex of XRCC4 and DNA ligase IV. It is thought that XRCC4 and ligase IV are essential for alignment-based gap filling, as well as for final ligation of the breaks. 336 -115303 pfam06633 DUF1155 Protein of unknown function (DUF1155). This family consists of several Cucumber mosaic virus ORF IIB proteins. The function of this family is unknown. 42 -310913 pfam06634 DUF1156 Protein of unknown function (DUF1156). This family represents a conserved region within hypothetical prokaryotic and archaeal proteins of unknown function. Structural modelling suggests this domain may bind nucleic acids. 73 -115305 pfam06635 NolV Nodulation protein NolV. This family consists of several nodulation protein NolV sequences from different Rhizobium species. The function of this family is unclear. 207 -253836 pfam06636 DUF1157 Protein of unknown function (DUF1157). This family consists of several uncharacterized proteins from Melanoplus sanguinipes entomopoxvirus (MsEPV). The function of this family is unknown. 370 -310914 pfam06637 PV-1 PV-1 protein (PLVAP). This family consists of several PV-1 (PLVAP) proteins which seem to be specific to mammals. PV-1 is a novel protein component of the endothelial fenestral and stomatal diaphragms. The function of this family is unknown. 440 -310915 pfam06638 Strabismus Strabismus protein. This family consists of several strabismus (STB) or Van Gogh-like (VANGL) proteins 1 and 2. The exact function of this family is unknown. It is thought, however that STB1 gene and STB2 may be potent tumor suppressor gene candidates. 503 -310916 pfam06639 BAP Basal layer antifungal peptide (BAP). This family consists of several basal layer antifungal peptide (BAP) sequences specific to Zea mays. The BAP2 peptide exhibits potent broad-range activity against a range of filamentous fungi, including several plant pathogens. 74 -336460 pfam06640 P_C P protein C-terminus. This family represents the C-terminus of plant P proteins. The maize P gene is a transcriptional regulator of genes encoding enzymes for flavonoid biosynthesis in the pathway leading to the production of a red phlobaphene pigment, and P proteins are homologous to the DNA-binding domain of myb-like transcription factors. All members of this family contain the pfam00249 domain. 206 -336461 pfam06643 DUF1158 Protein of unknown function (DUF1158). This family consists of several enterobacterial YbdJ proteins. The function of this family is unknown 79 -336462 pfam06644 ATP11 ATP11 protein. This family consists of several eukaryotic ATP11 proteins. In Saccharomyces cerevisiae, expression of functional F1-ATPase requires two proteins encoded by the ATP11 and ATP12 genes. Atp11p is a molecular chaperone of the mitochondrial matrix that participates in the biogenesis pathway to form F1, the catalytic unit of the ATP synthase. 265 -336463 pfam06645 SPC12 Microsomal signal peptidase 12 kDa subunit (SPC12). This family consists of several microsomal signal peptidase 12 kDa subunit proteins. Translocation of polypeptide chains across the endoplasmic reticulum (ER) membrane is triggered by signal sequences. Subsequently, signal recognition particle interacts with its membrane receptor and the ribosome-bound nascent chain is targeted to the ER where it is transferred into a protein-conducting channel. At some point, a second signal sequence recognition event takes place in the membrane and translocation of the nascent chain through the membrane occurs. The signal sequence of most secretory and membrane proteins is cleaved off at this stage. Cleavage occurs by the signal peptidase complex (SPC) as soon as the lumenal domain of the translocating polypeptide is large enough to expose its cleavage site to the enzyme. The signal peptidase complex is possibly also involved in proteolytic events in the ER membrane other than the processing of the signal sequence, for example the further digestion of the cleaved signal peptide or the degradation of membrane proteins. Mammalian signal peptidase is as a complex of five different polypeptide chains. This family represents the 12 kDa subunit (SPC12). 70 -284141 pfam06646 Mycoplasma_p37 High affinity transport system protein p37. This family consists of several high affinity transport system protein p37 sequences which are specific to Mycoplasma species. The p37 gene is part of an operon encoding two additional proteins which are highly similar to components of the periplasmic binding-protein-dependent transport systems of Gram-negative bacteria.It has been suggested that p37 is part of a homologous, high-affinity transport system in M. hyorhinis, a Gram-positive bacterium. 330 -148323 pfam06648 DUF1160 Protein of unknown function (DUF1160). This family consists of several hypothetical Baculovirus proteins of unknown function. 122 -336464 pfam06649 DUF1161 Protein of unknown function (DUF1161). This family consists of several short, hypothetical bacterial proteins of unknown function. 52 -310922 pfam06650 SHR-BD SHR-binding domain of vacuolar-sorting associated protein 13. SHR-BD is a family of eukaryotic proteins found on vacuolar-sorting associated proteins towards the C-terminus. In plants, the domain is found to be the region which interacts with SHR or the SHORT-ROOT transcription factor, a regulator of root-growth and asymmetric cell division that separates ground tissue into endodermis and cortex. The plant protein containing the SHR-BD is named SHRUBBY or SHBY, UniProtKB:Q9FT44. 272 -284144 pfam06651 DUF1163 Protein of unknown function (DUF1163). This family represents the C-terminus of hypothetical Arabidopsis thaliana proteins of unknown function. 67 -310923 pfam06652 Methuselah_N Methuselah N-terminus. This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. 180 -284146 pfam06653 Claudin_3 Tight junction protein, Claudin-like. This is a family of probable membrane tight junction, Claudin-like, proteins. 86 -284147 pfam06656 Tenui_PVC2 Tenuivirus PVC2 protein. This family consists of several Tenuivirus PVC2 proteins from Rice grassy stunt virus, Maize stripe virus and Rice hoja blanca virus. The function of this family is unknown. 784 -310924 pfam06657 Cep57_MT_bd Centrosome microtubule-binding domain of Cep57. This C-terminal region of Cep57 binds, nucleates and bundles microtubules. The N-terminal part, family Cep57_CLD, pfam14073, is the centrosome localization domain Cep57. 77 -336465 pfam06658 DUF1168 Protein of unknown function (DUF1168). This family consists of several hypothetical eukaryotic proteins of unknown function. 136 -284150 pfam06661 VirE3 VirE3. This family represents a conserved region within Agrobacterium tumefaciens VirE3. Agrobacterium tumefaciens (a plant pathogen) has a tumor-inducing (Ti) plasmid of which part, the transfer (T)-region, is transferred to plant cells during the infection process. Vir proteins mediate the processing of the T-region and the transfer of a single-stranded (ss) DNA copy of this region, the T-strand, into the recipient cells. VirE3 is a translocated effector protein, but its specific role has not been established. 316 -284151 pfam06662 C5-epim_C D-glucuronyl C5-epimerase C-terminus. This family represents the C-terminus of D-glucuronyl C5-epimerase (EC:5.1.3.-). Glucuronyl C5-epimerases catalyze the conversion of D-glucuronic acid (GlcUA) to L-iduronic acid (IdceA) units during the biosynthesis of glycosaminoglycans. 188 -310926 pfam06663 DUF1170 Protein of unknown function (DUF1170). This family represents a conserved region of unknown function within MAGUIN, a neuronal membrane-associated guanylate kinase-interacting protein. This region is situated between the pfam00595 and pfam00169 domains. All family members also contain an N-terminal pfam00536 domain. 211 -310927 pfam06664 MIG-14_Wnt-bd Wnt-binding factor required for Wnt secretion. MIG-14 is a Wnt-binding factor. Newly synthesized EGL-20/Wnt binds to MIG-14 in the Golgi, targetting the Wnt to the cell membrane for secretion. AP-2-mediated endocytosis and retromer retrieval at the sorting endosome would recycle MIG-14 to the Golgi, where it can bind to EGL-20/Wnt for next cycle of secretion. 293 -336466 pfam06666 DUF1173 Protein of unknown function (DUF1173). This family contains a group of hypothetical bacterial proteins that contain three conserved cysteine residues towards the N-terminal. The function of these proteins is unknown. 378 -336467 pfam06667 PspB Phage shock protein B. This family consists of several bacterial phage shock protein B (PspB) sequences. The phage shock protein (psp) operon is induced in response to heat, ethanol, osmotic shock and infection by filamentous bacteriophages. Expression of the operon requires the alternative sigma factor sigma54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a positive one. 73 -310930 pfam06668 ITI_HC_C Inter-alpha-trypsin inhibitor heavy chain C-terminus. This family represents the C-terminal region of inter-alpha-trypsin inhibitor heavy chains. Inter-alpha-trypsin inhibitors are glycoproteins with a high inhibitory activity against trypsin, built up from different combinations of four polypeptides: bikunin and the three heavy chains that belong to this family (HC1, HC2, HC3). The heavy chains do not have any protease inhibitory properties but have the capacity to interact in vitro and in vivo with hyaluronic acid, which promotes the stability of the extra-cellular matrix. All family members contain the pfam00092 domain. 188 -115333 pfam06670 Etmic-2 Microneme protein Etmic-2. This family consists of several Microneme protein Etmic-2 sequences from Eimeria tenella. Etmic-2 is a 50 kDa acidic protein, which is found within the microneme organelles of Eimeria tenella sporozoites and merozoites. 379 -310931 pfam06671 DUF1174 Repeat of unknown function (DUF1174). This family consists of a number of Caenorhabditis elegans specific repeats of around 36 residues in length which are found in two hypothetical proteins. This family is found in conjunction with pfam00024. 24 -310932 pfam06672 DUF1175 Protein of unknown function (DUF1175). This family consists of several hypothetical bacterial proteins of around 210 residues in length. The function of this family is unknown. 221 -115336 pfam06673 L_lactis_ph-MCP Lactococcus lactis bacteriophage major capsid protein. This family consists of several Lactococcus lactis bacteriophage major capsid proteins. 347 -310933 pfam06674 DUF1176 Protein of unknown function (DUF1176). This family consists of several hypothetical bacterial proteins of around 340 residues in length. Members of this family contain six highly conserved cysteine residues. The function of this family is unknown. 324 -336468 pfam06675 DUF1177 Protein of unknown function (DUF1177). This family consists of several hypothetical archaeal and and bacterial proteins of around 300 residues in length. The function of this family is unknown. 270 -336469 pfam06676 DUF1178 Protein of unknown function (DUF1178). This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. 144 -310936 pfam06677 Auto_anti-p27 Sjogren's syndrome/scleroderma autoantigen 1 (Autoantigen p27). This family consists of several Sjogren's syndrome/scleroderma autoantigen 1 (Autoantigen p27) sequences. It is thought that the potential association of anti-p27 with anti-centromere antibodies suggests that autoantigen p27 might play a role in mitosis. 38 -310937 pfam06678 DUF1179 Protein of unknown function (DUF1179). This family consists of several hypothetical Caenorhabditis elegans proteins of around 106 residues in length. The function of the family is unknown. 107 -310938 pfam06679 DUF1180 Protein of unknown function (DUF1180). This family consists of several hypothetical mammalian proteins of around 190 residues in length. The function of this family is unknown. 165 -284166 pfam06680 DUF1181 Protein of unknown function (DUF1181). This family consists of several hypothetical proteins of around 120 residues in length which are found specifically in Trypanosoma brucei. The function of this family is unknown. 120 -284167 pfam06681 DUF1182 Protein of unknown function (DUF1182). This family consists of several hypothetical proteins of around 360 residues in length and seems to be specific to Caenorhabditis elegans. The function of this family is unknown. It appears to carry seven TM regions. 208 -310939 pfam06682 SARAF SOCE-associated regulatory factor of calcium homoeostasis. SARAF is as family of eukaryotic proteins embedded in the ER. SARAF is SOCE-associated regulatory factor, where SOCE is store operated calcium entry. ie a mechanism governing calcium homoeostasis in the cell and the mitochondria. SOCE involves the enabling of Ca2+ release-activated Ca2+ (CRAC) channels. SARAF is a single pass ER membrane protein whose systolic-facing domain is responsible for activity and whose luminary-facing domain carries out a regulatory function in conjunction with another membrane protein STIM, an ER single pass membrane protein that detects changes in ER Ca2+ levels through its EF-hand, conserved Ca2+ binding domain. STIM is the major target for SARAF regulation, and thus SARAF negatively regulates the SOCE entry of calcium into cells protecting them from overfilling. 298 -310940 pfam06683 DUF1184 Protein of unknown function (DUF1184). This family contains a number of hypothetical proteins of unknown function from Arabidopsis thaliana. 203 -336470 pfam06684 AA_synth Amino acid synthesis. This family of proteins is structurally similar to proteins with the Bacillus chorismate mutase-like (BCM-like) fold. This structure, combined with its genomic context, suggest that it has a role in amino acid synthesis. 175 -310942 pfam06685 DUF1186 Protein of unknown function (DUF1186). This family consists of several hypothetical bacterial proteins of around 250 residues in length and is found in several Chlamydia and Anabaena species. The function of this family is unknown. 246 -310943 pfam06686 SpoIIIAC Stage III sporulation protein AC/AD protein family. This family consists of several bacterial stage III sporulation protein AC (SpoIIIAC) and SpoIIIAD sequences. The exact function of this family is unknown. SpoIIIAD is the an uncharacterized protein which is part of the spoIIIA operon that acts at sporulation stage III as part of a cascade of events leading to endospore formation. The operon is regulated by sigmaG. 56 -336471 pfam06687 SUR7 SUR7/PalI family. This family consists of several fungal-specific SUR7 proteins. Its activity regulates expression of RVS161, a homolog of human endophilin, suggesting a function for both in endocytosis. The protein carries four transmembrane domains and is thus likely to act as an anchoring protein for the eisosome to the plasma membrane. Eisosomes are the immobile protein complexes, that include the proteins Pil1 and Lsp1, which co-localize with sites of protein and lipid endocytosis at the plasma membrane. SUR7 protein may play a role in sporulation. This family also includes PalI which is part of a pH signal transduction cascade. Based on the similarity of PalI to the yeast Rim9 meiotic signal transduction component it has been suggested that PalI might be a membrane sensor for ambient pH. 201 -115351 pfam06688 DUF1187 Protein of unknown function (DUF1187). This family consists of several short, hypothetical bacterial proteins of around 62 residues in length. Members of this family are found in Escherichia coli and Salmonella typhi. The function of this family is unknown. 61 -336472 pfam06689 zf-C4_ClpX ClpX C4-type zinc finger. The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C4 type. This presumed zinc binding domain is found at the N-terminus of the ClpX protein. ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. The molecular function of this domain is now known. 37 -336473 pfam06690 DUF1188 Protein of unknown function (DUF1188). This family consists of several hypothetical archaeal proteins of around 260 residues in length which seem to be specific to Methanobacterium, Methanococcus and Methanopyrus species. The function of this family is unknown. 248 -310947 pfam06691 DUF1189 Protein of unknown function (DUF1189). This family consists of several hypothetical bacterial proteins of around 260 residues in length. The function of this family is unknown. 240 -115355 pfam06692 MNSV_P7B Melon necrotic spot virus P7B protein. This family consists of several Melon necrotic spot virus (MNSV) P7B proteins. The function of this family is unknown. 61 -336474 pfam06693 DUF1190 Protein of unknown function (DUF1190). This family consists of several hypothetical Enterobacterial proteins of around 212 residues in length and is known as YjfM in Escherichia coli. The function of this family is unknown. 161 -310949 pfam06694 Plant_NMP1 Plant nuclear matrix protein 1 (NMP1). This family consists of several plant specific nuclear matrix protein 1 (NMP1) sequences. Nuclear Matrix Protein 1 is a ubiquitously expressed 36 kDa protein, which has no homologs in animals and fungi, but is highly conserved among flowering and non-flowering plants. NMP1 is located both in the cytoplasm and nucleus and that the nuclear fraction is associated with the nuclear matrix. NMP1 is a candidate for a plant-specific structural protein with a function both in the nucleus and cytoplasm. 319 -310950 pfam06695 Sm_multidrug_ex Putative small multi-drug export protein. This family contains a small number of putative small multi-drug export proteins. 121 -336475 pfam06696 Strep_SA_rep Streptococcal surface antigen repeat. This family consists of a number of ~25 residue long repeats found commonly in Streptococcal surface antigens although one copy is present in the HPSR2-heavy chain potential motor protein of Giardia lamblia. This family is often found in conjunction with pfam00746. 25 -310952 pfam06697 DUF1191 Protein of unknown function (DUF1191). This family contains hypothetical plant proteins of unknown function. 270 -336476 pfam06698 DUF1192 Protein of unknown function (DUF1192). This family consists of several short, hypothetical, bacterial proteins of around 60 residues in length. The function of this family is unknown. 58 -310954 pfam06699 PIG-F GPI biosynthesis protein family Pig-F. PIG-F is involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. 180 -310955 pfam06701 MIB_HERC2 Mib_herc2. Named "mib/herc2 domain" in. Usually the protein also contains an E3 ligase domain (either Ring or Hect). 65 -336477 pfam06702 Fam20C Golgi casein kinase, C-terminal, Fam20. Fam20C represents the C-terminus of eukaryotic secreted Golgi casein kinase proteins. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an autosomal recessive osteosclerotic bone dysplasia. 218 -310957 pfam06703 SPC25 Microsomal signal peptidase 25 kDa subunit (SPC25). This family consists of several microsomal signal peptidase 25 kDa subunit proteins. Translocation of polypeptide chains across the endoplasmic reticulum (ER) membrane is triggered by signal sequences. Subsequently, signal recognition particle interacts with its membrane receptor and the ribosome-bound nascent chain is targeted to the ER where it is transferred into a protein-conducting channel. At some point, a second signal sequence recognition event takes place in the membrane and translocation of the nascent chain through the membrane occurs. The signal sequence of most secretory and membrane proteins is cleaved off at this stage. Cleavage occurs by the signal peptidase complex (SPC) as soon as the lumenal domain of the translocating polypeptide is large enough to expose its cleavage site to the enzyme. The signal peptidase complex is possibly also involved in proteolytic events in the ER membrane other than the processing of the signal sequence, for example the further digestion of the cleaved signal peptide or the degradation of membrane proteins. Mammalian signal peptidase is as a complex of five different polypeptide chains. This family represents the 25 kDa subunit (SPC25). 152 -284187 pfam06705 SF-assemblin SF-assemblin/beta giardin. This family consists of several eukaryotic SF-assemblin and related beta giardin proteins. During mitosis the SF-assemblin-based cytoskeleton is reorganized; it divides in prophase and is reduced to two dot-like structures at each spindle pole in metaphase. During anaphase, the two dots present at each pole are connected again. In telophase there is an asymmetrical outgrowth of new fibers. It has been suggested that SF-assemblin is involved in re-establishing the microtubular root system characteristic of interphase cells after mitosis. 247 -115368 pfam06706 CTV_P6 Citrus tristeza virus 6-kDa protein. This family consists of several Citrus tristeza virus (CTV) 6-kDa, 51 residue long hydrophobic (P6) proteins. The function of this family is unknown. 51 -310958 pfam06707 DUF1194 Protein of unknown function (DUF1194). This family consists of several hypothetical Rhizobiales specific proteins of around 270 residues in length. The function of this family is unknown. 206 -336478 pfam06708 DUF1195 Protein of unknown function (DUF1195). This family consists of several plant specific hypothetical proteins of around 160 residues in length. The function of this family is unknown. 147 -284189 pfam06709 DUF1196 Protein of unknown function (DUF1196). This family consists of several hypothetical bacterial proteins of around 51 residues in length which seem to be specific to Vibrio cholerae. The function of this family is unknown. 51 -310960 pfam06711 DUF1198 Protein of unknown function (DUF1198). This family consists of several bacterial proteins of around 150 residues in length which are specific to Escherichia coli, Salmonella species and Yersinia pestis. The function of this family is unknown. 143 -115374 pfam06712 DUF1199 Protein of unknown function (DUF1199). This family consists of several hypothetical Feline immunodeficiency virus (FIV) proteins. Members of this family are typically around 67 residues long and are often annotated as ORF3 proteins. The function of this family is unknown. 52 -310961 pfam06713 bPH_4 Bacterial PH domain. This family consists of several hypothetical proteins specific to Oceanobacillus and Bacillus species. Members of this family are typically around 130 residues in length. The function of this family is unknown. Members of this family have a PH domain like structure. 76 -148361 pfam06714 Gp5_OB Gp5 N-terminal OB domain. This domain is found at the N-terminus of the Gp5 baseplate protein of bacteriophage T4. This domain binds to the Gp27 protein. This domain has the common OB fold. 144 -310962 pfam06715 Gp5_C Gp5 C-terminal repeat (3 copies). This repeat composes the C-terminal part of the bacteriophage T4 baseplate protein Gp5. This region of the protein forms a needle like projection from the baseplate that is presumed to puncture the bacterial cell membrane. Structurally three copies of the repeated region trimerize to form a beta solenoid type structure. This family also includes repeats from bacterial Vgr proteins. 24 -284193 pfam06716 DUF1201 Protein of unknown function (DUF1201). This family consists of several Sugar beet yellow virus (SBYV) putative membrane-binding proteins of around 54 residues in length. The function of this family is unknown. 54 -284194 pfam06717 DUF1202 Protein of unknown function (DUF1202). This family consists of several hypothetical bacterial proteins of around 335 residues in length. Members of this family are found exclusively in Escherichia coli and Salmonella species and are often referred to as YggM proteins. The function of this family is unknown. 307 -336479 pfam06718 DUF1203 Protein of unknown function (DUF1203). This family consists of several hypothetical bacterial proteins of around 155 residues in length. Family members are present in Rhizobium, Agrobacterium and Streptomyces species. 116 -336480 pfam06719 AraC_N AraC-type transcriptional regulator N-terminus. This family represents the N-terminus of bacterial ARAC-type transcriptional regulators. In E. coli, these regulate the L-arabinose operon through sensing the presence of arabinose, and when the sugar is present, transmitting this information from the arabinose-binding domains to the protein's DNA-binding domains. This family might represent the N-terminal arm of the protein, which binds to the C-terminal DNA binding domains to hold them in a state where the protein prefers to loop and remain non-activating. All family members contain the pfam00165 domain. 147 -336481 pfam06720 Phi-29_GP16_7 Bacteriophage phi-29 early protein GP16.7. This family consists of several bacteriophage phi-29 early protein GP16.7 sequences of around 130 residues in length. The function of this family is unknown. 130 -284198 pfam06721 DUF1204 Protein of unknown function (DUF1204). This family represents the C-terminus of a number of Arabidopsis thaliana hypothetical proteins of unknown function. Family members contain a conserved DFD motif. 243 -284199 pfam06722 DUF1205 Protein of unknown function (DUF1205). This family represents a conserved region of unknown function within bacterial glycosyl transferases. Many family members contain pfam03033. 95 -336482 pfam06723 MreB_Mbl MreB/Mbl protein. This family consists of bacterial MreB and Mbl proteins as well as two related archaeal sequences. MreB is known to be a rod shape-determining protein in bacteria and goes to make up the bacterial cytoskeleton. Genes coding for MreB/Mbl are only found in elongated bacteria, not in coccoid forms. It has been speculated that constituents of the eukaryotic cytoskeleton (tubulin, actin) may have evolved from prokaryotic precursor proteins closely related to today's bacterial proteins FtsZ and MreB/Mbl. 327 -336483 pfam06724 DUF1206 Domain of Unknown Function (DUF1206). This region consists of two a pair of transmembrane helices and occurs three times in each of the family member proteins. 70 -310967 pfam06725 3D 3D domain. This short presumed domain contains three conserved aspartate residues, hence the name 3D. It has been shown to be part of the catalytic double psi beta barrel domain of MltA. 72 -310968 pfam06726 BC10 Bladder cancer-related protein BC10. This family consists of a series of short proteins of around 90 residues in length. The human protein BC10 has been implicated in bladder cancer where the transcription of the gene coding for this protein is nearly completely abolished in highly invasive transitional cell carcinomas (TCCs). The protein is a small globular protein containing two transmembrane helices, and it is a multiply edited transcript. All the editing sites are found in either the 5'-UTR or the N-terminal section of the protein, which is predicted to be outside the membrane. The three coding edits are all non-synonymous and predicted to encode exposed residues. The function of this family is unknown. 65 -310969 pfam06727 DUF1207 Protein of unknown function (DUF1207). This family consists of a number of hypothetical bacterial proteins of around 410 residues in length which seem to be specific to Chlamydia species. The function of this family is unknown. 337 -336484 pfam06728 PIG-U GPI transamidase subunit PIG-U. Many eukaryotic proteins are anchored to the cell surface via glycosylphosphatidylinositol (GPI), which is posttranslationally attached to the carboxyl-terminus by GPI transamidase. The mammalian GPI transamidase is a complex of at least four subunits, GPI8, GAA1, PIG-S, and PIG-T. PIG-U is thought to represent a fifth subunit in this complex and may be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI. 374 -310971 pfam06729 CENP-R Kinetochore component, CENP-R. This family consists of mammalian kinetochore sub-complex proteins CENP-R, also referred to as nuclear receptor co-activator NRIF3 proteins. NRIF3 exhibits a distinct receptor specificity in interacting with and potentiating the activity of only TRs and RXRs but not other examined nuclear receptors. NRIF3 as a co-regulator that possesses both transactivation and transrepression domains and/or functions. Collectively, the NRIF3 family of co-regulators may play dual roles in mediating both positive and negative regulatory effects on gene expression. CENP-R is one of the 15 components that make up the constitutive centromere associated complex (CCAN) part of the kinetochore. A sub-complex of CCAN, consisting of CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN). Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. 136 -284207 pfam06730 FAM92 FAM92 protein. This family of proteins has a role in embryogenesis. During embryogenesis it is essential for ectoderm and axial mesoderm development. It may regulate cell proliferation and apoptosis. 225 -310972 pfam06732 Pescadillo_N Pescadillo N-terminus. This family represents the N-terminal region of Pescadillo. Pescadillo protein localizes to distinct substructures of the interphase nucleus including nucleoli, the site of ribosome biogenesis. During mitosis pescadillo closely associates with the periphery of metaphase chromosomes and by late anaphase is associated with nucleolus-derived foci and prenucleolar bodies. Blastomeres in mouse embryos lacking pescadillo arrest at morula stages of development, the nucleoli fail to differentiate and accumulation of ribosomes is inhibited. It has been proposed that in mammalian cells pescadillo is essential for ribosome biogenesis and nucleologenesis and that disruption to its function results in cell cycle arrest. This family is often found in conjunction with a pfam00533 domain. 266 -336485 pfam06733 DEAD_2 DEAD_2. This represents a conserved region within a number of RAD3-like DNA-binding helicases that are seemingly ubiquitous - members include proteins of eukaryotic, bacterial and archaeal origin. RAD3 is involved in nucleotide excision repair, and forms part of the transcription factor TFIIH in yeast. 170 -284210 pfam06734 UL97 UL97. This family represents a conserved region within viral UL97 phosphotransferases. UL97 participates in the phosphorylation of the nucleoside analog ganciclovir (GCV) to produce GCV-monophosphate. 187 -310974 pfam06736 DUF1211 Protein of unknown function (DUF1211). This family represents a conserved region within a number of hypothetical proteins of unknown function found in eukaryotes, bacteria and archaea. These may possibly be integral membrane proteins. 89 -336486 pfam06737 Transglycosylas Transglycosylase-like domain. This family of proteins are very likely to act as transglycosylase enzymes related to pfam00062 and pfam01464. These other families are weakly matched by this family, and include the known active site residues. 75 -336487 pfam06738 ThrE Putative threonine/serine exporter. ThrE is a family of bacterial and Archaeal proteins that catalyze the export of L-threonine from the cell. UniProtKB:Q79VD1 has been characterized as being necessary for this export. The domain exhibits 10 putative TMs and catalyzes the proton-motive-force-dependent efflux of threonine and serine. 241 -115400 pfam06739 SBBP Beta-propeller repeat. This family is related to pfam00400 and is likely to also form a beta-propeller. SBBP stands for Seven Bladed Beta Propeller. 38 -310977 pfam06740 DUF1213 Protein of unknown function (DUF1213). This family represents a short conserved repeat within Drosophila melanogaster proteins of unknown function. Approximately 50 copies of this repeat are present in each protein. 31 -336488 pfam06741 LsmAD LsmAD domain. This domain is found associated with Lsm domain. 70 -310979 pfam06742 DUF1214 Protein of unknown function (DUF1214). This family represents the C-terminal region of several hypothetical proteins of unknown function. Family members are mostly bacterial, but a few are also found in eukaryotes and archaea. 110 -336489 pfam06743 FAST_1 FAST kinase-like protein, subdomain 1. This family represents a conserved region of eukaryotic Fas-activated serine/threonine (FAST) kinases (EC:2.7.1.-) that contains several conserved leucine residues. FAST kinase is rapidly activated during Fas-mediated apoptosis, when it phosphorylates TIA-1, a nuclear RNA-binding protein that has been implicated as an effector of apoptosis. Note that many family members are hypothetical proteins. This region is often found immediately N-terminal to the FAST kinase-like protein, subdomain 2. 69 -336490 pfam06744 IcmF_C Type VI secretion protein IcmF C-terminal. IcmF_C family represents a conserved region situated towards the C-terminal end of IcmF-like proteins. It was thought to be involved in Vibrio cholerae cell surface reorganisation that results in increased adherence to epithelial cells leading to an increased conjugation frequency. IcmF as a whole interacts with DotU whereby these bind tightly and form the docking area of the T6SS within the inner membrane. The exact function of this domain is not clear. 201 -284219 pfam06745 ATPase KaiC. This family is in the P-loop NTPase superfamily and is found in archaea, bacteria and eukaryotes. More than one copy is sometimes found in each protein. This family includes KaiC, which is one of the Kai proteins among which direct protein-protein association may be a critical process in the generation of circadian rhythms in cyanobacteria. 231 -310982 pfam06746 DUF1216 Protein of unknown function (DUF1216). This family represents a conserved region, within Arabidopsis thaliana proteins, of unknown function. Family members sometimes contain more than one copy.It has been reported that this domain will be found in other Brassicaceae. 132 -336491 pfam06747 CHCH CHCH domain. we have identified a conserved motif in the LOC118487 protein that we have called the CHCH motif. Alignment of this protein with related members showed the presence of three subgroups of proteins, which are called the S (Small), N (N-terminal extended) and C (C-terminal extended) subgroups. All three sub-groups of proteins have in common that they contain a predicted conserved [coiled coil 1]-[helix 1]-[coiled coil 2]-[helix 2] domain (CHCH domain). Within each helix of the CHCH domain, there are two cysteines present in a C-X9-C motif. The N-group contains an additional double helix domain, and each helix contains the C-X9-C motif. This family contains a number of characterized proteins: Cox19 protein - a nuclear gene of Saccharomyces cerevisiae, codes for an 11-kDa protein (Cox19p) required for expression of cytochrome oxidase. Because cox19 mutants are able to synthesize the mitochondrial and nuclear gene products of cytochrome oxidase, Cox19p probably functions post-translationally during assembly of the enzyme. Cox19p is present in the cytoplasm and mitochondria, where it exists as a soluble intermembrane protein. This dual location is similar to what was previously reported for Cox17p, a low molecular weight copper protein thought to be required for maturation of the CuA centre of subunit 2 of cytochrome oxidase. Cox19p have four conserved potential metal ligands, these are three cysteines and one histidine. Mrp10 - belongs to the class of yeast mitochondrial ribosomal proteins that are essential for translation. Eukaryotic NADH-ubiquinone oxidoreductase 19 kDa (NDUFA8) subunit. The CHCH domain was previously called DUF657. 35 -336492 pfam06748 DUF1217 Protein of unknown function (DUF1217). This family represents a conserved region that is found within bacterial proteins, most of which are hypothetical. Some members contain multiple copies. 149 -336493 pfam06749 DUF1218 Protein of unknown function (DUF1218). This family contains hypothetical plant proteins of unknown function. Family members contain a number of conserved cysteine residues. 88 -336494 pfam06750 DiS_P_DiS Bacterial Peptidase A24 N-terminal domain. This family is found at the N-terminus of the pre-pilin peptidases (pfam01478). It's function has not been specifically determined; however some of the family have been characterized as bifunctional, and this domain may contain the N-methylation activity (EC:2.1.1.-). It consists of an intracellular region between a pair of transmembrane. This region contains an invariant proline and two almost fully conserved disulphide bridges - hence the name DiS-P-DiS. The cysteines have been shown to be essential to the overall function of the enzyme in, but their role was incorrectly ascribed. 85 -310987 pfam06751 EutB Ethanolamine ammonia lyase large subunit (EutB). This family consists of several bacterial ethanolamine ammonia lyase large subunit (EutB) proteins (EC:4.3.1.7). Ethanolamine ammonia-lyase is a bacterial enzyme that catalyzes the adenosylcobalamin-dependent conversion of certain vicinal amino alcohols to oxo compounds and ammonia. The enzyme is a heterodimer composed of subunits of Mr approximately 55,000 (EutB) and 35,000 (EutC). 433 -310988 pfam06752 E_Pc_C Enhancer of Polycomb C-terminus. This family represents the C-terminus of eukaryotic enhancer of polycomb proteins, which have roles in heterochromatin formation. This family contains several conserved motifs. 228 -70231 pfam06753 Bradykinin Bradykinin. This family consists of several bradykinin sequences. The skins of anuran amphibians, in addition to mucus glands, contain highly specialized poison glands, which, in reaction to stress or attack, exude a complex noxious cocktail of biologically active molecules. These secretions often contain a plethora of peptides among which bradykinin or structural variants have been identified. 19 -336495 pfam06754 PhnG Phosphonate metabolism protein PhnG. This family consists of several bacterial phosphonate metabolism protein PhnG sequences. In Escherichia coli, the phn operon encodes proteins responsible for the uptake and breakdown of phosphonates. The exact function of PhnG is unknown, however it is thought likely that along with six other proteins PhnG makes up the the C-P (carbon-phosphorus) lyase. 142 -284228 pfam06755 CbtA_toxin CbtA_toxin of type IV toxin-antitoxin system. CbtA is a family of bacterial and archaeal toxins of type IV toxin-antitoxin system. Toxins from such systems in free-living bacteria inhibit cell growth by targeting essential functions of cellular metabolism. In this case the toxin inhibits cell-division leading to changes in morphology and finally lysis, by interacting with two essential cytoskeletal proteins, FtsZ and MreB. For FtsZ it inhibits its GTPase activity and GTP-dependent polymerization, and for MreB it inhibits its ATP-dependent polymerization. These actions of CbtA appear to occur simultaneously. he cognate antitoxin family is represented by pfam06154. 112 -310990 pfam06756 S19 Chorion protein S19 C-terminal. This family represents the C-terminal region of eukaryotic chorion protein S19. In Drosophilidae, the S19 gene is known to form part of an autosomal cluster that also contains s16, s15 and s18. Note that members of this family contain a conserved PVA motif, and many contain pfam03964. 70 -336496 pfam06757 Ins_allergen_rp Insect allergen related repeat, nitrile-specifier detoxification. This family exemplifies a case of novel gene evolution. The case in point is the arms-race between plants and their infective insective herbivores in the area of the glucosinolate-myrosinase system. Brassicas have developed the glucosinolate-myrosinase system as chemical defense mechanism against the insects, and consequently the insects have adapted to produce a detoxifying molecule, nitrile-specifier protein (NSP). NSP is present in the small white butterfly Pieris rapae. NSP is structurally different from and has no amino acid homology to any known detoxifying enzymes, and it appears to have arisen by a process of domain and gene duplication of a sequence of unknown function that is widespread in insect species and referred to as insect-allergen-repeat protein. Thus this family is found either as a single domain or as a multiple repeat-domain. 174 -310992 pfam06758 DUF1220 Repeat of unknown function (DUF1220). 66 -336497 pfam06760 DUF1221 Protein of unknown function (DUF1221). This is a family of plant proteins, most of which are hypothetical and of unknown function. All members contain the pfam00069 domain, suggesting that they may possess kinase activity. 215 -336498 pfam06761 IcmF-related Intracellular multiplication and human macrophage-killing. This family represents a conserved region within several bacterial proteins that resemble IcmF, which has been proposed to be involved in Vibrio cholerae cell surface reorganisation, resulting in increased adherence to epithelial cells and increased conjugation frequency. Note that many family members are hypothetical proteins. 303 -336499 pfam06762 LMF1 Lipase maturation factor. This family of transmembrane proteins includes the lipase maturation factor, LMF1. Lipoprotein lipase and hepatic lipase require LMF1 to fold into their active states. The precise role of LMF1 in lipase folding has yet to be determined. 379 -284235 pfam06763 Minor_tail_Z Prophage minor tail protein Z (GPZ). This family consists of several prophage minor tail protein Z like sequences from Escherichia coli, Salmonella typhimurium and Lambda-like bacteriophages. 190 -310996 pfam06764 DUF1223 Protein of unknown function (DUF1223). This family consists of several hypothetical proteins of around 250 residues in length which are found in both plants and bacteria. The function of this family is unknown. Structurally it lies in the Thioredoxin-like superfamily. 201 -336500 pfam06766 Hydrophobin_2 Fungal hydrophobin. This is a family of fungal hydrophobins that seems to be restricted to ascomycetes. These are small, moderately hydrophobic extracellular proteins that have eight cysteine residues arranged in a strictly conserved motif. Hydrophobins are generally found on the outer surface of conidia and of the hyphal wall, and may be involved in mediating contact and communication between the fungus and its environment. Note that some family members contain multiple copies. 65 -148397 pfam06767 Sif Sif protein. This family consists of several SifA and SifB and SseJ proteins which seem to be specific to the Salmonella species. SifA, SifB and SseJ have been demonstrated to localize to the Salmonella-containing vacuole (SCV) and to Salmonella-induced filaments (Sifs). Trafficking of SseJ and SifB away from the SCV requires the SPI-2 effector SifA. SseJ trafficking away from the SCV along Sifs is unnecessary for its virulence function. 336 -284238 pfam06769 YoeB_toxin YoeB-like toxin of bacterial type II toxin-antitoxin system. YoeB_toxin is a family of bacterial toxins that forms one component of the type II toxin-antitoxin system in E. coli whose antitoxin is represented by YefM, found in pfam02604. The plasmid encoded Axe-Txe proteins in Enterococcus faecium act as an antitoxin-toxin pair. When the plasmid is lost, the antitoxin is degraded relatively quickly by host enzymes. This allows the toxin to interact with its intracellular target, thus killing the cell or impeding cell growth. These toxins are highly potent protein synthesis inhibitors, specifically blocking the initiation of translation. In the case of YoeB, it binds to the 50 S ribosomal subunit in 70 S ribosomes and interacts with the A site leading to mRNA cleavage at this site. As a result, the 3'-end portion of the mRNA is released from ribosomes, and translation initiation is effectively inhibited. 80 -284239 pfam06770 Arif-1 Actin-rearrangement-inducing factor (Arif-1). This family consists of several Nucleopolyhedrovirus actin-rearrangement-inducing factor (Arif-1) proteins. In response to Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) infection, a sequential rearrangement of the actin cytoskeleton occurs this is induced by Arif-1. Arif-1 is tyrosine phosphorylated and is located at the plasma membrane as a component of the actin rearrangement-inducing complex. 205 -284240 pfam06771 Desmo_N Viral Desmoplakin N-terminus. This family represents the N-terminus of viral desmoplakin. Desmoplakin is a component of mature desmosomes, which are the main adhesive junctions in epithelia and cardiac muscle. Desmoplakin is also essential for the maturation of adherens junctions. Note that many family members are hypothetical. 97 -336501 pfam06772 LtrA Bacterial low temperature requirement A protein (LtrA). This family consists of several bacteria specific low temperature requirement A (LtrA) protein sequences which have been found to be essential for growth at low temperatures in Listeria monocytogenes. 349 -284242 pfam06773 Bim_N Bim protein N-terminus. This family represents the N-terminal region of several mammal specific Bim proteins. The Bim protein is one of the BH3-only proteins, members of the Bcl-2 family that have only one of the Bcl-2 homology regions, BH3. BH3-only proteins are essential initiators of apoptotic cell death. 40 -310999 pfam06775 Seipin Putative adipose-regulatory protein (Seipin). Seipin is a protein of approximately 400 residues, in humans, which is the product of a gene homologous to the murine guanine nucleotide-binding protein (G protein) gamma-3 linked gene. This gene is implicated in the regulation of body fat distribution and insulin resistance and particularly in the auto-immune disease Berardinelli-Seip congenital lipodystrophy type 2. Seipin has no similarity with other known proteins or consensus motifs that might predict its function, but it is predicted to contain two transmembrane domains at residues 28-49 and 237-258, in human, and a third transmembrane domain might be present at residues 155-173. Seipin may also be implicated in Silver spastic paraplegia syndrome and distal hereditary motor neuropathy type V. 194 -311000 pfam06776 IalB Invasion associated locus B (IalB) protein. This family consists of several invasion associated locus B (IalB) proteins and related sequences. IalB is known to be a major virulence factor in Bartonella bacilliformis where it was shown to have a direct role in human erythrocyte parasitism. IalB is upregulated in response to environmental cues signaling vector-to-host transmission. Such environmental cues would include, but not be limited to, temperature, pH, oxidative stress, and haemin limitation. It is also thought that IalB would aide B. bacilliformis survival under stress-inducing environmental conditions. The role of this protein in other bacterial species is unknown. 134 -336502 pfam06777 HBB Helical and beta-bridge domain. HBB is the domain on DEAD-box eukaryotic DNA repair helicases (EC:3.6.1.-) that appears to be a unique fold. It's conformation is of alpha-helices 12-16 plus a short beta-bridge to the FeS-cluster domain at the N-terminal. The full-length XPD protein verifies the presence of damage to DNA and allows DNA repair to proceed. XPD is an assembly of several domains to form a doughnut-shaped molecule that is able to separate two DNA strands and scan the DNA for damage. HBB helps to form the overall DNA-clamping architecture. This family represents a conserved region within a number of eukaryotic DNA repair helicases (EC:3.6.1.-). 190 -336503 pfam06778 Chlor_dismutase Chlorite dismutase. This family contains chlorite dismutase enzymes of bacterial and archaeal origin. This enzyme catalyzes the disproportionation of chlorite into chloride and oxygen. Note that many family members are hypothetical proteins. 191 -284247 pfam06779 MFS_4 Uncharacterized MFS-type transporter YbfB. This family represents putative bacterial membrane proteins which may be sugar transporters. Members carry twelve transmembrane regions which are characteristic of members of the major facilitator sugar-transporter superfamily. 363 -311003 pfam06780 Erp_C Erp protein C-terminus. This family represents the C-terminus of bacterial Erp proteins that seem to be specific to Borrelia burgdorferi (a causative agent of Lyme disease). Borrelia Erp proteins are particularly heterogeneous, which might enable them to interact with a wide variety of host components. 140 -336504 pfam06781 CrgA Cell division protein CrgA. CrgA is a trans-membrane (TM) protein, first described in Streptomyces as being required for sporulation through the coordination of several aspects of reproductive growth. In Mtb (Mycobacterium tuberculosis ) CrgA is a central component of the divisome, and consists of 93 residues with two predicted TM helices (TM1: residues 29##51; and TM2: residues 66##88). CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and also stabilizes the divisome. Reduced production of CrgA results in elongated cells and reduced growth rate, and loss of CrgA impairs peptidoglycan synthesis. CrgA has homologs in other actinomycetes. 88 -284250 pfam06782 UPF0236 Uncharacterized protein family (UPF0236). 479 -311005 pfam06783 UPF0239 Uncharacterized protein family (UPF0239). 81 -336505 pfam06784 UPF0240 Uncharacterized protein family (UPF0240). 167 -311007 pfam06785 UPF0242 Uncharacterized protein family (UPF0242). 401 -311008 pfam06786 UPF0253 Uncharacterized protein family (UPF0253). 65 -311009 pfam06787 UPF0254 Uncharacterized protein family (UPF0254). 163 -311010 pfam06788 UPF0257 Uncharacterized protein family (UPF0257). 235 -311011 pfam06789 UPF0258 Uncharacterized protein family (UPF0258). 150 -284258 pfam06790 UPF0259 Uncharacterized protein family (UPF0259). 248 -336506 pfam06791 TMP_2 Prophage tail length tape measure protein. This family represents a conserved region located towards the N-terminal end of prophage tail length tape measure protein (TMP). TMP is important for assembly of phage tails and involved in tail length determination. Mutated forms TMP cause tail fibers to be shortened. 203 -336507 pfam06792 UPF0261 Uncharacterized protein family (UPF0261). 400 -311014 pfam06793 UPF0262 Uncharacterized protein family (UPF0262). 151 -336508 pfam06794 UPF0270 Uncharacterized protein family (UPF0270). 67 -284263 pfam06795 Erythrovirus_X Erythrovirus X protein. This family consists of several Erythrovirus X proteins which seem to be found exclusively in human parvovirus and human erythrovirus. The function of this family is unknown. 81 -336509 pfam06796 NapE Periplasmic nitrate reductase protein NapE. This family consists of several bacterial periplasmic nitrate reductase NapE proteins. Seven genes, napKEFDABC, encoding the periplasmic nitrate reductase system were cloned from the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans IL106. NapE is thought to be a transmembrane protein. 53 -284265 pfam06797 DUF1229 Protein of unknown function (DUF1229). This family consists of several hypothetical proteins of around 415 residues in length which seem to be specific to the bacterium Leptospira interrogans. 414 -311017 pfam06798 PrkA PrkA serine protein kinase C-terminal domain. This is a family of PrkA bacterial and archaeal serine kinases approximately 630 residues long. This family corresponds to the C-terminal domain. 252 -336510 pfam06799 DUF1230 Protein of unknown function (DUF1230). This family consists of several hypothetical plant and photosynthetic bacterial proteins of around 160 residues in length. The function of this family is unknown although looking at the species distribution the protein may play a part in photosynthesis. 139 -284268 pfam06800 Sugar_transport Sugar transport protein. This is a family of bacterial sugar transporters approximately 300 residues long. Members include glucose uptake proteins, ribose transport proteins, and several putative and hypothetical membrane proteins probably involved in sugar transport across bacterial membranes. These members are transmembrane proteins which are usually 5+5 duplications. This model recognizes a set of five TMs, 281 -284269 pfam06802 DUF1231 Protein of unknown function (DUF1231). This family consists of several Orthopoxvirus specific proteins predominantly of around 340 residues in length. This family contains both B17 and B15 proteins, the function of which are unknown. 340 -311019 pfam06803 DUF1232 Protein of unknown function (DUF1232). This family represents a conserved region of approximately 60 residues within a number of hypothetical bacterial and archaeal proteins of unknown function. 35 -336511 pfam06804 Lipoprotein_18 NlpB/DapX lipoprotein. This family consists of a number of bacterial lipoproteins often known as NlpB or DapX. This lipoprotein is detected in outer membrane vesicles in Escherichia coli and appears to be nonessential. 295 -284272 pfam06805 Lambda_tail_I Bacteriophage lambda tail assembly protein I. This family consists of tail assembly proteins from lambdoid and T1 phages and related prophages, e.g. the tail assembly protein I (TAPI). Members of this family contain a core ubiquitin fold domain. The exact function of TAPI is not clear but it is not incorporated into the mature tail. Gene neighborhoods reveal that TAPI co-occurs with genes encoding the host-specificity protein TapJ, and TapK, which contains a JAB metallopeptidase fused to an NlpC/P60 peptidase. It is proposed that the TAPI protein is processed by the peptidase domains of TapK. 82 -284273 pfam06806 DUF1233 Putative excisionase (DUF1233). This family consists of several putative phage excisionase proteins of around 80 residues in length. 70 -336512 pfam06807 Clp1 Pre-mRNA cleavage complex II protein Clp1. This family consists of several pre-mRNA cleavage complex II Clp1 (or HeaB) proteins. Six different protein factors are required in vitro for 3' end formation of mammalian pre-mRNAs by endonucleolytic cleavage and polyadenylation. Clp1 is a subunit of cleavage complex IIA, which is required for cleavage, but not for polyadenylation of pre-mRNA. 116 -284275 pfam06808 DctM Tripartite ATP-independent periplasmic transporter, DctM component. This family contains a diverse range of predicted transporter proteins. Including the DctM subunit of the bacterial and archaeal TRAP C4-dicarboxylate transport (Dct) system permease. In general, C4-dicarboxylate transport systems allow C4-dicarboxylates like succinate, fumarate, and malate to be taken up. TRAP C4-dicarboxylate carriers are secondary carriers that use an electrochemical H+ gradient as the driving force for transport. DctM is an integral membrane protein that is one of the constituents of TRAP carriers. Note that many family members are hypothetical proteins. 413 -284276 pfam06809 NPDC1 Neural proliferation differentiation control-1 protein (NPDC1). This family consists of several neural proliferation differentiation control-1 (NPDC1) proteins. NPDC1 plays a role in the control of neural cell proliferation and differentiation. It has been suggested that NPDC1 may be involved in the development of several secretion glands. This family also contains the C-terminal region of the C. elegans protein CAB-1, which is known to interact with AEX-3. 352 -311022 pfam06810 Phage_GP20 Phage minor structural protein GP20. This family consists of several phage minor structural protein GP20 sequences of around 180 residues in length. The function of this family is unknown. 149 -336513 pfam06812 ImpA_N ImpA, N-terminal, type VI secretion system. This family represents a conserved region located towards the N-terminal end of ImpA and related proteins. ImpA is an inner membrane protein, which has been suggested to be involved with proteins that are exported and associated with colony variations in Actinobacillus actinomycetemcomitans. The ImpA gene in Vibrio cholera and many other bacteria is expressed from the virulence factor operon which produces the pathogenic injection, type VI secretion system; although the exact function of this gene-product is not known it appears to be an essential component of the pathogenic effect. 116 -284279 pfam06813 Nodulin-like Nodulin-like. This family represents a conserved region within plant nodulin-like proteins. 250 -336514 pfam06814 Lung_7-TM_R Lung seven transmembrane receptor. This family represents a conserved region with eukaryotic lung seven transmembrane receptors and related proteins. 286 -284281 pfam06815 RVT_connect Reverse transcriptase connection domain. This domain is known as the connection domain. This domain lies between the thumb and palm domains. 102 -311024 pfam06816 NOD NOTCH protein. NOTCH signalling plays a fundamental role during a great number of developmental processes in multicellular animals. NOD and NODP represent a region present in many NOTCH proteins and NOTCH homologs in multiple species such as NOTCH2 and NOTCH3, LIN12, SC1 and TAN1. Role of NOD domain remains to be elucidated. 52 -311025 pfam06817 RVT_thumb Reverse transcriptase thumb domain. This domain is known as the thumb domain. It is composed of a four helix bundle. 64 -336515 pfam06818 Fez1 Fez1. This family represents the eukaryotic Fez1 protein. Fez1 contains a leucine-zipper region with similarity to the DNA-binding domain of the cAMP-responsive activating-transcription factor 5. There is evidence that Fez1 inhibits cancer cell growth through regulation of mitosis, and that its alterations result in abnormal cell growth. Note that some family members contain more than one copy of this region. 165 -311027 pfam06819 Arc_PepC Archaeal Peptidase A24 C-terminal Domain. This region is of unknown function but is found in some archaeal pfam01478. It is predicted to be of mixed alpha/beta secondary structure by JPred. 111 -148432 pfam06820 Phage_fiber_C Putative prophage tail fibre C-terminus. This family represents the C-terminus of a prophage tail fibre protein found mostly in E. coli. All family members contain a conserved RLGP motif. 64 -284286 pfam06821 Ser_hydrolase Serine hydrolase. Members of this family have serine hydrolase activity. They contain a conserved serine hydrolase motif, GXSXG/A, where the serine is a putative nucleophile. This family has an alpha-beta hydrolase fold. Eukaryotic members of this family have a conserved LXCXE motif, which binds to retinoblastomas. This motif is absent from prokaryotic members of this family. 170 -284287 pfam06822 DUF1235 Protein of unknown function (DUF1235). This family contains a number of viral proteins of unknown function. 261 -311028 pfam06823 DUF1236 Protein of unknown function (DUF1236). This family contains a number of hypothetical bacterial proteins of unknown function. Some family members contain more than one copy of the region represented by this family. 64 -336516 pfam06824 Glyco_hydro_125 Metal-independent alpha-mannosidase (GH125). This family, which contains bacterial and fungal glycoside hydrolases, is also known as GH125. They function as metal-independent alpha-mannosidases, with specificity for alpha-1,6-linked non-reducing terminal mannose residues. Structurally this family is part of the 6 hairpin glycosidase superfamily. 413 -311030 pfam06825 HSBP1 Heat shock factor binding protein 1. Heat shock factor binding protein 1 (HSBP1) appears to be a negative regulator of the heat shock response. 51 -284291 pfam06826 Asp-Al_Ex Predicted Permease Membrane Region. This family represents five transmembrane helices that are normally found flanking (five either side) a pair of pfam02080 domains. This suggests that the paired regions form a ten helical structure, probably forming the pore, whereas the pfam02080) binds a ligand for export or regulation of the pore. Tetragenococcus halophilus aspT is described as a aspartate-alanine antiporter. In conjunction with aspD it forms a 'proton motive metabolic cycle catalyzed by an aspartate-alanine exchange'. The general conservation of domain architecture in this family suggests that they are functional orthologues. 167 -311031 pfam06827 zf-FPG_IleRS Zinc finger found in FPG and IleRS. This zinc binding domain is found at the C-terminus of isoleucyl tRNA synthetase and the enzyme Formamidopyrimidine-DNA glycosylase EC:3.2.2.23. 28 -336517 pfam06830 Root_cap Root cap. The cells at the periphery of the root cap are continuously sloughed off from the root into the mucilage, and are thought to be programmed to die.This family represents a conserved region approximately 60 residues in length within plant root cap proteins, which may be involved in the process. 57 -336518 pfam06831 H2TH Formamidopyrimidine-DNA glycosylase H2TH domain. Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the central domain containing the DNA-binding helix-two turn-helix domain. 92 -284295 pfam06832 BiPBP_C Penicillin-Binding Protein C-terminus Family. This conserved region of approximately 90 residues is found in a sub-group of bacterial Penicillin-Binding Proteins (PBPs). A variable length loop region separates this region from the transpeptidase unit (pfam00905). It is predicted by PROF to be an all beta fold. 90 -284296 pfam06833 MdcE Malonate decarboxylase gamma subunit (MdcE). This family consists of several bacterial malonate decarboxylase gamma subunit proteins. Malonate decarboxylase of Klebsiella pneumoniae consists of four different subunits and catalyzes the conversion of malonate plus H+ to acetate and CO2. The catalysis proceeds via acetyl and malonyl thioester residues with the phosphribosyl-dephospho-CoA prosthetic group of the acyl carrier protein (ACP) subunit. MdcD and E together probably function as malonyl-S-ACP decarboxylase. 232 -336519 pfam06834 TraU TraU protein. This family consists of several bacterial TraU proteins. TraU appears to be more essential to conjugal DNA transfer than to assembly of pilus filaments. 303 -311035 pfam06835 LptC Lipopolysaccharide-assembly, LptC-related. This family consists of several related groups of proteins one of which is the LptC family. LptC is involved in lipopolysaccharide-assembly on the outer membrane of Gram-negative organisms. The lipopolysaccharide component of the outer bacterial membrane is transported form its source of origin to the outer membrane by a set of proteins constituting a transport machinery that is made up of LptA, LptB, LptC, LptD, LptE. LptC is located on the inner membrane side of the intermembrane space. 166 -336520 pfam06836 DUF1240 Protein of unknown function (DUF1240). This family consists of a number of hypothetical putative membrane proteins which seem to be specific to Yersinia pestis. The function of this family is unknown. 95 -284300 pfam06837 Fijivirus_P9-2 Fijivirus P9-2 protein. This family consists of several Fijivirus specific P9-2 proteins from Rice black streaked dwarf virus (RBSDV) and Fiji disease virus. The function of this family is unknown. 207 -311036 pfam06838 Met_gamma_lyase Methionine gamma-lyase. This is a putative pyridoxal 5'-phosphate-dependent methionine gamma-lyase enzyme involved in methionine catabolism. 405 -284302 pfam06839 zf-GRF GRF zinc finger. This presumed zinc binding domain is found in a variety of DNA-binding proteins. It seems likely that this domain is involved in nucleic acid binding. It is named GRF after three conserved residues in the centre of the alignment of the domain. This zinc finger may be related to pfam01396. 45 -311037 pfam06840 DUF1241 Protein of unknown function (DUF1241). This family consists of several programmed cell death 10 protein (PDCD10 or TFAR15) sequences. The function of this family is unknown. 150 -311038 pfam06841 Phage_T4_gp19 T4-like virus tail tube protein gp19. This family consists of several tail tube protein gp19 sequences from the T4-like viruses. This family also contains bacterial members which suggest lateral transfer of genes. 134 -336521 pfam06842 DUF1242 Protein of unknown function (DUF1242). This family consists of a number of eukaryotic proteins of around 72 residues in length. The function of this family is unknown. 35 -336522 pfam06844 DUF1244 Protein of unknown function (DUF1244). This family consists of several short bacterial proteins of around 100 residues in length. The function of this family is unknown. 65 -311041 pfam06847 Arc_PepC_II Archaeal Peptidase A24 C-terminus Type II. This region is of unknown function but is found in some archaeal pfam01478. It is predicted to be of mixed alpha/beta secondary structure by Prof. 93 -311042 pfam06848 Disaggr_repeat Disaggregatase related repeat. This family consists of several repeats which seem to be specific to the Methanosarcina archaea species and are often found in multiple copies in disaggregatase proteins. Members of this family are also found in single copies in several hypothetical proteins. This repeat is also known as DNRLRE repeat and is predicted form a mainly beta-strand structure with two alpha-helices [Adindla et al. Comparative and Functional Genomics 2004; 5:2-16]. It is found in some cell surface proteins. 179 -311043 pfam06849 DUF1246 Protein of unknown function (DUF1246). This family represents the N-terminus of a number of hypothetical archaeal proteins of unknown function. This family is structurally related to the PreATP-grasp domain. 122 -311044 pfam06850 PHB_depo_C PHB de-polymerase C-terminus. This family represents the C-terminus of bacterial poly(3-hydroxybutyrate) (PHB) de-polymerase. This degrades PHB granules to oligomers and monomers of 3-hydroxy-butyric acid. 203 -284311 pfam06851 DUF1247 Protein of unknown function (DUF1247). This family contains a number of hypothetical viral proteins of unknown function approximately 200 residues long. 149 -311045 pfam06852 DUF1248 Protein of unknown function (DUF1248). This family represents a conserved region within a number of proteins of unknown function that seem to be specific to C. elegans. Note that some family members contain more than one copy of this region. 181 -336523 pfam06853 DUF1249 Protein of unknown function (DUF1249). This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. 116 -311047 pfam06854 Phage_Gp15 Bacteriophage Gp15 protein. This family consists of bacteriophage Gp15 proteins and related bacterial sequences. The function of this family is unknown 170 -311048 pfam06855 YozE_SAM_like YozE SAM-like fold. YozE-like is a family of Firmicute proteins that carries a four-helix motif similar to sterile alpha motif (SAM) domains. The family is suggested to fall into two subfamilies, possibly with differing functions based on the different surface charges on the three structural representatives, YozE MW0776 and MW1311. What this function is is not yet known although it is likely to involve binding to DNA. 65 -311049 pfam06856 DUF1251 Protein of unknown function (DUF1251). This family consists of the N-terminal region of several hypothetical Nucleopolyhedrovirus proteins of unknown function. 121 -336524 pfam06857 ACP Malonate decarboxylase delta subunit (MdcD). This family consists of several bacterial malonate decarboxylase delta subunit (MdcD) proteins. Malonate decarboxylase of Klebsiella pneumoniae consists of four different subunits and catalyzes the conversion of malonate plus H+ to acetate and CO2. The catalysis proceeds via acetyl and malonyl thioester residues with the phosphribosyl-dephospho-CoA prosthetic group of the acyl carrier protein (ACP) subunit. MdcC is the (apo) ACP subunit. The family also contains the CitD family of citrate lyase acyl carrier proteins. 82 -311051 pfam06858 NOG1 Nucleolar GTP-binding protein 1 (NOG1). This family represents a conserved region of approximately 60 residues in length within nucleolar GTP-binding protein 1 (NOG1). In S. cerevisiae, the NOG1 gene has been shown to be essential for cell viability, suggesting that NOG1 may play an important role in nucleolar functions. Family members include eukaryotic, bacterial and archaeal proteins. 57 -336525 pfam06859 Bin3 Bicoid-interacting protein 3 (Bin3). This family represents a conserved region of approximately 120 residues within eukaryotic Bicoid-interacting protein 3 (Bin3). Bin3, which shows similarity to a number of protein methyltransferases that modify RNA-binding proteins, interacts with Bicoid, which itself directs pattern formation in the early Drosophila embryo. The interaction might allow Bicoid to switch between its dual roles in transcription and translation. Note that family members contain a conserved HLN motif. 109 -115513 pfam06861 BALF1 BALF1 protein. This family consists of several BALF1 proteins which seem to be specific to the Lymphocryptoviruses. BALF1, inhibits the antiapoptotic activity of EBV BHRF1 and of KSBcl-2. 184 -311053 pfam06862 UTP25 Utp25, U3 small nucleolar RNA-associated SSU processome protein 25. UTP25 is a family of eukaryotic proteins. The family displays limited sequence similarity to DEAD-box RNA helicases, having alternative residues at the Walker A and DEAD-box sites, but conservation of structural and other key residues. The domain is required and sufficient for the interaction of Utp25 with Utp3. UTP25 interacts with nucleolar protein Nop19 in S. cerevisiae, and Nop19p is essential for the incorporation of Utp25p into pre-ribosomes. 471 -336526 pfam06863 DUF1254 Protein of unknown function (DUF1254). This family represents a conserved region about 130 residues long within hypothetical proteins of unknown function. Family members include eukaryotic, bacterial and archaeal proteins. 132 -336527 pfam06864 PAP_PilO Pilin accessory protein (PilO). This family consists of several enterobacterial PilO proteins. The function of PilO is unknown although it has been suggested that it is a cytoplasmic protein in the absence of other Pil proteins, but PilO protein is translocated to the outer membrane in the presence of other Pil proteins. Alternatively, PilO protein may form a complex with other Pil protein(s). PilO has been predicted to function as a component of the pilin transport apparatus and thin-pilus basal body. This family does not seem to be related to pfam04350. 415 -336528 pfam06865 DUF1255 Protein of unknown function (DUF1255). This family consists of several conserved hypothetical bacterial proteins of around 95 residues in length. The function of this family is unknown 91 -115518 pfam06866 DUF1256 Protein of unknown function (DUF1256). This family consists of several uncharacterized bacterial proteins which seem to be specific to the orders Clostridia and Bacillales. Family members are typically around 180 residues in length. The function of this family is unknown. These proteins are related to peptidase family M63 and so may be peptidases. 164 -311057 pfam06868 DUF1257 Protein of unknown function (DUF1257). This family contains hypothetical proteins of unknown function that are approximately 120 residues long. Family members include eukaryotic and bacterial proteins. 104 -284323 pfam06869 DUF1258 Protein of unknown function (DUF1258). This family represents a conserved region approximately 260 residues long within a number of hypothetical proteins of unknown function that seem to be specific to C. elegans. Note that this family contains a number of conserved cysteine and histidine residues. 250 -311058 pfam06870 RNA_pol_I_A49 A49-like RNA polymerase I associated factor. Saccharomyces cerevisiae A49 is a specific subunit associated with RNA polymerase I (Pol I) in eukaryotes. Pol I maintains transcription activities in A49 deletion mutants. However, such mutants are deficient in transcription activity at low temperatures. Deletion analysis of the fusion yeast homolog indicate that only the C-terminal two thirds are required for function. Transcript analysis has demonstrated that A49 is maximising transcription of ribosomal DNA. 381 -284325 pfam06871 TraH_2 TraH_2. This family consists of several TraH proteins which seem to be specific to Agrobacterium and Rhizobium species. This protein is thought to be involved in conjugal transfer but its function is unknown. This family does not appear to be related to pfam06122. 207 -336529 pfam06872 EspG EspG protein. This family consists of several EspG like proteins from Citrobacter rodentium and Escherichia coli. EspG is secreted by the type III secretory system and is translocated into host epithelial cells. EspG is homologous with Shigella flexneri protein VirA and can rescue invasion in a Shigella virA mutant, indicating that these proteins are functionally equivalent in Shigella. EspG plays an accessory but as yet undefined role in EPEC virulence that may involve intestinal colonisation. 372 -284327 pfam06873 SerH Cell surface immobilisation antigen SerH. This family consists of several cell surface immobilisation antigen SerH proteins which seem to be specific to Tetrahymena thermophila. The SerH locus of Tetrahymena thermophila is one of several paralogous loci with genes encoding variants of the major cell surface protein known as the immobilisation antigen (i-ag). 418 -336530 pfam06874 FBPase_2 Firmicute fructose-1,6-bisphosphatase. This family consists of several bacterial fructose-1,6-bisphosphatase proteins (EC:3.1.3.11) which seem to be specific to phylum Firmicutes. Fructose-1,6-bisphosphatase (FBPase) is a well known enzyme involved in gluconeogenesis. This family does not seem to be structurally related to pfam00316. 638 -115526 pfam06875 PRF Plethodontid receptivity factor PRF. This family consists of several plethodontid receptivity factor (PRF) proteins which seem to be specific to Plethodon jordani (Jordan's salamander). PRF is a courtship pheromone produced by males increase female receptivity. 214 -311061 pfam06876 SCRL Plant self-incompatibility response (SCRL) protein. This family consists of several Plant self-incompatibility response (SCRL) proteins. The male component of the self-incompatibility response in Brassica has been shown to be encoded by the S locus cysteine-rich gene (SCR). SCR is related, at the sequence level, to the pollen coat protein (PCP) gene family whose members encode small, cysteine-rich proteins located in the proteo-lipidic surface layer (tryphine) of Brassica pollen grains. 67 -336531 pfam06877 RraB Regulator of ribonuclease activity B. This family of proteins regulate mRNA abundance by binding to RNaseE and inhibiting its endonucleolytic activity. A subset of these proteins are predicted to function as immunity proteins. 98 -284331 pfam06878 Pkip-1 Pkip-1 protein. This family consists of several Pkip-1 proteins which seem to be specific to Nucleopolyhedroviruses. The function of this family is unknown although it has been found that Pkip-1 is not essential for virus replication in cell culture or by in vivo intrahaemocoelic injection. 163 -336532 pfam06880 DUF1262 Protein of unknown function (DUF1262). This family represents a conserved region within a number of proteins of unknown function that seem to be specific to Arabidopsis thaliana. Note that some family members contain more than one copy of this region. 98 -336533 pfam06881 Elongin_A RNA polymerase II transcription factor SIII (Elongin) subunit A. This family represents a conserved region within RNA polymerase II transcription factor SIII (Elongin) subunit A. In mammals, the Elongin complex activates elongation by RNA polymerase II by suppressing transient pausing of the polymerase at many sites within transcription units. Elongin is a heterotrimer composed of A, B, and C subunits of 110, 18, and 15 kilodaltons, respectively. Subunit A has been shown to function as the transcriptionally active component of Elongin. 105 -336534 pfam06882 DUF1263 Protein of unknown function (DUF1263). This family represents a conserved region located towards the C-terminus of a number proteins of unknown function that seem to be specific to Oryza sativa. 57 -336535 pfam06883 RNA_pol_Rpa2_4 RNA polymerase I, Rpa2 specific domain. This domain is found between domain 3 (pfam04565) and domain 5 (pfam04565), but shows no homology to domain 4 of Rpb2. The external domains in multisubunit RNA polymerase (those most distant from the active site) are known to demonstrate more sequence variability. 53 -336536 pfam06884 DUF1264 Protein of unknown function (DUF1264). This family contains a number of bacterial and eukaryotic proteins of unknown function that are approximately 200 residues long. Some family members are annotated as putative lipoproteins. 165 -336537 pfam06886 TPX2 Targeting protein for Xklp2 (TPX2). This family represents a conserved region approximately 60 residues long within the eukaryotic targeting protein for Xklp2 (TPX2). Xklp2 is a kinesin-like protein localized on centrosomes throughout the cell cycle and on spindle pole microtubules during metaphase. In Xenopus, it has been shown that Xklp2 protein is required for centrosome separation and maintenance of spindle bi-polarity. TPX2 is a microtubule-associated protein that mediates the binding of the C-terminal domain of Xklp2 to microtubules. It is phosphorylated during mitosis in a microtubule-dependent way. 57 -311068 pfam06887 DUF1265 Protein of unknown function (DUF1265). This family represents a conserved region approximately 50 residues long within a number of proteins of unknown function that seem to be restricted to C. elegans. The GO annotation for this protein indicate that its a protein involved in nematode larval development and has a positive regulation on growth rate. 47 -284339 pfam06888 Put_Phosphatase Putative Phosphatase. This family contains a number of putative eukaryotic acid phosphatases. Some family members represent the products of the PSI14 phosphatase family in Lycopersicon esculentum (Tomato). 234 -336538 pfam06889 DUF1266 Protein of unknown function (DUF1266). This family consists of several hypothetical bacterial proteins of around 235 residues in length. Members of this family seem to be found exclusively in the Enterobacteria Salmonella typhimurium and Escherichia coli. The function of this family is unknown. 173 -311070 pfam06890 Phage_Mu_Gp45 Bacteriophage Mu Gp45 protein. This family consists of Bacteriophage Mu Gp45 related proteins from both phages and bacteria. The function of this family is unknown although it has been suggested that family members may be involved in baseplate assembly. 151 -311071 pfam06891 P2_Phage_GpR P2 phage tail completion protein R (GpR). This family consists of P2 phage tail completion protein R (GpR) like sequences. GpR is thought to be a tail completion protein which is essential for stable head joining. 131 -311072 pfam06892 Phage_CP76 Phage regulatory protein CII (CP76). This family consists of several phage regulatory protein CII (CP76) sequences which are thought to be DNA binding proteins which are involved in the establishment of lysogeny. 155 -284344 pfam06894 Phage_TAC_2 Bacteriophage lambda tail assembly chaperone, TAC, protein G. This family consists of Bacteriophage lambda minor tail protein G and related sequences. The construction of phage tails involves a stage of tail-tube formation, and tail-tube polymerization requires two additional proteins, gpG and gpGT. The open reading frames, ORFs, for gpG and gpGT are overlapping and are related by a programmed translational frameshift. During virion morphogenesis, gpG is expressed in large amounts, and about 3.5% of the time, a -1 translational frameshift leads to the production of the larger fusion protein, gpGT. The correct ratio of gpG to gpGT, as determined by the frequency of frameshifting, is crucial for tail assembly. Since gpG accumulates to high levels during a lambda infection and yet is not found in mature phage particles it is believed to act as a chaperone. 126 -311073 pfam06896 Phage_TAC_3 Phage tail assembly chaperone proteins, TAC. This is a family of phage tail tube assembly chaperone proteins from some Siphoviridae viruses. 115 -336539 pfam06897 DUF1269 Protein of unknown function (DUF1269). This family consists of several bacterial and archaeal proteins of around 200 residues in length. The function of this family is unknown. The family carries a repeated glycine-zipper sequence- motif, GxxxGxxxG, where the x following the G is frequently found to be an alanine. As glycine-zippers occur in membrane proteins, this family is likely to be found spanning a membrane. 99 -311075 pfam06898 YqfD Putative stage IV sporulation protein YqfD. This family consists of several putative bacterial stage IV sporulation (SpoIV) proteins. YqfD of Bacillus subtilis is known to be essential for efficient sporulation although its exact function is unknown. 375 -336540 pfam06899 WzyE WzyE protein, O-antigen assembly polymerase. This family consists of several WzyE proteins which appear to be specific to Enterobacteria. Members of this family are described as putative ECA polymerases this has been found to be incorrect. The function of this family is unknown. The family is a transmembrane family with up to 11 TM regions, and is necessary for the assembly of O-antigen lipopolysaccharide. 446 -284349 pfam06900 DUF1270 Protein of unknown function (DUF1270). This family consists of several hypothetical Staphylococcus aureus and phage proteins of 53 residues in length. The function of this family is unknown. 53 -284350 pfam06901 FrpC RTX iron-regulated protein FrpC. This family consists of several RTX iron-regulated FrpC proteins which appear to be found exclusively in Neisseria meningitidis. FrpC has been shown to be related to the RTX family of bacterial cytotoxins. FrpC is found in the meningococcal outer membrane. The function of this family is unknown although it is thought to be a virulence factor. 271 -284351 pfam06902 Fer4_19 Divergent 4Fe-4S mono-cluster. Members of this family contain three highly conserved cysteine residues. This family includes proteins containing divergent domains which are most likely to bind to iron-sulfur clusters. 64 -284352 pfam06903 VirK VirK protein. This family consists of several bacterial VirK proteins of around 145 residues in length. The function of this family is unknown. 98 -336541 pfam06904 Extensin-like_C Extensin-like protein C-terminus. This family represents the C-terminus (approx. 120 residues) of a number of bacterial extensin-like proteins. Extensins are cell wall glycoproteins normally associated with plants, where they strengthen the cell wall in response to mechanical stress. Note that many family members of this family are hypothetical. 176 -311078 pfam06905 FAIM1 Fas apoptotic inhibitory molecule (FAIM1). This family consists of several fas apoptotic inhibitory molecule (FAIM1) proteins. FAIM expression is upregulated in B cells by anti-Ig treatment that induces Fas-resistance, and overexpression of FAIM diminishes sensitivity to Fas-mediated apoptosis of B and non-B cell lines. FAIM1 is highly evolutionarily conserved and is widely expressed in murine tissues, suggesting that FAIM plays an important role in cellular physiology. 174 -336542 pfam06906 DUF1272 Protein of unknown function (DUF1272). This family consists of several hypothetical bacterial proteins of around 80 residues in length. This family contains a number of conserved cysteine residues and its function is unknown. 57 -311080 pfam06907 Latexin Latexin. This family consists of several animal specific latexin proteins. Latexin is a carboxypeptidase A inhibitor and is expressed in a cell type-specific manner in both central and peripheral nervous systems in the rat. 217 -336543 pfam06908 DUF1273 Protein of unknown function (DUF1273). This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 168 -284358 pfam06910 MEA1 Male enhanced antigen 1 (MEA1). This family consists of several mammalian male enhanced antigen 1 (MEA1) proteins. The Mea-1 gene is found to be localized in primary and secondary spermatocytes and spermatids, but the protein products are detected only in spermatids. Intensive transcription of Mea-1 gene and specific localization of the gene product suggest that Mea-1 may play a important role in the late stage of spermatogenesis. 172 -336544 pfam06911 Senescence Senescence-associated protein. This family contains a number of plant senescence-associated proteins of approximately 450 residues in length. In Hemerocallis, petals have a genetically based program that leads to senescence and cell death approximately 24 hours after the flower opens, and it is believed that senescence proteins produced around that time have a role in this program. This family extends to the higher vertebrates where the full-length protein is often a Spartin, associated with mitochondrial membranes and transportation along microtubules. 181 -336545 pfam06912 DUF1275 Protein of unknown function (DUF1275). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown although most members have 6 TM regions, and may be putative permeases. 202 -336546 pfam06916 DUF1279 Protein of unknown function (DUF1279). This family represents the C-terminus (approx. 120 residues) of a number of eukaryotic proteins of unknown function. 88 -311085 pfam06917 Pectate_lyase_2 Periplasmic pectate lyase. This family consists of several Enterobacterial periplasmic pectate lyase proteins (EC:4.2.2.2). A major virulence determinant of the plant-pathogenic enterobacterium Erwinia chrysanthemi is the production of pectate lyase enzymes that degrade plant cell walls. 556 -311086 pfam06918 DUF1280 Protein of unknown function (DUF1280). This family represents a conserved region approximately 200 residues long within a number of proteins of unknown function that seem to be specific to C. elegans. 219 -284364 pfam06919 Phage_T4_Gp30_7 Phage Gp30.7 protein. This family consists of several phage Gp30.7 proteins of 121 residues in length. Family members seem to be exclusively from the T4-like viruses. The function of this family is unknown. 121 -336547 pfam06920 DHR-2 Dock homology region 2. This family represents a conserved region within a number of eukaryotic dedicator of cytokinesis proteins. These are potential guanine nucleotide exchange factors, which activate some small GTPases by exchanging bound GDP for free GTP. This region interacts with RAC1 and ELMO1. 485 -115570 pfam06922 CTV_P13 Citrus tristeza virus P13 protein. This family consists of several Citrus tristeza virus (CTV) P13 13-kDa proteins. Citrus tristeza virus (CTV), a member of the closterovirus group, is one of the more complex single-stranded RNA viruses. The function of this family is unknown. 119 -311088 pfam06923 GutM Glucitol operon activator protein (GutM). This family consists of several glucitol operon activator (GutM) proteins. Expression of the glucitol (gut) operon in Escherichia coli is regulated by an unusual, complex system which consists of an activator (encoded by the gutM gene) and a repressor (encoded by the gutR gene) in addition to the cAMP-CRP complex (CRP, cAMP receptor protein). Synthesis of the mRNA, which initiates at the promoter specific to the gutR gene, occurs within the gutM gene. Expressional control of the gut operon appears to occur as a consequence of the antagonistic action of the products of the autogenously regulated gutM and gutR genes. 104 -311089 pfam06924 DUF1281 Protein of unknown function (DUF1281). This family consists of several hypothetical enterobacterial proteins of around 170 residues in length. Members of this family are found in Escherichia coli, Salmonella typhimurium and Shigella species. The function of this family is unknown. 124 -284368 pfam06925 MGDG_synth Monogalactosyldiacylglycerol (MGDG) synthase. This family represents a conserved region of approximately 180 residues within plant and bacterial monogalactosyldiacylglycerol (MGDG) synthase (EC:2.4.1.46). In Arabidopsis, there are two types of MGDG synthase which differ in their N-terminal portion: type A and type B. 169 -284369 pfam06926 Rep_Org_C Putative replisome organizer protein C-terminus. This family represents the C-terminus (approximately 100 residues) of a putative replisome organizer protein in Lactococcus bacteriophages. 95 -284370 pfam06929 Rotavirus_VP3 Rotavirus VP3 protein. This family consists of several Rotavirus specific VP3 proteins. VP3 is known to be a viral guanylyltransferase and is thought to posses methyltransferase activity and therefore VP3 is a predicted multifunctional capping enzyme. 729 -336548 pfam06930 DUF1282 Protein of unknown function (DUF1282). This family consists of several hypothetical proteins of around 200 residues in length. The function of this family is unknown although a number of family members are thought to be putative membrane proteins. 172 -284372 pfam06931 Adeno_E4_ORF3 Mastadenovirus E4 ORF3 protein. This family consists of several Mastadenovirus E4 ORF3 proteins. Early proteins E4 ORF3 and E4 ORF6 have complementary functions during viral infection. Both proteins facilitate efficient viral DNA replication, late protein expression, and prevention of concatenation of viral genomes. A unique function of E4 ORF3 is the reorganisation of nuclear structures known as PML oncogenic domains (PODs). The function of these domains is unclear, but PODs have been implicated in a number of important cellular processes, including transcriptional regulation, apoptosis, transformation, and response to interferon. 113 -336549 pfam06932 DUF1283 Protein of unknown function (DUF1283). This family consists of several hypothetical proteins of around 115 residues in length which seem to be specific to Enterobacteria. The function of the family is unknown. 74 -115579 pfam06933 SSP160 Special lobe-specific silk protein SSP160. This family consists of several special lobe-specific silk protein SSP160 sequences which appear to be specific to Chironomus (Midge) species. 758 -284374 pfam06934 CTI Fatty acid cis/trans isomerase (CTI). This family consists of several fatty acid cis/trans isomerase proteins which appear to be found exclusively in bacteria of the orders Vibrionales and Pseudomonadales. Cis/trans isomerase (CTI) catalyzes the cis-trans isomerisation of esterified fatty acids in phospholipids, mainly cis-oleic acid (C(16:1,9)) and cis-vaccenic acid (C(18:1,11)), in response to solvents. The CTI protein has been shown to be involved in solvent resistance in Pseudomonas putida. 692 -311092 pfam06935 DUF1284 Protein of unknown function (DUF1284). This family consists of several hypothetical bacterial and archaeal proteins of around 130 residues in length. The function of this family is unknown, although it is thought that they may be iron-sulphur binding proteins. 102 -311093 pfam06936 Selenoprotein_S Selenoprotein S (SelS). This family consists of several mammalian selenoprotein S (SelS) sequences. SelS is a plasma membrane protein and is present in a variety of tissues and cell types. Selenoprotein S (SelS) is an intrinsically disordered protein. It formsa selenosulfide bond between cys 174 and Sec 188, that has a redox potential -234 mV. In vitro, SelS is an efficient reductase that depends on the presence of selenocysteine. Due to the high reactivity, SelS also has peroxidase activity that can catalyze the reduction of hydrogen peroxide. It is also resistant to inactivation by hydrogen peroxide which might provide evolutionary advantage compared to cysteine containing peroxidases. 192 -284377 pfam06937 EURL EURL protein. This family consists of several animal EURL proteins. EURL is preferentially expressed in chick retinal precursor cells as well as in the anterior epithelial cells of the lens at early stages of development. EURL transcripts are found primarily in the peripheral dorsal retina, i.e., the most undifferentiated part of the dorsal retina. EURL transcripts are also detected in the lens at stage 18 and remain abundant in the proliferating epithelial cells of the lens until at least day 11. The distribution pattern of EURL in the developing retina and lens suggest a role before the events leading to cell determination and differentiation. 283 -336550 pfam06938 DUF1285 Protein of unknown function (DUF1285). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown. The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain- interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress. 145 -311095 pfam06939 DUF1286 Protein of unknown function (DUF1286). This family consists of several hypothetical archaeal proteins of around 120 residues in length. All members of this family seem to be Sulfolobus species specific. The function of this family is unknown. 111 -336551 pfam06940 DUF1287 Domain of unknown function (DUF1287). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown. This family is related to pfam00877. 163 -284381 pfam06941 NT5C 5' nucleotidase, deoxy (Pyrimidine), cytosolic type C protein (NT5C). This family consists of several 5' nucleotidase, deoxy (Pyrimidine), cytosolic type C (NT5C) proteins. 5'(3')-Deoxyribonucleotidase is a ubiquitous enzyme in mammalian cells whose physiological function is not known. 180 -284382 pfam06942 GlpM GlpM protein. This family consists of several bacterial GlpM membrane proteins. GlpM is a hydrophobic protein containing 109 amino acids. It is thought that GlpM may play a role in alginate biosynthesis in Pseudomonas aeruginosa. 107 -336552 pfam06943 zf-LSD1 LSD1 zinc finger. This family consists of several plant specific LSD1 zinc finger domains. Arabidopsis lsd1 mutants are hyper-responsive to cell death initiators and fail to limit the extent of cell death. Superoxide is a necessary and sufficient signal for cell death propagation. LSD1 monitors a superoxide-dependent signal and negatively regulates a plant cell death pathway. LSD1 protein contains three zinc finger domains, defined by CxxCxRxxLMYxxGASxVxCxxC. It has been suggested that LSD1 defines a zinc finger protein subclass and that LSD1 regulates transcription, via either repression of a pro-death pathway or activation of an anti-death pathway, in response to signals emanating from cells undergoing pathogen-induced hypersensitive cell death. 25 -336553 pfam06945 DUF1289 Protein of unknown function (DUF1289). This family consists of a number of hypothetical bacterial proteins. The aligned region spans around 56 residues and contains 4 highly conserved cysteine residues towards the N-terminus. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 47 -311099 pfam06946 Phage_holin_5_1 Bacteriophage A118-like holin, Hol118. This family consists of several Listeria bacteriophage holin proteins and related bacterial sequences. Holins are a diverse family of proteins that cause bacterial membrane lysis during late-protein synthesis. It is thought that the temporal precision of holin-mediated lysis may occur through the build up of a holin oligomer which causes the lysis. 92 -311100 pfam06947 DUF1290 Protein of unknown function (DUF1290). This family consists of several bacterial small basic proteins of around 100 residues in length. The function of this family is unknown. 86 -311101 pfam06949 DUF1292 Protein of unknown function (DUF1292). This family consists of several hypothetical bacterial proteins of around 90 residues in length. The function of this family is unknown. 75 -284388 pfam06950 DUF1293 Protein of unknown function (DUF1293). This family consists of several bacterial and phage proteins of around 115 residues in length. The function of this family is unknown. 115 -311102 pfam06951 PLA2G12 Group XII secretory phospholipase A2 precursor (PLA2G12). This family consists of several group XII secretory phospholipase A2 precursor (PLA2G12) (EC:3.1.1.4) proteins. Group XII and group V PLA(2)s are thought to participate in helper T cell immune response through release of immediate second signals and generation of downstream eicosanoids. 182 -311103 pfam06952 PsiA PsiA protein. This family consists of several Enterobacterial PsiA proteins. The function of PsiA is unknown although it is thought that it may affect the generation of an SOS signal in Escherichia coli. 236 -336554 pfam06953 ArsD Arsenical resistance operon trans-acting repressor ArsD. This family consists of several bacterial arsenical resistance operon trans-acting repressor ArsD proteins. ArsD is a trans-acting repressor of the arsRDABC operon that confers resistance to arsenicals and antimonials in Escherichia coli. It possesses two-pairs of vicinal cysteine residues, Cys(12)-Cys(13) and Cys(112)-Cys(113), that potentially form separate binding sites for the metalloids that trigger dissociation of ArsD from the operon. However, as a homodimer it has four vicinal cysteine pairs. 122 -311105 pfam06954 Resistin Resistin. This family consists of several mammalian resistin proteins. Resistin is a 12.5-kDa cysteine-rich secreted polypeptide first reported from rodent adipocytes. It belongs to a multigene family termed RELMs or FIZZ proteins. Plasma resistin levels are significantly increased in both genetically susceptible and high-fat-diet-induced obese mice. Immunoneutralisation of resistin improves hyperglycemia and insulin resistance in high-fat-diet-induced obese mice, while administration of recombinant resistin impairs glucose tolerance and insulin action in normal mice. It has been demonstrated that increases in circulating resistin levels markedly stimulate glucose production in the presence of fixed physiological insulin levels, whereas insulin suppressed resistin expression. It has been suggested that resistin could be a link between obesity and type 2 diabetes. 87 -336555 pfam06955 XET_C Xyloglucan endo-transglycosylase (XET) C-terminus. This family represents the C-terminus (approximately 60 residues) of plant xyloglucan endo-transglycosylase (XET). Xyloglucan is the predominant hemicellulose in the cell walls of most dicotyledons. With cellulose, it forms a network that strengthens the cell wall. XET catalyzes the splitting of xyloglucan chains and the linking of the newly generated reducing end to the non-reducing end of another xyloglucan chain, thereby loosening the cell wall. Note that all family members contain the pfam00722 domain. 48 -336556 pfam06956 RtcR Regulator of RNA terminal phosphate cyclase. RtcR is a sigma54-dependent enhancer binding protein that activates transcription of the rtcBA operon. The product of the rtcA gene is an RNA 3'-terminal phosphate cyclase. This domain is found at the N-terminus of the RtcR sequence. RtcR, and other sigma54-dependent activators, contain pfam00158 in the central region of the protein sequence. 183 -311108 pfam06957 COPI_C Coatomer (COPI) alpha subunit C-terminus. This family represents the C-terminus (approximately 500 residues) of the eukaryotic coatomer alpha subunit. Coatomer (COPI) is a large cytosolic protein complex which forms a coat around vesicles budding from the Golgi apparatus. Such coatomer-coated vesicles have been proposed to play a role in many distinct steps of intracellular transport. Note that many family members also contain the pfam04053 domain. 399 -311109 pfam06958 Pyocin_S S-type Pyocin. This family represents a conserved region approximately 180 residues long within bacterial S-type pyocins. Pyocins are polypeptide toxins produced by, and active against, bacteria. S-type pyocins cause cell death by DNA breakdown due to endonuclease activity. 139 -311110 pfam06959 RecQ5 RecQ helicase protein-like 5 (RecQ5). This family represents a conserved region approximately 200 residues long within eukaryotic RecQ helicase protein-like 5 (RecQ5). The RecQ helicases have been implicated in DNA repair and recombination, and RecQ5 may have an important role in DNA metabolism. 202 -336557 pfam06961 DUF1294 Protein of unknown function (DUF1294). This family includes a number of hypothetical bacterial and archaeal proteins of unknown function. 51 -336558 pfam06962 rRNA_methylase Putative rRNA methylase. This family contains a number of putative rRNA methylases. Note that many family members are hypothetical proteins. 135 -311113 pfam06963 FPN1 Ferroportin1 (FPN1). This family represents a conserved region approximately 100 residues long within eukaryotic Ferroportin1 (FPN1), a protein that may play a role in iron export from the cell. This family may represent a number of transmembrane regions in Ferroportin1. 430 -336559 pfam06964 Alpha-L-AF_C Alpha-L-arabinofuranosidase C-terminal domain. This family represents the C-terminus (approximately 200 residues) of bacterial and eukaryotic alpha-L-arabinofuranosidase (EC:3.2.1.55). This catalyzes the hydrolysis of nonreducing terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides. 192 -336560 pfam06965 Na_H_antiport_1 Na+/H+ antiporter 1. This family contains a number of bacterial Na+/H+ antiporter 1 proteins. These are integral membrane proteins that catalyze the exchange of H+ for Na+ in a manner that is highly dependent on the pH. 376 -284403 pfam06966 DUF1295 Protein of unknown function (DUF1295). This family contains a number of bacterial and eukaryotic proteins of unknown function that are approximately 300 residues long. 235 -311116 pfam06967 Mo-nitro_C Mo-dependent nitrogenase C-terminus. This family represents the C-terminus (approximately 80 residues) of a number of bacterial Mo-dependent nitrogenases. These are involved in nitrogen fixation in cyanobacteria. Note that many family members are hypothetical proteins. 82 -336561 pfam06968 BATS Biotin and Thiamin Synthesis associated domain. Biotin synthase (BioB), EC:2.8.1.6, catalyzes the last step of the biotin biosynthetic pathway. The reaction consists in the introduction of a sulphur atom into dethiobiotin. BioB functions as a homodimer. Thiamin synthesis if a complex process involving at least six gene products (ThiFSGH, ThiI and ThiJ). Two of the proteins required for the biosynthesis of the thiazole moiety of thiamine (vitamin B(1)) are ThiG and ThiH (this family) and form a heterodimer. Both of these reactions are thought of involve the binding of co-factors, and both function as dimers. This domain therefore may be involved in co-factor binding or dimerization (Finn, RD personal observation). 91 -311118 pfam06969 HemN_C HemN C-terminal domain. Members of this family are all oxygen-independent coproporphyrinogen-III oxidases (HemN). This enzyme catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX, one of the last steps in haem biosynthesis. The function of this domain is unclear, but comparison to other proteins containing a radical SAM domain (pfam04055) suggest it may be a substrate binding domain. 66 -284407 pfam06970 RepA_N Replication initiator protein A (RepA) N-terminus. This of family of predicted proteins represents the N-terminus (approximately 80 residues) of replication initiator protein A (RepA), a DNA replication initiator in plasmids. Most proteins in this family are bacterial, but archaeal and eukaryotic members are also included. 75 -336562 pfam06971 Put_DNA-bind_N Putative DNA-binding protein N-terminus. This family represents the N-terminus (approximately 50 residues) of a number of putative bacterial DNA-binding proteins. 47 -336563 pfam06972 DUF1296 Protein of unknown function (DUF1296). This family represents a conserved region approximately 60 residues long within a number of plant proteins of unknown function. Structural modelling suggests this domain may bind nucleic acids. 60 -311121 pfam06973 DUF1297 Domain of unknown function (DUF1297). This family represents the C-terminus (approximately 200 residues) of a number of archaeal proteins of unknown function. One member is annotated as being a possible carboligase enzyme. 188 -336564 pfam06974 DUF1298 Protein of unknown function (DUF1298). This family represents the C-terminus (approximately 170 residues) of a number of hypothetical plant proteins of unknown function. 145 -115620 pfam06975 DUF1299 Protein of unknown function (DUF1299). This family represents a conserved region approximately 50 residues long within a number of proteins of unknown function that seem to be specific to Arabidopsis thaliana. Note that many family members contain multiple copies of this region. 47 -311123 pfam06977 SdiA-regulated SdiA-regulated. This family represents a conserved region approximately within a number of hypothetical bacterial proteins that may be regulated by SdiA, a member of the LuxR family of transcriptional regulators. Some family members contain the pfam01436 repeat. 249 -311124 pfam06978 POP1 Ribonucleases P/MRP protein subunit POP1. This family represents a conserved region approximately 150 residues long located towards the N-terminus of the POP1 subunit that is common to both the RNase MRP and RNase P ribonucleoproteins (EC:3.1.26.5). These RNA-containing enzymes generate mature tRNA molecules by cleaving their 5' ends. 207 -336565 pfam06979 TMEM70 Assembly, mitochondrial proton-transport ATP synth complex. TMEM70 is a family of proteins essential for assembly of the mitochondrial proton-transporting ATP synthase complex within the inner mitochondrial membrane. 123 -336566 pfam06980 DUF1302 Protein of unknown function (DUF1302). This family contains a number of hypothetical bacterial proteins of unknown function that are approximately 600 residues long. Most family members seem to be from Pseudomonas. 563 -284416 pfam06983 3-dmu-9_3-mt 3-demethylubiquinone-9 3-methyltransferase. This family represents a conserved region approximately 100 residues long within a number of bacterial and archaeal 3-demethylubiquinone-9 3-methyltransferases (EC:2.1.1.64). Note that some family members contain more than one copy of this region, and that many members are hypothetical proteins. 116 -311127 pfam06984 MRP-L47 Mitochondrial 39-S ribosomal protein L47 (MRP-L47). This family represents the N-terminal region (approximately 8 residues) of the eukaryotic mitochondrial 39-S ribosomal protein L47 (MRP-L47). Mitochondrial ribosomal proteins (MRPs) are the counterparts of the cytoplasmic ribosomal proteins, in that they fulfil similar functions in protein biosynthesis. However, they are distinct in number, features and primary structure. 86 -336567 pfam06985 HET Heterokaryon incompatibility protein (HET). This family represents a conserved region approximately 150 residues long within various heterokaryon incompatibility proteins that seem to be restricted to ascomycete fungi. Genetic differences in specific het genes prevent a viable heterokaryotic fungal cell from being formed by the fusion of filaments from two different wild-type strains. Many family members also contain the pfam00400 repeat and the pfam05729 domain. 145 -336568 pfam06986 TraN Type-1V conjugative transfer system mating pair stabilisation. TraN is a large cysteine-rich outer membrane protein involved in the mating-pair stabilisation (adhesin) component of the F-type conjugative plasmid transfer system. TraN is believed to interact with the core type IV secretion system apparatus through the TraV protein. 239 -336569 pfam06988 NifT NifT/FixU protein. This family consists of several NifT/FixU bacterial proteins. NifT/FixU is a very small, conserved protein that is found in nif clusters; however, its function is unknown. Although it is thought that the protein may be involved in biosynthesis of the FeMo cofactor of nitrogenase although perturbation of nifT expression in K. pneumoniae has only a limited effect on nitrogen fixation. 64 -311131 pfam06989 BAALC_N BAALC N-terminus. This family represents the N-terminal region of the mammalian BAALC proteins. BAALC (brain and acute leukaemia, cytoplasmic), that is highly conserved among mammals but evidently absent from lower organisms. Two isoforms are specifically expressed in neuroectoderm-derived tissues, but not in tumors or cancer cell lines of non-neural tissue origin. It has been shown that blasts from a subset of patients with acute leukaemia greatly overexpress eight different BAALC transcripts, resulting in five protein isoforms. Among patients with acute myeloid leukaemia, those overexpressing BAALC show distinctly poor prognosis, pointing to a key role of the BAALC products in leukaemia. It has been suggested that BAALC is a gene implicated in both neuroectodermal and hematopoietic cell functions. 48 -254007 pfam06990 Gal-3-0_sulfotr Galactose-3-O-sulfotransferase. This family consists of several mammalian galactose-3-O-sulfotransferase proteins. Gal-3-O-sulfotransferase is thought to play a critical role in 3'-sulfation of N-acetyllactosamine in both O- and N-glycans. 400 -336570 pfam06991 MFAP1 Microfibril-associated/Pre-mRNA processing. MFAP1 was first named for proteins associated with microfibrils which are an important component of the extracellular matrix (ECM) of many tissues. For example, MFAP1 has been shown to be associated with elastin-like fibers at the base of Schlemm's canal endothelium cells, in the juxtacanalicular tissue, and in the uveal region. Based on its role in the ECM and the proximity of the MFAP1 gene to FBN1 it was hypothesized that mutations in MFAP1 contributed to heritable diseases affecting microfibrils, Marfan syndrome but this has now been shown not to be the case. MFAP1 has also been shown to interact directly with certain pre-mRNA processing factor proteins, Prps, which are also spliceosome components and is thus required for pre-mRNA processing. MAFP1 bound to Pr38 of yeast is necessary for cells in vivo to progress from G2 to M phase. 208 -284423 pfam06992 Phage_lambda_P Replication protein P. This family consists of several Bacteriophage lambda replication protein P like proteins. The bacteriophage lambda P protein promoters replication of the phage chromosome by recruiting a key component of the cellular replication machinery to the viral origin. Specifically, P protein delivers one or more molecules of Escherichia coli DnaB helicase to a nucleoprotein structure formed by the lambda O initiator at the lambda replication origin. 233 -336571 pfam06993 DUF1304 Protein of unknown function (DUF1304). This family consists of several hypothetical bacterial proteins of around 120 residues in length. The function of this family is unknown. 107 -311134 pfam06994 Involucrin2 Involucrin. This family represents a conserved region approximately 60 residues long, multiple copies of which are found within eukaryotic involucrin, and which is rich in glutamine and glutamic acid residues. Involucrin forms part of the insoluble cornified cell envelope (a specialized protective barrier) of stratified squamous epithelia. Members of this family seem to be restricted to mammals. 41 -311135 pfam06995 Phage_P2_GpU Phage P2 GpU. This family consists of several bacterial and phage proteins of around 130 residues in length which seem to be related to the bacteriophage P2 GpU protein, which is thought to be involved in tail assembly. 120 -336572 pfam06996 T6SS_TssG Type VI secretion, TssG. This is a family of Gram-negative bacterial proteins that form part of the type VI pathogenicity secretion system (T6SS), including TssG. TssG is homologs to phage tail proteins and is required for proper assembly of the Hcp tube in bacteria.One other member in this family, SciB (Q93IT4) from Salmonella enterica, is thought to be involved in virulence. 300 -336573 pfam06998 DUF1307 Protein of unknown function (DUF1307). This family consists of several hypothetical bacterial proteins of around 150 residues in length. Some family members are described as putative lipoproteins but the function of the family is unknown. 114 -311138 pfam06999 Suc_Fer-like Sucrase/ferredoxin-like. This family contains a number of bacterial and eukaryotic proteins approximately 400 residues long that resemble ferredoxin and appear to have sucrolytic activity. 157 -336574 pfam07000 DUF1308 Protein of unknown function (DUF1308). This family consists of several hypothetical eukaryotic sequences of around 400 residues in length. The function of this family is unknown. 312 -311140 pfam07001 BAT2_N BAT2 N-terminus. This family represents the N-terminus (approximately 200 residues) of the proline-rich protein BAT2. BAT2 is similar to other proteins with large proline-rich domains, such as some nuclear proteins, collagens, elastin, and synapsin. 189 -284432 pfam07002 Copine Copine. This family represents a conserved region approximately 220 residues long within eukaryotic copines. Copines are Ca(2+)-dependent phospholipid-binding proteins that are thought to be involved in membrane-trafficking, and may also be involved in cell division and growth. 218 -311141 pfam07004 SHIPPO-rpt Sperm-tail PG-rich repeat. This family represents a short conserved region carrying a PGP motif that is repeated in eukaryotic proteins of sperm-tails. Shippo orthologues from some species may include up to 40 Pro-Gly-Pro repeats. 33 -336575 pfam07005 DUF1537 Putative sugar-binding N-terminal domain. This conserved region is found in proteins of unknown function in a range of Proteobacteria as well as the Gram-positive Oceanobacillus iheyensis. Structural analysis of the whole protein indicates the N- and C-termini interacting to produce an interacting surface into which a threonate-ADPcomplex is bound, suggesting that a sugar binding site is on the N-terminal domain here, and a nucleotide binding site is in the C-terminal domain (manuscript in preparation). There is a critical motif, DDXTG, at approximately residues 22-25. 229 -311143 pfam07006 DUF1310 Protein of unknown function (DUF1310). This family consists of several hypothetical proteins of around 125 residues in length. Members of this family seem to be specific to Listeria and Streptococcus species. The function of this family is unknown. 116 -336576 pfam07007 LprI Lysozyme inhibitor LprI. This family consists of several bacterial proteins of around 120 residues in length. Members of this family contain four highly conserved cysteine residues. Family members include lipoprotein LprI from Mycobacterium, which binds to and inhibits macrophage lysozyme, which may aid bacterial survival. 92 -311145 pfam07009 NusG_II NusG domain II. This domain is found in some NusG proteins where it forms domain II. However most NusG proteins are missing this domain. In other cases this domain is found in isolation. The function of this domain is unknown. 107 -311146 pfam07010 Endomucin Endomucin. This family consists of several mammalian endomucin proteins. Endomucin is an early endothelial-specific antigen that is also expressed on putative hematopoietic progenitor cells. 251 -311147 pfam07011 DUF1313 Protein of unknown function (DUF1313). This family consists of several hypothetical plant proteins of around 100 residues in length. The function of this family is unknown. 83 -336577 pfam07012 Curlin_rpt Curlin associated repeat. This family consists of several bacterial repeats of around 30 residues in length. These repeats are often found in multiple copies in the curlin proteins CsgA and CsgB. Curli fibers are thin aggregative surface fibers, connected with adhesion, which bind laminin, fibronectin, plasminogen, human contact phase proteins, and major histocompatibility complex (MHC) class I molecules. Curli fibers are coded for by the csg gene cluster, which is comprised of two divergently transcribed operons. One operon encodes the csgB, csgA, and csgC genes, while the other encodes csgD, csgE, csgF, and csgG. The assembly of the fibers is unique and involves extracellular self-assembly of the curlin subunit (CsgA), dependent on a specific nucleator protein (CsgB). CsgD is a transcriptional activator essential for expression of the two curli fibre operons, and CsgG is an outer membrane lipoprotein involved in extracellular stabilisation of CsgA and CsgB. 34 -284441 pfam07013 DUF1314 Protein of unknown function (DUF1314). This family consists of several Alphaherpesvirus proteins of around 200 residues in length. The function of this family is unknown. 197 -336578 pfam07014 Hs1pro-1_C Hs1pro-1 protein C-terminus. This family represents the C-terminus (approximately 270 residues) of a number of plant Hs1pro-1 proteins, which are believed to confer nematode resistance. 257 -148565 pfam07015 VirC1 VirC1 protein. This family consists of several bacterial VirC1 proteins. In Agrobacterium tumefaciens, a cis-active 24-base-pair sequence adjacent to the right border of the T-DNA, called overdrive, stimulates tumor formation by increasing the level of T-DNA processing. It is thought that the virC operon which enhances T-DNA processing probably does so because the VirC1 protein interacts with overdrive. It has now been shown that the virC1 gene product binds to overdrive but not to the right border of T-DNA. 231 -284443 pfam07016 CRAM_rpt Cysteine-rich acidic integral membrane protein precursor. This family consists of several 24 residue repeats from the Trypanosoma brucei cysteine-rich, acidic integral membrane protein precursor (CRAM). CRAM is concentrated in the flagellar pocket, an invagination of the cell surface of the trypanosome where endocytosis has been documented. 22 -336579 pfam07017 PagP Antimicrobial peptide resistance and lipid A acylation protein PagP. This family consists of several bacterial antimicrobial peptide resistance and lipid A acylation (PagP) proteins. The bacterial outer membrane enzyme PagP transfers a palmitate chain from a phospholipid to lipid A. In a number of pathogenic Gram-negative bacteria, PagP confers resistance to certain cationic antimicrobial peptides produced during the host innate immune response. 145 -336580 pfam07019 Rab5ip Rab5-interacting protein (Rab5ip). This family consists of several Rab5-interacting protein (RIP5 or Rab5ip ) sequences. The ras-related GTPase rab5 is rate-limiting for homotypic early endosome fusion. Rab5ip represents a novel rab5 interacting protein that may function on endocytic vesicles as a receptor for rab5-GDP and participate in the activation of rab5. 79 -115660 pfam07020 Orthopox_C10L Orthopoxvirus C10L protein. This family consists of several Orthopoxvirus C10L proteins. C10L viral protein can play an important role in vaccinia virus evasion of the host immune system. It may consist in the blockade of IL-1 receptors by the C10L protein, a homolog of the IL-1 Ra. 83 -254024 pfam07021 MetW Methionine biosynthesis protein MetW. This family consists of several bacterial and one archaeal methionine biosynthesis MetW proteins. Biosynthesis of methionine from homoserine in Pseudomonas putida takes place in three steps. The first step is the acylation of homoserine to yield an acyl-L-homoserine. This reaction is catalyzed by the products of the metXW genes and is equivalent to the first step in enterobacteria, gram-positive bacteria and fungi, except that in these microorganisms the reaction is catalyzed by a single polypeptide (the product of the metA gene in Escherichia coli and the met5 gene product in Neurospora crassa). In Pseudomonas putida, as in gram-positive bacteria and certain fungi, the second and third steps are a direct sulfhydrylation that converts the O-acyl-L-homoserine into homocysteine and further methylation to yield methionine. The latter reaction can be mediated by either of the two methionine synthetases present in the cells. 193 -311152 pfam07022 Phage_CI_repr Bacteriophage CI repressor helix-turn-helix domain. This family consists of several phage CI repressor proteins and related bacterial sequences. The CI repressor is known to function as a transcriptional switch, determining whether transcription is lytic or lysogenic. 65 -336581 pfam07023 DUF1315 Protein of unknown function (DUF1315). This family consists of several bacterial proteins of around 90 residues in length. The function of this family is unknown. 78 -336582 pfam07024 ImpE ImpE protein. This family consists of several bacterial proteins including ImpE from Rhizobium leguminosarum. It has been suggested that the imp locus is involved in the secretion to the environment of proteins, including periplasmic RbsB protein, that cause blocking of infection specifically in pea plants. The exact function of this family is unknown. 119 -284449 pfam07026 DUF1317 Protein of unknown function (DUF1317). This family consists of several hypothetical bacterial and phage proteins of around 60 residues in length. The function of this family is unknown. 60 -336583 pfam07027 DUF1318 Protein of unknown function (DUF1318). This family consists of several bacterial proteins of around 100 residues in length and is often known as YdbL. The function of this family is unknown. 86 -284451 pfam07028 DUF1319 Protein of unknown function (DUF1319). This family contains a number of viral proteins of unknown function approximately 200 residues long. Family members seem to be restricted to badnaviruses. 109 -311156 pfam07029 CryBP1 CryBP1 protein. This family consists of several CryBP1 like proteins from Bacillus thuringiensis and Paenibacillus popilliae. Members of this family are thought to be involved in the overall toxicity of the bacteria to their hosts. 164 -311157 pfam07030 DUF1320 Protein of unknown function (DUF1320). This family consists of both hypothetical bacterial and phage proteins of around 145 residues in length. The function of this family is unknown. 127 -311158 pfam07032 DUF1322 Protein of unknown function (DUF1322). This family consists of several hypothetical 9.4 kDa Borrelia burgdorferi (Lyme disease spirochete) proteins of around 78 residues in length. The function of this family is unknown. 78 -284455 pfam07033 Orthopox_B11R Orthopoxvirus B11R protein. This family consists of several Orthopoxvirus B11R proteins of around 70 residues in length. The function of this family is unknown. 71 -311159 pfam07034 ORC3_N Origin recognition complex (ORC) subunit 3 N-terminus. This family represents the N-terminus (approximately 300 residues) of subunit 3 of the eukaryotic origin recognition complex (ORC). Origin recognition complex (ORC) is composed of six subunits that are essential for cell viability. They collectively bind to the autonomously replicating sequence (ARS) in a sequence-specific manner and lead to the chromatin loading of other replication factors that are essential for initiation of DNA replication. 303 -336584 pfam07035 Mic1 Colon cancer-associated protein Mic1-like. This family represents the C-terminus (approximately 160 residues) of a number of proteins that resemble colon cancer-associated protein Mic1. 156 -311161 pfam07037 DUF1323 Putative transcription regulator (DUF1323). This family consists of several hypothetical Enterobacterial proteins of around 120 residues in length. This family appears to have an HTH domain and is therefore likely to act as a transcriptional regulator. 122 -70500 pfam07038 DUF1324 Protein of unknown function (DUF1324). This family consists of several Circovirus proteins of around 60 residues in length. The function of this family is unknown. 59 -311162 pfam07039 DUF1325 SGF29 tudor-like domain. This domain is found in the yeast protein SAGA-associated factor 29. This domain is related to members of the Tudor domain superfamily such as pfam05641. The SAGA complex is involved in RNA polymerase II-dependent transcriptional regulation. The membership of the tudor domain superfamily suggests this domain may bind to RNA. 129 -336585 pfam07040 DUF1326 Protein of unknown function (DUF1326). This family consists of several hypothetical bacterial proteins which seem to be found exclusively in Rhizobium and Ralstonia species. Members of this family are typically around 210 residues in length and contain 5 highly conserved cysteine residues at their N-terminus. The function of this family is unknown. 176 -311164 pfam07041 DUF1327 Protein of unknown function (DUF1327). This family consists of several hypothetical bacterial proteins of around 115 residues in length which seem to be specific to Escherichia coli. The function of this family is unknown. 113 -115680 pfam07042 TrfA TrfA protein. This family consists of several bacterial TrfA proteins. The trfA operon of broad-host-range IncP plasmids is essential to activate the origin of vegetative replication in diverse species. The trfA operon encodes two ORFs. The first ORF is highly conserved and encodes a putative single-stranded DNA binding protein (Ssb). The second, trfA, contains two translational starts as in the IncP alpha plasmids, generating related polypeptides of 406 (TrfA1) and 282 (TrfA2) amino acids. TrfA2 is very similar to the IncP alpha product, whereas the N-terminal region of TrfA1 shows very little similarity to the equivalent region of IncP alpha TrfA1. This region has been implicated in the ability of IncP alpha plasmids to replicate efficiently in Pseudomonas aeruginosa. 282 -336586 pfam07043 DUF1328 Protein of unknown function (DUF1328). This family consists of several hypothetical bacterial proteins of around 50 residues in length. The function of this family is unknown. 38 -336587 pfam07044 DUF1329 Protein of unknown function (DUF1329). This family consists of several hypothetical bacterial proteins of around 475 residues in length. The majority of family members are from Pseudomonas species but the family also contains sequences from Shewanella oneidensis and Thauera aromatica. 366 -311167 pfam07045 DUF1330 Domain of unknown function (DUF1330). This family consists of several hypothetical bacterial proteins of around 90 residues in length. The function of this family is unknown. 94 -336588 pfam07046 CRA_rpt Cytoplasmic repetitive antigen (CRA) like repeat. This family consists of several repeats of around 42 residues in length. These repeated sequences are found in multiple copies in Trypanosoma cruzi antigens, the cytoplasmic repetitive antigen (CRA) protein contains 23 copies of this repeat. 42 -336589 pfam07047 OPA3 Optic atrophy 3 protein (OPA3). This family consists of several optic atrophy 3 (OPA3) proteins. OPA3 deficiency causes type III 3-methylglutaconic aciduria (MGA) in humans. This disease manifests with early bilateral optic atrophy, spasticity, extrapyramidal dysfunction, ataxia, and cognitive deficits, but normal longevity. 125 -115686 pfam07048 DUF1331 Protein of unknown function (DUF1331). This family consists of several Circovirus proteins of around 35 residues in length. Members of this family are described as ORF-10 proteins and their function is unknown. 35 -311170 pfam07051 OCIA Ovarian carcinoma immunoreactive antigen (OCIA). This family consists of several ovarian carcinoma immunoreactive antigen (OCIA) and related eukaryotic sequences. The function of this family is unknown. 87 -311171 pfam07052 Hep_59 Hepatocellular carcinoma-associated antigen 59. This family represents a conserved region approximately 100 residues long within mammalian hepatocellular carcinoma-associated antigen 59 and similar proteins. Family members are found in a variety of eukaryotes, mainly as hypothetical proteins. 88 -311172 pfam07054 Pericardin_rpt Pericardin like repeat. This family consists of several repeated sequences of around 34 residues in length. This repeat is found in multiple copies in the Drosophila pericardin and other extracellular matrix proteins. 35 -336590 pfam07055 Eno-Rase_FAD_bd Enoyl reductase FAD binding domain. This family carries the region of the enzyme trans-2-enoyl-CoA reductase, at the very C-terminus, that binds to FAD. The activity was characterized in Euglena where an unusual fatty acid synthesis path-way in mitochondria performs a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. The full enzyme catalyzes the reduction of enoyl-CoA to acyl-CoA. The conserved region is seen as the motif FGFxxxxxDY. 62 -284470 pfam07056 DUF1335 Protein of unknown function (DUF1335). This family represents a conserved region approximately 130 residues long within a number of proteins of unknown function that seem to be specific to the white spot syndrome virus (WSSV). 130 -311174 pfam07057 TraI DNA helicase TraI. This family represents a conserved region approximately 130 residues long within the bacterial DNA helicase TraI (EC:3.6.1.-). TraI is a bifunctional protein that catalyzes the unwinding of duplex DNA as well as acts as a sequence-specific DNA trans-esterase, providing the site- and strand-specific nick required to initiate DNA transfer. 120 -311175 pfam07058 MAP70 Microtubule-associated protein 70. This family represents a family of plant microtubule-associated proteins of size 70 kDa. The proteins contain four predicted coiled-coil domains, and truncation studies identify a central domain that targets the proteins to microtubules. It has no predicted trans-membrane domains, and the region between the coils from approximately residues 240-483 is the targetting region. 544 -336591 pfam07059 DUF1336 Protein of unknown function (DUF1336). This family represents the C-terminus (approximately 250 residues) of a number of hypothetical plant proteins of unknown function. 216 -311177 pfam07061 Swi5 Swi5. Swi5 is involved in meiotic DNA repair synthesis and meiotic joint molecule formation. It is known to interact with Swi2, Rhp51 and Swi6. 77 -311178 pfam07062 Clc-like Clc-like. This family contains a number of Clc-like proteins that are approximately 250 residues long. 212 -336592 pfam07063 DUF1338 Domain of unknown function (DUF1338). This domain is found in a variety of bacterial and fungal hypothetical proteins of unknown function. The structure of this domain has been solved by structural genomics. The structure implies a zinc-binding function, so it is a putative metal hydrolase (information derived from TOPSAN for Structure 3iuz). 318 -336593 pfam07064 RIC1 RIC1. RIC1 has been identified in yeast as a Golgi protein involved in retrograde transport to the cis-Golgi network. It forms a heterodimer with Rgp1 and functions as a guanyl-nucleotide exchange factor. 244 -311181 pfam07065 D123 D123. This family contains a number of eukaryotic D123 proteins approximately 330 residues long. It has been shown that mutated variants of D123 exhibit temperature-dependent differences in their degradation rate. D123 proteins are regulators of eIF2, the central regulator of translational initiation. 296 -284478 pfam07066 DUF3882 Lactococcus phage M3 protein. This family consists of several Lactococcus phage middle-3 (M3) proteins of around 160 residues in length. The function of this family is unknown. 162 -115703 pfam07067 DUF1340 Protein of unknown function (DUF1340). This family consists of several hypothetical Streptococcus thermophilus bacteriophage proteins of around 235 residues in length. The function of this family is unknown. 236 -284479 pfam07068 Gp23 Major capsid protein Gp23. This family contains a number of major capsid Gp23 proteins approximately 500 residues long, from T4-like bacteriophages. 509 -115705 pfam07069 PRRSV_2b Porcine reproductive and respiratory syndrome virus 2b. This family consists of several Porcine reproductive and respiratory syndrome virus (PRRSV) ORF2b proteins. The function of this family is unknown however it is known that large amounts of 2b protein are present in the virion and it is thought that this protein may be an integral component of the virion. 73 -311182 pfam07070 Spo0M SpoOM protein. This family consists of several bacterial SpoOM proteins which are thought to control sporulation in Bacillus subtilis.Spo0M exerts certain negative effects on sporulation and its gene expression is controlled by sigmaH. 203 -336594 pfam07071 KDGP_aldolase KDGP aldolase. DgaF is part of the dga operon required for wild-type growth of Salmonella Typhimurium with D-glucosaminate. It catalyzes the conversion of keto-3-deoxygluconate 6-phosphate (KDGP) to yield pyruvate and glyceraldehyde-3-phosphate. Orthologues of the dga genes are largely restricted to certain enteric bacteria and a few species in the phylum Firmicutes. 217 -336595 pfam07072 ZapD Cell division protein. Cell division protein ZapD enhances FtsZ-ring assembly. It directly interacts with FtsZ and promotes bundling of FtsZ protofilaments, with a reduction in FtsZ GTPase activity. 210 -336596 pfam07073 ROF Modulator of Rho-dependent transcription termination (ROF). This family consists of several bacterial modulator of Rho-dependent transcription termination (ROF) proteins. ROF binds transcription termination factor Rho and inhibits Rho-dependent termination in vivo. 80 -311185 pfam07074 TRAP-gamma Translocon-associated protein, gamma subunit (TRAP-gamma). This family consists of several eukaryotic translocon-associated protein, gamma subunit (TRAP-gamma) sequences. The translocation site (translocon), at which nascent polypeptides pass through the endoplasmic reticulum membrane, contains a component previously called 'signal sequence receptor' that is now renamed as 'translocon-associated protein' (TRAP). The TRAP complex is comprised of four membrane proteins alpha, beta, gamma and delta which are present in a stoichiometric relation, and are genuine neighbors in intact microsomes. The gamma subunit is predicted to span the membrane four times. 170 -336597 pfam07075 DUF1343 Protein of unknown function (DUF1343). This family consists of several hypothetical bacterial proteins of around 400 residues in length. The function of this family is unknown. 361 -336598 pfam07076 DUF1344 Protein of unknown function (DUF1344). This family consists of several short, hypothetical bacterial proteins of around 80 residues in length. Members of this family are found in Rhizobium, Agrobacterium and Brucella species. The function of this family is unknown. 59 -336599 pfam07077 DUF1345 Protein of unknown function (DUF1345). This family consists of several hypothetical bacterial proteins of around 230 residues in length. The function of this family is unknown. 172 -311188 pfam07078 FYTT Forty-two-three protein. This family consists of several mammalian proteins of around 320 residues in length called 40-2-3 proteins. The function of this family is unknown. 308 -284489 pfam07079 DUF1347 Protein of unknown function (DUF1347). This family consists of several hypothetical bacterial proteins of around 610 residues in length. Members of this family are highly conserved and seem to be specific to Chlamydia species. The function of this family is unknown. 548 -336600 pfam07080 DUF1348 Protein of unknown function (DUF1348). This family consists of several highly conserved hypothetical proteins of around 150 residues in length. The function of this family is unknown. 130 -336601 pfam07081 DUF1349 Protein of unknown function (DUF1349). This family consists of several hypothetical bacterial proteins but contains one sequence from Saccharomyces cerevisiae. Members of this family are typically around 200 residues in length. The function of this family is unknown. 166 -115718 pfam07082 DUF1350 Protein of unknown function (DUF1350). This family consists of several hypothetical proteins from both cyanobacteria and plants. Members of this family are typically around 250 residues in length. The function of this family is unknown but the species distribution indicates that the family may be involved in photosynthesis. 250 -311191 pfam07083 DUF1351 Protein of unknown function (DUF1351). This family consists of several bacterial and phage proteins of around 230 residues in length. The function of this family is unknown. 210 -311192 pfam07084 Spot_14 Thyroid hormone-inducible hepatic protein Spot 14. This family consists of several thyroid hormone-inducible hepatic protein (Spot 14 or S14) sequences. Mainly expressed in tissues that synthesize triglycerides, the mRNA coding for Spot 14 has been shown to be increased in rat liver by insulin, dietary carbohydrates, glucose in hepatocyte culture medium, as well as thyroid hormone. In contrast, dietary fats and polyunsaturated fatty acids, have been shown to decrease the amount of Spot 14 mRNA, while an elevated level of cAMP acts as a dominant negative factor. In addition, liver-specific factors or chromatin organisation of the gene have been shown to contribute to the regulation of its expression. Spot 14 protein is thought to be required for induction of hepatic lipogenesis. 146 -336602 pfam07085 DRTGG DRTGG domain. This presumed domain is about 120 amino acids in length. It is found associated with CBS domains pfam00571, as well as the CbiA domain pfam01656. The function of this domain is unknown. It is named the DRTGG domain after some of the most conserved residues. This domain may be very distantly related to a pair of CBS domains. There are no significant sequence similarities, but its length and association with CBS domains supports this idea (Bateman A, pers. obs.). 105 -336603 pfam07086 Jagunal Jagunal, ER re-organisation during oogenesis. Jagunal is an endoplasmic-reticulum (ER)-membrane protein found in eukaryotes. It is involved in reorganising the ER in cells that must increase exocytic membrane traffic during development, that is, in the oocyte during vitellogenesis. It facilitates vesicular traffic in the subcortex. 184 -311195 pfam07087 DUF1353 Protein of unknown function (DUF1353). This family consists of several hypothetical bacterial proteins of around 100 residues in length. The function of this family is unknown. 93 -311196 pfam07088 GvpD GvpD gas vesicle protein. This family consists of several archaeal GvpD gas vesicle proteins. GvpD is thought to be involved in the regulation of gas vesicle formation. 484 -284498 pfam07090 GATase1_like Putative glutamine amidotransferase. This family consists of several hypothetical bacterial proteins of around 250 residues in length. The function of this family is unknown. The structure of this cytoplasmic domain was solved by the Midwest Center for Structural Genomics (MCSG). The structure has been classified as part of the Class-I Glutamine amidotransferase superfamily owing to similarity with other known structures. The monomer combines with itself to form a hexamer, and this hexamer exposes a potential catalytic surface rich in Glu, Asp, Tyr, Ser.Trp and His residues. 246 -336604 pfam07091 FmrO Ribosomal RNA methyltransferase (FmrO). This family consists of several bacterial ribosomal RNA methyltransferase (aminoglycoside-resistance methyltransferase) proteins. 252 -311198 pfam07092 DUF1356 Protein of unknown function (DUF1356). This family consists of several hypothetical mammalian proteins of around 250 residues in length. The function of this family is unknown. 232 -311199 pfam07093 SGT1 SGT1 protein. This family consists of several eukaryotic SGT1 proteins. Human SGT1 or hSGT1 is known to suppress GCR2 and is highly expressed in the muscle and heart. The function of this family is unknown although it has been speculated that SGT1 may be functionally analogous to the Gcr2p protein of Saccharomyces cerevisiae which is known to be a regulatory factor of glycolytic gene expression. 581 -284502 pfam07094 DUF1357 Protein of unknown function (DUF1357). This family consists of several hypothetical bacterial proteins of around 225 residues in length. Members of this family appear to be specific Borrelia burgdorferi (Lyme disease spirochete). The function of this family is unknown. 223 -336605 pfam07095 IgaA Intracellular growth attenuator protein IgaA. This family consists of several bacterial intracellular growth attenuator (IgaA) proteins. IgaA is involved in negative control of bacterial proliferation within fibroblasts. IgaA is homologous to the E. coli YrfF and P. mirabilis UmoB proteins. Whereas the biological function of YrfF is currently unknown, UmoB has been shown elsewhere to act as a positive regulator of FlhDC, the master regulator of flagella and swarming. FlhDC has been shown to repress cell division during P. mirabilis swarming, suggesting that UmoB could repress cell division via FlhDC. This biological function, if maintained in S. enterica, could sustain a putative negative control of cell division and growth exerted by IgaA in intracellular bacteria. 696 -284504 pfam07096 DUF1358 Protein of unknown function (DUF1358). This family consists of several hypothetical eukaryotic proteins of around 125 residues in length. The function of this family is unknown. 115 -284505 pfam07097 DUF1359 Protein of unknown function (DUF1359). This family consists of several hypothetical bacterial and phage proteins of around 100 residues in length. Members of this family seem to be found exclusively in Lactococcus lactis and the bacteriophages that infect this species. The function of this family is unknown. 104 -336606 pfam07098 DUF1360 Protein of unknown function (DUF1360). This family consists of several bacterial proteins of around 115 residues in length. Members of this family are found in Bacillus species and Streptomyces coelicolor, the function of the family is unknown. 102 -336607 pfam07099 DUF1361 Protein of unknown function (DUF1361). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown although some members are annotated as being putative integral membrane proteins. 161 -311203 pfam07100 ASRT Anabaena sensory rhodopsin transducer. The family of bacterial Anabaena sensory rhodopsin transducers are likely to bind sugars or related metabolites. The entire protein is comprised of a single globular domain with an eight-stranded beta-sandwich fold. There are a few characteristics which define this beta-sandwich fold as being distinct from other so-named folds, and these are: 1) a well conserved tryptophan, usually following a polar residue, present at the start of the first strand; this tryptophan appears to be central to a hydrophobic interaction required to hold the two beta-sheets of the sandwich together, and 2) a nearly absolutely conserved asparagine located at the end of the second beta-strand, that hydrogen bonds with the backbone carbonyls of the residues 2 and 4 positions downstream from it, thereby stabilizing the characteristic tight turn between strands 2 and 3 of the structure. 119 -115736 pfam07101 DUF1363 Protein of unknown function (DUF1363). This family consists of several Trypanosoma brucei putative variant specific antigen proteins of around 80 residues in length. 124 -336608 pfam07102 DUF1364 Protein of unknown function (DUF1364). This family consists of several bacterial and phage proteins of around 95 residues in length. The function of this family is unknown. 91 -336609 pfam07103 DUF1365 Protein of unknown function (DUF1365). This family consists of several bacterial and plant proteins of around 250 residues in length. The function of this family is unknown. 239 -336610 pfam07104 DUF1366 Protein of unknown function (DUF1366). This family consists of several hypothetical Streptococcus thermophilus bacteriophage proteins of around 130 residues in length. One of the sequences in this family, from phage Sfi11 is known as Gp149. The function of this family is unknown. 116 -336611 pfam07105 DUF1367 Protein of unknown function (DUF1367). This family consists of several highly conserved, hypothetical phage proteins of around 200 residues in length. The function of this family is unknown. Some proteins are annotated as IrsA (intracellular response to stress). 192 -284512 pfam07106 TBPIP Tat binding protein 1(TBP-1)-interacting protein (TBPIP). This family consists of several eukaryotic TBP-1 interacting protein (TBPIP) sequences. TBP-1 has been demonstrated to interact with the human immunodeficiency virus type 1 (HIV-1) viral protein Tat, then modulate the essential replication process of HIV. In addition, TBP-1 has been shown to be a component of the 26S proteasome, a basic multiprotein complex that degrades ubiquitinated proteins in an ATP-dependent fashion. Human TBPIP interacts with human TBP-1 then modulates the inhibitory action of human TBP-1 on HIV-Tat-mediated transactivation. 164 -284513 pfam07107 WI12 Wound-induced protein WI12. This family consists of several plant wound-induced protein sequences related to WI12 from Mesembryanthemum crystallinum. Wounding, methyl jasmonate, and pathogen infection is known to induce local WI12 expression. WI12 expression is also thought to be developmentally controlled in the placenta and developing seeds. WI12 preferentially accumulates in the cell wall and it has been suggested that it plays a role in the reinforcement of cell wall composition after wounding and during plant development. This family seems partly related to the NTF2-like superfamily. 109 -284514 pfam07108 PipA PipA protein. This family consists of several Salmonella PipA (pathogenicity island-encoded protein A) and related phage sequences. PipA is thought to contribute to enteric but not to systemic salmonellosis. The family carries a highly conserved HEXXH sequence motif along with several highly conserved glutamic acid residues which might be indicative of the family being a metallo-peptidase. 200 -311207 pfam07109 Mg-por_mtran_C Magnesium-protoporphyrin IX methyltransferase C-terminus. This family represents the C-terminus (approximately 100 residues) of bacterial and eukaryotic Magnesium-protoporphyrin IX methyltransferase (EC:2.1.1.11). This converts magnesium-protoporphyrin IX to magnesium-protoporphyrin IX methylester using S-adenosyl-L-methionine as a cofactor. 97 -311208 pfam07110 EthD EthD domain. This family consists of several bacterial sequences which are related to the EthD protein of Rhodococcus ruber. In Rhodococcus ruber, EthD is thought to be involved in the degradation of ethyl tert-butyl ether (ETBE). EthD synthesis is induced by ETBE but it's exact function is unknown, it is however thought to be essential to the ETBE degradation system. 95 -284517 pfam07111 HCR Alpha helical coiled-coil rod protein (HCR). This family consists of several mammalian alpha helical coiled-coil rod HCR proteins. The function of HCR is unknown but it has been implicated in psoriasis in humans and is thought to affect keratinocyte proliferation. 749 -254061 pfam07112 DUF1368 Protein of unknown function (DUF1368). This family consists of several proteins with seem to be specific to red algae plasmids. Members of this family are typically around 415 residues in length. The function of this family is unknown. 404 -311209 pfam07114 TMEM126 Transmembrane protein 126. This entry includes the transmembrane protein 126 A/B (TMEM126A/B) from animals. Human TMEM126B participates in constructing the membrane arm of mitochondrial respiratory complex I. 176 -254062 pfam07116 DUF1372 Protein of unknown function (DUF1372). This family consists of several Streptococcus bacteriophage sequences and related proteins from Streptococcus species. Members of this family are typically around 100 residues in length and their function is unknown. 104 -311210 pfam07117 DUF1373 Protein of unknown function (DUF1373). This family consists of several hypothetical proteins which seem to be specific to Oryzias latipes (Japanese ricefish). Members of this family are typically around 200 residues in length. The function of this family is unknown. 209 -284521 pfam07118 DUF1374 Protein of unknown function (DUF1374). This family consists of several hypothetical Sulfolobus virus proteins of around 100 residues in length. The function of this family is unknown. 92 -311211 pfam07119 DUF1375 Protein of unknown function (DUF1375). This family consists of several hypothetical, putative lipoproteins of around 80 residues in length. Members of this family seem to be specific to the Class Gammaproteobacteria. The function of this family is unknown. 74 -336612 pfam07120 DUF1376 Protein of unknown function (DUF1376). This family consists of several hypothetical bacterial proteins of around 95 residues in length. The function of this family is unknown. 86 -284524 pfam07122 VLPT Variable length PCR target protein (VLPT). This family consists of a number of 29 residue repeats which seem to be specific to the Ehrlichia chaffeensis variable length PCR target (VLPT) protein. Ehrlichia chaffeensis is a tick-transmitted rickettsial agent and is responsible for human monocytic ehrlichiosis (HME). The function of this family is unknown. 30 -311213 pfam07123 PsbW Photosystem II reaction centre W protein (PsbW). This family consists of several plant specific photosystem II reaction centre W (PsbW) proteins. PsbW is a nuclear-encoded protein located in the thylakoid membrane of the chloroplast. PsbW is a core component of photosystem II but not photosystem I. This family does not appear to be related to pfam03912. 130 -284526 pfam07124 Phytoreo_P8 Phytoreovirus outer capsid protein P8. This family consists of several Phytoreovirus outer capsid protein P8 sequences. 422 -115758 pfam07125 DUF1378 Protein of unknown function (DUF1378). This family consists of hypothetical bacterial and phage proteins of around 59 residues in length. Bacterial members of this family seem to be specific to Enterobacteria. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 59 -336613 pfam07126 ZapC Cell-division protein ZapC. ZapC is one of four FtsZ-binding components of the Z ring in bacteria. Formation of the Z ring on the cytoplasmic surface of the membrane is the starting process for assembly of the cell-division apparatus. It binds directly to the Z ring, and although it is not essential for absolute cell division it contributes to it by enhancing the interactions between the FtsZ protofilaments (or polymers) which aggregate to form the ring conformation in the Z ring. 169 -311215 pfam07127 Nodulin_late Late nodulin protein. This family consists of several plant specific late nodulin sequences which are homologous to the Pisum sativum (Garden pea) ENOD3 protein. ENOD3 is expressed in the late stages of root nodule formation and contains two pairs of cysteine residues towards the C-terminus which may be involved in metal-binding. 54 -311216 pfam07128 DUF1380 Protein of unknown function (DUF1380). This family consists of several hypothetical bacterial proteins of around 140 residues in length. Members of this family seem to be specific to Enterobacteria. The function of this family is unknown. 137 -311217 pfam07129 DUF1381 Protein of unknown function (DUF1381). This family consists of several hypothetical Staphylococcus aureus and Staphylococcus aureus bacteriophage proteins of around 65 residues in length. The function of this family is unknown. 44 -336614 pfam07130 YebG YebG protein. This family consists of several bacterial YebG proteins of around 75 residues in length. The exact function of this protein is unknown but it is thought to be involved in the SOS response. The induction of the yebG gene occurs as cell enter into the stationary growth phase and is dependent on is dependent on cyclic AMP and H-NS. 73 -284532 pfam07131 DUF1382 Protein of unknown function (DUF1382). This family consists of several hypothetical Escherichia coli and bacteriophage lambda-like proteins of around 60 residues in length. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 61 -284533 pfam07133 Merozoite_SPAM Merozoite surface protein (SPAM). This family consists of several Plasmodium falciparum SPAM (secreted polymorphic antigen associated with merozoites) proteins. Variation among SPAM alleles is the result of deletions and amino acid substitutions in non-repetitive sequences within and flanking the alanine heptad-repeat domain. Heptad repeats in which the a and d position contain hydrophobic residues generate amphipathic alpha-helices which give rise to helical bundles or coiled-coil structures in proteins. SPAM is an example of a P. falciparum antigen in which a repetitive sequence has features characteristic of a well-defined structural element. 182 -254068 pfam07134 DUF1383 Protein of unknown function (DUF1383). This family consists of several hypothetical Nucleopolyhedrovirus proteins of around 375 residues in length. The function of this family is unknown. 328 -336615 pfam07136 DUF1385 Protein of unknown function (DUF1385). This family contains a number of hypothetical bacterial proteins of unknown function approximately 300 residues in length. Some family members are predicted to be metal-dependent. 240 -336616 pfam07137 VDE VDE lipocalin domain. This family represents a conserved region approximately 150 residues long within plant violaxanthin de-epoxidase (VDE). In higher plants, violaxanthin de-epoxidase forms part of a conserved system that dissipates excess energy as heat in the light-harvesting complexes of photosystem II (PSII), thus protecting them from photo-inhibitory damage. 198 -311220 pfam07138 DUF1386 Protein of unknown function (DUF1386). This family consists of several hypothetical Nucleopolyhedrovirus proteins of around 350 residues in length. The function of this family is unknown. 334 -311221 pfam07139 DUF1387 Protein of unknown function (DUF1387). This family represents a conserved region approximately 300 residues long within a number of hypothetical proteins of unknown function that seem to be restricted to mammals. 309 -284538 pfam07140 IFNGR1 Interferon gamma receptor (IFNGR1). This family consists of several eukaryotic and viral interferon gamma receptor proteins. Molecular interactions among cytokines and cytokine receptors in eukaryotes form the basis of many cell-signaling pathways relevant to immune function. Human interferon-gamma (IFN-gamma) signals through a multimeric receptor complex consisting of two different but structurally related transmembrane chains: the high-affinity receptor-binding subunit (IFN-gammaRalpha) and a species specific accessory factor (AF-1 or IFN-gammaRbeta). The vaccinia viral interferon gamma receptor has been shown to be secreted from infected cells during early infection. The structure has been halved such that the N-terminus of this family is now represented by Tissue_fac pfam01108. 133 -284539 pfam07141 Phage_term_sma Putative bacteriophage terminase small subunit. This family consists of several putative Lactococcus bacteriophage terminase small subunit proteins. The exact function of this family is unknown. 174 -311222 pfam07142 DUF1388 Repeat of unknown function (DUF1388). This family consists of several repeats of around 29 residues in length. Members of this family are found in the variable surface lipoproteins in Mycoplasma bovis and in mammalian neurofilament triplet H (NefH or NF-H) proteins. This repeat contains several Lys-Ser-Pro (KSP) motifs and in NefH these are thought to function as the main target for neurofilament directed protein kinases in vivo. 27 -336617 pfam07143 CrtC CrtC N-terminal lipocalin domain. This family contains the members of the old Pfam family DUF2006. Structural characterization of family member NE1406 (from DUF2006 now merged into this family) has revealed a lipocalin-like fold with domain duplication. 171 -336618 pfam07145 PAM2 Ataxin-2 C-terminal region. The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as an important binding site for pfam00658. It has been found in a wide range of eukaryotic proteins. Strikingly, this motif appears to occur solely outside of globular domains. 17 -254076 pfam07146 DUF1389 Protein of unknown function (DUF1389). This family consists of several hypothetical bacterial proteins which seem to be specific to Chlamydia pneumoniae. Members of this family are typically around 400 residues in length. The function of this family is unknown. 311 -311224 pfam07147 PDCD9 Mitochondrial 28S ribosomal protein S30 (PDCD9). This family consists of several eukaryotic mitochondrial 28S ribosomal protein S30 (or programmed cell death protein 9 PDCD9) sequences. The exact function of this family is unknown although it is known to be a component of the mitochondrial ribosome and a component in cellular apoptotic signaling pathways. 442 -311225 pfam07148 MalM Maltose operon periplasmic protein precursor (MalM). This family consists of several maltose operon periplasmic protein precursor (MalM) sequences. The function of this family is unknown. 133 -284545 pfam07149 Pes-10 Pes-10. This family consists of several Caenorhabditis elegans pes-10 and related proteins. Members of this family are typically around 400 residues in length. The function of this family is unknown. 362 -284546 pfam07150 DUF1390 Protein of unknown function (DUF1390). This family consists of several Paramecium bursaria chlorella virus 1 (PBCV-1) proteins of around 250 residues in length. The function of this family is unknown. 226 -284547 pfam07151 DUF1391 Protein of unknown function (DUF1391). This family consists of several Enterobacterial proteins of around 50 residues in length. Members of this family are found in Escherichia coli and Salmonella typhi where they are often known as YdfA. The function of this family is unknown. 48 -336619 pfam07152 YaeQ YaeQ protein. This family consists of several hypothetical bacterial proteins of around 180 residues in length which are often known as YaeQ. YaeQ is homologous to RfaH, a specialized transcription elongation protein. YaeQ is known to compensate for loss of RfaH function. 172 -284549 pfam07153 Marek_SORF3 Marek's disease-like virus SORF3 protein. This family consists of several SORF3 proteins from the Marek's disease-like viruses. Members of this family are around 350 residues in length. The function of this family is unknown. 347 -284550 pfam07154 DUF1392 Protein of unknown function (DUF1392). This family consists of several hypothetical cyanobacterial proteins of around 150 residues in length which seem to be specific to Anabaena species. The function of this family is unknown. 150 -336620 pfam07155 ECF-ribofla_trS ECF-type riboflavin transporter, S component. This family is the substrate-binding component (S component) of the energy coupling-factor (ECF)-type riboflavin transporter. It is a transmembrane protein which binds riboflavin, and is responsible for riboflavin-uptake by cells. 169 -336621 pfam07156 Prenylcys_lyase Prenylcysteine lyase. This family contains prenylcysteine lyases (EC:1.8.3.5) that are approximately 500 residues long. Prenylcysteine lyase is a FAD-dependent thioether oxidase that degrades a variety of prenylcysteines, producing free cysteine, an isoprenoid aldehyde and hydrogen peroxide as products of the reaction. It has been noted that this enzyme has considerable homology with ClP55, a 55 kDa protein that is associated with chloride ion pumps. 362 -311229 pfam07157 DNA_circ_N DNA circularisation protein N-terminus. This family represents the N-terminus (approximately 100 residues) of a number of phage DNA circularisation proteins. 88 -115789 pfam07158 MatC_N Dicarboxylate carrier protein MatC N-terminus. This family represents the N-terminal region of the bacterial dicarboxylate carrier protein MatC. The MatC protein is an integral membrane protein that could function as a malonate carrier. 149 -311230 pfam07159 DUF1394 Protein of unknown function (DUF1394). This family consists of several hypothetical eukaryotic proteins of around 320 residues in length. The function of this family is unknown. 303 -311231 pfam07160 SKA1 Spindle and kinetochore-associated protein 1. Spindle and kinetochore-associated protein 1 (SKA1) is a component of the SKA1 complex (consists of Ska1, Ska2, and Ska3/Rama1), a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. 233 -336622 pfam07161 LppX_LprAFG LppX_LprAFG lipoprotein. This entry consists of several lipoproteins mainly from Mycobacterium species, collectively known as the LppX_ LprAFG family. Proteins in this entry include LprG, LppX, LprF and lprA. 191 -336623 pfam07162 B9-C2 Ciliary basal body-associated, B9 protein. The B9-C2 domain is found in proteins associated with the ciliary basal body. B9 domains were identified as a specific family of C2 domains. There are three sub-families represented by this family, notably, Mks1-Xbx7, Stumpy-Tza1 and Tza2 groups of proteins. Mutations in human Mks1 result in the developmental disorder Mechler-Gruber syndrome; mutations in mouse Stumpy lead to perinatal hydrocephalus and severe polycystic kidney disease. All the three distinct types of B9-C2 proteins cooperatively localize to the basal body or centrosome of cilia. 156 -311234 pfam07163 Pex26 Pex26 protein. This family consists of Pex26 and related mammalian proteins. Pex26 is a type II peroxisomal membrane protein which recruits Pex6-Pex1 complexes to peroxisomes. Mutations in Pex26 can lead to human disorders. 301 -336624 pfam07165 DUF1397 Protein of unknown function (DUF1397). This family consists of several insect specific proteins. A member from Manduca sexta is annotated as being a haemolymph glycoprotein precursor. The function of this family is unknown. 201 -311236 pfam07166 DUF1398 Protein of unknown function (DUF1398). This family consists of several hypothetical Enterobacterial proteins of around 130 residues in length. Members of this family seem to be found exclusively in Escherichia coli and Salmonella species. The function of this family is unknown. 118 -311237 pfam07167 PhaC_N Poly-beta-hydroxybutyrate polymerase (PhaC) N-terminus. This family represents the N-terminal region of the bacterial poly-beta-hydroxybutyrate polymerase (PhaC). Polyhydroxyalkanoic acids (PHAs) are carbon and energy reserve polymers produced in some bacteria when carbon sources are plentiful and another nutrient, such as nitrogen, phosphate, oxygen, or sulfur, becomes limiting. PHAs composed of monomeric units ranging from 3 to 14 carbons exist in nature. When the carbon source is exhausted, PHA is utilized by the bacterium. PhaC links D-(-)-3-hydroxybutyrl-CoA to an existing PHA molecule by the formation of an ester bond. This family appears to be a partial segment of an alpha/beta hydrolase domain. 173 -311238 pfam07168 Ureide_permease Ureide permease. Heterocyclic nitrogen compounds may serve as nitrogen sources or nitrogen transport compounds in plants that are not able to fix nitrogen. This family represents ureide permease, a transporter of a wide spectrum of oxo derivatives of heterocyclic nitrogen compounds, including allantoin, uric acid and xanthine; it has 10 putative transmembrane domains with a large cytosolic central domain containing a 'Walker A' motif. Ureide permease is likely to transport other purine degradation products when nitrogen sources are low. Transport is dependent on glucose and a proton gradient. The family is found in bacteria, plants and yeast. These transporters are constituted of two sets of 5xTMs. 359 -336625 pfam07171 MlrC_C MlrC C-terminus. This family represents the C-terminus (approximately 200 residues) of the product of a bacterial gene cluster that is involved in the degradation of the cyanobacterial toxin microcystin LR. Many members of this family are hypothetical proteins. 178 -254089 pfam07172 GRP Glycine rich protein family. This family of proteins includes several glycine rich proteins as well as two nodulins 16 and 24. The family also contains proteins that are induced in response to various stresses. 91 -311240 pfam07173 GRDP-like Glycine-rich domain-containing protein-like. This entry includes Arabidopsis Glycine-rich domain- containing protein 1 and 2 (GRDP1/2). They are involved in development and stress responses. 136 -311241 pfam07174 FAP Fibronectin-attachment protein (FAP). This family contains bacterial fibronectin-attachment proteins (FAP). Family members are rich in alanine and proline, are approximately 300 long, and seem to be restricted to mycobacteria. These proteins contain a fibronectin-binding motif that allows mycobacteria to bind to fibronectin in the extracellular matrix. 298 -311242 pfam07175 Osteoregulin Osteoregulin. This family represents a conserved region approximately 180 residues long within osteoregulin, a bone-remodelling protein expressed highly in osteocytes within trabecular and cortical bone. A conserved RGD motif is found towards the C-terminal end of this region, and this is potentially involved in integrin recognition. 160 -311243 pfam07176 DUF1400 Alpha/beta hydrolase of unknown function (DUF1400). This family contains a number of hypothetical proteins of unknown function that seem to be specific to cyanobacteria. Members of this family have an alpha/beta hydrolase fold. 127 -336626 pfam07177 Neuralized Neuralized. This family contains a conserved region approximately 60 residues long within eukaryotic neuralized and neuralized-like proteins. Neuralized belongs to a group of ubiquitin ligases and is required in a subset of Notch pathway-mediated cell fate decisions during development of the Drosophila nervous system. Some family members contain multiple copies of this region. 147 -311245 pfam07178 TraL TraL protein. This family consists of several bacterial TraL proteins. TraL is a predicted peripheral membrane protein which is thought to be involved in bacterial sex pilus assembly. The exact function of this family is unclear. 86 -336627 pfam07179 SseB SseB protein N-terminal domain. This family consists of several SseB proteins which appear to be found exclusively in Enterobacteria. SseB is known to enhance serine-sensitivity in Escherichia coli and is part of the Salmonella pathogenicity island 2 (SPI-2) translocon. This entry contains the presumed N-terminal domain of SseB. 112 -311247 pfam07180 CaiF_GrlA CaiF/GrlA transcriptional regulator. This is a family of transcriptional regulators. CaiF is involved in carnitine metabolism. GrlA is encoded within the LEE type III secretion system in the enteropathogenic E. coli O157:H. GrlR interacts with GrlA at its Helix-Turn-Helix (HTH) motif, preventing GrlA from binding to its target promoter DNA. 134 -284572 pfam07181 VirC2 VirC2 protein. This family consists of several VirC2 proteins which seem to be found exclusively in Agrobacterium species and Rhizobium etli. VirC2 is known to be involved in virulence in Agrobacterium species but its exact function is unclear. 200 -336628 pfam07182 DUF1402 Protein of unknown function (DUF1402). This family consists of several hypothetical bacterial proteins of around 310 residues in length. Members of this family seem to be found exclusively in Agrobacterium, Rhizobium and Brucella species. The function of this family is unknown. 300 -311249 pfam07183 DUF1403 Protein of unknown function (DUF1403). This family consists of several hypothetical bacterial proteins of around 320 residues in length. Members of this family are mainly found in Rhizobium and Agrobacterium species. The function of this family is unknown. 313 -115814 pfam07184 CTV_P33 Citrus tristeza virus P33 protein. This family consists of several Citrus tristeza virus (CTV) P33 proteins. The function of P33 is unclear although it is known that the protein is not needed for virion formation. 303 -311250 pfam07185 DUF1404 Protein of unknown function (DUF1404). This family consists of several archaeal proteins of around 180 residues in length. Members of this family seem to be found exclusively in Sulfolobus tokodaii and Sulfolobus solfataricus. The function of this family is unknown. 169 -311251 pfam07187 DUF1405 Protein of unknown function (DUF1405). This family consists of several bacterial and related archaeal protein of around 180 residues in length. The function of this family is unknown. 160 -284577 pfam07188 KSHV_K8 Kaposi's sarcoma-associated herpesvirus (KSHV) K8 protein. This family consists of Kaposi's sarcoma-associated herpesvirus (KSHV) K8 proteins. KSHV is a human Gammaherpesvirus related to Epstein-Barr virus (EBV) and herpesvirus saimiri. KSHV open reading frame K8 encodes a basic region-leucine zipper protein of 237 aa that homodimerizes. K8 interacts and co-localizes with human pfam04855, a cellular chromatin-remodelling factor, both in vivo and in vitro. K8 is thought to function as a transcriptional activator under specific conditions and its transactivation activity requires its interaction with the cellular chromatin remodelling factor hSNF5. 238 -336629 pfam07189 SF3b10 Splicing factor 3B subunit 10 (SF3b10). This family consists of several eukaryotic splicing factor 3B subunit 10 (SF3b10) proteins. SF3b10 is a 10 kDa subunit of the splicing factor SF3b. SF3b associates with the splicing factor SF3a and a 12S RNA unit to form the U2 small nuclear ribonucleoproteins complex. SF3b10 and SF3b14b are also thought to facilitate the interaction of U2 with the branch site. 75 -148663 pfam07190 DUF1406 Protein of unknown function (DUF1406). This family consists of several Orthopoxvirus proteins of around 185 resides in length. Members of this family seem to be exclusive to Vaccinia, Camelpox and Cowpox viruses. Some family members are annotated as being C8 proteins but their function is unknown. 170 -311253 pfam07191 zinc-ribbons_6 zinc-ribbons. This family consists of several short, hypothetical bacterial proteins of around 70 residues in length. Members of this family have 8 highly conserved cysteine residues, which form two zinc ribbon domains. 64 -284580 pfam07192 SNURF SNURF/RPN4 protein. This family consists of several mammalian SNRPN upstream reading frame (SNURF) proteins. SNURF or RPF4 is a RING-finger protein and a coregulator of androgen receptor-dependent transcription. It has been suggested that SNURF is involved in the regulation of processes required for late steps of spermatid maturation. 70 -284581 pfam07193 DUF1408 Protein of unknown function (DUF1408). This family consists of several hypothetical Lactococcus lactis and related phage proteins of around 75 residues in length. The function of this family is unknown. 71 -336630 pfam07194 P2 P2 response regulator binding domain. The response regulators for CheA bind to the P2 domain, which is found between pfam01627 and pfam02895 as either one or two copies. Highly flexible linkers connect P2 to the rest of CheA and impart remarkable mobility to the P2 domain. This feature is thought to enhance the inter CheA dimer phosphotransfer reactions within the signalling complex, thereby amplifying the phosphorylation signal. 79 -311255 pfam07195 FliD_C Flagellar hook-associated protein 2 C-terminus. The flagellar hook-associated protein 2 (HAP2 or FliD) forms the distal end of the flagella, and plays a role in mucin specific adhesion of the bacteria. This alignment covers the C-terminal region of this family of proteins. 235 -311256 pfam07196 Flagellin_IN Flagellin hook IN motif. The function of this region is not clear, but it is found in many flagellar hook proteins, including FliD homologs. It is normally repeated, but is also apparently seen as a singleton. A conserved IN is seen at the centre of the motif. The diversity of these motifs makes it likely that some members of the family are not identified. 56 -336631 pfam07197 DUF1409 Protein of unknown function (DUF1409). This family represents a short conserved region (approximately 50 residues long), sometimes repeated, within a number of hypothetical Oryza sativa proteins of unknown function. 48 -311257 pfam07198 DUF1410 Protein of unknown function (DUF1410). This family represents a conserved domain approximately 100 residues long, multiple copies of which are found within hypothetical Ureaplasma parvum proteins of unknown function, as well as related species. 62 -311258 pfam07199 DUF1411 Protein of unknown function (DUF1411). This family represents a conserved region approximately 150 residues long that is sometimes repeated within some Babesia bovis proteins of unknown function. 191 -336632 pfam07200 Mod_r Modifier of rudimentary (Mod(r)) protein. This family represents a conserved region approximately 150 residues long within a number of eukaryotic proteins that show homology with Drosophila melanogaster Modifier of rudimentary (Mod(r)) proteins. The N-terminal half of Mod(r) proteins is acidic, whereas the C-terminal half is basic, and both of these regions are represented in this family. Members of this family include the Vps37 subunit of the endosomal sorting complex ESCRT-I, a complex involved in recruiting transport machinery for protein sorting at the multivesicular body (MVB). The yeast ESCRT-I complex consists of three proteins (Vps23, Vps28 and Vps37). The mammalian homolog of Vps37 interacts with Tsg101 (Pfam: PF05743) through its mod(r) domain and its function is essential for lysosomal sorting of EGF receptors. 145 -311260 pfam07201 HrpJ HrpJ-like domain. This family represents a conserved region approximately 200 residues long within a number of bacterial hypersensitivity response secretion protein HrpJ and similar proteins. HrpJ forms part of a type III secretion system through which, in phytopathogenic bacterial species, virulence factors are thought to be delivered to plant cells. This family also includes the InvE invasion protein from Salmonella. This protein is involved in host parasite interactions and mutations in the InvE gene render Salmonella typhimurium non-invasive. InvE S. typhimurium mutants fail to elicit a rapid Ca2+ increase in cultured cells, an important event in the infection procedure and internalisation of S. typhimurium into epithelial cells. This family includes bacterial SepL and SsaL proteins. SepL plays an essential role in the infection process of enterohemorrhagic Escherichia coli and is thought to be responsible for the secretion of EspA, EspD, and EspB. SsaL of Salmonella typhimurium is thought to be a component of the type III secretion system. 165 -311261 pfam07202 Tcp10_C T-complex protein 10 C-terminus. This family represents the C-terminus (approximately 180 residues) of eukaryotic T-complex protein 10. The T-complex is involved in spermatogenesis in mice. 175 -311262 pfam07203 DUF1412 Protein of unknown function (DUF1412). This family consists of several Caenorhabditis elegans proteins of around 70-75 residues in length. The function of this family is unknown. 53 -115833 pfam07204 Orthoreo_P10 Orthoreovirus membrane fusion protein p10. This family consists of several Orthoreovirus membrane fusion protein p10 sequences. p10 is thought to be a multifunctional protein that plays a key role in virus-host interaction. 98 -311263 pfam07205 DUF1413 Domain of unknown function (DUF1413). This family consists of several hypothetical bacterial proteins which seem to be specific to firmicute species. Members of this family are typically around 100 residues in length. The function of this family is unknown. 69 -284592 pfam07206 Baculo_LEF-10 Baculovirus late expression factor 10 (LEF-10). This family consists of several Baculovirus specific late expression factor 10 (LEF-10) sequences. LEF-10 is thought to be a late expressed structural protein although its exact function is unknown. 71 -311264 pfam07207 Lir1 Light regulated protein Lir1. This family consists of several plant specific light regulated Lir1 proteins. Lir1 mRNA accumulates in the light, reaching maximum and minimum steady-state levels at the end of the light and dark period, respectively. Plants germinated in the dark have very low levels of lir1 mRNA, whereas plants germinated in continuous light express lir1 at an intermediate but constant level. It is thought that lir1 expression is controlled by light and a circadian clock. The exact function of this family is unclear. 134 -336633 pfam07208 DUF1414 Protein of unknown function (DUF1414). This family consists of several hypothetical bacterial proteins of around 70 residues in length. Members of this family are often referred to as YejL. The function of this family is unknown. 44 -336634 pfam07209 DUF1415 Protein of unknown function (DUF1415). This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 171 -311267 pfam07210 DUF1416 Protein of unknown function (DUF1416). This family consists of several hypothetical bacterial proteins of around 100 residues in length. Members of this family appear to be Actinomycete specific. The function of this family is unknown. 97 -284597 pfam07212 Hyaluronidase_1 Hyaluronidase protein (HylP). This family consists of several phage associated hyaluronidase proteins (EC:3.2.1.35) which seem to be specific to Streptococcus pyogenes and Streptococcus pyogenes bacteriophages. The substrate of hyaluronidase is hyaluronic acid, a sugar polymer composed of alternating N-acetylglucosamine and glucuronic acid residues. Hyaluronic acid is found in the ground substance of human connective tissue and the vitreous of the eye and also is the sole component of the capsule of group A streptococci. The capsule has been shown to be an important virulence factor of this organism by virtue of its ability to resist phagocytosis. Production by S. pyogenes of both a hyaluronic acid capsule and hyaluronidase enzymatic activity capable of destroying the capsule is an interesting, yet-unexplained, phenomenon. 278 -284598 pfam07213 DAP10 DAP10 membrane protein. This family consists of several mammalian DAP10 membrane proteins. In activated mouse natural killer (NK) cells, the NKG2D receptor associates with two intracellular adaptors, DAP10 and DAP12, which trigger phosphatidyl inositol 3 kinase (PI3K) and Syk family protein tyrosine kinases, respectively. It has been suggested that the DAP10-PI3K pathway is sufficient to initiate NKG2D-mediated killing of target cells. 79 -336635 pfam07214 DUF1418 Protein of unknown function (DUF1418). This family consists of several hypothetical Enterobacterial proteins of around 100 residues in length. Members of this family are often described as YbjC. In E. coli the ybjC gene is located downstream of nfsA (which encodes the major oxygen-insensitive nitroreductase). It is thought that nfsA and ybjC form an operon an its promoter is a class I SoxS-dependent promoter. The function of this family is unknown. 94 -311269 pfam07215 DUF1419 Protein of unknown function (DUF1419). This family consists of several bacterial proteins of around 110 residues in length. Members of this family seem to be specific to Agrobacterium species and to Rhizobium loti. The function of this family is unknown. 112 -284601 pfam07216 LcrG LcrG protein. This family consists of several bacterial LcrG proteins. Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. 91 -311270 pfam07217 Het-C Heterokaryon incompatibility protein Het-C. In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. 561 -284603 pfam07218 RAP1 Rhoptry-associated protein 1 (RAP-1). This family consists of several rhoptry-associated protein 1 (RAP-1) sequences which appear to be specific to Plasmodium falciparum. 793 -336636 pfam07219 HemY_N HemY protein N-terminus. This family represents the N-terminus (approximately 150 residues) of bacterial HemY porphyrin biosynthesis proteins. This is a membrane protein involved in a late step of protoheme IX synthesis. 107 -115849 pfam07220 DUF1420 Protein of unknown function (DUF1420). This family consists of several hypothetical putative lipoproteins which seem to be found specifically in the bacterium Leptospira interrogans. Members of this family are typically around 670 resides in length and their function is unknown. 672 -284605 pfam07221 GlcNAc_2-epim N-acylglucosamine 2-epimerase (GlcNAc 2-epimerase). This family contains a number of eukaryotic and bacterial N-acylglucosamine 2-epimerase (GlcNAc 2-epimerase) enzymes (EC:5.3.1.8) approximately 500 residues long. This converts N-acyl-D-glucosamine to N-acyl-D-mannosamine. 348 -311272 pfam07222 PBP_sp32 Proacrosin binding protein sp32. This family consists of several mammalian specific proacrosin binding protein sp32 sequences. sp32 is a sperm specific protein which is known to bind with with 55- and 53-kDa proacrosins and the 49-kDa acrosin intermediate. The exact function of sp32 is unclear, it is thought however that the binding of sp32 to proacrosin may be involved in packaging the acrosin zymogen into the acrosomal matrix. 243 -336637 pfam07223 DUF1421 UBA-like domain (DUF1421). This domain represents a conserved region that has a UBA like fold. It is found in a number of plant proteins of unknown function. 45 -254111 pfam07224 Chlorophyllase Chlorophyllase. This family consists of several plant specific Chlorophyllase proteins (EC:3.1.1.14). Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of ester bond to yield chlorophyllide and phytol. 307 -311274 pfam07225 NDUF_B4 NADH-ubiquinone oxidoreductase B15 subunit (NDUFB4). This family consists of several NADH-ubiquinone oxidoreductase B15 subunit proteins (EC:1.6.5.3). 124 -336638 pfam07226 DUF1422 Protein of unknown function (DUF1422). This family consists of several hypothetical bacterial proteins of around 120 residues in length. The function of this family is unknown. 114 -336639 pfam07227 PHD_Oberon PHD - plant homeodomain finger protein. PHD_oberon is a plant homeodomain finger domain of Oberon proteins from plants. Oberon is necessary for maintenance and/or establishment of both the shoot and root apical meristems in Arabidopsis. Oberon proteins are made up of a PHD finger domain and a coiled-coil domain. The PHD-finger domain is found in a wide variety of proteins involved in the regulation of chromatin structure. Oberon proteins mediate the TMO7 (the direct target of MP) expression through modification of, or binding to, chromatin at the TMO7 locus. TMO7 stands for the target of Monopteros 7 (MP) (or Auxin response factor 7). 130 -284611 pfam07228 SpoIIE Stage II sporulation protein E (SpoIIE). This family contains a number of bacterial stage II sporulation E proteins (EC:3.1.3.16). These are required for formation of a normal polar septum during sporulation. The N-terminal region is hydrophobic and is expected to contain up to 12 membrane-spanning segments. 190 -336640 pfam07229 VirE2 VirE2. This family consists of several VirE2 proteins which seem to be specific to Agrobacterium tumefaciens and Rhizobium etli. VirE2 is known to interact, via its C-terminus, with VirD4. Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. VirE2 is therefore thought to be a protein substrate of a type IV secretion system which is recruited to a member of the coupling protein superfamily. 556 -311277 pfam07230 Peptidase_S80 Bacteriophage T4-like capsid assembly protein (Gp20). This family consists of several bacteriophage T4-like capsid assembly (or portal) proteins. The exact mechanism by which the double-stranded (ds) DNA bacteriophages incorporate the portal protein at a unique vertex of the icosahedral capsid is unknown. In phage T4, there is evidence that this vertex, constituted by 12 subunits of gp20, acts as an initiator for the assembly of the major capsid protein and the scaffolding proteins into a prolate icosahedron of precise dimensions. The regulation of portal protein gene expression is an important regulator of prohead assembly in bacteriophage T4. This family represents the protease responsible for the proteolysis of head proteins, a critical step in the morphogenesis of many tailed phages, Cleavage facilitates the conversion of the prohead to the mature capsid. All these cleavages are carried out by action at consensus S/A/G-X-E recognition sequences at 39 cleavage sites. Evidence of multiple processing sites in nine phiKZ proteins appears to represent a built-in mechanism by which the phage ensures that the majority of the propeptide regions are removed, and emphasizes the essential nature of processing in phiKZ-head morphogenesis. The family is classified by MEROPS as a serine peptidase. 445 -284614 pfam07231 Hs1pro-1_N Hs1pro-1 N-terminus. This family represents the N-terminus (approximately 180 residues) of plant Hs1pro-1, which is believed to confer resistance to nematodes. 181 -115861 pfam07232 DUF1424 Putative rep protein (DUF1424). This family consists of several archaeal proteins of around 320 residues in length. Members of this family seem to be found exclusively in Halobacterium and Haloferax species. The function of this family is unknown. This protein is probably a rep protein due to conservation of functional motifs. 329 -336641 pfam07233 DUF1425 Protein of unknown function (DUF1425). This family consists of several hypothetical bacterial proteins of around 125 residues in length. Several members of this family are described as putative lipoproteins and are often known as YcfL. The function of this family is unknown. 87 -284616 pfam07234 Babuvirus_MP Movement and RNA silencing protein. This family consists of several Babuvirus proteins of around 120 residues in length. Proteins in this family include movement and RNA silencing protein (also known as MP) from Banana bunchy top virus. MP acts as a suppressor of RNA-mediated gene silencing, also known as post-transcriptional gene silencing (PTGS), a mechanism of plant viral defense that limits the accumulation of viral RNAs. It transports viral genome to neighboring plant cells directly through plasmosdesmata, without any budding. The movement protein allows efficient cell to cell propagation, by bypassing the host cell wall barrier. 117 -336642 pfam07235 DUF1427 Protein of unknown function (DUF1427). This family consists of several bacterial proteins of around 100 residues in length. The function of this family is unknown. 84 -284618 pfam07236 Phytoreo_S7 Phytoreovirus S7 protein. This family consists of several Phytoreovirus S7 proteins which are thought to be viral core proteins. 505 -336643 pfam07237 DUF1428 Protein of unknown function (DUF1428). This family consists of several hypothetical bacterial and one archaeal sequence of around 120 residues in length. The function of this family is unknown. The structure of this family shows it to be part of the Dimeric-alpha-beta-barrel superfamily. Many members are annotated as being RNA signal recognition particle 4.5S RNA, but this could not be verified. 101 -336644 pfam07238 PilZ PilZ domain. PilZ is a c-di-GMP binding domain which is found C terminal to pfam07317. Proteins which contain PilZ are known to interact with the flagellar switch-complex proteins FliG and FliM. This interaction results in a reduction of torque generation and induces CCW motor bias. This domain forms a beta barrel structure. 101 -284621 pfam07239 OpcA Outer membrane protein OpcA. This family consists of several Neisseria species specific OpcA outer membrane proteins. Opc (formerly called 5C) is one of the major outer membrane proteins and has been shown to play an important role in meningococcal adhesion and invasion of both epithelial and endothelial cells. 244 -311282 pfam07240 Turandot Stress-inducible humoral factor Turandot. This family consists of several Drosophila species specific Turandot proteins. The Turandot A (TotA) gene encodes a humoral factor, which is secreted from the fat body and accumulates in the body fluids. TotA is strongly induced upon bacterial challenge, as well as by other types of stress such as high temperature, mechanical pressure, dehydration, UV irradiation, and oxidative agents. It is also up-regulated during metamorphosis and at high age. Flies that over-express TotA show prolonged survival and retain normal activity at otherwise lethal temperatures. Although TotA is only induced by severe stress, it responds to a much wider range of stimuli than heat shock genes such as hsp70 or immune genes such as Cecropin A1. 81 -336645 pfam07242 DUF1430 Protein of unknown function (DUF1430). This family represents the C-terminus (approximately 120 residues) of a number of hypothetical bacterial proteins of unknown function. These are possibly membrane proteins involved in immunity. 100 -311284 pfam07243 Phlebovirus_G1 Phlebovirus glycoprotein G1. This family consists of several Phlebovirus glycoprotein G1 sequences. Members of the Bunyaviridae family acquire an envelope by budding through the lipid bilayer of the Golgi complex. The budding compartment is thought to be determined by the accumulation of the two heterodimeric membrane glycoproteins G1 and G2 in the Golgi. 527 -311285 pfam07244 POTRA Surface antigen variable number repeat. This family is found primarily in bacterial surface antigens, normally as variable number repeats at the N-terminus. The C-terminus of these proteins is normally represented by pfam01103. The alignment centers on a -GY- or -GF- motif. Some members of this family are found in the mitochondria. It is predicted to have a mixed alpha/beta secondary structure. 80 -148700 pfam07245 Phlebovirus_G2 Phlebovirus glycoprotein G2. This family consists of several Phlebovirus glycoprotein G2 sequences. Members of the Bunyaviridae family acquire an envelope by budding through the lipid bilayer of the Golgi complex. The budding compartment is thought to be determined by the accumulation of the two heterodimeric membrane glycoproteins G1 and G2 in the Golgi. 504 -148701 pfam07246 Phlebovirus_NSM Phlebovirus nonstructural protein NS-M. This family consists of several Phlebovirus nonstructural NS-M proteins which represent the N-terminal region of the M polyprotein precursor. The function of this family is unknown. 264 -254122 pfam07247 AATase Alcohol acetyltransferase. This family contains a number of alcohol acetyltransferase (EC:2.3.1.84) enzymes approximately 500 residues long found in both bacteria and metazoa. These catalyze the esterification of isoamyl alcohol by acetyl coenzyme A. 480 -311286 pfam07248 DUF1431 Protein of unknown function (DUF1431). This family contains a number of Drosophila melanogaster proteins of unknown function. These contain several conserved cysteine residues. 154 -284626 pfam07249 Cerato-platanin Cerato-platanin. This family contains a number of fungal cerato-platanin phytotoxic proteins approximately 150 residues long. Cerato-platanin contains four cysteine residues that form two disulphide bonds. 117 -336646 pfam07250 Glyoxal_oxid_N Glyoxal oxidase N-terminus. This family represents the N-terminus (approximately 300 residues) of a number of plant and fungal glyoxal oxidase enzymes. Glyoxal oxidase catalyzes the oxidation of aldehydes to carboxylic acids, coupled with reduction of dioxygen to hydrogen peroxide. It is an essential component of the extracellular lignin degradation pathways of the wood-rot fungus Phanerochaete chrysosporium. 242 -284628 pfam07252 DUF1433 Protein of unknown function (DUF1433). This family contains a number of hypothetical bacterial proteins of unknown function approximately 100 residues in length. 88 -254125 pfam07253 Gypsy Gypsy protein. This family consists of several Gypsy/Env proteins from Drosophila and Ceratitis fruit fly species. Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. Gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers. This family contains many members with full-length matches; however, it also includes a number of very short sequences and short matches of sequences with other unrelated domains on them, which cannot be excluded. These matches may represent remnants of once-functional genes. 472 -311288 pfam07254 Cpta_toxin Membrane-bound toxin component of toxin-antitoxin system. CptA is a family of bacterial proteins named for the member of this family, YGFX_ECOLI. YgfX was previously thought to be the toxic part of a toxin-antitoxin module along with the antitoxin, pfam03937 Sdh5. However, studies have shown that, YgfX interferes with correct cell division and morphology. Furthermore, the function of YgfX-SdhE as a TA system could not be demonstrated in either E. coli or Serratia sp. ATCC 39006. YgfX is predicted to have a short N-terminal cytoplasmic domain followed by two transmembrane helices (TMHs) separated by a short periplasmic loop and finally, a larger C-terminal cytoplasmic domain. The TMHs of YgfX are required for activity, but the sequence of the cytoplasmic 13 N-terminal amino acids is not essential. Furthermore, the amino acids W34 and D117 are not required for localization but are necessary for YgfX multimerization, interaction with SdhE, and YgfX activity. It is proposed that the formation of YgfX multimeric membrane-bound proteins are required to enable the interaction with the cytoplasmic SDH assembly factor SdhE. Another study has demonstrated that sdhEygfX (bicistronic operon) affects pig biosynthesis, directly or indirectly, at the level of transcription of the biosynthetic operon (pigA-O). It has also been suggested that, in addition to indirect transcriptional activation of pigA-O, YgfX might facilitate the formation of a terminal pig biosynthetic complex consisting of PigB and PigC. 130 -284630 pfam07255 Benyvirus_14KDa Benyvirus 14KDa protein. This family consists of several Benyvirus specific 14KDa proteins of around 125 residues in length. Members of this family contain 9 conserved cysteine residues. The function of this family is unknown. 123 -336647 pfam07256 DUF1435 Protein of unknown function (DUF1435). This family consists of several hypothetical Enterobacterial proteins of around 80 residues in length. The function of this family is unknown. 75 -336648 pfam07258 COMM_domain COMM domain. The leucine-rich, 70-85 amino acid long COMM domain is predicted to form a beta-sheet and an extreme C-terminal alpha- helix. The COMM domain containing proteins are about 200 residues in length and passed the C-terminal COMM domain. 71 -311291 pfam07259 ProSAAS ProSAAS precursor. This family consists of several mammalian proSAAS precursor proteins. ProSAAS mRNA is expressed primarily in brain and other neuroendocrine tissues (pituitary, adrenal, pancreas); within brain, the mRNA is broadly distributed among neurons. ProSAAS is thought to be an endogenous inhibitor of prohormone convertase 1 may function as a neuropeptide. N-terminal fragments of proSAAS in intracellular Pick Bodies (PBs) may cause a functional disturbance of neurons in Pick's disease. 188 -311292 pfam07260 ANKH Progressive ankylosis protein (ANKH). This family consists of several progressive ankylosis protein (ANK or ANKH) sequences. The ANK protein spans the outer cell membrane and shuttles inorganic pyrophosphate (PPi), a major inhibitor of physiologic and pathologic calcification, bone mineralisation and bone resorption. Mutations in ANK are thought to give rise to Craniometaphyseal dysplasia (CMD) which is a rare skeletal disorder characterized by progressive thickening and increased mineral density of craniofacial bones and abnormally developed metaphyses in long bones. This family shows distant homology to the MOP (TCDB) superfamily of transporters. 344 -336649 pfam07261 DnaB_2 Replication initiation and membrane attachment. This family consists of several bacterial replication initiation and membrane attachment (DnaB) proteins, as well as DnaD which is a component of the PriA primosome. The PriA primosome functions to recruit the replication fork helicase onto the DNA. The DnaB protein is essential for both replication initiation and membrane attachment of the origin region of the chromosome and plasmid pUB110 in Bacillus subtilis. It is known that there are two different classes (DnaBI and DnaBII) in the DnaB mutants; DnaBI is essential for both chromosome and pUB110 replication, whereas DnaBII is necessary only for chromosome replication. DnaD has been merged into this family. This family also includes Ftn6, a cyanobacterial-specific divisome component possibly playing a role at the interface between DNA replication and cell division. Ftn6 possesses a conserved domain localized within the N-terminus of the proteins. This domain, named FND, exhibits sequence and structure similarities with the DnaD-like domains pfam04271 now merged into pfam07261. 73 -336650 pfam07262 CdiI CDI immunity protein. CdiI immunity proteins function as part of the bacterial contact-dependent growth inhibition (CDI) system. CDI is mediated by the CdiB-CdiA two-partner secretion system. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). Cells with the CDI sytem also express a CdiI immunity protein that blocks the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. In many CDI systems the cdiBAI genes are followed by orphan cdiA-CT/cdiI modules, suggesting that these modules are exchanged between the CDI systems of different bacteria. 156 -311295 pfam07263 DMP1 Dentin matrix protein 1 (DMP1). This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralised dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralised matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown. 522 -336651 pfam07264 EI24 Etoposide-induced protein 2.4 (EI24). This family contains a number of eukaryotic etoposide-induced 2.4 (EI24) proteins approximately 350 residues long as well as bacterial CysZ proteins (formerly known as DUF540). In cells treated with the cytotoxic drug etoposide, EI24 is induced by p53. It has been suggested to play an important role in negative cell growth control. 161 -311297 pfam07265 TAP35_44 Tapetum specific protein TAP35/TAP44. This family consists of several plant tapetum specific proteins. Members of this family are found in Arabidopsis thaliana, Brassica napus and Sinapis alba. Members of this family may be involved in sporopollenin formation and/or deposition. 119 -311298 pfam07267 Nucleo_P87 Nucleopolyhedrovirus capsid protein P87. This family consists of several Nucleopolyhedrovirus capsid protein P87 sequences. P87 is expressed late in infection and concentrated in infected cell nuclei. 620 -284641 pfam07268 EppA_BapA Exported protein precursor (EppA/BapA). This family consists of a number of exported protein precursor (EppA and BapA) sequences which seem to be specific to Borrelia burgdorferi (Lyme disease spirochete). bapA gene sequences are quite stable but the encoded proteins do not provoke a strong immune response in most individuals. Conversely, EppA proteins are much more antigenic but are more variable in sequence. It is thought that BapA and EppA play important roles during the Borrelia burgdorferi infectious cycle. 138 -284642 pfam07270 DUF1438 Protein of unknown function (DUF1438). This family consists of several hypothetical proteins of around 170 residues in length which appear to be mouse specific. The function of this family is unknown. 151 -284643 pfam07271 Cytadhesin_P30 Cytadhesin P30/P32. This family consists of several Mycoplasma species specific Cytadhesin P32 and P30 proteins. P30 has been found to be membrane associated and localized on the tip organelle. It is thought that it is important in cytadherence and virulence. 308 -148716 pfam07272 Orthoreo_P17 Orthoreovirus P17 protein. This family consists of several Orthoreovirus P17 proteins. P17 is specified be ORF2 of the S1 gene and represents a nonstructural protein which associate with cell membranes. 146 -336652 pfam07273 DUF1439 Protein of unknown function (DUF1439). This family consists of several hypothetical bacterial proteins of around 190 residues in length. Several members of this family are annotated as being putative lipoproteins and are often known as YceB. The function of this family is unknown. 151 -336653 pfam07274 DUF1440 Protein of unknown function (DUF1440). This family contains a number of bacterial proteins of unknown function approximately 180 residues long. These are possibly integral membrane proteins. 133 -336654 pfam07275 ArdA Antirestriction protein (ArdA). This family consists of several bacterial antirestriction (ArdA) proteins. ArdA functions in bacterial conjugation to allow an unmodified plasmid to evade restriction in the recipient bacterium and yet acquire cognate modification. 162 -115901 pfam07276 PSGP Apopolysialoglycoprotein (PSGP). This family represents a series of 13 reside repeats found in the apopolysialoglycoprotein of Oncorhynchus mykiss (Rainbow trout) and Oncorhynchus masou (Cherry salmon). Polysialoglycoprotein (PSGP) of unfertilized eggs of rainbow trout consists of tandem repeats of a glycotridecapeptide, Asp-Asp-Ala-Thr*-Ser*-Glu-Ala-Ala-Thr*-Gly-Pro-Ser- Gly (* denotes the attachment site of a polysialoglycan chain). In response to egg activation, PSGP is discharged by exocytosis into the space between the vitelline envelope and the plasma membrane, i.e. the perivitelline space, where the 200-kDa PSGP molecules undergo rapid and dramatic depolymerization by proteolysis into glycotridecapeptides. 13 -336655 pfam07277 SapC SapC. This family contains a number of bacterial SapC proteins approximately 250 residues long. In Campylobacter fetus, SapC forms part of a paracrystalline surface layer (S-layer) that confers serum resistance. 219 -311303 pfam07278 DUF1441 Protein of unknown function (DUF1441). This family consists of several hypothetical Enterobacterial proteins of around 160 residues in length. The function of this family is unknown. However, it appears to be distantly related to other HTH families so may act as a transcriptional regulator. 149 -115904 pfam07279 DUF1442 Protein of unknown function (DUF1442). This family consists of several hypothetical Arabidopsis thaliana proteins of around 225 residues in length. The function of this family is unknown. 218 -148722 pfam07280 Ac110_PIF Per os infectivity factor AC110. This family consists of several Baculovirus proteins of around 55 residues in length. Family members include Autographa californica nuclear polyhedrosis virus (AcMNPV) Per os infectivity factor AC110, which is required for oral infectivity. It may play a role after occlusion-derived virions pass through the host's peritrophic membrane. 43 -336656 pfam07281 INSIG Insulin-induced protein (INSIG). This family contains a number of eukaryotic Insulin-induced proteins (INSIG-1 and INSIG-2) approximately 200 residues long. INSIG-1 and INSIG-2 are found in the endoplasmic reticulum and bind the sterol-sensing domain of SREBP cleavage-activating protein (SCAP), preventing it from escorting SREBPs to the Golgi. Their combined action permits feedback regulation of cholesterol synthesis over a wide range of sterol concentrations. 186 -284650 pfam07282 OrfB_Zn_ribbon Putative transposase DNA-binding domain. This putative domain is found at the C-terminus of a large number of transposase proteins. This domain contains four conserved cysteines suggestive of a zinc binding domain. Given the need for transposases to bind DNA as well as the large number of DNA-binding zinc fingers we hypothesize this domain is DNA-binding. 69 -336657 pfam07283 TrbH Conjugal transfer protein TrbH. This family contains TrbH, a bacterial conjugal transfer protein approximately 150 residues long. This contains a putative membrane lipoprotein lipid attachment site. 126 -311306 pfam07284 BCHF 2-vinyl bacteriochlorophyllide hydratase (BCHF). This family contains the bacterial enzyme 2-vinyl bacteriochlorophyllide hydratase (EC:4.2.1.-) (approximately 150 residues long). This is involved in the light-independent bacteriochlorophyll biosynthesis pathway by adding water across the 2-vinyl group. 139 -311307 pfam07285 DUF1444 Protein of unknown function (DUF1444). This family contains several hypothetical bacterial proteins of unknown function that are approximately 250 residues long. 264 -336658 pfam07286 DUF1445 Protein of unknown function (DUF1445). This family represents a conserved region approximately 150 residues long within a number of hypothetical bacterial and eukaryotic proteins of unknown function. 143 -336659 pfam07287 AtuA Acyclic terpene utilisation family protein AtuA. This family consists of several bacterial and plant proteins of around 400 residues in length. One member of this family has been characterized in Pseudomonas citronellolis as AtuA, a member of a gene cluster that is essential for the acyclic terpene utilisation (Atu) pathway. 353 -336660 pfam07288 DUF1447 Protein of unknown function (DUF1447). This family consists of several bacterial proteins of around 70 residues in length. The function of this family is unknown. 68 -311311 pfam07289 BBL5 Bardet-Biedl syndrome 5 protein. BBS5 is part of the BBSome complex that may function as a coat complex required for sorting of specific membrane proteins to the primary cilia. Mutations in the BBS5 gene cause Bardet-Biedl syndrome 5. 335 -336661 pfam07290 DUF1449 Protein of unknown function (DUF1449). This family consists of several bacterial proteins of around 210 residues in length. The function of this family is unknown. 195 -284659 pfam07291 MauE Methylamine utilisation protein MauE. This family consists of several bacterial methylamine utilisation MauE proteins. Synthesis of enzymes involved in methylamine oxidation via methylamine dehydrogenase (MADH) is encoded by genes present in the mau cluster. MauE and MauD are specifically involved in the processing, transport, and/or maturation of the beta-subunit and that the absence of each of these proteins leads to production of a non-functional beta-subunit which becomes rapidly degraded. 184 -311313 pfam07292 NID Nmi/IFP 35 domain (NID). This family represents a domain of approximately 90 residues that is tandemly repeated within interferon-induced 35 kDa protein (IFP 35) and the homologous N-myc-interactor (Nmi). This domain mediates Nmi-Nmi protein interactions and subcellular localization. 89 -311314 pfam07293 DUF1450 Protein of unknown function (DUF1450). This family consists of several hypothetical bacterial proteins of around 80 residues in length. Members of this family contain four highly conserved cysteine residues. The function of this family is unknown. 75 -284662 pfam07294 Fibroin_P25 Fibroin P25. This family consists of several insect fibroin P25 proteins. Silk fibroin produced by the silkworm Bombyx mori consists of a heavy chain, a light chain, and a glycoprotein, P25. The heavy and light chains are linked by a disulfide bond, and P25 associates with disulfide-linked heavy and light chains by non-covalent interactions. P25 is plays an important role in maintaining integrity of the complex. 196 -336662 pfam07295 DUF1451 Zinc-ribbon containing domain. This family consists of several hypothetical bacterial proteins of around 160 residues in length. Members of this family contain four highly conserved cysteine resides toward the C-terminal region of the protein. 145 -254144 pfam07296 TraP TraP protein. This family consists of several bacterial conjugative transfer TraP proteins from Escherichia coli and Salmonella typhimurium. TraP appears to play a minor role in conjugation and may interact with TraB, which varies in sequence along with TraP, in order to stabilize the proposed transmembrane complex formed by the tra operon products. 202 -311316 pfam07297 DPM2 Dolichol phosphate-mannose biosynthesis regulatory protein (DPM2). This family consists of several eukaryotic dolichol phosphate-mannose biosynthesis regulatory (DPM2) proteins. Biosynthesis of glycosylphosphatidylinositol and N-glycan precursor is dependent upon a mannosyl donor, dolichol phosphate-mannose (DPM). DPM2, an 84 amino acid membrane protein expressed in the endoplasmic reticulum (ER), makes a complex with DPM1 that is essential for the ER localization and stable expression of DPM1. Moreover, DPM2 enhances binding of dolichol phosphate, a substrate of DPM synthase. Biosynthesis of DPM in mammalian cells is regulated by DPM2. 76 -311317 pfam07298 NnrU NnrU protein. This family consists of several plant and bacterial NnrU proteins. NnrU is thought to be involved in the reduction of nitric oxide. The exact function of NnrU is unclear. It is thought however that NnrU and perhaps NnrT are required for expression of both nirK and nor. 194 -311318 pfam07299 EF-G-binding_N Elongation factor G-binding protein, N-terminal. This domain can be found in the N-terminus of the FusB, FusC, and FusD proteins from Staphylococcus aureus. They are elongation factor G (EF-G) binding proteins that are linked to the fusidic acid (FA) resistance in S. aureus. The FusB proteins are two-domain metalloproteins, and this N-terminal domain forms a four-helical bundle whose helices help to stabilize the conformation of the treble-clef zinc-finger in the C-terminal domain. FA is an antibiotic that binds to EF-G, preventing its release from the ribosome, thus stalling bacterial protein synthesis. The FusB proteins provide FA resistance by preventing formation or facilitating dissociation of the FA-locked EF-G-ribosome complex during elongation and ribosome recycling. 82 -311319 pfam07301 DUF1453 Protein of unknown function (DUF1453). This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. Members of this family seem to be found exclusively in the Order Bacillales. 144 -336663 pfam07302 AroM AroM protein. This family consists of several bacterial and archaeal AroM proteins. In Escherichia coli the aroM gene is cotranscribed with aroL. The function of this family is unknown. 218 -336664 pfam07303 Occludin_ELL Occludin homology domain. This domain represents a conserved region approximately 100 residues long within eukaryotic occludin proteins and the RNA polymerase II elongation factor ELL. Occludin is an integral membrane protein that localizes to tight junctions, while ELL is an elongation factor that can increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by polymerase at multiple sites along the DNA. This shared domain is thought to mediate protein interactions. 101 -311322 pfam07304 SRA1 Steroid receptor RNA activator (SRA1). This family consists of several hypothetical mammalian steroid receptor RNA activator proteins. SRA-RNAs likely to encode stable proteins are widely expressed in breast cancer cell lines. SRA-RNA is a steroid receptor co-activator which acts as a functional RNA and is classified as belonging to the growing family of functional non-coding RNAs. 145 -336665 pfam07305 DUF1454 Protein of unknown function (DUF1454). This family consists of several Enterobacterial sequences of around 200 residues in length which are often known as YiiQ proteins. The function of this family is unknown. 189 -284672 pfam07306 DUF1455 Protein of unknown function (DUF1455). This family consists of several hypothetical putative outer membrane proteins which appear to be specific to Anaplasma marginale and Anaplasma ovis. 130 -311324 pfam07307 HEPPP_synt_1 Heptaprenyl diphosphate synthase (HEPPP synthase) subunit 1. This family contains subunit 1 of bacterial heptaprenyl diphosphate synthase (HEPPP synthase) (EC:2.5.1.30) (approximately 230 residues long). The enzyme consists of two subunits, both of which are required for catalysis of heptaprenyl diphosphate synthesis. 210 -336666 pfam07308 DUF1456 Protein of unknown function (DUF1456). This family consists of several hypothetical bacterial proteins of around 150 residues in length. The function of this family is unknown. 68 -336667 pfam07309 FlaF Flagellar protein FlaF. This family consists of several bacterial FlaF flagellar proteins. FlaF and FlaG are trans-acting, regulatory factors that modulate flagellin synthesis during flagellum biogenesis. 112 -284676 pfam07310 PAS_5 PAS domain. This family contains a number of hypothetical bacterial proteins of unknown function approximately 200 residues long. This region is is distantly similar to other PAS domains. 136 -336668 pfam07311 Dodecin Dodecin. Dodecin is a flavin-binding protein,found in several bacteria and few archaea and represents a stand-alone version of the SHS2 domain. It most closely resembles the SHS2 domains of FtsA and Rpb7p, and represents a single domain small-molecule binding form. 62 -311328 pfam07312 DUF1459 Protein of unknown function (DUF1459). This family consists of several hypothetical Caenorhabditis elegans proteins of around 85 residues in length. The function of this family is unknown. 81 -311329 pfam07313 DUF1460 Protein of unknown function (DUF1460). This family consists of several hypothetical bacterial proteins of around 260 residues in length. The function of this family is unknown. 212 -336669 pfam07314 DUF1461 Protein of unknown function (DUF1461). This family contains a number of hypothetical bacterial proteins of unknown function approximately 200 residues long. These are possibly integral membrane proteins. 177 -311331 pfam07315 DUF1462 Protein of unknown function (DUF1462). This family consists of several hypothetical bacterial proteins of around 100 residues in length. The function of this family is unknown. 93 -311332 pfam07316 DUF1463 Protein of unknown function (DUF1463). This family consists of several hypothetical bacterial proteins of around 140 residues in length. Members of this family seem to be found exclusively in Borrelia burgdorferi (Lyme disease spirochete). The function of this family is unknown. 137 -336670 pfam07317 YcgR Flagellar regulator YcgR. This domain is found N terminal to pfam07238. Proteins which contain YcgR domains are known to interact with the flagellar switch-complex proteins FliG and FliM. This interaction results in a reduction of torque generation and induces CCW motor bias. 103 -311334 pfam07318 DUF1464 Protein of unknown function (DUF1464). This family consists of several hypothetical archaeal proteins of around 350 residues in length. The function of this family is unknown. 327 -336671 pfam07319 DnaI_N Primosomal protein DnaI N-terminus. This family represents the N-terminus (approximately 120 residues) of bacterial primosomal DnaI proteins, although one family member appears to be of viral origin. DnaI is one of the components of the Bacillus subtilis replication restart primosome, and is required for the DnaB75-dependent loading of the DnaC helicase. 90 -284686 pfam07321 YscO Type III secretion protein YscO. This family contains the bacterial type III secretion protein YscO, which is approximately 150 residues long. YscO has been shown to be required for high-level expression and secretion of the anti-host proteins V antigen and Yops in Yersinia pestis. 149 -284687 pfam07322 Seadorna_Vp10 Seadornavirus Vp10. This family consists of several Seadornavirus Vp10 proteins found in the Banna and Kadipiro viruses. Members of this family are typically around 240 residues in length. The function of this family is unknown. 241 -336672 pfam07323 DUF1465 Protein of unknown function (DUF1465). This family consists of several hypothetical bacterial proteins of around 180 residues in length. The function of this family is unknown. 154 -311337 pfam07324 DGCR6 DiGeorge syndrome critical region 6 (DGCR6) protein. This family contains DiGeorge syndrome critical region 6 (DGCR6) proteins (approximately 200 residues long) of a number of vertebrates. DGCR6 is a candidate for involvement in the DiGeorge syndrome pathology by playing a role in neural crest cell migration into the third and fourth pharyngeal pouches, the structures from which derive the organs affected in DiGeorge syndrome. Also found in this family is the Drosophila melanogaster gonadal protein gdl. 187 -148753 pfam07325 Curto_V2 Curtovirus V2 protein. This family consists of several Curtovirus V2 proteins. The exact function of V2 is unclear but it is known that the protein is required for a successful host infection process. 126 -311338 pfam07326 DUF1466 Protein of unknown function (DUF1466). This family consists of several hypothetical mammalian proteins of around 240 residues in length. 232 -115951 pfam07327 Neuroparsin Neuroparsin. This family consists of several locust specific neuroparsin proteins. Neuroparsins are produced by the A1 type of protocerebral median neurosecretory cells of the PI-CC system and display pleiotropic activities: inhibition of the effect of juvenile hormone, stimulation of fluid reabsorption of isolated recta, induction of an increase in hemolymph lipid and trehalose levels, and neurotrophic effects. 103 -284691 pfam07328 VirD1 T-DNA border endonuclease VirD1. This family consists of several T-DNA border endonuclease VirD1 proteins which appear to be found exclusively in Agrobacterium species. Agrobacterium, a plant pathogen, is capable to stably transform the plant cell with a segment of its own DNA called T-DNA (transferred DNA). This process depends, among others, on the specialized bacterial virulence proteins VirD1 and VirD2 that excise the T-DNA from its adjacent sequences. VirD1 is thought to interact with VirD2 in this process. 142 -336673 pfam07330 DUF1467 Protein of unknown function (DUF1467). This family consists of several bacterial proteins of around 90 residues in length. The function of this family is unknown. 82 -336674 pfam07331 TctB Tripartite tricarboxylate transporter TctB family. This family consists of several hypothetical bacterial proteins of around 150 residues in length. This family was formerly known as DUF1468. 139 -336675 pfam07332 Phage_holin_3_6 Putative Actinobacterial Holin-X, holin superfamily III. Phage_holin_3_6 is a family of small hydrophobic proteins with two or three transmembrane domains of the Hol-X family. Holin proteins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. 113 -284695 pfam07333 SLR1-BP S locus-related glycoprotein 1 binding pollen coat protein (SLR1-BP). This family consists of a number of cysteine rich SLR1 binding pollen coat like proteins. Adhesion of pollen grains to the stigmatic surface is a critical step during sexual reproduction in plants. In Brassica, S locus-related glycoprotein 1 (SLR1), a stigma-specific protein belonging to the S gene family of proteins, has been shown to be involved in this step. SLR1-BP specifically binds SLR1 with high affinity. The SLR1-BP gene is specifically expressed in pollen at late stages of development and is a member of the class A pollen coat protein (PCP) family, which includes PCP-A1, an SLG (S locus glycoprotein)-binding protein. 56 -284696 pfam07334 IFP_35_N Interferon-induced 35 kDa protein (IFP 35) N-terminus. This family represents the N-terminus of interferon-induced 35 kDa protein (IFP 35) (approximately 80 residues long), which contains a leucine zipper motif in an alpha helical configuration. This family also includes N-myc-interactor (Nmi), a homologous interferon-induced protein. 76 -311342 pfam07335 Glyco_hydro_75 Fungal chitosanase of glycosyl hydrolase group 75. This family consists of several fungal chitosanase proteins. Chitin, xylan, 6-O-sulphated chitosan and O-carboxymethyl chitin are indigestible by chitosanase. EC:3.2.1.132. The mechanism is likely to be inverting, and the probable catalytic neutrophile base is Asp, with the probable catalytic proton donor being Glu. (see the Chitosanase web-page from CAZY). 162 -336676 pfam07336 ABATE Putative stress-induced transcription regulator. The structure of one member of the ABATE domain family consists of a two-domain organisation, with the N-terminal domain presenting a new fold called the ABATE domain that may bind an as yet unknown ligand. The C-terminal domain forms a treble-clef zinc-finger that is likely to be involved in DNA binding. suggests a role as stress-induced transcriptional regulator. Further computational analyses sugeests a role as a stress-induced transcriptional regulator. Members of this family are found in Streptomyces, Rhizobium, Ralstonia, Agrobacterium and Bradyrhizobium species. 89 -284699 pfam07337 CagY_M DC-EC Repeat. This repeat is found in the CagY proteins - part of the CAG pathogenicity island - and involved in delivery of the protein CagA into host cells. It forms part of a surface needle structure, and this repeat may form an alpha-helical rod structure. A conserved -DC- and -EC- can be seen in regularly spaced in the alignment. 32 -336677 pfam07338 DUF1471 Protein of unknown function (DUF1471). This family consists of several hypothetical Enterobacterial proteins of around 90 residues in length. Some members of this family are annotated as ydgH precursors and contain two copies of this region, one at the N-terminus and the other at the C-terminus. The function of this family is unknown. 54 -115962 pfam07339 DUF1472 Protein of unknown function (DUF1472). This family consists of several Enterobacterial proteins of around 125 residues in length and contains 6 highly conserved cysteine residues. The function of this family is unknown. 101 -284701 pfam07340 Herpes_IE1 Cytomegalovirus IE1 protein. Expression from a human cytomegalovirus early promoter (E1.7) has been shown to be activated in trans by the IE2 gene product. Although the IE1 gene product alone had no effect on this early viral promoter, maximal early promoter activity was detected when both IE1 and IE2 gene products were present. The IE1 protein from cytomegalovirus is also known as UL123. 391 -115964 pfam07341 DUF1473 Protein of unknown function (DUF1473). This family consists of several hypothetical bacterial proteins of around 150 residues in length. Members of this family seem to be found exclusively in Borrelia burgdorferi (Lyme disease spirochete). The function of this family is unknown. 163 -284702 pfam07342 DUF1474 Protein of unknown function (DUF1474). This family consists of several bacterial proteins of around 100 residues in length. Members of this family seem to be found exclusively in Staphylococcus aureus. The function of this family is unknown. 100 -311345 pfam07343 DUF1475 Protein of unknown function (DUF1475). This family consists of several hypothetical plant proteins of around 250 residues in length. Members of this family seem to be found exclusively in Arabidopsis thaliana. The function of this family is unknown. 236 -311346 pfam07344 Amastin Amastin surface glycoprotein. This family contains the eukaryotic surface glycoprotein amastin (approximately 180 residues long).In Trypanosoma cruzi, amastin is particularly abundant during the amastigote stage. 156 -311347 pfam07345 DUF1476 Domain of unknown function (DUF1476). This family consists of several hypothetical bacterial proteins of around 100 residues in length. Members of this family are found in Bradyrhizobium, Rhizobium, Brucella and Caulobacter species. The function of this family is unknown. 102 -311348 pfam07346 DUF1477 Protein of unknown function (DUF1477). This family consists of several hypothetical Nucleopolyhedrovirus proteins of around 100 resides in length. The function of this family is unknown. 115 -336678 pfam07347 CI-B14_5a NADH:ubiquinone oxidoreductase subunit B14.5a (Complex I-B14.5a). This family contains the eukaryotic NADH:ubiquinone oxidoreductase subunit B14.5a (Complex I-B14.5a) (EC:1.6.5.3). This is approximately 100 residues long, and forms part of a multiprotein complex that resides on the inner mitochondrial membrane. The main function of the complex is the transport of electrons from NADH to ubiquinone, accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. 95 -336679 pfam07348 Syd Syd protein (SUKH-2). This family contains a number of bacterial Syd proteins approximately 180 residues long. It has been suggested that Syd is loosely associated with the cytoplasmic surface of the cytoplasmic membrane, and that interaction with SecY may be involved in this membrane association. Operon analysis showed that Syd protein may function as immunity protein in bacterial toxin systems. 174 -284709 pfam07349 DUF1478 Protein of unknown function (DUF1478). This family consists of several hypothetical Sapovirus proteins of around 165 residues in length. The function of this family is unknown. 161 -311351 pfam07350 DUF1479 Protein of unknown function (DUF1479). This family consists of several hypothetical Enterobacterial proteins, of around 420 residues in length. Members of this family are often known as YbiU. The function of this family is unknown. 404 -336680 pfam07351 DUF1480 Protein of unknown function (DUF1480). This family consists of several hypothetical Enterobacterial proteins of around 80 residues in length. The function of this family is unknown. 79 -336681 pfam07352 Phage_Mu_Gam Bacteriophage Mu Gam like protein. This family consists of bacterial and phage Gam proteins. The gam gene of bacteriophage Mu encodes a protein which protects linear double stranded DNA from exonuclease degradation in vitro and in vivo. 146 -284713 pfam07353 Uroplakin_II Uroplakin II. This family contains uroplakin II, which is approximately 180 residues long and seems to be restricted to mammals. Uroplakin II is an integral membrane protein, and is one of the components of the apical plaques of mammalian urothelium formed by the asymmetric unit membrane - this is believed to play a role in strengthening the urothelial apical surface to prevent the cells from rupturing during bladder distension. 161 -336682 pfam07354 Sp38 Zona-pellucida-binding protein (Sp38). This family contains a number of zona-pellucida-binding proteins that seem to be restricted to mammals. These are sperm proteins that bind to the 90-kDa family of zona pellucida glycoproteins in a calcium-dependent manner. These represent some of the specific molecules that mediate the first steps of gamete interaction, allowing fertilisation to occur. 177 -311354 pfam07355 GRDB Glycine/sarcosine/betaine reductase selenoprotein B (GRDB). This family represents a conserved region approximately 350 residues long within the selenoprotein B component of the bacterial glycine, sarcosine and betaine reductase complexes. 347 -336683 pfam07356 DUF1481 Protein of unknown function (DUF1481). This family consists of several hypothetical bacterial proteins of around 230 residues in length. Members of this family are often referred to as YjaH and are found in the Orders Vibrionales and Enterobacteriales. The function of this family is unknown. 186 -311356 pfam07357 DRAT Dinitrogenase reductase ADP-ribosyltransferase (DRAT). This family consists of several bacterial dinitrogenase reductase ADP-ribosyltransferase (DRAT) proteins. Members of this family seem to be specific to Rhodospirillum, Rhodobacter and Azospirillum species. Dinitrogenase reductase ADP-ribosyl transferase (DRAT) carries out the transfer of the ADP-ribose from NAD to the Arg-101 residue of one subunit of the dinitrogenase reductase homodimer, resulting in inactivation of that enzyme. Dinitrogenase reductase-activating glycohydrolase (DRAG) removes the ADP-ribose group attached to dinitrogenase reductase, thus restoring nitrogenase activity. The DRAT-DRAG system negatively regulates nitrogenase activity in response to exogenous NH4+ or energy limitation in the form of a shift to darkness or to anaerobic conditions. 256 -284717 pfam07358 DUF1482 Protein of unknown function (DUF1482). This family consists of several Enterobacterial proteins of around 60 residues in length. The function of this family is unknown. 57 -284718 pfam07359 LEAP-2 Liver-expressed antimicrobial peptide 2 precursor (LEAP-2). This family consists of several mammalian liver-expressed antimicrobial peptide 2 (LEAP-2) sequences. LEAP-2 is a cysteine-rich, and cationic protein. LEAP-2 contains a core structure with two disulfide bonds formed by cysteine residues in relative 1-3 and 2-4 positions. LEAP-2 is synthesized as a 77-residue precursor, which is predominantly expressed in the liver and highly conserved among mammals. The largest native LEAP-2 form of 40 amino acid residues is generated from the precursor at a putative cleavage site for a furin-like endoprotease. In contrast to smaller LEAP-2 variants, this peptide exhibits dose-dependent antimicrobial activity against selected microbial model organisms. The exact function of this family is unclear. 77 -311357 pfam07361 Cytochrom_B562 Cytochrome b562. This family contains the bacterial cytochrome b562. This forms a four-helix bundle that non-covalently binds a single heme prosthetic group.. 101 -336684 pfam07362 CcdA Post-segregation antitoxin CcdA. This family consists of several Enterobacterial post-segregation antitoxin CcdA proteins. The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. 71 -284721 pfam07363 DUF1484 Protein of unknown function (DUF1484). This family consists of several hypothetical bacterial proteins of around 110 residues in length. Members of this family appear to be found exclusively in Ralstonia solanacearum. The function of this family is unknown. 109 -336685 pfam07364 DUF1485 Metallopeptidase family M81. This is a family of proteobacterial metallo-peptidases. 287 -191732 pfam07365 Toxin_8 Alpha conotoxin precursor. This family consists of several alpha conotoxin precursor proteins from a number of Conus species. The alpha-conotoxins are small peptide neurotoxins from the venom of fish-hunting cone snails which block nicotinic acetylcholine receptors (nAChRs). 50 -336686 pfam07366 SnoaL SnoaL-like polyketide cyclase. This family includes SnoaL a polyketide cyclase involved in nogalamycin biosynthesis. This family was formerly known as DUF1486. The proteins in this family adopt a distorted alpha-beta barrel fold. Structural data together with site-directed mutagenesis experiments have shown that SnoaL has a different mechanism to that of the classical aldolase for catalyzing intramolecular aldol condensation. 126 -311361 pfam07367 FB_lectin Fungal fruit body lectin. This family consists of several fungal fruit body lectin proteins. Fruit body lectins are thought to have insecticidal activity and may also function in capturing nematodes. 139 -254173 pfam07368 DUF1487 Protein of unknown function (DUF1487). This family consists of several uncharacterized proteins from Drosophila melanogaster. The function of this family is unknown. 215 -336687 pfam07369 DUF1488 Protein of unknown function (DUF1488). This family consists of several hypothetical bacterial proteins of around 85 residues in length. The function of this family is unknown. 82 -311363 pfam07370 DUF1489 Protein of unknown function (DUF1489). This family consists of several hypothetical bacterial proteins of around 150 residues in length. Members of this family seem to be founds exclusively in the Class Alphaproteobacteria. The function of this family is unknown. 137 -311364 pfam07371 DUF1490 Protein of unknown function (DUF1490). This family consists of several hypothetical bacterial proteins of around 90 residues in length. Members of the family seem to be found exclusively in Mycobacterium species. The function of this family is unknown. 88 -336688 pfam07372 DUF1491 Protein of unknown function (DUF1491). This family consists of several bacterial proteins of around 115 residues in length. Members of this family seem to be found exclusively in the Class Alphaproteobacteria. The function of this family is unknown. 103 -284729 pfam07373 CAMP_factor CAMP factor (Cfa). This family consists of several bacterial CAMP factor (Cfa) proteins which seem to be specific to Streptococcus species. The CAMP reaction is a synergistic lysis of erythrocytes by the interaction of an extracellular protein (CAMP factor) produced by some streptococcal species with the Staphylococcus aureus sphingomyelinase C (beta-toxin). 220 -311366 pfam07374 DUF1492 Protein of unknown function (DUF1492). This family consists of several hypothetical, highly conserved Streptococcal and related phage proteins of around 100 residues in length. The function of this family is unknown. It appears to be distantly related to pfam08281. 100 -284730 pfam07376 Prosystemin Prosystemin. This family consists of several plant specific prosystemin proteins. Prosystemin is the precursor protein of the 18 amino acid wound signal systemin which activates systemic defense in plant leaves against insect herbivores. 204 -311367 pfam07377 DUF1493 Protein of unknown function (DUF1493). This family consists of several bacterial proteins of around 115 residues in length. Members of this family seem to be found exclusively in Salmonella and Yersinia species and several have been described as being putative cytoplasmic proteins. The function of this family is unknown. 110 -336689 pfam07378 FlbT Flagellar protein FlbT. This family consists of several FlbT proteins. FlbT is a post-transcriptional regulator of flagellin. FlbT is associated with the 5' untranslated region (UTR) of fljK (25 kDa flagellin) mRNA and that this association requires a predicted loop structure in the transcript. Mutations within this loop abolish FlbT association and result in increased mRNA stability. It is therefore thought that FlbT promotes the degradation of flagellin mRNA by associating with the 5' UTR. 119 -284733 pfam07379 DUF1494 Protein of unknown function (DUF1494). This family consists of several bacterial proteins of around 175 residues in length. Members of this family seem to be found exclusively in Chlamydia species. The function of this family is unknown. 179 -284734 pfam07380 Pneumo_M2 Pneumovirus M2 protein. This family consists of several Pneumovirus M2 proteins. The M2-1 protein of respiratory syncytial virus (RSV) is a transcription processivity factor that is essential for virus replication. 89 -284735 pfam07381 DUF1495 Winged helix DNA-binding domain (DUF1495). This family consists of several hypothetical archaeal proteins of around 110 residues in length. The structure of this domain possesses a winged helix DNA-binding domain suggesting these proteins are bacterial transcription factors. 90 -336690 pfam07382 HC2 Histone H1-like nucleoprotein HC2. This family contains the bacterial histone H1-like nucleoprotein HC2 (approximately 200 residues long), which seems to be found mostly in Chlamydia. HC2 functions in DNA condensation, although it has been suggested that it also has other roles. 187 -311370 pfam07383 DUF1496 Protein of unknown function (DUF1496). This family consists of several bacterial proteins of around 90 residues in length. Members of this family seem to be found exclusively in the Orders Vibrionales and Enterobacteriales. The function of this family is unknown. 53 -284738 pfam07384 DUF1497 Protein of unknown function (DUF1497). This family consists of several phage and bacterial proteins of around 59 residues in length. Members of this family seem to be found exclusively in Lactococcus lactis and the bacteriophages that infect this organism. The function of this family is unknown. 59 -336691 pfam07385 Lyx_isomer D-lyxose isomerase. Members of this family of sugar isomerases belong to the cupin superfamily. The enzyme from Cohnella laevoribosii has been shown to be specific for D-lyxose, L-ribose, and D-mannose. E. coli sugar isomerase (EcSI) has been structurally and functionally characterized and shows a preference for D-lyxose and D-mannose. 223 -336692 pfam07386 DUF1499 Protein of unknown function (DUF1499). This family consists of several hypothetical bacterial and plant proteins of around 125 residues in length. The function of this family is unknown. 114 -254182 pfam07387 Seadorna_VP7 Seadornavirus VP7. This family consists of several Seadornavirus specific VP7 proteins of around 305 residues in length. The function of this family is unknown. However, it appears to be distantly related to protein kinases. 308 -311373 pfam07388 A-2_8-polyST Alpha-2,8-polysialyltransferase (POLYST). This family contains the bacterial enzyme alpha-2,8-polysialyltransferase (EC:2.4.99.-) (approximately 500 residues long). This catalyzes the polycondensation of alpha-2,8-linked sialic acid required for the synthesis of polysialic acid (PSA). 414 -284742 pfam07389 DUF1500 Protein of unknown function (DUF1500). This family consists of several Orthopoxvirus specific proteins of around 100 residues in length. The function of this family is unknown. 97 -311374 pfam07390 P30 Mycoplasma P30 protein. This family consists of several P30 proteins which seem to be specific to Mycoplasma agalactiae. P30 is a 30-kDa immunodominant antigen and is known to be a transmembrane protein. 267 -311375 pfam07391 NPR NPR nonapeptide repeat (2 copies). This nine residue repeat which I have called NPR after NonaPeptide Repeat. It is found in two malarial proteins and has the consensus EEhhEEhhP where h stands for a hydrophobic amino acid. 17 -311376 pfam07392 P19Arf_N Cyclin-dependent kinase inhibitor 2a p19Arf N-terminus. This family represents the N-terminus (approximately 50 residues) of cyclin-dependent kinase inhibitor 2a p19Arf, which seems to be restricted to mammals. This is a tumor-suppressor protein that has been shown to inhibit the growth of human tumor cells lacking functional p53 by inducing a transient G2 arrest and subsequently apoptosis. 51 -311377 pfam07393 Sec10 Exocyst complex component Sec10. This family contains the Sec10 component (approximately 650 residues long) of the eukaryotic exocyst complex, which specifically affects the synthesis and delivery of secretory and basolateral plasma membrane proteins. 696 -254185 pfam07394 DUF1501 Protein of unknown function (DUF1501). This family contains a number of hypothetical bacterial proteins of unknown function approximately 400 residues long. 393 -284747 pfam07395 Mig-14 Mig-14. This family contains a number of bacterial mig-14 proteins (approximately 270 residues long). In Salmonella, mig-14 contributes to resistance to antimicrobial peptides, although the mechanism is not fully understood. 264 -311378 pfam07396 Porin_O_P Phosphate-selective porin O and P. This family represents a conserved region approximately 400 residues long within the bacterial phosphate-selective porins O and P. These are anion-specific porins, the binding site of which has a higher affinity for phosphate than chloride ions. Porin O has a higher affinity for polyphosphates, while porin P has a higher affinity for orthophosphate. In P. aeruginosa, porin O was found to be expressed only under phosphate-starvation conditions during the stationary growth phase. 357 -116019 pfam07397 DUF1502 Repeat of unknown function (DUF1502). This family consists of a number of repeats of around 34 residues in length. Members of this family seem to be found exclusively in three hypothetical Murid herpesvirus 4 proteins. The function of this family is unknown. 34 -311379 pfam07398 MDMPI_C MDMPI C-terminal domain. This domain is found at the C-terminus of the mycothiol maleylpyruvate isomerase enzyme (MDMPI). The structure of this protein has been solved. This domain appears weakly similar to pfam08608. 87 -336693 pfam07399 Na_H_antiport_3 Putative Na+/H+ antiporter. This family consists of several hypothetical bacterial proteins of around 440 residues in length. The function of this family is unknown. Many members carry 11 or 12 transmembrane regions, suggesting that they might be transporters. One family member, UniProtKB:Q821X2 is classified by TCDB as being an NhaE type of Na+/H+ antiporter. 418 -284751 pfam07400 IL11 Interleukin 11. This family contains interleukin 11 (approximately 200 residues long). This is a secreted protein that stimulates megakaryocytopoiesis, resulting in increased production of platelets, as well as activating osteoclasts, inhibiting epithelial cell proliferation and apoptosis, and inhibiting macrophage mediator production. These functions may be particularly important in mediating the hematopoietic, osseous and mucosal protective effects of interleukin 11. Family members seem to be restricted to mammals. 177 -116023 pfam07401 Lenti_VIF_2 Bovine Lentivirus VIF protein. This family consists of several Lentivirus viral infectivity factor (VIF) proteins. VIF is known to be essential for ability of cell-free virus preparation to infect cells. Members of this family are specific to Bovine immunodeficiency virus (BIV) and Jembrana disease virus which also infects cattle. 198 -284752 pfam07402 Herpes_U26 Human herpesvirus U26 protein. This family consists of several Human herpesvirus U26 proteins of around 300 residues in length. The function of this family is unknown. 293 -336694 pfam07403 DUF1505 Protein of unknown function (DUF1505). This family consists of several uncharacterized Caenorhabditis elegans proteins of around 115 resides in length. Members of this family contain 6 highly conserved cysteine residues. The function of this family is unknown. 112 -254188 pfam07404 TEBP_beta Telomere-binding protein beta subunit (TEBP beta). This family consists of several telomere-binding protein beta subunits which appear to be specific to the family Oxytrichidae. Telomeres are specialized protein-DNA complexes that compose the ends of eukaryotic chromosomes. Telomeres protect chromosome termini from degradation and recombination and act together with telomerase to ensure complete genome replication. TEBP beta forms a complex with TEBP alpha and this complex is able to recognize and bind ssDNA to form a sequence-specific, telomeric nucleoprotein complex that caps the very 3' ends of chromosomes. 375 -284754 pfam07405 DUF1506 Protein of unknown function (DUF1506). This family consists of several bacterial proteins of around 130 residues in length. Members of this family seem to be specific to Borrelia burgdorferi (Lyme disease spirochete). The function of this family is unknown. 127 -336695 pfam07406 NICE-3 NICE-3 protein. This family consists of several eukaryotic NICE-3 and related proteins. The gene coding for NICE-3 is part of the epidermal differentiation complex (EDC) which comprises a large number of genes that are of crucial importance for the maturation of the human epidermis. The function of NICE-3 is unknown. 177 -284756 pfam07407 Seadorna_VP6 Seadornavirus VP6 protein. This family consists of several VP6 proteins from the Banna virus as well as a related protein VP5 from the Kadipiro virus. Members of this family are typically of around 420 residues in length. The function of this family is unknown. 420 -311383 pfam07408 DUF1507 Protein of unknown function (DUF1507). This family consists of several hypothetical bacterial proteins of around 90 residues in length. The function of this family is unknown. 85 -311384 pfam07409 GP46 Phage protein GP46. This family contains GP46 phage proteins (approximately 120 residues long). 115 -311385 pfam07410 Phage_Gp111 Streptococcus thermophilus bacteriophage Gp111 protein. This family consists of several Streptococcus thermophilus bacteriophage Gp111 proteins of around 110 residues in length. The function of this family is unknown. 106 -336696 pfam07411 DUF1508 Domain of unknown function (DUF1508). This family represents a series of bacterial domains of unknown function of around 50 residues in length. Members of this family are often found as tandem repeats and in some cases represent the whole protein. All member proteins are described as being hypothetical. 45 -336697 pfam07412 Geminin Geminin. This family contains the eukaryotic protein geminin (approximately 200 residues long). Geminin inhibits DNA replication by preventing the incorporation of MCM complex into prereplication complex, and is degraded during the mitotic phase of the cell cycle. It has been proposed that geminin inhibits DNA replication during S, G2, and M phases and that geminin destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle. 195 -284761 pfam07413 Herpes_UL37_2 Betaherpesvirus immediate-early glycoprotein UL37. This family consists of several Betaherpesvirus immediate-early glycoprotein UL37 sequences. The human cytomegalovirus (HCMV) UL37 immediate-early regulatory protein is a type I integral membrane N-glycoprotein which traffics through the ER and the Golgi network. 334 -284762 pfam07415 Herpes_LMP2 Gammaherpesvirus latent membrane protein (LMP2) protein. This family consists of several Gammaherpesvirus latent membrane protein (LMP2) proteins. Epstein-Barr virus is a human Gammaherpesvirus that infects and establishes latency in B lymphocytes in vivo. The latent membrane protein 2 (LMP2) gene is expressed in latently infected B cells and encodes two protein isoforms, LMP2A and LMP2B, that are identical except for an additional N-terminal 119 aa cytoplasmic domain which is present in the LMP2A isoform. LMP2A is thought to play a key role in either the establishment or the maintenance of latency and/or the reactivation of productive infection from the latent state. The significance of LMP2B and its role in pathogenesis remain unclear. 497 -284763 pfam07416 Crinivirus_P26 Crinivirus P26 protein. This family consists of several Crinivirus P26 proteins which seem to be found exclusively in the Lettuce infectious yellows virus. The function of this family is unknown. 227 -336698 pfam07417 Crl Transcriptional regulator Crl. This family contains the bacterial transcriptional regulator Crl (approximately 130 residues long). This is a transcriptional regulator of the csgA curlin subunit gene for curli fibers that are found on the surface of certain bacteria. 119 -284765 pfam07418 PCEMA1 Acidic phosphoprotein precursor PCEMA1. This family consists of several acidic phosphoprotein precursor PCEMA1 sequences which appear to be found exclusively in Plasmodium chabaudi. PCEMA1 is an antigen that is associated with the membrane of the infected erythrocyte throughout the entire intraerythrocytic cycle. The exact function of this family is unclear. 303 -311389 pfam07419 PilM PilM. This family contains the bacterial protein PilM (approximately 150 residues long). PilM is an inner membrane protein that has been predicted to function as a component of the pilin transport apparatus and thin-pilus basal body. 131 -284767 pfam07420 DUF1509 Protein of unknown function (DUF1509). This family consists of several uncharacterized viral proteins from the Marek's disease-like viruses. Members of this family are typically around 400 residues in length. The function of this family is unknown. 384 -311390 pfam07421 Pro-NT_NN Neurotensin/neuromedin N precursor. This family contains the precursor of bacterial neurotensin/neuromedin N (approximately 170 residues long). This the common precursor of two biologically active related peptides, neurotensin and neuromedin N. It undergoes tissue-specific processing leading to the formation in some tissues and cancer cell lines of large peptides ending with the neurotensin or neuromedin N sequence. 163 -311391 pfam07422 s48_45 Sexual stage antigen s48/45 domain. This family contains sexual stage s48/45 antigens from Plasmodium (approximately 450 residues long). These are surface proteins expressed by Plasmodium male and female gametes that have been shown to play a conserved and important role in fertilisation. This domain contains 6 conserved cysteines suggesting 3 disulphide bridges. 107 -311392 pfam07423 DUF1510 Protein of unknown function (DUF1510). This family consists of several hypothetical bacterial proteins of around 200 residues in length. The function of this family is unknown. 214 -336699 pfam07424 TrbM TrbM. This family contains the bacterial protein TrbM (approximately 180 residues long). In Comamonas testosteroni T-2, TrbM is derived from the IncP1beta plasmid pTSA, which encodes the widespread genes for p-toluenesulfonate (TSA) degradation. 156 -116046 pfam07425 Pardaxin Pardaxin. This family consists of several Pardaxin proteins. Pardaxin, a 33-amino-acid pore-forming polypeptide toxin isolated from the Red Sea Moses sole Pardachirus marmoratus, has a helix-hinge-helix structure. This is a common structural motif found both in antibacterial peptides that can act selectively on bacterial membranes (e.g., cecropin), and in cytotoxic peptides that can lyse both mammalian and bacterial cells (e.g., melittin). Pardaxin possesses a high antibacterial activity with a significantly reduced haemolytic activity towards human red blood cells compared with melittin. Pardaxin has also been found to have a shark repellent action. 33 -311394 pfam07426 Dynactin_p22 Dynactin subunit p22. This family contains p22, the smallest subunit of dynactin, a complex that binds to cytoplasmic dynein and is a required activator for cytoplasmic dynein-mediated vesicular transport. Dynactin localizes to the cleavage furrow and to the midbodies of dividing cells, suggesting that it may function in cytokinesis. Family members are approximately 170 residues long. 163 -311395 pfam07428 Tri3 15-O-acetyltransferase Tri3. This family represents a conserved region approximately 400 residues long within 15-O-acetyltransferase (Tri3), which seems to be restricted to ascomycete fungi. In Fusarium sporotrichioides, this is required for acetylation of the C-15 hydroxyl group of trichothecenes in the biosynthesis of T-2 toxin. 408 -336700 pfam07429 Glyco_transf_56 4-alpha-L-fucosyltransferase glycosyl transferase group 56. This family contains the bacterial enzyme 4-alpha-L-fucosyltransferase (Fuc4NAc transferase) (EC 2.4.1.-) (approximately 360 residues long). This catalyzes the synthesis of Fuc4NAc-ManNAcA-GlcNAc-PP-Und (lipid III) as part of the biosynthetic pathway of enterobacterial common antigen (ECA), a polysaccharide comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc. 355 -311397 pfam07430 PP1 Phloem filament protein PP1 cystatin-like domain. This domain represents a conserved region related to cystatins. Eight copies of which are found within the plant phloem filament protein PP1. This is one of the constituents of the proteinaceous filaments found in the sieve elements of Cucurbita phloem. 78 -311398 pfam07431 DUF1512 Protein of unknown function (DUF1512). This family consists of several archaeal proteins of around 370 residues in length. The function of this family is unknown. 354 -311399 pfam07432 Hc1 Histone H1-like protein Hc1. This family consists of several bacterial histone H1-like Hc1 proteins. In Chlamydia, Hc1 is expressed in the late stages of the life cycle, concomitant with the reorganisation of chlamydial reticulate bodies into elementary bodies. This suggests that Hc1 protein plays a role in the condensation of chromatin during intracellular differentiation. 124 -311400 pfam07433 DUF1513 Protein of unknown function (DUF1513). This family consists of several bacterial proteins of around 360 residues in length. The function of this family is unknown. 302 -284778 pfam07434 CblD CblD like pilus biogenesis initiator. This family consists of several minor pilin proteins including CblD from Burkholderia cepacia which is known to CblD be the initiator of pilus biogenesis. The family also contains a variety of Enterobacterial minor pilin proteins. 398 -284779 pfam07435 YycH YycH protein. This family contains the bacterial protein YycH which is approximately 450 residues long. YycH plays a role in signal transduction and is found immediately downstream of the essential histidine kinase YycG. YycG forms a two component system together with its cognate response regulator YycF. PhoA fusion studies have shown that YycH is transported across the cytoplasmic protein. It is postulated that YycH functions as an antagonist to YycG. The molecule is made up of three domains, and has a novel three-dimensional structure. The N-terminal domain features a calcium binding site and the central domain contains two conserved loop regions. 407 -284780 pfam07436 Curto_V3 Curtovirus V3 protein. This family consists of several Curtovirus V3 proteins of around 90 residues in length. The function of this family is unknown. 86 -284781 pfam07437 YfaZ YfaZ precursor. This family contains the precursor of the bacterial protein YfaZ (approximately 180 residues long). Many members of this family are hypothetical proteins. 180 -311401 pfam07438 DUF1514 Protein of unknown function (DUF1514). This family consists of several Staphylococcus aureus and related bacteriophage proteins of around 65 residues in length. The function of this family is unknown. Structural modelling suggests this domain may bind nucleic acids. 59 -336701 pfam07439 DUF1515 Protein of unknown function (DUF1515). This family consists of several hypothetical bacterial proteins of around 130 residues in length. Members of this family seem to be found exclusively in Rhizobium species. The function of this family is unknown. 112 -116061 pfam07440 Caerin_1 Caerin 1 protein. This family consists of several caerin 1 proteins from Litoria species. The caerin 1 peptides are among the most powerful of the broad-spectrum antibiotic amphibian peptides. 24 -311402 pfam07441 BofA SigmaK-factor processing regulatory protein BofA. This family contains the sigmaK-factor processing regulatory protein BofA (Bypass-of-forespore protein A) (approximately 80 residues long). During sporulation in Bacillus subtilis, transcription is controlled in the developing sporangium by a cascade of sporulation-specific transcription factors (sigma factors). Following engulfment, processing of sigmaK is inhibited by BofA. It has been suggested that this effect is exerted by alteration of the level of the SpoIVFA protein. 75 -116063 pfam07442 Ponericin Ponericin. This family contains a number of ponericin peptides (approximately 30 residues long) from the venom of the predatory ant Pachycondyla goeldii. These peptides exhibit antibacterial and insecticidal properties, and may adopt an amphipathic alpha-helical structure in polar environments such as cell membranes. 29 -311403 pfam07443 HARP HepA-related protein (HARP). This family represents a conserved region approximately 60 residues long within eukaryotic HepA-related protein (HARP). This exhibits single-stranded DNA-dependent ATPase activity, and is ubiquitously expressed in human and mouse tissues. Family members may contain more than one copy of this region. 54 -311404 pfam07444 Ycf66_N Ycf66 protein N-terminus. This family represents the N-terminus (approximately 80 residues) of Ycf66, a protein that seems to be restricted to eukaryotes that contain chloroplasts and to cyanobacteria. 76 -336702 pfam07445 PriC Primosomal replication protein priC. This family contains the bacterial primosomal replication protein priC. In Escherichia coli, this function in the assembly of the primosome. 172 -311406 pfam07447 VP40 Matrix protein VP40. This family contains viral VP40 matrix proteins that seem to be restricted to the Filoviridae. These play an important role in the assembly process of virus particles by interacting with cellular factors, cellular membranes, and the ribonuclearprotein particle complex. It has been shown that the N-terminal region of VP40 folds into a mixture of hexameric and octameric states - these may have distinct roles. 292 -311407 pfam07448 Spp-24 Secreted phosphoprotein 24 (Spp-24) cystatin-like domain. This family represents a conserved region approximately 60 residues long within secreted phosphoprotein 24 (Spp-24), which seems to be restricted to vertebrates. This is a non-collagenous protein found in bone that is related in sequence to the cystatin family of thiol protease inhibitors. This suggests that Spp-24 could function to modulate the thiol protease activities known to be involved in bone turnover. It is also possible that the intact form of Spp-24 found in bone could be a precursor to a biologically active peptide that coordinates an aspect of bone turnover. 64 -311408 pfam07449 HyaE Hydrogenase-1 expression protein HyaE. This family contains bacterial hydrogenase-1 expression proteins approximately 120 residues long. This includes the E. coli protein HyaE, and the homologous proteins HoxO of R. eutropha and HupG of R. leguminosarum. Deletion of the hoxO gene in R. eutropha led to complete loss of the uptake [NiFe] hydrogenase activity, suggesting that it has a critical role in hydrogenase assembly. 108 -311409 pfam07450 HycH Formate hydrogenlyase maturation protein HycH. This family contains the bacterial formate hydrogenlyase maturation protein HycH, which is approximately 140 residues long. This may be required for the conversion of a precursor form of the large subunit of hydrogenlyase 3 into a mature form. 129 -311410 pfam07451 SpoVAD Stage V sporulation protein AD (SpoVAD). This family contains the bacterial stage V sporulation protein AD (SpoVAD), which is approximately 340 residues long. This is one of six proteins encoded by the spoVA operon, which is transcribed exclusively in the forespore at about the time of dipicolinic acid (DPA) synthesis in the mother cell. The functions of the proteins encoded by the spoVA operon are unknown, but it has been suggested they are involved in DPA transport during sporulation. 329 -336703 pfam07452 CHRD CHRD domain. CHRD (after SWISS-PROT abbreviation for chordin) is a novel domain identified in chordin, an inhibitor of bone morphogenetic proteins. This family includes bacterial homologs. It is anticipated to have an immunoglobulin-like beta-barrel structure based on limited similarity to superoxide dismutases but, as yet, no clear functional prediction can be made. Its most conserved feature is a GE[I/L]RCG[V/I/L] motif towards its C-terminal end Most bacterial proteins in this family have only one CHRD domain, whereas it is found repeated in many eukaryotic proteins such as human chordin and Drosophila SOG.. 110 -284793 pfam07453 NUMOD1 NUMOD1 domain. This domain probably represents a DNA-binding helix-turn-helix based on its similarity to other families (Bateman A pers obs). 37 -311412 pfam07454 SpoIIP Stage II sporulation protein P (SpoIIP). This family contains the bacterial stage II sporulation protein P (SpoIIP) (approximately 350 residues long). It has been shown that a block in polar cytokinesis in Bacillus subtilis is mediated partly by transcription of spoIID, spoIIM and spoIIP. This inhibition of polar division is involved in the locking in of asymmetry after the formation of a polar septum during sporulation. Engulfment in Bacillus subtilis is mediated by two complementary systems: the first includes the proteins SpoIID, SpoIIM and SpoIIP (DMP) which carry out the engulfment, and the second includes the SpoIIQ-SpoIIIAGH (Q-AH) zipper, that recruits other proteins to the septum in a second-phase of the engulfment. The course of events follows as the incorporation firstly of SpoIIB into the septum during division to serve directly or indirectly as a landmark for localising SpoIIM and then SpoIIP and SpoIID to the septum. SpoIIP and SpoIID interact together to form part of the DMP complex. SpoIIP itself has been identified as an autolysin with peptidoglycan hydrolase activity. 265 -311413 pfam07455 Psu Phage polarity suppression protein (Psu). This family contains a number of phage polarity suppression proteins (Psu) (approximately 190 residues long). The Psu protein of bacteriophage P4 causes suppression of transcriptional polarity in Escherichia coli by overcoming Rho termination factor activity. 174 -336704 pfam07456 Hpre_diP_synt_I Heptaprenyl diphosphate synthase component I. This family contains component I of bacterial heptaprenyl diphosphate synthase (EC:2.5.1.30) (approximately 170 residues long). This is one of the two dissociable subunits that form the enzyme, both of which are required for the catalysis of the biosynthesis of the side chain of menaquinone-7. 147 -311415 pfam07457 DUF1516 Protein of unknown function (DUF1516). This family contains a number of hypothetical bacterial proteins of unknown function approximately 120 residues long. 108 -311416 pfam07458 SPAN-X Sperm protein associated with nucleus, mapped to X chromosome. This family contains human sperm proteins associated with the nucleus and mapped to the X chromosome (SPAN-X) (approximately 100 residues long). SPAN-X proteins are cancer-testis antigens (CTAs), and thus represent potential targets for cancer immunotherapy because they are widely distributed in tumors but not in normal tissues, except testes. They are highly insoluble, acidic, and polymorphic. 95 -284799 pfam07459 CTX_RstB CTX phage RstB protein. This family contains a number of RstB proteins approximately 120 residues long, including RstB1 and RstB2, from the Vibrio cholerae phage CTX. Functional analyses indicate that rstB2 is required for integration of the CTXphi phage into the V. cholerae chromosome. 117 -311417 pfam07460 NUMOD3 NUMOD3 motif (2 copies). NUMOD3 is a DNA-binding motif found in homing endonucleases and related proteins. It occurs on its own or in tandem repeats in GIY-YIG (pfam01541) and HTH proteins. It constitutes a beta-turn-loop-helix subregion of the the DNA-binding domain of I-TevI homing endonuclease. 36 -284801 pfam07461 NADase_NGA Nicotine adenine dinucleotide glycohydrolase (NADase). This family consists of several bacterial nicotine adenine dinucleotide glycohydrolase (NGA) proteins which appear to be specific to Streptococcus pyogenes. NAD glycohydrolase (NADase) is a potential virulence factor. Streptococcal NADase may contribute to virulence by its ability to cleave beta-NAD at the ribose-nicotinamide bond, depleting intracellular NAD pools and producing the potent vasoactive compound nicotinamide. 446 -284802 pfam07462 MSP1_C Merozoite surface protein 1 (MSP1) C-terminus. This family represents the C-terminal region of merozoite surface protein 1 (MSP1) which are found in a number of Plasmodium species. MSP-1 is a 200-kDa protein expressed on the surface of the P. vivax merozoite. MSP-1 of Plasmodium species is synthesized as a high-molecular-weight precursor and then processed into several fragments. At the time of red cell invasion by the merozoite, only the 19-kDa C-terminal fragment (MSP-119), which contains two epidermal growth factor-like domains, remains on the surface. Antibodies against MSP-119 inhibit merozoite entry into red cells, and immunisation with MSP-119 protects monkeys from challenging infections. Hence, MSP-119 is considered a promising vaccine candidate. 535 -311418 pfam07463 NUMOD4 NUMOD4 motif. NUMOD4 is a putative DNA-binding motif found in homing endonucleases and related proteins. 48 -311419 pfam07464 ApoLp-III Apolipophorin-III precursor (apoLp-III). This family consists of several insect apolipoprotein-III sequences. Exchangeable apolipoproteins constitute a functionally important family of proteins that play critical roles in lipid transport and lipoprotein metabolism. Apolipophorin III (apoLp-III) is a prototypical exchangeable apolipoprotein found in many insect species that functions in transport of diacylglycerol (DAG) from the fat body lipid storage depot to flight muscles in the adult life stage. 142 -311420 pfam07465 PsaM Photosystem I protein M (PsaM). This family consists of several plant and cyanobacterial photosystem I protein M (PsaM) sequences. PsaM forms part of the photosystem I complex and its binding is stabilized by PsaI. 29 -284806 pfam07466 DUF1517 Protein of unknown function (DUF1517). This family consists of several hypothetical glycine rich plant and bacterial proteins of around 300 residues in length. The function of this family is unknown. 287 -311421 pfam07467 BLIP Beta-lactamase inhibitor (BLIP). The structure of BLIP reveals two structural domains, which form a polar, concave surface that docks onto a predominantly polar, convex protrusion on beta-lactamase. The ability of BLIP to adapt to a variety of class A beta-lactamases is thought to be due to flexibility between these two domains. 183 -116089 pfam07468 Agglutinin Agglutinin domain. 141 -311422 pfam07469 DUF1518 Domain of unknown function (DUF1518). This domain, which is usually found tandemly repeated, is found various receptor co-activating proteins. 58 -284809 pfam07470 Glyco_hydro_88 Glycosyl Hydrolase Family 88. Unsaturated glucuronyl hydrolase catalyzes the hydrolytic release of unsaturated glucuronic acids from oligosaccharides (EC:3.2.1.-) produced by the reactions of polysaccharide lyases. 343 -336705 pfam07471 Phage_Nu1 Phage DNA packaging protein Nu1. Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of subunits Nu1 and A. The smaller Nu1 terminase subunit has a low-affinity ATPase stimulated by non-specific DNA. 164 -284811 pfam07472 PA-IIL Fucose-binding lectin II (PA-IIL). In Pseudomonas aeruginosa the fucose-binding lectin II (PA-IIL) contributes to the pathogenic virulence of the bacterium. PA-IIL functions as a tetramer when binding fucose. Each monomer is comprised of a nine-stranded, antiparallel beta-sandwich arrangement and contains two calcium cations that mediate the binding of fucose in a recognition mode unique among carbohydrate-protein interactions. 107 -311423 pfam07473 Toxin_11 Spasmodic peptide gm9a; conotoxin from Conus species. This family consists of several spasmodic peptide gm9a sequences. Conotoxin gm9a is a putative 27-residue polypeptide encoded by Conus gloriamaris and is known to be a homolog of the 'spasmodic peptide', tx9a, isolated from the venom of the mollusc-hunting cone shell Conus textile. Upon injection of this venom component, normal mice are converted into behavioural phenocopies of a well-known mutant, the spasmodic mouse. 28 -311424 pfam07474 G2F G2F domain. Nidogen, an invariant component of basement membranes, is a multifunctional protein that interacts with most other major basement membrane proteins. The G2 fragment or (G2F domain) contains binding sites for collagen IV and perlecan. The structure is composed of an 11-stranded beta-barrel with a central helix. This domain is structurally related to that of green fluorescent protein pfam01353. A large surface patch on the beta-barrel is conserved in all metazoan nidogens. 182 -311425 pfam07475 Hpr_kinase_C HPr Serine kinase C-terminal domain. This family represents the C terminal kinase domain of Hpr Serine/threonine kinase PtsK. This kinase is the sensor in a multicomponent phosphorelay system in control of carbon catabolic repression in bacteria. This kinase in unusual in that it recognizes the tertiary structure of its target and is a member of a novel family unrelated to any previously described protein phosphorylating enzymes. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. 171 -284814 pfam07476 MAAL_C Methylaspartate ammonia-lyase C-terminus. Methylaspartate ammonia-lyase EC:4.3.1.2 catalyzes the second step of fermentation of glutamate. It is a homodimer. This family represents the C-terminal region of Methylaspartate ammonia-lyase and contains a TIM barrel fold similar to the pfam01188. This family represents the catalytic domain and contains a metal binding site. 247 -336706 pfam07477 Glyco_hydro_67C Glycosyl hydrolase family 67 C-terminus. Alpha-glucuronidases, components of an ensemble of enzymes central to the recycling of photosynthetic biomass, remove the alpha-1,2 linked 4-O-methyl glucuronic acid from xylans. This family represents the C terminal region of alpha-glucuronidase which is mainly alpha-helical. It wraps around the catalytic domain (pfam07488), making additional interactions both with the N-terminal domain (pfam03648) of its parent monomer and also forming the majority of the dimer-surface with the equivalent C-terminal domain of the other monomer of the dimer. 223 -311427 pfam07478 Dala_Dala_lig_C D-ala D-ala ligase C-terminus. This family represents the C-terminal, catalytic domain of the D-alanine--D-alanine ligase enzyme EC:6.3.2.4. D-Alanine is one of the central molecules of the cross-linking step of peptidoglycan assembly. There are three enzymes involved in the D-alanine branch of peptidoglycan biosynthesis: the pyridoxal phosphate-dependent D-alanine racemase (Alr), the ATP-dependent D-alanine:D-alanine ligase (Ddl), and the ATP-dependent D-alanine:D-alanine-adding enzyme (MurF). 205 -336707 pfam07479 NAD_Gly3P_dh_C NAD-dependent glycerol-3-phosphate dehydrogenase C-terminus. NAD-dependent glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the interconversion of dihydroxyacetone phosphate and L-glycerol-3-phosphate. This family represents the C-terminal substrate-binding domain. 138 -311429 pfam07481 DUF1521 Domain of Unknown Function (DUF1521). This family of unknown function is found in a limited set of Bradyrhizobium proteins. There appears to be a periodic -DG- motif in it. 169 -284819 pfam07482 DUF1522 Domain of Unknown Function (DUF1522). 110 -311430 pfam07483 W_rich_C Tryptophan-rich Synechocystis species C-terminal domain. This domain is found at the C-terminus, normally between 2-3 copies, of a range of Synechocystis membrane proteins. This domain is fairly tryptophan rich as well. 105 -336708 pfam07484 Collar Phage Tail Collar Domain. This region is occasionally found in conjunction with pfam03335. Most of the family appear to be phage tail proteins; however some appear to be involved in other processes. For instance a member from Rhizobium leguminosarum may be involved in plant-microbe interactions. A related protein MrpB is involved in the pathogenicity of Microcystis aeruginosa. The finding of this family in a structural component of the phage tail fibre baseplate suggests that its function is structural rather than enzymatic. Structural studies show this region consists of a helix and a loop and three beta-strands. This alignment does not catch the third strand as it is separated from the rest of the structure by around 100 residues. This strand is conserved in homologs but the intervening sequence is not. Much of the function of phage T4 appears to reside in this intervening region. In the tertiary structure of the phage baseplate this domain forms part of the 'collar'. The domain may bind SO4, however the residues accredited with this vary between the PDB file and the Swiss-Prot entry. The long unconserved region maybe due to domain swapping in and out of a loop or reflective of rapid evolution. 57 -311432 pfam07485 DUF1529 Domain of Unknown Function (DUF1259). This family is the lppY/lpqO homolog family. 119 -336709 pfam07486 Hydrolase_2 Cell Wall Hydrolase. These enzymes have been implicated in cell wall hydrolysis, most extensively in Bacillus subtilis. For instance Bacillus subtilis steB is expressed during sporulation as an inactive form and then deposited on the cell outer cortex. During germination the the enzyme is activated and hydrolyzes the cortex. A similar role is carried out by the partially redundant Bacillus subtilis CwlJ. It is not clear whether these enzymes are amidases or peptidases. 102 -284824 pfam07487 SopE_GEF SopE GEF domain. This family represents the C-terminal guanine nucleotide exchange factor (GEF) domain of SopE. Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. SopE, can activate Cdc42, an essential component of the host cellular signaling cascade, in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors. 165 -311434 pfam07488 Glyco_hydro_67M Glycosyl hydrolase family 67 middle domain. Alpha-glucuronidases, components of an ensemble of enzymes central to the recycling of photosynthetic biomass, remove the alpha-1,2 linked 4-O-methyl glucuronic acid from xylans. This family represents the central catalytic domain of alpha-glucuronidase. 323 -311435 pfam07489 Tir_receptor_C Translocated intimin receptor (Tir) C-terminus. Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border. The bacterial outer membrane adhesin, intimin, is necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria translocate their own receptor for intimin, Tir, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. This family represents the Tir C-terminal domain which has been reported to bind uninfected host cells and beta-1 integrins although the role of intimin binding to integrins is unclear. This intimin C-terminal domain has also been shown to be sufficient for Tir recognition. 222 -254231 pfam07490 Tir_receptor_N Translocated intimin receptor (Tir) N-terminus. Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border. The bacterial outer membrane adhesin, intimin, is necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria translocate their own receptor for intimin, Tir, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. This family represents the Tir N-terminal domain which is involved in Tir stability and Tir secretion. 269 -311436 pfam07491 PPI_Ypi1 Protein phosphatase inhibitor. These proteins include Ypi1,, a novel Saccharomyces cerevisiae type 1 protein phosphatase inhibitor and ppp1r11/hcgv, annotated as having protein phosphatase inhibitor activity. 57 -311437 pfam07492 Trehalase_Ca-bi Neutral trehalase Ca2+ binding domain. Neutral trehalases mobilise trehalose accumulated by fungal cells as a protective and storage carbohydrate. This family represents a calcium-binding domain similar to EF hand. Residues 97 and 108 in S. pombe ntp1 have been implicated in this interaction. It is thought that this domain may provide a general mechanism for regulating neutral trehalase activity in yeasts and filamentous fungi. 30 -311438 pfam07494 Reg_prop Two component regulator propeller. A large group of two component regulator proteins appear to have the same N-terminal structure of 14 tandem repeats. These repeats show homology to pfam01011 and pfam00400 indicating that they are likely to form a beta-propeller. This family has been built with artificially high cut-offs in order to avoid overlaps with other beta-propeller families. The fourteen repeats are likely to form two propellers; it is not clear if these structures are likely to recruit other proteins or interact with DNA. 24 -284830 pfam07495 Y_Y_Y Y_Y_Y domain. This domain is mostly found at the end of the beta propellers (pfam07494) in a family of two component regulators. However they are also found tandemly repeated in CTC_02402 without other signal conduction domains being present. It's named after the conserved tyrosines found in the alignment. The exact function is not known. 65 -336710 pfam07496 zf-CW CW-type Zinc Finger. This domain appears to be a zinc finger. The alignment shows four conserved cysteine residues and a conserved tryptophan. It was first identified by, and is predicted to be a "highly specialized mononuclear four-cysteine zinc finger...that plays a role in DNA binding and/or promoting protein-protein interactions in complicated eukaryotic processes including...chromatin methylation status and early embryonic development." Weak homology to pfam00628 further evidences these predictions (personal obs: C Yeats). Twelve different CW-domain-containing protein subfamilies are described, with different subfamilies being characteristic of vertebrates, higher plants and other animals in which these domain is found. 40 -336711 pfam07497 Rho_RNA_bind Rho termination factor, RNA-binding domain. The Rho termination factor disengages newly transcribed RNA from its DNA template at certain, specific transcripts. It it thought that two copies of Rho bind to RNA and that Rho functions as a hexamer of protomers. 71 -336712 pfam07498 Rho_N Rho termination factor, N-terminal domain. The Rho termination factor disengages newly transcribed RNA from its DNA template at certain, specific transcripts. It it thought that two copies of Rho bind to RNA and that Rho functions as a hexamer of protomers. This domain is found to the N-terminus of the RNA binding domain (pfam07497). 43 -311442 pfam07499 RuvA_C RuvA, C-terminal domain. Homologous recombination is a crucial process in all living organisms. In bacteria, this process the RuvA, RuvB, and RuvC proteins are involved. More specifically the proteins process the Holliday junction DNA. RuvA is comprised of three distinct domains. The domain represents the C-terminal domain and plays a significant role in the ATP-dependent branch migration of the hetero-duplex through direct contact with RuvB. Within the Holliday junction, the C-terminal domain makes no interaction with DNA. 47 -336713 pfam07500 TFIIS_M Transcription factor S-II (TFIIS), central domain. Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III), this domain and pfam01096 are required for transcription activity. 109 -336714 pfam07501 G5 G5 domain. This domain is found in a wide range of extracellular proteins. It is found tandemly repeated in up to 8 copies. It is found in the N-terminus of peptidases belonging to the M26 family which cleave human IgA. The domain is also found in proteins involved in metabolism of bacterial cell walls suggesting this domain may have an adhesive function. 75 -336715 pfam07502 MANEC MANEC domain. This region of similarity, comprising 8 conserved cysteines, is found in the N-terminal region of several membrane-associated and extracellular proteins. Although formerly called MANSC (for motif at N-terminus with seven cysteines) it has now been renamed by MANEC (motif at N-terminus with eight cysteines) by Richard Mitter and Stephen Fitzgerald after the discovery of an eighth conserved cysteine. It is postulated that this domain may play a role in the formation of protein complexes involving various protease activators and inhibitors. 89 -336716 pfam07503 zf-HYPF HypF finger. The HypF family of proteins are involved in the maturation and regulation of hydrogenase. In the N-terminus they appear to have two Zinc finger domains, as modelled by this family. 31 -336717 pfam07504 FTP Fungalysin/Thermolysin Propeptide Motif. This motif is found in both the bacterial M4 peptidase propeptide and the fungal M36 propeptide. Its exact function is not clear, but it is likely to either inhibit the peptidase, so as to prevent its premature activation, or has a chaperone activity. Both of these roles have been ascribed to the M4 and M36 propeptides. 50 -311448 pfam07505 DUF5131 Protein of unknown function (DUF5131). This is a family of bacterial and phage proteins of unknown function. There are three highly conserved cysteine residues in the disposition, Cx6Cxxc, amongst many highly conserved residues. 242 -311449 pfam07506 RepB RepB plasmid partitioning protein. This family includes proteins with sequence similarity to the RepB partitioning protein of the large Ti (tumor-inducing) plasmids of Agrobacterium tumefaciens. 185 -311450 pfam07507 WavE WavE lipopolysaccharide synthesis. These proteins are encoded by putative wav gene clusters, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. 301 -311451 pfam07508 Recombinase Recombinase. This domain is usually found associated with pfam00239 in putative integrases/recombinases of mobile genetic elements of diverse bacteria and phages. 101 -311452 pfam07509 DUF1523 Protein of unknown function (DUF1523). 175 -311453 pfam07510 DUF1524 Protein of unknown function (DUF1524). This family of uncharacterized proteins contain a conserved HXXP motif. A similar motif is seen in protein families in the His-Me finger endonuclease superfamily which suggests this family of proteins may also act as endonucleases. 139 -311454 pfam07511 DUF1525 Protein of unknown function (DUF1525). 113 -336718 pfam07514 TraI_2 Putative helicase. Some members of this family have been annotated as helicases. 326 -311456 pfam07515 TraI_2_C Putative conjugal transfer nickase/helicase TraI C-term. 121 -336719 pfam07516 SecA_SW SecA Wing and Scaffold domain. SecA protein binds to the plasma membrane where it interacts with proOmpA to support translocation of proOmpA through the membrane. SecA protein achieves this translocation, in association with SecY protein, in an ATP dependent manner. This family is composed of two C-terminal alpha helical subdomains: the wing and scaffold subdomains. 210 -336720 pfam07517 SecA_DEAD SecA DEAD-like domain. SecA protein binds to the plasma membrane where it interacts with proOmpA to support translocation of proOmpA through the membrane. SecA protein achieves this translocation, in association with SecY protein, in an ATP dependent manner. This domain represents the N-terminal ATP-dependent helicase domain, which is related to the pfam00270. 379 -284851 pfam07519 Tannase Tannase and feruloyl esterase. This family includes fungal tannase and feruloyl esterase. It also includes several bacterial homologs of unknown function. 460 -311459 pfam07520 SrfB Virulence factor SrfB. This family includes homologs of SsrAB is a two-component regulatory system encoded within the Salmonella pathogenicity island SPI-2. Among the products of genes activated by SsrAB within epithelial and macrophage cells is Salmonella typhimurium srfB. homologs are found in several other proteobacteria. 990 -336721 pfam07521 RMMBL Zn-dependent metallo-hydrolase RNA specificity domain. The metallo-beta-lactamase fold contains five sequence motifs. The first four motifs are found in pfam00753 and are common to all metallo-beta-lactamases. This, the fifth motif, appears to be specific to Zn-dependent metallohydrolases such as ribonuclease J 2 which are involved in the processing of mRNA. This domain adds essential structural elements to the CASP-domain and is unique to RNA/DNA-processing nucleases, showing that they are pre-mRNA 3'-end-processing endonucleases. 61 -336722 pfam07522 DRMBL DNA repair metallo-beta-lactamase. The metallo-beta-lactamase fold contains five sequence motifs. The first four motifs are found in pfam00753 and are common to all metallo-beta-lactamases. The fifth motif appears to be specific to function. This entry represents the fifth motif from metallo-beta-lactamases involved in DNA repair. 106 -284855 pfam07523 Big_3 Bacterial Ig-like domain (group 3). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in a variety of bacterial surface proteins. 67 -311462 pfam07524 Bromo_TP Bromodomain associated. This domain is predicted to bind DNA and is often found associated with pfam00439 and in transcription factors. It has a histone-like fold. 77 -336723 pfam07525 SOCS_box SOCS box. The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases. 38 -336724 pfam07526 POX Associated with HOX. The function of this domain is unknown. It is often found in plant proteins associated with pfam00046. 85 -336725 pfam07527 Hairy_orange Hairy Orange. The Orange domain is found in the Drosophila proteins Hesr-1, Hairy, and Enhancer of Split. The Orange domain is proposed to mediate specific protein-protein interaction between Hairy and Scute. 39 -284860 pfam07528 DZF DZF domain. The function of this domain is unknown. It is often found associated with pfam00098 or pfam00035. This domain has been predicted to belong to the nucleotidyltransferase superfamily. 248 -336726 pfam07529 HSA HSA. This domain is predicted to bind DNA and is often found associated with helicases. 71 -148888 pfam07530 PRE_C2HC Associated with zinc fingers. This function of this domain is unknown and is often found associated with pfam00096. 68 -336727 pfam07531 TAFH NHR1 homology to TAF. This corresponds to the region NHR1 that is conserved between the product of the nervy gene in Drosophila and the human mtg8b protein, which is hypothesized to be a transcription factor. 87 -336728 pfam07532 Big_4 Bacterial Ig-like domain (group 4). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in a variety of bacterial surface proteins. 59 -336729 pfam07533 BRK BRK domain. The function of this domain is unknown. It is often found associated with helicases and transcription factors. 41 -311470 pfam07534 TLD TLD. This domain is predicted to be an enzyme and is often found associated with pfam01476. It's structure consists of a beta-sandwich surrounded by two helices and two one-turn helices. 136 -311471 pfam07535 zf-DBF DBF zinc finger. This domain is predicted to bind metal ions and is often found associated with pfam00533 and pfam02178. It was first identified in the Drosophila chiffon gene product, and is associated with initiation of DNA replication. 42 -336730 pfam07536 HWE_HK HWE histidine kinase. Two-component systems, consisting of a histidine kinase and a cognate response regulator protein, represent the best-known apparatus for transducing external cues into a physiological response in bacteria. The HWE domain is found in a subset of two-component system kinases, belonging to the same superfamily as pfam00512. The family was defined by the presence of a highly conserved H residue in the kinase domain and a WxE motif in a C-terminal ATPase domain that is related to pfam02518. These proteins are found in a variety of alpha- and gamma-proteobacteria, with significant enrichment in the rhizobia. 83 -311473 pfam07537 CamS CamS sex pheromone cAM373 precursor. This family includes CamS, from which Staphylococcus aureus sex pheromone staph-cAM373 is processed. 316 -311474 pfam07538 ChW Clostridial hydrophobic W. A novel extracellular macromolecular system has been proposed based on the proteins containing ChW repeats. ChW stands for Clostridial hydrophobic with conserved W (tryptophan). This repeat was originally described in Clostridium acetobutylicum but is also found in other Gram-positive bacteria including Enterococcus faecalis, Streptococcus agalactiae and Streptomyces coelicolor. 35 -311475 pfam07539 DRIM Down-regulated in metastasis. These eukaryotic proteins include DRIM (Down-Regulated In Metastasis), which is differentially expressed in metastatic and non-metastatic human breast carcinoma cells. It is believed to be involved in processing of non-coding RNA. 588 -336731 pfam07540 NOC3p Nucleolar complex-associated protein. Nucleolar complex-associated protein (Noc3p) is conserved in eukaryotes and has essential roles in replication and rRNA processing in Saccharomyces cerevisiae. 91 -336732 pfam07541 EIF_2_alpha Eukaryotic translation initiation factor 2 alpha subunit. These proteins share a region of similarity that falls towards the C-terminus from pfam00575. 110 -336733 pfam07542 ATP12 ATP12 chaperone protein. Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. These proteins include examples from eukaryotes and bacteria and may have chaperone activity, being involved in F1 ATPase complex assembly. 121 -311479 pfam07543 PGA2 Protein trafficking PGA2. A Saccharomyces cerevisiae member of this family (PGA2) is an ER protein which has been implicated in protein trafficking. 135 -336734 pfam07544 Med9 RNA polymerase II transcription mediator complex subunit 9. This family of Med9 proteins is conserved in yeasts. It forms part of the middle region of Mediator. Med9 has two functional domains. The species-specific amino-terminal half (aa 1-63) plays a regulatory role in transcriptional regulation, whereas this well-conserved carboxy-terminal half (aa 64-149) has a more fundamental function involved in direct binding to the amino-terminal portions of Med4 and Med7 and the assembly of Med9 into the Middle module. Also, some unidentified factor(s) in med9 extracts may impact the binding of TFIID to the promoter. 79 -336735 pfam07545 Vg_Tdu Vestigial/Tondu family. The mammalian TEF and the Drosophila scalloped genes belong to a conserved family of transcriptional factors that possesses a TEA/ATTS DNA-binding domain. Transcriptional activation by these proteins likely requires interactions with specific coactivators. In Drosophila, Scalloped (Sd) interacts with Vestigial (Vg) to form a complex, which binds DNA through the Sd TEA/ATTS domain. The Sd-Vg heterodimer is a key regulator of wing development, which directly controls several target genes and is able to induce wing outgrowth when ectopically expressed. This short conserved region is needed for interaction with Sd. 31 -311482 pfam07546 EMI EMI domain. The Pfam alignment is truncated at the C-terminus and does not include the final cysteine defined in Callebaut et al. This is to stop the family overlapping with other domains. 67 -311483 pfam07547 RSD-2 RSD-2 N-terminal domain. This domain is found in three copies in the N-terminus of the C. elegans RSD-2 protein. RSD-2 (RNAi spreading defective) is involved in systemic RNAi. Mutations in the rsd-2 gene do not effect somatic genes but only germline expressed genes. 83 -311484 pfam07548 ChlamPMP_M Chlamydia polymorphic membrane protein middle domain. This family contains several Chlamydia polymorphic membrane proteins. Chlamydia pneumoniae is an obligate intracellular bacterium and a common human pathogen causing infection of the upper and lower respiratory tract. This domain is found between the beta-helical repeats (pfam02415) and the C-terminal pfam03797. This domain is excised subsequent to secretion. 170 -336736 pfam07549 Sec_GG SecD/SecF GG Motif. This family consists of various prokaryotic SecD and SecF protein export membrane proteins. This SecD and SecF proteins are part of the multimeric protein export complex comprising SecA, D, E, F, G, Y, and YajC. SecD and SecF are required to maintain a proton motive force. This alignment encompasses a -GG- motif typically found in N-terminal half of the SecD/SecF proteins. 27 -311486 pfam07550 DUF1533 Protein of unknown function (DUF1533). This family consists of several hypothetical bacterial proteins and is around 60 residues in length. It's function is not known. 60 -148905 pfam07551 DUF1534 Protein of unknown function (DUF1534). This family is found in a group of small bacterial proteins. Its function is not known. 48 -284881 pfam07552 Coat_X Spore Coat Protein X and V domain. This family is found in the Bacilliales coat protein X as a tandem repeat and also in coat protein V. The proteins are found in the insoluble fraction. 54 -311487 pfam07553 Lipoprotein_Ltp Host cell surface-exposed lipoprotein. This is a family of lipoproteins that is involved in superinfection exclusion. Proteins in this family have been shown to act at the stage of DNA release from the phage head into the cell. 48 -336737 pfam07554 FIVAR FIVAR domain. This domain is found in a wide variety of contexts, but mostly occurring in cell wall associated proteins. A lack of conserved catalytic residues suggests that it is a binding domain. From context, possible substrates are hyaluronate or fibronectin (personal obs: C Yeats). This is further evidenced by. Possibly the exact substrate is N-acetyl glucosamine. Finding it in the same protein as pfam05089 further supports this proposal. It is found in the C-terminal part of Bacillus sp. Gellan lyase, which is removed during maturation. Some of the proteins it is found in are involved in methicillin resistance. The name FIVAR derives from Found In Various Architectures. 69 -336738 pfam07555 NAGidase beta-N-acetylglucosaminidase. This family has previously been described as a hyaluronidase. However, more recently it has been shown that this family has beta-N-acetylglucosaminidase activity. 293 -311490 pfam07556 DUF1538 Protein of unknown function (DUF1538). This family contains several conserved glycines and phenylalanines. 211 -336739 pfam07557 Shugoshin_C Shugoshin C-terminus. Shugoshin-like proteins contain this conserved sequence at the C-terminus, which is rich in basic amino-acids. Shugoshin (Sgo1) protects Rec8 at centromeres during anaphase I (during meiosis) so that sister chromatids remain tethered. Sgo2 is a paralogue of Sgo1 and is involved in correctly orienting sister-centromeres. 24 -311492 pfam07558 Shugoshin_N Shugoshin N-terminal coiled-coil region. The Shugoshin protein is found to have this conserved N-terminal coiled-coil region and a highly conserved C-terminal basic region, family Shugoshin_C pfam07557. Shugoshin is a crucial target of Bub1 kinase function at kinetochores, necessary for both meiotic and mitotic localization of shugoshin to the kinetochore. Human shugoshin is diffusible and mediates kinetochore-driven formation of kinetochore-microtubules during bipolar spindle assembly. Further, the primary role of shugoshin is to ensure bipolar attachment of kinetochores, and its role in protecting cohesion has co-developed to facilitate this process. 45 -336740 pfam07559 FlaE Flagellar basal body protein FlaE. This family consists of several bacterial FlaE flagellar proteins. These proteins are part of the flageller basal body rod complex. 128 -116179 pfam07560 DUF1539 Domain of Unknown Function (DUF1539). 126 -336741 pfam07561 DUF1540 Domain of Unknown Function (DUF1540). This family has four conserved cysteines, which is suggestive of a metal binding function. 42 -336742 pfam07562 NCD3G Nine Cysteines Domain of family 3 GPCR. This conserved sequence contains several highly-conserved Cys residues that are predicted to form disulphide bridges. It is predicted to lie outside the cell membrane, tethered to the pfam00003 in several receptor proteins. 50 -311496 pfam07563 DUF1541 Protein of unknown function (DUF1541). This family consists of several hypothetical bacterial and occurs as a tandem repeat. 52 -336743 pfam07564 DUF1542 Domain of Unknown Function (DUF1542). This domain is found in several cell surface proteins. Some are involved in antibiotic resistance and/or cellular adhesion. 77 -311498 pfam07565 Band_3_cyto Band 3 cytoplasmic domain. This family contains the cytoplasmic domain of the Band 3 anion exchange proteins that exchange Cl-/HCO3-. Band 3 constitutes the most abundant polypeptide in the red blood cell membrane, comprising 25% of the total membrane protein. The cytoplasmic domain of band 3 functions primarily as an anchoring site for other membrane-associated proteins. Included among the protein ligands of cdb3 are ankyrin, protein 4.2, protein 4.1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphofructokinase, aldolase, hemoglobin, hemichromes, and the protein tyrosine kinase (p72syk). 258 -336744 pfam07566 DUF1543 Domain of Unknown Function (DUF1543). This domain is found as 1-2 copies in a small family of proteins of unknown function. 52 -284894 pfam07568 HisKA_2 Histidine kinase. This is the dimerization and phosphoacceptor domain of a sub-family of histidine kinases. It shares sequence similarity with pfam00512 and pfam07536. It is usually found adjacent to a C-terminal ATPase domain (pfam02518). This domain is found in a wide range of Bacteria and also several Archaea. 76 -336745 pfam07569 Hira TUP1-like enhancer of split. The Hira proteins are found in a range of eukaryotes and are implicated in the assembly of repressive chromatin. These proteins also contain pfam00400. 212 -311500 pfam07571 TAF6_C TAF6 C-terminal HEAT repeat domain. TAF6_C is the C-terminal domain of the TAF6 subunit of the general transcription factor TFIID. The crystal structure reveals the presence of five conserved HEAT repeats. This region is necessary for the complexing together of the subunits TAF5, TAF6 and TAF9. 89 -311501 pfam07572 BCNT Bucentaur or craniofacial development. Bucentaur or craniofacial development protein 1 (BCNT) in ruminents has a different domain architecture to that in mouse and human. For this reason it has been used as a model for molecular evolution. Both bovine and human BCNTs are phosphorylated by casein kinase II in vitro. 73 -311502 pfam07573 AreA_N Nitrogen regulatory protein AreA N-terminus. The AreA nitrogen regulatory protein proteins (which are GATA type transcription factors) share a highly conserved N-terminus and pfam00320 at the C-terminus. 94 -311503 pfam07574 SMC_Nse1 Nse1 non-SMC component of SMC5-6 complex. S. cerevisiae Nse1 forms part of a complex with SMC5-SMC6. This non-structural maintenance of chromosomes (SMC) complex plays an essential role in genomic stability, being involved in DNA repair and DNA metabolism. It is conserved in eukaryotes from yeast to human. This domain lies immediatley up-stream of the DNA-binding zinc-finger domain, zf-RING-like pfam08746. 193 -311504 pfam07575 Nucleopor_Nup85 Nup85 Nucleoporin. A family of nucleoporins conserved from yeast to human. THe nuclear pore complex is a large assembly composed of two essential complexes: the heptameric Nup84 complex and the heteromeric Nic96-containing complex. The Nup84 complex is composed of one copy each of Nup84, Nup85, Nup120, Nup133, Nup145C, Sec13, and Seh1. The structure of a complex of Nup85 and Seh1 was solved. The N-terminus of Nup85 is inserted and forms a three-stranded blade that completes the Seh1 6-bladed beta-propeller in trans. Following its N-terminal insertion blade, Nup85 forms a compact cuboid structure composed of 20 helices, with two distinct modules, referred to as crown and trunk. 563 -336746 pfam07576 BRAP2 BRCA1-associated protein 2. These proteins include BRCA1-associated protein 2 (BRAP2), which binds nuclear localization signals (NLSs) in vitro and in yeast two-hybrid screening. These proteins share a region of sequence similarity at their N-terminus. They also have pfam02148 at the C-terminus. 93 -284902 pfam07577 DUF1547 Domain of Unknown Function (DUF1547). This family appears to be found only in a small family of Chlamydia species. 60 -311506 pfam07578 LAB_N Lipid A Biosynthesis N-terminal domain. This family is found at the N-terminus of a group of Chlamydial Lipid A biosynthesis proteins. It is also found by itself in a family of proteins of unknown function. 68 -311507 pfam07579 DUF1548 Domain of Unknown Function (DUF1548). This family appears to be found only in a small family of Chlamydia proteins. 135 -336747 pfam07580 Peptidase_M26_C M26 IgA1-specific Metallo-endopeptidase C-terminal region. These peptidases, which cleave mammalian IgA, are found in Gram-positive bacteria. Often found associated with pfam00746, they may be attached to the cell wall. 736 -311509 pfam07581 Glug The GLUG motif. This family is found in the IgA1 (M26) peptidases, which attached to the cell wall peptidoglycan by an amide bond. IgA1 protease selectively cleaves human IgA1 and is likely to be a pathogenicity factor in some pathogens. This family is also found in various other contexts, including with pfam05860. It is named GLUG after the mostly conserved G-L-any-G motif. 28 -336748 pfam07582 AP_endonuc_2_N AP endonuclease family 2 C-terminus. This highly-conserved sequence is found at the C-terminus of several apurinic/apyrimidinic (AP) endonucleases. in a range of Gram-positive and Gram-negative bacteria. See also pfam01261. 55 -311511 pfam07583 PSCyt2 Protein of unknown function (DUF1549). A family of paralogues in the planctomyces. 207 -311512 pfam07584 BatA Aerotolerance regulator N-terminal. These proteins share a highly-conserved sequence at their N-terminus. They include several proteins from Rhodopirellula baltica and also several from proteobacteria. The proteins are produced by the Batl operon which appears to be important in pathogenicity and aerotolerance. This family is the conserved N-terminus, but the full length proteins carry multiple membrane-spanning domains. BatA ensures bacterial survival in the early stages of the infection process, when the infected sites are aerobic, and is produced under conditions of oxidative stress. 76 -284909 pfam07585 BBP7 Putative beta barrel porin-7 (BBP7). This is a family of putative beta barrel porin-7 BBP7 proteins identified initially in Rhodopirellula baltica. 347 -311513 pfam07586 HXXSHH Protein of unknown function (DUF1552). A family of proteins identified in Rhodopirellula baltica. 299 -311514 pfam07587 PSD1 Protein of unknown function (DUF1553). A family of proteins found in Rhodopirellula baltica. 216 -284912 pfam07588 DUF1554 Protein of unknown function (DUF1554). A family of proteins identified in Leptospira interrogans. 137 -311515 pfam07589 VPEP PEP-CTERM motif. This motif has been identified in a wide range of bacteria at their C-terminus. It has been suggested that this is a protein sorting signal. Based on phylogenetic profiling it has been suggested that the EpsH family of proteins mediate this function. 23 -284914 pfam07590 DUF1556 Protein of unknown function (DUF1556). 82 -284915 pfam07591 PT-HINT Pretoxin HINT domain. A member of the HINT superfamily of proteases that is usually found N-terminal to the toxin module in polymorphic toxin systems. The domain is predicted to function in releasing the toxin domain by autoproteolysis. 136 -311516 pfam07592 DDE_Tnp_ISAZ013 Rhodopirellula transposase DDE domain. These transposases are found in the planctomycete Rhodopirellula baltica, the cyanobacterium Nostoc, and the Gram-positive bacterium Streptomyces. 308 -311517 pfam07593 UnbV_ASPIC ASPIC and UnbV. This conserved sequence is found associated with pfam00515 in several paralogous proteins in Rhodopirellula baltica. It is also found associated with pfam01839 in several eukaryotic integrin-like proteins (e.g. human ASPIC) and in several other bacterial proteins. 66 -284918 pfam07595 Planc_extracel Planctomycete extracellular. This motif is conserved as the N-terminus of several Rhodopirellula baltica proteins predicted to be extracellular. 24 -284919 pfam07596 SBP_bac_10 Protein of unknown function (DUF1559). A large family of paralogous proteins apparently unique to planctomycetes. 268 -284920 pfam07597 DUF1560 Protein of unknown function (DUF1560). Small family of short hypothetical proteins in Rhodopirellula baltica. 49 -284921 pfam07598 DUF1561 Protein of unknown function (DUF1561). A family of paralogous proteins in Leptospira interrogans. 625 -203693 pfam07599 DUF1563 Protein of unknown function (DUF1563). A small family of short hypothetical proteins in Leptospira interrogans. 43 -284922 pfam07600 DUF1564 Protein of unknown function (DUF1564). A family of paralogous proteins in Leptospira interrogans. Several have been annotated as possible CopG-like transcriptional regulators (see pfam01402). 167 -284923 pfam07602 DUF1565 Protein of unknown function (DUF1565). These proteins share a region of homology in their N termini, and are found in several phylogenetically diverse bacteria and in the archaeon Methanosarcina acetivorans. Some of these proteins also contain characterized domains such as pfam00395 and pfam03422. 256 -336749 pfam07603 DUF1566 Protein of unknown function (DUF1566). These proteins of unknown function are found in Leptospira interrogans and in several gamma proteobacteria. 113 -311519 pfam07606 DUF1569 Protein of unknown function (DUF1569). A family of hypothetical proteins identified in Rhodopirellula baltica. 152 -284926 pfam07607 DUF1570 Protein of unknown function (DUF1570). A family of hypothetical proteins in Rhodopirellula baltica. This family carries a highly conserved HExxH sequence motif characteristic of members of the Peptidase clan MA. 129 -311520 pfam07608 DUF1571 Protein of unknown function (DUF1571). A family of paralogous proteins in Rhodopirellula baltica. 208 -311521 pfam07609 DUF1572 Protein of unknown function (DUF1572). These proteins, from several diverse bacteria, share a short conserved sequence towards their N termini. 163 -336750 pfam07610 DUF1573 Protein of unknown function (DUF1573). These hypothetical proteins, from bacteria such as Rhodopirellula baltica, Bacteroides thetaiotaomicron, and Porphyromonas gingivalis, share a region of conserved sequence towards their N-termini. 98 -311523 pfam07611 DUF1574 Protein of unknown function (DUF1574). A family of hypothetical proteins in Leptospira interrogans. 343 -311524 pfam07613 DUF1576 Protein of unknown function (DUF1576). This small family is found in several undescribed proteins. The alignment is distinguished by the frequent occurrence of conserved glycine and aromatic residues. 176 -311525 pfam07614 DUF1577 Protein of unknown function (DUF1577). A family of hypothetical proteins in Leptospira interrogans. 256 -284933 pfam07615 Ykof YKOF-related Family. 81 -336751 pfam07617 DUF1579 Protein of unknown function (DUF1579). A family of paralogous hypothetical proteins identified in Rhodopirellula baltica that also has members in Gloeobacter violaceus, Sinorhizobium meliloti and Agrobacterium tumefaciens. 155 -284935 pfam07618 DUF1580 Protein of unknown function (DUF1580). A family of short hypothetical proteins found in Rhodopirellula baltica. 57 -284936 pfam07619 DUF1581 Protein of unknown function (DUF1581). Several Rhodopirellula baltica proteins share this probable domain. Most of these proteins are predicted to be secreted or membrane-associated. 84 -284937 pfam07621 DUF1582 Protein of unknown function (DUF1582). A family of hypothetical proteins in Rhodopirellula baltica. 29 -284938 pfam07622 DUF1583 Protein of unknown function (DUF1583). Most of these Rhodopirellula baltica hypothetical proteins also match pfam07619. 411 -284939 pfam07623 PEGSRP Protein of unknown function (DUF1584). This sequence motif is highly conserved in several short hypothetical proteins in Rhodopirellula baltica. It also is associated with pfam07621 in RB11848. 27 -336752 pfam07624 PSD2 Protein of unknown function (DUF1585). A conserved sequence region at the C-terminus of several cytochrome-like proteins in Rhodopirellula baltica. 74 -284941 pfam07625 DUF1586 Protein of unknown function (DUF1586). A family of short hypothetical proteins in Rhodopirellula baltica. 20 -311528 pfam07626 PSD3 Protein of unknown function (DUF1587). A region of similarity shared by several Rhodopirellula baltica cytochrome-like proteins that are predicted to be secreted. These proteins also match pfam07624. 65 -311529 pfam07627 PSCyt3 Protein of unknown function (DUF1588). A region of similarity shared by several Rhodopirellula baltica cytochrome-like proteins that are predicted to be secreted. These proteins also match pfam07626 and pfam07624. 97 -284944 pfam07628 DUF1589 Protein of unknown function (DUF1589). A family of short hypothetical proteins in Rhodopirellula baltica. 164 -116246 pfam07629 DUF1590 Protein of unknown function (DUF1590). These hypothetical proteins in Rhodopirellula baltica have a conserved C terminal region. 32 -311530 pfam07631 PSD4 Protein of unknown function (DUF1592). A region of similarity shared by several Rhodopirellula baltica cytochrome-like proteins that are predicted to be secreted. These proteins also match pfam07627, pfam07626, and pfam07624. 128 -311531 pfam07632 DUF1593 Protein of unknown function (DUF1593). A family of proteins in Rhodopirellula baltica that are predicted to be secreted. Also, a member has been identified in Caulobacter crescentus. These proteins mat be related to pfam01156. 260 -311532 pfam07634 RtxA RtxA repeat. This short repeat is found in the RtxA toxin family. 18 -311533 pfam07635 PSCyt1 Planctomycete cytochrome C. These proteins share a region of homology at their N-terminus that contains the C-{CPWHF}-{CPWR}-C-H-{CFYW} motif typical of cytochromes C, or CxxCH. 58 -148958 pfam07636 PSRT PSRT. This motif is found at the N-terminus of several short hypothetical proteins in Rhodopirellula baltica and the predicted Arylsulfatase B (EC:3.1.6.12). 32 -311534 pfam07637 PSD5 Protein of unknown function (DUF1595). A family of proteins in Rhodopirellula baltica, associated with pfam07635, pfam07626, pfam07631, pfam07627, and pfam07624. 62 -254323 pfam07638 Sigma70_ECF ECF sigma factor. These proteins are probably RNA polymerase sigma factors belonging to the extra-cytoplasmic function (ECF) subfamily and show sequence similarity to pfam04542 and pfam04545. 185 -284950 pfam07639 YTV YTV. These hypothetical proteins in Rhodopirellula baltica contain several repeats of a sequence whose core is the residues YTV. 40 -311535 pfam07642 BBP2 Putative beta-barrel porin-2, OmpL-like. bbp2. BBP2 is a family of putative porin proteins that are likely to be outer membrane beta barrel proteins porins. 338 -284953 pfam07643 DUF1598 Protein of unknown function (DUF1598). A family of Rhodopirellula baltica hypothetical proteins of about 500 amino acids in length. 84 -311536 pfam07645 EGF_CA Calcium-binding EGF domain. 42 -311537 pfam07646 Kelch_2 Kelch motif. The kelch motif was initially discovered in Kelch. In this protein there are six copies of the motif. It has been shown that Drosophila kel is related to Galactose Oxidase for which a structure has been solved. The kelch motif forms a beta sheet. Several of these sheets associate to form a beta propeller structure as found in pfam00064, pfam00400 and pfam00415. 47 -336753 pfam07647 SAM_2 SAM domain (Sterile alpha motif). 66 -336754 pfam07648 Kazal_2 Kazal-type serine protease inhibitor domain. Usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors. Kazal domains often occur in tandem arrays. Small alpha+beta fold containing three disulphides. 49 -336755 pfam07650 KH_2 KH domain. 77 -336756 pfam07651 ANTH ANTH domain. AP180 is an endocytotic accessory proteins that has been implicated in the formation of clathrin-coated pits. The domain is involved in phosphatidylinositol 4,5-bisphosphate binding and is a universal adaptor for nucleation of clathrin coats. 270 -284962 pfam07652 Flavi_DEAD Flavivirus DEAD domain. 146 -336757 pfam07653 SH3_2 Variant SH3 domain. SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organisation. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. 52 -336758 pfam07654 C1-set Immunoglobulin C1-set domain. 85 -311544 pfam07655 Secretin_N_2 Secretin N-terminal domain. This is a short domain found in bacterial type II/III secretory system proteins. The architecture of these proteins suggest that this family may be functionally analogous to pfam03958. 91 -336759 pfam07657 MNNL N-terminus of Notch ligand. This entry represents a region of conserved sequence at the N-terminus of several Notch ligand proteins. 75 -311546 pfam07659 DUF1599 Domain of Unknown Function (DUF1599). 61 -336760 pfam07660 STN Secretin and TonB N-terminus short domain. This is a short domain found at the N-terminus of the Secretins of the bacterial type II/III secretory system as well as the TonB-dependent receptor proteins. These proteins are involved in TonB-dependent active uptake of selective substrates. 51 -311548 pfam07661 MORN_2 MORN repeat variant. This family represents an apparent variant of the pfam02493 repeat (personal obs:C Yeats). 22 -336761 pfam07662 Nucleos_tra2_C Na+ dependent nucleoside transporter C-terminus. This family consists of nucleoside transport proteins. Rat Slc28a2 is a purine-specific Na+-nucleoside cotransporter localized to the bile canalicular membrane. Rat Slc28a1 is a a Na+-dependent nucleoside transporter selective for pyrimidine nucleosides and adenosine it also transports the anti-viral nucleoside analogues AZT and ddC. This alignment covers the C-terminus of this family of transporters. 207 -284971 pfam07663 EIIBC-GUT_C Sorbitol phosphotransferase enzyme II C-terminus. 93 -336762 pfam07664 FeoB_C Ferrous iron transport protein B C-terminus. Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N-terminus has been previously erroneously described as being ATP-binding. Recent work shows that it is similar to eukaryotic G-proteins and that it is a GTPase. 50 -254342 pfam07666 MpPF26 M penetrans paralogue family 26. These proteins include those ascribed to M penetrans paralogue family 26 in. 133 -284973 pfam07667 DUF1600 Protein of unknown function (DUF1600). These proteins appear to be specific to Mycoplasma species. 109 -284974 pfam07668 MpPF1 M penetrans paralogue family 1. This family of paralogous proteins identified in Mycoplasma penetrans includes homologs of p35. 313 -284975 pfam07669 Eco57I Eco57I restriction-modification methylase. homologs of the Escherichia coli Eco57I restriction-modification methylase are found in several phylogenetically diverse bacteria. The structure of TaqI has been solved. 100 -311551 pfam07670 Gate Nucleoside recognition. This region in the nucleoside transporter proteins are responsible for determining nucleoside specificity in the human CNT1 and CNT2 proteins. In the FeoB proteins, which are believed to be Fe2+ transporters, it includes the membrane pore region, so the function of this region is likely to be more general than just nucleoside specificity. This family may represent the pore and gate, with a wide potential range of specificity. Hence its name 'Gate'. 99 -311552 pfam07671 DUF1601 Protein of unknown function (DUF1601). This repeat is found in a small number of proteins and is apparently limited to Coxiella and related species. 37 -284977 pfam07672 MFS_Mycoplasma Mycoplasma MFS transporter. These proteins share some similarity with members of the Major Facilitator Superfamily (MFS). 267 -284979 pfam07675 Cleaved_Adhesin Cleaved Adhesin Domain. This is a family of bacterial protein modules thought to function in various roles including cell adhesion, cell lysis and carbohydrate binding. A tandem repeat of these modules (either two or three repeats) constitute the haemagglutinin/adhesin (HA) regions of the gingipains, RgpA, Kgp, and Lys-gingipain HG66 expressed by Porphyromonas gingivalis (Bacteroides gingivalis). They form components of the major extracellular virulence complex RgpA-Kgp - a mixture of proteinases and adhesin domains. The adhesin domains in this complex are found in proteinase-cleaved forms when isolated from the cell surface. Haemagglutinin genes of P. gingivalis (hagA1 HAGA1_PORGI - and hagA2 HAGA2_PORGI) suggest that such proteins are composed of eight to ten tandem repeats of these adhesin modules. Genomic data predicts that homologous protein modules are also expressed by a number of other bacteria and form part of putative multi-domain proteins. These domains may be acting in concert with other adhesion modules thought to be part of these multi-domain proteins such as fibronectin type III, pfam00041, and Meprin, A5, mu (MAM), pfam00629, domains. 166 -284980 pfam07676 PD40 WD40-like Beta Propeller Repeat. This family appears to be related to the pfam00400 repeat This This repeat corresponds to the RIVW repeat identified in cell surface proteins [Adindla et al. Comparative and Functional Genomics 2004; 5:2-16]. 37 -336763 pfam07677 A2M_recep A-macroglobulin receptor. This family includes the receptor domain region of the alpha-2-macroglobulin family. 88 -311554 pfam07678 A2M_comp A-macroglobulin complement component. This family includes the complement components region of the alpha-2-macroglobulin family. 247 -336764 pfam07679 I-set Immunoglobulin I-set domain. 90 -311555 pfam07680 DoxA TQO small subunit DoxA. Thiosulphate:quinone oxidoreductase (TQO) is one of the early steps in elemental sulphur oxidation. A novel TQO enzyme was purified from the thermo-acidophilic archaeon Acidianus ambivalens and shown to consist of a large subunit (DoxD) and a smaller subunit (DoxA). The DoxD- and DoxA-like two subunits are fused together in a single polypeptide in BT_0515. 131 -311556 pfam07681 DoxX DoxX. These proteins appear to have some sequence similarity with pfam04173 but their function is unknown. 84 -311557 pfam07682 SOR Sulphur oxygenase reductase. The sulphur oxygenase/reductase (SOR) of the thermo-acidophilic archaeon Acidianus ambivalens is an unusual enzyme consisting of 24 identical subunits arranged in a perfectly symmetrical hollow sphere and containing a mononuclear non-heme iron centre (personal communication: A. Kletzin). At 85 degrees C in vitro, elemental sulphur is oxidized to sulphite, thiosulphate and hydrogen sulphide with no external cofactors needed. The proposed equation is: 4S + O2 + 4 H2O ---> 2 HSO3- + 2 H2S + 2 H+. 302 -336765 pfam07683 CobW_C Cobalamin synthesis protein cobW C-terminal domain. This is a large and diverse family of putative metal chaperones that can be separated into up to 15 subgroups. In addition to known roles in cobalamin biosynthesis and the activation of the Fe-type nitrile hydratase, this family is also known to be involved in the response to zinc limitation. The CobW subgroup involved in cobalamin synthesis represents only a small sub-fraction of the family. 94 -311559 pfam07684 NODP NOTCH protein. NOTCH signalling plays a fundamental role during a great number of developmental processes in multicellular animals. NOD and NODP represent a region present in many NOTCH proteins and NOTCH homologs in multiple species such as NOTCH2 and NOTCH3, LIN12, SC1 and TAN1. The role of the NOD and NODP domains remains to be elucidated. 58 -311560 pfam07685 GATase_3 CobB/CobQ-like glutamine amidotransferase domain. 195 -336766 pfam07686 V-set Immunoglobulin V-set domain. This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. 109 -336767 pfam07687 M20_dimer Peptidase dimerization domain. This domain consists of 4 beta strands and two alpha helices which make up the dimerization surface of members of the M20 family of peptidases. This family includes a range of zinc metallopeptidases belonging to several families in the peptidase classification. Family M20 are Glutamate carboxypeptidases. Peptidase family M25 contains X-His dipeptidases. 107 -311563 pfam07688 KaiA KaiA C-terminal domain. The cyanobacterial clock proteins KaiA and KaiB are proposed as regulators of the circadian rhythm in cyanobacteria. The overall fold of the KaiA C-terminal domain is that of a four-helix bundle, which forms a dimer in the known structure. 122 -284992 pfam07689 KaiB KaiB domain. The cyanobacterial clock proteins KaiA and KaiB are proposed as regulators of the circadian rhythm in cyanobacteria. Mutations in both proteins have been reported to alter or abolish circadian rhythmicity. KaiB adopts an alpha-beta meander motif and is found to be a dimer. 82 -336768 pfam07690 MFS_1 Major Facilitator Superfamily. 346 -311565 pfam07691 PA14 PA14 domain. This domain forms an insert in bacterial beta-glucosidases and is found in other glycosidases, glycosyltransferases, proteases, amidases, yeast adhesins, and bacterial toxins, including anthrax protective antigen (PA). The domain also occurs in a Dictyostelium prespore-cell-inducing factor Psi and in fibrocystin, the mammalian protein whose mutation leads to polycystic kidney and hepatic disease. The crystal structure of PA shows that this domain (named PA14 after its location in the PA20 pro-peptide) has a beta-barrel structure. The PA14 domain sequence suggests a binding function, rather than a catalytic role. The PA14 domain distribution is compatible with carbohydrate binding. 145 -254362 pfam07692 Fea1 Low iron-inducible periplasmic protein. In Chlamydomonas reinhardtii, the gene encoding Fe-assimilating protein 1 is induced by iron deficiency. In green algae, this protein is periplasmic. The two paralogues FEA1 and FEA2 are the major proteins secreted by iron-deficient Chlamydomonas reinhardtii, and both are up-regulated in response to iron deficiency. FEA1 but not FEA2 is up-regulated by high CO2 concentration. Both FEA1 and FEA2 are secreted into the periplasmic space and genetic evidence confirms that their association with the cell is required for growth in low iron. 359 -284995 pfam07693 KAP_NTPase KAP family P-loop domain. The KAP (after Kidins220/ARMS and PifA) family of predicted NTPases are sporadically distributed across a wide phylogenetic range in bacteria and in animals. Many of the prokaryotic KAP NTPases are encoded in plasmids and tend to undergo disruption to form pseudogenes. A unique feature of all eukaryotic and certain bacterial KAP NTPases is the presence of two or four transmembrane helices inserted into the P-loop NTPase domain. These transmembrane helices anchor KAP NTPases in the membrane such that the P-loop domain is located on the intracellular side. 293 -311566 pfam07694 5TM-5TMR_LYT 5TMR of 5TMR-LYT. This entry represents the transmembrane region of the 5TM-LYT (5TM Receptors of the LytS-YhcK type). 168 -311567 pfam07695 7TMR-DISM_7TM 7TM diverse intracellular signalling. This entry represents the transmembrane region of the 7TM-DISM (7TM Receptors with Diverse Intracellular Signalling Modules). 207 -336769 pfam07696 7TMR-DISMED2 7TMR-DISM extracellular 2. This entry represents one of two distinct types of extracellular domain found in the 7TM-DISM (7TM Receptors with Diverse Intracellular Signalling Modules) bacterial transmembrane proteins. It is possible that this domain adopts a jelly roll fold and acts as a receptor for carbohydrates and their derivatives. 129 -336770 pfam07697 7TMR-HDED 7TM-HD extracellular. This entry represents the extracellular domain of the 7TM-HD (7TM Receptors with HD hydrolase). 218 -336771 pfam07698 7TM-7TMR_HD 7TM receptor with intracellular HD hydrolase. These bacterial 7TM receptor proteins have an intracellular pfam01966. This entry corresponds to the 7 helix transmembrane domain. These proteins also contain an N-terminal extracellular domain. 191 -311571 pfam07699 Ephrin_rec_like Putative ephrin-receptor like. This family has repeats of a region rich in cysteines. 48 -336772 pfam07700 HNOB Haem-NO-binding. The HNOB (Haem NO Binding) domain, is a predominantly alpha-helical domain and binds heme via a covalent linkage to histidine. It is a haem protein sensor (SONO) that displays femtomolar affinity for nitrous oxide, NO. It is predicted to function as a haem-dependent sensor for gaseous ligands and to transduce diverse downstream signals in both bacteria and animals. 162 -336773 pfam07701 HNOBA Heme NO binding associated. The HNOBA domain is found associated with the HNOB domain and pfam00211 in soluble cyclases and signalling proteins. The HNOB domain is predicted to function as a heme-dependent sensor for gaseous ligands, and transduce diverse downstream signals, in both bacteria and animals. 209 -336774 pfam07702 UTRA UTRA domain. The UbiC transcription regulator-associated (UTRA) domain is a conserved ligand-binding domain that has a similar fold to pfam04345. It is believed to modulate activity of bacterial transcription factors in response to binding small molecules. 141 -336775 pfam07703 A2M_N_2 Alpha-2-macroglobulin family N-terminal region. This family includes a region of the alpha-2-macroglobulin family. 135 -336776 pfam07704 PSK_trans_fac Rv0623-like transcription factor. This entry represents the Rv0623-like family of transcription factors associated with the PSK operon. 82 -285007 pfam07705 CARDB CARDB. Cell adhesion related domain found in bacteria. 101 -311577 pfam07706 TAT_ubiq Aminotransferase ubiquitination site. This segment contains a probable site of ubiquitination that ensures rapid degradation of tyrosine aminotransferase in rats. The half life of the enzyme in vivo is about 2-4 hours. In addition, unpublished information identifies at least 2 phosphorylation sites including CAPK at Ser29 and, at the other end of the protein, a casein kinase II site at S*QEECDK. This region of TAT is probably primarily related to regulatory events. Most other transaminases are much more stable and are not phosphorylated. 40 -311578 pfam07707 BACK BTB And C-terminal Kelch. This domain is found associated with pfam00651 and pfam01344. The BACK domain is found juxtaposed to the BTB domain; they are separated by as little as two residues. This family appears to be closely related to the BTB domain (Finn RD, personal observation). 101 -285010 pfam07708 Tash_PEST Tash protein PEST motif. This motif is found in the Tash AT-hook proteins of Theileria annulata. These proteins are transported to the hosts nucleus and are likely to be involved in pathogenesis. It is also often found in conjunction with pfam04385. It is suggested that they may be 'part of PEST motifs' (a signal for rapid proteolytic degradation) in, though this is not definite. This motif is also found in other T. annulata proteins, which have no other known domains in (unpublished data: C Yeats). 18 -116323 pfam07709 SRR Seven Residue Repeat. Associated with pfam02969 in This repeat is found in some Plasmodium and Theileria proteins. 14 -311579 pfam07710 P53_tetramer P53 tetramerisation motif. 40 -311580 pfam07711 RabGGT_insert Rab geranylgeranyl transferase alpha-subunit, insert domain. Rab geranylgeranyl transferase (RabGGT) catalyzes the addition of two geranylgeranyl groups to the C-terminal cysteine residues of Rab proteins, which is crucial for membrane association and function of these proteins in intracellular vesicular trafficking. This domain is inserted between pfam01239 repeats. This domain adopts an Ig-like fold and is thought to be involved in protein-protein interactions and might be involved in the recognition and binding of REP. 100 -311581 pfam07712 SURNod19 Stress up-regulated Nod 19. 375 -336777 pfam07713 DUF1604 Protein of unknown function (DUF1604). This family is found at the N-terminus of several eukaryotic RNA processing proteins. 84 -336778 pfam07714 Pkinase_Tyr Protein tyrosine kinase. 258 -336779 pfam07715 Plug TonB-dependent Receptor Plug Domain. The Plug domain has been shown to be an independently folding subunit of the TonB-dependent receptors. It acts as the channel gate, blocking the pore until the channel is bound by ligand. At this point it under goes conformational changes opens the channel. 106 -311585 pfam07716 bZIP_2 Basic region leucine zipper. 51 -336780 pfam07717 OB_NTP_bind Oligonucleotide/oligosaccharide-binding (OB)-fold. This family is found towards the C-terminus of the DEAD-box helicases (pfam00270). In these helicases it is apparently always found in association with pfam04408. There do seem to be a couple of instances where it occurs by itself. The structure Structure 3i4u adopts an OB-fold. helicases (pfam00270). In these helicases it is apparently always found in association with pfam04408. This C-terminal domain of the yeast helicase contains an oligonucleotide/oligosaccharide-binding (OB)-fold which seems to be placed at the entrance of the putative nucleic acid cavity. It also constitutes the binding site for the G-patch-containing domain of Pfa1p. When found on DEAH/RHA helicases, this domain is central to the regulation of the helicase activity through its binding of both RNA and G-patch domain proteins. 83 -311587 pfam07718 Coatamer_beta_C Coatomer beta C-terminal region. This family is found at the C-terminus of the coatamer beta subunit proteins (Beta-coat proteins). This C-terminal domain probably adapts the function of the N-terminal pfam01602 domain. 131 -311588 pfam07719 TPR_2 Tetratricopeptide repeat. This Pfam entry includes outlying Tetratricopeptide-like repeats (TPR) that are not matched by pfam00515. 34 -311589 pfam07720 TPR_3 Tetratricopeptide repeat. This Pfam entry includes tetratricopeptide-like repeats found in the LcrH/SycD-like chaperones. 34 -311590 pfam07721 TPR_4 Tetratricopeptide repeat. This Pfam entry includes tetratricopeptide-like repeats not detected by the pfam00515, pfam07719 and pfam07720 models. 26 -336781 pfam07722 Peptidase_C26 Peptidase C26. These peptidases have gamma-glutamyl hydrolase activity; that is they catalyze the cleavage of the gamma-glutamyl bond in poly-gamma-glutamyl substrates. They are structurally related to pfam00117, but contain extensions in four loops and at the C-terminus. 217 -336782 pfam07723 LRR_2 Leucine Rich Repeat. This Pfam entry includes some LRRs that fail to be detected with the pfam00560 model. 26 -336783 pfam07724 AAA_2 AAA domain (Cdc48 subfamily). This Pfam entry includes some of the AAA proteins not detected by the pfam00004 model. 168 -285026 pfam07725 LRR_3 Leucine Rich Repeat. This Pfam entry includes some LRRs that fail to be detected by the pfam00560 model. 20 -285027 pfam07726 AAA_3 ATPase family associated with various cellular activities (AAA). This Pfam entry includes some of the AAA proteins not detected by the pfam00004 model. 131 -336784 pfam07727 RVT_2 Reverse transcriptase (RNA-dependent DNA polymerase). A reverse transcriptase gene is usually indicative of a mobile element such as a retrotransposon or retrovirus. Reverse transcriptases occur in a variety of mobile elements, including retrotransposons, retroviruses, group II introns, bacterial msDNAs, hepadnaviruses, and caulimoviruses. This Pfam entry includes reverse transcriptases not recognized by the pfam00078 model. 235 -336785 pfam07728 AAA_5 AAA domain (dynein-related subfamily). This Pfam entry includes some of the AAA proteins not detected by the pfam00004 model. 135 -336786 pfam07729 FCD FCD domain. This domain is the C-terminal ligand binding domain of many members of the GntR family. This domain probably binds to a range of effector molecules that regulate the transcription of genes through the action of the N-terminal DNA-binding domain pfam00392. This domain is found in Escherichia coli NanR and DgoR that are regulators of sugar biosynthesis operons. It is also in the known structure of FadR where it binds to acyl-coA, the domain is alpha helical. This family has been named as FCD for (FadR C-terminal Domain). 121 -336787 pfam07730 HisKA_3 Histidine kinase. This is the dimerization and phosphoacceptor domain of a sub-family of histidine kinases. It shares sequence similarity with pfam00512 and pfam07536. 61 -336788 pfam07731 Cu-oxidase_2 Multicopper oxidase. This entry contains many divergent copper oxidase-like domains that are not recognized by the pfam00394 model. 123 -336789 pfam07732 Cu-oxidase_3 Multicopper oxidase. This entry contains many divergent copper oxidase-like domains that are not recognized by the pfam00394 model. 117 -311600 pfam07733 DNA_pol3_alpha Bacterial DNA polymerase III alpha subunit. 380 -254394 pfam07734 FBA_1 F-box associated. Most of these proteins contain pfam00646 at the N-terminus, suggesting that they are effectors linked with ubiquitination. 159 -336790 pfam07735 FBA_2 F-box associated. Most of these proteins contain pfam00646 at the N-terminus, suggesting that they are effectors linked with ubiquitination. 67 -336791 pfam07736 CM_1 Chorismate mutase type I. Chorismate mutase EC:5.4.99.5 catalyzes the conversion of chorismate to prephenate in the pathway of tyrosine and phenylalanine biosynthesis. This enzyme is negatively regulated by tyrosine, tryptophan and phenylalanine. 116 -285037 pfam07737 ATLF Anthrax toxin lethal factor, N- and C-terminal domain. The C-terminal domain is the catalytically active domain whereas the N-terminal domain is likely to be inactive. 218 -336792 pfam07738 Sad1_UNC Sad1 / UNC-like C-terminal. The C. elegans UNC-84 protein is a nuclear envelope protein that is involved in nuclear anchoring and migration during development. The S. pombe Sad1 protein localizes at the spindle pole body. UNC-84 and and Sad1 share a common C-terminal region, that is often termed the SUN (Sad1 and UNC) domain. In mammals, the SUN domain is present in two proteins, Sun1 and Sun2. The SUN domain of Sun2 has been demonstrated to be in the periplasm. 135 -311604 pfam07739 TipAS TipAS antibiotic-recognition domain. This domain is found at the C-terminus of some MerR family transcription factors. The domain has an alpha-helical globin-like fold. The family includes Mta a central regulator of multidrug resistance in Bacillus subtilis. 117 -336793 pfam07740 Toxin_12 Ion channel inhibitory toxin. This is a family of potent toxins that function as ion-channel inhibitors for several different ions. Omega-Grammotoxin SIA is a VSCC antagonist that inhibits neuronal N- and P-type VSCC responses. Huwentoxin-IV, from the Chinese bird spider, is a highly potent neurotoxin that specifically inhibits the neuronal tetrodotoxin-sensitive voltage-gated sodium channel in rat dorsal root ganglion neurons. Hainantoxin-4, from the venom of spider Selenocosmia hainana, adopts an inhibitor cystine knot structural motif like huwentoin-IV, and is a potent antagonist that acts at site 1 on tetrodotoxin-sensitive (TTX-S) sodium channels. Study of the molecular nature of toxin-receptor interactions has helped elucidate the functioning of many ion-channels. 30 -336794 pfam07741 BRF1 Brf1-like TBP-binding domain. This region covers both the Brf homology II and III regions. This region is involved in binding TATA binding protein. 99 -336795 pfam07742 BTG BTG family. 116 -336796 pfam07743 HSCB_C HSCB C-terminal oligomerization domain. This domain is the HSCB C-terminal oligomerization domain and is found on co-chaperone proteins. 73 -336797 pfam07744 SPOC SPOC domain. The SPOC (Spen paralogue and orthologue C-terminal) domain is involved in developmental signalling. 140 -311610 pfam07745 Glyco_hydro_53 Glycosyl hydrolase family 53. This domain belongs to family 53 of the glycosyl hydrolase classification. These enzymes are enzymes are endo-1,4- beta-galactanases (EC:3.2.1.89). The structure of this domain is known and has a TIM barrel fold. 333 -311611 pfam07746 LigA Aromatic-ring-opening dioxygenase LigAB, LigA subunit. This is a family of aromatic ring opening dioxygenases which catalyze the ring-opening reaction of protocatechuate and related compounds. 87 -311612 pfam07747 MTH865 MTH865-like family. This domain has an EF-hand like fold. 70 -336798 pfam07748 Glyco_hydro_38C Glycosyl hydrolases family 38 C-terminal domain. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. 362 -336799 pfam07749 ERp29 Endoplasmic reticulum protein ERp29, C-terminal domain. ERp29 is a ubiquitously expressed endoplasmic reticulum protein found in mammals. ERp29 is comprised of two domains. This domain, the C-terminal domain, has an all helical fold. ERp29 is thought to form part of the thyroglobulin folding complex. 95 -254404 pfam07750 GcrA GcrA cell cycle regulator. GcrA is a master cell cycle regulator that, together with CtrA (see pfam00072 and pfam00486), is involved in controlling cell cycle progression and asymmetric polar morphogenesis. During this process, there are temporal and spatial variations in the concentrations of GcrA and CtrA. The variation in concentration produces time and space dependent transcriptional regulation of modular functions that implement cell-cycle processes. More specifically, GcrA acts as an activator of components of the replisome and the segregation machinery. 162 -336800 pfam07751 Abi_2 Abi-like protein. This family, found in various bacterial species, contains sequences that are similar to the Abi group of proteins, which are involved in bacteriophage resistance mediated by abortive infection in Lactococcus species. The proteins are thought to have helix-turn-helix motifs, found in many DNA-binding proteins, allowing them to perform their function. 185 -311616 pfam07752 S-layer S-layer protein. Archaeal S-layer proteins consist of two copies of this domain. 258 -285051 pfam07753 DUF1609 Protein of unknown function (DUF1609). This region is found in a number of hypothetical proteins thought to be expressed by the eukaryote Encephalitozoon cuniculi, an obligate intracellular microsporidial parasite. It is approximately 200 residues long. 227 -285052 pfam07754 DUF1610 Domain of unknown function (DUF1610). This zinc ribbon domain is found in archaeal species. It is likely to bind zinc via its four well-conserved cysteine residues. 24 -336801 pfam07755 DUF1611 Domain of unknown function (DUF1611_C) P-loop domain. This region is found in a number of hypothetical bacterial and archaeal proteins. According to structure it has a P-loop structure. 198 -336802 pfam07756 DUF1612 Protein of unknown function (DUF1612). This family includes sequences of largely unknown function but which share a number of features in common. They are expressed by bacterial species, and in many cases these bacteria are known to associate symbiotically with plants. Moreover, the majority are coded for by plasmids, which in many cases are known to confer on the organism the ability to interact symbiotically with leguminous plants. An example of such a plasmid is NGR234, which encodes Y4CF, a protein of unknown function that is a member of this family. Other members of this family are expressed by organisms with a documented genomic similarity to plant symbionts. 127 -254409 pfam07757 AdoMet_MTase Predicted AdoMet-dependent methyltransferase. Proteins in this family have been predicted to function as AdoMet-dependent methyltransferases. 112 -336803 pfam07758 DUF1614 Protein of unknown function (DUF1614). This is a family of sequences coming from hypothetical proteins found in both bacterial and archaeal species. 172 -311619 pfam07759 DUF1615 Protein of unknown function (DUF1615). This is a family of proteins of unknown function expressed by various bacterial species. Some members of this family are thought to be lipoproteins. Another member of this family is thought to be involved in photosynthesis. 320 -311620 pfam07760 DUF1616 Protein of unknown function (DUF1616). This is a family of sequences from hypothetical archaeal proteins. The region in question is approximately 330 amino acid residues long. 300 -285058 pfam07761 DUF1617 Protein of unknown function (DUF1617). This is a family of sequences from hypothetical bacterial and bacteriophage proteins. The region in question is approximately 150 residues long and is highly conserved throughout the family. 143 -336804 pfam07762 DUF1618 Protein of unknown function (DUF1618). The members of this family are mainly hypothetical proteins expressed by Oryza sativa. 129 -311622 pfam07763 FEZ FEZ-like protein. This is a family of eukaryotic proteins thought to be involved in axonal outgrowth and fasciculation. The N-terminal regions of these sequences are less conserved than the C-terminal regions, and are highly acidic. The C. elegans homolog, UNC-76, may play structural and signalling roles in the control of axonal extension and adhesion (particularly in the presence of adjacent neuronal cells) and these roles have also been postulated for other FEZ family proteins. Certain homologs have been definitively found to interact with the N-terminal variable region (V1) of PKC-zeta, and this interaction causes cytoplasmic translocation of the FEZ family protein in mammalian neuronal cells. The C-terminal region probably participates in the association with the regulatory domain of PKC-zeta. The members of this family are predicted to form coiled-coil structures, which may interact with members of the RhoA family of signalling proteins, but are not thought to contain other characteristic protein motifs. Certain members of this family are expressed almost exclusively in the brain, whereas others (such as FEZ2) are expressed in other tissues, and are thought to perform similar but unknown functions in these tissues. 241 -311623 pfam07764 Omega_Repress Omega Transcriptional Repressor. The omega transcriptional repressor regulates expression of involved in copy number control and stable maintenance of plasmids. The omega protein belongs to the structural superfamily of MetJ/Arc repressors featuring a ribbon-helix-helix DNA-binding motif with the beta-ribbon located in and recognising the major groove of operator DNA. 71 -311624 pfam07765 KIP1 KIP1-like protein. This is a family of sequences found exclusively in plants. They are similar to kinase interacting protein 1 (KIP1), which has been found to interact with the kinase domain of PRK1, a receptor-like kinase. This particular region contains two coiled-coils, which are described as motifs involved in protein-protein interactions. It has also been suggested that the protein's coiled- coils allow it to dimerize in vivo. 74 -336805 pfam07766 LETM1 LETM1-like protein. Members of this family are inner mitochondrial membrane proteins which play a role in potassium and hydrogen ion exchange. Deletion of LETM1 is thought to be involved in the development of Wolf-Hirschhorn syndrome in humans. 264 -336806 pfam07767 Nop53 Nop53 (60S ribosomal biogenesis). This nucleolar family of proteins are involved in 60S ribosomal biogenesis. They are specifically involved in the processing beyond the 27S stage of 25S rRNA maturation. This family contains sequences that bear similarity to the glioma tumor suppressor candidate region gene 2 protein (p60). This protein has been found to interact with herpes simplex type 1 regulatory proteins. 364 -285065 pfam07768 PVL_ORF50 PVL ORF-50-like family. This is a family of sequences found in both bacteria and bacteriophages. This region is approximately 130 residues long and in some cases is found as part of the PVL (Panton-Valentine leukocidin) group of genes, which encode a member of the leukocidin group of bacterial toxins that kill leukocytes by creation of pores in the cell membrane. PVL appears to be a virulence factor associated with a number of human diseases. 116 -336807 pfam07769 PsiF_repeat psiF repeat. This region is approximately 35 residues long. It is found repeated in a number of putative phosphate starvation- inducible proteins expressed by various bacterial species. psiF is known to be an example of such phosphate starvation-inducible proteins. 34 -311628 pfam07771 TSGP1 Tick salivary peptide group 1. This contains a group of peptides derived from a salivary gland cDNA library of the tick Ixodes scapularis. Also present are peptides from a related tick species, Ixodes ricinus. They are characterized by a putative signal peptide indicative of secretion and conserved cysteine residues. 112 -311629 pfam07773 DUF1619 Protein of unknown function (DUF1619). This is a family of sequences derived from hypothetical eukaryotic proteins. The region in question is approximately 330 residues long and has a cysteine rich amino-terminus. 304 -336808 pfam07774 DUF1620 Protein of unknown function (DUF1620). These sequences are mainly derived from predicted eukaryotic proteins. The region in question lies towards the C-terminus of these large proteins and is approximately 300 amino acid residues long. 209 -285070 pfam07775 PaRep2b PaRep2b protein. This is a family of proteins, expressed in the crenarchaeon Pyrobaculum aerophilum, whose members are variable in length and level of conservation. The presence of numerous frameshifts and internal stop codons in multiple alignments are thought to indicate that most family members are no longer functional. 512 -311631 pfam07776 zf-AD Zinc-finger associated domain (zf-AD). The zf-AD domain, also known as ZAD, forms an atypical treble-cleft-like zinc co-ordinating fold. The zf-AD domain is thought to be involved in mediating dimer formation, but does not bind to DNA. 74 -311632 pfam07777 MFMR G-box binding protein MFMR. This region is found to the N-terminus of the pfam00170 transcription factor domain. It is between 150 and 200 amino acids in length. The N-terminal half is rather rich in proline residues and has been termed the PRD (proline rich domain), whereas the C-terminal half is more polar and has been called the MFMR (multifunctional mosaic region). It has been suggested that this family is composed of three sub-families called A, B and C, classified according to motif composition. It has been suggested that some of these motifs may be involved in mediating protein-protein interactions. The MFMR region contains a nuclear localization signal in bZIP opaque and GBF-2. The MFMR also contains a transregulatory activity in TAF-1. The MFMR in CPRF-2 contains cytoplasmic retention signals. 95 -311633 pfam07778 CENP-I Mis6. Mis6 is an essential centromere connector protein acting during G1-S phase of the cell cycle. Mis6 is thought to be required for recruiting CENP-A, the centromere- specific histone H3 variant, an important event for centromere function and chromosome segregation during mitosis. 511 -311634 pfam07779 Cas1_AcylT 10 TM Acyl Transferase domain found in Cas1p. Cas1p protein of Cryptococcus neoformans is required for the synthesis of O-acetylated glucuronoxylomannans, a consitutent of the capsule, and is critical for its virulence. The multi TM domain of the Cas1p was unified with the 10 TM Sugar Acyltransferase superfamily. This superfamily is comprised of members from the OatA, MdoC, OpgC, NolL and GumG families in addition to the Cas1p family. The Cas1p protein has a N terminal PC-Esterase domain with the opposing Acyl esterase activity. 461 -311635 pfam07780 Spb1_C Spb1 C-terminal domain. This presumed domain is found at the C-terminus of a family of FtsJ-like methyltransferases. Members of this family are involved in 60S ribosomal biogenesis. 208 -285076 pfam07781 Reovirus_Mu2 Reovirus minor core protein Mu-2. This family represents the Reovirus core protein Mu-2. Mu-2 is a microtubule associated protein and is thought to play a key role in the formation and structural organisation of reovirus inclusion bodies. 727 -336809 pfam07782 DC_STAMP DC-STAMP-like protein. This is a family of sequences which are similar to a region of the dendritic cell-specific transmembrane protein (DC-STAMP). This is thought to be a novel receptor protein that shares no identity with other multimembrane-spanning proteins. It is thought to have seven putative transmembrane regions, two of which are found in the region featured in this family. DC-STAMP is also described as having potential N-linked glycosylation sites and a potential phosphorylation site for PKC, but these are not conserved throughout the family. 191 -311637 pfam07784 DUF1622 Protein of unknown function (DUF1622). This is a family of 14 highly conserved sequences, from hypothetical proteins expressed by both bacterial and archaeal species. 78 -285079 pfam07785 DUF1623 Protein of unknown function (DUF1623). The members of this family are all derived from relatively short hypothetical proteins thought to be expressed by various Nucleopolyhedroviruses. 90 -311638 pfam07786 DUF1624 Protein of unknown function (DUF1624). These sequences are found in hypothetical proteins of unknown function expressed by bacterial and archaeal species. The region in question is approximately 230 residues long. 222 -336810 pfam07787 TMEM43 Transmembrane protein 43. This entry represents the transmembrane protein 43 family of proteins, which may function as tetraspanin-like membrane organizers. 244 -285082 pfam07788 PDDEXK_10 PD-(D/E)XK nuclease superfamily. This family is found to carry modified motifs characteristic of PD-(D/E)XK endonuclease superfamily. These are the conserved Glu of motif I, the Asp surreounded by hydrophobics of motif II, EIKS of motif III, and the lysine of mmotif IV has migrated to an alpha-helix following the third core beta-strand. The conserved patch of positively charged lysine and arginine residues in the motif IV apha-helix might be involved in substrate-binding or be contributing to active site formation. Members with an additional N-terminal coi9led-coil domain, are annotated as tropomyosin, coiled-coil or microtubule binding proteins. 74 -116403 pfam07789 DUF1627 Protein of unknown function (DUF1627). This is a group of sequences found in hypothetical proteins predicted to be expressed in a number of bacterial species. The region in question is approximately 150 amino acid residues long. 155 -311640 pfam07790 Pilin_N Archaeal Type IV pilin, N-terminal. This entry represents the N-terminal domain of archaeal pilins, which play important roles in surface adhesion and twitching motility. This domain contains an conserved N- terminal hydrophobic motif. 78 -311641 pfam07791 DUF1629 Protein of unknown function (DUF1629). This family consists of sequences from hypothetical proteins thought to be expressed by two members of the Xanthomonas genus. The region in question is 125 amino acid residues long. 123 -311642 pfam07792 Afi1 Docking domain of Afi1 for Arf3 in vesicle trafficking. This domain occurs at the N-terminal of Afi1, an Arf3p-interacting protein, is a protein necessary for vesicle trafficking in yeast. This domain is the interacting region of the protein which binds to Arf3, the highly conserved small GTPases (ADP-ribosylation factors). Afi1 is distributed asymmetrically at the plasma membrane and is required for polarized distribution of Arf3 but not of an Arf3 guanine nucleotide-exchange factor, Yel1p. However, Afi1 is not required for targeting of Arf3 or Yel1p to the plasma membrane. Afi1 functions as an Arf3 polarization-specific adapter and participates in development of polarity. Although Arf3 is the homolog of human Arf6 it does not function in the same way, not being necessary for endocytosis or for mating factor receptor internalization. In the S phase, however, it is concentrated at the plasma membrane of the emerging bud. Because of its polarized localization and its critical function in the normal budding pattern of yeast, Arf3 is probably a regulator of vesicle trafficking, which is important for polarized growth. 115 -336811 pfam07793 DUF1631 Protein of unknown function (DUF1631). The members of this family are sequences derived from a group of hypothetical proteins expressed by certain bacterial species. The region concerned is approximately 440 amino acid residues in length. 736 -116408 pfam07794 DUF1633 Protein of unknown function (DUF1633). This family contains sequences derived from a group of hypothetical proteins expressed by Arabidopsis thaliana. These sequences are highly similar and the region concerned is about 100 residues long. 698 -311644 pfam07795 DUF1635 Protein of unknown function (DUF1635). The members of this family include sequences that are parts of hypothetical proteins expressed by plant species. The region in question is about 170 amino acids long. 215 -311645 pfam07796 DUF1638 Protein of unknown function (DUF1638). This family contains sequences covering an approximately 270 amino acid stretch of a group of hypothetical proteins. These proteins are expressed by archaeal species of the Methanosarcina genus. 161 -336812 pfam07797 DUF1639 Protein of unknown function (DUF1639). This approximately 50 residue region is found in a number of sequences derived from hypothetical plant proteins. This region features a highly basic 5 amino-acid stretch towards its centre. 50 -311647 pfam07798 DUF1640 Protein of unknown function (DUF1640). This family consists of sequences derived from hypothetical eukaryotic proteins. A region approximately 100 residues in length is featured. 174 -336813 pfam07799 DUF1643 Protein of unknown function (DUF1643). The members of this family are all sequences found within hypothetical proteins expressed by various bacterial species. The region concerned is approximately 150 residues long. 132 -336814 pfam07800 DUF1644 Protein of unknown function (DUF1644). This family consists of sequences found in a number of hypothetical plant proteins of unknown function. The region of interest contains nine highly conserved cysteine residues and is approximately 160 amino acids in length, and is probably a zinc-binding domain. 164 -311650 pfam07801 DUF1647 Protein of unknown function (DUF1647). The sequences making up this family are all derived from hypothetical proteins expressed by C. elegans. The region in question is approximately 160 amino acids long. The GO annotation for this protein indicates the protein to be involved in nematode larval development and to have a positive regulation on growth rate. 141 -336815 pfam07802 GCK GCK domain. This domain is found in proteins carrying other domains known to be involved in intracellular signalling pathways (such as pfam00071) indicating that it might also be involved in these pathways. It has 4 highly conserved cysteine residues, suggesting that it can bind zinc ions. Moreover, it is found repeated in some members of this family; this may indicate that these domains are able to interact with one another, raising the possibility that this domain mediates heterodimerization. 74 -311652 pfam07803 GSG-1 GSG1-like protein. This family contains sequences bearing similarity to a region of GSG1, a protein specifically expressed in testicular germ cells. It is possible that overexpression of the human homolog may be involved in tumorigenesis of human testicular germ cell tumors. The region in question has four highly-conserved cysteine residues. 110 -336816 pfam07804 HipA_C HipA-like C-terminal domain. The members of this family are similar to a region close to the C-terminus of the HipA protein expressed by various bacterial species. This protein is known to be involved in high-frequency persistence to the lethal effects of inhibition of either DNA or peptidoglycan synthesis. When expressed alone, it is toxic to bacterial cells, but it is usually tightly associated with HipB, and the HipA-HipB complex may be involved in autoregulation of the hip operon. The hip proteins may be involved in cell division control and may interact with cell division genes or their products. 221 -116420 pfam07806 Nod_GRP Nodule-specific GRP repeat. The region featured in this family is found repeated in a number of plant proteins, some of which are expressed specifically in nodules formed during symbiotic interactions with certain bacterial species. Some of these proteins are also termed glycine-rich proteins (GRPs), due to the presence of a glycine-rich C-terminal region in their structures. Bacterial infection is required for the induction of nodule-specific GRP genes, and it is thought that nodule-specific GRPs may play non-redundant roles required at specific stages of nodule development. Members of this group of proteins may be cytosolic, whereas others are thought to be membrane-associated. 38 -311655 pfam07807 RED_C RED-like protein C-terminal region. This family contains sequences that are similar to the C-terminal region of Red protein. This and related proteins are thought to be localized to the nucleus, and contain a RED repeat which consists of a number of RE and RD sequence elements. The region in question has several conserved NLS sequences. The function of Red protein is unknown, but efficient sequestration to nuclear bodies suggests that its expression may be tightly regulated or that the protein self-aggregates extremely efficiently. 112 -336817 pfam07808 RED_N RED-like protein N-terminal region. This family contains sequences that are similar to the N-terminal region of Red protein. This and related proteins contain a RED repeat which consists of a number of RE and RD sequence elements. The region in question has several conserved NLS sequences and a putative trimeric coiled-coil region, suggesting that these proteins are expressed in the nucleus. The function of Red protein is unknown, but efficient sequestration to nuclear bodies suggests that its expression may be tightly regulated of that the protein self-aggregates extremely efficiently. 223 -336818 pfam07809 RTP801_C RTP801 C-terminal region. The members of this family are sequences similar to the C-terminal region of RTP801, the protein product of a hypoxia-inducible factor 1 (HIF-1)- responsive gene. Two members of this family expressed by Drosophila melanogaster, Scylla and Charybde, are designated by the GenBank as Hox targets. RTP801 is thought to be involved in various cellular processes. Its overexpression caused the apoptosis- resistant phenotype in cycling cells, and apoptosis sensitivity in growth arrested cells. Moreover, the protein product of the mouse homolog of RTP801 (dig2) is thought to be induced by diverse apoptotic signals, and also by dexamethasone treatment. 116 -336819 pfam07810 TMC TMC domain. These sequences are similar to a region conserved amongst various protein products of the transmembrane channel-like (TMC) gene family, such as Transmembrane channel-like protein 3 and EVIN2 - this region is termed the TMC domain. Mutations in these genes are implicated in a number of human conditions, such as deafness and epidermodysplasia verruciformis. TMC proteins are thought to have important cellular roles, and may be modifiers of ion channels or transporters. 111 -336820 pfam07811 TadE TadE-like protein. The members of this family are similar to a region of the protein product of the bacterial tadE locus. In various bacterial species, the tad locus is closely linked to flp-like genes, which encode proteins required for the production of pili involved in adherence to surfaces. It is thought that the tad loci encode proteins that act to assemble or export an Flp pilus in various bacteria. All tad loci but TadA have putative transmembrane regions, and in fact the region in question is this family has a high proportion of hydrophobic amino acid residues. 43 -336821 pfam07812 TfuA TfuA-like protein. This family consists of a group of sequences that are similar to a region of TfuA protein. This protein is involved in the production of trifolitoxin (TFX), an gene-encoded, post-translationally modified peptide antibiotic. The role of TfuA in TFX synthesis is unknown, and it may be involved in other cellular processes. 120 -285104 pfam07813 LTXXQ LTXXQ motif family protein. This protein family includes two copies of a five residue motif is found in a number of bacterial proteins bearing similarity to the protein CpxP. This is a periplasmic protein that aids in combating extracytoplasmic protein-mediated toxicity, and may also be involved in the response to alkaline pH. Another member of this family, Spy, is also a periplasmic protein that may be involved in the response to stress. The homology between CpxP and Spy may indicate that these two proteins are functionally related. 98 -336822 pfam07814 WAPL Wings apart-like protein regulation of heterochromatin. This family contains sequences expressed in eukaryotic organisms bearing high similarity to the WAPL conserved region of D. melanogaster wings apart-like protein. This protein is involved in the regulation of heterochromatin structure. hWAPL, the human homolog, is found to play a role in the development of cervical carcinogenesis, and is thought to have similar functions to Drosophila wapl protein. Malfunction of the hWAPL pathway is thought to activate an apoptotic pathway that consequently leads to cell death. 341 -311662 pfam07815 Abi_HHR Abl-interactor HHR. The region featured in this family is found towards the N-terminus of a number of adaptor proteins that interact with Abl-family tyrosine kinases. More specifically, it is termed the homeo-domain homologous region (HHR), as it is similar to the DNA-binding region of homeo-domain proteins. Other homeo-domain proteins have been implicated in specifying positional information during embryonic development, and in the regulation of the expression of cell-type specific genes. The Abl-interactor proteins are thought to coordinate the cytoplasmic and nuclear functions of the Abl-family kinases, and seem to be involved in cytoskeletal reorganisation, but their precise role remains unclear. 76 -311663 pfam07816 DUF1645 Protein of unknown function (DUF1645). These sequences are derived from a number of hypothetical plant proteins. The region in question is approximately 270 amino acids long. Some members of this family are annotated as yeast pheromone receptor proteins AR781 but no literature was found to support this. 190 -336823 pfam07817 GLE1 GLE1-like protein. The members of this family are sequences that are similar to the human protein GLE1. This protein is localized at the nuclear pore complexes and functions in poly(A)+ RNA export to the cytoplasm. 249 -336824 pfam07818 HCNGP HCNGP-like protein. This family comprises sequences bearing significant similarity to the mouse transcriptional regulator protein HCNGP. This protein is localized to the nucleus and is thought to be involved in the regulation of beta-2-microglobulin genes. 91 -311666 pfam07819 PGAP1 PGAP1-like protein. The sequences found in this family are similar to PGAP1. This is an endoplasmic reticulum membrane protein with a catalytic serine containing motif that is conserved in a number of lipases. PGAP1 functions as a GPI inositol-deacylase; this deacylation is important for the efficient transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi body. 233 -336825 pfam07820 TraC TraC-like protein. The members of this family are sequences that are similar to TraC. The gene encoding this protein is one of a group of genes found on plasmid p42a of Rhizobium etli CFN42 that are thought to be involved in the process of plasmid self-transmission. Mobilisation of plasmid p42a is of importance as it is required for transfer of plasmid p42a, which is also known as plasmid pSym as it carries most of the genes required for nodulation and nitrogen fixation by the symbiotic bacterium. The predicted protein products of p42a are similar to known transfer proteins of Agrobacterium tumefaciens plasmid pTiC58. 88 -336826 pfam07821 Alpha-amyl_C2 Alpha-amylase C-terminal beta-sheet domain. This domain is organized as a five-stranded anti-parallel beta-sheet. It is the probable result of a decay of the common-fold. 58 -311668 pfam07822 Toxin_13 Neurotoxin B-IV-like protein. The members of this family resemble neurotoxin B-IV, which is a crustacean-selective neurotoxin produced by the marine worm Cerebratulus lacteus. This highly cationic peptide is approximately 55 residues and is arranged to form two antiparallel helices connected by a well-defined loop in a hairpin structure. The branches of the hairpin are linked by four disulphide bonds. Three residues identified as being important for activity, namely Arg-17, -25 and -34, are found on the same face of the molecule, while another residue important for activity, Trp30, is on the opposite side. The protein's mode of action is not entirely understood, but it may act on voltage-gated sodium channels, possibly by binding to an as yet uncharacterized site on these proteins. Its site of interaction may also be less specific, for example it may interact with negatively charged membrane lipids. 55 -311669 pfam07823 CPDase Cyclic phosphodiesterase-like protein. Cyclic phosphodiesterase (CPDase) is involved in the tRNA splicing pathway. This protein exhibits a bilobal arrangement of two alpha-beta modules. Two antiparallel helices are found on the outer side of each lobe and frame an antiparallel beta-sheet that is wrapped around an accessible cleft. Moreover, the beta-strands of each lobe interact with the other lobe. The central water-filled cavity houses the enzyme's active site. 199 -285114 pfam07824 Chaperone_III Type III secretion chaperone domain. Type III secretion chaperones are involved in delivering virulence effector proteins from bacterial pathogens directly into eukaryotic cells. The chaperones may prevent aggregation and degradation of their substrates, may target the effector to the secretion apparatus, and may ensure a secretion-component unfolded confirmation of their specific substrate. One member of this family, SigE forms homodimers in crystal. The monomers have a novel fold with an alpha-beta(3)-alpha-beta(2)-alpha topology. 110 -116439 pfam07825 Exc Excisionase-like protein. The phage-encoded excisionase protein (Xis) is involved in excisive recombination by regulating the assembly of the excisive intasome and by inhibiting viral integration. It adopts an unusual 'winged'-helix structure in which two alpha helices are packed against two extended strands. Also present in the structure is a two-stranded anti-parallel beta-sheet, whose strands are connected by a four-residue 'wing'. During interaction with DNA, helix alpha2 is thought to insert into the major groove, while the wing contacts the adjacent minor groove or phosphodiester backbone. The C-terminal region of Xis is involved in interaction with phage-encoded integrase (Int), and a putative C-terminal alpha helix may fold upon interaction with Int and/or DNA. 72 -336827 pfam07826 IMP_cyclohyd IMP cyclohydrolase-like protein. This enzyme may catalyze the cyclization of 5-formylamidoimidazole-4-carboxamide ribonucleotide to inosine monophosphate (IMP), a reaction which is important in de novo purine biosynthesis in archaeal species. This single domain protein is arranged to form an overall fold that consists of a four-layered alpha-beta-beta-alpha core structure. The two antiparallel beta-sheets pack against each other and are covered by alpha-helices on one face of the molecule. The protein is structurally similar to members of the N-terminal nucleophile (NTN) hydrolase superfamily. A deep pocket was in fact found on the surface of IMP cyclohydrolase in a position equivalent to that of active sites of NTN-hydrolases, but an N-terminal nucleophile could not be found. Therefore, it is thought that this enzyme is structurally but not functionally similar to members of the NTN-hydrolase family. 192 -285116 pfam07827 KNTase_C KNTase C-terminal domain. Kanamycin nucleotidyltransferase (KNTase) is involved in conferring resistance to aminoglycoside antibiotics and catalyzes the transfer of a nucleoside monophosphate group from a nucleotide to kanamycin. This enzyme is dimeric with each subunit being composed of two domains. The C-terminal domain contains five alpha helices, four of which are organized into an up-and-down alpha helical bundle. Residues found in this domain may contribute to this enzyme's active site. 132 -336828 pfam07828 PA-IL PA-IL-like protein. The members of this family are similar to the galactophilic lectin-1 expressed by P. aeruginosa ((PA-IL). Lectins recognising specific carbohydrates found on the surface of host cells are known to be involved in the initiation of infections by this organism. The protein is thought to be organized into an extensive network of beta-sheets, as is the case with many other lectins. 121 -311671 pfam07829 Toxin_14 Alpha-A conotoxin PIVA-like protein. Alpha-A conotoxin PIVA is the major paralytic toxin found in the venom produced by the piscivorous snail Conus purpurascens. This peptide acts by blocking the acetylcholine binding site of the nicotinic acetylcholine receptor at the neuromuscular junction. The overall shape of the peptide is described as an "iron" with a highly charged hydrophilic loop of 15S-19R forming the "handle" domain that is exposed to the exterior of the protein. The stability of the conotoxin is primarily governed by three disulphide bonds. A triangular structural motif formed by residues 19R, 12H and 6Y is thought to constitute a "binding core" that is important in binding to the acetylcholine receptor. 26 -311672 pfam07830 PP2C_C Protein serine/threonine phosphatase 2C, C-terminal domain. Protein phosphatase 2C (PP2C) is involved in regulating cellular responses to stress in various eukaryotes. It consists of two domains: an N-terminal catalytic domain and a C-terminal domain characteristic of mammalian PP2Cs. This domain consists of three antiparallel alpha helices, one of which packs against two corresponding alpha-helices of the N-terminal domain. The C-terminal domain does not seem to play a role in catalysis, but it may provide protein substrate specificity due to the cleft that is created between it and the catalytic domain. 77 -336829 pfam07831 PYNP_C Pyrimidine nucleoside phosphorylase C-terminal domain. This domain is found at the C-terminal end of the large alpha/beta domain making up various pyrimidine nucleoside phosphorylases. It has slightly different conformations in different members of this family. For example, in pyrimidine nucleoside phosphorylase (PYNP) there is an added three-stranded anti-parallel beta sheet as compared to other members of the family, such as E. coli thymidine phosphorylase (TP). The domain contains an alpha/ beta hammerhead fold and residues in this domain seem to be important in formation of the homodimer. 75 -254458 pfam07832 Bse634I Cfr10I/Bse634I restriction endonuclease. Cfr10I and Bse634I are two Type II restriction endonucleases. They exhibit a conserved tetrameric architecture that is of functional importance, wherein two dimers are arranged 'back-to-back' with their putative DNA-binding clefts facing opposite directions. These clefts are formed between two monomers that interact, mainly via hydrophobic interactions supported by a few hydrogen bonds, to form a U-shaped dimer. Each monomer is folded to form a compact alpha-beta structure, whose core is made up of a five-stranded mixed beta-sheet.The monomer may be split into separate N-terminal and C-terminal subdomains at a hinge located in helix alpha3. 281 -311673 pfam07833 Cu_amine_oxidN1 Copper amine oxidase N-terminal domain. Copper amine oxidases catalyze the oxidative deamination of primary amines to the corresponding aldehydes, while reducing molecular oxygen to hydrogen peroxide. These enzymes are dimers of identical subunits, each comprising four domains. The N-terminal domain, which is absent in some amine oxidases, consists of a five-stranded antiparallel beta sheet twisted around an alpha helix. The D1 domains from the two subunits comprise the 'stalk' of the mushroom-shaped dimer, and interact with each other but do not pack tightly against each other. 93 -336830 pfam07834 RanGAP1_C RanGAP1 C-terminal domain. Ran-GTPase activating protein 1 (RanGAP1) is a GTPase activator for the nuclear Ras-related regulatory protein Ran, converting it to the putatively inactive GDP-bound state. Its C-terminal domain is required for RanGAP1 localization at the vertebrate nuclear pore complex, and is sumoylated by the small ubiquitin-related modifier protein (SUMO-1). This domain is composed almost entirely of helical substructures that are organized into an alpha-alpha superhelix fold, with the exception of the peptide containing the lysine residue required for SUMO-1 conjugation. 178 -336831 pfam07835 COX4_pro_2 Bacterial aa3 type cytochrome c oxidase subunit IV. Bacterial cytochrome c oxidase is found bound to the to the cell membrane, where it is involved in the generation of the transmembrane proton electrochemical gradient. It is composed of four subunits. Subunit IV consists of one transmembrane helix that does not interact directly with the other subunits, but maintains its position by indirect contacts via phospholipid molecules found in the structure. The function of subunit IV is as yet unknown. 40 -336832 pfam07836 DmpG_comm DmpG-like communication domain. This domain is found towards the C-terminal region of various aldolase enzymes. It consists of five alpha-helices, four of which form an antiparallel helical bundle that plugs the C-terminus of the N-terminal TIM barrel domain. The communication domain is thought to play an important role in the heterodimerization of the enzyme. 63 -336833 pfam07837 FTCD_N Formiminotransferase domain, N-terminal subdomain. The formiminotransferase (FT) domain of formiminotransferase- cyclodeaminase (FTCD) forms a homodimer, and each protomer comprises two subdomains. The N-terminal subdomain is made up of a six-stranded mixed beta-pleated sheet and five alpha helices, which are arranged on the external surface of the beta sheet. This, in turn, faces the beta-sheet of the C-terminal subdomain to form a double beta-sheet layer. The two subdomains are separated by a short linker sequence, which is not thought to be any more flexible than the remainder of the molecule. The substrate is predicted to form a number of contacts with residues found in both the N-terminal and C-terminal subdomains. 173 -336834 pfam07839 CaM_binding Plant calmodulin-binding domain. The sequences featured in this family are found repeated in a number of plant calmodulin-binding proteins, and are thought to constitute the calmodulin-binding domains. Binding of the proteins to calmodulin depends on the presence of calcium ions. These proteins are thought to be involved in various processes, such as plant defense responses and stolonisation or tuberization. 117 -336835 pfam07840 FadR_C FadR C-terminal domain. This family contains sequences that are similar to the fatty acid metabolism regulator protein (FadR). This functions as a dimer, with each monomer being composed of an N-terminal DNA-binding domain and a regulatory C-terminal domain. A linker comprising two short alpha helices joins the two domains. In the C-terminal domain, an antiparallel array of six alpha helices forms a barrel-like structure, while a seventh alpha helix forms a 'lid' at the end closest to the N-terminal domain. This structure was found to be similar to that of the C-terminal domain of the Tet repressor. Long-chain acyl-CoA thioesters interact directly and reversibly with the C-terminal domain, and this interaction affects the structure and therefore the DNA binding properties of the N-terminal domain. 163 -336836 pfam07841 DM4_12 DM4/DM12 family. This family contains sequences derived from hypothetical proteins expressed by two insect species, D. melanogaster and A. gambiae. The region in question is approximately 115 amino acid residues long and contains four highly- conserved cysteine residues. 85 -311681 pfam07842 GCFC GC-rich sequence DNA-binding factor-like protein. Sequences found in this family are similar to a region of a human GC-rich sequence DNA-binding factor homolog. This is thought to be a protein involved in transcriptional regulation due to partial homologies to a transcription repressor and histone-interacting protein. This family also contains tuftelin interacting protein 11 which has been identified as both a nuclear and cytoplasmic protein, and has been implicated in the secretory pathway. Sip1, a septin interacting protein is also a member of this family. 276 -311682 pfam07843 DUF1634 Protein of unknown function (DUF1634). This family contains many hypothetical bacterial and archaeal proteins. A few members of this family are annotated as being putative transmembrane proteins, and the region in question in fact contains many hydrophobic residues. 101 -311683 pfam07845 DUF1636 Protein of unknown function (DUF1636). The sequences featured in this family are derived from a number of hypothetical prokaryotic proteins. The region in question is approximately 130 amino acids long. 117 -285130 pfam07846 Metallothio_Cad Metallothionein family. The sequences making up Metallothio_Cad are found repeated in metallothionein proteins expressed by several different Tetrahymena species. Metallothioneins are low molecular mass, cysteine-rich metal-binding proteins that are thought to be involved in the regulation of levels of trace metals, and detoxification of these metals when present in excess. Some of the metallothioneins found in this family are known to be induced by cadmium and are thought to be involved in the cellular sequestration of toxic metal ions. The high proportion of cysteine residues allows the metal ions to be bound by the formation of clusters of metal-thiolate complexes. Tetrahymena spp. metallothioneins differ from other eukaryotic metallothioneins mainly in the length of their sequences and in the cysteine-containing motifs they exhibit. 20 -336837 pfam07847 PCO_ADO PCO_ADO. This entry includes cysteine oxidases (PCOs) from plants and 2-aminoethanethiol dioxygenases (ADOs) from animals. 201 -285132 pfam07848 PaaX PaaX-like protein. This family contains proteins that are similar to the product of the paaX gene of Escherichia coli. This protein is involved in the regulation of expression of a group of proteins known to participate in the metabolism of phenylacetic acid. In fact, some members of this family are annotated by InterPro as containing a winged helix DNA-binding domain. 70 -336838 pfam07849 DUF1641 Protein of unknown function (DUF1641). Archaeal and bacterial hypothetical proteins are found in this family, with the region in question being approximately 40 residues long. 36 -311686 pfam07850 Renin_r Renin receptor-like protein. The sequences featured in this family are similar to a region of the human renin receptor that bears a putative transmembrane spanning segment. The renin receptor is involved in intracellular signal transduction by the activation of the ERK1/ERK2 pathway, and it also serves to increase the efficiency of angiotensinogen cleavage by receptor-bound renin, therefore facilitating angiotensin II generation and action on a cell surface. 95 -311687 pfam07851 TMPIT TMPIT-like protein. A number of members of this family are annotated as being transmembrane proteins induced by tumor necrosis factor alpha, but no literature was found to support this. 324 -311688 pfam07852 DUF1642 Protein of unknown function (DUF1642). The sequences making up this family are derived from various hypothetical phage and prophage proteins. The region in question is approximately 140 amino acids long. 132 -311689 pfam07853 DUF1648 Protein of unknown function (DUF1648). Members of this family are hypothetical proteins expressed by either bacterial or archaeal species. Some of these are annotated as being transmembrane proteins, and in fact many of these sequences contain a high proportion of hydrophobic residues. 46 -285138 pfam07854 DUF1646 Protein of unknown function (DUF1646). Some of the members of this family are hypothetical bacterial and archaeal proteins, but others are annotated as being cation transporters expressed by the archaebacterium Methanosarcina mazei. 347 -336839 pfam07855 ATG101 Autophagy-related protein 101. Atg101 is a critical autophagy factor that functions together with ULK, Atg13 and FIP200. 153 -311691 pfam07856 Orai-1 Mediator of CRAC channel activity. ORAI-1 is a protein homolog of Drosophila Orai and human Orai1, Orai2 and Orai3. ORAI-1 GFP reporters are co- expressed with STIM-1 (ER CA(2+) sensors) in the gonad and intestine. The protein has four predicted transmembrane domains with a highly conserved region between TM2 ad TM3. This conserved domain is thought to function in channel regulation. ORAI1- related proteins are required for the production of the calcium channel, CRAC, along with STIM1-related proteins. 172 -285141 pfam07857 TMEM144 Transmembrane family, TMEM144 of transporters. Members of this family fall in to the drug/metabolite transporter (dmt) superfamily. They carry 10xTM domains arranged as 5+5. Although these two sets may originally have arisen by gene-duplication the divergence now is such that the two halves are no longer homologous. 333 -285142 pfam07858 LEH Limonene-1,2-epoxide hydrolase catalytic domain. Epoxide hydrolases catalyze the hydrolysis of epoxides to corresponding diols, which is important in detoxification, synthesis of signal molecules, or metabolism. Limonene-1,2- epoxide hydrolase (LEH) differs from many other epoxide hydrolases in its structure and its novel one-step catalytic mechanism. Its main fold consists of a six-stranded mixed beta-sheet, with three N-terminal alpha helices packed to one side to create a pocket that extends into the protein core. A fourth helix lies in such a way that it acts as a rim to this pocket. Although mainly lined by hydrophobic residues, this pocket features a cluster of polar groups that lie at its deepest point and constitute the enzyme's active site. 125 -336840 pfam07859 Abhydrolase_3 alpha/beta hydrolase fold. This catalytic domain is found in a very wide range of enzymes. 205 -285144 pfam07860 CCD WisP family C-Terminal Region. This family is found at the C-terminus of the Tropheryma whipplei WisP family proteins. 130 -311693 pfam07861 WND WisP family N-Terminal Region. This family is found at the N-terminus of the Tropheryma whipplei WisP family proteins. 239 -336841 pfam07862 Nif11 Nif11 domain. This domain is found mainly in the Cyanobacteria and in Proteobacteria such as the nitrogen-fixing bacterium Azotobacter vinelandii. It is found in Nif11, a protein described in Azotobacter as linked to nitrogen fixation. It also constitutes a leader peptide in Nif11-derived peptides (N11P), which are thought to be post-translationally modified microcins derived from a putative nitrogen-fixing protein. N11P sequences have a classic leader peptide cleavage motif, usually Gly-Gly, which marks the end of family-wide similarity area and the beginning of a low-complexity region rich in Cys, Gly and Ser. 47 -311695 pfam07863 CtnDOT_TraJ homologs of TraJ from Bacteroides conjugative transposon. Members of this family have been implicated in as being involved in an unusual form of DNA transfer (conjugation) in Bacteroides. The family has been named CtnDOT_TraJ to avoid confusion with other conjugative transfer systems. 66 -311696 pfam07864 DUF1651 Protein of unknown function (DUF1651). This is a family containing bacterial proteins of unknown function. 73 -311697 pfam07865 DUF1652 Protein of unknown function (DUF1652). This is a family containing hypothetical bacterial proteins. 67 -336842 pfam07866 DUF1653 Protein of unknown function (DUF1653). This is a family of hypothetical bacterial proteins of unknown function. 61 -311699 pfam07867 DUF1654 Protein of unknown function (DUF1654). This family consists of proteins from the Pseudomonadaceae. 70 -285151 pfam07868 DUF1655 Protein of unknown function (DUF1655). This protein is found in some prophages found in Lactobacillales lactis. 55 -336843 pfam07869 DUF1656 Protein of unknown function (DUF1656). This family contains bacterial proteins, many of which are hypothetical. Some proteins in this family are putative membrane proteins. 56 -311701 pfam07870 DUF1657 Protein of unknown function (DUF1657). This domain appears to be restricted to the Bacillales. 49 -285154 pfam07871 DUF1658 Protein of unknown function (DUF1658). This family of small proteins seems to be found in several places in the Coxiella genome. 21 -311702 pfam07872 DUF1659 Protein of unknown function (DUF1659). This family consists of hypothetical bacterial proteins of unknown function. 45 -336844 pfam07873 YabP YabP family. This family of proteins is involved in spore coat assembly during the process of sporulation. 64 -285157 pfam07874 DUF1660 Prophage protein (DUF1660). This protein is found in Lactobacillae prophages. 64 -336845 pfam07875 Coat_F Coat F domain. The Coat F proteins, which contribute to the Bacillales spore coat. It occurs multiple times in the genomes it is found in. 63 -311705 pfam07876 Dabb Stress responsive A/B Barrel Domain. The function of this family is unknown, but it is upregulated in response to salt stress in Populus balsamifera. It is also found at the C-terminus of an fructose 1,6-bisphosphate aldolase from Hydrogenophilus thermoluteolus. Arthrobacter nicotinovorans ORF106 is found in the pA01 plasmid, which encodes genes for molybdopterin uptake and degradation of plant alkaloid nicotine. The structure of one has been solved and the domain forms an a/b barrel dimer. Although there is a clear duplication within the domain it is not obviously detectable in the sequence. 96 -285160 pfam07877 DUF1661 Protein of unknown function (DUF1661). This is a family containing bacterial proteins of unknown function. Many of the proteins in this family are hypothetical. 31 -311706 pfam07878 RHH_5 CopG-like RHH_1 or ribbon-helix-helix domain, RHH_5. This family contains bacterial proteins that form a ribbon-helix-helix fold. This fold occurs in many examples of bacterial antitoxins. 43 -311707 pfam07879 PHB_acc_N PHB/PHA accumulation regulator DNA-binding domain. This domain is found at the N-terminus of the Polyhydroxyalkanoate (PHA) synthesis regulators. These regulators have been shown to directly bind DNA and PHA. The invariant nature of this domain compared to the C-terminal pfam05233 domain(s) suggests that it contains the DNA-binding function. 61 -285163 pfam07880 T4_gp9_10 Bacteriophage T4 gp9/10-like protein. The members of this family are similar to gene products 9 (gp9) and 10 (gp10) of bacteriophage T4. Both proteins are components of the viral baseplate. Gp9 connects the long tail fibers of the virus to the baseplate and triggers tail contraction after viral attachment to a host cell. The protein is active as a trimer, with each monomer being composed of three domains. The N-terminal domain consists of an extended polypeptide chain and two alpha helices. The alpha1 helix from each of the three monomers in the trimer interacts with its counterparts to form a coiled-coil structure. The middle domain is a seven-stranded beta-sandwich that is thought to be a novel protein fold. The C-terminal domain is thought to be essential for gp9 trimerisation and is organized into an eight- stranded antiparallel beta-barrel, which was found to resemble the 'jelly roll' fold found in many viral capsid proteins. The long flexible region between the N-terminal and middle domains may be required for the function of gp9 to transmit signals from the long tail fibers. Together with gp11, gp10 initiates the assembly of wedges that then go on to associate with a hub to form the viral baseplate. 285 -336846 pfam07881 Fucose_iso_N1 L-fucose isomerase, first N-terminal domain. The members of this family are similar to L-fucose isomerase expressed by E. coli (EC:5.3.1.3). This enzyme corresponds to glucose-6-phosphate isomerase in glycolysis, and converts an aldo-hexose to a ketose to prepare it for aldol cleavage. The enzyme is a hexamer, with each subunit being wedge-shaped and composed of three domains. Both domains 1 and 2 contain central parallel beta-sheets with surrounding alpha helices. Domain 1 demonstrates the beta-alpha-beta-alpha- beta Rossman fold. The active centre is shared between pairs of subunits related along the molecular three-fold axis, with domains 2 and 3 from one subunit providing most of the substrate-contacting residues, and domain 1 from the adjacent subunit contributing some other residues. 169 -311709 pfam07882 Fucose_iso_N2 L-fucose isomerase, second N-terminal domain. The members of this family are similar to L-fucose isomerase expressed by E. coli (EC:5.3.1.3). This enzyme corresponds to glucose-6-phosphate isomerase in glycolysis, and converts an aldo-hexose to a ketose to prepare it for aldol cleavage. The enzyme is a hexamer, with each subunit being wedge-shaped and composed of three domains. Both domains 1 and 2 contain central parallel beta- sheets with surrounding alpha helices. The active centre is shared between pairs of subunits related along the molecular three-fold axis, with domains 2 and 3 from one subunit providing most of the substrate-contacting residues. 180 -336847 pfam07883 Cupin_2 Cupin domain. This family represents the conserved barrel domain of the 'cupin' superfamily ('cupa' is the Latin term for a small barrel). 71 -336848 pfam07884 VKOR Vitamin K epoxide reductase family. Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologs the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. 128 -336849 pfam07885 Ion_trans_2 Ion channel. This family includes the two membrane helix type ion channels found in bacteria. 74 -336850 pfam07886 BA14K BA14K-like protein. The sequences found in this family are similar to the BA14K proteins expressed by Brucella abortus and by Brucella suis. BA14K was found to be strongly immunoreactive; it induces both humoral and cellular responses in hosts throughout the infective process. 30 -336851 pfam07887 Calmodulin_bind Calmodulin binding protein-like. The members of this family are putative or actual calmodulin binding proteins expressed by various plant species. Some members are known to be involved in the induction of plant defense responses. However, their precise function in this regards is as yet unknown. 290 -311715 pfam07888 CALCOCO1 Calcium binding and coiled-coil domain (CALCOCO1) like. Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region. 545 -336852 pfam07889 DUF1664 Protein of unknown function (DUF1664). The members of this family are hypothetical plant proteins of unknown function. The region featured in this family is approximately 100 amino acids long. 122 -336853 pfam07890 Rrp15p Rrp15p. Rrp15p is required for the formation of 60S ribosomal subunits. 121 -311718 pfam07891 DUF1666 Protein of unknown function (DUF1666). These sequences are derived from hypothetical plant proteins of unknown function. The region in question is approximately 250 residues long. 246 -336854 pfam07892 DUF1667 Protein of unknown function (DUF1667). Hypothetical archaeal and bacterial proteins make up this family. A few proteins are annotated as being potential metal-binding proteins, and in fact the members of this family have four highly conserved cysteine residues, but no further literature evidence was found in this regard. 80 -336855 pfam07893 DUF1668 Protein of unknown function (DUF1668). The hypothetical proteins found in this family are expressed by Oryza sativa and are of unknown function. 329 -311721 pfam07894 DUF1669 Protein of unknown function (DUF1669). This family is composed of sequences derived from hypothetical eukaryotic proteins of unknown function. Some members of this family are annotated as being potential phospholipases but no literature was found to support this. 275 -311722 pfam07895 DUF1673 Protein of unknown function (DUF1673). This family contains hypothetical proteins of unknown function expressed by two archaeal species. 206 -311723 pfam07896 DUF1674 Protein of unknown function (DUF1674). The members of this family are sequences derived from hypothetical eukaryotic and bacterial proteins. The region in question is approximately 60 residues long. 49 -311724 pfam07897 EAR Ethylene-responsive binding factor-associated repression. The EAR motif is the ethylene-responsive element binding factor-associated amphiphilic repression motif. This motif binds to the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins. The motif is frequently to be find at the N-terminus of NINJA, or Novel INteractor of JAZ, proteins. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLN xxP, is the most predominant form of transcriptional repression motif so far identified in plants. It is highly conserved in transcriptional regulators that are known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. This family is closely related to family AUX_IAA Pam:PF02309 which also has an LxLxL signature. 35 -336856 pfam07898 DUF1676 Protein of unknown function (DUF1676). This family contains sequences derived from proteins of unknown function expressed by Drosophila melanogaster and Anopheles gambiae. 164 -336857 pfam07899 Frigida Frigida-like protein. This family is composed of plant proteins that are similar to FRIGIDA protein expressed by Arabidopsis thaliana. This protein is probably nuclear and is required for the regulation of flowering time in the late-flowering phenotype. It is known to increase RNA levels of flowering locus C. Allelic variation at the FRIGIDA locus is a major determinant of natural variation in flowering time. 290 -285183 pfam07900 DUF1670 Protein of unknown function (DUF1670). The hypothetical eukaryotic proteins found in this family are of unknown function. 218 -285184 pfam07901 DUF1672 Protein of unknown function (DUF1672). This family is composed of hypothetical bacterial proteins of unknown function. 271 -336858 pfam07902 Gp58 gp58-like protein. Sequences found in this family are derived from a number of bacteriophage and prophage proteins. They are similar to gp58, a minor structural protein of Lactococcus delbrueckii bacteriophage LL-H. 594 -285186 pfam07903 PaRep2a PaRep2a protein. This is a family of proteins expressed by the crenarchaeon Pyrobaculum aerophilum. The members are highly variable in length and level of conservation. The presence of numerous frameshifts and internal stop codons in multiple alignments are thought to indicate that most family members are no longer functional. 122 -336859 pfam07904 Eaf7 Chromatin modification-related protein EAF7. The S. cerevisiae member of this family is part of NuA4, the only essential histone acetyltransferase complex in Saccharomyces cerevisiae involved in global histone acetylation. 97 -311729 pfam07905 PucR Purine catabolism regulatory protein-like family. The bacterial proteins found in this family are similar to the purine catabolism regulatory protein expressed by Bacillus subtilis (PucR). PucR is thought to be a transcriptional activator involved in the induction of the purine degradation pathway, and may contain a LysR-like DNA-binding domain. It is similar to LysR-type regulators in that it represses its own expression. The other members of this family are also annotated as being putative regulatory proteins. 120 -285189 pfam07906 Toxin_15 ShET2 enterotoxin, N-terminal region. The members of this family are are sequences that are similar to the N-terminal half of the ShET2 enterotoxin produced by Shigella flexneri and Escherichia coli. This protein was found to confer toxigenicity in the Ussing chamber, and the N-terminal region was found to be important for the protein's enterotoxic effect. It is thought to be a hydrophobic protein that forms inclusion bodies within the bacterial cell, and may be secreted by the Mxi system. Most members of this family are annotated as putative enterotoxins, but one member is a regulator of acetyl CoA synthetase, and another two members are annotated as ankyrin-like regulatory proteins and contain Ank repeats (pfam00023). 275 -336860 pfam07907 YibE_F YibE/F-like protein. The sequences featured in this family are similar to two proteins expressed by Lactococcus lactis, YibE and YibF. Most of the members of this family are annotated as being putative membrane proteins, and in fact the sequences contain a high proportion of hydrophobic residues. 240 -116521 pfam07909 DUF1663 Protein of unknown function (DUF1663). The members of this family are hypothetical proteins expressed by Trypanosoma cruzi, a eukaryotic parasite that causes Chagas' disease in humans. This region is found as multiple copies per protein. 514 -311731 pfam07910 Peptidase_C78 Peptidase family C78. This family formerly known as DUF1671 has been shown to be a cysteine peptidase called (Ufm1)-specific protease. 197 -336861 pfam07911 DUF1677 Protein of unknown function (DUF1677). The sequences found in this family are all derived from hypothetical plant proteins of unknown function. The region features a number of highly conserved cysteine residues. 89 -336862 pfam07912 ERp29_N ERp29, N-terminal domain. ERp29 is a ubiquitously expressed endoplasmic reticulum protein, and is involved in the processes of protein maturation and protein secretion in this organelle. The protein exists as a homodimer, with each monomer being composed of two domains. The N-terminal domain featured in this family is organized into a thioredoxin-like fold that resembles the a domain of human protein disulphide isomerase (PDI). However, this domain lacks the C-X-X-C motif required for the redox function of PDI; it is therefore thought that ERp29's function is similar to the chaperone function of PDI. The N-terminal domain is exclusively responsible for the homodimerization of the protein, without covalent linkages or additional contacts with other domains. 126 -285193 pfam07913 DUF1678 Protein of unknown function (DUF1678). This family is composed of uncharacterized proteins expressed by Methanopyrus kandleri, a hyperthermophilic archaebacterium. 196 -311733 pfam07914 DUF1679 Protein of unknown function (DUF1679). The region featured in this family is found in a number of C. elegans proteins, in one case as a repeat. In many of the family members, this region is associated with the CHK region described by SMART as being found in ZnF_C4 and HLH domain-containing kinases. In fact, one member of this family is annotated as being a member of the nuclear hormone receptor family, and contains regions typical of such proteins (Interpro:IPR000536, Interpro:IPR008946, and Interpro:IPR001628). 413 -336863 pfam07915 PRKCSH Glucosidase II beta subunit-like protein. The sequences found in this family are similar to a region found in the beta-subunit of glucosidase II, which is also known as protein kinase C substrate 80K-H (PRKCSH). The enzyme catalyzes the sequential removal of two alpha-1,3-linked glucose residues in the second step of N-linked oligosaccharide processing. The beta subunit is required for the solubility and stability of the heterodimeric enzyme, and is involved in retaining the enzyme within the endoplasmic reticulum. Mutations in the gene coding for PRKCSH have been found to be involved in the development of autosomal dominant polycystic liver disease (ADPLD), but the precise role the protein has in the pathogenesis of this disease is unknown. This family also includes an ER sensor for misfolded glycoproteins and is therefore likely to be a generic sugar binding domain. 71 -336864 pfam07916 TraG_N TraG-like protein, N-terminal region. The bacterial sequences found in this family are similar to the N-terminal region of the TraG protein. This is a membrane-spanning protein, with three predicted transmembrane segments and two periplasmic regions. TraG protein is known to be essential for DNA transfer in the process of conjugation, with the N-terminal portion being required for F pilus assembly. The protein is thought to interact with the periplasmic domain of TraN to stabilize mating-cell interactions. 397 -311736 pfam07918 CAP160 CAP160 repeat. This region featured in this family is repeated in spinach cold acclimation protein CAP160. CAP160 is induced during periods of drought stress; its precise function is unknown but it has been implicated in the stabilisation of membranes, cytoskeletal elements, and ribosomes. By acting as a compatible solute, it may reduce the toxic effects of cellular solutes that accumulate at high concentration during dehydration; it may also function as an enzyme that produces such a solute. Other members of this family are also induced by water stress, abscisic acid, and/or low temperature, such as desiccation-responsive protein 29B and CDet11-24 protein. 27 -311737 pfam07919 Gryzun Gryzun, putative trafficking through Golgi. The proteins featured in this family are all eukaryotic, and many of them are annotated as being Gryzun. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun blocks Golgi exit. Thus the family is likely to be involved with trafficking of proteins through membranes, perhaps as part of the TRAPP complex. 589 -311738 pfam07920 DUF1684 Protein of unknown function (DUF1684). The sequences featured in this family are found in hypothetical archaeal and bacterial proteins of unknown function. The region in question is approximately 200 amino acids long. 140 -254516 pfam07921 Fibritin_C Fibritin C-terminal region. This family features sequences bearing similarity to the C-terminal portion of the bacteriophage T4 protein fibritin. This protein is responsible for attachment of long tail fibers to virus particle, and forms the 'whiskers' or fibers on the neck of the virion. The region seen in this family contains an N-terminal coiled-coil portion and the C-terminal globular foldon domain (residues 457-486), which is essential for fibritin trimerisation and folding. This domain consists of a beta-hairpin; three such hairpins come together in a beta-propeller-like arrangement in the trimer, which is stabilized by hydrogen bonds, salt bridges and hydrophobic interactions. 93 -311739 pfam07922 Glyco_transf_52 Glycosyltransferase family 52. This family features glycosyltransferases belonging to glycosyltransferase family 52, which have alpha-2,3- sialyltransferase (EC:4.2.99.4) and alpha-glucosyltransferase (EC 2.4.1.-) activity. For example, beta-galactoside alpha-2,3- sialyltransferase expressed by Neisseria meningitidis is a member of this family and is involved in a step of lipooligosaccharide biosynthesis requiring sialic acid transfer; these lipooligosaccharides are thought to be important in the process of pathogenesis. This family includes several bacterial lipooligosaccharide sialyltransferases similar to the Haemophilus ducreyi LST protein. Haemophilus ducreyi is the cause of the sexually transmitted disease chancroid and produces a lipooligosaccharide (LOS) containing a terminal sialyl N-acetyllactosamine trisaccharide. 271 -336865 pfam07923 N1221 N1221-like protein. The sequences featured in this family are similar to a hypothetical protein product of ORF N1221 in the CPT1-SPC98 intergenic region of the yeast genome. This encodes an acidic polypeptide with several possible transmembrane regions. 284 -311741 pfam07924 NuiA Nuclease A inhibitor-like protein. This family consists of protein sequences that are similar to the nuclease A inhibitor expressed by bacteria of the genus Anabaena ((NuiA). This sequence is organized to form an alpha-beta-alpha sandwich fold, which is similar to the PR-1-like fold. NuiA interacts with nuclease A by means of residues located at one end of the molecule, including residues making up the loop between helices III and IV and the loop between strands C and D. The mechanism of inhibition of nuclease A by NuiA is as yet incompletely understood. 130 -285203 pfam07925 RdRP_5 Reovirus RNA-dependent RNA polymerase lambda 3. The sequences in this family are similar to the reoviral minor core protein lambda 3, which functions as a RNA-dependent RNA polymerase within the protein capsid. It is organized into 3 domains. N- and C-terminal domains create a 'cage' that encloses a conserved central catalytic domain within a hollow centre; this catalytic domain is arranged to form 'fingers', 'palm' and 'thumb' subdomains. Unlike other RNA polymerases, like HIV reverse transcriptase and T7 RNA polymerase, lambda 3 protein binds template and substrate with only localized rearrangements, and catalytic activity can occur with little structural change. However, the structure of the catalytic complex is similar to that of other polymerase catalytic complexes with known structure. 1271 -336866 pfam07926 TPR_MLP1_2 TPR/MLP1/MLP2-like protein. The sequences featured in this family are similar to a region of human TPR protein and to yeast myosin-like proteins 1 (MLP1) and 2 (MLP2). These proteins share a number of features; for example, they all have coiled-coil regions and all three are associated with nuclear pores. TPR is thought to be a component of nuclear pore complex- attached intra-nuclear filaments, and is implicated in nuclear protein import. Moreover, its N-terminal region is involved in the activation of oncogenic kinases, possibly by mediating the dimerization of kinase domains or by targeting these kinases to the nuclear pore complex. MLP1 and MLP2 are involved in the process of telomere length regulation, where they are thought to interact with proteins such as Tel1p and modulate their activity. 129 -336867 pfam07927 HicA_toxin HicA toxin of bacterial toxin-antitoxin,. HicA_toxin is a bacterial family of toxins that act as mRNA interferases. The antitoxin that neutralizes this is family HicB, pfam15919. 55 -336868 pfam07928 Vps54 Vps54-like protein. This family contains various proteins that are homologs of the yeast Vps54 protein, such as the rat homolog, the human homolog, and the mouse homolog. In yeast, Vps54 associates with Vps52 and Vps53 proteins to form a trimolecular complex that is involved in protein transport between Golgi, endosomal, and vacuolar compartments. All Vps54 homologs contain a coiled coil region (not found in the region featured in this family) and multiple dileucine motifs. 132 -336869 pfam07929 PRiA4_ORF3 Plasmid pRiA4b ORF-3-like protein. Members of this family are similar to the protein product of ORF-3 found on plasmid pRiA4 in the bacterium Agrobacterium rhizogenes. This plasmid is responsible for tumorigenesis at wound sites of plants infected by this bacterium, but the ORF-3 product does not seem to be involved in the pathogenetic process. Other proteins found in this family are annotated as being putative TnpR resolvases, but no further evidence was found to back this. Moreover, another member of this family is described as a probable lexA repressor and in fact carries a LexA DNA binding domain (pfam01726), but no references were found to expand on this. 165 -336870 pfam07930 DAP_B D-aminopeptidase, domain B. D-aminopeptidase is a dimeric enzyme with each monomer being composed of three domains. Domain B is organized to form a beta barrel made up of eight antiparallel beta strands. It is connected to domain A, the catalytic domain, by an eight-residue sequence, and also interacts with both domains A and C via non-covalent bonds. Domain B probably functions in maintaining domain C in a good position to interact with domain A. 180 -311747 pfam07931 CPT Chloramphenicol phosphotransferase-like protein. The members of this family are all similar to chloramphenicol 3-O phosphotransferase (CPT) expressed by Streptomyces venezuelae. Chloramphenicol (Cm) is a metabolite produced by this bacterium that can inhibit ribosomal peptidyl transferase activity and therefore protein production. By transferring a phosphate group to the C-3 hydroxyl group of Cm, CPT inactivates this potentially lethal metabolite. 174 -336871 pfam07933 DUF1681 Protein of unknown function (DUF1681). This family is composed of sequences derived from a number of hypothetical eukaryotic proteins of unknown function. 155 -336872 pfam07934 OGG_N 8-oxoguanine DNA glycosylase, N-terminal domain. The presence of 8-oxoguanine residues in DNA can give rise to G-C to T-A transversion mutations. This enzyme is found in archaeal, bacterial and eukaryotic species, and is specifically responsible for the process which leads to the removal of 8-oxoguanine residues. It has DNA glycosylase activity (EC:3.2.2.23) and DNA lyase activity (EC:4.2.99.18). The region featured in this family is the N-terminal domain, which is organized into a single copy of a TBP-like fold. The domain contributes residues to the 8-oxoguanine binding pocket. 119 -311750 pfam07935 SSV1_ORF_D-335 ORF D-335-like protein. The sequences featured in this family are similar to a probable integrase expressed by the SSV1 virus of the archaebacterium Sulfolobus shibatae. This protein may be necessary for the integration of the virus into the host genome by a process of site-specific recombination. 63 -254527 pfam07936 Defensin_4 Potassium-channel blocking toxin. This family features the antihypertensive and antiviral proteins BDS-I and BDS-II expressed by Anemonia sulcata. BDS-I is organized into a triple-stranded antiparallel beta-sheet, with an additional small antiparallel beta-sheet at the N-terminus. Both peptides are known to specifically block the Kv3.4 potassium channel, and thus bring about a decrease in blood pressure. Moreover, they inhibit the cytopathic effects of mouse hepatitis virus strain MHV-A59 on mouse liver cells, by an unknown mechanism. 34 -285213 pfam07937 DUF1686 Protein of unknown function (DUF1686). The members of this family are all hypothetical proteins of unknown function expressed by the eukaryotic parasite Encephalitozoon cuniculi GB-M1. The region in question is approximately 250 amino acids long. 182 -336873 pfam07938 Fungal_lectin Fungal fucose-specific lectin. Lectins are involved in many recognition events at the molecular or cellular level. These fungal lectins, such as Aleuria aurantia lectin (AAL), specifically recognize fucosylated glycans. AAL is a dimeric protein, with each monomer being organized into a six-bladed beta-propeller fold and a small antiparallel two-stranded beta-sheet. The beta-propeller fold is important in fucose recognition; five binding pockets are found between the propeller blades. The small beta-sheet, on the other hand, is involved in the dimerization process. 303 -311751 pfam07939 DUF1685 Protein of unknown function (DUF1685). The members of this family are hypothetical eukaryotic proteins of unknown function. The region in question is approximately 100 amino acid residues long. 59 -336874 pfam07940 Hepar_II_III Heparinase II/III-like protein. This family features sequences that are similar to a region of the Flavobacterium heparinum proteins heparinase II and heparinase III. The former is known to degrade heparin and heparin sulphate, whereas the latter predominantly degrades heparin sulphate. Both are secreted into the periplasmic space upon induction with heparin. 233 -311753 pfam07941 K_channel_TID Potassium channel Kv1.4 tandem inactivation domain. This family features the tandem inactivation domain found at the N-terminus of the Kv1.4 potassium channel. It is composed of two subdomains. Inactivation domain 1 (ID1, residues 1-38) consists of a flexible N-terminus anchored at a 5-turn helix, and is thought to work by occluding the ion pathway, as is the case with a classical ball domain. Inactivation domain 2 (ID2, residues 40-50) is a 2.5 turn helix with a high proportion of hydrophobic residues that probably serves to attach ID1 to the cytoplasmic face of the channel. In this way, it can promote rapid access of ID1 to the receptor site in the open channel. ID1 and ID2 function together to being about fast inactivation of the Kv1.4 channel, which is important for the channel's role in short-term plasticity. 71 -285218 pfam07942 N2227 N2227-like protein. This family features sequences that are similar to a region of hypothetical yeast gene product N2227. This is thought to be expressed during meiosis and may be involved in the defense response to stressful conditions. 268 -336875 pfam07943 PBP5_C Penicillin-binding protein 5, C-terminal domain. Penicillin-binding protein 5 expressed by E. coli functions as a D-alanyl-D-alanine carboxypeptidase. It is composed of two domains that are oriented at approximately right angles to each other. The N-terminal domain (pfam00768) is the catalytic domain. The C-terminal domain featured in this family is organized into a sandwich of two anti-parallel beta-sheets, and has a relatively hydrophobic surface as compared to the N-terminal domain. Its precise function is unknown; it may mediate interactions with other cell wall-synthesising enzymes, thus allowing the protein to be recruited to areas of active cell wall synthesis. It may also function as a linker domain that positions the active site in the catalytic domain closer to the peptidoglycan layer, to allow it to interact with cell wall peptides. 91 -285220 pfam07944 Glyco_hydro_127 Beta-L-arabinofuranosidase, GH127. One member of this family, from Bidobacterium longicum, UniProtKB:E8MGH8, has been characterized as an unusual beta-L-arabinofuranosidase enzyme, EC:3.2.1.185. It rleases l-arabinose from the l-arabinofuranose (Araf)-beta1,2-Araf disaccharide and also transglycosylates 1-alkanols with retention of the anomeric configuration. Terminal beta-l-arabinofuranosyl residues have been found in arabinogalactan proteins from a mumber of different plantt species. beta-l-Arabinofuranosyl linkages with 1-4 arabinofuranosides are also found in the sugar chains of extensin and solanaceous lectins, hydroxyproline (Hyp)2-rich glycoproteins that are widely observed in plant cell wall fractions. The critical residue for catalytic activity is Glu-338, in a ET/SCAS sequence context. 508 -116555 pfam07945 Toxin_16 Janus-atracotoxin. This family includes three peptides secreted by the spider Hadronyche versuta. These are insect-selective, excitatory neurotoxins that may function by antagonising muscle acetylcholine receptors, or acetylcholine receptor subtypes present in other invertebrate neurons. Janus atracotoxin-Hv1c (J-ACTX-Hv1c) is organized into a disulphide-rich globular core (residues 3-19) and a beta-hairpin (residues 20-34). There are 4 disulphide bridges, one of which is a vicinal disulphide bridge; this is known to be unimportant in the maintenance of structure but critical for insecticidal activity. 36 -336876 pfam07946 DUF1682 Protein of unknown function (DUF1682). The members of this family are all hypothetical eukaryotic proteins of unknown function. One member is described as being an adipocyte-specific protein, but no evidence of this was found. 319 -311756 pfam07947 YhhN YhhN family. The members of this family are similar to the hypothetical protein yhhN expressed by E. coli. Many are annotated as possible transmembrane proteins, and in fact they all have a high proportion of hydrophobic residues. A human member of this family, formerly known as TMEM86B, is a lysoplasmalogenase that catalyzes the hydrolysis of the vinyl ether bond of lysoplasmalogen. Putative conserved active site residues have been proposed for the YhhN family. 182 -285223 pfam07948 Nairovirus_M Nairovirus M polyprotein-like. The sequences in this family are similar to the Dugbe virus M polyprotein precursor, which includes glycoproteins G1 and G2. Both are thought to be inserted in the membrane of the Golgi complex of the infected host cell, and G1 is known to have a role in infection of vertebrate hosts. 657 -336877 pfam07949 YbbR YbbR-like protein. The members of this family are are all hypothetical bacterial proteins of unknown function, and are similar to the YbbR protein expressed by Bacillus subtilis. One member is annotated as an uncharacterized secreted protein, whereas another member is described as a hypothetical protein in the 5'region of the def gene of Thermus thermophilus, which encodes a deformylase, but no further information was found in either case. This region is found repeated up to four times in many members of this family. 80 -311758 pfam07950 DUF1691 Protein of unknown function (DUF1691). This family of fungal proteins is uncharacterized. Each protein contains two copies of this region. 105 -285226 pfam07951 Toxin_R_bind_C Clostridium neurotoxin, C-terminal receptor binding. The Clostridium neurotoxin family is composed of tetanus neurotoxins and seven serotypes of botulinum neurotoxin. The structure of the botulinum neurotoxin reveals a four domain protein. The N-terminal catalytic domain (pfam01742), the central translocation domains and two receptor binding domains. This domains is the C-terminal receptor binding domain, which adopts a modified beta-trefoil fold with a six stranded beta-barrel and a beta-hairpin triplet capping the domain. The first step in the intoxication process is a binding event between this domains and the pre-synaptic nerve ending. 217 -311759 pfam07952 Toxin_trans Clostridium neurotoxin, Translocation domain. The Clostridium neurotoxin family is composed of tetanus neurotoxin and seven serotypes of botulinum neurotoxin. The structure of the botulinum neurotoxin reveals a four domain protein. The N-terminal catalytic domain (pfam01742), the central translocation domains and two receptor binding domains. Subsequent to cell surface binding and receptor mediated endocytosis of the neurotoxin, an acid induced conformational change in the neurotoxin translocation domain is believed to allow the domain to penetrate the endosome and from a pore, thereby facilitating the passage of the catalytic domain across the membrane into the cytosol. The structure of the translocation reveals a pair of helices that are 105 Angstroms long and is structurally distinct from other pore forming toxins. 318 -311760 pfam07953 Toxin_R_bind_N Clostridium neurotoxin, N-terminal receptor binding. The Clostridium neurotoxin family is composed of tetanus neurotoxin and seven serotypes of botulinum neurotoxin. The structure of the botulinum neurotoxin reveals a four domain protein. The N-terminal catalytic domain (pfam01742), the central translocation domains and two receptor binding domains. This domains is the N-terminal receptor binding domain,which is comprised of two seven-stranded beta-sheets sandwiched together to form a jelly role motif. The role of this domain in receptor binding appears to be indirect. 192 -285229 pfam07954 DUF1689 Protein of unknown function (DUF1689). Family of fungal proteins with unknown function. A member of this family has been found to localize in the mitochondria. 142 -311761 pfam07955 DUF1687 Protein of unknown function (DUF1687). This is a putative redox protein which is predicted to have a thioredoxin fold containing a single active cysteine. 124 -311762 pfam07956 DUF1690 Protein of Unknown function (DUF1690). Family of uncharacterized fungal proteins. 139 -311763 pfam07957 DUF3294 Protein of unknown function (DUF3294). This family was annotated as mitochondrial Ribosomal protein MRP8, based on the presumed similarity of the S.cerevisiae protein to an E.coli mitochondrial ribosomal protein; however, this similarity is spurious, and the function is not known [Wood, V]. 213 -336878 pfam07958 DUF1688 Protein of unknown function (DUF1688). A family of uncharacterized proteins. 415 -311765 pfam07959 Fucokinase L-fucokinase. In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. 401 -311766 pfam07960 CBP4 CBP4. The CBP4 in S. cerevisiae is essential for the expression and activity of ubiquinol-cytochrome c reductase. This family appears to be fungal specific. 125 -254545 pfam07961 MBA1 MBA1-like protein. Mba1 is an inner membrane protein that is part of the mitochondrial protein export machinery. It binds to the large subunit of mitochondrial ribosomes and cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. It is proposed that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane. 235 -336879 pfam07962 Swi3 Replication Fork Protection Component Swi3. Replication fork pausing is required to initiate a recombination events. More specifically, Swi1 is required for recombination near the mat1 locus. Swi3 has been found to co-purify with Swi1 Swi3, together with Swi1, define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks. The Swi1-Swi3 complex is required for accurate replication, fork protection and replication checkpoint signalling. 83 -336880 pfam07963 N_methyl Prokaryotic N-terminal methylation motif. This short motif directs methylation of the conserved phenylalanine residue. It is most often found at the N-terminus of pilins and other proteins involved in secretion, see pfam00114, pfam05946, pfam02501 and pfam07596. 27 -311769 pfam07964 Red1 Rec10 / Red1. Rec10 / Red1 is involved in meiotic recombination and chromosome segregation during homologous chromosome formation. This protein localizes to the synaptonemal complex in S. cerevisiae and the analogous structures (linear elements) in S. pombe. This family is currently only found in fungi. 752 -336881 pfam07965 Integrin_B_tail Integrin beta tail domain. This is the beta tail domain of the Integrin protein. Integrins are receptors which are involved in cell-cell and cell-extracellular matrix interactions. 84 -336882 pfam07966 A1_Propeptide A1 Propeptide. Most eukaryotic endopeptidases (Merops Family A1) are synthesized with signal and propeptides. The animal pepsin-like endopeptidase propeptides form a distinct family of propeptides, which contain a conserved motif approximately 30 residues long. In pepsinogen A, the first 11 residues of the mature pepsin sequence are displaced by residues of the propeptide. The propeptide contains two helices that block the active site cleft, in particular the conserved Asp11 residue, in pepsin, hydrogen bonds to a conserved Arg residues in the propeptide. This hydrogen bond stabilizes the propeptide conformation and is probably responsible for triggering the conversion of pepsinogen to pepsin under acidic conditions. 29 -311772 pfam07967 zf-C3HC C3HC zinc finger-like. This zinc-finger like domain is distributed throughout the eukaryotic kingdom in NIPA (Nuclear interacting partner of ALK) proteins. NIPA is implicate to perform some sort of antiapoptotic role in nucleophosmin-anaplastic lymphoma kinase (ALK) mediated signaling events. The domain is often repeated, with the second domain usually containing a large insert (approximately 90 residues) after the first three cysteine residues. The Schizosaccharomyces pombe the protein containing this domain is involved in mRNA export from the nucleus. 133 -336883 pfam07968 Leukocidin Leukocidin/Hemolysin toxin family. 241 -311774 pfam07969 Amidohydro_3 Amidohydrolase family. 477 -311775 pfam07970 COPIIcoated_ERV Endoplasmic reticulum vesicle transporter. This family is conserved from plants and fungi to humans. Erv46 works in close conjunction with Erv41 and together they form a complex which cycles between the endoplasmic reticulum and Golgi complex. Erv46-41 interacts strongly with the endoplasmic reticulum glucosidase II. Mammalian glucosidase II comprises a catalytic alpha-subunit and a 58 kDa beta subunit, which is required for ER localization. All proteins identified biochemically as Erv41p-Erv46p interactors are localized to the early secretory pathway and are involved in protein maturation and processing in the ER and/or sorting into COPII vesicles for transport to the Golgi. 223 -336884 pfam07971 Glyco_hydro_92 Glycosyl hydrolase family 92. Members of this family are alpha-1,2-mannosidases, enzymes which remove alpha-1,2-linked mannose residues from Man(9)(GlcNAc)(2) by hydrolysis. They are critical for the maturation of N-linked oligosaccharides and ER-associated degradation. 485 -336885 pfam07972 Flavodoxin_NdrI NrdI Flavodoxin like. 119 -336886 pfam07973 tRNA_SAD Threonyl and Alanyl tRNA synthetase second additional domain. The catalytically active from of threonyl/alanyl tRNA synthetase is a dimer. Within the tRNA synthetase class II dimer, the bound tRNA interacts with both monomers making specific interactions with the catalytic domain, the C-terminal domain, and this domain (the second additional domain). The second additional domain is comprised of a pair of perpendicularly orientated antiparallel beta sheets, of four and three strands, respectively, that surround a central alpha helix that forms the core of the domain. 43 -285248 pfam07974 EGF_2 EGF-like domain. This family contains EGF domains found in a variety of extracellular proteins. 32 -336887 pfam07975 C1_4 TFIIH C1-like domain. The carboxyl-terminal region of TFIIH is essential for transcription activity. This regions binds three zinc atoms through two independent domain. The first contains a C4 zinc finger motif, whereas the second is characterized by a CX(2)CX(2-4)FCADCD motif. The solution structure of the second C-terminal domain revealed homology with the regulatory domain of protein kinase C (pfam00130). 55 -336888 pfam07976 Phe_hydrox_dim Phenol hydroxylase, C-terminal dimerization domain. Phenol hydroxylase acts a homodimer, to hydroxylates phenol to catechol or similar product. The enzyme is comprised of three domains. The first two domains from the active site. The third domain, this domain, is involved in forming the dimerization interface. The domain adopts a thioredoxin-like fold. 167 -336889 pfam07977 FabA FabA-like domain. This enzyme domain has a HotDog fold. 135 -311781 pfam07978 NIPSNAP NIPSNAP. Members of this family include many hypothetical proteins. It also includes members of the NIPSNAP family which have putative roles in vesicular transport. This domain is often found in duplicate. 102 -311782 pfam07979 Intimin_C Intimin C-type lectin domain. This domain is found at the C-terminus of intimin. Its structure has been solved and shown to have a C-lectin type of structure. Intimin is a bacterial adhesion molecule involved in intimate attachment of enteropathogenic and enterohemorrhagic Escherichia coli to mammalian host cells. Intimin targets the translocated intimin receptor (Tir), which is exported by the bacteria and integrated into the host cell plasma membrane. 101 -336890 pfam07980 SusD_RagB SusD family. This domain is found in bacterial cell surface proteins such SusD and SusD-like proteins, as as well RagB, outer membrane surface receptor antigen. Bacteroidetes, one of the two dominant bacterial phyla in the human gut, are Gram-negative saccharolytic microorganisms that utilize a diverse array of glycans. Hence, they express starch-utilization system (Sus) for glycan uptake. SusD has 551 amino acids, and is almost entirely alpha-helical, with 22 alpha-helices, eight of which form 4 tetra-trico peptide repeats (TPRs: helix-turn-helix motifs involved in protein-protein interactions). The four TPRs pack together to create a right-handed super-helix. This is predicted to mediate the formation of SusD and SusC porin complex at the cell surface. The interaction between SusC and TPR1/TPR2 region of SusD is predicted to be of functional importance since it allows SusD to be in position for oligosaccharide capture from other Sus lipoproteins and delivery of these glycans to the SusC porin. The non-TPR containing portion of SusD is where starch binding occurs. The binding site is a shallow surface cavity located on top of TPR1. SusD homologs such as SusD-like proteins have a critical role in carbohydrate acquisition. Both SusD and its homologs, contain ###15-20 residues at the N-terminus that might be a flexible linker region, anchoring the protein to the membrane and the glycan-binding domain. Other homologs to SusD have been examined in Porphyromonas gingivalis such as RagB, an immunodominant outer-membrane surface receptor antigen. Structural characterization of RagB shows substantial similarity with##Bacteroides thetaiotaomicron##SusD (i.e alpha-helices and TPR regions). Based on this structural similarity, functional studies suggest that, RagB binding of glycans occurs at pockets on the molecular surface that are distinct from those of SusD. 284 -285255 pfam07981 Plasmod_MYXSPDY Plasmodium repeat_MYXSPDY. This repeat is found in two hypothetical Plasmodium proteins. 17 -285256 pfam07982 Herpes_UL74 Herpes UL74 glycoproteins. Members of this family are viral glycoproteins that form part of an envelope complex. 418 -311784 pfam07983 X8 X8 domain. The X8 domain domain contains at least 6 conserved cysteine residues that presumably form three disulphide bridges. The domain is found in an Olive pollen allergen as well as at the C-terminus of several families of glycosyl hydrolases. This domain may be involved in carbohydrate binding. This domain is characteristic of GPI-anchored domains. 76 -311785 pfam07984 NTP_transf_7 Nucleotidyltransferase. This family contains many hypothetical proteins. It also includes four nematode prion-like proteins. This domain has been identified as part of the nucleotidyltransferase superfamily. 319 -336891 pfam07985 SRR1 SRR1. SRR1 proteins are signalling proteins involved in regulating the circadian clock in Arabidopsis. 54 -311787 pfam07986 TBCC Tubulin binding cofactor C. Members of this family are involved in the folding pathway of tubulins and form a beta helix structure. 119 -311788 pfam07987 DUF1775 Domain of unkown function (DUF1775). Domain found in bacteria with undetermined function. Its structure has been determined and is an immunoglobulin-like fold. 145 -311789 pfam07988 LMSTEN LMSTEN motif. This region of Myb proteins has previously been described as the transcriptional activation domain present in the vertebrate c-Myb and A-Myb, but neither vertebrate B-Myb proteins nor Myb proteins of invertebrates. Because vertebrate B-Myb (but neither A-Myb nor c-Myb) can partially complement Drosophila Myb null mutants, this region appears to have been a relatively recent insertion. 45 -311790 pfam07989 Cnn_1N Centrosomin N-terminal motif 1. This domain has been identified in two microtubule associated proteins in Schizosaccharomyces pombe, Mto1 and Pcp1. Mto1 has been identified in association with spindle pole body and non-spindle pole body microtubules. The pericentrin homolog Pcp1 is also associated with the fungal centrosome or spindle pole body (SPB). Members of this family have been named centrosomins, and are an essential mitotic centrosome component required for assembly of all other known pericentriolar matrix proteins in order to achieve microtubule-organising activity in fission yeast. Cnn_1N is a short conserved motif towards the N-terminus. Motif 1 is found to be necessary for proper recruitment of gamma-tubulin, D-TACC (the homolog of vertebrate transforming acidic coiled-coil proteins [TACC]), and Minispindles (Msps) to embryonic centrosomes but is not required for assembly of other centrosome components including Aurora A kinase and CP60 in Drosophila. 69 -336892 pfam07990 NABP Nucleic acid binding protein NABP. Many members of this family are putative nucleic acid binding proteins. One member of this family has been partially characterized and contains two putative phosphorylation sites and a possible dimerization / leucine zipper domain. 384 -285265 pfam07991 IlvN Acetohydroxy acid isomeroreductase, NADPH-binding domain. Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. This N-terminal region of the enzyme carries the binding-site for NADPH. The active-site for enzymatic activity lies in the C-terminal part, IlvC, pfam01450. 165 -311792 pfam07992 Pyr_redox_2 Pyridine nucleotide-disulphide oxidoreductase. This family includes both class I and class II oxidoreductases and also NADH oxidases and peroxidases. This domain is actually a small NADH binding domain within a larger FAD binding domain. 301 -336893 pfam07993 NAD_binding_4 Male sterility protein. This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. 257 -311794 pfam07994 NAD_binding_5 Myo-inositol-1-phosphate synthase. This is a family of myo-inositol-1-phosphate synthases. Inositol-1-phosphate catalyzes the conversion of glucose-6- phosphate to inositol-1-phosphate, which is then dephosphorylated to inositol. Inositol phosphates play an important role in signal transduction. 434 -336894 pfam07995 GSDH Glucose / Sorbosone dehydrogenase. Members of this family are glucose/sorbosone dehydrogenases that possess a beta-propeller fold. 327 -336895 pfam07996 T4SS Type IV secretion system proteins. Members of this family are components of the type IV secretion system. They mediate intracellular transfer of macromolecules via a mechanism ancestrally related to that of bacterial conjugation machineries. 193 -336896 pfam07997 DUF1694 Protein of unknown function (DUF1694). This family contains many hypothetical proteins. 117 -191923 pfam07998 Peptidase_M54 Peptidase family M54. This is a family of metallopeptidases. Two human proteins have been reported to degrade synthetic substrates and peptides. 176 -191924 pfam07999 RHSP Retrotransposon hot spot protein. Members of this family are retrotransposon hot spot proteins. They are associated with polymorphic subtelomeric regions in Trypanosoma. These proteins contain a P-loop motif. 439 -336897 pfam08000 bPH_1 Bacterial PH domain. This family contains many bacterial hypothetical proteins. The structures of Structure 3hsa and Structure 3dcx show similarities to the PH or pleckstrin homology domain. First evidence of PH-like domains in bacteria suggests role in cell envelope stress response. 122 -285273 pfam08001 CMV_US CMV US. This is a family of unique short (US) cytoplasmic glycoproteins which are expressed in cytomegalovirus. 245 -336898 pfam08002 DUF1697 Protein of unknown function (DUF1697). This family contains many hypothetical bacterial proteins. 131 -285275 pfam08003 Methyltransf_9 Protein of unknown function (DUF1698). This family contains many hypothetical proteins. It also includes two putative methyltransferase proteins. 315 -311800 pfam08004 DUF1699 Protein of unknown function (DUF1699). This family contains many archaeal proteins which have very conserved sequences. 130 -336899 pfam08005 PHR PHR domain. This domain is called PHR as it was originally found in the proteins PAM, highwire, and RPM. This domain can be duplicated in the highwire, PFAM and PRM sequence. The C-terminal region of the protein BTBD1 includes the PHR domain and is known to interact with Topoisomerase I, an enzyme which relaxes DNA supercoils. 145 -285278 pfam08006 DUF1700 Protein of unknown function (DUF1700). This family contains many hypothetical bacterial proteins and putative membrane proteins. 181 -336900 pfam08007 Cupin_4 Cupin superfamily protein. This family contains many hypothetical proteins that belong to the cupin superfamily. 316 -285280 pfam08008 Viral_cys_rich Viral cysteine rich. Members of this family are polydna viral proteins that contain a cysteine rich motif. Some members of this family have multiple copies of this domain. 83 -311803 pfam08009 CDP-OH_P_tran_2 CDP-alcohol phosphatidyltransferase 2. This domain is found on CDP-alcohol phosphatidyltransferases. These enzymes catalyze the displacement of CMP from a CDP-alcohol by a second alcohol with formation of a phosphodiester bond and concomitant breaking of a phosphoride anhydride bond. 37 -285282 pfam08010 Phage_30_3 Bacteriophage protein GP30.3. Proteins in this family are bacteriophage GP30.3 proteins. Their function is poorly characterized. 138 -311804 pfam08011 PDDEXK_9 PD-(D/E)XK nuclease superfamily. This family contains many hypothetical bacterial proteins. It has been identified as a member of the PD-(D/E)XK nuclease superfamily through transitive meta profile searches. DUF1703 has the predicted secondary structure pattern of the restriction endonuclease-like fold core and contains an additional beta-strand at the C-terminus. 104 -311805 pfam08012 DUF1702 Protein of unknown function (DUF1702). This family of proteins contains many bacterial proteins that are encoded by the UnbL gene. The function of these proteins is unknown. 319 -336901 pfam08013 Tagatose_6_P_K Tagatose 6 phosphate kinase. Proteins in this family are tagatose 6 phosphate kinases. 419 -336902 pfam08014 DUF1704 Domain of unknown function (DUF1704). This family contains many hypothetical proteins. 366 -285287 pfam08015 Pheromone Fungal mating-type pheromone. This family corresponds to mating-type pheromone proteins. The homobasidiomycetes, or mushroom fungi, have arguably the most complex mating system of all known organisms. Many species possess a mating system known as bifactorial incompatibility, where two unlinked loci control the mating -type of an individual incompatibility loci (the A and B mating-type loci). Each A mating-type sublocus encodes a pair of divergently transcribed homeodomain transcription factors while the genes responsible for B mating-type activity encode lipopeptide pheromones and G-protein -coupled pheromone receptors. 68 -285288 pfam08016 PKD_channel Polycystin cation channel. This family contains the cation channel region of PKD1 and PKD2 proteins. 426 -311808 pfam08017 Fibrinogen_BP Fibrinogen binding protein. Proteins in this family bind to fibrinogen. Members of this family includes the fibrinogen receptor, FbsA, which mediates platelet aggregation. 393 -285289 pfam08018 Antimicrobial_1 Frog antimicrobial peptide. This family includes antimicrobial peptides secreted from skins of frogs. The secretion of antimicrobial peptides from the skins of frogs plays an important role in the self defense of these frogs. Structural characterization of these peptides showed that they belonged to four known families: the brevinin-1 family, the esculentin-2 family, the ranatuerin-2 family and the temporin family. 24 -336903 pfam08019 DUF1705 Domain of unknown function (DUF1705). Some members of this family are putative bacterial membrane proteins. This domain is found immediately N terminal to the sulfatase domain in many sulfatases. 148 -336904 pfam08020 DUF1706 Protein of unknown function (DUF1706). This family contains many hypothetical proteins from bacteria and yeast. 163 -311811 pfam08021 FAD_binding_9 Siderophore-interacting FAD-binding domain. 118 -285293 pfam08022 FAD_binding_8 FAD-binding domain. 108 -254589 pfam08023 Antimicrobial_2 Frog antimicrobial peptide. This family consists of the major classes of antimicrobial peptides secreted from the skin of frogs that protect the frogs against invading microbes. They are typically between 10-50 amino acids long and are derived from proteolytic cleavage of larger precursors. Major classes of peptides such esculentin, gaegurin, brevinin, rugosin and ranatuerin are included in this family. 33 -116634 pfam08024 Antimicrobial_4 Ant antimicrobial peptide. This family consists of the ponericin family of antimicrobial peptides isolated from predatory ant Pachycondyla goeldii. The ponericin peptides may adopt amphipathic alpha-helical structure in polar environments. In the ant colony, these peptides exhibit a defensive role against microbial pathogens arising from prey introduction and/or ingestion. 24 -116635 pfam08025 Antimicrobial_3 Spider antimicrobial peptide. This family includes antimicrobial peptides isolated from the crude venom of the wolf spider Oxyopes kitabensis. These peptides, known as oxyopinins, are the largest linear cationic amphipathic peptides chemically characterized and exhibit disrupting activities towards biological membranes. 37 -285294 pfam08026 Antimicrobial_5 Bee antimicrobial peptide. This family consists of antimicrobial peptides produced by bees. These peptides have strong antimicrobial and some anti-fungal activity and has homology to abaecin which is the largest proline-rich antimicrobial peptide isolated from European bumblebee Bombus pascuorum. 34 -285295 pfam08027 Albumin_I Albumin I chain b. The albumin I protein, a hormone-like peptide, stimulates kinase activity upon binding a membrane bound 43 kDa receptor. The structure of this domain (chain b) reveals a knottin like fold, comprise of three beta strands. 35 -311812 pfam08028 Acyl-CoA_dh_2 Acyl-CoA dehydrogenase, C-terminal domain. 133 -336905 pfam08029 HisG_C HisG, C-terminal domain. 71 -336906 pfam08030 NAD_binding_6 Ferric reductase NAD binding domain. 152 -336907 pfam08031 BBE Berberine and berberine like. This domain is found in the berberine bridge and berberine bridge- like enzymes which are involved in the biosynthesis of numerous isoquinoline alkaloids. They catalyze the transformation of the N-methyl group of (S)-reticuline into the C-8 berberine bridge carbon of (S)-scoulerine. 45 -311816 pfam08032 SpoU_sub_bind RNA 2'-O ribose methyltransferase substrate binding. This domain is a RNA 2'-O ribose methyltransferase substrate binding domain. 74 -336908 pfam08033 Sec23_BS Sec23/Sec24 beta-sandwich domain. 86 -311818 pfam08034 TES Trematode eggshell synthesis protein. This domain has been identified in a number of distantly related species of trematodes. This protein domain is crucial for eggshell synthesis in trematodes (Ebersberger I). 63 -311819 pfam08035 Op_neuropeptide Opioids neuropeptide. This family corresponds to the conserved YGG motif that is found in a wide variety of opioid neuropeptides such as enkephalin. 30 -285304 pfam08036 Antimicrobial_6 Diapausin family of antimicrobial peptide. This family consists of diapausin-related antimicrobial peptides. Diapause during periods of environmental adversity is an essential part of the life cycle of many organisms with the molecular basis being different among animals. Diapause-specific peptides provide anti-fungal activity and act as N-type voltage-gated calcium channel blocker. 39 -311820 pfam08037 Attractin Attractin family. This family consists of the attractin family of water-borne pheromone. Mate attraction in Aplysia involves a long-distance water-borne signal in the form of the attractin peptide, that is released during egg laying. These peptides contain 6 conserved cysteines and are folded into 2 antiparallel helices. The second helix contains the IEECKTS sequence conserved in Aplysia attractins. 55 -336909 pfam08038 Tom7 TOM7 family. This family consists of TOM7 family of mitochondrial import receptors. TOM7 forms part of the translocase of the outer mitochondrial membrane (TOM) complex and it appears to function as a modulator of the dynamics of the mitochondrial protein transport machinery by promoting the dissociation of subunits of the outer membrane translocase. 41 -285306 pfam08039 Mit_proteolip Mitochondrial proteolipid. This family consists of proteins with similarity to the mitochondrial proteolipids. Mitochondrial proteolipid consists of about 60 amino acids residues and is about 6.8 kDa in size. 59 -311822 pfam08040 NADH_oxidored MNLL subunit. This family consists of the MNLL subunits of NADH-ubiquinone oxidoreductase complex. NADH-ubiquinone oxidoreductase is involved in the transfer of electrons from NADH to the electron transport chain. This oxidation of NADH is coupled to proton transfer across the membrane, generating a proton motive force that is utilized for the synthesis of ATP. MNLL subunit is one of the many subunits found in the complex and it contains a mitochondrial import sequence. However, the role of MNLL subunit is unclear. 58 -285308 pfam08041 PetM PetM family of cytochrome b6f complex subunit 7. This family consists of the PetM family of cytochrome b6f complex subunit IV. The cytochrome b6f complex consists of 7 subunits and contains 2 beta hemes and 1 chlorophyll alpha per cytochrome f. It is highly active in transferring electrons from decylplastoquinol to oxidized plastocyanin. 29 -336910 pfam08042 PqqA PqqA family. This family consists of proteins belonging to the coenzyme Pyrroloquinoline quinone A (pqqA) family. PQQ is the non-covalently bounded prosthetic group of many quinoproteins catalyzing reactions in the periplasm of Gram-negative bacteria. PQQ is formed by the fusion of glutamate and tyrosine and synthesis of PQQ require the proteins encoded by the pqqABCDEF operon but details of the biosynthetic pathway are unclear. 19 -311824 pfam08043 Xin Xin repeat. The repeat has the consensus sequence GDV(K/Q/R)(T/S/G)X(R/K/T) WLFETXPLD. This repeat motif is typically found in the N-terminus of the proteins, with a copy number between 2 and 28 repeats. Direct evidence for binding to and stabilizing F-actin has been found in the human protein XIRP1. The homologs in mouse and chicken localize in the adherens junction complex of the intercalated disc in cardiac muscle and in the myotendon junction of skeletal muscle. mXin may co-localize with Vinculin which is known to attach the actin to the cytoplasmic membrane. It has been shown that the amino-terminus of human xin (CMYA1) binds the EVH1 domain of Mena/VASP/EVL, and the carboxy-terminus binds the, for the filamin family unique, domain 20 of filaminC. This confirms the proposed role of xin repeat containing proteins as F-actin-binding adapter proteins. 14 -311825 pfam08044 DUF1707 Domain of unknown function (DUF1707). This domain is found in a variety of Actinomycetales proteins. All of the proteins containing this domain are hypothetical and probably membrane bound or associated. Currently, it is unclear to the function of this domain. 52 -336911 pfam08045 CDC14 Cell division control protein 14, SIN component. Cdc14 is a component of the septation initiation network (SIN) and is required for the localization and activity of Sid1. Sid1 is a protein kinase that localizes asymmetrically to one spindle pole body (SPB) in anaphase disappears prior to cell separation. 273 -285313 pfam08046 IlvGEDA_leader IlvGEDA operon leader peptide. This family consists of the leader peptides of ilvGEDA operon. The expression of the ilvGEDA operon of E coli K-12 is multivalently controlled by the three branched -chain amino acids. Regulation is thought to occur by attenuation of transcription in response to the changing levels of the cognate tRNAs. Transcription of this operon is usually terminated at the end of the leader (regulatory) region. 32 -285314 pfam08047 His_leader Histidine operon leader peptide. This family consists of the leader peptide of the histidine (his) operon. The his operon contains all the genes necessary for histidine biosynthesis. The region corresponding to the untranslated 5' end of the transcript, named the his leader region, displays the typical features of the T box transcriptional attenuation mechanism which is involved in the regulation of many amino acid biosynthetic operons. 16 -116658 pfam08048 RepA1_leader Tap RepA1 leader peptide. This family consists of the RepA1 leader peptides. The frequency of replication of IncFII plasmid NR1 during the cell division cycle is regulated by the control of the synthesis of the plasmid-specific replication initiation protein (RepA1). When RepA1 is synthesized, it binds to the plasmid replication origin (ori) and effects the assembly of a replication complex composed of host proteins that mediate the replication of the plasmid. The tap gene encodes a 24-amino acids protein. The translation of tap is required for translation of repA. 25 -311827 pfam08049 IlvB_leader IlvB leader peptide. This family consists of the leader peptides of the ilvB operon. This region encodes a potential leader polypeptide containing 32 amino acids, 12 of which are the regulatory amino acids valine and leucine. A model for the multivalent regulation of this operon by valyl- and leucyl-tRNA is proposed on the basis of the mutually exclusive formation of five strong stem-and-loop structures in the leader mRNA. 31 -254601 pfam08050 Tet_res_leader Tetracycline resistance leader peptide. This family consists of the tetracycline resistance leader peptide. The presence of 3 inverted repeats which can form 2 different conformations of mRNA suggests that the tetracycline resistance (TcR) region is regulated by a translational attenuation mechanism. A Rho-independent transcriptional terminator structure is present immediately after the translational stop codon of the TET protein. 20 -285316 pfam08051 Ery_res_leader1 Erythromycin resistance leader peptide. This family consists of erythromycin resistance gene leader peptides. These leader peptides are involved in the translational attenuation of erythromycin resistance genes. Interestingly, the consensus sequence of peptides conferring erythromycin resistance is similar to that of the leader peptides, thus indicating that a similar type of interaction between the nascent peptide and antibiotics can occur in both cases. This family also includes a small number of regions from within larger proteins from actinomycetes. 15 -285317 pfam08052 PyrBI_leader PyrBI operon leader peptide. This family consists of the pyrBI operon leader peptides. The expression of the pyrBI operon, which encodes the subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamylase. is regulated primarily through a UTP-sensitive transcriptional attenuation control mechanism. In this mechanism, the concentration of UTP determines the extent of coupling between transcription and translation within the pyrBI leader region, hence determining the level of rho-independent transcriptional termination at an attenuator preceding the pyrB gene. 44 -285318 pfam08053 Tna_leader Tryptophanase operon leader peptide. This family consists of the tryptophanase (tna) operon leader peptide. Tna catalyzes the degradation of L-tryptophan to indole, pyruvate and ammonia, enabling the bacteria to utilize tryptophan as a source of carbon, nitrogen and energy. The tna operon of E. coli contains two major structural genes, tnaA and tnaB. Preceding tnaA in the tna operon is a 319 -nucleotide transcribed regulatory region that contains the coding region for a 24-residue leader peptide, TnaC. The RNA sequence in the vicinity of the tnaC stop codon is rich in Cytidylate residues which is required for efficient Rho -dependent termination in the leader region of the tna operon. 24 -285319 pfam08054 Leu_leader Leucine operon leader peptide. This family consists of the leucine operon leader peptide. The leucine operon is involved in the control of the biosynthesis of leucine. Four adjacent leucine codons within the leucine leader RNA are critically important in transcription attenuation-mediated control of leucine operon expression in bacteria. The leader RNA contains translational start and stop signals, a cluster of four leucine codons and overlapping regions of dyad symmetry that are capable of forming stem-and-loop structures. 28 -116663 pfam08055 Trp_leader1 Tryptophan leader peptide. This family consists of the tryptophan (trp) leader peptides. Tryptophan accumulation is the principal event resulting in downregulation of transcription of the structural genes of the trp operon. The leader peptide of the trp operon forms mutually exclusive secondary structures that would either result in the termination of transcription of the trp operon when tryptophan is in plentiful supply or vice versa. 18 -285320 pfam08056 Trp_leader2 Tryptophan operon leader peptide. This family consists of the tryptophan operon leader peptides. The tryptophan operon is regulated by transcription attenuation in response to changes in the level of tryptophan. The transcript of the leader peptide can adopt alternative mutually-exclusive secondary structures that would either result in termination of transcription of the tryptophan structural genes or in transcription of the entire operon. 41 -71493 pfam08057 Ery_res_leader2 Erythromycin resistance leader peptide. This family consists of erythromycin resistance gene leader peptides. These leader peptides are involved in the transcriptional attenuation control of the synthesis of the macrolide-lincosamide -streptogramin B resistance protein. It acts as a transcriptional attenuator, in contrast to other inducible erm genes. The mRNA leader sequence can fold in either of two mutually exclusive conformations, one of which is postulated to form in the absence of induction, and to contain two rho factor-independent terminators.. 14 -311828 pfam08058 NPCC Nuclear pore complex component. Proteins containing this domain are components of the nuclear pore complex. One member of this family is Nucleoporin POM34, which is thought to have a role in anchoring peripheral Nups into the pore and mediating pore formation. 135 -336912 pfam08059 SEP SEP domain. The SEP domain is named after Saccharomyces cerevisiae Shp1, Drosophila melanogaster eyes closed gene (eyc), and vertebrate p47. In p47, the SEP domain has been shown to bind to and inhibit the cysteine protease cathepsin L. Most SEP domains are succeeded closely by a UBX domain. 75 -285323 pfam08061 P68HR P68HR (NUC004) repeat. This short region is found in two copies in p68-like RNA helicases. 33 -285324 pfam08062 P120R P120R (NUC006) repeat. This characteristic repeat of proliferating cell nuclear antigen P120 is found in three copies. 22 -336913 pfam08063 PADR1 PADR1 (NUC008) domain. This domain is found in poly(ADP-ribose)-synthetases. The function of this domain is unknown. 53 -336914 pfam08064 UME UME (NUC010) domain. This domain is characteristic of UVSB PI-3 kinase, MEI-41 and ESR1. 102 -311832 pfam08065 K167R K167R (NUC007) repeat. This family represents the K167/Chmadrin repeat. The function of this repeat is unknown. 112 -336915 pfam08066 PMC2NT PMC2NT (NUC016) domain. This domain is found at the N-terminus of 3'-5' exonucleases with HRDC domains, and also in putative exosome components. 88 -311834 pfam08067 ROKNT ROKNT (NUC014) domain. This presumed domain is found at the N-terminus of RNP K-like proteins that also contains KH domains pfam00013. 28 -336916 pfam08068 DKCLD DKCLD (NUC011) domain. This is a TruB_N/PUA domain associated N-terminal domain of Dyskerin-like proteins. 48 -311836 pfam08069 Ribosomal_S13_N Ribosomal S13/S15 N-terminal domain. This domain is found at the N-terminus of ribosomal S13 and S15 proteins. This domain is also identified as NUC021. 57 -311837 pfam08070 DTHCT DTHCT (NUC029) region. The DTCHT region is the C-terminal part of DNA gyrases B / topoisomerase IV / HATPase proteins. This region is composed of quite low complexity sequence. 95 -311838 pfam08071 RS4NT RS4NT (NUC023) domain. This is the N-terminal domain of Ribosomal S4 / S4e proteins. This domain is associated with S4 and KOW domains. 37 -311839 pfam08072 BDHCT BDHCT (NUC031) domain. This is a C-terminal domain in Bloom's syndrome DEAD helicase subfamily. 40 -336917 pfam08073 CHDNT CHDNT (NUC034) domain. The CHDNT domain is found in PHD/RING finger and chromo domain-associated helicases. 54 -311841 pfam08074 CHDCT2 CHDCT2 (NUC038) domain. The CHDCT2 C-terminal domain is found in PHD/RING finger and chromo domain-associated CHD-like helicases. 172 -336918 pfam08075 NOPS NOPS (NUC059) domain. This domain is found at the C-terminus of NONA and PSP1 proteins adjacent to 1 or 2 pfam00076 domains. 52 -285338 pfam08076 TetM_leader Tetracycline resistance determinant leader peptide. This family consists of the tetracycline resistance determinant tet(M) leader peptides. A short open reading frame corresponding to a 28 amino acid peptide which contain a number of inverted repeat sequences was found immediately upstream of the tet(M). Transcriptional analyses has found that expression of tet(M) resulted from an extension of a small transcript representing the upstream leader region into the resistance determinant. Thus this leader sequence is responsible for transcriptional attenuation and thus regulation of the transcription of tet(M). 28 -71513 pfam08077 Cm_res_leader Chloramphenicol resistance gene leader peptide. This family consists of chloramphenicol (Cm) resistance gene leader peptides. Inducible resistance to Cm in both Gram positive and Gram negative bacteria is controlled by translation attenuation. In translation attenuation, the ribosome-binding-site (RBS) for the resistance determinant is sequestered in a secondary structure domain within the mRNA. Preceding the secondary structure is a short, translated ORF termed the leader. Ribosome stalling in the leader causes the destabilization of the downstream secondary structure, allowing initiation of translation of the Cm resistance gene. 17 -285339 pfam08078 PsaX PsaX family. This family consists of the PsaX family of photosystem I (PSI) protein subunits. PSI is a large multi-subunit pigment protein complex embedded in the thylakoid membranes of green plants and cyanobacteria. PsaX is one of the 12 protein subunits found in PSI and these subunits are arranged as monomers or trimers within the membrane as shown by the structure of the trimeric complex from Synechococcus elongatus. 34 -336919 pfam08079 Ribosomal_L30_N Ribosomal L30 N-terminal domain. This presumed domain is found at the N-terminus of Ribosomal L30 proteins and has been termed RL30NT or NUC018. 72 -311844 pfam08080 zf-RNPHF RNPHF zinc finger. This domain is a putative zinc-binding domain (CHHC motif) in RNP H and F. The domain is often associated with pfam00076. 36 -336920 pfam08081 RBM1CTR RBM1CTR (NUC064) family. This C-terminal region is found in RBM1-like RNA binding hnRNPs. 45 -336921 pfam08082 PRO8NT PRO8NT (NUC069), PrP8 N-terminal domain. The PRO8NT domain is found at the N-terminus of pre-mRNA splicing factors of PRO8 family. The NLS or nuclear localization signal for these spliceosome proteins begins at the start and runs for 60 residues. N-terminal to this domain is a highly variable proline-rich region. 152 -285343 pfam08083 PROCN PROCN (NUC071) domain. The PROCN domain is the central domain in pre-mRNA splicing factors of PRO8 family. 401 -336922 pfam08084 PROCT PROCT (NUC072) domain. The PROCT domain is the C-terminal domain in pre-mRNA splicing factors of PRO8 family. 123 -336923 pfam08085 Entericidin Entericidin EcnA/B family. This family consists of the entericidin antidote/toxin peptides. The entericidin locus is activated in stationary phase under high osmolarity conditions by rho-S and simultaneously repressed by the osmoregulatory EnvZ/OmpR signal transduction pathway. The entericidin locus encodes tandem paralogous genes (ecnAB) and directs the synthesis of two small cell-envelope lipoproteins which can maintain plasmids in bacterial population by means of post-segregational killing. 21 -116691 pfam08086 Toxin_17 Ergtoxin family. This family consists of ergtoxin peptides which are toxins secreted by the scorpions. The ergtoxins are capable of blocking the function of K+ channels. More than 100 ergtoxins have been found from scorpion venoms and they have been classified into three subfamilies according to their primary structures. 41 -191941 pfam08087 Toxin_18 Conotoxin O-superfamily. This family consists of members of the conotoxin O-superfamily. The O-superfamily of conotoxins consists of 3 groups of Conus peptides that belong to the same structural group. These 3 groups differ in their pharmacological properties: the w-conotoxins which inhibit calcium channels, the delta-conotoxins which slow down the inactivation rate of voltage -sensitive sodium channels and the muO-conotoxins block the voltage sensitive sodium currents. 31 -254615 pfam08088 Toxin_19 Conotoxin I-superfamily. This family consists of the I-superfamily of conotoxins. This is a new class of peptides in the venom of some Conus species. These toxins are characterized by four disulfide bridges and inhibit of modify ion channels of nerve cells. The I-superfamily conotoxins is found in five or six major clades of cone snails and could possible be found in many more species. 40 -285346 pfam08089 Toxin_20 Huwentoxin-II family. This family consists of the huwentoxin-II (HWTX-II) family of toxins secreted by spiders. These toxins are found in venom that secreted from the bird spider Selenocosmia huwena Wang. The HWTX-II adopts a novel scaffold different from the ICK motif that is found in other huwentoxins. HWTX-II consists of 37 amino acids residues including six cysteines involved in three disulfide bridges. 39 -116695 pfam08090 Enterotoxin_HS1 Heat stable E.coli enterotoxin 1. Heat-stable toxin 1 of entero-aggregative E.coli (EAST1) is a small toxin. It is not, however, solely associated with entero-aggregative E.coli but also with many other diarrhoaeic E. coli families. Some studies have established the role of EAST1 in some human outbreaks of diarrhoea. Isolates from farm animals have been shown to carry the astA gene coding for EAST1. However, the relation between the presence of EAST1 and disease is not conclusive. 36 -311849 pfam08091 Toxin_21 Spider insecticidal peptide. This family consists of insecticidal peptides isolated from venom of spiders of Aptostichus schlingeri and Calisoga sp. Nine insecticidal peptides were isolated from the venom of the Aptostichus schlingeri spider and seven of these toxins cause flaccid paralysis to insect larvae within 10 min of injection. However, all nine peptides were lethal within 24 hours. The structure of Aps III was solved and shown to be an atypical knottin peptide with four disulphide bridges. 35 -149265 pfam08092 Toxin_22 Magi peptide toxin family. This family consists of Magi peptide toxins (Magi 1, 2 and 5) isolated from the venom of Hexathelidae spider. These insecticidal peptide toxins bind to sodium channels and induce flaccid paralysis when injected into lepidopteran larvae. However, these peptides are not toxic to mice when injected intracranially at 20 pmol/g. 38 -116698 pfam08093 Toxin_23 Magi 5 toxic peptide family. This family consists of toxic peptides (Magi 5) found in the venom of the Hexathelidae spider. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel and the toxin has an insecticidal effect on larvae, causing paralysis when injected into the larvae. 30 -311850 pfam08094 Toxin_24 Conotoxin TVIIA/GS family. This family consists of conotoxins isolated from the venom of cone snail Conus tulipa and Conus geographus. Conotoxin TVIIA, isolated from Conus tulipa displays little sequence homology with other well-characterized pharmacological classes of peptides, but displays similarity with conotoxin GS, a peptide from Conus geographus. Both these peptides block skeletal muscle sodium channels and also share several biochemical features and represent a distinct subgroup of the four-loop conotoxins. 33 -71530 pfam08095 Toxin_25 Hefutoxin family. This family consists of the hefutoxins that are found in the venom of the scorpion Heterometrus fulvipes. These toxins, kappa-hefutoxin1 and kappa-hefutoxin2, exhibit no homology to any known toxins. The hefutoxins are potassium channel toxins. 22 -71531 pfam08096 Bombolitin Bombolitin family. This family consists of the bombolitin peptides that are found in the venom of the bumblebee Megabombus pennsylvanicus. Bombolitins are structurally and functionally very similar. They lyse erythrocytes and liposomes, release histamine from rat peritoneal mast cells, and stimulate phospholipase A2 from different sources. 17 -71532 pfam08097 Toxin_26 Conotoxin T-superfamily. This family consists of the T-superfamily of conotoxins. Eight different T-superfamily peptides from five Conus species were identified. These peptides share a consensus signal sequence, and a conserved arrangement of cysteine residues. T-superfamily peptides were found expressed in venom ducts of all major feeding types of Conus, suggesting that the T-superfamily is a large and diverse group of peptides, widely distributed in the 500 different Conus species. 11 -116700 pfam08098 ATX_III Anemonia sulcata toxin III family. This family consists of the Anemonia sulcata toxin III (ATX III) neurotoxin family. ATX III is a neurotoxin that is produced by sea anemone; it adopts a compact structure containing four reverse turns and two other chain reversals, but no regular alpha-helix or beta-sheet. A hydrophobic patch found on the surface of the peptide may constitute part of the sodium channel binding surface. 27 -311851 pfam08099 Toxin_27 Scorpion calcine family. This family consists of the calcine family of scorpion toxins. The calcine family consists of Maurocalcine and Imperatoxin. These toxins have been shown to be potent effector of ryanodyne-sensitive calcium channel from skeletal muscles. These toxins are thus useful for dihydropyridine receptor/ryanodyne receptor interaction studies. 33 -311852 pfam08100 dimerization dimerization domain. This domain is found at the N-terminus of a variety of plant O-methyltransferases. It has been shown to mediate dimerization of these proteins. 50 -311853 pfam08101 DUF1708 Domain of unknown function (DUF1708). This is a yeast domain of unknown function. 422 -116704 pfam08102 Antimicrobial_7 Scorpion antimicrobial peptide. This family consists of antimicrobial peptides secreted by scorpions. Novel antimicrobial peptides have been isolated from scorpions, namely the opistoporin and the pandinin. These peptides form essentially helical structures and demonstrate high antimicrobial activity against Gram-negative and Gram-positive bacteria respectively. 43 -116705 pfam08103 Antimicrobial_8 Uperin family. This family consists of the uperin family of antimicrobial peptides. Uperin is a wide-spectrum antibiotic peptide isolated from the Australian toadlet, Uperoleia mjobergii. Being only 17 amino acid residues long, it is smaller than most other wide-spectrum antibiotic peptides isolated from amphibians. Uperin adopts a well-defined amphipathic alpha-helix with distinct hydrophilic and hydrophobic faces. 17 -71539 pfam08104 Antimicrobial_9 Ponericin L family. This family consists of the ponericin L family of antimicrobial peptides that are isolated from the venom of the predatory ant Pachycondyla goeldii. Ponericin L family shares similarities with dermaseptins. Ponericin L may adopt an amphipathic alpha-helical structure in polar environments and these peptides exhibit a defensive role against microbial pathogens arising from prey introduction and/or ingestion. 24 -311854 pfam08105 Antimicrobial10 Metchnikowin family. This family consists of the metchnikowin family of antimicrobial peptides from Drosophila. metchnikowin is a proline-rich peptide whose expression is immune-inducible. Induction of the metchnikowin gene expression can be mediated either by the TOLL pathway or by the imd gene product. The metchnikowin peptide is unique among the Drosophila antimicrobial peptides in that it is active against both bacteria and fungi. 50 -71541 pfam08106 Antimicrobial11 Formaecin family. This family consists of the formaecin family of antimicrobial peptides isolated from the bulldog ant Myrmecia gulosa in response to bacterial infection. Formaecins are inducible peptide antibiotics and are active against growing Escherichia coli but were inactive against other Gram-negative and Gram-positive bacteria. Formaecin peptides are 16 amino acids long, are rich in proline and have N-acetylgalactosamine O-linked to a conserved threonine. 16 -116706 pfam08107 Antimicrobial12 Pleurocidin family. This family consists of the pleurocidin family of antimicrobial peptides. Pleurocidins are found in the skin mucous secretions of the winter flounder (Pleuronectes americanus) and these peptides exhibit antimicrobial activity against Escherichia coli. Pleurocidin is predicted to assume an amphipathic alpha-helical conformation similar to other linear antimicrobial peptides and may play a role in innate host defense. 42 -71543 pfam08108 Antimicrobial13 Halocidin family. This family consists of the halocidin family of antimicrobial peptides. Halocidins are isolated from the haemocytes of the tunicate, Halocynthia aurantium. They are dimeric in structures which are found via a disulfide linkage between cysteines of two different- sized monomers. Halocidins have been shown to have strong antimicrobial activities against a wide variety of pathogenic bacteria and could be ideal candidates as peptide antibiotics against multidrug-resistant bacteria. 15 -71544 pfam08109 Antimicrobial14 Lactocin 705 family. This family consists of lactocin 705 which is a bacteriocin produced by Lactobacillus casei CRL 705. Lactocin 705 is a class IIb bacteriocin, whose activity depends upon the complementation of two peptides (705-alpha and 705-beta) of 33 amino acid residues each. Lactocin 705 is active against several Gram-positive bacteria, including food-borne pathogens and is a good candidate to be used for biopreservation of fermented meats. 31 -149268 pfam08110 Antimicrobial15 Ocellatin family. This family consists of the ocellatin family of antimicrobial peptides. Ocellatins are produced from the electrical-stimulated skin secretions of the South American frog, Leptodactylus ocellatus. The family consists of three structurally related peptides, ocellatin 1, ocellatin 2 and ocellatin 3. These peptides present hemolytic activity against human erythrocytes and are also active against Escherichia coli. 19 -71546 pfam08111 Pea-VEAacid Pea-VEAacid family. This family consists of the PEA-VEAacid neuropeptides family. These neuropeptides are isolated from the abdominal perisympathetic organs of the American cockroach. These peptides are found together with Pea-YLS-amide and Pea-SKNacid, giving a unique neuropeptide pattern in abdominal perisympathetic organs. The functions of these neuropeptides are unknown. 15 -116708 pfam08112 ATP-synt_E_2 ATP synthase epsilon subunit. This family consists of epsilon subunits of the ATP synthase. The ATP synthase complex is composed of an oligomeric transmembrane sector (CF0), and a catalytic core (CF1). CF1 is composed of 5 subunits, of which the epsilon subunit functions as a potent inhibitor of ATPase activity in both soluble and bound CF1. Only when the epsilon inhibition is disabled is high ATPase activity detected in ATPase 56 -285350 pfam08113 CoxIIa Cytochrome c oxidase subunit IIa family. This family consists of the cytochrome c oxidase subunit IIa family. The bax-type cytochrome c oxidase from Thermus thermophilus is known as a two subunit enzyme. From its crystal structure, it was discovered that an additional transmembrane helix 'subunit IIa' spans the membrane. This subunit consists of 34 residues forming one helix across the membrane. The presence of this subunit seems to be important for the function of cytochrome c oxidases. 33 -285351 pfam08114 PMP1_2 ATPase proteolipid family. This family consists of small proteolipids associated with the plasma membrane H+ ATPase. Two proteolipids (PMP1 and PMP2) are associated with the ATPase and both genes are similarly expressed in the wild-type strain of yeast with no modification of the level of transcription of one PMP gene is detected in a strain deleted of the other. Though both proteolipids show similarity with other small proteolipids associated with other cation -transporting ATPases, their functions remain unclear. 43 -285352 pfam08115 Toxin_28 SFI toxin family. This family consists of the SFI family of spider toxins. This family of toxins might share structural, evolutionary and functional relationships with other small, highly structurally constrained spider neurotoxins. These toxins are highly selective agonists/antagonists of different voltage-dependent calcium channels and are extremely valuable reagents in the analysis of neuromuscular function. 35 -149271 pfam08116 Toxin_29 PhTx neurotoxin family. This family consists of PhTx insecticidal neurotoxins that are found in the venom of Brazilian, Phoneutria nigriventer. The venom of the Phoneutria nigrivente contains numerous neurotoxic polypeptides of 30-140 amino acids which exert a range of biological effects. While some of these neurotoxins are lethal to mice after intracerebroventricular injections, others are extremely toxic to insects of the orders Diptera and Dictyoptera but had much weaker toxic effects on mice. 31 -311855 pfam08117 Toxin_30 Ptu family. This family consists of toxic peptides that are isolated from the saliva of assassin bugs. The saliva contains a complex mixture of proteins that are used by the bug either to immobilise the prey or to digest it. One of the proteins (Ptu1) has been purified and shown to block reversibly the N-type calcium channels and to be less specific for the L- and P/Q- type calcium channels expressed in BHK cells. 35 -311856 pfam08118 MDM31_MDM32 Yeast mitochondrial distribution and morphology (MDM) proteins. Proteins in this family are yeast mitochondrial inner membrane proteins MDM31 and MDM32. These proteins are required for the maintenance of mitochondrial morphology, and the stability of mitochondrial DNA. 506 -71554 pfam08119 Toxin_31 Scorpion acidic alpha-KTx toxin family. This family consists of acidic alpha-KTx short chain scorpion toxins. These toxins named parabutoxins, block voltage-gated K channels and have extremely low pI values. Furthermore, they lack the crucial pore-plugging lysine. In addition, the second important residue of the dyad, the hydrophobic residue (Phe or Tyr) is also missing. 37 -71555 pfam08120 Toxin_32 Tamulustoxin family. This family consists of the tamulustoxins which are found in the venom of the Indian red scorpion (Mesobuthus tamulus). Tamulustoxin shares no similarity with other scorpion venom toxins, although the positions of its six cysteine residues suggest that it shares the same structural scaffold. Tamulustoxin acts as a potassium channel blocker. 35 -71556 pfam08121 Toxin_33 Waglerin family. This family consists of the lethal peptides (waglerins) that are found in the venom of Trimeresurus wagleri. Waglerins are 22-24 residue lethal peptides and are competitive antagonist of the muscle nicotinic receptor (nAChR). Waglerin-1 possesses a distinctive selectivity for the alpha-epsilon interface binding site of the mouse nAChR. 22 -336924 pfam08122 NDUF_B12 NADH-ubiquinone oxidoreductase B12 subunit family. This family consists of the NADH-ubiquinone oxidoreductase B12 subunit proteins. NADH is the central source of electrons in the mitochondrial and bacterial respiration. NADH-ubiquinone oxidoreductase is involved in the transfer of electrons from NADH to the electron transport chain. This oxidation of NADH is coupled to proton transfer across the membrane, generating a proton motive force that is utilized for the synthesis of ATP. The function of this subunit is unclear. 54 -149273 pfam08123 DOT1 Histone methylation protein DOT1. The DOT1 domain regulates gene expression by methylating histone H3. H3 methylation by DOT1 has been shown to be required for the DNA damage checkpoint in yeast. 205 -311858 pfam08124 Lyase_8_N Polysaccharide lyase family 8, N terminal alpha-helical domain. This family consists of a group of secreted bacterial lyase enzymes EC:4.2.2.1 capable of acting on hyaluronan and chondroitin in the extracellular matrix of host tissues, contributing to the invasive capacity of the pathogen. 324 -311859 pfam08125 Mannitol_dh_C Mannitol dehydrogenase C-terminal domain. 246 -285357 pfam08126 Propeptide_C25 Propeptide_C25. This is found at the N terminal end of some of the members of the C25 peptidase family (PF01364). Little is known about the function of this motif. 205 -336925 pfam08127 Propeptide_C1 Peptidase family C1 propeptide. This motif is found at the N terminal of some members of the Peptidase_C1 family (pfam00112) and is involved in activation of this peptidase. 39 -71564 pfam08129 Antimicrobial17 Alpha/beta enterocin family. This family consists of the alpha and beta enterocins and lactococcin G peptides. These peptides have some antimicrobial properties; they inhibit the growth of Enterococcus spp. and a few other gram-positive bacteria. These peptides act as pore- forming toxins that create cell membrane channels through a barrel-stave mechanism and thus produce an ionic imbalance in the cell. These family of antimicrobial peptides belong to the class II group of bacteriocin. 57 -116721 pfam08130 Antimicrobial18 Type A lantibiotic family. This family consists of the type A lantibiotic peptides. Both Pep5 and epicidin-280 are ribosomally-synthesized antimicrobial peptides produced by Gram-positive bacteria that are characterized by the presence of lanthionine and/or methyllanthionine residues. The lantibiotics family has a highly specific activity against multi- drug resistant bacteria and has potential to be utilized in a wide range of medical applications. 60 -254625 pfam08131 Defensin_3 Defensin-like peptide family. This family consists of the defensin-like peptides (DLPs) isolated from platypus venom. These DLPs show similar three-dimensional fold to that of beta-defensin-12 and sodium-channel neurotoxin Shl. However the side chains known to be functionally important to beta-defensin-12 and Shl are not conserved in DLPs. This suggests a different biological function. Consistent with this contention, DLPs have been shown to possess no anti-microbial properties and have no observable activity on rat dorsal-root-ganglion sodium-channel currents. 38 -311861 pfam08132 AdoMetDC_leader S-adenosyl-l-methionine decarboxylase leader peptide. This family consists of the S-adenosyl-l-methionine decarboxylase (AdoMetDC) leader peptides. AdoMetDC is a key regulatory enzymes in the biosynthesis of polyamines. All expressed plant AdoMetDC mRNA 5' leader sequences contain a highly conserved pair of overlapping upstream ORFs (uORFs) that overlap by one base. Sequences of the small uORFs are highly conserved between monocot, dicot and gymnosperm AdoMetDC mRNA species, suggesting a translational regulatory mechanism. 51 -285360 pfam08133 Nuclease_act Anticodon nuclease activator family. This family consists of the anticodon nuclease activator proteins. Pre-existing host tRNAs are reprocessed during bacteriophage T4 infection of certain Escherichia coli strains. In this pathway, tRNA(Lys) is cleaved 5' by the anticodon nuclease to the wobble base and is later restored in polynucleotide kinase and RNA ligase reactions. 26 -311862 pfam08134 cIII cIII protein family. This family consists of the cIII family of regulatory proteins. The lambda CIII protein has 54 amino acids and it forms an amphipathic helix within its amino acid sequence. Lambda cIII stabilizes the lambda cII protein and the host sigma factor 32, responsible for transcribing genes of the heat shock regulon. 40 -285362 pfam08135 EPV_E5 Major transforming protein E5 family. This family consists of the major transforming proteins (E5) of the bovine papilloma virus (BPV). The equine sarcoid is one of the most common dermatological lesion in equids. It is a benign, locally invasive dermal fibroblastic lesion and studies have shown an association of the lesions with BPV. E5 is a short hydrophobic membrane protein localising to the Golgi apparatus and other intracellular membranes. It binds to and constitutively activates the platelet-derived growth factor-beta in transformed cells. This stimulation activates a receptor signaling cascade which results in an intracellular growth stimulatory signal. 43 -311863 pfam08136 Ribosomal_S22 30S ribosomal protein subunit S22 family. This family consists of the 30S ribosomal proteins subunit S22 polypeptides. This polypeptide is 47 amino acids in length and has a molecular weight of about 5 kDa. The S22 subunit is a component of the stationary-phase-specific ribosomal protein and is assembled in the ribosomal particles in the stationary phase. This subunit along with other stationary-phase-specific ribosomal proteins result in compositional changes of ribosomes during the stationary phase. The significance of this change is not clear as yet. 44 -336926 pfam08137 DVL DVL family. This family consists of the DVL family of proteins. In a gain-of-function genetic screen for genes that influence fruit development in Arabidopsis, DEVIL (DVL) gene was identified. DVL is a small protein and overexpression of the protein results in pleiotropic phenotypes featured by shortened stature, rounder rosette leaves, clustered inflorescences, shortened pedicles, and siliques with pronged tips. DVL family is a novel class of small polypeptides and the overexpression phenotypes suggest that these polypeptides may have a role in plant development. 19 -285365 pfam08138 Sex_peptide Sex peptide (SP) family. This family consists of Sex Peptides (SP) that are found in Drosophila. On mating, Drosophila females decreases her remating rate and increases her egg-laying rate due, in part, to the transfer of SP from the male to the female. SP are found in seminal fluids transferred from the male to the female during mating. The male seminal fluid proteins are referred to as accessory gland proteins (Acps). The SP is one of the most interesting Acps and plays an important role in reproduction. 55 -285366 pfam08139 LPAM_1 Prokaryotic membrane lipoprotein lipid attachment site. In prokaryotes, membrane lipoproteins are synthesized with a precursor signal peptide, which is cleaved by a specific lipoprotein signal peptidase (signal peptidase II). The peptidase recognizes a conserved sequence and cuts upstream of a cysteine residue to which a glyceride-fatty acid lipid is attached. 35 -311865 pfam08140 Cuticle_1 Crustacean cuticle protein repeat. This family consists of the cuticle proteins from the Cancer pagurus and the Homarus americanus. These proteins are isolated from the calcified regions of the crustacean and they contain two copies of an 18 residue sequence motif, which thus far has been found only in crustacean calcified exoskeletons. 40 -311866 pfam08141 SspH Small acid-soluble spore protein H family. This family consists of the small acid-soluble spore proteins (SASP) of the H type (sspH). SspH are unique to spores of Bacillus subtilis and are expressed only in the forespore compartment during sporulation of this organism. The sspH genes are monocistronic and are recognized by the forespore-specific sigma factor for RNA polymerase - sigma-G. The specific role of this protein is unclear but is thought to play a role in sporulation under conditions different from that of the common laboratory tests of spore properties. 58 -336927 pfam08142 AARP2CN AARP2CN (NUC121) domain. This domain is the central domain of AARP2. It is weakly similar to the GTP-binding domain of elongation factor TU. 85 -311868 pfam08143 CBFNT CBFNT (NUC161) domain. This N terminal domain is found in proteins of CARG-binding factor A-like proteins. 60 -336928 pfam08144 CPL CPL (NUC119) domain. This C terminal domain is fund in Penguin-like proteins associated with Pumilio like repeats. 143 -311870 pfam08145 BOP1NT BOP1NT (NUC169) domain. This N terminal domain is found in BOP1-like WD40 proteins. 259 -336929 pfam08146 BP28CT BP28CT (NUC211) domain. This C terminal domain is found in BAP28-like nucleolar proteins. 146 -336930 pfam08147 DBP10CT DBP10CT (NUC160) domain. This C terminal domain is found in the Dbp10p subfamily of hypothetical RNA helicases. 63 -336931 pfam08148 DSHCT DSHCT (NUC185) domain. This C terminal domain is found in DOB1/SK12/helY-like DEAD box helicases. 154 -336932 pfam08149 BING4CT BING4CT (NUC141) domain. This C terminal domain is found in the BING4 family of nucleolar WD40 repeat proteins. 79 -336933 pfam08150 FerB FerB (NUC096) domain. This is central domain B in proteins of the Ferlin family. 75 -336934 pfam08151 FerI FerI (NUC094) domain. This domain is present in proteins of the Ferlin family. It is often located between two C2 domains. 51 -336935 pfam08152 GUCT GUCT (NUC152) domain. This is the C terminal domain found in the RNA helicase II / Gu protein family. 91 -336936 pfam08153 NGP1NT NGP1NT (NUC091) domain. This N terminal domain is found in a subfamily of hypothetical nucleolar GTP-binding proteins similar to human NGP1. 128 -336937 pfam08154 NLE NLE (NUC135) domain. This domain is located N terminal to WD40 repeats. It is found in the microtubule-associated yeast ribosome biogenesis protein YTM1. 65 -336938 pfam08155 NOGCT NOGCT (NUC087) domain. This C terminal domain is found in the NOG subfamily of nucleolar GTP-binding proteins. 53 -336939 pfam08156 NOP5NT NOP5NT (NUC127) domain. This N terminal domain is found in RNA-binding proteins of the NOP5 family. 66 -311882 pfam08157 NUC129 NUC129 domain. This C terminal domain is found in a novel family of hypothetical nucleolar proteins. 63 -336940 pfam08158 NUC130_3NT NUC130/3NT domain. This N terminal domain is found in a novel nucleolar protein family. 50 -336941 pfam08159 NUC153 NUC153 domain. This small domain is found in a a novel nucleolar family. 28 -336942 pfam08161 NUC173 NUC173 domain. This is the central domain of of novel family of hypothetical nucleolar proteins. 202 -336943 pfam08163 NUC194 NUC194 domain. This is domain B in the catalytic subunit of DNA-dependent protein kinases. 367 -336944 pfam08164 TRAUB Apoptosis-antagonizing transcription factor, C-terminal. This C terminal domain is found in traube proteins. This is the domain of the AATF proteins that interacts with BLOS2 or Ceap, that functions as an adaptor in processes such as protein and vesicle processing and transport, and perhaps transcription. 83 -311888 pfam08165 FerA FerA (NUC095) domain. This is central domain A in proteins of the Ferlin family. 58 -149302 pfam08166 NUC202 NUC202 domain. This domain is found in a novel family of nucleolar proteins. 61 -336945 pfam08167 RIX1 rRNA processing/ribosome biogenesis. Rix1 is a nucleoplasmic particle involved in rRNA processing/ribosome assembly. It associates with two other proteins, Ipi1 and Ipi3, to form the RIX1 complex that allows Rea1 - the AAA ATPase - to associate with the 60S ribosomal subunit. More than 170 assembly factors are involved in the construction and maturation of yeast ribosomes, and after these factors have completed their function they need to be released from the pre-ribosomes. Rea1 induces the release of the assembly protein complex in a mechanical fashion. This family is usually associated with NUC202, pfam08166. 191 -285391 pfam08168 NUC205 NUC205 domain. This domain is found in a novel family of nucleolar proteins. 44 -336946 pfam08169 RBB1NT RBB1NT (NUC162) domain. This domain is found N terminal to the ARID/BRIGHT domain in DNA-binding proteins of the Retinoblastoma-binding protein 1 family. 93 -336947 pfam08170 POPLD POPLD (NUC188) domain. This domain is found in POP1-like nucleolar proteins. 92 -311892 pfam08171 Mad3_BUB1_II Mad3/BUB1 homology region 2. This domain is found in checkpoint proteins which are involved in cell division. This region has been shown to be necessary and sufficient for the binding of MAD3 to BUB3 in Saccharomyces cerevisiae. This domain is present in BUB1 which also binds BUB3. 65 -336948 pfam08172 CASP_C CASP C terminal. This domain is the C-terminal region of the CASP family of proteins. It is a Golgi membrane protein which is thought to have a role in vesicle transport. 239 -336949 pfam08173 YbgT_YccB Membrane bound YbgT-like protein. This family contains a set of membrane proteins, typically 33 amino acids long. The family has no known function, but the protein is found in the operon CydAB in E. coli. Members have a consensus motif (MWYFXW) which is rich in aromatic residues. The protein forms a single membrane-spanning helix. This family seems to be restricted to Proteobacteria. 27 -336950 pfam08174 Anillin Cell division protein anillin. Anillin is a protein involved in septin organisation during cell division. It is an actin binding protein that is localized to the cleavage furrow, and it maintains the localization of active myosin, which ensures the spatial control of concerted contraction during cytokinesis. 139 -311896 pfam08175 SspO Small acid-soluble spore protein O family. This family consists of the small acid-soluble spore proteins (SASP) O type (sspO). SspO (originally cotK) are unique to the spores of Bacillus subtilis and are expressed only in the forespore compartment of sporulating cells of this organism. The sspO is the first gene in a likely operon with sspP and transcription of this gene is primarily by RNA polymerase with the forespore-specific sigma factor, sigma-G. Mutation deleting sspO causes the loss of the SspO from the forespore but had no discernible effect on sporulation, spore properties or spore germination. 51 -285399 pfam08176 SspK Small acid-soluble spore protein K family. This family consists of the small acid-soluble spore proteins (SASP) belonging to the K type (sspK). The sspK are unique to the spores of Bacillus subtilis and are expressed only in the forespore compartment of sporulating cells of this organism. The sspK gene is monocistronic and transcription is primarily by the RNA polymerase with the forespore-specific sigma factor, sigma-G. Mutation deleting sspK results in loss of SspK from the spore but had no discernible effect on sporulation, spore properties or spore germination. 47 -285400 pfam08177 SspN Small acid-soluble spore protein N family. This family consists of the small acid-soluble spore protein (SASP) N type (sspN). SspN is a 48 residues protein that is expressed only in the forespore compartment of sporulating Bacillus subtilis. The sspN gene is recognized equally by both sigma-G and sigma-F. The role of SspN is still not well-defined. 46 -285401 pfam08178 GnsAB_toxin GnsA/GnsB toxin of bacterial toxin-antitoxin system. This family consists of the GnsA/GnsB family. GnsA and GnsB are multicopy suppressors of the secG null mutation. These proteins participate in the synthesis of phospholipids, suggesting the functional relationship between SecG and membrane phospholipids. Over-expression of gnsA and gnsB causes a remarkable increase in the unsaturated fatty acid content. However, the gnsA-gnsB double null mutant exhibits no effect. Both proteins are predicted to possess a helix-turn-helix structure. GnsAB is a family of putative bacterial toxins (both GnsA and GnsB) that, are neutralized by the antitoxin YmcE, pfam15939. 54 -285402 pfam08179 SspP Small acid-soluble spore protein P family. This family consists of the small acid-soluble spore proteins (SASP) P type (sspP). sspP is expressed only in the forespore compartment of the sporulating cell. sspP is also expressed under sigma-G control from the same promoter as sspO. Mutations deleting sspP causes no discernible effect on sporulation, spore properties or spore germination. 44 -311897 pfam08180 BAGE B melanoma antigen family. This family consists of the B melanoma antigen (BAGE) peptides. The BAGE gene encodes a human tumor antigen that is recognized by a cytolytic T lymphocyte. BAGE genes are expressed in melanomas, bladder and lung carcinomas and in a few tumors of other histological types. 28 -285404 pfam08181 DegQ DegQ (SacQ) family. This family consists of the DegQ (formerly sacQ) regulatory peptides. The DegQ family of peptides control the rates of synthesis of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis. DegQ is 46 amino acids long and activates the synthesis of degradative enzymes. The expression of this peptide was shown to be subjected both to catabolite repression and DegS-DegU-mediated control. Thus allowing an increase in the rate of synthesis of degQ under conditions of nitrogen starvation. 46 -285405 pfam08182 Pedibin Pedibin/Hym-346 family. This family consists of the pedibin and Hym-346 signalling peptides. These two peptides have been isolated from Hydra vulgaris and Hydra magnipapillata. Experiments have indicated that both cause a reduction in the positional value gradient, the principle patterning process governing the maintenance of form in the adult hydra. The peptides cause an increase in the rate of foot regeneration following bisection of the body column. Thus both play important signalling roles in patterning processes in cnidaria and maybe in more complex metazoans. 35 -311898 pfam08183 SpoV Stage V sporulation protein family. This family consists of the stage V sporulation (SpoV) proteins of Bacillus subtilis which includes SpoVM. SpoVM is an small, 26 residue-long protein that is produced in the mother cell chamber of the sporangium during the process of sporulation in B. subtilis. SpoVM forms an amphipathic alpha-helix and is recruited to the polar septum shortly after the sporangium undergoes asymmetric division. The function of SpoVM depends on proper subcellular localization. 25 -116772 pfam08184 Cuticle_2 Cuticle protein 7 isoform family. This family consists of cuticle protein 7 isoforms that are isolated from the carapace cuticle of a juvenile horseshoe crab, Limulus polyphemus. There are 3 isoforms of cuticle protein 7. The 3 isoforms are N-terminally blocked but could be deblocked by treatment with pyroglutaminase, showing that the N-terminal residue is a pyroglutamine residue. 59 -311899 pfam08186 Wound_ind Wound-inducible basic protein family. This family consists of the wound-inducible basic proteins from plants. The metabolic activities of plants are dramatically altered upon mechanical injury or pathogen attack. A large number of proteins accumulates at wound or infection sites, such as the wound-inducible basic proteins. These proteins are small, 47 amino acids in length, has no signal peptides and are hydrophilic and basic. 45 -71621 pfam08187 Tetradecapep Myoactive tetradecapeptides family. This family consists of myoactive tetradecapeptides that are isolated from the gut of earthworms, Eisenia foetida and Pheretima vitata. These peptides were termed ETP and PTP respectively. Both peptides showed a potent excitatory action on spontaneous contractions of the anterior gut. These peptides show similarity to Molluscan tetradecapeptides and arthropodan tridecapeptides. 14 -71622 pfam08188 Protamine_3 Spermatozal protamine family. This family consists of the spermatozal protamines. Spermatozal protamines play an important role in remodelling of the sperm chromatin during mammalian spermiogenesis. Nuclear elongation and chromatin condensation are concomitant with modifications in the basic protein complement associated with DNA. Somatic histones are initially replaced by testis -specific histone variants, then by transitional proteins, and ultimately by protamines. 48 -285408 pfam08189 Meleagrin Meleagrin/Cygnin family. This family consists of meleagrin and cygnin basic peptides that are isolated from turkey and black swan respectively. Both peptides are low in molecular weight and contains three disulphide bonds with high concentrations of aromatic residues. These peptides show similarity to transferrins and probably play some vital role in avian eggs but the exact function is still unknown. 38 -311900 pfam08190 PIH1 pre-RNA processing PIH1/Nop17. This domain is involved in pre-rRNA processing. It has has been shown to be required either for nucleolar retention or correct assembly of the box C/D snoRNP in Saccharomyces cerevisiae. The C-terminal region of this family has similarity to the CS domain pfam04969. 325 -285410 pfam08191 LRR_adjacent LRR adjacent. These are small, all beta strand domains, structurally described for the protein Internalin (InlA) and related proteins InlB, InlE, InlH from the pathogenic bacterium Listeria monocytogenes. Their function appears to be mainly structural: They are fused to the C-terminal end of leucine-rich repeats (LRR), significantly stabilizing the LRR, and forming a common rigid entity with the LRR. They are themselves not involved in protein-protein-interactions but help to present the adjacent LRR-domain for this purpose. These domains belong to the family of Ig-like domains in that they consist of two sandwiched beta sheets that follow the classical connectivity of Ig-domains. The beta strands in one of the sheets is, however, much smaller than in most standard Ig-like domains, making it somewhat of an outlier. 57 -311901 pfam08192 Peptidase_S64 Peptidase family S64. This family of fungal proteins is involved in the processing of membrane bound transcription factor Stp1. The processing causes the signalling domain of Stp1 to be passed to the nucleus where several permease genes are induced. The permeases are important for uptake of amino acids, and processing of tp1 only occurs in an amino acid-rich environment. This family is predicted to be distantly related to the trypsin family (MEROPS:S1) and to have a typical trypsin-like catalytic triad. 684 -336951 pfam08193 INO80_Ies4 INO80 complex subunit Ies4. The INO80 ATPase is a member of the SNF2 family of ATPases and functions as an integral component of a multisubunit ATP-dependent chromatin remodelling complex. This family of proteins corresponds to the fungal Ies4 subunit of INO80. 233 -311903 pfam08194 DIM DIM protein. Drosophila immune-induced molecules (DIMs) are short proteins induced during the immune response of Drosophila. This family includes DIMs 1 to 4 that have masses below 5 kDa. 35 -336952 pfam08195 TRI9 TRI9 protein. Putative gene of 129 bp in the Trichothecene gene cluster of Fusarium sporotrichioides and F. graminearum. Encoding a predicted protein of 43 amino acids which function is unknown. 43 -285414 pfam08196 UL2 UL2 protein. Orf UL2 of Human cytomegalovirus (HCMV) which is a short protein of unknown function. 59 -285415 pfam08197 TT_ORF2a pORF2a truncated protein. Most isolated ORF2 of TT virus (TTV) encode a 49 amino acids protein (pORF2a) because of an in-frame stop codon. ORF2s isolated from G1 TTV encode 202 amino acids protein (pORF2ab). 49 -311905 pfam08198 Thymopoietin Thymopoietin protein. Short protein of 49 amino acid isolated from bovine spleen cells. Thymopoietins (TMPOs) are a group of ubiquitously expressed nuclear proteins. They are suggested to play an important role in nuclear envelope organisation and cell cycle control. 47 -285417 pfam08199 E2 Bacteriophage E2-like protein. Short conseved protein described in Lactococcus Bacteriophage c2 of 37 amino acids. 37 -285418 pfam08200 Phage_1_1 Bacteriophage 1.1 Protein. Gene 1.1 in Bacteriophage T7 encodes a 42 amino acid protein, rich in basic amino acids suggesting its interaction with nucleic acids. Many homologs are present in different T7 and T3-like bacteriophage. 45 -311906 pfam08201 BssC_TutF BssC/TutF protein. BssC short protein (57 amino acids) has been described as the gamma-subunit of benzylsuccinate synthase from Thauera aromatica strain K172. TutF has been identified and described as highly similar to BssC in T.aromatica strain T1. 56 -336953 pfam08202 MIS13 Mis12-Mtw1 protein family. Mis12-Mtw1 is a eukaryotic conserved kinetochore protein that is involved in chromosome segregation. 285 -311908 pfam08203 RNA_polI_A14 Yeast RNA polymerase I subunit RPA14. This is a family of yeast proteins. A14 is one of the final two subunits of Saccharomyces cerevisiae RNA polymerase I and is proposed to play a role in the recruitment of pol I to the promoter. 75 -311909 pfam08204 V-set_CD47 CD47 immunoglobulin-like domain. This family represents the CD47 leukocyte antigen V-set like Ig domain. 93 -311910 pfam08205 C2-set_2 CD80-like C2-set immunoglobulin domain. These domains belong to the immunoglobulin superfamily. 89 -285424 pfam08206 OB_RNB Ribonuclease B OB domain. This family includes the N-terminal OB domain found in ribonuclease B proteins in one or two copies. 58 -336954 pfam08207 EFP_N Elongation factor P (EF-P) KOW-like domain. 57 -336955 pfam08208 RNA_polI_A34 DNA-directed RNA polymerase I subunit RPA34.5. This is a family of proteins conserved from yeasts to human. Subunit A34.5 of RNA polymerase I is a non-essential subunit which is thought to help Pol I overcome topological constraints imposed on ribosomal DNA during the process of transcription. 201 -285427 pfam08209 Sgf11 Sgf11 (transcriptional regulation protein). The Sgf11 family is a SAGA complex subunit in Saccharomyces cerevisiae. The SAGA complex is a multisubunit protein complex involved in transcriptional regulation. SAGA combines proteins involved in interactions with DNA-bound activators and TATA-binding protein (TBP), as well as enzymes for histone acetylation and deubiquitylation. 33 -336956 pfam08210 APOBEC_N APOBEC-like N-terminal domain. A mechanism of generating protein diversity is mRNA editing. Members of this family are C-to-U editing enzymes. The N-terminal domain of APOBEC-1 like proteins is the catalytic domain, while the C-terminal domain is a pseudocatalyitc domain. More specifically, the catalytic domain is a zinc dependent deaminases domain and is essential for cytidine deamination.APOBEC-3 like members contain two copies of this domain. RNA editing by APOBEC-1 requires homodimerization and this complex interacts with RNA binding proteins to from the editosome (and references therein). This family also includes the functionally homologous activation induced deaminase (AID), which is essential for the development of antibody diversity in B lymphocytes, and the sea lamprey PmCDA1 and PmCDA2, which are predicted to play an AID-like role in the adaptive immune response of jawless vertebrates. Divergent members of this family are present in various eukaryotes such as Nematostella, C. elegans, Micromonas and Emiliania, and prokaryotes such as Wolbachia and Pseudomonas brassicacearum. 170 -336957 pfam08211 dCMP_cyt_deam_2 Cytidine and deoxycytidylate deaminase zinc-binding region. 121 -336958 pfam08212 Lipocalin_2 Lipocalin-like domain. Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The structure is an eight-stranded beta barrel. 146 -336959 pfam08213 DUF1713 Mitochondrial domain of unknown function (DUF1713). This domain is found at the C terminal end of mitochondrial proteins of unknown function. 31 -311917 pfam08214 HAT_KAT11 Histone acetylation protein. Histone acetylation is required in many cellular processes including transcription, DNA repair, and chromatin assembly. This family contains the fungal KAT11 protein (previously known as RTT109) which is required for H3K56 acetylation. Loss of KAT11 results in the loss of H3K56 acetylation, both on bulk histone and on chromatin. KAT11 and H3K56 acetylation appear to correlate with actively transcribed genes and associate with the elongating form of Pol II in yeast. This family also incorporates the p300/CBP histone acetyltransferase domain which has different catalytic properties and cofactor regulation to KAT11. 346 -336960 pfam08216 CTNNBL Catenin-beta-like, Arm-motif containing nuclear. CTNNBL is a family of eukaryotic nuclear proteins of the catenin-beta-like 1 type that contain an armadillo motif. A human nuclear protein with this domain is thought to have a role in apoptosis. The interaction of CTNNBL1 with its known partners (the Prp19-CDC5L complex and AID) is mediated by recognition of NLS (nuclear localization signal) motifs. The RNA-splicing factor Prp31 is also an interactor, with recognition also occurring through the NLS. CTNNBL1 uses its central armadillo (ARM) domain to bind NLS-containing partners. 103 -311919 pfam08217 DUF1712 Fungal domain of unknown function (DUF1712). The function of this family of proteins is unknown. 469 -285434 pfam08218 Citrate_ly_lig Citrate lyase ligase C-terminal domain. This family is composed of the C-terminal domain of citrate lyase ligase EC:6.2.1.22. 182 -336961 pfam08219 TOM13 Outer membrane protein TOM13. The TOM13 family of proteins are mitochondrial outer membrane proteins that mediate the assembly of beta-barrel proteins. 82 -285436 pfam08220 HTH_DeoR DeoR-like helix-turn-helix domain. 57 -311921 pfam08221 HTH_9 RNA polymerase III subunit RPC82 helix-turn-helix domain. This family consists of several DNA-directed RNA polymerase III polypeptides which are related to the Saccharomyces cerevisiae RPC82 protein. RNA polymerase C (III) promotes the transcription of tRNA and 5S RNA genes. In Saccharomyces cerevisiae, the enzyme is composed of 15 subunits, ranging from 160 to about 10 kDa. This region is a probably DNA-binding helix-turn-helix. 62 -116808 pfam08222 HTH_CodY CodY helix-turn-helix domain. This family consists of the C-terminal helix-turn-helix domain found in several bacterial GTP-sensing transcriptional pleiotropic repressor CodY proteins. CodY has been found to repress the dipeptide transport operon (dpp) of Bacillus subtilis in nutrient-rich conditions. The CodY protein also has a repressor effect on many genes in Lactococcus lactis during growth in milk. 60 -311922 pfam08223 PaaX_C PaaX-like protein C-terminal domain. This family contains proteins that are similar to the product of the paaX gene of Escherichia coli. This protein is involved in the regulation of expression of a group of proteins known to participate in the metabolism of phenylacetic acid. 99 -336962 pfam08224 DUF1719 Domain of unknown function (DUF1719). This is a domain of unknown function. It may have a role in ATPase activation. 231 -116811 pfam08225 Antimicrobial19 Pseudin antimicrobial peptide. Pseudins are a subfamily of the FSAP family (Frog Secreted Active Peptides) extracted from the skin of the paradoxical frog Pseudis paradoxa (Pseudidae). The pseudins belong to the class of cationic, amphipathic-helical antimicrobial peptides. 23 -336963 pfam08226 DUF1720 Domain of unknown function (DUF1720). This domain is found in different combinations with cortical patch components EF hand, SH3 and ENTH and is therefore likely to be involved in cytoskeletal processes. This family contains many hypothetical proteins. 76 -311925 pfam08227 DASH_Hsk3 DASH complex subunit Hsk3 like. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. This family also includes several higher eukaryotic proteins. However, other DASH subunits do not appear to be conserved in higher eukaryotes. 45 -254674 pfam08228 RNase_P_pop3 RNase P subunit Pop3. This family of fungal proteins form a subunit of RNase P, the ribonucleoprotein enzyme that cleaves the leader sequence of precursor tRNAs to generate mature tRNAs. The structure of Pop3 has been assigned the L7Ae/L30e fold. This RNA-binding fold is also present in human RNase P subunit Rpp38, raising the possibility that Pop3p and Rpp38 are functional homologs. 158 -336964 pfam08229 SHR3_chaperone ER membrane protein SH3. This family of proteins are membrane localized chaperones that are required for correct plasma membrane localization of amino acid permeases (AAPs). SH3 prevents AAPs proteins from aggregating and assists in their correct folding. In the absence of SH3, AAPs are retained in the ER. 185 -336965 pfam08230 CW_7 CW_7 repeat. This domain was originally found in the C-terminal moiety of the Cpl-7 lysozyme encoded by the Streptococcus pneumoniae bacteriophage Cp-7. It is also found in the cell wall hydrolases of human and life-stock pathogens. CW_7 repeats make up a cell wall binding motif. 40 -336966 pfam08231 SYF2 SYF2 splicing factor. Proteins in this family are involved in cell cycle progression and pre-mRNA splicing. 150 -336967 pfam08232 Striatin Striatin family. Striatin is an intracellular protein which has a caveolin-binding motif, a coiled-coil structure, a calmodulin-binding site, and a WD (pfam00400) repeat domain. It acts as a scaffold protein and is involved in signalling pathways. 86 -336968 pfam08234 Spindle_Spc25 Chromosome segregation protein Spc25. This is a family of chromosome segregation proteins. It contains Spc25, which is a conserved eukaryotic kinetochore protein involved in cell division. In fungi the Spc25 protein is a subunit of the Nuf2-Ndc80 complex, and in vertebrates it forms part of the Ndc80 complex. 71 -336969 pfam08235 LNS2 LNS2 (Lipin/Ned1/Smp2). This domain is found in Saccharomyces cerevisiae protein SMP2, proteins with an N-terminal lipin domain (Pfam: PF04571). SMP2 (also known as PAH1) is involved in plasmid maintenance and respiration, and has been identified as a Mg2+-dependent phosphatidate phosphatase (EC:3.1.3.4) that contains a haloacid dehalogenase (HAD)-like domain. Lipin proteins are involved in adipose tissue development and insulin resistance. 226 -311932 pfam08236 SRI SRI (Set2 Rpb1 interacting) domain. The SRI (Set2 Rpb1 interacting) domain mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. This domain is conserved from yeast to humans. Members of this family form a compact, closed three-helix bundle, with an up-down-up topology. The first and second helices are antiparallel to each other and are of similar length; the third helix, which is packed across helices alpha1 and alpha2 is slightly shorter, consisting of only 15 amino acids. Most conserved hydrophobic residues are largely buried in the interior of the structure and form an extensive and contiguous hydrophobic core that stabilizes the packing of the three-helix bundle. This domain mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. 83 -311933 pfam08237 PE-PPE PE-PPE domain. This domain is found C terminal to the PE (pfam00934) and PPE (pfam00823) domains. The secondary structure of this domain is predicted to be a mixture of alpha helices and beta strands. 226 -336970 pfam08238 Sel1 Sel1 repeat. This short repeat is found in the Sel1 protein. It is related to TPR repeats. 36 -311934 pfam08239 SH3_3 Bacterial SH3 domain. 54 -285452 pfam08240 ADH_N Alcohol dehydrogenase GroES-like domain. This is the catalytic domain of alcohol dehydrogenases. Many of them contain an inserted zinc binding domain. This domain has a GroES-like structure. 106 -336971 pfam08241 Methyltransf_11 Methyltransferase domain. Members of this family are SAM dependent methyltransferases. 95 -311936 pfam08242 Methyltransf_12 Methyltransferase domain. Members of this family are SAM dependent methyltransferases. 98 -311937 pfam08243 SPT2 SPT2 chromatin protein. This family includes the Saccharomyces cerevisiae protein SPT2 which is a chromatin protein involved in transcriptional regulation. 106 -336972 pfam08244 Glyco_hydro_32C Glycosyl hydrolases family 32 C terminal. This domain corresponds to the C terminal domain of glycosyl hydrolase family 32. It forms a beta sandwich module. 157 -285457 pfam08245 Mur_ligase_M Mur ligase middle domain. 191 -336973 pfam08246 Inhibitor_I29 Cathepsin propeptide inhibitor domain (I29). This domain is found at the N-terminus of some C1 peptidases such as Cathepsin L where it acts as a propeptide. There are also a number of proteins that are composed solely of multiple copies of this domain such as the peptidase inhibitor salarin. This family is classified as I29 by MEROPS. 57 -116832 pfam08247 ENOD40 ENOD40 protein. Rohrig et al. reported the in vitro translation of two peptides of 12 and 24 amino acids from the short, overlapping ORFs of soybean ENOD40 mRNA. The putative role of the enod40 genes has been in favour of organogenesis, such as induction of the cortical cell divisions that lead to initiation of nodule primordia, in developing lateral roots and embryonic tissues. This supports the hypothesis for a role of enod40 in lateral organ development. 12 -116833 pfam08248 Tryp_FSAP Tryptophyllin-3 skin active peptide. PdT-3 or Tryptophyllin-3 peptide is a subfamily of the family Tryptophyllin and of the superfamily FSAP (Frog Skin Active Peptide). Originally identified in skin extracts of Neotropical leaf frogs, Phyllomedusa sp. This subfamily has an average length of 13 amino acids. The pharmacological activity of the tryptophyllins remains to be established but it seems that these peptides possess an action on liver protein synthesis and body weight. 12 -116834 pfam08249 Mastoparan Mastoparan protein. Mastoparans are a family of tetradecapeptides from wasp venom, that have been shown to directly activate GTP-binding regulatory proteins. These peptides show selectivity among G proteins: they strongly activate Go and Gi but not Gs or Gt. The peptide of this family are composed by 14 amino acids but they can assume different structures. 14 -116835 pfam08250 Sperm_act_pep Sperm-activating peptides. The sperm-activating peptides (SAPs) are isolated in egg-conditioned media (egg jelly) of sea urchins. SAPs have several effects on sea urchin spermatozoa: stimulate sperm respiration and motility through intracellular alkalinization, transient elevation of cAMP, cGMP and Ca++levels in sperm cells. 10 -116836 pfam08251 Mastoparan_2 Mastoparan peptide. Mastoparan (MP) peptides I II and III are extracted from the venom gland of the Neotropical social wasp Protopolybia exigua(Saussure) They are tetradecapeptides presenting from seven to ten hydrophobic amino acid residues and from two to four lysine residues in their primary sequences. These peptide cause the degranulation of mast cells. Protopolybia-MP-I also act causing hemolysis in erythrocytes. 14 -285459 pfam08252 Leader_CPA1 arg-2/CPA1 leader peptide. In this family there are Leaders Peptides involved in the regulation the glutaminase subunit (small subunit) of arginine-specific carbamoyl phosphate synthetase. In Neurospora crassa it is a small upstream ORF of 24 codon above the arg-2 locus. In yeast it is the leader peptide of the CPA1 gene. The 5' region of CPA1 mRNA contains a 25 codon upstream open reading frame. The leader peptide, the product of the upstream open reading frame, plays an essential, negative role in the specific repression of CPA1 by arginine. 23 -285460 pfam08253 Leader_Erm Erm Leader peptide. These short proteins are Leader peptides (15-19 amino acids) of erm genes that code for resistance determinants in Staphylococcus aureus. 19 -285461 pfam08254 Leader_Thr Threonine leader peptide. Threonine leader peptide of the Threonine operon thrA1A2BC. It as been sequenced in different bacteria: E. coli, Serratia marcescens, Salmonella typhi. 22 -285462 pfam08255 Leader_Trp Trp-operon Leader Peptide. The tryptophan operon regulatory region of C. freundii's (leader transcript) encodes a 14-residue peptide containing characteristic tandem tryptophan residues. It is about 10 nucleotides shorter than those of E. coli and S. typhimurium. 14 -116841 pfam08256 Antimicrobial20 Aurein-like antibiotic peptide. This family of antibacterial peptides are secreted from the granular dorsal glands of the Green and Golden Bell Frog Litoria aurea, Southern Bell Frog L. raniformis, Blue Mountains tree-frog Litoria citropa (genus Litoria) and frogs from genus Uperoleia. They are a part of the FSAP peptide family. Amongst the more active of these are aurein 1.2, aurein 2.2 and aurein 3.1; caerin 1.1, maculatin 1.1, uperin 3.6; citropin 1.1, citropin 1.2, citropin 1.3 and a minor peptide are wide-spectrum antibacterial peptides. 13 -116842 pfam08257 Sulfakinin Sulfakinin family. The sulfakinin (SK) family of neuropeptides have only been identified in crustaceans and insects. For most species there is the potential for producing two sulfakinin peptides one have a short sulfakinin sequence The function of the sulfakinins is difficult to assess. For the American cockroach, various forms of the endogenous sulfakinins have been shown to be active on the hindgut, and also on the heart. In C. vomitoria the peptides act as neurotransmitters or neuromodulators, linking the brain with all thoracic and abdominal ganglia. In adults of P. monodon they appear to be restricted to a few neurones in the brain with a neural pathway extending along to the ventral thoracic and abdominal ganglia. 9 -116843 pfam08258 WWamide WWamide peptide. This family contain neuropeptides, isolated from ganglia of the African giant snail, Achatina fulica. Each peptide has a Trp residue at both the N- and C-termini. Purified WWamide-1, -2 and -3 showed an inhibitory effect on the phasic contractions of the anterior byssus retractor muscle (ABRM). 7 -254691 pfam08259 Periviscerokin Periviscerokinin family. Abdominal Perisympathetic organs of insects contain Periviscerokinins neuropeptides of about 11 amino acids. 11 -116845 pfam08260 Kinin Insect kinin peptide. These neuropeptides are the first members of the insect kinin-family isolated from the American cockroach. Their occurrence in the retrocerebral complex suggests a physiological role as a neurohormone. The C-terminal sequence Phe-X-Ser-Trp-Gly-NH2 characterized the peptides as members of the insect kinin family. Data suggest a possible involvement of insect kinins in water-balance by regulating the osmoregulation. These peptides have length from 6 to 14 amino acids. 8 -87473 pfam08261 Carcinustatin Carcinustatin peptide. A total of 20 peptides of the superfamily allostatin were isolated from the shore crab Carcinus maenas. They are named carcinustatin 1 to 20 and their length ranges from 5 to 27 amino acids. This family includes carcinustatin 8,9,15 and 16. 8 -116846 pfam08262 Lem_TRP Leucophaea maderae tachykinin-related peptide. These peptides are designated Leucophaea maderae tachykinin-related peptides (Lem TRPs). Some were isolated from the midgut of L. maderae, whereas others appear to be brain specific. The Lem TRPs of the brain are myotropic and induce increases in the amplitude and frequency of spontaneous contractions and tonus of hindgut muscle in L. maderae. They were also isolated from brain-corpora, cardiaca-corpora, allata-suboesophageal ganglion extracts of the Locusta migratoria. They stimulate visceral muscle contractions of the oviduct and the foregut of Locusta migratoria. 10 -336974 pfam08263 LRRNT_2 Leucine rich repeat N-terminal domain. Leucine Rich Repeats pfam00560 are short sequence motifs present in a number of proteins with diverse functions and cellular locations. Leucine Rich Repeats are often flanked by cysteine rich domains. This domain is often found at the N-terminus of tandem leucine rich repeats. 41 -336975 pfam08264 Anticodon_1 Anticodon-binding domain of tRNA. This domain is found mainly hydrophobic tRNA synthetases. The domain binds to the anticodon of the tRNA. 146 -311942 pfam08265 YL1_C YL1 nuclear protein C-terminal domain. This domain is found in proteins of the YL1 family. These proteins have been shown to be DNA-binding and may be a transcription factor. This domain is found in proteins that are not YL1 proteins. 29 -336976 pfam08266 Cadherin_2 Cadherin-like. This cadherin domain is usually the most N-terminal copy of the domain. 82 -311944 pfam08267 Meth_synt_1 Cobalamin-independent synthase, N-terminal domain. The N-terminal domain and C-terminal domains of cobalamin-independent synthases together define a catalytic cleft in the enzyme. The N-terminal domain is thought to bind the substrate, in particular, the negatively charged polyglutamate chain. The N-terminal domain is also thought to stabilize a loop from the C-terminal domain. 310 -285468 pfam08268 FBA_3 F-box associated domain. 125 -336977 pfam08269 dCache_2 Cache domain. Double Cache domain 2 (dCache_2) may be a result of single Cache domain 2 (sCache_2) duplication. 295 -285470 pfam08270 PRD_Mga M protein trans-acting positive regulator (MGA) PRD domain. Mga is a DNA-binding protein that activates the expression of several important virulence genes in group A streptococcus in response to changing environmental conditions. This corresponds to the PRD like region. 220 -336978 pfam08271 TF_Zn_Ribbon TFIIB zinc-binding. The transcription factor TFIIB contains a zinc-binding motif near the N-terminus. This domain is involved in the interaction with RNA pol II and TFIIF and plays a crucial role in selecting the transcription initiation site. The domain adopts a zinc ribbon like structure. 42 -336979 pfam08272 Topo_Zn_Ribbon Topoisomerase I zinc-ribbon-like. Some Proteobacteria topoisomerase I contain two zinc-ribbon-like domains at the C-terminus that structurally homologous to pfam01396. However, this domain no longer bind zinc. Indeed, only one of the four cysteine residues remains. 39 -336980 pfam08273 Prim_Zn_Ribbon Zinc-binding domain of primase-helicase. 37 -311948 pfam08274 PhnA_Zn_Ribbon PhnA Zinc-Ribbon. 30 -311949 pfam08275 Toprim_N DNA primase catalytic core, N-terminal domain. 128 -336981 pfam08276 PAN_2 PAN-like domain. 67 -336982 pfam08277 PAN_3 PAN-like domain. 71 -336983 pfam08278 DnaG_DnaB_bind DNA primase DnaG DnaB-binding. Eubacterial DnaG primases interact with several factors to from the replisome. One of these factors in DnaB, a helicase. This domain has been demonstrated to be responsible for the interaction between DnaG and DnaB. 120 -285479 pfam08279 HTH_11 HTH domain. This family includes helix-turn-helix domains in a wide variety of proteins. 52 -311953 pfam08280 HTH_Mga M protein trans-acting positive regulator (MGA) HTH domain. Mga is a DNA-binding protein that activates the expression of several important virulence genes in group A streptococcus in response to changing environmental conditions. 59 -311954 pfam08281 Sigma70_r4_2 Sigma-70, region 4. Region 4 of sigma-70 like sigma-factors are involved in binding to the -35 promoter element via a helix-turn-helix motif. 54 -311955 pfam08282 Hydrolase_3 haloacid dehalogenase-like hydrolase. This family contains haloacid dehalogenase-like hydrolase enzymes. 254 -285483 pfam08283 Gemini_AL1_M Geminivirus rep protein central domain. This is the cetral domain of the geminivirus rep proteins. 107 -336984 pfam08284 RVP_2 Retroviral aspartyl protease. Single domain aspartyl proteases from retroviruses, retrotransposons, and badnaviruses (plant dsDNA viruses). These proteases are generally part of a larger polyprotein; usually pol, more rarely gag. Retroviral proteases appear to be homologous to a single domain of the two-domain eukaryotic aspartyl proteases. 134 -336985 pfam08285 DPM3 Dolichol-phosphate mannosyltransferase subunit 3 (DPM3). This family corresponds to subunit 3 of dolichol-phosphate mannosyltransferase, an enzyme which generates mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation. DPM3 is an integral membrane protein and plays a role in stabilizing the dolichol-phosphate mannosyl transferase complex. 84 -336986 pfam08286 Spc24 Spc24 subunit of Ndc80. Spc24 is a component of the evolutionarily conserved kinetochore-associated Ndc80 complex and is involved in chromosome segregation 50 -336987 pfam08287 DASH_Spc19 Spc19. Spc19 is a component of the DASH complex. The DASH complex associates with the spindle pole body and is important for spindle and kinetochore integrity during cell division. 150 -311959 pfam08288 PIGA PIGA (GPI anchor biosynthesis). This domain is found on phosphatidylinositol n-acetylglucosaminyltransferase proteins. These proteins are involved in GPI anchor biosynthesis and are associated with disease the paroxysmal nocturnal haemoglobinuria. 90 -285488 pfam08289 Flu_M1_C Influenza Matrix protein (M1) C-terminal domain. This region is thought to be a second domain of the M1 matrix protein. 97 -285489 pfam08290 Hep_core_N Hepatitis core protein, putative zinc finger. This short region is found at the N-terminus of some hepatitis core proteins. Its conservation of four cys and his suggests a zinc binding domain. 27 -311960 pfam08291 Peptidase_M15_3 Peptidase M15. 111 -311961 pfam08292 RNA_pol_Rbc25 RNA polymerase III subunit Rpc25. Rpc25 is a strongly conserved subunit of RNA polymerase III and has homology to Rpa43 in RNA polymerase I, Rpb7 in RNA polymerase II and the archaeal RpoE subunit. Rpc25 is required for transcription initiation and is not essential for the elongating properties of RNA polymerase III. 125 -336988 pfam08293 MRP-S33 Mitochondrial ribosomal subunit S27. This family of proteins corresponds to mitochondrial ribosomal subunit S27 in prokaryotes and to subunit S33 in humans. It is a small 106 residue protein.The evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, reveals an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. 87 -311963 pfam08294 TIM21 TIM21. TIM21 interacts with the outer mitochondrial TOM complex and promotes the insertion of proteins into the inner mitochondrial membrane. 145 -336989 pfam08295 Sin3_corepress Sin3 family co-repressor. This domain is found on transcriptional regulators. It forms interactions with histone deacetylases. 96 -311965 pfam08297 U3_snoRNA_assoc U3 snoRNA associated. This family of proteins is associated with U3 snoRNA. U3 snoRNA is required for nucleolar processing of pre-18S ribosomal RNA. 85 -116881 pfam08298 AAA_PrkA PrkA AAA domain. This is a family of PrkA bacterial and archaeal serine kinases approximately 630 residues long. This is the N-terminal AAA domain. 358 -336990 pfam08299 Bac_DnaA_C Bacterial dnaA protein helix-turn-helix. 69 -311967 pfam08300 HCV_NS5a_1a Hepatitis C virus non-structural 5a zinc finger domain. The molecular function of the non-structural 5a protein is uncertain. The NS5a protein is phosphorylated when expressed in mammalian cells. It is thought to interact with the ds RNA dependent (interferon inducible) kinase PKR. This domain corresponds to the N-terminal zinc binding domain. 62 -149382 pfam08301 HCV_NS5a_1b Hepatitis C virus non-structural 5a domain 1b. The molecular function of the non-structural 5a protein is uncertain. The NS5a protein is phosphorylated when expressed in mammalian cells. It is thought to interact with the ds RNA dependent (interferon inducible) kinase PKR. This region corresponds to the 1b domain. 102 -336991 pfam08302 tRNA_lig_CPD Fungal tRNA ligase phosphodiesterase domain. This domain is found in fungal tRNA ligases and has cyclic phosphodiesterase activity. tRNA ligases are enzymes required for the splicing of precursor tRNA molecules containing introns. 258 -285499 pfam08303 tRNA_lig_kinase tRNA ligase kinase domain. This domain is found in fungal tRNA ligases and has kinase activity. tRNA ligases are enzymes required for the splicing of precursor tRNA molecules containing introns. This family contains a P-loop motif. 168 -311969 pfam08305 NPCBM NPCBM/NEW2 domain. This novel putative carbohydrate binding module (NPCBM) domain is found at the N-terminus of glycosyl hydrolase family 98 proteins. This domain has also been called the NEW2 domain (Naumoff DG. Phylogenetic analysis of alpha-galactosidases of the GH27 family. Molecular Biology (Engl Transl). (2004)38:388-399.) 134 -311970 pfam08306 Glyco_hydro_98M Glycosyl hydrolase family 98. This domain is the putative catalytic domain of glycosyl hydrolase family 98 proteins. 329 -285502 pfam08307 Glyco_hydro_98C Glycosyl hydrolase family 98 C-terminal domain. This putative domain is found at the C-terminus of glycosyl hydrolase family 98 proteins. This domain is not expected to form part of the catalytic activity. 270 -285503 pfam08308 PEGA PEGA domain. This domain is found in both archaea and bacteria and has similarity to S-layer (surface layer) proteins. It is named after the characteristic PEGA sequence motif found in this domain. The secondary structure of this domain is predicted to be beta-strands [Adindla et al. Comparative and Functional Genomics 2004; 5:2-16]. 70 -285504 pfam08309 LVIVD LVIVD repeat. This repeat is found in bacterial and archaeal cell surface proteins, many of which are hypothetical. The secondary structure corresponding to this repeat is predicted to comprise from 1-7 of 4-beta-strands which may associate to form a beta-propeller. The repeat copy number varies from 3-29. This repeat is sometimes found with the PKD domain pfam00801. 42 -311971 pfam08310 LGFP LGFP repeat. This 54 amino acid repeat is found in many hypothetical proteins. Several hypothetical proteins from C.glutamicum and C.efficiens along with PS1 protein contain this repeat region. The N-terminus region of PS1 contains an esterase domain which transfers corynomycolic acid. The C-terminus region consists of 4 tandem LGFP repeats. It is hypothesized that the PS1 proteins in Corynebacterium, when associated with the cell wall, may be anchored via the LGFP tandem repeats that may be important for maintaining cell wall integrity [Adindla et al. Comparative and Functional Genomics 2004; 5:2-16]. Deletion of Corynebacterium glutamicum csp1 protein results in a 10-fold increase in the cell volume of the organism and infers the corresponding proteins involvement in the cell shape formation. The secondary structure of each repeat is predicted to comprise two beta-strands and one alpha-helix [Adindla et al. 2004]. 52 -336992 pfam08311 Mad3_BUB1_I Mad3/BUB1 homology region 1. Proteins containing this domain are checkpoint proteins involved in cell division. This region has been shown to be essential for the binding of the binding of BUB1 and MAD3 to CDC20p. 122 -336993 pfam08312 cwf21 cwf21 domain. The cwf21 family is involved in mRNA splicing. It has been isolated as a subcomplex of the splicosome in Schizosaccharomyces pombe. The function of the cwf21 domain is to bind directly to the spliceosomal protein Prp8. Mutations in the cwf21 domain prevent Prp8 from binding. The structure of this domain has recently been solved which shows this domain to be composed of two alpha helices. 38 -336994 pfam08313 SCA7 SCA7, zinc-binding domain. This domain is found in the protein Sgf73/Sca7 which is a component of the multihistone acetyltransferase complexes SAGA and SILK. This domain is also found in Ataxin-7, a human protein which in its polyglutamine expanded pathological form, is responsible for the neurodegenerative disease spinocerebellar ataxia 7 (SCA7). Ataxin-7 is an integral component of the mammalian SAGA-like complexes, the TATA-binding protein-free TAF-containing complex (TFTC) and the SPT3/TAF9/GCN5 acetyltransferase complex (STAGA). This domain is a minimal domain in ataxin-7-like proteins that is required for interaction with TFTC/STAGA subunits and is conserved highly through evolution. The domain contains a conserved Cys(3)His motif that binds zinc, thus indicating this to be a new zinc-binding domain. 65 -336995 pfam08314 Sec39 Secretory pathway protein Sec39. Mnaimneh et al identified Sec39p as a protein involved in ER-Golgi transport in a large scale promoter shut down analysis of essential yeast genes. Kraynack et al. (2005) showed that Sec39p (Dsl3p) is required for Golgi-ER retrograde transport and is part of a very stable protein complex that also includes Dsl1p (in mammals ZW10), Tip20p (Rint-1) and the ER localized Q-SNARE proteins Ufe1p (syntaxin-18), Sec20p and Use1p. This was confirmed in a genome-wide analysis of protein complexes by Gavin et al (2006). 705 -336996 pfam08315 cwf18 cwf18 pre-mRNA splicing factor. The cwf18 family is involved in mRNA splicing. It has been isolated as a subcomplex of the splicosome in Schizosaccharomyces pombe. 127 -311977 pfam08316 Pal1 Pal1 cell morphology protein. Pal1 is a membrane associated protein that is involved in the maintenance of cylindrical cellular morphology. It localizes to sites of active growth. Pal1 physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p. 131 -336997 pfam08317 Spc7 Spc7 kinetochore protein. This domain is found in cell division proteins which are required for kinetochore-spindle association. 311 -336998 pfam08318 COG4 COG4 transport protein. This region is found in yeast oligomeric golgi complex component 4 which is involved in ER to Golgi an intra Golgi transport. 320 -336999 pfam08320 PIG-X PIG-X / PBN1. Mammalian PIG-X and yeast PBN1 are essential components of glycosylphosphatidylinositol-mannosyltransferase I. These enzymes are involved in the transfer of sugar molecules. 202 -311981 pfam08321 PPP5 PPP5 TPR repeat region. This region is specific to the PPP5 subfamily of serine/threonine phosphatases and contains TPR repeats. 92 -337000 pfam08323 Glyco_transf_5 Starch synthase catalytic domain. 237 -337001 pfam08324 PUL PUL domain. The PUL (PLAP, Ufd3p and Lub1p) domain is a novel alpha-helical Ub-associated domain. It directly binds to Cdc48, a chaperone-like AAA ATPase that collects ubiquitylated substrates. 258 -311984 pfam08325 WLM WLM domain. This is a predicted metallopeptidase domain called WLM (Wss1p-like metalloproteases). These are linked to the Ub-system by virtue of fusions with the UB-binding PUG (PUB), Ub-like, and Little Finger domains. More specifically, genetic evidence implicates the WLM family in de-SUMOylation. 190 -337002 pfam08326 ACC_central Acetyl-CoA carboxylase, central region. The region featured in this family is found in various eukaryotic acetyl-CoA carboxylases, N-terminal to the catalytic domain (pfam01039). This enzyme (EC:6.4.1.2) is involved in the synthesis of long-chain fatty acids, as it catalyzes the rate-limiting step in this process. 718 -337003 pfam08327 AHSA1 Activator of Hsp90 ATPase homolog 1-like protein. This family includes eukaryotic, prokaryotic and archaeal proteins that bear similarity to a C-terminal region of human activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1/p38). This protein is known to interact with the middle domain of Hsp90, and stimulate its ATPase activity. It is probably a general upregulator of Hsp90 function, particularly contributing to its efficiency in conditions of increased stress. p38 is also known to interact with the cytoplasmic domain of the VSV G protein, and may thus be involved in protein transport. It has also been reported as being underexpressed in Down's syndrome. This region is found repeated in two members of this family. 123 -337004 pfam08328 ASL_C Adenylosuccinate lyase C-terminal. This domain is found at the C-terminus of adenylosuccinate lyase(ASL; PurB in E. coli). It has been identified in bacteria, eukaryotes and archaea and is found together with the lyase domain pfam00206. ASL catalyzes the cleavage of succinylaminoimidazole carboxamide ribotide to aminoimidazole carboxamide ribotide and fumarate and the cleavage of adenylosuccinate to adenylate and fumarate. 115 -337005 pfam08329 ChitinaseA_N Chitinase A, N-terminal domain. This domain is found in a number of bacterial chitinases and similar viral proteins. It is organized into a fibronectin III module domain-like fold, comprising only beta strands. Its function is not known, but it may be involved in interaction with the enzyme substrate, chitin. It is separated by a hinge region from the catalytic domain (pfam00704); this hinge region is probably mobile, allowing the N-terminal domain to have different relative positions in solution. 130 -337006 pfam08331 DUF1730 Domain of unknown function (DUF1730). This domain of unknown function occurs in Iron-sulfur cluster-binding proteins together with the 4Fe-4S binding domain (pfam00037). 77 -285524 pfam08332 CaMKII_AD Calcium/calmodulin dependent protein kinase II association domain. This domain is found at the C-terminus of the Calcium/calmodulin dependent protein kinases II (CaMKII). These proteins also have a Ser/Thr protein kinase domain (pfam00069) at their N-terminus. The function of the CaMKII association domain is the assembly of the single proteins into large (8 to 14 subunits) multimers. 128 -311990 pfam08333 DUF1725 Protein of unknown function (DUF1725). This family include many eukaryotic and one bacterial sequence. Many of its members are annotated as being putative L1 retrotransposons or LINE-1 reverse transcriptase homologs. The region in question is found repeated in some family members. 19 -337007 pfam08334 T2SSG Type II secretion system (T2SS), protein G. The Type II secretion system, also called Secretion-dependent pathway (SDP), is responsible for the transport of proteins across the outer membrane first exported to the periplasm by the Sec or Tat translocon in Gram-negative (diderm) bacteria. The T2SG family includes proteins such as EpsG (P45773) in Vibrio cholera, XcpT also called PddA (Q00514) in Pseudomonas aeruginosa or PulG (P15746)in Klebsiella pneumoniae. The PulG is thought to be anchored in the inner membrane with its C-terminus directed towards the periplasme. Together with other members of the Type II secretion machinery, it is thought to assemble into a pilus-like structure that may function as a dynamic mechanism to push secreted proteins out of the cell. The polypeptide is organized into a long N-terminal alpha-helix followed by a loop region that separates it from a C-terminal anti-parallel beta-sheet. 106 -311992 pfam08335 GlnD_UR_UTase GlnD PII-uridylyltransferase. This is a family of bifunctional uridylyl-removing enzymes/uridylyltransferases (UR/UTases, GlnD) that are responsible for the modification (EC:2.7.7.59) of the regulatory protein P-II, or GlnB (pfam00543). In response to nitrogen limitation, these transferases catalyze the uridylylation of the PII protein, which in turn stimulates deadenylylation of glutamine synthetase (GlnA). Deadenylylated glutamine synthetase is the more active form of the enzyme. Moreover, uridylylated PII can act together with NtrB and NtrC to increase transcription of genes in the sigma54 regulon, which include glnA and other nitrogen-level controlled genes. It has also been suggested that the product of the glnD gene is involved in other physiological functions such as control of iron metabolism in certain species. The region described in this family is found in many of its members to be C-terminal to a nucleotidyltransferase domain (pfam01909), and N-terminal to an HD domain (pfam01966) and two ACT domains (pfam01842). 140 -311993 pfam08336 P4Ha_N Prolyl 4-Hydroxylase alpha-subunit, N-terminal region. The members of this family are eukaryotic proteins, and include all three isoforms of the prolyl 4-hydroxylase alpha subunit. This enzyme (EC:1.14.11.2) is important in the post-translational modification of collagen, as it catalyzes the formation of 4-hydroxyproline. In vertebrates, the complete enzyme is an alpha2-beta2 tetramer; the beta-subunit is identical to protein disulphide isomerase. The function of the N-terminal region featured in this family does not seem to be known. 133 -337008 pfam08337 Plexin_cytopl Plexin cytoplasmic RasGAP domain. This family features the C-terminal regions of various plexins. Plexins are receptors for semaphorins, and plexin signalling is important in path finding and patterning of both neurons and developing blood vessels. The cytoplasmic region, which has been called a SEX domain in some members of this family, is involved in downstream signalling pathways, by interaction with proteins such as Rac1, RhoD, Rnd1 and other plexins. This domain acts as a RasGAP domain. 521 -337009 pfam08338 DUF1731 Domain of unknown function (DUF1731). This domain of unknown function appears towards the C-terminus of proteins of the NAD dependent epimerase/dehydratase family (pfam01370) in bacteria, eukaryotes and archaea. Many of the proteins in which it is found are involved in cell-division inhibition. 46 -311996 pfam08339 RTX_C RTX C-terminal domain. This family describes the C-terminal region of various bacterial haemolysins and leukotoxins, which belong to the RTX family of toxins. These are produced by various Gram negative bacteria, such as E. coli and Actinobacillus pleuropneumoniae. RTX toxins may interact with lipopolysaccharide (LPS) to functionally impair and eventually kill leukocytes. This region is found in association with the RTX N-terminal domain (pfam02382) and multiple hemolysin-type calcium-binding repeats (pfam00353). 161 -337010 pfam08340 DUF1732 Domain of unknown function (DUF1732). This domain of unknown function is often found at the C-terminus of bacterial proteins, many of which are hypothetical, including proteins of the YicC family which have pfam03755 at the N-terminus. These include a protein important in the stationary phase of growth, and required for growth at high temperature. Structural modelling suggests this domain may bind nucleic acids. 85 -337011 pfam08341 TED Thioester domain. This domain is found near the N-terminus of a variety of bacterial surface proteins and pili. This domain contains an unusual covalent ester bond between a conserved cysteine and glutamine residue. 203 -337012 pfam08343 RNR_N Ribonucleotide reductase N-terminal. This domain is found at the N-terminus of bacterial ribonucleoside-diphosphate reductases (ribonucleotide reductases, RNRs) which catalyze the formation of deoxyribonucleotides. It occurs together with the RNR all-alpha domain (pfam00317) and the RNR barrel domain (pfam02867). 82 -337013 pfam08344 TRP_2 Transient receptor ion channel II. This domain is found in the transient receptor ion channel (Trp) family of proteins. There is strong evidence that Trp proteins are structural elements of calcium-ion entry channels activated by G protein-coupled receptors. This domain does not tend to appear with the TRP domain (pfam06011) but is often found to the C-terminus of Ankyrin repeats (pfam00023). 60 -337014 pfam08345 YscJ_FliF_C Flagellar M-ring protein C-terminal. This domain is found in bacterial flagellar M-ring (FliF) proteins together with the YscJ/FliF domain (pfam01514). 150 -337015 pfam08346 AntA AntA/AntB antirepressor. In E. coli the two proteins AntA and AntB have 62% amino acid identities near their N termini. AntA appears to be encoded by a truncated and divergent copy of AntB. The two proteins are homologous to putative antirepressors found in numerous bacteriophages, such as the hypothetical antirepressor protein encoded by the gene LO142 of the bacteriophage 933W. 68 -312003 pfam08347 CTNNB1_binding N-terminal CTNNB1 binding. This region tends to appear at the N-terminus of proteins also containing DNA-binding HMG (high mobility group) boxes (pfam00505) and appears to bind the armadillo repeat of CTNNB1 (beta-catenin), forming a stable complex. Signaling by Wnt through TCF/LCF is involved in developmental patterning, induction of neural tissues, cell fate decisions and stem cell differentiation. Isoforms of HMG T-cell factors lacking the N-terminal CTNNB1-binding domain cannot fulfill their role as transcriptional activators in T-cell differentiation. 205 -337016 pfam08348 PAS_6 YheO-like PAS domain. This family contains various hypothetical bacterial proteins that are similar to the E. coli protein YheO. Their function is unknown, but are likely to be involved in signalling based on the presence of this PAS domain. 115 -337017 pfam08349 DUF1722 Protein of unknown function (DUF1722). This domain of unknown function is found in bacteria and archaea and is homologous to the hypothetical protein ybgA from E. coli. 115 -312006 pfam08350 DUF1724 Domain of unknown function (DUF1724). This domain of unknown function has so far only been found at the C-terminus of archaean proteins, including several transcriptional regulators of the ArsR family (see pfam01022). 61 -312007 pfam08351 DUF1726 Domain of unknown function (DUF1726). This domain of unknown function is often found at the N-terminus of proteins containing pfam05127. Its fold resembles that of pfam05127, but it does not appear to bind ATP. 92 -312008 pfam08352 oligo_HPY Oligopeptide/dipeptide transporter, C-terminal region. This family features a region found towards the C-terminus of oligopeptide ABC transporter ATP binding proteins, immediately following the ATP-binding domain (pfam00005). All characterized members appear able to be involved in the transport of oligopeptides or dipeptides. Some are important for sporulation or antibiotic resistance. Some dipeptide transporters also act on the heme precursor delta-aminolevulinic acid. 65 -337018 pfam08353 DUF1727 Domain of unknown function (DUF1727). This domain of unknown function is found at the C-terminus of bacterial proteins which include UDP-N-acetylmuramyl tripeptide synthase and the related Mur ligase. 110 -337019 pfam08354 DUF1729 Domain of unknown function (DUF1729). This domain of unknown function is found in fatty acid synthase beta subunits together with the MaoC-like domain (pfam01575) and the Acyltransferase domain (pfam00698). The domain has been identified in fungi and bacteria. 57 -337020 pfam08355 EF_assoc_1 EF hand associated. This region typically appears on the C-terminus of EF hands in GTP-binding proteins such as Arht/Rhot (may be involved in mitochondrial homeostasis and apoptosis). The EF hand associated region is found in yeast, vertebrates and plants. 70 -337021 pfam08356 EF_assoc_2 EF hand associated. This region predominantly appears near EF-hands (pfam00036) in GTP-binding proteins. It is found in all three eukaryotic kingdoms. 87 -254756 pfam08357 SEFIR SEFIR domain. This family comprises IL17 receptors (IL17Rs) and SEF proteins. The latter are feedback inhibitors of FGF signalling and are also thought to be receptors. Due to its similarity to the TIR domain (pfam01582), the SEFIR region is thought to be involved in homotypic interactions with other SEFIR/TIR-domain-containing proteins. Thus, SEFs and IL17Rs may be involved in TOLL/IL1R-like signalling pathways. 150 -149427 pfam08358 Flexi_CP_N Carlavirus coat. This domain is found together with the viral coat protein domain (pfam00286) in coat/capsid proteins of Carlaviruses infecting plants. 52 -285548 pfam08359 TetR_C_4 YsiA-like protein, C-terminal region. The members of this family are thought to be TetR-type transcriptional regulators that bear particular similarity to YsiA, a hypothetical protein expressed by B. subtilis. 133 -285549 pfam08360 TetR_C_5 QacR-like protein, C-terminal region. This family features the C-terminal region of a number of proteins that bear similarity to the QacR protein, a transcriptional regulator of the TetR family. QacR is able to bind various environmental agents, which include a number of cationic lipophilic compounds, and thus regulate the transcription of QacA, a multidrug efflux pump. The C-terminal region contains the multifaceted, expansive drug-binding pocket, which is composed of several separate, but linked, binding sites. 131 -285550 pfam08361 TetR_C_2 MAATS-type transcriptional repressor, C-terminal region. This family is named after the various transcriptional regulatory proteins that it contains, including MtrR, AcrR, ArpR, TtgR and SmeT. These are members of the TetR family of transcriptional repressors, that are involved in the control of expression of multidrug resistance proteins. 120 -312013 pfam08362 TetR_C_3 YcdC-like protein, C-terminal region. This family comprises proteins that belong to the TetR family of transcriptional regulators. They bear particular similarity to YcdC, a putative HTH-containing protein. This family features the C-terminal region of these sequences, which does not include the helix-turn-helix. 143 -337022 pfam08363 GbpC Glucan-binding protein C. This domain is found in the Streptococcus Glucan-binding protein C (GbpC) and also in surface protein antigen (Spa)-family proteins which show sequence similarity to GbpC. 292 -337023 pfam08364 IF2_assoc Bacterial translation initiation factor IF-2 associated region. Most of the sequences in this alignment come from bacterial translation initiation factors (IF-2, also pfam04760), but the domain is also found in the eukaryotic translation initiation factor 4 gamma in yeast and in a hypothetical Euglenozoa protein of unknown function. 39 -285554 pfam08365 IGF2_C Insulin-like growth factor II E-peptide. This domain is found at the C-terminal domain of the insulin-like growth factor II (IGF-2, also see pfam00049) in vertebrates and seems to represent the E-peptide. 56 -337024 pfam08366 LLGL LLGL2. This domain is found in lethal giant larvae homolog 2 (LLGL2) proteins and syntaxin-binding proteins like tomosyn. It has been identified in eukaryotes and tends to be found together with WD repeats (pfam00400). 101 -337025 pfam08367 M16C_assoc Peptidase M16C associated. This domain appears in eukaryotes as well as bacteria and tends to be found near the C-terminus of the metalloprotease M16C (pfam05193). 245 -337026 pfam08368 FAST_2 FAST kinase-like protein, subdomain 2. This family represents a conserved region of eukaryotic Fas-activated serine/threonine (FAST) kinases (EC:2.7.1.-) that contains several conserved leucine residues. FAST kinase is rapidly activated during Fas-mediated apoptosis, when it phosphorylates TIA-1, a nuclear RNA-binding protein that has been implicated as an effector of apoptosis. Note that many family members are hypothetical proteins. This subdomain is often found associated with the FAST kinase-like protein, subdomain 2. 85 -312019 pfam08369 PCP_red Proto-chlorophyllide reductase 57 kD subunit. This domain is found in bacteria and plant chloroplast proteins. It often appears at the C-terminal of Nitrogenase component 1 type Oxidoreductases (pfam00148) and sometimes independently in bacterial proteins such as the Proto-chlorophyllide reductase 57 kD subunit of the Cyanobacterium Synechocystis. 45 -337027 pfam08370 PDR_assoc Plant PDR ABC transporter associated. This domain is found on the C-terminus of ABC-2 type transporter domains (pfam01061). It seems to be associated with the plant pleiotropic drug resistance (PDR) protein family of ABC transporters. Like in yeast, plant PDR ABC transporters may also play a role in the transport of antifungal agents [pfam06422]. The PDR family is characterized by a configuration in which the ABC domain is nearer the N-terminus of the protein than the transmembrane domain. 65 -337028 pfam08372 PRT_C Plant phosphoribosyltransferase C-terminal. This domain is found at the C-terminus of phosphoribosyltransferases and phosphoribosyltransferase-like proteins. It contains putative transmembrane regions. It often appears together with calcium-ion dependent C2 domains (pfam00168). 156 -312021 pfam08373 RAP RAP domain. This domain is found in various eukaryotic species, where it is found in proteins that are important in various parasite-host cell interactions. It is thought to be an RNA-binding domain. The domain is involved in plant defense in response to bacterial infection. 58 -312022 pfam08374 Protocadherin Protocadherin. The structure of protocadherins is similar to that of classic cadherins (pfam00028), but particularly on the cytoplasmic domains they also have some unique features. They are expressed in a variety of organisms and are found in high concentrations in the brain where they seem to be localized mainly at cell-cell contact sites. Their expression seems to be developmentally regulated. 214 -312023 pfam08375 Rpn3_C Proteasome regulatory subunit C-terminal. This eukaryotic domain is found at the C-terminus of 26S proteasome regulatory subunits such as the non-ATPase Rpn3 subunit which is essential for proteasomal function. It occurs together with the PCI/PINT domain (pfam01399). 58 -337029 pfam08376 NIT Nitrate and nitrite sensing. The nitrate- and nitrite sensing domain (NIT) is found in receptor components of signal transducing pathways in bacteria which control gene expression, cellular motility and enzyme activity in response to nitrate and nitrite concentrations. The NIT domain is predicted to be all alpha-helical in structure. 238 -312025 pfam08377 MAP2_projctn MAP2/Tau projection domain. This domain is found in the MAP2/Tau family of proteins which includes MAP2, MAP4, Tau, and their homologs. All isoforms contain a conserved C-terminal domain containing tubulin-binding repeats (pfam00418), and a N-terminal projection domain of varying size. This domain has a net negative charge and exerts a long-range repulsive force. This provides a mechanism that can regulate microtubule spacing which might facilitate efficient organelle transport. 1135 -337030 pfam08378 NERD Nuclease-related domain. The nuclease-related domain (NERD) is found in a range of bacterial as well as archaeal and plant proteins. It has distant similarity to endonucleases (hence its name) and its predicted secondary structure is helix - sheet - sheet - sheet - sheet - weak sheet/long loop - helix - sheet - sheet. The majority of NERD-containing proteins are single-domain, but in several cases proteins containing NERD have additional domains which in 75% of cases are involved in DNA processing. 110 -337031 pfam08379 Bact_transglu_N Bacterial transglutaminase-like N-terminal region. This region is found towards the N-terminus of various archaeal and bacterial hypothetical proteins. Some of these are annotated as being transglutaminase-like proteins, and in fact contain a transglutaminase-like superfamily domain (pfam01841). 80 -337032 pfam08381 BRX Transcription factor regulating root and shoot growth via Pin3. The BREVIS RADIX (BRX) domain was characterized as being a transcription factor in plants regulating the extent of cell proliferation and elongation in the growth zone of the root. BRX is rate limiting for auxin-responsive gene-expression by mediating cross-talk with the brassino-steroid pathway. BRX has a ubiquitous, although quantitatively variable role in modulating the growth rate in both the root and the shoot. The family features a short region of alpha-helix, approximately 60 residues in length, which is found repeated up to three times. BRX is expressed in the vasculature and is rate-limiting for transcriptional auxin action. 56 -312029 pfam08383 Maf_N Maf N-terminal region. This region is found in various leucine zipper transcription factors of the Maf family. These are implicated in the regulation of insulin gene expression, in erythroid differentiation, and in differentiation of the neuroretina. 34 -312030 pfam08384 NPP Pro-opiomelanocortin, N-terminal region. This family features the N-terminal peptide of pro-opiomelanocortin (NPP). It is thought to represent an important pituitary peptide, given its high yield from pituitary glands, and exhibits a potent in vitro aldosterone-stimulating activity. 43 -337033 pfam08385 DHC_N1 Dynein heavy chain, N-terminal region 1. Dynein heavy chains interact with other heavy chains to form dimers, and with intermediate chain-light chain complexes to form a basal cargo binding unit. The region featured in this family includes the sequences implicated in mediating these interactions. It is thought to be flexible and not to adopt a rigid conformation. 557 -312032 pfam08386 Abhydrolase_4 TAP-like protein. This is a family of putative bacterial peptidases and hydrolases that bear similarity to a tripeptidyl aminopeptidase isolated from Streptomyces lividans. A member of this family is thought to be involved in the C-terminal processing of propionicin F, a bacteriocidin characterized from Propionibacterium freudenreichii. 98 -337034 pfam08387 FBD FBD. This region is found in F-box (pfam00646) and other domain containing plant proteins; it is repeated in two family members. Its precise function is unknown, but it is thought to be associated with nuclear processes. In fact, several family members are annotated as being similar to transcription factors. 45 -337035 pfam08388 GIIM Group II intron, maturase-specific domain. This region is found mainly in various bacterial and archaeal species, but a few members of this family are expressed by fungal and chlamydomonal species. It has been implicated in the binding of intron RNA during reverse transcription and splicing. 80 -312035 pfam08389 Xpo1 Exportin 1-like protein. The sequences featured in this family are similar to a region close to the N-terminus of yeast exportin 1 (Xpo1, Crm1). This region is found just C-terminal to an importin-beta N-terminal domain (pfam03810) in many members of this family. Exportin 1 is a nuclear export receptor that interacts with leucine-rich nuclear export signal (NES) sequences, and Ran-GTP, and is involved in translocation of proteins out of the nucleus. 147 -337036 pfam08390 TRAM1 TRAM1-like protein. This family comprises sequences that are similar to human TRAM1. This is a transmembrane protein of the endoplasmic reticulum, thought to be involved in the membrane transfer of secretory proteins. The region featured in this family is found N-terminal to the longevity-assurance protein region (pfam03798). 62 -312037 pfam08391 Ly49 Ly49-like protein, N-terminal region. The sequences making up this family are annotated as, or are similar to, Ly49 receptors. These are type II transmembrane receptors expressed by mouse natural killer (NK) cells. They are classified as being activating (e.g.Ly49D and H) or inhibitory (e.g. Ly49A and G), depending on their effect on NK cell function. They are members of the C-type lectin receptor superfamily, and in fact in many family members this region is found immediately N-terminal to a lectin C-type domain (pfam00059). 119 -337037 pfam08392 FAE1_CUT1_RppA FAE1/Type III polyketide synthase-like protein. The members of this family are described as 3-ketoacyl-CoA synthases, type III polyketide synthases, fatty acid elongases and fatty acid condensing enzymes, and are found in both prokaryotic and eukaryotic (mainly plant) species. The region featured in this family contains the active site residues, as well as motifs involved in substrate binding. 290 -337038 pfam08393 DHC_N2 Dynein heavy chain, N-terminal region 2. Dyneins are described as motor proteins of eukaryotic cells, as they can convert energy derived from the hydrolysis of ATP to force and movement along cytoskeletal polymers, such as microtubules. This region is found C-terminal to the dynein heavy chain N-terminal region 1 (pfam08385) in many members of this family. No functions seem to have been attributed specifically to this region. 395 -285580 pfam08394 Arc_trans_TRASH Archaeal TRASH domain. This region is found in the C-terminus of a number of archaeal transcriptional regulators. It is thought to function as a metal-sensing regulatory module. 37 -285581 pfam08395 7tm_7 7tm Chemosensory receptor. This family includes a number of gustatory and odorant receptors mainly from insect species such as A. gambiae and D. melanogaster. They are classified as G-protein-coupled receptors (GPCRs), or seven-transmembrane receptors. They show high sequence divergence, consistent with an ancient origin for the family. 370 -254775 pfam08396 Toxin_34 Spider toxin omega agatoxin/Tx1 family. The Tx1 family lethal spider neurotoxin induces excitatory symptoms in mice. 75 -285582 pfam08397 IMD IRSp53/MIM homology domain. The N-terminal predicted helical stretch of the insulin receptor tyrosine kinase substrate p53 (IRSp53) is an evolutionary conserved F-actin bundling domain involved in filopodium formation. The domain has been named IMD after the IRSp53 and missing in metastasis (MIM) proteins in which it occurs. Filopodium-inducing IMD activity is regulated by Cdc42 and Rac1 and is SH3-independent. 218 -285583 pfam08398 Parvo_coat_N Parvovirus coat protein VP1. This is the N-terminal region of the Parvovirus VP1 coat protein. Also see Parvovirus coat protein VP2 (pfam00740). 63 -312040 pfam08399 VWA_N VWA N-terminal. This domain is found at the N-terminus of proteins containing von Willebrand factor type A (VWA, pfam00092) and Cache (pfam02743) domains. It has been found in vertebrates, Drosophila and C. elegans but has not yet been identified in other eukaryotes. It is probably involved in the function of some voltage-dependent calcium channel subunits. 119 -285585 pfam08400 phage_tail_N Prophage tail fibre N-terminal. This domain is found at the N-terminus of prophage tail fibre proteins. 134 -337039 pfam08401 DUF1738 Domain of unknown function (DUF1738). This region is found in a number of bacterial hypothetical proteins. Some members are annotated as being similar to replication primases, and in fact this region is often found together with the Toprim domain (pfam01751). 126 -312042 pfam08402 TOBE_2 TOBE domain. The TOBE domain (Transport-associated OB) always occurs as a dimer as the C-terminal strand of each domain is supplied by the partner. Probably involved in the recognition of small ligands such as molybdenum and sulphate. Found in ABC transporters immediately after the ATPase domain. In this family a strong RPE motif is found at the presumed N-terminus of the domain. 75 -312043 pfam08403 AA_permease_N Amino acid permease N-terminal. This domain is found to the N-terminus of the amino acid permease domain (pfam00324) in metazoan Na-K-Cl cotransporters. 69 -285589 pfam08404 Baculo_p74_N Baculoviridae P74 N-terminal. This domain is found at the N-terminus of P74 occlusion-derived virus (ODV) envelope proteins which are required for oral infectivity. The envelope proteins are found in baculoviruses which are insect pathogens. The C-terminus of P74 is anchored to the membrane whereas the N-terminus is exposed to the virion surface. Furthermore P74 is unusual for a virus envelope protein as it lacks an N-terminal localization signal sequence. Also see pfam04583. 300 -285590 pfam08405 Calici_PP_N Viral polyprotein N-terminal. This domain is found at the N-terminus of non-structural viral polyproteins of the Caliciviridae subfamily. 358 -337040 pfam08406 CbbQ_C CbbQ/NirQ/NorQ C-terminal. This domain is found at the C-terminus of proteins of the CbbQ/NirQ/NorQ family of proteins which play a role in the post-translational activation of Rubisco. It is also found in the Thauera aromatica TutH protein which is similar to the CbbQ/NirQ/NorQ family, as well as in putative chaperones. The ATPase family associated with various cellular activities (AAA) pfam07728 is found in the same bacterial and archaeal proteins as the domain described here. 85 -337041 pfam08407 Chitin_synth_1N Chitin synthase N-terminal. This is the N-terminal domain of Chitin synthase (pfam01644). 70 -312046 pfam08408 DNA_pol_B_3 DNA polymerase family B viral insert. This viral domain is found between the exonuclease domain of the DNA polymerase family B (pfam03104) and the pfam00136 domain, connecting the two. 128 -337042 pfam08409 DUF1736 Domain of unknown function (DUF1736). This domain of unknown function is found in various hypothetical metazoan proteins. 75 -337043 pfam08410 DUF1737 Domain of unknown function (DUF1737). This domain of unknown function is found at the N-terminus of bacterial and viral hypothetical proteins. 51 -337044 pfam08411 Exonuc_X-T_C Exonuclease C-terminal. This bacterial domain is found at the C-terminus of Exodeoxyribonuclease I/Exonuclease I (pfam00929), which is a single-strand specific DNA nuclease affecting recombination and expression pathways. The exonuclease I protein in E. coli is associated with DNA deoxyribophosphodiesterase (dRPase). 267 -337045 pfam08412 Ion_trans_N Ion transport protein N-terminal. This metazoan domain is found to the N-terminus of pfam00520 in voltage- and cyclic nucleotide-gated K/Na ion channels. 43 -337046 pfam08414 NADPH_Ox Respiratory burst NADPH oxidase. This domain is found in plant proteins such as respiratory burst NADPH oxidase proteins which produce reactive oxygen species as a defense mechanism. It tends to occur to the N-terminus of an EF-hand (pfam00036), which suggests a direct regulatory effect of Ca2+ on the activity of the NADPH oxidase in plants. 96 -312052 pfam08416 PTB Phosphotyrosine-binding domain. The phosphotyrosine-binding domain (PTB, also phosphotyrosine-interaction or PI domain) in the protein tensin tends to be found at the C-terminus. Tensin is a multi-domain protein that binds to actin filaments and functions as a focal-adhesion molecule (focal adhesions are regions of plasma membrane through which cells attach to the extracellular matrix). Human tensin has actin-binding sites, an SH2 (pfam00017) domain and a region similar to the tumor suppressor PTEN. The PTB domain interacts with the cytoplasmic tails of beta integrin by binding to an NPXY motif. 131 -337047 pfam08417 PaO Pheophorbide a oxygenase. This domain is found in bacterial and plant proteins to the C-terminus of a Rieske 2Fe-2S domain (pfam00355). One of the proteins the domain is found in is Pheophorbide a oxygenase (PaO) which seems to be a key regulator of chlorophyll catabolism. Arabidopsis PaO (AtPaO) is a Rieske-type 2Fe-2S enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize, in which the domain described here is also found. 88 -312054 pfam08418 Pol_alpha_B_N DNA polymerase alpha subunit B N-terminal. This is the eukaryotic DNA polymerase alpha subunit B N-terminal domain which is involved in complex formation. Also see pfam04058. 243 -337048 pfam08421 Methyltransf_13 Putative zinc binding domain. This domain is found at the N-terminus of bacterial methyltransferases and contains four conserved cysteines suggesting a potential zinc binding domain. 62 -312056 pfam08423 Rad51 Rad51. Rad51 is a DNA repair and recombination protein and is a homolog of the bacterial ATPase RecA protein. 255 -337049 pfam08424 NRDE-2 NRDE-2, necessary for RNA interference. This is a family of eukaryotic proteins. Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that regulate heterochromatin formation, developmental timing, defense against parasitic nucleic acids, and genome rearrangement. Many small regulatory RNAs are thought to function in nuclei, and in plants and fungi small interfering (si)RNAs associate with nascent transcripts and direct chromatin and/or DNA modifications. This family protein, NRDE-2, is required for small interfering (si)RNA-mediated silencing in nuclei. NRDE-2 associates with the Argonaute protein NRDE-3 within nuclei and is recruited by NRDE-3/siRNA complexes to nascent transcripts that have been targeted by RNA interference, RNAi, the process whereby double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA. 252 -312058 pfam08426 ICE2 ICE2. ICE2 is a fungal ER protein which has been shown to play an important role in forming/maintaining the cortical ER. It has also bee identified as a protein which is necessary for nuclear inner membrane targeting. 377 -337050 pfam08427 DUF1741 Domain of unknown function (DUF1741). This is a eukaryotic domain of unknown function. 229 -312060 pfam08428 Rib Rib/alpha-like repeat. The region featured in this family is found repeated in a number of bacterial surface proteins, such as Rib and alpha. These are expressed by group B streptococci, and Rib is thought to confer protective immunity. 65 -337051 pfam08429 PLU-1 PLU-1-like protein. Sequences in this family bear similarity to the central region of PLU-1. This is a nuclear protein that may have a role in DNA-binding and transcription, and is closely associated with the malignant phenotype of breast cancer. This region is found in various other Jumonji/ARID domain-containing proteins (see pfam02373, pfam01388). 330 -312062 pfam08430 Forkhead_N Forkhead N-terminal region. The region described in this family is found towards the N-terminus of various eukaryotic forkhead/HNF-3-related transcription factors (which contain the pfam00250 domain). These proteins play key roles in embryogenesis, maintenance of differentiated cell states, and tumorigenesis. 139 -337052 pfam08432 Vfa1 AAA-ATPase Vps4-associated protein 1. Vps Four-Associated 1, Vfa1, in yeast, is an endosomal protein that interacts with the AAA-ATPase Vps4. It would seem to be involved in regulating the trafficking of other proteins to the endocytic vacuole. There is a CCCH zinc finger at the N-terminus. 178 -312064 pfam08433 KTI12 Chromatin associated protein KTI12. This is a family of chromatin associated proteins which interact with the Elongator complex, a component of the elongating form of RNA polymerase II. The Elongator complex has histone acetyltransferase activity. 269 -337053 pfam08434 CLCA Calcium-activated chloride channel N terminal. The CLCA family of calcium-activated chloride channels has been identified in many epithelial and endothelial cell types as well as in smooth muscle cells and has four or five putative transmembrane regions. Additionally to their role as chloride channels some CLCA proteins function as adhesion molecules and may also have roles as tumor suppressors. This protein cleaves itself into an N-terminal portion and a C-terminal portion. The N-terminus contains an HEXXHXXXGXXDE motif which is essential for proteolytic cleavage. 266 -312066 pfam08435 Calici_coat_C Calicivirus coat protein C-terminal. This is the calicivirus coat protein (pfam00915) C-terminal region. 229 -337054 pfam08436 DXP_redisom_C 1-deoxy-D-xylulose 5-phosphate reductoisomerase C-terminal. This domain is found to the C-terminus of pfam02670 domains in bacterial and plant 1-deoxy-D-xylulose 5-phosphate reductoisomerases which catalyze the formation of 2-C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose-5-phosphate in the presence of NADPH. 84 -337055 pfam08437 Glyco_transf_8C Glycosyl transferase family 8 C-terminal. This domain is found at the C-terminus of the Pfam: PF01501 domain in bacterial glucosyltransferase and galactosyltransferase proteins. 54 -312069 pfam08438 MMR_HSR1_C GTPase of unknown function C-terminal. This domain is found at the C-terminus of pfam01926 in archaeal and eukaryotic GTP-binding proteins. The C-terminal domain of the GTP-binding proteins is necessary for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotides. 109 -337056 pfam08439 Peptidase_M3_N Oligopeptidase F. This domain is found to the N-terminus of the pfam01432 domain in bacterial and archaeal proteins including Oligoendopeptidase F. An example of this protein is Lactococcus lactis PepF. 70 -285618 pfam08440 Poty_PP Potyviridae polyprotein. This domain is found in polyproteins of the viral Potyviridae taxon. 277 -337057 pfam08441 Integrin_alpha2 Integrin alpha. This domain is found in integrin alpha and integrin alpha precursors to the C-terminus of a number of pfam01839 repeats and to the N-terminus of the pfam00357 cytoplasmic region. This region is composed of three immunoglobulin-like domains. 451 -285620 pfam08442 ATP-grasp_2 ATP-grasp domain. 202 -312072 pfam08443 RimK RimK-like ATP-grasp domain. This ATP-grasp domain is found in the ribosomal S6 modification enzyme RimK. 188 -117021 pfam08444 Gly_acyl_tr_C Aralkyl acyl-CoA:amino acid N-acyltransferase, C-terminal region. This family features the C-terminal region of several mammalian specific aralkyl acyl-CoA:amino acid N-acyltransferase (glycine N-acyltransferase) proteins EC:2.3.1.13. 89 -117022 pfam08445 FR47 FR47-like protein. The members of this family are similar to the C-terminal region of the D. melanogaster hypothetical protein FR47. This protein has been found to consist of two N-acyltransferase-like domains swapped with the C-terminal strands. 86 -312073 pfam08446 PAS_2 PAS fold. The PAS fold corresponds to the structural domain that has previously been defined as PAS and PAC motifs. The PAS fold appears in archaea, eubacteria and eukarya. 107 -337058 pfam08447 PAS_3 PAS fold. The PAS fold corresponds to the structural domain that has previously been defined as PAS and PAC motifs. The PAS fold appears in archaea, eubacteria and eukarya. 89 -312075 pfam08448 PAS_4 PAS fold. The PAS fold corresponds to the structural domain that has previously been defined as PAS and PAC motifs. The PAS fold appears in archaea, eubacteria and eukarya. 110 -312076 pfam08449 UAA UAA transporter family. This family includes transporters with a specificity for UDP-N-acetylglucosamine. 302 -312077 pfam08450 SGL SMP-30/Gluconolaconase/LRE-like region. This family describes a region that is found in proteins expressed by a variety of eukaryotic and prokaryotic species. These proteins include various enzymes, such as senescence marker protein 30 (SMP-30), gluconolactonase and luciferin-regenerating enzyme (LRE). SMP-30 is known to hydrolyze diisopropyl phosphorofluoridate in the liver, and has been noted as having sequence similarity, in the region described in this family, with PON1 and LRE. 246 -312078 pfam08451 A_deaminase_N Adenosine/AMP deaminase N-terminal. This domain is found to the N-terminus of the Adenosine/AMP deaminase domain (pfam00962) in metazoan proteins such as the Cat eye syndrome critical region protein 1 and its homologs. 95 -285628 pfam08452 DNAP_B_exo_N DNA polymerase family B exonuclease domain, N-terminal. This domain is found in viral DNA polymerases to the N-terminus of DNA polymerase family B exonuclease domains (pfam03104). 22 -312079 pfam08453 Peptidase_M9_N Peptidase family M9 N-terminal. This domain is found in microbial collagenase metalloproteases to the N-terminus of pfam01752. 183 -312080 pfam08454 RIH_assoc RyR and IP3R Homology associated. This eukaryotic domain is found in ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors (IP3R) which together form a superfamily of homotetrameric ligand-gated intracellular Ca2+ channels. There seems to be no known function for this domain. Also see the IP3-binding domain pfam01365 and pfam02815. 92 -337059 pfam08455 SNF2_assoc Bacterial SNF2 helicase associated. This domain is found in bacterial proteins of the SWF/SNF/SWI helicase family to the N-terminus of the SNF2 family N-terminal domain (pfam00176) and together with the Helicase conserved C-terminal domain (pfam00271). The function of the domain is not clear. 368 -285632 pfam08456 Vmethyltransf_C Viral methyltransferase C-terminal. This domain is found to the C-terminus of the viral methyltransferase domain (pfam01660) in single-stranded-RNA positive-strand viruses with no DNA stage in the Virgaviridae family. 230 -312082 pfam08457 Sfi1 Sfi1 spindle body protein. This is a family of fungal spindle pole body proteins that play a role in spindle body duplication. They contain binding sites for calmodulin-like proteins called centrins which are present in microtubule-organising centers. 570 -337060 pfam08458 PH_2 Plant pleckstrin homology-like region. This family describes a pleckstrin homology (PH)-like region found in several plant proteins of unknown function. 105 -337061 pfam08459 UvrC_HhH_N UvrC Helix-hairpin-helix N-terminal. This domain is found in the C subunits of the bacterial and archaeal UvrABC system which catalyzes nucleotide excision repair in a multi-step process. UvrC catalyzes the first incision on the fourth or fifth phosphodiester bond 3' and on the eighth phosphodiester bond 5' from the damage that is to be excised. The domain described here is found to the N-terminus of a helix hairpin helix (pfam00633) motif and also co-occurs with the pfam01541 catalytic domain which is found at the N-terminus of the same proteins. 151 -285636 pfam08460 SH3_5 Bacterial SH3 domain. 65 -285637 pfam08461 HTH_12 Ribonuclease R winged-helix domain. This domain is found at the amino terminus of Ribonuclease R and a number of presumed transcriptional regulatory proteins from archaebacteria. 66 -117039 pfam08462 Carmo_coat_C Carmovirus coat protein. This domain is found to the C-terminus of the pfam00729 domain in Carmoviruses. 99 -337062 pfam08463 EcoEI_R_C EcoEI R protein C-terminal. The restriction enzyme EcoEI recognizes 5'-GAGN(7)ATGC-3' and is composed of the three proteins R, M, and S. The domain described here is found at the C-terminus of the R protein (HsdR) which is required for both nuclease and ATPase activity. 154 -312086 pfam08464 Gemini_AC4_5_2 Geminivirus AC4/5 conserved region. This domain is found in replication initiator (Rep) associated proteins such as AC5 in the Geminivirus/Begomovirus. 43 -285639 pfam08465 Herpes_TK_C Thymidine kinase from Herpesvirus C-terminal. This domain is found towards the C-terminus in Herpesvirus Thymidine kinases. 33 -312087 pfam08466 IRK_N Inward rectifier potassium channel N-terminal. This metazoan domain is found to the N-terminus of the pfam01007 domain in Inward rectifier potassium channels (KIR2 or IRK2). 44 -285641 pfam08467 Luteo_P1-P2 Luteovirus RNA polymerase P1-P2/replicase. This domain is found in RNA-dependent RNA polymerase P1-P2 fusion/replicase proteins in plant Luteoviruses. 339 -337063 pfam08468 MTS_N Methyltransferase small domain N-terminal. This domain is found to the N-terminus of the methyltransferase small domain (pfam05175) in bacterial proteins. 157 -285643 pfam08469 NPHI_C Nucleoside triphosphatase I C-terminal. This viral domain is found to the C-terminus of Poxvirus nucleoside triphosphatase phosphohydrolase I (NPH I) together with the helicase conserved C-terminal domain (pfam00271). 148 -312089 pfam08470 NTNH_C Nontoxic nonhaemagglutinin C-terminal. Bacteria of the Clostridium genus produce protein neurotoxins, which are complexes consisting of neurotoxin (NT), haemagglutinin (HA), nontoxic nonhaemagglutinin (NTNH), and RNA. The domain described here is found at the C-terminus of the NTNH component. 162 -312090 pfam08471 Ribonuc_red_2_N Class II vitamin B12-dependent ribonucleotide reductase. This domain is found to the N-terminus of the ribonucleotide reductase barrel domain (pfam02867). It occurs in bacterial class II ribonucleotide reductase proteins which depend upon coenzyme B12 (deoxyadenosylcobalamine). 99 -337064 pfam08472 S6PP_C Sucrose-6-phosphate phosphohydrolase C-terminal. This is the Sucrose-6-phosphate phosphohydrolase (S6PP or SPP) C-terminal domain as found in in plant sucrose phosphatases. These enzymes irreversibly catalyze the last step in sucrose synthesis following the formation of Sucrose-6-Phosphate via sucrose-phosphate synthase (SPS). 133 -312092 pfam08473 VGCC_alpha2 Neuronal voltage-dependent calcium channel alpha 2acd. This eukaryotic domain has been found in the neuronal voltage-dependent calcium channel (VGCC) alpha 2a, 2c, and 2d subunits. It is also found in other calcium channel alpha-2 delta subunits to the C-terminus of a Cache domain (pfam02743). 393 -312093 pfam08474 MYT1 Myelin transcription factor 1. This domain is found in the myelin transcription factor 1 (MYT1) of chordates. MYT1 contains C2HC zinc finger domains (pfam01530) and is expressed in developing neurons of the central nervous system where it is involved in the selection of neuronal precursor cells. 237 -285649 pfam08475 Baculo_VP91_N Viral capsid protein 91 N-terminal. This domain is found in Baculoviridae including the nucleopolyhedrovirus at the N-terminus of the viral capsid protein 91 (VP91). 192 -285650 pfam08476 VD10_N Viral D10 N-terminal. This domain is found on the N-terminus of the viral protein D10 (VD10) and the related MutT motif proteins. The VD10 protein is probably essential for virus replication and is often found to the N-terminus of a pfam00293 domain. 41 -312094 pfam08477 Roc Ras of Complex, Roc, domain of DAPkinase. Roc, or Ras of Complex, proteins are mitochondrial Rho proteins (Miro-1, and Miro-2) and atypical Rho GTPases. Full-length proteins have a unique domain organisation, with tandem GTP-binding domains and two EF hand domains (pfam00036) that may bind calcium. They are also larger than classical small GTPases. It has been proposed that they are involved in mitochondrial homeostasis and apoptosis. 114 -312095 pfam08478 POTRA_1 POTRA domain, FtsQ-type. FtsQ/DivIB bacterial division proteins (pfam03799) contain an N-terminal POTRA domain (for polypeptide-transport-associated domain). This is found in different types of proteins, usually associated with a transmembrane beta-barrel. FtsQ/DivIB may have chaperone-like roles, which has also been postulated for the POTRA domain in other contexts. 67 -312096 pfam08479 POTRA_2 POTRA domain, ShlB-type. The POTRA domain (for polypeptide-transport-associated domain) is found towards the N-terminus of ShlB family proteins (pfam03865). ShlB is important in the secretion and activation of the haemolysin ShlA. It has been postulated that the POTRA domain has a chaperone-like function over ShlA; it may fold back into the C-terminal beta-barrel channel. 76 -285654 pfam08480 Disaggr_assoc Disaggregatase related. This domain is found in disaggregatases and several hypothetical proteins of the archaeal genus Methanosarcina. Disaggregatases cause aggregates to separate into single cells and contain parallel beta-helix repeats. Also see pfam06848. 194 -337065 pfam08481 GBS_Bsp-like GBS Bsp-like repeat. This domain is found as a repeat in a number of Streptococcus proteins including some hypothetical proteins and Bsp. Bsp is a protein of group B Streptococcus (GBS) which might control cell morphology. 89 -337066 pfam08482 HrpB_C ATP-dependent helicase C-terminal. This domain is found near the C-terminus of bacterial ATP-dependent helicases such as HrpB. 126 -337067 pfam08483 IstB_IS21_ATP IstB-like ATP binding N-terminal. This bacterial domain is found to the N-terminus of the pfam01695 like ATP binding domain in proteins which are putative transposase subunits. 28 -337068 pfam08484 Methyltransf_14 C-methyltransferase C-terminal domain. This domain is found in bacterial C-methyltransferase proteins. This domain is found C-terminal to methyltransferase domains such as pfam08241 or pfam08242. But this domain is not a methyltransferase. 160 -337069 pfam08485 Polysacc_syn_2C Polysaccharide biosynthesis protein C-terminal. This domain is found to the C-terminus of the pfam02719 domain in bacterial polysaccharide biosynthesis enzymes including the capsule protein CapD and several putative epimerases/dehydratases. 48 -337070 pfam08486 SpoIID Stage II sporulation protein. This domain is found in the stage II sporulation protein SpoIID. SpoIID is necessary for membrane migration as well as for some of the earlier steps in engulfment during bacterial endospore formation. The domain is also found in amidase enhancer proteins. Amidases, like SpoIID, are cell wall hydrolases. 88 -337071 pfam08487 VIT Vault protein inter-alpha-trypsin domain. Inter-alpha-trypsin inhibitors (ITIs) consist of one light chain and a variable set of heavy chains. ITIs play a role in extracellular matrix (ECM) stabilisation and tumor metastasis as well as in plasma protease inhibition. The vault protein inter-alpha-trypsin (VIT) domain described here is found to the N-terminus of a von Willebrand factor type A domain (pfam00092) in ITI heavy chains (ITIHs) and their precursors. 104 -254827 pfam08488 WAK Wall-associated kinase. This domain is found together with the eukaryotic protein kinase domain pfam00069 in plant wall-associated kinases (WAKs) and related proteins. WAKs are serine-threonine kinases which might be involved in signalling to the cytoplasm and are required for cell expansion. 103 -312104 pfam08489 DUF1743 Domain of unknown function (DUF1743). This domain of unknown function is found in many hypothetical proteins and predicted DNA-binding proteins such as transcription-associated proteins. It is found in bacteria and archaea. 116 -337072 pfam08490 DUF1744 Domain of unknown function (DUF1744). This domain is found on the epsilon catalytic subunit of DNA polymerase. It is found C terminal to pfam03104 and pfam00136. 396 -285664 pfam08491 SE Squalene epoxidase. This domain is found in squalene epoxidase (SE) and related proteins which are found in taxonomically diverse groups of eukaryotes and also in bacteria. SE was first cloned from Saccharomyces cerevisiae where it was named ERG1. It contains a putative FAD binding site and is a key enzyme in the sterol biosynthetic pathway. Putative transmembrane regions are found to the protein's C-terminus. 276 -312106 pfam08492 SRP72 SRP72 RNA-binding domain. This region has been identified as the binding site of the SRP72 protein to SRP RNA. 58 -285666 pfam08493 AflR Aflatoxin regulatory protein. This domain is found in the aflatoxin regulatory protein (AflR) which is involved in the regulation of the biosynthesis of aflatoxin in the fungal genus Aspergillus. It occurs together with the fungal Zn(2)-Cys(6) binuclear cluster domain (pfam00172). 275 -337073 pfam08494 DEAD_assoc DEAD/H associated. This domain is found in ATP-dependent helicases as well as a number of hypothetical proteins together with the helicase conserved C-terminal domain (pfam00270) and the pfam00271 domain. 186 -337074 pfam08495 FIST FIST N domain. The FIST N domain is a novel sensory domain, which is present in signal transduction proteins from Bacteria, Archaea and Eukarya. Chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids. 123 -337075 pfam08496 Peptidase_S49_N Peptidase family S49 N-terminal. This domain is found to the N-terminus of bacterial signal peptidases of the S49 family (pfam01343). 153 -337076 pfam08497 Radical_SAM_N Radical SAM N-terminal. This domain tends to occur to the N-terminus of the pfam04055 domain in hypothetical bacterial proteins. 296 -337077 pfam08498 Sterol_MT_C Sterol methyltransferase C-terminal. This domain is found to the C-terminus of a methyltransferase domain (pfam08241) in fungal and plant sterol methyltransferases. 66 -312112 pfam08499 PDEase_I_N 3'5'-cyclic nucleotide phosphodiesterase N-terminal. This domain is found to the N-terminus of the calcium/calmodulin-dependent 3'5'-cyclic nucleotide phosphodiesterase domain (pfam00233). 57 -149522 pfam08500 Tombus_P33 Tombusvirus p33. Tombusviruses, which replicate in a wide range of plant hosts, replicate with the help of viral replicase protein including the overlapping p33 and p92 proteins which contain the domain described here. 142 -312113 pfam08501 Shikimate_dh_N Shikimate dehydrogenase substrate binding domain. This domain is the substrate binding domain of shikimate dehydrogenase. 83 -337078 pfam08502 LeuA_dimer LeuA allosteric (dimerization) domain. This is the C-terminal regulatory (R) domain of alpha-isopropylmalate synthase, which catalyzes the first committed step in the leucine biosynthetic pathway. This domain, is an internally duplicated structure with a novel fold. It comprises two similar units that are arranged such that the two -helices pack together in the centre, crossing at an angle of 34 degrees, sandwiched between the two three-stranded, antiparallel beta-sheets. The overall domain is thus constructed as a beta-alpha-beta three-layer sandwich. 131 -337079 pfam08503 DapH_N Tetrahydrodipicolinate succinyltransferase N-terminal. This domain is found at the N-terminus of tetrahydrodipicolinate N-succinyltransferase (DapH) which catalyzes the acylation of L-2-amino-6-oxopimelate to 2-N-succinyl-6-oxopimelate in the meso-diaminopimelate/lysine biosynthetic pathway of bacteria, blue-green algae, and plants. The N-terminal domain as defined here contains three alpha-helices and two twisted hairpin loops. 82 -312115 pfam08504 RunxI Runx inhibition domain. This domain lies to the C-terminus of Runx-related transcription factors and homologous proteins (AML, CBF-alpha, PEBP2). Its function might be to interact with functional cofactors. 99 -312116 pfam08505 MMR1 Mitochondrial Myo2 receptor-related protein. Myo2p, a class V myosin, is essential for mitochondrial distribution, class V being vital for organelle distribution in S. cerevisiae. It is the myosin essential for mitochondrial distribution. The established mechanism for distribution of cellular components by class V myosins is that they interact with the cargo at the C-terminal tail domain and transport it along the actin cytoskeleton using the N-terminal motor domain. Cargo-specific myosin receptors act as the link between the myosin tail and cargo. Myo2 binds with MMR1 (mitochondrial Myo2p receptor-related 1), the receptor on cargo, via the C-terminal domain. 251 -337080 pfam08506 Cse1 Cse1. This domain is present in Cse1 nuclear export receptor proteins. Cse1 mediates the nuclear export of importin alpha. This domain contains HEAT repeats. 370 -312117 pfam08507 COPI_assoc COPI associated protein. Proteins in this family colocalize with COPI vesicle coat proteins. 123 -312118 pfam08508 DUF1746 Fungal domain of unknown function (DUF1746). This is a fungal domain of unknown function. 116 -312119 pfam08509 Ad_cyc_g-alpha Adenylate cyclase G-alpha binding domain. This fungal domain is found in adenylate cyclase and interacts with the alpha subunit of heterotrimeric G proteins. 48 -337081 pfam08510 PIG-P PIG-P. PIG-P (phosphatidylinositol N-acetylglucosaminyltransferase subunit P) is an enzyme involved in GPI anchor biosynthesis. 119 -337082 pfam08511 COQ9 COQ9. COQ9 is an enzyme that is required for the biosynthesis of coenzyme Q. It may either catalyze a reaction in the coenzyme Q biosynthetic pathway or have a regulatory role. 71 -337083 pfam08512 Rtt106 Histone chaperone Rttp106-like. This family includes Rttp106, a histone chaperone involved in heterochromatin-mediated silencing. This domain belongs to the Pleckstrin homology domain superfamily. 83 -337084 pfam08513 LisH LisH. The LisH (lis homology) domain mediates protein dimerization and tetramerisation. The LisH domain is found in Sif2, a component of the Set3 complex which is responsible for repressing meiotic genes. It has been shown that the LisH domain helps mediate interaction with components of the Set3 complex. 27 -337085 pfam08514 STAG STAG domain. STAG domain proteins are subunits of cohesin complex - a protein complex required for sister chromatid cohesion in eukaryotes. The STAG domain is present in Schizosaccharomyces pombe mitotic cohesin Psc3, and the meiosis specific cohesin Rec11. Many organisms express a meiosis-specific STAG protein, for example, mice and humans have a meiosis specific variant called STAG3, although budding yeast does not have a meiosis specific version. 108 -312125 pfam08515 TGF_beta_GS Transforming growth factor beta type I GS-motif. This motif is found in the transforming growth factor beta (TGF-beta) type I which regulates cell growth and differentiation. The name of the GS motif comes from its highly conserved GSGSGLP signature in the cytoplasmic juxtamembrane region immediately preceding the protein's kinase domain. Point mutations in the GS motif modify the signaling ability of the type I receptor. 28 -337086 pfam08516 ADAM_CR ADAM cysteine-rich. ADAMs are membrane-anchored proteases that proteolytically modify cell surface and extracellular matrix (ECM) in order to alter cell behaviour. It has been shown that the cysteine-rich domain of ADAM13 regulates the protein's metalloprotease activity. 115 -337087 pfam08517 AXH Ataxin-1 and HBP1 module (AXH). AXH is a protein-protein and RNA binding motif found in Ataxin-1 (ATX1). ATX1 is responsible for the autosomal-dominant neurodegenerative disorder Spinocerebellar ataxia type-1 (SCA1) in humans. The AXH module has also been identified in the apparently unrelated transcription factor HBP1 which is thought to be involved in the architectural regulation of chromatin and in specific gene expression. 114 -312128 pfam08518 GIT_SHD Spa2 homology domain (SHD) of GIT. GIT proteins are signaling integrators with GTPase-activating function which may be involved in the organisation of the cytoskeletal matrix assembled at active zones (CAZ). The function of the CAZ might be to define sites of neurotransmitter release. Mutations in the Spa2 homology domain (SHD) domain of GIT1 described here interfere with the association of GIT1 with Piccolo, beta-PIX, and focal adhesion kinase. 28 -337088 pfam08519 RFC1 Replication factor RFC1 C terminal domain. This is the C terminal domain of replication factor C, RFC1. RFC complexes hydrolyze ATP and load sliding clamps such as PCNA (proliferating cell nuclear antigen) onto double-stranded DNA. RFC1 is essential for RFC function in vivo. 153 -312130 pfam08520 DUF1748 Fungal protein of unknown function (DUF1748). This is a family of fungal proteins of unknown function. 69 -337089 pfam08521 2CSK_N Two-component sensor kinase N-terminal. This domain is found in bacterial two-component sensor kinases towards the N-terminus. 144 -337090 pfam08522 DUF1735 Domain of unknown function (DUF1735). This domain of unknown function is found in a number of bacterial proteins including acylhydrolases. The structure of this domain has a beta-sandwich fold. 112 -337091 pfam08523 MBF1 Multiprotein bridging factor 1. This domain is found in the multiprotein bridging factor 1 (MBF1) which forms a heterodimer with MBF2. It has been shown to make direct contact with the TATA-box binding protein (TBP) and interacts with Ftz-F1, stabilizing the Ftz-F1-DNA complex. It is also found in the endothelial differentiation-related factor (EDF-1). Human EDF-1 is involved in the repression of endothelial differentiation, interacts with CaM and is phosphorylated by PKC. The domain is found in a wide range of eukaryotic proteins including metazoans, fungi and plants. A helix-turn-helix motif (pfam01381) is found to its C-terminus. 71 -337092 pfam08524 rRNA_processing rRNA processing. This is a family of proteins that are involved in rRNA processing. In a localization study they were found to localize to the nucleus and nucleolus. The family also includes other metazoa members from plants to mammals where the protein has been named BR22 and is associated with TTF-1, thyroid transcription factor 1. In the lungs, the family binds TTF-1 to form a complex which influences the expression of the key lung surfactant protein-B (SP-B) and -C (SP-C), the small hydrophobic surfactant proteins that maintain surface tension in alveoli. 141 -337093 pfam08525 OapA_N Opacity-associated protein A N-terminal motif. This family includes the Haemophilus influenzae opacity-associated protein. This protein is required for efficient nasopharyngeal mucosal colonisation, and its expression is associated with a distinctive transparent colony phenotype. OapA is thought to be a secreted protein, and its expression exhibits high-frequency phase variation. This motif occurs at the N-terminus of these proteins. It contains a conserved histidine followed by a run of hydrophobic residues. 28 -337094 pfam08526 PAD_N Protein-arginine deiminase (PAD) N-terminal domain. This family represents the N-terminal non-catalytic domain of protein-arginine deiminase. This domain has a cupredoxin-like fold. 113 -312137 pfam08527 PAD_M Protein-arginine deiminase (PAD) middle domain. This family represents the central non-catalytic domain of protein-arginine deiminase. This domain has an immunoglobulin-like fold. 158 -337095 pfam08528 Whi5 Whi5 like. In metazoans, cyclin-dependent kinase(CDK) dependent phosphorylation of the retinoblastoma Tudor suppressor protein (Rb) alleviates repression of E2F and thereby activates G1/S transcription. The cell size regulator Whi5 appears to be an analogous target of CDK activity during G1 phase. 25 -337096 pfam08529 NusA_N NusA N-terminal domain. This domain represents the RNA polymerase binding domain of NusA. 120 -285702 pfam08530 PepX_C X-Pro dipeptidyl-peptidase C-terminal non-catalytic domain. This domain contains a beta sandwich domain. 220 -312140 pfam08531 Bac_rhamnosid_N Alpha-L-rhamnosidase N-terminal domain. This family consists of bacterial rhamnosidase A and B enzymes. This domain is probably involved in substrate recognition. 172 -285704 pfam08532 Glyco_hydro_42M Beta-galactosidase trimerisation domain. This is non catalytic domain B of beta-galactosidase enzymes belong to the glycosyl hydrolase 42 family. This domain is related to glutamine amidotransferase enzymes, but the catalytic residues are replaced by non functional amino acids. This domain is involved in trimerisation. 207 -312141 pfam08533 Glyco_hydro_42C Beta-galactosidase C-terminal domain. This domain is found at the C-terminus of beta-galactosidase enzymes that belong to the glycosyl hydrolase 42 family. 58 -285706 pfam08534 Redoxin Redoxin. This family of redoxins includes peroxiredoxin, thioredoxin and glutaredoxin proteins. 145 -337097 pfam08535 KorB KorB domain. This family consists of several KorB transcriptional repressor proteins. The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. This domain includes the DNA-binding HTH motif. 88 -312143 pfam08536 Whirly Whirly transcription factor. This family contains the plant whirly transcription factors. 136 -285709 pfam08537 NBP1 Fungal Nap binding protein NBP1. NBP1 is a nuclear protein which has been shown in Saccharomyces cerevisiae to be essential for the G2/M transition of the cell cycle. 333 -254864 pfam08538 DUF1749 Protein of unknown function (DUF1749). This is a plant and fungal family of unknown function. This family contains many hypothetical proteins. 303 -312144 pfam08539 HbrB HbrB-like. HbrB is involved hyphal growth and polarity. 157 -337098 pfam08540 HMG_CoA_synt_C Hydroxymethylglutaryl-coenzyme A synthase C terminal. 280 -337099 pfam08541 ACP_syn_III_C 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III C terminal. This domain is found on 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III EC:2.3.1.41, the enzyme responsible for initiating the chain of reactions of the fatty acid synthase in plants and bacteria. 90 -337100 pfam08542 Rep_fac_C Replication factor C C-terminal domain. This is the C-terminal domain of RFC (replication factor-C) protein of the clamp loader complex which binds to the DNA sliding clamp (proliferating cell nuclear antigen, PCNA). The five modules of RFC assemble into a right-handed spiral, which results in only three of the five RFC subunits (RFC-A, RFC-B and RFC-C) making contact with PCNA, leaving a wedge-shaped gap between RFC-E and the PCNA clamp-loader complex. The C-terminal is vital for the correct orientation of RFC-E with respect to RFC-A. 86 -312147 pfam08543 Phos_pyr_kin Phosphomethylpyrimidine kinase. This enzyme EC:2.7.4.7 is part of the Thiamine pyrophosphate (TPP) synthesis pathway, TPP is an essential cofactor for many enzymes. 246 -312148 pfam08544 GHMP_kinases_C GHMP kinases C terminal. This family includes homoserine kinases, galactokinases and mevalonate kinases. 86 -337101 pfam08545 ACP_syn_III 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III. This domain is found on 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III EC:2.3.1.180, the enzyme responsible for initiating the chain of reactions of the fatty acid synthase in plants and bacteria. 79 -312150 pfam08546 ApbA_C Ketopantoate reductase PanE/ApbA C terminal. This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalyzed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyzes the NADPH reduction of ketopantoic acid to pantoic acid in the alternative pyrimidine biosynthetic (APB) pathway. ApbA and PanE are allelic. ApbA, the ketopantoate reductase enzyme is required for the synthesis of thiamine via the APB biosynthetic pathway. 125 -312151 pfam08547 CIA30 Complex I intermediate-associated protein 30 (CIA30). This protein is associated with mitochondrial Complex I intermediate-associated protein 30 (CIA30) in human and mouse. The family is also present in Schizosaccharomyces pombe which does not contain the NADH dehydrogenase component of complex I, or many of the other essential subunits. This means it is possible that this family of protein may not be directly involved in oxidative phosphorylation. 156 -285719 pfam08548 Peptidase_M10_C Peptidase M10 serralysin C terminal. Serralysins are peptidases related to mammalian matrix metallopeptidases (MMPs). The peptidase unit is found at the N terminal while this domain at the C terminal forms a corkscrew and is thought to be important for secretion of the protein through the bacterial cell wall. This domain contains the calcium ion binding domain pfam00353. 221 -337102 pfam08549 SWI-SNF_Ssr4 Fungal domain of unknown function (DUF1750). This is a fungal domain of unknown function. 684 -337103 pfam08550 DUF1752 Fungal protein of unknown function (DUF1752). This is a family of fungal proteins of unknown function. This short section domain is bounded by two highly conserved tryptophans. The family contains MKD1 that is thought to be a negative regulator of RAS-cAMP pathway in S.cerevisiae. the Sch.pombe member is a GAF1 transcription factor that is also associated with the zinc finger family GATA pfam00320. 28 -285722 pfam08551 DUF1751 Eukaryotic integral membrane protein (DUF1751). This domain is found in eukaryotic integral membrane proteins. YOL107W, a Saccharomyces cerervisiae protein, has been shown to localize COP II vesicles. 99 -337104 pfam08552 Kei1 Inositolphosphorylceramide synthase subunit Kei1. Kei1 is a subunit of Saccharomyces cerevisiae inositol phosphorylceramide (IPC) synthase. It is localized to the Golgi and is cleaved by the late Golgi processing endopeptidase Kex2. Kei1 is essential for both the activity and the Golgi localization of IPC synthase. 181 -312155 pfam08553 VID27 VID27 cytoplasmic protein. This is a family of fungal and plant proteins and contains many hypothetical proteins. VID27 is a cytoplasmic protein that plays a potential role in vacuolar protein degradation. 771 -312156 pfam08555 DUF1754 Eukaryotic family of unknown function (DUF1754). This is a eukaryotic protein family of unknown function. 91 -312157 pfam08557 Lipid_DES Sphingolipid Delta4-desaturase (DES). Sphingolipids are important membrane signalling molecules involved in many different cellular functions in eukaryotes. Sphingolipid delta 4-desaturase catalyzes the formation of (E)-sphing-4-enine. Some proteins in this family have bifunctional delta 4-desaturase/C-4-hydroxylase activity. Delta 4-desaturated sphingolipids may play a role in early signalling required for entry into meiotic and spermatid differentiation pathways during Drosophila spermatogenesis. This small domain associates with FA_desaturase pfam00487 and appears to be specific to sphingolipid delta 4-desaturase. 37 -337105 pfam08558 TRF Telomere repeat binding factor (TRF). Telomere repeat binding factor (TRF) family proteins are important for the regulation of telomere stability. The two related human TRF proteins hTRF1 and hTRF2 form homodimers and bind directly to telomeric TTAGGG repeats via the myb DNA binding domain pfam00249 at the carboxy terminus. TRF1 is implicated in telomere length regulation and TRF2 in telomere protection. Other telomere complex associated proteins are recruited through their interaction with either TRF1 or TRF2. The fission yeast protein Taz1p (telomere-associated in Schizosaccharomyces pombe) has similarity to both hTRF1 and hTRF2 and may perform the dual functions of TRF1 and TRF2 at fission yeast telomeres. This domain is composed of multiple alpha helices arranged in a solenoid conformation similar to TPR repeats. The fungal members have now also been found to carry two double strand telomeric repeat binding factors. 233 -337106 pfam08559 Cut8 Cut8, nuclear proteasome tether protein. In Schizosaccharomyces pombe, Cut8 is a nuclear envelope protein that physically interacts with and tethers 26S proteasome in the nucleus resulting in the nuclear accumulation of proteasome. Cut8 comprises three functional domains. An N-terminal lysine-rich segment which binds to the proteasome when ubiquitinated, a central dimerization domain and a C-terminal nine-helix, Structure 3q5w, bundle which shows structural similarity to 14-3-3 phosphoprotein-binding domains. The helical bundle is necessary for liposome and cholesterol binding. Cut8 is a proteasome substrate and the N-terminal segment is polyubiquitinated and functions as a degron tag. Ubiquitination of the amino N-terminal segment is essential for the function of Cut8. Lysine residues in the N-terminal segment of Cut8 are required for physical interaction with proteasome. In fission yeast the function of Cut8 has been demonstrated to be regulated by ubiquitin-conjugating Rhp6/Ubc2/Rad6 and ligating enzymes Ubr1. Cut8 homologs have been identified in Drosophila melanogaster, Anopheles gambiae and Dictyostelium discoideum. 196 -312160 pfam08560 DUF1757 Protein of unknown function (DUF1757). This family of proteins are about 150 amino acids in length and have no known function. 147 -312161 pfam08561 Ribosomal_L37 Mitochondrial ribosomal protein L37. This family includes yeast MRPL37 a mitochondrial ribosomal protein. 88 -337107 pfam08562 Crisp Crisp. This domain is found on Crisp proteins which contain pfam00188 and has been termed the Crisp domain. It is found in the mammalian reproductive tract and the venom of reptiles, and has been shown to regulate ryanodine receptor Ca2+ signalling. It contains 10 conserved cysteines which are all involved in disulphide bonds and is structurally related to the ion channel inhibitor toxins BgK and ShK. 55 -312163 pfam08563 P53_TAD P53 transactivation motif. The binding of the p53 transactivation domain by regulatory proteins regulates p53 transcription activation. This motif is comprised of a single amphipathic alpha helix and contains a highly conserved sequence. 24 -312164 pfam08564 CDC37_C Cdc37 C terminal domain. Cdc37 is a protein required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the C terminal domain whose function is unclear. It is found C terminal to the Hsp90 chaperone (Heat shocked protein 90) binding domain pfam08565 and the N terminal kinase binding domain of Cdc37 pfam03234. 81 -312165 pfam08565 CDC37_M Cdc37 Hsp90 binding domain. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the Hsp90 chaperone (Heat shocked protein 90) binding domain of Cdc37. It is found between the N terminal Cdc37 domain pfam03234, which is predominantly involved in kinase binding, and the C terminal domain of Cdc37 pfam08564 whose function is unclear. 113 -337108 pfam08566 Pam17 Mitochondrial import protein Pam17. The presequence translocase-associated motor (PAM) drives the completion of preprotein translocation into the mitochondrial matrix. The Pam17 subunit is required for formation of a stable complex between cochaperones Pam16 and Pam18 and promotes the association of Pam16-Pam18 with the presequence translocase. Mitochondria lacking Pam17 are selectively impaired in the import of matrix proteins. 165 -337109 pfam08567 PH_TFIIH TFIIH p62 subunit, N-terminal domain. The N-terminal domain of the TFIIH basal transcription factor complex p62 subunit (BTF2-p62) forms an interaction with the 3' endonuclease XPG, which is essential for activity. The 3' endonuclease XPG is a major component of the nucleotide excision repair machinery. The structure of the N-terminal domain reveals that it adopts a pleckstrin homology (PH) fold. This PH-type domain has been shown to bind to a mono-phosphorylated inositide. 88 -337110 pfam08568 Kinetochor_Ybp2 Uncharacterized protein family, YAP/Alf4/glomulin. This entry contains a number of protein families with apparently unrelated functions. These include the YAP binding proteins of yeasts. These are stress response and redox homeostasis proteins, induced by hydrogen peroxide or induced in response to alkylating agent methyl methanesulphonate (MMS). The family includes Aberrant root formation protein 4 (Alf4) of Arabidopsis thaliana (Mouse-ear cress), which is required for the initiation of lateral roots independent from auxin signalling. It may also function in maintaining the pericycle in the mitotically competent state needed for lateral root formation. The family includes glomulin (FAP68), which is essential for normal development of the vasculature and may represent a naturally occurring ligand of the immunophilins FKBP59 and FKBP12. 612 -337111 pfam08569 Mo25 Mo25-like. Mo25-like proteins are involved in both polarised growth and cytokinesis. In fission yeast Mo25 is localized alternately to the spindle pole body and to the site cell division in a cell cycle dependent manner. 272 -337112 pfam08570 DUF1761 Protein of unknown function (DUF1761). Family of conserved fungal and bacterial membrane proteins with unknown function. 122 -337113 pfam08571 Yos1 Yos1-like. In yeast, Yos1 is a subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex. Yos1 appears to be conserved in eukaryotes. 80 -337114 pfam08572 PRP3 pre-mRNA processing factor 3 (PRP3). Pre-mRNA processing factor 3 (PRP3) is a U4/U6-associated splicing factor. The human PRP3 has been implicated in autosomal retinitis pigmentosa. 216 -337115 pfam08573 SAE2 DNA repair protein endonuclease SAE2/CtIP C-terminus. SAE2 is a protein involved in repairing meiotic and mitotic double-strand breaks in DNA. It has been shown to negatively regulate DNA damage checkpoint signalling. SAE2 is homologous to the CtIP proteins in mammals and an homologous protein in plants. Crucial sequence motifs that are highly conserved are the CxxC and the RHR motifs in this C-terminal part of the protein. It is now known to be an endonuclease. In budding yeast, genetic evidence suggests that the SAE2 protein is essential for the processing of hairpin DNA intermediates and meiotic double-strand breaks by Mre11/Rad50 complexes. SAE2 binds DNA and exhibits endonuclease activity on single-stranded DNA independently of Mre11/Rad50 complexes, but hairpin DNA structures are cleaved cooperatively in the presence of Mre11/Rad50 or Mre11/Rad50/Xrs2. Hairpin structures are not processed at the tip by SAE2 but rather at single-stranded DNA regions adjacent to the hairpin. The catalytic activities of SAE2 are important for its biological functions. 110 -312174 pfam08574 Iwr1 Transcription factor Iwr1. Iwr1 is involved in transcription from polymerase II promoters; it interacts with with most of the polymerase II subunits. Deletion of this protein results in hypersensitivity to the K1 killer toxin. 74 -337116 pfam08576 DUF1764 Eukaryotic protein of unknown function (DUF1764). This is a family of eukaryotic proteins of unknown function. This family contains many hypothetical proteins. 99 -312176 pfam08577 PI31_Prot_C PI31 proteasome regulator. PI31 is a cellular regulator of proteasome formation and of proteasome-mediated antigen processing. 75 -312177 pfam08578 DUF1765 Protein of unknown function (DUF1765). This region represents a conserved region found in hypothetical proteins from fungi, mycetozoa and entamoebidae. 123 -149581 pfam08579 RPM2 Mitochondrial ribonuclease P subunit (RPM2). Ribonuclease P (RNase P) generates mature tRNA molecules by cleaving their 5' ends. RPM2 is a protein subunit of the yeast mitochondrial RNase P. It has the ability to act as transcriptional activator in the nucleus where it plays a role in defining the steady-state levels of mRNAs for some nucleus-encoded mitochondrial components. 120 -312178 pfam08580 KAR9 Yeast cortical protein KAR9. The KAR9 protein in Saccharomyces cerevisiae is a cytoskeletal protein required for karyogamy, correct positioning of the mitotic spindle and for orientation of cytoplasmic microtubules. KAR9 localizes at the shmoo tip in mating cells and at the tip of the growing bud in anaphase. 668 -337117 pfam08581 Tup_N Tup N-terminal. The N-terminal domain of the Tup protein has been shown to interact with the Ssn6 transcriptional co-repressor. 77 -337118 pfam08583 Cmc1 Cytochrome c oxidase biogenesis protein Cmc1 like. Cmc1 is a metallo-chaperone like protein which is known to localize to the inner mitochondrial membrane in Saccharomyces cerevisiae. It is essential for full expression of cytochrome c oxidase and respiration. Cmc1 contains two Cx9C motifs and is able to bind copper(I). Cmc1 is thought to play a role in mitochondrial copper trafficking and transfer to cytochrome c oxidase. 70 -312181 pfam08584 Ribonuc_P_40 Ribonuclease P 40kDa (Rpp40) subunit. The tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule and at least eight protein subunits. Subunits hpop1, Rpp21, Rpp29, Rpp30, Rpp38, and Rpp40 (this entry) are involved in extensive, but weak, protein-protein interactions in the holoenzyme complex. 274 -312182 pfam08585 RMI1_N RecQ mediated genome instability protein. RMI1_N is an N-terminal family of eukaryotic proteins. The domain probably carries an oligo-nucleotide-binding domain or OB-fold, and forms a stable complex with Bloom syndrome protein BLM and DNA topoisomerase 3-alpha. 200 -312183 pfam08586 Rsc14 RSC complex, Rsc14/Ldb7 subunit. RSC is an ATP-dependent chromatin remodelling complex found in yeast. The RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. 99 -312184 pfam08587 UBA_2 Ubiquitin associated domain (UBA). This is a UBA (ubiquitin associated) domain. Ubiquitin is involved in intracellular proteolysis. 45 -337119 pfam08588 DUF1769 Protein of unknown function (DUF1769). Family of fungal protein with unknown function. 55 -312186 pfam08589 DUF1770 Fungal protein of unknown function (DUF1770). The function of this family is unknown. These proteins are rather dissimilar except for a single strongly conserved motif (PDLRFEQ). 96 -337120 pfam08590 DUF1771 Domain of unknown function (DUF1771). This domain is always found adjacent to pfam01713. 61 -337121 pfam08591 RNR_inhib Ribonucleotide reductase inhibitor. This family includes S. pombe Spd1. Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. 96 -337122 pfam08592 DUF1772 Domain of unknown function (DUF1772). This domain is of unknown function. 136 -312190 pfam08593 DUF1773 Domain of unknown function. This is the C-terminal part of some meiotically up-regulated gene products from fission yeast. The actual function is not yet known but the proteins are likely to be cell-surface glycoproteins. 60 -312191 pfam08594 UPF0300 Uncharacterized protein family (UPF0300). This family of proteins appear to be specific to S. pombe. 212 -312192 pfam08595 RXT2_N RXT2-like, N-terminal. The family represents the N-terminal region of RXT2-like proteins. In S. cerevisiae, RXT2 has been demonstrated to be involved in conjugation with cellular fusion (mating) and invasive growth. A high throughput localization study has localized RXT2 to the nucleus. 139 -312193 pfam08596 Lgl_C Lethal giant larvae(Lgl) like, C-terminal. The Lethal giant larvae (Lgl) tumor suppressor family is conserved from yeast to mammals. The Lgl family functions in cell polarity, at least in part, by regulating SNARE-mediated membrane delivery events at the cell surface. The N-terminal half of Lgl members contains WD40 repeats (see pfam00400), while the C-terminal half appears specific to the family. 393 -312194 pfam08597 eIF3_subunit Translation initiation factor eIF3 subunit. This is a family of proteins which are subunits of the eukaryotic translation initiation factor 3 (eIF3). In yeast it is called Hcr1. The Saccharomyces cerevisiae protein HCR1 has been shown to be required for processing of 20S pre-rRNA and binds to 18S rRNA and eIF3 subunits Rpg1p and Prt1p. 235 -312195 pfam08598 Sds3 Sds3-like. Repression of gene transcription is mediated by histone deacetylases containing repressor-co-repressor complexes, which are recruited to promoters of target genes via interactions with sequence-specific transcription factors. The co-repressor complex contains a core of at least seven proteins. This family represents the conserved region found in Sds3, Dep1 and BRMS1-homolog p40 proteins. 217 -312196 pfam08599 Nbs1_C DNA damage repair protein Nbs1. This C terminal region of the DNA damage repair protein Nbs1 has been identified to be necessary for the binding of Mre11 and Tel1. 63 -312197 pfam08600 Rsm1 Rsm1-like. Rsm1 is a protein involved in mRNA export from the nucleus 97 -312198 pfam08601 PAP1 Transcription factor PAP1. The transcription factor Pap1 regulates antioxidant-gene transcription in response to H2O2. This region is cysteine rich. Alkylation of cysteine residues following treatment with a cysteine alkylating agent can mask the accessibility of the nuclear exporter Crm1, triggering nuclear accumulation and Pap1 dependent transcriptional expression. 364 -312199 pfam08602 Mgr1 Mgr1-like, i-AAA protease complex subunit. The S. cerevisiae Mgr1 protein has been shown to be required for mitochondrial viability in yeast lacking mitochondrial DNA. It is a mitochondrial inner membrane protein, which interacts with Yme1 and is a new subunit of the i-AAA protease complex. 378 -337123 pfam08603 CAP_C Adenylate cyclase associated (CAP) C terminal. 151 -312201 pfam08604 Nup153 Nucleoporin Nup153-like. This family contains both the nucleoporin Nup153 from human and Nup154 from fission yeast. These have been demonstrated to be functionally equivalent. 507 -254915 pfam08605 Rad9_Rad53_bind Fungal Rad9-like Rad53-binding. In Saccharomyces cerevisiae the Rad9 a key adaptor protein in DNA damage checkpoint pathways. DNA damage induces Rad9 phosphorylation, and Rad53 specifically associates with this region of Rad9, when phosphorylated, via Rad53 pfam00498 domains. This region is structurally composed of a pair of TUDOR domains. 131 -337124 pfam08606 Prp19 Prp19/Pso4-like. This regions is found specifically in PRP19-like protein. The region represented by this family covers the sequence implicated in self-interaction and a coiled-coiled motif. PRP19-like proteins form an oligomer that is necessary for spliceosome assembly. 65 -312203 pfam08608 Wyosine_form Wyosine base formation. Some proteins in this family appear to be important in wyosine base formation in a subset of phenylalanine specific tRNAs. It has been proposed that they participates in converting tRNA(Phe)-m(1)G(37) to tRNA(Phe)-yW. 63 -337125 pfam08609 Fes1 Nucleotide exchange factor Fes1. Fes1 is a cytosolic homolog of Sls1, an ER protein which has nucleotide exchange factor activity. Fes1 in yeast has been shown to bind to the molecular chaperone Hsp70 and has adenyl-nucleotide exchange factor activity. 87 -312205 pfam08610 Pex16 Peroxisomal membrane protein (Pex16). Pex16 is a peripheral protein located at the matrix face of the peroxisomal membrane. 320 -312206 pfam08611 DUF1774 Fungal protein of unknown function (DUF1774). This is a fungal family of unknown function. 94 -337126 pfam08612 Med20 TATA-binding related factor (TRF) of subunit 20 of Mediator complex. This family of proteins is related to TATA-binding protein (TBP). TBP is a highly conserved RNA polymerase II general transcription factor that binds to the core promoter and initiates assembly of the preinitiation complex. Human TRF has been shown to associate with an RNA polymerase II-SRB complex. This Med20 subunit of Mediator is found in the non-essential part of the head. 202 -285777 pfam08613 Cyclin Cyclin. This family includes many different cyclin proteins. Members include the G1/S-specific cyclin pas1, and the phosphate system cyclin PHO80/PHO85. 148 -337127 pfam08614 ATG16 Autophagy protein 16 (ATG16). Autophagy is a ubiquitous intracellular degradation system for eukaryotic cells. During autophagy, cytoplasmic components are enclosed in autophagosomes and delivered to lysosomes/vacuoles. ATG16 (also known as Apg16) has been shown to be bind to Apg5 and is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. 199 -312209 pfam08615 RNase_H2_suC Ribonuclease H2 non-catalytic subunit (Ylr154p-like). This entry represents the non-catalytic subunit of RNase H2, which in S. cerevisiae is Ylr154p/Rnh203p. Whereas bacterial and archaeal RNases H2 are active as single polypeptides, the Saccharomyces cerevisiae homolog, Rnh2Ap, when expressed in Escherichia coli, fails to produce an active RNase H2. For RNase H2 activity three proteins are required [Rnh2Ap (Rnh201p), Ydr279p (Rnh202p) and Ylr154p (Rnh203p)]. Deletion of any one of the proteins or mutations in the catalytic site in Rnh2A leads to loss of RNase H2 activity. RNase H2 ia an endonuclease that specifically degrades the RNA of RNA:DNA hybrids. It participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers during DNA replication. 133 -312210 pfam08616 SPA Stabilization of polarity axis. Yeast AFI1 has been shown to interact with the outer plaque of the spindle pole body. In Aspergillus nidulans the protein member is necessary for stabilization of the polarity axes during septation. and in S. cerevisiae it functions as a polarisation-specific docking factor. 114 -337128 pfam08617 CGI-121 Kinase binding protein CGI-121. CGI-121 has been shown to bind to the p53-related protein kinase (PRPK). PRPK is a novel protein kinase which binds to and induces phosphorylation of the tumor suppressor protein p53. CGI-121 is part of a conserved protein complex, KEOPS. The KEOPS complex is involved in telomere uncapping and telomere elongation. Interestingly this family also include archaeal homologs, formerly in the DUF509 family. A structure for these proteins has been solved by structural genomics. 154 -312212 pfam08618 Opi1 Transcription factor Opi1. Opi1 is a leucine zipper containing yeast transcription factor that negatively regulates phospholipid biosynthesis. It represses the expression of several UAS(INO) cis acting element containing genes and its activity is mediated by phosphorylations catalyzed by protein kinase A, protein kinase C and casein kinase II. 416 -312213 pfam08619 Nha1_C Alkali metal cation/H+ antiporter Nha1 C-terminus. The C-terminus of the plasma membrane Nha1 antiporter plays an important role in the immediate cell response to hypo-osmotic shock which prevents an execessive loss of ions and water. This domain is found with pfam00999. 347 -337129 pfam08620 RPAP1_C RPAP1-like, C-terminal. Inhibition of RPAP1 synthesis in Saccharomyces cerevisiae results in changes in global gene expression that are similar to those caused by the loss of the RNAPII subunit Rpb11. This entry represents the C-terminal region that contains the motif GLHHH. This region is conserved from yeast to humans. 69 -337130 pfam08621 RPAP1_N RPAP1-like, N-terminal. Inhibition of RPAP1 synthesis in Saccharomyces cerevisiae results in changes in global gene expression that are similar to those caused by the loss of the RNAPII subunit Rpb11. This entry represents the N-terminal region of RPAP-1 that is conserved from yeast to humans. 46 -337131 pfam08622 Svf1 Svf1-like N-terminal lipocalin domain. Family of proteins that are involved in survival during oxidative stress. This entry corresponds to the N-terminal lipocalin domain of a pair. 161 -337132 pfam08623 TIP120 TATA-binding protein interacting (TIP20). TIP120 (also known as cullin-associated and neddylation-dissociated protein 1) is a TATA binding protein interacting protein that enhances transcription. 165 -312218 pfam08624 CRC_subunit Chromatin remodelling complex Rsc7/Swp82 subunit. This family has been identified as a subunit of chromatin remodelling complexes. Saccharomyces cerevisiae NPL6 and its paralogue SWP82 have been identified as subunits of the RSC chromatin remodelling complex, and SWI/SNF chromatin remodelling complex respectively. 134 -337133 pfam08625 Utp13 Utp13 specific WD40 associated domain. Utp13 is a component of the five protein Pwp2 complex that forms part of a stable particle subunit independent of the U3 small nucleolar ribonucleoprotein that is essential for the initial assembly steps of the 90S pre-ribosome. Pwp2 is capable of interacting directly with the 35 S pre-rRNA 5' end. 140 -312220 pfam08626 TRAPPC9-Trs120 Transport protein Trs120 or TRAPPC9, TRAPP II complex subunit. This region is found at the N terminal of Saccharomyces cerevisiae Trs120 protein. Trs120 is a subunit of the multiprotein complex TRAPP (transport particle protein) which functions in ER to Golgi traffic. Trs120 is specific to the larger TRAPP complex, TRAPP II, along with Trs65p and Trs130p(TRAPPC10). It is suggested that Trs120p is required for the stability of the Trs130p subunit, suggesting that these two proteins might interact in some way. It is likely that there is a complex function for TRAPP II in multiple pathways. 1172 -312221 pfam08627 CRT-like CRT-like, chloroquine-resistance transporter-like. This region is found in proteins related to Plasmodium falciparum chloroquine resistance transporter (CRT). 334 -337134 pfam08628 Nexin_C Sorting nexin C terminal. This region is found a the C terminal of proteins belonging to the sorting nexin family. It is found on proteins which also contain pfam00787. 111 -285793 pfam08629 PDE8 PDE8 phosphodiesterase. This region is found in members of the PDE8 phosphodiesterase family. It is found with pfam00233. 47 -337135 pfam08630 Dfp1_Him1_M Dfp1/Him1, central region. This is the middle regions described by Ogino et al. This region, together with the C-terminal zinc finger (pfam07535) is essential for the mitotic and kinase activation functions of Dfp1/Him1. 128 -337136 pfam08631 SPO22 Meiosis protein SPO22/ZIP4 like. SPO22/ZIP4 in yeast is a meiosis specific protein involved in sporulation. It has been shown to regulate crossover distribution by promoting synaptonemal complex formation. 244 -312225 pfam08632 Zds_C Activator of mitotic machinery Cdc14 phosphatase activation C-term. This region of the Zds1 protein is critical for sporulation and has also been shown to suppress the calcium sensitivity of Zds1 deletions. The C-terminal motif is common to both Zds1 and Zds2 proteins, both of which are putative interactors of Cdc55 and are required for the completion of mitotic exit and cytokinesis. They both contribute to timely Cdc14 activation during mitotic exit and are required downstream of separase to facilitate nucleolar Cdc14 release. 49 -337137 pfam08633 Rox3 Rox3 mediator complex subunit. The mediator complex is part of the RNA polymerase II holoenzyme. Rox3 is a subunit of the mediator complex. 208 -312227 pfam08634 Pet127 Mitochondrial protein Pet127. Pet127 has been implicated in mitochondrial RNA stability and/or processing and is localized to the mitochondrial membrane. The Pet127 family is part of the PD-(D/E)XK nuclease superfamily including a full set of active site residues. 275 -117208 pfam08635 ox_reductase_C Putative oxidoreductase C terminal. This is the C terminal of a family of putative oxidoreductases. 142 -312228 pfam08636 Pkr1 ER protein Pkr1. Pkr1 has been identified as an ER protein of unknown function. 69 -337138 pfam08637 NCA2 ATP synthase regulation protein NCA2. NCA2 has been shown to be required for the regulation of ATP synthase subunits Atp6p and Atp8p in Saccharomyces cerevisiae. 276 -337139 pfam08638 Med14 Mediator complex subunit MED14. Saccharomyces cerevisiae RGR1 mediator complex subunit affects chromatin structure, transcriptional regulation of diverse genes and sporulation, required for glucose repression, HO repression, RME1 repression and sporulation. This subunit is also found in higher eukaryotes and Med14 is the agreed unified nomenclature for this subunit. Med14 is found in the tail region of Mediator. 187 -312231 pfam08639 SLD3 DNA replication regulator SLD3. The SLD3 DNA replication regulator is required for loading and maintenance of Cdc45 on chromatin during DNA replication. 526 -337140 pfam08640 U3_assoc_6 U3 small nucleolar RNA-associated protein 6. This is a family of U3 nucleolar RNA-associated proteins which are involved in nucleolar processing of pre-18S ribosomal RNA. 77 -337141 pfam08641 Mis14 Kinetochore protein Mis14 like. Mis14 is a kinetochore protein which is known to be recruited to kinetochores independently of CENP-A. 133 -337142 pfam08642 Rxt3 Histone deacetylation protein Rxt3. Rxt3 has been shown in yeast to be required for histone deacetylation. 113 -312235 pfam08643 DUF1776 Fungal family of unknown function (DUF1776). This is a fungal family of unknown function. One of the proteins in this family YSC83 has been localized to the mitochondria. 295 -337143 pfam08644 SPT16 FACT complex subunit (SPT16/CDC68). Proteins in this family are subunits the FACT complex. The FACT complex plays a role in transcription initiation and promotes binding of TATA-binding protein (TBP) to a TATA box in chromatin. 151 -337144 pfam08645 PNK3P Polynucleotide kinase 3 phosphatase. Polynucleotide kinase 3 phosphatases play a role in the repair of single breaks in DNA induced by DNA-damaging agents such as gamma radiation and camptothecin. 161 -312238 pfam08646 Rep_fac-A_C Replication factor-A C terminal domain. This domain is found at the C terminal of replication factor A. Replication factor A (RPA) binds single-stranded DNA and is involved in replication, repair, and recombination of DNA. 146 -337145 pfam08647 BRE1 BRE1 E3 ubiquitin ligase. BRE1 is an E3 ubiquitin ligase that has been shown to act as a transcriptional activator through direct activator interactions. 95 -312240 pfam08648 DUF1777 Protein of unknown function (DUF1777). This is a family of eukaryotic proteins of unknown function. Some of the proteins in this family are putative nucleic acid binding proteins. 175 -337146 pfam08649 DASH_Dad1 DASH complex subunit Dad1. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. Components of the DASH complex, including Dam1, Duo1, Spc34, Dad1 and Ask1, are essential and connect the centromere to the plus end of spindle microtubules. Throughout the cell cycle Dad1 remains bound to kinetochores throughout the cell cycle and its association is dependent on the Mis6 and Mal2. 55 -312242 pfam08650 DASH_Dad4 DASH complex subunit Dad4. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. 71 -312243 pfam08651 DASH_Duo1 DASH complex subunit Duo1. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. 74 -312244 pfam08652 RAI1 RAI1 like PD-(D/E)XK nuclease. RAI1 is homologous to Caenorhabditis elegans DOM-3 and human DOM3Z and binds to a nuclear exoribonuclease. It is required for 5.8S rRNA processing. Profile-profile comparison tools demonstrate this to be a PD-(D/E)XK nuclease, with a full set of canonical active site signature motifs characteristic to the PD-(D/E)XK nuclease superfamily. 69 -337147 pfam08653 DASH_Dam1 DASH complex subunit Dam1. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. Components of the DASH complex, including Dam1, Duo1, Spc34, Dad1 and Ask1, are essential and connect the centromere to the plus end of spindle microtubules. 56 -312246 pfam08654 DASH_Dad2 DASH complex subunit Dad2. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. 98 -312247 pfam08655 DASH_Ask1 DASH complex subunit Ask1. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. Components of the DASH complex, including Dam1, Duo1, Spc34, Dad1 and Ask1, are essential and connect the centromere to the plus end of spindle microtubules. 64 -312248 pfam08656 DASH_Dad3 DASH complex subunit Dad3. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. 71 -312249 pfam08657 DASH_Spc34 DASH complex subunit Spc34. The DASH complex is a ~10 subunit microtubule-binding complex that is transferred to the kinetochore prior to mitosis. In Saccharomyces cerevisiae DASH forms both rings and spiral structures on microtubules in vitro. Components of the DASH complex, including Dam1, Duo1, Spc34, Dad1 and Ask1, are essential and connect the centromere to the plus end of spindle microtubules. 276 -312250 pfam08658 Rad54_N Rad54 N terminal. This is the N terminal of the DNA repair protein Rad54. 174 -312251 pfam08659 KR KR domain. This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centers in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group. 180 -312252 pfam08660 Alg14 Oligosaccharide biosynthesis protein Alg14 like. Alg14 is involved dolichol-linked oligosaccharide biosynthesis and anchors the catalytic subunit Alg13 to the ER membrane. 171 -312253 pfam08661 Rep_fac-A_3 Replication factor A protein 3. Replication factor A is involved in eukaryotic DNA replication, recombination and repair. 105 -285825 pfam08662 eIF2A Eukaryotic translation initiation factor eIF2A. This is a family of eukaryotic translation initiation factors. 194 -312254 pfam08663 HalX HalX domain. HalX is a domain of unknown function, previously (mis)annotated as HoxA-like transcriptional regulator. 65 -312255 pfam08664 YcbB YcbB domain. YcbB is a DNA-binding domain. 131 -312256 pfam08665 PglZ PglZ domain. This family is a member of the Alkaline phosphatase clan. 176 -337148 pfam08666 SAF SAF domain. This domain family includes a range of different proteins. Such as antifreeze proteins and flagellar FlgA proteins, and CpaB pilus proteins. 63 -285830 pfam08667 BetR BetR domain. This family includes an N-terminal helix-turn-helix domain. 144 -285831 pfam08668 HDOD HDOD domain. 196 -337149 pfam08669 GCV_T_C Glycine cleavage T-protein C-terminal barrel domain. This is a family of glycine cleavage T-proteins, part of the glycine cleavage multienzyme complex (GCV) found in bacteria and the mitochondria of eukaryotes. GCV catalyzes the catabolism of glycine in eukaryotes. The T-protein is an aminomethyl transferase. 94 -337150 pfam08670 MEKHLA MEKHLA domain. The MEKHLA domain shares similarity with the PAS domain and is found in the 3' end of plant HD-ZIP III homeobox genes, and bacterial proteins. 142 -312260 pfam08671 SinI Anti-repressor SinI. SinR is a pleiotropic regulator of several late growth processes. It is a tetrameric DNA binding protein whose activity is down-regulated thorough the formation of a SinI:SinR protein complex. When complexed with SinI, the SinR tetramer is disrupted such that is no longer able to bind DNA. 28 -337151 pfam08672 ANAPC2 Anaphase promoting complex (APC) subunit 2. The anaphase promoting complex or cyclosome (APC2) is an E3 ubiquitin ligase which is part of the SCF family of ubiquitin ligases. Ubiquitin ligases catalyze the transfer of ubiquitin from the ubiquitin conjugating enzyme (E2), to the substrate protein. 58 -312262 pfam08673 RsbU_N Phosphoserine phosphatase RsbU, N-terminal domain. RsbU is a phosphoserine phosphatase which acts as a positive regulator of the general stress-response factor of gram positive organisms, sigma-B. The phosphatase activity of RsbU is stimulated by association with the RsbT kinase. Deletions in the N terminal domain are deleterious to the activity of RsbU. 75 -285837 pfam08674 AChE_tetra Acetylcholinesterase tetramerisation domain. The acetylcholinesterase tetramerisation domain is found at the C-terminus and forms a left handed superhelix. 35 -285838 pfam08675 RNA_bind RNA binding domain. This domain corresponds to the RNA binding domain of Poly(A)-specific ribonuclease (PARN). 75 -337152 pfam08676 MutL_C MutL C terminal dimerization domain. MutL and MutS are key components of the DNA repair machinery that corrects replication errors. MutS recognizes mispaired or unpaired bases in a DNA duplex and in the presence of ATP, recruits MutL to form a DNA signaling complex for repair. The N terminal region of MutL contains the ATPase domain and the C terminal is involved in dimerization. 144 -337153 pfam08677 GP11 GP11 baseplate wedge protein. GP11 is a viral structural protein that connects short tail fibers to the baseplate. The tail region is responsible for attachment to the host bacteria during infection. 219 -312264 pfam08678 Rsbr_N Rsbr N terminal. Rsbr is a regulator of the RNA polymerase sigma factor subunit sigma(B). The structure of the N terminal domain belongs to the globin fold superfamily. 129 -337154 pfam08679 DsrD Dissimilatory sulfite reductase D (DsrD). The structure of the DsrD protein has shown it to contain a winged-helix motif similar to those found in DNA binding proteins. The structure suggests a possible role for DsrD in transcription of translation of genes which catalyze dissimilatory sulfite reduction. 65 -312266 pfam08680 DUF1779 TATA-box binding. TATA-box_bdg is a family of bacterial proteins. YwmB from Bacillus subtilis contains a circularly permuted TATA-box binding protein-like fold. Jian-Xiang Liu, Qi Xie, Jun Lin. Protein Structural Data Mining and Evolutionary Bioinformatic Analysis on Domains of TATA-box Binding Protein-like Fold. Life Science Journal 2014; 11(2): 298-302 (not yet in PubMed 27-02-2014). 183 -312267 pfam08681 DUF1778 Protein of unknown function (DUF1778). This is a family of uncharacterized proteins. The structure of one of the hypothetical proteins in this family has been solved and it forms a helix structure which may form interactions with DNA. 80 -285845 pfam08682 DUF1780 Putative endonuclease, protein of unknown function (DUF1780). This is a family of uncharacterized proteins. The structure of a hypothetical protein from Pseudomonas aeruginosa has shown it to adopt an alpha/beta fold, placing it in the Endonuclease superfamily/clan of restriction endonucleases. 208 -337155 pfam08683 CAMSAP_CKK Microtubule-binding calmodulin-regulated spectrin-associated. This is the C-terminal domain of a family of eumetazoan proteins collectively defined as calmodulin-regulated spectrin-associated, or CAMSAP, proteins. CAMSAP proteins carry an N-terminal region that includes the CH domain, a central region including a predicted coiled-coil and this C-terminal, or CKK, domain - defined as being present in CAMSAP, KIAA1078 and KIAA1543, The C-terminal domain is the part of the CAMSAP proteins that binds to microtubules. The domain appears to act by producing inhibition of neurite extension, probably by blocking microtubule function. CKK represents a domain that has evolved with the metazoa. The structure of a murine hypothetical protein from RIKEN cDNA has shown the domain to adopt a mainly beta barrel structure with an associated alpha-helical hairpin. 119 -312269 pfam08684 ocr DNA mimic ocr. The structure of an ocr protein from bacteriophage T7 has shown that this protein mimics the size and shape of a bent DNA molecule. ocr has also been shown to be an inhibitor of the complex type I DNA restriction enzymes. 100 -337156 pfam08685 GON GON domain. The GON domain is found in the ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin type-1 modules) family of proteins. It contains several conserved cysteine residues. 198 -337157 pfam08686 PLAC PLAC (protease and lacunin) domain. The PLAC (protease and lacunin) domain is a short six-cysteine region that is usually found at the C terminal of proteins. It is found in a range of proteins including PACE4 (paired basic amino acid cleaving enzyme 4) and the extracellular matrix protein lacunin. 31 -337158 pfam08687 ASD2 Apx/Shroom domain ASD2. This region is found in the actin binding protein Shroom which mediates apical contriction in epithelial cells and is required for neural tube closure. 282 -312273 pfam08688 ASD1 Apx/Shroom domain ASD1. This region is found in the actin binding protein Shroom which mediates apical contriction in epithelial cells and is required for neural tube closure. ASD1 has been implicated directly in F-actin binding. 170 -312274 pfam08689 Med5 Mediator complex subunit Med5. The mediator complex is required for the expression of nearly all RNA pol II dependent genes in Saccharomyces cerevisiae. Deletion of the MED5 gene leads to increased transcription of nuclear genes encoding components of the oxidative phosphorylation machinery, and decreased transcription of mitochondrial genes encoding components of the same machinery. There is no orthologue from pombe, and this subunit appears to be fungal specific. 1079 -312275 pfam08690 GET2 GET complex subunit GET2. This family corresponds to the GET complex subunit GET2. The GET complex is involved in the retrieval of ER resident proteins from the Golgi. 295 -312276 pfam08691 Nse5 DNA repair proteins Nse5 and Nse6. Nse5 and Nse6 are non essential nuclear proteins that are critical for chromosome segregation in fission yeast. Nse5 forms a dimer with Nse6 and facilitates DNA repair as part of the Smc5-Smc6 holocomplex. 504 -312277 pfam08692 Pet20 Mitochondrial protein Pet20. Pet20 is a mitochondrial protein which is thought to play a role in the correct assembly/maintenance of mitochondrial components. 133 -312278 pfam08693 SKG6 Transmembrane alpha-helix domain. SKG6/Axl2 are membrane proteins that show polarised intracellular localization. SKG6_Tmem is the highly conserved transmembrane alpha-helical domain of SKG6 and Axl2 proteins,. The full-length fungal protein has a negative regulatory function in cytokinesis. 38 -312279 pfam08694 UFC1 Ubiquitin-fold modifier-conjugating enzyme 1. Ubiquitin-like (UBL) post-translational modifiers are covalently linked to most, if not all, target protein(s) through an enzymatic cascade analogous to ubiquitylation, consisting of E1 (activating), E2 (conjugating), and E3 (ligating) enzymes. Ubiquitin-fold modifier 1 (Ufm1) a ubiquitin-like protein is activated by a novel E1-like enzyme, Uba5, by forming a high-energy thioester bond. Activated Ufm1 is then transferred to its cognate E2-like enzyme, Ufc1, in a similar thioester linkage. This family represents the E2-like enzyme. 155 -312280 pfam08695 Coa1 Cytochrome oxidase complex assembly protein 1. Coa1 is an inner mitochondrial membrane protein that associates with Shy1 and is required for cytochrome oxidase complex IV assembly. It contains a conserved hydrophobic segment (amino acids 74-92) with the potential to form a membrane-spanning helix. The N-terminus of Coa1 is rich in positively charged amino acids and could form an amphipathic alpha helix, characteristic of a mitochondrial presequence. A cleavage site for the mitochondrial processing peptidase is predicted adjacent to the presequence. Upon in vitro import into mitochondria, Coa1 is processed to a mature form, indicating that it possesses a cleavable presequence. The eukaryotic cytochrome oxidase complex consists of 12-13 subunits, with three mitochondrial encoded subunits, Cox1-Cox3, forming the core enzyme. Translation of the Cox1 transcript requires the two promoters, Pet309 and Mss51, and the latter has an additional role in translational elongation. Coa1 is necessary for linking the activity of Mss51 to Cox1 insertion into the assembly complex. 117 -337159 pfam08696 Dna2 DNA replication factor Dna2. Dna2 is a DNA replication factor with single-stranded DNA-dependent ATPase, ATP-dependent nuclease, ( 5'-flap endonuclease) and helicase activities. It is required for Okazaki fragment processing and is involved in DNA repair pathways. 204 -337160 pfam08698 Fcf2 Fcf2 pre-rRNA processing. This is a family of eukaryotic nucleolar proteins that are involved in pre-rRNA processing. 94 -337161 pfam08699 ArgoL1 Argonaute linker 1 domain. ArgoL1 is a region found in argonaute proteins. It normally co-occurs with pfam02179 and pfam02171. It is a linker region between the N-terminal and the PAZ domains. It contains an alpha-helix packed against a three-stranded antiparallel beta-sheet with two long beta-strands (beta8 and beta9) of the sheet spanning one face of the adjacent N and PAZ domains. L1 together with linker 2, L2, PAZ and ArgoN forms a compact global fold. 49 -337162 pfam08700 Vps51 Vps51/Vps67. This family includes a presumed domain found in a number of components of vesicular transport. The VFT tethering complex (also known as GARP complex, Golgi associated retrograde protein complex, Vps53 tethering complex) is a conserved eukaryotic docking complex which is involved recycling of proteins from endosomes to the late Golgi. Vps51 (also known as Vps67) is a subunit of VFT and interacts with the SNARE Tlg1. Cog1_N is the N-terminus of the Cog1 subunit of the eight-unit Conserved Oligomeric Golgi (COG) complex that participates in retrograde vesicular transport and is required to maintain normal Golgi structure and function. The subunits are located in two lobes and Cog1 serves to bind the two lobes together probably via the highly conserved N-terminal domain of approximately 85 residues. 86 -337163 pfam08701 GN3L_Grn1 GNL3L/Grn1 putative GTPase. Grn1 (yeast) and GNL3L (human) are putative GTPases which are required for growth and play a role in processing of nucleolar pre-rRNA. This family contains a potential nuclear localization signal. 72 -312286 pfam08702 Fib_alpha Fibrinogen alpha/beta chain family. Fibrinogen is a protein involved in platelet aggregation and is essential for the coagulation of blood. This domain forms part of the central coiled coiled region of the protein which is formed from two sets of three non-identical chains (alpha, beta and gamma). 142 -312287 pfam08703 PLC-beta_C PLC-beta C terminal. This domain corresponds to the alpha helical C terminal domain of phospholipase C beta. 176 -312288 pfam08704 GCD14 tRNA methyltransferase complex GCD14 subunit. GCD14 is a subunit of the tRNA methyltransferase complex and is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. 242 -312289 pfam08705 Gag_p6 Gag protein p6. HIV protein p6 contains two late-budding domains (L domains) which are short sequence motifs essential for viral particle release. p6 interacts with the endosomal sorting complex and represents a docking site for several cellular and binding factors. The PTAP motif interacts with the cellular budding factor TSG101. This domain is also found in some chimpanzee immunodeficiency virus (SIV-cpz) proteins. 37 -312290 pfam08706 D5_N D5 N terminal like. This domain is found in D5 proteins of DNA viruses and bacteriophage P4 DNA primases phages. 145 -312291 pfam08707 PriCT_2 Primase C terminal 2 (PriCT-2). This alpha helical domain is found at the C terminal of primases. 76 -312292 pfam08708 PriCT_1 Primase C terminal 1 (PriCT-1). This alpha helical domain is found at the C terminal of primases. 67 -312293 pfam08709 Ins145_P3_rec Inositol 1,4,5-trisphosphate/ryanodine receptor. This domain corresponds to the ligand binding region on inositol 1,4,5-trisphosphate receptor, and the N terminal region of the ryanodine receptor. Both receptors are involved in Ca2+ release. They can couple to the activation of neurotransmitter-gated receptors and voltage-gated Ca2+ channels on the plasma membrane, thus allowing the endoplasmic reticulum discriminate between different types of neuronal activity. 209 -285872 pfam08710 nsp9 nsp9 replicase. nsp9 is a single-stranded RNA-binding viral protein likely to be involved in RNA synthesis. Its structure comprises of a single beta barrel. 111 -337164 pfam08711 Med26 TFIIS helical bundle-like domain. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species {1-2]. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Mediator exists in two major forms in human cells: a smaller form that interacts strongly with pol II and activates transcription, and a large form that does not interact strongly with pol II and does not directly activate transcription. Notably, the 'small' and 'large' Mediator complexes differ in their subunit composition: the Med26 subunit preferentially associates with the small, active complex, whereas cdk8, cyclin C, Med12 and Med13 associate with the large Mediator complex. This family includesthe C terminal region of a number of eukaryotic hypothetical proteins which are homologous to the Saccharomyces cerevisiae protein IWS1. IWS1 is known to be an Pol II transcription elongation factor and interacts with Spt6 and Spt5. 52 -337165 pfam08712 Nfu_N Scaffold protein Nfu/NifU N terminal. This domain is found at the N-terminus of NifU and NifU related proteins, and in the human Nfu protein. Both of these proteins are thought to be involved in the the assembly of iron-sulphur clusters. 88 -337166 pfam08713 DNA_alkylation DNA alkylation repair enzyme. Proteins in this family are predicted to be DNA alkylation repair enzymes. The structure of a hypothetical protein in this family shows it to adopt a supercoiled alpha helical structure. 212 -312297 pfam08714 Fae Formaldehyde-activating enzyme (Fae). Formaldehyde-activating enzyme is an enzyme required for energy metabolism and formaldehyde detoxification. It catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin. 158 -312298 pfam08715 Viral_protease Papain like viral protease. This family of viral proteases are similar to the papain protease and are required for proteolytic processing of the replicase polyprotein. The structure of this protein has shown it adopts a fold similar that of de-ubiquitinating enzymes. 318 -285878 pfam08716 nsp7 nsp7 replicase. nsp7 (non structural protein 7) has been implicated in viral RNA replication and is predominantly alpha helical in structure. It forms a hexadecameric supercomplex with nsp7 that adopts a hollow cylinder-like structure. The dimensions of the central channel and positive electrostatic properties of the cylinder imply that it confers processivity on RNA-dependent RNA polymerase. 83 -285879 pfam08717 nsp8 nsp8 replicase. Viral nsp8 (non structural protein 8) forms a hexadecameric supercomplex with nsp7 that adopts a hollow cylinder-like structure. The dimensions of the central channel and positive electrostatic properties of the cylinder imply that it confers processivity on RNA-dependent RNA polymerase. 198 -337167 pfam08718 GLTP Glycolipid transfer protein (GLTP). GLTP is a cytosolic protein that catalyzes the intermembrane transfer of glycolipids. 136 -337168 pfam08719 DUF1768 Domain of unknown function (DUF1768). This is a domain of unknown function. It is alpha helical in structure. The GO annotation for this protein suggests it is involved in nematode larval development and has a positive regulation on growth rate. 156 -72144 pfam08720 Hema_stalk Influenza C hemagglutinin stalk. This domain corresponds to the stalk segment of hemagglutinin in influenza C virus. It forms a coiled coil structure. 175 -312301 pfam08721 Tn7_Tnp_TnsA_C TnsA endonuclease C terminal. The Tn7 transposase is composed of proteins TnsA and TnsB. DNA breakage at the 5' end of the transposon is carried out by TnsA, and breakage and joining at the 3' end is carried out by TnsB. The C terminal domain of TnsA binds DNA. 81 -337169 pfam08722 Tn7_Tnp_TnsA_N TnsA endonuclease N terminal. The Tn7 transposase is composed of proteins TnsA and TnsB. DNA breakage at the 5' end of the transposon is carried out by TnsA, and breakage and joining at the 3' end is carried out by TnsB. The N terminal domain of TnsA is catalytic. 83 -72147 pfam08723 Gag_p15 Gag protein p15. Gag p15 is a viral membrane-binding matrix protein which is alpha helical in structure. 123 -312303 pfam08724 Rep_N Rep protein catalytic domain like. Adeno-associated virus (AAV) Replication (Rep) protein is essential for viral replication and integration. The catalytic domain has DNA binding and endonuclease activity. 187 -337170 pfam08725 Integrin_b_cyt Integrin beta cytoplasmic domain. Integrins are a group of transmembrane proteins which function as extracellular matrix receptors and in cell adhesion. Integrins are ubiquitously expressed and are heterodimeric, each composed of an alpha and beta subunit. Several variations of the the alpha and beta subunits exist, and association of different alpha and beta subunits can have different a different binding specificity. This domain corresponds to the cytoplasmic domain of the beta subunit. 43 -312305 pfam08726 EFhand_Ca_insen Ca2+ insensitive EF hand. EF hands are helix-loop-helix binding motifs involved in the regulation of many cellular processes. EF hands usually bind to Ca2+ ions which causes a major conformational change that allows the protein to interact with its designated targets. This domain corresponds to an EF hand which has partially or entirely lost its calcium-binding properties. The calcium insensitive EF hand is still able to mediate protein-protein recognition. 69 -312306 pfam08727 P3A Poliovirus 3A protein like. This domain is found in positive-strand RNA viruses. The 3A protein is a critical component of the poliovirus replication complex, and is also an inhibitor of host cell ER to Golgi transport. 59 -337171 pfam08728 CRT10 CRT10. CRT10 is a transcriptional regulator of ribonucleotide reductase (RNR) genes. RNR catalyzes the rate limiting step in dNTP synthesis. Mutations in CRT10 have been shown to enhance hydroxyurea resistance. 618 -337172 pfam08729 HUN HPC2 and ubinuclein domain. HPC2 (Histone promoter control 2) is required for cell-cycle regulation of histone transcription. It regulates transcription of the histone genes during the S-phase of the cell cycle by repressing transcription at other cell cycle stages. HPC2 mutants display synthetic interactions with FACT complex which allows RNA Pol II to elongate through nucleosomes. Hpc2 is one of the proteins of one of the multi-subunit complexes that mediate replication- independent nucleosome assembly, along with histone chaperone proteins. the Hip4 sequence from SCH. pombe is an integral component of this complex that is required for transcriptional silencing at multiple loci. HPC2, ubinuclein/yemanuclein, and the cell cycle regulator FLJ25778 share a conserved domain that is predicted to bind histone tails. This domain is also referred to as the HRD or Hpc2-related domain. 52 -312309 pfam08730 Rad33 Rad33. Rad33 is involved in nucleotide excision repair (NER). NER is the main pathway for repairing DNA lesions induced by UV. Cells deleted for RAD33 display intermediate UV sensitivity that is epistatic with NER. 165 -285890 pfam08731 AFT Transcription factor AFT. AFT (activator of iron transcription) is an iron regulated transcriptional activator that regulates the expression of genes involved in iron homeostasis. This family includes the paralogous pair of transcription factors AFT1 and AFT2. 90 -312310 pfam08732 HIM1 HIM1. HIM1 (high induction of mutagenesis protein 1) plays a role in the control of spontaneous and induced mutagenesis. It is thought to participate in the control of processing of mutational intermediates appearing during error-prone bypass of DNA damage. 169 -312311 pfam08733 PalH PalH/RIM21. PalH (also known as RIM21) is a transmembrane protein required for proteolytic cleavage of Rim101/PacC transcription factors which are activated by C terminal proteolytic processing. Rim101/PacC family proteins play a key role in pH-dependent responses and PalH has been implicated as a pH sensor. 320 -337173 pfam08734 GYD GYD domain. This protein is found in a range of bacteria. It is usually less than 100 amino acids in length. The function of the protein is unknown. It may belong to the dimeric alpha/beta barrel superfamily. 89 -337174 pfam08735 DUF1786 Putative pyruvate format-lyase activating enzyme (DUF1786). This family is annotated as pyruvate formate-lyase activating enzyme (EC:1.97.1.4) in UniProt. It is not clear where this annotation comes from. 251 -337175 pfam08736 FA FERM adjacent (FA). This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a subset of FERM containing protein. The region has been hypothesized to play a role in regulatory adaptation, based on similarity to other protein kinase substrates. 43 -337176 pfam08737 Rgp1 Rgp1. Rgp1 forms heterodimer with Ric1 (pfam07064) which associates with Golgi membranes and functions as a guanyl-nucleotide exchange factor. 414 -312316 pfam08738 Gon7 Gon7 family. In S. cerevisiae Gon7 is a member of the KEOPS protein complex. A protein complex proposed to be involved in transcription and promoting telomere uncapping and telomere elongation. 105 -337177 pfam08740 BCS1_N BCS1 N terminal. This domain is found at the N terminal of the mitochondrial ATPase BSC1. It encodes the import and intramitochondrial sorting for the protein. 181 -312318 pfam08741 YwhD YwhD family. This family of proteins are currently uncharacterized. They are around 170 amino acids in length. 162 -337178 pfam08742 C8 C8 domain. This domain contains 8 conserved cysteine residues, but this family only contains 7 of them to overlaps with other domains. It is found in disease-related proteins including von Willebrand factor, Alpha tectorin, Zonadhesin and Mucin. It is often found on proteins containing pfam00094 and pfam01826. 68 -337179 pfam08743 Nse4_C Nse4 C-terminal. Nse4 is a component of the Smc5/6 DNA repair complex. It forms interactions with Smc5 and Nse1. The exact function of this highly conserved C-terminal domain is not known. 89 -285901 pfam08744 NOZZLE Plant transcription factor NOZZLE. NOZZLE is a transcription factor that plays a role in patterning the proximal-distal and adaxial-abaxial axes. 335 -312321 pfam08745 PIN_5 PINc domain ribonuclease. This is a family of bacterial and archaeal PINc domains. PIN domains are characterized by the conservation of three acidic residues, possibly four, an Asp at residue 13, a Glu at 63, and then Asps at 172 and 194 in UniProtKB:Q58360. 205 -337180 pfam08746 zf-RING-like RING-like domain. This is a zinc finger domain that is related to the C3HC4 RING finger domain (pfam00097). 42 -337181 pfam08747 DUF1788 Domain of unknown function (DUF1788). Putative uncharacterized domain in proteins of length around 200 amino acids. 118 -312324 pfam08748 Phage_TAC_4 Phage tail assembly chaperone. This is a family of phage tail assembly chaperone proteins largely from phage T1 Gp40. 124 -337182 pfam08750 CNP1 CNP1-like family. This family of proteins are likely to be lipoproteins. CNP1 (cryptic neisserial protein) has been expressed in E. coli and shown to be localized periplasmicly. 135 -337183 pfam08751 TrwC TrwC relaxase. Relaxases are DNA strand transferases which function during the conjugative cell to cell DNA transfer. TrwC binds to the origin of transfer (oriT) and melts the double helix. 283 -312327 pfam08752 COP-gamma_platf Coatomer gamma subunit appendage platform subdomain. COPI-coated vesicles function in retrograde transport from the Golgi to the ER, and in intra-Golgi transport. This is the platform subdomain of the coatomer gamma subunit appendage domain. It carries a protein-protein interaction site at UniProt:P53620, residue W776, which in yeast binds to the ARFGAP Glo3p, and in mammalian gamma-COP binds to a Glo3p orthologue, ARFGAP2. 145 -337184 pfam08753 NikR_C NikR C terminal nickel binding domain. NikR is a transcription factor that regulates nickel uptake. It consists of two dimeric DNA binding domains separated by a tetrameric regulatory domain that binds nickel. This domain corresponds to the C terminal regulatory domain which contains four nickel binding sites at the tetramer interface. 74 -337185 pfam08755 YccV-like Hemimethylated DNA-binding protein YccV like. YccV is a hemimethylated DNA binding protein which has been shown to regulate dnaA gene expression. The structure of one of the hypothetical proteins in this family has been solved and it forms a beta sheet structure with a terminating alpha helix. 95 -312330 pfam08756 YfkB YfkB-like domain. This protein is adjacent to YfkA in B. subtilis. In other bacterial species it is fused to this protein. As YfkA contains a Radical SAM domain it suggests this domain is interacts with them. 149 -337186 pfam08757 CotH CotH kinase protein. Members of this family include the spore coat protein H (cotH). This protein is an atypical protein kinase that phosphorylates CotB and CotG. 319 -312332 pfam08758 Cadherin_pro Cadherin prodomain like. Cadherins are a family of proteins that mediate calcium dependent cell-cell adhesion. They are activated through cleavage of a prosequence in the late Golgi. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions. 90 -337187 pfam08759 GT-D Glycosyltransferase GT-D fold. This domain is found at the C-terminus of proteins such as the probable glycosyltransferase Gly that also contain the glycosyl transferase domain at the N-terminus. It is also found N-terminal in numerous putative glycosyltransferases such as GalT1. GalT1 has been shown to catalyze the third step of Fap1 glycosylation. This domain is structurally distinct from all known GT folds of glycosyltransferases and contains a metal binding site. This new glycosyltransferase fold has been named GT-D. 224 -337188 pfam08760 DUF1793 Domain of unknown function (DUF1793). This presumed domain is found at the C-terminus of a glutaminase protein from fungi. This domain is also found as a single domain protein in Bacteroides thetaiotaomicron. 169 -337189 pfam08761 dUTPase_2 dUTPase. 2-Deoxyuridine 5-triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate (EC:3.6.1.23). Members of this family have a novel all-alpha fold and are unrelated to the all-beta fold found in dUTPases of the majority of organisms. This family contains both dUTPase homologs of dUTPase including dCTPase of phage T4. 161 -255023 pfam08762 CRPV_capsid CRPV capsid protein like. This is a family of capsid proteins found in positive stranded ssRNA viruses such as cricket paralysis virus (CRPV). It forms an all beta sheet structure. 199 -337190 pfam08763 Ca_chan_IQ Voltage gated calcium channel IQ domain. Voltage gated calcium channels control cellular calcium entry in response to changes in membrane potential. The isoleucine-glutamine (IQ) motif in the voltage gated calcium channel IQ domain interacts with hydrophobic pockets of Ca2+/calmodulin. The interaction regulates two self-regulatory calcium dependent feedback mechanism, calcium dependent inactivation (CDI), and calcium-dependent facilitation (CDF). 74 -312335 pfam08764 Coagulase Staphylococcus aureus coagulase. Staphylococcus aureus secretes a cofactor called coagulase. Coagulase is an extracellular protein that forms a complex with human prothrombin, and activates it without the usual proteolytic cleavages. The resulting complex directly initiates blood clotting. 279 -337191 pfam08765 Mor Mor transcription activator family. Mor (Middle operon regulator) is a sequence specific DNA binding protein. It mediates transcription activation through its interactions with the C-terminal domains of the alpha and sigma subunits of bacterial RNA polymerase. The N terminal region of Mor is the dimerization region, and the C terminal contains a helix-turn-helix motif which binds DNA. 107 -337192 pfam08766 DEK_C DEK C terminal domain. DEK is a chromatin associated protein that is linked with cancers and autoimmune disease. This domain is found at the C terminal of DEK and is of clinical importance since it can reverse the characteristic abnormal DNA-mutagen sensitivity in fibroblasts from ataxia-telangiectasia (A-T) patients. The structure of this domain shows it to be homologous to the E2F/DP transcription factor family. This domain is also found in chitin synthase proteins and in protein phosphastases. 55 -312338 pfam08767 CRM1_C CRM1 C terminal. CRM1 (also known as Exportin1) mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES). CRM1 forms a complex with the NES containing protein and the small GTPase Ran. This region forms an alpha helical structure formed by six helical hairpin motifs that are structurally similar to the HEAT repeat, but share little sequence similarity to the HEAT repeat. 321 -337193 pfam08768 DUF1794 Domain of unknown function (DUF1794). This domain forms a beta barrel structure but the function is unknown. The GO annotation for this protein indicates that the protein has a function in nematode larval development and has a positive regulation on growth rate. 153 -312340 pfam08769 Spo0A_C Sporulation initiation factor Spo0A C terminal. The response regulator Spo0A is comprised of a phophoacceptor domain and a transcription activation domain. This domain corresponds to the transcription activation domain and forms an alpha helical structure comprising of 6 alpha helices. The structure contains a helix-turn-helix and binds DNA. 104 -337194 pfam08770 SoxZ Sulphur oxidation protein SoxZ. SoxZ forms an anti parallel beta structure and forms a complex with SoxY. Sulphur oxidation occurs at the thiol of a conserved cysteine residue of the SoxY subunit. 90 -337195 pfam08771 FRB_dom FKBP12-rapamycin binding domain. The macrolide antibiotic rapamycin and the cytosol protein FKBP12 can form a complex which specifically inhibits the TORC1 complex, leading to growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FKBP12-rapamycin binding domain (FRB) of the TOR proteins. This entry represents the FRB domain. 98 -312343 pfam08772 NOB1_Zn_bind Nin one binding (NOB1) Zn-ribbon like. This domain corresponds to a zinc ribbon and is found on the RNA binding protein NOB1 (Nin one binding). 72 -312344 pfam08773 CathepsinC_exc Cathepsin C exclusion domain. Cathepsin C (dipeptidyl peptidase I) is the physiological activator of a group of serine proteases. This domain corresponds to the exclusion domain whose structure excludes the approach of a polypeptide apart from its termini. It forms an enclosed beta barrel structure composed from 8 anti-parallel beta strands. Based on a structural comparison and interaction data, it is suggested that the exclusion domain originates from a metallo-protease inhibitor. 117 -312345 pfam08774 VRR_NUC VRR-NUC domain. 114 -337196 pfam08775 ParB ParB family. ParB is a component of the par system which mediates accurate DNA partition during cell division. It recognizes A-box and B-box DNA motifs. ParB forms an asymmetric dimer with 2 extended helix-turn-helix (HTH) motifs that bind to A-boxes. The HTH motifs emanate from a beta sheet coiled coil DNA binding module. Both DNA binding elements are free to rotate around a flexible linker, this enables them to bind to complex arrays of A- and B-box elements on adjacent DNA arms of the looped partition site. 128 -337197 pfam08776 VASP_tetra VASP tetramerisation domain. Vasodilator-stimulated phosphoprotein (VASP) is an actin cytoskeletal regulatory protein. This region corresponds to the tetramerisation domain which forms a right handed alpha helical coiled coil structure. 36 -337198 pfam08777 RRM_3 RNA binding motif. This domain is found in protein La which functions as an RNA chaperone during RNA polymerase III transcription, and can also stimulate translation initiation. It contains a five stranded beta sheet which forms an atypical RNA recognition motif. 102 -285931 pfam08778 HIF-1a_CTAD HIF-1 alpha C terminal transactivation domain. Hypoxia inducible factor-1 alpha (HIF-1 alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1. It plays a key role in cellular response to low oxygen tension. This region corresponds to the C terminal transactivation domain. 37 -285932 pfam08779 SARS_X4 SARS coronavirus X4 like. The structure of the coronavirus X4 protein (also known as 7a and U122) shows similarities to the immunoglobulin like fold and suggests a binding activity to integrin I domains. In SARS-CoV- infected cells, the X4 protein is expressed and retained intra-cellularly within the Golgi network. X4 has been implicated to function during the replication cycle of SARS-CoV. 81 -337199 pfam08780 NTase_sub_bind Nucleotidyltransferase substrate binding protein like. Nucleotidyltransferases (EC 2.7.7) comprise a large enzyme family with diverse roles in polynucleotide synthesis and modification. This domain is structurally related to kanamycin nucleotidyltransferase (KNTase) and forms a complex with HI0073, a sequence homolog of the nucleotide-binding domain of this nucleotidyltransferase superfamily. 126 -337200 pfam08781 DP Transcription factor DP. DP forms a heterodimer with E2F and regulates genes involved in cell cycle progression. The transcriptional activity of E2F is inhibited by the retinoblastoma protein which binds to the E2F-DP heterodimer and negatively regulates the G1-S transition. 138 -337201 pfam08782 c-SKI_SMAD_bind c-SKI Smad4 binding domain. c-SKI is an oncoprotein that inhibits TGF-beta signaling through interaction with Smad proteins. This domain binds to Smad4 92 -337202 pfam08783 DWNN DWNN domain. DWNN is a ubiquitin like domain found at the N-terminus of the RBBP6 family of splicing-associated proteins. The DWNN domain is independently expressed in higher vertebrates so it may function as a novel ubiquitin-like modifier of other proteins. 73 -285937 pfam08784 RPA_C Replication protein A C terminal. This domain corresponds to the C terminal of the single stranded DNA binding protein RPA (replication protein A). RPA is involved in many DNA metabolic pathways including DNA replication, DNA repair, recombination, cell cycle and DNA damage checkpoints. 106 -337203 pfam08785 Ku_PK_bind Ku C terminal domain like. The non-homologous end joining (NHEJ) pathway is one method by which double stranded breaks in chromosomal DNA are repaired. Ku is a component of a multi-protein complex that is involved in the NHEJ. Ku has affinity for DNA ends and recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This domain is found at the C terminal of Ku which binds to DNA-PKcs. 117 -337204 pfam08786 DcrB DcrB. DcrB is a bacterial protein required for phages C1 and C6 adsorption. It may be involved in the opening or formation of diffusion channels in the outer membrane. Structurally, it consist of an antiparallel beta sheet with some alpha helical regions. 126 -337205 pfam08787 Alginate_lyase2 Alginate lyase. Alginate lyases are enzymes that degrade the linear polysaccharide alignate. They cleave the glycosidic linkage of alignate through a beta-elimination reaction. This family forms an all beta fold and is different to all alpha fold of pfam05426. 224 -312356 pfam08788 NHR2 NHR2 domain like. The NHR2 (Nervy homology 2) domain is found in the ETO protein where it mediates oligomerization and protein-protein interactions. It forms an alpha-helical tetramer. 67 -285942 pfam08789 PBCV_basic_adap PBCV-specific basic adaptor domain. The small PBCV-specific basic adaptor domain is found fused to S/T protein kinases and the 2-Cysteine domain. 38 -312357 pfam08790 zf-LYAR LYAR-type C2HC zinc finger. This C2HC zinc finger is found in LYAR proteins, which are involved in cell growth regulation. 28 -285944 pfam08792 A2L_zn_ribbon A2L zinc ribbon domain. This zinc ribbon domain is found associated with some viral A2L transcription factors. 33 -285945 pfam08793 2C_adapt 2-cysteine adaptor domain. The virus-specific 2-cysteine adaptor domain is found fused to OTU/A20-like peptidases and S/T protein kinases. The domain associations of these proteins indicate that they might function as viral adaptors connecting the kinases and OTU/A20 peptidases to specific targets. 35 -285946 pfam08794 Lipoprot_C Lipoprotein GNA1870 C terminal like. GNA1870 is a surface exposed lipoprotein in Neisseria meningitidis that and is a potent antigen of Meningococcus. The structure of the C terminal domain consists of an anti-parallel beta barrel overlaid by a short alpha helical region. 155 -312358 pfam08795 DUF1796 Putative papain-like cysteine peptidase (DUF1796). 149 -312359 pfam08796 DUF1797 Protein of unknown function (DUF1797). This is a domain of unknown function. It forms a central anti-parallel beta sheet with flanking alpha helical regions. 67 -337206 pfam08797 HIRAN HIRAN domain. The HIRAN domain (HIP116, Rad5p N-terminal) is found in the N-terminal regions of the SWI2/SNF2 proteins typified by HIP116 and Rad5p. The HIRAN domain is found as a standalone protein in several bacteria and prophages, or fused to other catalytic domains, such as a nuclease of the restriction endonuclease fold and TDP1-like DNA phosphoesterases, in the eukaryotes. It has been predicted that this domain functions as a DNA-binding domain that probably recognizes features associated with damaged DNA or stalled replication forks 94 -337207 pfam08798 CRISPR_assoc CRISPR associated protein. This domain forms an anti-parallel beta strand structure with flanking alpha helical regions. 204 -337208 pfam08799 PRP4 pre-mRNA processing factor 4 (PRP4) like. This small domain is found on PRP4 ribonuleoproteins. PRP4 is a U4/U6 small nuclear ribonucleoprotein that is involved in pre-mRNA processing. 29 -337209 pfam08800 VirE_N VirE N-terminal domain. This presumed domain is found at the N-terminus of VirE proteins. 133 -337210 pfam08801 Nucleoporin_N Nup133 N terminal like. Nup133 is a nucleoporin that is crucial for nuclear pore complex (NPC) biogenesis. The N terminal forms a seven-bladed beta propeller structure. This family now contains other sized nucleoporins, including Nup155, Nup8, Nuo132, Nup15 and Nup170. 424 -312365 pfam08802 CytB6-F_Fe-S Cytochrome B6-F complex Fe-S subunit. The cytochrome B6-F complex mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. This domain corresponds to the alpha helical transmembrane domain of the cytochrome B6-F complex iron-sulphur subunit. 39 -337211 pfam08803 ydhR Putative mono-oxygenase ydhR. ydhR is a homodimeric protein that comprises of a central four-stranded beta sheet and four surrounding alpha helices. It shows structural homology to the ActVA-Orf6 and YgiN proteins which indicates it could be a mono-oxygenase. 96 -285956 pfam08804 gp32 gp32 DNA binding protein like. gp32 is a single stranded (ss) DNA binding protein in bacteriophage T4 that is essential for DNA replication, recombination and repair. The ssDNA binding cleft of gp32 comprises regions from three structural subdomains. 93 -285957 pfam08805 PilS PilS N terminal. Type IV pili are bacterial virulence-associated adhesins that promote bacterial attachment to host cells. In Salmonella typhi, the structural pilin protein PilS interacts with the cystic fibrosis transmembrane conductance regulator. Mutagenesis studies suggest that residues on an alpha-beta loop and the C terminal disulphide-bonded region of PilS might be involved in binding specificity of the pilus. 137 -312367 pfam08806 Sep15_SelM Sep15/SelM redox domain. Sep15 and SelM are eukaryotic selenoproteins that have a thioredoxin-like domain and a surface accessible active site redox motif. This suggests that they function as thiol-disulphide isomerases involved in disulphide bond formation in the endoplasmic reticulum. Structurally it resembles the thioredoxin-fold. 76 -312368 pfam08807 DUF1798 Bacterial domain of unknown function (DUF1798). This domain is found in many hypothetical proteins. The structure of one of the proteins in this family has been solved and it adopts an all alpha helical fold. 108 -337212 pfam08808 RES RES domain. This presumed domain contains 3 highly conserved polar groups that could form an active site. These are an arginine, glutamate and serine, hence the RES domain. The domain is found widely distributed in bacteria. The domain is about 150 residues in length. 156 -337213 pfam08809 DUF1799 Phage related hypothetical protein (DUF1799). Members of this family are about 100 amino acids in length and are uncharacterized. 75 -312371 pfam08810 KapB Kinase associated protein B. This bacterial protein forms an anti-parallel beta sheet with an extending alpha helical region. 111 -337214 pfam08811 DUF1800 Protein of unknown function (DUF1800). This is a family of large bacterial proteins of unknown function. 440 -312373 pfam08812 YtxC YtxC-like family. This family includes proteins similar to B. subtilis YtxC an uncharacterized protein. 213 -312374 pfam08813 Phage_tail_3 Phage tail tube protein, TTP. This is a family of phage tail tube proteins. A few members have an associated bacterial Ig-like domain, pfam02368, at their C-terminus. 165 -312375 pfam08814 XisH XisH protein. The fdxN element, along with two other DNA elements, is excised from the chromosome during heterocyst differentiation in cyanobacteria. The xisH as well as the xisF and xisI genes are required. 133 -312376 pfam08815 Nuc_rec_co-act Nuclear receptor coactivator. This region is found on eukaryotic nuclear receptor coactivators and forms an alpha helical structure. 48 -337215 pfam08816 Ivy Inhibitor of vertebrate lysozyme (Ivy). This bacterial family is a strong inhibitor of vertebrate lysozyme. 117 -312378 pfam08817 YukD WXG100 protein secretion system (Wss), protein YukD. The YukD protein family members participate in the formation of a translocon required for the secretion of WXG100 proteins (pfam06013) in monoderm bacteria, with the WXG100 protein secretion system (Wss). Like the cytoplasmic protein EsaC in Staphylococcus aureus, YukD was hypothesized to play a role of a chaperone. YukD adopts a ubiquitin-like fold. Usually, ubiquitin covalently binds to protein and flags them for protein degradation, however conjugation assays have indicated that the classical YukD lacks the capacity for covalent bond formation with other proteins. In contrast to the situation in firmicutes, YukD-like proteins in actinobacteria are often fused to a transporter involved in the ESAT-6/ESX/Wss secretion pathway. Members of the YukD family are also associated in gene neighborhoods with other enzymatic members of the ubiquitin signaling and degradation pathway such as the E1, E2 and E3 trienzyme complex that catalyze ubiquitin transfer to substrates, and the JAB family metallopeptidases that are involved in its release. This suggests that a subset of the YukD family in bacteria are conjugated and released from proteins as in the eukaryotic ubiquitin-mediated signaling and degradation pathway. 77 -337216 pfam08818 DUF1801 Domain of unknown function (DU1801). This large family of bacterial proteins is uncharacterized. They contain a presumed domain about 110 amino acids in length. 96 -312380 pfam08819 DUF1802 Domain of unknown function (DUF1802). The function of this family is unknown. This region is found associated with a pfam04471 suggesting they could be part of a restriction modification system.. 175 -337217 pfam08820 DUF1803 Domain of unknown function (DUF1803). This small domain is found in one or two copies in proteins from bacteria. The function of this domain is unknown. 91 -337218 pfam08821 CGGC CGGC domain. This putative domain contains a quite highly conserved sequence of CGGC in its central region. The domain has many conserved cysteines and histidines suggestive of a zinc binding function. 103 -312382 pfam08822 DUF1804 Protein of unknown function (DUF1804). This family of bacterial protein is uncharacterized. 164 -255058 pfam08823 PG_binding_2 Putative peptidoglycan binding domain. This family may be a peptidoglycan binding domain. 74 -312383 pfam08824 Serine_rich Serine rich protein interaction domain. This is a serine rich domain that is found in the docking protein p130(cas) (Crk-associated substrate). This domain folds into a four helix bundle which is associated with protein-protein interactions. 156 -337219 pfam08825 E2_bind E2 binding domain. E1 and E2 enzymes play a central role in ubiquitin and ubiquitin-like protein transfer cascades. This is an E2 binding domain that is found on NEDD8 activating E1 enzyme. The domain resembles ubiquitin, and recruits the catalytic core of the E2 enzyme Ubc12 in a similar manner to that in which ubiquitin interacts with ubiquitin binding domains. 81 -117396 pfam08826 DMPK_coil DMPK coiled coil domain like. This domain is found in the myotonic dystrophy protein kinase (DMPK) and adopts a coiled coil structure. It plays a role in dimerization. 61 -312385 pfam08827 DUF1805 Domain of unknown function (DUF1805). This domain is found in bacteria and archaea and has an N terminal tetramerisation region that is composed of beta sheets. 58 -337220 pfam08828 DSX_dimer Doublesex dimerization domain. Doublesex (DSX) is a transcription factor that regulates somatic sexual differences in Drosophila. The structure of this domain has revealed a novel dimeric arrangement of ubiquitin-associated folds that has not previously been identified in a transcription factor. 60 -337221 pfam08829 AlphaC_N Alpha C protein N terminal. The alpha C protein (ACP) is found in Streptococcus and acts as an invasin which plays a role in the internalisation and translocation of the organism across human epithelial surfaces. Group B Streptococcus is the leading cause of diseases including bacterial pneumonia, sepsis and meningitis. The N terminal of ACP is associated with virulence and forms a beta sandwich and a three helix bundle. ACP consists of an N-terminal domain (170 amino acids) followed by a variable number of tandem repeats (82 amino acids each) and a C-terminal domain (45 amino acids) containing an LPXTG peptidoglycan-anchoring motif. This entry is the N-terminal domain of ACP (NtACP). NtACP can be further divided into two structurally distinct domains, D1 and D2. D1, the more distal (amino-terminal) portion, consists of a beta sandwich with strong structural homology to fibronectin's integrin-binding region (FnIII10). D2 consists of three antiparallel alpha helix coils containing a portion of the glycosaminoglycan (GAG)-binding domain adjacent to the repeat region. NtACP binds to heparin and GAGs only when it is covalently associated with the adjacent repeat region. NtACP's D1 region contains a K144- T145-D146 (KTD) motif, located within a loop region that is structurally analogous to the loop containing the RGD integrin-binding motif in FnIII10. Single mutation within the KTD motif (D146A), present in the D1 domain, reduces NtACP binding to a1b integrion. The a1b1-integrin is one of four collagen-binding I-domain-containing integrins. Structural analysis of the D1 domain, in particular the region containing the putative integrin-binding loop and KTD motif, shares a strong structural homology with the FnIII10's integrin-binding region. Amino acid sequence alignment of Alps indicates that KTD is highly conserved. 106 -312388 pfam08830 DUF1806 Protein of unknown function (DUF1806). This is a bacterial family of uncharacterized proteins. The structure of one of the proteins in this family has been solved and it adopts a beta barrel-like structure. 112 -312389 pfam08831 MHCassoc_trimer Class II MHC-associated invariant chain trimerisation domain. The class II associated invariant chain peptide is required for folding and localization of MHC class II heterodimers. This domain is involved in trimerisation of the ectoderm and interferes with DM/class II binding. The trimeric protein forms a cylindrical shape which is thought to be important for interactions between the invariant chain and class II molecules. 69 -312390 pfam08832 SRC-1 Steroid receptor coactivator. This domain is found in steroid/nuclear receptor coactivators and contains two LXXLL motifs that are involved in receptor binding. The family includes SRC-1/NcoA-1, NcoA-2/TIF2, pCIP/ACTR/GRIP-1/AIB1. 83 -312391 pfam08833 Axin_b-cat_bind Axin beta-catenin binding domain. This domain is found on the scaffolding protein Axin which is a component of the beta-catenin destruction complex. It competes with the tumor suppressor adenomatous polyposis coli protein (APC) for binding to beta-catenin. 44 -337222 pfam08837 DUF1810 Protein of unknown function (DUF1810). This is a family of uncharacterized proteins. The structure of one of the members in this family has been solved and it adopts a mainly alpha helical structure. 136 -312393 pfam08838 DUF1811 Protein of unknown function (DUF1811). This is a bacterial family of uncharacterized proteins. Some of the proteins are annotated as being transcriptional regulators. The structure of one of the proteins in this family has revealed a beta-barrel like structure with helix-turn-helix like motif. 100 -312394 pfam08839 CDT1 DNA replication factor CDT1 like. CDT1 is a component of the replication licensing system and promotes the loading of the mini-chromosome maintenance complex onto chromatin. Geminin is an inhibitor of CDT1 and prevents inappropriate re-initiation of replication on an already fired origin. This region of CDT1 binds to Geminin. 173 -312395 pfam08840 BAAT_C BAAT / Acyl-CoA thioester hydrolase C terminal. This catalytic domain is found at the C terminal of acyl-CoA thioester hydrolases and bile acid-CoA:amino acid N-acetyltransferases (BAAT). 211 -312396 pfam08841 DDR Diol dehydratase reactivase ATPase-like domain. Diol dehydratase (DDH, EC:4.2.1.28) and its isofunctional homolog glycerol dehydratase (GDH, EC.4.2.1.30) are enzymes which catalyze the conversion of glycerol 1,2-propanediol, and 1,2-ethanediol to aldehydes. These reactions require coenzyme B12. Cleavage of the Co-C bond of coenzyme B12 by substrates or coenzyme analogues results in inactivation during which coenzyme B12 remains tightly bound to the apoenzyme. This family comprises of the large subunit of the diol dehydratase and glycerol dehydratase reactivating factors whose function is to reactivate the holoenzyme by exchange of a damaged cofactor for intact coenzyme. 328 -337223 pfam08842 Mfa2 Fimbrillin-A associated anchor proteins Mfa1 and Mfa2. This family of proteins may be lipoproteins principally from bacilli. They are between 300 and 400 residues. Many Bacteroides-like bacterial species, including Porphyromonas gingivalis, the causal agent of periodontal infection, carry at least two types of fimbriae, namely FimA and Mfa1 fimbriae, following the names of their major subunit proteins. Normally, FimA fimbriae are long filaments that are easily detached from cells, whereas Mfa1 fimbriae are short filaments that are tightly bound to cells; however, in the absence of Mfa2 protein, the Mfa1 fimbriae are also very long and are not attached. Mfa2 and Mfa1 are associated with each other in whole P. gingivalis cells to the extent that Mfa2 is located on the cell surface and probably associated with Mfa1 fimbriae in such a way that it anchors the Mfa1 fimbriae to the cell surface and regulates Mfa1 filament length. 275 -337224 pfam08843 AbiEii Nucleotidyl transferase AbiEii toxin, Type IV TA system. This family was recently identified as belonging to the nucleotidyltransferase superfamily. AbiEii is the cognate toxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 232 -285990 pfam08844 DUF1815 Domain of unknown function (DUF1815). This presumed domain is about 100 amino acids in length and is functionally uncharacterized. 101 -337225 pfam08845 SymE_toxin Toxin SymE, type I toxin-antitoxin system. SymE (SOS-induced yjiW gene with similarity to MazE ) is an SOS-induced toxin. It inhibits cell growth, decreases protein synthesis and increases RNA degradation. It may play a role in the recycling of RNAs damaged under SOS response-inducing conditions. It is predicted to have an AbrB fold, similar to that of the antitoxin MazE. Its translation is repressed by the antisense RNA SymR, which acts as an antitoxin. 52 -312400 pfam08846 DUF1816 Domain of unknown function (DUF1816). Crocosphaera watsonii CpcD is associated with the pfam01383 domain suggesting this presumed domain could have a role in phycobilisomes. 65 -337226 pfam08847 Crr6 Chlororespiratory reduction 6. Chlororespiratory reduction 6 (Crr6) is a factor required for the assembly or stabilisation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. 150 -312402 pfam08848 DUF1818 Domain of unknown function (DUF1818). This presumed domain is found in a small family of cyanobacterial protein. These proteins are functionally uncharacterized. 112 -337227 pfam08849 DUF1819 Putative inner membrane protein (DUF1819). These proteins are functionally uncharacterized. Several are annotated as putative inner membrane proteins. 181 -337228 pfam08850 DUF1820 Domain of unknown function (DUF1820). This family includes small functionally uncharacterized proteins around 100 amino acids in length. 98 -312405 pfam08852 DUF1822 Protein of unknown function (DUF1822). This family of proteins are functionally uncharacterized. 365 -312406 pfam08853 DUF1823 Domain of unknown function (DUF1823). This presumed domain is functionally uncharacterized. 111 -312407 pfam08854 DUF1824 Domain of unknown function (DUF1824). This uncharacterized family of proteins are principally found in cyanobacteria. 125 -286000 pfam08855 DUF1825 Domain of unknown function (DUF1825). This uncharacterized family of proteins are principally found in cyanobacteria. 103 -312408 pfam08856 DUF1826 Protein of unknown function (DUF1826). These proteins are functionally uncharacterized. 197 -337229 pfam08857 ParBc_2 Putative ParB-like nuclease. This domain is probably distantly related to pfam02195. Suggesting these uncharacterized proteins have a nuclease function. 156 -312410 pfam08858 IDEAL IDEAL domain. This short domain is found at the C-terminus of proteins in the UPF0302 family. The domain is named after the sequence of the most conserved region in some members. The function of this domain is unknown. 37 -337230 pfam08859 DGC DGC domain. This domain appears to be a zinc binding domain from the conservation of four potential chelating cysteines. The domain is named after a conserved central motif. The function of this domain is unknown. 97 -312412 pfam08860 DUF1827 Domain of unknown function (DUF1827). This presumed domain has no known function. 90 -312413 pfam08861 DUF1828 Domain of unknown function DUF1828. This presumed domain is functionally uncharacterized. 90 -312414 pfam08862 DUF1829 Domain of unknown function DUF1829. This short domain is usually associated with pfam08861. 87 -312415 pfam08863 YolD YolD-like protein. Members of this family are functionally uncharacterized. However it has been predicted that these proteins are functionally equivalent to the UmuD subunit of polymerase V from gram-negative bacteria. This family has been shown to belong to the WYL-like superfamily. 94 -312416 pfam08864 UPF0302 UPF0302 domain. This family is known as UPF0302. It is currently uncharacterized. 105 -312417 pfam08865 DUF1830 Domain of unknown function (DUF1830). This family of short proteins is functionally uncharacterized. 66 -337231 pfam08866 DUF1831 Putative amino acid metabolism. Solution of the structure of the Lactobacillus plantarum protein from this family has indicated a potential new fold with remote similarities to TBP-like (TATA-binding protein) structures. This similarity, in combination with genomic context analysis, leads us to propose an involvement in amino-acid metabolism. The potentially novel fold is an alpha + beta fold comprising two beta sheets packed against a single helix. The enzyme is present in the cytosol. 110 -312419 pfam08867 FRG FRG domain. This presumed domain contains a conserved N-terminal (F/Y)RG motif. It is functionally uncharacterized. 93 -312420 pfam08868 YugN YugN-like family. This family of proteins related to B. subtilis YugN are functionally uncharacterized. 130 -312421 pfam08869 XisI XisI protein. The fdxN element, along with two other DNA elements, is excised from the chromosome during heterocyst differentiation in cyanobacteria. The xisH as well as the xisF and xisI genes are required. 103 -337232 pfam08870 DndE DNA sulphur modification protein DndE. DndE is a small protein of 126 residues. It is a putative carboxylase homologous to NCAIR synthetase. It is encoded by an operon that is associated with a sulphur-based modification to DNA. 110 -312423 pfam08872 KGK KGK domain. This presumed domain is found in one or two copies in cyanobacterial proteins. It is named after a short sequence motif. 110 -312424 pfam08873 DUF1834 Domain of unknown function (DUF1834). This family of proteins are functionally uncharacterized. One member is the Gp37 protein from the FluMu prophage. 204 -312425 pfam08874 DUF1835 Domain of unknown function (DUF1835). This family of proteins are functionally uncharacterized. 122 -286019 pfam08875 DUF1833 Domain of unknown function (DUF1833). This family of proteins are functionally uncharacterized and are predicted to adopt an all-beta fold. They are often found in gene neighborhoods containing genes for an NlpC peptidase and a Ubiquitin domain predicted to be involved in tail assembly. 150 -337233 pfam08876 DUF1836 Domain of unknown function (DUF1836). This family of proteins are functionally uncharacterized. 102 -312427 pfam08877 MepB MepB protein. MepB is a functionally uncharacterized protein in the mepRAB gene cluster of Staphylococcus aureus. 122 -337234 pfam08878 DUF1837 Domain of unknown function (DUF1837). This family of proteins are functionally uncharacterized. 230 -337235 pfam08879 WRC WRC. The WRC domain, named after the conserved Trp-Arg-Cys motif, contains two distinctive features: a putative nuclear localization signal and a zinc-finger motif (C3H). It is suggested that the WRC domain functions in DNA binding. 42 -337236 pfam08880 QLQ QLQ. The QLQ domain is named after the conserved Gln, Leu, Gln motif. The QLQ domain is found at the N-terminus of SWI2/SNF2 protein, which has been shown to be involved in protein-protein interactions. This domain has thus been postulated to be involved in mediating protein interactions. 35 -337237 pfam08881 CVNH CVNH domain. CyanoVirin-N Homology domains are found in the sugar-binding antiviral protein cyanovirin-N (CVN) as well as filamentous ascomycetes and in the fern Ceratopteris richardii. 100 -312432 pfam08882 Acetone_carb_G Acetone carboxylase gamma subunit. Acetone carboxylase is the key enzyme of bacterial acetone metabolism, catalyzing the condensation of acetone and CO(2) to form acetoacetate. 114 -337238 pfam08883 DOPA_dioxygen Dopa 4,5-dioxygenase family. This family of proteins are related to a DOPA 4,5-dioxygenase that is involved in synthesis of betalain. DOPA-dioxygenase is the key enzyme involved in betalain biosynthesis. It converts 3,4-dihydroxyphenylalanine to betalamic acid, a yellow chromophore. 103 -312434 pfam08884 Flagellin_D3 Flagellin D3 domain. This domain is found in the central portion bacterial flagellin FliC. The domain contains a structural motif called a beta-folium fold. Although no specific function is assigned to this domain its deletion leads to a reduction in filament stability. 88 -337239 pfam08885 GSCFA GSCFA family. This family of proteins are functionally uncharacterized. They have been named GSCFA after a highly conserved N-terminal motif in the alignment. Distant similarity to the pfam00657 lipases suggests these proteins are likely to be enzymes. 237 -337240 pfam08886 GshA Glutamate-cysteine ligase. This is a rare family of glutamate--cysteine ligases, EC:6.3.2.2, demonstrated first in Thiobacillus ferrooxidans and present in a few other Proteobacteria. It is the first of two enzymes for glutathione biosynthesis. It is also called gamma-glutamylcysteine synthetase. The structure of this family has been solved, and is similar to that of human glutathione synthetase and very different to gamma-glutamylcysteine synthetase from Escherichia coli. 402 -312437 pfam08887 GAD-like GAD-like domain. This domain is functionally uncharacterized, but it appears to be distantly related to the GAD domain pfam02938. 102 -337241 pfam08888 HopJ HopJ type III effector protein. Pathovars of Pseudomonas syringae interact with their plant hosts via the action of Hrp outer protein (Hop) effector proteins, injected into plant cells by the type III secretion system. The proteins in this family are called HopJ after the original member HopPmaJ. 108 -337242 pfam08889 WbqC WbqC-like protein family. This family of proteins are functionally uncharacterized. However it is found in an O-antigen gene cluster in E. coli and other bacteria suggesting a role in O-antigen production. Feng et al. suggest that wbnG may code for a glycine transferase. 216 -312440 pfam08890 Phage_TAC_5 Phage XkdN-like tail assembly chaperone protein, TAC. This is a family of phage tail assembly chaperone proteins, TACs, from Gram-positive bacteriophages, in particular PBSX from Firmicutes. 135 -337243 pfam08891 YfcL YfcL protein. This family of proteins are functionally uncharacterized. THey are related to the short YfcL protein from E. coli. 85 -337244 pfam08892 YqcI_YcgG YqcI/YcgG family. This family of proteins are functionally uncharacterized. The family include YqcI and YcgG from B. subtilis. The alignment contains a conserved FPC motif at the N-terminus and CPF at the C-terminus. 211 -337245 pfam08893 DUF1839 Domain of unknown function (DUF1839). This family of proteins are functionally uncharacterized. 311 -312444 pfam08894 DUF1838 Protein of unknown function (DUF1838). This family of proteins are functionally uncharacterized. 235 -337246 pfam08895 DUF1840 Domain of unknown function (DUF1840). This family of proteins are functionally uncharacterized. 102 -312446 pfam08896 DUF1842 Domain of unknown function (DUF1842). This domain is found at the N-terminus of proteins that are functionally uncharacterized. 109 -337247 pfam08897 DUF1841 Domain of unknown function (DUF1841). This family of proteins are functionally uncharacterized. 135 -312448 pfam08898 DUF1843 Domain of unknown function (DUF1843). This domain is found at the C-terminus of a family of proteins that are functionally uncharacterized. The presumed domain is about 60 amino acid residues in length and is found independently in some proteins. 52 -337248 pfam08899 DUF1844 Domain of unknown function (DUF1844). This family of proteins are functionally uncharacterized. 72 -312450 pfam08900 DUF1845 Domain of unknown function (DUF1845). This family of proteins are functionally uncharacterized. 215 -337249 pfam08901 DUF1847 Protein of unknown function (DUF1847). This family of proteins are functionally uncharacterized. THey contain 4 N-terminal cysteines that may form a zinc binding domain. 157 -337250 pfam08902 DUF1848 Domain of unknown function (DUF1848). This family of proteins are functionally uncharacterized. The C-terminus contains a cluster of cysteines that are similar to the iron-sulfur cluster found at the N-terminus of pfam04055. 263 -312453 pfam08903 DUF1846 Domain of unknown function (DUF1846). This family of proteins are functionally uncharacterized. Some members of the family are annotated as ATP-dependent peptidases. However, we can find no support for this annotation. 489 -312454 pfam08904 DUF1849 Domain of unknown function (DUF1849). This family of proteins are functionally uncharacterized. 245 -312455 pfam08905 DUF1850 Domain of unknown function (DUF1850). This family of proteins are functionally uncharacterized. Some members of this family appear to be misannotated as RocC an amino acid transporter from B. subtilis. 87 -312456 pfam08906 DUF1851 Domain of unknown function (DUF1851). This domain is found at the C-terminus of a variety of proteins that are functionally uncharacterized. 72 -337251 pfam08907 DUF1853 Domain of unknown function (DUF1853). This family of proteins are functionally uncharacterized. 286 -337252 pfam08908 DUF1852 Domain of unknown function (DUF1852). This family of proteins are functionally uncharacterized. 321 -337253 pfam08909 DUF1854 Domain of unknown function (DUF1854). This potential domain is functionally uncharacterized. It is found at the C-terminus of a number of ATP transporter proteins suggesting this domain may be involved in ligand binding. 126 -312460 pfam08910 Aida_N Aida N-terminus. This is the N-terminal domain of the axin interactor, dorsalization-associated protein family. 103 -337254 pfam08911 NUP50 NUP50 (Nucleoporin 50 kDa). Nucleoporin 50 kDa (NUP50) acts as a cofactor for the importin-alpha:importin-beta heterodimer, which in turn allows for transportation of many nuclear-targeted proteins through nuclear pore complexes. The C-terminus of NUP50 binds importin-beta through RAN-GTP, the N-terminus binds the C-terminus of importin-alpha, while a central domain binds importin-beta. NUP50:importin-alpha:importin-beta then binds cargo and can stimulate nuclear import. The N-terminal domain of NUP50 is also able to actively displace nuclear localization signals from importin-alpha. 69 -337255 pfam08912 Rho_Binding Rho Binding. Rho Binding Domain is responsible for the recognition and binding of Rho binding domain-containing proteins (such as ROCK) to Rho, resulting in activation of the GTPase which in turn modulates the phosphorylation of various signalling proteins. This domain is within an amphipathic alpha-helical coiled-coil and interacts with Rho through predominantly hydrophobic interactions. 68 -312463 pfam08913 VBS Vinculin Binding Site. Vinculin binding sites are predominantly found in talin and talin-like molecules, enabling binding of vinculin to talin, stabilizing integrin-mediated cell-matrix junctions. Talin, in turn, links integrins to the actin cytoskeleton. The consensus sequence for Vinculin binding sites is LxxAAxxVAxxVxxLIxxA, with a secondary structure prediction of four amphipathic helices. The hydrophobic residues that define the VBS are themselves 'masked' and are buried in the core of a series of helical bundles that make up the talin rod. 125 -286058 pfam08914 Myb_DNA-bind_2 Rap1 Myb domain. The Rap1 Myb domain adopts a canonical three-helix bundle tertiary structure, with the second and third helices forming a helix-turn-helix variant motif. The function of this domain is unclear: it may either interact with DNA via an adaptor protein or it may be only involved in protein-protein interactions. 65 -312464 pfam08915 tRNA-Thr_ED Archaea-specific editing domain of threonyl-tRNA synthetase. Archaea-specific editing domain of threonyl-tRNA synthetase, with marked structural similarity to D-amino acids deacylases found in eubacteria and eukaryotes. This domain can bind D-amino acids, and ensures high fidelity during translation. It is especially responsible for removing incorrectly attached serine from tRNA-Thr. The domain forms a fold that can be be defined as two layers of beta-sheets (a three-stranded sheet and a five-stranded sheet), with two alpha-helices located adjacent to the five-stranded sheet. 136 -337256 pfam08916 Phe_ZIP Phenylalanine zipper. The phenylalanine zipper consists of aromatic side chains from ten phenylalanine residues that are stacked within a hydrophobic core. This zipper mediates dimerization of various proteins, such as APS, SH2-B and Lnk. 57 -312466 pfam08917 ecTbetaR2 Transforming growth factor beta receptor 2 ectodomain. The Transforming growth factor beta receptor 2 ectodomain is a compact fold consisting of nine beta-strands and a single helix stabilized by a network of six intra strand disulphide bonds. The folding topology includes a central five-stranded antiparallel beta-sheet, eight-residues long at its centre, covered by a second layer consisting of two segments of two-stranded antiparallel beta-sheets (beta1-beta4, beta3-beta9). 103 -337257 pfam08918 PhoQ_Sensor PhoQ Sensor. The PhoQ Sensor is required for the virulence of various Gram-negative bacteria by allowing interaction of PhoPQ with the intracellular membrane, resulting in remodelling of the bacterial cell surface and subsequent bacterial resistance to host antimicrobial peptides. The domain contains a major flat acidic surface, which binds to at least 3 calcium ions, neutralising the domain's negative charge and allowing interaction with the negatively charged membrane. 179 -337258 pfam08919 F_actin_bind F-actin binding. The F-actin binding domain forms a compact bundle of four antiparallel alpha-helices, which are arranged in a left-handed topology. Binding of F-actin to the F-actin binding domain may result in cytoplasmic retention and subcellular distribution of the protein, as well as possible inhibition of protein function. 108 -337259 pfam08920 SF3b1 Splicing factor 3B subunit 1. This family consists of several eukaryotic splicing factor 3B subunit 1 proteins, which associate with p14 through a C-terminus beta-strand that interacts with beta-3 of the p14 RNA recognition motif (RRM) beta-sheet, which is in turn connected to an alpha-helix by a loop that makes extensive contacts with both the shorter C-terminal helix and RRM of p14. This subunit is required for 'A' splicing complex assembly (formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA) and 'E' splicing complex assembly. 114 -312470 pfam08921 DUF1904 Domain of unknown function (DUF1904). This domain is found in a set of hypothetical bacterial proteins. 107 -312471 pfam08922 DUF1905 Domain of unknown function (DUF1905). This domain is found in a set of hypothetical bacterial proteins. 78 -312472 pfam08923 MAPKK1_Int Mitogen-activated protein kinase kinase 1 interacting. Mitogen-activated protein kinase kinase 1 interacting protein is a small subcellular adaptor protein required for MAPK signaling and ERK1/2 activation. The overall topology of this domain has a central five-stranded beta-sheet sandwiched between a two alpha-helix and a one alpha-helix layer. 119 -312473 pfam08924 DUF1906 Domain of unknown function (DUF1906). This domain is found in a set of uncharacterized hypothetical bacterial proteins. 124 -337260 pfam08925 DUF1907 Domain of Unknown Function (DUF1907). The structure of this domain displays an alpha-beta-beta-alpha four layer topology, with an HxHxxxxxxxxxH motif that coordinates a zinc ion, and an acetate anion at a site that likely supports the enzymatic activity of an ester hydrolase. 278 -312475 pfam08926 DUF1908 Domain of unknown function (DUF1908). This domain is found in a set of hypothetical/structural eukaryotic proteins. 282 -312476 pfam08928 DUF1910 Domain of unknown function (DUF1910). This domain is found in a set of hypothetical bacterial proteins. 117 -312477 pfam08929 DUF1911 Domain of unknown function (DUF1911). This domain is found in a set of hypothetical bacterial proteins. 105 -286073 pfam08930 DUF1912 Domain of unknown function (DUF1912). This domain has no known function. It is found in various Streptococcal proteins. 84 -286074 pfam08931 Caudo_bapla_RBP Receptor-binding protein of phage tail base-plate Siphoviridae, head. Caudo_bapla_RBP is a family of proteins expressed from ORF18 of the Lactococcus P2-like phage. This is one of three protein species, shoulders, neck, and head, that form the phage tail base-plate. In the overall structure this head domain exists as six trimers, and is necessary for specific recognition of the receptors at the host cell surface. Siphoviridae are the P2-like Caudovirales of Lactococcus. This family now includes DUF1914. Family Baseplate, pfam16774, is the ORF15 or shoulder component of the base-plate complex. 262 -255115 pfam08933 DUF1864 Domain of unknown function (DUF1864). This domain has no known function. It is found in various hypothetical and conserved domain proteins. 387 -312478 pfam08934 Rb_C Rb C-terminal domain. The Rb C-terminal domain is required for high-affinity binding to E2F-DP complexes and for maximal repression of E2F-responsive promoters, thereby acting as a growth suppressor by blocking the G1-S transition of the cell cycle. This domain has a strand-loop-helix structure, which directly interacts with both E2F1 and DP1, followed by a tail segment that lacks regular secondary structure. 151 -286076 pfam08935 VP4_2 Viral protein VP4 subunit. This domain is predominantly found in viral proteins from the family Picornaviridae. It is VP4 of the viral polyprotein which, in poliovirus, is part of the capsid that consists of 60 copies each of four proteins VP1, VP2, VP3, and VP4 arranged on an icosahedral lattice. VP4 is on the inside and differs from the others in being small, myristoylated and having an extended structure. Productive infection involves the externalisation of the VP4, which is cleaved from the rest, along with the N-terminus of VP1. There thus seem to be three stages of the virus, ie a multi-step process for cell entry involving RNA translocation through a membrane channel formed by the externalised N termini of VP1. 84 -312479 pfam08936 CsoSCA Carboxysome Shell Carbonic Anhydrase. Carboxysome Shell Carbonic Anhydrase is a bacterial carbonic anhydrase localized in the carboxysome, where it converts bicarbonate ions to carbon dioxide for use in carbon fixation. It contains three domains, these being: (1) an N-terminal domain composed primarily of four alpha-helices; (2) a catalytic domain containing a tightly bound zinc ion and (3) a C-terminal domain with weak structural similarity to the catalytic domain. 455 -312480 pfam08937 DUF1863 MTH538 TIR-like domain (DUF1863). This domain adopts the flavodoxin fold, that is, five parallel beta-strands and four helical segments. The structure is a three-layer sandwich with alpha-1 and alpha-4 on one side of the beta-sheet, and alpha-2 and alpha-3 on the other side. Probable role in signal transduction as a phosphorylation-independent conformational switch protein. This domain is similar to the TIR domain. 120 -312481 pfam08938 HBS1_N HBS1 N-terminus. This domain is found at the N-terminus of HBS1 proteins. It interacts with the ribosomal protein rpS3 at the mRNA entry site. 77 -337261 pfam08939 DUF1917 Domain of unknown function (DUF1917). This domain is found in various hypothetical and basophilic leukaemia proteins. It has no known function. 251 -312483 pfam08940 DUF1918 Domain of unknown function (DUF1918). This domain, found in various hypothetical bacterial proteins, has no known function. 57 -312484 pfam08941 USP8_interact USP8 interacting. This domain interacts with the UBP deubiquitinating enzyme USP8. 179 -312485 pfam08942 DUF1919 Domain of unknown function (DUF1919). This domain has no known function. It is found in various hypothetical and putative bacterial proteins. 196 -312486 pfam08943 CsiD CsiD. This family consists of various bacterial proteins pertaining to the non-haem Fe(II)-dependent oxygenase family. Exact function is unknown, but a putative role includes involvement in the control of utilisation of gamma-aminobutyric acid. 294 -312487 pfam08944 p47_phox_C NADPH oxidase subunit p47Phox, C terminal domain. The C terminal domain of the phagocyte NADPH oxidase subunit p47Phox contains conserved PxxP motifs that allow binding to SH3 domains, with subsequent activation of the NADPH oxidase, and generation of superoxide, which plays a crucial role in host defense against microbial infection. 32 -312488 pfam08945 Bclx_interact Bcl-x interacting, BH3 domain. This domain is a long alpha helix, required for interaction with Bcl-x. It is found in BAM, Bim and Bcl2-like protein 11. This domain is also known as the BH3 domain between residues 146 and 161. 35 -337262 pfam08946 Osmo_CC Osmosensory transporter coiled coil. The osmosensory transporter coiled coil is a C-terminal domain found in various bacterial osmoprotective transporters, such as ProP, Proline/betaine transporter, Proline permease 2 and the citrate proton symporters. It adopts an antiparallel coiled-coil structure, and is essential for osmosensory and osmoprotectant transporter function. 44 -312490 pfam08947 BPS BPS (Between PH and SH2). The BPS (Between PH and SH2) domain, comprised of 2 beta strands and a C-terminal helix, is an approximately 45 residue region found in the adaptor proteins Grb7/10/14 that mediates inhibition of the tyrosine kinase domain of the insulin receptor by binding of the N-terminal portion of the BPS domain to the substrate peptide groove of the kinase, acting as a pseudosubstrate inhibitor. 45 -286089 pfam08948 DUF1859 Domain of unknown function (DUF1859). This domain has no known function. It is predominantly found in the N-terminus of bacteriophage spike proteins. 126 -312491 pfam08949 DUF1860 Domain of unknown function (DUF1860). This domain has no known function. It is predominantly found in the C-terminus of bacteriophage spike proteins. 219 -312492 pfam08950 DUF1861 Protein of unknown function (DUF1861). This hypothetical protein, found in bacteria and in the eukaryote Leishmania, has no known function. 294 -337263 pfam08951 EntA_Immun Enterocin A Immunity. Gram-positive lactobacilli produce bacteriocins to kill closely-related competitor species. To protect themselves from the bacteriocidal activity of this molecule they co-express an immunity protein (for discussion of this operon see Bacteriocin_IIc pfam10439). The immunity protein structure is a soluble, cytoplasmic, antiparallel four alpha-helical globular bundle with a fifth, more flexible and more divergent C-terminal helical hair-pin. The C-terminal hair-pin recognizes the C-terminus of the producer bacteriocin and this interaction is sufficient to dis-orient the bacteriocin within the membrane and close up the permeabilising pore that on its own the bacteriocin creates. These immunity proteins interact in the same way with other bacteriocins, family Bacteriocin_II, pfam01721. Since many enterococci can produce more than one bacteriocin it seems likely that the whole operon can be carried on transferable plasmids. 67 -286093 pfam08952 DUF1866 Domain of unknown function (DUF1866). This domain, found in Synaptojanin, has no known function. 146 -312494 pfam08953 DUF1899 Domain of unknown function (DUF1899). This set of domains is found in various eukaryotic proteins. Function is unknown. 66 -286095 pfam08954 Trimer_CC Trimerisation motif. This domain is predominantly found in the structural protein coronin, and is duplicated in some sequences. It appears to have the function of stabilizing the topology of short coiled-coils in proteins. 52 -312495 pfam08955 BofC_C BofC C-terminal domain. The C-terminal domain of the bacterial protein 'bypass of forespore C' contains a three-stranded beta-sheet and three alpha-helices. Its exact function is, as yet, unknown. 74 -312496 pfam08956 DUF1869 Domain of unknown function (DUF1869). This domain is found in a set of hypothetical bacterial proteins. 56 -286098 pfam08958 DUF1871 Domain of unknown function (DUF1871). This set of hypothetical proteins is produced by prokaryotes pertaining to the Bacillus genus. 77 -312497 pfam08960 DUF1874 Domain of unknown function (DUF1874). This domain is found in a set of hypothetical viral and bacterial proteins. 100 -312498 pfam08961 NRBF2 Nuclear receptor-binding factor 2, autophagy regulator. NRBF2 plays an essential role in autophagy, the cellular pathway that degrades long-lived proteins and other cytoplasmic contents through lysosomes. NRBF2 binds Atg14L - a Beclin-binding protein - directly via the MIT domain and enhances Atg14L-linked Vps34 kinase (a class III phosphatidylinositol-3 kinase) activity and autophagy induction. 197 -312499 pfam08962 DUF1876 Domain of unknown function (DUF1876). This domain is found in a set of hypothetical bacterial proteins. 82 -312500 pfam08963 DUF1878 Protein of unknown function (DUF1878). This domain is found in a set of hypothetical bacterial proteins. 110 -312501 pfam08964 Crystall_3 Beta/Gamma crystallin. This family of beta/gamma crystallins includes the N-terminal domain of Dictyostelium discoideum Calcium-dependent cell adhesion molecule 1, which mediates cell-cell adhesion through homophilic interactions. 86 -286104 pfam08965 DUF1870 Domain of unknown function (DUF1870). This domain is found in a set of hypothetical bacterial proteins. It contains a helix-turn-helix domain so may be a DNA-binding protein. 117 -337264 pfam08966 DUF1882 Domain of unknown function (DUF1882). This domain is found in a set of hypothetical bacterial proteins. 69 -286106 pfam08967 DUF1884 Domain of unknown function (DUF1884). This domain is found in a set of hypothetical bacterial proteins. It shows similarity to the N-terminus of ATP-synthase. 92 -312503 pfam08968 DUF1885 Domain of unknown function (DUF1885). This domain is found in a set of hypothetical proteins produced by bacteria of the Bacillus genus. 131 -312504 pfam08969 USP8_dimer USP8 dimerization domain. This domain is predominantly found in the amino terminal region of Ubiquitin carboxyl-terminal hydrolase 8 (USP8). It forms a five helical bundle that dimerizes. 113 -312505 pfam08970 Sda Sporulation inhibitor A. Members of this protein family contain two antiparallel alpha helices that are linked by a highly structured inter-helix loop to form a helical hairpin; the structure is stabilized by numerous hydrophobic and electrostatic interactions. These sporulation inhibitors are antikinases that bind to the histidine kinase KinA phosphotransfer domain and act as a molecular barricade that inhibit productive interaction between the ATP binding site and the phosphorylatable KinA His residue. This results in the inhibition of sporulation (by preventing phosphorylation of spo0A). 44 -286110 pfam08971 GlgS Glycogen synthesis protein. Members of this family are involved in glycogen synthesis in Enterobacteria. The structure of the polypeptide chain comprises a bundle of two parallel amphipathic helices, alpha-1 and alpha-3, and a short hydrophobic helix alpha-2 sandwiched between them. 64 -312506 pfam08972 DUF1902 Domain of unknown function (DUF1902). Members of this family of prokaryotic proteins adopt a fold consisting of one alpha-helix and four beta-strands. Their function has not, as yet, been elucidated. 75 -337265 pfam08973 TM1506 Domain of unknown function (DUF1893). A member of the deaminase fold that binds an unknown ligand in the crystal structure. The protein is ADP-ribosylated at a conserved aspartate. Contextual analysis suggests that the domain is likely to bind NAD or ADP ribose either to sense redox states or to function as a regulatory ADP ribosyltransferase. 125 -312508 pfam08974 DUF1877 Domain of unknown function (DUF1877). This domain is found in a set of hypothetical bacterial proteins. 161 -337266 pfam08975 2H-phosphodiest Domain of unknown function (DUF1868). This group of 2H-phosphodiesterases comprises a single family typified by the protein mlr3352 from M.loti. Members are also present in various alpha-proteobacteria, Synechocystis, Streptococcus and Chilo iridescent virus. The presence of a member of this predominantly bacterial group in a large eukaryotic DNA virus represents a potential case of horizontal transfer from a bacterial source into a virus. Several proteins of bacterial origin have been noticed in the insect viruses (L.M.Iyer, E.V.Koonin and L.Aravind, unpublished observations and these appear to have been acquired from endo-symbiotic or parasitic bacteria that share the same host cells with the viruses. Presence of 2H proteins in the proteomes of large DNA viruses (e.g. T4 57B protein and the Fowl-pox virus FPV025) may point to some role for these proteins in regulating the viral tRNA metabolism. Each member of this family contains an internal duplication, each of which contains an HXTX motif that defines the family. 116 -312509 pfam08976 EF-hand_11 EF-hand domain. This domain is found predominantly in DJ binding proteins. 105 -286116 pfam08977 BOFC_N Bypass of Forespore C, N terminal. The N-terminal domain of 'bypass of forespore C' is composed of a four-stranded beta-sheet covered by an alpha-helix. The beta-sheet has a beta2-beta1-beta4-beta3 topology, where strands beta1 and beta2 and strands beta3 and beta4 are connected by beta-turns, whereas strands beta2 and beta3 are joined by an alpha-helix that runs across one face of the beta-sheet. This domain is similar to the third immunoglobulin G-binding domain of protein G from Streptococcus, the latter belonging to a large and diverse group of cell surface-associated proteins that bind to immunoglobulins. It has been hypothesized that this domain may be a mediator of protein-protein interactions involved in proteolytic events at the cell surface. 49 -117544 pfam08978 Reoviridae_Vp9 Reoviridae VP9. This domain is found in various VP9 viral outer-coat proteins. It has no known function. 280 -312510 pfam08979 DUF1894 Domain of unknown function (DUF1894). Members of this family have an important role in methanogenesis. They assume an alpha-beta globular structure consisting of six beta-strands and three alpha-helices forming the secondary structural topological arrangement of alpha1-beta1-alpha2-beta2-beta3-beta4-beta5-beta6-alpha3. 85 -312511 pfam08980 DUF1883 Domain of unknown function (DUF1883). This domain is found in a set of hypothetical bacterial proteins. 89 -337267 pfam08982 DUF1857 Domain of unknown function (DUF1857). This domain has no known function. It is found in various hypothetical bacterial and fungal proteins. 129 -312513 pfam08983 DUF1856 Domain of unknown function (DUF1856). This domain has no known function. It is found in the C-terminal segment of various vasopressin receptors. 48 -337268 pfam08984 DUF1858 Domain of unknown function (DUF1858). This domain has no known function. It is found in various hypothetical bacterial proteins. 56 -337269 pfam08985 DP-EP DP-EP family. The DP-EP family of proteins, formerly known as DUF1888 have been shown to catalyze a cleavage of an internal peptide bond. 120 -337270 pfam08986 DUF1889 Domain of unknown function (DUF1889). This domain is found in a set of hypothetical bacterial proteins. 118 -312517 pfam08987 DUF1892 Protein of unknown function (DUF1892). Members of this family, that are synthesized by Saccharomycetes, adopt a structure consisting of a four-stranded beta-sheet, with strand order beta2-beta1-beta4-beta3, and two alpha-helices, with an overall topology of beta-beta-alpha-beta-beta-alpha. They have no known function. 105 -286125 pfam08988 T3SS_needle_E Type III secretion system, cytoplasmic E component of needle. T3SS_needle_E is a family of proteins from the operon that builds and controls the needle of the injection system of type III secretion. The YscE protein, produced by the pathogen Yersinia, assumes a secondary structure composed of two anti-parallel alpha-helices separated by a flexible loop. The family is cytoplasmic and may help to stabilize and prevent early polymerization of the needle-protein F. 65 -337271 pfam08989 DUF1896 Domain of unknown function (DUF1896). This domain is found in a set of hypothetical bacterial proteins. 142 -337272 pfam08990 Docking Erythronolide synthase docking. The N terminal docking domain found in modular polyketide synthase assumes an alpha-helical structure, wherein two alpha-helices are connected by a short loop. Two such N-terminal domains dimerize to form amphipathic parallel alpha-helical coiled coils: dimerization is essential for protein function. 25 -312519 pfam08991 MTCP1 Mature-T-Cell Proliferation I type. Members of this family adopt a coiled coil structure, with two antiparallel alpha-helices that are tightly strapped together by two disulfide bridges at each end. The protein sequence shows a cysteine motif, required for the stabilisation of the coiled-coil-like structure. Additional inter-helix hydrophobic contacts impart stability to this scaffold. The precise function of this eukaryotic domain is, as yet, unknown. MTCP1 is found in mitochondria. Mature-T-Cell Proliferation) is the first gene unequivocally identified in the group of uncommon leukemias with a mature phenotype. 59 -312520 pfam08992 QH-AmDH_gamma Quinohemoprotein amine dehydrogenase, gamma subunit. Members of this family contain a cross-linked, proteinous quinone cofactor, cysteine tryptophylquinone, which is required for catalysis of the oxidative deamination of a wide range of aliphatic and aromatic amines. The domain assumes a globular secondary structure, with two short alpha-helices having many turns and bends. 75 -286130 pfam08993 T4_Gp59_N T4 gene Gp59 loader of gp41 DNA helicase. Bacteriophage T4 gene-59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene-59 helicase assembly protein accelerates the loading of the T4 gene-41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene-59 helicase assembly protein binds to both T4 gene-41 helicase and T4 gene-32 single-stranded DNA binding protein, and to single and double-stranded DNA. The structure of T4 gene-59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size, this being the N-terminal domain that consists of six alpha-helices linked by loop segments and short turns. The surface of the domain contains large regions of exposed hydrophobic residues and clusters of acidic and basic residues. This domain has structural similarity to members of the high-mobility-group (HMG) family of DNA minor groove binding proteins including rat HMG1A and lymphoid enhancer-binding factor, and is required for binding of the helicase to the DNA minor groove. 93 -286131 pfam08994 T4_Gp59_C T4 gene Gp59 loader of gp41 DNA helicase C-term. Bacteriophage T4 gene-59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene-59 helicase assembly protein accelerates the loading of the T4 gene-41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene-59 helicase assembly protein binds to both T4 gene-41 helicase and T4 gene-32 single-stranded DNA binding protein, and to single and double-stranded DNA. The structure of T4 gene-59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size, this being the C-terminal domain that consists of seven alpha-helices with short intervening loops and turns. The surface of the domain contains large regions of exposed hydrophobic residues and clusters of acidic and basic residues. The hydrophobic region on the 'bottom' surface of the domain near the C-terminal helix binds the leading strand DNA, whilst the hydrophobic region on the 'top' surface of the domain lies between the two arms of the fork DNA, allowing for T4 gene 41 helicase binding and assembly into a hexameric complex around the lagging strand. 109 -117561 pfam08995 NIP_1 Necrosis inducing protein-1. Necrosis inducing protein-1, a fungal avirulence protein produced by plants, consists of two parts containing beta-sheets of two and three anti-parallel strands, respectively. Five intramolecular disulfide bonds, stabilize these parts and their position with respect to each other, providing a high level of stability. 82 -337273 pfam08996 zf-DNA_Pol DNA Polymerase alpha zinc finger. The DNA Polymerase alpha zinc finger domain adopts an alpha-helix-like structure, followed by three turns, all of which involve proline. The resulting motif is a helix-turn-helix motif, in contrast to other zinc finger domains, which show anti-parallel sheet and helix conformation. Zinc binding occurs due to the presence of four cysteine residues positioned to bind the metal centre in a tetrahedral coordination geometry. Function of this domain is uncertain: it has been proposed that the zinc finger motif may be an essential part of the DNA binding domain. 184 -312522 pfam08997 UCR_6-4kD Ubiquinol-cytochrome C reductase complex, 6.4kD protein. The ubiquinol-cytochrome C reductase complex (cytochrome bc1 complex) is an essential component of the mitochondrial cellular respiratory chain. This family represents the 6.4kD protein, which may be closely linked to the iron-sulphur protein in the complex and function as an iron-sulphur protein binding factor. 55 -312523 pfam08998 Epsilon_antitox Bacterial epsilon antitoxin. The epsilon antitoxin, produced by various prokaryotes, forms part of a postsegregational killing system which is involved in the initiation of programmed cell death of plasmid-free cells. The protein is folded into a three-helix bundle that directly interacts with the zeta toxin, inactivating it. 89 -286135 pfam08999 SP_C-Propep Surfactant protein C, N terminal propeptide. The N-terminal propeptide of surfactant protein C adopts an alpha-helical structure, with turn and extended regions. It's main function is the stabilisation of metastable surfactant protein C (SP-C), since the latter can irreversibly transform from its native alpha-helical structure to beta-sheet aggregates and form amyloid-like fibrils. The correct intracellular trafficking of proSP-C has also been reported to depend on the propeptide. 96 -312524 pfam09000 Cytotoxic Cytotoxic. The cytotoxic domain confers cytotoxic activity to proteins, enabling the formation of nucleolytic breaks in 16S ribosomal RNA. The structure of the domain reveals a highly twisted central beta-sheet elaborated with a short N-terminal alpha-helix. 82 -312525 pfam09001 DUF1890 Domain of unknown function (DUF1890). This domain is found in a set of hypothetical archaeal proteins. 141 -312526 pfam09002 DUF1887 Domain of unknown function (DUF1887). This domain is found in a set of hypothetical bacterial proteins. 379 -337274 pfam09003 Arm-DNA-bind_1 Bacteriophage lambda integrase, Arm DNA-binding domain. The amino terminal domain of bacteriophage lambda integrase folds into a three-stranded, antiparallel beta-sheet that packs against a C-terminal alpha-helix, adopting a fold that is structurally related to the three-stranded beta-sheet family of DNA-binding domains (which includes the GCC-box DNA-binding domain and the N-terminal domain of Tn916 integrase). This domain is responsible for high-affinity binding to each of the five DNA arm-type sites and is also a context-sensitive modulator of DNA cleavage. 72 -117570 pfam09004 DUF1891 Domain of unknown function (DUF1891). This domain is found in a set of hypothetical eukaryotic proteins. 38 -312528 pfam09005 DUF1897 Domain of unknown function (DUF1897). This domain is found in Psi proteins produced by Drosophila, and in various eukaryotic hypothetical proteins. It has no known function. 36 -286141 pfam09006 Surfac_D-trimer Lung surfactant protein D coiled-coil trimerisation. This domain, predominantly found in lung surfactant protein D, forms a triple-helical parallel coiled coil, and mediates trimerisation of the protein. 46 -312529 pfam09007 EBP50_C EBP50, C-terminal. This C terminal domain allows interaction of EBP50 with FERM (four-point one ERM) domains, resulting in the activation of Ezrin-radixin-moesin (ERM), with subsequent cytoskeletal modulation and cellular growth control. It includes a disordered section between two reasonably well conserved hydrophobic regions. 127 -312530 pfam09008 Head_binding Head binding. The head binding domain found in the Phage P22 tailspike protein contains two regular beta-sheets, A and B, oriented nearly perpendicular to each other and composed of five and three strands respectively. The topology of the strands is exclusively antiparallel. The tailspike protein trimerizes through this domain, and the direction of the strands with respect to the molecular triad is almost parallel for beta-sheet A, whereas beta-sheet B is perpendicular to the triad, forming a dome-like structure. This domain is dispensable for thermostability and SDS resistance of the intact protein, and its deletion has only minor effects on tailspike folding kinetics. 103 -312531 pfam09009 Exotox-A_cataly Exotoxin A catalytic. Members of this family, which are found in prokaryotic exotoxin A, catalyze the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, with subsequent inhibition of protein synthesis. 226 -286145 pfam09010 AsiA Anti-Sigma Factor A. Anti-sigma factor A is a transcriptional inhibitor that inhibits sigma 70-directed transcription by weakening its interaction with the core of the host's RNA polymerase. It is an all-helical protein, composed of six helical segments and intervening loops and turns, as well as a helix-turn-helix DNA binding motif, although neither free anti-sigma factor nor anti-sigma factor bound to sigma-70 has been shown to interact directly with DNA. In solution, the protein forms a symmetric dimer of small (10.59 kDa) protomers, which are composed of helix and coil regions and are devoid of beta-strand/sheet secondary structural elements. 85 -337275 pfam09011 HMG_box_2 HMG-box domain. This short 71 residue domain is an HMG-box domain. HMG-box domains mediate re-modelling of chromatin-structure. Mammalian HMG-box proteins are of two types: those that are non-sequence-specific DNA-binding proteins with two HMG-box domains and a long highly acidic C-tail; and a diverse group of sequence-specific transcription factor-proteins with either a single HMG-box or up to six copies, and no acidic C-tail. 68 -312532 pfam09012 FeoC FeoC like transcriptional regulator. This family contains several transcriptional regulators, including FeoC, which contain a HTH motif. FeoC acts as a [Fe-S] dependant transcriptional repressor. 69 -286148 pfam09013 YopH_N YopH, N-terminal. The N-terminal domain of YopH is a compact structure composed of four alpha-helices and two beta-hairpins. Helices alpha-1 and alpha-3 are parallel to each other and antiparallel to helices alpha-2 and alpha-4. This domain targets YopH for secretion from the bacterium and translocation into eukaryotic cells, and has phosphotyrosyl peptide-binding activity, allowing for recognition of p130Cas and paxillin. 121 -312533 pfam09014 Sushi_2 Beta-2-glycoprotein-1 fifth domain. The fifth domain of beta-2-glycoprotein-1 (b2GP-1) is composed of four well-defined anti-parallel beta-strands and two short alpha-helices, as well as a long highly flexible loop. It plays an important role in the binding of b2GP-1 to negatively charged compounds and subsequent capture for binding of anti-b2GP-1 antibodies. 88 -286150 pfam09015 NgoMIV_restric NgoMIV restriction enzyme. Members of this family are prokaryotic DNA restriction enzymes, exhibiting an alpha/beta structure, with a central region comprising a mixed six-stranded beta-sheet with alpha-helices on each side. A long 'arm' protrudes out of the core of the domain between strands beta2 and beta3 and is mainly involved in the tetramerisation interface of the protein. These restriction enzymes recognize the double-stranded sequence GCCGGC and cleave after G-1. 275 -312534 pfam09016 Pas_Saposin Pas factor saposin fold. Members of this family adopt a compact structure comprising five alpha helices. Charged and polar residues are exposed mostly on the surface, while most of the hydrophobic residues are buried inside the hydrophobic core of the helical bundle. The precise function of this domain is unknown, but it is has been shown to induce secretion of periplasmic proteins, especially collagenase. 76 -117583 pfam09017 Transglut_prok Microbial transglutaminase. Microbial transglutaminase (MTG) catalyzes an acyl transfer reaction by means of a Cys-Asp diad mechanism, in which the gamma-carboxyamide groups of peptide-bound glutamine residues act as the acyl donors. The MTG molecule forms a single, compact domain belonging to the alpha+beta folding class, containing 11 alpha-helices and 8 beta-strands. The alpha-helices and the beta-strands are concentrated mainly at the amino and carboxyl ends of the polypeptide, respectively. These secondary structures are arranged so that a beta-sheet is surrounded by alpha-helices, which are clustered into three regions. 414 -312535 pfam09018 Phage_Capsid_P3 P3 major capsid protein. The P3 major capsid protein adopts a 'double-barrel' structure comprising two eight-stranded viral beta-barrels or jelly rolls, each of which contains a 12-residue alpha-helix. This protein then trimerizes through a 'trimerisation loop' sequence, and is incorporated within the viral capsid. 394 -286153 pfam09019 EcoRII-C EcoRII C terminal. The C-terminal catalytic domain of the Restriction Endonuclease EcoRII has a restriction endonuclease-like fold with a central five-stranded mixed beta-sheet surrounded on both sides by alpha-helices. It cleaves DNA specifically at single 5' CCWGG sites. 165 -286154 pfam09020 YopE_N YopE, N terminal. The N terminal YopE domain targets YopE for secretion from the bacterium and translocation into eukaryotic cells. 126 -312536 pfam09021 HutP HutP. The HutP protein family regulates the expression of Bacillus 'hut' structural genes by an anti-termination complex, which recognizes three UAG triplet units, separated by four non-conserved nucleotides on the RNA terminator region. L-histidine and Mg2+ ions are also required. These proteins exhibit the structural elements of alpha/beta proteins, arranged in the order: alpha-alpha-beta-alpha-alpha-beta-beta-beta in the primary structure, and the four antiparallel beta-strands form a beta-sheet in the order beta1-beta2-beta3-beta4, with two alpha-helices each on the front (alpha1 and alpha2) and at the back (alpha3 and alpha4) of the beta-sheet. 127 -286156 pfam09022 Staphostatin_A Staphostatin A. The staphostatin A polypeptide chain folds into a slightly deformed, eight-stranded beta-barrel, with strands beta-4 through beta-8 forming an antiparallel sheet while the N-terminus forms a a psi-loop motif. Members of this family constitute a class of cysteine protease inhibitors distinct in the fold and the mechanism of action from any known inhibitors of these enzymes. 105 -286157 pfam09023 Staphostatin_B Staphostatin B. Staphostatin B inhibits the cysteine protease Staphopain B, produced by Staphylococcus aureus, by blocking the active site of the enzyme. The domain adopts an eight-stranded mixed beta-barrel structure, with a deviation from the up-down topology of canonical beta-barrels in the amino-terminal part of the molecule. 107 -286158 pfam09025 T3SS_needle_reg YopR, type III needle-polymerization regulator. The YopR core domain, predominantly found in the Gammaproteobacteria virulence factor YopR, is composed of five alpha-helices, four of which are arranged in an antiparallel bundle. Little is known about this domain, though it may contribute to the virulence of the protein YopR. YopR controls the selective access of early (YscF, YscI and YscP) substrates to the type III secretion machines of yersiniae and other Gammaproteobacteriae. YopR is a mobile regulatory component thought to function as a checkpoints probing the completion of discrete intermediary stages in the assembly of the type III injection pathway. The location of secreted YopR (into the medium) is directly controlling the secretion of YscF, the polymerized needle protein pfam09392, thereby impacting the assembly of type III machines. 145 -286159 pfam09026 CENP-B_dimeris Centromere protein B dimerization domain. The centromere protein B (CENP-B) dimerization domain is composed of two alpha-helices, which are folded into an antiparallel configuration. dimerization of CENP-B is mediated by this domain, in which monomers dimerize to form a symmetrical, antiparallel, four-helix bundle structure with a large hydrophobic patch in which 23 residues of one monomer form van der Waals contacts with the other monomer. This CENP-B dimer configuration may be suitable for capturing two distant CENP-B boxes during centromeric heterochromatin formation. 100 -312537 pfam09027 GTPase_binding GTPase binding. The GTPase binding domain binds to the G protein Cdc42, inhibiting both its intrinsic and stimulated GTPase activity. The domain is largely unstructured in the absence of Cdc42. 68 -286161 pfam09028 Mac-1 Mac 1. The bacterial protein Mac 1 adopts an alpha/beta fold, with 14 beta strands and 9 alpha helices. The N-terminal domain is made up predominantly of alpha helices, whereas the C-terminal domain consists predominantly of beta sheets. Mac 1 blocks polymorphonuclear opsonophagocytosis, inhibits the production of reactive oxygen species and contains IgG endopeptidase activity. 347 -337276 pfam09029 Preseq_ALAS 5-aminolevulinate synthase presequence. The N terminal presequence domain found in 5-aminolevulinate synthase exists as an amphipathic helix, with a positively charged surface provided by lysine residues and no stable helix at the N-terminus. The domain is essential for the import process by which ALAS is transported into the mitochondria: translocase of the outer membrane (Tom) and translocase of the inner membrane protein complexes appear responsible for recognition and import through the mitochondrial membrane. The protein Tom20 is anchored to the mitochondrial outer membrane, and its interaction with presequences is thought to be the recognition step which allows subsequent import. 117 -312539 pfam09030 Creb_binding Creb binding. The Creb binding domain assumes a structure comprising of three alpha-helices which pack in a bundle, exposing a hydrophobic groove between alpha-1 and alpha-3 within which complimentary domains found in the protein 'activator for thyroid hormone and retinoid receptors' (ACTR) can dock. Docking of these domains is required for the recruitment of RNA polymerase II and the basal transcription machinery. 91 -312540 pfam09032 Siah-Interact_N Siah interacting protein, N terminal. The N terminal domain of Siah interacting protein (SIP) adopts a helical hairpin structure with a hydrophobic core stabilized by a classic knobs-and-holes arrangement of side chains contributed by the two amphipathic helices. Little is known about this domain's function, except that it is crucial for interactions with Siah. It has also been hypothesized that SIP can dimerize through this N terminal domain. 75 -312541 pfam09033 DFF-C DNA Fragmentation factor 45kDa, C terminal domain. The C terminal domain of DNA Fragmentation factor 45kDa (DFF-C) consists of four alpha-helices, which are folded in a helix-packing arrangement, with alpha-2 and alpha-3 packing against a long C-terminal helix (alpha-4). The main function of this domain is the inhibition of DFF40 by binding to its C-terminal catalytic domain through ionic interactions, thereby inhibiting the fragmentation of DNA in the apoptotic process. In addition to blocking the DNase activity of DFF40, the C-terminal region of DFF45 is also important for the DFF40-specific folding chaperone activity, as demonstrated by the ability of DFF45 to refold DFF40. 165 -312542 pfam09034 TRADD_N TRADD, N-terminal domain. The N terminal domain of 'tumor necrosis factor receptor type 1 associated death domain protein' (TRADD) folds into an alpha-beta sandwich with a four-stranded beta sheet and six alpha helices, each forming one layer of the structure. The domain allows docking of TRADD onto 'tumor necrosis factor receptor-associated factor' (TRAF): the binding is at the beta-sandwich domain, away from the coiled-coil domain. Binding ensures the recruitment of cIAPs to the signaling complex, which may be important for direct caspase-8 inhibition and the immediate suppression of apoptosis at the apical point of the cascade. 111 -286167 pfam09035 Tn916-Xis Excisionase from transposon Tn916. The phage-encoded excisionase protein Tn916-Xis adopts a winged-helix structure that consists of a three-stranded anti-parallel beta-sheet that packs against a helix-turn-helix (HTH) motif and a third C-terminal alpha-helix. It is encoded for by Tn916, which also codes for the integrase Tn916-Int. The protein interacts with DNA by the insertion of helix alpha-2 into the major groove and the contact of the hairpin that connects strands beta-2 and beta-3 with the adjacent phosphodiester backbone and/or minor groove. Tn916-Xis stimulates phage excision and inhibits viral integration by stabilizing distorted DNA structures. 62 -312543 pfam09036 Bcr-Abl_Oligo Bcr-Abl oncoprotein oligomerization domain. The Bcr-Abl oncoprotein oligomerization domain consists of a short N-terminal helix (alpha-1), a flexible loop and a long C-terminal helix (alpha-2). Together these form an N-shaped structure, with the loop allowing the two helices to assume a parallel orientation. The monomeric domains associate into a dimer through the formation of an antiparallel coiled coil between the alpha-2 helices and domain swapping of two alpha-1 helices, where one alpha-1 helix swings back and packs against the alpha-2 helix from the second monomer. Two dimers then associate into a tetramer. The oligomerization domain is essential for the oncogenicity of the Bcr-Abl protein. 73 -286169 pfam09037 Sulphotransf Stf0 sulphotransferase. Members of this family are essential for the biosynthesis of sulpholipid-1 in prokaryotes. They adopt a structure that belongs to the sulphotransferase superfamily, consisting of a single domain with a core four-stranded parallel beta-sheet flanked by alpha-helices. 243 -337277 pfam09038 53-BP1_Tudor tumor suppressor p53-binding protein-1 Tudor. Members of this family consist of ten beta-strands and a carboxy-terminal alpha-helix. The amino-terminal five beta-strands and the C-terminal five beta-strands adopt folds that are identical to each other. This domain is essential for the recruitment of proteins to double stranded breaks in DNA, which is mediated by interaction with methylated Lys 79 of histone H3. 122 -286171 pfam09039 HTH_Tnp_Mu_2 Mu DNA binding, I gamma subdomain. Members of this family are responsible for binding the DNA attachment sites at each end of the Mu genome. They adopt a secondary structure comprising a four helix bundle tightly packed around a hydrophobic core consisting of aliphatic and aromatic amino acid residues. Helices 1 and 2 are oriented antiparallel to each other. Helix 3 crosses helices 1 and 2 at angles of 60 and 120 degrees, respectively. Excluding the C-terminal helix 4, the fold of the I-gamma subdomain is remarkably similar to that of the homeodomain family of helix-turn-helix DNA-binding proteins, although their amino acid sequences are completely unrelated. 109 -312544 pfam09040 H-K_ATPase_N Gastric H+/K+-ATPase, N terminal domain. Members of this family adopt an alpha-helical conformation under hydrophobic conditions. The domain contains tyrosine residues, phosphorylation of which regulates the function of the ATPase. Additionally, the domain also interacts with various structural proteins, including the spectrin-binding domain of ankyrin III. 43 -312545 pfam09041 Aurora-A_bind Aurora-A binding. The Aurora-A binding domain binds to two distinct sites on the Aurora kinase: the upstream residues bind at the N-terminal lobe, whilst the downstream residues bind in an alpha-helical conformation between the N- and C-terminal lobes. The two Aurora-A binding motifs are connected by a flexible linker that is variable in length and sequence across species. Binding of the domain results strong activation of Aurora-A and protection from deactivating dephosphorylation by phosphatase PP1. 68 -312546 pfam09042 Titin_Z Titin Z. The titin Z domain, that recognizes and binds to the C-terminal calmodulin-like domain of alpha-actinin-2 (Act-EF34), adopts a helical structure, and binds in a groove formed by the two planes between the helix pairs of Act-EF34. This interaction is essential for sarcomere assembly. 24 -337278 pfam09043 Lys-AminoMut_A D-Lysine 5,6-aminomutase TIM-barrel domain of alpha subunit. Members of his family are involved in the 1,2 rearrangement of the terminal amino group of DL-lysine and of L-beta-lysine, using adenosylcobalamin (AdoCbl) and pyridoxal-5'-phosphate as co-factors. The structure is predominantly a PLP-binding TIM barrel domain, with several additional alpha-helices and beta-strands at the N and C termini. These helices and strands form an intertwined accessory clamp structure that wraps around the sides of the TIM barrel and extends up toward the Ado ligand of the Cbl co-factor, providing most of the interactions observed between the protein and the Ado ligand of the Cbl, suggesting that its role is mainly in stabilizing AdoCbl in the precatalytic resting state. This is a TIM-barrel domain. 508 -337279 pfam09044 Kp4 Kp4. Members of this fungal family of toxins specifically inhibit voltage-gated calcium channels in mammalian cells. They adopt an alpha/beta-sandwich structure, comprising a five-stranded antiparallel beta-sheet with two antiparallel alpha-helices lying at approximately 45 degrees to these strands. 111 -312549 pfam09045 L27_2 L27_2. The L27_2 domain is a protein-protein interaction domain capable of organising scaffold proteins into supramolecular assemblies by formation of heteromeric L27_2 domain complexes. L27_2 domain-mediated protein assemblies have been shown to play essential roles in cellular processes including asymmetric cell division, establishment and maintenance of cell polarity, and clustering of receptors and ion channels. Members of this family form specific heterotetrameric complexes, in which each domain contains three alpha-helices. The two N-terminal helices of each L27_2 domain pack together to form a tight, four-helix bundle in the heterodimer, whilst the third helix of each L27_2 domain forms another four-helix bundle that assembles the two units of the heterodimer into a tetramer. 58 -286177 pfam09046 AvrPtoB-E3_ubiq AvrPtoB E3 ubiquitin ligase. The E3 ubiquitin ligase domain found in the bacterial protein AvrPtoB inhibits immunity-associated programmed cell death (PCD) when translocated into plant cells, probably by recruiting E2 enzymes and transferring ubiquitin molecules to cellular proteins involved in regulation of PCD and targeting them for degradation. The structure of this domain reveals a globular fold centred on a four-stranded beta-sheet that packs against two helices on one face and has three very extended loops connecting the elements of secondary structure, with remarkable homology to the RING-finger and U-box families of proteins involved in ubiquitin ligase complexes in eukaryotes. 118 -312550 pfam09047 MEF2_binding MEF2 binding. The myocyte enhancer factor-2 (MEF2) binding domain, predominantly found in the calcineurin-binding protein CABIN 1, adopts an amphipathic alpha-helical structure, which allows it to bind a hydrophobic groove on the MEF2S domain, forming a triple-helical interaction. Interaction of this domain with MEF2 causes repression of transcription. 35 -286179 pfam09048 Cro Cro. Members of this family are involved in the repression of transcription by binding as a homodimer to palindromic DNA operator sites in phage lambda: they repress genes expressed in early phage development and are necessary for the late stage of lytic growth. These proteins have a secondary structure consisting of three alpha-helices and three beta-sheets, and dimerize through interactions between the two antiparallel beta-strands. 59 -312551 pfam09049 SNN_transmemb Stannin transmembrane. Members of this family consist of a single highly hydrophobic transmembrane helix that transverses the lipid bilayer at a 20 degree angle with respect to the membrane normal. They contain a conserved cysteine residue (Cys32) that, together with Cys34 found in the stannin unstructured linker domain, constitutes the putative trimethyltin-binding site that resides at the end of the transmembrane domain close to the lipid/solvent interface. 32 -312552 pfam09050 SNN_linker Stannin unstructured linker. Members of this family are unstructured, acting as connectors of the stannin helical domains. They contain a conserved CXC metal-binding motif and a putative 14-3-3-zeta binding domain. Upon coordinating dimethytin, considerable structural or dynamic changes in the flexible loop region of SNN may take place, recruiting other binding partners such as 14-3-3-zeta, and thereby initiating the apoptotic cascade. 26 -286182 pfam09051 SNN_cytoplasm Stannin cytoplasmic. Members of this family consist of a distorted cytoplasmic helix that is partially absorbed into the plane of the lipid bilayer with a tilt angle of approximately 80 degrees from the membrane normal. They interact with the surface of the lipid bilayer, and contribute to the initiation of the apoptotic cascade on binding of the unstructured linker domain to dimethyltin. 26 -286183 pfam09052 SipA Salmonella invasion protein A. Salmonella invasion protein A is an actin-binding protein that contributes to host cytoskeletal rearrangements by stimulating actin polymerization and counteracting F-actin destabilizing proteins. Members of this family possess an all-helical fold consisting of eight alpha-helices arranged so that six long, amphipathic helices form a compact fold that surrounds a final, predominantly hydrophobic helix in the middle of the molecule. 682 -72471 pfam09053 CagZ CagZ. CagZ is a 23 kDa protein consisting of a single compact L-shaped domain, composed of seven alpha-helices that run antiparallel to each other. 70% of the residues are in alpha-helix conformation and no beta-sheet is present. CagZ is essential for the translocation of the pathogenic protein CagA into host cells. 198 -312553 pfam09055 Sod_Ni Nickel-containing superoxide dismutase. Nickel containing superoxide dismutase (NiSOD) is a metalloenzyme containing a hexameric assembly of right-handed 4-helix bundles of up-down-up-down topology with an N-terminal His-Cys-X-X-Pro-Cys-Gly-X-Tyr motif that chelates the active site Ni ions. NiSOD catalyzes the disproportionation of superoxide to peroxide and molecular oxygen through alternate oxidation and reduction of Ni, protecting cells from the toxic products of aerobic metabolism. 127 -312554 pfam09056 Phospholip_A2_3 Prokaryotic phospholipase A2. The prokaryotic phospholipase A2 domain is predominantly found in bacterial and fungal phospholipases, as well as various hypothetical and putative proteins. It enables the liberation of fatty acids and lysophospholipid by hydrolysing the 2-ester bond of 1,2-diacyl-3-sn-phosphoglycerides. The domain adopts an alpha-helical secondary structure, consisting of five alpha-helices and two helical segments. 102 -312555 pfam09057 Smac_DIABLO Second Mitochondria-derived Activator of Caspases. Second Mitochondria-derived Activator of Caspases promotes apoptosis by activating caspases in the cytochrome c/Apaf-1/caspase-9 pathway, and by opposing the inhibitory activity of inhibitor of apoptosis proteins (XIAP-BIR3). The protein assumes an elongated three-helix bundle structure, and forms a dimer in solution. 226 -312556 pfam09058 L27_1 L27_1. The L27 domain is a protein interaction module that exists in a large family of scaffold proteins, functioning as an organisation centre of large protein assemblies required for the establishment and maintenance of cell polarity. L27 domains form specific heterotetrameric complexes, in which each domain contains three alpha-helices. 59 -337280 pfam09059 TyeA TyeA. Members of this family are composed of two pairs of parallel alpha-helices, and interact with the bacterial protein YopN via hydrophobic residues located on the helices. Association of TyeA with the C-terminus of YopN is accompanied by conformational changes in both polypeptides that create order out of disorder: the resulting structure then serves as an impediment to type III secretion of YopN. 76 -312557 pfam09060 L27_N L27_N. The L27_N domain plays a role in the biogenesis of tight junctions and in the establishment of cell polarity in epithelial cells. Each L27_N domain consists of three alpha-helices, the first two of which form an antiparallel coiled-coil. Two L27 domains come together to form a four-helical bundle with the antiparallel coiled-coils formed by the first two helices. The third helix of each domain forms another coiled-coil packing at one end of the four-helix bundle, creating a large hydrophobic interface: the hydrophobic interactions are the major force that drives heterodimer formation. 48 -286190 pfam09061 Stirrup Stirrup. The Stirrup domain, found in the prokaryotic protein ribonucleotide reductase, has a molecular mass of 9 kDa and is folded into an alpha/beta structure. It allows for binding of the reductase to DNA via electrostatic interactions, since it has a predominance of positive charges distributed on its surface. 79 -286191 pfam09062 Endonuc_subdom PI-PfuI Endonuclease subdomain. The endonuclease subdomain, found in the prokaryotic protein ribonucleotide reductase, assumes an alpha-beta-beta-alpha-beta-beta-alpha-alpha topology. The four stranded beta-sheet forms a saddle-shaped surface and assembles together through an interface made of alpha-helices. The presence of 14 basic residues on the surface of the beta-sheets suggests that this large groove may be involved in DNA binding. 98 -312558 pfam09063 Phage_coat Phage PP7 coat protein. Members of this family form the capsid of P. aeruginosa phage PP7. They adopt a secondary structure consisting of a six stranded beta sheet and an alpha helix. 127 -312559 pfam09064 Tme5_EGF_like Thrombomodulin like fifth domain, EGF-like. Members of this family adopt a fold similar to other EGF domains, with a flat major and a twisted minor beta sheet. Disulphide pairing, however, is not of the usual 1-3, 2-4, 5-6 type; rather 1-2, 3-4, 5-6 pairing is found. Its extended major sheet (strands beta-2 and beta-3 and the connecting loop) projects into thrombin's active site groove. This domain is required for interaction of thrombomodulin with thrombin, and subsequent activation of protein-C. 34 -72483 pfam09065 Haemadin Haemadin. Members of this family adopt a secondary structure consisting of five short beta-strands (beta1-beta5), which are arranged in two antiparallel distorted sheets formed by strands beta1-beta4-beta5 and beta2-beta3 facing each other. This beta-sandwich is stabilized by six enclosed cysteines arranged in a [1-2, 3-5, 4-6] disulphide pairing resulting in a disulphide-rich hydrophobic core that is largely inaccessible to bulk solvent. The close proximity of disulfide bonds [3-5] and [4-6] organizes haemadin into four distinct loops. The N-terminal segment of this domain binds to the active site of thrombin, inhibiting it. 27 -337281 pfam09066 B2-adapt-app_C Beta2-adaptin appendage, C-terminal sub-domain. Members of this family adopt a structure consisting of a 5 stranded beta-sheet, flanked by one alpha helix on the outer side, and by two alpha helices on the inner side. This domain is required for binding to clathrin, and its subsequent polymerization. Furthermore, a hydrophobic patch present in the domain also binds to a subset of D-phi-F/W motif-containing proteins that are bound by the alpha-adaptin appendage domain (epsin, AP180, eps15). 106 -255160 pfam09067 EpoR_lig-bind Erythropoietin receptor, ligand binding. Members of this family interact with erythropoietin (EPO), with subsequent initiation of the downstream chain of events associated with binding of EPO to the receptor, including EPO-induced erythroblast proliferation and differentiation through induction of the JAK2/STAT5 signaling cascade. The domain adopts a secondary structure composed of a short amino-terminal helix, followed by two beta-sandwich regions. 104 -337282 pfam09068 EF-hand_2 EF hand. Members of this family adopt a helix-loop-helix motif, as per other EF hand domains. However, since they do not contain the canonical pattern of calcium binding residues found in many EF hand domains, they do not bind calcium ions. The main function of this domain is the provision of specificity in beta-dystroglycan recognition, though in dystrophin it serves an additional role: stabilisation of the WW domain (pfam00397), enhancing dystroglycan binding. 121 -312562 pfam09069 EF-hand_3 EF-hand. Members of this family adopt a helix-loop-helix motif, as per other EF hand domains. However, since they do not contain the canonical pattern of calcium binding residues found in many EF hand domains, they do not bind calcium ions. The main function of this domain is the provision of specificity in beta-dystroglycan recognition, though in dystrophin it serves an additional role: stabilisation of the WW domain (pfam00397), enhancing dystroglycan binding. 92 -337283 pfam09070 PFU PFU (PLAA family ubiquitin binding). This domain is found N terminal to pfam08324 and binds to ubiquitin. 111 -286197 pfam09071 Alpha-amyl_C Alpha-amylase, C terminal. Members of this family, which are found in the prokaryotic protein glycosyltrehalose trehalohydrolase, assume a gamma-crystallin-type fold with a five-stranded anti-parallel beta-sheet that packs against the C-terminal side of a beta-alpha barrel. This domain is common to family 13 glycosidases and typically contains a five to ten strand beta-sheet, however its precise fold varies. 67 -312564 pfam09072 TMA7 Translation machinery associated TMA7. TMA7 plays a role in protein translation. Deletions of the TMA7 gene results in altered protein synthesis rates. 62 -312565 pfam09073 BUD22 BUD22. BUD22 has been shown in yeast to be a nuclear protein involved in bud-site selection. It plays a role in positioning the proximal bud pole signal. More recently it has been shown to be involved in ribosome biogenesis. 377 -286200 pfam09074 Mer2 Mer2. Mer2 (Rec107) forms part of a complex that is required for meiotic double strand DNA break formation. Mer2 increases in abundance and is phosphorylated during the prophase phase of cell division. Blocking double strand break formation results in delayed dephosphorylation and dissociation of Mer2 from the chromosome. 188 -286201 pfam09075 STb_secrete Heat-stable enterotoxin B, secretory. Members of this family assume a helical secondary structure, with two alpha helices forming a disulphide crosslinked alpha-helical hairpin. The disulphide bonds are crucial for the toxic activity of the protein, and are required for maintenance of the tertiary structure, and subsequent interaction with the particulate form of guanylate cyclase, increasing cyclic GMP levels within the host intestinal epithelial cells. 48 -312566 pfam09076 Crystall_2 Beta/Gamma crystallin. Members of this family assume a beta-gamma-crystallin fold, wherein nine beta-strands are connected by loop, and are separated into two sheets, each sheet forming the Greek key motif. The two Greek key motifs face each other in the global topology. The three-dimensional structure of the molecule is a 'sandwich'-shaped beta-barrel structure: hydrophobic side-chains are packed in the large interface area of the beta-sheets. In Streptomyces killer toxin-like protein domain confers a cytocidal effect to the toxin, causing cell death in both budding and fission yeasts, and morphological changes in yeasts and filamentous fungi. This family also includes chitin-biding antifungal proteins. 70 -312567 pfam09077 Phage-MuB_C Mu B transposition protein, C terminal. The C terminal domain of the B transposition protein from Bacteriophage Mu comprises four alpha-helices arranged in a loosely packed bundle, where helix alpha1 runs parallel to alpha3, and anti-parallel to helices alpha2 and alpha4. The domain allows for non-specific binding of Mu to double-stranded DNA, allowing for integration into the bacterial genome, and mediates dimerization of the protein. 78 -337284 pfam09078 CheY-binding CheY binding. Members of this family adopt a secondary structure consisting of an open-face beta/alpha sandwich, with four antiparallel beta-strands and two alpha-helices. They bind to a corresponding domain on CheY, with subsequent phosphorylation of the CheY Asp57 residue, and activation of CheY, which then affects flagellar rotation. 63 -337285 pfam09079 Cdc6_C CDC6, C terminal winged helix domain. The C terminal domain of CDC6 assumes a winged helix fold, with a five alpha-helical bundle (alpha15-alpha19) structure, backed on one side by three beta strands (beta6-beta8). It has been shown that this domain acts as a DNA-localization factor, however its exact function is, as yet, unknown. Putative functions include: (1) mediation of protein-protein interactions and (2) regulation of nucleotide binding and hydrolysis. Mutagenesis studies have shown that this domain is essential for appropriate Cdc6 activity. 76 -286206 pfam09080 K-cyclin_vir_C K cyclin, C terminal. Members of this family adopt a secondary structure consisting of a five alpha-helix cyclin fold. Interaction with cyclin dependent kinases (CDKs) at a PSTAIRE sequence motif within the catalytic cleft of CDK results in the regulation of CDK activity. 104 -286207 pfam09081 DUF1921 Domain of unknown function (DUF1921). This domain, which is found in a set of prokaryotic amylases, has no known function. 51 -312570 pfam09082 DUF1922 Domain of unknown function (DUF1922). Members of this family consist of a beta-sheet region followed by an alpha-helix and an unstructured C-terminus. The beta-sheet region contains a CXCX...XCXC sequence with Cys residues located in two proximal loops and pointing towards each other. This precise function of this set of bacterial proteins is, as yet, unknown. 65 -72501 pfam09083 DUF1923 Domain of unknown function (DUF1923). Members of this family are found in maltosyltransferases, and adopt a secondary structure consisting of eight antiparallel beta-strands, which form an open-sided 'jelly roll' Greek key beta-barrel. Their exact function is, as yet, unknown. 64 -337286 pfam09084 NMT1 NMT1/THI5 like. This family contains the NMT1 and THI5 proteins. These proteins are proposed to be required for the biosynthesis of the pyrimidine moiety of thiamine. They are regulated by thiamine. The protein adopts a fold related to the periplasmic binding protein (PBP) family. Both pyridoxal-5'-phosphate (PLP) and an iron atom are bound to the protein suggesting numerous residues of the active site necessary for HMP-P biosynthesis. The yeast protein is a dimer and, although exceptionally using PLP as a substrate, has notable similarities with enzymes dependent on this molecule as a cofactor. 215 -337287 pfam09085 Adhes-Ig_like Adhesion molecule, immunoglobulin-like. Members of this family are found in a set of mucosal cellular adhesion proteins and adopt an immunoglobulin-like beta-sandwich structure, with seven strands arranged in two beta-sheets in a Greek-key topology. They are essential for recruitment of lymphocytes to specific tissues. 107 -337288 pfam09086 DUF1924 Domain of unknown function (DUF1924). This domain is found in a set of bacterial proteins, including Cytochrome c-type protein. It is functionally uncharacterized. 88 -337289 pfam09087 Cyc-maltodext_N Cyclomaltodextrinase, N-terminal. Members of this family assume a beta-sandwich structure composed of the eight antiparallel beta-strands. A ten residue linker is also present at the C-terminal end, which connects the N terminal domain to a distal domain in the protein. This domain participates in oligomerization of the protein, wherein the N-terminal domain of one subunit contacts the active centre of the other subunit, and is also required for binding of cyclodextrin to substrate. 86 -286213 pfam09088 MIF4G_like MIF4G like. Members of this family are involved in mediating U snRNA export from the nucleus. They adopt a highly helical structure, wherein the polypeptide chain forms a right-handed solenoid. At the tertiary level, the domain is composed of a superhelical arrangement of successive antiparallel pairs of helices. 191 -337290 pfam09089 gp12-short_mid Phage short tail fibre protein gp12, middle domain. Members of this family adopt a right-handed triple-stranded beta-helix fold, and are found in the middle of the phage short tail fibre protein gp12. 81 -337291 pfam09090 MIF4G_like_2 MIF4G like. Members of this family are involved in mediating U snRNA export from the nucleus. They adopt a highly helical structure, wherein the polypeptide chain forms a right-handed solenoid. At the tertiary level, the domain is composed of a superhelical arrangement of successive antiparallel pairs of helices. 259 -312576 pfam09092 Lyase_N Lyase, N terminal. Members of this family are predominantly found in chondroitin ABC lyase I, and adopt a jelly-roll fold topology consisting of a two-layered bent beta-sheet sandwich with one short alpha-helix. The convex beta sheet is composed of five antiparallel strands, whilst the concave beta-sheet contains five antiparallel beta-strands with a loop between two consecutive strands folding back onto the concave surface. This domain is required for binding of the protein to long glycosaminoglycan chains. 166 -337292 pfam09093 Lyase_catalyt Lyase, catalytic. Members of this family are predominantly found in chondroitin ABC lyase I, and adopt a helical structure, with fifteen alpha-helices which are at least two turns long and several short helical turns. The bulk of the domain is formed by ten alpha-helices forming five hairpin-like pairs and arranged into an incomplete toroid, the (alpha/alpha)5 fold. Additionally, two long and two short alpha-helices at the N-terminus of the domain wrap around the toroid. At the C-terminal end of the toroid there is one additional short alpha-helix. This domain is required for degradation of polysaccharides containing 1,4-beta-D-hexosaminyl and 1,3-beta-D-glucoronosyl or 1,3-alpha-L-iduronosyl linkages to disaccharides containing 4-deoxy-beta-D-gluc-4-enuronosyl groups. 360 -312578 pfam09094 DUF1925 Domain of unknown function (DUF1925). Members of this family, which are found in a set of prokaryotic transferases, adopt an immunoglobulin/albumin-binding domain-like fold, with a bundle of three alpha-helices. Their function is, as yet, unknown. 77 -312579 pfam09095 DUF1926 Domain of unknown function (DUF1926). Members of this family, which are found in a set of prokaryotic transferases, adopt a beta-sandwich fold, in which two layers of anti-parallel beta-sheets are arranged in a nearly parallel fashion. The exact function of this family is, as yet, unknown, however it has been proposed that they may play a role in transglycosylation reactions. 274 -286219 pfam09096 Phage-tail_2 Baseplate structural protein, domain 2. Members of this family adopt a beta barrel structure with a Greek key topology, which is topologically similar to the FMN-binding split barrel. They are structural component of the viral baseplate, predominantly found in the structural protein gp27. 173 -286220 pfam09097 Phage-tail_1 Baseplate structural protein, domain 1. Members of this family adopt a beta barrel structure with a Greek key topology, which is topologically similar to the FMN-binding split barrel. They are structural component of the viral baseplate, predominantly found in the structural protein gp27. 196 -312580 pfam09098 Dehyd-heme_bind Quinohemoprotein amine dehydrogenase A, alpha subunit, haem binding. Members of this family are predominantly found in the prokaryotic protein quinohemoprotein amine dehydrogenase. They have a predominantly alpha-helical structure and can be divided into two subdomains, each binding a haem C group via a conserved CXXCH motif. 164 -286222 pfam09099 Qn_am_d_aIII Quinohemoprotein amine dehydrogenase, alpha subunit domain III. Members of this family, which are predominantly found in the prokaryotic protein quinohemoprotein amine dehydrogenase, adopt an immunoglobulin-like beta-sandwich fold, with seven strands arranged into two beta sheets; the fold is possibly related to the immunoglobulin and/or fibronectin type III superfamilies. The precise function of this domain has not, as yet, been defined. 82 -312581 pfam09100 Qn_am_d_aIV Quinohemoprotein amine dehydrogenase, alpha subunit domain IV. Members of this family, which are predominantly found in the prokaryotic protein quinohemoprotein amine dehydrogenase, adopt an immunoglobulin-like beta-sandwich fold, with seven strands arranged into two beta sheets; the fold is possibly related to the immunoglobulin and/or fibronectin type III superfamilies. The precise function of this domain has not, as yet, been defined. 133 -286224 pfam09101 Exotox-A_bind Exotoxin A binding. Members of this family are found in Pseudomonas aeruginosa exotoxin A, and are responsible for binding of the toxin to the alpha-2-macroglobulin receptor, with subsequent internalisation into endosomes. The domain adopts a thirteen-strand antiparallel beta jelly roll topology, which belongs to the Concanavalin A-like lectins/glucanases fold superfamily. 274 -312582 pfam09102 Exotox-A_target Exotoxin A, targeting. Members of this family are found in Pseudomonas aeruginosa exotoxin A, and are responsible for transmembrane targeting of the toxin, as well as transmembrane translocation of the catalytic domain into the cytoplasmic compartment. A furin cleavage site is present within the domain: cleavage generates a 37 kDa carboxy-terminal fragment, which includes the enzymatic domain, which is then is translocated into the cytoplasm. The domain adopts a helical structure, with six alpha-helices forming a bundle. 133 -337293 pfam09103 BRCA-2_OB1 BRCA2, oligonucleotide/oligosaccharide-binding, domain 1. Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB1 has a shallow groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for weak single strand DNA binding. The domain also binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein, which was originally identified as one of three genes that map to a 1.5-Mb locus deleted in an inherited developmental malformation syndrome. 120 -312584 pfam09104 BRCA-2_OB3 BRCA2, oligonucleotide/oligosaccharide-binding, domain 3. Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB3 has a pronounced groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for strong ssDNA binding. 137 -255184 pfam09105 SelB-wing_1 Elongation factor SelB, winged helix. Members of this family adopt a winged-helix fold, with an alpha/beta structure consisting of three alpha-helices and a twisted three-stranded antiparallel beta-sheet, with an alpha-beta-alpha-alpha-beta-beta connectivity. They are involved in both DNA and RNA binding. 61 -337294 pfam09106 SelB-wing_2 Elongation factor SelB, winged helix. Members of this family adopt a winged-helix fold, with an alpha/beta structure consisting of three alpha-helices and a twisted three-stranded antiparallel beta-sheet, with an alpha-beta-alpha-alpha-beta-beta connectivity. They are involved in both DNA and RNA binding. 56 -337295 pfam09107 SelB-wing_3 Elongation factor SelB, winged helix. Members of this family adopt a winged-helix fold, with an alpha/beta structure consisting of three alpha-helices and a twisted three-stranded antiparallel beta-sheet, with an alpha-beta-alpha-alpha-beta-beta connectivity. They are involved in both DNA and RNA binding. 45 -286230 pfam09108 Xol-1_N Switch protein XOL-1, N-terminal. Members of this family, which are required for the formation of the active site of the sex-determining protein Xol-1, adopt a secondary structure consisting of five alpha helices and six antiparallel beta sheets, in a beta-alpha-beta-beta-beta-alpha-beta-alpha-alpha-alpha-beta arrangement. The fold of this family is similar to that found in ribosomal protein S5 domain 2-like. 160 -286231 pfam09109 Xol-1_GHMP-like Switch protein XOL-1, GHMP-like. Members of this family, which are required for the formation of the active site of the sex-determining protein Xol-1, adopt a secondary structure consisting of five alpha helices and seven antiparallel beta sheets, in a beta-alpha-beta-alpha-alpha-alpha-beta-beta-alpha-beta-beta-beta arrangement. The fold of this family is structurally similar to that found in the C-terminal domain of GHMP Kinase. 196 -312587 pfam09110 HAND HAND. The HAND domain adopts a secondary structure consisting of four alpha helices, three of which (H2, H3, H4) form an L-like configuration. Helix H2 runs antiparallel to helices H3 and H4, packing closely against helix H4, whilst helix H1 reposes in the concave surface formed by these three helices and runs perpendicular to them. The domain confers DNA and nucleosome binding properties to the protein. 109 -312588 pfam09111 SLIDE SLIDE. The SLIDE domain adopts a secondary structure comprising a main core of three alpha-helices. It has a role in DNA binding, contacting DNA target sites similar to c-Myb (pfam00249) repeats or homeodomains. 114 -337296 pfam09112 N-glycanase_N Peptide-N-glycosidase F, N terminal. Members of this family adopt an eight-stranded antiparallel beta jelly roll configuration, with the beta strands arranged into two sheets. They are similar in topology to many viral capsid proteins, as well as lectins and several glucanases. The domain allows the protein to bind sugars and catalyzes the complete removal of N-linked oligosaccharide chains from glycoproteins. 173 -337297 pfam09113 N-glycanase_C Peptide-N-glycosidase F, C terminal. Members of this family adopt an eight-stranded antiparallel beta jelly roll configuration, with the beta strands arranged into two sheets. They are similar in topology to many viral capsid proteins, as well as lectins and several glucanases. The domain allows the protein to bind sugars and catalyzes the complete removal of N-linked oligosaccharide chains from glycoproteins. 135 -312591 pfam09114 MotA_activ Transcription factor MotA, activation domain. Members of this family of viral protein domains are implicated in transcriptional activation. They are almost completely alpha-helical, with five alpha-helices and a short, two-stranded, beta-ribbon. Four alpha helices (alpha1, alpha3, alpha4 and alpha5) are amphipathic and pack their hydrophobic surfaces around the central helix alpha2. 95 -337298 pfam09115 DNApol3-delta_C DNA polymerase III, delta subunit, C terminal. Members of this family, which are predominantly found in prokaryotic DNA polymerase III, assume an alpha helical structure, with a core of five alpha helices, and an additional small helix. They are essential for the formation of the polymerase clamp loader. 112 -286237 pfam09116 gp45-slide_C gp45 sliding clamp, C terminal. Members of this family are essential for the interaction of the gp45 sliding clamp with the corresponding polymerase. They adopt a DNA clamp fold, consisting of two alpha helices and two beta sheets - the fold is duplicated and has internal pseudo two-fold symmetry. 105 -337299 pfam09117 MiAMP1 MiAMP1. MiAMP1 is a highly basic protein from the nut kernel of Macadamia integrifolia which inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It consists of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs then associate to form a Greek key beta-barrel. 76 -337300 pfam09118 DUF1929 Domain of unknown function (DUF1929). Members of this family adopt a secondary structure consisting of a bundle of seven, mostly antiparallel, beta-strands surrounding a hydrophobic core. The 7 strands are arranged in 2 sheets, in a Greek-key topology. Their precise function, has not, as yet, been defined, though they are mostly found in sugar-utilising enzymes, such as galactose oxidase. 95 -286240 pfam09119 SicP-binding SicP binding. Members of this family bind the chaperone SicP, which is required both to maintain the stability of SptP, as well as to ensure the eventual secretion of the protein. The domain is found in the Salmonella effector protein SptP, which interacts with SicP chaperone dimers mainly through four regions of its chaperone-binding domain. The structure of the SptP-SicP complex contains four molecules of SicP, aligned in a linear fashion and arranged in two sets of tightly bound homodimers that bind two SptP molecules. The SicP homodimers do not interact with each other, but are held together by a molecular interface formed between two SptP molecules. Each SptP molecule is wrapped around by three SicP chaperones (two chaperones from one homodimer and a third one from the opposite homodimer pair). 84 -312595 pfam09121 Tower Tower. Members of this family adopt a secondary structure consisting of a pair of long, antiparallel alpha-helices (the stem) that support a three-helix bundle (3HB) at their end. The 3HB contains a helix-turn-helix motif and is similar to the DNA binding domains of the bacterial site-specific recombinases, and of eukaryotic Myb and homeodomain transcription factors. The Tower domain has an important role in the tumor suppressor function of BRCA2, and is essential for appropriate binding of BRCA2 to DNA. 42 -117679 pfam09122 DUF1930 Domain of unknown function (DUF1930). Members of this family are found in 3-mercaptopyruvate sulfurtransferase, and have no known function. They adopt a structure consisting of a four-stranded antiparallel beta-sheet and an alpha-helix, arranged in a beta(2)-alpha-beta(2) fashion, and bearing a remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. 67 -312596 pfam09123 DUF1931 Domain of unknown function (DUF1931). Members of this family, which are found in a set of hypothetical bacterial proteins, contain a core of six alpha-helices, where one central helix is surrounded by the other five. The exact function of this family has not, as yet, been determined. The known structure shows this domain contains two copies of the histone fold. 138 -337301 pfam09124 Endonuc-dimeris T4 recombination endonuclease VII, dimerization. Members of this family, which are predominantly found in Bacteriophage T4 recombination endonuclease VII, adopt a helical secondary structure, with three alpha helices oriented parallel to each other. They mediate dimerization of the protein, as well as binding to the DNA major groove. 54 -255195 pfam09125 COX2-transmemb Cytochrome C oxidase subunit II, transmembrane. Members of this family adopt a tertiary structure consisting of two antiparallel transmembrane helices, in a transmembrane helix hairpin fold. 38 -312598 pfam09126 NaeI Restriction endonuclease NaeI. Members of this family adopt a secondary structure consisting of nine alpha-helices, six 3-10 helices and 13 beta-strands. They bind two GCC-CGG recognition sequences to cleave DNA into blunt-ended products. 287 -337302 pfam09127 Leuk-A4-hydro_C Leukotriene A4 hydrolase, C-terminal. Members of this family adopt a structure consisting of two layers of parallel alpha-helices, five in the inner layer and four in the outer, arranged in an antiparallel manner, with perpendicular loops containing short helical segments on top. They are required for the formation of a deep cleft harbouring the catalytic Zn2+ site in Leukotriene A4 hydrolase. 112 -286245 pfam09128 RGS-like Regulator of G protein signalling-like domain. Members of this family adopt a structure consisting of twelve helices that fold into a compact domain that contains the overall structural scaffold observed in other RGS proteins and three additional helical elements that pack closely to it. Helices 1-9 comprise the RGS (pfam00615) fold, in which helices 4-7 form a classic antiparallel bundle adjacent to the other helices. Like other RGS structures, helices 7 and 8 span the length of the folded domain and form essentially one continuous helix with a kink in the middle. Helices 10-12 form an apparently stable C-terminal extension of the structural domain, and although other RGS proteins lack this structure, these elements are intimately associated with the rest of the structural framework by hydrophobic interactions. Members of the family bind to active G-alpha proteins, promoting GTP hydrolysis by the alpha subunit of heterotrimeric G proteins, thereby inactivating the G protein and rapidly switching off G protein-coupled receptor signalling pathways. 188 -286246 pfam09129 Chol_subst-bind Cholesterol oxidase, substrate-binding. The substrate-binding domain found in Cholesterol oxidase is composed of an eight-stranded mixed beta-pleated sheet and six alpha-helices. This domain is positioned over the isoalloxazine ring system of the FAD cofactor bound by FAD_binding_4 (PF:PF01565) and forms the roof of the active site cavity, allowing for catalysis of oxidation and isomerisation of cholesterol to cholest-4-en-3-one. 321 -337303 pfam09130 DUF1932 Domain of unknown function (DUF1932). This domain is found in a set of hypothetical prokaryotic proteins. Its exact function has not, as yet, been described. 70 -117687 pfam09131 Endotoxin_mid Bacillus thuringiensis delta-Endotoxin, middle domain. Members of this family adopt a structure consisting of three four-stranded beta-sheets, each with a Greek key fold, with internal pseudo threefold symmetry. Thus they act as a receptor binding beta-prism, binding to insect-specific receptors of gut epithelial cells. 206 -312601 pfam09132 BmKX BmKX. Members of this family assume a structure adopted by most short-chain scorpion toxins, consisting of a cysteine-stabilized alpha/beta scaffold consisting of a short 3-10-helix and a two-stranded antiparallel beta-sheet. They are predominantly found in short-chain scorpion toxins, and their biological method of action has not, as yet, been defined. 30 -337304 pfam09133 SANTA SANTA (SANT Associated). The SANTA domain (SANT Associated domain) is approximately 90 amino acids in length and is conserved in Eukaryota. It is sometimes found in association with the SANT domain (pfam00249, also known as Myb-like DNA-binding domain) implying a putative function in regulating chromatin remodelling. Sequence analysis has showed that the SANTA domain is likely to form four central beta-sheets with three flanking alpha- helixes. Many conserved hydrophobic residues are present which implying a possible role in protein-protein interactions. 88 -312603 pfam09134 Invasin_D3 Invasin, domain 3. Members of this family adopt a structure consisting of an immunoglobulin-like beta-sandwich, with seven strands in two beta-sheets, arranged in a Greek-key topology. It forms part of the extracellular region of the protein, which can be expressed as a soluble protein (Inv497) that binds integrins and promotes subsequent uptake by cells when attached to bacteria. 100 -337305 pfam09135 Alb1 Alb1. Alb1 is a nuclear shuttling factor involved in ribosome biogenesis. 105 -117692 pfam09136 Glucodextran_B Glucodextranase, domain B. Members of this family adopt a structure consisting of seven/eight-strand antiparallel beta-sheets, in a Greek-key topology, similar to the immunoglobulin beta-sandwich fold. They act as cell wall anchors, where they interact with the S-layer present in the cell wall of Gram-positive bacteria by hydrophobic interactions. In glucodextranase, Domain B is buried in the S-layer, and a flexible linker located between domain B and the catalytic unit confers motion to the catalytic unit, which is capable of efficient hydrolysis of the substrates located close to the cell surface. 89 -337306 pfam09137 Glucodextran_N Glucodextranase, domain N. Members of this family, which are uniquely found in bacterial and archaeal glucoamylases and glucodextranases, adopt a structure consisting of 17 antiparallel beta-strands. These beta-strands are divided into two beta-sheets, and one of the beta-sheets is wrapped by an extended polypeptide, which appears to stabilize the domain. Members of this family are mainly concerned with catalytic activity, hydrolysing alpha-1,6-glucosidic linkages of dextran to release beta-D-glucose from the non-reducing end via an inverting reaction mechanism. 263 -312605 pfam09138 Urm1 Urm1 (Ubiquitin related modifier). Urm1 is a ubiquitin related protein that modifies proteins in the yeast ubiquitin-like pathway urmylation. Structural comparisons and phylogenetic analysis of the ubiquitin superfamily has indicated that Urm1 has the most conserved structural and sequence features of the common ancestor of the entire superfamily. 96 -337307 pfam09139 Mmp37 Mitochondrial matrix Mmp37. MMp37 is a mitochondrial matrix protein that functions in the translocation of proteins across the mitochondrial inner membrane. It has been shown that MMP37 proteins possess the NTase fold but they have only one active site carboxylate and thus probably are not able to carry out enzymatic reaction. These potentially non-active members of NTase fold superfamily may bind ATP, hydrolysis of which is necessary for the translocation of proteins through the membrane. 320 -312607 pfam09140 MipZ ATPase MipZ. MipZ is an ATPase that forms a complex with the chromosome partitioning protein ParB near the chromosomal origin of replication. It is responsible for the temporal and spatial regulation of FtsZ ring formation. 262 -337308 pfam09141 Talin_middle Talin, middle domain. Members of this family adopt a structure consisting of five alpha helices that fold into a bundle. They contain a Vinculin binding site (VBS) composed of a hydrophobic surface spanning five turns of helix four. Activation of the VBS causes subsequent recruitment of Vinculin, which enables maturation of small integrin/talin complexes into more stable adhesions. Formation of the complex between VBS and Vinculin requires prior unfolding of this middle domain: once released from the talin hydrophobic core, the VBS helix is then available to induce the 'bundle conversion' conformational change within the vinculin head domain thereby displacing the intramolecular interaction with the vinculin tail, allowing vinculin to bind actin. 161 -286255 pfam09142 TruB_C tRNA Pseudouridine synthase II, C terminal. The C terminal domain of tRNA Pseudouridine synthase II adopts a PUA (pfam01472) fold, with a four-stranded mixed beta-sheet flanked by one alpha-helix on each side. It allows for binding of the enzyme to RNA, as well as stabilisation of the RNA molecule. 56 -149995 pfam09143 AvrPphF-ORF-2 AvrPphF-ORF-2. Members of this family of plant pathogenic proteins adopt an elongated structure somewhat reminiscent of a mushroom that can be divided into 'stalk' and 'head' subdomains. The stalk subdomain is composed of the N-terminal helix (alpha1) and beta strands beta3-beta4. An antiparallel beta sheet (beta5, beta7-beta8) forms the base of the head subdomain that interacts with the stalk. A pair of twisted antiparallel beta sheets (beta1 and beta6; beta2 and beta9/9') supported by alpha2 form the dome of the head. The head subdomain possesses weak structural similarity with the catalytic portion of a number of ADP-ribosyltransferase toxins. 175 -72561 pfam09144 YpM Yersinia pseudo-tuberculosis mitogen. Members of this family of Yersinia pseudo-tuberculosis mitogens adopt a sandwich structure consisting of nine strands in two beta sheets, in a jelly-roll topology. As with other super-antigens, they are able to excessively activate T cells by binding to the T cell receptor. 117 -286256 pfam09145 Ubiq-assoc Ubiquitin-associated. Ubiquitin associated domains contain approximately 40 residues and bind ubiquitin non-covalently. They adopt a secondary structure consisting of three alpha-helices, and have been identified in various modular proteins involved in protein trafficking, clathrin assembly/disassembly, DNA repair, proteasomal degradation, and cell cycle regulation. 42 -286257 pfam09147 DUF1933 Domain of unknown function (DUF1933). Members of this family are predominantly found in carbapenam synthetase, and are composed of two antiparallel six-stranded beta-sheets that form a sandwich, flanked on each side by two alpha-helices. Their exact function has not, as yet, been determined. 201 -337309 pfam09148 DUF1934 Domain of unknown function (DUF1934). Members of this family are found in a set of hypothetical bacterial proteins. Their precise function has not, as yet, been defined. 108 -337310 pfam09149 DUF1935 Domain of unknown function (DUF1935). Members of this family are found in various bacterial and eukaryotic hypothetical proteins, as well as in the cysteine protease calpain. Their exact function has not, as yet, been defined. 98 -337311 pfam09150 Carot_N Orange carotenoid protein, N-terminal. Members of this family adopt an alpha-helical structure consisting of two four-helix bundles. They are predominantly found in prokaryotic orange carotenoid protein, and carotenoid binding proteins. 149 -286261 pfam09151 DUF1936 Domain of unknown function (DUF1936). This domain is found in a set of hypothetical Archaeal proteins. Its exact function has not, as yet, been defined. It possesses a zinc ribbon fold. 34 -286262 pfam09152 DUF1937 Domain of unknown function (DUF1937). This domain is found in a set of hypothetical bacterial proteins. Their exact function has not, as yet, been described. 111 -286263 pfam09153 DUF1938 Domain of unknown function (DUF1938). Members of this family, which are predominantly found in the archaeal protein O6-alkylguanine-DNA alkyltransferase, adopt a secondary structure consisting of a three stranded antiparallel beta-sheet and three alpha helices. Their exact function has not, as yet, been defined, though it has been postulated that they confer thermostability to the archaeal protein. 86 -286264 pfam09154 DUF1939 Domain of unknown function (DUF1939). Members of this family, which are predominantly found in Archaeal amylase, adopt a secondary structure consisting of an eight-stranded antiparallel beta-sheet containing a Greek key motif. Their exact function has not, as yet, been determined. 57 -312612 pfam09155 DUF1940 Domain of unknown function (DUF1940). Members of this family adopt a secondary structure consisting of six alpha helices, with four long helices (alpha1, alpha2, alpha5, alpha6) form a left-handed, antiparallel alpha helical bundle. The function of this family of Archaeal hypothetical proteins has not, as yet, been defined. 143 -286266 pfam09156 Anthrax-tox_M Anthrax toxin lethal factor, middle domain. Members of this family, which are predominantly found in anthrax toxin lethal factor, adopt a structure consisting of a core of antiparallel beta sheets and alpha helices. They form a long deep groove within the protein that anchors the 16-residue N-terminal tail of MAPKK-2 before cleavage. It has been noted that this domain resembles the ADP-ribosylating toxin from Bacillus cereus, but the active site has been modified to augment substrate recognition. 286 -312613 pfam09157 TruB-C_2 Pseudouridine synthase II TruB, C-terminal. Members of this family adopt a secondary structure consisting of a four-stranded beta sheet and one alpha helix. They are predominantly RNA-binding domains, mostly found in Pseudouridine synthase II TruB. 57 -286268 pfam09158 MotCF Bacteriophage T4 MotA, C-terminal. Members of this family adopt a compact alpha/beta structure comprising three alpha-helices and six beta-strands in the order: alpha1-beta1-beta2-beta3-beta4-alpha2-beta5-beta6-alpha3. The beta-strands form a single anti-parallel beta-sheet and the three alpha-helices pack side-by-side onto one surface of the beta-sheet. In this architecture, the domain's hydrophobic core is at the sheet-helix interface, and the second surface of the beta-sheet is completely exposed. The domain is a DNA-binding motif, with a consensus sequence containing nine base pairs (5'-TTTGCTTTA-3'), that appears to bind to various mot boxes, allowing access to the minor groove towards the 5'-end of this sequence and the major groove towards the 3'-end. 103 -337312 pfam09159 Ydc2-catalyt Mitochondrial resolvase Ydc2 / RNA splicing MRS1. Members of this family adopt a secondary structure consisting of two beta sheets and one alpha helix, arranged as a beta-alpha-beta motif. Each beta sheet has five strands, arranged in a 32145 order, with the second strand being antiparallel to the rest. Mitochondrial resolvase Ydc2 is capable of resolving Holliday junctions and cleaves DNA after 5'-CT-3' and 5'-TT-3' sequences. This family also contains the mitochondrial RNA-splicing protein MRS1 which is involved in the excision of group I introns. 253 -337313 pfam09160 FimH_man-bind FimH, mannose binding. Members of this family adopt a secondary structure consisting of a beta sandwich, with nine strands arranged in two sheets in a Greek key topology. They are predominantly found in bacterial mannose-specific adhesins, since they are capable of binding to D-mannose. 144 -337314 pfam09162 Tap-RNA_bind Tap, RNA-binding. Members of this family adopt a structure consisting of an alpha+beta sandwich with an antiparallel beta-sheet, arranged in a 2(beta-alpha-beta) motif. They are mainly found in mRNA export factors, and mediate the sequence nonspecific nuclear export of cellular mRNAs as well as the sequence-specific export of retroviral mRNAs bearing the constitutive transport element. 83 -337315 pfam09163 Form-deh_trans Formate dehydrogenase N, transmembrane. Members of this family are predominantly found in the beta subunit of formate dehydrogenase, and consist of a single transmembrane helix. They act as a transmembrane anchor, and allow for conduction of electrons within the protein. 43 -312618 pfam09164 VitD-bind_III Vitamin D binding protein, domain III. Members of this family are predominantly found in Vitamin D binding protein, and adopt a multi-helical structure. They are required for formation of an actin 'clamp', allowing the protein to bind to actin. 65 -337316 pfam09165 Ubiq-Cytc-red_N Ubiquinol-cytochrome c reductase 8 kDa, N-terminal. Members of this family adopt a structure consisting of many antiparallel beta sheets, with few alpha helices, in a non-globular arrangement. They are required for proper functioning of the respiratory chain. 75 -312620 pfam09166 Biliv-reduc_cat Biliverdin reductase, catalytic. Members of this family adopt a structure consisting of four alpha helices and six beta sheets, in an alpha-beta-alpha-alpha-alpha-beta-beta-beta-beta-beta arrangement. They contain a catalytic active site, capable of reducing the gamma-methene bridge of the open tetrapyrrole, biliverdin IX alpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor. 112 -312621 pfam09167 DUF1942 Domain of unknown function (DUF1942). Members of this family of bacterial proteins assume a beta-sandwich structure consisting of two antiparallel beta-sheets similar to an immunoglobulin-like fold, with an additional small, antiparallel beta-sheet. The longer-stranded beta-sheet is made up of four antiparallel beta-strands. The shorter-stranded beta-sheet consists of five beta-strands, four of these beta-strands form an antiparallel beta-sheet. The exact function of this family of proteins is unknown, though a putative role includes involvement in host-bacterial interactions involved in endocytosis or phagocytosis, possibly during bacterial internalisation. 124 -337317 pfam09168 PepX_N X-Prolyl dipeptidyl aminopeptidase PepX, N-terminal. Members of this family adopt a secondary structure consisting of a helical bundle of eight alpha helices and three beta strands, the last alpha helix connecting to the first strand of the catalytic domain. The first strand of the N-terminus also forms a small parallel beta sheet with strand 5' of catalytic domain. The domain mediates dimerization of the protein, with two proline residues present in the domain being critical for interaction. 157 -312623 pfam09169 BRCA-2_helical BRCA2, helical. Members of this family adopt a helical structure, consisting of a four-helix cluster core (alpha 1, alpha 8, alpha 9, alpha 10) and two successive beta-hairpins (beta 1 to beta 4). An approx. 50-amino acid segment that contains four short helices (alpha 2 to alpha 4), meanders around the surface of the core structure. In BRCA2, the alpha 9 and alpha 10 helices pack with BRCA-2_OB1 (pfam09103) through van der Waals contacts involving hydrophobic and aromatic residues, and also through side-chain and backbone hydrogen bonds. The domain binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein, which was originally identified as one of three genes that map to a 1.5-Mb locus deleted in an inherited developmental malformation syndrome. 187 -312624 pfam09170 STN1_2 CST, Suppressor of cdc thirteen homolog, complex subunit STN1. STN1 is a component of the CST complex, a complex that binds to single-stranded DNA and is required for protecting telomeres from DNA degradation. The CST complex binds single-stranded DNA with high affinity in a sequence-independent manner, while isolated subunits bind DNA with low affinity on their own. In addition to telomere protection, the CST complex probably has a more general role in DNA metabolism at non-telomeric sites. 177 -312625 pfam09171 AGOG N-glycosylase/DNA lyase. This domain is predominantly found in the Archaeal protein N-glycosylase/DNA lyase. 244 -337318 pfam09172 DUF1943 Domain of unknown function (DUF1943). Members of this family adopt a structure consisting of several large open beta-sheets. Their exact function has not, as yet, been determined. 292 -312627 pfam09173 eIF2_C Initiation factor eIF2 gamma, C terminal. Members of this family, which are found in the initiation factors eIF2 and EF-Tu, adopt a structure consisting of a beta barrel with Greek key topology. They are required for formation of the ternary complex with GTP and initiator tRNA. 84 -337319 pfam09174 Maf1 Maf1 regulator. Maf1 is a negative regulator of RNA polymerase III. It targets the initiation factor TFIIIB. 125 -312629 pfam09175 DUF1944 Domain of unknown function (DUF1944). Members of this family adopt a structure consisting of several large open beta-sheets. Their exact function has not, as yet, been determined. 167 -337320 pfam09176 Mpt_N Methylene-tetrahydromethanopterin dehydrogenase, N-terminal. Members of this family adopt a alpha-beta structure, with a core comprising three alpha/beta/alpha layers, in which each sheet contains four strands. They are predominantly found in prokaryotic methylene-tetrahydromethanopterin dehydrogenase, which catalyzes the dehydrogenation of methylene-tetrahydromethanopterin and the reversible dehydrogenation of methylene-H(4)F. 81 -337321 pfam09177 Syntaxin-6_N Syntaxin 6, N-terminal. Members of this family, which are found in the amino terminus of various SNARE proteins, adopt a structure consisting of an antiparallel three-helix bundle. Their exact function has not been determined, though it is known that they regulate the SNARE motif, as well as mediate various protein-protein interactions involved in membrane-transport. 91 -286287 pfam09178 DUF1945 Domain of unknown function (DUF1945). Members of this family, which are predominantly found in prokaryotic 4-alpha-glucanotransferase, adopt a structure composed of six antiparallel beta-strands, four of which form a beta-sheet and another two form a type I' beta-hairpin. The role of this family of domains, has not, as yet, been defined. 50 -337322 pfam09179 TilS TilS substrate binding domain. This domain is found in the tRNA(Ile) lysidine synthetase (TilS) protein. 62 -337323 pfam09180 ProRS-C_1 Prolyl-tRNA synthetase, C-terminal. Members of this family are predominantly found in prokaryotic prolyl-tRNA synthetase. They contain a zinc binding site, and adopt a structure consisting of alpha helices and antiparallel beta sheets arranged in 2 layers, in a beta-alpha-beta-alpha-beta motif. 67 -286290 pfam09181 ProRS-C_2 Prolyl-tRNA synthetase, C-terminal. Members of this family are predominantly found in prokaryotic prolyl-tRNA synthetase. They contain a zinc binding site, and adopt a structure consisting of alpha helices and antiparallel beta sheets arranged in 2 layers, in a beta-alpha-beta-alpha-beta motif. 66 -312634 pfam09182 PuR_N Bacterial purine repressor, N-terminal. The N-terminal domain of the bacterial purine repressor PuR is a winged-helix domain, a subdivision of the HTH structural family. It consists of a canonical arrangement of secondary structures: a1-b1-a2-T-a3-b2-W-b3, where a2-T-a3 is the HTH motif, a3 is the recognition helix, and W is the wing. The domain allows for recognition of a conserved CGAA sequence in the centre of a DNA PurBox, resulting in binding to the major groove of DNA. 70 -312635 pfam09183 DUF1947 Domain of unknown function (DUF1947). Members of this family are found in a set of hypothetical Archaeal proteins. Their exact function has not, as yet, been defined. 63 -312636 pfam09184 PPP4R2 PPP4R2. PPP4R2 (protein phosphatase 4 core regulatory subunit R2) is the regulatory subunit of the histone H2A phosphatase complex. It has been shown to confer resistance to the anticancer drug cisplatin in yeast, and may confer resistance in higher eukaryotes. 274 -286294 pfam09185 DUF1948 Domain of unknown function (DUF1948). Members of this family of Mycoplasma hypothetical proteins adopt a helical structure, with one central alpha-helix surrounded by five others, in a NusB-like fold. Their function has not, as yet, been determined. 140 -312637 pfam09186 DUF1949 Domain of unknown function (DUF1949). Members of this family pertain to a set of functionally uncharacterized hypothetical bacterial proteins. They adopt a ferredoxin-like fold, with a beta-alpha-beta-beta-alpha-beta arrangement. 55 -286296 pfam09187 RdDM_RDM1 RNA-directed DNA methylation 1. This family of plant proteins includes RDM1 from Arabidopsis, which is a component of the RNA-directed DNA methylation (RdDM) effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. As part of the DDR complex with two other RdDM components, it has been shown to facilitate association of PolV to chromatin. 119 -286297 pfam09188 DUF1951 Domain of unknown function (DUF1951). Members of this family of Mycoplasma hypothetical proteins adopt a helical structure, with a buried central helix. Their function has not, as yet, been determined. 137 -286298 pfam09189 DUF1952 Domain of unknown function (DUF1952). Members of this family are found in various Thermus thermophilus proteins. Their exact function has not, as yet, been determined. 73 -286299 pfam09190 DALR_2 DALR domain. This DALR domain is found in cysteinyl-tRNA-synthetases. 63 -312638 pfam09191 CD4-extracel CD4, extracellular. Members of this family adopt an immunoglobulin-like beta-sandwich, with seven strands in 2 beta sheets, in a Greek key topology. They are predominantly found in the extracellular portion of CD4 proteins, where they enable interaction with major histocompatibility complex class II antigens. 105 -312639 pfam09192 Act-Frag_cataly Actin-fragmin kinase, catalytic. Members of this family assume a secondary structure consisting of eight beta strands and 11 alpha-helices, organized in two lobes. They are predominantly found in actin-fragmin kinase, where they act as a catalytic domain that mediates the phosphorylation of actin. 278 -312640 pfam09193 CholecysA-Rec_N Cholecystokinin A receptor, N-terminal. Members of this family are found in the extracellular region of the cholecystokinin A receptor, where they adopt a tertiary structure consisting of a few helical turns and a disulphide-crosslinked loop. They are required for interaction of the cholecystokinin A receptor with it's corresponding hormonal ligand. 50 -312641 pfam09194 Endonuc-BsobI Restriction endonuclease BsobI. Members of this family of prokaryotic restriction endonucleases recognize the double-stranded sequence CYCGRG (where Y = T/C, and R = A/G) and cleave after C-1. They catalyze the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. 314 -337324 pfam09195 Endonuc-BglII Restriction endonuclease BglII. Members of this family are predominantly found in prokaryotic restriction endonuclease BglII, and adopt a structure consisting of an alpha/beta core containing a six-stranded beta-sheet surrounded by five alpha-helices, two of which are involved in homodimerization of the endonuclease. They recognize the double-stranded DNA sequence AGATCT and cleave after A-1, resulting in specific double-stranded fragments with terminal 5'-phosphates. 161 -286305 pfam09196 DUF1953 Domain of unknown function (DUF1953). This domain is found in the Archaeal protein maltooligosyl trehalose synthase produced by Sulfolobus spp. Its function has not, as yet, been defined. 63 -312643 pfam09197 Rap1-DNA-bind Rap1, DNA-binding. Members of this family, which are predominantly found in the yeast protein rap1, assume a secondary structure consisting of a three-helix bundle and an N-terminal arm. They contain an Arg-Asp-Arg-Lys sequence that interacts with an ACACC region in the 3' region of the DNA-binding site. 108 -72614 pfam09198 T4-Gluco-transf Bacteriophage T4 beta-glucosyltransferase. Members of this family are DNA-modifying enzymes encoded by bacteriophage T4 that transfer glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine bases of phage T4 DNA. 38 -286307 pfam09199 SSL_OB Staphylococcal superantigen-like OB-fold domain. This OB-fold domain folds into a five-stranded beta-barrel. Members of this family are found in various staphylococcal toxins described as staphylococcal superantigen-like (SSL) proteins that are related to the staphylococcal enterotoxins (SEs) or superantigens. These SSL proteins of which 11 have so far been characterized have a typical SE tertiary structure consisting of a distinct oligonucleotide/oligosaccharide binding (OB-fold), this domain, linked to a beta-grasp domain, family Stap_Strp_tox_C, pfam02876. SSLs do not bind to T-cell receptors or major histocompatibility complex class II molecules and do not stimulate T cells. SSLs target components of innate immunity, such as complement, Fc receptors, and myeloid cells 2,3,4,5,6,7,8]. SSL protein 7 (SSL7) is the best characterized of the SSLs and binds complement factor C5 and IgA with high affinity and inhibits the end stage of complement activation and IgA binding to FcalphaR. 84 -312644 pfam09200 Monellin Monellin. Monellin, a protein produced by the West African plant Dioscoreophyllum cumminsii, is approximately 70,000 times sweeter than sucrose on a molar basis. The protein adopts an alpha-beta structure, with a cystatin-like fold, where each helix packs against a coiled antiparallel beta-sheet. 40 -312645 pfam09201 SRX SRX, signal recognition particle receptor alpha subunit. Members of this family, which are predominantly found in eukaryotic signal recognition particle receptor alpha, consist of a central six-stranded anti-parallel beta-sheet sandwiched by helix alpha1 on one side and helices alpha2-alpha4 on the other. They interact with the small GTPase SR-beta, forming a complex that matches a class of small G protein-effector complexes, including Rap-Raf, Ras-PI3K(gamma), Ras-RalGDS, and Arl2-PDE(delta). Structurally the alpha subunit is SNARE-like. 148 -312646 pfam09202 Rio2_N Rio2, N-terminal. Members of this family are found in Rio2, and are structurally homologous to the winged helix (wHTH) domain. They adopt a structure consisting of four alpha helices followed by two beta strands and a fifth alpha helix. The domain confers DNA binding properties to the protein, as per other winged helix domains. 82 -312647 pfam09203 MspA MspA. MspA is a membrane porin produced by Mycobacteria, allowing hydrophilic nutrients to enter the bacterium. The protein forms a tightly interconnected octamer with eightfold rotation symmetry that resembles a goblet and contains a central channel. Each subunit fold contains a beta-sandwich of Ig-like topology and a beta-ribbon arm that forms an oligomeric transmembrane barrel. 169 -286312 pfam09204 Colicin_immun Bacterial self-protective colicin-like immunity. Colicin D, which is synthesized by various prokaryotes, adopts an antiparallel four helical bundle fold: the helices are tightly packed, forming a compact cylindrical molecule. The protein specifically cleaves the anticodon loop of all four tRNA-Arg isoacceptors, thereby inactivating prokaryotic protein synthesis and leading to cell death. This family also contains immunity proteins to klebicins and microcins. Many bacteria produce proteins that destroy their competitors. Colicin D is one such. The immunity proteins are expressed on the same operon as their cognate bacteriocins and protect the expressing bacterium from the effects of its own bacteriocin. 84 -312648 pfam09205 DUF1955 Domain of unknown function (DUF1955). Members of this family are found in hypothetical proteins synthesized by the Archaeal organism Sulfolobus. Their exact function has not, as yet, been determined. 159 -312649 pfam09206 ArabFuran-catal Alpha-L-arabinofuranosidase B, catalytic. Members of this family, which are present in fungal alpha-L-arabinofuranosidase B, adopt a beta-sandwich fold similar to that of Concanavalin A-like lectins/glucanase. The beta-sandwich fold consists of two anti-parallel beta-sheets with seven and and six strands, respectively. In addition, there are four helices outside of the beta-strands. The beta-sandwich strands are closely packed and curved with a jelly roll topology, creating a small catalytic pocket. The domain catalyzes the hydrolysis of alpha-1,2-, alpha-1,3- and alpha-1,5-L-arabinofuranosidic bonds in L-arabinose-containing hemicelluloses such as arabinoxylan and L-arabinan. 315 -312650 pfam09207 Yeast-kill-tox Yeast killer toxin. Members of this family, which are produced by Williopsis fungi, adopt a secondary structure consisting of eight strands in two beta sheets, in a Greek-key topology. 87 -286315 pfam09208 Endonuc-MspI Restriction endonuclease MspI. Members of this family of prokaryotic restriction endonucleases recognize the palindromic tetranucleotide sequence 5'-CCGG and cleave between the first and second nucleotides, leaving 2 base 5' overhangs. They fold into an alpha/beta architecture, with a five-stranded mixed beta-sheet sandwiched on both sides by alpha-helices. 254 -312651 pfam09209 DUF1956 Domain of unknown function (DUF1956). Members of this family are found in various prokaryotic transcriptional regulator proteins. Their exact function has not, as yet, been identified. 124 -337325 pfam09210 DUF1957 Domain of unknown function (DUF1957). This domain is found in a set of hypothetical bacterial proteins. Its exact function has not, as yet, been defined. 85 -337326 pfam09211 DUF1958 Domain of unknown function (DUF1958). Members of this functionally uncharacterized family are found in prokaryotic penicillin-binding protein 4. 63 -117765 pfam09212 CBM27 Carbohydrate binding module 27. Members of this family are carbohydrate binding modules that bind to beta-1, 4-manno-oligosaccharides, carob galactomannan, and konjac glucomannan, but not to cellulose (insoluble and soluble) or soluble birchwood xylan. They adopt a beta sandwich structure comprising 13 beta strands with a single, small alpha-helix and a single metal atom. 173 -117766 pfam09213 M3 M3. Members of this family of viral chemokine binding proteins adopt a structure consisting of two different beta-sandwich domains of partial topological similarity to immunoglobulin-like folds. They bind with the CC-chemokine MCP-1, acting as cytokine decoy receptors. 367 -286319 pfam09214 Prd1-P2 Bacteriophage Prd1, adsorption protein P2. Members of this family form a set of bacteriophage adsorption proteins, composed mainly of beta-strands whose complicated topology forms an elongated seahorse-shaped molecule with a distinct head, containing a pseudo-beta propeller structure with approximate 6-fold symmetry, and tail. They are required for the attachment of the phage to the host conjugative DNA transfer complex. This is a poorly understood large transmembrane complex of unknown architecture, with at least 11 different proteins. 554 -337327 pfam09215 Phage-Gp8 Bacteriophage T4, Gp8. Members of this family of viral baseplate structural proteins adopt a structure consisting of a three-layer beta-sandwich with two finger-like loops containing an alpha-helix at the opposite sides of the sandwich. The two peripheral, five-stranded, antiparallel beta-sheets are stacked against the middle, four-stranded, antiparallel beta-sheet. Attachment of this family of proteins to the baseplate during assembly creates a binding site for subsequent attachment of Gp6. 325 -286321 pfam09216 Pfg27 Pfg27. Members of this family are essential for gametocytogenesis in Plasmodium falciparum. They contain a fold composed of two pseudo dyad-related repeats of the helix-turn-helix motif, serving as a platform for RNA and Src homology-3 (SH3) binding. 176 -286322 pfam09217 EcoRII-N Restriction endonuclease EcoRII, N-terminal. The N-terminal effector-binding domain of the Restriction Endonuclease EcoRII has a DNA recognition fold, allowing for binding to 5'-CCWGG sequences. It assumes a structure composed of an eight-stranded beta-sheet with the strands in the order of b2, b5, b4, b3, b7, b6, b1 and b8. They are mostly antiparallel to each other except that b3 is parallel to b7. Alternatively, it may also be viewed as consisting of two mini beta-sheets of four antiparallel beta-strands, sheet I from beta-strands b2, b5, b4, b3 and sheet II from strands b7, b6, b1, b8, folded into an open mixed beta-barrel with a novel topology. Sheet I has a simple Greek key motif while sheet II does not. 148 -312654 pfam09218 DUF1959 Domain of unknown function (DUF1959). This domain is found in a set of uncharacterized Archaeal hypothetical proteins. Its function has not, as yet, been described. 116 -286324 pfam09220 LA-virus_coat L-A virus, major coat protein. Members of this family form the major coat protein of the Saccharomyces cerevisiae L-A virus. 439 -312655 pfam09221 Bacteriocin_IId Bacteriocin class IId cyclical uberolysin-like. Members of this family are membrane-interacting peptides, produced by Firmicutes that display a broad anti-microbial spectrum against Gram-positive and Gram-negative bacteria. They adopt a helical structure, with four or five alpha helices forming a Saposin-like fold. The structure has been found to be cyclical. It should be pointed out that one reference implies that both circularin A and gassericin A are class V or IIc-type bacteriocins; however we find that these two proteins fall into different Pfam families families, this one and BacteriocIIc_cy, pfam12173. 67 -312656 pfam09222 Fim-adh_lectin Fimbrial adhesin F17-AG, lectin domain. Members of this family are carbohydrate-specific lectin domains found in bacterial fimbrial adhesins. They adopt a compact, elongated structure consisting of a beta-sandwich with two major sheets: one consisting of five long strands in mixed orientations, and a front sheet with four antiparallel strands, forming an immunoglobin-like fold. 171 -337328 pfam09223 ZinT ZinT (YodA) periplasmic lipocalin-like zinc-recruitment. ZinT plays a critical role in recruiting periplasmic zinc to the bacterial zinc-uptake complex ZnuABC, consisting of families pfam01297,pfam00950, pfam00005, regulated by the transcription-regulator FUR, pfam01475. ZinT acts as a Zn2+-buffering protein that delivers Zn2+ to ZnuA (TroA), pfam01297. Members of this family of prokaryotic domains were first identified as part of the response of bacteria to a challenge with the toxic heavy metal cadmium. They are able to bind to cadmium, and ensure its subsequent elimination. 180 -312658 pfam09224 DUF1961 Domain of unknown function (DUF1961). Members of this family are found in a set of hypothetical bacterial proteins. Their exact function has not, as yet, been determined. 214 -286328 pfam09225 Endonuc-PvuII Restriction endonuclease PvuII. Members of this family are predominantly found in prokaryotic restriction endonuclease PvuII. They recognize the double-stranded DNA sequence 5'-CAGCTG-3' and cleave after G-3, resulting in specific double-stranded fragments with terminal 5'-phosphates. 154 -312659 pfam09226 Endonuc-HincII Restriction endonuclease HincII. Members of this family of prokaryotic restriction endonucleases recognize the double-stranded sequence 5'-GTYRAC-3' and cleave after Y-3. They catalyze the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. 247 -286330 pfam09227 DUF1962 Domain of unknown function (DUF1962). Members of this family of fungal domains are functionally uncharacterized. 64 -312660 pfam09228 Prok-TraM Prokaryotic Transcriptional repressor TraM. Members of this family of transcriptional repressors adopt a T-shaped structure, with a core composed of two antiparallel alpha-helices. These proteins can be divided into two parts, a 'globular head' and an 'elongated tail', and they negatively regulate conjugation and the expression of tra genes by antagonising traR/AAI-dependent activation. 102 -337329 pfam09229 Aha1_N Activator of Hsp90 ATPase, N-terminal. Members of this family, which are predominantly found in the protein 'Activator of Hsp90 ATPase' adopt a secondary structure consisting of an N-terminal alpha-helix leading into a four-stranded meandering antiparallel beta-sheet, followed by a C-terminal alpha-helix. The two helices are packed together, with the beta-sheet curving around them. They bind to the molecular chaperone HSP82 and stimulate its ATPase activity. 130 -312662 pfam09230 DFF40 DNA fragmentation factor 40 kDa. Members of this family of eukaryotic apoptotic proteins induce DNA fragmentation and chromatin condensation during apoptosis. 225 -286334 pfam09231 RDV-p3 Rice dwarf virus p3. Members of this family are core structural proteins found in the double-stranded RNA virus Phytoreovirus. They are large proteins without apparent domain division, with a number of all-alpha regions and one all beta domain near the C-terminal end. 963 -286335 pfam09232 Caenor_Her-1 Caenorhabditis elegans Her-1. Her-1 adopts an all-helical structure with two subdomains: residues 19-80 comprise a left-handed three-helix bundle with an overhand connection between the second and third helices, whilst residues 81-164 comprise a left-handed anti-parallel four-helix bundle in which the first helix consists of four consecutive turns of 3-10-helix. Fourteen Cys are conserved in all known HER-1 sequences and form seven disulfide bonds. The protein dictates male development in Caenorhabditis elegans, probably by playing a direct role in cell signaling during C. elegans sex determination. It also inhibits the function of tra-2a. 131 -312663 pfam09233 Endonuc-EcoRV Restriction endonuclease EcoRV. Members of this family of prokaryotic restriction endonucleases recognize the double-stranded sequence 5'-GATATC-3' and cleave after T-3. They catalyze the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. 239 -337330 pfam09234 DUF1963 Domain of unknown function (DUF1963). This domain is found in a set of hypothetical bacterial proteins. Its exact function has not, as yet, been described. 212 -337331 pfam09235 Ste50p-SAM Ste50p, sterile alpha motif. The fungal Ste50p SAM domain consists of five helices, which form a compact, globular fold. It is required for mediation of homodimerization and heterodimerization (and in some cases oligomerization) of the protein. 73 -312665 pfam09236 AHSP Alpha-haemoglobin stabilizing protein. Alpha-haemoglobin stabilizing protein (AHSP) acts a molecular chaperone for free alpha-haemoglobin, preventing the harmful aggregation of alpha-haemoglobin during normal erythroid cell development: it specifically protects free alpha-haemoglobin from precipitation. AHSP adopts a helical secondary structure consisting of an elongated antiparallel three alpha-helix bundle. 87 -150045 pfam09237 GAGA GAGA factor. Members of this family bind to a 5'-GAGAG-3' DNA consensus binding site, and contain a Cys2-His2 zinc finger core as well as an N-terminal extension containing two highly basic regions. The zinc finger core binds in the DNA major groove and recognizes the first three GAG bases of the consensus in a manner similar to that seen in other classical zinc finger-DNA complexes. The second basic region forms a helix that interacts in the major groove recognising the last G of the consensus, while the first basic region wraps around the DNA in the minor groove and recognizes the A in the fourth position of the consensus sequence. 54 -312666 pfam09238 IL4Ra_N Interleukin-4 receptor alpha chain, N-terminal. Members of this family are related in overall topology to fibronectin type III modules and fold into a sandwich comprising seven antiparallel beta sheets arranged in a three-strand and a four-strand beta-pleated sheet. They are required for binding of interleukin-4 to the receptor alpha chain, which is a crucial event for the generation of a Th2-dominated early immune response. 90 -312667 pfam09239 Topo-VIb_trans Topoisomerase VI B subunit, transducer. Members of this family adopt a structure consisting of a four-stranded beta-sheet backed by three alpha-helices, the last of which is over 50 amino acids long and extends from the body of the protein by several turns. This domain has been proposed to mediate intersubunit communication by structurally transducing signals from the ATP binding and hydrolysis domains to the DNA binding and cleavage domains of the gyrase holoenzyme. 157 -312668 pfam09240 IL6Ra-bind Interleukin-6 receptor alpha chain, binding. Members of this family adopt a structure consisting of an immunoglobulin-like beta-sandwich, with seven strands in two beta-sheets, in a Greek-key topology. They are required for binding to the cytokine Interleukin-6. 95 -286342 pfam09241 Herp-Cyclin Herpesviridae viral cyclin. Members of this family of viral cyclins adopt a helical structure consisting of five alpha-helices, with one helix surrounded by the others. They specifically activate CDK6 of host cells to a very high degree. 106 -337332 pfam09242 FCSD-flav_bind Flavocytochrome c sulphide dehydrogenase, flavin-binding. Members of this family adopt a structure consisting of a beta(3,4)-alpha(3) core, and an alpha+beta sandwich. They are required for binding to flavin, and subsequent electron transfer. 65 -286344 pfam09243 Rsm22 Mitochondrial small ribosomal subunit Rsm22. Rsm22 has been identified as a mitochondrial small ribosomal subunit and is a methyltransferase. In Schizosaccharomyces pombe, Rsm22 is tandemly fused to Cox11 (a factor required for copper insertion into cytochrome oxidase) and the two proteins are proteolytically cleaved after import into the mitochondria. 275 -312670 pfam09244 DUF1964 Domain of unknown function (DUF1964). Members of this family of bacterial domains adopt a beta-sandwich fold, with Greek-key topology. They are C-terminal to the catalytic sucrose phosphorylase beta/alpha barrel domain, and are functionally uncharacterized. 67 -312671 pfam09245 MA-Mit Mycoplasma arthritidis-derived mitogen. Mycoplasma arthritidis-derived mitogen (MA-Mit) adopts a completely alpha-helical structure consisting of ten alpha helices. It is a superantigen that can activate large fractions of T cells bearing particular TCR V-beta elements. Two MA-Mit molecules form an asymmetric dimer and cross-link two MHC antigens to form a dimerized MA-Mit-MHC complex. 213 -204178 pfam09246 PHAT PHAT. The PHAT (pseudo-HEAT analogous topology) domain assumes a structure consisting of a layer of three parallel helices packed against a layer of two antiparallel helices, into a cylindrical shaped five-helix bundle. It is found in the RNA-binding protein Smaug, where it is essential for high-affinity RNA binding. 108 -312672 pfam09247 TBP-binding TATA box-binding protein binding. Members of this family adopt a structure consisting of three alpha helices and a beta-hairpin. They bind to TATA box-binding protein (TBP), inhibiting TBP interaction with the TATA element, thereby resulting in shutting down of gene transcription. 57 -312673 pfam09248 DUF1965 Domain of unknown function (DUF1965). Members of this family of fungal domains adopt a structure that consists of an alpha/beta motif. Their exact function has not, as yet, been determined. 69 -312674 pfam09249 tRNA_NucTransf2 tRNA nucleotidyltransferase, second domain. Members of this family adopt a structure consisting of a five helical bundle core. They are predominantly found in Archaeal tRNA nucleotidyltransferase, following the catalytic nucleotidyltransferase domain. 104 -312675 pfam09250 Prim-Pol Bifunctional DNA primase/polymerase, N-terminal. Members of this family adopt a structure consisting of a core of antiparallel beta sheets. They are found in various bacterial hypothetical proteins, and have been shown to harbour both primase and polymerase activities. 159 -312676 pfam09251 PhageP22-tail Salmonella phage P22 tail-spike. Members of this family of viral domains adopt a structure consisting of a single-stranded right-handed beta-helix, which in turn is made of parallel beta-strands and short turns. They are required for recognition of the 0-antigenic repeating units of the cell surface, and for subsequent infection of the bacterial cell. 550 -312677 pfam09252 Feld-I_B Allergen Fel d I-B chain. Members of this family of cat allergens adopt a helical structure consisting of eight alpha helices, in a Uteroglobin-like fold. They are one of the most important causes of allergic asthma worldwide. 67 -312678 pfam09253 Ole-e-6 Pollen allergen ole e 6. Members of this family consist of two nearly antiparallel alpha-helices, that are connected by a short loop and followed by a long, unstructured C-terminal tail. They are highly allergenic, primarily mediating olive allergy. 39 -286354 pfam09254 Endonuc-FokI_C Restriction endonuclease FokI, C terminal. Members of this family are predominantly found in prokaryotic restriction endonuclease FokI, and adopt a structure consisting of an alpha/beta/alpha core containing a five-stranded beta-sheet. They recognize the double-stranded DNA sequence 5'-GGATG-3' and cleave DNA phosphodiester groups 9 base pairs away on this strand and 13 base pairs away on the complementary strand. 187 -286355 pfam09255 Antig_Caf1 Caf1 Capsule antigen. Members of this family are predominantly found in the F1 capsule antigen Caf1 synthesized by Yersinia bacteria. They adopt a structure consisting of a seven strands arranged in two beta-sheets, in a Greek-key topology, and mediate targeting of the bacterium to sites of infection. 136 -312679 pfam09256 BaffR-Tall_bind BAFF-R, TALL-1 binding. Members of this family, which are predominantly found in the tumor necrosis factor receptor superfamily member 13c, BAFF-R, are required for binding to tumor necrosis factor ligand TALL-1. 30 -312680 pfam09257 BCMA-Tall_bind BCMA, TALL-1 binding. Members of this family, which are predominantly found in the tumor necrosis factor receptor superfamily member 17, BCMA, are required for binding to tumor necrosis factor ligand TALL-1. 37 -337333 pfam09258 Glyco_transf_64 Glycosyl transferase family 64 domain. Members of this family catalyze the transfer reaction of N-acetylglucosamine and N-acetylgalactosamine from the respective UDP-sugars to the non-reducing end of [glucuronic acid]beta 1-3[galactose]beta 1-O-naphthalenemethanol, an acceptor substrate analog of the natural common linker of various glycosylaminoglycans. They are also required for the biosynthesis of heparan-sulphate. 241 -337334 pfam09259 Fve Fungal immunomodulatory protein Fve. Fve is a major fruiting body protein from Flammulina velutipes, a mushroom possessing immunomodulatory activity. It stimulates lymphocyte mitogenesis, suppresses systemic anaphylaxis reactions and oedema, enhances transcription of IL-2, IFN-gamma and TNF-alpha, and haemagglutinates red blood cells. It appears to be a lectin with specificity for complex cell-surface carbohydrates. Fve adopts a tertiary structure consisting of an immunoglobulin-like beta-sandwich, with seven strands arranged in two beta sheets, in a Greek-key topology. It forms a non-covalently linked homodimer containing no Cys, His or Met residues; dimerization occurs by 3-D domain swapping of the N-terminal helices and is stabilized predominantly by hydrophobic interactions. 111 -312682 pfam09260 DUF1966 Domain of unknown function (DUF1966). This domain is found in various fungal alpha-amylase proteins. Its exact function has not, as yet, been defined. 90 -337335 pfam09261 Alpha-mann_mid Alpha mannosidase middle domain. Members of this family adopt a structure consisting of three alpha helices, in an immunoglobulin/albumin-binding domain-like fold. They are predominantly found in the enzyme alpha-mannosidase. 79 -337336 pfam09262 PEX-1N Peroxisome biogenesis factor 1, N-terminal. Members of this family adopt a double psi beta-barrel fold, similar in structure to the Cdc48 N-terminal domain. It has been suggested that this domain may be involved in interactions with ubiquitin, ubiquitin-like protein modifiers, or ubiquitin-like domains, such as Ubx. Furthermore, the domain may possess a putative adaptor or substrate binding site, allowing for peroxisomal biogenesis, membrane fusion and protein translocation. 77 -312685 pfam09263 PEX-2N Peroxisome biogenesis factor 1, N-terminal. Members of this family adopt a Cdc48 domain 2-like fold, with a beta-alpha-beta(3) arrangement. It has been suggested that this domain may be involved in interactions with ubiquitin, ubiquitin-like protein modifiers, or ubiquitin-like domains, such as Ubx. Furthermore, the domain may possess a putative adaptor or substrate binding site, allowing for peroxisomal biogenesis, membrane fusion and protein translocation. 81 -286363 pfam09264 Sial-lect-inser Vibrio cholerae sialidase, lectin insertion. Members of this family are predominantly found in Vibrio cholerae sialidase, and adopt a beta sandwich structure consisting of 12-14 strands arranged in two beta-sheets. They bind to lectins with high affinity helping to target the protein to sialic acid-rich environments, thereby enhancing the catalytic efficiency of the enzyme. 197 -337337 pfam09265 Cytokin-bind Cytokinin dehydrogenase 1, FAD and cytokinin binding. Members of this family adopt an alpha+beta sandwich structure with an antiparallel beta-sheet, in a ferredoxin-like fold. They are predominantly found in plant cytokinin dehydrogenase 1, where they are capable of binding both FAD and cytokinin substrates. The substrate displays a 'plug-into-socket' binding mode that seals the catalytic site and precisely positions the carbon atom undergoing oxidation in close contact with the reactive locus of the flavin. 282 -286365 pfam09266 VirDNA-topo-I_N Viral DNA topoisomerase I, N-terminal. Members of this family are predominantly found in viral DNA topoisomerase, and assume a beta(2)-alpha-beta-alpha-beta(2) fold, with a left-handed crossover between strands beta2 and beta3. 58 -312687 pfam09267 Dict-STAT-coil Dictyostelium STAT, coiled coil. Members of this family are found in Dictyostelium STAT proteins and adopt a structure consisting of four long alpha-helices, folded into a coiled coil. They are responsible for nuclear export of the protein. 114 -337338 pfam09268 Clathrin-link Clathrin, heavy-chain linker. Members of this family adopt a structure consisting of alpha-alpha superhelix. They are predominantly found in clathrin, where they act as a heavy-chain linker domain. 24 -337339 pfam09269 DUF1967 Domain of unknown function (DUF1967). Members of this family contain a four-stranded beta sheet and three alpha helices flanked by an additional beta strand. They are predominantly found in the bacterial GTP-binding protein Obg, and are still functionally uncharacterized. 68 -312690 pfam09270 BTD Beta-trefoil DNA-binding domain. Members of this family of DNA binding domains adopt a beta-trefoil fold, that is, a capped beta-barrel with internal pseudo threefold symmetry. In the DNA-binding protein LAG-1, it also is the site of mutually exclusive interactions with NotchIC (and the viral protein EBNA2) and co-repressors (SMRT/N-Cor and CIR). 150 -312691 pfam09271 LAG1-DNAbind LAG1, DNA binding. Members of this family are found in various eukaryotic hypothetical proteins and in the DNA-binding protein LAG-1. They adopt a beta sandwich structure, with nine strands in two beta-sheets, in a Greek-key topology, and allow for DNA binding. This domain is also known as RHR-N (Rel-homology region) as it related to Rel domain proteins. 149 -312692 pfam09272 Hepsin-SRCR Hepsin, SRCR. Members of this family form an extracellular domain of the serine protease hepsin. They are formed primarily by three elements of regular secondary structure: a 12-residue alpha helix, a twisted five-stranded antiparallel beta sheet, and a second, two-stranded, antiparallel sheet. The two beta-sheets lie at roughly right angles to each other, with the helix nestled between the two, adopting an SRCR fold. The exact function of this domain has not been identified, though it probably may serve to orient the protease domain or place it in the vicinity of its substrate. 110 -337340 pfam09273 Rubis-subs-bind Rubisco LSMT substrate-binding. Members of this family adopt a multihelical structure, with an irregular array of long and short alpha-helices. They allow binding of the protein to substrate, such as the N-terminal tails of histones H3 and H4 and the large subunit of the Rubisco holoenzyme complex. 120 -117819 pfam09274 ParG ParG. Members of this family of plasmid partition proteins adopt a ribbon-helix-helix fold, with a core of four alpha-helices. They are an essential component of the DNA partition complex of the multidrug resistance plasmid TP228. 76 -286372 pfam09275 Pertus-S4-tox Pertussis toxin S4 subunit. Members of this family of Bordetella pertussis toxins adopt a structure consisting of an OB fold, with a closed or partly opened beta-barrel in a Greek-key topology. 110 -286373 pfam09276 Pertus-S5-tox Pertussis toxin S5 subunit. Members of this family of Bordetella pertussis toxins adopt a structure consisting of an OB fold, with a closed or partly opened beta-barrel in a Greek-key topology. 97 -337341 pfam09277 Erythro-docking Erythronolide synthase, docking. Members of this family of docking domains are found in prokaryotic erythronolide synthase. They adopt a structure consisting of a bundle of four alpha-helices, and mediate homodimerization of the protein, stabilizing the resulting complex. 58 -337342 pfam09278 MerR-DNA-bind MerR, DNA binding. Members of this family of DNA-binding domains are predominantly found in the prokaryotic transcriptional regulator MerR. They adopt a structure consisting of a core of three alpha helices, with an architecture that is similar to that of the 'winged helix' fold. 65 -312695 pfam09279 EF-hand_like Phosphoinositide-specific phospholipase C, efhand-like. Members of this family are predominantly found in phosphoinositide-specific phospholipase C. They adopt a structure consisting of a core of four alpha helices, in an EF like fold, and are required for functioning of the enzyme. 85 -337343 pfam09280 XPC-binding XPC-binding domain. Members of this family adopt a structure consisting of four alpha helices, arranged in an array. They bind specifically and directly to the xeroderma pigmentosum group C protein (XPC) to initiate nucleotide excision repair. 55 -312697 pfam09281 Taq-exonuc Taq polymerase, exonuclease. Members of this family are found in prokaryotic Taq DNA polymerase, where they assume a ribonuclease H-like motif. The domain confers 5'-3' exonuclease activity to the polymerase. 129 -337344 pfam09282 Mago-bind Mago binding. Members of this family adopt a structure consisting of a small globular all-beta-domain, with a three-stranded beta-sheet and a contiguous beta-hairpin. They bind to Mago alpha-helices via extensive electrostatic interactions and at a beta2-beta3 loop via hydrophobic interactions. 27 -337345 pfam09284 RhgB_N Rhamnogalacturonan lyase B, N-terminal. Members of this family are found in both fungi, bacteria and wood-eating arthropods. The domain is found at the N-terminus of rhamnogalacturonase B, a member of the polysaccharide lyase family 4. The domain adopts a structure consisting of a beta super-sandwich, with eighteen strands in two beta-sheets. The three domains of the whole protein rhamnogalacturonan lyase (RGL4), are involved in the degradation of rhamnogalacturonan-I, RG-I, an important pectic plant cell-wall polysaccharide. The active-site residues are a lysine at position 169 in UniProtKB:Q00019 and a histidine at 229, Lys169 is likely to be a proton abstractor, His229 a proton donor in the mechanism. The substrate is a disaccharide, and RGL4, in contrast to other rhamnogalacturonan hydrolases, cleaves the alpha-1,4 linkages of RG-I between Rha and GalUA through a beta-elimination resulting in a double bond in the nonreducing GalUA residue, and is thus classified as a polysaccharide lyase (PL). 251 -337346 pfam09285 Elong-fact-P_C Elongation factor P, C-terminal. Members of this family of nucleic acid binding domains are predominantly found in elongation factor P, where they adopt an OB-fold, with five beta-strands forming a beta-barrel in a Greek-key topology. 56 -312701 pfam09286 Pro-kuma_activ Pro-kumamolisin, activation domain. Members of this family are found in various subtilase propeptides, and adopt a ferredoxin-like fold, with an alpha+beta sandwich. Cleavage of the domain results in activation of the peptide. 142 -192243 pfam09287 CEP1-DNA_bind CEP-1, DNA binding. Members of this family of DNA-binding domains are found the transcription factor CEP-1. They adopt a beta sandwich structure, with nine strands in two beta-sheets, in a Greek-key topology. 198 -117832 pfam09288 UBA_3 Fungal ubiquitin-associated domain. Members of this family of ubiquitin binding domains adopt a structure consisting of a three alpha-helix bundle. They are predominantly found in fungal ubiquitin-protein ligases. 55 -312702 pfam09289 FOLN Follistatin/Osteonectin-like EGF domain. Members of this family are predominantly found in osteonectin and follistatin and adopt an EGF-like fold. 22 -337347 pfam09290 AcetDehyd-dimer Prokaryotic acetaldehyde dehydrogenase, dimerization. Members of this family are found in prokaryotic acetaldehyde dehydrogenase (acylating), and adopt a structure consisting of an alpha-beta-alpha-beta(3) core. They mediate dimerization of the protein. 137 -312704 pfam09291 DUF1968 Domain of unknown function (DUF1968). Members of this family are found in mammalian T-cell antigen receptor, and adopt an immunoglobulin-like beta-sandwich fold, with seven strands in two beta-sheets in a Greek-key topology. Their exact function has not, as yet, been determined. 80 -312705 pfam09292 Neil1-DNA_bind Endonuclease VIII-like 1, DNA bind. Members of this family are predominantly found in Endonuclease VIII-like 1 and adopt a glucocorticoid receptor-like fold. They allow for DNA binding. 39 -286386 pfam09293 RNaseH_C T4 RNase H, C terminal. Members of this family are found in T4 RNaseH ribonuclease, and adopt a SAM domain-like fold, consisting of a bundle of four/five helices. These residues may have a role in providing a docking site for other proteins or enzymes in the replication fork. 124 -312706 pfam09294 Interfer-bind Interferon-alpha/beta receptor, fibronectin type III. Members of this family adopt a secondary structure consisting of seven beta-strands arranged in an immunoglobulin-like beta-sandwich, in a Greek-key topology. They are required for binding to interferon-alpha. 104 -286388 pfam09295 ChAPs ChAPs (Chs5p-Arf1p-binding proteins). ChAPs (Chs5p-Arf1p-binding proteins) are required for the export of specialized cargo from the Golgi. They physically interact with Chs3, Chs5 and the small GTPase Arf1, and they form also interactions with each other. 395 -312707 pfam09296 NUDIX-like NADH pyrophosphatase-like rudimentary NUDIX domain. The N-terminal domain in NADH pyrophosphatase, which has a rudiment Nudix fold according to SCOP. 96 -312708 pfam09297 zf-NADH-PPase NADH pyrophosphatase zinc ribbon domain. This domain is found in between two duplicated NUDIX domains. It has a zinc ribbon structure. 32 -337348 pfam09298 FAA_hydrolase_N Fumarylacetoacetase N-terminal. The N-terminal domain of fumarylacetoacetate hydrolase is functionally uncharacterized, and adopts a structure consisting of an SH3-like barrel. 105 -337349 pfam09299 Mu-transpos_C Mu transposase, C-terminal. Members of this family are found in various prokaryotic integrases and transposases. They adopt a beta-barrel structure with Greek-key topology. 61 -286393 pfam09300 Tecti-min-caps Tectiviridae, minor capsid. Members of this family form the minor capsid protein of various Tectiviridae. 83 -286394 pfam09301 DUF1970 Domain of unknown function (DUF1970). Members of this family consist of various uncharacterized viral hypothetical proteins. 117 -337350 pfam09302 XLF XLF-Cernunnos, XRcc4-like factor, NHEJ component. XLF (also called Cernunnos) is Xrcc4-like-factor, and interacts with the XRCC4-DNA ligase IV complex to promote DNA non-homologous end-joining. It directly interacts with the XRCC4-Ligase IV complex and siRNA-mediated down-regulation of XLF in human cell lines leads to radio-sensitivity and impaired DNA non-homologous end-joining. This family contains Nej1 (non-homologous end-joining factor), and Lif1, ligase-interacting factor. XLF forms one of the components of the NHEJ machinery for DNA non-homologous end-joining. 180 -286396 pfam09303 KcnmB2_inactiv KCNMB2, ball and chain domain. Members of this family are found in the cytoplasmic N-terminus of KCNMB2, the beta-2 subunit of large conductance calcium and voltage-activated potassium channels. They are responsible for the fast inactivation of these channels. 31 -312712 pfam09304 Cortex-I_coil Cortexillin I, coiled coil. Members of this family are predominantly found in the actin-bundling protein Cortexillin I from Dictyostelium discoideum. They adopt a structure consisting of an 18-heptad-repeat alpha-helical coiled-coil, and are a prerequisite for the assembly of Cortexillin I. 107 -312713 pfam09305 TACI-CRD2 TACI, cysteine-rich domain. Members of this family are predominantly found in tumor necrosis factor receptor superfamily, member 13b (TACI), and are required for binding to the ligands APRIL and BAFF. 39 -286399 pfam09306 Phage-scaffold Bacteriophage, scaffolding protein. Members of this family of scaffolding proteins are produced by various bacteriophages. 303 -312714 pfam09307 MHC2-interact CLIP, MHC2 interacting. Members of this family are found in class II invariant chain-associated peptide (CLIP), and are required for association with class II major histocompatibility complex (MHC) in the MHC class II processing pathway. 109 -286401 pfam09308 LuxQ-periplasm LuxQ, periplasmic. Members of this family constitute the periplasmic sensor domain of the prokaryotic protein LuxQ, and assume a structure consisting of two tandem Per/ARNT/Simple-minded (PAS) folds. 238 -312715 pfam09309 FCP1_C FCP1, C-terminal. The C-terminal domain of FCP-1 is required for interaction with the carboxy terminal domain of RAP74. Interaction relies extensively on van der Waals contacts between hydrophobic residues situated within alpha-helices in both domains. 261 -312716 pfam09310 PD-C2-AF1 POU domain, class 2, associating factor 1. Members of this family are transcriptional coactivators that specifically associate with either OCT1 or OCT2, through recognition of their POU domains. They are essential for the response of B-cells to antigens and required for the formation of germinal centers. 248 -312717 pfam09311 Rab5-bind Rabaptin-like protein. Members of this family are predominantly found in Rabaptin and allow for binding to the GTPase Rab5. This interaction is necessary and sufficient for Rab5-dependent recruitment of Rabaptin5 to early endosomal membranes. 307 -312718 pfam09312 SurA_N SurA N-terminal domain. This domain is found at the N-terminus of the chaperone SurA. It is a helical domain of unknown function. The C-terminus of the SurA protein folds back and forms part of this domain also but is not included in the current alignment. 118 -337351 pfam09313 DUF1971 Domain of unknown function (DUF1971). Members of this family of functionally uncharacterized domains are predominantly found in bacterial Tellurite resistance protein. 80 -337352 pfam09314 DUF1972 Domain of unknown function (DUF1972). Members of this family of functionally uncharacterized domains are found in bacterial glycosyltransferases and rhamnosyltransferases. 185 -312720 pfam09316 Cmyb_C C-myb, C-terminal. Members of this family are predominantly found in the proto-oncogene c-myb and the viral transforming protein myb. Truncation of the domain results in 'activation' of c-myb and subsequent tumorigenesis. 164 -337353 pfam09317 DUF1974 Domain of unknown function (DUF1974). Members of this family of functionally uncharacterized domains are predominantly found in various prokaryotic acyl-coenzyme a dehydrogenases. 284 -286410 pfam09318 Glyco_trans_A_1 Glycosyl transferase 1 domain A. Glyco_trans_A_1 is family of found predominantly at the N-terminus of various prokaryotic alpha-glucosyltransferases. According to whether the domain exists as a whole molecule or as a half molecule determines the number of sugar residues that the molecule transfers. Two-domain proteins are processive in that they transfer more than one sugar residue, processively; single domain proteins transfer just one sugar moiety. 193 -337354 pfam09320 DUF1977 Domain of unknown function (DUF1977). Members of this family of functionally uncharacterized domains are predominantly found in dnaj-like proteins. 103 -312723 pfam09321 DUF1978 Domain of unknown function (DUF1978). Members of this family are found in various hypothetical proteins produced by the bacterium Chlamydia pneumoniae. Their exact function has not, as yet, been identified. 244 -337355 pfam09322 DUF1979 Domain of unknown function (DUF1979). Members of this family of functionally uncharacterized domains are found in various Oryza sativa mutator-like transposases. 58 -312725 pfam09323 DUF1980 Domain of unknown function (DUF1980). Members of this family are found in a set of prokaryotic hypothetical proteins. Their exact function, has not, as yet, been defined. 173 -337356 pfam09324 DUF1981 Domain of unknown function (DUF1981). Members of this family of functionally uncharacterized domains are found in various plant and yeast protein transport proteins. 84 -337357 pfam09325 Vps5 Vps5 C terminal like. Vps5 is a sorting nexin that functions in membrane trafficking. This is the C terminal dimerization domain. 236 -337358 pfam09326 NADH_dhqG_C NADH-ubiquinone oxidoreductase subunit G, C-terminal. Members of this family of are found at the C-terminus of NADH dehydrogenases subunit G or NADH-ubiquinone oxidoreductase subunit G. EC:1.6.99.5. 41 -337359 pfam09327 DUF1983 Domain of unknown function (DUF1983). Members of this family of functionally uncharacterized domains are found in various bacteriophage host specificity proteins. 75 -337360 pfam09328 Phytochelatin_C Domain of unknown function (DUF1984). Members of this family of functionally uncharacterized domains are found at the C-terminus of plant phytochelatin synthases. 261 -337361 pfam09329 zf-primase Primase zinc finger. This zinc finger is found in yeast Mcm10 proteins and DnaG-type primases. 46 -337362 pfam09330 Lact-deh-memb D-lactate dehydrogenase, membrane binding. Members of this family are predominantly found in prokaryotic D-lactate dehydrogenase, forming the cap-membrane-binding domain, which consists of a large seven-stranded antiparallel beta-sheet flanked on both sides by alpha-helices. They allow for membrane association. 289 -312733 pfam09331 DUF1985 Domain of unknown function (DUF1985). Members of this family of functionally uncharacterized domains are found in a set of Arabidopsis thaliana hypothetical proteins. 134 -337363 pfam09332 Mcm10 Mcm10 replication factor. Mcm10 is a eukaryotic DNA replication factor that regulates the stability and chromatin association of DNA polymerase alpha. 350 -337364 pfam09333 ATG_C Autophagy-related protein C terminal domain. ATG2 (also known as Apg2) is a peripheral membrane protein. It functions in both cytoplasm-to-vacuole targeting and in autophagy. 96 -337365 pfam09334 tRNA-synt_1g tRNA synthetases class I (M). This family includes methionyl tRNA synthetases. 391 -337366 pfam09335 SNARE_assoc SNARE associated Golgi protein. This is a family of SNARE associated Golgi proteins. The yeast member of this family localizes with the t-SNARE Tlg2. 120 -337367 pfam09336 Vps4_C Vps4 C terminal oligomerization domain. This domain is found at the C terminal of ATPase proteins involved in vacuolar sorting. It forms an alpha helix structure and is required for oligomerization. 61 -337368 pfam09337 zf-H2C2 His(2)-Cys(2) zinc finger. This domain binds to histone upstream activating sequence (UAS) elements that are found in histone gene promoters. Added to clan to resolve overlaps with PF16721 but neither are classic zf_C2H2 zinc-fingers. 39 -312739 pfam09338 Gly_reductase Glycine/sarcosine/betaine reductase component B subunits. This is a family of glycine reductase, sarcosine reductase and betaine reductases. These enzymes catalyze the following reactions. sarcosine reductase: Acetyl phosphate + methylamine + thioredoxin disulphide = N-methylglycine + phosphate + thioredoxin Acetyl phosphate + NH(3) + thioredoxin disulphide = glycine + phosphate + thioredoxin. betaine reductase: Acetyl phosphate + trimethylamine + thioredoxin disulphide = N,N,N-trimethylglycine + phosphate + thioredoxin. 426 -286429 pfam09339 HTH_IclR IclR helix-turn-helix domain. 49 -337369 pfam09340 NuA4 Histone acetyltransferase subunit NuA4. The NuA4 histone acetyltransferase (HAT) multisubunit complex is responsible for acetylation of histone H4 and H2A N-terminal tails in yeast. NuA4 complexes are highly conserved in eukaryotes and play primary roles in transcription, cellular response to DNA damage, and cell cycle control. 78 -337370 pfam09341 Pcc1 Transcription factor Pcc1. Pcc1 is a transcription factor that functions in regulating genes involved in cell cycle progression and polarised growth. 73 -286432 pfam09342 DUF1986 Domain of unknown function (DUF1986). This domain is found in serine proteases and is predicted to contain disulphide bonds. 116 -337371 pfam09343 DUF2460 Conserved hypothetical protein 2217 (DUF2460). This model represents a family of conserved hypothetical proteins. It is usually (but not always) found in apparent phage-derived regions of bacterial chromosomes. 200 -312743 pfam09344 Cas_CT1975 CT1975-like protein. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family is represented by CT1975 of Chlorobium tepidum. 353 -337372 pfam09345 DUF1987 Domain of unknown function (DUF1987). This family of proteins are functionally uncharacterized. 120 -337373 pfam09346 SMI1_KNR4 SMI1 / KNR4 family (SUKH-1). Proteins in this family are involved in the regulation of 1,3-beta-glucan synthase activity and cell-wall formation. Genome contextual information showed that SMI1 are primary immunity proteins in bacterial toxin systems. 121 -337374 pfam09347 DUF1989 Domain of unknown function (DUF1989). This family of proteins are functionally uncharacterized. 163 -312747 pfam09348 DUF1990 Domain of unknown function (DUF1990). This family of proteins are functionally uncharacterized. 151 -337375 pfam09349 OHCU_decarbox OHCU decarboxylase. The proteins in this family are OHCU decarboxylase - enzymes of the purine catabolism that catalyze the conversion of OHCU into S(+)-allantoin. This is the third step of the conversion of uric acid (a purine derivative) to allantoin. Step one is catalyzed by urate oxidase (pfam01014) and step two is catalyzed by HIUases (pfam00576). 155 -337376 pfam09350 DUF1992 Domain of unknown function (DUF1992). This family of proteins are functionally uncharacterized. 72 -337377 pfam09351 DUF1993 Domain of unknown function (DUF1993). This family of proteins are functionally uncharacterized. 161 -312751 pfam09353 DUF1995 Domain of unknown function (DUF1995). This family of proteins are functionally uncharacterized. 202 -312752 pfam09354 HNF_C HNF3 C-terminal domain. This presumed domain is found in the C-terminal region of Hepatocyte Nuclear Factor 3 alpha and beta chains. Its specific function is uncertain. The N-terminal region of this presumed domain contains an EH1 (engrailed homology 1) motif, that is characterized by the FxIxxIL sequence. 68 -286444 pfam09355 Phage_Gp19 Phage protein Gp19/Gp15/Gp42. This family of proteins are functionally uncharacterized. They are found in a variety of bacteriophage. 116 -337378 pfam09356 Phage_BR0599 Phage conserved hypothetical protein BR0599. This entry describes a family of proteins found almost exclusively in phage or in prophage regions of bacterial genomes, including the phage-like Rhodobacter capsulatus gene transfer agent, which packages DNA. An apparent exception is Wolbachia pipientis wMel, a bacterial endosymbiont of the fruit fly, which has several candidate phage-related genes physically separate from obvious prophage regions. 81 -312754 pfam09357 RteC RteC protein. Human colonic Bacteroides species harbor a family of large conjugative transposons, called tetracycline resistance (Tcr) elements. Activities of these elements are enhanced by pregrowth of bacteria in medium containing tetracycline, indicating that at least some Tcr element genes are regulated by tetracycline. An insertional disruption in the rteC gene abolished self-transfer of the Tcr element to Bacteroides recipients, indicating that the gene was essential for self-transfer. 218 -337379 pfam09358 E1_UFD Ubiquitin fold domain. The ubiquitin fold domain is found at the C-terminus of ubiquitin-activating E1 family enzymes. This domain binds to E2 enzymes. 93 -337380 pfam09359 VTC VTC domain. This presumed domain is found in the yeast vacuolar transport chaperone proteins VTC2, VTC3 and VTC4. This domain is also found in a variety of bacterial proteins. 241 -337381 pfam09360 zf-CDGSH Iron-binding zinc finger CDGSH type. The CDGSH-type zinc finger domain binds iron rather than zinc as a redox-active pH-labile 2Fe-2S cluster. The conserved sequence C-X-C-X2-(S/T)-X3-P-X-C-D-G-(S/A/T)-H is a defining feature of this family. The domain is oriented towards the cytoplasm and is tethered to the mitochondrial membrane by a more N-terminal domain found in higher vertebrates, MitoNEET_N, pfam10660. The domain forms a uniquely folded homo-dimer and spans the outer mitochondrial membrane, orienting the iron-binding residues towards the cytoplasm. 40 -337382 pfam09361 Phasin_2 Phasin protein. This entry describes a group of small proteins found associated with inclusions in bacterial cells. Most associate with polyhydroxyalkanoate (PHA) inclusions, the most common of which consist of polyhydroxybutyrate (PHB). These are designated granule-associate proteins or phasins. 91 -337383 pfam09362 DUF1996 Domain of unknown function (DUF1996). This family of proteins are functionally uncharacterized. 228 -337384 pfam09363 XFP_C XFP C-terminal domain. Bacterial enzyme splits fructose-6-P and/or xylulose-5-P with the aid of inorganic phosphate into either acetyl-P and erythrose-4-P and/or acetyl-P and glyeraldehyde-3-P EC:4.1.2.9, EC:4.1.2.22. 200 -286453 pfam09364 XFP_N XFP N-terminal domain. Bacterial enzyme splits fructose-6-P and/or xylulose-5-P with the aid of inorganic phosphate into either acetyl-P and erythrose-4-P and/or acetyl-P and glyeraldehyde-3-P EC:4.1.2.9, EC:4.1.2.22. This family is distantly related to transketolases e.g. pfam02779. 378 -337385 pfam09365 DUF2461 Conserved hypothetical protein (DUF2461). Members of this family are widely (though sparsely) distributed bacterial proteins, about 230 residues in length. All members have a motif RxxRDxRFxxx[DN]KxxY. The function of this protein family is unknown. 208 -337386 pfam09366 DUF1997 Protein of unknown function (DUF1997). This family of proteins are functionally uncharacterized. 154 -312763 pfam09367 CpeS CpeS-like protein. This family, that includes CpeS proteins, is functionally uncharacterized. 169 -337387 pfam09368 Sas10 Sas10 C-terminal domain. Sas10 is an Essential subunit of U3-containing Small Subunit (SSU) processome complex involved in the production of the 18S rRNA and assembly of the small ribosomal subunit. 74 -337388 pfam09369 DUF1998 Domain of unknown function (DUF1998). This family of proteins are functionally uncharacterized. They are mainly found in helicase proteins so could be RNA binding. This family includes a probable zinc binding motif at its C-terminus. 84 -337389 pfam09370 PEP_hydrolase Phosphoenolpyruvate hydrolase-like. This domain has a TIM barrel fold related to IGPS and to phosphoenolpyruvate mutase/aldolase/carboxylase. 266 -337390 pfam09371 Tex_N Tex-like protein N-terminal domain. This presumed domain is found at the N-terminus of Bordetella pertussis tex. This protein defines a novel family of prokaryotic transcriptional accessory factors. 184 -286461 pfam09372 PRANC PRANC domain. This presumed domain is found at the C-terminus of a variety of Pox virus proteins. The PRANC (Pox proteins Repeats of ANkyrin - C terminal) domain is also found on its own in some proteins. The function of this domain is unknown, but it appears to be related to the F-box domain and may play a similar role. 95 -117915 pfam09373 PMBR Pseudomurein-binding repeat. Methanothermobacter thermautotrophicus is a methanogenic Gram-positive microorganism with a cell wall consisting of pseudomurein. This repeat specifically binds to pseudomurein. This repeat is found at the N-terminus of PeiW and PeiP which are pseudomurein binding phage proteins. 33 -286462 pfam09374 PG_binding_3 Predicted Peptidoglycan domain. This family contains a potential peptidoglycan binding domain. 76 -337391 pfam09375 Peptidase_M75 Imelysin. The imelysin peptidase was first identified in Pseudomonas aeruginosa. The active site residues have not been identified. However, His201 and Glu204 are completely conserved in the family and occur in an HXXE motif that is also found in family M14. 285 -312769 pfam09376 NurA NurA domain. This family includes NurA a nuclease exhibiting both single-stranded endonuclease activity and 5'-3' exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. 259 -337392 pfam09377 SBDS_C SBDS protein C-terminal domain. This family is highly conserved in species ranging from archaea to vertebrates and plants. The family contains several Shwachman-Bodian-Diamond syndrome (SBDS) proteins from both mouse and humans. Shwachman-Diamond syndrome is an autosomal recessive disorder with clinical features that include pancreatic exocrine insufficiency, haematological dysfunction and skeletal abnormalities. Members of this family play a role in RNA metabolism. 116 -312771 pfam09378 HAS-barrel HAS barrel domain. The HAS barrel is named after HerA-ATP Synthase. In ATP synthases, this domain is implicated in the assembly of the catalytic toroid and docking of accessory subunits, such as the subunit of the ATP synthase complex. Similar roles in docking of the functional partner, the NurA nuclease, and assembly of the HerA toroid complex appear likely for the HAS-barrel of the HerA family. 90 -286467 pfam09379 FERM_N FERM N-terminal domain. This domain is the N-terminal ubiquitin-like structural domain of the FERM domain. 64 -337393 pfam09380 FERM_C FERM C-terminal PH-like domain. 89 -286469 pfam09381 Porin_OmpG Outer membrane protein G (OmpG). Porins are channel proteins in the outer membrane of gram negative bacteria which mediate the uptake of molecules required for growth and survival. Escherichia coli OmpG forms a 14 stranded beta-barrel and in contrast to most porins, appears to function as a monomer. The central pore of OmpG is wider than other E. coli porins and it is speculated that it may form a non-specific channel for the transport of larger oligosaccharides. 280 -337394 pfam09382 RQC RQC domain. This DNA-binding domain is found in the RecQ helicase among others and has a helix-turn-helix structure. The RQC domain, found only in RecQ family enzymes, is a high affinity G4 DNA binding domain. 108 -337395 pfam09383 NIL NIL domain. This domain is found at the C-terminus of ABC transporter proteins involved in D-methionine transport as well as a number of ferredoxin-like proteins. This domain is likely to act as a substrate binding domain. The domain has been named after a conserved sequence in some members of the family. 73 -312775 pfam09384 UTP15_C UTP15 C terminal. U3 snoRNA is ubiquitous in eukaryotes and is required for nucleolar processing of pre-18S ribosomal RNA. It is a component of the ribosomal small subunit (SSU) processome. UTP15 is needed for optimal pre-ribosomal RNA transcription by RNA polymerase I, together with a subset of U3 proteins required for transcription (t-UTPs). This entry represents the C terminal of UTP15, and is found adjacent to WD40 repeats (pfam00400). 146 -286473 pfam09385 HisK_N Histidine kinase N terminal. This domain is found at the N terminal of sensor histidine kinase proteins. 129 -286474 pfam09386 ParD Antitoxin ParD. ParD is a plasmid anti-toxin than forms a ribbon-helix-helix DNA binding structure. It stabilizes plasmids by inhibiting ParE toxicity in cells that express ParD and ParE. ParD forms a dimer and also regulates its own promoter (parDE). 79 -312776 pfam09387 MRP Mitochondrial RNA binding protein MRP. MRP1 and MRP2 are mitochondrial RNA binding proteins that form a heteromeric complex. The MRP1/MRP2 heterotetrameric complex binds to guide RNAs and stabilizes them in an unfolded conformation suitable for RNA-RNA hybridisation. Each MRP subunit adopts a 'whirly' transcription factor fold. 184 -337396 pfam09388 SpoOE-like Spo0E like sporulation regulatory protein. Spore formation is an extreme response to starvation and can also be a component of disease transmission. Sporulation is controlled by an expanded two-component system where starvation signals result in sensor kinase activation and phosphorylation of the master sporulation response regulator Spo0A. Phosphatases such as Spo0E dephosphorylate Spo0A thereby inhibiting sporulation. This is a family of Spo0E-like phosphatases. The structure of a Bacillus anthracis member of this family has revealed an anti-parallel alpha-helical structure. 38 -312778 pfam09390 DUF1999 Protein of unknown function (DUF1999). This family contains a putative Fe-S binding reductase whose structure adopts an alpha and beta fold. 151 -337397 pfam09391 DUF2000 Protein of unknown function (DUF2000). This is a family of proteins of unknown function. The structure of one of the proteins in this family has been shown to adopt an alpha beta fold. 132 -337398 pfam09392 T3SS_needle_F Type III secretion needle MxiH, YscF, SsaG, EprI, PscF, EscF. Type III secretion systems are essential virulence determinants for many gram-negative bacterial pathogens. MxiH is an extracellular alpha helical needle that is required for translocation of effector proteins into host cells. Once inside, the effector proteins subvert normal cell function to aid infection. The needle protein F, polymerizes to form a shaft. 67 -312781 pfam09393 DUF2001 Phage tail tube protein. This is a family of phage tail tube proteins including protein XkdM from phage-like element PBSX protein whose structure adopts a beta barrel flanked with alpha helical regions. 138 -337399 pfam09394 Inhibitor_I42 Chagasin family peptidase inhibitor I42. Chagasin is a cysteine peptidase inhibitor which forms a beta barrel structure. 87 -312783 pfam09396 Thrombin_light Thrombin light chain. Thrombin is an enzyme that cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII. Prothrombin is activated on the surface of a phospholipid membrane where factor Xa removes the activation peptide and cleaves the remaining part into light and heavy chains. This domain corresponds to the light chain of thrombin. 47 -337400 pfam09397 Ftsk_gamma Ftsk gamma domain. This domain directs oriented DNA translocation and forms a winged helix structure. Mutated proteins with substitutions in the FtsK gamma DNA-recognition helix are impaired in DNA binding. 63 -312785 pfam09398 FOP_dimer FOP N terminal dimerization domain. Fibroblast growth factor receptor 1 (FGFR1) oncogene partner (FOP) is a centrosomal protein that is involved in anchoring microtubules to subcellular structures. This domain includes a Lis-homology motif. It forms an alpha helical bundle and is involved in dimerization. 81 -286484 pfam09399 SARS_lipid_bind SARS lipid binding protein. This is a family of proteins found in SARS coronavirus. The protein has a novel fold which forms a dimeric tent-like beta structure with an amphipathic surface, and a central hydrophobic cavity that binds lipid molecules. This cavity is likely to be involved in membrane attachment. 98 -337401 pfam09400 DUF2002 Protein of unknown function (DUF2002). This is a family of putative cytoplasmic proteins. The structure of these proteins form an antiparallel beta and sheet and contain some alpha helical regions. 110 -286486 pfam09401 NSP10 RNA synthesis protein NSP10. Non-structural protein 10 (NSP10) is involved in RNA synthesis. it is synthesized as a polyprotein whose cleavage generates many non-structural proteins. NSP10 contains two zinc binding motifs and forms two anti-parallel helices which are stacked against an irregular beta sheet. A cluster of basic residues on the protein surface suggests a nucleic acid-binding function. 119 -337402 pfam09402 MSC Man1-Src1p-C-terminal domain. MAN1 is an integral protein of the inner nuclear membrane which binds to chromatin associated proteins and plays a role in nuclear organisation. The C terminal nucleoplasmic region forms a DNA binding winged helix and binds to Smad. This C-terminal tail is also found in S. cerevisiae and is thought to consist of three conserved helices followed by two downstream strands. 327 -286488 pfam09403 FadA Adhesion protein FadA. FadA (Fusobacterium adhesin A) is an adhesin which forms two alpha helices. 126 -286489 pfam09404 DUF2003 Eukaryotic protein of unknown function (DUF2003). This is a family of proteins of unknown function which adopt an alpha helical and beta sheet structure. 440 -312787 pfam09405 Btz CASC3/Barentsz eIF4AIII binding. This domain is found on CASC3 (cancer susceptibility candidate gene 3 protein) which is also known as Barentsz (Btz). CASC3 is a component of the EJC (exon junction complex) which is a complex that is involved in post-transcriptional regulation of mRNA in metazoa. The complex is formed by the association of four proteins (eIF4AIII, Barentsz, Mago, and Y14), mRNA, and ATP. This domain wraps around eIF4AIII and stacks against the 5' nucleotide. 116 -312788 pfam09406 DUF2004 Protein of unknown function (DUF2004). This is a family of proteins with unknown function. The structure of one of the proteins in this family has revealed a novel alpha-beta fold. 106 -312789 pfam09407 AbiEi_1 AbiEi antitoxin C-terminal domain. AbiEi_1 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 136 -312790 pfam09408 Spike_rec_bind Spike receptor binding domain. Spike is an envelope glycoprotein which aids viral entry into the host cell. This domain corresponds is the immunogenic receptor binding domain of the protein which binds to angiotensin-converting enzyme 2 (ACE2). 211 -312791 pfam09409 PUB PUB domain. The PUB (also known as PUG) domain is found in peptide N-glycanase where it functions as a AAA ATPase binding domain. This domain is also found on other proteins linked to the ubiquitin-proteasome system. 78 -337403 pfam09411 PagL Lipid A 3-O-deacylase (PagL). PagL is an outer membrane protein with lipid A 3-O-deacylase activity. It forms an 8 stranded beta barrel structure. 122 -337404 pfam09412 XendoU Endoribonuclease XendoU. This is a family of endoribonucleases involved in RNA biosynthesis which has been named XendoU in Xenopus laevis. XendoU is a U-specific metal dependent enzyme that produces products with a 2'-3' cyclic phosphate termini. 264 -337405 pfam09413 DUF2007 Putative prokaryotic signal transducing protein. This is a family of putative prokaryotic signal transducing proteins of Pii-type. 66 -337406 pfam09414 RNA_ligase RNA ligase. This is a family of RNA ligases. The enzyme repairs RNA strand breaks in nicked DNA:RNA and RNA:RNA but not in DNA:DNA duplexes. 91 -312796 pfam09415 CENP-X CENP-S associating Centromere protein X. The centromere, essential for faithful chromosome segregation during mitosis, has a network of constitutive centromere-associated (CCAN) proteins associating with it during mitosis. So far in vertebrates at least 15 centromere proteins have been identified, which are divided into several subclasses based on functional and biochemical analyses. These provide a platform for the formation of a functional kinetochore during mitosis. CENP-S is one that does not associate with the CENP-H-containing complex but rather interacts with CENP-X to form a stable assembly of outer kinetochore proteins that functions downstream of other components of the CCAN. This complex may directly allow efficient and stable formation of the outer kinetochore on the CCAN platform. 71 -337407 pfam09416 UPF1_Zn_bind RNA helicase (UPF2 interacting domain). UPF1 is an essential RNA helicase that detects mRNAs containing premature stop codons and triggers their degradation. This domain contains 3 zinc binding motifs and forms interactions with another protein (UPF2) that is also involved nonsense-mediated mRNA decay (NMD). 151 -312798 pfam09418 DUF2009 Protein of unknown function (DUF2009). This is a eukaryotic family of proteins with unknown function. 454 -286502 pfam09419 PGP_phosphatase Mitochondrial PGP phosphatase. This is a family of proteins that acts as a mitochondrial phosphatase in cardiolipin biosynthesis. Cardiolipin is a unique dimeric phosphoglycerolipid predominantly present in mitochondrial membranes. The inverted phosphatase motif includes the highly conserved DKD triad. 166 -337408 pfam09420 Nop16 Ribosome biogenesis protein Nop16. Nop16 is a protein involved in ribosome biogenesis. 200 -337409 pfam09421 FRQ Frequency clock protein. The frequency clock protein, is the central component of the frq-based circadian negative feedback loop, regulates various aspects of the circadian clock in Neurospora crassa. This protein has been shown to interact with itself via a coiled-coil. 977 -337410 pfam09422 WTX WTX protein. The WTX protein is found to be inactivated in one third of Wilms tumors. The WTX protein is functionally uncharacterized. 470 -337411 pfam09423 PhoD PhoD-like phosphatase. 345 -286507 pfam09424 YqeY Yqey-like protein. The function of this domain found in the YqeY protein is uncertain. 143 -337412 pfam09425 CCT_2 Divergent CCT motif. This short motif is found in a number of plant proteins. It appears to be related to the N-terminal half of the CCT motif. The CCT motif is about 45 amino acids long and contains a putative nuclear localization signal within the second half of the CCT motif. 25 -312804 pfam09426 Nyv1_N Vacuolar R-SNARE Nyv1 N terminal. This domain corresponds to the N terminal domain of vacuolar R-SNARE Nyv1 which adopts a longin fold. In yeast it has been shown that this domain is sufficient to direct the transport of Nyv1 to limiting membrane of the vacuole. 138 -337413 pfam09427 DUF2014 Domain of unknown function (DUF2014). This domain is found at the C terminal of a family of ER membrane bound transcription factors called sterol regulatory element binding proteins (SREBP). 262 -312806 pfam09428 DUF2011 Fungal protein of unknown function (DUF2011). This is a family of fungal proteins whose function is unknown. 129 -337414 pfam09429 Wbp11 WW domain binding protein 11. The WW domain is a small protein module with a triple-stranded beta-sheet fold. This is a family of WW domain binding proteins. 76 -312808 pfam09430 DUF2012 Protein of unknown function (DUF2012). This is a eukaryotic family of uncharacterized proteins. 122 -312809 pfam09431 DUF2013 Protein of unknown function (DUF2013). This region is found at the C terminal of a group of cytoskeletal proteins. 134 -286515 pfam09432 THP2 Tho complex subunit THP2. The THO complex plays a role in coupling transcription elongation to mRNA export. It is composed of subunits THP2, HPR1, THO2 and MFT1. 129 -312810 pfam09435 DUF2015 Fungal protein of unknown function (DUF2015). This is a fungal family of uncharacterized proteins. 109 -312811 pfam09436 DUF2016 Domain of unknown function (DUF2016). A predicted alpha+beta domain that is usually fused N-terminal to the JAB metallopeptidase. This protein in turn is found in conserved gene neighborhoods that include genes encoding the bacterial homologs of the ubiquitin modification system such as the E1, E2 and Ub proteins. The domain is also known as the JAB-N domain. 72 -117976 pfam09437 Pombe_5TM Pombe specific 5TM protein. 219 -312812 pfam09438 DUF2017 Domain of unknown function (DUF2017). This is an alpha-helical domain found in gene neighborhoods that contain genes encoding ubiquitin, cysteine synthases and JAB peptidases. 174 -312813 pfam09439 SRPRB Signal recognition particle receptor beta subunit. The beta subunit of the signal recognition particle receptor (SRP) is a transmembrane GTPase which anchors the alpha subunit to the endoplasmic reticulum membrane. 181 -337415 pfam09440 eIF3_N eIF3 subunit 6 N terminal domain. This is the N terminal domain of subunit 6 translation initiation factor eIF3. 132 -312815 pfam09441 Abp2 ARS binding protein 2. This DNA-binding protein binds to the autonomously replicating sequence (ARS) binding element. It may play a role in regulating the cell cycle response to stress signals. 171 -337416 pfam09442 DUF2018 Domain of unknown function (DUF2018). Acid-adaptive protein possibly of physiological significance when H.pylori colonises the human stomach, which adopts a unique four alpha-helical triangular conformations. The biologically active form is thought to be a tetramer. The protein is expressed along with six other proteins, some of which are related to iron storage and haem biosynthesis. 83 -312817 pfam09443 CFC Cripto_Frl-1_Cryptic (CFC). CFC domain is one half of the membrane protein Cripto, a protein overexpressed in many tumors and structurally similar to the C-terminal extracellular portions of Jagged 1 and Jagged 2. CFC is approx 40-residues long, compacted by three internal disulphide bridges, and binds Alk4 via a hydrophobic patch. CFC is structurally homologous to the VWFC-like domain. 35 -312818 pfam09444 MRC1 MRC1-like domain. This putative domain is found to be the most conserved region in mediator of replication checkpoint protein 1. 139 -337417 pfam09445 Methyltransf_15 RNA cap guanine-N2 methyltransferase. RNA cap guanine-N2 methyltransferases such as Schizosaccharomyces pombe Tgs1 and Giardia lamblia Tgs2 catalyze methylation of the exocyclic N2 amine of 7-methylguanosine. 165 -337418 pfam09446 VMA21 VMA21-like domain. This presumed short domain appears to contain two potential transmembrane helices. VMA21 is localized in the ER where it is needed as an accessory factor for assembly of the V0 component of the vacuolar ATPase. 64 -312821 pfam09447 Cnl2_NKP2 Cnl2/NKP2 family protein. This family includes the Cnl2 kinetochore protein. 65 -312822 pfam09448 MmlI Methylmuconolactone methyl-isomerase. MmlI is a short, approx 115 residue, protein of two alpha helices and four beta strands. It is involved in the catabolism of methyl-substituted aromatics via a modified oxo-adipate pathway in bacteria. The enzyme appears to be monomeric in some species and tetrameric in others. The known structure shows two copies of the protein form a dimeric alpha beta barrel. 114 -337419 pfam09449 DUF2020 Domain of unknown function (DUF2020). Protein of unknown function found in bacteria. 144 -312824 pfam09450 DUF2019 Domain of unknown function (DUF2019). Protein of unknown function found in bacteria. 105 -337420 pfam09451 ATG27 Autophagy-related protein 27. 263 -286530 pfam09452 Mvb12 ESCRT-I subunit Mvb12. The endosomal sorting complex required for transport (ESCRT) complexes play a critical role in receptor down-regulation and retroviral budding. A new component of the ESCRT-I complex was identified, multivesicular body sorting factor of 12 kD (Mvb12), which binds to the coiled-coil domain of the ESCRT-I subunit vacuolar protein sorting 23 (Vps23). 90 -312826 pfam09453 HIRA_B HIRA B motif. The HirA B (Histone regulatory homolog A binding) motif is the essential binding interface between HIRA pfam07569 and ASF1a, of approx. 40 residues. It forms an antiparallel beta-hairpin that binds perpendicular to the strands of the beta-sandwich of ASF1a N-terminal core domain, via beta-sheet, salt bridge and van der Waals interactions. The two histone chaperone proteins, HIRA and ASF1a, form a heterodimer with histones H3 and H4. HIRA is the human orthologue of Hir proteins known to silence histone gene expression and create transcriptionally silent heterochromatin in yeast, flies, plants and humans. The yeast CAF1B proteins which bind H3 also carry this motif at their very C-terminus. 22 -312827 pfam09454 Vps23_core Vps23 core domain. ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. The core domain of the Vps23 subunit of the heterotrimeric ESCRT-I complex is a helical hairpin sandwiched in a fan-like formation between two other helical hairpins from Vps28 (pfam03997) and Vps37. Vps23 gives ESCRT-I complex its stability. 60 -337421 pfam09455 Cas_DxTHG CRISPR-associated (Cas) DxTHG family. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. The family describes Cas proteins of about 400 residues that include the motif [VIL]-D-x-[ST]-H-[GS]. The CRISPR and associated proteins are thought to be involved in the evolution of host resistance. The exact molecular function of this family is currently unknown. 277 -337422 pfam09456 RcsC RcsC Alpha-Beta-Loop (ABL). This domain is found in the C-terminus of the phospho-relay kinase RcsC between pfam00512 and pfam00072, and forms a discrete alpha/beta/loop structure. 91 -312830 pfam09457 RBD-FIP FIP domain. The FIP domain is the Rab11-binding domain (RBD) at the C-terminus of a family of Rab11-interacting proteins (FIPs). The Rab proteins constitute the largest family of small GTPases (>60 members in mammals). Among them Rab11 is a well characterized regulator of endocytic and recycling pathways. Rab11 associates with a broad range of post-Golgi organelles, including recycling endosomes. 41 -337423 pfam09458 H_lectin H-type lectin domain. The H-type lectin domain is a unit of six beta chains, combined into a homo-hexamer. It is involved in self/non-self recognition of cells, through binding with carbohydrates. It is sometimes found in association with the F5_F8_type_C domain pfam00754. 67 -312832 pfam09459 EB_dh Ethylbenzene dehydrogenase. Eythylbenzene dehydrogenase is a heterotrimer of three subunits that catalyzes the anaerobic degradation of hydrocarbons. The alpha subunit contains the catalytic centre as a Molybdenum cofactor-complex. This removes an electron-pair from the hydrocarbon and passes it along an electron transport system involving iron-sulphur complexes held in the beta subunit and a Haem b molecule contained in the gamma subunit. The electron-pair is then subsequently passed to an as yet unknown receiver. The enzyme is found in a variety of different bacteria. 183 -286537 pfam09460 Saf-Nte_pilin Saf-pilin pilus formation protein. This domain consists of the adjacent Saf-Nte and Saf-pilin chains of the pilus-forming complex. Pilus assembly in Gram-negative bacteria involves a Donor-strand exchange mechanism between the C- and the N-termini of this domain. The C-terminal subunit forms an incomplete Ig-fold which is then complemented by the 10-18 residue N-terminus of another, incoming, pilus subunit which is not involved in the Ig-fold. The N-terminus sequences contain a motif of alternating hydrophobic residues that occupy the P2 to P5 binding pockets in the groove of the first pilus subunit. 123 -312833 pfam09461 PcF Phytotoxin PcF protein. PcF is a 52 residue protein factor of two alpha helices, containing a 4-hydroxyproline and three cysteine bridges. The presence of the hydroxyproline is unique in relation to other fungal phytotoxic proteins. The protein has a high content of acidic side-chains implying a lack of binding with lipid-rich components of membranes and appears to be an extracellular phytotoxin that causes leaf necrosis in strawberries. 43 -312834 pfam09462 Mus7 Mus7/MMS22 family. This family includes a conserved region from the Mus7 protein. Mus7 is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. The MMS22 proteins are involved in repairing double-stranded DNA breaks created by the cleavage reaction of topoisomerase II. 610 -312835 pfam09463 Opy2 Opy2 protein. Opy2p acts as a membrane anchor in the HOG signalling pathway. 35 -312836 pfam09465 LBR_tudor Lamin-B receptor of TUDOR domain. The Lamin-B receptor, found on the TUDOR domain pfam00567, is a chromatin and lamin binding protein in the inner nuclear membrane. It is one of the integral inner Nuclear Envelope membrane proteins responsible for targeting nuclear membranes to chromatin, being a downstream effector of Ran, a small Ras-like nuclear GTPase which regulates NE assembly. Lamin-B receptor interacts with Importin beta, a Ran-binding protein, thereby directly contributing to the fusion of membrane vesicles and the formation of the NE. 55 -312837 pfam09466 Yqai Hypothetical protein Yqai. This hypothetical protein is expressed in bacteria, particularly Bacillus subtilis. It forms a homo-dimer, with each monomer containing an alpha helix and four beta strands. 66 -286543 pfam09467 Yopt Hypothetical protein Yopt. This hypothetical protein is expressed in bacteria, particularly Bacillus subtilis. It forms homo-dimers, with each monomer consisting of one alpha helix and three beta strands. 71 -337424 pfam09468 RNase_H2-Ydr279 Ydr279p protein family (RNase H2 complex component). RNases H are enzymes that specifically hydrolyze RNA when annealed to a complementary DNA and are present in all living organisms. In yeast RNase H2 is composed of a complex of three proteins (Rnh2Ap, Ydr279p and Ylr154p), this family represents the homologs of Ydr279p. It is not known whether non yeast proteins in this family fulfil the same function. 243 -312839 pfam09469 Cobl Cordon-bleu ubiquitin-like domain. The Cordon-bleu protein domain is highly conserved among vertebrates. The sequence contains three repeated lysine, arginine, and proline-rich regions, the KKRAP motif. The exact function of the protein is unknown but it is thought to be involved in mid-brain neural tube closure. It is expressed specifically in the node. This domain has a ubiquitin-like fold. 79 -312840 pfam09470 Telethonin Telethonin protein. Telethonin is a 167-residue protein which complexes with the large muscle protein, titin. The very N-terminus of titin, composed of two immunoglobulin-like (Ig) domains, referred to as Z1 and Z2, interacts with the N-terminal region (residues 1-53) of telethonin, mediating the antiparallel assembly of two Z1Z2 domains. The C-terminus of the telethonin appears to induce dimerization of this 2:1 titin/telethonin structure which thus forms a complex necessary for myofibril assembly and maintenance of the intact Z-disk of skeletal and cardiac muscles. 152 -312841 pfam09471 Peptidase_M64 IgA Peptidase M64. This is a family of highly selective metallo-endopeptidases. The primary structure of the Clostridium ramosum IgA proteinase shows no significant overall similarity to any other known metallo-endopeptidase. 259 -312842 pfam09472 MtrF Tetrahydromethanopterin S-methyltransferase, F subunit (MtrF). Many archaea have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. This domain is mostly found in MtrF, where it covers the entire length of the protein. This polypeptide is one of eight subunits of the N5-methyltetrahydromethanopterin: coenzyme M methyltransferase complex found in methanogenic archaea. This is a membrane-associated enzyme complex that uses methyl-transfer reactions to drive a sodium-ion pump. MtrF itself is involved in the transfer of the methyl group from N5-methyltetrahydromethanopterin to coenzyme M. Subsequently, methane is produced by two-electron reduction of the methyl moiety in methyl-coenzyme M by another enzyme, methyl-coenzyme M reductase. In some organisms this domain is found at the C terminal region of what appears to be a fusion of the MtrA and MtrF proteins. The function of these proteins is unknown, though it is likely that they are involved in C1 metabolism. 62 -286549 pfam09474 Type_III_YscX Type III secretion system YscX (type_III_YscX). Members of this family are encoded within bacterial type III secretion gene clusters. Among all species with type III secretion, those with this protein are found among those that target animal rather than plant cells. The member of this family in Yersinia was shown by mutation to be required for type III secretion of Yops effector proteins and therefore is believed to be part of the secretion machinery. 121 -286550 pfam09475 Dot_icm_IcmQ Dot/Icm secretion system protein (dot_icm_IcmQ). Proteins in this entry are the IcmQ component of Dot/Icm secretion systems, as found in the obligate intracellular pathogens Legionella pneumophila and Coxiella burnetii. While this system resembles type IV secretion systems and has been called a form of type IV, the literature now seems to favour calling this the Dot/Icm system. This protein was shown to be essential for translocation. 178 -337425 pfam09476 Pilus_CpaD Pilus biogenesis CpaD protein (pilus_cpaD). Proteins in this entry consist of a pilus biogenesis protein, CpaD, from Caulobacter, and homologs in other bacteria, including three in the root nodule bacterium Bradyrhizobium japonicum. The molecular function of the homologs is not known. 202 -286552 pfam09477 Type_III_YscG Bacterial type II secretion system chaperone protein (type_III_yscG). YscG is a molecular chaperone for YscE, where both are part of the type III secretion system that in Yersinia is designated Ysc (Yersinia secretion). The secretion system delivers effector proteins, designated Yops (Yersinia outer proteins), in Yersinia. This entry consists of YscG from Yersinia and functionally equivalent type III secretion proteins in other species: e.g. AscG in Aeromonas and LscG in Photorhabdus luminescens. 116 -286553 pfam09478 CBM49 Carbohydrate binding domain CBM49. This domain is found at the C terminal of cellulases and in vitro binding studies have shown it to binds to crystalline cellulose. 80 -337426 pfam09479 Flg_new Listeria-Bacteroides repeat domain (List_Bact_rpt). This model describes a conserved core region of about 43 residues, which occurs in at least two families of tandem repeats. These include 78-residue repeats which occur from 2 to 15 times in some proteins of Bacteroides forsythus ATCC 43037, and 70-residue repeats found in families of internalins of Listeria species. Single copies are found in proteins of Fibrobacter succinogenes, Geobacter sulfurreducens, and a few other bacteria. 65 -337427 pfam09480 PrgH Type III secretion system protein PrgH-EprH (PrgH). In Salmonella, the gene encoding this protein is part of a four-gene operon PrgHIJK, while in other organisms it is found in type III secretion operons. PrgH has been shown to be required for type III secretion and is a structural component of the needle complex, which is the core component of type III secretion systems. 380 -337428 pfam09481 CRISPR_Cse1 CRISPR-associated protein Cse1 (CRISPR_cse1). Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry, represented by CT1972 from Chlorobaculum tepidum, is found in the CRISPR/Cas subtype Ecoli regions of many bacteria (most of which are mesophiles), and not in Archaea. It is designated Cse1. 463 -337429 pfam09482 OrgA_MxiK Bacterial type III secretion apparatus protein (OrgA_MxiK). This protein is encoded by genes which are found in type III secretion operons, and has been shown to be essential for the invasion phenotype in Salmonella and a component of the secretion apparatus. The protein is known as OrgA in Salmonella due to its oxygen-dependent expression pattern in which low-oxygen levels up-regulate the gene. In Shigella the gene is called MxiK and has been shown to be essential for the proper assembly of the needle complex, which is the core component of type III secretion systems. 182 -312848 pfam09483 HpaP Type III secretion protein (HpaP). This entry represents proteins encoded by genes which are always found in type III secretion operons, although their function in the processes of secretion and virulence is unclear. Hpa stands for Hrp-associated gene, where Hrp stands for hypersensitivity response and virulence. see also PMID:18584024 192 -312849 pfam09484 Cas_TM1802 CRISPR-associated protein TM1802 (cas_TM1802). Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This minor cas protein is found in at least five prokaryotic genomes: Methanosarcina mazei, Sulfurihydrogenibium azorense, Thermotoga maritima, Carboxydothermus hydrogenoformans, and Dictyoglomus thermophilum, the first of which is archaeal while the rest are bacterial. 542 -337430 pfam09485 CRISPR_Cse2 CRISPR-associated protein Cse2 (CRISPR_cse2). Clusters of short DNA repeats with non-homologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family of proteins, represented by CT1973 from Chlorobaculum tepidum, is encoded by genes found in the CRISPR/Cas subtype Ecoli regions of many bacteria (most of which are mesophiles), and not in Archaea. It is designated Cse2. 145 -286561 pfam09486 HrpB7 Bacterial type III secretion protein (HrpB7). This entry represents proteins encoded by genes which are found in type III secretion operons in a narrow range of species including Xanthomonas, Burkholderia and Ralstonia. 157 -312851 pfam09487 HrpB2 Bacterial type III secretion protein (HrpB2). This entry represents proteins encoded by genes which are found in type III secretion operons in a narrow group of species including Xanthomonas, Burkholderia and Ralstonia. 114 -312852 pfam09488 Osmo_MPGsynth Mannosyl-3-phosphoglycerate synthase (osmo_MPGsynth). This family consists of examples of mannosyl-3-phosphoglycerate synthase (MPGS), which together with mannosyl-3-phosphoglycerate phosphatase (MPGP) EC:2.4.1.217, comprises a two-step pathway for mannosylglycerate biosynthesis. Mannosylglycerate is a compatible solute that tends to be restricted to extreme thermophiles of archaea and bacteria. Note that in Rhodothermus marinus, this pathway is one of two; the other is condensation of GDP-mannose with D-glycerate by mannosylglycerate synthase. 380 -312853 pfam09489 CbtB Probable cobalt transporter subunit (CbtB). This entry represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of a single transmembrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a protein (CbtA) predicted to have five additional transmembrane segments. 51 -337431 pfam09490 CbtA Probable cobalt transporter subunit (CbtA). This entry represents a family of proteins which have been proposed to act as cobalt transporters acting in concert with vitamin B12 biosynthesis systems. Evidence for this assignment includes 1) prediction of five transmembrane segments, 2) positional gene linkage with known B12 biosynthesis genes, 3) upstream proximity of B12 transcriptional regulatory sites, 4) the absence of other known cobalt import systems and 5) the obligate co-localization with a small protein (CbtB) having a single additional transmembrane segment and a C-terminal histidine-rich motif likely to be a metal-binding site. 237 -312855 pfam09491 RE_AlwI AlwI restriction endonuclease. This family includes the AlwI (recognizes GGATC), Bsp6I (recognizes GC^NGC), BstNBI (recognizes GASTC), PleI(recognizes GAGTC) and MlyI (recognizes GAGTC) restriction endonucleases. 440 -312856 pfam09492 Pec_lyase Pectic acid lyase. Members of this family are isozymes of pectate lyase (EC:4.2.2.2), also called polygalacturonic transeliminase and alpha-1,4-D-endopolygalacturonic acid lyase. 290 -312857 pfam09493 DUF2389 Tryptophan-rich protein (DUF2389). Members of this family are small hypothetical proteins of 60 to 100 residues from Cyanobacteria and some Proteobacteria. Prochlorococcus marinus strains have two members, other species one only. Interestingly, of the eight most conserved residues, four are aromatic and three are invariant tryptophans. It appears all species that encode this protein can synthesize tryptophan de novo. 58 -337432 pfam09494 Slx4 Slx4 endonuclease. The Slx4 protein is a heteromeric structure-specific endonuclease found from fungi to mammals. Slx4 with Slx1 acts as a nuclease on branched DNA substrates, particularly simple-Y, 5'-flap, or replication fork structures by cleaving the strand bearing the 5' non-homologous arm at the branch junction and thus generating ligatable nicked products from 5'-flap or replication fork substrates. 57 -337433 pfam09495 DUF2462 Protein of unknown function (DUF2462). This protein is highly conserved, but its function is unknown. It can be isolated from HeLa cell nucleoli and is found to be homologous with Leydig cell tumor protein whose function is unknown. 77 -337434 pfam09496 CENP-O Cenp-O kinetochore centromere component. This eukaryotic protein is a component of the inner kinetochore subcomplex of the centromere. It has been shown to be involved in chromosome segregation via regulation of the spindle in both yeast and human. 203 -337435 pfam09497 Med12 Transcription mediator complex subunit Med12. Med12 is a negative regulator of the Gli3-dependent sonic hedgehog signalling pathway via its interaction with Gli3 within the RNA polymerase II transcriptional Mediator. A complex is formed between Med12, Med13, CDK8 and CycC which is responsible for suppression of transcription. This subunit forms part of the Kinase section of Mediator. 63 -337436 pfam09498 DUF2388 Protein of unknown function (DUF2388). This family consists of small hypothetical proteins, about 100 amino acids in length. The family includes five members (three in tandem) in Pseudomonas aeruginosa PAO1 and in Pseudomonas putida (strain KT2440), four in Pseudomonas syringae DC3000, and single members in several other Proteobacteria. The function is unknown. 70 -286574 pfam09499 RE_ApaLI ApaLI-like restriction endonuclease. This family includes R.ApaLI and R.XbaI restriction endonucleases. ApaLI recognizes and cleaves the sequence GTGCAC. 189 -337437 pfam09500 YiiD_C Putative thioesterase (yiiD_Cterm). This entry consists of a broadly distributed uncharacterized domain often found as a standalone protein. The member from Shewanella oneidensis is described from crystallography work as a putative thioesterase because it belongs to the HotDog clan of enzymes. About half of the members of this family are fused to an Acetyltransf_1 domain pfam00583. 144 -312864 pfam09501 Bac_small_YrzI Probable sporulation protein (Bac_small_yrzI). Members of this family are very small proteins, about 47 residues each, in the genus Bacillus. Single members are found in Bacillus subtilis and Bacillus halodurans, while arrays of six members in tandem are found in Bacillus cereus and Bacillus anthracis. An EIxxE motif present in most members of this family resembles cleavage sites by the germination protease GPR in a number of small acid-soluble spore proteins (SASP). A role in sporulation is possible. 45 -286577 pfam09502 HrpB4 Bacterial type III secretion protein (HrpB4). This entry represents proteins encoded by genes which are found in type III secretion operons in a narrow range of species including Xanthomonas, Burkholderia and Ralstonia. 217 -312865 pfam09504 RE_Bsp6I Bsp6I restriction endonuclease. This family includes the Bsp6I (recognizes and cleaves GC^NGC) restriction endonucleases. 178 -312866 pfam09505 Dimeth_Pyl Dimethylamine methyltransferase (Dimeth_PyL). This family consists of dimethylamine methyltransferases from the genus Methanosarcina. It is found in three nearly identical copies in each of Methanosarcina acetivorans, Methanosarcina barkeri, and Methanosarcina mazei. It is one of a suite of three non-homologous enzymes with a critical UAG-encoded pyrrolysine residue in these species (along with trimethylamine methyltransferase and monomethylamine methyltransferase). It demethylates dimethylamine, leaving monomethylamine, and methylates the prosthetic group of the small corrinoid protein MtbC. The methyl group is then transferred by methylcorrinoid:coenzyme M methyltransferase to coenzyme M. Note that the pyrrolysine residue is variously translated as K or X, or as a stop codon that truncates the sequence. 462 -312867 pfam09506 Salt_tol_Pase Glucosylglycerol-phosphate phosphatase (Salt_tol_Pase). Proteins in this family are glucosylglycerol-phosphate phosphatases, with the gene symbol stpA (Salt Tolerance Protein A). A motif characteristic of acid phosphatases is found, but otherwise this family shows little sequence similarity to other phosphatases. This enzyme acts on the glucosylglycerol phosphate, product of glucosylglycerol phosphate synthase and immediate precursor of the osmoprotectant glucosylglycerol. 386 -312868 pfam09507 CDC27 DNA polymerase subunit Cdc27. This protein forms the C subunit of DNA polymerase delta. It carries the essential residues for binding to the Pol1 subunit of polymerase alpha, from residues 293-332, which are characterized by the motif D--G--VT, referred to as the DPIM motif. The first 160 residues of the protein form the minimal domain for binding to the B subunit, Cdc1, of polymerase delta, the final 10 C-terminal residues, 362-372, being the DNA sliding clamp, PCNA, binding motif. 427 -337438 pfam09508 Lact_bio_phlase Lacto-N-biose phosphorylase N-terminal TIM barrel domain. The gene which codes for this protein in gut-bacteria is located in a novel putative operon for galactose metabolism. The protein appears to be a carbohydrate-processing phosphorolytic enzyme (EC:2.4.1.211), unlike either glycoside hydrolases or glycoside lyase. Intestinal colonisation by bifidobacteria is important for human health, especially in pediatrics, because colonisation seems to prevent infection by some pathogenic bacteria that cause diarrhoea or other illnesses. The operon seems to be involved in intestinal colonisation by bifidobacteria mediated by metabolism of mucin sugars. In addition, it may also resolve the question of the nature of the bifidus factor in human milk as the lacto-N-biose structure found in milk oligosaccharides. 434 -312870 pfam09509 Hypoth_Ymh Protein of unknown function (Hypoth_ymh). This entry consists of a relatively rare prokaryotic protein family (about 8 occurrences per 200 genomes). Genes for members of this family appear to be associated variously with phage and plasmid regions, restriction system loci, transposons, and housekeeping genes. Their function is unknown. 118 -312871 pfam09510 Rtt102p Rtt102p-like transcription regulator protein. This protein is found in fungi. The family includes Rtt102p, a transcription regulator protein which appears to be integrally associated with both the Swi-Snf and the RSC chromatin remodelling complexes,. 130 -312872 pfam09511 RNA_lig_T4_1 RNA ligase. Members of this family include T4 phage proteins with ATP-dependent RNA ligase activity. Host defense to phage may include cleavage and inactivation of specific tRNA molecules; members of this family act to reverse this RNA damage. The enzyme is adenylated, transiently, on a Lys residue in a motif KXDGSL. This family also includes fungal tRNA ligases that have adenylyltransferase activity. tRNA ligases are enzymes required for the splicing of precursor tRNA molecules containing introns.i 221 -312873 pfam09512 ThiW Thiamine-precursor transporter protein (ThiW). Levels of thiamine pyrophosphate (TPP) or thiamine regulate transcription or translation of a number of thiamine biosynthesis, salvage, or transport genes in a wide range of prokaryotes. The mechanism involves direct binding, with no protein involved, to a structural element called THI found in the untranslated upstream region of thiamine metabolism gene operons. This element is called a riboswitch and is seen also for other metabolites such as FMN and glycine. This protein family consists of proteins identified in operons controlled by the THI riboswitch and designated ThiW. The hydrophobic nature of this protein and reconstructed metabolic background suggests that this protein acts in transport of a thiazole precursor of thiamine. 150 -312874 pfam09514 SSXRD SSXRD motif. SSX1 can repress transcription, and this has been attributed to a putative Kruppel associated box (KRAB) repression domain at the N-terminus. However, from the analysis of these deletion constructs further repression activity was found at the C-terminus of SSX1. Which has been called the SSXRD (SSX Repression Domain). The potent repression exerted by full-length SSX1 appears to localize to this region. 31 -312875 pfam09515 Thia_YuaJ Thiamine transporter protein (Thia_YuaJ). Members of this protein family have been assigned as thiamine transporters by a phylogenetic analysis of families of genes regulated by the THI element, a broadly conserved RNA secondary structure element through which thiamine pyrophosphate (TPP) levels can regulate transcription of many genes related to thiamine transport, salvage, and de novo biosynthesis. Species with this protein always lack the ThiBPQ ABC transporter. In some species (e.g. Streptococcus mutans and Streptococcus pyogenes), yuaJ is the only THI-regulated gene. Evidence from Bacillus cereus indicates thiamine uptake is coupled to proton translocation. 177 -312876 pfam09516 RE_CfrBI CfrBI restriction endonuclease. This family includes the CfrBI (recognizes and cleaves C^CWWGG) restriction endonuclease. 249 -312877 pfam09517 RE_Eco29kI Eco29kI restriction endonuclease. This family includes the Eco29kI (recognizes and cleaves CCGC^GG ) restriction endonuclease. 161 -286590 pfam09518 RE_HindIII HindIII restriction endonuclease. This family includes the HindIII (recognizes and cleaves A^AGCTT) restriction endonuclease. 284 -312878 pfam09519 RE_HindVP HindVP restriction endonuclease. This family includes the HindVP (recognizes GRCGYC bu the cleavage site is unknown) restriction endonucleases. 324 -312879 pfam09520 RE_TdeIII Type II restriction endonuclease, TdeIII. This family includes many TdeIII restriction endonucleases that recognize and cleave at GGNCC sites. TdeIII cleave unmethylated double-stranded DNA. 239 -312880 pfam09521 RE_NgoPII NgoPII restriction endonuclease. This family includes the NgoPII (recognizes and cleaves GG^CC) restriction endonuclease. 262 -337439 pfam09522 RE_R_Pab1 R.Pab1 restriction endonuclease. 119 -337440 pfam09523 DUF2390 Protein of unknown function (DUF2390). Members of this family are bacterial hypothetical proteins, about 160 amino acids in length, found in various proteobacteria, including members of the genera Pseudomonas and Vibrio. The C-terminal region is poorly conserved and is not included in the model. 106 -312882 pfam09524 Phg_2220_C Conserved phage C-terminus (Phg_2220_C). This entry represents the conserved C-terminal domain of a family of proteins found exclusively in bacteriophage and in bacterial prophage regions. The functions of this domain and the proteins containing it are unknown. 74 -312883 pfam09526 DUF2387 Probable metal-binding protein (DUF2387). Members of this family are small proteins, about 70 residues in length, with a basic triplet near the N-terminus and a probable metal-binding motif CPXCX(18)CXXC. Members are found in various proteobacteria. 75 -337441 pfam09527 ATPase_gene1 Putative F0F1-ATPase subunit Ca2+/Mg2+ transporter. This model represents a protein found encoded in F1F0-ATPase operons in several genomes, including Methanosarcina barkeri (archaeal) and Chlorobium tepidum (bacterial). It is a small protein (about 100 amino acids) with long hydrophobic stretches and is presumed to be a subunit of the enzyme. It carries two transmembrane helices and is a magnesium or calcium uniporter. The atp operon of alkaliphilic Bacillus pseudofirmus OF4, as in most prokaryotes, contains the eight structural genes for the F-ATPase (ATP synthase), which are preceded by an atpI gene that encodes a membrane protein with 2 TMSs. A tenth gene, atpZ, has been found in this operon, which is upstream of and overlapping with atpI. 54 -312885 pfam09528 Ehrlichia_rpt Ehrlichia tandem repeat (Ehrlichia_rpt). This entry represents 30 amino acid tandem repeat, found in a variable number of copies in an immunodominant outer membrane protein of Ehrlichia chaffeensis, a tick-borne obligate intracellular pathogen. These short tandem-repeats elicit a strong antibody response in the hosts. 36 -337442 pfam09529 Intg_mem_TP0381 Integral membrane protein (intg_mem_TP0381). This entry represents a family of hydrophobic proteins with seven predicted transmembrane alpha helices. Members are found in Bacillus subtilis (ywaF), TP0381 from Treponema pallidum (TP0381), Streptococcus pyogenes, Rhodococcus erythropolis, etc. 205 -337443 pfam09531 Ndc1_Nup Nucleoporin protein Ndc1-Nup. Ndc1 is a nucleoporin protein that is a component of the Nuclear Pore Complex, and, in fungi, also of the Spindle Pole Body. It consists of six transmembrane segments, three lumenal loops, both concentrated at the N-terminus and cytoplasmic domains largely at the C-terminus, all of which are well conserved. 473 -312888 pfam09532 FDF FDF domain. The FDF domain, so called because of the conserved FDF at its N termini, is an entirely alpha-helical domain with multiple exposed hydrophilic loops. It is found at the C-terminus of Scd6p-like SM domains. It is also found with other divergent Sm domains and in proteins such as Dcp3p and FLJ21128, where it is found N terminal to the YjeF-N domain, a novel Rossmann fold domain. 102 -286602 pfam09533 DUF2380 Predicted lipoprotein of unknown function (DUF2380). This family consists of at least 9 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. One appears truncated toward the N-terminus; the others are predicted lipoproteins. The function is unknown. 187 -312889 pfam09534 Trp_oprn_chp Tryptophan-associated transmembrane protein (Trp_oprn_chp). Members of this family are predicted transmembrane proteins with four membrane-spanning helices. Members are found in the Actinobacteria (Mycobacterium, Corynebacterium, Streptomyces), always associated with genes for tryptophan biosynthesis. 180 -312890 pfam09535 Gmx_para_CXXCG Protein of unknown function (Gmx_para_CXXCG). This entry consists of at least 10 paralogous proteins from Myxococcus xanthus and that lack detectable sequence similarity to any other protein family. An imperfectly conserved CXXCG motif, a probable binding site, appears twice in the multiple sequence alignment. 232 -312891 pfam09536 DUF2378 Protein of unknown function (DUF2378). This family consists of a set of at least 17 paralogous proteins in Myxococcus xanthus DK 1622 and and 12 in Stigmatella aurantiaca DW4/3-1. Members are about 200 amino acids in length. The function is unknown. 177 -312892 pfam09537 DUF2383 Domain of unknown function (DUF2383). Members of this protein family are found mostly in the Proteobacteria, although one member is found in the the marine planctomycete Pirellula sp. strain 1. The function is unknown. 106 -337444 pfam09538 FYDLN_acid Protein of unknown function (FYDLN_acid). Members of this family are bacterial proteins with a conserved motif [KR]FYDLN, sometimes flanked by a pair of CXXC motifs, followed by a long region of low complexity sequence in which roughly half the residues are Asp and Glu, including multiple runs of five or more acidic residues. The function of members of this family is unknown. 108 -312894 pfam09539 DUF2385 Protein of unknown function (DUF2385). Members of this uncharacterized protein family are found in a number of alphaproteobacteria, including root nodule bacteria, Brucella suis, Caulobacter crescentus, and Rhodopseudomonas palustris. Conserved residues include two well-separated cysteines, suggesting a disulfide bond. The function is unknown. 88 -312895 pfam09543 DUF2379 Protein of unknown function (DUF2379). This family consists of at least 7 paralogs in Myxococcus xanthus and 6 in Stigmatella aurantiaca, both members of the Deltaproteobacteria. The function is unknown. 120 -312896 pfam09544 DUF2381 Protein of unknown function (DUF2381). This family consists of at least 8 paralogs in Myxococcus xanthus, a member of the Deltaproteobacteria. The function is unknown. 287 -286611 pfam09545 RE_AccI AccI restriction endonuclease. This family includes the AccI (recognizes and cleaves GT^MKAC) restriction endonuclease. 366 -312897 pfam09546 Spore_III_AE Stage III sporulation protein AE (spore_III_AE). This represents the stage III sporulation protein AE, which is encoded in a spore formation operon spoIIIAABCDEFGH under the control of sigma G. A comparative genome analysis of all sequenced genomes of Firmicutes shows that the proteins are strictly conserved among the sub-set of endospore-forming species. 323 -312898 pfam09547 Spore_IV_A Stage IV sporulation protein A (spore_IV_A). SpoIVA is designated stage IV sporulation protein A. It acts in the mother cell compartment and plays a role in spore coat morphogenesis. A comparative genome analysis of all sequenced genomes of Firmicutes shows that the proteins are strictly conserved among the sub-set of endospore-forming species. 490 -312899 pfam09548 Spore_III_AB Stage III sporulation protein AB (spore_III_AB). SpoIIIAB represents the stage III sporulation protein AB, which is encoded in a spore formation operon: spoIIIAABCDEFGH that is under sigma G regulation. A comparative genome analysis of all sequenced genomes of Firmicutes shows that the proteins are strictly conserved among the sub-set of endospore-forming species. 169 -312900 pfam09549 RE_Bpu10I Bpu10I restriction endonuclease. This family includes the Bpu10I (recognizes and cleaves CCTNAGC (-5/-2)) restriction endonucleases. 220 -312901 pfam09550 Phage_TAC_6 Phage tail assembly chaperone protein, TAC. This is a family of phage tail assembly chaperone proteins largely derived from the Rhodobacter species viral agent GTA (gene transfer agent) gp10. 58 -312902 pfam09551 Spore_II_R Stage II sporulation protein R (spore_II_R). SpoIIR is designated stage II sporulation protein R. A comparative genome analysis of all sequenced genomes of Firmicutes shows that the proteins are strictly conserved among the sub-set of endospore-forming species. SpoIIR is a signalling protein that links the activation of sigma E to the transcriptional activity of sigma F during sporulation. 125 -286618 pfam09552 RE_BstXI BstXI restriction endonuclease. This family includes the BstXI (recognizes and cleaves CCANNNNN^NTGG) restriction endonuclease. 290 -312903 pfam09553 RE_Eco47II Eco47II restriction endonuclease. This family includes the Eco47II (which recognizes GGNCC, but the cleavage site unknown) restriction endonuclease. 202 -286620 pfam09554 RE_HaeII HaeII restriction endonuclease. This family includes the HaeII (recognizes and cleaves RGCGC^Y) restriction endonuclease. 338 -312904 pfam09556 RE_HaeIII HaeIII restriction endonuclease. This family includes the HaeIII (recognizes and cleaves GG^CC) restriction endonuclease. 298 -312905 pfam09557 DUF2382 Domain of unknown function (DUF2382). This entry describes an uncharacterized domain, sometimes found in association with a PRC-barrel domain pfam05239 which is also found in rRNA processing protein RimM and in a photosynthetic reaction centre complex protein). This domain is found in proteins from Bacillus subtilis, Deinococcus radiodurans, Nostoc sp. PCC 7120, Myxococcus xanthus, and several other species. The function is not known. 111 -286623 pfam09558 DUF2375 Protein of unknown function (DUF2375). Two members of this family are found in Colwellia psychrerythraea (strain 34H / ATCC BAA-681) and one each in various other species of Colwellia and Shewanella. One member from C. psychrerythraea is of special interest because it is preceded by the same cis-regulatory site as a number of genes that have the PEP-CTERM domain described by PEP_anchor (IPR013424). 69 -312906 pfam09559 Cas6 Cas6 Crispr. The Cas6 Crispr family of proteins averaging 140 residues are characterized by having a GhGxxxxxGhG motif, where h indicates a hydrophobic residue, at the C-terminus. The CRISPR-Cas system is possibly a mechanism of defense against invading pathogens and plasmids that functions analogously to the RNA interference (RNAi) systems in eukaryotes. 190 -312907 pfam09560 Spore_YunB Sporulation protein YunB (Spo_YunB). Spo_YunB is the sporulation protein YunB. In Bacillus subtilis its expression is controlled by sigmaE.The gene YunB seems to code for a protein involved, at least indirectly, in the pathway leading to the activation of sigmaK. Inactivation of YunB delays sigmaK activation and results in reduced sporulation efficiency. 91 -312908 pfam09561 RE_HpaII HpaII restriction endonuclease. This family includes the HpaII (recognizes and cleaves C^CGG) restriction endonuclease. 351 -312909 pfam09562 RE_LlaMI LlaMI restriction endonuclease. This family includes the LlaMI (recognizes and cleaves CC^NGG) restriction endonuclease. 245 -312910 pfam09563 RE_LlaJI LlaJI restriction endonuclease. This family includes the LlaJI (recognizes GACGC) restriction endonucleases. 374 -286628 pfam09564 RE_NgoBV NgoBV restriction endonuclease. This family includes the NgoBV (recognizes GGNNCC but cleavage site is unknown) restriction endonuclease. 238 -312911 pfam09565 RE_NgoFVII NgoFVII restriction endonuclease. This family includes the NgoFVII (recognizes GCSGC but cleavage site unknown) restriction endonuclease. 288 -312912 pfam09566 RE_SacI SacI restriction endonuclease. This family includes the SacI (recognizes and cleaves GAGCT^C) restriction endonuclease. 268 -312913 pfam09567 RE_MamI MamI restriction endonuclease. This family includes the MamI (recognizes and cleaves GATNN^NNATC) restriction endonuclease. 183 -312914 pfam09568 RE_MjaI MjaI restriction endonuclease. This family includes the MjaI (recognizes CTAG but cleavage site unknown) restriction endonuclease. 164 -312915 pfam09569 RE_ScaI ScaI restriction endonuclease. This family includes the ScaI (recognizes and cleaves AGT^ACT) restriction endonuclease. 190 -312916 pfam09570 RE_SinI SinI restriction endonuclease. This family includes the SinI (recognizes and cleaves G^GWCC) restriction endonuclease. 218 -286631 pfam09571 RE_XcyI XcyI restriction endonuclease. This family includes the XcyI (recognizes and cleaves C^CCGGG) restriction endonucleases. 305 -312917 pfam09572 RE_XamI XamI restriction endonuclease. This family includes the XamI (recognizes GTCGAC but cleavage site unknown) restriction endonuclease. 254 -286633 pfam09573 RE_TaqI TaqI restriction endonuclease. This family includes the TaqI (recognizes and cleaves T^CGA) restriction endonuclease. 247 -286634 pfam09574 DUF2374 Protein of unknown function (Duf2374). This very small protein (about 46 amino acids) consists largely of a single predicted membrane-spanning region. It is found in Photobacterium profundum SS9 and in three species of Vibrio, always near periplasmic nitrate reductase genes, but far from the periplasmic nitrate reductase genes in Aeromonas hydrophila ATCC 7966. 42 -286635 pfam09575 Spore_SspJ Small spore protein J (Spore_SspJ). Spore_SspJ represents a group of small acid-soluble proteins (SASP) from Bacillus sp., which are present in spores but not in growing cells. The sspJ gene is transcribed in the forespore compartment by RNA polymerase with the forespore-specific sigmaG. Loss of SspJ causes a slight decrease in the rate of spore outgrowth in an otherwise wild-type background. 46 -312918 pfam09577 Spore_YpjB Sporulation protein YpjB (SpoYpjB). These proteins are found in the endospore-forming bacteria which include Bacillus species. In Bacillus subtilis, ypjB was found to be part of the sigma-E regulon. Sigma-E is a sporulation sigma factor that regulates expression in the mother cell compartment. Null mutants of ypjB show a sporulation defect, but this gene is not, however, a part of the endospore formation minimal gene set. 223 -312919 pfam09578 Spore_YabQ Spore cortex protein YabQ (Spore_YabQ). This protein is predicted to span the membrane several times. It is only found in genomes of species that perform sporulation, such as Bacillus subtilis, Clostridium tetani, and other members of the Firmicutes (low-GC Gram-positive bacteria). Mutation of this sigmaE-dependent gene blocks development of the spore cortex. The length of the C-terminal region, which includes some hydrophobic regions, is variable. 75 -312920 pfam09579 Spore_YtfJ Sporulation protein YtfJ (Spore_YtfJ). Proteins in this family are encoded by bacterial genomes if, and only if, the species is capable of endospore formation. YtfJ was confirmed in spores of B. subtilis; it appears to be expressed in the forespore under control of SigF. 84 -312921 pfam09580 Spore_YhcN_YlaJ Sporulation lipoprotein YhcN/YlaJ (Spore_YhcN_YlaJ). This entry contains YhcN and YlaJ, which are predicted lipoproteins that have been detected as spore proteins but not vegetative proteins in Bacillus subtilis. Both appear to be expressed under control of the RNA polymerase sigma-G factor. The YlaJ-like members of this family have a low-complexity, strongly acidic, 40-residue C-terminal domain. 175 -312922 pfam09581 Spore_III_AF Stage III sporulation protein AF (Spore_III_AF). This family represents the stage III sporulation protein AF (Spore_III_AF) of the bacterial endospore formation program, which exists in some but not all members of the Firmicutes (formerly called low-GC Gram-positives). The C-terminal region of these proteins is poorly conserved. 183 -312923 pfam09582 AnfO_nitrog Iron only nitrogenase protein AnfO (AnfO_nitrog). Proteins in this entry include Anf1 from Rhodobacter capsulatus (Rhodopseudomonas capsulata) and AnfO from Azotobacter vinelandii. They are found exclusively in species which contain the iron-only nitrogenase, and are encoded immediately downstream of the structural genes for the nitrogenase enzyme in these species. 190 -337445 pfam09583 Phageshock_PspG Phage shock protein G (Phageshock_PspG). This protein was previously designated as YjbO in Escherichia coli. It is found only in genomes that have the phage shock operon (psp), but it is only rarely encoded near other psp genes. The psp regulon is upregulated in response to a number of stress conditions, including ethanol, expression of the filamentous phage secretin protein IV and other secretins and heat shock. 64 -337446 pfam09584 Phageshock_PspD Phage shock protein PspD (Phageshock_PspD). Members of this family are phage shock protein PspD, found in a minority of bacteria that carry the defining genes of the phage shock regulon (pspA, pspB, pspC, and pspF). It is found in Escherichia coli, Yersinia pestis, and closely related species, where it is part of the phage shock operon. It is known to be expressed but its function is unknown. 61 -312926 pfam09585 Lin0512_fam Conserved hypothetical protein (Lin0512_fam). This family consists of few members, broadly distributed. It occurs so far in several Firmicutes (twice in Oceanobacillus), one Cyanobacterium, one alpha Proteobacterium, and (with a long prefix) in plants. The function is unknown. The alignment includes a well conserved motif GxGxDxHG near the N-terminus. 114 -337447 pfam09586 YfhO Bacterial membrane protein YfhO. This protein is a conserved membrane protein. The yfhO gene is transcribed in Difco sporulation medium and the transcription is affected by the YvrGHb two-component system. Some members of this family have been annotated as glycosyl transferases of the PMT family. 833 -337448 pfam09587 PGA_cap Bacterial capsule synthesis protein PGA_cap. This protein is a putative poly-gamma-glutamate capsule biosynthesis protein found in bacteria. Poly-gamma-glutamate is a natural polymer that may be involved in virulence and may help bacteria survive in high salt concentrations. It is a surface-associated protein. 255 -337449 pfam09588 YqaJ YqaJ-like viral recombinase domain. This protein family is found in many different bacterial species but is of viral origin. The protein forms an oligomer and functions as a processive alkaline exonuclease that digests linear double-stranded DNA in a Mg(2+)-dependent reaction, It has a preference for 5'-phosphorylated DNA ends. It thus forms part of the two-component SynExo viral recombinase functional unit. 148 -312930 pfam09589 HrpA_pilin HrpA pilus formation protein. HrpA is an essential component of the type III secretion system (TTSS) which pathogens use to inject virulence factors directly into their host cells, and to cause disease. The TTSS has an Hrp pilus appendage for channelling effector proteins through the plant cell wall and this pilus elongates by the addition of HrpA pilin subunits at the distal end. 113 -150302 pfam09590 Env-gp36 Lentivirus surface glycoprotein. This protein is found in feline immunodeficiency retrovirus. It represents the surface glycoprotein which is found in the polyprotein C-terminal to the Env protein. 591 -286649 pfam09591 DUF2463 Protein of unknown function (DUF2463). This protein is found in eukaryotic, parasitic microsporidia. Its function is unknown. 210 -286650 pfam09592 DUF2031 Protein of unknown function (DUF2031). This protein is expressed in Plasmodium; its function is unknown. It may be the product of gene family pyst-b. 227 -150305 pfam09593 Pathogen_betaC1 Beta-satellite pathogenicity beta C1 protein. Cotton leaf-curl disease - CLCuD - is of major economic importance in cotton-growing areas of the far-east. The infectious agent appears to be a single-stranded DNA molecule of approx 1350 nucleotides in length, which, when inoculated with the Begomovirus into cotton, induces symptoms typical of CLCuD. This molecule requires the Begomovirus for replication and encapsidation. DNA beta encodes a single protein, betaC1. The intracellular distribution of betaC1 is consistent with the hypothesis that it has a role in transporting the DNA A of Begomovirus from the nuclear site of replication to the plasmodesmatal exit sites of the infected cell. The DNA beta-encoded protein, betaC1, is the determinant of both pathogenicity and suppression of gene silencing. 117 -337450 pfam09594 GT87 Glycosyltransferase family 87. The enzymes in this family are glycosyltransferases. PimE is involved in phosphatidylinositol mannoside (PIM) synthesis, a major class of glycolipids in all mycobacteria. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of PIM. The family also includes alpha(1-->3) arabinofuranosyltransferase, invloved in the synthesis of of mycobacterial arabinogalactan. 237 -312932 pfam09595 Metaviral_G Metaviral_G glycoprotein. This is a viral attachment glycoprotein from region G of metaviruses. It is high in serine and threonine suggesting it is highly glycosylated. 183 -312933 pfam09596 MamL-1 MamL-1 domain. The MamL-1 domain is a polypeptide of up to 70 residues, numbers 15-67 of which adopt an elongated kinked helix that wraps around ANK and CSL forming one of the complexes in the build-up of the Notch transcriptional complex for recruiting general transcription factors. 58 -337451 pfam09597 IGR IGR protein motif. This domain is found in fungal proteins and contains a conserved IGR motif. Its function is unknown. 55 -312935 pfam09598 Stm1_N Stm1. This region is found at the N terminal of the Stm1 protein. Stm1 is a G4 quadraplex and purine motif triplex nucleic acid-binding protein. It has been implicated in many biological processes including apoptosis and telomere biosynthesis. Stm1 is known to interact with CDC13, and is known to associate with ribosomes and nuclear telomere cap complexes. 62 -286655 pfam09599 IpaC_SipC Salmonella-Shigella invasin protein C (IpaC_SipC). This entry represents a family of proteins associated with bacterial type III secretion systems, which are injection machines for virulence factors into host cell cytoplasm. Characterized members of this protein family are known to be secreted and are described as invasins, including IpaC from Shigella flexneri and SipC from Salmonella typhimurium. Members may be referred to as invasins, pathogenicity island effectors, and cell invasion proteins. 334 -337452 pfam09600 Cyd_oper_YbgE Cyd operon protein YbgE (Cyd_oper_YbgE). This entry describes a small protein of unknown function, about 100 amino acids in length, essentially always found in an operon with CydAB, subunits of the cytochrome d terminal oxidase. It appears to be an integral membrane protein. It is found so far only in the Proteobacteria. 76 -337453 pfam09601 DUF2459 Protein of unknown function (DUF2459). This conserved hypothetical protein of unknown function is found in several Proteobacteria. Its function is unknown and its genome context is not well-conserved. It is found amid urease genes in at least one species. 169 -286658 pfam09602 PhaP_Bmeg Polyhydroxyalkanoic acid inclusion protein (PhaP_Bmeg). This entry describes a protein found in polyhydroxyalkanoic acid (PHA) gene regions and incorporated into PHA inclusions in Bacillus cereus and Bacillus megaterium. The role of the protein may include amino acid storage. 167 -337454 pfam09603 Fib_succ_major Fibrobacter succinogenes major domain (Fib_succ_major). This domain of about 175 to 200 amino acids is found, in from one to five copies, in over 50 proteins in Fibrobacter succinogenes S85, an obligate anaerobe of the rumen. Many members of this family have an apparent lipoprotein signal sequence. Conserved cysteine residues, suggestive of disulfide bond formation, are also consistent with an extracytoplasmic location for this domain. This domain can also be found in small numbers of proteins in Chlorobium tepidum and Bacteroides thetaiotaomicron. 173 -337455 pfam09604 Potass_KdpF F subunit of K+-transporting ATPase (Potass_KdpF). This entry describes a very small integral membrane peptide KdpF, a subunit of the K(+)-translocating Kdp complex. It is found upstream of the KdpA subunit (IPR004623). Because of its very small size and highly hydrophobic character, it is sometimes missed in genome annotation. 24 -337456 pfam09605 Trep_Strep Hypothetical bacterial integral membrane protein (Trep_Strep). This family consists of strongly hydrophobic proteins about 190 amino acids in length with a strongly basic motif near the C-terminus. It is found in rather few species, but in paralogous families of 12 members in the oral pathogenic spirochaete Treponema denticola and 2 in Streptococcus pneumoniae R6. 185 -312941 pfam09606 Med15 ARC105 or Med15 subunit of Mediator complex non-fungal. The approx. 70 residue Med15 domain of the ARC-Mediator co-activator is a three-helix bundle with marked similarity to the KIX domain. The sterol regulatory element binding protein (SREBP) family of transcription activators use the ARC105 subunit to activate target genes in the regulation of cholesterol and fatty acid homeostasis. In addition, Med15 is a critical transducer of gene activation signals that control early metazoan development. 732 -286662 pfam09607 BrkDBD Brinker DNA-binding domain. This DNA-binding domain is the first approx. 100 residues of the N-terminal end of Brinker. The structure of this domain in complex with DNA consists of four alpha-helices that contain a helix-turn-helix DNA recognition motif specific for GC-rich DNA. The Brinker nuclear repressor is a major element of the Drosophila Decapentaplegic morphogen signalling pathway. 58 -337457 pfam09608 Alph_Pro_TM Putative transmembrane protein (Alph_Pro_TM). This family consists of predicted transmembrane proteins of about 270 amino acids. Members are found, so far, only among the Alphaproteobacteria and only once in each genome. 228 -312943 pfam09609 Cas_GSU0054 CRISPR-associated protein, GSU0054 family (Cas_GSU0054). This entry represents a rare CRISPR-associated protein. So far, members are found in Geobacter sulfurreducens and in two unpublished genomes: Gemmata obscuriglobus and Actinomyces naeslundii. CRISPR-associated proteins typically are found near CRISPR repeats and other CRISPR-associated proteins, have low levels of sequence identify, have sequence relationships that suggest lateral transfer, and show some sequence similarity to DNA-active proteins such as helicases and repair proteins. 552 -312944 pfam09610 Myco_arth_vir_N Mycoplasma virulence signal region (Myco_arth_vir_N). This entry represents the N-terminal region of a family of large, virulence-associated proteins in Mycoplasma arthritidis and smaller proteins in Mycoplasma capricolum. It includes a probable signal sequence or signal anchor, which, in most instances, has four consecutive Lys residues before the hydrophobic stretch. 32 -337458 pfam09611 Cas_Csy1 CRISPR-associated protein (Cas_Csy1). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2465 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy1, for CRISPR/Cas Subtype Ypest protein 1. 378 -337459 pfam09612 HtrL_YibB Bacterial protein of unknown function (HtrL_YibB). The protein from this rare, uncharacterized protein family is designated HtrL or YibB in E. coli, where its gene is found in a region of LPS core biosynthesis genes. homologs are found in Shigella flexneri, Campylobacter jejuni, and Caenorhabditis elegans only. The htrL gene may represent an insertion to the LPS core biosynthesis region, rather than an LPS biosynthetic protein. 263 -312947 pfam09613 HrpB1_HrpK Bacterial type III secretion protein (HrpB1_HrpK). This family of proteins is encoded by genes found within type III secretion operons in a limited range of species including Xanthomonas, Ralstonia and Burkholderia. 126 -337460 pfam09614 Cas_Csy2 CRISPR-associated protein (Cas_Csy2). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2464 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy2, for CRISPR/Cas Subtype Ypest protein 2. 296 -337461 pfam09615 Cas_Csy3 CRISPR-associated protein (Cas_Csy3). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This entry, typified by YPO2463 of Yersinia pestis, is a CRISPR-associated (Cas) entry strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy3, for CRISPR/Cas Subtype Ypest protein 3. 328 -312950 pfam09617 Cas_GSU0053 CRISPR-associated protein GSU0053 (Cas_GSU0053). This entry is found in CRISPR-associated (cas) proteins in the genomes of Geobacter sulfurreducens PCA and Desulfotalea psychrophila LSv54 (both Desulfobacterales from the Deltaproteobacteria), Gemmata obscuriglobus (a Planctomycete), and Actinomyces naeslundii MG1 (Actinobacteria). 169 -337462 pfam09618 Cas_Csy4 CRISPR-associated protein (Cas_Csy4). CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a widespread family of prokaryotic direct repeats with spacers of unique sequence between consecutive repeats. This protein family, typified by YPO2462 of Yersinia pestis, is a CRISPR-associated (Cas) family strictly associated with the Ypest subtype of CRISPR/Cas locus. It is designated Csy4, for CRISPR/Cas Subtype Ypest protein 4. 181 -337463 pfam09619 YscW Type III secretion system lipoprotein chaperone (YscW). This entry is encoded within type III secretion operons. The protein has been characterized as a chaperone for the outer membrane pore component YscC. YscW is a lipoprotein which is itself localized to the outer membrane and, it is believed, facilitates the oligomerization and localization of YscC. 105 -312953 pfam09620 Cas_csx3 CRISPR-associated protein (Cas_csx3). This entry is encoded in CRISPR-associated (cas) gene clusters, near CRISPR repeats, in the genomes of several different thermophiles: Archaeoglobus fulgidus (archaeal), Aquifex aeolicus (Aquificae), Dictyoglomus thermophilum (Dictyoglomi), and a thermophilic Synechococcus (Cyanobacteria). It is not yet assigned to a specific CRISPR/cas subtype (hence the x designation csx3). 79 -286674 pfam09621 LcrR Type III secretion system regulator (LcrR). This family of proteins are encoded within type III secretion operons and have been characterized in Yersinia as a regulator of the Low-Calcium Response (LCR). 138 -312954 pfam09622 DUF2391 Putative integral membrane protein (DUF2391). This entry is found in Nostoc sp. PCC 7120, Agrobacterium tumefaciens, Rhizobium meliloti, and Gloeobacter violaceus in a conserved two-gene neighborhood. Proteins containing this entry appear to span the membrane seven times. 265 -312955 pfam09623 Cas_NE0113 CRISPR-associated protein NE0113 (Cas_NE0113). Members of this minor CRISPR-associated (Cas) protein family are encoded in cas gene clusters in Vibrio vulnificus YJ016, Nitrosomonas europaea ATCC 19718, Mannheimia succiniciproducens MBEL55E, and Verrucomicrobium spinosum. 210 -337464 pfam09624 DUF2393 Protein of unknown function (DUF2393). The function of this protein is unknown. It is always found as part of a two-gene operon with IPR013416, a protein that appears to span the membrane seven times. It has so far been found in the bacteria Nostoc sp. PCC 7120, Agrobacterium tumefaciens, Rhizobium meliloti, and Gloeobacter violaceus. 141 -312957 pfam09625 VP9 VP9 protein. VP9 is a protein containing a ferredoxin fold. Two dimers come together to form one asymmetric unit which possesses a DNA recognition fold and specific metal binding sites possibly for zinc. It is postulated that being a non-structural protein VP9 is involved in the transcriptional regulation of the White spot syndrome virus, WSSV, from which it comes. WSSV is the major viral pathogen in shrimp aquaculture. VP9 is found N-terminal to the pfam07056 domain. 73 -312958 pfam09626 DHC Dihaem cytochrome c. Dihaem cytochrome c (DHC) is a soluble c-type cytochrome that folds into two distinct domains, each binding a single haem group and connected by a small linker region. Despite little sequence similarity, the N-terminal domain (residues 12-75) is a class I type cytochrome c, that binds one of the haems, but the domain surrounding the other haem is structurally unique. DHC binds electrostatically to an oxygen-binding protein, sphaeroides haem protein (SHP), as a component of a conserved electron transfer pathway. DHC acts as the physiological electron donor for SHP during phototrophic growth. In certain species DHC is found upstream of pfam01292. 112 -286680 pfam09627 PrgU PrgU-like protein. This hypothetical protein of 125 residues is expressed in bacteria but is thought to be plasmid in origin. It forms a six beta-strand barrel with three accompanying alpha helices and is probably a homo-dimer in the cell. It may be involved in pheromone-inducible conjugation. 105 -255461 pfam09628 YvfG YvfG protein. Yvfg is a hypothetical protein of 71 residues expressed in some bacteria. The monomer consists of two parallel alpha helices, and the protein crystallizes as a homo-dimer. 68 -286681 pfam09629 YorP YorP protein. YorP is a 71 residue protein found in bacteria. As it is also found in a bacteriophage it might be of viral origin. The structure is of an alpha helix between two of five beta strands. The function is unknown. 71 -312959 pfam09630 DUF2024 Domain of unknown function (DUF2024). This protein of 86 residues is expressed in bacteria. It consists of four alpha helices and two beta strands. Its function is unknown. One UniProt entry gives the gene name as Traf5. 81 -337465 pfam09631 Sen15 Sen15 protein. The Sen15 subunit of the tRNA intron-splicing endonuclease is one of the two structural subunits of this hetero-tetrameric enzyme. Residues 36-157 of this subunit possess a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet. Two monomers of Sen15 fold with two monomers of Sen34, one of the two catalytic subunits, to form an alpha2-beta2 tetramer as part of the functional endonuclease assembly. 100 -286684 pfam09632 Rac1 Rac1-binding domain. The Rac1-binding domain is the C-terminal portion of YpkA from Yersinia. It is an all-helical molecule consisting of two distinct subdomains connected by a linker. the N-terminal end, residues 434-615, consists of six helices organized into two three-helix bundles packed against each other. This region is involved with binding to GTPases. The C-terminal end, residues 705-732. is a novel and elongated fold consisting of four helices clustered into two pairs, and this fold carries the helix implicated in actin activation. Rac1-binding domain mimics host guanidine nucleotide dissociation inhibitors (GDIs) of the Rho GTPases, thereby inhibiting nucleotide exchange in Rac1 and causing cytoskeletal disruption in the host. It is usually found downstream of pfam00069. 297 -312961 pfam09633 DUF2023 Protein of unknown function (DUF2023). This protein of approx.120 residues consists of three beta strands and five alpha helices, thought to fold into a homo-dimer. It is expressed in bacteria. 99 -312962 pfam09634 DUF2025 Protein of unknown function (DUF2025). This protein is produced from gene PA1123 in Pseudomonas. It contains three alpha helices and six beta strands and is thought to be monomeric. It appears to be present in the biofilm layer and may be a lipoprotein. 105 -255464 pfam09635 MetRS-N MetRS-N binding domain. The MetRS-N domain binds an Arc1-P domain in a tetrameric complex resembling a classical GST homo-dimer. Domain-swapping between symmetrically related MetRS-N and Arc1p-N domains generates a 2:2 tetramer held together by van der Waals forces. This domain is necessary for formation of the aminoacyl-tRNA synthetase complex necessary for tRNA nuclear export and shuttling as part of the translational apparatus. The domain is associated with pfam09334. 122 -255465 pfam09636 XkdW XkdW protein. This protein of approx. 100 residues contains two alpha helices and two beta strands and is probably monomeric. It is expressed in bacteria but is probably viral in origin. Its function is unknown. 106 -337466 pfam09637 Med18 Med18 protein. Med18 is one subunit of Mediator, a head-module multiprotein complex, that stimulates basal RNA polymerase II (Pol II) transcription. Med18 consists of an eight-stranded beta-barrel with a central pore and three flanking helices. It complexes with Med8 and Med20 proteins by forming a heterodimer of two-fold symmetry with Med20 and binding the C-terminal alpha-helix region of Med8 across the top of its barrel. This complex creates a multipartite TBP-binding site that can be modulated by transcriptional activators. 244 -286688 pfam09638 Ph1570 Ph1570 protein. This is a hypothetical protein from Pyroccous horikoshii of unknown function. It contains six alpha helices and eight beta strands and is thought to be monomeric. 156 -286689 pfam09639 YjcQ YjcQ protein. YjcQ is a protein of approx. 100 residues containing four alpha helices and three beta strands. It is expressed in bacteria and also in viruses. It appears to be under the regulation of SigD RNA polymerase which is responsible for the expression of many genes encoding cell-surface proteins related to flagellar assembly, motility, chemotaxis and autolysis in the late exponential growth phase. The exact function of YjcQ is unknown. However, it is thought to be a prophage head protein in viruses. 94 -312964 pfam09640 DUF2027 Domain of unknown function (DUF2027). This protein domain is of unknown function. though putatively involved in DNA mismatch repair. It is associated with pfam01713. 154 -286691 pfam09641 DUF2026 Protein of unknown function (DUF2026). This protein of approx. 100 residues is found in bacteria. It contains up to five alpha helices and up to seven beta strands and is probably monomeric. Its function is unknown. It is cited as a major prophage head protein, so might generally be of viral origin. 205 -286692 pfam09642 YonK YonK protein. YonK protein is expressed by the bacterial prophage SPbetaC. It is a 63 residue protein that associates into a homo-octamer in the form of a beta-stranded barrel with four outer helical features at points of the compass. Its function is unknown. 62 -312965 pfam09643 YopX YopX protein. YopX is a protein that is largely helical, with three identical chains probably complexing into a twelve-chain structure. 123 -286694 pfam09644 Mg296 Mg296 protein. This protein of 129 residues is expressed in bacteria. It consists of three identical chains of five alpha helices. Two copies of each chain associate into a complex of six units of possible biological significance but of unknown function. 126 -286695 pfam09645 F-112 F-112 protein. F-112 protein is of 70-110 residues and is found in viruses. Its winged-helix structure suggests a DNA-binding function. 110 -312966 pfam09646 Gp37 Gp37 protein. This protein of 154 residues consists of a unit of helices and beta sheets that crystallizes into a beautiful asymmetrical dodecameric barrel-structure, of two six-membered rings one on top of the other. It is expressed in bacteria but is of viral origin as it is found in phage BcepMu and is probably a pathogenesis factor. 143 -312967 pfam09648 YycI YycH protein. This domain is exclusively found in YycI proteins in the low GC content Gram positive species. These two domains share the same structural fold with domains two and three of YycH pfam07435. Both, YycH and YycI are always found in pair on the chromosome, downstream of the essential histidine kinase YycG. Additionally, both proteins share a function in regulating the YycG kinase with which they appear to form a ternary complex. Lastly, the two proteins always contain an N-terminal transmembrane helix and are localized to the periplasmic space as shown by PhoA fusion studies. 229 -312968 pfam09649 CHZ Histone chaperone domain CHZ. This domain is highly conserved from yeasts to humans and is part of the chaperone protein HIRIP3 in vertebrates which interacts with the H3.3 chaperone HIRA, implicated in histone replacement during transcription. N- and C- termini of Chz family members are relatively divergent but do contain similar acidic stretches rich in Glu/Asp residues, characteristic of all histone chaperones. 34 -337467 pfam09650 PHA_gran_rgn Putative polyhydroxyalkanoic acid system protein (PHA_gran_rgn). Proteins in this entry are encoded by genes involved in either polyhydroxyalkanoic acid (PHA) biosynthesis or utilisation, including proteins found at the surface of PHA granules. These proteins have so far been found in the Pseudomonadales, Xanthomonadales, and Vibrionales, all of which belong to the Gammaproteobacteria. 79 -312970 pfam09651 Cas_APE2256 CRISPR-associated protein (Cas_APE2256). This entry represents a conserved region of about 150 amino acids found in at least five archaeal and three bacterial species. These species all contain CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). In six of eight species, the protein is encoded the vicinity of a CRISPR/Cas locus. 135 -286701 pfam09652 Cas_VVA1548 Putative CRISPR-associated protein (Cas_VVA1548). This entry represents a conserved region of about 95 amino acids found exclusively in species with CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). In all bacterial species that contain this entry, the genes encoding the proteins are in the midst of a cluster of cas (CRISPR-associated) genes. 91 -312971 pfam09654 DUF2396 Protein of unknown function (DUF2396). These conserved hypothetical proteins have so far been found only in the Cyanobacteria. They are about 170 amino acids long and contain a CxxCx(14)CxxH motif near the N-terminus. 159 -312972 pfam09655 Nitr_red_assoc Conserved nitrate reductase-associated protein (Nitr_red_assoc). Proteins in this entry are found in the Cyanobacteria, and are mostly encoded near nitrate reductase and molybdopterin biosynthesis genes. Molybdopterin guanine dinucleotide is a cofactor for nitrate reductase. These proteins are sometimes annotated as nitrate reductase-associated proteins, though their function is unknown. 144 -312973 pfam09656 PGPGW Putative transmembrane protein (PGPGW). Proteins in this entry are putative Actinobacterial proteins of about 150 amino acids in length, with three predicted transmembrane helices and an unusual motif with consensus sequence PGPGW. 53 -286705 pfam09657 Cas_Csx8 CRISPR-associated protein Csx8 (Cas_Csx8). Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry describes proteins of unknown function which are encoded in the midst of a cas gene operon. 493 -286706 pfam09658 Cas_Csx9 CRISPR-associated protein (Cas_Csx9). Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry describes archaeal proteins encoded in cas gene regions. 377 -312974 pfam09659 Cas_Csm6 CRISPR-associated protein (Cas_Csm6). Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 370 -312975 pfam09660 DUF2397 Protein of unknown function (DUF2397). Proteins in this entry are encoded within a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria including: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). 483 -312976 pfam09661 DUF2398 Protein of unknown function (DUF2398). Proteins in this entry are encoded within a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria including: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Betaproteobacteria). 361 -286710 pfam09662 Phenyl_P_gamma Phenylphosphate carboxylase gamma subunit (Phenyl_P_gamma). Members of this protein family are the gamma subunit of phenylphosphate carboxylase. Phenol (methyl-benzene) is converted to phenylphosphate, then para-carboxylated by this four-subunit enzyme, with the release of phosphate, to 4-hydroxybenzoate. The enzyme contains neither biotin nor thiamin pyrophosphate. The gamma subunit has no known homologs. 83 -337468 pfam09663 Amido_AtzD_TrzD Amidohydrolase ring-opening protein (Amido_AtzD_TrzD). Members of this family are ring-opening amidohydrolases, including cyanuric acid amidohydrolase (EC:3.5.2.15) (AtzD and TrzD) and barbiturase. Note that barbiturase does not act as defined for EC:3.5.2.1 (barbiturate + water = malonate + urea) but rather catalyzes the ring opening of barbiturase acid to ureidomalonic acid. 361 -312978 pfam09664 DUF2399 Protein of unknown function C-terminus (DUF2399). Proteins in this entry are encoded within a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria including: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Beta-proteobacteria). Just the C-terminal region is ioncluded here. 151 -286713 pfam09665 RE_Alw26IDE Type II restriction endonuclease (RE_Alw26IDE). Members of this entry are type II restriction endonucleases of the Alw26I/Eco31I/Esp3I family. characterized specificities of the three members are GGTCTC, CGTCTC and the shared subsequence GTCTC. 516 -312979 pfam09666 Sororin Sororin protein. Sororin is an essential, cell cycle-dependent mediator of sister chromatid cohesion. The protein is nuclear in interphase cells, dispersed from the chromatin in mitosis, and interacts with the cohesin complex. 149 -312980 pfam09667 DUF2028 Domain of unknown function (DUF2028). This region of similarity is found in the vertebrate homologs of the drosophila Bobby Sox. 198 -312981 pfam09668 Asp_protease Aspartyl protease. This family of eukaryotic aspartyl proteases have a fold similar to retroviral proteases which implies they function proteolytically during regulated protein turnover. 124 -312982 pfam09669 Phage_pRha Phage regulatory protein Rha (Phage_pRha). Members of this protein family are found in temperate phage and bacterial prophage regions. Members include the product of the rha gene of the lambdoid phage phi-80, a late operon gene. The presence of this gene interferes with infection of bacterial strains that lack integration host factor (IHF), which regulates the rha gene. It is suggested that Rha is a phage regulatory protein. 88 -312983 pfam09670 Cas_Cas02710 CRISPR-associated protein (Cas_Cas02710). Members of this family are found, exclusively in the vicinity of CRISPR repeats and other CRISPR-associated (cas) genes, in Methanothermobacter thermautotrophicus (Methanobacterium thermoformicicum), Thermus thermophilus (Deinococcus-Thermus), Chloroflexus aurantiacus (Chloroflexi), and Thermomicrobium roseum (Thermomicrobia). 377 -337469 pfam09671 Spore_GerQ Spore coat protein (Spore_GerQ). Members of this protein family are the spore coat protein GerQ of endospore-forming Firmicutes (low GC Gram-positive bacteria). This protein is cross-linked by a spore coat-associated transglutaminase. 76 -337470 pfam09673 TrbC_Ftype Type-F conjugative transfer system pilin assembly protein. This entry represents TrbC, a protein that is an essential component of the F-type conjugative pilus assembly system for the transfer of plasmid DNA. The N-terminal portion of these proteins is heterogeneous. 111 -337471 pfam09674 DUF2400 Protein of unknown function (DUF2400). Members of this uncharacterized protein family are found sporadically, so far only among spirochetes, epsilon and delta proteobacteria, and Bacteroides. The function is unknown and its gene neighborhoods show little conservation. 227 -286721 pfam09675 Chlamy_scaf Chlamydia-phage Chp2 scaffold (Chlamy_scaf). Members of this entry are encoded by genes in chlamydia-phage such as Chp2. These viruses have around eight genes and obligately infect intracellular bacterial pathogens of the genus Chlamydia. This protein is annotated as VP3 or structural protein (as if a protein of mature viral particles), however, it is displaced from procapsids as DNA is packaged, and therefore is more correctly described as a scaffolding protein. 109 -337472 pfam09676 TraV Type IV conjugative transfer system lipoprotein (TraV). This entry includes TraV, which is a component of conjugative type IV secretion system. TraV is an outer membrane lipoprotein that is believed to interact with the secretin TraK. The alignment contains three conserved cysteines in the N-terminal half. 127 -337473 pfam09677 TrbI_Ftype Type-F conjugative transfer system protein (TrbI_Ftype). This entry represents TrbI, an essential component of the F-type conjugative transfer system for plasmid DNA transfer that has been shown to be localized to the periplasm. 106 -337474 pfam09678 Caa3_CtaG Cytochrome c oxidase caa3 assembly factor (Caa3_CtaG). Members of this family are the CtaG protein required for assembly of active cytochrome c oxidase of the caa3 type, as found in Bacillus subtilis. 238 -286725 pfam09679 TraQ Type-F conjugative transfer system pilin chaperone (TraQ). This entry represents TraQ, a protein that makes a specific interaction with pilin (TraA) to aid its transfer through the inner membrane during the process of F-type conjugative pilus assembly. 97 -312989 pfam09680 Tiny_TM_bacill Protein of unknown function (Tiny_TM_bacill). This entry represents a family of hypothetical proteins, half of which are 40 residues or less in length. Members are found only in spore-forming species. A Gly-rich variable region is followed by a strongly conserved, highly hydrophobic region, predicted to form a transmembrane helix, ending with an invariant Gly. The consensus for this stretch is FALLVVFILLIIV. 23 -337475 pfam09681 Phage_rep_org_N N-terminal phage replisome organizer (Phage_rep_org_N). This entry represents the N-terminal domain of a small family of phage proteins. The protein contains a region of low-complexity sequence that reflects DNA direct repeats able to function as an origin of phage replication. The region is N-terminal to the low-complexity region. 121 -312991 pfam09682 Phage_holin_6_1 Bacteriophage holin of superfamily 6 (Holin_LLH). Phage_holin_6_1 or Holin_LLH identifies a family of phage holins from a number of phage and prophage regions of Gram-positive bacteria. Like other holins, it is large for holins (about 100-160 amino acids) with stretches of hydrophobic sequence and is encoded adjacent to lytic enzymes. Holin LLH family is found in phage of Firmicutes and have an N-terminal transmembrane segment. 100 -312992 pfam09683 Lactococcin_972 Bacteriocin (Lactococcin_972). These sequences represent bacteriocins related to lactococcin. Members tend to be found in association with a seven transmembrane putative immunity protein. 63 -312993 pfam09684 Tail_P2_I Phage tail protein (Tail_P2_I). These sequences represent the family of phage P2 protein I and related tail proteins from a number of temperate phage of Gram-negative bacteria. 132 -337476 pfam09685 DUF4870 Domain of unknown function (DUF4870). 107 -337477 pfam09686 Plasmid_RAQPRD Plasmid protein of unknown function (Plasmid_RAQPRD). This entry identifies a family of proteins, which are about 100 amino acids in length, including a predicted signal sequence and a perfectly conserved motif RAQPRD towards the C-terminus. Members are found in the Pseudomonas putida TOL plasmid pWW0 and in cryptic plasmid regions of Salmonella enterica subsp. enterica serovar Typhi and Pseudomonas syringae DC3000. The function of these proteins are unknown. 75 -337478 pfam09687 PRESAN Plasmodium RESA N-terminal. The short, four-helical domain first identified in the Plasmodium export proteins PHISTa and PHISTc has been extended to become this six-helical PRESAN domain identified in the P. falciparum-specific RESA-type (Ring-infected erythrocyte surface antigen) proteins in association with the DnaJ domain. Overall, at least 67 proteins have been detected in P. falciparum with complete copies of the PRESAN domain. No versions of this domain were detected in other apicomplexan genera, suggesting that the domain was 'invented' after the divergence of the lineage leading to the genus Plasmodium undergoing a dramatic proliferation only in P. falciparum. A secondary structure-prediction derived from the multiple alignment of the PRESAN family reveals that it is composed of an all-helical fold with six conserved helical segments. There is some evidence it might localize to membranes. 125 -312997 pfam09688 Wx5_PLAF3D7 Protein of unknown function (Wx5_PLAF3D7). This set of protein sequences represent a family of at least four proteins in Plasmodium falciparum (isolate 3D7). An interesting feature is five perfectly conserved Trp residues. 144 -286735 pfam09689 PY_rept_46 Plasmodium yoelii repeat (PY_rept_46). This repeat is found in the products of only 2 genes in Plasmodium yoelii, in each of these proteins it is repeated 9 times. It is found in no other organism. 51 -286736 pfam09690 PYST-C1 Plasmodium yoelii subtelomeric region (PYST-C1). This group of sequences are defined by the N-terminal domain of a paralogous family of Plasmodium yoelii genes preferentially located in the subtelomeric regions of the chromosomes. There are no obvious homologs to these genes in any other organism. The C-terminal portions of the genes that contain this domain are divergent and some contain other yoelii-specific paralogous domains such as PYST-C2 (IPR006491). 55 -337479 pfam09691 T2SS_PulS_OutS Type II secretion system pilotin lipoprotein (PulS_OutS). This family comprises lipoproteins from four gamma proteobacterial species: PulS protein of Klebsiella pneumoniae (P20440), the OutS protein of Erwinia chrysanthemi (Q01567) and Pectobacterium chrysanthemi, and the functionally uncharacterized E. coli protein EtpO. PulS and OutS have been shown to interact with and facilitate insertion of secretins into the outer membrane, suggesting a chaperone-like, or piloting function for members of this family. In the pilotin from this four-helix protein from enterohemorrhagic Escherichia coli, the straight helix alpha2, the curved helix alpha3 and the bent helix alpha4 surround the central N-terminal helix alpha1. These helices create a prominent groove, mainly formed by side chains of helices 1,2 and 3 suggesting this groove is important as a binding site. 107 -312998 pfam09692 Arb1 Argonaute siRNA chaperone (ARC) complex subunit Arb1. Arb1 is required for histone H3 Lys9 (H3-K9) methylation, heterochromatin, assembly and siRNA generation in fission yeast. 393 -286739 pfam09693 Phage_XkdX Phage uncharacterized protein (Phage_XkdX). This entry identifies a family of small (about 50 amino acid) phage proteins, found in at least 12 different phage and prophage regions of Gram-positive bacteria. In a number of these phage, the gene for this protein is found near the holin and endolysin genes. 40 -286740 pfam09694 Gcw_chp Bacterial protein of unknown function (Gcw_chp). This entry represents a conserved hypothetical protein about 240 residues in length found so far in Proteobacteria including Shewanella oneidensis and Ralstonia solanacearum, usually as part of a paralogous family. The function is unknown. 228 -286741 pfam09695 YtfJ_HI0045 Bacterial protein of unknown function (YtfJ_HI0045). These are sequences from gamma proteobacteria that are related to the E. coli protein, YtfJ. 159 -312999 pfam09696 Ctf8 Ctf8. Ctf8 (chromosome transmissions fidelity 8) is a component of the Ctf18 RFC-like complex which is a DNA clamp loader involved in sister chromatid cohesion. 121 -313000 pfam09697 Porph_ging Protein of unknown function (Porph_ging). This family of proteins of unknown function is found in Porphyromonas gingivalis (Bacteroides gingivalis). 81 -286744 pfam09698 GSu_C4xC__C2xCH Geobacter CxxxxCH...CXXCH motif (GSu_C4xC__C2xCH). This motif occurs from three to eight times in eight different proteins of Geobacter sulfurreducens. The final CXXCH motif matches the cytochrome c family haem-binding site signature, suggesting that the sequence may be involved in haem-binding. 36 -313001 pfam09699 Paired_CXXCH_1 Doubled CXXCH motif (Paired_CXXCH_1). This entry represents a domain of about 41 amino acids that contains, among other motifs, two copies of the motif CXXCH associated with haem binding. This domain is predicted to be a high molecular weight c-type cytochrome and is often found in multiple copies. Members are found mostly in species of Shewanella, Geobacter, and Vibrio. 41 -313002 pfam09700 Cas_Cmr3 CRISPR-associated protein (Cas_Cmr3). CRISPR is a term for Clustered Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This highly divergent family, found in at least ten different archaeal and bacterial species, is represented by TM1793 from Thermotoga maritima. 368 -313003 pfam09701 Cas_Cmr5 CRISPR-associated protein (Cas_Cmr5). CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This family, represented by TM1791.1 of Thermotoga maritima, is found in both archaeal and bacterial species. 118 -286748 pfam09702 Cas_Csa5 CRISPR-associated protein (Cas_Csa5). CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry represents a minor family of Cas proteins found in various species of Sulfolobus and Pyrococcus (all archaeal). It is found with two different CRISPR loci in Sulfolobus solfataricus. 106 -286749 pfam09703 Cas_Csa4 CRISPR-associated protein (Cas_Csa4). CRISPR loci appear to be mobile elements with a wide host range. This entry represents a protein that tends to be found near CRISPR repeats. The species range for this species, so far, is exclusively archaeal. It is found so far in only four different species, and includes two tandem genes in Pyrococcus furiosus DSM 3638. CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 355 -313004 pfam09704 Cas_Cas5d CRISPR-associated protein (Cas_Cas5). CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This small Cas family is represented by CT1134 of Chlorobium tepidum. 213 -313005 pfam09706 Cas_CXXC_CXXC CRISPR-associated protein (Cas_CXXC_CXXC). CRISPR is a term for Clustered, Regularly Interspaced Short Palindromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This entry describes a conserved region of about 65 amino acids from an otherwise highly divergent protein found in a minority of CRISPR-associated protein regions. This region features two motifs of CXXC. 69 -313006 pfam09707 Cas_Cas2CT1978 CRISPR-associated protein (Cas_Cas2CT1978). This entry represents a minor branch of the Cas2 family of CRISPR-associated protein which are found in IPR003799. Cas proteins are found adjacent to a characteristic short, palindromic repeat cluster termed CRISPR, a probable mobile DNA element. 86 -337480 pfam09709 Cas_Csd1 CRISPR-associated protein (Cas_Csd1). CRISPR loci appear to be mobile elements with a wide host range. This entry represents proteins that tend to be found near CRISPR repeats. The species range, so far, is exclusively bacterial and mesophilic, although CRISPR loci are particularly common among the archaea and thermophilic bacteria. Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. 565 -286754 pfam09710 Trep_dent_lipo Treponema clustered lipoprotein (Trep_dent_lipo). This entry represents a family of six predicted lipoproteins from a region of about 20 tandemly arranged genes in the Treponema denticola genome. Two other neighboring genes share the lipoprotein signal peptide region but do not show more extensive homology. The function of this locus is unknown. 397 -313008 pfam09711 Cas_Csn2 CRISPR-associated protein (Cas_Csn2). CRISPR loci appear to be mobile elements with a wide host range. This entry represents proteins found only in CRISPR-containing species, near other CRISPR-associated proteins (cas). The species range so far for these proteins is pathogenic bacteria only. Clusters of short DNA repeats with nonhomologous spacers, which are found at regular intervals in the genomes of phylogenetically distinct prokaryotic species, comprise a family with recognisable features. This family is known as CRISPR (short for Clustered, Regularly Interspaced Short Palindromic Repeats). 180 -313009 pfam09712 PHA_synth_III_E Poly(R)-hydroxyalkanoic acid synthase subunit (PHA_synth_III_E). This entry represents the PhaE subunit of the heterodimeric class (class III) of polymerase for poly(R)-hydroxyalkanoic acids (PHAs), carbon and energy storage polymers of many bacteria. The most common PHA is polyhydroxybutyrate but about 150 different constituent hydroxyalkanoic acids (HAs) have been identified in various species. 309 -337481 pfam09713 A_thal_3526 Plant protein 1589 of unknown function (A_thal_3526). This plant-specific family of proteins is defined by an uncharacterized region 57 residues in length. It is found toward the N-terminus of most proteins that contain it. Examples include at least several proteins from Arabidopsis thaliana and Oryza sativa. The function of the proteins are unknown. 51 -313011 pfam09715 Plasmod_dom_1 Plasmodium protein of unknown function (Plasmod_dom_1). These sequences represent an uncharacterized family consisting of a small number of hypothetical proteins of the malaria parasite Plasmodium falciparum (isolate 3D7). 66 -313012 pfam09716 ETRAMP Malarial early transcribed membrane protein (ETRAMP). These sequences represent a family of proteins from the malaria parasite Plasmodium falciparum, several of which have been shown to be expressed specifically in the ring stage as well as the rodent parasite Plasmodium yoelii. A homolog from Plasmodium chabaudi was localized to the parasitophorous vacuole membrane. Members have an initial hydrophobic, Phe/Tyr-rich, stretch long enough to span the membrane, a highly charged region rich in Lys, a second putative transmembrane region and a second highly charged, low complexity sequence region. Some members have up to 100 residues of additional C-terminal sequence. These genes have been shown to be found in the sub-telomeric regions of both Plasmodium falciparum and P. yoelii chromosomes. 81 -337482 pfam09717 CPW_WPC Plasmodium falciparum domain of unknown function (CPW_WPC). This group of sequences is defined by a domain of about 61 residues in length with six well-conserved cysteine residues and six well-conserved aromatic sites. The domain can be found in tandem repeats, and is known so far only in Plasmodium falciparum. It is named for motifs of CPxxW and (less well conserved) WPC. Its function is unknown. 55 -337483 pfam09718 Tape_meas_lam_C Lambda phage tail tape-measure protein (Tape_meas_lam_C). This represents a relatively well-conserved region near the C-terminus of the tape measure protein of a lambda and related phage. The protein, which controls phage tail length, is typically about 1000 residues in length. Both low-complexity sequence and insertion/deletion events appear common in this family. Mutational studies suggest a ruler or template role in the determination of phage tail length. Similar behaviour is attributed to proteins from distantly related or unrelated families in other phage. 76 -337484 pfam09719 C_GCAxxG_C_C Putative redox-active protein (C_GCAxxG_C_C). This entry represents a putative redox-active protein of about 140 residues, with four perfectly conserved Cys residues. It includes a CGAXXG motif. Most members are found within one or two loci of transporter or oxidoreductase genes. A member from Geobacter sulfurreducens, located in a molybdenum transporter operon, has a TAT (twin-arginine translocation) signal sequence for Sec-independent transport across the plasma membrane, a hallmark of bound prosthetic groups such as FeS clusters. 116 -337485 pfam09720 Unstab_antitox Putative addiction module component. This entry defines several short bacterial proteins, typically about 75 amino acids long, which are always found as part of a pair (at least) of small genes. The other protein in the pair always belongs to a family of plasmid stabilisation proteins (IPR007712). It is likely that this protein and its partner comprise some form of addiction module - a pair of genes consisting of a stable toxin and an unstable antitoxin which mediate programmed cell death - although these gene-pairs are usually found on the bacterial main chromosome. 54 -337486 pfam09721 Exosortase_EpsH Transmembrane exosortase (Exosortase_EpsH). Members of this family are designated exosortase, analogous to sortase in cell wall sorting mediated by LPXTG domains in Gram-positive bacteria. The phylogenetic distribution of the proteins in this entry is nearly perfectly correlated with the distribution of the proteins having the PEP-CTERM anchor motif, IPR013424. Members of this entry are integral membrane proteins with eight predicted transmembrane helices in common. Some members of this family have long trailing sequences past the region described by this model. This model does not include the region of the first predicted transmembrane region. The best characterized member is EpsH of Methylobacillus sp. 12S, where it is part of a locus associated with biosynthesis of the exopolysaccharide methanol-an. 247 -337487 pfam09722 DUF2384 Protein of unknown function (DUF2384). Proteins in this family are found almost exclusively in the Proteobacteria, but also in Gloeobacter violaceus PCC 7421, a cyanobacterium. The function is unknown. 51 -337488 pfam09723 Zn-ribbon_8 Zinc ribbon domain. This entry represents a region of about 41 amino acids found in a number of small proteins in a wide range of bacteria. The region usually begins with the initiator Met and contains two CxxC motifs separated by 17 amino acids. One protein in this entry has been noted as a putative regulatory protein, designated FmdB. Most proteins in this entry have a C-terminal region containing highly degenerate sequence. 39 -337489 pfam09724 Dcc1 Sister chromatid cohesion protein Dcc1. Sister chromatid cohesion protein Dcc1 is a component of the Ctf18-RFC complex. This complex is required for the efficient establishment of chromosome cohesion during S-phase and for loading the replication clamp Pol30/PCNA, which functions in DNA replication and repair. Ctf18-RFC loads PCNA onto DNA in an ATP-dependent manner. It may also have PCNA-unloading activity. 321 -337490 pfam09725 Fra10Ac1 Folate-sensitive fragile site protein Fra10Ac1. This entry represents the full-length proteins in which, in higher eukaryotes, the nested domain EDSLL lies. Fra10Ac1 is a highly conserved protein, of unknown function that is nuclear and highly expressed in brain. 113 -313022 pfam09726 Macoilin Macoilin family. The Macoilin proteins has an N-terminal portion that is composed of 5 trasnmembrane helices, followed by a C-terminal coiled-coil region. Macoilin is a highly conserved protein present in eukaryotes. Macoilin appears to be found in the ER and be involved in the function of neurons. 666 -337491 pfam09727 CortBP2 Cortactin-binding protein-2. This entry is the first approximately 250 residues of cortactin-binding protein 2. In addition to being a positional candidate for autism this protein is expressed at highest levels in the brain in humans. The human protein has six associated ankyrin repeat domains pfam00023 towards the C-terminus which act as protein-protein interaction domains. 187 -337492 pfam09728 Taxilin Myosin-like coiled-coil protein. Taxilin contains an extraordinarily long coiled-coil domain in its C-terminal half and is ubiquitously expressed. It is a novel binding partner of several syntaxin family members and is possibly involved in Ca2+-dependent exocytosis in neuroendocrine cells. Gamma-taxilin, described as leucine zipper protein Factor Inhibiting ATF4-mediated Transcription (FIAT), localizes to the nucleus in osteoblasts and dimerizes with ATF4 to form inactive dimers, thus inhibiting ATF4-mediated transcription. 299 -337493 pfam09729 Gti1_Pac2 Gti1/Pac2 family. In S. pombe the gti1 protein promotes the onset of gluconate uptake upon glucose starvation. In S. pombe the Pac2 protein controls the onset of sexual development, by inhibiting the expression of ste11, in a pathway that is independent of the cAMP cascade. 168 -313026 pfam09730 BicD Microtubule-associated protein Bicaudal-D. BicD proteins consist of three coiled-coiled domains and are involved in dynein-mediated minus end-directed transport from the Golgi apparatus to the endoplasmic reticulum (ER). For full functioning they bind with GSK-3beta pfam05350 to maintain the anchoring of microtubules to the centromere. It appears that amino-acid residues 437-617 of BicD and the kinase activity of GSK-3 are necessary for the formation of a complex between BicD and GSK-3beta in intact cells. 684 -337494 pfam09731 Mitofilin Mitochondrial inner membrane protein. Mitofilin controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. The first 78 amino acids contain a typical amino-terminal-cleavable mitochondrial presequence rich in positive-charged and hydroxylated residues and a membrane anchor domain. In addition, it has three centrally located coiled coil domains. 598 -337495 pfam09732 CactinC_cactus Cactus-binding C-terminus of cactin protein. CactinC_cactus is the C-terminal 200 residues of the cactin protein which are necessary for the association of cactin with IkappaB-cactus as one of the intracellular members of the Rel complex. The Rel (NF-kappaB) pathway is conserved in invertebrates and vertebrates. In mammals, it controls the activities of the immune and inflammatory response genes as well as viral genes, and is critical for cell growth and survival. In Drosophila, the Rel pathway functions in the innate cellular and humoral immune response, in muscle development, and in the establishment of dorsal-ventral polarity in the early embryo. Most members of the family also have a Cactin_mid domain pfam10312 further upstream. 120 -313029 pfam09733 VEFS-Box VEFS-Box of polycomb protein. The VEFS-Box (VRN2-EMF2-FIS2-Su(z)12) box is the C-terminal region of these proteins, characterized by an acidic cluster and a tryptophan/methionine-rich sequence, the acidic-W/M domain. Some of these sequences are associated with a zinc-finger domain about 100 residues towards the N-terminus. This protein is one of the polycomb cluster of proteins which control HOX gene transcription as it functions in heterochromatin-mediated repression. 137 -337496 pfam09734 Tau95 RNA polymerase III transcription factor (TF)IIIC subunit. TFIIIC1 is a multisubunit DNA binding factor that serves as a dynamic platform for assembly of pre-initiation complexes on class III genes. This entry represents the tau 95 subunit which holds a key position in TFIIIC, exerting both upstream and downstream influence on the TFIIIC-DNA complex by rendering the complex more stable. Once bound to tDNA-intragenic promoter elements, TFIIIC directs the assembly of TFIIIB on the DNA, which in turn recruits the RNA polymerase III (pol III) and activates multiple rounds of transcription. 299 -313031 pfam09735 Nckap1 Membrane-associated apoptosis protein. Expression of this protein was found to be markedly reduced in patients with Alzheimer's disease. It is involved in the regulation of actin polymerization in the brain as part of a WAVE2 signalling complex. 1113 -313032 pfam09736 Bud13 Pre-mRNA-splicing factor of RES complex. This entry is characterized by proteins with alternating conserved and low-complexity regions. Bud13 together with Snu17p and a newly identified factor, Pml1p/Ylr016c, form a novel trimeric complex. called The RES complex, pre-mRNA retention and splicing complex. Subunits of this complex are not essential for viability of yeasts but they are required for efficient splicing in vitro and in vivo. Furthermore, inactivation of this complex causes pre-mRNA leakage from the nucleus. Bud13 contains a unique, phylogenetically conserved C-terminal region of unknown function. 140 -313033 pfam09737 Det1 De-etiolated protein 1 Det1. This is the C-terminal conserved 400 residues of Det1 proteins of approximately 550 amino acids. Det1 (de-etiolated-1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Mammalian Det1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 Associated 1), and a member of the UBE2E group of canonical ubiquitin conjugating enzymes and modulates Cul4A function. 401 -337497 pfam09738 LRRFIP LRRFIP family. LRRFIP1 is a transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'- AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. LRRFIP2 may function as activator of the canonical Wnt signalling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. 297 -337498 pfam09739 MCM_bind Mini-chromosome maintenance replisome factor. This entry is of proteins of approximately 600 residues in length containing alternating regions of conservation and low complexity. The Arabidopsis protein is a replisome factor found to bind with the mini-chromosome maintenance, MCM-binding, complex and is crucial for efficient DNA replication. The family now spans the full-length proteins. 572 -337499 pfam09740 DUF2043 Uncharacterized conserved protein (DUF2043). This is a 100 residue conserved region of a family of proteins found from fungi to humans. This region contains three conserved Cysteines and a motif of {CP}{y/l}{HG}. 104 -313037 pfam09741 DUF2045 Uncharacterized conserved protein (DUF2045). This entry is the conserved 250 residues of proteins of approximately 450 amino acids. It contains several highly conserved motifs including a CVxLxxxD motif.The function is unknown. 225 -313038 pfam09742 Dymeclin Dyggve-Melchior-Clausen syndrome protein. Dymeclin (Dyggve-Melchior-Clausen syndrome protein) contains a large number of leucine and isoleucine residues and a total of 17 repeated dileucine motifs. It is characteristically about 700 residues long and present in plants and animals. Mutations in the gene coding for this protein in humans give rise to the disorder Dyggve-Melchior-Clausen syndrome (DMC, MIM 223800) which is an autosomal-recessive disorder characterized by the association of a spondylo-epi-metaphyseal dysplasia and mental retardation. DYM transcripts are widely expressed throughout human development and Dymeclin is not an integral membrane protein of the ER, but rather a peripheral membrane protein dynamically associated with the Golgi apparatus. 626 -337500 pfam09743 E3_UFM1_ligase E3 UFM1-protein ligase 1. The ubiquitin fold modifier 1 (Ufm1) is the most recently discovered ubiquitin-like modifier whose conjugation (ufmylation) system is conserved in multicellular organisms. Ufm1 is known to covalently attach with cellular protein(s) via a specific E1-activating enzyme (Uba5), an E2-conjugating enzyme (Ufc1), and a E3-ligating enzyme. 263 -337501 pfam09744 Jnk-SapK_ap_N JNK_SAPK-associated protein-1. This is the N-terminal 200 residues of a set of proteins conserved from yeasts to humans. Most of the proteins in this entry have an RhoGEF pfam00621 domain at their C-terminal end. 154 -337502 pfam09745 DUF2040 Coiled-coil domain-containing protein 55 (DUF2040). This entry is a conserved domain of approximately 130 residues of proteins conserved from fungi to humans. The proteins do contain a coiled-coil domain, but the function is unknown. 121 -313042 pfam09746 Membralin tumor-associated protein. Membralin is evolutionarily highly conserved; though it seems to represent a unique protein family. The protein appears to contain several transmembrane regions. In humans it is expressed in certain cancers, particularly ovarian cancers. Membralin-like gene homologs have been identified in plants including grape, cotton and tomato. 371 -313043 pfam09747 DUF2052 Coiled-coil domain containing protein (DUF2052). This entry is of sequences of two conserved domains separated by a region of low complexity, spanning some 200 residues. The function is unknown. 196 -337503 pfam09748 Med10 Transcription factor subunit Med10 of Mediator complex. Med10 is one of the protein subunits of the Mediator complex, tethered to Rgr1 protein. The Mediator complex is required for the transcription of most RNA polymerase II (Pol II)-transcribed genes. Med10 specifically mediates basal-level HIS4 transcription via Gcn4, and, additionally, there is a putative requirement for Med10 in Bas2-mediated transcription. Med10 is part of the middle region of Mediator. 119 -337504 pfam09749 HVSL Uncharacterized conserved protein. This entry is of proteins of approximately 300 residues conserved from plants to humans. It contains two conserved motifs, HxSL and FHVSL. The function is unknown. 227 -313046 pfam09750 DRY_EERY Alternative splicing regulator. This entry represents the conserved N-terminal region of SWAP (suppressor-of-white-apricot protein) proteins. This region contains two highly conserved motifs, viz: DRY and EERY, which appear to be the sites for alternative splicing of exons 2 and 3 of the SWAP mRNA. These proteins are thus thought to be involved in auto-regulation of pre-mRNA splicing. Most family members are associated with two Surp domains pfam01805 and an Arginine- serine-rich binding region towards the C-terminus. 125 -313047 pfam09751 Es2 Nuclear protein Es2. This entry is of a family of proteins of approximately 500 residues with alternating regions of low complexity and conservation where the domain similarities are strong. Apart from a predicted coiled-coil domain, no other known functional domains have been characterized. The protein appears to be expressed in the nucleus and particularly highly in the pons sub-region of the brain. The protein is clearly necessary for normal development of the nervous system. 412 -286795 pfam09752 DUF2048 Abhydrolase domain containing 18. The proteins in this family are conserved from plants to vertebrates. The function is unknown. 352 -313048 pfam09753 Use1 Membrane fusion protein Use1. This entry is of a family of proteins all approximately 300 residues in length. The proteins have a single C-terminal trans-membrane domain and a SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] domain of approximately 60 residues. The SNARE domains are essential for membrane fusion and are conserved from yeasts to humans. Use1 is one of the three protein subunits that make up the SNARE complex and it is specifically required for Golgi-endoplasmic reticulum retrograde transport. 233 -337505 pfam09754 PAC2 PAC2 family. This PAC2 (Proteasome assembly chaperone) family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 247 and 307 amino acids in length. These proteins function as a chaperone for the 26S proteasome. The 26S proteasome mediates ubiquitin-dependent proteolysis in eukaryotic cells. A number of studies including very recent ones have revealed that assembly of its 20S catalytic core particle is an ordered process that involves several conserved proteasome assembly chaperones (PACs). Two heterodimeric chaperones, PAC1-PAC2 and PAC3-PAC4, promote the assembly of rings composed of seven alpha subunits. 168 -313050 pfam09755 DUF2046 Uncharacterized conserved protein H4 (DUF2046). This is the conserved N-terminal 350 residues of a family of proteins of unknown function possibly containing a coiled-coil domain. 303 -313051 pfam09756 DDRGK DDRGK domain. This is a family of proteins of approximately 300 residues, found in plants and vertebrates. They contain a highly conserved DDRGK motif. 188 -337506 pfam09757 Arb2 Arb2 domain. A second fission yeast Argonaute complex (Argonaute siRNA chaperone, ARC) that contains two previously uncharacterized proteins, Arb1 and Arb2, both of which are required for histone H3 Lys9 (H3-K9) methylation, heterochromatin assembly and siRNA generation. This family includes a region found in Arb2 and the Hda1 protein. 211 -313053 pfam09758 FPL Uncharacterized conserved protein. This entry represents an N-terminal region of approximately 150 residues of a family of proteins of unknown function. It contains a highly conserved FPL motif. 148 -313054 pfam09759 Atx10homo_assoc Spinocerebellar ataxia type 10 protein domain. This is the conserved C-terminal 100 residues of Ataxin-10. Ataxin-10 belongs to the family of armadillo repeat proteins and in solution it tends to form homotrimeric complexes, which associate via a tip-to-tip association in a horseshoe-shaped contact with the concave sides of the molecules facing each other. This domain may represent the homo-association site since that is located near the C-terminus of Ataxin-10. The protein does not contain a signal sequence for secretion or any subcellular compartment confirming its cytoplasmic localization, specifically to the olivocerebellar region. 99 -337507 pfam09762 KOG2701 Coiled-coil domain-containing protein (DUF2037). This entry represents the conserved N-terminal 200 residues of a family of proteins conserved from plants to vertebrates. In Drosophila it comes from the Fidipidine gene, and is of unknown function. 176 -313056 pfam09763 Sec3_C Exocyst complex component Sec3. This entry is the conserved middle and C-terminus of the Sec3 protein. Sec3 binds to the C-terminal cytoplasmic domain of GLYT1 (glycine transporter protein 1). Sec3 is the exocyst component that is closest to the plasma membrane docking site and it serves as a spatial landmark in the plasma membrane for incoming secretory vesicles. Sec3 is recruited to the sites of polarised membrane growth through its interaction with Rho1p, a small GTP-binding protein. 697 -313057 pfam09764 Nt_Gln_amidase N-terminal glutamine amidase. This protein is conserved from plants to humans. It represents a family of N terminal glutamine amidases. The enzyme removes the NH2 group from a Gln, at the N-terminal, rendering it a Glu. 173 -313058 pfam09765 WD-3 WD-repeat region. This entry is of a region of approximately 100 residues containing three WD repeats and six cysteine residues possibly as three cystine-bridges. These regions are contained within the Fancl protein in humans which is the putative E3 ubiquitin ligase subunit of the FA complex (Fanconi anaemia). Eight subunits of the Fanconi anaemia gene products form a multisubunit nuclear complex which is required for mono-ubiquitination of a downstream FA protein, FANCD2. The WD repeats are required for interaction with other subunits of the FA complex. 283 -337508 pfam09766 FimP Fms-interacting protein. This entry carries part of the crucial 144 N-terminal residues of the FmiP protein, which is essential for the binding of the protein to the cytoplasmic domain of activated Fms-molecules in M-CSF induced haematopoietic differentiation of macrophages. The C-terminus contains a putative nuclear localization sequence and a leucine zipper which suggest further, as yet unknown, nuclear functions. The level of FMIP expression might form a threshold that determines whether cells differentiate into macrophages or into granulocytes. 354 -313060 pfam09767 DUF2053 Predicted membrane protein (DUF2053). This entry is of the conserved N-terminal 150 residues of proteins conserved from plants to humans. The function is unknown although some annotation suggests it to be a transmembrane protein. 154 -337509 pfam09768 Peptidase_M76 Peptidase M76 family. This is a family of metalloproteases. Proteins in this family are also annotated as Ku70-binding proteins. 168 -337510 pfam09769 ApoO Apolipoprotein O. Members of this family promote cholesterol efflux from macrophage cells. They are present in various lipoprotein complexes, including HDL, LDL and VLDL. The apoprotein is secreted by a microsomal triglyceride transfer protein (MTTP)-dependent mechanism, probably as a VLDL-associated protein that is subsequently transferred to HDL. 130 -313063 pfam09770 PAT1 Topoisomerase II-associated protein PAT1. Members of this family are necessary for accurate chromosome transmission during cell division. 837 -313064 pfam09771 Tmemb_18A Transmembrane protein 188. The function of this family of transmembrane proteins has not, as yet, been determined. 118 -313065 pfam09772 Tmem26 Transmembrane protein 26. The function of this family of transmembrane proteins has not, as yet, been determined. 287 -313066 pfam09773 Meckelin Meckelin (Transmembrane protein 67). Members of this family are thought to be related to the ciliary basal body. Defects result in Meckel syndrome type 3, an autosomal recessive disorder characterized by a combination of renal cysts and variably associated features including developmental anomalies of the central nervous system (typically encephalocele), hepatic ductal dysplasia and cysts, and polydactyly. Joubert syndrome type 6 is also a manifestation of certain mutations; it is an autosomal recessive congenital malformation of the cerebellar vermis and brainstem with abnormalities of axonal decussation (crossing in the brain) affecting the corticospinal tract and superior cerebellar peduncles. Individuals with Joubert syndrome have motor and behavioral abnormalities, including an inability to walk due to severe clumsiness and 'mirror' movements, and cognitive and behavioural disturbances. 818 -337511 pfam09774 Cid2 Caffeine-induced death protein 2. Members of this family of proteins mediate the disruption of the DNA replication checkpoint (S-M checkpoint) mechanism caused by caffeine. 155 -313068 pfam09775 Keratin_assoc Keratinocyte-associated protein 2. Members of this family comprise various keratinocyte-associated proteins. Their exact function has not, as yet, been determined. 129 -313069 pfam09776 Mitoc_L55 Mitochondrial ribosomal protein L55. Members of this family are involved in mitochondrial biogenesis and G2/M phase cell cycle progression. They form a component of the mitochondrial ribosome large subunit (39S) which comprises a 16S rRNA and about 50 distinct proteins. 116 -313070 pfam09777 OSTMP1 Osteopetrosis-associated transmembrane protein 1 precursor. Members of this family of proteins are required for osteoclast and melanocyte maturation and function. Mutations give rise to autosomal recessive osteopetrosis; also called autosomal recessive Albers-Schonberg disease. 231 -337512 pfam09778 Guanylate_cyc_2 Guanylylate cyclase. Members of this family of proteins catalyze the conversion of guanosine triphosphate (GTP) to 3',5'-cyclic guanosine monophosphate (cGMP) and pyrophosphate. 212 -313072 pfam09779 Ima1_N Ima1 N-terminal domain. This domain occurs at the N-terminus of the Schizosaccharomyces pombe inner nuclear membrane protein, Ima1. Ima1 interacts with other inner nuclear membrane proteins. 130 -313073 pfam09781 NDUF_B5 NADH:ubiquinone oxidoreductase, NDUFB5/SGDH subunit. Members of this family mediate the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone, the reaction that occurs being: NADH + ubiquinone = NAD(+) + ubiquinol. 182 -286822 pfam09782 NDUF_B6 NADH:ubiquinone oxidoreductase, NDUFB6/B17 subunit. Members of this family mediate the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone, the reaction that occurs being: NADH + ubiquinone = NAD(+) + ubiquinol. 128 -313074 pfam09783 Vac_ImportDeg Vacuolar import and degradation protein. Members of this family are involved in the negative regulation of gluconeogenesis. They are required for both proteosome-dependent and vacuolar catabolite degradation of fructose-1,6-bisphosphatase (FBPase), where they probably regulate FBPase targeting from the FBPase-containing vesicles to the vacuole. 171 -337513 pfam09784 L31 Mitochondrial ribosomal protein L31. This is a family of mitochondrial ribosomal proteins. L31 is essential for mitochondrial function in yeast. 102 -337514 pfam09785 Prp31_C Prp31 C terminal domain. This is the C terminal domain of the pre-mRNA processing factor Prp31. Prp31 is required for U4/U6.U5 tri-snRNP formation. In humans this protein has been linked to autosomal dominant retinitis pigmentosa. 121 -313077 pfam09786 CytochromB561_N Cytochrome B561, N terminal. Members of this family are found in the N terminal region of cytochrome B561, as well as in various other putative uncharacterized proteins. 572 -313078 pfam09787 Golgin_A5 Golgin subfamily A member 5. Members of this family of proteins are involved in maintaining Golgi structure. They stimulate the formation of Golgi stacks and ribbons, and are involved in intra-Golgi retrograde transport. Two main interactions have been characterized: one with RAB1A that has been activated by GTP-binding and another with isoform CASP of CUTL1. 306 -313079 pfam09788 Tmemb_55A Transmembrane protein 55A. Members of this family catalyze the hydrolysis of the 4-position phosphate of phosphatidylinositol 4,5-bisphosphate, in the reaction: 1-phosphatidyl-myo-inositol 4,5-bisphosphate + H(2)O = 1-phosphatidyl-1D-myo-inositol 5-phosphate + phosphate. 245 -313080 pfam09789 DUF2353 Uncharacterized coiled-coil protein (DUF2353). Members of this family of uncharacterized proteins have no known function. 312 -313081 pfam09790 Hyccin Hyccin. Members of this family of proteins may have a role in the beta-catenin-Tcf/Lef signaling pathway, as well as in the process of myelination of the central and peripheral nervous system. Defects in Hyccin are the cause of hypomyelination with congenital cataracts. This disorder is characterized by congenital cataracts, progressive neurologic impairment, and diffuse myelin deficiency. Affected individuals experience progressive pyramidal and cerebellar dysfunction, muscle weakness and wasting prevailing in the lower limbs. 321 -337515 pfam09791 Oxidored-like Oxidoreductase-like protein, N-terminal. Members of this family are found in the N terminal region of various oxidoreductase like proteins. Their exact function is, as yet, unknown. 46 -337516 pfam09792 But2 Ubiquitin 3 binding protein But2 C-terminal domain. This family is of proteins conserved in yeasts. It binds to Uba3 and is involved in the NEDD8 signalling pathway. This family represents a presumed C-terminal domain. 141 -313084 pfam09793 AD Anticodon-binding domain. This domain of approximately 100 residues is conserved from plants to humans. It is frequently found in association with Lsm domain-containing proteins. It is an anticodon-binding domain of a prolyl-tRNA synthetase, whose PDB structure is available under the identifier 1h4q. 88 -313085 pfam09794 Avl9 Transport protein Avl9. Avl9 is a protein involved in exocytic transport from the Golgi. It has been speculated that Avl9 could play a role in deforming membranes for vesicle fission and/or in recruiting cargo. 376 -313086 pfam09795 Atg31 Autophagy-related protein 31. Autophagy is an intracellular degradation system that responds to nutrient starvation. Cis1/Atg31 has been shown to be required for autophagosome formation in Saccharomyces cerevisiae. It interacts with Atg17. 156 -313087 pfam09796 QCR10 Ubiquinol-cytochrome-c reductase complex subunit (QCR10). The QCR10 family of proteins are a component of the ubiquinol-cytochrome c reductase complex (also known as complex III or cytochrome b-c1 complex). This complex is located on the inner mitochondrial membrane and it couples electron transfer from ubiquinol to cytochrome. This subunit (QCR10) is required for stable association of the iron-sulfur protein with the complex. 63 -313088 pfam09797 NatB_MDM20 N-acetyltransferase B complex (NatB) non catalytic subunit. This is the non-catalytic subunit of the N-terminal acetyltransferase B complex (NatB). The NatB complex catalyzes the acetylation of the amino-terminal methionine residue of all proteins beginning with Met-Asp or Met-Glu and of some proteins beginning with Met-Asn or Met-Met. In Saccharomyces cerevisiae this subunit is called MDM20 and in Schizosaccharomyces pombe it is called Arm1. NatB acetylates the Tpm1 protein and regulates and tropomyocin-actin interactions. This subunit is required by the NatB complex for the N-terminal acetylation of Tpm1. 376 -313089 pfam09798 LCD1 DNA damage checkpoint protein. This is a family of proteins which regulate checkpoint kinases. In Schizosaccharomyces pombe this protein is called Rad26 and in Saccharomyces cerevisiae it is called LCD1. 541 -313090 pfam09799 Transmemb_17 Predicted membrane protein. This is a 100 amino acid region of a family of proteins conserved from nematodes to humans. It is predicted to be a transmembrane region but its function is not known. 104 -337517 pfam09801 SYS1 Integral membrane protein S linking to the trans Golgi network. Members of this family are integral membrane proteins involved in protein trafficking between the late Golgi and endosome. They may also serve as a receptor for ADP-ribosylation factor-related protein 1 (ARFRP1). Sys1p is a small integral membrane protein with four predicted transmembrane domains that localizes to the Trans Golgi network TGN in yeast and human cells. 144 -313092 pfam09802 Sec66 Preprotein translocase subunit Sec66. Members of this family of proteins are a component of the heterotetrameric Sec62/63 complex composed of SEC62, SEC63, SEC66 and SEC72. The Sec62/63 complex associates with the Sec61 complex to form the Sec complex. Sec 66 is involved in SRP-independent post-translational translocation across the endoplasmic reticulum and functions together with the Sec61 complex and KAR2 in a channel-forming translocon complex. Furthermore, Sec66 is also required for growth at elevated temperatures. 173 -337518 pfam09803 Pet100 Pet100. Pet100 is a chaperone required for the assembly of cytochrome c oxidase. The human Pet100 homolog (also known as C19orf79) has been shown to be located in the mitochondrial inner membrane and forms a ~300 kDa subcomplex with mitochondrial complex IV subunits. 63 -337519 pfam09804 DUF2347 Uncharacterized conserved protein (DUF2347). Members of this family of hypothetical proteins have no known function. 282 -313095 pfam09805 Nop25 Nucleolar protein 12 (25kDa). Members of this family of proteins are part of the yeast nuclear pore complex-associated pre-60S ribosomal subunit. The family functions as a highly conserved exonuclease that is required for the 5'-end maturation of 5.8S and 25S rRNAs, demonstrating that 5'-end processing also has a redundant pathway. Nop25 binds late pre-60S ribosomes, accompanying them from the nucleolus to the nuclear periphery; and there is evidence for both physical and functional links between late 60S subunit processing and export. 134 -313096 pfam09806 CDK2AP Cyclin-dependent kinase 2-associated protein. Members of this family of proteins are cell-growth suppressors, associating with and influencing the biological activities of important cell cycle regulators in the S phase including monomeric non-phosphorylated cyclin-dependent kinase 2 (CDK2) and DNA polymerase alpha/primase. An association between mutations in the gene coding for this protein and oral cancer has been described. 203 -313097 pfam09807 ELP6 Elongation complex protein 6. ELP6 is a subunit of the RNA polymerase II elongator complex. The Elongator complex promotes RNA-polymerase II transcript elongation through histone acetylation in the nucleus and tRNA modification in the cytoplasm. ELP5 and ELP6 play a major role in the migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator 252 -313098 pfam09808 SNAPc_SNAP43 Small nuclear RNA activating complex (SNAPc), subunit SNAP43. Members of this family are part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. They bind to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Furthermore, they also recruit TBP and BRF2 to the U6 snRNA TATA box. 191 -286847 pfam09809 MRP-L27 Mitochondrial ribosomal protein L27. Members of this family of proteins are components of the mitochondrial ribosome large subunit. They are also involved in apoptosis and cell cycle regulation. 97 -313099 pfam09810 Exo5 Exonuclease V - a 5' deoxyribonuclease. Exonuclease V is a monomeric 5' deoxyribonuclease that is localized in the nucleus. It degrades single-stranded, but not double-stranded, DNA from the 5'-end, and the products are dinucleotides, except the 3'-terminal tri- and tetranucleotides, which are not degraded. The initial hydrolytic cut of exonuclease V on the dephosphorylated substrate produces a mixture of dinucleoside monophosphates and trinucleoside diphosphates. The enzyme is processive in action. Exo5 is specific for single-stranded DNA and does not hydrolyze RNA. However, Exo5 has the capacity to slide across 5' double-stranded DNA or 5' RNA sequences and resume cutting two nucleotides downstream of the double-stranded-to-single-stranded junction or RNA-to-DNA junction, respectively. 357 -313100 pfam09811 Yae1_N Essential protein Yae1, N terminal. Members of this family are found in the N terminal region of the essential protein Yae1. Their exact function has not, as yet, been determined. The family DUF1715, pfam08215 has now been merged into this family. 39 -313101 pfam09812 MRP-L28 Mitochondrial ribosomal protein L28. Members of this family are components of the mitochondrial large ribosomal subunit. Mature mitochondrial ribosomes consist of a small (37S) and a large (54S) subunit. The 37S subunit contains at least 33 different proteins and 1 molecule of RNA (15S). The 54S subunit contains at least 45 different proteins and 1 molecule of RNA (21S). 157 -286851 pfam09813 Coiled-coil_56 Coiled-coil domain-containing protein 56. Members of this family of proteins have no known function. 101 -313102 pfam09814 HECT_2 HECT-like Ubiquitin-conjugating enzyme (E2)-binding. HECT_2 is a family of UbcH10-binding proteins. 302 -313103 pfam09815 XK-related XK-related protein. Members of this family comprise various XK-related proteins, that are involved in sodium-dependent transport of neutral amino acids or oligopeptides. These proteins are responsible for the Kx blood group system - defects results in McLeod syndrome, an X-linked multi-system disorder characterized by late onset abnormalities in the neuromuscular and hematopoietic systems. 329 -313104 pfam09816 EAF RNA polymerase II transcription elongation factor. Members of this family act as transcriptional transactivators of ELL and ELL2 elongation activities. Eaf proteins form a stable heterodimer complex with ELL proteins to facilitate the binding of RNA polymerase II to activate transcription elongation. The N-terminus of approx 120 residues is globular and highly conserved. 105 -313105 pfam09817 Zwilch RZZ complex, subunit zwilch. The protein Zwilch is an essential component of the mitotic checkpoint, which prevents cells from prematurely exiting mitosis. It is required for the assembly of the dynein-dynactin, Mad2 complexes and spindly/CG15415 onto kinetochores. 577 -313106 pfam09818 ABC_ATPase Predicted ATPase of the ABC class. Members of this family include various bacterial predicted ABC class ATPases. 445 -337520 pfam09819 ABC_cobalt ABC-type cobalt transport system, permease component. Members of this family of prokaryotic proteins include various hypothetical proteins as well as ABC-type cobalt transport systems. 121 -313108 pfam09820 AAA-ATPase_like Predicted AAA-ATPase. This family contains many hypothetical bacterial proteins. This family was previously the N-terminal part of the Pfam DUF1703 (pfam08011) family before it was split into two. This region is predicted to be an AAA-ATPase domain. 278 -337521 pfam09821 AAA_assoc_C C-terminal AAA-associated domain. This had been thought to be an ATPase domain of ABC-transporter proteins. However, only one member has any trans-membrane regions. It is associated with an upstream ATP-binding cassette family, pfam00005. 117 -313110 pfam09822 ABC_transp_aux ABC-type uncharacterized transport system. This domain is found in various eukaryotic and prokaryotic intra-flagellar transport proteins involved in gliding motility, as well as in several hypothetical proteins. 263 -286861 pfam09823 DUF2357 Domain of unknown function (DUF2357). This entry was previously the N terminal portion of DUF524 (pfam04411) before it was split into two. This domain has no known function. It is predicted to adopt an all beta secondary structure pattern followed by mainly alpha-helical structures. 251 -313111 pfam09824 ArsR ArsR transcriptional regulator. Members of this family of archaeal proteins are conserved transcriptional regulators belonging to the ArsR family. 159 -313112 pfam09825 BPL_N Biotin-protein ligase, N terminal. The function of this structural domain is unknown. It is found to the N-terminus of the biotin protein ligase catalytic domain. 367 -313113 pfam09826 Beta_propel Beta propeller domain. Members of this family comprise secreted bacterial proteins containing C-terminal beta-propeller domain distantly related to WD-40 repeats. Jpred secondary-structure prediction shows family to be a series of 4 short beta-strands, characteristic of beta-propeller families. 507 -337522 pfam09827 CRISPR_Cas2 CRISPR associated protein Cas2. Members of this family of bacterial proteins comprise various hypothetical proteins, as well as CRISPR (clustered regularly interspaced short palindromic repeats) associated proteins, conferring resistance to infection by certain bacteriophages. 72 -337523 pfam09828 Chrome_Resist Chromate resistance exported protein. Members of this family of bacterial proteins, are involved in the reduction of chromate accumulation and are essential for chromate resistance. 131 -337524 pfam09829 DUF2057 Uncharacterized protein conserved in bacteria (DUF2057). This domain, found in various prokaryotic proteins, has no known function. 190 -337525 pfam09830 ATP_transf ATP adenylyltransferase. Members of this family of proteins catabolise Ap4N nucleotides (where N is A,C,G or U). Additionally they catalise the conversion of adenosine-5-phosphosulfate (AMPs) plus Pi to ADP plus sulphate, the exchange of NDP and phosphate and the synthesis of Ap4A from AMPs plus ATP. 60 -337526 pfam09831 DUF2058 Uncharacterized protein conserved in bacteria (DUF2058). This domain, found in various prokaryotic proteins, has no known function. 175 -313119 pfam09832 DUF2059 Uncharacterized protein conserved in bacteria (DUF2059). This domain, found in various prokaryotic proteins, has no known function. 59 -313120 pfam09834 DUF2061 Predicted membrane protein (DUF2061). This domain, found in various prokaryotic proteins, has no known function. 51 -337527 pfam09835 DUF2062 Uncharacterized protein conserved in bacteria (DUF2062). This domain, found in various prokaryotic proteins, has no known function. 152 -337528 pfam09836 DUF2063 Putative DNA-binding domain. This family represents the N-terminal part of a Neisseria protein, UniProtKB:Q5F5I0, Structure 3dee. It runs from residues 31-117 as a helical bundle with 4 main helices. \From genomic context and the fold of the C-terminal part, it is suggested that this protein is involved in transcriptional regulation. 86 -313123 pfam09837 DUF2064 Uncharacterized protein conserved in bacteria (DUF2064). This family has structural similarity to proteins in the nucleotide-diphospho-sugar transferases superfamily. The similarity suggests that it is an enzyme with a sugar substrate. 119 -337529 pfam09838 DUF2065 Uncharacterized protein conserved in bacteria (DUF2065). This domain, found in various prokaryotic proteins, has no known function. 56 -337530 pfam09839 DUF2066 Uncharacterized protein conserved in bacteria (DUF2066). This domain, found in various prokaryotic proteins, has no known function. 228 -313126 pfam09840 DUF2067 Uncharacterized protein conserved in archaea (DUF2067). This domain, found in various archaeal proteins, has no known function. 186 -337531 pfam09842 DUF2069 Predicted membrane protein (DUF2069). This domain, found in various prokaryotes, has no known function. 101 -313128 pfam09843 DUF2070 Predicted membrane protein (DUF2070). This is a family of Archaeal 7-TM proteins. There are 6 closely assembled TM-regions at the N-terminus followed by a long intracellular, from residues 220-590, highly conserved region, of unknown function, terminating with one more TM-region. The short 25 residue section between TMs 5 and 6 might lie on the outer surface of the membrane and be acting as a receptor (from TMHMM). 559 -313129 pfam09844 DUF2071 Uncharacterized conserved protein (COG2071). This conserved protein (similar to YgjF), found in various prokaryotes, has no known function. 213 -313130 pfam09845 DUF2072 Zn-ribbon containing protein. This archaeal protein has no known function. 131 -313131 pfam09846 DUF2073 Uncharacterized protein conserved in archaea (DUF2073). This archaeal protein has no known function. 105 -286883 pfam09847 12TM_1 Membrane protein of 12 TMs. This family carries twelve transmembrane regions. It does not have any characteristic nucleotide-binding-domains of the GxSGSGKST type. so it may not be an ATP-binding cassette transporter. However, it may well be a transporter of some description. ABC transporters always have two nucleotide binding domains; this has two unusual conserved sequence-motifs: 'KDhKxhhR' and 'LxxLP'. 448 -313132 pfam09848 DUF2075 Uncharacterized conserved protein (DUF2075). This domain, found in various prokaryotic proteins (including putative ATP/GTP binding proteins), has no known function. 352 -337532 pfam09849 DUF2076 Uncharacterized protein conserved in bacteria (DUF2076). This domain, found in various hypothetical prokaryotic proteins, has no known function. The domain, however, is found in various periplasmic ligand-binding sensor proteins. 206 -337533 pfam09850 DotU Type VI secretion system protein DotU. DotU is a family of Gram-negative bacterial proteins that form part of the membrane-joining complex of the type VI secretion system. DotU binds tightly to IcmF and together they are tethered to the inner membrane at one end and the peptidoglycan layer at the other; they interact with Lip1 which then tethers the peptidoglycan layer to the outer membrane. 204 -337534 pfam09851 SHOCT Short C-terminal domain. 28 -313136 pfam09852 DUF2079 Predicted membrane protein (DUF2079). This domain, found in various hypothetical prokaryotic proteins, has no known function. 455 -313137 pfam09853 DUF2080 Putative transposon-encoded protein (DUF2080). This domain, found in various hypothetical archaeal proteins, has no known function. 50 -313138 pfam09855 zinc_ribbon_13 Nucleic-acid-binding protein containing Zn-ribbon domain (DUF2082). This domain, found in various hypothetical prokaryotic proteins, as well as some Zn-ribbon nucleic-acid-binding proteins has no known function. 63 -337535 pfam09856 DUF2083 Predicted transcriptional regulator (DUF2083). This domain is found in various prokaryotic transcriptional regulatory proteins belonging to the XRE family. Its exact function is, as yet, unknown. 157 -337536 pfam09857 YjhX_toxin Putative toxin of bacterial toxin-antitoxin pair. YjhX_toxin is a putative toxin of a bacterial toxin-antitoxin pair, which is neutralized by the proteins YjhQ in family pfam00583. 85 -313140 pfam09858 DUF2085 Predicted membrane protein (DUF2085). This domain, found in various hypothetical prokaryotic proteins, has no known function. 89 -337537 pfam09859 Oxygenase-NA Oxygenase, catalyzing oxidative methylation of damaged DNA. This family of bacterial sequences is predicted to catalyze oxidative de-methylation of damaged bases in DNA. 172 -337538 pfam09860 DUF2087 Uncharacterized protein conserved in bacteria (DUF2087). This domain, found in various hypothetical prokaryotic proteins and transcriptional activators, has no known function. Structural modelling suggests this domain may bind nucleic acids. 67 -313143 pfam09861 DUF2088 Domain of unknown function (DUF2088). This domain, found in various hypothetical prokaryotic proteins, has no known function. 204 -337539 pfam09862 DUF2089 Protein of unknown function (DUF2089). This domain, found in various hypothetical prokaryotic proteins, has no known function. This domain is a zinc-ribbon. 111 -313145 pfam09863 DUF2090 Uncharacterized protein conserved in bacteria (DUF2090). This domain, found in various prokaryotic carbohydrate kinases, has no known function. 310 -337540 pfam09864 MliC Membrane-bound lysozyme-inhibitor of c-type lysozyme. Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Various mechanisms have evolved by which bacteria can evade this bactericidal enzyme, one being the production of lysozyme inhibitors. MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Structural analyses show that the invariant loop of MliC plays a crucial role in the inhibition of the lysozyme by its insertion into the active site cleft of the lysozyme, where the loop forms hydrogen and ionic bonds with the catalytic residues. 68 -337541 pfam09865 DUF2092 Predicted periplasmic protein (DUF2092). This domain, found in various hypothetical prokaryotic proteins, has no known function. 209 -337542 pfam09866 DUF2093 Uncharacterized protein conserved in bacteria (DUF2093). This domain, found in various hypothetical prokaryotic proteins, has no known function. 41 -337543 pfam09867 DUF2094 Uncharacterized protein conserved in bacteria (DUF2094). This domain, found in various hypothetical prokaryotic proteins, has no known function. 135 -286903 pfam09868 DUF2095 Uncharacterized protein conserved in archaea (DUF2095). This domain, found in various hypothetical prokaryotic proteins, has no known function. 129 -313150 pfam09869 DUF2096 Uncharacterized protein conserved in archaea (DUF2096). This domain, found in various hypothetical prokaryotic proteins, has no known function. 168 -313151 pfam09870 DUF2097 Uncharacterized protein conserved in archaea (DUF2097). This domain, found in various hypothetical prokaryotic proteins, has no known function. 86 -313152 pfam09871 DUF2098 Uncharacterized protein conserved in archaea (DUF2098). This domain, found in various hypothetical prokaryotic proteins, has no known function. 94 -313153 pfam09872 DUF2099 Uncharacterized protein conserved in archaea (DUF2099). This domain, found in various hypothetical prokaryotic proteins, has no known function. 256 -313154 pfam09873 DUF2100 Uncharacterized protein conserved in archaea (DUF2100). This domain, found in various hypothetical archaeal proteins, has no known function. 210 -255617 pfam09874 DUF2101 Predicted membrane protein (DUF2101). This domain, found in various archaeal and bacterial proteins, has no known function. 206 -313155 pfam09875 DUF2102 Uncharacterized protein conserved in archaea (DUF2102). This domain, found in various hypothetical archaeal proteins, has no known function. 102 -313156 pfam09876 DUF2103 Predicted metal-binding protein (DUF2103). This domain, found in various putative metal binding prokaryotic proteins, has no known function. 98 -286911 pfam09877 DUF2104 Predicted membrane protein (DUF2104). This domain, found in various hypothetical archaeal proteins, has no known function. 99 -313157 pfam09878 DUF2105 Predicted membrane protein (DUF2105). This domain, found in various hypothetical archaeal proteins, has no known function. 200 -313158 pfam09879 DUF2106 Predicted membrane protein (DUF2106). This domain, found in various hypothetical archaeal proteins, has no known function. 151 -313159 pfam09880 DUF2107 Predicted membrane protein (DUF2107). This domain, found in various hypothetical archaeal proteins, has no known function. 73 -313160 pfam09881 DUF2108 Predicted membrane protein (DUF2108). This domain, found in various hypothetical archaeal proteins, has no known function. 70 -313161 pfam09882 DUF2109 Predicted membrane protein (DUF2109). This domain, found in various hypothetical archaeal proteins, has no known function. 76 -313162 pfam09883 DUF2110 Uncharacterized protein conserved in archaea (DUF2110). This domain, found in various hypothetical archaeal proteins, has no known function. 223 -313163 pfam09884 DUF2111 Uncharacterized protein conserved in archaea (DUF2111). This domain, found in various hypothetical archaeal proteins, has no known function. 83 -313164 pfam09885 DUF2112 Uncharacterized protein conserved in archaea (DUF2112). This domain, found in various hypothetical archaeal proteins, has no known function. 143 -313165 pfam09886 DUF2113 Uncharacterized protein conserved in archaea (DUF2113). This domain, found in various hypothetical archaeal proteins, has no known function. 185 -313166 pfam09887 DUF2114 Uncharacterized protein conserved in archaea (DUF2114). This domain, found in various hypothetical archaeal proteins, has no known function. 446 -313167 pfam09888 DUF2115 Uncharacterized protein conserved in archaea (DUF2115). This domain, found in various hypothetical archaeal proteins, has no known function. 163 -286923 pfam09889 DUF2116 Uncharacterized protein containing a Zn-ribbon (DUF2116). This domain, found in various hypothetical archaeal proteins, has no known function. Structural modelling suggests this domain may bind nucleic acids. 59 -313168 pfam09890 DUF2117 Uncharacterized protein conserved in archaea (DUF2117). This domain, found in various hypothetical archaeal proteins, has no known function. 213 -313169 pfam09891 DUF2118 Uncharacterized protein conserved in archaea (DUF2118). This domain, found in various hypothetical archaeal proteins, has no known function. 148 -313170 pfam09892 DUF2119 Uncharacterized protein conserved in archaea (DUF2119). This domain, found in various hypothetical archaeal proteins, has no known function. 186 -313171 pfam09893 DUF2120 Uncharacterized protein conserved in archaea (DUF2120). This domain, found in various hypothetical archaeal proteins, has no known function. 136 -313172 pfam09894 DUF2121 Uncharacterized protein conserved in archaea (DUF2121). This domain, found in various hypothetical archaeal proteins, has no known function. 192 -313173 pfam09895 DUF2122 RecB-family nuclease (DUF2122). This domain, found in various hypothetical archaeal proteins, has no known function. 105 -313174 pfam09897 DUF2124 Uncharacterized protein conserved in archaea (DUF2124). This domain, found in various hypothetical archaeal proteins, has no known function. 141 -337544 pfam09898 DUF2125 Uncharacterized protein conserved in bacteria (DUF2125). This domain, found in various hypothetical prokaryotic proteins, has no known function. 306 -337545 pfam09899 DUF2126 Putative amidoligase enzyme (DUF2126). Members of this family of bacterial domains are predominantly found in transglutaminase and transglutaminase-like proteins. Their exact function is, as yet, unknown, but they are likely to act as amidoligase enzymes Protein in this family are found in conserved gene neighborhoods encoding a glutamine amidotransferase-like thiol peptidase (in proteobacteria) or an Aig2 family cyclotransferase protein (in firmicutes). 819 -313177 pfam09900 DUF2127 Predicted membrane protein (DUF2127). This domain, found in various hypothetical prokaryotic and archaeal proteins, has no known function. 140 -337546 pfam09902 DUF2129 Uncharacterized protein conserved in bacteria (DUF2129). This domain, found in various hypothetical prokaryotic proteins, has no known function. Structural modelling suggests this domain may bind nucleic acids. 70 -337547 pfam09903 DUF2130 Uncharacterized protein conserved in bacteria (DUF2130). This domain, found in various hypothetical prokaryotic proteins, has no known function. 252 -337548 pfam09904 HTH_43 Winged helix-turn helix. This family, found in various hypothetical prokaryotic proteins, is a probable winged helix DNA-binding domain. 88 -337549 pfam09905 VF530 DNA-binding protein VF530. VF530 contains a unique four-helix motif that shows some similarity to the C-terminal double-stranded DNA (dsDNA) binding domain of RecA, as well as other nucleic acid binding domains. 63 -313182 pfam09906 DUF2135 Uncharacterized protein conserved in bacteria (DUF2135). This domain, found in various hypothetical prokaryotic proteins, has no known function. 51 -337550 pfam09907 HigB_toxin HigB_toxin, RelE-like toxic component of a toxin-antitoxin system. HigB_toxin is a family of RelE-like prokaryotic proteins that function as mRNA interferases. HigB cleaves translated mRNA only, and cleavage depended on translation of the target RNAs. HigB belongs to the RelE super-family of RNases. The toxin-antitoxin gene-pair is induced by environmental stress factors. 72 -313184 pfam09909 DUF2138 Uncharacterized protein conserved in bacteria (DUF2138). This domain, found in various hypothetical prokaryotic proteins, has no known function. 546 -313185 pfam09910 DUF2139 Uncharacterized protein conserved in archaea (DUF2139). This domain, found in various hypothetical archaeal proteins, has no known function. 340 -337551 pfam09911 DUF2140 Uncharacterized protein conserved in bacteria (DUF2140). This domain, found in various hypothetical prokaryotic proteins, has no known function. 186 -337552 pfam09912 DUF2141 Uncharacterized protein conserved in bacteria (DUF2141). This domain, found in various hypothetical prokaryotic proteins, has no known function. 112 -337553 pfam09913 DUF2142 Predicted membrane protein (DUF2142). This domain, found in various hypothetical prokaryotic proteins, has no known function. 390 -337554 pfam09916 DUF2145 Uncharacterized protein conserved in bacteria (DUF2145). This domain, found in various hypothetical prokaryotic proteins, has no known function. 200 -337555 pfam09917 DUF2147 Uncharacterized protein conserved in bacteria (DUF2147). This domain, found in various hypothetical prokaryotic proteins, has no known function. 111 -337556 pfam09918 DUF2148 Uncharacterized protein containing a ferredoxin domain (DUF2148). This domain, found in various hypothetical bacterial proteins containing a ferredoxin domain, has no known function. 65 -313192 pfam09919 DUF2149 Uncharacterized conserved protein (DUF2149). This domain, found in various hypothetical prokaryotic proteins, has no known function. 92 -313193 pfam09920 DUF2150 Uncharacterized protein conserved in archaea (DUF2150). This domain, found in various hypothetical archaeal proteins, has no known function. 188 -313194 pfam09921 DUF2153 Uncharacterized protein conserved in archaea (DUF2153). This domain, found in various hypothetical archaeal proteins, has no known function. 123 -337557 pfam09922 DUF2154 Cell wall-active antibiotics response 4TMS YvqF. 114 -337558 pfam09923 DUF2155 Uncharacterized protein conserved in bacteria (DUF2155). This domain, found in various hypothetical prokaryotic proteins, has no known function. 89 -313197 pfam09924 DUF2156 Uncharacterized conserved protein (DUF2156). This domain, found in various hypothetical prokaryotic proteins, has no known function. 296 -337559 pfam09925 DUF2157 Predicted membrane protein (DUF2157). This domain, found in various hypothetical prokaryotic proteins, has no known function. 140 -313199 pfam09926 DUF2158 Uncharacterized small protein (DUF2158). Members of this family of prokaryotic proteins have no known function. 52 -337560 pfam09928 DUF2160 Predicted small integral membrane protein (DUF2160). The members of this family of hypothetical prokaryotic proteins have no known function. It is thought that they are transmembrane proteins, but their function has not been inferred yet. 88 -313201 pfam09929 DUF2161 Putative PD-(D/E)XK phosphodiesterase (DUF2161). This family of proteins is functionally uncharacterized. This family of proteins is found in prokaryotes. Advanced homology-detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses s have established this family to be a member of the PD-(D/E)XK superfamily. 111 -313202 pfam09930 DUF2162 Predicted transporter (DUF2162). Members of this family of bacterial proteins are thought to be membrane transporters, but their exact function has not, as yet, been elucidated. 223 -337561 pfam09931 DUF2163 Uncharacterized conserved protein (DUF2163). This domain, found in various hypothetical prokaryotic proteins, has no known function. 163 -337562 pfam09932 DUF2164 Uncharacterized conserved protein (DUF2164). This domain, found in various hypothetical prokaryotic proteins, has no known function. 72 -337563 pfam09933 DUF2165 Predicted small integral membrane protein (DUF2165). This domain, found in various hypothetical prokaryotic proteins, has no known function. 157 -337564 pfam09935 DUF2167 Protein of unknown function (DUF2167). This domain, found in various hypothetical membrane-anchored prokaryotic proteins, has no known function. 235 -337565 pfam09936 Methyltrn_RNA_4 SAM-dependent RNA methyltransferase. This family has a Rossmanoid fold, with a deep trefoil knot in its C-terminal region. It has structural similarity to RNA methyltransferases, and is likely to function as an S-adenosyl-L-methionine (SAM)-dependent RNA 2'-O methyltransferase. 181 -337566 pfam09937 DUF2169 Uncharacterized protein conserved in bacteria (DUF2169). This domain, found in various hypothetical prokaryotic proteins, has no known function. 294 -337567 pfam09938 DUF2170 Uncharacterized protein conserved in bacteria (DUF2170). This domain, found in various hypothetical prokaryotic proteins, has no known function. 137 -337568 pfam09939 DUF2171 Uncharacterized protein conserved in bacteria (DUF2171). This domain, found in various hypothetical prokaryotic proteins, has no known function. 63 -313211 pfam09940 DUF2172 Domain of unknown function (DUF2172). This domain, found in various hypothetical prokaryotic proteins, has no known function. An aminopeptidase domain is conserved within the family, but its relevance has not been established yet. Rebuilding from Structure 3kt9 shows this is an inserted (nested domain within the amino-peptidase). The function of this small domain is not known. 91 -313212 pfam09941 DUF2173 Uncharacterized conserved protein (DUF2173). This domain, found in various hypothetical prokaryotic proteins, has no known function. 104 -313213 pfam09943 DUF2175 Uncharacterized protein conserved in archaea (DUF2175). This domain, found in various hypothetical archaeal proteins, has no known function. 98 -337569 pfam09945 DUF2177 Predicted membrane protein (DUF2177). This domain, found in various hypothetical bacterial proteins, has no known function. 124 -313215 pfam09946 DUF2178 Predicted membrane protein (DUF2178). This domain, found in various hypothetical archaeal proteins, has no known function. 104 -286972 pfam09947 DUF2180 Uncharacterized protein conserved in archaea (DUF2180). This domain, found in various hypothetical archaeal proteins, has no known function. A few of the family members contain a zinc finger domain. 68 -337570 pfam09948 DUF2182 Predicted metal-binding integral membrane protein (DUF2182). This domain, found in various hypothetical bacterial membrane proteins having predicted metal-binding properties, has no known function. 188 -337571 pfam09949 DUF2183 Uncharacterized conserved protein (DUF2183). This domain, found in various hypothetical bacterial proteins, has no known function. 97 -337572 pfam09950 DUF2184 Uncharacterized protein conserved in bacteria (DUF2184). This domain, found in various hypothetical bacterial proteins, has no known function. 250 -313219 pfam09951 DUF2185 Protein of unknown function (DUF2185). This domain, found in various hypothetical bacterial proteins, has no known function. 81 -286977 pfam09952 AbiEi_2 Transcriptional regulator, AbiEi antitoxin, Type IV TA system. AbiEi_2 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 142 -313220 pfam09953 DUF2187 Uncharacterized protein conserved in bacteria (DUF2187). This domain, found in various hypothetical bacterial proteins, has no known function. 59 -313221 pfam09954 DUF2188 Uncharacterized protein conserved in bacteria (DUF2188). This domain, found in various hypothetical bacterial proteins, has no known function. 62 -337573 pfam09955 DUF2189 Predicted integral membrane protein (DUF2189). Members of this family are found in various hypothetical prokaryotic proteins, as well as putative cytochrome c oxidases. Their exact function has not, as yet, been established. 124 -313223 pfam09956 DUF2190 Uncharacterized conserved protein (DUF2190). This domain, found in various hypothetical prokaryotic proteins, as well as in some putative RecA/RadA recombinases, has no known function. 100 -313224 pfam09957 VapB_antitoxin Bacterial antitoxin of type II TA system, VapB. VapB is the antitoxin of a bacterial toxin-antitoxin gene pair. The cognate toxin is VapC, pfam05016. The family contains several related antitoxins from Cyanobacteria and Actinobacterial families. Antitoxins of this class carry an N-terminal ribbon-helix-helix domain, RHH, that is highly conserved across all type II bacterial antitoxins, which dimerizes with the RHH domain of a second VapB molecule. A hinge section follows the RHH, with an additional pair of flexible alpha helices at the C-terminus. This C-terminus is the Toxin-binding region of the dimer, and so is specific to the cognate toxin, whereas the RHH domain has the specific function of lying across the RNA-binding groove of the toxin dimer and inactivating the active-site - a more general function of all antitoxins. 43 -313225 pfam09958 DUF2192 Uncharacterized protein conserved in archaea (DUF2192). This domain, found in various hypothetical archaeal proteins, has no known function. 229 -313226 pfam09959 DUF2193 Uncharacterized protein conserved in archaea (DUF2193). This domain, found in various hypothetical archaeal proteins, has no known function. 498 -313227 pfam09960 DUF2194 Uncharacterized protein conserved in bacteria (DUF2194). This domain, found in various hypothetical bacterial proteins, has no known function. 552 -286986 pfam09961 DUF2195 Uncharacterized protein conserved in bacteria (DUF2195). This domain, found in various hypothetical bacterial proteins, has no known function. 117 -337574 pfam09962 DUF2196 Uncharacterized conserved protein (DUF2196). This domain, found in various hypothetical bacterial proteins, has no known function. 59 -313229 pfam09963 DUF2197 Uncharacterized protein conserved in bacteria (DUF2197). This domain, found in various hypothetical bacterial proteins, has no known function. 56 -313230 pfam09964 DUF2198 Uncharacterized protein conserved in bacteria (DUF2198). This domain, found in various hypothetical bacterial proteins, has no known function. 72 -313231 pfam09965 DUF2199 Uncharacterized protein conserved in bacteria (DUF2199). This domain, found in various hypothetical bacterial proteins, has no known function. 145 -337575 pfam09966 DUF2200 Uncharacterized protein conserved in bacteria (DUF2200). This domain, found in various hypothetical bacterial proteins, has no known function. 110 -286992 pfam09967 DUF2201 VWA-like domain (DUF2201). This domain, found in various hypothetical bacterial proteins, has no known function. However, it is clearly related to the VWA domain. 123 -313233 pfam09968 DUF2202 Uncharacterized protein domain (DUF2202). This domain, found in various hypothetical archaeal proteins, has no known function. 162 -313234 pfam09969 DUF2203 Uncharacterized conserved protein (DUF2203). This domain, found in various hypothetical bacterial proteins, has no known function. 120 -313235 pfam09970 DUF2204 Nucleotidyl transferase of unknown function (DUF2204). This domain, found in various hypothetical archaeal proteins, has no known function. However, this family was identified as belonging to the nucleotidyltransferase superfamily. 181 -313236 pfam09971 DUF2206 Predicted membrane protein (DUF2206). This domain, found in various hypothetical archaeal proteins, has no known function. 369 -337576 pfam09972 DUF2207 Predicted membrane protein (DUF2207). This domain, found in various hypothetical bacterial proteins, has no known function. 447 -313238 pfam09973 DUF2208 Predicted membrane protein (DUF2208). This domain, found in various hypothetical archaeal proteins, has no known function. 227 -313239 pfam09974 DUF2209 Uncharacterized protein conserved in archaea (DUF2209). This domain, found in various hypothetical archaeal proteins, has no known function. 121 -337577 pfam09976 TPR_21 Tetratricopeptide repeat-like domain. This family resembles a single unit of a TPR repeat. 195 -313241 pfam09977 Tad_C Putative Tad-like Flp pilus-assembly. This domain, found in various hypothetical prokaryotic proteins, is likely to be involved in Flp lius biogenesis. 93 -313242 pfam09979 DUF2213 Uncharacterized protein conserved in bacteria (DUF2213). Members of this family of bacterial proteins comprise various hypothetical and phage-related proteins. The exact function of these proteins has not, as yet, been determined. 168 -337578 pfam09980 DUF2214 Predicted membrane protein (DUF2214). This domain, found in various hypothetical bacterial proteins, has no known function. 144 -337579 pfam09981 DUF2218 Uncharacterized protein conserved in bacteria (DUF2218). This domain, found in various hypothetical bacterial proteins, has no known function. 84 -337580 pfam09982 DUF2219 Uncharacterized protein conserved in bacteria (DUF2219). This domain, found in various hypothetical bacterial proteins, has no known function. 294 -313246 pfam09983 DUF2220 Uncharacterized protein conserved in bacteria C-term(DUF2220). This domain, found in various hypothetical bacterial proteins, has no known function. The family represents just the C-terminus. 180 -337581 pfam09984 DUF2222 Uncharacterized signal transduction histidine kinase domain (DUF2222). Members of this family of domains are found in various BarA-like signal transduction histidine kinases, which are involved in the regulation of carbon metabolism via the csrA/csrB regulatory system. The role of this domain has not, as yet, been established. 147 -313248 pfam09985 Glucodextran_C C-terminal binding-module, SLH-like, of glucodextranase. Glucodextran_C is the C-terminal domain of glucodextranase-like proteins found in various prokaryotic membrane-anchored proteins. It shows homology to the carbohydrate-binding unit of some glycosidases. 228 -313249 pfam09986 DUF2225 Uncharacterized protein conserved in bacteria (DUF2225). This domain, found in various hypothetical bacterial proteins, has no known function. 212 -255677 pfam09987 DUF2226 Uncharacterized protein conserved in archaea (DUF2226). This domain, found in various hypothetical archaeal proteins, has no known function. 252 -313250 pfam09988 DUF2227 Uncharacterized metal-binding protein (DUF2227). Members of this family of hypothetical bacterial proteins possess metal binding properties; however, their exact function has not, as yet, been determined. 164 -337582 pfam09989 DUF2229 CoA enzyme activase uncharacterized domain (DUF2229). Members of this family include various bacterial hypothetical proteins, as well as CoA enzyme activases. The exact function of this domain has not, as yet, been defined. 210 -313252 pfam09990 DUF2231 Predicted membrane protein (DUF2231). This domain, found in various hypothetical bacterial proteins, has no known function. 100 -313253 pfam09991 DUF2232 Predicted membrane protein (DUF2232). This family of bacterial proteins are multi-pass membrane proteins with up to 10 (2 x 4/5) transmembrane regions. The exact function of this potential pore molecule is not known, but in many instances it is associated with ABC-transporter-like domains, implying that it is part of a secretion system that uses energy. 290 -337583 pfam09992 NAGPA Phosphodiester glycosidase. This is a family conserved from bacteria to humans. The structure of a member from Bacteroides has been crystallized and modelled onto the luminal region of the human member of the family, the transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. There is some conservation of potentially functional residues, implying that in the bacterial members this family acts in some way as a phosphodiester glycosidase. The human protein is also present, so the eukaryotic members are likely to be catalyzing the second step in the formation of the mannose 6-phosphate targeting signal on lysosomal enzyme oligosaccharides. 169 -337584 pfam09994 DUF2235 Uncharacterized alpha/beta hydrolase domain (DUF2235). This domain, found in various hypothetical bacterial proteins, has no known function. 283 -337585 pfam09995 DUF2236 Uncharacterized protein conserved in bacteria (DUF2236). This domain, found in various hypothetical bacterial proteins, has no known function. This family contains a highly conserved arginine and histidine that may be active site residues for an as yet unknown catalytic activity. 229 -337586 pfam09996 DUF2237 Uncharacterized protein conserved in bacteria (DUF2237). This domain, found in various hypothetical bacterial proteins, has no known function. 107 -337587 pfam09997 DUF2238 Predicted membrane protein (DUF2238). This domain, found in various hypothetical bacterial proteins, has no known function. 140 -337588 pfam09998 DUF2239 Uncharacterized protein conserved in bacteria (DUF2239). This domain, found in various hypothetical bacterial proteins, has no known function. 182 -313260 pfam09999 DUF2240 Uncharacterized protein conserved in archaea (DUF2240). This domain, found in various hypothetical archaeal proteins, has no known function. 144 -337589 pfam10000 ACT_3 ACT domain. This domain, found in various hypothetical bacterial proteins, has no known function. However, its structure is similar to the ACT domain which suggests that it binds to amino acids and regulates other protein activity. This family was formerly known as DUF2241. 63 -337590 pfam10001 DUF2242 Uncharacterized protein conserved in bacteria (DUF2242). This domain is found in various hypothetical bacterial proteins, and has no known function. 121 -313262 pfam10002 DUF2243 Predicted membrane protein (DUF2243). This domain, found in various hypothetical bacterial proteins, has no known function. 139 -337591 pfam10003 DUF2244 Integral membrane protein (DUF2244). This domain, found in various bacterial hypothetical and putative membrane proteins, has no known function. 136 -313264 pfam10004 DUF2247 Uncharacterized protein conserved in bacteria (DUF2247). This domain, found in various hypothetical bacterial proteins, has no known function. 158 -313265 pfam10005 zinc-ribbon_6 zinc-ribbon domain. This family appears to be a true zinc-ribbon, with two sets of putative zinc-binding domains in tandem. 93 -313266 pfam10006 DUF2249 Uncharacterized conserved protein (DUF2249). Members of this family of hypothetical bacterial proteins have no known function. 70 -287028 pfam10007 DUF2250 Uncharacterized protein conserved in archaea (DUF2250). Members of this family of hypothetical archaeal proteins have no known function. 93 -337592 pfam10008 DUF2251 Uncharacterized protein conserved in bacteria (DUF2251). Members of this family of hypothetical bacterial proteins have no known function. 94 -313268 pfam10009 DUF2252 Uncharacterized protein conserved in bacteria (DUF2252). This domain, found in various hypothetical bacterial proteins, has no known function. 392 -337593 pfam10011 DUF2254 Predicted membrane protein (DUF2254). Members of this family of bacterial proteins comprises various hypothetical and putative membrane proteins. Their exact function, has not, as yet, been defined. 358 -313270 pfam10012 DUF2255 Uncharacterized protein conserved in bacteria (DUF2255). Members of this family of hypothetical bacterial proteins have no known function. 114 -337594 pfam10013 DUF2256 Uncharacterized protein conserved in bacteria (DUF2256). Members of this family of hypothetical bacterial proteins have no known function. 40 -337595 pfam10014 2OG-Fe_Oxy_2 2OG-Fe dioxygenase. This family contains 2-oxoglutarate (2OG) and Fe-dependent dioxygenases. It includes L-isoleucine dioxygenase (IDO). 191 -313273 pfam10015 DUF2258 Uncharacterized protein conserved in archaea (DUF2258). Members of this family of hypothetical bacterial archaeal have no known function. Structural modelling suggests this domain may bind nucleic acids. 78 -287036 pfam10016 DUF2259 Predicted secreted protein (DUF2259). Members of this family of hypothetical bacterial proteins have no known function. 199 -337596 pfam10017 Methyltransf_33 Histidine-specific methyltransferase, SAM-dependent. The mycobacterial members of this family are expressed from part of the ergothioneine biosynthetic gene cluster. EGTD is the histidine methyltransferase that transfers three methyl groups to the alpha-amino moiety of histidine, in the first stage of the production of this histidine betaine derivative that carries a thiol group attached to the C2 atom of an imidazole ring. 299 -287038 pfam10018 Med4 Vitamin-D-receptor interacting Mediator subunit 4. Members of this family function as part of the Mediator (Med) complex, which links DNA-bound transcriptional regulators and the general transcription machinery, particularly the RNA polymerase II enzyme. They play a role in basal transcription by mediating activation or repression according to the specific complement of transcriptional regulators bound to the promoter. 184 -313275 pfam10020 DUF2262 Uncharacterized protein conserved in bacteria (DUF2262). This domain, found in various hypothetical bacterial proteins, has no known function. 142 -313276 pfam10021 DUF2263 Uncharacterized protein conserved in bacteria (DUF2263). This domain, found in various hypothetical bacterial and eukaryotic proteins, has no known function. 147 -313277 pfam10022 DUF2264 Uncharacterized protein conserved in bacteria (DUF2264). Members of this family of hypothetical bacterial proteins have no known function. 351 -337597 pfam10023 Aminopep Putative aminopeptidase. This family of bacterial proteins has a conserved HEXXH motif, suggesting that members are putative peptidases of zincin fold. 322 -313279 pfam10025 DUF2267 Uncharacterized conserved protein (DUF2267). This domain, found in various hypothetical bacterial proteins, has no known function. 120 -337598 pfam10026 DUF2268 Predicted Zn-dependent protease (DUF2268). This domain, found in various hypothetical bacterial proteins, as well as predicted zinc dependent proteases, has no known function. 195 -313281 pfam10027 DUF2269 Predicted integral membrane protein (DUF2269). Members of this family of bacterial hypothetical integral membrane proteins have no known function. 150 -337599 pfam10028 DUF2270 Predicted integral membrane protein (DUF2270). This domain, found in various hypothetical bacterial proteins, has no known function. 179 -313283 pfam10029 DUF2271 Predicted periplasmic protein (DUF2271). This domain, found in various hypothetical bacterial proteins and misannotated lysozyme proteins, it has no known function. 126 -313284 pfam10030 DUF2272 Uncharacterized protein conserved in bacteria (DUF2272). Members of this family of hypothetical bacterial proteins have no known function. However, given its similarity to the CHAP domain it seems likely that this is an enzyme involved in cleaving peptidoglycan. 191 -337600 pfam10031 DUF2273 Small integral membrane protein (DUF2273). Members of this family of hypothetical bacterial proteins have no known function. 45 -313286 pfam10032 Pho88 Phosphate transport (Pho88). Members of this family of proteins are involved in regulating inorganic phosphate transport, as well as telomere length regulation and maintenance. 185 -337601 pfam10033 ATG13 Autophagy-related protein 13. Members of this family of phosphoproteins are involved in cytoplasm to vacuole transport (Cvt), and more specifically in Cvt vesicle formation. They are probably involved in the switching machinery regulating the conversion between the Cvt pathway and autophagy. Finally, ATG13 is also required for glycogen storage. 231 -337602 pfam10034 Dpy19 Q-cell neuroblast polarisation. Dyp-19, formerly known as DUF2211, is a transmembrane domain family that is required to orient the neuroblast cells, QR and QL accurately on the anterior-posterior axis: QL and QR are born in the same anterior-posterior position, but polarise and migrate left-right asymmetrically, QL migrating towards the posterior and QR migrating towards the anterior. It is also required, with unc-40, to express mab-5 correctly in the Q cell descendants. The Dpy-19 protein derives from the C. elegans DUMPY mutant. 644 -337603 pfam10035 DUF2179 Uncharacterized protein conserved in bacteria (DUF2179). This domain, found in various hypothetical bacterial proteins, has no known function. 55 -337604 pfam10036 RLL Putative carnitine deficiency-associated protein. This family of proteins conserved from nematodes to humans is of approximately 250 amino acids. It is purported to be carnitine deficiency-associated protein but this could not be confirmed. It carries a characteristic RLL sequence-motif. The function is unknown. 247 -313291 pfam10037 MRP-S27 Mitochondrial 28S ribosomal protein S27. Members of this family of small ribosomal proteins possess one of three conserved blocks of sequence found in proteins that stimulate the dissociation of guanine nucleotides from G-proteins, leaving open the possibility that MRP-S27 might be a functional partner of GTP-binding ribosomal proteins. 384 -313292 pfam10038 DUF2274 Protein of unknown function (DUF2274). Members of this family of hypothetical bacterial proteins have no known function. 68 -287057 pfam10039 DUF2275 Predicted integral membrane protein (DUF2275). This domain, found in various hypothetical bacterial proteins and in the RNA polymerase sigma factor, has no known function. 201 -337605 pfam10040 CRISPR_Cas6 CRISPR-associated endoribonuclease Cas6. Cas6 is a member of the RAMP (repeat-associated mysterious protein) superfamily. It is among the most widely distributed Cas proteins and is found in both bacteria and archaea. Cas6 functions in the generation of CRISPR-derived guide RNAs for invader defense in prokaryotes. 66 -337606 pfam10041 DUF2277 Uncharacterized conserved protein (DUF2277). Members of this family of hypothetical bacterial proteins have no known function. 74 -337607 pfam10042 DUF2278 Uncharacterized conserved protein (DUF2278). Members of this family of hypothetical bacterial proteins have no known function. 205 -313296 pfam10043 DUF2279 Predicted periplasmic lipoprotein (DUF2279). This domain, found in various hypothetical bacterial proteins, has no known function. 83 -313297 pfam10044 LIN52 Retinal tissue protein. LIN52 is a family of proteins of approximately 112 amino acids in length which is conserved from nematodes to humans. The proposed tertiary structure is of almost entirely alpha helix interrupted only by loops located at proline residues. Three sites in the protein sequence reveal two types of possible post-translation modification. A serine residue, at position 41, is a candidate for protein kinase C phosphorylation. Glycine residues at position 69 and 91 are probable sites for acetylation by covalent amide linkage of myristate via N-myristoyl transferase. LIN52 is differentially expressed in the trout retina between parr and smolt developmental stages (smoltification). It is likely to be a house-keeping protein. LIN52 forms a complex (LINC) required for transcriptional activation of G2/M genes. The LINC core complex consists of at least five subunits including the chromatin-associated LIN-9 and RbAp48 proteins. LINC associates with a large number of E2F-regulated promoters in quiescent cells. Family members are required for spermatogenesis by repressing testis-specific gene expression. 92 -337608 pfam10045 DUF2280 Uncharacterized conserved protein (DUF2280). Members of this family of hypothetical bacterial proteins have no known function. 103 -313299 pfam10046 BLOC1_2 Biogenesis of lysosome-related organelles complex-1 subunit 2. Members of this family of proteins play a role in cellular proliferation, as well as in the biogenesis of specialized organelles of the endosomal-lysosomal system. 92 -337609 pfam10047 DUF2281 Protein of unknown function (DUF2281). Members of this family of hypothetical bacterial proteins have no known function. 66 -313301 pfam10048 DUF2282 Predicted integral membrane protein (DUF2282). Members of this family of hypothetical bacterial proteins and putative signal peptide proteins have no known function. 52 -337610 pfam10049 DUF2283 Protein of unknown function (DUF2283). Members of this family of hypothetical bacterial proteins have no known function. 48 -313303 pfam10050 DUF2284 Predicted metal-binding protein (DUF2284). Members of this family of metal-binding hypothetical bacterial proteins have no known function. 161 -313304 pfam10051 DUF2286 Uncharacterized protein conserved in archaea (DUF2286). Members of this family of hypothetical archaeal proteins have no known function. 134 -337611 pfam10052 DUF2288 Protein of unknown function (DUF2288). Members of this family of hypothetical bacterial proteins have no known function. 84 -313306 pfam10053 DUF2290 Uncharacterized conserved protein (DUF2290). Members of this family of hypothetical bacterial proteins have no known function. 200 -337612 pfam10054 DUF2291 Predicted periplasmic lipoprotein (DUF2291). Members of this family of hypothetical bacterial proteins have no known function. 198 -313308 pfam10055 DUF2292 Uncharacterized small protein (DUF2292). Members of this family of hypothetical bacterial proteins have no known function. 37 -337613 pfam10056 DUF2293 Uncharacterized conserved protein (DUF2293). This domain, found in various hypothetical bacterial proteins, has no known function. 85 -313310 pfam10057 DUF2294 Uncharacterized conserved protein (DUF2294). Members of this family of hypothetical bacterial proteins have no known function. 111 -313311 pfam10058 zinc_ribbon_10 Predicted integral membrane zinc-ribbon metal-binding protein. This domain, found in various hypothetical bacterial and eukaryotic metal-binding proteins is a probably zinc-ribbon. 54 -313312 pfam10060 DUF2298 Uncharacterized membrane protein (DUF2298). This domain, found in various hypothetical bacterial proteins, has no known function. 486 -313313 pfam10061 DUF2299 Uncharacterized conserved protein (DUF2299). Members of this family of hypothetical bacterial proteins have no known function. 137 -313314 pfam10062 DUF2300 Predicted secreted protein (DUF2300). This domain, found in various bacterial hypothetical and putative signal peptide proteins, has no known function. 127 -313315 pfam10063 DUF2301 Uncharacterized integral membrane protein (DUF2301). This domain, found in various hypothetical bacterial proteins, has no known function. 133 -313316 pfam10065 DUF2303 Uncharacterized conserved protein (DUF2303). Members of this family of hypothetical bacterial proteins have no known function. 269 -337614 pfam10066 DUF2304 Uncharacterized conserved protein (DUF2304). Members of this family of hypothetical archaeal proteins have no known function. 106 -313318 pfam10067 DUF2306 Predicted membrane protein (DUF2306). Members of this family of hypothetical bacterial proteins have no known function. 147 -313319 pfam10069 DICT Sensory domain in DIguanylate Cyclases and Two-component system. DICT is a sensory domain found associated with GGDEF, EAL, HD-GYP, STAS, and two component systems (histidine-kinase type). It assumes an alpha+beta fold with a 4-stranded beta-sheet and might have a role in light response (Natural history of sensor domains in bacterial signaling systems by Aravind L, LM Iyer, Anantharaman V, from 'Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition.' Caister Academic Press. 2010) - see (http://de.scribd.com/doc/28576661/Bacterial-Signaling-Chapter) 123 -337615 pfam10070 DUF2309 Uncharacterized protein conserved in bacteria (DUF2309). Members of this family of hypothetical bacterial proteins have no known function. 745 -313321 pfam10071 DUF2310 Zn-ribbon-containing, possibly nucleic-acid-binding protein (DUF2310). Members of this family of proteobacterial zinc ribbon proteins are thought to bind to nucleic acids, however their exact function has not as yet been defined. 255 -337616 pfam10073 DUF2312 Uncharacterized protein conserved in bacteria (DUF2312). Members of this family of hypothetical bacterial proteins have no known function. Structural modelling suggests this domain may bind nucleic acids. 70 -313323 pfam10074 DUF2285 Uncharacterized conserved protein (DUF2285). This domain, found in various hypothetical bacterial proteins, has no known function. 102 -313324 pfam10075 CSN8_PSD8_EIF3K CSN8/PSMD8/EIF3K family. This domain is conserved from plants to humans. It is a signature protein motif found in components of CSN (COP9 signalosome) where it functions as a structural scaffold for subunit-subunit interactions within the complex and is a key regulator of photomorphogenic development. It is found in Eukaryotic translation initiation factor 3 subunit K, a component of the eukaryotic translation initiation factor 3 (eIF-3) complex required for the initiation of protein synthesis. It is also found in 26S proteasome non-ATPase regulatory subunit 8 (PSMD8), a regulatory subunit of the 26S proteasome. 137 -313325 pfam10076 DUF2313 Uncharacterized protein conserved in bacteria (DUF2313). Members of this family of proteins comprise various hypothetical and putative bacteriophage tail proteins. 150 -313326 pfam10077 DUF2314 Uncharacterized protein conserved in bacteria (DUF2314). This domain is found in various bacterial hypothetical proteins, as well as putative ankyrin repeat proteins. The exact function of the domains comprising this family has not, as yet, been determined. 136 -313327 pfam10078 DUF2316 Uncharacterized protein conserved in bacteria (DUF2316). Members of this family of hypothetical bacterial proteins have no known function. 89 -313328 pfam10079 BshC Bacillithiol biosynthesis BshC. Members of this protein family include BshC, which is an enzyme required for bacillithiol biosynthesis and described as a cysteine-adding enzyme. 537 -337617 pfam10080 DUF2318 Predicted membrane protein (DUF2318). Members of this family of hypothetical bacterial proteins have no known function. 97 -337618 pfam10081 Abhydrolase_9 Alpha/beta-hydrolase family. This is a family of alpha/beta hydrolases which may function as lipases. This domain is the catalytic domain and includes the catalytic triad and the GXSXG sequence motif which is a characteristic of these enzymes. 282 -313331 pfam10082 BBP2_2 Putative beta-barrel porin 2. This domain is a putative beta-barrel porin type 2. 378 -287097 pfam10083 DUF2321 Uncharacterized protein conserved in bacteria (DUF2321). Members of this family of hypothetical bacterial proteins have no known function. 155 -313332 pfam10084 DUF2322 Uncharacterized protein conserved in bacteria (DUF2322). Members of this family of hypothetical bacterial proteins have no known function. 99 -337619 pfam10086 DUF2324 Putative membrane peptidase family (DUF2324). This domain, found in various hypothetical bacterial proteins, has no known function. This family appears to be related to the prenyl protease 2 family pfam02517, suggesting this family may be peptidases. 224 -337620 pfam10087 DUF2325 Uncharacterized protein conserved in bacteria (DUF2325). Members of this family of hypothetical bacterial proteins have no known function. 94 -337621 pfam10088 DUF2326 Uncharacterized protein conserved in bacteria (DUF2326). This domain, found in various hypothetical bacterial proteins, has no known function. 136 -337622 pfam10090 HPTransfase Histidine phosphotransferase C-terminal domain. HPTransfase is a family of essential histidine phosphotransferases. It controls the activity of the master bacterial cell-cycle regulator CtrA through phosphorylation. It behaves as a homodimer by adopting the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal [alpha]/[beta] domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The C-terminal domain adopts an atypical Bergerat ATP-binding fold. 123 -313337 pfam10091 Glycoamylase Putative glucoamylase. The structure of UniProt:Q5LIB7 has an alpha/alpha toroid fold and is similar structurally to a number of glucoamylases. Most of these structural homologs are glucoamylases, involved in breaking down complex sugars (e.g. starch). The biologically relevant state is likely to be monomeric. The putative active site is located at the centre of the toroid with a well defined large cavity. 215 -313338 pfam10092 DUF2330 Uncharacterized protein conserved in bacteria (DUF2330). Members of this family of hypothetical bacterial proteins have no known function. 306 -337623 pfam10093 DUF2331 Uncharacterized protein conserved in bacteria (DUF2331). Members of this family of hypothetical bacterial proteins have no known function. 372 -313340 pfam10094 DUF2332 Uncharacterized protein conserved in bacteria (DUF2332). Members of this family of hypothetical bacterial proteins have no known function. 334 -313341 pfam10095 DUF2333 Uncharacterized protein conserved in bacteria (DUF2333). Members of this family of hypothetical bacterial proteins have no known function. 326 -313342 pfam10096 DUF2334 Uncharacterized protein conserved in bacteria (DUF2334). This domain, found in various hypothetical bacterial proteins, has no known function. 208 -337624 pfam10097 DUF2335 Predicted membrane protein (DUF2335). Members of this family of hypothetical bacterial proteins have no known function. 50 -337625 pfam10098 DUF2336 Uncharacterized protein conserved in bacteria (DUF2336). Members of this family of hypothetical bacterial proteins have no known function. 261 -337626 pfam10099 RskA Anti-sigma-K factor rskA. This domain, formerly known as DUF2337, is the anti-sigma-K factor, RskA. In Mycobacterium tuberculosis the protein positively regulates expression of the antigenic proteins MPB70 and MPB83. 183 -313346 pfam10100 DUF2338 Uncharacterized protein conserved in bacteria (DUF2338). Members of this family of hypothetical bacterial proteins have no known function. 424 -337627 pfam10101 DUF2339 Predicted membrane protein (DUF2339). This domain, found in various hypothetical bacterial proteins, has no known function. 626 -313348 pfam10102 DUF2341 Domain of unknown function (DUF2341). Members of this family are found in various bacterial proteins, including MotA/TolQ/ExbB proton channels and other transport proteins. The exact function of this set of domains has not, as yet, been determined. 81 -337628 pfam10103 Zincin_2 Zincin-like metallopeptidase. This family of proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. The structure of this family has similarity to Peptidase_M1 (pfam01433, Structure 3CMN). 348 -337629 pfam10104 Brr6_like_C_C Di-sulfide bridge nucleocytoplasmic transport domain. Brr6_like_C_C is the highly conserved C-terminal region of a group of proteins found in fungi. It carries four highly conserved cysteine residues. It is suggested that members of the family interact with each other via di-sulfide bridges to form a complex which is involved in nucleocytoplasmic transport. Brr6 in yeast is an essential integral membrane protein of the NE-ER, wit two predicted transmembrane domains, and is a dosage suppressor of Apq12, pfam12716. 133 -337630 pfam10105 DUF2344 Uncharacterized protein conserved in bacteria (DUF2344). This domain, found in various hypothetical bacterial proteins and Radical Sam domain proteins, has no known function. This domain is distantly related to tRNA pseudouridine synthases, suggesting this family may carry out a function related to RNA modification. But this family appears to lack the catalytic aspartate found in pseudouridine synthases. 184 -337631 pfam10106 DUF2345 Uncharacterized protein conserved in bacteria (DUF2345). Members of this family are found in various bacterial hypothetical proteins, as well as Rhs element Vgr proteins. 151 -313353 pfam10107 Endonuc_Holl Endonuclease related to archaeal Holliday junction resolvase. This domain is found in various predicted bacterial endonucleases which are distantly related to archaeal Holliday junction resolvases. 159 -287120 pfam10108 DNA_pol_B_exo2 Predicted 3'-5' exonuclease related to the exonuclease domain of PolB. This domain is found in various prokaryotic 3'-5' exonucleases and hypothetical proteins. 212 -337632 pfam10109 Phage_TAC_7 Phage tail assembly chaperone proteins, E, or 41 or 14. This is family of various Myoviridae bacteriophage tail assembly chaperone, or TAC, proteins. 79 -337633 pfam10110 GPDPase_memb Membrane domain of glycerophosphoryl diester phosphodiesterase. Members of this family comprise the membrane domain of the prokaryotic enzyme glycerophosphoryl diester phosphodiesterase. 320 -313356 pfam10111 Glyco_tranf_2_2 Glycosyltransferase like family 2. Members of this family of prokaryotic proteins include putative glucosyltransferase, which are involved in bacterial capsule biosynthesis. 276 -313357 pfam10112 Halogen_Hydrol 5-bromo-4-chloroindolyl phosphate hydrolysis protein. Members of this family of prokaryotic proteins mediate the hydrolysis of 5-bromo-4-chloroindolyl phosphate bonds. 186 -313358 pfam10113 Fibrillarin_2 Fibrillarin-like archaeal protein. Members of this family of proteins include archaeal fibrillarin homologs. 500 -337634 pfam10114 PocR Sensory domain found in PocR. PocR, a ligand binding domain, has a novel variant of the PAS-like Fold. Evidence suggests that it binds small hydrocarbon derivatives such as 1,3-propanediol. In (Natural history of sensor domains in bacterial signaling systems by Aravind L, LM Iyer, Anantharaman V, from 'Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition.' Caister Academic Press. 2010) - see (http://de.scribd.com/doc/28576661/Bacterial-Signaling-Chapter) 162 -337635 pfam10115 HlyU Transcriptional activator HlyU. This domain, found in various hypothetical prokaryotic proteins, has no known function. One of the sequences in this family corresponds to the transcriptional activator HlyU, indicating a possible similar role in other members. 91 -337636 pfam10116 Host_attach Protein required for attachment to host cells. Members of this family of bacterial proteins are required for the attachment of the bacterium to host cells. 136 -313362 pfam10117 McrBC McrBC 5-methylcytosine restriction system component. Members of this family of bacterial proteins modify the specificity of mcrB restriction by expanding the range of modified sequences restricted. 319 -337637 pfam10118 Metal_hydrol Predicted metal-dependent hydrolase. Members of this family of proteins comprise various bacterial transition metal-dependent hydrolases. 244 -337638 pfam10119 MethyTransf_Reg Predicted methyltransferase regulatory domain. Members of this family of domains are found in various prokaryotic methyltransferases, where they regulate the activity of the methyltransferase domain. 83 -313365 pfam10120 ThiP_synth Thiamine-phosphate synthase. This family is thiamine-phosphate synthase, and it belongs to the SCOP phosphomethylpyrimidine kinase C-terminal domain-like family. Vitamin B1 (thiamine pyrophosphate) is involved in several microbial metabolic functions. Thiamine biosynthesis is accomplished by joining two intermediate molecules that are synthesized separately, HMP-PP and HET-P. In the archaeon Natrialba magadii, ThiE and ThiN, are known to join HMP-PP ( hydroxymethylpyrimidine pyrophosphate) and HET-P (hydroxyethylthiazole phosphate) to generate thiamine phosphate. Whereas ThiE in Natrialba magadii is a mono-functional protein, ThiN exists as a C-terminal domain in a ThiDN fusion protein - examples of all three forms, from various prokaryotes, are found in this family. 162 -287133 pfam10122 Mu-like_Com Mu-like prophage protein Com. Members of this family of proteins comprise the translational regulator of mom. 52 -313366 pfam10123 Mu-like_Pro Mu-like prophage I protein. Members of this family of proteins comprise various viral Mu-like prophage I proteins. 323 -313367 pfam10124 Mu-like_gpT Mu-like prophage major head subunit gpT. Members of this family of proteins comprise various caudoviral prophage proteins, including the Mu-like prophage major head subunit gpT. 289 -313368 pfam10125 NADHdeh_related NADH dehydrogenase I, subunit N related protein. This family comprises a set of NADH dehydrogenase I, subunit N related proteins found in archaea. Their exact function, has not, as yet, been determined. 221 -313369 pfam10126 Nit_Regul_Hom Uncharacterized protein, homolog of nitrogen regulatory protein PII. This domain, found in various hypothetical archaeal proteins, has no known function. It is distantly similar to the nitrogen regulatory protein PII. 107 -313370 pfam10127 Nuc-transf Predicted nucleotidyltransferase. Members of this family of bacterial proteins catalyze the transfer of nucleotide residues from nucleoside diphosphates or triphosphates into dimer or polymer forms. 245 -313371 pfam10128 OpcA_G6PD_assem Glucose-6-phosphate dehydrogenase subunit. Members of this family are found in various prokaryotic OpcA and glucose-6-phosphate dehydrogenase proteins. The exact function of the domain is, as yet, unknown. 262 -313372 pfam10129 OpgC_C OpgC protein. This domain, found in various hypothetical and OpgC prokaryotic proteins. It is likely to act as an acyltransferase enzyme. 358 -287141 pfam10130 PIN_2 PIN domain. Members of this family of bacterial domains are predicted to be RNases (from similarities to 5'-exonucleases). 133 -287142 pfam10131 PTPS_related 6-pyruvoyl-tetrahydropterin synthase related domain; membrane protein. This domain is found in various bacterial hypothetical membrane proteins, as well as in tetratricopeptide TPR_2 repeat protein. The exact function of the domain has not, as yet, been established. 621 -313373 pfam10133 CooT-like CooT family nickel-binding protein. CooT is one of three nickel-insertion accessory proteins for CO dehydrogenase. Its homologs may function as accessory proteins of nickel-dependent enzymes. 61 -313374 pfam10134 RPA Replication initiator protein A. Members of this family of bacterial proteins are single-stranded DNA binding proteins that are involved in DNA replication, repair and recombination. 229 -337639 pfam10135 Rod-binding Rod binding protein. Members of this family are involved in the assembly of the prokaryotic flagellar rod. 50 -337640 pfam10136 SpecificRecomb Site-specific recombinase. Members of this family of bacterial proteins are found in various putative site-specific recombinase transmembrane proteins. 641 -337641 pfam10137 TIR-like Predicted nucleotide-binding protein containing TIR-like domain. Members of this family of bacterial nucleotide-binding proteins contain a TIR-like domain. Their exact function has not, as yet, been defined. 118 -337642 pfam10138 vWA-TerF-like vWA found in TerF C-terminus. vWA domain fused to TerD domain typified by the TerF protein. Some times found as solos. 200 -313379 pfam10139 Virul_Fac Putative bacterial virulence factor. Members of this family of prokaryotic proteins include various putative virulence factor effector proteins. Their exact function is, as yet, unknown. 869 -337643 pfam10140 YukC WXG100 protein secretion system (Wss), protein YukC. Members of this family of proteins include predicted membrane proteins homologous to YukC in B. subtilis. The YukC protein family would participate to the formation of a translocon required for the secretion of WXG100 proteins (pfam06013) in monoderm bacteria, the WXG100 protein secretion system (Wss). This family includes EssB in Staphylococcus aureus. 357 -313381 pfam10141 ssDNA-exonuc_C Single-strand DNA-specific exonuclease, C terminal domain. Members of this set of prokaryotic domains are found in a set of single-strand DNA-specific exonucleases, including RecJ. Their exact function has not, as yet, been determined. 202 -337644 pfam10142 PhoPQ_related PhoPQ-activated pathogenicity-related protein. Members of this family of bacterial proteins are involved in the virulence of some pathogenic proteobacteria. 364 -337645 pfam10143 PhosphMutase 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. Members of this family are found in various bacterial 2,3-bisphosphoglycerate-independent phosphoglycerate mutase enzymes, which catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in the reaction: [2-phospho-D-glycerate + 2,3-diphosphoglycerate = 3-phospho-D-glycerate + 2,3-diphosphoglycerate]. 168 -337646 pfam10144 SMP_2 Bacterial virulence factor haemolysin. Members of this family of bacterial proteins are membrane proteins that effect the expression of haemolysin under anaerobic conditions. 159 -337647 pfam10145 PhageMin_Tail Phage-related minor tail protein. Members of this family are found in putative phage tail tape measure proteins. 200 -337648 pfam10146 zf-C4H2 Zinc finger-containing protein. This is a family of proteins which appears to have a highly conserved zinc finger domain at the C terminal end, described as -C-X2-CH-X3-H-X5-C-X2-C-. The structure is predicted to contain a coiled coil. Members are annotated as being tumor-associated antigen HCA127 in humans but this could not confirmed. 200 -313387 pfam10147 CR6_interact Growth arrest and DNA-damage-inducible proteins-interacting protein 1. Members of this family of proteins act as negative regulators of G1 to S cell cycle phase progression by inhibiting cyclin-dependent kinases. Inhibitory effects are additive with GADD45 proteins but occur also in the absence of GADD45 proteins. Furthermore, they act as a repressor of the orphan nuclear receptor NR4A1 by inhibiting AB domain-mediated transcriptional activity. 204 -287158 pfam10148 SCHIP-1 Schwannomin-interacting protein 1. Members of this family are coiled coil protein involved in linking membrane proteins to the cytoskeleton. 228 -313388 pfam10149 TM231 Transmembrane protein 231. This is a family of transmembrane proteins, given the number 231, of unknown function. It is conserved in eukaryotes. 300 -337649 pfam10150 RNase_E_G Ribonuclease E/G family. Ribonuclease E and Ribonuclease G are related enzymes that cleave a wide variety of RNAs. 267 -313390 pfam10151 TMEM214 TMEM214, C-terminal, caspase 4 activator. This is the N-terminal domain of transmembrane family 214, from eukaryotes. The family is localized on the endoplasmic reticulum where it recruits procaspase 4 to the ER and subsequently allows this to be cleaved to caspase 4 so leading to apoptosis. 659 -337650 pfam10152 CCDC53 Subunit CCDC53 of WASH complex. CCDC53 is a component of the WASH complex, which plays a key role in the fission of tubules that serve as transport intermediates during endosome sorting. 148 -337651 pfam10153 Efg1 rRNA-processing protein Efg1. Efg1 is involved in rRNA processing. 112 -313393 pfam10154 DUF2362 Uncharacterized conserved protein (DUF2362). This is a family of proteins conserved from nematodes to humans. The function is not known. 501 -337652 pfam10155 DUF2363 Uncharacterized conserved protein (DUF2363). This is a region of 120 amino acids of a family of proteins conserved from plants to humans. The function is not known. 125 -337653 pfam10156 Med17 Subunit 17 of Mediator complex. This Mediator complex subunit was formerly known as Srb4 in yeasts or Trap80 in Drosophila and human. The Med17 subunit is located within the head domain and is essential for cell viability to the extent that a mutant strain of cerevisiae lacking it shows all RNA polymerase II-dependent transcription ceasing at non-permissive temperatures. 441 -313396 pfam10157 BORCS6 BLOC-1-related complex sub-unit 6. This is a family of conserved proteins found from nematodes to humans. Family members include BORCS6 (BLOC-1-related complex sub-unit 6) also known as Lyspersin (lysosome-dispersing protein) or C17orf59. It constitutes sub-unit 6 of the BORC complex (BLOC-one-related complex). BORC is a multisubunit complex that regulates the positioning of lysosomes at the cell periphery, and consequently affects cell migration. BORC associates with the lysosomal membrane, where it functions to recruit the small GTPase Arl8. This initiates a series of interactions that promote the microtubule-guided transport of lysosomes toward the cell periphery. 148 -287167 pfam10158 LOH1CR12 tumor suppressor protein. This is a region of 130 amino acids that is the most conserved region of hypothetical proteins involved in loss of heterozygosity and thus tumor suppression. The exact function of family members is not known. This region is also found in subunit 5 of the BLOC-1-related complex, which is also found in the BORC complex. BLOC-1 is important for the biogenesis of lysosome-related organelles, and BORC is important for the positioning of the lysosome in the cytoplasm. The BORC complex associates with the lysosomal membrane where it recruits the small GTPase Arl8, which leads in turn to the kinesin-dependent movement of lysosomes toward the plus ends of microtubules in the peripheral cytoplasm. 131 -337654 pfam10159 MMtag Kinase phosphorylation protein. This is a glycine-rich domain that is the most highly conserved region of a family of proteins that in vertebrates are associated with tumors in multiple myelomas. The region may contain phosphorylation sites for several protein kinases, as well as N-myristoylation sites and nuclear localization signals, so it might act as a signal molecule in the nucleus. 79 -313398 pfam10160 Tmemb_40 Predicted membrane protein. This is a region of 280 amino acids from a group of proteins conserved from plants to humans. It is predicted to be a membrane protein but its function is otherwise unknown. 254 -313399 pfam10161 DDDD Putative mitochondrial precursor protein. This is a family of small conserved proteins found from nematodes to humans. The C-terminal region is rich in asparagine. Members are putatively assigned to be mitochondrial precursor proteins but this could not be confirmed. 76 -313400 pfam10162 G8 G8 domain. This domain is found in disease proteins PKHD1 and KIAA1199 and is named G8 after its 8 conserved glycines. It is predicted to contain 10 beta strands and an alpha helix. 124 -337655 pfam10163 EnY2 Transcription factor e(y)2. EnY2 is a small transcription factor which is combined in a complex with the TAFII40 protein. The protein is conserved from paramecium to humans. 81 -313402 pfam10164 DUF2367 Uncharacterized conserved protein (DUF2367). This is a highly conserved family of proteins which contains three pairs of cysteine residues within a length of 42 amino acids and is rich in proline residues towards the N-terminus. The function is unknown. Several members are putatively assigned as brain protein i3 but this was not validated. 104 -337656 pfam10165 Ric8 Guanine nucleotide exchange factor synembryn. Ric8 is involved in the EGL-30 neurotransmitter signalling pathway. It is a guanine nucleotide exchange factor that regulates neurotransmitter secretion. 429 -337657 pfam10166 DUF2368 Uncharacterized conserved protein (DUF2368). This family is conserved from nematodes to humans. The function is not known. 134 -337658 pfam10167 BORCS8 BLOC-1-related complex sub-unit 8. This is the N-terminal 80 residues of a family of proteins conserved from plants to humans. It contains a characteristic NEP sequence motif. Family members include BORCS8 (BLOC-1-related complex sub-unit 8) also known as MEF2BNB. It constitutes sub-unit 8 of the BORC complex (BLOC-one-related complex). BORC is a multisubunit complex that regulates the positioning of lysosomes at the cell periphery, and consequently affects cell migration. BORC associates with the lysosomal membrane, where it functions to recruit the small GTPase Arl8. This initiates a series of interactions that promote the microtubule-guided transport of lysosomes toward the cell periphery. 107 -313406 pfam10168 Nup88 Nuclear pore component. Nup88 can be divided into two structural domains; the N-terminal two-thirds of the protein has no obvious structural motifs but is the region for binding to Nup98, one of the components of the nuclear pore. the C-terminal end is a predicted coiled-coil domain. Nup88 is overexpressed in tumor cells. 700 -313407 pfam10169 Laps Learning-associated protein. This is a family of 121-amino acid secretory proteins. Laps functions in the regulation of neuronal cell adhesion and/or movement and synapse attachment. Laps binds to the ApC/EBP (Aplysia CCAAT/enhancer binding protein) promoter and activates the transcription of ApC/EBP mRNA. 124 -313408 pfam10170 C6_DPF Cysteine-rich domain. This is the N-terminal approximately 100 amino acids of a family of proteins found from nematodes to humans. It contains between six and eight highly conserved cysteine residues and a characteristic DPF sequence motif. One member is putatively named as receptor for egg jelly protein but this could not confirmed. 94 -313409 pfam10171 Tim29 Translocase of the Inner Mitochondrial membrane 29. This is a family of proteins conserved from nematodes to humans. The function is not known. However, family members such as the import inner membrane translocase sub-unit Tim29 (C19orf52) found in human, is shown to be required for the stability of the TIM22 complex. TIM22 complex imports and inserts multi-pass trans-membrane proteins into the mitochondrial inner membrane by formation of a twin-pore translocase with components in the outer and inner membranes. TIM29 is integrated into the inner member with the C-terminus exposed to the inter-membrane space and able to contact the translocase of the outer membrane. It is required for complex stability and for the addition of the TIMM22 protein to the complex. 169 -313410 pfam10172 DDA1 Det1 complexing ubiquitin ligase. DDA1 (De-etiolated 1, Damaged DNA binding protein 1 associated 1) protein binds strongly with DDB1 and Det1 forming a DDD complex which is part of the ubiquitin conjugation system. 66 -313411 pfam10173 Mit_KHE1 Mitochondrial K+-H+ exchange-related. The members of this family function as mitochondrial potassium-hydrogen exchange transporters. The family is part of a large mitochondrial KHE protein complex. 193 -313412 pfam10174 Cast RIM-binding protein of the cytomatrix active zone. This is a family of proteins that form part of the CAZ (cytomatrix at the active zone) complex which is involved in determining the site of synaptic vesicle fusion. The C-terminus is a PDZ-binding motif that binds directly to RIM (a small G protein Rab-3A effector). The family also contains four coiled-coil domains. 763 -313413 pfam10175 MPP6 M-phase phosphoprotein 6. This is a family of M-phase phosphoprotein 6s which is necessary for generation of the 3' end of the 5.8S rRNA precursor. It preferentially binds to poly(C) and poly(U). 131 -313414 pfam10176 DUF2370 Protein of unknown function (DUF2370). This family is conserved from fungi to humans. The human member is annotated as a Golgi-associated protein-Nedd4 WW domain-binding protein but this could not be confirmed. 212 -313415 pfam10177 DUF2371 Uncharacterized conserved protein (DUF2371). This is a family of proteins conserved from nematodes to humans. The function is not known. 141 -337659 pfam10178 PAC3 Proteasome assembly chaperone 3. PAC3 is a family of eukaryotic proteasome assembly chaperone 3 proteins conserved from fungi to plants to humans. PAC3 plays a crucial part in the assembly of the 20S core proteasome unit, in conjunction with PAC4. 84 -337660 pfam10179 DUF2369 Uncharacterized conserved protein (DUF2369). This is a proline-rich region of a group of proteins found from plants to fungi. The function is not known. 95 -337661 pfam10180 DUF2373 Uncharacterized conserved protein (DUF2373). This is the C-terminal conserved region of a family of proteins found from fungi to humans. The function is not known. 62 -337662 pfam10181 PIG-H GPI-GlcNAc transferase complex, PIG-H component. PIG-H is a family of conserved proteins that complexes with three other proteins to form the GPI-GnT (glycosylphosphatidylinositol anchor biosynthesis transferase) complex. It appears to be a peripheral membrane protein facing the cytoplasm involved in the first step in GPI anchor formation. 67 -313420 pfam10182 Flo11 Flo11 domain. This presumed domain is found at the N-terminus of the S. cerevisiae Flo11 protein. Flo11 is required for diploid pseudohyphal formation and haploid invasive growth. It belongs to a family of proteins involved in invasive growth, cell-cell adhesion, and mating, many of which can substitute for each other under abnormal conditions. 151 -313421 pfam10183 ESSS ESSS subunit of NADH:ubiquinone oxidoreductase (complex I). This subunit is part of the mitochondrial NADH:ubiquinone oxidoreductase (complex I). It carries mitochondrial import sequences. 105 -313422 pfam10184 DUF2358 Uncharacterized conserved protein (DUF2358). DUF2358 is a family of conserved proteins found from plants to humans. The function is unknown. 113 -313423 pfam10185 Mesd Chaperone for wingless signalling and trafficking of LDL receptor. Mesd is a family of highly conserved proteins found from nematodes to humans. The final C-terminal residues, KEDL, are the endoplasmic reticulum retention sequence as it is an ER protein specifically required for the intracellular trafficking of members of the low-density lipoprotein family of receptors (LDLRs). The N- and C-terminal sequences are predicted to adopt a random coil conformation, with the exception of an isolated predicted helix within the N-terminal region, The central folded domain flanked by natively unstructured regions is the necessary structure for facilitating maturation of LRP6 (Low-Density Lipoprotein Receptor-Related Protein 6 Maturation). 155 -337663 pfam10186 Atg14 Vacuolar sorting 38 and autophagy-related subunit 14. The Atg14 or Apg14 proteins are hydrophilic proteins with a predicted molecular mass of 40.5 kDa, and have a coiled-coil motif at the N-terminus region. Yeast cells with mutant Atg14 are defective not only in autophagy but also in sorting of carboxypeptidase Y (CPY), a vacuolar-soluble hydrolase, to the vacuole. Subcellular fractionation indicate that Apg14p and Apg6p are peripherally associated with a membrane structure(s). Apg14p was co-immunoprecipitated with Apg6p, suggesting that they form a stable protein complex. These results imply that Apg6/Vps30p has two distinct functions: in the autophagic process and in the vacuolar protein sorting pathway. Apg14p may be a component specifically required for the function of Apg6/Vps30p through the autophagic pathway. There are 17 auto-phagosomal component proteins which are categorized into six functional units, one of which is the AS-PI3K complex (Vps30/Atg6 and Atg14). The AS-PI3K complex and the Atg2-Atg18 complex are essential for nucleation, and the specific function of the AS-PI3K apparently is to produce phosphatidylinositol 3-phosphate (PtdIns(3)P) at the pre-autophagosomal structure (PAS). The localization of this complex at the PAS is controlled by Atg14. Autophagy mediates the cellular response to nutrient deprivation, protein aggregation, and pathogen invasion in humans, and malfunction of autophagy has been implicated in multiple human diseases including cancer. This effect seems to be mediated through direct interaction of the human Atg14 with Beclin 1 in the human phosphatidylinositol 3-kinase class III complex. 346 -313425 pfam10187 Nefa_Nip30_N N-terminal domain of NEFA-interacting nuclear protein NIP30. This is a the N-terminal 100 amino acids of a family of proteins conserved from plants to humans. The full-length protein has putatively been called NEFA-interacting nuclear protein NIP30, however no reference could be found to confirm this. 101 -313426 pfam10188 Oscp1 Organic solute transport protein 1. Oscp1 is a family of proteins conserved from plants to humans. It is called organic solute transport protein or oxido-red- nitro domain-containing protein 1, however no reference could be find to confirm the function of the protein. 174 -313427 pfam10189 Ints3 Integrator complex subunit 3. The Integrator complex is involved in small nuclear RNA (snRNA) U1 and U2 transcription, and in their 3'-box- dependent processing. This complex associates with the C- terminal domain of RNA polymerase II largest subunit and is recruited to the U1 and U2 snRNAs genes. This entry represents subunit 3 of this complex. 225 -313428 pfam10190 Tmemb_170 Putative transmembrane protein 170. Tmem170 is a family of putative transmembrane proteins conserved from fungi to nematodes to humans. The protein is only of approximately 130 amino acids in length. The function is unknown. 106 -337664 pfam10191 COG7 Golgi complex component 7 (COG7). COG7 is a component of the conserved oligomeric Golgi complex which is required for normal Golgi morphology and localization. Mutation in COG7 causes a congenital disorder of glycosylation. 736 -313429 pfam10192 GpcrRhopsn4 Rhodopsin-like GPCR transmembrane domain. This region of 270 amino acids is the seven transmembrane alpha-helical domains included within five GPCRRHODOPSN4 motifs of a G-protein-coupled-receptor (GPCR) protein, conserved from nematodes to humans. GPCRs are integral membrane receptors whose intracellular actions are mediated by signalling pathways involving G proteins and downstream secondary messengers. 257 -313430 pfam10193 Telomere_reg-2 Telomere length regulation protein. This family is the central conserved 110 amino acid region of a group of proteins called telomere-length regulation or clock abnormal protein-2 which are conserved from plants to humans. The full-length protein regulates telomere length and contributes to silencing of sub-telomeric regions. In vitro the protein binds to telomeric DNA repeats. 110 -313431 pfam10195 Phospho_p8 DNA-binding nuclear phosphoprotein p8. P8 is a short 80-82 amino acid protein that is conserved from nematodes to humans. It carries at least one protein kinase C domain suggesting a possible role in signal transduction and it is thought to be a phosphoprotein, but the sites of phosphorylation and the kinases involved remain to be determined. 58 -337665 pfam10197 Cir_N N-terminal domain of CBF1 interacting co-repressor CIR. This is a 45 residue conserved region at the N-terminal end of a family of proteins referred to as CIRs (CBF1-interacting co-repressors). CBF1 (centromere-binding factor 1) acts as a transcription factor that causes repression by binding specifically to GTGGGAA motifs in responsive promoters, and it requires CIR as a co-repressor. CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex. 37 -337666 pfam10198 Ada3 Histone acetyltransferases subunit 3. Ada3 is a family of proteins conserved from yeasts to humans. It is an essential component of the Ada transcriptional coactivator (alteration/deficiency in activation) complex. Ada3 plays a key role in linking histone acetyltransferase-containing complexes to p53 (tumor suppressor protein) thereby regulating p53 acetylation, stability and transcriptional activation following DNA damage. 122 -313434 pfam10199 Adaptin_binding Alpha and gamma adaptin binding protein p34. p34 is a protein involved in membrane trafficking. It is known to interact with both alpha and gamma adaptin. It has been speculated that p34 may play a chaperone role such as preventing the soluble adaptors from co-assembling with soluble clathrin, or helping to remove the adaptors from the coated vesicle. Another possible function is in aiding the recruitment of soluble adaptors onto the membrane. 93 -287207 pfam10200 Ndufs5 NADH:ubiquinone oxidoreductase, NDUFS5-15kDa. This is a family of short, approximately 105 amino acid residue, proteins which form part of NADH:ubiquinone oxidoreductase complex I. Complex I is the first multisubunit inner membrane protein complex of the mitochondrial electron transport chain and it transfers two electrons from NADH to ubiquinone. The protein carries four highly conserved cysteine residues but these do not appear to be in a configuration which would favour metal binding so the exact function of the protein is uncertain. 96 -313435 pfam10203 Pet191_N Cytochrome c oxidase assembly protein PET191. Pet191_N is the conserved N-terminal of a family of conserved proteins found from nematodes to humans. It carries six highly conserved cysteine residues. Pet191 is required for the assembly of active cytochrome c oxidase but does not form part of the final assembled complex. 67 -337667 pfam10204 DuoxA Dual oxidase maturation factor. DuoxA (Dual oxidase maturation factor) is the essential protein necessary for the final release of DUOX2 (an NADPH:O2 oxidoreductase flavoprotein) from the endoplasmic reticulum. Dual oxidases (DUOX1 and DUOX2) constitute the catalytic core of the hydrogen peroxide generator, which generates H2O2 at the apical membrane of thyroid follicular cells, essential for iodination of thyroglobulin by thyroid peroxidases. DuoxA carries five membrane-integral regions including a reverse signal-anchor with external N-terminus (type III) and two N-glycosylation sites. It is conserved from nematodes to humans. 273 -313437 pfam10205 KLRAQ Predicted coiled-coil domain-containing protein. This is the N-terminal 100 amino acid domain of a family of proteins conserved from nematodes to humans. It carries a characteristic KLRAQ sequence-motif. The function is not known. 99 -313438 pfam10206 WRW Mitochondrial F1F0-ATP synthase, subunit f. This is a family of small proteins of approximately 110 amino acids, which are highly conserved from nematodes to humans. Some members of the family have been annotated in Swiss-Prot as being the f subunit of mitochondrial F1F0-ATP synthase but this could not be confirmed. The sequence has a well-conserved WRW motif. The exact function of the protein is not known. 102 -313439 pfam10208 Armet Degradation arginine-rich protein for mis-folding. This is a family of small proteins of approximately 170 residues which contain four di-sulfide bridges that are highly conserved from nematodes to humans. Armet is a soluble protein resident in the endoplasmic reticulum and induced by ER stress. It appears to be involved with dealing with mis-folded proteins in the ER, thus in quality control of ER stress. 144 -313440 pfam10209 DUF2340 Uncharacterized conserved protein (DUF2340). This is a family of small proteins of approximately 150 amino acids of unknown function. 117 -337668 pfam10210 MRP-S32 Mitochondrial 28S ribosomal protein S32. This entry is of a family of short, approximately 100 amino acid residues, proteins which are mitochondrial 28S ribosomal proteins named as MRP-S32. Their exact function could not be confirmed. 93 -337669 pfam10211 Ax_dynein_light Axonemal dynein light chain. Axonemal dynein light chain proteins play a dynamic role in flagellar and cilia motility. Eukaryotic cilia and flagella are complex organelles consisting of a core structure, the axoneme, which is composed of nine microtubule doublets forming a cylinder that surrounds a pair of central singlet microtubules. This ultra-structural arrangement seems to be one of the most stable micro-tubular assemblies known and is responsible for the flagellar and ciliary movement of a large number of organisms ranging from protozoan to mammals. This light chain interacts directly with the N-terminal half of the heavy chains. 187 -313443 pfam10212 TTKRSYEDQ Predicted coiled-coil domain-containing protein. This is the C-terminal 500 amino acids of a family of proteins with a predicted coiled-coil domain conserved from nematodes to humans. It carries a characteristic TTKRSYEDQ sequence-motif. The function is not known. 519 -287217 pfam10213 MRP-S28 Mitochondrial ribosomal subunit protein. This is a conserved region of approx. 125 residues of one of the proteins that makes up the small subunit of the mitochondrial ribosome. In Saccharomyces cerevisiae the protein is MRP-S24 whereas in humans it is MRP-S28. The human mitochondrial ribosome has 29 distinct proteins in the small subunit and these have homologs in, for example, Drosophila melanogaster, Caenorhabditis elegans, and in the genomes of several fungi. 127 -337670 pfam10214 Rrn6 RNA polymerase I-specific transcription-initiation factor. RNA polymerase I-specific transcription-initiation factor Rrn6 and Rrn7 represent components of a multisubunit transcription factor essential for the initiation of rDNA transcription by Pol I. These proteins are found in fungi. 771 -337671 pfam10215 Ost4 Oligosaccaryltransferase. Ost4 is a very short, approximately 30 residues, enzyme found from fungi to vertebrates. It is a member of the ER oligosaccaryltansferase complex, EC 2.4.1.119, that catalyzes the asparagine-linked glycosylation of proteins. It appears to be an integral membrane protein that mediates the en bloc transfer of a preassembled high-mannose oligosaccharide onto asparagine residues of nascent polypeptides as they enter the lumen of the rough endoplasmic reticulum (RER). 34 -313446 pfam10216 ChpXY CO2 hydration protein (ChpXY). This small family of proteins includes paralogues ChpX and ChpY in Synechococcus sp. PCC7942 and other cyanobacteria, associated with distinct NAD(P)H dehydrogenase complexes. These proteins collectively enable light-dependent CO2 hydration and CO2 uptake; loss of both blocks growth at low CO2 concentrations. 351 -313447 pfam10217 DUF2039 Uncharacterized conserved protein (DUF2039). This entry is a region of approximately 100 residues containing three pairs of cysteine residues. The region is conserved from plants to humans but its function is unknown. 89 -313448 pfam10218 DUF2054 Uncharacterized conserved protein (DUF2054). This entry contains 14 conserved cysteines, three of which are CC-dimers. The region is of approximately 200 residues in length but its function is unknown. 123 -313449 pfam10220 Smg8_Smg9 Smg8_Smg9. Smg8 and Smg9 are two subunits of the Smg-1 complex. They suppress Smg-1 kinase activity in the isolated Smg-1 complex, and are involved in nonsense-mediated mRNA decay (NMD) in both mammals and nematodes. 867 -313450 pfam10221 DUF2151 Cell cycle and development regulator. This is a set of proteins conserved from worms to humans. The proteins are a PAN GU kinase substrate, Mat89Bb, essential for S-M cycles of early Drosophila embryogenesis, Xenopus embryonic cell cycles and morphogenesis, and cell division in cultured mammalian cells. 672 -287225 pfam10222 DUF2152 Uncharacterized conserved protein (DUF2152). This is a family of proteins conserved from worms to humans. Its function is unknown. 605 -337672 pfam10223 DUF2181 Uncharacterized conserved protein (DUF2181). This is region of approximately 250 residues conserved from worms to humans. Its function is unknown. 242 -313452 pfam10224 DUF2205 Predicted coiled-coil protein (DUF2205). This entry represent a highly conserved 100 residue region which is likely to be a coiled-coil structure. The exact function is unknown. 71 -313453 pfam10225 NEMP NEMP family. This entry includes a group of nuclear envelope integral membrane proteins from animals and plants, including NEMP1 from Xenopus laevis. NEMP1 is a RanGTP-binding protein and is involved in eye development. 249 -313454 pfam10226 CCDC85 CCDC85 family. This entry includes human CCDC85A/B/C and C. elegans Picc-1 protein. Picc-1 serves as a linker protein which helps to recruit the Rho GTPase-activating protein, pac-1, to adherens junctions. Human CCDC85B suppresses the beta-catenin activity in a p53-dependent manner. 186 -337673 pfam10228 DUF2228 Uncharacterized conserved protein (DUF2228). This is a family of conserved proteins of approximately 700 residues found from worms to humans. 249 -313456 pfam10229 MMADHC Methylmalonic aciduria and homocystinuria type D protein. This entry represents methylmalonic aciduria and homocystinuria type D protein and homologs. These proteins are involved in cobalamin (vitamin B12) metabolism. 272 -313457 pfam10230 LIDHydrolase Lipid-droplet associated hydrolase. This family of proteins is conserved from plants to humans. The function is as a lipid-droplet hydrolase in the yeast members. 261 -313458 pfam10231 DUF2315 Uncharacterized conserved protein (DUF2315). This is a family of small conserved proteins found from worms to humans. The function is not known. 122 -337674 pfam10232 Med8 Mediator of RNA polymerase II transcription complex subunit 8. Arc32, or Med8, is one of the subunits of the Mediator complex of RNA polymerase II. The region conserved contains two alpha helices putatively necessary for binding to other subunits within the core of the Mediator complex. The N-terminus of Med8 binds to the essential core Head part of Mediator and the C-terminus hinges to Med18 on the non-essential part of the Head that also includes Med20. 228 -337675 pfam10233 Cg6151-P Uncharacterized conserved protein CG6151-P. This is a family of small, less than 200 residue long, proteins which are named as CG6151-P proteins that are conserved from fungi to humans. The function is unknown. The fungal members have a characteristic ICP sequence motif. Some members are annotated as putative clathrin-coated vesicle protein but this could not be defined. 113 -313461 pfam10234 Cluap1 Clusterin-associated protein-1. This protein is conserved from worms to humans. The protein of 413 amino acids contains a central coiled-coil domain, possibly the region that binds to clusterin. Cluap1 expression is highest in the nucleus and gradually increases during late S to G2/M phases of the cell cycle and returns to the basal level in the G0/G1 phases. In addition, it is upregulated in colon cancer tissues compared to corresponding non-cancerous mucosa. It thus plays a crucial role in the life of the cell. 259 -313462 pfam10235 Cript Microtubule-associated protein CRIPT. The CRIPT protein is a cytoskeletal protein involved in microtubule production. The C-terminal domain is essential for binding to the PDZ3 domain of the SAP90 protein, one of a super-family of PDZ-containing proteins that play an important role in coupling the membrane ion channels with their signalling partners. SAP90 is concentrated in the post synaptic density of glutamatergic neurons. 86 -337676 pfam10236 DAP3 Mitochondrial ribosomal death-associated protein 3. This is a family of conserved proteins which were originally described as death-associated-protein-3 (DAP-3). The proteins carry a P-loop DNA-binding motif, and induce apoptosis. DAP3 has been shown to be a pro-apoptotic factor in the mitochondrial matrix and to be crucial for mitochondrial biogenesis and so has also been designated as MRP-S29 (mitochondrial ribosomal protein subunit 29). 311 -337677 pfam10237 N6-adenineMlase Probable N6-adenine methyltransferase. This is a protein of approximately 200 residues which is conserved from plants to humans. It contains a highly conserved QFW motif close to the N-terminus and a DPPF motif in the centre. The DPPF motif is characteristic of N-6 adenine-specific DNA methylases, and this family is found in eukaryotes. 121 -313465 pfam10238 Eapp_C E2F-associated phosphoprotein. This entry represents the conserved C-terminal portion of an E2F binding protein. E2F transcription factors play an essential role in cell proliferation and apoptosis and their activity is frequently deregulated in human cancers. E2F activity is regulated by a variety of mechanisms, frequently mediated by proteins binding to individual members or a subgroup of the family. EAPP interacts with a subset of E2F factors and influences E2F-dependent promoter activity. EAPP is present throughout the cell cycle but disappears during mitosis. 135 -313466 pfam10239 DUF2465 Protein of unknown function (DUF2465). FAM98A and B proteins are found from worms to humans but their function is unknown. This entry is of a family of proteins that is rich in glycines. 320 -337678 pfam10240 DUF2464 Multivesicular body subunit 12. MVB12A (also known as CFBP) and MVB12B are subunits of the ESCRT-I complex, which mediates the sorting of ubiquitinated cargo protein from the plasma membrane to the endosomal vesicle. MVB12A plays a key role in the ligand-mediated internalization and down-regulation of the EGF receptor. 208 -313468 pfam10241 KxDL Uncharacterized conserved protein. This is a family of short proteins which are conserved over a region of 80 residues. There is a characteristic KxDL motif towards the C-terminus. The function is unknown. 80 -287244 pfam10242 L_HMGIC_fpl Lipoma HMGIC fusion partner-like protein. This is a group of proteins expressed from a series of genes referred to as Lipoma HMGIC fusion partner-like. The proteins carry four highly conserved transmembrane domains in this entry. In certain instances, eg in LHFPL5, mutations cause deafness in humans and hypospadias, and LHFPL1 is transcribed in six liver tumor cell lines. 181 -313469 pfam10243 MIP-T3 Microtubule-binding protein MIP-T3. This protein, which interacts with both microtubules and TRAF3 (tumor necrosis factor receptor-associated factor 3), is conserved from worms to humans. The N-terminal region is the microtubule binding domain and is well-conserved; the C-terminal 100 residues, also well-conserved, constitute the coiled-coil region which binds to TRAF3. The central region of the protein is rich in lysine and glutamic acid and carries KKE motifs which may also be necessary for tubulin-binding, but this region is the least well-conserved. 518 -313470 pfam10244 MRP-L51 Mitochondrial ribosomal subunit. MRP-L51 is a family of small proteins from the intact 55 S mitochondrial ribosome. It has otherwise been referred to as bMRP-64. The exact function of this family is not known. 93 -313471 pfam10245 MRP-S22 Mitochondrial 28S ribosomal protein S22. This is the conserved N-terminus and central portion of the mitochondrial small subunit 28S ribosomal protein S22. Mammalian mitochondria carry out the synthesis of 13 polypeptides that are essential for oxidative phosphorylation and, hence, for the synthesis of the majority of the ATP used by eukaryotic organisms. The number of proteins produced by prokaryotes is smaller, reflected in the lower number of ribosomal proteins present in them. 243 -313472 pfam10246 MRP-S35 Mitochondrial ribosomal protein MRP-S35. This is a family of short mitochondrial ribosomal proteins, less than 200 amino acids long. that are highly conserved from worms to humans. The structure has previously been referred to as MRP-S18 but the current numbering fits the preferred nomenclature from these authors. 105 -313473 pfam10247 Romo1 Reactive mitochondrial oxygen species modulator 1. This is a family of small, approximately 100 amino acid, proteins found from yeasts to humans. The majority of endogenous reactive oxygen species (ROS) in cells are produced by the mitochondrial respiratory chain. An increase or imbalance in ROS alters the intracellular redox homeostasis, triggers DNA damage, and may contribute to cancer development and progression. Members of this family are mitochondrial reactive oxygen species modulator 1 (Romo1) proteins that are responsible for increasing the level of ROS in cells. Increased Romo1 expression can have a number of other effects including: inducing premature senescence of cultured human fibroblasts and increased resistance to 5-fluorouracil. 66 -313474 pfam10248 Mlf1IP Myelodysplasia-myeloid leukemia factor 1-interacting protein. This entry is the conserved central region of a group of proteins that are putative transcriptional repressors. The structure contains a putative 14-3-3 binding motif involved in the subcellular localization of various regulatory molecules, and it may be that interaction with the transcription factor DREF could be regulated through this motif. DREF regulates proliferation-related genes in Drosophila. Mlf1IP is expressed in both the nuclei and the cytoplasm and thus may have multi-functions. 135 -337679 pfam10249 NDUFB10 NADH-ubiquinone oxidoreductase subunit 10. NDUFB10 is a family of conserved proteins of up to 180 residues. It is one of the 41 protein subunits within the hydrophobic fraction of the NADH:ubiquinone oxidoreductase (complex I), a multiprotein complex located in the inner mitochondrial membrane whose main function is the transport of electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. NDUFB10 is encoded in the nucleus. 126 -337680 pfam10250 O-FucT GDP-fucose protein O-fucosyltransferase. This is a family of conserved proteins representing the enzyme responsible for adding O-fucose to EGF (epidermal growth factor-like) repeats. Six highly conserved cysteines are present in O-FucT-1 as well as a DXD-like motif (ERD), conserved in mammals, Drosophila, and C. elegans. Both features are characteristic of several glycosyltransferase families. The enzyme is a membrane-bound protein released by proteolysis and, as for most glycosyltransferases, is strongly activated by manganese. 248 -337681 pfam10251 PEN-2 Presenilin enhancer-2 subunit of gamma secretase. This entry is a short 101 peptide protein which is the smallest subunit of the gamma-secretase aspartyl protease complex that catalyzes the intramembrane cleavage of a subset of type I transmembrane proteins. The other active constituents of the complex are presenilin (PS) nicastrin and anterior pharynx defective-1 (APH-1) protein. PEN-2 adopts a hairpin orientation in the membrane with its N- and C-terminal domains facing the luminal/extracellular space, and the C-terminal domain maintains PS stability within the complex. 93 -313478 pfam10252 PP28 Casein kinase substrate phosphoprotein PP28. This domain is a region of 70 residues conserved in proteins from plants to humans and contains a serine/arginine rich motif. In rats the full protein is a casein kinase substrate, and this region contains phosphorylation sites for both cAMP-dependent protein kinase and casein kinase II. 80 -313479 pfam10253 PRCC Mitotic checkpoint regulator, MAD2B-interacting. This family constitutes the major, conserved, portion of PRCC proteins. In humans this family interacts with MAD2B, the mitotic checkpoint protein. In Schizosaccharomyces pombe this protein is part of the Cwf-complex that is known to be involved in pre-mRNA splicing. 129 -313480 pfam10254 Pacs-1 PACS-1 cytosolic sorting protein. PACS-1 is a cytosolic sorting protein that directs the localization of membrane proteins in the trans-Golgi network (TGN)/endosomal system. PACS-1 connects the clathrin adaptor AP-1 to acidic cluster sorting motifs contained in the cytoplasmic domain of cargo proteins such as furin, the cation-independent mannose-6-phosphate receptor and in viral proteins such as human immunodeficiency virus type 1 Nef. 411 -313481 pfam10255 Paf67 RNA polymerase I-associated factor PAF67. RNA polymerase I is a multisubunit enzyme and its transcription competence is dependent on the presence of PAF67. This family of proteins is conserved from worms to humans. 396 -337682 pfam10256 Erf4 Golgin subfamily A member 7/ERF4 family. This family of proteins includes Golgin subfamily A member 7 proteins as well as Ras modification protein ERF4. 116 -313483 pfam10257 RAI16-like Retinoic acid induced 16-like protein. This is the conserved N-terminal 450 residues of a family of proteins described as retinoic acid-induced protein 16-like proteins. The exact function is not known. The proteins are found from worms to humans. 357 -313484 pfam10258 RNA_GG_bind PHAX RNA-binding domain. RNA_GG_bind is the highly conserved U3 snoRNA-binding domain of PHAX (phosphorylated adaptor for RNA export) whose function is to transport U3 snoRNA from the nucleus after transcription. It is characterized by having two pairs of adjacent glycines, as GGx12GG. 84 -313485 pfam10259 Rogdi_lz Rogdi leucine zipper containing protein. This is a family of conserved proteins which have been suggested as containing leucine-zipper domains. A leucine zipper domain is a region of 30 amino acids with leucines repeating every seven or eight residues; these proteins do have many such leucines. The protein in Drosophila comes from the gene ROGDI. 271 -337683 pfam10260 SAYSvFN Uncharacterized conserved domain (SAYSvFN). This domain of approximately 75 residues contains a highly conserved SATSv/iFN motif. The function is unknown but the domain is conserved from plants to humans. 65 -313487 pfam10261 Scs3p Inositol phospholipid synthesis and fat-storage-inducing TM. This is a family of transmembrane proteins which are variously annotated as possibly being inositol phospholipid synthesis protein and fat-storage-inducing. The members are conserved from yeasts to humans and are localized to the endoplasmic reticulum where they are involved in triglyceride lipid droplet formation. 239 -337684 pfam10262 Rdx Rdx family. This entry is an approximately 100 residue region of selenoprotein-T, conserved from plants to humans. The protein binds to UDP-glucose:glycoprotein glucosyltransferase (UGTR), the endoplasmic reticulum (ER)-resident protein, which is known to be involved in the quality control of protein folding. Selenium (Se) plays an essential role in cell survival and most of the effects of Se are probably mediated by selenoproteins, including selenoprotein T. However, despite its binding to UGTR and that its mRNA is up-regulated in extended asphyxia, the function of the protein and hence of this region of it is unknown. Selenoprotein W contains selenium as selenocysteine in the primary protein structure and levels of this selenoprotein are affected by selenium. 74 -337685 pfam10263 SprT-like SprT-like family. This family represents a domain found in eukaryotes and prokaryotes. The domain contains a characteristic motif of the zinc metallopeptidases. This family includes the bacterial SprT protein. 109 -337686 pfam10264 Stork_head Winged helix Storkhead-box1 domain. This is the conserved N-terminal winged helix domain of Storkhead-box1 protein which is likely to be a DNA binding domain. In humans the full-length protein controls polyploidization of extravillus trophoblast and is implicated in pre-eclampsia. 77 -313491 pfam10265 Miga Mitoguardin. Mitoguardin (Miga) was first identified in flies as a mitochondrial outer-membrane protein that promotes mitochondrial fusion. Later, the mammalian Miga homologs, Miga1 and Miga2, were identified. They are found to promote mitochondrial fusion by regulating mitochondrial phospholipid metabolism via MitoPLD. 536 -337687 pfam10266 Strumpellin Hereditary spastic paraplegia protein strumpellin. This is a family of proteins conserved from plants to humans, in which two closely situated point mutations in the human protein lead to the condition of hereditary spastic paraplegia. Strumpellin contains one known domain called a spectrin repeat that consists of three alpha-helices of a characteristic length wrapped in a left-handed coiled coil. The spectrin proteins have multiple copies of this repeat, which can then form multimers in the cell. Spectrin associates with the cell membrane via spectrin repeats in the ankyrin protein. The spectrin repeat is a structural platform for cytoskeletal protein assemblies. 1083 -313493 pfam10267 Tmemb_cc2 Predicted transmembrane and coiled-coil 2 protein. This family of transmembrane coiled-coil containing proteins is conserved from worms to humans. Its function is unknown. 392 -313494 pfam10268 Tmemb_161AB Predicted transmembrane protein 161AB. Transmemb_161AB is a family of conserved proteins found from worms to humans. Members are putative transmembrane proteins but otherwise the function is not known. 480 -313495 pfam10269 Tmemb_185A Transmembrane Fragile-X-F protein. This is a family of conserved transmembrane proteins that appear in humans to be expressed from a region upstream of the FragileXF site and to be intimately linked with the Fragile-X syndrome. Absence of TMEM185A does not necessarily lead to developmental delay, but might in combination with other, yet unknown, factors. Otherwise, the lack of the TMEM185A protein is either disposable (redundant) or its function can be complemented by the highly similar chromosome 2 retro-pseudogene product, TMEM185B. 236 -313496 pfam10270 MMgT Membrane magnesium transporter. This entry represents a novel family of membrane magnesium transporters (MMgT). The proteins, MMgT1 and MMgT2, are localized to the Golgi complex and post-Golgi vesicles, including the early endosomes, suggesting that they may provide regulated pathways for Mg(2+) transport in the Golgi and post-Golgi organelles of epithelium-derived cells. 116 -313497 pfam10271 Tmp39 Putative transmembrane protein. This is a family of conserved proteins found from worms to humans. They are putative transmembrane proteins but the function is unknown. 423 -313498 pfam10272 Tmpp129 Putative transmembrane protein precursor. This is a family of proteins conserved from worms to humans. The proteins are purported to be transmembrane protein-precursors but the function is unknown. 344 -337688 pfam10273 WGG Pre-rRNA-processing protein TSR2. This entry represents the central conserved section of a family of proteins described as pre-rRNA-processing protein TSR2. The region has a distinctive WGG motif but the function is unknown. 80 -255872 pfam10274 ParcG Parkin co-regulated protein. This family of proteins is transcribed anti-sense along the DNA to the Parkin gene product and the two appear to be transcribed under the same promoter. The protein has predicted alpha-helical and beta-sheet domains which suggest its function is in the ubiquitin/proteasome system. Mutations in parkin are the genetic cause of early-onset and autosomal recessive juvenile parkinsonism. 183 -313500 pfam10275 Peptidase_C65 Peptidase C65 Otubain. This family of proteins conserved from plants to humans is a highly specific ubiquitin iso-peptidase that removes ubiquitin from proteins. The modification of cellular proteins by ubiquitin (Ub) is an important event that underlies protein stability and function in eukaryote being a dynamic and reversible process. Otubain carries several key conserved domains: (i) the OTU (ovarian tumor domain) in which there is an active cysteine protease triad (ii) a nuclear localization signal, (iii) a Ub interaction motif (UIM)-like motif phi-xx-A-xxxs-xx-Ac (where phi indicates an aromatic amino acid, x indicates any amino acid and Ac indicates an acidic amino acid), (iv) a Ub-associated (UBA)-like domain and (v) the LxxLL motif. 241 -337689 pfam10276 zf-CHCC Zinc-finger domain. This is a short zinc-finger domain conserved from fungi to humans. It is Cx8Hx14Cx2C. 37 -313502 pfam10277 Frag1 Frag1/DRAM/Sfk1 family. This family includes Frag1, DRAM and Sfk1 proteins. Frag1 (FGF receptor activating protein 1) is a protein that is conserved from fungi to humans. There are four potential iso-prenylation sites throughout the peptide, viz CILW, CIIW and CIGL. Frag1 is a membrane-spanning protein that is ubiquitously expressed in adult tissues suggesting an important cellular function. Dram is a family of proteins conserved from nematodes to humans with six hydrophobic transmembrane regions and an Endoplasmic Reticulum signal peptide. It is a lysosomal protein that induces macro-autophagy as an effector of p53-mediated death, where p53 is the tumor-suppressor gene that is frequently mutated in cancer. Expression of Dram is stress-induced. This region is also part of a family of small plasma membrane proteins, referred to as Sfk1, that may act together with or upstream of Stt4p to generate normal levels of the essential phospholipid PI4P, thus allowing proper localization of Stt4p to the actin cytoskeleton. 219 -287279 pfam10278 Med19 Mediator of RNA pol II transcription subunit 19. Med19 represents a family of conserved proteins which are members of the multi-protein co-activator Mediator complex. Mediator is required for activation of RNA polymerase II transcription by DNA binding transactivators. 178 -192511 pfam10279 Latarcin Latarcin precursor. This family represents the precursor proteins for a number of short antimicrobial peptides called Latarcins. Latarcins were discovered in the venom of the spider Lachesana tarabaevi. Latarcins are likely to adopt amphipathic alpha-helical structure in the plasma membrane. 64 -337690 pfam10280 Med11 Mediator complex protein. Mediator is a large, modular protein complex that is conserved from yeast to human and conveys regulatory signals from DNA-binding transcription factors to RNA polymerase II. Not only are the polypeptides conserved but the structural organisation is also largely conserved. One or two subunits are either fungal or vertebral specific but Med11 is one of the subunits that is conserved from fungi to humans. Med11 appears to be necessary for the full and successful assembly of the core head sub-region. 119 -337691 pfam10281 Ish1 Putative stress-responsive nuclear envelope protein. This entry represents a repeat found in the fungal protein Ish1, a putative stress-responsive nuclear envelope protein. 36 -337692 pfam10282 Lactonase Lactonase, 7-bladed beta-propeller. This entry contains bacterial 6-phosphogluconolactonases (6PGL)YbhE-type (EC:3.1.1.31) which hydrolyze 6-phosphogluconolactone to 6-phosphogluconate. The entry also contains the fungal muconate lactonising enzyme carboxy-cis,cis-muconate cyclase (EC:5.5.1.5) and muconate cycloisomerase (EC:5.5.1.1), which convert cis,cis-muconates to muconolactones and vice versa as part of the microbial beta-ketoadipate pathway. Structures of proteins in this family have revealed a 7-bladed beta-propeller fold. 340 -337693 pfam10283 zf-CCHH Zinc-finger (CX5CX6HX5H) motif. This domain is a zinc-finger motif that in humans is part of the APLF, aprataxin- and PNK-like forkead association domain-containing protein. The ZnF is highly conserved both in primary sequence and in the spacing between the putative zinc coordinating residues and is configured CX5CX6HX5H. Many of the proteins containing the APLF-like ZnF are involved in DNA strand break repair and/or contain domains implicated in DNA metabolism. 23 -118808 pfam10284 Luciferase_3H Luciferase helical bundle domain. This domain is found associated with the the catalytic domain of dinoflagellate luciferase. Luciferase is involved in catalyzing the light emitting reaction in bioluminescence. The structure of this domain has been solved. This domain has a three helix bundle structure that holds four important histidines that are thought to play a role in the pH regulation of the enzyme. 66 -118809 pfam10285 Luciferase_cat Luciferase catalytic domain. This domain is the catalytic domain of dinoflagellate luciferase. Luciferase is involved in catalyzing the light emitting reaction in bioluminescence. The structure of this domain has been solved. The core part of the domain is a 10 stranded beta barrel that is structurally similar to lipocalins and FABP. 296 -337694 pfam10287 DUF2401 Putative TOS1-like glycosyl hydrolase (DUF2401). This family of proteins is conserved in fungi. One member is annotated putatively as OPEL, a house-keeping protein, but this could not be confirmed. It contains 5 highly conserved cysteines two of which form a characteristic CGC sequence motif. It has recently been shown that this family is related to known glycosyl hydrolases. 230 -337695 pfam10288 CTU2 Cytoplasmic tRNA 2-thiolation protein 2. CTU2 is a family of proteins necessary for the formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. The family is conserved from plants to humans ]1]. It plays a central role in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine, or the wobble nucleoside. This wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group gives rigidity by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. 108 -337696 pfam10290 DUF2403 Glycine-rich protein domain (DUF2403). This domain is found in the N-terminal region of members of DUF2401 pfam10287. The function of this glycine-rich region is unknown. 59 -313510 pfam10291 muHD Muniscin C-terminal mu homology domain. The muniscins are a family of endocytic adaptors that is conserved from yeast to humans.This C-terminal domain is structurally similar to mu homology domains, and is the region of the muniscin proteins involved in the interactions with the endocytic adaptor-scaffold proteins Ede1-eps15. This interaction influences muniscin localization. The muniscins provide a combined adaptor-membrane-tubulation activity that is important for regulating endocytosis. 254 -313511 pfam10292 7TM_GPCR_Srab Serpentine type 7TM GPCR receptor class ab chemoreceptor. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srab is part of the Sra superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. The expression pattern of the srab genes is biologically intriguing. Of the six promoters successfully expressed in transgenic organisms, one was exclusively expressed in the tail phasmid neurons, two were exclusively expressed in a head amphid neuron, and two were expressed both in the head and tail neurons as well as a limited number of other cells. 323 -337697 pfam10293 DUF2405 Domain of unknown function (DUF2405). This is a conserved region of a family of proteins conserved in fungi. The function is unknown. 153 -313513 pfam10294 Methyltransf_16 Lysine methyltransferase. Methyltrans_16 is a lysine methyltransferase. characterized members of this family are protein methyltransferases targetting Lys residues in specific proteins, including calmodulin, VCP, Kin17 and Hsp70 proteins. 172 -337698 pfam10295 DUF2406 Uncharacterized protein (DUF2406). This is a family of small proteins conserved in fungi. The function is not known. 63 -313515 pfam10296 MMM1 Maintenance of mitochondrial morphology protein 1. MMM1 is conserved from plants to humans. MMM1 is an integral ER protein. It is N-glycosylated, and forms a complex with Mdm10, Mdm12and Mdm34 to tether the mitochondria to the endoplasmic reticulum. 316 -287292 pfam10297 Hap4_Hap_bind Minimal binding motif of Hap4 for binding to Hap2/3/5. In Saccharomyces cerevisiae, the haem-activated protein complex Hap2/3/4/5 plays a major role in the transcription of genes involved in respiration. Hap4_Hap_bind is the essential domain of Hap4 which allows it to associate with Hap2, Hap3 and Hap5 to form the Hap complex. 17 -313516 pfam10298 WhiA_N WhiA N-terminal LAGLIDADG-like domain. This domain is found at the N terminal of sporulation factor WhiA. This domain is related to the LAGLIDADG Homing endonuclease domain while the C terminal domain of WhiA is predicted to be a DNA binding helix-turn-helix domain. 86 -287294 pfam10300 DUF3808 Protein of unknown function (DUF3808). This is a family of proteins conserved from fungi to humans. Members of this family also carry a TPR_2 domain pfam07719 at their C-terminus. 467 -313517 pfam10302 DUF2407 DUF2407 ubiquitin-like domain. This is a family of proteins found in fungi. The function is not known. This domain is related to the ubiquitin domain. 101 -313518 pfam10303 DUF2408 Protein of unknown function (DUF2408). This is a family of proteins conserved in fungi. The function is unknown. 127 -313519 pfam10304 RTP1_C2 Required for nuclear transport of RNA pol II C-terminus 2. This domain is found towards the C-terminus of required for the nuclear transport of RNA pol II protein (RTP1). RTP1 is required for the nuclear localization of RNA polymerase II. This family is found in association with pfam10363. 34 -337699 pfam10305 Fmp27_SW RNA pol II promoter Fmp27 protein domain. Fmp27_SW is a conserved domain of a family of proteins involved in RNA polymerase II transcription initiation. It contains characteristic SW and GKG sequence motifs. 101 -313521 pfam10306 FLILHELTA Hypothetical protein FLILHELTA. This is a family of conserved proteins found in fungi. It contains a characteristic FL(I)LHE(L)TA sequence motif, where the bracketed residues are I, L or V. The function is not known. 83 -313522 pfam10307 DUF2410 Hypothetical protein (DUF2410). This is a family of proteins conserved in fungi. The function is not known.There are two characteristic sequence motifs, GGWW and TGR. 198 -313523 pfam10309 NCBP3 Nuclear cap-binding protein subunit 3. NCBP3 and NCBP1 form an alternative cap-binding complex in higher eukaryotes. NCBP3 binds mRNA, associates with components of the mRNA processing machinery and contributes to polyA RNA export. 59 -337700 pfam10310 DUF5427 Family of unknown function (DUF5427). This is a domain of unknown function. Family members found in Saccharomyces cerevisiae, are synthetic lethal with genes involved in maintenance of telomere capping. However, experimental evidence is yet to verify the exact function of family members and the domain. 446 -313525 pfam10311 Ilm1 Increased loss of mitochondrial DNA protein 1. This is a family of proteins of approximately 200 residues that are conserved in fungi. Ilm1 is part of the peroxisome, a complex that is the sole site of beta-oxidation in Saccharomyces cerevisiae and known to be required for optimal growth in the presence of fatty acid. Ilm1 may participate in the control of the C16/C18 ratio since it interacts strongly with Mga2p, a transcription factor that controls expression of Ole1, the sole fatty acyl desaturase in S. cerevisiae responsible for conversion of the saturated fatty acids stearate (C18) and palmitate (C16) to oleate and palmitoleate, respectively. 160 -337701 pfam10312 Cactin_mid Conserved mid region of cactin. This is the conserved middle region of a family of proteins referred to as cactins. The region contains two of three predicted coiled-coil domains. Most members of this family have a CactinC_cactus pfam09732 domain at the C-terminal end. Upstream of Mid_cactin in Drosophila members are a serine-rich region, some non-typical RD motifs and three predicted bipartite nuclear localization signals, none of which are well-conserved. Cactin associates with IkappaB-cactus as one of the intracellular members of the Rel (NF-kappaB) pathway which is conserved in invertebrates and vertebrates. In mammals, this pathway controls the activities of the immune and inflammatory response genes as well as viral genes, and is critical for cell growth and survival. In Drosophila, the Rel pathway functions in the innate cellular and humoral immune response, in muscle development, and in the establishment of dorsal-ventral polarity in the early embryo. 185 -313527 pfam10313 DUF2415 Uncharacterized protein domain (DUF2415). This is a short, 30 residue domain, from a family of proteins conserved in fungi. The function is unknown. There is a characteristic DLL sequence motif. 43 -313528 pfam10315 Aim19 Altered inheritance of mitochondria protein 19. This is a family of conserved proteins found in fungi. The function is not known. 100 -313529 pfam10316 7TM_GPCR_Srbc Serpentine type 7TM GPCR chemoreceptor Srbc. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srbc is a solo family amongst the superfamilies of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 273 -337702 pfam10317 7TM_GPCR_Srd Serpentine type 7TM GPCR chemoreceptor Srd. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srd is part of the larger Str superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 292 -337703 pfam10318 7TM_GPCR_Srh Serpentine type 7TM GPCR chemoreceptor Srh. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srh is part of the Str superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 301 -313532 pfam10319 7TM_GPCR_Srj Serpentine type 7TM GPCR chemoreceptor Srj. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srj is part of the Str superfamily of chemoreceptors. The srj family is designated as the out-group based on its location in preliminary phylogenetic analyses of the entire superfamily. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 310 -255903 pfam10320 7TM_GPCR_Srsx Serpentine type 7TM GPCR chemoreceptor Srsx. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srsx is a solo family amongst the superfamilies of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 257 -337704 pfam10321 7TM_GPCR_Srt Serpentine type 7TM GPCR chemoreceptor Srt. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srt is a member of the Srg superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 313 -313534 pfam10322 7TM_GPCR_Sru Serpentine type 7TM GPCR chemoreceptor Sru. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Sru is a member of the Srg superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 305 -313535 pfam10323 7TM_GPCR_Srv Serpentine type 7TM GPCR chemoreceptor Srv. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srv is a member of the Srg superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 283 -337705 pfam10324 7TM_GPCR_Srw Serpentine type 7TM GPCR chemoreceptor Srw. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srw is a solo family amongst the superfamilies of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. The genes encoding Srw do not appear to be under as strong an adaptive evolutionary pressure as those of Srz. 317 -313537 pfam10325 7TM_GPCR_Srz Serpentine type 7TM GPCR chemoreceptor Srz. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srz is a solo families amongst the superfamilies of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. The genes encoding Srz appear to be under strong adaptive evolutionary pressure. 265 -337706 pfam10326 7TM_GPCR_Str Serpentine type 7TM GPCR chemoreceptor Str. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Str is a member of the Str superfamily of chemoreceptors. Almost a quarter (22.5%) of str and srj family genes and pseudogenes in C. elegans appear to have been newly formed by gene duplications since the species split. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 307 -313539 pfam10327 7TM_GPCR_Sri Serpentine type 7TM GPCR chemoreceptor Sri. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Sri is part of the Str superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 303 -337707 pfam10328 7TM_GPCR_Srx Serpentine type 7TM GPCR chemoreceptor Srx. Chemoreception is mediated in Caenorhabditis elegans by members of the seven-transmembrane G-protein-coupled receptor class (7TM GPCRs) of proteins which are of the serpentine type. Srx is part of the Srg superfamily of chemoreceptors. Chemoperception is one of the central senses of soil nematodes like C. elegans which are otherwise 'blind' and 'deaf'. 262 -313541 pfam10329 DUF2417 Region of unknown function (DUF2417). This is a region of a family of proteins conserved in fungi some of whose members also have the Abhydrolase_1, pfam00561, domain in their sequence. The function of this region is not known. 231 -313542 pfam10330 Stb3 Putative Sin3 binding protein. This is a family of the conserved N-terminal end of a group of proteins conserved in fungi. It is likely to be a Sin3 binding protein. Sin3p does not bind DNA directly even though the yeast SIN3 gene functions as a transcriptional repressor. Sin3p is part of a large multiprotein complex. Stb3 appears to bind directly to ribosomal RNA Processing Elements (RRPE) although there are no obvious domains which would accord with this, implying that Stb3 may be a novel RNA-binding protein. 79 -313543 pfam10332 DUF2418 Protein of unknown function (DUF2418). This is a conserved 100 residue central region of a family of proteins found in fungi. It carries a characteristic EYD sequence motif. The function is not known. 96 -287322 pfam10333 Pga1 GPI-Mannosyltransferase II co-activator. Pga1 is found only in yeasts and not in mammals. It localizes in the ER as a glycosylated integral membrane protein. It binds to the GPI-mannosyltransferase II subunit of the GPI and it is responsible for the second mannose addition to GPI precursors. The GPI-anchoring complex is a glycolipid that functions as a membrane anchor for many cell-surface proteins. 174 -313544 pfam10334 ArAE_2 Aromatic acid exporter family member 2. This is a family of proteins conserved in fungi. The function is not known. 230 -313545 pfam10335 DUF294_C Putative nucleotidyltransferase substrate binding domain. This domain is found associated with presumed nucleotidyltransferase domains and seems to be distantly related to other helical substrate binding domains. 145 -313546 pfam10336 DUF2420 Protein of unknown function (DUF2420). This is a family of proteins conserved in fungi. The function is not known. 107 -313547 pfam10337 ArAE_2_N Putative ER transporter, 6TM, N-terminal. This is a family of proteins conserved in fungi. The function is not known. This family is the C-terminal half of some member proteins which contain the DUF2421 pfam10334 domain at their N-terminus. These proteins are putative endoplasmic reticulum tranpsorters, with a total of 12 TMs. 469 -313548 pfam10338 DUF2423 Protein of unknown function (DUF2423). This is a family of proteins conserved in fungi. The function is not known. 44 -287328 pfam10339 Vel1p Yeast-specific zinc responsive. This is a small family of proteins from Saccharomyces and related species. The function is not known but member proteins are highly induced in zinc-depleted conditions and have increased expression in NAP1-deletion mutants. The S. cerevisiae genes are named VEL by association with Velum formation in the wine making process http://www.ajevonline.org/content/48/1/55.abstract 201 -313549 pfam10340 Say1_Mug180 Steryl acetyl hydrolase. This entry includes budding yeast steryl acetyl hydrolase 1 (Say1) and fission yeast Mug180. Say1 is a a membrane-anchored deacetylase required for the deacetylation of acetylated sterols. It is involved in the resistance to eugenol and pregnenolone toxicity. Mug180 has a role in meiosis. 374 -313550 pfam10341 TPP1 Shelterin complex subunit, TPP1/ACD. TPP1 is a component of the telomerase holoenzyme, involved in telomere replication. It has been demonstrated that TPP1 dimerizes and binds to DNA and RNA. Furthermore, TPP1 stimulates the dissociation of RNA/DNA hetero-duplexes. Yeast telomerase protein TPP1 (Est3 in yeast) is a novel type of GTPase. The key residues in yeast EST3 are an Asp at residue 86 and the Arg at residue 110. The Asp is totally conserved in the family, whereas the Arg is not so well conserved. The N-terminal of TPP1 is likely to be the binding surface for TINF2, whereas the C-terminus probably binds to POT1, thereby tethering POT1 to the shelterin complex. The complex bound to telomeric DNA increases the activity and processivity of the human telomerase core enzyme, thus helping to maintain the length of the telomeres. This domain is conserved from fungi to mammals, hence family Telomere_Pot1 has been merged into the family. The human shelterin complex includes six proteins: telomere repeat binding factor 1 (TRF1), TRF2, repressor/activator protein 1 (RAP1), TRF1-interacting nuclear protein 2 (TIN2), TIN2-interacting protein 1 (TPP1) and protection of telomeres 1 (POT1). 105 -313551 pfam10342 GPI-anchored Ser-Thr-rich glycosyl-phosphatidyl-inositol-anchored membrane family. Some members of this family appear to be serine- threonine-rich membrane-anchored proteins, anchored by glycosyl-phosphatidylinositol. In A. fumigatus these proteins play a role in fungal cell wall organisation. In Lentinula edodes this family is involved in fruiting body formation, and may have a more general role in signalling in other organisms as it interacts with MAPK. The family is also found in archaea and bacteria. 90 -313552 pfam10343 Q_salvage Potential Queuosine, Q, salvage protein family. Q_salvage proteins occur in most Eukarya as well as in a few bacteria possible via horizontal gene-transfer. Queuosine (Q) is a chemical modification found at the wobble position of tRNAs that have GUN anticodons. Most bacteria synthesize queuosine de novo, whereas eukaryotes rely solely on salvaging this essential component from the environment or the gut flora. The exact enzymatic function of the domain has yet to be determined, but structural similarity with DNA glycosidases suggests a ribonucleoside hydrolase role. 281 -313553 pfam10344 Fmp27 Mitochondrial protein from FMP27. This family contains mitochondrial FMP27 proteins which in yeasts together with SEN1 are long genes that exist in a looped conformation, effectively bringing together their promoter and terminator regions. Pol-II is located at both ends of FMP27 when this gene is transcribed from a GAL1 promoter under induced and non-induced conditions. The exact function of the Fmp27 protein is not certain. 856 -313554 pfam10345 Cohesin_load Cohesin loading factor. Cohesin_load is a common cohesin loading factor protein that is conserved in fungi. It is associated with the cohesin complex and is required in G1 for cohesin binding to chromosomes but dispensable in G2 when cohesion has been established. It is referred to as both Ssl3, in pombe, and Scc4, in S.cerevisiae. It complexes with Mis4. 592 -337708 pfam10346 Con-6 Conidiation protein 6. Con-6 is the conserved N-terminal region of a family of small proteins found in fungi. It is expressed at approximately 6 hours after the induction of development and is induced just prior to major constriction-chain growth. 32 -337709 pfam10347 Fmp27_GFWDK RNA pol II promoter Fmp27 protein domain. Fmp27_GFWDK is a conserved domain of a family of proteins involved in RNA polymerase II transcription initiation. It contains characteristic GFWDK sequence motifs. Some members are associated with domain Fmp27_SW (pfam10305) towards the N-terminus. 155 -313557 pfam10348 DUF2427 Domain of unknown function (DUF2427). This is the N-terminal region of a family of proteins conserved in fungi. Several members are annotated as being Ftp1 but this could not be confirmed. The function is not known. 105 -337710 pfam10350 DUF2428 Putative death-receptor fusion protein (DUF2428). This is a family of proteins conserved from plants to humans. The function is not known. Several members have been annotated as being HEAT repeat-containing proteins while others are designated as death-receptor interacting proteins, but neither of these could be confirmed. 245 -337711 pfam10351 Apt1 Golgi-body localization protein domain. This is the C-terminus of a family of proteins conserved from plants to humans. The plant members are localized to the Golgi proteins and appear to regulate membrane trafficking, as they are required for rapid vesicle accumulation at the tip of the pollen tube. The C-terminus probably contains the Golgi localization signal and it is well-conserved. 380 -118874 pfam10353 DUF2430 Protein of unknown function (DUF2430). This is a family of short, 111 residue, proteins found in S. pombe. The function is not known. 107 -337712 pfam10354 DUF2431 Domain of unknown function (DUF2431). This is the N-terminal domain of a family of proteins found from plants to humans. The function is not known. 165 -313561 pfam10355 Ytp1 Protein of unknown function (Ytp1). This is a family of proteins found in fungi. The region appears to contain regions similar to mitochondrial electron transport proteins. The C-terminal domain is hydrophobic and negatively charged. There are consensus sites for both N-linked glycosylation and cAMP-dependent protein kinase phosphorylation. 280 -287343 pfam10356 DUF2034 Protein of unknown function (DUF2034). This protein is expressed in fungi but its function is unknown. 185 -337713 pfam10357 Kin17_mid Domain of Kin17 curved DNA-binding protein. Kin17_mid is the conserved central 169 residue region of a family of Kin17 proteins. Towards the N-terminal end there is a zinc-finger domain, and in human and mouse members there is a RecA-like domain further downstream. The Kin17 protein in humans forms intra-nuclear foci during cell proliferation and is re-distributed in the nucleoplasm during the cell cycle. 123 -337714 pfam10358 NT-C2 N-terminal C2 in EEIG1 and EHBP1 proteins. This version of the C2 domain was initally identified in the vertebrate estrogen early-induced gene 1 (EEIG1), and its Drosophila ortholog required for uptake of dsRNA via the endocytotic machinery to induce RNAi silencing. It is also in C.elegans ortholog Sym-3 (SYnthetic lethal with Mec-3) and the mammalian protein EHBP1 (EH domain Binding Protein-1) that regulates endocytotic recycling and two plant proteins, RPG that regulates Rhizobium-directed polar growth and PMI1 (Plastid Movement Impaired 1) that is essential for intracellular movement of chloroplasts in response to blue light. 143 -337715 pfam10359 Fmp27_WPPW RNA pol II promoter Fmp27 protein domain. Fmp27_WPPW is a conserved domain of a family of proteins involved in RNA polymerase II transcription initiation. It contains characteristic HQR and WPPW sequence motifs. and is towards the C-terminal in members which contain Fmp27_SW pfam10305. 480 -313565 pfam10360 DUF2433 Protein of unknown function (DUF2433). This is a conserved 120 residue region of a family of proteins found in fungi. The function is not known. 101 -313566 pfam10361 DUF2434 Protein of unknown function (DUF2434). This is a family of proteins conserved in fungi. The function is not known. 294 -337716 pfam10363 RTP1_C1 Required for nuclear transport of RNA pol II C-terminus 1. This domain is found towards the C-terminus of required for the nuclear transport of RNA pol II protein (RTP1). RTP1 is required for the nuclear localization of RNA polymerase II. This family is found in association with pfam10304. 109 -287350 pfam10364 NKWYS Putative capsular polysaccharide synthesis protein. Found only in Vibrio species, pombe and one other fungi, this is a the N-terminal 150 residues of a family of proteins of unknown function. There is a characteristic NKWYS sequence motif. 132 -287351 pfam10365 DUF2436 Domain of unknown function (DUF2436). This domain is found on peptidase C25 proteins and has no known function. 164 -313568 pfam10366 Vps39_1 Vacuolar sorting protein 39 domain 1. This domain is found on the vacuolar sorting protein Vps39 which is a component of the C-Vps complex. Vps39 is thought to be required for the fusion of endosomes and other types of transport intermediates with the vacuole. In Saccharomyces cerevisiae, Vps39 has been shown to stimulate nucleotide exchange. The precise function of this domain has not been characterized. 108 -313569 pfam10367 Vps39_2 Vacuolar sorting protein 39 domain 2. This domain is found on the vacuolar sorting protein Vps39 which is a component of the C-Vps complex. Vps39 is thought to be required for the fusion of endosomes and other types of transport intermediates with the vacuole. In Saccharomyces cerevisiae, Vps39 has been shown to stimulate nucleotide exchange. This domain is involved in localization and in mediating the interactions of Vps39 with Vps11. 109 -313570 pfam10368 YkyA Putative cell-wall binding lipoprotein. YkyA is a family of proteins containing a lipoprotein signal and a hydrolase domain. It is similar to cell wall binding proteins and might also be recognisable by a host immune defense system. It is thus likely to belong to pathways important for pathogenicity. 203 -337717 pfam10369 ALS_ss_C Small subunit of acetolactate synthase. ALS_ss_C is the C-terminal half of a family of proteins which are the small subunits of acetolactate synthase. Acetolactate synthase is a tetrameric enzyme, containing probably two large and two small subunits, which catalyzes the first step in branched-chain amino acid biosynthesis. This reaction is sensitive to certain herbicides. 74 -337718 pfam10370 DUF2437 Domain of unknown function (DUF2437). This is the N-terminal 50 amino acids of a group of bacterial proteins annotated as fumarylacetoacetate hydrolase-containing enzymes. In most cases members are associated with FAA_hydrolase pfam01557 further towards the C-terminus. 50 -313573 pfam10371 EKR Domain of unknown function. EKR is a short, 33 residue, domain found in bacterial and some lower eukaryotic species which lies between a POR (pyruvate ferredoxin/flavodoxin oxidoreductase) pfam01558 and the 4Fe-4S binding domain Fer4 pfam00037. It contains a characteristic EKR sequence motif. The exact function of this domain is not known. 56 -313574 pfam10372 YojJ Bacterial membrane-spanning protein N-terminus. YojJ is the N-terminus of a family of bacterial proteins some of which are associated with DUF147 pfam02457 towards the C-terminus. It is a putative membrane-spanning protein. 69 -337719 pfam10373 EST1_DNA_bind Est1 DNA/RNA binding domain. Est1 is a protein which recruits or activates telomerase at the site of polymerization. This is the DNA/RNA binding domain of EST1. 274 -337720 pfam10374 EST1 Telomerase activating protein Est1. Est1 is a protein which recruits or activates telomerase at the site of polymerization. Structurally it resembles a TPR-like repeat. 129 -313577 pfam10375 GRAB GRIP-related Arf-binding domain. The GRAB (GRIP-related Arf-binding) domain is towards the C-terminus of Rud3 type proteins. This domain is related to the GRIP domain, but the conserved tyrosine residue found at position 4 in all GRIP domains is replaced by a leucine residue. The Arf small GTPase is localized to the cis-Golgi where it recruits proteins via their GRAB domain, as part of the transport of cargo from the endoplasmic reticulum to the plasma membrane. 18 -313578 pfam10376 Mei5 Double-strand recombination repair protein. Mei5 is one of a pair of meiosis-specific proteins which facilitate the loading of Dmc1 on to Rad51 on DNA at double-strand breaks during recombination. Recombination is carried out by a large protein complex based around the two RecA homologs, Rad51 and Dmc1. This complex may play both a catalytic and a structural role in the interaction between homologous chromosomes during meiosis. Mei5 is seen to contain a coiled-coli region. 208 -337721 pfam10377 ATG11 Autophagy-related protein 11. The function of this family is conflicting. In the fission yeast, Schizosaccharomyces pombe, this protein has been shown to interact with the telomere cap complex. However, in budding yeast, Saccharomyces cerevisiae, this protein is called ATG11 and is shown to be involved in autophagy. 130 -313580 pfam10378 RRM Putative RRM domain. This is a putative RRM, RNA-binding, domain found only in fungi. It occurs in proteins annotated as Nrd1 yeast proteins, which are known to carry RRM domains. It is not homologous with any of the other RRM domains, eg RRM_1 pfam00076. 46 -287365 pfam10379 nec1 Virulence protein nec1. This is a family of virulence proteins that are found in pathogenic Streptomyces species. 184 -313581 pfam10380 CRF1 Transcription factor CRF1. CRF1 is a transcription factor that co-represses ribosomal genes with FHL1 via the TOR signalling pathway and protein kinase A. 123 -337722 pfam10381 Autophagy_C Autophagocytosis associated protein C-terminal. Autophagocytosis is a starvation-induced process responsible for transport of cytoplasmic proteins to the vacuole. The small C-terminal domain is likely to be a distinct binding region for the stability of the autophagosome complex. It carries a highly characteristic conserved FLKF sequence motif. 24 -337723 pfam10382 DUF2439 Protein of unknown function (DUF2439). Proteins in this family have been implicated in telomere maintenance in Saccharomyces cerevisiae and in meiotic chromosome segregation in Schizosaccharomyces pombe 74 -337724 pfam10383 Clr2 Transcription-silencing protein Clr2. Clr2 is a chromatin silencing protein, one of a quartet of proteins forming the core of SHREC, a multienzyme effector complex that mediates hetero-chromatic transcriptional gene silencing in fission yeast. Clr2 does not have any obvious well-conserved domains but, along with the other core proteins, binds to the histone deacetylase Clr3, and on its own might also have a role in chromatin organisation at the cnt domain, the site of kinetochore assembly. 140 -337725 pfam10384 Scm3 Centromere protein Scm3. Scm3 is a centromere protein that has been shown in Saccharomyces cerevisiae to be required for G2/M progression and Cse4 localization. The C terminal region of Scm3 proteins is variable in size and sometimes consists of DNA binding motifs. 53 -337726 pfam10385 RNA_pol_Rpb2_45 RNA polymerase beta subunit external 1 domain. RNA polymerases catalyze the DNA-dependent polymerization of RNA. Prokaryotes contain a single RNA polymerase compared with three in eukaryotes (not including mitochondrial or chloroplast polymerases). This domain in prokaryotes spans the gap between domains 4 and 5 of the yeast protein. It is also known as the external 1 region of the polymerase and is bound in association with the external 2 region. 66 -287372 pfam10386 DUF2441 Protein of unknown function (DUF2441). This is a family of highly conserved, predicted, proteins from Bacillus species. The structure forms a homo-dimer. The function is unknown. 141 -337727 pfam10387 DUF2442 Protein of unknown function (DUF2442). This family of bacterial and fungal proteins has several members annotated as being putative molybdopterin-guanine dinucleotide biosynthesis protein A; however this could not be verified. Hence the function is not known. This family also includes the DUF3532 that was found to be related and was merged into this family. Members of this family also fall into the NE0471 N-terminal domain-like superfamily, a family of proteins with a unique fold in SCOP:143880. 70 -313588 pfam10388 YkuI_C EAL-domain associated signalling protein domain. In Bacillus species this highly conserved region of the YkuI protein lies immediately downstream of the EAL (diguanylate cyclase/phosphodiesterase domain 2) pfam00563 domain so that together they form a monomer which dimerizes for its enzymatic action. The region contains three alpha helices and five beta strands and is the C-terminal half of the structure. 166 -313589 pfam10389 CoatB Bacteriophage coat protein B. CoatB is a single filamentous bacteriophage alpha helix of approximately 44 residues. It is likely to assemble into a complex of 35 monomers in a Catherine-wheel like formation. It is the major coat protein of the virion. 46 -337728 pfam10390 ELL RNA polymerase II elongation factor ELL. ELL is a family of RNA polymerase II elongation factors. It is bound stably to elongation-associated factors 1 and 2, EAFs, and together these act as a strong regulator of transcription activity. by direct interaction with Pol II. ELL binds to pol II on its own but the affinity is greatly increased by the cooperation of EAF. Some members carry an Occludin domain pfam07303 just downstream. There is no S. cerevisiae member. 279 -337729 pfam10391 DNA_pol_lambd_f Fingers domain of DNA polymerase lambda. DNA polymerases catalyze the addition of dNMPs onto the 3-prime ends of DNA chains. There is a general polymerase fold consisting of three subdomains that have been likened to the fingers, palm, and thumb of a right hand. DNA_pol_lambd_f is the central three-helical region of DNA polymerase lambda referred to as the F and G helices of the fingers domain. Contacts with DNA involve this conserved helix-hairpin-helix motif in the fingers region which interacts with the primer strand. This motif is common to several DNA binding proteins and confers a sequence-independent interaction with the DNA backbone. 50 -192566 pfam10392 COG5 Golgi transport complex subunit 5. The COG complex, the peripheral membrane oligomeric protein complex involved in intra-Golgi protein trafficking, consists of eight subunits arranged in two lobes bridged by Cog1. Cog5 is in the smaller, B lobe, bound in with Cog6-8, and is itself bound to Cog1 as well as, strongly, to Cog7. 132 -313592 pfam10393 Matrilin_ccoil Trimeric coiled-coil oligomerization domain of matrilin. This short domain is a coiled coil structure and has a single cysteine residue at the start which is likely to form a di-sulfide bridge with a corresponding cysteine in an upstream EGF (pfam00008) domain thereby spanning a VWA (pfam00092) domain. All three domains can be associated together as in the cartilage matrix protein matrilin, where this domain is likely to be responsible for oligomerization. 43 -337730 pfam10394 Hat1_N Histone acetyl transferase HAT1 N-terminus. This domain is the N-terminal half of the structure of histone acetyl transferase HAT1. It is often found in association with the C-terminal part of the GNAT Acetyltransf_1 (pfam00583) domain. It seems to be motifs C and D of the structure. Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-CoA to the lysine E-amino groups on the N-terminal tails of histones. HATs are involved in transcription since histones tend to be hyper-acetylated in actively transcribed regions of chromatin, whereas in transcriptionally silent regions histones are hypo-acetylated. 158 -313594 pfam10395 Utp8 Utp8 family. Utp8 is an essential component of the nuclear tRNA export machinery in Saccharomyces cerevisiae. It is a tRNA binding protein that acts at a step between tRNA maturation /aminoacylation, and translocation of the tRNA across the nuclear pore complex. 689 -337731 pfam10396 TrmE_N GTP-binding protein TrmE N-terminus. This family represents the shorter, B, chain of the homo-dimeric structure which is a guanine nucleotide-binding protein that binds and hydrolyzes GTP. TrmE is homologous to the tetrahydrofolate-binding domain of N,N-dimethylglycine oxidase and indeed binds formyl-tetrahydrofolate. TrmE actively participates in the formylation reaction of uridine and regulates the ensuing hydrogenation reaction of a Schiff's base intermediate. This B chain is the N-terminal portion of the protein consisting of five beta-strands and three alpha helices and is necessary for mediating dimer formation within the protein. 81 -337732 pfam10397 ADSL_C Adenylosuccinate lyase C-terminus. This is the C-terminal seven alpha helices of the structure whose full length represents the enzyme adenylosuccinate lyase. This sequence lies C-terminal to the conserved motif necessary for beta-elimination reactions, Adenylosuccinate lyase catalyzes two steps in the synthesis of purine nucleotides: the conversion of succinylaminoimidazole-carboxamide ribotide into aminoimidazole-carboxamide ribotide, the eighth step of the de novo pathway, and the formation of adenosine monophosphate (AMP) from adenylosuccinate, the second step in the conversion of inosine monophosphate into AMP. 79 -313597 pfam10398 DUF2443 Protein of unknown function (DUF2443). This is a small family of highly conserved proteins from bacteria, in particular Helicobacter species, The structure is a bundle of alpha helices. The function is not known. 79 -313598 pfam10399 UCR_Fe-S_N Ubiquitinol-cytochrome C reductase Fe-S subunit TAT signal. This is the N-terminal region of the E or R chain, Ubiquitinol-cytochrome C reductase Fe-S subunit, of the hetero-hexameric cytochrome bc1 complex. This region is a TAT-signal region. The cytochrome bc1 complex is an oligomeric membrane protein complex that is a component of respiratory and photosynthetic electron transfer chains. The enzyme couples the transfer of electrons from ubiquinol to cytochrome c with the the generation of a protein gradient across the membrane. The motif is also associated with Rieske (pfam00355), UCR_TM (pfam02921) and Ubiq-Cytc-red_N (pfam09165). 41 -313599 pfam10400 Vir_act_alpha_C Virulence activator alpha C-term. This structure is homo-dimeric, and the domain here is the C-terminal half of the structure, often associated with PadR upstream, (pfam03551), which is a transcriptional regulator. 85 -337733 pfam10401 IRF-3 Interferon-regulatory factor 3. This is the interferon-regulatory factor 3 chain of the hetero-dimeric structure which also contains the shorter chain CREB-binding protein. These two subunits make up the DRAF1 (double-stranded RNA-activated factor 1). Viral dsRNA produced during viral transcription or replication leads to the activation of DRAF1. The DNA-binding specificity of DRAF1 correlates with transcriptional induction of ISG (interferon-alpha,beta-stimulated gene). IRF-3 preexists in the cytoplasm of uninfected cells and translocates to the nucleus following viral infection. Translocation of IRF-3 is accompanied by an increase in serine and threonine phosphorylation, and association with the CREB coactivator occurs only after infection. 179 -337734 pfam10403 BHD_1 Rad4 beta-hairpin domain 1. This short domain is found in the Rad4 protein. This domain binds to DNA. 53 -337735 pfam10404 BHD_2 Rad4 beta-hairpin domain 2. This short domain is found in the Rad4 protein. This domain binds to DNA. 63 -337736 pfam10405 BHD_3 Rad4 beta-hairpin domain 3. This short domain is found in the Rad4 protein. This domain binds to DNA. 72 -337737 pfam10406 TAF8_C Transcription factor TFIID complex subunit 8 C-term. This is the C-terminal, Delta, part of the TAF8 protein. The N-terminal is generally the histone fold domain, Bromo_TP (pfam07524). TAF8 is one of the key subunits of the transcription factor for pol II, TFIID. TAF8 is one of the several general cofactors which are typically involved in gene activation to bring about the communication between gene-specific transcription factors and components of the general transcription machinery. 48 -313605 pfam10407 Cytokin_check_N Cdc14 phosphatase binding protein N-terminus. Cytokinesis in yeasts involves a family of proteins whose essential function is to bind Cdc14-family phosphatase and prevent this from being sequestered and inhibited in the nucleolus. This is the highly conserved N-terminus of a family of proteins which act as cytokinesis checkpoint controls by allowing cells to cope with cytokinesis defects. These proteins are required for rDNA silencing and mini-chromosome maintenance. 71 -313606 pfam10408 Ufd2P_core Ubiquitin elongating factor core. This is the most conserved part of the core region of Ufd2P ubiquitin elongating factor or E4, running from helix alpha-11 to alpha-38. It consists of 31 helices of variable length connected by loops of variable size forming a compact unit; the helical packing pattern of the compact unit consists of five structural repeats that resemble tandem Armadillo (ARM) repeats. This domain is involved in ubiquitination as it binds Cdc48p and escorts ubiquitinated proteins from Cdc48p to the proteasome for degradation. The core is structurally similar to the nuclear transporter protein importin-alpha. The core is associated with the U-box at the C-terminus, pfam04564, which has ligase activity. 593 -337738 pfam10409 PTEN_C2 C2 domain of PTEN tumor-suppressor protein. This is the C2 domain-like domain, in greek key form, of the PTEN protein, phosphatidyl-inositol triphosphate phosphatase, and it is the C-terminus. This domain may well include a CBR3 loop which means it plays a central role in membrane binding. This domain associates across an extensive interface with the N-terminal phosphatase domain DSPc (pfam00782) suggesting that the C2 domain productively positions the catalytic part of the protein onto the membrane. 133 -337739 pfam10410 DnaB_bind DnaB-helicase binding domain of primase. This domain is the C-terminal region three-helical domain of primase. Primases synthesize short RNA strands on single-stranded DNA templates, thereby generating the hybrid duplexes required for the initiation of synthesis by DNA polymerases. Primases are recruited to single-stranded DNA by helicases, and this domain is the region of the primase which binds DnaB-helicase. It is associated with the Toprim domain (pfam01751) which is the central catalytic core. 54 -337740 pfam10411 DsbC_N Disulfide bond isomerase protein N-terminus. This is the N-terminal domain of the disulfide bond isomerase DsbC. The whole molecule is V-shaped, where each arm is a DsbC monomer of two domains linked by a hinge; and the N-termini of each monomer join to form the dimer interface at the base of the V, so are vital for dimerization. DsbC is required for disulfide bond formation and functions as a disulfide bond isomerase during oxidative protein-folding in bacterial periplasm. It also has chaperone activity. 52 -313610 pfam10412 TrwB_AAD_bind Type IV secretion-system coupling protein DNA-binding domain. The plasmid conjugative coupling protein TrwB forms hexamers from six structurally very similar protomers. This hexamer contains a central channel running from the cytosolic pole (made up by the AADs) to the membrane pole ending at the transmembrane pore shaped by 12 transmembrane helices, rendering an overall mushroom-like structure. The TrwB_AAD (all-alpha domain) domain appears to be the DNA-binding domain of the structure. TrwB, a basic integral inner-membrane nucleoside-triphosphate-binding protein, is the structural prototype for the type IV secretion system coupling proteins, a family of proteins essential for macromolecular transport between cells and export. 386 -313611 pfam10413 Rhodopsin_N Amino terminal of the G-protein receptor rhodopsin. Rhodopsin is the archetypal G-protein-coupled receptor. Such receptors participate in virtually all physiological processes, as signalling molecules. They utilize heterotrimeric guanosine triphosphate (GTP)-binding proteins to transduce extracellular signals to intracellular events. Rhodopsin is important because of the pivotal role it plays in visual signal transduction. Rhodopsin is a dimeric transmembrane protein and its intradiskal surface consists of this amino terminal domain and three loops connecting six of the seven transmembrane helices. The N-terminus is a compact domain of alpha-helical regions with breaks and bends at proline residues outside the membrane. The transmembrane part of rhodopsin is represented by 7tm_1 (pfam00001). The N-terminal domain is extracellular is and is necessary for successful dimerization and molecular stability. 35 -337741 pfam10414 CysG_dimerizer Sirohaem synthase dimerization region. Bacterial sulfur metabolism depends on the iron-containing porphinoid sirohaem. CysG, S-adenosyl-L-methionine (SAM)-dependent bis-methyltransferase, dehydrogenase and ferrochelatase, synthesizes sirohaem from uroporphyrinogen III via reactions which encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B12) biosynthesis. CysG is a dimer of two structurally similar protomers held together asymmetrically through a number of salt-bridges across complementary residues in the CysG_dimerizer region to produce a series of active sites, accounting for CysG's multifunctionality, catalyzing four diverse reactions: two SAM-dependent methylations, NAD+-dependent tetrapyrrole dehydrogenation and metal chelation. The CysG_dimerizer region holding the two protomers together is of 74 residues. 56 -337742 pfam10415 FumaraseC_C Fumarase C C-terminus. Fumarase C catalyzes the stereo-specific interconversion of fumarate to L-malate as part of the Kreb's cycle. The full-length protein forms a tetramer with visible globular shape. FumaraseC_C is the C-terminal 65 residues referred to as domain 3. The core of the molecule consists of a bundle of 20 alpha-helices from the five-helix bundle of domain 2. The projections from the core of the tetramer are generated from domains 1 and 3 of each subunit. FumaraseC_C does not appear to be part of either the active site or the activation site but is helical in structure forming a little bundle. 54 -313614 pfam10416 IBD Transcription-initiator DNA-binding domain IBD. In Trichomonas vaginalis, thought to be the earliest extant eukaryote, the sole initiator element for control of the start of transcription is Inr, and this is recognized by the initiator binding protein IBP39. IBP39 contains an N-terminal Inr binding domain, IBD, connected via a flexible, proteolytically sensitive, linker (residues 127-145) to a C-terminal domain. The IBD structure reveals a winged-helix-wing conformation with each element binding to DNA, the central helix-turn-helix contributing the majority of the specificity-determining contacts with the Inr core motif TCAPy(T/A). The binding of IBP39 to the Inr directly recruits RNA polymerase II and in this way initiates transcription. 125 -337743 pfam10417 1-cysPrx_C C-terminal domain of 1-Cys peroxiredoxin. This is the C-terminal domain of 1-Cys peroxiredoxin (1-cysPrx), a member of the peroxiredoxin superfamily which protect cells against membrane oxidation through glutathione (GSH)-dependent reduction of phospholipid hydroperoxides to corresponding alcohols. The C-terminal domain is crucial for providing the extra cysteine necessary for dimerization of the whole molecule. Loss of the enzyme's peroxidase activity is associated with oxidation of the catalytic cysteine, upstream of this domain; and glutathionylation, presumably through its disruption of protein structure, facilitates access for GSH, resulting in spontaneous reduction of the mixed disulfide to the sulfhydryl and consequent activation of the enzyme. The domain is associated with family AhpC-TSA, pfam00578, which carries the catalytic cysteine. 40 -337744 pfam10418 DHODB_Fe-S_bind Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B. Lactococcus lactis is one of the few organisms with two dihydroorotate dehydrogenases, DHODs, A and B. The B enzyme is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a hetero-tetramer composed of a central homodimer of PyrDB subunits resembling the DHODA structure and two PyrK subunits along with three different cofactors: FMN, FAD, and a [2Fe-2S] cluster. The [2Fe-2S] iron-sulfur cluster binds to this C-terminal domain of the PyrK subunit, which is at the interface between the flavin and NAD binding domains and contains three beta-strands. The four cysteine residues at the N-terminal part of this domain are the ones that bind, in pairs, to the iron-sulfur cluster. The conformation of the whole molecule means that the iron-sulfur cluster is localized in a well-ordered part of this domain close to the FAD binding site. The FAD and and NAD binding domains are FAD_binding_6, pfam00970 and NAD_binding_1, pfam00175. 39 -337745 pfam10419 TFIIIC_sub6 TFIIIC subunit. This is a family of proteins subunits of TFIIIC. TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. Yeast members of this family are fused to phosphoglycerate mutase domain. 33 -313618 pfam10420 IL12p40_C Cytokine interleukin-12p40 C-terminus. IL12p40_C is the largely beta stranded C-terminal, D3, domain of interleukin-12p40 or interleukin-12B. This interleukin is produced on stimulation by macrophage-engulfed micro-organisms and other stimuli, when it dimerizes with interleukin-12p35 to form a heterodimer which then binds to receptors on natural killer cells to activate them to destroy the micro-organisms. This domain contains two disulfide bridges, one of which serves to bind p40 to p35 and the other to hold the beta strands within the domain together. The cupped shape of the p35 binding interface matches the elbow-like bend between D2 and D3 in p40. The domain is often associated with family fn3, pfam00041. 81 -313619 pfam10421 OAS1_C 2'-5'-oligoadenylate synthetase 1, domain 2, C-terminus. This is the largely alpha-helical, C-terminal half of 2'-5'-oligoadenylate synthetase 1, being described as domain 2 of the enzyme and homologous to a tandem ubiquitin repeat. It carries the region of enzymic activity between 320 and 344 at the extreme C-terminal end. Oligoadenylate synthetases are antiviral enzymes that counteract vial attack by degrading viral RNA. The enzyme uses ATP in 2'-specific nucleotidyl transfer reactions to synthesize 2'.5'-oligoadenylates, which activate latent ribonuclease, resulting in degradation of viral RNA and inhibition of virus replication. This domain is often associated with NTP_transf_2 pfam01909. 185 -255978 pfam10422 LRS4 Monopolin complex subunit LRS4. Monopolin is a protein complex, originally identified in Saccharomyces cerevisiae, that is required for the segregation of homologous centromeres to opposite poles of a dividing cell during meiosis I. The orthologous complex in Schizosaccharomyces pombe is not required for meiosis I chromosome segregation, but is proposed to play a similar physiological role in clamping microtubule binding sites. In S.cerevisiae this subunit is called LRS4, and in S. pombe it is known as Mde4. 211 -337746 pfam10423 AMNp_N Bacterial AMP nucleoside phosphorylase N-terminus. This is the N-terminal domain of bacterial AMP nucleoside phosphorylase (AMNp). The N- and C-termini form distinct domains which intertwine with each other to form a stable monomer which associates with five other monomers to yield the active hexamer. The N-terminus consists of a long helix and a four-stranded sheet with a novel topology. The C-terminus binds the nucleoside whereas the N-terminus acts as the enzymatic regulatory domain. AMNp (EC:3.2.2.4) catalyzes the hydrolysis of AMP to form adenine and ribose 5-phosphate. thereby regulating intracellular AMP levels. 150 -313621 pfam10425 SdrG_C_C C-terminus of bacterial fibrinogen-binding adhesin. This is the C-terminal half of a bacterial fibrinogen-binding adhesin SdrG. SdrG is a Gram-positive cell-wall-anchored adhesin that allows attachment of the bacterium to host tissues via specific binding to the beta-chain of human fibrinogen (Fg). SdrG binds to its ligand with a dynamic "dock, lock, and latch" mechanism which represents a general mode of ligand-binding for structurally related cell wall-anchored proteins in most Gram-positive bacteria. The C-terminal part of SdrG(276-596) is integral to the folding of the immunoglobulin-like whole to create the docking grooves necessary for Fg binding. The domain is associated with families of Cna_B, pfam05738. 153 -287407 pfam10426 zf-RAG1 Recombination-activating protein 1 zinc-finger domain. This is a C2-H2 zinc-finger domain closely resembling the classical TFIIIA-type zinc-finger, CX3FX5LX2-3H, despite having a valine and a tyrosine at the core instead of a phenylalanine and a leucine, hence CX3VX1LX2YX2H. The structure, nevertheless, contains the characteristic two-stranded beta-sheet and alpha-helix of a classical zinc-finger. The domain binds one zinc and, in complex with the zinc-RING-finger domain, helps to stabilize the whole of the dimerization region of recombination activating protein 1 (RAG1). The function of the whole is to bind double-stranded DNA. 30 -313622 pfam10427 Ago_hook Argonaute hook. This region has been called the argonaute hook. It has been shown to bind to the Piwi domain pfam02171 of Argnonaute proteins. 150 -337747 pfam10428 SOG2 RAM signalling pathway protein. SOG2 proteins in Saccharomyces cerevisiae are involved in cell separation and cytokinesis. 430 -287410 pfam10429 Mtr2 Nuclear pore RNA shuttling protein Mtr2. Mtr2 is a monomeric, dual-action, RNA-shuttle protein found in yeasts. Transport across the nuclear-cytoplasmic membrane is via the macro-molecular membrane-spanning nuclear pore complex, NPC. The pore is lined by a subset of NPC members called nucleoporins that present FG (Phe-Gly) receptors, characteristically GLFG and FXFG motifs, for shuttling RNAs and proteins. RNA cargo is bound to soluble transport proteins (nuclear export factors) such as Mex67 in yeasts, and TAP in metazoa, which pass along the pore by binding to successive FG receptors. Mtr2 when bound to Mex67 maximises this FG-binding. Mtr2 also acts independently of Mex67 in transporting the large ribosomal RNA subunit through the pore. 164 -313624 pfam10430 Ig_Tie2_1 Tie-2 Ig-like domain 1. 95 -337748 pfam10431 ClpB_D2-small C-terminal, D2-small domain, of ClpB protein. This is the C-terminal domain of ClpB protein, referred to as the D2-small domain, and is a mixed alpha-beta structure. Compared with the D1-small domain (included in AAA, pfam00004) it lacks the long coiled-coil insertion, and instead of helix C4 contains a beta-strand (e3) that is part of a three stranded beta-pleated sheet. In Thermophilus the whole protein forms a hexamer with the D1-small and D2-small domains located on the outside of the hexamer, with the long coiled-coil being exposed on the surface. The D2-small domain is essential for oligomerization, forming a tight interface with the D2-large domain of a neighboring subunit and thereby providing enough binding energy to stabilize the functional assembly. The domain is associated with two Clp_N, pfam02861, at the N-terminus as well as AAA, pfam00004 and AAA_2, pfam07724. 81 -313626 pfam10432 bact-PGI_C Bacterial phospho-glucose isomerase C-terminal SIS domain. This is the C-terminal SIS domain of a bacterial phospho-glucose isomerase EC:5.3.1.9 protein which is similar to eukaryote homologs to the extent that the sequence includes the cluster of threonines and serines that forms the sugar phosphate-binding site in conventional PGI. This domain contributes a good proportion of the active catalytic site residues. This PGI uses the same catalytic mechanisms for both glucose ring-opening and isomerisation for the interconversion of glucose 6-phosphate to fructose 6-phosphate. It is associated with family SIS, pfam01380. 147 -313627 pfam10433 MMS1_N Mono-functional DNA-alkylating methyl methanesulfonate N-term. MMS1 is a protein that protects against replication-dependent DNA damage in Saccharomyces cerevisiae. MMS1 belongs to the DDB1 family of cullin 4 adaptors and the two proteins are homologous. MMS1 bridges the interaction of MMS22 and Crt10 with Cul8/Rtt101. Cul8/Rtt101 is a cullin protein involved in the regulation of DNA replication subsequent to DNA damage. The N-terminal region of MMS1 and the C-terminal of MMS22 are required for the the MMS1-MMS22 interaction. The human HIV-1 virion-associated protein Vpr assembles with DDB1 through interaction with DCAF1 (chromatin assembly factor) to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and subsequent G2 arrest. 487 -313628 pfam10434 MAM1 Monopolin complex protein MAM1. Monopolin is a protein complex, originally identified in Saccharomyces cerevisiae, that is required for the segregation of homologous centromeres to opposite poles of a dividing cell during meiosis I. MAM1 is required in S. cerevisiae for monopolar attachment. 254 -337749 pfam10435 BetaGal_dom2 Beta-galactosidase, domain 2. This is the second domain of the five-domain beta-galactosidase enzyme that altogether catalyzes the hydrolysis of beta(1-3) and beta(1-4) galactosyl bonds in oligosaccharides as well as the inverse reaction of enzymatic condensation and trans-glycosylation. This domain is made up of 16 antiparallel beta-strands and an alpha-helix at its C-terminus. The fold of this domain appears to be unique. In addition, the last seven strands of the domain form a subdomain with an immunoglobulin-like (I-type Ig) fold in which the first strand is divided between the two beta-sheets. In penicillin spp this strand is interrupted by a 12-residue insertion which forms an additional edge-strand to the second beta-sheet of the sub-domain. The remainder of the second domain forms a series of beta-hairpins at its N-terminus, four strands of which are contiguous with part of the Ig-like sub-domain, forming in total a seven-stranded antiparallel beta-sheet. This domain is associated with family Glyco_hydro_35, pfam01301, which is N-terminal to it, but itself has no metazoan members. 178 -337750 pfam10436 BCDHK_Adom3 Mitochondrial branched-chain alpha-ketoacid dehydrogenase kinase. Catabolism and synthesis of leucine, isoleucine and valine are finely balanced, allowing the body to make the most of dietary input but removing excesses to prevent toxic build-up of their corresponding keto-acids. This is the butyryl-CoA dehydrogenase, subunit A domain 3, a largely alpha-helical bundle of the enzyme BCDHK. This enzyme is the regulator of the dehydrogenase complex that breaks branched-chain amino-acids down, by phosphorylating and thereby inactivating it when synthesis is required. The domain is associated with family HATPase_c pfam02518 which is towards the C-terminal. 159 -337751 pfam10437 Lip_prot_lig_C Bacterial lipoate protein ligase C-terminus. This is the C-terminal domain of a bacterial lipoate protein ligase. There is no conservation between this C-terminus and that of vertebrate lipoate protein ligase C-termini, but both are associated with the domain BPL_LipA_LipB pfam03099, further upstream. This domain is required for adenylation of lipoic acid by lipoate protein ligases. The domain is not required for transfer of lipoic acid from the adenylate to the lipoyl domain. Upon adenylation, this domain rotates 180 degrees away from the active site cleft. Therefore, the domain does not interact with the lipoyl domain during transfer. 78 -337752 pfam10438 Cyc-maltodext_C Cyclo-malto-dextrinase C-terminal domain. This domain is at the very C-terminus of cyclo-malto-dextrinase proteins and consists of 8 beta strands, is largely globular and appears to help stabilize the acitve sites created by upstream domains, Cyc-maltodext_N pfam09087, and Alpha-amylase pfam00128. Cyclo-malto-dextrinases hydrolyze cyclodextrans to maltose and glucose and catalyze trans-glycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. 76 -313633 pfam10439 Bacteriocin_IIc Bacteriocin class II with double-glycine leader peptide. This is a family of bacteriocidal bacteriocins secreted by Streptococcal species in order to kill off closely-related competitor Gram-positives. The sequence includes the peptide precursor, this being cleaved off proteolytically at the double-glycine. The family does not carry the YGNGVXC motif characteristic of pediocin-like Bacteriocins, Bacteriocin_II pfam01721. The producer bacteria are protected from the effects of their own bacteriocins by production of a specific immunity protein which is co-transcribed with the genes encoding the bacteriocins, eg family EntA_Immun pfam08951. The bacteriocins are structurally more specific than their immunity-protein counterparts. Typically, production of the bacteriocin gene is from within an operon carrying up to 6 genes including a typical two-component regulatory system (R and H), a small peptide pheromone (C), and a dedicated ABC transporter (A and -B) as well as an immunity protein. The ABC transporter is thought to recognize the N termini of both the pheromone and the bacteriocins and to transport these peptides across the cytoplasmic membrane, concurrent with cleavage at the conserved double-glycine motif. Cleaved extracellular C can then bind to the sensor kinase, H, resulting in activation of R and up-regulation of the entire gene cluster via binding to consensus sequences within each promoter. It seems likely that this whole regulon is carried on a transmissible plasmid which is passed between closely related Firmicute species since many clinical isolates from different Firmicutes can produce at least two bacteriocins. and the same bacteriocins can be produced by different species. 58 -337753 pfam10440 WIYLD Ubiquitin-binding WIYLD domain. This presumed domain has been predicted to contain three alpha helices. The domain was named the WIYLD domain based on the pattern of most conserved residues. It binds ubiquitin. In the Arabidopsis thaliana histone-lysine N-methyltransferase SUVR4, binding of ubiquitin to this domain stimulates enzymatic activity and converts its activity from a strict dimethylase to a di/trimethylase. 55 -337754 pfam10441 Urb2 Urb2/Npa2 family. This family includes the Urb2 protein from yeast that are involved in ribosome biogenesis. 212 -337755 pfam10442 FIST_C FIST C domain. The FIST C domain is a novel sensory domain, which is present in signal transduction proteins from Bacteria, Archaea and Eukarya. Chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids. 133 -313637 pfam10443 RNA12 RNA12 protein. This family includes RNA12 from S. cerevisiae. That protein contains an RRM domain. This region is C-terminal to that and includes a P-loop motif suggesting this region binds to NTP. The RNA12 proteins is involved in pre-rRNA maturation. 424 -337756 pfam10444 Nbl1_Borealin_N Nbl1 / Borealin N terminal. Nbl1 is a subunit of the conserved CPC, the chromosomal passenger complex, which regulates mitotic chromosome segregation. In Fungi and Animalia, this complex consists of the kinase Aurora B/AIR-2/Ipl1p, INCENP/ICP-1/Sli15p, and Survivin/BIR-1/Bir1p. In Animalia, a fourth subunit (Borealin/Dasra/CSC-1) is required for targeting CPC to centromeres and central spindles. Nbl1 has been shown in budding yeast to be essential for viability, and for CPC localization, stability, integrity, and function. The N-terminus of Borealin is homologous to Nbl1. This family contains both Nbl1, and the N terminal region of Borealin. 55 -313639 pfam10445 DUF2456 Protein of unknown function (DUF2456). This is a family of uncharacterized proteins. 94 -337757 pfam10446 DUF2457 Protein of unknown function (DUF2457). This is a family of uncharacterized proteins. 462 -337758 pfam10447 EXOSC1 Exosome component EXOSC1/CSL4. This family of proteins are components of the exosome 3'->5' exoribonuclease complex. The exosome mediates degradation of unstable mRNAs that contain AU-rich elements (AREs) within their 3' untranslated regions. 112 -337759 pfam10448 POC3_POC4 20S proteasome chaperone assembly proteins 3 and 4. This family contains chaperones of the 20S proteasome which function in early 20S proteasome assembly. The structures of two of the proteins in this family (POC3 and POC4) have been solved, and they closely resemble those of the mammalian proteasome assembling chaperone PAC3, although there is little sequence similarity between them. 136 -151025 pfam10450 POC1 POC1 chaperone. In yeast, POC1 is a chaperone of the 20S proteasome which functions in early 20S proteasome assembly. 223 -313642 pfam10451 Stn1 Telomere regulation protein Stn1. The budding yeast protein Stn1 is a DNA-binding protein which has specificity for telomeric DNA. Structural profiling has predicted an OB-fold. This domain is the N-terminal part of the molecule, which adopts the OB fold. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution. 252 -313643 pfam10452 TCO89 TORC1 subunit TCO89. TC089 is a component of the TORC1 complex. TORC1 is responsible for a wide range of rapamycin-sensitive cellular activities. 449 -313644 pfam10453 NUFIP1 Nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). Proteins in this family have been implicated in the assembly of the large subunit of the ribosome and in telomere maintenance. Some proteins in this family contain a CCCH zinc finger. This family contains a protein called human fragile X mental retardation-interacting protein 1, which is known to bind RNA and is phosphorylated upon DNA damage. 53 -313645 pfam10454 DUF2458 Protein of unknown function (DUF2458). This a is family of uncharacterized proteins. 166 -256002 pfam10455 BAR_2 Bin/amphiphysin/Rvs domain for vesicular trafficking. This Pfam entry includes proteins that are not matched by pfam03114. 286 -313646 pfam10456 BAR_3_WASP_bdg WASP-binding domain of Sorting nexin protein. The C-terminal region of the Sorting nexin group of proteins appears to carry a BAR-like (Bin/amphiphysin/Rvs) domain. This domain is very diverse and the similarities with other BAR domains are few. In the Sorting nexins it is associated with family PX, pfam00787.13, and in combination with PX appears to be necessary to bind WASP along with p85 to form a multimeric signalling complex. 236 -337760 pfam10457 MENTAL Cholesterol-capturing domain. Human meta-static lymph node (MLN) 64 is a late endosomal membrane protein, and carries this MENTAL (MLN64N-terminal) domain at its N-terminus. The domain is composed of four trans-membrane helices with three short intervening loops. The function of the domain is to capture cholesterol and pass it to the associated START domain pfam01852 for transfer to a cytosolic acceptor protein or membrane. In mammals, the MENTAL domain is involved in the localization of MLN64 and MENTHO in late endosomes, and also in homo-and of hetero-interactions of these two proteins. 175 -313648 pfam10458 Val_tRNA-synt_C Valyl tRNA synthetase tRNA binding arm. This domain is found at the C-terminus of Valyl tRNA synthetases. 66 -337761 pfam10459 Peptidase_S46 Peptidase S46. Dipeptidyl-peptidase 7 (DPP-7) is the best characterized member of this family. It is a serine peptidase that is located on the cell surface and is predicted to have two N-terminal transmembrane domains. 696 -313650 pfam10460 Peptidase_M30 Peptidase M30. This family contains the metallopeptidase hyicolysin. Hyicolysin has a zinc ion which is liganded by two histidine and one glutamate residue. 364 -313651 pfam10461 Peptidase_S68 Peptidase S68. This family of serine peptidases contains PIDD proteins. PIDD forms a complex with RAIDD and procaspase-2 that is known as the 'PIDDosome'. The PIDDosome forms when DNA damage occurs and either activates NF-kappaB, leading to cell survival, or caspase-2, which leads to apoptosis. 34 -287440 pfam10462 Peptidase_M66 Peptidase M66. This family of metallopeptidases contains StcE, a virulence factor found in Shiga toxigenic Escherichia coli organisms. StcE peptidase cleaves C1 esterase inhibitor. 306 -287441 pfam10463 Peptidase_U49 Peptidase U49. This family contains Lit peptidase from Escherichia coli. Lit protease functions in bacterial cell death in response to infection by bacteriophage T4. Following binding of Gol peptide to domains II and III of elongation factor Tu, the Lit peptidase cleaves domain I of the elongation factor. This prevents binding of guanine nucleotides, shuts down translation and leads to cell death. 205 -287442 pfam10464 Peptidase_U40 Peptidase U40. This family contains P5 murein endopeptidase from bacteriophage phi-6. P5 murein endopeptidase has lytic activity against several gram-negative bacteria. It is thought that the enzyme cleaves the cell wall peptide bridge formed by meso-2,6-diaminopimelic acid and D-Ala 212 -287443 pfam10465 Inhibitor_I24 PinA peptidase inhibitor. PinA inhibits the endopeptidase La. It binds to the La homotetramer but does not interfere with the ATP binding site or the active site of La. 140 -287444 pfam10466 Inhibitor_I34 Saccharopepsin inhibitor I34. The saccharopepsin inhibitor is highly specific for the aspartic peptidase saccharopepsin. It is largely unstructured in the absence of saccharopepsin, but in the presence, the inhibitor undergoes a conformation change forming an almost perfect alpha-helix from Asn2 to Met32 in the active site cleft of the peptidase. 69 -313652 pfam10467 Inhibitor_I48 Peptidase inhibitor clitocypin. Clitocypin binds and inhibits cysteine proteinases. It has no similarity to any other known cysteine proteinase inhibitors but bears some similarity to a lectin-like family of proteins from mushrooms. 142 -313653 pfam10468 Inhibitor_I68 Carboxypeptidase inhibitor I68. This is a family of tick carboxypetidase inhibitors. 74 -313654 pfam10469 AKAP7_NLS AKAP7 2'5' RNA ligase-like domain. AKAP7_NLS is the N-terminal domain of the cyclic AMP-dependent protein kinase A, PKA, anchor protein AKAP7. This protein anchors PKA for its role in regulating PKA-mediated gene transcription in both somatic cells and oocytes. AKAP7_NLS carries the nuclear localization signal (NLS) KKRKK, that indicates the cellular destiny of this anchor protein. Binding to the regulatory subunits RI and RII of PKA is mediated via the family AKAP7_RIRII_bdg. at the C-terminus. This family represents a region that contains two 2'5' RNA ligase like domains pfam02834. Presumably this domain carried out some as yet unknown enzymatic function. 207 -313655 pfam10470 AKAP7_RIRII_bdg PKA-RI-RII subunit binding domain of A-kinase anchor protein. AKAP7_RIRII_bdg is the C-terminal domain of the cyclic AMP-dependent protein kinase A, PKA, anchor protein AKAP7. This protein anchors PKA, for its role in regulating PKA-mediated gene transcription in both somatic cells and oocytes, by binding to its regulatory subunits, RI and RII, hence being known as a dual-specific AKAP. The 25 crucial amino acids of RII-binding domains in general form structurally conserved amphipathic helices with unrelated sequences; hydrophobic amino acid residues form the backbone of the interaction and hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction. The N-terminus, of family AKAP7_NLS, carries the nuclear localization signal. 57 -337762 pfam10471 ANAPC_CDC26 Anaphase-promoting complex APC subunit CDC26. The anaphase-promoting complex (APC) or cyclosome is a cell cycle-regulated ubiquitin-protein ligase that regulates important events in mitosis such as the initiation of anaphase and exit from telophase. The APC, in conjunction with other enzymes, assembles multi-ubiquitin chains on a variety of regulatory proteins thereby targeting them for proteolysis by the 26S proteasome. CDC26 is one of the nine or so subunits identified within APC but its exact function is not known. The APC/C becomes active at the metaphase/anaphase transition and remains active during G1 phase. One mechanism linked to activation of the APC/C is phosphorylation. The yeast APC/C is composed of at least 13 subunits, but the function of many of the subunits is unknown. Hcn1 is the smallest subunit of the S. pombe APC/C, and is found to be essential for cell viability, APC/C integrity, and proper APC/C regulation. In addition, Hcn1 phosphorylation indicates a specific role for the phosphorylation of this subunit late in the cell cycle. 65 -313657 pfam10472 CReP_N eIF2-alpha phosphatase phosphorylation constitutive repressor. This is the conserved N-terminal domain of CReP, constitutive repressor of eIF2-alpha phosphorylation/protein phosphatase 1, catalytic subunit. It functions in the dephosphorylation of eIF2-alpha under basal conditions in the absence of stress. In response to translation inhibition, there is reduced synthesis of the labile CReP that contributes to elevated levels of eIF2-alpha phosphorylation. The C-terminus, family PP1c, is shared with the apoptosis-associated protein Gadd34 and herpes simplex virus. 411 -313658 pfam10473 CENP-F_leu_zip Leucine-rich repeats of kinetochore protein Cenp-F/LEK1. Cenp-F, a centromeric kinetochore, microtubule-binding protein consisting of two 1,600-amino acid-long coils, is essential for the full functioning of the mitotic checkpoint pathway. There are several leucine-rich repeats along the sequence of LEK1 that are considered to be zippers, though they do not appear to be binding DNA directly in this instance. 140 -337763 pfam10474 DUF2451 Protein of unknown function C-terminus (DUF2451). This protein is found in eukaryotes but its function is not known. The C-terminal part of some members is DUF2450. 230 -313660 pfam10475 Vps54_N Vacuolar-sorting protein 54, of GARP complex. This is a family of vacuolar-sorting proteins 54, from eukaryotes. Along with VPS52 and VPS53 this forms the Golgi-associated retrograde protein complex GARP. VPS54 is separated into N- and C-terminal regions each of which has a different function. This N-terminal family of is important for GARP complex assembly and stability, whereas the C-terminal domain, pfam07928, brings about localization to an early endocytic compartment. 291 -313661 pfam10476 DUF2448 Protein of unknown function C-terminus (DUF2448). The family DUF2349 is the N-terminal part of this family. This protein is found in eukaryotes but its function is not known. 200 -313662 pfam10477 EIF4E-T Nucleocytoplasmic shuttling protein for mRNA cap-binding EIF4E. EIF4E-T is the transporter protein for shuttling the mRNA cap-binding protein EIF4E protein, targeting it for nuclear import. EIF4E-T contains several key binding domains including two functional leucine-rich NESs (nuclear export signals) between residues 438-447 and 613-638 in the human protein. The other two binding domains are an EIF4E-binding site, between residues 27-42 in Q9EST3, and a bipartite NLS (nuclear localization signals) between 194-211, and these lie in family EIF4E-T_N. EIF4E is the eukaryotic translation initiation factor 4E that is the rate-limiting factor for cap-dependent translation initiation. 644 -313663 pfam10479 FSA_C Fragile site-associated protein C-terminus. This is the conserved C-terminal half of the protein KIAA1109 which is the fragile site-associated protein FSA. Genome-wide-association studies showed this protein to linked to the susceptibility to coeliac disease. The protein may also be associated with polycystic kidney disease. 726 -119000 pfam10480 ICAP-1_inte_bdg Beta-1 integrin binding protein. ICAP-1 is a serine/threonine-rich protein that binds to the cytoplasmic domains of beta-1 integrins in a highly specific manner, binding to a NPXY sequence motif on the beta-1 integrin. The cytoplasmic domains of integrins are essential for cell adhesion, and the fact that phosphorylation of ICAP-1 by interaction with the cell-matrix implies an important role of ICAP-1 during integrin-dependent cell adhesion. Overexpression of ICAP-1 strongly reduces the integrin-mediated cell spreading on extracellular matrix and inhibits both Cdc42 and Rac1. In addition, ICAP-1 induces release of Cdc42 from cellular membranes and prevents the dissociation of GDP from this GTPase. An additional function of ICAP-1 is to promote differentiation of osteoprogenitors by supporting their condensation through modulating the integrin high affinity state, 200 -313664 pfam10481 CENP-F_N Cenp-F N-terminal domain. Mitosin or centromere-associated protein-F (Cenp-F) is found bound across the centromere as one of the proteins of the outer layer of the kinetochore. Most of the kinetochore/centromere functions appear to depend upon binding of the C-terminal par to f the molecule, whereas the N-terminal part, here, may be a cytoplasmic player in controlling the function of microtubules and dynein. 304 -313665 pfam10482 CtIP_N tumor-suppressor protein CtIP N-terminal domain. CtIP is predominantly a nuclear protein that complexes with both BRCA1 and the BRCA1-associated RING domain protein (BARD1). At the protein level, CtIP expression varies with cell cycle progression in a pattern identical to that of BRCA1. Thus, the steady-state levels of CtIP polypeptides, which remain low in resting cells and G1 cycling cells, increase dramatically as Dividing cells traverse the G1/S boundary. CtIP can potentially modulate the functions ascribed to BRCA1 in transcriptional regulation, DNA repair, and/or cell cycle checkpoint control. This N-terminal domain carries a coiled-coil region and is essential for homodimerization of the protein. The C-terminal domain is family pfam08573. 119 -313666 pfam10483 Elong_Iki1 Elongator subunit Iki1. This family is a component of the RNA polymerase II elongator complex. This complex is involved in elongation of RNA polymerase II transcription and in modification of wobble nucleosides in tRNA. 289 -337764 pfam10484 MRP-S23 Mitochondrial ribosomal protein S23. MRP-S23 is one of the proteins that makes up the 55S ribosome in eukaryotes from nematodes to humans. It does not appear to carry any common motifs, either RNA binding or ribosomal protein motifs. All of the mammalian MRPs are encoded in nuclear genes that are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. MRP-S23 is significantly up-regulated in uterine cancer cells. 124 -313668 pfam10486 PI3K_1B_p101 Phosphoinositide 3-kinase gamma adapter protein p101 subunit. Class I PI3Ks are dual-specific lipid and protein kinases involved in numerous intracellular signaling pathways. Class IB PI3K, p110gamma, is mainly activated by seven-transmembrane G-protein-coupled receptors (GPCRs), through its regulatory subunit p101 and G-protein beta-gamma subunits. 859 -313669 pfam10487 Nup188 Nucleoporin subcomplex protein binding to Pom34. This is one of the many peptides that make up the nucleoporin complex (NPC), and is found across eukaryotes. The Nup188 subcomplex (Nic96p-Nup188p-Nup192p-Pom152p) is one of at least six that make up the NPC, and as such is symmetrically localized on both faces of the NPC at the nuclear end, being integrally bound to the C-terminus of Pom34p. 921 -313670 pfam10488 PP1c_bdg Phosphatase-1 catalytic subunit binding region. This conserved C-terminus appears to be a protein phosphatase-1 catalytic subunit (PP1C) binding region, which may in some circumstances also be retroviral in origin since it is found in both herpes simplex virus and in mouse and man. This domain is found in Gadd-34 apoptosis-associated proteins as well as the constitutive repressor of eIF2-alpha phosphorylation/protein phosphatase 1, regulatory (inhibitor) subunit 15b, otherwise known as CReP. Diverse stressful conditions are associated with phosphorylation of the {alpha} subunit of eukaryotic translation initiation factor 2 (eIF2{alpha}) on serine 51. This signaling event, which is conserved from yeast to mammals, negatively regulates the guanine nucleotide exchange factor, eIF2-B and inhibits the recycling of eIF2 to its active GTP bound form. In mammalian cells eIF2{alpha} phosphorylation emerges as an important event in stress signaling that impacts on gene expression at both the translational and transcriptional levels. 287 -313671 pfam10490 CENP-F_C_Rb_bdg Rb-binding domain of kinetochore protein Cenp-F/LEK1. Cenp-F, a centromeric kinetochore, microtubule-binding protein consisting of two 1,600-amino acid-long coils, is essential for the full functioning of the mitotic checkpoint pathway. This domain is at the very C-terminus of the C-terminal coiled-coil, and is one of the key Rb-binding domains. 47 -313672 pfam10491 Nrf1_DNA-bind NLS-binding and DNA-binding and dimerization domains of Nrf1. In Drosophila, the erect wing (ewg) protein is required for proper development of the central nervous system and the indirect flight muscles. The fly ewg gene encodes a novel DNA-binding domain that is also found in four genes previously identified in sea urchin, chicken, zebrafish, and human. Nuclear respiratory factor-1 is a transcriptional activator that has been implicated in the nuclear control of respiratory chain expression in vertebrates. The first 26 amino acids of nuclear respiratory factor-1 are required for the binding of dynein light chain. The interaction with dynein light chain is observed for both ewg and Nrf-1, transcription factors that are structurally and functionally similar between humans and Drosophila. The highest level of expression of both ewg and Nrf-1 was found in the central nervous system, somites, first branchial arch, optic vesicle, and otic vesicle. In the mouse Nrf-1 protein there is also an NLS domain at 88-116, and a DNA binding and dimerization domain at 127-282. Ewg is a site-specific transcriptional activator, and evolutionarily conserved regions of ewg contribute both positively and negatively to transcriptional activity. 212 -313673 pfam10492 Nrf1_activ_bdg Nrf1 activator activation site binding domain. In Drosophila, the erect wing (ewg) protein is required for proper development of the central nervous system and the indirect flight muscles. The fly ewg gene encodes a novel DNA-binding domain that is also found in four genes previously identified in sea urchin, chicken, zebrafish, and human. Nuclear respiratory factor-1 is a transcriptional activator that has been implicated in the nuclear control of respiratory chain expression in vertebrates. The first 26 amino acids of nuclear respiratory factor-1 are required for the binding of dynein light chain. The interaction with dynein light chain is observed for both ewg and Nrf-1, transcription factors that are structurally and functionally similar between humans and Drosophila. The highest level of expression of both ewg and Nrf-1 was found in the central nervous system, somites, first branchial arch, optic vesicle, and otic vesicle. In the mouse Nrf-1 protein, there is an activation domain at 303-469, the most conserved part of which is this domain 446-469. Ewg is a site-specific transcriptional activator, and evolutionarily conserved regions of ewg contribute both positively and negatively to transcriptional activity. The family Nrf1_DNA-bind is associated with this domain towards the N-terminal, as is the N terminal of the activation domain. 82 -313674 pfam10493 Rod_C Rough deal protein C-terminal region. Rod, the Rough deal protein, displays a dynamic intracellular staining pattern, localising first to kinetochores in pro-metaphase, but moving to kinetochore microtubules at metaphase. Early in anaphase the protein is once again restricted to the kinetochores, where it persists until the end of telophase. This behaviour is in all respects similar to that described for ZW10, and indeed the two proteins function together, localization of each depending upon the other. These two proteins are found at the kinetochore in complex with a third, Zwilch, in both flies and humans. The C-terminus is the most conserved part of the protein. During pro-metaphase, the ZW10-Rod complex, dynein/dynactin, and Mad2 all accumulate on unattached kinetochores; microtubule capture leads to Mad2 depletion as it is carried off by dynein/dynactin; ZW10-Rod complex accumulation continues, replenishing kinetochore dynein. The continuing recruitment of the ZW10-Rod complex during metaphase may serve to maintain adequate dynein/dynactin complex on kinetochores for assisting chromatid movement during anaphase. The ZW10-Rod complex acts as a bridge whose association with Zwint-1 links Mad1 and Mad2, components that are directly responsible for generating the diffusible 'wait anaphase' signal, to a structural, inner kinetochore complex containing Mis12 and KNL-1AF15q14, the last of which has been proved to be essential for kinetochore assembly in C. elegans. Removal of ZW10 or Rod inactivates the mitotic checkpoint. 551 -313675 pfam10494 Stk19 Serine-threonine protein kinase 19. This serine-threonine protein kinase number 19 is expressed from the MHC and predominantly in the nucleus. Protein kinases are involved in signal transduction pathways and play fundamental roles in the regulation of cell functions. This is a novel Ser/Thr protein kinase, that has Mn2+-dependent protein kinase activity that phosphorylates alpha -casein at Ser/Thr residues and histone at Ser residues. It can be covalently modified by the reactive ATP analogue 5'-p-fluorosulfonylbenzoyladenosine in the absence of ATP, and this modification is prevented in the presence of 1 mM ATP, indicating that the kinase domain of is capable of binding ATP. 244 -313676 pfam10495 PACT_coil_coil Pericentrin-AKAP-450 domain of centrosomal targeting protein. This domain is a coiled-coil region close to the C-terminus of centrosomal proteins that is directly responsible for recruiting AKAP-450 and pericentrin to the centrosome. Hence the suggested name for this region is a PACT domain (pericentrin-AKAP-450 centrosomal targeting). This domain is also present at the C-terminus of coiled-coil proteins from Drosophila and S. pombe, and that from the Drosophila protein is sufficient for targeting to the centrosome in mammalian cells. The function of these proteins is unknown but they seem good candidates for having a centrosomal or spindle pole body location. The final 22 residues of this domain in AKAP-450 appear specifically to be a calmodulin-binding domain indicating that this member at least is likely to contribute to centrosome assembly. 78 -337765 pfam10496 Syntaxin-18_N SNARE-complex protein Syntaxin-18 N-terminus. This is the conserved N-terminal of Syntaxin-18. Syntaxin-18 is found in the SNARE complex of the endoplasmic reticulum and functions in the trafficking between the ER intermediate compartment and the cis-Golgi vesicle. In particular, the N-terminal region is important for the formation of ER aggregates. More specifically, syntaxin-18 is involved in endoplasmic reticulum-mediated phagocytosis, presumably by regulating the specific and direct fusion of the ER with the plasma or phagosomal membranes. 84 -313678 pfam10497 zf-4CXXC_R1 Zinc-finger domain of monoamine-oxidase A repressor R1. R1 is a transcription factor repressor that inhibits monoamine oxidase A gene expression. This domain is a four-CXXC zinc finger putative DNA-binding domain found at the C-terminal end of R1. The domain carries 12 cysteines of which four pairs are of the CXXC type. 96 -337766 pfam10498 IFT57 Intra-flagellar transport protein 57. Eukaryotic cilia and flagella are specialized organelles found at the periphery of cells of diverse organisms. Intra-flagellar transport (IFT) is required for the assembly and maintenance of eukaryotic cilia and flagella, and consists of the bidirectional movement of large protein particles between the base and the distal tip of the organelle. IFT particles contain multiple copies of two distinct protein complexes, A and B, which contain at least 6 and 11 protein subunits. IFT57 is part of complex B but is not, however, required for the core subunits to stay associated. This protein is known as Huntington-interacting protein-1 in humans. 358 -313680 pfam10500 SR-25 Nuclear RNA-splicing-associated protein. SR-25, otherwise known as ADP-ribosylation factor-like factor 6-interacting protein 4, is expressed in virtually all tissues. At the N-terminus there is a repeat of serine-arginine (SR repeat), and towards the middle of the protein there are clusters of both serines and of basic amino acids. The presence of many nuclear localization signals strongly implies that this is a nuclear protein that may contribute to RNA splicing. SR-25 is also implicated, along with heat-shock-protein-27, as a mediator in the Rac1 (GTPase ras-related C3 botulinum toxin substrate 1) signalling pathway. 227 -313681 pfam10501 Ribosomal_L50 Ribosomal subunit 39S. The 39S ribosomal protein appears to be a subunit of one of the larger mitochondrial 66S or 70S units. Under conditions of ethanol-stress in rats the larger subunit is largely dissociated into its smaller components. In E. coli, in the absence of the enzyme pseudouridine synthase (RluD) synthase, there is an accumulation of 50S and 30S subunits and the appearance of abnormal particles (62S and 39S), with concomitant loss of 70S ribosomes. 109 -313682 pfam10502 Peptidase_S26 Signal peptidase, peptidase S26. This is a family of membrane signal serine endopeptidases which function in the processing of newly-synthesized secreted proteins. Peptidase S26 removes the hydrophobic, N-terminal, signal peptides as proteins are translocated across membranes. The active site residues take the form of a catalytic dyad that is Ser, Lys in subfamily S26A; the Ser is the nucleophile in catalysis, and the Lys is the general base. 138 -313683 pfam10503 Esterase_phd Esterase PHB depolymerase. This family of proteins include acetyl xylan esterases (AXE), feruloyl esterases (FAE), and poly(3-hydroxybutyrate) (PHB) depolymerases. 226 -313684 pfam10504 DUF2452 Protein of unknown function (DUF2452). This protein is found in eukaryotes but its function is unknown. 152 -313685 pfam10505 NARG2_C NMDA receptor-regulated gene protein 2 C-terminus. The transition of neuronal cells from pre-cursor to mature state is regulated by the N-methyl-d-aspartate (NMDA) receptor, a glutamate-gated ion channel that is permeable to Ca2+. NMDA receptors probably mediate this activity by permitting expression of NARG2. NARG2 is transiently expressed, being a regulatory protein that is present in the nucleus of dividing cells and then down-regulated as progenitors exit the cell cycle and begin to differentiate. NARG2 contains repeats of (S/T)PXX, (11 in mouse, six in human), a putative DNA-binding motif that is found in many gene-regulatory proteins including Kruppel, Hunchback and Antennapedi. 209 -337767 pfam10506 MCC-bdg_PDZ PDZ domain of MCC-2 bdg protein for Usher syndrome. The protein has a high homology to the tumor suppressor MCC (mutated in colon cancer; or MCC1 hereafter) and was named MCC2. MCC2 protein binds the first PDZ domain of AIE-75 with its C-terminal amino acids -DTFL. A possible role of MCC2 as a tumor suppressor has been put forward. The carboxyl terminus of the predicted protein was DTFL which matched the consensus motif X-S/T-X-phi (phi: hydrophobic amino acid residue) for binding to the PDZ domain of AIE-75. 65 -337768 pfam10507 TMEM65 Transmembrane protein 65. MEM65 is an intercalated disc protein that interacts with with connexin 43 (Cx43) and is required for correct localization of Cx43 to the intercalated disc. It is essential for cardiac function in zebrafish. 108 -313688 pfam10508 Proteasom_PSMB Proteasome non-ATPase 26S subunit. The 26S proteasome, a eukaryotic ATP-dependent, dumb-bell shaped, protease complex with a molecular mass of approx 20kDa consists of a central 20S proteasome,functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles,composed of multiple subunits of 25- 110 kDa attached to the central portion in opposite orientations. It is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins, and may play a role as a component of a cellular anti-oxidative system. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene. The 20S proteasome comprises a cylindrical stack of four rings, two outer rings formed by seven alpha-subunits (alpha1-alpha7) and two inner rings of seven beta-subunits (beta1-beta7). Two outer rings of alpha subunits maintain structure, while the central beta rings contain the proteolytic active core subunits beta1 (PSMB6), beta2 (PSMB7), and beta5 (PSMB5). Expression of PSMB5 can be altered by chemical reactants, such as 3-methylcholanthrene. 497 -337769 pfam10509 GalKase_gal_bdg Galactokinase galactose-binding signature. This is the highly conserved galactokinase signature sequence which appears to be present in all galactokinases irrespective of how many other ATP binding sites, etc that they carry. The function of this domain appears to be to bind galactose, and the domain is normally at the N-terminus of the enzymes, EC:2.7.1.6. This domain is associated with the families GHMP_kinases_C, pfam08544 and GHMP_kinases_N, pfam00288. 48 -313690 pfam10510 PIG-S Phosphatidylinositol-glycan biosynthesis class S protein. PIG-S is one of several key, core, components of the glycosylphosphatidylinositol (GPI) trans-amidase complex that mediates GPI anchoring in the endoplasmic reticulum. Anchoring occurs when a protein's C-terminal GPI attachment signal peptide is replaced with a pre-assembled GPI. Mammalian GPITransamidase consists of at least five components: Gaa1, Gpi8, PIG-S, PIG-T, and PIG-U, all five of which are required for function. It is possible that Gaa1, Gpi8, PIG-S, and PIG-T form a tightly associated core that is only weakly associated with PIG-U. The exact function of PIG-S is unclear. 494 -287482 pfam10511 Cementoin Trappin protein transglutaminase binding domain. Trappin-2, itself a protease inhibitor, has this unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase. This domain contains several repeated motifs with the the consensus sequence Gly-Gln-Asp-Pro-Val-Lys, and these together can anchor the whole molecule to extracellular matrix proteins, such as laminin, fibronectin, beta-crystallin, collagen IV, fibrinogen, and elastin, by transglutaminase-catalyzed cross-links. The whole domain is rich in glutamine and lysine, thus allowing and transglutaminase(s) to catalyze the formation of an intermolecular epsilon-(gamma-glutamyl)lysine isopeptide bond. Cementoin is associated with the WAP family, pfam00095, at the C-terminus. 17 -337770 pfam10512 Borealin Cell division cycle-associated protein 8. The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Borealin is also a member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore-spindle mis-attachments and an increase in bipolar spindles associated with ectopic asters. 115 -337771 pfam10513 EPL1 Enhancer of polycomb-like. This is a family of EPL1 (Enhancer of polycomb-like) proteins. The EPL1 protein is a member of a histone acetyltransferase complex which is involved in transcriptional activation of selected genes. 144 -313693 pfam10514 Bcl-2_BAD Pro-apoptotic Bcl-2 protein, BAD. BAD is a Bcl-2 homology domain 3 (BH3)-only pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Binding of BAD to mitochondria is thought to be exclusively mediated by its BH3 domain. Membrane localization of BAD mediates membrane translocation of Bcl-XL. The C-terminal part of BAD is sufficient for membrane binding. There are two segments with differing lipid-binding preferences, LBD1 and LBD2, that are responsible for this binding: (i) LBD1 located in the proximity of the BH3 domain (amino acids 122-131) and (ii) LBD2, the putative C-terminal alpha-helix-5. Phosphorylation-regulated 14-3-3 protein binding may expose the cholesterol-preferring LBD1 and bury the LBD2, thereby mediating translocation of BAD to raft-like micro-domains. 167 -313694 pfam10515 APP_amyloid beta-amyloid precursor protein C-terminus. This is the amyloid, C-terminal, protein of the beta-Amyloid precursor protein (APP) which is a conserved and ubiquitous transmembrane glycoprotein strongly implicated in the pathogenesis of Alzheimer's disease but whose normal biological function is unknown. The C-terminal 100 residues are released and aggregate into amyloid deposits which are strongly implicated in the pathology of Alzheimer's disease plaque-formation. The domain is associated with family A4_EXTRA, pfam02177, further towards the N-terminus. 52 -287487 pfam10516 SHNi-TPR SHNi-TPR. SHNi-TPR family members contain a reiterated sequence motif that is an interrupted form of TPR repeat. 38 -337772 pfam10517 DM13 Electron transfer DM13. The DM13 domain is a component of a novel electron-transfer system potentially involved in oxidative modification of animal cell-surface proteins. It contains a nearly absolutely conserved cysteine, which could be involved in a redox reaction, either as a naked thiol group or through binding a prosthetic group like heme. 98 -337773 pfam10518 TAT_signal TAT (twin-arginine translocation) pathway signal sequence. 23 -337774 pfam10520 TMEM189_B_dmain B domain of TMEM189, localization domain. TMEM189_B is the B domain or probable localization domain of the transmembrane protein TMEM189 which in some mammals is fused with Kua ubiquitin-conjugation E2 enzyme proteins. The domain is also found on fatty acid saturase FAD4 in Arabidopsis. 176 -337775 pfam10521 Tti2 Tti2 family. Budding yeast Tti2 is a subunit of the ASTRA complex, which is involved in chromatin remodelling. Tti2 homolog from humans, TELO2-interacting protein 2, is part of the TTT complex that is involved in the cellular resistance to DNA damage stresses. 281 -337776 pfam10522 RII_binding_1 RII binding domain. This domain is found is a wide variety of AKAPs (A kinase anchoring proteins). The domain is also found on micro-tubule-associated proteins. 19 -313700 pfam10523 BEN BEN domain. The BEN domain is found in diverse animal proteins such as BANP/SMAR1, NAC1 and the Drosophila mod(mdg4) isoform C, in the chordopoxvirus virosomal protein E5R and in several proteins of polydnaviruses. Computational analysis suggests that the BEN domain mediates protein-DNA and protein-protein interactions during chromatin organisation and transcription. 76 -313701 pfam10524 NfI_DNAbd_pre-N Nuclear factor I protein pre-N-terminus. The Nuclear factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression in higher organisms. The N-terminal 200 residues contains the DNA-binding and dimerization domain, but also has an 8-47 residue highly conserved region 5' of this, whose function is not known. Deletion of the N-terminal 200 amino acids removes the DNA-binding activity, dimerization-ability and the stimulation of adenovirus DNA replication. 40 -313702 pfam10525 Engrail_1_C_sig Engrailed homeobox C-terminal signature domain. Engrailed homeobox proteins are characterized by the presence of a conserved region of some 20 amino-acid residues located at the C-terminal of the 'homeobox' domain. This domain of approximately 20 residues forms a kind of a signature pattern for this subfamily of proteins. 30 -337777 pfam10528 GLEYA GLEYA domain. The GLEYA domain is related to lectin-like binding domains found in the S. cerevisiae Flo proteins and the C. glabrata Epa proteins. It is a carbohydrate-binding domain that is found in fungal adhesins (also referred to as agglutinins or flocculins). Adhesins with a GLEYA domain possess a typical N-terminal signal peptide and a domain of conserved sequence repeats, but lack glycosylphosphatidylinositol (GPI) anchor attachment signals. They contain a conserved motif G(M/L)(E/A/N/Q)YA, hence the name GLEYA. Based on sequence homology, it is suggested that the GLEYA domain would predominantly contain beta sheets. The GLEYA domain is also found in S. pombe putative cell agglutination protein fta5, thought to be a kinetochore portein (Sim4 complex subunit), however no direct evidence for kinetochore association has been found. Furthermore, a global protein localization study in S. pombe identified it as a secreted protein localized to the Golgi complex. 91 -313703 pfam10529 Hist_rich_Ca-bd Histidine-rich Calcium-binding repeat region. This is a histidine-rich calcium binding repeat which appears in proteins called histidine-rich-calcium binding proteins (HRC). HRC is a high capacity, low affinity Ca2+-binding protein, residing in the lumen of the sarcoplasmic reticulum. HRC binds directly to triadin. This binding interaction occurs between the histidine-rich region of HRC and multiple clusters of charged amino acids, named as the KEKE motifs, in the lumenal domain of triadin. The region in which this repeat is found in many copies is long and variable but is the acidic region of the protein. There is also a cysteine-rich region further towards the C-terminus. HRC may regulate sarcoplasmic reticular calcium transport and play a critical role in maintaining calcium homeostasis and function in the heart. HRC as a candidate regulator of sarcoplasmic reticular calcium uptake. 15 -287498 pfam10530 Toxin_35 Toxin with inhibitor cystine knot ICK or Knottin scaffold. Spider toxins of the CSTX family are ion channel toxins containing an inhibitor cystine knot (ICK) structural motif or Knottin scaffold. The four disulfide bonds present in the CSTX spider toxin family are arranged in the following pattern: 1-4, 2-5, 3-8 and 6-7. CSTX-1 is the most important component of C. salei venom in terms of relative abundance and toxicity and therefore is likely to contribute significantly to the overall toxicity of the whole venom. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Cav channels. Interestingly, the omega-toxins from Phoneutria nigriventer venom (another South American species also belonging to the Ctenidae family) are included as they carry the same disulfide bond arrangement. suggestive that CSTX-1 may interact with Cav channels. Calcium ion voltage channel heteromultimer containing an L-type pore-forming alpha1-subunit is the most probable candidate for the molecular target of CSTX-1 and these toxins. 61 -337778 pfam10531 SLBB SLBB domain. 54 -119052 pfam10532 Plant_all_beta Plant specific N-all beta domain. This domain was identified by Babu and colleagues. It is found associated with the WRKY domain pfam03106. 114 -337779 pfam10533 Plant_zn_clust Plant zinc cluster domain. This zinc binding domain was identified by Babu and colleagues and found associated with the WRKY domain pfam03106. 38 -313706 pfam10534 CRIC_ras_sig Connector enhancer of kinase suppressor of ras. The CRIC - Connector enhancer of kinase suppressor of ras - domain functions as a scaffold in several signal cascades and acts on proliferation, differentiation and apoptosis. 93 -337780 pfam10536 PMD Plant mobile domain. This domain was identified by Babu and colleagues in a variety of transposases. 355 -337781 pfam10537 WAC_Acf1_DNA_bd ATP-utilising chromatin assembly and remodelling N-terminal. ACF (for ATP-utilising chromatin assembly and remodelling factor) is a chromatin-remodelling complex that catalyzes the ATP-dependent assembly of periodic nucleosome arrays. The WAC (WSTF/Acf1/cbp146) domain is an approximately 110-residue module present at the N-termini of Acf1-related proteins in a variety of organisms. The DNA-binding region of Acf1 includes the WAC domain, which is necessary for the efficient binding of ACF complex to DNA. 101 -119058 pfam10538 ITAM_Cys-rich Immunoreceptor tyrosine-based activation motif. Signal transduction by T and B cell antigen receptors and certain receptors for Ig Fc regions involves a conserved sequence motif, termed an immunoreceptor tyrosine-based activation motif (ITAM). It is also found in the cytoplasmic domain of apoptosis receptor. 24 -337782 pfam10539 Dev_Cell_Death Development and cell death domain. The DCD domain is found in plant proteins involved in development and cell death. The DCD domain is an approximately 130 amino acid long stretch that contains several mostly invariable motifs. These include a FGLP and a LFL motif at the N-terminus and a PAQV and a PLxE motif towards the C-terminus of the domain. The DCD domain is present in proteins with different architectures. Some of these proteins contain additional recognisable motifs, like the KELCH repeats or the ParB domain. 125 -313710 pfam10540 Membr_traf_MHD Munc13 (mammalian uncoordinated) homology domain. Munc13 proteins constitute a family of three highly homologous molecules (Munc13-1, Munc13-2 and Munc13-3) with homology to Caenorhabditis elegans unc-13p. Munc13 proteins contain a phorbol ester-binding C1 domain and two C2 domains, which are Ca2+/phospholipid binding domains. Sequence analyses have uncovered two regions called Munc13 homology domains 1 (MHD1) and 2 (MHD2) that are arranged between two flanking C2 domains. MHD1 and MHD2 domains are present in a wide variety of proteins from Arabidopsis thaliana, C. elegans, Drosophila melanogaster, mouse, rat and human, some of which may function in a Munc13-like manner to regulate membrane trafficking. The MHD1 and MHD2 domains are predicted to be alpha-helical. 140 -337783 pfam10541 KASH Nuclear envelope localization domain. The KASH (for Klarsicht/ANC-1/Syne-1 homology) or KLS domain is a highly hydrophobic nuclear envelope localization domain of approximately 60 amino acids comprising a 20-amino-acid transmembrane region and a 30-35-residue C-terminal region that lies between the inner and the outer nuclear membranes. During meiotic prophase, telomeres cluster to form a bouquet arrangement of chromosomes. SUN and KASH domain proteins form complexes that span both membranes of the nuclear envelope. The KASH domain links the dynein motor complex of the microtubules, through the outer nuclear membrane to the Sad1 domain in the inner nuclear membrane which then interacts with the bouquet proteins Bqt1 and Bqt2 that are complexed with Bqt4, Rap1 and Taz1 and attached to the telomere. SUN domain-containing proteins are essential for recruiting KASH domain proteins at the outer nuclear membrane, and KASH domains provide a generic NE tethering device for functionally distinct proteins whose cytoplasmic domains mediate nuclear positioning, maintain physical connections with other cellular organelles, and possibly even influence chromosome dynamics. 58 -313712 pfam10542 Vitelline_membr Vitelline membrane cysteine-rich region. In Drosophila melanogaster the vitelline membrane (VM) is the first layer of the eggshell produced by the follicular epithelium. It is composed of at least four different proteins. VM proteins are similarly organized with a central highly conserved 38-amino acid domain which is flanked by unrelated regions. The domain contains three highly conserved cysteines. 37 -337784 pfam10543 ORF6N ORF6N domain. This domain was identified by Iyer and colleagues. 83 -337785 pfam10544 T5orf172 T5orf172 domain. This domain was identified by Iyer and colleagues. 97 -313715 pfam10545 MADF_DNA_bdg Alcohol dehydrogenase transcription factor Myb/SANT-like. The myb/SANT-like domain in Adf-1 (MADF) is an approximately 80-amino-acid module that directs sequence specific DNA binding to a site consisting of multiple tri-nucleotide repeats. The MADF domain is found in one or more copies in eukaryotic and viral proteins and is often associated with the BESS domain. It is likely that the MADF domain is more closely related to the myb/SANT domain than it is to other HTH domains. 84 -313716 pfam10546 P63C P63C domain. This domain was identified by Iyer and colleagues. 93 -313717 pfam10547 P22_AR_N P22_AR N-terminal domain. This domain was identified by Iyer and colleagues. 111 -287513 pfam10548 P22_AR_C P22AR C-terminal domain. This domain was identified by Iyer and colleagues. It is found associated with pfam10547. 66 -287514 pfam10549 ORF11CD3 ORF11CD3 domain. This domain was identified by Iyer and colleagues. 52 -119070 pfam10550 Toxin_36 Conantokin-G mollusc-toxin. The conantokins are a family of neuroactive peptides found in the venoms of fish-hunting cone snails. They possess a high content of gamma-carboxyglutamic acid (Gla) (4-5 residues), a non-standard amino-acid made by the post-translational modification of glutamate (Glu) residue. Conantokins are the only natural biochemically characterized peptides known to be N-methyl-D-aspartate (NMDA) receptor antagonists. 15 -337786 pfam10551 MULE MULE transposase domain. This domain was identified by Babu and colleagues. 96 -313719 pfam10552 ORF6C ORF6C domain. This domain was identified by Iyer and colleagues. 112 -287517 pfam10553 MSV199 MSV199 domain. This domain was identified by Iyer and colleagues. 132 -337787 pfam10554 Phage_ASH Ash protein family. This family was identified by Iyer and colleagues. It includes the Ash protein from bacteriophage P4. 105 -313721 pfam10555 MraY_sig1 Phospho-N-acetylmuramoyl-pentapeptide-transferase signature 1. Phospho-N-acetylmuramoyl-pentapeptide-transferase (EC 2.7.8.13) (mraY) is a bacterial enzyme responsible for the formation of the first lipid intermediate of the cell wall peptidoglycan synthesis. It catalyzes the formation of undecaprenyl-pyrophosphoryl-N-acetylmuramoyl-pentapeptide from UDP-MurNAc-pentapeptide and undecaprenyl-phosphate. It is an integral membrane protein with probably ten transmembrane domains. This domain is located at the end of the first cytoplasmic loop and the beginning of the second transmembrane domain. 13 -337788 pfam10557 Cullin_Nedd8 Cullin protein neddylation domain. This is the neddylation site of cullin proteins which are a family of structurally related proteins containing an evolutionarily conserved cullin domain. With the exception of APC2, each member of the cullin family is modified by Nedd8 and several cullins function in Ubiquitin-dependent proteolysis, a process in which the 26S proteasome recognizes and subsequently degrades a target protein tagged with K48-linked poly-ubiquitin chains. Cullins are molecular scaffolds responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. Nedd8/Rub1 is a small ubiquitin-like protein, which was originally found to be conjugated to Cdc53, a cullin component of the SCF (Skp1-Cdc53/CUL1-F-box protein) E3 Ub ligase complex in Saccharomyces cerevisiae, and Nedd8 modification has now emerged as a regulatory pathway of fundamental importance for cell cycle control and for embryogenesis in metazoans. The only identified Nedd8 substrates are cullins. Neddylation results in covalent conjugation of a Nedd8 moiety onto a conserved cullin lysine residue. 61 -337789 pfam10558 MTP18 Mitochondrial 18 KDa protein (MTP18). This family of proteins are mitochondrial 18KDa proteins that are often misannotated as carbonic anhydrases. It was shown that knockdown of MTP18 protein results in a cytochrome c release from mitochondria and consequently leads to apoptosis. Overexpression studies suggest that MTP18 is required for mitochondrial fission. 166 -337790 pfam10559 Plug_translocon Plug domain of Sec61p. The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side.The plug is unlikely to be important for sealing the translocation pore in yeast but it plays a role in stabilizing Sec61p during translocon formation. The domain runs from residues 52-74. 33 -313725 pfam10561 UPF0565 Uncharacterized protein family UPF0565. This family of proteins has no known function. 294 -313726 pfam10562 CaM_bdg_C0 Calmodulin-binding domain C0 of NMDA receptor NR1 subunit. This is a very short highly conserved domain that is C-terminal to the cytosolic transmembrane region IV of the NMDA-receptor 1. It has been shown to bind Calmodulin-Calcium with high affinity. The ionotropic N-methyl-D-aspartate receptor (NMDAR) is a major source of calcium flux into neurons in the brain and plays a critical role in learning, memory, neural development, and synaptic plasticity. Calmodulin (CaM) regulates NMDARs by binding tightly to the C0 and C1 regions of their NR1 subunit. The conserved tryptophan is considered to be the anchor residue. 29 -313727 pfam10563 CdCA1 Cadmium carbonic anhydrase repeat. This domain is the cadmium carbonic anhydrase repeat unit of the beta-carbonic anhydrase of a marine diatom, that uses both zinc and cadmium for catalysis of the reversible hydration of carbon dioxide for use in inorganic carbon acquisition for photosynthesis (thus being a cambialistic enzyme). Compared with alpha- and gamma-carbonic anhydrases that use three histidines to coordinate the zinc-atom, this beta-carbonic anhydrase has two cysteines and one histidine, and rapidly binds cadmium. 200 -337791 pfam10564 MAR_sialic_bdg Sialic-acid binding micronemal adhesive repeat. This domain is a novel carbohydrate-binding domain found on micronemal proteins. Micronemal proteins (MICs) are released onto the parasite surface just before invasion of host cells and play important roles in host cell recognition, attachment and penetration. Toxoplasma gondii can infect and replicate within all nucleated cells. This domain interacts with sialylated oligosaccharides; the protein in Toxoplasma gondii is a monomer but several MAR domains are carried on the protein. Each MAR domain contains one central sialic acid-binding pocket. 95 -313729 pfam10565 NMDAR2_C N-methyl D-aspartate receptor 2B3 C-terminus. This domain is found at the C-terminus of many NMDA-receptor proteins, many of which also carry the Ligated ion-channel family pfam00060 further upstream as well as the ANF_receptor family pfam01094. This region is predicted to be a large extra-cellular domain of the NMDA receptor proteins, being highly hydrophilic, and is thought to be integrally involved in the function of the receptor. The region also carries a number of potential N-glycosylation sites. 645 -337792 pfam10566 Glyco_hydro_97 Glycoside hydrolase 97. This domain is the catalytic region of the bacterial glycosyl-hydrolase family 97. This central part of the GH97 family protein sequences represents a typical and complete (beta/alpha)8-barrel or catalytic TIM-barrel type domain. The N- and C-terminal parts of the sequences, mainly consisting of beta-strands, form two additional non-catalytic domains. In all known glycosidases with the (beta-alpha)8-barrel fold, the amino acid residues at the active site are located on the C-termini of the beta-strands. 272 -313731 pfam10567 Nab6_mRNP_bdg RNA-recognition motif. This conserved domain is found in fungal proteins and appears to be involved in RNA-processing. It binds to poly-adenylated RNA, interacts genetically with mRNA 3'-end processing factors, copurifies with the nuclear cap-binding protein Cbp20p, and is found in complexes containing other translation factors, such as EIF4G. 297 -337793 pfam10568 Tom37 Outer mitochondrial membrane transport complex protein. The TOM37 protein is one of the outer membrane proteins that make up the TOM complex for guiding cytosolic mitochondrial beta-barrel proteins from the cytosol across the outer mitochondrial membrane into the intra-membrane space. In conjunction with TOM70 it guides peptides without an MTS into TOM40, the protein that forms the passage through the outer membrane. It has homology with Metaxin-1, also part of the outer mitochondrial membrane beta-barrel protein transport complex. 125 -337794 pfam10569 Thiol-ester_cl Alpha-macro-globulin thiol-ester bond-forming region. This short highly conserved region of proteinase-binding alpha-macro-globulins contains the cysteine and a glutamine of a thiol-ester bond that is cleaved at the moment of proteinase binding, and mediates the covalent binding of the alpha-macro-globulin to the proteinase. The GCGEQ motif is highly conserved. 30 -287532 pfam10570 Myelin-PO_C Myelin-PO cytoplasmic C-term p65 binding region. Myelin protein zero is the major myelin protein in the peripheral central nervous system and is essential for normal myelination. The family is a single-pass transmembrane molecule containing one Ig-like loop in the extracellular domain and this highly basic 69 residue C-terminal cytoplasmic domain which is the region that interacts with protein p65. 65 -313734 pfam10571 UPF0547 Uncharacterized protein family UPF0547. This domain contains a zinc-ribbon motif. 26 -313735 pfam10572 UPF0556 Uncharacterized protein family UPF0556. This family of proteins has no known function. 153 -287535 pfam10573 UPF0561 Uncharacterized protein family UPF0561. This family of proteins has no known function. 120 -313736 pfam10574 UPF0552 Uncharacterized protein family UPF0552. This family of proteins has no known function. 224 -337795 pfam10576 EndIII_4Fe-2S Iron-sulfur binding domain of endonuclease III. Escherichia coli endonuclease III (EC 4.2.99.18) is a DNA repair enzyme that acts both as a DNA N-glycosylase, removing oxidized pyrimidines from DNA, and as an apurinic/apyrimidinic (AP) endonuclease, introducing a single-strand nick at the site from which the damaged base was removed. Endonuclease III is an iron-sulfur protein that binds a single 4Fe-4S cluster. The 4Fe-4S cluster does not seem to be important for catalytic activity, but is probably involved in the proper positioning of the enzyme along the DNA strand. The 4Fe-4S cluster is bound by four cysteines which are all located in a 17 amino acid region at the C-terminal end of endonuclease III. A similar region is also present in the central section of mutY and in the C-terminus of ORF-10 and of the Micro-coccus UV endonuclease. 17 -313738 pfam10577 UPF0560 Uncharacterized protein family UPF0560. This family of proteins has no known function. 818 -287539 pfam10578 SVS_QK Seminal vesicle protein repeat. 12 -313739 pfam10579 Rapsyn_N Rapsyn N-terminal myristoylation and linker region. Neuromuscular junction formation relies upon the clustering of acetylcholine receptors and other proteins in the muscle membrane. Rapsyn is a peripheral membrane protein that is selectively concentrated at the neuromuscular junction and is essential for the formation of synaptic acetylcholine receptor aggregates. Acetylcholine receptors fail to aggregate beneath nerve terminals in mice where rapsyn has been knocked out. The N-terminal six amino acids of rapsyn are its myristoylation site, and myristoylation is necessary for the targeting of the protein to the membrane. 80 -313740 pfam10580 Neuromodulin_N Gap junction protein N-terminal region. 26 -313741 pfam10581 Synapsin_N Synapsin N-terminal. This highly conserved domain of synapsin proteins has a serine at position 9 or 10 which is a phosphorylation site. The domain appears to be the part of the molecule that binds to calmodulin. 32 -313742 pfam10583 Involucrin_N Involucrin of squamous epithelia N-terminus. This is the N-terminal three beta strands of involucrin, a protein present in keratinocytes of epidermis and other stratified squamous epithelia. Involucrin first appears in the cell cytosol, but ultimately becomes cross-linked to membrane proteins by transglutaminase thus helping in the formation of an insoluble envelope beneath the plasma membrane. Apigenin is a plant-derived flavanoid that has significant promise as a skin cancer chemopreventive agent. It has been found that apigenin regulates normal human keratinocyte differentiation by suppressing it and this is associated with reduced cell proliferation without apoptosis. The downstream part of the protein is represented by the family Involucrin, pfam00904. 69 -337796 pfam10584 Proteasome_A_N Proteasome subunit A N-terminal signature. This domain is conserved in the A subunits of the proteasome complex proteins. 23 -337797 pfam10585 UBA_e1_thiolCys Ubiquitin-activating enzyme active site. Ubiquitin-activating enzyme (E1 enzyme) activates ubiquitin by first adenylating with ATP its C-terminal glycine residue and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding an ubiquitin-E1 thiolester and free AMP. Later the ubiquitin moiety is transferred to a cysteine residue on one of the many forms of ubiquitin-conjugating enzymes (E2). This domain carries the last of five conserved cysteines that is part of the active site of the enzyme, responsible for ubiquitin thiolester complex formation, the active site being represented by the sequence motif PICTLKNFP. 250 -313745 pfam10587 EF-1_beta_acid Eukaryotic elongation factor 1 beta central acidic region. 28 -337798 pfam10588 NADH-G_4Fe-4S_3 NADH-ubiquinone oxidoreductase-G iron-sulfur binding region. 40 -337799 pfam10589 NADH_4Fe-4S NADH-ubiquinone oxidoreductase-F iron-sulfur binding region. 83 -337800 pfam10590 PNP_phzG_C Pyridoxine 5'-phosphate oxidase C-terminal dimerization region. This domain represents one of the two dimerization regions of the protein, located at the edge of the dimer interface, at the C-terminus, being the last three beta strands, S6, S7, and S8 along with the last three residues to the end. In Myxococcus xanthus PdxH, S6 runs from residues 178-192, S7 from 200-206 and S8 from 211-215. the extended loop, of residues 167-177 may well be involved in the pocket formed between the two dimers that positions the FMN molecule.To date, the only time functional oxidase or phenazine biosynthesis activities have been experimentally demonstrated is when the sequences contain both pfam01243 and pfam10590. It is unknown the role performed by each domain in bringing about molecular functions of either oxidase or phenazine activity. 41 -313749 pfam10591 SPARC_Ca_bdg Secreted protein acidic and rich in cysteine Ca binding region. The SPARC_Ca_bdg domain of Secreted Protein Acidic and Rich in Cysteine is responsible for the anti-spreading activity of human urothelial cells. It is rich in alpha-helices. This extracellular calcium-binding domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. The anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2. 110 -313750 pfam10592 AIPR AIPR protein. This family of proteins was identified in as an abortive infection phage resistance protein often found in restriction modification system operons. 290 -313751 pfam10593 Z1 Z1 domain. This uncharacterized domain was identified by Iyer and colleagues. It is found associated with a helicase domain of superfamily type II. 223 -287553 pfam10595 UPF0564 Uncharacterized protein family UPF0564. This family of proteins has no known function. However, one of the members, TTHERM_01026310, is annotated as an EF-hand family protein. 362 -313752 pfam10596 U6-snRNA_bdg U6-snRNA interacting domain of PrP8. This domain incorporates the interacting site for the U6-snRNA as part of the U4/U6.U5 tri-snRNPs complex of the spliceosome, and is the prime candidate for the role of cofactor for the spliceosome's RNA core. The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor. 150 -313753 pfam10597 U5_2-snRNA_bdg U5-snRNA binding site 2 of PrP8. The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor. 133 -287556 pfam10598 RRM_4 RNA recognition motif of the spliceosomal PrP8. The large RNA-protein complex of the spliceosome catalyzes pre-mRNA splicing. One of the most conserved core proteins is PrP8 which occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there, and has recently come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa. The RNA-recognition motif of PrP8 is highly conserved and provides a possible RNA binding centre for the 5-prime SS, BP, or 3-prime SS of pre-mRNA which are known to contact with Prp8. The most conserved regions of an RRM are defined as the RNP1 and RNP2 sequences. Recognition of RNA targets can also be modulated by a number of other factors, most notably the two loops beta1-alpha1, beta2-beta3 and the amino acid residues C-terminal to the RNP2 domain. 92 -313754 pfam10599 Nup_retrotrp_bd Retro-transposon transporting motif. This is the highly conserved C-terminal motif GRKIxxxxxRRKx of nucleoporins that plays a critical and unique role in the nuclear import of retro-transposons in both yeasts and higher organisms. It would appear that the arginine residues at positions 2 and 9-10 constitute a bipartite nuclear localization signal, with two basic peptide motifs separated by an interchangeable spacer sequence, that is crucial for the retro-transposon activity. 90 -313755 pfam10600 PDZ_assoc PDZ-associated domain of NMDA receptors. This domain is found in higher eukaryotes between the second and third PDZ domains, pfam00595, of glutamate receptor like proteins. Its exact function is not known. 68 -337801 pfam10601 zf-LITAF-like LITAF-like zinc ribbon domain. Members of this family display a conserved zinc ribbon structure with the motif C-XX-C- separated from the more C-terminal HX-C(P)X-C-X4-G-R motif by a variable region of usually 25-30 (hydrophobic) residues. Although it belongs to one of the zinc finger's fold groups (zinc ribbon), this particular domain was first identified in LPS-induced tumor necrosis alpha factor (LITAF) which is produced in mammalian cells after being challenged with lipopolysaccharide (LPS). The hydrophobic region probably inserts into the membrane rather than traversing it. Such an insertion brings together the N- and C-terminal C-XX-C motifs to form a compact Zn2+-binding structure. 69 -313757 pfam10602 RPN7 26S proteasome subunit RPN7. RPN7 (known as the non ATPase regulatory subunit 6 in higher eukaryotes) is one of the lid subunits of the 26S proteasome and has been shown in Saccharomyces cerevisiae to be required for structural integrity. The 26S proteasome is is involved in the ATP-dependent degradation of ubiquitinated proteins. 174 -313758 pfam10604 Polyketide_cyc2 Polyketide cyclase / dehydrase and lipid transport. This family contains polyketide cylcases/dehydrases which are enzymes involved in polyketide synthesis. It also includes other proteins of the START superfamily. 131 -313759 pfam10605 3HBOH 3HB-oligomer hydrolase (3HBOH). D-(-)-3-hydroxybutyrate oligomer hydrolase (also known as 3HB-oligomer hydrolase) functions in the degradation of poly-3-hydroxybutyrate (PHB). It catalyzes the hydrolysis of D(-)-3-hydroxybutyrate oligomers (3HB-oligomers) into 3HB-monomers. 688 -313760 pfam10606 GluR_Homer-bdg Homer-binding domain of metabotropic glutamate receptor. This is the proline-rich region of metabotropic glutamate receptor proteins that binds Homer-related synaptic proteins. The Homer proteins form a physical tether linking mGluRs with the inositol trisphosphate receptors (IP3R) that appears to be due to the proline-rich "Homer ligand" (PPXXFr). Activation of PI turnover triggers intracellular calcium release. MGluR function is altered in the mouse model of human Fragile X syndrome mental retardation, a disorder caused by loss of function mutations in the Fragile X mental retardation gene Fmr1. Homer 3 (and to a lesser extent Homer 1b/c) has been shown to form a multimeric complex with mGlu1a and the IP3 receptor, indicating that Homers may play a role in the localization of receptors to their signalling partners. 51 -337802 pfam10607 CLTH CTLH/CRA C-terminal to LisH motif domain. RanBPM is a scaffolding protein and is important in regulating cellular function in both the immune system and the nervous system. This domain is at the C-terminus of the proteins and is the binding domain for the CRA motif (for CT11-RanBPM), which is comprised of approximately 100 amino acids at the C terminal of RanBPM. It was found to be important for the interaction of RanBPM with fragile X mental retardation protein (FMRP), but its functional significance has yet to be determined. This region contains CTLH and CRA domains annotated by SMART; however, these may be a single domain, and it is refereed to as a C-terminal to LisH motif. 143 -337803 pfam10608 MAGUK_N_PEST Polyubiquitination (PEST) N-terminal domain of MAGUK. The residues upstream of this domain are the probable palmitoylation sites, particularly two cysteines. The domain has a putative PEST site at the very start that seems to be responsible for poly-ubiquitination. PEST domains are polypeptide sequences enriched in proline (P), glutamic acid (E), serine (S) and threonine (T) that target proteins for rapid destruction. The whole domain, in conjunction with a C-terminal domain of the longer protein, is necessary for dimerization of the whole protein. 85 -337804 pfam10609 ParA NUBPL iron-transfer P-loop NTPase. This family contains ATPases involved in plasmid partitioning. It also contains the cytosolic Fe-S cluster assembling factor NBP35 which is required for biogenesis and export of both ribosomal subunits. 246 -313764 pfam10610 Tafi-CsgC Thin aggregative fimbriae synthesis protein. Fimbriae are cell-surface protein polymers, of eg. E coli and Salmonella spp, that mediate interactions important for host and environmental persistence, development of biofilms, motility, colonisation and invasion of cells, and conjugation. Four general assembly pathways for different fimbriae have been proposed, one of which is extracellular nucleation-precipitation (ENP), that differs from the others in that fibre-growth occurs extracellularly. Thin aggregative fimbriae (Tafi) are the only fimbriae dependent on the ENP pathway. Tafi were first identified in Salmonella spp and the controlling operon termed agf; however subsequent isolation of the homologous operon in E coli led to its being called csg. Tafi are known as curli because, in the absence of extracellular polysaccharides, their morphology appears curled; however, when expressed with such polysaccharides their morphology appears as a tangled amorphous matrix. The gene agfC is found to be transcribed at low levels, localized to the periplasm in a mature form, and in combination with AgfE is important for AgfA extracellular assembly, which facilitates the synthesis of Tafi. The genes involved in Tafi production are organized into two adjacent divergently transcribed operons, agfBAC and agfDEFG, both of which are required for biosynthesis and assembly. 98 -313765 pfam10611 DUF2469 Protein of unknown function (DUF2469). Member proteins often found in Actinomycetes clustered with signal peptidase and/or RNAse-HII. 100 -313766 pfam10612 Spore-coat_CotZ Spore coat protein Z. This family has members annotated as Spore coat protein Z, otherwise known as CotZ, It is a cysteine-rich spore coat family, and along with CotY is necessary for assembly of intact exosporium. 156 -337805 pfam10613 Lig_chan-Glu_bd Ligated ion channel L-glutamate- and glycine-binding site. This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. 114 -337806 pfam10614 CsgF Type VIII secretion system (T8SS), CsgF protein. The extracellular nucleation-precipitation (ENP) pathway or Type VIII secretion system (T8SS) in Gram-negative (diderm) bacteria is responsible for the secretion and assembly of prepilins for fimbiae biogenesis, the prototypical curli. Besides the T2SS that can be involved in the assembly of prototypical Type 4 pilus, the T4SS that can be involved in the biogenesis of the prototypical pilus T, the T3SS involved in the assembly of the injectisome and the T7SS involved in the formation of the prototypical Type 1 pilus, the T8SS differs in that fibre-growth occurs extracellularly. The curli, also called thin aggregative fimbriae (Tafi), are the only fimbriae dependent on the T8SS. Tafi were first identified in Salmonella spp and the controlling operon termed agf; however subsequent isolation of the homologous operon in E coli led to its being called csg. In the absence of extracellular polysaccharides Tafi appear curled, although when expressed with such polysaccharides their morphology appears as a tangled amorphous matrix. CsgF is one of three putative curli assembly factors appearing to act as a nucleator protein. Unlike eukaryotic amyloid formation, curli biogenesis is a productive pathway requiring a specific assembly machinery. 132 -337807 pfam10615 DUF2470 Protein of unknown function (DUF2470). This family is a putative haem-iron utilisation family, as many members are annotated as being pyridoxamine 5'-phosphate oxidase-related, FMN-binding; however this could not be confirmed. 74 -313770 pfam10616 DUF2471 Protein of unknown function (DUF2471). The function of this family is unknown. Members all come from Burkholderia spp. BDAG_04162 is annotated as Serine/threonine-protein kinase, but this could not be confirmed. 119 -337808 pfam10617 DUF2474 Protein of unknown function (DUF2474). This family of short proteins has no known function. 38 -313772 pfam10618 Tail_tube Phage tail tube protein. This bacterial family of proteins contains phage tail tube proteins related to the Mu phage tail tube protein M. Bacteriophage Mu has an eicosahedral head and contractile tail. The tail is composed of an outer sheath and an inner tube. 117 -337809 pfam10620 MdcG Phosphoribosyl-dephospho-CoA transferase MdcG. MdcG is a phosphoribosyl-dephospho-CoA transferase that is involved in the biosynthesis of the prosthetic group of malonate decarboxylase. Malonate decarboxylase from Klebsiella pneumoniae contains an acyl carrier protein (MdcC) to which a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group is attached via phosphodiester linkage. MdcG catalyzes the following reaction: 2'-(5''-triphosphoribosyl)-3'-dephospho-CoA + apo-[acyl-carrier-protein] = holo-[acyl-carrier-protein] + diphosphate. 196 -287577 pfam10621 FpoO F420H2 dehydrogenase subunit FpoO. This is the FpoO subunit of F420H2 dehydrogenase, an enzyme which oxidizes reduced coenzyme F420. Reduced coenzyme F420 is a universal electron carrier in methanogens. 110 -313774 pfam10622 Ehbp Energy-converting hydrogenase B subunit P (EhbP). Ehb (energy-converting hydrogenase B) is an methanogenic archaeal enzyme that functions in one of the metabolic pathways involved in methanol reduction to methane. This family contains subunit P of Ehb. 77 -151143 pfam10623 PilI Plasmid conjugative transfer protein PilI. The thin pilus of plasmid R64 belongs to the type IV family and is required for liquid matings. pilI is one of 14 genes that have been identified as being involved in biogenesis of the R64 thin pilus. 83 -287579 pfam10624 TraS Plasmid conjugative transfer entry exclusion protein TraS. Entry exclusion (Eex) is a process which prevents redundant transfer of DNA between donor cells. TraS is a protein involved in Eex. It blocks redundant conjugative DNA synthesis and transport between donor cells, and it is suggested that TraS interferes with a signalling pathway that is required to trigger DNA transfer. TraS on the recipient cell is known to form an interaction with TraG on the donor cell. 162 -337810 pfam10625 UspB Universal stress protein B (UspB). UspB in Escherichia coli is a 14kDa protein which is predicted to be an integral membrane protein. Overexpression of UspB results in cell death in stationary phase, and mutants of uspB are sensitive to ethanol exposure during stationary phase. 107 -337811 pfam10626 TraO Conjugative transposon protein TraO. This is a family of conjugative transposon proteins. 168 -337812 pfam10627 CsgE Curli assembly protein CsgE. Curli are a class highly aggregated surface fibers that are part of a complex extracellular matrix. They promote biofilm formation in addition to other activities. CsgE is a non-structural protein involved in curli biogenesis. CsgE forms an outer membrane complex with the curli assembly proteins CsgG and CsgF. 105 -313778 pfam10628 CotE Outer spore coat protein E (CotE). CotE is a morphogenic protein that is required for the assembly of the outer coat of the endospore and spore resistance to lysozyme. CotE also regulates the expression of cotA, cotB, cotC and other genes encoding spore outer coat proteins. The timing of cotE expression has been shown in Bacillus subtilis to affect spore coat morphology but not lysozyme resistance. 175 -313779 pfam10629 DUF2475 Protein of unknown function (DUF2475). This family of proteins has no known function. 64 -313780 pfam10630 DUF2476 Protein of unknown function (DUF2476). This is a family of proteins of unknown function. The family is rich in proline residues. 258 -313781 pfam10631 DUF2477 Protein of unknown function (DUF2477). This is a family of proteins with no known function. The family is rich in proline residues. 141 -313782 pfam10632 He_PIG_assoc He_PIG associated, NEW1 domain of bacterial glycohydrolase. The English-language version of the first reference can be found on pages 388-399 of the above. This domain has been named NEW1 but its actual function is not known. It is found on proteins which are bacterial galactosidases. The domain is associated with the He_PIG family, pfam05345, a putative Ig-containing domain. 29 -287588 pfam10633 NPCBM_assoc NPCBM-associated, NEW3 domain of alpha-galactosidase. The English-language version of the first reference can be found on pages 388-399 of the above. This domain has been named NEW3 but its actual function is not known. It is found on proteins which are bacterial galactosidases. The domain is associated with the NPCBM family, pfam08305, a novel putative carbohydrate binding module found at the N-terminus of glycosyl hydrolases. 78 -337813 pfam10634 Iron_transport Fe2+ transport protein. This is a bacterial family of periplasmic proteins that are thought to function in high-affinity Fe2+ transport. 147 -337814 pfam10635 DisA-linker DisA bacterial checkpoint controller linker region. The DisA protein is a bacterial checkpoint protein that dimerizes into an octameric complex. The protein consists of three distinct domains. the first, N-terminal region, from 1-145 is globular and is represented by family DisA_N, pfam02457; the next 146-289 residues is this domain that consists of an elongated bundle of three alpha helices (alpha-6, alpha-10, and alpha-11), one side of which carries an additional three helices (alpha7-9), thus forming a spine like-linker between domains 1 and 3. The C-terminal residues of domain 3 are family HHH, pfam00633, the specific DNA-binding domain. The octameric complex thus has structurally linked nucleotide-binding and DNA-binding HhH domains and the nucleotide-binding domains are bound to a cyclic di-adenosine phosphate such that DisA is a specific di-adenylate cyclase. The di-adenylate cyclase activity is strongly suppressed by binding to branched DNA, but not to duplex or single-stranded DNA, suggesting a role for DisA as a monitor of the presence of stalled replication forks or recombination intermediates via DNA structure-modulated c-di-AMP synthesis. 142 -337815 pfam10636 hemP Hemin uptake protein hemP. This is a bacterial family of proteins that are involved in the uptake of the iron source hemin. 36 -313786 pfam10637 Ofd1_CTDD Oxoglutarate and iron-dependent oxygenase degradation C-term. Ofd1 is a prolyl 4-hydroxylase-like 2-oxoglutarate-Fe(II) dioxygenase that accelerates the degradation of Sre1N in the presence of oxygen. The domain is conserved from yeasts to humans. Yeast Sre1 is the orthologue of mammalian sterol regulatory element binding protein (SREBP), and it responds to changes in oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. However, unlike the prolyl 4-hydroxylases that regulate mammalian hypoxia-inducible factor, Ofd1 uses multiple domains to regulate Sre1N degradation by oxygen; the Ofd1 N-terminal dioxygenase domain is required for oxygen sensing and this Ofd1 C-terminal domain accelerates Sre1N degradation in yeasts. 255 -313787 pfam10638 Sfi1_C Spindle body associated protein C-terminus. This C-terminal domain of spindle-body-associated protein Sfi1 has an important role to play in the bridge-splitting during bi-polar spindle assembly, and this separation event possibly requires interaction with integral components of the nuclear envelope, such as the Mps2-Bbp1 complex. Centrally to this domain is a region carrying centrin-binding repeats with repeating units containing tryptophan, family Sfi1_central, pfam08457. 102 -313788 pfam10639 TMEM234 Putative transmembrane family 234. TMEM234 is a family of putative inner membrane proteins. Many bacterial members are annotated as putative L-Ara4N-phosphoundecaprenol flippase subunit ArnE, and as inner membrane proteins. They may be transporters of the multi-drug-resistant superfamily. 113 -287595 pfam10640 Pox_ATPase-GT mRNA capping enzyme N-terminal, ATPase and guanylyltransferase. This domain is the N-terminus of the large subunit viral mRNA capping enzyme, and carries both the ATPase and the guanylyltransferase activities of the enzyme. The guanylyltransferase enzymatic region runs from residues 242 (leucine)-273(arginine), the core of the acitve site being the lysine residue at 260. The ATPase activity is at the very N-terminal part of the domain. 311 -313789 pfam10642 Tom5 Mitochondrial import receptor subunit or translocase. This protein family is very short and is only found in yeasts. Tom5 is one of three very small translocases of the mitochondrial outer membrane. Tom5 links mitochondrial preprotein receptors to the general import pore. Although Tom5 has allegedly been identified in vertebrates this could not be confirmed. 40 -313790 pfam10643 Cytochrome-c551 Photosystem P840 reaction-centre cytochrome c-551. A photosynthetic reaction-centre complex is found in certain green sulphur bacteria such as Chlorobium vibrioforme which are anaerobic photo-auto-trophic organisms. The primary electron donor is P840, a probable B-Chl a dimer, and the primary electron acceptor is a B-Chl monomer. Also on the donor side c-type cytochromes are known to function as electron donors to photo-oxidized P840. This family is thus the secondary endogenous donor of the photosynthetic reaction-centre complex and is a membrane-bound cytochrome containing a single haem group. 207 -313791 pfam10644 Misat_Tub_SegII Misato Segment II tubulin-like domain. The misato protein contains three distinct, conserved domains, segments I, II and III. Segments I and III are common to Tubulins pfam00091, but segment II aligns with myosin heavy chain sequences from D. melanogaster (PIR C35815), rabbit (SP P04460), and human (PIR S12458). Segment II of misato is a major contributor to its greater length compared with the various tubulins. The most significant sequence similarities to this 54-amino acid region are from a motif found in the heavy chains of myosins from different organisms. A comparison of segment II with the vertebrate myosin heavy chains reveals that it is homologous to a myosin peptide in the hinge region linking the S2 and LMM domains. Segment II also contains heptad repeats which are characteristic of the myosin tail alpha-helical coiled-coils. This myosin-like homology may be due only to the fact that both myosin and Misato carry coiled-coils, which appear similar but are not necessarily homologous (Wood V, personal communication). 115 -313792 pfam10645 Carb_bind Carbohydrate binding. This is a carbohydrate binding domain which has been shown in Schizosaccharomyces pombe to be required for septum localization. 49 -313793 pfam10646 Germane Sporulation and spore germination. The GerMN domain is a region of approximately 100 residues that is found, duplicated, in the Bacillus GerM protein and is implicated in both sporulation and spore germination. The domain is found in a number of different bacterial species both alone and in association with other domains such as Amidase_3 pfam01520, Gmad1 and Gmad2. It is predicted to have a novel alpha-beta fold. 112 -313794 pfam10647 Gmad1 Lipoprotein LpqB beta-propeller domain. The Gmad1 domain is found associated with the GerMN family, pfam10646, in bacterial spore formation. It is predicted to have a beta-propeller fold and to have a passive binding role rather than a catalytic function owing to the low number of conserved hydrophilic residues. 255 -313795 pfam10648 Gmad2 Immunoglobulin-like domain of bacterial spore germination. This domain is found linked to the GerMN domain pfam10646 in some bacterial proteins. It is predicted to contain an immunoglobulin-like all-beta fold. 84 -313796 pfam10649 DUF2478 Protein of unknown function (DUF2478). This is a family of hypothetical bacterial proteins found in the vicinity of Molybdenum ABC transporter ATP-binding gene-products MobA MobB and MobC. However the function could not be confirmed. This family appears to belong to the P-loop superfamily by alignment to pfam03266. However, the characteristic P-loop sequence motif appears to have diverged beyond recognition in this family. 158 -337816 pfam10650 zf-C3H1 Putative zinc-finger domain. This domain is conserved in fungi and might be a zinc-finger domain as it contains three conserved Cs and an H in the C-x8-C-x5-C-x3-H conformation typical of a zinc-finger. 22 -313798 pfam10651 DUF2479 Domain of unknown function (DUF2479). This domain is found in phage from a number of different bacteria. It is purported to be a putative long tail fibre (Bacteriophage A118) protein, but this could not be confirmed. 142 -313799 pfam10652 DUF2480 Protein of unknown function (DUF2480). All the members of this family are uncharacterized proteins, but the environment in which they are found on the bacterial genome suggests a function as a glucose-6-phosphate isomerase (EC 5.3.1.9). This could not, however, be confirmed. 165 -287607 pfam10653 Phage-A118_gp45 Protein gp45 of Bacteriophage A118. This domain is found in bacteriophage and is thought to have a gp45 function within the phage tail-fibre system. 62 -287608 pfam10654 DUF2481 Protein of unknown function (DUF2481). This is a hypothetical protein family homologous to Lmo2305 in Bacteriophage A118 systems. 126 -313800 pfam10655 DUF2482 Hypothetical protein of unknown function (DUF2482). All the members of this very small, very short family are derived from bacteriophages, of the SA bacteriophages 11, Mu50B, system, and from the Staphylococcal_phi-Mu50B-like_prophages subsystem. All members are hypothetical proteins. 98 -287609 pfam10656 DUF2483 Hypothetical protein of unknown function (DUF2483). This is a family of proteins found in bacteriophage particularly of the SA bacteriophages 11, Mu50B, family, homologous to phi-ETA orf16. 73 -287610 pfam10657 RC-P840_PscD Photosystem P840 reaction centre protein PscD. The photosynthetic reaction centers (RCs) of aerotolerant organisms contain a heterodimeric core, built up of two strongly homologous polypeptides each of which contributes five transmembrane peptide helices to hold a pseudo-symmetric double set of redox components. Two molecules of PscD are housed within a subunit. PscD may be involved in stabilizing the PscB component since it is found to co-precipitate with FMO (Fenna-Mathews-Olson BChl a-protein) and PscB. It may also be involved in the interaction with ferredoxin. 144 -287611 pfam10658 DUF2484 Protein of unknown function (DUF2484). A role of this family in UDP-N-acetylenolpyruvoylglucosamine reductase, as MurB, could not be confirmed. 73 -287612 pfam10659 Trypan_glycop_C Trypanosome variant surface glycoprotein C-terminal domain. The trypanosome parasite expresses these proteins to evade the immune response. 104 -313801 pfam10660 MitoNEET_N Iron-containing outer mitochondrial membrane protein N-terminus. MitoNEET_N is the N-terminal region of the MitoNEET and Miner-type proteins that carry a zf-CDGSH, pfam09360, redox-active 2Fe-2S cluster. The whole protein regulates oxidative capacity. The domain is an anchor sequence that tethers the protein to the outer membrane. 64 -287614 pfam10661 EssA WXG100 protein secretion system (Wss), protein EssA. The WXG100 protein secretion system (Wss) is responsible for the secretion of WXG100 proteins (pfam06013) such as ESAT-6 and CFP-10 in Mycobacterium tuberculosis or EsxA and EsxB in Staphylococcus aureus. In S. aureus, the Wss seems to be encoded by a locus of eight CDS, called ess (eSAT-6 secretion system). This locus encodes, amongst several other proteins, EssA, a protein predicted to possess one transmembrane domain. Due to its predicted membrane location and its absolute requirement for WXG100 protein secretion, it has been speculated that EssA could form a secretion apparatus in conjunction with the polytopic membrane protein EsaA, YukC (pfam10140) and YukAB, which is a membrane-bound ATPase containing Ftsk/SpoIIIE domains (pfam01580) called EssC in S. aureus and Snm1/Snm2 in Mycobacterium tuberculosis. Proteins homologous to EssA, YukC, EsaA and YukD seem absent from mycobacteria. 148 -287615 pfam10662 PduV-EutP Ethanolamine utilisation - propanediol utilisation. Members of this family function in ethanolamine and propanediol degradation pathways. PduV may be involved in the association of the bacterial microcompartments (BMCs) to filaments. 143 -313802 pfam10664 NdhM Cyanobacterial and plastid NDH-1 subunit M. The proton-pumping NADH:ubiquinone oxidoreductase catalyzes the electron transfer from NADH to ubiquinone linked with proton translocation across the membrane. It is the largest, most complex and least understood of the respiratory chain enzymes and is referred to as Complex I. The subunit composition of the enzyme varies between groups of organisms. Complex I originating from mammalian mitochondria contains 45 different proteins, whereas in bacteria, the corresponding complex NDH-1 consists of 14 different polypeptides. homologs of these 14 proteins are found among subunits of the mitochondrial complex I, and therefore bacterial NDH-1 might be considered a model proton-pumping NADH dehydrogenase with a minimal set of subunits. Escherichia coli NDH-1 readily disintegrates into 3 sub-complexes: a water-soluble NADH dehydrogenase fragment (NuoE, -F, and -G),the connecting fragment (NuoB, -C, -D, and -I), and the membrane fragment (NuoA, -H, -J, -K, -L, -M, -N). In cyanobacteria and their descendants, the chloroplasts of green plants, the subunit composition of NDH-1 remains obscure. The genes for eleven subunits NdhA-NdhK, homologous to the NuoA-NuoD and NuoH-NuoN of the E. coli complex, have been found in the genome of Synechocystis sp. PCC 6803 which has a family of 6 ndhD genes and a family of 3 ndhF genes. Two reported multisubunit complexes, NDH-1L and NDH-1M, represent distinct NDH-1 complexes in the thylakoid membrane of Synechocystis 6803 -cyanobacterium. NDH-1L was shown to be essential for photoheterotrophic cell growth, whereas expression of NDH-1M was a prerequisite for CO2 uptake and played an important role in growth of cells at low CO2. Here we report the subunit composition of these two complexes. Fifteen proteins were discovered in NDH-1L including NdhL, a new component of the membrane fragment, and Ssl1690 (designated as NdhO), a novel peripheral subunit. The cyanobacterial NDH-1 complex contains additional subunits, NdhM and NdhN, compared with the minimal set of the bacterial enzyme and these seem to be specific for thylakoid-located NDH-1 of photosynthetic organisms. The three subunits of NDH-1, NdhM, NdhN and NdhO are essential for effecting cyclic electron flow around photosystem I, by supplying extra-ATP for photosynthesis in both plastids and cyanobacteria. 107 -313803 pfam10665 Minor_capsid_1 Minor capsid protein. This is a putative tail-knob or minor capsid protein from bacteriophages. 104 -313804 pfam10666 Phage_TAC_8 Phage tail assembly chaperone protein Gp14 ()A118. This phage protein family is expressed from within a cluster of tail- and base plate-producing genes. It is a family of tail assembly chaperone proteins. 140 -313805 pfam10667 DUF2486 Protein of unknown function (DUF2486). This family is made up of members from various Burkholderia spp. The function is unknown. 259 -313806 pfam10668 Phage_terminase Phage terminase small subunit. This family of small highly conserved proteins come from a subset of Firmicute species. Its putative function is as a phage terminase small subunit. 60 -287621 pfam10669 Phage_Gp23 Protein gp23 (Bacteriophage A118). This is the highly conserved family of the major tail subunit protein. 121 -337817 pfam10670 DUF4198 Domain of unknown function (DUF4198). This family was previously missannotated in Pfam as NikM. 212 -337818 pfam10671 TcpQ Toxin co-regulated pilus biosynthesis protein Q. The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonisation in the disease of cholera. TcpQ is part of an outer membrane complex of the TCP biogenesis apparatus, comprised of TcpC and TcpQ, and the TcpQ is required for proper localization of TcpC to the outer membrane. The domain is found in other Proteobacterial species apart from Vibrio. 80 -287624 pfam10672 Methyltrans_SAM S-adenosylmethionine-dependent methyltransferase. Members of this family are S-adenosylmethionine-dependent methyltransferases from gamma-proteobacterial species. The diversity in the roles of methylation is matched by the almost bewildering number of methyltransferase enzymes that catalyze the methylation reaction. Although several classes of methyltransferase enzymes are known, the great majority of methylation reactions are catalyzed by the S-adenosylmethionine-dependent methyltransferases. 286 -313809 pfam10673 DUF2487 Protein of unknown function (DUF2487). This is a bacterial family of uncharacterized proteins. 142 -337819 pfam10674 Ycf54 Protein of unknown function (DUF2488). This protein is conserved in the green lineage and located in the chloroplast. 91 -337820 pfam10675 DUF2489 Protein of unknown function (DUF2489). This is a bacterial family of uncharacterized proteins. 130 -313812 pfam10676 gerPA Spore germination protein gerPA/gerPF. This is a bacterial family of proteins that are required for the formation of functionally normal spores. Proteins in this family may be involved in establishing normal coat structure and/or permeability which could control the access of germinants to their receptor. 69 -313813 pfam10677 DUF2490 Protein of unknown function (DUF2490). This is a bacterial family of uncharacterized proteins. They appear to belong to the outer membrane beta barrel superfamily. 182 -337821 pfam10678 DUF2492 Protein of unknown function (DUF2492). This is a bacterial family of uncharacterized proteins. 75 -337822 pfam10679 DUF2491 Protein of unknown function (DUF2491). This is a bacterial family of uncharacterized proteins. 215 -337823 pfam10680 RRN9 RNA polymerase I specific transcription initiation factor. Initiation of transcription of ribosomal DNA (rDNA) in yeast involves an interaction of upstream activation factor (UAF) with the upstream element of the promoter, to form a stable UAF-template complex. UAF, together with the TATA-binding transcription initiation factor protein TBP, then recruits an essential core factor to the promoter, to form a stable preinitiation complex. This Rrn9 domain, which seems to be constrained to fungi, is the two highly conserved regions of proteins which form one of the subunits of UAF and appears to be the region responsible for the interaction with TBP. The family includes the S.pombe Arc1 protein, which is found to be essential for the accumulation of condensin at kinetochores. 65 -313817 pfam10681 Rot1 Chaperone for protein-folding within the ER, fungal. This conserved fungal family is an essential molecular chaperone in the endoplasmic reticulum. Molecular chaperones transiently interact with unfolded proteins to inhibit their self-aggregation and to support their folding and/or assembly. Rot1 is a general chaperone with some substrate specificity, its substrates being the structurally unrelated Kre5 Kre6 Big1 Atg22, which are type I, type II, and polytopic membrane proteins. The dependencies of each for Rot1 do not share similarities. However, their folding does require BiP, and one of these proteins was simultaneously associated with both Rot1 and BiP. In addition, Rot1 may cooperate with BiP/Kar2 in the folding of Kre6. 207 -287634 pfam10682 UL40 Glycoprotein of human cytomegalovirus HHV-5. This is glycoprotein UL40 from human cytomegalovirus or herpesvirus 5. The signal sequence of the UL40 polypeptide contains an HLA-E ligand identical with HLA-Cw*0304. The first 37 residues of UL40, including this ligand, are predicted to encode a signal peptide. The virus thus prevents the lysis by NK (natural killer) cells of the cell it has invaded. 214 -119203 pfam10683 DBD_Tnp_Hermes Hermes transposase DNA-binding domain. This domain confers specific DNA-binding on Hermes transposase. 68 -313818 pfam10684 BDM Putative biofilm-dependent modulation protein. This is a family of tightly conserved proteins from Enterobacteriaceae which are annotated as being biofilm-dependent modulation protein homologs. 71 -313819 pfam10685 KGG Stress-induced bacterial acidophilic repeat motif. This repeat is found in proteins which are expressed under conditions of stress in bacteria. The repeat contains a highly conserved, characteristic sequence motif,KGG, that is also recognized by plants and lower eukaryotes and repeated in their LEA (late embryogenesis abundant) family of proteins, thereby rendering those proteins bacteriostatic. An example of such an LEA family is LEA_5, pfam00477. Further downstream from this motif is a Walker A, nucleotide binding, motif GXXXXGK(S,T), that in YciG of E coli is QSGGNKSGKS. YciG is expressed as part of a three-gene operon, yciGFE, and this operon is induced by stress and is regulated by RpoS, which controls the general stress-response in E coli. YciG was shown to be important for stationary-phase resistance to thermal stress and in particular to acid stress. 21 -337824 pfam10686 DUF2493 Protein of unknown function (DUF2493). Members of this family are all Proteobacteria. The function is not known. 66 -337825 pfam10688 Imp-YgjV Bacterial inner membrane protein. This is a family of inner membrane proteins. Many of the members are YgjV protein. 159 -337826 pfam10689 DUF2496 Protein of unknown function (DUF2496). This family consists of proteins from Gammaproteobacteria spp. Many members are annotated as being like the E coli protein YbaM. 42 -151186 pfam10690 Myticin-prepro Myticin pre-proprotein from the mussel. Myticin is a cysteine-rich peptide produced in three isoforms, A, B and C, by Mytilus galloprovincialis, the Mediterranean mussel. Some isoforms show antibacterial activity against gram-positive bacteria, while others are additionally active against the fungus Fusarium oxysporum and a gram-negative bacterium, Escherichia coli D31. Myticin-prepro is the precursor peptide. The mature molecule, named myticin, consists of 40 residues, with four intramolecular disulfide bridges and a cysteine array in the primary structure different from that of previously characterized cysteine-rich antimicrobial peptides. The first 20 amino acids are a putative signal peptide, and the antimicrobial peptide sequence is a 36-residue C-terminal extension. Such a structure suggests that myticins are synthesized as prepro-proteins that are then processed by various proteolytic events before storage in the haemocytes as the active peptide. Myticin precursors are expressed mainly in the haemocytes. The family Mytilin has been merged into this family. 98 -337827 pfam10691 DUF2497 Protein of unknown function (DUF2497). Members of this family belong to the Alphaproteobacteria. The function of the family is not known. 69 -337828 pfam10692 DUF2498 Protein of unknown function (DUF2498). Members of this family are Gammaproteobacteria. Many are annotated as like E coli protein YciN. The function is not known. 79 -313825 pfam10693 DUF2499 Protein of unknown function (DUF2499). Members of this family are found in plants, lower eukaryotes, and bacteria and the chloroplast where it is annotated as Ycf49 or Ycf49-like. The function is not known though several members are annotated as putative membrane proteins. 87 -337829 pfam10694 DUF2500 Protein of unknown function (DUF2500). The members of this family are largely confined to the Gammaproteobacteria. The function is not known. 106 -337830 pfam10696 DUF2501 Protein of unknown function (DUF2501). Members of this family are all Proteobacteria. Several are annotated as being YjjA or YjjA-like, but this protein is uncharacterized. 76 -313828 pfam10697 DUF2502 Protein of unknown function (DUF2502). Members of this family are all Gammaproteobacteria. The function is not known. 90 -313829 pfam10698 DUF2505 Protein of unknown function (DUF2505). Members of this family are all Actinobacteria. The function is not known. 151 -337831 pfam10699 HAP2-GCS1 Male gamete fusion factor. The gene encoding Arabidopsis HAP2 is allelic with GCS1 (Generative cell-specific protein 1). HAP2 is expressed only in the haploid sperm and is required for efficient guidance of the pollen tube to the ovules. In Arabidopsis the protein is a predicted membrane protein with an N-terminal secretion signal, a single transmembrane domain and a C-terminal histidine-rich domain. HAP2-GCS1 is found from plants to lower eukaryotes and is necessary for the fusion of the gametes in fertilisation. Studies in the green alga Chlamydomonas and the malaria organism Plasmodium showed that it is involved in a novel mechanism for gamete fusion where a first species-specific protein binds male and female gamete membranes together after which a second, broadly conserved protein, either directly or indirectly, causes fusion of the two membranes together. The broadly conserved protein is represented by this HAP2-GCS1 domain, conserved from plants to lower eukaryotes. In Plasmodium berghei the protein is expressed only in male gametocytes and gametes, having a male-specific function during the interaction with female gametes, and being indispensable for parasite fertilisation. The gene in plants and eukaryotes might well have originated from acquisition of plastids from red algae. 48 -313831 pfam10702 DUF2507 Protein of unknown function (DUF2507). This family is conserved in Firmicutes. The function is not known. 123 -337832 pfam10703 MoaF MoaF N-terminal domain. MoaF protein is essential for the production of the monoamine-inducible 30kDa protein in Klebsiella. It is necessary for reconstituting organoautotrophic growth in Ralstonia eutropha. It is conserved in Proteobacteria and some lower eukaryotes. The operon regulating the Moa genes is responsible for molybdenum cofactor biosynthesis. This entry corresponds to the N-terminal domain. 108 -313833 pfam10704 DUF2508 Protein of unknown function (DUF2508). This family is conserved in Firmicutes. Several members are annotated as being the protein YaaL. The function is not known. 70 -313834 pfam10705 Ycf15 Chloroplast protein precursor Ycf15 putative. In some species of plants the ycf15 gene is probably not a protein-coding gene because the protein in these species has premature stop codons. Most of the members of the family are hypothetical or uncharacterized. 86 -287651 pfam10706 Aminoglyc_resit Aminoglycoside-2''-adenylyltransferase. This family is conserved in Bacteria. It confers resistance to kanamycin, gentamicin, and tobramycin. The protein is also produced by plasmids in various bacterial species and confers resistance to essentially all clinically available aminoglycosides except streptomycin, and it eliminates the synergism between aminoglycosides and cell-wall active agents. 174 -313835 pfam10707 YrbL-PhoP_reg PhoP regulatory network protein YrbL. This is a family of proteins that are activated by PhoP. PhoP protein controls the expression of a large number of genes that mediate adaptation to low Mg2+ environments and/or virulence in several bacterial species. YbrL is proposed to be acting in a loop activity with PhoP and PrmA analogous to the multicomponent loop in Salmonella where the PhoP-dependent PmrD protein activates the regulatory protein PmrA, and the activated PmrA then represses transcription from the PmrD promoter which harbours binding sites for both the PhoP and PmrA proteins. Expression of YrbL is induced in low Mg2+ in a PhoP-dependent fashion and repressed by Fe3+ in a PmrA-dependent manner. 200 -313836 pfam10708 DUF2510 Protein of unknown function (DUF2510). This is family of proteins conserved in Actinobacteria. Many members are annotated as putative membrane proteins but this could not be confirmed. 35 -287654 pfam10709 DUF2511 Protein of unknown function (DUF2511). This family is conserved in bacteria. The function is not known. 87 -313837 pfam10710 DUF2512 Protein of unknown function (DUF2512). Proteins in this family are predicted to be integral membrane proteins, and many of them are annotated as being YndM protein. They are all found in Firmicutes. The true function is not known. 136 -313838 pfam10711 DUF2513 Hypothetical protein (DUF2513). This family is found in bacteria. The function is not known. 100 -287657 pfam10712 NAD-GH NAD-specific glutamate dehydrogenase. The members of this are annotated as being NAD-specific glutamate dehydrogenase encoded in antisense gene pair with DnaK-J. 574 -337833 pfam10713 DUF2509 Protein of unknown function (DUF2509). This family is conserved in Proteobacteria. The function is not known but many of the members are annotated as protein YgdB. 129 -337834 pfam10714 LEA_6 Late embryogenesis abundant protein 18. This is a family of late embryogenesis-abundant proteins There is high accumulation of this protein in dry seeds, and in the roots of full-grown plants in response to dehydration and ABA (abscisic acid application) treatments. This LEA protein disappears after germination. It accumulates in growing regions of well irrigated hypocotyls and meristems suggesting a role in seedling growth resumption on rehydration. As a group the LEA proteins are highly hydrophilic, contain a high percentage of glycine residues, lack Cys and Trp residues and do not coagulate upon exposure to high temperature, and for these reasons are considered to be members of a group of proteins called hydrophilins. Expression of the protein is negatively regulated during etiolating growth, particularly in roots, in contrast to its expression patterns during normal growth. 75 -337835 pfam10715 REGB_T4 T4-page Endoribonuclease RegB. The RegB endoribonuclease encoded by bacteriophage T4 is a unique sequence-specific nuclease that cleaves in the middle of GGAG or, in a few cases, GGAU tetranucleotides, preferentially those found in the Shine-Dalgarno regions of early phage mRNAs. Phage RB49 in addition to RegB utilizes Escherichia coli endoribonuclease E for the degradation of its transcripts for gene regB. The deduced primary structure of RegB proteins of 32 phages studied is almost identical to that of T4, while the sequences of RegB encoded by phages RB69, TuIa and RB49 show substantial divergence from their T4 counterpart. Rebuilding from the Structure 2hx6 structure, this family does not fall into the Lysozyme-like family, but rather is a new member of the RelE/YoeB structural and functional family of ribonucleases specialising in mRNA inactivation within the ribosome. 150 -313841 pfam10716 NdhL NADH dehydrogenase transmembrane subunit. The NdhL family is a component of the NDH-1L complex that is one of the proton-pumping NADH:ubiquinone oxidoreductases that catalyze the electron transfer from NADH to ubiquinone linked with proton translocation across the membrane. NDH-1L is essential for photoheterotrophic cell growth. NdhL appears to contain two transmembrane helices and it is necessary for the functioning of though not the correct assembly of the NDH-1 complex in Synechocystis 6803. The conservation between cyanobacteria and green plants suggests that chloroplast NDH-1 complexes contain related subunits. 76 -287662 pfam10717 ODV-E18 Occlusion-derived virus envelope protein ODV-E18. This family of occlusion-derived viral envelope proteins are detected in viral-induced intranuclear microvesicles and are not detected in the plasma membrane, cytoplasmic membranes, or the nuclear envelope. The ODV-E18 protein is encoded by baculovirus late genes with transcription initiating from a TAAG motif. It exists as a dimer in the ODV envelope and contains a hydrophobic domain which is putatively acting as a target or retention signal for intranuclear microvesicles. 87 -313842 pfam10718 Ycf34 Hypothetical chloroplast protein Ycf34. This family is of proteins annotated as hypothetical chloroplast protein YCF34. The function is not known. 76 -337836 pfam10719 ComFB Late competence development protein ComFB. This family is conserved in bacteria. Some members, with three conserved cysteines, are annotated as late competence development protein ComFB. 78 -313844 pfam10720 DUF2515 Protein of unknown function (DUF2515). This family is conserved in Firmicutes. Several members are annotated as YppC. The function is not known. 303 -287666 pfam10721 DUF2514 Protein of unknown function (DUF2514). This family is conserved in bacteria and some viruses. The function is not known. 161 -313845 pfam10722 YbjN Putative bacterial sensory transduction regulator. YbjN is a putative sensory transduction regulator protein found in Proteobacteria. As it is a multi-copy suppressor of the coenzyme A-associated temperature sensitivity in temperature-sensitive mutant strains of Escherichia coli the suggestion is that it both helps CoA-A1 and possibly works as a general stabilizer for some other unstable proteins. This family was expanded to subsume other related families: DUF1790, DUF1821 and DUF2596. 126 -287668 pfam10723 RepB-RCR_reg Replication regulatory protein RepB. This is a family of proteins which regulate replication of rolling circle replication (RCR) plasmids that have a double-strand replication origin (dso). Regulation of replication of RCR plasmids occurs mainly at initiation of leading strand synthesis at the dso, such that Rep protein concentration controls plasmid replication. 81 -313846 pfam10724 DUF2516 Protein of unknown function (DUF2516). This family is conserved in Actinobacteria. The function is not known. 91 -337837 pfam10725 DUF2517 Protein of unknown function (DUF2517). This family is conserved in Proteobacteria. Several members are annotated as being protein YbfA. The function is not known. 60 -313848 pfam10726 DUF2518 Protein of function (DUF2518). This family is conserved in Cyanobacteria. Several members are annotated as the protein Ycf51. The function is not known. 142 -287672 pfam10727 Rossmann-like Rossmann-like domain. This family of proteins contain a Rossmann-like domain. 127 -337838 pfam10728 DUF2520 Domain of unknown function (DUF2520). This presumed domain is found C-terminal to a Rossmann-like domain suggesting that these proteins are oxidoreductases. 126 -313850 pfam10729 CedA Cell division activator CedA. CedA is made up of four antiparallel beta-strands and an alpha-helix. It activates cell division by inhibiting chromosome over-replication. This is mediated by binding to dsDNA via the beta-sheet.. 75 -313851 pfam10730 DUF2521 Protein of unknown function (DUF2521). Family of unknown function specific to Bacillus. 146 -287676 pfam10731 Anophelin Thrombin inhibitor from mosquito. Members of this family are all inhibitors of thrombin, the peptidase that is at the end of the blood coagulation cascade and which creates the clot by cleaving fibrinogen. The interaction between thrombin and fibrinogen involves two different areas of contact - via the thrombin active site and via a second substrate-binding site known as an exosite. The inhibitor acts by blocking the exosite, rather than by interacting with the active site. The inhibitors are from mosquitoes that feed on human blood and which, by inhibiting thrombin, prevent the blood from clotting and keep it flowing. 65 -287677 pfam10732 DUF2524 Protein of unknown function (DUF2524). This family of proteins with unknown function appears to be restricted to Bacillaceae bacteria. 84 -313852 pfam10733 DUF2525 Protein of unknown function (DUF2525). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. The family has a highly conserved sequence. 60 -313853 pfam10734 DUF2523 Protein of unknown function (DUF2523). This is a family of phage related proteins whose function is uncharacterized. 80 -287680 pfam10735 DUF2526 Protein of unknown function (DUF2526). This family of proteins with unknown function is restricted to Enterobacteriaceae. The family has a highly conserved sequence. 81 -119256 pfam10736 DUF2527 Protein of unknown function (DUF2627). This family of proteins with unknown function appears to be restricted to a family of Enterobacterial proteins. It has a highly conserved sequence. 38 -337839 pfam10737 GerPC Spore germination protein GerPC. GerPC is required for the formation of functionally normal spores. The gerP locus encodes a number of proteins which are thought to be involved in the establishment of normal spore coat structure and/or permeability, which allows the access of germinants to their receptor. 172 -313855 pfam10738 Lpp-LpqN Probable lipoprotein LpqN. This family is conserved in Mycobacteriaceae and is likely to be a lipoprotein. 171 -313856 pfam10739 DUF2550 Protein of unknown function (DUF2550). This family is conserved in Corynebacterineae. The function is not known though most members are annotated as either secreted, or membrane, proteins. 127 -313857 pfam10740 DUF2529 Domain of unknown function (DUF2529). This domain is conserved in the Bacillales. The function is not known, but given this domains relationship to the SIS domain it may carry out a sugar isomerase reaction. Several members are annotated as being YWJG, a protein expressed downstream of pyrG, a gene encoding for cytidine triphosphate synthetase. 169 -287685 pfam10741 T2SSM_b Type II secretion system (T2SS), protein M subtype b. The T2SMb family is conserved in Proteobacteria and Actinobacteria, and differs from the T2SM proteins in Vibrio spp. (pfam04612). 111 -313858 pfam10742 DUF2555 Protein of unknown function (DUF2555). This family is conserved in Cyanobacteria. The function is not known. 55 -313859 pfam10743 Phage_Cox Regulatory phage protein cox. This family of phage Cox proteins is expressed by Enterobacteria phages. The Cox protein is a 79-residue basic protein with a predicted strong helix-turn-helix DNA-binding motif. It inhibits integrative recombination and it activates site-specific excision of the HP1 genome from the Haemophilus influenzae chromosome, Hp1. Cox appears to function as a tetramer. Cox binding sites consist of two direct repeats of the consensus motif 5'-GGTMAWWWWA, one Cox tetramer binding to each motif. Cox binding interferes with the interaction of HP1 integrase with one of its binding sites, IBS5. This competition is central to directional control. Both Cox binding sites are needed for full inhibition of integration and for activating excision, because it plays a positive role in assembling the nucleoprotein complexes that produce excisive recombination, by inducing the formation of a critical conformation in those complexes. 87 -337840 pfam10744 Med1 Mediator of RNA polymerase II transcription subunit 1. Mediator complexes are basic necessities for linking transcriptional regulators to RNA polymerase II. This domain, Med1, is conserved from plants to fungi to humans and forms part of the Med9 submodule of the Srb/Med complex. it is one of three subunits essential for viability of the whole organism via its role in environmentally-directed cell-fate decisions. Med1 is part of the tail region of the Mediator complex. 358 -313861 pfam10745 DUF2530 Protein of unknown function (DUF2530). This family of proteins with unknown function appears to be restricted to mycobacteria. 73 -287690 pfam10746 Phage_holin_2_2 Phage holin T7 family, holin superfamily II. Holins are a diverse family of proteins that cause bacterial membrane lysis during late-protein synthesis. 55 -313862 pfam10747 SirA Sporulation inhibitor of replication protein SirA. This entry represents the Sporulation inhibitor of replication (sirA) family of proteins from Bacillus sp. Induction of sporulation in rapidly growing cells inhibits replication; this is thought to be through the action of SirA protein and independent of phosphorylated Spo0A; however SirA protein synthesis is induced by Spo0A. 139 -313863 pfam10748 DUF2531 Protein of unknown function (DUF2531). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 132 -313864 pfam10749 DUF2534 Protein of unknown function (DUF2534). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 80 -337841 pfam10750 DUF2536 Protein of unknown function (DUF2536). This family of proteins with unknown function appears to be restricted to Bacillus spp. Structural modelling suggests this domain may bind nucleic acids. 68 -313866 pfam10751 DUF2535 Protein of unknown function (DUF2535). This family of proteins with unknown function appears to be restricted to Bacillus spp. 83 -313867 pfam10752 DUF2533 Protein of unknown function (DUF2533). This family of proteins with unknown function appears to be restricted to Bacillus spp. 83 -337842 pfam10753 Toxin_GhoT_OrtT Toxin GhoT_OrtT. GhoT is part of the GhoT-GhoS type V toxin-antitoxin (TA) system. OrtT is homologous to GhoT, but it is not part of a TA pair. In this case, it acts as an independent toxin to reduce growth during stress related to amino acid and DNA synthesis. 54 -337843 pfam10754 DUF2569 Protein of unknown function (DUF2569). This family is conserved in bacteria. The function is not known, but several members are annotated as being YdgK or a homolog thereof. 144 -313870 pfam10755 DUF2585 Protein of unknown function (DUF2585). This family is conserved in Proteobacteria. The function is not known. 164 -313871 pfam10756 bPH_6 Bacterial PH domain. This domain has a bacterial type PH domain structure. This domain was previously known as DUF2581. This family is conserved in the Actinomycetales. Although several members are annotated as RbiX homologs, RbiX being a putative regulator of riboflavin biosynthesis, the function could not be confirmed. 73 -337844 pfam10757 YbaJ Biofilm formation regulator YbaJ. YbaJ regulates biofilm formation. It also has an important role in the regulation of motility in the biofilm. YbaJ functions in increasing conjugation, aggregation and decreasing the motility, resulting in an increase of biofilm 118 -313872 pfam10758 DUF2586 Protein of unknown function (DUF2586). This bacterial family of proteins has no known function. 363 -313873 pfam10759 DUF2587 Protein of unknown function (DUF2587). This is a bacterial family of proteins with no known function. 160 -313874 pfam10761 DUF2590 Protein of unknown function (DUF2590). This family of proteins has no known function. 98 -337845 pfam10762 DUF2583 Protein of unknown function (DUF2583). Some members in this family of proteins are annotated as YchH however currently no function is known. 88 -313875 pfam10763 DUF2584 Protein of unknown function (DUF2584). This bacterial family of proteins have no known function. 77 -313876 pfam10764 Gin Inhibitor of sigma-G Gin. Gin allows sigma-F to delay late forespore transcription by preventing sigma-G to take over before the cell has reached a critical stage of development. Gin is also known as CsfB. 45 -313877 pfam10765 DUF2591 Protein of unknown function (DUF2591). This bacterial family of proteins has no known function. 107 -337846 pfam10766 AcrZ Multidrug efflux pump-associated protein AcrZ. AcrZ is associated with the AcrA-TolC multidrug efflux pump, it may enhance the ability of the pump to recognize and export certain substrates. 44 -337847 pfam10767 DUF2593 Protein of unknown function (DUF2593). This family of proteins appear to be restricted to Enterobacteriaceae. Some members in the family are annotated as YbjO however currently there is no known function. 136 -313880 pfam10768 FliX Class II flagellar assembly regulator. The FliX protein is possibly a transient component of the flagellum that is required for the assembly process. FliX may contribute to the targeting or assembly of the P- and L-ring protein monomers at the cell pole. The family carries a potential N-terminal signal sequence and at least one transmembrane domain indicating that it might function either in or in association with the cell membrane. 134 -337848 pfam10769 DUF2594 Protein of unknown function (DUF2594). This family of proteins with unknown function appear to be restricted to Enterobacteriaceae. 74 -313882 pfam10771 DUF2582 Winged helix-turn-helix domain (DUF2582). This family is conserved in bacteria and archaea. The function is not known. The structure of two proteins in this family were solved using NMR and shown to adopt a winged helix-turn-helix fold. Structural analysis shows that these proteins form an unusual dimeric conformation. This dimer was shown to be similar to that found in the FadR and TubR wHTH domains. It was suggested that these proteins are not very likely to bind to DNA. 65 -313883 pfam10772 DUF2597 Protein of unknown function (DUF2597). This family of proteins has no known function. 134 -287715 pfam10774 DUF4226 Domain of unknown function (DUF4226). This family of mycobacterial proteins are uncharacterized. 110 -313884 pfam10775 ATP_sub_h ATP synthase complex subunit h. Subunit h is a component of the yeast mitochondrial F1-F0 ATP synthase. It is essential for the correct assembly and functioning of this enzyme. Subunit h occupies a central place in the peripheral stalk between the F1 sector and the membrane. 67 -313885 pfam10776 DUF2600 Protein of unknown function (DUF2600). This is a bacterial family of proteins. Some members in the family are annotated as YtpB however currently no function is known. 328 -337849 pfam10777 YlaC Inner membrane protein YlaC. Members of this family include proteins annotated as inner membrane protein YlaC in E. coli and Salmonella. The function of this family is unknown. 153 -313887 pfam10778 DehI Halocarboxylic acid dehydrogenase DehI. Haloacid dehalogenases catalyze the removal of halides from organic haloacids. DehI can process both L- and D-substrates. A crucial aspartate residue is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of the configuration of either L- or D-substrates in contrast to D-only enzymes. 145 -313888 pfam10779 XhlA Haemolysin XhlA. XhlA is a cell-surface associated haemolysin that lyses the two most prevalent types of insect immune cells (granulocytes and plasmatocytes) as well as rabbit and horse erythrocytes. This family has had DUF1267, pfam06895, merged into it. 67 -337850 pfam10780 MRP_L53 39S ribosomal protein L53/MRP-L53. MRP-L53 is also known as Mrp144. It is part of the 39S ribosome. 53 -337851 pfam10781 DSRB Dextransucrase DSRB. DSRB is a novel dextransucrase which produces a dextran different from the typical dextran, as it contains (1-6) and (1-2) linkages, when this strain is grown in the presence of sucrose. 61 -337852 pfam10782 zf-C2HCIx2C Zinc-finger. This bacterial family of proteins is a zinc-finger domain of the C2HC type with an additional cysteine. 58 -313892 pfam10783 DUF2599 Protein of unknown function (DUF2599). This family is conserved in Actinobacteria. The function is not known. 92 -119304 pfam10784 Plasmid_stab_B Plasmid stability protein. This family is conserved in the Enterobacteriales. It is a putative plasmid stability protein in that it is expressed from the operon involved in stability, but its actual function has not yet been characterized. 72 -313893 pfam10785 NADH-u_ox-rdase NADH-ubiquinone oxidoreductase complex I, 21 kDa subunit. This family is the N-terminal domain of NADH-ubiquinone oxidoreductase 21 kDa subunits from fungi, lower metazoa and plants. 85 -337853 pfam10786 G6PD_bact Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49). This family is conserved in Firmicutes and Proteobacteria. Several members are annotated as being glucose-6-phosphate 1-dehydrogenase (EC:1.1.1.49) but this could not be confirmed. 213 -313895 pfam10787 YfmQ Uncharacterized protein from bacillus cereus group. This family is conserved in the Bacillus cereus group. Several members are called YfmQ but the function is not known. 142 -337854 pfam10788 DUF2603 Protein of unknown function (DUF2603). This family is conserved in Epsilon-proteobacteria. The function is not known. 136 -256166 pfam10789 Phage_RpbA Phage RNA polymerase binding, RpbA. Upon infection the RpbA encode phage protein binds to the ADP-ribosylated core RNA polymerase and modulates function to preferentially bind T4 promoters. This is a non-essential protein to the phage life cycle. 108 -287728 pfam10790 DUF2604 Protein of Unknown function (DUF2604). Family of bacterial proteins with undetermined function. 76 -313897 pfam10791 F1F0-ATPsyn_F Mitochondrial F1-F0 ATP synthase subunit F of fungi. The membrane bound F1-FO-type H+ ATP synthase of mitochondria catalyzes the terminal step in oxidative respiration converting the generation of the electrochemical gradient into ATP for cellular biosynthesis. The general structure and the core subunits of the enzyme are highly conserved in both prokaryotic and eukaryotic organisms. 90 -313898 pfam10792 DUF2605 Protein of unknown function (DUF2605). This family is conserved in Cyanobacteria. The function is not known. 96 -287731 pfam10793 Gloverin Gloverin-like protein. This family of proteins are Gloverin-like. Gloverin is a 13.8kDa inducible antibacterial insect protein which inhibits the synthesis of vital outer membrane proteins leading to a permeable outer membrane. Gloverin contains a large number of glycine residues. 161 -287732 pfam10794 DUF2606 Protein of unknown function (DUF2606). Family of bacterial proteins with unknown function. These proteins have been classified as membrane proteins 134 -287733 pfam10795 DUF2607 Protein of unknown function (DUF2607). This family is conserved in Gammaproteobacteria. The function is not known. 94 -337855 pfam10796 Anti-adapt_IraP Sigma-S stabilisation anti-adaptor protein. This family is conserved in Enterobacteriaceae. It is one of a series of proteins, expressed by these bacteria in response to stress, that help to regulate Sigma-S, the stationary phase sigma factor of Escherichia coli and Salmonella. IraP is essential for Sigma-S stabilisation in some but not all starvation conditions. 86 -313900 pfam10797 YhfT Protein of unknown function. This family is conserved in Firmicutes and Proteobacteria. The function is not known but several members are annotated as being homologs of E coli YhfT, a protein thought to be involved in fatty acid oxidation. 423 -337856 pfam10798 YmgB Biofilm development protein YmgB/AriR. YmgB is part of the three gene cluster ymgABC which has a role in biofilm development and stability. YmgB represses biofilm formation in rich medium containing glucose, decreases cellular motility and also protects the cell from acid which indicates that YmgB has an important function in acid-resistance. YmgB binds as a dimer to genes which are important for biofilm formation via a ligand. Due to its important function in acid resistance it is also known as AriR (regulator of acid resistance influenced by indole). 59 -313902 pfam10799 YliH Biofilm formation protein (YliH/bssR). YliH is induced in biofilms and is involved in repression of motility in the biofilms. YliH is also known as bssR (regulator of biofilm through signal secreton). 126 -313903 pfam10800 DUF2528 Protein of unknown function (DUF2528). This family of proteins has no known function. Some of the sequences are annotated as ea10 however the function of this protein is unknown. 103 -313904 pfam10801 DUF2537 Protein of unknown function (DUF2537). This bacterial family of proteins has no known function. 75 -313905 pfam10802 DUF2540 Protein of unknown function (DUF2540). This family of proteins with unknown function appears to be restricted to Methanococcus. 75 -313906 pfam10803 GerPB Spore germination GerPB. Members of this family are required for formation of functionally normal spores. They may be involved in the establishment of spore coat structure or permeability. 52 -287742 pfam10804 DUF2538 Protein of unknown function (DUF2538). This family of proteins has no known function. 155 -313907 pfam10805 DUF2730 Protein of unknown function (DUF2730). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 101 -313908 pfam10806 SAM35 SAM35, subunit of SAM coomplex. SAM35 is a family of fungal proteins found in the peripheral mitochondrial outer membrane. It is essential for cell viability. It forms a subunit of the SAM (sorting and assembly machinery) complex and is crucial for the assembly of the precursors of Tom40 and porin, the outer membrane beta-barrel proteins involved in mitochondrial biogenesis. SAM35 is required in order for the Sam50 subunit of the SAM complex to bind outer membrane substrate proteins. 126 -287745 pfam10807 DUF2541 Protein of unknown function (DUF2541). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. All proteins are annotated as YaaI precursor however currently no function is known. 130 -151258 pfam10808 DUF2542 Protein of unknown function (DUF2542). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. The family has a highly conserved sequence. 79 -313909 pfam10809 DUF2732 Protein of unknown function (DUF2732). This family of proteins has no known function. 74 -287747 pfam10810 DUF2545 Protein of unknown function (DUF2545). This family of proteins with unknown function is restricted to Enterobacteriaceae. The sequence is highly conserved. 80 -287748 pfam10811 DUF2532 Protein of unknown function (DUF2532). This bacterial family of proteins has no known function. 158 -287749 pfam10812 DUF2561 Protein of unknown function (DUF2561). This family of proteins with unknown function appears to be restricted to Mycobacterium spp. 203 -287750 pfam10813 DUF2733 Protein of unknown function (DUF2733). This viral family of proteins has no known function. 32 -313910 pfam10814 CwsA Cell wall synthesis protein CwsA. Cell wall synthesis protein CwsA is required for cell division, cell wall synthesis and cell shape maintenance. 132 -313911 pfam10815 ComZ ComZ. ComZ is part of a two gene operon. It affects competence regulation by negatively affecting the transcription of the ComG operon. ComZ contains a leucine zipper motif. 55 -313912 pfam10816 DUF2760 Domain of unknown function (DUF2760). This is a bacterial family of uncharacterized proteins. 123 -287754 pfam10817 DUF2563 Protein of unknown function (DUF2563). This family of proteins with unknown function appears to be restricted to Mycobacterium. 104 -313913 pfam10818 DUF2547 Protein of unknown function (DUF2547). This bacterial family of proteins has no known function. 96 -287756 pfam10819 DUF2564 Protein of unknown function (DUF2564). This family of proteins with unknown function appears to be restricted to Bacillus spp. 78 -313914 pfam10820 DUF2543 Protein of unknown function (DUF2543). This family of proteins with unknown function appear to be restricted to Enterobacteriaceae. The family has a highly conserved sequence. 81 -313915 pfam10821 DUF2567 Protein of unknown function (DUF2567). This is a bacterial family of proteins with unknown function. 166 -313916 pfam10823 DUF2568 Protein of unknown function (DUF2568). One member in this family is annotated as yrdB which is part of a four gene operon however currently no function is known. 92 -313917 pfam10824 T7SS_ESX_EspC Excreted virulence factor EspC, type VII ESX diderm. T7SS_ESX-EspC is a family of exported virulence proteins from largely Acinetobacteria and a few Fimicutes, Gram-positive bacteria. It is exported in conjunction with EspA as an interacting pair.ED F8ADQ6.1/227-313; F8ADQ6.1/227-313; 100 -313918 pfam10825 DUF2752 Protein of unknown function (DUF2752). This family is conserved in bacteria. Many members are annotated as being putative membrane proteins. 48 -313919 pfam10826 DUF2551 Protein of unknown function (DUF2551). This Archaeal family of proteins has no known function. 83 -287763 pfam10827 DUF2552 Protein of unknown function (DUF2552). This bacterial family of proteins has no known function. 79 -313920 pfam10828 DUF2570 Protein of unknown function (DUF2570). This is a family of proteins with unknown function. 108 -313921 pfam10829 DUF2554 Protein of unknown function (DUF2554). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 76 -313922 pfam10830 DUF2553 Protein of unknown function (DUF2553). This family of bacterial proteins has no known function. 75 -313923 pfam10831 DUF2556 Protein of unknown function (DUF2556). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 53 -337857 pfam10832 DUF2559 Protein of unknown function (DUF2559). This family of proteins appear to be restricted to Enterobacteriaceae. The sequences are annotated as yhfG however currently no function is known. 54 -287769 pfam10833 DUF2572 Protein of unknown function (DUF2572). This bacterial family of proteins has no known function. 220 -287770 pfam10834 DUF2560 Protein of unknown function (DUF2560). This family of proteins has no known function. 72 -313925 pfam10835 DUF2573 Protein of unknown function (DUF2573). Some members in this bacterial family of proteins are annotated as YusU however no function is currently known. This family of proteins appears to be restricted to Bacillus spp. 75 -287772 pfam10836 DUF2574 Protein of unknown function (DUF2574). This family of proteins appears to be restricted to Enterobacteriaceae. Members of the family are annotated as yehE however currently no function is known. 93 -287773 pfam10837 DUF2575 Protein of unknown function (DUF2575). This family of proteins appears to be restricted to Enterobacteriaceae. Members in the family are annotated as yaaY but currently there is no known function. 71 -313926 pfam10838 DUF2677 Protein of unknown function (DUF2677). Members in this family of proteins are annotated as UL121 however currently no function is known. 166 -287774 pfam10839 DUF2647 Protein of unknown function (DUF2647). This eukaryotic family of proteins are annotated as ycf68 but have no known function. 70 -337858 pfam10840 DUF2645 Protein of unknown function (DUF2645). This family of proteins appear to be restricted to Enterobacteriaceae. Some members in the family are annotated as YjeO however no function for this protein is currently known. 98 -287776 pfam10841 DUF2644 Protein of unknown function (DUF2644). This family of proteins with unknown function appear to be restricted to Pasteurellaceae. 59 -313928 pfam10842 DUF2642 Protein of unknown function (DUF2642). This family of proteins with unknown function appear to be restricted to Bacillus spp. 58 -313929 pfam10843 RGI1 Respiratory growth induced protein 1. This family of fungal proteins includes RGI1, standing for respiratory growth induced 1. RGI1 is involved in aerobic energetic metabolism. 194 -313930 pfam10844 DUF2577 Protein of unknown function (DUF2577). This family of proteins has no known function 102 -313931 pfam10845 DUF2576 Protein of unknown function (DUF2576). The function of this viral family of proteins is unknown. 48 -313932 pfam10846 DUF2722 Protein of unknown function (DUF2722). This eukaryotic family of proteins has no known function. 362 -287781 pfam10847 DUF2656 Protein of unknown function (DUF2656). This bacterial family of proteins has no known function. 140 -287782 pfam10848 DUF2655 Protein of unknown function (DUF2655). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 82 -287783 pfam10849 DUF2654 Protein of unknown function (DUF2654). Some members in this family of proteins are annotated as a-gt.4 however currently no function is known. 70 -313933 pfam10850 DUF2653 Protein of unknown function (DUF2653). This family of proteins with unknown function appears to be restricted to Bacillus spp. 88 -313934 pfam10851 DUF2652 Protein of unknown function (DUF2652). This family of proteins has no known function. 118 -313935 pfam10852 DUF2651 Protein of unknown function (DUF2651). This family of proteins with unknown function appears to be restricted to Bacillus spp. 73 -313936 pfam10853 DUF2650 Protein of unknown function (DUF2650). This family of proteins with unknown function appear to be restricted to Caenorhabditis elegans. 37 -287788 pfam10854 DUF2649 Protein of unknown function (DUF2649). Members in this family of proteins are annotated as Plectrovirus orf 10 transmembrane proteins however currently no function is known. 67 -287789 pfam10855 DUF2648 Protein of unknown function (DUF2648). This family of proteins with unknown function appears to be restricted to Bacillales Staphylococcus. 33 -287790 pfam10856 DUF2678 Protein of unknown function (DUF2678). This family of proteins has no known function. 118 -287791 pfam10857 DUF2701 Protein of unknown function (DUF2701). This viral family of proteins has no known function. 63 -313937 pfam10858 DUF2659 Protein of unknown function (DUF2659). This bacterial family of proteins has no known function. 224 -313938 pfam10859 DUF2660 Protein of unknown function (DUF2660). This is a family of proteins with unknown function. 91 -287794 pfam10860 DUF2661 Protein of unknown function (DUF2661). This viral family of proteins have no known function. 113 -337859 pfam10861 DUF2784 Protein of Unknown function (DUF2784). This is a family of uncharacterized protein. The function is not known however it is conserved in Bacteria. 105 -313940 pfam10862 FcoT FcoT-like thioesterase domain. Proteins in this family have a HotDog fold. This family was formerly known as domain of unknown function 2662 (DUF2662). The structure of Rv0098 from M. tuberculosis suggested a thioesterase function. Assays showed that this protein was a thioesterase with a preference for long chain fatty acyl groups. The maximal Kcat was observed for palmitoyl-CoA although longer and shorter molecules were also cleaved. In solution this protein forms a homo-hexameric complex. 150 -313941 pfam10863 NOP19 Nucleolar protein 19. Nucleolar protein 19 plays an essential role in 40S ribosomal subunit biogenesis. 142 -313942 pfam10864 DUF2663 Protein of unknown function (DUF2663). Some members in this family of proteins are annotated as YpbF however currently no function is known. 130 -313943 pfam10865 DUF2703 Domain of unknown function (DUF2703). This family of protein has no known function, but it may be distantly related to the thioredoxin fold. It contains the CXXC motif that is characteristic of thioredoxins. 120 -313944 pfam10866 DUF2704 Protein of unknown function (DUF2704). This viral family of proteins has no known function. 167 -287800 pfam10867 DUF2664 Protein of unknown function (DUF2664). This family of proteins is a viral family, annotated as UL96. Currently no function is known. 89 -337860 pfam10868 Defensin_like Cysteine-rich antifungal protein 2, defensin-like. This is a family of plant antifungal proteins. It has insecticidal and antifungal activity against certain plant pathogens. 50 -313946 pfam10869 DUF2666 Protein of unknown function (DUF2666). This Archaeal family of proteins has no known function. 135 -287802 pfam10870 DUF2729 Protein of unknown function (DUF2729). This viral family of proteins has no known function. 57 -313947 pfam10871 DUF2748 Protein of unknown function (DUF2748). This is a bacterial family of proteins with unknown function. 447 -287804 pfam10872 DUF2740 Protein of unknown function (DUF2740). This family of proteins with unknown function has a highly conserved sequence. 48 -313948 pfam10873 CYYR1 Cysteine and tyrosine-rich protein 1. Members in this family of proteins are annotated as Cysteine and tyrosine-rich protein 1, however currently no function is known. 149 -313949 pfam10874 DUF2746 Protein of unknown function (DUF2746). This family of proteins has no known function. 127 -287807 pfam10875 DUF2670 Protein of unknown function (DUF2670). This bacterial family of proteins has no known function. 145 -337861 pfam10876 Phage_TAC_9 Phage tail assemb.y chaperone protein, TAC. This is a family of putative phage tail assembly chaperone proteins largely from Haemophilus and Xylella species. 133 -313951 pfam10877 DUF2671 Protein of unknown function (DUF2671). This family of proteins with unknown function appears to be restricted to Rickettsia spp. 90 -313952 pfam10878 DUF2672 Protein of unknown function (DUF2672). This family of proteins with unknown function appear to be restricted to Rickettsiae. 67 -287811 pfam10879 DUF2674 Protein of unknown function (DUF2674). This family of proteins with unknown function appears to be conserved to Rickettsia spp. 67 -313953 pfam10880 DUF2673 Protein of unknown function (DUF2673). This family of proteins with unknown function appears to be restricted to Rickettsiae spp. 82 -337862 pfam10881 DUF2726 Protein of unknown function (DUF2726). This bacterial family of proteins has no known function. 127 -313955 pfam10882 bPH_5 Bacterial PH domain. This family of proteins with unknown function appear to be related to bacterial PH domains. This family was formerly known as DUF2679. 99 -313956 pfam10883 DUF2681 Protein of unknown function (DUF2681). This family of proteins is found in bacteria. Proteins in this family are typically between 81 and 117 amino acids in length. 87 -287815 pfam10884 DUF2683 Protein of unknown function (DUF2683). This family of proteins with unknown function appears to be restricted to Methanosarcinaceae. 78 -287816 pfam10885 DUF2684 Protein of unknown function (DUF2684). Members in this family of proteins are annotated as yqgD however currently no function is known. 89 -287817 pfam10886 DUF2685 Protein of unknown function (DUF2685). Members in this family of proteins are annotated as uvdY.-2 which is an open reading frame within uvsY. However currently there is no known function. 55 -287818 pfam10887 DUF2686 Protein of unknown function (DUF2686). Some members in this family of proteins are annotated as yjfZ however currently no function is known. 285 -287819 pfam10888 DUF2742 Protein of unknown function (DUF2742). Members in this family of phage proteins are the product of the gene phiRv1, however no function is known. 97 -313957 pfam10890 Cyt_b-c1_8 Cytochrome b-c1 complex subunit 8. This entry represents subunit 8 of the Cytochrome b-c1 complex. 72 -151339 pfam10891 DUF2719 Protein of unknown function (DUF2719). This family of proteins with unknown function appears to be restricted to Nucleopolyhedrovirus. 81 -287821 pfam10892 DUF2688 Protein of unknown function (DUF2688). Members in this family of proteins are annotated as KleB however currently no function is known. 57 -337863 pfam10893 DUF2724 Protein of unknown function (DUF2724). This is a family of proteins with unknown function. 71 -313958 pfam10894 DUF2689 Protein of unknown function (DUF2689). Members in this family of proteins are annotated as TrbD however currently no function is known. 57 -337864 pfam10895 DUF2715 Domain of unknown function (DUF2715). This family of proteins with unknown function appears to be largely found in spirochaete bacteria. It is related to membrane beta barrel proteins. 153 -313959 pfam10896 DUF2714 Protein of unknown function (DUF2714). This family of proteins with unknown function appears to be restricted to Mycoplasmataceae. 143 -313960 pfam10897 DUF2713 Protein of unknown function (DUF2713). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 235 -313961 pfam10898 DUF2716 Protein of unknown function (DUF2716). This bacterial family of proteins has no known function. 138 -313962 pfam10899 AbiGi Putative abortive phage resistance protein AbiGi, antitoxin. This is a bacterial family of proteins with unknown function. AbiGi is a family of putative type IV toxin-antitoxin system antitoxins. The AbiG abortive phage resistance system affects lactococcal bacteriophages phiP335 and phiQ30 but not the other P335 phage species. AbiGii toxin appears to confer resistance to phages by a mechanism of abortive infection that acts by interfering with phage RNA synthesis. The cognate toxin is found in pfam16873. 178 -313963 pfam10901 DUF2690 Protein of unknown function (DUF2690). This bacterial family of proteins has no known function. 93 -337865 pfam10902 WYL_2 WYL_2, Sm-like SH3 beta-barrel fold. WYL_2 is a family of Sm-like SH3 beta-barrel fold containing domains. WYL is named for three conserved amino acids found in a subset of domains of this superfamily. These residues are not strongly conserved throughout the family. Rather, the conservation pattern includes four basic residues and a position often occupied by a cysteine, which are predicted to line a ligand-binding groove typical of the Sm-like SH3 beta-barrels. It is predicted to be a ligand-sensing domain that could bind negatively charged ligands, such as nucleotides or nucleic acid fragments, to regulate CRISPR-Cas and other defense systems such as the abortive infection AbiG system 73 -313965 pfam10903 DUF2691 Protein of unknown function (DUF2691). This bacterial family of proteins has no known function. 152 -287827 pfam10904 DUF2694 Protein of unknown function (DUF2694). This family of proteins with unknown function appears to be restricted to Mycobacterium spp. 97 -313966 pfam10905 DUF2695 Protein of unknown function (DUF2695). This bacterial family of proteins has no known function. 53 -313967 pfam10906 Mrx7 MIOREX complex component 7. This entry includes budding yeast MIOREX complex component 7 (Mrx7), which associates with mitochondrial ribosome. Its function is not clear. 66 -337866 pfam10907 DUF2749 Protein of unknown function (DUF2749). This bacterial family of proteins appear to come from the Trb operon however currently no function is known. 64 -337867 pfam10908 DUF2778 Protein of unknown function (DUF2778). This is a bacterial family of uncharacterized proteins. 108 -151356 pfam10909 DUF2682 Protein of unknown function (DUF2682). This viral family of proteins has no known function. 77 -287830 pfam10910 DUF2744 Protein of unknown function (DUF2744). This is a viral family of proteins with unknown function. 119 -151358 pfam10911 DUF2717 Protein of unknown function (DUF2717). Members in this family of proteins are annotated as gene 6.5 protein however currently there is no known function. 77 -313970 pfam10912 DUF2700 Protein of unknown function (DUF2700). This family of proteins with unknown function appears to be restricted to Caenorhabditis elegans. 136 -313971 pfam10913 DUF2706 Protein of unknown function (DUF2706). This family of proteins with unknown function appears to be restricted to Rickettsia spp. 59 -313972 pfam10914 DUF2781 Protein of unknown function (DUF2781). This is a eukaryotic family of uncharacterized proteins. Some of the proteins in this family are annotated as membrane proteins. 146 -313973 pfam10915 DUF2709 Protein of unknown function (DUF2709). This bacterial family of proteins has no known function. 237 -313974 pfam10916 DUF2712 Protein of unknown function (DUF2712). This family of proteins with unknown function appear to be restricted to Bacillales. 115 -287835 pfam10917 Fungus-induced Fungus-induced protein. This entry represents fungus-induced proteins which may have role in hypoxia response. 44 -313975 pfam10918 DUF2718 Protein of unknown function (DUF2718). This viral family of proteins has no known function. 129 -287836 pfam10920 DUF2705 Protein of unknown function (DUF2705). This bacterial family of proteins has no known function. 237 -287837 pfam10921 DUF2710 Protein of unknown function (DUF2710). This family of proteins with unknown function appears to be restricted to Mycobacteriaceae. 104 -313976 pfam10922 DUF2745 Protein of unknown function (DUF2745). This is a viral family of proteins with unknown function. 85 -313977 pfam10923 DUF2791 P-loop Domain of unknown function (DUF2791). This is a family of proteins found in archaea and bacteria. This domain contains a P-loop motif suggesting it binds to a nucleotide such as ATP. 414 -287839 pfam10924 DUF2711 Protein of unknown function (DUF2711). Some members in this family of proteins are annotated as ywbB however currently there is no known function. 216 -313978 pfam10925 DUF2680 Protein of unknown function (DUF2680). Members in this family of proteins are annotated as yckD however currently no function is known. 57 -313979 pfam10926 DUF2800 Protein of unknown function (DUF2800). This is a family of uncharacterized proteins found in bacteria and viruses. Some members of this family are annotated as being Phi APSE P51-like proteins. 364 -287842 pfam10927 DUF2738 Protein of unknown function (DUF2738). This is a viral family of proteins with unknown function. 236 -287843 pfam10928 DUF2810 Protein of unknown function (DUF2810). This is a bacterial family of uncharacterized proteins. 52 -313980 pfam10929 DUF2811 Protein of unknown function (DUF2811). This is a bacterial family of uncharacterized proteins. 57 -287845 pfam10930 DUF2737 Protein of unknown function (DUF2737). This family of proteins has no known function. 53 -313981 pfam10931 DUF2735 Protein of unknown function (DUF2735). Some members in this family of proteins are annotated as glutamine synthetase translation inhibitor however this function can not be confirmed. 52 -337868 pfam10932 DUF2783 Protein of unknown function (DUF2783). This is a bacterial family of uncharacterized protein. 59 -313983 pfam10933 DUF2827 Protein of unknown function (DUF2827). This is a family of uncharacterized proteins found in Burkholderia. 362 -313984 pfam10934 DUF2634 Protein of unknown function (DUF2634). Some members in this family of proteins are annotated as phage related, xkdS however currently there is no known function. 104 -313985 pfam10935 DUF2637 Protein of unknown function (DUF2637). This family of proteins has no known function. 158 -313986 pfam10936 DUF2617 Protein of unknown function DUF2617. This bacterial family of proteins has no known function. 155 -313987 pfam10937 S36_mt Ribosomal protein S36, mitochondrial. This entry is represented by a mitochondrial ribosomal protein of the small subunit, which has similarity to human mitochondrial ribosomal protein MRP-S36. 106 -313988 pfam10938 YfdX YfdX protein. YfdX is a protein found in Proteobacteria of unknown function. The protein coding for this gene is regulated by EvgA in E. coli. 148 -313989 pfam10939 DUF2631 Protein of unknown function (DUF2631). This is s bacterial family of proteins with unknown function. 63 -287855 pfam10940 DUF2618 Protein of unknown function (DUF2618). This bacterial family of proteins has no known function. The sequences within the family are highly conserved. 40 -313990 pfam10941 DUF2620 Protein of unknown function DUF2620. This is a bacterial family of proteins with unknown function. 116 -313991 pfam10942 DUF2619 Protein of unknown function (DUF2619). This bacterial family of proteins has no known function. 69 -287858 pfam10943 DUF2632 Protein of unknown function (DUF2632). This is a family of membrane proteins with unknown function. 233 -313992 pfam10944 DUF2630 Protein of unknown function (DUF2630). This bacterial family of proteins have no known function. 80 -287860 pfam10945 CBP_BcsR Cellulose biosynthesis protein BcsR. CBP_BcsR is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation). 42 -313993 pfam10946 DUF2625 Protein of unknown function DUF2625. Some members in this family of proteins are annotated as ybfG however currently no function is known. 207 -313994 pfam10947 DUF2628 Protein of unknown function (DUF2628). Some members in this family of proteins are annotated as yigF however currently no function is known. 78 -313995 pfam10948 DUF2635 Protein of unknown function (DUF2635). This is a family of phage proteins with unknown function. 46 -313996 pfam10949 DUF2777 Protein of unknown function (DUF2777). This family of proteins with unknown function appears to be restricted to Bacillus cereus. 181 -313997 pfam10950 Organ_specific Organ specific protein. This eukaryotic family includes a number of plant organ-specific proteins. While their function is unknown, their predicted amino acid sequence suggests that these proteins could be exported and glycosylated. 117 -337869 pfam10951 DUF2776 Protein of unknown function (DUF2776). This bacterial family of proteins has no known function. 348 -287867 pfam10952 DUF2753 Protein of unknown function (DUF2753). This bacterial family of proteins has no known function. 140 -313999 pfam10953 DUF2754 Protein of unknown function (DUF2754). This family of proteins with unknown function appear to be restricted to Enterobacteriaceae. 70 -314000 pfam10954 DUF2755 Protein of unknown function (DUF2755). Some members in this family of proteins are annotated as YaiY however no function is known. The family appears to be restricted to Enterobacteriaceae. 99 -337870 pfam10955 DUF2757 Protein of unknown function (DUF2757). Members in this family of proteins are annotated as YabK however currently no function is known. 76 -314002 pfam10956 DUF2756 Protein of unknown function (DUF2756). Some members in this family of proteins are annotated yhhA however currently no function is known. The family appears to be restricted to Enterobacteriaceae. 104 -337871 pfam10957 Spore_Cse60 Sporulation protein Cse60. Cse60 is expressed during sporulation in Bacillus subtilis. Transcription commences around 2h after the start of sporulation and had an absolute requirement for the transcription factor sigmaE. Cse60 is an acidic product of only 60 residues, whose function is not known. 60 -314004 pfam10958 DUF2759 Protein of unknown function (DUF2759). This family of proteins with unknown function appear to be restricted to Bacillaceae. 50 -337872 pfam10959 DUF2761 Protein of unknown function (DUF2761). Members in this family of proteins are annotated as KleF however no function is known. 94 -314005 pfam10960 Holin_BhlA BhlA holin family. The Phage_holin_BhlA family is a family of holin-like proteins from both bacteriophages and bacterial chromosomes. In bacteriophage, holins are small membrane proteins that accumulate and oligomerise to form non-specific lesions in the cytoplasmic membrane allowing the release of the second protein, endolysins, to access the peptidoglycan. Most holins share common structural features: two or three transmembrane domains separated by a beta-turn, a short hydrophilic N-terminus, a highly charged C-terminus and a dual translational start motif. The BhlA holin of Bacillus is found to be toxic to the host cell where the site of action of is on the cell membrane and causes bacterial death by cell membrane disruption. 63 -314006 pfam10961 SelK_SelG Selenoprotein SelK_SelG. This entry inclues a group of eukaryotic selenoproteins, such as SelK and SelG. SelK seems to play an important role in protecting cells from endoplasmic reticulum stress induced apoptosis. SelG may be involved in regulating the redox state of the cell. 82 -314007 pfam10962 DUF2764 Protein of unknown function (DUF2764). This bacterial family of proteins has no known function. 272 -314008 pfam10963 Phage_TAC_10 Phage tail assembly chaperone. This is a family of phage tail assembly chaperone proteins. 82 -287878 pfam10964 DUF2766 Protein of unknown function (DUF2766). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 79 -314009 pfam10965 DUF2767 Protein of unknown function (DUF2767). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 67 -314010 pfam10966 DUF2768 Protein of unknown function (DUF2768). This family of proteins with unknown function appear to be restricted to Bacillus spp. 58 -314011 pfam10967 DUF2769 Protein of unknown function (DUF2769). This family of proteins have no known function. 57 -314012 pfam10968 DUF2770 Protein of unknown function (DUF2770). Members in this family of proteins are annotated as yceO however currently no function is known. 36 -314013 pfam10969 DUF2771 Protein of unknown function (DUF2771). This bacterial family of proteins has no known function. 152 -287884 pfam10970 GerPE Spore germination protein GerPE. GerPE is required for the formation of functionally normal spores. It could be involved in the establishment of a normal spore coat structure and (or) permeability, which allows the access of germinants to their receptor. 123 -287885 pfam10971 DUF2773 Protein of unknown function (DUF2773). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. 81 -337873 pfam10972 CsiV Peptidoglycan-binding protein, CsiV. CsiV, a small periplasmic protein (cell-shape integrity in Vibrio), is essential for growth of Vibrio cholerae in the presence of DAA, non-canonical amino-acids, the typical components of peptidoglycan side-chains in Vibrio cholerae. CsiV interacts with LpoA, the lipoprotein activator of penicillin-binding-protein1A that is necessary for mediating the assembly of peptidoglycan. CsiV acts through LpoA to promote peptidoglycan biogenesis in V. cholerae and other vibrio species as well as in the other genera where this protein is found. 209 -337874 pfam10973 DUF2799 Protein of unknown function (DUF2799). Some members in this family of proteins are annotated as yfiL which has no known function. 86 -314016 pfam10974 DUF2804 Protein of unknown function (DUF2804). This is a family of proteins with unknown function. 321 -337875 pfam10975 DUF2802 Protein of unknown function (DUF2802). This bacterial family of proteins has no known function. 63 -314018 pfam10976 DUF2790 Protein of unknown function (DUF2790). This family of proteins with unknown function appear to be restricted to Pseudomonadaceae. 77 -337876 pfam10977 DUF2797 Protein of unknown function (DUF2797). This family of proteins has no known function. 227 -337877 pfam10978 DUF2785 Protein of unknown function (DUF2785). Some members in this family are annotated as hypothetical membrane spanning proteins however this cannot be confirmed. The family has no known function. 174 -314021 pfam10979 DUF2786 Protein of unknown function (DUF2786). This family of proteins has no known function. 39 -337878 pfam10980 DUF2787 Protein of unknown function (DUF2787). This bacterial family of proteins has no known function. 129 -337879 pfam10981 DUF2788 Protein of unknown function (DUF2788). This bacterial family of proteins have no known function. 51 -337880 pfam10982 DUF2789 Protein of unknown function (DUF2789). This bacterial family of proteins has no known function. 75 -314025 pfam10983 DUF2793 Protein of unknown function (DUF2793). This is a bacterial family of proteins with unknown function. 86 -314026 pfam10984 DUF2794 Protein of unknown function (DUF2794). This is a bacterial family of proteins with unknown function. 84 -337881 pfam10985 DUF2805 Protein of unknown function (DUF2805). This is a bacterial family of proteins with unknown function. 71 -314028 pfam10986 DUF2796 Protein of unknown function (DUF2796). This bacterial family of proteins has no known function. 162 -337882 pfam10987 DUF2806 Protein of unknown function (DUF2806). This bacterial family of proteins has no known function. 221 -314030 pfam10988 DUF2807 Putative auto-transporter adhesin, head GIN domain. This bacterial family of proteins shows structural similarity to other pectin lyase families. Although structures from this family align with acetyl-transferases, there is no conservation of catalytic residues found. It is likely that the function is one of cell-adhesion. In Structure 3jx8, it is interesting to note that the sequence of contains several well defined sequence repeats, centred around GSG motifs defining the tight beta turn between the two sheets of the super-helix; there are 8 such repeats in the C-terminal half of the protein, which could be grouped into 4 repeats of two. It seems likely that this family belongs to the superfamily of trimeric auto-transporter adhesins (TAAs), which are important virulence factors in Gram-negative pathogens. In the case of Parabacteroides distasonis, which is a component of the normal distal human gut microbiota, TAA-like complexes probably modulate adherence to the host (information derived from TOPSAN). 181 -314031 pfam10989 DUF2808 Protein of unknown function (DUF2808). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 144 -314032 pfam10990 DUF2809 Protein of unknown function (DUF2809). Some members in this family of proteins are annotated as yjgA however currently no function for the protein is known. 86 -337883 pfam10991 DUF2815 Protein of unknown function (DUF2815). This is a phage related family of proteins with unknown function. 165 -314034 pfam10992 DUF2816 Protein of unknown function (DUF2816). This eukaryotic family of proteins has no known function. 62 -337884 pfam10993 DUF2818 Protein of unknown function (DUF2818). This bacterial family of proteins has no known function. 93 -337885 pfam10994 DUF2817 Protein of unknown function (DUF2817). This family of proteins has no known function. 340 -314037 pfam10995 CBP_GIL GGDEF I-site like or GIL domain. The GIL domain, for GGDEF I-site like domain, is a c-di-GMP binding domain on the BcsE proteins of enterobacteria. It is not essentail for cellulose synthesis but is critical for maximal cellulose production. Cellulose production in enterobacteria is controlled by a two-tiered c-di-GMP-dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA. 315 -337886 pfam10996 Beta-Casp Beta-Casp domain. The beta-CASP domain is found C terminal to the beta-lactamase domain in pre-mRNA 3'-end-processing endonuclease. The active site of this enzyme is located at the interface of these two domains. 102 -337887 pfam10997 Amj Alternate to MurJ. This bacterial family of proteins has no known function. However, family members include lipid II flippase Amj, which is required for bacterial cell wall synthesis. It transports lipid-linked peptidoglycan precursors from the inner to the outer surface of the cytoplasmic membrane. 253 -314040 pfam10998 DUF2838 Protein of unknown function (DUF2838). This bacterial family of proteins has no known function. 108 -314041 pfam10999 DUF2839 Protein of unknown function (DUF2839). This bacterial family of unknown function appear to be restricted to Cyanobacteria. 67 -337888 pfam11000 DUF2840 Protein of unknown function (DUF2840). This bacterial family of proteins have no known function. 148 -314043 pfam11001 DUF2841 Protein of unknown function (DUF2841). This family of proteins with unknown function are all present in yeast. 119 -314044 pfam11002 RDM RFPL defining motif (RDM). The RDM domain is found on RFPL (Ret finger protein like) proteins. In humans, RFPL transcripts can be detected at the onset of neurogenesis in differentiating human embryonic stem cells, and in the developing human neocortex. The RDM domain is thought to have emerged from a neofunctionalisation event. It is found N terminal to the SPRY domain (pfam00622). 42 -314045 pfam11003 DUF2842 Protein of unknown function (DUF2842). This bacterial family of proteins have no known function. 61 -337889 pfam11004 Kdo_hydroxy 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) hydroxylase. This is a family of 3-deoxy-D-manno-oct-2-ulosonic acid 3-hydroxylases, which catalyze the conversion of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) to D-glycero-D-talo-oct-2-ulosonic acid (Ko). It contains a potential iron-binding motif, HXDX(n)H (n>40). Hydroxylation activity is iron-dependent. 273 -314047 pfam11005 DUF2844 Protein of unknown function (DUF2844). This bacterial family of proteins has no known function. 129 -314048 pfam11006 DUF2845 Protein of unknown function (DUF2845). This bacterial family of proteins has no known function. 79 -314049 pfam11007 CotJA Spore coat associated protein JA (CotJA). CotJA is part of the CotJ operon which contains CotJA and CotJC. The operon encodes spore coat proteins. Interaction of CotJA with CotJC is required for the assembly of both CotJA and CotJC into the spore coat. 35 -314050 pfam11008 DUF2846 Protein of unknown function (DUF2846). Some members in this family of proteins with unknown function are annotated as lipoproteins however this cannot be confirmed. 114 -314051 pfam11009 DUF2847 Protein of unknown function (DUF2847). Some members in this bacterial family of proteins with unknown function are annotated as YtxJ, a putative general stress protein. This cannot be confirmed. 102 -314052 pfam11010 DUF2848 Protein of unknown function (DUF2848). This bacterial family of proteins has no known function. 194 -314053 pfam11011 DUF2849 Protein of unknown function (DUF2849). This bacterial family of proteins has no known function. 85 -314054 pfam11012 DUF2850 Protein of unknown function (DUF2850). This family of proteins with unknown function appear to be restricted to Vibrionaceae. 78 -337890 pfam11013 DUF2851 Protein of unknown function (DUF2851). This bacterial family of proteins has no known function. 369 -314056 pfam11014 DUF2852 Protein of unknown function (DUF2852). This bacterial family of proteins has no known function. 118 -314057 pfam11015 DUF2853 Protein of unknown function (DUF2853). This bacterial family of proteins has no known function. 101 -314058 pfam11016 DUF2854 Protein of unknown function (DUF2854). This family of proteins has no known function. 145 -337891 pfam11017 DUF2855 Protein of unknown function (DUF2855). This family of proteins has no known function. 332 -314060 pfam11018 Cuticle_3 Pupal cuticle protein C1. Insect cuticles are composite structures whose mechanical properties are optimized for biological function. The major components are the chitin filament system and the cuticular proteins, and the cuticle's properties are determined largely by the interactions between these two sets of molecules. The proteins can be ordered by species. 172 -314061 pfam11019 DUF2608 Protein of unknown function (DUF2608). This family is conserved in Bacteria. The function is not known. 240 -314062 pfam11020 DUF2610 Domain of unknown function (DUF2610). This family is conserved in Proteobacteria. One member is annotated as being elongation factor P but this could not be confirmed. This domain is related to the Ribbon-helix-helix superfamily so may be a DNA-binding protein. 78 -314063 pfam11021 DUF2613 Protein of unknown function (DUF2613). This is a family of putative small secreted proteins expressed by Actinobacteria. The function is not known. 56 -314064 pfam11022 DUF2611 Protein of unknown function (DUF2611). This family is conserved in the Dikarya of Fungi. The function is not known. 64 -314065 pfam11023 DUF2614 Zinc-ribbon containing domain. This is a family of proteins conserved in the Bacillaceae family. Some members are annotated as being protein YgzB. The function is not known. 111 -337892 pfam11024 DGF-1_4 Dispersed gene family protein 1 of Trypanosoma cruzi region 4. This protein is likely to be highly expressed, and is expressed from the sub-telomeric region. However, the function is not known. Other domains on this protein include DGF-1_N, DGF-1_2, and DGF-1_5. This domain is just downstream from the C-terminus, but not the C-terminus of proteins, also annotated as being DGF-1, that constitute family DGF-1_C. 70 -314067 pfam11025 GP40 Glycoprotein GP40 of Cryptosporidium. This family is highly conserved in Cryptosporidium spp. Many members are annotated as being a 60 kDa glycoprotein. 164 -337893 pfam11026 DUF2721 Protein of unknown function (DUF2721). This family is conserved in bacteria. The function is not known. 122 -314069 pfam11027 DUF2615 Protein of unknown function (DUF2615). This small. approximately 100 residue, family is conserved from worms to humans. It is cysteine-rich with a characteristic FDxCEC sequence motif. The function is not known. 98 -337894 pfam11028 DUF2723 Protein of unknown function (DUF2723). This family is conserved in bacteria. The function is not known. 171 -314071 pfam11029 DAZAP2 DAZ associated protein 2 (DAZAP2). DAZ associated protein 2 has a highly conserved sequence throughout evolution including a conserved polyproline region and several SH2/SH3 binding sites. It occurs as a single copy gene with a four-exon organisation and is located on chromosome 12. It encodes a ubiquitously expressed protein and binds to DAZ and DAZL1 through DAZ repeats. 130 -287944 pfam11030 Nucleocapsid-N Nucleocapsid protein N. This is the N protein of the nucleocapsid. The nucleocapsid functions to protect the RNA against nuclease degradation and to promote it's reverse transcription. The NC protein promotes viral RNA dimerization and encapsidation and initiates reverse transcription by activating the annealing of the primer tRNA to the initiation site. 167 -287945 pfam11031 Phage_holin_T Bacteriophage T holin. Bacteriophage effects host lysis with T holin along with an endolysin. T disrupts the membrane allowing sequential events which lead to the attack of the peptidoglycan. T has an usual periplasmic domain which transduces environmental information for the real-time control of lysis timing. 233 -314072 pfam11032 ApoM ApoM domain. ApoM is a 25 kDa plasma protein associated with high-density lipoproteins (HDLs). ApoM is important in the formation of pre-ss-HDL and also in increasing cholesterol efflux from macrophage foam cells. Lipoproteins consist of lipids solubilized by apolipoproteins. ApoM lacks an external amphipathic motif and is uniquely secreted to plasma without cleavage of its terminal signal peptide. 188 -314073 pfam11033 ComJ Competence protein J (ComJ). ComJ is a competence specific protein. 122 -314074 pfam11034 Grg1 Glucose-repressible protein Grg1. This fungal protein increases during glucose deprivation. Its function is unknown. 67 -314075 pfam11035 SnAPC_2_like Small nuclear RNA activating complex subunit 2, SNAP190 Myb. This family of proteins is snRNA-activating protein complex subunit 2 (SnAPC subunit 2). SnAPC complex allows the transcription of human small nuclear RNA genes to occur by recognition of the proximal sequence element, the TATA box. The family functions both to specifically recognize the proximal sequence element present in the core promoters of human snRNA genes and to stimulate TBP recognition of the neighboring TATA box present in human U6 snRNA promoters. 335 -151483 pfam11036 YqgB Virulence promoting factor. YqgB encodes adaptive factors that acts in synergy with vqfZ, enabling the bacteria to cope with the physical environment in vivo, facilitating colonisation of the host. 43 -314076 pfam11037 Musclin Insulin-resistance promoting peptide in skeletal muscle. Musclin is a muscle derived secretory peptide which induces insulin resistance in vitro. It encodes a 130 amino acid sequence including a NH(2) terminal 30 amino acid signal sequence. Musclin expression level is tightly regulated by nutritional changes. 133 -287951 pfam11038 DGF-1_5 Dispersed gene family protein 1 of Trypanosoma cruzi region 5. This protein is likely to be highly expressed, and is expressed from the sub-telomeric region. However, the function is not known. Other domains on this protein include DGF-1_N, DGF-1_2, and DGF-1_4. This domain is just downstream from the C-terminus, but not the C-terminus of proteins, also annotated as being DGF-1, that constitute family DGF-1_C. 278 -314077 pfam11039 DUF2824 Protein of unknown function (DUF2824). This family of proteins has no known function. Some members in the family are annotated as the P22 head assembly protein gp14 however this cannot be confirmed. 151 -337895 pfam11040 DGF-1_C Dispersed gene family protein 1 of Trypanosoma cruzi C-terminus. This protein is likely to be highly expressed, and is expressed from the sub-telomeric region. However, the function is not known. This is the very C-terminal part of the protein. 87 -337896 pfam11041 DUF2612 Protein of unknown function (DUF2612). This is a phage protein family expressed from a range of Proteobacteria species. The function is not known. 181 -337897 pfam11042 DUF2750 Protein of unknown function (DUF2750). This family is conserved in Proteobacteria. The function is not known. 102 -287956 pfam11043 DUF2856 Protein of unknown function (DUF2856). Some members in this viral family of proteins with unknown function are annotated as Abc2 however this cannot be confirmed. 97 -287957 pfam11044 TMEMspv1-c74-12 Plectrovirus spv1-c74 ORF 12 transmembrane protein. This is a family of proteins expressed by Plectroviruses. The plectroviruses are single-stranded DNA viruses belonging to the Inoviridae. Except that it is a putative transmembrane protein the function is not known. 49 -314080 pfam11045 YbjM Putative inner membrane protein of Enterobacteriaceae. This family is conserved in the Enterobacteriaceae. It is a putative inner membrane protein, named YbjM, but the function is not known. 117 -314081 pfam11046 HycA_repressor Transcriptional repressor of hyc and hyp operons. This family is conserved in Proteobacteria. It is likely to be the transcriptional repressor molecule for the hyc and hyp operons, which express, amongst others, the protein HycA. This protein may be harnessed for the reduction of technetium oxide, an unwelcome product of radio-nucleotide bioaccumulation. HycA produces formate hydrogenlyase, one of the key proteins necessary for metal compound reduction. 140 -287960 pfam11047 SopD Salmonella outer protein D. SopD is a type III virulence effector protein whose structure consists of 38% alpha-helix and 26% beta-strand. 319 -287961 pfam11049 KSHV_K1 Glycoprotein K1 of Kaposi's sarcoma-associated herpes virus. This is a highly glycosylated cytoplasmic and membrane protein similar to the immunoglobulin receptor family that is expressed as an inducible early-lytic-cycle gene product in primary effusion lymphoma cell-lines. This domain would appear to be the cytoplasmic region of the protein. 71 -287962 pfam11050 Viral_env_E26 Virus envelope protein E26. E26 is a multifunctional protein. One form of E26 associates with viral DNA or DNA binding proteins, while a second form associates with intracellular membranes. 225 -314082 pfam11051 Mannosyl_trans3 Mannosyltransferase putative. This family is conserved in fungi. Several members are annotated as being alpha-1,3-mannosyltransferase but this could not be confirmed. 267 -337898 pfam11052 Tr-sialidase_C Trans-sialidase of Trypanosoma hydrophobic C-terminal. This is a highly conserved sequence motif that is the very C-terminus of a number of more diverse proteins from Trypanosoma cruzi. All members of the family are annotated putatively as being trans-sialidase but this appears to be a diverse group. 23 -287965 pfam11053 DNA_Packaging Terminase DNA packaging enzyme. Phage T4 terminase functions in packaging concatemeric DNA. The T4 terminase is composed of a large subunit, gp17 ad a small subunit, gp16. The role of gp16 is not well characterized however it is known that it binds to double-stranded DNA but not single stranded DNA. 157 -287966 pfam11054 Surface_antigen Sporozoite TA4 surface antigen. This family of proteins is a Eukaryotic family of surface antigens. One of the better characterized members of the family is the sporulated TA4 antigen. The TA4 gene encodes a single polypeptide of 25 kDa which contains a 17 and a 8 kD polypeptide. 243 -314084 pfam11055 Gsf2 Glucose signalling factor 2. Gsf2 is localized to the ER and functions to promote the secretion of certain hexose transporters. 371 -314085 pfam11056 UvsY Recombination, repair and ssDNA binding protein UvsY. UvsY protein enhances the rate of single-stranded-DNA-dependant ATP hydrolysis by UvsX protein. The enhancement of ATP hydrolysis by UvsY protein is shown to result from the ability of UvsY protein to increase the affinity of UvsX protein for single-stranded DNA. 128 -314086 pfam11057 Cortexin Cortexin of kidney. In the middle of cortexin protein there is a single membrane-spanning domain which indicates that this protein may be a membrane protein involved in intracellular or extracellular signalling of the kidney or brain, since it is expressed specifically in the kidneys and brain only. The protein is highly conserved among species. Cortexin is also thought to be important to neurons of both the developing and adult cerebral cortex. 73 -287970 pfam11058 Ral Antirestriction protein Ral. Ral alleviates restriction and enhances modification by the E.Coli restriction and modification system. 66 -314087 pfam11059 DUF2860 Protein of unknown function (DUF2860). This bacterial family of proteins has no known function. 297 -314088 pfam11060 DUF2861 Protein of unknown function (DUF2861). This bacterial family of proteins has no known function. 267 -337899 pfam11061 DUF2862 Protein of unknown function (DUF2862). This family of proteins has no known function. 61 -337900 pfam11062 DUF2863 Protein of unknown function (DUF2863). This bacterial family of proteins have no known function. 398 -337901 pfam11064 DUF2865 Protein of unknown function (DUF2865). This bacterial family of proteins has no known function. 115 -314092 pfam11065 DUF2866 Protein of unknown function (DUF2866). This bacterial family of proteins have no known function. 64 -337902 pfam11066 DUF2867 Protein of unknown function (DUF2867). This bacterial family of proteins have no known function. 140 -337903 pfam11067 DUF2868 Protein of unknown function (DUF2868). Some members in this family of proteins with unknown function are annotated as putative membrane proteins. However, this cannot be confirmed. 300 -314095 pfam11068 YlqD YlqD protein. The structure of a representative of this family has been solved (Structure 4dci) and found to form a tetrameric structure of prefoldin-like architecture with the beta-barrel core and helical coiled coil tentacles. This suggests that this family may act as molecular chaperones. 131 -337904 pfam11069 DUF2870 Protein of unknown function (DUF2870). This is a eukaryotic family of proteins with unknown function. 97 -314097 pfam11070 DUF2871 Protein of unknown function (DUF2871). This family of proteins has no known function. 133 -314098 pfam11071 Nuc_deoxyri_tr3 Nucleoside 2-deoxyribosyltransferase YtoQ. 140 -314099 pfam11072 DUF2859 Protein of unknown function (DUF2859). This is a bacterial family of uncharacterized proteins. 146 -314100 pfam11073 NSs Rift valley fever virus non structural protein (NSs) like. This family contains several Phlebovirus non structural proteins which act as a major determinant of virulence by antagonising interferon beta gene expression. 238 -337905 pfam11074 DUF2779 Domain of unknown function(DUF2779). This domain is conserved in bacteria. The function is not known. 126 -337906 pfam11075 DUF2780 Protein of unknown function VcgC/VcgE (DUF2780). This is a bacterial family of uncharacterized proteins. 174 -314103 pfam11076 YbhQ Putative inner membrane protein YbhQ. This family is conserved in Proteobacteria. The function is not known but most members are annotated as being inner membrane protein YbhQ. 132 -314104 pfam11077 DUF2616 Protein of unknown function (DUF2616). This cysteine-rich family is expressed by the double-stranded Nucleopolyhedrovirus, a member of the Baculoviridae family of dsDNA viruses. The function is not known. 170 -337907 pfam11078 Optomotor-blind Optomotor-blind protein N-terminal region. This family is conserved in Drosophila spp. Optomotor-blind is one of the essential toolkit proteins for coordinating development in diverse animal taxa, and in Drosophila it plays a key role in establishing the abdominal pigmentation pattern, in development of the central nervous system and leg and wing imaginal disc-formation of Drosophila melanogaster. This is the N-terminal region of the protein and does not include the T-box-containing transcription factor that plays a part in DNA-binding. 79 -314106 pfam11079 YqhG Bacterial protein YqhG of unknown function. This family of putative proteins is conserved in the Bacillaceae family of the Firmicutes. The function is not known. 258 -337908 pfam11080 GhoS Endoribonuclease GhoS. GhoS is part of the GhoT-GhoS type V toxin-antitoxin (TA) system. GhoT is inhibited by antitoxin GhoS, which specifically cleaves its mRNA. 87 -314108 pfam11081 DUF2890 Protein of unknown function (DUF2890). This family is conserved in dsDNA adenoviruses of vertebrates. The function is not known. 168 -287992 pfam11082 DUF2880 Protein of unknown function (DUF2880). This bacterial family of proteins has no known function. 79 -314109 pfam11083 Streptin-Immun Lantibiotic streptin immunity protein. Streptococcal species produce a lantibiotic, streptin, in a similar manner to the production of nisin and subtilin by other lactic acid bacteria, in order to compete against competing bacteria within the environment. The immunity protein protects the bacterium from destruction by its own lantibiotic. In general, there is little homology between the immunity proteins of different genera of bacteria. 93 -314110 pfam11084 DUF2621 Protein of unknown function (DUF2621). This family is conserved in the Bacillaceae family. Several members are named as YneK. The function is not known. 139 -314111 pfam11085 YqhR Conserved membrane protein YqhR. This family is conserved in the Bacillaceae family of the Firmicutes. The function is not known. 165 -337909 pfam11086 DUF2878 Protein of unknown function (DUF2878). This bacterial family of proteins has no known function. Some members annotate the proteins as the permease component of a Mn2+/Zn2+ transport system however this cannot be confirmed. 151 -151532 pfam11087 PRD1_DD PRD1 phage membrane DNA delivery. This small family of phage proteins are bound in the viral membrane and assist, along with P11 and P18 in the delivery of DNA. 54 -287997 pfam11088 RL11D Glycoprotein encoding membrane proteins RL5A and RL6. RL5A and RL6 are part of the RL11 family which are predicted to encode membrane glycoproteins. Two adjacent open reading frames potentially encode a domain that is the hallmark of proteins encoded by the RL11 family. 99 -337910 pfam11089 SyrA Exopolysaccharide production repressor. SyrA is a small protein located in the cytoplasmic membrane that lacks an apparent DNA binding domain. SyrA mediates the transcriptional up-regulation of exo genes involved in the biosynthesis of the symbiotic exopolysaccharide succinoglycan. It does this through a mechanism which requires a two component system. 38 -151535 pfam11090 DUF2833 Protein of unknown function (DUF2833). This family of proteins with unknown function are found in the bacteriophage T7. Some of the members of this family are annotated as gene 13 protein. 86 -314113 pfam11091 T4_tail_cap Tail-tube assembly protein. This tail tube protein is also referred to as Gp48. It is required for the assembly and length regulation of the tail tube of bacteriophage T4. 348 -314114 pfam11092 Alveol-reg_P311 Neuronal protein 3.1 (p311). P311 has several PEST-like motifs and is found in neuron and muscle cells. P311 could have some function in myo-fibroblast transformation and prevention of fibrosis. It has also been identified as a potential regulator of alveolar generation. 66 -314115 pfam11093 Mitochondr_Som1 Mitochondrial export protein Som1. Som1 is a component of the mitochondrial protein export system. The various Som1 proteins exhibit a highly conserved region and a pattern of cysteine residues. Stabilisation of Som1 occurs through an interaction between Som1 and Imp1, a peptidase required for proteolytic processing of certain proteins during their transport across the mitochondrial membrane. This suggests that Som1 represents a third subunit of the Imp1 peptidase complex 88 -288002 pfam11094 UL11 Membrane-associated tegument protein. The UL11 gene product of herpes simplex virus is a membrane-associated tegument protein that is incorporated into the HSV virion and functions in viral envelopment. UL11 is acylated which is crucial for lipid raft association. 39 -314116 pfam11095 Gemin7 Gem-associated protein 7 (Gemin7). Gemin7 is a novel component of the survival of motor neuron complex which functions in the assembly of spliceosomal small nuclear ribonucleoproteins. Gemin7 interacts with several Sm proteins of spliceosomal small nuclear ribonucleoproteins, especially SmE. 76 -288004 pfam11097 DUF2883 Protein of unknown function (DUF2883). This family of proteins have no known function but appear to be restricted to phage. 75 -288005 pfam11098 Chlorosome_CsmC Chlorosome envelope protein C. Chlorosomes are light-harvesting antennae found in green bacteria. CsmC is one of the proteins that exists in the chlorosome envelope. CsmC has been shown to exist as a homomultimer with CsmD in the chlorosome envelope. CsmC is thought to be important in chlorosome elongation and shape. 139 -314117 pfam11099 M11L Apoptosis regulator M11L like. Apoptosis regulators function to modulate the apoptotic cascades and thereby favour productive viral replication. M11L inhibits mitochondrial-dependant apoptosis by mimicking and competing with host proteins for the binding and blocking of Bak and Bax, two executioner proteins. 141 -314118 pfam11100 TrbE Conjugal transfer protein TrbE. TrbE is essential for conjugation and phage adsorption. It contains four common motifs and one conserved domain. 66 -337911 pfam11101 DUF2884 Protein of unknown function (DUF2884). Some members in this bacterial family of proteins are annotated as YggN which currently has no known function. 228 -337912 pfam11102 YjbF Group 4 capsule polysaccharide lipoprotein gfcB, YjbF. This family includes lipoprotein GfcB (YmcC), involved in group 4 capsule polysaccharide formation. YjbF is a family of Gram-negative bacterial outer-membrane lipoproteins, predicted to be a beta-barrel and possibly a porin that is one of four gene-products expressed from an operon, yjbEFGH, which is regulated by the Rcs phosphorelay in a RcsA-dependent manner, similar to that of other exopolysaccharide biosynthetic pathways. It is highly possible that the yjbEFGH operon encodes a system involved in EPS secretion since none of the products is predicted to have enzymic activity, the products are all secreted and YbjF and H are predicted to be beta-barrel lipoproteins similar to porins. It may be that the operon products play some role in biofilm formation and/or matrix production. 201 -314121 pfam11103 DUF2887 Protein of unknown function (DUF2887). This bacterial family of proteins has no known function. These proteins may be distantly related to the PD(D/E)XK superfamily. 200 -314122 pfam11104 PilM_2 Type IV pilus assembly protein PilM;. The type IV pilus assembly protein PilM is required for competency and pilus biogenesis. It binds to PilN and ATP. 340 -314123 pfam11105 CCAP Arthropod cardioacceleratory peptide 2a. CCAP exerts a reversible and dose-dependant cardio-stimulatory effect on the semi-isolated heart of experimental beetles. CCAP also increases free hemolymph sugar concentration in young larvae and adults of the meal-worm beetle. 128 -314124 pfam11106 YjbE Exopolysaccharide production protein YjbE. YjbE is part of a four gene operon which is involved in exopolysaccharide production. The expression of YjbE is higher than the rest of the operon yjbEFGH. It appears to be restricted to Enterobacteriaceae. YbjE is one of four gene-products expressed from an operon, yjbEFGH, which is regulated by the Rcs phosphorelay in a RcsA-dependent manner, similar to that of other exopolysaccharide biosynthetic pathways. It is highly possible that the yjbEFGH operon encodes a system involved in EPS secretion since none of the products is predicted to have enzymic activity, the products are all secreted and YbjH and F are predicted to be beta-barrel lipoproteins similar to porins. It may be that the operon products play some role in biofilm formation and/or matrix production. 79 -337913 pfam11107 FANCF Fanconi anemia group F protein (FANCF). FANCF regulates its own expression by methylation at both mRNA and protein levels. Methylation-induced inactivation of FANCF has an important role on the occurrence of ovarian cancers by disrupting the FA-BRCA pathway. 347 -288014 pfam11108 Phage_glycop_gL Viral glycoprotein L. GL forms a complex with gH, a glycoprotein known to be essential for entry of HSV-1 into cells and virus-induced cell fusion. It is a hetero-oligomer of gH and gL which is incorporated into virions and transported to the cell surface which acts during entry of virus into cells 95 -314126 pfam11109 RFamide_26RFa Orexigenic neuropeptide Qrfp/P518. Qrfp/P518 has a direct role in maintaining bone mineral density. Qrfp has also found to be important in energy homeostasis by regulating appetite and energy expenditure in mice. The c-terminal 28 residues are the functional 26RFa. 131 -314127 pfam11110 Phage_hub_GP28 Baseplate hub distal subunit. These baseplate proteins are also referred to as Gp28. Gp28 is the structural component of the central part of the bacteriophage T4 baseplate, which possesses a hydrophobic region and is membrane bound. Gp28 forms a complex with gp27 which is another structural component of the baseplate. 154 -314128 pfam11111 CENP-M Centromere protein M (CENP-M). The prime candidate for specifying centromere identity is the array of nucleosomes assembles with CENP-A. CENP-A recruits a nucleosome associated complex (NAC) comprised of CENP-M along with two other proteins. Assembly of the CENP-A NAC at centromeres is partly dependant on CENP-M. The CENP-A NAC is essential, as disruption of the complex causes errors of chromosome alignment and segregation that preclude cell survival. 174 -314129 pfam11112 PyocinActivator Pyocin activator protein PrtN. PrtN is a transcriptional activator for pyocin synthesis genes. It activates the expression of various pyocin genes by interaction with the DNA sequences conserved in the 5' noncoding regions of the pyocin genes. 74 -288018 pfam11113 Phage_head_chap Head assembly gene product. This head assembly protein is also refereed to as gene product 40 (Gp40). A specific gp20-gp40 membrane insertion structure constitutes the T4 prohead assembly initiation complex. This protein in T4 stimulates head formation. 56 -314130 pfam11114 Minor_capsid_2 Minor capsid protein. Most of the members of this family are annotated as being minor capsid proteins. The genomes carrying the genes usually have three similar proteins adjacent to each other, hence this one being named as No.2. 113 -288020 pfam11115 DUF2623 Protein of unknown function (DUF2623). This family is conserved in the Enterobacteriaceae family. Several members are named as YghW. The function is not known. 93 -314131 pfam11116 DUF2624 Protein of unknown function (DUF2624). This family is conserved in the Bacillaceae family. Several members are named as YqfT. The function is not known. 83 -337914 pfam11117 DUF2626 Protein of unknown function (DUF2626). This family is conserved in the Bacillaceae family. Several members are named as YqgY. The function is not known. 73 -337915 pfam11118 DUF2627 Protein of unknown function (DUF2627). This family is conserved in the Bacillaceae family. Several members are named as YqzF. The function is not known. 72 -288024 pfam11119 DUF2633 Protein of unknown function (DUF2633). This family is conserved largely in the Bacillaceae family. Several members are named as YfgG. The function is not known. 57 -314134 pfam11120 CBP_BcsF Cellulose biosynthesis protein BcsF. CBP_BcsF is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 60 -288026 pfam11121 DUF2639 Protein of unknown function (DUF2639). This family is conserved in the Bacillaceae family. Several members are named as being YflJ, but the function is not known. 37 -314135 pfam11122 Spore-coat_CotD Inner spore coat protein D. This family is conserved in the Enterobacteriaceae family. CotD is an inner spore coat protein that is expressed in the middle phase of mother cell gene expression. Along with CotD, CotH, CotS and CotT it is assumed to assemble into the loose skeleton of the matrix, between the shells of SpoIVA and CotE. Coat proteins do not share much sequence similarity between species, but this does not imply they do not share secondary, tertiary, or quaternary features. 87 -288028 pfam11123 DNA_Packaging_2 DNA packaging protein. This DNA packaging protein is also referred to as gene 18 product (gp18). This protein is required for DNA packaging and functions in a complex with gp19. 82 -314136 pfam11124 Pho86 Inorganic phosphate transporter Pho86. Pho86p is an ER protein which is produced in response to phosphate starvation. It is essential for growth when phosphate levels are limiting. Pho86p is also involved in the regulation of Pho84p, a high-affinity phosphate transporter which is localized to the endoplasmic reticulum (ER) in low phosphate medium. When the level of phosphate increases Pho84p is transported to the vacuole. Pho86p is required for packaging of Pho84p in to COPII vesicles. 287 -288030 pfam11125 DUF2830 Protein of unknown function (DUF2830). Several members in this viral family of proteins are annotated as lysis proteins. 54 -288031 pfam11126 Phage_DsbA Transcriptional regulator DsbA. DsbA is a double stranded binding protein found in bacteriophage T4 which is involved in transcriptional regulation. DsbA, along with other viral proteins, interacts with the host RNA polymerase core enzyme enabling initiation of transcription. DsbA acts as an enhancer protein of late genes in vitro. The protein consists of mainly alpha helices. 67 -314137 pfam11127 DUF2892 Protein of unknown function (DUF2892). This family is conserved in bacteria. The function is not known. 66 -288033 pfam11128 Nucleocap_ssRNA Plant viral coat protein nucleocapsid. This family of nucleocapsid proteins is from ssRNA negative-strand viruses of plant origin. 181 -151573 pfam11129 EIAV_Rev Rev protein of equine infectious anaemia virus. The sequence of this family is highly conserved and carries a nuclear export signal from residues 31-55, and RNA binding/nuclear localization signals of RRDR at residue 76 and KRRRK at residue 159. Rev is an essential regulatory protein required for nucleocytoplasmic transport of incompletely spliced viral mRNAs that encode structural proteins. Rev has been shown to down-regulate the expression of viral late genes and alter sensitivity to Gag-specific cytotoxic-T-lymphocytes (CTL). Equine infectious anaemia virus (EIAV) exhibits a high rate of genetic variation in vivo, and results in a clinically variable disease in infected horses. 134 -337916 pfam11130 TraC_F_IV F pilus assembly Type-IV secretion system for plasmid transfer. This family of TraC proteins is conserved in Proteobacteria. TraC is a cytoplasmic, peripheral membrane protein and is one of the proteins encoded by the F transfer region of the conjugative plasmid that is required for the assembly of F pilin into the mature F pilus structure. F pili are filamentous appendages that help establish the physical contact between donor and recipient cells involved in the conjugation process. 231 -288035 pfam11131 PhrC_PhrF Rap-phr extracellular signalling. PhrC and PhrF stimulate ComA-dependent gene expression to different levels and are both required for full expression of genes activated by ComA, which activates the expression of genes involved in competence development and the production of several secreted products. 38 -337917 pfam11132 SplA Transcriptional regulator protein (SplA). The SplA protein functions in trans as a negative regulator of the level of splB-lacZ expression in the developing forespore. 73 -256308 pfam11133 Phage_head_fibr Head fiber protein. This head fiber protein is also refereed to as Gp8.5. Gp8.5 is a structural protein in phage. It is a dispensable head protein. 277 -288037 pfam11134 Phage_stabilize Phage stabilisation protein. Members of this family are phage proteins that are probably involved with stabilizing the condensed DNA within the capsid. 469 -288038 pfam11135 DUF2888 Protein of unknown function (DUF2888). Some members in this family of proteins with unknown function are annotated as immediate early protein ICP-18 however this cannot be confirmed. 144 -337918 pfam11136 DUF2889 Protein of unknown function (DUF2889). This bacterial family of proteins has no known function. 123 -337919 pfam11137 DUF2909 Protein of unknown function (DUF2909). This is a family of proteins conserved in Proteobacteria of unknown function. 60 -314142 pfam11138 DUF2911 Protein of unknown function (DUF2911). This bacterial family of proteins has no known function. 141 -314143 pfam11139 SfLAP Sap, sulfolipid-1-addressing protein. SAP is a transmembrane transport protein with six predicted transmembrane helices, with a hydrophilic domain between helices 3 and 4. This hyrodphobic region is highly variable among identified Gap-like (GPL, peptidoglycolipid, addressing protein) proteins and may be involved in substrate recognition. SAP also belongs to the LysE protein superfamily (pfam01810), whose members have been implicated in small molecule transport in bacteria. Other Gap proteins export metabolites across the cell membrane so it is possible that Sap specifically may be involved in transport of sulfolipid-1 across the membrane. 213 -314144 pfam11140 DUF2913 Protein of unknown function (DUF2913). This family of proteins with unknown function appear to be restricted to Gammaproteobacteria. 207 -314145 pfam11141 DUF2914 Protein of unknown function (DUF2914). This bacterial family of proteins has no known function. 62 -337920 pfam11142 DUF2917 Protein of unknown function (DUF2917). This bacterial family of proteins appears to be restricted to Proteobacteria. 59 -337921 pfam11143 DUF2919 Protein of unknown function (DUF2919). This bacterial family of proteins has no known function. Some members are annotated as YfeZ however this cannot be confirmed. 146 -314148 pfam11144 DUF2920 Protein of unknown function (DUF2920). This bacterial family of proteins has no known function. 394 -337922 pfam11145 DUF2921 Protein of unknown function (DUF2921). This eukaryotic family of proteins has no known function. 891 -337923 pfam11146 DUF2905 Protein of unknown function (DUF2905). This is a family of bacterial proteins conserved of unknown function. 61 -337924 pfam11148 DUF2922 Protein of unknown function (DUF2922). This bacterial family of proteins has no known function. 63 -314152 pfam11149 DUF2924 Protein of unknown function (DUF2924). This bacterial family of proteins has no known function. 134 -314153 pfam11150 DUF2927 Protein of unknown function (DUF2927). This family is conserved in Proteobacteria. Several members are described as being putative lipoproteins, but otherwise the function is not known. 203 -314154 pfam11151 DUF2929 Protein of unknown function (DUF2929). This family of proteins with unknown function appears to be restricted to Firmicutes. 56 -337925 pfam11152 CCB2_CCB4 Cofactor assembly of complex C subunit B, CCB2/CCB4. Cofactor maturation pathways such as the CCB system (system IV) for cytochrome c-heme attachment are conserved in all organisms performing oxygenic photosynthesis. The CCB system consists of four proteins: CCB1-4. CCB2 and CCB4 are paralogues derived from a unique cyanobacterial ancestor. Orthologues are conserved in higher plants. 193 -314156 pfam11153 DUF2931 Protein of unknown function (DUF2931). Some members in this family of proteins are annotated as lipoproteins however this cannot be confirmed. Currently, there is no known function. 202 -337926 pfam11154 DUF2934 Protein of unknown function (DUF2934). This bacterial family of proteins has no known function. 36 -314158 pfam11155 DUF2935 Domain of unknown function (DUF2935). This family of proteins with unknown function appears to be restricted to Firmicutes. The structure of this protein has been solved and each domain is composed of four alpha helices. A metal cluster composed of iron and magnesium lies between the two domains. 121 -337927 pfam11157 DUF2937 Protein of unknown function (DUF2937). This family of proteins with unknown function appears to be restricted to Proteobacteria. 160 -337928 pfam11158 DUF2938 Protein of unknown function (DUF2938). This bacterial family of proteins has no known function. Some members are thought to be membrane proteins however this cannot be confirmed. 142 -314161 pfam11159 DUF2939 Protein of unknown function (DUF2939). This bacterial family of proteins has no known function. 92 -314162 pfam11160 DUF2945 Protein of unknown function (DUF2945). This family of proteins has no known function. 61 -337929 pfam11161 DUF2944 Protein of unknown function (DUF2946). This family of proteins with unknown function appear to be restricted to Proteobacteria. 181 -337930 pfam11162 DUF2946 Protein of unknown function (DUF2946). This family of proteins has no known function. 117 -314165 pfam11163 DUF2947 Protein of unknown function (DUF2947). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 151 -337931 pfam11164 DUF2948 Protein of unknown function (DUF2948). This family of proteins with unknown function appear to be restricted to Proteobacteria. 136 -314167 pfam11165 DUF2949 Protein of unknown function (DUF2949). This family of proteins with unknown function appear to be restricted to Cyanobacteria. 55 -288067 pfam11166 DUF2951 Protein of unknown function (DUF2951). This family of proteins has no known function. It has a highly conserved sequence. 98 -314168 pfam11167 DUF2953 Protein of unknown function (DUF2953). This family of proteins has no known function. 53 -337932 pfam11168 DUF2955 Protein of unknown function (DUF2955). Some members in this family of proteins with unknown function annotate the proteins as membrane protein. However, this cannot be confirmed. 140 -314170 pfam11169 DUF2956 Protein of unknown function (DUF2956). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 102 -314171 pfam11170 DUF2957 Protein of unknown function (DUF2957). Some members annotate the proteins to be putative lipoproteins however this cannot be confirmed. Currently no function is known for this family of proteins. 299 -337933 pfam11171 DUF2958 Protein of unknown function (DUF2958). Some members are annotated as lipoproteins however this cannot be confirmed. This family of proteins has no known function. 111 -337934 pfam11172 DUF2959 Protein of unknown function (DUF2959). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 192 -337935 pfam11173 DUF2960 Protein of unknown function (DUF2960). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 79 -337936 pfam11174 DUF2970 Protein of unknown function (DUF2970). This short family is conserved in Proteobacteria. The function is not known. 56 -337937 pfam11175 DUF2961 Protein of unknown function (DUF2961). This family of proteins has no known function. 235 -337938 pfam11176 Tma16 Translation machinery-associated protein 16. Proteins in this family localize to the nucleus. Their function is not clear. 146 -314178 pfam11177 DUF2964 Protein of unknown function (DUF2964). This family of proteins with unknown function appears to be restricted to Proteobacteria. 62 -314179 pfam11178 DUF2963 Protein of unknown function (DUF2963). This family of proteins with unknown function appears to be restricted to Mollicutes. 51 -314180 pfam11179 DUF2967 Protein of unknown function (DUF2967). This family of proteins with unknown function appears to be restricted to Drosophila. 268 -337939 pfam11180 DUF2968 Protein of unknown function (DUF2968). This family of proteins has no known function. 180 -314182 pfam11181 YflT Heat induced stress protein YflT. YflT is a heat induced protein. 100 -314183 pfam11182 AlgF Alginate O-acetyl transferase AlgF. AlgF is essential for the addition of O-acetyl groups to alginate, an extracellular polysaccharide. The presence of O-acetyl groups plays an important role in the ability of the polymer to act as a virulence factor. 180 -314184 pfam11183 PmrD Polymyxin resistance protein PmrD. PmrB forms a two-component system (TCS) with PmrA that allows Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin G. The TCS is linked to another one via the polymyxin resistance protein PmrD. PmrD is the first protein identified to mediate the connectivity between the two TCSs. It binds to the N terminal domain of the PmrA response regulator which prevents its dephosphorylation, thereby promoting the the transcription of genes involved in polymyxin resistance. 81 -337940 pfam11184 DUF2969 Protein of unknown function (DUF2969). This family of proteins with unknown function appears to be restricted to Lactobacillales. 72 -337941 pfam11185 DUF2971 Protein of unknown function (DUF2971). This bacterial family of proteins has no known function. 91 -288086 pfam11186 DUF2972 Protein of unknown function (DUF2972). Some members in this family of proteins with unknown function are annotated as sugar transferase proteins, however this cannot be confirmed. 198 -337942 pfam11187 DUF2974 Protein of unknown function (DUF2974). This bacterial family of proteins has no known function. 224 -337943 pfam11188 DUF2975 Protein of unknown function (DUF2975). This family of bacterial proteins have no known function. These proteins are likely to be integral membrane proteins. The proteins contain a highly conserved glutamic acid close to their C-terminus. 130 -314189 pfam11189 DUF2973 Protein of unknown function (DUF2973). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently they have no known function. 68 -314190 pfam11190 DUF2976 Protein of unknown function (DUF2976). This family of proteins has no known function. Some members are annotated as membrane proteins however this cannot be confirmed. 86 -314191 pfam11191 DUF2782 Protein of unknown function (DUF2782). This is a bacterial family of proteins whose function is unknown. 88 -288092 pfam11192 DUF2977 Protein of unknown function (DUF2977). This family of proteins has no known function. 61 -314192 pfam11193 DUF2812 Protein of unknown function (DUF2812). This is a bacterial family of uncharacterized proteins, however some members of this family are annotated as membrane proteins. 108 -314193 pfam11195 DUF2829 Protein of unknown function (DUF2829). This is a uncharacterized family of proteins found in bacteria and bacteriphages. 71 -314194 pfam11196 DUF2834 Protein of unknown function (DUF2834). This is a bacterial family of uncharacterized proteins. 95 -337944 pfam11197 DUF2835 Protein of unknown function (DUF2835). This is a bacterial family of uncharacterized proteins. One member of this family is annotated as the A subunit of Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV). 68 -314196 pfam11198 DUF2857 Protein of unknown function (DUF2857). This is a bacterial family of uncharacterized proteins. 175 -314197 pfam11199 DUF2891 Protein of unknown function (DUF2891). This is a bacterial family of uncharacterized proteins. 323 -288099 pfam11200 DUF2981 Protein of unknown function (DUF2981). This eukaryotic family of proteins has no known function. 318 -337945 pfam11201 DUF2982 Protein of unknown function (DUF2982). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 150 -337946 pfam11202 PRTase_1 Phosphoribosyl transferase (PRTase). This PRTase family is fused to a C-terminal RNA binding Pelota domain, pfam01248. These genes are found in the biosynthetic operon associated with the Ter stress response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 247 -314200 pfam11203 EccE Putative type VII ESX secretion system translocon, EccE. EccE is a family of largely Gram-positive bacterial transmembrane componenets of the type VII secretion system characterized in Mycobacterium tuberculosis, systems ESX1-5. Translocation of virulent peptides through the membranes is thought to be mediated via a complex that includes EccB, EccC, EccD, EccE, and MycP. EccB, EccC, EccD, and EccE form a stable complex in the mycobacterial cell envelope. 97 -314201 pfam11204 DUF2985 Protein of unknown function (DUF2985). This eukaryotic family of proteins has no known function. 78 -337947 pfam11205 DUF2987 Protein of unknown function (DUF2987). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 145 -337948 pfam11207 DUF2989 Protein of unknown function (DUF2989). Some members in this bacterial family of proteins are annotated as lipoproteins however this cannot be confirmed. 201 -337949 pfam11208 DUF2992 Protein of unknown function (DUF2992). This bacterial family of proteins has no known function. However, the cis-regulatory yjdF motif, just upstream from the gene encoding the proteins for this family, is a small non-coding RNA, Rfam:RF01764. The yjdF motif is found in many Firmicutes, including Bacillus subtilis. In most cases, it resides in potential 5' UTRs of homologs of the yjdF gene whose function is unknown. However, in Streptococcus thermophilus, a yjdF RNA motif is associated with an operon whose protein products synthesize nicotinamide adenine dinucleotide (NAD+). Also, the S. thermophilus yjdF RNA lacks typical yjdF motif consensus features downstream of and including the P4 stem. Thus, if yjdF RNAs are riboswitch aptamers, the S. thermophilus RNAs might sense a distinct compound that structurally resembles the ligand bound by other yjdF RNAs. On the ohter hand, perhaps these RNAs have an alternative solution forming a similar binding site, as is observed with some SAM riboswitches. 132 -314205 pfam11209 DUF2993 Protein of unknown function (DUF2993). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 210 -314206 pfam11210 DUF2996 Protein of unknown function (DUF2996). This family of proteins has no known function. 120 -314207 pfam11211 DUF2997 Protein of unknown function (DUF2997). This family of proteins has no known function. 47 -288110 pfam11212 DUF2999 Protein of unknown function (DUF2999). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 82 -314208 pfam11213 DUF3006 Protein of unknown function (DUF3006). This family of proteins has no known function. 67 -314209 pfam11214 Med2 Mediator complex subunit 2. This family of mediator complex subunit 2 proteins is conserved in fungi. Cyclin-dependent kinase CDK8 or Srb10 interacts with and phosphorylates Med2. Post-translational modifications of Mediator subunits are important for regulation of gene expression. 100 -337950 pfam11215 DUF3010 Protein of unknown function (DUF3010). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 137 -288114 pfam11216 DUF3012 Protein of unknown function (DUF3012). This family of proteins with unknown function is restricted to Gammaproteobacteria. 32 -337951 pfam11217 DUF3013 Protein of unknown function (DUF3013). This bacterial family of proteins with unknown function appear to be restricted to Firmicutes. 159 -314212 pfam11218 DUF3011 Protein of unknown function (DUF3011). This bacterial family of proteins has no known function. Most members belong to Proteobacteria. 196 -337952 pfam11219 DUF3014 Protein of unknown function (DUF3014). This family of proteins with unknown function appears to be restricted to Proteobacteria. 156 -314214 pfam11220 DUF3015 Protein of unknown function (DUF3015). This bacterial family of proteins has no known function. 137 -337953 pfam11221 Med21 Subunit 21 of Mediator complex. Med21 has been known as Srb7 in yeasts, hSrb7 in humans and Trap 19 in Drosophila. The heterodimer of the two subunits Med7 and Med21 appears to act as a hinge between the middle and the tail regions of Mediator. 140 -314216 pfam11222 DUF3017 Protein of unknown function (DUF3017). This bacterial family of proteins with unknown function appear to be restricted to Actinobacteria. 74 -314217 pfam11223 DUF3020 Protein of unknown function (DUF3020). This family of fungal proteins is conserved towards the C-terminus of HMG domains. The function is not known. 49 -288122 pfam11224 DUF3023 Protein of unknown function (DUF3023). This bacterial family of proteins with unknown function appear to be restricted to Alphaproteobacteria. 130 -337954 pfam11225 DUF3024 Protein of unknown function (DUF3024). This family of proteins has no known function. 56 -288124 pfam11226 DUF3022 Protein of unknown function (DUF3022). This family of proteins with unknown function appears to be restricted to Proteobacteria. 105 -337955 pfam11227 DUF3025 Protein of unknown function (DUF3025). Some members in this bacterial family of proteins are annotated as transmembrane proteins however this cannot be confirmed. Currently this family of proteins has no known function. 212 -314220 pfam11228 DUF3027 Protein of unknown function (DUF3027). This family of proteins with unknown function appears to be restricted to Actinobacteria. 193 -314221 pfam11229 Focadhesin Focadhesin. Focadhesin (FOCAD) is focal adhesion protein with potential tumor suppressor function in gliomas. 589 -314222 pfam11230 DUF3029 Protein of unknown function (DUF3029). Some members in this family of proteins are annotated as ykkI. Currently no function is known. 485 -337956 pfam11231 DUF3034 Protein of unknown function (DUF3034). This family of proteins with unknown function appears to be restricted to Proteobacteria. 256 -314224 pfam11232 Med25 Mediator complex subunit 25 PTOV activation and synapsin 2. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-active part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. The overall function of the full-length Med25 is efficiently to coordinate the transcriptional activation of RAR/RXR (retinoic acid receptor/retinoic X receptor) in higher eukaryotic cells. Human Med25 consists of several domains with different binding properties, the N-terminal, VWA domain, an SD1 - synapsin 1 - domain from residues 229-381, a PTOV(B) or ACID domain from 395-545, an SD2 domain from residues 564-645 and a C-terminal NR box-containing domain (646-650) from 646-747. This family is the combined PTOV and SD2 domains. the PTOV domain being the domain through which Med25 co-operates with the histone acetyltransferase CBP, but the function of the SD2 domain is unclear. 147 -337957 pfam11233 DUF3035 Protein of unknown function (DUF3035). This family of proteins with unknown function appear to be restricted to Alphaproteobacteria. 140 -314226 pfam11235 Med25_SD1 Mediator complex subunit 25 synapsin 1. The overall function of the full-length Med25 is efficiently to coordinate the transcriptional activation of RAR/RXR (retinoic acid receptor/retinoic X receptor) in higher eukaryotic cells. Human Med25 consists of several domains with different binding properties, the N-terminal, VWA, domain, this SD1 - synapsin 1 - domain from residues 229-381, a PTOV(B) or ACID domain from 395-545, an SD2 domain from residues 564-645 and a C-terminal NR box-containing domain (646-650) from 646-747. This The function of the SD domains is unclear. 166 -314227 pfam11236 DUF3037 Protein of unknown function (DUF3037). This bacterial family of proteins has no known function. 118 -314228 pfam11237 DUF3038 Protein of unknown function (DUF3038). This family of proteins with unknown function appear to be restricted to Cyanobacteria. 169 -314229 pfam11238 DUF3039 Protein of unknown function (DUF3039). This family of proteins with unknown function appears to be restricted to Actinobacteria. 56 -314230 pfam11239 DUF3040 Protein of unknown function (DUF3040). Some members in this family of proteins with unknown function are annotated as membrane proteins however this cannot be confirmed. 80 -314231 pfam11240 DUF3042 Protein of unknown function (DUF3042). This family of proteins with unknown function appears to be restricted to Firmicutes. 54 -314232 pfam11241 DUF3043 Protein of unknown function (DUF3043). Some members in this family of proteins with unknown function are annotated as membrane proteins. This cannot be confirmed. 167 -288139 pfam11242 DUF2774 Protein of unknown function (DUF2774). This is a viral family of proteins with unknown function. 63 -288140 pfam11243 DUF3045 Protein of unknown function (DUF3045). Members in this family of proteins are annotated as gene protein 30.1. Currently no function is known. 88 -314233 pfam11244 Med25_NR-box Mediator complex subunit 25 C-terminal NR box-containing. The overall function of the full-length Med25 is efficiently to coordinate the transcriptional activation of RAR/RXR (retinoic acid receptor/retinoic X receptor) in higher eukaryotic cells. Human Med25 consists of several domains with different binding properties, the N-terminal, VWA, domain, an SD1 - synapsin 1 - domain from residues 229-381, a PTOV(B) or ACID domain from 395-545, an SD2 domain from residues 564-645 and this C-terminal NR box-containing domain (646-650) from C69-747. The NR box of MED25 is critical for its recruitment to the promoter, probably through an interaction with pre bound RAR. 94 -288142 pfam11245 DUF2544 Protein of unknown function (DUF2544). This is a bacterial family of proteins with unknown function. 246 -314234 pfam11246 Phage_gp53 Base plate wedge protein 53. The baseplate of bacteriophage T4 controls host cell recognition, attachment, tail sheath contraction and viral DNA ejection. The structure of the baseplate suggests a mechanism of baseplate structural transition during the initial stages of T4 infection. The baseplate is assembled from six identical wedges that surround the central hub. Gp53, along with other T4 gene products, combine sequentially to assemble a wedge. 187 -314235 pfam11247 DUF2675 Protein of unknown function (DUF2675). Members in this family of proteins are annotated as Gene protein 5.5. Currently no function is known. 99 -314236 pfam11248 DUF3046 Protein of unknown function (DUF3046). This family of proteins with unknown function appears to be restricted to Actinobacteria. 62 -337958 pfam11249 DUF3047 Protein of unknown function (DUF3047). This bacterial family of proteins has no known function. 189 -337959 pfam11250 FAF Fantastic Four meristem regulator. FAF is a family of plant proteins that regulate the size of the shoot meristem by modulating the CLV3-WUS feedback loop. The proteins are expressed in the centre of the shoot meristem, overlapping with the site of WUS - the homeodomain transcription factor WUSCHEL- expression. FAF proteins are capable of modulating shoot growth by repressing WUS in the organising centre of the shoot meristem. The ability of plants to form new organs throughout their life cycle requires tight control of the meristems to avoid unregulated growth. Plants have evolved an elaborate genetic network that controls meristem size and maintenance. WUS and the CLAVATA (CLV) ligand-receptor system are at the core of the network that regulates the size of the stem cell population in the shoot meristem. 54 -337960 pfam11251 DUF3050 Protein of unknown function (DUF3050). This bacterial family of proteins has no known function. 231 -151694 pfam11252 DUF3051 Protein of unknown function (DUF3051). This viral family of proteins has no known function. 189 -314240 pfam11253 DUF3052 Protein of unknown function (DUF3052). This family of proteins with unknown function appears to be restricted to Actinobacteria. 123 -337961 pfam11254 DUF3053 Protein of unknown function (DUF3053). Some members in this family of proteins are annotated as the membrane protein YiaF. No function is currently known. 220 -314242 pfam11255 DUF3054 Protein of unknown function (DUF3054). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 110 -314243 pfam11256 DUF3055 Protein of unknown function (DUF3055). This family of proteins with unknown function appear to be restricted to Firmicutes. 80 -337962 pfam11258 DUF3048 Protein of unknown function (DUF3048) N-terminal domain. Some members in this bacterial family of proteins are annotated as YerB. However currently no function is known. This entry represents the N-terminal domain. 143 -314245 pfam11259 DUF3060 Protein of unknown function (DUF3060). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. 58 -314246 pfam11260 Spidroin_MaSp Major ampullate spidroin 1 and 2. Dragline silk is composed of two proteins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). MaSp1 contains five alpha-helices. Only the C-terminus of the proteins are shown. 85 -314247 pfam11261 IRF-2BP1_2 Interferon regulatory factor 2-binding protein zinc finger. IRF-2BP1 and IRF-2BP2 are nuclear transcriptional repressor proteins and can inhibit both enhancer-activated and basal transcription. They both contain N-terminal zinc finger represented in this family and C-terminal RING finger domains. 52 -337963 pfam11262 Tho2 Transcription factor/nuclear export subunit protein 2. THO and TREX form a eukaryotic complex which functions in messenger ribonucleoprotein metabolism and plays a role in preventing the transcription-associated genetic instability. Tho2, along with four other subunits forms THO 300 -314249 pfam11263 Attachment_P66 Borrelia burgdorferi attachment protein P66. P66 is an outer membrane protein in Borrelia burgdorferi, the agent of Lyme disease. P66 has a role in the attachment of Borrelia burgdorferi to human cell-surface receptors. 253 -314250 pfam11264 ThylakoidFormat Thylakoid formation protein. THF1 is localized to the outer plastid membrane and the stroma. THF1 has a role in sugar signalling. THF1 is also thought to have a role in chloroplast and leaf development. THF1 has been shown to play a crucial role in vesicle-mediated thylakoid membrane biogenesis. 217 -314251 pfam11265 Med25_VWA Mediator complex subunit 25 von Willebrand factor type A. The overall function of the full-length Med25 is efficiently to coordinate the transcriptional activation of RAR/RXR (retinoic acid receptor/retinoic X receptor) in higher eukaryotic cells. Human Med25 consists of several domains with different binding properties, the N-terminal, VWA domain which is this one, an SD2 domain from residues 229-381, a PTOV(B) or ACID domain from 395-545, an SD2 domain from residues 564-645 and a C-terminal NR box-containing domain (646-650) from 646-747. This VWA or von Willebrand factor type A domain when bound to RAR and the histone acetyltransferase CBP is responsible for recruiting Med1 to the rest of the Mediator complex. 213 -288160 pfam11266 Ald_deCOase Long-chain fatty aldehyde decarbonylase. This cyanobacterial family of fatty aldehyde decarbonylases acts on mainly C16 and C18 substrates to form hydrocarbons and carbon monoxide. Note that the corresponding EC number (EC:4.1.99.5) dating from 1989 refers to a nonorthologous Pisum sativum enzyme that acts on C18 and longer chains and attaches the overly narrow narrow name octadecanal decarbonylase. 215 -314252 pfam11267 DUF3067 Domain of unknown function (DUF3067). This family of proteins found in plants and cyanobacteria has no known function. The structure of this domain has been solved by NMR for the alr2454 protein. The structure was determined to be a novel fold composed of four alpha helices and a sheet of three anti-parallel beta-strands. 90 -314253 pfam11268 DUF3071 Protein of unknown function (DUF3071). Some members in this family of proteins are annotated as DNA-binding proteins however this cannot be confirmed. Currently no function is known. 168 -314254 pfam11269 DUF3069 Protein of unknown function (DUF3069). This family of proteins with unknown function appear to be restricted to Gammaproteobacteria. 118 -288164 pfam11270 DUF3070 Protein of unknown function (DUF3070). This eukaryotic family of proteins has no known function. 23 -314255 pfam11271 DUF3068 Protein of unknown function (DUF3068). Some members in this family of proteins with unknown function are annotated as membrane proteins however this cannot be confirmed. 296 -314256 pfam11272 DUF3072 Protein of unknown function (DUF3072). This bacterial family of proteins has no known function. 58 -314257 pfam11273 DUF3073 Protein of unknown function (DUF3073). This family of proteins with unknown function appears to be restricted to Actinobacteria. 63 -337964 pfam11274 DUF3074 Protein of unknown function (DUF3074). This eukaryotic family of proteins has no known function but appears to be part of the START superfamily. 177 -314259 pfam11275 DUF3077 Protein of unknown function (DUF3077). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 77 -337965 pfam11276 DUF3078 Protein of unknown function (DUF3078). This bacterial family of proteins has no known function. 83 -314261 pfam11277 Med24_N Mediator complex subunit 24 N-terminal. This subunit of the Mediator complex appears to be conserved only from insects to humans. It is essential for correct retinal development in fish. Subunit composition of the mediator contributes to the control of differentiation in the vertebrate CNS as there are divergent functions of the mediator subunits Crsp34/Med27, Trap100/Med24, and Crsp150/Med14. 985 -337966 pfam11278 DUF3079 Protein of unknown function (DUF3079). This family of proteins with unknown function appears to be restricted to Proteobacteria. 51 -337967 pfam11279 DUF3080 Protein of unknown function (DUF3080). Some members in this family of proteins are annotated as lipoproteins however this cannot be confirmed. Currently this family has no known function. 314 -337968 pfam11280 DUF3081 Protein of unknown function (DUF3081). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 77 -314264 pfam11281 DUF3083 Protein of unknown function (DUF3083). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 315 -314265 pfam11282 DUF3082 Protein of unknown function (DUF3082). This family of proteins has no known function. 79 -314266 pfam11283 DUF3084 Protein of unknown function (DUF3084). This bacterial family of proteins has no known function. 77 -314267 pfam11284 DUF3085 Protein of unknown function (DUF3085). This family of proteins with unknown function appears to be restricted to Proteobacteria. 88 -314268 pfam11285 DUF3086 Protein of unknown function (DUF3086). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 272 -314269 pfam11286 DUF3087 Protein of unknown function (DUF3087). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 165 -337969 pfam11287 DUF3088 Protein of unknown function (DUF3088). This family of proteins with unknown function appears to be restricted to Proteobacteria. 110 -314271 pfam11288 DUF3089 Protein of unknown function (DUF3089). This family of proteins has no known function but appears to have an alpha/beta hydrolase domain and so is likely to be enzymatic. 197 -288183 pfam11289 APA3_viroporin Coronavirus accessory protein 3a. APA3_viroporin is a pro-apoptosis-inducing protein. It localizes to the endoplasmic reticulum (ER)-Golgi compartment. The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) causes apoptosis of infected cells, and this is one of the culprits. Multi-pass membrane protein that forms a homotetrameric potassium-sensitive ion channel called a viroporin whose activity causes ER-stress to the host cell. 273 -314272 pfam11290 DUF3090 Protein of unknown function (DUF3090). This family of proteins with unknown function appears to be restricted to Actinobacteria. 167 -151732 pfam11291 DUF3091 Protein of unknown function (DUF3091). This eukaryotic family of proteins has no known function. 100 -314273 pfam11292 DUF3093 Protein of unknown function (DUF3093). This family of proteins with unknown function appears to be restricted to Actinobacteria. Some members are annotated as alanine rich membrane proteins however this cannot be confirmed. 140 -314274 pfam11293 DUF3094 Protein of unknown function (DUF3094). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 55 -337970 pfam11294 DUF3095 Protein of unknown function (DUF3095). Some members in this bacterial family of proteins are annotated as adenylyl cyclase however this cannot be confirmed. Currently no function is known. 377 -314276 pfam11295 DUF3096 Protein of unknown function (DUF3096). This family of proteins with unknown function appears to be restricted to Proteobacteria. 37 -314277 pfam11296 DUF3097 Protein of unknown function (DUF3097). This family of proteins with unknown function appears to be restricted to Actinobacteria. 268 -337971 pfam11297 DUF3098 Protein of unknown function (DUF3098). This bacterial family of proteins has no known function. 67 -314279 pfam11298 DUF3099 Protein of unknown function (DUF3099). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 68 -337972 pfam11299 DUF3100 Protein of unknown function (DUF3100). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 235 -314281 pfam11300 DUF3102 Protein of unknown function (DUF3102). This family of proteins has no known function. 129 -314282 pfam11301 DUF3103 Protein of unknown function (DUF3103). This family of proteins with unknown function appear to be restricted to Proteobacteria. 353 -288195 pfam11302 DUF3104 Protein of unknown function (DUF3104). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 71 -337973 pfam11303 DUF3105 Protein of unknown function (DUF3105). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 124 -337974 pfam11304 DUF3106 Protein of unknown function (DUF3106). Some members in this family of proteins are annotated as transmembrane proteins however this cannot be confirmed. Currently no function is known. 98 -314285 pfam11305 DUF3107 Protein of unknown function (DUF3107). Some members in this family of proteins are annotated as ATP-binding proteins however this cannot be confirmed. Currently no function is known. 73 -337975 pfam11306 DUF3108 Protein of unknown function (DUF3108). This is a bacterial family of putative lipoproteins. Structure 3fzx, the first structural template for this large family including several homologs in the human gut microbiome and in metagenomic datasets, folds into a beta barrel that topologically looks like a small-scale porin (such as FepA). Bacteroides fragilis glyA is a putative exported protein, and this fold is of the YmcC-like type, with a predicted signal peptide SpI cleavage site AGAMA|QNQDC, and a Phobius server prediction of non-cytoplasmic localization for amino acids 21-236. The possibility of it being a membrane protein can be ruled out by the hydrophilic nature of the solvent exposed surface outside the barrels. Analysis of sequence conservation suggests that an area near Glu172/Trp206 is potentially interesting. These two residues are also conserved in Dali hit Structure 2in5, a hypothetical lipoprotein classified as a new YmcC-like fold in SCOP (SCOP:159271, with a 12-stranded meander beta-sheet folded into a deformed beta-barrel) despite large structural differences between the two structures, suggesting similarity in function. 225 -337976 pfam11307 DUF3109 Protein of unknown function (DUF3109). This bacterial family of proteins has no known function. 181 -314288 pfam11308 Glyco_hydro_129 Glycosyl hydrolases related to GH101 family, GH129. This family of bacterial and lower eukaryote glycosyl hydrolases is related to CAZy family GH129,and distantly to GH101, and is made up of sub-families GHL1-GHL3. 324 -314289 pfam11309 DUF3112 Protein of unknown function (DUF3112). This eukaryotic family of proteins has no known function. 217 -288203 pfam11310 DUF3113 Protein of unknown function (DUF3113). This family of proteins has no known function. It has a highly conserved sequence. 60 -337977 pfam11311 DUF3114 Protein of unknown function (DUF3114). Some members in this family of proteins with unknown function are annotated as cytosolic proteins. This cannot be confirmed. 262 -337978 pfam11312 Methyltransf_34 Putative SAM-dependent methyltransferase. This family of largely fungal proteins are likely to be a methyltransferase. This was determined through multiple motif screening in yeast. 296 -288206 pfam11313 DUF3116 Protein of unknown function (DUF3116). This family of proteins with unknown function appears to be restricted to Bacillales. 85 -288207 pfam11314 DUF3117 Protein of unknown function (DUF3117). This family of proteins with unknown function appears to be restricted to Actinobacteria. 50 -314292 pfam11315 Med30 Mediator complex subunit 30. Med30 is a metazoan-specific subunit of Mediator, having no homologs in yeasts. 147 -314293 pfam11316 Rhamno_transf Putative rhamnosyl transferase. Most members of this family are uncharacterized, but one is a putative side-chain-rhamnosyl transferase. 235 -314294 pfam11317 DUF3119 Protein of unknown function (DUF3119). This family of proteins has no known function. 108 -314295 pfam11318 DUF3120 Protein of unknown function (DUF3120). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 199 -337979 pfam11319 VasI Type VI secretion system VasI, EvfG, VC_A0118. VasI is a family of Gram-negative proteins that form part of the pathogenicity apparatus for bacteria-to-bacteria attack. The exact function of this component is not known. 183 -314297 pfam11320 DUF3122 Protein of unknown function (DUF3122). This family of proteins with unknown function appear to be restricted to Cyanobacteria. 134 -337980 pfam11321 DUF3123 Protein of unknown function (DUF3123). This eukaryotic family of proteins has no known function. 116 -337981 pfam11322 DUF3124 Protein of unknown function (DUF3124). This bacterial family of proteins has no known function. 118 -337982 pfam11324 DUF3126 Protein of unknown function (DUF3126). This family of proteins with unknown function appear to be restricted to Alphaproteobacteria. 63 -337983 pfam11325 DUF3127 Domain of unknown function (DUF3127). This bacterial family of proteins has no known function. However, it does show distant similarity to pfam00436, with proteins such as Prevotella buccalis HMPREF0650_0099 being similar to both families. This suggests that this family may have a DNA-binding function. 84 -337984 pfam11326 DUF3128 Protein of unknown function (DUF3128). This eukaryotic family of proteins has no known function. 80 -337985 pfam11327 DUF3129 Protein of unknown function (DUF3129). This eukaryotic family of proteins has no known function. 183 -288220 pfam11328 DUF3130 Protein of unknown function (DUF3130. This bacterial family of proteins has no known function. 89 -314305 pfam11329 DUF3131 Protein of unknown function (DUF3131). This bacterial family of proteins has no known function. 366 -288222 pfam11330 DUF3132 Protein of unknown function (DUF3132). This viral family of proteins are 55kDa. No function is currently known. 124 -337986 pfam11331 zinc_ribbon_12 Probable zinc-ribbon domain. This eukaryotic family of proteins has no known function. 45 -314307 pfam11332 DUF3134 Protein of unknown function (DUF3134). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 70 -314308 pfam11333 DUF3135 Protein of unknown function (DUF3135). This family of proteins with unkown function appears to be restricted to Proteobacteria. 80 -288226 pfam11334 DUF3136 Protein of unknown function (DUF3136). This family of proteins with unknown function appear to be restricted to Cyanobacteria. 64 -337987 pfam11335 DUF3137 Protein of unknown function (DUF3137). This bacterial family of proteins has no known function. 139 -288228 pfam11336 DUF3138 Protein of unknown function (DUF3138). This family of proteins with unknown function appear to be restricted to Proteobacteria. 510 -314310 pfam11337 DUF3139 Protein of unknown function (DUF3139). This family of proteins with unknown function appears to be restricted to Firmicutes. 77 -314311 pfam11338 DUF3140 Protein of unknown function (DUF3140). Some members in this family of proteins are annotated as DNA binding proteins. No function is currently known. 92 -314312 pfam11339 DUF3141 Protein of unknown function (DUF3141). This family of proteins with unknown function appears to be restricted to Proteobacteria. 581 -337988 pfam11340 DUF3142 Protein of unknown function (DUF3142). This bacterial family of proteins has no known function. 223 -314314 pfam11341 DUF3143 Protein of unknown function (DUF3143). This family of proteins has no known function. 65 -314315 pfam11342 DUF3144 Protein of unknown function (DUF3144). This family of proteins with unknown function appears to be restricted to Proteobacteria. 77 -288235 pfam11343 DUF3145 Protein of unknown function (DUF3145). This family of proteins with unknown function appear to be restricted to Actinobacteria. 155 -314316 pfam11344 DUF3146 Protein of unknown function (DUF3146). This family of proteins with unknown function appear to be restricted to Cyanobacteria. 80 -288237 pfam11345 DUF3147 Protein of unknown function (DUF3147). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 111 -314317 pfam11346 DUF3149 Protein of unknown function (DUF3149). This bacterial family of proteins has no known function. 39 -337989 pfam11347 DUF3148 Protein of unknown function (DUF3148). This family of proteins has no known function. 61 -314319 pfam11348 DUF3150 Protein of unknown function (DUF3150). This bacterial family of proteins with unknown function appears to be restricted to Proteobacteria. 255 -314320 pfam11349 DUF3151 Protein of unknown function (DUF3151). This family of proteins with unknown function appears to be restricted to Actinobacteria. 127 -314321 pfam11350 DUF3152 Protein of unknown function (DUF3152). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently there is no known function. 207 -314322 pfam11351 GTA_holin_3TM Holin of 3TMs, for gene-transfer release. This is a family of bacterial 3TM holins. In Rhodobacter capsulatus the protein is expressed just overlapping and downstream of a putative N-acetylmuramidase lysozyme (an endolysin) thought to be responsible for lysing a phage particle, RcGTA - a gene-transfer agent. A holin would be necessary for such an endolysin to access the peptidoglycan. Gene-transfer agents are bacteriophage-like genetic elements with the sole known function of horizontal gene transfer, serving an important role in microbial evolution. In order to be released from the cell these require the combined action of an endolysin and this holin. 123 -314323 pfam11352 DUF3155 Protein of unknown function (DUF3155). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 88 -337990 pfam11353 DUF3153 Protein of unknown function (DUF3153). This family of proteins with unknown function appear to be restricted to Cyanobacteria. Some members are annotated as membrane proteins however this cannot be confirmed. 192 -337991 pfam11354 DUF3156 Protein of unknown function (DUF3156). This family of proteins with unknown function appears to be restricted to Proteobacteria. 161 -314326 pfam11355 DUF3157 Protein of unknown function (DUF3157). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 199 -314327 pfam11356 T2SSC Type II secretion system protein C. This is the greater N-terminal region of GspC-type proteins. GspC proteins form part of the sophisticated transport mechanism of Gram-negative pathogens for injecting divers proteins into their hosts, a type-II secretion system - T2SS. The region is made up of a short N-terminal cytoplasmic domain that is followed by the single transmembrane helix, a Pro-rich linker, and the so-called homology region domain in the periplasm. This inner membrane GspC interacts with the outer membrane secretin GspD via periplasmic domains, an interaction which is critical for the effectiveness of type II secretion. 138 -314328 pfam11357 Spy1 Cell cycle regulatory protein. Speedy (Spy1) is a cell cycle regulatory protein which activates CDK2, the major kinase that allows progression through G1/S phase and further replication events. Spy1 expression overcomes a p27-induced cell cycle arrest to allow for DNA synthesis, so cell cycle progression occurs due to an interaction between Spy1 and p27. Spy1 is also known as Ringo protein A. 131 -314329 pfam11358 DUF3158 Protein of unknown function (DUF3158). Some members in this family of proteins are annotated as integrase regulator R however this cannot be confirmed. This family of proteins with unknown function appear to be restricted to Proteobacteria. 152 -288251 pfam11359 gpUL132 Glycoprotein UL132. Glycoprotein UL132 is a low-abundance structural component of Human cytomegalovirus (HCMV). The function of this protein is not fully understood. 238 -314330 pfam11360 DUF3110 Protein of unknown function (DUF3110). This family of proteins has no known function. 84 -314331 pfam11361 DUF3159 Protein of unknown function (DUF3159). Some members in this family of proteins with unknown function are annotated as membrane proteins however this cannot be confirmed. Currently this family of proteins has no known function. 188 -314332 pfam11362 DUF3161 Protein of unknown function (DUF3161). This eukaryotic family of proteins has no known function. 83 -314333 pfam11363 DUF3164 Protein of unknown function (DUF3164). This family of proteins has no known function. 194 -337992 pfam11364 DUF3165 Protein of unknown function (DUF3165). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently there is no known function. 79 -314335 pfam11365 SOGA Protein SOGA. The SOGA (suppressor of glucose by autophagy) family consists of proteins SOGA1, SOGA2, and SOGA3. SOGA1 regulates autophagy by playing a role in the reduction of glucose production in an adiponectin and insulin dependent manner. 95 -314336 pfam11367 DUF3168 Protein of unknown function (DUF3168). This family of proteins has no known function but is likely to be a component of bacteriophage. 118 -337993 pfam11368 DUF3169 Protein of unknown function (DUF3169). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently there is no known function. 247 -337994 pfam11369 DUF3160 Protein of unknown function (DUF3160). This family of proteins has no known function. 618 -314339 pfam11371 DUF3172 Protein of unknown function (DUF3172). This family of proteins has no known function. 139 -314340 pfam11372 DUF3173 Domain of unknown function (DUF3173). This family of proteins with unknown function appears to be restricted to Firmicutes. These proteins appear to be distantly related to HHH domains and are therefore likely to be DNA-binding. Genomic environment-visualisation confirms the likely function as being DNA-binding, as this short protein lies very closely between an integrase and a replication protein (http://www.microbesonline.org/). 58 -337995 pfam11373 DUF3175 Protein of unknown function (DUF3175). This family of proteins with unknown function appears to be restricted to Proteobacteria. 84 -337996 pfam11374 DUF3176 Protein of unknown function (DUF3176). This eukaryotic family of proteins has no known function. 110 -314343 pfam11375 DUF3177 Protein of unknown function (DUF3177). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently there is no known function. 188 -314344 pfam11376 DUF3179 Protein of unknown function (DUF3179). This family of proteins has no known function. 283 -314345 pfam11377 DUF3180 Protein of unknown function (DUF3180). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently there is no known function. 133 -314346 pfam11378 DUF3181 Protein of unknown function (DUF3181). This family of proteins has no known function. 88 -337997 pfam11379 DUF3182 Protein of unknown function (DUF3182). This family of proteins with unknown function appears to be restricted to Proteobacteria. 353 -337998 pfam11380 Stealth_CR2 Stealth protein CR2, conserved region 2. Stealth_CR2 is the second of several highly conserved regions on stealth proteins in metazoa and bacteria. There are up to four CR regions on all member proteins. CR2 carries a well-conserved NDD sequence-motif. The domain is found in tandem with CR1, CR3 and CR4 on both potential metazoan hosts and pathogenic eubacterial species that are capsular polysaccharide phosphotransferases. The CR domains appear on eukaryotic proteins such as GNPTAB, N-acetylglucosamine-1-phosphotransferase subunits alpha/beta. Horizontal gene-transfer seems to have occurred between host and bacteria of these sequence-regions in order for the bacteria to evade detection by the host innate immune system. 108 -337999 pfam11381 DUF3185 Protein of unknown function (DUF3185). Some members in this bacterial family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently no function is known. 56 -314350 pfam11382 MctB Copper transport outer membrane protein, MctB. Outer membrane channel protein MctB in Mycobacterium tuberculosis is part of a Cu resistance mechanism that ensures low intracellular Cu levels in the bacterium. Human resisitance to bacteria, mediated via IFN-gamma-mediated activation of macrophages, may involve the use of reactive Cu(1) in the presence of hyrodgen peroxide, since acitivated Cu is toxic to bacteria. IFN-gamma stimulates the trafficking of the Cu transporter ATP7a to the vesicles that fuse with phagosomes and these phagosomes are found to have a high Cu content and an increaseed bactericidal activity against E.coli. Using MctB, Mycobacterium tuberculosis may limit the amount of excess Cu within it whole in the host. 297 -288272 pfam11383 DUF3187 Protein of unknown function (DUF3187). This family of proteins with unknown function appear to be restricted to Proteobacteria. These proteins are likely to be outer membrane proteins. 320 -314351 pfam11384 DUF3188 Protein of unknown function (DUF3188). This bacterial family of proteins has no known function. 50 -314352 pfam11385 DUF3189 Protein of unknown function (DUF3189). This family of proteins with unknown function appears to be restricted to Firmicutes 147 -151826 pfam11386 VERL Vitelline envelope receptor for lysin. VERL, the egg vitelline envelope (VE) receptor for lysin, is a giant unbranched glycoprotein comprising 30% of the vitelline envelope. Lysin binds to VERL and creates a hole as VERL molecules lose cohesion and splay apart. These proteins are important in the mediation of fertilisation 78 -314353 pfam11387 DUF2795 Protein of unknown function (DUF2795). This family of proteins has no known function. 42 -288276 pfam11388 DotA Phagosome trafficking protein DotA. DotA is essential for intracellular growth in Legionella. DotA is thought to play an important role in regulating initial phagosome trafficking decisions either upon or immediately after macrophage uptake. 105 -338000 pfam11389 Porin_OmpL1 Leptospira porin protein OmpL1. OmpL1 is a member of the outer membrane (OM) proteins in the mammalian pathogen Leptospira. Specifically, it is a porin. 272 -338001 pfam11390 FdsD NADH-dependant formate dehydrogenase delta subunit FdsD. FdsD is the delta subunit of the enzyme formate dehydrogenase. This subunit may play a role in maintaining the quaternary structure by means of electrostatic interactions with the other subunits. The delta subunit is not involved in the active centre of the enzyme. 60 -338002 pfam11391 DUF2798 Protein of unknown function (DUF2798). This family of proteins has no known function. 58 -338003 pfam11392 DUF2877 Protein of unknown function (DUF2877). This bacterial family of proteins are putative carboxylase proteins however this cannot be confirmed. 109 -314357 pfam11393 T4BSS_DotI_IcmL Type-IV b secretion system, inner-membrane complex component. IcmL contains two amphipathic beta-sheet regions, required for the pore-forming ability which may be related to the transfer of this protein into a host cell membrane. The icmL gene shows significant similarity to plasmid genes involved in conjugation however IcmL is thought to be required for macrophage killing. It is unknown whether conjugation plays a role in macrophage killing. This is a family of DotI/IcmL proteins of type IVb secretion systems, that reside in the inner-membrane. It carries a single transmembrane helix in the N-terminal conserved region, has an extra-periplasmic domain, and is conserved in all T4BSSs including I-type conjugation systems (TraM). DotI/IcmL (and DotJ) may form an inner membrane complex that associates with the core complex. 180 -288282 pfam11394 DUF2875 Protein of unknown function (DUF2875). This family of proteins with unknown function appear to be restricted to Proteobacteria. 462 -288283 pfam11395 DUF2873 Protein of unknown function (DUF2873). This viral family of proteins has no known function. 43 -314358 pfam11396 PepSY_like Putative beta-lactamase-inhibitor-like, PepSY-like. This family of bacterial proteins is probably periplasmic. Members are found predominantly in microbes of the human gut and oral cavity. Structurally, one member of this family is found to show similarity to the beta-lactamase-inhibitor PepSY proteins, so the overall function may be inhibitory. There are tandem repeats of the domain on many family members. 83 -314359 pfam11397 GlcNAc Glycosyltransferase (GlcNAc). GlcNAc is an enzyme that carries out the first glycosylation step of hydroxylated Skp1, a ubiquitous eukaryotic protein, in the cytoplasm. 351 -314360 pfam11398 DUF2813 Protein of unknown function (DUF2813). This entry contains YjbD from Escherichia coli, which is annotated as a nucleotide triphosphate hydrolase. 372 -338004 pfam11399 DUF3192 Protein of unknown function (DUF3192). Some members in this family of proteins are annotated as lipoproteins however this cannot be confirmed. 101 -151840 pfam11401 Tetrabrachion Tetrabrachion. Tetrabrachion forms a parallel right-handed coiled coil structure with hydrophobic interactions and salt bridges forming a thermostable tetrameric structure. It contains large hydrophobic cavities. No function is known for this family of proteins. 49 -338005 pfam11402 Antifungal_prot Antifungal protein. Antifungal protein consists of five antiparallel beta strands which are highly twisted creating a beta barrel stabilized by four internal disulphide bridges. A cationic site adjacent to a hydrophobic stretch on the protein surface may constitute a phospholipid binding site. 50 -338006 pfam11403 Yeast_MT Yeast metallothionein. Metallothioneins are characterized by an abundance of cysteine residues and a lack of generic secondary structure motifs. This protein functions in primary metal storage, transport and detoxification. For the first 40 residues in the protein the polypeptide wraps around the metal by forming two large parallel loops separated by a deep cleft containing the metal cluster. 39 -314363 pfam11404 Potassium_chann Potassium voltage-gated channel. Fast inactivation of voltage-dependant potassium channels occurs by a 'ball-and-chain'-type mechanism. It controls membrane excitability and signal propagation in central neurons. Inactivation is regulated by protein phosphorylation where phosphorylation of serine residues leads to a reduction of the fast inactivation. 29 -314364 pfam11405 Inhibitor_I67 Bromelain inhibitor VI. Bromelain inhibitor VI is a double-chain inhibitor consisting of a 11-residue and a 41-residue chain. This protein is the 41-residue heavy chain which is joined to the 11-residue chain by disulphide bonds. The inhibitor acts to inhibit the cysteine proteinase bromelain. 41 -151845 pfam11406 Tachystatin_A Antimicrobial peptide tachystatin A. Tachystatin A contains a cysteine-stabilized triple-stranded beta-sheet and shows features common to membrane-interactive peptides. Tachystatin A is thought to have an antimicrobial activity similar to defensins.Tachystatin A is also a chitin-binding peptide. 43 -288291 pfam11407 RestrictionMunI Type II restriction enzyme MunI. Type II restriction enzyme MunI recognizes the palindromic sequence C/AATTG. It makes contact with the DNA via the major groove. 193 -151847 pfam11408 Helicase_Sgs1 Sgs1 RecQ helicase. RecQ helicases unwind DNA in an ATP-dependent manner. Sgs1 has a HRDC (helicase and RNaseD C-terminal) domain which modulates the helicase function via auxiliary contacts to DNA. 79 -314365 pfam11409 SARA Smad anchor for receptor activation (SARA). Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. SARA recruits Smad2 to the TGF-beta receptors for phosphorylation. 37 -314366 pfam11410 Antifungal_pept Antifungal peptide. This peptide has six cysteines involved in three disulphide bonds. It contains a global fold which involves a cysteine-knotted three-stranded antiparallel beta-sheet along with a flexible loop and four beta-reverse turns. It also has an amphiphilic character which is the main structural basis of its biological function. 33 -338007 pfam11411 DNA_ligase_IV DNA ligase IV. DNA ligase IV along with Xrcc4 functions in DNA non-homologous end joining. This process is required to mend double-strand breaks. Upon ligase binding to an Xrcc4 dimer, the helical tails unwind leading to a flat interaction surface. 34 -314368 pfam11412 DsbC Disulphide bond corrector protein DsbC. DsbC rearranges incorrect disulphide bonds during oxidative protein folding. It is activated by the N-terminal domain of DsbD, a transmembrane electron transporter. DsbD binds to a DsbC dimer and selectively activates it using electrons from the cytoplasm. 118 -314369 pfam11413 HIF-1 Hypoxia-inducible factor-1. HIF-1 is a transcriptional complex and controls cellular systemic homeostatic responses to oxygen availability. In the presence of oxygen HIF-1 alpha is targeted for proteasomal degradation by pHVL, a ubiquitination complex. 31 -314370 pfam11414 Suppressor_APC Adenomatous polyposis coli tumor suppressor protein. The tumor suppressor protein, APC, has a nuclear export activity as well as many different intracellular functions. The structure consists of three alpha-helices forming two separate antiparallel coiled coils. 82 -151854 pfam11415 Toxin_37 Antifungal peptide termicin. Termicin is a cysteine-rich antifungal peptide which exhibits antibacterial activity. A cysteine stabilized alpha beta motif is formed due to an alpha-helical segment and a two-stranded antiparallel beta-sheet. 35 -314371 pfam11416 Syntaxin-5_N Syntaxin-5 N-terminal, Sly1p-binding domain. Syntaxin-5_N is the Sed5 N-terminal and the N-terminus of Syntaxin-5-like proteins. It is the region of Syntaxin that interacts with Sly1p, a positive regulator of intracellular membrane fusion, allowing SM (cytosolic Sec1/munc18-like) proteins to stay associated with the assembling fusion machinery. This allows the SM proteins to participate in late fusion steps. 22 -288299 pfam11417 Inhibitor_G39P Loader and inhibitor of phage G40P. G39P inhibits the initiation of DNA replication by blocking G40P replicative helicase. G39P has a bipartite stricture consisting of a folded N-terminal domain and an unfolded C-terminal domain. The C terminal is essential for helicase interaction. 70 -314372 pfam11418 Scaffolding_pro Phi29 scaffolding protein. This protein is also referred to as gp7. The protein contains a DNA-binding function and may halve a role in mediating the structural transition from prohead to mature virus and also scaffold release.Gp7 is arranged within the capsid as a series of concentric shells. 97 -314373 pfam11419 DUF3194 Protein of unknown function (DUF3194). This family of proteins has no known function however the structure has been determined. The protein consists of two alpha-helices packed on the same side of a central beta-hairpin. 83 -288302 pfam11420 Subtilosin_A Bacteriocin subtilosin A. Subtilosin A is a bacteriocin from Bacillus subtilis.The protein has a cyclized peptide backbone and forms three cross-liks between the sulphurs of Cys13, Cys7 and Cys4 and the alpha-positions of Phe22,Thr28 and Phe31. 35 -314374 pfam11421 Synthase_beta ATP synthase F1 beta subunit. The NMR solution structure of the protein in SDS micelles was found to contain two helices, an N-terminal amphipathic alpha-helix and a C-terminal alpha-helix separated by a large unstructured internal domain. The N-terminal alpha-helix is the Tom20 receptor binding site whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site. 48 -288304 pfam11422 IBP39 Initiator binding protein 39 kDa. IBP39 recognizes the initiator which is solely responsible for transcription start site selection. IBP39 contains an N-terminal Inr binding domain connected to a C-terminal domain. The C domain structure indicates that it interacts with the T. vaginalis RNAP II large subunit C-terminal domain. Binding of IBP39 to Inr recruits RNAP II and initiates transcription. 179 -288305 pfam11423 Repressor_Mnt Regulatory protein Mnt. Mnt is a repressor which is involved in the genetic switch between lysogenic and lytic growth in bacteriophage P22. The C-terminal domain of the protein consists of a dimer of two antiparallel coiled coils with a right handed twist, which is both stronger and has closer inter-helical separation compared with those found in left-handed coiled coils. 25 -288306 pfam11424 DUF3195 Protein of unknown function (DUF3195). This archaeal family of proteins has no known function. 89 -314375 pfam11426 Tn7_TnsC_Int Tn7 transposition regulator TnsC. TnsC is a molecular switch that regulates transposition and interacts with TnsA which is a component of the transposase. The two proteins interact via the residues 504-555 on TnsC. The TnsA/TnsC interaction is very important in Tn7 transposition. 47 -192757 pfam11427 HTH_Tnp_Tc3_1 Tc3 transposase. Tc3 is transposase with a specific DNA-binding domain which contains three alpha-helices, two of which form a helix-turn-helix motif which makes four base-specific contacts with the major groove. The N-terminus makes contacts with the minor groove. There is a base specific recognition between Tc3 and the transposon DNA. The DNA binding domain forms a dimer in which each monomer binds a separate transposon end. This implicates that the dimer has a role in synapsis and is necessary for the simultaneous cleavage of both transposon termini. 50 -288308 pfam11428 DUF3196 Protein of unknown function (DUF3196). This proteins is the product of the gene MPN330 and is thought to involved in a cellular function that has yet to be characterized. The proteins has 11 helices and a novel fold. No function is currently known for this protein. 264 -314376 pfam11429 Colicin_D Colicin D. Colicin D is a tRNase which kills sensitive E.coli cells via a specific tRNA cleavage. It targets the four isoaccepting tRNAs for Arg and cleaves the phosphodiester bond between positions 38 and 39 at the 3' junction of the anticodon stem and the loop. 82 -288310 pfam11430 EGL-1 Programmed cell death activator EGL-1. Initiation of programmed cell death in C.elegans occurs by the binding of EGL-1 to CED-9 which disrupts a complex involving CED-4/CED-9 and allows CED-4 to activate CED-3, a caspase. It is the C terminal domain of EGL-1 which is involved in the formation of the complex with CED-9. The formation of the complex induces structural rearrangements in CED-9 and EGL-1 adopts an extended alpha-helical conformation. 20 -314377 pfam11431 Transport_MerF Membrane transport protein MerF. The mercury transport membrane protein, MerF has a core helix-loop-helix domain. It has two vicinal pairs of cysteine residues which are involved in the transport of Hg(II) across the membrane and are exposed to the cytoplasm. 45 -288312 pfam11432 DUF3197 Protein of unknown function (DUF3197). This bacterial family of proteins has no known function. 113 -314378 pfam11433 DUF3198 Protein of unknown function (DUF3198). Some members in this family of proteins are annotated as membrane proteins however this cannot be confirmed. Currently, this archaeal family has no known function. 49 -151873 pfam11434 CHIPS Chemotaxis-inhibiting protein CHIPS. The chemotaxis inhibitory protein, CHIPS, is an excreted virulence factor which acts by binding to C5a and formylated peptide receptor (FPR), blocking phagocyte responses. A fragment of CHIPS, which contains residues 31-121 comprises of an alpha helix packed onto a four stranded anti-parallel beta-sheet. Most of the conserved residues of CHIPS are present in the alpha-helix. 90 -314379 pfam11435 She2p RNA binding protein She2p. She2p is a RNA binding protein which binds to RNA via a helical hairpin. The protein is required for the actin dependent transport of ASH1 mRNA in yeast, a form of mRNP translocation. ASH1 mRNP requires recognition of zip code elements by the RNA binding protein She2p. She2p contains a globular domain consisting of a bundle of five alpha-helices. 199 -288315 pfam11436 DUF3199 Protein of unknown function (DUF3199). Some members in this family of proteins with unknown function are annotated as YqbG however this cannot be confirmed. Currently the proteins has no known function. 123 -288316 pfam11437 Vanabin-2 Vanadium-binding protein 2. The Vanadium binding protein, Vanabin2, contains four alpha-helices connected by nine disulphide bonds. Vanadium accumulates in Ascidians however the biological reason remains unclear. 93 -288317 pfam11438 N36 36-mer N-terminal peptide of the N protein (N36). The arginine-rich motif of the N protein is involved in transcriptional antitermination of phage lambda. N36 forms a complex with boxB RNA by binding tightly to the major groove of the boxB hairpin via hydrophobic and electrostatic interactions forming a bent alpha helix. 35 -314380 pfam11439 T3SchapCesA Type III secretion system filament chaperone CesA. This family represents a chaperone protein for the type III secretion system - TTSS - translocon protein EspA, to prevent the latter's self-polymerization. The TTSS is a highly specialized bacterial protein secretory pathway, similar in many ways to the flagellar system, that is essential for the pathogenesis of many Gram-negative bacteria. The twenty or so proteins making up the TTSS apparatus, referred to as the needle complex, allow the injection of virulence proteins (known as effectors) directly into the cytoplasm of the eukaryotic host cells they infect; however, the injection process itself is mediated by a subset of extracellular proteins that are secreted by the needle complex to the bacterial surface and assembled into the type III translocon - EspA. EspB and EspD. EspA polymerizes into an extracellular filament, and, as with other fibrous proteins, is apt to undergo massive polymerization when overexpressed. CesA is the secretion chaperone protein that binds to EspA. CesA is dimeric and helical, and it traps EspA in a monomeric state and inhibits its polymerization. 95 -288318 pfam11440 AGT DNA alpha-glucosyltransferase. The T4 bacteriophage of E.coli protects its DNA via two glycosyltransferases which glucosylate 5-hydroxymethyl cytosines (5-HMC) using UDP-glucose. These two proteins are the retaining alpha-glucosyltransferase (AGT) and the inverting beta-glucosyltransferase (BGT). The proteins in this family are AGT. AGT adopts the GT-B fold and binds both the sugar donor and acceptor to the C-terminal domain. There is evidence for a role of AGT in the base-flipping mechanism and for its specific recognition of the acceptor base. 355 -288319 pfam11441 MxiM Pilot protein MxiM. MxiM, a Shigella pilot protein, is essential for the assembly and membrane association of the Shigella secretin MxiD. MxiM contains an orthologous secretin component and has a specific binding domain for the acyl chains of bacterial lipids. The C terminal domain of MxiD hinders lipid binding to MxiM. 115 -288320 pfam11442 DUF2826 Protein of unknown function (DUF2826). This is a family of uncharacterized proteins that is highly conserved in Trypanosoma cruzi. 158 -338008 pfam11443 DUF2828 Domain of unknown function (DUF2828). This is a uncharacterized domain found in eukaryotes and viruses. 594 -314382 pfam11444 DUF2895 Protein of unknown function (DUF2895). This is a bacterial family of uncharacterized proteins. 188 -338009 pfam11445 DUF2894 Protein of unknown function (DUF2894). This is a bacterial family of uncharacterized proteins. 182 -314384 pfam11446 DUF2897 Protein of unknown function (DUF2897). This is a bacterial family of uncharacterized proteins. 54 -288325 pfam11447 DUF3201 Protein of unknown function (DUF3201). This archaeal family of proteins has no known function. 150 -314385 pfam11448 DUF3005 Protein of unknown function (DUF3005). This is a bacterial family of uncharacterized proteins. 108 -314386 pfam11449 ArsP_2 Putative, 10TM heavy-metal exporter. This is a family of putative manganese transporters with 9-11 TMs. Members carry two well-conserved characteristic sequence- motifs of 'PGCG'. 350 -314387 pfam11450 DUF3008 Protein of unknwon function (DUF3008). This is a bacterial family of uncharacterized proteins. 57 -314388 pfam11452 DUF3000 Protein of unknown function (DUF3000). This is a bacterial family of uncharacterized proteins. 172 -338010 pfam11453 DUF2950 Protein of unknown function (DUF2950). This is a bacterial family of uncharacterized proteins. 272 -338011 pfam11454 DUF3016 Protein of unknown function (DUF3016). This is a bacterial family of uncharacterized proteins. 139 -338012 pfam11455 DUF3018 Protein of unknown function (DUF3018). This is a bacterial family of uncharacterized proteins. 63 -314392 pfam11456 DUF3019 Protein of unknown function (DUF3019). This is a bacterial family of uncharacterized proteins. 101 -338013 pfam11457 DUF3021 Protein of unknown function (DUF3021). This is a bacterial family of uncharacterized proteins. 130 -288335 pfam11458 Mistic Membrane-integrating protein Mistic. Mistic is an integral membrane protein that folds autonomously into the membrane.The protein forms a helical bundle with a polar lipid-facing surface. Mistic can be used for high-level production of other membrane proteins in their native conformations. 84 -338014 pfam11459 AbiEi_3 Transcriptional regulator, AbiEi antitoxin, Type IV TA system. AbiEi_3 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 157 -314395 pfam11460 DUF3007 Protein of unknown function (DUF3007). This is a family of uncharacterized proteins found in bacteria and eukaryotes. 95 -314396 pfam11461 RILP Rab interacting lysosomal protein. RILP contains a domain which contains two coiled-coil regions and is found mainly in the cytosol. RILP is recruited onto late endosomal and lysosomal membranes by Rab7 and acts as a downstream effector of Rab7. This recruitment process is important for phagosome maturation and fusion with late endosomes and lysosomes. 56 -314397 pfam11462 DUF3203 Protein of unknown function (DUF3203). This family of proteins with unknown function appears to be restricted to Gammaproteobacteria. 67 -314398 pfam11463 R-HINP1I R.HinP1I restriction endonuclease. Hinp1I is a type II restriction endonuclease, recognising and cleaving a palindromic tetranucleotide sequence (G/CGC) resulting in 2 nt 5' overhanging ends. HINP1I has a conserved catalytic core domain containing an active site motif SDC18QXK and a DNA-binding domain. 205 -338015 pfam11464 Rbsn Rabenosyn Rab binding domain. Rabenosyn-5 (Rbsn) is a multivalent effector with interacts with the Rab family.Rsbn contains distinct Rab4 and Rab5 binding sites within residues 264-500 and 627-784 respectively. Rab proteins are GTPases involved in the regulation of all stages of membrane trafficking. 42 -288342 pfam11465 Receptor_2B4 Natural killer cell receptor 2B4. 2B4 is a transmembrane receptor which is expressed primarily on natural killer cells. It plays a role in activating NK-mediated cytotoxicity through its interaction with CD48 on target cells in a subset of CD8 T cells. The structure of 2B4 consists of an immunoglobulin variable domain fold and contains two beta-sheets. One of the beta-sheets, the six-stranded sheet, contains structural features that may have a role in ligand recognition and receptor function. 108 -288343 pfam11466 Doppel Prion-like protein Doppel. Dpl is a homolog related to the prion protein (PrP). Dpl is toxic to neurons and is expressed in the brains of mice that do not express PrP. In DHPC and SDS micelles, Dpl shoes about 40% alpha-helical structure however in aqueous solution it consists of a random coil. The alpha helical segment can adopt a transmembrane localization also in a membrane. The unprocessed Dpl protein is thought to posses a possible channel formation mechanism which may be related to toxicity through direct interaction with cell membranes and damage to the cell membrane. 30 -338016 pfam11467 LEDGF Lens epithelium-derived growth factor (LEDGF). LEDGF is a chromatin-associated protein that protects cells from stress-induced apoptosis. It is the binding partner of HIV-1 integrase in human cells. The integrase binding domain (IBD) of LEDGF is a compact right-handed bundle composed of five alpha-helices. The residues essential for the interaction with the integrase are present in the inter-helical loop regions of the bundle structure. 102 -314401 pfam11468 PTase_Orf2 Aromatic prenyltransferase Orf2. In vivo Orf2 attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during naphterpin biosynthesis. In vitro, Orf2 catalyzes carbon-carbon based and carbon-oxygen based prenylation of hydroxyl-containing aromatic acceptors of synthetic, microbial and plant origin. 287 -288346 pfam11469 Ribonucleas_3_2 Ribonuclease III. This is a family of archaeal ribonuclease_III proteins. 118 -338017 pfam11470 TUG-UBL1 TUG ubiquitin-like domain. TUG is a GLUT4 regulating protein and functions to retain membrane vesicles containing GLUT4 intracellularly. TUG releases the GLUT4 containing vesicles to the cellular exocytic machinery in response to insulin stimulation which allows translocation to the plasma membrane. TUG has an N-terminal ubiquitin-like domain (UBL1) which in similar proteins appears to participate in protein-protein interactions. The region does have a area of negative electrostatic potential and increased backbone motility which leads to suggestions of a potential protein-protein interaction site. This domain is also found at the N-terminus of yeast UBX4. 65 -338018 pfam11471 Sugarporin_N Maltoporin periplasmic N-terminal extension. This domain would appear to be the periplasmic, N-terminal extension of the outer membrane maltoporins, pfam02264, LamB. 55 -256473 pfam11472 DUF3206 Protein of unknown function (DUF3206). This bacterial family of proteins has no known function. 128 -314404 pfam11473 B2 RNA binding protein B2. B2 is expressed by the insect Flock House virus (FHV) as a counter-defense mechanism against antiviral RNA silencing during infection. In vitro, B2 binds to dsRNA as a dimer and inhibits the cleavage of it by Dicer. B2 blocks cleavage of the FHV genome by Dicer and also the incorporation of FHV small interfering RNAs into the RNA-induced silencing complex. 72 -151913 pfam11474 N-Term_TEN Telomerase reverse transcriptase TEN domain. This is the N terminal domain of the protein telomerase reverse transcriptase called TEN. The TEN domain is able to bind both RNA and telomeric DNA and contributes towards telomerase catalysis. The TEN domain has a structure that consists of a core beta sheet surrounded by seven alpha helices and a short beta hairpin. 188 -288349 pfam11475 VP_N-CPKC Virion protein N terminal domain. This is the N terminal domain of a family of virion proteins which contains a zinc finger domain. Currently no function is known. 32 -151915 pfam11476 TgMIC1 Toxoplasma gondii micronemal protein 1 TgMIC1. TgMIC1 is released as part of a complex by Toxoplasma gondii prior to invasion. The complex which consists of TgMIC4-MIC1-MIC6 participates in host cell attachment and penetration and is critical in invasion. This is the C terminal domain of TgMIC1 which has a Galectin-like fold which interacts with and stabilizes TgMIC6 providing a mechanism for an exit from the early secretory compartments and trafficking of the complex to micronemes. 137 -288350 pfam11477 PM0188 Sialyltransferase PMO188. PMO188 is a sialyltransferase from P.multocida. It transfers sialic acid from cytidine 5'-monophosphonuraminic acid to an acceptor sugar. It has important catalytic residues such as Asp141, His311, Glu338, Ser355 and Ser356. 385 -314405 pfam11478 Tachystatin_B Antimicrobial chitin binding protein tachystatin B. Tachystatin B is an antimicrobial chitin binding peptide and consists of two isotopes B1 and B2.Both structures contain a short antiparallel beta sheet with an inhibitory cysteine knot motif. Tyr(14) and Arg(17) are thought to be the essential residues for chitin binding. 42 -288351 pfam11479 Suppressor_P21 RNA silencing suppressor P21. P21 is produced by Beet yellows virus to suppress the antiviral silencing response mounted by the host. P21 acts by binding directly to siRNA which is a mediator in the process. P21 has an octameric ring structure with a large central cavity. 177 -288352 pfam11480 ImmE5 Colicin-E5 Imm protein. Imms bind specifically to cognate colicins in order to protect their host cells. Imm-E5 is a specific inhibitor protein of colicin E5. It binds to E5 C-terminal ribonuclease domain (CRD) to prevent cell death. The binding mode of E5-CRD and Imm-E5 mimics that of mRNA and tRNA suggesting an evolutionary pathway from the RNA-RNA interaction through the RNA-protein interaction of tRNA/E5-CRD. 82 -314406 pfam11482 DUF3208 Protein of unknown function (DUF3208). This bacterial family of proteins has no known function. 108 -314407 pfam11483 DUF3209 Protein of unknown function (DUF3209). This family of proteins has no known function. 123 -288355 pfam11485 DUF3211 Protein of unknown function (DUF3211). This archaeal family of proteins has no known function. 137 -288356 pfam11486 DUF3212 Protein of unknown function (DUF3212). Members in this family of proteins are annotated as YfmB however currently no function for this protein is known. 119 -288357 pfam11487 RestrictionSfiI Type II restriction enzyme SfiI. SfiI is a restriction enzyme that can cleave two DNA sites simultaneously to leave 3-base 3' overhangs. It acts as a homo-tetramer and recognizes a specific eight base-paid palindromic DNA sequence. After binding two copies of its recognition sequence, SfiI becomes activated leading to cleavage of all four DNA strands. The structure of SfiI consists of a central twisted beta-sheet surrounded by alpha-helices. 234 -338019 pfam11488 Lge1 Transcriptional regulatory protein LGE1. This family of proteins is conserved from fungi to human. In yeasts it is involved in the ubiquitination of histones H2A and H2B. This ubiquitination step is a vital one in the regulation of the transcriptional activity of RNA polymerase II. In S. cerevisiae, Rad6 and Bre1 are present in a complex, also containing Lge1, that is required for H2B ubiquitination. Bre1 is the H2B ubiquitin ligase that interacts with acidic activators, such as Gal4, and recruits Rad6 and its binding partner Lge1 to target promoters. In S. pombe the equivalent protein to Lge1 appears to be Shf1. In human, periphilin acts a transcriptional co-repressor and regulates cell cycle progression. 71 -314409 pfam11489 Aim21 Altered inheritance of mitochondria protein 21. This is a family of proteins conserved in yeasts. Saccharomyces cerevisiae Aim21 may be involved in mitochondrial migration along actin filament. It may also interact with ribosomes. 680 -338020 pfam11490 DNA_pol3_a_NII DNA polymerase III polC-type N-terminus II. This is the second N-terminal domain, NII domain, of the DNA polymerase III polC subunit A that is found only in Firmicutes. DNA polymerase polC-type III enzyme functions as the 'replicase' in low G + C Gram-positive bacteria. Purine asymmetry is a characteristic of organisms with a heterodimeric DNA polymerase III alpha-subunit constituted by polC which probably plays a direct role in the maintenance of strand-biased gene distribution; since, among prokaryotic genomes, the distribution of genes on the leading and lagging strands of the replication fork is known to be biased. It has been predicted that the N-terminus of polC folds into two globular domains, NI and NII. A predicted hydrophobic surface patch suggests this domain may be involved in protein binding. This domain is associated with DNA_pol3_alpha pfam07733 and DNA_pol3_a_NI pfam14480. 117 -288361 pfam11491 DUF3213 Protein of unknown function (DUF3213). The backbone structure of this family of proteins has been determined however the function remains unknown. The protein has an alpha and beta structure with a ferredoxin-like fold. 84 -288362 pfam11492 Dicistro_VP4 Cricket paralysis virus, VP4. This is a family of minor capsid proteins, known as VP4, from the dicistroviridae. The dicistroviridae is a group of small, RNA-containing viruses that are closely structurally related to the picornaviridae. VP4 is a short, extended polypeptide chain found within the viral capsid, at the interface between the external protein shell and packaged RNA genome. 53 -338021 pfam11493 TSP9 Thylakoid soluble phosphoprotein TSP9. The plant-specific protein, TSP9 is phosphorylated and released in response to changing light conditions from the photosynthetic membrane. The protein resembles the characteristics of transcription/translation regulatory factors. The structure of the protein is predicted to consist of a random coil. 80 -288364 pfam11494 Ta0938 Ta0938. Ta0938 is a protein of unknown function however the structure has been determined. The protein has a novel fold and a putative Zn-binding motif. The structure has two different parts, one region contains a beta sheet flanked by two alpha helices and the other contains a bundle of loops which contain all cysteines in the protein. 104 -314412 pfam11495 Regulator_TrmB Archaeal transcriptional regulator TrmB. TrmB is an alpha-glucoside sensing transcriptional regulator. The protein is the transcriptional repressor for gene cluster encoding trehalose/maltose ABC transporter in T.litoralis and P.furiosus. TrmB has lost its DNA binding domain but retained its sugar recognition site. A nonreducing glucosyl residue is shared by all substrates bound to TrmB which suggests that its a common recognition motif. 233 -338022 pfam11496 HDA2-3 Class II histone deacetylase complex subunits 2 and 3. This family of class II histone deacetylase complex subunits HDA2 and HDA3 is found in fungi, The member from S. pombe is referred to as Ccq1 (coiled-coil quantitatively-enriched protein 1). These proteins associate with HDA1 to generate the activity of the HDA1 histone deacetylase complex. HDA1 interacts with itself and with the HDA2-HDA3 subcomplex to form a probable tetramer and these interactions are necessary for catalytic activity. The HDA1 histone deacetylase complex is responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. HDA2 and HDA3 have a conserved coiled-coil domain towards their C-terminus. 279 -314414 pfam11497 NADH_Oxid_Nqo15 NADH-quinone oxidoreductase chain 15. This protein, Nqo15, is a part of respiratory complex 1 which is a complex that plays a central role in cellular energy production in both bacteria and mitochondria. Nqo15 has a similar fold to Frataxin, the mitochondrial iron chaperone. This protein may have a role in iron-sulphur cluster regeneration in the complex. This domain represents more than half the molecular mass of the entire complex. 123 -151935 pfam11498 Activator_LAG-3 Transcriptional activator LAG-3. The C.elegans Notch pathway, involved in the control of growth, differentiation and patterning in animal development, relies on either of the receptors GLP-1 or LIN-12. Both these receptors promote signalling by the recruitment of LAG-3 to target promoters, where it then acts as a transcriptional activator. LAG-3 works as a ternary complex together with the DNA binding protein, LAG-1. 476 -338023 pfam11500 Cut12 Spindle pole body formation-associated protein. This is the central coiled-coil region of cut12 also found in other fungi, barring S. cerevisiae. The full protein has two predicted coiled-coil regions, and one consensus phosphorylation site for p34cdc2 and two for MAP kinase. During fission yeast mitosis, the duplicated spindle pole bodies (SPBs) nucleate microtubule arrays that interdigitate to form the mitotic spindle. Cut12 is localized to the SPB throughout the cell cycle, predominantly around the inner face of the interphase SPB, adjacent to the nucleus. Cut12 associates with Fin1 and is important in this context for the activity of Plo1. 145 -288369 pfam11501 Nsp1 Non structural protein Nsp1. Nsp1 is the N-terminal cleavage product from the viral replicase that mediates RNA replication and processing. The specific function of the protein is unknown however the structure has been determined. The protein has a novel alpha/beta fold formed by a 6 stranded beta barrel with an alpha helix covering one end of the barrel and another helix alongside the barrel. Nsp1 could be involved in the degradation of mRNA. 115 -314416 pfam11502 BCL9 B-cell lymphoma 9 protein. The Wnt pathway plays a role in embryonic development, stem cell growth and tumorigenesis. BCL9 associates with beta-catenin and Tcf in the nucleus when the Wnt pathway is stimulated leading to the transactivation of Wnt target genes. 39 -314417 pfam11503 DUF3215 Protein of unknown function (DUF3215). This family of proteins with unknown function appears to be restricted to Saccharomycetaceae. 72 -314418 pfam11504 Colicin_Ia Colicin Ia. Colicins are toxic molecules secreted to kill other bacteria in times of stress. Colicin Ia kills susceptible E.coli cells by binding to the colicin I receptor leading to the formation of a voltage-dependant ion channel. The protein can be divided into three domains, a translocation domain, a receptor binding domain and a channel forming domain. 72 -288373 pfam11505 DUF3216 Protein of unknown function (DUF3216). This family of archaeal proteins with unknown function appears to be restricted ton Thermococcaceae. 91 -288374 pfam11506 DUF3217 Protein of unknown function (DUF3217). This family of proteins with unknown function appears to be restricted to Mycoplasma. Some members in this family of proteins are annotated as MG376 however this cannot be confirmed. 104 -314419 pfam11507 Transcript_VP30 Ebola virus-specific transcription factor VP30. VP30 is a nucleocapsid-associated Ebola virus-specific transcription factor. It acts by stabilizing nascent mRNA in Ebola virus replication. The C terminal domain of VP30 folds into a dimeric helical assembly. VP30 assembles into hexamers in solution by an N-terminal oligomerization domain which activates the transcription function of the protein. The oligomerization is mediated by hydrophobic amino acids at 94-112. 131 -288376 pfam11508 DUF3218 Protein of unknown function (DUF3218). This family of proteins with unknown function appears to be restricted to Pseudomonas. 213 -288377 pfam11510 FA_FANCE Fanconi Anaemia group E protein FANCE. Fanconi Anaemia (FA) is a cancer predisposition disorder. In response to DNA damage, the FA core complex monoubiquitinates the downatream FANCD2 protein. The protein FANCE has an important role in DNA repair as it is the FANCD2-binding protein in the FA core complex so it represents the link between the FA core complex and FANCD2. The sequence shown is the C terminal domain of the protein which consists predominantly of helices and does not contain any beta-strand. The fold of the polypeptide is a continuous right-handed solenoidal pattern from the N terminal to the C terminal end. 262 -314420 pfam11511 RhodobacterPufX Intrinsic membrane protein PufX. PufX organizes RC-LH1, the photosynthesis reaction centre-light harvesting complex 1 core complex of Rhodobacter sphaeroides. It also facilitates the exchange of quinol for quinone between the reaction centre and cytochrome bc(1) complexes. In organic solvent, PufX contains two hydrophobic helices which are flanked by unstructured regions and connected by a helical bend. 67 -314421 pfam11512 Atu4866 Agrobacterium tumefaciens protein Atu4866. Atu4866 is a protein with unknown function from Agrobacterium tumefaciens however the structure has been determined. Atu4866 adopts a streptavidin-like fold and has a beta-barrel/sandwich which is formed by eight antiparallel beta-strands. Atu4866 has a potential ligand-binding site where is has a stretch of conserved residues on the surface. 75 -314422 pfam11513 TA0956 Thermoplasma acidophilum protein TA0956. TA0956 is a protein from Thermoplasma acidophilum which currently has no known function however the structure has been determined. The protein has a two-layered alpha/beta-sandwich topology and is a putative Elongation factor 1-alpha binding motif. 110 -314423 pfam11514 DUF3219 Protein of unknown function (DUF3219). This family of proteins with unknown function appears to be restricted to Bacillaceae. Some members in this family of proteins are annotated as YkvR however this cannot be confirmed. 94 -338024 pfam11515 Cul7 Mouse development and cellular proliferation protein Cullin-7. The Cullin Ring Ligase family member, Cul7, is required for normal mouse development and cellular proliferation. Cul7 has a CPH domain which is a p53 interaction domain. The CPH domain interaction surface of P53 is present in the tetramerisation domain. 75 -151953 pfam11516 DUF3220 Protein of unknown function (DUF3120). This family of proteins with unknown function appears to be restricted to Bordetella. 106 -314425 pfam11517 Nab2 Nuclear abundant poly(A) RNA-bind protein 2 (Nab2). Nab2 is a yeast heterogeneous nuclear ribonucleoprotein that modulates poly(A) tail length and mRNA. This is the N terminal domain of the protein which mediates interactions with the C-terminal globular domain, Myosin-like protein 1 and the mRNA export factor, Gfd1.The N-terminal domain of Nab2 shows a structure of a helical fold. The N terminal domain of Nab2 is thought to mediate protein protein interactions that facilitate the nuclear export of mRNA. An essential hydrophobic Phe73 patch on the N terminal domain is thought to be a important component of the interface between Nab2 and Mlp1. 101 -288383 pfam11518 DUF3221 Protein of unknown function (DUF3221). This family of proteins with unknown function appears to be restricted to Bacillus. Some members in this family of proteins are annotated as YobA however this cannot be confirmed. YobA is a protein with unknown function. 98 -288384 pfam11519 DUF3222 Protein of unknown function (DUF3222). This family of proteins with unknown function appears to be restricted to Rhodopseudomonas. 75 -314426 pfam11520 Cren7 Chromatin protein Cren7. Cren7 is a chromatin protein found in Crenarchaeota and has a higher affinity for double-stranded DNA than for single-stranded DNA. The protein contains negative DNA supercoils and is associated with genomic DNA in vivo.Cren7 interacts with duplex DNA through a beta-sheet and a long flexible loop. The function has not been completely determined but it is thought that the protein may have a role similar to that of archaeal proteins in Euryarchaea. 55 -314427 pfam11521 TFIIE-A_C C-terminal general transcription factor TFIIE alpha. TFIIE is compiled of two subunits, alpha and beta. This family of proteins are the C terminal domain of the alpha subunit of the protein which is the largest subunit and contains several functional domains which are important for basal transcription and cell growth. The C terminal end of the protein binds directly to the amino-terminal PH domain of p62/Tfb1 (of IIH) which is involved in the recruitment of the general transcription factor IIH to the transcription preinitiation complex. P53 competes for the same binding site as TFIIE alpha which shows their structural similarity. Like p53, TFIIE alpha 336-439 can activate transcription in vivo. 83 -314428 pfam11522 Pik1 Yeast phosphatidylinositol-4-OH kinase Pik1. Pik1 is a regulator of membrane traffic and participates in the mating-pheromone signal-transduction cascade. The protein is localized to the nucleus and cytoplasm in the Golgi. Pik1 is thought to have an actin-independent role in membrane transport. 50 -338025 pfam11523 DUF3223 Protein of unknown function (DUF3223). This family of proteins has no known function. 72 -314430 pfam11524 SeleniumBinding Selenium binding protein. Selenium is an important nutrient that needs to be regulated since lack of the nutrient leads to cell abnormalities and high concentrations are toxic. SeBP regulates the level of free selenium in the cell by sequestering the nutrient during transport. SeBP acts as a pentamer and delivers the selenium to the selenophosphate synthetase enzyme. Each subunit is composed of an alpha helix on top of a four stranded twisted ss sheet, stabilized by hydrogen bonds. 82 -314431 pfam11525 CopK Copper resistance protein K. CopK is a periplasmic dimeric protein which is strongly up-regulated in the presence of copper, leading to a high periplasmic accumulation. CopK has two different binding sites for Cu(I), each with a different affinity for the metal. Binding of the first Cu(I) ion induces a conformational change of CopK which involves dissociation of the dimeric apo-protein. Binding of a second Cu(I) further increases the plasticity of the protein. CopK has features that are common with functionally related proteins such as a structure consisting of an all-beta fold and a methionine-rich Cu(I) binding site. 70 -338026 pfam11526 CFIA_Pcf11 Subunit of cleavage factor IA Pcf11. Pcf11 is a subunit of an essential polyadenylation factor in Saccharomyces cerevisiae, CFIA. Pcf11 binds to Clp1, another subunit of CFIA whose interaction is responsible for maintaining a tight coupling between the Clp1 nucleotide binding subunit and the other components of the polyadenylation machinery. 74 -338027 pfam11527 ARL2_Bind_BART The ARF-like 2 binding protein BART. BART binds specifically to ARL2.GTP with a high affinity however it does not bind to ARL2.GDP. It is thought that this specific interaction is due to BART being the first identified ARL2-specific effector. The function is not completely characterized. BART is predominantly cytosolic but can also be found to be associated with mitochondria. BART is also involved in binding to the adenine nucleotide transporter ANT1. 108 -338028 pfam11528 DUF3224 Protein of unknown function (DUF3224). This bacterial family of proteins has no known function. 124 -151966 pfam11529 AvrL567-A Melampsora lini avirulence protein AvrL567-A. AvrL567-A is a protein from the fungal pathogen flax which induces plant disease resistance in flax plants. The protein has a novel fold. 127 -288394 pfam11530 Pilin_PilX Minor type IV pilin, PilX. PilX is a protein from Neisseria meningitidis which is crucial for the formation of bacterial aggregates and adhesion to human cells. The structure of PilX is similar to all pilins as it has the common alpha/beta roll fold. PilX subunits have surface-exposed motifs which are thought to stabilize bacterial aggregates against pilus retraction. It also illustrates how a minor pilus component can modulate the virulence properties of pili which have a simple composition and structure. 127 -314435 pfam11531 CARM1 Coactivator-associated arginine methyltransferase 1 N terminal. CARM1 is an arginine methyltransferase which methylates a variety of different proteins and plays a role in gene expression. This is the N terminal domain of the protein which has a PH domain, normally present to regulate protein-protein interactions.A molecular switch is also present on the N terminal domain. 105 -314436 pfam11532 HnRNP_M Heterogeneous nuclear ribonucleoprotein M. HnRNP M is a splicing regulatory factor that binds to the auxiliary RNA cis-element ISE/ISS-2 which promotes splicing of exon IIIb and silencing of exon IIIC in the fibroblast growth factor receptor 2 (FGFR2). By binding to ISE/ISS-3, HnRNP M plays a role in the regulation of alternative splicing in FGFR2 as it induces exon skipping and promotes exon inclusion. 29 -314437 pfam11533 DUF3225 Protein of unknown function (DUF3225). This bacterial family of proteins has no known function. 126 -338029 pfam11534 HTHP Hexameric tyrosine-coordinated heme protein (HTHP). HTHP is from the marine bacterium Silicibacter pomeroyi and has peroxidase and catalase activity. HTHP consists of six monomers which each binds a solvent accessible heme group and is stabilized by the interaction of three neighboring monomers. The heme iron is penta-coordinated with a tyrosine residue as proximal ligand. 72 -314439 pfam11535 Calci_bind_CcbP Calcium binding. CcbP is a Ca(2+) binding protein which, in Anabaena, is thought to bind Ca(2+) by protein surface charge. When bound to Ca(2+), the protein becomes more compact and the level of free calcium decreases. The free Ca(2+) concentration which is regulated by CcbP is critical for the differentiation process. Calcium signalling is widespread in bacterial species, and prokaryotic cells like eukaryotes are equipped with all the elements to maintain Ca2+ homeostasis. 105 -151973 pfam11536 DUF3226 Protein of unknown function (DUF3226). This archaeal family of proteins has no known function. 239 -288400 pfam11537 DUF3227 Protein of unknown function (DUF3227). This archaeal family of proteins has no known function. 93 -314440 pfam11538 Snurportin1 Snurportin1. Snurportin1 is a novel nuclear import receptor which contains an N-terminal importin beta binding domain which is essential for its function of a snRNP-specific nuclear import receptor. Snurportin1 interacts with m3G-cap where it enhances the m3G-cap dependent nuclear import of U snRNPs in Xenopus laevis oocytes and digitonin-permeabilized HeLa cells. 40 -338030 pfam11539 DUF3228 Protein of unknown function (DUF3228). This family of proteins has no known function. 193 -338031 pfam11540 Dynein_IC2 Cytoplasmic dynein 1 intermediate chain 2. Intermediate chain IC 2 forms part of the complex cytoplasmic dynein 1 along with a heavy chain (HC), two light intermediate chains (LICs) and three light chains (LCs). The complex is responsible for hydrolysing ATP to generate force toward the minus end of microtubules. IC binds to the HC via the N terminal binding domain on the HC and ICs contain binding sites for the LCs. The ICs are responsible for binding to kinetochores and the Golgi apparatus through an interaction with the p150Glued subunit of dynactin which is another complex. 29 -288404 pfam11542 Mdv1 Mitochondrial division protein 1. Mdv1 is a component of the mitochondrial fission machinery in Saccharomyces cerevisiae. The protein is also involved in peroxisome proliferation. Mdv1 along with Fis1 is also involved in controlling Dnm-1 dependant devision, a GTPase involved in the mediation of mitochondrial division. In this role, Mdv1 is the linker between Fis1 and Dnm1. Mdv1 plays a key role in the regulation of Dnm1 self-assembly. 49 -338032 pfam11543 UN_NPL4 Nuclear pore localization protein NPL4. Npl4 is part of the heterodimer UN along with Ufd1 which is involved in the recruitment of p97, an AAA ATPase, for tasks involving the ubiquitin pathway. Npl4 has a ubiquitin-like domain which has within its structure a beta-grasp fold with a helical insert. 80 -288406 pfam11544 Spc42p Spindle pole body component Spc42p. Spc42p is a 42-kD component of the S.cerevisiae spindle body that localizes to the electron dense central region of the SPB.Spc42p is a phosphoprotein which forms a polymeric layer at the periphery of the SPB central plaque. This functions during SPB duplication and also facilitates the attachment of the SPB to the nuclear membrane. 72 -288407 pfam11545 HemeBinding_Shp Cell surface heme-binding protein Shp. Shp is part of a complex which functions in heme uptake in Streptococcus pyogenes. During which, Shp transfers its heme to HtsA which is a component of an ABC transporter. The heme binding region of Shp contains an immunoglobulin-like beta-sandwich fold and has a unique heme-iron coordination with the axial ligands being two methionine residues from the same Shp molecule. Surrounding the heme pocket, there is a negative surface which may serve as a docking interface for heme transfer. 151 -288408 pfam11546 CompInhib_SCIN Staphylococcal complement inhibitor SCIN. SCIN is released by Staphylococcus aureus to counteract the host immune defense. The protein binds to and inhibits C3 convertases on the bacterial surface, reducing phagocytosis and blocking downstream effector functions by C3b deposition on its surface. An 18 residue stretch 31-48 is crucial for SCIN activity. 112 -288409 pfam11547 E3_UbLigase_EDD E3 ubiquitin ligase EDD. EDD, the ER ubiquitin ligase from the HECT ligases, contains an N-terminal ubiquitin-associated domain which binds ubiquitin. Ubiquitin is recognized by helices alpha-1 and -3 in in the UBA domain. EDD is involved in DNA damage repair pathways and binds to mono-ubiquitinated proteins. 52 -338033 pfam11548 Receptor_IA-2 Protein-tyrosine phosphatase receptor IA-2. IA-2 is a protein-tyrosine phosphatase receptor that upon exocytosis, the cytoplasmic domain is cleaved and moves to the nucleus where it enhances transcription of the insulin gene. The mature exodomain of IA-2 participates in adhesion to the extracellular matrix and is self-proteolyzed in vitro by reactive oxygen species which may be a new shedding mechanism. 89 -314445 pfam11549 Sec31 Protein transport protein SEC31. Sec31 is involved in COPII coat formation as it forms through the sequential binding of three cytoplasmic proteins: Sar1, Sec23/24 and Sec13/31. Sec13/31 is recruited by the pre-budding complex and polymerization of Sec13/31 occurs to form an octahedral cage that is the outer shell of the COPII coat. Sec13/31 is a hetero-tetramer which is organized as a linear array of alpha-solenoid and beta-propeller domains to form a rod in which twenty-four copies assemble to form the COPII cub-octahedron. 48 -288412 pfam11550 IglC Intracellular growth locus C protein. IglC protein is involved in the escape of F.tularensis live vaccine strain. It has been shown that the expression of IglC is essential for F.tularensis to induce macrophage apoptosis. IglC adopts a beta-sandwich conformation that has no similarity to any known protein structure. 210 -314446 pfam11551 Omp28 Outer membrane protein Omp28. Omp28 is a 28-kDa outer membrane protein from Porphyromonas gingivalis. Omp28 is thought to be a surface adhesion/receptor protein. Omp28 is expressed in a wide distribution of P.gingivalis strains. 171 -314447 pfam11553 DUF3231 Protein of unknown function (DUF3231). This bacterial family of proteins has no known function. 161 -314448 pfam11554 DUF3232 Protein of unknown function (DUF3232). This bacterial family of proteins has no known function. 125 -314449 pfam11555 Inhibitor_Mig-6 EGFR receptor inhibitor Mig-6. When the kinase domain of EGFR binds to segment one of Mitogen induced gene 6 (Mig-6), EGFR becomes inactive due to the conformation it adopts which is Src/CDK like. The binding of the two proteins prevents EGFR acting as a cyclin-like activator for other kinase domains.The structure of Mig-6(1) consists of alpha helices-G and -H with a polar surface and hydrophobic residues for interactions with EGFR. A critical step for the activation of EGFR is the formation of an asymmetric dimer involving the kinase domains of the protein. Since Mig-6 binds to the kinase domain it blocks this process and EGFR becomes inactive. 73 -288415 pfam11556 EBA-175_VI Erythrocyte binding antigen 175. EBA-175 is involved in the formation of a tight junction, a necessary step in invasion. This family represents the region VI which is a cysteine rich domain essential for EBA-175 trafficking. The structure is a homodimer that contains a five-alpha-helical core stabilized by four disulphide bridges. 80 -314450 pfam11557 Omp_AT Solitary outer membrane autotransporter beta-barrel domain. Omp_AT is a family of Gram-negative Gamma-proteobacteria outer membrane autotransporter beta-barrel proteins. Secondary structure prediction indicates a beta-barrel domain of 12 beta-strands. with an N terminal helix running along the central barrel axis perpendicular to the 12 antiparallel strands that form the barrel. Autotransporter translocation units defined by a beta-barrel of 12 to 14 antiparallel strands with an N terminal helix perpendicular to the barrel. 327 -314451 pfam11558 HET-s_218-289 Het-s 218-289. This family of proteins is residues 218-289 of Het-s, a protein of Podospora anserina. Het-s plays a role in heterokaryon incompatibility which prevents different forms of parasitism. This region of the protein is the C-terminal end and is unstructured in solution but forms infectious fibrils in vitro which has a structure consisting of a left-handed beta solenoid which contains two windings per molecule. 61 -314452 pfam11559 ADIP Afadin- and alpha -actinin-Binding. This family is found in mammals where it is localized at cell-cell adherens junctions, and in Sch. pombe and other fungi where it anchors spindle-pole bodies to spindle microtubules. It is a coiled-coil structure, and in pombe, it is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body. The name ADIP derives from the family being composed of Afadin- and alpha -Actinin-Binding Proteins localized at Cell-Cell Adherens Junctions. 151 -314453 pfam11560 LAP2alpha Lamina-associated polypeptide 2 alpha. LAPs are components of the nuclear lamina which supports the nuclear envelope.LAP2alpha is a non-membrane-associated member of the LAP family which is unique. This family of proteins is the C terminal domain of LAP2alpha which consists of residues 459-693 and constitutes a dimeric structure with an antiparallel coiled coil. LAP2alpha is involved in cell-cycle regulation and chromatin organisation and preferentially binds to lamin A/C. 233 -314454 pfam11561 Saw1 Single strand annealing-weakened 1. This family of yeast proteins is involved in single-strand-annealing, or SSA. SSA entails multiple steps: end resection and ssDNA formation; annealing of complementary ssDNAs; removal of 3' single-stranded non-homologous tails; gap fill-in synthesis; and ligation. Saw1 in combination with Slx4 catalyzes the 3' non-homologous tail removal during recombination. Saw1 interacts physically with Rad1/Rad10, Msh2/Msh3, and Rad52 proteins, and works by targeting Rad1/Rad10 to Rad52-coated recombination intermediates. 244 -338034 pfam11563 Protoglobin Protoglobin. This family includes protoglobin from Methanosarcina acetivorans C2A. It is also found near the N-terminus of the Haem-based aerotactic transducer HemAT in Bacillus subtilis. It is part of the haemoglobin superfamily. Protoglobin has specific loops and an amino-terminal extension which leads to the burying of the haem within the matrix of the protein. Protoglobin-specific apolar tunnels allow the access of O2, CO and NO to the haem distal site. In HemAT it acts as an oxygen sensor domain. 152 -314456 pfam11564 BpuJI_N Restriction endonuclease BpuJI - N terminal. BpuJI is a restriction endonuclease which recognizes the asymmetric sequence 5'-CCCGT and cuts at multiple sites in the surrounding area of the target sequence. This family of proteins is the N terminal domain of BpuJI which has DNA recognition functions. The recognition domain has two subdomains D1 and D2. The recognition of the target sequence occurs through major groove contacts of amino acids on the helix-turn-helix region and the N-terminal arm. 278 -288422 pfam11565 PorB Alpha helical Porin B. Porin B is a porin from Corynebacterium glutamicum which allows the exchange of material across the mycolic acid layer which is the protective nonpolar barrier. Porin B has an alpha helical core structure consisting of four alpha-helices surrounding a nonpolar interior. There is a disulphide bridge between helices 1 and 4 to form a stable covalently bound ring. The channel of PorB is oligomeric. 99 -338035 pfam11566 PI31_Prot_N PI31 proteasome regulator N-terminal. PI31 is a regulatory subunit of the immuno-proteasome which is an inhibitor of the 20 S proteasome in vitro.PI31 is also an F-box protein Fbxo7.Skp1 binding partner which requires an N terminal FP domain in both proteins for the interaction to occur via the FP beta sheets. The structure of PI31 FP domain contains a novel alpha/beta-fold and two intermolecular contact surfaces. This is the N-terminal domain of the members. 152 -338036 pfam11567 PfUIS3 Plasmodium falciparum UIS3 membrane protein. UIS3 is a membrane protein essential for sporozoite development in infected hepatocytes. This family is 130-229 of the Plasmodium falciparum UIS3 protein which is compact and has an all alpha-helical structure.PfUIS3(130-229) interacts with lipids, phospholipid lysosomes, the human liver fatty acid-binding protein and with the lipid phosphatidylethanolamine. The interaction with liver fatty acid-binding protein provides the parasite with a method to import essential fatty acids/lipids during rapid growth phases of sporozoites. 101 -338037 pfam11568 Med29 Mediator complex subunit 29. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-active part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Med29, along with Med11 and Med28, in mammals, is part of the core head-region of the complex. Med29 is the apparent orthologue of the Drosophila melanogaster Intersex protein, which interacts directly with, and functions as a transcriptional coactivator for, the DNA-binding transcription factor Doublesex, so it is likely that mammalian Med29 serves as a target for one or more DNA-binding transcriptional activators. 140 -288426 pfam11569 Homez Homeodomain leucine-zipper encoding, Homez. Homez contains two leucine zipper-like motifs and an acidic domain and belongs to the superfamily of homeobox-containing proteins. The presence of leucine zippers suggests that Homez can function as a homo or heterodimer in the nucleus. It is thought that the first leucine zipper and homeodomain 1 (HD1)of Homez is responsible for dimerization and HD2 has a specific DNA-binding activity. Homez is also thought to function as a transcriptional repressor due to the acidic region in its C-terminal domain. Homez is involved in a complex regulatory network. 55 -314459 pfam11570 E2R135 Coiled-coil receptor-binding R-domain of colicin E2. E2 is a DNase which utilizes the outer membrane receptor BtuB to bind to and enter the cell. This family of proteins is E2R135 (residues 321-443) which is the part of E2 which is responsible for binding to BtuB in a coiled coil formation. 136 -338038 pfam11571 Med27 Mediator complex subunit 27. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species {1-2]. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Mediator exists in two major forms in human cells: a smaller form that interacts strongly with pol II and activates transcription, and a large form that does not interact strongly with pol II and does not directly activate transcription. The ubiquitous expression of Med27 mRNA suggests a universal requirement for Med27 in transcriptional initiation. Loss of Crsp34/Med27 decreases amacrine cell number, but increases the number of rod photoreceptor cells. 83 -288429 pfam11572 DUF3234 Protein of unknown function (DUF3234). This bacterial family of proteins has no known function. Some members in this family of proteins are annotated as TTHA0547 however this cannot be confirmed. 95 -314461 pfam11573 Med23 Mediator complex subunit 23. Med23 is one of the subunits of the Tail portion of the Mediator complex that regulates RNA polymerase II activity. Med23 is required for heat-shock-specific gene expression, and has been shown to mediate transcriptional activation of E1A in mice. 1300 -314462 pfam11574 DUF3235 Protein of unknown function (DUF3235). Some members in this family of proteins with unknown function are annotated as RpfA however this cannot be confirmed. 84 -338039 pfam11575 FhuF_C FhuF 2Fe-2S C-terminal domain. This family consists of several bacterial ferric iron reductase protein (FhuF) sequences. FhuF is involved in the reduction of ferric iron in cytoplasmic ferrioxamine B. This domain is the C-terminal domain that contains 4 conserved cysteine residues that are found to be part of a 2Fe-2S cluster. 21 -314464 pfam11576 DUF3236 Protein of unknown function (DUF3236). This family of proteins with unknown function appears to be restricted to Methanobacteria. 152 -314465 pfam11577 NEMO NF-kappa-B essential modulator NEMO. NEMO is a regulatory protein which is part of the IKK complex along with the catalytic IKKalpha and beta kinases. The IKK complex phosphorylates IkappaB targeting it for degradation which results in the release of NF-kappaB which initiates the inflammatory response, cell proliferation or cell differentiation. NEMO activates the IKK complex's activity by associating with the unphosphorylated IKK kinase C termini.The core domain of NEMO is a dimer which binds to two fragments of IKK. 68 -338040 pfam11578 DUF3237 Protein of unknown function (DUF3237). This family of proteins has no known function 144 -314467 pfam11579 DUF3238 Protein of unknown function (DUF3238). This family of proteins with unknown function appears to be restricted to Bacillus cereus. 192 -314468 pfam11580 DUF3239 Protein of unknown function (DUF3239). This bacterial family of proteins may be membrane proteins however this cannot be confirmed. Currently there is no known function. 125 -314469 pfam11581 Argos Antagonist of EGFR signalling, Argos. Argos is a natural secreted antagonist of EGFR signalling which functions by binding growth factor ligands that activate EGFR by forming a clamp like structure using three disulphide-bonded beta-sheet domains. 129 -338041 pfam11582 DUF3240 Protein of unknown function (DUF3240). This family of proteins with unknown function appears to be restricted to Proteobacteria. 101 -338042 pfam11583 AurF P-aminobenzoate N-oxygenase AurF. This family is a metalloenzyme which is involved in the biosynthesis of antibiotic aureothin by catalyzing the formation of p-nitrobenzoic acid from p-aminobenzoic acid. AurF is a non-heme di-iron monooxygenase which creates nitroarenes via the sequential oxidation of aminoarenes. 277 -288441 pfam11584 Toxin_ToxA Proteinaceous host-selective toxin ToxA. ToxA is produced by particular Pyrenophora tritici-repentis races and is a proteinaceous host-selective toxin. It is necessary and sufficient to cause cell death in sensitive wheat cultivars.ToxA adopts a single-domain, beta-sandwich fold which has novel topology. The protein is directly involved in recognition events required for ToxA action. It is thought to be distantly related to FnIII proteins, gaining entry to the host via an integrin-like receptor. 116 -152021 pfam11585 Stomoxyn Insect antimicrobial peptide, stomoxyn. Stomoxyn, localized in the gut epithelium, is an insect antimicrobial peptide which functions in killing a range of microorganisms, parasites and some viruses. Stomoxyn has a structure consisting of a random coil in water however in TFE it adopts a stable helical structure. Stomoxyn is thought to have a similar function to cecropin A from Hyalophora cecropia due to structural similarities. 42 -288442 pfam11586 DUF3242 Protein of unknown function (DUF3242). This protein from Thermotoga maritima is a hypothetical ORFan protein, TM1622, whose structure has been determined. The protein is composed of seven beta strands and three alpha helices. 125 -288443 pfam11587 Prion_bPrPp Major prion protein bPrPp - N terminal. This family represents the N-terminal domain (1-30) of the bovine prion protein (bPrPp). The proteins structure consists of mainly alpha helices. BPrPp forms a stable helix which inserts in a transmembrane location in the bilayer, with the N -terminal (1-30) functioning as a cell-penetrating peptide. 30 -338043 pfam11588 DUF3243 Protein of unknown function (DUF3243). This family of proteins with unknown function appears to be restricted to Firmicutes. 79 -314472 pfam11589 DUF3244 Domain of unknown function (DUF3244). This domain adopts an immunoglobulin-like beta-sandwich fold and structurally is most similar to fibronectin. 99 -314473 pfam11590 DNAPolymera_Pol DNA polymerase catalytic subunit Pol. This family of proteins represents the catalytic subunit, Pol, of the Herpes simplex virus DNA polymerase. Pol binds UL42, making up the DNA polymerase. UL42 is a processivity subunit which binds to the C-terminal of Pol in a similar way that the cell cycle regulator p21 binds to PCNA. 36 -152027 pfam11591 2Fe-2S_Ferredox Ferredoxin chloroplastic transit peptide. The structure of chloroplast ferredoxin in water is unstructured however in a 30:70 molar-ratio mixture of 2,2,2-trifluoroethanol, residues 3 to 13 form an alpha-helix. The rest of the peptide remains unstructured. This family is the N-terminal of the [2Fe-2S) ferredoxin from C.reinhardtii. This protein catalyzes the final reaction in a pathway which allows the production of H(2) from water in the chloroplast. 34 -288446 pfam11592 AvrPto Central core of the bacterial effector protein AvrPto. This family of proteins represents the bacterial effector protein AvrPto from Pseudomonas syringae. This is the central core region of the protein which consists of a three-helix bundle motif. AvrPto is part of a type III secretion system from P.syringae which is involved in the bacterial speck disease of tomato. In resistant plants, AvrPto interacts with the host Pto kinase, which elicits an antibacterial defense response. In plants lacking resistance, the Pto kinase is not present and AvrPto acts as a virulence factor, promoting bacterial growth. 105 -314474 pfam11593 Med3 Mediator complex subunit 3 fungal. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Mediator subunit Hrs1/Med3 is a physical target for Cyc8-Tup1, a yeast transcriptional co-repressor. 393 -314475 pfam11594 Med28 Mediator complex subunit 28. Mediator is a large complex of up to 33 proteins that is conserved from plants to fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Subunit Med28 of the Mediator may function as a scaffolding protein within Mediator by maintaining the stability of a submodule within the head module, and components of this submodule act together in a gene-regulatory programme to suppress smooth muscle cell differentiation. Thus, mammalian Mediator subunit Med28 functions as a repressor of smooth muscle-cell differentiation, which could have implications for disorders associated with abnormalities in smooth muscle cell growth and differentiation, including atherosclerosis, asthma, hypertension, and smooth muscle tumors. 98 -314476 pfam11595 DUF3245 Protein of unknown function (DUF3245). This is a family of proteins conserved in fungi. The function is not known, and there is no S. cerevisiae member. 144 -288450 pfam11596 DUF3246 Protein of unknown function (DUF3246). This is a small family of fungal proteins one of whose members, MUC1.5 from Pichia stipitis is described as being an extremely serine rich protein-mucin-like protein. 242 -314477 pfam11597 Med13_N Mediator complex subunit 13 N-terminal. Mediator is a large complex of up to 33 proteins that is conserved from plants through fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Med13 is part of the ancillary kinase module, together with Med12, CDK8 and CycC, which in yeast is implicated in transcriptional repression, though most of this activity is likely attributable to the CDK8 kinase. The large Med12 and Med13 proteins are required for specific developmental processes in Drosophila, zebrafish, and Caenorhabditis elegans but their biochemical functions are not understood. 324 -288452 pfam11598 COMP Cartilage oligomeric matrix protein. This family of proteins represents the five-stranded coiled-coil domain of cartilage oligomeric matrix protein (COMP). This region has a binding site between two internal rings formed by Leu37 and Thr40 45 -314478 pfam11599 AviRa RRNA methyltransferase AviRa. This family of proteins represents the methyltransferase AviRa from Streptomyces viridochromogenes. This protein mediates the resistance to the antibiotic avilamycin. AviRa methylates a specific guanine base within the peptidyl-transferase loop of the 23S ribosomal RNA. 237 -314479 pfam11600 CAF-1_p150 Chromatin assembly factor 1 complex p150 subunit, N-terminal. CAF-1_p150 is a polypeptide subunit of CAF-1, which functions in depositing newly synthesized and acetylated histones H3/H4 into chromatin during DNA replication and repair. CAF-1_p150 includes the HP1 interaction site, the PEST, KER and ED interacting sites. CAF-1_p150 interacts directly with newly synthesized and acetylated histones through the acidic KER and ED domains. The PEST domain is associated with proteins that undergo rapid proteolysis. 150 -288455 pfam11601 Shal-type Shal-type voltage-gated potassium channels, N-terminal. This family represents the short N-terminal helical domain of Shal-type voltage-gated potassium channels. The domain interacts with Kv channel-interacting proteins to modulate cell surface expression and the function of Kv4 channels. The interaction of the N-terminus of Shal-type protein Kv4.2 and the Kv interacting protein KChiP1 forms a structure which is like the structure between calmodulin and its target peptides when they interact. Interactions of an N terminal alpha helix in Kv4.2 and a C terminal alpha helix in KChIP1 are essential for the modulation of Kv4.2 by KChIPs. 26 -288456 pfam11602 NTPase_P4 ATPase P4 of dsRNA bacteriophage phi-12. P4 is a packaging motor which is involved in the packaging of phi-12 genome into preformed capsids using ATP. P4 is located at the vertices of the icosahedral capsid. ATP drives RNA translocation through cooperative conformational changes. 320 -314480 pfam11603 Sir1 Regulatory protein Sir1. Sir1p interacts with the BAH domain of the Orc1p subunit of the origin recognition complex (ORC) resulting in the establishment of silent chromatin at HMR and HML in S.cerevisiae. The amino acids from the ORC interaction region of Sir1p are presented on a conserved, convex surface that forms a complementary interface with the Orc1 BAH domain, critical for transcriptional silencing. 120 -338044 pfam11604 CusF_Ec Copper binding periplasmic protein CusF. CusF is a periplasmic protein involved in copper and silver resistance in Escherichia coil. CusF forms a five-stranded beta-barrel OB fold. Cu(I) binds to H36, M47 and M49 which are conserved residues in the protein. 58 -314482 pfam11605 Vps36_ESCRT-II Vacuolar protein sorting protein 36 Vps36. Vps36 is a subunit of ESCRT-II, a protein involved in driving protein sorting from endosomes to lysosomes. The GLUE domain of Vps36 allows for a tight interaction to occur between the protein and Vps28, a subunit of ESCRT-I. This interaction is critical for ubiquitinated cargo progression from early to late endosomes. 91 -152042 pfam11606 AlcCBM31 Family 31 carbohydrate binding protein. This family of proteins represents the family 31 carbohydrate-binding module of beta-1,2-xylanase. This protein is from Alcaligenes sp. strain XY-234. The AlcCBM31 module makes a beta-sandwich structure with an immunoglobulin fold and contains two intra-molecular disulfide bonds. AlcCBM31 shows affinity with only beta-1,3-xylan. 93 -288460 pfam11607 DUF3247 Protein of unknown function (DUF3247). This family of proteins is the protein product of the gene XC5848 from Xanthomonas campestris. The protein has no known function however its structure has been determined. The protein adopts a Lsm fold however differences with the fold were observed at the N-terminal and internal regions. 92 -288461 pfam11608 Limkain-b1 Limkain b1. This family of proteins represents Limkain b1, which is a novel human autoantigen, localized to a subset of ABCD3 and PXF marked peroxisomes. Limkain b1 may be a relatively common target of human autoantibodies reactive to cytoplasmic vesicle-like structures. 88 -288462 pfam11609 DUF3248 Protein of unknown function (DUF3248). This family of proteins is thought to be the product of the gene TT1592 from Thermus thermophilus however this cannot be confirmed. Currently there is no known function. 62 -288463 pfam11610 Ste5 Scaffold protein Ste5, Fus3-binding region. This family of proteins represents the Fus3 binding region of Ste5. Ste5 functions in the yeast mating pathway and is required for signalling through the mating response MAPK pathway. Ste5 has separate binding sites for each member of the MAPK cascade. This region of Ste5 allosterically activates autophosphroylation of Fus3, a mitogen-activated protein kinase. Auto-activated Fus3 has a negative regulatory role, and promotes Ste5 phosphorylation which leads to a decrease in pathway transcriptional output. 30 -338045 pfam11611 DUF4352 Domain of unknown function (DUF4352). Members of these family are putative lipoproteins that fall into the Antigen MPT63/MPB63 (immunoprotective extracellular protein) superfamily. 116 -338046 pfam11612 T2SSJ Type II secretion system (T2SS), protein J. The T2SJ proteins are pseudopilins, which are targeted to the membrane in E. Coli. T2SJ forms a complex with T2SI (pfam02501) and T2SK (pfam03934) which is part of the Type II secretion apparatus involved in the translocation of proteins across the outer membrane in E.coli. The T2SK-I-J complex has quasihelical characteristics. 137 -338047 pfam11614 FixG_C IG-like fold at C-terminal of FixG, putative oxidoreductase. This domain is part of a transmembrane protein, FixG, itself part of the FixGHIS operon closely associated with the FixNOPQ operon that is the symbiotically essential cbb3-type haem-copper oxidase complex. FixG expression is induced by oxygen-deprivation. This C-terminal domain adopts an E-set Ig-like fold. 113 -288467 pfam11615 Caf4 CCR4-associated factor 4. Caf4 is a WD40 repeats containing protein involved in mitochondrial fission. It displays physical interactions with CCR4-NOT complex. It has a paralogue, Mdv1. Both Caf4 and Mdv1 act as adapter proteins, binding to Fis1 on the mitochondrial outer membrane and recruiting the dynamin-like GTPase Dnm1 to form mitochondrial fission complexes. However, Fis1 and Caf4, but not Mdv1, determine the polar localization of Dnm1 clusters on the mitochondrial surface. 60 -314486 pfam11616 EZH2_WD-Binding WD repeat binding protein EZH2. This family of proteins represents Enhancer of zest homolog 2, (EZH2) a 30 residue peptide which binds to a WD-repeat domain of EED by residues 39-68. EED is a component of PRC2 complex which is involved in gene expression. This interaction is required for the HMTase activity of PCR2. 29 -338048 pfam11617 Cu-binding_MopE Putative metal-binding motif. The seqeunce of structure 2vov is not matched in any other sequence either in UniProt or in NCBI (Sep2014). The model is of a short repeat not found on the G1UBC6 - 2vov - protein. The presence of conserved cysteine residues and the lack of hydrophobic residues suggests that this repeat might be a metal-binding site, perhaps for zinc or calcium ions. 28 -314488 pfam11618 C2-C2_1 First C2 domain of RPGR-interacting protein 1. This domain is the first, more N-terminal, C2 domain on X-linked retinitis pigmentosa GTPase regulator-interacting proteins, or RPGR-interacting proteins. 140 -314489 pfam11619 P53_C Transcription factor P53 - C terminal domain. This family of proteins is the C terminal domain of the transcription factor P53. While the rest of the protein is quite conserved between the different transcription factors such as p53 and p73, the C terminal domain is highly divergent. The DM-p53 structure is characterized by an additional N-terminal beta-strand and a C-terminal helix. 67 -338049 pfam11620 GABP-alpha GA-binding protein alpha chain. This family of proteins represents the transcription factor GABP alpha. This alpha domain is a five-stranded beta-sheet crossed by a distorted helix termed an OST domain. The surface of the GABP alpha OST domain contains two clusters of negatively-charged residues suggesting there are positively-charged partner proteins. The OST domain binds to the CH1 and CH3 domains of the co-activator histone acetyltransferase CBP/p300, a direct link between GABP and transcriptional machinery has been made. 81 -288473 pfam11621 Sbi-IV C3 binding domain 4 of IgG-bind protein SBI. This family of proteins represents Sbi domain IV which binds the central complement protein C3. Sbi-IV interacts with Sbi-III to induce a consumption of complement via alternative pathway activation. When not interacting with Sbi-III, Sbi-IV inhibits the alternative pathway without complement consumption. The structure of Sbi-IV consists of a three-helix bundle fold. 69 -288474 pfam11622 DUF3251 Protein of unknown function (DUF3251). This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. Some members if this family are annotated as putative lipoprotein YajI however this cannot be confirmed. 156 -338050 pfam11623 NdhS NAD(P)H dehydrogenase subunit S. This family is found in Bacteria and Streptophyta includes members such as NdhS (NAD(P)H-quinone oxidoreductase subunit S). NdhS, also known as CRR31 (chlororespiratory reduction 31), is a subunit of the chloroplast NADH dehydrogenase-like (NDH) complex. It is also a subunit of the cyanobacterial NDH-1 complex. NAD(P)H-oxidizing subunits have not been found in chloroplasts or cyanobacteria, where ferredoxin is probably the electron donor. NdhS contributes to the formation of a ferredoxin binding site of NDH and is necessary for high affinity binding of ferredoxin. The cyanobacterial NDH-1 complex, also known as NADPH:plastoquinone oxidoreductase or type I NAD(P)H dehydrogenase, is involved in plastoquinone reduction and cyclic electron transfer (CET) around photosystem I. The chloroplast NDH is more similar to cyanobacterial NDH-1, which is believed to be the origin of chloroplast NDH, than to mitochondrial NADH dehydrogenase present in the same species. The NDH complexes of chloroplasts, however, contain many subunits that are absent from cyanobacterial NDH-1 complexes. 52 -314492 pfam11624 M157 MHC class I-like protein M157. This family of proteins represents M157,a divergent form of MHC class I-like proteins which is the protein product of the mouse cytomegalovirus. This protein is unique in its ability to engage both activating (Ly49H) and inhibitory (Ly49I) natural killer cell receptors. M157 is involved in intra- and intermolecular interacts within and between its domains to form a compact MHC-like molecule. 256 -314493 pfam11625 DUF3253 Protein of unknown function (DUF3253). This bacterial family of proteins has no known function. 81 -338051 pfam11626 Rap1_C TRF2-interacting telomeric protein/Rap1 - C terminal domain. This family of proteins represents the C-terminal domain of the protein Rap-1, which plays a distinct role in silencing at the silent mating-type loci and telomeres. The Rap-1 C-terminus adopts an all-helical fold. Rap1 carries out its function by recruiting the Sir3 and Sir4 proteins to chromatin via its C terminal domain. Rap1 is otherwise known as TRF2-interacting protein, as it is one of the six subunit components of the Shelterin complex. Shelterin protects telomere ends from attack by DNA-repair mechanisms. Model doesn't capture Sch. pombe as it cuts this sequence into two. 82 -314495 pfam11627 HnRNPA1 Nuclear factor hnRNPA1. This family of proteins represents hnRNPA1, a nuclear factor that binds to Pol II transcripts. The family of hnRNP proteins are involved in numerous RNA-related activities. 27 -314496 pfam11628 TCR_zetazeta T-cell surface glycoprotein CD3 zeta chain. The incorporation of the zetazeta signalling module requires one basic TCR alpha and two zetazeta aspartic acid TM residues. The structure of the zetazeta(TM) dimer consists of a left-handed coiled coil with polar contacts. Two aspartic acids are critical for zetazeta dimerization and assembly with TCR. 31 -314497 pfam11629 Mst1_SARAH C terminal SARAH domain of Mst1. This family of proteins represents the C terminal SARAH domain of Mst1. SARAH controls apoptosis and cell cycle arrest via the Ras, RASSF, MST pathway. The Mst1 SARAH domain interacts with Rassf1 and Rassf5 by forming a heterodimer which mediates the apoptosis process. 48 -152066 pfam11630 DUF3254 Protein of unknown function (DUF3254). This family of proteins is most likely a family of anti-lipopolysaccharide factor proteins however this cannot be confirmed. 97 -288482 pfam11631 DUF3255 Protein of unknown function (DUF3255). Members in this family of proteins are annotated as YxeF however no function is currently known. The family appears to be restricted to Bacillus. 123 -204695 pfam11632 LcnG-beta Lactococcin G-beta. This family of proteins is LcnG-beta, which with LcnG-alpha constitute the two-peptide bacteriocin lactococcin G (LcnG). This family of proteins represents the N terminal domain which has an alpha-helical structure and is amphiphilic. Both peptides have a GxxxG motif which they use for interaction through a helix-helix structure. 35 -314498 pfam11633 SUD-M Single-stranded poly(A) binding domain. This family of proteins represents Nsp3c, the product of ORF1a in group 2 coronavirus. The domain exhibits a macrodomain fold containing the nsp3 residues 528 to 648, with a flexibly extended N-terminal tail from residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. SUD-M(527-651) binds single-stranded poly(A); the contact area with this RNA on the protein surface, and the electrophoretic mobility shift assays confirm that SUD-M has higher affinity for purine bases than for pyrimidine bases. 143 -288483 pfam11634 IPI_T4 Nuclease inhibitor from bacteriophage T4. This family of proteins represents IPI from bacteriophage T4. This protein is a nuclease inhibitor which is injected by T4 to protect its DNA from gmrS/gmrD CT of pathogenic Escherichia coli into the infected host. The structure of this protein consists of two small beta-sheets flanked by N and C termini by alpha-helices. The protein has a gmrS/gmrD hydrophobic binding site. 76 -314499 pfam11635 Med16 Mediator complex subunit 16. Mediator is a large complex of up to 33 proteins that is conserved from plants through fungi to humans - the number and representation of individual subunits varying with species. It is arranged into four different sections, a core, a head, a tail and a kinase-activity part, and the number of subunits within each of these is what varies with species. Overall, Mediator regulates the transcriptional activity of RNA polymerase II but it would appear that each of the four different sections has a slightly different function. Med16 is one of the subunits of the Tail portion of the Mediator complex and is required for lipopolysaccharide gene-expression. Several members including the human protein MED16 have one or more WD40 domains on them, pfam00400. 748 -314500 pfam11636 Troponin-I_N Troponin I residues 1-32. This family of proteins represents the cardiac N-extension of troponin I. This region of the protein (1-32) interacts with the N-lobe of cTnC and modulates myofilament calcium(2) sensitivity. 32 -288485 pfam11637 UvsW ATP-dependant DNA helicase UvsW. This family of proteins represents the DNA helicase UvsW from bacteriophage T4. The protein is a member of the monomeric SF2 helicase superfamily and shows structural homology to the eukaryotic SF2 helicase Rad54. UvsW is thought to have a role in recombination and the rescue of stalled replication forks. 56 -314501 pfam11638 DnaA_N DnaA N-terminal domain. This family of proteins represents the N-terminal domain of DnaA, a protein involved in the initiation of bacterial chromosomal replication. The structure of this domain is known. It is also found in three copies in some proteins. The exact function of this domain is uncertain but it has been suggested to play a role in oligomerization. 65 -288487 pfam11639 HapK REDY-like protein HapK. This family of proteins represents HapK, a protein of unknown function, with two homologs PigK and RedY. The monomer structure of the protein contains a four-stranded anti parallel beta-sheet, three alpha-helices and a short C terminal tail which it uses for dimer formation. The surface of HapK has a deep cavity with consists of a kinked helix and a beta-four strand. HapK could be involved in prodigiosin biosynthesis, specifically the binding of a bipyrrole intermediate such as HBM or MBM. 103 -314502 pfam11640 TAN Telomere-length maintenance and DNA damage repair. ATM is a large protein kinase, in humans, critical for responding to DNA double-strand breaks (DSBs). Tel1, the orthologue from budding yeast, also regulates responses to DSBs. Tel1 is important for maintaining viability and for phosphorylation of the DNA damage signal transducer kinase Rad53 (an orthologue of mammalian CHK2). In addition to functioning in the response to DSBs, numerous findings indicate that Tel1/ATM regulates telomeres. The overall domain structure of Tel1/ATM is shared by proteins of the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, but this family carries a unique and functionally important TAN sequence motif, near its N-terminal, LxxxKxxE/DRxxxL. which is conserved specifically in the Tel1/ATM subclass of the PIKKs. The TAN motif is essential for both telomere length maintenance and Tel1 action in response to DNA damage. It is classified as an EC:2.7.11.1. 148 -152077 pfam11641 Antigen_Bd37 Glycosylphosphatidylinositol-anchored merozoite surface protein. This family of proteins represents the core region of Bd37, a surface antigen of B.divergens which is GPI-anchored at the surface of the merozoite. The structure of the protein consists of mainly alpha folds and has three sub domains. 224 -288489 pfam11642 Blo-t-5 Mite allergen Blo t 5. This family of proteins is Blo t 5, an allergen protein from Blomia tropicalis mites. This protein shoes strong reactivity with IgE in asthmatic and rhinitis patients. The structure of the protein contains three alpha helices which form a coiled-coil. 119 -338052 pfam11644 DUF3256 Protein of unknown function (DUF3256). This family of proteins with unknown function appears to be restricted to Bacteroidales. 195 -288491 pfam11645 PDDEXK_5 PD-(D/E)XK endonuclease. This family of endonucleases includes a group I intron-encoded endonuclease. This family belongs to the PD-(D/E)XK superfamily. 149 -314504 pfam11646 DUF3258 Protein of unknown function DUF3258. This viral family are possible phage integrase proteins however this cannot be confirmed. 99 -288492 pfam11647 MLD Membrane Localization Domain. This is a membrane localization domain found in multiple families of bacterial toxins including all of the clostridial glucosyltransferase toxins and various MARTX toxins (multifunctional-autoprocessing RTX toxins). In the Pasteurella multocida##toxin (PMT) C-terminal fragment, structural analysis have indicated that the C1 domain possesses a signal that leads the toxin to the cell membrane. Furthermore, the C1 domain was found to structurally resemble the phospholipid-binding domain of C. difficile toxin B. Functional studies in Vibrio cholera indicate that the subdomain at the N-terminus of RID (Rho-inactivation domain), homologous to the membrane targeting C1 domain of##Pasteurella multocida##toxin, is a conserved membrane localization domain essential for proper localization. The Rho-inactivation domain (RID) of MARTX (Multifunctional Autoprocessing RTX toxin) is responsible for inactivating the Rho-family of small GTPases in Vibrio cholerae. It is a bacterial toxin that self-process by a cysteine peptidase mechanism. These cysteine peptidases belong to MEROPS peptidase family C80 (RTX self-cleaving toxin, clan CD). 70 -338053 pfam11648 RIG-I_C-RD C-terminal domain of RIG-I. This family of proteins represents the regulatory domain RD of RIG-I, a protein which initiates a signalling cascade that provides essential antiviral protection for the host. The RD domain binds viral RNA, activating the RIG-I ATPase by RNA-dependant dimerization. The structure of RD contains a zinc-binding domain and is thought to confer ligand specificity. 113 -288494 pfam11649 T4_neck-protein Virus neck protein. This family of protein represents gene product 14, a major component of the neck in T4-like viruses along with gene product 13. Gene product 14 is rich is beta-sheets. The formation of the neck to the head of the bacteriophage is crucial for the tail attachment. 254 -314506 pfam11650 P22_Tail-4 P22 tail accessory factor. This tail accessory factor of the P22 virus is also referred to as gene product 4 (Gp4). The proteins structure consists of 60% alpha helices. Gp4 is the first tail accessory factor to be added to newly DNA-filled capsids during P22-morphogenesis. In solution, the protein acts as a monomer and has low structural stability. The interaction of gp4 with the portal protein involves the binding of two non-equivalent sets of six gp4 proteins. Gp4 acts as a structural adaptor for gp10 and gp26, the other tail accessory factors. 148 -314507 pfam11651 P22_CoatProtein P22 coat protein - gene protein 5. This family of proteins represents gene product 5 from bacteriophage P22. This protein is involved in the formation of the pro-capsid shells in the bacteriophage. In total, there are 415 molecules of the coat protein which are arranged in an icosahedral shell. 417 -314508 pfam11652 FAM167 FAM167. This entry describes a eukaryotic protein family of unknown function designated FAM167. 85 -314509 pfam11653 VirionAssem_T7 Bacteriophage T7 virion assembly protein. This family of proteins represents the gene product 7.3 from T7 bacteriophage. The protein is localized to the tail and is thought to be important in virion assembly. Particles assembled in the absence of the protein fail to adsorb to cells. 99 -314510 pfam11654 NCE101 Non-classical export protein 1. This entry represents the non classical export protein 1 family. Family members are Involved in a novel pathway of export of proteins that lack a cleavable signal sequence. 45 -314511 pfam11655 DUF2589 Protein of unknown function (DUF2589). This family of proteins has no known function. 152 -338054 pfam11656 DUF3811 YjbD family (DUF3811). This is a family of proteobacteria proteins of unknown function. This family is unrelated to pfam03960 which contains a set of transcription factors that are also named YjbD. 88 -338055 pfam11657 Activator-TraM Transcriptional activator TraM. TraM is required for quorum dependence. It binds to and in-activates TraR which controls the replication of the tumor-inducing virulence plasmid. TraM interacts in a two-step process with DNA-TraR to form a large, stable anti-activation complex. 142 -314514 pfam11658 CBP_BcsG Cellulose biosynthesis protein BcsG. CBP_BcsG is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 521 -338056 pfam11659 DUF3261 Protein of unknown function (DUF3261). This family of proteins with unknown function appears to be restricted to Proteobacteria. The family is related to the LolB family suggesting a role in lipoprotein insertion in the outer membrane. 135 -314516 pfam11660 DUF3262 Protein of unknown function (DUF3262). This family of proteins with unknown function appears to be restricted to Proteobacteria. 76 -314517 pfam11661 DUF2986 Protein of unknown function (DUF2986). This family of proteins has no known function. 43 -314518 pfam11662 DUF3263 Protein of unknown function (DUF3263). This family of proteins with unknown function appears to be restricted to Actinobacteria. 74 -338057 pfam11663 Toxin_YhaV Toxin with endonuclease activity, of toxin-antitoxin system. YhaV causes reversible bacteriostasis and is part of a toxin-antitoxin system in Escherichia coli along with PrlF. The toxicity of YhaV is counteracted by PrlF by the formation of a tight complex which binds to the promoter of the prlF-yhaV operon. In vitro, YhaV also has endonuclease activity. 138 -288509 pfam11665 DUF3265 Protein of unknown function (DUF3265). This family of proteins with unknown function appear to be restricted to Vibrio. 28 -338058 pfam11666 DUF2933 Protein of unknown function (DUF2933). This bacterial family of proteins has no known function. 50 -338059 pfam11667 DUF3267 Putative zincin peptidase. This family of proteins has a conserved HEXXH motif, suggesting the members are putative peptidases of zincin fold. 105 -288512 pfam11668 Gp_UL130 HCMV glycoprotein pUL130. This family of proteins represents pUL130 from Human cytomegalovirus, a glycoprotein secreted from infected cells that is incorporated into the virion envelope as a Golgi-matured form. The protein promotes endothelial cell infection through a producer cell modification of the virion. 159 -314522 pfam11669 WBP-1 WW domain-binding protein 1. This family of proteins represents WBP-1, a ligand of the WW domain of Yes-associated protein. This protein has a proline-rich domain. WBP-1 does not bind to the SH3 domain. 102 -314523 pfam11670 MSP1a Major surface protein 1a (MSP1a). MSP1a is part of the A.marginale major surface protein 1 (MSP1) complex and exists as a heterodimer with MSP1b. The complex has adhesive functions in bovine erythrocytes invasion. 134 -152107 pfam11671 Apis_Csd Complementary sex determiner protein. This family of proteins represents the complementary sex determiner in the honeybee. In the honeybee, the mechanism of sex determination depends on the csd gene which produces an SR-type protein. Males are homozygous while females are homozygous for the csd gene. Heterozygosity generates an active protein which initiates female development. 146 -314524 pfam11672 DUF3268 zinc-finger-containing domain. This is a family of bacterial and plasmid sequences that carry at least one zinc-finger towards the N-terminus and a possible second at the C-terminus. 118 -288515 pfam11673 DUF3269 Protein of unknown function (DUF3269). This family of proteins has no known function. 73 -338060 pfam11674 DUF3270 Protein of unknown function (DUF3270). This family of proteins with unknown function appears to be restricted to Streptococcus. 85 -288517 pfam11675 DUF3271 Protein of unknown function (DUF3271). This family of proteins with unknown function appears to be restricted to Plasmodium. 248 -314526 pfam11676 DUF3272 Protein of unknown function (DUF3272). This family of proteins with unknown function appears to be restricted to Streptococcus. 61 -314527 pfam11677 DUF3273 Protein of unknown function (DUF3273). Some members in this family of proteins are annotated as multi-transmembrane proteins however this cannot be confirmed. Currently this family has no known function. 265 -288520 pfam11678 DUF3274 Protein of unknown function (DUF3274). This bacterial family of proteins has no known function. 284 -314528 pfam11679 DUF3275 Protein of unknown function (DUF3275). This family of proteins with unknown function appear to be restricted to Proteobacteria. 207 -338061 pfam11680 DUF3276 Protein of unknown function (DUF3276). This bacterial family of proteins has no known function. 125 -314530 pfam11681 DUF3277 Protein of unknown function (DUF3277). This family of proteins represents a putative bacteriophage protein. No function is currently known. 144 -288524 pfam11682 zinc_ribbon_11 Probable zinc-ribbon. This family of proteins with unknown function appears to be restricted to Enterobacteriaceae. It is a probably zinc-ribbon. 127 -314531 pfam11683 DUF3278 Protein of unknown function (DUF3278). This bacterial family of proteins has no known function. 127 -314532 pfam11684 DUF3280 Protein of unknown function (DUF2380). This family of proteins with unknown function appears to be restricted to Proteobacteria. 133 -314533 pfam11685 DUF3281 Protein of unknown function (DUF3281). This family of bacterial proteins has no known function. 267 -288527 pfam11686 DUF3283 Protein of unknown function (DUF3283). This family of proteins with unknown function appears to be restricted to Proteobacteria. 61 -314534 pfam11687 DUF3284 Domain of unknown function (DUF3284). This family of proteins with unknown function appears to be restricted to Firmicutes. 116 -314535 pfam11688 DUF3285 Protein of unknown function (DUF3285). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 44 -314536 pfam11690 DUF3287 Protein of unknown function (DUF3287). This eukaryotic family of proteins has no known function. 121 -314537 pfam11691 DUF3288 Protein of unknown function (DUF3288). This family of proteins with unknown function appears to be restricted to Cyanobacteria. 88 -338062 pfam11692 DUF3289 Protein of unknown function (DUF3289). This family of proteins with unknown function appears to be restricted to Proteobacteria. 272 -314539 pfam11693 DUF2990 Protein of unknown function (DUF2990). This family of proteins represents a fungal protein with unknown function. 64 -338063 pfam11694 DUF3290 Protein of unknown function (DUF3290). This family of proteins with unknown function appears to be restricted to Firmicutes. 144 -314541 pfam11695 DUF3291 Domain of unknown function (DUF3291). This bacterial family of proteins has no known function. 139 -314542 pfam11696 DUF3292 Protein of unknown function (DUF3292). This eukaryotic family of proteins has no known function. 648 -338064 pfam11697 DUF3293 Protein of unknown function (DUF3293). This bacterial family of proteins has no known function. 73 -338065 pfam11698 V-ATPase_H_C V-ATPase subunit H. The yeast Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying organelles. It functions as an ATP dependent proton pump that transports protons across a lipid bilayer. This domain corresponds to the C terminal domain of the H subunit of V-ATPase. The N-terminal domain is required for the activation of the complex whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation. 116 -338066 pfam11699 CENP-C_C Mif2/CENP-C like. CENP-C_C is a C-terminal family of fungal and eukaryote proteins necessary for centromere formation. CENP-C is the inner-kinetochore centromere (CEN) binding protein. In the budding-yeast, Mif2, the yeast homolog, binds in the CDEIII region of the centromere, and has been shown to recruit a substantial subset of all inner and outer kinetochore proteins. Mif2 adopts a cupin fold and is extremely similar both in polypeptide chain conformation and in dimer geometry to the dimerization domain of a bacterial transcription factor. The Mif2 dimer appears to be part of an enhanceosome-like structure that nucleates kinetochore assembly in budding yeast. This C-terminal domain is the region via which CENP-C localizes to centromeres throughout the cell cycle 2,3]. 85 -314545 pfam11700 ATG22 Vacuole effluxer Atg22 like. Autophagy is a major survival survival mechanism in which eukaryotes recycle cellular nutrients during stress conditions. Atg22, Avt3 and Avt4 are partially redundant vacuolar effluxes, which mediate the efflux of leucine and other amino acids resulting from autophagy. This family also includes other transporter proteins. 479 -338067 pfam11701 UNC45-central Myosin-binding striated muscle assembly central. The UNC-45 or small muscle protein 1 of C.elegans is expressed in two forms from different genomic positions in mammals, as a general tissue protein UNC-45a and a specific form Unc-45b expressed only in striated and skeletal muscle. All members carry up to three amino-terminal tetratricopeptide repeat (TPR) domains towards their N-terminal, a UCS domain at the C-terminal that contains a number of Arm repeats pfam00514 and this central region of approximately 400 residues. Both the general form and the muscle form of UNC-45 function in myotube formation through cell fusion. Myofibril formation requires both GC and SM UNC-45, consistent with the fact that the cytoskeleton is necessary for the development and maintenance of organized myofibrils. The S. pombe Rng3p, is crucial for cell shape, normal actin cytoskeleton, and contractile ring assembly, and is essential for assembly of the myosin II-containing progenitors of the contractile ring. Widespread defects in the cytoskeleton are found in null mutants of all three fungal proteins. Mammalian Unc45 is found to act as a specific chaperone during the folding of myosin and the assembly of striated muscle by forming a stable complex with the general chaperone Hsp90. The exact function of this central region is not known. 148 -338068 pfam11702 DUF3295 Protein of unknown function (DUF3295). This family is conserved in fungi but the function is not known. 485 -314548 pfam11703 UPF0506 UPF0506. This uncharacterized family is found in Schistosoma genomes. Although uncharacterized it appears to belong to the knottin fold. The sequence is composed of two repeats of a 6 cysteine motif. 57 -338069 pfam11704 Folliculin Vesicle coat protein involved in Golgi to plasma membrane transport. In yeast cells this family functions in the regulated delivery of Gap1p (a general amino acid permease) to the cell surface, perhaps as a component of a post-Golgi secretory-vesicle coat complex. Birt-Hogg-Dube (BHD)4 syndrome is an autosomal dominant disorder characterized by hamartomas of skin follicles, lung cysts, spontaneous pneumothorax, and renal cell carcinoma. Folliculin is the protein from the BHD4 gene and is found to have no significant homology to any other human proteins. It is expressed in most tissues. These same symptoms also occur in TSC or tuberous sclerosis complex, suggesting that the same pathway is involved, and it is likely that the target is the down-stream Tor2 - an essential gene. Folliculin appears to bind Tor2, and down-regulation of Tor2 activity leads to up-regulation of nitrogen responsive genes including membrane transporters and amino acid permeases. 164 -338070 pfam11705 RNA_pol_3_Rpc31 DNA-directed RNA polymerase III subunit Rpc31. RNA polymerase III contains seventeen subunits in yeasts and in human cells. Twelve of these are akin to RNA polymerase I or II and the other five are RNA pol III-specific, and form the functionally distinct groups (i) Rpc31-Rpc34-Rpc82, and (ii) Rpc37-Rpc53. Rpc31, Rpc34 and Rpc82 form a cluster of enzyme-specific subunits that contribute to transcription initiation in S.cerevisiae and H.sapiens. There is evidence that these subunits are anchored at or near the N-terminal Zn-fold of Rpc1, itself prolonged by a highly conserved but RNA polymerase III-specific domain. 209 -338071 pfam11706 zf-CGNR CGNR zinc finger. This family consists of a C-terminal zinc finger domain. It seems likely to be DNA-binding given the conservation of many positively charged residues. The domain is named after a highly conserved motif found in many members of the family. 43 -338072 pfam11707 Npa1 Ribosome 60S biogenesis N-terminal. Npa1p is required for ribosome biogenesis and operates in the same functional environment as Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits. The protein partners of Npa1p include eight putative helicases as well as the novel Npa2p factor. Npa1p can also associate with a subset of H/ACA and C/D small nucleolar RNPs (snoRNPs) involved in the chemical modification of residues in the vicinity of the peptidyl transferase centre. The protein has also been referred to as Urb1, and this domain at the N-terminal is one of several conserved regions along the length. 331 -338073 pfam11708 Slu7 Pre-mRNA splicing Prp18-interacting factor. The spliceosome, an assembly of snRNAs (U1, U2, U4/U6, and U5) and proteins, catalyzes the excision of introns from pre-mRNAs in two successive trans-esterification reactions. Step 2 depends upon integral spliceosome constituents such as U5 snRNA and Prp8 and non-spliceosomal proteins Prp16, Slu7, Prp18, and Prp22. ATP hydrolysis by the DEAH-box enzyme Prp16 promotes a conformational change in the spliceosome that leads to protection of the 3'ss from targeted RNase H cleavage. This change, which probably reflects binding of the 3'ss PyAG in the catalytic centre of the spliceosome, requires the ordered recruitment of Slu7, Prp18, and Prp22 to the spliceosome. There is a close functional relationship between Prp8, Prp18, and Slu7, and Prp18 interacts with Slu7, so that together they recruit Prp22 to the spliceosome. Most members of the family carry a zinc-finger of the CCHC-type upstream of this domain. 251 -314554 pfam11709 Mit_ribos_Mrp51 Mitochondrial ribosomal protein subunit. This family is the mitochondrial ribosomal small-subunit protein Mrp51. Its function is not entirely clear, but deletion of the MRP51 gene completely blocked mitochondrial gene expression. 356 -314555 pfam11710 Git3 G protein-coupled glucose receptor regulating Gpa2. Git3 is one of six proteins required for glucose-triggered adenylate cyclase activation, and is a G protein-coupled receptor responsible for the activation of adenylate cyclase through Gpa2 - heterotrimeric G protein alpha subunit, part of the glucose-detection pathway. Git3 contains seven predicted transmembrane domains, a third cytoplasmic loop and a cytoplasmic tail. This is the conserved N-terminus of these proteins, and the C-terminal conserved region is now in family Git3_C. 201 -338074 pfam11711 Tim54 Inner membrane protein import complex subunit Tim54. Mitochondrial function depends on the import of hundreds of different proteins synthesized in the cytosol. Protein import is a multi-step pathway which includes the binding of precursor proteins to surface receptors, translocation of the precursor across one or both mitochondrial membranes, and folding and assembly of the imported protein inside the mitochondrion. Most precursor proteins carry amino-terminal targeting signals, called pre-sequences, and are imported into mitochondria via import complexes located in both the outer and the inner membrane (IM). The IM complex, TIM, is made up of at least two proteins which mediate translocation of proteins into the matrix by removing their signal peptide and another pair of proteins, Tim54 and Tim22, that insert the polytopic proteins, that carry internal targetting information, into the inner membrane. 373 -314557 pfam11712 Vma12 Endoplasmic reticulum-based factor for assembly of V-ATPase. The yeast vacuolar proton-translocating ATPase (V-ATPase) is the best characterized member of the V-ATPase family. A total of thirteen genes are required for encoding the subunits of the enzyme complex itself and an additional three for providing factors necessary for the assembly of the whole. Vma12 is one of these latter, all three of which are localized to the endoplasmic reticulum. 139 -288550 pfam11713 Peptidase_C80 Peptidase C80 family. This family belongs to cysteine peptidase family C80. 152 -152150 pfam11714 Inhibitor_I53 Thrombin inhibitor Madanin. Members of this family are the peptidase inhibitor madanin proteins. These proteins were isolated from tick saliva. 78 -314558 pfam11715 Nup160 Nucleoporin Nup120/160. Nup120 is conserved from fungi to plants to humans, and is homologous with the Nup160 of vertebrates. The nuclear core complex, or NPC, mediates macromolecular transport across the nuclear envelope. Deletion of the NUP120 gene causes clustering of NPCs at one side of the nuclear envelope, moderate nucleolar fragmentation and slower cell growth. The vertebrate NPC is estimated to contain between 30 and 60 different proteins. most of which are not known. Two important ones in creating the nucleoporin basket are Nup98 and Nup153, and Nup120, in conjunction with Nup 133, interacts with these two and itself plays a role in mRNA export. Nup160, Nup133, Nup96, and Nup107 are all targets of phosphorylation. The phosphorylation sites are clustered mainly at the N-terminal regions of these proteins, which are predicted to be natively disordered. The entire Nup107-160 sub-complex is stable throughout the cell cycle, thus it seems unlikely that phosphorylation affects interactions within the Nup107-160 sub-complex, but rather that it regulates the association of the sub-complex with the NPC and other proteins. 529 -314559 pfam11716 MDMPI_N Mycothiol maleylpyruvate isomerase N-terminal domain. 138 -338075 pfam11717 Tudor-knot RNA binding activity-knot of a chromodomain. This is a novel knotted tudor domain which is required for binding to RNA. The know influences the loop conformation of the helical turn Ht2 - residues 61-6 3- that is located at the side opposite the knot in the tudor domain-chromodomain; stabilisation of Ht2 is essential for RNA binding. 55 -338076 pfam11718 CPSF73-100_C Pre-mRNA 3'-end-processing endonuclease polyadenylation factor C-term. This is the C-terminal conserved region of the pre-mRNA 3'-end-processing of the polyadenylation factor CPSF-73/CPSF-100 proteins. The exact function of this domain is not known. 211 -314562 pfam11719 Drc1-Sld2 DNA replication and checkpoint protein. Genome duplication is precisely regulated by cyclin-dependent kinases CDKs, which bring about the onset of S phase by activating replication origins and then prevent re-licensing of origins until mitosis is completed. The optimum sequence motif for CDK phosphorylation is S/T-P-K/R-K/R, and Drc1-Sld2 is found to have at least 11 potential phosphorylation sites. Drc1 is required for DNA synthesis and S-M replication checkpoint control. Drc1 associates with Cdc2 and is phosphorylated at the onset of S phase when Cdc2 is activated. Thus Cdc2 promotes DNA replication by phosphorylating Drc1 and regulating its association with Cut5. Sld2 and Sld3 represent the minimal set of S-CDK substrates required for DNA replication. 395 -288556 pfam11720 Inhibitor_I78 Peptidase inhibitor I78 family. This family includes Aspergillus elastase inhibitor and belongs to MEROPS peptidase inhibitor family I78. 65 -338077 pfam11721 Malectin Di-glucose binding within endoplasmic reticulum. Malectin is a membrane-anchored protein of the endoplasmic reticulum that recognizes and binds Glc2-N-glycan. It carries a signal peptide from residues 1-26, a C-terminal transmembrane helix from residues 255-274, and a highly conserved central part of approximately 190 residues followed by an acidic, glutamate-rich region. Carbohydrate-binding is mediated by the four aromatic residues, Y67, Y89, Y116, and F117 and the aspartate at D186. NMR-based ligand-screening studies has shown binding of the protein to maltose and related oligosaccharides, on the basis of which the protein has been designated "malectin", and its endogenous ligand is found to be Glc2-high-mannose N-glycan. 162 -314564 pfam11722 zf-TRM13_CCCH CCCH zinc finger in TRM13 protein. This domain is found at the N-terminus of TRM13 methyltransferase proteins. It is presumed to be a zinc binding domain. 29 -314565 pfam11723 Aromatic_hydrox Homotrimeric ring hydroxylase. This domain is found on aromatic hydroxylating enzymes such as 2-oxo-1,2-dihydroquinoline 8-monooxygenase from Pseudomonas putida and carbazole 1,9a-dioxygenase from Janthinobacterium. These enzymes are homotrimers and are distantly related to the typical oxygenase. This domain is found C terminal to the Rieske domain which binds an iron-sulphur cluster. 241 -314566 pfam11724 YvbH_ext YvbH-like oligomerization region. This region is found at the C-terminus of a group of bacterial PH domains. This region is composed of a helical hairpin that appears to mediate oligomerization based on the known structure. This elaboration of the bacterial PH domain is only found in Bacillales. 61 -338078 pfam11725 AvrE Pathogenicity factor. This family is secreted by gram-negative Gammaproteobacteria such as Pseudomonas syringae of tomato and the fire blight plant pathogen Erwinia amylovora, amongst others. It is an essential pathogenicity factor of approximately 198 kDa. Its injection into the host-plant is dependent upon the bacterial type III or Hrp secretion system. The family is long and carries a number of predicted functional regions, including in Erwinia stewartii, an ERMS or endoplasmic reticulum membrane retention signal at both the C- and the N-termini, a leucine-zipper motif from residues 539-560, and a nuclear localization signal at 1358-1361. this conserved AvrE-family of effectors is among the few that are required for full virulence of many phytopathogenic pseudomonads, erwinias and pantoeas. A double beta-propeller structure is found towards the N-terminus. 1879 -338079 pfam11726 Inovirus_Gp2 Inovirus Gp2. Isoform G2P plays an essential role in viral DNA replication; it binds to the origin of replication and cleaves the dsDNA replicative form I (RFI) and becomes covalently bound to it via phosphotyrosine bond, generating the dsDNA replicative form II (RFII). 179 -314569 pfam11727 ISG65-75 Invariant surface glycoprotein. This family is found in Trypanosome species, and appears to be one of two invariant surface glycoproteins, ISG65 and ISG75. that are found in the mammalian stage of the parasitic protozoan. the sequence suggests the two families are polypeptides with N-terminal signal sequences, hydrophilic extracellular domains, single trans-membrane alpha-helices and short cytoplasmic domains. they are both expressed in the bloodstream form but not in the midgut stage. Both polypeptides are distributed over the entire surface of the parasite. 276 -314570 pfam11728 ArAE_1_C Putative aromatic acid exporter C-terminal domain. This region is a presumed intracellular domain found in a set of bacterial presumed transporter proteins. The region is about 160 amino acids in length. 162 -288565 pfam11729 Capsid-VNN nodavirus capsid protein. The capsid or coat protein of this family is expressed in Nodaviridae, that are ssRNA positive-strand viruses, with no DNA stage. These viruses are the causative agents of viral nervous necrosis in marine fish. 340 -314571 pfam11730 DUF3297 Protein of unknown function (DUF3297). This family is expressed in Proteobacteria and Actinobacteria. The function is not known. 71 -338080 pfam11731 Cdd1 Pathogenicity locus. Cdd1 is expressed as part of the pathogenicity locus operon in several different orders of bacteria. Many members of the family are annotated as being putative mitomycin resistance proteins but this could not be confirmed. 81 -338081 pfam11732 Thoc2 Transcription- and export-related complex subunit. The THO/TREX complex is the transcription- and export-related complex associated with spliceosomes that preferentially deal with spliced mRNAs as opposed to unspliced mRNAs. Thoc2 plays a role in RNA polymerase II (RNA pol II)-dependent transcription and is required for the stability of DNA repeats. In humans, the TRE complex is comprised of the exon-junction-associated proteins Aly/REF and UAP56 together with the THO proteins THOC1 (hHpr1/p84), Thoc2 (hRlr1), THOC3 (hTex1), THOC5 (fSAP79), THOC6 (fSAP35), and THOC7 (fSAP24). Although much evidence indicates that the function of the TREX complex as an adaptor between the mRNA and components of the export machinery is conserved among eukaryotes, in Drosophila the majority of mRNAs can be exported from the nucleus independently of the THO complex. 75 -314574 pfam11733 NP1-WLL Non-capsid protein NP1. This family is the non-capsid protein NP1 of the ssDNA, Parvovirinae virus Bocavirus of cattle and humans. 213 -314575 pfam11734 TilS_C TilS substrate C-terminal domain. This domain is found in the tRNA(Ile) lysidine synthetase (TilS) protein. 74 -338082 pfam11735 CAP59_mtransfer Cryptococcal mannosyltransferase 1. The capsule of pathogenic fungi is a complex polysaccharide whose formation is determined by a number of enzymes including, most importantly, alpha-1,3-mannosyltransferase 1, EC:2.4.1.-. 235 -338083 pfam11736 DUF3299 Protein of unknown function (DUF3299). This is a family of bacterial proteins of unknown function. 134 -338084 pfam11737 DUF3300 Protein of unknown function (DUF3300). This hypothetical bacterial gene product has a long hydrophobic segment and is thus likely to be a membrane protein. 230 -338085 pfam11738 DUF3298 Protein of unknown function (DUF3298). This family of bacterial protein C-terminal regions is highly conserved but the function is not known. Several members are annotated as being endo-1,4-beta-xylanase-like, but this could not be confirmed, and the structure can be defined as a heat-shock cognate 70kd protein 44kd ATPase. 62 -338086 pfam11739 DctA-YdbH Dicarboxylate transport. In certain bacterial families this protein is expressed from the ydbH gene, and there is a suggestion that this is a form of DctA or dicarboxylate transport protein. Dicarboxylate transport proteins are found in aerobic bacteria which grow on succinate or other C4-dicarboxylates. 206 -338087 pfam11740 KfrA_N Plasmid replication region DNA-binding N-term. The broad host-range plasmid RK2 is able to replicate in and be inherited in a stable manner in diverse Gram-negative bacterial species. It encodes a number of co-ordinately regulated operons including a central control korF1 operon that represses the kfrA operon. The KfrA polypeptide is a site-specific DNA-binding protein whose operator overlaps the kfrA promoter. The N-terminus, containing an helix-turn-helix motif, is essential for function. Downstream from this family is an extended coiled-coil domain containing a heptad repeat segment which is probably responsible for formation of multimers, and may provide an example of a bridge to host structures required for plasmid partitioning. 114 -314582 pfam11741 AMIN AMIN domain. This N-terminal domain of various bacterial protein families is crucial for the targetting of periplasmic or extracellular proteins to specific regions of the bacterial envelope. AMIN is derived from the N-terminal domain of AmiC, an N-acetylmuramoyl-l-alanine amidase of Escherichia coli which localizes to the septal ring during division and plays a key role in the separation of daughter cells. The AMIN domain is present in several protein families besides amidases suggesting that AMIN may represent a general targetting determinant involved in the localization of periplasmic protein complexes. 96 -314583 pfam11742 DUF3302 Protein of unknown function (DUF3302). This family of unknown function is expressed by proteobacteria. 77 -338088 pfam11743 DUF3301 Protein of unknown function (DUF3301). This family is conserved in Proteobacteria, but the function is not known. 93 -314585 pfam11744 ALMT Aluminium activated malate transporter. 469 -314586 pfam11745 DUF3304 Protein of unknown function (DUF3304). This is a family of bacterial proteins of unknown function. 125 -314587 pfam11746 DUF3303 Protein of unknown function (DUF3303). Several members are annotated as being LysM domain-like proteins, but these did not match any LysM domains reported in the literature. 90 -314588 pfam11747 RebB Killing trait. RebB is one of three proteins necessary for the production of R- bodies, refractile inclusion bodies produced by a small number of bacterial species, essential for the expression of the killing trait of the endosymbiont bacteria that produce them for attack upon the host Paramecium. R-bodies are highly insoluble protein ribbons which coil into cylindrical structures in the cell and the genes for their synthesis and assembly are encoded on a plasmid. One of these three proteins is RebB. 68 -314589 pfam11748 DUF3306 Protein of unknown function (DUF3306). This family of proteobacterial species proteins has no known function. 120 -338089 pfam11749 DUF3305 Protein of unknown function (DUF3305). Several members of this family are annotated as being molybdopterin-guanine dinucleotide biosynthesis protein A; however, this could not be confirmed. The family is found in proteobacteria. 143 -338090 pfam11750 DUF3307 Protein of unknown function (DUF3307). This family of bacterial proteins has no known function. 125 -314592 pfam11751 PorP_SprF Type IX secretion system membrane protein PorP/SprF. This entry describes a protein family unique to, and greatly expanded in, the Bacteriodetes. Species in this lineage include several, such as Cytophaga hutchinsonii and Cytophaga johnsonae (Flavobacterium johnsoniae), that exhibit a poorly understood rapid gliding phenotype. Several members of this protein family are found in operons with other genes whose loss leads to a loss of the rapid gliding phenotype. 272 -338091 pfam11752 DUF3309 Protein of unknown function (DUF3309). This family is conserved in bacteria but its function is not known. 49 -338092 pfam11753 DUF3310 Protein of unknwon function (DUF3310). This is a family of conserved bacteriophage proteins of unknown function. 58 -338093 pfam11754 Velvet Velvet factor. The velvet factor is conserved in many fungal species and is found to have gained different roles depending on the organism's need, expanding the conserved role in developmental programmes. The velvet factor orthologues can be adapted to the fungal-specific life cycle and may be involved in diverse functions such as sclerotia formation and toxin production, as in A. parasiticus, nutrition-dependent sporulation, as in A. fumigatus, or the microconidia-to-macroconidia ratio and cell wall formation, as in the heterothallic fungus Fusarium verticilloides. 236 -314596 pfam11755 DUF3311 Protein of unknown function (DUF3311). This is a family of short bacterial proteins of unknown function. 59 -338094 pfam11756 YgbA_NO Nitrous oxide-stimulated promoter. The function of ygaB is not known but it is a promoter that is stimulated by the presence of nitrous oxide. It is regulated by the gene-product of the bacterial nsrR gene. 103 -152193 pfam11757 RSS_P20 Suppressor of RNA silencing P21-like. This is a large family of putative suppressors of RNA silencing proteins, P20-P25, from ssRNA positive-strand viruses such as Closterovirus, Potyvirus and Cucumovirus families. RNA silencing is one of the major mechanisms of defense against viruses, and, in response, some viruses have evolved or acquired functions for suppression of RNA silencing. These counter-defencive viral proteins with RNA silencing suppressor (RSS) activity were originally discovered in the members of plant virus genera Potyvirus and Cucumovirus. Each of the conserved blocks of amino acids found in P21-like proteins corresponds to a computer-predicted alpha-helix, with the most C-terminal element being 42 residues long. This suggests conservation of the predominantly alpha-helical secondary structure in the P21-like proteins. 137 -314598 pfam11758 Bacteriocin_IIi Aureocin-like type II bacteriocin. This is a small family of type II bacteriocins usually encoded on a plasmid. Characteristically the members are small, cationic, rich in Lys and Try, and bring about a generalized membrane permeabilisation leading to leakage of ions. The family includes aureocin A, lacticins Q and Z, and BhtB as well as an archaeal member. 51 -314599 pfam11759 KRTAP Keratin-associated matrix. The major structural proteins of mammalian hair are the hair keratin intermediate filaments (KIFs) and the keratin-associated proteins (KRTAPs). In the hair cortex, hair keratins are embedded in an inter-filamentous matrix consisting of KRTAPs which are essential for the formation of a rigid and resistant hair shaft as a result of disulfide bonds between cysteine residues. There are essentially three groups of KRTAPs, viz: the high-sulfur (HS) and ultra-high-sulfur (UHS) KRTAPs (cysteine content: 16-30 and >30 mol%, respectively) and the high-glycine/tyrosine (HGT: 35-60 mol% glycine and tyrosine) KRTAPs. 59 -338095 pfam11760 CbiG_N Cobalamin synthesis G N-terminal. Members of this family are involved in cobalamin synthesis. Synechocystis sp. cbiH represents a fusion between cbiH and cbiG. As other multi-functional proteins involved in cobalamin biosynthesis catalyze adjacent steps in the pathway, including CysG, CobL (CbiET), CobIJ and CobA-HemD, it is therefore possible that CbiG catalyzes a reaction step adjacent to CbiH. In the anaerobic pathway such a step could be the formation of a gamma lactone, which is thought to help to mediate the anaerobic ring contraction process. Within the cobalamin synthesis pathway CbiG catalyzes the both the opening of the lactone ring and the extrusion of the two-carbon fragment of cobalt-precorrin-5A from C-20 and its associated methyl group (deacylation) to give cobalt-precorrin-5B. The N-terminal of the enzyme is conserved in this family, and the C-terminal and the mid-sections are conserved independently in other families, CbiG_C and CbiG_mid, although the distinct function of each region is unclear. 80 -338096 pfam11761 CbiG_mid Cobalamin biosynthesis central region. Members of this family are involved in cobalamin synthesis. Synechocystis sp. cbiH represents a fusion between cbiH and cbiG. As other multi-functional proteins involved in cobalamin biosynthesis catalyze adjacent steps in the pathway, including CysG, CobL (CbiET), CobIJ and CobA-HemD, it is therefore possible that CbiG catalyzes a reaction step adjacent to CbiH. In the anaerobic pathway such a step could be the formation of a gamma lactone, which is thought to help to mediate the anaerobic ring contraction process. 88 -338097 pfam11762 Arabinose_Iso_C L-arabinose isomerase C-terminal domain. This is a family of L-arabinose isomerases, AraA, EC:5.3.1.4. These enzymes catalyze the reaction: L-arabinose <=> L-ribulose. This reaction is the first step in the pathway of L-arabinose utilisation as a carbon source after entering the cell L-arabinose is converted into L-ribulose by the L-arabinose isomerases enzyme. This is a C-terminal non catalytic domain. 114 -288596 pfam11763 DIPSY Cell-wall adhesin ligand-binding C-terminal. The DIPSY domain is characterized by the distinctive D*I*PSY motif at the very C-terminus of yeast cell-wall glycoproteins. It appears not to be conserved in any other species, however. In fungi, cell adhesion is required for flocculation, mating and virulence, and is mediated by covalently bound cell wall proteins termed adhesins. Map4, an adhesin required for mating in Schizosaccharomyces pombe, is N-glycosylated and O-glycosylated, and is an endogenous substrate for the mannosyl transferase Oma4p. Map4 has a modular structure with an N-terminal signal peptide, a serine and threonine (S/T)-rich domain that includes nine repeats of 36 amino acids (rich in serine and threonine residues, but lacking glutamines), and a C-terminal DIPSY domain with no glycosyl-phosphatidyl inositol (GPI)-anchor signal. The N-terminal S/T-rich regions, are required for cell wall attachment, but the C-terminal DIPSY domain is required for agglutination and mating in liquid and solid media. 122 -338098 pfam11764 N-SET COMPASS (Complex proteins associated with Set1p) component N. The n-SET or N-SET domain is a component of the COMPASS complex, associated with SET1, conserved in yeasts and in other eukaryotes up to humans. The COMPASS complex functions to methylate the fourth lysine of Histone 3 and for the silencing of genes close to the telomeres of chromosomes. This domain promotes trimethylation in conjunction with an RRM domain and is necessary for binding of the Spp1 component of COMPASS into the complex. 170 -338099 pfam11765 Hyphal_reg_CWP Hyphally regulated cell wall protein N-terminal. The proteins in this family are all fungal and largely annotated as being hyphally regulated cell wall proteins, and several are listed as the enzyme EC:3.2.1.18. This enzyme is acetylneuraminyl hydrolase or exo-alpha-sialidase, that hydrolyzes glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates. 322 -314605 pfam11766 Candida_ALS_N Cell-wall agglutinin N-terminal ligand-sugar binding. This is likely to be the sugar or ligand binding domain of the yeast alpha-agglutinins. 242 -338100 pfam11767 SET_assoc Histone lysine methyltransferase SET associated. SET domains are protein lysine methyltransferase enzymes. SET domains appear to be protein-protein interaction domains. A subset of SET domains have been called PR domains. The SET domain consists of two regions known as N-SET and SET-C. SET-C forms an unusual and conserved knot-like structure of probably functional importance. Additionally to SET-N and SET-C, an insert region (SET-I) and flanking regions of high structural variability form part of the overall structure. This domain is found in fungi associated with SET and N-SET domains. 65 -314607 pfam11768 Frtz WD repeat-containing and planar cell polarity effector protein Fritz. Fritz is a probable effector of the planar cell polarity signaling pathway which regulates the septin cytoskeleton in both ciliogenesis and collective cell movements. In Drosophila melanogaster, fritz regulates both the location and the number of wing cell prehair initiation sites. 545 -338101 pfam11769 DUF3313 Protein of unknown function (DUF3313). This a bacterial family of proteins which are annotated as putative lipoproteins. 196 -314609 pfam11770 GAPT GRB2-binding adapter (GAPT). This is a family of transmembrane proteins which bind the growth factor receptor-bound protein 2 (GRB2) in B cells. In contrast to other transmembrane adaptor proteins, GAPT is not phosphorylated upon BCR ligation. It associates with GRB2 constitutively through its proline-rich region. 155 -314610 pfam11771 DUF3314 Protein of unknown function (DUF3314). This small family contains human, mouse and fish members but the function is not known. 162 -338102 pfam11772 EpuA DNA-directed RNA polymerase subunit beta. This short 60-residue long bacterial family is the beta subunit of the DNA-directed RNA polymerase, likely to be EC:2.7.7.6. It is membrane-bound and is referred to by the name EpuA. 46 -338103 pfam11773 PulG Type II secretory pathway pseudopilin. The secreton (type II secretion) and type IV pilus biogenesis branches of the general secretory pathway in Gram-negative bacteria share many features that suggest a common evolutionary origin. Five components of the secreton, the pseudopilins, are similar to subunits of type IV pili. Pseudopilin PulG is one of the secreton pseudopilins, and is found to assemble into pilus-like bundles. PulG interacts with proteins H, I and J within the multi-protein complex as well as blocking extracellular secretion and reducing the amount of PulE protein as well as the amounts of PulL, PulM, PulC and PulD when G is over-expressed. In Klebsiella the pilus-like structure is composed largely of PulG. 82 -314613 pfam11774 Lsr2 Lsr2. Lsr2 is a small, basic DNA-bridging protein present in Mycobacterium and related actinomycetes. It is a functional homolog of the H-NS-like proteins. H-NS proteins play a role in nucleoid organisation and also function as a pleiotropic regulator of gene expression. 109 -288608 pfam11775 CobT_C Cobalamin biosynthesis protein CobT VWA domain. This family consists of several bacterial cobalamin biosynthesis (CobT) proteins. CobT is involved in the transformation of precorrin-3 into cobyrinic acid. 220 -338104 pfam11776 RcnB Nickel/cobalt transporter regulator. RcnB is a family of Proteobacteria proteins. RcnB is required for maintaining metal ion homeostasis, in conjunction with the efflux pump RcnA, family NicO, pfam03824. 51 -338105 pfam11777 DUF3316 Protein of unknown function (DUF3316). This family of bacterial proteins has no known function. Several members are, however, annotated as being putative acyl-CoA synthetase, but this could not be confirmed. 107 -314616 pfam11778 SID Septation initiation. This family is required for activation of the spg1 GTPase signalling cascade which leads to the initiation of septation and the subsequent termination of mitosis. It may act as a scaffold at the spindle pole body to which other components of the spg1 signalling cascade attach in pombe. In S.cerevisiae it is both required for the proper formation of the spindle pole body outer plaque and may also connect the outer plaque to the central plaque embedded in the nuclear envelope. 135 -338106 pfam11779 SPT_ssu-like Small subunit of serine palmitoyltransferase-like. Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In mammals, two small subunits of serine palmitoyltransferase, ssSPTa and ssSPTb, substantially enhance the activity of SPT, conferring full enzyme activity upon it. The 2 ssSPT isoforms share a conserved hydrophobic central domain, which is predicted to reside in the membrane. 50 -314618 pfam11780 DUF3318 Protein of unknown function (DUF3318). This is a bacterial family of uncharacterized proteins. 141 -314619 pfam11781 zf-RRN7 Zinc-finger of RNA-polymerase I-specific TFIIB, Rrn7. This is the zinc-finger at the start of transcription-binding factor that associates strongly with both Rrn6 and Rrn7 to form a complex which itself binds the TATA-binding protein and is required for transcription by the core domain of the RNA PolI promoter. 32 -288615 pfam11782 DUF3319 Protein of unknown function (DUF3319). This is a family of short bacterial proteins, a few of which are annotated as being minor tail protein. Otherwise the function is unknown. 89 -338107 pfam11783 Cytochrome_cB Cytochrome c bacterial. This is a family of long bacterial cytochrome c proteins, found in Proteobacteria and Chlorobi families. 173 -338108 pfam11784 DUF3320 Protein of unknown function (DUF3320). This family is conserved in Proteobacteria and Chlorobi families. Many members are annotated as being putative DNA helicase-related proteins. 49 -314622 pfam11785 Aft1_OSA Aft1 osmotic stress response (OSM) domain. This domain is found in the transcription factor Aft1 which is required for a wide range of stress responses. The OSM domain has been shown to be involved in the osmotic stress response. 57 -314623 pfam11786 Aft1_HRA Aft1 HRA domain. This domain is found in the transcription factor Aft1 which is required for a wide range of stress responses. The HRA domain is involved in meiotic recombination. It has been shown to be necessary and sufficient to activate recombination. 76 -314624 pfam11787 Aft1_HRR Aft1 HRR domain. This domain is found in the transcription factor Aft1 which is required for a wide range of stress responses. The HRR domain is involved in meiotic recombination. It has been shown to be necessary and sufficient to repress recombination. 69 -314625 pfam11788 MRP-L46 39S mitochondrial ribosomal protein L46. This is the L46 subunit of the mammalian mitochondrial ribosome, conserved from plants and fungi. 119 -314626 pfam11789 zf-Nse Zinc-finger of the MIZ type in Nse subunit. Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex. This family is the zinc-finger domain similar to the MIZ type of zinc-finger. 57 -314627 pfam11790 Glyco_hydro_cc Glycosyl hydrolase catalytic core. This family is probably a glycosyl hydrolase, and is conserved in fungi and some Proteobacteria. The pombe member is annotated as being from IPR013781. 234 -338109 pfam11791 Aconitase_B_N Aconitate B N-terminal domain. This family represents the N-terminal domain of Aconitase B. 153 -288625 pfam11792 Baculo_LEF5_C Baculoviridae late expression factor 5 C-terminal domain. This C-terminal domain is likely to be a zinc-binding domain. 42 -314629 pfam11793 FANCL_C FANCL C-terminal domain. This domain is found at the C-terminus of the Fancl protein in humans which is the putative E3 ubiquitin ligase subunit of the FA complex (Fanconi anaemia). Eight subunits of the Fanconi anaemia gene products form a multisubunit nuclear complex which is required for mono-ubiquitination of a downstream FA protein, FANCD2. 70 -338110 pfam11794 HpaB_N 4-hydroxyphenylacetate 3-hydroxylase N terminal. HpaB is part of the 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli. HpaB is part of a heterodimeric enzyme that also requires HpaC. The enzyme is NADH-dependent and uses FAD as the redox chromophore. This family also includes PvcC, which may play a role in one of the proposed hydroxylation steps of pyoverdine chromophore biosynthesis. 266 -314631 pfam11795 DUF3322 Uncharacterized protein conserved in bacteria N-term (DUF3322). This domain, found in various hypothetical bacterial proteins, has no known function. The family represents just the N-terminus. 188 -314632 pfam11796 DUF3323 Protein of unknown function N-terminus (DUF3323). Proteins in this entry are encoded within a conserved gene four-gene neighborhood found sporadically in a phylogenetically broad range of bacteria including: Nocardia farcinica, Symbiobacterium thermophilum, and Streptomyces avermitilis (Actinobacteria), Geobacillus kaustophilus (Firmicutes), Azoarcus sp. EbN1 and Ralstonia solanacearum (Beta-proteobacteria). 208 -314633 pfam11797 DUF3324 Protein of unknown function C-terminal (DUF3324). This family consists of several hypothetical bacterial proteins of unknown function. 138 -288631 pfam11798 IMS_HHH IMS family HHH motif. These proteins are involved in UV protection, eg. 32 -338111 pfam11799 IMS_C impB/mucB/samB family C-terminal domain. These proteins are involved in UV protection. 110 -338112 pfam11800 RP-C_C Replication protein C C-terminal region. Replication protein C is involved in the early stages of viral DNA replication. 206 -338113 pfam11801 Tom37_C Tom37 C-terminal domain. The TOM37 protein is one of the outer membrane proteins that make up the TOM complex for guiding cytosolic mitochondrial beta-barrel proteins from the cytosol across the outer mitochondrial membrane into the intra-membrane space. In conjunction with TOM70 it guides peptides without an MTS into TOM40, the protein that forms the passage through the outer membrane. It has homology with Metaxin-1, also part of the outer mitochondrial membrane beta-barrel protein transport complex. 145 -314637 pfam11802 CENP-K Centromere-associated protein K. CENP-K is one of seven new CENP-A-nucleosome distal (CAD) centromere components (the others being CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S) that are identified as assembling on the CENP-A nucleosome associated complex, NAC. The CENP-A NAC is essential, as disruption of the complex causes errors of chromosome alignment and segregation that preclude cell survival despite continued centromere-derived mitotic checkpoint signalling. CENP-K is centromere-associated through its interaction with one or more components of the CENP-A NAC. 263 -314638 pfam11803 UXS1_N UDP-glucuronate decarboxylase N-terminal. The N-terminus of the UDP-glucuronate decarboxylases may be involved in localization to the perinuclear Golgi membrane. 75 -338114 pfam11804 DUF3325 Protein of unknown function (DUF3325). This family of short proteins are functionally uncharacterized. This family is restricted to Alpha-, Beta- and Gamma-proteobacteria. 101 -314640 pfam11805 DUF3326 Protein of unknown function (DUF3326). This protein is functionally uncharacterized. It is about 300-500 amino acids in length. This family is found in plants and bacteria. 336 -314641 pfam11806 DUF3327 Domain of unknown function (DUF3327). 120 -314642 pfam11807 DUF3328 Domain of unknown function (DUF3328). This family of proteins are functionally uncharacterized. This family is only found in eukaryotes. 220 -338115 pfam11808 DUF3329 Domain of unknown function (DUF3329). This family of proteins are functionally uncharacterized. This family is only found in bacteria. 83 -288642 pfam11809 DUF3330 Domain of unknown function (DUF3330). This family of proteins are functionally uncharacterized. This family is only found in bacteria. 69 -314644 pfam11810 DUF3332 Domain of unknown function (DUF3332). This family of proteins are functionally uncharacterized. This family is only found in bacteria. 170 -288644 pfam11811 DUF3331 Domain of unknown function (DUF3331). This family of proteins are functionally uncharacterized. This family is only found in bacteria. Proteins in this family vary in length from 96 to 160 amino acids. 90 -338116 pfam11812 DUF3333 Domain of unknown function (DUF3333). This family of proteins are functionally uncharacterized. This family is only found in bacteria. This presumed domain is typically between 116 to 159 amino acids in length. 150 -314646 pfam11813 DUF3334 Protein of unknown function (DUF3334). This family of proteins are functionally uncharacterized. This family is only found in bacteria. Proteins in this family are typically between 227 to 238 amino acids in length. 226 -338117 pfam11814 DUF3335 Peptidase_C39 like family. 206 -338118 pfam11815 DUF3336 Domain of unknown function (DUF3336). This family of proteins are functionally uncharacterized. This family is found in bacteria and eukaryotes. This presumed domain is typically between 143 to 227 amino acids in length. 135 -338119 pfam11816 DUF3337 Domain of unknown function (DUF3337). This family of proteins are functionally uncharacterized. This family is only found in eukaryotes. This presumed domain is typically between 285 to 342 amino acids in length. 162 -314650 pfam11817 Foie-gras_1 Foie gras liver health family 1. Mutating the gene foie gras in zebrafish has been shown to affect development; the mutants develop large, lipid-filled hepatocytes in the liver, resembling those in individuals with fatty liver disease. Foie-gras protein is long and has several well-defined domains though none of them has a known function. We have annotated this one as the first. The C-terminus of this region contains TPR repeats. 262 -338120 pfam11818 DUF3340 C-terminal domain of tail specific protease (DUF3340). This presumed domain is found at the C-terminus of tail specific proteases. Its function is unknown. This family is found in bacteria and eukaryotes. This presumed domain is typically between 88 to 187 amino acids in length. 142 -314652 pfam11819 DUF3338 Domain of unknown function (DUF3338). This family of proteins are functionally uncharacterized. This family is found in eukaryotes. This presumed domain is about 130 amino acids in length. 133 -314653 pfam11820 DUF3339 Protein of unknown function (DUF3339). This family of proteins are functionally uncharacterized. This family is found in eukaryotes. Proteins in this family are about 70 amino acids in length. 62 -314654 pfam11821 DUF3341 Protein of unknown function (DUF3341). This family of proteins are functionally uncharacterized. This family is found in bacteria. Proteins in this family are about 170 amino acids in length. 170 -314655 pfam11822 DUF3342 Domain of unknown function (DUF3342). This family of proteins are functionally uncharacterized. This family is found in bacteria. The domain is a BTB-like domain. 97 -314656 pfam11823 DUF3343 Protein of unknown function (DUF3343). This family of proteins are functionally uncharacterized. This protein is found in bacteria and archaea. Proteins in this family are typically between 78 to 102 amino acids in length. 63 -314657 pfam11824 DUF3344 Protein of unknown function (DUF3344). This family of proteins are functionally uncharacterized. This protein is found in bacteria and archaea. Proteins in this family are typically between 367 to 1857 amino acids in length. 263 -314658 pfam11825 Nuc_recep-AF1 Nuclear/hormone receptor activator site AF-1. Nuclear receptors (NRs) are a family of ligand-inducible transcription factors, and, like other transcription factors, they contain a distinct DNA binding domain that allows for target gene recognition and several activation domains that possess the ability to activate transcription. One of these activation domains is at the N-terminal, although there are two distinct motifs within this domain, between residues 20-36 and between 74 and the end of this domain, which are the binding regions. One of the co-activators is TIF1beta, which appears to bind at the first motif. 113 -288659 pfam11826 DUF3346 Protein of unknown function (DUF3346). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 231 to 659 amino acids in length. 225 -314659 pfam11827 DUF3347 Protein of unknown function (DUF3347). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 169 to 570 amino acids in length. 180 -338121 pfam11828 DUF3348 Protein of unknown function (DUF3348). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 244 to 323 amino acids in length. 247 -314661 pfam11829 DUF3349 Protein of unknown function (DUF3349). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 99 to 124 amino acids in length. 93 -314662 pfam11830 DUF3350 Domain of unknown function (DUF3350). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 50 to 64 amino acids in length. 54 -314663 pfam11831 Myb_Cef pre-mRNA splicing factor component. This family is a region of the Myb-Related Cdc5p/Cef1 proteins, in fungi, and is part of the pre-mRNA splicing factor complex. 226 -314664 pfam11832 DUF3352 Protein of unknown function (DUF3352). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 538 to 575 amino acids in length. 534 -314665 pfam11833 CPP1-like Protein CHAPERONE-LIKE PROTEIN OF POR1-like. This entry includes proteins from bacteria and eukaryotes. The plant member, CHAPERONE-LIKE PROTEIN OF POR1 (CPP1), is an essential protein for chloroplast development, plays a role in the regulation of POR (light-dependent protochlorophyllide oxidoreductase) stability and function. 194 -338122 pfam11834 KHA KHA, dimerization domain of potassium ion channel. KHA is the tetramerisation domain of eukaryotic voltage-dependent potassium ion-channel proteins. In plants the domain lies at the C-terminus whereas in many chordates it lies at the N-terminus. 64 -338123 pfam11835 DUF3355 Domain of unknown function (DUF3355). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 111 to 177 amino acids in length. 174 -338124 pfam11836 Phage_TAC_11 Phage tail tube protein, GTA-gp10. This is a family of phage tail tube proteins. 97 -314668 pfam11837 DUF3357 Domain of unknown function (DUF3357). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 96 to 119 amino acids in length. 105 -338125 pfam11838 ERAP1_C ERAP1-like C-terminal domain. This large domain is composed of 16 alpha helices organized as 8 HEAT-like repeats. This domain forms a concave face that faces towards the active site of the peptidase. 315 -338126 pfam11839 Alanine_zipper Alanine-zipper, major outer membrane lipoprotein. This is a family of a major outer membrane lipoprotein, OprL that is an alanine-zipper. Zipper motifs are a seven-repeat motif where the first and fourth positions are occupied by an aliphatic residue, usually a leucine. These residues are positioned on the outside of the coil such as to bind firmly to one or more monomers of the protein to create a triple or five-helical coiled-coil that probably forms a seam in a membrane. 69 -288673 pfam11840 DUF3360 Protein of unknown function (DUF3360). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 489 to 517 amino acids in length. 485 -338127 pfam11841 DUF3361 Domain of unknown function (DUF3361). This domain is functionally uncharacterized. This domain is found in eukaryotes and predominantly in ELMO (Elongation and Cell motility) proteins where it may play an important role in defining the functions of the ELMO family members and may be functionally linked to the ELMO domain in these proteins. 154 -338128 pfam11842 DUF3362 Domain of unknown function (DUF3362). This domain is functionally uncharacterized. This domain is found in bacteria and archaea. This presumed domain is typically between 117 to 158 amino acids in length. 151 -314673 pfam11843 DUF3363 Protein of unknown function (DUF3363). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 323 to 658 amino acids in length. 381 -338129 pfam11844 DUF3364 Domain of unknown function (DUF3364). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 60 amino acids in length. 56 -338130 pfam11845 DUF3365 Protein of unknown function (DUF3365). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 198 to 657 amino acids in length. 186 -314676 pfam11846 Wzy_C_2 Virulence factor membrane-bound polymerase, C-terminal. Wzy is a membrane-bound polymerase of 12 TMs, found in Gram-positive bacteria such as Streptococcus pnuemoniae. It forms part of the EPS or exopolysaccharide system. This family is the 6xTMs at the C-terminal end of the molecule. Wzy functions in polymerizing the oligosaccharide repeat subunits to form high-molecular-weight capsular polysaccharides. A contiguous emebrane-bound flippase, Wzx, pfam01943, transports the repeat units to the external surface of the membrane. These polysaccharides form the capsule and their differing compositions contribute to the multidudinous pneumococcal capsular serotypes, all being structurally and antigenically different. 186 -314677 pfam11847 DUF3367 Domain of unknown function (DUF3367). This domain is functionally uncharacterized. This domain is found in bacteria and archaea. This presumed domain is typically between 667 to 694 amino acids in length. 642 -338131 pfam11848 DUF3368 Domain of unknown function (DUF3368). This domain is functionally uncharacterized. This domain is found in bacteria and archaea. This presumed domain is about 50 amino acids in length. 46 -338132 pfam11849 DUF3369 Domain of unknown function (DUF3369). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 170 amino acids in length. The domain appears to be related to the GAF domain. 168 -314680 pfam11850 DUF3370 Protein of unknown function (DUF3370). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 452 to 532 amino acids in length. 422 -314681 pfam11851 DUF3371 Domain of unknown function (DUF3371). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 125 to 142 amino acids in length. 83 -338133 pfam11852 DUF3372 Domain of unknown function (DUF3372). This domain is functionally uncharacterized. This domain is found in bacteria and eukaryotes. This presumed domain is about 170 amino acids in length. 166 -338134 pfam11853 DUF3373 Protein of unknown function (DUF3373). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 472 to 574 amino acids in length. 392 -314684 pfam11854 MtrB_PioB Putative outer membrane beta-barrel porin, MtrB/PioB. MtrB-PioB is a family of bacterial putative outer membrane porins. This family, is secreted as part of the pio (phototrophic iron oxidation) operon that has been found to couple the oxidation of ferrous iron [Fe(II)] to reductive CO2 fixation using light energy. PioABC is found in Rhodopseudomonas palustris and MtrB-PioB is likely to be a beta-barrel porin. Similar to other outer membrane porins, PioB and MtrB are predicted to have long loops protruding into the extracellular space and short turns on the periplasmic side. 646 -314685 pfam11855 DUF3375 Protein of unknown function (DUF3375). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 479 to 499 amino acids in length. 469 -314686 pfam11856 DUF3376 Protein of unknown function (DUF3376). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 770 to 1142 amino acids in length. 495 -314687 pfam11857 DUF3377 Domain of unknown function (DUF3377). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is about 70 amino acids in length. 71 -314688 pfam11858 DUF3378 Domain of unknown function (DUF3378). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 80 amino acids in length. 75 -338135 pfam11859 DUF3379 Protein of unknown function (DUF3379). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 234 to 251 amino acids in length. 232 -338136 pfam11860 Muraidase N-acetylmuramidase. Endolysins are bacteriophage encoded proteins synthesized at the end of the lytic infection cycle. They degrade the peptidoglycan (PG) of the host bacterium to allow viral progeny release. This domain family is found in bacteria and viruses. It is also found associated with pfam01471. One of the family members is the modular Gp110 endolysin found in the Salmonella phage. This domain represents the catalytic region found in the C-terminal of Gp110. It has been demonstrated to have N-acetylmuramidase (lysozyme) activity cleaving the beta-(1,4) glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine residues in the sugar backbone of the PG. Furthermore, sequence alignments containing this domain show that the Gp110 E101 residue is conserved (suggesting that is is the catalytic residue), and followed by serine (a common feature in lysozymes). The structure of endolysins varies depending on their origin. In general, most of the endolysins from phages infecting Gram-positive bacteria have a modular structure consisting of one or two N-terminal enzymatic active domains (EADs) and a C-terminal cell wall binding domain (CBD) separated by a short linker. In silico##analysis indicate that this endolysin has a modular structure harboring this EAD family at the C-terminus and a PG_binding_1 CBD at the N-terminus. 173 -338137 pfam11861 DUF3381 Domain of unknown function (DUF3381). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 156 to 174 amino acids in length. This domain is found associated with pfam07780, pfam01728. 160 -338138 pfam11862 DUF3382 Domain of unknown function (DUF3382). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 100 amino acids in length. This domain is found associated with pfam02653. 99 -338139 pfam11863 DUF3383 Protein of unknown function (DUF3383). This family of proteins are functionally uncharacterized. This protein is found in bacteria and viruses. Proteins in this family are typically between 356 to 501 amino acids in length. 491 -338140 pfam11864 DUF3384 Domain of unknown function (DUF3384). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 422 to 486 amino acids in length. This domain is found associated with pfam02145. 462 -338141 pfam11865 DUF3385 Domain of unknown function (DUF3385). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 160 to 172 amino acids in length. This domain is found associated with pfam00454, pfam02260, pfam02985, pfam02259 and pfam08771. 160 -314696 pfam11866 DUF3386 Protein of unknown function (DUF3386). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are about 220 amino acids in length. 211 -338142 pfam11867 DUF3387 Domain of unknown function (DUF3387). This domain is functionally uncharacterized. This domain is found in bacteria and archaea. This presumed domain is typically between 255 to 340 amino acids in length. This domain is found associated with pfam04851, pfam04313. 329 -314698 pfam11868 DUF3388 Protein of unknown function (DUF3388). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 261 to 275 amino acids in length. This protein is found associated with pfam01842. 190 -314699 pfam11869 DUF3389 Protein of unknown function (DUF3389). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 80 amino acids in length. 75 -338143 pfam11870 DUF3390 Domain of unknown function (DUF3390). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 90 amino acids in length. This domain is found associated with pfam02589. This domain is found on most LutB proteins in association with DUF162 and usually Fer4_8. The LutABC operon is involved in lactate-utilisation and is essential. Duf162, pfam02589, is over-represented in the human gut-microbiome. 86 -338144 pfam11871 DUF3391 Domain of unknown function (DUF3391). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is typically between 122 to 139 amino acids in length. This domain is found associated with pfam01966. 86 -314702 pfam11872 DUF3392 Protein of unknown function (DUF3392). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 110 amino acids in length. 103 -338145 pfam11873 DUF3393 Domain of unknown function (DUF3393). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is typically between 188 to 206 amino acids in length. This domain is found associated with pfam01464. 205 -338146 pfam11874 DUF3394 Domain of unknown function (DUF3394). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 190 amino acids in length. This domain is found associated with pfam06808. 180 -338147 pfam11875 DUF3395 Domain of unknown function (DUF3395). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 147 to 176 amino acids in length. This domain is found associated with pfam00226. 146 -338148 pfam11876 DUF3396 Protein of unknown function (DUF3396). This family of proteins are functionally uncharacterized. This protein is found in bacteria and viruses. Proteins in this family are typically between 302 to 382 amino acids in length. 204 -338149 pfam11877 DUF3397 Protein of unknown function (DUF3397). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 114 to 128 amino acids in length. 112 -338150 pfam11878 DUF3398 Domain of unknown function (DUF3398). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is about 100 amino acids in length. 94 -314709 pfam11879 DUF3399 Domain of unknown function (DUF3399). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is about 100 amino acids in length. This domain is found associated with pfam02214, pfam00520. 104 -338151 pfam11880 DUF3400 Domain of unknown function (DUF3400). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 50 amino acids in length. This domain is found associated with pfam02754, pfam02913, pfam01565. 45 -314711 pfam11881 SPAR_C C-terminal domain of SPAR protein. This domain is found st the C-terminus of many spine-associated Rap GTPase-activating - SPAR - proteins in eukaryotes. This domain is found associated with pfam02145, pfam00595. The exact function is not known. 241 -338152 pfam11882 DUF3402 Domain of unknown function (DUF3402). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is typically between 350 to 473 amino acids in length. This domain is found associated with pfam07923. 421 -314713 pfam11883 DUF3403 Domain of unknown function (DUF3403). This domain is functionally uncharacterized. This domain is found in eukaryotes. This presumed domain is about 50 amino acids in length. This domain is found associated with pfam00069, pfam08276, pfam00954, pfam01453. 46 -314714 pfam11884 DUF3404 Domain of unknown function (DUF3404). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 260 amino acids in length. This domain is found associated with pfam02518, pfam00512. 259 -338153 pfam11885 DUF3405 Protein of unknown function (DUF3405). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 636 to 810 amino acids in length. 492 -338154 pfam11886 TOC159_MAD Translocase of chloroplast 159/132, membrane anchor domain. This is the membrane-anchor domain of translocase of chloroplast 159, TOC159/132. This domain is present in plants at the C-terminus of the GTPase, AIG1, pfam04548, and anchors the GTPas region to the outer membrane of the chloroplast. The domain may carry a very C-terminal sequence motif that resembles a transit peptide. 267 -314717 pfam11887 Mce4_CUP1 Cholesterol uptake porter CUP1 of Mce4, putative. Mce4_CUP1 is a family of putative Mce4 transporters of cholesterol. The domain is found associated with pfam02470. The full TCDB classification for this family in conjunction with PF02470 is TC:3.A.1.27.4. 250 -338155 pfam11888 DUF3408 Protein of unknown function (DUF3408). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 128 to 160 amino acids in length. 133 -288721 pfam11889 DUF3409 Domain of unknown function (DUF3409). This domain is functionally uncharacterized. This domain is found in viruses. This presumed domain is about 60 amino acids in length. This domain is found associated with pfam00271, pfam05550, pfam05578. 56 -338156 pfam11890 DUF3410 Domain of unknown function (DUF3410). This domain is functionally uncharacterized. This domain is found in bacteria. This presumed domain is about 90 amino acids in length. This domain is found associated with pfam02826, pfam00389. This domain has a conserved RRE sequence motif. 81 -338157 pfam11891 RETICULATA-like Protein RETICULATA-related. This entry represents RETICULATA and related proteins from plants. Arabidopsis RETICULATA protein is involved in differential development of bundle sheath and mesophyll cell chloroplasts. 175 -338158 pfam11892 DUF3412 Domain of unknown function (DUF3412). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 120 amino acids in length. This domain is found associated with pfam03641. 121 -338159 pfam11893 DUF3413 Domain of unknown function (DUF3413). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 250 amino acids in length. This domain is found associated with pfam00884. 245 -338160 pfam11894 Nup192 Nuclear pore complex scaffold, nucleoporins 186/192/205. This is a family of eukaryotic nucleoporins of several different sizes. All of them are long and form the scaffold of the nuclear pore complex. Nup192 in particular modulates the permeability of the central channel of the NPC central or nuclear pore complex. 1578 -314724 pfam11895 Peroxidase_ext Fungal peroxidase extension region. This region is found as an extension to a haem peroxidase domain in some fungi. This region is about 80 amino acids in length and forms an extended structure on the surface of the peroxidase domain pfam00141. 72 -338161 pfam11896 DUF3416 Domain of unknown function (DUF3416). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is about 190 amino acids in length. This domain is found associated with pfam00128. 185 -338162 pfam11897 DUF3417 Protein of unknown function (DUF3417). This family of proteins are functionally uncharacterized. This protein is found in bacteria and archaea. Proteins in this family are typically between 145 to 860 amino acids in length. This protein is found associated with pfam00343. This protein has a conserved AYF sequence motif. 109 -338163 pfam11898 DUF3418 Domain of unknown function (DUF3418). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is typically between 582 to 594 amino acids in length. This domain is found associated with pfam07717, pfam00271, pfam04408. 585 -314728 pfam11899 DUF3419 Protein of unknown function (DUF3419). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 398 to 802 amino acids in length. 374 -314729 pfam11900 DUF3420 Domain of unknown function (DUF3420). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 50 amino acids in length. This domain is found associated with pfam00023. 47 -338164 pfam11901 DUF3421 Protein of unknown function (DUF3421). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 119 to 296 amino acids in length. 113 -338165 pfam11902 DUF3422 Protein of unknown function (DUF3422). This family of proteins are functionally uncharacterized. This protein is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 426 to 444 amino acids in length. 415 -314732 pfam11903 ParD_like ParD-like antitoxin of type II bacterial toxin-antitoxin system. ParD-like antitoxin is a family of archaeal and bacterial proteins of a type II bacterial toxin-antitoxin system. Many of the cognate toxins for these molecules fall into family ParE-like_toxin, pfam15781. Gene-pairs are expressed from the same operon, the toxin of the pair being expressed first, eg, for UniProtKB:Q3AQ93 and UniProtKB:Q3AQ94. 73 -338166 pfam11904 GPCR_chapero_1 GPCR-chaperone. This domain, and the associated ANK family repeat pfam00023 domain, together act as a chaperone for biogenesis and folding of the DP receptor for prostaglandin D2. 305 -338167 pfam11905 DUF3425 Domain of unknown function (DUF3425). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 120 to 143 amino acids in length. 127 -338168 pfam11906 DUF3426 Protein of unknown function (DUF3426). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 262 to 463 amino acids in length. 147 -314736 pfam11907 DUF3427 Domain of unknown function (DUF3427). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is typically between 243 to 275 amino acids in length. This domain is found associated with pfam04851, pfam00271. 279 -314737 pfam11909 NdhN NADH-quinone oxidoreductase cyanobacterial subunit N. The proton-pumping NADH:ubiquinone oxidoreductase catalyzes the electron transfer from NADH to ubiquinone linked with proton translocation across the membrane. It is the largest, most complex and least understood of the respiratory chain enzymes and is referred to as Complex I. The subunit composition of the enzyme varies between groups of organisms. Complex I originating from mammalian mitochondria contains 45 different proteins, whereas in bacteria, the corresponding complex NDH-1 consists of 14 different polypeptides. homologs of these 14 proteins are found among subunits of the mitochondrial complex I, and therefore bacterial NDH-1 might be considered a model proton-pumping NADH dehydrogenase with a minimal set of subunits. Escherichia coli NDH-1 readily disintegrates into 3 subcomplexes: a water-soluble NADH dehydrogenase fragment (NuoE, -F, and -G),the connecting fragment (NuoB, -C, -D, and -I), and the membrane fragment (NuoA, -H, -J, -K, -L, -M, -N). In cyanobacteria and their descendants, the chloroplasts of green plants, the subunit composition of NDH-1 remains obscure. The genes for eleven subunits NdhA-NdhK, homologous to the NuoA-NuoD and NuoH-NuoN of the E. coli complex, have been found in the genome of Synechocystis sp. PCC 6803 which has a family of 6 ndhD genes and a family of 3 ndhF genes. Two reported multisubunit complexes, NDH-1L and NDH-1M, represent distinct NDH-1 complexes in the thylakoid membrane of Synechocystis 6803 -cyanobacterium. NDH-1L was shown to be essential for photoheterotrophic cell growth, whereas expression of NDH-1M was a prerequisite for CO2 uptake and played an important role in growth of cells at low CO2. Here we report the subunit composition of these two complexes. Fifteen proteins were discovered in NDH-1L including NdhL, a new component of the membrane fragment, and Ssl1690 (designated as NdhO), a novel peripheral subunit. The cyanobacterial NDH-1 complex contains additional subunits, NdhM and NdhN, compared with the minimal set of the bacterial enzyme and these seem to be specific for thylakoid-located NDH-1 of photosynthetic organisms. 153 -314738 pfam11910 NdhO Cyanobacterial and plant NDH-1 subunit O. The proton-pumping NADH:ubiquinone oxidoreductase catalyzes the electron transfer from NADH to ubiquinone linked with proton translocation across the membrane. It is the largest, most complex and least understood of the respiratory chain enzymes and is referred to as Complex I. The subunit composition of the enzyme varies between groups of organisms. Complex I originating from mammalian mitochondria contains 45 different proteins, whereas in bacteria, the corresponding complex NDH-1 consists of 14 different polypeptides. homologs of these 14 proteins are found among subunits of the mitochondrial complex I, and therefore bacterial NDH-1 might be considered a model proton-pumping NADH dehydrogenase with a minimal set of subunits. Escherichia coli NDH-1 readily disintegrates into 3 subcomplexes: a water-soluble NADH dehydrogenase fragment (NuoE, -F, and -G),the connecting fragment (NuoB, -C, -D, and -I), and the membrane fragment (NuoA, -H, -J, -K, -L, -M, -N). In cyanobacteria and their descendants, the chloroplasts of green plants, the subunit composition of NDH-1 remains obscure. The genes for eleven subunits NdhA-NdhK, homologous to the NuoA-NuoD and NuoH-NuoN of the E. coli complex, have been found in the genome of Synechocystis sp. PCC 6803 which has a family of 6 ndhD genes and a family of 3 ndhF genes. Two reported multisubunit complexes, NDH-1L and NDH-1M, represent distinct NDH-1 complexes in the thylakoid membrane of Synechocystis 6803 -cyanobacterium. NDH-1L was shown to be essential for photoheterotrophic cell growth, whereas expression of NDH-1M was a prerequisite for CO2 uptake and played an important role in growth of cells at low CO2. Here we report the subunit composition of these two complexes. Fifteen proteins were discovered in NDH-1L including NdhL, a new component of the membrane fragment, and Ssl1690 (designated as NdhO), a novel peripheral subunit. The three nuclear-encoded subunits NdhM,NdhN and NdhO are vital for the functional integrity of the plastidial complex. 66 -338169 pfam11911 DUF3429 Protein of unknown function (DUF3429). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 147 to 245 amino acids in length. 136 -256719 pfam11912 DUF3430 Protein of unknown function (DUF3430). This family of proteins are functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 209 to 265 amino acids in length. 204 -314740 pfam11913 DUF3431 Protein of unknown function (DUF3431). This family of proteins are functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 291 to 390 amino acids in length. This protein has a conserved NLRC sequence motif. 217 -288743 pfam11914 DUF3432 Domain of unknown function (DUF3432). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 100 amino acids in length. This domain is found associated with pfam00096. This domain has two conserved sequence motifs: YPSPV and PSP. 98 -338170 pfam11915 DUF3433 Protein of unknown function (DUF3433). This is a family of functionally uncharacterized proteins. The family is found in eukaryotes, and represents the conserved central region of the member proteins. 91 -314742 pfam11916 Vac14_Fig4_bd Vacuolar protein 14 C-terminal Fig4p binding. Vac14 is a scaffold for the Fab1 kinase complex, a complex that allows for the dynamic interconversion of PI3P and PI(3,5)P2p (phosphoinositide phosphate (PIP) lipids, that are generated transiently on the cytoplasmic face of selected intracellular membranes). This interconversion is regulated by at least five proteins in yeast: the lipid kinase Fab1p, lipid phosphatase Fig4p, the Fab1p activator Vac7p, the Fab1p inhibitor Atg18p, and Vac14p, a protein required for the activity of both Fab1p and Fig4p. The C-terminal region of Vac14 binds to Fig4p. The full length Vac14 in yeasts is likely to be a protein carrying a succession of HEAT repeats, most of which have now degenerated. This regulatory system is crucial for the proper functioning of the mammalian nervous system. 176 -314743 pfam11917 DUF3435 Protein of unknown function (DUF3435). This family of proteins are functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 435 to 791 amino acids in length. This family is related to pfam00589 suggesting it may be an integrase enzyme. 418 -314744 pfam11918 Peptidase_S41_N N-terminal domain of Peptidase_S41 in eukaryotic IRBP. Peptidase_S41_N is a family found at the N-terminus of the functional unit of interphotoreceptor retinoid binding proteins 3, IRBP, in eukaryotes. From the structure of Structure 1j7x, the domain forms the N-terminal end of the module which is characterized as a serine-peptidase, pfam03572. Peptidase_S41_N forms a three-helix bundle followed by a small beta strand and is termed domain A. Part of the peptidase domain folds back over domain A to create a largely hydrophobic cleft between the two domains. On binding of ligand domain A is structurally rearranged with respect to domain B. 129 -338171 pfam11919 DUF3437 Domain of unknown function (DUF3437). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 142 to 163 amino acids in length. 86 -314746 pfam11920 DUF3438 Protein of unknown function (DUF3438). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 276 to 307 amino acids in length. 282 -288750 pfam11921 DUF3439 Domain of unknown function (DUF3439). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 46 to 94 amino acids in length. This domain is found associated with pfam01462, pfam00560. 122 -338172 pfam11922 DUF3440 Domain of unknown function (DUF3440). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is typically between 53 to 190 amino acids in length. This domain is found associated with pfam01507. This domain has a conserved KND sequence motif. 182 -338173 pfam11923 DUF3441 Domain of unknown function (DUF3441). This presumed domain is functionally uncharacterized. This domain is found in archaea and eukaryotes. This domain is typically between 104 to 119 amino acids in length. This domain is found associated with pfam05833, pfam05670. This domain has two conserved residues (P and G) that may be functionally important. 114 -338174 pfam11924 IAT_beta Inverse autotransporter, beta-domain. This is a family of beta-barrel porin-like outer membrane proteins from enteropathogenic Gram-negative bacteria. Intimins and invasins are virulence factors produced by pathogenic Gram-negative bacteria. They carry C-terminal extracellular passenger domains that are involved in adhesion to host cells and N-terminal beta domains that are embedded in the outer membrane. This family represents the beta-barrel porin-like domain in the outer membrane that can be found in intimins, invasins and some inverse autotransporters. 276 -314750 pfam11925 DUF3443 Protein of unknown function (DUF3443). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 400 to 434 amino acids in length. This protein has two conserved sequence motifs: NPV and DNNG. 365 -338175 pfam11926 DUF3444 Domain of unknown function (DUF3444). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 210 amino acids in length. This domain is found associated with pfam00226. This domain has two conserved sequence motifs: FSH and FSH. 209 -338176 pfam11927 DUF3445 Protein of unknown function (DUF3445). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 264 to 418 amino acids in length. This protein has a conserved RLP sequence motif. This protein has two completely conserved R residues that may be functionally important. 230 -338177 pfam11928 DUF3446 Domain of unknown function (DUF3446). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 80 to 99 amino acids in length. This domain is found associated with pfam00096. This domain has a single completely conserved residue P that may be functionally important. 76 -314754 pfam11929 DUF3447 Domain of unknown function (DUF3447). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 80 amino acids in length. This domain is found associated with pfam00023. This domain has a conserved SHN sequence motif. It seems likely that this region represents divergent Ankyrin repeats. 76 -314755 pfam11931 DUF3449 Domain of unknown function (DUF3449). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 181 to 207 amino acids in length. This domain has two conserved sequence motifs: PIP and CEICG. The domain carries a zinc-finger domain of the C2H2-type. 189 -338178 pfam11932 DUF3450 Protein of unknown function (DUF3450). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are about 260 amino acids in length. 238 -338179 pfam11933 Na_trans_cytopl Cytoplasmic domain of voltage-gated Na+ ion channel. This is a large cytoplasmic domain towards the start of voltage-dependent sodium ion channel proteins in eukaryotes. It is found closely associated with pfam06512 and pfam00520. 168 -338180 pfam11934 DUF3452 Domain of unknown function (DUF3452). This presumed domain is functionally uncharacterized. This domain is found in bacteria and eukaryotes. This domain is typically between 124 to 150 amino acids in length. This domain is found associated with pfam01858, pfam01857. This domain has a single completely conserved residue W that may be functionally important. 131 -338181 pfam11935 DUF3453 Domain of unknown function (DUF3453). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 239 to 261 amino acids in length. 225 -314760 pfam11936 DUF3454 Domain of unknown function (DUF3454). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 60 amino acids in length. This domain is found associated with pfam00066, pfam00008, pfam06816, pfam07684, pfam00023. 61 -314761 pfam11937 DUF3455 Protein of unknown function (DUF3455). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 174 to 251 amino acids in length. 142 -338182 pfam11938 DUF3456 TLR4 regulator and MIR-interacting MSAP. This family of proteins, found from plants to humans, is PRAT4 (A and B), a Protein Associated with Toll-like receptor 4. The Toll family of receptors - TLRs - plays an essential role in innate recognition of microbial products, the first line of defense against bacterial infection. PRAT4A influences the subcellular distribution and the strength of TLR responses and alters the relative activity of each TLR. PRAT4B regulates TLR4 trafficking to the cell surface and the extent of its expression there. TLR4 recognizes lipopolysaccharide (LPS), one of the most immuno-stimulatory glycolipids constituting the outer membrane of the Gram-negative bacteria. This family has also been described as a SAP-like MIR-interacting protein family. 136 -314763 pfam11939 NiFe-hyd_HybE [NiFe]-hydrogenase assembly, chaperone, HybE. Members of this family are chaperones for the assembly of [NiFe] hydrogenases, in the family of HybE, which is specific for hydrogenase-2 of Escherichia coli. Members often have an additional N-terminal rubredoxin domain. 151 -338183 pfam11940 DUF3458 Domain of unknown function (DUF3458) Ig-like fold. This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. The domain has an Ig-like fold. This domain is found associated with pfam01433. 94 -338184 pfam11941 DUF3459 Domain of unknown function (DUF3459). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 110 amino acids in length. This domain is found associated with pfam00128, pfam02922. 92 -338185 pfam11942 Spt5_N Spt5 transcription elongation factor, acidic N-terminal. This is the very acidic N-terminal region of the early transcription elongation factor Spt5. The Spt5-Spt4 complex regulates early transcription elongation by RNA polymerase II and has an imputed role in pre-mRNA processing via its physical association with mRNA capping enzymes. The actual function of this N-terminal domain is not known although it is dispensable for binding to Spt4. 97 -338186 pfam11943 DUF3460 Protein of unknown function (DUF3460). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 70 amino acids in length. This protein has a conserved WDK sequence motif. 58 -338187 pfam11944 DUF3461 Protein of unknown function (DUF3461). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 130 amino acids in length. This protein has two conserved sequence motifs: KFK and HLE. 124 -314769 pfam11945 WASH_WAHD WAHD domain of WASH complex. This domain forms part of the WASH-complex of domains and proteins that activates the Arp2/3 complex, see pfam04062. The Arp2/3 complex regulates endocytosis, sorting, and trafficking within the cell. The WAHD domain attaches to the FAM21 proteins via its N-terminal residues and to the microtubules via its C-terminal residues. 286 -314770 pfam11946 DUF3463 Domain of unknown function (DUF3463). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is about 140 amino acids in length. This domain is found associated with pfam04055. This domain has two conserved sequence motifs: CTPWG and PCYL, plus a highly conserved CxxCxxHC motif. 134 -338188 pfam11947 DUF3464 Protein of unknown function (DUF3464). This family of proteins are functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 137 to 196 amino acids in length. 150 -314772 pfam11948 DUF3465 Protein of unknown function (DUF3465). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 131 to 151 amino acids in length. This protein has a conserved HWTH sequence motif. 126 -338189 pfam11949 DUF3466 Protein of unknown function (DUF3466). This family of proteins are functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 564 to 612 amino acids in length. 604 -314774 pfam11950 DUF3467 Protein of unknown function (DUF3467). This family of proteins are functionally uncharacterized. This protein is found in bacteria, archaea and viruses. Proteins in this family are typically between 101 to 118 amino acids in length. 92 -314775 pfam11951 Fungal_trans_2 Fungal specific transcription factor domain. This family of are likely to be transcription factors. This protein is found in fungi. Proteins in this family are typically between 454 to 826 amino acids in length. This protein is found associated with pfam00172. 384 -314776 pfam11952 XTBD XRN-Two Binding Domain, XTBD. XTBD is a family of eukaryotic proteins that act as an XRN2-binding module. XRN2 is an essential exoribonuclease in eukaryotes that processes and degrades a number of different substrates. XTBD is found on a number of different proteins to link them to XRN, such as PAXT-1. 85 -338190 pfam11953 DUF3470 Domain of unknown function (DUF3470). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 50 amino acids in length. This domain is found associated with pfam00037. This domain has a single completely conserved residue N that may be functionally important. 42 -338191 pfam11954 DUF3471 Domain of unknown function (DUF3471). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is typically between 98 to 114 amino acids in length. This domain is found associated with pfam00144. 94 -338192 pfam11955 PORR Plant organelle RNA recognition domain. This family, which was previously known as DUF860, has been shown to be a component of group II intron ribonucleoprotein particles in maize chloroplasts. The domain is required for the splicing of the introns with which it associates, and promotes splicing in the context of a heterodimer with the RNase III-domain protein RNC1. All of the members are predicted to localize to mitochondria or chloroplasts. It seems likely that most PORR proteins function in organellar RNA metabolism. 330 -314780 pfam11956 KCNQC3-Ank-G_bd Ankyrin-G binding motif of KCNQ2-3. Interactions with ankyrin-G are crucial to the localization of voltage-gated sodium channels (VGSCs) at the axon initial segment and for neurons to initiate action potentials. This conserved 9-amino acid motif ((V/A)P(I/L)AXXE(S/D)D) is required for ankyrin-G binding and functions to localize sodium channels to a variety of 'excitable' membrane domains both inside and outside of the nervous system. This motif has also been identified in the potassium channel 6TM proteins KCNQ2 and KCNQ3, that correspond to the M channels that exert a crucial influence over neuronal excitability. KCNQ2/KCNQ3 channels are preferentially localized to the surface of axons both at the axonal initial segment and more distally, and this axonal initial segment targeting of surface KCNQ channels is mediated by these ankyrin-G binding motifs of KCNQ2 and KCNQ3. KCNQ3 is a major determinant of M channel localization to the AIS, rather than KCNQ2. Phylogenetic analysis reveals that anchor motifs evolved sequentially in chordates (NaV channel) and jawed vertebrates (KCNQ2/3). 93 -314781 pfam11957 efThoc1 THO complex subunit 1 transcription elongation factor. The THO complex plays a role in coupling transcription elongation to mRNA export. It is composed of subunits THP2, HPR1, THO2 and MFT1. The THO complex is a nuclear complex that is required for transcription elongation through genes containing tandemly repeated DNA sequences. The THO complex is also part of the TREX (TRanscription EXport) complex that is involved in coupling transcription to export of mRNAs to the cytoplasm. 480 -314782 pfam11958 DUF3472 Domain of unknown function (DUF3472). This presumed domain is functionally uncharacterized. This domain is found in bacteria, eukaryotes and viruses. This domain is typically between 174 to 190 amino acids in length. This domain has a single completely conserved residue G that may be functionally important. 173 -338193 pfam11959 DUF3473 Domain of unknown function (DUF3473). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is about 130 amino acids in length. This domain is found associated with pfam01522. This domain has two completely conserved residues (P and H) that may be functionally important. 129 -314784 pfam11960 DUF3474 Domain of unknown function (DUF3474). This presumed domain is functionally uncharacterized. This domain is found in bacteria and eukaryotes. This domain is typically between 126 to 140 amino acids in length. This domain is found associated with pfam00487. 139 -338194 pfam11961 DUF3475 Domain of unknown function (DUF3475). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 60 amino acids in length. This domain is found associated with pfam05003. 57 -314786 pfam11962 Peptidase_G2 Peptidase_G2, IMC autoproteolytic cleavage domain. This domain is found at the very C-terminus of bacteriophage parallel beta-helical tailspike proteins. It carries the enzymic residues that induce autoproteolytic cleavage to bring about maturation of the folding process of the helix in a chaperone-like manner. The domain thus mediates the assembly of a large tailspike protein and then releases itself after maturation. These C-terminal regions that autoproteolytically release themselves after maturation are exchangeable between functionally unrelated N-terminal proteins and have been identified in a number of bacteriophage tailspike proteins. 218 -152398 pfam11963 DUF3477 Protein of unknown function (DUF3477). This family of proteins is functionally uncharacterized. This protein is found in viruses. Proteins in this family are typically between 246 to 7162 amino acids in length. This protein is found associated with pfam08716, pfam01661, pfam05409, pfam08717, pfam01831, pfam08715, pfam08710. 355 -338195 pfam11964 SpoIIAA-like SpoIIAA-like. These proteins adopt an alpha/beta SpoIIAA-like fold, similar to that found in STAT (pfam01740). They adopt open and closed conformations arising from different arrangements of their alpha-2 and alpha-3 helices. They may be membrane associated and may function as carriers of non-polar compounds. 104 -314788 pfam11965 DUF3479 Domain of unknown function (DUF3479). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is about 160 amino acids in length. This domain is found associated with pfam02514. 161 -338196 pfam11966 SSURE Fibronectin-binding repeat. Streptococcal surface repeat domain - SSURE - is a protein fragment found to bind to extracellular matrix protein fibronectin but not to collagen or submaxillary mucin in Streptococci. Anti-SSURE antibodies recognized the corresponding protein on the surface of streptococcal cells. The full-length proteins are thus fibronectin-binding surface adhesins. 81 -314789 pfam11967 RecO_N Recombination protein O N terminal. Recombination protein O (RecO) is involved in DNA repair and pfam00470 pathway recombination. This domain forms a beta barrel structure. 79 -314790 pfam11968 Bmt2 25S rRNA (adenine(2142)-N(1))-methyltransferase, Bmt2. This entry represents Bmt2 and its homogues. In Saccharomyces cerevisiae, Bmt2 is a nucleolar S-adenosylmethionine-dependent rRNA methyltransferase that is responsible for the N-1-methyl-adenosine base modification of 25S rRNA.It specifically methylates the N1 position of adenine 2142 in 25S rRNA. 221 -338197 pfam11969 DcpS_C Scavenger mRNA decapping enzyme C-term binding. This family consists of several scavenger mRNA decapping enzymes (DcpS) and is the C-terminal region. DcpS is a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. The C-terminal domain contains a histidine triad (HIT) sequence with three histidines separated by hydrophobic residues. The central histidine within the DcpS HIT motif is critical for decapping activity and defines the HIT motif as a new mRNA decapping domain, making DcpS the first member of the HIT family of proteins with a defined biological function. 101 -288797 pfam11970 GPR_Gpa2_C G protein-coupled glucose receptor regulating Gpa2 C-term. GPR1 is one of six proteins required for glucose-triggered adenylate cyclase activation, and is a G protein-coupled receptor responsible for the activation of adenylate cyclase through Gpa2 - heterotrimeric G protein alpha subunit, part of the glucose-detection pathway. The protein contains seven predicted transmembrane domains, a third cytoplasmic loop and a cytoplasmic tail. This family is the conserved C-terminal domain of the member proteins. 76 -314792 pfam11971 CAMSAP_CH CAMSAP CH domain. This domain is the N-terminal CH domain from the CAMSAP proteins. 85 -288799 pfam11972 HTH_13 HTH DNA binding domain. This is a helix-turn-helix DNA binding domain. 54 -288800 pfam11973 NQRA_SLBB NQRA C-terminal domain. This family consists of the C-terminal domain of several bacterial Na(+)-translocating NADH-quinone reductase subunit A (NQRA) proteins. The Na(+)-translocating NADH: ubiquinone oxidoreductase (Na(+)-NQR) generates an electrochemical Na(+) potential driven by aerobic respiration. 51 -314793 pfam11974 MG1 Alpha-2-macroglobulin MG1 domain. This is the N-terminal MG1 domain from alpha-2-macroglobulin. 102 -338198 pfam11975 Glyco_hydro_4C Family 4 glycosyl hydrolase C-terminal domain. 207 -314795 pfam11976 Rad60-SLD Ubiquitin-2 like Rad60 SUMO-like. The small ubiquitin-related modifier SUMO-1 is a Ub/Ubl family member, and although SUMO-1 shares structural similarity to Ub, SUMO's cellular functions remain distinct insomuch as SUMO modification alters protein function through changes in activity, cellular localization, or by protecting substrates from ubiquitination. Rad60 family members contain functionally enigmatic, integral SUMO-like domains (SLDs). Despite their divergence from SUMO, each Rad60 SLD interacts with a subset of SUMO pathway enzymes: SLD2 specifically binds the SUMO E2 conjugating enzyme (Ubc9)), whereas SLD1 binds the SUMO E1 (Fub2, also called Uba2) activating and E3 (Pli1, also called Siz1 and Siz2) specificity enzymes. Structural analysis of Structure 2uyz reveals a mechanistic basis for the near-synonymous roles of Rad60 and SUMO in survival of genotoxic stress and suggest unprecedented DNA-damage-response functions for SLDs in regulating SUMOylation. The Rad60 branch of this family is also known as RENi (Rad60-Esc2-Nip45), and biologically it should be two distinct families SUMO and RENi (Rad60-Esc2-Nip45). 72 -314796 pfam11977 RNase_Zc3h12a Zc3h12a-like Ribonuclease NYN domain. This domain is found in the Zc3h12a protein which has shown to be a ribonuclease that controls the stability of a set of inflammatory genes. It has been suggested that this domain belongs to the PIN domain superfamily. This domain has also been identified as part of the NYN domain family. 156 -338199 pfam11978 MVP_shoulder Shoulder domain. This domain is found in the Major Vault Protein and has been called the shoulder domain. This family includes two bacterial proteins, suggesting that some bacteria may possess vault particles. 117 -314798 pfam11979 DUF3480 Domain of unknown function (DUF3480). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 350 to 362 amino acids in length. This domain is found associated with pfam01363. 353 -314799 pfam11980 DUF3481 C-terminal domain of neuropilin glycoprotein. This domain is found in eukaryotes at the C-terminus of neuropilins. It represents the transmembrane region of these transmembrane glycoproteins, that are predominantly co-receptors for another class of proteins known as semaphorins. The domain is found associated with pfam00754, pfam00431, pfam00629. 82 -338200 pfam11981 DUF3482 Domain of unknown function (DUF3482). This presumed domain is functionally uncharacterized. This domain is found in bacteria and eukaryotes. This domain is typically between 289 to 301 amino acids in length. This domain is found associated with pfam01926. The central region of these proteins contains a hydrophobic region that is similar to pfam05433. 290 -314801 pfam11982 DUF3483 Domain of unknown function (DUF3483). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 230 amino acids in length. This domain is found associated with pfam02754. 217 -338201 pfam11983 DUF3484 Membrane-attachment and polymerization-promoting switch. This family is the C-terminal region of essential streptococcal FtsA proteins and their homologs. It acts as an intra-molecular switch, triggered by ATP, to promote polymerization of the whole protein and to attach it to the membrane. FtsA is essential for the formation of the septum that divides fully-grown cells into two daughter cells at cell-division. FtsA anchors the constricting FtsZ ring to the membrane. 66 -314803 pfam11984 DUF3485 Protein of unknown function (DUF3485). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 223 to 526 amino acids in length. This protein is found associated with pfam09721. 195 -314804 pfam11985 DUF3486 Protein of unknown function (DUF3486). This family of proteins is functionally uncharacterized. This protein is found in bacteria and viruses. Proteins in this family are about 190 amino acids in length. 179 -288812 pfam11986 PB1-F2 Influenza A Proapoptotic protein. PB1-F2 is a protein found in almost all known strains of Influenza A virus - a negative sense ssRNA Orthomyxovirus. It originates from translation of the viral polymerase gene in an alternative reading frame. PB1-F2 consists of two independent structural domains, two closely neighboring short helices at the N-terminus, and an extended C-terminal helix. Although the protein has originally been described to induce apoptosis, it has now been shown that PB1-F2 more likely acts as an apoptosis promoter in concert with other apoptosis-inducing agents. PB1-F2 promotes apoptosis by localising to the mitochondria where it destabilizes the membrane. This will cause release of cytochrome C which activates the caspase cascade of apoptosis through the endogenous pathway. In this way it acts like the Bcl-2 protein family which are physiological apoptotic regulators in cells. 87 -338202 pfam11987 IF-2 Translation-initiation factor 2. IF-2 is a translation initiator in each of the three main phylogenetic domains (Eukaryotes, Bacteria and Archaea). IF2 interacts with formylmethionine-tRNA, GTP, IF1, IF3 and both ribosomal subunits. Through these interactions, IF2 promotes the binding of the initiator tRNA to the A site in the smaller ribosomal subunit and catalyzes the hydrolysis of GTP following initiation-complex formation. 104 -314806 pfam11988 Dsl1_N Retrograde transport protein Dsl1 N terminal. Dsl1 is a peripheral membrane protein required for transport between the Golgi and the endoplasmic reticulum. It is localized to the ER membrane, and in vitro it specifically binds to coatomer, the major component of the protein coat of COPI vesicles. It is comprised primarily of alpha helical bundles. It complexes with another subunit of the Dsl1p complex called Tip20 which forms heterodimers by pairing the N termini of each protein. A central disorganized region between the N and C termini of Dsl1 contains binding sites for coatomer. The C-terminus of Dsl1 contains a binding site to the Sec39 subunit of the Dsl1p complex. 352 -152424 pfam11989 Dsl1_C Retrograde transport protein Dsl1 C terminal. Dsl1 is a peripheral membrane protein required for transport between the Golgi and the endoplasmic reticulum. It is localized to the ER membrane, and in vitro it specifically binds to coatomer, the major component of the protein coat of COPI vesicles. Binding sites for coatomer are found on a disorganized region between the C and N termini of Dsl1. The C terminal domain is involved in binding to the Sec39 subunit of the Dsl1p complex. The N terminal complexes with another subunit of the Dsl1p complex called Tip20 which forms heterodimers by pairing the N termini of each protein. 291 -314807 pfam11990 DUF3487 Protein of unknown function (DUF3487). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 121 to 136 amino acids in length. This protein has a conserved RLN sequence motif. 113 -338203 pfam11991 Trp_DMAT Tryptophan dimethylallyltransferase. This family of proteins represents tryptophan dimethylallyltransferase (EC:2.5.1.34), which catalyzes the first step of ergot alkaloid biosynthesis. Ergot alkaloids, which are produced by endophyte fungi, can enhance plant host fitness, but also cause livestock toxicosis to host plants. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 390 to 465 amino acids in length. 349 -338204 pfam11992 DUF3488 Domain of unknown function (DUF3488). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is typically between 323 to 339 amino acids in length. This domain is found associated with pfam01841. This domain has a conserved PLW sequence motif. This domain contains 6 transmembrane helices. 318 -338205 pfam11993 Ribosomal_S4Pg Ribosomal S4P (gammaproteobacterial). This family of proteins are ribosomal SSU S4 p proteins. This protein is found in gamma-proteobacteria. Proteins in this family are typically between 162 to 178 amino acids in length. 158 -314811 pfam11994 DUF3489 Protein of unknown function (DUF3489). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 84 to 211 amino acids in length. This protein has a single completely conserved residue W that may be functionally important. 68 -338206 pfam11995 DUF3490 Domain of unknown function (DUF3490). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 160 amino acids in length. This domain is found associated with pfam00225. This domain is found associated with pfam00225. This domain has two conserved sequence motifs: EVE and ESA. 160 -314813 pfam11996 DUF3491 Protein of unknown function (DUF3491). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 286 to 3225 amino acids in length. This protein is found associated with pfam04488. This protein is found associated with pfam04488. 946 -338207 pfam11997 DUF3492 Domain of unknown function (DUF3492). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is typically between 259 to 282 amino acids in length. This domain is found associated with pfam00534. This domain has two conserved sequence motifs: GGVS and EHGIY. 278 -314815 pfam11998 DUF3493 Protein of unknown function (DUF3493). This family of proteins is functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 79 to 331 amino acids in length. 73 -314816 pfam11999 DUF3494 Protein of unknown function (DUF3494). This family of proteins is functionally uncharacterized. This protein is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 243 to 678 amino acids in length. This protein has a single completely conserved residue G that may be functionally important. 198 -338208 pfam12000 Glyco_trans_4_3 Gkycosyl transferase family 4 group. This domain is found associated with pfam00534. 168 -314818 pfam12001 DUF3496 Domain of unknown function (DUF3496). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 110 amino acids in length. 109 -338209 pfam12002 MgsA_C MgsA AAA+ ATPase C terminal. The MgsA protein possesses DNA-dependent ATPase and ssDNA annealing activities. MgsA contributes to the recovery of stalled replication forks and therefore prevents genomic instability caused by aberrant DNA replication. Additionally, MgsA may play a role in chromosomal segregation. This is consistent with a report that MgsA co-localizes with the replisome and affects chromosome segregation. This domain represents the C terminal region of MgsA. 158 -338210 pfam12004 DUF3498 Domain of unknown function (DUF3498). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 433 to 538 amino acids in length. This domain is found associated with pfam00616, pfam00168. This domain has two conserved sequence motifs: DLQ and PLSFQNP. 500 -314821 pfam12005 DUF3499 Protein of unknown function (DUF3499). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 125 to 163 amino acids in length. 120 -338211 pfam12006 DUF3500 Protein of unknown function (DUF3500). This family of proteins is functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 335 to 438 amino acids in length. This protein has a conserved GHH sequence motif. This protein has two completely conserved G residues that may be functionally important. 307 -314823 pfam12007 DUF3501 Protein of unknown function (DUF3501). This family of proteins is functionally uncharacterized. This protein is found in bacteria and archaea. Proteins in this family are about 200 amino acids in length. The structure of protein BPSS1837 from B. pseudomallei has been solved. This protein contains two domains, domain I (1:31, 46:81) is a helical domain, domain II (32:45,82-193) is a mainly beta protein with a beta barrel. According to crystal contacts the proteins probably functions as a dimer. The gene neighborhood analysis suggests that this protein may be functionally related to rubrerythrin and ferredoxin. The wedge surface between the two domains might be functionally important. The fold of this protein could best be described as a circularly permuted C2-like fold (details derived from TOPSAN). 187 -338212 pfam12008 EcoR124_C Type I restriction and modification enzyme - subunit R C terminal. This enzyme has been characterized and shown to belong to a new family of the type I class of restriction and modification enzymes. This family is involved in bacterial defense by making double strand breaks in specific double stranded DNA sequences, e.g. that of invading bacteriophages. EcoR124 is made up of three subunits, HsdR, HsdS and HsdM. The R subunit has ATPase and restriction endonuclease activity. This domain is the C terminal of the R subunit. 261 -338213 pfam12009 Telomerase_RBD Telomerase ribonucleoprotein complex - RNA binding domain. Telomeres in most organisms are comprised of tandem simple sequence repeats. The total length of telomeric repeat sequence at each chromosome end is determined in a balance of sequence loss and sequence addition. One major influence on telomere length is the enzyme telomerase. It is a reverse transcriptase that adds these simple sequence repeats to chromosome ends by copying a template sequence within the RNA component of the enzyme. The RNA binding domain of telomerase - TRBD - is made up of twelve alpha helices and two short beta sheets. How telomerase and associated regulatory factors physically interact and function with each other to maintain appropriate telomere length is poorly understood. It is known however that TRBD is involved in formation of the holoenzyme (which performs the telomere extension) in addition to recognition and binding of RNA. 128 -314826 pfam12010 DUF3502 Domain of unknown function (DUF3502). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 140 amino acids in length. This domain is found associated with pfam01547. 130 -288834 pfam12011 NPH-II RNA helicase NPH-II. RNA helicase NPH-II or I8 is found in Poxviridae. It is essential for viral replication and plays an important role during transcription of early mRNAs, presumably by preventing R-loop formation behind the elongating RNA polymerase. It acts as NTP-dependent helicase that catalyzes unidirectional unwinding of 3'tailed duplex RNAs. It might also play a role in the export of newly synthesized mRNA chains out of the core into the cytoplasm and is required for propagation of viral particles. 168 -314827 pfam12012 DUF3504 Domain of unknown function (DUF3504). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 156 to 173 amino acids in length. 161 -314828 pfam12013 OrsD Orsellinic acid/F9775 biosynthesis cluster protein D. This family of proteins is functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 247 to 1018 amino acids in length. Family members include orsellinic acid/F9775 biosynthesis cluster protein D (orsD) from Emericella nidulans. The orsD gene is part of the cluster that encodes components for the biosynthesis of orsellinic acid, as well as biosynthesis of the cathepsin K inhibitors F9775 A and F9775 B, but the function of orsD is unknown. OrsD contains two segments that are likely to be C2H2 zinc binding domains. 112 -338214 pfam12014 DUF3506 Domain of unknown function (DUF3506). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 131 to 148 amino acids in length. This domain has a conserved KLTGD sequence motif. 111 -288838 pfam12015 DUF3507 Domain of unknown function (DUF3507). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 180 amino acids in length. This domain has a conserved ENL sequence motif. 182 -314830 pfam12016 Stonin2_N Stonin 2. Stonin 2 is involved in clathrin mediated endocytosis. It binds to Eps15 by its highly conserved NPF motif. The complex formed has been shown to directly associate with the clathrin adaptor complex AP-2, and to localize to clathrin-coated pits (CCPs). In addition, stonin2 was recently identified as a specific sorting adaptor for synaptotagmin, and may thus regulate synaptic vesicle recycling. 340 -288840 pfam12017 Tnp_P_element Transposase protein. Protein in this family are transposases found in insects. This region is about 230 amino acids in length and is found associated with pfam05485. 219 -338215 pfam12018 FAP206 Domain of unknown function. This domain of about 280 residues is found in eukaryotes. There are two conserved sequence motifs: GFC and GLL. This family is also known as UPF0704. This domain is found in FAP206, a protein associated with cilia and flagella. In the ciliate Tetrahymena, the cilium has radial spokes, each of which is a macromolecular complex essential for motility. A triplet of three radial spokes, RS1, RS2, and RS3, is repeated every 96 nm along the doublet microtubule. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Knockout of the FAP206 gene results in slow cell motility and the 96-nm repeats lack RS2 and dynein c. FAP206 is probably part of the front prong and docks RS2 and dynein c to the microtubule. 239 -338216 pfam12019 GspH Type II transport protein GspH. GspH is involved in bacterial type II export systems. Like all pilins, GspH has an N-terminus alpha helix. This helix is followed by nine beta strands forming two beta sheets, one of five antiparallel strands and one of four antiparallel strands. GspH is a minor pseudopilin; it is expressed much less than other pseudopilins in the type II secretion pilus (major pilins). The function and localization of minor pseudo-pilins are still to be fully unraveled. It has been suggested that some minor pseudopilins may assemble either into the base or the tip of pili, or both. They function as initiators or regulators of pilus biogenesis and dynamics, and/or as adaptors between various pseudopilin component and other members of the T2SS. 112 -314833 pfam12020 TAFA TAFA family. This family of secreted proteins are brain specific and thought to be chemokines. These proteins are found in vertebrates. Proteins in this family are typically between 94 to 133 amino acids in length and contain a number of conserved cysteines. 89 -338217 pfam12021 DUF3509 Protein of unknown function (DUF3509). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 92 to 110 amino acids in length. This protein has two completely conserved residues (G and R) that may be functionally important. 87 -338218 pfam12022 DUF3510 Domain of unknown function (DUF3510). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 130 amino acids in length. This domain is found associated with pfam06148. 125 -314836 pfam12023 DUF3511 Domain of unknown function (DUF3511). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 50 amino acids in length. This domain has two completely conserved residues (Y and K) that may be functionally important. 43 -314837 pfam12024 DUF3512 Domain of unknown function (DUF3512). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 231 to 249 amino acids in length. This domain is found associated with pfam00439. 235 -288848 pfam12025 Phage_C Phage protein C. This family of phage proteins is functionally uncharacterized. Proteins in this family are typically between 68 to 86 amino acids in length. 68 -338219 pfam12026 DUF3513 Domain of unknown function (DUF3513). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 192 to 218 amino acids in length. This domain is found associated with pfam00018, pfam08824. This domain has a conserved QPP sequence motif. 168 -314839 pfam12027 DUF3514 Protein of unknown function (DUF3514). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 368 to 823 amino acids in length. 256 -314840 pfam12028 DUF3515 Protein of unknown function (DUF3515). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 166 to 214 amino acids in length. This protein has a conserved RCG sequence motif. 159 -314841 pfam12029 DUF3516 Domain of unknown function (DUF3516). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is typically between 460 to 473 amino acids in length. This domain is found associated with pfam00270, pfam00271. 460 -314842 pfam12030 DUF3517 Domain of unknown function (DUF3517). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 340 amino acids in length. This domain is found associated with pfam00443. 335 -338220 pfam12031 BAF250_C SWI/SNF-like complex subunit BAF250/Osa. This entry represents the mammalian BAF250a/b and its homolog osa from fruit flies. They are part of the SWI/SNF-like ATP-dependent chromatin remodelling complex that regulates gene expression through regulating nucleosome remodelling. In humans there are two BAF250 isoforms, BAF250a/ARID1a and BAF250b/ARID1b. BAF250a/b may be E3 ubiquitin ligases that target histone H2B. 257 -338221 pfam12032 CLIP Regulatory CLIP domain of proteinases. CLIP is a regulatory domain which controls the proteinase action of various proteins of the trypsin family, e.g. easter and pap2. The CLIP domain remains linked to the protease domain after cleavage of a conserved residue which retains the protein in zymogen form. It is named CLIP because it can be drawn in the shape of a paper clip. It has many disulphide bonds and highly conserved cysteine residues, and so it folds extensively. 53 -152468 pfam12033 DUF3519 Protein of unknown function (DUF3519). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 117 to 1154 amino acids in length. This protein has a single completely conserved residue Q that may be functionally important. 104 -338222 pfam12034 DUF3520 Domain of unknown function (DUF3520). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 180 amino acids in length. This domain is found associated with pfam00092. 182 -338223 pfam12036 DUF3522 Protein of unknown function (DUF3522). This family of proteins is functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 220 to 787 amino acids in length. This family belongs to the CREST superfamily, which are distant members of the GPCR superfamily. 176 -314848 pfam12037 DUF3523 Domain of unknown function (DUF3523). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 257 to 277 amino acids in length. This domain is found associated with pfam00004. This domain has a conserved LER sequence motif. 265 -338224 pfam12038 DUF3524 Domain of unknown function (DUF3524). This presumed domain is functionally uncharacterized. This domain is found in bacteria and eukaryotes. This domain is about 170 amino acids in length. This domain is found associated with pfam00534. This domain has two conserved sequence motifs: HENQ and FNS. This domain has a single completely conserved residue S that may be functionally important. 165 -152474 pfam12039 DUF3525 Protein of unknown function (DUF3525). This family of proteins is functionally uncharacterized. This protein is found in viruses. Proteins in this family are about 360 amino acids in length. 404 -338225 pfam12040 DUF3526 Domain of unknown function (DUF3526). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is typically between 149 to 170 amino acids in length. This domain has a single completely conserved residue P that may be functionally important. 141 -314851 pfam12041 DELLA Transcriptional regulator DELLA protein N terminal. Gibberellins are plant hormones which have great impact on growth signalling. DELLA proteins are transcriptional regulators of growth related proteins which are downregulated when gibberellins bind to their receptor GID1. GID1 forms a complex with DELLA proteins and signals them towards 26S proteasome. The N terminal of DELLA proteins contains conserved DELLA and VHYNP motifs which are important for GID1 binding and proteolysis of the DELLA proteins. 68 -314852 pfam12042 RP1-2 Tubuliform egg casing silk strands structural domain. Spiders use fibroins to make silk strands. This family includes tubuliform silk fibroins which are used to protect egg cases. This domain is a structural domain which is found in repeats of up to 20 in many individuals (although this is not necessarily the case). RP1 makes up structural domains in the N terminal while RP2 makes up structural domains in the C terminal. 167 -338226 pfam12043 DUF3527 Domain of unknown function (DUF3527). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 120 amino acids in length. This domain has a conserved CDCGGWD sequence motif. 347 -314854 pfam12044 Metallopep Putative peptidase family. This family of proteins is functionally uncharacterized. However, it does contain an HEXXH motif characteristic of metallopeptidases. This protein is found mainly in fungi. Proteins in this family are typically between 625 to 773 amino acids in length. 425 -338227 pfam12045 DUF3528 Protein of unknown function (DUF3528). This family of proteins is functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 185 to 298 amino acids in length. This protein is found associated with pfam00046. 141 -314856 pfam12046 CCB1 Cofactor assembly of complex C subunit B. Cofactor maturation pathways such as the CCB system (system IV) for cytochrome c-heme attachment are conserved in all organisms performing oxygenic photosynthesis. The CCB system consists of four protein, CCB1-4. The four CCBs are well conserved between green algae and plants. 166 -338228 pfam12047 DNMT1-RFD Cytosine specific DNA methyltransferase replication foci domain. This domain is part of a cytosine specific DNA methyltransferase enzyme. It functions non-catalytically to target the protein towards replication foci. This allows the DNMT1 protein to methylate the correct residues. This domain targets DMAP1 and HDAC2 to the replication foci during the S phase of mitosis. They are thought to have some importance in conversion of critical histone lysine moieties. 138 -314858 pfam12048 DUF3530 Protein of unknown function (DUF3530). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 272 to 336 amino acids in length. These proteins are distantly related to alpa/beta hydrolases so they may act as enzymes. 287 -314859 pfam12049 DUF3531 Protein of unknown function (DUF3531). This family of proteins is functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 149 to 199 amino acids in length. 139 -314860 pfam12051 DUF3533 Protein of unknown function (DUF3533). This family of transmembrane proteins is functionally uncharacterized. This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 393 to 772 amino acids in length. 380 -338229 pfam12052 VGCC_beta4Aa_N Voltage gated calcium channel subunit beta domain 4Aa N terminal. The beta subunit of voltage gated calcium channels is coded for by four genes 1-4. Gene 4 can produce two types of beta4A domain (beta4Aa and beta4Ab) according to how the gene splicing is carried out. This family is part of the beta4Aa N terminal domain. It is made up of an alpha helix and a beta strand. It is thought to regulate the channel properties through protein-protein interactions with non Ca channel proteins. 41 -338230 pfam12053 DUF3534 N-terminal of Par3 and HAL proteins. This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 150 amino acids in length. This eukaryotic domain is found associated with pfam00595. It has a conserved GILD sequence motif. Family members have been found to be essential for cell polarity establishment and maintenance such as Par3 (partitioning defective) and involved in conversion of histidine into ammonia (a crucial step for forming histamine in humans) such as Histidine ammonia lyase (HAL). This N-terminal domain is found to mediate oligomerization critical for the membrane localization of Par-3. It is also found to possess a self-association capacity##via a ###front-to-back### mode in Par-3 and HAL proteins. However, unlike the Par-3 N-terminal domain which self-assembles into a left-handed helical filament, the HAL N-terminal domain does not tend to form a helical filament but rather self-assembles into circular oligomeric particles. This has been suggested to be likely due to the absence of equivalent charged residues that are essential for the longitudinal packing of the Par-3 N-terminal domain filament. 82 -314863 pfam12054 DUF3535 Domain of unknown function (DUF3535). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 439 to 459 amino acids in length. This domain is found associated with pfam00271, pfam02985, pfam00176. This domain has two completely conserved residues (P and K) that may be functionally important. 424 -314864 pfam12055 DUF3536 Domain of unknown function (DUF3536). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is typically between 274 to 285 amino acids in length. This domain is found associated with pfam03065. 284 -338231 pfam12056 DUF3537 Protein of unknown function (DUF3537). This family of transmembrane proteins are functionally uncharacterized. This protein is found in eukaryotes. Proteins in this family are typically between 427 to 453 amino acids in length. 388 -338232 pfam12057 DUF3538 Domain of unknown function (DUF3538). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 120 amino acids in length. This domain is found associated with pfam00240. This domain has a conserved SDL sequence motif. 116 -314867 pfam12058 DUF3539 Protein of unknown function (DUF3539). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 90 amino acids in length. This protein has a conserved NHP sequence motif. 86 -338233 pfam12059 DUF3540 Protein of unknown function (DUF3540). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 212 to 238 amino acids in length. This protein has a conserved SCL sequence motif. 199 -314869 pfam12060 DUF3541 Domain of unknown function (DUF3541). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 230 amino acids in length. 225 -314870 pfam12061 NB-LRR Late blight resistance protein R1. R1 is a gene for resistance to late blight, the most destructive disease in potato cultivation worldwide. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. This protein is found associated with PF00931. 385 -314871 pfam12062 HSNSD heparan sulfate-N-deacetylase. This family of proteins is are heparan sulfate N-deacetylase enzymes. This protein is found in eukaryotes. This proteinenzyme is often found associated with pfam00685. 489 -314872 pfam12063 DUF3543 Domain of unknown function (DUF3543). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 217 to 291 amino acids in length. This domain is found associated with pfam00069. This domain has a single completely conserved residue A that may be functionally important. 248 -314873 pfam12064 DUF3544 Domain of unknown function (DUF3544). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 198 to 216 amino acids in length. This domain is found associated with pfam00628, pfam01753, pfam00439, pfam00855. 203 -314874 pfam12065 DUF3545 Protein of unknown function (DUF3545). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 60 to 77 amino acids in length. This protein has two completely conserved residues (R and L) that may be functionally important. 58 -314875 pfam12066 DUF3546 Domain of unknown function (DUF3546). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 93 to 114 amino acids in length. This domain has two completely conserved Y residues that may be functionally important. 110 -314876 pfam12067 Sox17_18_mid Sox 17/18 central domain. This is the central region of eukaryotic SOX17 and 18 transcription factor proteins. It lies just downstream of the HMG-box family, pfam00505, and is followed by a C-terminal domain. 49 -338234 pfam12068 DUF3548 Domain of unknown function (DUF3548). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is typically between 184 to 216 amino acids in length. This domain is found associated with pfam00566. This domain is found at the N-terminus of GYP7 proteins. 213 -338235 pfam12069 DUF3549 Protein of unknown function (DUF3549). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 340 amino acids in length. This protein has a conserved LDE sequence motif. 338 -338236 pfam12070 SCAI Protein SCAI. SCAI is a transcriptional cofactor and tumor suppressor that suppresses MKL1-induced SRF transcriptional activity. It may function in the RHOA-DIAPH1 signal transduction pathway and regulate cell migration through transcriptional regulation of ITGB1. 526 -314880 pfam12071 DUF3551 Protein of unknown function (DUF3551). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 79 to 104 amino acids in length. This protein has a single completely conserved residue C that may be functionally important. 76 -314881 pfam12072 DUF3552 Domain of unknown function (DUF3552). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is about 200 amino acids in length. This domain is found associated with pfam00013, pfam01966. This domain has a single completely conserved residue A that may be functionally important. 201 -314882 pfam12073 DUF3553 Protein of unknown function (DUF3553). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 60 amino acids in length. This protein has two conserved sequence motifs: GQVQS and TVNF. 48 -338237 pfam12074 Gcn1_N Domain of unknown function (DUF3554). This domain is found in the N-terminal region of Gcn1 protein, which acts as a translation activator that mediates translational control by regulating Gcn2 kinase activity. 354 -338238 pfam12075 KN_motif KN motif. This small motif is found at the N-terminus of Kank proteins and has been called the KN (for Kank N-terminal) motif. This protein is found in eukaryotes. Proteins in this family are typically between 413 to 1202 amino acids in length. This protein is found associated with pfam00023. This protein has two conserved sequence motifs: TPYG and LDLDF. Kank1 was obtained by positional cloning of a tumor suppressor gene in renal cell carcinoma, while the other members were found by homology search. The family is involved in the regulation of actin polymerization and cell motility through signaling pathways containing PI3K/Akt and/or unidentified modulators/effectors. 39 -314885 pfam12076 Wax2_C WAX2 C-terminal domain. This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 170 amino acids in length. This domain is found associated with pfam04116. This domain has a conserved LEGW sequence motif. This region has similarity to short chain dehydrogenases. 164 -314886 pfam12077 DUF3556 Transmembrane protein of unknown function (DUF3556). This family of transmembrane proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 576 to 592 amino acids in length. 573 -314887 pfam12078 DUF3557 Domain of unknown function (DUF3557). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes. This domain is about 150 amino acids in length. 155 -314888 pfam12079 DUF3558 Protein of unknown function (DUF3558). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 177 to 195 amino acids in length. 129 -338239 pfam12080 GldM_C GldM C-terminal domain. This domain is found in bacteria at the C-terminus of the GldM protein. This domain is typically between 169 to 182 amino acids in length. This domain has two completely conserved residues (Y and N) that may be functionally important. GldM, is named for the member from Cytophaga johnsonae (Flavobacterium johnsoniae), which is required for a type of rapid gliding motility found in certain members of the Bacteriodetes. 171 -338240 pfam12081 GldM_N GldM N-terminal domain. This domain is found in bacteria at the N-terminus of the GldM protein. This domain is typically between 169 to 182 amino acids in length. This domain has two completely conserved residues (Y and N) that may be functionally important. GldM, is named for the member from Cytophaga johnsonae (Flavobacterium johnsoniae), which is required for a type of rapid gliding motility found in certain members of the Bacteriodetes. 189 -338241 pfam12083 DUF3560 Domain of unknown function (DUF3560). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 120 amino acids in length. This domain has a conserved GHHSE sequence motif. 120 -338242 pfam12084 DUF3561 Protein of unknown function (DUF3561). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 110 amino acids in length. 107 -288903 pfam12085 DUF3562 Protein of unknown function (DUF3562). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 62 to 84 amino acids in length. This protein has two completely conserved residues (A and Y) that may be functionally important. 60 -288904 pfam12086 DUF3563 Protein of unknown function (DUF3563). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 50 amino acids in length. This protein has conserved AYL and DLE sequence motifs. 57 -314893 pfam12087 DUF3564 Protein of unknown function (DUF3564). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 118 to 142 amino acids in length. This protein has a conserved WSRE sequence motif. 120 -314894 pfam12088 DUF3565 Protein of unknown function (DUF3565). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 30 to 78 amino acids in length. This protein has two conserved sequence motifs: WVA and CGH. 58 -314895 pfam12089 DUF3566 Transmembrane domain of unknown function (DUF3566). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 136 to 304 amino acids in length. This region represents a transmembrane region found at the C-terminus of the proteins. 118 -314896 pfam12090 Spt20 Spt20 family. This presumed domain is found in the Spt20 proteins from both human and yeast. The Spt20 protein is part of the SAGA complex which is a large complex mediating histone deacetylation. Yeast Spt20 has been shown to play a role in structural integrity of the SAGA complex as as no intact SAGA could be purified in spt20 deletion strains. 199 -338243 pfam12091 DUF3567 Protein of unknown function (DUF3567). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 90 amino acids in length. This protein has a conserved EIVDK sequence motif. 85 -314898 pfam12092 DUF3568 Protein of unknown function (DUF3568). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 130 amino acids in length. 124 -152528 pfam12093 Corona_NS8 Coronavirus NS8 protein. This family of proteins is functionally uncharacterized. This protein is found in coronaviruses. Proteins in this family are typically between 39 to 121 amino acids in length. This protein has two conserved sequence motifs: EDPCP and INCQ. 126 -338244 pfam12094 DUF3570 Protein of unknown function (DUF3570). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 396 to 444 amino acids in length. 420 -314900 pfam12095 CRR7 Protein CHLORORESPIRATORY REDUCTION 7. This entry includes protein from blue-green algae and plants, including CRR7 protein from Arabidopsis. CRR7 is part of the chloroplastic NAD(P)H dehydrogenase complex (NDH Complex) involved in respiration, photosystem I (PSI) cyclic electron transport and CO2 uptake. It is essential for the stable formation of the NDH Complex. 80 -338245 pfam12096 DUF3572 Protein of unknown function (DUF3572). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are about 100 amino acids in length. 81 -288914 pfam12097 DUF3573 Protein of unknown function (DUF3573). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 372 to 530 amino acids in length. 383 -338246 pfam12098 DUF3574 Protein of unknown function (DUF3574). This family of proteins is functionally uncharacterized. This protein is found in bacteria and viruses. Proteins in this family are typically between 144 to 163 amino acids in length. This protein has a conserved TPRF sequence motif. 103 -338247 pfam12099 DUF3575 Protein of unknown function (DUF3575). This family of proteins are functionally uncharacterized. This family is only found in bacteria. Proteins in this family are typically between 187 to 236 amino acids in length. 177 -314904 pfam12100 DUF3576 Domain of unknown function (DUF3576). This presumed domain is functionally uncharacterized. This domain is found in bacteria. This domain is about 100 amino acids in length. This domain has a single completely conserved residue G that may be functionally important. 101 -338248 pfam12101 DUF3577 Protein of unknown function (DUF3577). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 143 to 307 amino acids in length. 133 -314906 pfam12102 DUF3578 Domain of unknown function (DUF3578). This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea. This domain is typically between 177 to 191 amino acids in length. 183 -314907 pfam12103 Lipl32 Surface lipoprotein of Spirochaetales order. Lipl32 is an outer membrane surface lipoprotein of Leptospira like bacteria. 178 -288921 pfam12104 Tcell_CD4_C T cell CD4 receptor C terminal region. This domain is the C terminal domain of the CD4 T cell receptor. The C terminal domain is the cytoplasmic domain which relays the signal for T cell activation. This process involves co-receptor internalisation. This domain is involved in binding to the N terminal of Lck co-receptor in a Zn2+ clasp structure. 28 -338249 pfam12105 SpoU_methylas_C SpoU, rRNA methylase, C-terminal. This domain is found in bacteria. This domain is about 60 amino acids in length. This domain is found in association with pfam00588. This domain has a conserved LFE sequence motif. Some members of the Pfam family SpoU_methylase, pfam00588, carry this very distinctive sequence region at their extreme C-terminus. The exact function of this region is not known. 54 -314909 pfam12106 Colicin_E5 Colicin E5 ribonuclease domain. Colicin is a protein produced by bacteria with Col plasmids. Its function is to attack E. coli through actions on its inner membrane ion channels or through ribonuclease or deoxyribonuclease actions. The C terminal domain is the ribonuclease domain. It specifically cleaves tRNA anticodons which recognize codons in the form NAY (N:any nucleotide, A:adenosine, Y:pyrimidine) which corresponds to Tyrosine, Histidine, Asparagine and Aspartic Acid. E5-CRD can be referred to as an RNA restriction enzyme that specifically recognizes and cleaves single-stranded GU sequences. 88 -152542 pfam12107 VEK-30 Plasminogen (Pg) ligand in fibrinolytic pathway. Pg is an important mediator of angiostatin production in the fibrinolytic pathway. Pg is made up of five subunit kringle molecules (Pg-K1 to Pg-K5), of which the first three make the protein angiostatin. VEK-30 is a domain of the group A streptococcal protein PAM. It binds to Pg-K2 of angiostatin and activates the molecule to mediate its anti-angiogenic effects. VEK-30 binds to angiostatin via a C terminal lysine with argininyl and glutamyl side chain residues known as a 'through space isostere'. 17 -314910 pfam12108 SF3a60_bindingd Splicing factor SF3a60 binding domain. This domain is found in eukaryotes. This domain is about 30 amino acids in length. This domain has a single completely conserved residue Y that may be functionally important. SF3a60 makes up the SF3a complex with SF3a66 and SF3a120. This domain is the binding site of SF3a60 for SF3a120. The SF3a complex is part of the spliceosome, a protein complex involved in splicing mRNA after transcription. 27 -314911 pfam12109 CXCR4_N CXCR4 Chemokine receptor N terminal. CXCR4 and its ligand stromal cell-derived factor-1 (a.k.a. CXCL12) are essential for proper fetal development. CXCR4 is also the major coreceptor for T-tropic strains of human immunodeficiency virus 1 (HIV-1), and SDF-1 inhibits HIV-1 infection. Additionally, SDF-1 and CXCR4 mediate cancer cell migration and metastasis. The N terminal domain of most chemokine receptors is the ligand binding domain and so the N terminal domain of CXCR4 is the binding site for SDF-1. 33 -338250 pfam12110 Nup96 Nuclear protein 96. Nup96 (often known by the name of its yeast homolog Nup145C) is part of the Nup84 heptameric complex in the nuclear pore complex. Nup96 complexes with Sec13 in the middle of the heptamer. The function of the heptamer is to coat the curvature of the nuclear pore complex between the inner and outer nuclear membranes. Nup96 is predicted to be an alpha helical solenoid. The interaction between Nup96 and Sec13 is the point of curvature in the heptameric complex. 284 -314913 pfam12111 PNPase_C Polyribonucleotide phosphorylase C terminal. PNPase regulates the expression of small non-coding RNAs that control expression of outer-membrane proteins. The enzyme also affects complex processes, such as the tissue-invasive virulence of Salmonella enterica and the regulation of a virulence-factor secretion system in Yersinia. In Escherichia coli, PNPase is involved in the quality control of ribosomal RNA precursors and is required for growth following cold shock. This family contains the C terminal protomer domain of the PNPase core. The function of the C terminal protomer is to catalyze phosphorolysis through its two active sites. 37 -338251 pfam12112 DUF3579 Protein of unknown function (DUF3579). This family of proteins is functionally uncharacterized. This protein is found in bacteria. Proteins in this family are typically between 98 to 126 amino acids in length. This protein has a conserved FRP sequence motif. 89 -288929 pfam12113 SVM_signal SVM protein signal sequence. This region is presumed to be a signal peptide sequence found in Sequence-variable mosaic (SVM) proteins. This domain is found in phytoplasmas. This presumed signal sequence is about 30 amino acids in length. 33 -314915 pfam12114 Period_C Period protein 2/3C-terminal region. This domain is found in eukaryotes. This domain is typically between 164 to 200 amino acids in length. This domain is found associated with pfam08447. 192 -314916 pfam12115 Salp15 Salivary protein of 15kDa inhibits CD4+ T cell activation. This is a family of 15kDa salivary proteins from Acari Arachnids that is induced on feeding and assists the parasite to remain attached to its arthropod host. By repressing calcium fluxes triggered by TCR engagement, Salp15 inhibits CD4+ T cell activation. Salp15 shows weak similarity to Inhibin A, a member of the TGF-beta superfamily that inhibits the production of cytokines and the proliferation of T cells. 112 -314917 pfam12116 SpoIIID Stage III sporulation protein D. This stage III sporulation protein is a small DNA-binding family that is essential for gene expression of the mother-cell compartment during sporulation. The domain is found in bacteria and viruses, and is about 40 amino acids in length. It has a conserved RGG sequence motif. 82 -288933 pfam12117 DUF3580 Protein of unknown function (DUF3580). This domain is found in viruses, and is about 120 amino acids in length. It is found in association with pfam01057. 121 -288934 pfam12118 SprA-related SprA-related family. This family of bacterial proteins has a conserved HEXXH motif, suggesting they are putative peptidases of zincin fold. Proteins in this family are typically between 234 to 465 amino acids in length. Most members are annotated as being SprA-related. 310 -338252 pfam12119 DUF3581 Protein of unknown function (DUF3581). This protein is found in bacteria. Proteins in this family are about 240 amino acids in length. 217 -288936 pfam12120 Arr-ms Rifampin ADP-ribosyl transferase. This protein is found in bacteria. Proteins in this family are typically between 136 to 150 amino acids in length. The opportunistic pathogen Mycobacterium smegmatis is resistant to rifampin because of the presence of a chromosomally encoded rifampin ADP-ribosyltransferase (Arr-ms). Arr-ms is a small enzyme whose activity thus renders rifamycin antibiotics ineffective. 99 -314919 pfam12121 DD_K Dermaseptin. This protein is found in eukaryotes. Proteins in this family are typically between 30 to 76 amino acids in length. This protein is found associated with pfam03032. This domain is part of a dermaseptin protein which is used as an antimicrobial agent. The full protein is almost completely defined in an alpha helical domain. It creates high levels of disorder at the level of the phospholipid head group of bacterial membranes suggesting that it partitions into the bilayer where it severely disrupts membrane packing. 22 -314920 pfam12122 Rhomboid_N Cytoplasmic N-terminal domain of rhomboid serine protease. Rhomboid_N is the N-terminal cytoplasmic domain of the rhomboid intra-membraneous serine protease, otherwise known as Peptidase_S54, pfam01694. This N-terminal domain has similarity to other GlnB-like domains, some of which appear to have a binding role, eg to peptidoglycan. It is not clear exactly what the function of this domain is in the protease, but its presence is critical for maintaining a catalytically competent state for the protein. 86 -338253 pfam12123 Amidase02_C N-acetylmuramoyl-l-alanine amidase. This domain is found in bacteria and viruses. This domain is about 50 amino acids in length. This domain is classified with the enzyme classification code EC:3.5.1.28. This domain is the C terminal of the enzyme which hydrolyzes the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell-wall glycopeptides. 44 -288939 pfam12124 Nsp3_PL2pro Coronavirus polyprotein cleavage domain. This domain is found in SARS coronaviruses, and is about 70 amino acids in length. It is found associated with various other coronavirus proteins due to the polyprotein nature of most viral translation. PL2pro is a domain of the non-structural protein nsp3. The domain performs three of the cleavages required to separate the translated polyprotein into its distinct proteins. 66 -338254 pfam12125 Beta-TrCP_D D domain of beta-TrCP. This domain is found in eukaryotes, and is approximately 40 amino acids in length. It is found associated with pfam00646, pfam00400. The protein that contains this domain functions as a ubiquitin ligase. Ubiquitination is required to direct proteins towards the proteasome for degradation. This protein is part of the WD40 class of F box proteins. The D domain of these F box proteins is involved in mediating the dimerization of the protein. dimerization is necessary to polyubiquitinate substrates so this D domain is vital in directing substrates towards the proteasome for degradation. 39 -314922 pfam12126 DUF3583 Protein of unknown function (DUF3583). This domain is found in eukaryotes, and is typically between 302 and 338 amino acids in length. It is found in association with pfam00097 and pfam00643. Most members are promyelocytic leukemia proteins, and this family lies towards the C-terminus. 329 -314923 pfam12127 YdfA_immunity SigmaW regulon antibacterial. This protein is found in bacteria. Proteins in this family are about 330 amino acids in length. The operon from which this protein is derived confers immunity for the host species to a broad range of antibacterial compounds, unlike the specific immunity proteins that are linked to and co-regulated with their antibiotic-synthesis proteins. 313 -314924 pfam12128 DUF3584 Protein of unknown function (DUF3584). This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication. 1201 -314925 pfam12129 Phtf-FEM1B_bdg Male germ-cell putative homeodomain transcription factor. This domain is found in bacteria and eukaryotes, and is typically between 101 and 140 amino acids in length. Phtf proteins do not display any sequence similarity to known or predicted proteins, but their conservation among species suggests an essential function. The 84 kDa Phtf1 protein is an integral membrane protein, anchored to a cell membrane by six to eight trans-membrane domains, that is associated with a domain of the endoplasmic reticulum (ER) juxtaposed to the Golgi apparatus. It is present during meiosis and spermiogenesis, and, by the end of spermiogenesis, is released from the mature spermatozoon within the residual bodies. Phtf1 enhances the binding of FEM1B -feminisation homolog 1B - to cell membranes. Fem-1 was initially identified in the signaling pathway for sex determination, as well as being implicated in apoptosis, but its biochemical role is still unclear, and neither FEM1B nor PHTF1 is directly implicated in apoptosis in spermatogenesis. It is the ANK domain of FEM1B that is necessary for the interaction with the N-terminal region of Phtf1. 151 -338255 pfam12130 DUF3585 Protein of unknown function (DUF3585). This domain is found in eukaryotes. This domain is typically between 135 and 149 amino acids in length and is found associated with pfam00307. 129 -338256 pfam12131 DUF3586 Protein of unknown function (DUF3586). This domain is found in eukaryotes. This domain is about 80 amino acids in length and is found associated with pfam08246, and pfam00112. 77 -314928 pfam12132 DUF3587 Protein of unknown function (DUF3587). This protein is found in viruses. Proteins in this family are typically between 209 and 248 amino acids in length. 201 -288948 pfam12133 Sars6 Open reading frame 6 from SARS coronavirus. This family is found in Coronaviruses. Proteins in this family are typically between 42 to 63 amino acids in length. 62 -314929 pfam12134 PRP8_domainIV PRP8 domain IV core. This domain is found in eukaryotes, and is about 20 amino acids in length. It is found associated with pfam10597, pfam10596, pfam10598, pfam08083, pfam08082, pfam01398, pfam08084. There is a conserved LILR sequence motif. The domain is a selenomethionine domain in a subunit of the spliceosome. The function of PRP8 domain IV is believed to be interaction with the splicosomal core. 230 -288950 pfam12135 Sialidase_penC Sialidase enzyme penultimate C terminal domain. This domain is found in bacteria and eukaryotes, and is about 30 amino acids in length. The protein from which this domain is found is a sialidase enzyme which is used by virulent bacteria as a toxin. It is the penultimate C terminal domain. 25 -152571 pfam12136 RNA_pol_Rpo13 RNA polymerase Rpo13 subunit HTH domain. This domain is found in archaea, and is about 40 amino acids in length. It has a single completely conserved residue E that may be functionally important. It is found in the archaeal DNA dependent RNA polymerase. The domain is a 'helix-turn-helix' (HTH) domain in the Rpo13 subunit of the RNA polymerase. This domain is involved in downstream DNA binding, and the entire subunit has also been implicated in contacting transcription factor II B. 40 -338257 pfam12137 RapA_C RNA polymerase recycling family C-terminal. This domain is found in bacteria. This domain is about 360 amino acids in length. This domain is found associated with pfam00271, pfam00176. The function of this domain is not known, but structurally it forms an alpha-beta fold in nature with a central beta-sheet flanked by helices and loops, the beta-sheet being mainly antiparallel and flanked by four alpha helices, among which the two longer helices exhibit a coiled-coil arrangement. 361 -314931 pfam12138 Spherulin4 Spherulation-specific family 4. This protein is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 250 and 398 amino acids in length. There is a conserved NPG sequence motif and there are two completely conserved G residues that may be functionally important. Starvation will often induce spherulation - the production of spores - and this process may involve DNA-methylation. Changes in the methylation of spherulin4 are associated with the formation of spherules, but these changes are probably transient. Methylation of the gene accompanies its transcriptional activation, and spherulin4 mRNA is only detectable in late spherulating cultures and mature spherules. It is a spherulation-specific protein. 239 -314932 pfam12139 APS-reductase_C Adenosine-5'-phosphosulfate reductase beta subunit. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 112 to 142 amino acids in length. This family is found in association with pfam00037, and has a conserved FPIRTT sequence motif. The whole beta subunit has the enzymic properties of EC:1.8.99.2. 80 -314933 pfam12140 SLED SLED domain. The SLED (Scm-Like Embedded Domain) domain is a double-stranded DNA binding domain found in Scml2 which is a member of the Polycomb group of proteins involved in epigenetic gene silencing. 112 -314934 pfam12141 DUF3589 Protein of unknown function (DUF3589). This family of proteins is found in eukaryotes. Proteins in this family are typically between 541 and 717 amino acids in length. The function of this family is not known, 485 -338258 pfam12142 PPO1_DWL Polyphenol oxidase middle domain. This domain family is found in bacteria and eukaryotes, and is approximately 50 amino acids in length, and the family is found in association with pfam00264. Most members are annotated as being polyphenol oxidases, and many are from plants or plastids. There is a conserved DWL sequence motif which gives the family its name. 52 -314936 pfam12143 PPO1_KFDV Protein of unknown function (DUF_B2219). This domain family is found in eukaryotes, and is typically between 138 and 152 amino acids in length. and the family is found in association with pfam00264. Many members are plant or plastid polyphenol oxidases, and there is a highly conserved sequence motif: KFDV, from which the name derives. This is the C-terminal domain of these oxidases. 131 -314937 pfam12144 Med12-PQL Eukaryotic Mediator 12 catenin-binding domain. This domain is found in eukaryotes, and is typically between 325 and 354 amino acids in length. Both development and carcinogenesis are driven by signal transduction within the canonical Wnt/beta-catenin pathway through both programmed and unprogrammed changes in gene transcription. Beta-catenin physically and functionally targets this PQL (proline-, glutamine-, leucine-rich) region of the Med12 subunit of Mediator to activate transcription. The beta-catenin transactivation domain binds directly to isolated Med12 and intact Mediator both in vitro and in vivo, and Mediator is recruited to Wnt-responsive genes in a beta-catenin-dependent manner. 204 -338259 pfam12145 Med12-LCEWAV Eukaryotic Mediator 12 subunit domain. This domain is found in eukaryotes, and is typically between 325 and 354 amino acids in length. The function of this particular region of the Mediator subunit Med12 is not known, but there is a conserved sequence motif: LCEWAV, from which the name derives. 465 -338260 pfam12146 Hydrolase_4 Serine aminopeptidase, S33. This domain is found in bacteria and eukaryotes and is approximately 110 amino acids in length. It is found in association with pfam00561. The majority of the members in this family carry the exopeptidase active-site residues of Ser-122, Asp-239 and His-269 as in UniProtKB:Q7ZWC2. 237 -288961 pfam12147 Methyltransf_20 Putative methyltransferase. This domain is found in bacteria and eukaryotes and is approximately 110 amino acids in length. It is found in association with pfam00561. The family shows homology to methyltransferases. 309 -314940 pfam12148 TTD Tandem tudor domain within UHRF1. TTD, tandem tudor domain within UHRF1 preferentially binds H3 histone tails trimethylated at Lys-9. It specifically recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). This domain is found in eukaryotes and is found in association with pfam00097, pfam02182, pfam00628, pfam00240. 153 -288963 pfam12149 HSV_VP16_C Herpes simplex virus virion protein 16 C terminal. This domain is found in viruses, and is about 30 amino acids in length. It is found in association with pfam02232. This domain is the C terminal of the HSV virion protein 16. This protein is a transcription promoter. The C terminal domain is the carboxyl subdomain of the acidic transcriptional activation domain. The protein binds to DNA binding proteins to carry out its function. Such proteins include TATA binding protein, CBP, TBP-binding protein, etc. 26 -314941 pfam12150 MFP2b Cytosolic motility protein. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. These proteins are found in nematodes. They complex with MSP (major sperm protein) to allow motility. Their action is quite similar to the action of bacterial actin molecules. 351 -314942 pfam12151 MVL Mannan-binding protein. This domain family is found in bacteria, and is approximately 40 amino acids in length, There is a single completely conserved residue G that may be functionally important. The domain occurs in two types of proteins. In mannan binding proteins, it forms a homodimeric molecule which complexes into a homo-octamer. In thiamidases it occurs without repeats but in the presence of other domains. MVL is distinct amongst other oligomannoside binding proteins in that it exhibits specificity for certain tetrasaccharides. Each molecule of MVL has four distinct carbohydrate binding sites. 36 -314943 pfam12152 eIF_4G1 Eukaryotic translation initiation factor 4G1. This domain is found in eukaryotes, and is about 80 amino acids in length. It is found in association with pfam02854. This domain is part of the protein eIF_4G. It binds to eIF_4E by wrapping around its N terminal to form the eIF_4F complex. This complex binds various eIF_4E-BPs (binding proteins) to regulate initiation of translation. 59 -288967 pfam12153 CAP18_C LPS binding domain of CAP18 (C terminal). This domain family is found in eukaryotes, and is approximately 30 amino acids in length, and the family is found in association with pfam00666. CAP18 is a protein which is derived from rabbit granulocytes. It has two domains, an N terminal DUF and a C terminal Gram negative LPS binding domain. This domain is the C terminal domain. 26 -152589 pfam12154 HCMVantigenic_N Glycoprotein B N-terminal antigenic domain of HCMV. This domain is found in viruses, and is approximately 40 amino acids in length. The domain is found in association with pfam00606. There are two conserved sequence motifs: SVS and TSS. This family is the amino-terminal antigenic domain of glycoprotein B of human cytomegalovirus. 36 -152590 pfam12155 NADHdh-2_N NADH dehydrogenase subunit 2 N-terminal. This domain is found in eukaryotes, and is approximately 90 amino acids in length. It is found associated with pfam00361. All members are annotated as being NADH dehydrogenase subunit 2, and this region is the N-terminus. 88 -338261 pfam12156 ATPase-cat_bd Putative metal-binding domain of cation transport ATPase. This domain is found in bacteria, and is approximately 90 amino acids in length. It is found associated with pfam00403, pfam00122, pfam00702. The cysteine-rich nature and composition suggest this might be a cation-binding domain; most members are annotated as being cation transport ATPases. 86 -314945 pfam12157 DUF3591 Protein of unknown function (DUF3591). This domain is found in eukaryotes and is typically between 445 to 462 amino acids in length. Most members are annotated as being transcription initiation factor TFIID subunit 1, and this region is the conserved central portion of these proteins. 454 -314946 pfam12158 DUF3592 Protein of unknown function (DUF3592). This family of proteins is functionally uncharacterized.This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 150 and 242 amino acids in length. 134 -314947 pfam12159 DUF3593 Protein of unknown function (DUF3593). This family of proteins is functionally uncharacterized.This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 98 and 228 amino acids in length. There is a conserved LHG sequence motif. 88 -314948 pfam12160 Fibrinogen_aC Fibrinogen alpha C domain. This domain family is found in eukaryotes, and is approximately 70 amino acids in length, and the family is found in association with pfam08702. This domain is the C terminal domain of fibrinogen in mammals. The domain lies in the C terminal half of the alpha C region in these proteins. The function of the domain is that of intramolecular and intermolecular interactions to form fibrin. 68 -338262 pfam12161 HsdM_N HsdM N-terminal domain. This domain is found at the N-terminus of the methylase subunit of Type I DNA methyltransferases. This domain family is found in bacteria and archaea, and is typically between 123 and 138 amino acids in length. The family is found in association with pfam02384. Mutations in this region of EcoKI methyltransferase abolish the normally strong preference of this system for methylating hemimethylated substrate. The structure of this domain has been shown to be all alpha-helical. 94 -314950 pfam12162 STAT1_TAZ2bind STAT1 TAZ2 binding domain. This domain family is found in eukaryotes, and is approximately 20 amino acids in length, and the family is found in association with pfam02865, pfam00017, pfam01017, pfam02864. This domain is the C terminal domain of STAT1. This domain binds selectively to the TAZ2 domain of CRB (CREB-binding protein). In this process it becomes a transcriptional activator and can initiate transcription of certain genes. 25 -338263 pfam12163 HobA DNA replication regulator. This family of proteins is found exclusively in epsilon-proteobacteria. Proteins in this family are approximately 180 amino acids in length. The structure of HobA is a modified Rossmann fold consisting of a five-stranded parallel beta-sheet (beta1-5) flanked on one side by alpha-2, alpha-3 and alpha-6 helices and alpha-4 and alpha-5 on the other. The alpha-1 helix is extended away from and has minimal interaction with the globular part of the protein. Four monomers interact to form a tetrameric molecule. Four calcium atoms bind to the tetramer and these binding sites may have functional relevance. The function of HobA is to regulate DNA replication and its does this by binding to DNA-A, but the exact mechanism of how this regulation occurs is purely speculative 180 -314952 pfam12164 SporV_AA Stage V sporulation protein AA. This domain family is found in bacteria - primarily Firmicutes, and is approximately 90 amino acids in length. There is a single completely conserved residue G that may be functionally important. Most annotation associated with this domain suggests that it is involved in the fifth stage of sporulation, however there is little publication to back this up. 89 -338264 pfam12165 Alfin Alfin. The Alfin family includes PHD finger protein Alfin1 and Alfin1-like proteins. Alfin1 is a histone-binding component that specifically recognizes H3 tails trimethylated on 'Lys-4' (H3K4me3), which marks transcription start sites of virtually all active genes. 126 -338265 pfam12166 Piezo_RRas_bdg Piezo non-specific cation channel, R-Ras-binding domain. This is an extracellular domain at the C-terminus of Piezo, or FAM38 mechanosensitive non-specific cation channel proteins. It seems likely that this region of the Piezo proteins may be responsible for R-Ras recruitment because this region is capable of relocalising R-Ras to the ER in eukaryotes. 413 -314955 pfam12167 Arm-DNA-bind_2 Arm DNA-binding domain. This domain is found at the N-terminus of various phage integrases. The domain binds to DNA. 64 -338266 pfam12168 DNA_pol3_tau_4 DNA polymerase III subunits tau domain IV DnaB-binding. This domain family is found in bacteria, and is approximately 80 amino acids in length. The family is found in association with pfam00004. Domains I-III are shared between the tau and the gamma subunits, while most of the DnaB-binding Domain IV and all of the alpha-interacting Domain V are unique to tau. 80 -314957 pfam12169 DNA_pol3_gamma3 DNA polymerase III subunits gamma and tau domain III. This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam00004. Domains I-III are shared between the tau and the gamma subunits, while most of the DnaB-binding Domain IV and all of the alpha-interacting Domain V are unique to tau. 143 -338267 pfam12170 DNA_pol3_tau_5 DNA polymerase III tau subunit V interacting with alpha. This domain family is found in bacteria, and is approximately 140 amino acids in length. The family is found in association with pfam00004. Domains I-III are shared between the tau and the gamma subunits, while most of the DnaB-binding Domain IV and all of the alpha-interacting Domain V are unique to tau. The extreme C-terminal region of this domain 5 is the part which interacts with the alpha subunit of the DNA polymerase III holoenzyme. 142 -338268 pfam12171 zf-C2H2_jaz Zinc-finger double-stranded RNA-binding. This domain family is found in archaea and eukaryotes, and is approximately 30 amino acids in length. The mammalian members of this group occur multiple times along the protein, joined by flexible linkers, and are referred to as JAZ - dsRNA-binding ZF protein - zinc-fingers. The JAZ proteins are expressed in all tissues tested and localize in the nucleus, particularly the nucleolus. JAZ preferentially binds to double-stranded (ds) RNA or RNA/DNA hybrids rather than DNA. In addition to binding double-stranded RNA, these zinc-fingers are required for nucleolar localization. 26 -314960 pfam12172 DUF35_N Rubredoxin-like zinc ribbon domain (DUF35_N). This domain has no known function and is found in conserved hypothetical archaeal and bacterial proteins. The domain is duplicated in Mycobacterium tuberculosis Rv3521. The structure of a DUF35 representative reveals two long N-terminal helices followed by a rubredoxin-like zinc ribbon domain represented in this family and a C-terminal OB fold domain. Zinc is chelated by the four conserved cysteines in the alignment. 37 -152608 pfam12173 BacteriocIIc_cy Bacteriocin class IIc cyclic gassericin A-like. This class of bacteriocins was previously described as class V. The members include gassericin A, acidocin B and butyrovibriocin AR10, all of which are hydrophobic cyclical structures. The N- and C-termini are covalently linked, and the circular molecule is resistant to several proteases and peptidases. The immunity protein that protects Lactobacillus gasseri from the toxic effects of its bacteriocin, gassericin A, has been identified. It is found to be a small positively-charged hydrophobic peptide of 53 amino acids containing a putative transmembrane segment - a structure unlike that of the more common immunity proteins as found in pfam08951. 91 -338269 pfam12174 RST RCD1-SRO-TAF4 (RST) plant domain. This domain is found in plant RCD1, SRO and TAF4 proteins, hence its name of RST. It is required for interaction with multiple plant transcription factors. Radical-Induced Cell Death1 (RCD1) is an important regulator of stress and hormonal and developmental responses in Arabidopsis thaliana, as is its closest homolog, SRO1 - Similar To RCD-One1. TBP-Associated Factor 4 (TAF4) and TAF4-b are components of the transcription initiation factor complex TFIID. 63 -288986 pfam12175 WSS_VP White spot syndrome virus structural envelope protein VP. This family of proteins is found in viruses. Proteins in this family are approximately 210 amino acids in length. There is a conserved NNT sequence motif. These proteins are structural envelope proteins in viruses. This is the beta barrel C terminal domain. There is a protruding N terminal domain which completes the proteins. Three of four envelope proteins in white spot syndrome virus share sequence homology with each other and are present in this family - VP24, VP26 and VP28. VP19 is the other major envelope protein but shares no sequence homology with the other proteins. These proteins are essential for entry into cells of the crustacean host. 200 -314962 pfam12176 MtaB Methanol-cobalamin methyltransferase B subunit. This family of proteins is found in bacteria and archaea. Proteins in this family are approximately 460 amino acids in length. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). The function of this protein is to catalyze the cleavage of the C O bond in methanol by an SN2 mechanism. It complexes with MtaA and MtaC to perform this function. 460 -314963 pfam12177 Proho_convert Prohormone convertase enzyme. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam01483, pfam00082. There are two completely conserved residues (Y and D) that may be functionally important. This protein is the C terminal domain of a prohormone convertase enzyme which targets hormones in dense core secretory granules. This C terminal tail domain is the domain responsible for targeting these dense core secretory granules. The domain adopts an alpha helical structure. 37 -338270 pfam12178 INCENP_N Chromosome passenger complex (CPC) protein INCENP N terminal. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. INCENP is a regulatory protein in the chromosome passenger complex. It is involved in regulation of the catalytic protein Aurora B. It performs this function in association with two other proteins - Survivin and Borealin. These proteins form a tight three-helical bundle. The N terminal domain is the domain involved in formation of this three helical bundle. 36 -314965 pfam12179 IKKbetaNEMObind I-kappa-kinase-beta NEMO binding domain. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00069. These proteins are involved in inflammatory reactions. They cause release of NF-kappa-B into the nucleus of inflammatory cells and upregulation of transcription of proinflammatory cytokines. They perform this function by phosphorylating I-kappa-B proteins which are targeted for degradation to release NF-kappa-B. This kinase (I-kappa-kinase-beta) is found in association with IKK-alpha and NEMO (NF-kappa-B essential modulator). This domain is the binding site of IKK-beta for NEMO. 35 -314966 pfam12180 EABR TSG101 and ALIX binding domain of CEP55. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. This domain is the active domain of CEP55. CEP55 is a protein involved in cytokinesis, specifically in abscission of the plasma membrane at the midbody. To perform this function, CEP55 complexes with ESCRT-I (by a Proline rich sequence in its TSG101 domain) and ALIX. This is the domain on CEP55 which binds to both TSG101 and ALIX. It also acts as a hinge between the N and C termini. This domain is called EABR. 34 -288992 pfam12181 MogR_DNAbind DNA binding domain of the motility gene repressor (MogR). This domain family is found in bacteria, and is approximately 150 amino acids in length. MogR is involved in repression of transcription of the flagellar gene in Listeria bacteria. This allows a phenotypical switch from an extracellular bacterium to an intracellular pathogen. MogR binds AT rich flagellar gene promoter regions upstream of the flagellar gene. These regions follow the pattern 5'-TTTTNNNNNAAAA-3'. This domain is the DNA binding domain of MogR. 151 -338271 pfam12182 DUF3642 Bacterial lipoprotein. This domain family is found in bacteria, and is approximately 60 amino acids in length. There is a single completely conserved Y residue that may be functionally important. This domain is from a bacterial lipoprotein, a major virulence factor in Gram negative bacteria. 78 -314968 pfam12183 NotI Restriction endonuclease NotI. This family of proteins is found in bacteria. Proteins in this family are typically between 270 and 341 amino acids in length. There is a conserved CPF sequence motif. The type IIP restriction enzyme, NotI, is a homodimer that recognizes the 8 bp DNA sequence 5'-GC/GGCCGC-3' and cleaves both strands of DNA to create 5', 4 base cohesive overhangs. 230 -338272 pfam12185 IR1-M Nup358/RanBP2 E3 ligase domain. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. The family is found in association with pfam00638, pfam00641, pfam00160. There are two conserved sequence motifs: TFFC and EDF. Nup358/RanBP2 is a nucleoporin involved in ubiquitination of many different protein targets from various cellular pathways. It complexes with Ubc9, SUMO-1 and RanGAP1 to perform this function. This is the ligase domain which binds to Ubc9. 59 -338273 pfam12186 AcylCoA_dehyd_C Acyl-CoA dehydrogenase C terminal. This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam02770, pfam00441, pfam02771. There is a conserved ARRL sequence motif. The C terminal domain is an alpha helical domain. The flavin ring of Acyl-CoA dehydrogenase is buried in the crevice between the two alpha helical domains and the beta-sheet domain of one subunit, and the adenosine pyrophosphate moiety is stretched into the subunit junction of a neighboring subunit, composed of two C terminal domains. 111 -288997 pfam12187 VirArc_Nuclease Viral/Archaeal nuclease. This family of proteins is found in archaea and viruses. Proteins in this family are typically between 211 and 244 amino acids in length. These proteins are nucleases from fusseloviruses and sulfolobus archaea. 149 -314971 pfam12188 STAT2_C Signal transducer and activator of transcription 2 C terminal. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. The family is found in association with pfam02865, pfam00017, pfam01017, pfam02864. There is a conserved DLP sequence motif. STATs are involved in transcriptional regulation and are the only regulators known to be modulated by tyrosine phosphorylation. STAT2 forms a trimeric complex with STAT1 and IRF-9 (Interferon Regulatory Factor 9), on activation of the cell by interferon, which is called ISGF3 (Interferon-stimulated gene factor 3). The C terminal domain of STAT2 contains a nuclear export signal (NES) which allows export of STAT2 into the cytoplasm along with any complexed molecules. 56 -288999 pfam12189 VirE1 Single-strand DNA-binding protein. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved IELE sequence motif. VirE1 is an acidic chaperone protein which binds to VirE2, a ssDNA binding protein. These proteins are virulence factors of the plant pathogens Agrobacteria. VirE1 competes for the ssDNA binding site of VirE2. 63 -314972 pfam12190 amfpi-1 Fungal protease inhibitor. This protein family is found in eukaryotes, and is approximately 50 amino acids in length. These proteins are fungal protease inhibitors. 85 -314973 pfam12191 stn_TNFRSF12A tumor necrosis factor receptor stn_TNFRSF12A_TNFR domain. This family of proteins is found in eukaryotes. Proteins in this family are typically between 129 and 184 amino acids in length. This is the stn_TNFRSF12A_TNFR domain from the tumor necrosis factor receptor. The function of this domain is unknown. 129 -314974 pfam12192 CBP Fungal calcium binding protein. This domain is found in eukaryotes, and is approximately 60 amino acids in length. There is a single completely conserved residue C that may be functionally important. This is a calcium binding domain from the fungal protein CBP (calcium binding protein). This protein is a virulence factor with unknown virulence mechanisms. CBP complexes as a highly intertwined homodimer. Each monomer is comprised of four alpha helices which adopt the saposin fold, characteristic of a protein family that binds to membranes and lipids. 76 -289003 pfam12193 Sulf_coat_C Sulfolobus virus coat protein C terminal. This domain family is found in viruses, and is approximately 70 amino acids in length. It is the C terminal of a coat protein in sulfolobus viruses. 69 -314975 pfam12194 Ste5_C Protein kinase Fus3-binding. This domain family is found in eukaryotes, and is approximately 190 amino acids in length. This domain is the penultimate C terminal domain from the protein ste5 which co-catalyzes the phosphorylation of fus3 by ste7. It is involved in the MAPK pathways. This domain is the minimal scaffold domain of ste5. It binds to the mitogen activated protein kinase fus3 before it is phosphorylated. 189 -152630 pfam12195 End_beta_barrel Beta barrel domain of bacteriophage endosialidase. This domain family is found in bacteria and viruses, and is approximately 80 amino acids in length.This domain is the beta barrel domain of bacteriophage endosialidase which represents the one of the two sialic acid binding sites of the enzyme. The domain is nested in the beta propeller domain of the endosialidase enzyme. The endosialidase protein complexes to form homotrimeric molecules. 83 -314976 pfam12196 hNIFK_binding FHA Ki67 binding domain of hNIFK. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00076. There are two conserved sequence motifs: TPVCTP and LERRKS. This domain is found on the human nucleolar protein hNIFK. It binds to the fork-head-associated domain of human Ki67. High-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. This interaction is involved in cell cycle regulation. 40 -314977 pfam12197 lci Bacillus cereus group antimicrobial protein. This domain is found in bacteria, and is approximately 40 amino acids in length. This domain is found in bacillus cereus group bacteria. It is an antimicrobial protein. 42 -289006 pfam12198 Tuberculin Theoretical tuberculin protein. This domain family is found in bacteria, and is approximately 30 amino acids in length. This protein is a theoretical model of the tuberculin protein from Mycobacterium tuberculosis. 34 -289007 pfam12199 efb-c Extracellular fibrinogen binding protein C terminal. This domain family is found in bacteria, and is approximately 70 amino acids in length. There is a conserved VLK sequence motif. It is the C terminal domain of bacterial extracellular fibrinogen binding protein. It contains a helical motif involved in complement regulation. This motif binds to complement and changes its conformation to a form which cannot activate downstream components of the complement cascade. 65 -338274 pfam12200 DUF3597 Domain of unknown function (DUF3597). This family of proteins is found in bacteria, eukaryotes and viruses. Proteins in this family are typically between 126 and 281 amino acids in length. The function of this domain is unknown. The structure of this domain has been found to contain five helices with a long flexible loop between helices one and two. 128 -314979 pfam12201 bcl-2I13 Bcl2-interacting killer, BH3-domain containing. This is a family of pro-apoptotic Bcl-x proteins, B cell leukaemia/lymphoma 2, or BIKs. BIK proteins rely for their activity upon an intact BH3 domain lying between residues 48 and 80, as in UniProt:Q13323. 155 -338275 pfam12202 OSR1_C Oxidative-stress-responsive kinase 1 C-terminal domain. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00069. There is a single completely conserved residue F that may be functionally important. OSR1 is involved in the signalling cascade which activates Na/K/2Cl cotransporter during osmotic stress. This domain is the C terminal domain of OSR1 which recognizes a motif (Arg-Phe-Xaa-Val) on the OSR1-activating protein WNK1. 64 -338276 pfam12203 HDAC4_Gln Glutamine rich N terminal domain of histone deacetylase 4. This domain is found in eukaryotes, and is approximately 90 amino acids in length. The family is found in association with pfam00850. The domain forms an alpha helix which complexes to form a tetramer. The glutamine rich domains have many intra- and inter-helical interactions which are thought to be involved in reversible assembly and disassembly of proteins. The domain is part of histone deacetylase 4 (HDAC4) which removes acetyl groups from histones. This restores their positive charge to allow stronger DNA binding thus restricting transcriptional activity. 91 -314982 pfam12204 DUF3598 Domain of unknown function (DUF3598). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 230 and 398 amino acids in length. These proteins are formed entirely from B sheets which form a barrel structure similar to those seen in the lipocalin superfamily. 259 -314983 pfam12205 GIT1_C G protein-coupled receptor kinase-interacting protein 1 C term. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam01412, pfam00023, pfam08518. GIT1 plays an important role in cell adhesion, motility, cytoskeletal remodeling and membrane trafficking. To perform this function, it localizes p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions. Its activation is regulated by interaction between its paxillin-binding C terminal and the LD motifs of paxillin. The C terminal folds into a four helix bundle. 115 -289014 pfam12206 DUF3599 Domain of unknown function (DUF3599). This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. This domain is the phage-like element pbsx protein xkdh. 115 -289015 pfam12207 DUF3600 Domain of unknown function (DUF3600). This family of proteins is found in bacteria. Proteins in this family are approximately 230 amino acids in length. This domain is the C terminal of the putative ecf-type sigma factor negative effector. 157 -314984 pfam12208 DUF3601 Domain of unknown function (DUF3601). This domain family is found in bacteria, and is approximately 80 amino acids in length. 77 -314985 pfam12209 SAC3 Leucine permease transcriptional regulator helical domain. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. The family is found in association with pfam03399. This domain is a helical domain in the middle of leucine permease transcriptional regulator. 77 -338277 pfam12210 Hrs_helical Hepatocyte growth factor-regulated tyrosine kinase substrate. This domain family is found in eukaryotes, and is approximately 100 amino acids in length. The family is found in association with pfam00790, pfam01363, pfam02809. This domain is the helical region of Hrs which forms the core complex of ESCRT with STAM. 95 -314987 pfam12211 LMWSLP_N Low molecular weight S layer protein N terminal. This family of proteins is found in bacteria. Proteins in this family are typically between 328 and 381 amino acids in length. There is a conserved LGDG sequence motif. Clostridial species have a layer of surface proteins surrounding their membrane. This layer is comprised of a high molecular weight protein and a low molecular weight protein. This domain is the N terminal domain of the low molecular weight protein. It is a structural domain. 258 -314988 pfam12212 PAZ_siRNAbind PAZ domain. This entry corresponds to the PAZ domain found in some archaeal argonaute proteins. It is an siRNA binding domain. 127 -314989 pfam12213 Dpoe2NT DNA polymerases epsilon N terminal. This domain is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam04042. There is a single completely conserved residue F that may be functionally important. This domain is the N terminal domain of DNA polymerase epsilon subunit B. It forms a primarily alpha helical structure in which four helices are arranged in two hairpins with connecting loops containing beta strands which form a short parallel sheet. DNA polymerase epsilon is required in DNA replication for synthesis of the leading strand. This domain has close structural relation to AAA+ protein C terminal domains. 70 -338278 pfam12214 TPX2_importin Cell cycle regulated microtubule associated protein. This domain is found in eukaryotes. This domain is typically between 127 to 182 amino acids in length. This domain is found associated with pfam06886. This domain is found in the protein TPX2 (a.k.a p100) which is involved in cell cycling. It is only expressed between the start of the S phase and completion of cytokinesis. The microtubule-associated protein TPX2 has been reported to be crucial for mitotic spindle formation. This domain is close to the C terminal of TPX2. The protein importin alpha regulates the activity of TPX2 by binding to the nuclear localization signal in this domain. 133 -338279 pfam12215 Glyco_hydr_116N beta-glucosidase 2, glycosyl-hydrolase family 116 N-term. This domain is found in bacteria, archaea and eukaryotes. This domain is typically between 320 to 354 amino acids in length. This domain is found associated with pfam04685. It is found just after the extreme N-terminus. The N-terminal is thought to be the luminal domain while the C terminal is the cytosolic domain. The catalytic domain of GBA-2 is unknown. The primary catabolic pathway for glucosylceramide is catalysis by the lysosomal enzyme glucocerebrosidase. In higher eukaryotes, glucosylceramide is the precursor of glycosphingolipids, a complex group of ubiquitous membrane lipids. Mutations in the human protein cause motor-neurone defects in hereditary spastic paraplegia. The catalytic nucleophile, identified in UniProtKB:Q97YG8_SULSO, is a glutamine-335 in the downstream family pfam04685. 307 -314992 pfam12216 m04gp34like Immune evasion protein. This protein is found in archaea and viruses. Proteins in this family are typically between 265 to 342 amino acids in length. The proteins in this family are or are related to the m04 encoded protein gp34 of pathogenic microorganisms such as murine cytomegalovirus. m06 and m152 genes are expressed earlier in the intracellular replication phases of these microorganism' life cycles. They function to inhibit MHC-1 loading and export. gp34 is theorized to prevent immune reactions from NK cells which would ordinarily recognize and attack cells lacking MHC. 267 -152652 pfam12217 End_beta_propel Catalytic beta propeller domain of bacteriophage endosialidase. This domain family is found in bacteria and viruses, and is typically between 443 and 460 amino acids in length. This domain is the highly conserved beta propeller of bacteriophage endosialidase which represents the catalytically active part of the enzymes. This core domain forms stable SDS-resistant trimers. There is a nested beta barrel domain in this domain (pfam12195). The endosialidase protein complexes to form a homotrimeric molecule. 449 -314993 pfam12218 End_N_terminal N terminal extension of bacteriophage endosialidase. This domain family is found in bacteria and viruses, and is approximately 70 amino acids in length. This domain is found in the bacteriophage protein endosialidase. The two N-terminal domains (this domain and the beta propeller) assemble in the compact 'cap' whereas the C-terminal domain forms an extended tail-like structure. The very N-terminal part of the 'cap' region (residues 246 to 312) holds the only alpha-helix of the protein and is presumably the residual part of the deleted N-terminal head-binding domain. The endosialidase protein complexes to form homotrimeric molecules. 67 -152654 pfam12219 End_tail_spike Catalytic domain of bacteriophage endosialidase. This domain family is found in bacteria and viruses, and is approximately 160 amino acids in length. There are two conserved sequence motifs: VSR and YGA. This domain is the C terminal domain of the bacteriophage protein endosialidase. The endosialidase protein forms homotrimeric molecules and this domain complexes into a tail-spike stalk. The stalk region folds in a triple beta-helix that is interrupted by a small triple beta-prism domain. The tail-spike is a multifunctional protein device used by the phage to fulfill the following functions: (i) to adsorb to the bacterial polySia capsule (ii) to de-polymerize the capsule to gain access to the outer bacterial membrane, and finally (iii) to mediate tight adhesion to the membrane, a prerequisite for the initiation of the infection cycle. 160 -314994 pfam12220 U1snRNP70_N U1 small nuclear ribonucleoprotein of 70kDa MW N terminal. This domain is found in eukaryotes. This domain is about 90 amino acids in length. This domain is found associated with pfam00076. This domain is part of U1 snRNP, which is the pre-mRNA binding protein of the penta-snRNP spliceosome complex. It extends over a distance of 180 A from its RNA binding domain, wraps around the core domain of U1 snRNP consisting of the seven Sm proteins and finally contacts U1-C, which is crucial for 5'-splice-site recognition. 90 -338280 pfam12221 HflK_N Bacterial membrane protein N terminal. This domain is found in bacteria. This domain is typically between 65 to 81 amino acids in length. This domain is found associated with pfam01145. This domain is the N terminal of the bacterial membrane protein HflK. HflK complexes with HflC to form a membrane protease which is modulated by the GTPase HflX. The N terminal domain of HflK is the membrane spanning region which anchors the protein in the bacterial membrane. 45 -338281 pfam12222 PNGaseA Peptide N-acetyl-beta-D-glucosaminyl asparaginase amidase A. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 558 and 775 amino acids in length. There is a conserved TGG sequence motif. PNGase A is a protein which cleaves glycopeptides. 433 -314997 pfam12223 DUF3602 Protein of unknown function (DUF3602). This domain family is found in eukaryotes, and is typically between 78 and 89 amino acids in length. 80 -314998 pfam12224 Amidoligase_2 Putative amidoligase enzyme. This family of proteins are likely to act as amidoligase enzymes Protein in this family are found in conserved gene neighborhoods encoding a glutamine amidotransferase-like thiol peptidase (in proteobacteria) or an Aig2 family cyclotransferase protein (in firmicutes). 235 -314999 pfam12225 MTHFR_C Methylene-tetrahydrofolate reductase C terminal. This family is found in bacteria and archaea, and is approximately 100 amino acids in length. There is a conserved NGPCGG sequence motif. This family is the C terminal of methylene-tetrahydrofolate reductase. This protein reduces FAD using the reducing equivalents from reduced FAD, subsequently reduces tetrahydrofolate. The C terminal of MTHFR contains the FAD binding site and is the catalytic portion of the enzyme. 88 -315000 pfam12226 Astro_capsid_p Turkey astrovirus capsid protein. This family of proteins is found in viruses. Proteins in this family are typically between 241 and 261 amino acids in length. These proteins are capsid proteins from various astrovirus strains. 362 -315001 pfam12227 DUF3603 Protein of unknown function (DUF3603). This protein is found in bacteria and eukaryotes. Proteins in this family are about 250 amino acids in length. 214 -315002 pfam12228 DUF3604 Protein of unknown function (DUF3604). This family of proteins is found in bacteria. Proteins in this family are typically between 621 and 693 amino acids in length. 590 -315003 pfam12229 PG_binding_4 Putative peptidoglycan binding domain. This domain is found associated with the L,D-transpeptidase domain pfam03734. The structure of this domain has been solved and shows a mixed alpha-beta fold composed of nine beta strands and four alpha helices. This domain is usually found to be duplicated. Therefore, it seems likely that this domain acts to bind the two unlinked peptidoglycan chains and bring them into close association so they can be cross linked by the transpeptidase domain (Bateman A pers. observation). 115 -315004 pfam12230 PRP21_like_P Pre-mRNA splicing factor PRP21 like protein. This domain family is found in eukaryotes, and is typically between 212 and 238 amino acids in length. The family is found in association with pfam01805. There are two completely conserved residues (W and H) that may be functionally important. PRP21 is required for assembly of the prespliceosome and it interacts with U2 snRNP and/or pre-mRNA in the prespliceosome. This family also contains proteins similar to PRP21, such as the mammalian SF3a. SF3a also interacts with U2 snRNP from the prespliceosome, converting it to its active form. 217 -315005 pfam12231 Rif1_N Rap1-interacting factor 1 N terminal. This domain family is found in eukaryotes, and is typically between 135 and 146 amino acids in length. Rif1 is a protein which interacts with Rap1 to regulate telomere length. Interaction with telomeres limits their length. The N terminal region contains many HEAT- and ARMADILLO- type repeats. These are helical folds which form extended curved proteins or RNA interface surfaces. 374 -315006 pfam12232 Myf5 Myogenic determination factor 5. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam00010, pfam01586. There is a conserved CSD sequence motif. Myf5 is responsible for directing cells to the skeletal myocyte lineage during development. Myf5 is likely to act in a similar way to the other MRF4 proteins such as MyoD which perform the same function. These are histone acetyltransferases and histone deacetylases which activate and repress genes involved in the myocyte lineage. 71 -289037 pfam12233 p12I Human adult T cell leukemia/lymphoma virus protein. This family of proteins is found in viruses. Proteins in this family are approximately 100 amino acids in length. p12I binds to the immature beta and gamma-c chains of the interleukin-2 receptor retarding their translocation to the plasma membrane. p12I forms dimers which bind to these chains. 99 -338282 pfam12234 Rav1p_C RAVE protein 1 C terminal. This domain family is found in eukaryotes, and is typically between 621 and 644 amino acids in length. This family is the C terminal region of the protein RAVE (regulator of the ATPase of vacuolar and endosomal membranes). Rav1p is involved in regulating the glucose dependent assembly and disassembly of vacuolar ATPase V1 and V0 subunits. 634 -315008 pfam12235 FXMRP1_C_core Fragile X-related 1 protein core C terminal. This domain family is found in eukaryotes, and is typically between 126 and 160 amino acids in length. The family is found in association with pfam05641, pfam00013. This family is the core C terminal region of the fragile X related 1 proteins FXR1P, FXR2 and FMR1. These different proteins have different regions at their very C-terminus. The Glutamine-arginine rich region facilitates protein interactions. This family contains two blocks of RGG repeats that bind to G-quartet sequences in a wide variety of mRNAs. 124 -315009 pfam12236 Head-tail_con Bacteriophage head to tail connecting protein. This family of head-tail connector proteins is found in bacteria and viruses. Proteins in this family are typically between 516 and 555 amino acids in length. This protein is found in Phage T7 and T3 among others. 478 -315010 pfam12237 PCIF1_WW Phosphorylated CTD interacting factor 1 WW domain. This domain family is found in bacteria and eukaryotes, and is approximately 180 amino acids in length. This domain is the WW domain of PCIF1. PCIF1 interacts with phosphorylated RNA polymerase II carboxy-terminal domain (CTD). The WW domain of PCIF1 can directly and preferentially bind to the phosphorylated CTD compared to the unphosphorylated CTD. PCIF1 binds to the hyperphosphorylated RNAP II (RNAP IIO) in vitro and in vivo. Double immunofluorescence labeling in HeLa cells demonstrated that PCIF1 and endogenous RNAP IIO are co-localized in the cell nucleus. Thus, PCIF1 may play a role in mRNA synthesis by modulating RNAP IIO activity. 155 -289042 pfam12238 MSA-2c Merozoite surface antigen 2c. This family of proteins is found in eukaryotes. Proteins in this family are typically between 263 and 318 amino acids in length. There is a conserved SFT sequence motif. MSA-2 is a plasma membrane glycoprotein which can be found in Babesia bovis species. 216 -338283 pfam12239 DUF3605 Protein of unknown function (DUF3605). This family of proteins is found in eukaryotes and viruses. Proteins in this family are typically between 161 and 256 amino acids in length. 153 -338284 pfam12240 Angiomotin_C Angiomotin C terminal. This domain family is found in eukaryotes, and is typically between 197 and 211 amino acids in length. This family is the C terminal region of angiomotin. Angiomotin regulates the action of angiogenesis inhibitor angiostatin. The C terminal region of angiomotin appears to be involved in directing the protein chemotactically. 201 -338285 pfam12241 Enoyl_reductase Trans-2-enoyl-CoA reductase catalytic region. This family of trans-2-enoyl-CoA reductases, EC:1.3.1.44, carries the the catalytic sites of the enzyme, characterized by the conserved sequence motifs: YNThhhFxK, and YShAPxR. In Euglena where the enzyme has been characterized it catalyzes the reduction of enoyl-CoA to acyl-CoA in an unusual fatty acid pathway in mitochondria. the whole path performs a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. 236 -338286 pfam12242 Eno-Rase_NADH_b NAD(P)H binding domain of trans-2-enoyl-CoA reductase. This family carries the region of the enzyme trans-2-enoyl-CoA reductase, EC:1.3.1.44, which binds NAD(P)H. The activity of the enzyme was characterized in Euglena where an unusual fatty acid synthesis path-way in the mitochondria performs a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. The full enzyme catalyzes the reduction of enoyl-CoA to acyl-CoA. The binding site is conserved as GA/CSpGYG, where p is any polar residue. 79 -315015 pfam12243 CTK3 CTD kinase subunit gamma CTK3. The C-terminal domain kinase (CTDK-1), is a three-subunit complex comprised of Ctk1, Ctk2, and Ctk3, that plays a key role in regulation of transcription and translation and in coordinating these two processes. Both Ctk2 and Ctk3 are regulated at the level of protein turnover, and are unstable proteins processed through a ubiquitin-proteasome pathway. Their physical interaction is required to protect both subunits from degradation, and both Ctk2 and Ctk3 are required for Ctk1 CTD kinase activation. The mammalian P-TEFb is mirrored by the combined complexes in yeast of the CTDK1 and the Bur1/2. 123 -338287 pfam12244 DUF3606 Protein of unknown function (DUF3606). This family of proteins is found in bacteria. Proteins in this family are typically between 58 and 85 amino acids in length. There is a single completely conserved residue G that may be functionally important. 54 -338288 pfam12245 Big_3_2 Bacterial Ig-like domain (group 3). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in a variety of bacterial surface proteins. 38 -315018 pfam12246 MKT1_C Temperature dependent protein affecting M2 dsRNA replication. This domain family is found in eukaryotes, and is typically between 231 and 255 amino acids in length. There is a single completely conserved residue P that may be functionally important. MKT1 is required for maintenance of K2 toxin above 30 degrees C in strains with the L-A-HN variant of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. MKT1 is a 93 kDa protein with serine-rich regions and the retroviral protease signature, DTG. This family is the C terminal region of MKT1. 243 -338289 pfam12247 MKT1_N Temperature dependent protein affecting M2 dsRNA replication. This domain family is found in eukaryotes, and is typically between 231 and 255 amino acids in length. There is a single completely conserved residue P that may be functionally important. MKT1 is required for maintenance of K2 toxin above 30 degrees C in strains with the L-A-HN variant of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. MKT1 is a 93 kDa protein with serine-rich regions and the retroviral protease signature, DTG. This family is the N terminal region of MKT1. 84 -338290 pfam12248 Methyltransf_FA Farnesoic acid 0-methyl transferase. This domain family is found in bacteria and eukaryotes, and is approximately 110 amino acids in length.Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). 93 -315021 pfam12249 AftA_C Arabinofuranosyltransferase A C terminal. This domain family is found in bacteria, and is typically between 179 and 190 amino acids in length. This family is the C terminal region of AftA. The enzyme catalyzes the addition of the first key arabinofuranosyl residue from the sugar donor beta-D-arabinofuranosyl-1-monophosphoryldecaprenol to the galactan domain of the cell wall, thus priming the galactan for further elaboration by the arabinofuranosyltransferases. The C terminal region is predicted to be directed towards the periplasm. 177 -315022 pfam12250 AftA_N Arabinofuranosyltransferase N terminal. This domain family is found in bacteria, and is typically between 430 and 441 amino acids in length. This family is the N terminal region of AftA. The enzyme catalyzes the addition of the first key arabinofuranosyl residue from the sugar donor beta-D-arabinofuranosyl-1-monophosphoryldecaprenol to the galactan domain of the cell wall, thus priming the galactan for further elaboration by the arabinofuranosyltransferases. The N terminal region has been predicted to span 11 transmembrane regions. 421 -338291 pfam12251 zf-SNAP50_C snRNA-activating protein of 50kDa MW C terminal. This domain family is found in eukaryotes, and is typically between 196 and 207 amino acids in length. There is a conserved CEH sequence motif. SNAP50 is part of the snRNA-activating protein complex which activates RNA polymerases II and III. There is a cysteine-histidine cluster which contains two possible zinc finger motifs. 187 -289056 pfam12252 SidE Dot/Icm substrate protein. This family of proteins is found in bacteria. Proteins in this family are typically between 397 and 1543 amino acids in length. This family is the SidE protein in the Dot/Icm pathway of Legionella pneumophila bacteria. There is little literature describing the family. 1435 -338292 pfam12253 CAF1A Chromatin assembly factor 1 subunit A. The CAF-1 or chromatin assembly factor-1 consists of three subunits, and this is the first, or A. The A domain is uniquely required for the progression of S phase in mouse cells, independent of its ability to promote histone deposition but dependent on its ability to interact with HP1 - heterochromatin protein 1-rich heterochromatin domains next to centromeres that are crucial for chromosome segregation during mitosis. This HP1-CAF-1 interaction module functions as a built-in replication control for heterochromatin, which, like a control barrier, has an impact on S-phase progression in addition to DNA-based checkpoints. 75 -338293 pfam12254 DNA_pol_alpha_N DNA polymerase alpha subunit p180 N terminal. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam00136, pfam08996, pfam03104. This family is the N terminal of DNA polymerase alpha subunit p180 protein. The N terminal contains the catalytic region of the alpha subunit. 64 -315026 pfam12255 TcdB_toxin_midC Insecticide toxin TcdB middle/C-terminal region. This domain family is found in bacteria, and is approximately 150 amino acids in length. The family is found in association with pfam03534. This family is the C-terminal-sided middle region of the bacterial insecticide toxin TcdB. 140 -315027 pfam12256 TcdB_toxin_midN Insecticide toxin TcdB middle/N-terminal region. This domain family is found in bacteria and archaea, and is typically between 164 and 180 amino acids in length. The family is found in association with pfam05593. This family is the N-terminal-sided middle region of the bacterial insecticide toxin TcdB. This region appears related to the FG-GAP repeat pfam01839. 178 -338294 pfam12257 IML1 Vacuolar membrane-associated protein Iml1. Proteins in this family contain a DEP domain, which is a globular domain of about 80 residues. This entry includes vacuolar membrane-associated protein Iml1 and DEP domain-containing protein 5/DDB_G0279099. In Saccharomyces cerevisiae, Iml1 is a subunit of both the SEA (Seh1-associated) and Iml1 complexes (Iml1-Npr2-Npr3). SEA complex is associates dynamically with the vacuole and is involved in autophagy. Iml1 complex is required for non-nitrogen-starvation (NNS)-induced autophagy. 285 -315029 pfam12258 Microcephalin Microcephalin protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 384 and 835 amino acids in length. Microcephalin is involved in determining the size of the brain in animals. It is a protein, which if expressed homozygously causes the organism to have the condition microcephaly. Organisms expressing the mutated form of this protein in a homozygous manner develop a condition called microcephaly - a drastically reduced brain mass and volume. Microcephalin is predicted to contain three BRCA1 C-terminal domains, the first of which is the probable microcephaly mutation site. 386 -315030 pfam12259 Baculo_F Baculovirus F protein. This protein is found in a variety of baculoviruses. It is known as the F protein. Matches to this family are additionally found in some presumed transposons. 605 -315031 pfam12260 PIP49_C Protein-kinase domain of FAM69. This is the C-terminal region of a family of FAM69 proteins from Metazoa and Viridiplantae that are active protein-kinases. The family members have a short transmembrane helix close to the N-terminus, and thereafter are highly enriched with cysteines. FAM69 proteins are localized to the endoplasmic reticulum. Many members also have a short EF-hand, calcium-binding, domain just upstream of the kinase domain. The exact function of the more N-terminal family is uncertain. 187 -338295 pfam12261 T_hemolysin Thermostable hemolysin. This family of proteins is found in bacteria. Proteins in this family are typically between 200 and 228 amino acids in length. T_hemolysin is a pore-forming toxin of bacteria, able to lyse erythrocytes from a number of mammalian species. 171 -338296 pfam12262 Lipase_bact_N Bacterial virulence factor lipase N-terminal. This domain family is found in bacteria, and is typically between 258 and 271 amino acids in length. There are two conserved sequence motifs: DGT and DGWST. This family is the N-terminal region of bacterial virulence factor lipase. The N-terminal region contains a potential signalling sequence. 268 -315034 pfam12263 DUF3611 Protein of unknown function (DUF3611). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 180 and 205 amino acids in length. There are two completely conserved residues (W and G) that may be functionally important. 172 -152699 pfam12264 Waikav_capsid_1 Waikavirus capsid protein 1. The rice tungro spherical waikavirus polyprotein is cleaved into 7 proteins, including three capsid proteins, by the tungro spherical virus-type peptidase pfam12381. This family represents the capsid protein 1. 197 -338297 pfam12265 CAF1C_H4-bd Histone-binding protein RBBP4 or subunit C of CAF1 complex. The CAF-1 complex is a conserved heterotrimeric protein complex that promotes histone H3 and H4 deposition onto newly synthesized DNA during replication or DNA repair; specifically it facilitates replication-dependent nucleosome assembly with the major histone H3 (H3.1). This domain is an alpha helix which sits just upstream of the WD40 seven-bladed beta-propeller in the human RbAp46 protein. RbAp46 folds into the beta-propeller and binds histone H4 in a groove formed between this N-terminal helix and an extended loop inserted into blade six. 69 -289069 pfam12266 DUF3613 Protein of unknown function (DUF3613). This family of proteins is found in bacteria. Proteins in this family are typically between 94 and 126 amino acids in length. 67 -152702 pfam12267 DUF3614 Protein of unknown function (DUF3614). This family of proteins is found in viruses. Proteins in this family are typically between 162 and 495 amino acids in length. 173 -289070 pfam12268 DUF3612 Protein of unknown function (DUF3612). This domain family is found in bacteria, and is approximately 180 amino acids in length. The family is found in association with pfam01381. 175 -315036 pfam12269 zf-CpG_bind_C CpG binding protein zinc finger C terminal domain. This domain family is found in eukaryotes, and is approximately 240 amino acids in length. This domain is the zinc finger domain of a CpG binding DNA methyltransferase protein. It contains a CxxC motif which forms the zinc finger and binds to DNA. 232 -315037 pfam12270 Cyt_c_ox_IV Cytochrome c oxidase subunit IV. This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. This family is the fourth subunit of the cytochrome c oxidase complex. This subunit does not have a catalytic capacity but instead, is required for assembly and/or stability of the complex. 132 -315038 pfam12271 Chs3p Chitin synthase III catalytic subunit. This family of proteins is found in eukaryotes. Proteins in this family are typically between 288 and 332 amino acids in length. This family is the catalytic domain of chitin synthase III. Chitin is a major component of fungal cell walls and this enzyme is responsible for its formation. 283 -315039 pfam12273 RCR Chitin synthesis regulation, resistance to Congo red. RCR proteins are ER membrane proteins that regulate chitin deposition in fungal cell walls. Although chitin, a linear polymer of beta-1,4-linked N-acetylglucosamine, constitutes only 2% of the cell wall it plays a vital role in the overall protection of the cell wall against stress, noxious chemicals and osmotic pressure changes. Congo red is a cell wall-disrupting benzidine-type dye extensively used in many cell wall mutant studies that specifically targets chitin in yeast cells and inhibits growth. RCR proteins render the yeasts resistant to Congo red by diminishing the content of chitin in the cell wall. RCR proteins are probably regulating chitin synthase III interact directly with ubiquitin ligase Rsp5, and the VPEY motif is necessary for this, via interaction with the WW domains of Rsp5. 127 -338298 pfam12274 DUF3615 Protein of unknown function (DUF3615). This domain family is found in bacteria and eukaryotes, and is typically between 86 and 97 amino acids in length. There is a conserved FAE sequence motif. There is a single completely conserved residue F that may be functionally important. 93 -315041 pfam12275 DUF3616 Protein of unknown function (DUF3616). This family of proteins is found in bacteria. Proteins in this family are typically between 335 and 392 amino acids in length. There is a conserved GLRGPV sequence motif. 328 -315042 pfam12276 DUF3617 Protein of unknown function (DUF3617). This family of proteins is found in bacteria. Proteins in this family are typically between 155 and 179 amino acids in length. There is a single completely conserved residue C that may be functionally important. 156 -338299 pfam12277 DUF3618 Protein of unknown function (DUF3618). This domain family is found in bacteria, and is approximately 50 amino acids in length. 47 -338300 pfam12278 SDP_N Sex determination protein N terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 168 and 410 amino acids in length. This family is the N terminal end of the sex determination protein of many different animals. It plays a role in the gender determination of around 20% of all animals. 164 -338301 pfam12279 DUF3619 Protein of unknown function (DUF3619). This protein is found in bacteria. Proteins in this family are about 140 amino acids in length. This protein has two conserved sequence motifs: AAR and DDLP. 120 -315046 pfam12280 BSMAP Brain specific membrane anchored protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 285 and 331 amino acids in length. BSMAP has a putative transmembrane domain and is predicted to be a type I membrane glycoprotein. 180 -338302 pfam12281 NTP_transf_8 Nucleotidyltransferase. This is a family of bacterial proteins that have a nucleotidyltransferase fold. The fold-prediction is backed up by conservation of three highly characteristic sequence motifs found in all other nucleotidyl transferases: i) pDhDhhh(h/p), where p is a polar residue and h is a hydrophobic residue; ii) upstream of the first, a GG/S; iii) a conserved D/E in a hydrophobic surround. In the classification of nucleotidyltransferases proposed in this is a group XVIII NTP-transferase. Many of these sequences were classified in the COG database as COG5397. The exact function is not known. 215 -315048 pfam12282 H_kinase_N Signal transduction histidine kinase. This domain is found in bacteria. This domain is about 150 amino acids in length. This domain is found associated with pfam07568, pfam08448, pfam02518. This domain has a single completely conserved residue P that may be functionally important. This family is mostly annotated as a histidine kinase involved in signal transduction but there is little published evidence to support this. 139 -289084 pfam12283 Protein_K Bacteriophage protein K. This family of proteins is found in viruses. Proteins in this family are approximately 60 amino acids in length. This family is a protein expressed by bacteriophages which has an unknown function. There is evidence that it is non-essential for in vivo production of a mature phage. 56 -315049 pfam12284 HoxA13_N Hox protein A13 N terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 149 and 306 amino acids in length. The family is found in association with pfam00046. This family is the N terminal of the Hox gene protein involved in formation of the digital arch of the hands and feet as well as in correct genital formation. Mutation of the protein is associated with hand-foot-genital syndrome. 116 -204871 pfam12285 DUF3621 Protein of unknown function (DUF3621). This family of proteins is found in viruses. Proteins in this family are typically between 49 and 62 amino acids in length. There are two conserved sequence motifs: QPLDLS and EQQ. 49 -315050 pfam12286 DUF3622 Protein of unknown function (DUF3622). This family of proteins is found in bacteria. Proteins in this family are typically between 72 and 107 amino acids in length. There is a conserved VSK sequence motif. 69 -315051 pfam12287 Caprin-1_C Cytoplasmic activation/proliferation-associated protein-1 C term. This family of proteins is found in eukaryotes. Proteins in this family are typically between 343 and 708 amino acids in length. This family is the C terminal region of caprin-1. Caprin-1 is a protein involved in regulating cellular proliferation. In mutated phenotypes, the G1 phase of the cell cycle is greatly lengthened, impairing normal proliferation. The C terminal region of caprin-1 contains RGG motifs which are characteristic of RNA binding domains. It is possible that caprin-1 functions through an RNA binding mechanism. 327 -315052 pfam12288 CsoS2_M Carboxysome shell peptide mid-region. This domain family is found in bacteria and eukaryotes, and is approximately 430 amino acids in length. This family is annotated frequently as a carboxysome shell peptide, however there is little publication to confirm this. 425 -289089 pfam12289 Rotavirus_VP1 Rotavirus VP1 C-terminal domain. This domain is the C-terminal bracelet domain of the rotavirus VP1 RNA-directed RNA polymerase. It surrounds the exit tunnel for dsRNA produced by replication and for the RNA template for transcription. 307 -315053 pfam12290 DUF3802 Protein of unknown function (DUF3802). This family of proteins is found in bacteria. Proteins in this family are typically between 114 and 143 amino acids in length. There is a conserved KNLFD sequence motif. 112 -315054 pfam12291 DUF3623 Protein of unknown function (DUF3623). This family of proteins is found in bacteria. Proteins in this family are typically between 261 and 345 amino acids in length. 255 -315055 pfam12292 DUF3624 Protein of unknown function (DUF3624). This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There is a conserved GRC sequence motif. 74 -338303 pfam12293 T4BSS_DotH_IcmK Putative outer membrane core complex of type IVb secretion. T4BSS_DotH_IcmK is a family of bacterial transporter proteins from Proteobacteria. DotH is an integral outer membrane component and it may form an outer membrane complex along with DotD and DotC functionally equivalent to secretins. DotH is the strongest candidate for the VirB9 counterpart of other T4BSS systems. 236 -315057 pfam12294 DUF3626 Protein of unknown function (DUF3626). This family of proteins is found in bacteria. Proteins in this family are typically between 294 and 374 amino acids in length. 301 -338304 pfam12295 Symplekin_C Symplekin tight junction protein C terminal. This domain family is found in eukaryotes, and is approximately 180 amino acids in length. There is a single completely conserved residue P that may be functionally important. Symplekn has been localized, by light and electron microscopy, to the plaque associated with the cytoplasmic face of the tight junction-containing zone (zonula occludens) of polar epithelial cells and of Sertoli cells of testis. However, both the mRNA and the protein can also be detected in a wide range of cell types that do not form tight junctions. Careful analyses have revealed that the protein occurs in all these diverse cells in the nucleoplasm, and only in those cells forming tight junctions is it recruited, partly but specifically, to the plaque structure of the zonula occludens. 183 -338305 pfam12296 HsbA Hydrophobic surface binding protein A. This protein is found in eukaryotes. Proteins in this family are typically between 171 to 275 amino acids in length. Although the HsbA amino acid sequence suggests that HsbA may be hydrophilic, HsbA adsorbed to hydrophobic PBSA (Polybutylene succinate-co-adipate) surfaces in the presence of NaCl or CaCl2. When HsbA was adsorbed on the hydrophobic PBSA surfaces, it promoted PBSA degradation via the CutL1 polyesterase. CutL1 interacts directly with HsbA attached to the hydrophobic QCM electrode surface. These results suggest that when HsbA is adsorbed onto the PBSA surface, it recruits CutL1, and that when CutL1 is accumulated on the PBSA surface, it stimulates PBSA degradation. 110 -315060 pfam12297 EVC2_like Ellis van Creveld protein 2 like protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 571 and 1310 amino acids in length. There are two conserved sequence motifs: LPA and ELH. EVC2 is implicated in Ellis van Creveld chondrodysplastic dwarfism in humans. Mutations in this protein can give rise to this congenital condition. LIMBIN is a protein which shares around 80% sequence homology with EVC2 and it is implicated in a similar condition in bovine chondrodysplastic dwarfism. 428 -315061 pfam12298 Bot1p Eukaryotic mitochondrial regulator protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 168 and 381 amino acids in length. Bot1p localizes to the mitochondria in live cells and cofractionates with purified mitochondrial ribosomes. Bot1p has a novel function in the control of cell respiration by acting on the mitochondrial protein synthesis machinery. Observations also indicate that in fission yeast, alterations of mitochondrial function are linked to changes in cell cycle and cell morphology control mechanisms. 172 -315062 pfam12299 DUF3627 Protein of unknown function (DUF3627). This domain family is found in bacteria and viruses, and is approximately 90 amino acids in length. The family is found in association with pfam02498. 93 -315063 pfam12300 RhlB ATP-dependent RNA helicase RhlB. Proteins in this entry are DEAD Box RhlB RNA Helicases found in Xanthomonadaceae bacteria. 175 -315064 pfam12301 CD99L2 CD99 antigen like protein 2. This family of proteins is found in eukaryotes. Proteins in this family are typically between 165 and 237 amino acids in length. CD99L2 and CD99 are involved in trans-endothelial migration of neutrophils in vitro and in the recruitment of neutrophils into inflamed peritoneum. 167 -289102 pfam12302 DUF3629 Protein of unknown function (DUF3629). This family of proteins is found in eukaryotes. Proteins in this family are typically between 256 and 292 amino acids in length. 256 -315065 pfam12304 BCLP Beta-casein like protein. This protein is found in eukaryotes. Proteins in this family are typically between 216 to 240 amino acids in length. This protein has two conserved sequence motifs: VLR and TRIY. BCLP is associated with cell morphology and a regulation of growth pattern of tumor. It is found in adenocarcinomas of uterine cervical tissues. 184 -315066 pfam12305 DUF3630 Protein of unknown function (DUF3630). This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. There is a single completely conserved residue D that may be functionally important. 91 -315067 pfam12306 PixA Inclusion body protein. This family of proteins is found in bacteria. Proteins in this family are typically between 173 and 191 amino acids in length. PixA is thought to be specifically produced in Xenorhabdus nematophila. It is an inclusion body protein. 165 -315068 pfam12307 DUF3631 Protein of unknown function (DUF3631). This protein is found in bacteria. Proteins in this family are typically between 180 to 701 amino acids in length. 183 -315069 pfam12308 Noelin-1 Neurogenesis glycoprotein. This domain family is found in eukaryotes, and is approximately 100 amino acids in length. The family is found in association with pfam02191. There are two conserved sequence motifs: SAQ and VQN. Noelin-1 is a glycoprotein which is secreted mainly by postmitotic neurogenic tissues in the developing central and peripheral nervous systems, first appearing after neural tube closure. It is likely that it forms large multimeric complexes.It has a divergent function in neurogenesis. In animal caps neuralized by expression of noggin, co-expression of Noelin-1 causes expression of neuronal differentiation markers several stages before neurogenesis normally occurs in this tissue. Finally, only secreted forms of the protein can activate sensory marker expression, while all forms of the protein can induce early neurogenesis. 99 -338306 pfam12309 KBP_C KIF-1 binding protein C terminal. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 365 and 621 amino acids in length. There is a conserved LLP sequence motif. KBP is a binding partner for KIF1Balpha that is a regulator of its transport function and thus represents a type of kinesin interacting protein. 359 -315071 pfam12310 Elf-1_N Transcription factor protein N terminal. This domain family is found in eukaryotes, and is approximately 110 amino acids in length. The family is found in association with pfam00178. There is a conserved PAVIVE sequence motif. Elf-1 is an immune cell specific transcription factor. It is found in T cells, B cells, megakaryocytes,and mast cells and is involved in the control of transcription for various immune proteins. These include IL-2, GM-CSF, IL-5, IL-2 receptor alpha chain, and CD4 in T cells, IgH, blk, and lyn in B cells, TdT in T and B cells, IL-3 in megakaryocytes, and SCL and Fc-epsilon-RI alpha chain in mast cells. 106 -338307 pfam12311 DUF3632 Protein of unknown function (DUF3632). This domain family is found in eukaryotes, and is approximately 170 amino acids in length. There is a conserved ALE sequence motif. 191 -152747 pfam12312 NeA_P2 Nepovirus subgroup A polyprotein. This family of proteins is found in viruses. Proteins in this family are typically between 259 and 1110 amino acids in length. The family is found in association with pfam03688, pfam03689, pfam03391. This family is one of the polyproteins expressed by Nepoviruses in subgroup A. 175 -338308 pfam12313 NPR1_like_C NPR1/NIM1 like defense protein C terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 251 and 588 amino acids in length. The family is found in association with pfam00023, pfam00651. There are two conserved sequence motifs: LENRV and DLN. NPR1 (NIM1) is a defense protein in many plant species. 203 -315074 pfam12314 IMCp Inner membrane complex protein. This domain is found in bacteria and eukaryotes. This domain is about 120 amino acids in length. This family is the inner membrane complex of parasitic organisms. This is a cytoskeletal structure associated with the pellicle of these parasites. 87 -338309 pfam12315 DA1-like Protein DA1. Proteins in this family include protein DA1 and its homologs. In Arabidopsis thaliana, DA1 is an ubiquitin receptor that limits final seed and organ size by restricting the period of cell proliferation. It may act maternally to control seed mass. 211 -315076 pfam12316 Dsh_C Segment polarity protein dishevelled (Dsh) C terminal. This domain family is found in eukaryotes, and is typically between 177 and 207 amino acids in length. The family is found in association with pfam00778, pfam02377, pfam00610, pfam00595. The segment polarity gene dishevelled (dsh) is required for pattern formation of the embryonic segments. It is involved in the determination of body organisation through the Wingless pathway (analogous to the Wnt-1 pathway). 211 -338310 pfam12317 IFT46_B_C Intraflagellar transport complex B protein 46 C terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 298 and 416 amino acids in length. IFT46 is a flagellar protein of complex B. Like all IFT proteins, it is required for transport of IFT particles into the flagella. 203 -315078 pfam12318 FAD-SLDH Membrane bound FAD containing D-sorbitol dehydrogenase. This family of proteins is found in bacteria. Proteins in this family are typically between 168 and 189 amino acids in length. There is a conserved ALM sequence motif. This family is a membrane protein (FAD-SLDH) involved in oxidation of D-sorbitol to L-sorbose. 158 -338311 pfam12319 TryThrA_C Tryptophan-Threonine-rich plasmodium antigen C terminal. This protein is found in eukaryotes. Proteins in this family are typically between 254 to 536 amino acids in length. This family is the C terminal of a surface antigen of malarial Plasmodium species. It is currently being targeted for use as part of a subunit vaccine against Plasmodium falciparum, the main species involved in causing human malaria. 216 -338312 pfam12320 SbcD_C Type 5 capsule protein repressor C-terminal domain. This domain is found in bacteria and archaea. This domain is about 90 amino acids in length. This domain is found associated with pfam00149. SbcD works in complex with SbdC (SbcDC) which is a transcription regulator. It down-regulates transcription of arl and mgr to inhibit type 5 capsule protein production. It acts as part of the SOS pathway of bacteria. 95 -315081 pfam12321 DUF3634 Protein of unknown function (DUF3634). This family of proteins is found in bacteria. Proteins in this family are typically between 103 and 114 amino acids in length. 98 -289120 pfam12322 T4_baseplate T4 bacteriophage base plate protein. This protein is found in viruses. Proteins in this family are typically between 208 to 249 amino acids in length. This protein has a single completely conserved residue S that may be functionally important. This family includes the two base plate proteins in T4 bacteriophages. These are gp51 and gp26, encoded by late genes. 132 -338313 pfam12323 HTH_OrfB_IS605 Helix-turn-helix domain. This is the N terminal helix-turn-helix domain of Transposase_2 pfam01385. 48 -338314 pfam12324 HTH_15 Helix-turn-helix domain of alkylmercury lyase. Alkylmercury lyase (EC:4.99.1.2) cleaves the carbon-mercury bond of organomercurials such as phenylmercuric acetate. This is the N terminal helix-turn-helix domain associated with pfam03243. 74 -315083 pfam12325 TMF_TATA_bd TATA element modulatory factor 1 TATA binding. This is the C-terminal conserved coiled coil region of a family of TATA element modulatory factor 1 proteins conserved in eukaryotes. The proteins bind to the TATA element of some RNA polymerase II promoters and repress their activity. by competing with the binding of TATA binding protein. TMF1_TATA_bd is the most conserved part of the TMFs. TMFs are evolutionarily conserved golgins that bind Rab6, a ubiquitous ras-like GTP-binding Golgi protein, and contribute to Golgi organisation in animal and plant cells. The Rab6-binding domain appears to be the same region as this C-terminal family. 113 -315084 pfam12326 EOS1 N-glycosylation protein. This family is not required for survival of S.cerevisiae, but its deletion leads to heightened sensitivity to oxidative stress. It appears to be involved in N-glycosylation, and resides in the endoplasmic reticulum. 144 -315085 pfam12327 FtsZ_C FtsZ family, C-terminal domain. This family includes the bacterial FtsZ family of proteins. Members of this family are involved in polymer formation. FtsZ is the polymer-forming protein of bacterial cell division. It is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ is a GTPase, like tubulin. FtsZ can polymerize into tubes, sheets, and rings in vitro and is ubiquitous in eubacteria and archaea. 95 -315086 pfam12328 Rpp20 Rpp20 subunit of nuclear RNase MRP and P. The nuclear RNase P of Saccharomyces cerevisiae is made up of at least nine protein subunits; Pop1, Pop3, Pop4, Pop5, Pop6, Pop7, Pop8, Rpr2 and Rpp1. Many of these subunits seem to be present also in the RNase MRP, with the exception of Rpr2 (Rpp21) which is unique to RNase P. Human nuclear RNase P and MRP appear to contain at least 10 protein subunits, Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, hPop1 and hPop5, although there is recent evidence that not all of these subunits are shared between P and MRP. Archaeal RNase P has at least four protein subunits homologous to eukaryotic RNase P/MRP proteins. In the yeast RNase P, Pop6 and Pop7 (the Rpp20 homolog) interact with each other and they are both interaction partners of Pop4; in the human MRP Rpp25 and Rpp20 interact with each other and Rpp25 binds to Rpp29 (Pop4). 114 -338315 pfam12329 TMF_DNA_bd TATA element modulatory factor 1 DNA binding. This is the middle region of a family of TATA element modulatory factor 1 proteins conserved in eukaryotes that contains at its N-terminal section a number of leucine zippers that could potentially form coiled coil structures. The whole proteins bind to the TATA element of some RNA polymerase II promoters and repress their activity. by competing with the binding of TATA binding protein. TMFs are evolutionarily conserved golgins that bind Rab6, a ubiquitous ras-like GTP-binding Golgi protein, and contribute to Golgi organisation in animal and plant cells. 74 -338316 pfam12330 Haspin_kinase Haspin like kinase domain. This family represents the haspin-like kinase domains. 376 -338317 pfam12331 DUF3636 Protein of unknown function (DUF3636). This domain family is found in eukaryotes, and is approximately 160 amino acids in length. 148 -338318 pfam12333 Ipi1_N Rix1 complex component involved in 60S ribosome maturation. This domain family is found in eukaryotes, and is typically between 91 and 105 amino acids in length. This family is the N terminal of Ipi1, a component of the Rix1 complex which works in conjunction with Rea1 to mature the 60S ribosome. 99 -289131 pfam12334 rOmpB Rickettsia outer membrane protein B. This domain family is found in bacteria, and is approximately 220 amino acids in length. The family is found in association with pfam03797. This family is the middle region of one of the outer membrane proteins of Rickettsia which is involved in adhesion to eukaryotic cells for uptake. 217 -338319 pfam12335 SBF2 Myotubularin protein. This domain family is found in eukaryotes, and is approximately 220 amino acids in length. The family is found in association with pfam02141, pfam03456, pfam03455. This family is the middle region of SBF2, a member of the myotubularin family. Myotubularin-related proteins have been suggested to work in phosphoinositide-mediated signalling events that may also convey control of myelination. Mutations of SBF2 are implicated in Charcot-Marie-Tooth disease. 224 -315092 pfam12336 SOXp SOX transcription factor. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. The family is found in association with pfam00505. There are two conserved sequence motifs: KKDK and LPG. This family is made up of SOX transcription factors. These are involved in upregulation of nestin, a neural promoter. 83 -289134 pfam12337 DUF3637 Protein of unknown function (DUF3637). This domain family is found in viruses, and is approximately 70 amino acids in length. The family is found in association with pfam00073, pfam08935. 67 -289135 pfam12338 RbcS Ribulose-1,5-bisphosphate carboxylase small subunit. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00101. There is a conserved APF sequence motif. There are two completely conserved residues (L and P) that may be functionally important. This family is the small subunit of ribulose-1,5-bisphosphate. 45 -338320 pfam12339 DNAJ_related DNA-J related protein. This domain family is found in bacteria, and is approximately 130 amino acids in length. The family is found in association with pfam00226. There is a conserved YYLD sequence motif. Mostof the sequences in this family are annotated as DNA-J related proteins but there is little publication to back this up. 119 -338321 pfam12340 DUF3638 Protein of unknown function (DUF3638). This domain family is found in eukaryotes, and is approximately 230 amino acids in length. There are two conserved sequence motifs: LLE and NMG. 224 -338322 pfam12341 Mcl1_mid Minichromosome loss protein, Mcl1, middle region. Mcl1_mid, or the middle domain of minichromosome loss protein 1, is the domain that lies between a 7-bladed beta-propeller at the N-terminus, family WD40 pfam00400 etc, and a Homeobox (HMG) domain, pfam00505, at the C-terminus. The full length proteins with all three domains are referred to as DNA polymerase alpha accessory factor Mcl1, but the exact function of this domain is not known. 285 -152777 pfam12342 DUF3640 Protein of unknown function (DUF3640). This family of proteins is found in viruses. Proteins in this family are typically between 25 and 211 amino acids in length. 26 -315096 pfam12343 DEADboxA Cold shock protein DEAD box A. This domain family is found in bacteria, and is typically between 68 and 89 amino acids in length. The family is found in association with pfam00270, pfam00271, pfam03880. This family is the C terminal region of DEAD box A, a protein expressed under conditions of cold shock which is involved in various cellular processes such as transcription, translation and DA recombination. 69 -338323 pfam12344 UvrB Ultra-violet resistance protein B. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00271, pfam02151, pfam04851. There are two conserved sequence motifs: YAD and RRR. This family is the C terminal region of the UvrB protein which conveys mutational resistance against UV light to various different species. 42 -315098 pfam12345 DUF3641 Protein of unknown function (DUF3641). This domain family is found in bacteria and eukaryotes, and is approximately 140 amino acids in length. The family is found in association with pfam04055. This family consists of proteins which are commonly annotated as Radical SAM domains but there is little annotation to back this up. 134 -315099 pfam12346 HJURP_mid Holliday junction recognition protein-associated repeat. Vertebral Holliday junction recognition proteins carry an SCM3 domain at their N-terminus as do the eukaryotic fungi, but they also carry this central, conserved region. The function of this family is not known. Further downstream there is also a repeated domain, also of unknown function. Investigation of Scm3 and associated proteins is likely to be directly relevant to understanding the mechanism of HJURP-mediated CENP-A chromatin assembly at human centromeres. 115 -315100 pfam12347 HJURP_C Holliday junction regulator protein family C-terminal repeat. Although this family is conserved in the Holliday junction regulator, HJURP, proteins in higher eukaryotes, alongside an Scm3, pfam10384, family, its exact function is not known. The C-terminal region of Scm3 proteins has been evolving rapidly, and this short repeat at the C-terminal end can be present in up to two copies in the higher eukaryotes. 60 -338324 pfam12348 CLASP_N CLASP N terminal. This region is found at the N terminal of CLIP-associated proteins (CLASPs). CLASPs are widely conserved microtubule plus-end-tracking proteins that regulate the stability of dynamic microtubules. In yeast, Drosophila, and Xenopus, a single CLASP orthologue is present. In mammals, a second paralogue (CLASP2) exists which has some functional overlap with CLASP1. 227 -338325 pfam12349 Sterol-sensing Sterol-sensing domain of SREBP cleavage-activation. Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that promote lipid synthesis in animal cells. They are embedded in the membranes of the endoplasmic reticulum (ER) in a helical hairpin orientation and are released from the ER by a two-step proteolytic process. Proteolysis begins when the SREBPs are cleaved at Site-1, which is located at a leucine residue in the middle of the hydrophobic loop in the lumen of the ER. Upon proteolytic processing SREBP can activate the expression of genes involved in cholesterol biosynthesis and uptake. SCAP stimulates cleavage of SREBPs via fusion of the their two C-termini. This domain is the transmembrane region that traverses the membrane eight times and is the sterol-sensing domain of the cleavage protein. WD40 domains are found towards the C-terminus. 153 -315103 pfam12350 CTK3_C CTD kinase subunit gamma CTK3 C-terminus. The C-terminal domain kinase (CTDK-1), is a three-subunit complex comprised of Ctk1, Ctk2, and Ctk3, that plays a key role in regulation of transcription and translation and in coordinating these two processes. Both Ctk2 and Ctk3 are regulated at the level of protein turnover, and are unstable proteins processed through a ubiquitin-proteasome pathway. Their physical interaction is required to protect both subunits from degradation, and both Ctk2 and Ctk3 are required for Ctk1 CTD kinase activation. The mammalian P-TEFb is mirrored by the combined complexes in yeast of the CTDK1 and the Bur1/2. It is not clear what independent function this C-terminal domain has. 62 -315104 pfam12351 Fig1 Ca2+ regulator and membrane fusion protein Fig1. During the mating process of yeast cells, two Ca2+ influx pathways become activated. The resulting elevation of cytosolic free Ca2+ activates downstream signaling factors that promote long term survival of unmated cells. Fig1 is a regulator of the low affinity Ca2+ influx system (LACS), and is also required for efficient membrane fusion during yeast mating. 178 -289148 pfam12352 V-SNARE_C Snare region anchored in the vesicle membrane C-terminus. Within the SNARE proteins interactions in the C-terminal half of the SNARE helix are critical to the driving of membrane fusion; whereas interactions in the N-terminal half of the SNARE domain are important for promoting priming or docking of the vesicle pfam05008. 66 -338326 pfam12353 eIF3g Eukaryotic translation initiation factor 3 subunit G. This domain family is found in eukaryotes, and is approximately 130 amino acids in length. The family is found in association with pfam00076. This family is subunit G of the eukaryotic translation initiation factor 3. Subunit G is required for eIF3 integrity. 122 -289150 pfam12354 Internalin_N Bacterial adhesion/invasion protein N terminal. This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam00560, pfam08191, pfam09479. There are two completely conserved residues (I and F) that may be functionally important. Internalin mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. This family is the N terminal of internalin, the cap domain of the protein. The cap domain is conserved between different internalin types. The cap domain does not interact with E cadherin, therefore its function is presumably structural: capping the hydrophobic core. 50 -315106 pfam12355 Dscam_C Down syndrome cell adhesion molecule C terminal. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam00047, pfam07679, pfam00041. The Down syndrome cell adhesion molecule (Dscam) belongs to a family of cell membrane molecules involved in the differentiation of the nervous system. This is the C terminal cytoplasmic tail region of Dscam. 118 -315107 pfam12356 BIRC6 Baculoviral IAP repeat-containing protein 6. BIRC6 is an anti-apoptotic protein which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase. 172 -338327 pfam12357 PLD_C Phospholipase D C terminal. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam00168, pfam00614. There is a conserved FPD sequence motif. This family is the C terminal of phospholipase D. PLD is a major plant lipid-degrading enzyme which is involved in signal transduction. 69 -338328 pfam12358 DUF3644 Protein of unknown function (DUF3644). This domain family is found in bacteria, and is typically between 65 and 80 amino acids in length. 69 -338329 pfam12359 DUF3645 Protein of unknown function (DUF3645). This domain family is found in eukaryotes, and is approximately 40 amino acids in length. There is a conserved HPD sequence motif. 32 -289156 pfam12360 Pax7 Paired box protein 7. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00046, pfam00292. Pax7 belongs to a family of genes that encode paired-box-containing transcription factors involved in the control of developmental processes. Pax7 has a distinct role in the specification of myogenic satellite cells. 45 -289157 pfam12361 DBP Duffy-antigen binding protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 449 and 1061 amino acids in length. The family is found in association with pfam05424. There are two conserved sequence motifs: NKNGG and QKHDF. This family is part of the Duffy-antigen binding protein of Plasmodium spp. This protein is an antigen on these parasites which enable them to invade erythrocytes. 316 -315111 pfam12362 DUF3646 DNA polymerase III gamma and tau subunits C terminal. This domain family is found in bacteria, and is approximately 120 amino acids in length. The family is found in association with pfam00004. The proteins in this family are frequently annotated as the gamma and tau subunits of DNA polymerase III, however there is little accompanying literature to back this up. 111 -315112 pfam12363 Phage_TAC_12 Phage tail assembly chaperone protein, TAC. This is a family of phage tail assembly chaperone proteins from Siphoviridae phages. 111 -315113 pfam12364 DUF3648 Protein of unknown function (DUF3648). This family of proteins is found in eukaryotes and viruses. Proteins in this family are typically between 53 and 3115 amino acids in length. There are two completely conserved residues (A and F) that may be functionally important. 141 -338330 pfam12365 DUF3649 Protein of unknown function (DUF3649). This domain family is found in bacteria and eukaryotes, and is approximately 30 amino acids in length. 26 -315115 pfam12366 Casc1 Cancer susceptibility candidate 1. This domain family is found in eukaryotes, and is typically between 216 and 263 amino acids in length. Casc1 has many SNPs associated with cancer susceptibility. 235 -338331 pfam12367 PFO_beta_C Pyruvate ferredoxin oxidoreductase beta subunit C terminal. This domain family is found in bacteria and archaea, and is approximately 70 amino acids in length. The family is found in association with pfam02775. There are two completely conserved residues (A and G) that may be functionally important. PFO is involved in carbon dioxide fixation via a reductive TCA cycle. It forms a heterodimer (alpha/beta). The beta subunit has binding motifs for Fe-S clusters and thiamine pyrophosphate. 62 -315117 pfam12368 Rhodanese_C Rhodanase C-terminal. Rhodanase_C is found as the domain-extension to Rhodanase enzyme in some members of the Rhodanase family. Rhodanase is pfam00581. 63 -315118 pfam12369 GnHR_trans Gonadotropin hormone receptor transmembrane region. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam00560, pfam00001. There are two completely conserved C residues that may be functionally important. This family contains the transmembrane region of Follicular stimulating hormone and leutenizing hormone - the two major gonadotropin hormone receptors. These receptors are G protein coupled receptors involved in development and maturation of germ cells in both fecund genders. The transmembrane region is conserved between the two different receptors while the extracellular ligand binding domains are less well conserved. 68 -338332 pfam12371 TMEM131_like Transmembrane protein 131-like. TMEM131_like is a family of bacterial, plant and other metazoa transmembrane proteins. Many of the members are multi-pass transmembrane proteins. 84 -315120 pfam12372 DUF3652 Huntingtin protein region. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam02985. This family is in the middle region of the Huntingtin protein associated with Huntington's disease. The protein is of unknown function, however it is known that a polyglutamine (CAG) repeat in the gene coding for it results in the development of Huntington's disease. 39 -315121 pfam12373 Msg2_C Major surface glycoprotein 2 C terminal. This domain family is found in eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam02349. This family is the C terminal of major surface glycoprotein 2 of virulent bacteria. It is a virulence factor antigen. 30 -315122 pfam12374 Dmrt1 Double-sex mab3 related transcription factor 1. This domain family is found in eukaryotes, and is typically between 61 and 73 amino acids in length. The family is found in association with pfam00751. This family is a transcription factor involved in sex determination. The proteins in this family contain a zinc finger-like DNA-binding motif, DM domain. 71 -315123 pfam12375 DUF3653 Phage protein. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 112 and 194 amino acids in length. 66 -289169 pfam12376 DUF3654 Protein of unknown function (DUF3654). This family of proteins is found in eukaryotes. Proteins in this family are typically between 193 and 612 amino acids in length. 138 -315124 pfam12377 DuffyBP_N Duffy binding protein N terminal. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The family is found in association with pfam05424. This family contains the N-terminus of the Duffy receptor binding domain. 67 -315125 pfam12378 CytadhesinP1 Trypsin-sensitive surface-exposed protein. This domain family is found in bacteria, and is typically between 67 and 79 amino acids in length. This family contains trypsin-sensitive surface-exposed proteins called cytadhesins. Cytadhesins are virulence factor proteins which mediate attachment of bacterial cells to host cells for invasion. 72 -289172 pfam12379 DUF3655 Protein of unknown function (DUF3655). This domain family is found in viruses, and is approximately 70 amino acids in length. The family is found in association with pfam08716, pfam01661, pfam05409, pfam06471, pfam08717, pfam06478, pfam09401, pfam06460, pfam08715, pfam08710. 69 -289173 pfam12380 Peptidase_C62 Gill-associated viral 3C-like peptidase. a positive-stranded RNA virus of prawns, that has been called yellow head virus protease and gill-associated virus 3C-like peptidase. The GAV cysteine protease is predicted to be the key enzyme in the processing of the GAV replicase polyprotein precursors, pp1a and pp1ab. This protease employs a Cys(2968)-His(2879) catalytic dyad. 284 -152816 pfam12381 Peptidase_C3G Tungro spherical virus-type peptidase. This is the protease for self-cleavage of the positive single-stranded polyproteins of a number of plant viral genomes. The protease activity of the polyprotein is at the C-terminal end, adjacent to the putative RNA polymerase. 231 -152817 pfam12382 Peptidase_A2E Retrotransposon peptidase. This is a small family of fungal retroviral aspartyl peptidases. 137 -289174 pfam12383 SARS_3b Severe acute respiratory syndrome coronavirus 3b protein. This family of proteins is found in viruses. Proteins in this family are typically between 32 and 154 amino acids in length. This family contains the SARS coronavirus 3b protein which is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. 153 -152819 pfam12384 Peptidase_A2B Ty3 transposon peptidase. Ty3 is a gypsy-type, retrovirus-like, element found in the budding yeast. The Ty3 aspartyl protease is required for processing of the viral polyprotein into its mature species. 177 -315126 pfam12385 Peptidase_C70 Papain-like cysteine protease AvrRpt2. This is a family of cysteine proteases, found in actinobacteria, protobacteria and firmicutes. Papain-like cysteine proteases play a crucial role in plant-pathogen/pest interactions. On entering the host they act on non-self substrates, thereby manipulating the host to evade proteolysis. AvrRpt2 from Pseudomonas syringae pv. tomato DC3000 triggers resistance to P. syringae-2-dependent defense responses, including hypersensitive cell death, by cleaving the Arabidopsis RIN4 protein which is monitored by the cognate resistance protein RPS2. 146 -152821 pfam12386 Peptidase_C71 Pseudomurein endo-isopeptidase Pei. This peptidase has the catalytic triad C-H-D at the C-terminal end, a triad similar to that in thiol proteases and animal transglutaminases. It catalyzes the in vitro lysis of M. marburgensis cells under reducing conditions and exhibits characteristics of metal-activated peptidases. 142 -289175 pfam12387 Peptidase_C74 Pestivirus NS2 peptidase. The pestivirus NS2 peptidase is responsible for single cleavage between NS2 and NS3 of the bovine viral diarrhea virus polyprotein, a cleavage that is correlated with cytopathogenicity. The peptidase is activated by its interaction with 'J-domain protein interacting with viral protein'. 200 -315127 pfam12388 Peptidase_M57 Dual-action HEIGH metallo-peptidase. The catalytic triad for this family of proteases is HE-H-H, which in many members is in the sequence motif HEIGH. 212 -315128 pfam12389 Peptidase_M73 Camelysin metallo-endopeptidase. 196 -338333 pfam12390 Se-cys_synth_N Selenocysteine synthase N terminal. This domain family is found in bacteria, and is approximately 40 amino acids in length. The family is found in association with pfam03841. There is a single completely conserved residue P that may be functionally important. This family is the N terminal region of selenocysteine synthase which catalyzes the conversion of seryl-tRNA(Sec) into selenocysteyl-tRNA(Sec). 40 -338334 pfam12391 PCDO_beta_N Protocatechuate 3,4-dioxygenase beta subunit N terminal. This domain family is found in bacteria, and is approximately 40 amino acids in length. The family is found in association with pfam00775. There are two completely conserved residues (Y and R) that may be functionally important. This family is the N terminal region of the beta subunit of protocatechuate 3,4-dioxidase. This enzyme utilizes a mononuclear, non-heme Fe3+ centre to catalyze metabolic cellular reactions. 30 -338335 pfam12392 DUF3656 Collagenase. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam01136. 64 -152828 pfam12393 Dr_adhesin Dr family adhesin. This domain family is found in bacteria, and is approximately 20 amino acids in length. The family is found in association with pfam04619. This family is the Dr-family adhesin expressed by uropathogenic E. coli. 21 -315132 pfam12394 DUF3657 Protein FAM135. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. The family is found in association with pfam05057. 64 -315133 pfam12395 DUF3658 Protein of unknown function. This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam08874. There are two completely conserved residues (D and R) that may be functionally important. 103 -338336 pfam12396 DUF3659 Protein of unknown function (DUF3659). This domain family is found in bacteria and eukaryotes, and is approximately 70 amino acids in length. 61 -338337 pfam12397 U3snoRNP10 U3 small nucleolar RNA-associated protein 10. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam08146. This family is the protein associated with U3 snoRNA which is involved in the processing of pre-rRNA. 116 -315136 pfam12398 DUF3660 Receptor serine/threonine kinase. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00954, pfam01453, pfam00069, pfam08276. There is a conserved ELPL sequence motif. 42 -338338 pfam12399 BCA_ABC_TP_C Branched-chain amino acid ATP-binding cassette transporter. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam00005. There is a conserved AYLG sequence motif. This family is the C terminal of an ATP dependent branched-chain amino acid transporter. 23 -315138 pfam12400 STIMATE STIMATE family. STIMATE is a ER-resident multi-transmembrane protein that serves as a positive regulator of Ca(2+) influx in vertebrates. It interacts with ER-resident Ca2+ sensor protein STIM1 to promote STIM1 conformational switch. This entry also includes budding yeast YPL162C. 126 -315139 pfam12401 DUF3662 Protein of unknown function (DUF2662). This domain family is found in bacteria, and is approximately 120 amino acids in length. The family is found in association with pfam00498. 114 -338339 pfam12402 nlz1 NocA-like zinc-finger protein 1. This domain family is found in eukaryotes, and is typically between 42 and 57 amino acids in length. There is a conserved GAY sequence motif. There is a single completely conserved residue G that may be functionally important. Nlz1 self-associated via its C-terminus, interacted with Nlz2, and bound to histone deacetylases. 58 -315141 pfam12403 Pax2_C Paired-box protein 2 C terminal. This domain family is found in eukaryotes, and is approximately 110 amino acids in length. The family is found in association with pfam00292. This family is the C terminal of the paired-box protein 2 which is a transcription factor involved in embryonic development and organogenesis. 112 -338340 pfam12404 DUF3663 Peptidase. This domain family is found in bacteria, and is approximately 80 amino acids in length. The family is found in association with pfam00883. There is a conserved WAF sequence motif. 76 -289191 pfam12406 DUF3664 Surface protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 131 and 312 amino acids in length. 99 -289192 pfam12407 Abdominal-A Homeobox protein. This domain family is found in eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam00046. This family is a homeobox protein involved in differentiation of embryonic cells to form the abdominal region. 24 -315143 pfam12408 DUF3666 Ribose-5-phosphate isomerase. This domain family is found in bacteria, and is approximately 50 amino acids in length. The family is found in association with pfam02502. There are two completely conserved residues (D and F) that may be functionally important. 47 -338341 pfam12409 P5-ATPase P5-type ATPase cation transporter. This domain family is found in eukaryotes, and is typically between 110 and 126 amino acids in length. The family is found in association with pfam00122, pfam00702. P-type ATPases comprise a large superfamily of proteins, present in both prokaryotes and eukaryotes, that transport inorganic cations and other substrates across cell membranes. 118 -289195 pfam12410 rpo30_N Poxvirus DNA dependent RNA polymerase 30kDa subunit. This family of proteins is found in viruses. Proteins in this family are typically between 193 and 259 amino acids in length. The family is found in association with pfam01096. There are two conserved sequence motifs: GIEYSKD and LRY. This family is N terminal of the 30 kDa subunit of poxvirus DNA-d-RNA-pol. It has structural similarity to the eukaryotic transcriptional elongation factor SII. 135 -315145 pfam12411 Choline_sulf_C Choline sulfatase enzyme C terminal. This domain family is found in bacteria, eukaryotes and viruses, and is approximately 60 amino acids in length. The family is found in association with pfam00884. There are two completely conserved residues (R and W) that may be functionally important. This family is the C terminal of choline sulfatase, the enzyme responsible for catalyzing the conversion of choline-O-sulfate and, at a lower rate, phosphorylcholine, into choline. 53 -338342 pfam12412 DUF3667 Protein of unknown function (DUF3667). This domain family is found in bacteria and eukaryotes, and is approximately 50 amino acids in length. There is a single completely conserved residue P that may be functionally important. 45 -315147 pfam12413 DLL_N Homeobox protein distal-less-like N terminal. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. The family is found in association with pfam00046. This family is the N terminal of a homeobox protein involved in embryonic development and adult neural regeneration. 80 -315148 pfam12414 Fox-1_C Calcitonin gene-related peptide regulator C terminal. This domain family is found in eukaryotes, and is typically between 69 and 99 amino acids in length. The family is found in association with pfam00076. This family is the C terminal of Fox-1, a protein involved in the regulation of calcitonin gene-related peptide to mediate the neuron-specific splicing pattern. Fox-1, with Fox-2, functions to repress exon 4 inclusion. 96 -289200 pfam12415 rpo132 Poxvirus DNA dependent RNA polymerase. This domain family is found in viruses, and is approximately 30 amino acids in length. The family is found in association with pfam04566, pfam00562, pfam04567, pfam04560, pfam04565. This family is the second largest subunit of the poxvirus DNA dependent RNA polymerase. It has structural similarity to the second-largest RNA polymerase subunits of eubacteria, archaebacteria, and eukaryotes. 32 -315149 pfam12416 DUF3668 Cep120 protein. This family includes the Cep120 protein which is associated with centriole structure and function. 224 -315150 pfam12417 DUF3669 Zinc finger protein. This domain family is found in eukaryotes, and is typically between 64 and 80 amino acids in length. 65 -338343 pfam12418 AcylCoA_DH_N Acyl-CoA dehydrogenase N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam02770, pfam00441, pfam02771. This family is one of the enzymes involved in AcylCoA interaction in beta-oxidation. 31 -315152 pfam12419 DUF3670 SNF2 Helicase protein. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 140 amino acids in length. The family is found in association with pfam00271, pfam00176. Most of the proteins in this family are annotated as SNF2 helicases but there is little accompanying literature to confirm this. 136 -315153 pfam12420 DUF3671 Protein of unknown function. This domain family is found in eukaryotes, and is typically between 96 and 116 amino acids in length. 114 -289206 pfam12421 DUF3672 Fibronectin type III protein. This domain family is found in bacteria and viruses, and is typically between 126 and 146 amino acids in length. The family is found in association with pfam09327, pfam00041. There are two completely conserved G residues that may be functionally important. Many of the proteins in this family are annotated as fibronectin type III however there is little accompanying literature to confirm this. 133 -338344 pfam12422 Condensin2nSMC Condensin II non structural maintenance of chromosomes subunit. This domain family is found in eukaryotes, and is approximately 150 amino acids in length. This family is part of a non-SMC subunit of condensin II which is involved in maintenance of the structural integrity of chromosomes. Condensin II is made up of SMC (structural maintenance of chromosomes) and non-SMC subunits. The non-SMC subunits bind to the catalytic ends of the SMC subunit dimer. The condensin holocomplex is able to introduce superhelical tension into DNA in an ATP hydrolysis- dependent manner, resulting in the formation of positive supercoils in the presence of topoisomerase I and of positive knots in the presence of topoisomerase II. 148 -338345 pfam12423 KIF1B Kinesin protein 1B. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00225, pfam00498. KIF1B is an anterograde motor for transport of mitochondria in axons of neuronal cells. 44 -338346 pfam12424 ATP_Ca_trans_C Plasma membrane calcium transporter ATPase C terminal. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. The family is found in association with pfam00689, pfam00122, pfam00702, pfam00690. There is a conserved QTQ sequence motif. This family is the C terminal of a calcium transporting ATPase located in the plasma membrane. 47 -338347 pfam12425 DUF3673 Protein of unknown function (DUF3673). This domain family is found in eukaryotes, and is approximately 50 amino acids in length. 53 -289211 pfam12426 DUF3674 RNA dependent RNA polymerase. This domain family is found in viruses, and is approximately 40 amino acids in length. There is a conserved MFNLKF sequence motif. There are two completely conserved residues (E and P) that may be functionally important. 41 -289212 pfam12427 DUF3665 Branched-chain amino acid aminotransferase. This domain family is found in bacteria, and is typically between 23 and 35 amino acids in length. The family is found in association with pfam01063. There is a conserved TRT sequence motif. 22 -338348 pfam12428 DUF3675 Protein of unknown function (DUF3675). This domain family is found in eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam00097. There are two completely conserved residues (R and L) that may be functionally important. 118 -338349 pfam12429 DUF3676 Protein of unknown function (DUF3676). This domain family is found in eukaryotes, and is approximately 230 amino acids in length. 230 -338350 pfam12430 ABA_GPCR Abscisic acid G-protein coupled receptor. This domain family is found in eukaryotes, and is typically between 177 and 216 amino acids in length. This family is part of the abscisic acid (ABA) G-protein coupled receptor. ABA is a stress hormone in plants. 185 -338351 pfam12431 CitT Transcriptional regulator. This domain family is found in bacteria, and is approximately 30 amino acids in length. The family is found in association with pfam00072. There is a single completely conserved residue G that may be functionally important. CitT is a transcriptional regulator which allows transcription of the citM gene which codes for the secondary transporter in the Mg-citrate transport complex. 30 -315161 pfam12432 DUF3677 Protein of unknown function (DUF3677). This domain family is found in eukaryotes, and is approximately 80 amino acids in length. 81 -315162 pfam12433 PV_NSP1 Parvovirus non-structural protein 1. This family of proteins is found in viruses. Proteins in this family are typically between 109 and 668 amino acids in length. Parvoviral NSPs regulate host gene expression through histone acetylation. 71 -289219 pfam12434 Malate_DH Malate dehydrogenase enzyme. This domain family is found in bacteria, and is approximately 30 amino acids in length. The family is found in association with pfam00390, pfam03949, pfam01515. There is a conserved AAL sequence motif. There is a single completely conserved residue R that may be functionally important. Malate dehydrogenase is one of the enzymes involved in the citric acid cycle in mitochondria. It converts malate to oxaloacetate using NAD as a cofactor. 28 -338352 pfam12435 DUF3678 Protein of unknown function (DUF3678). This domain family is found in eukaryotes, and is approximately 40 amino acids in length. 35 -338353 pfam12436 USP7_ICP0_bdg ICP0-binding domain of Ubiquitin-specific protease 7. This domain is one of two C-terminal domains on the much longer ubiquitin-specific proteases. This particular one is found to interact with the herpesvirus 1 trans-acting transcriptional protein ICP0/VMW110. 244 -338354 pfam12437 GSIII_N Glutamine synthetase type III N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 160 amino acids in length. The family is found in association with pfam00120. This family is the N terminal region of glutamine synthetase type III which is one of the enzymes responsible for generation of glutamine through conversion glutamate to glutamine by the incorporation of ammonia (NH3). 160 -315165 pfam12438 DUF3679 Protein of unknown function (DUF3679). This domain family is found in bacteria, and is approximately 60 amino acids in length. 56 -315166 pfam12439 GDE_N Glycogen debranching enzyme N terminal. This domain family is found in bacteria and archaea, and is typically between 218 and 229 amino acids in length. The family is found in association with pfam06202. Glycogen debranching enzyme catalyzes the debranching of amylopectin in glycogen. This is done by transferring three glucose subunits of glycogen from one parallel chain to another. This has the effect of enabling the glucose residues to become more accessible for glycolysis. 220 -315167 pfam12440 MAGE_N Melanoma associated antigen family N terminal. This domain family is found in eukaryotes, and is typically between 82 and 96 amino acids in length. The family is found in association with pfam01454. This family is the N terminal of various melanoma associated antigens. These are tumor rejection antigens which are expressed on HLA-A1 of tumor cells and they are recognized by cytotoxic T lymphocytes (CTLs). 90 -315168 pfam12441 CopG_antitoxin CopG antitoxin of type II toxin-antitoxin system. CopG antitoxin is a member of a type II toxin-antitoxin system family found in bacteria and archaea. Most antitoxins encoded by the relBE and parDE loci belong to the MetJ/Arc/CopG family of dimeric proteins which bind DNA through N-terminal ribbon-helix-helix (RHH) motifs. The toxin for CopG proteins falls into the family BrnT_toxin, pfam04365. 79 -338355 pfam12442 DUF3681 Protein of unknown function (DUF3681). This family of proteins is found in eukaryotes. Proteins in this family are typically between 112 and 212 amino acids in length. There is a single completely conserved residue G that may be functionally important. 96 -315170 pfam12443 AKNA AT-hook-containing transcription factor. This domain family is found in eukaryotes, and is approximately 110 amino acids in length. This family contains a transcription factor which regulates the expression of the costimulatory molecules on lymphocytes. 96 -315171 pfam12444 Sox_N Sox developmental protein N terminal. This domain family is found in eukaryotes, and is typically between 69 and 88 amino acids in length. The family is found in association with pfam00505. There are two conserved sequence motifs: YDW and PVR. This family contains Sox8, Sox9 and Sox10 proteins which have structural similarity. Sox proteins are involved in developmental processes. 77 -315172 pfam12445 FliC Flagellin protein. This domain family is found in bacteria, and is typically between 125 and 147 amino acids in length. The family is found in association with pfam00669, pfam00700. There are two completely conserved G residues that may be functionally important. This family is the flagellin motor protein which confers motility to bacterial cells. 128 -289231 pfam12446 DUF3682 Protein of unknown function (DUF3682). This domain family is found in eukaryotes, and is typically between 125 and 136 amino acids in length. 129 -338356 pfam12447 DUF3683 Protein of unknown function (DUF3683). This domain family is found in bacteria, and is approximately 120 amino acids in length. The family is found in association with pfam02754, pfam01565, pfam02913. 114 -315174 pfam12448 Milton Kinesin associated protein. This domain family is found in eukaryotes, and is typically between 143 and 173 amino acids in length. The family is found in association with pfam04849. This family is a region of the protein milton. Milton recruits the heavy chain of kinesin to mitochondria to allow the motor movement function of kinesin. 171 -338357 pfam12449 DUF3684 Protein of unknown function (DUF3684). This domain family is found in eukaryotes, and is typically between 1072 and 1090 amino acids in length. 1085 -338358 pfam12450 vWF_A von Willebrand factor. This domain family is found in bacteria, and is approximately 100 amino acids in length. The family is found in association with pfam00092. There are two conserved sequence motifs: STF and DVD. There are two completely conserved residues (E and N) that may be functionally important. In hemostasis, platelet adhesion to the damaged vessel wall is mediated by several proteins, including von Willebrand factor. In solution vWF becomes immobilized via its A3 domain on the fibrillar collagen of the vessel wall and acts as an intermediary between collagen and the platelet receptor glycoprotein Ibalpha (GPIbalpha), which is the only platelet receptor that does not require prior activation for bond formation. 94 -338359 pfam12451 VPS11_C Vacuolar protein sorting protein 11 C terminal. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. Vps 11 is one of the evolutionarily conserved class C vacuolar protein sorting genes (c-vps: vps11, vps16, vps18, and vps33), whose products physically associate to form the c-vps protein complex required for vesicle docking and fusion. 44 -315178 pfam12452 DUF3685 Protein of unknown function (DUF3685). This domain family is found in bacteria and eukaryotes, and is approximately 190 amino acids in length. There are two completely conserved residues (L and D) that may be functionally important. 192 -315179 pfam12453 PTP_N Protein tyrosine phosphatase N terminal. This domain family is found in eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam00041. There is a single completely conserved residue L that may be functionally important. This family consists of various protein tyrosine phosphatase haematopoietic receptors, e.g. CD45, which dephosphorylate growth stimulating proteins. This limits growth signalling in haematopoietic cells. 26 -315180 pfam12454 Ecm33 GPI-anchored cell wall organization protein. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. Ecm33 is an essential cell wall component and is important for cell wall integrity. 40 -338360 pfam12455 Dynactin Dynein associated protein. This domain family is found in eukaryotes, and is approximately 280 amino acids in length. The family is found in association with pfam01302. There is a single completely conserved residue E that may be functionally important. Dynactin has been associated with Dynein, a kinesin protein which is involved in organelle transport, mitotic spindle assembly and chromosome segregation. Dynactin anchors Dynein to specific subcellular structures. 281 -338361 pfam12456 hSac2 Inositol phosphatase. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. The family is found in association with pfam02383. hSac2 functions as an inositol polyphosphate 5-phosphatase. 110 -315183 pfam12457 TIP_N Tuftelin interacting protein N terminal. This domain family is found in eukaryotes, and is typically between 99 and 114 amino acids in length. The family is found in association with pfam08697, pfam01585. There are two completely conserved residues (G and F) that may be functionally important. TIP is involved in enamel assembly by interacting with one of the major proteins responsible for biomineralisation of enamel - tuftelin. 92 -338362 pfam12458 DUF3686 ATPase involved in DNA repair. This domain family is found in bacteria, and is approximately 450 amino acids in length. There are two conserved sequence motifs: DVF and SPNGED. 448 -338363 pfam12459 DUF3687 D-Ala-teichoic acid biosynthesis protein. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. There are two completely conserved residues (L and Y) that may be functionally important. 43 -338364 pfam12460 MMS19_C RNAPII transcription regulator C-terminal. MMS19 is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. This C-terminal domain, along with the N-terminal, MMS19_N, form part of a silencing complex in fission yeast that contains Dos2, Rik1, Mms19 and Cdc20 (the catalytic subunit of DNA polymerase-epsilon). This complex regulates RNA polymerase II (RNA Pol II) activity in heterochromatin and is required for DNA replication and heterochromatin assembly. 409 -315187 pfam12461 DUF3688 Protein of unknown function (DUF3688). This domain family is found in bacteria and viruses, and is typically between 79 and 104 amino acids in length. There is a conserved YRW sequence motif. There is a single completely conserved residue Y that may be functionally important. 727 -338365 pfam12462 Helicase_IV_N DNA helicase IV / RNA helicase N terminal. This domain family is found in bacteria, and is approximately 170 amino acids in length. This family is found in bacterial DNA helicase IV, at the N-terminus of pfam00580. 163 -315189 pfam12463 DUF3689 Protein of unknown function (DUF3689). This family of proteins is found in eukaryotes. Proteins in this family are typically between 399 and 797 amino acids in length. 311 -338366 pfam12464 Mac Maltose acetyltransferase. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00132. Mac uses acetyl-CoA as acetyl donor to acetylated cytoplasmic maltose. 51 -338367 pfam12465 Pr_beta_C Proteasome beta subunits C terminal. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam00227. There is a conserved GTT sequence motif. There is a single completely conserved residue Y that may be functionally important. This family includes the C terminal of the beta-type subunits of the proteasome, a multimeric complex that degrades proteins into peptides as part of the MHC class I-mediated Ag-presenting pathway. 34 -315192 pfam12466 GDH_N Glutamate dehydrogenase N terminal. This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam05088. There is a conserved ALR sequence motif. Glutamate dehydrogenase (GDH) is a homohexameric, mitochondrial enzyme that reversibly catalyzes the oxidative deamination of L-glutamate to 2-oxoglutarate using either NADP(H) or NAD(H) with comparable efficacy. 96 -289250 pfam12467 CMV_1a Cucumber mosaic virus 1a protein family. This domain family is found in viruses, and is typically between 156 and 171 amino acids in length. The family is found in association with pfam01443, pfam01660. 1a protein is the major virulence factor of the cucumber mosaic virus (CMV). The Ns strain of CMV causes necrotic lesions to Nicotiana spp. while other strains cause systemic mosaic. The determinant of the pathogenesis of these different strains is the specific amino acid residue at the 461 residue of the 1a protein. 184 -315193 pfam12468 TTSSLRR Type III secretion system leucine rich repeat protein. This domain family is found in bacteria, and is approximately 50 amino acids in length. There are two completely conserved residues (Y and W) that may be functionally important. This family consists of leucine-rich repeat proteins involved in type III secretion. 54 -315194 pfam12469 DUF3692 CRISPR-associated protein. This domain family is found in bacteria and archaea, and is typically between 101 and 138 amino acids in length. The proteins in this family are frequently annotated as CRISPR-associated proteins however there is little accompanying literature to confirm this. 117 -338368 pfam12470 SUFU_C Suppressor of Fused Gli/Ci N terminal binding domain. This domain family is found in eukaryotes, and is typically between 192 and 219 amino acids in length. The family is found in association with pfam05076. There is a conserved HGRHFT sequence motif. This family is the C terminal domain of the Suppressor of Fused protein (Su(fu)). Su(fu) is a repressor of the Gli and Ci transcription factors of the Hedgehog signalling cascade. It functions by binding these proteins and preventing their translocation to the nucleus. The C terminal domain is only found in eukaryotic Su(fu) proteins; it is not present in bacterial homologs. The C terminal domain binds to the N terminal of Gli/Ci while the N terminal of Su(fu) binds to the C terminal of Gli/Ci. This dual binding mechanism is likely an evolutionary advancement in this signalling cascade which is not present in bacterial homologs. 193 -338369 pfam12471 GTP_CH_N GTP cyclohydrolase N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 190 amino acids in length. This family is the N terminal of GTP cyclohydrolase, the rate limiting enzyme in the synthesis of tetrahydrobiopterin. 193 -315197 pfam12472 DUF3693 Phage related protein. This domain family is found in bacteria and viruses, and is approximately 60 amino acids in length. 60 -338370 pfam12473 DUF3694 Kinesin protein. This domain family is found in eukaryotes, and is typically between 131 and 151 amino acids in length. The family is found in association with pfam00225, pfam00498. There is a single completely conserved residue W that may be functionally important. 148 -338371 pfam12474 PKK Polo kinase kinase. This domain family is found in eukaryotes, and is approximately 140 amino acids in length. The family is found in association with pfam00069. Polo-like kinase 1 (Plx1) is essential during mitosis for the activation of Cdc25C, for spindle assembly, and for cyclin B degradation. This family is Polo kinase kinase (PKK) which phosphorylates Polo kinase and Polo-like kinase to activate them. PKK is a serine/threonine kinase. 141 -289258 pfam12475 Amdo_NSP Amdovirus non-structural protein. This domain family is found in viruses, and is approximately 50 amino acids in length. This family contains proteins of each of the four types of Amdovirus non-structural protein. 54 -315200 pfam12476 DUF3696 Protein of unknown function (DUF3696). This domain family is found in bacteria and archaea, and is approximately 50 amino acids in length. 50 -289260 pfam12477 TraW_N Sex factor F TraW protein N terminal. This domain family is found in bacteria, and is approximately 30 amino acids in length. There is a single completely conserved residue G that may be functionally important. The traW gene of the E. coli K-12 sex factor, F, encodes one of the numerous proteins required for conjugative transfer of this plasmid. 29 -315201 pfam12478 DUF3697 Ubiquitin-associated protein 2. This domain family is found in eukaryotes, and is approximately 30 amino acids in length. The family is found in association with pfam00627. There are two conserved sequence motifs: AVEMPG and QFG. 30 -289262 pfam12479 DUF3698 Protein of unknown function (DUF3698). This domain family is found in eukaryotes, and is typically between 89 and 105 amino acids in length. 101 -315202 pfam12480 DUF3699 Protein of unknown function (DUF3699). This domain family is found in eukaryotes, and is approximately 80 amino acids in length. 71 -338372 pfam12481 DUF3700 Aluminium induced protein. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. There are two conserved sequence motifs: YGL and LRDR. This family is related to GATase enzyme domains. 227 -338373 pfam12482 DUF3701 Phage integrase protein. This domain family is found in bacteria, and is approximately 100 amino acids in length. The family is found in association with pfam00589. 88 -315205 pfam12483 GIDE E3 Ubiquitin ligase. This domain family is found in bacteria, archaea and eukaryotes, and is typically between 150 and 163 amino acids in length. There is a single completely conserved residue E that may be functionally important. GIDE is an E3 ubiquitin ligase which is involved in inducing apoptosis. 158 -315206 pfam12484 PE_PPE_C Polymorphic PE/PPE proteins C terminal. This domain family is found in bacteria, and is approximately 90 amino acids in length. The family is found in association with pfam00823. There is a conserved SVP sequence motif. There is a single completely conserved residue W that may be functionally important. The proteins in this family are PE/PPE proteins implicated in immunostimulation and virulence. 80 -315207 pfam12485 SLY Lymphocyte signaling adaptor protein. This domain family is found in eukaryotes, and is typically between 144 and 156 amino acids in length. The family is found in association with pfam07647, pfam07653. There is a conserved LGKK sequence motif. SLY contains a Src homology 3 domain and a sterile alpha motif, suggesting that it functions as a signaling adaptor protein in lymphocytes. 156 -338374 pfam12486 VasL Type VI secretion system, EvfB, or VasL. EvfB or VasL is a domain found on many Gram-negative proteins with an ImpA_N domain at the N-terminus. These proteins are expressed from the pathogenicity locus that forms the bacterial type VI secretion system. The exact function of VasL is not known. One E.coli member is annotated as being EvfB, though the E.coli equivalent of ImpA would be expected to be EvfG. It is possible that in many bacteria what is a single protein in one species, eg E.coli, is a fusion of two genes in others, which would explain an ImpA at the N-terminus and a VasL at the C-terminus. 146 -338375 pfam12487 DUF3703 Protein of unknown function (DUF3703). This family of proteins is found in bacteria. Proteins in this family are typically between 113 and 135 amino acids in length. 109 -289271 pfam12488 DUF3704 Protein of unknown function (DUF3704). This domain family is found in eukaryotes, and is approximately 30 amino acids in length. 27 -315210 pfam12489 ARA70 Nuclear coactivator. This domain family is found in eukaryotes, and is typically between 127 and 138 amino acids in length. This family is ARA70, a nuclear coactivator which interacts with peroxisome proliferator-activated receptor gamma (PPARgamma) to regulate transcription and the addition of the PPARgamma ligand (prostaglandin J2) enhances this interaction. 98 -315211 pfam12490 BCAS3 Breast carcinoma amplified sequence 3. This domain family is found in eukaryotes, and is typically between 229 and 245 amino acids in length. The proteins in this family have been shown to be proto-oncogenes implicated in the development of breast cancer. 235 -315212 pfam12491 ApoB100_C Apolipoprotein B100 C terminal. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. There are two conserved sequence motifs: QLS and LIDL. ApoB100 has an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. 57 -289275 pfam12493 DUF3709 Protein of unknown function (DUF3709). This domain family is found in bacteria, and is approximately 30 amino acids in length. There are two conserved sequence motifs: RCLMK and LIEL. 33 -315213 pfam12494 DUF3695 Protein of unknown function (DUF3695). This family of proteins is found in eukaryotes. Proteins in this family are typically between 157 and 192 amino acids in length. There is a single completely conserved residue D that may be functionally important. 95 -315214 pfam12495 Vip3A_N Vegetative insecticide protein 3A N terminal. This family of proteins is found in bacteria. Proteins in this family are typically between 170 and 789 amino acids in length. The family is found in association with pfam02018. Vip3A represents a novel class of proteins insecticidal to lepidopteran insect larvae. 177 -315215 pfam12496 BNIP2 Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2. This domain family is found in eukaryotes, and is typically between 119 and 133 amino acids in length. There is a conserved HGGY sequence motif. This family is Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2. It interacts with pro- and anti- apoptotic molecules in the cell. 125 -315216 pfam12497 ERbeta_N Estrogen receptor beta. This domain family is found in eukaryotes, and is approximately 110 amino acids in length. The family is found in association with pfam00104, pfam00105. There is a conserved IPS sequence motif. There are two completely conserved residues (Y and W) that may be functionally important. ERbeta binds estrogens with an affinity similar to that of ERalpha, and activates expression of reporter genes containing estrogen response elements in an estrogen-dependent manner. ERbeta acts as a transcription factor once bound to its ligand and it can dimerize with ERalpha. 111 -315217 pfam12498 bZIP_C Basic leucine-zipper C terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 174 and 411 amino acids in length. The family is found in association with pfam00170. There is a conserved KVK sequence motif. There is a single completely conserved residue K that may be functionally important. Various bZIP proteins have been found and shown to play a role in seed-specific gene expression. bZIP binds to the alpha-globulin gene promoter, but not to promoters of other major storage genes such as glutelin, prolamin and albumin. 121 -338376 pfam12499 DUF3707 Pherophorin. This domain family is found in eukaryotes, and is typically between 147 and 160 amino acids in length. The proteins in this family are frequently annotated as pherophorins however there is little accompanying literature to confirm this. 138 -338377 pfam12500 TRSP TRSP domain C-terminus to PRTase_2. This domain occurs C-terminal to PRTase_2 and has highly conserved GXXE and TRSP signatures. It is found in bacteria. These genes are found in the biosynthetic operon associated with the Ter stress response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 128 -338378 pfam12501 DUF3708 Phosphate ATP-binding cassette transporter. This domain family is found in bacteria, and is typically between 143 and 173 amino acids in length. The family is found in association with pfam00528. There is a single completely conserved residue P that may be functionally important. 164 -315221 pfam12502 DUF3710 Protein of unknown function (DUF3710). This family of proteins is found in bacteria. Proteins in this family are typically between 237 and 284 amino acids in length. There are two conserved sequence motifs: DLG and DGPRW. 177 -289285 pfam12503 CMV_1a_C Cucumber mosaic virus 1a protein C terminal. This domain family is found in viruses, and is approximately 90 amino acids in length. The family is found in association with pfam01443, pfam01660. There is a conserved GLG sequence motif. 1a protein is the major virulence factor of the cucumber mosaic virus (CMV). The Ns strain of CMV causes necrotic lesions to Nicotiana spp. while other strains cause systemic mosaic. The determinant of the pathogenesis of these different strains is the specific amino acid residue at the 461 residue of the 1a protein. 84 -338379 pfam12505 DUF3712 Protein of unknown function (DUF3712). This domain family is found in eukaryotes, and is approximately 130 amino acids in length. 125 -289287 pfam12506 DUF3713 Protein of unknown function (DUF3713). This family of proteins is found in bacteria. Proteins in this family are typically between 92 and 1225 amino acids in length. There is a single completely conserved residue S that may be functionally important. 115 -315223 pfam12507 HCMV_UL139 Human Cytomegalovirus UL139 protein. This family of proteins is found in eukaryotes and viruses. Proteins in this family are approximately 140 amino acids in length. UL139 product shared sequence homology with human CD24, a signal transducer modulating B-cell activation responses, and the sequences in the G1c variant of UL139 contained a specific attachment site of prokaryotic membrane lipoprotein lipid. 97 -338380 pfam12508 Transposon_TraM Conjugative transposon, TraM. Proteins in this entry are designated TraM and are found in a proposed transfer region of a class of conjugative transposon found in the Bacteroides lineage. 194 -315225 pfam12509 DUF3715 Protein of unknown function (DUF3715). This domain family is found in eukaryotes, and is approximately 170 amino acids in length. 150 -338381 pfam12510 Smoothelin Smoothelin cytoskeleton protein. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00307. Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to co-localize with smooth muscle alpha actin. 50 -338382 pfam12511 DUF3716 Protein of unknown function (DUF3716). This domain family is found in eukaryotes, and is approximately 60 amino acids in length. 58 -338383 pfam12512 DUF3717 Protein of unknown function (DUF3717). This family of proteins is found in bacteria. Proteins in this family are typically between 75 and 117 amino acids in length. There is a conserved AIN sequence motif. There are two completely conserved residues (L and Y) that may be functionally important. 64 -338384 pfam12513 SUV3_C Mitochondrial degradasome RNA helicase subunit C terminal. This domain family is found in bacteria and eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00271. The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. mtEXO is made up of two subunits: an RNase (DSS1) and an RNA helicase (SUV3). These co-purify with mitochondrial ribosomes. 47 -338385 pfam12514 DUF3718 Protein of unknown function (DUF3718). This domain family is found in bacteria and viruses, and is approximately 70 amino acids in length. There is a single completely conserved residue C that may be functionally important. 66 -338386 pfam12515 CaATP_NAI Ca2+-ATPase N terminal autoinhibitory domain. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00689, pfam00122, pfam00702, pfam00690. There is a conserved RRFR sequence motif. There are two completely conserved residues (F and W) that may be functionally important. This family is the N terminal autoinhibitory domain of an endosomal Ca2+-ATPase. 45 -338387 pfam12516 DUF3719 Protein of unknown function (DUF3719). This domain family is found in eukaryotes, and is approximately 70 amino acids in length. There is a conserved HLR sequence motif. There are two completely conserved residues (W and H) that may be functionally important. 65 -338388 pfam12517 DUF3720 Protein of unknown function (DUF3720). This domain family is found in eukaryotes, and is approximately 100 amino acids in length. There are two completely conserved A residues that may be functionally important. 99 -289298 pfam12518 DUF3721 Protein of unknown function. This domain family is found in bacteria and eukaryotes, and is approximately 30 amino acids in length. There is a conserved WMPC sequence motif. There are two completely conserved residues (A and C) that may be functionally important. 33 -315234 pfam12519 MDM10 Mitochondrial distribution and morphology protein 10. MDM10 is a family of eukaryotic proteins that forms a subunit of the SAM complex for biogenesis of beta-barrel proteins, though not porins, into the outer mitochondrial membrane. 369 -315235 pfam12520 DUF3723 Protein of unknown function (DUF3723). This family of proteins is found in eukaryotes. Proteins in this family are typically between 374 and 1069 amino acids in length. There is a conserved LGF sequence motif. 504 -152955 pfam12521 DUF3724 Protein of unknown function (DUF3724). This domain family is found in viruses, and is approximately 20 amino acids in length. The family is found in association with pfam00073. There is a single completely conserved residue Y that may be functionally important. 23 -315236 pfam12522 UL73_N Cytomegalovirus glycoprotein N terminal. This domain family is found in viruses, and is approximately 30 amino acids in length. The family is found in association with pfam03554. This family is an envelope glycoprotein of human cytomegalovirus (HCMV). 27 -152957 pfam12523 DUF3725 Protein of unknown function (DUF3725). This domain family is found in viruses, and is approximately 70 amino acids in length. The family is found in association with pfam01577. There is a conserved FLE sequence motif. 74 -315237 pfam12524 GlyL_C dsDNA virus glycoprotein L C terminal. This domain family is found in viruses, and is typically between 55 and 80 amino acids in length. The family is found in association with pfam05259. This family is the C terminal of glycoprotein L from various types of double stranded DNA viruses (dsDNA). 65 -338389 pfam12525 DUF3726 Protein of unknown function (DUF3726). This domain family is found in bacteria and eukaryotes, and is approximately 80 amino acids in length. There is a single completely conserved residue E that may be functionally important. 74 -315239 pfam12526 DUF3729 Protein of unknown function (DUF3729). This family of proteins is found in viruses. Proteins in this family are typically between 145 and 1707 amino acids in length. The family is found in association with pfam01443, pfam01661, pfam05417, pfam01660, pfam00978. There is a single completely conserved residue L that may be functionally important. 115 -315240 pfam12527 DUF3727 Protein of unknown function (DUF3727). This domain family is found in bacteria and eukaryotes, and is approximately 100 amino acids in length. 97 -338390 pfam12528 T2SSppdC Type II secretion prepilin peptidase dependent protein C. 80 -315242 pfam12529 Xylo_C Xylosyltransferase C terminal. This domain family is found in eukaryotes, and is typically between 169 and 183 amino acids in length. The family is found in association with pfam02485. There is a single completely conserved residue G that may be functionally important. Xylosyltransferases are enzymes involved in the biosynthesis of the glycosaminoglycan linker region in proteoglycans. 179 -315243 pfam12530 DUF3730 Protein of unknown function (DUF3730). This domain family is found in eukaryotes, and is typically between 220 and 262 amino acids in length. 227 -315244 pfam12531 DUF3731 DNA-K related protein. This domain family is found in bacteria, and is approximately 250 amino acids in length. There are two conserved sequence motifs: RPG and WRR. The proteins in this family are frequently annotated as DNA-K related proteins however there is little accompanying literature to confirm this. 247 -315245 pfam12532 DUF3732 Protein of unknown function (DUF3732). This domain family is found in bacteria and eukaryotes, and is typically between 180 and 198 amino acids in length. There is a conserved DQP sequence motif. 181 -338391 pfam12533 Neuro_bHLH Neuronal helix-loop-helix transcription factor. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. The family is found C-terminal to pfam00010. There is a single completely conserved residue W that may be functionally important. Neuronal basic helix-loop-helix (bHLH) transcription factors such as neuroD and neurogenin have been shown to play important roles in neuronal development. 121 -315247 pfam12534 Pannexin_like Pannexin-like TM region of LRRC8. Pannexin_like is a family of the four transmembrane domains of metazoan leucine-rich-repeat-containing 8 proteins. These four TMs associate into hexamers resulting in homo- or heteromeric channels that connect the cytosol to the extracellular space. The family is found in association with pfam00560. 342 -338392 pfam12535 Nudix_N Hydrolase of X-linked nucleoside diphosphate N terminal. This family of proteins is found in eukaryotes. Proteins in this family are typically between 847 and 5344 amino acids in length. These enzymes hydrolyze the molecular motif of a nucleoside diphosphate linked to some other moiety, X. 54 -338393 pfam12536 DUF3734 Patatin phospholipase. This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam01734. There are two completely conserved residues (F and G) that may be functionally important. The proteins in this family are frequently annotated as patatin family phospholipases however there is little accompanying literature to confirm this. 106 -338394 pfam12537 GPHR_N The Golgi pH Regulator (GPHR) Family N-terminal. GPHR_N is the N-terminal 5TM region of the Golgi pH regulator proteins in eukaryotes. It plays vital roles in the transport of newly synthesized proteins from the Golgi to the plasma membrane, in the glycosylation of proteins along the exocytic pathway and the structural organisation of the Golgi apparatus. 68 -338395 pfam12538 FtsK_SpoIIIE_N DNA transporter. This domain family is found in bacteria, and is typically between 107 and 121 amino acids in length. The family is found in association with pfam01580. The FtsK/SpoIIIE family of DNA transporters are responsible for translocating missegregated chromosomes after the completion of cell division. 115 -338396 pfam12539 Csm1 Chromosome segregation protein Csm1/Pcs1. Saccharomyces cerevisiae Csm1 is part of the monopolin complex. Csm1 forms a complex with Mde4 and promotes monoorientation during meiosis. Csm1 also plays a mitotic role in DNA replication. This family also contains the Schizosaccharomyces pombe homolog to Csm1, Pcs1. Pcs1 forms a complex with Mde4 and acts in the central kinetochore domain to clamp microtubule binding sites together. The two complexes (Csm1/Lrs4 and Pcs1/Mde4) contribute to the prevention of merotelic attachment. 85 -315253 pfam12540 DUF3736 Protein of unknown function (DUF3736). This domain family is found in eukaryotes, and is typically between 135 and 160 amino acids in length. 137 -338397 pfam12541 DUF3737 Protein of unknown function (DUF3737). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 281 and 297 amino acids in length. 273 -338398 pfam12542 CWC25 Pre-mRNA splicing factor. This domain family is found in eukaryotes, and is approximately 100 amino acids in length. The family is found in association with pfam10197. There is a single completely conserved residue Y that may be functionally important. Cwc25 has been identified to associate with pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (NTC) involved in spliceosome activation. Cwc25 is neither tightly associated with NTC nor required for spliceosome activation, but is required for the first catalytic reaction. 91 -315256 pfam12543 DUF3738 Protein of unknown function (DUF3738). This family of proteins is found in bacteria. Proteins in this family are typically between 251 and 457 amino acids in length. 184 -338399 pfam12544 LAM_C Lysine-2,3-aminomutase. This domain family is found in bacteria, archaea and eukaryotes, and is typically between 111 and 127 amino acids in length. The family is found in association with pfam04055. LAM catalyzes the interconversion of L-alpha-lysine and L-beta-lysine, which proceeds by migration of the amino group from C2 to C3 concomitant with cross-migration of the 3-pro-R hydrogen of L-alpha-lysine to the 2-pro-R position of L-beta-lysine. 127 -315258 pfam12545 DUF3739 Filamentous haemagglutinin family outer membrane protein. This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam05860. 111 -315259 pfam12546 Cryptochrome_C Blue/Ultraviolet sensing protein C terminal. This domain family is found in eukaryotes, and is typically between 113 and 125 amino acids in length. The family is found in association with pfam03441, pfam00875. Cryptochromes are blue/ultraviolet-A light sensing photoreceptors involved in regulating various growth and developmental responses in plants. 118 -315260 pfam12547 ATXN-1_C Capicua transcriptional repressor modulator. This family of proteins is found in eukaryotes. Proteins in this family are typically between 49 and 781 amino acids in length. There is a conserved IQT sequence motif. ATXN1 directly binds Capicua and modulates Capicua repressor activity in Drosophila and mammalian cells. The polyglutamine expanded mutant type of ATXN-1 does not bind Capicua with as high affinity as wild-type ATXN-1. It is associated with spinocerebellar ataxia type 1 (SCA1). 56 -315261 pfam12548 DUF3740 Sulfatase protein. This domain family is found in eukaryotes, and is typically between 144 and 173 amino acids in length. The family is found in association with pfam00884. 144 -315262 pfam12549 TOH_N Tyrosine hydroxylase N terminal. This domain family is found in eukaryotes, and is approximately 30 amino acids in length. There is a single completely conserved residue G that may be functionally important. Tyrosine hydroxylase converts L-tyrosine to L-DOPA in the catecholamine synthesis pathway. 25 -315263 pfam12550 GCR1_C Transcriptional activator of glycolytic enzymes. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. This family is activates the transcription of glycolytic enzymes. 80 -315264 pfam12551 PHBC_N Poly-beta-hydroxybutyrate polymerase N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam07167, pfam00561. There is a single completely conserved residue W that may be functionally important. PHBC is the third enzyme of the poly-beta-hydroxybutyrate biosynthetic pathway. 41 -338400 pfam12552 DUF3741 Protein of unknown function (DUF3741). This domain family is found in eukaryotes, and is approximately 50 amino acids in length. 45 -338401 pfam12553 DUF3742 Protein of unknown function (DUF3742). This domain family is found in bacteria, and is approximately 50 amino acids in length. There is a single completely conserved residue Y that may be functionally important. 114 -338402 pfam12554 MOZART1 Mitotic-spindle organizing gamma-tubulin ring associated. The name MOZART is derived from letters of 'mitotic-spindle organizing proteins associated with a ring of gamma-tubulin'. This family operates as part of the gamma-tubulin ring complex, gamma-TuRC, one of the complexes necessary for chromosome segregation. This complex is located at centrosomes and mediates the formation of bipolar spindles in mitosis; it consists of six subunits. However, unlike the other four known subunits, this family does not carry the conserved 'Spc97-Spc98' GCP domain, so the TUBCGP nomenclature cannot be used for it. MOZART1 is required for gamma-TuRC recruitment to centrosomes. 47 -315268 pfam12555 TPPK_C Thiamine pyrophosphokinase C terminal. This domain family is found in bacteria, and is approximately 50 amino acids in length. The proteins in this family catalyzes the pyrophosphorylation of thiamine in yeast and synthesizes thiamine pyrophosphate (TPP), a thiamine coenzyme. 50 -338403 pfam12556 CobS_N Cobaltochelatase CobS subunit N terminal. This domain family is found in bacteria, and is approximately 40 amino acids in length. The family is found in association with pfam07728. There are two completely conserved residues (P and F) that may be functionally important. This family is the N terminal of the CobS subunit of cobaltochelatase. Cobaltochelatase belongs to the AAA+ superfamily of proteins. CobS and CobT form a chaperone like complex. 34 -338404 pfam12557 Co_AT_N Cob(I)alamin adenosyltransferase N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 20 amino acids in length. The family is found in association with pfam02572. Cob(I)alamin adenosyltransferase adenosylates Co(I) in an ATP-dependent manner in the conversion of aquacobalamin to its coenzyme form. This is the third step in this process, after two steps involved in the reduction of Co(III) to Co(I). 25 -338405 pfam12558 DUF3744 ATP-binding cassette cobalt transporter. This domain family is found in bacteria, and is approximately 70 amino acids in length. The family is found in association with pfam00005. There is a conserved REP sequence motif. There is a single completely conserved residue P that may be functionally important. The proteins in this family are frequently annotated as ABC Cobalt transporters however there is little accompanying literature to confirm this. 72 -315272 pfam12559 Inhibitor_I10 Serine endopeptidase inhibitors. This family includes both microviridins and marinostatins. It seems likely that in both cases it is the C-terminus which becomes the active inhibitor after post-translational modifications of the full length, pre-peptide. it is the ester linkages within the key, 12-residue. region that circularize the molecule giving it its inhibitory conformation. 54 -315273 pfam12560 RAG1_imp_bd RAG1 importin binding. This region of RAG1 is responsible for binding to importin alpha. 286 -289338 pfam12561 TagA ToxR activated gene A lipoprotein. This domain family is found in bacteria, and is approximately 140 amino acids in length. The family is found in association with pfam10462. There is a conserved GAG sequence motif. This family is a bacterial lipoprotein. 134 -289339 pfam12562 DUF3746 Protein of unknown function (DUF3746). This domain family is found in viruses, and is approximately 40 amino acids in length. The family is found in association with pfam04595. 37 -289340 pfam12563 Hemolysin_N Hemolytic toxin N terminal. This domain family is found in bacteria, and is approximately 190 amino acids in length. The family is found in association with pfam07968, pfam00652. This family is a bacterial virulence factor - hemolysin - which forms pores in erythrocytes and causes them to lyse. 186 -338406 pfam12564 TypeIII_RM_meth Type III restriction/modification enzyme methylation subunit. This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam01555. There are two completely conserved residues (F and S) that may be functionally important. This family is a bacterial phage resistance protein. It functions in a type III restriction/modification enzyme complex. It is part of the methylation subunit of the complex. It binds DNA and methylates it. 56 -315275 pfam12565 DUF3747 Protein of unknown function (DUF3747). This family of proteins is found in bacteria. Proteins in this family are typically between 215 and 413 amino acids in length. There is a conserved DSNGYS sequence motif. 171 -338407 pfam12566 DUF3748 Protein of unknown function (DUF3748). This domain family is found in bacteria and eukaryotes, and is approximately 120 amino acids in length. 119 -315277 pfam12567 CD45 Leukocyte receptor CD45. This family of proteins is found in eukaryotes. Proteins in this family are typically between 77 and 1130 amino acids in length. The family is found in association with pfam00041. CD45 plays a critical role in T-cell receptor (TCR)-mediated signaling. CD45 interacts with SKAP55 which is a transcriptional activator of IL-2. 57 -338408 pfam12568 DUF3749 Acetyltransferase (GNAT) domain. This domain family is found in bacteria, and is approximately 40 amino acids in length. The proteins in this family are acetyltransferases of the GNAT family. 128 -338409 pfam12569 NARP1 NMDA receptor-regulated protein 1. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. The family is found in association with pfam07719, pfam00515. There is a single completely conserved residue L that may be functionally important. NARP1 is the mammalian homolog of a yeast N-terminal acetyltransferase that regulates entry into the G(0) phase of the cell cycle. 515 -315279 pfam12570 DUF3750 Protein of unknown function (DUF3750). This family of proteins is found in bacteria. Proteins in this family are typically between 175 and 265 amino acids in length. 129 -315280 pfam12571 DUF3751 Phage tail-collar fibre protein. This domain family is found in bacteria and viruses, and is approximately 160 amino acids in length. There are two completely conserved residues (K and W) that may be functionally important. The members are annotated as being putative phage tail or tail-collar proteins. 144 -315281 pfam12572 DUF3752 Protein of unknown function (DUF3752). This domain family is found in eukaryotes, and is typically between 140 and 163 amino acids in length. 150 -338410 pfam12573 OxoDH_E1alpha_N 2-oxoisovalerate dehydrogenase E1 alpha subunit N terminal. This domain family is found in bacteria, and is approximately 40 amino acids in length. The family is found in association with pfam00676. There are two conserved sequence motifs: VPEP and RPG. This family is the alpha subunit of the E1 component of 2-oxoisovalerate dehydrogenase. This is the enzyme complex responsible for metabolism of pyruvate, 2-oxoglutarate, branched chain 2-oxo acids and acetoin. The E1 component is a heterotetramer of alpha2beta2. The homodimerized beta subunits are flanked by two alpha subunits in a 'vise' structure. 41 -315283 pfam12574 120_Rick_ant 120 KDa Rickettsia surface antigen. This domain family is found in bacteria, and is approximately 40 amino acids in length. This family is a Rickettsia surface antigen of 120 KDa which may be used as an antigen for immune response against the bacterial species. 246 -289352 pfam12575 Pox_EPC_I2-L1 Poxvirus entry protein complex L1 and I2. Pox_EPC_I2-L1 family of proteins is found in poxviruses. Proteins in this family are approximately 70 amino acids in length. There is a conserved YLK sequence motif. 71 -338411 pfam12576 DUF3754 Protein of unknown function (DUF3754). This domain family is found in bacteria, archaea and eukaryotes, and is typically between 135 and 166 amino acids in length. There is a single completely conserved residue P that may be functionally important. 136 -315285 pfam12577 PPARgamma_N PPAR gamma N-terminal region. Peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that control the expression of genes involved in lipid homeostasis in mammals. This sequence region is found at the N-terminus of these proteins. The family is found in association with pfam00104, pfam00105. It is not clear if this region is a separate protein domain. 79 -315286 pfam12578 3-PAP Myotubularin-associated protein. This domain family is found in eukaryotes, and is typically between 115 and 138 amino acids in length. Myotubularin is a dual-specific phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bisphosphate. 3-PAP is a catalytically inactive member of the myotubularin gene family, which coprecipitates lipid phosphatidylinositol 3-phosphate-3-phosphatase activity from lysates of human platelets. 128 -338412 pfam12579 DUF3755 Protein of unknown function (DUF3755). This domain family is found in eukaryotes, and is approximately 40 amino acids in length. There is a single completely conserved residue N that may be functionally important. 34 -338413 pfam12580 TPPII Tripeptidyl peptidase II. This domain family is found in bacteria and eukaryotes, and is approximately 190 amino acids in length. The family is found in association with pfam00082. Tripeptidyl peptidase II (TPPII) is a crucial component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway. It is an amino peptidase belonging to the subtilase family removing tripeptides from the free N-terminus of oligopeptides. 184 -315289 pfam12581 DUF3756 Protein of unknown function (DUF3756). This domain family is found in viruses, and is approximately 40 amino acids in length. 41 -315290 pfam12582 DUF3757 Protein of unknown function (DUF3757). This family of proteins is found in bacteria. Proteins in this family are typically between 94 and 154 amino acids in length. 117 -338414 pfam12583 TPPII_N Tripeptidyl peptidase II N terminal. This domain family is found in bacteria and eukaryotes, and is approximately 190 amino acids in length. The family is found in association with pfam00082. Tripeptidyl peptidase II (TPPII) is a crucial component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway. It is an amino peptidase belonging to the subtilase family removing tripeptides from the free N-terminus of oligopeptides. 114 -315292 pfam12584 TRAPPC10 Trafficking protein particle complex subunit 10, TRAPPC10. This domain forms part of the TRAPP complex for mediating vesicle docking and fusion in the Golgi apparatus. The fungal version is referred to as Trs130, and an alternative vertebrate alias is TMEM1. 152 -315293 pfam12585 DUF3759 Protein of unknown function (DUF3759). This family of proteins is found in eukaryotes. Proteins in this family are typically between 107 and 132 amino acids in length. There is a single completely conserved residue H that may be functionally important. 91 -315294 pfam12586 DUF3760 Protein of unknown function (DUF3760). This domain family is found in eukaryotes, and is typically between 46 and 64 amino acids in length. 44 -315295 pfam12587 DUF3761 Protein of unknown function (DUF3761). This family of proteins is found in bacteria. Proteins in this family are typically between 100 and 157 amino acids in length. 87 -315296 pfam12588 PSDC Phophatidylserine decarboxylase. This domain family is found in bacteria and eukaryotes, and is approximately 140 amino acids in length. The family is found in association with pfam02666. Phosphatidylserine decarboxylase (PSD) is an important enzyme in the synthesis of phosphatidylethanolamine in both prokaryotes and eukaryotes. 137 -315297 pfam12589 WBS_methylT Methyltransferase involved in Williams-Beuren syndrome. This domain family is found in eukaryotes, and is typically between 72 and 83 amino acids in length. The family is found in association with pfam08241. This family is made up of S-adenosylmethionine-dependent methyltransferases. The proteins are deleted in Williams-Beuren syndrome (WBS), a complex developmental disorder with multisystemic manifestations including supravalvular aortic stenosis (SVAS) and a specific cognitive phenotype. 81 -315298 pfam12590 Acyl-thio_N Acyl-ATP thioesterase. This domain family is found in bacteria and eukaryotes, and is typically between 120 and 131 amino acids in length. The family is found in association with pfam01643. The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) have roles in fatty acid synthesis. 131 -153025 pfam12591 DUF3762 Protein of unknown function (DUF3762). This domain family is found in viruses, and is approximately 80 amino acids in length. The family is found in association with pfam05533. 80 -338415 pfam12592 DUF3763 Protein of unknown function (DUF3763). This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam07728. There is a single completely conserved residue F that may be functionally important. 55 -289369 pfam12593 McyA_C Microcystin synthetase C terminal. This domain family is found in bacteria, and is approximately 40 amino acids in length. The family is found in association with pfam08242, pfam00501. There is a conserved YAN sequence motif. Microcystins form a large family of small cyclic heptapeptides harbouring extensive modifications in amino acid residue composition and functional group chemistry. These peptide hepatotoxins contain a range of non-proteinogenic amino acids and unusual peptide bonds, and are typically N-methylated. They are synthesized on large enzyme complexes consisting of non-ribosomal peptide synthetases and polyketide synthases. This family is made up of the C terminal of microcystin synthetase, one of the proteins involved in this synthesis pathway. 43 -289370 pfam12594 DUF3764 Protein of unknown function (DUF3764). This family of proteins is found in bacteria. Proteins in this family are typically between 89 and 101 amino acids in length. 84 -315299 pfam12595 Rhomboid_SP Rhomboid serine protease. This domain family is found in eukaryotes, and is approximately 210 amino acids in length. The family is found in association with pfam01694. Rhomboid is a seven-transmembrane spanning protein that resides in the Golgi and acts as a serine protease to cleave Spitz. 216 -257152 pfam12596 Tnp_P_element_C 87kDa Transposase. This domain family is found in eukaryotes, and is typically between 78 and 110 amino acids in length. The family is found in association with pfam05485. There are two completely conserved residues (D and G) that may be functionally important. This family is an 87kDa transposase protein which catalyzes both the precise and imprecise excision of a nonautonomous P transposable element. 107 -338416 pfam12597 DUF3767 Protein of unknown function (DUF3767). This family of proteins is found in eukaryotes. Proteins in this family are typically between 112 and 199 amino acids in length. 99 -315301 pfam12598 TBX T-box transcription factor. This domain family is found in eukaryotes, and is typically between 77 and 89 amino acids in length. The family is found in association with pfam00907. There are two completely conserved residues (S and P) that may be functionally important. T-box genes encode transcription factors involved in morphogenesis and organogenesis of vertebrates and invertebrates 81 -315302 pfam12599 DUF3768 Protein of unknown function (DUF3768). This family of proteins is found in bacteria. Proteins in this family are typically between 108 and 129 amino acids in length. There are two conserved sequence motifs: NDP and RVLT. 83 -315303 pfam12600 DUF3769 Protein of unknown function (DUF3769). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 560 and 931 amino acids in length. 444 -289375 pfam12601 Rubi_NSP_C Rubivirus non-structural protein. This domain family is found in viruses, and is approximately 70 amino acids in length. The family is found in association with pfam05407. The rubella virus (RUB) nonstructural (NS) protein (NSP) ORF encodes a protease that cleaves the NSP precursor (240 kDa) at a single site to produce two products. 66 -315304 pfam12602 FinO_N Fertility inhibition protein N terminal. This domain family is found in bacteria, and is typically between 62 and 102 amino acids in length. The family is found in association with pfam04352. The FinOP (fertility inhibition) system of F-like plasmids consists of an antisense RNA (FinP) and a 22 kDa protein (FinO) which act in concert to prevent the translation of TraJ, the positive regulator of the transfer operon. 62 -289377 pfam12603 DUF3770 Protein of unknown function (DUF3770). This domain family is found in viruses, and is approximately 250 amino acids in length. The family is found in association with pfam04196. 235 -315305 pfam12604 gp37_C Tail fibre protein gp37 C terminal. This domain family is found in bacteria and viruses, and is typically between 49 and 166 amino acids in length. The family is found in association with pfam03906. In T-even phages, gp37 and gp38 are components of the tail Faber that are critical for phage-host interaction. 153 -315306 pfam12605 CK1gamma_C Casein kinase 1 gamma C terminal. This domain family is found in eukaryotes, and is typically between 54 and 99 amino acids in length. The family is found in association with pfam00069. CK1gamma is a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. 87 -315307 pfam12606 RELT tumor necrosis factor receptor superfamily member 19. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 49 and 288 amino acids in length. There are two completely conserved residues (K and Y) that may be functionally important. The members of tumor necrosis factor receptor (TNFR) superfamily have been designated as the "guardians of the immune system" due to their roles in immune cell proliferation, differentiation, activation, and death (apoptosis). The messenger RNA of RELT is especially abundant in hematologic tissues such as spleen, lymph node, and peripheral blood leukocytes as well as in leukemias and lymphomas. RELT is able to activate the NF-kappaB pathway and selectively binds tumor necrosis factor receptor-associated factor 1. 45 -338417 pfam12607 DUF3772 Protein of unknown function (DUF3772). This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam00924. 63 -289381 pfam12608 T4bSS_IcmS Type IVb secretion, IcmS, effector-recruitment. This is a family of Gram-negative bacterial proteins involved in the Dot/Icm type IVb transport system. Members are small acidic cytoplasmic proteins required for Dot/Icm-dependent activities. Binary complexes of IcmW-IcmS and of IcmS-LvgA have been consistently reported, suggestive of the binary WXG100 system. The IcmW-IcmS complex may play a role in recruitment of effector proteins to the transport apparatus. 92 -338418 pfam12609 DUF3774 Wound-induced protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 81 and 97 amino acids in length. The proteins in the family are often annotated as wound-induced proteins however there is little accompanying literature to confirm this. 76 -315310 pfam12610 SOCS Suppressor of cytokine signalling. This domain family is found in bacteria and eukaryotes, and is approximately 60 amino acids in length. The family is found in association with pfam07525, pfam00017. The suppressors of cytokine signaling (SOCS) family play important roles in regulating a variety of signal transduction pathways that are involved in immunity, growth and development of organisms. 56 -315311 pfam12611 Flagellar_put Putative flagellar. Proteins in this entry are encoded in a subset of bacterial flagellar operons, generally between genes designated flgD and flgE, in species as diverse as Bacillus halodurans and various other Firmicutes, Geobacter sulfurreducens, and Bdellovibrio bacteriovorus. 24 -338419 pfam12612 TFCD_C Tubulin folding cofactor D C terminal. This domain family is found in eukaryotes, and is typically between 182 and 199 amino acids in length. The family is found in association with pfam02985. There is a single completely conserved residue R that may be functionally important. Tubulin folding cofactor D does not co-polymerize with microtubules either in vivo or in vitro, but instead modulates microtubule dynamics by sequestering beta-tubulin from GTP-bound alphabeta-heterodimers in microtubules. 183 -289386 pfam12613 FliC_SP Flagellin structural protein. This domain family is found in bacteria, and is approximately 60 amino acids in length. The family is found in association with pfam00669, pfam00700. This family is the bacterial flagellin structural protein. It is involved with cell motility. 53 -315313 pfam12614 RRF_GI Ribosome recycling factor. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 130 amino acids in length. There are two conserved sequence motifs: LPS and LKR. Overproduction of ribosome recycling factor (RRF) reduces tna operon expression and increases the rate of cleavage of TnaC-tRNA(2)(Pro), relieving the growth inhibition associated with plasmid-mediated tnaC overexpression. 126 -338420 pfam12615 TraD_N F sex factor protein N terminal. This domain family is found in bacteria, and is typically between 96 and 107 amino acids in length. The family is found in association with pfam10412. TraD is a cytoplasmic membrane protein with possible DNA binding domains. It is part of the bacterial F sex factor complex. 96 -315315 pfam12616 DUF3775 Protein of unknown function (DUF3775). This domain family is found in bacteria, and is approximately 80 amino acids in length. There is a single completely conserved residue G that may be functionally important. 69 -315316 pfam12617 LdpA_C Iron-Sulfur binding protein C terminal. This domain family is found in bacteria and eukaryotes, and is typically between 179 and 201 amino acids in length. The family is found in association with pfam00037. LdpA (light-dependent period) plays a role in controlling the redox state in cyanobacteria to modulate its. circadian clock. LdpA is a protein with Iron-Sulfur cluster-binding motifs. 183 -315317 pfam12618 DUF3776 Protein of unknown function (DUF3776). This domain family is found in eukaryotes, and is approximately 100 amino acids in length. 96 -338421 pfam12619 MCM2_N Mini-chromosome maintenance protein 2. This domain family is found in eukaryotes, and is typically between 138 and 153 amino acids in length. The family is found in association with pfam00493. Mini-chromosome maintenance (MCM) proteins are essential for DNA replication. These proteins use ATPase activity to perform this function. 146 -338422 pfam12620 DUF3778 Protein of unknown function (DUF3778). This domain family is found in eukaryotes, and is typically between 48 and 61 amino acids in length. There is a conserved LRF sequence motif. 52 -338423 pfam12621 PHM7_ext Extracellular tail, of 10TM putative phosphate transporter. This PHM7_ext family is found in plants and fungi. It represents the C-terminal extracellular domain of the putative phosphate transporter, PHM7. The three N-terminal TMS are found in family RSN1_TM, pfam02714; the cytoplssmic domain is pfam14703, and the remaining 7TM region is in pfam02714. 84 -315321 pfam12622 NpwBP mRNA biogenesis factor. The full-length Wbp11 proteins carry several copies of a PPGPPP motif throughout their length. This motif is thought to be necessary for folding of the molecule as it helps to bind the WW domain, Wbp11, pfam09429. This domain together with Wbp11 may function as components of an mRNA factory in the nucleus. 48 -315322 pfam12623 Hen1_L RNA repair, ligase-Pnkp-associating, region of Hen1. This domain is the N-terminal region of the bacterial Hen1 protein. This protein forms stable hetero-tetramer with Pnkp. The hetero-tetramer was able to repair transfer RNAs cleaved by ribotoxins in vitro. This domain provides the ligase activity of the hetero-tetramer. 231 -338424 pfam12624 Chorein_N N-terminal region of Chorein or VPS13. Although mutations in the full-length vacuolar protein sorting 13A (VPS13A) protein in vertebrates lead to the disease of chorea-acanthocytosis, the exact function of any of the regions within the protein is not yet known. This region is the proposed leucine zipper at the N-terminus. The full-length protein is a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. 111 -338425 pfam12625 Arabinose_bd Arabinose-binding domain of AraC transcription regulator, N-term. AraC is a bacterial transcriptional regulatory protein with a DNA-binding domain at the C-terminus, HTH_AraC, pfam00165, and this dimerization domain which harbours the arabinose-binding pocket at the N-terminus. AraC positively and negatively regulates expression of the proteins required for the uptake and catabolism of the sugar L-arabinose 1,2,3]. 183 -338426 pfam12626 PolyA_pol_arg_C Polymerase A arginine-rich C-terminus. The C-terminus of polymerase A in E coli is arginine-rich and is necessary for full functioning of the enzyme. 119 -338427 pfam12627 PolyA_pol_RNAbd Probable RNA and SrmB- binding site of polymerase A. This region encompasses much of the RNA and SrmB binding motifs on polymerase A. 64 -289400 pfam12628 Inhibitor_I71 Falstatin, cysteine peptidase inhibitor. This family of peptidase inhibitors is expressed from plasmodial protozoal species. Falstatin is found to be a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and non-parasite-derived cysteine proteases, but is only a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Thus, P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. 173 -289401 pfam12629 Pox_polyA_pol_C Poxvirus poly(A) polymerase C-terminal domain. This domain is found at the C-terminus of the pox virus PolyA polymerase protein. 199 -289402 pfam12630 Pox_polyA_pol_N Poxvirus poly(A) polymerase N-terminal domain. This domain is found at the N-terminus of the pox virus Poly(A) polymerase protein. According to SCOP this domain contains a helix-hairpin-helix motif. 108 -338428 pfam12631 MnmE_helical MnmE helical domain. The tRNA modification GTPase MnmE consists of three domains. An N-terminal domain, a helical domain and a GTPase domain which is nested within the helical domain. This family represents the helical domain. 325 -338429 pfam12632 Vezatin Mysoin-binding motif of peroxisomes. Vezatin is a peroxisome transmembrane receptor that is involved in membrane-membrane and cell-cell adhesions. In the movement of peroxisomes it binds to class V and class VIIa myosins to guide the organelle through the microtubules and allow pathogens to internalize themselves into host cells. Vezatin is crucial for spermatozoan production. In mouse cells it interacts with the cadherin-catenin complex bridging it to the C-terminal FERM domain of myosin VIIA. 242 -338430 pfam12633 Adenyl_cycl_N Adenylate cyclase NT domain. 190 -338431 pfam12634 Inp1 Inheritance of peroxisomes protein 1. Inp1 is a family of peripheral membrane proteins of peroxisomes. Inp1p binds Pex25p, Pex30p, and Vps1p, all of which are involved in controlling peroxisome division. The levels of Inp1p vary with the cell cycle, and Inp1 acts as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p promotes the retention of peroxisomes in mother cells and buds of budding yeast by attaching peroxisomes to as-yet-unidentified cortical structures. 137 -315331 pfam12635 DUF3780 Protein of unknown function (DUF3780). This family of proteins is functionally uncharacterized.This family of proteins is found in bacteria. Proteins in this family are typically between 189 and 206 amino acids in length. There are two conserved sequence motifs: PEERWWL and GWR. This family is found in a very sporadic set of bacterial species, suggesting that it may have been horizontally transferred. One protein is annotated as plasmid borne. 185 -315332 pfam12636 DUF3781 Protein of unknown function (DUF3781). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 82 and 98 amino acids in length. There are two conserved sequence motifs: GKNWY and ITA. 72 -338432 pfam12637 TSCPD TSCPD domain. This family of proteins is found in bacteria, archaea and viruses. The domain is found in isolation in many proteins where it has a conserved C-terminal motif TSCPD after which the domain is named. Most copies of the domain possess 4 conserved cysteines that may be part of an Iron-sulfur cluster. This domain is found at the C-terminus of some ribonucleoside-diphosphate reductase enzymes. 74 -315334 pfam12638 Staygreen Staygreen protein. This family of proteins have been implicated in chlorophyll degradation. Intriguingly members of this family are also found in non-photosynthetic bacteria. 147 -315335 pfam12639 Colicin-DNase DNase/tRNase domain of colicin-like bacteriocin. Colicin-like bacteriocins are complex structures with an N-terminal beta-barrel translocation domain (pfam09000), a long double-alpha-helical receptor-binding domain (pfam11570) and this C-terminal RNAse/DNase domain with endonuclease activity. Their competitor bacteriocidal action is by a process that involves binding to a surface receptor, entering the cell, and, finally, killing it. The lethal action of colicin E3 is a specific cleavage in the ribosomal decoding A site. The crystal structure of colicin E3 reveals a Y-shaped molecule with the receptor binding domain forming a 100 Angstrom long stalk and the two globular heads of the translocation domain and this catalytic domain comprising the two arms. 96 -315336 pfam12640 UPF0489 UPF0489 domain. This family is probably an enzyme which is related to the Arginase family. 159 -315337 pfam12641 Flavodoxin_3 Flavodoxin domain. This family represents a flavodoxin domain. 161 -338433 pfam12642 TpcC Conjugative transposon protein TcpC. This family of proteins are annotated as conjugative transposon protein TcpC. The transfer clostridial plasmid (tcp) locus is part of some conjugative antibiotic resistance and virulence plasmids. TcpC was one of five genes whose products had low-level sequence identity to Tn916 proteins, having similarity to ORF13 homologs from Tn916, Tn5397, and CW459tet. This family of proteins is found in bacteria. Proteins in this family are typically between 302 and 351 amino acids in length. 229 -338434 pfam12643 MazG-like MazG-like family. This family of short proteins are distantly related to the MazG enzyme. This suggests that these proteins are enzymes that catalyze a related reaction. 74 -315340 pfam12644 DUF3782 Protein of unknown function (DUF3782). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 91 and 186 amino acids in length. 78 -315341 pfam12645 HTH_16 Helix-turn-helix domain. This domain appears to be a helix-turn-helix domain suggesting that this might be a transcriptional regulatory protein. Some members of this family are annotated as conjugative transposon domains. 65 -338435 pfam12646 DUF3783 Domain of unknown function (DUF3783). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 60 amino acids in length. 56 -315343 pfam12647 RNHCP RNHCP domain. This family of proteins is found in bacteria. Proteins in this family are typically between 94 and 143 amino acids in length. There is a conserved RNHCP sequence motif. 85 -315344 pfam12648 TcpE TcpE family. This family of proteins includes TcpE a conjugative transposon membrane protein.This family of proteins is found in bacteria. Proteins in this family are typically between 122 and 168 amino acids in length. 107 -338436 pfam12650 DUF3784 Domain of unknown function (DUF3784). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 96 and 110 amino acids in length. 92 -289422 pfam12651 RHH_3 Ribbon-helix-helix domain. This short bacterial protein contains a ribbon-helix-helix domain that is likely to be DNA-binding. 44 -315346 pfam12652 CotJB CotJB protein. CotJ is a sigma E-controlled operon involved in the spore coat of Bacillus subtilis. This protein has been identified as a spore coat protein. 76 -315347 pfam12653 DUF3785 Protein of unknown function (DUF3785). This family of proteins is functionally uncharacterized.This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. These proteins share two CXXC motifs suggesting these are zinc binding proteins. This protein is found in clostridia in an operon with three signalling proteins, suggesting this protein may be a DNA-binding transcription regulator downstream of an as yet unknown signalling pathway (Bateman A pers obs). 135 -315348 pfam12654 DUF3786 Domain of unknown function (DUF3786). This presumed domain is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 201 and 257 amino acids in length. Some proteins also contains an iron-sulfur cluster. 176 -315349 pfam12655 DUF3787 Domain of unknown function (DUF3787). This family of proteins is functionally uncharacterized. This family of proteins is found in Clostridia. Proteins in this family are approximately 60 amino acids in length. There is a conserved TAAW sequence motif that may be functionally important. 51 -315350 pfam12656 G-patch_2 G-patch domain. Yeast Spp2, a G-patch protein and spliceosome component, interacts with the ATP-dependent DExH-box splicing factor Prp2. As this interaction involves the G-patch sequence in Spp2 and is required for the recruitment of Prp2 to the spliceosome before the first catalytic step of splicing, it is proposed that Spp2 might be an accessory factor that confers spliceosome specificity on Prp2. 61 -338437 pfam12657 TFIIIC_delta Transcription factor IIIC subunit delta N-term. In humans there are six subunits of transcription factor IIIC, and this one is the 90 kDa subunit; whereas in fungi the complex resolves into nine different subunits and this is No. 9 in yeasts. The whole subunit is involved in RNA polymerase III-mediated transcription. It is possible that this N-terminal domain interacts with TFIIIC subunit 8. 172 -315352 pfam12658 Ten1 Telomere capping, CST complex subunit. Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. S.pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologues exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localize at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Two separate protein complexes are required for chromosome end protection in fission yeast. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution. Ten1 is one of the three components of the CST complex, which, in conjunction with the Shelterin complex helps protect telomeres from attack by DNA-repair mechanisms. 115 -289430 pfam12659 Stn1_C Telomere capping C-terminal wHTH. This domain consists of tandem winged helix-turn-helix motifs. Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. S.pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologues exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localize at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Two separate protein complexes are required for chromosome end protection in fission yeast. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution. 119 -338438 pfam12660 zf-TFIIIC Putative zinc-finger of transcription factor IIIC complex. This zinc-finger domain is at the very C-terminus of a number of different TFIIIC subunit proteins. This domain might be involved in protein-DNA and/or protein-protein interactions. 91 -338439 pfam12661 hEGF Human growth factor-like EGF. hEGF, or human growth factor-like EGF, domains have six conserved residues disulfide-bonded into the characteristic 'ababcc' pattern. They are involved in growth and proliferation of cells, in proteins of the Notch/Delta pathway, neurogulin and selectins. hEGFs are also found in mosaic proteins with four-disulfide laminin EGFs such as aggrecan and perlecan. The core fold of the EGF domain consists of two small beta-hairpins packed against each other. Two major structural variants have been identified based on the structural context of the C-terminal Cys residue of disulfide 'c' in the C-terminal hairpin: hEGFs and cEGFs. In hEGFs the C-terminal thiol resides in the beta-turn, resulting in shorter loop-lengths between the Cys residues of disulfide 'c', typically C[8-9]XC. These shorter loop-lengths are also typical of the four-disulfide EGF domains, laminin ad integrin. Tandem hEGF domains have six linking residues between terminal cysteines of adjacent domains. hEGF domains may or may not bind calcium in the linker region. hEGF domains with the consensus motif CXD4X[F,Y]XCXC are hydroxylated exclusively in the Asp residue. 22 -338440 pfam12662 cEGF Complement Clr-like EGF-like. cEGF, or complement Clr-like EGF, domains have six conserved cysteine residues disulfide-bonded into the characteristic pattern 'ababcc'. They are found in blood coagulation proteins such as fibrillin, Clr and Cls, thrombomodulin, and the LDL receptor. The core fold of the EGF domain consists of two small beta-hairpins packed against each other. Two major structural variants have been identified based on the structural context of the C-terminal cysteine residue of disulfide 'c' in the C-terminal hairpin: hEGFs and cEGFs. In cEGFs the C-terminal thiol resides on the C-terminal beta-sheet, resulting in long loop-lengths between the cysteine residues of disulfide 'c', typically C[10+]XC. These longer loop-lengths may have arisen by selective cysteine loss from a four-disulfide EGF template such as laminin or integrin. Tandem cEGF domains have five linking residues between terminal cysteines of adjacent domains. cEGF domains may or may not bind calcium in the linker region. cEGF domains with the consensus motif CXN4X[F,Y]XCXC are hydroxylated exclusively on the asparagine residue. 24 -315356 pfam12663 DUF3788 Protein of unknown function (DUF3788). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 137 and 149 amino acids in length. This family may be distantly related to RelE proteins. 127 -315357 pfam12664 DUF3789 Protein of unknown function (DUF3789). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There are two completely conserved residues (V and C) that may be functionally important. 32 -315358 pfam12666 PrgI PrgI family protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 116 and 146 amino acids in length. This protein is found in an operon that is part of a Type IV secretion system. 92 -338441 pfam12667 NigD_N NigD-like N-terminal OB domain. This family of proteins is functionally uncharacterized. This family of proteins is found in Bacteroides species. Proteins in this family are typically between 234 and 260 amino acids in length. These proteins possess an N-terminal lipoprotein attachment site. The family includes NigD a protein found in the Nig operon that encodes a bacteriocin called nigrescin. It has been suggested that NigD may be the immunity protein for nigrescin (NigC) because it is directly downstream. This domain has an OB fold. 61 -338442 pfam12668 DUF3791 Protein of unknown function (DUF3791). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 71 and 125 amino acids in length. 60 -315361 pfam12669 P12 Virus attachment protein p12 family. This family of proteins are related to Virus attachment protein p12 from the African swine fever virus. The family appears to contain an N-terminal signal peptide followed by a short cysteine rich region. The cysteine rich region is extremely variable and it is possible that only the N-terminal region is homologous. 45 -315362 pfam12670 DUF3792 Protein of unknown function (DUF3792). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. These proteins are integral membrane proteins. 110 -315363 pfam12671 Amidase_6 Putative amidase domain. 161 -315364 pfam12672 DUF3793 Protein of unknown function (DUF3793). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 187 and 211 amino acids in length. There are two conserved sequence motifs: PHE and LGYP. 168 -315365 pfam12673 DUF3794 Domain of unknown function (DUF3794). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 90 amino acids in length. The family is found in association with pfam01476. 82 -338443 pfam12674 Zn_ribbon_2 Putative zinc ribbon domain. This domain appears to be a zinc binding DNA-binding domain. 75 -338444 pfam12675 DUF3795 Protein of unknown function (DUF3795). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 99 and 171 amino acids in length. This protein is likely to be zinc binding given the conserved cysteines. 81 -315368 pfam12676 DUF3796 Protein of unknown function (DUF3796). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 113 -289447 pfam12677 DUF3797 Domain of unknown function (DUF3797). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and viruses, and is approximately 50 amino acids in length. There is a conserved CGN sequence motif. 48 -315369 pfam12678 zf-rbx1 RING-H2 zinc finger domain. There are 8 cysteine/ histidine residues which are proposed to be the conserved residues involved in zinc binding. The protein, of which this domain is the conserved region, participates in diverse functions relevant to chromosome metabolism and cell cycle control. 55 -315370 pfam12679 ABC2_membrane_2 ABC-2 family transporter protein. This family is related to the ABC-2 membrane transporter family. 282 -338445 pfam12680 SnoaL_2 SnoaL-like domain. This family contains a large number of proteins that share the SnoaL fold. 100 -315372 pfam12681 Glyoxalase_2 Glyoxalase-like domain. This domain is related to the Glyoxalase domain pfam00903. 118 -289452 pfam12682 Flavodoxin_4 Flavodoxin. This is a family of flavodoxins. Flavodoxins are electron transfer proteins that carry a molecule of non-covalently bound FMN. 156 -315373 pfam12683 DUF3798 Protein of unknown function (DUF3798). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 247 and 417 amino acids in length. Most of the proteins in this family have an N-terminal lipoprotein attachment site. These proteins have distant similarity to periplasmic ligand binding families such as pfam02608, which suggests that this family have a similar role. 271 -315374 pfam12684 DUF3799 PDDEXK-like domain of unknown function (DUF3799). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 265 and 420 amino acids in length. It appears that these proteins are distantly related to the PDDEXK superfamily and so these domains are likely to be nucleases. This family has a C-terminal cysteine cluster similar to that found in pfam01930. 228 -338446 pfam12685 SpoIIIAH SpoIIIAH-like protein. Stage III sporulation protein AH (SpoIIIAH) is a protein that is involved in forespore engulfment. It forms a channel with SpoIIIAH that is open on the forespore end and closed (or gated) on the mother cell end. This allows sigma-E-directed gene expression in the mother-cell compartment of the sporangium to trigger the activation of sigma-G forespore-specific gene expression by a pathway of intercellular signaling. This family of proteins is found in bacteria, archaea and eukaryotes and so must have a wider function that in sporulation. Proteins in this family are typically between 174 and 223 amino acids in length. 202 -338447 pfam12686 DUF3800 Protein of unknown function (DUF3800). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 215 and 302 amino acids in length. There is a DE motif at the N-terminus and a QXXD motif at the C-terminus that may be functionally important. 228 -315377 pfam12687 DUF3801 Protein of unknown function (DUF3801). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 158 and 187 amino acids in length. This family includes the PcfB protein. 131 -315378 pfam12688 TPR_5 Tetratrico peptide repeat. BH0479 of Bacillus halodurans is a hypothetical protein which contains a tetratrico peptide repeat (TPR) structural motif. The TPR motif is often involved in mediating protein-protein interactions. This protein is likely to function as a dimer. The first 48 amino acids are not present in the clone construct. This Pfam entry includes tetratricopeptide-like repeats not detected by the pfam00515, pfam07719, pfam07720 and pfam07221 models. 119 -315379 pfam12689 Acid_PPase Acid Phosphatase. This family contains phosphatase enzymes and other proteins of the HAD superfamily. It includes MDP-1 which is a eukaryotic magnesium-dependent acid phosphatase. 169 -338448 pfam12690 BsuPI Intracellular proteinase inhibitor. This is a bacterial domain which has been named BsuPI in Bacillus subtilis. This domain is found in Bacillus subtilis ipi, where it has been suggested to regulate the major intracellular proteinase (ISP-1) activity in vivo. The structure of proteins in this family adopt a beta barrel topology. 77 -315381 pfam12691 Minor_capsid_3 Minor capsid protein from bacteriophage. This family is from one of three adjacent genes, all of which are involved in formation of the minor phage capsid. 129 -289462 pfam12692 Methyltransf_17 S-adenosyl-L-methionine methyltransferase. This domain is found in bacterial proteins. The structure of the proteins in this family suggest that they function as a methyltransferase. 160 -289463 pfam12693 GspL_C GspL periplasmic domain. This domain is the periplasmic domain of the GspL/EpsL family proteins. These proteins are involved in type II secretion systems. 158 -315382 pfam12694 MoCo_carrier Putative molybdenum carrier. The structure of proteins in this family contain central beta strands with flanking alpha helices. The structure is similar to that of a molybdenum cofactor carrier protein. 145 -315383 pfam12695 Abhydrolase_5 Alpha/beta hydrolase family. This family contains a diverse range of alpha/beta hydrolase enzymes. 164 -315384 pfam12696 TraG-D_C TraM recognition site of TraD and TraG. This family includes both TraG and TraD as well as VirD4 proteins. TraG is essential for DNA transfer in bacterial conjugation. These proteins are thought to mediate interactions between the DNA-processing (Dtr) and the mating pair formation (Mpf) systems. This domain interacts with the relaxosome component TraM via the latter's tetramerisation domain. TraD is a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. 126 -338449 pfam12697 Abhydrolase_6 Alpha/beta hydrolase family. This family contains alpha/beta hydrolase enzymes of diverse specificity. 216 -338450 pfam12698 ABC2_membrane_3 ABC-2 family transporter protein. This family is related to the ABC-2 membrane transporter family pfam01061. 345 -289469 pfam12699 phiKZ_IP phiKZ-like phage internal head proteins. Phage internal head proteins (IP) are proteins that are encoded by a bacteriophage and assembled into the mature virion inside the capsid head. The most analogous characterized IP proteins are those of bacteriophage T4, which are known to be proteolytically processed during phage maturation, and then subsequently injected into the host cell during infection. The phiKZ_IP family consists of internal head proteins encoded by phiKZ-like phages. Each phage encodes three to six members of this family. Members of the family reside in the head and are cleaved during phage maturation to separate an N-terminal propeptide from a C-terminal domain. The C-terminal domain remains in the mature capsid. The N-terminal propeptide domain is either mostly or completely removed from the mature capsid. In one case, an unrelated polypeptide is embedded in the propeptide and also remains in the mature capsid. The phiKZ-like IP proteins are not discernibly homologous to the T4 IP proteins, and it is not known if the phiKZ-like IP proteins are injected into the host cell, or have some other function within the head. The alignment and HMM model exclude most of the propeptide region, but include the cleavage sites. The first 100 residues, including the cleavage sites, constitute the most conservative part of the seed alignment. 317 -289470 pfam12700 HlyD_2 HlyD family secretion protein. This family is related to pfam00529. 211 -338451 pfam12701 LSM14 Scd6-like Sm domain. The Scd6-like Sm domain is found in Scd6p from S. cerevisiae, Rap55 from the newt Pleurodeles walt, and its orthologs from fungi, animals, plants and apicomplexans. The domain is also found in Dcp3p and the human EDC3/FLJ21128 protein where it is fused to the the Rossmanoid YjeF-N domain. In addition both EDC3 and Scd6p are found fused to the FDF domain. 75 -338452 pfam12702 Lipocalin_3 Lipocalin-like. This is a family of proteins of 115 residues on average. The family has two highly conserved tryptophan residues. The fold is very similar to the lipocalin-like fold from several comparable structures. 92 -289473 pfam12703 ptaRNA1_toxin Toxin of toxin-antitoxin type 1 system. This family is the toxin of a type 1 toxin-antitoxin system which is found in a relatively widespread range of bacterial species. The species distribution suggests frequent horizontal gene transfer. In a type 1 system, as characterized for the plasmid-encoded E coli hok/sok system, the toxin-encoding stable mRNA encodes a protein which rapidly leads to cell death unless the translation is suppressed by a short-lived small RNA. The plasmid-encoded module prevents the growth of plasmid-free offspring, thus ensuring the persistence of the plasmid in the population. Plasmid-free cells arising after cell-division will be killed because the stable mRNA toxin is present while the comparably unstable anti-toxin is rapidly degraded. Where the system is transcribed chromosomally, the mechanism is poorly understood. 73 -338453 pfam12704 MacB_PCD MacB-like periplasmic core domain. This family represents the periplasmic core domain found in a variety of ABC transporters. The structure of this family has been solved for the MacB protein. Some structural similarity was found to the periplasmic domain of the AcrB multidrug efflux transporter. 209 -338454 pfam12705 PDDEXK_1 PD-(D/E)XK nuclease superfamily. Members of this family belong to the PD-(D/E)XK nuclease superfamily 246 -338455 pfam12706 Lactamase_B_2 Beta-lactamase superfamily domain. This family is part of the beta-lactamase superfamily and is related to pfam00753. 196 -289477 pfam12707 DUF3804 Protein of unknown function (DUF3804). This family is approximately 130 residues. Dali search indicates this protein carries a NTF2-fold with a hydrophobic cavity as a structural homolog to 1JB2, 2R4I, 3FSD and 2UX0. In this hydrophobic cavity, Arg 118 provides the H-bonding force to hold a PEG molecule from crystallisation. The interface interaction suggests that the biomolecule of PMN2A_0505 is a dimer. Two members of the family are annotated as putative EF-Tu domain 2 but there is no match to this family so this is likely to be a false assignment. There are two highly conserved tryptophan residues towards the C-terminal end of the family. 128 -338456 pfam12708 Pectate_lyase_3 Pectate lyase superfamily protein. This family of proteins possesses a beta helical structure like Pectate lyase. This family is most closely related to glycosyl hydrolase family 28. 214 -315393 pfam12709 Kinetocho_Slk19 Central kinetochore-associated. This is a family of proteins integrally involved in the central kinetochore. Slk19 is a yeast member and it may play an important role in the timing of nuclear migration. It may also participate, directly or indirectly, in the maintenance of centromeric tensile strength during mitotic stagnation, for instance during activation of checkpoint controls, when cells need to preserve nuclear integrity until cell cycle progression can be resumed. 77 -315394 pfam12710 HAD haloacid dehalogenase-like hydrolase. 187 -315395 pfam12712 DUF3805 Domain of unknown function (DUF3805). This family represent the N-terminal domain of the structure. In two related Bacteroides species the gene lies immediately upstream from a putative ATP binding component of an ATP transporter and a putative histidinol phosphatase. The structure of this domain is strikingly similar to the N-terminal structure of 1tui, also of unknown function. The domain carries four conserved tryptophan residues. 152 -338457 pfam12713 DUF3806 Domain of unknown function (DUF3806). This family represent the C-terminal domain of the structure. In two related Bacteroides species the gene lies immediately upstream from a putative ATP binding component of an ATP transporter and a putative histidinol phosphatase. The structure of this domain is strikingly similar to the N-terminal structure of 1ma7 whose C-terminal domain is a phage integrase, pfam00589. 86 -315397 pfam12714 TILa TILa domain. This cysteine rich domain occurs along side the TIL pfam01826 domain and is likely to be a distantly related relative. 54 -338458 pfam12715 Abhydrolase_7 Abhydrolase family. This is a family of probable bacterial abhydrolases. 388 -315399 pfam12716 Apq12 Nuclear pore assembly and biogenesis. This is a family of conserved fungal proteins involved in nuclear pore assembly. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum. Its absence leads to a partial block in mRNA export and cold-sensitive defects in the growth and localization of a subset of nucleoporins, particularly those asymmetrically localized to the cytoplasmic fibrils. The defects in nuclear pore assembly appear to be due to defects in regulating membrane fluidity. 53 -338459 pfam12717 Cnd1 non-SMC mitotic condensation complex subunit 1. The three non-SMC (structural maintenance of chromosomes) subunits of the mitotic condensation complex are Cnd1-3. The whole complex is essential for viability and the condensing of chromosomes in mitosis. 162 -338460 pfam12718 Tropomyosin_1 Tropomyosin like. This family is a set of eukaryotic tropomyosins. Within the yeast Tpm1 and Tpm2, biochemical and sequence analyses indicate that Tpm2p spans four actin monomers along a filament, whereas Tpm1p spans five. Despite its shorter length, Tpm2p can compete with Tpm1p for binding to F-actin. Over-expression of Tpm2p in vivo alters the axial budding of haploids to a bipolar pattern, and this can be partially suppressed by co-over-expression of Tpm1p. This suggests distinct functions for the two tropomyosins, and indicates that the ratio between them is important for correct morphogenesis. The family also contains higher eukaryote Tpm3 members. 142 -338461 pfam12719 Cnd3 Nuclear condensing complex subunits, C-term domain. The Cnd1-3 proteins are the three non-SMC (structural maintenance of chromosomes) proteins that go to make up the mitotic condensation complex along with the two SMC protein families, XCAP-C and XCAP-E, (or in the case of fission yeast, Cut3 and Cut14). The five-member complex seems to be conserved from yeasts to vertebrates. This domain is the C-terminal, cysteine-rich domain of Cnd3. The complex shuttles between the nucleus, during mitosis, and the cytoplasm during the rest of the cycle. Thus this family is made up of the C-termini of XCAP-Gs, Ycg1 and Ycs5 members. 277 -338462 pfam12720 DUF3807 Protein of unknown function (DUF3807). This is a family of conserved fungal proteins of unknown function. 177 -315404 pfam12721 RHIM RIP homotypic interaction motif. RIP proteins are receptor-interacting serine/threonine-protein kinases or cell death proteins. This interacting domain is involved in virus recognition. The RHIM domain is necessary for the recruitment of RIP and RIP3 by the IFN-inducible protein DNA-dependent activator of IRFs (DAI), also known as DLM-1 or Z-DNA binding protein (ZBP1). Both the RIP kinases contribute to DAI-induced NF-kappaB activation. RIP3 undergoes auto phosphorylation on binding to DAI. 50 -315405 pfam12722 Hid1 High-temperature-induced dauer-formation protein. Hid1 (high-temperature-induced dauer-formation protein 1) represents proteins of approximately 800 residues long and is conserved from fungi to humans. It contains up to seven potential transmembrane domains separated by regions of low complexity. Functionally it might be involved in vesicle secretion or be an inter-cellular signalling protein or be a novel insulin receptor. 802 -315406 pfam12723 DUF3809 Protein of unknown function (DUF3809). This family of proteins is functionally uncharacterized. This family of proteins is found in Deinococci bacteria. Proteins in this family are typically between 117 and 157 amino acids in length. 136 -338463 pfam12724 Flavodoxin_5 Flavodoxin domain. This is a family of flavodoxins. Flavodoxins are electron transfer proteins that carry a molecule of non-covalently bound FMN. 145 -338464 pfam12725 DUF3810 Protein of unknown function (DUF3810). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 333 and 377 amino acids in length. There is a conserved HEXXH sequence motif that is characteristic of metallopeptidases. This family may therefore belong to an as yet uncharacterized family of peptidase enzymes. 321 -338465 pfam12726 SEN1_N SEN1 N terminal. This domain is found at the N terminal of the helicase SEN1. SEN1 is a Pol II termination factor for noncoding RNA genes. The N terminal of SEN1, unlike the C terminal, is not required for growth. 745 -338466 pfam12727 PBP_like PBP superfamily domain. This family belongs to the periplasmic binding domain superfamily. It is often associated with a helix-turn-helix domain. 193 -338467 pfam12728 HTH_17 Helix-turn-helix domain. This domain is a DNA-binding helix-turn-helix domain. 51 -315412 pfam12729 4HB_MCP_1 Four helix bundle sensory module for signal transduction. This family is a four helix bundle that operates as a ubiquitous sensory module in prokaryotic signal-transduction. The 4HB_MCP is always found between two predicted transmembrane helices indicating that it detects only extracellular signals. In many cases the domain is associated with a cytoplasmic HAMP domain suggesting that most proteins carrying the bundle might share the mechanism of transmembrane signalling which is well-characterized in E coli chemoreceptors. 181 -315413 pfam12730 ABC2_membrane_4 ABC-2 family transporter protein. This family is related to the ABC-2 membrane transporter family pfam01061. 179 -257256 pfam12731 Mating_N Mating-type protein beta 1. This domain is found in some fungi and is the C-terminus of a homeodomain-containing transcription factor protein involved in mating. 95 -338468 pfam12732 YtxH YtxH-like protein. This family of proteins is found in bacteria. Proteins in this family are typically between 100 and 143 amino acids in length. The N-terminal region is the most conserved. Proteins is this family are functionally uncharacterized. 73 -315415 pfam12733 Cadherin-like Cadherin-like beta sandwich domain. This domain is found in several bacterial, metazoan and chlorophyte algal proteins. A profile-profile comparison recovered the cadherin domain and a comparison of the predicted structure of this domain with the crystal structure of the cadherin showed a congruent seven stranded secondary structure. The domain is widespread in bacteria and seen in the firmicutes, actinobacteria, certain proteobacteria, bacteroides and chlamydiae with an expansion in Clostridium. In contrast, it is limited in its distribution in eukaryotes suggesting that it was derived through lateral transfer from bacteria. In prokaryotes, this domain is widely fused to other domains such as FNIII (Fibronectin Type III), TIG, SLH (S-layer homology), discoidin, cell-wall-binding repeat domain and alpha-amylase-like glycohydrolases. These associations are suggestive of a carbohydrate-binding function for this cadherin-like domain. In animal proteins it is associated with an ATP-grasp domain. 89 -338469 pfam12734 CYSTM Cysteine-rich TM module stress tolerance. The members of this family are short cysteine-rich membrane proteins that most probably dimerize together to form a transmembrane sulfhydryl-lined pore. The CYSTM module is always present at the extreme C-terminus of the protein in which it is present. Furthermore, like the yeast prototypes, the majority of the proteins also possess a proline/glutamine-rich segment upstream of the CYSTM module that is likely to form a polar, disordered head in the cytoplasm. The presence of an atypical well-conserved acidic residue at the C-terminal end of the TM helix suggests that this might interact with a positively charged moiety in the lipid head group. Consistently across the eukaryotes, the different versions of the CYSTM module appear to have roles in stress-response or stress-tolerance, and, more specifically, in resistance to deleterious substances, implying that these might be general functions of the whole family. 37 -315417 pfam12735 Trs65 TRAPP trafficking subunit Trs65. This family is one of the subunits of the TRAPP Golgi trafficking complex. TRAPP subunits are found in two different sized complexes, TRAPP I and TRAPP II. While both complexes contain the same seven subunits, Bet3p, Bet5p, Trs20p, Trs23p, Trs31p, Trs33p and Trs85p, with TRAPPC human equivalents, TRAPP II has the additional three subunits,Trs65p, Trs120p and Trs130p. While it has been implicated in cell wall biogenesis and stress response, the role of Trs65 in TRAPP II is supported by the findings that the protein co-localizes with Trs130p, and deletion of TRS65 in yeast leads to a conditional lethal phenotype if either one of the other TRAPP II-specific subunits is modified. Furthermore, the trs65 mutant has reduced Ypt31/32p guanine nucleotide exchange, GEF, activity. 312 -315418 pfam12736 CABIT Cell-cycle sustaining, positive selection,. The 'CABIT' domain (for 'cysteine-containing, all- in Themis') is found in a newly identified gene family that has three mammalian homologs (Themis, Icb1 and 9130404H23Rik) that encode proteins with two CABIT domains and a highly conserved proline-rich region. In contrast, Fam59A, Fam59B and related proteins from mammals to cnidarians, including the insect Serrano proteins, have a single copy of the CABIT domain, a proline-rich region and often a C-terminal SAM (sterile-motif) domain. Multiple-sequence alignment has predicted that the CABIT domain adopts an all-strand structure with at least 12 strands, ie a dyad of six-stranded beta-barrel units. The CABIT domain contains a nearly absolutely conserved cysteine residue which is likely to be central to its function. CABIT domain proteins function downstream of tyrosine kinase signalling and interact with GRB2. 227 -315419 pfam12737 Mating_C C-terminal domain of homeodomain 1. Mating in fungi is controlled by the loci that determine the mating type of an individual, and only individuals with differing mating types can mate. Basidiomycete fungi have evolved a unique mating system, termed tetrapolar or bifactorial incompatibility, in which mating type is determined by two unlinked loci; compatibility at both loci is required for mating to occur. The multi-allelic tetrapolar mating system is considered to be a novel innovation that could have only evolved once, and is thus unique to the mushroom fungi. This domain is C-terminal to the homeodomain transcription factor region. 412 -315420 pfam12738 PTCB-BRCT twin BRCT domain. This is a BRCT domain that appears in duplicate in most member sequences. BRCT domains are peptide- and phosphopeptide-binding modules. BRCT domains are present in a number of proteins involved in DNA checkpoint controls and DNA repair. 63 -338470 pfam12739 TRAPPC-Trs85 ER-Golgi trafficking TRAPP I complex 85 kDa subunit. This family is one of the subunits of the TRAPP Golgi trafficking complex. TRAPP subunits are found in two different sized complexes, TRAPP I and TRAPP II, and this Trs85 is in the smaller complex. TRAPP I, but Not TRAPP II, functions in ER-Golgi transport. Trs85p was reported to function in the cytosol-to-vacuole targeting pathway, suggesting a role for this subunit in autophagy as well as in secretion. The overall architecture of TRAPP I shows the other components to be Bet3p (TRAPPC3), Bet5p (TRAPPC1), Trs20p (TRAPPC2), Trs23p (TRAPPC4), Trs31p (TRAPPC5), Trs33p (TRAPPC6a and b) and Trs85p. 404 -338471 pfam12740 Chlorophyllase2 Chlorophyllase enzyme. This family consists of several chlorophyllase and chlorophyllase-2 (EC:3.1.1.14) enzymes. Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of an ester bond to yield chlorophyllide and phytol. The family includes both plant and Amphioxus members. 255 -315423 pfam12741 SusD-like Susd and RagB outer membrane lipoprotein. This is a family of SusD-like proteins, one member of which, BT1043, is an outer membrane lipoprotein involved in host glycan metabolism. The structures of this and SusD-homologs in the family are dominated by tetratrico peptide repeats that may facilitate association with outer membrane beta-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of beta-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. 506 -289511 pfam12742 Gryzun-like Gryzun, putative Golgi trafficking. Members of this family are involved in Golgi trafficking. 56 -315424 pfam12743 ESR1_C Oestrogen-type nuclear receptor final C-terminal. This is the very C-terminal region of a subfamily of nuclear receptors that includes oestrogen receptors and other subfamily 3 group A members. The actual function of this region is not known, but the domain is absent from all the other types of nuclear receptors. Oestrogen receptors modulate AP-1-dependent transcription through two distinct mechanisms: via protein-protein interactions on DNA; and via non-genomic actions. The mechanism used depends on the cellular localization of the receptor. In addition to the more extensively studied cross-talk on DNA, additional non-genomic actions might be very important in target tissues in which membrane-associated ERs are found. These non-genomic actions probably contribute to the overall physiological responses mediated by ligand-bound ERs and might possibly be mediated via this C-terminal domain. 40 -315425 pfam12744 ATG19_autophagy Autophagy protein Atg19, Atg8-binding. Autophagy is generally known as a process involved in the degradation of bulk cytoplasmic components that are non-specifically sequestered into an autophagosome, where they are sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. In contrast to autophagy, however, the Cvt pathway is a highly selective process that involves the sequestration of at least two specific cargos that are resident vacuolar hydrolases, aminopeptidase I (Ape1) and alpha-mannosidase (Ams1). These proteins are sequestered within a double-membrane vesicle, termed a Cvt vesicle. The Cvt vesicle is fairly consistent in size, and is much smaller than the autophagosome, being 140-160 nm in diameter. The prApe1 is sequestered within either Cvt vesicles or autophagosomes, depending on the nutrient conditions, and delivered to the vacuole. Autophagy and the Cvt pathway are topologically and mechanistically similar and share most of the same machinery. The Ape1 complex is ultimately enwrapped within either Cvt vesicles or autophagosomes at the perivacuolar PAS. The receptor protein Atg19 binds to the Ape1 complex through the prApe1 propeptide to form the Cvt complex in the cytosol. In the absence of Atg19, prApe1 can form an Ape1 complex, but does not localize at the PAS. Atg19 is a peripheral membrane protein with differing binding sites for both Ape1 and Ams1. The Atg8-binding region in the yeast proteins is this very C-terminal residues. 247 -315426 pfam12745 HGTP_anticodon2 Anticodon binding domain of tRNAs. This is an HGTP_anticodon binding domain, found largely on Gcn2 proteins which bind tRNA to down regulate translation in certain stress situations. 260 -338472 pfam12746 GNAT_acetyltran GNAT acetyltransferase. Many of the members are annotated s being Zwittermicin A resistance proteins, whereas others are listed as being GNAT acetyltransferases. The family has similarities to the GNAT acetyltransferase family. 183 -315428 pfam12747 DdrB DdrB-like protein. This family includes the Deinococcus DdrB protein which is a ssDNA binding protein. This family also includes some possibly distantly related cyanobacterial proteins. However, these are not strongly supported. The structure of DdrB is known. 126 -315429 pfam12749 Metallothio_Euk Eukaryotic metallothionein. This is a family of eukaryotic metallothioneins. 66 -315430 pfam12750 Maff2 Maff2 family. This family of short membrane proteins are related to the protein Maff2. Maff2 lies just outside the direct repeats of a tetracycline resistance transposable element. This protein may contain transmembrane helices. 70 -338473 pfam12751 Vac7 Vacuolar segregation subunit 7. Vac7 is localized at the vacuole membrane, a location which is consistent with its involvement in vacuole morphology and inheritance. Vac7 has been shown to function as an upstream regulator of the Fab1 lipid kinase pathway. The Fab1 lipid p[pathway is important for correct regulation of membrane trafficking events. 386 -338474 pfam12752 SUZ SUZ domain. The SUZ domain is a conserved RNA-binding domain found in eukaryotes and enriched in positively charged amino acids. It was first characterized in the C.elegans protein Szy-20 where it has been shown to bind RNA and allow their localization to the centrosome. Warning- the domain has a compositionally biased character. 56 -289519 pfam12753 Nro1 Nuclear pore complex subunit Nro1. In fission yeast, this protein is a positive regulator of the stability of Sre1N, the sterol regulatory element-binding protein which is an ER membrane-bound transcription factor that controls adaptation to low oxygen-growth. In addition, the fission yeast Nro1 is a direct inhibitor of a protein that inhibits SreN1 degradation, Ofd1 (an oxoglutamate deoxygenase). The outcome of this reactivity is that Ofd1 acts as an oxygen sensor that regulates the binding of Nro1 to Ofd1 to control the stability of Sre1N. Solution of the structure of Nro1 reveals it to be made up of a number of TPR coils. TPR proteins are composed of three to 16 tandem peptide repeat motifs of 34 amino acids with degenerate sequence. The helical pairs adopt a helix-turn-helix anti-parallel arrangement with interacting helices. In general, TPR motifs are stacked together so that helix A from TPRn is packed between helix B from TPRn and helix A from TPRn+1. In Nro1, the 12 alpha helices forming the six TPR motifs are organized as follows from N-terminus to C-terminus - TPR1A, TPR1B, TPR2A, TPR2B, TPR3A, TPR3B, TPR4A, TPR4B, TPR5A, TPR5B, TPR6A, and TPR6B with the C-terminal helix (hC) running above the sixth TPR motif with an angle of approx 45 degrees with TPR6A and TPR6B. The corresponding TPRs structural motifs are longer (50 residues) than are canonical ones (34 amino acids) and are organized into two subdomains - Nro1-N (residues 55-225) and Nro1-C (residues 226-393). The Nro1/Etti protein plays a role in nuclear import suggesting that it is residues 4-19 that are interacting with Ofd1. 414 -315433 pfam12754 Blt1 Blt1 N-terminal domain. During size-dependent cell cycle transitions controlled by the ubiquitous cyclin-dependent kinase Cdk1, Blt1 has been shown to co-localize with Cdr2 in the medial interphase nodes, as well as with Mid1 which was previously shown to localize to similar interphase structures. Physical interactions between Blt1-Mid1, Blt1-Cdr2 and Cdr2-Mid1 were detected, indicating that medial cortical nodes are formed by the ordered, Cdr2-dependent assembly of multiple interacting proteins during interphase. This domain show similarity to ubiquitin family proteins. 151 -315434 pfam12755 Vac14_Fab1_bd Vacuolar 14 Fab1-binding region. Vac14 is a scaffold for the Fab1 kinase complex, a complex that allows for the dynamic interconversion of PI3P and PI(3,5)P2p (phosphoinositide phosphate (PIP) lipids, that are generated transiently on the cytoplasmic face of selected intracellular membranes). This interconversion is regulated by at least five proteins in yeast: the lipid kinase Fab1p, lipid phosphatase Fig4p, the Fab1p activator Vac7p, the Fab1p inhibitor Atg18p, and Vac14p, a protein required for the activity of both Fab1p and Fig4p. This domain appears to be the one responsible for binding to Fab1. The full length Vac14 in yeasts is likely to be a protein carrying a succession of HEAT repeats, most of which have now degenerated. This regulatory system is crucial for the proper functioning of the mammalian nervous system. 97 -338475 pfam12756 zf-C2H2_2 C2H2 type zinc-finger (2 copies). This family contains two copies of a C2H2-like zinc finger domain. 99 -338476 pfam12757 Eisosome1 Eisosome protein 1. Eisosome protein 1 is required for normal formation of eisosomes, large cytoplasmic protein assemblies that localize to specialized domains on plasma membrane and mark the site of endocytosis. 126 -315437 pfam12758 DUF3813 Protein of unknown function (DUF3813). This is an uncharacterized family of Bacillus proteins. 60 -289525 pfam12759 HTH_Tnp_IS1 InsA C-terminal domain. This short domain is found at the C-terminus of the InsA protein. This domain contains a helix-turn-helix domain. 46 -338477 pfam12760 Zn_Tnp_IS1595 Transposase zinc-ribbon domain. This zinc binding domain is found in a range of transposase proteins such as ISSPO8, ISSOD11, ISRSSP2 etc. It is likely a zinc-binding beta ribbon domain that could bind the DNA. 46 -315439 pfam12761 End3 Actin cytoskeleton-regulatory complex protein END3. Endocytosis is accomplished through the sequential recruitment at endocytic sites of proteins that drive cargo sorting, membrane invagination and vesicle release. End3p is part of the coat module protein complex Pan1, along with Pan1p, Sla1p, and Sla2p. The proteins in this complex are regulated by phosphorylation events. End3p also regulates the cortical actin cytoskeleton. The subunits of the Pan1 complex are homologous to mammalian intersectin. 196 -338478 pfam12762 DDE_Tnp_IS1595 ISXO2-like transposase domain. This domain probably functions as an integrase that is found in a wide variety of transposases, including ISXO2. 142 -289529 pfam12763 EF-hand_4 Cytoskeletal-regulatory complex EF hand. This is an efhand family from the N-terminal of actin cytoskeleton-regulatory complex END3 and similar proteins from fungi and closely related species. 104 -315441 pfam12764 Gly-rich_Ago1 Glycine-rich region of argonaut. This domain is often found at the very N-terminal of argonaut-like proteins. 105 -338479 pfam12765 Cohesin_HEAT HEAT repeat associated with sister chromatid cohesion. This HEAT repeat is found most frequently in sister chromatid cohesion proteins such as Nipped-B. HEAT repeats are found tandemly repeated in many proteins, and they appear to serve as flexible scaffolding on which other components can assemble. 42 -338480 pfam12766 Pyridox_oxase_2 Pyridoxamine 5'-phosphate oxidase. Pyridoxamine 5'-phosphate oxidase catalyzes the oxidation of pyridoxamine-5-P (PMP) and pyridoxine-5-P (PNP) to pyridoxal-5-P (PLP), the terminal step in the de novo biosynthesis of PLP in Escherichia coli and part of the salvage pathway of this coenzyme in both E. coli and mammalian cells. This region is the flavoprotein FMN-binding domain. 99 -338481 pfam12767 SAGA-Tad1 Transcriptional regulator of RNA polII, SAGA, subunit. The yeast SAGA complex is a multifunctional coactivator that regulates transcription by RNA polymerase II. It is formed of five major modular subunits and shows a high degree of structural conservation to human TFTC and STAGA. The complex can also be conceived of as consisting of two histone-fold-containing core subunits, and this family is one of these. As a family it is likely to carry binding regions for interactions with a number of the other components of the complex. 132 -338482 pfam12768 Rax2 Cortical protein marker for cell polarity. Diploid yeast cells repeatedly polarise and bud from their poles, due probably to the presence of highly stable membrane markers, and Rax2 is one such marker. It is inherited immutably at the cell cortex for multiple generations, and has a half-life exceeding several generations. The persistent inheritance of cortical protein markers would provide a means of coupling a cell's history with the future development of a precise morphogenetic form. Both Rax1 and Rax2 localize to the distal pole as well as to the division site and they interact both with each other and with Bud8p and Bud9p in the establishment and/or maintenance of the cortical markers for bipolar budding. thus Rax2 is likely to control cell polarity during vegetative growth, and in fission yeast this is done by regulating the localization of for3p. 210 -338483 pfam12769 PNTB_4TM 4TM region of pyridine nucleotide transhydrogenase, mitoch. PNTB_4TM is the region upstream of family PNTB, pfam02233, that carries four of this transporters transmembrane regions. PNTB is the beta-subunit of pyridine nucleotide transhydrogenase. This family forms part of the Proton-translocating Transhydrogenase (PTH) Family. 84 -315447 pfam12770 CHAT CHAT domain. These proteins appear to be related to peptidases in peptidase clan CD that includes the caspases. This domain has been termed the CHAT domain for Caspase HetF Associated with Tprs. This family has been identified as a sister group to the separins. 289 -289537 pfam12771 SusD-like_2 Starch-binding associating with outer membrane. SusD is a secreted starch-binding protein with an N-terminal lipid tail that allows it to associate with the outer membrane. 471 -315448 pfam12772 GHBP Growth hormone receptor binding. Growth hormone receptor binding protein is produced either by proteolysis of the GHR (growth hormone receptor) at the cell surface thereby releasing its extracellular domain, the GHBP (growth hormone-binding protein), or, in rodents, by alternative processing of the GHR transcript. The sheddase proteolytic enzyme responsible for the cleavage is TACE (tumor necrosis factor-alpha-converting enzyme). Growth hormone (GH) binding to GH receptor (GHR) is the initial step that leads to the physiological functions of the hormone. The biological effects of GHBP are determined by the serum levels of growth hormone (GH), which can vary. Low levels of GH can result in a dwarf phenotype and have been positively correlated with an increased life expectancy. High levels of GH can lead to gigantism or a clinical syndrome termed acromegaly and have been implicated in diabetic eye and kidney damage. 300 -315449 pfam12773 DZR Double zinc ribbon. This family consists of a pair of zinc ribbon domains. 45 -289540 pfam12774 AAA_6 Hydrolytic ATP binding site of dynein motor region D1. the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D1 unit of the motor and contains the hydrolytic ATP binding site. 231 -289541 pfam12775 AAA_7 P-loop containing dynein motor region D3. the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D3 and is an ATP binding site. 272 -338484 pfam12776 Myb_DNA-bind_3 Myb/SANT-like DNA-binding domain. This presumed domain appears to be related to other Myb/SANT like DNA binding domains. In particular pfam10545 seems most related. This family is greatly expanded in plants and appears in several proteins annotated as transposon proteins. 96 -289543 pfam12777 MT Microtubule-binding stalk of dynein motor. the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This family is the region between D4 and D5 and is the two predicted alpha-helical coiled coil segments that form the stalk supporting the ATP-sensitive microtubule binding component. 344 -315451 pfam12778 PXPV PXPV repeat (3 copies). This short repeat is found in multiple copies in a variety of Burkholderia proteins. The function of this region is unknown. 22 -338485 pfam12779 YXWGXW YXWGXW repeat (2 copies). This short repeat contains the motif YXWXXGXW where X can be any amino acid. It is generally found in 2-5 copies in short secreted bacterial proteins. Its function is as yet unknown. 26 -289546 pfam12780 AAA_8 P-loop containing dynein motor region D4. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D4 ATP-binding region of the motor. 268 -338486 pfam12781 AAA_9 ATP-binding dynein motor region D5. The 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. The core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. This particular family is the D5 ATP-binding region of the motor, but has lost its P-loop. 216 -315454 pfam12782 Innate_immun Invertebrate innate immunity transcript family. The immune response of the purple sea urchin appears to be more complex than previously believed in that it uses immune-related gene families homologous to vertebrate Toll-like and NOD/NALP-like receptor families as well as C-type lectins and a rudimentary complement system. In addition, the species also produces this unusual family of mRNAs, also known as 185/333, which is strongly upregulated in response to pathogen challenge. 291 -338487 pfam12783 Sec7_N Guanine nucleotide exchange factor in Golgi transport N-terminal. The full-length Sec7 functions proximally in the secretory pathway as a protein binding scaffold for the coat protein complexes COPII-COPI. The COPII-COPI-protein switch is necessary for maturation of the vesicular-tubular cluster, VTC, intermediate compartments for Golgi compartment biogenesis. This N-terminal domain however does not appear to be binding either of the COP or the ARF. 154 -315456 pfam12784 PDDEXK_2 PD-(D/E)XK nuclease family transposase. Members of this family belong to the PD-(D/E)XK nuclease superfamily. These proteins are transposase proteins. 228 -315457 pfam12785 VESA1_N Variant erythrocyte surface antigen-1. This family represents the N-terminal of the variant erythrocyte surface antigen 1, versions a and b, of Babesia. Babesia bovis is a tick-borne, intra-erythrocytic, protozoal parasite of cattle that shares many lifestyle parallels with the most virulent of the human malarial parasites, Plasmodium falciparum. Babesia uses antigenic variation to establish consistent infections of long duration. The two variants of VESA1, a and b, are expressed from different but closely related genes, and variation is achieved through the involvement of a segmental gene conversion mechanism and low-frequency epigenetic in situ switching of transcriptional activity from the VESA1 gene-pair to a possible other gene pair. 457 -193262 pfam12786 GBV-C_env GB virus C genotype envelope. This the envelope protein from the ssRNA GB virus genotype C. 413 -315458 pfam12787 EcsC EcsC protein family. Proteins in this family are related to EcsC from B. subtilis. This protein is found in an operon with EcsA and EcsB which are components of an ABC transport system. The function of this protein is unknown. 245 -315459 pfam12788 YmaF YmaF family. This family of proteins contain 6 HXH motifs and is named after the B. subtilis YmaF protein. It seems likely that these are involved in metal binding. The function of this protein is unknown. 97 -205071 pfam12789 PTR Phage tail repeat like. This family largely contains proteins from the eukaryote Trichomonas vaginalis. These proteins contain multiple HXH repeats. Some proteins in this family are annotated as having phage tail repeats. The function of this family is unknown. 60 -338488 pfam12790 T6SS-SciN Type VI secretion lipoprotein, VasD, EvfM, TssJ, VC_A0113. One of the virulence mechanisms of E coli is the production of toxins which it produces from dedicated machineries called secretion systems. Seven secretion systems have been described, which assemble from 3 to up to more than 20 subunits. These secretion systems derive from or have co-evolved with bacterial organelles such as ABC transporters (type I), type IV pili (type 2), flagella (type 3), or conjugative machines (type IV). The type VI secretion system (T6SS) is present in most pathogens that have contact with animals, plants, or humans. SciN is a lipoprotein tethered to the outer membrane and expressed in the periplasm of E coli and is essential for T6S-dependent secretion of the Hcp-like SciD protein and for biofilm formation. 129 -315461 pfam12791 RsgI_N Anti-sigma factor N-terminus. The heat shock genes in B. subtilis can be classified into several groups according to their regulation, and the sigma gene, sigI, of Bacillus subtilis belongs to the group IV heat-shock response genes and has many orthologues in the bacterial phylum Firmicutes. Regulation of sigma factor I is carried out by RsgI from the same operon, and this N-terminal cytoplasmic portion of RsgI ('upstream' of the single transmembrane helix) has been shown to interact directly with Sigma-I. 53 -338489 pfam12792 CSS-motif CSS motif domain associated with EAL. This family with its characteristic highly conserved CSS sequence motif is found N-terminal to the EAL, pfam00563, domain in many cyclic diguanylate phosphodiesterases. 207 -338490 pfam12793 SgrR_N Sugar transport-related sRNA regulator N-term. Small, non-coding RNA molecules play important regulatory roles in a variety of physiological processes in bacteria. SgrR_N is the N-terminus of a family of proteins which regulate the transcription of these sRNAs, in particular SgrS. SgrR_N contains a helix-turn-helix motif characteristic of winged-helix DNA-binding transcriptional regulators. SgrS is a small RNA required for recovery from glucose-phosphate stress in bacteria. In examining the regulation of sgrR expression it was found that SgrR negatively auto-regulates its own transcription in the presence and absence of stress, and thus SgrR coordinates the response to glucose-phosphate stress by binding specifically to sgrS promoter DNA. 115 -338491 pfam12794 MscS_TM Mechanosensitive ion channel inner membrane domain 1. The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic shock. The MscS protein alone is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. The MscS proteins are heptamers of three transmembrane subunits with seven converging M3 domains, and this domain is one of the inner membrane domains. 331 -338492 pfam12795 MscS_porin Mechanosensitive ion channel porin domain. The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic shock. The MscS protein alone is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. The MscS proteins are heptamers of three transmembrane subunits with seven converging M3 domains, and this MscS_porin is towards the N-terminal of the molecules. The high concentration of negative charges at the extracellular entrance of the pore helps select the cations for efflux. 235 -338493 pfam12796 Ank_2 Ankyrin repeats (3 copies). 92 -338494 pfam12797 Fer4_2 4Fe-4S binding domain. This superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 22 -338495 pfam12798 Fer4_3 4Fe-4S binding domain. This superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 15 -338496 pfam12799 LRR_4 Leucine Rich repeats (2 copies). Leucine rich repeats are short sequence motifs present in a number of proteins with diverse functions and cellular locations. These repeats are usually involved in protein-protein interactions. Each Leucine Rich Repeat is composed of a beta-alpha unit. These units form elongated non-globular structures. Leucine Rich Repeats are often flanked by cysteine rich domains. 44 -315470 pfam12800 Fer4_4 4Fe-4S binding domain. This superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 17 -338497 pfam12801 Fer4_5 4Fe-4S binding domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 48 -338498 pfam12802 MarR_2 MarR family. The Mar proteins are involved in the multiple antibiotic resistance, a non-specific resistance system. The expression of the mar operon is controlled by a repressor, MarR. A large number of compounds induce transcription of the mar operon. This is thought to be due to the compound binding to MarR, and the resulting complex stops MarR binding to the DNA. With the MarR repression lost, transcription of the operon proceeds. The structure of MarR is known and shows MarR as a dimer with each subunit containing a winged-helix DNA binding motif. 59 -289567 pfam12803 G-7-MTase mRNA (guanine-7-)methyltransferase (G-7-MTase). The Sendai virus RNA-dependent RNA polymerase complex, which consists of L and P proteins, participates in the synthesis of viral mRNAs that possess a methylated cap structure. The N-terminal of the L protein acts as the RNA-dependent RNA polymerase part of the molecule, family Paramyx_RNA_pol, pfam00946. This domain is the C-terminal part of the L protein and it catalyzes cap methylation through its mRNA (guanine-7-)methyltransferase (G-7-MTase) activity. 317 -338499 pfam12804 NTP_transf_3 MobA-like NTP transferase domain. This family includes the MobA protein (Molybdopterin-guanine dinucleotide biosynthesis protein A). The family also includes a wide range of other NTP transferase domain. 153 -338500 pfam12805 FUSC-like FUSC-like inner membrane protein yccS. This family has similarities to the fusaric acid resistance protein family. The proteins are lodged in the inner membrane. 283 -338501 pfam12806 Acyl-CoA_dh_C Acetyl-CoA dehydrogenase C-terminal like. this domain would appear to be the very C-terminal region of many bacterial acetyl-CoA dehydrogenases. 127 -338502 pfam12807 eIF3_p135 Translation initiation factor eIF3 subunit 135. Translation initiation factor eIF3 is a multi-subunit protein complex required for initiation of protein biosynthesis in eukaryotic cells. The complex promotes ribosome dissociation, the binding of the initiator methionyl-tRNA to the 40 S ribosomal subunit, and mRNA recruitment to the ribosome. The protein product from TIF31 genes in yeast is p135 which associates with the eIF3 but does not seem to be necessary for protein translation initiation. 163 -315477 pfam12808 Mto2_bdg Micro-tubular organizer Mto1 C-term Mto2-binding region. The C-terminal region of the micro-tubular organizer protein 1 (mto1) is the binding domain for attachment to Mto2p.The full-length Mto1 protein is required for microtubule nucleation from non-spindle pole body MTOCs in fission yeast. The interaction of Mto2p with this region of Mto1 is critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis. 52 -315478 pfam12809 Metallothi_Euk2 Eukaryotic metallothionein. This is a family of eukaryotic metallothioneins. 69 -315479 pfam12810 Gly_rich Glycine rich protein. This family of proteins is greatly expanded in Trichomonas vaginalis. The proteins are composed of several glycine rich motifs interspersed through the sequence. Although many proteins have been annotated by similarity in the family these annotations given the biased composition of the sequences these are unlikely to be functionally relevant. 254 -315480 pfam12811 BaxI_1 Bax inhibitor 1 like. The Bax-inhibitor-1 region of the receptor molecules is conserved from bacteria to humans. 238 -338503 pfam12812 PDZ_1 PDZ-like domain. PDZ domains are found in diverse signalling proteins in bacteria, yeasts, plants, insects and vertebrates. this is a family of PDZ-like domains from bacteria, plants and fungi. 78 -315482 pfam12813 XPG_I_2 XPG domain containing. This family is largely of fungal proteins and is related to the XP-G protein family. 244 -315483 pfam12814 Mcp5_PH Meiotic cell cortex C-terminal pleckstrin homology. The PH domain of these largely fungal proteins is necessary for the cortical localization of the protein during meiosis, since the overall function of the protein is to anchor dynein at the cell cortex during the horsetail phase. During prophase I of fission yeast, horsetail nuclear movement occurs, and this starts when all the telomeres become bundled at the spindle pole body - SPB. Subsequent to this, the nucleus undergoes a dynamic oscillation, resulting in elongated nuclear morphology. Horsetail nuclear movement is thought to be predominantly due to the pulling of astral microtubules that link the SPB to cortical microtubule-attachment sites at the opposite end of the cell; the pulling force is believed to be provided by cytoplasmic dynein and dynactin. 120 -315484 pfam12815 CTD Spt5 C-terminal nonapeptide repeat binding Spt4. The C-terminal domain of the transcription elongation factor protein Spt5 is necessary for binding to Spt4 to form the functional complex that regulates early transcription elongation by RNA polymerase II. The complex may be involved in pre-mRNA processing through its association with mRNA capping enzymes. This CTD domain carries a regular nonapeptide repeat that can be present in up to 18 copies, as in S. pombe. The repeat has a characteristic TPA motif. 71 -338504 pfam12816 Vps8 Golgi CORVET complex core vacuolar protein 8. Vps8 is one of the Golgi complex components necessary for vacuolar sorting. Eukaryotic cells contain a highly dynamic endo-membrane system, in which individual organelles keep their identity despite continuous vesicle generation and fusion. Vesicles that bud from a donor membrane are targeted and delivered to each individual organelle, where they release their cargo after fusion with the acceptor membrane. Vps8 is the core component of the endosomal tethering complex CORVET (class C core vacuole/endosome tethering). Vps8 co-operates with Vps21-GTP to mediate endosomal clustering in a reaction that is dependent on Vps3. Vps8 is the only CORVET subunit that is enriched on late endosomes, suggesting that it is a marker for the maturation of late endosomes. Late endosomes form intralumenal vesicles, and the resulting multivesicular bodies fuse with the vacuole to release their cargoes. 186 -289579 pfam12818 Tegument_dsDNA dsDNA viral tegument protein. This is a family of tegument proteins from double-stranded DNA herpesvirus and related viral species. 277 -338505 pfam12819 Malectin_like Carbohydrate-binding protein of the ER. Malectin is a membrane-anchored protein of the endoplasmic reticulum that recognizes and binds Glc2-N-glycan. The domain is found on a number of plant receptor kinases. 330 -315487 pfam12820 BRCT_assoc Serine-rich domain associated with BRCT. This domain is found on BRCA1 proteins. 164 -338506 pfam12821 ThrE_2 Threonine/Serine exporter, ThrE. ThrE_2 is a family of membrane proteins involved in the export of threonine and serine. L-threonine, L-serine are both substrates for the exporter. The exporter exhibits nine-ten predicted transmembrane-spanning helices with long charged C and N termini and an amphipathic helix present within the N-terminus. L-Threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum, but the potential for amino acid formation can be considerably improved by reducing its intracellular degradation into glycine and increasing its export by this exporter. Members of the family are found in Bacteria, Archaea, and the fungal kingdoms, and the family can exist either as a single long polypeptide chain or as two short polypeptides. All family members show an extended hydrophilic N-terminal domain with weak sequence similarity to portions of hydrolases (proteases, peptidases, and glycosidases); this suggests that since this region is cytoplasmic to the membrane it may be generating the transport substrate, so may imply that threonine may not be the primary substrate and the ThrE has a subsidiary function. 129 -338507 pfam12822 ECF_trnsprt ECF transporter, substrate-specific component. Energy-coupling factor (ECF) transporters consist of a substrate-specific component (known as the S component), and an energy-coupling module. The substrate-binding component is a small integral membrane protein which captures specific substrates and forms an active transporter in the presence of the energy-coupling AT module. 160 -338508 pfam12823 DUF3817 Domain of unknown function (DUF3817). This domain is of unknown function. It is sometimes found adjacent to pfam07690 and pfam03176 which are both transporter domains. 88 -315491 pfam12824 MRP-L20 Mitochondrial ribosomal protein subunit L20. This family is the essential mitochondrial ribosomal protein subunit L20 of fungi. 163 -315492 pfam12825 DUF3818 Domain of unknown function in PX-proteins (DUF3818). This domain is found on proteins carrying a PX domain. Its function is unknown. 333 -315493 pfam12826 HHH_2 Helix-hairpin-helix motif. The HhH domain of DisA, a bacterial checkpoint control protein, is a DNA-binding domain. 64 -315494 pfam12827 Peroxin-22 Peroxisomal biogenesis protein family. Peroxin-22 is a integral peroxisomal membrane protein family. The N-terminus is in the matrix and the C-terminus is in the cytosol. The N-terminus carries a 25-amino acid peroxisome membrane-targeting signal. It interacts with the ubiquitin-conjugating peripheral peroxisomal membrane enzyme Pex4p anchoring it at the peroxisomal membrane. Both Pex proteins are involved at the same stage of peroxisome biogenesis. 103 -338509 pfam12828 PXB PX-associated. This domain is associated with the PX domain. 129 -315496 pfam12829 Mhr1 Transcriptional regulation of mitochondrial recombination. This family is involved in the transcriptional regulation of recombination in the mitochondria, 83 -338510 pfam12830 Nipped-B_C Sister chromatid cohesion C-terminus. This domain lies towards the C-terminus of nipped-B or sister chromatid cohesion proteins. 177 -315498 pfam12831 FAD_oxidored FAD dependent oxidoreductase. This family of proteins contains FAD dependent oxidoreductases and related proteins. 423 -315499 pfam12832 MFS_1_like MFS_1 like family. This family contains proteins related to the MFS superfamily. 359 -338511 pfam12833 HTH_18 Helix-turn-helix domain. 81 -315501 pfam12834 Phage_int_SAM_2 Phage integrase, N-terminal. This is a family of DNA-binding prophage integrases. It is found largely in Proteobacteria. 91 -315502 pfam12835 Integrase_1 Integrase. This is a family of DNA-binding prophage integrases found in Proteobacteria. 146 -338512 pfam12836 HHH_3 Helix-hairpin-helix motif. The HhH domain is a short DNA-binding domain. 65 -338513 pfam12837 Fer4_6 4Fe-4S binding domain. This superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. 24 -338514 pfam12838 Fer4_7 4Fe-4S dicluster domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters. 52 -338515 pfam12840 HTH_20 Helix-turn-helix domain. This domain represents a DNA-binding Helix-turn-helix domain found in transcriptional regulatory proteins. 61 -315507 pfam12841 YvrJ YvrJ protein family. This family of short proteins are related to B. subtilis YvrJ protein. None of the members of this family have been functionally characterized. 36 -338516 pfam12842 DUF3819 Domain of unknown function (DUF3819). This is an uncharacterized domain that is found on the CCR4-Not complex component Not1. Not1 is a global regulator of transcription that affects genes positively and negatively and is thought to regulate transcription factor TFIID. 141 -338517 pfam12843 QSregVF_b Putative quorum-sensing-regulated virulence factor. QSregVF_b is a family of short Pseudomonas proteins that are potential virulence factors. The structure of UniProtKB:Q9HY15 a secreted protein has been solved and deposited as Structure 3npd, from pfam13652. It is predicted that these two adjacent proteins form a single transcriptional unit based on the prediction that together they interact with their adjacent protein PotD, which is the putrescine-binding periplasmic protein in the polyamine uptake system comprising PotABCD. These two adjacent proteins are predicted to be quroum-sensing-regulated virulence factors. 66 -338518 pfam12844 HTH_19 Helix-turn-helix domain. Members of this family contains a DNA-binding helix-turn-helix domain. This family contains many example antitoxins from bacterial toxin-antitoxin systems. These antitoxins are likely to be DNA-binding domains. 64 -315511 pfam12845 TBD TBD domain. The Tbk1/Ikki binding domain (TBD) is a 40 amino acid domain able to bind kinases, has been found to be essential for poly(I:C)-induced IRF activation. The domain is found in SINTBAD, TANK and NAP1 protein. This domain is predicted to form an a-helix with residues essential for kinase binding clustering on one side. 53 -315512 pfam12846 AAA_10 AAA-like domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. 362 -338519 pfam12847 Methyltransf_18 Methyltransferase domain. Protein in this family function as methyltransferases. 151 -338520 pfam12848 ABC_tran_Xtn ABC transporter. This domain is an extension of some members of pfam00005 and other ABC-transporter families. 85 -315515 pfam12849 PBP_like_2 PBP superfamily domain. This domain belongs to the periplasmic binding protein superfamily. 270 -338521 pfam12850 Metallophos_2 Calcineurin-like phosphoesterase superfamily domain. Members of this family are part of the Calcineurin-like phosphoesterase superfamily. 153 -315517 pfam12851 Tet_JBP Oxygenase domain of the 2OGFeDO superfamily. A double-stranded beta helix (DSBH) fold domain of the 2-oxoglutarate (2OG)-Fe(II)-dependent dioxygenase (2OGFeDO) superfamily found in various eukaryotes, bacteria and bacteriophages. Members of this family catalyze nucleic acid modifications, such as thymidine hydroxylation during base J synthesis in kinetoplastids, and the conversion of 5 methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (hmC), or further oxidation to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Metazoan TET proteins contain a cysteine-rich region inserted into the core of the DSBH fold. Vertebrate TET proteins are oncogenes that are mutated in various myeloid cancers. Fungal and algal versions of this family are linked to a predicted transposase and show lineage-specific expansions. 168 -338522 pfam12852 Cupin_6 Cupin. This is a family of bacterial and eukaryotic proteins that belong to the Cupin superfamily. Some of the proteins in this family are annotated as being members of the AraC family of transcription factors, in which case this domain corresponds to the ligand binding domain. 185 -315519 pfam12853 NADH_u_ox_C C-terminal of NADH-ubiquinone oxidoreductase 21 kDa subunit. This family is the C-terminal domain of NADH-ubiquinone oxidoreductase 21 kDa subunits from fungi. 86 -315520 pfam12854 PPR_1 PPR repeat. This family matches additional variants of the PPR repeat that were not captured by the model for pfam01535. The exact function is not known. 34 -315521 pfam12855 Ecl1 Life-span regulatory factor. This family is involved in the chronological life-span of S. cerevisiae. Over-expression leads to an extended viability of wild-type strains, indicating a role in regulation. 42 -315522 pfam12856 ANAPC9 Anaphase-promoting complex subunit 9. Apc9 is one of the subunits of the anaphase-promoting complex, or cyclosome, which is essential for regulating entry into anaphase and exit from mitosis. The APC is a ubiquitin-protein ligase complex. All APC subunits are members of the cullin family proteins, which bind to a ring-finger subunit via a conserved cullin domain. The APC is made up of four parts, the third of which is a tetratricopeptide repeat arm (TPR) that contains Apc9. 111 -338523 pfam12857 TOBE_3 TOBE-like domain. The TOBE domain (Transport-associated OB) always occurs as a dimer as the C-terminal strand of each domain is supplied by the partner. Probably involved in the recognition of small ligands such as molybdenum and sulfate. Found in ABC transporters immediately after the ATPase domain. 58 -338524 pfam12859 ANAPC1 Anaphase-promoting complex subunit 1. Apc1 is the largest of the subunits of the anaphase-promoting complex or cyclosome. The anaphase-promoting complex is a multiprotein subunit E3 ubiquitin ligase complex that controls segregation of chromosomes and exit from mitosis in eukaryotes. Infection of human fibroblasts with human cytomegalovirus (HCMV) leads to cell cycle dysregulation, which is associated with the inactivation of the anaphase-promoting complex. 112 -338525 pfam12860 PAS_7 PAS fold. The PAS fold corresponds to the structural domain that has previously been defined as PAS and PAC motifs. The PAS fold appears in archaea, eubacteria and eukarya. 115 -289620 pfam12861 zf-ANAPC11 Anaphase-promoting complex subunit 11 RING-H2 finger. Apc11 is one of the subunits of the anaphase-promoting complex or cyclosome. The APC subunits are cullin family proteins with ubiquitin ligase activity. Polyubiquitination marks proteins for degradation by the 26S proteasome and is carried out by a cascade of enzymes that includes ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases (E3s). Apc11 acts as an E3 enzyme and is responsible for recruiting E2s to the APC and for mediating the subsequent transfer of ubiquitin to APC substrates in vivo. In Saccharomyces cerevisiae this RING-H2 finger protein defines the minimal ubiquitin ligase activity of the APC, and the integrity of the RING-H2 finger is essential for budding yeast cell viability. 85 -315526 pfam12862 ANAPC5 Anaphase-promoting complex subunit 5. Apc5 is a subunit of the anaphase-promoting complex/cyclosome (APC/C) which is a multi-subunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. Apc5, although it does not harbour a classical RNA binding domain, Apc5 binds the poly(A) binding protein (PABP), which directly binds the internal ribosome entry site (IRES) of growth factor 2 mRNA. PABP was found to enhance IRES-mediated translation, whereas Apc5 over-expression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and co-sediments with the ribosomal fraction. The N-terminus of Afi1 serves to stabilize the union between Apc4 and Apc5, both of which lie towards the bottom-front of the APC. This region of the Apc5 member proteins carries a TPR-like motif. 91 -315527 pfam12863 DUF3821 Domain of unknown function (DUF3821). This is a domain largely confined to sequences from Methanomicrobiales found on putative lipases. The function is not known. 203 -338526 pfam12864 DUF3822 Protein of unknown function (DUF3822). This is a family of uncharacterized bacterial proteins. However, structural-similarity searches indicate the family takes on an actin-like ATPase fold. 241 -315529 pfam12866 DUF3823 Protein of unknown function (DUF3823). This is a family of uncharacterized proteins from Bacteroidetes. It has characteristic DN and DR sequence-motifs. The function is not known. 204 -338527 pfam12867 DinB_2 DinB superfamily. The DinB family are an uncharacterized family of potential enzymes. The structure of these proteins is composed of a four helix bundle. 127 -338528 pfam12868 DUF3824 Domain of unknwon function (DUF3824). This is a repeating domain found in fungal proteins. It is proline-rich, and the function is not known. 139 -338529 pfam12869 tRNA_anti-like tRNA_anti-like. This is a family of bacterial, archeael and viral proteins that is related to the tRNA_anti family pfam01336. The major characteristic of families like tRNA_anti is their OB-fold, and many of them bind DNA. 147 -315533 pfam12870 DUF4878 Domain of unknown function (DUF4878). This is a family of putative lipoproteins from bacteria. The family is probably related to the NTF2-like transpeptidase family. 108 -315534 pfam12871 PRP38_assoc Pre-mRNA-splicing factor 38-associated hydrophilic C-term. This domain is a hydrophilic region found at the C-terminus of plant and metazoan pre-mRNA-splicing factor 38 proteins. The function is not known. 97 -338530 pfam12872 OST-HTH OST-HTH/LOTUS domain. A predicted RNA-binding domain found in insect Oskar and vertebrate TDRD5/TDRD7 proteins that nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. The domain adopts the winged helix-turn- helix fold and bind RNA with a potential specificity for dsRNA.In eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized RNase domain belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains. 62 -315536 pfam12873 DUF3825 Domain of unknown function (DUF3825). Potential uncharacterized enzymatic domain associated with bacterial pfam12872 domains. Has conserved residues suggestive of an enzymatic role probably related to RNA metabolism. 231 -338531 pfam12874 zf-met Zinc-finger of C2H2 type. This is a zinc-finger domain with the CxxCx(12)Hx(6)H motif, found in multiple copies in a wide range of proteins from plants to metazoans. Some member proteins, particularly those from plants, are annotated as being RNA-binding. 24 -315538 pfam12875 DUF3826 Protein of unknown function (DUF3826). This is a putative sugar-binding family. 185 -289633 pfam12876 Cellulase-like Sugar-binding cellulase-like. This is a putative cellulase family. The structure is a TIM-barrel. 355 -315539 pfam12877 DUF3827 Domain of unknown function (DUF3827). This family contains the human KIAA1549 protein which has been found to be fused fused to BRAF gene in many cases of pilocytic astrocytomas. The fusion is due mainly to a tandem duplication of 2 Mb at 7q34. Although nothing is known about the function of the human KIAA1549 protein, the BRAF protein is a well characterized oncoprotein. It is a serine/threonine protein kinase which is implicated in MAP/ERK signalling, a critical pathway for the regulation of cell division, differentiation and secretion. 674 -315540 pfam12878 SICA_beta SICA extracellular beta domain. The SICA (schizont-infected cell agglutination) proteins of P. knowlesi, one of the variant antigen gene families, are associated with parasitic virulence. These proteins are comprised of multiple domains, with the extracellular domains occurring at different frequencies. There can be between 1 and 10 copies of this cysteine-rich domain. 172 -315541 pfam12879 SICA_C SICA C-terminal inner membrane domain. The SICA (schizont-infected cell agglutination) proteins of P. knowlesi, one of the variant antigen gene families, are associated with parasitic virulence. These proteins are comprised of multiple domains, with the extracellular domains occurring at different frequencies. The C-terminal domain is thought to remain in the erythrocyte, found juxtaposition to the single transmembrane domain. To date, all full length proteins contain a single copy of this domain. 144 -315542 pfam12881 NUT NUT protein. This family includes the NUT protein. The gene encoding for NUT protein (Nuclear Testis protein) is found fused to BRD3 or BRD4 genes, in some aggressive types of carcinoma, due to chromosomal translocations. Proteins of the BRD family contain two bromodomains that bind transcriptionally active chromatin through associations with acetylated histones H3 and H4. Such proteins are crucial for the regulation of cell cycle progression. On the other hand, little is known about NUT protein. NUT is known to have a Nuclear Export Sequence (NES) as well as a Nuclear localization Signal (NLS), both located towards the C-terminal end of the protein. A fused NUT-GFP protein showed either cytoplasmic or nuclear localization, suggesting that it is subject to nuclear/cytoplasmic shuttling. Consistent with this possibility, treatment with leptomycin B an inhibitor of CRM1-dependent nuclear export resulted in re-distribution of NUT-GFP to the nucleus. Inspection of NUT revealed a C-terminal sequence similar to known nuclear export sequences (NES) which are often regulated by phosphorylation. This family carries some natively unstructured sequence. 715 -315543 pfam12883 DUF3828 Protein of unknown function (DUF3828). This is a family of bacterial proteins of unknown function. 120 -338532 pfam12884 TORC_N Transducer of regulated CREB activity, N-terminus. This family includes the N terminal region of TORC proteins. TORC (Transducer of regulated CREB activity) is a protein family of coactivators that enhances the activity of CRE-depended transcription via a phosphorylation-independent interaction with the bZIP DNA binding/dimerization domain of CREB (cAMP Response Element-Binding). The proteins display a highly conserved predicted N-terminal coiled-coil domain and an invariant sequence matching a protein kinase A (PKA) phosphorylation consensus sequence (RKXS). The coiled-coil structure interacts with the bZIP domain of CREB. This interaction may occur via ionic bonds because it is disrupted under high-salt conditions. In addition to CREB-binding, the N-terminal region plays a role in the tetramer formation of TORCs, but the physiological function of the multimeric complex has not been clarified yet. 61 -338533 pfam12885 TORC_M Transducer of regulated CREB activity middle domain. This family includes the region between the N and C-terminus of TORC proteins. TORC (Transducer of regulated CREB activity) is a protein family of coactivators that enhances the activity of CRE-depended transcription via a phosphorylation-independent interaction with the bZIP DNA binding/dimerization domain of CREB (cAMP Response Element-Binding). Although the C- and N- terminal domains of these proteins have been well characterized, no functional role has been assigned to the central region, yet. 150 -338534 pfam12886 TORC_C Transducer of regulated CREB activity, C-terminus. This family includes the C terminal region of TORC proteins. TORC (Transducer of regulated CREB activity) is a protein family of coactivators that enhances the activity of CRE-depended transcription via a phosphorylation-independent interaction with the bZIP DNA binding/dimerization domain of CREB (cAMP Response Element-Binding). The C-terminus region is negatively charged, resembling the transcription activation domains. When this domain, from all three human TORC proteins, was expressed as fusion proteins with the DNA-binding domain of GAL4 (GAL4-BD), and tested for induction of a minimal promoter linked to GAL4-binding sites (UAS-GAL4), UAS-GAL4 was potently induced by GAL4-BD fusions containing the C-terminal portion of all three human TORCs. 75 -315547 pfam12887 SICA_alpha SICA extracellular alpha domain. The SICA (schizont-infected cell agglutination) proteins of P. knowlesi, one of the variant antigen gene families, are associated with parasitic virulence. These proteins are comprised of multiple domains, with the extracellular domains occurring at different frequencies. This domain is typically found at the N-terminus, with 1 or 2 copies per protein. The domain is cysteine-rich domain and similar to pfam12878. 187 -338535 pfam12888 Lipid_bd Lipid-binding putative hydrolase. This is a small family of lipid-binding proteins found in Bacteroidetes. 110 -338536 pfam12889 DUF3829 Protein of unknown function (DUF3829). This is a small family of proteins from several bacterial species, whose function is not known. It may, however, be related to the GvpL_GvpF family of proteins, pfam06386. 279 -315550 pfam12890 DHOase Dihydro-orotase-like. This is a small family of dihydro-orotase-like proteins from various bacteria. 142 -315551 pfam12891 Glyco_hydro_44 Glycoside hydrolase family 44. This is a family of bacterial glycoside hydrolases formerly known as cellulase family J, and now known as Cel44A. It is one of the major enzymatic components of the cellulosome of Clostridium thermocellum strain F1 and of many other Firmicutes. 223 -338537 pfam12892 FctA Spy0128-like isopeptide containing domain. The FCT and equivalent region genes of Streptococcus pyogenes and other related bacteria encode surface proteins that include fibronectin- and collagen-binding proteins and the serological markers known as T antigens. Some of these proteins give rise to pilus-like appendages. The FctA family is found in many Firmicutes and related bacteria. In S. pyogenes, the pili have a role in bacterial adherence and colonisation of human tissues. Members of this family have a conserved N-terminal lysine and C-terminal asparagine that can form a covalent isopeptide bond. 111 -338538 pfam12893 Lumazine_bd_2 Putative lumazine-binding. This is a family of uncharacterized proteins. However, the family belongs to the NTF2-like superfamily of various enzymes, and some of the members of the family are putative dehydrogenases. 115 -315554 pfam12894 ANAPC4_WD40 Anaphase-promoting complex subunit 4 WD40 domain. Apc4 contains an N-terminal propeller-shaped WD40 domain.The N-terminus of Afi1 serves to stabilize the union between Apc4 and Apc5, both of which lie towards the bottom-front of the APC, 91 -338539 pfam12895 ANAPC3 Anaphase-promoting complex, cyclosome, subunit 3. Apc3, otherwise known as Cdc27, is one of the subunits of the anaphase-promoting complex or cyclosome. The anaphase-promoting complex is a multiprotein subunit E3 ubiquitin ligase complex that controls segregation of chromosomes and exit from mitosis in eukaryotes. The protein members of this family contain TPR repeats just as those of Apc7 do, and it appears that these TPR units bind the C-termini of the APC co-activators CDH1 and CDC20. 82 -338540 pfam12896 ANAPC4 Anaphase-promoting complex, cyclosome, subunit 4. Apc4 is one of the larger of the subunits of the anaphase-promoting complex or cyclosome. This family represents the long domain downstream of the WD40 repeat/s that are present on the Apc4 subunits. The anaphase-promoting complex is a multiprotein subunit E3 ubiquitin ligase complex that controls segregation of chromosomes and exit from mitosis in eukaryotes. Results in C.elegans show that the primary essential role of the spindle assembly checkpoint is not in the chromosome segregation process itself but rather in delaying anaphase onset until all chromosomes are properly attached to the spindle. the APC/C is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism. 203 -289652 pfam12897 Aminotran_MocR Alanine-glyoxylate amino-transferase. These proteins catalyze the reversible transfer of an amino group from the amino acid substrate to an acceptor alpha-keto acid. They require pyridoxal 5'-phosphate (PLP) as a cofactor to catalyze this reaction. Trans-amination reactions are of central importance in amino acid metabolism and in links to carbohydrate and fat metabolism. This class of aminotransferases acts as dimers in a head-to-tail configuration. 419 -338541 pfam12898 Stc1 Stc1 domain. The domain contains 8 conserved cysteines that may bind to zinc. In S. pombe this protein acts as a protein linker which links the chromatin modifying CLRC complex to RNAi by tethering it to the RITS complex. The region is reported as a LIM domain here, but has a slightly different arrangement of its CxxC pairs from the Pfam LIM domain pfam00412, hence why it is not part of that family. The tandem zinc-finger structure could mediate protein-protein interactions. 78 -315558 pfam12899 Glyco_hydro_100 Alkaline and neutral invertase. This is a family of bacterial and plant alkaline and neutral invertases, EC:3.2.1.26, previously known as Invertase_neut pfam04853. 429 -338542 pfam12900 Pyridox_ox_2 Pyridoxamine 5'-phosphate oxidase. Pyridoxamine 5'-phosphate oxidase is a FMN flavoprotein that catalyzes the oxidation of pyridoxamine-5-P (PMP) and pyridoxine-5-P (PNP) to pyridoxal-5-P (PLP). This entry contains several pyridoxamine 5'-phosphate oxidases, and related proteins. 141 -315560 pfam12901 SUZ-C SUZ-C motif. The SUZ-C domain is a conserved motif found in one or more copies in several RNA-binding proteins. It is always found at the C-terminus of the protein and appear to be required for localization of the protein to specific subcellular structures. It was first characterized in the C.elegans protein Szy-20 which localizes to the centrosome. It is widely distributed in eukaryotes. 16 -315561 pfam12902 Ferritin-like Ferritin-like. This is a family of bacterial ferritin-like substances that also includes a C-terminal domain of VioB, polyketide synthase enzymes, that make up one of the key components of the violacein biosynthesis pathway. Violacein is a purple-coloured, broad-spectrum antibacterial pigment. 221 -315562 pfam12903 DUF3830 Protein of unknown function (DUF3830). This is a family of bacterial and archaeal proteins, the structure for one of whose members has been characterized. Structure 3kop probably adopts a new hexameric form compared to previous structures. The putative active is near the domain interface. 3kop is most closely related, structurally to Structure 1zx8, where the potential active site is located near residues E51 and Y53 (conserved in 1zx8). Beyond the two residues above, the other residues are not conserved. Also the shape of the active site differs from that of 1zx8. Structure 1zx8 belongs to family DUF369. pfam04126, which is part of the cyclophilin-like clan. 145 -315563 pfam12904 Collagen_bind_2 Putative collagen-binding domain of a collagenase. This domain is likely to be the collagen-binding domain of a family of bacterial collagenase enzymes. It is the C-terminal part of the Structure 3kzs (information derived from TOPSAN). 92 -338543 pfam12905 Glyco_hydro_101 Endo-alpha-N-acetylgalactosaminidase. Virulence of pathogenic organisms such as the Gram-positive Streptococcus pneumoniae is largely determined by the ability to degrade host glycoproteins and to metabolize the resultant carbohydrates. This family is the enzymatic region, EC:3.2.1.97, of the cell surface proteins that specifically cleave Gal-beta-1,3-GalNAc-alpha-Ser/Thr (T-antigen, galacto-N-biose), the core 1 type O-linked glycan common to mucin glycoproteins. This reaction is exemplified by the S. pneumoniae protein Endo-alpha-N-acetylgalactosaminidase, where Asp764 is the catalytic nucleophile-base and Glu796 the catalytic proton donor. 273 -289661 pfam12906 RINGv RING-variant domain. 47 -289662 pfam12907 zf-met2 Zinc-binding. This is small family of metazoan zinc-binding proteins. 38 -315565 pfam12910 PHD_like Antitoxin of toxin-antitoxin, RelE / RelB, TA system. This domain appears to be the N-terminus of the RelB antitoxin of toxin-antitoxin stability system or prevent-host death system. Together RelE toxin and the RelB antitoxin form a non-toxic complex. Although toxin-antitoxin gene cassettes were first found in plasmids, it is clear that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria, and these toxin-antitoxin loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress. 136 -338544 pfam12911 OppC_N N-terminal TM domain of oligopeptide transport permease C. Oligopeptide permeases (Opp) have been identified in numerous gram-negative and -positive bacteria. These transport systems belong to the superfamily of highly conserved ATP-binding cassette transporters. Typically, Opp importers comprise a complex of five proteins. The oligopeptide-binding protein OppA is responsible for the capture of peptides from the external medium. Two integral highly hydrophobic membrane spanning proteins, OppB and OppC, form a channel through the membrane used for peptide translocation. This N-terminal domain appears to be the first TM domain of the molecule. 53 -338545 pfam12912 N_NLPC_P60 NLPC_P60 stabilizing domain, N term. This domain, at the N-terminus, appears to be the stabilizing domain for the structure from Desulfovibrio vulgaris DVU_0896, Structure 3m1u, which is a four-domain protein. The next domain is an SH3b1, the third an SH3b2 and the last, the C-terminal region, the catalytic domain of the cysteine-peptidase type, ie family NLPC_P60, pfam00877 (details derived from TOPSAN). 118 -338546 pfam12913 SH3_6 SH3 domain (SH3b1 type). This domain appears to be an SH3 domain of the SH3b1-type, and is just C-terminal to an N-terminal domain that is probably the stabilizing domain for the structure from Desulfovibrio vulgaris DVU_0896, Structure 3m1u, which is a four-domain protein. The next domain is an SH3b2 and the last, the C-terminal region, is the catalytic domain of the cysteine-peptidase type, ie family NLPC_P60, pfam00877 (details derived from TOPSAN). 51 -338547 pfam12914 SH3_7 SH3 domain of SH3b2 type. This domain appears to be an SH3 domain of the SH3b2-type, and is the second SH3 domain to be found, downstream of an N-terminal domain that is probably the stabilizing domain, for the structure from Desulfovibrio vulgaris DVU_0896, Structure 3m1u, which is a four-domain protein. The last, the C-terminal region, is the catalytic domain of the cysteine-peptidase type, ie family NLPC_P60, pfam00877 (details derived from TOPSAN). 47 -338548 pfam12915 DUF3833 Protein of unknown function (DUF3833). This is a family of uncharacterized proteins found in Proteobacteria. 162 -315571 pfam12916 DUF3834 Protein of unknown function (DUF3834). This family is likely to be related to solute-binding lipo-proteins. 201 -315572 pfam12917 HD_2 HD containing hydrolase-like enzyme. This is a family of bacterial and archaeal hydrolases. 212 -338549 pfam12918 TcdB_N TcdB toxin N-terminal helical domain. This is a short helical bundle domain found associated with the catalytic domain of the TcdB toxin from C. difficile. The function of this domain is unknown, but it may be involved in substrate recognition. 65 -338550 pfam12919 TcdA_TcdB TcdA/TcdB catalytic glycosyltransferase domain. This domain represents the N-terminal glycosyltransferase from a set of toxins found in some bacteria. This domain in TcdB glycosylates the host RhoA protein. 383 -338551 pfam12920 TcdA_TcdB_pore TcdA/TcdB pore forming domain. This family represents the most conserved region within the C. difficile Toxin A and Toxin B pore forming region. 625 -315576 pfam12921 ATP13 Mitochondrial ATPase expression. ATP13 is necessary for the expression of subunit 9 of mitochondrial ATPase. The protein has a basic amino terminal signal sequence that is cleaved upon import into mitochondria. 114 -338552 pfam12922 Cnd1_N non-SMC mitotic condensation complex subunit 1, N-term. The three non-SMC (structural maintenance of chromosomes) subunits of the mitotic condensation complex are Cnd1-3. The whole complex is essential for viability and the condensing of chromosomes in mitosis. This is the conserved N-terminus of the subunit 1. 164 -338553 pfam12923 RRP7 Ribosomal RNA-processing protein 7 (RRP7). RRP7 is an essential protein in yeast that is involved in pre-rRNA processing and ribosome assembly. It is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. 124 -315579 pfam12924 APP_Cu_bd Copper-binding of amyloid precursor, CuBD. This short domain, part of the extra-cellular N-terminus of the amyloid precursor protein, APP, can bind both copper and zinc, CuBD. The structure of Cu2+-bound CuBD reveals that the metal ligands are His147, His151, Tyr168 and two water molecules, which are arranged in a square pyramidal geometry. The structure of Cu+-bound CuBD is almost identical to the Cu2+-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavourable for Cu+, thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins. 56 -338554 pfam12925 APP_E2 E2 domain of amyloid precursor protein. The E2 domain is the largest of the conserved domains of the amyloid precursor protein. The structure of E2 consists of two coiled-coil sub-structures connected through a continuous helix, and bears an unexpected resemblance to the spectrin family of protein structures.E 2 can reversibly dimerize in solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. The high degree of conservation of residues at the putative dimer interface suggests that the E2 dimer observed in the crystal could be physiologically relevant. Heparin sulfate proteoglycans, the putative ligands for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface. 190 -315581 pfam12926 MOZART2 Mitotic-spindle organizing gamma-tubulin ring associated. FAM128A and FAM128B proteins have been re-named MOZART2A and B. The name MOZART is derived from letters of 'mitotic-spindle organizing proteins associated with a ring of gamma-tubulin'. This family operates as part of the gamma-tubulin ring complex, gamma-TuRC, one of the complexes necessary for chromosome segregation. This complex is located at centrosomes and mediates the formation of bipolar spindles in mitosis; it consists of six subunits. However, unlike the other four known subunits, the MOZART proteins, both 1 and 2, do not carry the conserved 'Spc97-Spc98' GCP domain, so the TUBCGP nomenclature cannot be used for it. The exact function of MOZART2 is not clear. 90 -338555 pfam12927 DUF3835 Domain of unknown function (DUF3835). This is a C-terminal domain conserved in fungi. 73 -338556 pfam12928 tRNA_int_end_N2 tRNA-splicing endonuclease subunit sen54 N-term. This is an N-terminal family of archaeal and metazoan sen54 proteins that forms one of the tRNA-splicing endonuclease subunits. 69 -338557 pfam12929 Mid1 Stretch-activated Ca2+-permeable channel component. MID1 is a yeast Saccharomyces cerevisiae gene encoding a plasma membrane protein required for Ca2+ influx induced by the mating pheromone, alpha-factor. Mid1 protein plays a crucial role in supplying Ca2+ during the mating process. Mid1 is composed of 548-amino-acid residues with four hydrophobic regions named H1, H2, H3 and H4, and two cysteine-rich regions (C1 and C2) at the C-terminal. This family contains the H3, H4, C1 and C2 regions. suggesting that H1 is a signal sequence responsible for the alpha-factor-induced Mid1 delivery to the plasma membrane. The region from H1 to H3 is required for the localization of Mid1 in the plasma and ER membranes. Trafficking of Mid1-GFP to the plasma membrane is dependent on the N-glycosylation of Mid1 and the transporter protein Sec12. This findings suggests that the trafficking of Mid1-GFP to the plasma membrane requires a Sec12-dependent pathway from the ER to the Golgi, and that Mid1 is recruited via a Sec6- and Sec7-independent pathway from the Golgi to the plasma membrane. 435 -338558 pfam12930 DUF3836 Family of unknown function (DUF3836). Family of uncharacterized proteins found in Bacteroidales species. Test. 121 -338559 pfam12931 Sec16_C Sec23-binding domain of Sec16. Sec16 is a multi-domain vesicle coat protein. The C-terminal region is the part that binds to Sec23, a COPII vesicle coat protein. This association is part of the transport vesicle coat structure. 293 -338560 pfam12932 Sec16 Vesicle coat trafficking protein Sec16 mid-region. Sec16 is a multi-domain vesicle coat protein. This central region is the functional part of the molecules and thus is vital for the family's role in mediating the movement of protein-cargo between the organelles of the secretory pathway. 113 -315588 pfam12933 FTO_NTD FTO catalytic domain. This domain is the catalytic AlkB-like domain from the FTO protein. This domain catalyzes a demethylase activity with a preference for 3-methylthymidine. 280 -315589 pfam12934 FTO_CTD FTO C-terminal domain. This domain is found at the C-terminus of the FTO protein which was shown to be associated with increased BMI and obesity risk in humans. The N-terminal domain of this protein is a DNA demethylase and this domain is found to associate with the N-terminal domain in the crystal structure. This domain is alpha helical with three helices that form a bundle. 170 -315590 pfam12935 Sec16_N Vesicle coat trafficking protein Sec16 N-terminus. Sec16 is a multi-domain vesicle coat protein. The overall function of Sec16 is in mediating the movement of protein-cargo between the organelles of the secretory pathway. Over-expression of truncated mutants of only the N-terminus are lethal, and this portion does not appear to be essential for function so may act as a stabilizing region. 236 -315591 pfam12936 Kri1_C KRI1-like family C-terminal. The yeast member of this family (Kri1p) is found to be required for 40S ribosome biogenesis in the nucleolus. This is the C-terminal domain of the family. 89 -338561 pfam12937 F-box-like F-box-like. This is an F-box-like family. 45 -315593 pfam12938 M_domain M domain of GW182. 240 -315594 pfam12939 DUF3837 Domain of unknown function (DUF3837). A small, compact all-alpha helical domain of unknown function. This domain is currently only found in Clostridiales species. 92 -315595 pfam12940 RAG1 Recombination-activation protein 1 (RAG1), recombinase. This family is one of the two different components of the RAG1-RAG2 V(D)J recombinase complex. The RAG complex, consisting of two RAG1 and two RAG2 proteins is a multi-protein complex that mediates DNA cleavage during V(D)J (variable-diversity-joining) recombination. RAG1 mediates DNA-binding to the conserved recombination signal sequences (RSS). Many of the proteins in this family are fragments. Solution of the structure of the complex of RAG1 and RAG2 shows that each protein dimerizes with itself and each pair then complexes together to from the RAG1-RAG2 V(D)J recombinase enzyme. The different structural elements in RAG1 for UniProtKB:P15919 are: an N-terminal nonamer-binding domain from residues 391-459; a dimerization and DNA-binding domain from 459-515; an extended pre-RNase H domain from 515-588; the catalytic RNase H domain from 588-719; a ZnC2 domain from 719-791; and ZnH2 domain from 791-962; and a three-helix C-terminal domain from 962-1008. 653 -289693 pfam12941 HCV_NS5a_C HCV NS5a protein C-terminal region. This is a family of proteins found in the hepatitis C virus. This family contains the C-terminal region of the NS5A protein. CC The molecular function of the non-structural 5a protein is uncertain. The NS5a protein is phosphorylated when expressed in mammalian cells. It is thought to interact with the ds RNA dependent (interferon inducible) kinase PKR. 242 -289694 pfam12942 Archaeal_AmoA Archaeal ammonia monooxygenase subunit A (AmoA). This is an archeael family that contains ammonia monooxygenase subunit A. Ammonia monooxygenase is an enzyme that oxidizes ammonia to nitrite and nitrate, thus playing a significant role in the nitrogen cycle. Ammonia-oxidising archaea (AOA) are widespread in marine environments. 183 -315596 pfam12943 DUF3839 Protein of unknown function (DUF3839). This is a family of uncharacterized proteins that are found in Trichomonas. 242 -289696 pfam12944 HAV_VP Hepatitis A virus viral protein VP. This is a family of the viral protein found in hepatitis A viruses. HAV is unique among picornaviruses in targeting the liver. 168 -338562 pfam12945 YcgR_2 Flagellar protein YcgR. This domain is found N terminal to pfam07238. Proteins which contain YcgR domains are known to interact with the flagellar switch-complex proteins FliG and FliM. This interaction results in a reduction of torque generation and induces CCW motor bias. This family contains members not captured by pfam07317. 82 -289698 pfam12946 EGF_MSP1_1 MSP1 EGF domain 1. This EGF-like domain is found at the C-terminus of the malaria parasite MSP1 protein. MSP1 is the merozoite surface protein 1. This domain is part of the C-terminal fragment that is proteolytically processed from the the rest of the protein and is left attached to the surface of the invading parasite. 37 -315598 pfam12947 EGF_3 EGF domain. This family includes a variety of EGF-like domain homologs. This family includes the C-terminal domain of the malaria parasite MSP1 protein. 36 -338563 pfam12948 MSP7_C MSP7-like protein C-terminal domain. MSP7 is a protein family the malaria parasite that has been found to be associated with processed fragments from the MSP1 protein in a complex involved in red blood cell invasion. 124 -338564 pfam12949 HeH HeH/LEM domain. This is a HeH domain. HeH domains form helix-extended loop-helix (HeH) structures. This domain is closely related to pfam03020 and pfam02037. 35 -315601 pfam12950 TaqI_C TaqI-like C-terminal specificity domain. This domain is found at the C-terminus of the TaqI protein and is involved in DNA-binding and substrate recognition. 119 -338565 pfam12951 PATR Passenger-associated-transport-repeat. This Autotransporter-associated beta strand repeat model represents a core 32-residue region of a class of bacterial protein repeat found in one to 30 copies per protein. Most proteins with a copy of this repeat have domains associated with membrane autotransporters (pfam03797). The repeats occur with a periodicity of 60 to 100 residues. A pattern of sequence conservation is that every second residue is well-conserved across most of the domain. These repeats as likely to have a beta-helical structure. This repeat plays a role in the efficient transport of autotransporter virulence factors to the bacterial surface during growth and infection. The repeat is always associated with the passenger domain of the autotransporter. For these reasons it has been coined the Passenger-associated Transport Repeat (PATR). The mechanism by which the PATR motif promotes transport is uncertain but it is likely that the conserved glycines (see HMM Logo) are required for flexibility of folding and that this folding drives secretion. Autotransporters that contain PATR(s) associate with distinct virulence traits such as subtilisin (S8) type protease domains and polymorphic outer-membrane protein repeats, whilst SPATE (S6) type protease and lipase-like autotransporters do not tend to contain PATR motifs. 30 -315603 pfam12952 DUF3841 Domain of unknown function (DUF3841). This presumed domain is around 190 amino acids in length. As yet no function has been given to any member of the family. 177 -315604 pfam12953 DUF3842 Domain of unknown function (DUF3842). This short protein is found mainly in firmicute bacteria. It is functionally uncharacterized. 130 -315605 pfam12954 DUF3843 Protein of unknown function (DUF3843). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 409 -338566 pfam12955 DUF3844 Domain of unknown function (DUF3844). This presumed domain is found in fungal species. It contains 8 largely conserved cysteine residues. This domain is found in proteins that are thought to be found in the endoplasmic reticulum. 100 -289708 pfam12956 DUF3845 Domain of Unknown Function with PDB structure. Member Structure 3GF6 has statistically significant similarity to TNF-like jelly roll fold may indicate an immunomodulatory function or a bioadhesion role 220 -315607 pfam12957 DUF3846 Domain of unknown function (DUF3846). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This domain is found associated with an pfam07275 like domain. This suggests that this family may also be involved in evading host restriction. 92 -315608 pfam12958 DUF3847 Protein of unknown function (DUF3847). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 81 -315609 pfam12959 DUF3848 Protein of unknown function (DUF3848). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This domain frequently seen with DUF3849. 93 -315610 pfam12960 DUF3849 Protein of unknown function (DUF3849). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This domain frequently seen with DUF3848. 122 -315611 pfam12961 DUF3850 Domain of Unknown Function with PDB structure (DUF3850). The search results from NCBI sequence alignment indicates a conserved domain belonging to ASCH superfamily. Dali searching results show that the protein is a structurally similar to the PUA domain, suggesting it may be involved in RNA recognition. It has been reported that the deletion of PUA genes results in impaired growth (RluD) and competitive disadvantage (TruB) in Escherichia coli. Suggestions have been put forward that, apart from their usual catalytic role, certain PUS enzymes (e.g. TruB) may also act as chaperones for RNA folding. The interface interaction indicates that the biomolecule of protein NP_809782.1 should be a dimer. 75 -289714 pfam12962 DUF3851 Protein of unknown function (DUF3851). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 126 -315612 pfam12963 DUF3852 Protein of unknown function (DUF3852). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This domain frequently seen with DUF3848. 107 -315613 pfam12964 DUF3853 Protein of unknown function (DUF3853). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 96 -315614 pfam12965 DUF3854 Domain of unknown function (DUF3854). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This domain is likely to be related to the Toprim domain. 124 -315615 pfam12966 AtpR N-ATPase, AtpR subunit. Membrane protein with three predicted transmembrane segments, two of which contain conserved Arg residues. AtpR genes are found in the N-ATPase (archaeal-type F1-Fo-ATPase) operons and are predicted to interact with the conserved Glu/Asp residues in the c subunits, regulating the assembly and/or function of the membrane-embedded ring of 'c' (proteolipid) subunits (pfam00137). 86 -289719 pfam12967 DUF3855 Domain of Unknown Function with PDB structure (DUF3855). Family based on orphan protein (TM0875) from Thermotoga maritima that has been structurally determined as Structure 1022. The TM0875 gene of Thermotoga maritima encodes a hypothetical protein NP_228683 of unknown function. Analysis of TM0875 genomic context reveals the presence of MMT1 (a predicted Co/Zn/Cd cation transporter) and an inactive homolog of metal-dependent proteases. 1O22 shows weak structural similarity with the phosphoribosylformylglycinamidine synthase 1t4a (Dali Z-scr=4.6), the yggU protein (PDB structure:1n91; with DALI Z-scr=3), and with the thioesterase superfamily member (PDB structure 2cy9 - found using FATCAT), even though they have very low sequence identity. 157 -289720 pfam12968 DUF3856 Domain of Unknown Function (DUF3856). TPR-like protein. The 2hr2 structure belongs to the SCOP all alpha class, TPR-like superfamily, CT2138-like family. A DALI search gives hits with the putative peptidyl-prolyl isomerase 2fbn (Z=16), the SGTA protein (Z=16), the PLCR protein 2qfc (Z=16), a putative FK506-binding protein (Structure 1qz2-A; DALI Z-score 15.3; RMSD 2.9; 16% sequence identity within 132 superimposed residues), and with the tetratricopeptide repeats of the protein phosphatase 5 (Structure 2bug; DALI Z-score 15.1; RMSD 2.5; 19% sequence identity within 117 superimposed residues). 142 -338567 pfam12969 DUF3857 Domain of Unknown Function with PDB structure (DUF3857). This family is based on the first domain of the PDB structure Structure 3KD4(residues 1-228). It is structurally similar to domains in other hydrolases, eg. M1 family aminopeptidase (3ebi, Z=10, rmsd 3.6A for 152 CA, seq id 12%), despite lack of any significant sequence similarity. 132 -289722 pfam12970 DUF3858 Domain of Unknown Function with PDB structure (DUF3858). This family is based on the third domain of the PDB structure 3KD4(residues 410-525). It is structurally similar to part of neuropilin-2 (Z=4.6, rmsd 3.6A for 83 CA, 7% seq id). This domain and the second domain appears to be part of peptide-n-glycanase (1x3w, 2g9f). 116 -338568 pfam12971 NAGLU_N Alpha-N-acetylglucosaminidase (NAGLU) N-terminal domain. Alpha-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. Mutations on the alpha-N-acetylglucosaminidase (NAGLU) gene can lead to Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) characterized by neurological dysfunction but relatively mild somatic manifestations. The structure shows that the enzyme is composed of three domains. This N-terminal domain has an alpha-beta fold. 81 -338569 pfam12972 NAGLU_C Alpha-N-acetylglucosaminidase (NAGLU) C-terminal domain. Alpha-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. Mutations on the alpha-N-acetylglucosaminidase (NAGLU) gene can lead to Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) characterized by neurological dysfunction but relatively mild somatic manifestations. The structure shows that the enzyme is composed of three domains. This C-terminal domain has an all alpha helical fold. 264 -315619 pfam12973 Cupin_7 ChrR Cupin-like domain. Members of this family are part of the cupin superfamily. This family includes the transcriptional activator ChrR. 91 -338570 pfam12974 Phosphonate-bd ABC transporter, phosphonate, periplasmic substrate-binding protein. This is a family of periplasmic proteins which are part of the transport system for alkylphosphonate uptake. 241 -338571 pfam12975 DUF3859 Domain of unknown function (DUF3859). This short domain is functionally uncharacterized. 123 -315622 pfam12976 DUF3860 Domain of Unknown Function with PDB structure (DUF3860). A protein family created to cover Structure 2OD5. 2OD5 is a hypothetical protein (JCVI_PEP_1096688149193) from an environmental metagenome (unidentified marine microbe). 92 -315623 pfam12977 DUF3861 Domain of Unknown Function with PDB structure (DUF3861). The 3cjl structure is likely a representative of a new fold with some resemblance to 3-helical bundle folds such as the serum albumin-like fold of SCOP. No significant hits reported by a Dali search. This protein is the first structural representative of a small (about 60 proteins) family of proteins that are found among proteo- and enterobacteria (REF http://www.topsan.org/Proteins/JCSG/3CJL). 88 -289729 pfam12978 DUF3862 Domain of Unknown Function with PDB structure (DUF3862). Structure 3D4E shared structural similarity to beta-lactamase inhibitory proteins (BLIP) which already include 1XXM, 1S0W, 1JTG, 2G2U, 2G2W, 2B5R, and 3due. All of structures are involved in beta-lactamase inhibitor complex. (REF http://www.topsan.org/Proteins/JCSG/3d4e) 159 -315624 pfam12979 DUF3863 Domain of Unknown Function with PDB structure (DUF3863). Domain based on 1-364 domain of Structure 3LM3 which is encoded by the BDI_3119 gene from Parabacteroides distasonis atcc 8503. 347 -289731 pfam12980 DUF3864 Domain of Unknown Function with PDB structure (DUF3864). Domain based on 366-449 domain of Structure 3LM3 which is encoded by the BDI_3119 gene from Parabacteroides distasonis atcc 8503. 80 -289732 pfam12981 DUF3865 Domain of Unknown Function with PDB structure (DUF3865). Family based of Structure 3B5P encoded by ZP_00108531 from nitrogen-fixing cyanobacterium Nostoc punctiforme pcc 73102 is a CADD-like protein of unknown function. Superposition between protein structures encoded by CT610 from Chlamydia trachomatis (Structure 1rwc), pyrroloquinolinquinone synthase C (PqqC, Structure 1otv) and ZP_00108531 revealed that putative active sites in CT610 and ZP_00108531 are identical. 224 -315625 pfam12982 DUF3866 Protein of unknown function (DUF3866). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 352 and 374 amino acids in length. 318 -315626 pfam12983 DUF3867 Protein of unknown function (DUF3867). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 190 amino acids in length. 185 -338572 pfam12984 DUF3868 Domain of unknown function, B. Theta Gene description (DUF3868). Based on Bacteroides thetaiotaomicron gene BT_1065, a putative uncharacterized protein As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), It appears to be upregulated in the presence of host or other bacterial species vs when in culture. 95 -315628 pfam12985 DUF3869 Domain of unknown function (DUF3869). A family based on the N-terminal domain of 3KOG, which shows weak but consistent remote homology with adhesive families such as immunoglobulins and cadherins, suggesting it might form an attachment module. 101 -315629 pfam12986 DUF3870 Domain of unknown function (DUF3870). A family based on the C-terminal domain of 3KOG which shows structural similarity to pore-forming proteins, suggesting it may have a lytic function. 94 -315630 pfam12987 DUF3871 Domain of unknown function, B. Theta Gene description (DUF3871). Based on Bacteroides thetaiotaomicron gene BT_2984, a putative uncharacterized protein As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231). It appears to be upregulated in the presence of host or other bacterial species vs when in culture. 318 -338573 pfam12988 DUF3872 Domain of unknown function, B. Theta Gene description (DUF3872). Based on Bacteroides thetaiotaomicron gene BT_2593, a conserved protein found in a conjugate transposon. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231). It appears to be upregulated in the presence of host or other bacterial species vs when in culture. 127 -338574 pfam12989 DUF3873 Domain of unknown function, B. Theta Gene description (DUF3873). Based on Bacteroides thetaiotaomicron gene BT_2286, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or other bacterial species vs when in culture. 68 -338575 pfam12990 DUF3874 Domain of unknonw function from B. Theta Gene description (DUF3874). Based on Bacteroides thetaiotaomicron gene BT_4228, a putative uncharacterized protein As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), It appears to be upregulated in the presence of host or other bacterial species vs when in culture. 70 -289742 pfam12991 DUF3875 Domain of unknown function, B. Theta Gene description (DUF3875). Based on Bacteroides thetaiotaomicron gene BT_4769, a conserved protein found in a conjugate transposon. As seem in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231). It appears to be upregulated in the presence of host or other bacterial species vs when in culture. 50 -315633 pfam12992 DUF3876 Domain of unknown function, B. Theta Gene description (DUF3876). Based on Bacteroides thetaiotaomicron gene BT_0092, a conserved protein found in a conjugate transposon. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or other bacterial species vs when in culture. 91 -315634 pfam12993 DUF3877 Domain of unknown function, E. rectale Gene description (DUF3877). Based on Eubacterium rectale gene EUBREC_0237. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737), it appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. 173 -289745 pfam12994 DUF3878 Domain of unknown function, E. rectale Gene description (DUF3878). Based on Eubacterium rectale gene EUBREC_0973. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737). it appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. 300 -289746 pfam12995 DUF3879 Domain of unknown function, E. rectale Gene description (DUF3879). Based on Eubacterium rectale gene EUBREC_1343. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737), it appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. 179 -338576 pfam12996 DUF3880 DUF based on E. rectale Gene description (DUF3880). Based on Eubacterium rectale gene EUBREC_3218. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737), It appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. 77 -315636 pfam12997 DUF3881 Domain of unknown function, E. rectale Gene description (DUF3881). Based on Eubacterium rectale gene EUBREC_3695. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737), it appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. 283 -338577 pfam12998 ING Inhibitor of growth proteins N-terminal histone-binding. Histones undergo numerous post-translational modifications, including acetylation and methylation, at residues which are then probable docking sites for various chromatin remodelling complexes. Inhibitor of growth proteins (INGs) specifically bind to residues that have been thus modified. INGs carry a well-characterized C-terminal PHD-type zinc-finger domain, binding with lysine 4-tri-methylated histone H3 (H3K4me3), as well as this N-terminal domain that binds unmodified H3 tails. Although these two regions can bind histones independently, together they increase the apparent association of the ING for the H3 tail. 102 -193472 pfam12999 PRKCSH-like Glucosidase II beta subunit-like. The sequences found in this family are similar to a region found in the beta-subunit of glucosidase II, which is also known as protein kinase C substrate 80K-H (PRKCSH). The enzyme catalyzes the sequential removal of two alpha-1,3-linked glucose residues in the second step of N-linked oligosaccharide processing. The beta subunit is required for the solubility and stability of the heterodimeric enzyme, and is involved in retaining the enzyme within the endoplasmic reticulum. 176 -315638 pfam13000 Acatn Acetyl-coenzyme A transporter 1. The mouse Acatn is a 61 kDa hydrophobic protein with six to 10 transmembrane domains. It appears to promote 9-O-acetylation in gangliosides. 545 -338578 pfam13001 Ecm29 Proteasome stabilizer. The proteasome consists of two subunits, and the capacity of the proteasome to degrade protein depends crucially on the interaction between these two subunits. This interaction is affected by a wide range of factors including metabolites, such as ATP, and proteasome-associated proteins such as Ecm29. Ecm29 stabilizes the interaction between the two subunits. 491 -315640 pfam13002 LDB19 Arrestin_N terminal like. This is a family of proteins related to the Arrestin_N terminal family. 183 -338579 pfam13004 BACON Putative binding domain, N-terminal. The BACON (Bacteroidetes-Associated Carbohydrate-binding Often N-terminal) domain is an all-beta domain found in diverse architectures, principally in combination with carbohydrate-active enzymes and proteases. These architectures suggest a carbohydrate-binding function which is also supported by the nature of BACON's few conserved amino-acids. The phyletic distribution of BACON and other data tentatively suggest that it may frequently function to bind mucin. Further work with the characterized structure of a member of glycoside hydrolase family 5 enzyme, Structure 3ZMR, has found no evidence for carbohydrate-binding for this domain. 60 -338580 pfam13005 zf-IS66 zinc-finger binding domain of transposase IS66. This is a zinc-finger region of the N-terminus of the insertion element IS66 transposase. 46 -338581 pfam13006 Nterm_IS4 Insertion element 4 transposase N-terminal. This family represents the N-terminal region of proteins carrying the transposase enzyme, DDE_Tnp_1 (that was Transposase_11), pfam01609, at the C-terminus. The full-length members are Insertion Element 4, IS4. Within the collection of E.coli strains, ECOR, the number of IS4 elements varies from zero to 14, with an average of 5 copies/strain. 95 -338582 pfam13007 LZ_Tnp_IS66 Transposase C of IS166 homeodomain. This is a leucine-zipper-like or homeodomain-like region of transposase TnpC of insertion element IS66. 73 -289756 pfam13008 zf-Paramyx-P Zinc-binding domain of Paramyxoviridae V protein. The Paramyxoviridae, which include such respiroviruses as para-influenzae and measles, produce phosphoproteins - protein P - that are integral to the polymerase transcription-replication complex. Protein P consists of two functionally distinct moieties, an N-terminal PNT, and a C-terminal PCT. The P gene region transcribes proteins from all three ORFs, and the V protein consists of the PNT moiety and a more C-terminal 2-zinc-binding domain. This conserved region consists of the two-zinc-binding section sandwiched between beta sheets 6 and 7 of the overall V protein. It is the binding of this core domain of V protein with the DDB1 protein (part of the ubiquitin-ligase complex) of eukaryotes which represents the key element of the virus-host protein interaction. In the Henipavirus family which includes Nipah and Hendra viruses, the V protein is able to block IFN (interferon) signalling by preventing IFN-induced STAT phosphorylation and nuclear translocation. The P gene of morbillivirus is co-transcriptionally edited leading to a V protein being produced. 45 -315645 pfam13009 Phage_Integr_2 Putative phage integrase. This family is found in association with IS elements. 323 -289758 pfam13010 pRN1_helical Primase helical domain. This alpha helical domain is found in a set of bacterial plasmid replication proteins. The domain is found to the C-terminus of the primase/polymerase domain. Mutants of this domain are defective in template binding, dinucleotide formation and conformation change prior to DNA extension. 138 -289759 pfam13011 LZ_Tnp_IS481 leucine-zipper of insertion element IS481. This is the upstream region of the conjoined ORF AB of insertion element 481. The significance of IS481 in the detection of Bordetella pertussis is discussed in. The B portion of the ORF AB carries the transposase activity in family rve, pfam00665. 85 -338583 pfam13012 MitMem_reg Maintenance of mitochondrial structure and function. This is C-terminal to the Mov24 region of the yeast proteasomal subunit Rpn11 and seems likely to regulate the mitochondrial fission and tubulation processes, ie the outer mitochondrial membrane proteins. This function appears to be unrelated to the proteasome activity of the N-terminal region. 72 -289761 pfam13013 F-box-like_2 F-box-like domain. The F-box domain has a role in mediating protein-protein interactions in a variety of contexts, such as polyubiquitination, transcription elongation, centromere binding and translational repression. 103 -205196 pfam13015 PRKCSH_1 Glucosidase II beta subunit-like protein. The sequences found in this family are similar to a region found in the beta-subunit of glucosidase II, which is also known as protein kinase C substrate 80K-H (PRKCSH). The enzyme catalyzes the sequential removal of two alpha-1,3-linked glucose residues in the second step of N-linked oligosaccharide processing. The beta subunit is required for the solubility and stability of the heterodimeric enzyme, and is involved in retaining the enzyme within the endoplasmic reticulum. The beta-subunit confers substrate specificity for di- and monoglucosylated glycans on the glucose-trimming activity of the alpha-subunit. 154 -315647 pfam13016 Gliadin Cys-rich Gliadin N-terminal. This is a cysteine-rich N-terminal region of gliadin and avenin plant proteins. The exact function is not known. 76 -315648 pfam13017 Maelstrom piRNA pathway germ-plasm component. Maelstrom is a germ-plasm component protein, that is shown to be functionally involved in the piRNA pathway. It is conserved throughout Eukaryota, though it appears to have been lost from all examined teleost fish species. The domain architecture shows that it is coupled with several DNA- and RNA- related domains such as HMG box, SR-25-like and HDAC_interact domains. Sequence analysis and fold recognition have found a distant similarity between Maelstrom domain and the DnaQ 3'-5' exonuclease family with the RNase H fold (Exonuc_X-T, pfam00929); notably, that the Maelstrom domains from basal eukaryotes contain the conserved 3'-5' exonuclease active site residues (Asp-Glu-Asp-His-Asp, DEDHD). However, the animal and some amoeba maelstrom contain another set of conserved residues (Glu-His-His-Cys-His-Cys, EHHCHC). This evolutionary link together with structural examinations leads to the hypothesis that Maelstrom domains may have a potential nuclease-transposase activity or RNA-binding ability that may be implicated in piRNA biogenesis. A protein function evolution mode, namely "active site switch", has been proposed, in which the amoeba Maelstrom domains are the possible evolutionary intermediates due to their harbouring of the specific characteristics of both 3'-5' exonuclease and Maelstrom domains. 211 -338584 pfam13018 ESPR Extended Signal Peptide of Type V secretion system. This conserved domain is called ESPR for Extended Signal Peptide Region. It is present at the N-terminus of the signal peptides of proteins belonging to the Type V secretion systems, including the autotransporters (T5aSS), TpsA exoproteins of the two-partner system (T5bSS) and trimeric autotransporters (TAAs). So far, the ESPR is present only in Gram-negative bacterial proteins originating from the classes Beta- and Gamma-proteobacteria. ESPR severely impairs inner membrane translocation, suggesting that it adopts a particular conformation or it interacts with a cytoplasmic or inner membrane co-factor, prior to exportation. Deletion of ESPR causes mis-folding of the TAAs passenger domain in the periplasm, substantially impairing its translocation across the outer membrane. 23 -338585 pfam13019 Telomere_Sde2 Telomere stability and silencing. Sde2 has been identified in fission yeast as an important factor in telomere formation and maintenance. This is a more N-terminal domain on these nuclear proteins, and is essential for telomeric silencing and genomic stability. 164 -338586 pfam13020 DUF3883 Domain of unknown function (DUF3883). This is a domain is uncharacterized. It is found on restriction endonucleases. 83 -315652 pfam13021 DUF3885 Domain of unknown function (DUF3885). A putative Rac prophage DNA binding protein. This domain family is found in bacteria, and is approximately 40 amino acids in length. There is a conserved YDDRG sequence motif. There is a single completely conserved residue D that may be functionally important. 37 -315653 pfam13022 HTH_Tnp_1_2 Helix-turn-helix of insertion element transposase. This is a family of largely phage proteins which are likely to be a helix-turn-helix insertion elements. 122 -338587 pfam13023 HD_3 HD domain. HD domains are metal dependent phosphohydrolases. 161 -338588 pfam13024 DUF3884 Protein of unknown function (DUF3884). This family of proteins is functionally uncharacterized. However several proteins are annotated as Tagatose 1,6-diphosphate aldolase, but evidence to support this could not be found. This family of proteins is found in bacteria. Proteins in this family are typically between 61 and 106 amino acids in length. There are two completely conserved residues (Y and F) that may be functionally important. 73 -315655 pfam13025 DUF3886 Protein of unknown function (DUF3886). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There are two completely conserved L residues that may be functionally important. 68 -315656 pfam13026 DUF3887 Protein of unknown function (DUF3887). This domain family is found in bacteria and archaea, and is approximately 90 amino acids in length. 87 -315657 pfam13027 DUF3888 Protein of unknown function (DUF3888). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 111 and 149 amino acids in length. 86 -315658 pfam13028 DUF3889 Protein of unknown function (DUF3889). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. There are two completely conserved residues (A and Y) that may be functionally important. 84 -289775 pfam13029 DUF3890 Domain of unknown function (DUF3890). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 70 amino acids in length. 84 -315659 pfam13030 DUF3891 Protein of unknown function (DUF3891). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are approximately 250 amino acids in length. 216 -315660 pfam13031 DUF3892 Protein of unknown function (DUF3892). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 87 and 104 amino acids in length. 72 -315661 pfam13032 DUF3893 Domain of unknown function (DUF3893). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 123 and 144 amino acids in length. There is a single completely conserved residue E that may be functionally important. 125 -289778 pfam13033 DUF3894 Protein of unknown function (DUF3894). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 66 and 79 amino acids in length. There are two conserved sequence motifs: FNIC and MALLNLT. 54 -315662 pfam13034 DUF3895 Protein of unknown function (DUF3895). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. There are two completely conserved residues (Y and L) that may be functionally important. 78 -315663 pfam13035 DUF3896 Protein of unknown function (DUF3896). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 61 -338589 pfam13036 LpoB Peptidoglycan-synthase activator LpoB. This is a family of Gram-negative bacterial outer membrane lipoproteins. LpoB is required for the function of the major peptidoglycan synthase enzyme PBP1B. It interacts with PBP1B protein via the UvrB-like non-catalytic domain on that protein. LpoB has a 54-aa-long flexible N-terminal stretch followed by a globular domain with similarity to the N-terminal domain of the prevalent periplasmic protein TolB. The long, flexible N-terminal region of LpoB enables it to span the periplasm and reach its docking site in PBP1B. Peptidoglycan is the essential polymer within the sacculus that surrounds the cytoplasmic membrane of bacteria. 147 -315665 pfam13037 DUF3898 Domain of unknown function (DUF3898). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 90 amino acids in length. There are two conserved sequence motifs: DFG and FEKG. 89 -315666 pfam13038 DUF3899 Domain of unknown function (DUF3899). Putative Tryptophanyl-tRNA synthetase. 83 -315667 pfam13039 DUF3900 Protein of unknown function (DUF3900). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 360 amino acids in length. 249 -315668 pfam13040 Fur_reg_FbpB Fur-regulated basic protein B. This family of proteins is regulated by the ferric uptake regulator protein Fur. This family represses expression of the lutABC operon encoding iron sulfur-containing enzymes necessary for growth on lactate. 39 -338590 pfam13041 PPR_2 PPR repeat family. This repeat has no known function. It is about 35 amino acids long and is found in up to 18 copies in some proteins. The family appears to be greatly expanded in plants and fungi. The repeat has been called PPR. 50 -289787 pfam13042 DUF3902 Protein of unknown function (DUF3902). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 170 amino acids in length. There is a conserved LGI sequence motif. 161 -315670 pfam13043 DUF3903 Domain of unknown function (DUF3903). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 40 amino acids in length. 40 -289789 pfam13044 Fusion_F0 Fusion glycoprotein F0, Isavirus. Fusion between viral and cellular membranes is mediated by viral membrane fusion glycoproteins. This entry represents fusion glycoprotein F0 from the infectious salmon anemia virus (ISAV). The precursor protein F0 is proteolytically cleaved to F1 and F2, which are held together by disulphide bridges. 436 -315671 pfam13045 DUF3905 Protein of unknown function (DUF3905). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 84 -289791 pfam13046 DUF3906 Protein of unknown function (DUF3906). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved EKK sequence motif. 64 -315672 pfam13047 DUF3907 Protein of unknown function (DUF3907). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. There is a conserved AYTG sequence motif. 147 -315673 pfam13048 DUF3908 Protein of unknown function (DUF3908). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 140 amino acids in length. There is a single completely conserved residue Y that may be functionally important. 134 -315674 pfam13049 DUF3910 Protein of unknown function (DUF3910). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. 93 -315675 pfam13050 DUF3911 Protein of unknown function (DUF3911). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 77 -315676 pfam13051 DUF3912 Protein of unknown function (DUF3912). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 68 -315677 pfam13052 DUF3913 Protein of unknown function (DUF3913). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 57 -289798 pfam13053 DUF3914 Protein of unknown function (DUF3914). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. There are two conserved sequence motifs: KFDIR and DLW. 89 -315678 pfam13054 DUF3915 Protein of unknown function (DUF3915). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 126 -315679 pfam13055 DUF3917 Protein of unknown function (DUF3917). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 71 -289801 pfam13056 DUF3918 Protein of unknown function (DUF3918). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There are two completely conserved residues (G and R) that may be functionally important. 43 -315680 pfam13057 DUF3919 Protein of unknown function (DUF3919). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 251 and 262 amino acids in length. There is a conserved YLNG sequence motif. 227 -289803 pfam13058 DUF3920 Protein of unknown function (DUF3920). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. 126 -315681 pfam13059 DUF3922 Protein of unknown function (DUF3992). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 87 and 98 amino acids in length. 79 -289805 pfam13060 DUF3921 Protein of unknown function (DUF3921). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 58 -289806 pfam13061 DUF3923 Protein of unknown function (DUF3923). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 65 -289807 pfam13062 DUF3924 Protein of unknown function (DUF3924). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 62 -315682 pfam13063 DUF3925 Protein of unknown function (DUF3925). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. 65 -315683 pfam13064 DUF3927 Protein of unknown function (DUF3927). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 50 amino acids in length. There is a conserved SVL sequence motif. There is a single completely conserved residue D that may be functionally important. 45 -315684 pfam13065 DUF3928 Protein of unknown function (DUF3928). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. 95 -315685 pfam13066 DUF3929 Protein of unknown function (DUF3929). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. 65 -315686 pfam13067 DUF3930 Protein of unknown function (DUF3930). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 51 and 67 amino acids in length. 55 -315687 pfam13068 DUF3932 Protein of unknown function (DUF3932). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 81 -315688 pfam13069 DUF3933 Protein of unknown function (DUF3933). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 53 -289815 pfam13070 DUF3934 Protein of unknown function (DUF3934). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There are two conserved sequence motifs: GTG and SKG. 40 -315689 pfam13071 DUF3935 Protein of unknown function (DUF3935). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There are two conserved sequence motifs: FVF and LGV. 70 -289817 pfam13072 DUF3936 Protein of unknown function (DUF3936). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There is a conserved GKAW sequence motif. There is a single completely conserved residue G that may be functionally important. 37 -315690 pfam13073 DUF3937 Protein of unknown function (DUF3937). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 72 -315691 pfam13074 DUF3938 Protein of unknown function (DUF3938). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. 102 -289820 pfam13075 DUF3939 Protein of unknown function (DUF3939). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 150 amino acids in length. 133 -315692 pfam13076 Fur_reg_FbpA Fur-regulated basic protein A. This family of proteins is regulated by the ferric uptake regulator protein Fur. This family does not regulate the lutABC operon encoding iron sulfur-containing enzymes necessary for growth on lactate. 36 -315693 pfam13077 DUF3909 Protein of unknown function (DUF3909). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 108 -289823 pfam13078 DUF3942 Protein of unknown function (DUF3942). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. 137 -315694 pfam13079 DUF3916 Protein of unknown function (DUF3916). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 170 amino acids in length. There is a single completely conserved residue S that may be functionally important. 147 -315695 pfam13080 DUF3926 Protein of unknown function (DUF3926). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 46 and 63 amino acids in length. There is a single completely conserved residue P that may be functionally important. 43 -289826 pfam13081 DUF3941 Domain of unknown function (DUF3941). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 30 amino acids in length. There is a conserved YSK sequence motif. 24 -289827 pfam13082 DUF3931 Protein of unknown function (DUF3931). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 66 -338591 pfam13083 KH_4 KH domain. 73 -315697 pfam13084 DUF3943 Domain of unknown function (DUF3943). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 110 amino acids in length. 107 -338592 pfam13085 Fer2_3 2Fe-2S iron-sulfur cluster binding domain. The 2Fe-2S ferredoxin family have a general core structure consisting of beta(2)-alpha-beta(2) which abeta-grasp type fold. The domain is around one hundred amino acids with four conserved cysteine residues to which the 2Fe-2S cluster is ligated. 105 -338593 pfam13086 AAA_11 AAA domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. 248 -338594 pfam13087 AAA_12 AAA domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. 196 -315701 pfam13088 BNR_2 BNR repeat-like domain. This family of proteins contains BNR-like repeats suggesting these proteins may act as sialidases. 282 -338595 pfam13089 PP_kinase_N Polyphosphate kinase N-terminal domain. Polyphosphate kinase (Ppk) catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate molecules. 106 -338596 pfam13090 PP_kinase_C Polyphosphate kinase C-terminal domain. Polyphosphate kinase (Ppk) catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate molecules. This C-terminal domain has a structure similar to phospholipase D. 346 -315704 pfam13091 PLDc_2 PLD-like domain. 132 -338597 pfam13092 CENP-L Kinetochore complex Sim4 subunit Fta1. CENP-L is one of the components that assembles onto the CENP-A-nucleosome distal (CAD) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENP-A-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. Fta1 is the equivalent component of the fission yeast Sim4 complex. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. 159 -338598 pfam13093 FTA4 Kinetochore complex Fta4 of Sim4 subunit, or CENP-50. Fission yeast has three kinetochore protein complexes. Two complexes, Sim4 and Ndc80-MIND-Spc7 (NMS), are constitutive components, whereas the third complex, DASH, is transiently associated with kinetochores only in mitosis and is required for precise chromosome segregation. The Sim4 complex functions as a loading dock for the DASH complex. Sim4 consists of a number of different proteins including Ftas 1-7 and Dad1. 195 -315707 pfam13094 CENP-Q CENP-Q, a CENPA-CAD centromere complex subunit. CENP-Q is one of the components that assembles onto the CENPA-nucleosome distal (CAD) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENPA nucleosomes directly recruit a proximal CENPA-nucleosome-associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENPA NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENPA-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. Fta7 is the equivalent component of the fission yeast Sim4 complex. 163 -338599 pfam13095 FTA2 Kinetochore Sim4 complex subunit FTA2. Fission yeast has three kinetochore protein complexes. Two complexes, Sim4 and Ndc80-MIND-Spc7 (NMS), are constitutive components, whereas the third complex, DASH, is transiently associated with kinetochores only in mitosis and is required for precise chromosome segregation. The Sim4 complex functions as a loading dock for the DASH complex. Sim4 consists of a number of different proteins including Ftas 1-7 and Dad1. The equivalent higher eukaryotic protein is CENP-P. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENP-A-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. 202 -289841 pfam13096 CENP-P CENP-A-nucleosome distal (CAD) centromere subunit, CENP-P. CENP-P is one of the components that assembles onto the CENP-A-nucleosome distal (CAD) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENP-A-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. Fta7 is the equivalent component of the fission yeast Sim4 complex. 177 -315709 pfam13097 CENP-U CENP-A nucleosome associated complex (NAC) subunit. CENP-U is one of the components that assembles onto the CENP-A-nucleosome associated complex (NAC). The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENP-A nucleosomes directly recruit a proximal CENP-A nucleosome associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENP-A NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENP-A-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. FTA4 is the equivalent component of the fission yeast Sim4 complex. 175 -315710 pfam13098 Thioredoxin_2 Thioredoxin-like domain. 104 -289844 pfam13099 DUF3944 Domain of unknown function (DUF3944). This short domain is sometimes found N terminal to pfam03981. 35 -315711 pfam13100 OstA_2 OstA-like protein. This is a family of OstA-like proteins that are related to pfam03968. 158 -315712 pfam13101 DUF3945 Protein of unknown function (DUF3945). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This is a C-terminal repeated region. 56 -338600 pfam13102 Phage_int_SAM_5 Phage integrase SAM-like domain. A family of uncharacterized proteins found by clustering human gut metagenomic sequences. This family appears related to the N-terminal domain of phage integrases. 96 -338601 pfam13103 TonB_2 TonB C terminal. This family contains TonB members that are not captured by pfam03544. 85 -289849 pfam13104 DUF3956 Protein of unknown function (DUF3956). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. 45 -315715 pfam13105 DUF3959 Protein of unknown function (DUF3959). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 260 amino acids in length. 245 -315716 pfam13106 DUF3961 Domain of unknown function (DUF3961). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and viruses, and is approximately 40 amino acids in length. 39 -289852 pfam13107 DUF3964 Protein of unknown function (DUF3964). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. There are two conserved sequence motifs: FYF and AFW. 109 -315717 pfam13108 DUF3969 Protein of unknown function (DUF3969). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 106 -315718 pfam13109 AsmA_1 AsmA-like C-terminal region. This family is similar to the C-terminal of the AsmA protein of E. coli. 213 -315719 pfam13110 DUF3966 Protein of unknown function (DUF3966). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 58 and 86 amino acids in length. 50 -289856 pfam13111 DUF3962 Protein of unknown function (DUF3962). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 233 and 796 amino acids in length. There is a conserved FSY sequence motif. 220 -289857 pfam13112 DUF3965 Protein of unknown function (DUF3965). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 380 amino acids in length. 291 -289858 pfam13113 DUF3970 Protein of unknown function (DUF3970). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved NPKY sequence motif. 55 -315720 pfam13114 RecO_N_2 RecO N terminal. This entry contains members that are not captured by pfam11967. 71 -315721 pfam13115 YtkA YtkA-like. 85 -338602 pfam13116 DUF3971 Protein of unknown function. Some members of this family are related to the AsmA family proteins. 288 -315723 pfam13117 Cag12 Cag pathogenicity island protein Cag12. This is a Proteobacterial family of Cag pathogenicity island proteins. 111 -315724 pfam13118 DUF3972 Protein of unknown function (DUF3972). This is a Proteobacterial family of unknown function. Some of the proteins in this family are annotated as being kinesin-like proteins. 125 -315725 pfam13119 DUF3973 Domain of unknown function (DUF3973). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 40 amino acids in length. There is a conserved YCI sequence motif. 40 -315726 pfam13120 DUF3974 Domain of unknown function (DUF3974). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 130 amino acids in length. 126 -315727 pfam13121 DUF3976 Domain of unknown function (DUF3976). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 40 amino acids in length. 40 -289867 pfam13122 DUF3977 Protein of unknown function (DUF3977). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 77 -289868 pfam13123 DUF3978 Protein of unknown function (DUF3978). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 150 amino acids in length. 144 -289869 pfam13124 DUF3963 Protein of unknown function (DUF3963). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 42 and 85 amino acids in length. There is a conserved DIQKW sequence motif. 40 -315728 pfam13125 DUF3958 Protein of unknown function (DUF3958). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. There are two conserved sequence motifs: RLF and TWH. 98 -315729 pfam13126 DUF3975 Protein of unknown function (DUF3975). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 80 -338603 pfam13127 DUF3955 Protein of unknown function (DUF3955). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 68 and 87 amino acids in length. There are two completely conserved residues (G and E) that may be functionally important. 59 -315731 pfam13128 DUF3954 Protein of unknown function (DUF3954). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 60 amino acids in length. 49 -315732 pfam13129 DUF3953 Protein of unknown function (DUF3953). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 47 and 76 amino acids in length. 40 -315733 pfam13130 DUF3952 Domain of unknown function (DUF3952). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 110 amino acids in length. There is a conserved VMSAS sequence motif. 101 -315734 pfam13131 DUF3951 Protein of unknown function (DUF3951). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 56 and 71 amino acids in length. There is a conserved YTP sequence motif. 52 -289877 pfam13132 DUF3950 Domain of unknown function (DUF3950). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and viruses, and is approximately 30 amino acids in length. There is a conserved NFS sequence motif. 30 -315735 pfam13133 DUF3949 Protein of unknown function (DUF3949). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 69 and 87 amino acids in length. 60 -315736 pfam13134 DUF3948 Protein of unknown function (DUF3948). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. 35 -289880 pfam13135 DUF3947 Protein of unknown function (DUF3947). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 91 -315737 pfam13136 DUF3984 Protein of unknown function (DUF3984). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 393 and 442 amino acids in length. 327 -289882 pfam13137 DUF3983 Protein of unknown function (DUF3983). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 40 amino acids in length. There is a conserved AWRN sequence motif. 34 -315738 pfam13138 DUF3982 Protein of unknown function (DUF3982). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 47 and 73 amino acids in length. There are two conserved sequence motifs: EKL and EIP. 34 -289884 pfam13139 DUF3981 Domain of unknown function (DUF3981). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 110 amino acids in length. 114 -289885 pfam13140 DUF3980 Domain of unknown function (DUF3980). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 90 amino acids in length. 87 -315739 pfam13141 DUF3979 Protein of unknown function (DUF3979). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 112 -289887 pfam13142 DUF3960 Domain of unknown function (DUF3960). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 72 and 89 amino acids in length. 89 -315740 pfam13143 DUF3986 Protein of unknown function (DUF3986). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. 91 -338604 pfam13144 ChapFlgA Chaperone for flagella basal body P-ring formation. ChapFlgA is a family similar to the SAF family, and includes chaperones for flagellar basal-body proteins and pilus-assembly proteins, FlgA, RcpB and CpaB. ChapFlgA is necessary for the formation of the P-ring of the flagellum, FlgI, which sits in the peptidoglycan layer of the outer membrane of the bacterium. FlgA plays an auxiliary role in P-ring assembly. 194 -338605 pfam13145 Rotamase_2 PPIC-type PPIASE domain. 121 -315743 pfam13146 TRL TRL-like protein family. This family includes the TRL protein that is found in a locus that includes several tRNAs. The function of this protein is not known. The proteins in this family usually have a lipoprotein attachment site at their N-terminus. 77 -338606 pfam13148 DUF3987 Protein of unknown function (DUF3987). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 366 -338607 pfam13149 Mfa_like_1 Fimbrillin-like. A family of putative fimbrillin proteins found by clustering human gut metagenomic sequences. Analysis of structural comparisons shows this family to be part of the FimbA (CL0450) superfamily of adhesin components or fimbrillins. 281 -315746 pfam13150 DUF3989 Protein of unknown function (DUF3989). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 86 -338608 pfam13151 DUF3990 Protein of unknown function (DUF3990). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 144 -289896 pfam13152 DUF3967 Protein of unknown function (DUF3967). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 173 and 249 amino acids in length. 35 -289897 pfam13153 DUF3985 Protein of unknown function (DUF3985). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. 44 -315748 pfam13154 DUF3991 Protein of unknown function (DUF3991). This family of proteins is often associated with family Toprim, pfam01751. 74 -338609 pfam13155 Toprim_2 Toprim-like. This is a family or Toprim-like proteins. 89 -315750 pfam13156 Mrr_cat_2 Restriction endonuclease. Prokaryotic family found in type II restriction enzymes containing the hallmark (D/E)-(D/E)XK active site. Presence of catalytic residues implicates this region in the enzymatic cleavage of DNA. 127 -315751 pfam13157 DUF3992 Protein of unknown function (DUF3992). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 98 and 122 amino acids in length. There is a single completely conserved residue T that may be functionally important. 88 -315752 pfam13158 DUF3993 Protein of unknown function (DUF3993). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. 118 -315753 pfam13159 DUF3994 Domain of unknown function (DUF3994). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 97 and 111 amino acids in length. 107 -315754 pfam13160 DUF3995 Protein of unknown function (DUF3995). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 138 and 149 amino acids in length. There are two completely conserved residues (W and P) that may be functionally important. 124 -315755 pfam13161 DUF3996 Protein of unknown function (DUF3996). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 172 and 203 amino acids in length. 154 -315756 pfam13162 DUF3997 Protein of unknown function (DUF3997). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. 112 -338610 pfam13163 DUF3999 Protein of unknown function (DUF3999). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 440 and 470 amino acids in length. There is a single completely conserved residue D that may be functionally important. 421 -315758 pfam13164 Diedel Diedel. Diedel (die) was identified as an insect immune response protein. It is up-regulated after a septic injury and may act as a negative regulator of the JAK/STAT signalling pathway. Its homologs can be found in Drosophila and Acyrtosiphon pisum. Interestingly, the orthologues of the die gene are present in the genome of insect DNA viruses of the Baculoviridae and Ascoviridae families. The viral homologs suppress the immune deficiency (IMD) pathway in Drosophila. 74 -338611 pfam13165 SCIFF Six-cysteine peptide SCIFF. Members of this protein family are essentially universal in the class Clostidia and therefore highly abundant in the human gut microbiome. This short peptide is designated SCIFF, for Six Cysteines in Forty-Five residues. It is a presumed ribosomal natural product precursor, always found associated with a yet-uncharacterized radical SAM protein that resembles other peptide modification radical SAM enzymes and is designated SCIFF radical SAM maturase. 43 -338612 pfam13166 AAA_13 AAA domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. This family includes the PrrC protein that is thought to be the active component of the anticodon nuclease. 705 -338613 pfam13167 GTP-bdg_N GTP-binding GTPase N-terminal. This is the N-terminal region of GTP-binding HflX-like proteins. The full-length members bind and interact with the 50S ribosome and are GTPases, hydrolysing GTP/GDP/ATP/ADP. This N-terminal region is necessary for stability of the whole protein. 87 -289912 pfam13168 Poxvirus_B22R_C Poxvirus B22R protein C-terminal. This is the highly conserved C-terminal region of poxvirus proteins from eg, Fowlpox virus, Myxoma virus, Lumpy skin disease, Variola virus and other members of the Poxviridae family of double-stranded, no-RNA stage poxviruses. 195 -289913 pfam13169 Poxvirus_B22R_N Poxvirus B22R protein N-terminal. This is the highly conserved N-terminal region of poxvirus proteins from eg, Fowlpox virus, Myxoma virus, Lumpy skin disease, Variola virus and other members of the Poxviridae family of double-stranded, no-RNA stage poxviruses. 88 -315762 pfam13170 DUF4003 Protein of unknown function (DUF4003). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 327 and 345 amino acids in length. 296 -315763 pfam13171 DUF4004 Protein of unknown function (DUF4004). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 210 amino acids in length. 196 -315764 pfam13173 AAA_14 AAA domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. 130 -338614 pfam13174 TPR_6 Tetratricopeptide repeat. 33 -338615 pfam13175 AAA_15 AAA ATPase domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. 256 -338616 pfam13176 TPR_7 Tetratricopeptide repeat. 36 -338617 pfam13177 DNA_pol3_delta2 DNA polymerase III, delta subunit. DNA polymerase III, delta subunit (EC 2.7.7.7) is required for, along with delta' subunit, the assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. The delta subunit is also known as HolA. 160 -315769 pfam13178 DUF4005 Protein of unknown function (DUF4005). This is a C-terminal region of plant IQ-containing putative calmodulin-binding proteins. 88 -338618 pfam13179 DUF4006 Family of unknown function (DUF4006). This is a family of short, approx 65 residue-long, bacterial proteins of unknown function. 63 -315771 pfam13180 PDZ_2 PDZ domain. 74 -338619 pfam13181 TPR_8 Tetratricopeptide repeat. 33 -338620 pfam13182 DUF4007 Protein of unknown function (DUF4007). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 284 and 326 amino acids in length. This domain is found associated with pfam01507 in some proteins, suggesting a functional link. 287 -315774 pfam13183 Fer4_8 4Fe-4S dicluster domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters. 62 -315775 pfam13184 KH_5 NusA-like KH domain. 69 -338621 pfam13185 GAF_2 GAF domain. 122 -338622 pfam13186 SPASM Iron-sulfur cluster-binding domain. This domain occurs as an additional C-terminal iron-sulfur cluster binding domain in many radical SAM domain, pfam04055 proteins. The domain occurs in a number of proteins that modify a protein to become an active enzyme, or a peptide to become a ribosomal natural product. The domain is named SPASM because it occurs in the maturases of Subilitosin, PQQ, Anaerobic Sulfatases, and Mycofactocin. 65 -315778 pfam13187 Fer4_9 4Fe-4S dicluster domain. 50 -338623 pfam13188 PAS_8 PAS domain. 65 -338624 pfam13189 Cytidylate_kin2 Cytidylate kinase-like family. This family includes enzymes related to cytidylate kinase. 179 -315781 pfam13190 PDGLE PDGLE domain. This short presumed domain is usually found on its own. However, it is also found associated with pfam01891 suggesting it may have a role in cobalt uptake. The domain is named after a short motif found within many members of the family. 84 -338625 pfam13191 AAA_16 AAA ATPase domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. 167 -338626 pfam13192 Thioredoxin_3 Thioredoxin domain. 70 -338627 pfam13193 AMP-binding_C AMP-binding enzyme C-terminal domain. This is a small domain that is found C terminal to pfam00501. It has a central beta sheet core that is flanked by alpha helices. 76 -338628 pfam13194 DUF4010 Domain of unknown function (DUF4010). This is a family of putative membrane proteins found in archaea and bacteria. It is sometimes found C terminal to pfam02308. 209 -315786 pfam13195 DUF4011 Protein of unknown function (DUF4011). This family of proteins is found in archaea and bacteria. Many members are annotated as being putative DNA helicase-related proteins. 113 -315787 pfam13196 DUF4012 Protein of unknown function (DUF4012). This is a family of uncharacterized proteins found in archaea and bacteria. 144 -315788 pfam13197 DUF4013 Protein of unknown function (DUF4013). This is a family of uncharacterized proteins that is found in archaea and bacteria. 168 -338629 pfam13198 DUF4014 Protein of unknown function (DUF4014). This is a bacterial and viral family of uncharacterized proteins. 72 -315789 pfam13199 Glyco_hydro_66 Glycosyl hydrolase family 66. This family is a set of glycosyl hydrolase enzymes including cycloisomaltooligosaccharide glucanotransferase (EC:2.4.1.-) and dextranase (EC:3.2.1.11) activities. 549 -315790 pfam13200 DUF4015 Putative glycosyl hydrolase domain. This domain is related to other known glycosyl hydrolases suggesting this domain is also involved in carbohydrate break down. 313 -338630 pfam13201 PCMD Putative carbohydrate metabolism domain. This domain has been suggested to participate in carbohydrate metabolism. Structural evidence indicates that it might be a carbohydrate binding domain, with or without enzymatic activity. In particular, it has been hypothesized that it might act as a glycoside hydrolase. 231 -338631 pfam13202 EF-hand_5 EF hand. 25 -289946 pfam13203 DUF2201_N Putative metallopeptidase domain. This domain, found in various hypothetical bacterial proteins, has no known function. However, it is related to pfam01435. 270 -315793 pfam13204 DUF4038 Protein of unknown function (DUF4038). A family of putative cellulases. 320 -338632 pfam13205 Big_5 Bacterial Ig-like domain. 105 -315795 pfam13206 VSG_B Trypanosomal VSG domain. This family represents the B-type variant surface glycoproteins from trypanosomal parasites. This family is related to pfam00913. 351 -338633 pfam13207 AAA_17 AAA domain. 136 -315797 pfam13208 TerB_N TerB N-terminal domain. The TerB_N domain is found N-terminal to TerB, and TerB_C containing proteins. It has a predominantly alpha-helical structure and contains an absolutely conserved glutamate. The presence of a conserved acidic residue suggests that it might chelate metal like TerB. These proteins occur in a two-gene operon containing an AAA+ ATPase and SF-II DNA helicase suggesting a role in stress-response or phage defense. 204 -289952 pfam13209 DUF4017 Protein of unknown function (DUF4017). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 60 -315798 pfam13210 DUF4018 Domain of unknown function (DUF4018). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 190 amino acids in length. 192 -338634 pfam13211 DUF4019 Protein of unknown function (DUF4019). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 130 and 183 amino acids in length. There is a single completely conserved residue E that may be functionally important. 104 -315800 pfam13212 DUF4020 Domain of unknown function (DUF4020). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 176 and 195 amino acids in length. 174 -289956 pfam13213 DUF4021 Protein of unknown function (DUF4021). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved YGM sequence motif. 46 -289957 pfam13214 DUF4022 Protein of unknown function (DUF4022). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 73 and 85 amino acids in length. 77 -315801 pfam13215 DUF4023 Protein of unknown function (DUF4023). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There is a conserved KLP sequence motif. 34 -315802 pfam13216 DUF4024 Protein of unknown function (DUF4024). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There is a conserved RDE sequence motif. 35 -315803 pfam13217 DUF4025 Protein of unknown function (DUF4025). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved EGT sequence motif. 50 -338635 pfam13218 DUF4026 Protein of unknown function (DUF4026). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 450 amino acids in length. The family is found in association with pfam10077. 320 -315805 pfam13219 DUF4027 Protein of unknown function (DUF4027). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There is a conserved CLGGF sequence motif. 36 -289962 pfam13220 DUF4028 Protein of unknown function (DUF4028). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 67 and 93 amino acids in length. There are two conserved sequence motifs: IVKI and YVKKWF. 65 -289963 pfam13221 DUF4029 Protein of unknown function (DUF4029). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 95 and 119 amino acids in length. 96 -289964 pfam13222 DUF4030 Protein of unknown function (DUF4030). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 164 and 197 amino acids in length. 142 -338636 pfam13223 DUF4031 Protein of unknown function (DUF4031). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 91 and 130 amino acids in length. There is a conserved HYD sequence motif. 76 -315807 pfam13224 DUF4032 Domain of unknown function (DUF4032). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 170 amino acids in length. The family is found in association with pfam06293. 163 -315808 pfam13225 DUF4033 Domain of unknown function (DUF4033). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is approximately 80 amino acids in length. 88 -338637 pfam13226 DUF4034 Domain of unknown function (DUF4034). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 280 amino acids in length. There is a conserved PRW sequence motif. 274 -315810 pfam13227 DUF4035 Protein of unknown function (DUF4035). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 67 and 93 amino acids in length. 55 -315811 pfam13228 DUF4037 Domain of unknown function (DUF4037). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is approximately 100 amino acids in length. There is a single completely conserved residue P that may be functionally important. 90 -315812 pfam13229 Beta_helix Right handed beta helix region. This region contains a parallel beta helix region that shares some similarity with Pectate lyases. 157 -315813 pfam13230 GATase_4 Glutamine amidotransferases class-II. This family captures members that are not found in pfam00310. 272 -338638 pfam13231 PMT_2 Dolichyl-phosphate-mannose-protein mannosyltransferase. This family contains members that are not captured by pfam02366. 159 -315815 pfam13232 Complex1_LYR_1 Complex1_LYR-like. This is a family of proteins carrying the LYR motif of family Complex1_LYR, pfam05347, likely to be involved in Fe-S cluster biogenesis in mitochondria. 99 -338639 pfam13233 Complex1_LYR_2 Complex1_LYR-like. This is a family of proteins carrying the LYR motif of family Complex1_LYR, pfam05347, likely to be involved in Fe-S cluster biogenesis in mitochondria. 80 -338640 pfam13234 rRNA_proc-arch rRNA-processing arch domain. Mtr4 is the essential RNA helicase, and is an exosome-activating cofactor. This arch domain is carried in Mtr4 and Ski2 (the cytosolic homolog of Mtr4). The arch domain is required for proper 5.8S rRNA processing, and appears to function independently of canonical helicase activity. 187 -315818 pfam13236 CLU Clustered mitochondria. The CLU domain (CLUstered mitochondria) is a eukaryotic domain found in proteins from fungi, protozoa, plants to humans. It is required for correct functioning of the mitochondria and mitochondrial transport although the exact function of the domain is unknown. In Dictyostelium the full-length protein is required for a very late step in fission of the outer mitochondrial membrane suggesting that mitochondria are transported along microtubules, as in mammalian cells, rather than along actin filaments, as in budding yeast. Disruption of the protein-impaired cytokinesis and caused mitochondria to cluster at the cell centre. It is likely that CLU functions in a novel pathway that positions mitochondria within the cell based on their physiological state. Disruption of the CLU pathway may enhance oxidative damage, alter gene expression, cause mitochondria to cluster at microtubule plus ends, and lead eventually to mitochondrial failure. 221 -338641 pfam13237 Fer4_10 4Fe-4S dicluster domain. This family includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. The structure of the domain is an alpha-antiparallel beta sandwich. 56 -315820 pfam13238 AAA_18 AAA domain. 128 -338642 pfam13239 2TM 2TM domain. This short region contains two transmembrane alpha helices that are found associated with a wide range of other domains. This domain may be involved in cell lysis or peptidoglycan turnover. 80 -315822 pfam13240 zinc_ribbon_2 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR. pfam12773. 23 -338643 pfam13241 NAD_binding_7 Putative NAD(P)-binding. This domain is found in fungi, plants, archaea and bacteria. 104 -338644 pfam13242 Hydrolase_like HAD-hyrolase-like. 75 -315825 pfam13243 SQHop_cyclase_C Squalene-hopene cyclase C-terminal domain. Squalene-hopene cyclase, EC:5.4.99.17, catalyzes the cyclisation of squalene into hopene in bacteria. This reaction is part of a cationic cyclisation cascade, which is homologous to a key step in cholesterol biosynthesis. This family is the C-terminal half of the molecule. 319 -338645 pfam13244 DUF4040 Domain of unknown function (DUF4040). 67 -315827 pfam13245 AAA_19 AAA domain. 134 -338646 pfam13246 Cation_ATPase Cation transport ATPase (P-type). This domain is found in cation transport ATPases, including phospholipid-transporting ATPases, calcium-transporting ATPases, and sodium-potassium ATPases. 91 -338647 pfam13247 Fer4_11 4Fe-4S dicluster domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters. 100 -315830 pfam13248 zf-ribbon_3 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR. pfam12773. 26 -315831 pfam13249 SQHop_cyclase_N Squalene-hopene cyclase N-terminal domain. Squalene-hopene cyclase, EC:5.4.99.17, catalyzes the cyclisation of squalene into hopene in bacteria. This reaction is part of a cationic cyclisation cascade, which is homologous to a key step in cholesterol biosynthesis. This family is the N-terminal domain. 289 -338648 pfam13250 DUF4041 Domain of unknown function (DUF4041). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and viruses, and is approximately 60 amino acids in length. The family is found in association with pfam10544. 55 -338649 pfam13251 DUF4042 Domain of unknown function (DUF4042). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 180 amino acids in length. 180 -338650 pfam13252 DUF4043 Protein of unknown function (DUF4043). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 369 and 424 amino acids in length. There is a single completely conserved residue G that may be functionally important. 352 -338651 pfam13253 DUF4044 Protein of unknown function (DUF4044). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 42 and 56 amino acids in length. There is a single completely conserved residue M that may be functionally important. 33 -338652 pfam13254 DUF4045 Domain of unknown function (DUF4045). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is typically between 384 and 430 amino acids in length. 422 -315837 pfam13255 DUF4046 Protein of unknown function (DUF4046). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 64 and 331 amino acids in length. 90 -315838 pfam13256 DUF4047 Domain of unknown function (DUF4047). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 130 amino acids in length. There are two conserved sequence motifs: TEA and FPKT. 125 -315839 pfam13257 DUF4048 Domain of unknown function (DUF4048). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 228 and 257 amino acids in length. 249 -289998 pfam13258 DUF4049 Domain of unknown function (DUF4049). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 310 and 324 amino acids in length. 333 -338653 pfam13259 DUF4050 Protein of unknown function (DUF4050). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 173 amino acids in length. There are two conserved sequence motifs: IPL and FLVD. 122 -315841 pfam13260 DUF4051 Protein of unknown function (DUF4051). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 53 -315842 pfam13261 DUF4052 Protein of unknown function (DUF4052). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 220 amino acids in length. 217 -315843 pfam13262 DUF4054 Protein of unknown function (DUF4054). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 120 and 152 amino acids in length. 106 -315844 pfam13263 PHP_C PHP-associated. This is a subunit, probably the alpha, of bacterial and eukaryotic DNA polymerase III, associated with the PHP domain, pfam02811. 53 -338654 pfam13264 DUF4055 Domain of unknown function (DUF4055). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and viruses, and is approximately 140 amino acids in length. 135 -338655 pfam13265 DUF4056 Protein of unknown function (DUF4056). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 355 and 380 amino acids in length. 266 -315847 pfam13266 DUF4057 Protein of unknown function (DUF4057). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 279 and 322 amino acids in length. 300 -315848 pfam13267 DUF4058 Protein of unknown function (DUF4058). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 244 and 264 amino acids in length. 252 -338656 pfam13268 DUF4059 Protein of unknown function (DUF4059). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved DKT sequence motif. 72 -315850 pfam13269 DUF4060 Protein of unknown function (DUF4060). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. There are two conserved sequence motifs: VEVV and SYVAT. 73 -315851 pfam13270 DUF4061 Domain of unknown function (DUF4061). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 90 amino acids in length. There is a conserved AFG sequence motif. 88 -338657 pfam13271 DUF4062 Domain of unknown function (DUF4062). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 80 amino acids in length. There is a conserved SST sequence motif. 78 -315853 pfam13272 Holin_2-3 Putative 2/3 transmembrane domain holin. Holin_2-3 is a putative holins with 2 or 3 transmembrane segments. It consists of many proteobacterial proteins ranging in size from about 70 aas to 120 aas. They have 2 or 3 predicted TMSs. Although some are annotated as phage proteins or holins, none appears to be functionally characterized. 106 -338658 pfam13273 DUF4064 Protein of unknown function (DUF4064). 101 -338659 pfam13274 DUF4065 Protein of unknown function (DUF4065). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and viruses. Proteins in this family are typically between 155 and 202 amino acids in length. 91 -338660 pfam13275 S4_2 S4 domain. The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4. 65 -338661 pfam13276 HTH_21 HTH-like domain. This domain contains a predicted helix-turn-helix suggesting a DNA-binding function. 59 -338662 pfam13277 YmdB YmdB-like protein. This family of putative phosphoesterases contains the B. subtilis protein YmdB. 252 -315859 pfam13279 4HBT_2 Thioesterase-like superfamily. This family contains a wide variety of enzymes, principally thioesterases. These enzymes are part of the Hotdog fold superfamily. 121 -338663 pfam13280 WYL WYL domain. WYL is a Sm-like SH3 beta-barrel fold containing domain. It is a member of the WYL-like superfamily, named for three conserved amino acids found in a subset of the superfamily. However, these residues are not strongly conserved throughout the family. Rather, the conservation pattern includes four basic residues and a position often occupied by a cysteine, which are predicted to line a ligand-binding groove typical of the Sm-like SH3 beta-barrels. A WYL domain protein (sll7009) is a negative regulator of the I-D CRISPR-Cas system in Synechocystis sp. It is predicted to be a ligand-sensing domain that could bind negatively charged ligands, such as nucleotides or nucleic acid fragments, to regulate CRISPR-Cas and other defense systems such as the abortive infection AbiG system. 172 -338664 pfam13281 DUF4071 Domain of unknown function (DUF4071). This domain is found at the N-terminus of many serine-threonine kinase-like proteins. 369 -338665 pfam13282 DUF4070 Domain of unknown function (DUF4070). This is a bacterial domain often found at the C-terminus of Radical_SAM methylases. 142 -315863 pfam13283 NfrA_C Bacteriophage N adsorption protein A C-term. The function of this domain is unknown but it is found at the C-terminus of bacteriophage N4 adsorption protein A, in association with an N-terminal region of TPR repeats. 173 -338666 pfam13284 DUF4072 Domain of unknown function (DUF4072). This short domain is normally found at the very N-terminus of Hyrdrolases pfam00702. 47 -290024 pfam13285 DUF4073 Domain of unknown function (DUF4073). This family is frequently found at the C-terminus of bacterial proteins carrying the family, Metallophos pfam00149. 157 -338667 pfam13286 HD_assoc Phosphohydrolase-associated domain. This domain is found on bacterial and archaeal metal-dependent phosphohydrolases. 91 -315865 pfam13287 Fn3_assoc Fn3 associated. 59 -338668 pfam13288 DXPR_C DXP reductoisomerase C-terminal domain. This is the C-terminal domain of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase enzyme. This domain forms a left handed super-helix. 113 -315867 pfam13289 SIR2_2 SIR2-like domain. This family of proteins are related to the sirtuins. 141 -315868 pfam13290 CHB_HEX_C_1 Chitobiase/beta-hexosaminidase C-terminal domain. 67 -338669 pfam13291 ACT_4 ACT domain. ACT domains bind to amino acids and regulate associated enzyme domains. These ACT domains are found at the C-terminus of the RelA protein. 79 -338670 pfam13292 DXP_synthase_N 1-deoxy-D-xylulose-5-phosphate synthase. This family contains 1-deoxyxylulose-5-phosphate synthase (DXP synthase), an enzyme which catalyzes the thiamine pyrophosphoate-dependent acyloin condensation reaction between carbon atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate, to yield 1-deoxy-D- xylulose-5-phosphate, a precursor in the biosynthetic pathway to isoprenoids, thiamine (vitamin B1), and pyridoxol (vitamin B6). 273 -315871 pfam13293 DUF4074 Domain of unknown function (DUF4074). This family is found at the C-terminal of Homeobox proteins in Metazoa. 63 -290033 pfam13294 DUF4075 Domain of unknown function (DUF4075). The members of this family are putative mature parasite-infected erythrocyte surface antigen protein from Bacillus spp. 79 -290034 pfam13295 DUF4077 Domain of unknown function (DUF4077). This is the N-terminal region of methyl-accepting chemotaxis proteins from Bacillus spp. The function is not known. 176 -338671 pfam13296 T6SS_Vgr Putative type VI secretion system Rhs element Vgr. This is a family of putative type VI secretion system Rhs element Vgr proteins from Proteobacteria. 108 -315873 pfam13297 Telomere_Sde2_2 Telomere stability C-terminal. This short C-terminal domain is found in higher eukaryotes further downstream from the Sde2 family, pfam13019. It is found in all Sde2-related proteins except those from fission yeast, fly, and mosquito. Its exact function in telomere formation and maintenance has not yet been established. 60 -315874 pfam13298 LigD_N DNA polymerase Ligase (LigD). This is the N terminal region of ATP dependant DNA ligase. 104 -338672 pfam13299 CPSF100_C Cleavage and polyadenylation factor 2 C-terminal. This family lies at the C-terminus of many fungal and plant cleavage and polyadenylation specificity factor subunit 2 proteins. The exact function of the domain is not known, but is likely to function as a binding domain for the protein within the overall CPSF complex. 156 -315876 pfam13300 DUF4078 Domain of unknown function (DUF4078). This family is found from fungi to humans, but its exact function is not known. 80 -315877 pfam13301 DUF4079 Protein of unknown function (DUF4079). This is an uncharacterized family of proteins. 141 -315878 pfam13302 Acetyltransf_3 Acetyltransferase (GNAT) domain. This domain catalyzes N-acetyltransferase reactions. 139 -315879 pfam13303 PTS_EIIC_2 Phosphotransferase system, EIIC. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The sugar-specific permease of the PTS consists of three domains (IIA, IIB and IIC). The IIC domain catalyzes the transfer of a phosphoryl group from IIB to the sugar substrate. 327 -315880 pfam13304 AAA_21 AAA domain, putative AbiEii toxin, Type IV TA system. Several members are annotated as being of the abortive phage resistance system, in which case the family would be acting as the toxin for a type IV toxin-antitoxin resistance system. 303 -338673 pfam13305 WHG WHG domain. This presumed domain is around 80 amino acids in length. It is found to the C-terminus of a DNA-binding helix-turn-helix domain. This domain may be involved in binding to an as yet unknown ligand that allows a transcriptional regulation response to that molecule. The domain is named WHG after three conserved residues near the C-terminus of the domain. 81 -315882 pfam13306 LRR_5 Leucine rich repeats (6 copies). This family includes a number of leucine rich repeats. This family contains a large number of BSPA-like surface antigens from Trichomonas vaginalis. 127 -338674 pfam13307 Helicase_C_2 Helicase C-terminal domain. This domain is found at the C-terminus of DEAD-box helicases. 168 -315884 pfam13308 YARHG YARHG domain. This presumed extracellular domain is about 70 amino acids in length. It is named YARHG after a conserved motif in the sequence. This domain is associated with peptidases and bacterial kinase proteins. Its molecular function is unknown. 77 -338675 pfam13309 HTH_22 HTH domain. This domain is a helix-turn-helix domain that is likely to act as a DNA-binding domain. 63 -338676 pfam13310 Virulence_RhuM Virulence protein RhuM family. There are currently no experimental data for members of this group or their homologs. However, these proteins are implicated in virulence/pathogenicity because RhuM is encoded in the SPI-3 pathogenicity island in Salmonella typhimurium. 252 -315887 pfam13311 DUF4080 Protein of unknown function (DUF4080). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. 188 -315888 pfam13312 DUF4081 Domain of unknown function (DUF4081). This domain is often found N-terminal to the GNAT acetyltransferase domain, pfam00583 and FR47, pfam08445. 97 -338677 pfam13313 DUF4082 Domain of unknown function (DUF4082). This family appears to be a parallel beta-helix repeated region that sits between successive Cadherin domains, pfam00028. 148 -290053 pfam13314 DUF4083 Domain of unknown function (DUF4083). This is a family of very short, approximately 60 residue, proteins from Firmicutes, that are all putatively annotated as being MutT/Nudix. However, the characteristic Nudix motif of GX(5)EX(7)REUXEE is absent. 57 -290054 pfam13315 DUF4085 Protein of unknown function (DUF4085). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 101 and 269 amino acids in length. 205 -315890 pfam13316 DUF4087 Protein of unknown function (DUF4087). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 140 and 280 amino acids in length. There is a conserved RCGW sequence motif. 94 -290056 pfam13317 DUF4088 Protein of unknown function (DUF4088). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 258 and 300 amino acids in length. 226 -315891 pfam13318 DUF4089 Protein of unknown function (DUF4089). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 50 -290058 pfam13319 DUF4090 Protein of unknown function (DUF4090). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 84 -338678 pfam13320 DUF4091 Domain of unknown function (DUF4091). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 70 amino acids in length. There is a single completely conserved residue G that may be functionally important. 66 -290060 pfam13321 DUF4084 Domain of unknown function (DUF4084). This family of Firmicute proteins is frequently associated with the EAL, GGDEF and PAS families, pfam00563, pfam00990, and pfam00989. The exact function is not known. 304 -290061 pfam13322 DUF4092 Domain of unknown function (DUF4092). This family is found in Proteobacteria. The function is not known. 176 -315893 pfam13323 HPIH N-terminal domain with HPIH motif. This family is found in fungi on proteins carrying the PAS, pfam00989, domain. There is a well-conserved characteristic HPIH motif, but the function is not known. 153 -315894 pfam13324 GCIP Grap2 and cyclin-D-interacting. GCIP, or Grap2 and cyclin-D-interacting protein, is found in eukaryotes, and in the human protein CCNDBP1, residues 149-190 constitute a helix-loop-helix domain, residues 190-240 an acidic region, and 240-261 a leucine zipper domain. GCIP interacts with full-length Grap2 protein and with the COOH-terminal unique and SH3 domains (designated QC domain) of Grap2. It is potentially involved in the regulation of cell differentiation and proliferation through Grap2 and cyclin D-mediated signalling pathways. In mice, it is involved in G1/S-phase progression of hepatocytes, which in older animals is associated with the development of liver tumors. In vitro it acts as an inhibitory HLH protein, for example, blocking transcription of the HNF-4 promoter. In its function as a cyclin D1-binding protein it is able to reduce CDK4-mediated phosphorylation of the retinoblastoma protein and to inhibit E2F-mediated transcriptional activity. GCIP has also been shown to have interact physically with Rad (Ras associated with diabetes), Rad being important in regulating cellular senescence. 262 -315895 pfam13325 MCRS_N N-terminal region of micro-spherule protein. This domain is found in plants and higher eukaryotes, and is the N-terminal region of micro-spherule proteins which repress the transactivation activities of Nrf1 (p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1). In conjunction with DIPA the full-length protein acts as a transcription repressor. The exact function of the region is not known. 199 -338679 pfam13326 PSII_Pbs27 Photosystem II Pbs27. This family of proteins contains Pbs27, a highly conserved component of photosystem II. Pbs27 is comprised of four helices arranged in a right handed up-down-up-down fold, with a less ordered region located at the N-terminus. 141 -315897 pfam13327 T3SS_LEE_assoc Type III secretion system subunit. This is a family of bacterial putative type III secretion apparatus proteins associated with the locus of enterocyte effacement (LEE). 162 -315898 pfam13328 HD_4 HD domain. HD domains are metal dependent phosphohydrolases. 154 -315899 pfam13329 ATG2_CAD Autophagy-related protein 2 CAD motif. The Atg2 protein, an integral membrane protein, is required for a range of functions including the regulation of autophagy in conjunction with the Atg1-Atg13 complex. Atg2 binds Atg9. The precise function of this region, with its characteristic highly conserved CAD sequence motif, is not known. 155 -315900 pfam13330 Mucin2_WxxW Mucin-2 protein WxxW repeating region. This family is repeating region found on mucins 2 and 5. The function is not known, but the repeat can be present in up to 32 copies, as in an uncharacterized protein from Branchiostoma floridae. The region carries a highly conserved WxxW sequence motif and also has at least six well conserved cysteine residues. 85 -338680 pfam13331 DUF4093 Domain of unknown function (DUF4093). This domain lies at the C-terminus of primase proteins carrying the TOPRIM, pfam01751, domain. The exact function of the domain is not known. 85 -338681 pfam13332 Fil_haemagg_2 Haemagluttinin repeat. 169 -338682 pfam13333 rve_2 Integrase core domain. 52 -338683 pfam13334 DUF4094 Domain of unknown function (DUF4094). This domain is found in plant proteins that often carry a galactosyltransferase domain, pfam01762, at their C-terminus. 78 -338684 pfam13335 Mg_chelatase_C Magnesium chelatase, subunit ChlI C-terminal. This is a family of the C-terminal of putative bacterial magnesium chelatase subunit ChlI proteins. Most members have the associated pfam01078. 94 -338685 pfam13336 AcetylCoA_hyd_C Acetyl-CoA hydrolase/transferase C-terminal domain. This family contains several enzymes which take part in pathways involving acetyl-CoA. Acetyl-CoA hydrolase EC:3.1.2.1 catalyzes the formation of acetate from acetyl-CoA, CoA transferase (CAT1) EC:2.8.3.- produces succinyl-CoA, and acetate-CoA transferase EC:2.8.3.8 utilizes acyl-CoA and acetate to form acetyl-CoA. 153 -338686 pfam13337 Lon_2 Putative ATP-dependent Lon protease. This is a family of proteins that are annotated as ATP-dependent Lon proteases. 450 -315907 pfam13338 AbiEi_4 Transcriptional regulator, AbiEi antitoxin. AbiEi_4 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 49 -338687 pfam13339 AATF-Che1 Apoptosis antagonizing transcription factor. The N-terminal and leucine-zipper region of the apoptosis antagonizing transcription factor-Che1. 131 -338688 pfam13340 DUF4096 Putative transposase of IS4/5 family (DUF4096). 75 -315910 pfam13341 RAG2_PHD RAG2 PHD domain. This domain is found at the C-terminus of the RAG2 protein. The structure of this domain has been shown bound to histone H3 trimethylated at lysine 4 (H3K4me3). 78 -338689 pfam13342 Toprim_Crpt C-terminal repeat of topoisomerase. 60 -338690 pfam13343 SBP_bac_6 Bacterial extracellular solute-binding protein. This family includes bacterial extracellular solute-binding proteins. 239 -338691 pfam13344 Hydrolase_6 Haloacid dehalogenase-like hydrolase. This family is part of the HAD superfamily. 101 -315914 pfam13346 ABC2_membrane_5 ABC-2 family transporter protein. This family is related to the ABC-2 membrane transporter family pfam01061. 206 -315915 pfam13347 MFS_2 MFS/sugar transport protein. This family is part of the major facilitator superfamily of membrane transport proteins. 426 -338692 pfam13349 DUF4097 Putative adhesin. This has a putative all-beta structure with a twenty-residue repeat with a highly conserved repeating GD, gly-asp, motif. It may form part of a bacterial adhesin. 249 -338693 pfam13350 Y_phosphatase3 Tyrosine phosphatase family. This family is closely related to the pfam00102 and pfam00782 families. 240 -338694 pfam13351 DUF4099 Protein of unknown function (DUF4099). A family of uncharacterized proteins found by clustering human gut metagenomic sequences. The C-terminal repeat region of this family is DUF4098, pfam13345. 81 -290090 pfam13352 DUF4100 Protein of unknown function (DUF4100). This is a family of uncharacterized proteins found in Physcomitrella. 205 -338695 pfam13353 Fer4_12 4Fe-4S single cluster domain. This family includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. The structure of the domain is an alpha-antiparallel beta sandwich. 140 -338696 pfam13354 Beta-lactamase2 Beta-lactamase enzyme family. This family is closely related to Beta-lactamase, pfam00144, the serine beta-lactamase-like superfamily, which contains the distantly related pfam00905 and PF00768 D-alanyl-D-alanine carboxypeptidase. 199 -315921 pfam13355 DUF4101 Protein of unknown function (DUF4101). This is a family of uncharacterized proteins, and is sometimes found in combination with pfam00226. 117 -338697 pfam13356 Arm-DNA-bind_3 Arm DNA-binding domain. This DNA-binding domain is found at the N-terminus of a wide variety of phage integrase proteins. 78 -315923 pfam13358 DDE_3 DDE superfamily endonuclease. This family of proteins are related to pfam00665 and are probably endonucleases of the DDE superfamily. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 145 -338698 pfam13359 DDE_Tnp_4 DDE superfamily endonuclease. This family of proteins are related to pfam00665 and are probably endonucleases of the DDE superfamily. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 154 -338699 pfam13360 PQQ_2 PQQ-like domain. This domain contains several repeats of the PQQ repeat. 235 -315926 pfam13361 UvrD_C UvrD-like helicase C-terminal domain. This domain is found at the C-terminus of a wide variety of helicase enzymes. This domain has a AAA-like structural fold. 519 -315927 pfam13362 Toprim_3 Toprim domain. The toprim domain is found in a wide variety of enzymes involved in nucleic acid manipulation. 95 -338700 pfam13363 BetaGal_dom3 Beta-galactosidase, domain 3. This is the second domain of the five-domain beta-galactosidase enzyme that altogether catalyzes the hydrolysis of beta(1-3) and beta(1-4) galactosyl bonds in oligosaccharides as well as the inverse reaction of enzymatic condensation and trans-glycosylation. This domain has an Ig-like fold. 65 -315929 pfam13364 BetaGal_dom4_5 Beta-galactosidase jelly roll domain. This domain is found in beta galactosidase enzymes. It has a jelly roll fold. 112 -338701 pfam13365 Trypsin_2 Trypsin-like peptidase domain. This family includes trypsin-like peptidase domains. 135 -338702 pfam13366 PDDEXK_3 PD-(D/E)XK nuclease superfamily. Members of this family belong to the PD-(D/E)XK nuclease superfamily 116 -315932 pfam13367 PrsW-protease Protease prsW family. This is a family of putative peptidases, possibly belonging to the MEROPS M79 family. PrsW, appears to be a member of a widespread family of membrane proteins that includes at least one previously known protease. PrsW appears to be responsible for Site-1 cleavage of the RsiW anti-sigma factor, the cognate anti-sigma factor, and it senses antimicrobial peptides that damage the cell membrane and other agents that cause cell envelope stress, The three acidic residues, E75, E76 and E95 in Aflv_1074, appear to be crucial since their mutation to alanine renders the protein inactive. Based on predictions of the bioinformatics programme TMHMM it is likely that these residues are located on the extracytoplasmic face of PrsW placing them in a position to act as a sensor for cell envelope stress. 195 -338703 pfam13368 Toprim_C_rpt Topoisomerase C-terminal repeat. This domain is repeated up to five times to form the C-terminal region of bacterial topoisomerase immediately downstream of the zinc-finger motif. 54 -338704 pfam13369 Transglut_core2 Transglutaminase-like superfamily. 155 -338705 pfam13370 Fer4_13 4Fe-4S single cluster domain of Ferredoxin I. Fer4_13 is a ferredoxin I from sulfate-reducing bacteria. Chemical sequence analysis suggests that this characteristic [4Fe-4S] cluster sulfur environment is widely distributed among ferredoxins. 58 -338706 pfam13371 TPR_9 Tetratricopeptide repeat. 73 -315937 pfam13372 Alginate_exp Alginate export. This domain forms an 18-stranded beta-barrel pore which is likely to act as an alginate export channel. 396 -315938 pfam13373 DUF2407_C DUF2407 C-terminal domain. This is a family of proteins found in fungi. The function is not known. There is a characteristic GFDRL sequence motif. 135 -315939 pfam13374 TPR_10 Tetratricopeptide repeat. 42 -338707 pfam13375 RnfC_N RnfC Barrel sandwich hybrid domain. This domain is part of the barrel sandwich hybrid superfamily. It is found at the N-terminus of the RnfC Electron transport complex protein. It appears to be most related to the N-terminal NQRA domain (pfam05896). 101 -338708 pfam13376 OmdA Bacteriocin-protection, YdeI or OmpD-Associated. This is a family of archaeal and bacterial proteins predicted to be periplasmic. YdeI is important for resistance to polymyxin B in broth and for bacterial survival in mice upon oral, but not intraperitoneal inoculation, suggesting a role for YdeI in the gastrointestinal tract of mice. Production of the ydeI gene is regulated by the Rcs (regulator of capsule synthesis) phospho-relay system pathway independently of RcsA, and additionally transcription of the protein is regulated by the stationary-phase sigma factor, RpoS (sigma-S). YdeI confers protection against cationic AMPs (Antimicrobial peptides) or bacteriocins in conjunction with the general porin Omp, thus justifying its name of OmdA, for OmpD-Associated protein. 58 -315942 pfam13377 Peripla_BP_3 Periplasmic binding protein-like domain. Thi domain is found in a variety of transcriptional regulatory proteins. It is related to bacterial periplasmic binding proteins, although this domain is unlikely to be found in the periplasm. This domain likely acts to bind a small molecule ligand that the DNA-binding domain responds to. 160 -338709 pfam13378 MR_MLE_C Enolase C-terminal domain-like. This domain appears at the C-terminus of many of the proteins that carry the MR_MLE_N pfam02746 domain. EC:4.2.1.40. 202 -338710 pfam13379 NMT1_2 NMT1-like family. This family is closely related to the pfam09084 family. 252 -338711 pfam13380 CoA_binding_2 CoA binding domain. This domain has a Rossmann fold and is found in a number of proteins including succinyl CoA synthetases, malate and ATP-citrate ligases. 115 -338712 pfam13382 Adenine_deam_C Adenine deaminase C-terminal domain. This family represents a C-terminal region of the adenine deaminase enzyme. 167 -315947 pfam13383 Methyltransf_22 Methyltransferase domain. This family appears to be a methyltransferase domain. 245 -338713 pfam13384 HTH_23 Homeodomain-like domain. 50 -338714 pfam13385 Laminin_G_3 Concanavalin A-like lectin/glucanases superfamily. This domain belongs to the Concanavalin A-like lectin/glucanases superfamily. 152 -338715 pfam13386 DsbD_2 Cytochrome C biogenesis protein transmembrane region. 203 -338716 pfam13387 DUF4105 Domain of unknown function (DUF4105). This is a family of uncharacterized bacterial proteins. There is a highly conserved histidine residue and a well-conserved NCT motif. 160 -315952 pfam13388 DUF4106 Protein of unknown function (DUF4106). This family of proteins are found in large numbers in the Trichomonas vaginalis proteome. The function of this protein is unknown. 420 -315953 pfam13389 DUF4107 Protein of unknown function (DUF4107). This family of putative proteins are found in Trichomonas vaginalis in large numbers. The function of this protein is unknown. 160 -290126 pfam13390 DUF4108 Protein of unknown function (DUF4108). This family of putative proteins are found in Trichomonas vaginalis in large numbers. The function of this protein is unknown. 145 -338717 pfam13391 HNH_2 HNH endonuclease. 64 -315955 pfam13392 HNH_3 HNH endonuclease. This is a zinc-binding loop of Fold group 7 as found in endo-deoxy-ribonucleases and HNH nucleases. 46 -338718 pfam13393 tRNA-synt_His Histidyl-tRNA synthetase. This is a family of class II aminoacyl-tRNA synthetase-like and ATP phosphoribosyltransferase regulatory subunits. 309 -315957 pfam13394 Fer4_14 4Fe-4S single cluster domain. 115 -338719 pfam13395 HNH_4 HNH endonuclease. This HNH nuclease domain is found in CRISPR-related proteins. 54 -338720 pfam13396 PLDc_N Phospholipase_D-nuclease N-terminal. This family is often found at the very N-terminus of proteins from the phospholipase_D-nuclease family, PLDc, pfam00614. However, a large number of members are full-length within this family. 43 -315960 pfam13397 RbpA RNA polymerase-binding protein. RbpA is a family bacterial RNA polymerase-binding proteins. RbpA acts as a transcription factor by binding to the sigma subunit of RNA polymerase. 103 -315961 pfam13398 Peptidase_M50B Peptidase M50B-like. This is a family of bacterial and plant peptidases in the same family as MEROPS:M50B. 194 -315962 pfam13399 LytR_C LytR cell envelope-related transcriptional attenuator. This family appears at the C-terminus of members of the LytR_cpsA_psr, pfam03816, family 85 -315963 pfam13400 Tad Putative Flp pilus-assembly TadE/G-like. This is an N-terminal domain on a family of putative Flp pilus-assembly proteins. The exact function is not known. The Flp-pilus biogenesis genes include the Tad genes, and some members of this family are putatively assigned as being TadG. 47 -315964 pfam13401 AAA_22 AAA domain. 128 -338721 pfam13402 Peptidase_M60 Peptidase M60, enhancin and enhancin-like. This family of peptidases contains a zinc metallopeptidase motif (HEXXHX(8,28)E) and possesses mucinase activity. It includes the viral enhancins as well as enhancin-like peptidases from bacterial species. Enhancins are a class of metalloproteases found in some baculoviruses that enhance viral infection by degrading the peritrophic membrane (PM) of the insect midgut. Bacterial enhancins are found to be cytotoxic when compared to viral enhancin, however, suggesting that the bacterial enhancins do not enhance infection in the same way as viral enhancin. Bacterial enhancins may have evolved a distinct biochemical function. These bacterial domains are peptidases targetting host glycoproteins and thus probably play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. This family has been augmented by a merge with the sequences in the Enhancin Pfam family. 274 -315966 pfam13403 Hint_2 Hint domain. This domain is found in inteins. 147 -338722 pfam13404 HTH_AsnC-type AsnC-type helix-turn-helix domain. 41 -338723 pfam13405 EF-hand_6 EF-hand domain. 30 -315969 pfam13406 SLT_2 Transglycosylase SLT domain. This family is related to the SLT domain pfam01464. 292 -315970 pfam13407 Peripla_BP_4 Periplasmic binding protein domain. This domain is found in a variety of bacterial periplasmic binding proteins. 259 -315971 pfam13408 Zn_ribbon_recom Recombinase zinc beta ribbon domain. This short bacterial protein contains a zinc ribbon domain that is likely to be DNA-binding. This domain is found in site specific recombinase proteins. This family appears most closely related to pfam04606. 58 -338724 pfam13409 GST_N_2 Glutathione S-transferase, N-terminal domain. This family is closely related to pfam02798. 67 -338725 pfam13410 GST_C_2 Glutathione S-transferase, C-terminal domain. This domain is closely related to pfam00043. 66 -338726 pfam13411 MerR_1 MerR HTH family regulatory protein. 67 -338727 pfam13412 HTH_24 Winged helix-turn-helix DNA-binding. 45 -338728 pfam13413 HTH_25 Helix-turn-helix domain. This domain is a helix-turn-helix domain that probably binds to DNA. 62 -315977 pfam13414 TPR_11 TPR repeat. 42 -338729 pfam13415 Kelch_3 Galactose oxidase, central domain. 48 -338730 pfam13416 SBP_bac_8 Bacterial extracellular solute-binding protein. This family includes bacterial extracellular solute-binding proteins. 282 -338731 pfam13417 GST_N_3 Glutathione S-transferase, N-terminal domain. 73 -338732 pfam13418 Kelch_4 Galactose oxidase, central domain. 49 -315982 pfam13419 HAD_2 Haloacid dehalogenase-like hydrolase. 178 -315983 pfam13420 Acetyltransf_4 Acetyltransferase (GNAT) domain. 155 -315984 pfam13421 Band_7_1 SPFH domain-Band 7 family. 211 -315985 pfam13422 DUF4110 Domain of unknown function (DUF4110). This is a family that is found predominantly at the C-terminus of Kelch-containing proteins. However, the exact function of this region is not known. 96 -315986 pfam13423 UCH_1 Ubiquitin carboxyl-terminal hydrolase. 295 -315987 pfam13424 TPR_12 Tetratricopeptide repeat. 77 -315988 pfam13425 O-antigen_lig O-antigen ligase like membrane protein. 463 -338733 pfam13426 PAS_9 PAS domain. 102 -338734 pfam13427 DUF4111 Domain of unknown function (DUF4111). Although the exact function of this domain is not known it frequently appears downstream of the family Nucleotidyltransferase, pfam01909. It is also found in species associated with methicillin-resistant bacteria. 102 -338735 pfam13428 TPR_14 Tetratricopeptide repeat. 44 -315992 pfam13429 TPR_15 Tetratricopeptide repeat. 279 -338736 pfam13430 DUF4112 Domain of unknown function (DUF4112). This family has several highly conserved GD sequence-motifs of unknown function. The family is found in bacteria, archaea and fungi. 103 -338737 pfam13431 TPR_17 Tetratricopeptide repeat. 33 -338738 pfam13432 TPR_16 Tetratricopeptide repeat. This family is found predominantly at the C-terminus of transglutaminase enzyme core regions. 65 -315996 pfam13433 Peripla_BP_5 Periplasmic binding protein domain. This domain is found in a variety of bacterial periplasmic binding proteins. 363 -338739 pfam13434 K_oxygenase L-lysine 6-monooxygenase (NADPH-requiring). This is family of Rossmann fold oxidoreductases that catalyzes the NADPH-dependent hydroxylation of lysine at the N6 position, EC:1.14.13.59. 337 -338740 pfam13435 Cytochrome_C554 Cytochrome c554 and c-prime. This family is a tetra-haem cytochrome involved in the oxidation of ammonia. It is found in both phototrophic and denitrifying bacteria. 81 -315999 pfam13436 Gly-zipper_OmpA Glycine-zipper domain. 44 -338741 pfam13437 HlyD_3 HlyD family secretion protein. This is a family of largely bacterial haemolysin translocator HlyD proteins. 104 -338742 pfam13438 DUF4113 Domain of unknown function (DUF4113). Although the function is not known this domain occurs almost invariably at the very C-terminus of the IMS family DNA-polymerase repair proteins, IMS, pfam00817. 49 -338743 pfam13439 Glyco_transf_4 Glycosyltransferase Family 4. 168 -316003 pfam13440 Polysacc_synt_3 Polysaccharide biosynthesis protein. 293 -338744 pfam13441 Gly-zipper_YMGG YMGG-like Gly-zipper. 45 -338745 pfam13442 Cytochrome_CBB3 Cytochrome C oxidase, cbb3-type, subunit III. 67 -316006 pfam13443 HTH_26 Cro/C1-type HTH DNA-binding domain. This is a helix-turn-helix domain that probably binds to DNA. 63 -338746 pfam13444 Acetyltransf_5 Acetyltransferase (GNAT) domain. This family contains proteins with N-acetyltransferase functions. 102 -338747 pfam13445 zf-RING_UBOX RING-type zinc-finger. This zinc-finger is a typical RING-type of plant ubiquitin ligases. 38 -316009 pfam13446 RPT A repeated domain in UCH-protein. This is a repeated domain found in de-ubiquitinating proteins. It's exact function is not known although it is likely to be involved in the binding of the Ubps in the complex with Rsp5 and Rup1. 59 -290183 pfam13447 Multi-haem_cyto Seven times multi-haem cytochrome CxxCH. This domain carries up to seven CxxCH repeated sequence motifs, characteristic of multi-haem cytochromes. 269 -338748 pfam13448 DUF4114 Domain of unknown function (DUF4114). This is a repeated domain that is found towards the C-terminal of many different types of bacterial proteins. There are highly conserved glutamate and aspartate residues suggesting that this domain might carry enzymic activity. 81 -338749 pfam13449 Phytase-like Esterase-like activity of phytase. This is a repeated domain that carries several highly conserved Glu and Asp residues indicating the likelihood that the domain incorporates the enzymic activity of the PLC-like phospho-diesterase part of the proteins. 279 -316012 pfam13450 NAD_binding_8 NAD(P)-binding Rossmann-like domain. 66 -338750 pfam13451 zf-trcl Probable zinc-ribbon domain. This is a probable zinc-binding domain with two CxxC sequence motifs, found in various families of bacteria. 45 -338751 pfam13452 MaoC_dehydrat_N N-terminal half of MaoC dehydratase. It is clear from the structures of bacterial members of MaoC dehydratase, pfam01575, that the full-length functional dehydratase enzyme is made up of two structures that dimerize to form a whole. Divergence of the N- and C- monomers in higher eukaryotes has led to two distinct domains, this one and MaoC_dehydratas. However, in order to function as an enzyme both are required together. 129 -338752 pfam13453 zf-TFIIB Transcription factor zinc-finger. 41 -338753 pfam13454 NAD_binding_9 FAD-NAD(P)-binding. 156 -338754 pfam13455 MUG113 Meiotically up-regulated gene 113. This is a family of fungal proteins found to be up-regulated in meiosis. 73 -338755 pfam13456 RVT_3 Reverse transcriptase-like. This domain is found in plants and appears to be part of a retrotransposon. 123 -316019 pfam13457 SH3_8 SH3-like domain. 75 -338756 pfam13458 Peripla_BP_6 Periplasmic binding protein. This family includes a diverse range of periplasmic binding proteins. 338 -316021 pfam13459 Fer4_15 4Fe-4S single cluster domain. 65 -338757 pfam13460 NAD_binding_10 NAD(P)H-binding. 183 -316023 pfam13462 Thioredoxin_4 Thioredoxin. 165 -316024 pfam13463 HTH_27 Winged helix DNA-binding domain. 68 -338758 pfam13464 DUF4115 Domain of unknown function (DUF4115). This short domain is often found at the C-terminus of proteins containing a helix-turn-helix domain. The function of this domain is unknown. 68 -338759 pfam13465 zf-H2C2_2 Zinc-finger double domain. 26 -316027 pfam13466 STAS_2 STAS domain. The STAS (after Sulphate Transporter and AntiSigma factor antagonist) domain is found in the C-terminal region of Sulphate transporters and bacterial antisigma factor antagonists. It has been suggested that this domain may have a general NTP binding function. 80 -338760 pfam13467 RHH_4 Ribbon-helix-helix domain. This short bacterial protein contains a ribbon-helix-helix domain that is likely to be DNA-binding. 64 -338761 pfam13468 Glyoxalase_3 Glyoxalase-like domain. This domain is related to the Glyoxalase domain pfam00903. 174 -338762 pfam13469 Sulfotransfer_3 Sulfotransferase family. 212 -338763 pfam13470 PIN_3 PIN domain. Members of this family of bacterial domains are predicted to be RNases (from similarities to 5'-exonucleases). 117 -316032 pfam13471 Transglut_core3 Transglutaminase-like superfamily. This family includes uncharacterized proteins that are related to the transglutaminase like domain pfam01841. 117 -338764 pfam13472 Lipase_GDSL_2 GDSL-like Lipase/Acylhydrolase family. This family of presumed lipases and related enzymes are similar to pfam00657. 126 -316034 pfam13473 Cupredoxin_1 Cupredoxin-like domain. The cupredoxin-like fold consists of a beta-sandwich with 7 strands in 2 beta-sheets, which is arranged in a Greek-key beta-barrel. 104 -338765 pfam13474 SnoaL_3 SnoaL-like domain. This family contains a large number of proteins that share the SnoaL fold. 121 -316036 pfam13475 DUF4116 Domain of unknown function (DUF4116). 49 -338766 pfam13476 AAA_23 AAA domain. 198 -316038 pfam13477 Glyco_trans_4_2 Glycosyl transferase 4-like. 139 -338767 pfam13478 XdhC_C XdhC Rossmann domain. This entry is the rossmann domain found in the Xanthine dehydrogenase accessory protein. 141 -316040 pfam13479 AAA_24 AAA domain. This AAA domain is found in a wide variety of presumed phage proteins. 195 -316041 pfam13480 Acetyltransf_6 Acetyltransferase (GNAT) domain. This family contains proteins with N-acetyltransferase functions. 143 -316042 pfam13481 AAA_25 AAA domain. This AAA domain is found in a wide variety of presumed DNA repair proteins. 194 -316043 pfam13482 RNase_H_2 RNase_H superfamily. 164 -316044 pfam13483 Lactamase_B_3 Beta-lactamase superfamily domain. This family is part of the beta-lactamase superfamily and is related to pfam00753. 160 -338768 pfam13484 Fer4_16 4Fe-4S double cluster binding domain. 65 -290220 pfam13485 Peptidase_MA_2 Peptidase MA superfamily. 247 -316046 pfam13486 Dehalogenase Reductive dehalogenase subunit. This family is most frequently associated with a Fer4 iron-sulfur cluster towards the C-terminal region. 290 -338769 pfam13487 HD_5 HD domain. HD domains are metal dependent phosphohydrolases. 64 -338770 pfam13488 Gly-zipper_Omp Glycine zipper. 46 -338771 pfam13489 Methyltransf_23 Methyltransferase domain. This family appears to be a methyltransferase domain. 162 -338772 pfam13490 zf-HC2 Putative zinc-finger. This is a putative zinc-finger found in some anti-sigma factor proteins. 34 -338773 pfam13491 FtsK_4TM 4TM region of DNA translocase FtsK/SpoIIIE. 4TM_FtsK is the integral membrane domain of the FtsK DNA tranlocases. During sporulation in Bacillus subtilis, the SpoIIIE protein is believed to form a translocation pore at the leading edge of the nearly closed septum. The E. coli FtsK protein is homologous to SpoIIIE, and can free chromosomes trapped in vegetative septa. 171 -338774 pfam13492 GAF_3 GAF domain. 129 -338775 pfam13493 DUF4118 Domain of unknown function (DUF4118). This domain is found in a wide variety of bacterial signalling proteins. It is likely to be a transmembrane domain involved in ligand sensing. 107 -316054 pfam13494 DUF4119 Domain of unknown function, B. Theta Gene description (DUF4119). Based on Bacteroides thetaiotaomicron gene BT_0594, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 91 -338776 pfam13495 Phage_int_SAM_4 Phage integrase, N-terminal SAM-like domain. 84 -290231 pfam13496 DUF4120 Domain of unknown function (DUF4120). Based on Bacteroides thetaiotaomicron gene BT_2585, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 95 -338777 pfam13497 DUF4121 Domain of unknown function (DUF4121). Based on Bacteroides thetaiotaomicron gene BT_2588, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 263 -316057 pfam13498 DUF4122 Domain of unknown function (DUF4122). Based on Bacteroides thetaiotaomicron gene BT_2607, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 218 -338778 pfam13499 EF-hand_7 EF-hand domain pair. 68 -316059 pfam13500 AAA_26 AAA domain. This domain is found in a number of proteins involved in cofactor biosynthesis such as dethiobiotin synthase and cobyric acid synthase. This domain contains a P-loop motif. 193 -338779 pfam13501 SoxY Sulfur oxidation protein SoxY. This domain is found in the sulfur oxidation protein SoxY. It is closely related to the Desulfoferrodoxin family pfam01880. Dissimilatory oxidation of thiosulfate is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. The structure of this domain shows an Ig-like fold. 109 -338780 pfam13502 AsmA_2 AsmA-like C-terminal region. This family is similar to the C-terminal of the AsmA protein of E. coli. 235 -338781 pfam13503 DUF4123 Domain of unknown function (DUF4123). This presumed domain is functionally uncharacterized. It is about 120 amino acids in length and contains several conserved motifs that may be functionally important. This domain is sometimes associated with the FHA domain. 122 -338782 pfam13505 OMP_b-brl Outer membrane protein beta-barrel domain. This domain is found in a wide range of outer membrane proteins. This domain assumes a membrane bound beta-barrel fold. 176 -338783 pfam13506 Glyco_transf_21 Glycosyl transferase family 21. This is a family of ceramide beta-glucosyltransferases - EC:2.4.1.80. 168 -338784 pfam13507 GATase_5 CobB/CobQ-like glutamine amidotransferase domain. This family captures members that are not found in pfam00310, pfam07685 and pfam13230. 259 -338785 pfam13508 Acetyltransf_7 Acetyltransferase (GNAT) domain. This domain catalyzes N-acetyltransferase reactions. 85 -316067 pfam13509 S1_2 S1 domain. The S1 domain was originally identified as a repeat motif in the ribosomal S1 protein. It was later identified in a wide range of proteins. The S1 domain has an OB-fold structure. The S1 domain is involved in nucleic acid binding. 61 -316068 pfam13510 Fer2_4 2Fe-2S iron-sulfur cluster binding domain. The 2Fe-2S ferredoxin family have a general core structure consisting of beta(2)-alpha-beta(2) which a beta-grasp type fold. The domain is around one hundred amino acids with four conserved cysteine residues to which the 2Fe-2S cluster is ligated. This cluster appears within sarcosine oxidase proteins. 82 -338786 pfam13511 DUF4124 Domain of unknown function (DUF4124). This presumed domain is found in a variety of bacterial proteins. It is found associated at the N-terminus associated with other domains such as the SLT domain and glutaredoxin domains in some proteins. The function of this domain is unknown, but it may have an Ig-like fold. 53 -338787 pfam13512 TPR_18 Tetratricopeptide repeat. 145 -338788 pfam13513 HEAT_EZ HEAT-like repeat. The HEAT repeat family is related to armadillo/beta-catenin-like repeats (see pfam00514). These EZ repeats are found in subunits of cyanobacterial phycocyanin lyase and other proteins and probably carry out a scaffolding role. 55 -338789 pfam13514 AAA_27 AAA domain. This domain is found in a number of double-strand DNA break proteins. This domain contains a P-loop motif. 207 -338790 pfam13515 FUSC_2 Fusaric acid resistance protein-like. 124 -338791 pfam13516 LRR_6 Leucine Rich repeat. 24 -338792 pfam13517 VCBS Repeat domain in Vibrio, Colwellia, Bradyrhizobium and Shewanella. This domain of about 100 residues is found in multiple (up to 35) copies in long proteins from several species of Vibrio, Colwellia, Bradyrhizobium, and Shewanella (hence the name VCBS) and in smaller copy numbers in proteins from several other bacteria. The large protein size and repeat copy numbers, species distribution, and suggested activities of several member proteins suggests a role for this domain in adhesion (TIGR). 61 -338793 pfam13518 HTH_28 Helix-turn-helix domain. This helix-turn-helix domain is often found in transposases and is likely to be DNA-binding. 52 -338794 pfam13519 VWA_2 von Willebrand factor type A domain. 103 -316078 pfam13520 AA_permease_2 Amino acid permease. 423 -316079 pfam13521 AAA_28 AAA domain. 163 -316080 pfam13522 GATase_6 Glutamine amidotransferase domain. This domain is a class-II glutamine amidotransferase domain found in a variety of enzymes, such as asparagine synthetase and glutamine--fructose-6-phosphate transaminase. 130 -338795 pfam13523 Acetyltransf_8 Acetyltransferase (GNAT) domain. This domain catalyzes N-acetyltransferase reactions. 142 -338796 pfam13524 Glyco_trans_1_2 Glycosyl transferases group 1. 92 -338797 pfam13525 YfiO Outer membrane lipoprotein. This outer membrane lipoprotein carries a TPR-like region towards its N-terminal. YfiO in E.coli is one of three outer membrane lipoproteins that form a multicomponent YaeT complex in the outer membrane of Gram-negative bacteria that is involved in the targeting and folding of beta-barrel outer membrane proteins. YfiO is the only essential lipoprotein component of the complex. It is required for the proper assembly and/or targeting of outer membrane proteins to the outer membrane. Through its interactions with NlpB it maintains the functional integrity of the YaeT complex. 200 -316084 pfam13526 DUF4125 Protein of unknown function (DUF4125). 196 -316085 pfam13527 Acetyltransf_9 Acetyltransferase (GNAT) domain. This domain catalyzes N-acetyltransferase reactions. 124 -316086 pfam13528 Glyco_trans_1_3 Glycosyl transferase family 1. 319 -316087 pfam13529 Peptidase_C39_2 Peptidase_C39 like family. 140 -316088 pfam13530 SCP2_2 Sterol carrier protein domain. 203 -338798 pfam13531 SBP_bac_11 Bacterial extracellular solute-binding protein. This family includes bacterial extracellular solute-binding proteins. 225 -338799 pfam13532 2OG-FeII_Oxy_2 2OG-Fe(II) oxygenase superfamily. 191 -338800 pfam13533 Biotin_lipoyl_2 Biotin-lipoyl like. 50 -338801 pfam13534 Fer4_17 4Fe-4S dicluster domain. This family includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. The structure of the domain is an alpha-antiparallel beta sandwich. 61 -316093 pfam13535 ATP-grasp_4 ATP-grasp domain. This family includes a diverse set of enzymes that possess ATP-dependent carboxylate-amine ligase activity. 160 -338802 pfam13536 EmrE Putative multidrug resistance efflux transporter. This is a membrane protein family whose members are purported to be related to the DMT or Drug/Metabolite Transporter (DMT) Superfamily. Members are all uncharacterized. 259 -338803 pfam13537 GATase_7 Glutamine amidotransferase domain. This domain is a class-II glutamine amidotransferase domain found in a variety of enzymes such as asparagine synthetase and glutamine-fructose-6-phosphate transaminase. 122 -338804 pfam13538 UvrD_C_2 UvrD-like helicase C-terminal domain. This domain is found at the C-terminus of a wide variety of helicase enzymes. This domain has a AAA-like structural fold. 49 -338805 pfam13539 Peptidase_M15_4 D-alanyl-D-alanine carboxypeptidase. This family resembles VanY, pfam02557, which is part of the peptidase M15 family. 67 -338806 pfam13540 RCC1_2 Regulator of chromosome condensation (RCC1) repeat. 30 -338807 pfam13541 ChlI Subunit ChlI of Mg-chelatase. 121 -338808 pfam13542 HTH_Tnp_ISL3 Helix-turn-helix domain of transposase family ISL3. 51 -316101 pfam13543 KSR1-SAM SAM like domain present in kinase suppressor RAS 1. 129 -338809 pfam13545 HTH_Crp_2 Crp-like helix-turn-helix domain. This family represents a crp-like helix-turn-helix domain that is likely to bind DNA. 70 -338810 pfam13546 DDE_5 DDE superfamily endonuclease. This family of proteins are related to pfam00665 and are probably endonucleases of the DDE superfamily. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 271 -316104 pfam13547 GTA_TIM GTA TIM-barrel-like domain. This domain is found in the gene transfer agent protein. An unusual system of genetic exchange exists in the purple nonsulfur bacterium Rhodobacter capsulatus. DNA transmission is mediated by a small bacteriophage-like particle called the gene transfer agent (GTA) that transfers random 4.5-kb segments of the producing cell's genome to recipient cells, where allelic replacement occurs. The genes involved in this process appear to be found widely in bacteria. According to the SUPERFAMILY database this domain has a TIM barrel fold. 298 -338811 pfam13548 DUF4126 Domain of unknown function (DUF4126). 175 -338812 pfam13549 ATP-grasp_5 ATP-grasp domain. This family includes a diverse set of enzymes that possess ATP-dependent carboxylate-amine ligase activity. 221 -338813 pfam13550 Phage-tail_3 Putative phage tail protein. This putative domain is found in the large gene transfer agent protein. These produce defective phage like particles. This domain is similar to other phage-tail protein families. 164 -338814 pfam13551 HTH_29 Winged helix-turn helix. This helix-turn-helix domain is often found in transferases and is likely to be DNA-binding. 62 -338815 pfam13552 DUF4127 Protein of unknown function (DUF4127). This family of uncharacterized bacterial proteins are about 500 amino acids in length. 494 -316110 pfam13553 FIIND Function to find. The function to find (FIIND) was initially discovered in two proteins, NLRP1 (aka NALP1, CARD7, NAC, DEFCAP) and CARD8 (aka TUCAN, Cardinal). NLRP1 is a member of the Nod-like receptor (NLR) protein superfamily and is involved in apoptosis and inflammation. To date, it is the only NLR protein known to have a FIIND domain. The FIIND domain is also present in the CARD8 protein where, like in NLRP1, it is followed by a C-terminal CARD domain. Both proteins are described to form an "inflammasome", a macro-molecular complex able to process caspase 1 and activate pro-IL1beta. The FIIND domain is present in only a very small subset of the kingdom of life, comprising primates, rodents (mouse, rat), carnivores (dog) and a few more, such as horse. The function of this domain is yet to be determined. Publications describing the newly discovered NLRP1 protein failed to identify it as a separate domain; for example, it was taken as part of the adjacent leucine rich repeat domain (LRR). Upon discovery of CARD8 it was noted that the N-terminal region shared significant sequence identity with an undescribed region in NLRP1. Before getting its final name, FIIND, this domain was termed NALP1-associated domain (NAD). 250 -316111 pfam13554 DUF4128 Bacteriophage related domain of unknown function. The three-dimensional structure of NP_888769.1, Structure 2L25, reveals a tail terminator protein gpU fold, which suggests that the protein could have a bacteriophage origin. 128 -338816 pfam13555 AAA_29 P-loop containing region of AAA domain. 60 -316113 pfam13556 HTH_30 PucR C-terminal helix-turn-helix domain. This helix-turn-helix domain is often found at the C-terminus of PucR-like transcriptional regulators such as Bacillus subtilis pucR and is likely to be DNA-binding. 55 -338817 pfam13557 Phenol_MetA_deg Putative MetA-pathway of phenol degradation. 243 -338818 pfam13558 SbcCD_C Putative exonuclease SbcCD, C subunit. Possible exonuclease SbcCD, C subunit, on AAA proteins. 89 -316116 pfam13559 DUF4129 Domain of unknown function (DUF4129). This presumed domain is found at the C-terminus of proteins that contain a transglutaminase core domain. The function of this domain is unknown. The domain has a conserved TXXE motif. 70 -316117 pfam13560 HTH_31 Helix-turn-helix domain. This domain is a helix-turn-helix domain that probably binds to DNA. 63 -338819 pfam13561 adh_short_C2 Enoyl-(Acyl carrier protein) reductase. 236 -316119 pfam13562 NTP_transf_4 Sugar nucleotidyl transferase. This is a probable sugar nucleotidyl transferase family. 146 -338820 pfam13563 2_5_RNA_ligase2 2'-5' RNA ligase superfamily. This family contains proteins related to pfam02834. These proteins are likely to be enzymes, but they may not share the RNA ligase activity. 151 -316121 pfam13564 DoxX_2 DoxX-like family. This family of uncharacterized proteins are related to DoxX pfam07681. 103 -338821 pfam13565 HTH_32 Homeodomain-like domain. 74 -338822 pfam13566 DUF4130 Domain of unknown function (DUF4130. 163 -338823 pfam13567 DUF4131 Domain of unknown function (DUF4131). This domain is frequently found to the N-terminus of the Competence domain, pfam03772. 165 -338824 pfam13568 OMP_b-brl_2 Outer membrane protein beta-barrel domain. This domain is found in a wide range of outer membrane proteins. This domain assumes a membrane bound beta-barrel fold. 172 -338825 pfam13569 DUF4132 Domain of unknown function (DUF4132). This domain might be involved in the biosynthesis of the molybdopterin cofactor in E.coli. 180 -338826 pfam13570 PQQ_3 PQQ-like domain. 40 -338827 pfam13571 DUF4133 Domain of unknown function (DUF4133). Based on Bacteroides thetaiotaomicron gene BT_0094, a putative uncharacterized protein as seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), It appears to be upregulated in the presence of host or vs when in culture. 90 -338828 pfam13572 DUF4134 Domain of unknown function (DUF4134). Based on Bacteroides thetaiotaomicron gene BT_0095, a putative uncharacterized protein As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), It appears to be upregulated in the presence of host or vs when in culture. 91 -290306 pfam13573 SprB SprB repeat. This repeat occurs several times in SprB, a cell surface protein involved in gliding motility in the bacterium Flavobacterium johnsoniae. 37 -316130 pfam13574 Reprolysin_2 Metallo-peptidase family M12B Reprolysin-like. This zinc-binding metallo-peptidase has the characteristic binding motif HExxGHxxGxxH of Reprolysin-like peptidases of family M12B. 192 -316131 pfam13575 DUF4135 Domain of unknown function (DUF4135). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 380 amino acids in length. The family is found in association with pfam05147. This domain may be involved in synthesis of a lantibiotic compound. 374 -338829 pfam13576 Pentapeptide_3 Pentapeptide repeats (9 copies). 48 -316133 pfam13577 SnoaL_4 SnoaL-like domain. This family contains a large number of proteins that share the SnoaL fold. 126 -338830 pfam13578 Methyltransf_24 Methyltransferase domain. This family appears to be a methyltransferase domain. 106 -316135 pfam13579 Glyco_trans_4_4 Glycosyl transferase 4-like domain. 158 -316136 pfam13580 SIS_2 SIS domain. SIS (Sugar ISomerase) domains are found in many phosphosugar isomerases and phosphosugar binding proteins. SIS domains are also found in proteins that regulate the expression of genes involved in synthesis of phosphosugars. 138 -338831 pfam13581 HATPase_c_2 Histidine kinase-like ATPase domain. 126 -316138 pfam13582 Reprolysin_3 Metallo-peptidase family M12B Reprolysin-like. This zinc-binding metallo-peptidase has the characteristic binding motif HExxGHxxGxxH of Reprolysin-like peptidases of family M12B. 122 -316139 pfam13583 Reprolysin_4 Metallo-peptidase family M12B Reprolysin-like. This zinc-binding metallo-peptidase has the characteristic binding motif HExxGHxxGxxH of Reprolysin-like peptidases of family M12B. 203 -338832 pfam13584 BatD Oxygen tolerance. This family of proteins carries up to three membrane spanning regions and is involved in tolerance to oxygen in in Bacteroides spp. 496 -316141 pfam13585 CHU_C C-terminal domain of CHU protein family. The function of this C-terminal domain is not known; there are several conserved tryptophan and asparagine residues. 85 -290319 pfam13586 DDE_Tnp_1_2 Transposase DDE domain. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. 90 -338833 pfam13588 HSDR_N_2 Type I restriction enzyme R protein N-terminus (HSDR_N). This family consists of a number of N terminal regions found in type I restriction enzyme R (HSDR) proteins. Restriction and modification (R/M) systems are found in a wide variety of prokaryotes and are thought to protect the host bacterium from the uptake of foreign DNA. Type I restriction and modification systems are encoded by three genes: hsdR, hsdM, and hsdS. The three polypeptides, HsdR, HsdM, and HsdS, often assemble to give an enzyme (R2M2S1) that modifies hemimethylated DNA and restricts unmethylated DNA. 110 -316143 pfam13589 HATPase_c_3 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase. This family represents, additionally, the structurally related ATPase domains of histidine kinase, DNA gyrase B and HSP90. 136 -338834 pfam13590 DUF4136 Domain of unknown function (DUF4136). This domain is found in bacterial lipoproteins. The function is not known. 148 -338835 pfam13591 MerR_2 MerR HTH family regulatory protein. 84 -338836 pfam13592 HTH_33 Winged helix-turn helix. This helix-turn-helix domain is often found in transferases and is likely to be DNA-binding. 60 -338837 pfam13593 SBF_like SBF-like CPA transporter family (DUF4137). These family members are 7TM putative membrane transporter proteins. The family is similar to the SBF family of bile-acid symporters, pfam01758. 313 -316147 pfam13595 DUF4138 Domain of unknown function (DUF4138). Based on Bacteroides thetaiotaomicron gene BT_4780, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 245 -338838 pfam13596 PAS_10 PAS domain. 106 -338839 pfam13597 NRDD Anaerobic ribonucleoside-triphosphate reductase. 569 -338840 pfam13598 DUF4139 Domain of unknown function (DUF4139). This family is usually found at the C-terminus of proteins. 316 -316151 pfam13599 Pentapeptide_4 Pentapeptide repeats (9 copies). 78 -338841 pfam13600 DUF4140 N-terminal domain of unknown function (DUF4140). This family is often found at the N-terminus of its member proteins, with DUF4139, pfam13598, at the C-terminus. 98 -316153 pfam13601 HTH_34 Winged helix DNA-binding domain. 80 -338842 pfam13602 ADH_zinc_N_2 Zinc-binding dehydrogenase. 131 -338843 pfam13603 tRNA-synt_1_2 Leucyl-tRNA synthetase, Domain 2. This is a family of the conserved region of Leucine-tRNA ligase or Leucyl-tRNA synthetase, EC:6.1.1.4. 185 -338844 pfam13604 AAA_30 AAA domain. This family of domains contain a P-loop motif that is characteristic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. There is a Walker A and Walker B. 193 -338845 pfam13605 DUF4141 Domain of unknown function (DUF4141). Based on Bacteroides thetaiotaomicron gene BT_4772, a putative uncharacterized protein. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2231), it appears to be upregulated in the presence of host or vs when in culture. 53 -338846 pfam13606 Ank_3 Ankyrin repeat. Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. This repeat-domain is a 'membrane-binding' domain of up to 24 repeated units, and it mediates most of the protein's binding activities. 30 -338847 pfam13607 Succ_CoA_lig Succinyl-CoA ligase like flavodoxin domain. This domain contains the catalytic domain from Succinyl-CoA ligase alpha subunit and other related enzymes. A conserved histidine is involved in phosphoryl transfer. 138 -290339 pfam13608 Potyvirid-P3 Protein P3 of Potyviral polyprotein. This is the P3 protein section of the Potyviridae polyproteins. The function is not known except that the protein is essential to viral survival. 452 -338848 pfam13609 Porin_4 Gram-negative porin. 312 -316161 pfam13610 DDE_Tnp_IS240 DDE domain. This DDE domain is found in a wide variety of transposases including those found in IS240, IS26, IS6100 and IS26. 139 -316162 pfam13611 Peptidase_S76 Serine peptidase of plant viral polyprotein, P1. This family is the P1 protein of the Potyviridae polyproteins that is a serine peptidase at the N-terminus. The catalytic triad in the genome polyprotein of ssRNA positive-strand Brome streak mosaic rymovirus, is His-311, Asp-322 and Ser-355. 120 -338849 pfam13612 DDE_Tnp_1_3 Transposase DDE domain. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contains three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. The catalytic activity of this enzyme involves DNA cleavage at a specific site followed by a strand transfer reaction. 154 -338850 pfam13613 HTH_Tnp_4 Helix-turn-helix of DDE superfamily endonuclease. This domain is the probable DNA-binding region of transposase enzymes, necessary for efficient DNA transposition. Most of the members derive from the IS superfamily IS5 and rather fewer from IS4. 53 -316165 pfam13614 AAA_31 AAA domain. This family includes a wide variety of AAA domains including some that have lost essential nucleotide binding residues in the P-loop. 177 -316166 pfam13616 Rotamase_3 PPIC-type PPIASE domain. Rotamases increase the rate of protein folding by catalyzing the interconversion of cis-proline and trans-proline. 111 -338851 pfam13617 Lipoprotein_19 YnbE-like lipoprotein. This family includes lipoproteins similar to E. coli YnbE. Protein in this family are typically 60 amino acids in length and contain an N-terminal lipid attachment site, which has been included in the alignment to increase sensitivity. The specific function of these proteins is unknown. 56 -338852 pfam13618 Gluconate_2-dh3 Gluconate 2-dehydrogenase subunit 3. This family corresponds to subunit 3 of the Gluconate 2-dehydrogenase enzyme that catalyzes the conversion of gluconate to 2-dehydro-D-gluconate EC:1.1.99.3. 128 -338853 pfam13619 KTSC KTSC domain. This short domain is named after Lysine tRNA synthetase C-terminal domain. It is found at the C-terminus of some Lysyl tRNA synthetases as well as a single domain in bacterial proteins. The domain is about 60 amino acids in length and contains a reasonably conserved YXY motif in the centre of the sequence. The function of this domain is unknown but it could be an RNA binding domain. 58 -338854 pfam13620 CarboxypepD_reg Carboxypeptidase regulatory-like domain. 81 -316171 pfam13621 Cupin_8 Cupin-like domain. This cupin like domain shares similarity to the JmjC domain. 250 -338855 pfam13622 4HBT_3 Thioesterase-like superfamily. This family contains a wide variety of enzymes, principally thioesterases. These enzymes are part of the Hotdog fold superfamily. 244 -338856 pfam13623 SurA_N_2 SurA N-terminal domain. This domain is found at the N-terminus of the chaperone SurA. It is a helical domain of unknown function. The C-terminus of the SurA protein folds back and forms part of this domain also but is not included in the current alignment. 139 -338857 pfam13624 SurA_N_3 SurA N-terminal domain. This domain is found at the N-terminus of the chaperone SurA. It is a helical domain of unknown function. The C-terminus of the SurA protein folds back and forms part of this domain also but is not included in the current alignment. 162 -316175 pfam13625 Helicase_C_3 Helicase conserved C-terminal domain. This domain family is found in a wide variety of helicases and helicase-related proteins. 125 -338858 pfam13627 LPAM_2 Prokaryotic lipoprotein-attachment site. In prokaryotes, membrane lipoproteins are synthesized with a precursor signal peptide, which is cleaved by a specific lipoprotein signal peptidase (signal peptidase II). The peptidase recognizes a conserved sequence and cuts upstream of a cysteine residue to which a glyceride-fatty acid lipid is attached. 23 -316177 pfam13628 DUF4142 Domain of unknown function (DUF4142). This is a bacterial family of unknown function. 137 -338859 pfam13629 T2SS-T3SS_pil_N Pilus formation protein N terminal region. 72 -338860 pfam13630 SdpI SdpI/YhfL protein family. This family of proteins includes the SdpI and YhfL proteins from B. subtilis. The SdpI protein is a multipass integral membrane protein that protects toxin-producing cells from being killed. Killing is mediated by the exported toxic protein SdpC an extracellular protein that induces the synthesis of an immunity protein. 69 -316180 pfam13631 Cytochrom_B_N_2 Cytochrome b(N-terminal)/b6/petB. 168 -338861 pfam13632 Glyco_trans_2_3 Glycosyl transferase family group 2. Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. 192 -338862 pfam13634 Nucleoporin_FG Nucleoporin FG repeat region. This family includes a number of FG repeats that are found in nucleoporin proteins. This family includes the yeast nucleoporins Nup116, Nup100, Nup49, Nup57 and Nup 145. 90 -316183 pfam13635 DUF4143 Domain of unknown function (DUF4143). This domain is almost always found C-terminal to an ATPase core family. 162 -338863 pfam13636 Methyltranf_PUA RNA-binding PUA-like domain of methyltransferase RsmF. Methyltranf_PUA is the second of two C-terminal domains found on bacterial methyltransferase RsmF that modifies the 16S ribosomal RNA. It has some structural similarity to the RNA-binding PUA domains suggesting that it is involved in RNA recognition. It lies downstream of the catalytic centre of this methyltransferase, family pfam01189. 49 -316185 pfam13637 Ank_4 Ankyrin repeats (many copies). 54 -338864 pfam13638 PIN_4 PIN domain. Members of this family of bacterial domains are predicted to be RNases (from similarities to 5'-exonucleases). 130 -338865 pfam13639 zf-RING_2 Ring finger domain. 44 -338866 pfam13640 2OG-FeII_Oxy_3 2OG-Fe(II) oxygenase superfamily. This family contains members of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily. 94 -338867 pfam13641 Glyco_tranf_2_3 Glycosyltransferase like family 2. Members of this family of prokaryotic proteins include putative glucosyltransferase, which are involved in bacterial capsule biosynthesis. 229 -316190 pfam13642 DUF4144 protein structure with unknown function. A family based on the three-dimensional structure of YP_926445.1 (Structure 2L6O) 95 -338868 pfam13643 DUF4145 Domain of unknown function (DUF4145). This domain is found in a variety of restriction endonuclease enzymes. The exact function of this domain is uncertain. 88 -338869 pfam13644 DKNYY DKNYY family. This family represents a group of proteins found enriched in fusobacteria. These proteins contain many repeats of a DKNXXYY motif. The repeats are spaced at about 35 amino acid residues intervals. These proteins are likely to be associated with the membrane. The specific function of these proteins is unknown. 150 -316193 pfam13645 YkuD_2 L,D-transpeptidase catalytic domain. This family is related to pfam03734. 169 -338870 pfam13646 HEAT_2 HEAT repeats. This family includes multiple HEAT repeats. 88 -205824 pfam13647 Glyco_hydro_80 Glycosyl hydrolase family 80 of chitosanase A. This is a small family of bacterial chitosanases. These have lysozyme-like activity. 308 -338871 pfam13648 Lipocalin_4 Lipocalin-like domain. 89 -338872 pfam13649 Methyltransf_25 Methyltransferase domain. This family appears to be a methyltransferase domain. 97 -338873 pfam13650 Asp_protease_2 Aspartyl protease. This family consists of predicted aspartic proteases, typically from 180 to 230 amino acids in length, in MEROPS clan AA. This model describes the well-conserved 121-residue C-terminal region. The poorly conserved, variable length N-terminal region usually contains a predicted transmembrane helix. 90 -316198 pfam13651 EcoRI_methylase Adenine-specific methyltransferase EcoRI. This methylase recognizes the double-stranded sequence GAATTC, causes specific methylation on A-3 on both strands, and protects the DNA from cleavage by the EcoRI endonuclease. 343 -338874 pfam13652 QSregVF Putative quorum-sensing-regulated virulence factor. This is a family of short ~14 kDa proteins from Psuedomonas. The structure of UniProtKB:Q9HY15 a secreted protein has been solved and deposited as Structure 3npd. It comprises one structural domain with five beta-strands and five alpha-helices. Various comparative structural prediction methods plus its genomic location point to the protein forming a functional dimer with its adjacent genomic partner, UniProtKB:Q9HY14, in pfam12843. Together these might be regulated by the other product from the PotABCD operon, namely the putrescine-binding periplasmic protein UniProtKB:Q9HY16. which has been implicated in quorum-sensing. QSregVF is certainly up-regulated in quorum-sensing, and is predicted to be a virulence factor. 112 -338875 pfam13653 GDPD_2 Glycerophosphoryl diester phosphodiesterase family. This family also includes glycerophosphoryl diester phosphodiesterases as well as agrocinopine synthase, the similarity to GDPD has been noted. This family appears to have weak but not significant matches to mammalian phospholipase C pfam00388, which suggests that this family may adopt a TIM barrel fold. 29 -338876 pfam13654 AAA_32 AAA domain. This family includes a wide variety of AAA domains including some that have lost essential nucleotide binding residues in the P-loop. 511 -338877 pfam13655 RVT_N N-terminal domain of reverse transcriptase. This domain is found at the N-terminus of bacterial reverse transcriptases. 83 -338878 pfam13656 RNA_pol_L_2 RNA polymerase Rpb3/Rpb11 dimerization domain. The two eukaryotic subunits Rpb3 and Rpb11 dimerize to from a platform onto which the other subunits of the RNA polymerase assemble (D/L in archaea). The prokaryotic equivalent of the Rpb3/Rpb11 platform is the alpha-alpha dimer. The dimerization domain of the alpha subunit/Rpb3 is interrupted by an insert domain (pfam01000). Some of the alpha subunits also contain iron-sulphur binding domains (pfam00037). Rpb11 is found as a continuous domain. Members of this family include: alpha subunit from eubacteria, alpha subunits from chloroplasts, Rpb3 subunits from eukaryotes, Rpb11 subunits from eukaryotes, RpoD subunits from archaeal spp, and RpoL subunits from archaeal spp. Many of the members of this family carry only the N-terminal region of Rpb11. 73 -338879 pfam13657 Couple_hipA HipA N-terminal domain. This domain is found to the N-terminus of HipA-like proteins. It is also found in isolation in some proteins. 95 -338880 pfam13660 DUF4147 Domain of unknown function (DUF4147). This domain is frequently found at the N-terminus of proteins carrying the glycerate kinase-like domain MOFRL, pfam05161. 223 -316206 pfam13661 2OG-FeII_Oxy_4 2OG-Fe(II) oxygenase superfamily. This family contains members of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily. 93 -316207 pfam13662 Toprim_4 Toprim domain. The toprim domain is found in a wide variety of enzymes involved in nucleic acid manipulation. 83 -338881 pfam13663 DUF4148 Domain of unknown function (DUF4148). 62 -338882 pfam13664 DUF4149 Domain of unknown function (DUF4149). 99 -338883 pfam13665 DUF4150 Domain of unknown function (DUF4150). 108 -338884 pfam13667 ThiC-associated ThiC-associated domain. This domain is most frequently found at the N-terminus of the ThiC family of proteins, pfam01964. The function is not known. 70 -338885 pfam13668 Ferritin_2 Ferritin-like domain. This family contains ferritins and other ferritin-like proteins such as members of the DPS family and bacterioferritins. 137 -338886 pfam13669 Glyoxalase_4 Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily. 109 -316214 pfam13670 PepSY_2 Peptidase propeptide and YPEB domain. This region is likely to have a protease inhibitory function (personal obs:C Yeats). The name is derived from Peptidase & Bacillus subtilis YPEB. 83 -338887 pfam13671 AAA_33 AAA domain. This family of domains contain only a P-loop motif, that is characteristic of the AAA superfamily. Many of the proteins in this family are just short fragments so there is no Walker B motif. 143 -338888 pfam13672 PP2C_2 Protein phosphatase 2C. Protein phosphatase 2C is a Mn++ or Mg++ dependent protein serine/threonine phosphatase. 209 -338889 pfam13673 Acetyltransf_10 Acetyltransferase (GNAT) domain. This family contains proteins with N-acetyltransferase functions such as Elp3-related proteins. 127 -338890 pfam13675 PilJ Type IV pili methyl-accepting chemotaxis transducer N-term. This domain is found on many type IV pili methyl-accepting chemotaxis transducer proteins where there is also a HAMP, signature towards the C-terminus. 111 -316219 pfam13676 TIR_2 TIR domain. This is a family of bacterial Toll-like receptors. 102 -338891 pfam13677 MotB_plug Membrane MotB of proton-channel complex MotA/MotB. This is the MotB member of the E.coli MotA/MotB proton-channel complex that forms the stator of the bacterial membrane flagellar motor. Key residues act as a plug to prevent premature proton flow. The plug is in the periplasm just C-terminal to the MotB TM, consisting of an amphipathic alpha helix flanked by Pro-52 and Pro-65. In addition to the Pro residues, Ile-58, Tyr-61, and Phe 62 are also essential for plug function. 56 -316221 pfam13678 Peptidase_M85 NFkB-p65-degrading zinc protease. This family of bacterial metallo-peptidases is thought to compromise the inflammatory response by degrading p65 thereby down-regulating the NF-kappaB signalling pathway. NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52; and the heterodimeric p65-p50 complex appears to be most abundant one. 251 -316222 pfam13679 Methyltransf_32 Methyltransferase domain. This family appears to be a methyltransferase domain. 147 -338892 pfam13680 DUF4152 Protein of unknown function (DUF4152). This family of proteins is functionally uncharacterized. This family of proteins is found in archaea. Proteins in this family are approximately 230 amino acids in length. The structure of PF2046 from pyrococcus furiosus has been solved. It shows an RNaseH like fold that conserves critical catalytic residues. This suggests that these proteins may cleave nucleic acid. 225 -338893 pfam13681 PilX Type IV pilus assembly protein PilX C-term. This family is likely to be the C-terminal region of type IV pilus assembly PilX or PilW proteins. 89 -338894 pfam13682 CZB Chemoreceptor zinc-binding domain. The chemoreceptor zinc-binding domain (CZB) is found in bacterial signal transduction proteins - most frequently receptors involved in chemotaxis and motility, but also in c-di-GMP signalling and nitrate/nitrite-sensing. Originally discovered in the cytoplasmic chemoreceptor TlpD from Helicobacter pylori, it is often found C-terminal to the MCPsignal domain in cytoplasmic chemoreceptor proteins. The CZB domain contains a core sequence motif, Hxx[WFYL]x21-28Cx[LFMVI]Gx[WFLVI]x18-27HxxxH. The highly-conserved H-C-H-H residues of this motif are believed to coordinate zinc; mutating the latter two histidines of the motif to alanines abolishes Zn binding. This domain binds zinc with high affinity, with a Kd in the femtomolar range. This domain has been shown in E. coli to be a zinc sensor that regulates the catalytic activity of pfam00990. 66 -338895 pfam13683 rve_3 Integrase core domain. 67 -338896 pfam13684 Dak1_2 Dihydroxyacetone kinase family. This is the kinase domain of the dihydroxyacetone kinase family. 311 -338897 pfam13685 Fe-ADH_2 Iron-containing alcohol dehydrogenase. 251 -316228 pfam13686 DrsE_2 DsrE/DsrF/DrsH-like family. DsrE is a small soluble protein involved in intracellular sulfur reduction. The family also includes YrkE proteins. 156 -316229 pfam13687 DUF4153 Domain of unknown function (DUF4153). Members of this family are annotated as putative inner membrane proteins. 217 -338898 pfam13688 Reprolysin_5 Metallo-peptidase family M12. 188 -338899 pfam13689 DUF4154 Domain of unknown function (DUF4154). This family of proteins is found in bacteria. Proteins in this family are typically between 172 and 207 amino acids in length. Many members are annotated as valyl-tRNA synthetase but this could not be confirmed. 139 -338900 pfam13690 CheX Chemotaxis phosphatase CheX. CheX is very closely related to the CheC chemotaxis phosphatase, but it dimerizes in a different way, via a continuous beta sheet between the subunits. CheC and CheX both dephosphorylate CheY, although CheC requires binding of CheD to achieve the activity of CheX. The ability of bacteria to modulate their swimming behaviour in the presence of external chemicals (nutrients and repellents) is one of the most rudimentary behavioural responses known, but the the individual components are very sensitively tuned. 94 -338901 pfam13691 Lactamase_B_4 tRNase Z endonuclease. This is family of tRNase Z enzymes, that are closely related structurally to the Lactamase_B family members. tRNase Z is the endonuclease that is involved in tRNA 3'-end maturation through removal of the 3'-trailer sequences from tRNA precursors. The fission yeast Schizosaccharomyces pombe contains two candidate tRNase Zs encoded by two essential genes. The first, trz1, is targeted to the nucleus and has an SV40 nuclear localization signal at its N-terminus, consisting of four consecutive arginine and lysine residues between residues 208 and 211 (KKRK) that is critical for the NLS function. The second, trz2, is targeted to the mitochondria, with an N-terminal mitochondrial targeting signal within the first 38 residues. 63 -338902 pfam13692 Glyco_trans_1_4 Glycosyl transferases group 1. 139 -338903 pfam13693 HTH_35 Winged helix-turn-helix DNA-binding. 70 -316236 pfam13694 Hph Sec63/Sec62 complex-interacting family. This is a family of closely related Hph proteins that are integral endoplasmic reticulum (ER) membrane proteins required for yeast survival under environmental stress conditions. They interact with several subunits of the Sec63/Sec62 complex that mediates post-translational translocation of proteins into the ER. Cells with mutant Hph1 and Hph2 proteins revealed phenotypes resembling those of mutants defective for vacuolar proton ATPase (V-ATPase) activity. The yeast V-ATPase is a multisubunit complex whose function, structure, and assembly have been well characterized. Cells with impaired V-ATPase activity fail to acidify the vacuole, cannot grow at alkaline pH, and are sensitive to high concentrations of extracellular calcium. 187 -338904 pfam13695 zf-3CxxC Zinc-binding domain. This is a family with several pairs of CxxC motifs possibly representing a multiple zinc-binding region. Only one pair of cysteines is associated with a highly conserved histidine residue. 94 -338905 pfam13696 zf-CCHC_2 Zinc knuckle. This is a zinc-binding domain of the form CxxCxxxGHxxxxC from a variety of different species. 21 -338906 pfam13698 DUF4156 Domain of unknown function (DUF4156). The function of this family is unknown but members are annotated as putative lipoprotein outer membrane proteins. 94 -316240 pfam13699 DUF4157 Domain of unknown function (DUF4157). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 80 amino acids in length. This domain contains an HEXXH motif that is characteristic of many families of metallopeptidases. However, no peptidase activity has been shown for this domain. 79 -338907 pfam13700 DUF4158 Domain of unknown function (DUF4158). The exact function of this domain is not clear, but it frequently occurs as an N-terminal region of transposase 3 or IS3 family of insertion elements. 165 -316242 pfam13701 DDE_Tnp_1_4 Transposase DDE domain group 1. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. 434 -316243 pfam13702 Lysozyme_like Lysozyme-like. 158 -316244 pfam13704 Glyco_tranf_2_4 Glycosyl transferase family 2. Members of this family of prokaryotic proteins include putative glucosyltransferases, 97 -338908 pfam13705 TRC8_N TRC8 N-terminal domain. This region is found at the N-terminus of the TRC8 protein. TRC8 is an E3 ubiquitin-protein ligase also known as RNF139. This region contains 12 transmembrane domains. This region has been suggested to contain a sterol sensing domain. It has been found that TRC8 protein levels are sterol responsive and that it binds and stimulates ubiquitylation of the endoplasmic reticulum anchor protein INSIG. 488 -338909 pfam13707 RloB RloB-like protein. This family includes the RloB protein that is found within a bacterial restriction modification operon. This family includes the AbiLii protein that is found as part of a plasmid encoded phage abortive infection mechanism. Deletion within abiLii abolished the phage resistance. The family includes some proteins annotated as CRISPR Csm2 proteins. 144 -316247 pfam13708 DUF4942 Domain of unknown function (DUF4942). The function of this family is not known. 188 -338910 pfam13709 DUF4159 Domain of unknown function (DUF4159). Members of this family are hypothetical proteins. 192 -338911 pfam13710 ACT_5 ACT domain. ACT domains bind to amino acids and regulate associated enzyme domains. These ACT domains are found at the C-terminus of the RelA protein. 61 -338912 pfam13711 DUF4160 Domain of unknown function (DUF4160). 61 -316251 pfam13712 Glyco_tranf_2_5 Glycosyltransferase like family. Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. 210 -338913 pfam13713 BRX_N Transcription factor BRX N-terminal domain. The BREVIS RADIX (BRX) domain was characterized as being a transcription factor in plants regulating the extent of cell proliferation and elongation in the growth zone of the root. BRX is rate limiting for auxin-responsive gene-expression by mediating cross-talk with the brassino-steroid pathway. BRX has a ubiquitous, although quantitatively variable role in modulating the growth rate in both the root and the shoot. This family features a short region, also alpha-helical, N-terminal to the repeated alpha-helices of family BRX, pfam08381. BRX is expressed in the vasculature and is rate-limiting for transcriptional auxin action. 37 -316253 pfam13714 PEP_mutase Phosphoenolpyruvate phosphomutase. This domain includes the enzyme Phosphoenolpyruvate phosphomutase (EC:5.4.2.9). This protein has been characterized as catalyzing the formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-Pyr). This enzyme has a TIM barrel fold. 239 -338914 pfam13715 CarbopepD_reg_2 CarboxypepD_reg-like domain. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 90 amino acids in length. The family is found in association with pfam07715 and pfam00593. 88 -338915 pfam13716 CRAL_TRIO_2 Divergent CRAL/TRIO domain. This family includes divergent members of the CRAL-TRIO domain family. This family includes ECM25 that contains a divergent CRAL-TRIO domain identified by Gallego and colleagues. 129 -316256 pfam13717 zinc_ribbon_4 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR, pfam12773. 36 -316257 pfam13718 GNAT_acetyltr_2 GNAT acetyltransferase 2. This domain has N-acetyltransferase activity. It has a GCN5-related N-acetyltransferase (GNAT) fold. 227 -316258 pfam13719 zinc_ribbon_5 zinc-ribbon domain. This family consists of a single zinc ribbon domain, ie half of a pair as in family DZR, pfam12773. 37 -338916 pfam13720 Acetyltransf_11 Udp N-acetylglucosamine O-acyltransferase; Domain 2. This is domain 2, or the C-terminal domain, of Udp N-acetylglucosamine O-acyltransferase. This enzyme is a zinc-dependent enzyme that catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-(R-hydroxymyristoyl)glucosamine and acetate. 82 -338917 pfam13721 SecD-TM1 SecD export protein N-terminal TM region. This domain appears to be the fist transmembrane region of the SecD export protein. SecD is directly involved in protein secretion and important for the release of proteins that have been translocated across the cytoplasmic membrane. 103 -338918 pfam13722 CstA_5TM 5TM C-terminal transporter carbon starvation CstA. CstA_5TM is the last five transmembrane regions of the peptide transporter carbon starvation family CstA. 114 -338919 pfam13723 Ketoacyl-synt_2 Beta-ketoacyl synthase, N-terminal domain. 222 -316263 pfam13724 DNA_binding_2 DNA-binding domain. This domain, often found on ovate proteins, binds to single-stranded and double-stranded DNA. Binding to DNA is not sequence-specific. 47 -338920 pfam13725 tRNA_bind_2 Possible tRNA binding domain. This domain, found at the C-terminus of tRNA(Met) cytidine acetyltransferase, may be involved in tRNA-binding. 229 -316265 pfam13726 Na_H_antiport_2 Na+-H+ antiporter family. This family includes integral membrane proteins, some of which are NA+-H+ antiporters. 88 -316266 pfam13727 CoA_binding_3 CoA-binding domain. 175 -338921 pfam13728 TraF F plasmid transfer operon protein. TraF protein undergoes proteolytic processing associated with export. The 19 amino acids at the amino terminus of the polypeptides appear to constitute a typical membrane leader peptide - not included in this family, while the remainder of the molecule is predicted to be primarily hydrophilic in character. F plasmid TraF and TraH are required for F pilus assembly and F plasmid transfer, and they are both localized to the outer membrane in the presence of the complete F transfer region, especially TraV, the putative anchor. 223 -338922 pfam13729 TraF_2 F plasmid transfer operon, TraF, protein. 272 -316269 pfam13730 HTH_36 Helix-turn-helix domain. 55 -316270 pfam13731 WxL WxL domain surface cell wall-binding. The WxL motif appears in two or three copies in these bacterial proteins and confers a cell surface localization function. It seems likely that this region is the cell wall-binding domain of gram-positive bacteria, and may interact with the peptidoglycan. 215 -316271 pfam13732 DUF4162 Domain of unknown function (DUF4162). This domain is found at the C-terminus of bacterial ABC transporter proteins. The function is not known. 82 -316272 pfam13733 Glyco_transf_7N N-terminal region of glycosyl transferase group 7. This is the N-terminal half of a family of galactosyltransferases from a wide range of Metazoa with three related galactosyltransferases activities, all three of which are possessed by one sequence in some cases. EC:2.4.1.90, N-acetyllactosamine synthase; EC:2.4.1.38, Beta-N-acetylglucosaminyl-glycopeptide beta-1,4- galactosyltransferase; and EC:2.4.1.22 Lactose synthase. Note that N-acetyllactosamine synthase is a component of Lactose synthase along with alpha-lactalbumin, in the absence of alpha-lactalbumin EC:2.4.1.90 is the catalyzed reaction. 133 -338923 pfam13734 Inhibitor_I69 Spi protease inhibitor. This family includes the inhibitor Spi and the pro-peptides of streptopain (SpeB). SpeB is produced as a 43 kDa pre-pro-protein, which is secreted via the recently described Sec secretory pathway Exportal. There is tight coupling between this inhibitor and its associated protease: the gene for the inhibitor Spi is located directly downstream from the gene for the streptococcal cysteine protease SpeB, and the sequence of the inhibitor is very similar to that of the SpeB propeptide. This is an example of an inhibitor molecule that is a structural homolog of the cognate propeptide, and is genetically linked to the protease gene. 99 -316274 pfam13735 tRNA_NucTran2_2 tRNA nucleotidyltransferase domain 2 putative. 149 -290455 pfam13737 DDE_Tnp_1_5 Transposase DDE domain. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. 112 -316275 pfam13738 Pyr_redox_3 Pyridine nucleotide-disulphide oxidoreductase. 290 -338924 pfam13739 DUF4163 Domain of unknown function (DUF4163). The structure of this domain is and alpha-beta-two layer sandwich, identified from a Fervidobacterium nodosum Rt17-B1 like protein. The function is not known except that it is found in association with Heat-shock cognate 70kd protein 44kd ATPase, pfam11738. 93 -338925 pfam13740 ACT_6 ACT domain. ACT domains bind to amino acids and regulate associated enzyme domains. 76 -316278 pfam13741 MRP-S25 Mitochondrial ribosomal protein S25. This is the family of fungal 37S mitochondrial ribosomal S25 proteins. 220 -338926 pfam13742 tRNA_anti_2 OB-fold nucleic acid binding domain. This family contains OB-fold domains that bind to nucleic acids. 95 -316280 pfam13743 Thioredoxin_5 Thioredoxin. 186 -316281 pfam13744 HTH_37 Helix-turn-helix domain. Members of this family contains a DNA-binding helix-turn-helix domain. 80 -316282 pfam13746 Fer4_18 4Fe-4S dicluster domain. This family includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. The structure of the domain is an alpha-antiparallel beta sandwich. 114 -316283 pfam13747 DUF4164 Domain of unknown function (DUF4164). This is a family of short, approx 100 residue-long, bacterial proteins of unknown function. There is several conserved LE/LD sequence pairs. 89 -316284 pfam13748 ABC_membrane_3 ABC transporter transmembrane region. This family represents a unit of six transmembrane helices. 237 -338927 pfam13749 HATPase_c_4 Putative ATP-dependent DNA helicase recG C-terminal. This domain may well interact selectively and non-covalently with ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. 88 -316286 pfam13750 Big_3_3 Bacterial Ig-like domain (group 3). This family consists of bacterial domains with an Ig-like fold. Members of this family are found in a variety of bacterial surface proteins. 157 -338928 pfam13751 DDE_Tnp_1_6 Transposase DDE domain. Transposase proteins are necessary for efficient DNA transposition. This domain is a member of the DDE superfamily, which contain three carboxylate residues that are believed to be responsible for coordinating metal ions needed for catalysis. 125 -338929 pfam13752 DUF4165 Domain of unknown function (DUF4165). 124 -316288 pfam13753 SWM_repeat Putative flagellar system-associated repeat. This family appears to be a repeated unit that can occur up to 29 times in these outer membrane proteins. It is putatively associated with a novel flagellar system. 87 -316289 pfam13754 Big_3_4 Domain of unknown function. This is a family of uncharacterized Clostridiales proteins. 105 -338930 pfam13755 Sensor_TM1 Sensor N-terminal transmembrane domain. This domain is found at the N-terminus of the sensor component of the two-component regulatory system. It includes a transmembrane region and part of the periplasmic region, which is likely to be involved in stimulus sensing. 68 -316291 pfam13756 Stimulus_sens_1 Stimulus-sensing domain. This domain is found in the periplasmic region of the sensor component of the two-component regulatory system. The periplasmic region is likely to be involved in stimulus sensing. 110 -316292 pfam13757 VIT_2 Vault protein inter-alpha-trypsin domain. Inter-alpha-trypsin inhibitors (ITIs) consist of one light chain and a variable set of heavy chains. ITIs play a role in extracellular matrix (ECM) stabilisation and tumor metastasis as well as in plasma protease inhibition. The vault protein inter-alpha-trypsin (VIT) domain described here is found to the N-terminus of a von Willebrand factor type A domain (pfam00092) in ITI heavy chains (ITIHs) and their precursors. 78 -316293 pfam13758 Prefoldin_3 Prefoldin subunit. This family includes prefoldin subunits that are not detected by pfam02996. 99 -338931 pfam13759 2OG-FeII_Oxy_5 Putative 2OG-Fe(II) oxygenase. This family has structural similarity to the 2OG-Fe(II) oxygenase superfamily. 101 -316295 pfam13761 DUF4166 Domain of unknown function (DUF4166). This domain is often found at the C-terminus of proteins containing pfam03435. 176 -316296 pfam13762 MNE1 Mitochondrial splicing apparatus component. MNE1 is a novel component of the mitochondrial splicing apparatus responsible for the processing of a COX1 group I intron in yeast. Yeast cells lacking MNE1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but do contain wild-type levels of the bc1 complex. 141 -338932 pfam13763 DUF4167 Domain of unknown function (DUF4167). 72 -316298 pfam13764 E3_UbLigase_R4 E3 ubiquitin-protein ligase UBR4. This is a family of E3 ubiquitin ligase enzymes. 803 -338933 pfam13765 PRY SPRY-associated domain. SPRY and PRY domains occur on PYRIN proteins. Their function is not known. 49 -338934 pfam13767 DUF4168 Domain of unknown function (DUF4168). 84 -338935 pfam13768 VWA_3 von Willebrand factor type A domain. 155 -316302 pfam13769 Virulence_fact Virulence factor. This domain is found in conserved virulence factors. It is often found in association with pfam02985 and pfam08712. 81 -338936 pfam13770 DUF4169 Domain of unknown function (DUF4169). 53 -338937 pfam13771 zf-HC5HC2H PHD-like zinc-binding domain. The members of this family are annotated as containing PHD domain, but the zinc-binding region here is not typical of PHD domains. The conformation here is a well-conserved cysteine-histidine rich region spanning 90 residues, where the Cys and His are arranged as HxxC(31)CxxC(6)CxxCxxxxCxxxxHxxC (21)CxxH. 88 -316305 pfam13772 AIG2_2 AIG2-like family. This family is found in bacteria and metazoa. 83 -338938 pfam13773 DUF4170 Domain of unknown function (DUF4170). 68 -338939 pfam13774 Longin Regulated-SNARE-like domain. Longin is one of the approximately 26 components required for transporting proteins from the ER to the plasma membrane, via the Golgi apparatus. It is necessary for the steps of the transfer from the ER to the Golgi complex. Longins are the only R-SNAREs that are common to all eukaryotes, and they are characterized by a conserved N-terminal domain with a profilin-like fold called a longin domain. 78 -316308 pfam13775 DUF4171 Domain of unknown function (DUF4171). This short family is frequently found at the N-terminus of Homeobox proteins. 133 -338940 pfam13776 DUF4172 Domain of unknown function (DUF4172). The family is often found in association with pfam02661. 82 -316310 pfam13777 DUF4173 Domain of unknown function (DUF4173). This domain of unknown function contains multiple predicted transmembrane domains. 189 -338941 pfam13778 DUF4174 Domain of unknown function (DUF4174). This domain of unknown function is found in a putative tumor suppressor gene and in a ligand for the the urokinase-type plasminogen activator receptor, which plays a role in cellular migration and adhesion. 113 -338942 pfam13779 DUF4175 Domain of unknown function (DUF4175). 825 -338943 pfam13780 DUF4176 Domain of unknown function (DUF4176). 73 -338944 pfam13781 DoxX_3 DoxX-like family. This family of uncharacterized proteins are related to DoxX pfam07681. 101 -316315 pfam13782 SpoVAB Stage V sporulation protein AB. This family of proteins is required for sporulation. 109 -316316 pfam13783 DUF4177 Domain of unknown function (DUF4177). 60 -338945 pfam13784 Fic_N Fic/DOC family N-terminal. This domain is found at the N-terminus of the Fic/DOC family, pfam02661. 82 -338946 pfam13785 DUF4178 Domain of unknown function (DUF4178). 148 -316319 pfam13786 DUF4179 Domain of unknown function (DUF4179). 93 -338947 pfam13787 HXXEE Protein of unknown function with HXXEE motif. This domain contains an HXXEE motif, another conserved histidine and a YXPG motif. Its function is unknown. 104 -316321 pfam13788 DUF4180 Domain of unknown function (DUF4180). 109 -316322 pfam13789 DUF4181 Domain of unknown function (DUF4181). 107 -316323 pfam13790 SR1P SR1 protein. This family of proteins is encoded by the dual function SR1 RNA. SR1 is a sRNA which regulates arginine metabolism, it also encodes a short protein that binds to glyceraldehyde-3-phosphate dehydrogenase (GapA) and stabilizes the gapA operon mRNAs. 37 -338948 pfam13791 Sigma_reg_C Sigma factor regulator C-terminal. This family is the C-terminal domain of a sigma factor regulator, this may represent a sensory domain. 150 -338949 pfam13793 Pribosyltran_N N-terminal domain of ribose phosphate pyrophosphokinase. This family is frequently found N-terminal to the Pribosyltran, pfam00156. 117 -205967 pfam13794 MiaE_2 tRNA-(MS[2]IO[6]A)-hydroxylase (MiaE)-like. 185 -338950 pfam13795 HupE_UreJ_2 HupE / UreJ protein. These proteins contain many conserved histidines that may be involved in nickel binding. 155 -316327 pfam13796 Sensor Putative sensor. This family is often found at the N-terminus of proteins containing pfam07730 and pfam02518. The N-termini of proteins containing these two domains often function in stimulus sensing. 168 -316328 pfam13797 Post_transc_reg Post-transcriptional regulator. This family includes post-transcriptional regulators. 81 -316329 pfam13798 PCYCGC Protein of unknown function with PCYCGC motif. This domain contains a PCYCGC motif and four other conserved cysteines. Its function is unknown. 153 -316330 pfam13799 DUF4183 Domain of unknown function (DUF4183). This domain of unknown function contains a highly conserved ING motif. 74 -316331 pfam13800 Sigma_reg_N Sigma factor regulator N-terminal. This domain is found near the N-terminus of a sigma factor regulator. The N-terminus is responsible for interaction with the sigma factor. 89 -338951 pfam13801 Metal_resist Heavy-metal resistance. This is a metal-binding protein which is involved in resistance to heavy-metal ions. The protein forms a four-helix hooked hairpin, consisting of two long alpha helices each flanked by a shorter alpha helix. It binds a metal ion in a type-2 like centre. It contains two copies of an LTXXQ motif. 122 -338952 pfam13802 Gal_mutarotas_2 Galactose mutarotase-like. This family is found N-terminal to glycosyl-hydrolase domains, and appears to be similar to the galactose mutarotase superfamily. 66 -338953 pfam13803 DUF4184 Domain of unknown function (DUF4184). This domain of unknown function contains several highly conserved histidines. 230 -290518 pfam13804 HERV-K_env_2 Retro-transcribing viruses envelope glycoprotein. This family comes from human endogenous retrovirus K envelope glycoproteins. 169 -338954 pfam13805 Pil1 Eisosome component PIL1. In the budding yeast, S. cerevisiae, Pil1 and another cytoplasmic protein, Lsp1, together form large immobile assemblies at the plasma membrane that mark sites for endocytosis, called eisosomes. Endocytosis functions to recycle plasma membrane components, to regulate cell-surface expression of signalling receptors and to internalize nutrients in all eukaryotic cells. 264 -316336 pfam13806 Rieske_2 Rieske-like [2Fe-2S] domain. 104 -338955 pfam13807 GNVR G-rich domain on putative tyrosine kinase. This domain is found between two families, Wzz, pfam02706 and CbiA pfam01656. There is a highly conserved GNVR sequence motif which characterizes this domain. The function is not known. 82 -338956 pfam13808 DDE_Tnp_1_assoc DDE_Tnp_1-associated. This domain is frequently found N-terminal to the transposase, IS family DDE_Tnp_1, pfam01609 and its relatives. 88 -316339 pfam13809 Tubulin_2 Tubulin like. Many of the residues conserved in Tubulin, pfam00091, are also highly conserved in this family. 341 -338957 pfam13810 DUF4185 Domain of unknown function (DUF4185). 308 -316341 pfam13811 DUF4186 Domain of unknown function (DUF4186). 109 -316342 pfam13812 PPR_3 Pentatricopeptide repeat domain. This family matches additional variants of the PPR repeat that were not captured by the model for pfam01535. In the case of the Arabidopsis protein UniProtKB:Q66GI4, the repeated helices in this N-terminal region, of protein-only RNase P (PRORP) enzymes, form the pentatricopeptide repeat (PPR) domain which enhances pre-tRNA binding affinity. PROPRP enzymes process precursor tRNAs in human mitochondria and in all tRNA-using compartments of Arabidopsis thaliana. 63 -316343 pfam13813 MBOAT_2 Membrane bound O-acyl transferase family. 84 -316344 pfam13814 Replic_Relax Replication-relaxation. This family includes proteins which are essential for plasmid replication and plasmid DNA relaxation. 191 -290529 pfam13815 Dzip-like_N Iguana/Dzip1-like DAZ-interacting protein N-terminal. The DAZ gene-product - Deleted in Azoospermia - and a closely related sequence are required early in germ-cell development in order to maintain germ-cell populations. This family is the N-terminal region that is the only part of the protein in some fungi and lower metazoa. 118 -338958 pfam13816 Dehydratase_hem Haem-containing dehydratase. This family includes aldoxime dehydratase, EC:4.99.1.5. This is a haem-containing enzyme, which catalyzes the dehydration of aldoximes to their corresponding nitrile. It also includes phenylacetaldoxime dehydratase, EC:4.99.1.7. This haem-containing enzyme catalyzes the dehydration of Z-phenylacetaldoxime to phenylacetonitrile. The enzyme forms an elliptic beta barrel, composed of eight beta-strands, flanked by alpha-helices. 308 -338959 pfam13817 DDE_Tnp_IS66_C IS66 C-terminal element. 39 -316347 pfam13820 Nucleic_acid_bd Putative nucleic acid-binding region. This is a family of putative nucleic acid-binding proteins. Several members are annotated as being nuclear receptor coactivator 6 proteins but this could not be confirmed. 143 -338960 pfam13821 DUF4187 Domain of unknown function (DUF4187). This family is found at the very C-terminus of proteins that carry a G-patch domain, pfam01585. The domain is short and cysteine-rich. 50 -316349 pfam13822 ACC_epsilon Acyl-CoA carboxylase epsilon subunit. This family includes the epsilon subunits of propionyl-CoA carboxylase, EC:6.4.1.3, and acetyl-CoA carboxylase, EC:6.4.1.2. These enzymes are involved in the biosynthesis of long-chain fatty acids. The epsilon subunit is necessary for an efficient interaction between the alpha and beta subunits of these enzymes. 61 -316350 pfam13823 ADH_N_assoc Alcohol dehydrogenase GroES-associated. This short domain is frequently found at the N-terminus of the alcohol dehydrogenase GroES-like domain, Pfam: PF08240. 23 -316351 pfam13824 zf-Mss51 Zinc-finger of mitochondrial splicing suppressor 51. Mss51 regulates the expression of cytochrome oxidase, so this domain is probably DNA-binding. 54 -290537 pfam13825 Paramyxo_PNT Paramyxovirus structural protein V/P N-terminus. This family consists of several Paramyxoviridae structural protein P and V sequences. From a structural point of view, P is the best-characterized protein of the replicative complex. P is organized into two moieties that are functionally and structurally distinct: a C-terminal moiety (PCT) and an N-terminal moiety (PNT). PCT is the most conserved in sequence and contains all regions required for virus transcription, whereas PNT, which is poorly conserved, provides several additional functions required for replication. P protein plays a crucial role in the enzyme by positioning L onto the N/RNA template through an interaction with the C-terminal domain of N. Without P, L is not functional. The N, P, and L proteins of SeV and measles and mumps viruses are functionally equivalent. However, sequence identity between proteins from these viruses is limited, and the viruses have been placed in different genera (Respirovirus, Morbilivirus, and Rubulavirus, respectively). SeV P protein (568 aa) is a modular protein with distinct functional domains. The N-terminal part of P (PNT) is a chaperone for N and prevents it from binding to non-viral RNA in the infected cell. 309 -316352 pfam13826 DUF4188 Domain of unknown function (DUF4188). 117 -338961 pfam13827 DUF4189 Domain of unknown function (DUF4189). This domain of unknown function contains six well-conserved cysteine residues. 98 -338962 pfam13828 DUF4190 Domain of unknown function (DUF4190). This integral membrane domain is functionally uncharacterized. One of the membrane helices contains two GXXG motifs that are usually associated with dimerization. 61 -316355 pfam13829 DUF4191 Domain of unknown function (DUF4191). 217 -316356 pfam13830 DUF4192 Domain of unknown function (DUF4192). 318 -338963 pfam13831 PHD_2 PHD-finger. PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. 33 -338964 pfam13832 zf-HC5HC2H_2 PHD-zinc-finger like domain. 108 -316358 pfam13833 EF-hand_8 EF-hand domain pair. 53 -316359 pfam13834 DUF4193 Domain of unknown function (DUF4193). This domain of unknown function contains four conserved cysteines and a conserved histidine, including a CXXXXH motif. 97 -338965 pfam13835 DUF4194 Domain of unknown function (DUF4194). 165 -316361 pfam13836 DUF4195 Domain of unknown function (DUF4195). This family is found at the N-terminus of metazoan proteins that carry PHD-like zinc-finger domains. The function is not known. 184 -338966 pfam13837 Myb_DNA-bind_4 Myb/SANT-like DNA-binding domain. This presumed domain appears to be related to other Myb/SANT-like DNA binding domains. In particular pfam10545 seems most related. This family is greatly expanded in plants and appears in several proteins annotated as transposon proteins. 89 -316363 pfam13838 Clathrin_H_link Clathrin-H-link. This short domain is found on clathrins, and often appears on proteins directly downstream from the Clathrin-link domain pfam09268. 66 -338967 pfam13839 PC-Esterase GDSL/SGNH-like Acyl-Esterase family found in Pmr5 and Cas1p. The PC-Esterase family is comprised of Cas1p, the Homo sapiens C7orf58, Arabidopsis thaliana PMR5 and a group of plant freezing resistance/cold acclimatization proteins typified by Arabidopsis thaliana ESKIMO1, animal FAM55D proteins, and animal FAM113 proteins. The PC-Esterase family has features that are both similar and different from the canonical GDSL/SGNH superfamily. The members of this family are predicted to have Acyl esterase activity and predicted to modify cell-surface biopolymers such as glycans and glycoproteins. The Cas1p protein has a Cas1_AcylT domain, in addition, with the opposing acyltransferase activity. The C7orf58 family has a ATP-Grasp domain fused to the PC-Esterase and is the first identified secreted tubulin-tyrosine ligase like enzyme in eukaryotes. The plant family with PMR5, ESK1, TBL3 etc have a N-terminal C rich potential sugar binding domain followed by PC-Esterase domain. 283 -338968 pfam13840 ACT_7 ACT domain. The ACT domain is a structural motif of 70-90 amino acids that functions in the control of metabolism, solute transport and signal transduction. They are thus found in a variety of different proteins in a variety of different arrangements. In mammalian phenylalanine hydroxylase the domain forms no contacts but promotes an allosteric effect despite the apparent lack of ligand binding. 62 -316366 pfam13841 Defensin_beta_2 Beta defensin. The beta defensins are antimicrobial peptides implicated in the resistance of epithelial surfaces to microbial colonisation. 30 -316367 pfam13842 Tnp_zf-ribbon_2 DDE_Tnp_1-like zinc-ribbon. This zinc-ribbon domain is frequently found at the C-terminal of proteins derived from transposable elements. 31 -316368 pfam13843 DDE_Tnp_1_7 Transposase IS4. 350 -316369 pfam13844 Glyco_transf_41 Glycosyl transferase family 41. This family of glycosyltransferases includes O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase, an enzyme which catalyzes the addition of O-GlcNAc to serine and threonine residues. In addition to its function as an O-GlcNAc transferase, human OGT also appears to proteolytically cleave the epigenetic cell-cycle regulator HCF-1. 469 -316370 pfam13845 Septum_form Septum formation. This domain is found in a protein which is predicted to play a role in septum formation during cell division. 227 -316371 pfam13846 DUF4196 Domain of unknown function (DUF4196). This is a short region of ccdc82_homologs that is conserved from Schizo. pombe up to humans. The function is not known. 116 -316372 pfam13847 Methyltransf_31 Methyltransferase domain. This family appears to have methyltransferase activity. 150 -316373 pfam13848 Thioredoxin_6 Thioredoxin-like domain. 184 -338969 pfam13850 ERGIC_N Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC). This family is the N-terminal of ERGIC proteins, ER-Golgi intermediate compartment clusters, otherwise known as Ervs, and is associated with family COPIIcoated_ERV, pfam07970. 90 -316375 pfam13851 GAS Growth-arrest specific micro-tubule binding. This family is the highly conserved central region of a number of metazoan proteins referred to as growth-arrest proteins. In mouse, Gas8 is predominantly a testicular protein, whose expression is developmentally regulated during puberty and spermatogenesis. In humans, it is absent in infertile males who lack the ability to generate gametes. The localization of Gas8 in the motility apparatus of post-meiotic gametocytes and mature spermatozoa, together with the detection of Gas8 also in cilia at the apical surfaces of epithelial cells lining the pulmonary bronchi and Fallopian tubes suggests that the Gas8 protein may have a role in the functioning of motile cellular appendages. Gas8 is a microtubule-binding protein localized to regions of dynein regulation in mammalian cells. 200 -338970 pfam13852 DUF4197 Protein of unknown function (DUF4197). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 228 and 249 amino acids in length. 200 -290564 pfam13853 7tm_4 Olfactory receptor. The members of this family are transmembrane olfactory receptors. 280 -338971 pfam13854 Kelch_5 Kelch motif. The kelch motif was initially discovered in Kelch. In this protein there are six copies of the motif. It has been shown that Drosophila ring canal kelch protein is related to Galactose Oxidase for which a structure has been solved. The kelch motif forms a beta sheet. Several of these sheets associate to form a beta propeller structure as found in pfam00064, pfam00400 and pfam00415. 41 -338972 pfam13855 LRR_8 Leucine rich repeat. 60 -316379 pfam13856 Gifsy-2 ATP-binding sugar transporter from pro-phage. Members of this short family are putative ATP-binding sugar transporter-like protein. 98 -316380 pfam13857 Ank_5 Ankyrin repeats (many copies). 56 -338973 pfam13858 DUF4199 Protein of unknown function (DUF4199). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 167 and 182 amino acids in length. 159 -316382 pfam13859 BNR_3 BNR repeat-like domain. This family of proteins contains BNR-like repeats suggesting these proteins may act as sialidases. 301 -338974 pfam13860 FlgD_ig FlgD Ig-like domain. This domains has an immunoglobulin like beta sandwich fold. It is found in the FlgD protein the flagellar hook capping protein. THe structure for this domain shows that it is inserted within a TUDOR like beta barrel domain. 73 -338975 pfam13861 FLgD_tudor FlgD Tudor-like domain. This domain has a tudor domain-like beta barrel fold. It is found in the FlgD protein the flagellar hook capping protein. The structure for this domain shows that it contains a nested Ig-like domain within it. However in some firmicute proteins this inserted domain is absent such as Q67K21. 135 -338976 pfam13862 BCIP p21-C-terminal region-binding protein. This family of p21-binding proteins is important as a modulator of p21 activity. The domain binds the C-terminal region of p21 in a ternary complex with CDK2, which results in inhibition of the kinase activity of CDK2. 209 -338977 pfam13863 DUF4200 Domain of unknown function (DUF4200). This family is found in eukaryotes. It is a coiled-coil domain of unknwon function. 119 -338978 pfam13864 Enkurin Calmodulin-binding. This is a family of apparent calmodulin-binding proteins found at high levels in the testis and vomeronasal organ and at lower levels in certain other tissues. Enkurin is a scaffold protein that binds PI3 kinase to sperm transient receptor potential (canonical) (TRPC) channels. The mammalian transient receptor potential (canonical) channels are the primary candidates for the Ca(2+) entry pathway activated by the hormones, growth factors, and neurotransmitters that exert their effect through activation of PLC. Calmodulin binds to the C-terminus of all TRPC channels, and dissociation of calmodulin from TRPC4 results in profound activation of the channel. 96 -316388 pfam13865 FoP_duplication C-terminal duplication domain of Friend of PRMT1. Fop, or Friend of Prmt1, proteins are conserved from fungi and plants to vertebrates. There is little that is actually conserved except for this C-terminal LDXXLDAYM region where X is any amino acid). The Fop proteins themselves are nuclear proteins localized to regions with low levels of DAPI, with a punctate/speckle-like distribution. Fop is a chromatin-associated protein and it co-localizes with facultative heterochromatin. It is is critical for oestrogen-dependent gene activation. 81 -316389 pfam13866 zf-SAP30 SAP30 zinc-finger. SAP30 is a subunit of the histone deacetylase complex, and this domain is a zinc-finger. Solution of the structure shows a novel fold comprising two beta-strands and two alpha-helices with the zinc organising centre showing remote resemblance to the treble clef motif. In silico analysis of the structure revealed a highly conserved surface dominated by basic residues. NMR-based analysis of potential ligands for the SAP30 zn-finger motif indicated a strong preference for nucleic acid substrates. The zinc-finger of SAP3 probably functions as a double-stranded DNA-binding motif, thereby expanding the known functions of both SAP30 and the mammalian Sin3 co-repressor complex. 71 -338979 pfam13867 SAP30_Sin3_bdg Sin3 binding region of histone deacetylase complex subunit SAP30. This C-terminal domain of the SAP30 proteins appears to be the binding region for Sin3. 54 -338980 pfam13868 TPH Trichohyalin-plectin-homology domain. This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. 352 -338981 pfam13869 NUDIX_2 Nucleotide hydrolase. Nudix hydrolases are found in all classes of organism and hydrolyze a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, di-nucleoside and diphospho-inositol polyphosphates, nucleotide sugars and RNA caps, with varying degrees of substrate specificity. 188 -316393 pfam13870 DUF4201 Domain of unknown function (DUF4201). This is a family of coiled-coil proteins from eukaryotes. The function is not known. 177 -316394 pfam13871 Helicase_C_4 C-terminal domain on Strawberry notch homolog. Strawberry notch proteins carry DExD/H-box groups upstream of this domain. The function of this domain is not known. These proteins promote the expression of diverse targets, potentially through interactions with transcriptional activator or repressor complexes. 268 -316395 pfam13872 AAA_34 P-loop containing NTP hydrolase pore-1. 302 -316396 pfam13873 Myb_DNA-bind_5 Myb/SANT-like DNA-binding domain. This presumed domain appears to be related to other Myb/SANT like DNA binding domains. This family is greatly expanded in arthropods and higher eukaryotes. 78 -338982 pfam13874 Nup54 Nucleoporin complex subunit 54. This is the human Nup54 subunit of the nucleoporin complex, equivalent to Nup57 of yeast. Nup54, Nup58 and Nup62 all have similar affinities for importin-beta. It seems likely that they are the only FG-repeat nucleoporins of the central channel, and as such they would form a zone of equal affinity spanning the central channel. The diffusion of importin-beta import complexes through the central channel may be a stochastic process as the affinities are similar, whereas movement from cytoplasmic fibrils to the central channel and from the central channel to the nuclear basket would be facilitated by the subtle differences in affinity between them. 137 -338983 pfam13875 DUF4202 Domain of unknown function (DUF4202). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 187 and 205 amino acids in length. There are two conserved sequence motifs: LED and KMS. The function of these proteins is unknown, although many are incorrectly annotated as glutamyl tRNA synthetases. 183 -316399 pfam13876 Phage_gp49_66 Phage protein (N4 Gp49/phage Sf6 gene 66) family. This family of phage proteins is functionally uncharacterized. The family includes bacteriophage Sf6 gene 66 as well as phage N4 GP49 protein. Proteins in this family are typically between 87 and 154 amino acids in length. There is a conserved NGF sequence motif. 77 -316400 pfam13877 RPAP3_C Potential Monad-binding region of RPAP3. This domain is found at the C-terminus of RNA-polymerase II-associated proteins. These proteins bind to Monad and are involved in regulating apoptosis. They contain TPR-repeats towards the N_terminus. 89 -338984 pfam13878 zf-C2H2_3 zinc-finger of acetyl-transferase ESCO. 40 -338985 pfam13879 KIAA1430 KIAA1430 homolog. This is a family of KIAA1430 homologs. The function is not known. 103 -338986 pfam13880 Acetyltransf_13 ESCO1/2 acetyl-transferase. 69 -316404 pfam13881 Rad60-SLD_2 Ubiquitin-2 like Rad60 SUMO-like. 111 -316405 pfam13882 Bravo_FIGEY Bravo-like intracellular region. This is the very C-terminal intracellular region of neural adhesion molecule L1 proteins that are also known as Bravo or NrCAM. It lies upstream of the IG and Fn3 domains and has the highly conserved motif FIGEY. The function is not known. 88 -316406 pfam13883 Pyrid_oxidase_2 Pyridoxamine 5'-phosphate oxidase. 167 -338987 pfam13884 Peptidase_S74 Chaperone of endosialidase. This is the very C-terminal, chaperone, domain of the bacteriophage protein endosialidase. It releases itself, via the serine-lysine dyad at the N-terminus, from the remainder of the end-tail-spike. Cleavage occurs after the threonine which is the final residue of the End-tail-spike family, pfam12219. The endosialidase protein forms homotrimeric molecules in bacteriophages. The catalytic dyad allows this portion of the molecule to be cleaved from the more N-terminal region such that the latter can fold and presumably bind to DNA. 56 -316408 pfam13885 Keratin_B2_2 Keratin, high sulfur B2 protein. 45 -338988 pfam13886 DUF4203 Domain of unknown function (DUF4203). This is the N-terminal region of 7tm proteins. The function is not known. 187 -316410 pfam13887 MRF_C1 Myelin gene regulatory factor -C-terminal domain 1. This domain is found just downstream of Peptidase_S74, pfam13884. The function is not known. 36 -316411 pfam13888 MRF_C2 Myelin gene regulatory factor C-terminal domain 2. This domain is found further downstream of Peptidase_S74, pfam13884, and MRF_C1, pfam13887. The function is not known. 136 -338989 pfam13889 Chromosome_seg Chromosome segregation during meiosis. The proteins come from eukaryotes, plants and animals, and are necessary for chromosome segregation during meiosis. 54 -316413 pfam13890 Rab3-GTPase_cat Rab3 GTPase-activating protein catalytic subunit. This family is the probable catalytic subunit of the GTPase activating protein that has specificity for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). It is likely to convert active Rab3-GTP to the inactive form Rab3-GDP. Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones. The Rab3 GTPase-activating complex is a heterodimer composed of RAB3GAP and RAB3-GAP150. This complex interacts with DMXL2. 160 -338990 pfam13891 zf-C3Hc3H Potential DNA-binding domain. This domain is likely to be the DNA-binding domain of chromatin re-modelling proteins and helicases. 62 -338991 pfam13892 DBINO DNA-binding domain. DBINO is a DNA-binding domain found on global transcription activator SNF2L1 proteins and chromatin re-modelling proteins. 134 -338992 pfam13893 RRM_5 RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain). The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. 125 -338993 pfam13894 zf-C2H2_4 C2H2-type zinc finger. This family contains a number of divergent C2H2 type zinc fingers. 24 -316418 pfam13895 Ig_2 Immunoglobulin domain. This domain contains immunoglobulin-like domains. 78 -338994 pfam13896 Glyco_transf_49 Glycosyl-transferase for dystroglycan. This glycosyl-transferase brings about the glycosylation of the alpha-dystroglycan subunit. Dystroglycan is an integral member of the skeletal muscular dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix. 328 -316420 pfam13897 GOLD_2 Golgi-dynamics membrane-trafficking. Sec14-like Golgi-trafficking domain The GOLD domain is always found combined with lipid- or membrane-association domains. 133 -316421 pfam13898 DUF4205 Domain of unknown function (DUF4205). The proteins in this family are uncharacterized but often named FAM188B. 344 -316422 pfam13899 Thioredoxin_7 Thioredoxin-like. Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. 82 -338995 pfam13901 zf-RING_9 Putative zinc-RING and/or ribbon. This is a family of cysteine-rich proteins. Many members also carry a pleckstrin-homology domain, pfam00169 196 -316424 pfam13902 R3H-assoc R3H-associated N-terminal domain. This family is found at the N-terminus of R3H, pfam01424, domain-containing proteins. The function is not known. 103 -316425 pfam13903 Claudin_2 PMP-22/EMP/MP20/Claudin tight junction. Members of this family are claudins, that form tight junctions between cells. 191 -316426 pfam13904 DUF4207 Domain of unknown function (DUF4207). This family is found in eukaryotes; it has several conserved tryptophan residues. The function is not known. 250 -338996 pfam13905 Thioredoxin_8 Thioredoxin-like. Thioredoxins are small enzymes that participate in redox reactions, via the reversible oxidation of an active centre disulfide bond. 94 -338997 pfam13906 AA_permease_C C-terminus of AA_permease. This is the C-terminus of AA-permease enzymes that is not captured by the models pfam00324 and pfam13520. 50 -338998 pfam13907 DUF4208 Domain of unknown function (DUF4208). This domain is found at the C-terminus of chromodomain-helicase-DNA-binding proteins. The exact function of the domain is undetermined. 84 -316430 pfam13908 Shisa Wnt and FGF inhibitory regulator. Shisa is a transcription factor-type molecule that physically interacts with immature forms of the Wnt receptor Frizzled and the FGF receptor within the endoplasmic reticulum to inhibit their post-translational maturation and trafficking to the cell surface. 183 -316431 pfam13909 zf-H2C2_5 C2H2-type zinc-finger domain. 26 -316432 pfam13910 DUF4209 Domain of unknown function (DUF4209). This short domain is found in bacteria and eukaryotes, though not in yeasts or Archaea. It carries a highly conserved RNxxxHG sequence motif. 89 -316433 pfam13911 AhpC-TSA_2 AhpC/TSA antioxidant enzyme. This family contains proteins related to alkyl hydro-peroxide reductase (AhpC) and thiol specific antioxidant (TSA). 113 -338999 pfam13912 zf-C2H2_6 C2H2-type zinc finger. 27 -316435 pfam13913 zf-C2HC_2 zinc-finger of a C2HC-type. This family contains a number of divergent C2H2 type zinc fingers. 25 -316436 pfam13914 Phostensin Phostensin PP1-binding and SH3-binding region. Phostensin has been identified as a PP1 regulatory protein binding PP1 at the KISF motif. The domain also appears to carry an incomplete incomplete SH3-binding domain PxRxP further upstream. It is likely that Phostensin targets PP1 to the F-actin cytoskeleton. Phostensin binds to actin and decreases the elongation and depolymerization rates of actin filament pointed ends. 132 -316437 pfam13915 DUF4210 Domain of unknown function (DUF4210). This short domain is found in fungi, plants and animals, and the proteins appear to be necessary for chromosome segregation during meiosis. 67 -316438 pfam13916 Phostensin_N PP1-regulatory protein, Phostensin N-terminal. Phostensin has been identified as a PP1 regulatory protein binding protein. This domain is N-terminal to the PP1- and SH3-binding regions though may carry an additional SH3-binding motif. It is likely that Phostensin targets PP1 to the F-actin cytoskeleton. Phostensin binds to actin and decreases the elongation and depolymerization rates of actin filament pointed ends. 86 -316439 pfam13917 zf-CCHC_3 Zinc knuckle. The zinc knuckle is a zinc binding motif composed of the the following CX2CX4HX4C where X can be any amino acid. The motifs are mostly from retroviral gag proteins (nucleocapsid). Prototype structure is from HIV. Also contains members involved in eukaryotic gene regulation, such as C. elegans GLH-1. Structure is an 18-residue zinc finger. 39 -316440 pfam13918 PLDc_3 PLD-like domain. 177 -339000 pfam13919 ASXH Asx homology domain. A conserved alpha helical domain with a characteristic LXXLL motif. The LXXLL motif is detected in diverse transcription factors, coactivators and corepressors and is implicated in mediating interactions between them. The ASXH domain is found in animals, fungi and plants and is predicted to play a role in mediating contact between transcription factors and chromatin-associated complexes. In Drosophila Asx and Human ASXL1, the ASXH domain is predicted to mediate interactions with the Calypso and BAP1 deubiquitinases (DUBs) which further belong to the UCHL5/UCH37 clade of DUBs. 128 -339001 pfam13920 zf-C3HC4_3 Zinc finger, C3HC4 type (RING finger). 48 -339002 pfam13921 Myb_DNA-bind_6 Myb-like DNA-binding domain. This family contains the DNA binding domains from Myb proteins, as well as the SANT domain family. 60 -316444 pfam13922 PHD_3 PHD domain of transcriptional enhancer, Asx. This is the DNA-binding domain on the additional sex combs-like 1 proteins. The Asx protein acts as an enhancer of trithorax and polycomb in displaying bidirectional homoeotic phenotypes in Drosophila, suggesting that it is required for maintenance of both activation and silencing of Hox genes. Asx is required for normal adult haematopoiesis and its function depends on its cellular context. 68 -316445 pfam13923 zf-C3HC4_2 Zinc finger, C3HC4 type (RING finger). 40 -339003 pfam13924 Lipocalin_5 Lipocalin-like domain. This family includes domains distantly related to lipocalins. However, they do contain the important GXW motif in the first strand. The protein in this family include aln5, which is involved in biosynthesis of alnumycin. The family also includes the ZFK protein from Trypanosoma brucei which is a protein kinase. This domain is at the C-terminus of that protein. The domain is also found as the C-terminal domain in StiJ a protein involved in producing stigmatellin. This domain has been assumed to catalyze a final cyclisation reaction. 140 -339004 pfam13925 Katanin_con80 con80 domain of Katanin. The con80 domain of katanin is the C-terminal region of the protein that binds to the N-terminal domain of katanin-p60, the catalytic ATPase. The complex associates with a specific subregion of the mitotic spindle leading to increased microtubule disassembly and targeting of p60 to the spindle poles. The assembly and function of the mitotic spindle requires the activity of a number of microtubule-binding proteins. Katanin, a heterodimeric microtubule-severing ATPase, is found localized at mitotic spindle poles. A proposed model is that katanin is targeted to spindle poles through a combination of direct microtubule binding by the p60 subunit and through interactions between the WD40 domain and an unknown protein. 153 -316448 pfam13926 DUF4211 Domain of unknown function (DUF4211). 140 -339005 pfam13927 Ig_3 Immunoglobulin domain. This family contains immunoglobulin-like domains. 79 -316450 pfam13928 Flocculin_t3 Flocculin type 3 repeat. This repeat is found in the Flocculation protein FLO9 close to its C-terminus. 44 -316451 pfam13929 mRNA_stabil mRNA stabilisation. This domain is an mRNA stabilisation factor. 287 -316452 pfam13930 Endonuclea_NS_2 DNA/RNA non-specific endonuclease. 132 -316453 pfam13931 Microtub_bind Kinesin-associated microtubule-binding. This domain binds to micotubules. 137 -339006 pfam13932 GIDA_assoc GidA associated domain. The GidA associated domain is a domain that has been identified at the C-terminus of protein GidA. It consists of several helices, the last three being rather short and forming small bundle. GidA is an tRNA modification enzyme found in bacteria and mitochondrial. Based on mutational analysis this domain has been suggested to be implicated in binding of the D-stem of tRNA and to be responsible for the interaction with protein MnmE. Structures of GidA in complex with either tRNA or MnmE are missing. Reported to bind to Pfam family MnmE, pfam12631. 211 -316455 pfam13933 HRXXH Putative peptidase family. This family of putative peptidases are closely related to the M35 family pfam02102. In this family the metal binding HEXXH motif is replaced with HRXXH. The exact function of these proteins is unknown. Members of this family are found to be fungal allergens. 244 -316456 pfam13934 ELYS Nuclear pore complex assembly. ELYS (embryonic large molecule derived from yolk sac) is conserved from fungi such Aspergillus nidulans and Schizosaccharomyces pombe to human. It is important for the assembly of the nuclear pore complex. 209 -339007 pfam13935 Ead_Ea22 Ead/Ea22-like protein. This family contains phage proteins and bacterial proteins that are likely to represent integrated phage proteins. This family includes the Lambda phage Ea22 early protein as well as the Bacteriophage P22 Ead protein. 96 -339008 pfam13936 HTH_38 Helix-turn-helix domain. This helix-turn-helix domain is often found in transferases and is likely to be DNA-binding. 44 -339009 pfam13937 DUF4212 Domain of unknown function (DUF4212). This family includes several putative integral membrane proteins. 77 -339010 pfam13938 DUF4213 Putative heavy-metal chelation. This domain of unknown function has an enolase N-terminal domain-like fold. Its genomic context suggests that it may have a role in anaerobic vitamin B12 biosynthesis. This domain is often found at the N-terminus of proteins containing DUF364, pfam04016. The structure of UnioProtKB:B8FUJ5, Structure 3l5o, suggests that the whole protein has this enolase N-terminal-like fold and an Rossmann-like C-terminal domain. Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The protein may be playing a role in heavy-metal chelation. 73 -316461 pfam13939 TisB_toxin Toxin TisB, type I toxin-antitoxin system. TisB (toxicity-induced by SOS B) is an SOS-induced toxic peptide. It is a hydrophobic membrane-spanning protein which inhibits cell growth. Its expression is inhibited by the antisense RNA IstR-1, which acts as an antitoxin. 28 -290651 pfam13940 Ldr_toxin Toxin Ldr, type I toxin-antitoxin system. This family includes the Ldr (long direct repeat) toxins. In Escherichia coli there are four Ldr toxins, LdrA, LdrB, LdrC and LdrD. These toxins inhibit cell growth, decrease cell viability and cause nucleoid condensation. LdrD expression is inhibited by the antisense RNA RdlD, which functions as an antitoxin. 35 -339011 pfam13941 MutL MutL protein. This small family includes, GlmL/MutL from Clostridium tetanomorphum and Clostridium cochlearium. GlmL is located between the genes for the two subunits, epsilon (GlmE) and sigma (GlmS), of the coenzyme-B12-dependent glutamate mutase (methylaspartate mutase), the first enzyme in a pathway of glutamate fermentation. Members shows significant sequence similarity to the hydantoinase branch of the hydantoinase/oxoprolinase family. 446 -339012 pfam13942 Lipoprotein_20 YfhG lipoprotein. This family includes the YfhG protein from E. coli. Members of this family have an N-terminal lipoprotein attachment site. The members of this family are functionally uncharacterized. 175 -316464 pfam13943 WPP WPP domain. 99 -339013 pfam13944 Calycin_like Calycin-like beta-barrel domain. 121 -316466 pfam13945 NST1 Salt tolerance down-regulator. NST1 is a family of proteins that seem to be involved, directly or indirectly, in the salt sensitivity of some cellular functions in yeast. It does this without affecting sodium accumulation. It negatively affects salt-tolerance through an interaction with the splicing factor Msl1p. This interaction stresses the importance of efficient RNA processing under salt stress conditions. 186 -339014 pfam13946 DUF4214 Domain of unknown function (DUF4214). This domain is found on a variety of different proteins including transferases, and allergen V5/Tpx-1 related proteins. 72 -339015 pfam13947 GUB_WAK_bind Wall-associated receptor kinase galacturonan-binding. This cysteine-rich GUB_WAK_bind domain is the extracellular part of this serine/threonine kinase that binds to the cell-wall pectins. 106 -290659 pfam13948 DUF4215 Domain of unknown function (DUF4215). The function of this family is unknown. 47 -339016 pfam13949 ALIX_LYPXL_bnd ALIX V-shaped domain binding to HIV. The binding of the LYPxL motif of late HIV p6Gag and EIAV p9Gag to this domain is necessary for viral budding.This domain is generally central between an N-terminal Bro1 domain, pfam03097 and a C-terminal proline-rich domain. The retroviruses thus used this domain to hijack the ESCRT system of the cell. 288 -339017 pfam13952 DUF4216 Domain of unknown function (DUF4216). This DUF is sometimes found at the C-terminal end of proteins carrying a Transposase_21 domain, pfam02992. 72 -339018 pfam13953 PapC_C PapC C-terminal domain. The PapC C-terminal domain is a structural domain found at the C-terminus of the E. coli PapC protein. Pili are assembled using the chaperone usher system. In E.coli this is composed of the chaperone PapD and the usher PapC. This domain represents the C-terminal domain from PapC and its homologs. This domain has a beta-sandwich structure similar to the plug domain of PapC. 66 -339019 pfam13954 PapC_N PapC N-terminal domain. The PapC N-terminal domain is a structural domain found at the N-terminus of the E. coli PapC protein. Pili are assembled using the chaperone usher system. In E.coli this is composed of the chaperone PapD and the usher PapC. This domain represents the N-terminal domain from PapC and its homologs. This domain is involved in substrate binding. 146 -339020 pfam13955 Fst_toxin Toxin Fst, type I toxin-antitoxin system. Fst (faecalis plasmid stabilization toxin), also known as RNA I, is a toxic peptide. Its N-terminus forms a transmembrane alpha helix, its C-terminus is disordered and is likely to be cytosolic. Its translation is inhibited by the antisense RNA, RNA II, which acts as an antitoxin. 21 -206126 pfam13956 Ibs_toxin Toxin Ibs, type I toxin-antitoxin system. The Ibs (induction brings stasis) proteins are a family of toxic peptides. Their expression is inhibited by the Sib antisense RNAs, which act as antitoxins. 19 -316474 pfam13957 YafO_toxin Toxin YafO, type II toxin-antitoxin system. YafO is a toxin which inhibits protein synthesis. It acts as a ribosome-dependent mRNA interferase. It forms part of a type II toxin-antitoxin system, where the YafN protein acts as an antitoxin. This domain forms complexes with yafN antitoxins containing pfam02604. 101 -316475 pfam13958 ToxN_toxin Toxin ToxN, type III toxin-antitoxin system. ToxN acts as a toxin, it is part of a type III toxin-antitoxin system. It acts as a ribosome independent endoribonuclease. It interacts with, and is inhibited by, the RNA antitoxin, ToxI. Three ToxN monomers bind to three ToxI monomers to create a trimeric ToxN-ToxI complex. 154 -339021 pfam13959 DUF4217 Domain of unknown function (DUF4217). This short domain is found at the C-terminus of many helicase proteins. 60 -339022 pfam13960 DUF4218 Domain of unknown function (DUF4218). 114 -339023 pfam13961 DUF4219 Domain of unknown function (DUF4219). This domain is very short and is found at the N-terminal of many Gag-pol polyprotein and related proteins. There is a highly conserved YxxWxxxM sequence motif. 27 -339024 pfam13962 PGG Domain of unknown function. The PGG domain is named for the highly conserved sequence motif found at the startt of the domain. The function is not known. 112 -339025 pfam13963 Transpos_assoc Transposase-associated domain. 74 -316481 pfam13964 Kelch_6 Kelch motif. 50 -339026 pfam13965 SID-1_RNA_chan dsRNA-gated channel SID-1. This is a family of proteins that are transmembrane dsRNA-gated channels. They passively transport dsRNA into cells and do not act as ATP-dependent pumps. They are required for systemic RNA interference. This family of proteins belong to the CREST superfamily, which are distantly related to GPCRs. 600 -339027 pfam13966 zf-RVT zinc-binding in reverse transcriptase. This domain would appear to be a zinc-binding region of a putative reverse transcriptase. 78 -316484 pfam13967 RSN1_TM Late exocytosis, associated with Golgi transport. This family represents the first three transmembrane regions of 11-TM proteins involved in vesicle transport. In S. cerevisiae these proteins are members of the yeast facilitator superfamily and are integral membrane proteins localized to the cell periphery, in particular to the bud-neck region. The distribution is consistent with a role in late exocytosis which is in agreement with the proteins' ability to substitute for the function of Sro7p, required for the sorting of the protein Enap1 into Golgi-derived vesicles destined for the cell surface. 156 -339028 pfam13968 DUF4220 Domain of unknown function (DUF4220). This family is found in plants and is often associated with DUF294, pfam04578. 339 -316486 pfam13969 Pab87_oct Pab87 octamerisation domain. This domain was first characterized as the C-terminal domain of Pab87 serine protease from Pyrococcus abyssi. The domain is reported to play a crucial role in Pab87 octamerisation and active site compartmentalisation. Its up-and-down 8-stranded beta-barrel 3D structure is reminiscent of the one found in lipocalins. 96 -316487 pfam13970 DUF4221 Domain of unknown function (DUF4221). This family of bacterial proteins contains highly conserved asparagine and cysteine residues. The function is not known. 312 -316488 pfam13971 Mei4 Meiosis-specific protein Mei4. This family of meiosis specific proteins is required for correct meiotic chromosome segregation and recombination. It is required for meiotic DNA double-strand break (DSB) formation. 347 -339029 pfam13972 TetR Bacterial transcriptional repressor. This family of bacterial transcriptional repressors is characterized by the short approximately 50 amino acid stretch of residues constituting the helix-turn-helix DNA binding motif, around the YRFhY motif. The target proteins that are repressed are involved in the transcriptional control of multi-drug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which TetR itself is involved is in being released in the presence of tetracycline, binding to the target operator, and repressing tetA transcription. 143 -316490 pfam13973 DUF4222 Domain of unknown function (DUF4222). This short protein is likely to be of phage origin. For example it is found in the Enterobacteria phage YYZ-2008. It is largely found in enteric bacteria. The molecular function of this protein is unknown. 51 -339030 pfam13974 YebO YebO-like protein. This short protein is uncharacterized. It seems likely to be of phage origin as it is found in Enterobacteria phage HK022 Gp20 and Enterobacteria phage HK97 Gp15. The protein is also found in a variety of enteric bacteria. 79 -339031 pfam13975 gag-asp_proteas gag-polyprotein putative aspartyl protease. This family of putative aspartyl proteases is found pre-dominantly in retroviral proteins. 92 -339032 pfam13976 gag_pre-integrs GAG-pre-integrase domain. This domain is found associated with retroviral insertion elements and lies just upstream of the integrase region on the polyproteins. 67 -339033 pfam13977 TetR_C_6 BetI-type transcriptional repressor, C-terminal. This family comprises the C-terminal portion of proteins that belong to the TetR family of transcriptional regulators. The C-terminus represents the regulatory region, and does not include the DNA binding helix-turn-helix domain. The target proteins that are repressed are involved in the transcriptional control of multi-drug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. One of the target proteins is BetI, an osmoprotectant which controls the choline-glycine betaine pathway in E.coli. 113 -290685 pfam13978 DUF4223 Protein of unknown function (DUF4223). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. These proteins are likely to be lipoproteins (attachment site currently included in alignment). 54 -290686 pfam13979 SopA_C SopA-like catalytic domain. This domain is found in the E. coli Type III secretion effector proteins SopA and NleL. These proteins have been shown to act as E3 ubiquitin ligase enzymes. This domain contains the active site cysteine residue. 177 -339034 pfam13980 UPF0370 Uncharacterized protein family (UPF0370). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved DWP sequence motif. 61 -290688 pfam13981 SopA SopA-like central domain. This domain is found in the E. coli Type III secretion effector proteins SopA and NleL. These proteins have been shown to act as E3 ubiquitin ligase enzymes. 126 -316496 pfam13982 YbfN YbfN-like lipoprotein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. Members of this family are lipoproteins. 88 -316497 pfam13983 YsaB YsaB-like lipoprotein. This family of proteins is functionally uncharacterized. These proteins are related to E.coli YsaB. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. These proteins are lipoproteins. 75 -339035 pfam13984 MsyB MsyB protein. The MsyB protein has been found to be able to restore protein export defects caused by a temperature-sensitive secY or secA mutation. However, its exact molecular function is still unknown, but it may play a role in protein export. Proteins in this family are approximately 120 amino acids in length. This family of proteins is found in bacteria. 120 -316499 pfam13985 YbgS YbgS-like protein. This family of proteins is functionally uncharacterized. The family includes the YbgS protein from E. coli. This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. Some members of this family are annotated as homeobox protein, but this annotation cannot be verified. 120 -339036 pfam13986 DUF4224 Domain of unknown function (DUF4224). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and viruses, and is approximately 50 amino acids in length. The protein is likely to be of phage origin and is found as protein Gp02 in the Xylella phage Xfas53. 45 -339037 pfam13987 YedD YedD-like protein. This family of proteins related to the YedD protein is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. These proteins are lipoproteins. 106 -339038 pfam13988 DUF4225 Protein of unknown function (DUF4225). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 182 and 282 amino acids in length. 163 -339039 pfam13989 YejG YejG-like protein. The YejG protein family is a group of functionally uncharacterized proteins related to Escherichia coli yejG. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 106 -316504 pfam13990 YjcZ YjcZ-like protein. This family of proteins is functionally uncharacterized. The family includes the YjcZ protein from E. coli. This family of proteins is found in enteric bacteria. Proteins in this family are approximately 300 amino acids in length. There are two conserved sequence motifs: FGD and MPR. 272 -339040 pfam13991 BssS BssS protein family. The BssS protein family is a group of proteins that are involved in regulation of biofilm formation. Proteins in this family are approximately 80 amino acids in length. 69 -316506 pfam13992 YecR YecR-like lipoprotein. The YecR-like family of lipoproteins includes the YecR protein from E. coli. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 110 amino acids in length. 73 -339041 pfam13993 YccJ YccJ-like protein. The YccJ-like family of proteins includes the E. coli YccJ protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 67 -339042 pfam13994 PgaD PgaD-like protein. This family includes the PgaD protein from E. coli. The homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in eubacteria. The pgaABCD operon is required for its synthesis and export. It has been shown that PgaD is essential for this process. 147 -339043 pfam13995 YebF YebF-like protein. The YebF-like protein family appears to be a group of colicin immunity proteins. As well as YebF the family includes cmi, the colicin M immunity protein. This domain family is found in bacteria, and is approximately 80 amino acids in length. The alignment contains two conserved cysteine residues that form a disulphide bond in the solved structure. 88 -339044 pfam13996 YobH YobH-like protein. The YobH-like protein family includes the YobH protein from E. coli, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. There are two conserved sequence motifs: GYG and GLGL. 70 -339045 pfam13997 YqjK YqjK-like protein. The YqjK-like protein family includes the E. coli YqjK protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. There is a single completely conserved residue R that may be functionally important. 73 -339046 pfam13998 MgrB MgrB protein. The MgrB protein is a short lipoprotein. The mgrB gene has a mg2+ responsive promoter. Deletion of mgrB results in a potent increase in PhoP-regulated transcription. The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. Over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. This domain family is found in bacteria, and is approximately 40 amino acids in length. There are two conserved sequence motifs: CDQ and GIC. 29 -316513 pfam13999 MarB MarB protein. The MarB protein is found in the multiple antibiotic resistance (mar) locus in Escherichia coli. The MarB protein is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved GSDKSD sequence motif. 63 -290707 pfam14000 Packaging_FI DNA packaging protein FI. This family includes the lambda phage DNA-packaging protein FI. Proteins in this family are typically between 124 and 140 amino acids in length. There is a conserved EEE sequence motif. 131 -316514 pfam14001 YdfZ YdfZ protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved YDRNRN sequence motif. The E. coli protein has been shown to bind selenium. 64 -339047 pfam14002 YniB YniB-like protein. The YniB-like protein family includes the E. coli YniB protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 180 amino acids in length. This family of proteins are integral membrane proteins. 164 -316516 pfam14003 YlbE YlbE-like protein. The YlbE-like protein family includes the B. subtilis protein YlbE, which is functionally uncharacterized. This family of cytosolic proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. There is a conserved WYR sequence motif. 60 -339048 pfam14004 DUF4227 Protein of unknown function (DUF4227). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 71 -316518 pfam14005 YpjP YpjP-like protein. The YpjP-like protein family includes the B. subtilis YpjP protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 200 amino acids in length. 133 -316519 pfam14006 YqzL YqzL-like protein. The YqzL-like protein family includes the B. subtilis YqzL protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. 39 -316520 pfam14007 YtpI YtpI-like protein. The YtpI-like protein family includes the B. subtilis YtpI protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 73 and 101 amino acids in length. 87 -339049 pfam14008 Metallophos_C Iron/zinc purple acid phosphatase-like protein C. This domain is found at the C-terminus of Purple acid phosphatase proteins. 63 -339050 pfam14009 DUF4228 Domain of unknown function (DUF4228). This domain is found in plants. The function is not known. 119 -339051 pfam14010 PEPcase_2 Phosphoenolpyruvate carboxylase. This family of phosphoenolpyruvate carboxylases is based on seqeunces not picked up by the model for PEPcase, PF00311. Most of the family members are from Archaea. 496 -316524 pfam14011 ESX-1_EspG EspG family. This family of proteins contains the the EspG1, EspG2 and EspG3 proteins from M. tuberculosis. These proteins are involved in the ESAT-6 secretion system 1 (ESX-1) of Mycobacterium tuberculosis which is important for virulence and intercellular spread. Proteins in this family are typically between 254 and 295 amino acids in length. 247 -316525 pfam14012 DUF4229 Protein of unknown function (DUF4229). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 95 and 122 amino acids in length. 65 -316526 pfam14013 MT0933_antitox MT0933-like antitoxin protein. This family of proteins contains the MT0933 protein, which has been identified as an antitoxin to /protein MT0934. This family of proteins is found in bacteria. Proteins in this family are typically between 61 and 90 amino acids in length. 49 -339052 pfam14014 DUF4230 Protein of unknown function (DUF4230). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 203 and 228 amino acids in length. 134 -316528 pfam14015 DUF4231 Protein of unknown function (DUF4231). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 148 and 288 amino acids in length. 106 -316529 pfam14016 DUF4232 Protein of unknown function (DUF4232). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 177 and 242 amino acids in length. Many members of this family are lipoproteins. 130 -316530 pfam14017 DUF4233 Protein of unknown function (DUF4233). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 122 and 147 amino acids in length. Proteins in this family are integral membrane proteins. 106 -316531 pfam14018 DUF4234 Domain of unknown function (DUF4234). This presumed integral membrane protein domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 70 amino acids in length. 66 -316532 pfam14019 DUF4235 Protein of unknown function (DUF4235). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 88 and 119 amino acids in length. 75 -316533 pfam14020 DUF4236 Protein of unknown function (DUF4236). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 69 and 402 amino acids in length. 54 -339053 pfam14021 TNT Tuberculosis necrotizing toxin. This is the C-terminal domain secreted by Mycobacterium tuberculosis##(Mtb). It induces necrosis of infected cells to evade immune responses.##Mtb utilizes the protein CpnT to kill human macrophages by secreting its C-terminal domain (CTD), named##tuberculosis##necrotizing##toxin (TNT) that induces necrosis. It acts as a NAD+ glycohydrolase##which hydrolyzes the essential cellular coenzyme NAD+ in the cytosol of infected macrophages resulting in necrotic cell death. CpnT transports its toxic CTD from the cell surface of M. tuberculosis by proteolytic cleavage, where the toxin is cleaved to induce host cell death. Structural analysis determined that the TNT core contains only six beta-strands as opposed to seven found in all known NAD+-utilizing toxins, and is significantly smaller, with only two short alpha-helices and two 3/10 helices. Furthermore, the putative NAD+ binding pocket identified Q822, Y765 and R757 as residues possibly involved in NAD+-binding and hydrolysis based on similar positions of catalytic amino acids of ADP-ribosylating toxins. While glutamine 822 residue was detected to be highly conserved among TNT homologs. 83 -339054 pfam14022 DUF4238 Protein of unknown function (DUF4238). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 274 and 374 amino acids in length. 240 -339055 pfam14023 DUF4239 Protein of unknown function (DUF4239). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 254 and 270 amino acids in length. 212 -316537 pfam14024 DUF4240 Protein of unknown function (DUF4240). This presumed domain is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 169 and 263 amino acids in length. This domain is often associated with the WGR domain pfam05406. 127 -316538 pfam14025 DUF4241 Protein of unknown function (DUF4241). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 205 and 315 amino acids in length. There is a conserved GDG sequence motif at the C-terminus. 132 -339056 pfam14026 DUF4242 Protein of unknown function (DUF4242). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 90 and 170 amino acids in length. There is a single completely conserved residue C that may be functionally important. 74 -339057 pfam14027 DUF4243 Protein of unknown function (DUF4243). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 348 and 477 amino acids in length. 330 -316541 pfam14028 Lant_dehydr_C Lantibiotic biosynthesis dehydratase C-term. Lant_dehydr_C is the C-terminal domain of a family of dehydratases that are involved in the biosynthesis of lantibiotics. While the extensive N-terminal domain, pfam04738, is involved in the serine-threonine glutamylation step of the synthetic process, this C-terminal domain, once thought to be a separate domain from the dehydratase enzymic activity, is necessary for the final glutamate-elimination step in the generation of the lantibiotic. Lantibiotics are a class of peptide antibiotic that contains one or more thioether bonds. 298 -316542 pfam14029 DUF4244 Protein of unknown function (DUF4244). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 66 and 95 amino acids in length. There is a conserved EYA sequence motif. 50 -316543 pfam14030 DUF4245 Protein of unknown function (DUF4245). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 188 and 235 amino acids in length. 158 -339058 pfam14031 D-ser_dehydrat Putative serine dehydratase domain. This domain is found at the C-terminus of yeast D-serine dehydratase. Structures have been solved for two bacterial members of this family. The yeast protein has been shown to be a zinc dependant enzyme. 97 -316545 pfam14032 PknH_C PknH-like extracellular domain. This domain is functionally uncharacterized. It is found as the periplasmic domain of the bacterial protein kinase PknH. The domain is also found in isolation in numerous proteins, for example the lipoproteins lpqQ, lprH, lppH and lpqA from M. tuberculosis. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 268 amino acids in length. There are two completely conserved C residues that are likely to form a disulphide bond. A second pair of cysteines are less well conserved probably form a second disulphide bond. It seems likely that this domain functions to bind some as yet unknown ligand. 187 -339059 pfam14033 DUF4246 Protein of unknown function (DUF4246). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and fungi. Proteins in this family are typically between 392 and 644 amino acids in length. 412 -316547 pfam14034 Spore_YtrH Sporulation protein YtrH. This family of proteins is involved in sporulation. It may contribute to the formation and stability of the thick peptidoglycan layer between the two membranes of the spore, known as the cortex. In Bacillus subtilis its expression is regulated by sigma-E. 99 -316548 pfam14035 YlzJ YlzJ-like protein. The YlzJ-like protein family includes the B. subtilis YlzJ protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 61 and 72 amino acids in length. There are two completely conserved residues (L and G) that may be functionally important. 65 -339060 pfam14036 YlaH YlaH-like protein. The YlaH-like protein family includes the B. subtilis YlaH protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. There is a conserved LGFA sequence motif. 75 -316550 pfam14037 YoqO YoqO-like protein. The YoqO-like protein family includes the B. subtilis YoqO protein, which is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 120 amino acids in length. There are two completely conserved residues (I and Y) that may be functionally important. 116 -316551 pfam14038 YqzE YqzE-like protein. The YqzE-like protein family includes the B. subtilis YqzE protein, which is functionally uncharacterized. It is a part of the ComG operon, which is regulated by the competence transcription factor ComK. This family of proteins is found in bacteria. Proteins in this family are typically between 49 and 66 amino acids in length. 53 -339061 pfam14039 YusW YusW-like protein. The YusW-like protein family includes the B. subtilis YusW protein, which is functionally uncharacterized. This family of proteins is found in bacteria, and is approximately 90 amino acids in length. 91 -316553 pfam14040 DNase_NucA_NucB Deoxyribonuclease NucA/NucB. Members of this family act as deoxyribonucleases. 111 -316554 pfam14041 Lipoprotein_21 LppP/LprE lipoprotein. The family includes putative lipoproteins LppP and LprE from species of Mycobacterium. LppP is required for optimal growth of M. tuberculosis. 86 -316555 pfam14042 DUF4247 Domain of unknown function (DUF4247). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 143 and 271 amino acids in length. 118 -316556 pfam14043 WVELL WVELL protein. This family includes the B. subtilis YfjH protein, which is functionally uncharacterized. This is not a homolog of E. coli YfjH, a synonym for IscX, which belongs to pfam04384. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length and contain a highly conserved WVELL motif. 73 -316557 pfam14044 NETI NETI protein. This family includes the B. subtilis YebG protein, which is functionally uncharacterized. This is not a homolog of E. coli YebG, which belongs to pfam07130. This family of proteins is found in bacteria. Proteins in this family are typically between 42 and 66 amino acids in length and contain a conserved NETI motif. 56 -316558 pfam14045 YIEGIA YIEGIA protein. This family includes the B. subtilis YphB protein, which is functionally uncharacterized. Its expression is regulated by the sporulation transcription factor sigma-F, however it is not essential for sporulation or germination. This is not a homolog of E. coli YphB, which belongs to pfam01263. This family of proteins is found in bacteria. Proteins in this family are typically between 276 and 300 amino acids in length and contain a conserved YIEGIA motif. 282 -339062 pfam14046 NR_Repeat Nuclear receptor repeat. This is a repeat domain involved in dimerization of nuclear receptors proteins and in transcriptional regulation in general. It contains a Leu-Xaa-Xaa-Leu-Leu motif which has been characterized for the orphan nuclear receptor Dax-1, which represses the constitutively expressed protein Ad4BP/SF-1. The LXXLL motif plays in important role in binding of Dax-1 to Ad4BP/SF-1. The domain is subject to structure determination by the Joint Center of Structural Genomics. 46 -316560 pfam14047 DCR Dppa2/4 conserved region. This domain has been characterized in the finding of a developmental pluripotency associated gene (Dppa) in the lower vertebrate Xenopus laevis. Previous to this discovery, Dppa genes were known only in higher vertebrates. The domain is subject to structure determination by the Joint Center of Structural Genomics. 67 -339063 pfam14048 MBD_C C-terminal domain of methyl-CpG binding protein 2 and 3. CpG-methylation is a frequently occurring epigenetic modification of vertebrate genomes resulting in transcriptional repression. This domain was found at the C-terminus of the methyl-CpG-binding domain (MBD) containing proteins MBD2 and MBD3, the latter was shown to not bind directly to methyl-CpG DNA but rather interact with components of the NuRD/Mi2 complex, an abundant deacetylase complex. The domain is subject to structure determination by the Joint Center of Structural Genomics. 93 -316562 pfam14049 Dppa2_A Dppa2/4 conserved region in higher vertebrates. Developmental pluripotency associated genes (Dppa) in lower vertebrates have remained undetected until the discovery of a Dppa homolog in Xenopus laevis, reporting a new domain termed Dppa2/4 conserved region (DCR). In higher vertebrate Dppa proteins the DCR domain is located next to the here-reported domain. The domain is subject to structure determination by the Joint Center of Structural Genomics. 83 -316563 pfam14050 Nudc_N N-terminal conserved domain of Nudc. The N-terminus of nuclear distribution gene C homolog (NUDC) proteins contains a highly conserved region consisting of a predicted three helix bundle. In the human homolog this segment has been targeted for structure determination by the Joint Center for Structural Genomics. NUDC forms a complex with other NUD proteins and is involved in several cellular division activities. Recently it was shown that NUDC regulates platelet-activating factor (PAF) acetylhydrolase with PAF being a pro-inflammatory secondary lipidic messenger. 60 -339064 pfam14051 Requiem_N N-terminal domain of DPF2/REQ. This putative domain has been detected on the human DPF2 protein and was subsequently targeted for structure determination by the Joint Center for Structural Genomics (JCSG). Possibly, the C-terminus extends by 30 amino acids and forms a separate domain. DPF2 interacts with estrogen related receptor alpha (Err-alpha), an orphan receptor which acts as a regulator in energy metabolism. It was also identified as an adaptor molecule that links nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa-B) dimer RelB/p52 and switch/sucrose-nonfermentable (SWI/SNF) chromatin remodeling factor. 72 -339065 pfam14052 Caps_assemb_Wzi Capsule assembly protein Wzi. Many bacteria are covered in a layer of surface-associated polysaccharide called the capsule. These capsules can be divided into four groups depending upon the organisation of genes responsible for capsule assembly, the assembly pathway and regulation. This family plays a role in group 1 capsule biosynthesis. It is likely to be involved in the later stages of capsule assembly. It is likely to consist of a beta-barrel structure. 394 -339066 pfam14053 DUF4248 Domain of unknown function (DUF4248). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 73 and 86 amino acids in length. 66 -316567 pfam14054 DUF4249 Domain of unknown function (DUF4249). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 279 and 365 amino acids in length. There are two completely conserved residues (C and G) that may be functionally important. 259 -316568 pfam14055 NVEALA NVEALA protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 75 and 92 amino acids in length. There is a conserved NVEALA sequence motif. 62 -339067 pfam14056 DUF4250 Domain of unknown function (DUF4250). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There are two completely conserved residues (N and R) that may be functionally important. 52 -316570 pfam14057 GGGtGRT GGGtGRT protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are approximately 330 amino acids in length and contain many highly conserved residues including a GGGtGRT motif. 326 -316571 pfam14058 PcfK PcfK-like protein. The PcfK-like protein family includes the Enterococcus faecalis PcfK protein, which is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 137 and 257 amino acids in length. There are two completely conserved residues (D and L) that may be functionally important. 94 -339068 pfam14059 DUF4251 Domain of unknown function (DUF4251). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 164 and 196 amino acids in length. 131 -339069 pfam14060 DUF4252 Domain of unknown function (DUF4252). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 154 and 182 amino acids in length. 150 -339070 pfam14061 Mtf2_C Polycomb-like MTF2 factor 2. Mammalian Polycomb-like gene MTF2/PCL2 forms a complex with Polycomb repressive complex-2 (PRC2) and collaborates with PRC1 to achieve repression of Hox gene expression. The human MTF2 gene is expressed in three splicing variants, each of them contains the short C-terminal domain defined here. The domain is subject to structure determination by the Joint Center of Structural Genomics. 47 -316575 pfam14062 DUF4253 Domain of unknown function (DUF4253). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 110 amino acids in length. 109 -339071 pfam14063 DUF4254 Protein of unknown function (DUF4254). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 195 and 207 amino acids in length. 144 -339072 pfam14064 HmuY HmuY protein. HmuY is a novel heme-binding protein that recruits heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 278 amino acids in length. 156 -316578 pfam14065 DUF4255 Protein of unknown function (DUF4255). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 190 and 320 amino acids in length. 174 -339073 pfam14066 DUF4256 Protein of unknown function (DUF4256). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 190 amino acids in length. 173 -339074 pfam14067 LssY_C LssY C-terminus. This domain is found at the C-terminus of Legionella LssY proteins, which may be a part of the type I secretion system. This domain is functionally uncharacterized. This domain is found in bacteria, and is typically between 182 and 195 amino acids in length. It is often found in association with pfam09335 and PF01569. There are two completely conserved residues (P and W) that may be functionally important. 183 -316581 pfam14068 YuiB Putative membrane protein. This family of bacterial proteins is functionally uncharacterized. Proteins in this family are approximately 100 amino acids in length. There is a conserved FGIGF sequence motif, and many members are putative membrane proteins. 101 -339075 pfam14069 SpoVIF Stage VI sporulation protein F. The sporulation-specific SpoVIF (YjcC) protein of Bacillus subtilis is essential for the development of heat-resistant spores. Its expression is governed by SigK. 72 -339076 pfam14070 YjfB_motility Putative motility protein. This family of proteins is regulated in B. subtilis by SigD, and is likely to be involved in motility or flagellin production, Proteins in this family are approximately 60 amino acids in length, and contain two highly conserved asparagine residues. 53 -316584 pfam14071 YlbD_coat Putative coat protein. This is a family of putative bacterial coat proteins. Proteins in this family are approximately 140 amino acids in length. 125 -339077 pfam14072 DndB DNA-sulfur modification-associated. This is family of bacterial proteins likely to be necessary for binding to DNA and recognising the modification sites. Members are found in bacteria, archaea and on viral plasmids, and are typically between 354 and 474 amino acids in length. There is a conserved DGQHR sequence motif. 335 -316586 pfam14073 Cep57_CLD Centrosome localization domain of Cep57. The CLD or centrosome localization domain of Cep57 is found at the N-terminus, and lies approximately between residues 58 and 239. This region lies within the first alpha-helical coiled-coil segment of Cep57, and localizes to the centrosome internally to gamma-tubulin, suggesting that it is either on both centrioles or on a centromatrix component. This N-terminal region can also multimerize with the N-terminus of other Cep57 molecules. The C-terminal part, Family Cep57_MT_bd, pfam06657, is the microtubule-binding region of Cep57. 178 -316587 pfam14074 DUF4257 Protein of unknown function (DUF4257). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 80 -339078 pfam14075 UBN_AB Ubinuclein conserved middle domain. Ubinuclein 1 and 2 (UBN1, UBN2) are members of a histone chaperone complex involved in the formation of a certain type of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF). The domain described here is conserved in many eukaryotes such as human, rat, drosophila, and zebra-fish and has been targeted for protein structure determination by the Joint Center for Structural Genomics. 204 -316589 pfam14076 DUF4258 Domain of unknown function (DUF4258). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 95 and 124 amino acids in length. 71 -316590 pfam14077 WD40_alt Alternative WD40 repeat motif. WD repeats are short subdomains of about 40 amino acids and fold into 4 antiparallel beta hairpins. This domain here has been detected on the C-terminus of WD repeat-containing protein 18 during target selection by the Joint Center for Structural Genomics. 48 -316591 pfam14078 DUF4259 Domain of unknown function (DUF4259). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 118 and 145 amino acids in length. 129 -339079 pfam14079 DUF4260 Domain of unknown function (DUF4260). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 114 and 126 amino acids in length. There is a conserved GLK sequence motif. 112 -316593 pfam14080 DUF4261 Domain of unknown function (DUF4261). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 80 amino acids in length. 77 -339080 pfam14081 DUF4262 Domain of unknown function (DUF4262). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 147 and 227 amino acids in length. Some members may be incorrectly annotated as the KatG protein. 127 -316595 pfam14082 DUF4263 Domain of unknown function (DUF4263). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 244 and 403 amino acids in length. 167 -290790 pfam14083 PGDYG PGDYG protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 150 amino acids in length. There is a conserved PGDYG motif. 101 -316596 pfam14084 DUF4264 Protein of unknown function (DUF4264). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 51 -316597 pfam14085 DUF4265 Domain of unknown function (DUF4265). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 139 and 168 amino acids in length. 111 -339081 pfam14086 DUF4266 Domain of unknown function (DUF4266). This presumed lipoprotein domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 50 amino acids in length. 50 -339082 pfam14087 DUF4267 Domain of unknown function (DUF4267). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 126 and 142 amino acids in length. 109 -339083 pfam14088 DUF4268 Domain of unknown function (DUF4268). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 151 and 387 amino acids in length. 140 -316601 pfam14089 KbaA KinB-signalling pathway activation in sporulation. This family of small proteins is found in the membrane and is necessary for kinase KinB signalling during sporulation. There is a conserved GFF sequence motif. The initiation of sporulation in Bacillus subtilis is dependent on the phosphorylation of the Spo0A transcription factor mediated by the phospho-relay and by two major kinases, KinA and KinB. 179 -339084 pfam14090 HTH_39 Helix-turn-helix domain. This helix-turn-helix domain is often found in phage proteins and is likely to be DNA-binding. 70 -316603 pfam14091 DUF4269 Domain of unknown function (DUF4269). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 176 and 187 amino acids in length. There is a conserved KTE sequence motif. 151 -339085 pfam14092 DUF4270 Domain of unknown function (DUF4270). This family of lipoproteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 444 and 534 amino acids in length. 423 -339086 pfam14093 DUF4271 Domain of unknown function (DUF4271). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 221 and 326 amino acids in length. 207 -316606 pfam14094 DUF4272 Domain of unknown function (DUF4272). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 221 and 399 amino acids in length. 207 -339087 pfam14096 DUF4274 Domain of unknown function (DUF4274). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 80 amino acids in length. 76 -316608 pfam14097 SpoVAE Stage V sporulation protein AE1. Members of this family are all described as putative stage V sporulation protein AE, although this could not be confirmed. Proteins in this family are approximately 190 amino acids in length. 177 -339088 pfam14098 SSPI Small, acid-soluble spore protein I. This family of proteins is putatively assigned as a small, acid-soluble spore protein 1. Proteins in this family are approximately 70 amino acids in length. There is a conserved LPGLGV sequence motif. 64 -316610 pfam14099 Polysacc_lyase Polysaccharide lyase. This family includes heparin lyase I, EC:4.2.2.7. Heparin lyase I depolymerizes heparin by cleaving the glycosidic linkage next to an iduronic acid moiety. The structure of heparin lyase I consists of a beta-jelly roll domain with a long, deep substrate-binding groove and an unusual thumb domain containing many basic residues extending from the main body of the enzyme. This family also includes glucuronan lyase, EC:4.2.2.14. The structure glucuronan lyase is a beta-jelly roll. 209 -316611 pfam14100 PmoA Methane oxygenase PmoA. This family is a putative methane oxygenase 271 -316612 pfam14101 DUF4275 Domain of unknown function (DUF4275). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. 139 -316613 pfam14102 Caps_synth_CapC Capsule biosynthesis CapC. This family of proteins play a role in capsule biosynthesis. They are essential for gamma-polyglutamic acid (PGA) production. 119 -339089 pfam14103 DUF4276 Domain of unknown function (DUF4276). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 190 and 224 amino acids in length. There is a single completely conserved residue E that may be functionally important. 184 -339090 pfam14104 DUF4277 Domain of unknown function (DUF4277). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 110 amino acids in length. There is a conserved NGLGF sequence motif. 103 -316616 pfam14105 DUF4278 Domain of unknown function (DUF4278). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 58 and 136 amino acids in length. There is a single completely conserved residue R that may be functionally important. 57 -339091 pfam14106 DUF4279 Domain of unknown function (DUF4279). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 134 and 145 amino acids in length. 116 -316618 pfam14107 DUF4280 Domain of unknown function (DUF4280). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 129 and 456 amino acids in length. There is a single completely conserved residue C that may be functionally important. 108 -316619 pfam14108 DUF4281 Domain of unknown function (DUF4281). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 147 and 232 amino acids in length. There are two completely conserved residues (W and P) that may be functionally important. 125 -339092 pfam14109 GldH_lipo GldH lipoprotein. Members of this protein family are predicted lipoproteins, exclusive to the Bacteroidetes phylum. Proteins in this family are typically between 155 and 167 amino acids in length. Members include GldH, a protein linked to a type of rapid surface gliding motility found in certain Bacteroidetes, such as Flavobacterium johnsoniae and Cytophaga hutchinsonii. Gliding motility appears closely linked to chitin utilization in the model species Flavobacterium johnsoniae. Not all Bacteroidetes with members of this protein family may have gliding motility. 124 -339093 pfam14110 DUF4282 Domain of unknown function (DUF4282). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 93 and 155 amino acids in length. There is a single completely conserved residue E that may be functionally important. 86 -339094 pfam14111 DUF4283 Domain of unknown function (DUF4283). This domain family is found in plants, and is approximately 100 amino acids in length. Considering the very diverse range of other domains it is associated with it is possible that this domain is a binding/guiding region. There are two highly conserved tryptophan residues. 145 -316623 pfam14112 DUF4284 Immunity protein 22. A predicted immunity protein with an alpha+beta fold and conserved tryptophan,tyrosine and an acidic residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the ColD/E5, Tox-REase-4, Ntox49 or Ntox14 families. The domain is also found in heterogeneous polyimmunity loci. 121 -339095 pfam14113 Tae4 Type VI secretion system (T6SS), amidase effector protein 4. Tae4 is a new form of toxin-antitoxin system protein for a type VI secretion system, T6SS. T6SS has roles in interspecies interactions, as well as higher order host-infection, by injecting effector proteins into the periplasmic compartment of the recipient cells of closely related species. Pseudomonas aeruginosa produces at least three effector proteins to other cells and thus has three specific cognate immunity proteins to protect itself. Tae4, or type VI amidase effector 4, in Enterobacter cloacae has a cognate Tai4 or type VI amidase immunity 4 protein. The immunity protein is Tai4, pfam16695. 118 -316625 pfam14114 DUF4286 Domain of unknown function (DUF4286). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 100 and 112 amino acids in length. 95 -316626 pfam14115 YuzL YuzL-like protein. The YuzL-like protein family includes the B. subtilis YuzL protein, which is functionally uncharacterized. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. 41 -316627 pfam14116 YyzF YyzF-like protein. The YyzF-like protein family includes the B. subtilis YyzF protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 48 -316628 pfam14117 DUF4287 Domain of unknown function (DUF4287). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 70 and 180 amino acids in length. 60 -290824 pfam14118 YfzA YfzA-like protein. The YfzA-like protein family includes the B. subtilis YfzA protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. 90 -316629 pfam14119 DUF4288 Domain of unknown function (DUF4288). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 83 -316630 pfam14120 YhzD YhzD-like protein. The YhzD-like protein family includes the B. subtilis YhzD protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved GKL sequence motif. 61 -339096 pfam14121 Porin_10 Putative porin. This family of membrane bet-barrel proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 655 and 722 amino acids in length. SRI_1264 is identified by Gene3D as a membrane bound beta-barrel. These sequences are putative porins. 596 -316632 pfam14122 YokU YokU-like protein, putative antitoxin. The YokU-like protein family includes the B. subtilis YokU protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There are two conserved CXXC sequence motifs. This is likely to be a family of bacterial antitoxins, as the sequence bears remote homology to the RelE fold family. 87 -339097 pfam14123 DUF4290 Domain of unknown function (DUF4290). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 200 and 221 amino acids in length. There are two conserved sequence motifs: EYGR and KLWD. 172 -339098 pfam14124 DUF4291 Domain of unknown function (DUF4291). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 190 and 214 amino acids in length. There are two conserved sequence motifs: VYQAY and RMTW. 180 -316635 pfam14125 DUF4292 Domain of unknown function (DUF4292). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 243 and 287 amino acids in length. 206 -339099 pfam14126 DUF4293 Domain of unknown function (DUF4293). This family of integral membrane proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 136 and 154 amino acids in length. 153 -339100 pfam14127 DUF4294 Domain of unknown function (DUF4294). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 192 and 226 amino acids in length. 151 -339101 pfam14128 DUF4295 Domain of unknown function (DUF4295). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. There are two completely conserved residues (K and Y) that may be functionally important. 47 -339102 pfam14129 DUF4296 Domain of unknown function (DUF4296). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 90 amino acids in length. 84 -316640 pfam14130 DUF4297 Domain of unknown function (DUF4297). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is typically between 207 and 221 amino acids in length. 211 -316641 pfam14131 DUF4298 Domain of unknown function (DUF4298). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 94 and 105 amino acids in length. There are two completely conserved residues (Y and D) that may be functionally important. 84 -339103 pfam14132 DUF4299 Domain of unknown function (DUF4299). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 275 and 313 amino acids in length. There are two conserved sequence motifs: RGF and DAY. There are two completely conserved residues (P and D) that may be functionally important. 301 -339104 pfam14133 DUF4300 Domain of unknown function (DUF4300). This family of lipoproteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 281 and 303 amino acids in length. There are two conserved sequence motifs: NCR and PYQ. 250 -339105 pfam14134 DUF4301 Domain of unknown function (DUF4301). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 505 and 516 amino acids in length. 502 -339106 pfam14135 DUF4302 Domain of unknown function (DUF4302). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 344 and 443 amino acids in length. There are two completely conserved residues (R and L) that may be functionally important. 236 -339107 pfam14136 DUF4303 Domain of unknown function (DUF4303). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 169 and 192 amino acids in length. 153 -316647 pfam14137 DUF4304 Domain of unknown function (DUF4304). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 154 and 223 amino acids in length. 114 -339108 pfam14138 COX16 Cytochrome c oxidase assembly protein COX16. This family represents homologs of COX16 which has been shown to be involved in assembly of cytochrome oxidase. Protein in this family are typically between 106 and 134 amino acids in length. 78 -316649 pfam14139 YpzG YpzG-like protein. The YpzG-like protein family includes the B. subtilis YpzG protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. There is a conserved QVNG sequence motif. 49 -290845 pfam14140 YpzI YpzI-like protein. The YpzI-like protein family includes the B. subtilis YpzI protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. 42 -339109 pfam14141 YqzM YqzM-like protein. The YqzM-like protein family includes the B. subtilis YqzM protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. 40 -290847 pfam14142 YrzO YrzO-like protein. The YrzO-like protein family includes the B. subtilis YrzO protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. 46 -316651 pfam14143 YrhC YrhC-like protein. The YrhC-like protein family includes the B. subtilis YrhC protein, which is functionally uncharacterized. YrhC is on the same operon as the MccA and MccB genes, which are involved in the conversion of methionine to cysteine. Expression of this operon is repressed in the presence of sulphate or cysteine. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 71 -339110 pfam14144 DOG1 Seed dormancy control. This family of plant proteins appears to be a highly specific controller seed dormancy. 77 -316653 pfam14145 YrhK YrhK-like protein. The YrhK-like protein family includes the B. subtilis YrhK protein, which is functionally uncharacterized. Its expression is under the control of the motility sigma factor sigma-D. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 60 amino acids in length. 57 -316654 pfam14146 DUF4305 Domain of unknown function (DUF4305). This family includes the B. subtilis YdiK protein, which is functionally uncharacterized. This is not a homolog of E. coli YdiK, which belongs to pfam01594. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 37 -290852 pfam14147 Spore_YhaL Sporulation protein YhaL. This family of proteins is involved in sporulation. In B. subtilis its expression is regulated by the early mother-cell-specific transcription factor sigma-E. 52 -290853 pfam14148 YhdB YhdB-like protein. The YhdB-like protein family includes the B. subtilis YhdB protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 57 and 82 amino acids in length. There are two conserved sequence motifs: LMVRT and FLHAY. 71 -316655 pfam14149 YhfH YhfH-like protein. The YhfH-like protein family includes the B. subtilis YhfH protein, which is functionally uncharacterized. Its expression is repressed by the Spx paralogue MgsR, which regulates genes involved in stress response. This family of proteins is found in bacteria. Proteins in this family are typically between 42 and 53 amino acids in length. 37 -339111 pfam14150 YesK YesK-like protein. The YesK-like protein family includes the B. subtilis YesK protein, which is functionally uncharacterized. Its expression is regulated by the sporulation-specific sigma factor sigma-E. This family of proteins is found in bacteria. Proteins in this family are approximately 100 amino acids in length. 81 -316657 pfam14151 YfhD YfhD-like protein. The YfhD-like protein family includes the B. subtilis YfhD protein, which is functionally uncharacterized. Its expression is regulated by the sporulation-specific sigma factor sigma-F. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. There is a single completely conserved residue E that may be functionally important. 49 -290857 pfam14152 YfhE YfhE-like protein. The YfhE-like protein family includes the B. subtilis YfhE protein, which is functionally uncharacterized. Its expression may be regulated by the sigma factor sigma-B, which regulates the expression of stress-response proteins. This family of proteins is found in bacteria. Proteins in this family are approximately 40 amino acids in length. There is a conserved QEV sequence motif. 35 -316658 pfam14153 Spore_coat_CotO Spore coat protein CotO. Bacillus spores are protected by a protein shell consisting of over 50 different polypeptides, known as the coat. This family of proteins has an important morphogenetic role in coat assembly, it is involved in the assembly of at least 5 different coat proteins including CotB, CotG, CotS, CotSA and CotW. It is likely to act at a late stage of coat assembly. 180 -316659 pfam14154 DUF4306 Domain of unknown function (DUF4306). This family includes the B. subtilis YjdJ protein, which is functionally uncharacterized. This is not a homolog of E. coli YjdJ, which belongs to pfam00583. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 95 and 152 amino acids in length. 88 -316660 pfam14155 DUF4307 Domain of unknown function (DUF4307). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 132 and 153 amino acids in length. There is a single completely conserved residue C that may be functionally important. 109 -316661 pfam14156 AbbA_antirepres Antirepressor AbbA. This family inactivates the repressor AbrB, which represses genes switched on during the transition from the exponential to the stationary phase of growth. It binds to AbrB and prevents it from binding to DNA. 63 -290862 pfam14157 YmzC YmzC-like protein. The YmzC-like protein family includes the B. subtilis YmzC protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 58 and 91 amino acids in length. There is a conserved ELR sequence motif. 58 -316662 pfam14158 YndJ YndJ-like protein. The YndJ-like protein family includes the B. subtilis YndJ protein, which is functionally uncharacterized. This family is found in bacteria and archaea, and is typically between 222 and 269 amino acids in length. There are two completely conserved G residues that may be functionally important. 255 -339112 pfam14159 CAAD CAAD domains of cyanobacterial aminoacyl-tRNA synthetase. This domain is present in aminoacyl-tRNA synthetases (aaRSs), enzymes that couple tRNAs to their cognate amino acids. aaRSs from cyanobacteria containing the CAAD (for cyanobacterial aminoacyl-tRNA synthetases appended domain) protein domains are localized in the thylakoid membrane. The domain bears two putative transmembrane helices and is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. 85 -339113 pfam14160 FAM110_C Centrosome-associated C-terminus. This is the C-terminus of a family of proteins that colocalize with the centrosome/microtubule organisation centre in interphase and at the spindle poles in mitosis. 114 -339114 pfam14161 FAM110_N Centrosome-associated N-terminus. This is the N-terminus of a family of proteins that colocalize with the centrosome/microtubule organisation centre in interphase and at the spindle poles in mitosis. 107 -316666 pfam14162 YozD YozD-like protein. The YozD-like protein family includes the B. subtilis YozD protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 57 -316667 pfam14163 SieB Super-infection exclusion protein B. This family includes superinfection exclusion proteins. These proteins prevent the growth of superinfecting phage which are insensitive to repression. It aborts lytic development of superinfecting phage. 144 -316668 pfam14164 YqzH YqzH-like protein. The YqzH-like protein family includes the B. subtilis YqzH protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 64 -316669 pfam14165 YtzH YtzH-like protein. The YtzH-like protein family includes the B. subtilis YtzH protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There is a conserved DIL sequence motif. 86 -316670 pfam14166 YueH YueH-like protein. The YueH-like protein family includes the B. subtilis YueH protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 79 -316671 pfam14167 YfkD YfkD-like protein. The YfkD-like protein family includes the B. subtilis YfkD protein, which is functionally uncharacterized. Its expression is regulated by the sigma factor sigma-B, which regulates the expression of stress-response proteins, and by the forespore-specific sigma factor sigma-G. This family of proteins is found in bacteria. Proteins in this family are typically between 254 and 265 amino acids in length. 232 -316672 pfam14168 YjzC YjzC-like protein. The YjzC-like protein family includes the B. subtilis YjzC protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 55 -316673 pfam14169 YdjO Cold-inducible protein YdjO. This family includes the B. subtilis YdjO protein, which is functionally uncharacterized. This is not a homolog of E. coli YdjO. B. subtilis YdjO is cold-inducible. Its expression is induced by the extracytoplasmic function sigma factor sigma-W. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. 59 -316674 pfam14171 SpoIISA_toxin Toxin SpoIISA, type II toxin-antitoxin system. SpoIISA is a toxin which causes lysis of vegetatively growing cells. It forms part of a type II toxin-antitoxin system, where the SpoIISB protein, pfam14185, acts as an antitoxin. It is a transmembrane protein, with a cytoplasmic domain accounting for approximately two-thirds of the protein. The structure of the cytoplasmic domain resembles that of the GAF domains, Pfam: PF01590. SpoIISB binds to the cytoplasmic domain of SpoIISA with high affinity. 241 -316675 pfam14172 DUF4309 Domain of unknown function (DUF4309). This family includes the B. subtilis YjgB protein, which is functionally uncharacterized. This is not a homolog of E. coli YjgB. Expression of B. subtilis YjgB is regulated by the alternative transcription factor sigma-B. This family is found in bacteria, and is approximately 140 amino acids in length. 131 -316676 pfam14173 ComGG ComG operon protein 7. This family is required for DNA-binding during transformation of competent bacterial cells. 95 -316677 pfam14174 YycC YycC-like protein. The YycC-like protein family includes the B. subtilis YycC protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. There is a conserved HIL sequence motif. 48 -316678 pfam14175 YaaC YaaC-like Protein. The YaaC-like protein family includes the B. subtilis YaaC protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 320 and 333 amino acids in length. 312 -316679 pfam14176 YxiJ YxiJ-like protein. The YxiJ-like protein family includes the B. subtilis YxiJ protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 110 -316680 pfam14177 YkyB YkyB-like protein. The YkyB-like protein family includes the B. subtilis YkyB protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 150 amino acids in length. There are two conserved sequence motifs: NRHAKTA and HLG. 135 -290882 pfam14178 YppF YppF-like protein. The YppF-like protein family includes the B. subtilis YppF protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There is a conserved LLDF sequence motif. 59 -316681 pfam14179 YppG YppG-like protein. The YppG-like protein family includes the B. subtilis YppG protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 115 and 181 amino acids in length. There are two completely conserved residues (F and G) that may be functionally important. 102 -316682 pfam14181 YqfQ YqfQ-like protein. The YqfQ-like protein family includes the B. subtilis YqfQ protein, also known as VrrA, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 146 and 237 amino acids in length. There are two conserved sequence motifs: QYGP and PKLY. 166 -316683 pfam14182 YgaB YgaB-like protein. The YgaB-like protein family includes the B. subtilis YgaB protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 76 -316684 pfam14183 YwpF YwpF-like protein. The YwpF-like protein family includes the B. subtilis YwpF protein, which is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 146 and 167 amino acids in length. There is a conserved IIN sequence motif. 133 -316685 pfam14184 YrvL Regulatory protein YrvL. YrvL prevents expression and activity of the YrvI sigma factor. It may function as an anti-sigma factor. 121 -290888 pfam14185 SpoIISB_antitox Antitoxin SpoIISB, type II toxin-antitoxin system. Members of this family act as antitoxins. They bind to the SpoIISA toxin, pfam14171. They are disordered proteins which adopt structure only when bound to SpoIISA. 55 -316686 pfam14186 Aida_C2 Cytoskeletal adhesion. This is the C-terminal domain of the axin-interacting protein family, and is a distinct version of the C2 domain. This domain is critical for interactions with cytoskeletal in the context of cellular adhesion points. 140 -339115 pfam14187 DUF4310 Domain of unknown function (DUF4310). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 231 amino acids in length. 209 -316687 pfam14188 DUF4311 Domain of unknown function (DUF4311). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 260 amino acids in length. 213 -339116 pfam14189 DUF4312 Domain of unknown function (DUF4312). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 99 and 118 amino acids in length. 84 -316689 pfam14190 DUF4313 Domain of unknown function (DUF4313). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 136 and 171 amino acids in length. 102 -316690 pfam14191 YodL YodL-like. The YodL-like protein family includes the B. subtilis YodL protein, which is functionally uncharacterized. This domain family is found in bacteria, and is approximately 100 amino acids in length. There are two completely conserved residues (Y and D) that may be functionally important. 100 -316691 pfam14192 DUF4314 Domain of unknown function (DUF4314). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is typically between 56 and 93 amino acids in length. 69 -316692 pfam14193 DUF4315 Domain of unknown function (DUF4315). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 81 -316693 pfam14194 Cys_rich_VLP Cysteine-rich VLP. This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is approximately 60 amino acids in length. It contains 6 conserved cysteines and a conserved VLP sequence motif. 56 -316694 pfam14195 DUF4316 Domain of unknown function (DUF4316). This domain is functionally uncharacterized. This domain is found in bacteria, and is typically between 56 and 95 amino acids in length. 44 -339117 pfam14196 ATC_hydrolase L-2-amino-thiazoline-4-carboxylic acid hydrolase. This family of enzymes catalyzes the conversion of L-2-amino-delta2-thiazoline-4-carboxylic acid (L-ATC) to N-carbamoyl-L-cysteine. It cleaves the carbon-sulphur bond in the ring structure of L-ATC to produce N-carbamoyl-L-cysteine. 147 -316696 pfam14197 Cep57_CLD_2 Centrosome localization domain of PPC89. The N-terminal region of the fission yeast spindle pole body protein PPC89 has low similarity to the human Cep57 protein. The CLD or centrosome localization domain of Cep57 and PPC89 is found at the N-terminus. This region localizes to the centrosome internally to gamma-tubulin, suggesting that it is either on both centrioles or on a centromatrix component. This N-terminal region can also multimerize with the N-terminus of other Cep57 molecules. The C-terminal part, Family Cep57_MT_bd, pfam06657, is the microtubule-binding region of Cep57 and PPC89. 67 -316697 pfam14198 TnpV Transposon-encoded protein TnpV. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 114 and 125 amino acids in length. 112 -316698 pfam14199 DUF4317 Domain of unknown function (DUF4317). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 225 and 451 amino acids in length. There is a single completely conserved residue P that may be functionally important. 369 -316699 pfam14200 RicinB_lectin_2 Ricin-type beta-trefoil lectin domain-like. 90 -316700 pfam14201 DUF4318 Domain of unknown function (DUF4318). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. There is a single completely conserved residue F that may be functionally important. 75 -316701 pfam14202 TnpW Transposon-encoded protein TnpW. This family of proteins is found in bacteria. Proteins in this family are typically between 54 and 75 amino acids in length. There is a single completely conserved residue G that may be functionally important. 31 -316702 pfam14203 TTRAP Putative tranposon-transfer assisting protein. TTRAP is a family of small bacterial proteins largely from Clostrium difficile. From comparative and other structural studies of the Structure 2L7K, UniProtKB:Q18AW3, it has been suggested that this family is required for interacting with other proteins in order to facilitate the transfer of the transposon CTn4 between different bacterial species. Structure 2L7K comprises an alpha-helical fold of four alpha-helices leading to the production of two clefts, the larger of which displays two highly conserved residues in close proximity, Glu-8 and Lys-48. The gene concerned is part of an operon within transposon CTn4, and is expressed alongside a putative DNA primase, a DNA topoisomerase and conjugal transfer proteins. 62 -339118 pfam14204 Ribosomal_L18_c Ribosomal L18 C-terminal region. This domain is the C-terminal end of ribosomal L18/L5 proteins. 93 -316704 pfam14205 Cys_rich_KTR Cysteine-rich KTR. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are approximately 60 amino acids in length. There are 4 conserved cysteines and a conserved KTR sequence motif. 54 -316705 pfam14206 Cys_rich_CPCC Cysteine-rich CPCC. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 68 and 104 amino acids in length. There are six conserved cysteines and a conserved CPCC sequence motif. 74 -316706 pfam14207 DpnD-PcfM DpnD/PcfM-like protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 57 and 153 amino acids in length. There are two completely conserved residues (E and A) that may be functionally important. 46 -316707 pfam14208 DUF4320 Domain of unknown function (DUF4320). This family of proteins is found in bacteria. Proteins in this family are typically between 120 and 131 amino acids in length. There are two completely conserved residues (G and Y) that may be functionally important. 118 -316708 pfam14209 DUF4321 Domain of unknown function (DUF4321). This family of proteins is functionally uncharacterized. It is found in bacteria, and is approximately 50 amino acids in length. 48 -290912 pfam14210 DUF4322 Domain of unknown function (DUF4322). This presumed domain is functionally uncharacterized. This domain family is found in archaea, and is approximately 60 amino acids in length. There is a conserved QTV sequence motif. 66 -339119 pfam14213 DUF4325 STAS-like domain of unknown function (DUF4325). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 99 and 341 amino acids in length. This domain is distantly related to the STAS domain. 63 -339120 pfam14214 Helitron_like_N Helitron helicase-like domain at N-terminus. This family is found in Helitrons, recently recognized eukaryotic transposons that are predicted to amplify by a rolling-circle mechanism. In many instances a protein-coding gene is disrupted by their insertion. 185 -339121 pfam14215 bHLH-MYC_N bHLH-MYC and R2R3-MYB transcription factors N-terminal. This is the N-terminal region of a family of MYB and MYC transcription factors. The DNA-binding HLH domain is further downstream, pfam00010. Members of the MYB and MYC family regulate the biosynthesis of phenylpropanoids in several plant species (DOI:10.1007/s11295-009-0232-y). 110 -316712 pfam14216 DUF4326 Domain of unknown function (DUF4326). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 100 and 162 amino acids in length. There are two completely conserved residues (P and C) that may be functionally important. 82 -316713 pfam14217 DUF4327 Domain of unknown function (DUF4327). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 67 -316714 pfam14218 COP23 Circadian oscillating protein COP23. This family includes the circadian oscillating protein COP23 from Cyanothece sp. (strain PCC 8801). The levels of this peripheral membrane protein display a circadian oscillation. 138 -316715 pfam14219 DUF4328 Domain of unknown function (DUF4328). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 218 and 342 amino acids in length. 161 -316716 pfam14220 DUF4329 Domain of unknown function (DUF4329). This domain is functionally uncharacterized. It is found in bacteria and eukaryotes, and is approximately 130 amino acids in length. It is often found in association with pfam05593 and pfam03527. There is a single completely conserved residue D and a highly conserved HTH motif which may be functionally important. 111 -316717 pfam14221 DUF4330 Domain of unknown function (DUF4330). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 165 and 177 amino acids in length. There is a single completely conserved residue G that may be functionally important. 170 -339122 pfam14222 MOR2-PAG1_N Cell morphogenesis N-terminal. This family is the conserved N-terminal region of proteins that are involved in cell morphogenesis. 545 -339123 pfam14223 Retrotran_gag_2 gag-polypeptide of LTR copia-type. This family is found in Plants and fungi, and contains LTR-polyproteins, or retrotransposons of the copia-type. 125 -339124 pfam14224 DUF4331 Domain of unknown function (DUF4331). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 223 and 526 amino acids in length. There is a conserved FPY sequence motif. 414 -339125 pfam14225 MOR2-PAG1_C Cell morphogenesis C-terminal. This family is the conserved C-terminal region of proteins that are involved in cell morphogenesis. 252 -339126 pfam14226 DIOX_N non-haem dioxygenase in morphine synthesis N-terminal. This is the highly conserved N-terminal region of proteins with 2-oxoglutarate/Fe(II)-dependent dioxygenase activity. 116 -316723 pfam14228 MOR2-PAG1_mid Cell morphogenesis central region. This family is the conserved central region of proteins that are involved in cell morphogenesis. 1112 -316724 pfam14229 DUF4332 Domain of unknown function (DUF4332). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 134 and 356 amino acids in length. This domain contains helix-hairpin-helix motifs. 121 -316725 pfam14230 DUF4333 Domain of unknown function (DUF4333). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 140 and 255 amino acids in length. There are two completely conserved C residues that may be functionally important. 78 -339127 pfam14231 GXWXG GXWXG protein. This domain is found in bacteria and eukaryotes, and is approximately 60 amino acids in length. There is a conserved GXWXG motif. This domain is frequently found at the N-terminus of pfam14232. 59 -339128 pfam14232 DUF4334 Domain of unknown function (DUF4334). This domain family is found in bacteria and eukaryotes, and is approximately 60 amino acids in length. This domain is frequently found at the C-terminus of pfam14231. 55 -316728 pfam14233 DUF4335 Domain of unknown function (DUF4335). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 204 and 480 amino acids in length. There are two completely conserved residues (G and D) that may be functionally important. 184 -316729 pfam14234 DUF4336 Domain of unknown function (DUF4336). 321 -339129 pfam14235 DUF4337 Domain of unknown function (DUF4337). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 187 and 201 amino acids in length. There is a single completely conserved residue Q that may be functionally important. 154 -316731 pfam14236 DUF4338 Domain of unknown function (DUF4338). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 206 and 475 amino acids in length. 229 -339130 pfam14237 DUF4339 Domain of unknown function (DUF4339). This domain is found in bacteria, archaea and eukaryotes, and is approximately 50 amino acids in length. There are two completely conserved residues (G and W) that may be functionally important. 44 -316733 pfam14238 DUF4340 Domain of unknown function (DUF4340). This domain is found in bacteria, and is typically between 183 and 196 amino acids in length. 182 -339131 pfam14239 RRXRR RRXRR protein. This domain is found in bacteria, eukaryotes and viruses, and is approximately 180 amino acids in length. It contains a conserved RRXRR motif. It is often found in association with pfam01844. 172 -316735 pfam14240 YHYH YHYH protein. This domain family is found in bacteria, eukaryotes and viruses, and is typically between 141 and 198 amino acids in length. There is a conserved YHYH sequence motif. 178 -316736 pfam14242 DUF4342 Domain of unknown function (DUF4342). This family of proteins is found in bacteria. Proteins in this family are typically between 97 and 206 amino acids in length. There is a single completely conserved residue P that may be functionally important. 79 -316737 pfam14243 DUF4343 Domain of unknown function (DUF4343). This domain family is found in bacteria, eukaryotes and viruses, and is typically between 127 and 142 amino acids in length. 128 -316738 pfam14244 Retrotran_gag_3 gag-polypeptide of LTR copia-type. This family is found in Plants and fungi, and contains pol polyprotein-like retroelements or retrotransposons of the copia-type. It is a short domain at the very start of these polypeptides. 48 -290944 pfam14245 Pilin_PilA Type IV pilin PilA. This family consists of proteins which form type IV pili. In M. xanthus these pili are required for social motility. 136 -316739 pfam14246 TetR_C_7 AefR-like transcriptional repressor, C-terminal region. This family comprises the C-terminal domain of transcriptional regulators of the TetR family. It includes the AefR transcriptional regulator from P. syringae. It is found in association with pfam00440. 55 -316740 pfam14247 DUF4344 Putative metallopeptidase. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 247 and 291 amino acids in length. There is a conserved EED sequence motif. This is a putative metallopeptidase. 214 -339132 pfam14248 DUF4345 Domain of unknown function (DUF4345). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 125 and 141 amino acids in length. There is a single completely conserved residue E that may be functionally important. 118 -316742 pfam14249 Tocopherol_cycl Tocopherol cyclase. This family contains tocopherol cyclases. These enzymes are involved in the synthesis of tocopherols and tocotrienols (vitamin E). 328 -316743 pfam14250 AbrB-like AbrB-like transcriptional regulator. This family of DNA-binding proteins is likely to act as a transcriptional regulator. This family does not include E.coli AbrB, which belongs to pfam05145. 70 -316744 pfam14251 DUF4346 Domain of unknown function (DUF4346). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 127 and 502 amino acids in length. There are two conserved sequence motifs: LDP and DHA. Many members of this family have been annotated as dihydropteroate synthases, however no experimental evidence can be found for this and MJ0107 has been shown not to possess dihydropteroate synthase activity. 118 -339133 pfam14252 DUF4347 Domain of unknown function (DUF4347). This domain family is found in bacteria and eukaryotes, and is approximately 160 amino acids in length. There are two completely conserved residues (C and G) that may be functionally important. 164 -316746 pfam14253 AbiH Bacteriophage abortive infection AbiH. This family of proteins confers resistance to bacteriophage. 260 -339134 pfam14254 DUF4348 Domain of unknown function (DUF4348). Two structures have been solved form this DUF, Structure 4mjf and Structure 3sbu. TOPSAN records that both proteins are the only structural representatives of Pfam PF14254, DUF4348. There are no other significant hits in FFAS. DUF4348 has ~200 proteins, all from Bacteroidetes, and all with a single domain architecture with just one DUF4348 domain. There appears to be a possible gene duplication in the protein as the N-terminal domain (approx residues 25-174) and C-terminal domain (approx residues 175-286) superimpose quite well with ~1.9A r.m.s.d. and ~30% sequence identity. 271 -339135 pfam14255 Cys_rich_CPXG Cysteine-rich CPXCG. This family of proteins is found in bacteria. Proteins in this family are approximately 60 amino acids in length. There are 5 conserved cysteines which occur in a CPXCG motif and a DCXXCCXP motif. 49 -316749 pfam14256 YwiC YwiC-like protein. The YwiC-like protein family includes the B. subtilis YwiC protein, which is functionally uncharacterized. This domain family is found in bacteria, and is approximately 130 amino acids in length. There is a single completely conserved residue G that may be functionally important. 124 -316750 pfam14257 DUF4349 Domain of unknown function (DUF4349). This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 282 and 353 amino acids in length. There is a single completely conserved residue D that may be functionally important. 264 -316751 pfam14258 DUF4350 Domain of unknown function (DUF4350). This domain family is found in bacteria, archaea and eukaryotes, and is approximately 70 amino acids in length. 69 -339136 pfam14260 zf-C4pol C4-type zinc-finger of DNA polymerase delta. In fission yeast this zinc-finger domain appears is the region of Pol3 that binds directly to the B-subunit, Cdc1. Pol delta is a hetero-tetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. 68 -316753 pfam14261 DUF4351 Domain of unknown function (DUF4351). This domain is found in bacteria, and is approximately 60 amino acids in length. 59 -339137 pfam14262 Cthe_2159 Carbohydrate-binding domain-containing protein Cthe_2159. Cthe_2159 from Clostridium thermocellum is the first representative of a novel family of cellulose and/or acid-sugar binding beta-helix proteins that share structural similarities with polysaccharide lyases. 246 -339138 pfam14263 DUF4354 Domain of unknown function (DUF4354). Several members of this family are annotated as being ATP/GTP-binding site motif A (P-loop) proteins, but this could not be confirmed. The one Structure 3NRF structure solved for this family exhibits an immunoglobin-like beta-sandwich fold. Crystal packing suggests that a tetramer is a significant oligomerization state, and a disulfide bridge is formed between Cys 125 at the C-terminal end of the monomer, and Cys 69. 123 -316756 pfam14264 Glucos_trans_II Glucosyl transferase GtrII. This family includes glucosyl transferase II from the Shigella phage SfII, which mediates seroconversion of S. flexneri when the phage is integrated into the host chromosome. 310 -316757 pfam14265 DUF4355 Domain of unknown function (DUF4355). This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 180 and 214 amino acids in length. 120 -316758 pfam14266 YceG_bac Putative component of 'biosynthetic module'. YceG is a family of proteins found in bacteria. Proteins in this family are approximately 540 amino acids in length. YceG is an additional gene-product encoded in the Ter operon and might thus be part of a 'biosynthetic module' encoding certain enzymes. 477 -316759 pfam14267 DUF4357 Domain of unknown function (DUF4357). This domain family is found in bacteria and archaea, and is approximately 60 amino acids in length. There are two completely conserved residues (G and W) that may be functionally important. 54 -316760 pfam14268 YoaP YoaP-like. The YoaP-like domain is found at the C-terminus of the B. subtilis YoaP protein. It is found in bacteria and archaea, and is approximately 40 amino acids in length. The family is found in association with pfam00583. There is a single completely conserved residue A that may be functionally important. 42 -316761 pfam14269 Arylsulfotran_2 Arylsulfotransferase (ASST). 301 -316762 pfam14270 DUF4358 Domain of unknown function (DUF4358). This domain family is found in bacteria, and is approximately 110 amino acids in length. 96 -339139 pfam14271 DUF4359 Domain of unknown function (DUF4359). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. There are two completely conserved residues (P and S) that may be functionally important. 108 -316764 pfam14272 Gly_rich_SFCGS Glycine-rich SFCGS. This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. There are a number of highly conserved motifs including an SFCGSGGAGA motif. 113 -316765 pfam14273 DUF4360 Domain of unknown function (DUF4360). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 200 and 228 amino acids in length. There is a conserved GCP sequence motif near the N-terminus. 171 -316766 pfam14274 DUF4361 Domain of unknown function (DUF4361). 141 -316767 pfam14275 DUF4362 Domain of unknown function (DUF4362). This family of proteins is found in bacteria. Proteins in this family are typically between 93 and 146 amino acids in length. There is a conserved IRIV sequence motif. 93 -316768 pfam14276 DUF4363 Domain of unknown function (DUF4363). This family of proteins is found in bacteria. Proteins in this family are approximately 120 amino acids in length. 118 -316769 pfam14277 DUF4364 Domain of unknown function (DUF4364). This family of proteins is found in bacteria and archaea. Proteins in this family are approximately 180 amino acids in length. 162 -316770 pfam14278 TetR_C_8 Transcriptional regulator C-terminal region. This domain is a tetracycline repressor, domain 2, or C-terminus. 77 -339140 pfam14279 HNH_5 HNH endonuclease. This domain is related to other HNH domain families such as pfam01844. Suggesting that these proteins have a nucleic acid cleaving function. 56 -339141 pfam14280 DUF4365 Domain of unknown function (DUF4365). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, eukaryotes and viruses. Proteins in this family are typically between 182 and 530 amino acids in length. There is a single completely conserved residue D that may be functionally important. 141 -339142 pfam14281 PDDEXK_4 PD-(D/E)XK nuclease superfamily. Members of this family belong to the PD-(D/E)XK nuclease superfamily. 178 -316774 pfam14282 FlxA FlxA-like protein. This family includes FlxA from E. coli. The expression of FlxA is regulated by the FliA sigma factor, a transcription factor specific for class 3 flagellar operons. However FlxA is not required for flagellar function or formation. 101 -339143 pfam14283 DUF4366 Domain of unknown function (DUF4366). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 227 and 387 amino acids in length. 147 -339144 pfam14284 PcfJ PcfJ-like protein. The PcfJ-like protein family includes the E. faecalis PcfJ protein, which is functionally uncharacterized. It is found in bacteria and viruses, and is typically between 159 and 170 amino acids in length. There is a conserved HCV sequence motif. 144 -316777 pfam14285 DUF4367 Domain of unknown function (DUF4367). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 229 and 435 amino acids in length. 110 -290984 pfam14286 DHHW DHHW protein. This family of proteins is found in bacteria. Proteins in this family are typically between 366 and 404 amino acids in length. There is a conserved DHHW motif. There is some distant homology to the Lipase_GDSL_2 family. 373 -316778 pfam14287 DUF4368 Domain of unknown function (DUF4368). This domain family is found in bacteria, and is approximately 70 amino acids in length. The family is found in association with pfam00239 and pfam07508. There is a single completely conserved residue G that may be functionally important. 64 -339145 pfam14288 FKS1_dom1 1,3-beta-glucan synthase subunit FKS1, domain-1. The FKS1_dom1 domain is likely to be the 'Class I' region just N-terminal to the first set of transmembrane helices that is involved in 1,3-beta-glucan synthesis itself. This family is found on proteins with family Glucan_synthase, pfam02364. 112 -339146 pfam14289 DUF4369 Domain of unknown function (DUF4369). This domain family is found in bacteria, and is approximately 110 amino acids in length. The family is found in association with pfam00578. 99 -316781 pfam14290 DUF4370 Domain of unknown function (DUF4370). 241 -339147 pfam14291 DUF4371 Domain of unknown function (DUF4371). 233 -339148 pfam14292 SusE SusE outer membrane protein. This family includes the SusE outer membrane protein from Bacteroides thetaiotaomicron. This protein has a role in starch utilisation, but is not essential for growth on starch. 116 -339149 pfam14293 YWFCY YWFCY protein. This family is found in bacteria, and is approximately 60 amino acids in length. There is a conserved YWFCY motif. It is often found in association with pfam02534. 60 -339150 pfam14294 DUF4372 Domain of unknown function (DUF4372). This domain family is found in bacteria, and is approximately 80 amino acids in length. The family is found in association with pfam01609. There is a single completely conserved residue G that may be functionally important. 73 -316786 pfam14295 PAN_4 PAN domain. 51 -316787 pfam14296 O-ag_pol_Wzy O-antigen polysaccharide polymerase Wzy. This family includes O-antigen polysaccharide polymerases. These enzymes link O-units via a glycosidic linkage to form a long O-antigen. These enzymes vary in specificity and sequence. 467 -339151 pfam14297 DUF4373 Domain of unknown function (DUF4373). This domain is found in bacteria, eukaryotes and viruses, and is approximately 90 amino acids in length. 90 -339152 pfam14298 DUF4374 Domain of unknown function (DUF4374). This family of proteins is found in bacteria. Proteins in this family are typically between 406 and 466 amino acids in length. 426 -339153 pfam14299 PP2 Phloem protein 2. Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in the phloem sap. PP2 is translocated in the assimilate stream where its lectin activity or RNA-binding properties can exert effects over long distances. 144 -339154 pfam14300 DUF4375 Domain of unknown function (DUF4375). This family of proteins is found in bacteria. Proteins in this family are typically between 156 and 204 amino acids in length. There is a single completely conserved residue G that may be functionally important. 116 -339155 pfam14301 DUF4376 Domain of unknown function (DUF4376). This domain family is found in bacteria and viruses, and is approximately 110 amino acids in length. 102 -339156 pfam14302 DUF4377 Domain of unknown function (DUF4377). This domain family is found in bacteria and archaea, and is approximately 80 amino acids in length. 76 -339157 pfam14303 NAM-associated No apical meristem-associated C-terminal domain. This domain is found in a number of different types of plant proteins including NAM-like proteins. 154 -316795 pfam14304 CSTF_C Transcription termination and cleavage factor C-terminal. The C-terminal section of CSTF proteins is a discreet structure is crucial for mRNA 3'-end processing. This domain interacts with Pcf11 and possibly PC4, thus linking CstF2 to transcription, transcriptional termination, and cell growth. 41 -291003 pfam14305 ATPgrasp_TupA TupA-like ATPgrasp. A member of the ATP-grasp fold predicted to be involved in the biosynthesis of cell surface polysaccharides such as the O-antigen in proteobacteria, the capsule in firmicutes and the polyglutamate chain of teichuronopeptide. 241 -339158 pfam14306 PUA_2 PUA-like domain. This PUA like domain is found at the N-terminus of ATP-sulfurylase enzymes. 159 -339159 pfam14307 Glyco_tran_WbsX Glycosyltransferase WbsX. Members of this family are found in within O-antigen biosynthesis clusters in Gram negative bacteria, where they are predicted to function as glycosyltransferases. 340 -339160 pfam14308 DnaJ-X X-domain of DnaJ-containing. IN certain plant and yeast proteins, the DnaJ-1 proteins have a three-domain structure. The x-domain lies between the N-terminal DnaJ and the C-terminal Z domains. The exact function is not known. 206 -339161 pfam14309 DUF4378 Domain of unknown function (DUF4378). 155 -339162 pfam14310 Fn3-like Fibronectin type III-like domain. This domain has a fibronectin type III-like structure. It is often found in association with pfam00933 and pfam01915. Its function is unknown. 70 -339163 pfam14311 DUF4379 Probable Zinc-ribbon domain. This domain is found in bacteria, eukaryotes and viruses, and is approximately 60 amino acids in length. It contains a CXXCXH motif and a CPXC motif. 54 -316802 pfam14312 FG-GAP_2 FG-GAP repeat. 49 -316803 pfam14313 Soyouz_module N-terminal region of Paramyxovirinae phosphoprotein (P). The soyouz module moiety is the N-terminal region of the phosphoprotein (P) from the subfamily Paramyxovirinae of the family Paramyxoviridae viruses. The main genera in this subfamily include the Rubulaviruses, avulaviruses, respiroviruses, henipaviruses, and morbilliviruses, all of which are enveloped viruses with a non-segmented, negative, single-stranded RNA genome encapsidated by the nucleoprotein (N) within a helical nucleocapsid. 58 -316804 pfam14314 Methyltrans_Mon Virus-capping methyltransferase. This is the methyltransferase region of the Mononegavirales single-stranded RNA viral RNA polymerase enzymes. This region is involved in the mRNA-capping of the virion particles. 685 -316805 pfam14315 DUF4380 Domain of unknown function (DUF4380). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 288 and 372 amino acids in length. There are two completely conserved residues (G and E) that may be functionally important. 295 -339164 pfam14316 DUF4381 Domain of unknown function (DUF4381). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 158 and 180 amino acids in length. 142 -339165 pfam14317 YcxB YcxB-like protein. The YcxB-like protein family includes the B. subtilis YcxB protein, which is a functionally uncharacterized transmembrane protein. This family of proteins is found in bacteria, and is approximately 60 amino acids in length. 62 -316808 pfam14318 Mononeg_mRNAcap Mononegavirales mRNA-capping region V. This V domain of L RNA-polymerase carries a new motif, GxxTx(n)HR, that is essential for mRNA cap formation. Nonsegmented negative-sense (NNS) RNA viruses, Mononegavirales, cap their mRNA by an unconventional mechanism. Specifically, 5'-monophosphate mRNA is transferred to GDP derived from GTP through a reaction that involves a covalent intermediate between the large polymerase protein L and mRNA. The V region is essential for this process. 241 -339166 pfam14319 Zn_Tnp_IS91 Transposase zinc-binding domain. This domain is likely to be a zinc-binding domain. It is found at the N-terminus of transposases belonging to the IS91 family. 100 -291018 pfam14320 Paramyxo_PCT Phosphoprotein P region PCT disordered. The N-terminal half of the phosphoprotein P of the Paramyxovirinae viruses. The very first 60 residues have been built as the family Soyouz-module, pfam14313. The remaining part of the region, here, is disordered, and is liable to induced folding under the right physiological conditions. The region undergoes an unstructured-to-structured transition upon binding to Measles virus tail, C, unstructured region. 311 -339167 pfam14321 DUF4382 Domain of unknown function (DUF4382). This family is found in bacteria and archaea, and is typically between 142 and 161 amino acids in length. 145 -339168 pfam14322 SusD-like_3 Starch-binding associating with outer membrane. SusD is a secreted polysaccharide-binding protein with an N-terminal lipid moiety that allows it to associate with the outer membrane. SusD probably mediates xyloglucan-binding prior to xyloglucan transport in the periplasm for degradation. This domain is found N-terminal to pfam07980. 186 -316812 pfam14323 GxGYxYP_C GxGYxYP putative glycoside hydrolase C-terminal domain. This family carries a characteristic sequence motif, GxGYxYP, and is a putative glycoside hydrolase. This domain is found in association with pfam16216. Associated families are sugar-processing domains. 226 -339169 pfam14324 PINIT PINIT domain. The PINIT domain is a protein domain that is found in PIAS proteins. The PINIT domain is about 180 amino acids in length. 134 -316814 pfam14325 DUF4383 Domain of unknown function (DUF4383). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 137 and 164 amino acids in length. 125 -339170 pfam14326 DUF4384 Domain of unknown function (DUF4384). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 80 amino acids in length. 81 -339171 pfam14327 CSTF2_hinge Hinge domain of cleavage stimulation factor subunit 2. The hinge domain of cleavage stimulation factor subunit 2 proteins, CSTF2, is necessary for binding to the subunit CstF-77 within the polyadenylation complex and subsequent nuclear localization. This suggests that nuclear import of a pre-formed CSTF complex is an essential step in polyadenylation. Accurate and efficient polyadenylation is essential for transcriptional termination, nuclear export, translation, and stability of eukaryotic mRNAs. CSTF2 is an important regulatory subunit of the polyadenylation complex. 81 -339172 pfam14328 DUF4385 Domain of unknown function (DUF4385). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea, eukaryotes and viruses. Proteins in this family are typically between 149 and 163 amino acids in length. 143 -316818 pfam14329 DUF4386 Domain of unknown function (DUF4386). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 214 and 245 amino acids in length. 210 -339173 pfam14330 DUF4387 Domain of unknown function (DUF4387). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are approximately 110 amino acids in length. There is a conserved RSKN sequence motif. 98 -339174 pfam14331 ImcF-related_N ImcF-related N-terminal domain. This domain is found in bacterial ImcF (intracellular multiplication and human macrophage-killing) proteins. It is found to the N-terminus of the ImcF-related domain, pfam06761. 258 -316821 pfam14332 DUF4388 Domain of unknown function (DUF4388). This domain family is found in bacteria, and is typically between 102 and 135 amino acids in length. 96 -316822 pfam14333 DUF4389 Domain of unknown function (DUF4389). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 104 and 223 amino acids in length. There is a single completely conserved residue R that may be functionally important. 76 -339175 pfam14334 DUF4390 Domain of unknown function (DUF4390). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 192 and 203 amino acids in length. 155 -339176 pfam14335 DUF4391 Domain of unknown function (DUF4391). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 220 and 257 amino acids in length. 216 -316825 pfam14336 DUF4392 Domain of unknown function (DUF4392). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 282 and 585 amino acids in length. There are two completely conserved G residues that may be functionally important. 289 -339177 pfam14337 DUF4393 Domain of unknown function (DUF4393). This family of proteins is found in bacteria, archaea and viruses. Proteins in this family are typically between 254 and 285 amino acids in length. 191 -339178 pfam14338 Mrr_N Mrr N-terminal domain. This domain is found at the N-terminus of the Mrr restriction endonuclease catalytic domain, pfam04471. Fold recognition analysis predicts that it is a diverged member of the winged helix variant of helix turn helix proteins. It may play a role in DNA sequence recognition. 82 -316828 pfam14339 DUF4394 Domain of unknown function (DUF4394). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 262 and 476 amino acids in length. 223 -339179 pfam14340 DUF4395 Domain of unknown function (DUF4395). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 142 and 168 amino acids in length. There are two completely conserved C residues that may be functionally important. 130 -339180 pfam14341 PilX_N PilX N-terminal. This domain is found at the N-terminus of the PilX prepilin-like proteins which are involved in type 4 fimbrial biogenesis. 51 -339181 pfam14342 DUF4396 Domain of unknown function (DUF4396). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 167 and 310 amino acids in length. 137 -339182 pfam14343 PrcB_C PrcB C-terminal. This domain is found at the C-terminus of Treponema denticola PrcB. PrcB interacts with the PrtP protease (dentilisin) and is required for the stability of the protease complex. 55 -339183 pfam14344 DUF4397 Domain of unknown function (DUF4397). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is approximately 120 amino acids in length. 116 -339184 pfam14345 GDYXXLXY GDYXXLXY protein. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 171 and 199 amino acids in length. It contains a conserved GDYXXLXY motif. 151 -316835 pfam14346 DUF4398 Domain of unknown function (DUF4398). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 127 and 269 amino acids in length. 89 -316836 pfam14347 DUF4399 Domain of unknown function (DUF4399). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 135 and 1079 amino acids in length. 91 -316837 pfam14348 DUF4400 Domain of unknown function (DUF4400). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 209 and 249 amino acids in length. There is a single completely conserved residue P that may be functionally important. 197 -339185 pfam14349 SprA_N Motility related/secretion protein. This domain is found repeated three times in the N-terminal half of the gliding motility-related SprA proteins. The role of this domain in motility is uncertain. It is also found in proteins required for secretion. 509 -316839 pfam14350 Beta_protein Beta protein. This family includes the beta protein from Bacteriophage T4. Beta protein prevents the gop protein from killing the bacterial host cell. 338 -339186 pfam14351 DUF4401 Domain of unknown function (DUF4401). This family of proteins is found in bacteria. Proteins in this family are typically between 357 and 735 amino acids in length. The family is found in association with pfam09925. There is a single completely conserved residue K that may be functionally important. 308 -316841 pfam14352 DUF4402 Domain of unknown function (DUF4402). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 155 and 182 amino acids in length. 127 -316842 pfam14353 CpXC CpXC protein. This presumed domain is functionally uncharacterized. This domain is found in bacteria and archaea, and is typically between 122 and 134 amino acids in length. It contains four conserved cysteines forming two CpXC motifs. 126 -339187 pfam14354 Lar_restr_allev Restriction alleviation protein Lar. This family includes the restriction alleviation protein Lar encoded by the Rac prophage of Escherichia coli. This protein modulates the activity of the Escherichia coli restriction and modification system. 59 -339188 pfam14355 Abi_C Abortive infection C-terminus. This domain is found at the C-terminus of the Lactococcus lactis abortive infection protein Abi-859. This protein confers bacteriophage resistance. 77 -316845 pfam14356 DUF4403 Domain of unknown function (DUF4403). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 455 and 518 amino acids in length. There is a single completely conserved residue W that may be functionally important. 423 -339189 pfam14357 DUF4404 Domain of unknown function (DUF4404). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. There are two completely conserved residues (P and G) that may be functionally important. 83 -339190 pfam14358 DUF4405 Domain of unknown function (DUF4405). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and archaea, and is approximately 50 amino acids in length. There are two conserved histidines that may be functionally important. This family is N-terminally truncated compared to other members of the clan. 65 -339191 pfam14359 DUF4406 Domain of unknown function (DUF4406). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 98 and 145 amino acids in length. 91 -339192 pfam14360 PAP2_C PAP2 superfamily C-terminal. This family is closely related to the C-terminal a region of PAP2. 72 -339193 pfam14361 RsbRD_N RsbT co-antagonist protein rsbRD N-terminal domain. This domain is found at the N-terminus of a number of anti-sigma-factor antagonist proteins including B. subtilis RsbRD. These proteins are negative regulators of the general stress transcription factor sigma(B). It is found in association with pfam01740. 104 -316850 pfam14362 DUF4407 Domain of unknown function (DUF4407). This family of proteins is found in bacteria. Proteins in this family are typically between 366 and 597 amino acids in length. There is a single completely conserved residue R that may be functionally important. 296 -339194 pfam14363 AAA_assoc Domain associated at C-terminal with AAA. This domain is found in association with the AAA family, pfam00004. 94 -339195 pfam14364 DUF4408 Domain of unknown function (DUF4408). This domain is found at the N-terminus of member of the DUF761 family pfam05553. Many members are plant proteins. 32 -339196 pfam14365 Neprosin_AP Neprosin activation peptide. Pitcher plants are insectivorous and secrete a digestive fluid into the pitcher. This fluid contains a mixture of enzymes including peptidases. One of these is neprosin, characterized from the pitcher plant Nepenthes ventrata. This peptidase is of unknown catalytic type and is unaffected by standard peptidase inhibitors. Unusually, activity is directed towards prolyl bonds, but unlike most peptidase that cleave after proline, there is no restriction on sequence length or position of the proline residue. The peptidase is secreted and is presumed to possess an N-terminal activation peptide. This domain corresponds to the presumed activation peptide. 111 -316854 pfam14366 DUF4410 Domain of unknown function (DUF4410). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 187 and 238 amino acids in length. 119 -316855 pfam14367 DUF4411 Domain of unknown function (DUF4411). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 153 and 170 amino acids in length. There is a single completely conserved residue D that may be functionally important. 159 -339197 pfam14368 LTP_2 Probable lipid transfer. The members of this family are probably involved in lipid transfer. The family has several highly conserved cysteines, paired in various ways. 91 -339198 pfam14369 zinc_ribbon_9 zinc-ribbon. 35 -316858 pfam14370 Topo_C_assoc C-terminal topoisomerase domain. This domain is found at the C-terminal of topoisomerase and other similar enzymes. 68 -316859 pfam14371 DUF4412 Domain of unknown function (DUF4412). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and eukaryotes, and is typically between 75 and 104 amino acids in length. 191 -339199 pfam14372 DUF4413 Domain of unknown function (DUF4413). This domain is part of an RNase-H fold section of longer proteins some of which are transposable elements possibly of the Pong type, since some members are putative Tam3 transposases. 100 -316861 pfam14373 Imm_superinfect Superinfection immunity protein. This family includes the E. coli bacteriophage T4 superinfection immunity (imm) protein. When E. coli is sequentially infected with two T-even type bacteriophage the DNA of the superinfecting phage is excluded from the host, into the periplasmic space. The immunity protein plays a role in this process. 42 -339200 pfam14374 Ribos_L4_asso_C 60S ribosomal protein L4 C-terminal domain. This family is found at the very C-terminal of 60 ribosomal L4 proteins. 75 -339201 pfam14375 Cys_rich_CWC Cysteine-rich CWC. This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 74 and 102 amino acids in length. It contains eight conserved cysteines, including a conserved CWC sequence motif. 50 -339202 pfam14376 Haem_bd Haem-binding domain. This domain contains a potential haem-binding motif, CXXCH. This family is found in association with pfam00034 and pfam03150. 133 -339203 pfam14377 DUF4414 Domain of unknown function (DUF4414). This family is frequently found on DNA binding proteins of the URE-B1 type and on ligases. 105 -316866 pfam14378 PAP2_3 PAP2 superfamily. 154 -339204 pfam14379 Myb_CC_LHEQLE MYB-CC type transfactor, LHEQLE motif. This family is found towards the C-terminus of Myb-CC type transcription factors, and carries a highly conserved LHEQLE sequence motif. 46 -339205 pfam14380 WAK_assoc Wall-associated receptor kinase C-terminal. This WAK_assoc domain is cysteine-rich and lies C-terminal to the binding domain, GUB_WAK_bind, pfam13947. 97 -339206 pfam14381 EDR1 Ethylene-responsive protein kinase Le-CTR1. EDR1 regulates disease resistance and ethylene-induced senescence, and is also involved in stress response signalling and cell death regulation. 199 -339207 pfam14382 ECR1_N Exosome complex exonuclease RRP4 N-terminal region. ECR1_N is an N-terminal region of the exosome complex exonuclease RRP proteins. It is a G-rich domain which structurally is a rudimentary single hybrid fold with a permuted topology. 36 -316871 pfam14383 VARLMGL DUF761-associated sequence motif. This family is found frequently at the N-terminus of family DUF3741, pfam12552. 31 -339208 pfam14384 BrnA_antitoxin BrnA antitoxin of type II toxin-antitoxin system. BrnA is family of antitoxins that neutralizes the toxin BrnT, pfam04365. It consists of 3 alpha-helices and a C-terminal ribbon-helix-helix DNA binding domain. As in other toxin-antitoxin systems, BrnA negatively autoregulates the brnTA operon and has higher affinity for the DNA operator when complexed with BrnT. It dimerizes with two molecules of its toxin BrnT. 66 -339209 pfam14385 DUF4416 Domain of unknown function (DUF4416). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 176 and 187 amino acids in length. There is a conserved DPG sequence motif. 162 -316874 pfam14386 DUF4417 Domain of unknown function (DUF4417). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 220 and 340 amino acids in length. There is a single completely conserved residue G that may be functionally important. 183 -316875 pfam14387 DUF4418 Domain of unknown function (DUF4418). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 132 and 150 amino acids in length. 117 -339210 pfam14388 DUF4419 Domain of unknown function (DUF4419). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria, eukaryotes and viruses. Proteins in this family are typically between 348 and 454 amino acids in length. 302 -339211 pfam14389 Lzipper-MIP1 Leucine-zipper of ternary complex factor MIP1. This leucine-zipper is towards the N-terminus of MIP1 proteins. These proteins, here largely from plants, are subunits of the TORC2 (rictor-mTOR) protein complex controlling cell growth and proliferation. The leucine-zipper is likely to be the region that interacts with plant MADS-box factors, 84 -316878 pfam14390 DUF4420 Putative PD-(D/E)XK family member, (DUF4420). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 310 and 334 amino acids in length. Advanced homology-detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses have established this family to be a member of the PD-(D/E)XK superfamily. 311 -339212 pfam14391 DUF4421 Domain of unknown function (DUF4421). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 336 and 370 amino acids in length. 297 -339213 pfam14392 zf-CCHC_4 Zinc knuckle. The zinc knuckle is a zinc binding motif composed of the the following CX2CX4HX4C where X can be any amino acid. This particular family is found in plant proteins. 49 -339214 pfam14393 DUF4422 Domain of unknown function (DUF4422). This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 255 and 371 amino acids in length. 222 -316882 pfam14394 DUF4423 Domain of unknown function (DUF4423). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, and is approximately 170 amino acids in length. 168 -316883 pfam14395 COOH-NH2_lig Phage phiEco32-like COOH.NH2 ligase-type 2. A family of COOH-NH2 ligases/GCS superfamily found in the neighborhood of YheC/D-like ATP-grasp and the CotE family of proteins in the firmicutes. Contextual analysis suggests that it might be involved in cell wall modification and spore coat biosynthesis. 253 -316884 pfam14396 CFTR_R Cystic fibrosis TM conductance regulator (CFTR), regulator domain. 213 -316885 pfam14397 ATPgrasp_ST Sugar-transfer associated ATP-grasp. A member of the ATP-grasp fold predicted to be involved in the biosynthesis of cell surface polysaccharides. 284 -316886 pfam14398 ATPgrasp_YheCD YheC/D like ATP-grasp. A member of the ATP-grasp fold predicted to be involved in the modification/biosynthesis of spore-wall and capsular proteins. 255 -339215 pfam14399 BtrH_N Butirosin biosynthesis protein H, N-terminal. BtrH_N is the N-terminus of the acyl carrier protein:aminoglycoside acyltransferase BtrH. Alternatively it can be referred to as butirosin biosynthesis protein H. BtrH transfers the unique (S)-4-amino-2-hydroxybutyrate (AHBA) side chain, which protects the antibiotic butirosin from several common resistance mechanisms. Butirosin, an aminoglycoside antibiotic produced by Bacillus circulans, exhibits improved antibiotic properties over its parent molecule and retains bactericidal activity toward many aminoglycoside-resistant strains. Butirosin is unique in carrying the AHBA side-chain. BtrH transfers the AHBA from the acyl carrier protein BtrI to the parent aminoglycoside ribostamycin as a gamma-glutamylated dipeptide. 134 -316888 pfam14400 Transglut_i_TM Inactive transglutaminase fused to 7 transmembrane helices. A family of inactive transglutaminases fused to seven transmembrane helices. The transglutaminase domain is predicted to be extracellularly located. Members of this family are associated in gene neighborhoods with a pepsin-like peptidase and an ATP-grasp of the RimK-family. The ATP-grasp is predicted to modify the 7TM protein or a cofactor that interacts with it. 161 -339216 pfam14401 RLAN RimK-like ATPgrasp N-terminal domain. An uncharacterized alpha+beta fold domain that is mostly fused to a RimK-like ATP-grasp and is found in bacteria and euryarchaea. Members of this family are almost always associated in gene neighborhoods with a GNAT-like acetyltransferase fused to a papain-like petidase. Additionally M20-like peptidases, GCS2, 4Fe-4S Ferredoxins, a distinct metal-sulfur cluster protein and ribosomal proteins are found in the gene neighborhoods. Contextual analysis suggests a role for these in peptide biosynthesis. 150 -339217 pfam14402 7TM_transglut 7 transmembrane helices usually fused to an inactive transglutaminase. A family of seven transmembrane helices fused to an inactive transglutaminase domain. The transglutaminase domain is predicted to be extracellularly located. Members of this family are associated in gene neighborhoods with a pepsin-like peptidase and an ATP-grasp of the RimK-family. The ATP-grasp is predicted to modify the 7TM protein or a cofactor that interacts with it. 249 -339218 pfam14403 CP_ATPgrasp_2 Circularly permuted ATP-grasp type 2. Circularly permuted ATP-grasp prototyped by Roseiflexus RoseRS_2616 that is associated in gene neighborhoods with a GCS2-like COOH-NH2 ligase, alpha/beta hydrolase fold peptidase, GAT-II -like amidohydrolase, and M20 peptidase. Members of this family are predicted to be involved in the biosynthesis of small peptides. 377 -316892 pfam14404 Strep_pep Ribosomally synthesized peptide in Streptomyces species. A ribosomally synthesized peptide related to microviridin and marinostatin, usually in the gene neighborhood of one or more RimK-like ATP-grasp. The gene-context suggests that it is further modified by the ATP-grasp. The peptide is predicted to function in a defensive or developmental role, or as an antibiotic. 63 -316893 pfam14406 Bacteroid_pep Ribosomally synthesized peptide in Bacteroidetes. Ribosomally synthesized peptide that is usually in the gene neighborhood of a RimK-like ATP-grasp, and an ABC ATPase fused to a papain-like domain. It is often present in multiple tandem gene copies. The gene contexts suggest that it is modified by the ATP-grasp as in the biosynthesis of microviridin and marinostatin. They might function in defense or development or as peptide antibiotics. 52 -316894 pfam14407 Frankia_peptide Ribosomally synthesized peptide prototyped by Frankia Franean1_4349. Ribosomally synthesized peptide linked to cyclases in chloroflexi. It may have a link to cyclic nucleotide signaling. 62 -316895 pfam14408 Actino_peptide Ribosomally synthesized peptide in actinomycetes. Ribosomally synthesized peptide that is usually in the gene neighborhood of a RimK-like ATP-grasp and an aspartyl-O-methylase. Gene contexts suggest that it is further modified by the ATP-grasp and the methylase. It might function in defense or development, or as a peptide antibiotic. 58 -291106 pfam14409 Herpeto_peptide Ribosomally synthesized peptide in Herpetosiphon. Ribosomally synthesized peptide that is usually in the gene neighborhood of a RimK-like ATP-grasp, and an ABC ATPase fused to a papain-like domain. It is often present in multiple tandem gene copies. Gene contexts suggest that it is modified by the ATP=grasp. It might function in defense or development, or as a peptide antibiotic. 56 -316896 pfam14410 GH-E HNH/ENDO VII superfamily nuclease with conserved GHE residues. A predicted nuclease of the HNH/EndoVII superfamily of the treble clef fold which is closely related to the NucA-like family. The name is derived from the conserved G, H and E residues. It is found in several bacterial polymorphic toxin systems. Some GH-E members preserve the conserved cysteines of the treble-clef suggesting that they might represent potential evolutionary intermediates from a classical HNH domain to the derived NucA-like form. 70 -316897 pfam14411 LHH A nuclease of the HNH/ENDO VII superfamily with conserved LHH. LHH is a predicted nuclease of the HNH/ENDO VII superfamily of the treble clef fold. The name is derived from the conserved motif, LHH. It is found in bacterial polymorphic toxin systems and functions as a toxin module. Like WHH and AHH, LHH nuclease contain 4 conserved histidines of which, the first one is predicted to bind metal-ion and other three ones are involved in activation of water molecule for hydrolysis. 77 -339219 pfam14412 AHH A nuclease family of the HNH/ENDO VII superfamily with conserved AHH. AHH is a predicted nuclease of the HNH/ENDO VII superfamily of the treble clef fold. The name is derived from the conserved motif, AHH. It is found in bacterial polymorphic toxin systems and functions as a toxin module. Like WHH and LHH, the AHH nuclease contains 4 conserved histidines of which, the first one is predicted to bind a metal-ion and the other three ones are involved in activation of a water molecule for hydrolysis. 110 -316899 pfam14413 Thg1C Thg1 C terminal domain. Thg1 polymerases contain an additional region of conservation C-terminal to the core palm domain that comprise of 5 helices and two strands. This region has several well-conserved charged residues including a basic residue found towards the end of the first helix of this unit might contribute to the Thg1-specific active site. This C-terminal module of Thg1 is predicted to form a helical bundle that functions equivalently to the fingers of the other nucleic acid polymerases, probably in interacting with the template HtRNA. 118 -316900 pfam14414 WHH A nuclease of the HNH/ENDO VII superfamily with conserved WHH. WHH is a predicted nuclease of the HNH/ENDO VII superfamily of the treble clef fold. The name is derived from the conserved motif WHH. It is found in bacterial polymorphic toxin systems and functions as a toxin module. WHH is the shortest version of HNH nuclease families. Like AHH and LHH, the WHH nuclease contains 4 conserved histidines of which the first one is predicted to bind a metal-ion and other three ones are involved in activation of water molecule for hydrolysis. 43 -316901 pfam14415 DUF4424 Domain of unknown function (DUF4424). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 310 and 361 amino acids in length. 283 -339220 pfam14416 PMR5N PMR5 N terminal Domain. The plant family with PMR5, ESK1, TBL3 etc have a N-terminal C rich predicted sugar binding domain followed by the PC-Esterase (acyl esterase) domain. 53 -339221 pfam14417 MEDS MEDS: MEthanogen/methylotroph, DcmR Sensory domain. MEDS is prototyped by DcmR and is likely to function with the PocR domain in certain organisms in sensing hydrocarbon derivatives. The MEDS domain occurs fused to Histidine Kinase and as stand-alone version. Sequence analysis shows that it is a catalytically inactive version of the P-loop NTPase domain of the RecA superfamily. 160 -316904 pfam14418 OHA OST-HTH Associated domain. OHA occurs with OST-HTH. 74 -316905 pfam14419 SPOUT_MTase_2 AF2226-like SPOUT RNA Methylase fused to THUMP. SPOUT superfamily RNA methylase fused to RNA binding THUMP domain. 173 -339222 pfam14420 Clr5 Clr5 domain. This domain is found at the N-terminus of the Clr5 protein which has been shown to be involved in silencing in fission yeast. This domain has been found to often be associated with proteins that contain ankyrin repeats and large regions of disordered sequence. 54 -316907 pfam14421 LmjF365940-deam A distinct subfamily of CDD/CDA-like deaminases. A distinct branch of the CDD/CDA-like deaminases prototyped by Leishmania LmjF36.5940. Members of this family are widely distributed across several microbial eukaryotes such as kinetoplastids, chlorophyte algae, stramenopiles and the alveolate Perkinsus. Domain architectures suggest that these proteins might possess mRNA editing or DNA mutagenizing activity. 170 -316908 pfam14423 Imm5 Immunity protein Imm5. A predicted Immunity protein, with an all-alpha fold, present in bacterial polymorphic toxin systems as an immediate neighbor of the toxin. 185 -291120 pfam14424 Toxin-deaminase The BURPS668_1122 family of deaminases. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Burkholderia BURPS668_1122. Members of this family are found as toxins in polymorphic toxin systems in a wide range of bacteria and in the eukaryote Perkinsus. Members of this family typically possess a DxE catalytic motif in Helix-2 of the core fold instead of the more common C[H]xE motif. The Perkinsus versions are predicted to be inactive. 135 -316909 pfam14425 Imm3 Immunity protein Imm3. A predicted Immunity protein, with a mostly all-alpha fold, present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene. 119 -339223 pfam14426 Imm2 Immunity protein Imm2. A predicted Immunity protein, with a mostly all-alpha fold, present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene. 60 -316911 pfam14427 Pput2613-deam Pput_2613-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Pseudomonas Pput_2613. Members of this family are predicted to function as toxins in bacterial polymorphic toxin systems. 118 -316912 pfam14428 SCP1201-deam SCP1.201-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Streptomyces SCP1.201. Members of this family are predicted to function as toxins in bacterial polymorphic toxin systems. 135 -339224 pfam14429 DOCK-C2 C2 domain in Dock180 and Zizimin proteins. The Dock180/Dock1 and Zizimin proteins are atypical GTP/GDP exchange factors for the small GTPases Rac and Cdc42 and are implicated cell-migration and phagocytosis. Across all Dock180 proteins, two regions are conserved: C-terminus termed CZH2 or DHR2 (or the Dedicator of cytokinesis) whereas CZH1/DHR1 contain a new family of the C2 domain. 187 -316914 pfam14430 Imm1 Immunity protein Imm1. A predicted immunity protein, with an alpha+beta fold and a conserved C-terminal tryptophan residue. The protein is present in a wide range of bacteria in polymorphic toxin systems as an immediate gene neighbor of the toxin gene. 126 -316915 pfam14431 YwqJ-deaminase YwqJ-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Bacillus YwqJ. Members of this family are present in a wide phyletic range of bacteria and a few basidiomycetes. Bacterial versions are predicted to function as toxins in bacterial polymorphic toxin systems. 127 -316916 pfam14432 DYW_deaminase DYW family of nucleic acid deaminases. A family of nucleic acid deaminases prototyped by the plant PPR DYW proteins that are implicated in chloroplast and mitochondrial RNA transcript maturation by numerous C to U editing events. The name derives from the DYW motif present at the C-terminus of the classical plant PPR DYW deaminases. Members of this family are present in bacteria, plants, Naegleria, and fungi. Plants and Naegleria show lineage-specific expansions of this family. The classical DYW family contain an additional C-terminal metal-binding cluster composed of 2 histidines and a CxC motif and are often fused to PPR repeats. Ascomycete versions, which are independent lateral transfers, contain a large insert within the domain and are often fused to ankyrin repeats. Bacterial versions are predicted to function as toxins in polymorphic toxin systems. 125 -316917 pfam14433 SUKH-3 SUKH-3 immunity protein. This family belongs to the SUKH superfamily and functions as immunity proteins in bacterial toxin systems. 141 -316918 pfam14434 Imm6 Immunity protein Imm6. A predicted immunity protein, with an alpha+beta fold (mostly alpha helices). The protein is present in polymorphic toxin systems as an immediate gene neighbor of the toxin gene. 120 -316919 pfam14435 SUKH-4 SUKH-4 immunity protein. This family belongs to the SUKH superfamily and functions as immunity proteins in bacterial toxin systems. 139 -339225 pfam14436 EndoU_bacteria Bacterial EndoU nuclease. This is a bacterial virion of EndoU nuclease. It is found at C-terminal region of polymorphic toxin proteins. 90 -316921 pfam14437 MafB19-deam MafB19-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Neisseria MafB19. Members of this family are present in a wide phyletic range of bacteria and are predicted to function as toxins in bacterial polymorphic toxin systems. 138 -339226 pfam14438 SM-ATX Ataxin 2 SM domain. This SM domain is found in Ataxin-2. 81 -206605 pfam14439 Bd3614-deam Bd3614-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Bdellovibrio Bd3614. They are typified by a distinct N-terminal globular domain. The Bdellovibrio version occurs in a predicted operon with a 23S rRNA G2445-modifying methylase suggesting that it might be involved in RNA editing. 113 -316923 pfam14440 XOO_2897-deam Xanthomonas XOO_2897-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Xanthomonas XOO_2897. Members of this family are present in a wide phyletic range of bacteria and are predicted to function as toxins in bacterial polymorphic toxin systems. The Xanthomonas XOO_2897 lack an immunity protein and is predicted to be deployed against its eukaryotic host. 101 -339227 pfam14441 OTT_1508_deam OTT_1508-like deaminase. A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Orientia OTT_1508. Members of this family are present in a wide phyletic range of bacteria,including several intracellular parasites and eukaryotes such as fungi, Leishmania, Selaginella, and some apicomplexa. In bacteria, these deaminases are predicted to function as toxins in bacterial polymorphic toxin systems. Versions in intracellular bacteria lack immunity proteins and are likely to be deployed against their eukaryotic hosts. Eukaryotic versions are predicted to function as nucleic acid (either DNA or RNA) deaminases. Among eukaryotes, some fungi show lineage-specific expansions of this family. Many fungal versions are fused to a distinct N-terminal globular domain. Various fungal versions are fused to domains involved in chromatin function. Apicomplexan versions are fused to tRNA guanine transglycosylase domain. 61 -291134 pfam14442 Bd3614_N Bd3614-like deaminase N-terminal. This is a globular domain that occurs N-terminal to the Bd3614-like deaminases, which are predicted to be involved in RNA editing. 89 -339228 pfam14443 DBC1 DBC1. DBC1 and it homologs from diverse eukaryotes are a catalytically inactive version of the Nudix hydrolase (MutT) domain. DBC1 is predicted to bind NAD metabolites and regulate the activity of SIRT1 or related deacetylases by sensing the soluble products or substrates of the NAD-dependent deacetylation reaction. 118 -339229 pfam14444 S1-like S1-like. S1-like RNA binding domain found in DBC1 58 -316927 pfam14445 Prok-RING_2 Prokaryotic RING finger family 2. RING finger family found sporadically in bacteria and archaea, and associated with other components of the ubiquitin-based signaling and degradation system, including ubiquitin and the E1 and E2 proteins. The bacterial versions contain transmembrane helices. 56 -316928 pfam14446 Prok-RING_1 Prokaryotic RING finger family 1. RING finger family found sporadically in bacteria and archaea, and associated in gene neighborhoods with other components of the ubiquitin-based signaling and degradation system, including ubiquitin, the E1 and E2 proteins and the JAB-like metallopeptidase. The bacterial versions contain transmembrane helices. 52 -316929 pfam14447 Prok-RING_4 Prokaryotic RING finger family 4. RING finger family domain found sporadically in bacteria. The finger is fused to an N-terminal alpha-helical domain, ROT/Trove-like repeats and a C-terminal TerD domain. The architecture suggests a possible role in an RNA-processing complex. 46 -291139 pfam14448 Nuc_N Nuclease N terminal. This is a conserved short region that is found in many bacterial polymorphic toxin proteins. It is often located before C-terminal nuclease domains. 58 -339230 pfam14449 PT-TG Pre-toxin TG. PT-TG is a conserved region found in many bacterial toxin proteins. It could function as a linker that links N-terminal secretion-related domain and C-terminal toxin domain. It contains a TG motif. 68 -339231 pfam14450 FtsA Cell division protein FtsA. FtsA is essential for bacterial cell division, and co-localizes to the septal ring with FtsZ. It has been suggested that the interaction of FtsA-FtsZ has arisen through coevolution in different bacterial strains. The FtsA protein contains two structurally related actin-like ATPase domains which are also structurally related to the ATPase domains of HSP70 (see PF00012). FtsA has a SHS2 domain PF02491 inserted in to the RnaseH fold PF02491. 166 -291142 pfam14451 Ub-Mut7C Mut7-C ubiquitin. This member of the ubiquitin superfamily is found at the N-terminus of Mut7-C like RNAses, suggestive of an RNA-binding role. 81 -339232 pfam14452 Multi_ubiq Multiubiquitin. A ubiquitin superfamily domain that is often present in multiple tandem copies in the same polypeptide. Members of this family are associated in gene neighborhoods, or on occasions fused to, bacterial homologs of components of ubiquitin-dependent modification system such as the E1, E2 and JAB metallopeptidase enzymes and a distinct metal-binding domain. The E2/UBC fold domain appears to be inactive. The JAB domain in these operons is usually fused to the E1 domain. 69 -316933 pfam14453 ThiS-like ThiS-like ubiquitin. A member of the ubiquitin superfamily that is often fused to the ThiF-like (E1)- ubiquitin activating enzyme and is present in gene neighborhoods with components of the thiamine biosynthesis pathway. 57 -316934 pfam14454 Prok_Ub Prokaryotic Ubiquitin. A Ubiquitin-superfamily protein that is present across several bacterial lineages, and found in gene neighborhoods with components of the ubiquitin modification system such as the E1, E2 and JAB proteins, and a novel alpha-helical protein, which is predicted to be enzymatic. 63 -291146 pfam14455 Metal_CEHH Predicted metal binding domain. A predicted metal-binding domain that is found in gene-neighborhood associations with genes encoding components of the bacterial homologs of the ubiquitin modification pathway including the E1, E2, JAB metallopeptidase and ubiquitin proteins. The domain is characterized by a conserved motif with a CxxxxxEYHxxxxH signature. 177 -316935 pfam14456 alpha-hel2 Alpha-helical domain 2. An alpha-helical domain found in gene neighborhoods encoding genes containing bacterial homologs of components of the ubiquitin modification pathway such as the E1, E2, Ub and JAB peptidase proteins. 304 -316936 pfam14457 Prok-E2_A Prokaryotic E2 family A. A member of the E2/UBC superfamily of proteins found in several bacteria. The active site residues are very similar to the eukaryotic E2 proteins. Members of this family are usually fused to E1 and JAB domains C-terminal to the E2 domain. The protein is usually in the gene neighborhood of a gene encoding a distinct metallobetalactamase family protein. 162 -291149 pfam14459 Prok-E2_C Prokaryotic E2 family C. A divergent member of the E2/UBC superfamily of proteins found in bacteria. Members of the family contain a conserved cysteine in place of the histidine of the classical E2/UBC proteins. Members of this family are usually fused to an E1 domain at their C-terminus. The protein is usually in the gene neighborhood of a gene encoding a JAB peptidase and another encoding a predicted metal binding domain. 133 -316937 pfam14460 Prok-E2_D Prokaryotic E2 family D. A member of the E2/UBC superfamily of proteins found in several bacteria. Members of this family lack the conserved histidine of the classical E2-fold. However, they have an absolutely conserved histidine carboxyl-terminal to the conserved cysteine. Members of this family are usually present in a conserved gene neighborhood with genes encoding members of the Ub modification pathway such as the E1, Ub and JAB proteins. These neighborhoods also contain a gene encoding a rapidly diverging alpha-helical protein. 168 -291151 pfam14461 Prok-E2_B Prokaryotic E2 family B. A member of the E2/UBC superfamily of proteins found in several bacteria. The active site residues are similar to the eukaryotic E2 proteins but lack the conserved asparagine. Members of this family are usually fused to an E1 domain at the C-terminus. The protein is usually in the gene neighborhood of a gene encoding a member of the pol-beta nucleotidyltransferase superfamily. Many of the operons in this family are in ICE-like mobile elements and plasmids. 133 -339233 pfam14462 Prok-E2_E Prokaryotic E2 family E. A member of the E2/UBC superfamily of proteins found in diverse bacteria. Analysis of the active site residues suggest that members of this family are inactive as they lack the characteristic catalytic residues of the E2 enzymes. They are usually fused to or in the neighborhood of a multi/poly ubiquitin domain protein. Other proteins of the ubiquitin modification pathway such as the E1 and JAB proteins are also found in its gene neighborhood along with a distinct predicted metal-binding protein. 120 -206628 pfam14463 E1-N E1 N-terminal domain. An uncharacterized alpha/beta domain fused to E1 proteins. This protein is usually present in gene neighborhoods with genes encoding a JAB protein and a predicted metal-binding protein. In related E1 proteins, the E1-N domain is replaced by an E2/UBC superfamily domain. 152 -316939 pfam14464 Prok-JAB Prokaryotic homologs of the JAB domain. These are metalloenzymes that function as the ubiquitin isopeptidase/ deubiquitinase in the ubiquitin-based signaling and protein turnover pathways in eukaryotes. Prokaryotic JAB domains are predicted to have a similar role in their cognates of the ubiquitin modification pathway. The domain is widely found in bacteria, archaea and phages where they are present in several gene contexts in addition to those that correspond to the prokaryotic cognates of the eukaryotic Ub pathway. Other contexts in which JAB domains are present include gene neighbor associations with ubiquitin fold domains in cysteine and siderophore biosynthesis, and phage tail morphogenesis, where they are shown or predicted to process the associated ubiquitin. A distinct family, the RadC-like JAB domains are widespread in bacteria and are predicted to function as nucleases. In halophilic archaea the JAB domain shows strong gene-neighborhood associations with a nucleotidyltransferase suggesting a role in nucleotide metabolism. 113 -316940 pfam14465 NFRKB_winged NFRKB Winged Helix-like. This domain covers regions 370-495 of human nuclear factor related to kappaB binding (NFRKB) protein. 100 -316941 pfam14466 PLCC PLAT/LH2 and C2-like Ca2+-binding lipoprotein. A small family of bacterial proteins, found in several Bacteroides species. Structure determination (NMR and Xray) shows an immunoglobulin beta-barrel fold. Multiple homologs have been found in human gut metagenomics data sets. Structural experimentation shows it to share features with two well-established protein architectures in the SCOP database, ie, C2 (calcium/lipid-binding domain) of the Pfam PF00168 and PLAT/LH2 (lipase/lipooxigenase domain) of the Pfam PF01477. The C2 and PLAT/LH2 domains bind Ca2+ in their functions of targeting proteins to cell-membranes; this domain is also shown to bind Ca2+ as well as to be a novel fold. 124 -339234 pfam14467 DUF4426 Domain of unknown function (DUF4426). Members of this entry are found mostly in g-proteobacteria, especially in Vibrio. Strangely enough, there seems to be one eukaryotic homolog in Nematostella vectensis (NEMVEDRAFT_v1g226006), where the PA0388-like domain is fused with a domain homogous to the Methionine biosynthesis protein MetW (see below). In several Pseudomonas species, but also in Vibrio vulnificus and Azotobacter vinelandii PA0388 homologs are genomic neighbors of Nucleoside 5-triphosphatase RdgB (dHAPTP, dITP, XTP-specific) (EC 3.6.1.15) and Methionine biosynthesis protein MetW. On the other hand, in most Vibrio species it appears as a part of a conserved operon involved in possible response to stress. 120 -291157 pfam14468 DUF4427 Protein of unknown function (DUF4427). This domain is often found at the C-terminal of proteins with pfam10899 domain, for instance in STY1911 protein from a multiple drug resistant Salmonella enterica serovar Typhi CT18. 132 -316943 pfam14469 AKAP28 28 kDa A-kinase anchor. 28 kDa AKAP (AKAP28) is highly enriched in human airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Homologs of AKAP28 are present in all animals and in some, including mice the AKAP28-like domain are preceded by another uncharacterized domain 121 -316944 pfam14470 bPH_3 Bacterial PH domain. Proteins in this family are distantly related to PH domains. 96 -339235 pfam14471 DUF4428 Domain of unknown function (DUF4428). This putative zinc finger domain is found in uncharacterized bacterial proteins. 51 -316946 pfam14472 DUF4429 Domain of unknown function (DUF4429). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, archaea and viruses, and is approximately 90 amino acids in length. This domain is often found in two tandem copies. 95 -316947 pfam14473 RD3 RD3 protein. RD3 is a human protein that is found preferentially expressed in the retina. Mutations in RD3 causes Leber Congenital Amaurosis type 12. 117 -339236 pfam14474 RTC4 RTC4-like domain. This presumed domain is found in the RTC4 protein from yeasts. In Saccharomyces cerevisiae, Cdc13 binds telomeric DNA to recruit telomerase and to "cap" chromosome ends. RTC4 was identified in a screen to identify novel proteins and pathways that cap telomeres, or that respond to uncapped telomeres. This domain is also found in proteins that contain a DNA-binding myb domain. 120 -316949 pfam14475 Mso1_Sec1_bdg Sec1-binding region of Mso1. Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p. It is a small hydrophilic protein that is enriched in the microsomal membrane fraction, and this binding domain is towards the N-terminus of Mso1. The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. Mso1p and Sec1p interact at sites of exocytosis and the Mso1p-Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. The C-terminal region of Mso1 (not built) assists in targetting Sec1 to the sites of polarised membrane transport. 40 -316950 pfam14476 Chloroplast_duf Petal formation-expressed. The members of this plant family from Arabidopsis thaliana appear to be proteins found in the chloroplast, expressed in the pollen tube during the petal differentiation and expansion stage. The function is not known. 310 -316951 pfam14477 Mso1_C Membrane-polarising domain of Mso1. Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p. It is a small hydrophilic protein that is enriched in the microsomal membrane fraction. The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. Mso1p and Sec1p interact at sites of exocytosis and the Mso1p-Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. This C-terminal region of Mso1 assists in targeting Sec1 to the sites of polarised membrane transport, the SNARES and Sec4. 54 -339237 pfam14478 DUF4430 Domain of unknown function (DUF4430). Although this family has overlaps with SLBB, the majority of its sequences are unique. Several family members, eg UniProtKB:A0RGA8, that do not overlap have an LPXTG-cell wall anchor at their C-terminus, a SSF_Family 10_polysaccharide_lyase or Glycosyltransferase structure associated with them in the middle region, as shown by InterPro, as well as this domain at the N-terminus. 73 -339238 pfam14479 HeLo Prion-inhibition and propagation. This N-terminal region, HeLo, has a prion-inhibitory effect in cis on its own prion-forming domain (PFD) and in trans on HET-s prion propagation. The domain is found exclusively in the fungal kingdom. Its structure, as it occurs in the HET-s/HET-S proteins, consists of two bundles of alpha-helices that pack into a single globular domain. The domain boundary determined from its structure and from protease-resistance experiments overlaps with the C-terminal prion-forming domain of HET-s (PF11558. The HeLo domains of HET-s and HET-S are very similar and their few differences (and not the prion-forming domains) determine the compatibility-phenotype of the fungi in which the proteins are expressed. The mechanism of the HeLo domain-function in heterokaryon-incompatibility is still under investigation, however the HeLo domain is found in similar protein architectures as other cell death and apoptosis-inducing domains. The only other HeLo protein to which a function has been associated is LopB from L. maculans. Although its specific role in L. maculans is unknown, LopB- mutants have impaired ability to form lesions on oilseed rape. The HeLo domain is not related to the HET domain (PF06985) which is another domain involved in heterokaryon incompatibility. 197 -339239 pfam14480 DNA_pol3_a_NI DNA polymerase III polC-type N-terminus I. This is the first N-terminal domain, NI domain, of the DNA polymerase III polC subunit A that is found only in Firmicutes. DNA polymerase polC-type III enzyme functions as the 'replicase' in low G + C Gram-positive bacteria. Purine asymmetry is a characteristic of organisms with a heterodimeric DNA polymerase III alpha-subunit constituted by polC which probably plays a direct role in the maintenance of strand-biased gene distribution; since, among prokaryotic genomes, the distribution of genes on the leading and lagging strands of the replication fork is known to be biased. It has been predicted that the N-terminus of polC folds into two globular domains, NI and NII. A predicted patch of elecrostatic potential at the surface of this domain suggests a possible involvement in nucleic acid binding. This domain is associated with DNA_pol3_alpha pfam07733 and DNA_pol3_a_NI pfam11490. 72 -316955 pfam14481 Fimbrial_PilY2 Type 4 fimbrial biogenesis protein PilY2. Members of this family were experimentally shown to be involved in fimbrial biogenesis, but its exact role appears to be unknown. 115 -316956 pfam14484 FISNA Fish-specific NACHT associated domain. This domain is frequently found associated with the NACHT domain (pfam05729) in fish and other vertebrates. 70 -316957 pfam14485 DUF4431 Domain of unknown function (DUF4431). 48 -316958 pfam14486 DUF4432 Domain of unknown function (DUF4432). 301 -316959 pfam14487 DUF4433 Domain of unknown function (DUF4433). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 201 and 230 amino acids in length. There is a single completely conserved residue E that may be functionally important. This family is distantly similar to pfam01885 suggesting these may be ADP-ribosylases. 200 -339240 pfam14488 DUF4434 Domain of unknown function (DUF4434). 164 -316961 pfam14489 QueF QueF-like protein. This protein is involved in the biosynthesis of queuosine. In some proteins this domain appears to be fused to pfam06508. 81 -339241 pfam14490 HHH_4 Helix-hairpin-helix containing domain. This presumed domain contains at least one helix-hairpin-helix motif. This domain is often found in RecD helicases. 91 -339242 pfam14491 DUF4435 Protein of unknown function (DUF4435). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 285 and 362 amino acids in length. This domain is sometimes associated with AAA domains. 233 -339243 pfam14492 EFG_II Elongation Factor G, domain II. This domain is found in Elongation Factor G. It shares a similar structure with domain V (pfam00679). 74 -339244 pfam14493 HTH_40 Helix-turn-helix domain. This presumed domain is found at the C-terminus of a large number of helicase proteins. 88 -316966 pfam14494 DUF4436 Domain of unknown function (DUF4436). This is a family of membrane and transmembrane proteins from mycobacterial and related species. The function is not known. 255 -316967 pfam14495 Cytochrom_C550 Cytochrome c-550 domain. This domain is a heme binding cytochrome known as cytochrome c550, or cytochrome c549, or PsbV. 137 -339245 pfam14496 NEL C-terminal novel E3 ligase, LRR-interacting. This NEL or novel E3 ligase domain is found at the C-terminus of bacterial virulence factors. Its sequence is different from those of the eukaryotic HECT and RING-finger E3 ligases, and it subverts the host ubiquitination process. At the N-terminus of the family-members there is a series of LRR repeats, and the NEL domain interacts with the most N-terminal repeat. The key residue for the ligation step is the cysteine, eg found at position 386 in UniProtKB:E7K2H2. The LRR section sequesters this active site until invasion has occurred. 216 -339246 pfam14497 GST_C_3 Glutathione S-transferase, C-terminal domain. This domain is closely related to pfam00043. 101 -316970 pfam14498 Glyco_hyd_65N_2 Glycosyl hydrolase family 65, N-terminal domain. This domain represents a domain found to the N-terminus of the glycosyl hydrolase 65 family catalytic domain. 235 -316971 pfam14499 DUF4437 Domain of unknown function (DUF4437). This family of proteins is found in bacteria. Proteins in this family are typically between 152 and 283 amino acids in length. 250 -339247 pfam14500 MMS19_N Dos2-interacting transcription regulator of RNA-Pol-II. This domain, along with the C-terminal part, pfam12460, is an essential component of a silencing complex in fission yeast that contains Dos2, Rik1, Mms19 and Cdc20 (the catalytic subunit of DNA polymerase-epsilon). This complex regulates RNA polymerase II (RNA Pol II) activity in heterochromatin and is required for DNA replication and heterochromatin assembly. 258 -339248 pfam14501 HATPase_c_5 GHKL domain. This family represents the structurally related ATPase domains of histidine kinase, DNA gyrase B and HSP90. 100 -291188 pfam14502 HTH_41 Helix-turn-helix domain. 48 -316974 pfam14503 YhfZ_C YhfZ C-terminal domain. This domain is often found in association with the helix-turn-helix domain HTH_41 (pfam14502). It includes YhfZ proteins from Escherichia coli and Shigella flexneri. 232 -316975 pfam14504 CAP_assoc_N CAP-associated N-terminal. The function of this domain is unknown, but it is found towards the N-terminus of bacterial proteins carrying the CAP domain, pfam00188. All members that do not otherwise carry an additional Cu_amine_oxidN1, pfam07833, domain are likely to be extracellular as they start with a signal-peptide. Most other non-bacterial proteins with the CAP domain are allergenic. 140 -339249 pfam14505 DUF4438 Domain of unknown function (DUF4438). 259 -291192 pfam14506 CppA_N CppA N-terminal. This is the N-terminal domain of the CppA protein found in species of Streptococcus. CppA is a putative C3-glycoprotein degrading proteinase, involved in pathogenicity. It is often found associated with pfam14507. 123 -339250 pfam14507 CppA_C CppA C-terminal. This is the C-terminal domain of the CppA protein found in species of Streptococcus. CppA is a putative C3-glycoprotein degrading proteinase, involved in pathogenicity. It is often found associated with pfam14506. 97 -339251 pfam14508 GH97_N Glycosyl-hydrolase 97 N-terminal. This N-terminal domain of glycosyl-hydrolase-97 contributes part of the active site pocket. It is also important for contact with the catalytic and C-terminal domains of the whole. 249 -339252 pfam14509 GH97_C Glycosyl-hydrolase 97 C-terminal, oligomerization. Glycosyl-hydrolase-97 is made up of three tightly linked and highly conserved globular domains. The C-terminal domain is found to be necessary for oligomerization of the whole molecule in order to create the active-site pocket and the Ca++-binding site. 96 -339253 pfam14510 ABC_trans_N ABC-transporter extracellular N-terminal. This domain is found at the N-terminus of ABC-transporter proteins from fungi, plants to higher eukaryotes. It would appear to be an extracellular domain. 78 -316981 pfam14511 RE_EcoO109I Type II restriction endonuclease EcoO109I. This is a family of Type II restriction endonucleases. 193 -316982 pfam14512 TM1586_NiRdase Putative TM nitroreductase. Compared with the more traditional NADH oxidase/flavin reductase family, this family is a duplication, consisting of two similar domains arranged as the subunits of the dimeric NADH oxidase/flavin reductase with one conserved active site. 214 -316983 pfam14513 DAG_kinase_N Diacylglycerol kinase N-terminus. This domain is found at the N-terminus of diacylglycerol kinases. 100 -291200 pfam14514 TetR_C_9 Transcriptional regulator, TetR, C-terminal. This family comprises proteins that belong to the TetR family of transcriptional regulators. This family features the C-terminal region of these sequences, which does not include the N-terminal helix-turn-helix. 130 -339254 pfam14515 HOASN Haem-oxygenase-associated N-terminal helices. This domain represents a pair of alpha helices, which are found at the N-terminus of some Haem-oxygenase globular domain. 92 -316984 pfam14516 AAA_35 AAA-like domain. This family of proteins are part of the AAA superfamily. 331 -316985 pfam14517 Tachylectin Tachylectin. This family of lectins binds N-acetylglucosamine and N-acetylgalactosamine and may be involved in innate immunity. It has a five-bladed beta-propeller structure with five carbohydrate-binding sites, one per beta sheet. 229 -339255 pfam14518 Haem_oxygenas_2 Iron-containing redox enzyme. The CADD, Chlamydia protein associating with death domains, crystal structure reveals a dimer of seven-helical bundles. Each bundle contains a di-iron centre adjacent to an internal cavity that forms an active site similar to that of methane mono-oxygenase hydrolase. 177 -258659 pfam14519 Macro_2 Macro-like domain. This domain is an ADP-ribose binding module. It is found in a number of yeast proteins. 274 -339256 pfam14520 HHH_5 Helix-hairpin-helix domain. 56 -316988 pfam14521 Aspzincin_M35 Lysine-specific metallo-endopeptidase. This is the catalytic region of aspzincins, a group of lysine-specific metallo-endopeptidases in the MEROPS:M35 family. They exhibit the following active-site architecture. The active site is composed of two helices and a loop region and includes the HExxH and GTxDxxYG motifs. In UniProt:P81054, His117, His121 and Asp130 coordinate to the catalytic zinc ligands. An electrostatically negative region composed of Asp154 and Glu157 attracts a positively charged Lys side chain of a substrate in a specific manner. 140 -316989 pfam14522 Cytochrome_C7 Cytochrome c7 and related cytochrome c. This family includes cytochromes c7 and c7-type. In cytochromes c7 all three haems are bis-His co-ordinated. In c7-type the last haem is His-Met co-ordinated. 66 -339257 pfam14523 Syntaxin_2 Syntaxin-like protein. This domain includes syntaxin-like domains including from the Vam3p protein. 101 -339258 pfam14524 Wzt_C Wzt C-terminal domain. This domain is found at the C-terminus of the Wzt protein. The crystal structure of C-Wzt(O9a) reveals a beta sandwich with an immunoglobulin-like topology that contains the O-antigenic polysaccharide binding pocket. This domain is often associated with the ABC-transporter domain. 143 -339259 pfam14525 AraC_binding_2 AraC-binding-like domain. This domain is related to the AraC ligand binding domain pfam02311. 173 -316993 pfam14526 Cass2 Integron-associated effector binding protein. This family contains Cass2 from Vibrio cholerae, an integron-associated protein that has been shown to bind cationic drug compounds with submicromolar affinity. Cass2 has been proposed to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and other closely-related species. 146 -291211 pfam14527 LAGLIDADG_WhiA WhiA LAGLIDADG-like domain. This domain is found within the sporulation regulator WhiA. It is a LAGLIDADG superfamily like domain. 91 -339260 pfam14528 LAGLIDADG_3 LAGLIDADG-like domain. This domain is part of the LAGLIDADG superfamily. 76 -339261 pfam14529 Exo_endo_phos_2 Endonuclease-reverse transcriptase. This domain represents the endonuclease region of retrotransposons from a range of bacteria, archaea and eukaryotes. These are enzymes largely from class EC:2.7.7.49. 119 -316996 pfam14530 DUF4439 Domain of unknown function (DUF4439). This domain has a ferritin-like fold. 131 -339262 pfam14531 Kinase-like Kinase-like. This family includes the pseudokinases ROP2 and ROP8 from Toxoplasma gondii. These proteins have a typical bilobed protein kinase fold, but lack catalytic actvity. 288 -316998 pfam14532 Sigma54_activ_2 Sigma-54 interaction domain. 138 -339263 pfam14533 USP7_C2 Ubiquitin-specific protease C-terminal. This C-terminal domain on many long ubiquitin-specific proteases has no known function. 205 -339264 pfam14534 DUF4440 Domain of unknown function (DUF4440). 107 -339265 pfam14535 AMP-binding_C_2 AMP-binding enzyme C-terminal domain. This is a small domain that is found C terminal to pfam00501. It has a central beta sheet core that is flanked by alpha helices. 96 -317002 pfam14536 DUF4441 Domain of unknown function (DUF4441). This family is largely made up of uncharacterized proteins from the Ciliophora. The function is not known. 114 -317003 pfam14537 Cytochrom_c3_2 Cytochrome c3. 78 -339266 pfam14538 Raptor_N Raptor N-terminal CASPase like domain. This domain is found at the N-terminus of the Raptor protein. It has been identified to have a CASPase like structure. It conserves the characteristic cys/his dyad of the caspases suggesting it may have a peptidase activity. 152 -339267 pfam14539 DUF4442 Domain of unknown function (DUF4442). This family of proteins is found in bacteria, archaea and eukaryotes. Proteins in this family are typically between 139 and 165 amino acids in length. There is a conserved PYF sequence motif. There is a single completely conserved residue N that may be functionally important. 132 -317006 pfam14540 NTF-like Nucleotidyltransferase-like. Structural comparisons with Structure 1kny indicate that this N-terminal domain resembles a nucleotidyltransferase fold. 117 -339268 pfam14541 TAXi_C Xylanase inhibitor C-terminal. The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylasnase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. 160 -339269 pfam14542 Acetyltransf_CG GCN5-related N-acetyl-transferase. This family of GCN5-related N-acetyl-transferases bind both CoA and acetyl-CoA. They are characterized by highly conserved glycine, a cysteine residue in the acetyl-CoA binding site near the acetyl group, their small size compared with other GNATs and a lack of of an obvious substrate-binding site. It is proposed that they transfer an acetyl group from acetyl-CoA to one or more unidentified aliphatic amines via an acetyl (cysteine) enzyme intermediate. The substrate might be another macromolecule. 78 -339270 pfam14543 TAXi_N Xylanase inhibitor N-terminal. The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylanase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. 174 -291228 pfam14544 DUF4443 Domain of unknown function (DUF4443). This is a family of archaeal proteins. The domain is a putative gyrase domain. 112 -339271 pfam14545 DBB Dof, BCAP, and BANK (DBB) motif,. The DBB domain is named from the Drosophila (Downstream of FGFR - Dof, also known as Heartbroken or Stumps) protein, the BANKS and BCAP, both signalling in B-cell pathway, proteins. This domain defines a minimal region required for mediating Dof dimerization. Since this domain can interact both with itself and with a region in the C-terminal part of the molecule, it may mediate either intermolecular or intramolecular interactions. Mutants lacking this domain disrupt FGFR signal transduction and fibroblast growth-factor signalling. 139 -339272 pfam14547 Hydrophob_seed Hydrophobic seed protein. This domain has a four-helix bundle structure. It contains four disulfide bonds, of which three function to keep the C- and N-terminal parts of the molecule in place. 84 -291231 pfam14549 P22_Cro DNA-binding transcriptional regulator Cro. Bacteriophage P22 Cro protein represses genes normally expressed in early phage development and is necessary for the late stage of lytic growth. It does this by binding to the OL and OR operator-regions normally used by the repressor protein for lysogenic maintenance. 60 -317012 pfam14550 Peptidase_S78_2 Putative phage serine protease XkdF. This domain is largely found on phage proteins. In a number of cases the domain is associated with a SAM-dependent methyltransferase. Members are serine peptidases. 116 -339273 pfam14551 MCM_N MCM N-terminal domain. This family contains the N-terminal domain of MCM proteins. 92 -339274 pfam14552 Tautomerase_2 Tautomerase enzyme. 82 -317015 pfam14553 YqbF YqbF, hypothetical protein domain. This N-terminal domain is found in Bacillus and related spp. The function is not known. 43 -317016 pfam14554 VEGF_C VEGF heparin-binding domain. This short domain is found at the C-terminus of VEGF. It has been shown to have heparin binding activity. 49 -339275 pfam14555 UBA_4 UBA-like domain. 42 -291237 pfam14556 AF2331-like AF2331-like. AF2331-like is a 11-kDa orphan protein of unknown function from Archaeoglobus fulgidus. The structure consists of an alpha + beta fold formed by an unusual homodimer, where the two core beta-sheets are interdigitated, containing strands alternating from both subunits. AF2331 contains multiple negatively charged surface clusters and is located on the same operon as the basic protein AF2330. It is suggested that AF2331 and AF2330 may form a charge-stabilized complex in vivo, though the role of the negatively charged surface clusters is not clear. 90 -317018 pfam14557 AphA_like Putative AphA-like transcriptional regulator. Members of this family are putative transcriptional regulators that appear to be related to the pfam03551 family. This family includes AphA-like members. 174 -339276 pfam14558 TRP_N ML-like domain. This domain is distantly similar to pfam02221 and conserves its pattern of conserved cysteines. This suggests that this domain may be involved in lipid binding. 137 -339277 pfam14559 TPR_19 Tetratricopeptide repeat. 68 -339278 pfam14560 Ubiquitin_2 Ubiquitin-like domain. This entry contains ubiquitin-like domains. 84 -339279 pfam14561 TPR_20 Tetratricopeptide repeat. 90 -317023 pfam14562 Endonuc_BglI Restriction endonuclease BglI. This restriction endonuclease binds DNA as a dimer. BglI recognizes and cleaves the interrupted DNA sequence GCCNNNNNGGC and cleaves between the fourth and fifth unspecified base pair to produce 3' overhanging ends. 276 -291243 pfam14563 DUF4444 Domain of unknown function (DUF4444). This domain family is found in bacteria, and is approximately 40 amino acids in length. There is a conserved LIPL sequence motif. There are two completely conserved G residues that may be functionally important. 41 -317024 pfam14564 Membrane_bind Membrane binding. This family includes the C-terminal domain of Dictyostelium discoideum Calcium-dependent cell adhesion molecule 1, which has an immunoglobulin-like fold. It tethers the protein to the cell membrane. 109 -291245 pfam14565 IL22 Interleukin 22 IL-10-related T-cell-derived-inducible factor. Interleukin-22 is distantly related to interleukin (IL)-10, and is produced by activated T cells. IL-22 is a ligand for CRF2-4, a member of the class II cytokine receptor family. 139 -339280 pfam14566 PTPlike_phytase Inositol hexakisphosphate. Inositol hexakisphosphate, often called phytate, is found in abundance in seeds and acting as an inorganic phosphate reservoir. Phytases are phosphatases that hydrolyze phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. The active-site sequence (HCXXGXGR) of the phytase identified from the gut micro-organism Selenomonas ruminantium forms a loop (P loop) at the base of a substrate binding pocket that is characteristic of protein tyrosine phosphatases (PTPs). The depth of this pocket is an important determinant of the substrate specificity of PTPs. In humans this enzyme is thought to aid bone mineralization and salvage the inositol moiety prior to apoptosis. 156 -339281 pfam14567 SUKH_5 SMI1-KNR4 cell-wall. Members of this family are related to the SMI1/KNR4-like or SUKH superfamily of proteins. 138 -317027 pfam14568 SUKH_6 SMI1-KNR4 cell-wall. Members of this family are related to the SMI1/KNR4-like or SUKH superfamily of proteins. 113 -317028 pfam14569 zf-UDP Zinc-binding RING-finger. This RING/U-box type zinc-binding domain is frequently found in the catalytic subunit (irx3) of cellulose synthase. The enzymic class is EC:2.4.1.12, whereby the synthase removes the glucose from UDP-glucose and adds it to the growing cellulose, thereby releasing UDP. The domain-structure is treble-clef like (Structure 1weo). 75 -339282 pfam14570 zf-RING_4 RING/Ubox like zinc-binding domain. 47 -339283 pfam14571 Di19_C Stress-induced protein Di19, C-terminal. C-terminal domain of Di19, a protein that increases the sensitivity of plants to environmental stress, such as salinity, drought, osmotic stress and cold. the protein is also induced by an increased supply of stress-related hormones such as abscisic acid ABA and ethylene. There is a zinc-finger at the N-terminus, zf-Di19, pfam05605. 101 -291252 pfam14572 Pribosyl_synth Phosphoribosyl synthetase-associated domain. This family includes several examples of enzymes from class EC:2.7.6.1, phosphoribosyl-pyrophosphate transferase. 185 -317031 pfam14573 PP-binding_2 Acyl-carrier. 96 -339284 pfam14574 DUF4445 Domain of unknown function (DUF4445). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and archaea. Proteins in this family are typically between 525 and 664 amino acids in length. The family is found in association with pfam00111. 402 -339285 pfam14575 EphA2_TM Ephrin type-A receptor 2 transmembrane domain. Epha2_TM represents the left-handed dimer transmembrane domain of of EphA2 receptor. This domain oligomerises and is important for the active signalling process. 71 -317034 pfam14576 SEO_N Sieve element occlusion N-terminus. Sieve element occlusion (SEO) proteins, or forisomes, are phloem proteins which accumulate during sieve element differentiation. This domain represents the N-terminus of SEO proteins. 287 -317035 pfam14577 SEO_C Sieve element occlusion C-terminus. Sieve element occlusion (SEO) proteins, or forisomes, are phloem proteins which accumulate during sieve element differentiation. This domain represents the C-terminus of SEO proteins. 232 -339286 pfam14578 GTP_EFTU_D4 Elongation factor Tu domain 4. Elongation factor Tu consists of several structural domains, and this is usually the fourth. 86 -339287 pfam14579 HHH_6 Helix-hairpin-helix motif. The HHH domain is a short DNA-binding domain. 90 -339288 pfam14580 LRR_9 Leucine-rich repeat. 175 -339289 pfam14581 SseB_C SseB protein C-terminal domain. This family consists of several SseB proteins which appear to be found exclusively in Enterobacteria. SseB is known to enhance serine-sensitivity in Escherichia coli and is part of the Salmonella pathogenicity island 2 (SPI-2) translocon. This presumed domain is found at the C-terminus of SseB proteins. 104 -317040 pfam14582 Metallophos_3 Metallophosphoesterase, calcineurin superfamily. Members of this family are part of the Calcineurin-like phosphoesterase superfamily. 259 -291262 pfam14583 Pectate_lyase22 Oligogalacturonate lyase. This is a family of oligogalacturonate lyases, referred to more generally as pectate lyase family 22. These proteins fold into 7-bladed beta-propellers. 386 -317041 pfam14584 DUF4446 Protein of unknown function (DUF4446). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 165 and 176 amino acids in length. 149 -291264 pfam14585 CagY_I CagY type 1 repeat. This repeat is found at the N-terminus of the CagY proteins - part of the CAG pathogenicity island - and involved in delivery of the protein CagA into host cells. 65 -291265 pfam14586 MHC_I_2 Class I Histocompatibility antigen, NKG2D ligand, domains 1 and 2. Members of this family are known as retinoic-acid-inducible proteins. They are ligands for the activating immunoreceptor NKG2D, which is widely expressed on natural killer cells, T cells, and macrophages. 174 -317042 pfam14587 Glyco_hydr_30_2 O-Glycosyl hydrolase family 30. 367 -258726 pfam14588 YjgF_endoribonc YjgF/chorismate_mutase-like, putative endoribonuclease. YjgF_Endoribonuc is a putative endoribonuclease. The structure is of beta-alpha-beta-alpha-beta(2) domains common both to bacterial chorismate mutase and to members of the YjgF family. These proteins form trimers with a three-fold symmetry with three closely-packed beta-sheets. The YjgF family is a large, widely distributed family of proteins of unknown biochemical function that are highly conserved among eubacteria, archaea and eukaryotes. 148 -317043 pfam14589 NrfD_2 Polysulfide reductase. Bacterial polysulfide reductase is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. Polysulfides are a class of compounds composed of chains of sulfur atoms, which in their simplest form are present as an anion with general formula Sn(2-). In nature, polysulfides are found in particularly high concentrations in extreme volcanic or geothermically active environments. Here, the reduction and oxidation of polysulfides are vital processes for many bacteria and are essential steps in the global sulfur cycle. In particular, the reduction of polysulfide to hydrogen sulfide in these environments is usually linked to energy-generating respiratory processes, supporting growth of many microorganisms, particularly hyperthermophiles. 281 -317044 pfam14590 DUF4447 Domain of unknown function (DUF4447). This family of proteins is found in bacteria. Proteins in this family are approximately 170 amino acids in length. 166 -339290 pfam14591 AF0941-like AF0941-like. Members of this family are of unknown function. 113 -317046 pfam14592 Chondroitinas_B Chondroitinase B. This family includes chondroitinases. These enzymes cleave the glycosaminoglycan dermatan sulfate. 426 -317047 pfam14593 PH_3 PH domain. 103 -317048 pfam14594 Sipho_Gp37 Siphovirus ReqiPepy6 Gp37-like protein. This family includes numerous phage proteins from Siphoviruses. The function of this protein is uncertain, but it is related to pfam06605. In Rhodococcus phage ReqiPepy6 this protein is called Gp37. 335 -317049 pfam14595 Thioredoxin_9 Thioredoxin. 129 -291272 pfam14596 STAT6_C STAT6 C-terminal. This family represents the C-terminus of mammalian STAT6 (Signal transducer and activator of transcription 6), it contains an LXXLL motif which binds to NCOA1 (Nuclear receptor coactivator 1). 193 -317050 pfam14597 Lactamase_B_5 Metallo-beta-lactamase superfamily. This is a small family of putative metal-dependent hydrolases. 199 -317051 pfam14598 PAS_11 PAS domain. This family includes the PAS-B domain of NCOA1 (Nuclear receptor coactivator 1), which binds to an LXXLL motif in the C-terminal region of STAT6 (Signal transducer and activator of transcription 6). 112 -339291 pfam14599 zinc_ribbon_6 Zinc-ribbon. This is a typical zinc-ribbon finger, with each pair of zinc-ligands coming from more-or-less either side of two knuckles. It is found in eukaryotes. 59 -317053 pfam14600 CBM_5_12_2 Cellulose-binding domain. This C-terminal domain belongs to the CAZy family of carbohydrate-binding domains that are associated with glycosyl-hydrolases. It is suggested to bind cellulose. 62 -317054 pfam14601 TFX_C DNA_binding protein, TFX, C-term. This is the C-terminal region of TFX-like DNA-binding proteins. 83 -317055 pfam14602 Hexapep_2 Hexapeptide repeat of succinyl-transferase. 33 -317056 pfam14603 hSH3 Helically-extended SH3 domain. This domain is the 70 C-terminal residues of ADAP - Adhesion and de-granulation promoting adapter protein. It shows homology to SH3 domains; however, conserved residues of the fold are absent. It thus represents an altered SH3 domain fold. An N-terminal, amphipathic, helix makes extensive contacts to residues of the regular SH3 domain fold thereby creating a composite surface with unusual surface properties. The domain can no longer bind conventional proline-rich peptides. There are key phosphorylation sites within the two hSH3 domains and it would appear that binding at these sites does not materially affect the folding of these regions although the equilibrium towards the unfolded state may be slightly altered. The binding partners of the hSH3 domains are still unknown. 88 -291278 pfam14604 SH3_9 Variant SH3 domain. 50 -317057 pfam14605 Nup35_RRM_2 Nup53/35/40-type RNA recognition motif. 53 -317058 pfam14606 Lipase_GDSL_3 GDSL-like Lipase/Acylhydrolase family. 178 -339292 pfam14607 GxDLY N-terminus of Esterase_SGNH_hydro-type. This domain lies upstream of SGNH hydrolase, but its function is not known. There is a highly conserved GxDLY sequence-motif. 146 -317060 pfam14608 zf-CCCH_2 RNA-binding, Nab2-type zinc finger. This is an unusual zinc-finger family, and is represented by fingers 5-7 of Nab2. Nab2 ZnF5-7 are zinc-fingers of the type C-x8-C-x5-C-x3-H. Nab2 ZnFs function in the generation of export-competent mRNPs. Mab2 is a conserved polyadenosine-RNA-binding Zn finger protein required for both mRNA export and polyadenylation regulation and becomes attached to the mRNP after splicing and during or immediately after polyadenylation. The three ZnFs, 5-7, have almost identical folds and, most unusually, associate with one another to form a single coherent structural unit. ZnF5-7 bind to eight consecutive adenines, and chemical shift perturbations identify residues on each finger that interact with RNA. 18 -291283 pfam14609 GCP5-Mod21 gamma-Tubulin ring complex non-core subunit mod21. GCP5-Mod21 is a non-core subunit of the larger gamma-tubulin ring complex that effects microtubule nucleation from both centrosomal and non-centrosomal sites. This subunit, unlike GCP2 and and GCP3 and others, is not thought to be essential for viability in the fission yeast, and may not be expressed in very high concentrations. Fission yeast can form a large gamma-Tubulin complex C similar to that found in higher eukaryotes and this complex is important for maintaining normal levels of microtubule nucleation in vivo. 653 -339293 pfam14610 DUF4448 Protein of unknown function (DUF4448). This is a family of predicted membrane glycoproteins from fungi. However there appears, visually, to be some similarity with the family of GPI-anchored fungal proteins, pfam10342. 180 -339294 pfam14611 SLS Mitochondrial inner-membrane-bound regulator. SLS is a fungal domain found bound to the mitochondrial inner-membrane. It reacts physically with fungal Kar2p to promote translocation across the endoplasmic-reticulum membrane. This action appeared to be mediated via the promotion of the Sec63p-mediated activation of Kar2p's ATPase activity. This indicates that the Sls1p protein is a GrpE-like protein in the endoplasmic reticulum. In S.cerevisiae the SLS1 gene (ScSLS1) is not essential but is also involved in ERAD and folding. 197 -317063 pfam14612 Ino80_Iec3 IEC3 subunit of the Ino80 complex, chromatin re-modelling. This is a family of fungal chromatin re-modelling proteins found in one of the chromatin-central complexes, Ino80. The function was identified in Schizosaccharomyces pombe but there is no orthologue in S. cerevisiae. 231 -339295 pfam14613 DUF4449 Protein of unknown function (DUF4449). This is a fungal DUF of unknown function. 156 -291288 pfam14614 DUF4450 Domain of unknown function (DUF4450). This is a family of bacterial proteins of unknown function. 217 -317065 pfam14615 Rsa3 Ribosome-assembly protein 3. This is a family of 60S ribosome-assembly proteins, from fungi. 46 -317066 pfam14616 DUF4451 Domain of unknown function (DUF4451). This is family of fungal proteins up-regulated during meiosis. 120 -291291 pfam14617 CMS1 U3-containing 90S pre-ribosomal complex subunit. This is a family of fungal and plant CMS1-like proteins. The family has similarity to the DEAD-box helicases. 249 -339296 pfam14618 DUF4452 Domain of unknown function (DUF4452). This fungal family has no known function. However, it is rich in paired, as CXXC, cysteines and histidines, but these do not fall in the conformation that might suggest zinc-binding. 168 -339297 pfam14619 SnAC Snf2-ATP coupling, chromatin remodelling complex. This domain appears to play a crucial role in chromatin remodelling for yeast SWI/SNF. It binds histones. It is required for mobilising nucleosomes and lies within the catalytic subunit of the yeast SWI/SNF. It is found to be universally conserved. 69 -317069 pfam14620 YPEB YpeB sporulation. YPEB is a protein that is necessary for the functioning of SleB during spore-cortex hydrolysis. 361 -317070 pfam14621 RFX5_DNA_bdg RFX5 DNA-binding domain. RFX5 and RFXAP reveals molecular details associated with MHCII gene expression. 219 -317071 pfam14622 Ribonucleas_3_3 Ribonuclease-III-like. Members of this family are involved in rDNA transcription and rRNA processing. They probably also cleave a stem-loop structure at the 3' end of U2 snRNA to ensure formation of the correct U2 3' end; they are involved in polyadenylation-independent transcription termination. Some members may be mitochondrial ribosomal protein subunit L15, others may be 60S ribosomal protein L3. 128 -339298 pfam14623 Vint Hint-domain. This short domain is a conserved region of intein-containing proteins from lower eukaryotes. 166 -339299 pfam14624 Vwaint VWA / Hh protein intein-like. VWA-Hint proteins carry this conserved domain of around 300 residues, now named the Vwaint domain. Such proteins do not seem to have a signal peptide for secretion. Generally, this domain lies between the N-terminal VWA domain and the more C-terminal 'Vint'-type Hint domain. The exact function of this domain is not known. 70 -339300 pfam14625 Lustrin_cystein Lustrin, cysteine-rich repeated domain. This repeated domain is found in proteins from lower eukaryotes in lustrin, perlucin, pearl nacre, and other similar protein-types. Each repeat lies between Kunitz-BPTI repeats, in certain species, which are also cysteine-rich. The cysteines may form the disulfide bonds observed for other members of this superfamily. 43 -317075 pfam14626 RNase_Zc3h12a_2 Zc3h12a-like Ribonuclease NYN domain. This family is found to be a divergent form of the NYN-domain- containing RNAse family. 122 -291301 pfam14627 DUF4453 Domain of unknown function (DUF4453). This short domain is found only on a small subgroup of proteins from Gram-negative Proteobacteria that also carry a YARHG domain, pfam13308. They carry three conserved tryptophan and three conserved cysteine residues. 107 -317076 pfam14628 DUF4454 Domain of unknown function (DUF4454). This C-terminal domain is found only on a small subgroup of proteins from Gram-positive Clostridiales that also carry a YARHG domain, pfam13308. 209 -339301 pfam14629 ORC4_C Origin recognition complex (ORC) subunit 4 C-terminus. This entry represents the C-terminus of origin recognition complex subunit 4. 150 -339302 pfam14630 ORC5_C Origin recognition complex (ORC) subunit 5 C-terminus. This entry represents the C-terminus of origin recognition complex subunit 5. 266 -317079 pfam14631 FancD2 Fanconi anaemia protein FancD2 nuclease. The Fanconi anaemia protein FancD2 is a nuclease necessary for the repair of DNA interstrand-crosslinks. 1346 -317080 pfam14632 SPT6_acidic Acidic N-terminal SPT6. The N-terminus of SPT6 is highly acidic. The full SPT6 protein is a transcription regulator, but the exact function of this acidic region is not certain. 88 -339303 pfam14633 SH2_2 SH2 domain. 212 -339304 pfam14634 zf-RING_5 zinc-RING finger domain. 43 -291309 pfam14635 HHH_7 Helix-hairpin-helix motif. 104 -339305 pfam14636 FNIP_N Folliculin-interacting protein N-terminus. This is the N-terminus of folliculin-interacting proteins. 130 -317084 pfam14637 FNIP_M Folliculin-interacting protein middle domain. This is the middle domain of folliculin-interacting proteins. 225 -317085 pfam14638 FNIP_C Folliculin-interacting protein C-terminus. This is the C-terminus of folliculin-interacting proteins. This region is responsible for binding to folliculin. 189 -258777 pfam14639 YqgF Holliday-junction resolvase-like of SPT6. The YqgF domain of SPT6 proteins is homologous to the E.coli RuvC but its putative catalytic site lacks the carboxylate side chains critical for coordinating magnesium ions that mediate phosphodiester bond-cleavage 150 -317086 pfam14640 TMEM223 Transmembrane protein 223. 167 -317087 pfam14641 HTH_44 Helix-turn-helix DNA-binding domain of SPT6. This helix-turn-helix represents the first of two DNA-binding domains on the SPT6 proteins. 115 -317088 pfam14642 FAM47 FAM47 family. The function of this Chordate family of proteins is not known. 257 -317089 pfam14643 DUF4455 Domain of unknown function (DUF4455). This domain family is found in bacteria and eukaryotes, and is approximately 480 amino acids in length. There are two completely conserved residues (W and P) that may be functionally important. 469 -317090 pfam14644 DUF4456 Domain of unknown function (DUF4456). This domain family is found in bacteria and eukaryotes, and is approximately 210 amino acids in length. There is a single completely conserved residue E that may be functionally important. 206 -317091 pfam14645 Chibby Chibby family. This family includes the eukaryotic chibby proteins. These proteins inhibit the wingless/Wnt pathway by binding to beta-catenin and inhibiting beta-catenin-mediated transcriptional activation. Chibby is Japanese for small, and is named after the RNAi phenotype seen in Drosophila. 114 -339306 pfam14646 MYCBPAP MYCBP-associated protein family. This family of eukaryotic proteins includes the mammalian MYCBP-associated proteins. These proteins may be synaptic processes and may have a role in spermatogenesis. 431 -339307 pfam14647 FAM91_N FAM91 N-terminus. 305 -317094 pfam14648 FAM91_C FAM91 C-terminus. 391 -339308 pfam14649 Spatacsin_C Spatacsin C-terminus. This family includes the C-terminus of spatacsin. 293 -317096 pfam14650 FAM75 FAM75 family. 381 -258789 pfam14651 Lipocalin_7 Lipocalin / cytosolic fatty-acid binding protein family. Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). 126 -317097 pfam14652 DUF4457 Domain of unknown function (DUF4457). This family of proteins is found in eukaryotes. It is found repeated several times in the vertebrate KIAA0556 proteins. 322 -317098 pfam14653 IGFL Insulin growth factor-like family. This family includes the insulin growth factor-like proteins. These proteins are potential ligands for the IGFLR1 cell membrane receptor. 83 -317099 pfam14654 Epiglycanin_C Mucin, catalytic, TM and cytoplasmic tail region. This family represents the non-tandem repeat domain including cleavage site, the transmembrane helix domain, and the cytoplasmic tail of epiglycanin and related mucins. 100 -317100 pfam14655 RAB3GAP2_N Rab3 GTPase-activating protein regulatory subunit N-terminus. This family includes the N-terminus of the Rab3 GTPase-activating protein non-catalytic subunit. Rab3 GTPase-activating protein is a GTPase activating protein with specificity for Rab3 subfamily. 415 -339309 pfam14656 RAB3GAP2_C Rab3 GTPase-activating protein regulatory subunit C-terminus. This family includes the N-terminus of the Rab3 GTPase-activating protein non-catalytic subunit. Rab3 GTPase-activating protein is a GTPase activating protein with specificity for Rab3 subfamily. 597 -339310 pfam14657 Arm-DNA-bind_4 Arm DNA-binding domain. This family includes AP2-like domains found in a variety of phage integrase proteins. These domains bind to Arm DNA sites. 45 -317103 pfam14658 EF-hand_9 EF-hand domain. 66 -317104 pfam14659 Phage_int_SAM_3 Phage integrase, N-terminal SAM-like domain. This domain is found in a variety of phage integrase proteins. 55 -339311 pfam14660 DUF4458 Domain of unknown function (DUF4458). this domain is found in tandem repeats on the N-terminus of secreted LRR proteins from human associated Bacteroidetes domain boundaries are based on the JCSG solved 3D structure of JCSG target SP16667A (BT_0210) 111 -317106 pfam14661 HAUS6_N HAUS augmin-like complex subunit 6 N-terminus. This family includes the N-terminus of HAUS augmin-like complex subunit 6. The HAUS augmin-like complex contributes to mitotic spindle assembly, maintenance of chromosome integrity and completion of cytokinesis. 224 -317107 pfam14662 KASH_CCD Coiled-coil region of CCDC155 or KASH. This coiled-coil region is found in the central part of KASH or Klarsicht/ANC-1/Syne/homology proteins. KASH are a meiosis-specific proteins that localize at telomeres and interact with SUN1, thus being implicated in meiotic chromosome dynamics and homolog pairing. 191 -339312 pfam14663 RasGEF_N_2 Rapamycin-insensitive companion of mTOR RasGEF_N domain. Rictor appears to serve as a scaffolding protein that is important for maintaining mTORC2 integrity. The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes, mTROC1 and mTORC2, important for nutrient and growth-factor signalling. This region is the more conserved central section that may include several individual domains. Rictor can be inhibited in the short-term by rapamycin. 107 -339313 pfam14664 RICTOR_N Rapamycin-insensitive companion of mTOR, N-term. Rictor appears to serve as a scaffolding protein that is important for maintaining mTORC2 integrity. The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes, mTROC1 and mTORC2, important for nutrient and growth-factor signalling. This region is the N-terminal conserved section that may include several individual domains. Rictor can be inhibited in the short-term by rapamycin. 320 -317110 pfam14665 RICTOR_phospho Rapamycin-insensitive companion of mTOR, phosphorylation-site. Rictor appears to serve as a scaffolding protein that is important for maintaining mTORC2 integrity. The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes, mTROC1 and mTORC2, important for nutrient- and growth-factor signalling. This short region is the phoshorylation site. Rictor does interact with 14-3-3 in a Thr1135-dependent manner. Rictor can be inhibited by short-term rapamycin treatment showing that Thr1135 is an mTORC1-regulated site. 109 -317111 pfam14666 RICTOR_M Rapamycin-insensitive companion of mTOR, middle domain. Rictor appears to serve as a scaffolding protein that is important for maintaining mTORC2 integrity. The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes, mTROC1 and mTORC2, important for nutrient and growth-factor signalling. This region is the more conserved central section that may include several individual domains. Rictor can be inhibited in the short-term by rapamycin. 104 -339314 pfam14667 Polysacc_synt_C Polysaccharide biosynthesis C-terminal domain. This family represents the C-terminal integral membrane region of polysaccharide biosynthesis proteins. 141 -317113 pfam14668 RICTOR_V Rapamycin-insensitive companion of mTOR, domain 5. Rictor appears to serve as a scaffolding protein that is important for maintaining mTORC2 integrity. The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes, mTROC1 and mTORC2, important for nutrient and growth-factor signalling. These long eukaryotic proteins carry several well-conserved domains, and this is No.5. 69 -291341 pfam14669 Asp_Glu_race_2 Putative aspartate racemase. This is a small family of vertebrate putative aspartate racemases. The family lies on TOPAZ 1 proteins. 235 -339315 pfam14670 FXa_inhibition Coagulation Factor Xa inhibitory site. This short domain on coagulation enzyme factor Xa is found to be the target for a potent inhibitor of coagulation, TAK-442. 36 -339316 pfam14671 DSPn Dual specificity protein phosphatase, N-terminal half. The active core of the dual specificity protein phosphatase is made up of two globular domains both with the DSP-like fold. This family represents the N-terminal half of the core. These domains are arranged in tandem, and are associated via an extensive interface to form a single globular whole. The conserved PTP signature motif (Cys-[X]5-Arg) that defines the catalytic centre of all PTP-family members is located within the C-terminal domain, family DSPc, pfam00782. Although the centre of the catalytic site is formed from DSPc, two loops from the N-terminal domain, DSPn, also contribute to the catalytic site, facilitating peptide substrate specificity. 138 -317116 pfam14672 LCE Late cornified envelope. This is a family of late cornified envelope proteins that are expressed in skin. 76 -317117 pfam14673 DUF4459 Domain of unknown function (DUF4459). This family appears only on sequences from Salmonella spp. These sequences also all carry a YARHG domain, pfam13308. 159 -339317 pfam14674 FANCI_S1-cap FANCI solenoid 1 cap. This is the solenoid 1 cap (S1-cap) domain of the Fanconi anemia group I protein. 51 -339318 pfam14675 FANCI_S1 FANCI solenoid 1. This is the solenoid 1 (S1) domain of the Fanconi anemia group I protein. 221 -339319 pfam14676 FANCI_S2 FANCI solenoid 2. This is the solenoid 2 (S2) domain of the Fanconi anemia group I protein. 151 -339320 pfam14677 FANCI_S3 FANCI solenoid 3. This is the solenoid 3 (S3) domain of the Fanconi anemia group I protein. 217 -339321 pfam14678 FANCI_S4 FANCI solenoid 4. This is the solenoid 4 (S4) domain of the Fanconi anemia group I protein. 244 -339322 pfam14679 FANCI_HD1 FANCI helical domain 1. This is the helical domain 1 (HD1) of the Fanconi anemia group I protein. 86 -339323 pfam14680 FANCI_HD2 FANCI helical domain 2. This is the helical domain 2 (HD2) of the Fanconi anemia group I protein. 225 -317125 pfam14681 UPRTase Uracil phosphoribosyltransferase. This family includes the enzyme uracil phosphoribosyltransferase (EC:2.4.2.9). This enzyme catalyzes the first step of UMP biosynthesis. 204 -317126 pfam14682 SPOB_ab Sporulation initiation phospho-transferase B, C-terminal. Sporulation initiation phospho-transferase B or SpoOB is part of a phospho-relay that initiates sporulation in Bacillus subtilis. Spo0B is a two-domain protein consisting of an N-terminal alpha-helical hairpin domain and a C-terminal alpha/beta domain, represented by this family. Two subunits of Spo0B dimerize by a parallel association of helical hairpins to form a novel four-helix bundle from which the active histidine - involved in the auto-phosphorylation - protrudes. In the phospho-relay, the signal-receptor histidine kinases are dephosphorylated by a common response regulator, Spo0F. Spo0B then takes phosphorylated Spo0F as substrate hereby mediating the transfer of a phosphoryl group to Spo0A, the ultimate transcription factor. 113 -339324 pfam14683 CBM-like Polysaccharide lyase family 4, domain III. CBM-like is domain III of rhamnogalacturonan lyase (RG-lyase). The full-length protein specifically recognizes and cleaves alpha-1,4 glycosidic bonds between l-rhamnose and d-galacturonic acids in the backbone of rhamnogalacturonan-I, a major component of the plant cell wall polysaccharide, pectin. This domain possesses a jelly roll beta-sandwich fold structurally homologous to carbohydrate binding modules (CBMs), and it carries two sulfate ions and a hexa-coordinated calcium ion. 161 -339325 pfam14684 Tricorn_C1 Tricorn protease C1 domain. This domain is the C1 core domain of tricorn protease. This is a mixed alpha-beta domain. 70 -339326 pfam14685 Tricorn_PDZ Tricorn protease PDZ domain. This domain is the PDZ domain of tricorn protease. 84 -339327 pfam14686 fn3_3 Polysaccharide lyase family 4, domain II. FnIII-like is domain II of rhamnogalacturonan lyase (RG-lyase). The full-length protein specifically recognizes and cleaves alpha-1,4 glycosidic bonds between l-rhamnose and d-galacturonic acids in the backbone of rhamnogalacturonan-I, a major component of the plant cell wall polysaccharide, pectin. This domain displays an immunoglobulin-like or more specifically Fibronectin-III type fold and shows highest structural similarity to the C-terminal beta-sandwich subdomain of the pro-hormone/propeptide processing enzyme carboxypeptidase gp180 from duck. It serves to assist in producing the deep pocket, with domain III, into which the substrate fits. 74 -317131 pfam14687 DUF4460 Domain of unknown function (DUF4460). This domain family is found in eukaryotes, and is typically between 103 and 119 amino acids in length. There is a conserved HPD sequence motif. There are two completely conserved residues (N and F) that may be functionally important. 105 -339328 pfam14688 DUF4461 Domain of unknown function (DUF4461). This domain family is found in eukaryotes, and is approximately 310 amino acids in length. 308 -317133 pfam14689 SPOB_a Sensor_kinase_SpoOB-type, alpha-helical domain. Sporulation initiation phospho-transferase B or SpoOB is part of a phospho-relay that initiates sporulation in Bacillus subtilis. Spo0B is a two-domain protein consisting of an N-terminal alpha-helical hairpin domain and a C-terminal alpha/beta domain. Two subunits of Spo0B dimerize by a parallel association of helical hairpins to form a novel four-helix bundle from which the active histidine - involved in the auto-phosphorylation - protrudes. In the phospho-relay, the signal-receptor histidine kinases are dephosphorylated by a common response regulator, Spo0F. Spo0B then takes phosphorylated Spo0F as substrate thereby mediating the transfer of a phosphoryl group to Spo0A, the ultimate transcription factor. The exact function of this alpha-helical domain is not known; it does not always occur just as the N-terminal domain of SPOB_ab, pfam14682. SCOP describes this domain as a histidine kinase-like fold lacking the kinase ATP-binding site. 62 -339329 pfam14690 zf-ISL3 zinc-finger of transposase IS204/IS1001/IS1096/IS1165. 47 -339330 pfam14691 Fer4_20 Dihydroprymidine dehydrogenase domain II, 4Fe-4S cluster. Domain II of the enzyme dihydroprymidine dehydrogenase binds FAD. Dihydroprymidine dehydrogenase catalyzes the first and rate-limiting step of pyrimidine degradation by converting pyrimidines to the corresponding 5,6- dihydro compounds. This domain carries two Fe4-S4 clusters. 111 -317136 pfam14692 DUF4462 Domain of unknown function (DUF4462). This domain family is found in eukaryotes, and is approximately 30 amino acids in length. 28 -339331 pfam14693 Ribosomal_TL5_C Ribosomal protein TL5, C-terminal domain. This family contains the C-terminal domain of ribosomal protein TL5. The N-terminal domain, which binds to 5S rRNA, is contained in family Ribosomal_L25p, pfam01386. Full length (N- and C-terminal domain) homologs of TL5 are also known as CTC proteins. TL5 or CTC are not found in Eukarya or Archaea. In some Bacteria, including E. coli, this ribosomal subunit occurs as a single domain protein (named Ribosomal subunit L25), where the only domain is homologous to TL5 N-terminal domain (hence included in family pfam01386). The function of the C-terminal domain of TLC is at present unknown. 83 -317138 pfam14694 LINES_N Lines N-terminus. This family represents the N-terminus of protein lines. In Drosophila this protein is involved in embryonic segmentation and may function as a transcriptional regulator. 341 -317139 pfam14695 LINES_C Lines C-terminus. This family represents the C-terminus of protein lines. In Drosophila this protein is involved in embryonic segmentation and may function as a transcriptional regulator. 36 -317140 pfam14696 Glyoxalase_5 Hydroxyphenylpyruvate dioxygenase, HPPD, N-terminal. This domain is one of two barrel-shaped regions that together form the active enzyme, 4-hydroxyphenylpyruvic acid dioxygenase, EC:1.13.11.27. As can be deduced from the disposition of the various Glyoxalase families, _2, _3 and _4 in Pfam, pfam00903, pfam12681, pfam13468, pfam13669, these two regions are similar to be indicative of a gene-duplication event. At the individual sequence level slight differences in conformation have given rise to slightly different functions. In the case of UniProt:P80064, 4-hydroxyphenylpyruvic acid dioxygenase catalyzes the formation of homogentisate from 4-hydroxyphenylpyruvate, and the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate), derived from L-tyrosine, and the O2 molecule occupy the three free coordination sites of the catalytic iron atom in the C-terminal domain. In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocopherols. 138 -339332 pfam14697 Fer4_21 4Fe-4S dicluster domain. Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters. 59 -339333 pfam14698 ASL_C2 Argininosuccinate lyase C-terminal. This domain is found at the C-terminus of argininosuccinate lyase. 68 -339334 pfam14699 hGDE_N N-terminal domain from the human glycogen debranching enzyme. This domain is found on the very N-terminal of eukaryotic variants of the glycogen debranching enzyme (GDE), where it is immediately followed by the aldolase-like domain. The eukaryotic GDE performs two functions: 4-alpha-D-glucanotransferase, EC:2.4.1.25, and Amylo-alpha-1,6-glucosidase, EC:3.2.1.33, performed by the, respectively N- and C- terminal halves of eukaryotic GDE enzyme. The domain is involved in the glucosyltransferase activity, probably as a substrate-binding module (by analogy with other glucosyltransferases). 88 -339335 pfam14700 RPOL_N DNA-directed RNA polymerase N-terminal. This is the N-terminal domain of DNA-directed RNA polymerase. This domain has a role in interaction with regions of upstream promoter DNA and the nascent RNA chain, leading to the processivity of the enzyme. In order to make mRNA transcripts the RNA polymerase undergoes a transition from the initiation phase (which only makes short fragments of RNA) to an elongation phase. This domain undergoes a structural change in the transition from initiation to elongation phase. The structural change results in abolition of the promoter binding site, creation of a channel accommodating the heteroduplex in the active site and formation of an exit tunnel which the RNA transcript passes through after peeling off the heteroduplex. 269 -339336 pfam14701 hDGE_amylase Glycogen debranching enzyme, glucanotransferase domain. This is a glucanotransferase catalytic domain of the eukaryotic variant of the glycogen debranching enzyme (GDE). The eukaryotic GDEs performs two functions: 4-alpha-D-glucanotransferase, EC:2.4.1.25, and Amylo-alpha-1,6-glucosidase, EC:3.2.1.33, performed by the, respectively N- and C- terminal halves of eukaryotic GDE enzymes. The domain is a catalytic domain responsible for the glucanotransferase function. It belongs to the alpha-amylase clan and is predicted to have a structure of a 8-stranded alpha/beta barrel (TIM barrel) where strands are interrupted by long loops and additional mini-domains. In most other amylases, the catalytic domain is followed by a beta- barrel substrate binding domain, but presence of such a domain cannot be verified in the human (and other eukaryotic) GDE enzymes. 437 -339337 pfam14702 hGDE_central Central domain of human glycogen debranching enzyme. This is a central domain of the eukaryotic variant of the glycogen debranching enzyme (GDE). The eukaryotic GDE performs two functions: 4-alpha-D-glucanotransferase, EC:2.4.1.25, and Amylo-alpha-1,6-glucosidase, EC:3.2.1.33, performed by the, respectively N- and C- terminal halves of eukaryotic GDE enzyme This central domain follows the glucanotransferase domain and precedes the glucosidase (GDE_N) domain. It is very likely that the current definition contains two or more domains, by analogy with baterial GDEs, this domain should be involved in substrate- binding either for the N-terminal glucanotransferase and/or the the C-terminal glucosidase (or both). 241 -317147 pfam14703 PHM7_cyt Cytosolic domain of 10TM putative phosphate transporter. PHM7_cyt is the predicted cytosolic domain of integral membrane proteins, such as yeast PHM7 and TM63A_HUMAN TRANSMEMBRANE PROTEIN 63A. This domain usually precedes the 7TM region, pfam02714, and follows a RSN1_TM, pfam13967. Fold recognition programs consistently and with high significance predict this domain to be distantly homologous to RNA binding proteins from the RRM clan. 167 -317148 pfam14704 DERM Dermatopontin. Members of this family mediate cell adhesion via cell surface integrin binding. They also induce haemagglutination and aggregation of amebocytes. 149 -339338 pfam14705 Costars Costars. This domain is found both alone and at the C-terminus of actin-binding Rho-activating protein (ABRA). It binds to actin, and in muscle regulates the actin cytoskeleton and cell motility. It has a winged helix-like fold consisting of three alpha-helices and four antiparallel beta strands. Unlike typical winged helix proteins it does not bind to DNA, but contains a hydrophobic groove which may be responsible for interaction with other proteins. 75 -317150 pfam14706 Tnp_DNA_bind Transposase DNA-binding. This domain occurs at the C-terminus of transposases including E. coli tnpA. TnpA encodes a transposase and an inhibitor protein, the inhibitor only differs from the transposase by the absence of the N-terminal 55 amino acids, which includes most of this domain. This domain consists of alpha helices and turns, and functions as a DNA-binding domain. 57 -317151 pfam14707 Sulfatase_C C-terminal region of aryl-sulfatase. 122 -317152 pfam14709 DND1_DSRM double strand RNA binding domain from DEAD END PROTEIN 1. A C-terminal domain in human dead end protein 1 (DND1_HUMAN) homologous to double strand RNA binding domains (PF00035, PF00333) 81 -339339 pfam14710 Nitr_red_alph_N Respiratory nitrate reductase alpha N-terminal. This is the N-terminal tail of the respiratory nitrate reductase alpha chain. The nitrate reductase complex is a dimer of heterotrimers each consisting of an alpha, beta and gamma chain. The N-terminal tail of the alpha chain interacts with the beta chain and contributes to the stability of the heterotrimer. 37 -339340 pfam14711 Nitr_red_bet_C Respiratory nitrate reductase beta C-terminal. This domain occurs near the C-terminus of the respiratory nitrate reductase beta chain. The nitrate reductase complex is a dimer of heterotrimers each consisting of an alpha, beta and gamma chain. This domain plays a role in the interactions between subunits and shielding of the Fe-S clusters 81 -339341 pfam14712 Snapin_Pallidin Snapin/Pallidin. This family of proteins includes Snapin, this protein is associated with the SNARE complex, which mediates synaptic vesicle docking and fusion. It also includes the yeast snapin-like protein SNN1, which is a part of a complex involved in endosomal cargo sorting. The family also includes pallidin, a component of a complex involved in biogenesis of lysosome-related organelles. 87 -339342 pfam14713 DUF4464 Domain of unknown function (DUF4464). This family of proteins is found in eukaryotes. Proteins in this family are typically between 224 and 241 amino acids in length. There is a conserved YID sequence motif. 222 -339343 pfam14714 KH_dom-like KH-domain-like of EngA bacterial GTPase enzymes, C-terminal. The KH-like domain at the C-terminus of the EngA subfamily of essential bacterial GTPases has a unique domain structure position. The two adjacent GTPase domains (GD1 and GD2), two domains of family MMR_HSR1, pfam01926, pack at either side of the C-terminal domain. This C-terminal domain resembles a KH domain but is missing the distinctive RNA recognition elements. Conserved motifs of the nucleotide binding site of GD1 are integral parts of the GD1-KH domain interface, suggesting the interactions between these two domains are directly influenced by the GTP/GDP cycling of the protein. In contrast, the GD2-KH domain interface is distal to the GDP binding site of GD2. This family has not been added to the KH clan since SCOP classifies it separately due to its missing the key KH motif/fold. 81 -339344 pfam14715 FixP_N N-terminal domain of cytochrome oxidase-cbb3, FixP. This is the N-terminal domain of FixP, the cytochrome oxidase type-cbb3. the exact function is not known. 47 -339345 pfam14716 HHH_8 Helix-hairpin-helix domain. 67 -317160 pfam14717 DUF4465 Domain of unknown function (DUF4465). A large family of uncharacterized proteins mostly from human gut bacteroides, but also some environmental and water bacteria (Planctomycetes) as well as metagenomic samples Most proteins from this family are secreted or located on the outer surface and may participate in cell-cell interactions or cell-nutrient interactions This function is supported by a solved structure of a Bacteroides ovatus homolog, which adapts a galactose binding (jelly-roll) beta barrel structure 170 -339346 pfam14718 SLT_L Soluble lytic murein transglycosylase L domain. Soluble lytic murein transglycosylase (SLT) consists of three domains, an N-terminal U domain, an L domain (linker domain) and a C-terminal domain (C). The L domain may be involved in the interaction of the enzyme with peptidoglycan. 67 -317162 pfam14719 PID_2 Phosphotyrosine interaction domain (PTB/PID). 183 -339347 pfam14720 NiFe_hyd_SSU_C NiFe/NiFeSe hydrogenase small subunit C-terminal. This domain is found at the C-terminus of hydrogenase small subunits including periplasmic [NiFeSe] hydrogenase small subunit, uptake hydrogenase small subunit and periplasmic [NiFe] hydrogenase small subunit. This C-terminal domain binds two of the three iron-sulfur clusters in this enzyme. 77 -339348 pfam14721 AIF_C Apoptosis-inducing factor, mitochondrion-associated, C-term. This C-terminal domain appears to be a dimerization domain of the mitochondrial apoptosis-inducing factor 1. protein. The domain also appears at the C-terminus of FAD-dependent pyridine nucleotide-disulfide oxidoreductases. Apoptosis inducing factor (AIF) is a bifunctional mitochondrial flavoprotein critical for energy metabolism and induction of caspase-independent apoptosis. On reduction with NADH, AIF undergoes dimerization and forms tight, long-lived FADH2-NAD charge-transfer complexes proposed to be functionally important. 128 -317165 pfam14722 KRAP_IP3R_bind Ki-ras-induced actin-interacting protein-IP3R-interacting domain. This family includes the N-terminus of the actin-interacting protein sperm-specific antigen 2, or KRAP (Ki-ras-induced actin-interacting protein). This region is found to be the residues that interact with inositol 1,4,5-trisphosphate receptor (IP3R). KRAP was first localized as a membrane-bound form with extracellular regions suggesting it might be involved in the regulation of filamentous actin and signals from the outside of the cells. It has now been shown to be critical for the proper subcellular localization and function of IP3R. Inositol 1,4,5-trisphosphate receptor functions as the Ca2+ release channel on specialized endoplasmic reticulum membranes, so the subcellular localization of IP3R is crucial for its proper function. 143 -317166 pfam14723 SSFA2_C Sperm-specific antigen 2 C-terminus. This family includes the C-terminus of the actin-interacting protein sperm-specific antigen 2. 157 -317167 pfam14724 mit_SMPDase Mitochondrial-associated sphingomyelin phosphodiesterase. The GO annotation for this family indicates that it is a single-pass membrane protein, and it appears to be found in mitochondrial membranes. Sphingolipids play important roles in regulating cellular responses, and although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Sphingomyelin phosphodiesterases catalyze the hydrolysis of sphingomyelin to ceramide and phosphocholine, and these metabolites are involved in signalling pathways. 765 -317168 pfam14725 DUF4466 Domain of unknown function (DUF4466). 304 -339349 pfam14726 RTTN_N Rotatin, an armadillo repeat protein, centriole functioning. Rotatin and its homologs such as Ana3 in Drosophila are found to be essential for centriole function. A deficiency of rotatin in mice leads to randomised heart tube looping, defects in embryonic turning, and abnormal expression of HNF3beta, lefty, and nodal. Thus it is required for left-right and axial patterning. Ana3 - the Drosophila homolog - is present in centrioles and basal bodies, is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion. Rotatin also localizes to centrioles and basal bodies and appears to be essential for cilia function. This family represents the N-terminal domain. 97 -339350 pfam14727 PHTB1_N PTHB1 N-terminus. This family includes the N-terminus of PTHB1 protein. This protein forms a part of the BBSome complex, which is required for ciliogenesis. 412 -317171 pfam14728 PHTB1_C PTHB1 C-terminus. This family includes the C-terminus of PTHB1 protein. This protein forms a part of the BBSome complex, which is required for ciliogenesis. 371 -291399 pfam14729 DUF4467 Domain of unknown function with cystatin-like fold (DUF4467). Large family of predicted lipoproteins from Gram-positive bacteria Experimentally determined structure shows a cystatitin-like fold, allowing us to classify this family in the NFT2 clan, despite lack of any detectable sequence similarity between members of this family and other families in this clan 94 -339351 pfam14730 DUF4468 Domain of unknown function (DUF4468) with TBP-like fold. A large family of (predicted) secreted proteins with unknown functions from human gut and oral cavity. Typically forms a N-terminal domain with FMN binding domain at the C-terminus. Experimentaly determined 3D structure of this domain shows a variant of a TATA box binding - like fold, but no detectable sequence similarity to other proteins with this fold 88 -291401 pfam14731 Staphopain_pro Staphopain proregion. This domain is the proregion of the cysteine protease staphopain. Like many papain type peptidases, staphopain is synthesized as an inactive precursor and cleavage of the proregion is required for activation. This proregion has a half-barrel or barrel-sandwich hybrid fold. The proregion blocks the active site cleft of the mature enzyme on one side of the nucleophilic cysteine 169 -339352 pfam14732 UAE_UbL Ubiquitin/SUMO-activating enzyme ubiquitin-like domain. This is the C-terminal domain of ubiquitin-activating enzyme and SUMO-activating enzyme 2. It is structurally similar to ubiquitin. This domain is involved in E1-SUMO-thioester transfer to the SUMO E2 conjugating protein. 86 -317174 pfam14733 ACDC AP2-coincident C-terminal. This family is found at the C-terminus of apicomplexan proteins containing the AP2 domain (pfam00847). 89 -317175 pfam14734 DUF4469 Domain of unknown function (DUF4469) with IG-like fold. A C-terminal domain in a large family of (predicted) secreted proteins with uknown functions from human gut bacteroides 100 -317176 pfam14735 HAUS4 HAUS augmin-like complex subunit 4. This family includes HAUS augmin-like complex subunit 4. The HAUS augmin-like complex contributes to mitotic spindle assembly, maintenance of chromosome integrity and completion of cytokinesis. 235 -317177 pfam14736 N_Asn_amidohyd Protein N-terminal asparagine amidohydrolase. This family of enzymes catalyze the deamindation of N-terminal asparagines in peptides and proteins to aspartic acid. 267 -339353 pfam14737 DUF4470 Domain of unknown function (DUF4470). This family is conserved from fungi to Metazoa and includes plants. The function is not known, but several members have zinc-finger domain, zf-MYND, pfam01753, at their very C-terminus. Others are also associated with DUF1279, pfam06916. 93 -339354 pfam14738 PaaSYMP Solute carrier (proton/amino acid symporter), TRAMD3 or PAT1. PAT1 (proton amino acid transporter 1), also known as TRAMD3 of AAT-1, is the molecular correlate of the intestinal imino acid carrier. It is a proton-amino acid co-transporter having a stoichiometry of 1:1. Due to its mechanism, PAT1 activity increases at acidic pH, which correlates well with the acidic micro-climate close to the brush-border in the intestine. Glycine, proline, and alanine are the preferred substrates of the transporter. The maximum velocity is similar for the three substrates. All substrates are transported with low affinity, showing Km values in the range of 2-10 mM. The transporter does not discriminate between L- and D-isoforms of these amino acids; in addition, beta-alanine is transported with similar affinity as alpha-alanine. Similar to the IMINO transporter, the amino acid analog MeAIB is recognized by PAT1. The transporter is strongly expressed in the small intestine, colon, kidney, and brain. 153 -317180 pfam14739 DUF4472 Domain of unknown function (DUF4472). This family is specific to the Chordates. Some members also carry Kinesin-motor domains at their N-terminus, Kinesin, pfam00225. 106 -339355 pfam14740 DUF4471 Domain of unknown function (DUF4471). This family is conserved from fungi to Metazoa and includes plants. The function is not known, but several members have zinc-finger domain, zf-MYND, pfam01753, at their very C-terminus. Others are also associated with DUF1279, pfam06916. This domain is more C-terminal in many members to DUF4470, pfam14737. 303 -317182 pfam14741 GH114_assoc N-terminal glycosyl-hydrolase-114-associated domain. This short domain is also a very small family found at the N-terminus of GH114, glycosyl-hydrolases. 125 -339356 pfam14742 GDE_N_bis N-terminal domain of (some) glycogen debranching enzymes. This domain is found on the N-terminal of some glycogen debranching enzymes and is usually followed by the GDE_C (PF06202) and in this sense it is analogous (but probably not homologous) to the GDE_N (PF12439). Its exact function is unknown 193 -339357 pfam14743 DNA_ligase_OB_2 DNA ligase OB-like domain. This domain has an OB-like fold, but does not appear to be related to pfam03120. It is found at the C-terminus of the ATP dependent DNA ligase domain pfam01068. 60 -339358 pfam14744 WASH-7_mid WASH complex subunit 7. This family is the central, conserved region of proteins that form subunit 7 of the WASH complex. In species such as Drosophila this protein is the only component of the 'complex'. This complex is a nucleation promoting factor necessary for the activation of Arp2/3 that nucleates and organizes actin filaments by associating with a pre-existing filament to induce the assembly of a branching filament. WASH thus effectively nucleates actin on endosomes. 335 -339359 pfam14745 WASH-7_N WASH complex subunit 7, N-terminal. This family is the conserved N-terminal region of proteins that form subunit 7 of the WASH complex. In species such as Drosophila this protein is the only component of the 'complex'. This complex is a nucleation promoting factor necessary for the activation of Arp2/3 that nucleates and organizes actin filaments by associating with a pre-existing filament to induce the assembly of a branching filament. WASH thus effectively nucleates actin on endosomes. 560 -339360 pfam14746 WASH-7_C WASH complex subunit 7, C-terminal. This family is the conserved C-terminal region of proteins that form subunit 7 of the WASH complex. In species such as Drosophila this protein is the only component of the 'complex'. This complex is a nucleation promoting factor necessary for the activation of Arp2/3 that nucleates and organizes actin filaments by associating with a pre-existing filament to induce the assembly of a branching filament. WASH thus effectively nucleates actin on endosomes. The C-terminus is predicted to include a transmembrane region. 175 -317188 pfam14747 DUF4473 Domain of unknown function (DUF4473). This short family is largely confined to Caenorhabditis proteins. The function is not known. There are two well-conserved aspartate residues. 73 -339361 pfam14748 P5CR_dimer Pyrroline-5-carboxylate reductase dimerization. Pyrroline-5-carboxylate reductase consists of two domains, an N-terminal catalytic domain (pfam03807) and a C-terminal dimerization domain. This is the dimerization domain. 105 -339362 pfam14749 Acyl-CoA_ox_N Acyl-coenzyme A oxidase N-terminal. Acyl-coenzyme A oxidase consists of three domains. An N-terminal alpha-helical domain, a beta sheet domain (pfam02770) and a C-terminal catalytic domain (pfam01756). This entry represents the N-terminal alpha-helical domain. 120 -317191 pfam14750 INTS2 Integrator complex subunit 2. This family of proteins are subunits of the integrator complex involved in snRNA transcription and processing. 1045 -317192 pfam14751 DUF4474 Domain of unknown function (DUF4474). Domain found on N-termina of few families of uncharacterized Clostridia proteins. Typically followed by a proline-rich domain or other kinds of repeats 240 -339363 pfam14752 RBP_receptor Retinol binding protein receptor. Proteins in this family function as retinol binding protein receptors. 604 -317194 pfam14753 FAM221 Protein FAM221A/B. This family of proteins is found in eukaryotes. Proteins in this family are typically between 99 and 305 amino acids in length. 195 -291424 pfam14754 IFR3_antag Papain-like auto-proteinase. The replicase polyproteins of the Nidoviruses such as, porcine arterivirus PRRSV, equine arterivirus EAV, human coronavirus 229E, and severe acute respiratory syndrome coronavirus (SARS-CoV), are predicted to be cleaved into 14 non-structural proteins (nsps) by the nsp4 main proteinase pfam05579 and three accessory proteinases residing in nsp1-alpha, nsp1-beta and nsp2. This family is the two nsp1 proteins that together act in a papain-like way to separate off the rest of the various functional domains of the polyprotein. Once inside the host cell, this nsp1 interferes with the regulation of interferon, thereby enabling the virus to replicate. 249 -317195 pfam14755 ER-remodelling Intracellular membrane remodeller. This domain represents subunit nsp3 of the RNA-arteriviruses, such as porcine arterivirus PRRSV and equine arterivirus EAV, and is a tetraspanning transmembrane protein that contains a cluster of four highly conserved cysteine residues. These are predicted to reside in the first luminal domain of the protein. Arterivirus nsp3 proteins are uniformly predicted to contain four transmembrane helices, with the N and C termini of the protein residing in the cytoplasm. NSP3 are localized to the ER and appear to be essential for formation of double-membrane vesicles that originate from the ER during the life-cycle of the virus. 148 -258893 pfam14756 Pdase_C33_assoc Peptidase_C33-associated domain. The nsps or non-structural protein subunits of the arteriviral polyproteins such as porcine arterivirus PRRSV and equine arterivirus EAV are auto-cleaved into functional units. the function of this particular domain is not known. 147 -317196 pfam14757 NSP2-B_epitope Immunogenic region of nsp2 protein of arterivirus polyprotein. This domain is in a non-essential part of the nsp2 (non-structural protein) subunit section of the arterivirus polyprotein. This domain carries seven small sequence-regions that are predicted to be potential B-cell epitopes. 272 -317197 pfam14758 NSP2_assoc Non-essential region of nsp2 of arterivirus polyprotein. This non-essential region of the nsp2 subunit of the arterivirus polyprotein of such as porcine arterivirus PRRSV and equine arterivirus EAV may offer immunogenic surfaces to B-cells. It is associated with Peptidase_C33, pfam05412. 198 -339364 pfam14759 Reductase_C Reductase C-terminal. This domain occurs at the C-terminus of various reductase enzymes, including putidaredoxin reductase, ferredoxin reductase, 3-phenylpropionate/cinnamic acid dioxygenase ferredoxin--NAD(+) reductase component, benzene 1,2-dioxygenase system ferredoxin--NAD(+) reductase subunit, rhodocoxin reductase, biphenyl dioxygenase system ferredoxin--NAD(+) reductase component, rubredoxin-NAD(+) reductase and toluene 1,2-dioxygenase system ferredoxin--NAD(+) reductase component. In putidaredoxin reductase this domain is involved in dimerization. In the FAD-containing NADH-ferredoxin reductase (BphA4) it is responsible for interaction with the Rieske-type [2Fe-2S] ferredoxin (BphA3). 85 -339365 pfam14760 Rnk_N Rnk N-terminus. This domain occurs at the N-terminus of Rnk, an RNA polymerase-interacting protein of the GreA/GreB family (pfam01272). It has a coiled coil structure. 41 -317200 pfam14761 HPS3_N Hermansky-Pudlak syndrome 3. This domain is at the N-terminus of these vertebrate proteins. This region carries the clathrin-binding motif LLDFE at residues 172-176 in human HPS3. There is also reference to a human Mendelian disease at MIM:614072. 211 -317201 pfam14762 HPS3_Mid Hermansky-Pudlak syndrome 3, middle region. This domain is downstream of the N-terminus of these vertebrate proteins. This region carries a number of tyrosine sorting motifs and one of two di-leucine sorting boxes at residues 542-548 well as a peroxisomal matrix targetting motif at residues 614-623 in human HPS3. There is also reference to a human Mendelian disease at MIM:614072. 380 -317202 pfam14763 HPS3_C Hermansky-Pudlak syndrome 3, C-terminal. This domain is downstream of the mid domain family, pfam14762, of these vertebrate proteins. This region carries a number of tyrosine sorting motifs and the second of two di-leucine sorting boxes at residues 711-717 well as the ER membrane-retention signal KKPL at residues 1000-1003 in human HPS3. There is also reference to a human Mendelian disease at MIM:614072. 350 -339366 pfam14764 SPG48 AP-5 complex subunit, vesicle trafficking. This family would appear to be the second of the two larger subunits of the fifth Adaptor-Protein complex, AP-5. Adaptor protein (AP) complexes facilitate the trafficking of cargo from one membrane compartment of the cell to another by recruiting other proteins to particular types of vesicles. AP-5 is involved in trafficking proteins from endosomes towards other membranous compartments. There are genetic links between AP-5 and hereditary spastic paraplegia, a group of human genetic disorders characterized by progressive spasticity in the lower limbs. 118 -317204 pfam14765 PS-DH Polyketide synthase dehydratase. This is the dehydratase domain of polyketide synthases. Structural analysis shows these DH domains are double hotdogs in which the active site contains a histidine from the N-terminal hotdog and an aspartate from the C-terminal hotdog. Studies have uncovered that a substrate tunnel formed between the DH domains may be essential for loading substrates and unloading products. 289 -317205 pfam14766 RPA_interact_N Replication protein A interacting N-terminal. This family of proteins represents the N-terminal domain of replication protein A (RPA) interacting protein. RPA interacting protein is involved in the import of RPA into the nucleus. The N-terminal domain is responsible for interaction with importin beta. 38 -317206 pfam14767 RPA_interact_M Replication protein A interacting middle. This family of proteins represents the middle domain of replication protein A (RPA) interacting protein. RPA interacting protein is involved in the import of RPA into the nucleus. This domain is responsible for interaction with RPA. 78 -339367 pfam14768 RPA_interact_C Replication protein A interacting C-terminal. This family of proteins represents the C-terminal domain of replication protein A (RPA) interacting protein. RPA interacting protein is involved in the import of RPA into the nucleus. The C-terminal domain is a putative zinc finger. 79 -339368 pfam14769 CLAMP Flagellar C1a complex subunit C1a-32. This family represents one small subunit, C1a-32, of the C1a projection (the seventh projection of flagellar). Numerous studies have indicated that each of the seven projections associated with the central pair of microtubules in flagellar plays a distinct role in regulating eukaryotic ciliary/flagellar motility. The C1a projection is a complex of proteins including PF6, C1a-86, C1a-34, C1a-32, C1a-18, and calmodulin. C1a projection is involved in modulating flagellar beat frequency and this is mediated via the C1a-34, C1a-32, and C1a-18 sub-complex by modulating the activity of both the inner and outer dynein arms. 95 -317209 pfam14770 TMEM18 Transmembrane protein 18. The function of this family is not known, however it is predicted to be a three-pass membrane protein. 120 -317210 pfam14771 DUF4476 Domain of unknown function (DUF4476). 87 -317211 pfam14772 NYD-SP28 Sperm tail. NYD-SP28 is expressed in a development-dependent manner, localized in spermatogenic cell cytoplams and human spermatozoa tail. It is post-translationally modified during sperm capacitation and ultimately contributes to the success of fertilisation. 100 -339369 pfam14773 VIGSSK Helicase-associated putative binding domain, C-terminal. The function of this short, serine-rich C-terminal region is not known. However, as it is frequently found at the very C-terminus of P-loop containing nucleoside triphosphate hydrolases, it might possibly be a binding domain. 62 -317213 pfam14774 FAM177 FAM177 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 134 and 205 amino acids in length. 113 -339370 pfam14775 NYD-SP28_assoc Sperm tail C-terminal domain. NYD-SP28 is expressed in a development-dependent manner, localized in spermatogenic cell cytoplams and human spermatozoa tail. It is post-translationally modified during sperm capacitation and ultimately contributes to the success of fertilisation. This short region is found at the very C-terminus of family members of family NYD-SP28, pfam14772. 59 -317215 pfam14776 UNC-79 Cation-channel complex subunit UNC-79. This family is a component of a cation-channel complex. 520 -317216 pfam14777 BBIP10 Cilia BBSome complex subunit 10. The BBSome (so-named after the association with Bardet-Biedl syndrome) is a complex of 8 subunits that lies at the base of the flagellar microtubule structure. The precise function of all the individual components in cilia formation is unclear, however they function to promote loading of cargo to the ciliary axoneme. BBIP10 localizes to the primary cilium, and is present exclusively in ciliated organisms. It is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth. The primary cilium, a slim microtubule-based organelle that projects from the surface of vertebrate cells has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for Hedgehog (Hh) signal transduction. Formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction. 55 -317217 pfam14778 ODR4-like Olfactory receptor 4-like. In C.elegans, odr-4 and odr-8 are required for localising a subset of odorant GPCRs to the cilia of olfactory neurons. Olfactory receptors (ORs) are synthesized in endoplasmic reticulum of the olfactory neurons, trafficked to the cell surface membrane and transported to the tip of the olfactory cilium, where they bind with odorants. Various accessory proteins are required for proper targetting of different ORs to the cell membrane. ODR-4 was the first accessory protein to be described. 343 -317218 pfam14779 BBS1 Ciliary BBSome complex subunit 1. The BBSome (so-named after the association with Bardet-Biedl syndrome) is a complex of 8 subunits that lies at the base of the flagellar microtubule structure. The precise function of the all the individual components in cilia formation is unclear, however they function to promote loading of cargo to the ciliary axoneme. The primary cilium, a slim microtubule-based organelle that projects from the surface of vertebrate cells has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for Hedgehog (Hh) signal transduction. Formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction. BBS1 predominantly localizes to the basal body and or transitional zone of ciliated cells. It has been found in a heptameric complex with BBS2, BBS5, BBS7, BBS8, and BBS9, termed the BBSome. Mutations in BBS1 can lead to retinal inadequacy. 253 -317219 pfam14780 DUF4477 Domain of unknown function (DUF4477). 186 -339371 pfam14781 BBS2_N Ciliary BBSome complex subunit 2, N-terminal. The BBSome (so-named after the association with Bardet-Biedl syndrome) is a complex of 8 subunits that lies at the base of the flagellar microtubule structure. The precise function of all the individual components in cilia formation is unclear, however they function to promote loading of cargo to the ciliary axoneme. The primary cilium, a slim microtubule-based organelle that projects from the surface of vertebrate cells has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for Hedgehog (Hh) signal transduction. Formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction. BBS2 is one of the three Bardet-Biedl syndrome subunits that is required for leptin receptor signalling in the hypothalamus, and BBS2 and 4 are also required for the localization of somatostatin receptor 3 and melanin-concentrating hormone receptor 1 into neuronal cilia. 106 -339372 pfam14782 BBS2_C Ciliary BBSome complex subunit 2, C-terminal. The BBSome (so-named after the association with Bardet-Biedl syndrome) is a complex of 8 subunits that lies at the base of the flagellar microtubule structure. The precise function of all the individual components in cilia formation is unclear, however they function to promote loading of cargo to the ciliary axoneme. The primary cilium, a slim microtubule-based organelle that projects from the surface of vertebrate cells has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for Hedgehog (Hh) signal transduction. Formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction. BBS2 is one of the three Bardet-Biedl syndrome subunits that is required for leptin receptor signalling in the hypothalamus, and BBS2 and 4 are also required for the localization of somatostatin receptor 3 and melanin-concentrating hormone receptor 1 into neuronal cilia. 427 -339373 pfam14783 BBS2_Mid Ciliary BBSome complex subunit 2, middle region. The BBSome (so-named after the association with Bardet-Biedl syndrome) is a complex of 8 subunits that lies at the base of the flagellar microtubule structure. The precise function of all the individual components in cilia formation is unclear, however they function to promote loading of cargo to the ciliary axoneme. The primary cilium, a slim microtubule-based organelle that projects from the surface of vertebrate cells has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for Hedgehog (Hh) signal transduction. Formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction. BBS2 is one of the three Bardet-Biedl syndrome subunits that is required for leptin receptor signalling in the hypothalamus, and BBS2 and 4 are also required for the localization of somatostatin receptor 3 and melanin-concentrating hormone receptor 1 into neuronal cilia. 108 -317222 pfam14784 ECSIT_C C-terminal domain of the ECSIT protein. This family represents the C-terminal domain of the evolutionarily conserved signaling intermediate in Toll pathway protein, an adapter protein of the Toll-like and IL-1 receptor signaling pathway, which is involved in the activation of NF-kappa-B via MAP3K1. This domain is missing in isoform 2. Fold recognition suggests that this domain may be distantly homologous to the pleckstrin homology domain 131 -317223 pfam14785 MalF_P2 Maltose transport system permease protein MalF P2 domain. This is the second periplasmic domain (P2 domain) of the maltose transport system permease protein MalF. 164 -317224 pfam14786 Death_2 Tube Death domain. This Tube-Death domain has an insertion between helices 2 and 3, and a C-terminal tail compared with the Death domain of Pelle proteins in Drosophila. The two N-terminal Death domains of the serine/threonine kinase Pelle and the adaptor protein Tube interact to form a six-helix bundle fold arranged in an open-ended linear array with plastic interfaces mediating their interactions. This interaction leads to the nuclear translocation of the transcription factor Dorsal and activation of zygotic patterning genes during Drosophila embryogenesis, and is assisted by the significant and indispensable contacts in the heterodimer contributed by the insertion and C-terminal tail described above. 137 -339374 pfam14787 zf-CCHC_5 GAG-polyprotein viral zinc-finger. 35 -317225 pfam14788 EF-hand_10 EF hand. 50 -339375 pfam14789 THDPS_M Tetrahydrodipicolinate N-succinyltransferase middle. This is the middle domain of 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. 41 -339376 pfam14790 THDPS_N Tetrahydrodipicolinate N-succinyltransferase N-terminal. This is the N-terminal domain of 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. 167 -339377 pfam14791 DNA_pol_B_thumb DNA polymerase beta thumb. The catalytic region of DNA polymerase beta is split into three domains. An N-terminal fingers domain, a central palm domain and a C-terminal thumb domain. This entry represents the thumb domain. 63 -339378 pfam14792 DNA_pol_B_palm DNA polymerase beta palm. The catalytic region of DNA polymerase beta is split into three domains. An N-terminal fingers domain, a central palm domain and a C-terminal thumb domain. This entry represents the palm domain. 111 -339379 pfam14793 DUF4478 Domain of unknown function (DUF4478). This domain is found in bacteria, and is approximately 110 amino acids in length. It is found in association with pfam03641 and pfam11892. 109 -339380 pfam14794 DUF4479 Domain of unknown function (DUF4479). This domain family is found in bacteria, and is approximately 70 amino acids in length. The family is found in association with pfam01588. 71 -317232 pfam14795 Leucyl-specific Leucine-tRNA synthetase-specific domain. This short region is found only in leucyl-tRNA synthetases. It is flexibly linked to the enzyme-core by beta-ribbons structures 56 -339381 pfam14796 AP3B1_C Clathrin-adaptor complex-3 beta-1 subunit C-terminal. This domain lies at the C-terminus of the clathrin-adaptor protein complex-3 beta-1 subunit. The AP-3 complex is associated with the Golgi region of the cell as well as with more peripheral structures. The AP-3 complex may be directly involved in trafficking to lysosomes or alternatively it may be involved in another pathway, but that mis-sorting in that pathway may indirectly lead to defects in pigment granules. 144 -317234 pfam14797 SEEEED Serine-rich region of AP3B1, clathrin-adaptor complex. This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. 127 -317235 pfam14798 Ca_hom_mod Calcium homeostasis modulator. This family of proteins control cytosolic calcium concentration. They are transmembrane proteins which may be pore-forming ion channels. 252 -317236 pfam14799 FAM195 FAM195 family. 95 -317237 pfam14800 DUF4481 Domain of unknown function (DUF4481). 293 -317238 pfam14801 GCD14_N tRNA methyltransferase complex GCD14 subunit N-term. This is the N-terminal domain of GCD14, itself a subunit of the tRNA methyltransferase complex that is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. The exact function of the N-terminus is not known but it is necessary for maintaining the overall folding and for full enzymatic activity. 51 -339382 pfam14802 TMEM192 TMEM192 family. The function of this family of transmembrane proteins is unknown. In vertebrates, proteins in this family are located in the lysosomal membrane and late endosome. In Arabidopsis, a member of this family has been found to weakly interact with FRIGIDA, a determinant of flowering time. 235 -339383 pfam14803 Nudix_N_2 Nudix N-terminal. Ths domain occurs at the N-terminus of several Nudix (Nucleoside Diphosphate linked to X) hydrolases. 33 -339384 pfam14804 Jag_N Jag N-terminus. This domain is found at the N-terminus of proteins containing pfam13083 and pfam01424, including the jag proteins. 49 -339385 pfam14805 THDPS_N_2 Tetrahydrodipicolinate N-succinyltransferase N-terminal. This is the N-terminal domain of 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. 67 -317243 pfam14806 Coatomer_b_Cpla Coatomer beta subunit appendage platform. This family is found at the C-terminus of the coatamer beta subunit proteins (Beta-coat proteins). It is a platform domain on the appendage that carries a highly conserved tryptophan. 128 -317244 pfam14807 AP4E_app_platf Adaptin AP4 complex epsilon appendage platform. This domain is found at the C terminal of clathrin-adaptor epsilon subunit, and at the C-terminus of the appendage on the platform domain. 99 -317245 pfam14808 TMEM164 TMEM164 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 214 and 330 amino acids in length. There are two conserved sequence motifs: LNPCH and DPF. 250 -291475 pfam14809 TGT_C1 C1 domain of tRNA-guanine transglycosylase dimerization. This short region of the tRNA-guanine transglycosylase enzyme acts as the dimerization domain of the whole protein. 70 -317246 pfam14810 TGT_C2 Patch-forming domain C2 of tRNA-guanine transglycosylase. Domain C2 of tRNA-guanine transglycosylase is formed by a four-stranded anti-parallel beta-sheet lined with two alpha helices. It has conserved basic residues on the surface of the beta-sheets as does the C-terminal domain PUA, pfam01472. The catalytic domain, TGT has conserved basic residues on the outer surface of the N-terminal three-stranded beta sheet, which closes the barrel, and it is postulated that these basic residues from the three domains form a continuous, positively charged patch to which the tRNA binds. 68 -317247 pfam14811 TPD Protein of unknown function TPD sequence-motif. This is a family of eukaryotic proteins of unknown function. A few members have an associated zinc-finger domain. All members carry a highly conserved TPD sequence-motif. 131 -339386 pfam14812 PBP1_TM Transmembrane domain of transglycosylase PBP1 at N-terminal. This is the N-terminal, transmembrane, domain of the transglycosylases ()penicillin-binding proteins), the multi-domain membrane proteins essential for cell wall synthesis that are targeted by penicillin antibiotics. The TM domain is a single helix, several of whose residues lie in close proximity to hydrophobic residues in the TGT domain. The TM helix seems to be necessary for stabilizing the protein-membrane interaction, and the resulting orientation limits the interaction between PBPb1 and lipid II in the membrane in a 2D lateral diffusion fashion. 85 -339387 pfam14813 NADH_B2 NADH dehydrogenase 1 beta subcomplex subunit 2. This family represents an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. 69 -339388 pfam14814 UB2H Bifunctional transglycosylase second domain. UB2H is the second domain of the transglycosylases, or penicillin-binding proteins PBP1bs)), the multi-domain membrane proteins essential for cell wall synthesis that are targeted by penicillin antibiotics. The exact function of the UB2H domain is uncertain, but it may act as the binding component of PBP1b with different binding partners, or it may participate in the regulation between DNA repair and/or synthesis and cell wall formation during the bacterial cell cycle. 85 -339389 pfam14815 NUDIX_4 NUDIX domain. 114 -317252 pfam14816 FAM178 Family of unknown function, FAM178. 373 -317253 pfam14817 HAUS5 HAUS augmin-like complex subunit 5. This family includes HAUS augmin-like complex subunit 5. The HAUS augmin-like complex contributes to mitotic spindle assembly, maintenance of chromosome integrity and completion of cytokinesis. 642 -317254 pfam14818 DUF4482 Domain of unknown function (DUF4482). This family is found in eukaryotes, and is approximately 140 amino acids in length. The family is found in association with pfam11365. 137 -339390 pfam14819 QueF_N Nitrile reductase, 7-cyano-7-deazaguanine-reductase N-term. The QueF monomer is made up of two ferredoxin-like domains aligned together with their beta-sheets that have additional embellishments. This subunit is composed of a three-stranded beta-sheet and two alpha-helices. QueF reduces a nitrile bond to a primary amine. The two monomer units together create suitable substrate-binding pockets. 110 -291486 pfam14820 SPRR2 Small proline-rich 2. This family of small proteins is rich in proline, cysteine and glutamate. They contain a tandemly repeated nonamer, PKCPEPCPP. They are components of the cornified envelope of keratinocytes. 68 -339391 pfam14821 Thr_synth_N Threonine synthase N-terminus. This domain is found at the N-terminus of many threonine synthase enzymes. 79 -317257 pfam14822 Vasohibin Vasohibin. This family of proteins function as angiogenesis inhibitors in animals. 245 -339392 pfam14823 Sirohm_synth_C Sirohaem biosynthesis protein C-terminal. This domain is the C-terminus of a multifunctional enzyme which catalyzes the biosynthesis of sirohaem. Both of the catalytic activities of this enzyme (precorrin-2 dehydrogenase EC:1.3.1.76) and sirohydrochlorin ferrochelatase (EC:4.99.1.4) are located in the N-terminal domain of this enzyme, pfam13241. 64 -317259 pfam14824 Sirohm_synth_M Sirohaem biosynthesis protein central. This is the central domain of a multifunctional enzyme which catalyzes the biosynthesis of sirohaem. Both of the catalytic activities of this enzyme (precorrin-2 dehydrogenase EC:1.3.1.76) and sirohydrochlorin ferrochelatase (EC:4.99.1.4) are located in the N-terminal domain of this enzyme, pfam13241. 25 -339393 pfam14825 DUF4483 Domain of unknown function (DUF4483). This family of proteins is found in eukaryotes. Proteins in this family are typically between 203 and 326 amino acids in length. There is a single completely conserved residue N that may be functionally important. 157 -339394 pfam14826 FACT-Spt16_Nlob FACT complex subunit SPT16 N-terminal lobe domain. The FACT or facilitator of chromatin transcription complex binds to and alters the properties of nucleosomes. This family represents the N-terminal lobe of the NTD, or N-terminal domain, and acts as a protein-protein interaction domain presumably with partners outside of the FACT complex. Knockout of the whole NTD domain, 1-450 residues in UniProt:P32558, in yeast serves to tender the cells sensitive to DNA replication stress but is not lethal. The C-terminal half of NTD is structurally similar to aminopeptidases, and the most highly conserved surface residues line a cleft equivalent to the aminopeptidase substrate-binding site, family peptidase_M24, pfam00557. 159 -339395 pfam14827 dCache_3 Double sensory domain of two-component sensor kinase. Cache_3 is the periplasmic sensor domains of sensor histidine kinase of E. coli DcuS. This domain forms one of the components of the two-component signalling system that allows bacteria to adapt to changing environments. The ability of bacteria to monitor and adapt to their environment is crucial to their survival, and two-component signal transduction systems mediate most of these adaptive responses. One component is a histidine kinase sensor - this domain - most commonly part of a homodimeric transmembrane sensor protein, and the second component is a cytoplasmic response regulator. The two components interact in tandem through a phospho-transfer cascade. 235 -339396 pfam14828 Amnionless Amnionless. The amnionless protein forms a complex with cubilin. This complex is necessary for vitamin B12 uptake. 426 -317264 pfam14829 GPAT_N Glycerol-3-phosphate acyltransferase N-terminal. GPAT_N is the N-terminal domain of glycerol-3-phosphate acyltransferases, and it forms a four-helix bundle. Glycerol-3-phosphate (1)-acyltransferase(G3PAT) catalyzes the incorporation of an acyl group from either acyl-acyl carrier proteins or acyl-CoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol-3-phosphate. G3PATs can either be selective, preferentially using the unsaturated fatty acid, oleate (C18:1), as the acyl donor, or non-selective, using either oleate or the saturated fatty acid, palmitate (C16:0), at comparable rates. The differential substrate-specificity for saturated versus unsaturated fatty acids seen within this enzyme family has been implicated in the sensitivity of plants to chilling temperatures. The exact function of this domain is not known. it lies upstream of family Acyltransferase, pfam01553. 76 -317265 pfam14830 Haemocyan_bet_s Haemocyanin beta-sandwich. This antiparallel beta sandwich domain occurs in mollusc haemocyanins. Each mollusc haemocyanin contains several globular oxygen binding functional units. Each unit consists of an alpha-helical copper binding domain (pfam00264) and an antiparallel beta sandwich domain. 103 -339397 pfam14831 DUF4484 Domain of unknown function (DUF4484). This domain is found, in a few members, a the the C-terminus of family Avl9, pfam09794. The function is not known. 184 -317267 pfam14832 Tautomerase_3 Putative oxalocrotonate tautomerase enzyme. 4-oxalocrotonate tautomerase enzyme is involved in the anthranilate synthase pathway.1 136 -339398 pfam14833 NAD_binding_11 NAD-binding of NADP-dependent 3-hydroxyisobutyrate dehydrogenase. 3-Hydroxyisobutyrate is a central metabolite in the valine catabolic pathway, and is reversibly oxidized to methylmalonate semi-aldehyde by a specific dehydrogenase belonging to the 3-hydroxyacid dehydrogenase family. The reaction is NADP-dependent and this region of the enzyme binds NAD. The NAD-binding domain of 6-phosphogluconate dehydrogenase adopts an alpha helical structure. 122 -317269 pfam14834 GST_C_4 Glutathione S-transferase, C-terminal domain. GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. 117 -291501 pfam14835 zf-RING_6 zf-RING of BARD1-type protein. The RING domain of the breast and ovarian cancer tumor-suppressor BRCA1 interacts with multiple cognate proteins, including the RING protein BARD1. Proper function of the BRCA1 RING domain is critical, as evidenced by the many cancer-predisposing mutations found within this domain. A dimer is formed between the RING domains of BRCA1 and BARD1. The BRCA1-BARD1 structure provides a model for its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be involved in associations with multiple protein partners and provides a framework for understanding cancer-causing mutations at the molecular level. The corresponding BRCA1-RING domain is on family zf-C3HC4_2, pfam13923. 65 -317270 pfam14836 Ubiquitin_3 Ubiquitin-like domain. This ubiquitin-like domain is found in several ubiquitin carboxyl-terminal hydrolases and in gametogenetin-binding protein. 88 -339399 pfam14837 INTS5_N Integrator complex subunit 5 N-terminus. This family of proteins represents the N-terminus of subunit 5 of the integrator complex involved in snRNA transcription and processing. 208 -339400 pfam14838 INTS5_C Integrator complex subunit 5 C-terminus. This family of proteins represents the C-terminus of subunit 5 of the integrator complex involved in snRNA transcription and processing. 693 -317273 pfam14839 DOR DOR family. This family of proteins regulate autophagy and gene transcription. 202 -291506 pfam14840 DNA_pol3_delt_C Processivity clamp loader gamma complex DNA pol III C-term. This domain lies at the C-terminus of the delta subunit of the DNA polymerase III clamp loader gamma complex. Within the complex the several C-terminal domains, of gamma, delta and delta' form a helical scaffold, on which the rest of he subunits are hung. The gamma complex, an AAA+ ATPase, is the bacterial homolog of the eukaryotic replication factor C that loads the sliding clamp (beta, homologous to PCNA) onto DNA. 125 -339401 pfam14841 FliG_M FliG middle domain. This is the middle domain of the flagellar rotor protein FliG. 75 -339402 pfam14842 FliG_N FliG N-terminal domain. This is the N-terminal domain of the flagellar rotor protein FliG. 101 -317276 pfam14843 GF_recep_IV Growth factor receptor domain IV. This is the fourth extracellular domain of receptor tyrosine protein kinases. Interaction between this domain and the furin-like domain (pfam00757) regulates the binding of ligands to the receptor L domains (pfam01030). 132 -317277 pfam14844 PH_BEACH PH domain associated with Beige/BEACH. This PH domain is found in proteins containing the Beige/BEACH domain (pfam02138), it immediately precedes the Beige/BEACH domain. 98 -339403 pfam14845 Glycohydro_20b2 beta-acetyl hexosaminidase like. 132 -317279 pfam14846 DUF4485 Domain of unknown function (DUF4485). This family is found in eukaryotes, and is approximately 90 amino acids in length. 82 -317280 pfam14847 Ras_bdg_2 Ras-binding domain of Byr2. This domain is the binding/interacting region of several protein kinases, such as the Schizosaccharomyces pombe Byr2. Byr2 is a Ser/Thr-specific protein kinase acting as mediator of signals for sexual differentiation in S. pombe by initiating a MAPK module, which is a highly conserved element in eukaryotes. Byr2 is activated by interacting with Ras, which then translocates the molecule to the plasma membrane. Ras proteins are key elements in intracellular signaling and are involved in a variety of vital processes such as DNA transcription, growth control, and differentiation. They function like molecular switches cycling between GTP-bound 'on' and GDP-bound 'off' states. 95 -317281 pfam14848 HU-DNA_bdg DNA-binding domain. 123 -339404 pfam14849 YidC_periplas YidC periplasmic domain. This is the periplasmic domain of YidC, a bacterial membrane protein which is required for the insertion and assembly of inner membrane proteins. 280 -339405 pfam14850 Pro_dh-DNA_bdg DNA-binding domain of Proline dehydrogenase. This domain lies at the N-terminus of bifunctional proline-dehydrogenases and is found to bind DNA. 113 -317284 pfam14851 FAM176 FAM176 family. Members of the FAM176 family regulate autophagy and apoptosis. 144 -339406 pfam14852 Fis1_TPR_N Fis1 N-terminal tetratricopeptide repeat. The mitochondrial fission protein Fis1 consists of two tetratricopeptide repeats. This domain is the N-terminal tetratricopeptide repeat 33 -317286 pfam14853 Fis1_TPR_C Fis1 C-terminal tetratricopeptide repeat. The mitochondrial fission protein Fis1 consists of two tetratricopeptide repeats. This domain is the C-terminal tetratricopeptide repeat 53 -317287 pfam14854 LURAP Leucine rich adaptor protein. This family of proteins activate the canonical NF-kappa-B pathway, promote proinflammatory cytokine production and promote the antigen presenting and priming functions of dendritic cells. 117 -258992 pfam14855 PapJ Pilus-assembly fibrillin subunit, chaperone. PapJ is part of the Pap pilus assembly complex that plays an auxiliary role by ensuring the proper integration of PapA into the fimbrial shaft. PapA is the major shaft protein of the pilus. 187 -339407 pfam14856 Hce2 Pathogen effector; putative necrosis-inducing factor. The domain corresponds to the mature part of the Ecp2 effector protein from the tomato pathogen Cladopsorium fulvum. Effectors are low molecular weight proteins that are secreted by bacteria, oomycetes and fungi to manipulate their hosts and adapt to their environment. Ecp2 is a 165 amino acid secreted protein that was originally identified as a virulence factor in C. fulvum, since disruption reduces virulence of the fungus on tomato plants. We have recently determined that Ecp2 is a member of a novel, widely distributed and highly diversified within the fungal kingdom multigene superfamily, which we have designated Hce2, for Homologs of C. fulvum Ecp2 effector. Although Ecp2 is present in most organisms as a small secreted protein, the mature part of this protein can be found fused to other protein domains, including the fungal Glycoside Hydrolase family 18, Glyco_hydro_18 pfam00704 and other, unknown, protein domains. The intrinsic function of Ecp2 remains unknown but it is postulated by that it is a necrosis-inducing factor in plants that serves pathogenicity on the host. 102 -317289 pfam14857 TMEM151 TMEM151 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 338 and 558 amino acids in length. 428 -317290 pfam14858 DUF4486 Domain of unknown function (DUF4486). This domain family is found in eukaryotes, and is typically between 542 and 565 amino acids in length. 541 -258996 pfam14859 Colicin_M Colicin M. Colicin M is a toxin produced by, and active against, Escherichia coli. It catalyzes the hydrolysis of lipid I and lipid II peptidoglycan intermediates, therefore inhibiting peptidoglycan biosynthesis and leading to lysis of the bacterial cells. 269 -291524 pfam14860 DrrA_P4M DrrA phosphatidylinositol 4-phosphate binding domain. This domain binds to phosphatidylinositol 4-phosphate. It is found in Legionella pneumophila DrrA, a protein involved in the redirection of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuoles. 118 -317291 pfam14861 Antimicrobial21 Plant antimicrobial peptide. This family includes plant antimicrobial peptides. They adopt an alpha-helical hairpin fold stabilized by two disulphide bonds. 30 -317292 pfam14862 Defensin_big Big defensin. Big defensins are antimicrobial peptides. They consist of a hydrophobic N-terminal half, which is active against Gram-positive bacteria, and a cationic C-terminal half, which is active against Gram-negative bacteria. The C-terminal half adopts a beta-defensin-like structure. 55 -339408 pfam14863 Alkyl_sulf_dimr Alkyl sulfatase dimerization. This domain is found in alkyl sulfatases such as the Pseudomonas aeruginosa SDS hydrolase, where it acts as a dimerization domain 134 -317294 pfam14864 Alkyl_sulf_C Alkyl sulfatase C-terminal. This domain is found at the C-terminus of alkyl sulfatases. Together with the N-terminal catalytic domain, this domain forms a hydrophobic chute and may recruit hydrophobic substrates. 124 -317295 pfam14865 Macin Macin. The macins are antimicrobial proteins. They form a disulphide-stabilized alpha-beta motif. 60 -259003 pfam14866 Toxin_38 Potassium channel toxin. This family includes scorpion potassium channel toxins. 55 -291529 pfam14867 Lantibiotic_a Lantibiotic alpha. Lantibiotics are two-component lanthionine-containing peptide antibiotics active on Gram-positive bacteria. 29 -339409 pfam14868 DUF4487 Domain of unknown function (DUF4487). This family of proteins is found in eukaryotes. Proteins in this family are typically between 209 and 938 amino acids in length. There is a conserved WCF sequence motif. There is a single completely conserved residue W that may be functionally important. 550 -317297 pfam14869 DUF4488 Domain of unknown function (DUF4488). In most members this domain covers almost the whole sequence, but a few member-sequences also carry a TonB_C domain, PF03544. This domain has a lipocalin fold. 122 -317298 pfam14870 PSII_BNR Photosynthesis system II assembly factor YCF48. YCF48 is one of several assembly factors of the photosynthesis system II. The photosynthesis system II occurs in Cyanobacteria that are Gram-negative bacteria performing oxygenic photosynthesis. One of the three membranes surrounding these bacteria is the inner thylakoid membrane (TM) system that is localized within the cell and houses the large pigment-protein complexes of the photosynthetic electron transfer chain, i.e. Photosystem (PS) II, PSI, the cytochrome b6f complex, and the ATP synthase. YCF48 is necessary for efficient assembly and repair of the PSII. YCF48 is found predominantly in the thykaloid membrane. It is a BNR repeat protein. 303 -317299 pfam14871 GHL6 Hypothetical glycosyl hydrolase 6. GHL6 is a family of hypothetical glycoside hydrolases. 135 -317300 pfam14872 GHL5 Hypothetical glycoside hydrolase 5. GHL5 is a family of hypothetical glycoside hydrolases. 801 -339410 pfam14873 BNR_assoc_N N-terminal domain of BNR-repeat neuraminidase. This domain is usually found at the N-terminus of the BNR-repeat neuraminidase protein family. 146 -317302 pfam14874 PapD-like Flagellar-associated PapD-like. This domain is a putative PapD periplasmic pilus chaperone protein family. 102 -317303 pfam14875 PIP49_N N-term cysteine-rich ER, FAM69. The FAM69 family of cysteine-rich type II transmembrane proteins localize to the endoplasmic reticulum (ER) in cultured cells, probably via N-terminal di-arginine motifs. These proteins carry at least 14 luminal cysteines which are conserved in all FAM69s. There are currently few indications of the involvement of FAM69 members in human diseases. It would appear that FAM69 proteins are predicted to be have a protein kinase structure and function. Analysis of three-dimensional structure models and conservation of the classic catalytic motifs of protein kinases in four of human FAM69 proteins suggests they might have retained catalytic phosphotransferase activity. An EF-hand Ca2+-binding domain, inserted within the structure of the kinase domain, suggests they function as Ca2+-dependent kinases (unpublished). 156 -291538 pfam14876 RSF Respiratory growth transcriptional regulator. This is a family of transcriptional regulators that determine the transition from fermentative activity to growth on glycerol. 380 -291539 pfam14877 mIF3 Mitochondrial translation initiation factor. This is a family of mitochondrial initiation factors IF3. 169 -339411 pfam14878 DLD Death-like domain of SPT6. This DLD domain maintains the characteristic overall topology of death domains, as it consists of a six-helix bundle with three stacked antiparallel helices and an additional helix inserted between the final two helices of the bundle. Although it is unlikely that the Spt6 DLD functions in an apoptotic process in yeast, its prominent location and the observation that it displays the most highly conserved region of the Spt6 surface suggest that it mediates important intermolecular interactions. 107 -317305 pfam14879 DUF4489 Domain of unknown function (DUF4489). 139 -317306 pfam14880 COX14 Cytochrome oxidase c assembly. COX14 plays an essential role in cytochrome oxidase assembly. The COX14 product is a low-molecular weight membrane protein of mitochondria, but it is not a subunit of cytochrome oxidase. Orthology-prediction methods have identified the vertebrate C12orf62 orthologues to be orthologues of the yeast COX14. 59 -317307 pfam14881 Tubulin_3 Tubulin domain. This family includes the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. Misato from Drosophila and Dml1p from fungi are descendants of an ancestral tubulin-like protein, and exhibit regions with similarity to members of a GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. Dml1p and Misato have been co-opted into a role in mtDNA inheritance in yeast, and into a cell division-related mechanism in flies, respectively. Dml1p might additionally function in the partitioning of the mitochondrial organelle itself, or in the segregation of chromosomes, thereby explaining its essential requirement. This domain subject to extensive post-translational modifications. 180 -317308 pfam14882 PHINT_rpt Phage-integrase repeat unit. This repeat family is found on phage-integrase proteins in up to 15 copies. The function is not known. 52 -339412 pfam14883 GHL13 Hypothetical glycosyl hydrolase family 13. GHL13 is a family of hypothetical glycoside hydrolases. 323 -291546 pfam14884 EFF-AFF Type I membrane glycoproteins cell-cell fusogen. EFF-AFF was first identified when EFF1 mutants were found to block cell fusion in all epidermal and vulval epithelia in the worm. However, fusion between the anchor cell and the utse syncytium that establishes a continuous uterine-vulval tube proceeds normally in eff-1 mutants and thus Aff1 was established as necessary for this and the fusion of heterologous cells in C. elegans. The transmembrane forms of FF proteins, like most viral fusogens, possess an N-terminal signal sequence followed by a long extracellular portion, a predicted transmembrane domain, and a short intracellular tail. A striking conservation in the position and number of all 16 cysteines in the extracellular portion of FF proteins from different nematode species suggests that these proteins are folded in a similar 3D structure that is essential for their fusogenic activity. C. elegans AFF-1 and EFF-1 proteins are essential for developmental cell-to-cell fusion and can merge insect cells. Thus FFs comprise an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle. 575 -317310 pfam14885 GHL15 Hypothetical glycosyl hydrolase family 15. GHL15 is a family of hypothetical glycoside hydrolases. 269 -339413 pfam14886 FAM183 FAM183A and FAM183B related. The function of this family of metazoan sequences is not known. 106 -317312 pfam14887 HMG_box_5 HMG (high mobility group) box 5. Nucleolar transcription factor/upstream binding factor contains six HMG box domains. This is the fifth HMG box domain in these proteins. This domain has lost DNA-binding ability. 86 -317313 pfam14888 PBP-Tp47_c Penicillin-binding protein Tp47 domain C. Domain C is the largest domain in this unusual penicillin-binding protein PBP), Tp47. This domain is mainly characterized by an immunoglobulin fold with two opposing beta-sheets that form the typical barrel-like structure. In contrast to the classical immunoglobulin fold, however, this has an additional beta-strand inserted after strand 3. Also, the strands are connected by rather large loops. Helices are inserted between strands 2 and 3 and between strands 4 and 5. Domain C interacts with domain B via a surface that has a slightly concave, goblet-like shape. Tp47 is unusual in that it displays beta-lactamase activity, and thus it does not fit the classical structural and mechanistic paradigms for PBPs, and thus Tp47 appears to represent a new class of PBP. 158 -317314 pfam14889 PBP-Tp47_a Penicillin-binding protein Tp47 domain a. This is the first domain in this unusual penicillin-binding protein PBP), Tp47 is mainly composed of beta-strands and is sequentially non-contiguous. The first three domains in Tp47 interact with each other through intimate domain-domain interfaces. Domain A contacts domain B through its N-terminal segment. Domain A also interacts tightly with domain C, Tp47 is unusual in that it displays beta-lactamase activity, and thus it does not fit the classical structural and mechanistic paradigms for PBPs, and thus Tp47 appears to represent a new class of PBP. 162 -339414 pfam14890 Intein_splicing Intein splicing domain. Inteins are segments of protein which excise themselves from a precursor protein and mediate the rejoining of the remainder of the precursor (the extein). Most inteins consist of a splicing domain which is split into two segments by a homing endonuclease domain. This domain represents the splicing domain. 390 -317316 pfam14891 Peptidase_M91 Effector protein. This family of proteins contains an HEXXH motif, typical of zinc metallopeptidases. The family includes the E. coli effector protein NleD, which cleaves and inactivates c-Jun N-terminal kinase (JNK). 162 -317317 pfam14892 DUF4490 Domain of unknown function (DUF4490). This family of proteins is found in eukaryotes. Proteins in this family are typically between 101 and 220 amino acids in length. In mice, a member of this family whose expression is induced by p53 may play a role in DNA damage response. 99 -317318 pfam14893 PNMA PNMA. The PNMA family includes paraneoplastic antigens Ma 1, 2 and 3, found in the serum of patients with paraneoplastic neurological disorders. The family also includes modulator of apoptosis 1, which has a role in death receptor-dependent apoptosis. 326 -317319 pfam14894 Lsm_C Lsm C-terminal. This domain is found at the C-terminus of archaeal Lsm (like-Sm) proteins. 57 -317320 pfam14895 PPPI_inhib Protein phosphatase 1 inhibitor. This family of proteins interacts with and inhibits the phosphatase activity of protein phosphatase 1 (PP1) complexes. 342 -317321 pfam14896 Arabino_trans_C EmbC C-terminal domain. Arabinosyltransferase is involved in arabinogalactan (AG) biosynthesis pathway in mycobacteria. AG is a component of the macromolecular assembly of the mycolyl-AG-peptidoglycan complex of the cell wall. This enzyme has important clinical applications as it is believed to be the target of the antimycobacterial drug Ethambutol. This domain represents the C-terminal extracellular domain that is likely to bind to carbohydrate. 385 -317322 pfam14897 EpsG EpsG family. This family of proteins are related to the EpsG protein from B. subtilis. These proteins are likely glycosyl transferases belonging to the membrane protein GT-C clan. 321 -339415 pfam14898 DUF4491 Domain of unknown function (DUF4491). This family of proteins is found in bacteria. Proteins in this family are typically between 94 and 107 amino acids in length. There is a conserved EYY sequence motif. 90 -339416 pfam14899 DUF4492 Domain of unknown function (DUF4492). This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. The function of these proteins is unknown. 63 -339417 pfam14900 DUF4493 Domain of unknown function (DUF4493). This family of proteins is found in bacteria. Proteins in this family are typically between 264 and 710 amino acids in length. Many of these proteins have a lipid attachment site suggesting they are lipoproteins. 221 -339418 pfam14901 Jiv90 Cleavage inducing molecular chaperone. Jiv90 is a fragment of the DnaJ protein in eukaryotes and in J-domain protein interacting with viral protein (Jiv) located in the N terminal region of the pestivirus viral polypeptide. The viral protein interacts stably with non structural (NS) protein NS2, causing a conformational change in NS2-NS3 and stimulates NS2-NS3 cleavage in trans. Cleavage of NS2-NS3 increases cytopathogenicity and consequently aids viral replication. Jiv therefore acts as a regulating cofactor for NS2 auto-protease. The efficient release of NS3 from the viral polypeptide by Jiv is considered crucial to the pestivirus cytopathogenicity. In eukaryotes, it usually lies 40 residues downstream of DnaJ family pfam00226. However, the function in eukaryotes is still unknown. 90 -339419 pfam14902 DUF4494 Domain of unknown function (DUF4494). This family of proteins is found in bacteria. Proteins in this family are typically between 154 and 172 amino acids in length. There are two conserved sequence motifs: VDA and EAE. There is a single completely conserved residue E that may be functionally important. 139 -339420 pfam14903 WG_beta_rep WG containing repeat. This repeat contains an N-terminal WG repeat motif. The extent of the repeat is poorly defined. This repeat may form a beta solenoid structure (Bateman A pers. obs.). 35 -317329 pfam14904 FAM86 Family of unknown function. Function of this protein family is not known. 92 -339421 pfam14905 OMP_b-brl_3 Outer membrane protein beta-barrel family. This family includes proteins annotated as TonB dependent receptors. But it is also likely to contain other membrane beta barrel proteins of other functions. 404 -317331 pfam14906 DUF4495 Domain of unknown function (DUF4495). This domain family is found in eukaryotes, and is typically between 322 and 336 amino acids in length. There are two conserved sequence motifs: QMW and DLW. Proteins in this family vary in length from 793 to 1184 amino acids. 318 -339422 pfam14907 NTP_transf_5 Uncharacterized nucleotidyltransferase. This family is likely to be an uncharacterized group of nucleotidyltransferases. 248 -317333 pfam14908 DUF4496 Domain of unknown function (DUF4496). This domain family is found in eukaryotes, and is typically between 134 and 154 amino acids in length. Proteins in this family vary in length between 264 and 772 amino acid residues. 135 -339423 pfam14909 SPATA6 Spermatogenesis-assoc protein 6. This domain family is found in eukaryotes, and is approximately 140 amino acids in length. The family has similarity to the motor domain of kinesin related proteins and with the Caenorhabditis elegans neural calcium sensor protein (NCS-2). 139 -317335 pfam14910 MMS22L_N S-phase genomic integrity recombination mediator, N-terminal. MMS22L (Methyl methanesulfonate-sensitivity protein 22-like) is found in yeast, plants and vertebrates, and is integrally concerned with DNA forking and repair mechanisms during replication. MMS22L complexes with TONSL and this complex accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks. Its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Thus the complex mediates recovery from replication stress and homologous recombination in vertebrates, yeasts and plants. This family is the more N-terminal region of the proteins. 706 -339424 pfam14911 MMS22L_C S-phase genomic integrity recombination mediator, C-terminal. MMS22L (Methyl methanesulfonate-sensitivity protein 22-like) is found in yeast, plants and vertebrates, and is integrally concerned with DNA forking and repair mechanisms during replication. MMS22L complexes with TONSL and this complex accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks. Its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Thus the complex mediates recovery from replication stress and homologous recombination in vertebrates, yeasts and plants. This family is the more C-terminal region of the proteins. 375 -339425 pfam14912 THEG Testicular haploid expressed repeat. This repeat is the only conserved part of the THEG proteins from vertebrate spermatids. Both human and mouse THEG are specifically expressed in the nucleus of haploid male germ cells and are involved in the regulation of nuclear functions. Although the differential gene expression of THEG in spermatid-Sertoli cell co-culture supports the relevance of germ cell-Sertoli cell interaction for gene regulation during spermatogenesis, THEG was not found to be essential for spermatogenesis in mice. 59 -339426 pfam14913 DPCD DPCD protein family. This protein is a found in eukaryotes and a mutation in this protein is thought to cause Primary Ciliary Dyskinesia (PCD). This protein is 203 amino acids in length, 23 kDa in size and its function remains unknown. The gene that encodes this protein is a candidate gene for PCD and is expressed during ciliogenesis. PCD affects the airways and reproductive organs, and probing Northern blots show DPCD expression in humans is highest in the testes. Additionally, there is no indication of major splice variants. 190 -317339 pfam14914 LRRC37AB_C LRRC37A/B like protein 1 C-terminal domain. This family represents the C-terminal domain of the putative Leucine Rich Repeat Containing protein 37A or protein 37B (LRRC37A/B) found in eukaryotes. The Leucine Rich Repeats (LRR) lies in the central region. The gene that encodes this protein is found in the chromosomal position 17q11.2, and its microdeletion results in the disease, neurofibromatosis type-1 (NF1). The function of the protein, LRRC37B is unknown, however experimental data shows expression in the aorta, heart, skeletal muscle, liver and brain during gestation. 147 -317340 pfam14915 CCDC144C CCDC144C protein coiled-coil region. This family includes the human protein CCDC144C and the ankyrin repeat domain-containing protein 26-like 1 found in eukaryotes. Its function remains unknown, however, it is known to contain a coiled-coil domain which corresponds to this region. The ankyrin repeat which features in this protein is a common amino acid motif. 304 -317341 pfam14916 CCDC92 Coiled-coil domain of unknown function. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. The function is not known and the proteins carry no other domains. 57 -317342 pfam14917 CCDC74_C Coiled coil protein 74, C terminal. This is a C-terminal conserved domain of coiled-coil proteins from vertebrates. The function is not known. Expression levels in humans are elevated in breast cancer. 121 -317343 pfam14918 MTBP_N MDM2-binding. MTBP, or MDM2-binding protein, binds to MDM2. The MDM2 protein, through its interaction with p53, plays an important role in the regulation of the G1 checkpoint of the cell cycle. MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilisation in an MDM2 RING finger-dependent manner. MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells. MTBP inhibits cancer cell migration by interacting with a protein involved in cell motility. This motility protein is alpha-actinin-4 (ACTN4). It is unclear which regions of MTBP interact with which binding-partner. See PF14919, PF14920. 254 -317344 pfam14919 MTBP_mid MDM2-binding. MTBP, or MDM2-binding protein, binds to MDM2. The MDM2 protein, through its interaction with p53, plays an important role in the regulation of the G1 checkpoint of the cell cycle. MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilisation in an MDM2 RING finger-dependent manner. MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells. MTBP inhibits cancer cell migration by interacting with a protein involved in cell motility. This motility protein is alpha-actinin-4 (ACTN4). It is unclear which regions of MTBP interact with which binding-partner. See PF14918, PF14920. 340 -317345 pfam14920 MTBP_C MDM2-binding. MTBP, or MDM2-binding protein, binds to MDM2. The MDM2 protein, through its interaction with p53, plays an important role in the regulation of the G1 checkpoint of the cell cycle. MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilisation in an MDM2 RING finger-dependent manner. MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells. MTBP inhibits cancer cell migration by interacting with a protein involved in cell motility. This motility protein is alpha-actinin-4 (ACTN4). It is unclear which regions of MTBP interact with which binding-partner. See PF14918, PF14919. 254 -317346 pfam14921 APCDDC Adenomatosis polyposis coli down-regulated 1. The domain is duplicated in most members of this family. APCDD is directly regulated by the beta-catenin/Tcf complex, and its elevated expression promotes proliferation of colonic epithelial cells in vitro and in vivo. APCDD1 has an N-terminal signal-peptide and a C-terminal transmembrane region. The domain is rich in cysteines, there being up to 12 such residues, a structural motif important for interaction between Wnt ligands and their receptors. APCDD1 is expressed in a broad repertoire of cell types, indicating that it may regulate a diverse range of biological processes controlled by Wnt signalling. 234 -317347 pfam14922 FWWh Protein of unknown function. This is a family of eukaryotic proteins. Most members carry a highly distinctive, conserved sequence motif of FWWh, where h represents a hydrophobic residue. The function of the family is not known. 150 -317348 pfam14923 CCDC142 Coiled-coil protein 142. The function of this coiled-coil domain-containing family is not known. It is found in eukaryotes. 456 -339427 pfam14924 DUF4497 Protein of unknown function (DUF4497). This domain family is found in eukaryotes, and is typically between 107 and 123 amino acids in length. There are two completely conserved G residues that may be functionally important. 107 -317350 pfam14925 HPHLAWLY Domain of unknown function. Members of this family carry two distinct, highly conserved sequence motifs, CPPPLYYTHL and HPHLAWLY. The family is found in eukaryotes, and the function is not known. This family lies at the C-terminus of members. 641 -317351 pfam14926 DUF4498 Domain of unknown function (DUF4498). This family of proteins is found in eukaryotes. Proteins in this family are typically between 203 and 308 amino acids in length. 246 -317352 pfam14927 Neurensin Neurensin. The neurensin family includes the neuronal membrane proteins neurensin-1 and neurensin-2. Neurensin-1 plays a role in neurite extension. 131 -291589 pfam14928 S_tail_recep_bd Short tail fibre protein receptor-binding domain. This domain is a receptor binding domain found on bacteriophage short tail fibre proteins. It contains a zinc-binding site and a potential lipopolysaccharide-binding site. 120 -317353 pfam14929 TAF1_subA TAF RNA Polymerase I subunit A. TATA box binding protein associated factor RNA Polymerase I subunit A is found in eukaryotes and is encoded by the gene TAF1A in humans. Its function is to aid transcription of DNA into RNA by binding to the promoter at the -10 TATA box site. It is a component of the transcription factor SL1/TIF-IB complex, involved in PIC assembly (pre-initiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation depends on the rate of association of this protein. This protein also stabilizes nucleolar transcription factor 1/UBTF on rDNA. 366 -317354 pfam14930 Qn_am_d_aII Quinohemoprotein amine dehydrogenase, alpha subunit domain II. This is the second domain of the alpha subunit of quinohemoprotein amine dehydrogenase. 107 -339428 pfam14931 IFT20 Intraflagellar transport complex B, subunit 20. IFT20 is subunit 20 of the intraflagellar transport complex B. The intraflagellar transport complex assembles and maintains eukaryotic cilia and flagella. IFT20 is localized to the Golgi complex and is anchored there by the Golgi polypeptide, GMAP210, whereas all other subunits except IFT172 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. IFT20 accompanies Golgi-derived vesicles to the point of exocytosis near the basal bodies where the other IFT polypeptides are present, and where the intact IFT particle is assembled in association with the inner surface of the cell membrane. Passage of the IFT complex then follows, through the flagellar pore recognition site at the transition region, into the ciliary compartment. There also appears to be a role of intraflagellar transport (IFT) polypeptides in the formation of the immune synapse in non ciliated cells. The flagellum, in addition to being a sensory and motile organelle, is also a secretory organelle. A number of IFT components are expressed in haematopoietic cells, which have no cilia, indicating an unexpected role of IFT proteins in immune synapse-assembly and intracellular membrane trafficking in T lymphocytes; this suggests that the immune synapse could represent the functional homolog of the primary cilium in these cells. 119 -317356 pfam14932 HAUS-augmin3 HAUS augmin-like complex subunit 3. This domain is subunit three of the augmin complex found from Drosophila to humans. The HAUS-augmin complex is made up of eight subunits. The augmin complex interacts with gamma-TuRC, and attenuation of this interaction severely impairs spindle MT generation. Furthermore, we provide evidence that human augmin plays critical and non-redundant roles in the kinetochore-MT attachment and also central spindle formation during anaphase in human cells.The HAUS complex is required for mitotic spindle assembly and for maintenance of centrosome integrity. 259 -317357 pfam14933 CEP19 CEP19-like protein. This family includes the centrosomal protein of 19 kDa found in eukaryotes. In humans, it is encoded for by the gene CEP19 which is also known as C3orf34. These proteins localize in the centrosomes. Centrosomes are dynamic organelles that assemble around the centrioles. They organize the microtubule cytoskeleton and mitotic spindle apparatus and are required for cell division and cell migration. C3orf34 localizes near the centrosome in early interphase, to spindle poles during mitosis, and to distinct foci oriented towards the midbody at telophase. 150 -339429 pfam14934 DUF4499 Domain of unknown function (DUF4499). This family contains a protein found in eukaryotes. Transmembrane protein C10orf57 is encoded for by the gene chromosome 10 open reading frame 57 (C10orf57) located in chromosomal position 10q22.3. The exact function of this protein is still unknown, however it is thought to be an integral membrane protein. The protein sequence is 123 amino acids in length and has a mass of approximately 14.2 kDa. The family also includes some longer proteins that possess an N-terminal dehydrogenase domain, pfam01073. 86 -339430 pfam14935 TMEM138 Transmembrane protein 138. This family of proteins is found in eukaryotes and members are approximately 160 amino acids in length. There are two conserved sequence motifs: YYY and DPR. This transmembrane protein belongs to a family found in eukaryotes and is involved in the biogenesis and degradation of ciliated cells. Mutations in this protein cause the disease Joubert syndrome(JBTS) where the cilia becomes non-motile. Ciliopathy can be severe since cilia provide the cell with large amounts of information through signals. Ciliopathy can affect cell behaviour as the appropriate signals between the cell and its environment are not made, which can affect cell survival. 119 -317360 pfam14936 p53-inducible11 tumor protein p53-inducible protein 11. TP53 is a tumor suppressor gene, when switched on it suppresses tumor development by inducing stable growth arrest or cell apoptosis. The tumor protein TP53 inducible protein 11 encoded for by the gene TP53I11, has a protein sequence of 189 amino acids in length and 21 kDa in mass. The role of this protein is thought to negatively regulate cell proliferation in response to stress, and therefore suppress tumor formation. 182 -317361 pfam14937 DUF4500 Domain of unknown function (DUF4500). This family is found in eukaryotes. The function of this protein remains unknown. The gene which encodes for this protein is named chromosome 6 open reading frame 162 (C6orf162) and is found between the chromosomal positions 6q15-q16.1. It is thought that this protein may be an important part of membrane function. 81 -317362 pfam14938 SNAP Soluble NSF attachment protein, SNAP. The soluble NSF attachment protein (SNAP) proteins are involved in vesicular transport between the endoplasmic reticulum and Golgi apparatus. They act as adaptors between SNARE (integral membrane SNAP receptor) proteins and NSF (N-ethylmaleimide-sensitive factor). They are structurally similar to TPR repeats. 277 -317363 pfam14939 DCAF15_WD40 DDB1-and CUL4-substrate receptor 15, WD repeat. DCAFs, Ddb1- and Cul4-associated factors, are substrate receptors for the Cul4-Ddb1 Ubiquitin Ligase. There are 18 different factors, the majority of which are WD40-repeat-proteins. 204 -317364 pfam14940 TMEM219 Transmembrane 219. This protein belongs to a family found in eukaryotes. Proteins in this family are typically between 240 and 315 amino acids in length. The domains in this family vary in length from 202 to 249 amino acids. Its exact function remains unknown, however, it is thought to have a role as a transmembrane protein. More specifically, it is possible that this transmembrane protein may have a role as an insulin-like growth factor binding protein 3-receptor (IGFBP-3R). This receptor binds to the ligand, insulin growth factor 3, which is a p53-induced, apoptosis factor important for cancer prevention. 235 -317365 pfam14941 OAF Transcriptional regulator, Out at first. This family of proteins is found in eukaryotes. Proteins in this family are typically between 198 and 332 amino acids in length. The domains in this family vary in length from 239 to 242 amino acids. The gene, OAF (out at first), which encodes this protein, has a promoter which may help mediate regulation of neighboring genes. An alternative name for this protein is HCV NS5A-transactivated protein 13 target protein 2, which stands for Hepatitis C virus nonstructural 5A-transactivated protein 13 target protein 2. NS5A inhibits double-stranded-RNA-activated protein kinase (PKR) activity, which is thought to allow Hepatitis C Virus replication to continue in the presence of an alpha interferon (IFN)induced antiviral response. 241 -317366 pfam14942 Muted Organelle biogenesis, Muted-like protein. The protein is a coiled-coil protein and belongs to a family found in eukaryotes. It undergoes alternative splicing forming two isoforms. The larger isoform is 187 amino acids long in protein sequence length and 21 kDa in mass. The smaller isoform is 110 amino acids long in protein sequence length and 12 kDa in mass. This protein associates with other proteins in order to form biogenesis of lysosome-related organelles complex-1 BLOC1 complex. BLOC-1 is required for the normal biogenesis of specialized organelles of the endosomal-lysosomal system. 138 -317367 pfam14943 MRP-S26 Mitochondrial ribosome subunit S26. This family of proteins corresponds to mitochondrial ribosomal subunit S26 in eukaryotes 169 -317368 pfam14944 TCRP1 Tongue Cancer Chemotherapy Resistant Protein 1. This family of proteins are found in eukaryotes. Tongue Cancer Chemotherapy Resistant-associated Protein 1 (TCRP1) is resistant to the chemotherapy drug, cisplatin, which induces apoptosis in tumor cells. There is suggestion that TCRP1 can be targeted to reverse chemotherapy resistance. The precise mechanism of TCRP1 inducing resistance against chemotherapy is still not clear, but it is thought that TCRP1 alters cell signalling pathways affecting apoptosis or DNA repair capacity. Proteins in this family are typically between 194 and 235 amino acids in length. 195 -317369 pfam14945 LLC1 Normal lung function maintenance, Low in Lung Cancer 1 protein. This protein is part of a family found in eukaryotes. It is 137 amino acids long in protein sequence length and mass is approximately 15.7 kDa. The protein is present in the normal lung epithelium, but absent or downregulated in most primary non-small lung cancers. The gene is known as Low in Lung Cancer 1 (LLC1). This protein is thought to have a role in the maintenance of normal lung function and its absence may lead to lung tumorigenesis. 118 -317370 pfam14946 DUF4501 Domain of unknown function (DUF4501). This family of proteins is found in eukaryotes. Proteins in this family are typically between 167 and 308 amino acids in length. The exact function of this protein remains unknown, but it is thought to be a single-pass membrane protein. This family contains many highly conserved cysteine residues. 177 -339431 pfam14947 HTH_45 Winged helix-turn-helix. This winged helix-turn-helix domain contains an extended C-terminal alpha helix which is responsible for dimerization of this domain. 75 -317372 pfam14948 RESP18 RESP18 domain. This domain is found in the glucocorticoid-responsive protein regulated endocrine-specific protein 18 (RESP18) and in the N-terminal extracellular region of receptor-type tyrosine-protein phosphatases containing the protein-tyrosine phosphatase receptor IA-2 domain (pfam11548). 92 -339432 pfam14949 ARF7EP_C ARF7 effector protein C-terminus. This family represents the C-terminus of the ARF7 effector protein (ARF7EP). ARF7EP interacts with ADP-ribosylation factor-like protein 14 and unconventional myosin-Ie and through this interaction controls movement of MHC-II-containing vesicles along the actin cytoskeleton in dendritic cells. It contains a conserved CXCXXXXCXXCXXXCXXCXXXXCXXXCXC motif in it's C-terminal half. 100 -317374 pfam14950 DUF4502 Domain of unknown function (DUF4502). This family of proteins is found in eukaryotes. Proteins in this family are typically between 181 and 876 amino acids in length. 376 -317375 pfam14951 DUF4503 Domain of unknown function (DUF4503). This family of proteins is found in eukaryotes. Proteins in this family are typically between 313 and 876 amino acids in length. 391 -339433 pfam14952 zf-tcix Putative treble-clef, zinc-finger, Zn-binding. This domain resembles the zinc-binding domain of prokaryotic topoisomerases, family DNA_ligase_ZBD pfam03119. The function of the eukaryotic proteins it is carried on is not known. 41 -339434 pfam14953 DUF4504 Domain of unknown function (DUF4504). This family of proteins is found in eukaryotes. Proteins in this family are typically between 253 and 329 amino acids in length. There are two conserved sequence motifs: LLGYP and SFS. 254 -317378 pfam14954 LIX1 Limb expression 1. This entry represents the limb expression 1 (LIX1) family. 242 -317379 pfam14955 MRP-S24 Mitochondrial ribosome subunit S24. This family of proteins corresponds to mitochondrial ribosomal subunit S24 in eukaryotes. 135 -339435 pfam14956 DUF4505 Domain of unknown function (DUF4505). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 166 and 225 amino acids in length. 177 -317381 pfam14957 BORG_CEP Cdc42 effector. The Cdc42 effector (CEP) or binder of Rho GTPases (BORG) proteins are involved in the organisation of the actin cytoskeleton. They may function as negative regulators of Rho GTPase signaling. 71 -317382 pfam14958 DUF4506 Domain of unknown function (DUF4506). This domain family is found in eukaryotes, and is approximately 140 amino acids in length. 140 -317383 pfam14959 GSAP-16 gamma-Secretase-activating protein C-term. GSAP, or gamma-secretase-activating protein, also known as PION, regulates gamma-secretase activity. The holo-protein is a large, approx 850 residue protein that is rapidly cleaved to an active 16 kDa C-terminal fragment that is the stable, predominant form. GSAP is expressed in inclusion bodies and is important in brain function. It dramatically and selectively increases neurotoxic beta-Amyloid production in the brain through a mechanism involving its interactions with both gamma-secretase and its substrate, the amyloid precursor protein C-terminal fragment (APP-CTF). Accumulation of neurotoxic beta-Amyloid is a major hallmark of Alzheimer's disease. Formation of beta-Amyloid is catalyzed by gamma-secretase, a protease with numerous substrates that catalyzes the intra-membrane cleavage of integral membrane proteins such as Notch receptors and APP (beta-amyloid precursor protein). The secondary structure of GSAP is largely alpha-helical, lacking well-defined tertiary structure. GSAP represents a type of gamma-secretase regulator that directs enzyme specificity by interacting with a specific substrate. 108 -339436 pfam14960 ATP_synth_reg ATP synthase regulation. Members of this family are subunits of mitochondrial ATP synthase (F-ATPase) and vacuolar ATPase (V-ATPase). In F-ATPase, this subunit regulates mitochondrial ATP synthase population. 51 -317385 pfam14961 BROMI Broad-minded protein. Broad-minded protein (BROMI) interacts with cell cycle-related kinase (CCRK), together these proteins regulate ciliary membrane and axonemal growth. 1249 -317386 pfam14962 AIF-MLS Mitochondria localization Sequence. This family contains a protein found in eukaryotes. Proteins in this family are typically between 240 and 613 amino acids in length. The family is found in association with pfam07992. This protein family is an N-terminal domain for the mitochondrial localization sequence for an apoptosis-inducing factor. The protein is also known as Corneal endothelium-specific protein 1 or as Ovary-specific acidic protein. It is thought to be important for membrane function and is expressed in the ovary and corneal endothelium. 192 -317387 pfam14963 CAML Calcium signal-modulating cyclophilin ligand. Calcium signal-modulating cyclophilin ligand was originally identified in a screen for cyclophilin B-interacting proteins. It is likely to be involved in calcium signalling. It has also been shown to interact with many other signalling molecules including proto-oncogene tyrosine-protein kinase LCK, tumor necrosis factor receptor superfamily member 13B and EGFR. 268 -339437 pfam14964 DUF4507 Domain of unknown function (DUF4507). This family of proteins is found in eukaryotes. Proteins in this family are typically between 346 and 434 amino acids in length. 356 -317389 pfam14965 BRI3BP Negative regulator of p53/TP53. This family of transmembrane proteins is found in eukaryotes. Proteins in this family are typically between 213 and 245 amino acids in length. It is found in various tissues, including the brain, liver and kidneys. It was first discovered as a functional unknown gene, murine brain I3 (BRI3). This protein is also known as HCCRBP-1 and it plays a role in tumorigenesis, as it binds to an oncogene, HCCR-1, and acts as a negative regulator of p53/TP53 tumor suppressor. BRI3BP induces tumorigenesis by activating protein kinase C (PKC) activity but decreasing the pro-apoptotic PKC-alpha and PKC-delta isoform levels. BRI3BP is over-expressed in many tumors. 179 -317390 pfam14966 DNA_repr_REX1B DNA repair REX1-B. This family of proteins includes Chlamydomonas reinhardtii REX1-B (Required for Excision 1-B) which is involved in a light-independent DNA repair pathway. 94 -317391 pfam14967 FAM70 FAM70 protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 241 and 349 amino acids in length. The function of this family is unknown. 325 -339438 pfam14968 CCDC84 Coiled coil protein 84. The function of this coiled-coil domain-containing family is not known. It is found in eukaryotes. 345 -317393 pfam14969 DUF4508 Domain of unknown function (DUF4508). This family of proteins is found in eukaryotes. Proteins in this family are typically between 117 and 253 amino acids in length. 96 -317394 pfam14970 DUF4509 Domain of unknown function (DUF4509). This family of proteins is found in eukaryotes. Proteins in this family are typically between 212 and 449 amino acids in length. There is a conserved WLL sequence motif. 186 -317395 pfam14971 DUF4510 Domain of unknown function (DUF4510). This family of proteins is found in eukaryotes. Proteins in this family are typically between 242 and 452 amino acids in length. There are two conserved sequence motifs: LEA and WMD. 153 -317396 pfam14972 Mito_morph_reg Mitochondrial morphogenesis regulator. This family of proteins regulate mitochondrial morphogenesis via a mechanism which is independent of mitofusins and dynamin-related protein 1. 161 -317397 pfam14973 TINF2_N TERF1-interacting nuclear factor 2 N-terminus. This is the N-terminus of TERF1-interacting nuclear factor 2. It is required for the formation of the shelterin complex. The shelterin complex is involved in the protection and maintenance of telomeres. 144 -339439 pfam14974 P_C10 Protein C10. The function of this protein family is unknown. Mutations in protein C (C12orf57) are implicated in the pathogenesis of colobomatous microphthalmia. 103 -317398 pfam14975 DUF4512 Domain of unknown function (DUF4512). This family of proteins is found in eukaryotes. Proteins in this family are typically between 74 and 104 amino acids in length. There are two completely conserved residues (C and P) that may be functionally important. 96 -317399 pfam14976 FAM72 FAM72 protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 145 and 264 amino acids in length. The function of this family is unknown. 145 -317400 pfam14977 FAM194 FAM194 protein. This family is found in eukaryotes, and is approximately 210 amino acids in length. There is a conserved YPSG sequence motif. The function of this family is unknown. 195 -317401 pfam14978 MRP-63 Mitochondrial ribosome protein 63. This family of proteins is present in the intact 55S subunit of the mitochondrial ribosome. It is not known if it belongs to the 28S or to the 39S subunit. 89 -317402 pfam14979 TMEM52 Transmembrane 52. This family of transmembrane proteins is found in eukaryotes. Proteins in this family are typically between 160 and 236 amino acids in length. There is a conserved LLCG sequence motif. The function of this family is unknown. 139 -317403 pfam14980 TIP39 TIP39 peptide. 51 -317404 pfam14981 FAM165 FAM165 family. This family of proteins known as FAM165 are found in eukaryotes. Members of this family are as yet uncharacterized. Proteins in this family are typically short membrane proteins between 55 and 70 amino acids in length. 50 -291643 pfam14982 UPF0731 UPF0731 family. The UPF0731 family of uncharacterized proteins is found in mammals. 78 -291644 pfam14983 DUF4513 Domain of unknown function (DUF4513). This family of uncharacterized proteins is found in chordates. 132 -317405 pfam14984 CD24 CD24 protein. 52 -317406 pfam14985 TM140 TM140 protein family. This family of uncharacterized membrane proteins are called transmembrane protein 140. They are found in mammals. 180 -317407 pfam14986 DUF4514 Domain of unknown function (DUF4514). This family of uncharacterized proteins are found in mammals. 60 -317408 pfam14987 NADHdh_A3 NADH dehydrogenase 1 alpha subcomplex subunit 3. This family of proteins are accessory subunits of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). This subunit is not believed to be catalytic. 78 -291649 pfam14988 DUF4515 Domain of unknown function (DUF4515). This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 198 and 469 amino acids in length. There are two completely conserved L residues that may be functionally important. 206 -317409 pfam14989 CCDC32 Coiled-coil domain containing 32. This family of proteins is found in eukaryotes. Proteins in this family are typically between 160 and 188 amino acids in length. The gene that encodes this protein is C15orf57 but its protein product is called Protein CCDC32 (Coiled-coil domain containing 32). The exact function of this protein is still unknown. 150 -317410 pfam14990 DUF4516 Domain of unknown function (DUF4516). This family of proteins is found in eukaryotes. Proteins in this family are typically between 56 and 69 amino acids in length. 43 -317411 pfam14991 MLANA Protein melan-A. 117 -317412 pfam14992 TMCO5 TMCO5 family. The TMCO5 family includes human transmembrane and coiled-coil domain-containing proteins 5A and 5B. 272 -317413 pfam14993 Neuropeptide_S Neuropeptide S precursor protein. 65 -317414 pfam14994 TSGA13 Testis-specific gene 13 protein. This family of uncharacterized proteins are found in chordates. In humans this gene is found to be expressed specifically in the testes. 269 -317415 pfam14995 TMEM107 Transmembrane protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 138 and 164 amino acids in length. There are two completely conserved residues (H and E) that may be functionally important and four transmembrane helices. The domains in this family vary in length from 124 to 126 amino acids. The precise function of the protein family is still unknown. 123 -317416 pfam14996 RMP Retinal Maintenance. RMP is encoded for by a gene, C8orf37. Mutations in the gene cause two types of retinal dystrophies: cone-rod dystrophy type 16 (CORD16) and retinitis pigmentosa type 64 (RP64). CORD16 affects the cone receptors which detect red, green or blue wavelengths of light and RP64 affects the cone receptors first and then the rod receptors. Both of these affect the photo-receptors in the eye leading to colour blindness or blindness respectively. 154 -317417 pfam14997 CECR6_TMEM121 CECR6/TMEM121 family. This family includes Cat eye syndrome critical region protein 6, a protein which has been identified in a screen for candidate genes for the developmental disorder Cat Eye Syndrome (CES). It also includes the TMEM121 transmembrane proteins. The function of this family is unknown. 193 -317418 pfam14998 Ripply Transcription Regulator. The precise function of this family is not clear, but it is thought to play a role in somitogenesis, development and transcriptional repression. Ripply is also known by an alternative name, Bowline. Bowline, is an associate protein of the transcriptional co-repressor XGrg-4. This family contains two conserved sequence motifs: WRPW and FPVQATI. The WRPW motif is thought to be required for binding to tle/groucho proteins. Ripply3 is also known as Down Syndrome Critical Region Protein 6 homolog. This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 154 amino acids in length. 85 -317419 pfam14999 Shadoo Shadow of prion protein, neuroprotective. This protein family is a Prion-like protein and its function is neuroprotective and similar to PrP(C)-like. Shadoo is mainly expressed in the brain, and highly expressed in the hippocampus, the area of the brain which co-ordinates memory as well as spatial memory and navigation. This protein may also alter the biological actions of normal and abnormal Prion Protein (PrP) which lead to lethal neurodegenerative diseases. This family of proteins is found in eukaryotes. Proteins in this family are approximately 150 amino acids in length, of which the first 90 are alanine rich. 130 -317420 pfam15000 TUSC2 tumor suppressor candidate 2. This family of proteins are candidate tumor suppressors. 112 -317421 pfam15001 AP-5_subunit_s1 AP-5 complex subunit sigma-1. This family of proteins are subunits of the adaptor protein complex AP-5. 191 -317422 pfam15002 ERK-JNK_inhib ERK and JNK pathways, inhibitor. This coiled-coiled domain, CCDC134, is a secretory protein that inhibits Mitogen activated protein kinase (MAPK) pathways such as Raf-1/MEK/ERK and JNK/SAPK but not p38. CCDC134 is widely expressed in normal adult tissues, tumor tissues and cell lines, which shows its importance in cell signal transduction pathways, transcription regulation and therefore cell survival. Additionally, CCDC134 is known to bind to a transcription adaptor, hADA2a, which forms part of the general control nonderepressible 5 (GCN5) histone acetyltransferase complex. Acetylation usually 'switches genes on' for transcription. Moreover, knocking out CCDC134 suppressed hADA2a-induced cell apoptosis activity and G1/S cell cycle arrest suggesting its importance in cell survival. This family of proteins is found in eukaryotes. Proteins in this family are typically between 188 and 257 amino acids in length. This family is a coiled-coil domain containing protein 134 (CCDC134) whereby the coiled-coiled domain is a ubiquitous motif involved in oligomerization. 191 -317423 pfam15003 HAUS2 HAUS augmin-like complex subunit 2. This family of proteins is found in eukaryotes. Proteins in this family are typically between 203 and 291 amino acids in length. HAUS augmin-like complex subunit 2 is alternatively called centrosomal protein of 27 kDa (CEP27). It localized in the microtubule organising centre, the centrosome. These microtubules are part of the cytoskeleton and give the cell its shape, provides it with a platform for motility and are crucial for mitosis. This protein is part of the HAUS augmin-like complex. This interacts with the gamma-tubulin ring complex (gamma-TuRC) which is required for spindle generation. HAUS2 may also increase the tension between spindle and kinetochore allowing for chromosome segregation during mitosis. This protein is involved in mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis. 191 -317424 pfam15004 MYEOV2 Myeloma-overexpressed-like. This family of proteins is found in eukaryotes. It includes human myeloma-overexpressed gene 2 protein. Proteins in this family are typically between 45 and 74 amino acids in length. There are two conserved sequence motifs: MKP and DEMF. The function of this family is unknown. 54 -339440 pfam15005 IZUMO Izumo sperm-egg fusion, Ig domain-associated. This IZUMO family is a domain just upstream of the immunoglobulin domain on Izumo proteins in higher eukaryotes. The actual function of this region of the Izumo proteins is not known. The full-length protein is a molecule with a single immunoglobulin (Ig) domain. It is thought that Izumo proteins bind to putative Izumo receptors on the oocyte. Izumo is not detectable on the surface of fresh sperm but becomes exposed only after an exocytotic process, the acrosome reaction, has occurred. Studies have shown that knock-out mice (Izumo-/- males) were sterile despite normal mating behaviour and ejaculation, indicating the importance of the protein in fertilisation. There are cysteine residues thought to form a disulphide bridge. Izumo is a typical type I membrane glycoprotein with one immunoglobulin-like domain and a putative N-glycoside link motif (Asn 204). There is a conserved GCL sequence motif. Izumo expression has been found to be testis-specific. 145 -317426 pfam15006 DUF4517 Domain of unknown function (DUF4517). The function of this protein remains unknown. This family of proteins is found in eukaryotes and are typically between 160 and 182 amino acids in length. 152 -317427 pfam15007 CEP44 Centrosomal spindle body, CEP44. CEP44 is a coiled coil domain found localized in the centrosome and spindle poles. 127 -339441 pfam15008 DUF4518 Domain of unknown function (DUF4518). The precise function of this protein family is unknown but it is thought to be involved in apoptosis regulation. 259 -317429 pfam15009 TMEM173 Transmembrane protein 173. Transmembrane protein 173, also known as stimulator of interferon genes protein (STING), is a transmembrane adaptor protein which is involved in innate immune signalling processes. It induces expression of type I interferons (IFN-alpha and IFN-beta) via the NF-kappa-B and IRF3, pathways in response to non-self cytosolic RNA and dsDNA. 292 -317430 pfam15010 FAM131 Putative cell signalling. The precise function of this protein family is unknown, however studies have shown it undergoes Protein N-myristoylation; a type of lipid modification in eukaryotic and viral proteins. Protein N-myristoylation is usually an irreversible co-translational protein modification which is useful in cell signal transduction pathways. This indicates that FAM131 may have some sort of role in cell signalling due to its ability to be myristoylated. This family of proteins is found in eukaryotes and are typically between 257 and 361 amino acids in length. 287 -339442 pfam15011 CK2S Casein Kinase 2 substrate. It is suggested that CK2S (C10orf109) is important in the regulation of cancer cell proliferation. Studies have indicated that CK2S is the downstream target of a protein kinase, casein kinase 2 (CK2), which is upregulated in cancer cells. CK2S has been found to be upregulated in cancer cells. The precise mechanism of CK2 targetting CK2S is not well characterized. It is found to be localized in the nucleus and cytoplasm. This family of proteins is found in eukaryotes. Proteins in this family are typically between 160 and 221 amino acids in length. There is a single completely conserved residue P that may be functionally important. 154 -339443 pfam15012 DUF4519 Domain of unknown function (DUF4519). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 59 amino acids in length. There are two conserved sequence motifs: KET and VLP. There is a single completely conserved residue P that may be functionally important. 55 -339444 pfam15013 CCSMST1 CCSMST1 family. This family of proteins was discovered in a screen of Bos taurus placental ESTs. The B. taurus member of this family was named cattle cerebrum and skeletal muscle-specific transcript 1. This family of proteins is found in eukaryotes. Proteins in this family are typically between 97 and 157 amino acids in length. There is a single completely conserved residue D that may be functionally important. The function of this family is unknown. 74 -317434 pfam15014 CLN5 Ceroid-lipofuscinosis neuronal protein 5. 301 -317435 pfam15015 NYD-SP12_N Spermatogenesis-associated, N-terminal. NYD-SP12, also known as SPATA16, is a germ-cell specific participant in the Golgi apparatus, and its expression is confined to spermatogenic epithelium, not being found in interstitial cells. Computer analysis of the protein-sequence showed that NYD-SP12 contains a cluster of phosphorylation sites for protein kinase C as well as for cyclic nucleotide-dependent protein kinases. It is postulated that since the mutation of some Golgi apparatus' proteins are responsible for male infertility that NYD-SP12 might play a role in modification and sorting of acrosomal enzymes. OMIM:102530. 564 -317436 pfam15016 DUF4520 Domain of unknown function (DUF4520). This family of proteins is found in eukaryotes. Proteins in this family are typically between 197 and 638 amino acids in length.This is the C-terminal domain of the member proteins. 79 -317437 pfam15017 WRNPLPNID Putative WW-binding domain and destruction box. This short conserved region is a putative destruction-box, with its RxxLxxI sequence motif, though the homology is not absolute. The domain occurs on a number of tumorigenic proteins, on some RNA-binding proteins and serine-threonine regulatory proteins. The second less well-conserved motif, WITPS, is a potential WW domain ligand-binding motif for recruiting proteins to their substrates. WW domains bind tightly to short proline-containing peptides that are typically in regions of native disordered polypeptide, as this family is as it lies between a PIN domain and a zinc-binding domain. 60 -339445 pfam15018 InaF-motif TRP-interacting helix. This highly conserved motif is thought to be a transmembrane helix that binds to transient receptor potential (TRP) calcium channel. It is known that proline-rich proteins inactivate tannins found in food compounds, and it is putatively thought that PRR24 does too. This is important since tannins often inhibit the uptake of iron. InaF is a protein required for TRP calcium channel function in Drosophila. TRP-related channels have been suggested to mediate store-operated calcium entry, important for Ca2+ homeostasis in a wide variety of cell types. The amino acid sequence of PRR-24 contains two completely conserved Y residues that may be functionally important. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. 35 -317439 pfam15019 C9orf72-like C9orf72-like protein family. The precise function of this family is unknown but members have been found to be localized in the cytoplasm of brain tissue. Defects in the gene, C9orf72, are the cause of frontotemporal dementia and/or amyotrophic lateral sclerosis (FTDALS) which is an autosomal dominant neurodegenerative disorder. The disorder is caused by a large expansion of a GGGGCC hexa-nucleotide within the first C9orf72 intron located between the first and the second non-coding exons. The expansion leads to the loss of transcription of one of the two transcripts encoding isoform 1 and to the formation of nuclear RNA foci. This domain family is found in eukaryotes, and is typically between 230 and 250 amino acids in length. There is a single completely conserved residue F that may be functionally important. 239 -317440 pfam15020 CATSPERD Cation channel sperm-associated protein subunit delta. The CATSPER (cation channel of sperm) complex is a tetrameric complex consisting of CATSPER1, CATSPER2, CATSPER3 and CATSPER4, it functions as an alkalinisation-activated calcium channel. This complex requires several auxiliary subunits, including CATSPERD. CATSPERD is essential for the cation channel function and may play a role in channel assembly or transport. 729 -317441 pfam15021 DUF4521 Protein of unknown function (DUF4521). This family of vertebrate proteins is functionally uncharacterized. The family includes the Chromosome 20 protein C20orf196. 200 -291682 pfam15022 DUF4522 Protein of unknown function (DUF4522). This family of proteins is functionally uncharacterized. This family of proteins is found in mammals. In human this protein is known as C4orf36. 117 -317442 pfam15023 DUF4523 Protein of unknown function (DUF4523). This family of proteins is functionally uncharacterized. This family of proteins is found in mammals. 166 -317443 pfam15024 Glyco_transf_18 Glycosyltransferase family 18. Enzymes belonging to glycosyltransferase family 18 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase) contribute to the creation of branches in complex-type N-glycans. This domain is responsible for the catalytic activity of the enzyme. 556 -317444 pfam15025 DUF4524 Domain of unknown function (DUF4524). This family of proteins is found in eukaryotes. Proteins in this family are typically between 197 and 638 amino acids in length.This is the N-terminal domain of the member proteins. The human gene is from C5orf34. 145 -317445 pfam15027 DUF4525 Domain of unknown function (DUF4525). This domain is found in eukaryotes. It is often found at the N-terminus of glycosyltransferase family 18 enzymes (pfam15024). It is also found in coiled-coil domain-containing protein 126. 137 -317446 pfam15028 PTCRA Pre-T-cell antigen receptor. The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alpha/beta T-cell lineage differentiation. This protein contains an immunoglobulin domain. 127 -317447 pfam15029 TMEM174 Transmembrane protein 174. This family of proteins is found in chordates and includes the human integral membrane protein TMEM174 protein. 234 -317448 pfam15030 DUF4527 Protein of unknown function (DUF4527). This family of proteins is functionally uncharacterized. This family of proteins is found in vertebrates. 276 -317449 pfam15031 DUF4528 Domain of unknown function (DUF4528). This family of proteins is found in eukaryotes. Proteins in this family are typically between 95 and 154 amino acids in length. This family includes Human C15orf61. 126 -317450 pfam15032 DUF4529 Protein of unknown function (DUF4529). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. The proteins contain a conserved VLPPLK sequence motif. 405 -317451 pfam15033 Kinocilin Kinocilin protein. This family of kinocilin proteins is found in vertebrate. In mouse it has been shown that this protein is expressed primarily in the kinocilium of sensory cells in the inner ear. 123 -291693 pfam15034 KRTAP7 KRTAP type 7 family. This family of keratin associated proteins are found in vertebrate. 84 -339446 pfam15035 Rootletin Ciliary rootlet component, centrosome cohesion. 186 -317453 pfam15036 IL34 Interleukin 34. 157 -317454 pfam15037 IL17_R_N Interleukin-17 receptor extracellular region. This domain is found at the N-terminus (extracellular region) of interleukin-17 receptor C and Interleukin-17 receptor E. This is the presumed ligand-binding domain. Human putative interleukin-17 receptor E-like consists only of this domain. 383 -317455 pfam15038 Jiraiya Jiraiya. Jiraiya inhibits bone morphogenetic protein (BMP) signaling during embryogenesis. The human member of this family is TMEM221. 169 -317456 pfam15039 DUF4530 Domain of unknown function (DUF4530). This family of proteins is found in eukaryotes. Proteins in this family are typically around 140 amino acids in length. The human member of this family is C19orf69. 113 -291699 pfam15040 Humanin Humanin family. This family of proteins is found exclusively in humans. Humanin is a short anti-apoptotic peptide that interacts with Bax. 24 -317457 pfam15041 DUF4531 Domain of unknown function (DUF4531). This family of uncharacterized proteins is found in mammals. This family includes the human protein C19orf71. 184 -317458 pfam15042 LELP1 Late cornified envelope-like proline-rich protein 1. This family of uncharacterized proteins is found in mammals. 105 -317459 pfam15043 CNRIP1 CB1 cannabinoid receptor-interacting protein 1. This family of proteins interacts with cannabinoid receptor 1 (CNR1) and attenuates CNR1-mediated tonic inhibition of voltage-gated calcium channels. 152 -317460 pfam15044 CLU_N Mitochondrial function, CLU-N-term. CLU_N is the N-terminal domain of the Clueless protein, also known as TIF31-like in other organisms. The function of this domain is not known. It family is found in association with pfam13236. 78 -339447 pfam15045 Clathrin_bdg Clathrin-binding box of Aftiphilin, vesicle trafficking. Aftiphilin forms a stable complex with p200 and gamma-synergin. This family contains a clathrin box, with two identified clathrin-binding motifs. This family of proteins is found in eukaryotes. 80 -317462 pfam15046 DUF4532 Protein of unknown function (DUF4532). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. 279 -317463 pfam15047 DUF4533 Protein of unknown function (DUF4533). This family of proteins is functionally uncharacterized. This family of proteins is found in mammals. This family includes two human proteins: C12orf60 and C12orf69. 224 -317464 pfam15048 OSTbeta Organic solute transporter subunit beta protein. 122 -317465 pfam15049 DUF4534 Protein of unknown function (DUF4534). This family of proteins is functionally uncharacterized. This family of proteins is found in mammals. Proteins in this family are typically between 170 and 190 amino acids in length. The protein includes the human integral membrane TMEM217 protein. 163 -317466 pfam15050 SCIMP SCIMP protein. This family contains the SCIMP proteins which are a a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. 132 -317467 pfam15051 FAM198 FAM198 protein. This family of proteins is found in eukaryotes. The function of this family is unknown. Murine FAM198B is downregulated by FGFR signalling. 326 -317468 pfam15052 TMEM169 TMEM169 protein family. This domain is thought to be structured transmembrane helices and includes the intermediary cytoplasmic domain. It is found in eukaryotes, and is approximately 130 amino acids in length. 131 -317469 pfam15053 Njmu-R1 Mjmu-R1-like protein family. This protein family is thought to have a role in spermatogenesis. This family of proteins is found in eukaryotes. In humans, it is found in chromosome 17 open reading frame 75 (C17orf75). Proteins in this family are typically between 217 and 399 amino acids in length. 344 -339448 pfam15054 DUF4535 Domain of unknown function (DUF4535). This family includes the uncharacterized protein C7orf73 that is found in eukaryotes. Members are generally less than 100 residues in length. Although the precise function of the domain is still unknown, members have a predicted N-terminal signal peptide sequence which suggests they are short secreted peptides. 45 -317471 pfam15055 DUF4536 Domain of unknown function (DUF4536). This domain family is thought to be a transmembrane helix. It is found in eukaryotes, and is approximately 50 amino acids in length. In humans, it is located in the chromosomal position, C9orf123. The family contains the uncharacterized Sch. pombe protein TAM6 which is found in the mitochondrion. 47 -317472 pfam15056 NRN1 Neuritin protein family. The domain family Neuritin1 (NRN1) is a GPI-anchored protein expressed in post-mitotic-differentiating neurons in the developing nervous system. NRN1 is a glutamate and neurotrophin receptor target encoding a neuronal protein that functions extracellularly to modulate neurite outgrowth (OMIM:607409). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 158 amino acids in length. 88 -317473 pfam15057 DUF4537 Domain of unknown function (DUF4537). The function of this domain family is unknown. It is found in eukaryotes, and is typically between 119 and 141 amino acids in length. In humans, it is found in the chromosomal position C11orf16. 118 -291717 pfam15058 Speriolin_N Speriolin N-terminus. This family represents the N-terminus of the sperm centrosome protein speriolin. 200 -317474 pfam15059 Speriolin_C Speriolin C-terminus. This family represents the C-terminus of the sperm centrosome protein speriolin. 148 -317475 pfam15060 PPDFL Differentiation and proliferation regulator. Pancreatic progenitor cell differentiation and proliferation factor-like protein (PPDFL) is alternatively named Exocrine differentiation and proliferation factor-like protein. PPDFL regulates exocrine cell fate. This protein is highly expressed in exocrine progenitor cells which eventually differentiate to form exocrine pancreatic cells. 110 -317476 pfam15061 DUF4538 Domain of unknown function (DUF4538). This protein family is thought to be a transmembrane helix. Its function remains unknown. This family of proteins is found in eukaryotes. Proteins in this family are typically between 58 and 87 amino acids in length. 56 -317477 pfam15062 ARL6IP6 Haemopoietic lineage transmembrane helix. ADP-ribosylation factor-like protein 6-interacting protein 6 (ARP6) is a transmembrane helix present in the J2E erythro-leukaemic cell line, but not its myeloid variants. In tissues, ARL-6 mRNA was most abundant in brain and kidney. While ARL-6 protein was predominantly cytosolic, it is known to bind to SEC61-beta subunit of a protein conducting channel SEC61p. 86 -317478 pfam15063 TC1 Thyroid cancer protein 1. Thyroid cancer protein 1 (TC1) is thought to decrease in apoptosis and increase cell proliferation. It is found to be expressed in thyroid papillary carcinoma. This suggests its importance in thyroid cancer. The molecular mechanism of TC1, involves up-regulating cell signalling through ERK-1/2 signalling pathway and it positively regulates transition between the G1 and S phase in the cell cycle. It is thought to positively regulate Wnt/beta-catenin signalling pathway by interacting with its repressor. In humans, it is located in the chromosomal position, C8orf4. This family of proteins is found in eukaryotes and contains a conserved NIF sequence motif. 75 -317479 pfam15064 CATSPERG Cation channel sperm-associated protein subunit gamma. This family represents the gamma subunit of the CATSPER, or cation channel sperm-associated protein complex. The complex appears only to be expressed in the flagellum of sperm. The complex is activated at alkaline intracellular pH, and being restricted to the flagellum is the mediating calcium channel. 964 -317480 pfam15065 NCU-G1 Lysosomal transcription factor, NCU-G1. NCU-G1 is a set of highly conserved nuclear proteins rich in proline with a molecular weight of approximately 44 kDa. Especially high levels are detected in human prostate, liver and kidney. NCU-G1 is a dual-function family capable of functioning as a transcription factor as well as a nuclear receptor co-activator by stimulating the transcriptional activity of peroxisome proliferator-activated receptor-alpha (PPAR-alpha). 354 -317481 pfam15066 CAGE1 Cancer-associated gene protein 1 family. CAGE-1 is a family of proteins overexpressed in tumor tissues compared with surrounding tissues. CAGE-1 gene showed testis-specific expression among normal tissues and displayed wide expression in a variety of cancer cell lines and cancer tissues. CAGE-1 is predominantly expressed during post-meiotic stages. It localizes to the acrosomal matrix and acrosomal granule showing it to be a component of the acrosome of mammalian spermatids and spermatozoa. 528 -317482 pfam15067 FAM124 FAM124 family. The exact function of this protein family remains unknown. This family of proteins is found in eukaryotes. Proteins in this family are approximately 480 amino acids in length. There is a conserved LFL sequence motif. 235 -317483 pfam15068 FAM101 FAM101 family. This protein family includes the actin regulators, Refilin A and B, however the exact function of this protein family remains unknown. Refilin is thought to stabilize peri-nuclear actin filament bundles, important in fibroblasts. Refilin is important as changes in localization and shape in the nucleus plays a role in cellular and developmental processes. 205 -317484 pfam15069 FAM163 FAM163 family. This protein family is alternatively named Neuroblastoma-derived secretory proteins. Highly expressed in neuroblastoma compared to other tissues, suggesting that it may be used as a marker for metastasis in bone marrow. 159 -317485 pfam15070 GOLGA2L5 Putative golgin subfamily A member 2-like protein 5. The function of the GOLGA2L5 protein family remains unknown. This family of proteins is thought to be found in the Golgi apparatus of eukaryotes. Proteins in this family are typically between and 840 amino acids in length. 616 -317486 pfam15071 TMEM220 Transmembrane family 220, helix. Transmembrane 220 (TMEM220) is a domain of unknown function. It is thought to be a transmembrane helix. The length of this protein is typically between 150 and 160 amino acids. In humans, it is found in the chromosomal position 17p13.1. 98 -339449 pfam15072 DUF4539 Domain of unknown function (DUF4539). This family of proteins is found in eukaryotes. Proteins in this family are typically between 230 and 625 amino acids in length. 85 -317488 pfam15073 DUF4540 Domain of unknown function (DUF4540). This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 302 amino acids in length. In humans, it is found in the chromosomal position, C7orf72. 128 -339450 pfam15074 DUF4541 Domain of unknown function (DUF4541). This family of proteins is found in eukaryotes. Proteins in this family are typically between 100 and 163 amino acids in length. There is a conserved KLHRDDR sequence motif. There is a single completely conserved residue Y that may be functionally important. In humans, the gene is found in the chromosomal location, C5orf49. 92 -291734 pfam15075 DUF4542 Domain of unknown function (DUF4542). This family of proteins is found in eukaryotes. Proteins in this family are typically between 123 and 173 amino acids in length. There is a conserved IPPYN sequence motif. The gene that encodes this protein in humans, is found in the chromosomal position, C17orf98. 132 -317490 pfam15076 DUF4543 Domain of unknown function (DUF4543). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 90 amino acids in length. The human member of this family is C17orf67. 74 -317491 pfam15077 MAJIN Membrane-anchored junction protein. Membrane-anchored junction protein (MAJIN) is a meiosis-specific telomere-associated protein involved in meiotic telomere attachment to the nucleus inner membrane, a crucial step for homologous pairing and synapsis. It is a component of the MAJIN-TERB1-TERB2 complex, which promotes telomere cap exchange by mediating attachment of telomeric DNA to the inner nuclear membrane and replacement of the protective cap of telomeric chromosomes. 238 -317492 pfam15078 DUF4545 Domain of unknown function (DUF4545). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 417 amino acids in length. The human member of this family is C1orf141. 423 -317493 pfam15079 Tsc35 Testis-specific protein 35. Tsc35 (also referred to in the literature as Tsc24) is essential for spermatogenesis in mammalian male reproduction. It is expressed in the testis from day 35 onwards in mice. 199 -291739 pfam15080 DUF4547 Domain of unknown function (DUF4547). This family of proteins is found in eukaryotes. Proteins in this family are typically between 144 and 206 amino acids in length. The human member of this family is C3orf43. 195 -317494 pfam15081 DUF4548 Domain of unknown function (DUF4548). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 178 amino acids in length. The human member of this family is C1orf105. 167 -317495 pfam15082 DUF4549 Domain of unknown function (DUF4549). This family of proteins is found in eukaryotes. Proteins in this family are typically between 143 and 1871 amino acids in length. The human member of this family is C6orf183. 142 -317496 pfam15083 Colipase-like Colipase-like. This is a family of colipase-like proteins. 89 -339451 pfam15084 DUF4550 Domain of unknown function (DUF4550). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 100 amino acids in length. This domain contains an N-terminal HXE motif. 94 -317498 pfam15085 NPFF Neuropeptide FF. 104 -317499 pfam15086 UPF0542 Uncharacterized protein family UPF0542. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. There is a conserved LSWKL sequence motif. This family includes human protein C5orf43. 72 -317500 pfam15087 DUF4551 Protein of unknown function (DUF4551). This family of proteins is functionally uncharacterized. This family of proteins is found in metazoa. This family includes human protein C12orf56. 587 -291747 pfam15088 NADH_dh_m_C1 NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial. 49 -317501 pfam15089 DUF4552 Domain of unknown function (DUF4552). This family of proteins is functionally uncharacterized. This family of proteins is found in vertebrates. Proteins in this family are typically between 425 and 649 amino acids in length. 425 -317502 pfam15090 DUF4553 Domain of unknown function (DUF4553). This family of proteins is functionally uncharacterized. This family of proteins is found in vertebrates. This family includes the human protein C10orf12. 473 -317503 pfam15091 DUF4554 Domain of unknown function (DUF4554). This family of proteins is functionally uncharacterized. This family of proteins is found in some vertebrates. This family includes human protein C11orf80. 434 -317504 pfam15092 UPF0728 Uncharacterized protein family UPF0728. This family of proteins is functionally uncharacterized. This family of proteins is found in metazoa. There is a conserved GPY sequence motif. 88 -317505 pfam15093 DUF4555 Domain of unknown function (DUF4555). This family of proteins is functionally uncharacterized. This family of proteins is found in metazoa.This family includes the human protein C7orf31. 284 -317506 pfam15094 DUF4556 Domain of unknown function (DUF4556). This family of proteins is functionally uncharacterized. This family of proteins is found in vertebrates. This family includes human protein C1orf127. 215 -317507 pfam15095 IL33 Interleukin 33. 269 -317508 pfam15096 G6B G6B family. 222 -317509 pfam15097 Ig_J_chain Immunoglobulin J chain. 134 -317510 pfam15098 TMEM89 TMEM89 protein family. The function of this family of transmembrane proteins, TMEM89, has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are approximately 159 amino acids in length. 134 -317511 pfam15099 PIRT Phosphoinositide-interacting protein family. The function of this family, PIRT, is not known, however it is predicted to be a multi-pass membrane protein. This family of proteins is thought to have a role in positively regulating TRPV1 channel activity via phosphatidylinositol 4,5-bisphosphate (PIP2). This family of proteins is found in eukaryotes. Proteins in this family are located in the cell membrane. Proteins in this family are approximately 140 amino acids in length. 131 -317512 pfam15100 TMEM187 TMEM187 protein family. The function of this family, TMEM187, is not known, however it is predicted to be a multi-pass membrane protein. Members of this family are as yet uncharacterized. This protein family is also alternatively named ITBA1. This family of proteins are found in eukaryotes. Proteins in this family are typically between 239 and 267 amino acids in length. 244 -317513 pfam15101 TERB2 Telomere-associated protein TERB2. TERB2 is a meiosis-specific telomere-associated protein involved in meiotic telomere attachment to the nucleus inner membrane, a crucial step for homologous pairing and synapsis. 207 -317514 pfam15102 TMEM154 TMEM154 protein family. The function of this family of transmembrane proteins has not, as yet, been determined. However, it is thought to be a therapeutic target for ovine lentivirus infection. This family of proteins is found in eukaryotes and members are typically between 138 and 320 amino acids in length. 147 -317515 pfam15103 G0-G1_switch_2 G0/G1 switch protein 2. This family of proteins regulate apoptosis by binding to Bcl-2 and preventing the formation of the anti-apoptotic BAX-BCL2 heterodimers. 105 -317516 pfam15104 DUF4558 Domain of unknown function (DUF4558). This family of proteins is found in eukaryotes. Proteins in this family are typically between 78 and 121 amino acids in length. One member is annotated as being a flagellar associated protein. 86 -317517 pfam15105 TMEM61 TMEM61 protein family. The function of this family of transmembrane proteins has not, as yet, been determined. Members of this family remain uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 150 and 211 amino acids in length. 189 -317518 pfam15106 TMEM156 TMEM156 protein family. The function of this family of transmembrane proteins, TMEM 156, has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins are found in eukaryotes. Proteins in this family are approximately 310 amino acids in length. In humans, the gene encoding this protein is located in the chromosomal position, 4p14. 208 -317519 pfam15107 FAM216B FAM216B protein family. The function of this family of proteins, FAM216B, has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins are found in eukaryotes. Proteins in this family are approximately 150 amino acids in length. In humans, the gene encoding this protein is located in the position, C13orf30. 103 -291767 pfam15108 TMEM37 Voltage-dependent calcium channel gamma-like subunit protein family. This family of transmembrane proteins, TMEM37, has a role in stabilizing the calcium channel in an inactivated (closed) state. It is a subunit of the L-type calcium channels. This family of proteins are found in eukaryotes. Proteins in this family are approximately 210 amino acids in length. 182 -317520 pfam15109 TMEM125 TMEM125 protein family. The function of this family of transmembrane proteins, TMEM125, has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 55 and 232 amino acids in length. 111 -317521 pfam15110 TMEM141 TMEM141 protein family. The function of this family of transmembrane proteins, TMEM141, has not, as yet, been determined. Members of this family remain uncharacterized. TMEM141 protein family is found in eukaryotes. Proteins in this family are typically between 103 and 124 amino acids in length. There are two completely conserved residues (C and W) that may be functionally important. 91 -291770 pfam15111 TMEM101 TMEM101 protein family. The function of this family of transmembrane proteins, TMEM101, has not, as yet, been determined. Members of this family remain uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 127 and 257 amino acids in length. 249 -317522 pfam15112 DUF4559 Domain of unknown function (DUF4559). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. This family includes human protein CXorf38. 311 -317523 pfam15113 TMEM117 TMEM117 protein family. The function of this family of transmembrane proteins has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 181 and 504 amino acids in length. 410 -339452 pfam15114 UPF0640 Uncharacterized protein family UPF0640. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 70 and 80 amino acids in length. There are two conserved sequence motifs: PGK and YRFLP. 66 -317525 pfam15115 HDNR Domain of unknown function with conserved HDNR motif. This family of proteins is found in eukaryotes. Proteins in this family are typically between 117 and 219 amino acids in length. There is a conserved HDNR sequence motif. The function is not known. 172 -291775 pfam15116 CD52 CAMPATH-1 antigen. 41 -317526 pfam15117 UPF0697 Uncharacterized protein family UPF0697. This family of uncharacterized proteins is found in vertebrates. Proteins in this family are typically around 100 amino acids in length. 96 -317527 pfam15118 DUF4560 Domain of unknown function (DUF4560). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 66 and 78 amino acids in length. There are two conserved sequence motifs: FCK and RTL. 65 -317528 pfam15119 APOC4 Apolipoprotein C4. 94 -339453 pfam15120 SPACA9 Sperm acrosome-associated protein 9. This family of proteins found in eukaryotes represents sperm acrosome-associated protein 9 (SPACA9, previously known as C9orf9 or MAST). Sperm acrosome-associated protein 9 has been suggested to form a complex with calcium-binding proteins calreticulin and caldendrin localized to the acrosome. Despite this, no known protein interaction motifs have been identified in MAST/SPACA9. 164 -317530 pfam15121 TMEM71 TMEM71 protein family. The function of this family, TMEM71, is not known, however it is predicted to be a transmembrane protein. This family of proteins is found in eukaryotes and located in the cell membrane. Proteins in this family vary between 41 and 291 amino acids in length. 150 -317531 pfam15122 TMEM206 TMEM206 protein family. The function of this family of transmembrane proteins, TMEM206, has not, as yet, been determined. Members of this family are remain uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are approximately 350 amino acids in length. 296 -317532 pfam15123 DUF4562 Domain of unknown function (DUF4562). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. There is a conserved HRYQNPW sequence motif. This family includes the human protein C4orf45. 112 -317533 pfam15124 FANCD2OS FANCD2 opposite strand protein. This family of proteins of unknown function gets its name from its position in the mammalian genome: Fanconi anemia group D2 protein opposite strand transcript protein. 175 -317534 pfam15125 TMEM238 TMEM238 protein family. The function of this family of transmembrane proteins, TMEM238; has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 61 and 153 amino acids in length. 64 -317535 pfam15127 SmAKAP Small membrane A-kinase anchor protein. SmAKAP is a small membrane-bound PKA-RI-specific protein kinase A-anchoring protein, referred to as small membrane-AKAP. It is probably tethered to the plasma membrane most through a dual acylation of its N-terminal Met-Gly-Cys- motif (myristoylation and palmitoylation, respectively). It specifically targets PKA-RI isoforms to the plasma membrane. It localizes to plasma membranes, is enriched at cell-cell junctions and associates with filopodia. 96 -317536 pfam15128 T_cell_tran_alt T-cell leukemia translocation-altered. This family of proteins is required for osteoclastogenesis. 92 -317537 pfam15129 FAM150 FAM150 family. This family of proteins known as FAM150 is found in eukaryotes. Members of this family are as yet uncharacterized. Proteins in this family are approximately 143 amino acids in length. The function of this family has not, as yet, been determined, however it is predicted to be a secretory protein family. 123 -291788 pfam15130 DUF4566 Domain of unknown function (DUF4566). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. This family includes human protein C6orf62. 226 -291789 pfam15131 DUF4567 Domain of unknown function (DUF4567). This family of proteins is functionally uncharacterized. This family of proteins is found in some mammals. 75 -317538 pfam15132 DUF4568 Domain of unknown function (DUF4568). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. 209 -317539 pfam15133 DUF4569 Domain of unknown function (DUF4569). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. This family includes human protein CXorf21. 298 -317540 pfam15134 DUF4570 Domain of unknown function (DUF4570). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. 109 -317541 pfam15135 UPF0515 Uncharacterized protein UPF0515. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. There are two conserved sequence motifs: PLT and HSC. 267 -317542 pfam15136 UPF0449 Uncharacterized protein family UPF0449. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. There is a conserved LPTRP sequence motif. 100 -317543 pfam15137 DUF4571 Domain of unknown function (DUF4571). This family of proteins is functionally uncharacterized. This family of proteins is found in vertebrate. This family includes human protein C21orf62. 214 -317544 pfam15138 Syncollin Syncollin. This family has a role in zymogen granule exocytosis. 112 -317545 pfam15139 DUF4572 Domain of unknown function (DUF4572). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 160 and 220 amino acids in length. 194 -317546 pfam15140 DUF4573 Domain of unknown function (DUF4573). This family of proteins is found in eukaryotes. Proteins in this family are typically approximately 360 amino acids in length. 174 -317547 pfam15141 DUF4574 Domain of unknown function (DUF4574). This family of proteins is found in eukaryotes. Proteins in this family are typically between and 86 amino acids in length. 84 -317548 pfam15142 INCA1 INCA1. This family of proteins inhibits cyclin-dependent kinase activity. 178 -291801 pfam15143 DUF4575 Domain of unknown function (DUF4575). This family of uncharacterized proteins is found in eukaryotes. 129 -317549 pfam15144 DUF4576 Domain of unknown function (DUF4576). This family of uncharacterized proteins is found in eukaryotes. 88 -317550 pfam15145 DUF4577 Domain of unknown function (DUF4577). The function of this family of proteins, has not, as yet, been determined. Members of this family are as yet uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically 128 amino acids in length. 128 -317551 pfam15146 FANCAA Fanconi anemia-associated. This family of proteins plays a role in the Fanconi anemia-associated DNA damage response. 434 -317552 pfam15147 DUF4578 Domain of unknown function (DUF4578). This family of proteins is found in eukaryotes. Proteins in this family are typically between 44 and 137 amino acids in length. 126 -317553 pfam15148 Apolipo_F Apolipoprotein F. 193 -317554 pfam15149 CATSPERB Cation channel sperm-associated protein subunit beta protein family. The function of this family of transmembrane proteins, CATSPERB, has not, as yet, been determined. However, it is thought to play a role in sperm hyperactivation by associating with CATSPER1. This family of proteins is found in eukaryotes. Proteins in this family are typically between 220 and 1107 amino acids in length. 520 -317555 pfam15150 PMAIP1 Phorbol-12-myristate-13-acetate-induced. This family carries a BH3 domain between residues 23 and 40. 54 -317556 pfam15151 RGCC Response gene to complement 32 protein family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 44 and 130 amino acids in length. There is a conserved KLGDT sequence motif. 128 -317557 pfam15152 Kisspeptin Kisspeptin. 76 -317558 pfam15153 CYTL1 Cytokine-like protein 1. The function of this family of proteins, CYTL1, has not, as yet, been determined. However it is thought to be a secretory protein expressed in CD34+ haemopoietic cells. This family of proteins is found in eukaryotes. Proteins in this family are typically between 134 and 145 amino acids in length. There are two conserved sequence motifs: PPTCYSR and DDC. 121 -317559 pfam15155 MRFAP1 MORF4 family-associated protein1. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 127 amino acids in length. 119 -317560 pfam15156 CLN6 Ceroid-lipofuscinosis neuronal protein 6. This family of proteins is found in eukaryotes. Proteins in this family are typically between 190 and 310 amino acids in length. 280 -317561 pfam15157 IQCJ-SCHIP1 Fusion protein IQCJ-SCHIP1 with IQ-like motif. This is a family of eukaryotic fusion proteins. It bridges two adjacent genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein. It contains a unique calmodulin-binding IQ motif at the N-terminus not shared with its shorter isoform SCHIP1, suggesting a distinctive function for this protein. It is localized to cytoplasm and actin-rich regions, and in differentiated PC12 cells is seen in neurite extensions. the exact physiological function is unclear. 153 -317562 pfam15158 DUF4579 Domain of unknown function (DUF4579). This family of proteins is found in eukaryotes. Proteins in this family are typically between 192 and 239 amino acids in length. The human member of this family is C8orfK29. 183 -317563 pfam15159 PIG-Y Phosphatidylinositol N-acetylglucosaminyltransferase subunit Y. This family of proteins represents subunit Y of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) complex. It may regulate activity of the complex by binding the catalytic subunit, PIG-A. 71 -317564 pfam15160 SASRP1 Spermatogenesis-associated serine-rich protein 1. Spermatogenesis-associated serine-rich protein 1 is a serine-rich protein differentially expressed during spermatogenesis. 236 -317565 pfam15161 Neuropep_like Neuropeptide-like. This family contains putative neuropeptides. 61 -317566 pfam15162 DUF4580 Domain of unknown function (DUF4580). This family of proteins is found in eukaryotes. Proteins in this family are typically between 63 and 185 amino acids in length. 162 -317567 pfam15163 Meiosis_expr Meiosis-expressed. This family of proteins is essential for spermiogenesis. 75 -317568 pfam15164 WBS28 Williams-Beuren syndrome chromosomal region 28 protein homolog. WBS28 is an integral membrane family. These proteins have been identified as being linked to Williams-Beuren syndrome, OMIM:194050. This family of proteins is found in eukaryotes, and are typically 266 amino acids in length. 265 -317569 pfam15165 REC114-like Meiotic recombination protein REC114-like. REC114-like members are necessary for meiotic DNA double-strand break formation. It functions in conjunction with Mei4. This family of proteins is found in eukaryotes. Proteins in this family are typically between 43 and 259 amino acids in length. 237 -291823 pfam15167 DUF4581 Domain of unknown function (DUF4581). This family of proteins is found in eukaryotes. Proteins in this family are typically 131 amino acids in length. 131 -317570 pfam15168 TRIQK Triple QxxK/R motif-containing protein family. TRIQK member-proteins share a characteristic triple repeat of the sequence QXXK/R, as well as a hydrophobic C-terminal region. Xenopus and mouse triqk genes are broadly expressed throughout embryogenesis, and mtriqk is also generally expressed in mouse adult tissues. TRIQK proteins are localized to the endoplasmic reticulum membrane. This family is found in eukaryotes and members are typically between and 86 amino acids in length. 79 -317571 pfam15169 DUF4564 Domain of unknown function (DUF4564). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. This family includes the human protein C17orf62. 182 -317572 pfam15170 CaM-KIIN Calcium/calmodulin-dependent protein kinase II inhibitor. CaM-KIIN is the inhibitor of Calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII plays a central part in long-term potentiation, which underlies some forms of learning and memory. CaM-KIIN is a natural, specific inhibitor of CaMKII. This family is found in eukaryotes. 79 -317573 pfam15171 Spexin Neuropeptide secretory protein family, NPQ, spexin. Spexin, alternatively named NPQ, is a peptide hormone and is derived from a pro-hormone. This family of proteins has a role in inducing stomach wall contraction and is expressed in the submucosal layer of the mouse oesophagus and stomach. Spexin, like most peptide hormones, is a ligand for G-protein coupled receptors. Spexin is also thought to have a role in controlling arterial blood pressure as well as salt and water balance. 90 -317574 pfam15172 Prolactin_RP Prolactin-releasing peptide. 40 -317575 pfam15173 FAM180 FAM180 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 117 and 182 amino acids in length. There are two conserved sequence motifs: ELAS and DFE. The function of this family is unknown. 137 -291830 pfam15174 PRNT Prion-related protein testis-specific. PRNT is a family of prion-related proteins expressed in the testis. This family of proteins is found in eukaryotes. Proteins in this family are typically between 52 and 94 amino acids in length. 51 -317576 pfam15175 SPATA24 Spermatogenesis-associated protein 24. This family of proteins bind to DNA and to TBP (TATA box binding protein), TATA-binding protein (TBP)-related protein 2 (TRF2) and several polycomb factors. It is likely to function as a transcription regulator. 167 -317577 pfam15176 LRR19-TM Leucine-rich repeat family 19 TM domain. LRR19-TM is the single-span transmembrane region of LRRC19, a leucine-rich repeat protein family. LRRC19 functions as a transmembrane receptor inducing pro-inflammatory cytokines. This suggests its role in innate immunity. This family of proteins is found in eukaryotes. 108 -317578 pfam15177 IL28A Interleukin-28A. The protein family, Interleukin-28A, plays an important role in modulating the immune system. This protein family is induced by viral infection and interacts with a class II receptor. This family of proteins is found in eukaryotes. Proteins in this family are typically between 145 and 195 amino acids in length. 157 -291834 pfam15178 TOM_sub5 Mitochondrial import receptor subunit TOM5 homolog. This is a family of transmembrane proteins thought to form part of the pre-protein translocase complex of the outer mitochondrial membrane (TOM complex). This family of proteins is found in eukaryotes. Proteins in this family are approximately 50 amino acids in length. 51 -317579 pfam15179 Myc_target_1 Myc target protein 1. This family of proteins is regulated by the c-Myc oncoprotein. It regulates the expression of several other c-Myc target genes. 191 -317580 pfam15180 NPBW Neuropeptides B and W. The function of this family, NPBW, which includes Neuropeptides B and W, is thought to be involved in activating G-protein coupled receptors, GPR7 and GPR8. It is thought to play a regulatory role in the organisation of neuroendocrine signals accessing the anterior pituitary gland. It is predicted that this effect will stimulate the increase in water-drinking and food-intake. This suggests it plays a role in the hypothalamic response to stress. This family of proteins is found in eukaryotes. 113 -317581 pfam15181 SMRP1 Spermatid-specific manchette-related protein 1. This family of proteins, SMRP1, is thought to have a role in spermatogenesis and may be involved in differentiation or function of ciliated cells. This family of proteins is found in eukaryotes. Proteins in this family are typically approximately 260 amino acids in length. 248 -317582 pfam15182 OTOS Otospiralin. This family of proteins, Otospiralin, has a role in maintaining the neurosensory epithelium of the inner ear. This family of proteins is found in eukaryotes. Proteins in this family are approximately 90 amino acids in length. 69 -317583 pfam15183 MRAP Melanocortin-2 receptor accessory protein family. This family is thought to be involved in cell trafficking. It is required for MC2R expression in certain cell types, suggesting that it is involved in the processing, trafficking or function of MC2R. MRAP may be involved in the intracellular trafficking pathways in adipocyte cells. This family of proteins is found in eukaryotes. Proteins in this family are typically between 47 and 205 amino acids in length. 89 -291840 pfam15184 TOM6p Mitochondrial import receptor subunit TOM6 homolog. TOMM6 forms part of the pre-protein translocase complex of the outer mitochondrial membrane (TOM complex). This family of proteins is found in eukaryotes. Proteins in this family are typically between 43 and 74 amino acids in length. 74 -291841 pfam15185 BMF Bcl-2-modifying factor, apoptosis. BMF is thought to play a role in inducing apoptosis. It is thought to bind to Bcl-2 proteins. This family of proteins is found in eukaryotes. Proteins in this family are typically between 75 and 190 amino acids in length. There are two conserved sequence motifs: GNA and DQF. 224 -317584 pfam15186 TEX13 Testis-expressed sequence 13 protein family. The function of this family of proteins has not, as yet, been determined. However, members are thought to be encoded for by spermatogonially-expressed, germ-cell-specific genes. This family of proteins is found in eukaryotes. Proteins in this family are typically between 177 and 384 amino acids in length. There are two conserved sequence motifs: FIN and LAL. 148 -317585 pfam15187 Augurin Oesophageal cancer-related gene 4. Augurin is alternatively named oesophageal cancer-related gene 4 protein. The function of this family of transmembrane proteins, is to induce the senescence of oligodendrocyte and neural precursor cells, characterized by G1 arrest, RB1 dephosphorylation and accelerated CCND1 and CCND3 proteasomal degradation. Augurin has been found to stimulate the release of ACTH via the release of hypothalamic CRF. This family of proteins is found in eukaryotes. Proteins in this family are typically 145 amino acids in length. 115 -317586 pfam15188 CCDC-167 Coiled-coil domain-containing protein 167. The function of this family of coiled-coil domains, has not, as yet, been determined. Members of this family remain uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 103 amino acids in length. 82 -317587 pfam15189 MEIOC Meiosis-specific coiled-coil domain-containing protein MEIOC. This family of proteins is found in eukaryotes. In humans, it is encoded for on the chromosomal position C17orf104. 166 -291846 pfam15190 TMEM251 Transmembrane protein 251. This family of proteins, also known as UPF0694, is found in eukaryotes. Proteins in this family are around 135 amino acids in length. In humans, it is found on the chromosomal position, C14orf109. 128 -317588 pfam15191 Synaptonemal_3 Synaptonemal complex central element protein 3. 92 -317589 pfam15192 TMEM213 TMEM213 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 154 amino acids in length. The function of this family is unknown. 79 -317590 pfam15193 FAM24 FAM24 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 87 and 101 amino acids in length. There are two conserved sequence motifs: FDLRT and CLY. The function of this family is unknown. 69 -291850 pfam15194 TMEM191C TMEM191C family. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 302 amino acids in length. There are two conserved sequence motifs: QDC and RLF. The function of this family is unknown. 121 -317591 pfam15195 TMEM210 TMEM210 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 149 amino acids in length. The function of this family is unknown. 112 -259330 pfam15196 Harakiri Activator of apoptosis harakiri. 94 -291852 pfam15198 Dexa_ind Dexamethasone-induced. 90 -291853 pfam15199 DAOA D-amino acid oxidase activator. 90 -317592 pfam15200 KRTDAP Keratinocyte differentiation-associated. 76 -291855 pfam15201 Rod_cone_degen Progressive rod-cone degeneration. This family of proteins is involved in vision. 54 -317593 pfam15202 Adipogenin Adipogenin. This family of proteins is involved in the stimulation of adipocyte differentiation and development. 79 -317594 pfam15203 TMEM95 TMEM95 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 102 and 231 amino acids in length. There is a conserved LGG sequence motif. The function of this family is unknown. 151 -317595 pfam15204 KKLCAg1 Kita-kyushu lung cancer antigen 1. This is a family of cancer antigens. 85 -317596 pfam15205 PLAC9 Placenta-specific protein 9. This family of proteins was identified as being enriched in placenta. 74 -317597 pfam15206 FAM209 FAM209 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 170 amino acids in length. The function of this family is unknown. 148 -317598 pfam15207 TMEM240 TMEM240 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 54 and 175 amino acids in length. The function of this family is unknown. 177 -317599 pfam15208 Rab15_effector Rab15 effector. This family of proteins has a role in receptor recycling from the endocytic recycling compartment. 230 -317600 pfam15209 IL31 Interleukin 31. 132 -291864 pfam15210 SFTA2 Surfactant-associated protein 2. 59 -317601 pfam15211 CXCL17 VEGF co-regulated chemokine 1. 89 -291866 pfam15212 SPATA19 Spermatogenesis-associated protein 19, mitochondrial. 130 -317602 pfam15213 CDRT4 CMT1A duplicated region transcript 4 protein. 137 -317603 pfam15214 PXT1 Peroxisomal testis-specific protein 1. This family of proteins is testis-specific. 50 -291869 pfam15215 FDC-SP Follicular dendritic cell secreted peptide. 65 -317604 pfam15216 TSLP Thymic stromal lymphopoietin. 125 -291871 pfam15217 TSC21 TSC21 family. This family of proteins is testis-specific. 180 -317605 pfam15218 SPATA25 Spermatogenesis-associated protein 25. This family of proteins may be involved in spermatogenesis. 222 -317606 pfam15219 TEX12 Testis-expressed 12. 96 -291874 pfam15220 HILPDA Hypoxia-inducible lipid droplet-associated. This family of proteins stimulate intracellular lipid accumulation, function as autocrine growth factors and enhance cell growth. 63 -317607 pfam15221 LEP503 Lens epithelial cell protein LEP503. This protein may be involved in lens epithelial cell differentiation. 61 -259356 pfam15222 KAR Kidney androgen-regulated. The function of this family is unknown. 105 -317608 pfam15223 DUF4584 Domain of unknown function (DUF4584). This family of proteins is found in eukaryotes. Proteins in this family are approximately 835 amino acids in length. The family is found in association with pfam02437. 425 -317609 pfam15224 SCRG1 Scrapie-responsive protein 1. This protein family has an important function in acting against the prion protein, Scrapie.This family of proteins is found in eukaryotes. Proteins in this family are approximately 98 amino acids in length. 76 -291878 pfam15225 IL32 Interleukin 32. 100 -317610 pfam15226 HPIP HCF-1 beta-propeller-interacting protein family. HPIP is a small cellular polypeptide that binds to the beta-propeller domain of HCF-1. HPIP regulates HCF-1 activity by modulating its subcellular localization. HCF-1 is a cellular protein required by VP16 to activate the herpes simplex virus- immediate-early genes. VP16 is a component of the viral tegument and, after release into the cell, binds to HCF-1 and translocates to the nucleus to form a complex with the POU domain protein Oct-1 and a VP16-responsive DNA sequence. HPIP-mediated export may provide the pool of cytoplasmic HCF-1 required for import of virion-derived VP16 into the nucleus. 130 -317611 pfam15227 zf-C3HC4_4 zinc finger of C3HC4-type, RING. This is a family of primate-specific Ret finger protein-like (RFPL) zinc-fingers of the C3HC4 type. Ret finger protein-like proteins are primate-specific target genes of Pax6, a key transcription factor for pancreas, eye and neocortex development. This domain is likely to be DNA-binding. This zinc-finger domain together with the RDM domain, pfam11002, forms a large zinc-finger structure of the RING/U-Box superfamily. RING-containing proteins are known to exert an E3 ubiquitin protein ligase activity with the zinc-finger structure being mandatory for binding to the E2 ubiquitin-conjugating enzyme. 42 -339454 pfam15228 DAP Death-associated protein. 96 -317613 pfam15229 POM121 POM121 family. 226 -317614 pfam15230 SRRM_C Serine/arginine repetitive matrix protein C-terminus. This domain is found near to the C-terminus of Serine/arginine repetitive matrix proteins 3 and 4. 67 -291884 pfam15231 VCX_VCY Variable charge X/Y family. The variable charge X/Y (VCX/VCY) family of proteins has members on the Human X and Y chromosomes, is expressed in male germ calls and may play a role in spermatogenesis or in sex ratio distortion. 141 -317615 pfam15232 DUF4585 Domain of unknown function (DUF4585). The function of this protein domain family is yet to be characterized. It is putatively thought to lie in the C-terminal domain of the DNA nucleotide repair protein, Xeroderma pigmentosa complementation group A (XPA). The function of XPA is to bind to DNA and repair any mismatched base pairs. This domain family is often found in eukaryotes, and is approximately 70 amino acids in length. There is a conserved DPE sequence motif. In humans, this protein is encoded for in the chromosomal position, Chromosome 5 open reading frame 65. Mutations in the gene lead to myelodysplastic syndromes, where there is inefficient stem cell production in the bone marrow. This suggests that the protein may have a role in forming blood cells. 73 -317616 pfam15233 SYCE1 Synaptonemal complex central element protein 1. This family of proteins includes synaptonemal complex central element protein 1, a component of the synaptonemal complex involved in meiosis, and synaptonemal complex central element protein 1-like, which may be involved in meiosis. 120 -317617 pfam15234 LAT Linker for activation of T-cells. 237 -317618 pfam15235 GRIN_C G protein-regulated inducer of neurite outgrowth C-terminus. This represents the C-terminus of the G protein-regulated inducer of neurite outgrowth proteins. 132 -317619 pfam15236 CCDC66 Coiled-coil domain-containing protein 66. This protein family, named Coiled-coil domain-containing protein 66 (CCDC) refers to a protein domain found in eukaryotes, and is approximately 160 amino acids in length. CCDC66 protein is detected mainly in the inner segments of photoreceptors in many vertebrates including mice and humans. It has been found in dogs, that a mutation in the CCDC66 gene causes generalized progressive retinal atrophy (gPRA). This shows that the protein encoded for by this gene is vital for healthy vision and guards against photoreceptor cell degeneration. The structure of CCDC66 proteins includes a heptad repeat pattern which contains at least one coiled-coil domain. There are at least two or more alpha-helices which form a cable-like structure. 151 -317620 pfam15237 PTRF_SDPR PTRF/SDPR family. This family of proteins includes muscle-related coiled-coil protein (MURC), protein kinase C delta-binding protein (PRKCDBP), polymerase I and transcript release factor (PTRF) and serum deprivation-response protein (SDPR). MURC activates the Rho/ROCK pathway. PRKCDBP appears to act as an immune potentiator. PTRF is involved in caveolae formation and function. SDPR is involved in the targetting of protein kinase Calpha to caveolae. 228 -317621 pfam15238 FAM181 FAM181. This family of proteins is found in eukaryotes. Proteins in this family are typically between 256 and 426 amino acids in length. 284 -317622 pfam15239 DUF4586 Domain of unknown function (DUF4586). This protein family, refers to a domain of unknown function. The precise role of this protein domain remains to be elucidated. This family of proteins is found in eukaryotes and are typically between 256 and 320 amino acids in length. There is a single completely conserved residue, phenylalanine (F), that may be functionally important. In humans, the protein is found in the position, chromosome 4 open reading frame 47. 296 -291893 pfam15240 Pro-rich Proline-rich. This family includes several eukaryotic proline-rich proteins. 160 -317623 pfam15241 Cylicin_N Cylicin N-terminus. This is the N-terminus of cylicin proteins, which may play a role in spermatid differentiation. 107 -317624 pfam15242 FAM53 Family of FAM53. The FAM53 protein family refers to a family of proteins, which bind to a transcriptional regulator that modulates cell proliferation. It is known to be highly important in neural tube development. It is found in eukaryotes and is typically between 303 and 413 amino acids in length. 304 -339455 pfam15243 ANAPC15 Anaphase-promoting complex subunit 15. This is a component of the anaphase promoting complex/cyclosome. 60 -317626 pfam15244 HSD3 Spermatogenesis-associated protein 7, or HSD3. Spermatogenesis-associated protein HSD3 also goes by the name of spermatogenesis-associated protein 7 or SPAT7. The family carries a single transmembrane domain. It functions in several tissues, and is expressed in the developing and mature mouse retina; it is expressed in multiple retinal layers in the adult mouse retina. Mutations lead to LCA disease, or Leber congenital amaurosis, which results in a number of retinal dystrophies. The disease- phenotype is characterized by severe visual loss at birth, nystagmus, a variety of fundus changes, and minimal or absent recordable responses on the electroretinogram (ERG). 413 -317627 pfam15245 VGLL4 Transcription cofactor vestigial-like protein 4. These proteins act as transcriptional enhancer factor (TEF-1) cofactors. 212 -317628 pfam15246 NCKAP5 Nck-associated protein 5, Peripheral clock protein. NCKAP5 is short for Nck-associated protein 5, which is also known as the Peripheral clock protein. NCKAP5 is a protein family, which interacts with the SH3-containing region of the adaptor protein Nck. Nck is a protein that interacts with receptor tyrosine kinases and guanine nucleotide exchange factor Sos. The role of Nck can be thought of as similar to Grb2. The role of NCKAP5 is to assist Nck with its adaptor protein role. 307 -339456 pfam15247 SLBP_RNA_bind Histone RNA hairpin-binding protein RNA-binding domain. This family represents the RNA-binding domain of histone RNA hairpin-binding protein. 68 -317630 pfam15248 DUF4587 Domain of unknown function (DUF4587). This protein family is a domain of unknown function. The precise function of this protein domain remains to be elucidated. This domain family is found in eukaryotes, and is typically between 64 and 79 amino acids in length. There are two conserved sequence motifs: QNAQ and HHH. In humans, it is found in the position, chromosome 21 open reading frame 58. 76 -339457 pfam15249 GLTSCR1 Conserved region of unknown function on GLTSCR protein. This domain family is found in eukaryotes, and is typically between 105 and 124 amino acids in length. It is found on glioma tumor suppressor candidate region gene proteins. ** Forced reload 102 -317632 pfam15250 Raftlin Raftlin. This family of proteins plays a role in the formation and/or maintenance of lipid rafts. 449 -317633 pfam15251 DUF4588 Domain of unknown function (DUF4588). This family of proteins is found in eukaryotes. Proteins in this family are typically between 200 and 274 amino acids in length. There is a conserved LYK sequence motif. There is a single completely conserved residue A that may be functionally important. 242 -317634 pfam15252 DUF4589 Domain of unknown function (DUF4589). This protein family is a domain of unknown function. The precise function of the protein domain remains to be elucidated. This family of proteins is found in eukaryotes and are typically between 215 and 293 amino acids in length. The protein contains two conserved sequence motifs: SSS and KST. 243 -317635 pfam15253 STIL_N SCL-interrupting locus protein N-terminus. 404 -317636 pfam15254 CCDC14 Coiled-coil domain-containing protein 14. This protein family, Coiled-coil domain-containing protein 14 (CCDC14) is a domain of unknown function. This family of proteins is found in eukaryotes. Proteins in this family are typically between 301 and 912 amino acids in length. 861 -317637 pfam15255 CAP-ZIP_m WASH complex subunit CAP-Z interacting, central region. This domain is found on WASH complex subunits FAM21 and CAP-ZIP proteins, as well as on VPEF (vaccinia virus penetration factor). This family of proteins is found in eukaryotes. Proteins in this family are typically between 305 and 1321 amino acids in length. The exact function of this region is not known. 139 -317638 pfam15256 SPATIAL SPATIAL. SPATIAL (stromal protein associated with thymii and lymph node) proteins may be involved in spermatid differentiation. 200 -317639 pfam15257 DUF4590 Domain of unknown function (DUF4590). This family of proteins remains to be characterized and is a domain of unknown function. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. There are two conserved sequence motifs: CCE and PCY. In humans, the gene encoding this protein lies in the position, chromosome 1 open reading frame 173. 104 -317640 pfam15258 FAM222A Protein family of FAM222A. This protein family, FAM222A are a domain of unknown function. This family of proteins is found in eukaryotes and are typically between 411 and 562 amino acids in length. In humans, the gene encoding this protein domain lies in the position, chromosome 12 open reading frame 34. 529 -317641 pfam15259 GTSE1_N G-2 and S-phase expressed 1. This family is the N-terminus of GTSE1 proteins. GTSE-1 (G2 and S phase-expressed-1) protein is specifically expressed during S and G2 phases of the cell cycle. It is mainly localized to the microtubules and when overexpressed delays the G2 to M transition. the full protein negatively regulates p53 transactivation function, protein levels, and p53-dependent apoptosis. This domain family is found in eukaryotes, and is approximately 140 amino acids in length. There is a conserved FDFD sequence motif. 144 -317642 pfam15260 FAM219A Protein family FAM219A. This protein family, FAM219A is a domain of unknown function. This protein family has been found in eukaryotes. Proteins in this family are typically between 144 and 191 amino acids in length. There are two conserved sequence motifs: QLL and LDE. 125 -317643 pfam15261 DUF4591 Domain of unknown function (DUF4591). This protein family is a domain of unknown function. It is found in eukaryotes, and is approximately 120 amino acids in length. In humans, the gene encoding this protein lies in the position chromosome 11 open reading frame 63. 123 -317644 pfam15262 DUF4592 Domain of unknown function (DUF4592). This protein family is a domain of unknown function, which lies to the N-terminus of the protein. This domain family is found in eukaryotes, and is typically between 114 and 130 amino acids in length. There are two completely conserved residues (L and A) that may be functionally important. In humans, the gene that encodes this protein lies in the position, chromosome 2 open reading frame 55. 132 -317645 pfam15264 TSSC4 tumor suppressing sub-chromosomal transferable candidate 4. This family of proteins is expressed from a gene cluster where in humans the TSSC4 gene is not imprinted. This same cluster is associated with the Beckwith-Wiedermann syndrome. This domain family is found in eukaryotes, and is typically between 120 and 147 amino acids in length. There is a conserved YSL sequence motif. 122 -317646 pfam15265 FAM196 FAM196 family. This protein family is a domain of unknown function. This family of proteins is found in eukaryotes and are typically between 441 and 534 amino acids in length. 492 -317647 pfam15266 DUF4594 Domain of unknown function (DUF4594). This protein family is a domain of unknown function. The protein family is found in eukaryotes, and is typically between 170 and 183 amino acids in length.In humans, the gene encoding this protein lies in the position, chromosome 15 open reading frame 52. 175 -317648 pfam15268 Dapper Dapper. This is a family of signalling proteins. They act in a diverse range of signaling pathways and have a range of binding partners. They act as homo- and heterodimers. 659 -259402 pfam15269 zf-C2H2_7 Zinc-finger. this is a family of eukaryotic zinc-fingers. 54 -259403 pfam15270 ACI44 Metallo-carboxypeptidase inhibitor. ACI44, a metallo-carboxypeptidase inhibitor, is one member of a battery of selective inhibitors protecting roundworms of the genus Ascaris, common parasites of the human gastrointestinal tract, from host enzymes and the immune system. 58 -291920 pfam15271 BBP1_N Spindle pole body component BBP1, Mps2-binding protein. This N-terminal domain of BBP1, a spindle pole body component, interacts directly, though transiently, with the polo-box domain of Cdc5p. full length BBP1 localizes at the cytoplasmic side of the central plaque periphery of the spindle pole body (SPB) and plays an important role in inserting a duplication plaque into the nuclear envelope and assembling a functional inner plaque. Although not a membrane protein itself, BBP1 binds to Mps2 as well as to Spc29 and the half-bridge protein Kar1, thus providing a model for how the SPB core is tethered within the nuclear envelope and to the half-bridge. 152 -291921 pfam15272 BBP1_C Spindle pole body component BBP1, C-terminal. This C-terminal domain of BBP1, a spindle pole body component, carries coiled-coils that are necessary for the localization of BBP1 to the spindle pole body (SPB). Although not a membrane protein itself, BBP1 binds to Mps2 as well as to Spc29 and the half-bridge protein Kar1, thus providing a model for how the SPB core is tethered within the nuclear envelope and to the half-bridge 183 -317649 pfam15273 NHS NHS-like. This family of proteins includes Nance-Horan syndrome protein (NHS). 620 -317650 pfam15274 MLIP Muscular LMNA-interacting protein. MLIP is a Muscle-enriched A-type Lamin-interacting Protein, an innovation of amniotes, and is expressed ubiquitously and most abundantly in heart, skeletal, and smooth muscle. MLIP interacts directly and co-localizes with lamin A and C in the nuclear envelope. MLIP also co-localizes with promyelocytic leukemia (PML) bodies within the nucleus. PML, like MLIP, is only found in amniotes, suggesting that a functional link between the nuclear envelope and PML bodies may exist through MLIP. 274 -317651 pfam15275 PEHE PEHE domain. This domain was first identified in drosophila MSL1 (male-specific lethal 1). In drosophila it binds to the histone acetyltransferase males-absent on the first protein (MOF) and to protein male-specific lethal-3 (MSL3). 119 -317652 pfam15276 PP1_bind Protein phosphatase 1 binding. This domain contains a protein phosphatase 1 (PP1) binding site. 61 -339458 pfam15277 Sec3-PIP2_bind Exocyst complex component SEC3 N-terminal PIP2 binding PH. This is the N-terminal domain of fungal and eukaryotic Sec3 proteins. Sec3 is a component of the exocyst complex that is involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.This N-terminal domain contains a cryptic pleckstrin homology (PH) fold, and all six positively charged lysine and arginine residues in the PH domain predicted to bind the PIP2 head group are conserved. The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarised exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. 86 -259411 pfam15278 Sec3_C_2 Sec3 exocyst complex subunit. This small Sec3 C-terminal domain family is based around the fission yeast protein, and is rather shorter than the budding yeast/vertebrate domain Sec3_C, family. pfam09763. In fact it is only this coiled-coil region that they carry in common. The full length fission yeast, UniProtKB:Q10324, protein Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting that these components act as exocyst tethers at the plasma membrane. Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. The exocyst holo-complex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk. 86 -317654 pfam15279 SOBP Sine oculis-binding protein. SOBP is associated with syndromic and nonsyndromic intellectual disability. It carries a zinc-finger of the zf-C2H2 type at the N-terminus, and a highly characteristic C-terminal PhPhPhPhPhPh motif. The deduced 873-amino acid protein contains an N-terminal nuclear localization signal (NLS), followed by 2 FCS-type zinc finger motifs, a proline-rich region (PR1), a putative RNA-binding motif region, and a C-terminal NLS embedded in a second proline-rich motif. SOBP is expressed in various human tissues, including developing mouse brain at embryonic day 14. In postnatal and adult mouse brain SOBP is expressed in all neurons, with intense staining in the limbic system. Highest expression is in layer V cortical neurons, hippocampus, pyriform cortex, dorsomedial nucleus of thalamus, amygdala, and hypothalamus. Postnatal expression of SOBP in the limbic system corresponds to a time of active synaptogenesis. the family is also referred to as Jackson circler, JXC1. In seven affected siblings from a consanguineous Israeli Arab family with mental retardation, anterior maxillary protrusion, and strabismus mutations were found in this protein. 303 -317655 pfam15280 BORA_N Protein aurora borealis N-terminus. This family of proteins is required for the activation of the protein kinase Aurora-A. 193 -317656 pfam15281 Consortin_C Consortin C-terminus. Consortin is a trans-Golgi network cargo receptor involved in targeting connexins to the plasma membrane. 112 -317657 pfam15282 BMP2K_C BMP-2-inducible protein kinase C-terminus. This family represents the C-terminus of BMP2K and related proteins. 233 -339459 pfam15283 DUF4595 Domain of unknown function (DUF4595) with porin-like fold. Large family of predicted secreted proteins mostly from CFG group, but also from Burkholderia, Pseudomonas and Streptomyces. Function of these proteins is not known. A 3D structure of a representative of this family from Bacteroides uniformis was solved by JCSG and deposited to PDB as 4ghb. There is some overlap with RHS-repeat (PF05593) family despite lack of obvious repeats in the structure. 199 -317659 pfam15284 PAGK Phage-encoded virulence factor. PAGK represents a new of virulence factors that is translocated into the host cytoplasm via bacterial outer membrane vesicles (OMV). Members are small proteins composed of ##70 amino acids. In Salmonella they are secreted independently of the SPI-2 type-III secretion system, T3SS. The OMV functions as a vehicle for transferring virulence determinants to the cytoplasm of the infected host cell. OMVs are released from the cell envelopes of Gram-negative bacteria and comprise a variety of outer membrane and periplasmic constituents, including proteins, phospholipids, lipopolysaccharides, and DNA. 64 -291932 pfam15285 BH3 Beclin-1 BH3 domain, Bcl-2-interacting. The BH3 domain is a short motif known to bind to Bcl-xLs. This interaction is important in apoptosis. 23 -317660 pfam15286 Bcl-2_3 Apoptosis regulator M11, B cell 2 leukaemia/lymphoma like. pfam02180. Bcl-2_3 is a small family of eukaryotic proteins associated with autophagy. The family is found in association with pfam00452. 126 -317661 pfam15287 KRBA1 KRBA1 family repeat. KRBA1 is a short repeating motif found in mammalian proteins. It is characterized by a highly conserved sequence of residues, SSPLxxLxxCLK. The function of the repeat, which can be present in up to seven copies, is unknown as is the function of the full length proteins. 43 -317662 pfam15288 zf-CCHC_6 Zinc knuckle. This Zinc knuckle is found in FAM90A mammalian proteins. 36 -317663 pfam15289 RFXA_RFXANK_bdg Regulatory factor X-associated C-terminal binding domain. This C-terminal domain of Regulatory factor X-associated protein binds to RFXANK, the Ankyrin-repeat regulatory factor X proteins. RFXA is part of the RFX complex, Mutants of either RFXAP or RFXANK protein fail to bind to each other. RFX5 binds only to the RFXANK-RFXAP scaffold and not to either protein alone, and neither the scaffold nor RFX5 alone can bind DNA. The binding of the RFXANK-RFXAP scaffold to RFX5 leads to a conformational change in the latter that exposes the DNA-binding domain of RFX5. The DNA-binding domain of RFX5 anchors the RFX complex to MHC class II X and S promoter boxes. 112 -317664 pfam15290 Syntaphilin Golgi-localized syntaxin-1-binding clamp. Syntaphilin or Syntabulin is a family of eukaryotic proteins. Syntaphilin binds to syntaxin-1 thereby inhibiting SNARE complex formation by absorbing free syntaxin-1. So it is a syntaxin-1 clamp that controls SNARE assembly. 216 -291937 pfam15291 Dermcidin Dermcidin, antibiotic peptide. Dermcidin is a family of peptides produced in the sweat to protect against pathogenic Gram-positive bacteria. 101 -317665 pfam15292 Treslin_N Treslin N-terminus. This family represents the N-terminus of treslin, a checkpoint regulator which plays a role in DNA replication preinitiation complex formation. 795 -317666 pfam15293 NUFIP2 Nuclear fragile X mental retardation-interacting protein 2. 594 -317667 pfam15294 Leu_zip Leucine zipper. This family includes Leucine zipper transcription factor-like protein 1 (LZTFL1) and Leucine zipper protein 2 (LUZP2). 276 -317668 pfam15295 CCDC50_N Coiled-coil domain-containing protein 50 N-terminus. 121 -317669 pfam15296 Codanin-1_C Codanin-1 C-terminus. This domain is found near to the C-terminus of codanin-1. 117 -317670 pfam15297 CKAP2_C Cytoskeleton-associated protein 2 C-terminus. This family includes the C-terminus of CKAP2 and CKAP2L. CKAP2 is a microtubule associated protein which stabilizes microtubules. 347 -317671 pfam15298 AJAP1_PANP_C AJAP1/PANP C-terminus. This family includes the C-terminus of adherens junction-associated protein 1 (AJAP1) and of PILR-associating neural protein (PANP). AJAP1 inhibits cell adhesion and migration. PANP is a ligand for the immune inhibitory receptor paired immunoglobulin-like type 2 receptor alpha. 200 -317672 pfam15299 ALS2CR8 Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 8. This domain is found in amyotrophic lateral sclerosis 2 chromosomal region candidate gene 8 protein. 206 -339460 pfam15300 INT_SG_DDX_CT_C INTS6/SAGE1/DDX26B/CT45 C-terminus. This domain is found at the C-terminus of integrator complex subunit 6 (INTS6), sarcoma antigen 1 (SAGE1), protein DDX26B (DDX26B) and members of the cancer/testis antigen family 45. 62 -317674 pfam15301 SLAIN SLAIN motif-containing family. The SLAIN motif containing family is named after the presence of a SLAIN motif in SLAIN1. They are a family of microtubule plus-end tracking proteins. 383 -317675 pfam15302 P33MONOX P33 mono-oxygenase. This family of proteins contains a flavine-containing mono-oxygenase motif. It may have a role in the regulation of neuronal survival, differentiation and axonal outgrowth. 291 -317676 pfam15303 RNF111_N E3 ubiquitin-protein ligase Arkadia N-terminus. This domain is found at the N-terminus of E3 ubiquitin-protein ligase Arkadia. 277 -317677 pfam15304 AKAP2_C A-kinase anchor protein 2 C-terminus. This family includes the C-terminus of A-kinase anchor protein 2 (AKAP2). It includes the site where the regulatory subunits (RII) of protein kinase AII binds. 318 -317678 pfam15305 IFT43 Intraflagellar transport protein 43. Intraflagellar transport protein 43 (IFT43) is a subunit of the IFT complex A (IFT-A) machinery of primary cilia. 133 -317679 pfam15306 LIN37 LIN37. LIN37 is a component of the DREAM (or LINC) complex which represses cell cycle-dependent genes in quiescent cells and plays a role in the cell cycle-dependent activation of G2/M genes. 148 -339461 pfam15307 SPACA7 Sperm acrosome-associated protein 7. SPACA7 is a family of eukaryotic proteins expressed in the testes. Proteins in this family are typically between 104 and 195 amino acids in length. There is a conserved DEIL sequence motif. The function is not known. 108 -317681 pfam15308 CEP170_C CEP170 C-terminus. This family includes the C-terminus of centrosomal protein of 170 kDa (CEP170). 674 -317682 pfam15309 ALMS_motif ALMS motif. This domain is found at the C-terminus of Alstrom syndrome protein 1 (ALMS1), KIAA1731 and C10orf90. 131 -317683 pfam15310 VAD1-2 Vitamin A-deficiency (VAD) rat model signalling. VAD1-2 is a family of proteins found in eukaryotes. The family is expressed in testes and is involved in signalling during spermatogenesis. 249 -317684 pfam15311 HYLS1_C Hydrolethalus syndrome protein 1 C-terminus. 89 -317685 pfam15312 JSRP Junctional sarcoplasmic reticulum protein. JSRP, junctional sarcoplasmic reticulum protein 1, or junctional-face membrane protein of 45 kDa homolog, is a family of eukaryotic proteins. The family is to the junctional face membrane of the skeletal muscle sarcoplasmic reticulum (SR); it colocalizes with its Ca2+-release channel (the ryanodine receptor), and interacts with calsequestrin and the skeletal-muscle dihydro-pyridine receptor Cav1. It is key for the functional expression of voltage-dependent Ca2+ channels. 59 -317686 pfam15313 HEXIM Hexamethylene bis-acetamide-inducible protein. HEXIM is a transcriptional regulator that functions as a general RNA polymerase II transcription inhibitor. In cooperation with 7SK snRNA it sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation. HEXIM may also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity. 100 -317687 pfam15314 PRAP Proline-rich acidic protein 1, pregnancy-specific uterine. PRAP, or proline-rich acidic protein 1, is a family of eukaryotic proteins. PRAP is abundantly expressed in the epithelial cells of the human liver, kidney, gastrointestinal tract, and cervix. It is significantly down-regulated in hepatocellular carcinoma and right colon adenocarcinoma compared with the respective adjacent normal tissues. In the mouse it is expressed in the epithelial cells of the mouse and rat gastrointestinal tracts, and pregnant mouse uterus. This article describes the isolation, distribution, and functional characterization of the human homolog. PRAP was abundantly expressed in the epithelial cells of the human liver, kidney, gastrointestinal tract, and cervix. PRAP plays an important role in maintaining normal growth suppression. 45 -317688 pfam15315 FRG2 Facioscapulohumeral muscular dystrophy candidate 2. This family of proteins is found in eukaryotes. The family is localized close to the D4Z4 repeats on chromosome 4 and 10 that are associated with the autosomal dominant facioscapulohumeral muscular dystrophy (FSHD). FRG2 are transcriptionally upregulated in FSHD myoblast cultures suggesting involvement in the pathogenesis of FSHD. 183 -317689 pfam15316 MDFI MyoD family inhibitor. Members of this family inhibits the transactivation activity of the MyoD family of myogenic factors. They affect axin-mediated regulation of the Wnt and JNK signaling pathways, and regulate expression from viral promoters. 179 -317690 pfam15317 Lbh Cardiac transcription factor regulator, Developmental protein. The family of proteins are cardiac transcription regulators, named Lbh, short for Limb, bud and heart. They regulate embryological development in the heart. More specifically, in humans, they may act as transcriptional activators in MAPK signaling pathway to mediate cellular functions. This family of proteins is found in eukaryotes. Proteins in this family are typically between 92 and 116 amino acids in length. 89 -317691 pfam15318 Bclt Putative Bcl-2 like protein of testis. This family of proteins is found in eukaryotes. The family may represent a set of Bcl-2-like proteins involved in apoptosis, see UniProt:Q9BQM9. 175 -317692 pfam15319 RHINO RAD9, RAD1, HUS1-interacting nuclear orphan protein. RHINO, or RAD9, RAD1, HUS1-interacting nuclear orphan, is a family of eukaryotic proteins. Under genotoxic stresses such as ionizing radiation during the S phase, RHINO plays a role in DNA damage response signalling. It is recruited to sites of DNA damage through interaction with the 9-1-1 cell-cycle checkpoint response complex and TOPBP1 in a ATR-dependent (ataxia telangiectasia and Rad3-related) manner. It is required for the progression of the G1 to S phase transition of breast cancer cells, and it is known to play a role in the stimulation of CHEK1 phosphorylation. It interacts with RAD9A, RAD18, TOPBP1 and UBE2N. 244 -317693 pfam15320 RAM mRNA cap methylation, RNMT-activating mini protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 102 and 154 amino acids in length. There is a single completely conserved residue D that may be functionally important. RAM is a family of eukaryotic proteins that are an obligate component of the mammalian cap methyltransferase, RNMT (RNA guanine-7 methyltransferase). RAM consists of an N-terminal RNMT-activating domain and a C-terminal RNA-binding domain. Either RAM or RNMT independently have rather weak binding affinity for RNA, but together their RNA affinity is significantly increased. RAM is necessary for efficient cap methylation, maintaining mRNA expression levels, for mRNA translation and for cell viability. 81 -317694 pfam15321 ATAD4 ATPase family AAA domain containing 4. ATAD4 is a family of proteins is found in eukaryotes. The family is also known as PRR15L, or proline-rich 15-like. ATAD4 is expressed almost exclusively in post-mitotic cells both during foetal development and in adult tissues, such as the intestinal epithelium and the testis. Its expression in mouse and human gastrointestinal tumors is linked, directly or indirectly, to the disruption of the Wnt signaling pathway. 96 -317695 pfam15322 PMSI1 Protein missing in infertile sperm 1, putative. This family of proteins is found in eukaryotes. Proteins in this family are typically between 249 and 341 amino acids in length. 308 -317696 pfam15323 Ashwin Developmental protein. This family of proteins are found in eukaryotes. These proteins have an important role to play in developmental biology, particularly embryogenesis. It plays an important role in cell survival and axial pattern. It is also thought to be a crucial subunit in the tRNA splicing ligase complex. Proteins in this family are typically between 141 and 232 amino acids in length. There are two conserved sequence motifs: HPE and PQR. 220 -317697 pfam15324 TALPID3 Hedgehog signalling target. TALPID3 is a family of eukaryotic proteins that are targets for Hedgehog signalling. Mutations in this gene noticed first in chickens lead to multiple abnormalities of development. 1241 -317698 pfam15325 MRI Modulator of retrovirus infection. MRI, or modulator of retrovirus infection, is a family of eukaryotic proteins that regulate the activity of the proteasome in the uncoating of retroviruses. 105 -317699 pfam15326 TEX15 Testis expressed sequence 15. TEX15 is a family of eukaryotic proteins that is required for chromosomal synapsis and meiotic recombination. TEX15 regulates the loading of DNA repair proteins onto sites of double-stranded-breaks and, thus, its absence causes a failure in meiotic recombination. Two polymorphisms in the TEX15 gene could be considered the genetic risk factors for spermatogenic failure in the Chinese Han population. 234 -317700 pfam15327 Tankyrase_bdg_C Tankyrase binding protein C terminal domain. This protein domain family is found at the C-terminal end of the Tankyrase binding protein in eukaryotes. The precise function of this protein is still unknown. However, it is known interacts with the enzyme tankyrase, a telomeric poly(ADP-ribose) polymerase, by binding to it. Tankyrin catalyzes poly(ADP-ribose) chain formation onto proteins. More specifically, it binds to the ankyrin domain in tankyrase. The protein domain is approximately 170 amino acids in length and contains two conserved sequence motifs: FPG and LKA. 170 -317701 pfam15328 GCOM2 Putative GRINL1B complex locus protein 2. This protein family is named Putative GRINL1B complex locus protein 2. GRINL1B is short for: glutamate receptor, ionotropic, N-methyl D-aspartate-like 1B. The name indicates what sort of receptor it is thought to be, a ligand gated ion channel specific to the neurotransmitter Glutamate. This family of proteins is found in eukaryotes. Proteins in this family are typically between 325 and 463 amino acids in length. The protein is thought to be the product of a pseudogene with a role in helping assemble a gene transcription unit. 213 -317702 pfam15330 SIT SHP2-interacting transmembrane adaptor protein, SIT. SIT, or SHP2-interacting transmembrane adaptor protein, is a disulfide-linked dimer that regulates human T Cell activation. 112 -317703 pfam15331 TP53IP5 Cellular tumor antigen p53-inducible 5. TP53IP5 suppresses cell growth, and its intracellular location and expression change in a cell-cycle-dependent manner. 218 -317704 pfam15332 LIME1 Lck-interacting transmembrane adapter 1. LIME1 is a family of eukaryotic transmembrane adaptors. It plays an important role in linking BCR stimulation to B-cell activation and is expressed in primary B cells. LIME localizes to lipid rafts in T cells in response to TCR stimulation, and is phosphorylated by Lck and recruits signalling molecules such as Lck, PI3K, Grb2, Gads, and SHP-2. LIME acts as the transmembrane adaptor linking BCR-induced membrane-proximal signalling to B-cell activation. 224 -317705 pfam15333 TAF1D TATA box-binding protein-associated factor 1D. TAF1D is a family of eukaryotic proteins that are members of the SL1 complex The SL1 complex includes TBP and TAF1A, TAF1B and TAF1C, and plays a role in RNA polymerase I transcription. Alternatives names have included 'JOSD3, Josephin domain containing 3'. 219 -317706 pfam15334 AIB Aurora kinase A and ninein interacting protein. AIB is a family of eukaryotic proteins necessary for the adequate functioning of Aurora-A, a protein involved in chromosome alignment, centrosome maturation, mitotic spindle assembly and aspects of tumorigenesis. AIB is likely to act as a regulator of Aurora-A activity. 324 -339462 pfam15335 CAAP1 Caspase activity and apoptosis inhibitor 1. CAAP1, or caspase activity and apoptosis inhibitor 1, is a family of eukaryotic proteins involved in the regulation of apoptosis. It modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. 62 -317708 pfam15336 Auts2 Autism susceptibility gene 2 protein. Auts2, or FBRSL2, Fibrosin-1-like protein 2, is a family of eukaryotic proteins associated both with a susceptibility to autism and with influencing the number of corpora lutea produced by breeding sows. 196 -317709 pfam15337 Vasculin Vascular protein family Vasculin-like 1. GC-rich promoter-binding protein 1-like 1 or Vasculin-like protein family 1, is likely to be a transcription factor. The domain family is found in eukaryotes, and is approximately 90 amino acids in length. 83 -317710 pfam15338 TPIP1 p53-regulated apoptosis-inducing protein 1. TPIP1 is a family of eukaryotic proteins whose expression is induced by wild-type p53. Ectopically expressed TPIP1, which is localized within mitochondria, leads to apoptotic cell death through dissipation of mitochondrial A(psi)m. Phosphorylation of p53 Ser-46 regulates the transcriptional activation of TPIP1, thereby mediating p53-dependent apoptosis. 123 -317711 pfam15339 Afaf Acrosome formation-associated factor. Afaf is a family of single pass type I membrane proteins. Afaf is a vesicle factor derived from the early endosome trafficking pathway that is involved in the biogenesis of the acrosome on the maturing spermatozoon head. 191 -291985 pfam15340 COPR5 Cooperator of PRMT5 family. COPR5 is a family of histone H4-binding proteins expressed in the nucleus. It interacts with the N-terminus of histone H4 thereby mediating the association between histone H4 and PRMT5, PRMT5, the Janus kinase-binding protein 1 that catalyzes the formation of symmetric dimethyl-arginine residues in proteins. COPR5 is specifically required for histone H4 'Arg-3' methylation mediated by PRMT5, but not histone H3 'Arg-8' methylation, suggesting that it modulates the substrate specificity of PRMT5. This family of proteins is found in eukaryotes. 151 -339463 pfam15341 SLX9 Ribosome biogenesis protein SLX9. SLX9 is present in pre-ribosomes from an early stage and is implicated in the processing events that remove the ITS1 spacer sequences. In eukaryotes, biogenesis of ribosomes starts in the nucleolus with transcription by RNA polymerase I of a large precursor RNA molecule, called 35S pre-rRNA in yeast, in which the 18S, 5.8S, and 25S mature rRNAs reside, while RNA polymerase III transcribes a 3'-extended pre-5S rRNA. The 35S precursor also contains external transcribed spacer elements (5' and 3'-ETS) at either end as well as internal transcribed spacers (ITS1 and ITS2) that separate the mature sequences. 124 -317713 pfam15342 FAM212 FAM212 family. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. 40 -317714 pfam15343 DEPP Decidual protein induced by progesterone family. DEPP is a family of proteins expressed in various tissues, including pancreas, placenta, ovary, testis and kidney. High levels are found during the first trimester. Its expression is induced by progesterone, testosterone and, to a much lower extent, oestrogen. The family is alternatively known as fasting-induced gene protein, FIG. 188 -317715 pfam15344 FAM217 FAM217 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 329 and 507 amino acids in length. There is a conserved YPDFLP sequence motif. 211 -317716 pfam15345 TMEM51 Transmembrane protein 51. This family of proteins is found in eukaryotes. Proteins in this family are typically between 233 and 253 amino acids in length. 238 -339464 pfam15346 ARGLU Arginine and glutamate-rich 1. ARGLU, arginine and glutamate-rich 1 protein family, is required for the oestrogen-dependent expression of ESR1 target genes. It functions in cooperation with MED1. The family of proteins is found in eukaryotes. 151 -317718 pfam15347 PAG Phosphoprotein associated with glycosphingolipid-enriched. PAG, or Cbp/PAG (Csk binding protein/phospho-protein associated with glycosphingolipid-enriched microdomains) is a transmembrane family that has a negative regulatory role in T-cell activation through being an adapter for C-terminal Src kinase, Csk. This family of proteins is found in eukaryotes. 429 -317719 pfam15348 GEMIN8 Gemini of Cajal bodies-associated protein 8. GEMIN8 proteins are found in the nuclear bodies called gems (Gemini of Cajal bodies) that are often in proximity to Cajal (coiled) bodies themselves. They are also found in the cytoplasm. The family is part of the SMN (survival motor neurone) complex that plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus. GEMIN8 binds directly to SMN1 and mediates the interaction of the GEMIN6-GEMIN7 heterodimer. 210 -291994 pfam15349 DCA16 DDB1- and CUL4-associated factor 16. DCA16 is a family of eukaryotic proteins that interacts with DDB1 and CUL4A. The family may function as a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex. 216 -317720 pfam15350 ETAA1 Ewing's tumor-associated antigen 1 homolog. This family of proteins is found in eukaryotes, where members are expressed at high levels in the brain, liver kidney and Ewing tumor cell lines. Proteins in this family are typically between 648 and 898 amino acids in length. 819 -317721 pfam15351 JCAD Junctional protein associated with coronary artery disease. JCAD is a component of VE-cadherin-based cell-cell junctions in endothelial cells. The cell-cell or adherens junction is an adhesion complex that plays a crucial role in the organisation and function of epithelial and endothelial cellular sheets. These junctions join the actin cytoskeleton to the plasma membrane to form adhesive contacts between cells or between cells and extracellular matrix. The junctions also mediate both cell adhesion and cell-signalling. JCAD localizes close to the apical membrane in epithelial cells. This family is found in eukaryotes. 1357 -317722 pfam15352 K1377 Susceptibility to monomelic amyotrophy. This family of proteins is associated with a susceptibility to monomelic amyotrophy. 983 -317723 pfam15353 HECA Headcase protein family homolog. HECA was characterized first in Drosophila where it regulates the proliferation and differentiation of cells during adult morphogenesis. In humans, HECA affects cell cycle progression and proliferation in head and neck cancer cells. It by slows down cell division of oral squamous cell carcinoma cells and may thereby act as a tumor-suppressor in head and neck cancers. 101 -259486 pfam15354 KAAG1 Kidney-associated antigen 1. KAAG1, kidney-associated antigen 1, or RU2AS (RU2 antisense gene protein) has been found in mammals. It is expressed in testis and kidney, and, at lower levels, in urinary bladder and liver. It is expressed by a high proportion of tumors of various histologic origin, including melanomas, sarcomas and colorectal carcinomas. 84 -317724 pfam15355 Chisel Stretch-responsive small skeletal muscle X protein, Chisel. The murine X-linked gene Chisel (Csl/Smpx) is selectively expressed in cardiac and skeletal muscle cells. It localizes to the costameric cytoskeleton of muscle cells through its association with focal adhesion proteins, where it may participate in regulating the dynamics of actin through the Rac1/p38 kinase pathway. Thus it is implicated in the maintenance of muscle integrity and in responses to biomechanical stress. 84 -292000 pfam15356 SPR1 Psoriasis susceptibility locus 2. SPR1 is psoriasis susceptibility locus 2 protein family. 114 -292001 pfam15357 SEEK1 Psoriasis susceptibility 1 candidate 1. This family is considered a candidate for susceptibility to psoriasis. 150 -317725 pfam15358 TSKS Testis-specific serine kinase substrate. TSKS, testis-specific serine kinase substrate, is expressed in the testis and is downregulated in cancerous testicular tissue, in comparison with adjacent normal tissue. TSKS expression is very low to undetectable in seminoma, teratocarcinoma, embryonal, and Leydig cell tumors, while high in testicular tissue adjacent to tumors which contain pre-malignant carcinoma in situ. Recently it has been shown in human testis to be localized to the equatorial segment of ejaculated human sperm. The finding of a TSKS family member in mature sperm suggests that this family of kinases might play a role in sperm function. TSKS is localized during spermiogenesis to the centrioles of post-meiotic spermatids, where it reaches its greatest concentration during the period of flagellogenesis. 556 -339465 pfam15359 CDV3 Carnitine deficiency-associated protein 3. This family of proteins is found in eukaryotes. Proteins in this family are typically between 128 and 251 amino acids in length. CDV3 is also known as TPP36 - tyrosine-phosphorylated protein 36. The function is not known. 123 -317727 pfam15360 Apelin APJ endogenous ligand. Apelin is among the most potent stimulators of cardiac contractility known. The apelin-APJ signaling pathway is an important novel mediator of cardiovascular control. Apelin is an adipokine secreted by adipocytes where it is co-expressed with apelin receptor (APJ) in adipocytes. It suppresses adipogenesis through MAPK kinase/ERK dependent pathways and prevents lipid droplet fragmentation, thereby inhibiting basal lipolysis through AMP kinase dependent enhancement of perilipin expression. It also inhibits hormone-stimulated acute lipolysis through decreasing perilipin phosphorylation. Apelin induces a decrease of free fatty acid release via its dual inhibition on adipogenesis and lipolysis. As a vaso-active and vascular cell growth-regulating peptide Apelin is a target of the BMP pathway, the TGF-beta/bone morphogenic protein (BMP) system - a major pathway for angiogenesis. 55 -339466 pfam15361 RIC3 Resistance to inhibitors of cholinesterase homolog 3. RIC3 is a protein associated with nicotinic acetylcholine receptors (nAChRs), neurotransmitter-gated ion channels expressed at the neuromuscular junction and within the central and peripheral nervous systems. It can enhance functional expression of multiple nAChR subtypes. RIC3 promotes functional expression of homomeric alpha-7 and alpha-8 nicotinic acetylcholine receptors at the cell surface. 146 -317729 pfam15362 Enamelin Enamelin. ENAMELIN is involved in the mineralisation and structural organisation of enamel. It is necessary for the extension of enamel during the secretory stage of dental enamel formation. The proteins are expressed in teeth, particularly in odontoblasts, ameloblasts and cementoblasts. 908 -317730 pfam15363 DUF4596 Domain of unknown function (DUF4596). This domain family is found in eukaryotes, and is approximately 50 amino acids in length. There is a conserved ELET sequence motif. There are two completely conserved residues (S and E) that may be functionally important. 46 -317731 pfam15364 PAXIP1_C PAXIP1-associated-protein-1 C term PTIP binding protein. This protein domain family is the C-terminal domain of PAXIP1-associated-protein-1, which also goes by the name PTIP-associated protein 1. This family of proteins is found in eukaryotes. The function of this protein is to localize at the site of DNA damage and form foci with PTIP at the DNA break point. Furthermore, studies have shown that depletion of PA1 increases cellular sensitivity to ionizing radiation. Proteins in this family are typically between 122 and 254 amino acids in length. 134 -339467 pfam15365 PNRC Proline-rich nuclear receptor coactivator motif. The PNRC family, proline-rich nuclear receptor coactivator, is found in eukaryotes. Studies in S. pombe show that the proteins carrying this motif are mRNA decapping proteins.In addition, this motif is found in Saccharomyces cerevisiae two intrinsically disordered decapping enhancers Edc1 and Edc2, which show limited sequence conservation with human PNRC2. This motif in the N-terminal domain serves two purposes: it enhances the activity of the catalytic domain by recognizing part of the mRNA cap structure (i.e. activation motif), and secondly, it directly interacts with the decapping activator Dcp1. Mutation in the (YAG) sequence led to los of activity of activate the decapping complex. Hence the activity of the family members involved in mRNA processing mechanisms depends on YAG activation motif that is 11-13 residues N-terminal of a conserved LPxP Dcp1 interaction motif. 20 -317733 pfam15366 DUF4597 Domain of unknown function (DUF4597). This family of proteins is found in eukaryotes. Proteins in this family are typically between 63 and 76 amino acids in length. There is a conserved TPPTPT sequence motif. 63 -317734 pfam15367 CABS1 Calcium-binding and spermatid-specific protein 1. CABS1 is a family of proteins found in eukaryotes. It is also known as NYD-SP26. It binds calcium and is specifically expressed in the elongate spermatids and then localized into the principal piece of flagella of matured spermatozoa. 397 -317735 pfam15368 BioT2 Spermatogenesis family BioT2. BioT2 is a family of eukaryotic proteins expressed only in the testes. BioT2 is found abundantly in five types of murine cancer cell lines, suggesting it plays a role in testes development as well as tumorigenesis. 170 -317736 pfam15369 KIAA1328 Uncharacterized protein KIAA1328. This function of this protein family remains uncharacterized. This family of proteins is found in eukaryotes. 323 -317737 pfam15370 DUF4598 Domain of unknown function (DUF4598). This family of proteins is found in eukaryotes. Proteins in this family are typically between 159 and 251 amino acids in length. 111 -317738 pfam15371 DUF4599 Domain of unknown function (DUF4599). The function of this family of eukaryotic proteins is not known. 88 -317739 pfam15372 DUF4600 Domain of unknown function (DUF4600). 128 -317740 pfam15373 DUF4601 Domain of unknown function (DUF4601). This protein family is a domain of unknown function, which is found in eukaryotes. In humans, the gene encoding this protein is found in the position, chromosome 19 open reading frame 45. 440 -317741 pfam15374 CCDC71L Coiled-coil domain-containing protein 71L. The protein family, Coiled-coil domain-containing protein 71L, is a domain of unknown function, which is found in eukaryotes. 379 -317742 pfam15375 DUF4602 Domain of unknown function (DUF4602). This family of proteins is found in eukaryotes. Proteins in this family are typically between 173 and 294 amino acids in length. This family includes Human C1orf131. 129 -317743 pfam15376 DUF4603 Domain of unknown function (DUF4603). This protein family is a domain of unknown function. In particular, this domain lies at the C-terminal end of a protein found in eukaryotes. 1247 -339468 pfam15377 DUF4604 Domain of unknown function (DUF4604). This protein family is a domain of unknown function, which is found in eukaryotes. Proteins in this family are typically between 141 and 174 amino acids in length and contain a conserved LSF sequence motif. 171 -317745 pfam15378 DUF4605 Domain of unknown function (DUF4605). This protein family is a domain of unknown function, which is found in eukaryotes. Proteins in this family are typically between 82 and 137 amino acids in length. 55 -317746 pfam15379 DUF4606 Domain of unknown function (DUF4606). This domain family is found in eukaryotes, and is approximately 100 amino acids in length. 103 -317747 pfam15380 DUF4607 Domain of unknown function (DUF4607). This family of proteins is found in eukaryotes. Proteins in this family are typically between 207 and 359 amino acids in length. 264 -317748 pfam15382 DUF4609 Domain of unknown function (DUF4609). This family of proteins is found in eukaryotes. Proteins in this family are typically between 70 and 139 amino acids in length. 68 -339469 pfam15383 TMEM237 Transmembrane protein 237. This protein family is found in eukaryotes. The function of this protein is to aid the production of new cilia in ciliogenesis. Mutations in the protein cause a disease, named Joubert syndrome type 14 (JBTS14) and also affect cell signalling using the Wnt pathway. Proteins in this family are typically between 203 and 512 amino acids in length. There are two completely conserved G residues that may be functionally important. 251 -317750 pfam15384 PAXX PAXX, PAralog of XRCC4 and XLF, also called C9orf142. PAXX is a set of eukaryotic proteins that belong to the XRCC4 superfamily of DNA-double-strand break-repair proteins. PAXX interacts directly with DSB-repair protein Ku and is recruited to DNA-damage sites in cells thus functioning with XRCC4 and XLF to bring about DSB repair and cell survival in response to DSB-inducing agents. 190 -317751 pfam15385 SARG Specifically androgen-regulated gene protein. This family of proteins is found in eukaryotes, the function of this protein is still unknown but it is thought to be an androgen receptor. Protein expression is up-regulated in the presence of androgens, but not in the presence of glucocorticoids. SARG tends to be highly expressed in prostate tissue. Proteins in this family are typically between 340 and 587 amino acids in length. There is a conserved EETI sequence motif. 560 -317752 pfam15386 Tantalus Drosophila Tantalus-like. An alpha+beta fold domain found in metazoan proteins such as Drosophila Tantalus. Drosophila Tantalus binds the chromatin protein Additional sex combs (Asx) and also binds DNA in vitro. 50 -317753 pfam15387 DUF4611 Domain of unknown function (DUF4611). This family of proteins is found in eukaryotes. Proteins in this family are typically between 71 and 100 amino acids in length. There is a conserved AKR sequence motif. 96 -317754 pfam15388 FAM117 Protein Family FAM117. This protein family is a domain of unknown function found in eukaryotes. Proteins in this family are typically between 269 and 453 amino acids in length. There are two conserved sequence motifs: RRT and TQT. 306 -317755 pfam15389 DUF4612 Domain of unknown function (DUF4612). This protein family is a domain of unknown function, which is found in eukaryotes. Proteins in this family are typically between 109 and 323 amino acids in length. 112 -339470 pfam15390 WDCP WD repeat and coiled-coil-containing protein family. This family includes WD repeat and coiled-coil-containing protein (WDCP, previously known as C2orf44), which is found in eukaryotes and consists of around 721 amino acids. The N-terminal contains two WD (tryptophan-aspartic acid) repeats (WD1 and WD2). WD repeats may be involved in a range of biological functions including apoptosis, transcriptional regulation and signal transduction. The C-terminal contains a proline-rich sequence (PPRLPQR), and is predicted to have leucine-rich coiled coil region (CC). WDCP was identified in a proteomic screen to find signalling components that interact with Hck (hematopoietic cell kinase), a non-receptor tyrosine kinase. WDCP was shown to bind tightly and specifically to the SH3 domain of Hck in U937 human monocytic cells. WDCP was also shown to exist as an oligomer when expressed in mammalian cells. While the function of WDCP is unknown, it has been identified in a gene fusion event with anaplastic lymphoma kinase (ALK) in colorectal cancer patients. 682 -317757 pfam15391 DUF4614 Domain of unknown function (DUF4614). This domain family is found in eukaryotes, and is approximately 180 amino acids in length. There is a conserved EALT sequence motif. 176 -317758 pfam15392 Joubert Joubert syndrome-associated. This family of proteins is domain of unknown function, which is found in eukaryotes. However, mutations in the gene lead to Joubert's Syndrome, indicating that the protein that the gene encodes for is vital for correct ciliogenesis. 300 -339471 pfam15393 DUF4615 Domain of unknown function (DUF4615). This protein family is a domain of unknown function, which is found in eukaryotes. Proteins in this family are typically between 161 and 229 amino acids in length. There is a single completely conserved residue F that may be functionally important. 120 -317760 pfam15394 DUF4616 Domain of unknown function (DUF4616). This protein family is a domain of unknown function found at the C-terminal domain of the proteins. This protein family is found in eukaryotes. Proteins in this family are typically between 166 and 538 amino acids in length. 488 -317761 pfam15395 DUF4617 Domain of unknown function (DUF4617). This family of proteins is found in eukaryotes. Proteins in this family are typically between 702 and 1745 amino acids in length. 1076 -317762 pfam15396 FAM60A Protein Family FAM60A. This protein family, FAM60A is a family of proteins is found in eukaryotes. It is known to be a cell cycle protein that binds to the promoter of a gene transcription repressor complex, named SIN4-HDAC complex. This means that FAM60A has an important role to play in 'switching on' gene expression. Proteins in this family are typically between 179 and 324 amino acids in length. 206 -317763 pfam15397 DUF4618 Domain of unknown function (DUF4618). This family of proteins is found in eukaryotes. Proteins in this family are typically between 238 and 363 amino acids in length. There are two conserved sequence motifs: EYP and KCTPD. 258 -317764 pfam15398 DUF4619 Domain of unknown function (DUF4619). This family of proteins is found in eukaryotes. Proteins in this family are typically between 128 and 299 amino acids in length. 296 -292042 pfam15399 DUF4620 Domain of unknown function (DUF4620). 112 -317765 pfam15400 TEX33 Testis-expressed sequence 33 protein family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 147 and 280 amino acids in length. There are two conserved sequence motifs: NIRH and SYT. The function is not known. 139 -317766 pfam15401 TAA-Trp-ring Tryptophan-ring motif of head of Trimeric autotransporter adhesin. TAA-head_Trp-ring is the tryptophan-ring motif of some Gram-negative Enterobacteriaceae. The Trp-ring folds into a beta-meander type on the top of the head domain of its trimeric autotransporter adhesin proteins. In conjunction with the GIN domain it is thought to be the region of the head that adheres to fibronectin. 64 -317767 pfam15402 Spc7_N N-terminus of kinetochore NMS complex subunit Spc7. 913 -317768 pfam15403 HiaBD2 HiaBD2_N domain of Trimeric autotransporter adhesin (GIN). HiaBD2_N may represent the GIN domain of the Head region of TAAs - trimeric autotransporter adhesins. Not all TAAs carry this domain; however, in those that do, the GIN in combination with the Trp-ring domain is necessary for adhesion to fibronectin in the host cell. 52 -317769 pfam15404 PH_4 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 182 -317770 pfam15405 PH_5 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 131 -339472 pfam15406 PH_6 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 112 -317772 pfam15407 Spo7_2_N Sporulation protein family 7. Spo7_2 constitutes a different set of fungal and related species from those found in Spo7. This domain is found in general at the N-terminus. In many members the domain is associated with a Pleckstrin-homology - PH - domain. 61 -317773 pfam15409 PH_8 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 89 -292052 pfam15410 PH_9 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 118 -339473 pfam15411 PH_10 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 120 -339474 pfam15412 Nse4-Nse3_bdg Binding domain of Nse4/EID3 to Nse3-MAGE. This family includes Nse4 and EID3 members, that bind over this region to the Nse3 pocket, in MAGE family pfam01454. 53 -317776 pfam15413 PH_11 Pleckstrin homology domain. This Pleckstrin homology domain is found in some fungal species. 95 -292056 pfam15414 DUF4621 Protein of unknown function (DUF4621). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 350 amino acids in length. 329 -292057 pfam15415 Mfa_like_2 Fimbrillin-like. This family of proteins is found in bacteria. Proteins in this family are typically between 348 and 360 amino acids in length. Analysis of structural comparisons shows this family to be part of the FimbA (CL0450) superfamily of adhesin components or fimbrillins. 305 -317777 pfam15416 DUF4623 Domain of unknown function (DUF4623). This family of proteins is found in bacteria. Proteins in this family are approximately 470 amino acids in length. There are two conserved sequence motifs: HLL and RYL. 445 -292059 pfam15417 DUF4624 Domain of unknown function (DUF4624). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are approximately 150 amino acids in length. 132 -339475 pfam15418 DUF4625 Domain of unknown function (DUF4625). This family contains a likely bacterial Ig-like fold, suggesting it may be a family of lipoproteins. 125 -317779 pfam15419 LNP1 Leukemia NUP98 fusion partner 1. This family of proteins includes leukemia NUP98 fusion partner 1, the gene encoding this protein is involved in a chromosomal translocation with the NUP98 locus in a form of T-cell acute lymphoblastic leukemia. 169 -339476 pfam15420 Abhydrolase_9_N Alpha/beta-hydrolase family N-terminus. This is the N-terminal transmembrane domain of a family of alpha/beta hydrolases which may function as lipases. The C-terminal domain (pfam10081) is the catalytic domain. 207 -292063 pfam15421 Polysacc_deac_3 Putative polysaccharide deacetylase. 423 -317781 pfam15423 FLYWCH_N FLYWCH-type zinc finger-containing protein. This family is the N-terminus of some FLYWCH-zinc-finger proteins, found in eukaryotes. The family is found in association with pfam04500. There are two conserved sequence motifs: EQE and QEPS. 107 -317782 pfam15424 ODAM Odontogenic ameloblast-associated family. 264 -339477 pfam15425 DUF4627 Domain of unknown function (DUF4627). This family of proteins is found in bacteria. Proteins in this family are approximately 230 amino acids in length. There is a conserved WYK sequence motif. 200 -317784 pfam15427 S100PBPR S100P-binding protein. S100PBPR is a family of proteins found in eukaryotes, and localized to cell nuclei where S100P is also present, and the two proteins co-immunoprecipitate. S100P is a member of the S100 family of calcium-binding proteins and there have been several recent reports of its over-expression in pancreatic ductal adenocarcinoma. In situ hybridisation shows S100PBPR transcripts to be found in islet cells but not duct cells of the healthy pancreas. An interaction between S100P and S100PBPR may be involved in early pancreatic cancer. 388 -339478 pfam15428 Imm26 Immunity protein 26. A predicted immunity protein with mostly all-beta fold and several conserved hydrophobic residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-URI1 or Tox-HNH family. The protein is also found heterogeneous poly-immunity loci. 105 -317786 pfam15429 DUF4628 Domain of unknown function (DUF4628). This family of proteins is found in eukaryotes. Proteins in this family are typically between 152 and 673 amino acids in length. 273 -317787 pfam15430 SVWC Single domain von Willebrand factor type C. SVWC is a family of single-domain von Willebrand factor type C proteins from lower eukaryotes. The canonical pattern of most von Willebrand factor type C (VWC) domains is of ten cysteines, however this family, largely but not exclusively of arthropod proteins, contains only eight. SVWC family proteins respond to environmental challenges, such as bacterial infection and nutritional status. They also are involved in anti-viral immunity, and all of these functions seem linked to SVWC expression being induced by Dicer2. 66 -292071 pfam15431 TMEM190 Transmembrane protein 190. 133 -339479 pfam15432 Sec-ASP3 Accessory Sec secretory system ASP3. Sec-ASP3 is family of bacterial proteins involved in the Sec secretory system. The family forms part of the accessory SecA2/SecY2 system specifically required to export GspB, a serine-rich repeat cell-wall glycoprotein adhesin encoded upstream in the same operon. 123 -317789 pfam15433 MRP-S31 Mitochondrial 28S ribosomal protein S31. MRP-S31 is the mitochondrial 28S ribosomal subunit S31. This family of proteins is found in eukaryotes. Proteins in this family are typically between 246 and 395 amino acids in length. There are two conserved sequence motifs: RHFMELV and GLSKN. 301 -317790 pfam15434 FAM104 Family 104. This family of proteins is found in eukaryotes. Proteins in this family are typically between 113 and 185 amino acids in length. There is a conserved SLQ sequence motif. 109 -317791 pfam15435 UNC119_bdg UNC119-binding protein C5orf30 homolog. UNC119_bdg is a family of eukaryotic proteins that probably plays a role in trafficking of proteins, via interaction with unc119 family cargo adapters. The family may play a role in ciliary membrane localization. 198 -339480 pfam15436 PGBA_N Plasminogen-binding protein pgbA N-terminal. PGBA_N is an N-terminal family of bacterial proteins that bind plasminogen. This activity was identified in In Helicobacter pylori where it is thought to contribute to the virulence of this bacterium. Both PgbA and PgbB are surface-exposed proteins that mediate binding to plasminogen such that it can be converted into plasmin in the presence of a Pg activator. 217 -292077 pfam15437 PGBA_C Plasminogen-binding protein pgbA C-terminal. PGBA_C is an C-terminal family of bacterial proteins that bind plasminogen. This activity was identified in Helicobacter pylori where it is thought to contribute to the virulence of this bacterium. Both PgbA and PgbB are surface-exposed proteins that mediate binding to plasminogen such that it can be converted into plasmin in the presence of a plasminogen activator. 84 -292078 pfam15438 Phyto-Amp Antigenic membrane protein of phytoplasma. Phyto-Amp is a family of phytopathogenic wall-less bacterial antigenic membrane proteins. The bacteria are limited to the phloem and pose a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are assumed to be involved in determining vector specificity. Phyto-Amp is thought to be one family of proteins that mediates such specificity. The proteins appear to be encoded by circular extrachromosomal elements, at least one of which is a plasmid. 195 -317793 pfam15439 NYAP_N Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter. NYAP_N is an N-terminal family of eukaryotic proteins that are substrates of tyrosine kinase in the brain. When first identified, the family members were referred to as unconventional myosin XVI, or Myr 8. However, proteins have now been identified as being integrally involved in neuronal function and morphogenesis. The family is involved in both the activation of phosphoinositide 3-kinase (PI3K) and the recruitment of the downstream effector WAVE complex to the close vicinity of PI3K; it also appears to regulate the brain size and neurite outgrowth in mice. 377 -317794 pfam15440 THRAP3_BCLAF1 THRAP3/BCLAF1 family. This family includes thyroid hormone receptor-associated protein 3 (THRAP3), which is a spliceosome component and a subunit of the TRAP complex which plays a role in pre-mRNA splicing and in mRNA decay. It also includes the transcriptional repressor Bcl-2-associated transcription factor 1 (BCLAF1). 594 -317795 pfam15441 ARHGEF5_35 Rho guanine nucleotide exchange factor 5/35. This family includes Rho guanine nucleotide exchange factor 5 and Rho guanine nucleotide exchange factor 35. 488 -317796 pfam15442 DUF4629 Domain of unknown function (DUF4629). This domain family is found in eukaryotes, and is approximately 150 amino acids in length. There are two conserved sequence motifs: MHML and LGKK. 150 -317797 pfam15443 DUF4630 Domain of unknown function (DUF4630). This family of proteins is found in eukaryotes. Proteins in this family are typically between 124 and 286 amino acids in length. 154 -317798 pfam15444 TMEM247 Transmembrane protein 247. This family of transmembrane proteins is found in eukaryotes. Proteins in this family are typically between 197 and 222 amino acids in length. The function of this family is unknown. 211 -317799 pfam15445 ATS acidic terminal segments, variant surface antigen of PfEMP1. ATS is the intracellular and relatively conserved acidic terminal segment of the Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1). this domain appears to be present in all variants of the highly polymorphic PfEMP1 proteins. 446 -317800 pfam15446 zf-PHD-like PHD/FYVE-zinc-finger like domain. This family appears to be a combination domain of several consecutive zinc-binding regions. 169 -317801 pfam15447 NTS N-terminal segments of PfEMP1. This family, the N-terminal segment, is the most variable part of the variant surface antigen family of Plasmodium falciparum, the erythrocyte membrane protein-1 (PfEMP1) proteins. PfEMP1 is an important target for protective immunity and is implicated in the pathology of malaria through its ability to adhere to host endothelial receptors. A structural and functional study of the N-terminal domain of PfEMP1 from the VarO variant comprising the N-terminal segment (NTS) and the first DBL domain (DBL1alpha1), shows this region is directly implicated in rosetting. NTS, previously thought to be a structurally independent component of PfEMP1, forms an integral part of the DBL1alpha domain that is found to be the important heparin-binding site. This family is closely associated with PFEMP, pfam03011, and Duffy_binding, pfam05424. 36 -292088 pfam15448 NTS_2 N-terminal segments of P. falciparum erythrocyte membrane protein. NTS_2 is a family of the most variable part of the variant surface antigen family of Plasmodium falciparum, the erythrocyte membrane protein-1 (PfEMP1). However, in this group of proteins conservation is high. PfEMP1 is an important target for protective immunity and is implicated in the pathology of malaria through its ability to adhere to host endothelial receptors. 50 -317802 pfam15449 Retinal Retinal protein. This family of proteins is found in the photoreceptor cells of the retina. Mutations of the gene encoding this protein have been associated with retinal disorders such as retinitis pigmentosa and late-onset progressive retinal atrophy. The function of this family of proteins is unknown, but it is likely to be important in the development and function of the retina. 1292 -317803 pfam15450 CCDC154 Coiled-coil domain-containing protein 154. CCDC154 is an osteopetrosis-related protein that suppresses cell proliferation by inducing G2/M arrest. 527 -317804 pfam15451 DUF4632 Domain of unknown function (DUF4632). This family of proteins is found in eukaryotes. Proteins in this family are typically between 59 and 190 amino acids in length. 72 -317805 pfam15452 NYAP_C Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter. NYAP_C is a C-terminal family of eukaryotic proteins that are substrates of tyrosine kinase in the brain. When first identified, the family members were referred to as unconventional myosin XVI, or Myr 8. However, proteins have now been identified as being integrally involved in neuronal function and morphogenesis. The family is involved in both the activation of phosphoinositide 3-kinase (PI3K) and the recruitment of the downstream effector WAVE complex to the close vicinity of PI3K; it also appears to regulate the brain size and neurite outgrowth in mice. 262 -317806 pfam15453 Pilt Protein incorporated later into Tight Junctions. Pilt is a family of eukaryotic tight junction-proteins that binds to guanylate-kinase. Pilt is a component of TJs (Tight junctions) rather than AJs (Adhesin junctions). The protein is incorporated into TJs after TJ strands are formed, thereby suggesting the name Pilt for 'protein incorporated later into TJs'. Pilt binds to the guanylate-kinase region of hDlg otherwise known as Disk large homolog. 350 -317807 pfam15454 LAMTOR Late endosomal/lysosomal adaptor and MAPK and MTOR activator. LAMTOR is a family of eukaryotic proteins that have otherwise been referred to as Lipid raft adaptor protein p18, Late endosomal/lysosomal adaptor and MAPK and MTOR activator 1, and Protein associated with DRMs and endosomes. It is found to be one of three small proteins constituting the Rag complex or Ragulator that interact with each other, localize to endosomes and lysosomes, and play positive roles in the MAPK pathway. The complex does this by interacting with the Rag GTPases, recruiting them to lysosomes, and bringing about mTORC1 activation. 71 -317808 pfam15455 Pro-rich_19 Proline-rich 19. This family includes proline-rich protein 19. 363 -339481 pfam15456 Uds1 Up-regulated During Septation. Uds1 is a domain family is found mostly in fungi, and is typically between 120 and 138 amino acids in length. The GO annotation for the S.pombe protein describes the protein as barrier septum assembly involved in cell cycle cytokinesis, GO:0071937. Many of the uncharacterized members are listed as being involucrin repeat proteins, but this can not be substantiated. 120 -259588 pfam15457 HopW1-1 Type III T3SS secreted effector HopW1-1/HopPmaA. HopW1-1 is a family of bacterial modular P. syringae Avr effectors that induce accumulation of the signal molecule salicylic acid (SA) and the transcripts of HWI1 (HOPW1-1-INDUCED GENE1) in Arabidopsis. Thus HopW1-1 elicits a resistance response in Arabidopsis. 321 -317810 pfam15458 NTR2 Nineteen complex-related protein 2. NTR2 or Nineteen complex-related protein 2 is a family of largely fungal and plant proteins that form a complex with the DExD/H-box RNA helicase Prp43. Along with NTR1 it is an accessory factor of Prp43 in catalyzing spliceosome disassembly. Disassembly of the spliceosome after completion of the splicing reaction is necessary for recycling of splicing factors to promote efficient splicing. NTR2 and NTR1 associate with a post-splicing complex containing the excised intron and the spliceosomal U2, U5, and U6 snRNAs, that supports a link with a late stage in the pre-mRNA splicing process. 254 -317811 pfam15459 RRP14 60S ribosome biogenesis protein Rrp14. RRP14 is a family of nucleolar 60S ribosomal biogenesis proteins from eukaryotes. RRP14 functions in ribosome synthesis as it is required for the maturation of both small and large subunit rRNAs and it helps to prevent premature cleavage of the pre-rRNA at site C2. It also plays a role in cell polarity and/or spindle positioning. 63 -339482 pfam15460 SAS4 Something about silencing, SAS, complex subunit 4. SAS4 is a family of largely fungal silencing regulators. This silencing is mediated by chromatin. SAS4 specifically silences the yeast mating-type genes HML and HMR. SAS4 is found to be one subunit of a complex, the SAS complex, that interacts with chromatin assembly factor Asf1p, and asf1 mutants show silencing defects similar to mutants in the SAS complex. Thus, ASF1-dependent chromatin-assembly may mediate the role of the SAS complex in silencing. Co-expression of Sas2, SAS4, and Sas5 in Escherichia coli leads to formation of a stable SAS complex that acetylates histones. SAS4 is essential for the acetyltransferase activity of Sas2, and Sas5 is also important. 99 -339483 pfam15461 BCD Beta-carotene 15,15'-dioxygenase. This is a family of bacterial and archaeal proteins that catalyzes or regulates the conversion of beta-carotene to retinal. characterization of BCD proteins shows them to cleave beta-carotene at its central double bond (15,15') to yield two molecules of all-trans-retinal. However, the oxygen atom of retinal originated not from water but from molecular oxygen, suggesting that the enzyme was a beta-carotene 15,15'-dioxygenase, rather than a mono-oxygenase that catalyzes the same biochemical reaction. 266 -317814 pfam15462 Barttin Bartter syndrome, infantile, with sensorineural deafness (Barttin). Barttin is a family of mammalian proteins that are chloride ion channel beta-subunits crucial for renal Cl-re-absorption and inner ear K+ secretion. Bartter syndrome is a term covering a heterogeneous group of autosomal recessive salt-losing nephropathies that are caused by disturbed transepithelial sodium chloride re-absorption in the distal nephron. Mutations in the BCD proteins lead to sensorial deafness. 220 -339484 pfam15463 ECM11 Extracellular mutant protein 11. ECM11 is a family of largely fungal proteins. ECM11 interacts with Cdc6, an essential protein involved in the initiation of DNA replication, and is a nuclear protein involved in maintaining chromatin structure. It was previously identified as a protein involved in yeast cell wall biogenesis and organisation, but is also found to be required in meiosis where its function is related to DNA replication and crossing-over. 132 -317816 pfam15464 DUF4633 Domain of unknown function (DUF4633). This family of proteins is found in eukaryotes. Proteins in this family are typically between 94 and 123 amino acids in length. 114 -317817 pfam15465 DUF4634 Domain of unknown function (DUF4634). This family of proteins is found in eukaryotes. Proteins in this family are typically between 98 and 133 amino acids in length. 130 -317818 pfam15466 DUF4635 Domain of unknown function (DUF4635). This family of proteins is found in eukaryotes. Proteins in this family are typically between 120 and 154 amino acids in length. There are two conserved sequence motifs: LEQ and DLE. 134 -317819 pfam15467 SGIII Secretogranin-3. Secretogranin_3 is a family of vertebrate proteins that is one of the granin family. Granins are rich in acidic amino acids, exhibit aggregation at low pH, and possess a high capacity for calcium binding. Because granins are restricted in their localization to secretory granules of neuroendocrine cells, two interesting characteristics of their sorting mechanisms have been observed. These are, first, that they aggregate on low pH/high calcium concentrations and second that two of them carry an N-terminal disulfide loop, mutations in which lead to mis-sorting. Thus, granins are thought to be essential for the sorting of secretory proteins at the trans-Golgi network. Chromogranin A (CgA) binds to SGIII in secretory granules of endocrine cells. SGIII directly binds to cholesterol components of the secretory granule membrane and targets CgA to secretory granules in pituitary and pancreatic endocrine cells. Mutations in the SGIII gene may influence the risk of obesity through possible regulation of hypothalamic neuropeptide secretion. 449 -292107 pfam15468 DUF4636 Domain of unknown function (DUF4636). This family of proteins is found in eukaryotes. Proteins in this family are typically between 196 and 244 amino acids in length. 243 -339485 pfam15469 Sec5 Exocyst complex component Sec5. This Sec5 family of eukaryotic proteins conserved is not representing the Sec5-Ral binding site. 186 -317821 pfam15470 DUF4637 Domain of unknown function (DUF4637). This family of proteins is found in eukaryotes. Proteins in this family are typically between 142 and 178 amino acids in length. 166 -317822 pfam15471 TMEM171 Transmembrane protein family 171. This family of proteins is found in eukaryotes. TMEM171 is also known as parturition-related protein 2. Proteins in this family are typically between 242 and 326 amino acids in length. 318 -317823 pfam15472 DUF4638 Domain of unknown function (DUF4638). This family of proteins is found in eukaryotes. Proteins in this family are typically between 240 and 272 amino acids in length. 262 -317824 pfam15473 PCNP PEST, proteolytic signal-containing nuclear protein family. PCNP is a PEST-containing nuclear protein that is ubiquitinated by NIRF, a Np95/ICBP90-like RING finger protein. PEST sequences, which are rich in proline (P), glutamic acid (E), serine (S) and threonine (T), are found in a number of short-lived proteins, such as transcription factors and cell cycle-associated proteins. Their function is generally controlled by proteolysis, mostly via ubiquitin-mediated degradation. Thus, NIRF and PCNP are a ubiquitin ligase and its substrate, respectively, that may constitute a novel signalling pathway with some relation to cell proliferation. 154 -339486 pfam15474 MU117 Meiotically up-regulated gene family. This protein was identified as being up-regulated during meiosis in S.pombe. This family of proteins is found in largely in plants and fungi. Proteins in this family are typically between 128 and 920 amino acids in length. 91 -317826 pfam15475 UPF0444 Transmembrane protein C12orf23, UPF0444. This family of proteins is found in eukaryotes. Proteins in this family are typically between 94 and 119 amino acids in length. 91 -317827 pfam15476 SAP25 Histone deacetylase complex subunit SAP25. SAP25 is a family of proteins found in eukaryotes. SAP25 is a core component of the mSin3 co-repressor complex whose subcellular location is regulated by PML. mSin3, the transcriptional co-repressor, is associated with histone deacetylases (HDACs) and is utilized by many DNA-binding transcriptional repressors. SAP25 is a nucleo-cytoplasmic shuttling protein that is actively exported from the nucleus by a CRM1-dependent mechanism. It binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. 202 -339487 pfam15477 SMAP Small acidic protein family. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. There is a single completely conserved residue G that may be functionally important. 75 -317829 pfam15478 LKAAEAR Family of unknown function with LKAAEAR motif. This family of proteins is found in eukaryotes. Proteins in this family are typically between 119 and 235 amino acids in length. There is a conserved LKAAEAR sequence motif. 131 -317830 pfam15479 DUF4639 Domain of unknown function (DUF4639). This family of proteins is found in eukaryotes. Proteins in this family are typically between 161 and 601 amino acids in length. 580 -317831 pfam15480 DUF4640 Domain of unknown function (DUF4640). This family of proteins is found in eukaryotes. Proteins in this family are typically between 99 and 306 amino acids in length. 278 -317832 pfam15481 CPG4 Chondroitin proteoglycan 4. CPG4 is a domain family found in nematodes of one of nine core chondroitin proteoglycans. Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans, the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. CPG4 has the largest predicted mass of the C. elegans CPGs at 84 kDa. The majority of its 35 predicted glycosaminoglycan attachment sites reside in the COOH-terminal half of the protein, of which four sites were confirmed by DTT modification. The family is rich in conserved cysteines. 95 -317833 pfam15482 CCER1 Coiled-coil domain-containing glutamate-rich protein family 1. This is a family of coiled-coil family proteins found in eukaryotes. Proteins in this family are typically between 160 and 397 amino acids in length. 214 -317834 pfam15483 DUF4641 Domain of unknown function (DUF4641). This family of proteins is found in eukaryotes. Proteins in this family are typically between 201 and 519 amino acids in length. 443 -317835 pfam15484 DUF4642 Domain of unknown function (DUF4642). This family of proteins is found in eukaryotes. Proteins in this family are typically between 115 and 196 amino acids in length. 155 -317836 pfam15485 DUF4643 Domain of unknown function (DUF4643). This family of proteins is found in eukaryotes. Proteins in this family are typically between 254 and 462 amino acids in length. 250 -317837 pfam15486 DUF4644 Domain of unknown function (DUF4644). This family of proteins is found in eukaryotes. Proteins in this family are typically between 143 and 191 amino acids in length. 161 -317838 pfam15487 FAM220 FAM220 family. This protein family is a domain of unknown function which is found in eukaryotes. Proteins in this family are typically between 217 and 277 amino acids in length. There are two completely conserved residues (S and L) that may be functionally important. 274 -317839 pfam15488 DUF4645 Domain of unknown function (DUF4645). This family of proteins is found in eukaryotes. Proteins in this family are typically between 200 and 298 amino acids in length. 294 -317840 pfam15489 CTC1 CST, telomere maintenance, complex subunit CTC1. CTC1 is one of the three components of the CST complex that assists Shelterin to protect the ends of telomeres from attack by DNA-repair mechanisms. Mutations in human CTC1 have been recognized as contributing to cerebroretinal microangiopathy. 1137 -317841 pfam15490 Ten1_2 Telomere-capping, CST complex subunit. Ten1_2 is a family of primarily plant and vertebrate telomere-capping proteins that is evolutionarily related to the mostly fungal family of Ten1, pfam12658. 117 -339488 pfam15491 CTC1_2 CST, telomere maintenance, complex subunit CTC1. CTC1 is one of the three components of the CST complex that assists Shelterin to protect the ends of telomeres from attack by DNA-repair mechanisms. This family largely represents sequences from plants species. 284 -317843 pfam15492 Nbas_N Neuroblastoma-amplified sequence, N terminal. Nbas_N is an N-terminal family of metazoan sequences. This domain lies at the N-terminal of several WD40-containing proteins. The human protein is over-expressed in neuroblastoma cells. 282 -339489 pfam15493 YrpD Domain of unknown function, YrpD. This family of proteins is found in bacteria. Proteins in this family are typically between 236 and 351 amino acids in length. The member from Bacillus subtilis, UniProtKB:O05411, is named YrpD. 201 -317845 pfam15494 SRCR_2 Scavenger receptor cysteine-rich domain. SRCR_2 is a scavenger receptor cysteine-rich domain family found largely on vertebrate sequences up-stream of the trypsin-like transmembrane serine protease, Spinesin. 99 -339490 pfam15495 Fimbrillin_C Major fimbrial subunit protein type IV, Fimbrillin, C-terminal. Fimbrillin_C is a C-terminal family of major fimbrial subunit protein type IV proteins largely from Bacillus species. The family is associated with family P_gingi_FimA, pfam06321. 84 -317847 pfam15496 DUF4646 Domain of unknown function (DUF4646). This is a family of proteins largely from fungi. The function is not known. 115 -317848 pfam15497 SNAPc19 snRNA-activating protein complex subunit 19, SNAPc subunit 19. SNAPc19 is a family of proteins found in eukaryotes. It is one of the five core components of the snRNA-activating protein complex or SNAPc that helps direct the nucleation of RNA polymerases II and III. The core RNA polymerase II snRNA promoters consist of a single essential element, the proximal sequence element (PSE), whereas the core RNA polymerase III snRNA promoters consist of both a PSE and a TATA box. The SNAPc binds to the PSE of both of these. SNAPc recognizes the PSE sequence common to all human snRNA genes, irrespective of polymerase specificity. SNAPc is also known as the PSE transcription factor (PTF) or PSE-binding protein (PBP). The human SNAP19 and SNAP45 subunits are dispensable for transcription in vitro and are not as widely conserved as the other three, SNAP190, SNAP43 and SNAP50, suggesting that these vertebrate-specific SNAPc subunits may have adapted specialized regulatory roles for snRNA gene transcription. 88 -317849 pfam15498 Dendrin Nephrin and CD2AP-binding protein, Dendrin. Dendrin is a family of eukaryotic proteins found in the podocytes of the kidneys. Dendrin, originally identified in telencephalic dendrites, is a constituent of the slit diaphragm, SD, complex of podocytes, where it directly binds to nephrin and CD2AP. Kidney podocytes and their slit diaphragms (SDs) form the final barrier to urinary protein loss. SD proteins also participate in intracellular signalling pathways. Dendrin appears to prevent programmed cell death (apoptosis) through its binding to nephrin. The SD protein nephrin serves as a component of a signalling complex that directly links podocyte junctional integrity to actin cytoskeletal dynamics. Thus, dendrin is identified as an SD family with proapoptotic signalling properties that accumulates in the podocyte nucleus in response to glomerular injury. 656 -317850 pfam15499 Peptidase_C98 Ubiquitin-specific peptidase-like, SUMO isopeptidase. Peptidase_C98 is a small family of SUMO - small ubiquitin-related modifier - isopeptidases found in eukaryotes. Reversible attachment of SUMO is an essential protein modification in all eukaryotic cells, The family neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase, and the invariant residues required for SUMO binding and cleavage, in UniProtKB:Q5W0Q7, are Cys-236, His-456 and Asp-472, all of which are fully conserved in the family. Member proteins are low-abundance proteins that colocalize with coilin in Cajal bodies. Peptidase_C98 depletion does not affect global sumoylation, but causes striking coilin mis-localization and impairs cell proliferation, functions that are not dependent on the catalytic activity. Thus, Peptidase_C98 represents a third type of SUMO protease, with essential functions in Cajal body biology. 271 -259631 pfam15500 Ntox1 Putative RNase-like toxin, toxin_1. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold and conserved cysteine, histidine and glutamate residues that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 96 -339491 pfam15501 MDM1 Nuclear protein MDM1. This family of proteins is present in the nucleus. The function of MDM1 is not known. 493 -317852 pfam15502 MPLKIP M-phase-specific PLK1-interacting protein. 63 -317853 pfam15503 PPP1R35_C Protein phosphatase 1 regulatory subunit 35 C-terminus. This is the C-terminus of protein phosphatase 1 regulatory subunit 35. This protein interacts with and inhibits the serine/threonine-protein phosphatase PPP1CA. 143 -317854 pfam15504 DUF4647 Domain of unknown function (DUF4647). This family of proteins is found in eukaryotes. Proteins in this family are typically between 282 and 480 amino acids in length. 455 -317855 pfam15505 DUF4648 Domain of unknown function (DUF4648). This family of proteins is found in eukaryotes. Proteins in this family are typically between 115 and 207 amino acids in length. 165 -292144 pfam15506 OCC1 OCC1 family. The human member of this family, overexpressed in colon carcinoma 1 protein has been shown to be overexpressed in several colon carcinomas. 61 -339492 pfam15507 DUF4649 Domain of unknown function (DUF4649). This family of Firmicute sequences has members that are annotated as ribose-phosphate pyrophosphokinase; however there is no evidence for this attribution. Member proteins are all shorter than 100 residues in length. 68 -339493 pfam15508 NAAA-beta beta subunit of N-acylethanolamine-hydrolyzing acid amidase. NAAA-beta is a family of vertebral sequences that form the beta subunit of vertebral N-acylethanolamine-hydrolyzing acid amidase, a member of the choloylglycine hydrolase acid ceramidase family. The alpha subunit is represented by family CBAH, pfam02275. 63 -317858 pfam15509 DUF4650 Domain of unknown function (DUF4650). This family of vertebrate proteins lies to the C-terminus of Ubiquitin-specific peptidase-like protein family peptidase_C98, pfam15499. It might be acting as the exosite for the peptidase. 519 -317859 pfam15510 CENP-W CENP-W protein. CENP-W is a family of vertebral kinetochore proteins that associates directly with CENP-T. CENP-W members are histone-fold proteins. The histone fold region is critical for binding to centromeric DNA. Importantly, the CENP-T-W complex does not directly associate with CENP-A, but with histone H3 in the centromere region. CENP-T and -W form a hetero-tetramer with CENP-S and -X and bind to a ~100 bp region of nucleosome-free DNA forming a nucleosome-like structure. The DNA-CENP-T-W-S-X complex is likely to be associated with histone H3-containing nucleosomes rather than with CENP-nucleosomes. 88 -317860 pfam15511 CENP-T_C Centromere kinetochore component CENP-T histone fold. CENP-T is a family of vertebral kinetochore proteins that associates directly with CENP-W. The N-terminus of CENP-T proteins interacts directly with the Ndc80 complex in the outer kinetochore. Importantly, the CENP-T-W complex does not directly associate with CENP-A, but with histone H3 in the centromere region. CENP-T and -W form a hetero-tetramer with CENP-S and -X and bind to a ~100 bp region of nucleosome-free DNA forming a nucleosome-like structure. The DNA-CENP-T-W-S-X complex is likely to be associated with histone H3-containing nucleosomes rather than with CENP-nucleosomes. This domain is the C-terminal histone fold domain of CENP-T, which associates with chromatin. 108 -317861 pfam15512 CAF-1_p60_C Chromatin assembly factor complex 1 subunit p60, C-terminal. CAF-1_p60_C is a family of vertebral proteins that is involved in chromatin assembly. CAF-1_p60 is one of the three subunits of the CAF-1 complex, and this domain binds to the C-terminal region of CAF-1_p150, family pfam12253. The N-terminal part of the CAF-1_p60 proteins is a WD-repeat structure, pfam00400. 177 -339494 pfam15513 DUF4651 Domain of unknown function (DUF4651). family of short, secreted proteins specific to the Streptococcus genus, with distant homologs, not recognized by this HMM, found in other cocci. In all sequenced genomes, proteins from this family appear in a conserved genomic context with an thioredoxin, tRNA synthase and tRNA binding protein, but the functional implication of this is unclear 61 -292152 pfam15514 ThaI Restriction endonuclease ThaI. This family of restriction endonucleases belongs to the PD-(D/E)XK superfamily. It cuts the recognition site CG^CG leaving blunt ends. 202 -317863 pfam15515 MvaI_BcnI MvaI/BcnI restriction endonuclease family. This family of proteins includes the restriction endonucleases MvaI and BcnI. These enzymes both function as monomers. MvaI cleaves the sequence CC/WGG, where W is an A or a T nucleotide, leaving sticky ends. BcnI cleaves the sequence CC/SGG, where S is G or C, leaving sticky ends. 230 -292154 pfam15516 BpuSI_N BpuSI N-terminal domain. This is the N-terminal (nuclease) domain of the BpuSI restriction endonuclease. 162 -292155 pfam15517 TBPIP_N TBP-interacting protein N-terminus. This is the N-terminal restriction endonuclease-like domain found in several archaeal TATA-binding protein (TBP)-interacting proteins. 100 -317864 pfam15518 L_protein_N L protein N-terminus. This endonuclease domain is found at the N-terminus of many bunyavirus L proteins. 93 -317865 pfam15519 RBM39linker linker between RRM2 and RRM3 domains in RBM39 protein. A conserved linker between the second and the third RRM domain in human RBM39 (CAPER) protein, also present in other RNA binding proteins, especially those involved in RNA splicing. This linker was implicated in interactions with ESR1 and ESR2. Preliminary results from JCSG suggest that this is a structured domain with a well defined fold. 37 -292158 pfam15520 Ntox10 Novel toxin 10. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold that is usually exported by the type 2 secretion system. 193 -317866 pfam15521 Ntox11 Novel toxin 11. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin contains two structural domains, an N-terminal alpha/beta domain and a C-terminal all-beta domain. The domain contains conserved GxR, RxxxoH GxE and GxxH motifs and a conserved histidine residue. In bacterial polymorphic toxin systems, the toxin is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 256 -259653 pfam15522 Ntox14 Novel toxin 14. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 218 -317867 pfam15523 Ntox16 Novel toxin 16. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-alpha helical fold and conserved (DNE)xxH motif and arginine residue. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 6, or Photorhabdus virulence cassette (PVC)-type secretion system. 84 -317868 pfam15524 Ntox17 Novel toxin 17. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses a mostly all-beta fold and a conserved ExD motif and a histidine residue. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 7 or TcdB/TcaC-type secretion system. 94 -317869 pfam15525 DUF4652 Domain of unknown function (DUF4652). This family of uncharacterized proteins from Clostridia and Bacilli classes has an unusual structure of three beta propeller repeats that do not form a barrel, as in well known 6-, 7- etc beta propeller barrels, but instead are stacked in a three-layer beta-sheet sandwich. The function of all the proteins from this family is unknown. 193 -317870 pfam15526 Ntox21 Novel toxin 21. Bacterial genomes and plasmids encode a variety of peptide and protein toxins that mediate inter-bacterial competition. Bacteriocins are diffusible proteins that parasitize cell-envelope proteins to enter and kill bacteria. Contact-dependent growth inhibition (CDI) is one mechanism of inter-bacterial competition. Novel Toxin 21 (alternatively 16S rRNA endonuclease CdiA) belongs to a family of prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. This RNase toxin found in bacterial polymorphic toxin systems, is proposed to adopt the BECR (Barnase-EndoU-ColicinE5/D-RelE) fold, with two conserved lysine residues and [DS]xDxxxH, RxG[ST] and RxxD motifs. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2, type 4, type 5 or type 7 secretion systems. This is also referred to as the E. cloacae CdiAC. The CdiAC proteins carry a variety of sequence-diverse C-terminal domains, which represent a collection of distinct toxins. Many CdiA-CT toxins have nuclease activities. In accord with the structural homology, CdiA-CT cleaves 16S rRNA at the same site as colicin E3 and this nuclease activity is responsible for growth inhibition. 71 -292164 pfam15527 Ntox22 Bacterial toxin 22. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses a mostly beta fold and two conserved histidines, two aspartates and a glutamate residue. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 5 secretion system. 129 -317871 pfam15528 Ntox23 Bacterial toxin 23. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-beta fold and conserved ND and DxxR motifs and a histidine residue. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or TcdB/TcaC secretion system. 190 -317872 pfam15529 Ntox24 Bacterial toxin 24. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-beta fold and conserved ND and DxxR motifs and a histidine residue. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or TcdB/TcaC secretion system. Interestingly, the toxin is also found in type-II toxin-antitoxin systems. 96 -317873 pfam15530 Ntox25 Bacterial toxin 25. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses a mostly all-beta fold and conserved FGPY motif and a histidine residue. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 5 secretion system. 167 -317874 pfam15531 Ntox27 Bacterial toxin 27. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold and conserved aspartate and glutamate residues, and an RxW motif. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 7 secretion systems. 129 -317875 pfam15532 Ntox30 Bacterial toxin 30. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-beta fold and two conserved histidines present in an RxH and THIP motif. The domain additionally has a highly conserved arginine residue. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2, type 6 or type 7 secretion systems. 103 -292170 pfam15533 Ntox33 Bacterial toxin 33. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold and [DN]xHxxK and DxxxD motifs. It is usually exported by the Type 2 secretory system. 65 -317876 pfam15534 Ntox35 Bacterial toxin 35. A predicted RNase toxin found in bacterial polymorphic toxin systems that is proposed to adopt the BECR (Barnase-EndoU-ColicinE5/D-RelE) fold, and contains a conserved histidine residue and a KH motif. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2 secretion system. 77 -317877 pfam15535 Ntox37 Bacterial toxin 37. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-beta fold and a conserved glutamate residue, and [KR] and Hx[DH] motifs. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 7 secretion systems. 63 -292173 pfam15536 Ntox3 Bacterial toxin 3. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-beta fold and conserved aspartate, arginine, histidine and cysteine residues that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 133 -292174 pfam15537 Ntox43 Bacterial toxin 43. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold with two conserved histidine residues. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2 or TcdB/TcaC-type secretion system. An example of this, the Pseudomonas RhsT-C, has been experimentally characterized. 127 -339495 pfam15538 Ntox46 Bacterial toxin 46. A predicted toxin domain found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold with a conserved glutamine residue and a [KR]STxxPxxDxx[ST] motif. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 6 secretion system. 157 -317878 pfam15539 CAF1-p150_C2 CAF1 complex subunit p150, region binding to CAF1-p60 at C-term. CAF1-p150_C2 is part of the binding region of the CAF1 complex p150 subunit to the p60 subunit. The CAF1 complex is essential in human cells for the de novo deposition of histones H3 and H4 at the DNA replication fork. 288 -292177 pfam15540 Ntox47 Bacterial toxin 47. A predicted RNase toxin found in bacterial polymorphic toxin systems that is proposed to adopt the BECR (Barnase-EndoU-ColicinE5/D-RelE) fold, and contains two conserved aspartates, a glutamate, a histidine and an arginine residue and an RT motif. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2, type 6 or type 7 secretion system. 111 -292178 pfam15541 Ntox4 Bacterial toxin 4. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 109 -317879 pfam15542 Ntox50 Bacterial toxin 50. A predicted RNase toxin found in bacterial polymorphic toxin systems that is proposed to adopt the BECR (Barnase-EndoU-ColicinE5/D-RelE) fold, and contains two conserved histidine, a serine, two lysine, and a threonine residue and a HxVP motif. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2, type 6, type 7, and MuF-type secretion systems. 93 -292180 pfam15543 Ntox5 Bacterial toxin 5. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 142 -292181 pfam15544 Ntox6 Bacterial toxin 6. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold that is usually exported by the Photorhabdus virulence cassette (PVC)-type export system. 273 -292182 pfam15545 Ntox8 Bacterial toxin 8. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an alpha+beta fold and HxR and HxxxH motifs and is usually exported by the type 2 and type 6 secretion system. 74 -317880 pfam15546 DUF4653 Domain of unknown function (DUF4653). This family of proteins is found in eukaryotes. Proteins in this family are typically between 93 and 229 amino acids in length. 229 -317881 pfam15547 DUF4654 Domain of unknown function (DUF4654). This family of proteins is found in eukaryotes. Proteins in this family are typically between 145 and 169 amino acids in length. There is a conserved IDC sequence motif. 137 -317882 pfam15548 DUF4655 Domain of unknown function (DUF4655). This family of proteins is found in eukaryotes. Proteins in this family are typically between 533 and 570 amino acids in length. 534 -317883 pfam15549 PGC7_Stella PGC7/Stella/Dppa3 domain. The domain belongs to a fast evolving family known only from the placental mammals. The PGC7/Stella/Dppa3 protein protects imprinted regions from demethylation post-fertilization. This suggests that it might bind methylated DNA sequences directly. The conserved core includes a postively charged helical segment and a C-terminal CXCXXC motif that is predicted to chelate a metal ion. Most placental mammals contain 3-6 paralogs of this domain family. The CXCXXC motif is also conserved in a subset of fungal MBD4-like proteins. 165 -317884 pfam15550 Draxin Draxin. This family of proteins inhibit Wnt signaling and act as chemorepulsive axon guidance molecules. 321 -317885 pfam15551 DUF4656 Domain of unknown function (DUF4656). This family of proteins is found in eukaryotes. Proteins in this family are typically between 286 and 398 amino acids in length. 361 -317886 pfam15552 DUF4657 Domain of unknown function (DUF4657). This family of proteins is found in eukaryotes. Proteins in this family are typically between 305 and 370 amino acids in length. 302 -317887 pfam15553 TEX19 Testis-expressed protein 19. This family of proteins is expressed in testis. 159 -317888 pfam15554 FSIP1 FSIP1 family. 397 -317889 pfam15555 DUF4658 Domain of unknown function (DUF4658). This family of proteins is found in eukaryotes. Proteins in this family are typically between 129 and 161 amino acids in length. 123 -317890 pfam15556 Zwint ZW10 interactor. This family of proteins is found in eukaryotes. Proteins in this family are typically between 127 and 281 amino acids in length. 252 -317891 pfam15557 CAF1-p150_N CAF1 complex subunit p150, region binding to PCNA. CAF1-p150_N is part of the N-terminus of the CAF1 complex p150 subunit that binds to PCNA - proliferating cell nuclear antigen. The PCNA mediates the connection between CAF-1 and the DNA replication fork. The CAF1 complex is essential in human cells for the de novo deposition of histones H3 and H4 at the DNA replication fork. 230 -317892 pfam15558 DUF4659 Domain of unknown function (DUF4659). This family of proteins is found in eukaryotes. Proteins in this family are typically between 427 and 674 amino acids in length. There are two completely conserved residues (D and I) that may be functionally important. 374 -317893 pfam15559 DUF4660 Domain of unknown function (DUF4660). This family of proteins is found in eukaryotes. Proteins in this family are typically between 93 and 189 amino acids in length. 107 -292197 pfam15560 Imm12 Immunity protein 12. A predicted immunity protein with an alpha+beta fold and several conserved charged and hydrophobic residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-URI2 family. The protein is also found in heterogeneous poly-immunity loci. 138 -317894 pfam15561 Imm15 Immunity protein 15. A predicted immunity protein with an alpha+beta fold and several conserved polar and hydrophobic residues. Proteins containing this domain are present in heterogeneous poly-immunity loci in polymorphic toxin systems. 179 -339496 pfam15562 Imm17 Immunity protein 17. A predicted immunity protein with two transmembrane helices, and a WxW motif and a conserved arginine between the two helices. Proteins containing this domain are present in heterogeneous poly-immunity loci in polymorphic toxin systems. 58 -292200 pfam15563 Imm19 Immunity protein 19. A predicted immunity protein with an alpha+beta fold and a conserved HxxRN motif. Proteins containing this domain are present in heterogeneous poly-immunity loci in polymorphic toxin systems. 230 -259695 pfam15564 Imm25 Immunity protein 25. A predicted immunity protein with an alpha+beta fold. Proteins containing this domain are present in heterogeneous poly-immunity loci of polymorphic toxin systems. 131 -292201 pfam15565 Imm30 Immunity protein 30. A predicted immunity protein with a mostly alpha-helical fold and a conserved DxG motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-SHH family of HNH/Endonuclease VII fold nucleases. 96 -292202 pfam15566 Imm32 Immunity protein 32. A predicted immunity protein with an alpha+beta fold and a conserved histidine residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox12 or Ntox37 or Notx 7 families. 54 -317896 pfam15567 Imm35 Immunity protein 35. A predicted immunity protein with an alpha+beta fold and a conserved tryptophan residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a protease domain such as Tox-PL1 and Ntox40. In some instances, it is also fused to a papain-like toxin, ADP-ribosyl glycohydrolase and a S8-like peptidase. Based on these associations the domain is likely to be a protease inhibitor. 83 -259699 pfam15568 Imm39 Immunity protein 39. A predicted immunity protein with an alpha+beta fold and conserved GR, and GxK motifs. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-URI2 family of nucleases. 131 -292204 pfam15569 Imm40 Immunity protein 40. A predicted immunity protein with an alpha+beta fold and conserved phenylalanine and tryptophan residues and a GGD motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox19 family. 90 -292205 pfam15570 Imm43 Immunity protein 43. A predicted immunity protein with an alpha+beta fold with conserved tryptophan, proline, aspartate, serine and arginine residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-AHH family of HNH/Endonuclease VII fold nucleases. The gene for this toxin is also found in heterogeneous poly-immunity loci. 134 -292206 pfam15571 Imm44 Immunity protein 44. A predicted immunity protein with an alpha+beta fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-URI1, Tox-URI2 or Tox-ParBL1 families. The gene for this toxin is also found in heterogeneous poly-immunity loci that show variations in structure even between closely related strains. 126 -339497 pfam15572 Imm45 Immunity protein 45. A predicted immunity protein with an alpha+beta fold and a conserved C-terminal tryptophan residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-ColE3 family. 90 -317898 pfam15573 Imm47 Immunity protein 47. A predicted immunity protein with an alpha+beta fold and a conserved KxGDxxK motif. Proteins containing this domain are present in heterogeneous poly-immunity loci in polymorphic toxin systems. 258 -317899 pfam15574 Imm48 Immunity protein 48. A predicted immunity protein with an all alpha-helical fold and a conserved HRG motif. Proteins containing this domain are present in heterogeneous poly-immunity loci in polymorphic toxin systems. 123 -317900 pfam15575 Imm49 Immunity protein 49. A predicted immunity protein with an all alpha-helical fold and a conserved proline residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-REAse-1 or Tox-REase-6 families. 175 -317901 pfam15576 DUF4661 Domain of unknown function (DUF4661). This family of proteins is found in eukaryotes. Proteins in this family are typically between 281 and 302 amino acids in length. 253 -339498 pfam15577 Spc7_C2 Spc7_C2. Spc7_C2 is a short family to the C-terminus of fungal Spc7 proteins. The Ndc80-MIND-Spc7 complex plays a role in kinetochore function during late meiotic prophase and throughout the mitotic cell cycle. The N-terminal region of Spc7 co-localizes with the mitotic spindle, and it has been argued that Spc7 has the potential to associate with spindle microtubules and that this association is regulated by the C-terminal part of the Spc7 protein. However, this family represents only the conserved region towards the end of the C-terminus; the majority of the C-terminal part is in family Spc7, pfam08317. 62 -317903 pfam15578 DUF4662 Domain of unknown function (DUF4662). This family of proteins is found in eukaryotes. Proteins in this family are approximately 290 amino acids in length. 268 -339499 pfam15579 Imm52 Immunity protein 52. A predicted immunity protein with an alpha+beta fold and conserved tryptophan and phenylalanine residues, and a GT motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-REase-5 family. 99 -317905 pfam15580 Imm53 Immunity protein 53. A predicted immunity protein with an alpha+beta fold and a conserved tryptophan, and WE and PGW motifs. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox24 or Ntox10 families. 90 -292215 pfam15581 Imm58 Immunity protein 58. A predicted immunity protein with an alpha+beta fold and YxxxD, WxG, KxxxE motifs. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene. 109 -292216 pfam15582 Imm65 Immunity protein 65. A predicted immunity protein with an alpha+beta fold and a conserved YxC motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-JAB1 family. The immunity protein typically contains a signal peptide and a lipobox. 321 -317906 pfam15583 Imm68 Immunity protein 68. A predicted immunity protein with an alpha+beta fold and a conserved glutamate residue. The domain is often fused to one or more immunity domains in poly-immunity proteins. 149 -292218 pfam15584 Imm72 Immunity protein 72. A predicted immunity protein with a mostly all-beta fold and GxxE, WxDxRY motifs and a glutamate residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Ntox48 family. This domain is often fused to the Imm71 immunity domain. 81 -317907 pfam15585 Imm7 Immunity protein 7. A predicted immunity protein with an alpha+beta fold and a conserved GxaG motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a Tox-REase-3 domain. 130 -317908 pfam15586 Imm8 Immunity protein 8. A predicted immunity protein with an alpha+beta fold and a conserved WEa (a: aromatic) motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox7 family. 114 -292221 pfam15587 Imm9 Immunity protein 9. A predicted immunity protein with an alpha+beta fold and a conserved lysine residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-URI2 family. The protein is also found in heterogeneous poly-immunity loci. 149 -317909 pfam15588 Imm10 Immunity protein 10. A predicted immunity protein with a mostly all-beta fold and a conserved arginine residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a Pput_2613 deaminase domain. The protein is also found in heterogeneous poly-immunity loci. 104 -317910 pfam15589 Imm21 Immunity protein 21. A predicted immunity protein with an alpha+beta fold and conserved WxG and YxxxC motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the NGO1392-family of HNH/Endonuclease VII fold nucleases. 153 -317911 pfam15590 Imm27 Immunity protein 27. A predicted immunity protein with an alpha+beta fold and a conserved aspartate and GGxP motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox10 or Tox-ParB families. 69 -292225 pfam15591 Imm31 Immunity protein 31. A predicted immunity protein with a mostly all-beta fold and a conserved GxS motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox17 or Ntox7 families. 73 -317912 pfam15592 Imm41 Immunity protein 41. A predicted immunity protein with an alpha+beta fold and a conserved SF motif and tryptophan residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox21, Ntox29 or Tox-ART-RSE-like ADP-ribosyltransferase families. 106 -339500 pfam15593 Imm42 Immunity protein 42. A predicted immunity protein with an alpha+beta fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Ntox18 family. 162 -339501 pfam15594 Imm50 Immunity protein 50. A predicted immunity protein with an all-beta fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-HHH or Ntox24 families. 117 -317915 pfam15595 Imm51 Immunity protein 51. A predicted immunity protein with an alpha+beta fold and a conserved tryptophan and Dx[DE] motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the Tox-RES or Tox-URI1 families. Proteins containing this domain are present in heterogeneous poly immunity loci in polymorphic toxin systems. 99 -292230 pfam15596 Imm57 Immunity protein 57. A predicted immunity protein with a mostly alpha-helical fold and conserved aspartate and cysteine residues and an SE motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, usually containing a domain of the LD-peptidase or Tox-Caspase families. 109 -339502 pfam15597 Imm59 Immunity protein 59. A predicted immunity protein with an alpha+beta fold and a conserved [DE]R motif. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Ntox13 or Ntox40 families. In some proteins this domain is fused to the Imm38, pfam15599 immunity domain. 103 -317916 pfam15598 Imm61 Immunity protein 61. A predicted immunity protein with an alpha+beta fold and a conserved arginine. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Ntox40 family. 154 -317917 pfam15599 Imm63 Immunity protein 63. A predicted immunity protein with an alpha+beta fold and a conserved E+G and ExxY motifs. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Ntox40, Tox-CdiAC and Tox-ARC families. The protein is also found in poly-immunity loci in polymorphic toxin systems. 83 -292234 pfam15600 Imm64 Immunity protein 64. A predicted immunity protein with an alpha+beta fold and a conserved DxEA motif and arginine residue. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-ColD family. 195 -317918 pfam15601 Imm70 Immunity protein 70. A predicted immunity protein with an alpha+beta fold and conserved tyrosine and tryptophan residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-REase-10 family. 131 -339503 pfam15602 Imm71 Immunity protein 71. A predicted immunity protein with a mostly alpha-helical fold and conserved arginine and phenylalanine residues. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Ntox48 family. This domain is often fused to the Imm72 immunity domain. 158 -292237 pfam15603 Imm74 Immunity protein 74. A predicted immunity protein with an alpha+beta fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-ARC family. This domain is also found in heterogeneous poly-immunity loci. 80 -317920 pfam15604 Ntox15 Novel toxin 15. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses a most all-alpha helical fold and a conserved HxxD motif. In bacterial polymorphic toxin systems, the toxin is usually exported by the type 2, type 6, type 7 or Photorhabdus virulence cassette (PVC)-type secretion systems. This is shown to be a type IV secretion system protein that behaves as DNase. 156 -317921 pfam15605 Ntox28 Bacterial toxin 28. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all alpha-helical fold and conserved aspartate and glutamate residues, and K[DE] and[DN]HxxE motifs. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5 or type 7 secretion system. 103 -292240 pfam15606 Ntox34 Bacterial toxin 34. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-alpha helical fold and conserved lysine and cysteine residues, and GNxxD and WxCxH motifs. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 6 secretion system. 80 -317922 pfam15607 Ntox44 Bacterial toxin 44. A predicted RNase toxin found in bacterial polymorphic toxin systems. The toxin possesses an all-alpha-helical fold with conserved DxK, GNxxxG, and DxxxD motifs. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 6 or type 7 secretion systems. 95 -317923 pfam15608 PELOTA_1 PELOTA RNA binding domain. This RNA binding Pelota domain is at the C-terminus of a PRTase family. These PRTase+Pelota genes are found in the biosynthetic operon associated with the Ter stress-response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 79 -339504 pfam15609 PRTase_2 Phosphoribosyl transferase. This PRTase family, and C-terminal TRSP domain, are related to OPRTases, and are predicted to use Orotate as substrate. These genes are found in the biosynthetic operon associated with the Ter stress-response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 189 -317925 pfam15610 PRTase_3 PRTase ComF-like. This PRTase family is related to the ComF PRTases. These genes are found in the smaller biosynthetic operon associated with the Ter stress-response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress-response. 265 -339505 pfam15611 EH_Signature EH_Signature domain. This domain with a strongly conserved glutamate at the N-terminus and a histidine at the C-terminus, is found in a SWI2/SNF2 four gene operon. Its strict-neighborhood association with SWI2/SNF2 ATPase strongly suggests a function in conjunction with it. The other genes in the operon are a OmpA protein and a TM protein. This has a DNA related function along with the TerY-P triad. 345 -339506 pfam15612 WHIM1 WSTF, HB1, Itc1p, MBD9 motif 1. A conserved alpha helical motif that along with the WHIM2 and WHIM3 motifs, and the DDT domain comprise an alpha helical module found in diverse eukaryotic chromatin proteins.Based on the Ioc3 structure, this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The conserved basic residue in WHIM1 is involved in packing with the DDT motif. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognising and DNA binding domains, some of which discriminate methylated DNA. 45 -317927 pfam15613 WSD Williams-Beuren syndrome DDT (WSD), D-TOX E motif. This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. 69 -317928 pfam15615 TerB_C TerB-C domain. TerB-C occurs C-terminal of TerB in TerB-N containing proteins. This domain displays multiple conserved acidic residues (TerBC). The presence of conserved acidic residues in both TerB-N and TerB-C suggests that they, like the TerB domain, might also chelate metals. These two domains may also occur together in the same protein independently of TerB. 146 -339507 pfam15616 TerY_C TerY-C metal binding domain. TerY-C is found C-terminal to TerY-like vWA domains in some proteins. It has 8 conserved metal chelating cysteines or histidines. It occasionally occurs as solos. 129 -317930 pfam15617 C-C_Bond_Lyase C-C_Bond_Lyase of the TIM-Barrel fold. This family of TIM-Barrel fold C-C bond lyase is related to citrate-lyase. These genes are found in the biosynthetic operon, with other enzymatic domains, associated with the Ter stress response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 315 -339508 pfam15619 Lebercilin Ciliary protein causing Leber congenital amaurosis disease. Lebercilin is a family of eukaryotic ciliary proteins. Mutations in the gene, LCA5, are implicated in the disease Leber congenital amaurosis. In photoreceptors, lebercilin is uniquely localized at the cilium that bridges the inner and outer segments. Lebercilin functions as an integral element of selective protein transport through photoreceptor cilia. Lebercilin specifically interacts with the intraflagellar transport (IFT), and disruption of IFT can lead to Leber congenital amaurosis. 180 -317932 pfam15620 CENP-C_mid Centromere assembly component CENP-C middle DNMT3B-binding region. CENP-C is a component of the centromere assembly complex in eukaryotes. CENP-C recruits the DNA methyltransferases DNMT3B, in order to establish the necessary epigenetic DNA-methylation essential for maintenance of chromatin structure and genomic stability. This middle region of CENP-C is the binding-domain for DNMT3B. Binding of CENP-C and DNMT3B to DNA occurs at both centromeric and peri-centromeric satellite repeats. CENP-C and DNMT3B regulate the histone code in these regions. 259 -317933 pfam15621 PROL5-SMR Proline-rich submaxillary gland androgen-regulated family. SMR is a family of proteins found in eukaryotes. The family of SMR proteins is expressed in the submaxillary gland. SMR members may play a role in protection or detoxification. 102 -317934 pfam15622 CENP_C_N Kinetochore assembly subunit CENP-C N-terminal. CENP-C is a vertebrate family that forms a core component of the centromeric chromatin. On depletion of CENP-C proper formation of both centromeres and kinetochores is prevented. The N-terminal of CENP-C is necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. 287 -317935 pfam15623 CT47 Cancer/testis gene family 47. CT47 is a family of proteins found in eukaryotes. Proteins in this family are typically between 262 and 291 amino acids in length. There is a conserved HIL sequence motif. The function of this family is not known. 259 -317936 pfam15624 Mif2_N Kinetochore CENP-C fungal homolog, Mif2, N-terminal. Mif2_N is a family of fungal proteins homologous to mammalian CENP-C. On depletion of CENP-C proper formation of both centromeres and kinetochores is prevented. The N-terminal of CENP-C is necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. 136 -339509 pfam15625 CC2D2AN-C2 CC2D2A N-terminal C2 domain. Many ciliary proteins are involved in ciliogenesis and implicated for ciliophathies. A recent study has shown that many of them contain various new versions of C2 domains which are predicted to mediate membrane localizations for Y-shaped linkers of transition zone of cilia. This is the first C2 domain of ciliary CC2D2A proteins which also have another C2 domain (CC2D2AC-C2) and a new inactive transglutaminase-like peptidase domain (CC2D2A-TGL). 174 -317938 pfam15626 mono-CXXC single CXXC unit. This is a solo version of the zf-CXXC domain with a conserved CXXCXXCX(n)C, zinc-binding motif. This is, thus far, only detected in the plant lineage in diverse chromatin proteins. Structural comparisons show that the mono-CXXC is homologous to the structural- zinc binding domain of medium chain dehydrogenases. The regular zf-CXXC domain binds nonmethyl-CpG dinucleotides. 52 -339510 pfam15627 CEP76-C2 CEP76 C2 domain. Many ciliary proteins are involved in ciliogenesis and implicated for ciliophathies. A recent study has shown that many of them contain various new versions of C2 domains which are predicted to mediate membrane localizations for Y-shaped linkers of transition zone of cilia. This is the new C2 domain that is contained by ciliary CEP76 proteins. 155 -339511 pfam15628 RRM_DME RRM in Demeter. This is a predicted RRM-fold domain present at the C-terminus of Demeter-like glycoslyases. These proteins are involved in DNA demethylation in plants where they catalyze removal of the 5mC base and subsequently cleave the backbone through lyase activity. Orthologs of Demeter are present in plants and stramenopiles. The RRM fold domain is predicted to facilitate interaction of the catalytic domain with ssDNA or regulatory RNA. 102 -339512 pfam15629 Perm-CXXC Permuted single zf-CXXC unit. This is a permuted version of a single unit of the zf-CXXC domain that is detected in the Demeter-like proteins of land plants. Structural comparisons show that the mono-CXXC is homologous to the structural-zinc binding domain of medium chain dehydrogenases. The classical zf-CXXC domain binds nonmethyl-CpG dinucleotides. 32 -317942 pfam15630 CENP-S CENP-S protein. CENP-S is a family of vertebral and fungal kinetochore component proteins. CENP-S complexes with CENP-X to form a stable CENP-T-W-S-X heterotetramer. 76 -317943 pfam15631 Imm-NTF2-2 NTF2 fold immunity protein. A predicted immunity protein of the NTF2 fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-NucA family. This domain is also fused to ankyrin repeats and the pfam14025. 69 -339513 pfam15632 ATPgrasp_Ter ATP-grasp in the biosynthetic pathway with Ter operon. This ATP-grasp family is related to carbamoyl phosphate synthetase. These genes are found in the biosynthetic operon associated with the Ter stress response operon and are predicted to be involved in the biosynthesis of a ribo-nucleoside involved in stress response. 331 -292266 pfam15633 Tox-ART-HYD1 HYD1 signature containing ADP-ribosyltransferase. A predicted toxin of the ADP-ribosyltransferase superfamily present in bacterial polymorphic toxin systems. The domain has characteristic histidine, tyrosine and aspartate residues that comprise the active site. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 6, or type 7 secretion system. 98 -292267 pfam15634 Tox-ART-HYE1 HYE1 signature containing ADP-ribosyltransferase. A predicted toxin of the ADP-ribosyltransferase superfamily present in bacterial polymorphic toxin systems. The domain has characteristic histidine, tyrosine and glutamate residues that comprise the active site. 282 -339514 pfam15635 Tox-GHH2 GHH signature containing HNH/Endo VII superfamily nuclease toxin 2. A predicted toxin of the HNH/Endonuclease VII fold present in bacterial polymorphic toxin systems with a characteristic s[AGP]HH signature motif. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type secretion system. 112 -339515 pfam15636 Tox-GHH GHH signature containing HNH/Endo VII superfamily nuclease toxin. A predicted toxin of the HNH/Endonuclease VII fold present in bacterial polymorphic toxin systems with a characteristic sG[HQ]H signature motif. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 6, type 7 or TcdB/TcaC-type secretion system. The metazoan teneurin proteins possess an inactive of this domain at their C-terminus. 76 -317946 pfam15637 Tox-HNH-HHH HNH/Endo VII superfamily nuclease toxin with a HHH motif. A predicted toxin of the HNH/Endonuclease VII fold present in bacterial polymorphic toxin systems with characteristic conserved s[GD]xxR and HHH motifs. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5, type 6, type 7 or Photorhabdus virulence cassette (PVC)-type secretion system. 114 -259768 pfam15638 Tox-MPTase2 Metallopeptidase toxin 2. A zincin-like metallopeptidase domain found in bacterial polymorphic toxin systems. 196 -292270 pfam15639 Tox-MPTase3 Metallopeptidase toxin 3. A zincin-like metallopeptidase domain found in bacterial polymorphic toxin systems. 135 -317947 pfam15640 Tox-MPTase4 Metallopeptidase toxin 4. A zincin-like metallopeptidase domain found in bacterial polymorphic toxin systems. 132 -317948 pfam15641 Tox-MPTase5 Metallopeptidase toxin 5. A zincin-like metallopeptidase domain found in bacterial polymorphic toxin systems. 110 -292272 pfam15642 Tox-ODYAM1 Toxin in Odyssella and Amoebophilus. A predicted all-alpha fold toxin present in bacterial polymorphic toxin systems of the endosymbionts Odyssella and Amoebophilus. 385 -317949 pfam15643 Tox-PL-2 Papain fold toxin 2. A papain fold toxin domain found in bacterial polymorphic toxin systems. 102 -317950 pfam15644 Gln_amidase Papain fold toxin 1, glutamine deamidase. A papain fold toxin domain found in bacterial polymorphic toxin systems. In these systems they might function either as a releasing peptidase or toxin. In Shigella flexneri, UniProtKB:Q8VSD5, this protein is expressed from a plasmid, and delivered into the host via the type III secretion system where it deamidates the glutamine residue at position 100 in ubiquitin-activating enzyme E2, UBC13, to a glutamic acid residue. Invasion of host cells by pathogens normally invokes an acute inflammatory response through activating the TRAF6-mediated signalling pathway. UBC13 helps to activate TRAF6. Thus deamidation of UBC13 results in the dampening of the inflammatory response. The key glutaminase deamidase activity is mediated by a cys-his-glu triad, present in all members of the family. 113 -339516 pfam15645 Tox-PLDMTX Dermonecrotoxin of the Papain-like fold. A papain fold toxin domain found in bacterial polymorphic toxin systems. 139 -317951 pfam15646 Tox-REase-2 Restriction endonuclease fold toxin 2. A predicted toxin of the restriction endonuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 7 or PrsW-peptidase dependent secretion system. 129 -317952 pfam15647 Tox-REase-3 Restriction endonuclease fold toxin 3. A predicted toxin of the restriction endonuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 6, type 7 or PrsW-peptidase dependent secretion system. 102 -339517 pfam15648 Tox-REase-5 Restriction endonuclease fold toxin 5. A predicted toxin of the restriction endonuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5, type 6, or PrsW-peptidase dependent secretion system. Versions of this domain are also found in caudoviruses. 96 -317954 pfam15649 Tox-REase-7 Restriction endonuclease fold toxin 7. A predicted toxin of the restriction endonuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5, type 6, or type 7 secretion system. 86 -317955 pfam15650 Tox-REase-9 Restriction endonuclease fold toxin 9. A predicted toxin of the restriction endonuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 7 secretion system. 87 -292281 pfam15651 Tox-SGS Salivary glad secreted protein domain toxin. An alpha+beta fold domain with four conserved cysteine residues and a conserved [DE}xx[ND] motif. This domain is mainly present at the c-terminus of RHS repeats containing proteins in insects and crustaceans. Although no bacterial homologs have been identified, the domain architecture suggests an origin from bacterial polymorphic toxin systems. 96 -317956 pfam15652 Tox-SHH HNH/Endo VII superfamily toxin with a SHH signature. A predicted toxin of the HNH/Endonuclease VII fold present in bacterial polymorphic toxin systems with two conserved histidine residues. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5, type 6 or type 7 secretion system. 97 -317957 pfam15653 Tox-URI2 URI fold toxin 2. A predicted toxin of the URI nuclease fold present in bacterial polymorphic toxin systems. In bacterial polymorphic toxin systems, the toxin is exported by the type 2 or type 6 secretion system. 86 -292283 pfam15654 Tox-WTIP Toxin with a conserved tryptophan and TIP tripeptide motif. A predicted toxin domain with two membrane spanning alpha helices and RxxR, Wx[ST]IP motifs. The domain is present in bacterial polymorphic toxin systems. The toxin is usually exported by the type 2 or Photorhabdus virulence cassette (PVC)-type secretion system. 53 -317958 pfam15655 Imm-NTF2 NTF2 fold immunity protein. A predicted immunity protein of the NTF2 fold. Proteins containing this domain are present in bacterial polymorphic toxin systems as an immediate gene neighbor of the toxin gene, which usually contains toxin domains of the Tox-JAB-2 family. 123 -317959 pfam15656 Tox-HDC Toxin with a H, D/N and C signature. A predicted alpha/beta fold peptidase domain with a strongly conserved triad of a histidine, aspartate/asparagine and cysteine residues that are predicted to comprise the active site of the predicted peptidase. Proteins bearing this predicted toxin domain are particularly common in both intracellular and extracellular pathogens. 130 -317960 pfam15657 Tox-HNH-EHHH HNH/Endo VII superfamily nuclease toxins. A predicted toxin of the HNH/Endonuclease VII fold present in bacterial polymorphic toxin systems with a characteristic conserved [ED]H motif and two histidine residues. In bacterial polymorphic toxin systems, the toxin is exported by the type 2, type 5, type 6, type 7 or Photorhabdus virulence cassette (PVC)-type secretion system. 69 -317961 pfam15658 Latrotoxin_C Latrotoxin C-terminal domain. A toxin domain present in arthropod alphaproteobacterial, gammaproteobacterial endosymbionts and also at the C-termini of the latrotoxins of the black widow spider. The domain is characterized by a conserved, hydrophobic helix and is predicted to associate with the cell membrane. 137 -339518 pfam15659 Toxin-JAB1 JAB-like toxin 1. 86 -317963 pfam15660 Imm75 Putative Immunity protein 75. This family is highly conserved suggesting it might derive from a phage protein. Members are less than 90 residues in length, and the function is not known. 84 -317964 pfam15661 CF222 C6orf222, uncharacterized family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 618 and 652 amino acids in length. 648 -317965 pfam15662 SPATA3 Spermatogenesis-associated protein 3 family. The SPATA3 family of proteins is expressed significantly in testis and faintly in epididymis in the ten tissues of testis, ovary, spleen, kidney, lung, heart, brain, epididymis, liver and skeletal muscle in mouse. Members are not expressed in the eight other tissues. This suggests that SPATA3 plays potential roles in spermatogenesis cell apoptosis or spermatogenesis. 191 -317966 pfam15663 zf-CCCH_3 Zinc-finger containing family. zf-CCCH_3 family is found in eukaryotes, and is typically between 155 and 169 amino acids in length. 110 -317967 pfam15664 TMEM252 Transmembrane protein 252 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 152 and 182 amino acids in length. The function is not known. 139 -317968 pfam15665 FAM184 Family with sequence similarity 184, A and B. The function of FAM184 is not known. 211 -317969 pfam15666 HGAL Germinal center-associated lymphoma. HGAL is a family of mammalian sequences typically between 104 and 179 amino acids in length. Members were discovered in a search for proteins precipitating diffuse large B-cell lymphomas. HGAL interacts with the cytoskeleton and aids the activity of interleukin-6 on cell migration. It also modulates the RhoA signalling pathway. 80 -317970 pfam15667 GDWWSH Protein of unknown function with motif GDWWSH. This family of proteins is found in eukaryotes. Proteins in this family are typically between 135 and 289 amino acids in length. There are three conserved sequence motifs: GDWWSH, RSDF and KRHG. 238 -317971 pfam15668 DUF4663 Domain of unknown function (DUF4663). This family of proteins is found in eukaryotes. Proteins in this family are typically between 289 and 334 amino acids in length. There are two completely conserved residues (W and G) that may be functionally important. 330 -317972 pfam15669 CCDC24 Coiled-coil domain-containing protein 24 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 187 and 319 amino acids in length. There are two completely conserved residues (G and P) that may be functionally important. 190 -317973 pfam15670 Spem1 Spermatid maturation protein 1. Spem1 is a family of mammalian proteins. Proteins are exclusively expressed in the cytoplasm of the last three steps of spermiogenesis in the mouse testis, and male mice deficient in Spem1 are completely infertile because of deformed sperm. 254 -317974 pfam15671 PRR18 Proline-rich protein family 18. This family of proteins is found in eukaryotes. Proteins in this family are typically between 117 and 297 amino acids in length. The function is not known but there are many highly conserved proline residues. 264 -317975 pfam15672 Mucin15 Cell-membrane associated Mucin15. Mucin15 is a family of vertebrate mucins associated with the cell-membrane. The function is not known. Members of the family are typically between 284 and 335 amino acids in length. 315 -317976 pfam15673 Ciart Circadian-associated transcriptional repressor. Circadian-associated transcriptional repressor (Ciart or Chrono) is a negative regulatory component of the circadian clock. It functions as a transcriptional repressor, modulating BMAL1-CLOCK activity. It also regulates metabolic pathways such as the glucocorticoid response triggered by behavioral stress. 277 -317977 pfam15674 CCDC23 Coiled-coil domain-containing protein 23. This family of proteins is found in eukaryotes. Proteins in this family are typically between 66 and 78 amino acids in length. There are two completely conserved residues (K and E) that may be functionally important. 57 -317978 pfam15675 CLLAC CLLAC-motif containing domain. This short domain is found in chordates. It carries a highly conserved CLLAC sequence motif. The function is not known. 30 -317979 pfam15676 S6OS1 Six6 opposite strand transcript 1 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 114 and 587 amino acids in length. The function is not known. 552 -317980 pfam15677 CEND1 Cell cycle exit and neuronal differentiation protein 1. This family of neuron-specific proteins may have a role in the differentiation of neuroblastoma cells and neuronal precursors. It is involved in development of the cerebellum. 143 -317981 pfam15678 SPICE Centriole duplication and mitotic chromosome congression. SPICE is a family of proteins found in chordates. It localizes to spindle microtubules in mitosis and to centrioles throughout the cell cycle. Deletion of SPICE compromises the architecture of spindles, the integrity of the spindle pole and the process of aligning chromosomes on the spindle (chromosome congression). 337 -339519 pfam15679 DUF4665 Domain of unknown function (DUF4665). This family of proteins is found in eukaryotes. Proteins in this family are typically between 45 and 100 amino acids in length. 99 -317983 pfam15680 OFCC1 Orofacial cleft 1 candidate gene 1 protein. This family of proteins is found in eukaryotes. Proteins in this family are typically between 125 and 276 amino acids in length. 106 -317984 pfam15681 LAX Lymphocyte activation family X. LAX is a family of proteins is found in chordates. LAX is membrane-associates and expressed in B cells, T cells, and other lymphoid-specific cell types. It down-regulates antigen-receptor signalling in T cells by inhibiting TCR-mediated p38 MAPK activation. 369 -317985 pfam15682 Mustang Musculoskeletal, temporally activated-embryonic nuclear protein 1. Mustang is a family of short, approx 80 residue, proteins found in chordates. It localizes to the nucleus and specifically, spatially in mesenchymal cells of the developing limbs and tail as well as in the fracture callus, especially in periosteal osteoprogenitor cells, proliferating chondrocytes, and young active osteoblasts. It is highly expressed during embryogenesis and inactivated in most adult tissues with the exception of skeletal muscle and tendon where is is acutely and differentially expressed during bone regeneration. 73 -317986 pfam15683 TDRP Testis development-related protein. TDRP is a family of proteins found in chordates. It is predominantly expressed in the testis. distributed in both cytoplasm and the nuclei of spermatogenic cells. It may act as a nuclear factor with an important role in spermatogenesis. 145 -317987 pfam15684 AROS Active regulator of SIRT1, or 40S ribosomal protein S19-binding 1. AROS is a family of chordate proteins active in the nucleolus. It has a stretch of polylysines at the N-terminus and in the middle regions and it localizes to the nucleus and especially the nucleolus in high concentrations. It binds to the 40S ribosomal protein RPS19, which is implicated in erythropoiesis. AROS is an active regulator of Sirtuin (SIRT1), an NAD+-dependent deacetylase protein that plays a role in cell survival and hormonal signalling, and AROS regulates the activity of SIRT1 by enhancing SIRT1-mediated de-acetylation of p53 and thus regulates growth of the cell. 111 -317988 pfam15685 GGN Gametogenetin. GGN is a family of proteins largely found in mammals. It reacts with POG in the maturation of sperm and is expressed virtually only in the testis. It is found to be associated with the intracellular membrane, binds with GGNBP1 and may be involved in vesicular trafficking. 648 -317989 pfam15686 LYRIC Lysine-rich CEACAM1 co-isolated protein family. LYRIC is a family of proteins found in eukaryotes. It is a type-1b membrane protein with a single transmembrane domain and localizes to the endoplasmic reticulum and the nuclear envelope. It is also found in the nucleolus, suggesting functional relationships between these two cellular compartments. It is found to be colocalized with tight junction proteins ZO-1 and occludin in polarised epithelial cells, suggesting that LYRIC is part of the tight junction complex. LYRIC has been shown to promote tumor cell migration and invasion by activating the transcription factor NF-kappaB. 410 -317990 pfam15687 NRIP1_repr_1 Nuclear receptor-interacting protein 1 repression 1. This domain is the first (N-terminal) repression domain of nuclear receptor-interacting protein 1. 308 -317991 pfam15688 NRIP1_repr_2 Nuclear receptor-interacting protein 1 repression 2. This domain is the second repression domain of nuclear receptor-interacting protein 1. 324 -317992 pfam15689 NRIP1_repr_3 Nuclear receptor-interacting protein 1 repression 3. This domain is the third repression domain of nuclear receptor-interacting protein 1. 89 -317993 pfam15690 NRIP1_repr_4 Nuclear receptor-interacting protein 1 repression 4. This domain is the fourth (C-terminal) repression domain of nuclear receptor-interacting protein 1. 311 -317994 pfam15691 PPP1R32 Protein phosphatase 1 regulatory subunit 32. PPP1R32 is a family of eukaryotic proteins thought to be involved in the interactome of protein phosphatase-1. 418 -339520 pfam15692 NKAP NF-kappa-B-activating protein. NKAP is a family of eukaryotic proteins that interacts with NF-kappa-B. It is a nuclear regulator of TNF- and IL-1-induced NF-kappa-B activation. NKAP does not interact with RIP in mammalian cells family is often found in association with pfam06047. 80 -339521 pfam15693 Med26_C Mediator complex subunit 26 C-terminal. Med26_C is the C-terminal domain of subunit 26 of the Mediator complex in eukaryotes. Med19 and Med26 act synergistically to mediate the interaction between REST (a Kruppel-type zinc finger transcription factor that binds to a 21-bp RE1 silencing element present in over 900 human genes) and Mediator. The C-terminal domain is critical and sufficient for its assembly into Mediator and its interaction with Pol II. The most highly conserved C-terminal amino acids are critical for these interactions because deletion of the last eight amino acids from the Med26 C-terminus disrupted binding to Mediator and Pol II. 182 -317997 pfam15694 Med26_M Mediator complex subunit 26 middle domain. Med26_M is the middle domain of subunit 26 of Mediator. Med19 and Med26 act synergistically to mediate the interaction between REST (a Kruppel-type zinc finger transcription factor that binds to a 21-bp RE1 silencing element present in over 900 human genes) and Mediator. 252 -292323 pfam15695 HERV-K_REC Rec (regulator of expression encoded by corf) of HERV-K-113. REC is a family of rec proteins from the HERV-K viral polyprotein family. Rec is a functional homolog of Rev and Rex, and binds to an RNA element, the Rec-responsive element (RcRE), in the 3'LTR of HTDV/HERV-K transcripts. Thus Rec mediates nuclear export of RNA by binding to its responsive element, RcRE, present in a transcript. The human small glutamine-rich tetratricopeptide repeat-containing protein (hSGT) that controls mitotic processes and is a checkpoint protein during pro-metaphase is found to be a Rec-interacting partner.interferes with its role as a negative regulator of the androgen receptor, leading to enhanced androgen receptor activity. HERV-K(HML-2) elements benefit from this enhanced activity, as this leads to a vicious cycle that can result in increased cell proliferation, an inhibition of apoptosis, and eventually tumorigenesis. 87 -317998 pfam15696 RAD51_interact RAD51 interacting motif. This motif interacts with RAD51. 39 -317999 pfam15697 DUF4666 Domain of unknown function (DUF4666). This family of proteins is found in plants. Proteins in this family are typically between 103 and 140 amino acids in length. There are two conserved sequence motifs: LQRS and FRR. 109 -318000 pfam15698 Phosphatase Phosphatase. Members of this family have phosphatase activity. 256 -318001 pfam15699 NPR1_interact NPR1 interacting. This family of proteins interacts via a motif at the C-terminus with the regulatory protein NPR1. 108 -318002 pfam15700 DUF4667 Domain of unknown function (DUF4667). This family of proteins is found in fungi. Proteins in this family are typically between 172 and 313 amino acids in length. 93 -292329 pfam15701 DUF4668 Domain of unknown function (DUF4668). This family of proteins is found in eukaryotes. Proteins in this family are typically between 142 and 211 amino acids in length. 162 -318003 pfam15702 HPS6 Hermansky-Pudlak syndrome 6 protein. 768 -318004 pfam15703 LAT2 Linker for activation of T-cells family member 2. 177 -318005 pfam15704 Mt_ATP_synt Mitochondrial ATP synthase subunit. This plant mitochondrial ATP synthase subunit may the the equivalent of the mitochondrial ATP synthase d subunit. 184 -318006 pfam15705 TMEM132D_N Mature oligodendrocyte transmembrane protein, TMEM132D, N-term. TMEM132D_N is the N-terminal family of chordate proteins implicated in panic disorder. TMEM132D is a single-pass transmembrane protein that is highly expressed in the cortical regions of the human and mouse brain. The function is still unknown. It may act as a cell-surface marker for oligodendrocyte differentiation. Additionally, as it may be most strongly expressed in neurons and it colocalizes with actin filaments TMEM132D may be implicated in neuronal sprouting and connectivity in brain regions important for anxiety-related behaviour. 130 -318007 pfam15706 TMEM132D_C Mature oligodendrocyte transmembrane protein, TMEM132D, C-term. TMEM132D_C is the C-terminal family of chordate proteins implicated in panic disorder. TMEM132D is a single-pass transmembrane protein that is highly expressed in the cortical regions of the human and mouse brain. The function is still unknown. It may act as a cell-surface marker for oligodendrocyte differentiation. Additionally, as it may be most strongly expressed in neurons and it colocalizes with actin filaments TMEM132D may be implicated in neuronal sprouting and connectivity in brain regions important for anxiety-related behaviour. 84 -318008 pfam15707 MCCD1 Mitochondrial coiled-coil domain protein 1. This is a family of uncharacterized proteins known as mitochondrial coiled-coil domain protein 1. 90 -318009 pfam15708 PRR20 Proline-rich protein family 20. This family of proteins is found in eukaryotes. Proteins in this family are typically between 73 and 221 amino acids in length. There is a conserved AYV sequence motif. 223 -318010 pfam15709 DUF4670 Domain of unknown function (DUF4670). This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. 520 -318011 pfam15710 DUF4671 Domain of unknown function (DUF4671). This family of proteins is found in eukaryotes. Proteins in this family are typically between 385 and 652 amino acids in length. 678 -339522 pfam15711 ILEI Interleukin-like EMT inducer. ILEI is a family of proteins found in vertebrates. It is heavily involved in the process of the transition from epithelial to mesenchymal tissue - EMT - during all of embryonic development, cancer progression, metastasis, and chronic inflammation/fibrosis. ILEI is upregulated exclusively at the level of translation, and abnormal ILEI expression, ie cytoplasmic over-expression instead of vesicular localization, is associated with EMT in human cancerous tissue. In order to induce and maintain the EMT of hepatocytes in a TGF-beta-independent fashion ILEI needs the cooperation of oncogenic Ras. 91 -339523 pfam15712 NPAT_C NPAT C-terminus. 677 -318014 pfam15713 PTPRCAP Protein tyrosine phosphatase receptor type C-associated. 150 -339524 pfam15714 SpoVT_C Stage V sporulation protein T C-terminal, transcription factor. SpoVT_C is the C-terminal part of the stage V sporulation protein T, a transcription factor involved in endospore formation in Gram-positive bacteria such as Bacillus subtilis. Sporulation is induced by conditions of environmental stress to protect the genome. SpoVT behaves as a tetramer that shows an overall significant distortion mediated by electrostatic interactions. Two monomers dimerize via the highly charged N-terminal AbrB-like domains, family pfam04014, to form swapped-hairpin beta-barrels. These asymmetric dimers then form tetramers through the formation of mixed helix bundles between their C-terminal domains. The C-termini themselves fold as GAF (cGMP-specific and cGMP-stimulated phosphodiesterases, Anabaena adenylate cyclases, and Escherichia coli FhlA) domains. 128 -318016 pfam15715 PAF PCNA-associated factor. 73 -318017 pfam15716 DUF4672 Domain of unknown function (DUF4672). This family of proteins is found in eukaryotes. Proteins in this family are typically between 165 and 199 amino acids in length. 185 -339525 pfam15717 PCM1_C Pericentriolar material 1 C-terminus. 614 -318019 pfam15718 MNR Protein moonraker. Protein moonraker is a centriolar satellite component involved in centriole duplication. It promotes centriole duplication by localizing WDR62 to the centrosome. 935 -318020 pfam15719 DUF4674 Domain of unknown function (DUF4674). This family of proteins is found in eukaryotes. Proteins in this family are typically between 126 and 221 amino acids in length. 191 -318021 pfam15720 DUF4675 Domain of unknown function (DUF4675). This family of proteins is found in eukaryotes. Proteins in this family are approximately 190 amino acids in length. 198 -292349 pfam15721 ANXA2R Annexin-2 receptor. This family of proteins acts as annexin-2 receptors. 190 -318022 pfam15722 FAM153 FAM153 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 289 amino acids in length. 114 -339526 pfam15723 MqsR_toxin Motility quorum-sensing regulator, toxin of MqsA. MqsR_toxin is a family of bacterial toxins that act as an mRNA interferase. MqsR is the gene most highly upregulated in E. coli persister cells and it plays an essential role in biofilm regulation and cell signalling. It forms part of a bacterial toxin-antitoxin TA system, and as expected for a TA system, the expression of the MqsR toxin leads to growth arrest, while co-expression with its antitoxin, MqsA, rescues the growth arrest phenotype. In addition, MqsR associates with MqsA to form a tight, non-toxic complex and both MqsA alone and the MqsR:MqsA2:MqsR complex bind and regulate the mqsR promoter. The structure of MqsR shows that is is a member of the RelE/YoeB family of bacterial RNases that are structurally and functionally characterized bacterial toxins.y characterized bacterial toxins. 96 -318024 pfam15724 TMEM119 TMEM119 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 217 and 283 amino acids in length. 251 -292353 pfam15725 RCDG1 Renal cancer differentiation gene 1 protein. This family includes human protein C4orf46, also known as renal cancer differentiation gene 1 protein (RCDG1). 83 -292354 pfam15726 DUF4677 Domain of unknown function (DUF4677). This family of proteins is found in eukaryotes. Proteins in this family are typically between 157 and 195 amino acids in length. 198 -318025 pfam15727 DUF4678 Domain of unknown function (DUF4678). This family of proteins is found in eukaryotes. Proteins in this family are typically between 318 and 395 amino acids in length. 381 -318026 pfam15728 DUF4679 Domain of unknown function (DUF4679). This family of proteins is found in eukaryotes. Proteins in this family are typically between 213 and 412 amino acids in length. 398 -318027 pfam15729 ALS2CR11 Amyotrophic lateral sclerosis 2 candidate 11. This family of proteins is found in eukaryotes. Proteins in this family are typically between 286 and 727 amino acids in length. 418 -318028 pfam15730 DUF4680 Domain of unknown function (DUF4680). This family of proteins is found in eukaryotes. Proteins in this family are typically between 65 and 178 amino acids in length. There are two conserved sequence motifs: VISRM and ENE. 144 -292359 pfam15731 MqsA_antitoxin Antitoxin component of bacterial toxin-antitoxin system, MqsA. MqsA_antitoxin is a family of prokaryotic proteins that act as antidotes to the mRNA interferase MqsR. It has a zinc-binding at the very N-terminus indicating its DNA-binding capacity. MqsR is the gene most highly upregulated in E. Colo MqsR_toxin is a family of bacterial toxins that act as an mRNA interferase. MqsR is the gene most highly upregulated in E. coli persister cells and it plays an essential role in biofilm regulation and cell signalling. It forms part of a bacterial toxin-antitoxin TA system, and as expected for a TA system, the expression of the MqsR toxin leads to growth arrest, while co-expression with its antitoxin, MqsA, rescues the growth arrest phenotype. In addition, MqsR associates with MqsA to form a tight, non-toxic complex and both MqsA alone and the MqsR:MqsA2:MqsR complex bind and regulate the mqsR promoter. The structure of MqsR shows that is is a member of the RelE/YoeB family of bacterial RNases that are structurally and functionally characterized bacterial toxins. 131 -318029 pfam15732 DUF4681 Domain of unknown function (DUF4681). This family of proteins is found in eukaryotes. Proteins in this family are typically between 101 and 127 amino acids in length. 127 -339527 pfam15733 DUF4682 Domain of unknown function (DUF4682). This domain family is found in eukaryotes, and is typically between 152 and 183 amino acids in length. The family is found in association with pfam00566. There is a conserved NHLL sequence motif. 124 -318031 pfam15734 MIIP Migration and invasion-inhibitory. This family of proteins binds to insulin-like growth factor binding protein 2 (IGFBP-2) and inhibits the invasion of glioma cells. 338 -318032 pfam15735 DUF4683 Domain of unknown function (DUF4683). This domain family is found in eukaryotes, and is typically between 384 and 400 amino acids in length. 402 -318033 pfam15736 DUF4684 Domain of unknown function (DUF4684). This family of proteins is found in eukaryotes. Proteins in this family are typically between 531 and 1277 amino acids in length. 439 -318034 pfam15737 DUF4685 Domain of unknown function (DUF4685). This domain family is found in eukaryotes, and is typically between 106 and 131 amino acids in length. There are two conserved sequence motifs: SGE and VRF. 116 -318035 pfam15738 YafQ_toxin Bacterial toxin of type II toxin-antitoxin system, YafQ. YafQ is a family of bacterial toxin ribonucleases of type II toxin-antitoxin systems. The E.coli gene is expressed from the dinB operon. The cognate antitoxin for the E. coli protein is DinJ, in family RelB_antitoxin, pfam02604. 88 -339528 pfam15739 TSNAXIP1_N Translin-associated factor X-interacting N-terminus. This domain is found at the N-terminus of translin-associated factor X-interacting protein, a protein which may play a role in spermatogenesis. 105 -318037 pfam15740 PPP1R26_N Protein phosphatase 1 regulatory subunit 26 N-terminus. This domain represents the N-terminus of protein phosphatase 1 regulatory subunit 26. 853 -318038 pfam15741 LRIF1 Ligand-dependent nuclear receptor-interacting factor 1. This family of proteins interacts with the retinoic acid receptor RARalpha and inhibit it's ligand-dependent transcriptional activation. 743 -318039 pfam15742 DUF4686 Domain of unknown function (DUF4686). This family of proteins is found in eukaryotes. Proteins in this family are typically between 498 and 775 amino acids in length. There is a conserved DLK sequence motif. 384 -318040 pfam15743 SPATA1_C Spermatogenesis-associated C-terminus. This domain family is found in eukaryotes, and is approximately 150 amino acids in length. There is a single completely conserved residue E that may be functionally important. 150 -318041 pfam15744 UPF0492 Uncharacterized protein family UPF0492. This family of proteins is found in eukaryotes. Proteins in this family are typically between 78 and 408 amino acids in length. 364 -318042 pfam15745 AP1AR AP-1 complex-associated regulatory protein. 276 -318043 pfam15746 TMEM215 TMEM215 family. This family of proteins is found in eukaryotes. Proteins in this family are approximately 230 amino acids in length. 224 -318044 pfam15747 DUF4687 Domain of unknown function (DUF4687). This family of proteins is found in eukaryotes. Proteins in this family are typically between 76 and 140 amino acids in length. 120 -318045 pfam15748 CCSAP Centriole, cilia and spindle-associated. This family of microtubule-binding proteins may play a role in embryonic brain development and cilia beating. 241 -339529 pfam15749 MRNIP MRN-interacting protein. This family is found in eukaryotes. Family members include MRN complex-interacting protein (MRNIP), which plays a role in preventing the accumulation of damaged DNA in cells. It associates with the MRE11-RAD50-NBS1 (MRN) damage-sensing complex and is rapidly recruited to sites of DNA damage. Phosphorylation of a serine promotes nuclear localization of MRNIP. 99 -318047 pfam15750 UBZ_FAAP20 Ubiquitin-binding zinc-finger. This domain is the ubiquitin-binding zinc-finger of the Fanconi anemia-associated protein of 20 kDa. 34 -318048 pfam15751 FANCA_interact FAAP20 FANCA interaction domain. This domain is found at the N-terminus of Fanconi anemia-associated protein of 20 kDa (FAAP20), where it is responsible for interaction with Fanconi anemia group A protein (FANCA). 108 -292380 pfam15752 DUF4688 Domain of unknown function (DUF4688). This family of proteins is found in eukaryotes. Proteins in this family are typically between 331 and 596 amino acids in length. 400 -318049 pfam15753 BLOC1S3 Biogenesis of lysosome-related organelles complex 1 subunit 3. This family of proteins are components of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). 172 -318050 pfam15754 SPESP1 Sperm equatorial segment protein 1. 319 -318051 pfam15755 DUF4689 Domain of unknown function (DUF4689). This family of proteins is found in eukaryotes. Proteins in this family are typically between 202 and 224 amino acids in length. 223 -318052 pfam15756 DUF4690 Domain of unknown function (DUF4690). This family of proteins is found in eukaryotes. Proteins in this family are typically between 100 and 122 amino acids in length. There are two conserved sequence motifs: LGPGAI and LRKF. 96 -318053 pfam15757 Amelotin Amelotin. This ameloblast-specific family of proteins may play a role in dental enamel formation. 194 -292386 pfam15758 HRCT1 Histidine-rich carboxyl terminus protein 1. 77 -318054 pfam15759 TMEM108 TMEM108 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 258 and 575 amino acids in length. 512 -318055 pfam15760 DLEU7 Leukemia-associated protein 7. 194 -318056 pfam15761 IMUP Immortalisation up-regulated protein. This family of proteins is found in eukaryotes. Proteins in this family are approximately 100 amino acids in length. There are two conserved sequence motifs: GDPK and KKPK. 99 -318057 pfam15762 DUF4691 Domain of unknown function (DUF4691). This family of proteins is found in eukaryotes. Proteins in this family are typically between 71 and 317 amino acids in length. 184 -318058 pfam15763 DUF4692 Domain of unknown function (DUF4692). This family of proteins is found in eukaryotes. Proteins in this family are approximately 170 amino acids in length. 169 -318059 pfam15764 DUF4693 Domain of unknown function (DUF4693). This family of proteins is found in eukaryotes. Proteins in this family are typically between 238 and 436 amino acids in length. 285 -318060 pfam15765 DUF4694 Domain of unknown function (DUF4694). This family of proteins is found in eukaryotes. Proteins in this family are typically between 154 and 217 amino acids in length. There is a conserved SSGY sequence motif. 148 -318061 pfam15766 DUF4695 Domain of unknown function (DUF4695). This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 206 amino acids in length. There is a conserved RFKTQP sequence motif. 107 -318062 pfam15767 DUF4696 Domain of unknown function (DUF4696). This family of proteins is found in eukaryotes. Proteins in this family are typically between 599 and 780 amino acids in length. There is a conserved AFP sequence motif. 583 -318063 pfam15768 CC190 Coiled-coil domain-containing protein 190. This family of proteins is found in eukaryotes. Proteins in this family are typically between 234 and 297 amino acids in length. 268 -318064 pfam15769 DUF4698 Domain of unknown function (DUF4698). This family of proteins is found in eukaryotes. Proteins in this family are typically between 464 and 550 amino acids in length. 486 -318065 pfam15770 DUF4699 Domain of unknown function (DUF4699). This family of proteins is found in eukaryotes. Proteins in this family are typically between 303 and 319 amino acids in length. 310 -318066 pfam15771 IHO1 Interactor of HORMAD1 protein 1. Interactor of HORMAD1 protein 1 (IHO1, previously known as coiled-coil domain-containing protein 36 or DUF4700) is required for DNA double-strand breaks (DSBs) formation in unsynapsed regions during meiotic recombination. It is thought to function, in collaboration with SPO11-auxiliary proteins MEI4 and REC114, through the formation of DSB-promoting recombinosomes on chromatin at the onset of meiosis. 576 -318067 pfam15772 UPF0688 UPF0688 family. This family of proteins is found in eukaryotes. Proteins in this family are typically between 176 and 243 amino acids in length. 232 -318068 pfam15773 DUF4701 Domain of unknown function (DUF4701). This family of proteins is found in eukaryotes. Proteins in this family are typically between 111 and 520 amino acids in length. 504 -318069 pfam15774 DUF4702 Domain of unknown function (DUF4702). This family of proteins is found in eukaryotes. Proteins in this family are typically between 346 and 637 amino acids in length. 392 -318070 pfam15775 DUF4703 Domain of unknown function (DUF4703). This family of proteins is found in eukaryotes. Proteins in this family are typically between 149 and 210 amino acids in length. 186 -318071 pfam15776 PRR22 Proline-rich protein family 22. This family of proteins is found in eukaryotes. Proteins in this family are typically between 217 and 420 amino acids in length. 366 -318072 pfam15777 Anti-TRAP Tryptophan RNA-binding attenuator protein inhibitory protein. 59 -318073 pfam15778 UNC80 Cation channel complex component UNC80. UNC80 is a family of proteins found in eukaryotes, and is typically between 193 and 224 amino acids in length. NALCN and UNC80 form a complex in mouse brain, both being tyrosine-phosphorylated; this phosphorylation can be inhibited by PP1. NALCN as the cation channel activated by substance P receptor, and the coupling from receptor to channel is facilitated by UNC80 and Src kinases rather than by a G-protein. 187 -318074 pfam15779 LRRC37 Leucine-rich repeat-containing protein 37 family. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. The function of this protein is unknown but it is likely to be upregulated by androgen. 60 -339530 pfam15780 ASH Abnormal spindle-like microcephaly-assoc'd, ASPM-SPD-2-Hydin. The ASH domain or N-terminal domain of abnormal spindle-like microcephaly-associated protein are found in proteins associated with cilia, flagella, the centrosome and the Golgi complex. The domain is also found in Hydin and OCRL whose deficiencies are associated with hydrocephalus and Lowe oculocerebrorenal syndrome (OCRL), respectively. The fact that Human ASPM protein carries an ASH domain indicates possible roles for ASPM in sperm flagellar or in ependymal cells' cilia. The presence of ASH in centrosomal and ciliary proteins indicates that ASPM may possess roles not only in mitotic spindle regulation, but also in ciliary and flagellar function. 98 -318076 pfam15781 ParE-like_toxin ParE-like toxin of type II bacterial toxin-antitoxin system. 86 -318077 pfam15782 GREB1 Gene regulated by oestrogen in breast cancer. GREB1 (gene regulated by estrogen in breast cancer 1) was first identified as an oestrogen-regulated gene expressed in breast cancer. Its exact function is not known but its expression is regulated by the coordinated binding of oestrogen-receptors to distal sites interacting with Pol II to activate gene transcription from core promoters located at a considerable distance from the greb1 gene. 1940 -318078 pfam15783 FSIP2 Fibrous sheath-interacting protein 2. FSIP2, fibrous sheath-interacting protein 2, is the C-terminal portion of a family of proteins found in mammals. The function is not known but the domain appears to be repeated up to 10 times in some members. 876 -318079 pfam15784 GPS2_interact G-protein pathway suppressor 2-interacting domain. GPS2_interact is the more N-terminal domain of two co-repressor protein-families found in vertebrates. The domain is found in NCoR and SMRT proteins; N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator for retinoid and thyroid receptors) are related corepressors that mediate transcriptional repression by unliganded nuclear receptors and other classes of transcriptional repressors. GPS2 is a stoichiometric subunit of the N-CoR-HDAC3 complex. GPS2 links the complex to membrane receptor-related intracellular JNK (c-Jun amino-terminal kinase) signalling pathways. 87 -318080 pfam15785 SMG1 Serine/threonine-protein kinase smg-1. SMG1 is a family of eukaryotic proteins. In humans this family acts as an mRNA-surveillance protein. In C.elegans, SMG1, a phosphatidylinositol kinase-related protein kinase, is a key regulator of growth. Loss of SMG1 leads to hyperactive responses to injury and subsequent growth that continues out of control. It has an antagonistic role to mTOR signalling in these worms and possibly also in higher eukaryotes. 614 -339531 pfam15786 PET117 PET assembly of cytochrome c oxidase, mitochondrial. PET117 is a family of eukaryotic proteins found from fungi and plants to human. It is likely to be involved in the assembly of cytochrome C oxidase, and is found in the mitochondrion. 66 -339532 pfam15787 DUF4704 Domain of unknown function (DUF4704). This domain of unknown function is found in eukaryotes on neurobeachin proteins. 278 -318083 pfam15788 DUF4705 Domain of unknown function (DUF4705). DUF4705 is a family of repeated domains that is found in eukaryotes. It can occur up to 10 times in any one sequence. The repeat is rich in glycine and proline residues. 50 -292417 pfam15789 Hyr1 Hyphally regulated cell wall GPI-anchored protein 1. Hyr1 family is a repeated domain found up to 39 times in a range of fungal and vertebral proteins. Hyr1 is a hypha-specific protein. 41 -318084 pfam15790 EP400_N E1A-binding protein p400, N-terminal. EP400_N is a family of eukaryote proteins. the exact function of this domain is not known. This family is largely low-complexity residues. 487 -318085 pfam15791 DMRT-like Doublesex-and mab-3-related transcription factor C1 and C2. DMRT-like is a C-terminal domain found on eukaryotic proteins for doublesex-and mab-3-related transcription factors C1 and C2. This is not the DM DNA-binding region. The family is all disorder and low-complexity. 117 -318086 pfam15792 LAS2 Lung adenoma susceptibility protein 2. LAS2 is a family of eukaryotic proteins. Deletion of LAS2 is observed in approx. 40% of human lung adenocarcinomas, suggesting that loss of function of LAS2 may be a key step for promoting lung tumorigenesis. 75 -318087 pfam15793 FAM35_C Protein family FAM35, C-terminal. FAM35_C is a family of proteins found in eukaryotes. the function is not known. 175 -318088 pfam15794 CCDC106 Coiled-coil domain-containing protein 106. CCDC106, coiled-coil domain-containing protein 106, is a family of eukaryote proteins. Yeast two-hybrid screening has identified CCDC106 as a p53-interacting partner. CCDC106 is a negative regulator of p53 and may be involved in tumorigenesis in some cancers by promoting the degradation of p53 protein and inhibiting its transactivity. 222 -339533 pfam15795 Spec3 Ectodermal ciliogenesis protein. Spec3 is a family of eukaryotic membrane proteins. In the sea urchin, Spec3 is expressed predominantly during ectodermal ciliogenesis. 85 -318090 pfam15796 KELK KELK-motif containing domain of MRCK Ser/Thr protein kinase. KELK is a domain of eukaryotic proteins found in serine/threonine-protein kinase MRCK-type proteins. The region is low-complexity, but it is not a predicted disordered-binding domain. The name comes from a highly conserved sequence motif within the domain. The function is not known. 79 -318091 pfam15797 DUF4706 Domain of unknown function (DUF4706). This domain family is found in eukaryotes, and is approximately 110 amino acids in length. 104 -318092 pfam15798 PRAS Proline-rich AKT1 substrate 1. This domain family is found in eukaryotes, and is typically between 117 and 132 amino acids in length. PRAS domain family is found in eukaryotes, and is typically between 117 and 132 amino acids in length. It is a proline-rich family that can be phosphorylated by AKT, and in the phosphorylated state binds to 14-3-3. The AKT signalling pathway contributes to regulation of apoptosis after a variety of cell death stimuli, and PRAS is found to be a substrate. PRAS plays an important role in regulating cell survival downstream of the PI3-K/Akt pathway after re-perfusion injury after transient focal cerebral ischemia. Copper/zinc-SOD (SOD1), a cytosolic isoenzyme of superoxide dismutase, SOD, is highly protective against ischemia and re-perfusion injury after transient focal cerebral ischemia, and SOD1 thus contributes to the inhibition of direct oxidation of PRAS and the activation of its signalling pathway. PRAS is also a mTOR binding partner, and PRAS phosphorylation by AKT and its association with 14-3-3, a cytosolic anchor protein, are crucial for insulin to stimulate mTOR (mammalian target of rapamycin). 122 -318093 pfam15799 CCD48 Coiled-coil domain-containing protein 48. This family of proteins is found in eukaryotes. Proteins in this family are typically between 161 and 575 amino acids in length. 580 -318094 pfam15800 CiPC Clock interacting protein circadian. CiPC is a family of proteins found in eukaryotes. The protein was identified in sheep as a gene-orthologue involved in regulation of the circadian clock. Proteins in this family are typically between 220 and 400 amino acids in length. 339 -339534 pfam15801 zf-C6H2 zf-MYND-like zinc finger, mRNA-binding. zf-C6H2 is an unusual zinc-finger similar to zf-MYND, pfam01753.This zinc-finger is found at the N-terminus of Pfam families Exo_endo_phos pfam03372 and Peptidase_M24 pfam00557. The domain is missing in prokaryotic methionine aminopeptidases, and is a unique type of zinc-finger domain. It consists of a C2-C2 zinc-finger motif similar to the RING finger family followed by a C2H2 motif similar to zinc-fingers involved in RNA-binding. In yeast the domain chelates zinc in a 2:1 ratio. The domain is found in yeast, plants and mammals. The domain is necessary for the association of the methionine aminopeptidase with the ribosome and the normal processing of the peptidase. 42 -318096 pfam15802 DCAF17 DDB1- and CUL4-associated factor 17. DCAF17, DDB1- and CUL4-associated factor 17, is a family of proteins found in eukaryotes. It may function as a substrate-receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. Mutations in the human protein, otherwise known as C2orf37, are responsible for Woodhouse-Sakati Syndrome. Woodhouse-Sakati Syndrome is a rare autosomal recessive multi-systemic disorder characterized by hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. 475 -318097 pfam15803 zf-SCNM1 Zinc-finger of sodium channel modifier 1. zf-SCNM1 is a C2H2 type zinc-finger conserved in eukaryotes found at the N-terminus of SCNM1, sodium channel modifier protein 1. Phylogenetic analysis of these zinc finger sequences places SCNM1 within the U1C subfamily of RNA binding proteins that is commonly found in RNA-processing proteins, suggesting that SCNM1 is involved in splicing activities. 27 -318098 pfam15804 CCDC168_N Coiled-coil domain-containing protein 168. CCDC168_N is the N-terminal region of eukaryotic coiled-coil proteins 168 family. There are up to 17, on average 6, copies of this repeat in most members. 205 -318099 pfam15805 SCNM1_acidic Acidic C-terminal region of sodium channel modifier 1 SCNM1. SCNM1_acidic is the C-terminal acidic region of eukaryotic sodium channel modifier protein 1. Deletion of this region affects the splicing and normal activity of the sodium channel Nav1.6 from gene Scn8a. SCNM1 sits within the U1C subfamily of RNA binding proteins that is commonly found in RNA-processing proteins, suggesting that SCNM1 is involved in splicing activities. SCNM1 and LUC7L2 associate with the mammalian spliceosomal subunit U1 snRNP. 46 -318100 pfam15806 DUF4707 Domain of unknown function (DUF4707). This family of proteins is found in eukaryotes. The function is not known. 432 -318101 pfam15807 MAP17 Membrane-associated protein 117 kDa, PDZK1-interacting protein 1. MAP17 is a family of proteins found in eukaryotes. It is a small non-glycosylated two-pass membrane protein, that is overexpressed in many tumors of different origins, including carcinomas. 121 -318102 pfam15808 BCOR BCL-6 co-repressor, non-ankyrin-repeat region. BCOR is a domain family found in eukaryotes, and is approximately 220 amino acids in length. This domain lies just upstream of the ankyrin-repeat region at the C-terminus of BCL-6 co-repressor proteins. The function of this region is not known. 217 -318103 pfam15809 STG Simian taste bud-specific gene product family. STG was first isolated from rhesus monkey taste buds. The exact function of STG is not known, but it has been implicated in follicular lymphomas, though not with psoriasis at least in a Swedish population despite lying close to the PSOR1 gene-locus. 235 -318104 pfam15810 CCDC117 Coiled-coil domain-containing protein 117. CCDC117 is a family of coiled-coil proteins found in eukaryotes. Proteins in this family are typically between 203 and 279 amino acids in length. There is a conserved MELV sequence motif. The function is not known. 142 -318105 pfam15811 SVIP Small VCP/p97-interacting protein. SVIP, small VCP/p97-interacting protein, is a family of proteins found in eukaryotes. SVIP was identified by yeast two-hybrid screening to be an interactive partner of VCP/p97. Mammalian VCP/p97 and its yeast counterpart Cdc48p participate in the formation of organelles, including the endoplasmic reticulum (ER), Golgi apparatus, and nuclear envelope. Over-expression of SVIP caused the formation of large vacuoles that seemed to be derived from the ER. The family has two putative coiled-coil regions and contains proteins of approximately 80 amino acids in length. 77 -318106 pfam15812 MREG Melanoregulin. Melanoregulin is a family of proteins found in eukaryotes. It is a putative membrane fusion regulator. MREG forms a complex with peripherin-2. It is required for lysosome maturation and plays a role in intracellular trafficking. It is a negative regulator of melanosome intercellular transfer and it regulates intercellular melanosome transfer through palmitoylation. 148 -318107 pfam15813 DUF4708 Domain of unknown function (DUF4708). This family of proteins is found in eukaryotes. 274 -318108 pfam15814 FAM199X Protein family FAM199X. This family of proteins is found in eukaryotes. The function of FAM199X is not known. 320 -318109 pfam15815 MKRN1_C E3 ubiquitin-protein ligase makorin-1, C-terminal. MKRN1_C is the very C-terminus of E3 ubiquitin-protein ligase makorin-1, or MKRN1, a family of eukaryotic putative ribonucleoproteins with a distinctive array of zinc-finger motifs. MKRN1 plays an important role in modulating the homeostasis of telomere-length through a dynamic balance involving the stability of the protein hTERT. MKRN1 has been shown to be a a transcriptional co-regulator and an E3 ligase. It functions simultaneously as a differentially negative regulator of p53 and p21, preferentially leading cells to p53-dependent apoptosis by suppressing p21. The exact function of the C-terminal region has not been determined. 81 -318110 pfam15816 TMEM82 Transmembrane protein 82. TMEM82 is a family of proteins found in eukaryotes. The function is not known. 295 -318111 pfam15817 TMEM40 Transmembrane protein 40 family. TMEM40 is a family of eukaryotic membrane proteins. 120 -318112 pfam15818 CCDC73 Coiled-coil domain-containing protein 73 family. CCDC73 is a family of eukaryotic coiled-coil containing proteins. The function is not known. The alternative name is sarcoma antigen NY-SAR-79. 1045 -318113 pfam15819 Fibin Fin bud initiation factor homolog. Fibin is a family of eukaryotic proteins expressed in the lateral plate mesoderm of presumptive pectoral fin bud regions. It acts as a signal molecule for the expression of Tbx5, a gene involved in the specification of fore-limb identity. Fibin is found to be expressed in cerebellum, skeletal muscle and many other embryonic as well as adult mouse tissues, suggesting roles in both embryogenesis and in adult life. Although Fibin is routed through the endoplasmic reticulum (ER) no significant evidence for secretion is found. Fibin is post-translationally modified and forms dimers when expressed heterologously and its expression is regulated by a number of cellular signalling pathways. 190 -292448 pfam15820 ECSCR Endothelial cell-specific chemotaxis regulator. ECSCR, endothelial cell-specific chemotaxis regulator, is a family of proteins found in eukaryotes. It is also known as ARIA for apoptosis regulator through modulating IAP expression. It is a cell surface protein that regulates endothelial chemotaxis and tube formation, and interacts with filamin A. Filamin A anchors transmembrane proteins to the actin cytoskeleton becoming a scaffold for various signalling proteins. ECSCR is also known to interact with and regulate the function of several endothelial transmembrane molecules. It has been shown to play a role in angiogenesis, a complex process involving the migration, proliferation, and lumen formation of blood vessels by endothelial cells. ECSCR appears also to regulate endothelial apoptosis, probably through modulating proteasomal degradation of cIAP-1 and cIAP-2 in endothelial cells. 104 -339535 pfam15821 DUF4709 Domain of unknown function (DUF4709). This domain family is found in eukaryotes, and is approximately 110 amino acids in length. There is a conserved QQL sequence motif. 110 -318115 pfam15822 MISS MAPK-interacting and spindle-stabilizing protein-like. MISS is a family of eukaryotic MAPK-interacting and spindle-stabilizing protein-like proteins. MISS is rich in prolines and has four potential MAPK-phosphorylation sites, a MAPK-docking site, a PEST sequence (PEST motif) and a bipartite nuclear localization signal. The endogenous protein accumulates during mouse meiotic maturation and is found as discrete dots on the MII spindle. MISS is the first example of a physiological MAPK-substrate that is stabilized in MII that specifically regulates MII spindle integrity during the CSF arrest. 238 -318116 pfam15823 UPF0524 UPF0524 of C3orf70. UPF0524 is a family of proteins found in eukaryotes. Proteins in this family are typically between 183 and 250 amino acids in length. The function is not known. 239 -292452 pfam15824 SPATA9 Spermatogenesis-associated protein 9. SPATA9, spermatogenesis-associated protein 9, or testis development protein NYD-SP16, is a family of eukaryotic proteins associated with sperm production. It is highly expressed in human testis and contains one transmembrane domain. Its localization indicates it is likely to play an important role in testicular development and spermatogenesis and may be an important factor in male infertility. 253 -318117 pfam15825 FAM25 FAM25 family. FAM25 is a family of proteins found in eukaryotes. Proteins in this family are typically between 54 and 95 amino acids in length. There is a conserved GEK sequence motif. The function is not known. 65 -318118 pfam15826 PUMA Bcl-2-binding component 3, p53 upregulated modulator of apoptosis. PUMA (p53 upregulated modulator of apoptosis) is a family of eukaryotic proteins that are a target for activation by p53. The proteins contain BH3 domains and are induced in cells after p53 activation. They bind to Bcl-2, localize to the mitochondria to induce cytochrome c release, and activate the rapid induction of apoptosis. 217 -318119 pfam15827 UPF0730 UPF0730 unknown protein family. UPF0730 is a family of proteins found in eukaryotes. Proteins in this family are typically between 51 and 156 amino acids in length. 46 -318120 pfam15828 DUF4710 Domain of unknown function (DUF4710). This family of proteins is found in eukaryotes. Proteins in this family are typically between 60 and 150 amino acids in length. 77 -318121 pfam15829 DUF4711 Domain of unknown function (DUF4711). This family of proteins is found in eukaryotes. Proteins in this family are typically between 130 and 288 amino acids in length. 218 -318122 pfam15830 DUF4712 Domain of unknown function (DUF4712). This family of proteins is found in eukaryotes. Proteins in this family are typically between 133 and 267 amino acids in length. 250 -318123 pfam15831 DUF4713 Domain of unknown function (DUF4713). This family of proteins is found in eukaryotes. Proteins in this family are typically between 68 and 91 amino acids in length. Members are single-pass membrane proteins. 56 -318124 pfam15832 FAM27 FAM27 D and E protein family. FAM27 is a family of proteins found in eukaryotes. Proteins in this family are typically between 57 and 131 amino acids in length. 57 -318125 pfam15833 DUF4714 Domain of unknown function (DUF4714). This family of proteins is found in eukaryotes. Proteins in this family are typically between 143 and 164 amino acids in length. 148 -318126 pfam15834 THEG4 Testis highly expressed protein 4. THEG4, testis highly expressed protein 4, is a family of proteins found in eukaryotes. Proteins in this family are typically between 152 and 232 amino acids in length. 201 -318127 pfam15835 DUF4715 Domain of unknown function (DUF4715). This family of proteins is found in eukaryotes. Proteins in this family are approximately 150 amino acids in length. The proteins are described as coiled-coil domain-containing protein ENSP00000299415-like. 139 -318128 pfam15836 SSTK-IP SSTK-interacting protein, TSSK6-activating co-chaperone protein. SSTK-IP, SSTK-interacting protein or TSSK6-activating co-chaperone, is a family of proteins found in eukaryotes. SSTK-IP directly binds to HSP70, is found associated with HSP70 and HSP90 in cells, and facilitates HSP90-dependent enzymatic activation of SSTK. SSTK is a small serine/threonine kinase expressed post-meiotically and essential for male fertility along with two other serine threonine kinases. SSTK is one of the smallest protein kinases, consisting only of N- and C-lobes of a kinase catalytic domain, and forms stable associations with heat shock protein (HSP) 70 and 90. SSTK-IP, its interacting protein, thus represents the first germ cell-specific co-chaperone and protein kinase that requires the HSP90 machinery for catalytic activation. 125 -318129 pfam15837 DUF4716 Domain of unknown function (DUF4716). This domain family is found in eukaryotes, and is approximately 60 amino acids in length. 60 -318130 pfam15838 DUF4717 Domain of unknown function (DUF4717). This family of proteins is found in eukaryotes. Proteins in this family are typically between 103 and 139 amino acids in length. There are two conserved sequence motifs: LLLL and CFNLAS. 72 -318131 pfam15839 TEX29 Testis-expressed sequence 29 protein. TEX29, testis-expressed sequence 29 protein, is a family of proteins found in eukaryotes. Proteins in this family are typically between 39 and 150 amino acids in length. 76 -318132 pfam15840 ARL17 ADP-ribosylation factor-like protein 17. ARL17 is a family of proteins found in primates. Proteins in this family are typically between 82 and 130 amino acids in length. Members of this family are also referred to as NBR2 or neighbor of BRAC1 gene 2. 62 -292469 pfam15841 TMEM239 Transmembrane protein 239 family. This family of proteins is found in primates. Proteins in this family are typically between 152 and 198 amino acids in length. 149 -292470 pfam15842 DUF4718 Domain of unknown function (DUF4718). This family of proteins is found in eukaryotes. Proteins in this family are typically between 130 and 224 amino acids in length. 183 -292471 pfam15843 DUF4719 Domain of unknown function (DUF4719). This family of proteins is found in eukaryotes. Proteins in this family are typically between 67 and 240 amino acids in length. 122 -318133 pfam15844 TMCCDC2 Transmembrane and coiled-coil domain-containing protein 2. This family of proteins is found in primates. Proteins in this family are approximately 180 amino acids in length. 171 -292473 pfam15845 NICE-1 Cysteine-rich C-terminal 1 family. NICE-1 is family of proteins found in primates. Proteins in this family are typically between 51 and 105 amino acids in length. 99 -318134 pfam15846 DUF4720 Domain of unknown function (DUF4720). This family of proteins is found in vertebrates. Proteins in this family are typically between 101 and 117 amino acids in length. 80 -292475 pfam15847 Loricrin Major keratinocyte cell envelope protein. Loricrin is a family of major keratinocyte cell envelope proteins found in primates. It acts as an important epidermal barrier, and is initially expressed in the granular layer comprising 70% of the total protein mass of the cornified layer. Expression of Loricrin is regulated by TNF-alpha via a c-Jun N-terminal kinase-dependent pathway. 336 -318135 pfam15848 DUF4721 Domain of unknown function (DUF4721). This domain family is found in primates. 95 -292477 pfam15849 DUF4722 Domain of unknown function (DUF4722). This family of proteins is found in vertebrates. Proteins in this family are typically between 86 and 203 amino acids in length. 167 -318136 pfam15851 DUF4723 Domain of unknown function (DUF4723). This family of proteins is found in mammals. There are a number of conserved cysteines but it is unlikely to be a zinc-finger family. 81 -318137 pfam15852 DUF4724 Domain of unknown function (DUF4724). This family of proteins is found in mammals. There is a conserved KVKPL sequence motif. 89 -318138 pfam15854 DUF4725 Domain of unknown function (DUF4725). This family of proteins is found in vertebrates. Proteins in this family are approximately 80 amino acids in length. 80 -318139 pfam15855 DUF4726 Domain of unknown function (DUF4726). This family of proteins is found in vertebrates. Proteins in this family are typically between 40 and 110 amino acids in length. 101 -318140 pfam15856 DUF4727 Domain of unknown function (DUF4727). This family of proteins is found in vertebrates. There are a number of conserved cysteines, but the domain is not a zinc-finger. 215 -318141 pfam15858 LCE6A Late cornified envelope protein 6A family. LCE6A is a family of proteins is found in mammals. It was identified in a large-scale screening experiment as being involved in the barrier function of the epidermis. 81 -292484 pfam15859 DEC1 Deleted in esophageal cancer 1 family. DEC1 is a family of proteins found in primates. The protein has been identified as being deleted in oesophageal cancers so is also referred to as candidate tumor suppressor CTS9. Proteins in this family are approximately 70 amino acids in length. 62 -318142 pfam15860 DUF4728 Domain of unknown function (DUF4728). This family of arthropod proteins is functionally uncharacterized. 89 -318143 pfam15861 partial_CstF Partial cleavage stimulation factor domain. Partial_CstF domain is a protein domain that occurs in proteins from apicomplexan parasites. Currently (as of 2012), little is known about the function of this domain. However, it is homologous to the amino-terminal part of the cleavage stimulation factor, which is thought to be involved with mRNA maturation in mammals. 62 -318144 pfam15862 Coilin_N Coilin N-terminus. 140 -318145 pfam15863 EELM2 Extended EGL-27 and MTA1 homology domain. EELM2, the extended EGL-27 and MTA1 homology domain is a protein domain that occurs in proteins from apicomplexan parasites. Part of the EELM2 domain is homologous to the ELM2 domain, but is 'extended' in that its boundaries (the region of conservation) are longer than in the ELM2 domain. Currently (as of 2012), little is known about the function of this domain. However, some proteins that contain an EELM2 domain also contain a PHD finger domain, which is thought to be involved in chromatin remodelling. This suggests an associated role for the EELM2 domain. 161 -339536 pfam15864 PglL_A Protein glycosylation ligase. PglL_A is a pilin glycosylation ligase domain found in Gram negative bacteria. PglL protein O-oligosaccharyltransferases differ from the wider Wzy_C family, pfam04932, which contains both WaaL O-antigen ligases, in its substrate-specificity. PglL O-oligosaccharyltransferases (O-OTase) transfer oligosaccharide to serine or threonine in a protein. A further indication that the genes identified are PglL rather than WaaL homologs is that they are not located within lipopolysaccharide biosynthetic loci. The specific pilin glycosylation ligases are a subset of the more general bacterial protein o-oligosaccharyltransferases. 26 -339537 pfam15865 Fanconi_A_N Fanconi anaemia group A protein N-terminus. 325 -318147 pfam15866 DUF4729 Domain of unknown function (DUF4729). This family of proteins is functionally uncharacterized. This family of proteins is found in insects. Proteins in this family are typically between 238 and 666 amino acids in length. 210 -318148 pfam15867 Dynein_attach_N Dynein attachment factor N-terminus. This family represents the N-terminus of a dynein arm attachment factor which is required for dynein arm assembly and cilia motility. 69 -339538 pfam15868 MBF2 Transcription activator MBF2. MBF2 activates transcription via its interaction with TFIIA. In Bombyx mori, it has been found to form a complex with MBF1 and the DNA-binding regulator FTZ-F1. 89 -318150 pfam15869 TolB_like TolB-like 6-blade propeller-like. 295 -318151 pfam15870 EloA-BP1 ElonginA binding-protein 1. This domain family is found in eukaryotes, and is typically between 144 and 167 amino acids in length. 164 -318152 pfam15871 JMY Junction-mediating and -regulatory protein. JMY, Junction-mediating and -regulatory protein is also a WASP homolog-associated protein with actin, membranes and microtubules. This middle region is the coiled-coil region that putatively binds microtubules to the scaffold. This ability to interact with microtubules plays a role in membrane tubulation. 355 -318153 pfam15872 SRTM1 Serine-rich and transmembrane domain-containing protein 1. This family of proteins is found in eukaryotes. Proteins in this family are approximately 100 amino acids in length. 103 -292498 pfam15873 DUF4730 Domain of unknown function (DUF4730). This family of proteins is found in eukaryotes. Proteins in this family are approximately 60 amino acids in length. 55 -318154 pfam15874 Il2rg Putative Interleukin 2 receptor, gamma chain. This family of proteins is found in eukaryotes. Proteins in this family are typically between 137 and 197 amino acids in length. 95 -318155 pfam15875 DUF4731 Domain of unknown function (DUF4731). This family of proteins is found in eukaryotes. Proteins in this family are typically between 37 and 78 amino acids in length. 75 -292501 pfam15876 DUF4732 Domain of unknown function (DUF4732). This family of proteins is found in eukaryotes. Proteins in this family are typically between 107 and 201 amino acids in length. 159 -318156 pfam15877 TMEM232 Transmembrane protein family 232. This family of proteins is found in eukaryotes. The function is not known. 452 -318157 pfam15878 DUF4733 Domain of unknown function (DUF4733). This family of proteins is found in eukaryotes. Proteins in this family are typically between 73 and 99 amino acids in length. 93 -339539 pfam15879 MWFE NADH-ubiquinone oxidoreductase MWFE subunit. MWFE is a short subunit of NADH-ubiquinone oxidoreductase found in eukaryotes. It is necessary for the activity of NADH-ubiquinone oxidoreductase complex I in mitochondria. This subunit is essential for the assembly and function of the enzyme. MWFE is found to be phosphorylated, eg in rat heart mitochondria. The short family includes much of a signal peptide. 55 -318159 pfam15880 NDUFV3 NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial. 34 -318160 pfam15881 DUF4734 Domain of unknown function (DUF4734). This domain family is found in species of Drosophila, and is approximately 90 amino acids in length. The family is found in association with pfam07707. 90 -318161 pfam15882 DUF4735 Domain of unknown function (DUF4735). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 288 and 410 amino acids in length. There are two completely conserved C residues that may be functionally important. In mammals this protein family is thyroid-specific. 285 -318162 pfam15883 DUF4736 Domain of unknown function (DUF4736). This family of proteins is functionally uncharacterized. This family of proteins is found in insects. Proteins in this family are typically between 186 and 228 amino acids in length. 185 -318163 pfam15884 QIL1 Protein QIL1. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 111 and 169 amino acids in length. 95 -339540 pfam15886 CBM39 Carbohydrate binding domain (family 32). This domain is found at the N-terminus of beta-1,3-glucan-binding proteins involved in recognition of invading micro-organisms. It often co-occurs with pfam00722 (Glycosyl hydrolases family 16). It recognizes and binds to a triple-helical beta-1,3-glucan structure. 104 -339541 pfam15887 Peptidase_Mx Putative zinc-binding metallo-peptidase. This family has a highly conserved HHExxH motif with a highly conserved ED pairing downstream. HExxH is indicative of a zinc-binding metallo-peptidase. 240 -318166 pfam15888 FOG_N Folded gastrulation N-terminus. This is the N-terminal domain of the folded gastrulation protein. Folded gastrulation is required for morphogenic movements during gastrulation and nervous system development. It may act as a secreted signal and activate the G protein alpha subunit. This domain may be the G protein-coupled receptor ligand. 112 -339542 pfam15889 DUF4738 Domain of unknown function (DUF4738). Family of uncharacterized proteins found in CFB group of bacteria, mostly from Bacteroides and Prevotella genera present in human gut and oral cavity, respectively. JCSG target SP13584B, the experimentally determined structure consists of two WD40-like beta sheet repeats forming a beta sandwich 138 -339543 pfam15890 Peptidase_Mx1 Putative zinc-binding metallo-peptidase. This family is a putative zinc-binding metallo-peptidase. There are two highly conserved motifs, HHExxH and ED. HExxH with ED is indicative of zinc-binding metallo-peptidases. 235 -318169 pfam15891 Nuc_deoxyri_tr2 Nucleoside 2-deoxyribosyltransferase like. 105 -318170 pfam15892 BNR_4 BNR repeat-containing family member. BNR_4 is a family which carries the unique sequence motif SxDxGxTW which is so characteristic of the repeats of the BNR family, pfam02012. It is unclear whether or not this unit is repeated throughout the sequences of this family, but if it is then the family is likely to be bacterial neuraminidase. 269 -318171 pfam15893 DUF4739 Domain of unknown function (DUF4739). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 138 and 167 amino acids in length. 236 -292518 pfam15894 SgrT Inhibitor of glucose uptake transporter SgrT. 49 -292519 pfam15895 CAAX_1 CAAX box cerebral protein 1. CAAX_1 is a family of primate proteins. CAAX refers to the highly characteristic C-terminal residues, a cysteine and two aliphatic residues followed by any residue, a C-terminal tetrapeptide recognition motif called the Ca1a2X box. This motif on substrates is recognized by prenyltransferases that then attach an isoprenoid lipid (a process termed prenylation), one of the many post-translational modifications that occur in cells. The function of the prenylated family is not known. 199 -292520 pfam15897 DUF4741 Domain of unknown function (DUF4741). 169 -339544 pfam15898 PRKG1_interact cGMP-dependent protein kinase interacting domain. This domain is found at the C-terminus of protein phosphatase 1 regulatory subunits 12A, 12B and 12C. In protein phosphatase 1 regulatory subunit 12A it has been found to bind to cGMP-dependent protein kinase 1 via a leucine zipper motif located at the C-terminus of this domain. 101 -292522 pfam15899 BNR_6 BNR-Asp box repeat. This BNR repeat is found in proteins such as human sortilin. The model complements family BNR_5. 14 -339545 pfam15901 Sortilin_C Sortilin, neurotensin receptor 3, C-terminal. Sortilin_C is the C-terminal cytoplasmic tail of sortilin, a Vps10p domain-containing family of proteins. Most sortilin is expressed within intracellular compartments, where it chaperones diverse ligands, including proBDNF and acid hydrolases. The sortilin cytoplasmic tail is homologous to mannose 6-phosphate receptor and is required for the intracellular trafficking of cargo proteins via interactions with distinct adaptor molecules. In addition to mediating lysosomal targeting of specific acid hydrolases, the sortilin cytoplasmic tail also directs trafficking of BDNF to the secretory pathway in neurons, where it can be released in response to depolarisation to modulate cell survival and synaptic plasticity. 163 -339546 pfam15902 Sortilin-Vps10 Sortilin, neurotensin receptor 3,. Sortilin, also known in mammals as neurotensin receptor-3, is the archetypical member of a Vps10-domain (Vps10-D) that binds neurotrophic factors and neuropeptides. This domain constitutes the entire luminal part of Sortilin and is activated in the trans-Golgi network by enzymatic propeptide cleavage. The structure of the domain has been determined as a ten-bladed propeller, with up to 9 BNR or beta-hairpin turns in it. The mature receptor binds various ligands, including its own propeptide (Sort-pro), neurotensin, the pro-forms of nerve growth factor-beta (NGF)6 and brain-derived neurotrophic factor (BDNF)7, lipoprotein lipase (LpL), apo lipoprotein AV14 and the receptor-associated protein (RAP)1. 443 -318175 pfam15903 PL48 Filopodia upregulated, FAM65. PL48 is associated with cytotrophoblast and lineage-specific HL-60 cell differentiation. The N-terminal part of the family is found to induce the formation of filopodia. It is found in vertebrates. 346 -318176 pfam15904 LIP1 LKB1 serine/threonine kinase interacting protein 1. LIP1 is a protein found in eukaryotes. It represents the N-terminus of a leucine-rich-repeat protein that is implicated in Peutz-Jeghers syndrome. LIP1 interacts with the TGF-beta-regulated transcription factor SMAD4 to form a LKB1-LIP1-SMAD4 ternary complex. Mutations in SMAD4 lead to juvenile polyposis, suggesting a mechanistic link between these two diseases. 90 -318177 pfam15905 HMMR_N Hyaluronan mediated motility receptor N-terminal. HMMR_N is the N-terminal region of eukaryotic hyaluronan-mediated motility receptor proteins. The protein is functionally associated with BRCA1 and thus predicted to be a common, low-penetrance breast cancer candidate. 331 -318178 pfam15906 zf-NOSIP Zinc-finger of nitric oxide synthase-interacting protein. 75 -318179 pfam15907 Itfg2 Integrin-alpha FG-GAP repeat-containing protein 2. Members of this family are annotated as being integrin-alpha FG-GAP repeat-containing protein 2. 334 -318180 pfam15908 HMMR_C Hyaluronan mediated motility receptor C-terminal. HMMR_C is the C-terminal region of eukaryotic hyaluronan-mediated motility receptor proteins. The protein is functionally associated with BRCA1 and thus predicted to be a common, low-penetrance breast cancer candidate. 157 -318181 pfam15909 zf-C2H2_8 C2H2-type zinc ribbon. This family carries three zinc-fingers in tandem. 98 -318182 pfam15910 V-set_2 ICOS V-set domain. This family contains divergent V-set ig domains found in the ICOS protein. 112 -339547 pfam15911 WD40_3 WD domain, G-beta repeat. 57 -318184 pfam15912 VIR_N Virilizer, N-terminal. VIR_N is the conserved N-terminus of the protein virilizer, necessary for male and female viability and required for the production of eggs capable of embryonic development. 263 -318185 pfam15913 Furin-like_2 Furin-like repeat, cysteine-rich. The furin-like cysteine rich region has been found in a variety of proteins from eukaryotes that are involved in the mechanism of signal transduction by receptor tyrosine kinases, which involves receptor aggregation. 105 -318186 pfam15914 FAM193_C FAM193 family C-terminal. This domain family is found in eukaryotes, and is approximately 60 amino acids in length. This C-terminal region of these proteins carries the most conserved residues. 54 -318187 pfam15915 BAT GAF and HTH_10 associated domain. GAF-HTH_assoc domain is always found between GAF-2 and HTH_10 domains on bacterio-opsin activator proteins. The exact function is not known. 156 -339548 pfam15916 DUF4743 Domain of unknown function (DUF4743). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is approximately 150 amino acids in length. The family is found in association with pfam00293. 116 -318189 pfam15917 PIEZO Piezo. This domain is found in proteins belonging to the piezo family. Piezo proteins are components of cation channels. This domain is found in association with pfam12166. 221 -318190 pfam15918 DUF4744 Domain of unknown function (DUF4744). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 81 and 415 amino acids in length. 66 -318191 pfam15919 HicB_lk_antitox HicB_like antitoxin of bacterial toxin-antitoxin system. This is a family of HicB-like antitoxins. 123 -318192 pfam15920 WHAMM-JMY_N N-terminal of Junction-mediating and WASP homolog-associated. WHAMM-JMY_N is the very N-terminus of WHAMM and JMY proteins. The function of this conserved region is not known; there are two highly conserved tryptophan residues. 49 -318193 pfam15921 CCDC158 Coiled-coil domain-containing protein 158. CCDC158 is a family of proteins found in eukaryotes. The function is not known. 1112 -292544 pfam15922 YjeJ YjeJ-like. YjeJ is a family of bacterial proteins. The domains and proteins in this family vary in length from 283 to 284 amino acids. The function is not yet known. All proteins are Gammaproteobacteria. 283 -318194 pfam15923 DUF4745 Domain of unknown function (DUF4745). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 180 amino acids in length. 133 -339549 pfam15924 ALG11_N ALG11 mannosyltransferase N-terminus. 208 -318196 pfam15925 SOSSC SOSS complex subunit C. SOSS complex subunit C is a component of the SOSS complex, a single-stranded DNA binding complex involved in genomic stability, double-stranded break repair and ataxia telangiectasia-mutated-dependent signaling pathways. 92 -318197 pfam15926 RNF220 E3 ubiquitin-protein ligase RNF220. This family represents the central region of the E3 ubiquitin-protein ligase RNF220. 249 -339550 pfam15927 Casc1_N Cancer susceptibility candidate 1 N-terminus. This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 200 amino acids in length. The family is found in association with pfam12366. There are two completely conserved residues (N and W) that may be functionally important. 198 -318199 pfam15928 DUF4746 Domain of unknown function (DUF4746). This presumed domain is functionally uncharacterized. This domain is found in eukaryotes, and is typically between 247 and 324 amino acids in length. The family is found in association with pfam00085. 274 -318200 pfam15929 Myofilin Myofilin. Myofilin is an insect muscle protein found in thick muscle filaments. 150 -318201 pfam15930 YdiH Domain of unknown function. YdiH is a family of proteins found in bacteria. Proteins in this family are typically between 62 and 80 amino acids in length. The function is not known. 62 -292553 pfam15931 DUF4747 Domain of unknown function (DUF4747). This family of proteins is found in bacteria. Proteins in this family are typically between 263 and 305 amino acids in length. 258 -318202 pfam15932 DUF4748 Domain of unknown function (DUF4748). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 114 and 139 amino acids in length. 51 -318203 pfam15933 RnlB_antitoxin Antitoxin to bacterial toxin RNase LS or RnlA. RnlB_antitoxin, formerly known as yfjO, has been found to be the antidote protein to RNase LS or RnlA in E. coli. Bacterial toxin-antitoxin systems consist of a stable toxin and an unstable antitoxin. In this case, a novel type II system, RnlA is the stable toxin that causes inhibition of cell growth and rapidly degrades T4 late mRNAs to prevent their expression, and this is neutralized by the activity of the unstable antitoxin RnlB. 94 -318204 pfam15934 Yuri_gagarin Yuri gagarin. The yuri gagarin protein found in Drosophila, it plays roles in spermatogenesis. 234 -292557 pfam15935 RnlA_toxin RNase LS, bacterial toxin. RnlA_toxin is an RNase LS and a putative toxin of a bacterial toxin-antitoxin pair. Toxin-antitoxin systems consist of a stable toxin and an unstable antitoxin. In this case, a novel type II system, RnlA is the stable toxin that causes inhibition of cell growth and rapidly degrades T4 late mRNAs to prevent their expression, and this is neutralized by the activity of the unstable antitoxin RnlB. 229 -339551 pfam15936 DUF4749 Domain of unknown function (DUF4749). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 121 and 170 amino acids in length. It is usually found in association with pfam00595 (PDZ) and pfam00412 (LIM), and often contains the conserved Zasp-like motif (IPR006643). 90 -318206 pfam15937 PrlF_antitoxin prlF antitoxin for toxin YhaV_toxin. PrlF_antitoxin is a family of bacterial antitoxins that neutralizes the toxin YhaV. PrlF is labile and forms a homodimer that then binds to the YhaV toxin thereby neutralising its ribonuclease activity. Alone, it can also act as a transcription factor. The YhaV/PrlF complex binds the prlF-yhaV operon, probably regulating its expression negatively. Over-expression of PrlF leads to increased doubling time. 95 -318207 pfam15938 DUF4750 Domain of unknown function (DUF4750). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 76 and 92 amino acids in length. There are two completely conserved W residues that may be functionally important. 54 -292561 pfam15939 YmcE_antitoxin Putative antitoxin of bacterial toxin-antitoxin system. YmcE_antitoxin is the putative antitoxin for the supposed bacterial toxin GnsA, UniProtKB:P0AC92, family pfam08178. 76 -318208 pfam15940 YjcB Family of unknown function. This family of proteins is found in bacteria. Proteins in this family are approximately 90 amino acids in length. 90 -339552 pfam15941 FidL_like FidL-like putative membrane protein. FidL-like is a family of bacterial proteins that are purported to be membrane proteins. 88 -292564 pfam15942 DUF4751 Domain of unknown function (DUF4751). This family of proteins is found in bacteria. Proteins in this family are approximately 140 amino acids in length. 121 -339553 pfam15943 YdaS_antitoxin Putative antitoxin of bacterial toxin-antitoxin system, YdaS/YdaT. YdaS_antitoxin is a family of putative bacterial antitoxins, neutralising the toxin YdaT, family pfam06254. 65 -339554 pfam15944 DUF4752 Domain of unknown function (DUF4752). This family of proteins is found in bacteria and viruses. Proteins in this family are typically between 90 and 105 amino acids in length. There is a conserved GLA sequence motif. 84 -318212 pfam15945 DUF4753 Domain of unknown function (DUF4753). This family of proteins is found in bacteria. Proteins in this family are approximately 50 amino acids in length. 45 -318213 pfam15946 DUF4754 Domain of unknown function (DUF4754). This family of proteins is found in bacteria. Proteins in this family are approximately 80 amino acids in length. 80 -318214 pfam15947 DUF4755 Domain of unknown function (DUF4755). This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. 129 -292570 pfam15948 DUF4756 Domain of unknown function (DUF4756). This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. 158 -339555 pfam15949 DUF4757 Domain of unknown function (DUF4757). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 145 and 166 amino acids in length. The family is found in association with pfam00412. There are two completely conserved residues (W and L) that may be functionally important. 160 -339556 pfam15950 DUF4758 Putative sperm flagellar membrane protein. 125 -318217 pfam15951 MITF_TFEB_C_3_N MITF/TFEB/TFEC/TFE3 N-terminus. This domain is found at the N-terminus of several transcription factors including microphthalmia-associated transcription factor, transcription factor EB, transcription factor EC and transcription factor E3. 149 -318218 pfam15952 ESM4 Enhancer of split M4 family. This family of proteins includes enhancer of split M4, enhancer of split M2 and enhancer of split MAlpha. These proteins are part of the Notch signaling pathway. 178 -292575 pfam15953 PDU_like Putative propanediol utilisation. This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. 153 -318220 pfam15955 Cuticle_4 Cuticle protein. 75 -318221 pfam15956 DUF4760 Domain of unknown function (DUF4760). This family of proteins is found in bacteria, archaea and viruses. Proteins in this family are typically between 147 and 190 amino acids in length. There is a single completely conserved residue R that may be functionally important. 141 -318222 pfam15957 Comm Commissureless. Commissureless regulates Roundabout (Robo) levels and as a result regulates controls axon guidance across the embryo midline. 110 -318223 pfam15958 DUF4761 Domain of unknown function (DUF4761). This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 105 -339557 pfam15959 DUF4762 Domain of unknown function (DUF4762). This family of proteins is found in bacteria. Proteins in this family are approximately 70 amino acids in length. There is a conserved TTC sequence motif. 61 -318225 pfam15960 DUF4763 Domain of unknown function (DUF4763). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 237 and 332 amino acids in length. There are two completely conserved residues (C and R) that may be functionally important. 227 -318226 pfam15961 DUF4764 Domain of unknown function (DUF4764). 797 -318227 pfam15962 DUF4765 Domain of unknown function (DUF4765). This domain family is found in bacteria, and is approximately 90 amino acids in length. 1128 -339558 pfam15963 Myb_DNA-bind_7 Myb DNA-binding like. 84 -318229 pfam15964 CCCAP Centrosomal colon cancer autoantigen protein family. CCCAP is a family of proteins found in eukaryotes. CCCAP is also known as SDCCAG8, serologically defined colon cancer antigen 8. It is associated with the centrosome. 703 -318230 pfam15965 zf-TRAF_2 TRAF-like zinc-finger. 93 -318231 pfam15966 F-box_4 F-box. 109 -318232 pfam15967 Nucleoporin_FG2 Nucleoporin FG repeated region. Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif. 593 -292590 pfam15968 RexB Membrane-anchored ion channel, Abi component. RexB is a family of anti-lambda phage inner-membrane ion-channels with four transmembrane domains. On infection by phage, a phage protein-DNA complex is produced as a replication or recombination intermediate which activates RexA. RexA is an intracellular sensor that activates the membrane-anchored RexB. At least two RexA proteins are needed to activate one RexB protein. Activation opens the ion-channel leading to a drop in membrane potential, the outcome of which is the death of the host cell but also the cessation or abortion of the phage infection. RexA-RexB is one of the most well characterized bacterial abortive infection systems, or Abis. 139 -292591 pfam15969 RexA Intracellular sensor of Lambda phage, Abi component. RexA is a family of bacterial anti-phage proteins. It forms one partner in the two-component abortive infection system, Abi, of E. coli in partnership with RexB, a membrane-anchored ion- channel. Two RexA are needed to activate one RexB, and activation causes opening of the channel, the efflux of cations, a drop in cellular levels of ATP and subsequent death of the host cell and abortion of the phage infecting process which requires ATP. 277 -292592 pfam15970 HicB-like_2 HicB_like antitoxin of bacterial toxin-antitoxin system. This is a family of HicB-like antitoxins. 81 -318233 pfam15971 Mannosyl_trans4 DolP-mannose mannosyltransferase. This family catalyzes the transfer of mannose from DolP-mannose to the N-linked tetrasaccharide bound to the S-layer glycoprotein to form a pentasaccharide. 163 -318234 pfam15972 Unpaired Unpaired protein. Unpaired protein activates the JAK pathway. 222 -318235 pfam15973 DUF4766 Domain of unknown function (DUF4766). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 106 and 128 amino acids in length. There is a conserved KVI sequence motif. 113 -318236 pfam15974 Cadherin_tail Cadherin C-terminal cytoplasmic tail, catenin-binding region. Cadherin_tail is the cytoplasmic domain at the C-terminus of cadherin proteins. This domain binds p120 catenin, an action critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. 134 -339559 pfam15975 Flot Flotillin. Flotillin is a family of lipid-membrane-associated proteins found in bacteria, archaea and eukaryotes. The family is found in association with pfam01145, another integral membrane-associated domain. Flotillins in vertebrates are associated with sphingolipids and cholesterol-enriched membrane microdomains known as lipid-rafts. These rafts along with other membrane components are important in cell-signalling. Flotillins in other organisms have roles in viral pathogenesis, endocytosis, and membrane shaping. 119 -339560 pfam15976 CooC_C CS1-pili formation C-terminal. CooC_C is a highly conserved C-terminal domain on fimbrial outer membrane usher proteins like TcfC. The protein is required for CS1 pilus formation. 93 -318239 pfam15977 HTH_46 Winged helix-turn-helix DNA binding. 68 -292600 pfam15978 TnsD Tn7-like transposition protein D. TnsD is a family of putative Tn7-like transposition proteins type D. 359 -339561 pfam15979 Glyco_hydro_115 Glycosyl hydrolase family 115. Glyco_hydro_115 is a family of glycoside hydrolases likely to have the activity of xylan a-1,2-glucuronidase, EC:3.2.1.131, or a-(4-O-methyl)-glucuronidase EC:3.2.1.-. 331 -339562 pfam15980 ComGF Putative Competence protein ComGF. ComGF is a family of putative bacterial competence proteins. 98 -292603 pfam15981 EAV_GP5 Envelope glycoprotein GP 5 of equine arteritis virus. EAV_GP5 is a domain family found in equine arteritis virus envelope. It is approximately 80 amino acids in length and is found in association with pfam00951. 80 -318242 pfam15982 TMEM135_C_rich N-terminal cysteine-rich region of Transmembrane protein 135. TMEM135_C_rich is a family of putative peroxisomal membrane proteins found in eukaryotes. This is the highly conserved N-terminal region that has several highly conserved cysteine residues. The domain is associated with family Tim17, pfam02466. 134 -318243 pfam15983 DUF4767 Domain of unknown function (DUF4767). This domain family is found in bacteria, and is approximately 140 amino acids in length. There is a single completely conserved residue Q that may be functionally important. 138 -318244 pfam15984 Collagen_mid Bacterial collagen, middle region. Collagen_mid is the conserved central region of bacterial collagen triple helix repeat proteins. 192 -339563 pfam15985 KH_6 KH domain. KH motifs bind RNA in vitro. Auto-antibodies to Nova, a KH domain protein, cause para-neoplastic opsoclonus ataxia. 44 -318246 pfam15989 DUF4768 Domain of unknown function (DUF4768). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 116 and 180 amino acids in length. There is a conserved FFFGQY sequence motif. 87 -318247 pfam15990 UPF0767 UPF0767 family. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between and 92 amino acids in length. There are two conserved sequence motifs: IGYN and SPSL. 83 -318248 pfam15991 G_path_suppress G-protein pathway suppressor. This family of proteins inhibits G-protein- and mitogen-activated protein kinase-mediated signal transduction. 267 -318249 pfam15992 DUF4769 Domain of unknown function (DUF4769). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 291 and 501 amino acids in length. 257 -339564 pfam15993 Fuseless Fuseless. This family includes Drosophila fuseless protein and contains four WXGXW motifs. Fuseless is a transmembrane protein which regulates pre-synaptic calcium channels. 299 -318251 pfam15994 DUF4770 Domain of unknown function (DUF4770). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 169 and 182 amino acids in length. There is a single completely conserved residue L that may be functionally important. 179 -318252 pfam15995 DUF4771 Domain of unknown function (DUF4771). This domain family is found in eukaryotes, and is approximately 160 amino acids in length. There is a conserved RYGK sequence motif. 160 -339565 pfam15996 PNISR Arginine/serine-rich protein PNISR. 188 -339566 pfam15997 DUF4772 Domain of unknown function (DUF4772). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 107 and 124 amino acids in length. There is a single completely conserved residue V that may be functionally important. 91 -339567 pfam15998 DUF4773 Domain of unknown function (DUF4773). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 120 amino acids in length. 116 -339568 pfam15999 DUF4774 Domain of unknown function (DUF4774). This presumed domain is functionally uncharacterized. This domain family is found in bacteria, eukaryotes and viruses, and is approximately 50 amino acids in length. 58 -318257 pfam16000 CARMIL_C CARMIL C-terminus. This domain is found near to the C-terminus of leucine-rich repeat-containing proteins in the CARMIL family. In leucine-rich repeat-containing protein 16A (LRRC16A) it includes the region responsible for interaction with F-actin-capping protein subunit alpha-2 (CAPZA2). 285 -318258 pfam16001 DUF4775 Domain of unknown function (DUF4775). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 308 and 484 amino acids in length. 450 -318259 pfam16002 Headcase Headcase protein. This domain is found in Drosophila Headcase protein and the human Headcase protein homolog. In humans, it may have a role in some cancers. 189 -318260 pfam16003 DUF4776 Domain of unknown function (DUF4776). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 444 and 485 amino acids in length. There is a conserved TLR sequence motif. 493 -339569 pfam16004 EFTUD2 116 kDa U5 small nuclear ribonucleoprotein component N-terminus. 75 -318262 pfam16005 MOEP19 KH-like RNA-binding domain. MOEP19 is a family of mammalian KH-like RNA-binding motifs. The family is expressed during early embryogenesis. It appears to effect an early form of molecular asymmetry within the murine oocyte cytoplasm. The family marks a defined cortical cytoplasmic domain in oocytes and provides evidence for mammalian oocyte polarity and a form of pre-patterning that persists in zygotes and early embryos through the morula stage. 81 -318263 pfam16006 NUSAP Nucleolar and spindle-associated protein. This family of microtubule-associated proteins has a role in spindle microtubule organisation. 277 -318264 pfam16007 DUF4777 Domain of unknown function (DUF4777). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. 66 -318265 pfam16008 DUF4778 Domain of unknown function (DUF4778). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 321 and 791 amino acids in length. There is a single completely conserved residue P that may be functionally important. 260 -339570 pfam16009 DUF4779 Domain of unknown function (DUF4779). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 234 and 351 amino acids in length. 160 -339571 pfam16010 CDH-cyt Cytochrome domain of cellobiose dehydrogenase. CDH-cyt is the cytochrome domain, at the N-terminus, of cellobiose dehydrogenase. CDH-cyt folds as a beta sandwich with the topology of the antibody Fab V(H) domain and binds iron. The haem iron is ligated by Met83 and His181 in UniProtKB:Q01738. 174 -339572 pfam16011 CBM9_2 Carbohydrate-binding family 9. CBM9_2 is a family of putative endoxylanase-like proteins that belong to the Carbohydrate-binding family 9. 198 -318269 pfam16012 DUF4780 Domain of unknown function (DUF4780). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 132 and 144 amino acids in length. There is a single completely conserved residue W that may be functionally important. 177 -339573 pfam16013 DUF4781 Domain of unknown function (DUF4781). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is typically between 288 and 306 amino acids in length. 308 -318271 pfam16014 SAP130_C Histone deacetylase complex subunit SAP130 C-terminus. 405 -339574 pfam16015 Promethin Promethin. 96 -339575 pfam16016 DUF4782 Domain of unknown function (DUF4782). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 150 amino acids in length. The family is found in association with pfam02893. 149 -318274 pfam16017 BTB_3 BTB/POZ domain. 106 -318275 pfam16018 Anillin_N Anillin N-terminus. This domain is found towards the N-terminus of anillin. In mammalian anillin this domain is repeated. This domain overlaps with the region responsible for nuclear localization of anillin. 86 -339576 pfam16019 CSRNP_N Cysteine/serine-rich nuclear protein N-terminus. This presumed domain is found at the N-terminus of cysteine/serine-rich nuclear proteins. These proteins act as transcriptional activators. 214 -339577 pfam16020 Deltameth_res Deltamethrin resistance. This presumed domain is found in the deltamethrin-resistance protein prag01 from Culex pipiens pallens. 49 -339578 pfam16021 PDCD7 Programmed cell death protein 7. 304 -339579 pfam16022 DUF4783 Domain of unknown function (DUF4783). This family of proteins is found in bacteria. Proteins in this family are approximately 130 amino acids in length. There is a single completely conserved residue F that may be functionally important. Recent structures show this domain has an NTF2 fold. 102 -318280 pfam16023 DUF4784 Domain of unknown function (DUF4784). This is a family of uncharacterized proteins from Bacteroidetes. 403 -292643 pfam16024 DUF4785 Domain of unknown function (DUF4785). This family of proteins is found in bacteria. Proteins in this family are typically between 392 and 442 amino acids in length. 376 -318281 pfam16025 CALM_bind Calcium-dependent calmodulin binding. This domain is found at the N-terminus of centriolar coiled-coil protein of 110 kDa (CCP110), where it binds calmodulin. Binding of calmodulin to this domain is calcium dependent. 78 -339580 pfam16026 MIEAP Mitochondria-eating protein. This domain is found at the C-terminus of mitochondria-eating proteins. This family of proteins regulate mitochondrial quality. They have a role in the degradation of damaged mitochondrial proteins and in the degradation of damaged mitochondria. 197 -318283 pfam16027 DUF4786 Domain of unknown function (DUF4786). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 209 and 353 amino acids in length. 164 -339581 pfam16028 SLC3A2_N Solute carrier family 3 member 2 N-terminus. This domain is found at the N-terminus of solute carrier family 3 member 2 proteins (4F2 cell-surface antigen heavy chain). 71 -318285 pfam16029 DUF4787 Domain of unknown function (DUF4787). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. 63 -339582 pfam16030 GD_N Serine protease gd N-terminus. This domain is found at the N-terminus of the serine protease gd (gastrulation defective) in insects. 103 -339583 pfam16031 TonB_N TonB N-terminal region. TonB_N is a short domain found just downstream of the cytoplasmic-membrane anchor at the N-terminus of TonB proteins. The exact function is not known. 133 -318288 pfam16032 DUF4788 Domain of unknown function (DUF4788). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 230 amino acids in length. There is a single completely conserved residue D that may be functionally important. 229 -339584 pfam16033 DUF4789 Domain of unknown function (DUF4789). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 87 and 100 amino acids in length. There is a conserved GPC sequence motif. There are two completely conserved C residues that may be functionally important. 83 -318290 pfam16034 JAKMIP_CC3 JAKMIP CC3 domain. This domain is found at the C-terminus of proteins belonging to the JAKMIP family (Janus kinase and microtubule-interacting proteins) and is predicted to be a coiled coil. It interacts with the Janus family kinases Tyk2 and Jak1. 198 -318291 pfam16035 Chalcone_2 Chalcone isomerase like. 203 -339585 pfam16036 Chalcone_3 Chalcone isomerase-like. Chalcone_3 is a family of largely bacterial members. 165 -318293 pfam16037 DUF4790 Domain of unknown function (DUF4790). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 134 and 191 amino acids in length. There is a single completely conserved residue C that may be functionally important. 93 -318294 pfam16038 TMIE TMIE protein. This family of proteins includes the mammalian transmembrane inner ear expressed protein. It's function is unknown. 85 -318295 pfam16039 DUF4791 Domain of unknown function (DUF4791). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 189 and 203 amino acids in length. There are two conserved sequence motifs: PLPL and LGN. There is a single completely conserved residue N that may be functionally important. 161 -339586 pfam16040 DUF4792 Domain of unknown function (DUF4792). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. 70 -339587 pfam16041 DUF4793 Domain of unknown function (DUF4793). This domain family is found in bacteria and eukaryotes, and is approximately 110 amino acids in length. There are two completely conserved C residues that may be functionally important. 104 -318298 pfam16042 DUF4794 Domain of unknown function (DUF4794). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 74 and 92 amino acids in length. 72 -318299 pfam16043 DUF4795 Domain of unknown function (DUF4795). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 285 and 978 amino acids in length. 181 -339588 pfam16044 DUF4796 Domain of unknown function (DUF4796). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 194 and 289 amino acids in length. There is a single completely conserved residue C that may be functionally important. 190 -318301 pfam16045 LisH_2 LisH. 28 -318302 pfam16046 FAM76 FAM76 protein. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 233 and 341 amino acids in length. 291 -292666 pfam16047 Antimicrobial22 Frog antimicrobial peptide. This family includes the antimicrobial peptides Grahamin and Nigrocin which are secreted from frog skin. 21 -292667 pfam16048 Antimicrobial23 Frog antimicrobial peptide. This family includes antimicrobial peptides such as Ranacyclin which are secreted from frog skin. 17 -292668 pfam16049 Antimicrobial24 Frog antimicrobial peptide. This family includes antimicrobial peptides such as Aurein-5 and Caerin 2 which are secreted from frog skin. 25 -318303 pfam16050 CDC73_N Paf1 complex subunit CDC73 N-terminal. CDC73_N is the N-terminal region of the members of CDC73_C, pfam05179. CDC73 forms part of the Paf1 post-initiation complex. The exact function within the complex is not known. 293 -318304 pfam16051 DUF4797 Domain of unknown function (DUF4797). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 40 amino acids in length. There is a conserved SGLPT sequence motif. There are two completely conserved residues (P and G) that may be functionally important. 43 -339589 pfam16053 MRP-S34 Mitochondrial 28S ribosomal protein S34. 129 -318306 pfam16054 TMEM72 Transmembrane protein family 72. This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 145 and 275 amino acids in length. 154 -318307 pfam16055 DUF4798 Domain of unknown function (DUF4798). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 80 and 365 amino acids in length. There is a single completely conserved residue H that may be functionally important. 103 -318308 pfam16056 DUF4799 Domain of unknown function (DUF4799). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 362 and 1493 amino acids in length. 375 -318309 pfam16057 DUF4800 Domain of unknown function (DUF4800). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 310 amino acids in length. The family is found in association with pfam02138, pfam00400. There is a conserved RDN sequence motif. 254 -318310 pfam16058 Mucin-like Mucin-like. This domain is found repeated at the C-terminus (C-tail) of bile salt-activated lipase, where is is O-glycosylated. 100 -292677 pfam16059 DUF4801 Domain of unknown function (DUF4801). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 50 amino acids in length. The family is found in association with pfam00907. 51 -318311 pfam16060 DUF4802 Domain of unknown function (DUF4802). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 70 amino acids in length. There are two conserved sequence motifs: CRC and YFDC. 65 -339590 pfam16061 DUF4803 Domain of unknown function (DUF4803). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 351 and 686 amino acids in length. There is a conserved RRY sequence motif. 254 -318313 pfam16062 DUF4804 Domain of unknown function (DUF4804). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 238 and 504 amino acids in length. 446 -339591 pfam16063 DUF4805 Domain of unknown function (DUF4805). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 244 and 363 amino acids in length. There is a conserved WEL sequence motif. 265 -318315 pfam16064 DUF4806 Domain of unknown function (DUF4806). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 80 amino acids in length. 86 -339592 pfam16065 DUF4807 Domain of unknown function (DUF4807). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 171 and 270 amino acids in length. There is a conserved STLGG sequence motif. 125 -339593 pfam16066 DUF4808 Domain of unknown function (DUF4808). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 106 and 135 amino acids in length. 119 -292685 pfam16067 DUF4809 Domain of unknown function (DUF4809). This family of proteins is found in bacteria. Proteins in this family are typically between 120 and 137 amino acids in length. There is a conserved GGCNAC sequence motif. 129 -318318 pfam16068 DUF4810 Domain of unknown function (DUF4810). This family of proteins is found in bacteria. Proteins in this family are typically between 117 and 134 amino acids in length. There is a conserved PES sequence motif. It is a putative lipoprotein. 85 -318319 pfam16069 DUF4811 Domain of unknown function (DUF4811). This family of proteins is found in bacteria. Proteins in this family are typically between 188 and 241 amino acids in length. There is a single completely conserved residue Y that may be functionally important. 154 -339594 pfam16070 TMEM132 Transmembrane protein family 132. This presumed domain is found in members of the TMEM132 family. TMEM132A may be involved in embryonic and postnatal brain development. TMEM132D may be a marker for oligodendrocyte differentiation. 342 -339595 pfam16071 DUF4812 Domain of unknown function (DUF4812). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 100 amino acids in length. The family is found in association with pfam03791, pfam03790. There are two completely conserved residues (H and I) that may be functionally important. 65 -318322 pfam16072 DUF4813 Domain of unknown function (DUF4813). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 345 and 672 amino acids in length. 291 -339596 pfam16073 SAT Starter unit:ACP transacylase in aflatoxin biosynthesis. SAT is the N-terminal starter unit:ACP transacylase of the aflatoxin biosynthesis pathway. SAT selects the hexanoyl starter unit from a pair of specialized fungal fatty acid synthase subunits (HexA/HexB) and transfers it onto the polyketide synthase A acyl-carrier protein to prime polyketide chain elongation. The family is found in association with pfam02801, pfam00109, pfam00550, pfam00975, pfam00698. 239 -339597 pfam16074 PilW Type IV Pilus-assembly protein W. PilW is a family of putative type IV pilus-assembly proteins. PilW is one of the component proteins of the pilus biogenesis process whereby pilus fibers are assembled in the periplasm, emerge onto the cell surface and are there stabilized, to allow bacterial attachment to host cells. PilW is an outer-membrane protein necessary for both the functionality of fibers and their stabilisation. 123 -318325 pfam16075 DUF4815 Domain of unknown function (DUF4815). 570 -318326 pfam16076 Acyltransf_C Acyltransferase C-terminus. This domain is found at the C-terminus of several different acyltransferases including 1-acyl-sn-glycerol-3-phosphate acyltransferase, acyl-CoA:lysophosphatidylglycerol acyltransferase 1 and lysocardiolipin acyltransferase 1. 73 -339598 pfam16077 Spaetzle Spaetzle. This family of proteins are nerve growth factor-like ligands required in the pathway that establishes the dorsal-ventral pattern of the embryo. They form a cystine knot structure. 93 -339599 pfam16078 2-oxogl_dehyd_N 2-oxoglutarate dehydrogenase N-terminus. This domain is found at the N-terminus of 2-oxoglutarate dehydrogenases. 38 -318329 pfam16079 Phage_holin_5_2 Phage holin family Hol44, in holin superfamily V. Phage_holin_V_2 is a family of small hydrophobic proteins with three transmembrane domains of the Hol44 family. These proteins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. Full activity of the endolysin Lys44 from oenophage fOg44 requires sudden ion-nonspecific dissipation of the proton motive force, undertaken by the fOg44 holin during phage-infection. 62 -318330 pfam16080 Phage_holin_2_3 Bacteriophage holin family HP1. Phage_holin_2_3 is a family of small hydrophobic phage proteins called holins with one transmembrane domain. Holins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. 56 -292699 pfam16081 Phage_holin_7_1 Mycobacterial 2 TMS Phage Holin (M2 Hol) Family. Phage_holin_8_1 is a family of two transmembrane mycobacteriophage holins, small hydrophobic proteins that effect lysis of host mycobacterial cells in conjunction with a mycobacteria-specific lysin, lysB. The product of lysB gene targets the mycobacteria outer membrane, the last barrier to bacteriophage release. 139 -339600 pfam16082 Phage_holin_2_4 Bacteriophage holin family, superfamily II-like. Phage_holin_2_4 is a family of small hydrophobic phage proteins called holins with one transmembrane domain. Holins are produced by double-stranded DNA bacteriophages that use an endolysin-holin strategy to achieve lysis of their hosts. The endolysins are peptidoglycan-degrading enzymes that are usually accumulated in the cytosol until access to the cell wall substrate is provided by the holin membrane lesion. 76 -339601 pfam16083 Phage_holin_3_3 LydA holin phage, holin superfamily III. Phage_holin_3_3 is a family of small hydrophobic holin proteins with one or more transmembrane domains. Holins are encoded within the genomes of Gram-positive and Gram-negative bacteria as well as those of the bacteriophages of these organisms. Their primary function appears to be transport of murein hydrolases across the cytoplasmic membrane to the cell wall where these enzymes hydrolyze the cell wall polymer as a prelude to cell lysis. When chromosomally encoded, these enzymes are therefore autolysins. Holins may also facilitate leakage of electrolytes and nutrients from the cell cytoplasm, thereby promoting cell death. Some may catalyze export of nucleases. LydA and lydB are encoded on the dar operon. The phenotype of a rapid lysis in the absence of active LydB suggests that this protein might be an antagonist of the holin LydA. 78 -292702 pfam16084 LydB LydA-holin antagonist. LydB is a family of proteins that are antagonistic to the lysing action of holin LydA. 147 -318333 pfam16085 Phage_holin_3_5 Bacteriophage holin Hol, superfamily III. Phage_holin_6_2 is a family of holins classified as 1.E.20 in the TC database. The hol gene (PRF9) product (117 aas) of Pseudomonas aeruginosa PAO1 exhibits a hydrophobicity profile similar to holins of P2 and phiCTX phages with two peaks of hydrophobicity that might correspond to either one or two TMSs. Hol functions in conjunction with the lytic enzyme, Lys, a glycosyl hydrolase that breaks-up the murein in the bacterial cell-wall, causing lysis of the cell and hence entry of phage particles. Several members are annotated as pyocin R2_PP when encoded on the chromosome. 113 -339602 pfam16086 DUF4816 Domain of unknown function (DUF4816). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria and eukaryotes. Proteins in this family are typically between 178 and 456 amino acids in length. There is a conserved WKP sequence motif. 43 -318335 pfam16087 DUF4817 Domain of unknown function (DUF4817). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 109 and 322 amino acids in length. There are two completely conserved residues (G and R) that may be functionally important. 52 -339603 pfam16088 BORCS7 BLOC-1-related complex sub-unit 7. This is a family of unknown function found in eukaryotes. Family members include BORCS7 (BLOC-1-related complex sub-unit 7) also known as Diaskedin (from the Ancient Greek ###diaskedazo,### meaning ###to disperse###) or C10orf32. It constitutes sub-unit 7 of the BORC complex (BLOC-one-related complex). BORC is a multisubunit complex that regulates the positioning of lysosomes at the cell periphery, and consequently affects cell migration. BORC associates with the lysosomal membrane, where it functions to recruit the small GTPase Arl8. This initiates a series of interactions that promote the microtubule-guided transport of lysosomes toward the cell periphery. 103 -339604 pfam16089 DUF4818 Domain of unknown function (DUF4818). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 176 and 214 amino acids in length. There is a single completely conserved residue W that may be functionally important. 110 -339605 pfam16090 DUF4819 Domain of unknown function (DUF4819). This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 82 and 99 amino acids in length. 82 -318339 pfam16091 DUF4820 Domain of unknown function (DUF4820). This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 320 and 483 amino acids in length. There are two conserved sequence motifs: WSLP and RPLPW. 226 -339606 pfam16092 DUF4821 Domain of unknown function (DUF4821). 258 -339607 pfam16093 PAC4 Proteasome assembly chaperone 4. PAC4 or proteasome assembly chaperone 4 protein promotes assembly of the 20S proteasome. It interacts with PSMG3. It associates with alpha subunits of the 20S proteasome. At the very C-terminal is a crucial HbYX or hydrophobic-tyrosine-X sequence motif that, in proteasome activators, opens the 20S proteasome entry pore. 71 -318342 pfam16094 PAC1 Proteasome assembly chaperone 4. PAC1 is a family of eukaryotic proteasome assembly chaperone 1 proteins in eukaryotes that promotes assembly of the core 20S proteasome as part of a heterodimer with PAC2. 282 -318343 pfam16095 COR C-terminal of Roc, COR, domain. The C-terminal of Roc domain, COR, along with Roc functions as the putative regulator of kinase activity. It functions as a proper GTP-binding protein with a low GTPase activity somehow stimulating the kinase activity. 194 -318344 pfam16096 FXR_C1 Fragile X-related 1 protein C-terminal region 2. FXR_C1 is a small highly conserved region of the C-terminus of Fragile X-related proteins 1 and 2, FRX1, FRX2. The family is found in association with pfam05641, pfam00013. This family is immediately C-terminal to the core C terminal region, PF12235, and contains at least one block of RGG repeats that bind to G-quartet sequences in a wide variety of mRNAs. 74 -318345 pfam16097 FXR_C3 Fragile X-related 1 protein C-terminal region 3. FXR_C1 is a small highly conserved region at the very C-terminus of Fragile X-related proteins 1 and 2, FRX1, FRX2. The family is found in association with pfam05641, pfam00013, PF16096. 66 -318346 pfam16098 FXMR_C2 Fragile X-related mental retardation protein C-terminal region 2. FXMR_C2 is a small highly conserved region at the very C-terminus of Fragile X-related proteins FMR1. The family is found in association with pfam05641, pfam00013, PF16096. 86 -339608 pfam16099 RMI1_C Recq-mediated genome instability protein 1, C-terminal OB-fold. RMI1_C is a C-terminal oligo-nucleotide binding domain of Recq-mediated genome instability proteins. This domain interacts with RMI2-OB folds to make up the RMI core complex. The RMI core interface is crucial for BLM, Bloom syndrome, dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins. 137 -339609 pfam16100 RMI2 RecQ-mediated genome instability protein 2. RMI2 is a eukaryotic family of an OB3, oligo-nucleotide-binding proteins. It is an essential component of the RMI complex that plays a vital role in the processing of homologous recombination intermediates in order to limit DNA-crossover-formation in cells. 123 -318349 pfam16101 PRIMA1 Proline-rich membrane anchor 1. 121 -318350 pfam16102 ACTH_assoc ACTH-associated domain. ACTH_assoc is the low-complexity regions immediately adjacent to the highly conserved binding motif of the ACTH_domain, pfam00976. the exact function is not known. 28 -318351 pfam16103 DUF4822 Domain of unknown function (DUF4822). A lipocain-like domain found in functionally uncharacterized bacterial proteins, often as a repeat of two domains. Proteins with this domain are found in a wide range of bacteria and are often annotated as S-layer proteins, but the origin of this annotation is not clear 121 -292722 pfam16104 FPRL1_inhibitor Formyl peptide receptor-like 1 inhibitory protein. This family consists of several formyl peptide receptor-like 1 inhibitory proteins from Staphylococcus aureus. These are secreted proteins that block the formyl peptide receptor-like 1 found in neutrophils, monocytes, B cells, and NK cells; and inhibit the binding of chemoattractants (such as formylated peptides) to FPRL1, which initiate phagocyte mobilization towards the infection site. 105 -339610 pfam16105 DUF4823 Domain of unknown function (DUF4823). This family consists of hypothetical lipoproteins around 210 residues of length and is mainly found in various Pseudomonas species. The function of this family is unknown. 141 -318353 pfam16106 DUF4824 Domain of unknown function (DUF4824). This family consists of several hypothetical lipoproteins around 270 residues in length and is mainly found in Pseudomonas species. The function of this family is unknown. 252 -318354 pfam16107 DUF4825 Domain of unknown function (DUF4825). This domain forms the N-terminal, extracellular domain of some homologs of Staph BlaR1 proteases, where it replaces the penicillin-binding domain of BlaR1. It is also found in many uncharacterized proteins in a broad range of bacteria. Its association with BlaR1 homologs suggests it may be involved in substrate-, possibly antibiotic-binding, but this prediction has not been verified experimentally. 97 -339611 pfam16108 DUF4826 Domain of unknown function (DUF4826). This family consists of uncharacterized proteins around 150 residues in length and is mainly found in various Shewanella species. The function of this protein is unknown. 124 -339612 pfam16109 DUF4827 Domain of unknown function (DUF4827). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides species. Distant homology prediction algorithms consistently suggest a homology between this family and FKBP-type peptidyl-prolyl cis-trans isomerases (PF00254), but this relation is as yet not confirmed. The function of this family is unknown. 179 -318357 pfam16110 DUF4828 Domain of unknown function (DUF4828). This family consists of uncharacterized proteins around 120 residues in length and is mainly found in various Enterococcus and Lactobacillus species. The function of this family is unknown. 79 -318358 pfam16111 DUF4829 Domain of unknown function (DUF4829). This family consists of several uncharacterized proteins around 150 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 118 -318359 pfam16112 DUF4830 Domain of unknown function (DUF4830). This family consists of several uncharacterized proteins around 150 residues in length and is mainly found in Clostridium, Eubacterium, and Ruminococcus species. The function of this family is unknown. 84 -339613 pfam16113 ECH_2 Enoyl-CoA hydratase/isomerase. This family contains a diverse set of enzymes including: enoyl-CoA hydratase, napthoate synthase, carnitate racemase, 3-hydroxybutyryl-CoA dehydratase and dodecanoyl-CoA delta-isomerase. This family differs from pfam00378 in the structure of it's C-terminus. 330 -318361 pfam16114 Citrate_bind ATP citrate lyase citrate-binding. This is the citrate-binding domain of ATP citrate lyase. This domain has a Rossmann fold. 175 -339614 pfam16115 DUF4831 Domain of unknown function (DUF4831). This family consists of several uncharacterized proteins around 350 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 315 -339615 pfam16116 DUF4832 Domain of unknown function (DUF4832). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides and Capnocytophaga species. The function of this family is unknown. Distant homology analysis suggests a possible similarity of proteins from this family to TIM barrel glycoside hydrolases and, subsequently its involvement in carbohydrate metabolism.The domain lies downstream of glycosyl hydrolases 42 suggesting that as a domain it might represent the carbohydrate-binding region of the enzyme. 212 -318364 pfam16117 DUF4833 Domain of unknown function (DUF4833). This family consists of uncharacterized proteins around 170 residues in length and is mainly found in various Parabacteroides and Bacteroides species. The function of this family is unknown. 131 -339616 pfam16118 DUF4834 Domain of unknown function (DUF4834). This family consists of uncharacterized proteins around 90 residues in length and is mainly found in various Parabacteroides and Bacteroides species. Protein in this family are characterized by a strongly conserved KDEGEYVD motif on the C-terminal and a very divergent N-terminal. The function of this family is unknown. 97 -318366 pfam16119 DUF4835 Domain of unknown function (DUF4835). This family consists of uncharacterized proteins of around 300 residues in length and is mainly found in bacteria from the Cytophaga-Flavobacteria-Bacteroides (CFB) group, both environmental and from human microbiome. The function of this family is unknown. 275 -339617 pfam16120 DUF4836 Domain of unknown function (DUF4836). This family consists of several uncharacterized proteins around 520 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 470 -339618 pfam16121 40S_S4_C 40S ribosomal protein S4 C-terminus. This domain is found at the C-terminus of 40S ribosomal protein S4. 48 -318369 pfam16122 40S_SA_C 40S ribosomal protein SA C-terminus. This domain is found at the C-terminus of 40S ribosomal protein SA. 95 -339619 pfam16123 HAGH_C Hydroxyacylglutathione hydrolase C-terminus. This domain is found at the C-terminus of hydroxyacylglutathione hydrolase enzymes. Substrate binding occurs at the interface between this domain and the catalytic domain (pfam00753). 81 -339620 pfam16124 RecQ_Zn_bind RecQ zinc-binding. This domain is the zinc-binding domain of ATP-dependent DNA helicase RecQ. 65 -339621 pfam16125 DUF4837 Domain of unknown function (DUF4837). This family consists of uncharacterized proteins around 350 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 292 -339622 pfam16126 DUF4838 Domain of unknown function (DUF4838). This family consists of several uncharacterized proteins found in various Bacteroides and Chloroflexus species. The function of this family is unknown. 253 -318374 pfam16127 DUF4839 Domain of unknown function (DUF4839). This family consists of uncharacterized proteins around 300 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 122 -339623 pfam16128 DUF4840 Domain of unknown function (DUF4840). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 143 -318376 pfam16129 DUF4841 Domain of unknown function (DUF4841). this domain is found on the N-terminal of several uncharacterize proteins found in various Bacteroides species. Solved structure of one of them (BACOVA_00967) from Bacteroides ovatus shows a small beta barrel with an immunoglobulin-like fold. DUF4841 domain shows weak overlap with the DUF4114 family, suggesting a possible distant relation. Function of this domain is unknown. 65 -339624 pfam16130 DUF4842 Domain of unknown function (DUF4842). This domain is found on the C-terminal of large number of uncharacterized proteins with broad phylogenetic distribution, which includes human gut Bacteroides, g-proteobacteria (Vibrio and Shewanella) and also spirochetes from Leptospira genus. Solved structure of Bacteroides ovatus protein BACOVA_00967 shows a large beta barrel with an immunoglobulin-like fold and significant structural similarity to collagen-binding domain of adhesin from S. aureus (1amx), but with several additional long loops and secondary structure elements. Function of this domain is unknown. 196 -339625 pfam16131 Torus Torus domain. This domain is found in pre-mRNA-splicing factor CWC2. It includes a CCCH-type zinc finger. 105 -318379 pfam16132 DUF4843 Domain of unknown function (DUF4843). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Bacteroides species. Distant homology analysis suggest distant relation between this family and other families of proteins with immunoglobulin-like folds, which are often involved in substrate binding. However, specific function of this family is unknown. There is distant homology to the Calx-beta family pfam03160. 163 -318380 pfam16133 DUF4844 Domain of unknown function (DUF4844). this family consists of short uncharacterized proteins found mostly in different strains of Acinetobacter bumanii, but also in several Shewanella species and in some bacteria from the CFB group. Solved structure of ABAYE3784 protein from Acinetobacter baumannii AYE shows a five helical bundle with a very strong structural similarity to a bromodomain domain. However, the specific function of proteins from the DUF4844 family is unknown 117 -339626 pfam16134 THOC2_N THO complex subunit 2 N-terminus. This family represents the N-terminus of THO complex subunit 2. 589 -339627 pfam16135 Jas TPL-binding domain in jasmonate signalling. The Jas domain is a short region of sequence characterized by IxCxCx(12)HAG found in plant transcriptional repressors. This motif appears to bind to the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs). This binding is a crucial step in the jasmonate signalling pathway, involved in plant disease and defense. 75 -318383 pfam16136 NINJA_B Putative nuclear localization signal. NINJA proteins are Novel INteractor of JAZ proteins found in plants. NINJA proteins act as a transcriptional repressor, the activity of which is mediated by a functional TPL-binding EAR repression motif upstream from this domain. 110 -339628 pfam16137 DUF4845 Domain of unknown function (DUF4845). This family consists of uncharacterized proteins around 120 residues in length and is mainly found in various Pseudomonas species. Distant homology analysis suggests that proteins from this family are related to pilin type IV proteins from the Bundlin (PF05307) family, this prediction is however not confirmed by any experimental evidence 85 -339629 pfam16138 DUF4846 Domain of unknown function (4846). This family consists of uncharacterized proteins around 260 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 240 -339630 pfam16139 DUF4847 Domain of unknown function (DUF4847). This uncharacterized domain has a lipocalin fold. 142 -339631 pfam16140 DUF4848 Domain of unknown function (DUF4848). A small family of uncharacterized proteins around 310 residues in length and found in various Bacteroides species. The function of this family is unknown. 216 -339632 pfam16141 DUF4849 Putative glycoside hydrolase Family 18, chitinase_18. This DUF is likely to be a form of glycosyl hydrolase from CAZy family 18, possibly chitinase 18. This would have the EC number of EC:3.2.1.14. 308 -292760 pfam16142 DUF4850 Domain of unknown function (DUF4850). This family consists of several uncharacterized proteins around 250 residues in length and is mainly found in various Acinetobacter species. The function of this family is unknown. 184 -318389 pfam16143 DUF4851 Domain of unknown function (DUF4851). This family consists of several uncharacterized proteins around 250 residues in length and is mainly found in various Desulfovibrio species. The function of this family is unknown. 184 -292762 pfam16144 DUF4852 Domain of unknown function (DUF4852). This family consists of several uncharacterized proteins around 350 residues in length and is mainly found in various Parabacteroides, Bacteroides and Porphyromonas species. The function of this family is unknown. 113 -318390 pfam16145 DUF4853 Domain of unknown function (DUF4853). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Actinomyces species. The function of this family is unknown. 135 -318391 pfam16146 DUF4854 Domain of unknown function (DUF4854). This family consists of uncharacterized proteins found in firmicutes and high GC Gram+ bacteria associated with human and animal guts. The function of this family is unknown. 105 -318392 pfam16147 DUF4855 Domain of unknown function (DUF4855). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides species. Several proteins are annotated as glycerophosphodiester phosphodiesterases, but the origin of this annotation is not clear. 309 -318393 pfam16148 DUF4856 Domain of unknown function (DUF4856). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this family is unknown. 357 -339633 pfam16149 DUF4857 Domain of unknown function (DUF4857). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 270 -339634 pfam16150 DUF4858 Domain of unknown function (DUF4858). This family consists of uncharacterized proteins around 190 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 187 -318396 pfam16151 DUF4859 Domain of unknown function (DUF4859). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this family is unknown. 117 -318397 pfam16152 DUF4860 Domain of unknown function (DUF4860). This family consists of uncharacterized proteins around 160 residues in length and is mainly found in various Eubacterium and Clostridium species. The function of this family is unknown. 98 -339635 pfam16153 DUF4861 Domain of unknown function (DUF4861). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. However, in many instances the domain lies upstream of a glycosyl hydrolase family, usually family 88, so it might be involved in carbohydrate binding. 376 -318399 pfam16154 DUF4862 Domain of unknown function (DUF4862). This family consists of uncharacterized proteins around 300 residues in length and is mainly found in various high GC Gram+ bacteria, but also in several pathogenic and non-pathogenic enterobacteria (Salmonella, E. coli). Distant homology analysis suggests this could be a branch of Xylose isomerase-like TIM barrel family, but this prediction is currently not confirmed by experiment 292 -339636 pfam16155 DUF4863 Domain of unknown function (DUF4863). This family consists of uncharacterized proteins around 150 residues in length and is mainly found in various delta- proteobacteria, but also several fungal species. Distant homology analysis suggest proteins from this family have a cupin-like fold and may be related to a group of lyases involved in the metabolism of benzoate. Few proteins from this family are annotated as p-hydroxylaminobenzoate lyases, NbaB, and this proposed function matches well their phylogenetic distribution, but there seems to be no direct experimental verification of this function, therefore at this point we call it a DUF. 147 -318401 pfam16156 DUF4864 Domain of unknown function (DUF4864). This family consists of uncharacterized proteins around 120 residues in length and is mainly found in various Anabaena and Nostoc species. Distant homology analysis suggests this family is related to NTF2-like proteins and specifically to proteins that bind small molecules. HMM partly overlaps with Tol_Tol_Ttg2 (PF05494) involved in Toluene tolerance and lumazine binding family (PF12870) and these families should form a clan. 101 -339637 pfam16157 DUF4865 Domain of unknown function (DUF4865). This family consists of uncharacterized proteins around 180 residues in length and is mainly found in various Bacillus species. Distant homology and fold prediction suggests proteins from this family would have a ferrodoxin dimeric fold and specifically be related to the putative mono-oxygenase ydhR family PF08803, however this prediction has not been verified by experiment 183 -339638 pfam16158 N_BRCA1_IG Ig-like domain from next to BRCA1 gene. Domain present between positions 365-485 in the human next to BRCA1 gene 1 protein Q14596 (NBR1_HUMAN) Distant homology and fold prediction analysis suggests this domain has an immunoglobulin like fold and is distantly homologous to domains involved in cell adhesion such as CARDB (PF07705). JCSG construct was crystalized confirming the domain boundaries 105 -318404 pfam16159 FOXP-CC FOXP coiled-coil domain. This domain, approximately 60-70 residues in length, is mainly found in Forkhead box proteins in various Mammalia species. It is a coiled-coil domain, which modulates the dimeric associations of FOXP transcription factors. Several key disease mutations, for instance those found in the IPEX syndrome are located in this domain 68 -318405 pfam16160 DUF4866 Domain of unknown function (DUF4866). This family consists of uncharacterized proteins around 250 residues in length and is mainly found in various human gut Firmicute species and abundant in human gut metagenomic datasets. The function of this family is unknown. 246 -318406 pfam16161 DUF4867 Domain of unknown function (DUF4867). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various human gut Firmicutes and a few eubacteria species. It is also amply represented in human gut metagenomic datasets. Distant homology analysis and marginal HMM overlaps suggest this family is a distant homolog of Ureidoglycolate hydrolase pfam04115, but this prediction is not verified by experiment, therefore the function of this family is still unknown. 197 -318407 pfam16162 DUF4868 Domain of unknown function (DUF4868). This family consists of uncharacterized proteins around 320 residues in length and is a phylogenetically broad range of bacteria associated with the human gut microbiome. A member of this family from Lactobacillus casei CRL 705 is part of the gene cluster involved in synthesis of bacteriocin toxin, but the specific function of this family is unknown. 186 -318408 pfam16163 DUF4869 Domain of unknown function (DUF4869). This family consists of uncharacterized proteins around 150 residues in length. Its members are found in human gut Firmicutes and are also abundant in human gut metagenomics datasets. The function of this family is unknown. 128 -292782 pfam16164 VWA_N2 VWA N-terminal. This domain is found in von Willebrand factor proteins, where it is found to the N-terminus of the first VWA domain (pfam00092). 79 -318409 pfam16165 Ferlin_C Ferlin C-terminus. This domain is found at the C-terminus of proteins belonging to the ferlin family, including dysferlin, myoferlin, otoferlin and fer-1-like proteins. 154 -318410 pfam16166 TIC20 Chloroplast import apparatus Tic20-like. Chloroplast function requires the import of nuclear encoded proteins from the cytoplasm across the chloroplast double membrane. This is accomplished by two protein complexes, the Toc complex located at the outer membrane and the Tic complex located at the inner membrane. The Toc complex recognizes specific proteins by a cleavable N-terminal sequence and is primarily responsible for translocation through the outer membrane, while the Tic complex translocates the protein through the inner membrane. This entry represents Tic20, a core member of the Tic complex. This protein is deeply embedded in the inner envelope membrane and is thought to function as a protein- conducting component of the Tic complex. 177 -292785 pfam16167 DUF4871 Domain of unknown function (DUF4871). This family consists of uncharacterized proteins around 170 residues in length and is mainly found in various Bacillus species (B. cereus, B. thuringiensis and B. anthracis). The solved structure of B. anthracis homologs has a variant of the Greek-key beta barrel fold, making the DUF4870 family a member of a large group of bacterial immunoglobulin like domains, but the functional consequences of this classification remain unknown. 128 -318411 pfam16168 AIDA Adhesin of bacterial autotransporter system, probable stalk. The AIDA repeat is found on bacterial autotransporter proteins. As the repeat is short and occurs multiple times, it is likely to be the region of the transporter that acts as the stalk between the beta-barrel inserted into the membrane and the N-terminal head domain. 57 -339639 pfam16169 DUF4872 Domain of unknown function (DUF4872). Members of this family are often found in the gene neighborhood, or fused to, non-ribosomal peptide synthetases. 174 -318413 pfam16170 DUF4873 Domain of unknown function (DUF4873). This family consists mostly of short uncharacterized proteins found in various high GC Gram positive bacteria, primarily Mycobacterium species. However in some proteins, such as for instance Rv0943c proteins from Mycobacterium tuberculosis H37Rv, DUF4873 domain is found at the C-terminus, following the flavin-binding monooxygenase-like domain pfam00743, which is why probably many proteins with DUF4873 domains are annotated as monooxygenases. However these functions are not confirmed experimentally and the function of DUF4873 domain is still unknown. 91 -318414 pfam16171 CENP-T_N Centromere kinetochore component CENP-T N-terminus. CENP-T is a family of vertebral kinetochore proteins that associates directly with CENP-W. The N-terminus of CENP-T proteins interacts directly with the Ndc80 complex in the outer kinetochore. Importantly, the CENP-T-W complex does not directly associate with CENP-A, but with histone H3 in the centromere region. CENP-T and -W form a hetero-tetramer with CENP-S and -X and bind to a ~100 bp region of nucleosome-free DNA forming a nucleosome-like structure. The DNA-CENP-T-W-S-X complex is likely to be associated with histone H3-containing nucleosomes rather than with CENP-nucleosomes. This family represents the N-terminus of CENP-T. 375 -339640 pfam16172 DOCK_N DOCK N-terminus. This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) proteins, between the variant SH3 domain (pfam07653) and the C2 domain (pfam14429). 379 -339641 pfam16173 DUF4874 Domain of unknown function (DUF4874). This presumed domain is functionally uncharacterized. This domain family is found in bacteria and eukaryotes, and is typically between 161 and 175 amino acids in length. There is a conserved WGE sequence motif. 162 -318417 pfam16174 IHABP4_N Intracellular hyaluronan-binding protein 4 N-terminal. IHABP4_N is the N-terminal region of intracellular hyaluronan-binding protein 4-like and SERPINE1 mRNA binding protein 1-like proteins. This region carries nuclear localization sites, and may also be involved in the binding to some of the partners in the translational machinery. 145 -292793 pfam16175 DUF4875 Domain of unknown function (DUF4875). Small protein family, with members present in few proteobacteria mostly Desulfovibrio species, but also a Vibrio phage vB, suggesting a possible phage origin Experimentally determined structure shows a fold reminiscent of a thioesterase/thiol ester dehydrase-isomerase fold, but a functional consequences of this similarity are not clear 127 -318418 pfam16176 T-box_assoc T-box transcription factor-associated. This domain lies downstream of the T-box in many eukaryotic T-box proteins. The exact function is not known. 226 -339642 pfam16177 ACAS_N Acetyl-coenzyme A synthetase N-terminus. This domain is found at the N-terminus of many acetyl-coenzyme A synthetase enzymes. 55 -339643 pfam16178 Anoct_dimer dimerization domain of Ca+-activated chloride-channel, anoctamin. This family appears to be the cytoplasmic domain of the calcium-activated chloride-channel, anoctamin, protein. It is responsible for creating the homodimeric architecture of the chloride-channel proteins. 223 -339644 pfam16179 RHD_dimer Rel homology dimerization domain. The Rel homology domain (RHD) is composed of two structural domains, an N-terminal DNA_binding domain (pfam00554) and a C-terminal dimerization domain. This is the dimerization domain. 102 -318422 pfam16180 RelB_leu_zip RelB leucine zipper. This domain is a leucine zipper found in RelB transcription factors. 85 -292799 pfam16181 RelB_transactiv RelB transactivation domain. This domain is the transactivation domain of the transcription factor RelB. 177 -318423 pfam16182 AbLIM_anchor Putative adherens-junction anchoring region of AbLIM. AbLIM_anchor is a domain lying between the LIM actin-binding and the vilin-head domain of actin-binding LIM proteins. It is likely that this domain is involved in anchoring abLIMs to circumferential actin bundles in specific cell types. 318 -318424 pfam16183 Kinesin_assoc Kinesin-associated. 181 -339645 pfam16184 Cadherin_3 Cadherin-like. 111 -339646 pfam16185 MTABC_N Mitochondrial ABC-transporter N-terminal five TM region. MTABC_N is the N-terminal five transmembrane helices of eukaryotic mitochondrial ABC-transporters. 242 -339647 pfam16186 Arm_3 Atypical Arm repeat. This atypical Arm repeat appears at the very C-terminus of eukaryotic proteins such as importin subunit alpha-2, as the last of the repeating units. 52 -339648 pfam16187 Peptidase_M16_M Middle or third domain of peptidase_M16. Peptidase_M16_M is the third domain of peptidase_M16 in eukaryotes of the insulin-degrading-enzyme type. Insulin-degrading enzymes - insulysin - are zinc metallopeptidases that metabolize several bioactive peptides, including insulin and the amyloid-beta-peptide. The tertiary structure of insulin-degrading enzymes resembles a clamshell composed of four structurally similar domains arranged to enclose a large central chamber. Substrates must enter the chamber, and it is likely that a hinge-like conformational change allows substrate binding and product release. Triphosphates are found to dock between the inner surfaces of the non-catalytic domains three and four. 282 -339649 pfam16188 Peptidase_M24_C C-terminal region of peptidase_M24. This is a short region at the C-terminus of a number of metallo-peptidases of the M24 family. 63 -339650 pfam16189 Creatinase_N_2 Creatinase/Prolidase N-terminal domain. 159 -339651 pfam16190 E1_FCCH Ubiquitin-activating enzyme E1 FCCH domain. This domain is found in the ubiquitin-activating E1 family enzymes. 69 -339652 pfam16191 E1_4HB Ubiquitin-activating enzyme E1 four-helix bundle. This domain is found in the ubiquitin-activating E1 family enzymes. 65 -339653 pfam16192 PMT_4TMC C-terminal four TMM region of protein-O-mannosyltransferase. PMT_4TMC is the C-terminal four membrane-pass region of protein-O-mannosyltransferases and similar enzymes. 192 -339654 pfam16193 AAA_assoc_2 AAA C-terminal domain. AAA_assoc_2 is found at the C-terminus of a relatively small set of AAA domains in proteins ranging from archaeal to fungi, plants and mammals. 80 -318435 pfam16195 UBA2_C SUMO-activating enzyme subunit 2 C-terminus. 93 -339655 pfam16197 KAsynt_C_assoc Ketoacyl-synthetase C-terminal extension. KAsynt_C_assoc represents the very C-terminus of a subset of proteins from the keto-acyl-synthetase 2 family. It is found in proteins ranging from bacteria to human. 112 -339656 pfam16198 TruB_C_2 tRNA pseudouridylate synthase B C-terminal domain. This C-terminal region is found on a subset of TruB_B protein family members pfam01509. It is found from bacteria and archaea to fungi, plants and human. 65 -339657 pfam16199 Radical_SAM_C Radical_SAM C-terminal domain. This domain is found as a C-terminal extension to a subset of Radical_SAM domains. It is found in archaeal, bacterial, fungal, plant and human proteins. 82 -339658 pfam16200 Band_7_C C-terminal region of band_7. This domain is found on a subset of proteins as a C-terminal extension of the Band_7 family, pfam01145. It is found in proteins fro bacteria to fungi, plants and mammals. 62 -339659 pfam16201 NopRA1 Nucleolar pre-ribosomal-associated protein 1. This family is found on the long vertebral and plant nucleolar proteins that also carry Npa1, pfam11707. 191 -318442 pfam16202 BLM_N N-terminal region of Bloom syndrome protein. BLM_N is the very N-terminal region of chordate Bloom syndrome proteins. The exact function is not known. 368 -318443 pfam16203 ERCC3_RAD25_C ERCC3/RAD25/XPB C-terminal helicase. This is the C-terminal helicase domain of ERCC3, RAD25 and XPB helicases. 247 -318444 pfam16204 BDHCT_assoc BDHCT-box associated domain on Bloom syndrome protein. This family is found on Bloom syndrome-associated DEAD-box helicases in higher eukaryotes. It lies between the BDHCT, and DEAD-box families, pfam08072 and pfam00270. 223 -339660 pfam16205 Ribosomal_S17_N Ribosomal_S17 N-terminal. This short N-terminal region is found in a number of higher eukaryotic ribosomal subunit 17 proteins. 69 -318446 pfam16206 Mon2_C C-terminal region of Mon2 protein. Mon2 proteins are found from fungi to plants, to human and is a scaffold protein involved in multiple aspects of endo membrane trafficking. This C-terminal region is essential for Mon2 activity. 829 -318447 pfam16207 RAWUL RAWUL domain RING finger- and WD40-associated ubiquitin-like. The RAWUL domain is found at the C-terminus of poly-comb group RING finger proteins. It is a ubiquitin-like domain. RAWUL binds directly to PUFD, a domain on BCOR proteins (BCL6 corepressor). BCOR has emerged as an important player in development and health. 65 -318448 pfam16208 Keratin_2_head Keratin type II head. 160 -339661 pfam16209 PhoLip_ATPase_N Phospholipid-translocating ATPase N-terminal. PhoLip_ATPase_N is found at the N-terminus of a number of phospholipid-translocating ATPases. It is found in higher eukaryotes. 67 -318450 pfam16210 Keratin_2_tail Keratin type II cytoskeletal 1 tail. 131 -318451 pfam16211 Histone_H2A_C C-terminus of histone H2A. 34 -339662 pfam16212 PhoLip_ATPase_C Phospholipid-translocating P-type ATPase C-terminal. PhoLip_ATPase_C is found at the C-terminus of a number of phospholipid-translocating ATPases. It is found in higher eukaryotes. 250 -339663 pfam16213 DCB dimerization and cyclophilin-binding domain of Mon2. DCB is the N-terminal domain of Mon2- and GIG1-like proteins from metazoa. Mon2 and BIG1 like proteins play an important role in the cytoplasm-to-vacuole transport pathway and are required for Golgi homeostasis. 171 -318454 pfam16214 AC_N Adenylyl cyclase N-terminal extracellular and transmembrane region. This family covers the N-terminal extracellular region and the first transmembrane 5-6 pass region of adenylate cyclase. 415 -318455 pfam16215 DUF4876 Protein of unknown function (DUF4876). This family of proteins is functionally uncharacterized. This family of proteins is found in bacteria. Proteins in this family are typically between 392 and 433 amino acids in length. There is a conserved NNS sequence motif. 185 -318456 pfam16216 GxGYxYP_N GxGYxY sequence motif in domain of unknown function N-terminal. This domain is found in bacteria, archaea and eukaryotes, and is typically between 213 and 231 amino acids in length. This domain is found in association with pfam14323. 210 -339664 pfam16217 M64_N Peptidase M64 N-terminus. This domain is found at the N-terminus of IgA Peptidase M64. Its function is unknown. 115 -318458 pfam16218 Peptidase_C101 Peptidase family C101. This is a family of cysteine-peptidases that is conserved in vertebrates. The key residues as found in human OTULIN are Asp126, Cys129, His339 and Asn341. 264 -318459 pfam16219 DUF4879 Domain of unknown function (DUF4879). family of short proteins of bacterial proteins of phage origin, exemplified by protein SPBc2p013 from Bacillus phage SPBc2, found in various Bacillus and Pseudomonas species. Structure show unexpected structural similarity to greek key beta barrels from the E-set domain, especially to domains involved in carbohydrate and protein- protein binding. However functional consequences of this similarity are not confirmed. 122 -339665 pfam16220 DUF4880 Domain of unknown function (DUF4880). This domain can be found on the N-terminal of uncharacterized proteins from various Rhodopseudomonas and Pseudomonas species, often, but not always followed by the ron siderophore sensor protein family (FecR, PF04773). The function of this domain is unknown. 43 -318461 pfam16221 HTH_47 winged helix-turn-helix. HTH_47 is an example of a circularly permuted winged helix-turn-helix domain. HTH_47 is found at the very C-terminus of DUF2172, which is structurally similar to M28-peptidases but lacking one of the key zinc-binding residues. 77 -339666 pfam16222 DUF4881 Domain of unknown function (DUF4881). This small family consists of several uncharacterized proteins around 200 residues in length and is mainly found in various Desulfovibrio species. The function of this protein is unknown. 180 -318462 pfam16223 DUF4882 Domain of unknown function (DUF4882). This small family consists of several uncharacterized proteins around 325 residues in length and is mainly found in various Acinetobacter species. The function of this family is unknown. 254 -318463 pfam16224 DUF4883 DOmain of unknown function (DUF4883). This family consists of several uncharacterized proteins around 160 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 118 -318464 pfam16225 DUF4884 Domain of unknown function (DUF4884). This family consists of several uncharacterized proteins around 90 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 47 -292843 pfam16226 DUF4885 Domain of unknown function (DUF4885). This family consists of several uncharacterized proteins around 390 residues in length and is mainly found in various Bacillus subtillis species. This family is predicted to be functional in biosynthesis of rhizocticins and antifungal phosphonate oligopeptides, but the specific function of this family is still unknown. 325 -339667 pfam16227 DUF4886 Domain of unknown function (DUF4886). This domain is mainly found in uncharacterized proteins around 290 residues in length and is mainly found in various Bacteroides species. It has a curved central beta sheet flanked by helices. Distant homolog analysis showed it has a similarity with GDSL-like Lipase/Acylhydrose family. The function of this domain is still unknown. 244 -318466 pfam16228 DUF4887 Domain of unknown function (DUF4887). This family consists of uncharacterized proteins around 210 residues in length and is mainly found in various Staphylococcus species. The function of this family is unknown. 170 -292846 pfam16229 DUF4888 Domain of unknown function (DUF4888). This family consists of uncharacterized proteins around 190 residues in length and is mainly found in various Staphylococcus species. The function of this family is unknown. 141 -292847 pfam16230 DUF4889 Domain of unknown function (DUF4889). This family consists of uncharacterized proteins around 110 residues in length and is mainly found in various Staphylococcus aureus species. The function of this family is unknown. 71 -318467 pfam16231 DUF4890 Domain of unknown function (DUF4890). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 110 -318468 pfam16232 DUF4891 Domain of unknown function (DUF4891). This family consists of uncharacterized proteins around 140 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 92 -318469 pfam16233 DUF4893 Domain of unknown function (DUF4893). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Pseudomonas species. The function of this family is unknown. 169 -318470 pfam16234 DUF4892 Domain of unknown function (DUF4892). This family consists of uncharacterized proteins around 270 residues in length and is mainly found in various Pseudomonas aeruginosa species. The function of this family is unknown. 182 -318471 pfam16235 DUF4894 Domain of unknown function (DUF4894). A small family of uncharacterized proteins around 180 residues in length and found in various Thermotoga species. The function of this family is unknown. 121 -339668 pfam16236 DUF4895 Domain of unknown function (DUF4895). A small family of uncharacterized proteins around 250 residues in length and found in various Thermotoga species. The function of this family is unknown. 217 -339669 pfam16237 DUF4896 Domain of unknown function (DUF4896). A small family of uncharacterized proteins around 50 or 570 residues in length and found in various Thermotoga species. The function of this family is unknown. 44 -339670 pfam16238 DUF4897 Domain of unknown function (DUF4897). A small family of uncharacterized proteins around 200 residues in length and found in various Thermotoga species. The function of this family is unknown. 152 -292856 pfam16239 DUF4898 Domain of unknown function (DUF4898). A small family of uncharacterized proteins around 100 residues in length and found in various Sulfolobus species. The function of this family is unknown. 80 -339671 pfam16240 DUF4899 Domain of unknown function (DUF4899). A small family of uncharacterized proteins around 340 residues in length and found in various Thermotoga and Thermosipho species. The function of this family is unknown. 279 -292858 pfam16241 DUF4900 Domain of unknown function (DUF4900). This family consists of uncharacterized proteins around 600 residues in length and is mainly found in various Thermotoga and Fervidobaterium species. The function of this family is unknown. 89 -318476 pfam16242 Pyrid_ox_like Pyridoxamine 5'-phosphate oxidase like. This domain, approximately 140 residues in length, is mainly found in general stress proteins in various Xanthomonas species. It is composed of a six-stranded antiparallel beta-barrel flanked by five alpha-helices and can bind to FMN and FAD, suggesting that it may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant. 149 -318477 pfam16243 Sm_like Sm_like domain. This domain, approximately 150 residues, is mainly found in several uncharacterized proteins in various Prochlorococcus and Synechococcus species. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The specific function of this family is unknown, but the structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing. 85 -318478 pfam16244 DUF4901 Domain of unknown function (DUF4901). This family consists of uncharacterized proteins around 470 residues in length and is mainly found in various Bacillus subtilis species. The function of this family is unknown. 227 -292862 pfam16245 DUF4902 Domain of unknown function (DUF4902). A family of uncharacterized proteins around 140 residues in length and found in various Acidithiobacillacea and Acinetobacter species. It may be functional in extreme acidophile Acidithiobacillus ferrooxidans, but the specific function of this family is unknown. 112 -318479 pfam16246 DUF4903 Domain of unknown function (DUF4903). A small family of uncharacterized proteins around 210 residues in length and found in various Bacteroides and Prevotella species. The function of this family is unknown. 190 -292864 pfam16247 DUF4904 Domain of unknown function (DUF4904). This domain, approximately 130 residues in length, is mainly found in several uncharacterized proteins around 340 residues in Actinobacteria, Cyanobacteria and Metazoa species. It is mainly composed of antiparallel beta sheets and has a cystatin-like fold, but the specific function of this family is unknown. 127 -292865 pfam16248 DUF4905 Domain of unknown function (DUF4905). A small family of uncharacterized proteins around 270 residues in length and found in various Cytophagales, Sphingobacteriaceae and Ignavibacteriaceae species. The function of this family is unknown. 81 -339672 pfam16249 DUF4906 Domain of unknown function (DUF4906). A family of uncharacterized proteins around 300 residues in length and found in various Bacteroides species. The function of this family is unknown. 196 -318481 pfam16250 DUF4907 Domain of unknown function (DUF4907). A family of uncharacterized proteins around 110 residues in length and found in various Bacteroides species. The function of this family is unknown. 63 -292868 pfam16251 NAR Nucleic acid-binding domain (NAR). This domain, approximately 100 residues in length, is mainly found in Orf1a polyproteins in severe acute respiratory syndrome coronavirus. The global domain of the NAR represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands and a group of residues form a positively charged patch on the protein surface as the binding site responsible for binding affinity for nucleic acids. 113 -318482 pfam16252 DUF4908 Domain of unknown function (DUF4908). A small family of uncharacterized proteins around 260 residues in length and found in various Caulobacter and Brevundimonas species. The function of this family is unknown. 221 -292870 pfam16253 DUF4909 Domain of unknown function (DUF4909). This family of proteins is found in bacteria. Proteins in this family are approximately 160 amino acids in length. Several members are associated with vancomycin virulence in Staph. aureus in some way. These proteins are all lipoproteins, carrying the characteristic prokaryotic membrane-attachment site at their N-termini. 127 -318483 pfam16254 DUF4910 Domain of unknown function (DUF4910). 339 -318484 pfam16255 Lipase_GDSL_lke GDSL-like Lipase/Acylhydrolase. 202 -339673 pfam16256 DUF4911 Domain of unknown function (DUF4911). This family consists of uncharacterized proteins around 75 residues in length and is mainly found in various Thermotogav species. The function of this family is unknown. 57 -318486 pfam16257 UxaE tagaturonate epimerase. This family consists of uncharacterized proteins around 500 residues in length and is mainly found in various Bacteria species, such as Thermotoga, Paenibacillus and Rhodothermus. A newly recognized enzyme from the galacturonate utilization pathway in T. maritima with tagaturonate epimerase activity. 474 -339674 pfam16258 DUF4912 Domain of unknown function (DUF4912). This family consists of uncharacterized proteins around 160 residues in length and is mainly found in various Clostridium species. The function of this family is unknown. 108 -318488 pfam16259 DUF4913 Domain of unknown function (DUF4913). This family consists of uncharacterized proteins around 150 residues in length and is mainly found in various Arthrobacter species. The function of this family may be functional in enableing the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen. 105 -318489 pfam16260 DUF4914 Domain of unknown function (DUF4914). This family consists of uncharacterized proteins around 630 residues in length and is mainly found in various Thermotoga, Thermoanaerobacter and Carboxydibrachium species. The function of this family is unknown. 606 -318490 pfam16261 DUF4915 Domain of unknown function (DUF4915). This family consists of uncharacterized proteins around 370 residues in length and is mainly found in various species, such as Shewanella, Rheinheimera, Saccharophagus, Leptolyngbya and so on. It contains serveral TPR repeat-containing proteins. The function of this family is unknown. 317 -318491 pfam16262 DUF4916 Domain of unknown function (DUF4916). This domain family consists of uncharacterized proteins around 175 residues in length and is mainly found in various Streptomyces species. The function of this family is unknown. This family is related to the NUDIX hydrolases. 169 -318492 pfam16263 DUF4917 Domain of unknown function (DUF4917). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Burkholderia and Brucella species. The function of this family is unknown. 310 -339675 pfam16264 SatD SatD family (SatD). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Streptococcus species. The function of this family is involved in acid resistance. 211 -318494 pfam16265 DUF4918 Domain of unknown function (DUF4918). This family consists of uncharacterized proteins around 230 residues in length and is mainly found in various Listeria species. The function of this family is unknown. 225 -318495 pfam16266 DUF4919 Domain of unknown function (DUF4919). This family consists of uncharacterized proteins around 230 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this family is unknown. 183 -318496 pfam16267 DUF4920 Domain of unknown function (DUF4920). This family consists of uncharacterized proteins around 190 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 87 -318497 pfam16268 DUF4921 Domain of unknown function (DUF4921). This family consists of uncharacterized proteins around 450 residues in length and is mainly found in various Corynebacterium species. Several proteins are predicted as galactose-1-phosphate uridylytransferases. The function of this family is unknown. 425 -339676 pfam16269 DUF4922 Domain of unknown function (DUF4922). This family consists of uncharacterized proteins around 310 residues in length and is mainly found in various Bacteroides and Parabacteroides species. Several members are annotated as putative glycosyltransferases, but the specific function of this family is still unknown. 187 -339677 pfam16270 DUF4923 Domain of unknown function (DUF4923). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides and Parabacteroides species. The function of this family is unknown. 176 -339678 pfam16271 DUF4924 Domain of unknown function (DUF4924). This family consists of uncharacterized proteins around 180 residues in length and is mainly found in various Parabacteroides and Bacteroides species. The function of this family is unknown. 173 -318501 pfam16272 DUF4925 Domain of unknown function (DUF4925). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 323 -339679 pfam16273 NuDC Nuclear distribution C domain. This domain, approximately 40-50 residues in length, is mainly found in nuclear migration proteins in various Mammalia species. It may play a role not only in mitosis and cytokinesis, but also in interkinetic nuclear migration and neuronal migration during neocortical development. 64 -318503 pfam16274 Qua1 Qua1 domain. This domain, approximately 40 residues in length, is mainly found in KH-domain containing, RNA-binding, signal transduction-associated protein 1 from yeast to human. It forms a homodimer composed of a perpendicular interaction of two helical hairpins, and the Qua1 domain is sufficient for homodimerization which is required for the regulation of alternative splicing. 51 -318504 pfam16275 SF1-HH Splicing factor 1 helix-hairpin domain. This domain, approximately 100 residues in length, is mainly found in splicing factor 1 from yeast to human. It is a helix-hairpin domain, which forms a secondary, hydrophobic interface with U2AF65(UHM) to lock the orientation of the two subunits, which is essential for cooperative formation of the ternary SF1-U2AF65-RNA complex. In this domain, it contains a highly conserved SPSP motif in its C terminal and phophorylation of SPSP motif induces a disorder-to-order transition within a novel SF1/U2AF65 interface, indicating a phosphorylation-dependent control of pre-mRNA splicing factors. 113 -318505 pfam16276 NPM1-C Nucleophosmin C-terminal domain. This domain, approximately 50 residues in length, is mainly found in Nucleophosmin proteins in mammalia species. Nucleophosmin, a nucleocytoplasmic shuttling protein, is related with cancer and involved in serveral cellluar functions, such as ribosome maturatation and export, centrosome duplication, and response to stress stimuli. This domain has a three-helix bundle which can bind G-quadruplex DNA and the interaction involves helices H1 and H2 of the NPM1-C domain mainly through electrostatic contacts with G-quadruplex phosphates, indicating a crucial role in rescuring its function in leukemia. 49 -318506 pfam16277 DUF4926 Domain of unknown function (DUF4926). This family consists of uncharacterized proteins around 70 residues in length and is mainly found in various Caulobacter, Microcystis and Cyanothece species. The function of this family is unknown. 58 -339680 pfam16278 zf-C2HE C2HE / C2H2 / C2HC zinc-binding finger. zf-C2HE is an unusual zinc-binding domain found in fungi, plants and metazoa. It is often found at the C-terminus of HIT-domain-containing proteins, pfam01230. In fungi the fourth ligand is a Glu, in plants it is Cys and in metazoans it is usually a His. The fourth ligand is often mutated in neurogenerative disease-states. 61 -318508 pfam16279 DUF4927 Domain of unknown function (DUF4927). This family, around 80 residues, consists of uncharacterized and nuclear receptor coactivator 2 proteins and is mainly found in mammalia species. The specific function of this family is still unknown. 89 -292897 pfam16280 DUF4928 Domain of unknown function (DUF4928). This family consists of uncharacterized proteins around 330 residues in length and is mainly found in various Bacteria species, such as Enterobacteriales, Clostridiales, Actinomycetales and so on. The function of this family is unknown. 306 -339681 pfam16282 SANT_DAMP1_like SANT/Myb-like domain of DAMP1. This domain, approximately 90 residues, is mainly found in DNA methyltransferase 1-associated protein 1 (DAMP1) that plays an important role in development and maintenace of genome integrity in various mammalia species. It mainly consists of tandem repeats of three alpha-helices that are arranged in a helix-turn-helix motif and shows a structual similarity with SANT domain and Myb DNA-binding domain, indicating it contains a putative DNA binding site. 80 -292899 pfam16283 DUF4929 Domain of unknown function (DUF4929). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various species, such as Bacteroides, Capnocytophaga and Prevotella. The function of this family is unknown. 364 -292900 pfam16284 DUF4930 Domain of unknown function (DUF4930). A small family of uncharacterized proteins around 150 residues in length and found in various Staphylococcus aureus species. The function of this family is unknown. 132 -318510 pfam16285 DUF4931 Domain of unknown function (DUF4931). This family consists of uncharacterized proteins around 270 residues in length and is mainly found in various Bacillus cereus species. Some members of this family are annotated as Galactose-1-phosphate uridylyltransferases, but the specific function of this family is unknown. 245 -318511 pfam16286 DUF4932 Domain of unknown function (DUF4932). This family consists of uncharacterized proteins around 460 residues in length and is mainly found in various Bacteroides species, such as Bacteroides fragilis, Bacteroides sp. and so on. Several members are annotated as putative metalloproteases, but the specific function of this family is unknown. 332 -292903 pfam16287 DUF4933 Domain of unknown function (DUF4933). This family consists of uncharacterized proteins around 450 residues in length and is mainly found in various species, such as Bacteroides and Parabacteroides. Several members are annotated as putative transmembrane proteins, but the specific function of this family is unknown. 396 -318512 pfam16288 DUF4934 Domain of unknown function (DUF4934). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides species, such as Bacteroides fragilis and Bacteroides sp. The function of this family is unknown. 102 -292905 pfam16289 DUF4935 Domain of unknown function (DUF4935). This family consists of uncharacterized proteins around 350 residues in length and is mainly found in various species, such as Prevotella, Pseudomonas, Leptospira and so on. The function of this family is unknown. 379 -292906 pfam16290 DUF4936 Domain of unknown function (DUF4936). This family consists of uncharacterized proteins around 100 residues in length and is mainly found in various Burkholderiales species, such as Herbaspirillum, Cupriavidus, Ralstonia and so on. The function of this family is unknown. 90 -318513 pfam16291 DUF4937 Domain of unknown function (DUF4937. This family consists of uncharacterized proteins around 120 residues in length and is mainly found in various Bacillus species, such as Bacillus subtilis and Bacillus amyloliquefaciens. Several members are annotated as ydbC, but the specific function of this family is unknown. 89 -292908 pfam16292 DUF4938 Domain of unknown function (DUF4938). A small family consists of several uncharacterized proteins around 300 residues in length and is mainly found in various Chloroflexus, Comamonas, Delfitia, Rubrivivax and Roseiflexus species. Several members are annotated as cyanophycin synthetases, but the function of this family is unknown. 302 -292909 pfam16293 zf-C2H2_9 C2H2 type zinc-finger (1 copy). 57 -318514 pfam16294 RSB_motif RNSP1-SAP18 binding (RSB) motif. The RSB motif on the Acinus protein is the core around which the ASAP complex is built. The apoptosis and splicing-associated protein complex, ASAP, is made up of three proteins, SAP18 (Sin3-associated protein of 18 kDa), RNA-binding protein S1 (RNPS1) and apoptotic chromatin inducer in the nucleus (Acinus). The ASAP complex appears to be an assembly of proteins at the interface between transcription, splicing and NMD, acting as a hub in the network of protein-interactions that regulate gene-expression. 93 -292911 pfam16295 TetR_C_10 Tetracycline repressor, C-terminal all-alpha domain. 132 -318515 pfam16296 TM_PBP2_N N-terminal of TM subunit in PBP-dependent ABC transporters. This family mainly consists of Transmembrane subunit (TM) found in Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporters which generally bind type 2 PBPs, such as Binding-protein-dependent transport systems inner membrane component and Maltose transport permease MalF. It is around 580 residues in length and is mainly found in various species, such as Thermotoga, Dictyoglomus, Thermosipho, Fervidobacterium, Mesotoga and so on. The function of this family is unknown. 80 -318516 pfam16297 DUF4939 Domain of unknown function (DUF4939). This family consists of uncharacterized proteins around 110 residues in length and is mainly found in various mammalia species. LDOC1, a member of this family and a novel MZF-1-interacting protein, inhibits NF-kappaB activation and relates with cancer and some other diseases. But the specific function of this family is still unknown. 112 -292914 pfam16298 DUF4940 Domain of unknown function (DUF4940). This family consists of several uncharacterized proteins around 250 residues in length and is mainly found in various Thermotoga species. The function of this family is unknown. 204 -292915 pfam16299 DUF4941 Domain of unknown function (DUF4941). This family consists of several uncharacterized proteins around 300 residues in length and is mainly found in various Thermotoga species. The function of this family is unknown. 266 -339682 pfam16300 WD40_4 Type of WD40 repeat. Most members of this family form part of the 7-bladed beta-propeller at the N-terminus of coronin proteins. 42 -339683 pfam16301 DUF4943 Domain of unknown function (DUF4943). This small family consists of several uncharacterized proteins around 170 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 150 -292918 pfam16302 DUF4944 Domain of unknown function (DUF4944). This family consists of uncharacterized proteins around 160 residues in length and is mainly found in various Bacillus species. The function of this family is unknown. 128 -292919 pfam16303 DUF4945 Domain of unknown function (DUF4945). This small family consists of uncharacterized proteins around 140 residues in length and is mainly found in various Bacteroides species, such as Bacteroides fragilis and Bacteroides sp.. The function of this family is unknown. 115 -318518 pfam16304 DUF4946 Domain of unknown function (DUF4946). This small family consists of uncharacterized proteins around 180 residues in length and is mainly found in various Pseudomonas species, especially in Pseudomonas aeruginosa. The function of this family is unknown. 152 -339684 pfam16305 DUF4947 Domain of unknown function (DUF4947). This small family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Streptococcus mutans species. The function of this family is unknown. 166 -339685 pfam16306 DUF4948 Domain of unknown function (DUF4948). This small family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides, Paraprevotella, Parabacteroides and Alistipes species. The function of this family is unknown. 172 -292923 pfam16307 DUF4949 Domain of unknown function (DUF4949). This small family consists of uncharacterized proteins around 140 residues in length and is mainly found in various Legionella pneumophila and longbeachae species. The function of this family is unknown. 107 -292924 pfam16308 DUF4950 Domain of unknown function (DUF4950). This family consists of several uncharacterized proteins around 250 residues in length and is mainly found in various Enterococcus faecalis species. The function of this family is unknown. 191 -339686 pfam16309 DUF4951 Domian of unknown function (DUF4951). This family consists of several uncharacterized proteins around 125 residues in length and is mainly found in various Acinetobacter baumannii species. The function of this family is unknown. 83 -292926 pfam16310 DUF4952 Domian of unknown function (DUF4952). This family consists of several uncharacterized proteins around 150 residues in length and is mainly found in various Leptospira, Pseudomonas, Stenotrophomonas and Desulfovibrio species. The function of this family is unknown. 77 -292927 pfam16311 TMEM100 Transmembrane protein 100. This family of proteins is found in eukaryotes. Proteins in this family are approximately 130 amino acids in length. There is some apparent similarity with family the phosphoinositide-interacting protein family PIRT, pfam15099, because those proteins are also transmembrane proteins. 130 -339687 pfam16312 Oberon_cc Coiled-coil region of Oberon. Oberon_cc is the coiled-coil region of Oberon proteins from plants. Oberon is necessary for maintenance and/or establishment of both the shoot and root apical meristems in Arabidopsis. Most Oberon proteins carry a PHD finger domain, pfam07227 and this coiled-coil domain. Oberon proteins mediate the TMO7 (the direct target of MP) expression through modification of, or binding to, chromatin at the TMO7 locus. TMO7 stands for the target of Monopteros 7 (or Auxin response factor 7). 129 -339688 pfam16313 DUF4953 Met-zincin. This is a family of uncharacterized proteins that carry the highly characteristic met-zincin mmotif HExxHxxGxxH, the extended zinc-binding domain of metallopeptidases. 319 -318523 pfam16314 DUF4954 Domain of unknown function (DUF4954). This family consists of uncharacterized proteins around 660 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 652 -339689 pfam16315 DUF4955 Domain of unknown function (DUF4955). This family consists of uncharacterized proteins around 850 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 150 -318525 pfam16316 DUF4956 Domain of unknown function (DUF4956). This family consists of uncharacterized proteins around 220 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 165 -292933 pfam16317 Glyco_hydro_99 Glycosyl hydrolase family 99. This domain, around 350 residues, is mainly found in some uncharacterized proteins from bacteroides to human. Some proteins in this family, annotated as endo-alpha-mannosidases cleave mannoside linkages internally within an N-linked glycan chain, short circuiting the classical N-glycan biosynthetic pathway. This domain reveals a (beta-alpha)(8) barrel fold in which the catalytic centre is present in a long substrate-binding groove, consistent with cleavage within the N-glycan chain, providing a foundation upon which to develop new enzyme inhibitors targeting the hijacking of N-glycan synthesis in viral disease and cancer. 342 -318526 pfam16318 DUF4957 Domain of unknown function (DUF4957). This family consists of uncharacterized proteins around 150 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this protein is unknown. 138 -339690 pfam16319 DUF4958 Domain of unknown function (DUF4958). This family consists of uncharacterized proteins around 720 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 731 -339691 pfam16320 Ribosomal_L12_N Ribosomal protein L7/L12 dimerization domain. This is the N-terminal dimerization domain of ribosomal protein L7/L12. 46 -339692 pfam16321 Ribosom_S30AE_C Sigma 54 modulation/S30EA ribosomal protein C-terminus. This domain often occurs at the C-terminus of proteins containing pfam02482. 57 -318529 pfam16322 Tub_N Tubby N-terminal. Tub_N is the N-terminal region of Tubby proteins. It carries a nuclear localization signal and is able to activate transcription. 211 -318530 pfam16323 DUF4959 Domain of unknown function (DUF4959). This family consists of uncharacterized proteins around 400 residues in length and is mainly found in various Bacteroides, Pedobacter and Parabacteroides species. Several proteins are annotated as Galactose-binding like proteins, but the specific function of this protein is unknown. 106 -339693 pfam16324 DUF4960 Domain of unknown function (DUF4960). This family consists of uncharacterized proteins around 460 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 252 -339694 pfam16325 Peptidase_U32_C Peptidase family U32 C-terminal domain. This domain is found at the C-terminus of many members of Peptidase family U32 (pfam01136). 79 -339695 pfam16326 ABC_tran_CTD ABC transporter C-terminal domain. This domain is found at the C-terminus of ABC transporters. It has a coiled coil structure with an atypical 3(10)-helix in the alpha-hairpin region. It is involved in DNA_binding. 68 -339696 pfam16327 CcmF_C Cytochrome c-type biogenesis protein CcmF C-terminal. This C-terminal region of CcmF, one of the cytochrome c-type biogenesis proteins, is associated at the C-terminal with Cytochrome_C_asm family pfam01578. It is possible that it is this domain which delivers reductant to haem on CcmE. 322 -292944 pfam16328 DUF4961 Domain of unknown function (DUF4961). This small family consists of several uncharacterized proteins around 350 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 317 -318535 pfam16329 Pestivirus_E2 Pestivirus envelope glycoprotein E2. 372 -339697 pfam16330 MukB_hinge MukB hinge domain. The hinge domain of chromosome partition protein MukB is responsible for dimerization and is also involved in protein-DNA interactions and conformational flexibility. 167 -339698 pfam16331 TolA_bind_tri TolA binding protein trimerisation. This is the N-terminal domain of the YbgF protein. YbgF binds to TolA. This domain mediates trimerisation. 72 -339699 pfam16332 DUF4962 Domain of unknown function (DUF4962). This family consists of uncharacterized proteins around 870 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 476 -318539 pfam16334 DUF4964 Domain of unknown function (DUF4964). This family consists of uncharacterized proteins around 840 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as Glutaminases, but the function of this protein is unknown. 87 -339700 pfam16335 DUF4965 Domain of unknown function (DUF4965). This family consists of uncharacterized proteins around 840 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as Glutaminases, but the function of this protein is unknown. 174 -318541 pfam16338 DUF4968 Domain of unknown function (DUF4968). This family consists of uncharacterized proteins around 830 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as alpha-glucosidases, but the function of this protein is unknown. 93 -318542 pfam16339 DUF4969 Domain of unknown function (DUF4969). This small family consists of several uncharacterized proteins around 540 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 79 -318543 pfam16341 DUF4971 Domain of unknown function (DUF4971). This small family consists of uncharacterized proteins around 370 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 140 -292954 pfam16342 DUF4972 Domain of unknown function (DUF4972). This family consists of uncharacterized proteins around 490 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 128 -318544 pfam16343 DUF4973 Domain of unknown function (DUF4973). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Bacteroides and Prevotella species. The function of this protein is unknown. 130 -339701 pfam16344 DUF4974 Domain of unknown function (DUF4974). This family consists of uncharacterized proteins around 340 residues in length and is mainly found in various Bacteroides and Parabacterodies species. The function of this protein is unknown. 98 -339702 pfam16346 DUF4975 Domain of unknown function (DUF4975). This family consists of uncharacterized proteins around 500 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as Glycosyl hydrolases, but the function of this protein is unknown. 173 -339703 pfam16347 DUF4976 Domain of unknown function (DUF4976). This family consists of uncharacterized proteins around 530 residues in length and is mainly found in various Bacteroides species. Several proteins in this family are annotated as Arylsulfatases, but the function of this protein is unknown. 103 -292959 pfam16348 Corona_NSP4_C Coronavirus nonstructural protein 4 C-terminus. This is the C-terminal domain of the coronavirus nonstructural protein 4 (NSP4). NSP4 is a membrane-spanning protein which is thought to anchor the viral replication-transcription complex (RTC) to modified endoplasmic reticulum membranes. This predominantly alpha-helical domain may be involved in protein-protein interactions. 92 -318548 pfam16349 DUF4978 Domain of unknown function (DUF4978). This family consists of uncharacterized proteins around 540 residues in length and is mainly found in various Bacteroides and Prevotella species. Several proteins in this family are annotated as Glycoside hydrolases, but the function of this protein is unknown. 181 -339704 pfam16350 FAO_M FAD dependent oxidoreductase central domain. This domain occurs in several FAD dependent oxidoreductases: Sarcosine dehydrogenase, Dimethylglycine dehydrogenase and Dimethylglycine dehydrogenase. It is situated between the DAO domain (pfam01266) and the GCV_T domain (pfam01571). 51 -339705 pfam16351 DUF4979 Domain of unknown function (DUF4979). This family consists of uncharacterized proteins around 450 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 167 -339706 pfam16352 DUF4980 Domain of unknown function (DUF4980). This family consists of uncharacterized proteins around 610 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 102 -339707 pfam16353 DUF4981 Domain of unknown function(DUF4981). This family consists of uncharacterized proteins around 1000 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 86 -339708 pfam16355 DUF4982 Domain of unknown function (DUF4982). This family is found in the C-terminal of uncharacterized proteins and beta-galactosidases around 680 residues in length from various Bacteroides species. The function of this protein is unknown. 62 -318554 pfam16356 DUF4983 Domain of unknown function (DUF4983). This family consists of uncharacterized proteins around 600 residues in length and is mainly found in various Bacteroides species. The function of this protein is unknown. 93 -318555 pfam16357 PepSY_TM_like_2 Putative PepSY_TM-like. This is a family of bacterial proteins with three PepSY-like TM regions. 197 -339709 pfam16358 RcsF RcsF lipoprotein. The RcsF lipoprotein is a component of the Rcs signaling system. It activates the Rcs system by transmitting signals from the cell suface to the histidine kinase RcsC. 107 -339710 pfam16359 RcsD_ABL RcsD-ABL domain. This domain is part of the RcsD histidine kinase. It recognizes the effector domain of RcsB. 102 -339711 pfam16360 GTP-bdg_M GTP-binding GTPase Middle Region. This family locates between the N-terminal domain and MMR_HSR1 50S ribosome-binding GTPase of GTP-binding HflX-like proteins. The full-length members bind and interact with the 50S ribosome and are GTPases, hydrolysing GTP/GDP/ATP/ADP. This region is unknown for its function. 69 -339712 pfam16361 Peptidase_S8_N N-terminal of Subtilase family. This is the N-terminal of Peptidase_S8 of subtilase family. It is around 100 residues in length from various Bacteroides species. The function of this family is unknown. 140 -339713 pfam16362 YaiA YaiA protein. This family of proteins is found in Enterobacteriaceae, where they are immediately downstream of a Shikimate kinase. 63 -339714 pfam16363 GDP_Man_Dehyd GDP-mannose 4,6 dehydratase. 332 -339715 pfam16364 Antigen_C Cell surface antigen C-terminus. This repeated domain is found at the C-terminus of cell surface antigens. In the Streptococcus mutans antigen I/II there are three repeats of this domain, a cleft between the first two of these forms a binding site for the human salivary agglutinin (SAG). 162 -292975 pfam16365 EutK_C Ethanolamine utilization protein EutK C-terminus. This is the C-terminal domain of the ethanolamine utilization protein EutK. It is a helix-turn-helix domain and is predicted to bind to nucleic acids. 55 -318563 pfam16366 CEBP_ZZ Cytoplasmic polyadenylation element-binding protein ZZ domain. This ZZ-type zinc finger domain binds zinc via two conserved histidines in the C-terminal part of the domain. 57 -318564 pfam16367 RRM_7 RNA recognition motif. 94 -318565 pfam16368 CEBP1_N Cytoplasmic polyadenylation element-binding protein 1 N-terminus. This is the N-terminal domain of cytoplasmic polyadenylation element-binding protein 1. 307 -318566 pfam16369 GH43_C C-terminal of Glycosyl hydrolases family 43. This is the C-terminal of Glycosyl hydrolases family 43. It is around 100 residues in length from various Bacteroides species. The function of this family is unknown. 105 -339716 pfam16370 MetallophosC C terminal of Calcineurin-like phosphoesterase. This is the C-terminal of Calcineurin-like phosphoesterases. It is around 150 residues in length from various Bacteroides species. The function of this family is unknown. 149 -339717 pfam16371 MetallophosN N terminal of Calcineurin-like phosphoesterase. This is the N-terminal of Calcineurin-like phosphoesterases. It is around 150 residues in length from various Bacteroides species. The function of this family is unknown. 78 -339718 pfam16372 DUF4984 Domain of unknown function (DUF4984). This domain is around 150 residues long and is located in the C-terminal of some uncharacterized proteins in various Bacteroides and Prevotella species. The function of this domain remains unknown. 164 -339719 pfam16373 DUF4985 Domain of unknown function. This family around 100 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides, Prevotella and Prevotella species. The function of this family remains unknown. 114 -292984 pfam16374 CIF Cycle inhibiting factor (CIF). Cycle inhibiting factors (Cif) are bacterial effectors that interfere with the eukarytoc cell cycle. CIF induce an irreversible cell cycle arrest upon injection into host cell. CIF blocks degradation of cyclin -dependent kinase inhibitors p21 and p27, inducing their accumulation in the cell. The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. 138 -318571 pfam16375 DUF4986 Domain of unknown function. This family around 150 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Bacillus species. The function of this family remains unknown. 81 -292986 pfam16376 fragilysinNterm N-terminal domain of fragilysin. N-terminal domain of fragilysin, an extracellular metalloprotease toxin, which is primary virulence factor of B. fragilis, an oportunistic pathogen of human gut. The N-terminal domain of fragilysin inhibits fragilysin and is cleaved in a mature, virulent form. 144 -292987 pfam16377 DUF4987 Domain of unknown function. This family around 150 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Prevotella species. The function of this family remains unknown. 143 -339720 pfam16378 DUF4988 Domain of unknown function. This family around 200 residues locates in the N-terminal of some uncharacterized proteins in various Bacteroides and Alistipes species. The function of this family remains unknown. The N-terminus of this model has been clipped by ~30 residues as it was capturing parts of collagen sequences, pfam01391. 178 -339721 pfam16379 DUF4989 Domain of unknown function (DUF4989). This family around 300 residues locates in the N-terminal of some uncharacterized proteins in various Bacteroides and Alistipes species. The function of this family remains unknown. This entry contains a duplication of a DUF1735-like domain. 293 -339722 pfam16380 DUF4990 Domain of unknown function. This family around 150 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides species. The function of this family remains unknown. 138 -318574 pfam16381 Coatomer_g_Cpla Coatomer subunit gamma-1 C-terminal appendage platform. Coatomer_g_Cpla is the very C-terminal domain of the eukaryotic Coatomer subunit gamma-1 proteins. It acts as a platform domain to the C-terminal appendage. It carries one single protein/protein interaction site, which is the binding site for ARFGAP2 or ADP-ribosylation factor GTPase-activating protein. COPI-coated vesicles mediate retrograde transport from the Golgi back to the ER and intra-Golgi transport. The gamma-COPI is part of one of two subcomplexes that make up the heptameric coatomer complex along with the beta, delta and zeta subunits. 115 -318575 pfam16383 DUF4992 Domain of unknown function. This family around 150 residues locates in the N-terminal of some uncharacterized proteins in various Bacteroides and Prevotella species. The function of this family remains unknown. 181 -318576 pfam16384 DUF4993 Domain of unknown function. This family around 350 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides species. The function of this family remains unknown. 358 -339723 pfam16385 DUF4994 Domain of unknown function. This family around 100 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Prevotella species. The function of this family remains unknown. 98 -339724 pfam16386 DUF4995 Domain of unknown function. This family around 100 residues locates in the N-terminal of some uncharacterized proteins and glucuronyl hydrolases in various Bacteroides species. The function of this family remains unknown. 73 -339725 pfam16387 DUF4996 Domain of unknown function. This family around 100 residues locates in the N-terminal of some glycerophosphoryl diester phosphodiesterases and uncharacterized proteins in various Bacteroides and Prevotella species. The function of this family remains unknown. 102 -318580 pfam16389 DUF4998 Domain of unknown function. This family around 200 residues locates in the N-terminal of some uncharacterized proteins in various Bacteroides and Parabacteroides species. The function of this family remains unknown. 198 -339726 pfam16390 DUF4999 Domain of unknown function. This family around 75 residues locates in the N-terminal of F5/8 type C domain proteins and some uncharacterized proteins in various Bacteroides species. The function of this family remains unknown. 76 -318581 pfam16391 DUF5000 Domain of unknown function. This family around 200 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Parabacteroides species. The function of this family remains unknown. 144 -339727 pfam16392 DUF5001 Domain of unknown function. This family around 100 residues locates in the C-terminal of some uncharacterized proteins in various Bacteroides and Parabacteroides species. The function of this family remains unknown. 93 -318582 pfam16394 DUF5003 Domain of unknown function (DUF5003). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are typically between 500 and 650 amino acids in length. 325 -318583 pfam16395 DUF5004 Domain of unknown function (DUF5004). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are typically around 150 amino acids in length. 152 -293005 pfam16396 DUF5005 Domain of unknown function (DUF5005). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are typically around 440 amino acids in length. 436 -318584 pfam16397 DUF5006 Domain of unknown function (DUF5006). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are around 600 amino acids in length. 264 -318585 pfam16398 DUF5007 Domain of unknown function (DUF5007). This small family of proteins is functionally uncharacterized. This family is found in Bacteroides and Sphingobacterium. The members in this family are around 350 residues in length. 288 -339728 pfam16399 Aquarius_N Intron-binding protein aquarius N-terminus. This family represents the N-terminus of intron-binding protein aquarius, a splicing factor which links excision of introns from pre-mRNA with snoRP assembly. 792 -318587 pfam16400 DUF5008 Domain of unknown function (DUF5008). This small family of proteins is functionally uncharacterized. This family is found in Bacteroides, Paraprevotella, and Sphingobacterium. The members in this family are around 550 residues in length. 101 -293010 pfam16401 DUF5009 Domain of unknown function (DUF5009). This small family of proteins is functionally uncharacterized. This family is mainly found in various Bacteroides species. The members in this family are around 470 residues in length. 260 -318588 pfam16402 DUF5010 Domain of unknown function (DUF5010). This small family of proteins is functionally uncharacterized. This family is found in bacteroides. Proteins in this family are around 600 amino acids in length. 349 -339729 pfam16403 DUF5011 Domain of unknown function (DUF5011). This small family of proteins is functionally uncharacterized. This family is found in Bacteroides, Prevotella, and Parabateroides. Proteins in this family are around 230 amino acids in length. 71 -293013 pfam16404 DUF5012 Domain of unknown function (DUF5012). This small family of proteins is functionally uncharacterized. This family is found in various Bacteroides species. Proteins in this family are around 230 amino acids in length. 125 -318590 pfam16405 DUF5013 Domain of unknown function (DUF5013). This small family of proteins is functionally uncharacterized. This family is found in various Bacteroides and Parabacteroides species. Proteins in this family are around 400 amino acids in length. 146 -293015 pfam16406 DUF5014 Domain of unknown function (DUF5014). This small family of proteins is functionally uncharacterized. This family is found in various Bacteroides species. Proteins in this family are around 630 amino acids in length. 90 -318591 pfam16407 PKD_2 PKD-like family. This is a PKD-like family of proteins found in various Bacteroides species. 157 -318592 pfam16408 DUF5016 Domain of unknown function (DUF5016). This family of proteins is functionally uncharacterized. This family is found in various Bacteroides species. Proteins in this family are around 660 amino acids in length. 121 -318593 pfam16409 DUF5017 Domain of unknown function (DUF5017). This family of proteins is functionally uncharacterized. This family is found in various Bacteroides and Prevotella species. Proteins in this family are around 350 amino acids in length. 180 -293019 pfam16410 DUF5018 Domain of unknown function (DUF5018). This family of proteins is functionally uncharacterized. This family is found in various Bacteroides and Alistipes species. Proteins in this family are around 600 amino acids in length. 351 -339730 pfam16411 SusF_SusE Outer membrane protein SusF_SusE. SusE and SusF are two outer membrane proteins composed of tandem starch specific carbohydrate binding modules (CBMs) with no enzymatic activity. They are are likely to play an important role in starch metabolism in Bacteroides. It has been speculated that they could compete for starch in the human intestinal tract by sequestering starch at the bacterial surface and away from competitors. SusE has higher affinity for starch compared to SusF. 72 -339731 pfam16412 DUF5020 Domain of unknown function (DUF5020). This family of proteins is functionally uncharacterized. This family is found in various Bacteroides species. Proteins in this family are around 235 amino acids in length. 212 -339732 pfam16413 Mlh1_C DNA mismatch repair protein Mlh1 C-terminus. This is the C-terminal domain of DNA mismatch repair protein Mlh1, these proteins belong to the MutL family. This domain forms part of the endonuclease active site. 253 -339733 pfam16414 NPC1_N Niemann-Pick C1 N-terminus. This is the N-terminal domain of Niemann-Pick C1 family proteins. This family of proteins mediates transport of cholesterol from the intestinal lumen to enterocytes. This domain contains a cholesterol-binding pocket. 238 -318598 pfam16415 CNOT1_CAF1_bind CCR4-NOT transcription complex subunit 1 CAF1-binding domain. This is the CAF1-binding domain of CCR4-NOT transcription complex. It adopts a MIF4G (middle portion of eIF4G) fold. 224 -293025 pfam16416 GUN4_N ARM-like repeat domain, GUN4-N terminal. GUN4_N is the ARM-repeat like N-terminal domain of GUN4 proteins. It contains five helices arranged in an alternating antiparallel pattern that resembles ARM or HEAT repeats, though the functional importance of this poorly conserved domain in Gun4 is not currently known. 82 -318599 pfam16417 CNOT1_TTP_bind CCR4-NOT transcription complex subunit 1 TTP binding domain. This is the TTP binding domain of CCR4-NOT transcription complex subunit 1. It adopts a MIF4G (middle portion of eIF4G) fold. 186 -339734 pfam16418 CNOT1_HEAT CCR4-NOT transcription complex subunit 1 HEAT repeat. This domain is a HEAT repeat found in CCR4-NOT transcription complex subunit 1. 142 -318601 pfam16419 CNOT1_HEAT_N CCR4-NOT transcription complex subunit 1 HEAT repeat. This domain is a HEAT repeat found in fungal CCR4-NOT transcription complex subunit 1 at the N-terminus of PF16418. 224 -339735 pfam16420 ATG7_N Ubiquitin-like modifier-activating enzyme ATG7 N-terminus. This is the N-terminal domain of Ubiquitin-like modifier-activating enzyme ATG7. In Arabidopsis this domain binds the E2 enzymes ATG10 and ATG3. 306 -339736 pfam16421 E2F_CC-MB E2F transcription factor CC-MB domain. This is the coiled coil (CC) - marked box (MB) domain of E2F transcription factors. This domain forms a heterodimer with the corresponding domain of the DP transcription factor, the heterodimer binds the C-terminus of retinoblastoma protein. 95 -293031 pfam16422 COE1_DBD Transcription factor COE1 DNA-binding domain. 227 -318604 pfam16423 COE1_HLH Transcription factor COE1 helix-loop-helix domain. This is the helix-loop-helix domain of transcription factor COE1. It is responsible for dimerization. 44 -318605 pfam16424 DUF5021 Domain of unknown function (DUF5021). This family consists of Prepilin-type cleavage/methylation N-terminal domain proteins around 200 residues in length and is mainly found in various Eubacterium species. The function of this family is unknown. 162 -293034 pfam16425 DUF5022 Domain of unknown function (DUF5022). This family consists of several uncharacterized proteins around 350 in length and is mainly found in various Firmicutes species. The function of this family is unknown. 287 -318606 pfam16426 DUF5023 Domain of unknown function (DUF5023). This family consists of several uncharacterized proteins around 300 residues in length and is mainly found in various Eubacterium species. The function of this family is unknown. 211 -318607 pfam16427 DUF5024 Domain of unknown function (DUF5024). This family consists of several uncharacterized proteins around 150 or 200 in length and is mainly found in various Bacteroides and Parabacteroides species. The function of this family is unknown. 104 -318608 pfam16428 DUF5025 Domain of unknown function (DUF5025). This family consists of several uncharacterized proteins around 200 in length and is mainly found in various Parabacteroides species. The function of this family is unknown. 151 -293038 pfam16429 DUF5026 Domain of unknown function (DUF5026). This family consists of several uncharacterized proteins around 100 residues in length and is mainly found in various Clostridiales species. The function of this family is unknown. 82 -318609 pfam16430 DUF5027 Domain of unknown function (DUF5027). This family consists of several uncharacterized proteins around 180 in length and is mainly found in various Clostridiales species. The function of this family is unknown. 184 -293040 pfam16431 DUF5028 Domain of unknown function (DUF5028). This family consists of several uncharacterized proteins around 200 in length and is mainly found in Eubacterium and Clostridium. The function of this family is unknown. 177 -293041 pfam16432 DUF5029 Domain of unknown function (DUF5029). This family consists of several uncharacterized proteins around 550 in length and is mainly found in Bacteroides fragilis and sp. The function of this family is unknown. 210 -293042 pfam16433 DUF5030 Domain of unknown function (DUF5030). This family consists of several uncharacterized proteins around 300 in length and is mainly found in various Bacteroides species. The function of this family is unknown. 276 -293043 pfam16434 DUF5031 Domain of unknown function (DUF5031). This family consists of several uncharacterized proteins around 380 in length and is mainly found in Bacteroides fragilis and sp. The function of this family is unknown. 351 -293044 pfam16435 DUF5032 Domain of unknown function (DUF5032). This family consists of several uncharacterized proteins around 270 in length and is mainly found in various Bacteroides and Parabacteroides species. The function of this family is unknown. 277 -318610 pfam16436 DUF5033 Domain of unknown function (DUF5033). This family consists of several uncharacterized proteins around 200 in length and is mainly found in various Bacteroides species. The function of this family is unknown. 178 -293046 pfam16437 DUF5034 Domain of unknown function (DUF5034). This family consists of several uncharacterized proteins around 190 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 148 -318611 pfam16438 DUF5035 Domain of unknown function (DUF5035). This family consists of several uncharacterized proteins around 170 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 146 -293048 pfam16439 DUF5036 Domain of unknown function (DUF5036). This family consists of several uncharacterized proteins around 240 residues in length and is mainly found in various Bacteroides and Parabacteroides species. The function of this family is unknown. 223 -293049 pfam16440 DUF5037 Domain of unknown function (DUF5037). This family consists of several uncharacterized proteins around 270 residues in length and is mainly found in various Clostridiales species. The function of this family is unknown. 242 -293050 pfam16441 DUF5038 Domain of unknown function (DUF5038). This family consists of several uncharacterized proteins around 200 residues in length and is mainly found in various Clostridiales species. The function of this family is unknown. 147 -339737 pfam16442 DUF5039 Domain of unknown function (DUF5039). This family consists of several uncharacterized proteins around 240 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 203 -293052 pfam16443 DUF5040 Domain of unknown function (DUF5040). This family consists of several uncharacterized proteins around 260 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 227 -318613 pfam16444 DUF5041 Domain of unknown function (DUF5041). This family consists of several uncharacterized proteins around 230 residues in length and is mainly found in various Bacteroidales species. The function of this family is unknown. 192 -293054 pfam16445 DUF5042 Domain of unknown function (DUF5042). This family consists of several uncharacterized proteins around 460 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 434 -293055 pfam16446 DUF5043 Domain of unknown function (DUF5043). This family consists of several uncharacterized proteins around 200 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 154 -318614 pfam16447 DUF5044 Domain of unknown function (DUF5044). This family consists of several uncharacterized proteins around 220 residues in length and is mainly found in various Clostridiales species. The function of this family is unknown. 178 -339738 pfam16448 LapD_MoxY_N LapD/MoxY periplasmic domain. This domain is the N-terminal periplasmic domain of the LapD and MoxY receptor proteins. 124 -318616 pfam16449 MatB Fimbrillin MatB. This is a family of fimbrial proteins. 168 -318617 pfam16450 Prot_ATP_ID_OB Proteasomal ATPase OB/ID domain. This is the interdomain (ID) or oligonucleotide binding (OB) domain of proteasomal ATPase 130 -318618 pfam16451 Spike_NTD Spike glycoprotein N-terminal domain. The N-terminal domain of the coronavirus spike glycoprotein functions as a receptor binding domain. It binds carcinoembryonic antigen-related cell adhesion molecule 1. 273 -339739 pfam16452 Phage_CI_C Bacteriophage CI repressor C-terminal domain. The C-terminal domain of the CI repressor functions in oligomer formation. 101 -318620 pfam16453 IQ_SEC7_PH PH domain. This PH domain is found in IQ motif and SEC7 domain-containing proteins. 127 -339740 pfam16454 PI3K_P85_iSH2 Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain. This domain is found between the two SH2 domains in phosphatidylinositol 3-kinase regulatory subunit P85. It forms a complex with the adaptor-binding domain of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha. 152 -318622 pfam16455 UBD Ubiquitin-binding domain. This ubiquitin-binding domain is found in ubiquitin domain-containing proteins. 103 -293065 pfam16456 YmgD YmgD protein. This family of proteins is found in bacteria. Proteins in this family are approximately 110 amino acids in length. 82 -339741 pfam16457 PH_12 Pleckstrin homology domain. 129 -318624 pfam16458 Beta-prism_lec Beta-prism lectin. This beta-prism fold lectin is the C-terminal domain of the Vibrio cholerae cytolytic pore-forming toxin hemolysin. It binds to N-glycans with a heptasaccharide GlcNAc4Man3 core (NGA2). 128 -339742 pfam16459 Phage_TAC_13 Phage tail assembly chaperone, TAC. This family represents the phage-tail assembly chaperone proteins from a small set of Siphoviridae from Gammaproteobacteria. TACs are required for the morphogenesis of all long-tailed phages. The proposed function for the TAC is to coat the tape-measure protein to prevent it from forming unproductive complexes or precipitating before the tail tube protein has been incorporated. 98 -293069 pfam16460 Phage_TTP_11 Phage tail tube, TTP, lambda-like. This family represents the phage-tail-tube protein from a set of Siphoviridae from Gammaproteobacteria. Tail tube proteins polymerize with the assistance of the Tail-tip complex, a tape measure protein and two chaperones. Infectivity of host is delivered through the tube. 137 -318626 pfam16461 Phage_TTP_12 Lambda phage tail tube protein, TTP. This family represents the phage-tail-tube protein from a set of Siphoviridae from Gammaproteobacteria. Tail tube proteins polymerize with the assistance of the Tail-tip complex, a tape measure protein and two chaperones. Infectivity of host is delivered through the tube. 153 -318627 pfam16462 Phage_TAC_14 Phage tail assembly chaperone protein, TAC. This is a family of Siphoviridae phage tail assembly chaperone proteins. 113 -318628 pfam16463 Phage_TTP_13 Phage tail tube protein family. This is a small family of Siphoviridae phage tail tube proteins. The tube protein polymerizes to form the shaft through which the infecting DNA passes into the host. 137 -318629 pfam16464 DUF5045 Domain of unknown function (DUF5045). This family consists of N-terminal of several uncharacterized proteins around 260 residues in length and is mainly found in various Bacteroides and Parabacteroides species. The function of this family is unknown. 85 -293074 pfam16465 DUF5046 Domain of unknown function (DUF5046). This small family consists of C-terminal of several uncharacterized proteins around 500 residues in length and is mainly found in various Faecalibacterium species. The function of this family is unknown. This family has distant similarity to WD40 repeats. 265 -293075 pfam16466 DUF5047 Domain of unknown function (DUF5047). This family consists of N-terminal of several uncharacterized proteins and peptidases around 360 residues in length and is mainly found in various Streptomyces species. The function of this family is unknown. 135 -293076 pfam16467 DUF5048 Domain of unknown function (DUF5048). This family consists of C-terminal of several uncharacterized proteins around 500 residues in length and is mainly found in various Faecalibacterium and Clostridium species. The function of this family is unknown. 102 -318630 pfam16468 DUF5049 Domain of unknown function (DUF5049). This family consists of some uncharacterized proteins around 60 residues in length and is mainly found in various Lactobacillus and Selenomonas species. The function of this family is unknown. 57 -318631 pfam16469 NPA Nematode polyprotein allergen ABA-1. The nematode polyprotein allergen ABA-1 is a lipid-binding protein comprising multiple tandem repeats of this domain. 122 -339743 pfam16470 S8_pro-domain Peptidase S8 pro-domain. This domain is the pro-domain of several peptidases belonging to family S8. 77 -318633 pfam16471 JIP_LZII JNK-interacting protein leucine zipper II. This is the second leucine zipper domain (LZII) of several JNK-interacting proteins (JIP). It interacts with the small GTP-binding protein ARF6. 69 -318634 pfam16472 DUF5050 Domain of unknown function (DUF5050). 283 -339744 pfam16473 DUF5051 3' exoribonuclease, RNase T-like. This is a highly divergent 3' exoribonuclease family. The proteins constitute a typical RNase fold, where the active site residues form a magnesium catalytic centre. The protein of the solved structure readily cleaves 3' overhangs in a time-dependent manner. It is similar to DEDD-type RNases and is an unusual ATP-binding protein that binds ATP and dATP. It forms a dimer in solution and both protomers in the asymmetric unit bind a magnesium ion through Asp-6 in UniProtKB:P9WJ73. 137 -318636 pfam16474 KIND Kinase non-catalytic C-lobe domain. The KIND domain (kinase non-catalytic C-lobe domain) evolved from a catalytic protein kinase fold and functions as an interaction domain. In SPIRE1 (protein spire homolog 1) this domain interacts with FMN2 (formin-2). 194 -318637 pfam16475 DUF5052 Domain of unknown function (DUF5052). This family consists of uncharacterized proteins around 200 residues in length and is mainly found in various Firmicutes species. The function of this family is unknown. 199 -318638 pfam16476 DUF5053 Domain of unknown function (DUF5053). This family consists of C-terminal of uncharacterized proteins around 100 residues in length and is mainly found in various Prevotella species. The function of this family is unknown. 59 -318639 pfam16477 DUF5054 Domain of unknown function (DUF5054). This family consists of Glycosyl hydrolase family 38 proteins around 700 residues in length and is mainly found in various Clostridium and Rhizobium species. The function of this family is unknown. 283 -318640 pfam16478 DUF5055 Domain of unknown function (DUF5055). This family consists of several uncharacterized proteins around 100 residues in length and is mainly found in butyrate-producing bacteriums. The function of this family is unknown. 105 -339745 pfam16479 DUF5056 Domain of unknown function (DUF5056). This family consists of uncharacterized proteins around 360 residues in length and is mainly found in various Bacteroides species. The function of this family is unknown. 92 -293089 pfam16480 DUF5057 Domain of unknown function (DUF5057). This family consists of C-terminal of uncharacterized proteins and F5/8 type C domain proteins around 360 residues in length and is mainly found in various Firmicutes species. The function of this family is unknown. 356 -318641 pfam16481 DUF5058 Domain of unknown function (DUF5058). This family consists of uncharacterized proteins around 250 residues in length and is mainly found in various Firmicutes species. The function of this family is unknown. 218 -339746 pfam16482 Staufen_C Staufen C-terminal domain. This is the C-terminal domain of Staufen proteins. It consists of an N-terminal Staufen-swapping motif (SSM) comprising two alpha helices, connected by a linker region to a dsRNA-binding-like domain ('RBD'). The 'RBD' has the fold of a functional dsRNA-binding domain, but lacks the residues required to bind RNA. This domain is responsible for dimerization, the SSM from one molecule interacts with the 'RBD' of another. 110 -318643 pfam16483 Glyco_hydro_64 Beta-1,3-glucanase. Family 64 glycoside hydrolases have beta-1,3-glucanase activity. 374 -318644 pfam16484 CPT_N Carnitine O-palmitoyltransferase N-terminus. This domain is found at the N-terminus of carnitine O-palmitoyltransferases. It functions as a regulatory domain and is linked to the catalytic domain (pfam00755) via two transmembrane regions. 46 -318645 pfam16485 PLN_propep Protealysin propeptide. This propeptide is cleaved during maturation of protealysin. Before cleavage it interacts with the catalytic domain, blocking the active site. 43 -339747 pfam16486 ArgoN N-terminal domain of argonaute. ArgoN is the N-terminal domain of argonaute proteins in eukaryotes. ArgoN is composed of an antiparallel four-stranded beta sheet core that has two alpha helices positioned along one face of the sheet and an extended beta strand towards its N-terminus. The core fold of the N domain most closely resembles the catalytic domain of replication-initiator protein Rep. The N domain is linked to the PAZ domain via linker 1 region, and together these three regions are designated the PAZ-containing lobe of argonaute. 90 -318647 pfam16487 ArgoMid Mid domain of argonaute. The ArgoMid domain is found to be part of the Piwi-lobe of the argonaute proteins. It is composed of a parallel four-stranded beta-sheet core surrounded by four alpha-helices and two additional short alpha-helices. It most closely resembles the amino terminal tryptic core of the E.coli lactose repressor. There is an extensive interface between the Mid and the Piwi domains. The conserved C-terminal half or the Mid has extensive interactions with Piwi, with a deep basic pocket on the surface of the `Mid adjacent to the interface with Piwi. The Mid carries a binding pocket for the 5' phosphate overhang of the guide strand of DNA. The N, Mid, and Piwi domains form a base upon which the PAZ domain sits, resembling a duck. The 5' phosphate and the U1 base are held in place by a conserved network of interactions from protein residues of the Mid and Piwi domains in order to place the guide uniquely in the proper position observed in all Argonaute-RNA complexes. 82 -339748 pfam16488 ArgoL2 Argonaute linker 2 domain. ArgoL2 is the second linker domain in eukaryotic argonaute proteins. It starts with two alpha-helices aligned orthogonally to each other followed by a beta-strand involved in linking the two lobes, the PAZ lobe and the Piwi lobe of argonaute to each other. Linker 2 together with the N, PAZ and L1 domains form a compact global fold. Numerous residues from Piwi, L1 and L2 linkers direct the path of the phosphate backbone of nucleotides 7-9, thus allowing DNA-slicing. 47 -339749 pfam16489 GAIN GPCR-Autoproteolysis INducing (GAIN) domain. The GAIN a domain of alpha-helices and beta-strands that is found in cell-adhesion GPCRs and precedes the GPS motif where the autoproteolysis occurs, family, pfam01825. The full GAIN domain, comprises the GPS and the GAIN, in cell-adhesion GPCRs, and is the functional unit for autoproteolysis. The GPS motif at the end of the GAIN domain is an ancient domain that exists in primitive ancestor organisms, and the full GAIN + GPS is conserved in all cell-adhesion GPCRs and all PKD1-related proteins. 207 -318650 pfam16490 Oxidoreduct_C Putative oxidoreductase C terminal domain. This is the putative C-terminal domain of a bacterial oxidoreductase. It lies C-terminal to family GFO_IDH_MocA pfam01408 in some members. 278 -339750 pfam16491 Peptidase_M48_N CAAX prenyl protease N-terminal, five membrane helices. The five N-terminal five transmembrane alpha-helices of peptidase_M48 family proteins including the CAAX prenyl proteases reside completely within the membrane of the endoplasmic reticulum. 178 -339751 pfam16492 Cadherin_C_2 Cadherin cytoplasmic C-terminal. Cadherin_C_2 is the cytoplasmic C-terminal domain of some proto-cadherins. It is this region of the cadherins that allows cell-adhesion and the essential feature of metazoan multicellularity. Cadherins are cell-surface receptors that function in cell adhesion, cell polarity, and tissue morphogenesis. 84 -318653 pfam16493 Meis_PKNOX_N N-terminal of Homeobox Meis and PKNOX1. Meis_PKNOX_N is a family found at the N-terminus of Meis, Myeloid ecotropic viral integration site, transcription regulators and PKNOX1 regulators, PBX/knotted 1 homeobox 1, homeobox proteins. 85 -318654 pfam16494 Na_Ca_ex_C C-terminal extension of sodium/calcium exchanger domain. Na_Ca_ex_C is a region of the higher eukaryote sodium/calcium exchanger domain that extends toward the C-terminal, and is cytoplasmic. 124 -339752 pfam16495 SWIRM-assoc_1 SWIRM-associated region 1. Much of the higher eukaryote SWI/SNF complex subunit SMARCC2 proteins is of low-complexity and or disordered. However, there are several short regions that are quite highly conserved. This is one of these regions. The function of the individual regions is not known. 84 -318656 pfam16496 SWIRM-assoc_2 SWIRM-associated domain at the N-terminal. Much of the higher eukaryote SWI/SNF complex subunit SMARCC2 proteins is of low-complexity and or disordered. However, there are several short regions that are quite highly conserved. This is one of these regions. The function of the individual regions is not known. 412 -318657 pfam16497 MHC_I_3 MHC-I family domain. 180 -318658 pfam16498 SWIRM-assoc_3 SWIRM-associated domain at the C-terminal. Much of the higher eukaryote SWI/SNF complex subunit SMARCC2 proteins is of low-complexity and or disordered. However, there are several short regions that are quite highly conserved. This is one of these regions. The function of the individual regions is not known. 65 -339753 pfam16499 Melibiase_2 Alpha galactosidase A. 284 -318660 pfam16500 Cyclin_N2 N-terminal region of cyclin_N. Cyclin_N2 is fond upstream of the family Cyclin_N, pfam00134. The exact function of this region of cyclins is not certain. 134 -339754 pfam16501 SCAPER_N S phase cyclin A-associated protein in the endoplasmic reticulum. SCAPER_N is a short highly conserved region close to the N-terminus. SCAPER is localized to the endoplasmic reticulum and is a substrate for cyclin A/Cdk2. It associates with cyclin A and localizes to the ER. One theory suggests that SCAPER functions to create a local high concentration of cyclin A2 in the cytoplasm. Alternatively, SCAPER might be acting to sequester a portion of cellular cyclin A2 that could then be readily available for nuclear translocation, which may be needed for exit from G0 phase. 98 -318661 pfam16502 DUF5059 Domain of unknown function (DUF5059). This domain is found fused to a copper-binding protein at the C-terminus, family Copper-bind, pfam00127. Its function is not known, and it is found in the Halobacteriaceae family in Archaea. 622 -339755 pfam16503 zn-ribbon_14 Zinc-ribbon. This is a family of zinc-ribbons largely from eukaryotes that lie at the C-terminus of cytoplasmic tRNA adenylyltransferase 1 proteins. Most of these proteins carry an ATP-binding domain towards the N-terminus. 32 -293113 pfam16504 SP24 Putative virion membrane protein of plant and insect virus. SP24, or structural protein of 24kD, is a family of putative virion membrane proteins of plant and insect viruses. These viruses are ssRNA positive-strand viruses, with no DNA stage. The family corresponds to the central region of the ORF3 of insect chroparaviruses and negeviruses and plant cileviruses, higreviruses and blunerviruses. It contains four transmembrane regions. Chronic bee paralysis virus (CBPV) is one of the more common member virions. SP24 is probably one of the major structural components of the virions. 123 -293114 pfam16505 Emaravirus_P4 P4 movement protein of Emaravirus, and the 30K superfamily. Emaravirus_P4 is composed of movement proteins of the genus of negative-strand RNA viruses Emaravirus (related to the family Bunyaviridae), which infect plants. P4 is a movement protein of the 30K superfamily. 349 -318663 pfam16506 DiSB-ORF2_chro Putative virion glycoprotein of insect viruses. DiSB-ORF2_chro corresponds to a short conserved region at the N-terminus of putative glycoproteins from chroparaviruses. It carries two putative disulfide bridges. No similarity can be found with any other glycoproteins outside this region. 51 -339756 pfam16507 BLM10_mid Proteasome-substrate-size regulator, mid region. The ordered regions of the yeast BLM10 or PA200 (human homolog), full-length protein encode 32 HEAT repeat (HR)-like modules, each comprising two helices joined by a turn, with adjacent repeats connected by a linker. Whereas a standard HEAT repeat is composed of ~50 residues, the BLM10 HEAT repeats are highly variable. The length of helices ranges from 8 to 35 residues, turns range from 2 to 87 residues, and linkers range from 1 to 88 residues, with the longest linker, between HR21 and HR22, containing additional secondary structures (two strands and three helices). BLM10_mid is the middle ordered region of the three in BLM10. BLM10 is found to surround the proteasome entry pore in the 1.2 MDa complex of proteasome and BLM10 to form a largely closed dome that is expected to restrict access of potential substrates. Thus Blm10 and PA200 are predominantly nuclear and stimulate the degradation of model peptides, although they do not appear to stimulate the degradation of proteins, recognize ubiquitin, or utilize ATP. 519 -339757 pfam16508 NIBRIN_BRCT_II Second BRCT domain on Nijmegen syndrome breakage protein. 112 -318666 pfam16509 KORA TrfB plasmid transcriptional repressor. KORA is a family of Gram-negative bacterial proteins that act as global repressors of genes involved in plasmid replication, conjugative transfer and stable inheritance in the IncP group of plasmids. KORA operates as a symmetric dimer, and contacts the DNA via the helix-turn-helix region at the N-terminus. 84 -293119 pfam16510 P22_portal Phage P22-like portal protein. The portal protein of P22 and similar Podoviridae tail phages is a dodecameric structure consisting of a hip (2), a leg(1) and a barrel(3). DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Domains 1 and 3 are mostly helical and form the majority of the DNA-translocating channel. Domain 2 adopts an alpha-beta-fold characterized by two sheets of eight beta-strands, which cross each other to form a beta-barrel-like structure. 668 -339758 pfam16511 FERM_f0 N-terminal or F0 domain of Talin-head FERM. FERM_f0 forms a stable globular structure. The fold is an ubiquitin-like fold joined to the f1 domain in a novel fixed orientation by an extensive charged interface. It is required for maximal integrin-activation, by interacting with other FA components, No binding partner has yet been found for it. 82 -339759 pfam16512 RhoGAP-FF1 p190-A and -B Rho GAPs FF domain. RhoGAP-FF1 is the FF domain of the Rho GTPase activating proteins (GAPs). These are the key proteins that make the switch between the active guanosine-triphosphate-bound form of Rho guanosine triphosphatases (GTPases) and the inactive guanosine-diphosphate-bound form. Rho guanosine triphosphatases (GTPases) are a family of proteins with key roles in the regulation of actin cytoskeleton dynamics. The RhoGAP-FF1 region contains the FF domain that has been implicated in binding to the transcription factor TFII-I; and phosphorylation of Tyr308 within the first FF domain inhibits this interaction. The RhoGAPFF1 domain constitutes the first solved structure of an FF domain that lacks the first of the two highly conserved Phe residues, but the substitution of Phe by Tyr does not affect the domain fold. 80 -339760 pfam16514 NADH-UOR_E putative NADH-ubiquinone oxidoreductase chain E. This putative NADH-ubiquinone oxidoreductase chain E family is found in Epsilonproteobacteria, chiefly in Helicobacter pylori. All proteins in the family are less than 100 residues in length. 74 -318670 pfam16515 HIP1_clath_bdg Clathrin-binding domain of Huntingtin-interacting protein 1. HIP1_clath_bdg is the coiled-coil region of Huntington-interacting proteins 1. It carries a highly conserved HADLLRKN sequence motif at its N-terminus which effects the binding of HIP1R to clathrin light-chain EED regulatory site. this binding then stimulates clathrin lattice assembly. Huntingtin-interacting protein 1 (HIP1) is an obligate binding partner for Huntungtin, and loss of this interaction triggers the cascade of events that results in the apoptosis of neuronal cells and the onset of Hungtinton's disease. Clathrin light-chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. 99 -339761 pfam16516 CC2-LZ Leucine zipper of domain CC2 of NEMO, NF-kappa-B essential modulator. CC2-LZ is a leucine-zipper domain associated with the CC2 coiled-coil region of NF-kappa-B essential modulator, NEMO. It plays a regulatory role, along with the very C-terminal zinc-finger; it contains a ubiquitin-binding domain (UBD) and represents one region that contributes to NEMO oligomerization. NEMO itself is an integral part of the IkappaB kinase complex and serves as a molecular switch via which the NF-kappaB signalling pathway is regulated. 86 -318672 pfam16517 Nore1-SARAH Novel Ras effector 1 C-terminal SARAH (Sav/Rassf/Hpo) domain. The Nore1-SARAH, C-terminal, domain of Nore1, the tumor-suppressor, a novel Ras effector, has a characteristic coiled-coil structure. It is a small helical module that is important in signal-transduction networks. The recombinant SARAH domain of Nore1 crystallizes as an anti-parallel homodimer with representative characteristics of coiled coils. The central function of the SARAH domain seems to be the mediation of homo- and hetero-oligomerization between SARAH domain-containing proteins. Nore1 forms homo- and hetero complexes through its C-terminal SARAH (Sav/Rassf/Hpo) domain. 40 -293126 pfam16518 GrlR T3SS negative regulator,GrlR. GrlR is a family of protobacterial type III secretion system negative regulators. Structurally, GrlR consists of a typical beta-barrel fold with eight beta-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two beta-barrels maintain its dimeric architecture. A unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. The locus of enterocyte effacement (LEE) is essential for virulence of enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). It encodes some 20 genes including an overall regulator ler and two others, GrlR and GrlA, that form the type three secretion system for infection. GrlR comlexes with GrlA to repress expression of ler. GrlA is found in family pfam00462. 111 -318673 pfam16519 TRPM_tetra Tetramerisation domain of TRPM. TRPM7_tetra is a short anti-parallel coiled-coil tetramerisation domain of the transient receptor potential cation channel subfamily M member proteins 1-8. It is held together by extensive core packing and interstrand polar interactions. Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. The presence of cytoplasmic domains that direct channel assembly appears to be a feature of many voltage-gated ion channel superfamily members. 52 -293128 pfam16520 BDV_M ssRNA-binding matrix protein of Bornaviridae. BDV_M is a family of matrix proteins from negative-strand Bornaviridae viruses. Its most stable oligomeric form is a tetramer, and it lies beneath the viral envelope where it associates with the inner layer of the viral membrane. It bridges the gap between the nucleocapsid and the viral envelope thereby imparting structural integrity and individual form to the virus particle. Borna disease virus (BDV) is a neurotropic enveloped RNA virus causing a noncytolytic, persistent infection of the central nervous system in mammals. The order to which this virus belongs, Mononegavirales, also contains the Ebola, mumps, rabies and measles viruses, amongst other highly infectious agents. 103 -339762 pfam16521 Myosin-VI_CBD Myosin VI cargo binding domain. Myosin-VI_CBD is a C-terminal family that allows unconventional myosin-VI to recognize and select its binding cargoes. Several adaptor proteins have been reported to interact specifically with the CBD, thus defining the specific subcellular functions of myosin VI. The crystal structure determination of the myosin VI CBD/Dab2 (an endocytic adaptor protein Disabled-2 that is a cargo) complex shows that the Myosin-VI_CBD forms a cargo-induced dimer, suggesting that the motor undergoes monomer-to-dimer conversion that is dependent upon cargo binding. In the absence of cargo myosin VI exists as a stable monomer. This cargo binding-mediated monomer-to-dimer conversion mechanism adopted by myosin VI may be shared by other unconventional myosins, such as myosin VII and myosin X. 90 -339763 pfam16522 FliS_cochap Flagellar FLiS export co-chaperone, HP1076. FliS_cochap is a family of largely Campylobacterales proteins that are co-chaperones for FliS, one of the type III secretion system flagellar chaperones. The HP1076 (Flis_cochap) and FliS complex together prevents premature polymerization of flagellins and is critical for flagellar assembly and bacterial colonisation. The HP1076 shows co-chaperone activity that promotes protein folding of FliS with mutations in the flagellin binding pocket and enhances the chaperone activity of FliS. 146 -318676 pfam16523 betaPIX_CC betaPIX coiled coil. betaPIX_CC is the very C-terminal coiled-coil region of betaPIX or p21-activated kinase interacting exchange factor proteins. The coiled-coil runs from residues 589-646 in UniProtKB:G31IU6, and the PDZ-binding site is the final eight residues immediately downstream. The coiled-coil trimerizes and thus exposes three potential PZD-binding surfaces, although only one of these is maximally used. One of the C-terminal ends of the coiled-coil forms an extensive beta-sheet interaction with the Shank PDZ, while the other two ends are not involved in ligand binding and form random coils. Thus the coiled-coil domain allows multimerisation of betaPIX that is vital for its physiological functions. betaPIX and the Shank/ProSAP protein form a complex that acts as a protein scaffold for integrating signalling pathways and regulating postsynaptic structure.** Forced reload 86 -339764 pfam16524 RisS_PPD Periplasmic domain of Sensor histidine kinase RisS. RisS_PPD is the periplasmic domain of the sensor histidine kinase RisS. It is purported to be the region of the kinase that senses the pH of the environs. 105 -318678 pfam16525 MHB Haemophore, haem-binding. MHB is a coiled-coil molecule that binds free haem in mycobacterial cytoplasm to deliver it to membrane proteins for shuttling through the membrane. 75 -339765 pfam16526 CLZ C-terminal leucine zipper domain of cyclic nucleotide-gated channels. The CLZ domain is the C-terminal leucine-zipper domain of of cyclic nucleotide-gated channel proteins. The CLZ domains form homotypic trimers in solution thus constraining the channel of the CNGs to contain three cyclic nucleotide-gated subunits, CNGA. The CLZ domains formed homotypic parallel 3-helix coiled-coil domains, consistent with their proposed role in regulating subunit assembly. 70 -318680 pfam16527 CpxA_peri Two-component sensor protein CpxA, periplasmic domain. CpxA_peri is the periplasmic domain-family of the Gram-negative Gammaproteobacteria two-component signalling system, Cpx. It represents the recognition-site for sensing specific envelope stress signals. The fold that the domain-core of CpxA_peri conforms to is a PAS fold. The domain senses the environmental change and triggers a signal transduction to the cytoplasmic domain. As well as the PAS-core, there is a C-terminal tail that is necessary for ligand-sensing and binding to CpxP, a CpxA-associated and a regulatory protein. 134 -318681 pfam16528 Exo84_C Exocyst component 84 C-terminal. Exo84_C is the C-terminal helical region of the exocyst component Exo84. This region resembles a cullin-repeat, a multi-helical bundle. The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Exocyst subunits are composed of mostly helical modules strung together into long rods. 203 -339766 pfam16529 Ge1_WD40 WD40 region of Ge1, enhancer of mRNA-decapping protein. Ge1_WD40 is the N-terminal region of Ge-1 or enhancer of mRNA-decapping proteins. WD40-repeat regions are involved in protein-protein interactions. 329 -293138 pfam16530 IHHNV_capsid Infectious hypodermal and haematopoietic necrosis virus, capsid. IHHNV_capsid is the single capsid protein of infectious hypodermal and haematopoietic necrosis virus, found particularly in shrimp densovirus. Densoviruses are a subfamily of the parvoviruses. The capsid protein has an eight-stranded anti-parallel beta-barrel 'jelly roll' motif similar to that found in many icosahedral viruses, including other parvoviruses. The N-terminal portion of the IHHNV coat protein adopts a 'domain-swapped' conformation relative to its twofold-related neighbor. The loops connecting the strands of the structurally conserved jelly roll motif differ considerably in structure and length from those of other parvoviruses. IHHNV was first reported as a highly lethal disease of juvenile shrimp in 1983, and has only one type of capsid protein that lacks the phospholipase A2 activity that has been implicated as a requirement during parvoviral host cell infection. The structure of recombinant virus-like particles, composed of 60 copies of the 37.5-kDa coat protein is the smallest parvoviral capsid protein reported thus far. The small size of the PstDNV capsid protein makes the system attractive as a model for studying assembly mechanisms of icosahedral virus capsids. 323 -339767 pfam16531 SAS-6_N Centriolar protein SAS N-terminal. SAS-6_N is the N-terminal domain of the SAS-6 centriolar protein, both in C.elegans and in humans. The N-terminal domain is the region through which the 9 rod-shaped homodimers that SAS-6 forms on oligomerization interact with each other. Proper functioning of the centriole requires this correct oligomerization. 88 -318684 pfam16532 Phage_tail_NK Sf6-type phage tail needle knob or tip of some Caudovirales. Phage_tail_NK is the globular tip protein of some tailed bacteriophages. Tailed bacteriophage virions deliver DNA to susceptible cells after adsorbing to specific receptors on the surface of the bacteria. In the Gram-negative bacteria these receptors are surface proteins or polysaccharides. In the phage Sf6-type needle, this distal tip folds into a knob with a TNF-like fold, similar to the fibre knobs of bacteriophage PRD1 and Adenovirus. It contains three bound L-glutamate molecules that are bind tightly in the crevices between the trimers of this trimeric tip. 152 -318685 pfam16533 SOAR STIM1 Orai1-activating region. SOAR is the Orai1-activating region of STIM1, where STIM1 are calcium sensors in the endoplasmic reticulum. As the store of calcium is depleted the calcium sensor in the ER activates Orai1, a Ca2+-release-activated Ca2+ (CRAC) channel, in the plasma membrane. The SOAR region, which runs from residues 340-443 on UniProtKB:Q13586, forms a dimer, and is essential for oligomerization of the whole of STIM1. 98 -339768 pfam16534 ULD Ubiquitin-like oligomerization domain of SATB. ULD is an N-terminal oligomerization domain of SATB or special AT-rich sequence-binding proteins. SATBs are global chromatin organizers and regulators of gene expression that are essential for T-cell development, breast cancer tumor growth and metastasis. SATBs assemble into a tetramer via the ULD domain, and the tetramerisation of SATBs are essential for recognising specific DNA sequences (such as multiple AT-rich DNA fragments). Thus, SATBs may regulate gene expression directly by binding to various promoters and upstream regions and thereby influencing promoter activity. 105 -293143 pfam16535 T3SSipB Type III cell invasion protein SipB. T3SSipB is a family of pathogenic Gram-negative bacterial proteins that invade human intestinal cells via the type III secretion system translocators. T3SSipB represents the coiled -coil region of the proteins and is shown to be homologous in activity to the pore-forming toxins of other Gram-negative pathogens, such as colicin Ia. 155 -318687 pfam16536 PNKP-ligase_C PNKP adenylyltransferase domain, C-terminal region. This is a short unique anti-parallel two-helical module with an extended tail peptide. It packs tightly against an extended peptide segment, residues 489-501 in UniProtKB:A3DJ38, near the N-terminus of the NTase domain, pfam16542. PNKP (polynucleotide 5'-kinase/3'-phosphatase) is the end-healing and end-sealing component of an RNA-repair system present in diverse bacteria from ten different phyla. RNA breakage by site-specific 'ribotoxins' is an ancient mechanism by which microbes respond to cellular stress and distinguish self from non-self. Ribotoxins are trans-esterifying endonucleases that generate 5'-OH and 2',3' cyclic phosphate termini. Repair of this type of RNA damage is feasible via sequential enzymatic end-healing and end-sealing steps. The exact function of this C-terminal region is unclear; however, the conformation of the bundles changes on transfer of a PO4 from ATP to AMP. 60 -339769 pfam16537 T2SSB Type II secretion system protein B. This is the B protein from some operons of bacterial secretion systems of type II. The exact function of the B protein is not known, though in the case of Vibrio cholerae there is a fusion protein between proteins A and B that includes an AAA domain, a PG_binding domains well as this domain at the C-terminus. Many of the other species have no A or B domain genes in this operon. The type II secretion pathway is conserved in Gram-negative bacteria that are prevalent in bacterial pathogens of plants (Pseudomonas fluorescens, Erwinia or Xanthomonas species), animals (Aeromonas hydrophila) and humans (Klebsiella oxytoca, Pseudomonas aeruginosa, Vibrio cholerae or Legionella pneumophila). Typical type II secretion systems (T2SSs) are encoded by a set of 12 to 16 gsp (general secretion pathway) genes organized into large operons including the conserved 'core' genes denoted C to O and in some bacterial species, as indicated above, extra gsp genes such as gspAB, gspN or gspS. A different nomenclature is used for Pseudomonas T2SSs, so the B gene is referred to as the P protein. 60 -339770 pfam16538 FlgT_C Flagellar assembly protein T, C-terminal domain. FlgT_C is the C-terminal domain of a family of flagellar proteins that make up part of the basal body of the flagellum. The flagellum is a large macromolecular assembly composed of three major parts: the basal body, the hook, and the filament. The basal body has two unique ring structures, the T ring and the H ring. FlgT is required to form and stabilize both ring structures. FlgT_C is not essential but stabilizes the H-ring structure.. 74 -339771 pfam16539 FlgT_M Flagellar assembly protein T, middle domain. FlgT_M is the middle region of a family of flagellar proteins that make up part of the basal body of the flagellum. The flagellum is a large macromolecular assembly composed of three major parts: the basal body, the hook, and the filament. The basal body has two unique ring structures, the T ring and the H ring. FlgT is required to form and stabilize both ring structures. FlgT-N and FlgT-M are thought to be involved in the H-ring and the T-ring formation, respectively. and FlgT-M is also required for the stable association of FlgT with the basal body. 153 -318691 pfam16540 MKLP1_Arf_bdg Arf6-interacting domain of mitotic kinesin-like protein 1. This family is a C-terminal region of mitotic kinesin-like proteins that is necessary for the interaction with the small GTPase Arf6. MKLP1 is a Flemming body-localising protein essential for cytokinesis, so its interaction with Arf6 shows how Arf6 is involved in cytokinesis. The Arf6-MKLP1 complex plays a crucial role in cytokinesis by connecting the microtubule bundle and membranes at the cleavage plane. 105 -339772 pfam16541 AltA1 Alternaria alternata allergen 1. AltA1 is a family of fungal allergens. It shows a unique beta-barrel comprising 11 beta-strands. There is structural evidence for the location of IgE antibody-binding epitopes. The crystal structure will allow efforts to promote immunotherapy for patients allergic to Alternaria species. 106 -318693 pfam16542 PNKP_ligase PNKP adenylyltransferase domain, ligase domain. PNKP_ligase is a classical ligase nucleotidyltransferase module of bacteria. PNKP (polynucleotide 5'-kinase/3'-phosphatase) is the end-healing and end-sealing component of an RNA-repair system present in diverse bacteria from ten different phyla. RNA breakage by site-specific 'ribotoxins' is an ancient mechanism by which microbes respond to cellular stress and distinguish self from non-self. Ribotoxins are trans-esterifying endonucleases that generate 5'-OH and 2',3' cyclic phosphate termini. Repair of this type of RNA damage is feasible via sequential enzymatic end-healing and end-sealing steps. 315 -318694 pfam16543 DFRP_C DRG Family Regulatory Proteins, Tma46. DFRP_C is a family of eukaryotic translation machinery-associated protein 46 proteins that are the binding partner for the highly conserved Developmentally Regulated GTP-binding (DRG) GTPases. Thus this family is referred to as DRG Family Regulatory Proteins (DFRP). Binding of this DFRP modulates the function of the GTPase. 89 -339773 pfam16544 STAR_dimer Homodimerization region of STAR domain protein. This family is the homodimerization domain of quaking proteins. Quaking-dimer is a helix-turn-helix dimer with an additional helix in the turn region. dimerization is required for adequate RNA-binding. Quaking is a prototypical member of the STAR (signal transducer and activator of RNA) protein family, which plays key roles in post-transcriptional gene regulation by controlling mRNA translation, stability and splicing. STAR_dimer is the homodimerization domain, Qua1 of the STAR domain of a series of proteins referred to as STAR/GSG, or Signal Transduction and Activation of RNA/GRP33, Sam68, GLD-1 family. These are conserved in higher eukaryotes and are RNA-binding transcriptional regulators. The STAR domain is a KH domain flanked by two homologous regions, Qua1 and Qua2. Qua1, this family, is the homodimerization domain, and the KH plus Qua2 is the RNA-binding region. 53 -318696 pfam16545 CCM2_C Cerebral cavernous malformation protein, harmonin-homology. CCM2_HHD is a folded-helical region of a family of vertebral proteins, mutations in which cause cerebral cavernous malformations (CCMs). These malformations are congenital vascular anomalies of the central nervous system that can result in haemorrhagic stroke, seizures, recurrent headaches, and focal neurologic deficits. This domain is structurally homologous to the N-terminal domain of harmonin, so it is named the CCM2 harmonin-homology domain or CCM2_HHD. This protein is often called Malcavernin. 91 -339774 pfam16546 SGTA_dimer Homodimerization domain of SGTA. SGTA_dimer is a short N-terminal domain at the start of SGTA or small glutamine-rich tetratricopeptide repeat-containing proteins. It is the homodimerization domain of the SGTA, a heat-shock protein (HSP) co-chaperone involved in the targeting of tail-anchor membrane proteins to the endoplasmic reticulum. This N-terminal homodimerization domain mediates the association with a single copy of Get4 or Get5 proteins, providing a link to the rest of the GET pathway. 65 -318698 pfam16547 BLM10_N Proteasome-substrate-size regulator, N-terminal. The ordered regions of the yeast BLM10 or PA200 (human homolog), full-length protein encode 32 HEAT repeat (HR)-like modules, each comprising two helices joined by a turn, with adjacent repeats connected by a linker. Whereas a standard HEAT repeat is composed of ~50 residues, the BLM10 HEAT repeats are highly variable. The length of helices ranges from 8 to 35 residues, turns range from 2 to 87 residues, and linkers range from 1 to 88 residues, with the longest linker, between HR21 and HR22, containing additional secondary structures (two strands and three helices). BLM10_N is the N-terminal ordered region of the three in BLM10. BLM10 is found to surround the proteasome entry pore in the 1.2 MDa complex of proteasome and BLM10 to form a largely closed dome that is expected to restrict access of potential substrates. BLM10 and PA200 are predominantly nuclear and stimulate the degradation of model peptides, although they do not appear to stimulate the degradation of proteins, recognize ubiquitin, or utilize ATP. 81 -318699 pfam16548 FlgT_N Flagellar assembly protein T, N-terminal domain. FlgT_N is the N-terminal domain of a family of flagellar proteins that make up part of the basal body of the flagellum. The flagellum is a large macromolecular assembly composed of three major parts: the basal body, the hook, and the filament. The basal body has two unique ring structures, the T ring and the H ring. FlgT is required to form and stabilize both ring structures. FlgT-N contributes to the construction of the H-ring structure, and adopts a two-layer alpha-beta sandwich architecture composed of a four-stranded anti-parallel beta-sheet and two alpha helices. 87 -293157 pfam16549 T2SSS_2 Type II secretion system (T2SS) pilotin, S protein. T2S_S is the S protein or pilotin of the bacterial Gram-negative secretion system in Vibrio and some E.coli and Shigella. It is given the suffix _2 to distinguish it from the PulS_OutS family of pilotins from Klebsiella and Dickeya, etc. AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhancing the kinetics of secretin assembly; homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS. PulS is the Kelbsiella pilotin, found in PulS_OutS, pfam09691. Not all species with a type II secretion system have this pilotin or S protein. 107 -339775 pfam16550 RPN13_C UCH-binding domain. RPN13_C is a family of all-helical domains that forms the binding-surface for the proteasome-ubiquitn-receptor protein Rpn13 to UCH37, one of the three de-ubiquitinating enzymes of the proteasome. 106 -293159 pfam16551 Quaking_NLS Putative nuclear localization signal of quaking. Quaking_NLS is the very C-terminal region of quaking proteins that is purported to be the nuclear localization signal. 28 -339776 pfam16552 OAM_alpha D-ornithine 4,5-aminomutase alpha-subunit. OAM_alpha is the 12.8kDa, alpha subunit of d-ornithine 4,5-aminomutase, or OAM, an enzyme that converts d-ornithine to 2,4-diaminopentanoic acid by way of radical propagation from an adenosylcobalamin to a pyridoxal 5'-phosphate cofactor. OAM is an alpha2-beta2 heterodimer comprising two strongly associating subunits. The packing of the alpha subunits against the beta helps to form the substrate and co-factor binding-regions. 107 -318702 pfam16553 PUFD BCORL-PCGF1-binding domain. PUFD is the minimal domain at the C-terminus of BCORL (BCL6 corepressor) that is needed for binding and giving specificity to some of the PCGF proteins, polycomb-group RING finger homologs. PUFD binds to the RAWUL (RING finger- and WD40-associated ubiquitin-like) domain of the particular PCGF PCGF1, pfam16207. Polycomb group proteins form repressive complexes (PRC) that mediate epigenetic modifications of histones. In humans there are many different PCGF homologs whose functions all vary, but the direct binding partner of PCGF1 is BCOR. BCOR has emerged as an important player in development and health. 110 -339777 pfam16554 OAM_dimer dimerization domain of d-ornithine 4,5-aminomutase. This family is the short dimerization domain of the enzyme D-ornithine 4,5-aminomutase. It sits between the TIM-barrel pfam09043 and pfam02310. The enzyme is an alpha2-beta2-heterodimer that converts D-ornithine to 2,4-diaminopentanoic acid by way of radical propagation from an adenosylcobalamin to a pyridoxal 5'-phosphate cofactor. 76 -318704 pfam16555 GramPos_pilinD1 Gram-positive pilin subunit D1, N-terminal. GramPos_pilinD1 is the first subunit domain of Gram-positive pilins from Strep.pneumoniae. There are three major pilin subunits that form the polymeric backbone of the pilin from S. pneumoniae, constructed of three Ig-like, CnaB, domains along with a crucial N-terminal domain, D1. The three IG-like domains are stabilized by internal Lys-Asn isopeptdie bonds, but this N-terminal domain makes few contact with the rest of the molecule due to the different orientation of its G beta-strand. Strand G of D1 also carries the YPKN motif that provides the essential Lys residue for the sortase-mediated intermolecular linkages along the pilus shaft. Gram-positive pili are formed from a single chain of covalently linked subunit proteins (pilins), usually comprising an adhesin at the distal tip, a major pilin that forms the polymer shaft and a minor pilin that mediates cell wall anchoring at the base. 191 -318705 pfam16556 IL17R_fnIII_D1 Interleukin-17 receptor, fibronectin-III-like domain 1. IL17R_fnIII_D1 is the first of two fibronectin 3-like domains on interleukin-17 receptor proteins A and B. The tow fnIII domains are linked and together bind two molecules of IL-17 at one of its receptor-binding interfaces. This allows the other interface to bind to another receptor, thus allowing the IL-17 family of homodimeric cytokines to coordinate two different receptors. 154 -318706 pfam16557 CUTL CUT1-like DNA-binding domain of SATB. CUTL is part of the N-terminal region of SATB proteins, special AT-rich sequence-binding proteins that are global chromatin organizers and gene expression regulators essential for T-cell development and breast cancer tumor growth and metastasis. CUTL carries a DNA-binding region just as CUT domains do. 71 -318707 pfam16558 AZUL Amino-terminal Zinc-binding domain of ubiquitin ligase E3A. The AZUL or amino-terminal zinc-binding domain of ubiquitin E3a ligase is found in eukaryotes, and is an unusual zinc-finger domain. The final cysteine is usually mutated in Angelman syndrome patients. It is likely that AZUL plays a role in Ube3A substrate-recognition. 59 -318708 pfam16559 GIT_CC GIT coiled-coil Rho guanine nucleotide exchange factor. GIT-CC is the coiled-coil region of GIT (G protein-coupled receptor kinase-interacting) proteins. This coiled-coil region is the surface that associates with the equivalent binding-region on beta-PIX, or p21-activated kinase-interacting exchange factor proteins. Both GIT and PIX complex together to form a scaffold for the formation of multi-protein assemblies. On its own the GIT-CC region assembles into a parallel two-stranded CC in the asymmetric unit. Similarly the PIX coiled-coil region assembles into a trimer. At least in vitro the two regions associate together into a stable heteropentameric complex that consists of one PIX trimer and one GIT dimer. 66 -318709 pfam16560 SAPI Putative mobile pathogenicity island. SAPI is a family of putative Gram-positive mobile pathogenicity island proteins. SAPIs are responsible for many superantigen-related diseases in humans as they carry two or more superantigens. 213 -339778 pfam16561 AMPK1_CBM Glycogen recognition site of AMP-activated protein kinase. AMPK1_CBM is a family found in close association with AMPKBI pfam04739. The surface of AMPK1_CBM reveals a carbohydrate-binding pocket. 80 -318711 pfam16562 HECW_N N-terminal domain of E3 ubiquitin-protein ligase HECW1 and 2. HECW_N is a domain on E3 ubiquitin-protein ligases that lies upstream of the C2 domain; its function is not clearly understood, except perhaps to determine the substrate spectrum of the ligase. 120 -339779 pfam16563 P66_CC Coiled-coil and interaction region of P66A and P66B with MBD2. This family is a short coiled-coil interaction region on the transcriptional repressors P66A and P66B. The P66A and B, or alpha and beta, complex with MBDs or methyl-binding domain-containing proteins via a coiled-coil region on each. This P66-MBD2 complex forms part of an assembly with NuRD, nucleosome remodelling and deacetylation protein. MBD2-NuRD binds methylated DNA and regulates transcription of eg, the foetal beta-globin gene during development. 37 -318713 pfam16564 MBDa p55-binding region of Methyl-CpG-binding domain proteins MBD. MBDa is a second MBD domain of Methyl-CpG-binding domain proteins. region implicated in binding the RbAp46/48 (retinoblastoma protein-associated protein) homolog p55, which is one of the components of the MBD2-NuRD complex. The MBD2-NuRD complex is a nucleosome remodelling and deacetylation complex. 67 -318714 pfam16565 MIT_C Phospholipase D-like domain at C-terminus of MIT. MIT_C is the C-terminal domain of MIT-containing proteins, pfam04212. It contains an unanticipated phospholipase d fold (PLD fold) that binds avidly to phosphoinositide-containing membranes. It is conserved in eukaryotes, though not fungi and plants, and some bacteria. 142 -318715 pfam16566 CREPT Cell-cycle alteration and expression-elevated protein in tumor. CREPT (Cell-cycle alteration and expression-elevated protein in tumor) is a family of eukaryotic transcriptional regulators that ptromote the binding of RNA-polymerase to the CYCLIN D1, CCDN1, promoter and other genes involved in the cell-cycle. It promotes the formation of a chromatin loop in the CYCLIN D1 gene, and is preferentially expressed in a range of different human tumors. 146 -293175 pfam16567 CagD Pathogenicity island component CagD. CagD is a tightly conserved family of proteins found in the pathogenic strains of Helicobacter species. It is one of some 30 proteins, produced from the genomic insert termed the pathogenicity island, required for the type IV secretion system - T4SS - that delivers CagA oncoprotein toxin into the host cell. CagD is a covalent dimer in which each monomer folds as a single domain composed of five beta-strands and three alpha-helices. CagD partially associates with the inner membrane, where it may be exposed to the periplasmic space; this may indicate that CagD is released into the supernatant during host cell infection in order then to bind to the host cell surface, or to be incorporated into the pilus structure. 205 -318716 pfam16568 Sam68-YY Tyrosine-rich domain of Sam68. Sam68-YY is a short tyrosine-rich domain on Src-associated in mitosis, 68 kDa protein (Sam68), a protein that regulates TCF-1 alternative splicing. It is a crucial binding-partner of the APC-Arm domain that forms a superhelix with a positively charged groove, the surface-residues of which groove form numerous interactions with Sam68-YY to fix it in a bent conformation. APC-Arm is the armadillo repeat domain of the tumor-suppressor protein adenomatous polyposis coli or APC. APC plays plays important roles in Wnt signalling and other cellular processes. 54 -318717 pfam16569 GramPos_pilinBB Gram-positive pilin backbone subunit 2, Cna-B-like domain. GramPos_pilinBB is one of the major backbone units of Gram-positive pili, such as those from S.pneumoniae. There are three major pilin subunits that form the polymeric backbone of the pilin from S. pneumoniae, constructed of three transthyretin-like, CnaB, domains along with a crucial N-terminal domain, D1. The three Cna-B like domains are stabilized by internal Lys-Asn isopeptdie bonds, Gram-positive pili are formed from a single chain of covalently linked subunit proteins (pilins), usually comprising an adhesin at the distal tip, a major pilin that forms the polymer shaft and a minor pilin that mediates cell wall anchoring at the base. 115 -318718 pfam16570 GramPos_pilinD3 Gram-positive pilin backbone subunit 3, Cna-B-like domain. GramPos_pilinD3 is one of the major backbone units of Gram-positive pili, such as those from S.pneumoniae. There are three major pilin subunits that form the polymeric backbone of the pilin from S. pneumoniae, constructed of three transthyretin-like, CnaB, domains along with a crucial N-terminal domain, D1. The three Cna-B like domains are stabilized by internal Lys-Asn isopeptdie bonds, Gram-positive pili are formed from a single chain of covalently linked subunit proteins (pilins), usually comprising an adhesin at the distal tip, a major pilin that forms the polymer shaft and a minor pilin that mediates cell wall anchoring at the base. 143 -318719 pfam16571 FBP_C FBP C-terminal treble-clef zinc-finger. FBP_C is a family from the C terminal end of fibronectin-binding proteins. It forms an extended four-cysteine zinc-finger with a unique structural fold. Fibronectin-binding proteins bind to elongation factor G - EF-G, which is mediated by the zinc-finger binding to the C-terminus of EF-G. FBPs release ribosomes by competing with them for EF-G. 154 -318720 pfam16572 HlyD_D4 Long alpha hairpin domain of cation efflux system protein, CusB. HlyD_D4 is the long alpha-hairpin domain in the centre of CusB or HlyD proteins. CusB and HlyD proteins are membrane fusion proteins of the CusCFBA copper efflux system in E.coli and related bacteria. Efflux systems of this resistance-nodulation-division group - RND - have been developed to excrete poisonous metal ions, and in E.coli the only one that deals with silver and copper is the CusA transporter. The transporter CusA works in conjunction with a periplasmic component that is a membrane fusion protein, eg CusB, and an outer-membrane channel component CusC in a CusABC complex driven by import of protons. HlyD_D4 is thought to interact with the alpha-helical tunnels of the corresponding outer-membrane channels, ie the periplasmic domain of CusC. 54 -339780 pfam16573 CLP1_N N-terminal beta-sandwich domain of polyadenylation factor. This family is the short N-terminal domain of the pre-mRNA cleavage complex II protein Clp1. Clp1 function involves some degree of adenine or guanine nucleotide-binding and participates in the 3'-end-processing of mRNAs in eukaryotes. 91 -318722 pfam16574 CEP209_CC5 Coiled-coil region of centrosome protein CE290. CEP290 and similar centrosomal proteins carry a number of coiled-coil regions, and this is the fifth along the length of the protein. It is thought that the proteins are involved in cilia biosynthesis. 128 -318723 pfam16575 CLP1_P mRNA cleavage and polyadenylation factor CLP1 P-loop. CLP1_P is the P-loop carrying domain of Clp1 mRNA cleavage and polyadenylation factor, Clp1, proteins in eukaryotes. Clp1 is essential for 3'-end processing of mRNAs. This region carries the P-loop suggesting it is the region that binds adenine or guanine nucleotide. 187 -339781 pfam16576 HlyD_D23 Barrel-sandwich domain of CusB or HlyD membrane-fusion. HlyD_D23 is the combined domains 2 and 3 of the membrane-fusion proteins CusB and HlyD, which forms a barrel-sandwich. CusB and HlyD proteins are membrane fusion proteins of the CusCFBA copper efflux system in E.coli and related bacteria. The whole molecule hinges between D2 and D3. Efflux systems of this resistance-nodulation-division group - RND - have been developed to excrete poisonous metal ions, and in E.coli the only one that deals with silver and copper is the CusA transporter. The transporter CusA works in conjunction with a periplasmic component that is a membrane fusion protein, eg CusB, and an outer-membrane channel component CusC in a CusABC complex driven by import of protons. 214 -318725 pfam16577 UBA_5 UBA domain. UBA_2 is a domain found on eukaryotic ubiquitin-interacting proteins. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain. This domain selectively binds K63-polyubiquitinated proteins. 62 -318726 pfam16578 IL17R_fnIII_D2 Interleukin 17 receptor D. IL17R_fnIII_D2 is the second extracellular fibronectin III-like domain on interleukin17-receptor-D molecules. The exact ligands of IL17R-D are not known. 105 -318727 pfam16579 AdenylateSensor Adenylate sensor of SNF1-like protein kinase. AdenylateSensor is a family found at the C-terminus of SNF1-like protein kinases snf other protein-kinases. 118 -293188 pfam16580 Astro_capsid_p2 C-terminal tail of astrovirus capsid projection or spike. Astro_capsid_p2 is a family of turkey astroviral spike projections. These are globular domains on the surface of the viral capsid. Astroviruses cause diarrhoea in a variety of mammals and birds, and are small, non-enveloped, single-stranded RNA viruses. The spike carries three conserved patches on its surface which could be candidates for avian receptor-binding sites. 245 -318728 pfam16581 HIGH_NTase1_ass Cytidyltransferase-related C-terminal region. This domain is found as the C-terminal portion of some HIGH_NTase1 proteins. The exact function is not known. 204 -339782 pfam16582 TPP_enzyme_M_2 Middle domain of thiamine pyrophosphate. TPP_enzyme_M_2 is the middle domain of thiamine pyrophosphate in sequences not captured by pfam00205. This enzyme is necessary for the first step of the biosynthesis of menaquinone, or vitamin K2, an important cofactor in electron transport in bacteria. 207 -293191 pfam16583 ZirS_C Zinc-regulated secreted antivirulence protein C-terminal domain. ZirS_C is the C-terminal domain of ZirS, zinc-regulated secreted protein, that is part of a type V-like secretion system. The domain adopts a bacterial Ig-like fold. This domain interacts with its transporter ZirT, and ZirS also interacts directly with ZirU, the third component of this antivirulence complex. ZirT is the zinc-regulated transporter through which ZirS is secreted. 141 -293192 pfam16584 LolA_2 Outer membrane lipoprotein carrier protein LolA. LolA_2 is a family of Bacteroidetes outer membrane lipoprotein carrier protein LolA-like proteins. The exact function is not known. 152 -339783 pfam16585 Lipocalin_8 Lipocalin-like domain. 135 -339784 pfam16586 DUF5060 Domain of unknown function (DUF5060). This is the N-terminal domain of a putative glycoside hydrolase, DUF4038. It is found in a number of different bacterial orders. 70 -318732 pfam16587 DUF5061 17 kDa common-antigen outer membrane protein. This is a bacterial domain of 17 kDa common-antigen proteins. 103 -318733 pfam16588 zf-C2H2_10 C2H2 zinc-finger. 22 -318734 pfam16589 BRCT_2 BRCT domain, a BRCA1 C-terminus domain. This BRCT domain, a BRCA1 C-terminus region, is found on many RAP1 proteins, usually at the very N-terminus. The function in human at least of a BRCT is to contribute to the heterogeneity of the telomere DNA length, but that may not be its general function, which remains unknown. 80 -318735 pfam16590 ESP Exocrine gland-secreting peptide. ESP is a family of largely rodent exocrine gland-secreting peptides that are produced by the male extraorbital lacrimal gland to be secreted into the tear fluid. Other mice including females detect these peptides through receptors in the vomeronasal organ, and the receptors report information on mouse-strain, sex and species. The peptides are short, all carrying an N-terminal signal-peptide to indicate they are for secretion which accounts for much of the common conservation. 89 -318736 pfam16591 HBM Helical bimodular sensor domain. The HBM sensor domain has been identified primarily in bacterial chemoreceptors but is also present on histidine kinases. Characteristic features of this domain are its size of approximately 250 amino acids and its location in the bacterial periplasm. The McpS chemoreceptor of Pseudomonas putida KT2440 was found to possess an HBM sensor domain and its 3D structure in complex with physiologically relevant ligands has been reported. This domain is composed of 2 long and 4 short helices that form two modules each composed of a 4-helix bundle. The McpS chemoreceptor mediates chemotaxis towards a number of organic acids. Both modules of the McpS HBM domain contain a ligand binding site. Chemo-attractants binds to each of these sites and their binding was shown to trigger a chemotactic response. This domain is primarily found in different proteobacteria but also in archaea. Interestingly, amino acids in both ligand binding sites showed a high degree of conservation suggesting that members of this family sense similar ligands. 245 -339785 pfam16592 Cas9_REC REC lobe of CRISPR-associated endonuclease Cas9. The REC lobe of Cas9 - the CRISPR-associated endonuclease Cas9 - includes the REC1 and REC2 domains. REC1 forms an elongated, alpha-helical structure consisting of 25 alpha helices and two beta-sheets, whereas REC2 inserted within REC1 adopts a six-helix bundle structure. The REC lobe and the NUC lobe of Cas9 fold to present a positively charged groove at their interface which accommodates the negatively charged sgRNA:target DNA heteroduplex. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system occurs naturally in bacteria as a defense against invasion by phages or other mobile genetic elements. Cas9 is targeted to specific genomic locations by sgRNAs or single guide RNAs, in order to complex with invading DNA in order to cleave it and render it inactive. 531 -293201 pfam16593 Cas9-BH Bridge helix of CRISPR-associated endonuclease Cas9. Cas9-BH is the bridge helix between the NUC and the REC lobes of Cas9 - the CRISPR-associated endonuclease Cas9. The REC lobe and the NUC lobe of Cas9 fold to present a positively charged groove at their interface which accommodates the negatively charged sgRNA:target DNA heteroduplex. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system occurs naturally in bacteria as a defense against invasion by phages or other mobile genetic elements. Cas9 is targeted to specific genomic locations by sgRNAs or single guide RNAs, in order to complex with invading DNA in order to cleave it and render it inactive. 33 -318737 pfam16594 ATP-synt_Z Putative AtpZ or ATP-synthase-associated. This is a family of short highly conserved plant proteins that might be associated with ATP-synthase atp operon. 53 -339786 pfam16595 Cas9_PI PAM-interacting domain of CRISPR-associated endonuclease Cas9. Cas9_PI is a family found at the C-terminal of bacterial type II CRISPR system Cas9 endonuclease. This domain adopts a novel protein fold that is unique to the Cas9 family. It is positioned in the structure-DNA-complex to recognize the PAM sequence on the non-complementary DNA strand of the crRNA. PAM sequence is protospacer-adjacent motifs on DNA. See family CRISPR-DR2, Rfam:RF01315. Cas9 carries two nuclease domains, HNH and RuvC, which cleave the DNA strands that are complementary and non-complementary to the 20 nucleotide guide sequence in crRNAs, respectively. 262 -318739 pfam16596 MFMR_assoc Disordered region downstream of MFMR. This is a conserved region of disorder, identified with the MobiDB database, found in plants immediately to the C-terminus of the MFMR domain. 134 -318740 pfam16597 Thyroglob_assoc Thyroglobulin_1 repeat associated disordered domain. This domain of conserved disorder lies almost invariably between the two repeated Thyroglobulin_1 domains, pfam00086. 58 -318741 pfam16598 Edc3_linker Linker region of enhancer of mRNA-decapping protein 3. This region is located between the LSM14 pfam12701 (Lsm) and FDF pfam09532 domains of the enhancer of mRNA-decapping protein 3. This region is predicted to be natively unstructured. Its precise functional role is not known. 93 -318742 pfam16599 PTN13_u3 Unstructured linker region on PTN13 protein between PDZ. This natively unstructured region lies between the first two PDZ domains on long eukaryotic tyrosine-protein phosphatase non-receptor type 13 proteins. The function is not known. However, since each of the PDZ domains binds with a different protein it is likely to be a linker region allowing flexibility between the PDZs. 191 -318743 pfam16600 Caskin1-CID Caskin1 CASK-interaction domain. The Caskin1 protein interacts with the CASK protein via this region.CASK and Caskin1 are synaptic scaffolding proteins. The binding motif on human Caskin1 is EEIWVLRK. A similar motif is found on protein MINT1 and protein TIAM1, both shown to be able to bind to CASK though the motif. MINT1 and TIAM1 are not part of this family. This region is predicted to be natively unstructured. 57 -318744 pfam16601 NPF Rabosyn-5 repeating NPF sequence-motif. NPF is a natively unstructured but well-conserved region found in eukaryotic proteins of the Rabenosyn-5 type, wherein the sequence motif arginine-proline-phenylalanine followed by several glutamates and aspartates is repeated up to four times along the sequence. NPF lies between the two Rab-binding domains, for Rab-4 and Rab-5, at the C-terminal end of these proteins. Rabosyn-5 (or rabenosyn) is also involved in cell-polarity determination in developing wing epithelia of Drosophila, when the NPF-motif may be implicated. These NPF motifs create a region of strong positive surface potential which appear to bind Eps15 homology, EH or EF-hand, domains on proteins involved in vesicle trafficking. 187 -318745 pfam16602 USP19_linker Linker region of USP19 deubiquitinase. This region is generally located between a CS domain pfam04969 and the enzymatic UCH domain pfam00582 of USP19 deubiquitinases. This region is predicted to be natively unstructured. Its precise functional role is not known. 121 -318746 pfam16605 LSM_int_assoc LSM-interacting associated unstructured. LSM_int_assoc is a family found largely on eukaryotic SART3 proteins just upstream of their C-terminal LSM-interacting domain. This region is natively unstructured. 60 -318747 pfam16606 zf-C2H2_assoc Unstructured conserved, between two C2H2-type zinc-fingers. This domain is found on a set of eukaryotic Zinc finger protein 536 transcriptional regulator proteins sandwiched between zf-C2H2, pfam00096 and zf-H2C2_2 pfam13465. It is not conserved between other pairs of the zinc-fingers on these sequences. It is natively unstructured, and its function is not known. The proteins recognize and bind 2 copies of the core DNA sequence 5'-CCCCCA-3'. 79 -318748 pfam16607 CYLD_phos_site Phosphorylation region of CYLD, unstructured. CYLD_phos_site is a natively unstructured region on a subset of tumor-suppressor and de-ubiquitinating enzyme CYLD proteins in eukaryotes. It lies between the second pair of CAP_GLY domains, pfam01302, on these proteins. This region of CYLD, being unstructured, carries a number of serine residues which, in response to cellular stimuli, become phosphorylated. This transient phosphorylation-state induces ubiquitination of TRAF2, a ubiquitin ligase that catalyzes both self-ubiquitination and the ubiquitination of specific target molecules involved in signal transduction. 165 -318749 pfam16608 TNRC6-PABC_bdg TNRC6-PABC binding domain. TNRC6-PABC_bdg is a natively unstructured region on the higher eukaryote TNRC6 subset of GW182 proteins that carries the binding motif for the interaction with Polyadenylate-binding protein 1, PABC. TNRC6 are trinucleotide repeat-containing gene 6 proteins required for miRNA-mediated gene silencing that are localized to the P bodies (processing bodies). P bodies are cytoplasmic mRNP aggregates that are involved in general mRNA translation repression and decay, including nonsense-mediated decay. Thus GW182 proteins are essential for microRNA-mediated translational repression and deadenylation in animal cells being a major component of miRISCs. The interaction motif that binds to PABC is ShNWPPEFHPGVPWKGLQ. This region lies between a Q-rich region and the RRM, or RNA-recognition motif, pfam13893. 288 -318750 pfam16609 SH3-RhoG_link SH3-RhoGEF linking unstructured region. This family of natively unstructured but conserved residues from higher eukaryotes is found to lie between an SH3 pfam00018 and the RhoGEF, pfam00621, domains. It is serine-rich and likely to be acidic and natively unstructured. 251 -318751 pfam16610 dbPDZ_assoc Unstructured region between two PDZ domains on Dlg5. dbPDZ_assoc is found on higher eukaryote Dlg5, Disks large homolog 5, proteins, lying between the second pair of PDZ domains. The sequence is natively unstructured but may just be long extensions of the PDZs on these sequences in this position. The function is not known. 81 -318752 pfam16611 RGS12_us2 Unstructured region between RBD and GoLoco. RGs12_us2 is a region of Regulator of G-protein signalling 12 proteins that is natively unstructured and lies between an RBD domain and a GoLoco motif, pfam02196 and pfam02188. The function is not known. 71 -318753 pfam16612 RGS12_usC C-terminal unstructured region of RGS12. RGS12_usC is a region of Regulator of G-protein signalling 12 proteins that is natively unstructured and lies at the very C-terminus. It has a highly conserved central section. The function is not known. 128 -318754 pfam16613 RGS12_us1 Unstructured region of RGS12. RGS12_us1 is a region of Regulator of G-protein signalling 12 proteins that is natively unstructured and lies N-terminal to other such regions in UniProt:E1BPP4. It is very glycine-rich, and the function is not known. 114 -318755 pfam16614 RhoGEF67_u2 Unstructured region two on RhoGEF 6 and 7. RhoGEF67_u2 is a region of natively unstructured residues on Rho guanine nucleotide exchange factor 6 and 7 proteins. The function is not known. It lies after the PH domain and before the C-terminal coiled-coil. 108 -318756 pfam16615 RhoGEF67_u1 Unstructured region one on RhoGEF 6 and 7. RhoGEF67_u1 is a region of natively unstructured residues on Rho guanine nucleotide exchange factor 6 and 7 proteins. The function is not known. It lies between the CH and the SH3 domains. 48 -318757 pfam16616 PHC2_SAM_assoc Unstructured region on Polyhomeotic-like protein 1 and 2. PHC2_SAM_assoc is a natively unstructured region on Polyhomeotic-like proteins 1 and 2, that lies immediately upstream of the SAM domain, pfam00536. The function is not known. 119 -318758 pfam16617 INTAP Intersectin and clathrin adaptor AP2 binding region. INTAP is a natively unstructured region of intersectin 1 proteins, lying between the first pair of SH3 domains, that binds to the clathrin adaptor AP2. This binding forms an intersectin-AP2 complex that functions as an important regulator of clathrin-mediated SV recycling in synapses. 115 -318759 pfam16618 SH3-WW_linker Linker region between SH3 and WW domains on ARHGAP12. SH3-WW_linker is a natively unstructured region on Rho-GTPase activating factor 12 proteins that lies between the SH3 and the WW domains. it is found in higher eukaryotes, and the function is not known. 200 -318760 pfam16619 SUIM_assoc Unstructured region C-term to UIM in Ataxin3. SUIM_assoc is a natively unstructured region on Ataxin 3 proteins that lies immediately C-terminal to the second UIM domain linking it to a third when present. The function is not known. It is rich in glutamine residues. 58 -318761 pfam16620 23ISL Unstructured linker between I-set domains 2 and 3 on MYLCK. 23ISL is a natively unstructured region lying between the second and third I-set domains on higher eukaryotic myosin light chain kinase (MYLCK) proteins. The function is not known. It carries a highly conserved TSSTITLQ sequence motif which might be a binding domain. 162 -318762 pfam16621 NECFESHC SH3 terminal domain of 2nd SH3 on Neutrophil cytosol factor 1. NECFESHC is the C-terminal domain of the second SH3 domain found on neutrophil cytosol factor 1 or p47phox proteins in higher eukaryotes. It is not unstructured as illustrated by the structure of Structure 1ng2. 50 -318763 pfam16622 zf-C2H2_11 zinc-finger C2H2-type. Zinc-finger of C2H2 type found in higher eukaryotes. 29 -318764 pfam16623 WW_FCH_linker Unstructured linker region between on GAS7 protein. WW_FCH_linker is a natively unstructured region on GAS7 or Growth arrest-specific protein 7 higher eukaryote proteins. It lies between the WW and the FCH domains. The function is not known but it carries a highly conserved TINCVTFP sequence motif which might be a binding domain. 92 -318765 pfam16624 zf-C2H2_assoc2 Unstructured region upstream of a zinc-finger. zf-C2H2_assoc2 is a short region of natively unstructured sequence immediately upstream of a C2H2-type zinc-finger on eukaryotic Zinc-finger proteins 592 and 800. The function is not known. 95 -318766 pfam16625 ISET-FN3_linker Unstructured linking region I-set and fnIII on Brother of CDO. ISET-FN3_linker is a short section of natively unstructured sequence on Biregional cell adhesion molecule-related/down-regulated by oncogenes (Cdon) binding proteins or Brother of CDO. It is found in higher eukaryotes and lies between the second I-set and the first fnIII domains, pfam07679 and pfam00041. The function is not known. 65 -318767 pfam16626 Papilin_u7 Linking region between Kunitz_BPTI and I-set on papilin. Papilin_u7 is a conserved region of natively unstructured residues on proteoglycan-like sulfated glycoprotein - papilin 0 in higher eukaryotes. It links the Kunitz_BPTI, pfam00014, and I-set domains pfam07679. The function is not known. 92 -339787 pfam16627 BRX_assoc Unstructured region between BRX_N and BRX domain. BRX_assoc is a short stretch of plant transcription regulator proteins carrying the BRX domain that is natively unstructured. It connects the BRX_N and BRX domains in plant transcription regulators. The function is not known. 67 -318769 pfam16628 Mac_assoc Unstructured region on maltose acetyltransferase. Mac_assoc is a region of natively unstructured residues on fungal maltose acetyltransferase proteins. It lies just upstream of the Mac, pfam12464, domain linking it with the upstream Zn_clus, pfam00172, the Zn(2)-Cys(6) binuclear cluster. the function of this region is not known. 180 -318770 pfam16629 Arm_APC_u3 Armadillo-associated region on APC. Arm_APC_u3 is a semi-unstructured region lying immediately downstream of the armadillo fold before the beta-catenin binding motifs, APC_crr, pfam05923, on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 291 -318771 pfam16630 APC_u5 Unstructured region on APC between 1st and 2nd catenin-bdg motifs. APC_u5 is a short region of natively unstructured sequence lying between the first and the second 15-residue beta-catenin binding motifs, APC_15aa, pfam05972, on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 100 -318772 pfam16631 TUTF7_u4 Unstructured region 4 on terminal uridylyltransferase 7. TUTF7_u4 is the fourth natively unstructured region found on a set of higher eukaryote Terminal uridylyltransferase 7 proteins. The function is not known. The region is rich in arginine and lysine. 88 -318773 pfam16632 Caskin-tail C-terminal region of Caskin. This region is found at the C-terminus of Caskin proteins. Caskins are CASK-binding synaptic scaffolding proteins. Part of this region is predicted to be in coiled-coil conformation. Its function is not known. 61 -318774 pfam16633 APC_u9 Unstructured region on APC between 1st two creatine-rich regions. APC_u9 is a short region of natively unstructured sequence lying between the first and second APC_crr, pfam05923, domains on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 87 -318775 pfam16634 APC_u13 Unstructured region on APC between APC_crr and SAMP. APC_u13 is a short region of natively unstructured sequence lying between the fourth creatine-rich region, APC_crr, pfam05923, and the SAMP pfam05924, domains on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 54 -318776 pfam16635 APC_u14 Unstructured region on APC between SAMP and APC_crr. APC_u14 is a short region of natively unstructured sequence lying between the second SAMP pfam05924, and the fifth creatine-rich region, APC_crr, pfam05923, on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 92 -318777 pfam16636 APC_u15 Unstructured region on APC between APC_crr regions 5 and 6. APC_u15 is a short region of natively unstructured sequence lying between the fifth and sixth creatine-rich, APC_crr, pfam05923, domains on APC or adenomatous polyposis coli proteins in higher eukaryotes. The function is not known. 81 -318778 pfam16637 zf-C2H2_assoc3 Putative zinc-finger between two C2H2 zinc-fingers on Patz. zf-C2H2_assoc3 is a partially unstructured region on Patz or POZ-, AT hook-, and zinc finger-containing proteins of higher eukaryotes. It lies between the two C2H2-type zinc-fingers towards the C-terminus of these proteins and may well be an unusual zinc-finger itself. 72 -318779 pfam16638 Tristanin_u2 Unstructured region on methyltransferase between zinc-fingers. Tristanin_u2 is a region of natively unstructured sequence on tristanin like or PR domain zinc finger protein 10s found in higher eukaryotes. It lies between two C2H2-type zinc-fingers. The function is not known. 124 -318780 pfam16639 Apocytochr_F_N Apocytochrome F, N-terminal. This is the N-terminal domain of cytochrome f. It is a soluble lumen-side domain. 154 -339788 pfam16640 Big_3_5 Bacterial Ig-like domain (group 3). This family consists of bacterial domains with an Ig-like fold. 88 -339789 pfam16641 CLIP1_ZNF CLIP1 zinc knuckle. This zinc knuckle domain is found tandemly repeated at the C-terminal of the cytoplasmic linker protein CLIP1 (CLIP170). It forms a complex with the CAP-Gly domain of Dynactin. 18 -318783 pfam16642 KCNQ2_u3 Unstructured region on Potassium channel subunit alpha KvLQT2. KCNQ2_u3 is a region of natively unstructured sequence on potassium voltage-gated channel subfamily KQT member 2 proteins from higher eukaryotes. It lies between families KCNQ_channel, pfam03520, and KCNQC3-Ank_bd, pfam11956. The function is not known. 95 -318784 pfam16643 cNMPbd_u2 Unstructured region on cNMP-binding protein. cNMPbd_u2 is a natively unstructured region on a set of higher eukaryote cyclic nucleotide-binding domain-containing proteins. It lies between the second cNMP_binding, pfam00027, and the F-box, pfam00646, domains. The function is not known but there is a highly conserved DPDPFL sequence motif. 161 -318785 pfam16644 NEXCaM_BD Regulatory region of Na+/H+ exchanger NHE binds to calmodulin. NEXCaM_BD is a coiled-coil domain found as part of the regulatory, C-terminal region of the 12-14 TM sodium/proton exchangers (NHEs)2 of the solute carrier 9 (SLC9) family in all animal kingdoms. The C- lobe of CaM binds the first alpha-helix of the NHE, or NEXCaM_BD region, and the N-lobe of CaM binds the second helix of NEXCaM_BD. 108 -318786 pfam16645 PHtD_u1 Unstructured region on Pneumococcal histidine triad protein. PHtD_u1 is a natively unstructured region on Pneumococcal histidine triad proteins of higher eukaryotes lying between the first two Strep_his_triad domains so far identified, pfam04270. The function is not known but it does not carry the characteristic histidine triad. 56 -318787 pfam16646 AXIN1_TNKS_BD Axin-1 tankyrase binding domain. This is the N-terminal domain tankyrase binding domain of Axin-1. 72 -339790 pfam16647 GCSF Granulocyte colony-stimulating factor. GCSF is a family of higher eukaryotic granulocyte colony-stimulating factor proteins. Granulocyte colony-stimulating factors are cytokines that are involved in haematopoeisis. They control the production, differentiation and function of white blood cell granulocytes. GCSF binds to the extracellular Ig-like and CRH domain of its receptor GCSFR, thereby triggering the receptor to homodimerize. Homodimerization result in activation of Janus tyrosine kinase-signal transducers and other activators of transcription (JAK-STAT)-type signalling cascades. 149 -318788 pfam16648 Calpain_u2 Unstructured region on Calpain-3. Calpain_u2 is a region of natively unstructured sequence that lies between the Calpain_III, pfam01067 and the first EF-hand, Pfam;PF13833, domains on higher eukaryote calpain-3 proteins. The function is not known. 71 -318789 pfam16649 IL23 Interleukin 23 subunit alpha. This family, interleukin 23 subunit alpha, is a heterodimer consisting of a 40 kDa subunit - p40 - that is shared with IL12 and a unique 19 kDa subunit - p19. IL23 is a pro-inflammatory cytokine that binds to adnectins and thus plays a key role in the pathogenesis of several autoimmune and inflammatory diseases. IL23 signalling on the cell membrane works through the interaction of four proteins, two of which are shared with the IL12-receptor complex; signalling through the cell membrane involves the combined aggregation of at least two receptor components and then the subsequent activation of the Jak/Tyk tyrosine kinases and the family of STAT transcription factors. 158 -293256 pfam16650 SPEG_u2 Unstructured region on SPEG complex protein. SPEG_u2 is a region of natively unstructured but conserved sequence on Striated muscle-specific serine/threonine-protein kinase proteins in higher eukaryotes. It lies between two I-set immunoglobulin, pfam07679, domains. The function is not known. 57 -318790 pfam16652 PH_13 Pleckstrin homology domain. 143 -339791 pfam16653 Sacchrp_dh_C Saccharopine dehydrogenase C-terminal domain. This family comprises the C-terminal domain of saccharopine dehydrogenase. In some organisms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. 248 -318792 pfam16654 DAPDH_C Diaminopimelic acid dehydrogenase C-terminal domain. This family comprises the C-terminal domain of diaminopimelic acid dehydrogenase. Diaminopimelate dehydrogenase is a NADPH-dependent enzyme that catalyzes the oxidative deamination of meso-2,6-diaminopimelate, which is the direct precursor of L-lysine in bacterial lysine biosynthesis. 154 -318793 pfam16655 PhoD_N PhoD-like phosphatase, N-terminal domain. This domain is found at the N-terminus of proteins in the PhoD family pfam09423. 89 -318794 pfam16656 Pur_ac_phosph_N Purple acid Phosphatase, N-terminal domain. This domain is found at the N-terminus of Purple acid phosphatase proteins. 92 -339792 pfam16657 Malt_amylase_C Maltogenic Amylase, C-terminal domain. This is the C-terminal domain of Maltogenic amylase, an enzyme that hydrolyzes starch material. Maltogenic amylases are central to carbohydrate metabolism. 75 -339793 pfam16658 RF3_C Class II release factor RF3, C-terminal domain. 128 -318797 pfam16660 PHD20L1_u1 PHD finger protein 20-like protein 1. PHD20L1_u1 is a region of natively unstructured but highly conserved sequence on a set of higher eukaryotic PHD finger protein 20-like protein 1 like proteins. The function is not known. 99 -318798 pfam16661 Lactamase_B_6 Metallo-beta-lactamase superfamily domain. This family is part of the metallo-beta-lactamase superfamily. 190 -318799 pfam16662 FLYWCH_u FLYWCH-type zinc finger-containing protein 1. FLYWCH_u is a region of natively unstructured but conserved sequence that lies between the FLYWCH zinc-finger domains on FLYWCH-type zinc finger-containing protein 1 proteins in higher eukaryotes. The function is not known but the N- and C-termini are likely to be part of the zinc-finger domains specific, to the eukaryotes. 90 -318800 pfam16663 MAGI_u1 Unstructured region on MAGI. MAGI_u3 is a region of natively unstructured but highly conserved sequence on a subset, of higher eukaryote, membrane-associated guanylate kinase with WW and PDZ domain-containing proteins. The function is not known. 60 -318801 pfam16664 STAC2_u1 Unstructured on SH3 and cysteine-rich domain-containing protein 2. STAC2_u1 is a region of natively unstructured but highly conserved sequence between C1_1 pfam00130, and an SH3 domain, eg pfam00018, on SH3 and cysteine-rich domain-containing proteins from higher eukaryotes. The function is not known. 120 -318802 pfam16665 NCOA_u2 Unstructured region on nuclear receptor coactivator protein. NCOA_u2 is a region of natively unstructured but highly conserved sequence found on higher eukaryote nuclear receptor coactivator proteins. It lies between a PAS domain, pfam14598 and a steroid receptor coactivator domain, pfam08832. The function is not known. 116 -318803 pfam16666 MAGI_u5 Unstructured region on MAGI. MAGI_u5 is a region of natively unstructured but highly conserved sequence on a subset, of higher eukaryote, membrane-associated guanylate kinase with WW and PDZ domain-containing proteins. The function is not known. This region lies between two PDZ, pfam00595 domains. 94 -318804 pfam16667 MPDZ_u10 Unstructured region 10 on multiple PDZ protein. MPDZ_u10 is a region of natively unstructured but highly conserved sequence on multiple-PDZ-containing domain proteins in higher eukaryotes. It lies between two PDZ domains, pfam00595. The function is not known. 65 -293273 pfam16668 JLPA Adhesin from Campylobacter. JLPA is a surface-exposed lipoprotein adhesin that promotes interaction with the host epithelial cells. It is found in the genus Campylobacter, and the structure is an unclosed half beta-barrel fold with a wide hydrophobic concave face; this represents a novel bacterial surface lipoprotein. 352 -318805 pfam16669 TTC5_OB Tetratricopeptide repeat protein 5 OB fold domain. This OB fold domain is located at the C-terminus of Tetratricopeptide repeat protein 5 and is required for effective p53 response. 113 -318806 pfam16670 PI-PLC-C1 Phosphoinositide phospholipase C, Ca2+-dependent. PI-PLC-C1 is a family of calcium 2+-dependent phosphatidylinositol-specific phospholipase C1 enzymes from bacteria and fungi. The enzyme classification number is EC:3.1.4.11. This enzyme is involved in part of the myo-inositol phosphate metabolic pathway. 328 -293276 pfam16671 ACD Actin cross-linking domain. This domain is found in Vibrio cholerae RtxA toxin and VgrG1 protein. This domain cross-links to G-actin leading to cytoskeletal changes. 386 -318807 pfam16672 LAMTOR5 Ragulator complex protein LAMTOR5. 88 -318808 pfam16673 TRAF_BIRC3_bd TNF receptor-associated factor BIRC3 binding domain. This domain is found in TNF receptor-associated factor 1 and 2 (TRAF1 and TRAF2), where it binds to Baculoviral IAP repeat-containing protein 3 (BIRC3) (cIAP2). 63 -318809 pfam16674 UCH_N N-terminal of ubiquitin carboxyl-terminal hydrolase 37. UCH_N is a domain found at the N-terminus of ubiquitin carboxyl-terminal hydrolase 37 or 26. The function is not known. 101 -318810 pfam16675 FOXO_KIX_bdg KIX-binding domain of forkhead box O, CR2. FOXO_KIX_bd is the first part of the region of transcription factor forkhead box O family proteins that binds to the CREB-binding proteins via the KIX domain. Coactivator CBP/p300 is recruited by FOXO3 via the binding of this domain as well as the simultaneous binding of the more C-terminal TAD domain. 78 -318811 pfam16676 FOXO-TAD Transactivation domain of FOXO protein family. TAD is a promiscuous binding domain that mediates the association of the transcription factor FOXO with the coactivator CBP/p300. Both this domain and the FOXO-KIX_bd family pfam16675 bind simultaneously the KIX domain of CBP/p300. Coactivator CBP/p300 is recruited by FOXO3 though binding to these two regions. The promiscuity of the TAD is further evidenced by that the finding that they also bind the TAZ1 and TAZ2 domains of CBP/p300. 40 -339794 pfam16677 GP3_package DNA-packaging protein gp3. DNA-packaging protein gp3 (terminase small subunit) is involved in DNA packing in bacteriophage. it contains a channel where DNA is bound and passed to DNA-packaging protein gp2 (terminase large subunit). 103 -339795 pfam16678 HOIP-UBA HOIP UBA domain pair. HOIP-UB is a binding domain on E3 ubiquitin-protein ligase RNF31 like proteins. E3 ubiquitin-protein ligase RNF31 is often referred to as HOIL-1L binding partner. The interaction of HOIL-1L and HOIP is thus via the UBL-UBA interaction. this interaction is important in E3 complex formation and the subsequent activation of NF-kappaB. This family contains two UBA-like domains. 150 -339796 pfam16679 CDT1_C DNA replication factor Cdt1 C-terminal domain. This is the C-terminal domain of DNA replication factor Cdt1. This domain binds the MCM complex. 95 -339797 pfam16680 Ig_4 T-cell surface glycoprotein CD3 delta chain. This is an immunoglobulin-like domain. It is found on the T-cell surface glycoprotein CD3 delta chain. CD3delta and CD3epsilon complex together as part of the T-cell receptor complex. 72 -318816 pfam16681 Ig_5 Ig-like domain on T-cell surface glycoprotein CD3 epsilon chain. Ig_5 is an immunoglobulin domain found on T-cell surface glycoprotein CD3 epsilon chain. It forms a first-order complex with T-cell surface glycoprotein CD3 delta chain as part of the T-cell receptor complex. 75 -318817 pfam16682 MSL2-CXC CXC domain of E3 ubiquitin-protein ligase MSL2. MSL2-CXC is an autonomously folded domain containing that binds three zinc ions. It lies on the E3 ubiquitin-protein ligase MSL2 in eukaryotes. The CXC domain critically contributes to the DNA-binding activity of MSL2. It carries 9 invariant cysteines within about a 50 residue region. 52 -318818 pfam16683 TGase_elicitor Transglutaminase elicitor. TGase_elicitor is a family of largely oomycete sequences from plant pathogens that elicit transglutaminase/acyltransferase activity. The enzyme classification is E.C:2.3.2.13. From the presence of sequences from Vibrio spp one can propose a lateral gene transfer event having occurred between bacteria and oomycetes to the probable selective advantage of the pathogen. 358 -293289 pfam16684 Telomere_res Telomere resolvase. Telomere resolvase (protelomerase) catalyzes the conversion of linear double-stranded DNA into hairpin telomeres. 274 -318819 pfam16685 zf-RING_10 zinc RING finger of MSL2. zf-RING_10 is an N-terminal domain on E3 ubiquitin-protein ligase msl-2 proteins. The domain binds MSL1 and exhibits ubiquitin E3 ligase activity towards H2B K34, the histone proteins. 70 -318820 pfam16686 POT1PC ssDNA-binding domain of telomere protection protein. POT1PC is the ssDNA-binding domain on a family of fungal telomere protection protein 1 proteins. POT1PC is able to accommodate heterogeneous ssDNA ligands. Pot1 proteins are the proteins responsible for binding to and protecting the 3' single-stranded DNA (ssDNA) overhang at most eukaryotic telomeres. 152 -318821 pfam16687 ELYS-bb beta-propeller of ELYS nucleoporin. ELYS-bb is the N-terminal seven-bladed beta-propeller domain of ELYS nucleoporins in higher eukaryotes. It is required for anchorage of the nucleoporin to the nuclear envelope during cell-division. 487 -293293 pfam16688 CNV-Replicase_N Replicase polyprotein N-term from Coronavirus nsp1. CNV-Replicase_N is the N-terminal domain of a family of ssRNA positive-stranded porcine transmissible gastroenteritis coronaviruses. the domain folds into a six-stranded beta-barrel fold with a long alpha helix on the rim of the barrel. This fold is shared with SARS-CoV nsp1. 108 -293294 pfam16689 APC_N_CC Coiled-coil N-terminus of APC, dimerization domain. APC_N_CC is the N-terminal, coiled-coil dimerization domain of the adenomatosis polyposis coli (APC) tumor-repressor proteins. It plays a key role in the regulation of cellular levels of the oncogene product beta-catenin. Coiled-coil regions are binding repeats that in this case bind to the armadillo repeat region of beta-catenin. 52 -318822 pfam16690 MMACHC Methylmalonic aciduria and homocystinuria type C family. 216 -318823 pfam16691 DUF5062 Domain of unknown function (DUF5062). This family is found in Vibrio spp. The function is not known. 73 -318824 pfam16692 Folliculin_C Folliculin C-terminal domain. This is the C-terminal domain of folliculin. It has guanine nucleotide exchange factor (GEF) activity. 216 -293298 pfam16693 Yop-YscD_ppl Inner membrane component of T3SS, periplasmic domain. Yop-YscD-ppl is the periplasmic domain of Yop proteins like YscD from Proteobacteria. YscD forms part of the inner membrane component of the bacterial type III secretion injectosome apparatus. 254 -339798 pfam16694 Cytochrome_P460 Cytochrome P460. 125 -339799 pfam16695 Tai4 Type VI secretion system (T6SS), amidase immunity protein. Tai4 is a new form of autoimmunity protein for a type VI secretion system, T6SS. T6SS has roles in interspecies interactions, as well as higher order host-infection, by injecting effector proteins into the periplasmic compartment of the recipient cells of closely related species. Pseudomonas aeruginosa produces at least three effector proteins to other cells and thus has three specific cognate immunity proteins to protect itself. Tae4, or type VI amidase effector 4, in Enterobacter cloacae has a cognate Tai4 or type VI amidase immunity 4 protein. The effector is Tae4, pfam14113. 91 -318827 pfam16696 ZFYVE21_C Zinc finger FYVE domain-containing protein 21 C-terminus. This is the C-terminal domain of Zinc finger FYVE domain-containing protein 21. It has a PH-like fold and is required for the regulation of focal adhesions and in cell migration. 120 -318828 pfam16697 Yop-YscD_cpl Inner membrane component of T3SS, cytoplasmic domain. Yop-YscD-cpl is the cytoplasmic domain of Yop proteins like YscD from Proteobacteria. YscD forms part of the inner membrane component of the bacterial type III secretion injectosome apparatus. 91 -339800 pfam16698 ADAM17_MPD Membrane-proximal domain, switch, for ADAM17. ADAM17_MPD is the membrane-proximal domain of a family of disintegrin and metalloproteinase domain-containing protein 17 found in metazoan species. ADAM17 is a major sheddase that is responsible for the regulation of a wide range of biological processes, such as cellular differentiation, regeneration, and cancer progression. This MPD region acts as the sheddase switch. PDI or protein-disulfide isomerase interacts with ADAM17 and to down-regulate its enzymatic activity. The interaction is directly with the MPD, the region of dimerization and substrate recognition, where it catalyzes an isomerisation of disulfide bridges within the thioredoxin motif CXXC. this isomerisation results in a major structural change between an active, open state and an inactive, closed state of the MPD. This change is thought to act as a molecular switch, allowing a global reorientation of the extracellular domains in ADAM17 and regulating its shedding activity. 61 -339801 pfam16699 CSTF1_dimer Cleavage stimulation factor subunit 1, dimerization domain. This family is the dimerization domain, at the N-terminal, of a family of cleavage stimulation factor subunit 1 proteins from eukaryotes. This domain allows for homodimerization such that the functional state of CSTF1 is a heterohexamer. The cleavage stimulation factor (CstF) complex is composed of three subunits and is essential for pre-mRNA 3'-end processing. CstF recognizes U and G/U-rich cis-acting RNA sequence elements and helps to stabilize the cleavage and polyadenylation specificity factor (CPSF) at the polyadenylation site as required for productive RNA cleavage. 57 -318831 pfam16700 SNCAIP_SNCA_bd Synphilin-1 alpha-Synuclein-binding domain. This coiled-coil domain found in Synphilin-1 is responsible for binding to alpha-Synuclein. 45 -293306 pfam16701 Ad_Cy_reg Adenylate cyclase regulatory domain. This domain regulates the activity of Actinobacterial adenylate cyclase in a pH-dependent manner, allowing activation at acidic pH. 185 -318832 pfam16702 DUF5063 Domain of unknown function (DUF5063). 165 -318833 pfam16703 DUF5064 Domain of unknown function (DUF5064). This is found in Pseudomonas species. Several members are annotated as being acetyl-CoA carboxylase alpha subunit, but his could not be confirmed. 117 -293309 pfam16704 Rab_bind Rab binding domain. This coiled-coil domain, found in GRIP and coiled-coil domain-containing protein 2 and RANBP2-like and GRIP domain-containing protein, has been shown to bind to Rab in GRIP and coiled-coil domain-containing protein 2. 65 -318834 pfam16705 NUDIX_5 NUDIX, or N-terminal NPxY motif-rich, region of KRIT. NUDIX_5 is found in higher eukaryotes at the N-terminus of KRIT1 or Krev interaction trapped proteins. NUDIX_5 carries three NPxY-like motifs, and it is found to bind the integrin cytoplasmic-associated protein 1 ICAP1. In the absence of KRIT1 ICAP1 binds via its C-terminal PH/PTB fold domain to the integrin beta-1 cytoplasmic tail. Binding of KRIT1 to ICAP1 via NUDIX_5 out-competes the binding of ICAP1 to integrin cytoplasmic tails such that ICAP1 is sequestered in the nucleus. Integrin activation is thus prevented. 169 -318835 pfam16706 Izumo-Ig Izumo-like Immunoglobulin domain. Izumo-Ig is the immunoglobulin domain on Izumo proteins from higher eukaryotes. Izumo is a typical type I membrane glycoprotein with one immunoglobulin-like domain and a putative N-glycoside link motif - glycosylation site. The full-length protein is a molecule with a single immunoglobulin (Ig) domain. It is thought that Izumo proteins bind to putative Izumo receptors on the oocyte. Izumo is not detectable on the surface of fresh sperm but becomes exposed only after an exocytotic process, the acrosome reaction, has occurred. Studies have shown that knock-out mice (Izumo-/- males) were sterile despite normal mating behaviour and ejaculation, indicating the importance of the protein in fertilisation. There is a conserved GCL sequence motif. Izumo expression has been found to be testis-specific. 86 -293312 pfam16707 CagS Cag pathogenicity island protein S of Helicobacter pylori. CagS is a family of proteins from the pathogenicity island of Helicobacter pylori. The gene lies just downstream of the cluster whose protein-products resemble those of the Vibrio proteins that form the structural core of T4SS. The exact function of CagS is not known. 196 -318836 pfam16708 LppA Lipoprotein confined to pathogenic Mycobacterium. This is a family of lipoproteins found only in pathogenic mycobacteria. These pathogenic lipoproteins may play a role in host-pathogen interactions. Lipoproteins localized to the cell-envelope of pathogenic bacteria are major determinants of virulence. The proteins are localized to the cell-surface via an N-terminal lipidation carried out by a transferase - pro-lipoprotein diacylglyceryl transferase Lgt - which attaches a diacylglyceride molecule to a sulfur atom from a crucial cysteine, and a consecutively acting lipoprotein signal peptidase LspA that cleaves the signal peptide just before the modified cysteine. When the peptidase is inactivated the pathogen has difficulty in replicating inside macrophages. 153 -318837 pfam16709 SCAB-IgPH Fused Ig-PH domain of plant-specific actin-binding protein. This family is a fused Ig and PH domain found on plant-specific actin-binding proteins or SCABs. SCAB proteins bind, bundle and stabilize actin filaments and regulate stomatal movement. The Ig-PH fusion domain is at the C-terminus. This domain has the N-terminal Ig beta-sandwich fold consisting of two antiparallel beta-sheets built from strands beta1 and beta2 and strands beta3-beta6, respectively. The C-terminus of the fused domains adopts the PH fold, of seven beta-strands, beta7-beta13 and two alpha-helices, alpha1 and alpha2 arranged into a beta-barrel. The Ig and PH domains appear to be truly fused together into an integral structure which displays a few conserved patches on the surface, particularly of the PH part. The canonical phosphoinositide-binding pocket of the classic PH domain is degenerate in this fused one, and the charge on the pocket suggest that the Ig-PH domain contains a non-canonical binding site for inositol phosphates. There are a handful of bacterial members at low threshold but they are missing the PH part of the fused domain, and appear to match little else. 208 -293315 pfam16710 CTXphi_pIII-N1 N-terminal N1 domain of Vibrio phage CTXphi pIII. CTXphi_pIII-N1 is the N-terminal domain, N1, of the pIII protein of the CTXphi bacteriophage of Vibrio cholerae. CTXphi is a ssDNA Inovirus. pIII is a minor coat protein. This domain interacts directly with the C-terminus of TolA, a periplasmic protein of Vibrio cholerae itself as part of the infection mechanism. 111 -339802 pfam16711 SCAB-ABD Actin-binding domain of plant-specific actin-binding protein. SCAB-ABD is the actin-binding domain of plant-specific actin-binding proteins or SCABs. SCAB proteins bind, bundle and stabilize actin filaments and regulate stomatal movement. The Ig-PH fusion domain is at the C-terminus. The ABD is structurally independent from the first coiled-coil, CC1, domain which is also involved in binding; the CC1 is likely to function as a dimerization module 42 -339803 pfam16712 SCAB_CC Coiled-coil regions of plant-specific actin-binding protein. SCAB_CC is the two coiled-coil, dimerization domains of plant-specific actin-binding proteins or SCABs, CC1 and CC2, both of which contribute independently to dimerization. CC1 is also required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. since CC1 adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. SCAB proteins bind, bundle and stabilize actin filaments and regulate stomatal movement 168 -293318 pfam16713 EAGR_box Enriched in aromatic and glycine Residues box. The Enriched in Aromatic and Glycine Residues (EAGR) box is found in proteins from Mycoplasma, often tandemly repeated, and may have a role in cell motility. 34 -318840 pfam16714 TyrRSs_C Tyrosyl-tRNA synthetase C-terminal domain. This domain is found at the C-terminus of fungal tyrosyl-tRNA synthetases. It binds to group I introns. 120 -318841 pfam16715 CDPS Cyclodipeptide synthase. This family of proteins includes enzymes involved in the synthesis of cyclodipeptides using aminoacyl-tRNAs as substrates, including cyclo(L-leucyl-L-leucyl) synthase, cyclo(L-tyrosyl-L-tyrosyl) synthase and cyclo(L-leucyl-L-phenylalanyl) synthase. They are structurally similar to class Ic aminoacyl-tRNA synthetases (aaRSs). 220 -318842 pfam16716 BST2 Bone marrow stromal antigen 2. 88 -339804 pfam16717 RAC_head Ribosome-associated complex head domain. The RAC head domain is involved in ribosome binding. 88 -318844 pfam16718 IFS Immunity factor for SPN. Immunity factor for SPN (IFS) binds to and inhibits the SPN toxin. 164 -339805 pfam16719 SAWADEE SAWADEE domain. The SAWADEE domain, found in plant homeobox proteins, has a pair of tandem tudor-like folds that bind chromatin. 126 -293325 pfam16720 Albumin_I_a Albumin I chain a. The albumin I protein, a hormone-like peptide, stimulates kinase activity upon binding a membrane bound 43 kDa receptor. This domain represents the a chain. 48 -293326 pfam16721 zf-H3C2 Zinc-finger like, probable DNA-binding. This is a family of probably DNA-binding zinc-fingers found on Gag-Pol polyproteins from mouse retroviruses. Added to clan to resolve overlaps with zf-H2C2, but neither are true members. 96 -318846 pfam16722 SAPIS-gp6 Pathogenicity island protein gp6 in Staphylococcus. SAPIS-gp6 is a family of proteins produced from the pathogenicity island SAPI1 in pathogenic Staphylococcus aureus. This is a mobile genetic element that carries genes for several superantigen toxins. SAPIS-gp6 is a dimeric protein produced from the pathogenicity island with a helix-loop-helix motif similar to that of bacteriophage scaffolding proteins. It is thought to determine the size of the capsids of distribution of the SAPI1 genome as it acts as an internal scaffolding protein during capsid size determination. 71 -318847 pfam16723 DUF5065 Domain of unknown function (DUF5065). This family is found in found in Bacillus species. The function is not known. 152 -318848 pfam16724 T4-gp15_tss T4-like virus Myoviridae tail sheath stabilizer. T4-gp15_tss is the tail-sheath-stabilizer or tail-terminator protein of T4-like myoviridae phage. It forms a hexamer. It simultaneously forms the binding site for attachment of the capsid to the tail as gp15 binds to gp14 and gp13, the neck proteins, and completes the tail as it binds to the top of the tail via hexamer gp3 and the C-terminal domain of gp18 located in the last ring of the contractile tail sheath. 238 -339806 pfam16725 Nucleolin_bd Nucleolin binding domain. This domain adopts a three helix fold resembling part of a winged helix motif. It binds nucleolin. 70 -318850 pfam16726 OCRL_clath_bd Inositol polyphosphate 5-phosphatase clathrin binding domain. This domain is a clathrin binding domain found at the N-terminus of inositol polyphosphate 5-phosphatase OCRL. It has a PH domain-like fold. 101 -318851 pfam16727 REV1_C DNA repair protein REV1 C-terminal domain. This is the C-terminal domain of DNA repair protein REV1. It interacts with REV7, POLN, POLK and POLI. 122 -293333 pfam16728 DUF5066 Domain of unknown function (DUF5066). 213 -318852 pfam16729 DUF5067 Domain of unknown function (DUF5067). 125 -339807 pfam16730 DnaGprimase_HBD DnaG-primase C-terminal, helicase-binding domain. DnaG-primase_C is the C-terminal of a set of eubacterial DnaG primases that are a single-stranded DNA (ssDNA)-dependent RNA polymerase responsible for the synthesis of oligonucleotide primers needed for the replication of DNA. It interacts with helicase at the replication fork. 118 -318854 pfam16731 GARP Glutamic acid/alanine-rich protein of Trypanosoma. GARP, or glutamic acid/alanine-rich protein, is one of a subset of major surface molecules on Trypanosoma species. They are all surface-orientated, immunodominant, and highly charged. GARP is interesting as ts expression coincides with the loss and gain of variant surface glycoprotein (VSG) molecules in the tsetse vector. It has an extended helical bundle structure that is homologous to the core surface structure of VSG, suggesting that it might replace the bloodstream VSG as the trypanosomes differentiate inside the tsetse vector after a blood-meal. 191 -339808 pfam16732 ComP_DUS Type IV minor pilin ComP, DNA uptake sequence receptor. ComP-DUS is the DNA-uptake sequence receptor of pathogenic Proteobacteria. ComP is a type IV minor pilin -site on the minor type IV pilin, C one of three minor (low abundance) pilins in pathogenic Proteobacteria Neisseria species (with PilV and PilX). These modulate Tfp-mediated properties without affecting Tfp biogenesis. ComP plays a prominent role in competence at the level of DNA uptake. Comp is exposed on the surface of Neisseria filaments, and it is this that recognizes homotypic DNA through genus-specific DNA uptake sequence (DUS) motifs. 82 -293338 pfam16733 NRho Rhomboid N-terminal domain. This is the N-terminal domain of rhomboid protease. 69 -318856 pfam16734 Pilin_GH Type IV pilin-like G and H, putative. Pilin_GH is a family from Cyanobacteria. All the proteins are putatively annotated as being general secretion pathway proteins G and H, and are likely to be pilins of the type IV secretory pathway. 111 -339809 pfam16735 MYO10_CC Unconventional myosin-X coiled coil domain. This coiled coil domain is found in unconventional myosin-X and is responsible for dimerization. 44 -318858 pfam16736 sCache_like Single Cache-like. This entry represents the N-terminal Cache-like domain of the alkaline phosphatase synthesis sensor protein PhoR. It covers part of the PAS-like fold that share a central five-stranded beta- sheet of identical topology to other PAS domains. 114 -318859 pfam16737 PHF12_MRG_bd PHD finger protein 12 MRG binding domain. This domain found in PHD finger protein 12 binds to the MRG domain of Mortality factor 4-like protein 1. 39 -339810 pfam16738 CBM26 Starch-binding module 26. CBM26 is a carbohydrate-binding module that binds starch. 68 -339811 pfam16739 CARD_2 Caspase recruitment domain. In the probable ATP-dependent RNA helicase DDX58 this CARD domain is found near the N-terminus and interacts with the C-terminal domain. 92 -318862 pfam16740 SKA2 Spindle and kinetochore-associated protein 2. Spindle and kinetochore-associated protein 2 (SKA2) interacts with the N-termini of SKA1 and SKA3 and forms the Ska complex. This is a microtubule binding complex required for chromosome segregation. 108 -318863 pfam16741 mRNA_decap_C mRNA-decapping enzyme C-terminus. The C-terminal domain of mRNA-decapping enzyme in Metazoa is responsible for trimerisation. 43 -318864 pfam16742 IL17R_D_N N-terminus of interleukin 17 receptor D. IL17R_D_N is found in higher eukaryotes. The function of this N-terminal domain is not known. 122 -318865 pfam16743 PliI Periplasmic lysozyme inhibitor of I-type lysozyme. 121 -293349 pfam16744 Zf_RING KIAA1045 RING finger. 73 -318866 pfam16745 RsgA_N RsgA N-terminal domain. This domain is found at the N-terminus of RsgA domains. It has an OB fold. 54 -318867 pfam16746 BAR_3 BAR domain of APPL family. BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation. 235 -318868 pfam16747 Adhesin_E Surface-adhesin protein E. Adhesin E plays a role in pathogenesis. It binds to host proteins including plasminogen, vitronectin and laminin. 125 -318869 pfam16748 INSC_LBD Inscuteable LGN-binding domain. This is the LGN-binding domain (LBD) of the inscuteable homolog protein. It interacts with the TPR motifs of G-protein-signaling modulator 2 (GPSM2) (LGN) and stabilizes LGN. 43 -318870 pfam16749 Arteri_nsp7a Arterivirus nonstructural protein 7 alpha. Nonstructural protein 7 alpha is likely to have a role in viral RNA synthesis. 130 -293355 pfam16750 HK_sensor Sensor domain of 2-component histidine kinase. HK_sensor is the sensor domain found at the N-terminus of the integral membrane two-component system sensor histidine kinase proteins in bacteria. 110 -293356 pfam16751 RsdA_SigD_bd Anti-sigma-D factor RsdA to sigma factor binding region. RsdA_SigD_bd is a domain at the N-terminus of anti-sigma-D factor RsdA proteins. It binds to the -35 promoter binding domain of sigma-D. The complex formed regulates the transcriptional expression of the bacterium. 46 -318871 pfam16752 TBCC_N Tubulin-specific chaperone C N-terminal domain. This N-terminal domain of tubulin-specific chaperone C has a spectrin-like fold and binds to tubulin. 113 -339812 pfam16753 Tipalpha TNF-alpha-Inducing protein of Helicobacter. Tipalpha is secreted from H. pylori as dimers and enters the gastric cells.It binds to DNA via the positively charged surface-patch formed between the two monomers of the crystal structure by the loop between helices alpha1 and alpha2. Each monomer consists of a helical domain and a mixed domain. 150 -318872 pfam16754 Pesticin Bacterial toxin homolog of phage lysozyme, C-term. This the C-terminal activator domain of pesticin, a hydrolase enzyme secreted by Yersinia pestis and other Gammaproteobacteria to kill related bacteria occupying the same ecological niche. It is referred to as a bacteriocin and it leads to the hydrolysis of peptidoglycan. Its immunity protein is Pim. Pesticin carries an elongated N-terminal translocation domain, an intermediate receptor binding domain, and a C-terminal activity domain with structural analogy to lysozyme homologs. The full-length protein is toxic to bacteria when taken up to the target site via the outer or the inner membrane. The receptor domain is necessary for the close contact with the outer membrane; the N-terminal is a type of translocational, TonB box; the C-terminal domain is the death-delivering domain. 151 -293360 pfam16755 NUP214 Nucleoporin or Nuclear pore complex subunit NUP214=Nup159. NUP214 is a family of nucleoporins or nuclear pore complex subunit 214 in vertebrates and 159 in yeast found in eukaryotes. It participates in allowing family 2 of DEAD-box ATPases Dbp5/DDX19 to localize to the nuclear pore complex where it takes part in mRNA export and re-modelling. NUP214 helps to regulate DEAD-box ATPase activity. 359 -318873 pfam16756 PALB2_WD40 Partner and localizer of BRCA2 WD40 domain. This domain is found at the C-terminus of partner and localizer of BRCA2 (PALB2). It is a seven-bladed WD40-type beta-propeller. It binds to the N-terminus of BRCA2. 337 -339813 pfam16757 Fucosidase_C Alpha-L-fucosidase C-terminal domain. The C-terminal domain of Structure 1hl8 is constructed of eight anti-parallel-strands packed into two-sheets of five and three strands, respectively, forming a two-layer-sandwich containing a Greek key motif. 86 -293363 pfam16758 UL141 Herpes-like virus membrane glycoprotein UL141. UL141 is a family of glycoproteins from herpesvirus species. At it N-terminus it carries an Ig-like beta-sandwich domain, which binds to the cysteine-rich region of TRAIL-R2, a family of tumor necrosis factor receptor proteins. UL141 is both necessary and sufficient to retain TRAIL receptors in the ER, thereby preventing their cell surface expression and it is also necessary and sufficient to inhibit cell surface expression of CD155. 191 -339814 pfam16759 LIG3_BRCT DNA ligase 3 BRCT domain. The BRCT domain of DNA ligase 3 (LIG3) binds to the C-terminal BRCT domain of the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1) and mediates homo- and heterodimerization. 79 -339815 pfam16760 CBM53 Starch/carbohydrate-binding module (family 53). 78 -339816 pfam16761 Clr2_transil Transcription-silencing protein, cryptic loci regulator Clr2. Clr2_transil is a domain carrying the first and second of three regions on Clr2 that are necessary for transcriptional silencing by the protein. Clr2 is a protein in the SHREC complex that is a crucial factor required for heterochromatin formation and it plays a major role in mating-type and rDNA silencing. The third region is family pfam10383. 68 -318878 pfam16762 RHH_6 Ribbon-helix-helix domain. This ribbon-helix-helix domain binds to DNA and may be a part of a toxin-antitoxin system. 77 -318879 pfam16763 Spidroin_N Major ampullate spidroin 1, spider silk protein 1, N-term. Spidroin is produced by a number of arachnids. Spidrions are made up of repetitive segments flanked by conserved non-repetitive domains, and this domain is the conserved non-repetitive region. Aggregation to form the rigid silk occurs due to association at the repetitive regions, and the N-terminal domain is necessary to prevent premature aggregation during storage before extrusion. This N_terminal region inhibits precocious aggregation and then accelerates and directs self-assembly as the pH is lowered along the extrusion duct. 125 -339817 pfam16764 Sharpin_PH Sharpin PH domain. This PH domain is found at the N-terminus of sharpin and is involved in dimerization. 117 -293370 pfam16765 Pim Pesticin immunity protein. Pim is the immunity protein produced by Yersinia pestis and other Gammaproteobacteria to protect themselves against the bacteriostatic activity of the toxin pesticin, pfam16754. 98 -318881 pfam16766 CID_GANP Binding region of GANP to ENY2. CID is a domain on higher eukaryotic germinal-cent associated nuclear protein, or GANP, that binds to the transcription and mRNA export factor ENY2. The complex of these two proteins forms part of the TREX-2 complex that links transcription with nuclear messenger RNA export. 71 -318882 pfam16767 KinB_sensor Sensor domain of alginate biosynthesis sensor protein KinB. KinB_sensor is the N-terminal sensor domain of histidine kinase from Pseudomonas species. The domain is the extracellular sensing domain, and is four helical bundle. 120 -318883 pfam16768 NupH_GANP Nucleoporin homology of Germinal-centre associated nuclear protein. NupH_GANP is the nucleoporin-homology domain at the N-terminus of human GANP or germinal-centre associated nuclear proteins. GANP is part of the TREX-2 complex that links transcription with nuclear messenger RNA export, and it associates with the mRNP particle through the interaction of the NupH_GANP with NXF1, the export factor. This attachment mediates efficient delivery of mRNPs to nuclear pore complexes. 291 -318884 pfam16769 MCM3AP_GANP MCM3AP domain of GANP. MCM3AP_GANP is the C-terminal domain of germinal centre-associated proteins, GANPs in higher eukaryotes. GANP forms part of the TREX-2 complex which in higher eukaryotes requires the MCM3AP domain of GANP to facilitate its localization to the Nuclear pore complex and nuclear envelope. TREX-2 complex links transcription with nuclear messenger RNA export. 717 -339818 pfam16770 RTT107_BRCT_5 Regulator of Ty1 transposition protein 107 BRCT domain. This is the fifth BRCT domain of regulator of Ty1 transposition protein 107 (RTT107). It is involved in binding phosphorylated histone H2A. 93 -318886 pfam16771 RTT107_BRCT_6 Regulator of Ty1 transposition protein 107 BRCT domain. This is the sixth BRCT domain of regulator of Ty1 transposition protein 107 (RTT107). It is involved in binding phosphorylated histone H2A. 107 -318887 pfam16772 TERF2_RBM Telomeric repeat-binding factor 2 Rap1-binding motif. This domain, found in telomeric repeat-binding factor 2, binds to the C-terminus of repressor activator protein 1 (RAP1) (telomeric repeat-binding factor 2-interacting protein 1). 41 -318888 pfam16773 Phage_SSB Lactococcus phage single-stranded DNA binding protein. This single-stranded DNA binding protein is found in Lactococcus phage. It can stimulate RecA-mediated homologous recombination. Its structure is a variation of the typical oligonucleotide/oligosaccharide binding-fold of single-stranded DNA binding proteins. 112 -293379 pfam16774 Baseplate Baseplate protein. This protein is a structural component of the phage baseplate in Siphoviridae. 160 -293380 pfam16775 ZoocinA_TRD Target recognition domain of lytic exoenzyme. ZoocinA_TRD is domain found downstream of various lytic enzymes, such as peptidase M23 and phage lysins. The domain is composed of strands of antiparallel beta sheet with one short alpha helix at the C-terminal end. 106 -339819 pfam16776 INPP5B_PH Type II inositol 1,4,5-trisphosphate 5-phosphatase PH domain. 140 -318890 pfam16777 RHH_7 Transcriptional regulator, RHH-like, CopG. RHH_7 is a ribbon-helix-helix protein family expressed by Helicobacter species. These proteins bind to specific DNA sequences with high affinity and usually act as repressors. Many are putatively named CopG. 74 -318891 pfam16778 Phage_tail_APC Phage tail assembly chaperone protein. Phage_tail_APC is a family of general phage tail assembly chaperone proteins from double-stranded DNA viruses with no RNA stage, many of which are unclassified. 59 -293384 pfam16779 DMP12 DNA-mimic protein. This is a family of DNA-mimic proteins expressed by Neisseria species. In its monomeric form DMP12 interacts with the Neisseria dimeric form of the bacterial histone-like protein HU. HU proteins promote the assembly of higher-order DNA-protein structures, The interaction between DMP12 and HU protein may be instrumental in controlling the stability of the nucleoid in Neisseria as DMP12 prevents Neisseria HU protein from being digested by trypsin. 115 -318892 pfam16780 AIMP2_LysRS_bd AIMP2 lysyl-tRNA synthetase binding domain. This is the lysyl-tRNA synthetase binding domain of aminoacyl tRNA synthase complex-interacting multifunctional protein 2 (AIMP2). 31 -318893 pfam16781 DUF5068 Domain of unknown function (DUF5068). This family is expressed by Firmicutes. The function is not known. 185 -318894 pfam16782 SIL1 Nucleotide exchange factor SIL1. This family consists of fungal SIL1 nucleotide-exchange factor proteins.It interacts with Hsp70 (heat-shock protein of 70 kDa) Bip. 283 -318895 pfam16783 FANCM-MHF_bd FANCM to MHF binding domain. FANCM-MHF_bd is a structured region on Fanconi anaemia complementation group protein M that binds to a two-histone-fold-containing protein complex MHF. MHF binds double-strand DNA, stimulates the DNA-binding activity of FANCM, and contributes to the targeting of FANCM to chromatin. 115 -293389 pfam16784 HNHc_6 Putative HNHc nuclease. This family is found in Gammaproteobacteria. It may be an HNH-like nucleases. The shorter matches are likely to be from phage proteins whereas the longer members are probably from the bacterial genomes. 203 -318896 pfam16785 SMBP Small metal-binding protein. This histidine-rich protein binds metal ions. 111 -293391 pfam16786 RecA_dep_nuc Recombination enhancement, RecA-dependent nuclease. REF is a family of P1-like phage RecA-dependent nucleases. It does not appear to act as a positive RecA regulator. It is a new kind of enzyme, a RecA-dependent nuclease. 101 -318897 pfam16787 NDC10_II Centromere DNA-binding protein complex CBF3 subunit, domain 2. NDC10_II is a the second of five domains on the Kluyveromyces lactis Ndc10 protein. Each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. 304 -318898 pfam16788 ATF7IP_BD ATF-interacting protein binding domain. ATF7IP-BD is a short conserved region of activating transcription factor 7-interacting protein 1 found in higher eukaryotes. This domain appears to bind several key proteins such as TFIIE-alpha and TFIIE-beta as well the transcriptional regulator Sp1 which are part of the transcriptional machinery. 213 -318899 pfam16789 YscO-like YscO-like protein. This family of proteins is similar to the type III secretion protein YscO. The family includes Chlamydia trachomatis CT670 which is found in a type III secretion gene cluster. CT670 interacts with CT671, a putative YscP homolog and CT670 and CT671 may form a chaperone-effector pair. 160 -293395 pfam16790 Phage_clamp_A Bacteriophage clamp loader A subunit. This is the A subunit of bacteriophage DNA clamp loader required for loading of sliding clamps onto chromosomal DNA. These clamps are involved in processivity of DNA replication. 144 -318900 pfam16791 Connexin40_C Connexin 40 C-terminal domain. This is the C-terminal domain of connexin 40. It interacts with the C-terminal and cytoplasmic loop domains of connexin 43 and with the cytoplasmic loop pf connexin 40. 105 -318901 pfam16792 Caudo_bapla16 Phage tail base-plate attachment protein of Caudovirales ORF16. Caudo_bapla16 is a family of ORF16 tail-phage P2-like proteins that forms part of the base-plate at the tip of the phage tail. The whole base-plate complex is involved in host recognition and attachment, and consists of several proteins derived from consecutive open-reading-frames. This central domain is expressed from ORF16 in the lactococcal P2-phage and forms a trimer. 372 -318902 pfam16793 RepB_primase RepB DNA-primase from phage plasmid. RepB_primase is a DNA-primase produced by P4-like phages. It is a zinc-independent primase unlike Pri-type primases. It takes up a dumbbell shaped consisting of an N-terminal catalytic domain separated by a long alpha-helix plus tether and a C-terminal helical-bundle domain. Primases are necessary for phage replication. RepBprime primases such as in this family recognize both ssiA and ssiB, ie only 1 single-stranded primase initiation site on each strand, independently of each other and then synthesize primers that are elongated by DNA polymerase III. The phage is thus replicated exclusively in leading strand mode. 230 -339820 pfam16794 fn3_4 Fibronectin-III type domain. 102 -318904 pfam16795 Phage_integr_3 Archaeal phage integrase. catalyzes cleavage and ligation of DNA. 162 -318905 pfam16796 Microtub_bd Microtubule binding. This motor homology domain binds microtubules and lacks an ATP-binding site. 140 -339821 pfam16797 Fungal_KA1 Fungal kinase associated-1 domain. This domain is found at the C-terminus of several fungal kinases. 112 -318907 pfam16798 DUF5069 Domain of unknown function (DUF5069). 133 -318908 pfam16799 VGPC1_C C-terminal membrane-localization domain of ion-channel, VCN1. VCN1_C is the short C-terminal region of voltage-gated proton channel 1 proteins in higher eukaryotes. The domain is necessary for achieving the dimeric architecture, two monomers form a dimer via parallel alpha-helical coiled-coil interaction. but it is also essential for localising the protein to an intracellular membrane. 48 -318909 pfam16800 Endopep_inhib IseA DL-endopeptidase inhibitor. This domain functions as a DL-endopeptidase inhibitor. 150 -293406 pfam16801 MSL1_dimer dimerization domain of Male-specific-Lethal 1. MSL1_dimer is the short coiled dimerization domain of higher eukaryotic MSL1, part of the MSL or Male-Specific Lethal complex. This complex regulates the dosage compensation of the male X chromosome in Drosophila and other eukaryotes. The structure of the MSL1/MSL2 core shows that two MSL2 subunits bind to a dimer formed by two molecules of MSL1. MSL11 is a substrate for MSL2 E3 ubiquitin ligase activity. 36 -318910 pfam16802 DUF5070 Domain of unknown function (DUF5070). 154 -318911 pfam16803 DRE2_N Fe-S cluster assembly protein DRE2 N-terminus. This is the N-terminal domain of the fungal Fe-S cluster assembly protein DRE2. 129 -318912 pfam16804 DUF5071 Domain of unknown function (DUF5071). 119 -318913 pfam16805 Trans_coact Phage late-transcription coactivator. This family of proteins is found in Caudovirales. It is a late-transcription coactivator which interacts with the host RNA polymerase forming a part of the initiation complex. 69 -293411 pfam16806 ExsD Antiactivator protein ExsD. The antiactivator protein ExsD represses the transcriptional activator ExsA. ExsA activates expression of type III secretion system genes. Repression of ExsA by ExsD is relieved by the secretion chaperone ExsC. 237 -293412 pfam16807 DUF5072 Domain of unknown function (DUF5072). 112 -339822 pfam16808 PKcGMP_CC Coiled-coil N-terminus of cGMP-dependent protein kinase. PKcGMP_CC is the N-terminal coiled-coil, dimerization, domain of cGMP-protein kinases. 35 -293414 pfam16809 NleF_casp_inhib NleF caspase inhibitor. Binds to and inhibits caspase-9, caspase-8 and caspase-4. therefore preventing caspase-induced apoptosis in the host cell. 145 -318914 pfam16810 RXLR RXLR phytopathogen effector protein, Avirulence activity. RXLR is a family of phytopathogen avirulence or effector proteins. RXLR proteins are defined by a secretion signal peptide - not in this family - followed by a conserved N-terminal domain with the sequence motif RXLR (Arg-Xaa-Leu-Arg) consensus sequence. The RXLR part is required for translocation inside plant cells, although it appears to be dispensable for the biochemical activity of the effectors when expressed directly inside host cells. The effector activity resides in the C-terminal part of the family, which activate effector-triggered immunity in plants that carry a corresponding resistance (R) protein. The C-terminal region exhibits a fold appears to be able to evolve to outwit the host as the latter tries to acquire new immunity. 141 -318915 pfam16811 TAtT TRAP transporter T-component. TAtT is a family of one component, the T-component, of a sub-set of TRAP-Ts or Tripartite ATP-independent periplasmic transporters. TRAP-Ts are bacterial transport systems implicated in the import of small molecules into the cytoplasm in bacteria. They are all periplasmic lipoproteins. TatT consists of a 13-alpha-helical fold containing cryptic tetratricopeptide repeat motifs (cTPRs) and encompassing a pore, ie is a water-soluble trimer whose protomers are each perforated by a pore. It forms a complex with a P component, and a putative ligand-binding cleft of TatPT aligns with the pore of TatT. Family TatPT is represented by some members of pfam03480. 247 -318916 pfam16812 AdHead_fibreRBD C-terminal head domain of the fowl adenovirus type 1 long fibre. AdHead_fibreRBD is a C-terminal part of the head domain of the dsDNA viruses, no RNA stage, Adenovirus. This is a globular head domain with an anti-parallel beta-sandwich fold formed by two four-stranded beta-sheets with the same overall topology as human adenovirus fibre heads. This C-terminal domain is the receptor-binding domain of the avian adenovirus long fibre. 207 -339823 pfam16813 Cas_St_Csn2 CRISPR-associated protein Csn2 subfamily St. Cas_St_Csn2 is a family of Csn2 CRISPR-associated (Cas) proteins found in Firmicutes, largely Streptococcus and Enterococcus. CRISPR-associated (Cas) proteins are the main executioners of the process whereby prokaryotes acquire immunity against foreign genetic material. Cas allow short segments of this DNA, called spacer, to become incorporated into chromosomal loci as clustered regularly interspaced short palindromic repeats or CRISPRs; the resulting encoded RNAs are then processed into small fragments that guide the silencing of the invading genetic elements. Thus Cas are involved in the acquisition of new spacers. This family of St_Csn2 is longer than the canonical Csn2, pfam09711 through the addition of a large C-terminal domain. The central domain present in both families appears to be a channel that selectively interacts with dsDNA. 325 -293419 pfam16814 Read-through Read-through domain. The Enterobacteria phage minor coat protein A1 is a C-terminally extended version of the coat protein formed when ribosomes read-through a leaky stop codon. This is the C-terminal read-through domain of A1. 182 -339824 pfam16815 HRI1 Protein HRI1. This fungal protein interacts with Sec72 and Hrr25, it's function is not yet known. 222 -339825 pfam16816 DotD DotD protein. The DotD protein is a component of the Dot/Icm type IVB secretion system. It is involved in the outer membrane targeting of DotH. 120 -293422 pfam16817 DUF5073 Domain of unknown function (DUF5073). This domain of unknown function is a membrane protein found in Mycobacterium. 121 -318919 pfam16818 SLM4 Protein SLM4. The fungal protein SLM4 (EGO3, GSE1) is a component of the GSE complex and the EGO (TOR) complex. The GSE complex is required for trafficking GAP1 out of the endosome. The EGO complex is involved in the regulation of autophagy and cell growth. SLM4 is required for the integrity and function of the EGO complex. 159 -318920 pfam16819 DUF5074 Domain of unknown function (DUF5074). This family of proteins from Bacteroidetes, is found with a PKD domain at the N-terminus. Several members are annotated as putative quinonprotein alcohol dehydrogenase-like proteins but this could not be confirmed. 112 -318921 pfam16820 PKD_3 PKD-like domain. This PKD-like family is found in various Bacteroidetes species. 68 -293426 pfam16821 C_Hendra C protein from hendra and measles viruses. This is a family of C proteins from a number of Morbillivirus species. 150 -318922 pfam16822 ALGX SGNH hydrolase-like domain, acetyltransferase AlgX. ALGX is a family found in bacteria. The domain demonstrates catalytic activity similar to that of the SGNH hydrolase-like domain, with the typical Ser-His-Asp triad found in this enzyme. Alginate is an exopolysaccharide that contributes to biofilm formation. ALGX is secreted into the biofilm and is responsible for the acetylation of biofilm polymers that help protect them from host destruction. 266 -318923 pfam16823 PilZ_2 Atypical PilZ domain, cyclic di-GMP receptor. PilZ_2 is a family of cyclic di-GMP receptors found in Proteobacteria plant pathogens. PilZ_2 forms a tetramer that adopts a novel 'house-like' construct, with a central pillar domain of the four vertical alpha3 helices, a roof-top domain made up of the eight inclined alpha2 and alpha4 helices, and four corner-stone domains making up the PilZ domain. Cyclic-di-GMP is a universal secondary messenger molecule extensively involved in regulating bacterial pathogenicity, and its downstream receptor appears to be this PilZ domain. 136 -318924 pfam16824 CBM_26 C-terminal carbohydrate-binding module. CBM_26 is a family of bacterial carbohydrate-binding modules frequently found at the C-terminus of enzymes. The combination is not unusual as the CBMs function to bring the relevant polysaccharide into close proximity to the active site. 130 -318925 pfam16825 DUF5075 IGP family C-type lectin domain. This C-type lectin domain is present in the IGP 'invariant glycoprotein' family of proteins from Trypanosoma and Leishmania. 173 -318926 pfam16826 DUF5076 Domain of unknown function (DUF5076). 84 -318927 pfam16827 zf-HC3 zinc-finger. This is a family of putative zinc-fingers from Actinobacteriales. 67 -339826 pfam16828 GAGBD GAG-binding domain on surface antigen. GAGBD is a domain on the surface antigen of the swine pathogen Streptococcus suis and related species. This domain expresses three clusters of basic residues, largely lysines, that are critical for heparin-binding and cell adhesion during bacterium-host cell adhesion. The GAGBD domain binds to the host cell surface glycosaminoglycans or GAGs of the Streptococcus. 152 -293434 pfam16829 ATR13 Avirulence protein ATR13, RxLR effector. ATR13 is expressed by the plant pathogen oomycete Hyaloperonospora. Such phytopathogenic oomycetes like the one that infects Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), grow intercellularly, forming parasitic structures called haustoria. Haustoria play a role in feeding and suppression of host defense systems. A whole range of pathogen proteins, called effectors, are secreted across this haustorial membrane, a subset of which are further translocated across the plant plasma membrane by an unknown mechanism that is present in both plants and animals. ATR13 is an RxLR effector from the downy mildew oomycete, and is a very dynamic protein. It contains two surface-exposed patches of polymorphism, one of which is involved in the specific recognition by host R-genes. The R-gene-products detect the presence of the infection by recognising the effector proteins. Once detected, the host R-genes trigger apoptosis of the host cell. The R-gene-products carry a specific motif, RxLR, that is recognizes the effector proteins. 101 -318929 pfam16830 NBD94 Nucleotide-Binding Domain 94 of RH. NBD94 is a domain on one of the reticulocyte binding protein homolog family or RH proteins expressed by the malaria parasite merozoite. RH proteins recognize erythrocytes and are important in virulence. This domain has been shown to exhibit selective binding to ATP and ADP. Binding of ATP or ADP induces nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94 that directly impact on the ability of the RH to bind to the red blood cells. 91 -318930 pfam16831 CssAB CS6 fimbrial subunits A and B, Coli surface antigen 6. CssAB is a family of CS6 pilins from E.coli, including both subunits A and B. It acts as a colonisation factor for the enterotoxigenic species pf E.coli to mediate bacterial attachment to the small intestinal epithelium. Both subunits in the fibre bind to receptors on epithelial cells, and that CssB, but not CssA, specifically recognizes the extracellular matrix protein fibronectin. 129 -318931 pfam16832 EKLF_TAD1 Erythroid krueppel-like transcription factor, transactivation 1. This family is the first part of the minimal transactivation domain of erythroid-specific transcription factor EKFL in craniates. EKLF plays an important role in red blood cell development; it is posttranslationally modified by UBI on several lysine residues, and its turnover in the cell is regulated by ubiquitin-mediated degradation. In the first 90 residues at the N-terminus EKLF carries a minimal transactivation or TAD domain that is highly acidic. This minimal TAD of EKLF can be further subdivided into two independent domains EKLF_TAD1 (residues 1-40) and EKLF_TAD2 (residues 51-90), pfam16833, that are both capable of independently activating transcription. TAD1, is able to form a non-covalent interaction with ubiquitin. Both TAD1 and TAd2 are highly acidic and carry a PEST (sequence rich in proline, glutamic acid, serine, and threonine) region. Deletion of either PEST domain significantly slows down degradation of EKLF by ubiquitin. The minimal TAD has an overlapping activation/degradation function that is critical for the role of EKLF in red blood cell development. 27 -318932 pfam16833 EKLF_TAD2 Erythroid krueppel-like transcription factor, transactivation 2. This family is the second part of the minimal transactivation domain of erythroid-specific transcription factor EKFL in craniates. EKLF plays an important role in red blood cell development; it is post-translationally modified by ubiquitin on several lysine residues, and its turnover in the cell is regulated by ubiquitin-mediated degradation. In the first 90 residues at the N-terminus EKLF carries a minimal transactivation or TAD domain that is highly acidic. This minimal TAD of EKLF can be further subdivided into two independent domains EKLF_TAD1 (residues 1-40), pfam16832, and EKLF_TAD2 (residues 51-90) that are both capable of independently activating transcription. Both TAD1 and TAD2 are highly acidic and carry a PEST (sequence rich in proline, glutamic acid, serine, and threonine) region. Deletion of either PEST domain significantly slows down degradation of EKLF by ubiquitin. The minimal TAD has an overlapping activation/degradation function that is critical for the role of EKLF in red blood cell development. 27 -318933 pfam16834 CSM2 Shu complex component Csm2, DNA-binding. CSM2 is one of the components of the yeast Shu complex that maintains genomic stability during replication. CSM2 complexes first with Psy3, and their L2 loops confer the DNA-binding activity to the Shu complex. The Shu complex binds to recombination sites and is required for Rad51 assembly and function during meiosis. The heterodimer of Psy3-Csm2 stabilizes the Rad51-single-stranded DNA complex independently of nucleotide cofactor because Psy3-Csm2 is a structural mimic of the Rad51-dimer. 200 -318934 pfam16835 SF3A2 Pre-mRNA-splicing factor SF3a complex subunit 2 (Prp11). SF3A2 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp21 (subunit 1). with Prp21 wrapping around Prp11. 80 -318935 pfam16836 PSY3 Shu complex component Psy3, DNA-binding description. PSY3 is one of the components of the yeast Shu complex that maintains genomic stability during replication. Psy3 complexes first with Cms2, and their L2 loops confer the DNA-binding activity to the Shu complex. The Shu complex binds to recombination sites and is required for Rad51 assembly and function during meiosis. The heterodimer of Psy3-Csm2 stabilizes the Rad51-single-stranded DNA complex independently of nucleotide cofactor because Psy3-Csm2 is a structural mimic of the Rad51-dimer. 215 -339827 pfam16837 SF3A3 Pre-mRNA-splicing factor SF3A3, of SF3a complex, Prp9. SF3A3 is one of the components of the SF3a splicing factor complex of the mature U2 snRNP (small nuclear ribonucleoprotein particle). In yeast, SF3a shows a bifurcated assembly structure of three subunits, Prp9 (subunit 3), Prp11 (subunit 2) and Prp21 (subunit 1). Prp9 and Prp21 were not thought to interact with each other but the alpha1 helix of Prp9 does make important contacts with the SURP2 domain of Prp21, thus the two do interact via a bidentate-binding mode. Prp9 harbours a major binding site for stem-loop IIa of U2 snRNA. 76 -318937 pfam16838 Caud_tail_N Caudoviral major tail protein N-terminus. This is the N-terminal domain of the major tail protein, or knob protein, from Caudovirales. 116 -318938 pfam16839 Antimicrobial25 Nematode antimicrobial peptide. This family of antimicrobial peptides is found in nematodes. 54 -293445 pfam16840 ACTL7A_N Actin-like protein 7A N-terminus. The N-terminus of actin-like protein 7A is required for interaction with testin (TES). 65 -318939 pfam16841 CBM60 Ca-dependent carbohydrate-binding module xylan-binding. CBM60 is a family of xylan-binding modules found in conjunction with xylanase enzymes in many bacterial species that attack plant cell walls. Xylan is the major hemicellulose component of most plant cell walls, and is one of the most complex carbohydrates targeted by CBMs. CBM60 modules are evolutionarily related to CBM36 domains as both show circular permutation in the beta-barrel folds. CBM60 targets xylan but is also able to bind cellulose and galactan and thus contribute towards breakdown of the plant cell wall. Recognition of the ligand is conferred primarily through the polar interactions of O2 (oxygen) and O3 of a single sugar with a protein-bound calcium ion. 93 -318940 pfam16842 RRM_occluded Occluded RNA-recognition motif. This family is an unusual, usually C-terminal, RNA-recognition motif found in fungi. In yeast it is the fourth RRM domain on the essential splicing factor Prp24. Structurally, it has a non-canonical RRM fold with the expected beta-aloha-beta-beta-alpha-beta RRM-fold is flanked by N- and C-terminal alpha-helices. These two additional flanking alpha-helices occlude the beta-sheet face. The electropositive surface thereby presented is an alternative RNA-binding surface that allows both binding and unwinding of the U6 small nuclear RNA's internal stem loop, at least in vitro. 79 -318941 pfam16843 Get5_bdg Binding domain to Get4 on Get5, Golgi to ER traffic protein. Get5_bdg is the binding domain at the N-terminus of Get5, or Golgi to ER traffic protein 5, in yeast, that binds to Get4. Together with Get3, this tripartite complex is involved in the insertion of tail-anchored proteins in the ER membrane. 52 -318942 pfam16844 DIMCO_N Dinitrogenase iron-molybdenum cofactor, N-terminal. DIMCO_N is the N-terminal domain of the gamma (Y) subunit of nitrogenase. An alternative name is NafY_N, for nitrogenase accessory factor Y N-terminal. This region is negatively charged and appears to be necessary for recognising and interacting with the apo state of dinitrogenase. The full-length NafY protein facilitates the transfer of iron-molybdenum cofactor, or FeMo-co, into apodinitrogenase by binding to both. The C-terminal region, family Nitro_FeMo-Co, pfam02579, is the part that binds to the cofactor, and the N-terminus binds to apodinitrogenase. Nitrogenase is the bacterial enzyme responsible for nitrogen fixation by catalyzing the reduction of nitrogen gas (N2) to ammonium in an ATP-dependent manner. It has two components, dinitrogenase and dinitrogenase reductase. 91 -339828 pfam16845 SQAPI Aspartic acid proteinase inhibitor. SQAPI, aspartic acid inhibitor first isolated from squash, inhibits a wide range of aspartic proteinases. This particular family of PAAPIs (proteinaceous aspartic acid inhibitors) seems to have evolved quite recently from an ancestral cystatin. Structurally it consists of a four-stranded anti-parallel beta-sheet gripping an alpha-helix in much the same manner that a hand grips a tennis racket. The unstructured N-terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. 83 -339829 pfam16846 Cep3 Centromere DNA-binding protein complex CBF3 subunit B. Cep3 is one of the major components of the CBF3. It dimerizes and in so doing forms a large central channel that is large enough to accommodate duplex B-form DNA. The dimerization region is followed by a linker to the zinc-finger domain at the C-terminus. The CBF3 complex is an essential core component of the budding yeast kinetochore and is required for the centromeric localization of all other kinetochore proteins. Cep3 is the only component with DNA-binding properties. 507 -293452 pfam16847 AvrPtoB_bdg Avirulence AvrPtoB, BAK1-binding domain. AvrPtoB_bdg is a binding region on a family of bacterial plant pathogenic proteins. Type III effector proteins are injected into plants by bacteria when they are under attack, eg Pseudomonas syringae when attacking tomato. AvrPtoB is one such effector that suppresses the plants' PAMP-triggered innate immunity. PAMPs are pathogen/microbe-associated molecular patterns that are detected as non-self by a host. AvrPtoB suppresses this response by binding to BAK1, a kinase that acts with several pattern recognition receptors to activate defense signalling. AvrPtoB_bdg is the region of AvrPtoB that binds to BAK1 thereby preventing its kinase activity after the perception of flagellin. 91 -318945 pfam16848 SoDot-IcmSS Substrate of the Dot/Icm secretion system, putative. This is a family of putative substrates of the Dot/Icm type IVA secretion system from Legionella species. 177 -293454 pfam16849 Glyco_transf_88 Glycosyltransferase family 88. This is a family of type A glycosyltransferases found in Legionella. It acts as a virulence factor by the glucosylation of EF1A (elongation factor 1A) thereby blocking protein synthesis in the host cell. 423 -318946 pfam16850 Inhibitor_I66 Peptidase inhibitor I66. This family of serine protease inhibitors has a beta-trefoil fold and inhibits trypsin and chymotrypsin. 146 -318947 pfam16851 Stomagen Stomagen. Stomagen (epidermal patterning factor-like protein 9) acts as a positive regulator of stomatal development. 50 -293457 pfam16852 HHV-1_VABD Herpes viral adaptor-to-host cellular mRNA binding domain. HHV-1_VABD is the short region of the Herpes simplex 1 virus' specific signature adaptor protein that binds to the cellular mRNA export factor such as mouse REF. 42 -339830 pfam16853 CDC13_N Cell division control protein 13 N-terminus. This domain is found at the N-terminus of fungal cell division control protein 13 (CDC13). It has an OB type fold. It is involved in dimerization of CDC13 and in interaction of CDC13 with the catalytic subunit of DNA polymerase alpha, Pol1. 208 -318949 pfam16854 VPS53_C Vacuolar protein sorting-associated protein 53 C-terminus. This is the C-terminal domain of fungal vacuolar protein sorting-associated protein 53. 202 -293460 pfam16855 Soc Small outer capsid protein. This protein attaches to and stabilizes the bacteriophage capsid. 74 -293461 pfam16856 CDC4_D Cell division control protein 4 dimerization domain. This is the dimerization domain (D domain) of fungal cell division control protein 4. 49 -318950 pfam16857 RNA_pol_inhib RNA polymerase inhibitor. This bacteriophage protein inhibits the bacterial host RNA polymerase by interacting with the RpoC subunit and inhibiting the formation of a promoter complex. 47 -318951 pfam16858 CNDH2_C Condensin II complex subunit CAP-H2 or CNDH2, C-term. CNDH2_C is the C-terminal domain of the H2 subunit of the condensin II complex, found in eukaryotes but not fungi. Eukaryotes carry at least two condensin complexes, I and II, each made up of five subunits. The functions of the two complexes are collaborative but non-overlapping. CI appears to be functional in G2 phase in the cytoplasm beginning the process of chromosomal lateral compaction while the CII are concentrated in the nucleus, possibly to counteract the activity of cohesion at this stage. In prophase, CII contributes to axial shortening of chromatids while CI continues to bring about lateral chromatid compaction, during which time the sister chromatids are joined centrally by cohesins. There appears to be just one condensin complex in fungi. CI and CII each contain SMC2 and SMC4 (structural maintenance of chromosomes) subunits, then CI has non-SMC CAP-D2 (CND1), CAP-G (CND3), and CAP-H (CND2). CII has, in addition to the two SMCs, CAP-D3, CAPG2 and CAP-H2. All four of the CAP-D and CAP-G subunits have degenerate HEAT repeats, whereas the CAP-H are kleisins or SMC-interacting proteins (ie they bind directly to the SMC subunits in the complex). The SMC molecules are each long with a small hinge-like knob at the free end of a longish strand, articulating with each other at the hinge. Each strand ends in a knob-like head that binds to one or other end of the CAP-H subunit. The HEAT-repeat containing D and G subunits bind side-by-side between the ends of the H subunit. Activity of the various parts of the complex seem to be triggered by extensive phosphorylations, eg, entry of the complex, in Sch.pombe, into the nucleus during mitosis is promoted by Cdk1 phosphorylation of SMC4/Cut3; and it has been shown that Cdk1 phosphorylates CAP-D3 at Thr1415 in He-La cells thus promoting early stage chromosomal condensation by CII. 238 -339831 pfam16859 TetR_C_11 Bacterial transcriptional repressor C-terminal. This family of bacterial transcriptional repressors is characterized by the short approximately 50 amino acid stretch of residues constituting the helix-turn-helix DNA binding motif, around the YRFhY motif. The target proteins that are repressed are involved in the transcriptional control of multi-drug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. Another target protein is BetI, an osmoprotectant which controls the choline-glycine betaine pathway in E.coli. 112 -318953 pfam16860 CX9C CHCH-CHCH-like Cx9C, IMS import disulfide relay-system,. CX9C is the first half of a twin Cx9C motif in eukaryotic proteins. The function of this motif is to import nuclear-encoded mitochondrial intermembrane-space-proteins into the IMS (intermembrane space), as these latter lack a mitochondrial targeting sequence. The Cx9C proteins have a disulfide-bonded alpha-hairpin conformation. Cx9C-containing proteins are thus putative substrates for the Mia40-dependent thiol-disulfide exchange mechanism that carries out an oxidative folding process resulting in the proteins being trapped in the IMS. 41 -339832 pfam16861 Carbam_trans_C Carbamoyltransferase C-terminus. This domain is found in NodU from Rhizobium, CmcH from Nocardia lactamdurans and the bifunctional carbamoyltransferase TobZ from Streptoalloteichus tenebrarius. NodU a Rhizobium nodulation protein involved in the synthesis of nodulation factors has 6-O-carbamoyltransferase-like activity. CmcH is involved in cephamycin (antibiotic) biosynthesis and has 3-hydroxymethylcephem carbamoyltransferase activity, EC:2.1.3.7 catalyzing the reaction: Carbamoyl phosphate + 3-hydroxymethylceph-3-EM-4-carboxylate <=> phosphate + 3-carbamoyloxymethylcephem. TobZ functions as an ATP carbamoyltransferase and tobramycin carbamoyltransferase. These proteins contain two domains, this is the smaller, C-terminal, domain. 169 -318955 pfam16862 Glyco_hydro_79C Glycosyl hydrolase family 79 C-terminal beta domain. This domain is found at the C-terminus of glycosyl hydrolase family 79 proteins. It's function is not yet known. 103 -339833 pfam16863 NtCtMGAM_N N-terminal barrel of NtMGAM and CtMGAM, maltase-glucoamylase. NtCtMGAM_N is a beta-barrel-like structure just N-terminal to the catalytic domain of maltase-glucoamylase in eukaryotes. It contributes to the architecture of the substrate-binding site, by donating a loop that comes into close contact with two regions in the catalytic domain thereby creating the site. This family is frequently found at the N-terminus of Glycosyl hydrolase 31, pfam01055.to which it contributes as above. 112 -339834 pfam16864 dimerization2 dimerization domain. This domain, found in methyltransferases, functions as a dimerization domain. 85 -293470 pfam16865 GST_C_5 Glutathione S-transferase, C-terminal domain. Leishmania major and Trypanosoma cruzi glutathione-S-transferase (GST) has undergone gene duplication, diversification, and gene fusion leading to an four domain enzyme which contains two repeats of a GST N-terminal domain followed by a GST C-terminal domain. 108 -339835 pfam16866 PHD_4 PHD-finger. 64 -339836 pfam16867 DMSP_lyase Dimethlysulfonioproprionate lyase. Breaks down into dimethylsulfoniopropionate (DMSP) into acrylate and dimethyl sulfide. 161 -318960 pfam16868 NMT1_3 NMT1-like family. 287 -318961 pfam16869 CNDH2_M PF16858. CNDH2_M is the middle domain of the H2 subunit of the condensin II complex, found in eukaryotes but not fungi. Eukaryotes carry at least two condensin complexes, I and II, each made up of five subunits. The functions of the two complexes are collaborative but non-overlapping. CI appears to be functional in G2 phase in the cytoplasm beginning the process of chromosomal lateral compaction while the CII are concentrated in the nucleus, possibly to counteract the activity of cohesion at this stage. In prophase, CII contributes to axial shortening of chromatids while CI continues to bring about lateral chromatid compaction, during which time the sister chromatids are joined centrally by cohesins. There appears to be just one condensin complex in fungi. CI and CII each contain SMC2 and SMC4 (structural maintenance of chromosomes) subunits, then CI has non-SMC CAP-D2 (CND1), CAP-G (CND3), and CAP-H (CND2). CII has, in addition to the two SMCs, CAP-D3, CAPG2 and CAP-H2. All four of the CAP-D and CAP-G subunits have degenerate HEAT repeats, whereas the CAP-H are kleisins or SMC-interacting proteins (ie they bind directly to the SMC subunits in the complex). The SMC molecules are each long with a small hinge-like knob at the free end of a longish strand, articulating with each other at the hinge. Each strand ends in a knob-like head that binds to one or other end of the CAP-H subunit. The HEAT-repeat containing D and G subunits bind side-by-side between the ends of the H subunit. Activity of the various parts of the complex seem to be triggered by extensive phosphorylations, eg, entry of the complex, in Sch.pombe, into the nucleus during mitosis is promoted by Cdk1 phosphorylation of SMC4/Cut3; and it has been shown that Cdk1 phosphorylates CAP-D3 at Thr1415 in He-La cells thus promoting early stage chromosomal condensation by CII. This region represents the disordered section of CNDH2 between the N- and the C-termini. 121 -339837 pfam16870 OxoGdeHyase_C 2-oxoglutarate dehydrogenase C-terminal. OxoGdeHyase_C is a family found immediately C-terminal to Transket_pyr, pfam02779. It is found at the C-terminus of 2-oxoglutarate dehydrogenase. 149 -318963 pfam16871 DUF5077 Domain of unknown function (DUF5077). This family is found at the N-terminal of DUF3472, pfam00958. 189 -318964 pfam16872 putAbiC Putative phage abortive infection protein. Several members are annotated as putative phage abortive infection proteins. 81 -318965 pfam16873 AbiGii_2 Putative abortive phage resistance protein AbiGii toxin. AbiGii is a family of putative type IV toxin-antitoxin system toxins. The AbiG abortive phage resistance protein affects lactococcal bacteriophages phiP335 and phiQ30 but not the other P335 phage species. AbiGii toxin appears to confer resistance to phages by a mechanism of abortive infection that acts by interfering with phage RNA synthesis. The cognate anti-toxin is found in pfam10899. 397 -339838 pfam16874 Glyco_hydro_36C Glycosyl hydrolase family 36 C-terminal domain. This domain is found at the C-terminus of many family 36 glycoside hydrolases. It has a beta-sandwich structure with a Greek key motif. 78 -339839 pfam16875 Glyco_hydro_36N Glycosyl hydrolase family 36 N-terminal domain. This domain is found at the N-terminus of many family 36 glycoside hydrolases. It has a beta-supersandwich fold. 255 -339840 pfam16876 Lipin_mid Lipin/Ned1/Smp2 multi-domain protein middle domain. This is a middle domain of lipins. Overall the enzyme acts as a magnesium-dependent phosphatidate phosphatase enzyme that catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis. EC:5.2.1.8. 93 -318969 pfam16877 DUF5078 Domain of unknown function (DUF5078). This family of unknown function is found in Mycobacterium spp. 119 -339841 pfam16878 SIX1_SD Transcriptional regulator, SIX1, N-terminal SD domain. SIX1_SD is a family of eukaryotic proteins, and it is found N-terminal to the Homeobox domain. As a transcription factor it lacks intrinsic activation domains and thus needs to bind to the EYA family of co-factors in order to mediate transcriptional activation. It is the SD domain that is necessary for this protein-protein interaction, binding to the C-terminal region of EYA - Eyes absent homolog proteins. 110 -339842 pfam16879 Sin3a_C C-terminal domain of Sin3a protein. Sin3a_C is a family of eukaryotic species. It is found at the C-terminus of the co-repressor Sin3a, and downstream of family Sin3_corepress, pfam08295. 278 -318972 pfam16880 EHD_N N-terminal EH-domain containing protein. EHD_N is a short domain that lies at the very N-terminus of many dynamins and EF-hand domain-containing proteins. 32 -318973 pfam16881 LIAS_N N-terminal domain of lipoyl synthase of Radical_SAM family. LIAS_N is found as the N-terminal domain of the Radical_SAM family in the members that are lipoyl synthase enzymes, particularly the mitochondrial ones in metazoa but also those in bacteria. 99 -293487 pfam16882 DUF5079 Domain of unknown function (DUF5079). This protein is believed to be involved in the type VII secretion system. 217 -293488 pfam16883 DUF5080 Domain of unknown function (DUF5080). This protein is believed to be involved in the type VII secretion system. 204 -339843 pfam16884 ADH_N_2 N-terminal domain of oxidoreductase. N-terminal region of oxidoreductase and prostaglandin reductase and alcohol dehydrogenase. 108 -318975 pfam16885 CAC1F_C Voltage-gated calcium channel subunit alpha, C-term. CAC1F_C is the C-terminal region of voltage-gated calcium channel subunit alpha in higher eukaryotes. The exact function of this domain is not known.This region lies immediately downstream from the CDB motif, pfam08673. 353 -339844 pfam16886 ATP-synt_ab_Xtn ATPsynthase alpha/beta subunit N-term extension. ATP-synt_ab_Xtn is an extension of the alpha-beta catalytic subunit of VATA or V-type proton ATPase catalytic subunit at the N-terminal end. It is found from bacteria to humans, and was not modelled in family ATP-synt_ab, pfam00006. 120 -318977 pfam16887 DUF5081 Domain of unknown function (DUF5081). This protein is believed to be involved in the type VII secretion system. 230 -339845 pfam16888 DUF5082 Domain of unknown function (DUF5082). This protein is believed to be involved in the type VII secretion system. 120 -339846 pfam16889 Hepar_II_III_N Heparinase II/III N-terminus. This is the N-terminal domain of heparinase II/III proteins. It is a toroid-like domain. 340 -318980 pfam16890 DUF5083 Domain of unknown function (DUF5083). This protein is believed to be involved in the type VII secretion system. 157 -339847 pfam16891 STPPase_N Serine-threonine protein phosphatase N-terminal domain. This family is often found at the N-terminus of Metallophos family, in serine-threonine protein phosphatases. 48 -318982 pfam16892 CHS5_N Chitin biosynthesis protein CHS5 N-terminus. This domain is found at the N-terminus of fungal chitin biosynthesis protein CHS5. It functions as a dimerization domain. 48 -339848 pfam16893 fn3_2 Fibronectin type III domain. This fibronectin type III domain is found in fungal chitin biosynthesis protein CHS5 where, together with the neighboring BRCT domain (pfam00533), it binds to the Arf1 GTPase. 89 -318984 pfam16894 DUF5084 Domain of unknown function (DUF5084). This protein is believed to be involved in the type VII secretion system. 130 -318985 pfam16895 DUF5085 Domain of unknown function (DUF5085). This protein is believed to be involved in the type VII secretion system. 141 -318986 pfam16896 PGDH_C Phosphogluconate dehydrogenase (decarboxylating) C-term. PGDH_C is the C-terminal domain of putative bacterial phosphogluconate dehydrogenase proteins. 154 -339849 pfam16897 MMR_HSR1_Xtn C-terminal region of MMR_HSR1 domain. MMR_HSR1_Xtn is the C-terminal region of some members of the MMR_HSR1 family. 105 -339850 pfam16898 TOPRIM_C C-terminal associated domain of TOPRIM. TOPRIM_C is found as the C-terminal extension of the TOPRIM domain, pfam01751 in metazoa. 127 -339851 pfam16899 Cyclin_C_2 Cyclin C-terminal domain. Cyclins contain two domains of similar all-alpha fold, this family corresponds with the C-terminal domain of some cyclins including cyclin C and cyclin H. 97 -339852 pfam16900 REPA_OB_2 Replication protein A OB domain. Replication protein A contains two OB domains in it's DNA binding region. This is the second of the OB domains. 98 -339853 pfam16901 DAO_C C-terminal domain of alpha-glycerophosphate oxidase. DAO_C is the C-terminal region of alpha-glycerophosphate oxidase. 126 -318992 pfam16902 Type2_restr_D3 Type-2 restriction enzyme D3 domain. This is the D3 domain of type-2 restriction enzyme. These enzymes contain an N-terminal recognition domain and a C-terminal catalytic domain. The recognition domain consists of the D1, D2 and D3 domains. 69 -293508 pfam16903 Capsid_N Major capsid protein N-terminus. This is the N-terminal domain of the major capsid protein in several dsDNA viruses. 196 -293509 pfam16904 PurL_C Phosphoribosylformylglycinamidine synthase II C-terminus. This is the C-terminal domain of phosphoribosylformylglycinamidine synthase II in Thermatoga and related species. 92 -339854 pfam16905 GPHH Voltage-dependent L-type calcium channel, IQ-associated. GPHH is a sequence motif found in this short domain on voltage-dependent L-type calcium channel proteins in eukaryotes. The domain is closely associated with the IQ-domain, pfam08763. 71 -339855 pfam16906 Ribosomal_L26 Ribosomal proteins L26 eukaryotic, L24P archaeal. Ribosomal_L26 is a family of the 50S and the 60S ribosomal proteins from eukaryotes - L26 - and archaea - L25. 114 -318995 pfam16907 Caskin-Pro-rich Proline rich region of Caskin proteins. This proline rich region is found in Caskin proteins. Caskins are CASK-binding synaptic scaffolding proteins. This region is predicted to be natively unstructured. Its function is not known. 90 -339856 pfam16908 VPS13 Vacuolar sorting-associated protein 13, N-terminal. VPS13 is a family of eukaryotic vacuolar sorting-associated 13 proteins that lies just downstream from Chorein_N family, pfam12624. The exact function of this domain is not known. 192 -318997 pfam16909 VPS13_C Vacuolar-sorting-associated 13 protein C-terminal. VPS13_C is a family of eukaryotic vacuolar sorting-associated 13 proteins that lies at the C-terminus of the members, The exact function of this domain is not known. 173 -339857 pfam16910 VPS13_mid_rpt Repeating coiled region of VPS13. This repeat is a family of repeating regions of eukaryotic vacuolar sorting-associated 13 proteins. This repeating region shares a common core element that includes a well-conserved P-x4-P-x13-17-G sequence. The exact function of this repeat is not known. 235 -318999 pfam16911 PapA_C Phthiocerol/phthiodiolone dimycocerosyl transferase C-terminus. 120 -319000 pfam16912 Glu_dehyd_C Glucose dehydrogenase C-terminus. 211 -293518 pfam16913 PUNUT Purine nucleobase transmembrane transport. PUNUT is a family of largely plant and fungal purine transporters. Most members are 10-pass transmembrane proteins, and they belong to the drug/metabolite transporter (dmt) superfamily. The plant vascular system transports nucloebases and their derivatives such as cytokinins and caffeine by a common H+-coupled high-affinity purine transport system; the PUNUT family members carry out this transport. 321 -293519 pfam16914 TetR_C_12 Bacterial transcriptional repressor C-terminal. This domain is found at the C-terminus of a small group of bacterial TetR transcriptional regulator proteins. 106 -319001 pfam16915 Eryth_link_C Annelid erythrocruorin linker subunit C-terminus. This domain is found in linker subunits of the erythrocruorin respiratory complex in annelid worms. 120 -339858 pfam16916 ZT_dimer dimerization domain of Zinc Transporter. ZT_dimer is the dimerization region of the whole molecule of zinc transporters since the full-length members form a homodimer during activity. The domain lies within the cytoplasm and exhibits an overall structural similarity with the copper metallochaperone Hah1 UniProtKB:O00244, exhibiting an open alpha-beta domain with two alpha helices (H1 and H2) aligned on one side and a three-stranded mixed beta-sheet (S1 to S3) on the other side. The N-terminal part of the members is the Cation_efflux family, pfam01545. 73 -319003 pfam16917 BPL_LplA_LipB_2 Biotin/lipoate A/B protein ligase family. 182 -319004 pfam16918 PknG_TPR Protein kinase G tetratricopeptide repeat. This domain is found at the C-terminus of protein kinase G and contains a tetratricopeptide repeat (TPR). 340 -319005 pfam16919 PknG_rubred Protein kinase G rubredoxin domain. This rubredoxin domain is found at the N-terminus of protein kinase G, and is essential for kinase activity. 137 -319006 pfam16920 TPKR_C2 Tyrosine-protein kinase receptor C2 Ig-like domain. In the tyrosine-protein kinase receptor NTRK1 this domain interacts with beta-nerve growth factor NGF. 45 -339859 pfam16921 Tex_YqgF Tex protein YqgF-like domain. This is the YqgF-like domain of the bacterial Tex protein, which is involved in transcriptional processes. 126 -339860 pfam16922 SLD5_C DNA replication complex GINS protein SLD5 C-terminus. The C-terminal domain of DNA replication complex GINS protein SLD5 is important in the assembly of the GINS complex, a complex which is involved in initiation of DNA replication and progression of DNA replication forks. 57 -319009 pfam16923 Glyco_hydro_63N Glycosyl hydrolase family 63 N-terminal domain. This is a family of eukaryotic enzymes belonging to glycosyl hydrolase family 63. They catalyze the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2). Mannosyl oligosaccharide glucosidase EC:3.2.1.106 is the first enzyme in the N-linked oligosaccharide processing pathway. This family represents the N-terminal beta sandwich domain. 221 -339861 pfam16924 DpaA_N Dipicolinate synthase subunit A N-terminal domain. 116 -293530 pfam16925 TetR_C_13 Bacterial transcriptional repressor C-terminal. 113 -293531 pfam16926 HisKA_4TM Archaeal 4TM region of histidine kinase. This N-terminal region of histidine-kinases consists of 4xTMs and is found in Archaea. 164 -319011 pfam16927 HisKA_7TM N-terminal 7TM region of histidine kinase. HisKA_7TM is an N-terminal region consisting of seven transmembrane domains found in Archaea and some bacteria. It is always found associated with histidine kinase. 219 -293533 pfam16928 Inj_translocase DNA/protein translocase of phage P22 injectosome. Inj_translocase is a family of putative phage translocases that are involved in the injectosome mechanism. Phage P22 of Salmonella typhimurium ejects four proteins, gp7, gp16, gp20 and gp26, which are ejected from the phage virion into the bacterial cell after absorption. These four proteins may play a role in DNA ejection. 217 -339862 pfam16929 Asp2 Accessory Sec system GspB-transporter. Asp2 is a family of the SecA2/Y2 accessory Sec secretory system of Gram-positive bacteria. It is specific for large serine-rich repeat, cell-wall-anchored, glycoproteins such as GspB. Export of GspB requires the three Asp1-Asp3 proteins. Asp2, in conjunction with Asp3, probably acts as a chaperone in the early stage of GspB transport. 509 -319013 pfam16930 Porin_5 Putative porin. 538 -339863 pfam16931 Phage_holin_8 Putative phage holin. 123 -339864 pfam16932 T4SS_TraI Type IV secretory system, conjugal DNA-protein transfer. T4SS_TraI is a family of putative Gram-negative, largely Proteobacterial, type IV conjugal DNA-Protein transfer or VirB secretory pathway (IVSP) proteins. 210 -339865 pfam16933 PelG Putative exopolysaccharide Exporter (EPS-E). PelG is a family of putative exopolysaccharide transporters like PelG. Most members carry twelve transmembrane regions. The family also contains fusion proteins with glycosyl transferase group 1, which are putative flippase transporters. 452 -293539 pfam16934 Mersacidin Two-component Enterococcus faecalis cytolysin (EFC). Mersacidin is a cytolysin, a lantibiotic produced by Gram-positive bacteria, The cytolysin is a 'pseudohaemolysin' which produces haemolysis on blood agar plates, but not in broth culture. Mersacidin is one of the type B lantibiotics (lanthionine-containing antibiotics) that contain post-translationally modified amino acids and cyclic ring structures. Mersacidin attacks the cell wall precursor lipid II, thereby inhibiting cell-wall synthesis. 68 -319017 pfam16935 Hol_Tox Putative Holin-like Toxin (Hol-Tox). Hol_Tox is a family of small proteins (34-48aas) with a single TM region. Members can exhibit antibacterial activity against Gram-positive bacteria but not against Gram-negative bacteria. 60 -293541 pfam16936 Holin_9 Putative holin. This is a family of putative holins from Actinobacteria with three TM regions. 78 -319018 pfam16937 T3SS_HrpK1 Type III secretion system translocator protein, HrpF. T3SS_HrpK1 is a family of putative Type III secretion system pore-forming bacterial proteins. These allow transfer of pathogenic material from bacterial cytoplasm into the plant host cytoplasm. 256 -293543 pfam16938 Phage_holin_Dp1 Putative phage holin Dp-1. Phage_holin_Dp1 is a family of putative phage-holins from Gram-positive bacteria, largely Firmicutes, with two probable TMSs. The family shows lytic activity. 62 -293544 pfam16939 Porin_6 Putative porin. Porin_6 is a family of putative porins from Leptospira species. 282 -319019 pfam16940 Tic110 Chloroplast envelope transporter. Tic110 is a family of chloroplast envelope proteins. Some are involved in protein translocation and others are neurotransmitter receptor, cys loop, ligand-gated ion channel or LIC proteins. 573 -293546 pfam16941 CymA Putative cyclodextrin porin. 348 -293547 pfam16942 CclA_1 Putative cyclic bacteriocin. This is a family of short proteins from Gram- putatively from the carnocylcin A family of bacteriocins. 103 -293548 pfam16943 T4SS_CagC Cag pathogenicity island, type IV secretory system. T4SS_CagC is a family of putative pathogenicity island, type IV, conjugal DNA-protein transfer, secretory system proteins from Gram-negative bacteria. 119 -319020 pfam16944 KCH Fungal potassium channel. KHC is a family of fungal proteins carrying three transmembrane domains. It is a member of the fungal potassium channel family of transporters, and includes a pair of homologous sequences that localize to distinct zones of the yeast plasma membrane and are induced during the response to mating pheromones. Together KCH1 and KCH2 promote low-affinity K+ uptake and are essential for K+-dependent activation of HACS - a high-affinity Ca2+ influx system that activates calcineurin and is essential for cell survival - in S. cerevisiae cells responding to mating pheromones. 251 -293550 pfam16945 Phage_r1t_holin Putative lactococcus lactis phage r1t holin. Phage_r1t_holin is a family of putative phage r1t holins from lactococcus. these holins carry two hydrophobic putative TMs separated by a short beta-turn region. 70 -319021 pfam16946 Porin_OmpG_1_2 OMPG-porin 1 family. Porin_OmpG_1_2 is a family of putative porins of the OmpG-type. these are channels without solute specificity. 294 -319022 pfam16947 Ferredoxin_N N-terminal region of 4Fe-4S ferredoxin iron-sulfur binding. Ferredoxin_N is a short domain that is often found at the N-terminus of 4Fe-4S ferredoxin iron-sulfur binding domain proteins from Archaea and a few bacteria. 65 -319024 pfam16949 ABC_tran_2 Putative ATP-binding cassette. This is a family of putative two component ABC exporters. This is the membrane protein of approximately 573 residues and twelve transmembrane domains. It is encoded adjacent to an ATPase. 542 -293556 pfam16951 MaAIMP_sms Putative methionine and alanine importer, small subunit. MaAIMP_sms is a family of hypothetical proteins from Proteobacteria that purported to be small subunits of a methionine and alanine importer. 60 -293557 pfam16952 Gln-synt_N_2 Glutamine synthetase N-terminal domain. 107 -339866 pfam16953 PRORP Protein-only RNase P. PRORPs (protein-only RNase P) are a class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. Arabidopsis thaliana contains PRORP enzymes (PRORP1, PRORP2 and PRORP3) where PRORP1 localizes to mitochondria as well as chloroplasts, while PRORP2 and PRORP3 are found in the nucleus. In humans and most other metazoans, mt-RNase P is composed of three protein subunits (mitochondrial RNase P proteins 1-3; MRPP1-3), homologs to the Arabidopsis thaliana PRORP1-3. This domain corresponds to the metallonuclease domain of PRORPs. PRORP1 has 22% sequence identity to the human homolog MRPP3. PRORP1 crystal structure shows a V-shaped tripartite structure with a C-terminal metallonuclease domain of the NYN (N4BL1, YacP-like nuclease) family, with a typical and functional two-metal-ion catalytic site that has conserved aspartate residues. 240 -319027 pfam16954 HRG Haem-transporter, endosomal/lysosomal, haem-responsive gene. HRG1 is a family of conserved, membrane-bound permeases that reside in distinct intracellular compartments and bind and transport haem in metazoa. These proteins carry four transmembrane domains, 4xTMs, modelled here in two pairs, the two N-terminal and the two more C-terminal. 52 -319028 pfam16955 OFeT_1 Ferrous iron uptake permease, iron-lead transporter. OFeT_1 is a family of conserved archaeal membrane proteins that are putative oxidase-dependent Fe2+ transporters. 206 -339867 pfam16956 Porin_7 Putative general bacterial porin. 274 -319030 pfam16957 Mal_decarbox_Al Malonate decarboxylase, alpha subunit, transporter. Mal_decarbox_Al is a family of Na+-transporting carboxylic acid decarboxylases. 545 -319031 pfam16958 PRP9_N Pre-mRNA-splicing factor PRP9 N-terminus. This is the N-terminal domain of pre-mRNA-splicing factor PRP9. 147 -319032 pfam16959 Collectrin Renal amino acid transporter. Collectrin is a single-pass transmembrane protein that is homologous to the C-terminal region of human angiotensin-converting enzyme 2, ACE2, found in Peptidase_M2 pfam01401. Collectrin is critical for normal amino acid reabsorption in the kidney. 154 -319033 pfam16960 HpuA Haemoglobin-haptoglobin utilisation, porphyrin transporter. HpuA is a family of Neisseria spp proteins from the hpuAB operon, which are putative porphyrin transporters. 313 -319034 pfam16961 OmpA_like Putative OmpA-OmpF-like porin family. This is a family of putative OmpA-OmpF-like porins from Bacteroidetes. 196 -319035 pfam16962 ABC_export Putative ABC exporter. This is a family of putative ABC_exporters from Firmicutes. 525 -293568 pfam16963 PelD_GGDEF PelD GGDEF domain. This degenerate GGDEF domain is found at the C-terminus of PelD, a membrane-bound c-di-GMP-specific receptor. It contains an RXXD motif resembling the allosteric inhibition site found in diguanylate cyclases. In PelD this RXXD motif binds to dimeric c-di-GMP. 123 -319036 pfam16964 TadF Putative tight adherence pilin protein F. TadF is a family of proteins from the tad locus that is part of the type IV bacterial secretory system. 181 -319037 pfam16965 CSG2 Ceramide synthase regulator. CSG2 is an integral membrane protein with up to 10 transmembrane segments that, when over-expressed, localizes to the endoplasmic reticulum. CSG2 is a family of fungal transmembrane proteins that regulate mannosyl phosphorylinositol ceramide synthase and are thereby implicated in calcium homoeostasis in the cell. 397 -339868 pfam16966 Porin_8 Porin-like glycoporin RafY. This is a family of Gram-negative Gammaproteobacteria putative raffinose-like porins. 363 -339869 pfam16967 TcfC E-set like domain. TcfC is a family of bacterial fimbrial proteins. These sit in the outer bacterial membrane surrounding the RcpA proteins of the fimbrial shaft. This family is from Gamma-proteobacteria. This domain represents an immunoglobulin like E-set domain. 68 -293573 pfam16968 TadZ_N Pilus assembly protein TadZ N-terminal. TadZ_N is the N-terminal region of the Flp pilus assembly protein TadZ, which carries an AAA, ATPase domain immediately downstream, AAA_31, pfam13614. The domain is an example of a signal-transduction-response receiver. It is localized to the cytoplasmic side of the inner bacterial cell-membrane, contacting also with both tadA and RcpC. 129 -319040 pfam16969 SRP68 RNA-binding signal recognition particle 68. SRP68 is a family that is part of the SRP or signal recognition particle complex. This complex, consisting of six proteins and a 7SL-RNA is necessary for guiding the emerging proteins designed for the membrane towards the translocation pore. SRP68 forms a stable heterodimer with SRP72, a protein with a TPR repeat. Specific RNA-binding of SRP68 is mediated by the N-terminal domain of approximately 200 residues of this family. 553 -339870 pfam16970 FimA Type-1 fimbrial protein, A. FimA is a family of Gram-negative fimbrial component A proteins that form part of the pili. There are usually up to 1000 copies of this subunit in one pilus that form a helically wound rod onto which the tip fibrillum (FimF.FimG, FimH) is attached. Pilus subunits are translocated from the cytoplasm to the periplasm via the general secretory pathway SecYEG. 145 -293576 pfam16971 RcpB Rough colony protein B, tight adherence - tad - subunit. RcpB is part of the Tad operon of proteins. The Tad (tight adherence) macromolecular transport system, present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, are localized to the bacterial outer membrane. 167 -319041 pfam16972 TipE Na+ channel auxiliary subunit TipE. TipE appears to be a family of insect Na+ channel auxiliary subunit proteins. 486 -339871 pfam16973 FliN_N Flagellar motor switch protein FliN N-terminal. FliN is one of three proteins that form a switch-complex at the base of the basal body of the flagellum; the switch regulates the flagellum-motor. 50 -339872 pfam16974 NAR2 High-affinity nitrate transporter accessory. NAR2 is a family of plant proteins with a C-terminal transmembrane region that is an essential accessory for high-affinity nitrate uptake. This family works together with NRT2, a 12xTM family of proteins that is part of family MFS_1, pfam07690. NAR2 is also involved in the repression of lateral root initiation in response to high ratios of sucrose to nitrogen in the medium. Therefore the two component-system of NAR2 and NRT2 itself is likely to be involved in the signalling pathway that integrates nutritional cues for the regulation of lateral root architecture. The functional unit of the high-affinity nitrate influx complex is likely to be a tetramer, in Arabidopsis, made up of two subunits each of NRT2.1 and NAR2.1. 173 -319044 pfam16975 UPAR_LY6_2 Ly6/PLAUR domain-containing protein 6, Lypd6. UPAR_LY6_2 is a family of higher eukaryotic proteins expressed in neurons. It modulates nicotinic acetylcholine receptors by selectively increasing Ca2+-influx through this ion channel. The family carries an LU protein domain - about 80 amino acids long characterized by a conserved pattern of 10 cysteine residues. The family is a positive feedback regulator of Wnt/beta-catenin signalling, eg for patterning of the mesoderm and neuroectoderm in zebrafish gastrulation, where Lypd6 is GPI-anchored to the plasma-membrane and interacts with the Wnt receptor Frizzled8 and the co-receptor Lrp6. 105 -339873 pfam16976 RcpC Flp pilus assembly protein RcpC/CpaB. RcpC is a family of Gram-negative proteins expressed from the tight-adherence tad locus. RcpC is an auxillary protein that sits in the inner membrane and interacts with TadB and TadZ, an AAA ATPase. A recent study has identified two tandem beta-clip domains in RcpC95. beta-Clip domains are known to interact with carbohydrate moieties in other systems, such as SAF. 114 -319046 pfam16977 ApeC C-terminal domain of apextrin. ApeC domain was first identified from two apextrin-like proteins (ALP) of the amphioxus Branchiostoma japonicum. Our functional studies show that amphioxus ALP1 and ALP2 are important anti-bacterial effectors, and that the apeC domain of the ALP1/2 mediates the bacterial recognition by binding to bacterial muramyl dipeptide (MDP). Further analysis shows that the apeC domain is present in various proteins from cnidarians, molluscs, arthropods, hemichordates, echinoderms and amphioxus. The apeC domain is also found to form different domain combinations with other domains (in press). 205 -319047 pfam16978 CRIM SAPK-interacting protein 1 (Sin1), middle CRIM domain. CRIM is a domain in the middle of Sin1 that is important in the substrate recognition of TORC2. It is conserved from yeast to humans. TOR is a serine/threonine-specific protein kinase and forms functionally distinct protein complexes referred to as TORC1 and TORC2. 136 -319048 pfam16979 SIN1_PH SAPK-interacting protein 1 (Sin1), Pleckstrin-homology. SIN1_PH is a pleckstrin-homology domain found at the C-terminus of SIN1. It is conserved from yeast to humans. PH-domains are involved in intracellular signalling or as constituents of the cytoskeleton. SIN1 (SAPK-interacting protein 1) plays an essential role in signal transduction, anf the PH domain is involved in lipid and membrane binding. 106 -319049 pfam16980 CitMHS_2 Putative citrate transport. CitMHS is a family of putative citrate transporters, belonging to the Na+/H+ antiporter NhaD-like permease superfamily. 439 -293586 pfam16981 Chi-conotoxin chi-Conotoxin or t superfamily. Chi-conotoxin is a family of Cone snail venom chi-conopeptide class bioactive peptides based. These conopeptides show a unique ability, highly selectively and non-competitively, to inhibit the noradrenaline transporter. They show an unusual cysteine-stabilized scaffold that presents a gamma-turn in an optimized conformation for high affinity interactions with the noradrenaline transporter. 60 -319050 pfam16982 Flp1_like Putative Flagellin, Flp1-like, domain. 48 -339874 pfam16983 MFS_MOT1 Molybdate transporter of MFS superfamily. MFS_MOT1 is a family of molybdenate transporters. Molybdenum is an essential element that is taken up into the cell in the oxyanion molybdate. Molybdenum is used in the form of molybdopterin-cofactor, which participates in the active site of enzymes involved in key reactions of carbon, nitrogen, and sulfur metabolism. 115 -319052 pfam16984 Grp7_allergen Group 7 allergen. 180 -293590 pfam16985 DUF5086 Domain of unknown function (DUF5086). 118 -319053 pfam16986 CzcE Heavy-metal resistance protein CzcE. CzcE is involved in heavy-metal resistance. It binds copper, which induces a conformational change. 80 -319054 pfam16987 KIX_2 KIX domain. This KIX domain is an activator-binding domain. 78 -339875 pfam16988 Vps36-NZF-N Vacuolar protein sorting 36 NZF-N zinc-finger domain. The vacuolar protein sorting 36 NZF-N zinc-finger domain interacts with the C-terminus of vacuolar protein sorting 28. 64 -339876 pfam16989 T6SS_VasJ Type VI secretion, EvfE, EvfF, ImpA, BimE, VC_A0119, VasJ. T6SS_VasJ is a family from Gram-negative bacteria that forms a component of the type VI pathogenic secretion system. In the case of the Escherichia coli RS218 strain UniProtKB:G8IRL4, EvfF,it represents expression of the full-length gene; whereas it is just the C-terminal part of EvfE, UniProtKB:G8IRL3. The N-terminal part of these sequences is in family ImpA_N, pfam06812. 254 -293595 pfam16990 CBM_35 Carbohydrate binding module (family 35). This is a mannan-specific carbohydrate binding domain, previously known as the X4 module. Unlike other carbohydrate binding modules, binding to substrate causes a conformational change. 119 -293596 pfam16991 SIR4_SID Sir4 SID domain. This is the Sir2 interaction domain (SID domain) of silent information regulator 4 (Sir4). 149 -319057 pfam16992 RNA_pol_RpbG DNA-directed RNA polymerase, subunit G. RNA_pol_RpbG is a family of archaeal and fungal subunit G of DNA-directed RNA polymerase. 119 -293598 pfam16993 Asp1 Accessory Sec system protein Asp1. Asp1, along with SecY2, SecA2, and other proteins forms part of the accessory secretory protein system. The system is involved in the export of serine-rich glycoproteins important for virulence in a number of Gram-positive species, including Streptococcus gordonii and Staphylococcus aureus. This protein family is assigned to transport rather than glycosylation function, but the specific molecular role is unknown. Asp1 is predicted to be cytosolic. 515 -319058 pfam16994 Glyco_trans_4_5 Glycosyl-transferase family 4. 167 -319059 pfam16995 tRNA-synt_2_TM Transmembrane region of lysyl-tRNA synthetase. tRNA-synt_2_TM is a family from the N-terminal region of tRNA-synthase-2, with 6xTMs. The presence of this region indicates that the protein is anchored in the membrane. The family is found in Actinobacteria. 215 -319060 pfam16996 Asp4 Accessory secretory protein Sec Asp4. Asp4 and Asp5 are putative accessory components of the SecY2 channel of the SecA2-SecY2 mediated export system, but they are not present in all SecA2-SecY2 systems. This family of Asp4 is found in Firmicutes. 55 -293602 pfam16997 Wap1 Wap1 domain. The Wap1 domain is found at the C-terminus of fungal Wpl1 proteins (also known as Rad61). These proteins are members of the cohesin complex. The Wap1 domain binds to the ATPase domain of Smc3. 373 -339877 pfam16998 17kDa_Anti_2 17 kDa outer membrane surface antigen. 17kDa_Anti_2 is a surface protein that is found in several Proteobacteria species. 111 -339878 pfam16999 V-ATPase_G_2 Vacuolar (H+)-ATPase G subunit. This family represents vacuolar (H+)-ATPase G subunit from several bacterial and archaeal species. Subunit G is a component of the peripheral stalk of the ATPase complex 104 -339879 pfam17000 Asp5 Accessory secretory protein Sec, Asp5. Asp4 and Asp5 are putative accessory components of the SecY2 channel of the SecA2-SecY2 mediated export system, but they are not present in all SecA2-SecY2 systems. This family of Asp5 is found in Firmicutes. 73 -319064 pfam17001 T3SS_basalb_I Type III secretion basal body protein I, YscI, HrpB, PscI. T3SS_basalb_I represents a family of Gram-negative type III secretion basal body proteins I. It is the inner rod protein of the secreted needle. YscI is suggested to form a rod that allows substrate passage across the inner membrane of the needle protein YscF through it. 91 -319065 pfam17002 DUF5089 Domain of unknown function (DUF5089). This is a family of microsporidial-specific proteins of unknown function. There is distant homology to synaptosomal-associated 25 family proteins. 193 -319066 pfam17003 Actin_micro Putative actin-like family. This is a family of microsporidial-specific proteins of unknown function. There is distant homology to the Actin family. 354 -319067 pfam17004 SRP_TPR_like Putative TPR-like repeat. This is a family of microsporidial sequences that are likely to fold into a TPR-like structure. Many sequences are annotated as being signal recognition proteins. 109 -319068 pfam17005 WD40_like WD40-like domain. This is a family of proteins which have weak homology to the WD40 repeat family. Members are largely from microsporidia and related species. 301 -319069 pfam17006 DUF5087 Domain of unknown function (DUF5087). This is a family of microsporidial sequences of unknown function. 291 -319070 pfam17007 HTH_micro HTH-like. This is a family of microsporidial sequences whose function is not known. It is possible that the proteins are DNA-binding as there is distant homology to helix-turn-helix families at the N-terminus. 442 -319071 pfam17008 DUF5088 Domain of unknown function (DUF5088). This is a family of microsporidial sequences of unknown function. 184 -319072 pfam17009 DUF5090 Domain of unknown function (DUF5090). This is a microsporidial-specific family of proteins of unknown function. The family is likely to be of four transmembrane domains. 185 -319073 pfam17010 DUF5092 Domain of unknown function (DUF5092). his is a family of microsporidial-specific sequences of unknown function. There is one transmembrane domain towards the C-terminus. 163 -319074 pfam17011 DUF5093 Domain of unknown function (DUF5093). This is a family of microsporidial sequences that may be distantly related to RRP7, pfam12923, ribosomal-RNA-processing protein 7. 131 -319075 pfam17012 DUF5091 Domain of unknown function (DUF5091). This is a family of microsporidial-specific sequences of unknown function. 146 -319076 pfam17013 Acetyltransf_15 Putative acetyl-transferase. This is a family of microsporidial proteins which may be distantly related to acetyl-transferase. 210 -319077 pfam17014 Mad3_BUB1_I_2 Putative Mad3/BUB1 like region 1 protein. This family of microsporidial sequences may be related to the Mad3_BUB1_I family pfam08311. 128 -319078 pfam17015 DUF5094 Domain of unknown function (DUF5094). This family of largely microsporidial-specific proteins is of unknown function. However there may be distant homology to family Csm1, pfam12539. 178 -319079 pfam17016 DUF5095 Domain of unknown function (DUF5095). This is a family of microsporidial-specific sequences. The function is not known and there is no distant homology to any Pfam families so far. 229 -319080 pfam17017 zf-C2H2_aberr Aberrant zinc-finger. This is a family of largely microsporidia-specific proteins with an aberrant zinc-finger motif of Cx(4)C2H repeated. 165 -319081 pfam17018 MICSWaP Spore wall protein. This is a family of microsporidial spore-wall proteins. 193 -319082 pfam17019 DUF5096 Domain of unknown function (DUF5096). This is a family of microsporidial sequences of unknown function. There is a well conserved Asp residue towards the C-terminus which may be functional. 192 -319083 pfam17020 DUF5097 Domain of unknown function (DUF5097). This is a family of microsporidia-specific proteins of unknown function. There is the possibility of very distant homology to the WAC domain. 119 -319084 pfam17021 Mei5_like Putative double-strand recombination repair-like. This is a family of microsporidia-specific sequences with homology to the double-strand recombination repair protein family, Mei5 pfam10376. 118 -319085 pfam17022 PTP2 Polar tube protein 2 from Microsporidia. PTP2 is a family of microsporidial polar-tube protein 2 sequences. Humans can be infected with the unicellular eukaryote Microsporidia which are obligate intracellular parasites that produce resistant spores. To initiate entry into a new host cell a unique motile process is formed by a sudden extrusion of the polar tube protein from the spore. There are a series of conserved cysteine residues. 207 -319086 pfam17023 DUF5098 Domain of unknown function (DUF5098). This is family of microsporidia-specific sequences with no known function. There is a very characteristic NPW sequence motif at the very C-terminus. 452 -319087 pfam17024 DMAP1_like Putative DMAP1-like. This is a family of microsporidia-specific sequences that may have distant homology to the family DMAP1, pfam05499. 113 -319088 pfam17025 DUF5099 Domain of unknown function (DUF5099). This is a family of microsporidia-specific sequences of unknown function. 109 -319089 pfam17026 zf-RRPl_C4 Putative ribonucleoprotein zinc-finger pf C4 type. This is a family of largely microsporidia-specific proteins. One member is annotated as being a ribonucleoprotein. The family carries two pairs of CxxC residues suggesting that there is DNA-binding. 108 -319090 pfam17027 Bromo_TP_like Histone-fold protein. This is a family of microsporidia-specific sequences that have distant homology to the Bromo_TP family, pfam07524. 117 -319091 pfam17028 8TM_micro 8TM Microsporidial transmembrane domain. This is a family of largely microsporidial-specific proteins that carry eight transmembrane regions, in two blocks of four. Such an arrangement of TMs suggests a transporter function of some kind. There is a highly conserved NFLNW sequence-motif at the C-terminus which might be of functional importance. 258 -319092 pfam17029 DUF5100 Domain of unknown function (DUF5100). This is a family of microsporidia-specific sequences of unknown function. 122 -319093 pfam17030 Beta_lactamase3 Putative beta-lactamase-like family. This is a family derived from microsporidia-specific proteins. There is homology to the beta-lactamase domain. 213 -319094 pfam17031 DUF5101 Domain of unknown function (DUF5101). This is a family of short microsporidia-specific proteins of unknown function. 99 -319095 pfam17032 zinc_ribbon_15 zinc-ribbon family. This zinc-ribbon region is found on a set of largely microsporidia-specific proteins. 73 -319096 pfam17033 Peptidase_M99 Carboxypeptidase controlling helical cell shape catalytic. This is the peptidase domain of a D,L-carboxypeptidase. The active site residues are Arg86, Glu222 and the metal ligands, in the peptidase domain, are Gln46, Glu49 and His128 in UniProtKB:O25708. The protein binds many zinc ions and a calcium ion and there are other metal binding sites. The catalytic activity is the release of m-Dpm from the peptide muramyl-Ala-gamma-D-Glu-m-Dpm; this is probably the precursor of the cell wall cross-linking peptide. 227 -293639 pfam17034 zinc_ribbon_16 Zinc-ribbon like family. This family is found at the C-terminus of WD40 repeat structures in eukaryotes. 125 -339880 pfam17035 BET Bromodomain extra-terminal - transcription regulation. The BET, or bromodomain extra-terminal domain, is found on bromodomain proteins that play key roles in development, cancer progression and virus-host pathogenesis. It interacts with NSD3, JMJD6, CHD4, GLTSCR1, and ATAD5 all of which are shown to impart a pTEFb-independent transcriptional activation function on the bromodomain proteins. 66 -319098 pfam17036 CBP_BcsS Cellulose biosynthesis protein BcsS. This is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 145 -319099 pfam17037 CBP_BcsO Cellulose biosynthesis protein BcsO. This is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 208 -293643 pfam17038 CBP_BcsN Cellulose biosynthesis protein BcsN. This is a family of bacterial cellulose biosynthesis proteins. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 299 -319100 pfam17039 Glyco_tran_10_N Fucosyltransferase, N-terminal. This is the N-terminal domain of a family of fucosyltransferases. This enzyme transfers fucose from GDP-Fucose to GlcNAc in an alpha1,3 linkage. This family is known as glycosyltransferase family 10. The N-terminal domain is the likely binding-region for the fucose-like substrate (manuscript in publication). 109 -319101 pfam17040 CBP_CCPA Cellulose-complementing protein A. This is a family of bacterial cellulose-complementing protein A proteins necessary for cellulose biosynthesis. Cellulose is necessary for biofilm formation in bacteria. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). 342 -293646 pfam17041 SasG_E E domain. This short domain is about 50 amino acids in length. Its structure shows that it is composed of two beta sheets each of three strands. This domain is found associated with the pfam07501 domain and it has structural similarity with that domain although it is somewhat shorter. The E domain forms part of a rod like structure. 48 -339881 pfam17042 DUF1357_C Putative nucleotide-binding of sugar-metabolising enzyme. This conserved region is found in proteins of unknown function in a range of Proteobacteria as well as the Gram-positive Oceanobacillus iheyensis. Structural analysis of the whole protein indicates the N- and C-termini interacting to produce a binding-interface in which a threonate-ADP complex is bound, suggesting that a sugar binding site is on the N-terminal domain, pfam07005, and a nucleotide binding site is in the C-terminal domain here (manuscript in preparation). 163 -339882 pfam17043 MAT1-1-2 Mating type protein 1-1-2 of unknown function. MAT1-1-2 is a family of proteins present in Sordariomycetes. They are encoded by the MAT1-1-2 gene which is present in the mating types of Sordariomycetes. The most famous representative if this family is Neurospora crassa. MAT1-1-2 is the generic nomenclature of all mating-type genes encoding proteins with HPG (also termed PPF) domain. This gene and its domain was first identified in Podospora anserina (its name in this species is SMR1) and Neurospora crassa (its name in this species is mat A-2) by Debuchy et al (1993). HPG was the first name proposed for the domain found in MAT1-1-2 proteins, based on the most conserved residues (histidine, proline and glycine). PPF was a second denomination proposed by Kanematsu et al (2007) for the same domain but these authors identified different conserved residues (proline, proline and phenylalanine). The function of this domain is not yet known. 114 -319104 pfam17044 BPTA Borrelial persistence in ticks protein A. BPTA is a family of proteins that are found in Borrelia species. The function is not known. 196 -319105 pfam17045 CEP63 Centrosomal protein of 63 kDa. CEP63 is a family of eukaryotic proteins involved in centriole activity. 269 -319106 pfam17046 Ses_B SesB domain on fungal death-pathway protein. SesB is a short conserved domain found on fungal proteins that are part of the cell death or heterokaryon incompatibility pathway. 22 -293652 pfam17047 SMP_LBD Synaptotagmin-like mitochondrial-lipid-binding domain. SMP is a proposed lipid-binding module, ie a synaptotagmin-like mitochondrial-lipid-binding domain found in eukaryotes. The SMP domain has a beta-barrel structure like protein modules in the tubular-lipid-binding (TULIP) superfamily. It dimerizes to form an approximately 90-Angstrom-long cylinder traversed by a channel lined entirely with hydrophobic residues. The following two C2 domains then form arched structures flexibly linked to the SMP domain. The SMP domain is a lipid-binding domain that links the ER with other lipid bilayer-membranes within the cell. 180 -339883 pfam17048 Ceramidse_alk_C Neutral/alkaline non-lysosomal ceramidase, C-terminal. This family represents C-terminal domain of a group of neutral/alkaline ceramidases found in both bacteria and eukaryotes. The EC classification is EC:3.5.1.23. The enzyme hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. This C-terminal tail of the enzyme is highly conserved across all species and may play a role in the interaction of the enzyme with the plasma membranes. The tail is also vital for the stabilisation of the enzyme as a whole. 165 -293654 pfam17049 AEP1 ATPase expression protein 1. ATPase expression protein 1 (AEP1) is a yeast mitochondrial protein. It is essential for the expression of subunit 9 of mitochondrial ATP synthase. 395 -319108 pfam17050 AIM5 Altered inheritance of mitochondria 5. AIM5 is a fungal mitochondrial inner membrane protein. It is a component of the mitochondrial inner membrane organising system (MINOS/MitOS), which promotes normal mitochondrial morphology. 82 -293656 pfam17051 COA2 Cytochrome C oxidase assembly factor 2. 86 -319109 pfam17052 CAF20 Cap associated factor. In eukaryotes, the translation of mRNA is initiated by the binding of eIF4F complex, which is composed of eIF4E, eIF4A and eIF4G proteins. elF4E-binding proteins (4E-BPs) are involved in translational regulation through their interaction with eIF4E. There are two elF4E-binding proteins (4E-BPs) found in S. cerevisiae, Caf20 and Eap1. This entry represents Caf20 (also known as p20), which competes with elF4G for binding to elF4E and interferes with the formation of the elF4F complex, hence inhibiting translation. It is needed for the induction of pseudohyphal growth in response to nitrogen limitation. 151 -319110 pfam17053 GEP5 Genetic interactor of prohibitin 5. Genetic interactor of prohibitin 5 (GEP5), also known as required for respiratory growth protein5 (RRG5), has been shown to interact with prohibitin ring complexes in the mitochondrial inner membrane that regulate cell proliferation as well as the dynamics and function of mitochondria. It is required for mitochondrial genome maintenance and is essential for respiratory growth. 219 -293659 pfam17054 JUPITER Microtubule-Associated protein Jupiter. Is a microtubule-associated protein that binds to all microtubule populations in Drosophila. 208 -293660 pfam17055 VMR2 Viral matrix protein M2. Is a viral transmembrane protein which forms a proton-selective ion channel that is needed for the efficient release of the viral genome during virus entry. Once is attached to the cell surface, the virion enters the cells by endocytosis. Acidification of the endosome triggers M2 ion channel activity. Also plays a role in viral proteins secretory pathways. Elevates the intravesicular pH of normally acidic compartments, such as trans-Golgi network. It seems that M2 protein ion channel activity can affect the status of the conformational form of cleaved HA during intracellular transport. 235 -319111 pfam17056 KRE1 Killer toxin-resistance protein 1. The killer toxin-resistance protein 1 family are GPI-anchored plasma membrane proteins, found in yeast. They are involved in 1,6-beta-glucan formation and in the assembly and architecture of the cell wall. They also act as plasma membrane receptors for the yeast K1 viral toxin, and are involved in subsequent lethal channel formation. The family also includes Pga1 proteins, which have a role in oxidative stress response and in adhesion and biofilm formation. 66 -293662 pfam17057 B3R Poxviridae B3 protein. This is a viral protein. Its function is unknown. 123 -293663 pfam17058 MBR1 Mitochondrial biogenesis regulation protein 1. In yeast this protein participates in mitochondrial biogenesis and stress response. And also seems that may affect the NAM7 function, possibly at the level of mRNA turnover. 339 -293664 pfam17059 MGTL MgtA leader peptide. MTG is a bacterial protein that makes mgtA transcription sensitive to intracellular proline levels. When the levels of proline are low, this protein is not able to be translated and stem loop'C' forms in the mgt A 5'UTR which enables the transcription of the downstream mgtA gene. 17 -293665 pfam17060 MPS2 Monopolar spindle protein 2. Is a fungal transmembrane protein which is part of the component of the spindle pole body (SPB) required for the insertion of the nascent SPB into the nuclear envelope and for the proper execution of spindle pole body (SPB) duplication. It seems that Mps2-Spc24 interaction may contribute to the localization of Spc24 and other kinetochore components to the inner plaque of the SPB. 372 -319112 pfam17061 PARM PARM. Human PARM-1 is a mucin-like, androgen-regulated transmembrane protein that is present in most tissues, with high levels in the heart, kidney and placenta. It has been shown to be induced and expressed in prostate after castration and may have a role in cell proliferation and immortalisation in prostate cancer. 296 -319113 pfam17062 Osw5 Outer spore wall 5. In fungi the outermost cape of the spore wall is made up of a polymer that contains cross-linked amino acid dityrosine, which is important for the stress resistance of the spore. The OSW family of proteins have been implicated in assembly of this protective dityrosine coat. OSW5 null mutant spores show an enhanced spore wall permeability and vulnerability to beta glucanase digestion. The proteins are predicted to be integral membrane proteins. 70 -293668 pfam17063 Psm4 Phenol-soluble modulin alpha 4 peptide. Psma4 is a methicillin-resistant Staphylococcus aureus (MRSA) protein that may recruit, activate and induce the lysis of human neutrophils. It stimulates the secretion of IL-8 and also has haemolytic activity during MRSA infection. 20 -293669 pfam17064 QVR Sleepless protein. In Drosophila QUIVER (also known as SLEEPLESS protein) is required for homoeostatic regulation of sleep under normal conditions and following sleep deprivation. It is a novel potassium channel subunit that modulates the Shaker potassium channel which regulates the sleep. 161 -293670 pfam17065 UPF0669 Putative cytokine, C6ORF120. C6orf120 is a secreted protein that promotes cell cycle progression of CD4(+) T-cells, not hepatocytes. In humans it has its main role in tunicamycin-induced CD4(+) T apoptosis that may be associated with endoplasmatic reticulum stress. This suggests that it might be a new cytokine with immununoregulatory function that is selective for CD4+ T cells. It is mainly expressed in hepatocytes and cells in germinal centre of lymph nodes. 185 -319114 pfam17066 RITA RBPJ-interacting and tubulin associated protein. RITA is a highly conserved protein that binds to tubulin and shuttles between the cytoplasm and nucleus. It is responsible for export of RBP-J/CBF-1 from the nucleus, which modulates Notch-mediated transcription. 267 -293672 pfam17067 RPS31 Ribosomal protein S31e. RPS31, Ubi3 precursor, which is part of mature 60S and 40S ribosomal subunits. It seems that linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. 99 -293673 pfam17068 RRG8 Required for respiratory growth protein 8 mitochondrial. RRG8 is a mitochondrial protein that plays an important role in maintenance of mtDNA due to is required for respiratory activity and maintenance and expression of the mitochondrial genome. 279 -293674 pfam17069 RSRP Arginine/Serine-Rich protein 1. RSRP1 is an eukaryotic protein family. Its function is unknown. 299 -319115 pfam17070 Thx 30S ribosomal protein Thx. Thx forms part of the 30S ribosomal subunit. It fits into a cavity between multiple RNA elements in the top of the 30S subunit head and stabilizes the organisation of these elements. 27 -293676 pfam17071 Capsid_VP7 Outer capsid protein VP7. Outer capsid protein VP7 is a reoviral protein that interacts with VP4 to form the outer icosahedral capsid. Outer capsids are involved directly in viral host interactions. 276 -293677 pfam17072 Spike_torovirin Torovirinae spike glycoprotein. The spike glycoprotein is a corona viral transmembrane protein that mediates the binding of virions to the host cell receptor and is involved in membrane fusion. The torovirinae spike proteins appear distinct from other coronaviridae spike proteins, such as human SARS coronavirus. 1583 -319116 pfam17073 SafA Two-component-system connector protein. SafA is a bacterial transmembrane protein family that connects the signal transduction between the two component systems EvgS/EvgA and PhoQ/Phop. SafA interacts with PhoQ, leading to the PhoQ/PhoP system activation in response to acid stress conditions. 64 -293679 pfam17074 Darcynin Darcynin, domain of unknown function. Darcynin is a bacterial protein family. Its function is unknown. 127 -293680 pfam17075 RRT14 Regular of rDNA transcription protein 14. Regulator of rDNA transcription protein14 (RRT14) is a nucleolar protein that is involved in ribosome biogenensis. 196 -293681 pfam17076 SBE2 SBE2, cell-wall formation. 820 -293682 pfam17077 Msap1 Mitotic spindle associated protein SHE1. She1 seems to be related to the spindle integrity function of the Dam1 complex. She1 is a dynein regulator and limits dynein offloading by gating the recruitment of dynactin to the astral microtubule plus end. Aurora B phosphorylates She1, modulating its potency against dynein. 330 -293683 pfam17078 SHE3 SWI5-dependent HO expression protein 3. SWI5-dependent HO expression protein 3 (She3) is an RNA-binding protein that binds specific mRNAs, including the mRNA of Ash1, which is invalid in cell-fate determination. She3 acts as an adapter protein that docks the myosin motor Myo4p onto an Ash1-She2p ribonucleoprotein complex. She3 seems to bind to Myo4p and Shep2p via different domains. 228 -293684 pfam17079 SOTI Male-specific protein scotti. Soti is a post-meiotically transcribed gene that is required in late spermiogenesis for normal spermatid individualisation. Besides, it is expressed in primary spermatocytes and round spermatids. 101 -293685 pfam17080 SepA Multidrug Resistance efflux pump. SepA is a drug efflux protein that is involved in bacterial multidrug resistance. It is predicted to have four transmembrane domains. 144 -293686 pfam17081 SOP4 Suppressor of PMA 1-7 protein. SOP4 is a family of fungal ER membrane proteins that regulate the quality control and intracellular transport of Pma1-7, a mutant plasma membrane ATPase. 208 -293687 pfam17082 Spc29 Spindle Pole Component 29. Spc29 is a component of the Spc-110 subcomplex and is required for the SPB (Spindle pole body) duplication. Spc29 acts as a linker between the central plaque component Spc42 to the inner plaque component Spc110. 245 -293688 pfam17083 Swm2 Nucleolar protein Swm2. The nucleolar protein SWM2 (Synthetic With MUD-2-delta protein2) constitutes a yeast protein family. SWM2 is a nonessential gene whose function is unknown, but it encodes a protein that binds Tgs1, an enzyme responsible for 2,2,7-trimethylguanosine (TMG) capping of small nuclear (sn) RNAs implicated in pre-mRNA splicing. 146 -293689 pfam17084 TDA11 Topoisomerase I damage affected protein 11. Tda11 is a fungal protein family. The function is unknown. 523 -293690 pfam17085 UCMA Unique cartilage matrix associated protein. UCMA is a secreted cartilage-specific protein located in chromosome 2 that is predominantly expressed in resting chondrocytes. It is secreted into the extracellular matrix as an uncleaved precursor and shows the same restricted distribution pattern in cartilage as UCMA mRNA. This protein is proteolytically processed and contains tyrosine sulfates. It seems to be to be involved in the negative control of osteogenic differentiation of osteochondrogenic precursor cells in peripheral zones of foetal cartilage. 134 -293691 pfam17086 HV_small_capsid Small capsid protein of Herpesviridae. This is a family of herpes-type viral small capsid proteins. 75 -293692 pfam17087 HHV-5_US34A Herpesvirus US34A protein family. Proteins in this human cytomegalovirus (HHV-5 )family contain a transmembrane domain. 64 -319117 pfam17088 YCF90 Uncharacterized protein family. Ycf90 is an algal protein located in chloroplasts. Its function is unknown. 388 -293694 pfam17089 YjbT Uncharacterized protein family. This is a family of bacterial proteins. The function is unknown. 92 -293695 pfam17090 Ytca Uncharacterized protein family. This is a family of bacterial transmembrane proteins. The function is unknown. 62 -293696 pfam17091 Tail_VII Inovirus G7P protein. Tail virion protein 7P is a viral transmembrane protein that interacts with the packaging signal of the viral genome leading to the initiation the virion concomitant assembly-budding process in the host inner membrane. 40 -339884 pfam17092 PCB_OB Penicillin-binding protein OB-like domain. 111 -293698 pfam17093 PBP_N Penicillin-binding protein N-terminus. This domain occurs at the N-terminus of some penicillin-binding proteins in Caulobacter species. 138 -293699 pfam17094 UPF0715 Uncharacterized protein family (UPF0715). This is a family of Bacilli transmembrane proteins. The function is unknown. 115 -339885 pfam17095 CAMSAP_CC1 Spectrin-binding region of Ca2+-Calmodulin. CAMSAP_CC1 is the conserved region on calmodulin-regulated spectrin-associated proteins in eukaryotes that binds spectrin. CAMSAPs are vertebrate microtubule-binding proteins, representatives of a family of cytoskeletal proteins that arose in animals. This conserved CC1 region binds to both spectrin and Ca2+/calmodulin in vitro, although the binding of Ca2+/calmodulin inhibited the binding of spectrin. CC1 appears to be a functional region of CAMSAP1 that links spectrin-binding to neurite outgrowth. 59 -319120 pfam17096 AIM3 Altered inheritance of mitochondria protein 3. AIM3 is a family of fungal proteins that are described as altered inheritance of mitochondria protein 3 proteins. 85 -293702 pfam17097 Kre28 Spindle pole body component. In Saccharomyces cerevisae Kre28 and Spc105 form a kinetochore microtubule binding complex, which bridges between centromeric heterochromatin and kinetochore MAPs (microtubule associated protein, such as Bim1, Bik1 and SIk19) and motors (Cin8, Kar3). It may be regulated by sumoylation. 366 -319121 pfam17098 Wtap WTAP/Mum2p family. The Wtap family includes female-lethal(2)D from Drosophila and pre-mRNA-splicing regulator WTAP from mammals. The former is required for female-specific splicing of Sex-lethal RNA, and the latter is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. The family also includes the yeast Mum2p protein which is part of the Mis complex. 156 -293704 pfam17099 TrpP Tryptophan transporter TrpP. TrpP is a bacterial transmembrane protein that is probably involved in tryptophan uptake. Its expression is regulated by tryptophan-activated RNA-binding regulatory protein (TRAP). 169 -319122 pfam17100 NACHT_N N-terminal domain of NWD NACHT-NTPase. This is an N-terminal domain on putative NWD NACHT proteins, signal transducing ATPases which undergo ligand-induced oligomerization. 220 -339886 pfam17101 Stealth_CR1 Stealth protein CR1, conserved region 1. Stealth_C1 is the first of several highly conserved regions on stealth proteins in metazoa and bacteria. There are up to four CR regions on all member proteins. CR1 carries a well-conserved IDVVYT sequence-motif. The domain is found in tandem with CR2, CR3 and CR4 on both potential metazoan hosts and pathogenic eubacterial species that are capsular polysaccharide phosphotransferases. The CR domains appear on eukaryotic proteins such as GNPTAB, N-acetylglucosamine-1-phosphotransferase subunits alpha/beta. Horizontal gene-transfer seems to have occurred between host and bacteria of these sequence-regions in order for the bacteria to evade detection by the host innate immune system. 29 -339887 pfam17102 Stealth_CR3 Stealth protein CR3, conserved region 3. Stealth_CR3 is the third of several highly conserved regions on stealth proteins in metazoa and bacteria. There are up to four CR regions on all member proteins. The domain is found in tandem with CR1, CR2 and CR3 on both potential metazoan hosts and pathogenic eubacterial species that are capsular polysaccharide phosphotransferases. The CR domains appear on eukaryotic proteins such as GNPTAB, N-acetylglucosamine-1-phosphotransferase subunits alpha/beta. Horizontal gene-transfer seems to have occurred between host and bacteria of these sequence-regions in order for the bacteria to evade detection by the host innate immune system. 49 -339888 pfam17103 Stealth_CR4 Stealth protein CR4, conserved region 4. Stealth_CR4 is the fourth highly conserved region on stealth proteins in metazoa and bacteria. There are four CR regions on mammalian members. CR4 carries a well-conserved CLND sequence-motif. The domain is found in tandem with CR1, CR2 and CR3 on both potential metazoan hosts and on pathogenic eubacterial species that are capsular polysaccharide phosphotransferases. The CR domains also appear on eukaryotic proteins such as GNPTAB, N-acetylglucosamine-1-phosphotransferase subunits alpha/beta. Horizontal gene-transfer seems to have occurred between host and bacteria of these sequence-regions in order for the bacteria to evade detection by the host innate immune system. 55 -339889 pfam17104 DUF5102 Domain of unknown function (DUF5102). This is a family fungal sequences of no known function. 288 -319127 pfam17105 BRD4_CDT C-terminal domain of bromodomain protein 4. BRD4_CDT is the short highly conserved C-terminal domain of certain bromodomain proteins, notably Brd4. The Brd4 CTD interacts with the cyclin T1 and Cdk9 subunits of positive transcription elongation factor b (pTEFb) complex. Brd4 displaces negative regulators, the HEXIM1 and 7SKsnRNA complex, from pTEFb, thereby transforming it into an active form that can phosphorylate RNA pol II. 44 -339890 pfam17106 NACHT_sigma Sigma domain on NACHT-NTPases. NACHT_sigma is a short conserved region found on NACHT-NTPases. The function of this domain is not known. 42 -339891 pfam17107 SesA N-terminal domain on NACHT_NTPase and P-loop NTPases. This is a family of fungal N-terminal domains that appear at the N-terminus of P-loop NTPases, NACHT-NTPases and Ankyrin or WD repeat proteins. The exact function is not known. 122 -339892 pfam17108 HET-S N-terminal small S protein of HET, non-prionic. HET-S is an N-terminal domain on various fungal STAND proteins. The function is not known exactly. 23 -319131 pfam17109 Goodbye fungal STAND N-terminal Goodbye domain. The Goodbye domain is an N-terminal domain on certain fungal STAND proteins. The exact function is not known. 120 -319132 pfam17110 TFB6 Subunit 11 of the general transcription factor TFIIH. TFB6 is a family of fungal proteins that form the 11th subunit of the general transcription factor TFIIH. TFB6 facilitates the dissociation of Ssl2 helicase from TFIIH after the initiation of transcription. 170 -319133 pfam17111 Helo_like_N Fungal N-terminal domain of STAND proteins. Helo_like is a family of predicted fungal STAND NTPases. The exact function is not known. 209 -319134 pfam17112 Tom6 Mitochondrial import receptor subunit Tom6, fungal. Tom6 is the Tom6 subunit of the protein translocase complex TOM in fungi. This complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are encoded by nuclear DNA, synthesized in the cytosol and imported into the mitochondria. Tom6 and Tom7 together play a role in the assembly, stability and dynamics of the TOM complex. 44 -339893 pfam17113 AmpE Regulatory signalling modulator protein AmpE. AmpE is a family of bacterial regulatory proteins. AmpE in conjunction with AmpD sense the effect of beta-lactam on peptidoglycan synthesis and relay this signal to AmpR. AmpR regulates the production of beta-lactamase. 284 -319136 pfam17114 Nod1 Gef2-related medial cortical node protein Nod1. This is a small family of fungal proteins that are involved in cytokinesis, the last stage of the cell-division cycle. Nod1 co-localizes with Gef2 - RhoGEF - in the contractile ring and its precursor cortical nodes. Nod1 and Gef2 interact through this C-terminal region of each, this interaction being important for their localization. 145 -319137 pfam17115 Toast_rack_N N-terminal domain of toast_rack, DUF2154. This short domain lies at the N-terminus of DUF2154, pfam09922, hereafter named Toast_rack from its structural resemblance. The function of both domains is unknown though DUF2154 is proposed to be a cell-adhesion protein. 92 -339894 pfam17116 DUF5103 Domain of unknown function (DUF5103). This is a family of Bacteroidetes proteins of unknown function. 288 -319139 pfam17117 DUF5104 Domain of unknown function (DUF5104). This is a family of gut microbes of unknown function. 108 -293723 pfam17118 DUF5105 Domain of unknown function (DUF5105). This is a family of Firmicutes proteins of unknown function. There is one structure, Structure 4r4g, a lipoprotein, whose N-terminus is represented by DUF4352, pfam11611. 189 -319140 pfam17119 MMU163 Mitochondrial protein up-regulated during meiosis. This is a family of fungal mitochondrial proteins of unknown function. 246 -293725 pfam17120 Zn_ribbon_17 Zinc-ribbon, C4HC2 type. 57 -319141 pfam17121 zf-C3HC4_5 Zinc finger, C3HC4 type (RING finger). 51 -293727 pfam17122 zf-C3H2C3 Zinc-finger. 35 -339895 pfam17123 zf-RING_11 RING-like zinc finger. 29 -319143 pfam17124 ThiJ_like ThiJ/PfpI family-like. This is a family of fungal and bacterial ThiJ/PfpI-like proteins. 188 -339896 pfam17125 Methyltr_RsmF_N N-terminal domain of 16S rRNA methyltransferase RsmF. This is the N-terminal domain of the RsmF methyl transferase. RsmF is a multi-site-specific methyltransferase that is responsible for the synthesis of three modifications on cytidines in 16S ribosomal RNA. The N-terminus is critical for stabilizing the catalytic core of the enzyme. 88 -319145 pfam17126 RsmF_methylt_CI RsmF rRNA methyltransferase first C-terminal domain. This is the first of two distinct C-terminal domains of the 16S rRNA methyltransferase RsmF. It is necessary for stabilizing the catalytic core, pfam01189. 61 -339897 pfam17127 DUF5106 Domain of unknown function (DUF5106). This domain, found in Bacteroidetes proteins, is frequently associated with a putative thiol-disulfide oxidoreductase domain, pfam13905. The function of this domain is not known. 154 -319147 pfam17128 DUF5107 Domain of unknown function (DUF5107). This family is found in range of different bacterial species. In many proteins it lies N-terminal to a TPR-repeat region at the C-terminus. 300 -319148 pfam17129 Peptidase_M99_C C-terminal domain of metallo-carboxypeptidase. C-terminal immunoglobulin-like domain of helical cell shape-determining peptidoglycan hydrolases, a metallo-carboxypeptidase. The structural elements of this domain form a Ca2+ binding-channel, the Ca2+ being co-ordinated by six ligand-atoms. 100 -319149 pfam17130 Peptidase_M99_m beta-barrel domain of carboxypeptidase M99. This is the central, beta-barrel, domain of the metallo-carboxypeptidase that maintains helical cell-shape in Helicobacter. It shows a novel fold. It has a highly positively charged surface which contributes to a high overall isoelectric point. A calcium-binding channel is formed from residues in the C-terminal Ig-like domain in conjunction with some of the long side-chains of residues from strands beta-14 and beta-18 of this domain. 73 -339898 pfam17131 LolA_like Outer membrane lipoprotein-sorting protein. This is likely to be a family of outer-membrane lipoprotein-sorting proteins. 185 -319151 pfam17132 Glyco_hydro_106 alpha-L-rhamnosidase. 878 -319152 pfam17133 DUF5108 Domain of unknown function (DUF5108). This is a family of Bacteroidetes proteins. The domain lies upstream of a Fasciclin family, pfam02469. 211 -319153 pfam17134 DUF5109 Domain of unknown function (DUF5109). This is a family of Gram-positive Bacteroidetes and Firmicutes proteins. It lies just C-terminal to a putative glycosyl-hydrolase family, DUF4434, pfam14488. It is likely to be some form of binding or recognition domain. 114 -339899 pfam17135 Ribosomal_L18 Ribosomal protein 60S L18 and 50S L18e. This is a family of ribosomal proteins, 60S L18 from eukaryotes and 50S L18e from Archaea. 188 -339900 pfam17136 ribosomal_L24 Ribosomal proteins 50S L24/mitochondrial 39S L24. This is the family of bacterial 50S ribosomal subunit proteins L24. It also carries some mitochondrial 39S L24 proteins. 60 -339901 pfam17137 DUF5110 Domain of unknown function (DUF5110). This domain is likely to be a carbohydrate-binding domain of some description as it is found immediately C-terminal to the glycosyl-hydrolase family Glyco_hydro_31, pfam01055. 72 -339902 pfam17138 DUF5111 Domain of unknown function (DUF5111). This family is found immediately downstream of SusE, a putative starch-processing family, pfam14292. It is possible that this domain represents a substrate-binding site. 121 -339903 pfam17139 DUF5112 Domain of unknown function (DUF5112). This domain is frequently found upstream of family HATPase_c pfam000251. 267 -339904 pfam17140 DUF5113 Domain of unknown function (DUF5113). This domain is frequently found downstream of family HATPase_c pfam000251 in duplicate. 162 -339905 pfam17141 DUF5114 Domain of unknown function (DUF5114). This family lies further downstream of DUF5111, pfam17138, on proteins from Bacteroidetes that also carry a SusE family, pfam14292. 88 -319161 pfam17142 DUF5115 Domain of unknown function (DUF5115). 258 -319162 pfam17144 Ribosomal_L5e Ribosomal large subunit proteins 60S L5, and 50S L18. This family contains the large 60S ribosomal L5 proteins from Eukaryota and the 50S L18 proteins from Archaea. It has been shown that the amino terminal 93 amino acids of Rat Rpl5 are necessary and sufficient to bind 5S rRNA in vitro, suggesting that the entire family has a function in rRNA binding. 163 -339906 pfam17145 DUF5119 Domain of unknown function (DUF5119). This is a family of uncharacterized Bacteroidia sequences. 192 -339907 pfam17146 PIN_6 PIN domain of ribonuclease. This is a PIN domain found largely in eukaryotes. 87 -339908 pfam17147 PFOR_II Pyruvate:ferredoxin oxidoreductase core domain II. PFOR_II is a core domain of the anaerobic enzyme pyruvate:ferredoxin oxidoreductase and is necessary for inter subunit contacts in conjunction with domains I and IV. 102 -319166 pfam17148 DUF5117 Domain of unknown function (DUF5117). This domain may fall upstream of a met-zincin domain. 187 -319167 pfam17149 CHASE5 Periplasmic sensor domain found in signal transduction proteins. CHASE5 is a conserved periplasmic sensor domain found in histidine kinases, diguanylate cyclases/phosphodiesterases and methyl-accepting chemotaxis proteins. In Pseudomonas aeruginosa, CHASE5 is the sensor domain in the c-di-GMP phosphodiesterase BifA that regulates biofilm formation and in sensor kinase AruS that regulates arginine degradation pathways. These results suggest that CHASE5 might bind arginine or a related compound. 108 -339909 pfam17150 CHASE6_C C-terminal domain of two-partite extracellular sensor domain. CHASE6 was originally described as a two-partite extracellular (periplasmic) sensor domain found in histidine kinases and HD-GYP-type c-di-GMP-specific phosphodiesterases and assigned to COG4250 in the COG database. Subsequently, its N-terminal part has been described as a separate DICT (DIguanylate Cyclases and Two-component systems) domain (pfam10069) (Aravind L., Iyer LM, Anantharaman V. (2010) Natural history of sensor domains in the bacterial signalling systems. In: Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition ((Spiro S, Dixon R, eds)), pp. 1-38. Caister Academic Press, Norfolk, UK). The current entry contains only the C-terminal part of the original CHASE6 domain, which is found primarily in cyanobacteria. 80 -319169 pfam17151 CHASE7 Periplasmic sensor domain. CHASE7 is a conserved periplasmic sensor domain found in histidine kinases and diguanylate cyclases/phosphodiesterases, including the diguanylate cyclase DgcQ (YedQ) that regulates biofilm formation and motility in Escherichia coli (Hengge R. et al. (2015) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation). 187 -339910 pfam17152 CHASE8 Periplasmic sensor domain. CHASE8 is a conserved periplasmic sensor domain found in histidine kinases, diguanylate cyclases/phosphodiesterases and methyl-accepting chemotaxis proteins, including the diguanylate cyclase DgcN (YfiN) that regulates biofilm formation and motility in Escherichia coli (Hengge R. et al. (2015) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation). In Pseudomonas aeruginosa, CHASE8 is the sensor domain in the diguanylate cyclase TpbB that regulates biofilm formation by controlling the levels of extracellular DNA. 102 -319171 pfam17153 CHASE9 Periplasmic sensor domain, extracellular. CHASE9 is a conserved extracellular (periplasmic) sensor domain found in histidine kinases, diguanylate cyclases/phosphodiesterases, methyl-accepting chemotaxis proteins, adenylate cyclases and protein serine phosphatases, including the c-di-GMP phosphodiesterases PdeI (YliE) of Escherichia coli (Hengge R. et al. ((2015)) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation). 116 -339911 pfam17154 GAPES3 Gammaproteobacterial periplasmic sensor domain. GAPES3 (GAmmaproteobacterial PEriplasmic Sensor) domain is a periplasmic sensor domain found in diguanylate cyclases/phosphodiesterases, including the c-di-GMP phosphodiesterases PdeK (YhjK) of Escherichia coli (Hengge R. et al. ((2015)) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation) and HmsP of Yersinia pestis. 121 -319173 pfam17155 GAPES1 Gammaproteobacterial periplasmic sensor domain. GAPES1 (GAmmaproteobacterial PEriplasmic Sensor) domain is a periplasmic sensor domain found in diguanylate cyclases and methyl-accepting chemotaxis proteins, including the diguanylate cyclase DgcJ (YeaJ) that regulates biofilm formation and motility in Escherichia coli and (Hengge R. et al. ((2015)) 'A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12'. J.Bacteriol., in preparation). 274 -319174 pfam17156 GAPES2 Gammaproteobacterial periplasmic sensor domain. GAPES2 (GAmmaproteobacterial PEriplasmic Sensor) domain is a periplasmic sensor domain found in diguanylate cyclases, including the diguanylate cyclase DgcI (YliF) of Escherichia coli (Hengge R. et al. ((2015)) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation). It contains three conserved Cys residues that might participate in thiol-disulfide exchange. 204 -339912 pfam17157 GAPES4 Gammaproteobacterial periplasmic sensor domain. GAPES4 (GAmmaproteobacterial PEriplasmic Sensor) domain is a periplasmic sensor domain found in various GGDEF- and EAL-containing proteins. In Escherichia coli, GAPES4 forms the N-terminal domain of the regulatory protein CsrD (YhdA) (Hengge R. et al. ((2015)) 'A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12'. J.Bacteriol., in preparation), which contains enzymatically inactive GGDEF and EAL domains and controls CsrD) that controls the degradation of two non-coding RNAs, CsrB and CsrC. In Vibrio cholerae, GAPES4-containing protein MshH (Q9KUW1_VIBCH) inhibits biofilm formation, apparently acting through the glucose-specific enzyme IIA (Q9KTD8, pfam00358). 98 -339913 pfam17158 MASE4 Membrane-associated sensor, integral membrane domain. MASE4 (Membrane-Associated SEnsor) is an integral membrane sensor domain found in various GGDEF domain proteins, including a functional diguanylate cyclase DgcT (YcdT) and the enzymatically inactive CdgI (YeaI) of Escherichia coli (Hengge R. et al. ((2015)) 'A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12'. J.Bacteriol., in preparation). In the Shiga toxin-producing enteroaggregative E. coli O104:H4, which caused the outbreak of the haemolytic uraemic syndrome in Germany in 2011, MASE4-containing diguanylate cyclase DgcX, UniProtKB:B7LBD9_ECO55, was highly expressed, ensuring strong biofilm formation. 239 -339914 pfam17159 MASE3 Membrane-associated sensor domain. MASE3 (Membrane-Associated SEnsor) is an integral membrane sensor domain of unknown specificity found in histidine kinases, diguanylate cyclases and protein phosphatases in various bacteria and archaea. 226 -319178 pfam17160 DUF5124 Domain of unknown function (DUF5124). 100 -339915 pfam17161 DUF5123 Domain of unknown function (DUF5123). 114 -319180 pfam17162 DUF5118 Domain of unknown function (DUF5118). This domain falls upstream of a met-zincin domain. 50 -319181 pfam17163 DUF5125 Domain of unknown function (DUF5125). 190 -319182 pfam17164 DUF5122 Domain of unknown function (DUF5122) beta-propeller. 36 -319183 pfam17165 DUF5121 Domain of unknown function (DUF5121). 114 -319184 pfam17166 DUF5126 Domain of unknown function (DUF5126). This domain lies C-terminal to DUF4959, pfam16323. 103 -319185 pfam17167 Glyco_hydro_36 Glycosyl hydrolase 36 superfamily, catalytic domain. This is the catalytic region of the superfamily of enzymes referred to as GH36. UniProtKB:Q76IQ9 is a chitobiose phosphorylase that catalyzes the reversible phosphorolysis of chitobiose into alpha-GlcNAc-1-phosphate and GlcNAc with inversion of the anomeric configuration. The full-length enzyme comprises a beta sandwich domain and an (alpha/alpha)(6) barrel domain. The alpha-helical barrel component of the domain, this family, is the catalytic region. 426 -319186 pfam17168 DUF5127 Domain of unknown function (DUF5127). 189 -319187 pfam17169 NRBF2_MIT MIT domain of nuclear receptor-binding factor 2. This MIT domain is the microtubule interaction and trafficking of nuclear receptor-binding factor 2 - NRBF2 - in higher eukaryotes. It is a coiled-coil region at the N-terminus of pfam08961. NRBF2 plays an essential role in autophagy, the cellular pathway that degrades long-lived proteins and other cytoplasmic contents through lysosomes. NRBF2 binds Atg14L - a Beclin-binding protein - directly via the MIT domain and enhances Atg14L-linked Vps34 kinase (a class III phosphatidylinositol-3 kinase) activity and autophagy induction. 83 -319188 pfam17170 DUF5128 6-bladed beta-propeller. This family is a 6-bladed beta-propeller structure of unknown function. There is a highly conserved FDxxG motif which might be important. 330 -339916 pfam17171 GST_C_6 Glutathione S-transferase, C-terminal domain. This domain is closely related to PF00043. 64 -339917 pfam17172 GST_N_4 Glutathione S-transferase N-terminal domain. This domain is homologous to pfam02798. 97 -319191 pfam17173 DUF5129 Domain of unknown function (DUF5129). 337 -319192 pfam17174 DUF5130 Domain of unknown function (DUF5130). 136 -339918 pfam17175 MOLO1 Modulator of levamisole receptor-1. MOLO1 is a one-pass transmembrane protein that contains a single extracellular globular domain. It is a positive regulator of levamisole-sensitive acetylcholine receptors in Caenorhabditis elegans. These receptors are Cys-loop ligand-gated ion channels, and the MOLO1 domain is an auxiliary subunit of the gated channel. The proteins carry a Rossmann fold. 117 -339919 pfam17176 tRNA_bind_3 tRNA-binding domain. This domain, found at the C-terminus of tRNA(Met) cytidine acyltransferase, may be involved in tRNA-binding. This family represents the tRNA-binding domain proteins not captured by pfam13725. 119 -339920 pfam17177 PPR_long Pentacotripeptide-repeat region of PRORP. Pentatricopeptide repeat (PPR) proteins are a large family of modular RNA-binding proteins which mediate several aspects of gene expression primarily in organelles but also in the nucleus. PPR_long is the region of Arabidopsis protein-only RNase P (PRORP) enzyme that consists of up to eleven alpha-helices. PRORPs are a class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. All PPR proteins contain tandemly repeated sequence motifs (the PPR motifs) which can vary in number. The series of helix-turn-helix motifs formed by PPR motifs throughout the protein produces a superheros with a central groove that allows the protein to bind RNA. Proteins containing PPR motifs are known to have roles in transcription, RNA processing, splicing, stability, editing, and translation. Over a decade after the discovery of PPR proteins, the super-helical structure was confirmed. The protein-only mitochondrial RNase P crystal structure from Arabidopsis thaliana (PRORP1) confirmed the role of its PPR motifs in pre-tRNA binding and suggest it has evolved independently from other RNase P proteins that rely on catalytic RNA. 212 -319196 pfam17178 MASE5 Membrane-associated sensor. MASE5 is a family of bacterial membrane-associated sensor domains. It is an integral membrane sensor domain found in various GGDEF domain proteins, including a diguanylate cyclase DgcY (EcSMS35_1716) from multidrug-resistant environmental isolate Escherichia coli SMS-3-5 (Hengge R. et al. (2015) [A systematic naming system for GGDEF- and EAL-containing c-di-GMP turnover proteins in Escherichia coli K-12]. J.Bacteriol., in preparation). 190 -339921 pfam17179 Fer4_22 4Fe-4S dicluster domain. 94 -319198 pfam17180 zf-3CxxC_2 Zinc-binding domain. 66 -319199 pfam17181 EPF Epidermal patterning factor proteins. EPF is a family of plant epidermal cell growth factors. It is a signalling peptide that determines the spacing and separation of the development of stomatal cells in the upper epidermis of plant leaf cells. 51 -319200 pfam17182 OSK OSK domain. This entry represents the OSK domain defined by Jeske and colleagues. The domain is related to SGNH hydrolases but lacks the active site residues. The domain binds to RNA. 202 -319201 pfam17183 Blt1_C Get5 carboxyl domain. During size-dependent cell cycle transitions controlled by the ubiquitous cyclin-dependent kinase Cdk1, Blt1 has been shown to co-localize with Cdr2 in the medial interphase nodes, as well as with Mid1 which was previously shown to localize to similar interphase structures. Physical interactions between Blt1-Mid1, Blt1-Cdr2 and Cdr2-Mid1 were detected, indicating that medial cortical nodes are formed by the ordered, Cdr2-dependent assembly of multiple interacting proteins during interphase. This entry corresponds to the C-terminal dimerization domain. 51 -339922 pfam17184 Rit1_C Rit1 N-terminal domain. This domain is the N-terminal domain from the enzyme (EC:2.4.2.-) which modifies exclusively the initiator tRNA in position 64 using 5'-phosphoribosyl-1'-pyrophosphate as the modification donor. As the initiator tRNA participates both in the initiation and elongation of translation, the 2'-O-ribosyl phosphate modification discriminates the initiator tRNAs from the elongator tRNAs. The N-terminal domain is the most conserved region of the protein. 265 -339923 pfam17185 NlpE_C NlpE C-terminal OB domain. This family represents a bacterial outer membrane lipoprotein that is necessary for signalling by the Cpx pathway. This pathway responds to cell envelope disturbances and increases the expression of periplasmic protein folding and degradation factors. While the molecular function of the NlpE protein is unknown, it may be involved in detecting bacterial adhesion to abiotic surfaces. In Escherichia coli and Salmonella typhi, NlpE is also known to confer copper tolerance in copper-sensitive strains of Escherichia coli, and may be involved in copper efflux and delivery of copper to copper-dependent enzymes. This domain is found at the C-terminus of the NlpE protein. 90 -339924 pfam17186 Lipocalin_9 Lipocalin-like domain. This family contains the members of the old Pfam family DUF2006. Structural characterization of a family member (from DUF2006 now merged into this family) has revealed a lipocalin-like fold with domain duplication. This entry represents the C-terminal domain of the pair. 130 -339925 pfam17187 Svf1_C Svf1-like C-terminal lipocalin-like domain. Family of proteins that are involved in survival during oxidative stress. This entry corresponds to the the C-terminal domain of a pair of lipocalin domains. 162 -339926 pfam17188 MucB_RseB_C MucB/RseB C-terminal domain. Members of this family are regulators of the anti-sigma E protein RseD. 97 -339927 pfam17189 Glyco_hydro_30C Glycosyl hydrolase family 30 beta sandwich domain. 63 -319208 pfam17190 RecG_N RecG N-terminal helical domain. This four helical bundle domain is found at the N-terminus of bacterial RecG proteins. 87 -319209 pfam17191 RecG_wedge RecG wedge domain. This DNA-binding domain has an OB-fold with large elaborations. 164 -319210 pfam17192 MukF_M MukF middle domain. The kicA and kicB genes are found upstream of mukB. It has been suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid. 161 -319211 pfam17193 MukF_C MukF C-terminal domain. This presumed domain is found at the C-terminus of the MukF protein. 158 -339928 pfam17194 AbiEi_3_N Transcriptional regulator, AbiEi antitoxin N-terminal domain. AbiEi_3 is the cognate antitoxin of the type IV toxin-antitoxin 'innate immunity' bacterial abortive infection (Abi) system that protects bacteria from the spread of a phage infection. The Abi system is activated upon infection with phage to abort the cell thus preventing the spread of phage through viral replication. There are some 20 or more Abis, and they are predominantly plasmid-encoded lactococcal systems. TA, toxin-antitoxin, systems on plasmids function by killing cells that lose the plasmid upon division. AbiE phage resistance systems function as novel Type IV TAs and are widespread in bacteria and archaea. The cognate antitoxin is pfam13338. 93 -319213 pfam17195 DUF5132 Protein of unknown function (DUF5132). Proteins in this family are uncharacterized, but have been identified as members of a gene cluster for the synthesis of Ansamitocin. 46 -319214 pfam17196 DUF5133 Protein of unknown function (DUF5133). This protein of unknown function is part of the Borrelidin synthesis genomic cluster. Borrelidin is a polyketide antibiotic. 65 -339929 pfam17197 DUF5134 Domain of unknown function (DUF5134). Proteins in this family are uncharacterized, but have been identified as members of a gene cluster for the synthesis of the tetramic-acid antibiotic streptolydigin, which inhibits bacterial RNA polymerase (RNAP). 155 -319216 pfam17198 AveC_like Spirocyclase AveC-like. AveC catalyzes the stereospecific spiroketalization of a dihydroxy-ketone polyketide intermediate in the biosynthetic pathway of Avermectin, a potent antiparasitic agent. Additionally, it has a unique dehydration activity that serves to determine the regiospecific saturation pattern for spiroketal diversity. MeiC, the counterpart in the biosynthesis of AVE-like meilingmycin, also has spirocyclase activity, but lacks the dehydratase activity. 229 -339930 pfam17199 DUF5136 Protein of unknown function (DUF5136). Sequences in this family have been identified in Micromonospora as part of the genomic cluster for the synthesis of dynemicin, an enediyne antitumor antibiotic. 28 -339931 pfam17200 sCache_2 Single Cache domain 2. This entry represents the single Cache domain 2 (sCache_2), which contains the long N-terminal helix domain. 152 -339932 pfam17201 Cache_3-Cache_2 Cache 3/Cache 2 fusion domain. The Cache_3-Cache_2 domain likely originated as a fusion of sCache_3 and sCache_2 domains. 295 -339933 pfam17202 sCache_3_3 Single cache domain 3. 107 -319221 pfam17203 sCache_3_2 Single cache domain 3. 140 -319222 pfam17204 Sid-5 Sid-5 family. SID-5 is a C. elegans endosome-associated protein that is required for efficient systemic RNA. 76 -339934 pfam17205 PSI_integrin Integrin plexin domain. This short disulphide rich domain is found at the N-terminus of integrin beta chains. 48 -319224 pfam17206 SeqA_N SeqA protein N-terminal domain. The binding of SeqA protein to hemimethylated GATC sequences is important in the negative modulation of chromosomal initiation at oriC, and in the formation of SeqA foci necessary for Escherichia coli chromosome segregation. SeqA tetramers are able to aggregate or multimerize in a reversible, concentration-dependent manner. Apart from its function in the control of DNA replication, SeqA may also be a specific transcription factor. This short domain mediates dimerization. 36 -339935 pfam17207 MCM_OB MCM OB domain. This family contains an OB-fold found within MCM proteins. This domain contains an insertion at the zinc binding motif. 126 -339936 pfam17208 RBR RNA binding Region. 53 -319227 pfam17209 Hfq Hfq protein. 64 -319228 pfam17210 SdrD_B SdrD B-like domain. This family corresponds to the B-like domain from the SdrD protein. This domain has three calcium binding sites within a greek key beta sandwich fold. 112 -319229 pfam17211 VHL_C VHL box domain. This domain represents the short C-terminal alpha helical domain from the VHL protein. 56 -339937 pfam17212 Tube Tail tubular protein. This family includes the tail tubular gp11 protein from bacteriophage T7. 169 -319231 pfam17213 Hydin_ADK Hydin Adenylate kinase-like domain. This domain found in the Hydin protein is homologous to adenylate kinases. 200 -339938 pfam17214 KH_7 KH domain. 68 -319233 pfam17215 Rrp44_S1 S1 domain. This domain corresponds to the S1 domain found at the C-terminus of ribonucleases such as yeast Rrp44. 87 -319234 pfam17216 Rrp44_CSD1 Rrp44-like cold shock domain. 148 -319235 pfam17217 UPA UPA domain. The UPA domain is conserved in UNC5, PIDD, and Ankyrins. It has a beta sandwich structure. 140 -319236 pfam17218 CBX7_C CBX family C-terminal motif. This motif is found at the C-terminus of CBX family proteins. It is bound by the RAWUL domain of the RING1B protein. 33 -319237 pfam17219 YAF2_RYBP Yaf2/RYBP C-terminal binding motif. This motif is found in the Yaf2 and RYBP proteins that are homologous parts of the PRC1 complex. This motif forms a beta hairpin structure when it binds to the RAWUL domain pfam16207. 33 -319238 pfam17220 DUF5137 Protein of unknown function (DUF5137). This is a family of uncharacterized yeast proteins. 78 -339939 pfam17221 COMMD1_N COMMD1 N-terminal domain. This helical domain is found at the N-terminus of COMMD1. 103 -319240 pfam17222 Peptidase_C107 Viral cysteine endopeptidase C107. This is a family of viral cysteine endopeptidases that process RNA polyproteins. Site directed mutagenesis suggest that H1434 and C1539 form the catalytic dyad. 314 -319241 pfam17223 CPCFC Cuticle protein CPCFC. This entry contains cuticle proteins with a CX(5)C motif, although some members have a CX(7)C motif. In Anopheles gambiae, mRNA for this protein is most abundant immediately following ecdysis in larvae, pupae and adults, and is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization studies have shown that the protein is present in the endocuticle of legs and antennae. CPCFC is found throughout the Hexapoda and in several classes of Crustacea. 17 -339940 pfam17224 DUF5300 Domain of unknown function (DUF5300). This small family of proteins found in Clostridiales is functionally uncharacterized. Proteins in this family are around 130 amino acids in length. Based on NMR structure 2MCA, it forms a beta-sandwich structure consisting of two 4-stranded antiparallel b-strands. The structure is very similar to glutamine glutamyltransferases (1l9n) and peptide transporters (5a9h). 93 -339941 pfam17225 DUF5301 Domain of unknown function (DUF5300). This small family of proteins is functionally uncharacterized. It is found mainly in Firmicutes. Proteins in this family are around 130 amino acids in length. Based on NMR structure 2MCT, it forms an alpha/beta structure with a 6 stranded antiparallel b-sheet planked by a single alpha helix. The only protein with similar structures is a putative lipoprotein (PDB code 4R7R). 97 -339942 pfam17226 MTA_R1 MTA R1 domain. The R1 domain is found in the MTA1 protein and its homologs. The domain is composed of 4 alpha helices. It has been shown to bind to the RBBP4 protein. The MTA proteins contain a second partial copy of this domain called R2. The R2 domain is matched by this model for some proteins. 79 -339943 pfam17227 DUF5302 Family of unknown function (DUF5302). Family of unknown function found in Actinobacteria with highly conserved motif of FRRKSG found at the C-terminus. 52 -339944 pfam17228 SGP Sulphur globule protein. Sulphur globules are membrane-bounded intracellular globules, used by purple sulphur bacteria to transiently store sulphur during the oxidisation of reduced sulphur compounds. This proteobacterial family contains structural proteins of these sulphur globules, and includes sulphur globule protein CV1 (SgpA) and sulphur globule protein CV2 (SgpB). 95 -339945 pfam17229 DUF5303 Region of unknown function (DUF5303). This disordered region of unknown function shows similarity to the N-terminal region of SMG1. 106 -339946 pfam17230 DUF5304 Family of unknown function (DUF5304). This family of unknown function is found in Actinobacteria. 135 -339947 pfam17231 DUF5305 Family of unknown function (DUF5305). This family consists of several hypothetical proteins of unknown function. 219 -339948 pfam17232 DUF5306 Family of unknown function (DUF5306). This family of unknown function is found mainly in plants. 82 -339949 pfam17233 DUF5308 Family of unknown function (DUF5308). This family of uncharacterized fungal proteins are primarily found in ascomycota. 162 -339950 pfam17234 MPM1 Mitochondrial peculiar membrane protein 1. This family contains mitochondrial peculiar membrane proteins, found predominantly in Saccharomycetales. 170 -339951 pfam17235 STD1 STD1/MTH1. This family of proteins includes the known homologs STD1 (also known as MSN3) and MTH1. Both STD1 and MTH1 are involved in modulating the expression of glucose-regulated genes in yeast, but have been shown to function by slightly different methods. It has been suggested that both STD1 and MTH1 are required to repress the hexose transporter genes in low glucose conditions. STD1 has also been shown to stimulate SNF1 kinase through interaction with the catalytic domain of SNF1, antagonising auto-inhibition and promoting an active conformation of the kinase. 213 -339952 pfam17236 DUF5309 Family of unknown function (DUF5309). This is a family of uncharacterized proteins found in viruses and bacteria. 273 -339953 pfam17237 DUF5310 Family of unknown function (DUF5310). This uncharacterized family of proteins contains members that are found mainly in fungi. 44 -339954 pfam17238 DUF5311 Family of unknown function (DUF5311). This is a family of proteins which is mostly found in Streptophyta.On the C terminal of this family, the Nucleoporin Nup120/160 family pfam11715 if often present. 194 -339955 pfam17239 DUF5312 Family of unknown function (DUF5312). This is a family of unknown function, mostly found in Spirochaeta. 553 -339956 pfam17240 DUF5313 Family of unknown function (DUF5313). This is a family of unknown function, found mostly in Actinobacteria and composed of trans-membrane proteins. 111 -339957 pfam17241 DUF5314 Family of unknown function (DUF5314). This is a family of unknown function usually preceded by the GAG-pre-integrase domain pfam13976. 194 -339958 pfam17242 DUF5315 Disordered region of unknown function (DUF5315). This is a family of unknown function found mostly in Saccharomycetales. 77 -339959 pfam17243 POTRA_TamA_1 POTRA domain TamA domain 1. This family represents the POTRA domain found in the membrane insertase TamA. 74 -339960 pfam17244 CDC24_OB3 Cell division control protein 24, OB domain 3. This family contains OB-fold domains that bind to nucleic acids. The family includes a domain found in Cell division control protein 24 (Cdc24). Cdc24 plays an essential role in the progression of normal DNA replication and is required to maintain genomic integrity. Cdc24 has been reported to interact with replication factor C (RFC) as well as proliferating cell nuclear antigen (PCNA), and has been suggested to act as a target for the regulation of damage repair DNA synthesis. 114 -339961 pfam17245 CDC24_OB2 Cell division control protein 24, OB domain 2. This family contains OB-fold domains that bind to nucleic acids. The family includes a domain found in Cell division control protein 24 (Cdc24). Cdc24 plays an essential role in the progression of normal DNA replication and is required to maintain genomic integrity. Cdc24 has been reported to interact with replication factor C (RFC) as well as proliferating cell nuclear antigen (PCNA), and has been suggested to act as a target for the regulation of damage repair DNA synthesis. 101 -339962 pfam17246 CDC24_OB1 Cell division control protein 24, OB domain 1. This family contains OB-fold domains that bind to nucleic acids. The family includes a domain found in Cell division control protein 24 (Cdc24). Cdc24 plays an essential role in the progression of normal DNA replication and is required to maintain genomic integrity. Cdc24 has been reported to interact with replication factor C (RFC) as well as proliferating cell nuclear antigen (PCNA), and has been suggested to act as a target for the regulation of damage repair DNA synthesis. 122 -339963 pfam17247 DUF5316 Family of unknown function (DUF5316). This is a family of unknown function mainly found in Firmicutes. Might contain multiple trans-membrane sequences. 74 -339964 pfam17248 DUF5317 Family of unknown function (DUF5317). This is a family of unknown function found mainly in Bacteria. Members of this family have multiple trans-membrane domains with the majority typically constituted of 4 trans-membrane regions. 150 -339965 pfam17249 DUF5318 Family of unknown function (DUF5318). This family of unknown function is mostly found in Actinobacteria. 131 -339966 pfam17250 NDUFB11 NADH-ubiquinone oxidoreductase 11 kDa subunit. Complex I of the respiratory chain is a proton-pumping, NADH ubiquinone oxidoreductase that oxidizes NADH in the electron transport pathway. Plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes. 86 -339967 pfam17251 Pom Protochlamydia outer membrane protein. This family represents an outer membrane protein found in environmental chlamydia. The protein shows porin function. 276 -339968 pfam17252 DUF5319 Family of unknown function (DUF5319). This is a family of unknown function mostly found in Actinobacteria. 121 -339969 pfam17253 DUF5320 Family of unknown function (DUF5320). A number of this family members have a coiled coil domain at the C terminal. 92 -339970 pfam17254 DUF5321 Family of unknown function (DUF5321). This is a family of unknown function. Most of the members seem to carry one trans-membrane region. 159 -339971 pfam17255 DUF5322 Family of unknown function (DUF5322). This is a family of unknown function. The uncharacterized family is mainly found in Bacteria and consists of two putative trans-membrane domains. 133 -339972 pfam17256 ANAPC16 Anaphase Promoting Complex Subunit 16. The Anaphase-promoting complex/cyclosome (APC/C) is a 1.5 megaDaltons assembly ubiquitin ligase complex comprising 19 subunits. This multifunctional ubiquitin-protein ligase targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. The APC/C complex contains two sub-complexes,the Platform and the Arc Lamp. The Arc Lamp, which mediates transient association with regulators and ubiquitination substrates, contains the small subunits APC16, CDC26, APC13, and tetratricopeptide repeat (TPR) proteins. APC16 is a conserved subunit of the APC/C. APC16 was found in association with tandem-affinity-purified mitotic checkpoint complex protein complexes. APC16 is a bona fide subunit of human APC/C. It is present in APC/C complexes throughout the cell cycle. The phenotype of APC16-depleted cells copies depletion of other APC/C subunits, and APC16 is important for APC/C activity towards mitotic substrates. APC16 sequence homologs can be identified in metazoans, but not fungi, by four conserved primary sequence stretches. 80 -339973 pfam17257 DUF5323 Family of unknown function (DUF5323). This family of proteins found in Eukaryota, has no known function. 62 -339974 pfam17258 DUF5324 Family of unknown function (DUF5324). This is a family of unknown function, mostly found in Actinobacteria. Most of the family members contain one trans-membrane domain. 220 -339975 pfam17259 DUF5325 Family of unknown function (DUF5325). This is a family of unknown function mainly found in Bacilli. Family members of this family are predicted to have trans-membrane domains. 61 -339976 pfam17260 DUF5326 Family of unknown function (DUF5326). This is a family of unknown function mostly found in Actinobacteria. Many of the family members are predicted to contain two trans-membrane domains. 70 -339977 pfam17261 DUF5327 Family of unknown function (DUF5327). This bacterial family of proteins has no known function and is mostly found in Bacilli. 91 -339978 pfam17262 DUF5328 Family of unknown function (DUF5328). This family of unknown function can be found in Bacteria and Archaea. Some of the proteins in this family are annotated in UniProt as putative DNA repair proteins. 151 -339979 pfam17263 DUF5329 Family of unknown function (DUF5329). This is a bacterial family of proteins with unknown function. 93 -339980 pfam17264 DUF5330 Family of unknown function (DUF5330). This is a family of unknown function which is mostly found in Bacteria. 65 -339981 pfam17265 DUF5331 Family of unknown function (DUF5331). This bacterial family of unknown function can be found in Cyanobacteria. 113 -339982 pfam17266 DUF5332 Family of unknown function (DUF5332). This family of uncharacterized proteins is mostly found in Chromadorea. 149 -339983 pfam17267 DUF5333 Family of unknown function (DUF5333). This family of uncharacterized proteins is mostly found in Alphaproteobacteria. 110 -339984 pfam17268 DUF5334 Family of unknown function (DUF5334). This is a family of unknown function which can is found mainly in Proteobacteria. 71 -339985 pfam17269 DUF5335 Family of unknown function (DUF5335). This bacterial family of proteins has no known function. 112 -339986 pfam17270 DUF5336 Family of unknown function (DUF5336). This Actinobacterial family of proteins has no known function. Most of the family members are predicted to have have 4 trans-membrane regions. 168 -339987 pfam17271 Usher_TcfC TcfC Usher-like barrel domain. This is the presumed beta barrel domain from the usher-like TcfC family of proteins. 420 -339988 pfam17272 DUF5337 Family of unknown function (DUF5337). This family of unknown function is found in Rhodobacterales. Most members are predicted to have 2 trans-membrane regions. 74 -339989 pfam17273 DUF5338 Family of unknown function (DUF5338). This is a family of unknown function which can be found mostly in Proteobacteria. 69 -339990 pfam17274 DUF5339 Family of unknown function (DUF5339). This is a family of unknown function that can be found mostly in Proteobacteria. Some of the family members are predicted to contain a coiled coil region. 70 -339991 pfam17275 DUF5340 Family of unknown function (DUF5340). This family of unknown function can be found in Cyanobacteria. 70 -339992 pfam17276 DUF5341 Family of unknown function (DUF5341). This is a family of unknown function, which can be found mostly in Ascomycota. 161 -339993 pfam17277 DUF5342 Family of unknown function (DUF5342). This family of no known function is found in Bacilli. 69 -339994 pfam17278 DUF5343 Family of unknown function (DUF5343). This is a family of unknown function which is found in Bacteria and Archaea. 139 -339995 pfam17279 DUF5344 Family of unknown function (DUF5344). This is a Bacterial family of unknown function. Most of the members of this family are predicted to contain a coiled-coil region. 87 -339996 pfam17280 DUF5345 Family of unknown function (DUF5345). This is a family of unknown function. It is found mostly in Bacteria. Members of this family are predicted to contain 2 trans-membrane regions. 77 -339997 pfam17281 DUF5346 Family of unknown function (DUF5346). This family of unknown function is found in Nematoda. 96 -339998 pfam17282 DUF5347 Family of unknown function (DUF5347). This family of unknown function is found in Bacteria, mainly in Proteobacteria. 102 -339999 pfam17283 Zn_ribbon_SprT SprT-like zinc ribbon domain. This family represents a domain found in eukaryotes and prokaryotes. The domain contains a characteristic motif of the zinc ribbon. This family includes the bacterial SprT protein. 38 -340000 pfam17284 Spermine_synt_N Spermidine synthase tetramerisation domain. This domain represents the N-terminal tetramerization domain from spermidine synthase. 53 -340001 pfam17285 PRMT5_TIM PRMT5 TIM barrel domain. This domain corresponds to the N-terminal TIM barrel domain from PRMT5 proteins.. 248 -340002 pfam17286 PRMT5_C PRMT5 oligomerization domain. 173 -340003 pfam17287 POTRA_3 POTRA domain. This POTRA domain is found in ShlB-like proteins. 53 -340004 pfam17288 Terminase_3C Terminase RNAseH like domain. 154 -340005 pfam17289 Terminase_6C Terminase RNaseH-like domain. 154 -340006 pfam17290 Arena_ncap_C Arenavirus nucleocapsid C-terminal domain. This domain represents the the C-terminal domain that contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. This domain has an RNaseH-like fold. 181 -340007 pfam17291 M60-like_N N-terminal domain of M60-like peptidases. This accessory domain has a jelly roll topology. 109 -340008 pfam17292 POB3_N POB3-like N-terminal PH domain. This domain is found at the N-terminus of POB3 and related proteins. 93 -340009 pfam17293 Arm-DNA-bind_5 Arm DNA-binding domain. This domain is the N-terminal Arm DNA-binding domain found in various tyrosine recombinases. 87 -340010 pfam17294 Lipoprotein_22 Uncharacterized lipoprotein family. The proteins in this family all have an N-terminal lipoprotein attachment motif. No member of this family has been functionally characterized. 167 -340011 pfam17295 DUF5348 Domain of unknown function (DUF5348). 68 -340012 pfam17296 ArenaCapSnatch Arenavirus cap snatching domain. This domain represents the N-terminal domain of the Arenavirus polymerase that is involved in cap snatching during transcription initiation. 171 -340013 pfam17297 PEPCK_N Phosphoenolpyruvate carboxykinase N-terminal domain. catalyzes the formation of phosphoenolpyruvate by decarboxylation of oxaloacetate. 217 -340014 pfam17298 DUF5349 Family of unknown function (DUF5349). This is a family of unknown function found in Saccharomycetaceae. 362 -340015 pfam17299 DUF5350 Family of unknown function (DUF5350). This family is found in Euryarchaeota, predominantly in Methanomicrobia and Archaeoglobi. No known function for this family has been demonstrated. 57 -340016 pfam17300 FIN1 Filament protein FIN1. Fin1 is a kinetochore protein, predicted to contain two putative coiled-coil regions at its C-terminus. It is present in a filamentous structure associated with the spindle and spindle pole in dividing cells during anaphase. Fin1 is a substrate of S-phase cyclin-dependent kinase (CDK). It binds to PP1 creating the Fin1- PPI complex which is recruited onto kinetochores promoting spindle assembly checkpoint (SAC) dis-assembly during anaphase. This is an important step in cell division since the kinetochore is the docking site for the spindle assembly checkpoint that monitors the defects in chromosome attachment and blocks anaphase onset. Fin1 has two RXXS/T sequences: S377 (RVTS), S526 (RKVS) that can be phosphorylated. Upon phosphorylation, interactions with other proteins such as Bmh1 and Bmh2 is promoted. However, de-phosphorylation during anaphase promotes the kinetochore recruitment of Fin1-PP1. 240 -340017 pfam17301 LpqV Putative lipoprotein LpqV. This is a family of cell surface proteins found in Mycobacterium with no known function. 117 -340018 pfam17302 DUF5351 Family of unknown function (DUF5351). This family of unknown function is found in Bacillales. 29 -340019 pfam17303 DUF5352 Family of unknown function (DUF5352). This is a family of unknown function found mostly in Eukaryota. 165 -340020 pfam17304 DUF5353 Family of unknown function (DUF5353). This is a family of unknown function found mostly in Fungi. Members of this family are predicted to contain 2 trans-membrane regions. 67 -340021 pfam17305 DUF5354 Family of unknown function (DUF5354). This family of unknown function is found mostly in Metazoa. 124 -340022 pfam17306 DUF5355 Family of unknown function (DUF5355). This family of unknown function is found in Saccharomycetales. 329 -340023 pfam17307 Smim3 Small integral membrane protein 3. This domain family can be found in Smim3 proteins (Small integral membrane protein 3) also known as NID67 (NGF-induced differentiation clone 67). It is a primary response gene, hypothesized to be involved in forming or regulating ion channels in neuronal differentiation. It is strongly induced by NGF (Nerve Growth Factor) and FGF (Fibroblast Growth Factor), both of which cause these cells to differentiate. The amino acid sequence of NID67 is strongly conserved among rat, mouse and human. This family of small membrane proteins is only 60 amino acids long and analysis of the predicted peptide sequence reveals a stretch of 29 hydrophobic and uncharged residues which very likely comprise a trans-membrane region. 60 -340024 pfam17308 Corazonin Pro-corazonin. This domain family is found in Corazonin proteins in Drosophila and other Anthropods. Corazonin (Crz)is a neuropeptide with a wide spectrum of biological functions in diverse insect groups. It was first discovered due to its myostimulatory activities on the heart muscle of Periplaneta Americana and the hyper-neural muscle of Carausius morosus. In Drosophila melanogaster, Crz plays diverse roles ranging from a regulator of insulin producing cells in the brain to roles specific to tissues, life stages, and gender. 134 -340025 pfam17309 DUF5356 Family of unknown function (DUF5356). This is a family of unknown function found in Chromadorea. 136 -340026 pfam17310 DUF5357 Family of unknown function (DUF5357). This is a family of unknown function found in Cyanobacteria. Most of the family members are predicted to have several trans-membrane regions. 319 -340027 pfam17311 DUF5358 Family of unknown function (DUF5358). This family of unknown function is found in Proteobacteria. 160 -340028 pfam17312 Helveticin_J Bacteriocin helveticin-J. Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards closely related species. Bacteriocins produced by lactic acid bacteria are grouped into different classes. Class III of bacteriocins includes large heat liable proteins. Lactobacillus helveticus 481 produces a 37-kDa bacteriocin called helveticin J which is a representative for Clas III bacteriocins. 311 -340029 pfam17313 DUF5359 Family of unknown function (DUF5359). This is a family of unknown function found in Bacillales. Most of the family members are predicted to have one trans-membrane region. 56 -340030 pfam17314 DUF5360 Family of unknown function (DUF5360). This is a family of unknown function. It is present in Bacteria and most of the family members are predicted to have 4 trans-membrane regions. 127 -340031 pfam17315 FMP23 Found in Mitochondrial Proteome. FMP23 gene encodes a putative mitochondrial protein involved in iron-copper homoeostasis. It was observed to be induced in response to ATX1 deletion and high copper conditions. 153 -340032 pfam17316 PET10 Petite colonies protein 10. This family of proteins found in yest does not have a clear function but are predicted to be involved in lipid metabolism. 248 -340033 pfam17317 MFA1_2 Mating hormone A-factor 1&2. The polypeptides encoded by the MFa1 and MFa2 genes are precursors of 36 and 38 amino acids, respectively. These mating pheromones secreted by S. cerevisiae a-cells, exhibit a single amino acid residue difference (the MFa1 gene product contains a valine instead of the leucine coded for by MFa2 at position 6 of the mature a-factor). The most significant feature of the primary a-factor gene products is the presence of a specific C-terminal motif, found in all known farnesylated proteins, representing a signal for modification of polypeptides with an isoprenoid group. In the case of both a-factor precursors, this specific sequence of amino acids is -CVIA. However, the general motif is referred to as a CAAX box, since the consensus sequence of amino acids present at the C-terminus of isoprenylated proteins consists of an invariable cysteine (C) residue followed by two aliphatic (A) amino acids and ending in a carboxyl-terminal residue of almost any (X) type The specific CAAX sequence has also been shown to target the peptide for either farnesylation or geranylgeranylation. 34 -340034 pfam17318 DUF5361 Family of unknown function (DUF5361). This is a family of unknown function found in Bacteria. 87 -340035 pfam17319 DUF5362 Family of unknown function (DUF5362). This is a family of unknown function found in Bacteria. Most of the family members are predicted to have 2 trans-membrane regions. 94 -340036 pfam17320 DUF5363 Family of unknown function (DUF5363). This is a family of unknown function found in Gammaproteobacteri. 54 -340037 pfam17321 Vac17 Vacuole-related protein 17. Vac17 serves as an adaptor protein recruiting vacuole vesicles to the actin cable tracks by its dual interaction with Vac8 and the Myo2 motor protein. It is directly phosphorylated by Cdk1. Vac17 plays an important role in vacuole inheritance and segregation in cell division. 443 -340038 pfam17322 DUF5364 Family of unknown function (DUF5364). This family of unknown function is found in Saccharomycetales. 186 -340039 pfam17323 ToxS Trans-membrane regulatory protein ToxS. Gram negative bacteria such as Vibrio cholera require the production of a number of virulence factors during infection. ToxS, a member of this domain family, is required for ToxR activity. The ToxR and ToxS regulatory proteins are considered to be at the root of the V. cholera virulence regulon, called the ToxR regulon. ToxS serves as a mediator of ToxR function, perhaps by influencing its stability and/or capacity to dimerize, hence ToxS plays an important function in transcriptional activation of Vibrio cholerae virulence genes. 148 -340040 pfam17324 BLI1 BLOC-1 interactor 1. In yeast BLOC-1 consists of six subunits localized to the endosomes. In the absence of BLOC-1 subunits, the balance between recycling and degradation of selected cargoes is impaired. This family contains BLI1 (BlOC-1 interactor 1) protein, a subunit of the BLOC-1 complex which mediates endosomal maturation. 111 -340041 pfam17325 SPG4 Stationary phase protein 4. Saccharomyces cerevisiae respond and cope to starvation by ceasing growth and entering a non-proliferating state referred to as stationary phase. Expression of SPG4 has been shown to be higher in stressed cells, and stationary phase cells compared to active cells. It is not required for growth on non-fermentable carbon sources. 109 -340042 pfam17326 DUF5365 Family of unknown function (DUF5365). This is a family of unknown function found in Bacillaceae. 116 -340043 pfam17327 AHL_synthase Acyl homoserine lactone synthase. Members of this family are involved in quorum sensing processes. In gram negative bacteria, N-acylhomoserine lactones (AHLs) act as signals. As the bacterial density increases, AHLs accumulate, and once they reach a critical level (quorum), they interact with cognate receptor proteins, which then affect target gene expression. Some AHLs are synthesized by LuxM (AHL synthase) and homologs (VanM and opaM). LuxM enzymes use S-adenosyl-methionine (SAM) as one of its two substrates and are capable of using either acyl-acyl-carrier-protein (acyl-ACP) or acyl-coenzyme A (acyl-CoA) as the other substrate. VanM, the LuxM homolog, produces two auto-inducers C6HSL and 3OC6HSL. Both autoinducers are detected by the VanN receptor. The autoinducers HAI-1, is synthesized by the cytoplasmic enzymes LuxM. 377 -340044 pfam17328 DUF5366 Family of unknown function (DUF5366). This is a family of unknown function, found in Bacillales. Members of the family are predicted to have between 4 and 5 trans-membrane regions. 158 -340045 pfam17329 DUF5367 Family of unknown function (DUF5367). This bacterial family of proteins of unknown function is predicted to contain 3 or 4 trans-membrane regions. 98 -340046 pfam17330 SWC7 SWR1 chromatin-remodelling complex, subunit Swc7. Th SWR1 complex is involved in chromatin-remodelling by promoting the the ATP-dependent exchange of histone H2A for the H2A variant HZT1 in Saccharomyces cerevisiae or H2AZ in mammals. The SWR1 chromatin-remodelling complex is composed of at least 14 subunits and has a molecular mass of about 1.2 to 1.5 MDa. In S. cerevisiae there are core conserved subunits (ATPase; Swr1,RuvB-like; Rvb1 and Rvb2, Actin; Act1, Actin-related: Arp4 and Arp6, YEATS protein; Yaf9) and non-conserved subunits ( Vps71 (Swc6), Vps72 (Swc2), Swc3, Swc4, Swc5, Swc7, Bdf1). Seven of the SWR1 subunits are involved in maintaining complex integrity and H2AZ histone replacement activity: Swr1, Swc2, Swc3, Arp6, Swc5, Yaf9 and Swc6. Arp4 is required for the association of Bdf1, Yaf9, and Swc4 and Arp4 is also required for SWR1 H2AZ histone replacement activity in vitro. Furthermore the N-terminal region of the ATPase Swr1 provides the platform upon which Bdf1, Swc7, Arp4, Act1, Yaf9 and Swc4 associate. It also contains an additional H2AZ-H2B specific binding site, distinct from the binding site of the Swc2 subunit. In eukaryotes the deposition of variant histones into nucleosomes by the chromatin-remodelling complexes such as the SWR1 and INO80 complexes have many crucial functions including the control of gene regulation and expression, checkpoint regulation, DNA replication and repair, telomer maintenance and chromosomal segregation and as such represent critical components of pathways that maintain genomic integrity. This entry represents the subunit Swc7; the smallest subunit of the SWR1 complex. Swc7 is not required for H2AZ binding. It associates with the N-terminus of Swr1, and the association of Bdf1 requires Swc7, Yaf9, and Arp4. 98 -340047 pfam17331 GFD1 GFD1 mRNA transport factor. Following transcription, mRNA is processed, packaged into messenger ribonucleoprotein (mRNP) particles, and transported through nuclear pores (NPCs) to the cytoplasm. Gfd1 is one of several factors that, although not essential for mRNA export, enhances the efficiency of the process, either by facilitating integration of different steps in the gene expression pathway or by increasing the rate of key steps. Gfd1 localizes to the cytoplasm and nuclear rim. It interacts with a number of components of the mRNA export machinery in yeast. Most notably, Gfd1 interacts with the Dbp5-activating protein, Gle1, the cytoplasmic nucleoporin Nup42/Rip1, the putative RNA helicase, Dbp5, and a protein implicated in mRNA export, Zds1. Gfd1 forms a complex with Nab2 both in vitro and in vivo in which Gfd1 binds to the N-terminal domain of Nab2. The crystal structure, together with complementary NMR data, indicated that residues 126-150 of Gfd1 form a single alpha-helix that binds primarily to helix 2 of Nab2-N. Gfd1 functions to co-ordinate Dbp5 and Gle1 to facilitate the removal of Nab2 from mRNPs at the cytoplasmic face of nuclear pores. 59 -340048 pfam17332 pXO2-11 Uncharacterized protein pXO2-11. This is a protein of unknown function found in Firmicutes and predicted to contain 2 trans-membrane regions. 90 -340049 pfam17333 DEFB136 Beta-defensin 136. Beta-defensins are small cationic peptides that have triple-stranded beta-sheet structure. They are characterized by the presence of multiple cysteine residues (forming three distinctive intramolecular disulfide bridges) and a highly similar tertiary structure known as the defensin motif. All beta-defensin genes encode a precursor peptide that consists of a hydrophobic, leucine-rich signal sequence, a pro-sequence, and a mature six-cysteine defensin motif at the carboxy terminus. They exhibit broad-spectrum antimicrobial properties and contribute to mucosal immune responses at epithelial sites. Several beta-defensins family members have been shown to play essential roles in sperm maturation and fertility in rats, mice and humans. In addition to the wide spectrum of antimicrobial activity, mammalian beta-defensins have been reported to have other roles in the immune system, such as the chemotactic ability for immature dendritic cells and memory T-cells via chemokine receptor-6 demonstrated by human beta-defensin-2. This entry contains beta-defensins such as DEFB136, the mouse homolog Defb42, and Ostricacin-3. 51 -340050 pfam17334 CsgA Sigma-G-dependent sporulation-specific SASP protein. Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. The csg (curli specific gene) operon encodes major structural and accessory proteins that are required for curli production. The csgBAC operon encodes the major and minor curli fiber components, CsgA and CsgB, respectively. CsgA is secreted to the extracellular milieu as an unfolded protein and forms amyloid polymers upon interacting with the CsgB nucleator. CsgA is comprised of five imperfect repeating units with highly conserved glutamine and asparagine residues that are important for amyloid formation. Each repeating unit is predicted to form a strand-loop-strand motif. In vitro, CsgC inhibits CsgA amyloid formation at substoichiometric concentrations and maintains CsgA in a non-beta-sheet rich conformation, making CsgC an efficient and selective amyloid inhibitor. 83 -340051 pfam17335 IES5 Ino80 complex subunit 5. The INO80 chromatin remodeling complex is known to be related to DNA repair in yeast, mammals, and plants. In yeast, the INO80 complex is recruited to the DSBs (DNA double-strand breaks) through the direct interaction of its Nhp10 (non-histone protein 10) or Arp4 (Actin-Related Protein) subunits with phosphorylated histone H2A. However, the ortholog of yeast Nhp10 does not exist in mammals. The Nhp10 module consists of Nhp10, Ies1, Ies3, and Ies5. These yeast-specific subunits cross-link to the N-terminus of Ino80 and form a stable complex in-vitro, which helps high-affinity targeting of INO80 to nucleosome-binding. 112 -340052 pfam17336 DUF5368 Family of unknown function (DUF5368). This is a family of unknown function found in Proteobacteria and predicted to contain 2 trans-membrane regions. 111 -340053 pfam17337 Gal_GalNac_35kD Galactose-inhibitable lectin 35 kDa subunit. The role of the cell surface D-galactose (Gal)/N-Acetyl-D-galactosamine (GalNAc), lectin in the adhesion process has been demonstrated in Entamoeba histolytica, a protozoan parasite that causes amebiasis in humans. The Gal/GalNAc lectin is a heterotrimeric protein complex. It is composed of a 260 kDa heterodimer of trans-membrane disulphide-linked heavy 170 kDa subunit and glycosylphosphatidylinositol (GPI)-anchored light 31 kDa/35 kDa subunits. The light subunits are non-covalently associated with an intermediate subunit of 150 kDa. Inhibition of expression of 35 kDa subunit of Gal/GalNAc lectin inhibits the cytotoxic and cytopathic activity of E. histolytica, but no decrease in adherence capacity to mammalian cells was evident. Interestingly, a carbohydrate-binding activity has been reported for the 35 kDa light subunit of the lectin molecules of the closely related Entamoeba invadens. This entry is related to the light subunit where this domain of unknown function is present. The light subunit consists of several polypeptide chains with considerable antigenic homology. The two light (31/35 kDa) subunits of the lectin are present in two isoforms: the 31 kDa isoform is glycerolphosphatidylinositol (GPI) anchored; and the 35 kDa isoform is more highly glycosylated. 225 -340054 pfam17338 GP88 Gene 88 protein. This family of unknown function is found in Bacteria. 231 -340055 pfam17339 DUF5369 Family of unknown function (DUF5369). This is a family of unknown function found in Chromadorea. 128 -340056 pfam17340 DUF5370 Family of unknown function (DUF5370). This is a family of unknown function found in Bacillaceae. 63 -340057 pfam17341 DUF5371 Family of unknown function (DUF5371). This is a family of unknown function found in Euryarchaeota. 65 -340058 pfam17342 DUF5372 Family of unknown function (DUF5372). This family of unknown function is found in Bacteria. 78 -340059 pfam17343 DUF5373 Family of unknown function (DUF5373). This family of unknown function is found in Caenorhabditis. Members of this family are predicted to contain 4 trans-membrane regions. 182 -340060 pfam17344 DUF5374 Family of unknown function (DUF5374). This is a family of unknown function found in Pasteurellaceae. 40 -340061 pfam17345 DUF5375 Family of unknown function (DUF5375). This is a family of unknown function found in Enterobacteriaceae. 106 -340062 pfam17346 DUF5376 Family of unknown function (DUF5376). This is a family of unknown function found in Bacteria. 128 -340063 pfam17347 DUF5377 Family of unknown function (DUF5377). This is a family of unknown function found in Pasteurellaceae. 96 -340064 pfam17349 DUF5378 Family of unknown function (DUF5378). This is a family of unknown function which is found in Mycoplasmataceae.Family members are predicted to contain 7 trans-membrane regions 278 -340065 pfam17350 DUF5379 Family of unknown function (DUF5379). This family of unknown function is found in Methanobacteria and Methanococci. Family members are predicted to have 3 trans-membrane regions. 90 -340066 pfam17351 DUF5380 Family of unknown function (DUF5380). This is a family of unknown function found in Rhabditida. 85 -340067 pfam17352 MFS18 Male Flower Specific protein 18. This domain family is found on MFS18 protein from Maize. MFS18 mRNA accumulates in the glumes and in anther walls, paleas and lemmas of mature florets. It is particularly associated with the vascular bundle in the glumes and encodes a polypeptide of 12 kDa, rich in glycine, proline and serine that has similarities with other plant structural proteins. There is no known function of this domain family in Maize or other Poaceae. 97 -340068 pfam17353 DUF5381 Family of unknown function (DUF5381). This is a family of unknown function found in Bacillales. 169 -340069 pfam17354 DUF5382 Family of unknown function (DUF5382). This is a family of unknown function found in Caenorhabditis. 418 -340070 pfam17355 DUF5383 Family of unknown function (DUF5383). This is a family of unknown function found in Bacillales. Members of this family are predicted to contain one trans-membrane region. 124 -340071 pfam17356 PBSX_XtrA Phage-like element PBSX protein XtrA. This is a family of unknown function found in Bacilli. 64 -340072 pfam17357 FIT1_2 Facilitor Of Iron Transport 1 and 2. Fit proteins (facilitor of iron transport) found on Saccharomyces cerevisiae cell wall are mannoproteins implicated in the siderophore-iron bound transport. This domain family can be found in FIT1 and FIT2 proteins in Saccharomycetaceae. The FIT1-3 cell wall mannoproteins are attached to the beta-glucan layer through a GPI (glycosylphosphatidylinoisitol) anchor. They are very rich in serine and threonine residues (40-50 % serine and threonine) and bear several short repeat of 6-7 amino acids sequence. The exact domain function is unknown. 86 -340073 pfam17358 DUF5384 Family of unknown function (DUF5384). This is a family of unknown function found in Proteobacteria. 143 -340074 pfam17359 DUF5385 Family of unknown function (DUF5385). This is a family of unknown function found in Mycoplasmataceae. Family members are predicted to have one trans-membrane region. 220 -340075 pfam17360 DUF5386 Family of unknown function (DUF5386). This is a family of unknown function found in Chromadorea. 170 -340076 pfam17361 DUF5387 Family of unknown function (DUF5387). This is a family of unknown function found in Strongyloides. 222 -340077 pfam17362 pXO2-34 Family of unknown function. This is a family of unknown function found in Bacilli. 79 -340078 pfam17363 DUF5388 Family of unknown function (DUF5388). This is a family of unknown function found in Lactobacillales. 70 -340079 pfam17364 DUF5389 Family of unknown function (DUF5389). This is a family of unknown function found in Pasteurellaceae. Family members are predicted to have 3 trans-membrane regions. 104 -340080 pfam17365 DUF5390 Family of unknown function (DUF5390). This is a family of unknown function found in Caenorhabditis. 141 -340081 pfam17366 AGA2 A-agglutinin-binding subunit Aga2. The wall of Saccharomyces cerevisiae##consists of mannoproteins, beta-glucans, and a small amount of chitin. Mannoproteins include Aga2p where this domain family is found. There are two main display systems for yeast, the agglutinin system and the flocculin system. The S. cerevisiae sexual agglutinins facilitate the mating between two types of cells, a and alpha. a-Agglutinin consists of two subunits, encoded by two unlinked genes, AGA1 and AGA2. The cell surface adhesion protein (Aga2), enhances agglutination between a and alpha cells. Optimal binding includes interactions of the alpha-agglutinin binding pocket with the Aga2p terminal carboxyl group. This O-mannosylated glycopeptide is doubly disulfide linked to Aga1p. The Aga2p half-cystines near the ends of the peptide are linked to two Aga1p Cys residues separated by only two residues. This closeness of the disulfide bonds stabilizes the alpha/beta structure in Aga2p. 58 -340082 pfam17367 NiFe_hyd_3_EhaA NiFe-hydrogenase-type-3 Eha complex subunit A. Energy-converting [NiFe] hydrogenases are membrane-bound enzymes with a six-subunit core: the large and small hydrogenase subunits, plus two hydrophilic proteins and two integral membrane proteins. Their large and small subunits show little sequence similarity to other [NiFe] hydrogenases, except for key conserved residues coordinating the active site and [FeS] cluster. Energy-converting [NiFe] hydrogenases function as ion pumps, catalyzing the reduction of ferredoxin with H2 driven by the proton-motive force or the sodium-ion-motive force. Eha and Ehb hydrogenases contain extra subunits in addition to those shared by other energy-converting [NiFe] hydrogenases (or [NiFe]-hydrogenase-3-type). Eha contains a 6[4Fe-4S] polyferredoxin, a 10[4F-4S] polyferredoxin, ten other predicted integral membrane proteins (EhaA, EhaB, EhaC, EhaD, EhaE, EhaF, EhaG, EhaI, EhaK, EhaL) and four hydrophobic subunits (EhaM, EhaR, EhS, EhT). Eha and Ehb catalyze the reduction of low-potential redox carriers (e.g. ferredoxins or polyferredoxins), which then might function as electron donors to oxidoreductases. Based on sequence similarity and genome context analysis, other organisms such as Methanopyrus kandleri, Methanocaldococcus jannaschii, and Methanothermobacter marburgensis also encode Eha-like [NiFe]-hydrogenase-3-type complexes and have very similar eha operon structure. This domain family can be found on the small membrane proteins that are predicted to be the EhaA trans-membrane subunits of multisubunit membrane-bound [NiFe]-hydrogenase Eha complexes. 97 -340083 pfam17368 YwcE Spore morphogenesis and germination protein YwcE. The ywcE gene codes for a holin-like protein that localizes to the cell and spore membranes. It is expressed at the onset of sporulation and transcription is repressed during growth by the transition-state regulator AbrB. YwcE is an 83-residue protein with three trans-membrane domains and a highly charged C-terminal tail. Moreover, YwcE has a dual start motif, which plays a role in the regulation of class I or class II holins. It is likely to have the N-terminus on the outside of the membrane and the C-terminus in the cytoplasm. This domain family is found in YwcE proteins in Bacilli. 85 -340084 pfam17369 DUF5391 Family of unknown function (DUF5391). This is a family of unknown function found in Bacilli. Family members are predicted to have 4 trans-membrane regions. 135 -340085 pfam17370 DUF5392 Family of unknown function (DUF5392). This is a family of unknown function found in Bacilli. Family members are predicted to have 2 trans-membrane regions. 139 -340086 pfam17371 DUF5393 Family of unknown function (DUF5393). This is a family of unknown function found in Trypanosomatidae. 653 -340087 pfam17372 DUF5394 Family of unknown function (DUF5394). This is a family of unknown function found in Rickettsiales. 236 -340088 pfam17373 DUF5395 Family of unknown function (DUF5395). This is a family of unknown function found in Archaea and Bacteria. 81 -340089 pfam17374 DUF5396 Family of unknown function (DUF5396). This is a family of unknown function found in Mycoplasma. 947 -340090 pfam17375 DUF5397 Family of unknown function (DUF5397). This is a family of unknown function found in Proteobacteria. 64 -340091 pfam17376 DUF5398 Family of unknown function (DUF5398). This is a family of unknown function found in Chlamydiales. 80 -340092 pfam17377 DUF5399 Family of unknown function (DUF5399). This is a family of unknown function found in Chlamydiales. 134 -340093 pfam17378 REC104 Meiotic recombination protein REC104. REC104 is one of several meiosis specific genes required for generating meiotic DSBs (double strand breaks). It is suggested that Rec102 and Rec104 directly promote DSB formation as part of a multiprotein complex with Spo11. Rec102 and Rec104 are mutually dependent for proper sub-cellular localization, and share a requirement for Spo11 and Ski8 for their recruitment to meiotic chromosomes. Moreover, Rec102 is required for Rec104 to accumulate to normal steady-state levels and to be properly phosphorylated. It is likely that Rec102 and Rec104 move freely in and out of the nucleus but are most stably sequestered there only when they can form a complex on chromosomes. This domain family is found on Rec104 proteins in yeast. 182 -340094 pfam17379 DUF5400 Family of unknown function (DUF5400). This is a family of unknown function found in Methanobacteria and Methanococci. Members of this family are predicted to contain 4 trans-membrane regions. 100 -340095 pfam17380 DUF5401 Family of unknown function (DUF5401). This is a family of unknown function found in Chromadorea. 756 -340096 pfam17381 Svs_4_5_6 Seminal vesicle secretory protein 4/5/6. There are seven major proteins involved in murine seminal vesicle secretion (SVS1-7). Mouse Svs2-Svs6 genes evolved by gene duplication and belong to the same gene family. This domain family is found in SVS4/5 and 6. SVS4 is a basic, thermostable, secretory protein synthesized by rat seminal vesicle epithelium under strict androgen transcriptional control. This protein has potent nonspecies-specific immunomodulatory, anti-inflammatory, and pro-coagulant activities that have been shown to be located in the N-terminal region of Svs4 (fragment 1-70). The N-terminal segment has a high amino-acid sequence similarity with the C-terminal segment 34-66 of uteroglobin, a rabbit steroid-inducible, cytokine-like, multifunctional, secreted protein. Furthermore, SVS4 acts as a sperm capacitation inhibitor, by interacting with SVS3 and SVS2. 95 -340097 pfam17382 ycf70 Uncharacterized protein ycf70. This is a family of unknown function found in Poaceae. 89 -340098 pfam17383 kleA_kleC Uncharacterized KorC regulated protein A. This is a family of unknown function found in Proteobacteria. 77 -340099 pfam17384 DUF150_C RimP C-terminal SH3 domain. This family represents the C-terminal domain from RimP. 70 -340100 pfam17385 LBP_M Lacto-N-biose phosphorylase central domain. The gene which codes for this protein in gut-bacteria is located in a novel putative operon for galactose metabolism. The protein appears to be a carbohydrate-processing phosphorolytic enzyme (EC:2.4.1.211), unlike either glycoside hydrolases or glycoside lyase. Intestinal colonisation by bifidobacteria is important for human health, especially in pediatrics, because colonisation seems to prevent infection by some pathogenic bacteria that cause diarrhoea or other illnesses. The operon seems to be involved in intestinal colonisation by bifidobacteria mediated by metabolism of mucin sugars. In addition, it may also resolve the question of the nature of the bifidus factor in human milk as the lacto-N-biose structure found in milk oligosaccharides. 221 -340101 pfam17386 LBP_C Lacto-N-biose phosphorylase C-terminal domain. The gene which codes for this protein in gut-bacteria is located in a novel putative operon for galactose metabolism. The protein appears to be a carbohydrate-processing phosphorolytic enzyme (EC:2.4.1.211), unlike either glycoside hydrolases or glycoside lyase. Intestinal colonisation by bifidobacteria is important for human health, especially in pediatrics, because colonisation seems to prevent infection by some pathogenic bacteria that cause diarrhoea or other illnesses. The operon seems to be involved in intestinal colonisation by bifidobacteria mediated by metabolism of mucin sugars. In addition, it may also resolve the question of the nature of the bifidus factor in human milk as the lacto-N-biose structure found in milk oligosaccharides. 53 -340102 pfam17387 Glyco_hydro_59M Glycosyl hydrolase family 59 central domain. 115 -340103 pfam17388 GP24_25 Tail assembly protein Gp24 and Gp25. Bacteriophages (viruses of bacteria) use a specialized organelle called a tail to deliver their genetic material and proteins across the cell envelope during infection. In phages the most complex part of these contractile injection systems, the base-plate, is responsible for coordinating host recognition or other environmental signals with sheath contraction. In T4 phage, 15 different proteins encoded by Gene Products (Gps), make up the base-plate and proximal region of the tail tube. The base-plate is divided into inner, intermediate and peripheral regions. Gp25 is located in the inner region of the base-plate. It interacts with Gp53 connecting the core bundle to the central hub and the tube, stabilizing the entire assembly. Gp25 has a structurally conserved loop (residues 47-49), mediating the interaction between LysM (residues 46-82 in Gp53) and the core bundle. Orthologues of Gp25 contain an EPR motif (Glu-Pro-Arg, residues 85-87 of Gp25), which interacts with the core bundle and points towards the region of the Gp27-Gp48 interface. In summary, Gp25 plays a critical role in sheath assembly and contraction. This domain family is found on Gp24 and Gp25 Mycobacterium phages. 115 -340104 pfam17389 Bac_rhamnosid6H Bacterial alpha-L-rhamnosidase 6 hairpin glycosidase domain. This family consists of bacterial rhamnosidase A and B enzymes. L-Rhamnose is abundant in biomass as a common constituent of glycolipids and glycosides, such as plant pigments, pectic polysaccharides, gums or biosurfactants. Some rhamnosides are important bioactive compounds. For example, terpenyl glycosides, the glycosidic precursor of aromatic terpenoids, act as important flavouring substances in grapes. Other rhamnosides act as cytotoxic rhamnosylated terpenoids, as signal substances in plants or play a role in the antigenicity of pathogenic bacteria. 340 -340105 pfam17390 Bac_rhamnosid_C Bacterial alpha-L-rhamnosidase C-terminal domain. This family consists of bacterial rhamnosidase A and B enzymes. L-Rhamnose is abundant in biomass as a common constituent of glycolipids and glycosides, such as plant pigments, pectic polysaccharides, gums or biosurfactants. Some rhamnosides are important bioactive compounds. For example, terpenyl glycosides, the glycosidic precursor of aromatic terpenoids, act as important flavouring substances in grapes. Other rhamnosides act as cytotoxic rhamnosylated terpenoids, as signal substances in plants or play a role in the antigenicity of pathogenic bacteria. 78 -340106 pfam17391 Urocanase_N Urocanase N-terminal domain. 127 -340107 pfam17392 Urocanase_C Urocanase C-terminal domain. 196 -340108 pfam17393 DUF5402 Family of unknown function (DUF5402). This is a family of unknown function found in Methanobacteria and Methanococci. 119 -340109 pfam17394 KleE Uncharacterized KleE stable inheritance protein. This domain family of unknown function is found in Proteobacteria. Family Members are predicted to contain two trans-membrane regions. 108 -340110 pfam17395 DUF5403 Family of unknown function (DUF5403). This is a family of unknown function found in Actinobacteria. 93 -340111 pfam17396 DUF1611_N Domain of unknown function (DUF1611_N) Rossmann-like domain. 93 -340112 pfam17397 DUF5404 Family of unknown function (DUF5404). This is a family of unknown function found in Chordata. This domain is located downstream the N-terminal of Fip1 pfam05182. The Tsx gene resides at the X-inactivation centre and once thought to encode a protein expressed in testis. However, this was disputed upon further analysis. ORF and immunostaining analysis concluded that Tsx may be non-coding. Tsx long transcript is abundantly expressed in meiotic germ cells, embryonic stem cells, and brain. In vertebrates, Fip1 is the evolutionary precursor of eutherian Tsx, hence its location upstream from the Tsx gene. 145 -340113 pfam17398 NolB Nodulation protein NolB. This domain family of unknown function is found in Rhizobiales. Family members are involved in Nodulation (nodule development in plants). 149 -340114 pfam17399 DUF5405 Domain of unknown function (DUF5405). This domain family is found in Enterobacteriaceae. This protein may have a phage origin being found in bacteriophage P2. The majority of proteins have a conserved cysteine residue close to their C-terminus which may have functional significance. 93 -340115 pfam17400 DUF5406 Family of unknown function (DUF5406). This is a family of unknown function found in Bacteria. 114 -340116 pfam17401 DUF5407 Family of unknown function (DUF5407). This is a family of unknown function found in Chlamydiales. 74 -340117 pfam17402 DUF5408 Family of unknown function (DUF5408). This is a family of unknown function found in Helicobacteraceae. Family members are predicted to contain one trans-membrane region. 63 -340118 pfam17403 Nrap_D2 Nrap protein PAP/OAS-like domain. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. 149 -340119 pfam17404 Nrap_D3 Nrap protein domain 3. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. 159 -340120 pfam17405 Nrap_D4 Nrap protein nucleotidyltransferase domain 4. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. 185 -340121 pfam17406 Nrap_D5 Nrap protein PAP/OAS1-like domain 5. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. 158 -340122 pfam17407 Nrap_D6 Nrap protein domain 6. Members of this family are nucleolar RNA-associated proteins (Nrap) which are highly conserved from yeast (Saccharomyces cerevisiae) to human. In the mouse, Nrap is ubiquitously expressed and is specifically localized in the nucleolus. Nrap is a large nucleolar protein (of more than 1000 amino acids). Nrap appears to be associated with ribosome biogenesis by interacting with pre-rRNA primary transcript. 124 -340123 pfam17408 MCD_N Malonyl-CoA decarboxylase N-terminal domain. This family consists of several eukaryotic malonyl-CoA decarboxylase (MLYCD) proteins. Malonyl-CoA, in addition to being an intermediate in the de novo synthesis of fatty acids, is an inhibitor of carnitine palmitoyltransferase I, the enzyme that regulates the transfer of long-chain fatty acyl-CoA into mitochondria, where they are oxidized. After exercise, malonyl-CoA decarboxylase participates with acetyl-CoA carboxylase in regulating the concentration of malonyl-CoA in liver and adipose tissue, as well as in muscle. Malonyl-CoA decarboxylase is regulated by AMP-activated protein kinase (AMPK). 85 -340124 pfam17409 MoaF_C MoaF C-terminal domain. MoaF protein is essential for the production of the monoamine-inducible 30kDa protein in Klebsiella. It is necessary for reconstituting organoautotrophic growth in Ralstonia eutropha. It is conserved in Proteobacteria and some lower eukaryotes. The operon regulating the Moa genes is responsible for molybdenum cofactor biosynthesis. This entry corresponds to the C-terminal domain. 113 -340125 pfam17410 Stevor Subtelomeric Variable Open Reading frame. The parasite protein STEVOR (Subtelomeric Variable Open Reading frame) is an erythrocyte-binding protein recognizing Glycophorin C on the red blood cell (RBC) surface. The cytoplasmic domain of STEVOR is shown to interact with ankyrin complex at the erythrocyte skeleton. It is phosphorylated by protein kinase A (PKA) at a specific serine residue (S324). The N-terminal semi-conserved region of Stevor that is present in this domain is shown to specifically bind to to a chymotrypsin-resistant RBC receptor. The expression of STEVOR in multiple parasite stages including merozoites##suggests that STEVOR mediates multiple distinct functions in parasitic infectious cycle. 273 -340126 pfam17411 SmaI Type II site-specific deoxyribonuclease. Family members of this domain are Type II site-specific deoxyribonuclease EC=3.1.21.4. The endonuclease SmaI recognizes and cleaves the sequence CCCGGGG on DNA, yielding a blunt end scission. It has been used for the diagnosis of neurogenic muscle weakness, ataxia and retinitis pigmentosa disease or Leigh's disease. Due to its specificity in recognizing the cleavage site, it is used in Leigh's disease to specifically eliminate the mutant mitochondrial DNA (mtDNA), which coexists with the wild-type mtDNA (heteroplasmy). Only the mutant mtDNA, but not the wild-type mtDNA, is selectively restricted by the enzyme. By delivering the SmaI gene fused to a mitochondrial targeting sequence, specific elimination of the mutant mtDNA was demonstrated, resulting in restoration of both the normal intracellular ATP level and normal mitochondrial membrane potential. The same strategy has also been demonstrated retinitis pigmentosa (NARP), where a mutant mitochondrial DNA carrying a T8993G transversion has been targeted by using SmaI enzymes. 250 -340127 pfam17412 VraX Family of unknown function. This domain family is found in VraX proteins from Staphylococcus aureus. The vraX gene belongs to the vra operon together with the vraA gene encoding for a long chain fatty acid-CoA ligase, which is up-regulated in the VISA (vancomycin-intermediate S. aureus). The gene product, a 55-amino acids protein,is upregulated in the stress response to cell wall-active antibiotics and other surface-interactive molecules. VraX harbors a putative phosphorylation site, and could therefore be involved in regulatory processes within the cell. However, no exact function has been demonstrated. 55 -340128 pfam17413 VirB7 Outer membrane lipoprotein virB7. The type IV secretion systems (T4SSs) are ancestrally related to bacterial conjugation machines and are able to translocate proteins and/or protein-DNA complexes to the extracellular milieu or the host interior, in many cases contributing to the ability of the bacterial pathogen to colonize the host and evade its immune system. In the pathogenic plant pathogen Agrobacterium tumefaciens T4SS allows the bacterium to transfer a segment of its tumor inducing (Ti-) plasmid DNA into plant cells causing crown gall tumor disease. Proteins in the virB and virD operons catalyze processing of the T-DNA and its transfer to plants. The VirB proteins assemble a secretion apparatus spanning both bacterial membranes to allow transfer of DNA and protein substrates into plant cells. VirB7 and VirB8, along with VirB6, VirB9 and VirB10, are the core components of the Agrobacterium DNA translocation apparatus. Structural studies with the Escherichia coli plasmid pKM101 VirB homologs showed that three proteins, TraN (VirB7 homolog), TraO (VirB9) and TraF (VirB10), form a hetero-tetradecameric structure with 14-fold symmetry forming an outer membrane channel through which the substrates pass. VirB7 stabilizes VirB9 and in its absence bacteria do not accumulate VirB9 preventing assembly of the secretion machine. Members of the VirB7 family are typically 45-65 residues long, becoming 15-20 residues shorter after removal of the N-terminal signal sequence and covalent attachment to lipid molecules. 35 -340129 pfam17414 MatP_C MatP C-terminal ribbon-helix-helix domain. This family, many of whose members are YcbG, organizes the macrodomain Ter of the chromosome of bacteria such as E coli. In these bacteria, insulated macrodomains influence the segregation of sister chromatids and the mobility of chromosomal DNA. Organisation of the Terminus region (Ter) into a macrodomain relies on the presence of a 13 bp motif called matS repeated 23 times in the 800-kb-long domain. MatS sites are the main targets in the E. coli chromosome of YcbG or MatP (macrodomain Ter protein). MatP accumulates in the cell as a discrete focus that co-localizes with the Ter macrodomain. The effects of MatP inactivation reveal its role as the main organizer of the Ter macrodomain: in the absence of MatP, DNA is less compacted, the mobility of markers is increased, and segregation of the Ter macrodomain occurs early in the cell cycle. A specific organisational system is required in the Terminus region for bacterial chromosome management during the cell cycle. This entry represents the C-terminal ribbon-helix-helix domain. 60 -340130 pfam17415 NigD_C NigD-like C-terminal beta sandwich domain. This family of proteins is functionally uncharacterized. This family of proteins is found in Bacteroides species. Proteins in this family are typically between 234 and 260 amino acids in length. These proteins possess an N-terminal lipoprotein attachment site. The family includes NigD a protein found in the Nig operon that encodes a bacteriocin called nigrescin. It has been suggested that NigD may be the immunity protein for nigrescin (NigC) because it is directly downstream. This entry represents the C-terminal beta-sandwich domain of NigD. 120 -340131 pfam17416 Glycoprot_B_PH1 Herpesvirus Glycoprotein B. This domain has a PH-like fold. 210 -340132 pfam17417 Glycoprot_B_PH2 Herpesvirus Glycoprotein B PH-like domain. This domain corresponds to the second PH-like domain in herpesvirus glycoprotein B. 97 -340133 pfam17418 SdpA Sporulation delaying protein SdpA. Spore formation by the bacterium Bacillus subtilis is an elaborate developmental process that is triggered by nutrient limitation. Cells that have entered the pathway to sporulate produce and export a killing factor and a signaling protein that act cooperatively to block sister cells from sporulating and to cause them to lyse. The sporulating cells feed on the nutrients thereby released, which allows them to keep growing rather than to complete morphogenesis. Entry into sporulation is governed by the regulatory protein Spo0A (master regulator of sporulation). Upon Spo0A phosphorylation, it represses the expression of abrB, a negative regulator of skfABCEFGH and sdpAB, leading to the transcriptional activation of sdpAB operon. The production of SdpAB is essential for the SDP toxin. SDP is a 42-amino-acid, ribosomally synthesized AMP which contains a disulfide bond between two cysteine residues located at the N-terminus. SDP acts by rapidly collapsing the proton motive force thereby inducing autolysin mediated lysis on neighboring species and non-biofilm producing B. subtilis cells (which do not produce SdpI) to respond by moving away, while autolysis would release nutrients that can be readily used to promote biofilm growth. SdpAB proteins are required to produce SDP from SdpC33-203. This domain family is found in SdpA proteins which are predicted to be a 158-amino-acid proteins suggest to be primarily cytoplasmic. 142 -340134 pfam17419 MauJ Methylamine utilization protein MauJ. This domain family is found in MauJ proteins. The exact function of the MauJ proteins is unknown but thought to be involved in methylamine utilization. MauJ is predicted to be a cytoplasmic protein. 281 -340135 pfam17420 Gp17 Superinfection exclusion protein, bacteriophage P22. Bacteriophages infect host cells by injecting their genome through the cell wall. To this end, tailed bacteriophages have evolved complex tail machines that extend from a unique capsid vertex, providing both an attachment point to the host surface, and a channel for genome-ejection through the cell envelope. Family members of this domain are putative gp17 proteins involved in genome delivery tail machine in Entereobacteria phage p22 and Salmonella phage ViI. Gp17 found in other bacteriophages such as SPP1 (siphophage SPP1, a lytic Bacillus subtilis phage) has been identified as a tail completion protein adopting an alpha/beta fold, and found to be located at the interface between the head-to-tail connector and the tail of bacteriophage SPP1. 98 -340136 pfam17421 DUF5409 Family of unknown function (DUF5409). This domain of unknown function is found in Poxviridae. 88 -340137 pfam17422 DUF5410 Family of unknown function (DUF5410). This is a family of unknown function found in Rickettsia. 350 -340138 pfam17423 SwrA Swarming motility protein. This domain family is found in Bacillus. Members of this family are Swra proteins involved in swarming motility (a multicellular movement of hyper-flagellated cells on a surface). SwrA is a key transcription factor facilitating this cascade. It acts synergistically with DegU to drive the fla/che operon encoding flagella components, chemotaxis constituents and the alternative sigma factor sigmaD, which is regarded as the primary event in the development of motility. LonA protease of Bacillus subtilis inhibits SwrA by proteolytically restricting its accumulation. SwrA does not contain any known DNA binding domain, and it has been shown to interact with the N-terminal domain of DegU. Anecdotally, in most laboratory strains, e.g. 168, the swrA coding sequence contains a nucleotide insertion that prematurely interrupts its reading frame, causing a non-swarming phenotype strain. 116 -340139 pfam17424 DUF5411 Family of unknown function (DUF5411). This is a family of unknown function found in Bacteria. 136 -340140 pfam17425 Arylsulfotran_N Arylsulfotransferase Ig-like domain. This family consists of several bacterial Arylsulfotransferase proteins. Arylsulfotransferase (ASST) transfers a sulfate group from phenolic sulfate esters to a phenolic acceptor substrate. This domain has an Ig-like fold. 89 -340141 pfam17426 Putative_G5P Putative Gamma DNA binding protein G5P. This domain family is found in Gammaproteobacterial proteins. Members of the family are predicted to be G5P DNA binding proteins. Homologous proteins are found in pfam02303 107 -340142 pfam17427 Phi29_Phage_SSB Phage Single-stranded DNA-binding protein. DNA replication of phi29 and related phages takes place via a strand displacement mechanism, a process that generates large amounts of single-stranded DNA (ssDNA). Consequently, phage-encoded ssDNA-binding proteins (SSBs) are essential proteins during phage phi29-like DNA replication. Single-stranded DNA-binding proteins (SSBs) destabilize double-stranded DNA (dsDNA) and bind without sequence specificity, but selectively and cooperatively, to single-stranded DNA (ssDNA) conferring a regular structure to it, which is recognized and exploited by a variety of enzymes involved in DNA replication, repair and recombination. Phage phi29 protein p5 is the SSB protein active during phi29 DNA replication. It protects ssDNA against nuclease degradation and greatly stimulates dNTP incorporation during phi29 DNA replication process. Binding of the SSB to ssDNA prevents non-productive binding of the viral DNA polymerase to ssDNA, and allows the release DNA polymerase molecules that are already titrated by the ssDNA. This effect would be of particular importance in phi29-like DNA replication systems, where large amounts of ssDNA are generated and SSB binding to ssDNA could favor efficient re-usage of templates. This domain family is found in SSB proteins in phage phi-29, homologs are found in pfam00436. 123 -340143 pfam17428 DUF5412 Family of unknown function (DUF5412). This is a family of unknown function found in Bacteria. Members of this family have one or two predicted trans-membrane regions. 118 -340144 pfam17429 GP70 Gene 70 protein. This family of unknown function is found in Mycobcterium phage and Actinobacteria. 54 -340145 pfam17430 yqgC Uncharacterized yqgC. This is a family of unknown function found in Enterobacteriaceae such as E.coli and Shigella. 51 -340146 pfam17431 ypmT Uncharacterized ympT. This is a family of unknown function found in Bacillus. 62 -340147 pfam17432 DUF3458_C Domain of unknown function (DUF3458_C) ARM repeats. This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. 324 -340148 pfam17433 Glyco_hydro_49N Glycosyl hydrolase family 49 N-terminal Ig-like domain. Family of dextranase (EC 3.2.1.11) and isopullulanase (EC 3.2.1.57). Dextranase hydrolyzes alpha-1,6-glycosidic bonds in dextran polymers. This domain corresponds to the N-terminal Ig-like fold. 188 -340149 pfam17434 DUF5413 Family of unknown function (DUF5413). This is a family of unknown function found in Bradyrhizobiaceae. Family members contain 3 or 4 predicted trans-membrane regions. 133 -340150 pfam17435 DUF5414 Family of unknown function (DUF5414). This is a family of unknown function found in Chlamydiales. Family members have a known structure. 183 -340151 pfam17436 DUF5415 Family of unknown function (DUF5415). This is a family of unknown function found in Enterococcus. 66 -340152 pfam17437 DUF5416 Family of unknown function (DUF5416). This is a family of unknown function found in Campylobacteria. 166 -340153 pfam17438 DUF5417 Family of unknown function (DUF5417). This is a family of unknown function found in Proteobacteria. 91 -340154 pfam17439 DUF5418 Family of unknown function (DUF5418). This is a family of unknown function found in Methanocaldococcus jannaschii. Family members hace three predicted trans-membrane regions. 151 -340155 pfam17440 Thiol_cytolys_C Thiol-activated cytolysin beta sandwich domain. This domain has an immunoglobulin like fold. It is found at the C-terminus of the thiol-activated cytolsin protein. 101 -340156 pfam17441 DUF5419 Family of unknown function (DUF5419). This is a family of unknown function found in Rhodopseudomonas. 80 -340157 pfam17442 U62_UL91 Functional domain of U62 and UL91 proteins. Human herpesvirus 6A (HHV-6A) and HHV-6B are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. Human cytomegalovirus (HCMV) is responsible for significant diseases in developing fetus as well as in an immunocompromised host. During their productive cycle, herpesviruses have a regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). Following viral DNA replication, late viral genes that mainly encode structural proteins start to be transcribed, ultimately leading to the assembly and release of infectious particles. This domain family is found in Human herpesvirus 6A and 6B (HHV-6A/B) as well as HCMV. Family members are shown to be involved in late gene expression such as UL91 in Human Cytomegalovirus. This functional domain is located on the N-terminal (1-71 amino acids) of full-length UL91. It has been found to suffice for transcriptional activation of true-late genes within the nucleus of infected cells. In other words, UL91 is fully functional as a 71-aa N-terminal polypeptide and This small 71-aa polypeptide contains all protein-protein interaction motifs crucial to mediate transcriptional activation. 65 -340158 pfam17443 pXO2-72 Uncharacterized protein pXO2-72. This is a family of unknown function found in Bacilli. 62 -340159 pfam17444 yhdX Uncharacterized protein YhdX. This is a family of unknown function found in Bacillus. 33 -340160 pfam17445 Mfa1 Mating factor A1. Many pathogenic fungi undergo morphological changes in order to infect their hosts. The Ustilago maydis pathogenic cycle starts when two mating compatible haploid yeast cells recognize each other via a pheromone-receptor system which is encoded by two sets of genes a and b. The a locus (a1 and a2) controls the cell fusion by encoding intercellular recognition system consisting of precursors (mfa1##and##mfa2) and receptors (pra1##and##pra2) of lipopeptide pheromones. The open reading frame codes for a 42-amino acid precursor, which is processed to a shorter peptide of 13 amino acids. The terminal CAAX motif is typical of farnesylated fungal pheromones, in which the last three amino acids are removed during farnesylation of the cysteine residue. This terminal cysteine is known to be Omethylated in several fungal pheromones. Mating leads to the formation of a dikaryon filament, whose apical tip differentiates into a specialized structure for plant penetration known as the appressorium. Once inside the plant, U. maydis proliferates, inducing the formation of tumors and eventually develops into diploid spores. This mating process requires cross-talk between cAMP and mitogen-activated protein kinase (MAPK) signaling. Upstream regulation of a locus has been demonstrated where Hos2 (Histone deacetylases (HDACs) plant homolog) directly regulates the expression of U. maydis mating-type genes downstream of the cAMP-PKA pathway. Furthermore, pheromone recognition blocks cell cycle progression in U. maydis##cells in order to prepare mating partners for conjugation where cells undergo arrest in G2 phase. This entry relates to the domain found in Mfa1 proteins in Ustilgo maydis and U. hordei. 43 -340161 pfam17446 ltuA Late transcription unit A protein. This is a domain of unknown function found in Chlamydia. 46 -340162 pfam17447 ykpC Uncharacterized protein YkpC. This is a family of unknown function found in Bacillus. 14 -340163 pfam17448 yqaH Uncharacterized protein YqaH. This is a family of unknown function found in Bacillus. 88 -340164 pfam17449 yrzK Uncharacterized protein YrzK. This is a family of unknown function found in Bacillus. 54 -340165 pfam17450 Melibiase_2_C Alpha galactosidase A C-terminal beta sandwich domain. 86 -340166 pfam17451 Glyco_hyd_101C Glycosyl hydrolase 101 beta sandwich domain. Virulence of pathogenic organisms such as the Gram-positive Streptococcus pneumoniae is largely determined by the ability to degrade host glycoproteins and to metabolize the resultant carbohydrates. This family is the enzymatic region, EC:3.2.1.97, of the cell surface proteins that specifically cleave Gal-beta-1,3-GalNAc-alpha-Ser/Thr (T-antigen, galacto-N-biose), the core 1 type O-linked glycan common to mucin glycoproteins. This reaction is exemplified by a S. pneumoniae protein, where Asp764 is the catalytic nucleophile-base and Glu796 the catalytic proton donor. This domain represents C-terminal the beta sandwich domain. 115 -340167 pfam17452 YnfE Uncharacterized protein YnfE. This is a family of unknown function found in Bacillus. 78 -340168 pfam17453 YhdK Sigma-M inhibitor protein. This is a domain of unknown function found in Sigma M inhibitor proteins YhdK. In Bacillus subtilis, sigM##(yhdM) gene, is required for growth and survival after salt stress. Expression of sigM is positively autoregulated and is controlled by growth phase and medium composition. SigM-dependent transcription is regulated by the products of both the yhdL and the yhdK genes, which are co-transcribed with the sigM gene. The small hydrophobic protein YhdK, appears to interact with the trans-membrane domain of YhdL, suggesting some specific role for YhdK in the anti-sigma function of YhdL. 96 -340169 pfam17454 Bee_toxin Honey bee toxin. Bee venom contains a variety of peptides such as melittin, apamin, adolapin and mast cell degranulating peptide. Bee venom has been used in the treatment of major neurodegenerative disorders, including Alzheimer's Disease, Parkinson's Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Secondary structure analysis of apamin, mast cell degranulating peptide, tertiapin and secapin have been studied. The predicted structure for mast cell degranulating peptide is almost spherical with the eight positive centers evenly distributed over the surface. It has also been suggested that these four peptides share a common folding pattern, which is centred on a beta-turn covalently linked to an alpha-helical segment by two disulphide links. It is further suggested that apamin, mast cell degranulating peptide and tertiapin form a single molecular class. This domain family is found in apamin, mast cell degranulating peptide and tertiapin. Apamin, the most widely studied member of this family has been shown to be a selective blocker of small-conductance Ca2+-activated K+ (KCa2.X or SK) channels. 50 -340170 pfam17455 LtuB Late transcription unit B protein. This is a family of unknown function which is specific to Chlamydia late transcription unit B protein. 81 -340171 pfam17456 TcpS Toxin-coregulated pilus protein S. The toxin-coregulated pilus (TCP) and cholera toxin (CT) are two main virulence factors produced by V. cholerae, which allows the bacterium to colonize and establish an infection in a host and to cause the physical symptoms of the disease, respectively. Increased expression of the TCP, a type IV pilus expressed by the tcp operon (tcpABQCRDSTEF) located on the Vibrio pathogenicity island (VPI), has been associated with enhanced attachment and is essential for colonization of the intestinal epithelium. This domain of unknown function is found in TcpS proteins in Vibrionaceae such as Vibrio choleae. 152 -340172 pfam17457 DUF5420 Family of unknown function (DUF5420). This is a domain of unknown function found in Gammaproteobacteria such as Haemophilus influenzae. 184 -340173 pfam17458 DUF5421 Family of unknown function (DUF5421). This is a domain of unknown function found in Chlamydia. 284 -340174 pfam17459 DUF5422 Family of unknown function (DUF5422). This is a family of unknown function found in Chlamydia. Members of this family have 1-4 predicted trans-membrane regions. 153 -340175 pfam17460 RP854 Uncharacterized protein RP854. This is a family of unknown function found in Rickettsia. Members of this family are predicted to have one trans-membrane region. 212 -340176 pfam17461 DUF5423 Family of unknown function (DUF5423). This is a domain of unknown function found in Chlamydia. Family members have 4 predicted trans-membrane regions. 363 -340177 pfam17462 DUF5424 Family of unknown function (DUF5424). This is a family of unknown function specific to Rickettsia amblyommii. 175 -340178 pfam17463 Gp79 Gene Product 79. This is a domain of unknown function found in Mycobacterium phage. Family members include the full Gp79 protein found in Mycobacteriophage L5. Mycobacteriophage L5, is a phage isolated from Mycobacterium smegmatis. It forms stable lysogens in M. smegmatis and has a broad host range among the pathogenic mycobacteria. L5 encodes gene products (gp) toxic to the host M. smegmatis. Expression of gp79 interferes with the cell membrane or cell-wall synthesis of M. smegmatis, leading to altered cell morphology. It also has a bactericidal effect on E. coli. The N-terminal segment of gp79 (amino acids 1-41) shares sequence similarity with the signal peptide of the D-alanylD-alanine carboxypeptidase of Bacillus licheniformis. This enzyme removes C-terminal D-alanyl residues from sugarpeptide cell-wall precursors and is also a penicillin-binding protein (PBP). The homology of the hydrophobic N-terminal part of gp79 to a PBP (penicillin-binding protein) signal peptide may indicate an interaction of gp79 with proteins or metabolites involved in the peptidoglycan synthesis of M. smegmatis. 51 -340179 pfam17464 Pns11_12 Non-structural protein 11 and 12. This is a domain of unknown function found in Phytoreovirus. Family members include the Rice dwarf virus Pns11 and Pns12. Rice dwarf virus (RDV) is an icosahedral, double-layered particle. The viral genome consists of 12 segmented dsRNAs that encode seven structural (P1, P2, P3, P5, P7, P8 and P9) and five non-structural (Pns4, Pns6, Pns10, Pns11 and Pns12) proteins. Pns11 is known to bind nucleic acids and Pns12 is a phosphorylated protein. The non-structural proteins Pns6, Pns11 and Pns12 of RDV are the major constituents of the matrix of viral inclusions in which the assembly of progeny virions and the synthesis of viral RNA are thought to occur. 205 -340180 pfam17465 Putative_CCL4 Chemokine-like protein, HHV-6 U83 gene product. Human herpesvirus 6A (HHV-6A) and HHV-6B are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. HHV6 A/B encode two putative chemokine receptors and a chemokine-like protein. The HHV6 U83 gene encodes a CC chemokine, which functions as a highly selective and efficacious agonist for the human CCR2 receptor both in respect of signal transduction and the ability to induce chemotaxis. homologs of the U83 gene products are found in Human cytomegalovirus encoded chemokines vCXC1 and vCXC2. HHV-6 CCL4 contains a region with the CC/CX3C chemokine motif and a glycosaminoglycan (GAG)-binding epitope, BBXB (B being a basic residue), found right before the third Cys residue, which very likely forms a disulfide bridge back to the first Cys of the protein. This gene is the only HHV-6A/B divergent gene that is specific for these viruses. The U83 chemokine gene is distinct between HHV-6A and HHV-6B strains, encoding up to 13###% amino acid differences. The HHV-6A (U83A) and HHV-6B (U83B) chemokines have distinct specificities which determine chemoattraction or diversion of different leukocyte subsets for infection or immune evasion, thus an early component of cellular tropism as well as mediator of innate immunity. U83 also has a varied gene structure, with N-terminal length variation determining production of the encoded mature secreted chemokine, coupled with control by cell-directed splicing which truncates the chemokine gene early in replication to encode an antagonist. The ###long' active form of U83A has a unique broad specificity for receptors CCR1, CCR4, CCR5, CCR6 and CCR8 present on plasmacytoid and myeloid dendritic and monocyte/macrophage antigen presenting cells, as well as both TH1 and TH2 skin homing lymphocytes and NK cells; it is also amongst the highest affinity ligands for CCR5 and inhibits HIV-1 binding at this coreceptor. U83A can both block and divert human chemokine action while occupying the human chemokine receptors. 97 -340181 pfam17466 NinD Family of unknown function. This is a family of unknown function found in Enterobacteria phage P22 and Enterobacteria phage lambda. 57 -340182 pfam17467 E7R Viral Protein E7. This domain family is found in Vaccinia and Variola viruses. Family members include E7R gene product. Vaccinia virus (VV) is a large double-stranded DNA virus that replicates in the cytoplasm of infected cells. Many viruses express proteins that are modified by myristic acid. Myristic acid is a 14-carbon fatty acid that is cotranslationally transferred to the penultimate glycine residue found within the consensus sequence MGXXX(S/T/A/C/N) (where X is any amino acid) at the amino terminus of target proteins. E7R proteins in Vaccina virus have been shown to be myristylated. The expressed E7R protein has also been found to reside within mature infectious virions. 60 -340183 pfam17468 Gp52 Phage protein Gp52. This domain of unknown function is found in Mycobacterium phage. 61 -340184 pfam17469 Gp68 Phage protein Gp68. This is a domain of unknown function found in Mycobacterium phage. 78 -340185 pfam17470 Gp45_2 Phage protein Gp45.2. This is a domain of unknown function found in Myoviridae. 58 -340186 pfam17471 Gp63 Hypothetical phage protein Gp63. This is a family of unknown function found in Mycobacterium. 73 -340187 pfam17472 DUF5425 Family of unknown function (DUF5425). This is a family of unknown function found in Borreliella burgdorferi. 76 -340188 pfam17473 DUF5426 Family of unknown function (DUF5426). This is a family of unknown function found in Mycoplasma. 137 -340189 pfam17474 U71 Tegument protein UL11 homolog. Human herpesvirus 6A (HHV-6A) and HHV-6B are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. During their productive cycle, herpesviruses have a regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). Following viral DNA replication, late viral genes that mainly encode structural proteins start to be transcribed, ultimately leading to the assembly and release of infectious particles. This domain family is found in tegument protein UL11 homolog (U71) in HHV-6A/B. It is a myristylated virion protein which is expressed at the early stage of the lytic cycle. 52 -340190 pfam17475 Binary_toxB_2 Clostridial binary toxin B/anthrax toxin PA domain 2. This domain forms the middle beta sandwish domain in anthrax toxin. 218 -340191 pfam17476 Binary_toxB_3 Clostridial binary toxin B/anthrax toxin PA domain 3. This entry represents the beta-grasp domain in anthrax protective antigen. 105 -340192 pfam17477 Rota_VP4_MID Rotavirus VP4 membrane interaction domain. This entry represents the VP4 membrane interction domain. 225 -340193 pfam17478 VP4_helical Rotavirus VP4 helical domain. 291 -340194 pfam17479 DUF3048_C Protein of unknown function (DUF3048) C-terminal domain. Some members in this bacterial family of proteins are annotated as YerB. However currently no function is known. This entry represents the C-terminal domain. 114 -340195 pfam17480 AlphaC_C Alpha C protein C terminal. The alpha C protein (ACP) is found in Streptococcus and acts as an invasin which plays a role in the internalisation and translocation of the organism across human epithelial surfaces. Group B Streptococcus is the leading cause of diseases including bacterial pneumonia, sepsis and meningitis. The N terminal of ACP is associated with virulence and forms a beta sandwich and a three helix bundle. This entry is the C-terminal domain for APC. The C-terminal domain (45 amino acids) contains an LPXTG peptidoglycan-anchoring motif characteristic of cell-wall anchored surface proteins. 71 -340196 pfam17481 Phage_sheath_1N Phage tail sheath protein beta-sandwich domain. This entry represents the N-terminal beta sandwich domain found in a variety of phage tail sheath proteins. 96 -340197 pfam17482 Phage_sheath_1C Phage tail sheath C-terminal domain. This entry represents the C-terminal domain in a variety of phage tail sheath proteins. 104 -340198 pfam17483 TbpB_C C-lobe handle domain of Tf-binding protein B. Bacterial lipoproteins represent a large group of specialized membrane proteins that perform a variety of functions including maintenance and stabilization of the cell envelope, protein targeting and transit to the outer membrane, membrane biogenesis, and cell adherence. Pathogenic Gram-negative bacteria within the Neisseriaceae and Pasteurellaceae families rely on a specialized uptake system, characterized by an essential surface receptor complex that acquires iron from host transferrin (Tf) and transports the iron across the outer membrane. They have an iron uptake system composed of surface exposed lipoprotein, Tf-binding protein B (TbpB), and an integral outer-membrane protein, Tf-binding protein A (TbpA), that together function to extract iron from the host iron binding glycoprotein (Tf). TbpB is a bilobed (N and C lobe) lipid-anchored protein with each lobe consisting of an eight-stranded beta barrel flanked by a ###handle### domain made up of four (N lobe) or eight (C lobe) beta strands. TbpB extends from the outer membrane surface by virtue of an N-terminal peptide region that is anchored to the outer membrane by fatty acyl chains on the N-terminal cysteine and is involved in the initial capture of iron-loaded Tf. This domain family is found in the handle domain of the C lobe (domain C) of TbpB proteins. It consists of a squashed six-stranded beta sheet flanked by two antiparallel beta strands and has no supporting alpha helix as in the N lobe. 97 -340199 pfam17484 TbpB_A N-Lobe handle Tf-binding protein B. Bacterial lipoproteins represent a large group of specialized membrane proteins that perform a variety of functions including maintenance and stabilization of the cell envelope, protein targeting and transit to the outer membrane, membrane biogenesis, and cell adherence. Pathogenic Gram-negative bacteria within the Neisseriaceae and Pasteurellaceae families rely on a specialized uptake system, characterized by an essential surface receptor complex that acquires iron from host transferrin (Tf) and transports the iron across the outer membrane. They have an iron uptake system composed of surface exposed lipoprotein, Tf-binding protein B (TbpB), and an integral outer-membrane protein, Tf-binding protein A (TbpA), that together function to extract iron from the host iron binding glycoprotein (Tf). TbpB is a bilobed (N and C lobe) lipid-anchored protein with each lobe consisting of an eight-stranded beta barrel flanked by a ###handle### domain made up of four (N lobe) or eight (C lobe) beta strands. TbpB extends from the outer membrane surface by virtue of an N-terminal peptide region that is anchored to the outer membrane by fatty acyl chains on the N-terminal cysteine and is involved in the initial capture of iron-loaded Tf. The 4-residue conserved LSAC motif found at the amino terminus of TbpB represents a prototypical lipobox, with the cysteine residue serving as the first amino acid in the mature protein which is subsequently modified by the addition of a diacyl glycerol. A second conserved motif of interest is located two amino acids downstream of the LSAC site. This region consists of four glycine residues in tandem. Deletion of the conserved polyglycine motif has significant negative effects on growth in certain conditions, while mutational analysis revealed that the LSAC motif constituting the lipobox of TbpB is necessary for lipidation and hence tethering of TbpB to the bacterial surface. This domain family is found on the N-terminal region of TbpB proteins, which comprises the N lobe handle consisting of a four-stranded antiparallel beta sheets held together by a short surface-exposed alpha helix. Tf-binding activity primarily resides in the TbpB N lobe. 134 -340200 pfam17485 SatRNA_48 Satellite RNA 48 kDa protein. Satellite RNAs (satRNAs) are short RNA molecules, usually <1,500 nt, that depend on cognate helper viruses for replication, encapsidation, movement, and transmission, but most share little or no sequence homology to the helper viruses. In contrast, satellite viruses are satRNAs that encode and are encapsidated in their own capsid proteins (CPs). Members of this family are nonstructural proteins of 48kDa in size which been shown to be involved in the replication of the sat-RNA. They are found in tomato black ring virus (TBRV). 299 -340201 pfam17486 Cys_Knot_tox Cystine knot toxins. This family is found in Araneaea (spiders) and family members are venomus peptides with 4 disulfide bonds. Cystine knot toxins (CKTs) are small, compact molecules cross-linked by three to five disulfide bonds and are often the key contributors to the activity and potency of the venom. While these disulfide-rich peptides can adopt a number of different structural motifs, three of the most observed structural scaffold motifs are the inhibitor cystine knot (ICK) and the disulfide-directed beta-hairpin (DDH) and Kunitz motif. These venomus peptides mainly act on membrane proteins in electro-excitable cell membranes by modulating voltage-activated sodium (NaV), calcium (CaV), and potassium (KV) channels, acid-sensing ion channels (ASICs), transient receptor potential (TRP) channels, and mechanosensitive channels (MSCs). 70 -340202 pfam17487 RPS12 Ribosomal protein S12. This is a family of unknown function. Family members are ribosomal proteins found in the mitochondria (RPS12). Homologus RPS12 proteins in bacterial ribosoms participate in stabilizing the second base pair of the codon-anticodon duplex in the A site and is likely to be critical for the fidelity of decoding process. A similar role can be anticipated for this protein in mitochondrial ribosomes. This has been shown where the product of edited RPS12 mRNA translation represented a component of the mitoribosome's small subunit. 87 -340203 pfam17488 Herpes_glycoH_C Herpesvirus glycoprotein H C-terminal domain. Herpesvirus glycoprotein H (gH) is a virion associated envelope glycoprotein. Complex formation between gH and gL has been demonstrated in both virions and infected cells. This entry represents the C-terminal domain. 140 -340204 pfam17489 Tnp_22_trimer L1 transposable element trimerization domain. This entry represents the trimerization domain. 43 -340205 pfam17490 Tnp_22_dsRBD L1 transposable element dsRBD-like domain. This entry represents the double stranded RNA-binding-like domain. 65 -340206 pfam17491 m_DGTX_Dc1a_b_c Spider Toxins mu-diguetoxin-1 a, b and c. This family has members that are 56-59 residue mu-diguetoxin-1 toxins, which have been isolated from the weaving spider, Diguetia canities. These toxins were isolated as a result of their potent insect paralytic activities, designated mu-DGTX-Dc1a to -Dc1c (formerly DTX9.2, DTX11 and DTX12). Family members such as beta-Diguetoxin-Dc1a (Dc1a) has been structurally characterized and shown to have disulfide bonds which form a classical inhibitor cysteine knot (ICK) motif in which the Cys13-Cys26 and Cys20-Cys40 disulfide bonds and the intervening sections of the polypeptide backbone forming a 23-residue ring that is pierced by the Cys25-Cys54 disulfide bond. This ICK motif is commonly found in spider toxins, and this particular scaffold provides these peptides (so-called knottins) with an unusually high degree of chemical, thermal and biological stability. Dc1a contains an additional disulfide bond (Cys42-Cys52) that appears to serve as a molecular staple which limits the flexibility of a disordered serine-rich hairpin loop. The extended N-terminus of Dc1a along with an unusually large loop between Cys26 and Cys40 enables the formation of an N-terminal three-stranded antiparallel beta-sheet that is not found in any other knottin.The molecular surface of Dc1a contains a relatively uniform distribution of charged residues; moreover, there are no distinct clusters of hydrophobic residues that might mediate an interaction with lipid bilayers. 55 -340207 pfam17492 D_CNTX Delta Ctenitoxins. This family includes peptides isolated from Phoneutria such as delta-ctenitoxins.Members of the CNTX-Pn1a family and its paralogs (delta-CNTX-Pn1b through delta-CNTX-Pn1e) of##Phoneutria##toxins have complex effects on sodium channels but their primary effect appears to be an inhibition of channel inactivation, a pharmacology similar to that of the delta-atracotoxins and delta-conotoxins. Orthologous toxins such as delta-CNTX-Pr1/PK1 and Pn2 are also family members, some of which act by clocking the calcium channels. Delta-CNTX-Pn1a and delta-CNTX-PN2a are 48-amino-acid polypeptides, with 5 disulfide bridges. The later has a complex pharmacology that results in inhibition of NaV##channel inactivation and a hyperpolarizing shift in the channel activation potential. 48 -340208 pfam17493 DUF5428 Family of unknown function (DUF5428). This is a family of unknown function found in Betanecrovirus. 63 -340209 pfam17494 DUF5429 Family of unknown function (DUF5429). This is a family of unknown function. 76 -340210 pfam17495 DUF5430 Family of unknown function (DUF5430). This is a family of unknown function found in Feline immunodeficiency virus. 106 -340211 pfam17496 DUF5431 Family of unknown function (DUF5431). This is a family of unknown function found in Enterobacteriaceae. 70 -340212 pfam17497 DUF5432 Family of unknown function (DUF5432). This is a family of unknown function found in Orthopoxvirus. 74 -340213 pfam17498 DUF5433 Family of unknown function (DUF5433). This is a family of unknown function found in Orthopoxviruses. 67 -340214 pfam17499 Pilosulin Ant venom peptides. Members of this family are found in Myrmecia pilosula and represent a group of peptides that display cytotoxic, hypotensive, histamine-releasing and antimicrobial activities. Pilosulins constitute the major allergens of the venom of Myrmecia pilosula (Myrmeciinae). Pilosulin 1 is a long linear peptide (57 amino acids) and displays haemolytic and cytolytic activities. Pilosulins 3, 4, and 5 are a group of homo- and heterodimeric peptides. Pilosulin 1 is expressed in the venom sac of ants in the form of a propeptide (112 kDa) which undergoes extensive post-translational modification. It is proposed to give rise to a family of six homologous C-terminal peptide sub-sequences containing between 27 and 56 amino acid residues in the final venom. Furthermore, it is found to form random coils and have minimal secondary structure. However, in increasingly hydrophobic conditions, approximately one-third of the peptide forms alpha-helix secondary structures. Studies on human erythrocytes and lymphocytes, show that Pilosulin 1 is highly lytic towards leukocytes and that the NH2-terminus (20 N-terminal residues) of Pilosulin 1 is critical for its cytotoxic activity and antimicrobial activities. Another family member Pilosulin 3, is a heterodimer of Pilosulin 3a and Pilosulin 3b linked in anti-parallel fashion through 2 disulfide bridges. This peptide is the most abundant peptide found in native venom. 73 -340215 pfam17500 Colicin_K Colicin-K immunity protein. Colicins are bacterial toxins produced by##Escherichia coli##strains and are active against E. coli or related strains. These bacterial antibiotic toxins play an important role in the E. coli colonization of environmental niches. Members of this family are Colicin K peptides which require TolA, TolB, TolQ, and TolR proteins for translocation across the periplasm and binding to the outer membrane receptor. Colicin K uses the Tsx nucleoside-specific receptor for binding at the cell surface, the OmpA protein for translocation through the outer membrane, and the TolABQR proteins for the transit through the periplasm. The N-terminal domain interacts with components of its import machinery, including the TolB and TolQ proteins. 96 -340216 pfam17501 Viral_RdRp_C Viral RNA-directed RNA polymerase. This is the C-terminal of RNA-directed RNA polymerase (Protein A) found in Alphanodaviruses such as Flock House Virus (FHV). FHV is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2. RNA1 encodes protein A, which is the catalytic subunit of the RNA-dependent RNA polymerase (RdRp) and functions as the sole viral replicase protein responsible for RNA replication. FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which is able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation. It has also been reported that FHV protein A replicates viral RNA in concert with the mitochondrial outer membrane and other viral or cellular factors and mediates the formation of viral RNA replication complexes and small spherules by inducing membrane rearrangement.This domain is also found in B1 proteins which are encoded by the subgenomic RNA3 during FHV replication. The function of translated B1 protein is poorly defined, but may be important for maintenance of RNA replication. 101 -340217 pfam17502 DUF5434 Family of unknown function (DUF5434). This is a family of unknown function found in Varicellovirus. 189 -340218 pfam17503 DUF5435 Family of unknown function (DUF5435). This is a family of unknown function found in Varicellovirus. 208 -340219 pfam17504 DUF5436 Family of unknown function (DUF5436). This is a family of unknown function found in Orthopoxvirus. 79 -340220 pfam17505 DUF5437 Family of unknown function (DUF5437). This is a family of unknown function found in Alphabaculovirus. 60 -340221 pfam17506 DUF5438 Family of unknown function (DUF5438). This is a family of unknown function found in Orthopoxvirus. 71 -340222 pfam17507 DUF5439 Family of unknown function (DUF5439). This is a family of unknown function found in Orthopoxvirus. 75 -340223 pfam17508 MccV Microcin V bacteriocin. Family members are bacterial microcin-V peptides MccV, also known as colicin V. MccV was the first antibiotic substance reported to be produced by E. coli. This antibacterial agent was initially named colicin V (ColV). However, on account of several characteristics (low molecular mass, non-inducible production, and dedicated export system), it became classified within the microcins. The structural gene cvaC, encodes the 103-aa MccV precursor. The dedicated export system of MccV has been well characterized and involves two genes that form the second operon. The MccV protein has an N-terminal double glycine motif which precedes the cleavage site for the precursor protein. 104 -340224 pfam17509 DUF5440 Family of unknown function (DUF5440). This is a family of unknown function found in bacteria. 93 -340225 pfam17510 Gp44 Mycobacterium phage hypothetical protein Gp44.1. This is a family with unknown function. Family members are hypothetical proteins found in Mycobacterium phages. 108 -340226 pfam17511 Mobilization_B Mobilization protein B. This is a family of unknown function found in Bacteria. Family members include Mobilization protein B (MobB). MobB contains a putative membrane-spanning domain, and might be involved in anchoring or presenting MobA, and the covalently-linked plasmid DNA, to the conjugative pore for subsequent export. In agreement with this, MobB has been shown to be associated with the membrane. Deletion of the membrane-spanning domain disrupts this association and decreases the frequency of both type IV transport and plasmid mobilization. MobB is one out of three proteins encoded by RSF1010 that are required for its mobilization along with MobA and MobC. MobB encoded by the broad-host-range plasmid R1162 is required for its efficient transfer by conjugation. The C-terminal half of the protein contains a membrane domain essential for transfer, while the other, functionally active region of MobB, identified by mutagenesis, is at the N-terminal end. One mutation affecting this region inhibits replication, suggesting that this part of the protein is contacting and sequestering the relaxase-linked primase. A model that represents MobB molecules as anchored in the membrane at one end and engaging the relaxase at the other. This arrangement is suggested to increase the transfer frequency by raising the probability of contact between the relaxase and the membrane-embedded, coupling protein for type IV secretion. 136 -340227 pfam17512 Sh_2 Metapneumovirus Small hydrophobic protein. This family is found in SH (small hydrophobic) proteins present in Metapneumovirus such as the Avian metapneumovirus (AMPV), a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein. It is located in both the plasma membrane as well as within intracellular compartments. AMPV type C- SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, it has been shown that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds. 174 -340228 pfam17513 DUF5441 Family of unknown function (DUF5441). This is a family of unknown function found in Mastadenoviruses. 189 -340229 pfam17514 DUF5442 Family of unknown function (DUF5442). This is a family of unknown function found in Chironomus. 107 -340230 pfam17515 CPV_Polyhedrin Cypovirus polyhedrin protein. This family is found in polyhedrin proteins of Cypoviruses. These viruses possess a single capsid layer with turrets and are commonly embedded in crystalline occlusion bodies called polyhedra, which are formed in the cell cytoplasm and mainly composed of a single virus-encoded protein, polyhedron. Cypoviruses have been classified into 21 distinct types. Within each type the amino acid sequence of polyhedrins are highly conserved, whilst between types there is little conservation. Structural analysis and comparison of the different polyhedrins reveals five variable regions: the N-terminal loop, connections between secondary structures (H2 and H3, beta-E and beta-F, beta-F and beta-G, beta-G and beta-H), and the C-terminal loop, which is designate V1-V5 respectively. V2 forms a ###cap' at one end of the protein and is subdivided across two sections of the polypeptide, V2n and V2c. Differences in these regions give each polyhedrin its characteristic appearance. The base domain (residues 74-110) is a region that is neither required for proper folding of the protein, nor for crystal assembly, but fine-tunes the crystal, 'locking-down' the structure, often in conjunction with NTPs. This region is also implicated in virion recognition and packaging. 241 -340231 pfam17516 ProQ_C ProQ C-terminal domain. This domain is found at the C-terminus of many ProQ proteins. 51 -340232 pfam17517 IgGFc_binding IgGFc binding protein. This domain is found at the N terminal of human IgGFc-binding protein and has been shown to confer IgG Fc binding activity. It may play a role in immune protection and inflammation in the intestines of primates. 292 -340233 pfam17518 DUF5443 Family of unknown function (DUF5443). This is a family of unknown function found in Mycoplasma. 344 -340234 pfam17519 DUF5444 Family of unknown function (DUF5444). This is a family of unknown function found in Enterobacterales. 62 -340235 pfam17520 DUF5445 Family of unknown function (DUF5445). This is a family of unknown function found in Enterobacteriaceae. 52 -340236 pfam17521 Secapin Honey bee peptides. Family members are bee venom peptides such as Secapin. Mature secapin is composed of 25 amino acid residues that contain a disulfide link. Secapin has been demonstrated to act as a potent neurotoxin. In Apis mellifera secapin exhibits anti-bacterial activity and induces inflammation and pain with anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Secapin shares a common folding pattern with apamin, mast cell degranulating peptide and tertiapin; it is centred on a beta-turn covalently linked to an alpha-helical segment by one disulphide link (two disulphide links in the other peptides). 45 -340237 pfam17522 DUF5446 Family of unknown function (DUF5446). This is a family of unknown function found in Bacillales. 72 -340238 pfam17523 MPS-4 MinK-related peptide, potassium channel accessory sub-unit protein 4. MinK-related peptides (MiRPs or KCNEs) are single-transmembrane proteins that associate with pore-forming ion-channel sub-units to form stable complexes with channel properties markedly distinct from those of the isolated pore-forming sub-units. MPS-4 is expressed exclusively in the C. elegans nervous system and is essential for neuronal excitability. 78 -340239 pfam17524 CnrY anti-sigma factor CnrY. This family is found in alpha and beta proteobacteria. Family members include anti-sigma factor CnrY from Cupriavidus metallidurans. Sigma factors are multi-domain sub-units of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. They also control a wide variety of adaptive responses such as morphological development and the management of stress. A recurring theme in sigma factor control is their sequestration by anti-sigma factors that occlude their RNAP-binding determinants. CnrH, controls cobalt and nickel resistance in Cupriavidus metallidurans. CnrH is regulated by a complex of two transmembrane proteins: the periplasmic sensor CnrX and the anti-sigma CnrY. At rest, CnrH is sequestered by CnrY whose 45-residue-long cytosolic domain is one of the shortest anti-## domains. Upon Ni(II) or Co(II) ions detection by CnrX in the periplasm, CnrH is released between CnrH and the cytosolic domain of CnrY (CnrYc). The CnrH/CnrYC complex displays an unexpected structural similarity to the anti-sigma NepR in complex with its antagonist PhyR, whereas NepR shares no sequence similarity with CnrY. Crystal structure of CnrH/CnrY shows that CnrYC residues 3-19 are folded as a well-defined alpha-helix. The peptide further extends along the hydrophobic groove of sigma 2 with no canonical structure except for a short helical turn spanning residues 24-28. CnrY has a hydrophobic knob made of V4, W7 and L8 side chains protruding into sigma 4 hydrophobic pocket and contributing to the interface. In vivo investigation of CnrY function pinpoints part of the hydrophobic knob as a hotspot in CnrH inhibitory binding. 95 -340240 pfam17525 DUF5447 Family of unknown function (DUF5447). This is a family of unknown function found in Pseudomonas. 92 -340241 pfam17526 DUF5448 Family of unknown function (DUF5448). This is a family of unknown function found in Gammaproteobacteria. 118 -340242 pfam17527 ALP Phage ALP protein. During the course of infection of Escherichia coil by bacteriophage T4, transcription of viral late genes does not take place unless template DNA contains hydroxymethyl cytosine (hmCyt), a modification normally effected by virus-encoded enzymes. Bacteriophage T4 Alc protein acts as a site-specific termination factor participating in shutting off host transcription after infection of E. coli, while the bacteriophage T4 transcription is protected from the action of Alc by overall substitution of cytosine with 5-hydroxymethyl cytosine in T4 DNA. Based on genetic studies, Alc is thought to bind directly to the beta sub-unit dispensable region 1 (bDR1) of E.coli RNAP. However, immune-isolation experiments show that Alc binds both core and sigma 70-holoenzyme of RNAP. 177 -340243 pfam17528 DUF5449 Family of unknown function (DUF5449). This is a family of unknown function found in Lactobacillus. 174 -340244 pfam17529 DUF5450 Family of unknown function (DUF5450). This is a family of unknown function found in Giardia intestinalis. 160 -340245 pfam17530 NS3 Non-structural protein NS3. This is a family of proteins found in Densoviruses. Members of this family such as NS3 found in Junonia coenia have been shown to be involved in viral DNA replication. Generation of deletion mutants and replicative cycle analysis show that NS3 is required for viral DNA replication. Bioinformatics analysis of Bombyx mori densovirus protein NS3, show that it has two putative zinc-finger motifs, 6 putative N glycosylation sites, and 4 putative phosphorylation sites. 245 -340246 pfam17531 O_Spanin_T7 outer-membrane spanin sub-unit. This family contains members of the outer membrane spanin sub-unit protein (o-spanin), found in Enterobacteria phage T7. Spanins are lytic proteins that act on bacterial outer-membrane by disrupting it, allowing progeny virions to spread. O-spanin acts together with inner membrane spanin sub-unit (i-spanin) to form the spanin complex necessary for function. 33 -340247 pfam17532 DUF5451 Family of unknown function (DUF5451). This is a family of unknown function found in Epstein-Barr virus. 148 -340248 pfam17533 DUF5452 Family of unknown function (DUF5452). This is a family of unknown function found in Mycoplasmataceae. 169 -340249 pfam17534 DUF5453 Family of unknown function (DUF5453). This is a family of unknown function found in Mycoplasma. Family members have 4 predicted trans-membrane regions. 186 -340250 pfam17535 DUF5454 Family of unknown function (DUF5454). This is a family of unknown function found in Mycoplasma. 221 -340251 pfam17536 Mx_ML Matrix and Matrix long proteins N-terminal. This entry represents the N-terminal fragment of family members such as the Matrix (Mx) and Matrix protein long (ML) proteins. They are found in Thogoto virus (THOV), a tick-transmitted orthomyxovirus with a genome consisting of six single-stranded RNA segments that encode seven structural proteins. Matrix proteins of the family Orthomyxoviridae are major structural components of the viral capsid, located below the viral lipid membrane and provide protection for viral ribonucleoproteins (vRNPs). They serve as a major participant during the processes of virus invasion and budding. Furthermore, they play specific roles throughout the viral life cycle, usually by interacting with other viral components or host cellular proteins. ML protein, an extended version of the viral M protein, is a viral IFN antagonist. ML is essential for virus growth and pathogenesis in an IFN-competent host. In the presence of ML the activation and/or action of the interferon regulatory factor-3 (IRF-3) is severely affected. This effect depends on direct interaction of ML with the transcription factor IIB (TFIIB). ML suppresses IRF-7 in a similar manner as it suppresses IRF-3. Studies have revealed that ML associates with IRF-7 and prevents IRF-7 dimerization and interaction with TRAF6. Structural analysis revealed that N-terminal fragment of M protein (MN) undergoes conformational changes that result in specific, pH-dependent inter-molecular interactions. Comparison of THOV MN and influenza A virus (IAV) MN region, showed low sequence identity. However, superimposition of the two structures in neutral condition, showed that both matrix proteins contain nine helices connected with same topology. Since the matrix layer of IAV disassembles in acidic endosome at the beginning of infection and repacks in the neutral cytoplasm, a change of pH might be a key regulator for the capsid assembly/disassembly transition during these processes. Hence, pH-dependent conformational transition model was studied in THOV MN, where interactions such as hydrogen bonds and hydrophobic interactions are suggested to be involved in THOV matrix assembly. 149 -340252 pfam17537 DUF5455 Family of unknown function (DUF5455). This is a family of unknown function found in Proteobacteria. Family members contain three predicted trans-membrane regions. 99 -340253 pfam17538 C_LFY_FLO DNA Binding Domain (C-terminal) Leafy/Floricaula. This family consists of various plant development proteins which are homologs of floricaula (FLO) and Leafy (LFY) proteins which are floral meristem identity proteins. Mutations in the sequences of these proteins affect flower and leaf development. LFY is a plant-specific transcription factor (TF) essential for flower development. It is one of the few master regulators of flower development, as it integrates environmental and endogenous signals to orchestrate the whole floral network. Transcription factors such as LFY, recognize short DNA motifs primarily through their DNA-binding domain. Upon binding to short stretches of DNA called cis-elements or TF binding sites (TFBS), they regulate gene expression. This entry represents the DNA binding domain found in C-terminal of LFY proteins in plants. Structure-function studies have demonstrated that LFY binds semi-palindromic 19-bp DNA elements through its highly conserved C-terminal DBD, a unique helix-turn-helix fold that by itself dimerizes on DNA. 168 -340254 pfam17539 DUF5456 Family of unknown function (DUF5456). This is a family of unknown function found in Bacteroides. 152 -340255 pfam17540 DUF5457 Family of unknown function (DUF5457). This is a family of unknown function found in Bacteria. Family members have one predicted trans-membrane region. 134 -340256 pfam17541 DUF5458 Family of unknown function (DUF5458). This is a family of unknown function found in Bacteroidetes. 430 -340257 pfam17542 RP853 Uncharacterized RP853. This is a family of unknown function found in Rickettsia. Family members are predicted to contain one trans-membrane region. 317 -340258 pfam17543 DUF5459 Family of unknown function (DUF5459). This is a family of unknown function found in Bacteroidetes. 607 -340259 pfam17544 DUF5460 Family of unknown function (DUF5460). This is a family of unknown function found in Rickettsia. Family members are predicted to contain one trans-membrane region. 375 -340260 pfam17545 DUF5461 Family of unknown function (DUF5461). This is a family of unknown function found in viruses. 93 -340261 pfam17546 Defb50 Beta Defensin 50. B-defensin are small cationic antimicrobial peptides. Family members such as beta-defensin 50 (Defb50) has poor antimicrobial activity in its oxidized form, but this improves under reduced conditions. 50 -340262 pfam17547 DUF5462 Family of unknown function (DUF5462). This is a family of unknown function found in Gammaproteobacteria. 167 -340263 pfam17548 p6 Histone-like Protein p6. Family members such as protein p6 from Bacillus subtilis phage phi29 bind double-stranded DNA, forming a large nucleoprotein complex all along the viral genome, and have been proposed to be an architectural protein with a global role in genome organization. P6 is also involved in viral transcriptional control, repressing the C2 early promoter located at the right DNA end,and together with the viral regulatory protein p4, repressing early promoters A2b/A2c and activating late promoter A3. 76 -340264 pfam17549 Phage_Gp17 Gene Product 17. Family members such as protein 17 (gene product 17/gp17) found in Bacillus phage phi29, is involved in DNA replication and in pulling the phage DNA into the cell during the injection process. 140 -340265 pfam17550 PsaF Family of unknown function. This is a family of unknown function found in Yersinia pestis. 162 -340266 pfam17551 DUF5463 Family of unknown function (DUF5463). This is a family of unknown function found in Yersinia pestis. 32 -340267 pfam17552 DUF5464 Family of unknown function (DUF5464). This is a family of unknown function found in Bacteriophages. 51 -340268 pfam17553 DUF5465 Family of unknown function (DUF5465). This is a family of unknown function found in Enterobacteria phage T7. 19 -340269 pfam17554 DUF5466 Family of unknown function (DUF5466). This is a family of unknown function found in Enterobacteria phage T7. 57 -340270 pfam17555 DUF5467 Family of unknown function (DUF5467). This is a family of unknown function found in Bacteria. Family members have 5 predicted trans-membrane regions. 275 -340271 pfam17556 MIT_LIKE_ACTX MIT-like atracotoxin family. This family includes peptides such as the Atracotoxin-Hvf17. It is a a non-toxic peptide isolated from the venom of Blue Mountains funnel-web spider Hadronyche versuta. It does not function like classical funnel-web spider atracotoxins to modulate mammalian or insect voltage-gated ion channel function since it lacks insecticidal activity and fails to affect vas deferens smooth muscle or skeletal muscle contractility. This peptide has ten conserved cysteine residues similar to AVIT family members such as MIT1. Due to the lack of the AVIT N-terminal four residues and lack of functional similarity to the AVIT family, the Atracotoxin-Hvf17 is classified as MIT-like atracotoxin. 68 -340272 pfam17557 Conotoxin_I2 I2-superfamily conotoxins. Conotoxins (or conopeptides) are the peptidic components of the venoms of marine cone snails (genus##Conus). They are classified in one of three ways: gene superfamily, cysteine framework or pharmacological family. Several distinct cysteine frameworks have been described in conotoxins. Members of this family display a XI cysteine pattern (C-C-CC-CC-C-C) and belong to the I2- superfamily conotoxins. Family members such as Kappa-conotoxin ViTx and Kappa-conotoxin SrXIA inhibit voltage gated potassium channels (Kv). 38 -340273 pfam17558 AGH Androgenic gland hormone. This family contains members such as the Androgenic gland hormone (AGH) of the woodlouse, Armadillidium vulgare. AGH is a heterodimeric glycopeptide synthesized and secreted from androgenic glands. It is responsible for sex differentiation in crustaceans and contains 4 disulfide bonds. 121 -340274 pfam17559 DUF5468 Family of unknown function (DUF5468). This is a family of unknown function found in Rickettsia. 57 -340275 pfam17560 Megourin Aphid Megourins. This family is fond in the vetch aphid Megoura viciae with members such as Megourin 1, 2 and 3. Megourins are antimicrobial peptides that act against Gram-positive bacteria and fungi. 63 -340276 pfam17561 DUF5469 Family of unknown function (DUF5469). This is a family of unknown function found in Bacteroidetes. Family members have one predicted trans-membrane region. 148 -340277 pfam17562 Styelin Styelin A-E. This is a family of antimicrobial peptides found in Stela clava (Sea squirt). Family members such as Styelin A and B, are two alpha-helical phenylalanine-rich antimicrobial peptides effective against a panel of Gram-negative and Gram-positive bacteria. Styelin contains unusual amino acids such as dihydroxyarginine, dihydroxylysine, 6-bromotryptophan, and 3,4-dihydroxyphenylalanine which are important for the antimicrobial activity at high salt concentrations. 59 -340278 pfam17563 Cu Cupiennin. Cupiennin are small cationic alpha-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. Family members such as cupiennin 1a exert both cytolytic and antibacterial effects. The cytolytic activity of the cupiennin peptides depends primarily on the amphipathic N-terminus, which is capable of inserting into the membrane, and is modulated by the C-terminus via electrostatic interactions with the cell surface. 27 -340279 pfam17564 DUF5470 Family of unknown function (DUF5470). This is a family of unknown function found in viruses. 73 -340280 pfam17565 DUF5471 Family of unknown function (DUF5471). This is a family of unknown function found in Enterobacteria phage T7. 70 -340281 pfam17566 DUF5472 Family of unknown function (DUF5472). This is a family of unknown function found in Human papillomavirus type 11. 73 -340282 pfam17567 DUF5473 Family of unknown function (DUF5473). This is a family of unknown function found in Human adenovirus. 106 -340283 pfam17568 DUF5474 Family of unknown function (DUF5474). This is a family of unknown function found in Saccharomycetales. 77 -340284 pfam17569 DUF5475 Family of unknown function (DUF5475). This is a family of unknown function found in Alphabaculovirus. 81 -340285 pfam17570 DUF5476 Family of unknown function (DUF5476). This is a family of unknown function found in Podoviridae. 61 -340286 pfam17571 DUF5477 Family of unknown function (DUF5477). This is a family of unknown function found in Podoviridae. 77 -340287 pfam17572 DUF5478 Family of unknown function (DUF5478). This is a family of unknown function found in Alphabaculovirus. 86 -340288 pfam17573 GA-like GA-like domain. This domain is found in bacterial cell surface proteins. It is related to the GA domain that forms a three helix bundle. 50 -340289 pfam17574 TA_inhibitor Inhibitor of toxin/antitoxin system (Gp4.5). This is a family of prokaryotic toxin-antitoxin (TA) systems inhibitors, found in Podoviridae such as Enterobacteria phage T7. Family members such as Gene product 4.5 have been shown to neutralize TA-system-mediated abortive infection by inhibiting the Lon protease activity, thus preventing antitoxin degradation and toxin activation. 89 -340290 pfam17575 DUF5479 Family of unknown function (DUF5479). This is a family of unknown function found in Kappa-papillomavirus. 101 -340291 pfam17576 DUF5480 Family of unknown function (DUF5480). This is a family of unknown function found in Podoviridae. 71 -340292 pfam17577 ETM ECORI-T site protein ETM. This is a family of unknown function found in Alphabaculovirus. 109 -340293 pfam17578 DUF5481 Family of unknown function (DUF5481). This is a family of unknown function found in Myoviridae. 103 -340294 pfam17579 DUF5482 Family of unknown function (DUF5482). This is a family of unknown function found in Saccharomycetales. 159 -340295 pfam17580 GBR_NSP5 Group B Rotavirus Non-structural protein 5. Family members such as non-structural protein 5 (NSP5), are found in Group B rotaviruses (GBR). Group B rotavirus (GBR) is genetically and antigenically distinct from Group A rotavirus (GAR). Hence phylogneetic studies have been carried out and show that the C-terminal region of NSP5, which is conserved among GAR and critical for its function for viroplasm-like structure formation in cells, was also conserved in GBR NSP5. 176 -340296 pfam17581 DUF5483 Family of unknown function (DUF5483). This is a family of unknown function found in Saccharomycetaceae. 441 -340297 pfam17582 UL20 Cytomegalovirus UL20. This family has members such as the human cytomegalovirus glycoprotein UL20. UL20 is a type I trans-membrane glycoprotein with an immunoglobulin-like ectodomain that is highly polymorphic among HCMV strains. 304 -340298 pfam17583 DUF5484 Family of unknown function (DUF5484). This is a family of unknown function found in Myoviridae. 43 -340299 pfam17584 comS Bacillus Competence protein S. ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. This family includes members of the Bacillus comS proteins. 44 -340300 pfam17585 Phage_Arf Accessory recombination function protein. Family members are found in Caudovirales such as Salmonella virus P22. Family members have a recombination accessory function. 47 -340301 pfam17586 DUF5485 Family of unknown function (DUF5485). This is a family of unknown function found in Alphabaculovirus. 56 -340302 pfam17587 Dmd Discriminator of mRNA degradation. This family includes Dmd peptides from T4 phages. Dmd can suppress the toxicities of toxins such as LsoA (an endoribonucleases toxin expressed by E.coli). Crystal structure analysis show that Dmd is inserted into the deep groove between the N-terminal repeated domain (NRD) and the Dmd-binding domain (DBD) of LsoA. Site-directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression. 60 -340303 pfam17588 DUF5486 Family of unknown function (DUF5486). This is a family of unknown function found in Myoviridae. 53 -340304 pfam17589 DUF5487 Family of unknown function (DUF5487). This is a family of unknown function found in Myoviridae. 70 -340305 pfam17590 DUF5488 Family of unknown function (DUF5488). This is a family of unknown function found in Orthopoxvirus. 70 -340306 pfam17591 UL41A Herpesvirus UL41A. Members of this family are found in Human cytomegalovirus. No known function has been reported. 78 -340307 pfam17592 DUF5489 Family of unknown function (DUF5489). This is a family of unknown function found in Alphafusellovirus. 78 -340308 pfam17593 DUF5490 Family of unknown function (DUF5490). This is a family of unknown function found in Myoviridae. 62 -340309 pfam17594 GP57 Phage Tail fiber assembly helper protein. Gene product 57 (Gp57) is a chaperone protein for short tail fiberphage protein that acts as a molecular chaperone of gp12, increasing the folding efficacy and production efficiency. 75 -340310 pfam17595 DUF5491 Family of unknown function (DUF5491). This is a family of unknown function found in Myoviridae. 68 -340311 pfam17596 DUF5492 Family of unknown function (DUF5492). This is a family of unknown function found in Alphabaculovirus. 80 -340312 pfam17597 DUF5493 Family of unknown function (DUF5493). This is a family of unknown function found in viruses. 82 -340313 pfam17598 DUF5494 Family of unknown function (DUF5494). This is a family of unknown function found in viruses. 84 -340314 pfam17599 DUF5495 Family of unknown function (DUF5495). This is a family of unknown function found in Myoviridae. 87 -340315 pfam17600 DUF5496 Family of unknown function (DUF5496). This is a family of unknown function found in Myoviridae. 87 -340316 pfam17601 DUF5497 Family of unknown function (DUF5497). This is a family of unknown function found in Alphabaculovirus. 89 -340317 pfam17602 DUF5498 Family of unknown function (DUF5498). This is a family of unknown function found in Myoviridae. 96 -340318 pfam17603 DUF5499 Family of unknown function (DUF5499). This is a family of unknown function found in Myoviridae. 97 -340319 pfam17604 DUF5500 Family of unknown function (DUF5500). This is a family of unknown function found in Herpesvirus. 98 -340320 pfam17605 DUF5501 Family of unknown function (DUF5501). This is a family of unknown function found in Alphabaculovirus. 107 -340321 pfam17606 DUF5502 Family of unknown function (DUF5502). This is a family of unknown function found in Listeria. 87 -340322 pfam17607 DUF5503 Family of unknown function (DUF5503). This is a family of unknown function found in Enterobacteriaceae. 116 -340323 pfam17608 DUF5504 Family of unknown function (DUF5504). This is a family of unknown function found in Lactobacillus. Family members have 4 predicted trans-membrane regions. 124 -340324 pfam17609 HCMV_UL124 Family of unknown function. This is a family of unknown function found in beta-herpesvirus. Family members such as UL124 is a predicted membrane glycoprotein with one predicted trans-membrane region. 126 -340325 pfam17610 DUF5505 Family of unknown function (DUF5505). This is a family of unknown function found in Alphabaculovirus. 156 -340326 pfam17611 DUF5506 Family of unknown function (DUF5506). This is a family of unknown function found in Fowl aviadenovirus. 161 -340327 pfam17612 DUF5507 Family of unknown function (DUF5507). This is a family of unknown function found in Escherichia. 160 -340328 pfam17613 motB Modifier of transcription. Family members are transcription regulation-related proteins found in Myoviridae such as Enterobacteria phage T4. 162 -340329 pfam17614 FPV060 Viral CC-type chemokine. Family members found in Fowlpox virus are CC chemokine-like proteins. Fpv060 contains the conserved pattern of four cysteine residues similar to the CC chemokine family. Fpv060 also contains more cysteines in the mature protein, than cellular chemokines and one predicted trans-membrane region. In vitro studies show N-terminal glycosylation and show that Fpv060 from Fowl pox virus is much larger and has many more cysteine residues than host chemokines and viral homologs. 188 -340330 pfam17615 C166 Family of unknown function. Family members found in Fuselloviridae are predicted to play a role in virus function. 166 -340331 pfam17616 US6 Viral unique short region 6. This family has members such as US6 found in HCMV (Human cytomegalovirus). US6 is a unique short region glycoprotein found in the ER. It blocks the binding of ATP by TAP1 (Transporter associated with Antigen Processing 1) through a conformational change and subsequently inhibits TAP-mediated peptide translocation to the ER. It also down regulates only MHC class I. Inhibition of US6 of TAP has been shown to require residues 89 to 108 of the HCMV US6 luminal domain, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. Residues 81 to 90 and the C-terminal 39 residues of HCMV US6 may also contribute to the stabilization of the interaction between US6 and TAP. 161 -340332 pfam17617 US10 Viral unique short region 10. This family contains US10 proteins found in HCMV Human cytomegalovirus. US10 is a unique short region trans-membrane glycoprotein found in the endoplasmic reticulum (ER). It down-regulates cell surface expression of HLA-G, but not that of classical class I MHC molecules. Despite of binding to classical class I MHC molecules and delaying their trafficking, it does not affect their steady-state cell surface levels. US10 contains a tri-leucine motif in the cytoplasmic tail which is responsible for down-regulation of HLA-G. 161 -340333 pfam17618 SL4P Uncharacterized Strongylid L4 protein. Family members are predicted non-classically secreted proteins found in Ancylostoma ceylaniucum. Homologs are found in strongylids A. ceylanicum, N. americanus, H. contortus and Angiostrongylus cantonensis, where the corresponding genes in A. cantonensis are expressed in L4 larvae. Thus this family members found in A, ceylaniucum have been named strongylid L4 proteins (SL4Ps). Although SL4Ps do not resemble any domains of known function, they do have a conspicuous number of charged residues (both acidic and basic) in their N-terminal, most highly conserved regions. 88 -340334 pfam17619 SCVP Secreted clade V proteins. Family members are found in strongylid parasites (A. ceylanicum, N. americanus, H. contortus and Heterorhabditis bacteriophora) and in related non-parasitic clade V species (C. elegans, Caenorhabditis briggsae and P. pacificus), hence the name secreted clade V proteins (SCVPs). In A. ceylanicum, the encoded 150 residue proteins are predicted to be classically secreted. 96 -340335 pfam17620 ORF45 Family of unknown function. Family members found in alphabaculoviruses such as orf45 have been implicated in late gene expression when linked to orf41. 191 -340336 pfam17621 DUF5508 Family of unknown function (DUF5508). This is a family of unknown function found in Enterobacteriaceae. 263 -340337 pfam17622 UL16 Viral unique long protein 16. This family contains members such as UL16 found in the human cytomegalovirus (HCMV). It is an immunoevasin which subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. UL16 is a heavily glycosylated 50 kDa type I trans-membrane glycoprotein. The ectodomain folds into a modified version of the a variable (V-type) (immunoglobulin Ig)-like domain. The N-terminal ###plug### region (amino acids 27-50) is covalently linked to the Ig-like core with a disulfide bond. UL16 protein utilizes a three-stranded beta-sheet to engage the alpha-helical surface of the MHC class I-like MICB platform domain. Residues at the center of this beta-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. 204 -340338 pfam17623 B277 Family of unknown function. This is a family of unknown function, however family members such as B277 have been suggested to play a role in viral function. 277 -340339 pfam17624 US30 Family of unknown function. This is a family of unknown function found in Cytomegalovirus. One of the family members US30 is a putative membrane glycoprotein with one predicted trans-membrane region. 282 -340340 pfam17625 DUF5509 Family of unknown function (DUF5509). This is a family of unknown function found in Baculoviridae. 362 -340341 pfam17626 IncF Inclusion membrane protein F. The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs) are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. This family has members such as the IncF proteins found in Chlamydia trachomatis. IncF, is enriched at the point of contact of RBs (reticulate bodies) with the inclusion membrane. It is expressed early in the developmental cycle and interacts with many other Inc proteins, like Ct058 or Ct850, which are expressed later during the cycle. Thus, IncF could act as an interaction node for Inc proteins. IncF consists of 104 amino acids of which 38 N-terminal amino acids encoding the signal sequence for the type III system and 12 C-terminal amino acids may be localized in the host cell cytoplasm. Suggesting that IncF or other small Incs interact with other Inc proteins by their trans-membrane domain. It has been identified to be capable of homo-oligomerization and also displayed self-interacting properties. 104 -340342 pfam17627 IncE Inclusion membrane protein E. The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs) have two major characteristics: an N-terminal type III secretion signal that is necessary for their secretion out of the bacterium and a hydrophobic region consisting of at least two trans-membrane helices that allows insertion into the inclusion membrane. Generally, both the N- and C-terminal regions of the Inc are exposed to the host cell cytosol. This family has members such as the IncE (also known as CT116) proteins found in Chlamydia trachomatis. IncE Interacts with Retromer-Associated Sorting Nexins (SNXs) directly binding the PX-domains of SNX5/6. It is expressed within the first 2 hours of C. trachomatis infection. IncE region 101-132 is the binding site for SNX5/6 causing re-localization of SNX5/6 from endosomes to the inclusion membrane. IncE101-132 expression was shown to be sufficient to maintain CI-MPR (Cation-Independent Mannose-6-Phosphate Receptor) in retromer-containing compartments, thereby disrupting efficient CI-MPR trafficking to the trans-Golgi. It has been suggested that SNX5/6 bind directly to IncE independently of phosphoinositides and that the predicted IncE C-terminal beta-hairpin is required. IncE-mediated sequestration of retromer SNX-BAR proteins may promote Golgi fragmentation, a process that facilitates lipid acquisition by C. trachomatis and enhances progeny production. 132 -340343 pfam17628 IncD Inclusion membrane protein D. The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs) have two major characteristics: an N-terminal type III secretion signal that is necessary for their secretion out of the bacterium and a hydrophobic region consisting of at least two trans-membrane helices that allows insertion into the inclusion membrane. Generally, both the N- and C-terminal regions of the Inc are exposed to the host cell cytosol. This family has members such as the IncD proteins found in Chlamydia trachomatis. This C. trachomatis effector protein IncD has been shown to recruit the lipid transfer protein CERT to the inclusion membrane by directly interacting with CERT PH domain, which mediates the FFAT motif-dependent recruitment of the ER-resident protein VAPB (vesicle-associated membrane protein-associated##protein) to the inclusion. 141 -340344 pfam17629 DUF5510 Family of unknown function (DUF5510). This is a family of unknown function found in Rickettsia. Family members are predicted to have 2 or 3 trans-membrane regions. 62 -340345 pfam17630 DUF5511 Family of unknown function (DUF5511). This is a family of unknown function found in Bacillus. 69 -340346 pfam17631 DUF5512 Family of unknown function (DUF5512). This is a family of unknown function found in Bacillus. 139 -340347 pfam17632 DUF5513 Family of unknown function (DUF5513). This is a family of unknown function found in Bacillus. 91 -340348 pfam17633 DUF5514 Family of unknown function (DUF5514). This is a family of unknown function found in Bacillus. 142 -340349 pfam17634 Gp67 Gene product 67. This is a family of unknown function found in Myoviridae such as Enterobacteria phages. Family members such as Gp67, is a prohead core (scaffold) protein. 80 -340350 pfam17635 DUF5515 Family of unknown function (DUF5515). This is a family of unknown function found in SARS coronavirus. 70 -340351 pfam17636 UL21a Viral Unique Long protein 21a. Members of this family such as UL21a found in Human cytomegalovirus (HCMV) is required for HCMV to establish efficient productive infection. It is a short-lived cytoplasmic protein that facilitates HCMV replication. It has also been shown to be responsible for APC1, APC4 and APC5 degradation. 123 -340352 pfam17637 DUF5516 Family of unknown function (DUF5516). This is a family of unknown function found in T7 viruses. 37 -340353 pfam17638 UL42 HCMV UL42. Family members include UL42 proteins found in Human cytomegalovirus (HCMV). UL42 has two Pro-Pro-X-Tyr (PPxY) sequences, a hydrophobic region at the C-terminus and no N-terminal signal peptide. These features are shared with herpes simplex virus (HSV) UL56. UL42 has a putative C-terminal trans-membrane region. HCMV UL42 interacts with Itch, a member of the Nedd4 family of ubiquitin E3 ligases, through its PY motifs as observed in HSV UL56, suggestive of a regulatory function. 125 -340354 pfam17639 DUF5517 Family of unknown function (DUF5517). This is a family of unknown function found in Fuselloviridae. Structure analysis suggest a role in viral assembly. 100 -340355 pfam17640 UL17 Uncharacterized UL17. This is a family of unknown function found in beta-herpesviruses such as Human cytomegalovirus (HCMV). 102 -340356 pfam17641 ASPRs Ancylostoma-associated secreted protein related genes. This family includes members encoded by ASP-related genes which are distant homologs to ASPs (Ancylostoma-associated secreted proteins). ASPs are a diverse set of secreted cysteine-rich proteins pfam00188. ASPRs, on the other hand are predicted to be secreted with one ASPR in Heligmosomoides bakeri shown to be secreted by parasitic adults. Thus, like ASPs, ASPRs are suggested to comprise an important element of hookworm infection in vivo. 112 -275365 sd00001 TSP3 Calcium-binding Thrombospondin type 3 (TSP3) repeat. TSP3 repeats of the vertebrate thrombospondin (TSP)-1,-2,-3,-4 and TSP-5/also known as COMP (cartilage oligomeric matrix protein), and related proteins. These short aspartate-rich repeats are a continuous series of calcium binding sites that can be divided into two sequence motifs: N-type and C-type. N-type and C-type motifs are distinguished by their sequence length, calcium ion binding, and their interactions with water molecules. C-type motifs are higher affinity binding sites compared to N-type motifs. 59 -275366 sd00002 TSP3 Calcium-binding Thrombospondin type 3 (TSP3) repeat. TSP3 repeats of the vertebrate thrombospondin (TSP)-1,-2,-3,-4 and TSP-5/also known as COMP (cartilage oligomeric matrix protein), and related proteins. These short aspartate-rich repeats are a continuous series of calcium binding sites that can be divided into two sequence motifs: N-type and C-type. N-type and C-type motifs are distinguished by their sequence length, calcium ion binding, and their interactions with water molecules. C-type motifs are higher affinity binding sites compared to N-type motifs. 59 -275367 sd00003 TSP3_1C Calcium-binding Thrombospondin type 3 (TSP3) repeat; C-type motif 1C. TSP3 repeats of the vertebrate thrombospondin (TSP)-1,-2,-3,-4 and TSP-5/also known as COMP (cartilage oligomeric matrix protein), and related proteins. These short aspartate-rich repeats are a continuous series of calcium binding sites that can be divided into two sequence motifs: N-type and C-type. N-type and C-type motifs are distinguished by their sequence length, calcium ion binding, and their interactions with water molecules. C-type motifs are higher affinity binding sites compared to N-type motifs. The first TSP3 repeat 1C deviates from the canonical C-type calcium binding repeat in containing an insert relative to the other C-type repeats, however, the residues of the interrupted halves are positioned identically to C-type repeats without the insert. 35 -276811 sd00004 PPR Pentatricopeptide repeat, an RNA-binding module. The Pentatricopeptide repeat (PPR) is a 35-residue repeat motif that forms two anti-parallel alpha helices and binds single-stranded RNA in a sequence-specific and modular manner. It is present in a large family of RNA-binding proteins that are found in protists, fungi, and metazoan, but are most abundant in the mitochondria and chloroplasts of terrestrial plants. PPR proteins function in many aspects of RNA metabolism, including splicing, editing, degradation, and translation. They contain between 2 to 30 PPR repeats, organized into a hairpin of alpha helices. Proteins containing only arrays of PPR repeats that are 35-amino acid in length are called P class proteins. The second type of PPR proteins, called PLS class, contain additional C-terminal endonuclease or RNA editing domains and a distinct PPR architecture of triplet repeats alternating between a typical PPR, a longer PPR and a short PPR of 31 residues. 100 -276810 sd00005 TPR Tetratricopeptide repeat. The Tetratricopeptide repeat (TPR) typically contains 34 amino acids and is found in a variety of organisms including bacteria, cyanobacteria, yeast, fungi, plants, and humans. It is present in a variety of proteins including those involved in chaperone, cell-cycle, transcription, and protein transport complexes. The number of TPR motifs varies among proteins. Those containing 5-6 tandem repeats generate a right-handed helical structure with an amphipathic channel that is thought to accommodate an alpha-helix of a target protein. It has been proposed that TPR proteins preferentially interact with WD-40 repeat proteins, but in many instances several TPR-proteins seem to aggregate to multi-protein complexes. 60 -276809 sd00006 TPR Tetratricopeptide repeat. The Tetratricopeptide repeat (TPR) typically contains 34 amino acids and is found in a variety of organisms including bacteria, cyanobacteria, yeast, fungi, plants, and humans. It is present in a variety of proteins including those involved in chaperone, cell-cycle, transcription, and protein transport complexes. The number of TPR motifs varies among proteins. Those containing 5-6 tandem repeats generate a right-handed helical structure with an amphipathic channel that is thought to accommodate an alpha-helix of a target protein. It has been proposed that TPR proteins preferentially interact with WD-40 repeat proteins, but in many instances several TPR-proteins seem to aggregate to multi-protein complexes. 97 -276808 sd00008 TPR_YbbN C-terminal Tetratricopeptide repeat (TPR) region of YbbN and similar motifs. The Tetratricopeptide repeat (TPR) typically contains 34 amino acids and is found in a variety of organisms including bacteria, cyanobacteria, yeast, fungi, plants, and humans. It is present in a variety of proteins including those involved in chaperone, cell-cycle, transcription, and protein transport complexes. YbbN is a thioredoxin-like protein containing two tandem TPR repeats at the C-terminus, separated by two alpha helices. Its N-terminal thioredoxin-like domain is not a functional oxidoreductase. It functions in heat stress response and DNA synthesis as a chaperone or co-chaperone. 171 -276807 sd00010 SLR Sel1-like repeat. Sel1-like repeats (SLRs) share similar alpha-helical conformations with Tetratricopeptide repeats (TPRs), but with different consensus sequence lengths and superhelical topologies. SLRs contain 36 to 44 amino acids and are present in bacteria and eukaryotes but not in archaea. SLR proteins are involved in a variety of functions, and many serve as adaptor proteins for the assembly of macromolecular complexes. The SLR family was named after the Caenorhabditis elegans Sel1 protein which is predicted to fold into 11 SLRs, a transmembrane domain, and an N-terminal signal sequence. The human Sel1L protein contains an additional fibronectin type-II domain and an N-terminal PEST sequence. Its downregulation is associated with the development of breast and pancreatic carcinomas. 133 -276806 sd00016 Apc5 Tetratricopeptide repeat (TPR)-like motif of Apc5 and similar motifs. Apc5 is a subunit of the anaphase-promoting complex/cyclosome (APC/C) which is a multi-subunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. Apc5 binds the poly(A) binding protein (PABP), which directly binds the internal ribosome entry site (IRES) of growth factor 2 mRNA. PABP was found to enhance IRES-mediated translation, whereas Apc5 over-expression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and co-sediments with the ribosomal fraction. The N-terminus of Afi1 serves to stabilize the union between Apc4 and Apc5, both of which lie towards the bottom-front of the APC. This model represents the Tetratricopeptide repeat (TPR)-like motif region of Apc5. 98 -275368 sd00017 ZF_C2H2 Zinc finger, C2H2 type. The C2H2 zinc finger is a classical zinc finger domain. C2H2-type zinc fingers are ubiquitous; more than 1% of all mammalian proteins are predicted to contain at least one zinc finger. They often function as DNA or protein binding structural motifs, such as in eukaryotic transcription factors, and therefore they play important roles in cellular processes such as development, differentiation, and oncosuppression. C2H2 zinc finger proteins contain from 1 to more than 30 zinc finger repeats. 78 -275369 sd00018 ZF_C2H2 Zinc finger, C2H2 type. The C2H2 zinc finger is a classical zinc finger domain. C2H2-type zinc fingers are ubiquitous; more than 1% of all mammalian proteins are predicted to contain at least one zinc finger. They often function as DNA or protein binding structural motifs, such as in eukaryotic transcription factors, and therefore they play important roles in cellular processes such as development, differentiation, and oncosuppression. C2H2 zinc finger proteins contain from 1 to more than 30 zinc finger repeats. 24 -275370 sd00019 ZF_C2H2 Zinc finger, C2H2 type. The C2H2 zinc finger is a classical zinc finger domain. C2H2-type zinc fingers are ubiquitous; more than 1% of all mammalian proteins are predicted to contain at least one zinc finger. They often function as DNA or protein binding structural motifs, such as in eukaryotic transcription factors, and therefore they play important roles in cellular processes such as development, differentiation, and oncosuppression. C2H2 zinc finger proteins contain from 1 to more than 30 zinc finger repeats. 49 -275371 sd00020 ZF_C2H2 Zinc finger, C2H2 type. The C2H2 zinc finger is a classical zinc finger domain. C2H2-type zinc fingers are ubiquitous; more than 1% of all mammalian proteins are predicted to contain at least one zinc finger. They often function as DNA or protein binding structural motifs, such as in eukaryotic transcription factors, and therefore they play important roles in cellular processes such as development, differentiation, and oncosuppression. C2H2 zinc finger proteins contain from 1 to more than 30 zinc finger repeats. 46 -275375 sd00025 zf-RanBP2 RanBP2-type zinc finger. The zf-RanBP2 domain represents a new superfamily of C2C2-type zinc finger motif, which is characterized by the conserved sequence pattern W-X-C-X(2,4)-C-X(3)-N-X(6)-C-X(2)-C. They fold into a structure composed of two orthogonal beta-hairpin strands that sandwich a single Zn2+ ion coordinated with four cysteine residues. zf-RanBP2 domains are mainly found in eukaryotic proteins and some exist in bacteria and archaea. According to different binding partners, the superfamily can be classified into several families. For instance, the E3 SUMO-protein ligase RanBP2-like family binds Ran, the nuclear protein localization protein 4 homolog (NPL4)-like family binds ubiquitin, and the zinc finger Ran-binding domain-containing protein 2 (ZRANB2)-like family binds single-stranded RNA (ssRNA). Most of superfamily members contain one copy of zf-RanBP2, but some contain several zf-RanBP2 domains. 293 -275376 sd00029 zf-RanBP2 RanBP2-type zinc finger. The zf-RanBP2 domain represents a new superfamily of C2C2-type zinc finger motif, which is characterized by the conserved sequence pattern W-X-C-X(2,4)-C-X(3)-N-X(6)-C-X(2)-C. They fold into a structure composed of two orthogonal beta-hairpin strands that sandwich a single Zn2+ ion coordinated with four cysteine residues. zf-RanBP2 domains are mainly found in eukaryotic proteins and some exist in bacteria and archaea. According to different binding partners, the superfamily can be classified into several families. For instance, the E3 SUMO-protein ligase RanBP2-like family binds Ran, the nuclear protein localization protein 4 homolog (NPL4)-like family binds ubiquitin, and the zinc finger Ran-binding domain-containing protein 2 (ZRANB2)-like family binds single-stranded RNA (ssRNA). Most of superfamily members contain one copy of zf-RanBP2, but some contain several zf-RanBP2 domains. 74 -275377 sd00030 zf-RanBP2 RanBP2-type zinc finger. The zf-RanBP2 domain represents a new superfamily of C2C2-type zinc finger motif, which is characterized by the conserved sequence pattern W-X-C-X(2,4)-C-X(3)-N-X(6)-C-X(2)-C. They fold into a structure composed of two orthogonal beta-hairpin strands that sandwich a single Zn2+ ion coordinated with four cysteine residues. zf-RanBP2 domains are mainly found in eukaryotic proteins and some exist in bacteria and archaea. According to different binding partners, the superfamily can be classified into several families. For instance, the E3 SUMO-protein ligase RanBP2-like family binds Ran, the nuclear protein localization protein 4 homolog (NPL4)-like family binds ubiquitin, and the zinc finger Ran-binding domain-containing protein 2 (ZRANB2)-like family binds single-stranded RNA (ssRNA). Most of superfamily members contain one copy of zf-RanBP2, but some contain several zf-RanBP2 domains. 60 -275378 sd00031 LRR_1 leucine-rich repeats. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 110 -275379 sd00032 LRR_2 leucine rich repeats. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 205 -275380 sd00033 LRR_RI leucine-rich repeats, ribonuclease inhibitor (RI)-like subfamily. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 238 -275381 sd00034 LRR_AMN1 leucine-rich repeats, antagonist of mitotic exit network protein 1-like subfamily. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 212 -275382 sd00035 LRR_NTF leucine-rich repeats, nuclear transport factor-like subfamily. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 144 -275383 sd00036 LRR_3 leucine-rich repeats. A leucine-rich repeat (LRR) is a structural protein motif of 20-30 amino acids that is unusually rich in the hydrophobic amino acid leucine. The conserved eleven-residue sequence motif (LxxLxLxxN/CxL) within the LRRs corresponds to the beta-strand and adjacent loop regions, whereas the remaining parts of the repeats are variable. LRRs fold together to form a solenoid protein domain, termed leucine-rich repeat domain. Leucine-rich repeats are usually involved in protein-protein interactions. 142 -275384 sd00037 PASTA PASTA domain. PASTA domain is found at the C-termini of several penicillin-binding proteins (PBPs) and bacterial serine/threonine kinases. It is a small globular domain consisting of 3 beta-sheets and an alpha-helix. The name PASTA is derived from PBP and Serine/Threonine kinase Associated domain. 126 -276965 sd00038 Kelch Kelch repeat. Kelch repeats are 44 to 56 amino acids in length and form a four-stranded beta-sheet corresponding to a single blade of five to seven bladed beta propellers. The Kelch superfamily is a large evolutionary conserved protein family whose members are present throughout the cell and extracellularly, and have diverse activities. Kelch repeats are often in combination with other domains, like BTB and BACK or F-box domains. 140 -293791 sd00039 7WD40 WD40 repeats in seven bladed beta propellers. The WD40 repeat is found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing, and cytoskeleton assembly. It typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40. Between the GH and WD dipeptides lies a conserved core. It forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel beta-sheet. The WD40 sequence repeat originally described in literature forms the first three strands of one blade and the last strand in the next blade. The C-terminal WD40 repeat completes the blade structure of the N-terminal WD40 repeat to create the closed ring propeller-structure. The residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands, allowing them to bind either stably or reversibly. 293 -293790 sd00041 GyrA-ParC_C beta-pinwheel repeat found at the C-terminus of GyrA, ParC, and similar proteins. Beta-pinwheel repeats are found at the C-terminus of both DNA gyrase subunit A and ParC, a subunit of topoisomerase IV (topo IV). DNA gyrase, a type IIA topoisomerase is a GyrA2GyrB2 heterotetramer which introduces negative supercoiling into the circular bacterial chromosome. Topo IV, a type IIB topoisomerase, is a ParC2ParE2 tetramer, which primarily relaxes positive supercoils and mediates topological unlinking of entangled DNA segments such as catenanes. The GyrA C-terminal repeat region, referred to as the C-terminal domain or CTD, binds DNA nonspecifically; it is thought to constrain a positive supercoil by wrapping a DNA duplex around its surface, upon strand passage, this wrap is converted into two negative supercoils. All known gyrase CTDs have 6 bladed beta-pinwheels, the topo IV CTD in various organisms is more variable and includes both 3-bladed and 8-bladed pinwheels. 253 -293789 sd00042 LVIVD LVIVD repeat. LVIVD repeats are mainly found in bacterial and archaeal cell surface proteins, many of them hypothetical. Structurally, LVIVD repeats have been predicted to form a beta-propeller, with each repeat forming one four-stranded anti-parallel beta-sheet blade. 120 -293788 sd00043 ARM armadillo repeat. Armadillo (ARM)/beta-catenin-like repeats are approximately 40 amino acid long, tandemly repeated sequence motif, first identified in the Drosophila segment polarity gene armadillo. These repeats were also found in the mammalian armadillo homolog beta-catenin, the junctional plaque protein plakoglobin, the adenomatous polyposis coli (APC) tumor suppressor protein, and a number of other proteins. ARM has been implicated in mediating protein-protein interactions, but no common features among the target proteins recognized by the ARM repeats have been identified. ARM repeats are related to HEAT repeats. 117 -293787 sd00044 HEAT HEAT repeats. The canonical HEAT repeat consists of two helices forming a helical hairpin. HEAT repeats are found in a diverse family of proteins, including the four proteins from which its name is based: Huntingtin, Elongation factor 3, the PR65/A subunit of protein phosphatase 2A (PP2A), and the lipid kinase TOR (target of rapamycin). The HEAT repeat family is related to armadillo (ARM)/beta-catenin-like repeats. 181 -293786 sd00045 ANK ankyrin repeats. Ankyrin repeats are one of the most abundant repeat motifs, and generally function as scaffolds for protein-protein interactions in processes including cell cycle, transcriptional regulation, signal transduction, vesicular trafficking, and inflammatory response. Although predominantly found in eukaryotic proteins, they are also found in some bacterial and viral proteins. Less is known of their physiological roles in prokaryotes. Some bacterial ANK proteins play key roles in microbial pathogenesis by mimicking or manipulating host function(s). The pathogen Providencia alcalifaciens N-formyltransferase ankyrin repeats function in small molecule binding and allosteric control. Ankyrin-repeat proteins have been associated with a number of human diseases. 98 -293785 sd00046 FHA_bHelix beta-helical repeat found in filamentous hemagglutinin and related adhesins and CdiA family proteins. This model contains ten copies of an approximately 20-residue repeat found in two-partner secretion (TPS) proteins, including the filamentous hemagglutinin (FHA) family of adhesins and CdiA family proteins. These repeats form a right-handed beta-helical structure, and are found in large secreted proteins from a number of plant and animal pathogens. FHA family adhesins bind to various types of cells and may contribute to attachment, aggregation, and pathogenesis. CdiA proteins are involved in contact-dependent growth inhibition (CDI). 209 -128322 smart00002 PLP Myelin proteolipid protein (PLP or lipophilin). 60 -128323 smart00003 NH Neurohypophysial hormones. Vasopressin/oxytocin gene family. 78 -197463 smart00004 NL Domain found in Notch and Lin-12. The Notch protein is essential for the proper differentiation of the Drosophila ectoderm. This protein contains 3 NL domains. 38 -214467 smart00005 DEATH DEATH domain, found in proteins involved in cell death (apoptosis). Alpha-helical domain present in a variety of proteins with apoptotic functions. Some (but not all) of these domains form homotypic and heterotypic dimers. 88 -128326 smart00006 A4_EXTRA amyloid A4. amyloid A4 precursor of Alzheimers disease 165 -214468 smart00008 HormR Domain present in hormone receptors. 70 -197466 smart00010 small_GTPase Small GTPase of the Ras superfamily; ill-defined subfamily. SMART predicts Ras-like small GTPases of the ARF, RAB, RAN, RAS, and SAR subfamilies. Others that could not be classified in this way are predicted to be members of the small GTPase superfamily without predictions of the subfamily. 166 -214469 smart00012 PTPc_DSPc Protein tyrosine phosphatase, catalytic domain, undefined specificity. Protein tyrosine phosphatases. Homologues detected by this profile and not by those of "PTPc" or "DSPc" are predicted to be protein phosphatases with a similar fold to DSPs and PTPs, yet with unpredicted specificities. 105 -214470 smart00013 LRRNT Leucine rich repeat N-terminal domain. 33 -214471 smart00014 acidPPc Acid phosphatase homologues. 116 -197470 smart00015 IQ Calmodulin-binding motif. Short calmodulin-binding motif containing conserved Ile and Gln residues. 23 -214472 smart00017 OSTEO Osteopontin. Osteopontin is an acidic phosphorylated glycoprotein of about 40 Kd which is abundant in the mineral matrix of bones and which binds tightly to hydroxyapatite. It is suggested that osteopontin might function as a cell attachment factor and could play a key role in the adhesion of osteoclasts to the mineral matrix of bone 287 -197472 smart00018 PD P or trefoil or TFF domain. Proposed role in renewal and pathology of mucous epithelia. 46 -128335 smart00019 SF_P Pulmonary surfactant proteins. Pulmonary surfactant associated proteins promote alveolar stability by lowering the surface tension at the air-liquid interface in the peripheral air spaces. SP-C, a component of surfactant, is a highly hydrophobic peptide of 35 amino acid residues which is processed from a larger precursor protein. SP-C is post-translationally modified by the covalent attachment of two palmitoyl groups on two adjacent cysteines 191 -214473 smart00020 Tryp_SPc Trypsin-like serine protease. Many of these are synthesised as inactive precursor zymogens that are cleaved during limited proteolysis to generate their active forms. A few, however, are active as single chain molecules, and others are inactive due to substitutions of the catalytic triad residues. 229 -197474 smart00021 DAX Domain present in Dishevelled and axin. Domain of unknown function. 83 -214474 smart00022 PLAc Cytoplasmic phospholipase A2, catalytic subunit. Cytosolic phospholipases A2 hydrolyse arachidonyl phospholipids. Family includes phospholipases B isoforms. 549 -128339 smart00023 COLIPASE Colipase. Colipase is a protein that functions as a cofactor for pancreatic lipase, with which it forms a stoichiometric complex. It also binds to the bile-salt covered triacylglycerol interface thus allowing the enzyme to anchor itself to the water-lipid interface. Colipase is a small protein of approximately 100 amino-acid residues with five conserved disulfide bonds. 95 -214475 smart00025 Pumilio Pumilio-like repeats. Pumilio-like repeats that bind RNA. 36 -128341 smart00026 EPEND Ependymins. Ependymins are the predominant proteins in the cerebrospinal fluid (CSF) of teleost fish. They have been implicated in the neurochemistry of memory and neuronal regeneration. They are glycoproteins of about 200 amino acids that can bind calcium. Four cysteines are conserved that probably form disulfide bonds. 191 -197477 smart00027 EH Eps15 homology domain. Pair of EF hand motifs that recognise proteins containing Asn-Pro-Phe (NPF) sequences. 96 -197478 smart00028 TPR Tetratricopeptide repeats. Repeats present in 4 or more copies in proteins. Contain a minimum of 34 amino acids each and self-associate via a "knobs and holes" mechanism. 34 -214476 smart00029 GASTRIN gastrin / cholecystokinin / caerulein family. This family gathers small proteins of about 100 130 amino acids that act as hormones, among them gastrin, cholecystokinin and preprocaerulein which stimulate gastric, biliary, and pancreatic secretion and smooth muscle contraction. 14 -128345 smart00030 CLb CLUSTERIN Beta chain. 206 -214477 smart00031 DED Death effector domain. 79 -214478 smart00032 CCP Domain abundant in complement control proteins; SUSHI repeat; short complement-like repeat (SCR). The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. A missense mutation in seventh CCP domain causes deficiency of the b subunit of factor XIII. 56 -214479 smart00033 CH Calponin homology domain. Actin binding domains present in duplicate at the N-termini of spectrin-like proteins (including dystrophin, alpha-actinin). These domains cross-link actin filaments into bundles and networks. A calponin homology domain is predicted in yeasst Cdc24p. 101 -214480 smart00034 CLECT C-type lectin (CTL) or carbohydrate-recognition domain (CRD). Many of these domains function as calcium-dependent carbohydrate binding modules. 124 -128350 smart00035 CLa CLUSTERIN alpha chain. 216 -214481 smart00036 CNH Domain found in NIK1-like kinases, mouse citron and yeast ROM1, ROM2. 302 -128352 smart00037 CNX Connexin homologues. Connexin channels participate in the regulation of signaling between developing and differentiated cell types. 34 -197483 smart00038 COLFI Fibrillar collagens C-terminal domain. Found at C-termini of fibrillar collagens: Ephydatia muelleri procollagen EMF1alpha, vertebrate collagens alpha(1)III, alpha(1)II, alpha(2)V etc. 232 -128354 smart00039 CRF corticotropin-releasing factor. 40 -128355 smart00040 CSF2 Granulocyte-macrophage colony-simulating factor (GM-CSF). GM-CSF stimulates the development of and the cytotoxic activity of white blood cells. 121 -214482 smart00041 CT C-terminal cystine knot-like domain (CTCK). The structures of transforming growth factor-beta (TGFbeta), nerve growth factor (NGF), platelet-derived growth factor (PDGF) and gonadotropin all form 2 highly twisted antiparallel pairs of beta-strands and contain three disulphide bonds. The domain is non-globular and little is conserved among these presumed homologues except for their cysteine residues. CT domains are predicted to form homodimers. 82 -214483 smart00042 CUB Domain first found in C1r, C1s, uEGF, and bone morphogenetic protein. This domain is found mostly among developmentally-regulated proteins. Spermadhesins contain only this domain. 102 -214484 smart00043 CY Cystatin-like domain. Cystatins are a family of cysteine protease inhibitors that occur mainly as single domain proteins. However some extracellular proteins such as kininogen, His-rich glycoprotein and fetuin also contain these domains. 107 -214485 smart00044 CYCc Adenylyl- / guanylyl cyclase, catalytic domain. Present in two copies in mammalian adenylyl cyclases. Eubacterial homologues are known. Two residues (Asn, Arg) are thought to be involved in catalysis. These cyclases have important roles in a diverse range of cellular processes. 194 -214486 smart00045 DAGKa Diacylglycerol kinase accessory domain (presumed). Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known. 160 -214487 smart00046 DAGKc Diacylglycerol kinase catalytic domain (presumed). Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown. 124 -214488 smart00047 LYZ2 Lysozyme subfamily 2. Eubacterial enzymes distantly related to eukaryotic lysozymes. 147 -128363 smart00048 DEFSN Defensin/corticostatin family. Cysteine-rich domains that lyse bacteria, fungi and enveloped viruses by forming multimeric membrane-spanning channels. 29 -214489 smart00049 DEP Domain found in Dishevelled, Egl-10, and Pleckstrin. Domain of unknown function present in signalling proteins that contain PH, rasGEF, rhoGEF, rhoGAP, RGS, PDZ domains. DEP domain in Drosophila dishevelled is essential to rescue planar polarity defects and induce JNK signalling (Cell 94, 109-118). 77 -214490 smart00050 DISIN Homologues of snake disintegrins. Snake disintegrins inhibit the binding of ligands to integrin receptors. They contain a 'RGD' sequence, identical to the recognition site of many adhesion proteins. Molecules containing both disintegrin and metalloprotease domains are known as ADAMs. 75 -128366 smart00051 DSL delta serrate ligand. 63 -214491 smart00052 EAL Putative diguanylate phosphodiesterase. Putative diguanylate phosphodiesterase, present in a variety of bacteria. 242 -197491 smart00053 DYNc Dynamin, GTPase. Large GTPases that mediate vesicle trafficking. Dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. 240 -197492 smart00054 EFh EF-hand, calcium binding motif. EF-hands are calcium-binding motifs that occur at least in pairs. Links between disease states and genes encoding EF-hands, particularly the S100 subclass, are emerging. Each motif consists of a 12 residue loop flanked on either side by a 12 residue alpha-helix. EF-hands undergo a conformational change unpon binding calcium ions. 29 -214492 smart00055 FCH Fes/CIP4 homology domain. Alignment extended from original report. Highly alpha-helical. Also known as the RAEYL motif or the S. pombe Cdc15 N-terminal domain. 87 -214493 smart00057 FIMAC factor I membrane attack complex. 68 -214494 smart00058 FN1 Fibronectin type 1 domain. One of three types of internal repeat within the plasma protein, fibronectin. Found also in coagulation factor XII, HGF activator and tissue-type plasminogen activator. In t-PA and fibronectin, this domain type contributes to fibrin-binding. 45 -128373 smart00059 FN2 Fibronectin type 2 domain. One of three types of internal repeat within the plasma protein, fibronectin. Also occurs in coagulation factor XII, 2 type IV collagenases, PDC-109, and cation-independent mannose-6-phosphate and secretory phospholipase A2 receptors. In fibronectin, PDC-109, and the collagenases, this domain contributes to collagen-binding function. 49 -214495 smart00060 FN3 Fibronectin type 3 domain. One of three types of internal repeat within the plasma protein, fibronectin. The tenth fibronectin type III repeat contains a RGD cell recognition sequence in a flexible loop between 2 strands. Type III modules are present in both extracellular and intracellular proteins. 83 -214496 smart00061 MATH meprin and TRAF homology. 95 -214497 smart00062 PBPb Bacterial periplasmic substrate-binding proteins. bacterial proteins, eukaryotic ones are in PBPe 219 -214498 smart00063 FRI Frizzled. Drosophila melanogaster frizzled mediates signalling that polarises a precursor cell along the anteroposterior axis. Homologues of the N-terminal region of frizzled exist either as transmembrane or secreted molecules. Frizzled homologues are reported to be receptors for the Wnt growth factors. (Not yet in MEDLINE: the FRI domain occurs in several receptor tyrosine kinases [Xu, Y.K. and Nusse, Curr. Biol. 8 R405-R406 (1998); Masiakowski, P. and Yanopoulos, G.D., Curr. Biol. 8, R407 (1998)]. 113 -214499 smart00064 FYVE Protein present in Fab1, YOTB, Vac1, and EEA1. The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. 68 -214500 smart00065 GAF Domain present in phytochromes and cGMP-specific phosphodiesterases. Mutations within these domains in PDE6B result in autosomal recessive inheritance of retinitis pigmentosa. 149 -214501 smart00066 GAL4 GAL4-like Zn(II)2Cys6 (or C6 zinc) binuclear cluster DNA-binding domain. Gal4 is a positive regulator for the gene expression of the galactose- induced genes of S. cerevisiae. Is present only in fungi. 43 -128381 smart00067 GHA Glycoprotein hormone alpha chain homologues. Also called gonadotropins. Glycoprotein hormones consist of two glycosylated chains (alpha and beta) of similar topology. 87 -214502 smart00068 GHB Glycoprotein hormone beta chain homologues. Also called gonadotropins. Glycoprotein hormones consist of two glycosylated chains (alpha and beta) of similar topology. 107 -214503 smart00069 GLA Domain containing Gla (gamma-carboxyglutamate) residues. A hyaluronan-binding domain found in proteins associated with the extracellular matrix, cell adhesion and cell migration. 65 -128384 smart00070 GLUCA Glucagon like hormones. 27 -128385 smart00071 Galanin Galanin. Galanin is a neuropeptide that controls various biological activities: it regulates the release growth hormone, inhibits the release of insulin and somatostatin, contracts smooth muscle of the gastrointestinal and genitourinary tract and may be involved in the control of adrenal secretion 103 -214504 smart00072 GuKc Guanylate kinase homologues. Active enzymes catalyze ATP-dependent phosphorylation of GMP to GDP. Structure resembles that of adenylate kinase. So-called membrane-associated guanylate kinase homologues (MAGUKs) do not possess guanylate kinase activities; instead at least some possess protein-binding functions. 174 -197502 smart00073 HPT Histidine Phosphotransfer domain. Contains an active histidine residue that mediates phosphotransfer reactions. Domain detected only in eubacteria. This alignment is an extension to that shown in the Cell structure paper. 92 -214505 smart00075 HYDRO Hydrophobins. 76 -197503 smart00076 IFabd Interferon alpha, beta and delta. Interferons produce antiviral and antiproliferative responses in cells. They are classified into five groups, all of them related but gamma-interferon. 117 -128390 smart00077 ITAM Immunoreceptor tyrosine-based activation motif. Motif that may be dually phosphorylated on tyrosine that links antigen receptors to downstream signalling machinery. 21 -214506 smart00078 IlGF Insulin / insulin-like growth factor / relaxin family. Family of proteins including insulin, relaxin, and IGFs. Insulin decreases blood glucose concentration. 66 -197504 smart00079 PBPe Eukaryotic homologues of bacterial periplasmic substrate binding proteins. Prokaryotic homologues are represented by a separate alignment: PBPb 133 -197505 smart00080 LIF_OSM leukemia inhibitory factor. OSM, Oncostatin M 157 -214507 smart00082 LRRCT Leucine rich repeat C-terminal domain. 51 -197507 smart00084 NMU Neuromedin U. Neuromedin U (NmU) is a vertebrate peptide which stimulates uterine smooth muscle contraction and causes selective vasoconstriction. Like most other active peptides, it is proteolytically processed from a larger precursor protein. The mature peptides are 8 (NmU-8) to 25 (NmU-25) residues long and C- terminally amidated. The sequence of the C-terminal extremity of NmU is extremely well conserved in mammals, birds and amphibians. 25 -214508 smart00085 PA2c Phospholipase A2. 117 -197509 smart00086 PAC Motif C-terminal to PAS motifs (likely to contribute to PAS structural domain). PAC motif occurs C-terminal to a subset of all known PAS motifs. It is proposed to contribute to the PAS domain fold. 43 -128398 smart00087 PTH Parathyroid hormone. 36 -214509 smart00088 PINT motif in proteasome subunits, Int-6, Nip-1 and TRIP-15. Also called the PCI (Proteasome, COP9, Initiation factor 3) domain. Unknown function. 88 -214510 smart00089 PKD Repeats in polycystic kidney disease 1 (PKD1) and other proteins. Polycystic kidney disease 1 protein contains 14 repeats, present elsewhere such as in microbial collagenases. 79 -214511 smart00090 RIO RIO-like kinase. 237 -214512 smart00091 PAS PAS domain. PAS motifs appear in archaea, eubacteria and eukarya. Probably the most surprising identification of a PAS domain was that in EAG-like K+-channels. 67 -128403 smart00092 RNAse_Pc Pancreatic ribonuclease. 123 -214513 smart00093 SERPIN SERine Proteinase INhibitors. 359 -214514 smart00094 TR_FER Transferrin. 332 -128406 smart00095 TR_THY Transthyretin. 121 -128407 smart00096 UTG Uteroglobin. 69 -128408 smart00097 WNT1 found in Wnt-1. 305 -214515 smart00098 alkPPc Alkaline phosphatase homologues. 419 -128410 smart00099 btg1 tob/btg1 family. The tob/btg1 is a family of proteins that inhibit cell proliferation. 108 -197516 smart00100 cNMP Cyclic nucleotide-monophosphate binding domain. Catabolite gene activator protein (CAP) is a prokaryotic homologue of eukaryotic cNMP-binding domains, present in ion channels, and cNMP-dependent kinases. 120 -128412 smart00101 14_3_3 14-3-3 homologues. 14-3-3 homologues mediates signal transduction by binding to phosphoserine-containing proteins. They are involved in growth factor signalling and also interact with MEK kinases. 244 -214516 smart00102 ADF Actin depolymerisation factor/cofilin -like domains. Severs actin filaments and binds to actin monomers. 127 -214517 smart00103 ALBUMIN serum albumin. 187 -197517 smart00104 ANATO Anaphylatoxin homologous domain. C3a, C4a and C5a anaphylatoxins are protein fragments generated enzymatically in serum during activation of complement molecules C3, C4, and C5. They induce smooth muscle contraction. These fragments are homologous to a three-fold repeat in fibulins. 35 -214518 smart00105 ArfGap Putative GTP-ase activating proteins for the small GTPase, ARF. Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs. 119 -128417 smart00107 BTK Bruton's tyrosine kinase Cys-rich motif. Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains (but not all PH domains are followed by BTK motifs). The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. 36 -214519 smart00108 B_lectin Bulb-type mannose-specific lectin. 114 -197519 smart00109 C1 Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains). Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. 50 -128420 smart00110 C1Q Complement component C1q domain. Globular domain found in many collagens and eponymously in complement C1q. When part of full length proteins these domains form a 'bouquet' due to the multimerization of heterotrimers. The C1q fold is similar to that of tumour necrosis factor. 135 -128421 smart00111 C4 C-terminal tandem repeated domain in type 4 procollagens. Duplicated domain in C-terminus of type 4 collagens. Mutations in alpha-5 collagen IV are associated with X-linked Alport syndrome. 114 -214520 smart00112 CA Cadherin repeats. Cadherins are glycoproteins involved in Ca2+-mediated cell-cell adhesion. Cadherin domains occur as repeats in the extracellular regions which are thought to mediate cell-cell contact when bound to calcium. 81 -128423 smart00113 CALCITONIN calcitonin. This family is formed by calcitonin, the calcitonin gene-related peptide, and amylin. They are short polypeptide hormones. 38 -128424 smart00114 CARD Caspase recruitment domain. Motif contained in proteins involved in apoptotic signalling. Mediates homodimerisation. Structure consists of six antiparallel helices arranged in a topology homologue to the DEATH and the DED domain. 88 -214521 smart00115 CASc Caspase, interleukin-1 beta converting enzyme (ICE) homologues. Cysteine aspartases that mediate programmed cell death (apoptosis). Caspases are synthesised as zymogens and activated by proteolysis of the peptide backbone adjacent to an aspartate. The resulting two subunits associate to form an (alpha)2(beta)2-tetramer which is the active enzyme. Activation of caspases can be mediated by other caspase homologues. 241 -214522 smart00116 CBS Domain in cystathionine beta-synthase and other proteins. Domain present in all 3 forms of cellular life. Present in two copies in inosine monophosphate dehydrogenase, of which one is disordered in the crystal structure. A number of disease states are associated with CBS-containing proteins including homocystinuria, Becker's and Thomsen disease. 49 -214523 smart00119 HECTc Domain Homologous to E6-AP Carboxyl Terminus with. E3 ubiquitin-protein ligases. Can bind to E2 enzymes. 328 -214524 smart00120 HX Hemopexin-like repeats. Hemopexin is a heme-binding protein that transports heme to the liver. Hemopexin-like repeats occur in vitronectin and some matrix metalloproteinases family (matrixins). The HX repeats of some matrixins bind tissue inhibitor of metalloproteinases (TIMPs). 45 -197525 smart00121 IB Insulin growth factor-binding protein homologues. High affinity binding partners of insulin-like growth factors. 75 -128430 smart00125 IL1 Interleukin-1 homologues. Cytokines with various biological functions. Interluekin 1 alpha and beta are also known as hematopoietin and catabolin. 147 -128431 smart00126 IL6 Interleukin-6 homologues. Family includes granulocyte colony-stimulating factor (G-CSF) and myelomonocytic growth factor (MGF). IL-6 is also known as B-cell stimulatory factor 2. 154 -128432 smart00127 IL7 Interleukin-7 and interleukin-9 family. IL-7 is a cytokine that acts as a growth factor for early lymphoid cells of both B- and T-cell lineages. IL-9 is a multifunctional cytokine that, although originally described as a T-cell growth factor, its function in T-cell response remains unclear. 146 -214525 smart00128 IPPc Inositol polyphosphate phosphatase, catalytic domain homologues. Mg(2+)-dependent/Li(+)-sensitive enzymes. 306 -214526 smart00129 KISc Kinesin motor, catalytic domain. ATPase. Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. 335 -214527 smart00130 KR Kringle domain. Named after a Danish pastry. Found in several serine proteases and in ROR-like receptors. Can occur in up to 38 copies (in apolipoprotein(a)). Plasminogen-like kringles possess affinity for free lysine and lysine- containing peptides. 83 -197529 smart00131 KU BPTI/Kunitz family of serine protease inhibitors. Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. 53 -214528 smart00132 LIM Zinc-binding domain present in Lin-11, Isl-1, Mec-3. Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways. 54 -214529 smart00133 S_TK_X Extension to Ser/Thr-type protein kinases. 64 -214530 smart00134 LU Ly-6 antigen / uPA receptor -like domain. Three-fold repeated domain in urokinase-type plasminogen activator receptor; occurs singly in other GPI-linked cell-surface glycoproteins (Ly-6 family, CD59, thymocyte B cell antigen, Sgp-2). Topology of these domains is similar to that of snake venom neurotoxins. 85 -214531 smart00135 LY Low-density lipoprotein-receptor YWTD domain. Type "B" repeats in low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. Also present in a variety of molecules similar to gp300/megalin. 43 -214532 smart00136 LamNT Laminin N-terminal domain (domain VI). N-terminal domain of laminins and laminin-related protein such as Unc-6/ netrins. 238 -214533 smart00137 MAM Domain in meprin, A5, receptor protein tyrosine phosphatase mu (and others). Likely to have an adhesive function. Mutations in the meprin MAM domain affect noncovalent associations within meprin oligomers. In receptor tyrosine phosphatase mu-like molecules the MAM domain is important for homophilic cell-cell interactions. 161 -214534 smart00138 MeTrc Methyltransferase, chemotaxis proteins. Methylates methyl-accepting chemotaxis proteins to form gamma-glutamyl methyl ester residues. 264 -214535 smart00139 MyTH4 Domain in Myosin and Kinesin Tails. Domain present twice in myosin-VIIa, and also present in 3 other myosins. 152 -128445 smart00140 NGF Nerve growth factor (NGF or beta-NGF). NGF is important for the development and maintenance of the sympathetic and sensory nervous systems. 106 -197537 smart00141 PDGF Platelet-derived and vascular endothelial growth factors (PDGF, VEGF) family. Platelet-derived growth factor is a potent activator for cells of mesenchymal origin. PDGF-A and PDGF-B form AA and BB homodimers and an AB heterodimer. Members of the VEGF family are homologues of PDGF. 83 -214536 smart00142 PI3K_C2 Phosphoinositide 3-kinase, region postulated to contain C2 domain. Outlier of C2 family. 100 -197539 smart00143 PI3K_p85B PI3-kinase family, p85-binding domain. Region of p110 PI3K that binds the p85 subunit. 78 -197540 smart00144 PI3K_rbd PI3-kinase family, Ras-binding domain. Certain members of the PI3K family possess Ras-binding domains in their N-termini. These regions show some similarity (although not highly significant similarity) to Ras-binding RA domains (unpublished observation). 108 -214537 smart00145 PI3Ka Phosphoinositide 3-kinase family, accessory domain (PIK domain). PIK domain is conserved in all PI3 and PI4-kinases. Its role is unclear but it has been suggested to be involved in substrate presentation. 184 -214538 smart00146 PI3Kc Phosphoinositide 3-kinase, catalytic domain. Phosphoinositide 3-kinase isoforms participate in a variety of processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, and apoptosis. These homologues may be either lipid kinases and/or protein kinases: the former phosphorylate the 3-position in the inositol ring of inositol phospholipids. The ataxia telangiectesia-mutated gene produced, the targets of rapamycin (TOR) and the DNA-dependent kinase have not been found to possess lipid kinase activity. Some of this family possess PI-4 kinase activities. 240 -214539 smart00147 RasGEF Guanine nucleotide exchange factor for Ras-like small GTPases. 242 -197543 smart00148 PLCXc Phospholipase C, catalytic domain (part); domain X. Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. 143 -128454 smart00149 PLCYc Phospholipase C, catalytic domain (part); domain Y. Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. 115 -197544 smart00150 SPEC Spectrin repeats. 101 -128456 smart00151 SWIB SWI complex, BAF60b domains. 77 -128457 smart00152 THY Thymosin beta actin-binding motif. 37 -128458 smart00153 VHP Villin headpiece domain. 36 -197545 smart00154 ZnF_AN1 AN1-like Zinc finger. Zinc finger at the C-terminus of An1, a ubiquitin-like protein in Xenopus laevis. 39 -197546 smart00155 PLDc Phospholipase D. Active site motifs. Phosphatidylcholine-hydrolyzing phospholipase D (PLD) isoforms are activated by ADP-ribosylation factors (ARFs). PLD produces phosphatidic acid from phosphatidylcholine, which may be essential for the formation of certain types of transport vesicles or may be constitutive vesicular transport to signal transduction pathways. PC-hydrolysing PLD is a homologue of cardiolipin synthase, phosphatidylserine synthase, bacterial PLDs, and viral proteins. Each of these appears to possess a domain duplication which is apparent by the presence of two motifs containing well-conserved histidine, lysine, aspartic acid, and/or asparagine residues which may contribute to the active site. An E. coli endonuclease (nuc) and similar proteins appear to be PLD homologues but possess only one of these motifs. The profile contained here represents only the putative active site regions, since an accurate multiple alignment of the repeat units has not been achieved. 28 -197547 smart00156 PP2Ac Protein phosphatase 2A homologues, catalytic domain. Large family of serine/threonine phosphatases, that includes PP1, PP2A and PP2B (calcineurin) family members. 271 -197548 smart00157 PRP Major prion protein. The prion protein is a major component of scrapie-associated fibrils in Creutzfeldt-Jakob disease, kuru, Gerstmann-Straussler syndrome and bovine spongiform encephalopathy. 218 -128463 smart00159 PTX Pentraxin / C-reactive protein / pentaxin family. This family form a doscoid pentameric structure. Human serum amyloid P demonstrates calcium-mediated ligand-binding. 206 -197549 smart00160 RanBD Ran-binding domain. Domain of apporximately 150 residues that stabilises the GTP-bound form of Ran (the Ras-like nuclear small GTPase). 130 -128465 smart00162 SAPA Saposin/surfactant protein-B A-type DOMAIN. Present as four and three degenerate copies, respectively, in prosaposin and surfactant protein B. Single copies in acid sphingomyelinase, NK-lysin amoebapores and granulysin. Putative phospholipid membrane binding domains. 34 -214540 smart00164 TBC Domain in Tre-2, BUB2p, and Cdc16p. Probable Rab-GAPs. Widespread domain present in Gyp6 and Gyp7, thereby giving rise to the notion that it performs a GTP-activator activity on Rab-like GTPases. 216 -197551 smart00165 UBA Ubiquitin associated domain. Present in Rad23, SNF1-like kinases. The newly-found UBA in p62 is known to bind ubiquitin. 37 -197552 smart00166 UBX Domain present in ubiquitin-regulatory proteins. Present in FAF1 and Shp1p. 77 -128469 smart00167 VPS9 Domain present in VPS9. Domain present in yeast vacuolar sorting protein 9 and other proteins. 117 -214541 smart00173 RAS Ras subfamily of RAS small GTPases. Similar in fold and function to the bacterial EF-Tu GTPase. p21Ras couples receptor Tyr kinases and G protein receptors to protein kinase cascades 164 -197554 smart00174 RHO Rho (Ras homology) subfamily of Ras-like small GTPases. Members of this subfamily of Ras-like small GTPases include Cdc42 and Rac, as well as Rho isoforms. 174 -197555 smart00175 RAB Rab subfamily of small GTPases. Rab GTPases are implicated in vesicle trafficking. 164 -128473 smart00176 RAN Ran (Ras-related nuclear proteins) /TC4 subfamily of small GTPases. Ran is involved in the active transport of proteins through nuclear pores. 200 -128474 smart00177 ARF ARF-like small GTPases; ARF, ADP-ribosylation factor. Ras homologues involved in vesicular transport. Activator of phospholipase D isoforms. Unlike Ras proteins they lack cysteine residues at their C-termini and therefore are unlikely to be prenylated. ARFs are N-terminally myristoylated. Contains ATP/GTP-binding motif (P-loop). 175 -197556 smart00178 SAR Sar1p-like members of the Ras-family of small GTPases. Yeast SAR1 is an essential gene required for transport of secretory proteins from the endoplasmic reticulum to the Golgi apparatus. 184 -214542 smart00179 EGF_CA Calcium-binding EGF-like domain. 39 -214543 smart00180 EGF_Lam Laminin-type epidermal growth factor-like domai. 46 -214544 smart00181 EGF Epidermal growth factor-like domain. 35 -214545 smart00182 CULLIN Cullin. 143 -128480 smart00183 NAT_PEP Natriuretic peptide. Atrial natriuretic peptides are vertebrate hormones important in the overall control of cardiovascular homeostasis and sodium and water balance in general. 24 -214546 smart00184 RING Ring finger. E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding activity towards E2 ubiquitin-conjugating enzymes (Ubc' s) 40 -214547 smart00185 ARM Armadillo/beta-catenin-like repeats. Approx. 40 amino acid repeat. Tandem repeats form superhelix of helices that is proposed to mediate interaction of beta-catenin with its ligands. Involved in transducing the Wingless/Wnt signal. In plakoglobin arm repeats bind alpha-catenin and N-cadherin. 41 -214548 smart00186 FBG Fibrinogen-related domains (FReDs). Domain present at the C-termini of fibrinogen beta and gamma chains, and a variety of fibrinogen-related proteins, including tenascin and Drosophila scabrous. 212 -197563 smart00187 INB Integrin beta subunits (N-terminal portion of extracellular region). Portion of beta integrins that lies N-terminal to their EGF-like repeats. Integrins are cell adhesion molecules that mediate cell-extracellular matrix and cell-cell interactions. They contain both alpha and beta subunits. Beta integrins are proposed to have a von Willebrand factor type-A "insert" or "I" -like domain (although this remains to be confirmed). 423 -128485 smart00188 IL10 Interleukin-10 family. Interleukin-10 inhibits the synthesis of a number of cytokines, including IFN-gamma, IL-2, IL-3, TNF and GM-CSF produced by activated macrophages and by helper T cells. 137 -128486 smart00189 IL2 Interleukin-2 family. Interleukin-2 is a cytokine produced by T-helper cells in response to antigenic or mitogenic stimulation. This protein is required for T-cell proliferation and other activities crucial to the regulation of the immune response. 154 -197564 smart00190 IL4_13 Interleukins 4 and 13. Interleukins-4 and -13 are cytokines involved in inflammatory and immune responses. IL-4 stimulates B and T cells. 138 -214549 smart00191 Int_alpha Integrin alpha (beta-propellor repeats). Integrins are cell adhesion molecules that mediate cell-extracellular matrix and cell-cell interactions. They contain both alpha and beta subunits. Alpha integrins are proposed to contain a domain containing a 7-fold repeat that adopts a beta-propellor fold. Some of these domains contain an inserted von Willebrand factor type-A domain. Some repeats contain putative calcium-binding sites. The 7-fold repeat domain is homologous to a similar domain in phosphatidylinositol-glycan-specific phospholipase D. 57 -197566 smart00192 LDLa Low-density lipoprotein receptor domain class A. Cysteine-rich repeat in the low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. The N-terminal type A repeats in LDL receptor bind the lipoproteins. Other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. Mutations in the LDL receptor gene cause familial hypercholesterolemia. 33 -128490 smart00193 PTN Pleiotrophin / midkine family. Heparin-binding domain family. 80 -214550 smart00194 PTPc Protein tyrosine phosphatase, catalytic domain. 259 -214551 smart00195 DSPc Dual specificity phosphatase, catalytic domain. 138 -214552 smart00197 SAA Serum amyloid A proteins. Serum amyloid A proteins are induced during the acute-phase response. Secondary amyloidosis is characterised by the extracellular accumulation in tissues of SAA proteins. SAA proteins are apolipoproteins. 103 -214553 smart00198 SCP SCP / Tpx-1 / Ag5 / PR-1 / Sc7 family of extracellular domains. Human glioma pathogenesis-related protein GliPR and the plant pathogenesis-related protein represent functional links between plant defense systems and human immune system. This family has no known function. 144 -197570 smart00199 SCY Intercrine alpha family (small cytokine C-X-C) (chemokine CXC). Family of cytokines involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response. 59 -214554 smart00200 SEA Domain found in sea urchin sperm protein, enterokinase, agrin. Proposed function of regulating or binding carbohydrate sidechains. 121 -197571 smart00201 SO Somatomedin B -like domains. Somatomedin-B is a peptide, proteolytically excised from vitronectin, that is a growth hormone-dependent serum factor with protease-inhibiting activity. 43 -214555 smart00202 SR Scavenger receptor Cys-rich. The sea ucrhin egg peptide speract contains 4 repeats of SR domains that contain 6 conserved cysteines. May bind bacterial antigens in the protein MARCO. 101 -197573 smart00203 TK Tachykinin family. Tachykinins are a group of biologically active peptides which excite neurons, evoke behavioral responses, are potent vasodilatators and contract (directly or indirectly) many smooth muscles. These peptides are synthesized as longer precursors and then processed to peptides from ten to twelve residues long. 11 -214556 smart00204 TGFB Transforming growth factor-beta (TGF-beta) family. Family members are active as disulphide-linked homo- or heterodimers. TGFB is a multifunctional peptide that controls proliferation, differentiation, and other functions in many cell types. 102 -128501 smart00205 THN Thaumatin family. The thaumatin family gathers proteins related to plant pathogenesis. The thaumatin family includes very basic members with extracellular and vacuolar localization. Thaumatin itsel is a potent sweet-tasting protein. Several members of this family display significant in vitro activity of inhibiting hyphal growth or spore germination of various fungi probably by a membrane permeabilizing mechanism. 218 -128502 smart00206 NTR Tissue inhibitor of metalloproteinase family. Form complexes with metalloproteinases, such as collagenases, and irreversibly inactivate them. 172 -214557 smart00207 TNF Tumour necrosis factor family. Family of cytokines that form homotrimeric or heterotrimeric complexes. TNF mediates mature T-cell receptor-induced apoptosis through the p75 TNF receptor. 125 -214558 smart00208 TNFR Tumor necrosis factor receptor / nerve growth factor receptor repeats. Repeats in growth factor receptors that are involved in growth factor binding. TNF/TNFR 39 -214559 smart00209 TSP1 Thrombospondin type 1 repeats. Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. 53 -214560 smart00210 TSPN Thrombospondin N-terminal -like domains. Heparin-binding and cell adhesion domain of thrombospondin 184 -214561 smart00211 TY Thyroglobulin type I repeats. The N-terminal region of human thyroglobulin contains 11 type-1 repeats TY repeats are proposed to be inhibitors of cysteine proteases and binding partners of heparin. 46 -214562 smart00212 UBCc Ubiquitin-conjugating enzyme E2, catalytic domain homologues. Proteins destined for proteasome-mediated degradation may be ubiquitinated. Ubiquitination follows conjugation of ubiquitin to a conserved cysteine residue of UBC homologues. This pathway functions in regulating many fundamental processes required for cell viability.TSG101 is one of several UBC homologues that lacks this active site cysteine. 145 -214563 smart00213 UBQ Ubiquitin homologues. Ubiquitin-mediated proteolysis is involved in the regulated turnover of proteins required for controlling cell cycle progression 72 -214564 smart00214 VWC von Willebrand factor (vWF) type C domain. 59 -214565 smart00215 VWC_out von Willebrand factor (vWF) type C domain. 67 -214566 smart00216 VWD von Willebrand factor (vWF) type D domain. Von Willebrand factor contains several type D domains: D1 and D2 are present within the N-terminal propeptide whereas the remaining D domains are required for multimerisation. 163 -197580 smart00217 WAP Four-disulfide core domains. 47 -128514 smart00218 ZU5 Domain present in ZO-1 and Unc5-like netrin receptors. Domain of unknown function. 104 -197581 smart00219 TyrKc Tyrosine kinase, catalytic domain. Phosphotransferases. Tyrosine-specific kinase subfamily. 257 -214567 smart00220 S_TKc Serine/Threonine protein kinases, catalytic domain. Phosphotransferases. Serine or threonine-specific kinase subfamily. 254 -214568 smart00221 STYKc Protein kinase; unclassified specificity. Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase. 258 -214569 smart00222 Sec7 Sec7 domain. Domain named after the S. cerevisiae SEC7 gene product, which is required for proper protein transport through the Golgi. The domain facilitates guanine nucleotide exchange on the small GTPases, ARFs (ADP ribosylation factors). 189 -128519 smart00223 APPLE APPLE domain. Four-fold repeat in plasma kallikrein and coagulation factor XI. Factor XI apple 3 mediates binding to platelets. Factor XI apple 1 binds high-molecular-mass kininogen. Apple 4 in factor XI mediates dimer formation and binds to factor XIIa. Mutations in apple 4 cause factor XI deficiency, an inherited bleeding disorder. 79 -128520 smart00224 GGL G protein gamma subunit-like motifs. 63 -197585 smart00225 BTB Broad-Complex, Tramtrack and Bric a brac. Domain in Broad-Complex, Tramtrack and Bric a brac. Also known as POZ (poxvirus and zinc finger) domain. Known to be a protein-protein interaction motif found at the N-termini of several C2H2-type transcription factors as well as Shaw-type potassium channels. Known structure reveals a tightly intertwined dimer formed via interactions between N-terminal strand and helix structures. However in a subset of BTB/POZ domains, these two secondary structures appear to be missing. Be aware SMART predicts BTB/POZ domains without the beta1- and alpha1-secondary structures. 97 -197586 smart00226 LMWPc Low molecular weight phosphatase family. 134 -128523 smart00227 NEBU The Nebulin repeat is present also in Las1. Tandem arrays of these repeats are known to bind actin. 31 -214570 smart00228 PDZ Domain present in PSD-95, Dlg, and ZO-1/2. Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities. 85 -214571 smart00229 RasGEFN Guanine nucleotide exchange factor for Ras-like GTPases; N-terminal motif. A subset of guanine nucleotide exchange factor for Ras-like small GTPases appear to possess this domain N-terminal to the RasGef (Cdc25-like) domain. The recent crystal structureof Sos shows that this domain is alpha-helical and plays a "purely structural role" (Nature 394, 337-343). 127 -128526 smart00230 CysPc Calpain-like thiol protease family. Calpain-like thiol protease family (peptidase family C2). Calcium activated neutral protease (large subunit). 318 -214572 smart00231 FA58C Coagulation factor 5/8 C-terminal domain, discoidin domain. Cell surface-attached carbohydrate-binding domain, present in eukaryotes and assumed to have horizontally transferred to eubacterial genomes. 139 -214573 smart00232 JAB_MPN JAB/MPN domain. Domain in Jun kinase activation domain binding protein and proteasomal subunits. Domain at Mpr1p and Pad1p N-termini. Domain of unknown function. 135 -214574 smart00233 PH Pleckstrin homology domain. Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. 102 -214575 smart00234 START in StAR and phosphatidylcholine transfer protein. putative lipid-binding domain in StAR and phosphatidylcholine transfer protein 205 -214576 smart00235 ZnMc Zinc-dependent metalloprotease. Neutral zinc metallopeptidases. This alignment represents a subset of known subfamilies. Highest similarity occurs in the HExxH zinc-binding site/ active site. 139 -197593 smart00236 fCBD Fungal-type cellulose-binding domain. Small four-cysteine cellulose-binding domain of fungi 34 -197594 smart00237 Calx_beta Domains in Na-Ca exchangers and integrin-beta4. Domain in Na-Ca exchangers and integrin subunit beta4 (and some cyanobacterial proteins) 90 -197595 smart00238 BIR Baculoviral inhibition of apoptosis protein repeat. Domain found in inhibitor of apoptosis proteins (IAPs) and other proteins. Acts as a direct inhibitor of caspase enzymes. 71 -214577 smart00239 C2 Protein kinase C conserved region 2 (CalB). Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. 101 -214578 smart00240 FHA Forkhead associated domain. Found in eukaryotic and prokaryotic proteins. Putative nuclear signalling domain. 52 -214579 smart00241 ZP Zona pellucida (ZP) domain. ZP proteins are responsible for sperm-adhesion fo the zona pellucida. ZP domains are also present in multidomain transmembrane proteins such as glycoprotein GP2, uromodulin and TGF-beta receptor type III (betaglycan). 252 -214580 smart00242 MYSc Myosin. Large ATPases. ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin. 677 -128539 smart00243 GAS2 Growth-Arrest-Specific Protein 2 Domain. GROWTH-ARREST-SPECIFIC PROTEIN 2 Domain 73 -214581 smart00244 PHB prohibitin homologues. prohibitin homologues 160 -214582 smart00245 TSPc tail specific protease. tail specific protease 192 -128542 smart00246 WH2 Wiskott Aldrich syndrome homology region 2. Wiskott Aldrich syndrome homology region 2 / actin-binding motif 18 -214583 smart00247 XTALbg Beta/gamma crystallins. Beta/gamma crystallins 82 -197603 smart00248 ANK ankyrin repeats. Ankyrin repeats are about 33 amino acids long and occur in at least four consecutive copies. They are involved in protein-protein interactions. The core of the repeat seems to be an helix-loop-helix structure. 30 -214584 smart00249 PHD PHD zinc finger. The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. 47 -197605 smart00250 PLEC Plectin repeat. 38 -128547 smart00251 SAM_PNT SAM / Pointed domain. A subfamily of the SAM domain 82 -214585 smart00252 SH2 Src homology 2 domains. Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae. 84 -128549 smart00253 SOCS suppressors of cytokine signalling. suppressors of cytokine signalling 43 -214586 smart00254 ShKT ShK toxin domain. ShK toxin domain 33 -214587 smart00255 TIR Toll - interleukin 1 - resistance. 140 -197608 smart00256 FBOX A Receptor for Ubiquitination Targets. 41 -197609 smart00257 LysM Lysin motif. 44 -128554 smart00258 SAND SAND domain. 73 -128555 smart00259 ZnF_A20 A20-like zinc fingers. A20- (an inhibitor of cell death)-like zinc fingers. The zinc finger mediates self-association in A20. These fingers also mediate IL-1-induced NF-kappaB activation. 26 -214588 smart00260 CheW Two component signalling adaptor domain. 138 -214589 smart00261 FU Furin-like repeats. 45 -214590 smart00262 GEL Gelsolin homology domain. Gelsolin/severin/villin homology domain. Calcium-binding and actin-binding. Both intra- and extracellular domains. 90 -197612 smart00263 LYZ1 Alpha-lactalbumin / lysozyme C. 127 -214591 smart00264 BAG BAG domains, present in regulator of Hsp70 proteins. BAG domains, present in Bcl-2-associated athanogene 1 and silencer of death domains 79 -128561 smart00265 BH4 BH4 Bcl-2 homology region 4. 27 -128562 smart00266 CAD Domains present in proteins implicated in post-mortem DNA fragmentation. 74 -128563 smart00267 GGDEF diguanylate cyclase. Diguanylate cyclase, present in a variety of bacteria. 163 -214592 smart00268 ACTIN Actin. ACTIN subfamily of ACTIN/mreB/sugarkinase/Hsp70 superfamily 373 -197615 smart00269 BowB Bowman-Birk type proteinase inhibitor. 55 -214593 smart00270 ChtBD1 Chitin binding domain. 38 -197617 smart00271 DnaJ DnaJ molecular chaperone homology domain. 60 -197618 smart00272 END Endothelin. 22 -214594 smart00273 ENTH Epsin N-terminal homology (ENTH) domain. 127 -128570 smart00274 FOLN Follistatin-N-terminal domain-like. Follistatin-N-terminal domain-like, EGF-like. Region distinct from the kazal-like sequence 24 -214595 smart00275 G_alpha G protein alpha subunit. Subunit of G proteins that contains the guanine nucleotide binding site 342 -214596 smart00276 GLECT Galectin. Galectin - galactose-binding lectin 128 -197621 smart00277 GRAN Granulin. 51 -197622 smart00278 HhH1 Helix-hairpin-helix DNA-binding motif class 1. 20 -197623 smart00279 HhH2 Helix-hairpin-helix class 2 (Pol1 family) motifs. 36 -197624 smart00280 KAZAL Kazal type serine protease inhibitors. Kazal type serine protease inhibitors and follistatin-like domains. 46 -214597 smart00281 LamB Laminin B domain. 127 -214598 smart00282 LamG Laminin G domain. 132 -214599 smart00283 MA Methyl-accepting chemotaxis-like domains (chemotaxis sensory transducer). Thought to undergo reversible methylation in response to attractants or repellants during bacterial chemotaxis. 262 -128580 smart00284 OLF Olfactomedin-like domains. 255 -197628 smart00285 PBD P21-Rho-binding domain. Small domains that bind Cdc42p- and/or Rho-like small GTPases. Also known as the Cdc42/Rac interactive binding (CRIB). 36 -128582 smart00286 PTI Plant trypsin inhibitors. 29 -214600 smart00287 SH3b Bacterial SH3 domain homologues. 63 -197630 smart00288 VHS Domain present in VPS-27, Hrs and STAM. Unpublished observations. Domain of unknown function. 133 -214601 smart00289 WR1 Worm-specific repeat type 1. Worm-specific repeat type 1. Cysteine-rich domain apparently unique (so far) to C. elegans. Often appears with KU domains. About 3 dozen worm proteins contain this domain. 38 -197632 smart00290 ZnF_UBP Ubiquitin Carboxyl-terminal Hydrolase-like zinc finger. 50 -197633 smart00291 ZnF_ZZ Zinc-binding domain, present in Dystrophin, CREB-binding protein. Putative zinc-binding domain present in dystrophin-like proteins, and CREB-binding protein/p300 homologues. The ZZ in dystrophin appears to bind calmodulin. A missense mutation of one of the conserved cysteines in dystrophin results in a patient with Duchenne muscular dystrophy. 44 -214602 smart00292 BRCT breast cancer carboxy-terminal domain. 78 -214603 smart00293 PWWP domain with conserved PWWP motif. conservation of Pro-Trp-Trp-Pro residues 63 -128590 smart00294 4.1m putative band 4.1 homologues' binding motif. 19 -214604 smart00295 B41 Band 4.1 homologues. Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs. 201 -197636 smart00297 BROMO bromo domain. 107 -214605 smart00298 CHROMO Chromatin organization modifier domain. 55 -128594 smart00299 CLH Clathrin heavy chain repeat homology. 140 -197638 smart00300 ChSh Chromo Shadow Domain. 61 -214606 smart00301 DM Doublesex DNA-binding motif. 54 -128597 smart00302 GED Dynamin GTPase effector domain. 92 -197639 smart00303 GPS G-protein-coupled receptor proteolytic site domain. Present in latrophilin/CL-1, sea urchin REJ and polycystin. 49 -197640 smart00304 HAMP HAMP (Histidine kinases, Adenylyl cyclases, Methyl binding proteins, Phosphatases) domain. 53 -197641 smart00305 HintC Hint (Hedgehog/Intein) domain C-terminal region. Hedgehog/Intein domain, C-terminal region. Domain has been split to accommodate large insertions of endonucleases. 46 -197642 smart00306 HintN Hint (Hedgehog/Intein) domain N-terminal region. Hedgehog/Intein domain, N-terminal region. Domain has been split to accommodate large insertions of endonucleases. 100 -214607 smart00307 ILWEQ I/LWEQ domain. Thought to possess an F-actin binding function. 200 -214608 smart00308 LH2 Lipoxygenase homology 2 (beta barrel) domain. 105 -197643 smart00309 PAH Pancreatic hormones / neuropeptide F / peptide YY family. Pancreatic hormone is a regulator of pancreatic and gastrointestinal functions. 36 -197644 smart00310 PTBI Phosphotyrosine-binding domain (IRS1-like). 99 -214609 smart00311 PWI PWI, domain in splicing factors. 74 -214610 smart00312 PX PhoX homologous domain, present in p47phox and p40phox. Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. 105 -214611 smart00313 PXA Domain associated with PX domains. unpubl. observations 176 -214612 smart00314 RA Ras association (RalGDS/AF-6) domain. RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Kalhammer et al. have shown that not all RA domains bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. Predicted RA domains in PLC210 and nore1 found to bind RasGTP. Included outliers (Grb7, Grb14, adenylyl cyclases etc.) 90 -214613 smart00315 RGS Regulator of G protein signalling domain. RGS family members are GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. 118 -197648 smart00316 S1 Ribosomal protein S1-like RNA-binding domain. 72 -214614 smart00317 SET SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain. Putative methyl transferase, based on outlier plant homologues 124 -214615 smart00318 SNc Staphylococcal nuclease homologues. 137 -128614 smart00319 TarH Homologues of the ligand binding domain of Tar. Homologues of the ligand binding domain of the wild-type bacterial aspartate receptor, Tar. 135 -197651 smart00320 WD40 WD40 repeats. Note that these repeats are permuted with respect to the structural repeats (blades) of the beta propeller domain. 40 -214616 smart00321 WSC present in yeast cell wall integrity and stress response component proteins. Domain present in WSC proteins, polycystin and fungal exoglucanase 95 -197652 smart00322 KH K homology RNA-binding domain. 68 -214617 smart00323 RasGAP GTPase-activator protein for Ras-like GTPases. All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. Improved domain limits from structure. 344 -214618 smart00324 RhoGAP GTPase-activator protein for Rho-like GTPases. GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers. 174 -214619 smart00325 RhoGEF Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases. Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. 180 -214620 smart00326 SH3 Src homology 3 domains. Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations. 56 -214621 smart00327 VWA von Willebrand factor (vWF) type A domain. VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. 175 -214622 smart00328 BPI1 BPI/LBP/CETP N-terminal domain. Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide-binding protein (LBP) / Cholesteryl ester transfer protein (CETP) N-terminal domain 225 -128624 smart00329 BPI2 BPI/LBP/CETP C-terminal domain. Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide-binding protein (LBP) / Cholesteryl ester transfer protein (CETP) C-terminal domain 202 -214623 smart00330 PIPKc Phosphatidylinositol phosphate kinases. 342 -214624 smart00331 PP2C_SIG Sigma factor PP2C-like phosphatases. 193 -214625 smart00332 PP2Cc Serine/threonine phosphatases, family 2C, catalytic domain. The protein architecture and deduced catalytic mechanism of PP2C phosphatases are similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity. 252 -197660 smart00333 TUDOR Tudor domain. Domain of unknown function present in several RNA-binding proteins. 10 copies in the Drosophila Tudor protein. Initial proposal that the survival motor neuron gene product contain a Tudor domain are corroborated by more recent database search techniques such as PSI-BLAST (unpublished). 57 -197661 smart00335 ANX Annexin repeats. 53 -197662 smart00336 BBOX B-Box-type zinc finger. 42 -214626 smart00337 BCL BCL (B-Cell lymphoma); contains BH1, BH2 regions. (BH1, BH2, (BH3 (one helix only)) and not BH4(one helix only)). Involved in apoptosis regulation 100 -197664 smart00338 BRLZ basic region leucin zipper. 65 -214627 smart00339 FH FORKHEAD. FORKHEAD, also known as a "winged helix" 89 -128634 smart00340 HALZ homeobox associated leucin zipper. 44 -128635 smart00341 HRDC Helicase and RNase D C-terminal. Hypothetical role in nucleic acid binding. Mutations in the HRDC domain cause human disease. 81 -197666 smart00342 HTH_ARAC helix_turn_helix, arabinose operon control protein. 84 -197667 smart00343 ZnF_C2HC zinc finger. 17 -214628 smart00344 HTH_ASNC helix_turn_helix ASNC type. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli) 108 -197669 smart00345 HTH_GNTR helix_turn_helix gluconate operon transcriptional repressor. 60 -214629 smart00346 HTH_ICLR helix_turn_helix isocitrate lyase regulation. 91 -197670 smart00347 HTH_MARR helix_turn_helix multiple antibiotic resistance protein. 101 -128642 smart00348 IRF interferon regulatory factor. interferon regulatory factor, also known as trytophan pentad repeat 107 -214630 smart00349 KRAB krueppel associated box. 61 -214631 smart00350 MCM minichromosome maintenance proteins. 509 -128645 smart00351 PAX Paired Box domain. 125 -197673 smart00352 POU Found in Pit-Oct-Unc transcription factors. 75 -197674 smart00353 HLH helix loop helix domain. 53 -197675 smart00354 HTH_LACI helix_turn _helix lactose operon repressor. 70 -197676 smart00355 ZnF_C2H2 zinc finger. 23 -214632 smart00356 ZnF_C3H1 zinc finger. 27 -214633 smart00357 CSP Cold shock protein domain. RNA-binding domain that functions as a RNA-chaperone in bacteria and is involved in regulating translation in eukaryotes. Contains sub-family of RNA-binding domains in the Rho transcription termination factor. 64 -214634 smart00358 DSRM Double-stranded RNA binding motif. 67 -214635 smart00359 PUA Putative RNA-binding Domain in PseudoUridine synthase and Archaeosine transglycosylase. 76 -214636 smart00360 RRM RNA recognition motif. 73 -214637 smart00361 RRM_1 RNA recognition motif. 70 -214638 smart00363 S4 S4 RNA-binding domain. 60 -214639 smart00364 LRR_BAC Leucine-rich repeats, bacterial type. 20 -197684 smart00365 LRR_SD22 Leucine-rich repeat, SDS22-like subfamily. 22 -197685 smart00367 LRR_CC Leucine-rich repeat - CC (cysteine-containing) subfamily. 26 -197686 smart00368 LRR_RI Leucine rich repeat, ribonuclease inhibitor type. 28 -197687 smart00369 LRR_TYP Leucine-rich repeats, typical (most populated) subfamily. 24 -197688 smart00370 LRR Leucine-rich repeats, outliers. 24 -197689 smart00380 AP2 DNA-binding domain in plant proteins such as APETALA2 and EREBPs. 64 -214640 smart00382 AAA ATPases associated with a variety of cellular activities. AAA - ATPases associated with a variety of cellular activities. This profile/alignment only detects a fraction of this vast family. The poorly conserved N-terminal helix is missing from the alignment. 148 -197691 smart00384 AT_hook DNA binding domain with preference for A/T rich regions. Small DNA-binding motif first described in the high mobility group non-histone chromosomal protein HMG-I(Y). 13 -214641 smart00385 CYCLIN domain present in cyclins, TFIIB and Retinoblastoma. A helical domain present in cyclins and TFIIB (twice) and Retinoblastoma (once). A protein recognition domain functioning in cell-cycle and transcription control. 83 -214642 smart00386 HAT HAT (Half-A-TPR) repeats. Present in several RNA-binding proteins. Structurally and sequentially thought to be similar to TPRs. 33 -214643 smart00387 HATPase_c Histidine kinase-like ATPases. Histidine kinase-, DNA gyrase B-, phytochrome-like ATPases. 111 -214644 smart00388 HisKA His Kinase A (phosphoacceptor) domain. Dimerisation and phosphoacceptor domain of histidine kinases. 66 -197696 smart00389 HOX Homeodomain. DNA-binding factors that are involved in the transcriptional regulation of key developmental processes 57 -214645 smart00390 GoLoco LGN motif, putative GEFs specific for G-alpha GTPases. GEF specific for Galpha_i proteins 23 -128673 smart00391 MBD Methyl-CpG binding domain. Methyl-CpG binding domain, also known as the TAM (TTF-IIP5, ARBP, MeCP1) domain 77 -214646 smart00392 PROF Profilin. Binds actin monomers, membrane polyphosphoinositides and poly-L-proline. 129 -214647 smart00393 R3H Putative single-stranded nucleic acids-binding domain. 79 -197697 smart00394 RIIa RIIalpha, Regulatory subunit portion of type II PKA R-subunit. RIIalpha, Regulatory subunit portion of type II PKA R-subunit. Contains dimerisation interface and binding site for A-kinase-anchoring proteins (AKAPs). 38 -197698 smart00396 ZnF_UBR1 Putative zinc finger in N-recognin, a recognition component of the N-end rule pathway. Domain is involved in recognition of N-end rule substrates in yeast Ubr1p 71 -197699 smart00397 t_SNARE Helical region found in SNAREs. All alpha-helical motifs that form twisted and parallel four-helix bundles in target soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor proteins. This motif found in "Q-SNAREs". 66 -197700 smart00398 HMG high mobility group. 70 -197701 smart00399 ZnF_C4 c4 zinc finger in nuclear hormone receptors. 70 -128681 smart00400 ZnF_CHCC zinc finger. 55 -214648 smart00401 ZnF_GATA zinc finger binding to DNA consensus sequence [AT]GATA[AG]. 52 -214649 smart00404 PTPc_motif Protein tyrosine phosphatase, catalytic domain motif. 105 -214650 smart00406 IGv Immunoglobulin V-Type. 81 -214651 smart00407 IGc1 Immunoglobulin C-Type. 75 -197706 smart00408 IGc2 Immunoglobulin C-2 Type. 63 -214652 smart00409 IG Immunoglobulin. 85 -214653 smart00410 IG_like Immunoglobulin like. IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. 85 -197709 smart00411 BHL bacterial (prokaryotic) histone like domain. 90 -128690 smart00412 Cu_FIST Copper-Fist. binds DNA only in present of copper or silver 39 -197710 smart00413 ETS erythroblast transformation specific domain. variation of the helix-turn-helix motif 87 -197711 smart00414 H2A Histone 2A. 106 -214654 smart00415 HSF heat shock factor. 105 -128694 smart00417 H4 Histone H4. 74 -197713 smart00418 HTH_ARSR helix_turn_helix, Arsenical Resistance Operon Repressor. 66 -128696 smart00419 HTH_CRP helix_turn_helix, cAMP Regulatory protein. 48 -197714 smart00420 HTH_DEOR helix_turn_helix, Deoxyribose operon repressor. 53 -197715 smart00421 HTH_LUXR helix_turn_helix, Lux Regulon. lux regulon (activates the bioluminescence operon 58 -197716 smart00422 HTH_MERR helix_turn_helix, mercury resistance. 70 -214655 smart00423 PSI domain found in Plexins, Semaphorins and Integrins. 47 -128701 smart00424 STE STE like transcription factors. 111 -214656 smart00425 TBOX Domain first found in the mice T locus (Brachyury) protein. 190 -128703 smart00426 TEA TEA domain. 68 -197718 smart00427 H2B Histone H2B. 97 -128705 smart00428 H3 Histone H3. 105 -214657 smart00429 IPT ig-like, plexins, transcription factors. 90 -214658 smart00430 HOLI Ligand binding domain of hormone receptors. 163 -128708 smart00431 SCAN leucine rich region. 113 -197721 smart00432 MADS MADS domain. 59 -214659 smart00433 TOP2c TopoisomeraseII. Eukaryotic DNA topoisomerase II, GyrB, ParE 594 -214660 smart00434 TOP4c DNA Topoisomerase IV. Bacterial DNA topoisomerase IV, GyrA, ParC 444 -214661 smart00435 TOPEUc DNA Topoisomerase I (eukaryota). DNA Topoisomerase I (eukaryota), DNA topoisomerase V, Vaccina virus topoisomerase, Variola virus topoisomerase, Shope fibroma virus topoisomeras 391 -214662 smart00436 TOP1Bc Bacterial DNA topoisomeraes I ATP-binding domain. Extension of TOPRIM in Bacterial DNA topoisomeraes I and III, Eukaryotic DNA topoisomeraes III, reverse gyrase beta subunit 89 -214663 smart00437 TOP1Ac Bacterial DNA topoisomerase I DNA-binding domain. Bacterial DNA topoisomerase I and III, Eukaryotic DNA topoisomeraes III, reverse gyrase alpha subunit 259 -128715 smart00438 ZnF_NFX Repressor of transcription. 20 -214664 smart00439 BAH Bromo adjacent homology domain. 121 -128717 smart00440 ZnF_C2C2 C2C2 Zinc finger. Nucleic-acid-binding motif in transcriptional elongation factor TFIIS and RNA polymerases. 40 -128718 smart00441 FF Contains two conserved F residues. A novel motif that often accompanies WW domains. Often contains two conserved Phe (F) residues. 55 -214665 smart00442 FGF Acidic and basic fibroblast growth factor family. Mitogens that stimulate growth or differentiation of cells of mesodermal or neuroectodermal origin. The family play essential roles in patterning and differentiation during vertebrate embryogenesis, and have neurotrophic activities. 126 -197727 smart00443 G_patch glycine rich nucleic binding domain. A predicted glycine rich nucleic binding domain found in the splicing factor 45, SON DNA binding protein and D-type Retrovirus- polyproteins. 47 -214666 smart00444 GYF Contains conserved Gly-Tyr-Phe residues. Proline-binding domain in CD2-binding protein. Contains conserved Gly-Tyr-Phe residues. 56 -214667 smart00445 LINK Link (Hyaluronan-binding). 94 -197729 smart00446 LRRcap occurring C-terminal to leucine-rich repeats. A motif occurring C-terminal to leucine-rich repeats in "sds22-like" and "typical" LRR-containing proteins. 19 -214668 smart00448 REC cheY-homologous receiver domain. CheY regulates the clockwise rotation of E. coli flagellar motors. This domain contains a phosphoacceptor site that is phosphorylated by histidine kinase homologues. 55 -214669 smart00449 SPRY Domain in SPla and the RYanodine Receptor. Domain of unknown function. Distant homologues are domains in butyrophilin/marenostrin/pyrin homologues. 122 -197731 smart00450 RHOD Rhodanese Homology Domain. An alpha beta fold found duplicated in the Rhodanese protein. The the Cysteine containing enzymatically active version of the domain is also found in the CDC25 class of protein phosphatases and a variety of proteins such as sulfide dehydrogenases and stress proteins such as Senesence specific protein 1 in plants, PspE and GlpE in bacteria and cyanide and arsenate resistance proteins. Inactive versions with a loss of the cysteine are also seen in Dual specificity phosphatases, ubiquitin hydrolases from yeast and in sulfuryltransferases. These are likely to play a role in protein interactions. 100 -197732 smart00451 ZnF_U1 U1-like zinc finger. Family of C2H2-type zinc fingers, present in matrin, U1 small nuclear ribonucleoprotein C and other RNA-binding proteins. 35 -214670 smart00452 STI Soybean trypsin inhibitor (Kunitz) family of protease inhibitors. 172 -197734 smart00453 WSN Worm-specific (usually) N-terminal domain. 69 -197735 smart00454 SAM Sterile alpha motif. Widespread domain in signalling and nuclear proteins. In EPH-related tyrosine kinases, appears to mediate cell-cell initiated signal transduction via the binding of SH2-containing proteins to a conserved tyrosine that is phosphorylated. In many cases mediates homodimerisation. 68 -128731 smart00455 RBD Raf-like Ras-binding domain. 70 -197736 smart00456 WW Domain with 2 conserved Trp (W) residues. Also known as the WWP or rsp5 domain. Binds proline-rich polypeptides. 33 -214671 smart00457 MACPF membrane-attack complex / perforin. 195 -214672 smart00458 RICIN Ricin-type beta-trefoil. Carbohydrate-binding domain formed from presumed gene triplication. 118 -128735 smart00459 Sorb Sorbin homologous domain. First found in the peptide hormone sorbin and later in the ponsin/ArgBP2/vinexin family of proteins. 50 -214673 smart00460 TGc Transglutaminase/protease-like homologues. Transglutaminases are enzymes that establish covalent links between proteins. A subset of transglutaminase homologues appear to catalyse the reverse reaction, the hydrolysis of peptide bonds. Proteins with this domain are both extracellular and intracellular, and it is likely that the eukaryotic intracellular proteins are involved in signalling events. 68 -214674 smart00461 WH1 WASP homology region 1. Region of the Wiskott-Aldrich syndrome protein (WASp) that contains point mutations in the majority of patients with WAS. Unknown function. Ena-like WH1 domains bind polyproline-containing peptides, and that Homer contains a WH1 domain. 106 -214675 smart00462 PTB Phosphotyrosine-binding domain, phosphotyrosine-interaction (PI) domain. PTB/PI domain structure similar to those of pleckstrin homology (PH) and IRS-1-like PTB domains. 134 -214676 smart00463 SMR Small MutS-related domain. 80 -197740 smart00464 LON Found in ATP-dependent protease La (LON). N-terminal domain of the ATP-dependent protease La (LON), present also in other bacterial ORFs. 92 -214677 smart00465 GIYc GIY-YIG type nucleases (URI domain). 84 -197742 smart00466 SRA SET and RING finger associated domain. Domain of unknown function in SET domain containing proteins and in Deinococcus radiodurans DRA1533. 155 -197743 smart00467 GS GS motif. Aa approx. 30 amino acid motif that precedes the kinase domain in types I and II TGF beta receptors. Mutation of two or more of the serines or threonines in the TTSGSGSG of TGF-beta type I receptor impairs phosphorylation and signaling activity. 30 -128744 smart00468 PreSET N-terminal to some SET domains. A Cys-rich putative Zn2+-binding domain that occurs N-terminal to some SET domains. Function is unknown. Unpublished. 98 -128745 smart00469 WIF Wnt-inhibitory factor-1 like domain. Occurs as extracellular domain in metazoan Ryk receptor tyrosine kinases. C. elegans Ryk is required for cell-cuticle recognition. WIF-1 binds to Wnt and inhibits its activity. 136 -214678 smart00470 ParB ParB-like nuclease domain. Plasmid RK2 ParB preferentially cleaves single-stranded DNA. ParB also nicks supercoiled plasmid DNA preferably at sites with potential single-stranded character, like AT-rich regions and sequences that can form cruciform structures. ParB also exhibits 5-->3 exonuclease activity. 89 -214679 smart00471 HDc Metal dependent phosphohydrolases with conserved 'HD' motif. Includes eukaryotic cyclic nucleotide phosphodiesterases (PDEc). This profile/HMM does not detect HD homologues in bacterial glycine aminoacyl-tRNA synthetases (beta subunit). 124 -197746 smart00472 MIR Domain in ryanodine and inositol trisphosphate receptors and protein O-mannosyltransferases. 57 -214680 smart00473 PAN_AP divergent subfamily of APPLE domains. Apple-like domains present in Plasminogen, C. elegans hypothetical ORFs and the extracellular portion of plant receptor-like protein kinases. Predicted to possess protein- and/or carbohydrate-binding functions. 78 -214681 smart00474 35EXOc 3'-5' exonuclease. 3\' -5' exonuclease proofreading domain present in DNA polymerase I, Werner syndrome helicase, RNase D and other enzymes 172 -214682 smart00475 53EXOc 5'-3' exonuclease. 259 -128752 smart00476 DNaseIc deoxyribonuclease I. Deoxyribonuclease I catalyzes the endonucleolytic cleavage of double-stranded DNA. The enzyme is secreted outside the cell and also involved in apoptosis in the nucleus. 276 -214683 smart00477 NUC DNA/RNA non-specific endonuclease. prokaryotic and eukaryotic double- and single-stranded DNA and RNA endonucleases also present in phosphodiesterases 210 -214684 smart00478 ENDO3c endonuclease III. includes endonuclease III (DNA-(apurinic or apyrimidinic site) lyase), alkylbase DNA glycosidases (Alka-family) and other DNA glycosidases 149 -214685 smart00479 EXOIII exonuclease domain in DNA-polymerase alpha and epsilon chain, ribonuclease T and other exonucleases. 169 -214686 smart00480 POL3Bc DNA polymerase III beta subunit. 345 -197753 smart00481 POLIIIAc DNA polymerase alpha chain like domain. DNA polymerase alpha chain like domain, incl. family of hypothetical proteins 67 -214687 smart00482 POLAc DNA polymerase A domain. 207 -214688 smart00483 POLXc DNA polymerase X family. includes vertebrate polymerase beta and terminal deoxynucleotidyltransferases 334 -214689 smart00484 XPGI Xeroderma pigmentosum G I-region. domain in nucleases 73 -214690 smart00485 XPGN Xeroderma pigmentosum G N-region. domain in nucleases 99 -214691 smart00486 POLBc DNA polymerase type-B family. DNA polymerase alpha, delta, epsilon and zeta chain (eukaryota), DNA polymerases in archaea, DNA polymerase II in e. coli, mitochondrial DNA polymerases and and virus DNA polymerases 474 -214692 smart00487 DEXDc DEAD-like helicases superfamily. 201 -214693 smart00488 DEXDc2 DEAD-like helicases superfamily. 289 -197757 smart00490 HELICc helicase superfamily c-terminal domain. 82 -214694 smart00491 HELICc2 helicase superfamily c-terminal domain. 142 -214695 smart00493 TOPRIM topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. 75 -214696 smart00494 ChtBD2 Chitin-binding domain type 2. 49 -197760 smart00495 ChtBD3 Chitin-binding domain type 3. 41 -128772 smart00496 IENR2 Intron-encoded nuclease repeat 2. Short helical motif of unknown function (unpublished results). 17 -197761 smart00497 IENR1 Intron encoded nuclease repeat motif. Repeat of unknown function, but possibly DNA-binding via helix-turn-helix motif (Ponting, unpublished). 53 -214697 smart00498 FH2 Formin Homology 2 Domain. FH proteins control rearrangements of the actin cytoskeleton, especially in the context of cytokinesis and cell polarisation. Members of this family have been found to interact with Rho-GTPases, profilin and other actin-assoziated proteins. These interactions are mediated by the proline-rich FH1 domain, usually located in front of FH2 (but not listed in SMART). Despite this cytosolic function, vertebrate formins have been assigned functions within the nucleus. A set of Formin-Binding Proteins (FBPs) has been shown to bind FH1 with their WW domain. 392 -214698 smart00499 AAI Plant lipid transfer protein / seed storage protein / trypsin-alpha amylase inhibitor domain family. 79 -128776 smart00500 SFM Splicing Factor Motif, present in Prp18 and Pr04. 44 -128777 smart00501 BRIGHT BRIGHT, ARID (A/T-rich interaction domain) domain. DNA-binding domain containing a helix-turn-helix structure 93 -128778 smart00502 BBC B-Box C-terminal domain. Coiled coil region C-terminal to (some) B-Box domains 127 -214699 smart00503 SynN Syntaxin N-terminal domain. Three-helix domain that (in Sso1p) slows the rate of its reaction with the SNAP-25 homologue Sec9p 117 -128780 smart00504 Ubox Modified RING finger domain. Modified RING finger domain, without the full complement of Zn2+-binding ligands. Probable involvement in E2-dependent ubiquitination. 63 -214700 smart00505 Knot1 Knottins. Knottins, representing plant lectins/antimicrobial peptides, plant proteinase/amylase inhibitors, plant gamma-thionins and arthropod defensins. 45 -214701 smart00506 A1pp Appr-1"-p processing enzyme. Function determined by Martzen et al. Extended family detected by reciprocal PSI-BLAST searches (unpublished results, and Pehrson & Fuji). 133 -214702 smart00507 HNHc HNH nucleases. 52 -214703 smart00508 PostSET Cysteine-rich motif following a subset of SET domains. 17 -197766 smart00509 TFS2N Domain in the N-terminus of transcription elongation factor S-II (and elsewhere). 75 -128786 smart00510 TFS2M Domain in the central regions of transcription elongation factor S-II (and elsewhere). 102 -128787 smart00511 ORANGE Orange domain. This domain confers specificity among members of the Hairy/E(SPL) family. 45 -214704 smart00512 Skp1 Found in Skp1 protein family. Family of Skp1 (kinetochore protein required for cell cycle progression) and elongin C (subunit of RNA polymerase II transcription factor SIII) homologues. 104 -128789 smart00513 SAP Putative DNA-binding (bihelical) motif predicted to be involved in chromosomal organisation. 35 -214705 smart00515 eIF5C Domain at the C-termini of GCD6, eIF-2B epsilon, eIF-4 gamma and eIF-5. 83 -214706 smart00516 SEC14 Domain in homologues of a S. cerevisiae phosphatidylinositol transfer protein (Sec14p). Domain in homologues of a S. cerevisiae phosphatidylinositol transfer protein (Sec14p) and in RhoGAPs, RhoGEFs and the RasGAP, neurofibromin (NF1). Lipid-binding domain. The SEC14 domain of Dbl is known to associate with G protein beta/gamma subunits. 158 -197769 smart00517 PolyA C-terminal domain of Poly(A)-binding protein. Present also in Drosophila hyperplastics discs protein. Involved in homodimerisation (either directly or indirectly) 64 -214707 smart00518 AP2Ec AP endonuclease family 2. These endonucleases play a role in DNA repair. Cleave phosphodiester bonds at apurinic or apyrimidinic sites 273 -128794 smart00520 BASIC Basic domain in HLH proteins of MYOD family. 91 -128795 smart00521 CBF CCAAT-Binding transcription Factor. 62 -214708 smart00523 DWA Domain A in dwarfin family proteins. 109 -197770 smart00524 DWB Domain B in dwarfin family proteins. 171 -197771 smart00525 FES iron-sulpphur binding domain in DNA-(apurinic or apyrimidinic site) lyase (subfamily of ENDO3). 21 -197772 smart00526 H15 Domain in histone families 1 and 5. 66 -197773 smart00527 HMG17 domain in high mobilty group proteins HMG14 and HMG 17. 88 -128801 smart00528 HNS Domain in histone-like proteins of HNS family. 46 -197774 smart00529 HTH_DTXR Helix-turn-helix diphteria tox regulatory element. iron dependent repressor 95 -197775 smart00530 HTH_XRE Helix-turn-helix XRE-family like proteins. 56 -128804 smart00531 TFIIE Transcription initiation factor IIE. 147 -214709 smart00532 LIGANc Ligase N family. 441 -214710 smart00533 MUTSd DNA-binding domain of DNA mismatch repair MUTS family. 308 -197777 smart00534 MUTSac ATPase domain of DNA mismatch repair MUTS family. 185 -197778 smart00535 RIBOc Ribonuclease III family. 129 -197779 smart00536 AXH domain in Ataxins and HMG containing proteins. unknown function 116 -214711 smart00537 DCX Domain in the Doublecortin (DCX) gene product. Tandemly-repeated domain in doublin, the Doublecortin gene product. Proposed to bind tubulin. Doublecortin (DCX) is mutated in human X-linked neuronal migration defects. 89 -197780 smart00538 POP4 A domain found in a protein subunit of human RNase MRP and RNase P ribonucleoprotein complexes and archaeal proteins. 92 -214712 smart00539 NIDO Extracellular domain of unknown function in nidogen (entactin) and hypothetical proteins. 152 -128813 smart00540 LEM in nuclear membrane-associated proteins. LEM, domain in nuclear membrane-associated proteins, including lamino-associated polypeptide 2 and emerin. 44 -128814 smart00541 FYRN FY-rich domain, N-terminal region. is sometimes closely juxtaposed with the C-terminal region (FYRC), but sometimes is far distant. Unknown function, but occurs frequently in chromatin-associated proteins. 44 -197781 smart00542 FYRC FY-rich domain, C-terminal region. is sometimes closely juxtaposed with the N-terminal region (FYRN), but sometimes is far distant. Unknown function, but occurs frequently in chromatin-associated proteins. 86 -214713 smart00543 MIF4G Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press) 200 -214714 smart00544 MA3 Domain in DAP-5, eIF4G, MA-3 and other proteins. Highly alpha-helical. May contain repeats and/or regions similar to MIF4G domains Ponting (TIBS) "Novel eIF4G domain homologues" in press 113 -128818 smart00545 JmjN Small domain found in the jumonji family of transcription factors. To date, this domain always co-occurs with the JmjC domain (although the reverse is not true). 42 -214715 smart00546 CUE Domain that may be involved in binding ubiquitin-conjugating enzymes (UBCs). CUE domains also occur in two protein of the IL-1 signal transduction pathway, tollip and TAB2. Ponting (Biochem. J.) "Proteins of the Endoplasmic reticulum" (in press) 43 -197784 smart00547 ZnF_RBZ Zinc finger domain. Zinc finger domain in Ran-binding proteins (RanBPs), and other proteins. In RanBPs, this domain binds RanGDP. 25 -214716 smart00548 IRO Motif in Iroquois-class homeodomain proteins (only). Unknown function. 18 -197785 smart00549 TAFH TAF homology. Domain in Drosophila nervy, CBFA2T1, human TAF105, human TAF130, and Drosophila TAF110. Also known as nervy homology region 1 (NHR1). 92 -128823 smart00550 Zalpha Z-DNA-binding domain in adenosine deaminases. Helix-turn-helix-containing domain. Also known as Zab. 68 -214717 smart00551 ZnF_TAZ TAZ zinc finger, present in p300 and CBP. 79 -214718 smart00552 ADEAMc tRNA-specific and double-stranded RNA adenosine deaminase (RNA-specific editase). 374 -197786 smart00553 SEP Domain present in Saccharomyces cerevisiae Shp1, Drosophila melanogaster eyes closed gene (eyc), and vertebrate p47. 93 -214719 smart00554 FAS1 Four repeated domains in the Fasciclin I family of proteins, present in many other contexts. 97 -128828 smart00555 GIT Helical motif in the GIT family of ADP-ribosylation factor GTPase-activating proteins. Helical motif in the GIT family of ADP-ribosylation factor GTPase-activating proteins, and in yeast Spa2p and Sph1p (CPP; unpublished results). In p95-APP1 the N-terminal GIT motif might be involved in binding PIX. 31 -214720 smart00557 IG_FLMN Filamin-type immunoglobulin domains. These form a rod-like structure in the actin-binding cytoskeleton protein, filamin. The C-terminal repeats of filamin bind beta1-integrin (CD29). 93 -214721 smart00558 JmjC A domain family that is part of the cupin metalloenzyme superfamily. Probable enzymes, but of unknown functions, that regulate chromatin reorganisation processes (Clissold and Ponting, in press). 58 -128831 smart00559 Ku78 Ku70 and Ku80 are 70kDa and 80kDa subunits of the Lupus Ku autoantigen. This is a single stranded DNA- and ATP-depedent helicase that has a role in chromosome translocation. This is a domain of unknown function C-terminal to its von Willebrand factor A domain, that also occurs in bacterial hypothetical proteins. 140 -214722 smart00560 LamGL LamG-like jellyroll fold domain. 133 -214723 smart00561 MBT Present in Drosophila Scm, l(3)mbt, and vertebrate SCML2. Present in Drosophila Scm, l(3)mbt, and vertebrate SCML2. These proteins are involved in transcriptional regulation. 96 -197791 smart00562 NDK Enzymes that catalyze nonsubstrate specific conversions of nucleoside diphosphates to nucleoside triphosphates. These enzymes play important roles in bacterial growth, signal transduction and pathogenicity. 135 -214724 smart00563 PlsC Phosphate acyltransferases. Function in phospholipid biosynthesis and have either glycerolphosphate, 1-acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activities. Tafazzin, the product of the gene mutated in patients with Barth syndrome, is a member of this family. 118 -128836 smart00564 PQQ beta-propeller repeat. Beta-propeller repeat occurring in enzymes with pyrrolo-quinoline quinone (PQQ) as cofactor, in Ire1p-like Ser/Thr kinases, and in prokaryotic dehydrogenases. 33 -128837 smart00567 EZ_HEAT E-Z type HEAT repeats. Present in subunits of cyanobacterial phycocyanin lyase, and other proteins. Probable scaffolding role. 30 -214725 smart00568 GRAM domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. 60 -197794 smart00569 L27 domain in receptor targeting proteins Lin-2 and Lin-7. 53 -197795 smart00570 AWS associated with SET domains. subdomain of PRESET 50 -214726 smart00571 DDT domain in different transcription and chromosome remodeling factors. 63 -128842 smart00572 DZF domain in DSRM or ZnF_C2H2 domain containing proteins. 246 -214727 smart00573 HSA domain in helicases and associated with SANT domains. 73 -214728 smart00574 POX domain associated with HOX domains. 140 -128845 smart00575 ZnF_PMZ plant mutator transposase zinc finger. 28 -128846 smart00576 BTP Bromodomain transcription factors and PHD domain containing proteins. subdomain of archael histone-like transcription factors 77 -214729 smart00577 CPDc catalytic domain of ctd-like phosphatases. 148 -214730 smart00579 FBD domain in FBox and BRCT domain containing plant proteins. 72 -197798 smart00580 PUG domain in protein kinases, N-glycanases and other nuclear proteins. 57 -128850 smart00581 PSP proline-rich domain in spliceosome associated proteins. 54 -214731 smart00582 RPR domain present in proteins, which are involved in regulation of nuclear pre-mRNA. 124 -214732 smart00583 SPK domain in SET and PHD domain containing proteins and protein kinases. 114 -214733 smart00584 TLDc domain in TBC and LysM domain containing proteins. 165 -128854 smart00586 ZnF_DBF Zinc finger in DBF-like proteins. 49 -214734 smart00587 CHK ZnF_C4 abd HLH domain containing kinases domain. subfamily of choline kinases 196 -128856 smart00588 NEUZ domain in neuralized proteins. 123 -128857 smart00589 PRY associated with SPRY domains. 52 -214735 smart00591 RWD domain in RING finger and WD repeat containing proteins and DEXDc-like helicases subfamily related to the UBCc domain. 107 -197800 smart00592 BRK domain in transcription and CHROMO domain helicases. 45 -214736 smart00593 RUN domain involved in Ras-like GTPase signaling. 64 -214737 smart00594 UAS UAS domain. 122 -214738 smart00595 MADF subfamily of SANT domain. 89 -128863 smart00596 PRE_C2HC PRE_C2HC domain. 69 -214739 smart00597 ZnF_TTF zinc finger in transposases and transcription factors. 91 -214740 smart00602 VPS10 VPS10 domain. 612 -128866 smart00603 LCCL LCCL domain. 85 -214741 smart00604 MD MD domain. 145 -214742 smart00605 CW CW domain. 94 -128869 smart00606 CBD_IV Cellulose Binding Domain Type IV. 129 -128870 smart00607 FTP eel-Fucolectin Tachylectin-4 Pentaxrin-1 Domain. 151 -214743 smart00608 ACR ADAM Cysteine-Rich Domain. 137 -197803 smart00609 VIT Vault protein Inter-alpha-Trypsin domain. 130 -214744 smart00611 SEC63 Domain of unknown function in Sec63p, Brr2p and other proteins. 312 -128874 smart00612 Kelch Kelch domain. 47 -214745 smart00613 PAW domain present in PNGases and other hypothetical proteins. present in several copies in proteins with unknown function in C. elegans 89 -214746 smart00614 ZnF_BED BED zinc finger. DNA-binding domain in chromatin-boundary-element-binding proteins and transposases 50 -128877 smart00615 EPH_lbd Ephrin receptor ligand binding domain. 177 -214747 smart00630 Sema semaphorin domain. 390 -214748 smart00631 Zn_pept Zn_pept domain. 277 -214749 smart00632 Aamy_C Aamy_C domain. 81 -214750 smart00633 Glyco_10 Glycosyl hydrolase family 10. 263 -214751 smart00634 BID_1 Bacterial Ig-like domain (group 1). 92 -214752 smart00635 BID_2 Bacterial Ig-like domain 2. 81 -214753 smart00636 Glyco_18 Glyco_18 domain. 334 -214754 smart00637 CBD_II CBD_II domain. 92 -214755 smart00638 LPD_N Lipoprotein N-terminal Domain. 574 -214756 smart00639 PSA Paramecium Surface Antigen Repeat. 62 -214757 smart00640 Glyco_32 Glycosyl hydrolases family 32. 437 -128889 smart00641 Glyco_25 Glycosyl hydrolases family 25. 109 -214758 smart00642 Aamy Alpha-amylase domain. 166 -214759 smart00643 C345C Netrin C-terminal Domain. 114 -214760 smart00644 Ami_2 Ami_2 domain. 126 -214761 smart00645 Pept_C1 Papain family cysteine protease. 175 -214762 smart00646 Ami_3 Ami_3 domain. 113 -214763 smart00647 IBR In Between Ring fingers. the domains occurs between pairs og RING fingers 64 -197818 smart00648 SWAP Suppressor-of-White-APricot splicing regulator. domain present in regulators which are responsible for pre-mRNA splicing processes 54 -197819 smart00649 RL11 Ribosomal protein L11/L12. 132 -128898 smart00650 rADc Ribosomal RNA adenine dimethylases. 169 -197820 smart00651 Sm snRNP Sm proteins. small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing 67 -128900 smart00652 eIF1a eukaryotic translation initiation factor 1A. 83 -214764 smart00653 eIF2B_5 domain present in translation initiation factor eIF2B and eIF5. 110 -128902 smart00654 eIF6 translation initiation factor 6. 200 -214765 smart00656 Amb_all Amb_all domain. 190 -128904 smart00657 RPOL4c DNA-directed RNA-polymerase II subunit. 118 -197821 smart00658 RPOL8c RNA polymerase subunit 8. subunit of RNA polymerase I, II and III 143 -128906 smart00659 RPOLCX RNA polymerase subunit CX. present in RNA polymerase I, II and III 44 -197822 smart00661 RPOL9 RNA polymerase subunit 9. 52 -214766 smart00662 RPOLD RNA polymerases D. DNA-directed RNA polymerase subunit D and bacterial alpha chain 224 -214767 smart00663 RPOLA_N RNA polymerase I subunit A N-terminus. 295 -214768 smart00664 DoH Possible catecholamine-binding domain present in a variety of eukaryotic proteins. A predominantly beta-sheet domain present as a regulatory N-terminal domain in dopamine beta-hydroxylase, mono-oxygenase X and SDR2. Its function remains unknown at present (Ponting, Human Molecular Genetics, in press). 148 -214769 smart00665 B561 Cytochrome b-561 / ferric reductase transmembrane domain. Cytochrome b-561 recycles ascorbate for the generation of norepinephrine by dopamine-beta-hydroxylase in the chromaffin vesicles of the adrenal gland. It is a transmembrane heme protein with the two heme groups being bound to conserved histidine residues. A cytochrome b-561 homologue, termed Dcytb, is an iron-regulated ferric reductase in the duodenal mucosa. Other homologues of these are also likely to be ferric reductases. SDR2 is proposed to be important in regulating the metabolism of iron in the onset of neurodegenerative disorders. 129 -214770 smart00666 PB1 PB1 domain. Phox and Bem1p domain, present in many eukaryotic cytoplasmic signalling proteins. The domain adopts a beta-grasp fold, similar to that found in ubiquitin and Ras-binding domains. A motif, variously termed OPR, PC and AID, represents the most conserved region of the majority of PB1 domains, and is necessary for PB1 domain function. This function is the formation of PB1 domain heterodimers, although not all PB1 domain pairs associate. 81 -128913 smart00667 LisH Lissencephaly type-1-like homology motif. Alpha-helical motif present in Lis1, treacle, Nopp140, some katanin p60 subunits, muskelin, tonneau, LEUNIG and numerous WD40 repeat-containing proteins. It is suggested that LisH motifs contribute to the regulation of microtubule dynamics, either by mediating dimerisation, or else by binding cytoplasmic dynein heavy chain or microtubules directly. 34 -128914 smart00668 CTLH C-terminal to LisH motif. Alpha-helical motif of unknown function. 58 -214771 smart00670 PINc Large family of predicted nucleotide-binding domains. From similarities to 5'-exonucleases, these domains are predicted to be RNases. PINc domains in nematode SMG-5 and yeast NMD4p are predicted to be involved in RNAi. 111 -214772 smart00671 SEL1 Sel1-like repeats. These represent a subfamily of TPR (tetratricopeptide repeat) sequences. 36 -214773 smart00672 CAP10 Putative lipopolysaccharide-modifying enzyme. 256 -197827 smart00673 CARP Domain in CAPs (cyclase-associated proteins) and X-linked retinitis pigmentosa 2 gene product. 38 -197828 smart00674 CENPB Putative DNA-binding domain in centromere protein B, mouse jerky and transposases. 66 -128920 smart00675 DM11 Domains in hypothetical proteins in Drosophila including 2 in CG15241 and CG9329. 164 -128921 smart00676 DM10 Domains in hypothetical proteins in Drosophila, C. elegans and mammals. Occurs singly in some nucleoside diphosphate kinases. 104 -128922 smart00678 WWE Domain in Deltex and TRIP12 homologues. Possibly involved in regulation of ubiquitin-mediated proteolysis. 73 -128923 smart00679 CTNS Repeated motif present between transmembrane helices in cystinosin, yeast ERS1p, mannose-P-dolichol utilization defect 1, and other hypothetical proteins. Function unknown, but likely to be associated with the glycosylation machinery. 32 -197829 smart00680 CLIP Clip or disulphide knot domain. Present in horseshoe crab proclotting enzyme N-terminal domain, Drosophila Easter and silkworm prophenoloxidase-activating enzyme. 52 -214774 smart00682 G2F G2 nidogen domain and fibulin. 227 -128926 smart00683 DM16 Repeats in sea squirt COS41.4, worm R01H10.6, fly CG1126 etc. 55 -128927 smart00684 DM15 Tandem repeat in fly CG14066 (La related protein), human KIAA0731 and worm R144.7. Unknown function. 39 -128928 smart00685 DM14 Repeats in fly CG4713, worm Y37H9A.3 and human FLJ20241. 59 -128929 smart00686 DM13 Domain present in fly proteins (CG14681, CG12492, CG6217), worm H06A10.1 and Arabidopsis thaliana MBG8.9. 108 -128930 smart00688 DM7 Domain of unknown function in Drosophila CG15332, CG15333 and CG18293. 95 -214775 smart00689 DM6 Cysteine-rich domain currently specific to Drosophila. 157 -214776 smart00690 DM5 Domain of unknown function, currently peculiar to Drosophila. 102 -128933 smart00692 DM3 Zinc finger domain in CG10631, C. elegans LIN-15B and human P52rIPK. 59 -214777 smart00693 DysFN Dysferlin domain, N-terminal region. Domain of unknown function present in yeast peroxisomal proteins, dysferlin, myoferlin and hypothetical proteins. Due to an insertion of a dysferlin domain within a second dysferlin domain we have chosen to predict these domains in two parts: the N-terminal region and the C-terminal region. 62 -128935 smart00694 DysFC Dysferlin domain, C-terminal region. Domain of unknown function present in yeast peroxisomal proteins, dysferlin, myoferlin and hypothetical proteins. Due to an insertion of a dysferlin domain within a second dysferlin domain we have chosen to predict these domains in two parts: the N-terminal region and the C-terminal region. 34 -197831 smart00695 DUSP Domain in ubiquitin-specific proteases. 88 -128937 smart00696 DM9 Repeats found in Drosophila proteins. 71 -214778 smart00697 DM8 Repeats found in several Drosophila proteins. 93 -197832 smart00698 MORN Possible plasma membrane-binding motif in junctophilins, PIP-5-kinases and protein kinases. 22 -214779 smart00700 JHBP Juvenile hormone binding protein domains in insects. The juvenile hormone exerts pleiotropic functions during insect life cycles and its binding proteins regulate these functions. 224 -128941 smart00701 PGRP Animal peptidoglycan recognition proteins homologous to Bacteriophage T3 lysozyme. The bacteriophage molecule, but not its moth homologue, has been shown to have N-acetylmuramoyl-L-alanine amidase activity. One member of this family, Tag7, is a cytokine. 142 -214780 smart00702 P4Hc Prolyl 4-hydroxylase alpha subunit homologues. Mammalian enzymes catalyse hydroxylation of collagen, for example. Prokaryotic enzymes might catalyse hydroxylation of antibiotic peptides. These are 2-oxoglutarate-dependent dioxygenases, requiring 2-oxoglutarate and dioxygen as cosubstrates and ferrous iron as a cofactor. 165 -214781 smart00703 NRF N-terminal domain in C. elegans NRF-6 (Nose Resistant to Fluoxetine-4) and NDG-4 (resistant to nordihydroguaiaretic acid-4). Also present in several other worm and fly proteins. 110 -197836 smart00704 ZnF_CDGSH CDGSH-type zinc finger. Function unknown. 38 -128945 smart00705 THEG Repeats in THEG (testicular haploid expressed gene) and several fly proteins. 20 -214782 smart00706 TECPR Beta propeller repeats in Physarum polycephalum tectonins, Limulus lectin L-6 and animal hypothetical proteins. 35 -128947 smart00707 RPEL Repeat in Drosophila CG10860, human KIAA0680 and C. elegans F26H9.2. 26 -214783 smart00708 PhBP Insect pheromone/odorant binding protein domains. 103 -128949 smart00709 Zpr1 Duplicated domain in the epidermal growth factor- and elongation factor-1alpha-binding protein Zpr1. Also present in archaeal proteins. 160 -214784 smart00710 PbH1 Parallel beta-helix repeats. The tertiary structures of pectate lyases and rhamnogalacturonase A show a stack of parallel beta strands that are coiled into a large helix. Each coil of the helix represents a structural repeat that, in some homologues, can be recognised from sequence information alone. Conservation of asparagines might be connected with asparagine-ladders that contribute to the stability of the fold. Proteins containing these repeats most often are enzymes with polysaccharide substrates. 23 -197839 smart00711 TDU Short repeats in human TONDU, fly vestigial and other proteins. Unknown function. 16 -197840 smart00712 PUR DNA/RNA-binding repeats in PUR-alpha/beta/gamma and in hypothetical proteins from spirochetes and the Bacteroides-Cytophaga-Flexibacter bacteria. 63 -128953 smart00713 GYR Motif of unknown function with conserved Gly, Tyr, Arg tripeptide in Drosophila proteins. 18 -197841 smart00714 LITAF Possible membrane-associated motif in LPS-induced tumor necrosis factor alpha factor (LITAF), also known as PIG7, and other animal proteins. 67 -128955 smart00715 LA Domain in the RNA-binding Lupus La protein; unknown function. 80 -197842 smart00717 SANT SANT SWI3, ADA2, N-CoR and TFIIIB'' DNA-binding domains. 49 -214785 smart00718 DM4_12 DM4/DM12 family of domains in Drosophila melanogaster proteins of unknown function. 95 -197843 smart00719 Plus3 Short conserved domain in transcriptional regulators. Plus3 domains occur in the Saccharomyces cerevisiae Rtf1p protein, which interacts with Spt6p, and in parsley CIP, which interacts with the bZIP protein CPRF1. 109 -214786 smart00720 calpain_III calpain_III domain. 143 -214787 smart00721 BAR BAR domain. 239 -214788 smart00722 CASH Domain present in carbohydrate binding proteins and sugar hydrolses. 153 -128962 smart00723 AMOP Adhesion-associated domain present in MUC4 and other proteins. 154 -214789 smart00724 TLC TRAM, LAG1 and CLN8 homology domains. Protein domain with at least 5 transmembrane alpha-helices. Lag1p and Lac1p are essential for acyl-CoA-dependent ceramide synthesis, TRAM is a subunit of the translocon and the CLN8 gene is mutated in Northern epilepsy syndrome. The family may possess multiple functions such as lipid trafficking, metabolism, or sensing. Trh homologues possess additional homeobox domains. 205 -214790 smart00725 NEAT NEAr Transporter domain. 123 -197845 smart00726 UIM Ubiquitin-interacting motif. Present in proteasome subunit S5a and other ubiquitin-associated proteins. 20 -128966 smart00727 STI1 Heat shock chaperonin-binding motif. 41 -214791 smart00728 ChW Clostridial hydrophobic, with a conserved W residue, domain. 46 -214792 smart00729 Elp3 Elongator protein 3, MiaB family, Radical SAM. This superfamily contains MoaA, NifB, PqqE, coproporphyrinogen III oxidase, biotin synthase and MiaB families, and includes a representative in the eukaryotic elongator subunit, Elp-3. Some members of the family are methyltransferases. 216 -214793 smart00730 PSN Presenilin, signal peptide peptidase, family. Presenilin 1 and presenilin 2 are polytopic membrane proteins, whose genes are mutated in some individuals with Alzheimer's disease. Distant homologues, present in eukaryotes and archaea, also contain conserved aspartic acid residues which are predicted to contribute to catalysis. At least one member of this family has been shown to possess signal peptide peptidase activity. 249 -214794 smart00731 SprT SprT homologues. Predicted to have roles in transcription elongation. Contains a conserved HExxH motif, indicating a metalloprotease function. 146 -128971 smart00732 YqgFc Likely ribonuclease with RNase H fold. YqgF proteins are likely to function as an alternative to RuvC in most bacteria, and could be the principal holliday junction resolvases in low-GC Gram-positive bacteria. In Spt6p orthologues, the catalytic residues are substituted indicating that they lack enzymatic functions. 99 -197848 smart00733 Mterf Mitochondrial termination factor repeats. Human mitochondrial termination factor is a DNA-binding protein that acts as a transcription termination factor. Six repeats occur in human mTERF, that also are present in numerous plant proteins. 31 -128973 smart00734 ZnF_Rad18 Rad18-like CCHC zinc finger. Yeast Rad18p functions with Rad5p in error-free post-replicative DNA repair. This zinc finger is likely to bind nucleic-acids. 24 -128974 smart00735 ZM ZASP-like motif. Short motif (26 amino acids) present in an alpha-actinin-binding protein, ZASP, and similar molecules. 26 -214795 smart00736 CADG Dystroglycan-type cadherin-like domains. Cadherin-homologous domains present in metazoan dystroglycans and alpha/epsilon sarcoglycans, yeast Axl2p and in a very large protein from magnetotactic bacteria. Likely to bind calcium ions. 97 -214796 smart00737 ML Domain involved in innate immunity and lipid metabolism. ML (MD-2-related lipid-recognition) is a novel domain identified in MD-1, MD-2, GM2A, Npc2 and multiple proteins of unknown function in plants, animals and fungi. These single-domain proteins were predicted to form a beta-rich fold containing multiple strands, and to mediate diverse biological functions through interacting with specific lipids. 119 -197850 smart00738 NGN In Spt5p, this domain may confer affinity for Spt4p. It possesses a RNP-like fold. In Spt5p, this domain may confer affinity for Spt4p.Spt4p 106 -128978 smart00739 KOW KOW (Kyprides, Ouzounis, Woese) motif. Motif in ribosomal proteins, NusG, Spt5p, KIN17 and T54. 28 -197851 smart00740 PASTA PASTA domain. 67 -214797 smart00741 SapB Saposin (B) Domains. Present in multiple copies in prosaposin and in pulmonary surfactant-associated protein B. In plant aspartic proteinases, a saposin domain is circularly permuted. This causes the prediction algorithm to predict two such domains, where only one is truly present. 76 -128981 smart00742 Hr1 Rho effector or protein kinase C-related kinase homology region 1 homologues. Alpha-helical domain found in vertebrate PRK1 and yeast PKC1 protein kinases C. The HR1 in rhophilin bind RhoGTP; those in PRK1 bind RhoA and RhoB. Also called RBD - Rho-binding domain 57 -214798 smart00743 Agenet Tudor-like domain present in plant sequences. Domain in plant sequences with possible chromatin-associated functions. 59 -128983 smart00744 RINGv The RING-variant domain is a C4HC3 zinc-finger like motif found in a number of cellular and viral proteins. Some of these proteins have been shown both in vivo and in vitro to have ubiquitin E3 ligase activity. The RING-variant domain is reminiscent of both the RING and the PHD domains and may represent an evolutionary intermediate. To describe this domain the term PHD/LAP domain has been used in the past. Extended description: The RING-variant (RINGv) domain contains a C4HC3 zinc-finger-like motif similar to the PHD domain, while some of the spacing between the Cys/His residues follow a pattern somewhat closer to that found in the RING domain. The RINGv domain, similar to the RING, PHD and LIM domains, is thought to bind two zinc ions co-ordinated by the highly conserved Cys and His residues. RING variant domain: C-x (2) -C-x(10-45)-C-x (1) -C-x (7) -H-x(2)-C-x(11-25)-C-x(2)-C As opposed to a PHD: C-x(1-2) -C-x (7-13)-C-x(2-4)-C-x(4-5)-H-x(2)-C-x(10-21)-C-x(2)-C Classical RING domain: C-x (2) -C-x (9-39)-C-x(1-3)-H-x(2-3)-C-x(2)-C-x(4-48) -C-x(2)-C 49 -197854 smart00745 MIT Microtubule Interacting and Trafficking molecule domain. 77 -214799 smart00746 TRASH metallochaperone-like domain. 39 -128986 smart00747 CFEM eight cysteine-containing domain present in fungal extracellular membrane proteins. 65 -214800 smart00748 HEPN Higher Eukarytoes and Prokaryotes Nucleotide-binding domain. 113 -197856 smart00749 BON bacterial OsmY and nodulation domain. 61 -214801 smart00750 KIND kinase non-catalytic C-lobe domain. It is an interaction domain identified as being similar to the C-terminal protein kinase catalytic fold (C lobe). Its presence at the N terminus of signalling proteins and the absence of the active-site residues in the catalytic and activation loops suggest that it folds independently and is likely to be non-catalytic. The occurrence of KIND only in metazoa implies that it has evolved from the catalytic protein kinase domain into an interaction domain possibly by keeping the substrate-binding features 176 -128990 smart00751 BSD domain in transcription factors and synapse-associated proteins. 51 -214802 smart00752 HTTM Horizontally Transferred TransMembrane Domain. Sequence analysis of vitamin K dependent gamma-carboxylases (VKGC) revealed the presence of a novel domain, HTTM (Horizontally Transferred TransMembrane) in its N-terminus. In contrast to most known domains, HTTM contains four transmembrane regions. Its occurrence in eukaryotes, bacteria and archaea is more likely caused by horizontal gene transfer than by early invention. The conservation of VKGC catalytic sites indicates an enzymatic function also for the other family members. 271 -214803 smart00753 PAM PCI/PINT associated module. 88 -214804 smart00754 CHRD A domain in the BMP inhibitor chordin and in microbial proteins. 118 -197860 smart00755 Grip golgin-97, RanBP2alpha,Imh1p and p230/golgin-245. 46 -214805 smart00756 VKc Family of likely enzymes that includes the catalytic subunit of vitamin K epoxide reductase. Bacterial homologues are fused to members of the thioredoxin family of oxidoreductases. 142 -214806 smart00757 CRA CT11-RanBPM. protein-protein interaction domain present in crown eukaryotes (plants, animals, fungi) 99 -214807 smart00758 PA14 domain in bacterial beta-glucosidases other glycosidases, glycosyltransferases, proteases, amidases, yeast adhesins, and bacterial toxins. 136 -128998 smart00759 Flu_M1_C Influenza Matrix protein (M1) C-terminal domain. This region is thought to be a second domain of the M1 matrix protein. 95 -197863 smart00760 Bac_DnaA_C Bacterial dnaA protein helix-turn-helix domain. Could be involved in DNA-binding. 69 -214808 smart00761 HDAC_interact Histone deacetylase (HDAC) interacting. This domain is found on transcriptional regulators. It forms interactions with histone deacetylases. 102 -214809 smart00762 Cog4 COG4 transport protein. This region is found in yeast oligomeric golgi complex component 4 which is involved in ER to Golgi and intra Golgi transport. 324 -214810 smart00763 AAA_PrkA PrkA AAA domain. This is a family of PrkA bacterial and archaeal serine kinases approximately 630 residues long. This is the N-terminal AAA domain. 361 -129003 smart00764 Citrate_ly_lig Citrate lyase ligase C-terminal domain. Proteins of this family contain the C-terminal domain of citrate lyase ligase EC:6.2.1.22. 182 -129004 smart00765 MANEC The MANEC domain, formerly called MANSC. This domain, comprising 8 conserved cysteines, is found in the N terminus of higher multicellular animal membrane and extracellular proteins. It is postulated that this domain may play a role in the formation of protein complexes involving various protease activators and inhibitors. It is possible that some of the cysteine residues in the MANSC domain form structurally important disulfide bridges. All of the MANSC-containing proteins contain predicted transmembrane regions and signal peptides. It has been proposed that the MANSC domain in HAI-1 might function through binding with hepatocyte growth factor activator and matriptase. 93 -197866 smart00766 DnaG_DnaB_bind DNA primase DnaG DnaB-binding. DnaG_DnaB_bind defines a domain of primase required for functional interaction with DnaB that attracts primase to the replication fork. DnaG_DnaB_bind is responsible for the interaction between DnaG and DnaB. 125 -214811 smart00767 DCD DCD is a plant specific domain in proteins involved in development and programmed cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell death by pathogens or ozone. 132 -197867 smart00768 X8 Possibly involved in carbohydrate binding. The X8 domain, which may be involved in carbohydrate binding, is found in an Olive pollen antigen as well as at the C terminus of family 17 glycosyl hydrolases. It contains 6 conserved cysteine residues which presumably form three disulfide bridges. 85 -214812 smart00769 WHy Water Stress and Hypersensitive response. 100 -214813 smart00770 Zn_dep_PLPC Zinc dependent phospholipase C (alpha toxin). This domain conveys a zinc dependent phospholipase C activity (EC 3.1.4.3). It is found in a monomeric phospholipase C of Bacillus cereus as well as in the alpha toxin of Clostridium perfringens and Clostridium bifermentans, which is involved in haemolysis and cell rupture. It is also found in a lecithinase of Listeria monocytogenes, which is involved in breaking the 2-membrane vacuoles that surround the bacterium. Structure information: PDB 1ca1. 241 -129010 smart00771 ZipA_C ZipA, C-terminal domain (FtsZ-binding). C-terminal domain of ZipA, a component of cell division in E.coli. It interacts with the FtsZ protein in one of the initial steps of septum formation. The structure of this domain is composed of three alpha-helices and a beta-sheet consisting of six antiparallel beta-strands. 131 -214814 smart00773 WGR Proposed nucleic acid binding domain. This domain is named after its most conserved central motif. It is found in a variety of polyA polymerases as well as in molybdate metabolism regulators (e.g. in E.coli) and other proteins of unknown function. The domain is found in isolation in some proteins and is between 70 and 80 residues in length. It is proposed that it may be a nucleic acid binding domain. 84 -214815 smart00774 WRKY DNA binding domain. The WRKY domain is a DNA binding domain found in one or two copies in a superfamily of plant transcription factors. These transcription factors are involved in the regulation of various physiological programs that are unique to plants, including pathogen defense, senescence and trichome development. The domain is a 60 amino acid region that is defined by the conserved amino acid sequence WRKYGQK at its N-terminal end, together with a novel zinc-finger-like motif. It binds specifically to the DNA sequence motif (T)(T)TGAC(C/T), which is known as the W box. The invariant TGAC core is essential for function and WRKY binding. 59 -197870 smart00775 LNS2 This domain is found in Saccharomyces cerevisiae protein SMP2, proteins with an N-terminal lipin domain and phosphatidylinositol transfer proteins. SMP2 is involved in plasmid maintenance and respiration. Lipin proteins are involved in adipose tissue development and insulin resistance. 157 -214816 smart00776 NPCBM This novel putative carbohydrate binding module (NPCBM) domain is found at the N-terminus of glycosyl hydrolase family 98 proteins. 145 -214817 smart00777 Mad3_BUB1_I Mad3/BUB1 hoMad3/BUB1 homology region 1. Proteins containing this domain are checkpoint proteins involved in cell division. This region has been shown to be essential for the binding of the binding of BUB1 and MAD3 to CDC20p. 124 -129016 smart00778 Prim_Zn_Ribbon Zinc-binding domain of primase-helicase. This region represents the zinc binding domain. It is found in the N-terminal region of the bacteriophage P4 alpha protein, which is a multifunctional protein with origin recognition, helicase and primase activities. 37 -197872 smart00780 PIG-X PIG-X / PBN1. Mammalian PIG-X and yeast PBN1 are essential components of glycosylphosphatidylinositol-mannosyltransferase I. These enzymes are involved in the transfer of sugar molecules. 203 -129018 smart00782 PhnA_Zn_Ribbon PhnA Zinc-Ribbon. This protein family includes an uncharacterised member designated phnA in Escherichia coli, part of a large operon associated with alkylphosphonate uptake and carbon-phosphorus bond cleavage. This protein is not related to the characterised phosphonoacetate hydrolase designated PhnA. 47 -129019 smart00783 A_amylase_inhib Alpha amylase inhibitor. Alpha amylase inhibitor inhibits mammalian alpha-amylases specifically, by forming a tight stoichiometric 1:1 complex with alpha-amylase. The inhibitor has no action on plant and microbial alpha amylases. 69 -214818 smart00784 SPT2 SPT2 chromatin protein. This entry includes the Saccharomyces cerevisiae protein SPT2 which is a chromatin protein involved in transcriptional regulation. 106 -129021 smart00785 AARP2CN AARP2CN (NUC121) domain. This domain is the central domain of AARP2. It is weakly similar to the GTP-binding domain of elongation factor TU. 83 -129022 smart00786 SHR3_chaperone ER membrane protein SH3. This family of proteins are membrane localised chaperones that are required for correct plasma membrane localisation of amino acid permeases (AAPs). Shr3 prevents AAPs proteins from aggregating and assists in their correct folding. In the absence of Shr3, AAPs are retained in the ER. 196 -197874 smart00787 Spc7 Spc7 kinetochore protein. This domain is found in cell division proteins which are required for kinetochore-spindle association. 312 -197875 smart00788 Adenylsucc_synt Adenylosuccinate synthetase. Adenylosuccinate synthetase plays an important role in purine biosynthesis, by catalyzing the GTP-dependent conversion of IMP and aspartic acid to AMP. Adenylosuccinate synthetase has been characterized from various sources ranging from Escherichia coli (gene purA) to vertebrate tissues. In vertebrates, two isozymes are present - one involved in purine biosynthesis and the other in the purine nucleotide cycle. The crystal structure of adenylosuccinate synthetase from E. coli reveals that the dominant structural element of each monomer of the homodimer is a central beta-sheet of 10 strands. The first nine strands of the sheet are mutually parallel with right-handed crossover connections between the strands. The 10th strand is antiparallel with respect to the first nine strands. In addition, the enzyme has two antiparallel beta-sheets, comprised of two strands and three strands each, 11 alpha-helices and two short 3/10-helices. Further, it has been suggested that the similarities in the GTP-binding domains of the synthetase and the p21ras protein are an example of convergent evolution of two distinct families of GTP-binding proteins. Structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana when compared with the known structures from E. coli reveals that the overall fold is very similar to that of the E. coli protein. 417 -129025 smart00789 Ad_cyc_g-alpha Adenylate cyclase G-alpha binding domain. This fungal domain is found in adenylate cyclase and interacts with the alpha subunit of heterotrimeric G proteins. 51 -129026 smart00790 AFOR_N Aldehyde ferredoxin oxidoreductase, N-terminal domain. Enzymes of the aldehyde ferredoxin oxidoreductase (AOR) family contain a tungsten cofactor and an 4Fe4S cluster and catalyse the interconversion of aldehydes to carboxylates. This family includes AOR, formaldehyde ferredoxin oxidoreductase (FOR), glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), all isolated from hyperthermophilic archea. carboxylic acid reductase found in clostridia. and hydroxycarboxylate viologen oxidoreductase from Proteus vulgaris, the sole member of the AOR family containing molybdenum. GAPOR may be involved in glycolysis. but the functions of the other proteins are not yet clear. AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid oxidoreductases. 199 -129027 smart00791 Agglutinin Amaranthus caudatus agglutinin or amaranthin is a lectin from the ancient South American crop, amaranth grain. Although its biological function is unknown, it has a high binding specificity for the methyl-glycoside of the T-antigen, found linked to serine or threonine residues of cell surface glycoproteins. The protein is comprised of a homodimer, with each homodimer consisting of two beta-trefoil domains. 139 -197876 smart00792 Agouti Agouti protein. The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. A highly homologous protein agouti signal protein (ASIP) is present in humans and is expressed at highest levels in adipose tissue where it may play a role in energy homeostasis and possibly human pigmentation. 124 -214819 smart00793 AgrB Accessory gene regulator B. The accessory gene regulator (agr) of Staphylococcus aureus is the central regulatory system that controls the gene expression for a large set of virulence factors. The arg locus consists of two transcripts: RNAII and RNAIII. RNAII encodes four genes (agrA, B, C, and D) whose gene products assemble a quorum sensing system. At low cell density, the agr genes are continuously expressed at basal levels. A signal molecule, autoinducing peptide (AIP), produced and secreted by the bacteria, accumulates outside of the cells. When the cell density increases and the AIP concentration reaches a threshold, it activates the agr response, i.e. activation of secreted protein gene expression and subsequent repression of cell wall-associated protein genes. AgrB and AgrD are essential for the production of the autoinducing peptide which functions as a signal for quorum sensing. AgrB is a transmembrane protein. AgrB is involved in the proteolytic processing of AgrD and may have both proteolytic enzyme activity and a transporter facilitating the export of the processed AgrD peptide. 184 -129030 smart00794 AgrD Staphylococcal AgrD protein. This family consists of several AgrD proteins from many Staphylococcus species. The agr locus was initially described in Staphylococcus aureus as an element controlling the production of exoproteins implicated in virulence. Its pattern of action has been shown to be complex, upregulating certain extracellular toxins and enzymes expressed post-exponentially and repressing some exponential-phase surface components. AgrD encodes the precursor of the autoinducing peptide (AIP).The AIP derived from AgrD by the action of AgrB interacts with AgrC in the membrane to activate AgrA, which upregulates transcription both from promoter P2, amplifying the response, and from P3, initiating the production of a novel effector: RNAIII. In S. aureus, delta-hemolysin is the only translation product of RNA III and is not involved in the regulatory functions of the transcript, which is therefore the primary agent for modulating the expression of other operons controlled by agr. 45 -129031 smart00795 Agro_virD5 Agrobacterium VirD5 protein. The virD operon in Agrobacterium encodes a site-specific endonuclease, and a number of other poorly characterised products. This family represents the VirD5 protein. 780 -214820 smart00796 AHS1 Allophanate hydrolase subunit 1. This domain represents subunit 1 of allophanate hydrolase (AHS1). 201 -214821 smart00797 AHS2 Allophanate hydrolase subunit 2. This domain represents subunit 2 of allophanate hydrolase (AHS2). 280 -214822 smart00798 AICARFT_IMPCHas AICARFT/IMPCHase bienzyme. This is a family of bifunctional enzymes catalysing the last two steps in de novo purine biosynthesis. The bifunctional enzyme is found in both prokaryotes and eukaryotes. The second last step is catalysed by 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), this enzyme catalyses the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate. The last step is catalysed by IMP (Inosine monophosphate) cyclohydrolase (IMPCHase), cyclizing FAICAR (5-formylaminoimidazole-4-carboxamide ribonucleotide) to IMP. 311 -214823 smart00799 DENN Domain found in a variety of signalling proteins, always encircled by uDENN and dDENN. The DENN domain is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 183 -214824 smart00800 uDENN Domain always found upstream of DENN domain, found in a variety of signalling proteins. The uDENN domain is part of the tripartite DENN domain. It is always found upstream of the DENN domain itself, which is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 89 -129037 smart00801 dDENN Domain always found downstream of DENN domain, found in a variety of signalling proteins. The dDENN domain is part of the tripartite DENN domain. It is always found downstream of the DENN domain itself, which is found in a variety of signalling proteins involved in Rab-mediated processes or regulation of MAPKs signalling pathways. The DENN domain is always encircled on both sides by more divergent domains, called uDENN (for upstream DENN) and dDENN (for downstream DENN). The function of the DENN domain remains to date unclear, although it appears to represent a good candidate for a GTP/GDP exchange activity. 69 -214825 smart00802 UME Domain in UVSB PI-3 kinase, MEI-41 and ESR-1. Characteristic domain in UVSP PI-3 kinase, MEI-41 and ESR-1. Found in nucleolar proteins. Associated with FAT, FATC, PI3_PI4_kinase modules. 107 -129039 smart00803 TAF TATA box binding protein associated factor. TAFs (TATA box binding protein associated factors) are part of the transcription initiation factor TFIID multimeric protein complex. TFIID is composed of the TATA box binding protein (TBP) and a number of TAFs. The TAFs provide binding sites for many different transcriptional activators and co-activators that modulate transcription initiation by Pol II. TAF proteins adopt a histone-like fold. 65 -197882 smart00804 TAP_C C-terminal domain of vertebrate Tap protein. The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for the nuclear export of mRNA. Its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate shuttling. This domain forms a compact four-helix fold related to that of a UBA domain. 63 -197883 smart00805 AGTRAP Angiotensin II, type I receptor-associated protein. This family consists of several angiotensin II, type I receptor-associated protein (AGTRAP) sequences. AGTRAP is known to interact specifically with the C-terminal cytoplasmic region of the angiotensin II type 1 (AT(1)) receptor to regulate different aspects of AT(1) receptor physiology. The function of this family is unclear. 159 -214826 smart00806 AIP3 Actin interacting protein 3. Aip3p/Bud6p is a regulator of cell and cytoskeletal polarity in Saccharomyces cerevisiae that was previously identified as an actin-interacting protein. Actin-interacting protein 3 (Aip3p) localizes at the cell cortex where cytoskeleton assembly must be achieved to execute polarized cell growth, and deletion of AIP3 causes gross defects in cell and cytoskeletal polarity. Aip3p localization is mediated by the secretory pathway, mutations in early- or late-acting components of the secretory apparatus lead to Aip3p mislocalization. 426 -214827 smart00807 AKAP_110 A-kinase anchor protein 110 kDa. This family consists of several mammalian protein kinase A anchoring protein 3 (PRKA3) or A-kinase anchor protein 110 kDa (AKAP 110) sequences. Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. PKA anchoring is a key biochemical mechanism controlling motility. AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. 851 -197885 smart00808 FABD F-actin binding domain (FABD). FABD is the F-actin binding domain of Bcr-Abl and its cellular counterpart c-Abl. The Bcr-Abl tyrosine kinase causes different forms of leukemia in humans. Depending on its position within the cell, Bcr-Abl differentially affects cellular growth. The FABD forms a compact left-handed four-helix bundle in solution. 126 -197886 smart00809 Alpha_adaptinC2 Adaptin C-terminal domain. Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. Gamma-adaptin is a subunit of the golgi adaptor. Alpha adaptin is a heterotetramer that regulates clathrin-bud formation. The carboxyl-terminal appendage of the alpha subunit regulates translocation of endocytic accessory proteins to the bud site. This Ig-fold domain is found in alpha, beta and gamma adaptins and consists of a beta-sandwich containing 7 strands in 2 beta-sheets in a greek-key topology.. The adaptor appendage contains an additional N-terminal strand. 104 -129046 smart00810 Alpha-amyl_C2 Alpha-amylase C-terminal beta-sheet domain. This entry represents the beta-sheet domain that is found in several alpha-amylases, usually at the C-terminus. This domain is organised as a five-stranded anti-parallel beta-sheet. 61 -214828 smart00811 Alpha_kinase Alpha-kinase family. This family is a novel family of eukaryotic protein kinase catalytic domains, which have no detectable similarity to conventional kinases. The family contains myosin heavy chain kinases and Elongation Factor-2 kinase and a bifunctional ion channel. This family is known as the alpha-kinase family. The structure of the kinase domain revealed unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. 198 -214829 smart00812 Alpha_L_fucos Alpha-L-fucosidase. O-Glycosyl hydrolases (EC 3.2.1.-) are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycosyl hydrolases, based on sequence similarity, has led to the definition of 85 different families. This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site. Because the fold of proteins is better conserved than their sequences, some of the families can be grouped in 'clans'. Family 29 encompasses alpha-L-fucosidases, which is a lysosomal enzyme responsible for hydrolyzing the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins. Deficiency of alpha-L-fucosidase results in the lysosomal storage disease fucosidosis. 384 -214830 smart00813 Alpha-L-AF_C Alpha-L-arabinofuranosidase C-terminus. This entry represents the C terminus (approximately 200 residues) of bacterial and eukaryotic alpha-L-arabinofuranosidase. This catalyses the hydrolysis of non-reducing terminal alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides. 189 -129050 smart00814 Alpha_TIF Alpha trans-inducing protein (Alpha-TIF). Alpha-TIF (VP16) from Herpes Simplex virus is an essential tegument protein involved in the transcriptional activation of viral immediate early (IE) promoters (alpha genes) during the lytic phase of viral infection. VP16 associates with cellular transcription factors to enhance transcription rates, including the general transcription factor TFIIB and the transcriptional coactivator PC4. The N-terminal residues of VP16 confer specificity for the IE genes, while the C-terminal residues are responsible for transcriptional activation. Within the C-terminal region are two activation regions that can independently and cooperatively activate transcription. VP16 forms a transcriptional regulatory complex with two cellular proteins, the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1. VP16 is an alpha/beta protein with an unusual fold. Other transcription factors may have a similar topology. 356 -214831 smart00815 AMA-1 Apical membrane antigen 1. Apical membrane antigen 1 (AMA-1) is a Plasmodium asexual blood-stage antigen. It has been suggested that positive selection operates on the AMA-1 gene in regions coding for antigenic sites. 239 -129052 smart00816 Amb_V_allergen Amb V Allergen. Amb V is an Ambrosia sp (ragweed) pollen allergen. Amb t V has been shown to contain a C-terminal helix as the major T cell epitope. Free sulphhydryl groups also play a major role in the T cell recognition of cross-reactivity T cell epitopes within these related allergens. 45 -214832 smart00817 Amelin Ameloblastin precursor (Amelin). This family consists of several mammalian Ameloblastin precursor (Amelin) proteins. Matrix proteins of tooth enamel consist mainly of amelogenin but also of non-amelogenin proteins, which, although their volumetric percentage is low, have an important role in enamel mineralisation. One of the non-amelogenin proteins is ameloblastin, also known as amelin and sheathlin. Ameloblastin (AMBN) is one of the enamel sheath proteins which is though to have a role in determining the prismatic structure of growing enamel crystals. 411 -197891 smart00818 Amelogenin Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth. They seem to regulate formation of crystallites during the secretory stage of tooth enamel development and are thought to play a major role in the structural organisation and mineralisation of developing enamel. The extracellular matrix of the developing enamel comprises two major classes of protein: the hydrophobic amelogenins and the acidic enamelins. Circular dichroism studies of porcine amelogenin have shown that the protein consists of 3 discrete folding units: the N-terminal region appears to contain beta-strand structures, while the C-terminal region displays characteristics of a random coil conformation. Subsequent studies on the bovine protein have indicated the amelogenin structure to contain a repetitive beta-turn segment and a "beta-spiral" between Gln112 and Leu138, which sequester a (Pro, Leu, Gln) rich region. The beta-spiral offers a probable site for interactions with Ca2+ ions. Muatations in the human amelogenin gene (AMGX) cause X-linked hypoplastic amelogenesis imperfecta, a disease characterised by defective enamel. A 9bp deletion in exon 2 of AMGX results in the loss of codons for Ile5, Leu6, Phe7 and Ala8, and replacement by a new threonine codon, disrupting the 16-residue (Met1-Ala16) amelogenin signal peptide. 165 -214833 smart00822 PKS_KR This enzymatic domain is part of bacterial polyketide synthases. It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group. 180 -214834 smart00823 PKS_PP Phosphopantetheine attachment site. Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. 86 -214835 smart00824 PKS_TE Thioesterase. Peptide synthetases are involved in the non-ribosomal synthesis of peptide antibiotics. Next to the operons encoding these enzymes, in almost all cases, are genes that encode proteins that have similarity to the type II fatty acid thioesterases of vertebrates. There are also modules within the peptide synthetases that also share this similarity. With respect to antibiotic production, thioesterases are required for the addition of the last amino acid to the peptide antibiotic, thereby forming a cyclic antibiotic. Thioesterases (non-integrated) have molecular masses of 25-29 kDa. 212 -214836 smart00825 PKS_KS Beta-ketoacyl synthase. The structure of beta-ketoacyl synthase is similar to that of the thiolase family and also chalcone synthase. The active site of beta-ketoacyl synthase is located between the N and C-terminal domains. 298 -214837 smart00826 PKS_DH Dehydratase domain in polyketide synthase (PKS) enzymes. 167 -214838 smart00827 PKS_AT Acyl transferase domain in polyketide synthase (PKS) enzymes. 298 -214839 smart00828 PKS_MT Methyltransferase in polyketide synthase (PKS) enzymes. 224 -214840 smart00829 PKS_ER Enoylreductase. Enoylreductase in Polyketide synthases. 287 -214841 smart00830 CM_2 Chorismate mutase type II. Chorismate mutase, catalyses the conversion of chorismate to prephenate in the pathway of tyrosine and phenylalanine biosynthesis. This enzyme is negatively regulated by tyrosine, tryptophan and phenylalanine.. 79 -214842 smart00831 Cation_ATPase_N Cation transporter/ATPase, N-terminus. This entry represents the conserved N-terminal region found in several classes of cation-transporting P-type ATPases, including those that transport H+, Na+, Ca2+, Na+/K+, and H+/K+. In the H+/K+- and Na+/K+-exchange P-ATPases, this domain is found in the catalytic alpha chain. In gastric H+/K+-ATPases, this domain undergoes reversible sequential phosphorylation inducing conformational changes that may be important for regulating the function of these ATPases. 75 -214843 smart00832 C8 This domain contains 8 conserved cysteine residues. Not all of the conserved cysteines have been included in the alignment model. It is found in disease-related proteins including von Willebrand factor, Alpha tectorin, Zonadhesin and Mucin. 76 -214844 smart00833 CobW_C Cobalamin synthesis protein cobW C-terminal domain. CobW proteins are generally found proximal to the trimeric cobaltochelatase subunit CobN, which is essential for vitamin B12 (cobalamin) biosynthesis. They contain a P-loop nucleotide-binding loop in the N-terminal domain and a histidine-rich region in the C-terminal portion suggesting a role in metal binding, possibly as an intermediary between the cobalt transport and chelation systems. CobW might be involved in cobalt reduction leading to cobalt(I) corrinoids. This entry represents the C-terminal domain found in CobW, as well as in P47K, a Pseudomonas chlororaphis protein needed for nitrile hydratase expression. 92 -197903 smart00834 CxxC_CXXC_SSSS Putative regulatory protein. CxxC_CXXC_SSSS represents a region of about 41 amino acids found in a number of small proteins in a wide range of bacteria. The region usually begins with the initiator Met and contains two CxxC motifs separated by 17 amino acids. One protein in this entry has been noted as a putative regulatory protein, designated FmdB. Most proteins in this entry have a C-terminal region containing highly degenerate sequence. 41 -214845 smart00835 Cupin_1 Cupin. This family represents the conserved barrel domain of the 'cupin' superfamily ('cupa' is the Latin term for a small barrel). This family contains 11S and 7S plant seed storage proteins, and germins. Plant seed storage proteins provide the major nitrogen source for the developing plant. 146 -214846 smart00836 DALR_1 DALR anticodon binding domain. This all alpha helical domain is the anticodon binding domain of Arginyl tRNA synthetase. This domain is known as the DALR domain after characteristic conserved amino acids. 122 -129070 smart00837 DPBB_1 Rare lipoprotein A (RlpA)-like double-psi beta-barrel. Rare lipoprotein A (RlpA) contains a conserved region that has the double-psi beta-barrel (DPBB) fold. The function of RlpA is not well understood, but it has been shown to act as a prc mutant suppressor in Escherichia coli. The DPBB fold is often an enzymatic domain. The members of this family are quite diverse, and if catalytic this family may contain several different functions. Another example of this domain is found in the N terminus of pollen allergen. 87 -197906 smart00838 EFG_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold. 85 -214847 smart00839 ELFV_dehydrog Glutamate/Leucine/Phenylalanine/Valine dehydrogenase. Glutamate, leucine, phenylalanine and valine dehydrogenases are structurally and functionally related. They contain a Gly-rich region containing a conserved Lys residue, which has been implicated in the catalytic activity, in each case a reversible oxidative deamination reaction. 102 -214848 smart00840 DALR_2 This DALR domain is found in cysteinyl-tRNA-synthetases. 56 -214849 smart00841 Elong-fact-P_C Elongation factor P, C-terminal. These nucleic acid binding domains are predominantly found in elongation factor P, where they adopt an OB-fold, with five beta-strands forming a beta-barrel in a Greek-key topology. 57 -214850 smart00842 FtsA Cell division protein FtsA. FtsA is essential for bacterial cell division, and co-localizes to the septal ring with FtsZ. It has been suggested that the interaction of FtsA-FtsZ has arisen through coevolution in different bacterial strains. 187 -197911 smart00843 Ftsk_gamma This domain directs oriented DNA translocation and forms a winged helix structure. Mutated proteins with substitutions in the FtsK gamma DNA-recognition helix are impaired in DNA binding. 63 -197912 smart00844 GA GA module. The protein G-related albumin-binding (GA) module is composed of three alpha helices. This module is found in a range of bacterial cell surface proteins. The GA module from the Peptostreptococcus magnus albumin-binding protein (PAB) shows a strong affinity for albumin. 60 -197913 smart00845 GatB_Yqey GatB domain. This domain is found in GatB and proteins related to bacterial Yqey. It is about 140 amino acid residues long. This domain is found at the C terminus of GatB which transamidates Glu-tRNA to Gln-tRNA. The function of this domain is uncertain. It does however suggest that Yqey and its relatives have a role in tRNA metabolism. 147 -214851 smart00846 Gp_dh_N Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain. GAPDH is a tetrameric NAD-binding enzyme involved in glycolysis and glyconeogenesis. N-terminal domain is a Rossmann NAD(P) binding fold. 149 -214852 smart00847 HA2 Helicase associated domain (HA2) Add an annotation. This presumed domain is about 90 amino acid residues in length. It is found is a diverse set of RNA helicases. Its function is unknown, however it seems likely to be involved in nucleic acid binding. 82 -214853 smart00848 Inhibitor_I29 Cathepsin propeptide inhibitor domain (I29). This domain is found at the N-terminus of some C1 peptidases such as Cathepsin L where it acts as a propeptide. There are also a number of proteins that are composed solely of multiple copies of this domain such as the peptidase inhibitor salarin. This family is classified as I29 by MEROPS. Peptide proteinase inhibitors can be found as single domain proteins or as single or multiple domains within proteins; these are referred to as either simple or compound inhibitors, respectively. In many cases they are synthesised as part of a larger precursor protein, either as a prepropeptide or as an N-terminal domain associated with an inactive peptidase or zymogen. This domain prevents access of the substrate to the active site. Removal of the N-terminal inhibitor domain either by interaction with a second peptidase or by autocatalytic cleavage activates the zymogen. Other inhibitors interact direct with proteinases using a simple noncovalent lock and key mechanism; while yet others use a conformational change-based trapping mechanism that depends on their structural and thermodynamic properties. 57 -214854 smart00849 Lactamase_B Metallo-beta-lactamase superfamily. Apart from the beta-lactamases a number of other proteins contain this domain. These proteins include thiolesterases, members of the glyoxalase II family, that catalyse the hydrolysis of S-D-lactoyl-glutathione to form glutathione and D-lactic acid and a competence protein that is essential for natural transformation in Neisseria gonorrhoeae and could be a transporter involved in DNA uptake. Except for the competence protein these proteins bind two zinc ions per molecule as cofactor. 177 -197918 smart00850 LytTR LytTr DNA-binding domain. This domain is found in a variety of bacterial transcriptional regulators. The domain binds to a specific DNA sequence pattern. 96 -214855 smart00851 MGS MGS-like domain. This domain composes the whole protein of methylglyoxal synthetase and the domain is also found in Carbamoyl phosphate synthetase (CPS) where it forms a regulatory domain that binds to the allosteric effector ornithine. This family also includes inosicase. The known structures in this family show a common phosphate binding site. 91 -214856 smart00852 MoCF_biosynth Probable molybdopterin binding domain. This domain is found a variety of proteins involved in biosynthesis of molybdopterin cofactor. The domain is presumed to bind molybdopterin. The structure of this domain is known, and it forms an alpha/beta structure. In the known structure of Gephyrin this domain mediates trimerisation. 138 -214857 smart00853 MutL_C MutL C terminal dimerisation domain. MutL and MutS are key components of the DNA repair machinery that corrects replication errors. MutS recognises mispaired or unpaired bases in a DNA duplex and in the presence of ATP, recruits MutL to form a DNA signaling complex for repair. The N terminal region of MutL contains the ATPase domain and the C terminal is involved in dimerisation. 140 -214858 smart00854 PGA_cap Bacterial capsule synthesis protein PGA_cap. This protein is a putative poly-gamma-glutamate capsule biosynthesis protein found in bacteria. Poly-gamma-glutamate is a natural polymer that may be involved in virulence and may help bacteria survive in high salt concentrations. It is a surface-associated protein. 239 -214859 smart00855 PGAM Phosphoglycerate mutase family. Phosphoglycerate mutase (PGAM) and bisphosphoglycerate mutase (BPGM) are structurally related enzymes that catalyse reactions involving the transfer of phospho groups between the three carbon atoms of phosphoglycerate... Both enzymes can catalyse three different reactions with different specificities, the isomerization of 2-phosphoglycerate (2-PGA) to 3-phosphoglycerate (3-PGA) with 2,3-diphosphoglycerate (2,3-DPG) as the primer of the reaction, the synthesis of 2,3-DPG from 1,3-DPG with 3-PGA as a primer and the degradation of 2,3-DPG to 3-PGA (phosphatase activity). In mammals, PGAM is a dimeric protein with two isoforms, the M (muscle) and B (brain) forms. In yeast, PGAM is a tetrameric protein. 158 -214860 smart00856 PMEI Plant invertase/pectin methylesterase inhibitor. This domain inhibits pectin methylesterases (PMEs) and invertases through formation of a non-covalent 1:1 complex. It has been implicated in the regulation of fruit development, carbohydrate metabolism and cell wall extension. It may also be involved in inhibiting microbial pathogen PMEs. It has been observed that it is often expressed as a large inactive preprotein. It is also found at the N-termini of PMEs predicted from DNA sequences, suggesting that both PMEs and their inhibitors are expressed as a single polyprotein and subsequently processed. It has two disulphide bridges and is mainly alpha-helical. 148 -214861 smart00857 Resolvase Resolvase, N terminal domain. The N-terminal domain of the resolvase family contains the active site and the dimer interface. The extended arm at the C-terminus of this domain connects to the C-terminal helix-turn-helix domain of resolvase. 148 -214862 smart00858 SAF This domain family includes a range of different proteins. Such as antifreeze proteins and flagellar FlgA proteins, and CpaB pilus proteins. 63 -214863 smart00859 Semialdhyde_dh Semialdehyde dehydrogenase, NAD binding domain. The semialdehyde dehydrogenase family is found in N-acetyl-glutamine semialdehyde dehydrogenase (AgrC), which is involved in arginine biosynthesis, and aspartate-semialdehyde dehydrogenase, an enzyme involved in the biosynthesis of various amino acids from aspartate. This family is also found in yeast and fungal Arg5,6 protein, which is cleaved into the enzymes N-acety-gamma-glutamyl-phosphate reductase and acetylglutamate kinase. These are also involved in arginine biosynthesis. All proteins in this entry contain a NAD binding region of semialdehyde dehydrogenase. 123 -214864 smart00860 SMI1_KNR4 SMI1 / KNR4 family. Proteins in this family are involved in the regulation of 1,3-beta-glucan synthase activity and cell-wall formation. 127 -214865 smart00861 Transket_pyr Transketolase, pyrimidine binding domain. Transketolase (TK) catalyzes the reversible transfer of a two-carbon ketol unit from xylulose 5-phosphate to an aldose receptor, such as ribose 5-phosphate, to form sedoheptulose 7-phosphate and glyceraldehyde 3- phosphate. This enzyme, together with transaldolase, provides a link between the glycolytic and pentose-phosphate pathways. TK requires thiamine pyrophosphate as a cofactor. In most sources where TK has been purified, it is a homodimer of approximately 70 Kd subunits. TK sequences from a variety of eukaryotic and prokaryotic sources show that the enzyme has been evolutionarily conserved. In the peroxisomes of methylotrophic yeast Hansenula polymorpha, there is a highly related enzyme, dihydroxy-acetone synthase (DHAS) (also known as formaldehyde transketolase), which exhibits a very unusual specificity by including formaldehyde amongst its substrates. 136 -214866 smart00862 Trans_reg_C Transcriptional regulatory protein, C terminal. This domain is almost always found associated with the response regulator receiver domain. It may play a role in DNA binding. 76 -197931 smart00863 tRNA_SAD Threonyl and Alanyl tRNA synthetase second additional domain. The catalytically active form of threonyl/alanyl tRNA synthetase is a dimer. Within the tRNA synthetase class II dimer, the bound tRNA interacts with both monomers making specific interactions with the catalytic domain, the C-terminal domain, and this SAD domain (the second additional domain). The second additional domain is comprised of a pair of perpendicularly orientated antiparallel beta sheets, of four and three strands, respectively, that surround a central alpha helix that forms the core of the domain. 43 -214867 smart00864 Tubulin Tubulin/FtsZ family, GTPase domain. This domain is found in all tubulin chains, as well as the bacterial FtsZ family of proteins. These proteins are involved in polymer formation. Tubulin is the major component of microtubules, while FtsZ is the polymer-forming protein of bacterial cell division, it is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ and tubulin are GTPases, this entry is the GTPase domain. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in bacteria and archaea. 192 -214868 smart00865 Tubulin_C Tubulin/FtsZ family, C-terminal domain. This domain is found in the tubulin alpha, beta and gamma chains, as well as the bacterial FtsZ family of proteins. These proteins are GTPases and are involved in polymer formation. Tubulin is the major component of microtubules, while FtsZ is the polymer-forming protein of bacterial cell division, it is part of a ring in the middle of the dividing cell that is required for constriction of cell membrane and cell envelope to yield two daughter cells. FtsZ can polymerise into tubes, sheets, and rings in vitro and is ubiquitous in bacteria and archaea. This is the C-terminal domain. 120 -214869 smart00866 UTRA The UbiC transcription regulator-associated (UTRA) domain is a conserved ligand-binding domain. It has a similar fold to HutC/FarR-like bacterial transcription factors of the GntR family. It is believed to modulate activity of bacterial transcription factors in response to binding small molecules. 143 -214870 smart00867 YceI YceI-like domain. E. coli YceI is a base-induced periplasmic protein. The recent structure of a member of this family shows that it binds to polyisoprenoid. The structure consists of an extended, eight-stranded, antiparallel beta-barrel that resembles the lipocalin fold. 166 -214871 smart00868 zf-AD Zinc-finger associated domain (zf-AD). The zf-AD domain, also known as ZAD, forms an atypical treble-cleft-like zinc co-ordinating fold. The zf-AD domain is thought to be involved in mediating dimer formation, but does not bind to DNA. 73 -214872 smart00869 Autotransporter Autotransporter beta-domain. Secretion of protein products occurs by a number of different pathways in bacteria. One of these pathways known as the type IV pathway was first described for the IgA1 protease. The protein component that mediates secretion through the outer membrane is contained within the secreted protein itself, hence the proteins secreted in this way are called autotransporters. This family corresponds to the presumed integral membrane beta-barrel domain that transports the protein. This domain is found at the C-terminus of the proteins it occurs in. The N-terminus contains the variable passenger domain that is translocated across the membrane. Once the passenger domain is exported it is cleaved auto-catalytically in some proteins, in others a different peptidase is used and in some cases no cleavage occurs. 268 -214873 smart00870 Asparaginase Asparaginase, found in various plant, animal and bacterial cells. Asparaginase catalyses the deamination of asparagine to yield aspartic acid and an ammonium ion, resulting in a depletion of free circulatory asparagine in plasma. The enzyme is effective in the treatment of human malignant lymphomas, which have a diminished capacity to produce asparagine synthetase: in order to survive, such cells absorb asparagine from blood plasma..- if Asn levels have been depleted by injection of asparaginase, the lymphoma cells die. 323 -214874 smart00871 AraC_E_bind Bacterial transcription activator, effector binding domain. This domain is found in the probable effector binding domain of a number of different bacterial transcription activators.and is also present in some DNA gyrase inhibitors. The absence of a HTH motif in the DNA gyrase inhibitors is thought to indicate the fact that these do not bind DNA. 158 -214875 smart00872 Alpha-mann_mid Alpha mannosidase, middle domain. Members of this entry belong to the glycosyl hydrolase family 38, This domain, which is found in the central region adopts a structure consisting of three alpha helices, in an immunoglobulin/albumin-binding domain-like fold. The domain is predominantly found in the enzyme alpha-mannosidase. 79 -214876 smart00873 B3_4 B3/4 domain. This domain is found in tRNA synthetase beta subunits as well as in some non tRNA synthetase proteins. 174 -197942 smart00874 B5 tRNA synthetase B5 domain. This domain is found in phenylalanine-tRNA synthetase beta subunits. 68 -197943 smart00875 BACK BTB And C-terminal Kelch. The BACK domain is found juxtaposed to the BTB domain; they are separated by as little as two residues. 101 -214877 smart00876 BATS Biotin and Thiamin Synthesis associated domain. Biotin synthase (BioB), , catalyses the last step of the biotin biosynthetic pathway. The reaction consists in the introduction of a sulphur atom into dethiobiotin. BioB functions as a homodimer. Thiamin synthesis if a complex process involving at least six gene products (ThiFSGH, ThiI and ThiJ). Two of the proteins required for the biosynthesis of the thiazole moiety of thiamine (vitamin B(1)) are ThiG and ThiH (this entry) and form a heterodimer. Both of these reactions are thought of involve the binding of co-factors, and both function as dimers.. This domain therefore may be involved in co-factor binding or dimerisation. 94 -197945 smart00877 BMC Bacterial microcompartments are primitive organelles composed entirely of protein subunits. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. These proteins for hexameric structure. 75 -214878 smart00878 Biotin_carb_C Biotin carboxylase C-terminal domain. Biotin carboxylase is a component of the acetyl-CoA carboxylase multi-component enzyme which catalyses the first committed step in fatty acid synthesis in animals, plants and bacteria. Most of the active site residues reported in reference are in this C-terminal domain. 107 -214879 smart00879 Brix The Brix domain is found in a number of eukaryotic proteins. Members include SSF proteins from yeast and humans, Arabidopsis thaliana Peter Pan-like protein and several hypothetical proteins. 180 -214880 smart00880 CHAD The CHAD domain is an alpha-helical domain functionally associated with some members of the adenylate cyclase family. It has conserved histidines that may chelate metals. 262 -214881 smart00881 CoA_binding CoA binding domain. This domain has a Rossmann fold and is found in a number of proteins including succinyl CoA synthetases, malate and ATP-citrate ligases. 100 -214882 smart00882 CoA_trans Coenzyme A transferase. Coenzyme A (CoA) transferases belong to an evolutionary conserved family of enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. They have been identified in many prokaryotes and in mammalian tissues. The bacterial enzymes are heterodimer of two subunits (A and B) of about 25 Kd each while eukaryotic SCOT consist of a single chain which is colinear with the two bacterial subunits. 212 -197951 smart00883 Cpn10 Chaperonin 10 Kd subunit. The chaperonins are 'helper' molecules required for correct folding and subsequent assembly of some proteins. These are required for normal cell growth, and are stress-induced, acting to stabilise or protect disassembled polypeptides under heat-shock conditions. Type I chaperonins present in eubacteria, mitochondria and chloroplasts require the concerted action of 2 proteins, chaperonin 60 (cpn60) and chaperonin 10 (cpn10). The 10 kDa chaperonin (cpn10 - or groES in bacteria) exists as a ring-shaped oligomer of between six to eight identical subunits, while the 60 kDa chaperonin (cpn60 - or groEL in bacteria) forms a structure comprising 2 stacked rings, each ring containing 7 identical subunits. These ring structures assemble by self-stimulation in the presence of Mg2+-ATP. The central cavity of the cylindrical cpn60 tetradecamer provides as isolated environment for protein folding whilst cpn-10 binds to cpn-60 and synchronizes the release of the folded protein in an Mg2+-ATP dependent manner. The binding of cpn10 to cpn60 inhibits the weak ATPase activity of cpn60. 93 -214883 smart00884 Cullin_Nedd8 Cullin protein neddylation domain. This is the neddylation site of cullin proteins which are a family of structurally related proteins containing an evolutionarily conserved cullin domain. With the exception of APC2, each member of the cullin family is modified by Nedd8 and several cullins function in Ubiquitin-dependent proteolysis, a process in which the 26S proteasome recognises and subsequently degrades a target protein tagged with K48-linked poly-ubiquitin chains. Cullins are molecular scaffolds responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. Nedd8/Rub1 is a small ubiquitin-like protein, which was originally found to be conjugated to Cdc53, a cullin component of the SCF (Skp1-Cdc53/CUL1-F-box protein) E3 Ub ligase complex in Saccharomyces cerevisiae, and Nedd8 modification has now emerged as a regulatory pathway of fundamental importance for cell cycle control and for embryogenesis in metazoans. The only identified Nedd8 substrates are cullins. Neddylation results in covalent conjugation of a Nedd8 moiety onto a conserved cullin lysine residue. 68 -197953 smart00885 D5_N D5 N terminal like. This domain is found in D5 proteins of DNA viruses and bacteriophage P4 DNA primases phages. 141 -214884 smart00886 Dabb Stress responsive A/B Barrel Domain. The function of this domain is unknown, but it is upregulated in response to salt stress in Populus balsamifera (balsam poplar). It is also found at the C-terminus of a fructose 1,6-bisphosphate aldolase from Hydrogenophilus thermoluteolus.It is found in the pA01 plasmid, which encodes genes for molybdopterin uptake and degradation of plant alkaloid nicotine. The structure of one has been solved and the domain forms an alpha-beta barrel dimer. Although there is a clear duplication within the domain it is not obviously detectable in the sequence. 97 -214885 smart00887 EB_dh Ethylbenzene dehydrogenase. Eythylbenzene dehydrogenase is a heterotrimer of three subunits that catalyses the anaerobic degradation of hydrocarbons. The alpha subunit contains the catalytic centre as a Molybdenum cofactor-complex. This removes an electron-pair from the hydrocarbon and passes it along an electron transport system involving iron-sulphur complexes held in the beta subunit and a Haem b molecule contained in the gamma subunit. The electron-pair is then subsequently passed to an as yet unknown receiver. The enzyme is found in a variety of different bacteria. 209 -214886 smart00888 EF1_GNE EF-1 guanine nucleotide exchange domain. Translation elongation factors are responsible for two main processes during protein synthesis on the ribosome. EF1A (or EF-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the A-site (acceptor site) of the ribosome. EF2 (or EF-G) is responsible for the translocation of the peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) of the ribosome, thereby freeing the A-site for the next aminoacyl-tRNA to bind. Elongation factors are responsible for achieving accuracy of translation and both EF1A and EF2 are remarkably conserved throughout evolution. Elongation factor EF1B (also known as EF-Ts or EF-1beta/gamma/delta) is a nucleotide exchange factor that is required to regenerate EF1A from its inactive form (EF1A-GDP) to its active form (EF1A-GTP). EF1A is then ready to interact with a new aminoacyl-tRNA to begin the cycle again. EF1B is more complex in eukaryotes than in bacteria, and can consist of three subunits: EF1B-alpha (or EF-1beta), EF1B-gamma (or EF-1gamma) and EF1B-beta (or EF-1delta). This entry represents the guanine nucleotide exchange domain of the beta (EF-1beta, also known as EF1B-alpha) and delta (EF-1delta, also known as EF1B-beta) chains of EF1B proteins from eukaryotes and archaea. The beta and delta chains have exchange activity, which mainly resides in their homologous guanine nucleotide exchange domains, found in the C-terminal region of the peptides. Their N-terminal regions may be involved in interactions with the gamma chain (EF-1gamma). 88 -214887 smart00889 EFG_IV Elongation factor G, domain IV. Translation elongation factors are responsible for two main processes during protein synthesis on the ribosome. EF1A (or EF-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the A-site (acceptor site) of the ribosome. EF2 (or EF-G) is responsible for the translocation of the peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) of the ribosome, thereby freeing the A-site for the next aminoacyl-tRNA to bind. Elongation factors are responsible for achieving accuracy of translation and both EF1A and EF2 are remarkably conserved throughout evolution. Elongation factor EF2 (EF-G) is a G-protein. It brings about the translocation of peptidyl-tRNA and mRNA through a ratchet-like mechanism: the binding of GTP-EF2 to the ribosome causes a counter-clockwise rotation in the small ribosomal subunit; the hydrolysis of GTP to GDP by EF2 and the subsequent release of EF2 causes a clockwise rotation of the small subunit back to the starting position. This twisting action destabilises tRNA-ribosome interactions, freeing the tRNA to translocate along the ribosome upon GTP-hydrolysis by EF2. EF2 binding also affects the entry and exit channel openings for the mRNA, widening it when bound to enable the mRNA to translocate along the ribosome. EF2 has five domains. This entry represents domain IV found in EF2 (or EF-G) of both prokaryotes and eukaryotes. The EF2-GTP-ribosome complex undergoes extensive structural rearrangement for tRNA-mRNA movement to occur. Domain IV, which extends from the 'body' of the EF2 molecule much like a lever arm, appears to be essential for the structural transition to take place. 120 -197958 smart00890 EKR Domain of unknown function. EKR is a short, 33 residue, domain found in bacterial and some lower eukaryotic species which lies between a POR (pyruvate ferredoxin/flavodoxin oxidoreductase) and the 4Fe-4S binding domain Fer4. It contains a characteristic EKR sequence motif. The exact function of this domain is not known. 57 -214888 smart00891 ERCC4 ERCC4 domain. This entry represents a structural motif found in several DNA repair nucleases, such as Rad1/Mus81/XPF endonucleases, and in ATP-dependent helicases. The XPF/Rad1/Mus81-dependent nuclease family specifically cleaves branched structures generated during DNA repair, replication, and recombination, and is essential for maintaining genome stability. The nuclease domain architecture exhibits remarkable similarity to those of restriction endonucleases. 98 -214889 smart00892 Endonuclease_NS DNA/RNA non-specific endonuclease. A family of bacterial and eukaryotic endonucleases share the following characteristics: they act on both DNA and RNA, cleave double-stranded and single-stranded nucleic acids and require a divalent ion such as magnesium for their activity. An histidine has been shown to be essential for the activity of the Serratia marcescens nuclease. This residue is located in a conserved region which also contains an aspartic acid residue that could be implicated in the binding of the divalent ion. 198 -214890 smart00893 ETF Electron transfer flavoprotein domain. Electron transfer flavoproteins (ETFs) serve as specific electron acceptors for primary dehydrogenases, transferring the electrons to terminal respiratory systems. They can be functionally classified into constitutive, "housekeeping" ETFs, mainly involved in the oxidation of fatty acids (Group I), and ETFs produced by some prokaryotes under specific growth conditions, receiving electrons only from the oxidation of specific substrates (Group II). ETFs are heterodimeric proteins composed of an alpha and beta subunit, and contain an FAD cofactor and AMP. ETF consists of three domains: domains I and II are formed by the N- and C-terminal portions of the alpha subunit, respectively, while domain III is formed by the beta subunit. Domains I and III share an almost identical alpha-beta-alpha sandwich fold, while domain II forms an alpha-beta-alpha sandwich similar to that of bacterial flavodoxins. FAD is bound in a cleft between domains II and III, while domain III binds the AMP molecule. Interactions between domains I and III stabilise the protein, forming a shallow bowl where domain II resides. This entry represents the N-terminal domain of both the alpha and beta subunits from Group I and Group II ETFs. 185 -214891 smart00894 Excalibur Excalibur calcium-binding domain. Extracellular Ca2+-dependent nuclease YokF from Bacillus subtilis and several other surface-exposed proteins from diverse bacteria are encoded in the genomes in two paralogous forms that differ by a ~45 amino acid fragment, which comprises a novel conserved domain. Sequence analysis of this domain revealed a conserved DxDxDGxxCE motif, which is strikingly similar to the Ca2+-binding loop of the calmodulin-like EF-hand domains, suggesting an evolutionary relationship between them. Functions of many of the other proteins in which the novel domain, named Excalibur (extracellular calcium-binding region), is found, as well as a structural model of its conserved motif are consistent with the notion that the Excalibur domain binds calcium. This domain is but one more example of the diversity of structural contexts surrounding the EF-hand-like calcium-binding loop in bacteria. This loop is thus more widespread than hitherto recognised and the evolution of EF-hand-like domains is probably more complex than previously appreciated. 37 -214892 smart00895 FCD This entry represents the C-terminal ligand binding domain of many members of the GntR family. This domain probably binds to a range of effector molecules that regulate the transcription of genes through the action of the N-terminal DNA-binding domain. This domain is found in and that are regulators of sugar biosynthesis operons. Many bacterial transcription regulation proteins bind DNA through a helix-turn-helix (HTH) motif, which can be classified into subfamilies on the basis of sequence similarities. The HTH GntR family has many members distributed among diverse bacterial groups that regulate various biological processes. It was named GntR after the Bacillus subtilis repressor of the gluconate operon. In general, these proteins contain a DNA-binding HTH domain at the N terminus, and an effector binding or oligomerisation domain at the C terminus. The winged-helix DNA-binding domain is well conserved in structure for the whole of the GntR family, and is similar in structure to other transcriptional regulator families. The C-terminal effector-binding and oligomerisation domains are more variable and are consequently used to define the subfamilies. Based on the sequence and structure of the C-terminal domains, the GtnR family can be divided into four major groups, as represented by FadR, HutC, MocR and YtrA, as well as some minor groups such as those represented by AraR and PlmA. 123 -214893 smart00896 FDX-ACB Ferredoxin-fold anticodon binding domain. This is the anticodon binding domain found in some phenylalanyl tRNA synthetases. The domain has a ferredoxin fold, consisting of an alpha+beta sandwich with anti-parallel beta-sheets (beta-alpha-beta x2). 93 -214894 smart00897 FIST FIST N domain. The FIST N domain is a novel sensory domain, which is present in signal transduction proteins from Bacteria, Archaea and Eukarya. Chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids. 196 -214895 smart00898 Fapy_DNA_glyco Formamidopyrimidine-DNA glycosylase N-terminal domain. This entry represents the catalytic domain of DNA glycosylase/AP lyase enzymes, which are involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Most damage to bases in DNA is repaired by the base excision repair pathway. These enzymes are primarily from bacteria, and have both DNA glycosylase activity and AP lyase activity. Examples include formamidopyrimidine-DNA glycosylases (Fpg; MutM) and endonuclease VIII (Nei). Formamidopyrimidine-DNA glycosylases (Fpg, MutM) is a trifunctional DNA base excision repair enzyme that removes a wide range of oxidation-damaged bases (N-glycosylase activity; ) and cleaves both the 3'- and 5'-phosphodiester bonds of the resulting apurinic/apyrimidinic site (AP lyase activity; ). Fpg has a preference for oxidised purines, excising oxidized purine bases such as 7,8-dihydro-8-oxoguanine (8-oxoG). ITs AP (apurinic/apyrimidinic) lyase activity introduces nicks in the DNA strand, cleaving the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Fpg is a monomer composed of 2 domains connected by a flexible hinge. The two DNA-binding motifs (a zinc finger and the helix-two-turns-helix motifs) suggest that the oxidized base is flipped out from double-stranded DNA in the binding mode and excised by a catalytic mechanism similar to that of bifunctional base excision repair enzymes. Fpg binds one ion of zinc at the C-terminus, which contains four conserved and essential cysteines.. Endonuclease VIII (Nei) has the same enzyme activities as Fpg above, but with a preference for oxidized pyrimidines, such as thymine glycol, 5,6-dihydrouracil and 5,6-dihydrothymine. These protein contains three structural domains: an N-terminal catalytic core domain, a central helix-two turn-helix (H2TH) module and a C-terminal zinc finger (see PDB:1K82). The N-terminal catalytic domain and the C-terminal zinc finger straddle the DNA with the long axis of the protein oriented roughly orthogonal to the helical axis of the DNA. Residues that contact DNA are located in the catalytic domain and in a beta-hairpin loop formed by the zinc finger. 115 -214896 smart00899 FeoA This entry represents the core domain of the ferrous iron (Fe2+) transport protein FeoA found in bacteria. This domain also occurs at the C-terminus in related proteins. The transporter Feo is composed of three proteins: FeoA a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. Feo allows the bacterial cell to acquire iron from its environment. 72 -214897 smart00900 FMN_bind This conserved region includes the FMN-binding site of the NqrC protein as well as the NosR and NirI regulatory proteins. 86 -214898 smart00901 FRG This domain contains a conserved N-terminal (F/Y)RG motif. It is functionally uncharacterised. 103 -214899 smart00902 Fe_hyd_SSU Iron hydrogenase small subunit. Many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, photosynthetic, or sulphate-reducing bacteria, metabolise hydrogen. Hydrogen activation is mediated by a family of enzymes, termed hydrogenases, which either provide these organisms with reducing power from hydrogen oxidation, or act as electron sinks. There are two hydrogenases families that differ functionally from each other: NiFe hydrogenases tend to be more involved in hydrogen oxidation, while Iron-only FeFe (Fe only) hydrogenases in hydrogen production. Fe only hydrogenases show a common core structure, which contains a moiety, deeply buried inside the protein, with an Fe-Fe dinuclear centre, nonproteic bridging, terminal CO and CN- ligands attached to each of the iron atoms, and a dithio moiety, which also bridges the two iron atoms and has been tentatively assigned as a di(thiomethyl)amine. This common core also harbours three [4Fe-4S] iron-sulphur clusters. In FeFe hydrogenases, as in NiFe hydrogenases, the set of iron-sulphur clusters is dispersed regularly between the dinuclear Fe-Fe centre and the molecular surface. These clusters are distant by about 1.2 nm from each other but the [4Fe-4S] cluster closest to the dinuclear centre is covalently bound to one of the iron atoms though a thiolate bridging ligand. The moiety including the dinuclear centre, the thiolate bridging ligand, and the proximal [4Fe-4S] cluster is known as the H-cluster. A channel, lined with hydrophobic amino acid side chains, nearly connects the dinuclear centre and the molecular surface. Furthermore hydrogen-bonded water molecule sites have been identified at the interior and at the surface of the protein. The small subunit is comprised of alternating random coil and alpha helical structures that encompass the large subunit in a novel protein fold. 52 -214900 smart00903 Flavin_Reduct Flavin reductase like domain. This entry represents the FMN-binding domain found in NAD(P)H-flavin oxidoreductases (flavin reductases), a class of enzymes capable of producing reduced flavin for bacterial bioluminescence and other biological processes. This domain is also found in various other oxidoreductase and monooxygenase enzymes... This domain consists of a beta-barrel with Greek key topology, and is related to the ferredoxin reductase-like FAD-binding domain. The flavin reductases have a different dimerisation mode than that found in the PNP oxidase-like family, which also carries an FMN-binding domain with a similar topology. 147 -214901 smart00904 Flavokinase Riboflavin kinase. Riboflavin is converted into catalytically active cofactors (FAD and FMN) by the actions of riboflavin kinase, which converts it into FMN, and FAD synthetase, which adenylates FMN to FAD. Eukaryotes usually have two separate enzymes, while most prokaryotes have a single bifunctional protein that can carry out both catalyses, although exceptions occur in both cases. While eukaryotic monofunctional riboflavin kinase is orthologous to the bifunctional prokaryotic enzyme. the monofunctional FAD synthetase differs from its prokaryotic counterpart, and is instead related to the PAPS-reductase family. The bacterial FAD synthetase that is part of the bifunctional enzyme has remote similarity to nucleotidyl transferases and, hence, it may be involved in the adenylylation reaction of FAD synthetases. This entry represents riboflavin kinase, which occurs as part of a bifunctional enzyme or a stand-alone enzyme. 124 -214902 smart00905 FolB Dihydroneopterin aldolase. Dihydroneopterin aldolase catalyses the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the biosynthetic pathway of tetrahydrofolate. In the opportunistic pathogen Pneumocystis carinii, dihydroneopterin aldolase function is expressed as the N-terminal portion of the multifunctional folic acid synthesis protein (Fas). This region encompasses two domains, FasA and FasB, which are 27% amino acid identical. FasA and FasB also share significant amino acid sequence similarity with bacterial dihydroneopterin aldolases. This region consists of two tandem sequences each homologous to folB and which form tetramers. 113 -214903 smart00906 Fungal_trans Fungal specific transcription factor domain. This domain is found in a number of fungal transcription factors including transcriptional activator xlnR, yeast regulatory protein GAL4, and other transcription proteins regulating a variety of cellular and metabolic processes. 93 -197975 smart00907 GDNF GDNF/GAS1 domain. This cysteine rich domain is found in multiple copies in GNDF and GAS1 proteins. GDNF and neurturin (NTN) receptors are potent survival factors for sympathetic, sensory and central nervous system neurons.. GDNF and neurturin promote neuronal survival by signaling through similar multicomponent receptors that consist of a common receptor tyrosine kinase and a member of a GPI-linked family of receptors that determines ligand specificity. 86 -214904 smart00908 Gal-bind_lectin Galactoside-binding lectin. Animal lectins display a wide variety of architectures. They are classified according to the carbohydrate-recognition domain (CRD) of which there are two main types, S-type and C-type. Galectins (previously S-lectins) bind exclusively beta-galactosides like lactose. They do not require metal ions for activity. Galectins are found predominantly, but not exclusively in mammals. Their function is unclear. They are developmentally regulated and may be involved in differentiation, cellular regulation and tissue construction. 122 -214905 smart00909 Germane Sporulation and spore germination. The GerMN domain is a region of approximately 100 residues that is found, duplicated, in the Bacillus GerM protein and is implicated in both sporulation and spore germination. The domain is found in a number of different bacterial species both alone and in association with other domains such as Amidase_3 pfam01520 Gmad1 and Gmad2. It is predicted to have a novel alpha-beta fold. 84 -214906 smart00910 HIRAN The HIRAN protein (HIP116, Rad5p N-terminal) is found in the N-terminal regions of the SWI2/SNF2 proteins typified by HIP116 and Rad5p. HIRAN is found as a standalone protein in several bacteria and prophages, or fused to other catalytic domains, such as a nuclease of the restriction endonuclease fold and TDP1-like DNA phosphoesterases, in the eukaryotes. It has been predicted that this protein functions as a DNA-binding domain that probably recognises features associated with damaged DNA or stalled replication forks. 90 -214907 smart00911 HWE_HK HWE histidine kinase. The HWE domain is found in a subset of two-component system kinases, belonging to the same superfamily as. In. the HWE family was defined by the presence of conserved a H residue and a WXE motifs and was limited to members of the proteobacteria. However, many homologues of this domain are lack the WXE motif. Furthermore, homologues are found in a wide range of Gram-positive and Gram-negative bacteria as well as in several archaea. 84 -214908 smart00912 Haemagg_act haemagglutination activity domain. This domain is suggested to be a carbohydrate- dependent haemagglutination activity site. It is found in a range of haemagglutinins and haemolysins. 119 -197981 smart00913 IBN_N Importin-beta N-terminal domain. Members of the importin-beta (karyopherin-beta) family can bind and transport cargo by themselves, or can form heterodimers with importin-alpha. As part of a heterodimer, importin-beta mediates interactions with the pore complex, while importin-alpha acts as an adaptor protein to bind the nuclear localisation signal (NLS) on the cargo through the classical NLS import of proteins. Importin-beta is a helicoidal molecule constructed from 19 HEAT repeats. Many nuclear pore proteins contain FG sequence repeats that can bind to HEAT repeats within importins.. which is important for importin-beta mediated transport. 67 -197982 smart00914 IDEAL A short protein domain of unknown function. It is found at the C-terminus of proteins in the UPF0302 family. It is named after the sequence of the most conserved region in some members. 37 -214909 smart00915 Jacalin Jacalin-like lectin domain. This entry represents a mannose-binding lectin domain with a beta-prism fold consisting of three 4-stranded beta-sheets, with an internal pseudo 3-fold symmetry. Some lectins in this group stimulate distinct T- and B- cell functions, such as Jacalin, which binds to the T-antigen and acts as an agglutinin. This domain is found in 1 to 6 copies in lectins. The domain is also found in the salt-stress induced protein from rice and an animal prostatic spermine-binding protein. 128 -197984 smart00916 L51_S25_CI-B8 Mitochondrial ribosomal protein L51 / S25 / CI-B8 domain. Proteins containing this domain are located in the mitochondrion and include ribosomal protein L51, and S25. This domain is also found in mitochondrial NADH-ubiquinone oxidoreductase B8 subunit (CI-B8) . It is not known whether all members of this family form part of the NADH-ubiquinone oxidoreductase and whether they are also all ribosomal proteins. 70 -214910 smart00917 LeuA_dimer LeuA allosteric (dimerisation) domain. This is the C-terminal regulatory (R) domain of alpha-isopropylmalate synthase, which catalyses the first committed step in the leucine biosynthetic pathway. This domain, is an internally duplicated structure with a novel fold. It comprises two similar units that are arranged such that the two -helices pack together in the centre, crossing at an angle of 34 degrees, sandwiched between the two three-stranded, antiparallel beta-sheets. The overall domain is thus constructed as a beta-alpha-beta three-layer sandwich. 131 -214911 smart00918 Lig_chan-Glu_bd Ligated ion channel L-glutamate- and glycine-binding site. This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan. 62 -214912 smart00919 Malic_M Malic enzyme, NAD binding domain. Malic enzymes (malate oxidoreductases) catalyse the oxidative decarboxylation of malate to form pyruvate. 231 -214913 smart00920 MHC_II_alpha Class II histocompatibility antigen, alpha domain. Class II MHC glycoproteins are expressed on the surface of antigen-presenting cells (APC), including macrophages, dendritic cells and B cells. MHC II proteins present peptide antigens that originate extracellularly from foreign bodies such as bacteria. Proteins from the pathogen are degraded into peptide fragments within the APC, which sequesters these fragments into the endosome so they can bind to MHC class II proteins, before being transported to the cell surface. MHC class II receptors display antigens for recognition by helper T cells (stimulate development of B cell clones) and inflammatory T cells (cause the release of lymphokines that attract other cells to site of infection). 81 -197989 smart00921 MHC_II_beta Class II histocompatibility antigen, beta domain. Class II MHC glycoproteins are expressed on the surface of antigen-presenting cells (APC), including macrophages, dendritic cells and B cells. MHC II proteins present peptide antigens that originate extracellularly from foreign bodies such as bacteria. Proteins from the pathogen are degraded into peptide fragments within the APC, which sequesters these fragments into the endosome so they can bind to MHC class II proteins, before being transported to the cell surface. MHC class II receptors display antigens for recognition by helper T cells (stimulate development of B cell clones) and inflammatory T cells (cause the release of lymphokines that attract other cells to site of infection). 72 -214914 smart00922 MR_MLE Mandelate racemase / muconate lactonizing enzyme, C-terminal domain. Mandelate racemase (MR) and muconate lactonizing enzyme (MLE) are two bacterial enzymes involved in aromatic acid catabolism. They catalyze mechanistically distinct reactions yet they are related at the level of their primary, quaternary (homooctamer) and tertiary structures.. This entry represents the C-terminal region of these proteins. 97 -197991 smart00923 MbtH MbtH-like protein. This domain is found in the MbtH protein as well as at the N-terminus of the antibiotic synthesis protein NIKP1. This domain is about 70 amino acids long and contains 3 fully conserved tryptophan residues. Many of the members of this family are found in known antibiotic synthesis gene clusters. 49 -214915 smart00924 MgtE_N MgtE intracellular N domain. This region is the integral membrane part of the eubacterial MgtE family of magnesium transporters. It is presumed to be an intracellular domain, that may be involved in magnesium binding. 105 -214916 smart00925 MltA MltA specific insert domain. This beta barrel domain is found inserted in the MltA a murein degrading transglycosylase enzyme. This domain may be involved in peptidoglycan binding. 153 -197994 smart00926 Molybdop_Fe4S4 Molybdopterin oxidoreductase Fe4S4 domain. The molybdopterin oxidoreductase Fe4S4 domain is found in a number of reductase/dehydrogenase families, which include the periplasmic nitrate reductase precursor and the formate dehydrogenase alpha chain. 55 -214917 smart00927 MutH DNA mismatch repair enzyme MutH. MutS, MutL and MutH are the three essential proteins for initiation of methyl-directed DNA mismatch repair to correct mistakes made during DNA replication in Escherichia coli. MutH cleaves a newly synthesized and unmethylated daughter strand 5' to the sequence d(GATC) in a hemi-methylated duplex. Activation of MutH requires the recognition of a DNA mismatch by MutS and MutL. 100 -197996 smart00928 NADH_4Fe-4S NADH-ubiquinone oxidoreductase-F iron-sulfur binding region. 46 -214918 smart00929 NADH-G_4Fe-4S_3 NADH-ubiquinone oxidoreductase-G iron-sulfur binding region. 41 -197998 smart00930 NIL This domain is found at the C-terminus of ABC transporter proteins involved in D-methionine transport as well as a number of ferredoxin-like proteins. This domain is likely to act as a substrate binding domain. The domain has been named after a conserved sequence in some members of the family. 76 -197999 smart00931 NOSIC NOSIC (NUC001) domain. This is the central domain in Nop56/SIK1-like proteins. 52 -214919 smart00932 Nfu_N Scaffold protein Nfu/NifU N terminal. This domain is found at the N terminus of NifU and NifU related proteins, and in the human Nfu protein. Both of these proteins are thought to be involved in the the assembly of iron-sulphur clusters. 88 -214920 smart00933 NurA NurA nuclease. This family includes NurA a nuclease exhibiting both single-stranded endonuclease activity and 5'-3' exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. 262 -214921 smart00934 OMPdecase Orotidine 5'-phosphate decarboxylase / HUMPS family. Orotidine 5'-phosphate decarboxylase (OMPdecase) catalyzes the last step in the de novo biosynthesis of pyrimidines, the decarboxylation of OMP into UMP. In higher eukaryotes OMPdecase is part, with orotate phosphoribosyltransferase, of a bifunctional enzyme, while the prokaryotic and fungal OMPdecases are monofunctional protein. 212 -214922 smart00935 OmpH Outer membrane protein (OmpH-like). This family includes outer membrane proteins such as OmpH among others. Skp (OmpH) has been characterized as a molecular chaperone that interacts with unfolded proteins as they emerge in the periplasm from the Sec translocation machinery. 140 -198004 smart00936 PBP5_C Penicillin-binding protein 5, C-terminal domain. Penicillin-binding protein 5 expressed by E. coli functions as a D-alanyl-D-alanine carboxypeptidase. It is composed of two domains that are oriented at approximately right angles to each other. The N-terminal domain (pfam00768) is the catalytic domain. The C-terminal domain featured in this family is organized into a sandwich of two anti-parallel beta-sheets, and has a relatively hydrophobic surface as compared to the N-terminal domain. Its precise function is unknown; it may mediate interactions with other cell wall-synthesising enzymes, thus allowing the protein to be recruited to areas of active cell wall synthesis. It may also function as a linker domain that positions the active site in the catalytic domain closer to the peptidoglycan layer, to allow it to interact with cell wall peptides. 92 -214923 smart00937 PCRF This domain is found in peptide chain release factors. 116 -198006 smart00938 P-II Nitrogen regulatory protein P-II. P-II modulates the activity of glutamine synthetase. 102 -214924 smart00939 PepX_C X-Pro dipeptidyl-peptidase C-terminal non-catalytic domain. This domain is found at the C-terminus of cocaine esterase CocE, several glutaryl-7-ACA acylases, and the putative diester hydrolase NonD of Streptomyces griseus (all hydrolases). The domain, which is a beta sandwich, is also found in serine peptidases belonging to MEROPS peptidase family S15: Xaa-Pro dipeptidyl-peptidases. Members of this entry, that are not characterised as peptidases, show extensive low-level similarity to the Xaa-Pro dipeptidyl-peptidases. 214 -198008 smart00940 PepX_N X-Prolyl dipeptidyl aminopeptidase PepX, N-terminal. This N-terminal domain adopts a secondary structure consisting of a helical bundle of eight alpha helices and three beta strands, with the last alpha helix connecting to the first strand of the catalytic domain. The first strand of the N-terminus also forms a small parallel beta sheet with strand five of the catalytic domain. This domain mediates dimerisation of the protein, with two proline residues present in the domain being critical for interaction. 156 -214925 smart00941 PYNP_C Pyrimidine nucleoside phosphorylase C-terminal domain. This domain is found at the C-terminal end of the large alpha/beta domain making up various pyrimidine nucleoside phosphorylases. It has slightly different conformations in different members of this family. For example, in pyrimidine nucleoside phosphorylase (PYNP) there is an added three-stranded anti-parallel beta sheet as compared to other members of the family, such as E. coli thymidine phosphorylase (TP). The domain contains an alpha/ beta hammerhead fold and residues in this domain seem to be important in formation of the homodimer. 75 -214926 smart00942 PriCT_1 Primase C terminal 1 (PriCT-1). This alpha helical domain is found at the C terminal of primases. 66 -214927 smart00943 Prim-Pol Bifunctional DNA primase/polymerase, N-terminal. Members of this family adopt a structure consisting of a core of antiparallel beta sheets. They are found in various bacterial hypothetical proteins, and have been shown to harbour both primase and polymerase activities. 154 -214928 smart00944 Pro-kuma_activ Pro-kumamolisin, activation domain. This domain is found at the N-terminus of peptidases belonging to MEROPS peptidase family S53 (sedolisin, clan SB). The domain adopts a ferredoxin-like fold, with an alpha+beta sandwich. Cleavage of the domain results in activation of the peptidase. 136 -198013 smart00945 ProQ ProQ/FINO family. This family includes ProQ, which is required for full activation of the osmoprotectant transporter, ProQ, in Escherichia coli. 113 -198014 smart00946 ProRS-C_1 Prolyl-tRNA synthetase, C-terminal. Members of this family are predominantly found in prokaryotic prolyl-tRNA synthetase. They contain a zinc binding site, and adopt a structure consisting of alpha helices and antiparallel beta sheets arranged in 2 layers, in a beta-alpha-beta-alpha-beta motif. 67 -214929 smart00947 Pro_CA Carbonic anhydrase. Carbonic anhydrases (CA) are zinc metalloenzymes which catalyze the reversible hydration of carbon dioxide. In Escherichia coli, CA (gene cynT) is involved in recycling carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate by cyanase (gene cynS). By this action, it prevents the depletion of cellular bicarbonate. In photosynthetic bacteria and plant chloroplast, CA is essential to inorganic carbon fixation. Prokaryotic and plant chloroplast CA are structurally and evolutionary related and form a family distinct from the one which groups the many different forms of eukaryotic CA's. 154 -198016 smart00948 Proteasome_A_N Proteasome subunit A N-terminal signature Add an annotation. This domain is conserved in the A subunits of the proteasome complex proteins. 23 -198017 smart00949 PAZ This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerisation. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. 138 -214930 smart00950 Piwi This domain is found in the protein Piwi and its relatives. The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex.. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteristics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. 301 -214931 smart00951 QLQ QLQ is named after the conserved Gln, Leu, Gln motif. QLQ is found at the N-terminus of SWI2/SNF2 protein, which has been shown to be involved in protein-protein interactions. QLQ has been postulated to be involved in mediating protein interactions. 36 -214932 smart00952 RAP This domain is found in various eukaryotic species, particularly in apicomplexans. In Plasmodium falciparum, the domain is found in proteins that are important in various parasite-host cell interactions. It is thought to be an RNA-binding domain. 58 -214933 smart00953 RES RES domain. This presumed protein contains 3 highly conserved polar groups that could form an active site. These are an arginine, glutamate and serine, hence the RES domain. RES is found widely distributed in bacteria, it has about 150 residues in length. 121 -214934 smart00954 RelA_SpoT Region found in RelA / SpoT proteins. The functions of Escherichia coli RelA and SpoT differ somewhat. RelA produces pppGpp (or ppGpp) from ATP and GTP (or GDP). SpoT degrades ppGpp, but may also act as a secondary ppGpp synthetase. The two proteins are strongly similar. In many species, a single homolog to SpoT and RelA appears reponsible for both ppGpp synthesis and ppGpp degradation. (p)ppGpp is a regulatory metabolite of the stringent response, but appears also to be involved in antibiotic biosynthesis in some species. 111 -214935 smart00955 RNB This domain is the catalytic domain of ribonuclease II. 286 -214936 smart00956 RQC This DNA-binding domain is found in the RecQ helicase among others and has a helix-turn-helix structure. The RQC domain, found only in RecQ family enzymes, is a high affinity G4 DNA binding domain. 92 -214937 smart00957 SecA_DEAD SecA DEAD-like domain. SecA protein binds to the plasma membrane where it interacts with proOmpA to support translocation of proOmpA through the membrane. SecA protein achieves this translocation, in association with SecY protein, in an ATP dependent manner. This domain represents the N-terminal ATP-dependent helicase domain, which is related to the. 380 -214938 smart00958 SecA_PP_bind SecA preprotein cross-linking domain. The SecA ATPase is involved in the insertion and retraction of preproteins through the plasma membrane. This domain has been found to cross-link to preproteins, thought to indicate a role in preprotein binding. The pre-protein cross-linking domain is comprised of two sub domains that are inserted within the ATPase domain. 114 -198027 smart00959 Rho_N Rho termination factor, N-terminal domain. The Rho termination factor disengages newly transcribed RNA from its DNA template at certain, specific transcripts. It it thought that two copies of Rho bind to RNA and that Rho functions as a hexamer of protomers. This domain is found to the N-terminus of the RNA binding domain. 43 -214939 smart00960 Robl_LC7 Roadblock/LC7 domain. This family includes proteins that are about 100 amino acids long and have been shown to be related. Members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. It is proposed that roadblock/LC7 family members may modulate specific dynein functions. This family also includes Golgi-associated MP1 adapter protein and MglB from Myxococcus xanthus, a protein involved in gliding motility. However the family also includes members from non-motile bacteria such as Streptomyces coelicolor, suggesting that the protein may play a structural or regulatory role. 88 -198029 smart00961 RuBisCO_small Ribulose bisphosphate carboxylase, small chain. RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) is a bifunctional enzyme that catalyses both the carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), thus fixing carbon dioxide as the first step of the Calvin cycle. RuBisCO is the major protein in the stroma of chloroplasts, and in higher plants exists as a complex of 8 large and 8 small subunits. The function of the small subunit is unknown. While the large subunit is coded for by a single gene, the small subunit is coded for by several different genes, which are distributed in a tissue specific manner. They are transcriptionally regulated by light receptor phytochrome. which results in RuBisCO being more abundant during the day when it is required. 96 -214940 smart00962 SRP54 SRP54-type protein, GTPase domain. This entry represents the GTPase domain of the 54 kDa SRP54 component, a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 of the signal recognition particle has a three-domain structure: an N-terminal helical bundle domain, a GTPase domain, and the M-domain that binds the 7s RNA and also binds the signal sequence. The extreme C-terminal region is glycine-rich and lower in complexity and poorly conserved between species. The GTPase domain is evolutionary related to P-loop NTPase domains found in a variety of other proteins. 197 -214941 smart00963 SRP54_N SRP54-type protein, helical bundle domain. This entry represents the N-terminal helical bundle domain of the 54 kDa SRP54 component, a GTP-binding protein that interacts with the signal sequence when it emerges from the ribosome. SRP54 of the signal recognition particle has a three-domain structure: an N-terminal helical bundle domain, a GTPase domain, and the M-domain that binds the 7s RNA and also binds the signal sequence. The extreme C-terminal region is glycine-rich and lower in complexity and poorly conserved between species. 77 -214942 smart00964 STAT_int STAT protein, protein interaction domain. STAT proteins (Signal Transducers and Activators of Transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. STAT proteins also include an SH2 domain. 120 -198033 smart00965 STN Secretin and TonB N terminus short domain. This is a short domain found at the N-terminus of the Secretins of the bacterial type II/III secretory system as well as the TonB-dependent receptor proteins. These proteins are involved in TonB-dependent active uptake of selective substrates. 52 -198034 smart00966 SpoVT_AbrB SpoVT / AbrB like domain. This domain is found in AbrB from Bacillus subtilis. The product of the abrB gene is an ambiactive repressor and activator of the transcription of genes expressed during the transition state between vegetative growth and the onset of stationary phase and sporulation. AbrB is thought to interact directly with the transcription initiation regions of genes under its control. AbrB contains a helix-turn-helix structure, but this domain ends before the helix-turn-helix begins. The product of the B. subtilis gene spoVT is another member of this family and is also a transcriptional regulator. DNA-binding activity in this AbrB homologue requires hexamerisation. Another family member has been isolated from the Sulfolobus solfataricus and has been identified as a homologue of bacterial repressor-like proteins. The Escherichia coli family member SohA or Prl1F appears to be bifunctional and is able to regulate its own expression as well as relieve the export block imposed by high-level synthesis of beta-galactosidase hybrid proteins. 45 -214943 smart00967 SpoU_sub_bind RNA 2'-O ribose methyltransferase substrate binding. This domain is a RNA 2'-O ribose methyltransferase substrate binding domain. 70 -214944 smart00968 SMC_hinge SMC proteins Flexible Hinge Domain. This entry represents the hinge region of the SMC (Structural Maintenance of Chromosomes) family of proteins. The hinge region is responsible for formation of the DNA interacting dimer. It is also possible that the precise structure of it is an essential determinant of the specificity of the DNA-protein interaction. 120 -198037 smart00969 SOCS_box The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases. 34 -214945 smart00970 s48_45 Sexual stage antigen s48/45 domain. This family contains sexual stage s48/45 antigens from Plasmodium (approximately 450 residues long). These are surface proteins expressed by Plasmodium male and female gametes that have been shown to play a conserved and important role in fertilisation. 116 -198039 smart00971 SATase_N Serine acetyltransferase, N-terminal. The N-terminal domain of serine acetyltransferase has a sequence that is conserved in plants.and bacteria. 105 -198040 smart00972 SCPU Spore Coat Protein U domain. This domain is found in a bacterial family of spore coat proteins.as well as a family of secreted pili proteins involved in motility and biofilm formation. 59 -214946 smart00973 Sec63 Sec63 Brl domain. This domain was named after the yeast Sec63 (or NPL1) (also known as the Brl domain) protein in which it was found. This protein is required for assembly of functional endoplasmic reticulum translocons. Other yeast proteins containing this domain include pre-mRNA splicing helicase BRR2, HFM1 protein and putative helicases. 314 -214947 smart00974 T5orf172 This entry represents the putative helicase A859L. 80 -214948 smart00975 Telomerase_RBD Telomerase ribonucleoprotein complex - RNA binding domain. Telomeres in most organisms are comprised of tandem simple sequence repeats. The total length of telomeric repeat sequence at each chromosome end is determined in a balance of sequence loss and sequence addition. One major influence on telomere length is the enzyme telomerase. It is a reverse transcriptase that adds these simple sequence repeats to chromosome ends by copying a template sequence within the RNA component of the enzyme. The RNA binding domain of telomerase - TRBD - is made up of twelve alpha helices and two short beta sheets. How telomerase and associated regulatory factors physically interact and function with each other to maintain appropriate telomere length is poorly understood. It is known however that TRBD is involved in formation of the holoenzyme (which performs the telomere extension) in addition to recognition and binding of RNA. 136 -214949 smart00976 Telo_bind Telomeric single stranded DNA binding POT1/CDC13. The telomere-binding protein forms a heterodimer in ciliates consisting of an alpha and a beta subunit. This complex may function as a protective cap for the single-stranded telomeric overhang. Alpha subunit consists of 3 structural domains, all with the same beta-barrel OB fold. 137 -198045 smart00977 TilS_C TilS substrate C-terminal domain. This domain is found in the tRNA(Ile) lysidine synthetase (TilS) protein. 69 -214950 smart00978 Tim44 Tim44 is an essential component of the machinery that mediates the translocation of nuclear-encoded proteins across the mitochondrial inner membrane. Tim44 is thought to bind phospholipids of the mitochondrial inner membrane both by electrostatic interactions and by penetrating the polar head group region. 147 -198047 smart00979 TIFY This short possible domain is found in a variety of plant transcription factors that contain GATA domains as well as other motifs. Although previously known as the Zim domain this is now called the tify domain after its most conserved amino acids. TIFY proteins can be further classified into two groups depending on the presence (group I) or absence (group II) of a C2C2-GATA domain. Functional annotation of these proteins is still poor, but several screens revealed a link between TIFY proteins of group II and jasmonic acid-related stress response. 36 -214951 smart00980 THAP The THAP domain is a putative DNA-binding domain (DBD) and probably also binds a zinc ion. It features the conserved C2CH architecture (consensus sequence: Cys - 2-4 residues - Cys - 35-50 residues - Cys - 2 residues - His). Other universal features include the location of the domain at the N-termini of proteins, its size of about 90 residues, a C-terminal AVPTIF box and several other conserved residues. Orthologues of the human THAP domain have been identified in other vertebrates and probably worms and flies, but not in other eukaryotes or any prokaryotes. 80 -214952 smart00981 THUMP The THUMP domain is named after after thiouridine synthases, methylases and PSUSs. The THUMP domain consists of about 110 amino acid residues. The structure of ThiI reveals that the THUMP has a fold unlike that of previously characterised RNA-binding domains. It is predicted that this domain is an RNA-binding domain The THUMP domain probably functions by delivering a variety of RNA modification enzymes to their targets. 83 -198050 smart00982 TRCF This domain is found in proteins necessary for strand-specific repair in DNA such as TRCF in Escherichia coli. A lesion in the template strand blocks the RNA polymerase complex (RNAP). The RNAP-DNA-RNA complex is specifically recognised by the transcription-repair-coupling factor (TRCF) which releases RNAP and the truncated transcript. 100 -214953 smart00983 TPK_B1_binding Thiamin pyrophosphokinase, vitamin B1 binding domain. Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. The structure of thiamin pyrophosphokinase suggest that the enzyme may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis. 66 -214954 smart00984 UDPG_MGDP_dh_C UDP binding domain. The UDP-glucose/GDP-mannose dehydrogenases are a small group of enzymes which possesses the ability to catalyse the NAD-dependent 2-fold oxidation of an alcohol to an acid without the release of an aldehyde intermediate. 99 -214955 smart00985 UBA_e1_C Ubiquitin-activating enzyme e1 C-terminal domain. This presumed domain found at the C terminus of Ubiquitin-activating enzyme e1 proteins is functionally uncharacterised. 128 -214956 smart00986 UDG Uracil DNA glycosylase superfamily. 156 -214958 smart00988 UreE_N UreE urease accessory protein, N-terminal domain. UreE is a urease accessory protein. Urease hydrolyses urea into ammonia and carbamic acid. 65 -198057 smart00989 V4R The V4R (vinyl 4 reductase) domain is a predicted small molecular binding domain, that may bind to hydrocarbons. 61 -214959 smart00990 VRR_NUC This model contains proteins with the VRR-NUC domain. It is associated with members of the PD-(D/E)XK nuclease superfamily, which include the type III restriction modification enzymes, for example StyLTI. 108 -214960 smart00991 WHEP-TRS A conserved domain of 46 amino acids, called WHEP-TRS has been shown.to exist in a number of higher eukaryote aminoacyl-transfer RNA synthetases. This domain is present one to six times in the several enzymes. There are three copies in mammalian multifunctional aminoacyl-tRNA synthetase in a region that separates the N-terminal glutamyl-tRNA synthetase domain from the C-terminal prolyl-tRNA synthetase domain, and six copies in the intercatalytic region of the Drosophila enzyme. The domain is found at the N-terminal extremity of the mammalian tryptophanyl- tRNA synthetase and histidyl-tRNA synthetase, and the mammalian, insect, nematode and plant glycyl- tRNA synthetases. This domain could contain a central alpha-helical region and may play a role in the association of tRNA-synthetases into multienzyme complexes. 56 -214961 smart00992 YccV-like Hemimethylated DNA-binding protein YccV like. YccV is a hemimethylated DNA binding protein which has been shown to regulate dnaA gene expression. The structure of one of the hypothetical proteins in this family has been solved and it forms a beta sheet structure with a terminating alpha helix. 98 -198061 smart00993 YL1_C YL1 nuclear protein C-terminal domain. This domain is found in proteins of the YL1 family. These proteins have been shown to be DNA-binding and may be a transcription factor. This domain is found in proteins that are not YL1 proteins. 30 -198062 smart00994 zf-C4_ClpX ClpX C4-type zinc finger. The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C4 type. This presumed zinc binding domain is found at the N-terminus of the ClpX protein. ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. The molecular function of this domain is now known. 39 -214962 smart00995 AD Anticodon-binding domain. This domain of approximately 100 residues is conserved from plants to humans. It is frequently found in association with Lsm domain-containing proteins. 90 -214963 smart00996 AdoHcyase S-adenosyl-L-homocysteine hydrolase. 426 -198065 smart00997 AdoHcyase_NAD S-adenosyl-L-homocysteine hydrolase, NAD binding domain. 162 -198066 smart00998 ADSL_C Adenylosuccinate lyase C-terminus. Adenylosuccinate lyase catalyses two steps in the synthesis of purine nucleotides: the conversion of succinylaminoimidazole-carboxamide ribotide into aminoimidazole-carboxamide ribotide (the fifth step of de novo IMP biosynthesis); the formation of adenosine monophosphate (AMP) from adenylosuccinate (the final step in the synthesis of AMP from IMP). This entry represents the C-terminal, seven alpha-helical, domain of adenylosuccinate lyase. 81 -198067 smart00999 Aerolysin Aerolysin toxin. This family represents the pore forming lobe of aerolysin. 368 -214964 smart01000 Aha1_N Activator of Hsp90 ATPase, N-terminal. This domain is predominantly found in the protein 'Activator of Hsp90 ATPase', it adopts a secondary structure consisting of an N-terminal alpha-helix leading into a four-stranded meandering antiparallel beta-sheet, followed by a C-terminal alpha-helix. The two helices are packed together, with the beta-sheet curving around them. They bind to the molecular chaperone HSP82 and stimulate its ATPase activity. 134 -214965 smart01001 AIRC AIR carboxylase. Members of this family catalyse the decarboxylation of 1-(5-phosphoribosyl)-5-amino-4-imidazole-carboxylate (AIR). This family catalyse the sixth step of de novo purine biosynthesis. Some members of this family contain two copies of this domain. 152 -214966 smart01002 AlaDh_PNT_C Alanine dehydrogenase/PNT, C-terminal domain. Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. 149 -214967 smart01003 AlaDh_PNT_N Alanine dehydrogenase/PNT, N-terminal domain. Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. 133 -214968 smart01004 ALAD Delta-aminolevulinic acid dehydratase. This entry represents porphobilinogen (PBG) synthase (PBGS, or 5-aminoaevulinic acid dehydratase, or ALAD, ), which functions during the second stage of tetrapyrrole biosynthesis. This enzyme catalyses a Knorr-type condensation reaction between two molecules of ALA to generate porphobilinogen, the pyrrolic building block used in later steps. The structure of the enzyme is based on a TIM barrel topology made up of eight identical subunits, where each subunit binds to a metal ion that is essential for activity, usually zinc (in yeast, mammals and certain bacteria) or magnesium (in plants and other bacteria). A lysine has been implicated in the catalytic mechanism. The lack of PBGS enzyme causes a rare porphyric disorder known as ALAD porphyria, which appears to involve conformational changes in the enzyme. 321 -214969 smart01005 Ala_racemase_C Alanine racemase, C-terminal domain. Alanine racemase plays a role in providing the D-alanine required for cell wall biosynthesis by isomerising L-alanine to D-alanine. Proteins contains this domain are found in both prokaryotic and eukaryotic proteins. 124 -198074 smart01006 AlcB Siderophore biosynthesis protein domain. AlcB is the conserved 45 residue region of one of the proteins of a complex which mediates alcaligin biosynthesis in Bordetella and aerobactin biosynthesis in E. coli and other bacteria. The protein appears to catalyse N-acylation of the hydroxylamine group in N-hydroxyputrescine with succinyl CoA - an activated mono-thioester derivative of succinic acid that is an intermediate in the Krebs cycle. 48 -214970 smart01007 Aldolase_II Class II Aldolase and Adducin N-terminal domain. This family includes class II aldolases and adducins which have not been ascribed any enzymatic function. 185 -214971 smart01008 Ald_Xan_dh_C Aldehyde oxidase and xanthine dehydrogenase, a/b hammerhead domain. Aldehyde oxidase catalyses the conversion of an aldehyde in the presence of oxygen and water to an acid and hydrogen peroxide. The enzyme is a homodimer, and requires FAD, molybdenum and two 2FE-2S clusters as cofactors. Xanthine dehydrogenase catalyses the hydrogenation of xanthine to urate, and also requires FAD, molybdenum and two 2FE-2S clusters as cofactors. This activity is often found in a bifunctional enzyme with xanthine oxidase activity too. The enzyme can be converted from the dehydrogenase form to the oxidase form irreversibly by proteolysis or reversibly through oxidation of sulphydryl groups. 107 -214972 smart01009 AlkA_N AlkA N-terminal domain. This domain is found at the N terminus of bacterial AlkA . AlkA (3-methyladenine-DNA glycosylase II) is a base excision repair glycosylase from Escherichia coli. It removes a variety of alkylated bases from DNA, primarily by removing alkylation damage from duplex and single stranded DNA. AlkA flips a 1-azaribose abasic nucleotide out of DNA. This produces a 66 degrees bend in the DNA and a marked widening of the minor groove. 113 -214973 smart01010 AMPKBI 5'-AMP-activated protein kinase beta subunit, interation domain. This region is found in the beta subunit of the 5'-AMP-activated protein kinase complex, and its yeast homologues Sip1, Sip2 and Gal83, which are found in the SNF1 kinase complex. This region is sufficient for interaction of this subunit with the kinase complex, but is not solely responsible for the interaction, and the interaction partner is not known. The isoamylase N-terminal domain is sometimes found in proteins belonging to this family. 100 -198079 smart01011 AMP_N Aminopeptidase P, N-terminal domain. This domain is structurally very similar to the creatinase N-terminal domain. However, little or no sequence similarity exists between the two families. 135 -198080 smart01012 ANTAR ANTAR (AmiR and NasR transcription antitermination regulators) is an RNA-binding domain found in bacterial transcription antitermination regulatory proteins. The majority of the domain consists of a coiled-coil. 55 -198081 smart01013 APC2 Anaphase promoting complex (APC) subunit 2. The anaphase promoting complex or cyclosome (APC2) is an E3 ubiquitin ligase which is part of the SCF family of ubiquitin ligases. Ubiquitin ligases catalyse the transfer of ubiquitin from the ubiquitin conjugating enzyme (E2), to the substrate protein. 60 -198082 smart01014 ARID ARID/BRIGHT DNA binding domain. Members of the recently discovered ARID (AT-rich interaction domain) family of DNA-binding proteins are found in fungi and invertebrate and vertebrate metazoans. ARID-encoding genes are involved in a variety of biological processes including embryonic development, cell lineage gene regulation and cell cycle control. Although the specific roles of this domain and of ARID-containing proteins in transcriptional regulation are yet to be elucidated, they include both positive and negative transcriptional regulation and a likely involvement in the modification of chromatin structure. The basic structure of the ARID domain domain appears to be a series of six alpha-helices separated by beta-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. Based on primary sequence homology, they can be partitioned into three structural classes: Minimal ARID proteins that consist of a core domain formed by six alpha helices; ARID proteins that supplement the core domain with an N-terminal alpha-helix; and Extended-ARID proteins, which contain the core domain and additional alpha-helices at their N- and C-termini. 88 -214974 smart01015 Arfaptin Arfaptin-like domain. Arfaptin interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. The structure of arfaptin shows that upon binding to a small GTPase, arfaptin forms an elongated, crescent-shaped dimer of three-helix coiled-coils. The N-terminal region of ICA69 is similar to arfaptin. 217 -214975 smart01016 Arg_tRNA_synt_N Arginyl tRNA synthetase N terminal dom. This domain is found at the amino terminus of Arginyl tRNA synthetase, also called additional domain 1 (Add-1). It is about 140 residues long and it has been suggested that this domain will be involved in tRNA recognition. 85 -214976 smart01017 Arrestin_C Arrestin (or S-antigen), C-terminal domain. Ig-like beta-sandwich fold. Scop reports duplication with N-terminal domain. Arrestins comprise a family of closely-related proteins that includes beta-arrestin-1 and -2, which regulate the function of beta-adrenergic receptors by binding to their phosphorylated forms, impairing their capacity to activate G(S) proteins; Cone photoreceptors C-arrestin (arrestin-X). which could bind to phosphorylated red/green opsins; and Drosophila phosrestins I and II, which undergo light-induced phosphorylation, and probably play a role in photoreceptor transduction. 142 -198086 smart01018 B12-binding_2 B12 binding domain. Cobalamin-dependent methionine synthase is a large modular protein that catalyses methyl transfer from methyltetrahydrofolate (CH3-H4folate) to homocysteine. During the catalytic cycle, it supports three distinct methyl transfer reactions, each involving the cobalamin (vitamin B12) cofactor and a substrate bound to its own functional unit. The cobalamin cofactor plays an essential role in this reaction, accepting the methyl group from CH3-H4folate to form methylcob(III)alamin, and in turn donating the methyl group to homocysteine to generate methionine and cob(I)alamin. Methionine synthase is a large enzyme composed of four structurally and functionally distinct modules: the first two modules bind homocysteine and CH3-H4folate, the third module binds the cobalamin cofactor and the C-terminal module binds S-adenosylmethionine. The cobalamin-binding module is composed of two structurally distinct domains: a 4-helical bundle cap domain (residues 651-740 in the Escherichia coli enzyme) and an alpha/beta B12-binding domain (residues 741-896). The 4-helical bundle forms a cap over the alpha/beta domain, which acts to shield the methyl ligand of cobalamin from solvent. Furthermore, in the conversion to the active conformation of this enzyme, the 4-helical cap rotates to allow the cobalamin cofactor to bind the activation domain. The alpha/beta domain is a common cobalamin-binding motif, whereas the 4-helical bundle domain with its methyl cap is a distinctive feature of methionine synthases. 84 -214977 smart01019 B3 B3 DNA binding domain. Two DNA binding proteins, RAV1 and RAV2 from Arabidopsis thaliana contain two distinct amino acid sequence domains found only in higher plant species. The N-terminal regions of RAV1 and RAV2 are homologous to the AP2 DNA-binding domain (see ) present in a family of transcription factors, while the C-terminal region exhibits homology to the highly conserved C-terminal domain, designated B3, of VP1/ABI3 transcription factors. The AP2 and B3-like domains of RAV1 bind autonomously to the CAACA and CACCTG motifs, respectively, and together achieve a high affinity and specificity of binding. It has been suggested that the AP2 and B3-like domains of RAV1 are connected by a highly flexible structure enabling the two domains to bind to the CAACA and CACCTG motifs in various spacings and orientations. 96 -198088 smart01020 B2-adapt-app_C Beta2-adaptin appendage, C-terminal sub-domain. Members of this family adopt a structure consisting of a 5 stranded beta-sheet, flanked by one alpha helix on the outer side, and by two alpha helices on the inner side. This domain is required for binding to clathrin, and its subsequent polymerisation. Furthermore, a hydrophobic patch present in the domain also binds to a subset of D-phi-F/W motif-containing proteins that are bound by the alpha-adaptin appendage domain (epsin, AP180, eps15). 111 -214978 smart01021 Bac_rhodopsin Bacteriorhodopsin-like protein. The bacterial opsins are retinal-binding proteins that provide light- dependent ion transport and sensory functions to a family of halophilic bacteria.. They are integral membrane proteins believed to contain seven transmembrane (TM) domains, the last of which contains the attachment point for retinal (a conserved lysine). 233 -214979 smart01022 ASCH The ASCH domain adopts a beta-barrel fold similar to that of the PUA domain. It is thought to function as an RNA-binding domain during coactivation, RNA-processing and possibly during prokaryotic translation regulation. 99 -198091 smart01023 BAF Barrier to autointegration factor. Barrier-to-autointegration factor (BAF) is an essential protein that is highly conserved in metazoan evolution, and which may act as a DNA-bridging protein. BAF binds directly to double-stranded DNA, to transcription activators, and to inner nuclear membrane proteins, including lamin A filament proteins that anchor nuclear-pore complexes in place, and nuclear LEM-domain proteins that bind to laminins filaments and chromatin. New findings suggest that BAF has structural roles in nuclear assembly and chromatin organization, represses gene expression and might interlink chromatin structure, nuclear architecture and gene regulation in metazoans. BAF can be exploited by retroviruses to act as a host component of pre-integration complexes, which promote the integration of the retroviral DNA into the host chromosome by preventing autointegration of retroviral DNA. BAF might contribute to the assembly or activity of retroviral pre-integration complexes through direct binding to the retroviral proteins p55 Gag and matrix, as well as to DNA. 87 -214980 smart01024 BCS1_N This domain is found at the N terminal of the mitochondrial ATPase BSC1. It encodes the import and intramitochondrial sorting for the protein. 170 -214981 smart01025 BEN The BEN domain is found in diverse animal proteins. Proteins containing BEN domains are BANP/SMAR1, NAC1 and the Drosophila mod(mdg4) isoform C, the chordopoxvirus virosomal protein E5R and several proteins of polydnaviruses. Computational analysis suggests that the BEN domain mediates protein-DNA and protein-protein interactions during chromatin organisation and transcription. 80 -214982 smart01026 Beach Beige/BEACH domain. The BEACH domain was described in the BEIGE protein (D1035670) and in the highly homologous CHS protein. The BEACH domain is usually followed by a series of WD repeats. The function of the BEACH domain is unknown. 280 -214983 smart01027 Beta-Casp Beta-Casp domain. The beta-CASP domain is found C terminal to the beta-lactamase domain in pre-mRNA 3'-end-processing endonuclease. The active site of this enzyme is located at the interface of these two domains. 126 -198096 smart01028 Beta-TrCP_D D domain of beta-TrCP. This domain is found in eukaryotes, and is approximately 40 amino acids in length. It is found associated with F-box domain, WD domain. The protein that contains this domain functions as a ubiquitin ligase. Ubiquitination is required to direct proteins towards the proteasome for degradation. This protein is part of the WD40 class of F box proteins. The D domain of these F box proteins is involved in mediating the dimerisation of the protein. Dimerisation is necessary to polyubiquitinate substrates so this D domain is vital in directing substrates towards the proteasome for degradation. 40 -198097 smart01029 BetaGal_dom2 Beta-galactosidase, domain 2. This is the second domain of the five-domain beta-galactosidase enzyme that altogether catalyses the hydrolysis of beta(1-3) and beta(1-4) galactosyl bonds in oligosaccharides as well as the inverse reaction of enzymatic condensation and trans-glycosylation. This domain is made up of 16 antiparallel beta-strands and an alpha-helix at its C terminus. The fold of this domain appears to be unique. In addition, the last seven strands of the domain form a subdomain with an immunoglobulin-like (I-type Ig) fold in which the first strand is divided between the two beta-sheets. In penicillin spp this strand is interrupted by a 12-residue insertion which forms an additional edge-strand to the second beta-sheet of the sub-domain. The remainder of the second domain forms a series of beta-hairpins at its N terminus, four strands of which are contiguous with part of the Ig-like sub-domain, forming in total a seven-stranded antiparallel beta-sheet. This domain is associated with family Glyco_hydro_35, which is N-terminal to it, but itself has no metazoan members. 182 -214984 smart01030 BHD_1 Rad4 beta-hairpin domain 1. This short domain is found in the Rad4 protein. This domain binds to DNA. 54 -214985 smart01031 BHD_2 Rad4 beta-hairpin domain 2. This short domain is found in the Rad4 protein. This domain binds to DNA. 56 -198100 smart01032 BHD_3 Rad4 beta-hairpin domain 3. This short domain is found in the Rad4 protein. This domain binds to DNA. 75 -198101 smart01033 BING4CT BING4CT (NUC141) domain. This C terminal domain is found in the BING4 family of nucleolar WD40 repeat proteins. 80 -198102 smart01034 BLUF Sensors of blue-light using FAD. The BLUF domain has been shown to bind FAD in the AppA protein. AppA is involved in the repression of photosynthesis genes in response to blue-light. 92 -214986 smart01035 BOP1NT BOP1NT (NUC169) domain. This N terminal domain is found in BOP1-like WD40 proteins. 264 -214987 smart01036 BP28CT BP28CT (NUC211) domain. This C-terminal domain is found in BAP28-like nucleolar proteins. 151 -198105 smart01037 Bet_v_1 Pathogenesis-related protein Bet v I family. This family is named after Bet v 1, the major birch pollen allergen. This protein belongs to family 10 of plant pathogenesis-related proteins (PR-10), cytoplasmic proteins of 15-17 kd that are wide-spread among dicotyledonous plants. In recent years, a number of diverse plant proteins with low sequence similarity to Bet v 1 was identified. A classification by sequence similarity yielded several subfamilies related to PR-10.- Pathogenesis-related proteins PR-10: These proteins were identified as major tree pollen allergens in birch and related species (hazel, alder), as plant food allergens expressed in high levels in fruits, vegetables and seeds (apple, celery, hazelnut), and as pathogenesis-related proteins whose expression is induced by pathogen infection, wounding, or abiotic stress. Hyp-1, an enzyme involved in the synthesis of the bioactive naphthodianthrone hypericin in St. John's wort (Hypericum perforatum) also belongs to this family. Most of these proteins were found in dicotyledonous plants. In addition, related sequences were identified in monocots and conifers. - Cytokinin-specific binding proteins: These legume proteins bind cytokinin plant hormones. - (S)-Norcoclaurine synthases are enzymes catalysing the condensation of dopamine and 4-hydroxyphenylacetaldehyde to (S)-norcoclaurine, the first committed step in the biosynthesis of benzylisoquinoline alkaloids such as morphine. -Major latex proteins and ripening-related proteins are proteins of unknown biological function that were first discovered in the latex of opium poppy (Papaver somniferum) and later found to be upregulated during ripening of fruits such as strawberry and cucumber. The occurrence of Bet v 1-related proteins is confined to seed plants with the exception of a cytokinin-binding protein from the moss Physcomitrella patens. 151 -214988 smart01038 Bgal_small_N Beta galactosidase small chain. This domain comprises the small chain of dimeric beta-galactosidases EC:3.2.1.23. This domain is also found in single chain beta-galactosidase. 272 -198107 smart01039 BRICHOS The BRICHOS domain is found in a variety of proteins implicated in dementia, respiratory distress and cancer. Its exact function is unknown; roles that have been proposed for the domain, which is about 100 amino acids long, include (a) targeting of the protein to the secretory pathway, (b) intramolecular chaperone-like function, and (c) assisting the specialised intracellular protease processing system. This C-terminal domain is embedded in the endoplasmic reticulum lumen, and binds to the N-terminal, transmembrane, SP_C, pfam08999 provided that it is in non-helical conformation. Thus the Brichos domain of proSP-C is a chaperone that induces alpha-helix formation of an aggregation-prone TM region. 96 -214989 smart01040 Bro-N BRO family, N-terminal domain. This family includes the N-terminus of baculovirus BRO and ALI motif proteins. The function of BRO proteins is unknown. It has been suggested that BRO-A and BRO-C are DNA binding proteins that influence host DNA replication and/or transcription. This Pfam domain does not include the characteristic invariant alanine, leucine, isoleucine motif of the ALI proteins. 89 -214990 smart01041 BRO1 BRO1-like domain. This domain is found in a number proteins including Rhophilin and BRO1. It is known to have a role in endosomal targeting. ESCRT-III subunit Snf7 binds to a conserved hydrophobic patch in the BRO1 domain that is required for protein complex formation and for the protein-sorting function of BRO1. 381 -198110 smart01042 Brr6_like_C_C Di-sulfide bridge nucleocytoplasmic transport domain. Brr6_like_C_C is the highly conserved C-terminal region of a group of proteins found in fungi. It carries four highly conserved cysteine residues. It is suggested that members of the family interact with each other via di-sulfide bridges to form a complex which is involved in nucleocytoplasmic transport. 134 -198111 smart01043 BTAD Bacterial transcriptional activator domain. Found in the DNRI/REDD/AFSR family of regulators. This region of AFSR along with the C terminal region is capable of independently directing actinorhodin production. This family contains TPR repeats. 145 -214991 smart01044 Btz CASC3/Barentsz eIF4AIII binding. This domain is found on CASC3 (cancer susceptibility candidate gene 3 protein) which is also known as Barentsz (Btz). CASC3 is a component of the EJC (exon junction complex) which is a complex that is involved in post-transcriptional regulation of mRNA in metazoa. The complex is formed by the association of four proteins (eIF4AIII, Barentsz, Mago, and Y14), mRNA, and ATP. This domain wraps around eIF4AIII and stacks against the 5' nucleotide. 106 -214992 smart01045 BURP The BURP domain is found at the C-terminus of several different plant proteins. It was named after the proteins in which it was first identified: the BNM2 clone-derived protein from Brassica napus; USPs and USP-like proteins; RD22 from Arabidopsis thaliana; and PG1beta from Lycopersicon esculentum. This domain is around 230 amino acid residues long. It possesses the following conserved features: two phenylalanine residues at its N-terminus; two cysteine residues; and four repeated cysteine-histidine motifs, arranged as: CH-X(10)-CH-X(25-27)-CH-X(25-26)-CH, where X can be any amino acid. The function of this domain is unknown. 222 -198114 smart01046 c-SKI_SMAD_bind c-SKI Smad4 binding domain. c-SKI is an oncoprotein that inhibits TGF-beta signaling through interaction with Smad proteins. This domain binds to Smad4. 95 -214993 smart01047 C1_4 TFIIH C1-like domain. The carboxyl-terminal region of TFIIH is essential for transcription activity. This regions binds three zinc atoms through two independent domain. The first contains a C4 zinc finger motif, whereas the second is characterised by a CX(2)CX(2-4)FCADCD motif. The solution structure of the second C-terminal domain revealed homology with the regulatory domain of protein kinase C. 49 -214994 smart01048 C6 This domain of unknown function is found in a C. elegans protein. It is presumed to be an extracellular domain. The C6 domain contains six conserved cysteine residues in most copies of the domain. However some copies of the domain are missing cysteine residues 1 and 3 suggesting that these form a disulphide bridge. 98 -214995 smart01049 Cache_2 Cache is an extracellular domain that is predicted to have a role in small-molecule recognition in a wide range of proteins. Members include the animal dihydropyridine-sensitive voltage-gated Ca2+ channel; alpha-2delta subunit, and various bacterial chemotaxis receptors. The name Cache comes from CAlcium channels and CHEmotaxis receptors. This domain consists of an N-terminal part with three predicted strands and an alpha-helix, and a C-terminal part with a strand dyad followed by a relatively unstructured region. The N-terminal portion of the (unpermuted) Cache domain contains three predicted strands that could form a sheet analogous to that present in the core of the PAS domain structure. Cache domains are particularly widespread in bacteria, with Vibrio cholerae. The animal calcium channel alpha-2delta subunits might have acquired a part of their extracellular domains from a bacterial source. The Cache domain appears to have arisen from the GAF-PAS fold despite their divergent functions. 91 -214996 smart01050 CactinC_cactus Cactus-binding C-terminus of cactin protein. CactinC_cactus is the C-terminal 200 residues of the cactin protein which are necessary for the association of cactin with IkappaB-cactus as one of the intracellular members of the Rel complex. The Rel (NF-kappaB) pathway is conserved in invertebrates and vertebrates. In mammals, it controls the activities of the immune and inflammatory response genes as well as viral genes, and is critical for cell growth and survival. In Drosophila, the Rel pathway functions in the innate cellular and humoral immune response, in muscle development, and in the establishment of dorsal-ventral polarity in the early embryo. Most members of the family also have a Cactin_mid domain further upstream. 129 -198119 smart01051 CAMSAP_CKK Microtubule-binding calmodulin-regulated spectrin-associated. This is the C-terminal domain of a family of eumetazoan proteins collectively defined as calmodulin-regulated spectrin-associated, or CAMSAP, proteins. CAMSAP proteins carry an N-terminal region that includes the CH domain, a central region including a predicted coiled-coil and this C-terminal, or CKK, domain - defined as being present in CAMSAP, KIAA1078 and KIAA1543, The C-terminal domain is the part of the CAMSAP proteins that binds to microtubules. The domain appears to act by producing inhibition of neurite extension, probably by blocking microtubule function. CKK represents a domain that has evolved with the metazoa. The structure of a murine hypothetical protein from RIKEN cDNA has shown the domain to adopt a mainly beta barrel structure with an associated alpha-helical hairpin. 129 -214997 smart01052 CAP_GLY Cytoskeleton-associated proteins (CAPs) are involved in the organisation of microtubules and transportation of vesicles and organelles along the cytoskeletal network. A conserved motif, CAP-Gly, has been identified in a number of CAPs, including CLIP-170 and dynactins. The crystal structure of Caenorhabditis elegans F53F4.3 protein CAP-Gly domain was recently solved. The domain contains three beta-strands. The most conserved sequence, GKNDG, is located in two consecutive sharp turns on the surface, forming the entrance to a groove. 68 -198121 smart01053 CaMBD Calmodulin binding domain. Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through this the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. The structure of this domain complexed with CaM is known. This domain forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. 76 -214998 smart01054 CaM_binding Plant calmodulin-binding domain. The sequences featured in this family are found repeated in a number of plant calmodulin-binding proteins, and are thought to constitute the calmodulin-binding domains.. Binding of the proteins to calmodulin depends on the presence of calcium ions.. These proteins are thought to be involved in various processes, such as plant defence responses.and stolonisation or tuberization. 115 -214999 smart01055 Cadherin_pro Cadherin prodomain like. Cadherins are a family of proteins that mediate calcium dependent cell-cell adhesion. They are activated through cleavage of a prosequence in the late Golgi. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions. 87 -198124 smart01056 Candida_ALS_N Cell-wall agglutinin N-terminal ligand-sugar binding. This is likely to be the sugar or ligand binding domain of the yeast alpha-agglutinins. 245 -215000 smart01057 Carb_anhydrase Eukaryotic-type carbonic anhydrase. Carbonic anhydrases are zinc metalloenzymes which catalyse the reversible hydration of carbon dioxide to bicarbonate.. CAs have essential roles in facilitating the transport of carbon dioxide and protons in the intracellular space, across biological membranes and in the layers of the extracellular space; they are also involved in many other processes, from respiration and photosynthesis in eukaryotes to cyanate degradation in prokaryotes. There are five known evolutionarily distinct CA families (alpha, beta, gamma, delta and epsilon) that have no significant sequence identity and have structurally distinct overall folds. Some CAs are membrane-bound, while others act in the cytosol; there are several related proteins that lack enzymatic activity. The active site of alpha-CAs is well described, consisting of a zinc ion coordinated through 3 histidine residues and a water molecule/hydroxide ion that acts as a potent nucleophile. The enzyme employs a two-step mechanism: in the first step, there is a nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide; in the second step, the active site is regenerated by the ionisation of the zinc-bound water molecule and the removal of a proton from the active site. Beta- and gamma-CAs also employ a zinc hydroxide mechanism, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. 247 -215001 smart01058 CarD_TRCF CarD-like/TRCF domain. CarD is a Myxococcus xanthus protein required for the activation of light- and starvation-inducible genes. This family includes the presumed N-terminal domain. CarD interacts with the zinc-binding protein CarG, to form a complex that regulates multiple processes in Myxococcus xanthus. This family also includes a domain to the N-terminal side of the DEAD helicase of TRCF proteins. TRCF displaces RNA polymerase stalled at a lesion, binds to the damage recognition protein UvrA, and increases the template strand repair rate during transcription. This domain is involved in binding to the stalled RNA polymerase. 99 -215002 smart01059 CAT Chloramphenicol acetyltransferase. Chloramphenicol acetyltransferase (CAT).catalyzes the acetyl-CoA dependent acetylation of chloramphenicol (Cm), an antibiotic which inhibits prokaryotic peptidyltransferase activity. Acetylation of Cm by CAT inactivates the antibiotic. A histidine residue, located in the C-terminal section of the enzyme, plays a central role in its catalytic mechanism. There is a second family of CAT. evolutionary unrelated to the main family described above. These CAT belong to the bacterial hexapeptide-repeat containing-transferases family (see ). The crystal structure of the type III enzyme from Escherichia coli with chloramphenicol bound has been determined. CAT is a trimer of identical subunits (monomer Mr 25,000) and the trimeric structure is stabilised by a number of hydrogen bonds, some of which result in the extension of a beta-sheet across the subunit interface. Chloramphenicol binds in a deep pocket located at the boundary between adjacent subunits of the trimer, such that the majority of residues forming the binding pocket belong to one subunit while the catalytically essential histidine belongs to the adjacent subunit. His195 is appropriately positioned to act as a general base catalyst in the reaction, and the required tautomeric stabilisation is provided by an unusual interaction with a main-chain carbonyl oxygen. 202 -215003 smart01060 Catalase Catalases are antioxidant enzymes that catalyse the conversion of hydrogen peroxide to water and molecular oxygen, serving to protect cells from its toxic effects. Hydrogen peroxide is produced as a consequence of oxidative cellular metabolism and can be converted to the highly reactive hydroxyl radical via transition metals, this radical being able to damage a wide variety of molecules within a cell, leading to oxidative stress and cell death. Catalases act to neutralise hydrogen peroxide toxicity, and are produced by all aerobic organisms ranging from bacteria to man. Most catalases are mono-functional, haem-containing enzymes, although there are also bifunctional haem-containing peroxidase/catalases that are closely related to plant peroxidases, and non-haem, manganese-containing catalases that are found in bacteria. 373 -215004 smart01061 CAT_RBD CAT RNA binding domain. This RNA binding domain is found at the amino terminus of transcriptional antitermination proteins such as BglG, SacY and LicT. These proteins control the expression of sugar metabolising operons in Gram+ and Gram- bacteria. This domain has been called the CAT (Co-AntiTerminator) domain. It binds as a dimer.to short Ribonucleotidic Anti-Terminator (RAT) hairpin, each monomer interacting symmetrically with both strands of the RAT hairpin. In the full-length protein, CAT is followed by two phosphorylatable PTS regulation domains that modulate the RNA binding activity of CAT. Upon activation, the dimeric proteins bind to RAT targets in the nascent mRNA, thereby preventing abortive dissociation of the RNA polymerase from the DNA template. 55 -198130 smart01062 Ca_chan_IQ Voltage gated calcium channel IQ domain. Voltage gated calcium channels control cellular calcium entry in response to changes in membrane potential. The isoleucine-glutamine (IQ) motif in the voltage gated calcium channel IQ domain interacts with hydrophobic pockets of Ca2+/calmodulin. The interaction regulates two self-regulatory calcium dependent feedback mechanism, calcium dependent inactivation (CDI), and calcium-dependent facilitation (CDF). 31 -215005 smart01063 CBM49 Carbohydrate binding domain CBM49. This domain is found at the C terminal of cellulases and in vitro binding studies have shown it to binds to crystalline cellulose. 84 -198132 smart01064 CBM_10 Cellulose or protein binding domain. This domain is found in two distinct sets of proteins with different functions. Those found in aerobic bacteria bind cellulose (or other carbohydrates); but in anaerobic fungi they are protein binding domains, referred to as dockerin domains or docking domains. They are believed to be responsible for the assembly of a multiprotein cellulase/hemicellulase complex, similar to the cellulosome found in certain anaerobic bacteria. 29 -215006 smart01065 CBM_2 Starch binding domain. 88 -198134 smart01066 CBM_25 Carbohydrate binding domain. 83 -215007 smart01067 CBM_3 Cellulose binding domain. 83 -215008 smart01068 CBM_X Putative carbohydrate binding domain. 62 -215009 smart01069 CDC37_C Cdc37 C terminal domain. Cdc37 is a protein required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the C terminal domain whose function is unclear. It is found C terminal to the Hsp90 chaperone (Heat shocked protein 90) binding domain pfam08565 and the N terminal kinase binding domain of Cdc37. 93 -215010 smart01070 CDC37_M Cdc37 Hsp90 binding domain. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domains corresponds to the Hsp90 chaperone (Heat shocked protein 90) binding domain of Cdc37. It is found between the N terminal Cdc37 domain which is predominantly involved in kinase binding, and the C terminal domain of Cdc37 whose function is unclear. 155 -198139 smart01071 CDC37_N Cdc37 N terminal kinase binding. Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This domain corresponds to the N terminal domain which binds predominantly to protein kinases.and is found N terminal to the Hsp (Heat shocked protein) 90-binding domain. Expression of a construct consisting of only the N-terminal domain of Saccharomyces pombe Cdc37 results in cellular viability. This indicates that interactions with the cochaperone Hsp90 may not be essential for Cdc37 function. 154 -215011 smart01072 CDC48_2 Cell division protein 48 (CDC48) domain 2. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the C-terminus. The VAT-N domain found in AAA ATPases is a substrate 185-residue recognition domain. 64 -215012 smart01073 CDC48_N Cell division protein 48 (CDC48) N-terminal domain. This domain has a double psi-beta barrel fold and includes VCP-like ATPase and N-ethylmaleimide sensitive fusion protein N-terminal domains. Both the VAT and NSF N-terminal functional domains consist of two structural domains of which this is at the N-terminus. The VAT-N domain found in AAA ATPases is a substrate 185-residue recognition domain. 82 -215013 smart01074 Cdc6_C CDC6, C terminal. The C terminal domain of CDC6 assumes a winged helix fold, with a five alpha-helical bundle (alpha15-alpha19) structure, backed on one side by three beta strands (beta6-beta8). It has been shown that this domain acts as a DNA-localisation factor, however its exact function is, as yet, unknown. Putative functions include: (1) mediation of protein-protein interactions and (2) regulation of nucleotide binding and hydrolysis. Mutagenesis studies have shown that this domain is essential for appropriate Cdc6 activity. 84 -215014 smart01075 CDT1 DNA replication factor CDT1 like. CDT1 is a component of the replication licensing system and promotes the loading of the mini-chromosome maintenance complex onto chromatin. Geminin is an inhibitor of CDT1 and prevents inappropriate re-initiation of replication on an already fired origin. This region of CDT1 binds to Geminin. 164 -198144 smart01076 CG-1 CG-1 domains are highly conserved domains of about 130 amino-acid residues. The domains contain a predicted bipartite NLS and are named after a partial cDNA clone isolated from parsley encoding a sequence-specific DNA-binding protein. CG-1 domains are associated with CAMTA proteins (for CAlModulin -binding Transcription Activator) that are transcription factors containing a calmodulin -binding domain and ankyrins (ANK) motifs. 118 -198145 smart01077 Cg6151-P Uncharacterized conserved protein CG6151-P. This is a family of small, less than 200 residue long, proteins which are named as CG6151-P proteins that are conserved from fungi to humans. The function is unknown. The fungal members have a characteristic ICP sequence motif. Some members are annotated as putative clathrin-coated vesicle protein but this could not be defined. 111 -198146 smart01078 CGGC This putative domain contains a quite highly conserved sequence of CGGC in its central region. The domain has many conserved cysteines and histidines suggestive of a zinc binding function. 106 -215015 smart01079 CHASE This domain is found in the extracellular portion of receptor-like proteins - such as serine/threonine kinases and adenylyl cyclases. Predicted to be a ligand binding domain. 176 -215016 smart01080 CHASE2 CHASE2 is an extracellular sensory domain, which is present in various classes of transmembrane receptors that are parts of signal transduction pathways in bacteria. Specifically, CHASE2 domains are found in histidine kinases, adenylate cyclases, serine/threonine kinases and predicted diguanylate cyclases/phosphodiesterases. Environmental factors that are recognised by CHASE2 domains are not known at this time. 303 -215017 smart01081 CHB_HEX Putative carbohydrate binding domain. This domain represents the N terminal domain in chitobiases and beta-hexosaminidases EC:3.2.1.52. It is composed of a beta sandwich structure that is similar in structure to the cellulose binding domain of cellulase from Cellulomonas fimi. This suggests that this may be a carbohydrate binding domain. 160 -198150 smart01082 CHZ Histone chaperone domain CHZ. This domain is highly conserved from yeasts to humans and is part of the chaperone protein HIRIP3 in vertebrates which interacts with the H3.3 chaperone HIRA, implicated in histone replacement during transcription. N- and C- termini of Chz family members are relatively divergent but do contain similar acidic stretches rich in Glu/Asp residues, characteristic of all histone chaperones. 38 -198151 smart01083 Cir_N N-terminal domain of CBF1 interacting co-repressor CIR. This is a 45 residue conserved region at the N-terminal end of a family of proteins referred to as CIRs (CBF1-interacting co-repressors). CBF1 (centromere-binding factor 1) acts as a transcription factor that causes repression by binding specifically to GTGGGAA motifs in responsive promoters, and it requires CIR as a co-repressor. CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex. 37 -198152 smart01084 CKS Cyclin-dependent kinase regulatory subunit. Cyclin-dependent kinase regulatory subunit. 70 -198153 smart01085 CK_II_beta Casein kinase II regulatory subunit. 184 -198154 smart01086 ClpB_D2-small C-terminal, D2-small domain, of ClpB protein. This is the C-terminal domain of ClpB protein, referred to as the D2-small domain, and is a mixed alpha-beta structure. Compared with the D1-small domain (included in AAA) it lacks the long coiled-coil insertion, and instead of helix C4 contains a beta-strand (e3) that is part of a three stranded beta-pleated sheet. In Thermophilus the whole protein forms a hexamer with the D1-small and D2-small domains located on the outside of the hexamer, with the long coiled-coil being exposed on the surface. The D2-small domain is essential for oligomerisation, forming a tight interface with the D2-large domain of a neighbouring subunit and thereby providing enough binding energy to stabilise the functional assembly. The domain is associated with two Clp_N at the N-terminus as well as AAA and AAA_2. 90 -215018 smart01087 COG6 Conserved oligomeric complex COG6. COG6 is a component of the conserved oligomeric golgi complex, which is composed of eight different subunits and is required for normal golgi morphology and localisation. 598 -198156 smart01088 Col_cuticle_N Nematode cuticle collagen N-terminal domain. The function of this domain is unknown. It is found in the N-terminal region of nematode cuticle collagens. Cuticle is a tough elastic structure secreted by hypodermal cells and is primarily composed of collagen proteins. 53 -198157 smart01089 Connexin_CCC Gap junction channel protein cysteine-rich domain. 67 -215019 smart01090 Copper-fist Copper fist is an N-terminal domain involved in copper-dependent DNA binding. The domain is named for its resemblance to a fist. It can be found in some fungal transcription factors. These proteins activate the transcription of the metallothionein gene in response to copper. Metallothionein maintains copper levels in yeast. The copper fist domain is similar in structure to metallothionein itself, and on copper binding undergoes a large conformational change, which allows DNA binding. 38 -215020 smart01091 CorC_HlyC Transporter associated domain. This small domain is found in a family of proteins with the DUF21 domain and two CBS domains with this domain found at the C-terminus of the proteins, the domain is also found at the C terminus of some Na+/H+ antiporters. This domain is also found in CorC that is involved in Magnesium and cobalt efflux. The function of this domain is uncertain but might be involved in modulating transport of ion substrates. 78 -215021 smart01092 CO_deh_flav_C CO dehydrogenase flavoprotein C-terminal domain. 102 -198161 smart01093 CP12 CP12 domain. 72 -215022 smart01094 CpcD CpcD/allophycocyanin linker domain. 51 -198163 smart01095 Cpl-7 Cpl-7 lysozyme C-terminal domain. This domain was originally found in the C-terminal moiety of the Cpl-7 lysozyme encoded by the Streptococcus pneumoniae bacteriophage Cp-7. It is assumed that these repeats represent cell wall binding motifs although no direct evidence has been obtained so far. 42 -198164 smart01096 CPSase_L_D3 Carbamoyl-phosphate synthetase large chain, oligomerisation domain. Carbamoyl-phosphate synthase catalyses the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. 124 -198165 smart01097 CPSase_sm_chain Carbamoyl-phosphate synthase small chain, CPSase domain. The carbamoyl-phosphate synthase domain is in the amino terminus of protein. Carbamoyl-phosphate synthase catalyses the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. This important enzyme initiates both the urea cycle and the biosynthesis of arginine and/or pyrimidines. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. The small chain promotes the hydrolysis of glutamine to ammonia, which is used by the large chain to synthesise carbamoyl phosphate. The small chain has a GATase domain in the carboxyl terminus. 130 -215023 smart01098 CPSF73-100_C This is the C-terminal conserved region of the pre-mRNA 3'-end-processing of the polyadenylation factor CPSF-73/CPSF-100 proteins. The exact function of this domain is not known. 212 -198167 smart01099 CPW_WPC This group of sequences is defined by a domain of about 61 residues in length with six well-conserved cysteine residues and six well-conserved aromatic sites. The domain can be found in tandem repeats, and is known so far only in Plasmodium falciparum. It is named for motifs of CPxxW and (less well conserved) WPC. Its function is unknown. 60 -215024 smart01100 CRAL_TRIO_N CRAL/TRIO, N-terminal domain. 48 -215025 smart01101 CRISPR_assoc This domain forms an anti-parallel beta strand structure with flanking alpha helical regions. 215 -198170 smart01102 CRM1_C CRM1 C terminal. CRM1 (also known as Exportin1) mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES). CRM1 forms a complex with the NES containing protein and the small GTPase Ran. This region forms an alpha helical structure formed by six helical hairpin motifs that are structurally similar to the HEAT repeat, but share little sequence similarity to the HEAT repeat. 321 -198171 smart01103 CRS1_YhbY Escherichia coli YhbY is associated with pre-50S ribosomal subunits, which implies a function in ribosome assembly. GFP fused to a single-domain CRM protein from maize localises to the nucleolus, suggesting that an analogous activity may have been retained in plants. A CRM domain containing protein in plant chloroplasts has been shown to function in group I and II intron splicing. In vitro experiments with an isolated maize CRM domain have shown it to have RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. YhbY has a fold similar to that of the C-terminal domain of translation initiation factor 3 (IF3C), which binds to 16S rRNA in the 30S ribosome. 84 -215026 smart01104 CTD Spt5 C-terminal nonapeptide repeat binding Spt4. The C-terminal domain of the transcription elongation factor protein Spt5 is necessary for binding to Spt4 to form the functional complex that regulates early transcription elongation by RNA polymerase II. The complex may be involved in pre-mRNA processing through its association with mRNA capping enzymes. This CTD domain carries a regular nonapeptide repeat that can be present in up to 18 copies, as in S. pombe. The repeat has a characteristic TPA motif. 121 +410909 cd19501 RecA-like_FtsH ATP-dependent zinc metalloprotease FtsH. FtsH ATPase is a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. It is anchored to the cytoplasmic membrane such that the amino- and carboxy-termini are exposed to the cytoplasm. It presents a membrane-bound hexameric structure that is able to unfold and degrade protein substrates. It is comprised of an N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. This RecA-Like FTsH subfamily represents the ATPase domain, and belongs to the RecA-like NTPase family which includes the NTP binding domain of F1 and V1 H(+)ATPases, DnaB and related helicases as well as bacterial RecA and related eukaryotic and archaeal recombinases. The RecA-like NTPase family also includes bacterial conjugation proteins and related DNA transfer proteins involved in type II and type IV secretion. 171 +409299 cd21157 PUA_G5K PUA domain of gamma-glutamyl kinase, found in archaea, bacteria, and eukarya. Gamma glutamyl kinase (G5K) is an enzyme essential for the biosynthesis of L-proline; it catalyzes the transfer of a phosphate group to glutamate. The resulting glutamate 5-phosphate cyclizes spontaneously to form 5-oxoproline. The PUA (PseudoUridine synthase and Archaeosine transglycosylase) domain functions as an RNA binding domain in many other proteins; however, its role in G5K is not understood. It might play a role in modulating the enzymatic properties of bacterial G5Ks. 104 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cdtrack.txt b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cdtrack.txt index e9f41a1e08..2a89c3f180 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cdtrack.txt +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/cdtrack.txt @@ -1,14883 +1,13 @@ - - # Acc ShortName PssmId Parent Root Ver Lv Rl ER Time # ------------ -------------- ------- -------- -------- ---- -- -- -- ----------------- -cd00001 PTS_IIB_man 237975 N/A cd00001 6 1 1 0 01/17/13 11:10:00 -cd00002 YbaK_deacylase 237976 cd04332 cd04332 6 1 1 0 01/17/13 11:10:00 -cd00003 PNPsynthase 237977 N/A cd00003 6 1 1 0 01/17/13 11:10:00 -cd00004 Sortase 320674 N/A cd00004 7 1 1 0 08/18/16 17:14:00 -cd00005 CBM9_like_1 187674 cd00241 cd00241 5 1 1 0 01/17/13 11:10:00 -cd00006 PTS_IIA_man 237978 N/A cd00006 5 1 1 0 01/17/13 11:10:00 -cd00008 PIN_53EXO-like 350199 cd09853 cd09852 7 1 0 0 07/11/18 17:58:00 -cd00009 AAA 99707 N/A cd00009 5 1 1 0 01/17/13 11:10:00 -cd00010 AAI_LTSS 237980 N/A cd00010 5 1 1 0 01/17/13 11:10:00 -cd00011 BAR_Arfapti... 153270 cd07307 cd07307 6 1 1 0 01/17/13 11:10:00 -cd00012 NBD_sugar-k... 212657 N/A cd00012 6 1 1 0 01/17/13 11:10:00 -cd00013 ADF_gelsolin 200435 N/A cd00013 6 1 1 0 01/17/13 11:10:00 -cd00014 CH 237981 N/A cd00014 5 1 1 0 01/17/13 11:10:00 -cd00015 ALBUMIN 237982 N/A cd00015 5 1 1 0 01/17/13 11:10:00 -cd00016 ALP_like 293732 N/A cd00016 8 1 1 0 11/06/15 11:54:00 -cd00017 ANATO 237984 N/A cd00017 4 1 1 0 01/17/13 11:10:00 -cd00018 AP2 237985 N/A cd00018 5 1 1 0 01/17/13 11:10:00 -cd00019 AP2Ec 237986 N/A cd00019 5 1 1 0 01/17/13 11:10:00 -cd00021 BBOX 237988 N/A cd00021 5 1 1 0 01/17/13 11:10:00 -cd00022 BIR 237989 N/A cd00022 5 1 1 0 01/17/13 11:10:00 -cd00023 BBI 237990 N/A cd00023 4 1 1 0 01/17/13 11:10:00 -cd00024 CD_CSD 349274 N/A cd00024 5 1 0 0 07/11/18 17:50:00 -cd00025 BPI1 237992 cd00264 cd00264 7 1 1 0 01/17/13 11:10:00 -cd00026 BPI2 237993 cd00264 cd00264 7 1 1 0 01/17/13 11:10:00 -cd00027 BRCT 349339 N/A cd00027 6 1 0 0 07/11/18 17:50:00 -cd00028 B_lectin 237995 N/A cd00028 4 1 1 0 01/17/13 11:10:00 -cd00029 C1 237996 N/A cd00029 5 1 1 0 01/17/13 11:10:00 -cd00030 C2 175973 N/A cd00030 5 1 1 0 01/17/13 11:10:00 -cd00031 CA_like 206635 N/A cd00031 6 1 1 0 01/17/13 11:10:00 -cd00032 CASc 237997 N/A cd00032 5 1 1 0 01/17/13 11:10:00 -cd00033 CCP 153056 N/A cd00033 5 1 1 0 01/17/13 11:10:00 -cd00034 CSD 349275 cd00024 cd00024 7 1 0 0 07/11/18 17:50:00 -cd00035 ChtBD1 211311 N/A cd00035 6 1 1 0 01/17/13 11:10:00 -cd00036 ChtBD3 213175 N/A cd00036 6 1 1 0 01/17/13 11:10:00 -cd00037 CLECT 153057 N/A cd00037 7 1 1 0 01/17/13 11:10:00 -cd00038 CAP_ED 237999 N/A cd00038 5 1 1 0 01/17/13 11:10:00 -cd00039 COLIPASE 119409 N/A cd00039 5 1 1 0 01/17/13 11:10:00 -cd00040 CSF2 238000 N/A cd00040 5 1 1 0 01/17/13 11:10:00 -cd00041 CUB 238001 N/A cd00041 5 1 1 0 01/17/13 11:10:00 -cd00042 CY 238002 N/A cd00042 4 1 1 0 01/17/13 11:10:00 -cd00043 CYCLIN 238003 N/A cd00043 4 1 1 0 01/17/13 11:10:00 -cd00044 CysPc 238004 N/A cd00044 5 1 1 0 01/17/13 11:10:00 -cd00045 DED 260016 cd08304 cd08304 6 1 1 0 08/20/13 16:29:00 -cd00046 SF2-N 350668 cd17912 cd17912 7 1 0 0 07/11/18 18:01:00 -cd00047 PTPc 350343 cd14494 cd14494 6 1 0 0 07/11/18 17:59:00 -cd00048 DSRM 238007 N/A cd00048 5 1 1 0 01/17/13 11:10:00 -cd00049 MH1 199811 N/A cd00049 6 1 1 0 01/17/13 11:10:00 -cd00050 MH2 199819 N/A cd00050 6 1 1 0 01/17/13 11:10:00 -cd00051 EFh 238008 N/A cd00051 5 1 1 0 01/17/13 11:10:00 -cd00052 EH 238009 N/A cd00052 5 1 1 0 01/17/13 11:10:00 -cd00053 EGF 238010 N/A cd00053 4 1 1 0 01/17/13 11:10:00 -cd00054 EGF_CA 238011 N/A cd00054 5 1 1 0 01/17/13 11:10:00 -cd00055 EGF_Lam 238012 N/A cd00055 4 1 1 0 01/17/13 11:10:00 -cd00056 ENDO3c 238013 N/A cd00056 5 1 1 0 01/17/13 11:10:00 -cd00057 FA58C 238014 N/A cd00057 5 1 1 0 01/17/13 11:10:00 -cd00058 FGF 238015 N/A cd00058 5 1 1 0 01/17/13 11:10:00 -cd00059 FH 238016 N/A cd00059 5 1 1 0 01/17/13 11:10:00 -cd00060 FHA 238017 N/A cd00060 4 1 1 0 01/17/13 11:10:00 -cd00061 FN1 238018 N/A cd00061 4 1 1 0 01/17/13 11:10:00 -cd00062 FN2 238019 N/A cd00062 4 1 1 0 01/17/13 11:10:00 -cd00063 FN3 238020 N/A cd00063 3 1 1 0 01/17/13 11:10:00 -cd00064 FU 238021 N/A cd00064 4 1 1 0 01/17/13 11:10:00 -cd00065 FYVE_like_SF 277249 N/A cd00065 6 1 1 0 03/27/15 16:15:00 -cd00066 G-alpha 206639 cd00882 cd00882 8 1 1 0 01/17/13 11:10:00 -cd00067 GAL4 238023 N/A cd00067 5 1 1 0 01/17/13 11:10:00 -cd00068 GGL 238024 N/A cd00068 5 1 1 0 01/17/13 11:10:00 -cd00069 GHB_like 200450 N/A cd00069 6 1 1 0 01/17/13 11:10:00 -cd00070 GLECT 238025 N/A cd00070 5 1 1 0 01/17/13 11:10:00 -cd00071 GMPK 238026 cd02019 cd02019 8 1 1 0 01/17/13 11:10:00 -cd00072 GYF 238027 N/A cd00072 4 1 1 0 01/17/13 11:10:00 -cd00073 H15 238028 N/A cd00073 5 1 1 0 01/17/13 11:10:00 -cd00074 H2A 238029 N/A cd00074 5 1 1 0 01/17/13 11:10:00 -cd00075 HATPase 340391 N/A cd00075 6 1 0 0 06/09/17 14:30:00 -cd00076 H4 238031 N/A cd00076 5 1 1 0 01/17/13 11:10:00 -cd00077 HDc 238032 N/A cd00077 5 1 1 0 01/17/13 11:10:00 -cd00078 HECTc 238033 N/A cd00078 5 1 1 0 01/17/13 11:10:00 -cd00080 H3TH_Struct... 188616 N/A cd00080 6 1 1 0 01/17/13 11:10:00 -cd00081 Hint 238035 N/A cd00081 6 1 1 0 01/17/13 11:10:00 -cd00082 HisKA 119399 N/A cd00082 6 1 1 0 01/17/13 11:10:00 -cd00083 HLH 238036 N/A cd00083 5 1 1 0 01/17/13 11:10:00 -cd00084 HMG-box 238037 N/A cd00084 6 1 1 0 01/17/13 11:10:00 -cd00085 HNHc 238038 N/A cd00085 5 1 1 0 01/17/13 11:10:00 -cd00086 homeodomain 238039 N/A cd00086 5 1 1 0 01/17/13 11:10:00 -cd00087 FReD 238040 N/A cd00087 5 1 1 0 01/17/13 11:10:00 -cd00088 HPT 238041 N/A cd00088 5 1 1 0 01/17/13 11:10:00 -cd00089 HR1 212008 N/A cd00089 5 1 1 0 01/17/13 11:10:00 -cd00090 HTH_ARSR 238042 N/A cd00090 5 1 1 0 01/17/13 11:10:00 -cd00091 NUC 238043 N/A cd00091 5 1 1 0 01/17/13 11:10:00 -cd00092 HTH_CRP 238044 N/A cd00092 5 1 1 0 01/17/13 11:10:00 -cd00093 HTH_XRE 238045 N/A cd00093 5 1 1 0 01/17/13 11:10:00 -cd00094 HX 238046 N/A cd00094 4 1 1 0 01/17/13 11:10:00 -cd00095 IFN 238047 N/A cd00095 4 1 1 0 01/17/13 11:10:00 -cd00096 Ig 319273 N/A cd00096 9 1 1 0 08/18/16 16:18:00 -cd00098 IgC 319274 cd00096 cd00096 10 1 1 0 08/18/16 16:18:00 -cd00099 IgV 319275 cd00096 cd00096 10 1 1 0 08/18/16 16:18:00 -cd00100 IL1 238048 N/A cd00100 3 1 1 0 01/17/13 11:11:00 -cd00101 IlGF_like 238049 N/A cd00101 5 1 1 0 01/17/13 11:11:00 -cd00102 IPT 238050 N/A cd00102 4 1 1 0 01/17/13 11:11:00 -cd00103 IRF 238051 N/A cd00103 5 1 1 0 01/17/13 11:11:00 -cd00104 KAZAL_FS 238052 N/A cd00104 4 1 1 0 01/17/13 11:11:00 -cd00105 KH-I 238053 N/A cd00105 5 1 1 0 01/17/13 11:11:00 -cd00106 KISc 276812 cd01363 cd01363 7 1 1 0 02/05/15 10:54:00 -cd00107 Knot1 238055 N/A cd00107 5 1 1 0 01/17/13 11:11:00 -cd00108 KR 238056 N/A cd00108 4 1 1 0 01/17/13 11:11:00 -cd00109 KU 238057 N/A cd00109 3 1 1 0 01/17/13 11:11:00 -cd00110 LamG 238058 N/A cd00110 3 1 1 0 01/17/13 11:11:00 -cd00111 Trefoil 238059 N/A cd00111 6 1 1 0 01/17/13 11:11:00 -cd00112 LDLa 238060 N/A cd00112 5 1 1 0 01/17/13 11:11:00 -cd00113 PLAT 238061 N/A cd00113 3 1 1 0 01/17/13 11:11:00 -cd00114 LIGANc 238062 N/A cd00114 5 1 1 0 01/17/13 11:11:00 -cd00115 LMWP 319970 N/A cd00115 6 1 1 0 08/18/16 16:45:00 -cd00116 LRR_RI 238064 N/A cd00116 4 1 1 0 01/17/13 11:11:00 -cd00117 LU 238065 N/A cd00117 4 1 1 0 01/17/13 11:11:00 -cd00118 LysM 212030 N/A cd00118 4 1 1 0 03/16/18 10:24:00 -cd00119 LYZ 340357 cd00442 cd00442 6 1 0 0 06/09/17 13:53:00 -cd00120 MADS 238067 N/A cd00120 5 1 1 0 01/17/13 11:11:00 -cd00121 MATH 238068 N/A cd00121 6 1 1 0 01/17/13 11:11:00 -cd00122 MBD 238069 N/A cd00122 5 1 1 0 01/17/13 11:11:00 -cd00123 DmpA_OAT 238070 N/A cd00123 6 1 1 0 01/17/13 11:11:00 -cd00124 MYSc 276950 cd01363 cd01363 7 1 1 0 02/05/15 10:54:00 -cd00125 PLA2c 153091 cd00618 cd00618 7 1 1 0 01/17/13 11:11:00 -cd00126 PAH 238072 N/A cd00126 5 1 1 0 01/17/13 11:11:00 -cd00128 PIN_FEN1_EX... 350200 cd09853 cd09852 7 1 0 0 07/11/18 17:58:00 -cd00129 PAN_APPLE 238074 N/A cd00129 4 1 1 0 01/17/13 11:11:00 -cd00130 PAS 238075 N/A cd00130 4 1 1 0 01/17/13 11:11:00 -cd00131 PAX 238076 N/A cd00131 5 1 1 0 01/17/13 11:11:00 -cd00132 CRIB 238077 N/A cd00132 5 1 1 0 01/17/13 11:11:00 -cd00133 PTS_IIB 99904 N/A cd00133 5 1 1 0 01/17/13 11:11:00 -cd00135 PDGF 238079 N/A cd00135 5 1 1 0 01/17/13 11:11:00 -cd00136 PDZ 238080 N/A cd00136 5 1 1 0 01/17/13 11:11:00 -cd00137 PI-PLCc 176497 cd08555 cd08555 8 1 1 0 08/20/13 16:30:00 -cd00138 PLDc_SF 197200 N/A cd00138 5 1 1 0 01/17/13 11:11:00 -cd00139 PIPKc 340436 N/A cd00139 7 1 0 0 06/09/17 14:30:00 -cd00140 beta_clamp 238082 N/A cd00140 5 1 1 0 01/17/13 11:11:00 -cd00141 NT_POLXc 143386 cd05397 cd05397 5 1 1 0 01/17/13 11:11:00 -cd00142 PI3Kc_like 270621 cd13968 cd13968 8 1 1 0 06/12/17 09:25:00 -cd00143 PP2Cc 238083 N/A cd00143 5 1 1 0 01/17/13 11:11:00 -cd00144 MPP_PPP_family 277316 cd00838 cd00838 6 1 1 0 03/27/15 16:17:00 -cd00145 POLBc 99912 N/A cd00145 5 1 1 0 01/17/13 11:11:00 -cd00146 PKD 238084 N/A cd00146 3 1 1 0 01/17/13 11:11:00 -cd00147 cPLA2_like 132835 cd01819 cd01819 6 1 1 0 01/17/13 11:11:00 -cd00148 PROF 238085 N/A cd00148 5 1 1 0 01/17/13 11:11:00 -cd00150 PlantTI 119410 N/A cd00150 3 1 1 0 01/17/13 11:11:00 -cd00152 PTX 238086 N/A cd00152 4 1 1 0 01/17/13 11:11:00 -cd00153 RA_RalGDS_like 340449 cd17043 cd00196 8 1 0 0 06/09/17 14:30:00 -cd00154 Rab 206640 cd00882 cd00882 7 1 1 0 01/17/13 11:11:00 -cd00155 RasGEF 238087 N/A cd00155 4 1 1 0 01/17/13 11:11:00 -cd00156 REC 238088 N/A cd00156 4 1 1 0 01/17/13 11:11:00 -cd00157 Rho 206641 cd00882 cd00882 7 1 1 0 01/17/13 11:11:00 -cd00158 RHOD 238089 N/A cd00158 5 1 1 0 01/17/13 11:11:00 -cd00159 RhoGAP 238090 N/A cd00159 5 1 1 0 01/17/13 11:11:00 -cd00160 RhoGEF 238091 N/A cd00160 4 1 1 0 01/17/13 11:11:00 -cd00161 RICIN 238092 N/A cd00161 5 1 1 0 01/17/13 11:11:00 -cd00162 RING_Ubox 319361 N/A cd00162 6 1 1 0 08/18/16 16:27:00 -cd00163 RNase_A 119386 N/A cd00163 5 1 1 0 01/17/13 11:11:00 -cd00164 S1_like 238094 N/A cd00164 5 1 1 0 01/17/13 11:11:00 -cd00165 S4 238095 N/A cd00165 5 1 1 0 01/17/13 11:11:00 -cd00167 SANT 238096 N/A cd00167 4 1 1 0 01/17/13 11:11:00 -cd00168 CAP 349397 N/A cd00168 5 1 0 0 07/11/18 17:51:00 -cd00169 Chemokine 238098 N/A cd00169 6 1 1 0 01/17/13 11:11:00 -cd00170 SEC14 238099 N/A cd00170 5 1 1 0 01/17/13 11:11:00 -cd00171 Sec7 238100 N/A cd00171 5 1 1 0 01/17/13 11:11:00 -cd00172 SERPIN 238101 N/A cd00172 4 1 1 0 01/17/13 11:11:00 -cd00173 SH2 198173 N/A cd00173 7 1 1 0 01/17/13 11:11:00 -cd00174 SH3 212690 N/A cd00174 5 1 1 0 01/17/13 11:11:00 -cd00175 SNc 238102 N/A cd00175 4 1 1 0 01/17/13 11:11:00 -cd00176 SPEC 238103 N/A cd00176 3 1 1 0 01/17/13 11:11:00 -cd00177 START 176851 cd07812 cd07812 6 1 1 0 01/17/13 11:11:00 -cd00178 STI 238104 N/A cd00178 4 1 1 0 01/17/13 11:11:00 -cd00179 SynN 238105 N/A cd00179 4 1 1 0 01/17/13 11:11:00 -cd00180 PKc 270622 cd13968 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00181 Tar_Tsr_LBD 206638 N/A cd00181 6 1 1 0 01/17/13 11:11:00 -cd00182 TBOX 238106 N/A cd00182 5 1 1 0 01/17/13 11:11:00 -cd00183 TFIIS_I 238107 N/A cd00183 5 1 1 0 01/17/13 11:11:00 -cd00184 TNF 238108 N/A cd00184 5 1 1 0 01/17/13 11:11:00 -cd00185 TNFRSF 276900 N/A cd00185 6 1 1 0 11/06/15 13:17:00 -cd00186 TOP1Ac 238110 N/A cd00186 7 1 1 0 01/17/13 11:11:00 -cd00187 TOP4c 238111 N/A cd00187 4 1 1 0 01/17/13 11:11:00 -cd00188 TOPRIM 173773 N/A cd00188 7 1 1 0 01/17/13 11:11:00 -cd00190 Tryp_SPc 238113 N/A cd00190 4 1 1 0 01/17/13 11:11:00 -cd00191 TY 238114 N/A cd00191 4 1 1 0 01/17/13 11:11:00 -cd00192 PTKc 270623 cd00180 cd13968 8 1 1 0 03/02/14 08:44:00 -cd00193 SNARE 277192 N/A cd00193 5 1 1 0 03/27/15 16:13:00 -cd00194 UBA_like_SF 270455 N/A cd00194 7 1 1 0 03/02/14 08:29:00 -cd00195 UBCc 238117 N/A cd00195 6 1 1 0 01/17/13 11:11:00 -cd00196 Ubiquitin_l... 340450 N/A cd00196 6 1 0 0 06/09/17 14:30:00 -cd00197 VHS_ENTH_ANTH 340764 N/A cd00197 5 1 0 0 06/09/17 14:32:00 -cd00198 vWFA 238119 N/A cd00198 5 1 1 0 01/17/13 11:12:00 -cd00199 WAP 238120 N/A cd00199 4 1 1 0 01/17/13 11:12:00 -cd00200 WD40 238121 N/A cd00200 3 1 1 0 01/17/13 11:12:00 -cd00201 WW 238122 N/A cd00201 4 1 1 0 01/17/13 11:12:00 -cd00202 ZnF_GATA 238123 N/A cd00202 5 1 1 0 01/17/13 11:12:00 -cd00203 ZnMc 238124 N/A cd00203 6 1 1 0 01/17/13 11:12:00 -cd00205 rhv_like 119412 N/A cd00205 4 1 1 0 01/17/13 11:12:00 -cd00206 snake_toxin 119411 N/A cd00206 4 1 1 0 01/17/13 11:12:00 -cd00207 fer2 238126 N/A cd00207 4 1 1 0 01/17/13 11:12:00 -cd00208 LbetaH 100038 N/A cd00208 5 1 1 0 01/17/13 11:12:00 -cd00209 DHFR 238127 N/A cd00209 5 1 1 0 01/17/13 11:12:00 -cd00210 PTS_IIA_glc 238128 N/A cd00210 4 1 1 0 01/17/13 11:12:00 -cd00211 PTS_IIA_fru 238129 N/A cd00211 5 1 1 0 01/17/13 11:12:00 -cd00212 PTS_IIB_glc 238130 N/A cd00212 5 1 1 0 01/17/13 11:12:00 -cd00213 S-100 238131 N/A cd00213 5 1 1 0 01/17/13 11:12:00 -cd00214 Calpain_III 238132 N/A cd00214 5 1 1 0 01/17/13 11:12:00 -cd00215 PTS_IIA_lac 238133 N/A cd00215 5 1 1 0 01/17/13 11:12:00 -cd00216 PQQ_DH_like 199833 N/A cd00216 7 1 1 0 01/17/13 11:12:00 -cd00217 INT_Flp_C 271174 cd00397 cd00397 6 1 1 0 10/22/14 09:49:00 -cd00218 GlcAT-I 132995 cd00761 cd00761 7 1 1 0 01/17/13 11:12:00 -cd00219 ToxGAP 119405 N/A cd00219 5 1 1 0 01/17/13 11:12:00 -cd00220 VMO-I 238135 N/A cd00220 5 1 1 0 01/17/13 11:12:00 -cd00221 Vsr 238136 cd01037 cd01037 5 1 1 0 01/17/13 11:12:00 -cd00222 CollagenBindB 212461 N/A cd00222 6 1 1 0 01/17/13 11:12:00 -cd00223 TOPRIM_Topo... 173774 cd00188 cd00188 8 1 1 0 01/17/13 11:12:00 -cd00224 Mog1 238137 N/A cd00224 5 1 1 0 01/17/13 11:12:00 -cd00225 API3 119406 N/A cd00225 4 1 1 0 01/17/13 11:12:00 -cd00226 PRCH 238138 N/A cd00226 5 1 1 0 01/17/13 11:12:00 -cd00227 CPT 238139 N/A cd00227 5 1 1 0 01/17/13 11:12:00 -cd00228 eu-GS 238140 N/A cd00228 5 1 1 0 01/17/13 11:12:00 -cd00229 SGNH_hydrolase 238141 N/A cd00229 6 1 1 0 01/17/13 11:12:00 -cd00231 ZipA 238142 N/A cd00231 5 1 1 0 01/17/13 11:12:00 -cd00232 HemeO-like 350855 N/A cd00232 6 1 0 0 07/12/18 13:34:00 -cd00233 VIP2 238144 N/A cd00233 4 1 1 0 01/17/13 11:12:00 -cd00235 TLP-20 119413 N/A cd00235 3 1 1 0 01/17/13 11:12:00 -cd00236 FinO_conjug... 238145 N/A cd00236 4 1 1 0 01/17/13 11:12:00 -cd00237 p23 107218 cd06463 cd00298 6 1 1 0 01/17/13 11:12:00 -cd00238 ERp29c 238146 N/A cd00238 4 1 1 0 01/17/13 11:12:00 -cd00239 PapG_CBD 119414 N/A cd00239 4 1 1 0 01/17/13 11:12:00 -cd00240 TFIIFa 238147 N/A cd00240 3 1 1 0 01/17/13 11:12:00 -cd00241 DOMON_like 187675 N/A cd00241 6 1 1 0 01/17/13 11:12:00 -cd00242 Ecotin 153074 N/A cd00242 7 1 1 0 01/17/13 11:12:00 -cd00243 Lysin-Sp18 119415 N/A cd00243 3 1 1 0 01/17/13 11:12:00 -cd00244 AlgLyase 238148 N/A cd00244 5 1 1 0 01/17/13 11:12:00 -cd00245 Glm_e 238149 N/A cd00245 5 1 1 0 01/17/13 11:12:00 -cd00246 RabGEF 238150 N/A cd00246 5 1 1 0 01/17/13 11:12:00 -cd00247 Endostatin-... 238151 N/A cd00247 5 1 1 0 01/17/13 11:12:00 -cd00248 Mth938-like 238152 N/A cd00248 4 1 1 0 01/17/13 11:12:00 -cd00249 AGE 238153 N/A cd00249 5 1 1 0 01/17/13 11:12:00 -cd00250 CAS_like 238154 N/A cd00250 4 1 1 0 01/17/13 11:12:00 -cd00251 Mth_Ecto 119403 N/A cd00251 4 1 1 0 01/17/13 11:12:00 -cd00252 EFh_SPARC_EC 320009 N/A cd00252 5 1 1 0 08/18/16 16:55:00 -cd00253 PL_Passenge... 238156 N/A cd00253 3 1 1 0 01/17/13 11:12:00 -cd00254 LT_GEWL_like 340358 cd00442 cd00442 6 1 0 0 06/09/17 13:53:00 -cd00255 nidG2 238158 N/A cd00255 5 1 1 0 01/17/13 11:12:00 -cd00256 VATPase_H 238159 N/A cd00256 4 1 1 0 01/17/13 11:12:00 -cd00257 Fascin 238160 N/A cd00257 5 1 1 0 01/17/13 11:12:00 -cd00258 GM2-AP 238161 cd00912 cd00912 5 1 1 0 01/17/13 11:12:00 -cd00259 STNV 119404 N/A cd00259 4 1 1 0 01/17/13 11:12:00 -cd00260 Sialidase 271229 N/A cd00260 7 1 1 0 06/11/14 17:01:00 -cd00261 AAI_SS 238163 cd00010 cd00010 6 1 1 0 01/17/13 11:12:00 -cd00264 BPI 238164 N/A cd00264 7 1 1 0 01/17/13 11:12:00 -cd00265 MADS_MEF2_like 238165 cd00120 cd00120 5 1 1 0 01/17/13 11:12:00 -cd00266 MADS_SRF_like 238166 cd00120 cd00120 5 1 1 0 01/17/13 11:12:00 -cd00267 ABC_ATPase 213179 N/A cd00267 9 1 1 0 01/17/13 11:12:00 -cd00268 DEADc 350669 cd00046 cd17912 6 1 0 0 07/11/18 18:01:00 -cd00270 MATH_TRAF_C 238168 cd00121 cd00121 5 1 1 0 01/17/13 11:12:00 -cd00271 Chemokine_C 238169 cd00169 cd00169 5 1 1 0 01/17/13 11:12:00 -cd00272 Chemokine_CC 238170 cd00169 cd00169 5 1 1 0 01/17/13 11:12:00 -cd00273 Chemokine_CXC 238171 cd00169 cd00169 5 1 1 0 01/17/13 11:12:00 -cd00274 Chemokine_CX3C 238172 cd00169 cd00169 5 1 1 0 01/17/13 11:12:00 -cd00275 C2_PLC_like 175974 cd00030 cd00030 5 1 1 0 01/17/13 11:12:00 -cd00276 C2B_Synapto... 175975 cd00030 cd00030 4 1 1 0 01/17/13 11:12:00 -cd00279 YlxR 238173 N/A cd00279 4 1 1 0 01/17/13 11:12:00 -cd00280 TRFH 238174 N/A cd00280 3 1 1 0 01/17/13 11:12:00 -cd00281 DAP_dppA 176449 N/A cd00281 3 1 1 0 01/17/13 11:12:00 -cd00283 GIY-YIG_Cterm 238175 N/A cd00283 5 1 1 0 01/17/13 11:12:00 -cd00284 Cytochrome_b_N 238176 N/A cd00284 4 1 1 0 01/17/13 11:12:00 -cd00286 Tubulin_Fts... 276954 N/A cd00286 7 1 1 0 02/05/15 16:30:00 -cd00287 ribokinase_... 238177 N/A cd00287 7 1 1 0 01/17/13 11:12:00 -cd00288 Pyruvate_Ki... 238178 N/A cd00288 4 1 1 0 01/17/13 11:12:00 -cd00290 cytochrome_b_C 238179 N/A cd00290 4 1 1 0 01/17/13 11:12:00 -cd00291 SirA_YedF_YeeD 238180 N/A cd00291 3 1 1 0 01/17/13 11:12:00 -cd00292 EF1B 238181 N/A cd00292 4 1 1 0 01/17/13 11:12:00 -cd00293 USP_Like 238182 cd01984 cd01984 4 1 1 0 01/17/13 11:12:00 -cd00295 RNA_Cyclase 238183 cd01553 cd01553 4 1 1 0 01/17/13 11:12:00 -cd00296 SIR2 238184 N/A cd00296 3 1 1 0 01/17/13 11:12:00 -cd00298 ACD_sHsps_p... 107219 N/A cd00298 4 1 1 0 01/17/13 11:12:00 -cd00299 GST_C_family 198286 N/A cd00299 4 1 1 0 01/17/13 11:12:00 -cd00300 LDH_like 133418 cd00650 cd00650 7 1 1 0 01/17/13 11:12:00 -cd00303 retropepsin... 133136 cd05470 cd05470 3 1 1 0 01/17/13 11:12:00 -cd00304 RT_like 238185 N/A cd00304 3 1 1 0 01/17/13 11:12:00 -cd00305 Cu-Zn_Super... 238186 N/A cd00305 3 1 1 0 01/17/13 11:12:00 -cd00306 Peptidases_... 173787 N/A cd00306 3 1 1 0 01/17/13 11:12:00 -cd00307 RuBisCO_sma... 238187 N/A cd00307 4 1 1 0 01/17/13 11:12:00 -cd00308 enolase_like 238188 N/A cd00308 5 1 1 0 01/17/13 11:12:00 -cd00309 chaperonin_... 238189 cd03333 cd03333 5 1 1 0 01/17/13 11:12:00 -cd00310 ATP-synt_Fo... 349411 N/A cd00310 1 1 0 0 07/11/18 17:51:00 -cd00311 TIM 238190 cd04722 cd04722 3 1 1 0 01/17/13 11:12:00 -cd00312 Esterase_li... 238191 N/A cd00312 4 1 1 0 01/17/13 11:12:00 -cd00313 ATP-synt_Fo... 349412 N/A cd00313 1 1 0 0 07/11/18 17:51:00 -cd00314 plant_perox... 173823 N/A cd00314 7 1 1 0 01/17/13 11:12:00 -cd00315 Cyt_C5_DNA_... 238192 N/A cd00315 7 1 1 0 01/17/13 11:12:00 -cd00316 Oxidoreduct... 238193 N/A cd00316 2 1 1 0 01/17/13 11:12:00 -cd00317 cyclophilin 238194 N/A cd00317 4 1 1 0 01/17/13 11:12:00 -cd00318 Phosphoglyc... 238195 N/A cd00318 4 1 1 0 01/17/13 11:12:00 -cd00319 Ribosomal_S... 238196 N/A cd00319 3 1 1 0 01/17/13 11:12:00 -cd00320 cpn10 238197 N/A cd00320 4 1 1 0 01/17/13 11:12:00 -cd00321 SO_family_Moco 238198 N/A cd00321 4 1 1 0 01/17/13 11:12:00 -cd00322 FNR_like 99778 N/A cd00322 3 1 1 0 01/17/13 11:12:00 -cd00323 uS7 271245 N/A cd00323 1 1 1 0 06/11/14 17:02:00 -cd00325 chitinase_GH19 340359 cd16889 cd00442 5 1 0 0 06/09/17 13:53:00 -cd00326 alpha_CA 238200 N/A cd00326 4 1 1 0 01/17/13 11:12:00 -cd00327 cond_enzymes 238201 N/A cd00327 6 1 1 0 01/17/13 11:12:00 -cd00328 catalase 163705 cd08150 cd08150 5 1 1 0 01/17/13 11:12:00 -cd00329 TopoII_MutL... 238202 N/A cd00329 4 1 1 0 01/17/13 11:12:00 -cd00330 phosphagen_... 153075 N/A cd00330 3 1 1 0 01/17/13 11:12:00 -cd00331 IGPS 238203 cd04722 cd04722 5 1 1 0 01/17/13 11:13:00 -cd00332 PAL-HAL 176460 cd01594 cd01594 5 1 1 0 01/17/13 11:13:00 -cd00333 MIP 238204 N/A cd00333 5 1 1 0 01/17/13 11:13:00 -cd00336 Ribosomal_L22 238205 N/A cd00336 3 1 1 0 01/17/13 11:13:00 -cd00338 Ser_Recombi... 238206 N/A cd00338 3 1 1 0 01/17/13 11:13:00 -cd00340 GSH_Peroxidase 238207 cd01659 cd01659 3 1 1 0 01/17/13 11:13:00 -cd00342 gram_neg_po... 238208 cd01345 cd01345 4 1 1 0 01/17/13 11:13:00 -cd00344 FBP_aldolase_I 188629 cd00945 cd00945 5 1 1 0 01/17/13 11:13:00 -cd00347 Flavin_util... 238209 N/A cd00347 5 1 1 0 01/17/13 11:13:00 -cd00349 Ribosomal_L11 100101 N/A cd00349 5 1 1 0 01/17/13 11:13:00 -cd00350 rubredoxin_... 238210 N/A cd00350 5 1 1 0 01/17/13 11:13:00 -cd00351 TS_Pyrimidi... 238211 N/A cd00351 3 1 1 0 01/17/13 11:13:00 -cd00352 Gn_AT_II 238212 N/A cd00352 6 1 1 0 01/17/13 11:13:00 -cd00353 Ribosomal_S... 238213 cd00677 cd00677 3 1 1 0 01/17/13 11:13:00 -cd00354 FBPase 238214 cd01637 cd01636 4 1 1 0 01/17/13 11:13:00 -cd00355 Ribosomal_L... 100098 N/A cd00355 5 1 1 0 01/17/13 11:13:00 -cd00361 arom_aa_hyd... 238215 N/A cd00361 3 1 1 0 01/17/13 11:13:00 -cd00363 PFK 238216 N/A cd00363 4 1 1 0 01/17/13 11:13:00 -cd00365 HMG-CoA_red... 153080 N/A cd00365 5 1 1 0 01/17/13 11:13:00 -cd00366 FGGY 212658 cd00012 cd00012 3 1 1 0 01/17/13 11:13:00 -cd00367 PTS-HPr_like 238217 N/A cd00367 5 1 1 0 01/17/13 11:13:00 -cd00368 Molybdopter... 238218 N/A cd00368 6 1 1 0 01/17/13 11:13:00 -cd00371 HMA 238219 N/A cd00371 4 1 1 0 01/17/13 11:13:00 -cd00374 RNase_T2 238220 N/A cd00374 4 1 1 0 01/17/13 11:13:00 -cd00375 Urease_alpha 238221 cd01292 cd01292 4 1 1 0 01/17/13 11:13:00 -cd00377 ICL_PEPM 119340 cd06556 cd06556 3 1 1 0 01/17/13 11:13:00 -cd00378 SHMT 99733 cd01494 cd01494 3 1 1 0 01/17/13 11:13:00 -cd00379 Ribosomal_L... 238222 N/A cd00379 3 1 1 0 01/17/13 11:13:00 -cd00380 KOW 240504 N/A cd00380 1 1 1 0 02/01/13 11:37:00 -cd00381 IMPDH 238223 cd04722 cd04722 3 1 1 0 01/17/13 11:13:00 -cd00382 beta_CA 238224 N/A cd00382 5 1 1 0 01/17/13 11:13:00 -cd00383 trans_reg_C 294013 N/A cd00383 5 1 1 0 11/06/15 13:22:00 -cd00384 ALAD_PBGS 238226 N/A cd00384 3 1 1 0 01/17/13 11:13:00 -cd00385 Isoprenoid_... 173830 N/A cd00385 5 1 1 0 01/17/13 11:13:00 -cd00386 Heme_Cu_Oxi... 238227 N/A cd00386 4 1 1 0 01/17/13 11:13:00 -cd00387 Ribosomal_L... 100102 N/A cd00387 3 1 1 0 01/17/13 11:13:00 -cd00389 microbial_R... 238228 N/A cd00389 4 1 1 0 01/17/13 11:13:00 -cd00390 Urease_gamma 238229 N/A cd00390 3 1 1 0 01/17/13 11:13:00 -cd00392 Ribosomal_L13 238230 N/A cd00392 3 1 1 0 01/17/13 11:13:00 -cd00394 Clp_proteas... 132923 N/A cd00394 3 1 1 0 01/17/13 11:13:00 -cd00395 Tyr_Trp_RS_... 173893 cd00802 cd02156 6 1 1 0 01/17/13 11:13:00 -cd00396 PurM-like 100027 N/A cd00396 5 1 1 0 01/17/13 11:13:00 -cd00397 DNA_BRE_C 271175 N/A cd00397 6 1 1 0 10/22/14 09:49:00 -cd00398 Aldolase_II 238232 N/A cd00398 4 1 1 0 01/17/13 11:13:00 -cd00399 RNAP_larges... 259843 N/A cd00399 1 1 1 0 08/20/13 16:28:00 -cd00400 Voltage_gat... 238233 N/A cd00400 3 1 1 0 01/17/13 11:13:00 -cd00401 SAHH 240619 cd12154 cd12154 5 1 1 0 02/01/13 12:26:00 -cd00402 Riboflavin_... 293928 N/A cd00402 1 1 1 0 11/06/15 13:18:00 -cd00403 Ribosomal_L1 238235 N/A cd00403 3 1 1 0 01/17/13 11:13:00 -cd00404 Aconitase_s... 238236 N/A cd00404 6 1 1 0 01/17/13 11:13:00 -cd00405 PRAI 238237 cd04722 cd04722 3 1 1 0 01/17/13 11:13:00 -cd00407 Urease_beta 238238 N/A cd00407 4 1 1 0 01/17/13 11:13:00 -cd00408 DHDPS-like 188630 cd00945 cd00945 5 1 1 0 01/17/13 11:13:00 -cd00411 L-asparagin... 199205 N/A cd00411 5 1 1 0 01/17/13 11:13:00 -cd00412 pyrophospha... 238239 N/A cd00412 4 1 1 0 01/17/13 11:13:00 -cd00413 Glyco_hydro... 185683 N/A cd00413 5 1 1 0 01/17/13 11:13:00 -cd00418 GlxRS_core 185672 cd00802 cd02156 8 1 1 0 01/17/13 11:13:00 -cd00419 Ferrochelat... 238240 cd03409 cd03409 4 1 1 0 01/17/13 11:13:00 -cd00421 intradiol_d... 238241 N/A cd00421 4 1 1 0 01/17/13 11:13:00 -cd00423 Pterin_binding 238242 N/A cd00423 4 1 1 0 01/17/13 11:13:00 -cd00424 PolY 176453 N/A cd00424 5 1 1 0 01/17/13 11:13:00 -cd00427 Ribosomal_L... 238243 N/A cd00427 3 1 1 0 01/17/13 11:13:00 -cd00429 RPE 238244 cd04722 cd04722 3 1 1 0 01/17/13 11:13:00 -cd00430 PLPDE_III_AR 143481 cd06808 cd06808 6 1 1 0 01/17/13 11:13:00 -cd00431 cysteine_hy... 238245 N/A cd00431 4 1 1 0 01/17/13 11:13:00 -cd00432 Ribosomal_L... 238246 N/A cd00432 3 1 1 0 01/17/13 11:13:00 -cd00433 Peptidase_M17 238247 N/A cd00433 5 1 1 0 01/17/13 11:13:00 -cd00435 ACBP 238248 N/A cd00435 4 1 1 0 01/17/13 11:13:00 -cd00436 UP_TbUP-like 350155 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd00439 Transaldolase 188631 cd00945 cd00945 7 1 1 0 01/17/13 11:13:00 -cd00442 Lyz_like 340360 N/A cd00442 5 1 0 0 06/09/17 13:53:00 -cd00443 ADA_AMPD 238250 cd01292 cd01292 6 1 1 0 01/17/13 11:13:00 -cd00445 Uricase 238251 cd00651 cd00651 4 1 1 0 01/17/13 11:13:00 -cd00446 GrpE 271355 N/A cd00446 5 1 1 0 06/11/14 17:10:00 -cd00447 NusB_Sun 238253 N/A cd00447 5 1 1 0 01/17/13 11:13:00 -cd00448 YjgF_YER057... 100004 N/A cd00448 5 1 1 0 01/17/13 11:13:00 -cd00449 PLPDE_IV 238254 N/A cd00449 5 1 1 0 01/17/13 11:13:00 -cd00451 GH38N_AMII_euk 212095 cd10786 cd10785 2 1 1 0 01/17/13 11:13:00 -cd00452 KDPG_aldolase 188632 cd00945 cd00945 5 1 1 0 01/17/13 11:13:00 -cd00453 FTBP_aldola... 238255 N/A cd00453 4 1 1 0 01/17/13 11:13:00 -cd00454 TrHb1_N 271265 cd14756 cd01067 5 1 1 0 06/11/14 17:04:00 -cd00455 nuc_hydro 238257 N/A cd00455 4 1 1 0 01/17/13 11:13:00 -cd00457 PEBP 176642 N/A cd00457 5 1 1 0 01/17/13 11:13:00 -cd00458 SugarP_isom... 238258 N/A cd00458 3 1 1 0 01/17/13 11:13:00 -cd00460 RNAP_RPB11_... 132901 N/A cd00460 3 1 1 0 01/17/13 11:13:00 -cd00462 PTH 238259 N/A cd00462 4 1 1 0 01/17/13 11:13:00 -cd00463 Ribosomal_L31e 199209 N/A cd00463 2 1 1 0 01/17/13 11:13:00 -cd00464 SK 238260 cd02019 cd02019 4 1 1 0 01/17/13 11:13:00 -cd00465 URO-D_CIMS_... 238261 N/A cd00465 3 1 1 0 01/17/13 11:13:00 -cd00466 DHQase_II 238262 N/A cd00466 3 1 1 0 01/17/13 11:13:00 -cd00468 HIT_like 238263 N/A cd00468 4 1 1 0 01/17/13 11:13:00 -cd00470 PTPS 238264 cd00651 cd00651 4 1 1 0 01/17/13 11:13:00 -cd00472 Ribosomal_L... 100103 N/A cd00472 3 1 1 0 01/17/13 11:13:00 -cd00473 bS6 275385 N/A cd00473 1 1 1 0 10/22/14 09:38:00 -cd00474 eIF1_SUI1_like 211317 N/A cd00474 6 1 1 0 01/17/13 11:13:00 -cd00475 Cis_IPPS 259850 N/A cd00475 5 1 1 0 08/20/13 16:28:00 -cd00476 SAICAR_synt 133468 N/A cd00476 5 1 1 0 01/17/13 11:13:00 -cd00477 FTHFS 349750 cd01983 cd01983 5 1 0 0 07/11/18 17:53:00 -cd00480 malate_synt 238267 N/A cd00480 4 1 1 0 01/17/13 11:13:00 -cd00481 Ribosomal_L19e 238268 N/A cd00481 4 1 1 0 01/17/13 11:13:00 -cd00483 HPPK 238269 N/A cd00483 4 1 1 0 01/17/13 11:13:00 -cd00484 PEPCK_ATP 238270 cd01919 cd00820 4 1 1 0 01/17/13 11:13:00 -cd00487 Pep_deformy... 238271 N/A cd00487 4 1 1 0 01/17/13 11:13:00 -cd00488 PCD_DCoH 238272 N/A cd00488 3 1 1 0 01/17/13 11:13:00 -cd00489 Barstar_like 238273 N/A cd00489 3 1 1 0 01/17/13 11:13:00 -cd00490 Met_repress... 119402 N/A cd00490 4 1 1 0 01/17/13 11:13:00 -cd00491 4Oxalocroto... 238274 N/A cd00491 4 1 1 0 01/17/13 11:13:00 -cd00493 FabA_FabZ 238275 cd03440 cd03440 3 1 1 0 01/17/13 11:13:00 -cd00494 PBP2_HMBS 270213 cd00648 cd00648 5 1 1 0 03/02/14 08:24:00 -cd00495 Ribosomal_L... 198379 N/A cd00495 4 1 1 0 01/17/13 11:13:00 -cd00496 PheRS_alpha... 238277 cd00768 cd00768 5 1 1 0 01/17/13 11:13:00 -cd00497 PseudoU_syn... 211322 cd01291 cd01291 5 1 1 0 01/17/13 11:13:00 -cd00498 Hsp33 238278 N/A cd00498 4 1 1 0 01/17/13 11:13:00 -cd00501 Peptidase_C15 238279 N/A cd00501 4 1 1 0 01/17/13 11:13:00 -cd00502 DHQase_I 188633 cd00945 cd00945 5 1 1 0 01/17/13 11:14:00 -cd00503 Frataxin 238280 N/A cd00503 5 1 1 0 01/17/13 11:14:00 -cd00504 GXGXG 238281 N/A cd00504 3 1 1 0 01/17/13 11:14:00 -cd00505 Glyco_transf_8 132996 cd00761 cd00761 4 1 1 0 01/17/13 11:14:00 -cd00506 PseudoU_syn... 211323 cd01291 cd01291 5 1 1 0 01/17/13 11:14:00 -cd00508 MopB_CT_Fdh... 238282 cd02775 cd02775 4 1 1 0 01/17/13 11:14:00 -cd00512 MM_CoA_mutase 238283 N/A cd00512 3 1 1 0 01/17/13 11:14:00 -cd00513 Ribosomal_L... 238284 N/A cd00513 3 1 1 0 01/17/13 11:14:00 -cd00515 HAM1 238285 cd00985 cd00985 4 1 1 0 01/17/13 11:14:00 -cd00516 PRTase_typeII 238286 N/A cd00516 4 1 1 0 01/17/13 11:14:00 -cd00517 ATPS 173895 cd02039 cd02156 5 1 1 0 01/17/13 11:14:00 -cd00518 H2MP 99872 N/A cd00518 3 1 1 0 01/17/13 11:14:00 -cd00519 Lipase_3 238287 cd00741 cd00741 6 1 1 0 01/17/13 11:14:00 -cd00520 RRF 238288 N/A cd00520 5 1 1 0 01/17/13 11:14:00 -cd00522 Hemerythrin... 213981 N/A cd00522 5 1 1 0 01/17/13 11:14:00 -cd00523 archeal_HJR 238289 cd01037 cd01037 5 1 1 0 01/17/13 11:14:00 -cd00524 SORL 238290 N/A cd00524 3 1 1 0 01/17/13 11:14:00 -cd00525 AE_Prim_S_like 238291 N/A cd00525 3 1 1 0 01/17/13 11:14:00 -cd00527 IF6 238292 N/A cd00527 4 1 1 0 01/17/13 11:14:00 -cd00528 MoaC 238293 N/A cd00528 4 1 1 0 01/17/13 11:14:00 -cd00529 RuvC_like 340812 N/A cd00529 5 1 0 0 06/09/17 14:32:00 -cd00530 PTE 238295 cd01292 cd01292 4 1 1 0 01/17/13 11:14:00 -cd00531 NTF2_like 238296 N/A cd00531 5 1 1 0 01/17/13 11:14:00 -cd00532 MGS-like 238297 N/A cd00532 4 1 1 0 01/17/13 11:14:00 -cd00534 DHNA_DHNTPE 238298 cd00651 cd00651 4 1 1 0 01/17/13 11:14:00 -cd00537 MTHFR 238299 N/A cd00537 4 1 1 0 01/17/13 11:14:00 -cd00538 PA 238300 N/A cd00538 3 1 1 0 01/17/13 11:14:00 -cd00539 MCR_gamma 238301 N/A cd00539 4 1 1 0 01/17/13 11:14:00 -cd00540 AAG 187726 cd08370 cd08370 3 1 1 0 01/17/13 11:14:00 -cd00541 OMPLA 238302 N/A cd00541 4 1 1 0 01/17/13 11:14:00 -cd00542 Ntn_PVA 238303 cd01935 cd01901 5 1 1 0 01/17/13 11:14:00 -cd00544 CobU 238304 cd01120 cd01120 4 1 1 0 01/17/13 11:14:00 -cd00545 MCH 238305 N/A cd00545 5 1 1 0 01/17/13 11:14:00 -cd00546 QFR_TypeD_s... 238306 cd03493 cd03493 3 1 1 0 01/17/13 11:14:00 -cd00547 QFR_TypeD_s... 238307 cd03493 cd03493 3 1 1 0 01/17/13 11:14:00 -cd00548 NrfA-like 349426 N/A cd00548 1 1 0 0 07/11/18 17:51:00 -cd00551 AmyAc_family 200451 N/A cd00551 2 1 1 0 01/17/13 11:14:00 -cd00552 RaiA 238308 N/A cd00552 3 1 1 0 01/17/13 11:14:00 -cd00553 NAD_synthase 238309 cd01986 cd01984 4 1 1 0 01/17/13 11:14:00 -cd00554 MECDP_synthase 100025 N/A cd00554 5 1 1 0 01/17/13 11:14:00 -cd00555 Maf 238310 cd00985 cd00985 4 1 1 0 01/17/13 11:14:00 -cd00556 Thioesteras... 238311 cd03440 cd03440 3 1 1 0 01/17/13 11:14:00 -cd00557 Translocase... 238312 N/A cd00557 3 1 1 0 01/17/13 11:14:00 -cd00559 Cyanase_C 238313 N/A cd00559 3 1 1 0 01/17/13 11:14:00 -cd00560 PanC 185673 cd02039 cd02156 5 1 1 0 01/17/13 11:14:00 -cd00561 CobA_CobO_BtuR 238314 cd01120 cd01120 4 1 1 0 01/17/13 11:14:00 -cd00562 NifX_NifB 238315 N/A cd00562 3 1 1 0 01/17/13 11:14:00 -cd00563 Dtyr_deacylase 238316 N/A cd00563 4 1 1 0 01/17/13 11:14:00 -cd00564 TMP_TenI 238317 cd04722 cd04722 3 1 1 0 01/17/13 11:14:00 -cd00565 Ubl_ThiS 340451 cd17040 cd00196 5 1 0 0 06/09/17 14:30:00 -cd00567 ACAD 173838 N/A cd00567 6 1 1 0 01/17/13 11:14:00 -cd00568 TPP_enzymes 238318 N/A cd00568 3 1 1 0 01/17/13 11:14:00 -cd00569 HTH_Hin_like 259851 N/A cd00569 4 1 1 0 08/20/13 16:28:00 -cd00570 GST_N_family 238319 cd01659 cd01659 3 1 1 0 01/17/13 11:14:00 -cd00571 UreE 238320 N/A cd00571 4 1 1 0 01/17/13 11:14:00 -cd00575 NOS_oxygenase 238321 N/A cd00575 4 1 1 0 01/17/13 11:14:00 -cd00576 RNR_PFL 153083 N/A cd00576 7 1 1 0 01/17/13 11:14:00 -cd00577 PCNA 238322 N/A cd00577 3 1 1 0 01/17/13 11:14:00 -cd00578 L-fuc_L-ara... 238323 N/A cd00578 4 1 1 0 01/17/13 11:14:00 -cd00580 CHMI 238324 N/A cd00580 4 1 1 0 01/17/13 11:14:00 -cd00581 QFR_TypeB_TM 238325 cd03526 cd03493 4 1 1 0 01/17/13 11:14:00 -cd00583 MutH_Sau3AI 238326 cd01037 cd01037 4 1 1 0 01/17/13 11:14:00 -cd00584 Prefoldin_a... 238327 cd00890 cd00890 5 1 1 0 01/17/13 11:14:00 -cd00585 Peptidase_C1B 238328 cd02619 cd02619 4 1 1 0 01/17/13 11:14:00 -cd00586 4HBT 238329 cd03440 cd03440 3 1 1 0 01/17/13 11:14:00 -cd00587 HCP_like 238330 N/A cd00587 6 1 1 0 01/17/13 11:14:00 -cd00588 CheW_like 238331 N/A cd00588 3 1 1 0 01/17/13 11:14:00 -cd00590 RRM_SF 240668 N/A cd00590 4 1 1 0 02/01/13 12:33:00 -cd00591 HU_IHF 259852 N/A cd00591 5 1 1 0 08/20/13 16:28:00 -cd00592 HTH_MerR-like 133378 cd04761 cd04761 6 1 1 0 01/17/13 11:14:00 -cd00593 RIBOc 238333 N/A cd00593 4 1 1 0 01/17/13 11:14:00 -cd00594 KU 238334 N/A cd00594 6 1 1 0 01/17/13 11:14:00 -cd00595 NDPk 238335 N/A cd00595 4 1 1 0 01/17/13 11:14:00 -cd00596 Peptidase_M... 349427 N/A cd00596 5 1 0 0 07/11/18 17:51:00 -cd00598 GH18_chitin... 119349 N/A cd00598 3 1 1 0 01/17/13 11:14:00 -cd00599 GH25_murami... 119373 N/A cd00599 3 1 1 0 01/17/13 11:14:00 -cd00600 Sm_like 212462 N/A cd00600 6 1 1 0 01/17/13 11:14:00 -cd00602 IPT_TF 238336 cd00102 cd00102 4 1 1 0 01/17/13 11:14:00 -cd00603 IPT_PCSR 238337 cd00102 cd00102 3 1 1 0 01/17/13 11:14:00 -cd00604 IPT_CGTD 238338 cd00102 cd00102 3 1 1 0 01/17/13 11:14:00 -cd00606 fungal_RNase 238339 cd00389 cd00389 4 1 1 0 01/17/13 11:14:00 -cd00607 RNase_Sa 238340 cd00389 cd00389 4 1 1 0 01/17/13 11:14:00 -cd00608 GalT 238341 cd00468 cd00468 4 1 1 0 01/17/13 11:14:00 -cd00609 AAT_like 99734 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00610 OAT_like 99735 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00611 PSAT_like 99736 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00613 GDC-P 99737 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00614 CGS_like 99738 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00615 Orn_deC_like 99739 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00616 AHBA_syn 99740 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00617 Tnase_like 99741 cd01494 cd01494 3 1 1 0 01/17/13 11:14:00 -cd00618 PLA2_like 153092 N/A cd00618 8 1 1 0 01/17/13 11:14:00 -cd00619 Terminator_... 238342 cd00447 cd00447 5 1 1 0 01/17/13 11:14:00 -cd00620 Methyltrans... 238343 cd00447 cd00447 5 1 1 0 01/17/13 11:14:00 -cd00622 PLPDE_III_ODC 143482 cd06810 cd06808 3 1 1 0 01/17/13 11:14:00 -cd00625 ArsB_NhaD_p... 238344 N/A cd00625 4 1 1 0 01/17/13 11:14:00 -cd00630 RNAP_larges... 132719 N/A cd00630 3 1 1 0 01/17/13 11:14:00 -cd00632 Prefoldin_beta 238345 cd00890 cd00890 5 1 1 0 01/17/13 11:14:00 -cd00633 Secretoglobin 238346 N/A cd00633 3 1 1 0 01/17/13 11:14:00 -cd00635 PLPDE_III_Y... 143483 cd06808 cd06808 6 1 1 0 01/17/13 11:14:00 -cd00636 TroA-like 238347 N/A cd00636 4 1 1 0 01/17/13 11:14:00 -cd00637 7tm_classA_... 341313 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd00640 Trp-synth-b... 107202 N/A cd00640 3 1 1 0 01/17/13 11:14:00 -cd00641 GTP_cyclohy... 238348 N/A cd00641 3 1 1 0 01/17/13 11:14:00 -cd00642 GTP_cyclohy... 238349 cd00651 cd00651 4 1 1 0 01/17/13 11:14:00 -cd00643 HMG-CoA_red... 153081 cd00365 cd00365 5 1 1 0 01/17/13 11:14:00 -cd00644 HMG-CoA_red... 153082 cd00365 cd00365 5 1 1 0 01/17/13 11:14:00 -cd00645 AsnA 238350 cd00768 cd00768 5 1 1 0 01/17/13 11:14:00 -cd00648 Periplasmic... 270214 N/A cd00648 1 1 1 0 03/02/14 08:24:00 -cd00649 catalase_pe... 173824 cd00314 cd00314 5 1 1 0 01/17/13 11:14:00 -cd00650 LDH_MDH_like 133419 N/A cd00650 7 1 1 0 01/17/13 11:14:00 -cd00651 TFold 238351 N/A cd00651 4 1 1 0 01/17/13 11:14:00 -cd00652 TBP_TLF 238352 N/A cd00652 4 1 1 0 01/17/13 11:14:00 -cd00653 RNA_pol_B_RPB2 238353 N/A cd00653 5 1 1 0 01/17/13 11:14:00 -cd00655 RNAP_Rpb7_N... 238354 N/A cd00655 3 1 1 0 01/17/13 11:14:00 -cd00656 Zn-ribbon 259791 N/A cd00656 1 1 1 0 04/05/13 12:51:00 -cd00657 Ferritin_like 153097 N/A cd00657 5 1 1 0 01/17/13 11:15:00 -cd00659 Topo_IB_C 271176 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00660 Topoisomer_... 238356 N/A cd00660 3 1 1 0 01/17/13 11:15:00 -cd00667 ring_hydrox... 238357 cd00531 cd00531 4 1 1 0 01/17/13 11:15:00 -cd00668 Ile_Leu_Val... 185674 cd00802 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00669 Asp_Lys_Asn... 238358 cd00768 cd00768 6 1 1 0 01/17/13 11:15:00 -cd00670 Gly_His_Pro... 238359 cd00768 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00671 ArgRS_core 185675 cd00802 cd02156 6 1 1 0 01/17/13 11:15:00 -cd00672 CysRS_core 173899 cd00802 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00673 AlaRS_core 238360 cd00768 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00674 LysRS_core_... 173900 cd00802 cd02156 6 1 1 0 01/17/13 11:15:00 -cd00677 S15_NS1_EPR... 238361 N/A cd00677 3 1 1 0 01/17/13 11:15:00 -cd00680 RHO_alpha_C 176852 cd07812 cd07812 5 1 1 0 01/17/13 11:15:00 -cd00683 Trans_IPPS_HH 173831 cd00867 cd00385 5 1 1 0 01/17/13 11:15:00 -cd00684 Terpene_cyc... 173832 cd00868 cd00385 5 1 1 0 01/17/13 11:15:00 -cd00685 Trans_IPPS_HT 173833 cd00867 cd00385 6 1 1 0 01/17/13 11:15:00 -cd00686 Terpene_cyc... 173834 cd00868 cd00385 5 1 1 0 01/17/13 11:15:00 -cd00687 Terpene_cyc... 173835 cd00868 cd00385 5 1 1 0 01/17/13 11:15:00 -cd00688 ISOPREN_C2_... 238362 N/A cd00688 3 1 1 0 01/17/13 11:15:00 -cd00691 ascorbate_p... 173825 cd00314 cd00314 5 1 1 0 01/17/13 11:15:00 -cd00692 ligninase 173826 cd00314 cd00314 5 1 1 0 01/17/13 11:15:00 -cd00693 secretory_p... 173827 cd00314 cd00314 5 1 1 0 01/17/13 11:15:00 -cd00704 MDH 133420 cd00650 cd00650 7 1 1 0 01/17/13 11:15:00 -cd00707 Pancreat_li... 238363 cd00741 cd00741 4 1 1 0 01/17/13 11:15:00 -cd00710 LbH_gamma_CA 100039 cd04645 cd00208 3 1 1 0 01/17/13 11:15:00 -cd00712 AsnB 238364 cd00352 cd00352 6 1 1 0 01/17/13 11:15:00 -cd00713 GltS 238365 cd00352 cd00352 6 1 1 0 01/17/13 11:15:00 -cd00714 GFAT 238366 cd00352 cd00352 6 1 1 0 01/17/13 11:15:00 -cd00715 GPATase_N 238367 cd00352 cd00352 6 1 1 0 10/30/18 14:50:00 -cd00716 creatine_ki... 153076 cd07931 cd00330 3 1 1 0 01/17/13 11:15:00 -cd00717 URO-D 238368 cd03465 cd00465 3 1 1 0 01/17/13 11:15:00 -cd00719 GIY-YIG_SF 198380 N/A cd00719 2 1 1 0 01/17/13 11:15:00 -cd00727 malate_synt_A 238369 cd00480 cd00480 3 1 1 0 01/17/13 11:15:00 -cd00728 malate_synt_G 238370 cd00480 cd00480 3 1 1 0 01/17/13 11:15:00 -cd00729 rubredoxin_SM 238371 cd00350 cd00350 5 1 1 0 01/17/13 11:15:00 -cd00730 rubredoxin 238372 cd00350 cd00350 5 1 1 0 01/17/13 11:15:00 -cd00731 CheA_reg 238373 cd00588 cd00588 3 1 1 0 01/17/13 11:15:00 -cd00732 CheW 238374 cd00588 cd00588 3 1 1 0 01/17/13 11:15:00 -cd00733 GlyRS_alpha... 238375 cd00768 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00735 T4_like_lys 340361 cd00737 cd00442 5 1 0 0 06/09/17 13:53:00 -cd00736 lambda_lys_... 340362 cd00442 cd00442 5 1 0 0 06/09/17 13:53:00 -cd00737 lyz_endolys... 340363 cd16889 cd00442 5 1 0 0 06/09/17 13:53:00 -cd00738 HGTP_anticodon 238379 N/A cd00738 3 1 1 0 01/17/13 11:15:00 -cd00739 DHPS 238380 cd00423 cd00423 4 1 1 0 01/17/13 11:15:00 -cd00740 MeTr 238381 cd00423 cd00423 4 1 1 0 01/17/13 11:15:00 -cd00741 Lipase 238382 N/A cd00741 4 1 1 0 01/17/13 11:15:00 -cd00751 thiolase 238383 cd00826 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00754 Ubl_MoaD 340452 cd17040 cd00196 6 1 0 0 06/09/17 14:30:00 -cd00755 YgdL_like 238384 cd01483 cd01483 4 1 1 0 01/17/13 11:15:00 -cd00756 MoaE 238385 N/A cd00756 3 1 1 0 01/17/13 11:15:00 -cd00757 ThiF_MoeB_H... 238386 cd01483 cd01483 4 1 1 0 01/17/13 11:15:00 -cd00758 MoCF_BD 238387 N/A cd00758 2 1 1 0 01/17/13 11:15:00 -cd00761 Glyco_tranf... 132997 N/A cd00761 4 1 1 0 01/17/13 11:15:00 -cd00762 NAD_bind_ma... 133442 cd05191 cd05191 3 1 1 0 01/17/13 11:15:00 -cd00763 Bacterial_PFK 238388 cd00363 cd00363 4 1 1 0 01/17/13 11:15:00 -cd00764 Eukaryotic_PFK 238389 cd00363 cd00363 3 1 1 0 01/17/13 11:15:00 -cd00765 Pyrophospha... 238390 cd00363 cd00363 4 1 1 0 01/17/13 11:15:00 -cd00768 class_II_aa... 238391 N/A cd00768 5 1 1 0 01/17/13 11:15:00 -cd00769 PheRS_beta_... 238392 cd00768 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00770 SerRS_core 238393 cd00670 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00771 ThrRS_core 238394 cd00670 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00772 ProRS_core 238395 cd00670 cd00768 6 1 1 0 01/17/13 11:15:00 -cd00773 HisRS-like_... 238396 cd00670 cd00768 7 1 1 0 01/17/13 11:15:00 -cd00774 GlyRS-like_... 238397 cd00670 cd00768 7 1 1 0 01/17/13 11:15:00 -cd00775 LysRS_core 238398 cd00669 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00776 AsxRS_core 238399 cd00669 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00777 AspRS_core 238400 cd00669 cd00768 7 1 1 0 01/17/13 11:15:00 -cd00778 ProRS_core_... 238401 cd00772 cd00768 5 1 1 0 01/17/13 11:15:00 -cd00779 ProRS_core_... 238402 cd00772 cd00768 7 1 1 0 01/17/13 11:15:00 -cd00780 NTF2 238403 cd00531 cd00531 5 1 1 0 01/17/13 11:15:00 -cd00781 ketosteroid... 238404 cd00531 cd00531 5 1 1 0 01/17/13 11:15:00 -cd00782 MutL_Trans 238405 cd00329 cd00329 3 1 1 0 01/17/13 11:15:00 -cd00786 cytidine_de... 238406 N/A cd00786 4 1 1 0 01/17/13 11:15:00 -cd00788 KU70 238407 cd00594 cd00594 6 1 1 0 01/17/13 11:15:00 -cd00789 KU_like 238408 cd00594 cd00594 6 1 1 0 01/17/13 11:15:00 -cd00794 NOS_oxygena... 238409 cd00575 cd00575 4 1 1 0 01/17/13 11:15:00 -cd00795 NOS_oxygena... 238410 cd00575 cd00575 4 1 1 0 01/17/13 11:15:00 -cd00796 INT_Rci_Hp1_C 271177 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00797 INT_RitB_C_... 271178 cd00397 cd00397 6 1 1 0 10/22/14 09:49:00 -cd00798 INT_XerDC_C 271179 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00799 INT_Cre_C 271180 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00800 INT_Lambda_C 271181 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00801 INT_P4_C 271182 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd00802 class_I_aaR... 173901 cd02156 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00805 TyrRS_core 173902 cd00395 cd02156 6 1 1 0 01/17/13 11:15:00 -cd00806 TrpRS_core 173903 cd00395 cd02156 6 1 1 0 01/17/13 11:15:00 -cd00807 GlnRS_core 185676 cd00418 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00808 GluRS_core 173905 cd00418 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00812 LeuRS_core 173906 cd00668 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00814 MetRS_core 173907 cd00668 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00817 ValRS_core 185677 cd00668 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00818 IleRS_core 173909 cd00668 cd02156 8 1 1 0 01/17/13 11:15:00 -cd00819 PEPCK_GTP 238417 cd01919 cd00820 4 1 1 0 01/17/13 11:15:00 -cd00820 PEPCK_HprK 238418 N/A cd00820 6 1 1 0 01/17/13 11:15:00 -cd00821 PH 275388 cd00900 cd00900 8 1 1 0 10/22/14 09:41:00 -cd00822 TopoII_Tran... 238419 cd00329 cd00329 3 1 1 0 01/17/13 11:15:00 -cd00823 TopoIIB_Trans 238420 cd00329 cd00329 3 1 1 0 01/17/13 11:15:00 -cd00825 decarbox_co... 238421 cd00327 cd00327 6 1 1 0 01/17/13 11:15:00 -cd00826 nondecarbox... 238422 cd00327 cd00327 6 1 1 0 01/17/13 11:15:00 -cd00827 init_cond_e... 238423 cd00825 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00828 elong_cond_... 238424 cd00825 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00829 SCP-x_thiolase 238425 cd00826 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00830 KAS_III 238426 cd00827 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00831 CHS_like 238427 cd00827 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00832 CLF 238428 cd00828 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00833 PKS 238429 cd00828 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00834 KAS_I_II 238430 cd00828 cd00327 4 1 1 0 01/17/13 11:15:00 -cd00835 RanBD_family 269907 cd00900 cd00900 6 1 1 0 10/22/14 09:41:00 -cd00836 FERM_C-lobe 275389 cd00900 cd00900 8 1 1 0 10/22/14 09:41:00 -cd00837 EVH1_family 269909 cd00900 cd00900 7 1 1 0 10/22/14 09:41:00 -cd00838 MPP_superfa... 277317 N/A cd00838 4 1 1 0 03/27/15 16:17:00 -cd00839 MPP_PAPs 277318 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00840 MPP_Mre11_N 277319 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00841 MPP_YfcE 277320 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00842 MPP_ASMase 277321 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00844 MPP_Dbr1_N 277322 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00845 MPP_UshA_N_... 277323 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd00851 MTH1175 238431 cd00562 cd00562 3 1 1 0 01/17/13 11:16:00 -cd00852 NifB 238432 cd00562 cd00562 3 1 1 0 01/17/13 11:16:00 -cd00853 NifX 238433 cd00562 cd00562 3 1 1 0 01/17/13 11:16:00 -cd00854 NagA 238434 cd01292 cd01292 4 1 1 0 01/17/13 11:16:00 -cd00855 SWIB-MDM2 349487 N/A cd00855 1 1 0 0 07/11/18 17:51:00 -cd00858 GlyRS_antic... 238435 cd00738 cd00738 3 1 1 0 01/17/13 11:16:00 -cd00859 HisRS_antic... 238436 cd00738 cd00738 3 1 1 0 01/17/13 11:16:00 -cd00860 ThrRS_antic... 238437 cd00738 cd00738 3 1 1 0 01/17/13 11:16:00 -cd00861 ProRS_antic... 238438 cd00738 cd00738 3 1 1 0 01/17/13 11:16:00 -cd00862 ProRS_antic... 238439 cd00738 cd00738 4 1 1 0 01/17/13 11:16:00 -cd00864 PI3Ka 238440 N/A cd00864 3 1 1 0 01/17/13 11:16:00 -cd00865 PEBP_bact_arch 176643 cd00457 cd00457 5 1 1 0 01/17/13 11:16:00 -cd00866 PEBP_euk 176644 cd00457 cd00457 5 1 1 0 01/17/13 11:16:00 -cd00867 Trans_IPPS 173836 cd00385 cd00385 7 1 1 0 01/17/13 11:16:00 -cd00868 Terpene_cyc... 173837 cd00385 cd00385 5 1 1 0 01/17/13 11:16:00 -cd00869 PI3Ka_II 238441 cd00864 cd00864 3 1 1 0 01/17/13 11:16:00 -cd00870 PI3Ka_III 238442 cd00864 cd00864 3 1 1 0 01/17/13 11:16:00 -cd00871 PI4Ka 238443 cd00864 cd00864 3 1 1 0 01/17/13 11:16:00 -cd00872 PI3Ka_I 238444 cd00864 cd00864 3 1 1 0 01/17/13 11:16:00 -cd00873 KU80 238445 cd00594 cd00594 6 1 1 0 01/17/13 11:16:00 -cd00874 RNA_Cyclase... 238446 cd00295 cd01553 4 1 1 0 01/17/13 11:16:00 -cd00875 RNA_Cyclase... 238447 cd00295 cd01553 4 1 1 0 01/17/13 11:16:00 -cd00876 Ras 206642 cd00882 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00877 Ran 206643 cd00882 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00878 Arf_Arl 206644 cd00882 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00879 Sar1 206645 cd00878 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00880 Era_like 206646 cd00882 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00881 GTP_transla... 206647 cd00882 cd00882 5 1 1 0 01/17/13 11:16:00 -cd00882 Ras_like_GT... 206648 N/A cd00882 5 1 1 0 01/17/13 11:16:00 -cd00883 beta_CA_cladeA 238448 cd00382 cd00382 3 1 1 0 01/17/13 11:16:00 -cd00884 beta_CA_cladeB 238449 cd00382 cd00382 3 1 1 0 01/17/13 11:16:00 -cd00885 cinA 238450 cd00758 cd00758 2 1 1 0 01/17/13 11:16:00 -cd00886 MogA_MoaB 238451 cd00758 cd00758 3 1 1 0 01/17/13 11:16:00 -cd00887 MoeA 238452 cd00758 cd00758 3 1 1 0 01/17/13 11:16:00 -cd00890 Prefoldin 238453 N/A cd00890 4 1 1 0 01/17/13 11:16:00 -cd00891 PI3Kc 270624 cd00142 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00892 PIKKc_ATR 270625 cd05164 cd13968 9 1 1 0 03/02/14 08:44:00 -cd00893 PI4Kc_III 270626 cd00142 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00894 PI3Kc_IB_gamma 270627 cd05165 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00895 PI3Kc_C2_beta 119421 cd05166 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00896 PI3Kc_III 270628 cd00891 cd13968 7 1 1 0 03/02/14 08:44:00 -cd00897 UGPase_euk 132998 cd04180 cd00761 4 1 1 0 01/17/13 11:16:00 -cd00899 b4GalT 132999 cd00761 cd00761 4 1 1 0 01/17/13 11:16:00 -cd00900 PH-like 275390 N/A cd00900 7 1 1 0 10/22/14 09:41:00 -cd00904 Ferritin 153098 cd00657 cd00657 5 1 1 0 01/17/13 11:16:00 -cd00907 Bacteriofer... 153099 cd00657 cd00657 5 1 1 0 01/17/13 11:16:00 -cd00912 ML 238454 N/A cd00912 4 1 1 0 01/17/13 11:16:00 -cd00913 PCD_DCoH_su... 238455 cd00488 cd00488 3 1 1 0 01/17/13 11:16:00 -cd00914 PCD_DCoH_su... 238456 cd00488 cd00488 3 1 1 0 01/17/13 11:16:00 -cd00915 MD-1_MD-2 238457 cd00912 cd00912 4 1 1 0 01/17/13 11:16:00 -cd00916 Npc2_like 238458 cd00912 cd00912 4 1 1 0 01/17/13 11:16:00 -cd00917 PG-PI_TP 238459 cd00912 cd00912 4 1 1 0 01/17/13 11:16:00 -cd00918 Der-p2_like 238460 cd00912 cd00912 4 1 1 0 01/17/13 11:16:00 -cd00919 Heme_Cu_Oxi... 238461 N/A cd00919 4 1 1 0 01/17/13 11:16:00 -cd00920 Cupredoxin 259860 N/A cd00920 1 1 1 0 08/20/13 16:28:00 -cd00922 Cyt_c_Oxida... 238462 N/A cd00922 3 1 1 0 01/17/13 11:16:00 -cd00923 Cyt_c_Oxida... 238463 N/A cd00923 3 1 1 0 01/17/13 11:16:00 -cd00924 Cyt_c_Oxida... 238464 N/A cd00924 3 1 1 0 01/17/13 11:16:00 -cd00925 Cyt_c_Oxida... 238465 N/A cd00925 3 1 1 0 01/17/13 11:16:00 -cd00926 Cyt_c_Oxida... 238466 N/A cd00926 3 1 1 0 01/17/13 11:16:00 -cd00927 Cyt_c_Oxida... 238467 N/A cd00927 3 1 1 0 01/17/13 11:16:00 -cd00928 Cyt_c_Oxida... 238468 N/A cd00928 3 1 1 0 01/17/13 11:16:00 -cd00929 Cyt_c_Oxida... 238469 N/A cd00929 3 1 1 0 01/17/13 11:16:00 -cd00930 Cyt_c_Oxida... 238470 N/A cd00930 3 1 1 0 01/17/13 11:16:00 -cd00933 barnase 238471 cd00389 cd00389 4 1 1 0 01/17/13 11:16:00 -cd00934 PTB 269911 cd00900 cd00900 7 1 1 0 10/22/14 09:41:00 -cd00935 GlyRS_RNA 238472 cd01200 cd00677 3 1 1 0 01/17/13 11:16:00 -cd00936 WEPRS_RNA 238473 cd01200 cd00677 3 1 1 0 01/17/13 11:16:00 -cd00938 HisRS_RNA 238474 cd01200 cd00677 3 1 1 0 01/17/13 11:16:00 -cd00939 MetRS_RNA 238475 cd01200 cd00677 3 1 1 0 01/17/13 11:16:00 -cd00945 Aldolase_Cl... 188634 N/A cd00945 5 1 1 0 01/17/13 11:16:00 -cd00946 FBP_aldolas... 238476 cd00453 cd00453 4 1 1 0 01/17/13 11:16:00 -cd00947 TBP_aldolas... 238477 cd00453 cd00453 4 1 1 0 01/17/13 11:16:00 -cd00948 FBP_aldolas... 188635 cd00344 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00949 FBP_aldolas... 188636 cd00344 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00950 DHDPS 188637 cd00408 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00951 KDGDH 188638 cd00408 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00952 CHBPH_aldolase 188639 cd00408 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00953 KDG_aldolase 188640 cd00408 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00954 NAL 188641 cd00408 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00955 Transaldola... 188642 cd00439 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00956 Transaldola... 188643 cd00439 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00957 Transaldola... 188644 cd00439 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00958 DhnA 188645 cd00945 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00959 DeoC 188646 cd00945 cd00945 5 1 1 0 01/17/13 11:16:00 -cd00974 DSRD 238478 N/A cd00974 3 1 1 0 01/17/13 11:16:00 -cd00978 chitosanase... 340364 cd16889 cd00442 5 1 0 0 06/09/17 13:53:00 -cd00980 FwdC/FmdC 238480 cd00504 cd00504 3 1 1 0 01/17/13 11:16:00 -cd00981 arch_gltB 238481 cd00504 cd00504 3 1 1 0 01/17/13 11:16:00 -cd00982 gltB_C 238482 cd00504 cd00504 3 1 1 0 01/17/13 11:16:00 -cd00983 recA 238483 cd01393 cd01120 4 1 1 0 01/17/13 11:16:00 -cd00984 DnaB_C 238484 cd01120 cd01120 4 1 1 0 01/17/13 11:16:00 -cd00985 Maf_Ham1 238485 N/A cd00985 6 1 1 0 01/17/13 11:16:00 -cd00986 PDZ_LON_pro... 238486 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00987 PDZ_serine_... 238487 cd00136 cd00136 4 1 1 0 04/25/13 09:12:00 -cd00988 PDZ_CTP_pro... 238488 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00989 PDZ_metallo... 238489 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00990 PDZ_glycyl_... 238490 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00991 PDZ_archaea... 238491 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00992 PDZ_signaling 238492 cd00136 cd00136 4 1 1 0 01/17/13 11:16:00 -cd00993 PBP2_ModA_like 270215 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd00994 PBP2_GlnH 270216 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd00995 PBP2_NikA_D... 173853 N/A cd00995 2 1 1 0 01/17/13 11:16:00 -cd00996 PBP2_AatB_like 270217 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd00997 PBP2_GluR0 270218 cd00998 cd00648 1 1 1 0 03/02/14 08:24:00 -cd00998 PBP2_iGluR_... 270219 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd00999 PBP2_ArtJ 270220 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01000 PBP2_Cys_DE... 270221 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01001 PBP2_HisJ_L... 270222 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01002 PBP2_Ehub_like 270223 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01003 PBP2_YckB 270224 cd13626 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01004 PBP2_MidA_like 270225 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01005 PBP2_CysP 270226 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01006 PBP2_phosph... 270227 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01007 PBP2_BvgS_H... 270228 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01008 PBP2_NrtA_S... 270229 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01009 PBP2_YfhD_N 270230 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01011 nicotinamidase 238493 cd00431 cd00431 4 1 1 0 01/17/13 11:16:00 -cd01012 YcaC_related 238494 cd00431 cd00431 4 1 1 0 01/17/13 11:16:00 -cd01013 isochorisma... 238495 cd00431 cd00431 4 1 1 0 01/17/13 11:16:00 -cd01014 nicotinamid... 238496 cd00431 cd00431 4 1 1 0 01/17/13 11:16:00 -cd01015 CSHase 238497 cd00431 cd00431 4 1 1 0 01/17/13 11:16:00 -cd01016 TroA 238498 cd00636 cd00636 4 1 1 0 01/17/13 11:16:00 -cd01017 AdcA 238499 cd00636 cd00636 4 1 1 0 01/17/13 11:16:00 -cd01018 ZntC 238500 cd00636 cd00636 4 1 1 0 01/17/13 11:16:00 -cd01019 ZnuA 238501 cd00636 cd00636 4 1 1 0 01/17/13 11:16:00 -cd01020 TroA_b 238502 cd00636 cd00636 4 1 1 0 01/17/13 11:16:00 -cd01021 GEWL 340365 cd00254 cd00442 5 1 0 0 06/09/17 13:53:00 -cd01022 GH57N_like 212096 cd10785 cd10785 2 1 1 0 01/17/13 11:16:00 -cd01025 TOPRIM_recR 173775 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01026 TOPRIM_OLD 173776 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01027 TOPRIM_RNas... 173777 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01028 TOPRIM_TopoIA 173778 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01029 TOPRIM_prim... 173779 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01030 TOPRIM_Topo... 173780 cd00188 cd00188 5 1 1 0 01/17/13 11:16:00 -cd01031 EriC 238504 cd00400 cd00400 3 1 1 0 01/17/13 11:16:00 -cd01033 ClC_like 238505 cd00400 cd00400 2 1 1 0 01/17/13 11:16:00 -cd01034 EriC_like 238506 cd00400 cd00400 2 1 1 0 01/17/13 11:16:00 -cd01036 ClC_euk 238507 cd00400 cd00400 2 1 1 0 01/17/13 11:17:00 -cd01037 Restriction... 238508 N/A cd01037 4 1 1 0 01/17/13 11:17:00 -cd01038 Endonucleas... 238509 cd01037 cd01037 4 1 1 0 01/17/13 11:17:00 -cd01040 Mb_like 271266 cd01067 cd01067 5 1 1 0 06/11/14 17:04:00 -cd01041 Rubrerythrin 153100 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01042 DMQH 153101 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01043 DPS 153102 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01044 Ferritin_CC... 153103 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01045 Ferritin_li... 153104 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01046 Rubrerythri... 153105 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01047 ACSF 153106 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01048 Ferritin_li... 153107 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01049 RNRR2 153108 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01050 Acyl_ACP_Desat 153109 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01051 Mn_catalase 153110 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01052 DPSL 153111 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01053 AOX 153112 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01055 Nonheme_Fer... 153113 cd00904 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01056 Euk_Ferritin 153114 cd00904 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01057 AAMH_A 153115 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01058 AAMH_B 153116 cd00657 cd00657 5 1 1 0 01/17/13 11:17:00 -cd01059 CCC1_like 153121 N/A cd01059 6 1 1 0 01/17/13 11:17:00 -cd01060 Membrane-FA... 238511 N/A cd01060 3 1 1 0 01/17/13 11:17:00 -cd01061 RNase_T2_euk 238512 cd00374 cd00374 4 1 1 0 01/17/13 11:17:00 -cd01062 RNase_T2_prok 238513 cd00374 cd00374 4 1 1 0 01/17/13 11:17:00 -cd01065 NAD_bind_Sh... 133443 cd05191 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01066 APP_MetAP 238514 N/A cd01066 4 1 1 0 01/17/13 11:17:00 -cd01067 Globin_like 271267 N/A cd01067 5 1 1 0 06/11/14 17:04:00 -cd01068 globin_sensor 271268 cd01067 cd01067 5 1 1 0 06/11/14 17:04:00 -cd01069 PBP2_PheC 270231 cd13530 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01071 PBP2_PhnD_like 270232 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01072 PBP2_SMa008... 270233 cd01000 cd00648 1 1 1 0 03/02/14 08:24:00 -cd01075 NAD_bind_Le... 133444 cd05211 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01076 NAD_bind_1_... 133445 cd05211 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01078 NAD_bind_H4... 133446 cd05191 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01079 NAD_bind_m-... 133447 cd05212 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01080 NAD_bind_m-... 133448 cd05212 cd05191 3 1 1 0 01/17/13 11:17:00 -cd01081 Aldose_epim 185695 N/A cd01081 3 1 1 0 01/17/13 11:17:00 -cd01083 GAG_Lyase 238517 N/A cd01083 3 1 1 0 01/17/13 11:17:00 -cd01085 APP 238518 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01086 MetAP1 238519 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01087 Prolidase 238520 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01088 MetAP2 238521 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01089 PA2G4-like 238522 cd01066 cd01066 6 1 1 0 01/17/13 11:17:00 -cd01090 Creatinase 238523 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01091 CDC68-like 238524 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01092 APP-like 238525 cd01066 cd01066 4 1 1 0 01/17/13 11:17:00 -cd01093 CRIB_PAK_like 238526 cd00132 cd00132 4 1 1 0 01/17/13 11:17:00 -cd01094 Alkanesulfo... 238527 cd00347 cd00347 4 1 1 0 01/17/13 11:17:00 -cd01095 Nitrilotria... 238528 cd00347 cd00347 6 1 1 0 01/17/13 11:17:00 -cd01096 Alkanal_mon... 238529 cd00347 cd00347 4 1 1 0 01/17/13 11:17:00 -cd01097 Tetrahydrom... 238530 cd00347 cd00347 5 1 1 0 01/17/13 11:17:00 -cd01098 PAN_AP_plant 238531 cd00129 cd00129 3 1 1 0 01/17/13 11:17:00 -cd01099 PAN_AP_HGF 238532 cd00129 cd00129 3 1 1 0 01/17/13 11:17:00 -cd01100 APPLE_Facto... 238533 cd00129 cd00129 3 1 1 0 01/17/13 11:17:00 -cd01102 Link_Domain 238534 N/A cd01102 4 1 1 0 01/17/13 11:17:00 -cd01104 HTH_MlrA-CarA 133379 cd04763 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01105 HTH_GlnR-like 133380 cd00592 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01106 HTH_TipAL-Mta 133381 cd04768 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01107 HTH_BmrR 133382 cd04768 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01108 HTH_CueR 133383 cd04770 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01109 HTH_YyaN 133384 cd00592 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01110 HTH_SoxR 133385 cd00592 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01111 HTH_MerD 133386 cd00592 cd04761 6 1 1 0 01/17/13 11:17:00 -cd01115 SLC13_permease 238535 cd00625 cd00625 6 1 1 0 01/17/13 11:17:00 -cd01116 P_permease 238536 cd00625 cd00625 4 1 1 0 01/17/13 11:17:00 -cd01117 YbiR_permease 238537 cd00625 cd00625 4 1 1 0 01/17/13 11:17:00 -cd01118 ArsB_permease 238538 cd00625 cd00625 4 1 1 0 01/17/13 11:17:00 -cd01119 Chemokine_C... 238539 cd00272 cd00169 4 1 1 0 01/17/13 11:17:00 -cd01120 RecA-like_N... 238540 N/A cd01120 4 1 1 0 01/17/13 11:17:00 -cd01121 Sms 238541 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01122 GP4d_helicase 238542 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01123 Rad51_DMC1_... 238543 cd01393 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01124 KaiC 238544 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01125 repA 238545 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01126 TraG_VirD4 238546 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01127 TrwB 238547 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01128 rho_factor 238548 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01129 PulE-GspE 238549 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01130 VirB11-like... 238550 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01131 PilT 238551 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01132 F1_ATPase_a... 238552 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01133 F1-ATPase_beta 238553 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01134 V_A-ATPase_A 238554 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01135 V_A-ATPase_B 238555 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01136 ATPase_flag... 238556 cd01120 cd01120 4 1 1 0 01/17/13 11:17:00 -cd01137 PsaA 238557 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01138 FeuA 238558 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01139 TroA_f 238559 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01140 FatB 238560 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01141 TroA_d 238561 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01142 TroA_e 238562 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01143 YvrC 238563 cd00636 cd00636 3 1 1 0 01/17/13 11:17:00 -cd01144 BtuF 238564 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01145 TroA_c 238565 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01146 FhuD 238566 cd00636 cd00636 3 1 1 0 01/17/13 11:17:00 -cd01147 HemV-2 238567 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01148 TroA_a 238568 cd00636 cd00636 4 1 1 0 01/17/13 11:17:00 -cd01149 HutB 238569 cd00636 cd00636 3 1 1 0 01/17/13 11:17:00 -cd01150 AXO 173839 cd00567 cd00567 7 1 1 0 01/17/13 11:17:00 -cd01151 GCD 173840 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01152 ACAD_fadE6_... 173841 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01153 ACAD_fadE5 173842 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01154 AidB 173843 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01155 ACAD_FadE2 173844 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01156 IVD 173845 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01157 MCAD 173846 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01158 SCAD_SBCAD 173847 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01159 NcnH 173848 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01160 LCAD 173849 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01161 VLCAD 173850 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01162 IBD 173851 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01163 DszC 173852 cd00567 cd00567 5 1 1 0 01/17/13 11:17:00 -cd01164 FruK_PfkB_like 238570 cd00287 cd00287 5 1 1 0 01/17/13 11:17:00 -cd01165 BTB_POZ 349496 N/A cd01165 1 1 0 0 07/11/18 17:52:00 -cd01166 KdgK 238571 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01167 bac_FRK 238572 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01168 adenosine_k... 238573 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01169 HMPP_kinase 238574 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01170 THZ_kinase 238575 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01171 YXKO-related 238576 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01172 RfaE_like 238577 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01173 pyridoxal_p... 238578 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01174 ribokinase 238579 cd00287 cd00287 4 1 1 0 01/17/13 11:17:00 -cd01175 IPT_COE 238580 cd00102 cd00102 3 1 1 0 01/17/13 11:17:00 -cd01176 IPT_RBP-Jkappa 238581 cd00602 cd00102 3 1 1 0 01/17/13 11:17:00 -cd01177 IPT_NFkappaB 238582 cd00602 cd00102 4 1 1 0 01/17/13 11:17:00 -cd01178 IPT_NFAT 238583 cd00602 cd00102 4 1 1 0 01/17/13 11:17:00 -cd01179 IPT_plexin_... 238584 cd00603 cd00102 3 1 1 0 01/17/13 11:17:00 -cd01180 IPT_plexin_... 238585 cd00603 cd00102 3 1 1 0 01/17/13 11:17:00 -cd01181 IPT_plexin_... 238586 cd00603 cd00102 3 1 1 0 01/17/13 11:17:00 -cd01182 INT_RitC_C_... 271183 cd00397 cd00397 6 1 1 0 10/22/14 09:49:00 -cd01184 INT_C_like_1 271184 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01185 INTN1_C_like 271185 cd00397 cd00397 6 1 1 0 10/22/14 09:49:00 -cd01186 INT_tnpA_C_... 271186 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01187 INT_tnpB_C_... 271187 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01188 INT_RitA_C_... 271188 cd00397 cd00397 6 1 1 0 10/22/14 09:49:00 -cd01189 INT_ICEBs1_... 271189 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01190 INT_StrepXe... 271190 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01191 INT_C_like_2 271191 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01192 INT_C_like_3 271192 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01193 INT_IntI_C 271193 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01194 INT_C_like_4 271194 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01195 INT_C_like_5 271195 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01196 INT_C_like_6 271196 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01197 INT_FimBE_like 271197 cd00397 cd00397 5 1 1 0 10/22/14 09:49:00 -cd01200 WHEPGMRS_RNA 238605 cd00677 cd00677 3 1 1 0 01/17/13 11:18:00 -cd01201 PH_BEACH 275391 cd00900 cd00900 8 1 1 0 10/22/14 09:41:00 -cd01202 PTB_FRS2 269913 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01203 PTB_DOK1_DO... 269914 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01204 PTB_IRS 269915 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01205 EVH1_WASP-like 269916 cd00837 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01206 EVH1_Homer_... 269917 cd00837 cd00900 6 1 1 0 10/22/14 09:41:00 -cd01207 EVH1_Ena_VA... 269918 cd00837 cd00900 6 1 1 0 10/22/14 09:41:00 -cd01208 PTB_X11 269919 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01209 PTB_Shc 269920 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01210 PTB_EPS8 269921 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01211 PTB_Rab6GAP 269922 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01212 PTB_JIP 269923 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01213 PTB_tensin 269924 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01214 PTB_FAM43A 269925 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01215 PTB_Dab 269926 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01217 PTB_CG12581 241252 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01218 PH_Phafin2-... 269927 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01219 PH1_FGD1 275392 cd13388 cd00900 8 1 1 0 10/22/14 09:41:00 -cd01220 PH1_FARP1-like 269928 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01221 PH_ephexin 269929 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01223 PH_Vav 269930 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01224 PH_Collybis... 269931 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01225 PH_Cool_Pix 269932 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01226 PH_RalBD_exo84 269933 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01227 PH_Dbs 269934 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01228 PH_BCR-related 269935 cd00821 cd00900 10 1 1 0 10/22/14 09:41:00 -cd01229 PH_Ect2 269936 cd00821 cd00900 6 1 1 0 10/22/14 09:41:00 -cd01230 PH1_Tiam1_2 269937 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01231 PH_SH2B_family 269938 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01233 PH_KIFIA_KIFIB 269939 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01234 PH_CADPS 269940 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01235 PH_Sbf1_hMTMR5 269941 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01236 PH_RIP 269942 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01237 PH_fermitin 269943 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01238 PH_Btk 269944 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01239 PH_PKD 269945 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01240 PH_GRK2_sub... 269946 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01241 PH_PKB 269947 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01242 PH_ROCK 269948 cd00821 cd00900 9 1 1 0 10/22/14 09:41:00 -cd01243 PH_MRCK 269949 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01244 PH_GAP1-like 269950 cd00821 cd00900 8 1 1 0 10/22/14 09:41:00 -cd01247 PH_FAPP1_FAPP2 269951 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01248 PH_PLC_ELMO1 269952 cd00821 cd00900 8 1 1 0 10/22/14 09:41:00 -cd01249 BAR-PH_GRAF... 269953 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01250 PH_AGAP 241281 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01251 PH2_ADAP 241282 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01252 PH_GRP1-like 269954 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01253 PH_ARHGAP21... 269955 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01254 PH_PLD 269956 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01255 PH2_Tiam1_2 269957 cd00821 cd00900 6 1 1 0 10/22/14 09:41:00 -cd01256 PH_dynamin 269958 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01257 PH_IRS 269959 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01258 PHsplit_syn... 269960 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01259 PH_APBB1IP 269961 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01260 PH_CNK_mamm... 269962 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01261 PH_SOS 269963 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01262 PH_PDK1 241293 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01263 PH_anillin 269964 cd00821 cd00900 6 1 1 0 10/22/14 09:41:00 -cd01264 PH_MELT_VEPH1 269965 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01265 PH_TBC1D2A 269966 cd00821 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01266 PH_Gab1_Gab2 241297 cd13324 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01268 PTB_Numb 241298 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01269 PTB_TBC1D1_... 269967 cd00934 cd00900 9 1 1 0 10/22/14 09:41:00 -cd01270 PTB_CAPON-like 269968 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01271 PTB2_Fe65 269969 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01272 PTB1_Fe65 269970 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01273 PTB_CED-6 269971 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01274 PTB_Anks 269972 cd00934 cd00900 7 1 1 0 10/22/14 09:41:00 -cd01275 FHIT 238606 cd00468 cd00468 4 1 1 0 01/17/13 11:18:00 -cd01276 PKCI_related 238607 cd00468 cd00468 4 1 1 0 01/17/13 11:18:00 -cd01277 HINT_subgroup 238608 cd00468 cd00468 4 1 1 0 01/17/13 11:18:00 -cd01278 aprataxin_r... 238609 cd00468 cd00468 4 1 1 0 01/17/13 11:18:00 -cd01279 HTH_HspR-like 133387 cd00592 cd04761 6 1 1 0 01/17/13 11:18:00 -cd01282 HTH_MerR-li... 133388 cd00592 cd04761 6 1 1 0 01/17/13 11:18:00 -cd01283 cytidine_de... 238610 cd00786 cd00786 4 1 1 0 01/17/13 11:18:00 -cd01284 Riboflavin_... 238611 cd00786 cd00786 4 1 1 0 01/17/13 11:18:00 -cd01285 nucleoside_... 238612 cd00786 cd00786 4 1 1 0 01/17/13 11:18:00 -cd01286 deoxycytidy... 238613 cd00786 cd00786 4 1 1 0 01/17/13 11:18:00 -cd01287 FabA 238614 cd00493 cd03440 3 1 1 0 01/17/13 11:18:00 -cd01288 FabZ 238615 cd00493 cd03440 2 1 1 0 01/17/13 11:18:00 -cd01289 FabA_like 238616 cd00493 cd03440 3 1 1 0 01/17/13 11:18:00 -cd01291 PseudoU_synth 211324 N/A cd01291 7 1 1 0 01/17/13 11:18:00 -cd01292 metallo-dep... 238617 N/A cd01292 4 1 1 0 01/17/13 11:18:00 -cd01293 Bact_CD 238618 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01294 DHOase 238619 cd01292 cd01292 5 1 1 0 01/17/13 11:18:00 -cd01295 AdeC 238620 cd01292 cd01292 6 1 1 0 01/17/13 11:18:00 -cd01296 Imidazolone... 238621 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01297 D-aminoacylase 238622 cd01292 cd01292 6 1 1 0 01/17/13 11:18:00 -cd01298 ATZ_TRZ_like 238623 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01299 Met_dep_hyd... 238624 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01300 YtcJ_like 238625 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01301 rDP_like 238626 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01302 Cyclic_amid... 238627 cd01292 cd01292 6 1 1 0 01/17/13 11:18:00 -cd01303 GDEase 238628 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01304 FMDH_A 238629 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01305 archeal_chl... 238630 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01306 PhnM 238631 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01307 Met_dep_hyd... 238632 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01308 Isoaspartyl... 238633 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01309 Met_dep_hyd... 238634 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01310 TatD_DNAse 238635 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01311 PDC_hydrolase 238636 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01312 Met_dep_hyd... 238637 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01313 Met_dep_hyd... 238638 cd01292 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01314 D-HYD 238639 cd01302 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01315 L-HYD_ALN 238640 cd01302 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01316 CAD_DHOase 238641 cd01302 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01317 DHOase_IIa 238642 cd01302 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01318 DHOase_IIb 238643 cd01302 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01319 AMPD 238644 cd00443 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01320 ADA 238645 cd00443 cd01292 4 1 1 0 01/17/13 11:18:00 -cd01321 ADGF 238646 cd00443 cd01292 6 1 1 0 01/17/13 11:18:00 -cd01324 cbb3_Oxidas... 238647 N/A cd01324 3 1 1 0 01/17/13 11:18:00 -cd01327 KAZAL_PSTI 238648 cd00104 cd00104 3 1 1 0 01/17/13 11:18:00 -cd01328 FSL_SPARC 238649 cd00104 cd00104 4 1 1 0 01/17/13 11:18:00 -cd01330 KAZAL_SLC21 238650 cd00104 cd00104 3 1 1 0 01/17/13 11:18:00 -cd01334 Lyase_I 176461 cd01594 cd01594 4 1 1 0 01/17/13 11:18:00 -cd01335 Radical_SAM 100105 N/A cd01335 2 1 1 0 01/17/13 11:18:00 -cd01336 MDH_cytopla... 133421 cd00704 cd00650 7 1 1 0 01/17/13 11:18:00 -cd01337 MDH_glyoxys... 133422 cd00650 cd00650 7 1 1 0 01/17/13 11:18:00 -cd01338 MDH_choloro... 133423 cd00704 cd00650 7 1 1 0 01/17/13 11:18:00 -cd01339 LDH-like_MDH 133424 cd00300 cd00650 7 1 1 0 01/17/13 11:18:00 -cd01341 ADP_ribosyl 238651 N/A cd01341 4 1 1 0 01/17/13 11:18:00 -cd01342 Translation... 293888 N/A cd01342 3 1 1 0 11/06/15 13:15:00 -cd01343 PL1_Passeng... 238653 cd00253 cd00253 3 1 1 0 01/17/13 11:18:00 -cd01344 PL2_Passeng... 238654 cd00253 cd00253 3 1 1 0 01/17/13 11:18:00 -cd01345 OM_channels 238655 N/A cd01345 5 1 1 0 01/17/13 11:19:00 -cd01346 Maltoporin-... 238656 cd01345 cd01345 4 1 1 0 01/17/13 11:19:00 -cd01347 ligand_gate... 238657 cd01345 cd01345 6 1 1 0 01/17/13 11:19:00 -cd01351 Aconitase 153129 N/A cd01351 5 1 1 0 01/17/13 11:19:00 -cd01355 AcnX 153130 cd01351 cd01351 5 1 1 0 01/17/13 11:19:00 -cd01356 AcnX_swivel 238658 cd00404 cd00404 4 1 1 0 01/17/13 11:19:00 -cd01357 Aspartase 176462 cd01596 cd01594 4 1 1 0 01/17/13 11:19:00 -cd01359 Argininosuc... 176463 cd01334 cd01594 4 1 1 0 01/17/13 11:19:00 -cd01360 Adenylsucci... 176464 cd01595 cd01594 6 1 1 0 01/17/13 11:19:00 -cd01362 Fumarase_cl... 176465 cd01596 cd01594 4 1 1 0 01/17/13 11:19:00 -cd01363 Motor_domain 276814 N/A cd01363 8 1 1 0 02/05/15 10:54:00 -cd01364 KISc_BimC_Eg5 276815 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01365 KISc_KIF1A_... 276816 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01366 KISc_C_term... 276817 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01367 KISc_KIF2_like 276818 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01368 KISc_KIF23_... 276819 cd00106 cd01363 7 1 1 0 02/05/15 10:54:00 -cd01369 KISc_KHC_KIF5 276820 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01370 KISc_KIP3_like 276821 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01371 KISc_KIF3 276822 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01372 KISc_KIF4 276823 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01373 KISc_KLP2_like 276824 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01374 KISc_CENP_E 276825 cd00106 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01375 KISc_KIF9_like 276826 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01376 KISc_KID_like 276827 cd00106 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01377 MYSc_class_II 276951 cd00124 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01378 MYSc_Myo1 276829 cd00124 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01379 MYSc_Myo3 276830 cd00124 cd01363 8 1 1 0 02/05/15 10:54:00 -cd01380 MYSc_Myo5 276831 cd00124 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01381 MYSc_Myo7 276832 cd00124 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01382 MYSc_Myo6 276833 cd00124 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01383 MYSc_Myo8 276834 cd00124 cd01363 6 1 1 0 02/05/15 10:54:00 -cd01384 MYSc_Myo11 276835 cd00124 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01385 MYSc_Myo9 276836 cd00124 cd01363 7 1 1 0 02/05/15 10:54:00 -cd01386 MYSc_Myo18 276837 cd00124 cd01363 5 1 1 0 02/05/15 10:54:00 -cd01387 MYSc_Myo15 276838 cd00124 cd01363 6 1 1 0 02/05/15 10:55:00 -cd01388 SOX-TCF_HMG... 238684 cd00084 cd00084 4 1 1 0 01/17/13 11:19:00 -cd01389 MATA_HMG-box 238685 cd00084 cd00084 4 1 1 0 01/17/13 11:19:00 -cd01390 HMGB-UBF_HM... 238686 cd00084 cd00084 4 1 1 0 01/17/13 11:19:00 -cd01391 Periplasmic... 107248 N/A cd01391 3 1 1 0 01/17/13 11:19:00 -cd01392 HTH_LacI 143331 N/A cd01392 3 1 1 0 01/17/13 11:19:00 -cd01393 recA_like 238687 cd01120 cd01120 4 1 1 0 01/17/13 11:19:00 -cd01394 radB 238688 cd01393 cd01120 4 1 1 0 01/17/13 11:19:00 -cd01395 HMT_MBD 238689 cd00122 cd00122 4 1 1 0 01/17/13 11:19:00 -cd01396 MeCP2_MBD 238690 cd00122 cd00122 4 1 1 0 01/17/13 11:19:00 -cd01397 HAT_MBD 238691 cd00122 cd00122 4 1 1 0 01/17/13 11:19:00 -cd01398 RPI_A 238692 cd00458 cd00458 3 1 1 0 01/17/13 11:19:00 -cd01399 GlcN6P_deam... 238693 cd00458 cd00458 3 1 1 0 01/17/13 11:19:00 -cd01400 6PGL 238694 cd00458 cd00458 3 1 1 0 01/17/13 11:19:00 -cd01401 PncB_like 238695 cd01567 cd00516 4 1 1 0 01/17/13 11:19:00 -cd01403 Cyt_c_Oxida... 238696 N/A cd01403 3 1 1 0 01/17/13 11:19:00 -cd01406 SIR2-like 238697 cd00296 cd00296 3 1 1 0 01/17/13 11:19:00 -cd01407 SIR2-fam 238698 cd00296 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01408 SIRT1 238699 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01409 SIRT4 238700 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01410 SIRT7 238701 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01411 SIR2H 238702 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01412 SIRT5_Af1_CobB 238703 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01413 SIR2_Af2 238704 cd01407 cd00296 4 1 1 0 01/17/13 11:19:00 -cd01414 SAICAR_synt_Sc 133469 cd00476 cd00476 5 1 1 0 01/17/13 11:19:00 -cd01415 SAICAR_synt... 133470 cd00476 cd00476 5 1 1 0 01/17/13 11:19:00 -cd01416 SAICAR_synt... 133471 cd00476 cd00476 5 1 1 0 01/17/13 11:19:00 -cd01417 Ribosomal_L... 238705 cd00481 cd00481 4 1 1 0 01/17/13 11:19:00 -cd01418 Ribosomal_L... 238706 cd00481 cd00481 4 1 1 0 01/17/13 11:19:00 -cd01419 MoaC_A 238707 cd00528 cd00528 4 1 1 0 01/17/13 11:19:00 -cd01420 MoaC_PE 238708 cd00528 cd00528 4 1 1 0 01/17/13 11:19:00 -cd01421 IMPCH 238709 cd00532 cd00532 4 1 1 0 01/17/13 11:19:00 -cd01422 MGS 238710 cd00532 cd00532 4 1 1 0 01/17/13 11:19:00 -cd01423 MGS_CPS_I_III 238711 cd00532 cd00532 4 1 1 0 01/17/13 11:19:00 -cd01424 MGS_CPS_II 238712 cd00532 cd00532 4 1 1 0 01/17/13 11:19:00 -cd01425 RPS2 100106 N/A cd01425 3 1 1 0 01/17/13 11:19:00 -cd01426 ATP-synt_F1... 349738 N/A cd01426 1 1 0 0 07/11/18 17:53:00 -cd01427 HAD_like 319763 N/A cd01427 4 1 1 0 08/18/16 16:37:00 -cd01428 ADK 238713 cd02019 cd02019 4 1 1 0 01/17/13 11:19:00 -cd01429 ATP-synt_F1... 349744 N/A cd01429 1 1 0 0 07/11/18 17:53:00 -cd01431 P-type_ATPases 319764 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01433 Ribosomal_L... 238714 N/A cd01433 3 1 1 0 01/17/13 11:19:00 -cd01434 EFG_mtEFG1_IV 238715 cd01680 cd01680 2 1 1 0 01/17/13 11:19:00 -cd01435 RNAP_I_RPA1_N 259844 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd01436 Dipth_tox_like 238716 cd01341 cd01341 4 1 1 0 01/17/13 11:19:00 -cd01437 parp_like 238717 cd01341 cd01341 4 1 1 0 01/17/13 11:19:00 -cd01438 tankyrase_like 238718 cd01341 cd01341 3 1 1 0 01/17/13 11:19:00 -cd01439 TCCD_induci... 238719 cd01341 cd01341 4 1 1 0 01/17/13 11:19:00 -cd01443 Cdc25_Acr2p 238720 cd00158 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01444 GlpE_ST 238721 cd00158 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01445 TST_Repeats 238722 cd00158 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01446 DSP_MapKP 238723 cd00158 cd00158 3 1 1 0 01/17/13 11:19:00 -cd01447 Polysulfide_ST 238724 cd00158 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01448 TST_Repeat_1 238725 cd01445 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01449 TST_Repeat_2 238726 cd01445 cd00158 4 1 1 0 01/17/13 11:19:00 -cd01450 vWFA_subfam... 238727 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01451 vWA_Magnesi... 238728 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01452 VWA_26S_pro... 238729 cd00198 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01453 vWA_transcr... 238730 cd00198 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01454 vWA_norD_type 238731 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01455 vWA_F11C1-5... 238732 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01456 vWA_ywmD_type 238733 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01457 vWA_ORF176_... 238734 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01458 vWA_ku 238735 cd00198 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01459 vWA_copine_... 238736 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01460 vWA_midasin 238737 cd00198 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01461 vWA_interal... 238738 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01462 VWA_YIEM_type 238739 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01463 vWA_VGCC_like 238740 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01464 vWA_subfamily 238741 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01465 vWA_subgroup 238742 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01466 vWA_C3HC4_type 238743 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01467 vWA_BatA_type 238744 cd00198 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01468 trunk_domain 238745 cd00198 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01469 vWA_integri... 238746 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01470 vWA_complem... 238747 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01471 vWA_microne... 238748 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01472 vWA_collagen 238749 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01473 vWA_CTRP 238750 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01474 vWA_ATR 238751 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01475 vWA_Matrilin 238752 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01476 VWA_integri... 238753 cd01450 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01477 vWA_F09G8-8... 238754 cd01450 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01478 Sec23-like 238755 cd01468 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01479 Sec24-like 238756 cd01468 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01480 vWA_collage... 238757 cd01472 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01481 vWA_collage... 238758 cd01472 cd00198 3 1 1 0 01/17/13 11:19:00 -cd01482 vWA_collage... 238759 cd01472 cd00198 4 1 1 0 01/17/13 11:19:00 -cd01483 E1_enzyme_f... 238760 N/A cd01483 6 1 1 0 01/17/13 11:19:00 -cd01484 E1-2_like 238761 cd01483 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01485 E1-1_like 238762 cd01483 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01486 Apg7 238763 cd01483 cd01483 4 1 1 0 01/17/13 11:19:00 -cd01487 E1_ThiF_like 238764 cd01483 cd01483 4 1 1 0 01/17/13 11:19:00 -cd01488 Uba3_RUB 238765 cd01484 cd01483 4 1 1 0 01/17/13 11:19:00 -cd01489 Uba2_SUMO 238766 cd01484 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01490 Ube1_repeat2 238767 cd01484 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01491 Ube1_repeat1 238768 cd01485 cd01483 5 1 1 0 01/17/13 11:19:00 -cd01492 Aos1_SUMO 238769 cd01485 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01493 APPBP1_RUB 238770 cd01485 cd01483 6 1 1 0 01/17/13 11:19:00 -cd01494 AAT_I 99742 N/A cd01494 3 1 1 0 01/17/13 11:19:00 -cd01513 Translation... 275447 N/A cd01513 4 1 1 0 11/06/15 13:21:00 -cd01514 Elongation_... 238772 N/A cd01514 2 1 1 0 01/17/13 11:19:00 -cd01515 Arch_FBPase_1 238773 cd01637 cd01636 4 1 1 0 01/17/13 11:19:00 -cd01516 FBPase_glpX 238774 cd01636 cd01636 4 1 1 0 01/17/13 11:19:00 -cd01517 PAP_phospha... 238775 cd01637 cd01636 6 1 1 0 01/17/13 11:20:00 -cd01518 RHOD_YceA 238776 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01519 RHOD_HSP67B2 238777 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01520 RHOD_YbbB 238778 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01521 RHOD_PspE2 238779 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01522 RHOD_1 238780 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01523 RHOD_Lact_B 238781 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01524 RHOD_Pyr_redox 238782 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01525 RHOD_Kc 238783 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01526 RHOD_ThiF 238784 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01527 RHOD_YgaP 238785 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01528 RHOD_2 238786 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01529 4RHOD_Repeats 238787 cd00158 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01530 Cdc25 238788 cd01443 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01531 Acr2p 238789 cd01443 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01532 4RHOD_Repeat_1 238790 cd01529 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01533 4RHOD_Repeat_2 238791 cd01529 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01534 4RHOD_Repeat_3 238792 cd01529 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01535 4RHOD_Repeat_4 238793 cd01529 cd00158 4 1 1 0 01/17/13 11:20:00 -cd01536 PBP1_ABC_su... 107249 cd01537 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01537 PBP1_Repres... 107250 cd01391 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01538 PBP1_ABC_xy... 107251 cd01536 cd01391 4 1 1 0 10/29/18 15:22:00 -cd01539 PBP1_GGBP 107252 cd01536 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01540 PBP1_arabin... 107253 cd01536 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01541 PBP1_AraR 107254 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01542 PBP1_TreR_like 107255 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01543 PBP1_XylR 107256 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01544 PBP1_GalR 107257 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01545 PBP1_SalR 107258 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01553 EPT_RTPC-like 238794 N/A cd01553 6 1 1 0 01/17/13 11:20:00 -cd01554 EPT-like 238795 cd01553 cd01553 4 1 1 0 01/17/13 11:20:00 -cd01555 UdpNAET 238796 cd01554 cd01553 4 1 1 0 01/17/13 11:20:00 -cd01556 EPSP_synthase 238797 cd01554 cd01553 4 1 1 0 01/17/13 11:20:00 -cd01557 BCAT_beta_f... 238798 cd00449 cd00449 4 1 1 0 01/17/13 11:20:00 -cd01558 D-AAT_like 238799 cd00449 cd00449 4 1 1 0 01/17/13 11:20:00 -cd01559 ADCL_like 238800 cd00449 cd00449 4 1 1 0 01/17/13 11:20:00 -cd01560 Thr-synth_2 107203 cd00640 cd00640 3 1 1 0 01/17/13 11:20:00 -cd01561 CBS_like 107204 cd00640 cd00640 3 1 1 0 01/17/13 11:20:00 -cd01562 Thr-dehyd 107205 cd00640 cd00640 3 1 1 0 01/17/13 11:20:00 -cd01563 Thr-synth_1 107206 cd00640 cd00640 3 1 1 0 01/17/13 11:20:00 -cd01567 NAPRTase_PncB 238801 cd00516 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01568 QPRTase_NadC 238802 cd00516 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01569 PBEF_like 238803 cd01567 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01570 NAPRTase_A 238804 cd01567 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01571 NAPRTase_B 238805 cd01567 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01572 QPRTase 238806 cd01568 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01573 modD_like 238807 cd01568 cd00516 4 1 1 0 01/17/13 11:20:00 -cd01574 PBP1_LacI 107259 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01575 PBP1_GntR 107260 cd06267 cd01391 4 1 1 0 01/17/13 11:20:00 -cd01576 AcnB_Swivel 238808 cd00404 cd00404 4 1 1 0 01/17/13 11:20:00 -cd01577 IPMI_Swivel 238809 cd00404 cd00404 6 1 1 0 01/17/13 11:20:00 -cd01578 AcnA_Mitoch... 238810 cd00404 cd00404 4 1 1 0 01/17/13 11:20:00 -cd01579 AcnA_Bact_S... 238811 cd00404 cd00404 4 1 1 0 01/17/13 11:20:00 -cd01580 AcnA_IRP_Sw... 238812 cd00404 cd00404 4 1 1 0 01/17/13 11:20:00 -cd01581 AcnB 153131 cd01351 cd01351 5 1 1 0 01/17/13 11:20:00 -cd01582 Homoaconitase 153132 cd01351 cd01351 7 1 1 0 01/17/13 11:20:00 -cd01583 IPMI 153133 cd01351 cd01351 5 1 1 0 01/17/13 11:20:00 -cd01584 AcnA_Mitoch... 153134 cd01351 cd01351 5 1 1 0 01/17/13 11:20:00 -cd01585 AcnA_Bact 153135 cd01351 cd01351 5 1 1 0 01/17/13 11:20:00 -cd01586 AcnA_IRP 153136 cd01351 cd01351 7 1 1 0 01/17/13 11:20:00 -cd01594 Lyase_I_like 176466 N/A cd01594 6 1 1 0 01/17/13 11:20:00 -cd01595 Adenylsucci... 176467 cd01334 cd01594 6 1 1 0 01/17/13 11:20:00 -cd01596 Aspartase_like 176468 cd01334 cd01594 4 1 1 0 01/17/13 11:20:00 -cd01597 pCLME 176469 cd01595 cd01594 4 1 1 0 01/17/13 11:20:00 -cd01598 PurB 176470 cd01595 cd01594 4 1 1 0 01/17/13 11:20:00 -cd01609 RNAP_beta'_N 259845 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd01610 PAP2_like 238813 N/A cd01610 3 1 1 0 01/17/13 11:20:00 -cd01611 Ubl_Autopha... 340453 cd00196 cd00196 5 1 0 0 06/09/17 14:30:00 -cd01612 Ubl_ATG12 340454 cd01611 cd00196 5 1 0 0 06/09/17 14:30:00 -cd01614 EutN_CcmL 133473 N/A cd01614 3 1 1 0 01/17/13 11:20:00 -cd01615 CIDE_N 119367 N/A cd01615 3 1 1 0 01/17/13 11:20:00 -cd01616 TGS 340455 cd00196 cd00196 4 1 0 0 06/09/17 14:31:00 -cd01617 DCX 340456 cd00196 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01619 LDH_like 240620 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd01620 Ala_dh_like 240621 cd12154 cd12154 1 1 1 0 02/01/13 12:26:00 -cd01624 HAD_VSP_like 319765 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01625 HAD_PNP 319766 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01627 HAD_TPP 319767 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01629 HAD_EP 319768 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01630 HAD_KDO-like 319769 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd01635 Glycosyltra... 340816 N/A cd01635 3 1 0 0 06/09/17 14:32:00 -cd01636 FIG 238814 N/A cd01636 6 1 1 0 01/17/13 11:20:00 -cd01637 IMPase_like 238815 cd01636 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01638 CysQ 238816 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01639 IMPase 238817 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01640 IPPase 238818 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01641 Bacterial_I... 238819 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01642 Arch_FBPase_2 238820 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01643 Bacterial_I... 238821 cd01637 cd01636 4 1 1 0 01/17/13 11:20:00 -cd01644 RT_pepA17 238822 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01645 RT_Rtv 238823 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01646 RT_Bac_retr... 238824 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01647 RT_LTR 238825 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01648 TERT 238826 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01650 RT_nLTR_like 238827 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01651 RT_G2_intron 238828 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01653 GATase1 153210 cd03128 cd03128 6 1 1 0 01/17/13 11:20:00 -cd01657 Ribosomal_L... 100099 cd00355 cd00355 5 1 1 0 01/17/13 11:20:00 -cd01658 Ribosomal_L30 100100 cd00355 cd00355 5 1 1 0 01/17/13 11:20:00 -cd01659 TRX_superfa... 238829 N/A cd01659 2 1 1 0 01/17/13 11:20:00 -cd01660 ba3-like_Ox... 238830 cd00919 cd00919 4 1 1 0 01/17/13 11:20:00 -cd01661 cbb3_Oxidase_I 238831 cd00919 cd00919 4 1 1 0 01/17/13 11:20:00 -cd01662 Ubiquinol_O... 238832 cd00919 cd00919 4 1 1 0 01/17/13 11:20:00 -cd01663 Cyt_c_Oxida... 238833 cd00919 cd00919 4 1 1 0 01/17/13 11:20:00 -cd01665 Cyt_c_Oxida... 238834 cd00386 cd00386 4 1 1 0 01/17/13 11:20:00 -cd01666 TGS_DRG 340457 cd04938 cd00196 4 1 0 0 06/09/17 14:31:00 -cd01667 TGS_ThrRS 340458 cd01616 cd00196 4 1 0 0 06/09/17 14:31:00 -cd01668 TGS_RSH 340459 cd01616 cd00196 4 1 0 0 06/09/17 14:31:00 -cd01669 TGS_MJ1332_... 340460 cd04938 cd00196 4 1 0 0 06/09/17 14:31:00 -cd01670 Death 260017 cd08304 cd08304 3 1 1 0 08/20/13 16:29:00 -cd01671 CARD 260018 cd08304 cd08304 3 1 1 0 08/20/13 16:29:00 -cd01672 TMPK 238835 cd02019 cd02019 4 1 1 0 01/17/13 11:20:00 -cd01673 dNK 238836 cd02019 cd02019 4 1 1 0 01/17/13 11:20:00 -cd01674 Homoaconita... 238837 cd00404 cd00404 4 1 1 0 01/17/13 11:20:00 -cd01675 RNR_III 153084 cd00576 cd00576 6 1 1 0 01/17/13 11:20:00 -cd01676 RNR_II_monomer 153085 cd00576 cd00576 6 1 1 0 01/17/13 11:20:00 -cd01677 PFL2_DhaB_BssA 153086 cd00576 cd00576 6 1 1 0 01/17/13 11:20:00 -cd01678 PFL1 153087 cd00576 cd00576 6 1 1 0 01/17/13 11:20:00 -cd01679 RNR_I 153088 cd00576 cd00576 8 1 1 0 01/17/13 11:20:00 -cd01680 EFG_like_IV 238838 N/A cd01680 2 1 1 0 01/17/13 11:20:00 -cd01681 aeEF2_snRNP... 238839 cd01680 cd01680 2 1 1 0 01/17/13 11:20:00 -cd01683 EF2_IV_snRNP 238840 cd01681 cd01680 2 1 1 0 01/17/13 11:20:00 -cd01684 Tet_like_IV 238841 cd01680 cd01680 2 1 1 0 01/17/13 11:20:00 -cd01693 mtEFG2_like_IV 238842 cd01680 cd01680 2 1 1 0 01/17/13 11:20:00 -cd01699 RNA_dep_RNAP 238843 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01700 PolY_Pol_V_... 176454 cd00424 cd00424 5 1 1 0 01/17/13 11:20:00 -cd01701 PolY_Rev1 176455 cd00424 cd00424 5 1 1 0 01/17/13 11:20:00 -cd01702 PolY_Pol_eta 176456 cd00424 cd00424 7 1 1 0 01/17/13 11:20:00 -cd01703 PolY_Pol_iota 176457 cd00424 cd00424 5 1 1 0 01/17/13 11:20:00 -cd01709 RT_like_1 238844 cd00304 cd00304 3 1 1 0 01/17/13 11:20:00 -cd01712 ThiI 238845 cd01986 cd01984 4 1 1 0 01/17/13 11:20:00 -cd01713 PAPS_reductase 238846 cd01986 cd01984 4 1 1 0 01/17/13 11:20:00 -cd01714 ETF_beta 238847 cd01985 cd01984 4 1 1 0 01/17/13 11:20:00 -cd01715 ETF_alpha 238848 cd01985 cd01984 3 1 1 0 01/17/13 11:21:00 -cd01716 Hfq 212463 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01717 Sm_B 212464 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01718 Sm_E 212465 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01719 Sm_G 212466 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01720 Sm_D2 212467 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01721 Sm_D3 212468 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01722 Sm_F 212469 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01723 LSm4 212470 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01724 Sm_D1 212471 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01725 LSm2 212472 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01726 LSm6 212473 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01727 LSm8 212474 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01728 LSm1 212475 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01729 LSm7 212476 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01730 LSm3 212477 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01731 archaeal_Sm1 212478 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01732 LSm5 212479 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01733 LSm10 212480 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01734 YlxS_C 212481 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01735 LSm12_N 212482 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01736 LSm14_N 212483 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01737 LSm16_N 212484 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01739 LSm11_M 212485 cd00600 cd00600 6 1 1 0 01/17/13 11:21:00 -cd01740 GATase1_FGA... 153211 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01741 GATase1_1 153212 cd01653 cd03128 6 1 1 0 01/17/13 11:21:00 -cd01742 GATase1_GMP... 153213 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01743 GATase1_Ant... 153214 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01744 GATase1_CPSase 153215 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01745 GATase1_2 153216 cd01653 cd03128 6 1 1 0 01/17/13 11:21:00 -cd01746 GATase1_CTP... 153217 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01747 GATase1_Glu... 153218 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01748 GATase1_IGP... 153219 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01749 GATase1_PB 153220 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01750 GATase1_CobQ 153221 cd01653 cd03128 4 1 1 0 01/17/13 11:21:00 -cd01751 PLAT_LH2 238849 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01752 PLAT_polycy... 238850 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01753 PLAT_LOX 238851 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01754 PLAT_plant_... 238852 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01755 PLAT_lipase 238853 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01756 PLAT_repeat 238854 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01757 PLAT_RAB6IP1 238855 cd00113 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01758 PLAT_LPL 238856 cd01755 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01759 PLAT_PL 238857 cd01755 cd00113 2 1 1 0 01/17/13 11:21:00 -cd01760 RBD 340461 cd00196 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01763 Ubl_SUMO_like 340462 cd00196 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01764 Ubl_Urm1 340463 cd17040 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01765 FERM_F0_F1 340464 cd01768 cd00196 1 1 0 0 06/09/17 14:31:00 -cd01766 Ubl_UFM1 340465 cd00196 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01767 UBX 340466 cd00196 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01768 RA_FERM_F0_... 340467 cd00196 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01770 UBX_UBXN2 340468 cd01767 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01771 UBX_UBXN3A 340469 cd01767 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01772 UBX_UBXN1 340470 cd01767 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01773 UBX_UBXN7 340471 cd01767 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01774 UBX_UBXN8 340472 cd01767 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01775 RA_PHLPP_like 340473 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01776 RA_Rin 340474 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01777 FERM_F1_SNX27 340475 cd17109 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01778 RA_RASSF1_like 340476 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01779 RA_Myosin-IX 340477 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01780 RA2_PLC-eps... 340478 cd17114 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01781 RA2_Afadin 340479 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01782 RA1_Afadin 340480 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01783 RA2_DAGK-theta 340481 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01784 RA_RASSF2_like 340482 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01785 RA_PDZ-GEF1 340483 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01786 RA_STE50 340484 cd17043 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01787 RA_MRL 340485 cd17112 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01788 Ubl_ElonginB 340486 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01789 Ubl_TBCB 340487 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01790 Ubl_HERP 340488 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01791 Ubl_UBL5 340489 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01792 Ubl1_ISG15 340490 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01793 Ubl_FUBI 340491 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01794 Ubl_UBTD 340492 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01795 Ubl_USP48 340493 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01796 Ubl_Ddi1_like 340494 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01797 Ubl_UHRF 340495 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01798 Ubl_parkin 340496 cd17039 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01799 Ubl_HOIL1 340497 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01800 Ubl_SF3a120 340498 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01801 Ubl_TECR_like 340499 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01802 Ubl_ZFAND4 340500 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01803 Ubl_ubiquitin 340501 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01804 Ubl_midnolin 340502 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01805 Ubl_Rad23 340503 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01806 Ubl_NEDD8 340504 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01807 Ubl_UBL4A_like 340505 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01808 Ubl_PLICs 340506 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01809 Ubl_BAG6 340507 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01810 Ubl2_ISG15 340508 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01811 Ubl1_OASL 340509 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01812 Ubl_BAG1 340510 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01813 Ubl_UBLCP1 340511 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01814 Ubl_MUBs_plant 340512 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01815 Ubl_UBL7 340513 cd17039 cd00196 5 1 0 0 06/09/17 14:31:00 -cd01816 RBD_RAF 340514 cd01760 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01817 RBD1_RGS12_... 340515 cd01760 cd00196 6 1 0 0 06/09/17 14:31:00 -cd01819 Patatin_and... 132836 N/A cd01819 3 1 1 0 01/17/13 11:21:00 -cd01820 PAF_acetyle... 238858 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01821 Rhamnogalac... 238859 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01822 Lysophospho... 238860 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01823 SEST_like 238861 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01824 Phospholipa... 238862 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01825 SGNH_hydrol... 238863 cd00229 cd00229 6 1 1 0 01/17/13 11:21:00 -cd01826 acyloxyacyl... 238864 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01827 sialate_O-a... 238865 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01828 sialate_O-a... 238866 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01829 SGNH_hydrol... 238867 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01830 XynE_like 238868 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01831 Endoglucana... 238869 cd00229 cd00229 6 1 1 0 01/17/13 11:21:00 -cd01832 SGNH_hydrol... 238870 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01833 XynB_like 238871 cd00229 cd00229 6 1 1 0 01/17/13 11:21:00 -cd01834 SGNH_hydrol... 238872 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01835 SGNH_hydrol... 238873 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01836 FeeA_FeeB_like 238874 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01837 SGNH_plant_... 238875 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01838 Isoamyl_ace... 238876 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01839 SGNH_aryles... 238877 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01840 SGNH_hydrol... 238878 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01841 NnaC_like 238879 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01842 SGNH_hydrol... 238880 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01844 SGNH_hydrol... 238881 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01846 fatty_acylt... 238882 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01847 Triacylglyc... 238883 cd00229 cd00229 5 1 1 0 01/17/13 11:21:00 -cd01849 YlqF_relate... 206746 N/A cd01849 4 1 1 0 01/17/13 11:21:00 -cd01850 CDC_Septin 206649 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01851 GBP 206650 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01852 AIG1 206651 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01853 Toc34_like 206652 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01854 YjeQ_EngC 206747 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01855 YqeH 206748 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01856 YlqF 206749 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01857 HSR1_MMR1 206750 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01858 NGP_1 206751 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01859 MJ1464 206752 cd01849 cd01849 4 1 1 0 01/17/13 11:21:00 -cd01860 Rab5_related 206653 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01861 Rab6 206654 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01862 Rab7 206655 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01863 Rab18 206656 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01864 Rab19 133267 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01865 Rab3 206657 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01866 Rab2 206658 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01867 Rab8_Rab10_... 206659 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01868 Rab11_like 206660 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01869 Rab1_Ypt1 206661 cd00154 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01870 RhoA_like 206662 cd00157 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01871 Rac1_like 206663 cd00157 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01873 RhoBTB 133275 cd00157 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01874 Cdc42 206664 cd00157 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01875 RhoG 133277 cd00157 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01876 YihA_EngB 206665 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01878 HflX 206666 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01879 FeoB 206667 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01881 Obg_like 206668 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01882 BMS1 206669 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01883 EF1_alpha 206670 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01884 EF_Tu 206671 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01885 EF2 206672 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01886 EF-G 206673 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01887 IF2_eIF5B 206674 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01888 eIF2_gamma 206675 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01889 SelB_euk 206676 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01890 LepA 206677 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01891 TypA_BipA 206678 cd00881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01892 Miro2 206679 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01893 Miro1 206680 cd00882 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01894 EngA1 206681 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01895 EngA2 206682 cd00880 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01896 DRG 206683 cd01881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01897 NOG 206684 cd01881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01898 Obg 206685 cd01881 cd00882 5 1 1 0 01/17/13 11:21:00 -cd01899 Ygr210 206686 cd01881 cd00882 5 1 1 0 01/17/13 11:22:00 -cd01900 YchF 206687 cd01881 cd00882 5 1 1 0 01/17/13 11:22:00 -cd01901 Ntn_hydrolase 238884 N/A cd01901 5 1 1 0 01/17/13 11:22:00 -cd01902 Ntn_CGH 238885 cd01935 cd01901 4 1 1 0 01/17/13 11:22:00 -cd01903 Ntn_AC_NAAA 238886 cd01935 cd01901 4 1 1 0 01/17/13 11:22:00 -cd01906 proteasome_... 238887 cd01901 cd01901 5 1 1 0 01/17/13 11:22:00 -cd01907 GlxB 238888 cd00352 cd00352 7 1 1 0 01/17/13 11:22:00 -cd01908 YafJ 238889 cd00352 cd00352 5 1 1 0 01/17/13 11:22:00 -cd01909 betaLS_CarA_N 238890 cd00352 cd00352 5 1 1 0 01/17/13 11:22:00 -cd01910 Wali7 238891 cd00352 cd00352 5 1 1 0 01/17/13 11:22:00 -cd01911 proteasome_... 238892 cd01906 cd01901 5 1 1 0 01/17/13 11:22:00 -cd01912 proteasome_... 238893 cd01906 cd01901 5 1 1 0 01/17/13 11:22:00 -cd01913 protease_HslV 238894 cd01906 cd01901 5 1 1 0 01/17/13 11:22:00 -cd01914 HCP 238895 cd00587 cd00587 6 1 1 0 01/17/13 11:22:00 -cd01915 CODH 238896 cd00587 cd00587 4 1 1 0 01/17/13 11:22:00 -cd01916 ACS_1 238897 cd00587 cd00587 3 1 1 0 01/17/13 11:22:00 -cd01917 ACS_2 238898 cd00587 cd00587 3 1 1 0 01/17/13 11:22:00 -cd01918 HprK_C 238899 cd00820 cd00820 4 1 1 0 01/17/13 11:22:00 -cd01919 PEPCK 238900 cd00820 cd00820 4 1 1 0 01/17/13 11:22:00 -cd01920 cyclophilin... 238901 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01921 cyclophilin... 238902 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01922 cyclophilin... 238903 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01923 cyclophilin... 238904 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01924 cyclophilin... 238905 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01925 cyclophilin... 238906 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01926 cyclophilin... 238907 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01927 cyclophilin... 238908 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01928 Cyclophilin... 238909 cd00317 cd00317 4 1 1 0 01/17/13 11:22:00 -cd01935 Ntn_CGH_like 238910 cd01901 cd01901 7 1 1 0 01/17/13 11:22:00 -cd01936 Ntn_CA 238911 cd03747 cd01901 7 1 1 0 01/17/13 11:22:00 -cd01937 ribokinase_... 238912 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01938 ADPGK_ADPPFK 238913 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01939 Ketohexokinase 238914 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01940 Fructoselys... 238915 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01941 YeiC_kinase... 238916 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01942 ribokinase_... 238917 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01943 MAK32 238918 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01944 YegV_kinase... 238919 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01945 ribokinase_... 238920 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01946 ribokinase_... 238921 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01947 Guanosine_k... 238922 cd00287 cd00287 4 1 1 0 01/17/13 11:22:00 -cd01948 EAL 238923 N/A cd01948 3 1 1 0 01/17/13 11:22:00 -cd01949 GGDEF 143635 cd07556 cd07556 6 1 1 0 01/17/13 11:22:00 -cd01951 lectin_L-type 173886 N/A cd01951 3 1 1 0 01/17/13 11:22:00 -cd01958 HPS_like 238924 cd00010 cd00010 2 1 1 0 01/17/13 11:22:00 -cd01959 nsLTP2 238925 cd00010 cd00010 2 1 1 0 01/17/13 11:22:00 -cd01960 nsLTP1 238926 cd00010 cd00010 2 1 1 0 01/17/13 11:22:00 -cd01965 Nitrogenase... 238927 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01966 Nitrogenase... 238928 cd01965 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01967 Nitrogenase... 238929 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01968 Nitrogenase... 238930 cd01967 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01971 Nitrogenase... 238931 cd01965 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01972 Nitrogenase... 238932 cd01967 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01973 Nitrogenase... 238933 cd01965 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01974 Nitrogenase... 238934 cd01965 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01976 Nitrogenase... 238935 cd01967 cd00316 3 1 1 0 01/17/13 11:22:00 -cd01977 Nitrogenase... 238936 cd01967 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01979 Pchlide_red... 238937 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01980 Chlide_redu... 238938 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01981 Pchlide_red... 238939 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01982 Chlide_redu... 238940 cd00316 cd00316 2 1 1 0 01/17/13 11:22:00 -cd01983 SIMIBI 349751 N/A cd01983 5 1 0 0 07/11/18 17:53:00 -cd01984 AANH_like 238942 N/A cd01984 6 1 1 0 01/17/13 11:22:00 -cd01985 ETF 238943 cd01984 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01986 Alpha_ANH_like 238944 cd01984 cd01984 6 1 1 0 01/17/13 11:22:00 -cd01987 USP_OKCHK 238945 cd00293 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01988 Na_H_Antipo... 238946 cd00293 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01989 STK_N 238947 cd00293 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01990 Alpha_ANH_l... 238948 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01991 Asn_Synthas... 238949 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01992 PP-ATPase 238950 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01993 Alpha_ANH_l... 238951 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01994 Alpha_ANH_l... 238952 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01995 ExsB 238953 cd01986 cd01984 6 1 1 0 01/17/13 11:22:00 -cd01996 Alpha_ANH_l... 238954 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01997 GMP_synthase_C 238955 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01998 tRNA_Me_trans 238956 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd01999 Argininosuc... 238957 cd01986 cd01984 4 1 1 0 01/17/13 11:22:00 -cd02000 TPP_E1_PDC_... 238958 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02001 TPP_ComE_Pp... 238959 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02002 TPP_BFDC 238960 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02003 TPP_IolD 238961 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02004 TPP_BZL_OCo... 238962 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02005 TPP_PDC_IPDC 238963 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02006 TPP_Gcl 238964 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02007 TPP_DXS 238965 cd00568 cd00568 5 1 1 0 01/17/13 11:22:00 -cd02008 TPP_IOR_alpha 238966 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02009 TPP_SHCHC_s... 238967 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02010 TPP_ALS 238968 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02011 TPP_PK 238969 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02012 TPP_TK 238970 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02013 TPP_Xsc_like 238971 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02014 TPP_POX 238972 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02015 TPP_AHAS 238973 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02016 TPP_E1_OGDC... 238974 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02017 TPP_E1_EcPD... 238975 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02018 TPP_PFOR 238976 cd00568 cd00568 3 1 1 0 01/17/13 11:22:00 -cd02019 NK 238977 N/A cd02019 6 1 1 0 01/17/13 11:22:00 -cd02020 CMPK 238978 cd02019 cd02019 5 1 1 0 01/17/13 11:22:00 -cd02021 GntK 238979 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02022 DPCK 238980 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02023 UMPK 238981 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02024 NRK1 238982 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02025 PanK 238983 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02026 PRK 238984 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02027 APSK 238985 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02028 UMPK_like 238986 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02029 PRK_like 238987 cd02019 cd02019 4 1 1 0 01/17/13 11:22:00 -cd02030 NDUO42 238988 cd01673 cd02019 3 1 1 0 01/17/13 11:22:00 -cd02032 Bchl-like 349752 cd02117 cd01983 4 1 0 0 07/11/18 17:53:00 -cd02033 BchX 349753 cd02117 cd01983 4 1 0 0 07/11/18 17:53:00 -cd02034 CooC1 349754 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02035 ArsA 349755 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02036 MinD 349756 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02037 Mrp_NBP35 349757 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02038 FlhG-like 349758 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02039 cytidylyltr... 185678 cd02156 cd02156 5 1 1 0 01/17/13 11:22:00 -cd02040 NifH 349759 cd02117 cd01983 4 1 0 0 07/11/18 17:53:00 -cd02042 ParAB_family 349760 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd02043 plant_SERPIN 238998 cd00172 cd00172 3 1 1 0 01/17/13 11:22:00 -cd02044 ov-serpin 238999 cd00172 cd00172 3 1 1 0 01/17/13 11:22:00 -cd02045 antithrombi... 239000 cd00172 cd00172 3 1 1 0 01/17/13 11:22:00 -cd02046 hsp47 239001 cd00172 cd00172 3 1 1 0 01/17/13 11:22:00 -cd02047 HCII 239002 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02048 neuroserpin 239003 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02049 bacterial_S... 239004 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02050 C1_inh 239005 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02051 PAI-1_nexin-1 239006 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02052 PEDF 239007 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02053 alpha2AP 239008 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02054 angiotensin... 239009 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02055 PZI 239010 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02056 alpha-1-ant... 239011 cd00172 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02057 maspin_like 239012 cd02044 cd00172 4 1 1 0 01/17/13 11:23:00 -cd02058 PAI-2 239013 cd02044 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02059 ovalbumin_like 239014 cd02044 cd00172 3 1 1 0 01/17/13 11:23:00 -cd02062 Nitro_FMN_r... 239015 N/A cd02062 5 1 1 0 01/17/13 11:23:00 -cd02064 FAD_synthet... 185679 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02065 B12-binding... 239016 N/A cd02065 4 1 1 0 01/17/13 11:23:00 -cd02066 GRX_family 239017 cd01659 cd01659 3 1 1 0 01/17/13 11:23:00 -cd02067 B12-binding 239018 cd02065 cd02065 4 1 1 0 01/17/13 11:23:00 -cd02068 radical_SAM... 239019 cd02065 cd02065 3 1 1 0 01/17/13 11:23:00 -cd02069 methionine_... 239020 cd02067 cd02065 4 1 1 0 01/17/13 11:23:00 -cd02070 corrinoid_p... 239021 cd02067 cd02065 4 1 1 0 01/17/13 11:23:00 -cd02071 MM_CoA_mut_... 239022 cd02067 cd02065 4 1 1 0 01/17/13 11:23:00 -cd02072 Glm_B12_BD 239023 cd02067 cd02065 4 1 1 0 01/17/13 11:23:00 -cd02073 P-type_ATPa... 319770 cd07536 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02076 P-type_ATPa... 319771 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02077 P-type_ATPa... 319772 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02078 P-type_ATPa... 319773 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02079 P-type_ATPa... 319774 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02080 P-type_ATPa... 319775 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02081 P-type_ATPa... 319776 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02082 P-type_ATPa... 319777 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02083 P-type_ATPa... 319778 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02085 P-type_ATPa... 319779 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02086 P-type_ATPa... 319780 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02089 P-type_ATPa... 319781 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02092 P-type_ATPa... 319782 cd02079 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02094 P-type_ATPa... 319783 cd02079 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02106 SPFH_like 259797 N/A cd02106 3 1 1 0 04/05/13 12:52:00 -cd02107 YedY_like_Moco 239025 cd00321 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02108 bact_SO_fam... 239026 cd00321 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02109 arch_bact_S... 239027 cd00321 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02110 SO_family_M... 239028 cd00321 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02111 eukary_SO_Moco 239029 cd02110 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02112 eukary_NR_Moco 239030 cd02110 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02113 bact_SoxC_Moco 239031 cd02110 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02114 bact_SorA_Moco 239032 cd02110 cd00321 4 1 1 0 01/17/13 11:23:00 -cd02115 AAK 239033 N/A cd02115 3 1 1 0 01/17/13 11:23:00 -cd02116 ACT 153139 N/A cd02116 3 1 1 0 01/17/13 11:23:00 -cd02117 NifH-like 349761 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd02120 PA_subtilis... 239035 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02121 PA_GCPII_like 239036 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02122 PA_GRAIL_like 239037 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02123 PA_C_RZF_like 239038 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02124 PA_PoS1_like 239039 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02125 PA_VSR 239040 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02126 PA_EDEM3_like 239041 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02127 PA_hPAP21_like 239042 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02128 PA_TfR 239043 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02129 PA_hSPPL_like 239044 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02130 PA_ScAPY_like 239045 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02131 PA_hNAALADL... 239046 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02132 PA_GO-like 239047 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02133 PA_C5a_like 239048 cd00538 cd00538 3 1 1 0 01/17/13 11:23:00 -cd02134 NusA_KH 239049 cd02409 cd02409 3 1 1 0 01/17/13 11:23:00 -cd02135 Arsenite_ox... 239050 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02136 Nitroreductase 239051 cd02062 cd02062 5 1 1 0 01/17/13 11:23:00 -cd02137 Nitroreduct... 239052 cd02062 cd02062 5 1 1 0 01/17/13 11:23:00 -cd02138 Nitroreduct... 239053 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02139 Nitroreduct... 239054 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02140 Nitroreduct... 239055 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02142 mcbC-like_o... 239056 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02143 NADH_nitror... 239057 cd02062 cd02062 5 1 1 0 01/17/13 11:23:00 -cd02144 iodotyrosin... 239058 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02145 BluB 239059 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02146 NfsA_FRP 239060 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02148 Nitroreduct... 239061 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02149 NfsB_like_n... 239062 cd02062 cd02062 5 1 1 0 01/17/13 11:23:00 -cd02150 NADPH_oxido... 239063 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02151 NADPH_oxido... 239064 cd02062 cd02062 3 1 1 0 01/17/13 11:23:00 -cd02152 OAT 239065 cd00123 cd00123 3 1 1 0 01/17/13 11:23:00 -cd02153 tRNA_bindin... 239066 N/A cd02153 3 1 1 0 01/17/13 11:23:00 -cd02156 nt_trans 173912 N/A cd02156 5 1 1 0 01/17/13 11:23:00 -cd02163 PPAT 173914 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02164 PPAT_CoAS 173915 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02165 NMNAT 185680 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02166 NMNAT_Archaea 173917 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02167 NMNAT_NadR 173918 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02168 NMNAT_Nudix 173919 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02169 Citrate_lya... 173920 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02170 cytidylyltr... 173921 cd02039 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02171 G3P_Cytidyl... 173922 cd02170 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02172 RfaE_N 173923 cd02170 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02173 ECT 173924 cd02170 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02174 CCT 173925 cd02170 cd02156 5 1 1 0 01/17/13 11:23:00 -cd02175 GH16_lichenase 185684 cd00413 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02176 GH16_XET 185685 cd00413 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02177 GH16_kappa_... 185686 cd00413 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02178 GH16_beta_a... 185687 cd00413 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02179 GH16_beta_GRP 185688 cd08023 cd00413 4 1 1 0 01/17/13 11:23:00 -cd02180 GH16_fungal... 185689 cd08023 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02181 GH16_fungal... 185690 cd08023 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02182 GH16_Strep_... 185691 cd08023 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02183 GH16_fungal... 185692 cd00413 cd00413 5 1 1 0 01/17/13 11:23:00 -cd02185 AroH 100026 N/A cd02185 5 1 1 0 01/17/13 11:23:00 -cd02186 alpha_tubulin 276955 cd06059 cd00286 6 1 1 0 02/05/15 16:30:00 -cd02187 beta_tubulin 276956 cd06059 cd00286 6 1 1 0 02/05/15 16:30:00 -cd02188 gamma_tubulin 276957 cd06059 cd00286 6 1 1 0 02/05/15 16:30:00 -cd02189 delta_zeta_... 276958 cd06059 cd00286 8 1 1 0 02/05/15 16:30:00 -cd02190 epsilon_tub... 276959 cd06059 cd00286 8 1 1 0 02/05/15 16:30:00 -cd02191 FtsZ_CetZ-like 276960 cd00286 cd00286 6 1 1 0 02/05/15 16:30:00 -cd02192 PurM-like3 100028 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02193 PurL 100029 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02194 ThiL 100030 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02195 SelD 100031 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02196 PurM 100032 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02197 HypE 100033 cd00396 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02198 YjgH_like 100005 cd00448 cd00448 5 1 1 0 01/17/13 11:23:00 -cd02199 YjgF_YER057... 100006 cd00448 cd00448 5 1 1 0 01/17/13 11:23:00 -cd02201 FtsZ_type1 276961 cd02191 cd00286 6 1 1 0 02/05/15 16:30:00 -cd02202 CetZ_tubuli... 276962 cd02191 cd00286 8 1 1 0 02/05/15 16:30:00 -cd02203 PurL_repeat1 100034 cd02193 cd00396 7 1 1 0 01/17/13 11:23:00 -cd02204 PurL_repeat2 100035 cd02193 cd00396 5 1 1 0 01/17/13 11:23:00 -cd02205 CBS_pair_SF 341358 N/A cd02205 5 1 0 0 07/31/17 15:57:00 -cd02248 Peptidase_C1A 239068 cd02619 cd02619 4 1 1 0 01/17/13 11:23:00 -cd02249 ZZ 239069 N/A cd02249 4 1 1 0 01/17/13 11:23:00 -cd02252 nylC_like 239070 cd00123 cd00123 3 1 1 0 01/17/13 11:23:00 -cd02253 DmpA 239071 cd00123 cd00123 3 1 1 0 01/17/13 11:23:00 -cd02255 Peptidase_C12 187736 N/A cd02255 2 1 1 0 01/17/13 11:23:00 -cd02257 Peptidase_C19 239072 N/A cd02257 6 1 1 0 01/17/13 11:23:00 -cd02258 Peptidase_C... 199210 N/A cd02258 3 1 1 0 01/17/13 11:23:00 -cd02259 Peptidase_C... 239073 N/A cd02259 4 1 1 0 01/17/13 11:23:00 -cd02266 SDR 187535 N/A cd02266 3 1 1 0 01/17/13 11:23:00 -cd02325 R3H 100064 N/A cd02325 5 1 1 0 01/17/13 11:23:00 -cd02334 ZZ_dystrophin 239074 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02335 ZZ_ADA2 239075 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02336 ZZ_RSC8 239076 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02337 ZZ_CBP 239077 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02338 ZZ_PCMF_like 239078 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02339 ZZ_Mind_bomb 239079 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02340 ZZ_NBR1_like 239080 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02341 ZZ_ZZZ3 239081 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02342 ZZ_UBA_plant 239082 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02343 ZZ_EF 239083 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02344 ZZ_HERC2 239084 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02345 ZZ_dah 239085 cd02249 cd02249 4 1 1 0 01/17/13 11:23:00 -cd02393 PNPase_KH 239086 cd00105 cd00105 4 1 1 0 01/17/13 11:23:00 -cd02394 vigilin_lik... 239087 cd00105 cd00105 4 1 1 0 01/17/13 11:23:00 -cd02395 SF1_like-KH 239088 cd00105 cd00105 4 1 1 0 01/17/13 11:23:00 -cd02396 PCBP_like_KH 239089 cd00105 cd00105 4 1 1 0 01/17/13 11:23:00 -cd02406 CRS2 239090 cd00462 cd00462 3 1 1 0 01/17/13 11:23:00 -cd02407 PTH2_family 239091 N/A cd02407 3 1 1 0 01/17/13 11:23:00 -cd02409 KH-II 239092 N/A cd02409 3 1 1 0 01/17/13 11:23:00 -cd02410 archeal_CPS... 239093 cd02409 cd02409 3 1 1 0 01/17/13 11:23:00 -cd02411 archeal_30S... 239094 cd02409 cd02409 3 1 1 0 01/17/13 11:23:00 -cd02412 30S_S3_KH 239095 cd02409 cd02409 3 1 1 0 01/17/13 11:24:00 -cd02413 40S_S3_KH 239096 cd02409 cd02409 3 1 1 0 01/17/13 11:24:00 -cd02414 jag_KH 239097 cd02409 cd02409 3 1 1 0 01/17/13 11:24:00 -cd02417 Peptidase_C... 239098 cd02259 cd02259 3 1 1 0 01/17/13 11:24:00 -cd02418 Peptidase_C39B 239099 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02419 Peptidase_C39C 239100 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02420 Peptidase_C39D 239101 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02421 Peptidase_C... 239102 cd02259 cd02259 3 1 1 0 01/17/13 11:24:00 -cd02423 Peptidase_C39G 239103 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02424 Peptidase_C39E 239104 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02425 Peptidase_C39F 239105 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02426 Pol_gamma_b... 239106 cd00738 cd00738 4 1 1 0 01/17/13 11:24:00 -cd02429 PTH2_like 239107 cd02407 cd02407 3 1 1 0 01/17/13 11:24:00 -cd02430 PTH2 239108 cd02407 cd02407 3 1 1 0 01/17/13 11:24:00 -cd02431 Ferritin_CC... 153122 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02432 Nodulin-21_... 153123 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02433 Nodulin-21_... 153124 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02434 Nodulin-21_... 153125 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02435 CCC1 153126 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02436 Nodulin-21 153127 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02437 CCC1_like_1 153128 cd01059 cd01059 4 1 1 0 01/17/13 11:24:00 -cd02439 DMB-PRT_CobT 143332 N/A cd02439 3 1 1 0 01/17/13 11:24:00 -cd02440 AdoMet_MTases 100107 N/A cd02440 3 1 1 0 01/17/13 11:24:00 -cd02503 MobA 133000 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02507 eIF-2B_gamm... 133001 cd00761 cd00761 2 1 1 0 01/17/13 11:24:00 -cd02508 ADP_Glucose_PP 133002 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02509 GDP-M1P_Gua... 133003 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02510 pp-GalNAc-T 133004 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02511 Beta4Glucos... 133005 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02513 CMP-NeuAc_S... 133006 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02514 GT13_GLCNAC-TI 133007 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02515 Glyco_transf_6 133008 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02516 CDP-ME_synt... 133009 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02517 CMP-KDO-Syn... 133010 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02518 GT2_SpsF 133011 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02520 Glucosylcer... 133012 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02522 GT_2_like_a 133013 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02523 PC_cytidyly... 133014 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02524 G1P_cytidyl... 133015 cd04181 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02525 Succinoglyc... 133016 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02526 GT2_RfbF_like 133017 cd00761 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02537 GT8_Glycogenin 133018 cd00505 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02538 G1P_TT_short 133019 cd04181 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02540 GT2_GlmU_N_bac 133020 cd04181 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02541 UGPase_prok... 133021 cd04181 cd00761 4 1 1 0 01/17/13 11:24:00 -cd02549 Peptidase_C39A 239109 cd02259 cd02259 4 1 1 0 01/17/13 11:24:00 -cd02550 PseudoU_syn... 211325 cd01291 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02552 PseudoU_syn... 211326 cd01291 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02553 PseudoU_syn... 211327 cd02870 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02554 PseudoU_syn... 211328 cd02870 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02555 PSSA_1 211329 cd02870 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02556 PseudoU_syn... 211330 cd02870 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02557 PseudoU_syn... 211331 cd02869 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02558 PSRA_1 211332 cd02869 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02563 PseudoU_syn... 211333 cd02869 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02566 PseudoU_syn... 211334 cd02870 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02568 PseudoU_syn... 211335 cd00497 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02569 PseudoU_syn... 211336 cd00497 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02570 PseudoU_syn... 211337 cd00497 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02572 PseudoU_syn... 211338 cd00506 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02573 PseudoU_syn... 211339 cd00506 cd01291 5 1 1 0 01/17/13 11:24:00 -cd02575 PseudoU_syn... 211340 cd02552 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02576 PseudoU_syn... 211341 cd02552 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02577 PSTD1 211342 cd02552 cd01291 7 1 1 0 01/17/13 11:24:00 -cd02582 RNAP_archea... 259846 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd02583 RNAP_III_RP... 259847 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd02584 RNAP_II_Rpb1_C 132720 cd00630 cd00630 3 1 1 0 01/17/13 11:24:00 -cd02585 HAD_PMM 319784 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02586 HAD_PHN 319785 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02587 HAD_5-3dNT 319786 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02588 HAD_L2-DEX 319787 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02598 HAD_BPGM 319788 cd07505 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02601 HAD_Eya 319789 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02603 HAD_sEH-N_like 319790 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02604 HAD_5NT 319791 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02605 HAD_SPP 319792 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02607 HAD_ThrH_like 319793 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02608 P-type_ATPa... 319794 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02609 P-type_ATPase 319795 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02612 HAD_PGPPase 319796 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02616 HAD_PPase 319797 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd02619 Peptidase_C1 239110 N/A cd02619 4 1 1 0 01/17/13 11:24:00 -cd02620 Peptidase_C... 239111 cd02248 cd02619 4 1 1 0 01/17/13 11:24:00 -cd02621 Peptidase_C... 239112 cd02248 cd02619 4 1 1 0 01/17/13 11:24:00 -cd02636 R3H_sperm-a... 100065 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02637 R3H_PARN 100066 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02638 R3H_unknown_1 100067 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02639 R3H_RRM 100068 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02640 R3H_NRF 100069 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02641 R3H_Smubp-2... 100070 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02642 R3H_encore_... 100071 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02643 R3H_NF-X1 100072 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02644 R3H_jag 100073 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02645 R3H_AAA 100074 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02646 R3H_G-patch 100075 cd02325 cd02325 5 1 1 0 01/17/13 11:24:00 -cd02647 nuc_hydro_T... 239113 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02648 nuc_hydro_1 239114 cd00455 cd00455 6 1 1 0 01/17/13 11:24:00 -cd02649 nuc_hydro_C... 239115 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02650 nuc_hydro_C... 239116 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02651 nuc_hydro_I... 239117 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02652 nuc_hydro_2 239118 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02653 nuc_hydro_3 239119 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02654 nuc_hydro_CjNH 239120 cd00455 cd00455 4 1 1 0 01/17/13 11:24:00 -cd02655 RNAP_beta'_C 132721 cd00630 cd00630 3 1 1 0 01/17/13 11:24:00 -cd02656 MIT 239121 N/A cd02656 3 1 1 0 01/17/13 11:24:00 -cd02657 Peptidase_C19A 239122 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02658 Peptidase_C19B 239123 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02659 peptidase_C19C 239124 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02660 Peptidase_C19D 239125 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02661 Peptidase_C19E 239126 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02662 Peptidase_C19F 239127 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02663 Peptidase_C19G 239128 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02664 Peptidase_C19H 239129 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02665 Peptidase_C19I 239130 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02666 Peptidase_C19J 239131 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02667 Peptidase_C19K 239132 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02668 Peptidase_C19L 239133 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02669 Peptidase_C19M 239134 cd02257 cd02257 5 1 1 0 01/17/13 11:24:00 -cd02670 Peptidase_C19N 239135 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02671 Peptidase_C19O 239136 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02672 Peptidase_C19P 239137 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02673 Peptidase_C19Q 239138 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02674 Peptidase_C19R 239139 cd02257 cd02257 6 1 1 0 01/17/13 11:24:00 -cd02675 Ephrin_ecto... 259861 cd00920 cd00920 3 1 1 0 08/20/13 16:28:00 -cd02677 MIT_SNX15 239140 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02678 MIT_VPS4 239141 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02679 MIT_spastin 239142 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02680 MIT_calpain7_2 239143 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02681 MIT_calpain7_1 239144 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02682 MIT_AAA_Arch 239145 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02683 MIT_1 239146 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02684 MIT_2 239147 cd02656 cd02656 3 1 1 0 01/17/13 11:24:00 -cd02685 MIT_C 239148 N/A cd02685 2 1 1 0 01/17/13 11:24:00 -cd02688 E_set 199878 N/A cd02688 4 1 1 0 01/17/13 11:24:00 -cd02690 M28 349868 cd03873 cd03873 3 1 0 0 07/11/18 17:54:00 -cd02691 PurM-like2 100036 cd00396 cd00396 5 1 1 0 01/17/13 11:24:00 -cd02696 MurNAc-LAA 119407 N/A cd02696 3 1 1 0 01/17/13 11:24:00 -cd02697 M20_like 349869 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd02698 Peptidase_C... 239149 cd02248 cd02619 4 1 1 0 01/17/13 11:24:00 -cd02699 M4_M36 341048 cd09594 cd09594 3 1 0 0 06/09/17 14:33:00 -cd02733 RNAP_II_RPB1_N 259848 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd02735 RNAP_I_Rpa1_C 132722 cd00630 cd00630 3 1 1 0 01/17/13 11:24:00 -cd02736 RNAP_III_Rp... 132723 cd00630 cd00630 3 1 1 0 01/17/13 11:24:00 -cd02737 RNAP_IV_NRP... 132724 cd00630 cd00630 3 1 1 0 01/17/13 11:24:00 -cd02742 GH20_hexosa... 119331 N/A cd02742 3 1 1 0 01/17/13 11:24:00 -cd02749 Macro 239150 N/A cd02749 3 1 1 0 01/17/13 11:24:00 -cd02750 MopB_Nitrat... 239151 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02751 MopB_DMSOR-... 239152 cd00368 cd00368 4 1 1 0 01/17/13 11:24:00 -cd02752 MopB_Format... 239153 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02753 MopB_Format... 239154 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02754 MopB_Nitrat... 239155 cd00368 cd00368 4 1 1 0 01/17/13 11:24:00 -cd02755 MopB_Thiosu... 239156 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02756 MopB_Arseni... 239157 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02757 MopB_Arsena... 239158 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02758 MopB_Tetrat... 239159 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02759 MopB_Acetyl... 239160 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02760 MopB_Phenyl... 239161 cd00368 cd00368 4 1 1 0 01/17/13 11:24:00 -cd02761 MopB_FmdB-FwdB 239162 cd00368 cd00368 4 1 1 0 01/17/13 11:24:00 -cd02762 MopB_1 239163 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02763 MopB_2 239164 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02764 MopB_PHLH 239165 cd00368 cd00368 3 1 1 0 01/17/13 11:24:00 -cd02765 MopB_4 239166 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02766 MopB_3 239167 cd00368 cd00368 6 1 1 0 01/17/13 11:24:00 -cd02767 MopB_ydeP 239168 cd00368 cd00368 4 1 1 0 01/17/13 11:25:00 -cd02768 MopB_NADH-Q... 239169 cd00368 cd00368 3 1 1 0 01/17/13 11:25:00 -cd02769 MopB_DMSOR-... 239170 cd02751 cd00368 4 1 1 0 01/17/13 11:25:00 -cd02770 MopB_DmsA-EC 239171 cd02751 cd00368 4 1 1 0 01/17/13 11:25:00 -cd02771 MopB_NDH-1_... 239172 cd02768 cd00368 4 1 1 0 01/17/13 11:25:00 -cd02772 MopB_NDH-1_... 239173 cd02768 cd00368 3 1 1 0 01/17/13 11:25:00 -cd02773 MopB_Res-Cm... 239174 cd02768 cd00368 3 1 1 0 01/17/13 11:25:00 -cd02774 MopB_Res-Cm... 239175 cd02768 cd00368 3 1 1 0 01/17/13 11:25:00 -cd02775 MopB_CT 239176 N/A cd02775 4 1 1 0 01/17/13 11:25:00 -cd02776 MopB_CT_Nit... 239177 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02777 MopB_CT_DMS... 239178 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02778 MopB_CT_Thi... 239179 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02779 MopB_CT_Ars... 239180 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02780 MopB_CT_Tet... 239181 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02781 MopB_CT_Ace... 239182 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02782 MopB_CT_1 239183 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02783 MopB_CT_2 239184 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02784 MopB_CT_PHLH 239185 cd02775 cd02775 3 1 1 0 01/17/13 11:25:00 -cd02785 MopB_CT_4 239186 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02786 MopB_CT_3 239187 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02787 MopB_CT_ydeP 239188 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02788 MopB_CT_NDH... 239189 cd02775 cd02775 3 1 1 0 01/17/13 11:25:00 -cd02789 MopB_CT_Fmd... 239190 cd02775 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02790 MopB_CT_For... 239191 cd00508 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02791 MopB_CT_Nit... 239192 cd00508 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02792 MopB_CT_For... 239193 cd00508 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02793 MopB_CT_DMS... 239194 cd02777 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02794 MopB_CT_Dms... 239195 cd02777 cd02775 4 1 1 0 01/17/13 11:25:00 -cd02795 CBM6-CBM35-... 271143 N/A cd02795 3 1 1 0 03/02/14 08:55:00 -cd02796 tRNA_bind_b... 239196 cd02153 cd02153 3 1 1 0 01/17/13 11:25:00 -cd02798 tRNA_bind_CsaA 239197 cd02153 cd02153 3 1 1 0 01/17/13 11:25:00 -cd02799 tRNA_bind_E... 239198 cd02153 cd02153 3 1 1 0 01/17/13 11:25:00 -cd02800 tRNA_bind_E... 239199 cd02153 cd02153 3 1 1 0 01/17/13 11:25:00 -cd02801 DUS_like_FMN 239200 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02803 OYE_like_FM... 239201 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02808 GltS_FMN 239202 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02809 alpha_hydro... 239203 cd04722 cd04722 6 1 1 0 01/17/13 11:25:00 -cd02810 DHOD_DHPD_FMN 239204 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02811 IDI-2_FMN 239205 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02812 PcrB_like 239206 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02825 PAZ 239207 N/A cd02825 4 1 1 0 01/17/13 11:25:00 -cd02826 Piwi-like 239208 N/A cd02826 3 1 1 0 01/17/13 11:25:00 -cd02843 PAZ_dicer_like 239209 cd02825 cd02825 4 1 1 0 01/17/13 11:25:00 -cd02844 PAZ_CAF_like 239210 cd02825 cd02825 4 1 1 0 01/17/13 11:25:00 -cd02845 PAZ_piwi_like 239211 cd02825 cd02825 4 1 1 0 01/17/13 11:25:00 -cd02846 PAZ_argonau... 239212 cd02825 cd02825 4 1 1 0 01/17/13 11:25:00 -cd02847 E_set_Chito... 199879 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02848 E_set_Chiti... 199880 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02850 E_set_Cellu... 199881 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02851 E_set_GO_C 199882 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02853 E_set_MTHas... 199883 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02854 E_set_GBE_e... 199884 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02855 E_set_GBE_p... 199885 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02856 E_set_GDE_I... 199886 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02857 E_set_CDase... 199887 cd02688 cd02688 5 1 1 0 01/17/13 11:25:00 -cd02858 E_set_Ester... 199888 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02859 E_set_AMPKb... 199889 cd02688 cd02688 5 1 1 0 01/17/13 11:25:00 -cd02860 E_set_Pullu... 199890 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02861 E_set_pullu... 199891 cd02688 cd02688 4 1 1 0 01/17/13 11:25:00 -cd02862 NorE_like 239213 cd00386 cd00386 4 1 1 0 01/17/13 11:25:00 -cd02863 Ubiquinol_o... 239214 cd00386 cd00386 4 1 1 0 01/17/13 11:25:00 -cd02864 Heme_Cu_Oxi... 239215 cd00386 cd00386 4 1 1 0 01/17/13 11:25:00 -cd02865 Heme_Cu_Oxi... 239216 cd00386 cd00386 4 1 1 0 01/17/13 11:25:00 -cd02866 PseudoU_syn... 211343 cd00497 cd01291 5 1 1 0 01/17/13 11:25:00 -cd02867 PseudoU_syn... 211344 cd00506 cd01291 5 1 1 0 01/17/13 11:25:00 -cd02868 PseudoU_syn... 211345 cd00506 cd01291 7 1 1 0 01/17/13 11:25:00 -cd02869 PseudoU_syn... 211346 cd02550 cd01291 5 1 1 0 01/17/13 11:25:00 -cd02870 PseudoU_syn... 211347 cd02550 cd01291 5 1 1 0 01/17/13 11:25:00 -cd02871 GH18_chitin... 119350 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02872 GH18_chitol... 119351 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02873 GH18_IDGF 119352 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02874 GH18_CFLE_s... 119353 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02875 GH18_chitob... 119354 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02876 GH18_SI-CLP 119355 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02877 GH18_hevami... 119356 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02878 GH18_zymoci... 119357 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02879 GH18_plant_... 119358 cd00598 cd00598 3 1 1 0 01/17/13 11:25:00 -cd02883 Nudix_Hydro... 239217 N/A cd02883 3 1 1 0 01/17/13 11:25:00 -cd02885 IPP_Isomerase 239218 cd02883 cd02883 3 1 1 0 01/17/13 11:25:00 -cd02888 RNR_II_dimer 153089 cd00576 cd00576 7 1 1 0 01/17/13 11:25:00 -cd02889 SQCY 239219 cd00688 cd00688 6 1 1 0 01/17/13 11:25:00 -cd02890 PTase 239220 cd00688 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02891 A2M_like 239221 cd00688 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02892 SQCY_1 239222 cd02889 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02893 FTase 239223 cd02890 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02894 GGTase-II 239224 cd02890 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02895 GGTase-I 239225 cd02890 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02896 complement_... 239226 cd02891 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02897 A2M_2 239227 cd02891 cd00688 4 1 1 0 01/17/13 11:25:00 -cd02899 PLAT_SR 239228 cd00113 cd00113 2 1 1 0 01/17/13 11:25:00 -cd02900 Macro_Appr_... 239229 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02901 Macro_Poa1p... 239230 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02903 Macro_BAL_like 239231 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02904 Macro_H2A_like 239232 cd02749 cd02749 2 1 1 0 01/17/13 11:25:00 -cd02905 Macro_GDAP2... 239233 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02906 Macro_1 239234 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02907 Macro_Af152... 239235 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02908 Macro_Appr_... 239236 cd02749 cd02749 3 1 1 0 01/17/13 11:25:00 -cd02911 arch_FMN 239237 cd04722 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02922 FCB2_FMN 239238 cd02809 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02929 TMADH_HD_FMN 239239 cd02803 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02930 DCR_FMN 239240 cd02803 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02931 ER_like_FMN 239241 cd02803 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02932 OYE_YqiM_FMN 239242 cd02803 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02933 OYE_like_FMN 239243 cd02803 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02940 DHPD_FMN 239244 cd02810 cd04722 4 1 1 0 01/17/13 11:25:00 -cd02947 TRX_family 239245 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02948 TRX_NDPK 239246 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02949 TRX_NTR 239247 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02950 TxlA 239248 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02951 SoxW 239249 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02952 TRP14_like 239250 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02953 DsbDgamma 239251 cd01659 cd01659 3 1 1 0 01/17/13 11:25:00 -cd02954 DIM1 239252 cd01659 cd01659 2 1 1 0 01/17/13 11:25:00 -cd02955 SSP411 239253 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02956 ybbN 239254 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02957 Phd_like 239255 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02958 UAS 239256 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02959 ERp19 239257 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02960 AGR 239258 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02961 PDI_a_family 239259 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02962 TMX2 239260 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02963 TRX_DnaJ 239261 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02964 TryX_like_f... 239262 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02965 HyaE 239263 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02966 TlpA_like_f... 239264 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02967 mauD 239265 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02968 SCO 239266 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02969 PRX_like1 239267 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02970 PRX_like2 239268 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02971 PRX_family 239269 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02972 DsbA_family 239270 cd01659 cd01659 5 1 1 0 01/17/13 11:26:00 -cd02973 TRX_GRX_like 239271 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02974 AhpF_NTD_N 239272 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02975 PfPDO_like_N 239273 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02976 NrdH 239274 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02977 ArsC_family 239275 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02978 KaiB_like 239276 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02979 PHOX_C 239277 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02980 TRX_Fd_family 239278 cd01659 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02981 PDI_b_family 239279 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02982 PDI_b'_family 239280 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02983 P5_C 239281 cd01659 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02984 TRX_PICOT 239282 cd02947 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02985 TRX_CDSP32 239283 cd02947 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02986 DLP 239284 cd02954 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02987 Phd_like_Phd 239285 cd02957 cd01659 5 1 1 0 01/17/13 11:26:00 -cd02988 Phd_like_VIAF 239286 cd02957 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02989 Phd_like_Tx... 239287 cd02957 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02990 UAS_FAF1 239288 cd02958 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02991 UAS_ETEA 239289 cd02958 cd01659 2 1 1 0 01/17/13 11:26:00 -cd02992 PDI_a_QSOX 239290 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02993 PDI_a_APS_r... 239291 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02994 PDI_a_TMX 239292 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02995 PDI_a_PDI_a'_C 239293 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02996 PDI_a_ERp44 239294 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02997 PDI_a_PDIR 239295 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02998 PDI_a_ERp38 239296 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd02999 PDI_a_ERp44... 239297 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03000 PDI_a_TMX3 239298 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03001 PDI_a_P5 239299 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03002 PDI_a_MPD1_... 239300 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03003 PDI_a_ERdj5_N 239301 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03004 PDI_a_ERdj5_C 239302 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03005 PDI_a_ERp46 239303 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03006 PDI_a_EFP1_N 239304 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03007 PDI_a_ERp29_N 239305 cd02961 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03008 TryX_like_R... 239306 cd02964 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03009 TryX_like_T... 239307 cd02964 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03010 TlpA_like_DsbE 239308 cd02966 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03011 TlpA_like_S... 239309 cd02966 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03012 TlpA_like_D... 239310 cd02966 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03013 PRX5_like 239311 cd02971 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03014 PRX_Atyp2cys 239312 cd02971 cd01659 3 1 1 0 01/17/13 11:26:00 -cd03015 PRX_Typ2cys 239313 cd02971 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03016 PRX_1cys 239314 cd02971 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03017 PRX_BCP 239315 cd02971 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03018 PRX_AhpE_like 239316 cd02971 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03019 DsbA_DsbA 239317 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03020 DsbA_DsbC_DsbG 239318 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03021 DsbA_GSTK 239319 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03022 DsbA_HCCA_Iso 239320 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03023 DsbA_Com1_like 239321 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03024 DsbA_FrnE 239322 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03025 DsbA_FrnE_like 239323 cd02972 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03026 AhpF_NTD_C 239324 cd02973 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03027 GRX_DEP 239325 cd02066 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03028 GRX_PICOT_like 239326 cd02066 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03029 GRX_hybridPRX5 239327 cd02066 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03030 GRX_SH3BGR 239328 cd02066 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03031 GRX_GRX_like 239329 cd02066 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03032 ArsC_Spx 239330 cd02977 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03033 ArsC_15kD 239331 cd02977 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03034 ArsC_ArsC 239332 cd02977 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03035 ArsC_Yffb 239333 cd02977 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03036 ArsC_like 239334 cd02977 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03037 GST_N_GRX2 239335 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03038 GST_N_ether... 239336 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03039 GST_N_Sigma... 239337 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03040 GST_N_mPGES2 239338 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03041 GST_N_2GST_N 239339 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03042 GST_N_Zeta 239340 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03043 GST_N_1 239341 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03044 GST_N_EF1Bg... 239342 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03045 GST_N_Delta... 239343 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03046 GST_N_GTT1_... 239344 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03047 GST_N_2 239345 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03048 GST_N_Ure2p... 239346 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03049 GST_N_3 239347 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03050 GST_N_Theta 239348 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03051 GST_N_GTT2_... 239349 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03052 GST_N_GDAP1 239350 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03053 GST_N_Phi 239351 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03054 GST_N_Metaxin 239352 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03055 GST_N_Omega 239353 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03056 GST_N_4 239354 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03057 GST_N_Beta 239355 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03058 GST_N_Tau 239356 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03059 GST_N_SspA 239357 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03060 GST_N_Omega... 239358 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03061 GST_N_CLIC 239359 cd00570 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03062 TRX_Fd_Sucrase 239360 cd02980 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03063 TRX_Fd_FDH_... 239361 cd02980 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03064 TRX_Fd_NuoE 239362 cd02980 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03065 PDI_b_Calse... 239363 cd02981 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03066 PDI_b_Calse... 239364 cd02981 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03067 PDI_b_PDIR_N 239365 cd02981 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03068 PDI_b_ERp72 239366 cd02981 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03069 PDI_b_ERp57 239367 cd02981 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03070 PDI_b_ERp44 239368 cd02981 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03071 PDI_b'_NRX 239369 cd02982 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03072 PDI_b'_ERp44 239370 cd02982 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03073 PDI_b'_ERp7... 239371 cd02982 cd01659 2 1 1 0 01/17/13 11:27:00 -cd03074 PDI_b'_Cals... 239372 cd02982 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03075 GST_N_Mu 239373 cd03039 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03076 GST_N_Pi 239374 cd03039 cd01659 3 1 1 0 01/17/13 11:27:00 -cd03077 GST_N_Alpha 239375 cd03039 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03078 GST_N_Metax... 239376 cd03054 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03079 GST_N_Metaxin2 239377 cd03054 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03080 GST_N_Metax... 239378 cd03054 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03081 TRX_Fd_NuoE... 239379 cd03064 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03082 TRX_Fd_NuoE... 239380 cd03064 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03083 TRX_Fd_NuoE... 239381 cd03064 cd01659 3 1 1 0 01/17/13 11:28:00 -cd03084 phosphohexo... 100086 N/A cd03084 3 1 1 0 01/17/13 11:28:00 -cd03085 PGM1 100087 cd03084 cd03084 3 1 1 0 01/17/13 11:28:00 -cd03086 PGM3 100088 cd03084 cd03084 3 1 1 0 01/17/13 11:28:00 -cd03087 PGM_like1 100089 cd03084 cd03084 3 1 1 0 01/17/13 11:28:00 -cd03088 ManB 100090 cd03084 cd03084 3 1 1 0 01/17/13 11:28:00 -cd03089 PMM_PGM 100091 cd03084 cd03084 3 1 1 0 01/17/13 11:28:00 -cd03108 AdSS 349762 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd03109 DTBS 349763 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd03110 SIMIBI_bact... 349764 cd01983 cd01983 6 1 0 0 07/11/18 17:53:00 -cd03111 CpaE-like 349765 cd01983 cd01983 5 1 0 0 07/11/18 17:53:00 -cd03112 CobW-like 349766 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd03113 CTPS_N 349767 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd03114 MMAA-like 349768 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd03115 SRP_G_like 349769 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd03116 MobB 349770 cd01983 cd01983 4 1 0 0 07/11/18 17:53:00 -cd03117 alpha_CA_IV... 239391 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03118 alpha_CA_V 239392 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03119 alpha_CA_I_... 239393 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03120 alpha_CARP_... 239394 cd00326 cd00326 2 1 1 0 01/17/13 11:28:00 -cd03121 alpha_CARP_... 239395 cd00326 cd00326 2 1 1 0 01/17/13 11:28:00 -cd03122 alpha_CARP_... 239396 cd00326 cd00326 2 1 1 0 01/17/13 11:28:00 -cd03123 alpha_CA_VI... 239397 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03124 alpha_CA_pr... 239398 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03125 alpha_CA_VI 239399 cd03123 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03126 alpha_CA_XI... 239400 cd03123 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03127 tetraspanin... 239401 N/A cd03127 3 1 1 0 01/17/13 11:28:00 -cd03128 GAT_1 153222 N/A cd03128 4 1 1 0 01/17/13 11:28:00 -cd03129 GAT1_Peptid... 153223 cd03128 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03130 GATase1_CobB 153224 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03131 GATase1_HTS 153225 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03132 GATase1_cat... 153226 cd01653 cd03128 3 1 1 0 01/17/13 11:28:00 -cd03133 GATase1_ES1 153227 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03134 GATase1_Pfp... 153228 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03135 GATase1_DJ-1 153229 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03136 GATase1_Ara... 153230 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03137 GATase1_AraC_1 153231 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03138 GATase1_AraC_2 153232 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03139 GATase1_PfpI_2 153233 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03140 GATase1_PfpI_3 153234 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03141 GATase1_Hsp... 153235 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03142 GATase1_ThuA 153236 cd01653 cd03128 3 1 1 0 01/17/13 11:28:00 -cd03143 A4_beta-gal... 153237 cd01653 cd03128 5 1 1 0 01/17/13 11:28:00 -cd03144 GATase1_ScB... 153238 cd01653 cd03128 6 1 1 0 01/17/13 11:28:00 -cd03145 GAT1_cyanop... 153239 cd03129 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03146 GAT1_Peptid... 153240 cd03129 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03147 GATase1_Ydr... 153241 cd03141 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03148 GATase1_EcH... 153242 cd03141 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03149 alpha_CA_VII 239402 cd00326 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03150 alpha_CA_IX 239403 cd03123 cd00326 3 1 1 0 01/17/13 11:28:00 -cd03151 CD81_like_LEL 239404 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03152 CD9_LEL 239405 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03153 PHEMX_like_LEL 239406 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03154 TM4SF3_like... 239407 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03155 CD151_like_LEL 239408 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03156 uroplakin_I... 239409 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03157 TM4SF12_lik... 239410 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03158 penumbra_li... 239411 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03159 TM4SF9_like... 239412 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03160 CD37_CD82_l... 239413 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03161 TM4SF2_6_li... 239414 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03162 peripherin_... 239415 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03163 TM4SF8_like... 239416 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03164 CD53_like_LEL 239417 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03165 NET-5_like_LEL 239418 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03166 CD63_LEL 239419 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03167 oculospanin... 239420 cd03127 cd03127 3 1 1 0 01/17/13 11:28:00 -cd03169 GATase1_PfpI_1 153243 cd01653 cd03128 4 1 1 0 01/17/13 11:28:00 -cd03171 SORL_Dfx_cl... 239421 cd00524 cd00524 3 1 1 0 01/17/13 11:28:00 -cd03172 SORL_classII 239422 cd00524 cd00524 3 1 1 0 01/17/13 11:28:00 -cd03173 DUF619-like 176264 N/A cd03173 3 1 1 0 01/17/13 11:28:00 -cd03174 DRE_TIM_met... 163674 N/A cd03174 3 1 1 0 01/17/13 11:28:00 -cd03177 GST_C_Delta... 198287 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03178 GST_C_Ure2p... 198288 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03180 GST_C_2 198289 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03181 GST_C_EF1Bg... 198290 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03182 GST_C_GTT2_... 198291 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03183 GST_C_Theta 198292 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03184 GST_C_Omega 198293 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03185 GST_C_Tau 198294 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03186 GST_C_SspA 198295 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03187 GST_C_Phi 198296 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03188 GST_C_Beta 198297 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03189 GST_C_GTT1_... 198298 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03190 GST_C_Omega... 198299 cd00299 cd00299 3 1 1 0 01/17/13 11:28:00 -cd03191 GST_C_Zeta 198300 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03192 GST_C_Sigma... 198301 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03193 GST_C_Metaxin 198302 cd00299 cd00299 6 1 1 0 01/17/13 11:28:00 -cd03194 GST_C_3 198303 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03195 GST_C_4 198304 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03196 GST_C_5 198305 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03197 GST_C_mPGES2 198306 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03198 GST_C_CLIC 198307 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03199 GST_C_GRX2 198308 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03200 GST_C_AIMP2 198309 cd10289 cd00299 3 1 1 0 01/17/13 11:28:00 -cd03201 GST_C_DHAR 198310 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03202 GST_C_ether... 198311 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03203 GST_C_Lambda 198312 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03204 GST_C_GDAP1... 198313 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03205 GST_C_6 198314 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03206 GST_C_7 198315 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03207 GST_C_8 198316 cd00299 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03208 GST_C_Alpha 198317 cd03192 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03209 GST_C_Mu 198318 cd03192 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03210 GST_C_Pi 198319 cd03192 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03211 GST_C_Metaxin2 198320 cd03193 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03212 GST_C_Metax... 198321 cd03193 cd00299 4 1 1 0 01/17/13 11:28:00 -cd03213 ABCG_EPDR 213180 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03214 ABC_Iron-Si... 213181 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03215 ABC_Carb_Mo... 213182 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03216 ABC_Carb_Mo... 213183 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03217 ABC_FeS_Ass... 213184 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03218 ABC_YhbG 213185 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03219 ABC_Mj1267_... 213186 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03220 ABC_KpsT_Wzt 213187 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03221 ABCF_EF-3 213188 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03222 ABC_RNaseL_... 213189 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03223 ABCD_peroxi... 213190 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03224 ABC_TM1139_... 213191 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03225 ABC_cobalt_... 213192 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03226 ABC_cobalt_... 213193 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03227 ABC_Class2 213194 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03228 ABCC_MRP_Like 213195 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03229 ABC_Class3 213196 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03230 ABC_DR_subf... 213197 cd00267 cd00267 7 1 1 0 01/17/13 11:28:00 -cd03231 ABC_CcmA_he... 213198 cd00267 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03232 ABCG_PDR_do... 213199 cd03213 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03233 ABCG_PDR_do... 213200 cd03213 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03234 ABCG_White 213201 cd03213 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03235 ABC_Metalli... 213202 cd03214 cd00267 5 1 1 0 01/17/13 11:28:00 -cd03236 ABC_RNaseL_... 213203 cd03222 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03237 ABC_RNaseL_... 213204 cd03222 cd00267 6 1 1 0 01/17/13 11:28:00 -cd03238 ABC_UvrA 213205 cd03227 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03239 ABC_SMC_head 213206 cd03227 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03240 ABC_Rad50 213207 cd03227 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03241 ABC_RecN 213208 cd03227 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03242 ABC_RecF 213209 cd03227 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03243 ABC_MutS_ho... 213210 cd03227 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03244 ABCC_MRP_do... 213211 cd03228 cd00267 5 1 1 0 01/17/13 11:29:00 -cd03245 ABCC_bacter... 213212 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03246 ABCC_Protea... 213213 cd03228 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03247 ABCC_cytoch... 213214 cd03228 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03248 ABCC_TAP 213215 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03249 ABC_MTABC3_... 213216 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03250 ABCC_MRP_do... 213217 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03251 ABCC_MsbA 213218 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03252 ABCC_Hemolysin 213219 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03253 ABCC_ATM1_t... 213220 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03254 ABCC_Glucan... 213221 cd03228 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03255 ABC_MJ0796_... 213222 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03256 ABC_PhnC_tr... 213223 cd03255 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03257 ABC_NikE_Op... 213224 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03258 ABC_MetN_me... 213225 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03259 ABC_Carb_So... 213226 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03260 ABC_PstB_ph... 213227 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03261 ABC_Org_Sol... 213228 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03262 ABC_HisP_GlnQ 213229 cd03229 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03263 ABC_subfami... 213230 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03264 ABC_drug_re... 213231 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03265 ABC_DrrA 213232 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03266 ABC_NatA_so... 213233 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03267 ABC_NatA_like 213234 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03268 ABC_BcrA_ba... 213235 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03269 ABC_putativ... 213236 cd03230 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03270 ABC_UvrA_I 213237 cd03238 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03271 ABC_UvrA_II 213238 cd03238 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03272 ABC_SMC3_euk 213239 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03273 ABC_SMC2_euk 213240 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03274 ABC_SMC4_euk 213241 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03275 ABC_SMC1_euk 213242 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03276 ABC_SMC6_euk 213243 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03277 ABC_SMC5_euk 213244 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03278 ABC_SMC_bar... 213245 cd03239 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03279 ABC_sbcCD 213246 cd03240 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03280 ABC_MutS2 213247 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03281 ABC_MSH5_euk 213248 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03282 ABC_MSH4_euk 213249 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03283 ABC_MutS-like 213250 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03284 ABC_MutS1 213251 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03285 ABC_MSH2_euk 213252 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03286 ABC_MSH6_euk 213253 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03287 ABC_MSH3_euk 213254 cd03243 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03288 ABCC_SUR2 213255 cd03244 cd00267 7 1 1 0 01/17/13 11:29:00 -cd03289 ABCC_CFTR2 213256 cd03244 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03290 ABCC_SUR1_N 213257 cd03250 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03291 ABCC_CFTR1 213258 cd03250 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03292 ABC_FtsE_tr... 213259 cd03255 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03293 ABC_NrtD_Ss... 213260 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03294 ABC_Pro_Gly... 213261 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03295 ABC_OpuCA_O... 213262 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03296 ABC_CysA_su... 213263 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03297 ABC_ModC_mo... 213264 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03298 ABC_ThiQ_th... 213265 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03299 ABC_ModC_like 213266 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03300 ABC_PotA_N 213267 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03301 ABC_MalK_N 213268 cd03259 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03302 Adenylsucci... 176471 cd01595 cd01594 4 1 1 0 01/17/13 11:29:00 -cd03307 Mta_CmuA_like 239423 cd03465 cd00465 2 1 1 0 01/17/13 11:29:00 -cd03308 CmuA_CmuC_like 239424 cd03465 cd00465 2 1 1 0 01/17/13 11:29:00 -cd03309 CmuC_like 239425 cd03465 cd00465 2 1 1 0 01/17/13 11:29:00 -cd03310 CIMS_like 239426 cd00465 cd00465 2 1 1 0 01/17/13 11:29:00 -cd03311 CIMS_C_term... 239427 cd03310 cd00465 3 1 1 0 01/17/13 11:29:00 -cd03312 CIMS_N_term... 239428 cd03310 cd00465 2 1 1 0 01/17/13 11:29:00 -cd03313 enolase 239429 cd00308 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03314 MAL 239430 cd00308 cd00308 5 1 1 0 01/17/13 11:29:00 -cd03315 MLE_like 239431 cd00308 cd00308 5 1 1 0 01/17/13 11:29:00 -cd03316 MR_like 239432 cd00308 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03317 NAAAR 239433 cd03315 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03318 MLE 239434 cd03315 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03319 L-Ala-DL-Gl... 239435 cd03315 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03320 OSBS 239436 cd03315 cd00308 5 1 1 0 01/17/13 11:29:00 -cd03321 mandelate_r... 239437 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03322 rpsA 239438 cd03316 cd00308 5 1 1 0 01/17/13 11:29:00 -cd03323 D-glucarate... 239439 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03324 rTSbeta_L-f... 239440 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03325 D-galactona... 239441 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03326 MR_like_1 239442 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03327 MR_like_2 239443 cd03316 cd00308 5 1 1 0 01/17/13 11:29:00 -cd03328 MR_like_3 239444 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03329 MR_like_4 239445 cd03316 cd00308 3 1 1 0 01/17/13 11:29:00 -cd03330 Macro_2 239446 cd02749 cd02749 3 1 1 0 01/17/13 11:29:00 -cd03331 Macro_Poa1p... 239447 cd02901 cd02749 3 1 1 0 01/17/13 11:29:00 -cd03332 LMO_FMN 239448 cd02809 cd04722 6 1 1 0 01/17/13 11:29:00 -cd03333 chaperonin_... 239449 N/A cd03333 4 1 1 0 01/17/13 11:29:00 -cd03334 Fab1_TCP 239450 cd03333 cd03333 2 1 1 0 01/17/13 11:29:00 -cd03335 TCP1_alpha 239451 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03336 TCP1_beta 239452 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03337 TCP1_gamma 239453 cd00309 cd03333 5 1 1 0 01/17/13 11:29:00 -cd03338 TCP1_delta 239454 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03339 TCP1_epsilon 239455 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03340 TCP1_eta 239456 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03341 TCP1_theta 239457 cd00309 cd03333 5 1 1 0 01/17/13 11:29:00 -cd03342 TCP1_zeta 239458 cd00309 cd03333 5 1 1 0 01/17/13 11:29:00 -cd03343 cpn60 239459 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03344 GroEL 239460 cd00309 cd03333 3 1 1 0 01/17/13 11:29:00 -cd03345 eu_TyrOH 239461 cd00361 cd00361 3 1 1 0 01/17/13 11:29:00 -cd03346 eu_TrpOH 239462 cd00361 cd00361 3 1 1 0 01/17/13 11:29:00 -cd03347 eu_PheOH 239463 cd00361 cd00361 3 1 1 0 01/17/13 11:29:00 -cd03348 pro_PheOH 239464 cd00361 cd00361 3 1 1 0 01/17/13 11:29:00 -cd03349 LbH_XAT 100040 cd04647 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03350 LbH_THP_suc... 100041 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03351 LbH_UDP-Glc... 100042 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03352 LbH_LpxD 100043 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03353 LbH_GlmU_C 100044 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03354 LbH_SAT 100045 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03356 LbH_G1P_AT_... 100046 cd00208 cd00208 2 1 1 0 01/17/13 11:29:00 -cd03357 LbH_MAT_GAT 100047 cd04647 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03358 LbH_WxcM_N_... 100048 cd04647 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03359 LbH_Dynactin_5 100049 cd00208 cd00208 2 1 1 0 01/17/13 11:29:00 -cd03360 LbH_AT_puta... 100050 cd00208 cd00208 3 1 1 0 01/17/13 11:29:00 -cd03361 TOPRIM_Topo... 173781 cd01028 cd00188 5 1 1 0 01/17/13 11:29:00 -cd03362 TOPRIM_Topo... 173782 cd01028 cd00188 5 1 1 0 01/17/13 11:29:00 -cd03363 TOPRIM_Topo... 173783 cd01028 cd00188 5 1 1 0 10/06/15 11:36:00 -cd03364 TOPRIM_DnaG... 173784 cd01029 cd00188 5 1 1 0 01/17/13 11:29:00 -cd03365 TOPRIM_TopoIIA 173785 cd01030 cd00188 5 1 1 0 01/17/13 11:29:00 -cd03366 TOPRIM_Topo... 173786 cd01030 cd00188 5 1 1 0 01/17/13 11:29:00 -cd03367 Ribosomal_S23 239465 cd00319 cd00319 3 1 1 0 01/17/13 11:29:00 -cd03368 Ribosomal_S12 239466 cd00319 cd00319 3 1 1 0 01/17/13 11:29:00 -cd03369 ABCC_NFT1 213269 cd03244 cd00267 6 1 1 0 01/17/13 11:29:00 -cd03370 NADH_oxidase 239467 cd02062 cd02062 5 1 1 0 01/17/13 11:29:00 -cd03371 TPP_PpyrDC 239468 cd02001 cd00568 3 1 1 0 01/17/13 11:29:00 -cd03372 TPP_ComE 239469 cd02001 cd00568 3 1 1 0 01/17/13 11:29:00 -cd03375 TPP_OGFOR 239470 cd00568 cd00568 5 1 1 0 01/17/13 11:29:00 -cd03376 TPP_PFOR_po... 239471 cd02018 cd00568 3 1 1 0 01/17/13 11:29:00 -cd03377 TPP_PFOR_PNO 239472 cd02018 cd00568 3 1 1 0 01/17/13 11:29:00 -cd03378 beta_CA_cladeC 239473 cd00382 cd00382 5 1 1 0 01/17/13 11:29:00 -cd03379 beta_CA_cladeD 239474 cd00382 cd00382 3 1 1 0 01/17/13 11:29:00 -cd03380 PAP2_like_1 239475 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03381 PAP2_glucos... 239476 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03382 PAP2_dolich... 239477 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03383 PAP2_diacyl... 239478 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03384 PAP2_wunen 239479 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03385 PAP2_BcrC_like 239480 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03386 PAP2_Aur1_like 239481 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03388 PAP2_SPPase1 239482 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03389 PAP2_lipid_... 239483 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03390 PAP2_contai... 239484 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03391 PAP2_contai... 239485 cd01610 cd01610 3 1 1 0 01/17/13 11:29:00 -cd03392 PAP2_like_2 239486 cd01610 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03393 PAP2_like_3 239487 cd01610 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03394 PAP2_like_5 239488 cd01610 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03395 PAP2_like_4 239489 cd01610 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03396 PAP2_like_6 239490 cd01610 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03397 PAP2_acid_p... 239491 cd03380 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03398 PAP2_halope... 239492 cd03380 cd01610 3 1 1 0 01/17/13 11:30:00 -cd03399 SPFH_flotillin 259798 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03401 SPFH_prohib... 259799 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03402 SPFH_like_u2 259800 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03403 SPFH_stomatin 259801 cd13434 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03404 SPFH_HflK 259802 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03405 SPFH_HflC 259803 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03406 SPFH_like_u3 259804 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03407 SPFH_like_u4 259805 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03408 SPFH_like_u1 259806 cd02106 cd02106 3 1 1 0 04/05/13 12:52:00 -cd03409 Chelatase_C... 239503 N/A cd03409 3 1 1 0 01/17/13 11:30:00 -cd03411 Ferrochelat... 239504 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03412 CbiK_N 239505 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03413 CbiK_C 239506 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03414 CbiX_SirB_C 239507 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03415 CbiX_CbiC 239508 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03416 CbiX_SirB_N 239509 cd03409 cd03409 3 1 1 0 01/17/13 11:30:00 -cd03418 GRX_GRXb_1_... 239510 cd02066 cd01659 3 1 1 0 01/17/13 11:30:00 -cd03419 GRX_GRXh_1_... 239511 cd02066 cd01659 3 1 1 0 01/17/13 11:30:00 -cd03420 SirA_RHOD_P... 239512 cd00291 cd00291 3 1 1 0 01/17/13 11:30:00 -cd03421 SirA_like_N 239513 cd00291 cd00291 3 1 1 0 01/17/13 11:30:00 -cd03422 YedF 239514 cd00291 cd00291 3 1 1 0 01/17/13 11:30:00 -cd03423 SirA 239515 cd00291 cd00291 3 1 1 0 01/17/13 11:30:00 -cd03424 ADPRase_NUDT5 239516 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03425 MutT_pyroph... 239517 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03426 CoAse 239518 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03427 MTH1 239519 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03428 Ap4A_hydrol... 239520 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03429 NADH_pyroph... 239521 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03430 GDPMH 239522 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03431 DNA_Glycosy... 239523 cd02883 cd02883 3 1 1 0 01/17/13 11:30:00 -cd03440 hot_dog 239524 N/A cd03440 3 1 1 0 01/17/13 11:30:00 -cd03441 R_hydratase... 239525 cd03440 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03442 BFIT_BACH 239526 cd03440 cd03440 2 1 1 0 01/17/13 11:30:00 -cd03443 PaaI_thioes... 239527 cd03440 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03444 Thioesteras... 239528 cd00556 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03445 Thioesteras... 239529 cd00556 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03446 MaoC_like 239530 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03447 FAS_MaoC 239531 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03448 HDE_HSD 239532 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03449 R_hydratase 239533 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03450 NodN 239534 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03451 FkbR2 239535 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03452 MaoC_C 239536 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03453 SAV4209_like 239537 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03454 YdeM 239538 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03455 SAV4209 239539 cd03441 cd03440 3 1 1 0 01/17/13 11:30:00 -cd03457 intradiol_d... 239540 cd00421 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03458 Catechol_in... 239541 cd00421 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03459 3,4-PCD 239542 cd00421 cd00421 2 1 1 0 01/17/13 11:30:00 -cd03460 1,2-CTD 239543 cd03458 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03461 1,2-HQD 239544 cd03458 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03462 1,2-CCD 239545 cd03458 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03463 3,4-PCD_alpha 239546 cd03459 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03464 3,4-PCD_beta 239547 cd03459 cd00421 3 1 1 0 01/17/13 11:30:00 -cd03465 URO-D_like 239548 cd00465 cd00465 2 1 1 0 01/17/13 11:30:00 -cd03466 Nitrogenase... 239549 cd01965 cd00316 2 1 1 0 01/17/13 11:30:00 -cd03467 Rieske 239550 N/A cd03467 4 1 1 0 01/17/13 11:30:00 -cd03468 PolY_like 176458 cd00424 cd00424 5 1 1 0 01/17/13 11:30:00 -cd03469 Rieske_RO_A... 239551 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03470 Rieske_cyto... 239552 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03471 Rieske_cyto... 239553 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03472 Rieske_RO_A... 239554 cd03469 cd03467 3 1 1 0 01/17/13 11:30:00 -cd03473 Rieske_CMP_... 239555 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03474 Rieske_T4moC 239556 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03475 Rieske_SoxF... 239557 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03476 Rieske_ArOX... 239558 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03477 Rieske_YhfW_C 239559 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03478 Rieske_AIFL_N 239560 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03479 Rieske_RO_A... 239561 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03480 Rieske_RO_A... 239562 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03481 TopoIIA_Tra... 239563 cd00329 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03482 MutL_Trans_... 239564 cd00782 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03483 MutL_Trans_... 239565 cd00782 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03484 MutL_Trans_... 239566 cd00782 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03485 MutL_Trans_... 239567 cd00782 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03486 MutL_Trans_... 239568 cd00782 cd00329 3 1 1 0 01/17/13 11:30:00 -cd03487 RT_Bac_retr... 239569 cd00304 cd00304 3 1 1 0 01/17/13 11:30:00 -cd03488 Topoisomer_... 239570 cd00660 cd00660 3 1 1 0 01/17/13 11:30:00 -cd03489 Topoisomer_... 239571 cd00660 cd00660 3 1 1 0 01/17/13 11:30:00 -cd03490 Topoisomer_... 239572 cd00660 cd00660 3 1 1 0 01/17/13 11:30:00 -cd03493 SQR_QFR_TM 239573 N/A cd03493 3 1 1 0 01/17/13 11:30:00 -cd03494 SQR_TypeC_SdhD 239574 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03495 SQR_TypeC_S... 239575 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03496 SQR_TypeC_CybS 239576 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03497 SQR_TypeB_1_TM 239577 cd03526 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03498 SQR_TypeB_2_TM 239578 cd03526 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03499 SQR_TypeC_SdhC 239579 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03500 SQR_TypeA_S... 239580 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03501 SQR_TypeA_S... 239581 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03505 Delta9-FADS... 239582 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03506 Delta6-FADS... 239583 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03507 Delta12-FAD... 239584 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03508 Delta4-sphi... 239585 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03509 DesA_FADS-like 239586 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03510 Rhizobitoxi... 239587 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03511 Rhizopine-o... 239588 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03512 Alkane-hydr... 239589 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03513 CrtW_beta-c... 239590 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03514 CrtR_beta-c... 239591 cd01060 cd01060 3 1 1 0 01/17/13 11:30:00 -cd03515 Link_domain... 239592 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03516 Link_domain... 239593 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03517 Link_domain... 239594 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03518 Link_domain... 239595 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03519 Link_domain... 239596 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03520 Link_domain... 239597 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03521 Link_domain... 239598 cd01102 cd01102 4 1 1 0 01/17/13 11:30:00 -cd03522 MoeA_like 239599 cd00758 cd00758 2 1 1 0 01/17/13 11:30:00 -cd03523 NTR_like 239600 N/A cd03523 2 1 1 0 01/17/13 11:30:00 -cd03524 RPA2_OBF_fa... 239601 N/A cd03524 2 1 1 0 01/17/13 11:30:00 -cd03526 SQR_QFR_Typ... 239602 cd03493 cd03493 3 1 1 0 01/17/13 11:30:00 -cd03527 RuBisCO_small 239603 cd00307 cd00307 3 1 1 0 01/17/13 11:30:00 -cd03528 Rieske_RO_f... 239604 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03529 Rieske_NirD 239605 cd03467 cd03467 3 1 1 0 01/17/13 11:30:00 -cd03530 Rieske_NirD... 239606 cd03467 cd03467 4 1 1 0 01/17/13 11:30:00 -cd03531 Rieske_RO_A... 239607 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03532 Rieske_RO_A... 239608 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03535 Rieske_RO_A... 239609 cd03469 cd03467 3 1 1 0 01/17/13 11:30:00 -cd03536 Rieske_RO_A... 239610 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03537 Rieske_RO_A... 239611 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03538 Rieske_RO_A... 239612 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03539 Rieske_RO_A... 239613 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03541 Rieske_RO_A... 239614 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03542 Rieske_RO_A... 239615 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03545 Rieske_RO_A... 239616 cd03469 cd03467 2 1 1 0 01/17/13 11:30:00 -cd03548 Rieske_RO_A... 239617 cd03469 cd03467 3 1 1 0 01/17/13 11:30:00 -cd03556 L-fucose_is... 239618 cd00578 cd00578 3 1 1 0 01/17/13 11:31:00 -cd03557 L-arabinose... 239619 cd00578 cd00578 3 1 1 0 01/17/13 11:31:00 -cd03558 LGIC_ECD 349787 N/A cd03558 1 1 0 0 07/11/18 17:53:00 -cd03559 LGIC_TM 349850 N/A cd03559 1 1 0 0 07/11/18 17:54:00 -cd03561 VHS 340765 cd00197 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03562 CID 340766 cd00197 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03564 ANTH_N 340767 cd00197 cd00197 4 1 0 0 06/09/17 14:32:00 -cd03565 VHS_Tom1_like 340768 cd03561 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03567 VHS_GGA_met... 340769 cd16977 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03568 VHS_STAM 340770 cd03561 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03569 VHS_Hrs 340771 cd03561 cd00197 3 1 0 0 06/09/17 14:32:00 -cd03571 ENTH 340772 cd00197 cd00197 4 1 0 0 06/09/17 14:32:00 -cd03572 ENTH_like_T... 340773 cd00197 cd00197 4 1 0 0 06/09/17 14:32:00 -cd03574 NTR_complem... 239629 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03575 NTR_WFIKKN 239630 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03576 NTR_PCOLCE 239631 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03577 NTR_TIMP_like 239632 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03578 NTR_netrin-... 239633 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03579 NTR_netrin-... 239634 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03580 NTR_Sfrp1_like 239635 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03581 NTR_Sfrp3_like 239636 cd03523 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03582 NTR_complem... 239637 cd03574 cd03523 3 1 1 0 01/17/13 11:31:00 -cd03583 NTR_complem... 239638 cd03574 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03584 NTR_complem... 239639 cd03574 cd03523 2 1 1 0 01/17/13 11:31:00 -cd03585 NTR_TIMP 239640 cd03577 cd03523 3 1 1 0 01/17/13 11:31:00 -cd03586 PolY_Pol_IV... 176459 cd00424 cd00424 5 1 1 0 01/17/13 11:31:00 -cd03587 SOCS 239641 N/A cd03587 2 1 1 0 01/17/13 11:31:00 -cd03588 CLECT_CSPGs 153058 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03589 CLECT_CEL-1... 153059 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03590 CLECT_DC-SI... 153060 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03591 CLECT_colle... 153061 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03592 CLECT_selec... 153062 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03593 CLECT_NK_re... 153063 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03594 CLECT_REG-1... 153064 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03595 CLECT_chond... 153065 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03596 CLECT_tetra... 153066 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03597 CLECT_attra... 153067 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03598 CLECT_EMBP_... 153068 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03599 CLECT_DGCR2... 153069 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03600 CLECT_throm... 153070 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03601 CLECT_TC14_... 153071 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03602 CLECT_1 153072 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03603 CLECT_VCBS 153073 cd00037 cd00037 4 1 1 0 01/17/13 11:31:00 -cd03670 ADPRase_NUDT9 239642 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03671 Ap4A_hydrol... 239643 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03672 Dcp2p 239644 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03673 Ap6A_hydrolase 239645 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03674 Nudix_Hydro... 239646 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03675 Nudix_Hydro... 239647 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03676 Nudix_hydro... 239648 cd02883 cd02883 3 1 1 0 01/17/13 11:31:00 -cd03677 MM_CoA_muta... 239649 cd00512 cd00512 3 1 1 0 01/17/13 11:31:00 -cd03678 MM_CoA_muta... 239650 cd00512 cd00512 3 1 1 0 01/17/13 11:31:00 -cd03679 MM_CoA_muta... 239651 cd00512 cd00512 3 1 1 0 01/17/13 11:31:00 -cd03680 MM_CoA_muta... 239652 cd00512 cd00512 2 1 1 0 01/17/13 11:31:00 -cd03681 MM_CoA_muta... 239653 cd00512 cd00512 3 1 1 0 01/17/13 11:31:00 -cd03682 ClC_sycA_like 239654 cd00400 cd00400 2 1 1 0 01/17/13 11:31:00 -cd03683 ClC_1_like 239655 cd01036 cd00400 2 1 1 0 01/17/13 11:31:00 -cd03684 ClC_3_like 239656 cd01036 cd00400 2 1 1 0 01/17/13 11:31:00 -cd03685 ClC_6_like 239657 cd01036 cd00400 2 1 1 0 01/17/13 11:31:00 -cd03687 Dehydratase_LU 239658 N/A cd03687 3 1 1 0 01/17/13 11:31:00 -cd03688 eIF2_gamma_II 293889 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03689 RF3_II 293890 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03690 Tet_II 293891 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03691 BipA_TypA_II 293892 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03692 mtIF2_IVc 293893 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03693 EF1_alpha_II 293894 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03694 GTPBP_II 293895 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03695 CysN_NodQ_II 293896 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03696 SelB_II 293897 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03697 EFTU_II 293898 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03698 eRF3_II_like 293899 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03699 EF4_II 293900 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03700 EF2_snRNP_l... 293901 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03701 IF2_IF5B_II 293902 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03702 IF2_mtIF2_II 293903 cd03701 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03703 aeIF5B_II 293904 cd03701 cd01342 3 1 1 0 11/06/15 13:15:00 -cd03704 eRF3_C_III 294003 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd03705 EF1_alpha_III 294004 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd03706 mtEFTU_III 294005 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd03707 EFTU_III 294006 cd01513 cd01513 5 1 1 0 11/06/15 13:21:00 -cd03708 GTPBP_III 294007 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd03709 lepA_C 239680 cd01514 cd01514 2 1 1 0 01/17/13 11:31:00 -cd03710 BipA_TypA_C 239681 cd01514 cd01514 2 1 1 0 01/17/13 11:31:00 -cd03711 Tet_C 239682 cd01514 cd01514 2 1 1 0 01/17/13 11:31:00 -cd03713 EFG_mtEFG_C 239683 cd01514 cd01514 2 1 1 0 01/17/13 11:31:00 -cd03714 RT_DIRS1 239684 cd00304 cd00304 3 1 1 0 01/17/13 11:31:00 -cd03715 RT_ZFREV_like 239685 cd00304 cd00304 3 1 1 0 01/17/13 11:31:00 -cd03716 SOCS_ASB_like 239686 cd03587 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03717 SOCS_SOCS_like 239687 cd03587 cd03587 2 1 1 0 01/17/13 11:31:00 -cd03718 SOCS_SSB1_4 239688 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03719 SOCS_SSB2 239689 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03720 SOCS_ASB1 239690 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03721 SOCS_ASB2 239691 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03722 SOCS_ASB3 239692 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03723 SOCS_ASB4_A... 239693 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03724 SOCS_ASB5 239694 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03725 SOCS_ASB6 239695 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03726 SOCS_ASB7 239696 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03727 SOCS_ASB8 239697 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03728 SOCS_ASB_9_11 239698 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03729 SOCS_ASB13 239699 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03730 SOCS_ASB14 239700 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03731 SOCS_ASB15 239701 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03733 SOCS_WSB_SWIP 239702 cd03716 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03734 SOCS_CIS1 239703 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03735 SOCS_SOCS1 239704 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03736 SOCS_SOCS2 239705 cd03717 cd03587 2 1 1 0 01/17/13 11:31:00 -cd03737 SOCS_SOCS3 239706 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03738 SOCS_SOCS4 239707 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03739 SOCS_SOCS5 239708 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03740 SOCS_SOCS6 239709 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03741 SOCS_SOCS7 239710 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03742 SOCS_Rab40 239711 cd03717 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03743 SOCS_SSB4 239712 cd03718 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03744 SOCS_SSB1 239713 cd03718 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03745 SOCS_WSB2_S... 239714 cd03733 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03746 SOCS_WSB1_S... 239715 cd03733 cd03587 3 1 1 0 01/17/13 11:31:00 -cd03747 Ntn_PGA_like 239716 cd01901 cd01901 5 1 1 0 01/17/13 11:31:00 -cd03748 Ntn_PGA 239717 cd03747 cd01901 5 1 1 0 01/17/13 11:31:00 -cd03749 proteasome_... 239718 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03750 proteasome_... 239719 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03751 proteasome_... 239720 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03752 proteasome_... 239721 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03753 proteasome_... 239722 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03754 proteasome_... 239723 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03755 proteasome_... 239724 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03756 proteasome_... 239725 cd01911 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03757 proteasome_... 239726 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03758 proteasome_... 239727 cd01912 cd01901 2 1 1 0 01/17/13 11:31:00 -cd03759 proteasome_... 239728 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03760 proteasome_... 239729 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03761 proteasome_... 239730 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03762 proteasome_... 239731 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03763 proteasome_... 239732 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03764 proteasome_... 239733 cd01912 cd01901 3 1 1 0 01/17/13 11:31:00 -cd03765 proteasome_... 239734 cd01912 cd01901 2 1 1 0 01/17/13 11:31:00 -cd03766 Gn_AT_II_novel 239735 cd00352 cd00352 3 1 1 0 01/17/13 11:31:00 -cd03767 SR_Res_par 239736 cd00338 cd00338 3 1 1 0 01/17/13 11:31:00 -cd03768 SR_ResInv 239737 cd00338 cd00338 3 1 1 0 01/17/13 11:31:00 -cd03769 SR_IS607_tr... 239738 cd00338 cd00338 3 1 1 0 01/17/13 11:31:00 -cd03770 SR_TndX_tra... 239739 cd00338 cd00338 3 1 1 0 01/17/13 11:31:00 -cd03771 MATH_Meprin 239740 cd00121 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03772 MATH_HAUSP 239741 cd00121 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03773 MATH_TRIM37 239742 cd00121 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03774 MATH_SPOP 239743 cd00121 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03775 MATH_Ubp21p 239744 cd00121 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03776 MATH_TRAF6 239745 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03777 MATH_TRAF3 239746 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03778 MATH_TRAF2 239747 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03779 MATH_TRAF1 239748 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03780 MATH_TRAF5 239749 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03781 MATH_TRAF4 239750 cd00270 cd00121 3 1 1 0 01/17/13 11:31:00 -cd03782 MATH_Meprin... 239751 cd03771 cd00121 3 1 1 0 01/17/13 11:32:00 -cd03783 MATH_Meprin... 239752 cd03771 cd00121 3 1 1 0 01/17/13 11:32:00 -cd03784 GT1_Gtf-like 340817 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03785 GT28_MurG 340818 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03786 GTB_UDP-Glc... 340819 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03788 GT20_TPS 340820 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03789 GT9_LPS_hep... 340821 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03791 GT5_Glycoge... 340822 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03792 GT4_trehalo... 340823 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03793 GT3_GSY2-like 340824 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03794 GT4_WbuB-like 340825 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03795 GT4_WfcD-like 340826 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03796 GT4_PIG-A-like 340827 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03798 GT4_WlbH-like 340828 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03799 GT4_AmsK-like 340829 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03800 GT4_sucrose... 340830 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03801 GT4_PimA-like 340831 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03802 GT4_AviGT4-... 340832 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03804 GT4_WbaZ-like 340833 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03805 GT4_ALG2-like 340834 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03806 GT4_ALG11-like 340835 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03807 GT4_WbnK-like 340836 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03808 GT4_CapM-like 340837 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03809 GT4_MtfB-like 340838 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03811 GT4_GT28_Wa... 340839 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03812 GT4_CapH-like 340840 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03813 GT4-like 340841 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03814 GT4-like 340842 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03816 GT33_ALG1-like 340843 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03817 GT4_UGDG-like 340844 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03818 GT4_ExpC-like 340845 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03819 GT4_WavL-like 340846 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03820 GT4_AmsD-like 340847 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03821 GT4_Bme6-like 340848 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd03822 GT4_mannosy... 340849 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03823 GT4_ExpE7-like 340850 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03825 GT4_WcaC-like 340851 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd03829 Sina 239753 N/A cd03829 3 1 1 0 01/17/13 11:32:00 -cd03855 M14_ASTE 349428 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03856 M14_Nna1-like 349429 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03857 M14-like 349430 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03858 M14_CP_N-E_... 349431 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03859 M14_CPT 349432 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03860 M14_CP_A-B_... 349433 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03862 M14-like 349434 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03863 M14_CPD_II 349435 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03864 M14_CPN 349436 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03865 M14_CPE 349437 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03866 M14_CPM 349438 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03867 M14_CPZ 349439 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03868 M14_CPD_I 349440 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03869 M14_CPX_like 349441 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03870 M14_CPA 349442 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03871 M14_CPB 349443 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03872 M14_CPA6 349444 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd03873 Zinc_peptid... 349870 N/A cd03873 3 1 0 0 07/11/18 17:54:00 -cd03874 M28_PMSA_Tf... 349871 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03875 M28_Fxna_like 349872 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03876 M28_SGAP_like 349873 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03877 M28_like 349874 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03879 M28_AAP 349875 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03880 M28_QC_like 349876 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03881 M28_Nicastrin 349877 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03882 M28_nicalin... 349878 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03883 M28_Pgcp_like 349879 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03884 M20_bAS 349880 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03885 M20_CPDG2 349881 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03886 M20_Acy1 349882 cd08660 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03887 M20_Acy1L2 349883 cd08660 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03888 M20_PepV 349884 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03890 M20_pepD 349885 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03891 M20_DapE_pr... 349886 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03892 M20_peptT 349887 cd05645 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03893 M20_Dipept_... 349888 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03894 M20_ArgE 349889 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03895 M20_ArgE_Da... 349890 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd03896 M20_PAAh_like 349891 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd04009 C2B_Munc13-... 175976 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04010 C2B_RasA3 175977 cd08675 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04011 C2B_Ferlin 175978 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04012 C2A_PI3K_cl... 175979 cd08380 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04013 C2_SynGAP_like 175980 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04014 C2_PKC_epsilon 175981 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04015 C2_plant_PLD 175982 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04016 C2_Tollip 175983 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04017 C2D_Ferlin 175984 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04018 C2C_Ferlin 175985 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04019 C2C_MCTP_PR... 175986 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04020 C2B_SLP_1-2... 175987 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04021 C2_E3_ubiqu... 175988 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04022 C2A_MCTP_PR... 175989 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04024 C2A_Synapto... 175990 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04025 C2B_RasA1_R... 175991 cd08675 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04026 C2_PKC_alph... 175992 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04027 C2B_Munc13 175993 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04028 C2B_RIM1alpha 175994 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04029 C2A_SLP-4_5 175995 cd08521 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04030 C2C_KIAA1228 175996 cd00030 cd00030 2 1 1 0 01/17/13 11:32:00 -cd04031 C2A_RIM1alpha 175997 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04032 C2_Perforin 175998 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04033 C2_NEDD4_NE... 175999 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04035 C2A_Rabphil... 176000 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04036 C2_cPLA2 176001 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04037 C2E_Ferlin 176002 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04038 C2_ArfGAP 176003 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04039 C2_PSD 176004 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04040 C2D_Tricalb... 176005 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04041 C2A_fungal 176006 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04042 C2A_MCTP_PRT 176007 cd00030 cd00030 3 1 1 0 01/17/13 11:32:00 -cd04043 C2_Munc13_f... 176008 cd00030 cd00030 2 1 1 0 01/17/13 11:33:00 -cd04044 C2A_Tricalb... 176009 cd00030 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04045 C2C_Tricalb... 176010 cd00030 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04046 C2_Calpain 176011 cd00030 cd00030 2 1 1 0 01/17/13 11:33:00 -cd04047 C2B_Copine 176012 cd00030 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04048 C2A_Copine 176013 cd00030 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04049 C2_putative... 176014 cd00030 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04050 C2B_Synapto... 176015 cd00030 cd00030 2 1 1 0 01/17/13 11:33:00 -cd04051 C2_SRC2_like 176016 cd00030 cd00030 2 1 1 0 01/17/13 11:33:00 -cd04052 C2B_Tricalb... 176017 cd00030 cd00030 2 1 1 0 01/17/13 11:33:00 -cd04054 C2A_Rasal1_... 176018 cd08383 cd00030 3 1 1 0 01/17/13 11:33:00 -cd04056 Peptidases_S53 173788 cd00306 cd00306 3 1 1 0 01/17/13 11:33:00 -cd04059 Peptidases_... 173789 cd00306 cd00306 3 1 1 0 01/17/13 11:33:00 -cd04077 Peptidases_... 173790 cd00306 cd00306 3 1 1 0 01/17/13 11:33:00 -cd04078 CBM36_xylan... 271144 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04079 CBM6_agaras... 271145 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04080 CBM6_cellul... 271146 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04081 CBM35_galac... 271147 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04082 CBM35_pecta... 271148 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04083 CBM35_Lmo24... 271149 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04084 CBM6_xylana... 271150 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04085 delta_endot... 271151 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04086 CBM35_manna... 271152 cd02795 cd02795 3 1 1 0 03/02/14 08:55:00 -cd04087 PTPA 239754 N/A cd04087 3 1 1 0 01/17/13 11:33:00 -cd04088 EFG_mtEFG_II 293905 cd01342 cd01342 3 1 1 0 11/06/15 13:15:00 -cd04089 eRF3_II 293906 cd03698 cd01342 3 1 1 0 11/06/15 13:15:00 -cd04090 EF2_II_snRNP 293907 cd03700 cd01342 3 1 1 0 11/06/15 13:15:00 -cd04091 mtEFG1_II_like 293908 cd04088 cd01342 3 1 1 0 11/06/15 13:15:00 -cd04092 mtEFG2_II_like 293909 cd04088 cd01342 3 1 1 0 11/06/15 13:15:00 -cd04093 HBS1_C_III 294008 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd04094 eSelB_III 294009 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd04095 CysN_NoDQ_III 294010 cd01513 cd01513 4 1 1 0 11/06/15 13:21:00 -cd04096 eEF2_snRNP_... 239763 cd01514 cd01514 2 1 1 0 01/17/13 11:33:00 -cd04097 mtEFG1_C 239764 cd03713 cd01514 2 1 1 0 01/17/13 11:33:00 -cd04098 eEF2_C_snRNP 239765 cd04096 cd01514 2 1 1 0 01/17/13 11:33:00 -cd04100 Asp_Lys_Asn... 239766 N/A cd04100 3 1 1 0 01/17/13 11:33:00 -cd04101 RabL4 206688 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04102 RabL3 206689 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04103 Centaurin_g... 133303 cd00882 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04104 p47_IIGP_like 206690 cd00882 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04105 SR_beta 206691 cd00882 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04106 Rab23_like 133306 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04107 Rab32_Rab38 206692 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04108 Rab36_Rab34 206693 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04109 Rab28 206694 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04110 Rab35 133310 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04111 Rab39 133311 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04112 Rab26 206695 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04113 Rab4 206696 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04114 Rab30 133314 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04115 Rab33B_Rab33A 133315 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04116 Rab9 206697 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04117 Rab15 206698 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04118 Rab24 133318 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04119 RJL 133319 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04120 Rab12 206699 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04121 Rab40 133321 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04122 Rab14 133322 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04123 Rab21 133323 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04124 RabL2 133324 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04126 Rab20 133326 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04127 Rab27A 206700 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04128 Spg1 206701 cd00154 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04129 Rho2 206702 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04130 Wrch_1 133330 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04131 Rnd 206703 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04132 Rho4_like 206704 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04133 Rop_like 206705 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04134 Rho3 206706 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04135 Tc10 206707 cd00157 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04136 Rap_like 206708 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04137 RheB 206709 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04138 H_N_K_Ras_like 133338 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04139 RalA_RalB 206710 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04140 ARHI_like 206711 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04141 Rit_Rin_Ric 206712 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04142 RRP22 133342 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04143 Rhes_like 133343 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04144 Ras2 133344 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04145 M_R_Ras_like 133345 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04146 RERG_RasL11... 206713 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04147 Ras_dva 206714 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04148 RGK 206715 cd00876 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04149 Arf6 206716 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04150 Arf1_5_like 206717 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04151 Arl1 206718 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04152 Arl4_Arl7 206719 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04153 Arl5_Arl8 133353 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04154 Arl2 206720 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04155 Arl3 206721 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04156 ARLTS1 133356 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04157 Arl6 206722 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04158 ARD1 206723 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04159 Arl10_like 206724 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04160 Arfrp1 206725 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04161 Arl2l1_Arl1... 133361 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04162 Arl9_Arfrp2... 133362 cd00878 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04163 Era 206726 cd00880 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04164 trmE 206727 cd00880 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04165 GTPBP1_like 206728 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04166 CysN_ATPS 206729 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04167 Snu114p 206730 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04168 TetM_like 206731 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04169 RF3 206732 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04170 EF-G_bact 206733 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04171 SelB 206734 cd00881 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04172 Rnd3_RhoE_Rho8 206735 cd04131 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04173 Rnd2_Rho7 206736 cd04131 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04174 Rnd1_Rho6 206737 cd04131 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04175 Rap1 133375 cd04136 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04176 Rap2 133376 cd04136 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04177 RSR1 133377 cd04136 cd00882 5 1 1 0 01/17/13 11:33:00 -cd04178 Nucleostemi... 206753 cd01849 cd01849 4 1 1 0 01/17/13 11:33:00 -cd04179 DPM_DPG-syn... 133022 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04180 UGPase_euk_... 133023 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04181 NTP_transfe... 133024 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04182 GT_2_like_f 133025 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04183 GT2_BcE_like 133026 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04184 GT2_RfbC_Mx... 133027 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04185 GT_2_like_b 133028 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04186 GT_2_like_c 133029 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04187 DPM1_like_bac 133030 cd04179 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04188 DPG_synthase 133031 cd04179 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04189 G1P_TT_long 133032 cd04181 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04190 Chitin_synth_C 133033 cd06423 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04191 Glucan_BSP_... 133034 cd06423 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04192 GT_2_like_e 133035 cd00761 cd00761 3 1 1 0 01/17/13 11:33:00 -cd04193 UDPGlcNAc_P... 133036 cd04180 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04194 GT8_A4GalT_... 133037 cd00505 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04195 GT2_AmsE_like 133038 cd00761 cd00761 3 1 1 0 01/17/13 11:33:00 -cd04196 GT_2_like_d 133039 cd00761 cd00761 4 1 1 0 01/17/13 11:33:00 -cd04197 eIF-2B_epsi... 133040 cd02507 cd00761 2 1 1 0 01/17/13 11:33:00 -cd04198 eIF-2B_gamma_N 133041 cd02507 cd00761 2 1 1 0 01/17/13 11:33:00 -cd04199 CuRO_1_ceru... 259862 cd04206 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04200 CuRO_2_ceru... 259863 cd04207 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04201 CuRO_1_CuNI... 259864 cd04206 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04202 CuRO_D2_2dM... 259865 cd04207 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04203 Cupredoxin_... 259866 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04204 Pseudoazuri... 259867 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04205 CuRO_2_LCC_... 259868 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04206 CuRO_1_LCC_... 259869 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04207 CuRO_3_LCC_... 259870 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04208 CuRO_2_CuNIR 259871 cd00920 cd00920 1 1 1 0 08/20/13 16:28:00 -cd04210 Cupredoxin_... 259872 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04211 Cupredoxin_... 259873 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04212 CuRO_UO_II 259874 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04213 CuRO_CcO_Ca... 259875 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04214 PAD_N 259876 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04215 Nitrosocyanin 259877 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04216 Phytocyanin 259878 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04217 Cupredoxin_... 259879 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04218 Pseudoazurin 259880 cd04204 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04219 Plastocyanin 259881 cd04204 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04220 Halocyanin 259882 cd04204 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04221 MauL 259883 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04222 CuRO_1_ceru... 259884 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04223 N2OR_C 259885 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04224 CuRO_3_ceru... 259886 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04225 CuRO_5_ceru... 259887 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04226 CuRO_1_FV_like 259888 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04227 CuRO_3_FVII... 259889 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04228 CuRO_5_FVII... 259890 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04229 CuRO_1_Ceru... 259891 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04230 Sulfocyanin 259892 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04231 Rusticyanin 259893 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04232 CuRO_1_CueO... 259894 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04233 Auracyanin 259895 cd13843 cd00920 1 1 1 0 08/20/13 16:29:00 -cd04234 AAK_AK 239767 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04235 AAK_CK 239768 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04236 AAK_NAGS-Urea 239769 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04237 AAK_NAGS-ABP 239770 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04238 AAK_NAGK-like 239771 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04239 AAK_UMPK-like 239772 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04240 AAK_UC 239773 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04241 AAK_FomA-like 239774 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04242 AAK_G5K_ProB 239775 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04243 AAK_AK-HSDH... 239776 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04244 AAK_AK-LysC... 239777 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04245 AAK_AKiii-Y... 239778 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04246 AAK_AK-DapG... 239779 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04247 AAK_AK-Hom3 239780 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04248 AAK_AK-Ectoine 239781 cd04234 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04249 AAK_NAGK-NC 239782 cd04238 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04250 AAK_NAGK-C 239783 cd04238 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04251 AAK_NAGK-UC 239784 cd04238 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04252 AAK_NAGK-fA... 239785 cd02115 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04253 AAK_UMPK-Py... 239786 cd04239 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04254 AAK_UMPK-Py... 239787 cd04239 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04255 AAK_UMPK-MosAB 239788 cd04239 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04256 AAK_P5CS_ProBA 239789 cd04242 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04257 AAK_AK-HSDH 239790 cd04243 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04258 AAK_AKiii-L... 239791 cd04243 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04259 AAK_AK-DapDC 239792 cd04243 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04260 AAK_AKi-Dap... 239793 cd04246 cd02115 3 1 1 0 01/17/13 11:33:00 -cd04261 AAK_AKii-Ly... 239794 cd04246 cd02115 3 1 1 0 01/17/13 11:34:00 -cd04263 DUF619-NAGK... 176265 cd03173 cd03173 3 1 1 0 01/17/13 11:34:00 -cd04264 DUF619-NAGS 176266 cd03173 cd03173 3 1 1 0 01/17/13 11:34:00 -cd04265 DUF619-NAGS-U 176267 cd04264 cd03173 3 1 1 0 01/17/13 11:34:00 -cd04266 DUF619-NAGS... 176268 cd04264 cd03173 3 1 1 0 01/17/13 11:34:00 -cd04267 ZnMc_ADAM_like 239795 cd00203 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04268 ZnMc_MMP_like 239796 cd00203 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04269 ZnMc_adamal... 239797 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04270 ZnMc_TACE_like 239798 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04271 ZnMc_ADAM_f... 239799 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04272 ZnMc_saliva... 239800 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04273 ZnMc_ADAMTS... 239801 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04275 ZnMc_pappal... 239802 cd04267 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04276 ZnMc_MMP_li... 239803 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04277 ZnMc_serral... 239804 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04278 ZnMc_MMP 239805 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04279 ZnMc_MMP_li... 239806 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04280 ZnMc_astaci... 239807 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04281 ZnMc_BMP1_TLD 239808 cd04280 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04282 ZnMc_meprin 239809 cd04280 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04283 ZnMc_hatchi... 239810 cd04280 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04299 GT35_Glycog... 340852 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd04300 GT35_Glycog... 340853 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd04301 NAT_SF 173926 N/A cd04301 4 1 1 0 01/17/13 11:34:00 -cd04302 HAD_5NT 319798 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd04303 HAD_PGPase 319799 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd04305 HAD_Neu5Ac-... 319800 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd04309 HAD_PSP_eu 319801 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd04316 ND_PkAspRS_... 239811 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04317 EcAspRS_like_N 239812 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04318 EcAsnRS_like_N 239813 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04319 PhAsnRS_like_N 239814 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04320 AspRS_cyto_N 239815 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04321 ScAspRS_mt_... 239816 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04322 LysRS_N 239817 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04323 AsnRS_cyto_... 239818 cd04100 cd04100 3 1 1 0 01/17/13 11:34:00 -cd04327 ZnMc_MMP_li... 239819 cd04268 cd00203 3 1 1 0 01/17/13 11:34:00 -cd04328 RNAP_I_Rpa43_N 239820 cd00655 cd00655 3 1 1 0 01/17/13 11:34:00 -cd04329 RNAP_II_Rpb7_N 239821 cd00655 cd00655 3 1 1 0 01/17/13 11:34:00 -cd04330 RNAP_III_Rp... 239822 cd00655 cd00655 3 1 1 0 01/17/13 11:34:00 -cd04331 RNAP_E_N 239823 cd00655 cd00655 3 1 1 0 01/17/13 11:34:00 -cd04332 YbaK_like 239824 N/A cd04332 3 1 1 0 01/17/13 11:34:00 -cd04333 ProX_deacylase 239825 cd04332 cd04332 3 1 1 0 01/17/13 11:34:00 -cd04334 ProRS-INS 239826 cd04332 cd04332 3 1 1 0 01/17/13 11:34:00 -cd04335 PrdX_deacylase 239827 cd04332 cd04332 3 1 1 0 01/17/13 11:34:00 -cd04336 YeaK 239828 cd04332 cd04332 3 1 1 0 01/17/13 11:34:00 -cd04337 Rieske_RO_A... 239829 cd03469 cd03467 2 1 1 0 01/17/13 11:34:00 -cd04338 Rieske_RO_A... 239830 cd03469 cd03467 2 1 1 0 01/17/13 11:34:00 -cd04365 IlGF_relaxi... 239831 cd00101 cd00101 2 1 1 0 01/17/13 11:34:00 -cd04366 IlGF_insuli... 239832 cd00101 cd00101 2 1 1 0 01/17/13 11:34:00 -cd04367 IlGF_insuli... 239833 cd04366 cd00101 2 1 1 0 01/17/13 11:34:00 -cd04368 IlGF 239834 cd04367 cd00101 2 1 1 0 01/17/13 11:34:00 -cd04369 Bromodomain 99922 N/A cd04369 2 1 1 0 01/17/13 11:34:00 -cd04370 BAH 239835 N/A cd04370 2 1 1 0 01/17/13 11:34:00 -cd04371 DEP 239836 N/A cd04371 2 1 1 0 01/17/13 11:34:00 -cd04372 RhoGAP_chim... 239837 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04373 RhoGAP_p190 239838 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04374 RhoGAP_Graf 239839 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04375 RhoGAP_DLC1 239840 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04376 RhoGAP_ARHGAP6 239841 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04377 RhoGAP_myos... 239842 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04378 RhoGAP_GMIP... 239843 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04379 RhoGAP_SYD1 239844 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04380 RhoGAP_OCRL1 239845 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04381 RhoGap_RalBP1 239846 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04382 RhoGAP_MgcR... 239847 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04383 RhoGAP_srGAP 239848 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04384 RhoGAP_CdGAP 239849 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04385 RhoGAP_ARAP 239850 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04386 RhoGAP_nadrin 239851 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04387 RhoGAP_Bcr 239852 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04388 RhoGAP_p85 239853 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04389 RhoGAP_KIAA... 239854 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04390 RhoGAP_ARHG... 239855 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04391 RhoGAP_ARHG... 239856 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04392 RhoGAP_ARHG... 239857 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04393 RhoGAP_FAM1... 239858 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04394 RhoGAP-ARHG... 239859 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04395 RhoGAP_ARHG... 239860 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04396 RhoGAP_fSAC... 239861 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04397 RhoGAP_fLRG1 239862 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04398 RhoGAP_fRGD1 239863 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04399 RhoGAP_fRGD2 239864 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04400 RhoGAP_fBEM3 239865 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04401 RhoGAP_fMSB1 239866 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04402 RhoGAP_ARHG... 239867 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04403 RhoGAP_ARHG... 239868 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04404 RhoGAP-p50r... 239869 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04405 RhoGAP_BRCC... 239870 cd00159 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04406 RhoGAP_myos... 239871 cd04377 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04407 RhoGAP_myos... 239872 cd04377 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04408 RhoGAP_GMIP 239873 cd04378 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04409 RhoGAP_PARG1 239874 cd04378 cd00159 3 1 1 0 01/17/13 11:34:00 -cd04410 DMSOR_beta-... 319870 N/A cd04410 1 1 1 0 08/18/16 16:42:00 -cd04411 Ribosomal_P... 100108 N/A cd04411 2 1 1 0 01/17/13 11:34:00 -cd04412 NDPk7B 239875 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04413 NDPk_I 239876 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04414 NDPk6 239877 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04415 NDPk7A 239878 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04416 NDPk_TX 239879 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04418 NDPk5 239880 cd00595 cd00595 3 1 1 0 01/17/13 11:34:00 -cd04433 AFD_class_I 341228 N/A cd04433 3 1 0 0 07/26/17 17:21:00 -cd04434 LanC_like 271198 N/A cd04434 4 1 1 0 03/02/14 08:59:00 -cd04435 DEP_fRom2 239882 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04436 DEP_fRgd2 239883 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04437 DEP_Epac 239884 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04438 DEP_disheve... 239885 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04439 DEP_1_P-Rex 239886 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04440 DEP_2_P-Rex 239887 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04441 DEP_2_DEP6 239888 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04442 DEP_1_DEP6 239889 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04443 DEP_GPR155 239890 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04444 DEP_PLEK2 239891 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04445 DEP_PLEK1 239892 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04446 DEP_DEPDC4 239893 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04447 DEP_BRCC3 239894 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04448 DEP_PIKfyve 239895 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04449 DEP_DEPDC5-... 239896 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04450 DEP_RGS7-like 239897 cd04371 cd04371 2 1 1 0 01/17/13 11:34:00 -cd04451 S1_IF1 239898 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04452 S1_IF2_alpha 239899 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04453 S1_RNase_E 239900 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04454 S1_Rrp4_like 239901 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04455 S1_NusA 239902 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04456 S1_IF1A_like 239903 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04457 S1_S28E 239904 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04458 CSP_CDS 239905 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04459 Rho_CSD 239906 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04460 S1_RpoE 239907 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04461 S1_Rrp5_rep... 239908 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04462 S1_RNAPII_Rpb7 239909 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04463 S1_EF_like 239910 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04465 S1_RPS1_rep... 239911 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04466 S1_YloQ_GTPase 239912 cd00164 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04467 S1_aIF5A 239913 cd04463 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04468 S1_eIF5A 239914 cd04463 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04469 S1_Hex1 239915 cd04463 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04470 S1_EF-P_rep... 239916 cd04463 cd00164 3 1 1 0 01/17/13 11:34:00 -cd04471 S1_RNase_R 239917 cd00164 cd00164 3 1 1 0 01/17/13 11:35:00 -cd04472 S1_PNPase 239918 cd00164 cd00164 3 1 1 0 01/17/13 11:35:00 -cd04473 S1_RecJ_like 239919 cd00164 cd00164 3 1 1 0 01/17/13 11:35:00 -cd04474 RPA1_DBD_A 239920 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04475 RPA1_DBD_B 239921 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04476 RPA1_DBD_C 239922 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04477 RPA1N 239923 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04478 RPA2_DBD_D 239924 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04479 RPA3 239925 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04480 RPA1_DBD_A_... 239926 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04481 RPA1_DBD_B_... 239927 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04482 RPA2_OBF_like 239928 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04483 hOBFC1_like 239929 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04484 polC_OBF 239930 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04485 DnaE_OBF 239931 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04486 YhcR_OBF_like 239932 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04487 RecJ_OBF2_like 239933 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04488 RecG_wedge_OBF 239934 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04489 ExoVII_LU_OBF 239935 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04490 PolII_SU_OBF 239936 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04491 SoSSB_OBF 239937 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04492 YhaM_OBF_like 239938 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04493 BRCA2DBD_OB1 239939 cd03524 cd03524 2 1 1 0 01/17/13 11:35:00 -cd04494 BRCA2DBD_OB2 239940 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04495 BRCA2DBD_OB3 239941 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04496 SSB_OBF 239942 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04497 hPOT1_OB1_like 239943 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04498 hPOT1_OB2 239944 cd03524 cd03524 3 1 1 0 01/17/13 11:35:00 -cd04501 SGNH_hydrol... 239945 cd00229 cd00229 3 1 1 0 01/17/13 11:35:00 -cd04502 SGNH_hydrol... 239946 cd00229 cd00229 3 1 1 0 01/17/13 11:35:00 -cd04506 SGNH_hydrol... 239947 cd00229 cd00229 3 1 1 0 01/17/13 11:35:00 -cd04508 TUDOR 119391 N/A cd04508 3 1 1 0 01/17/13 11:35:00 -cd04509 PBP1_ABC_tr... 107261 cd01391 cd01391 3 1 1 0 01/17/13 11:35:00 -cd04511 Nudix_Hydro... 239948 cd02883 cd02883 3 1 1 0 01/17/13 11:35:00 -cd04512 Ntn_Asparag... 271334 N/A cd04512 4 1 1 0 06/11/14 17:07:00 -cd04513 Glycosylasp... 271335 cd04512 cd04512 4 1 1 0 06/11/14 17:07:00 -cd04514 Taspase1_like 271336 cd04512 cd04512 4 1 1 0 06/11/14 17:07:00 -cd04515 Alpha_kinase 341214 N/A cd04515 1 1 0 0 06/12/17 09:14:00 -cd04516 TBP_eukaryotes 239952 cd00652 cd00652 3 1 1 0 01/17/13 11:35:00 -cd04517 TLF 239953 cd00652 cd00652 3 1 1 0 01/17/13 11:35:00 -cd04518 TBP_archaea 239954 cd00652 cd00652 3 1 1 0 01/17/13 11:35:00 -cd04519 RasGAP 213328 N/A cd04519 4 1 1 0 01/17/13 11:35:00 -cd04582 CBS_pair_AB... 341359 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04583 CBS_pair_AB... 341360 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04584 CBS_pair_Ac... 341361 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04586 CBS_pair_BO... 341362 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04587 CBS_pair_CA... 341363 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04588 CBS_pair_ar... 341364 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04589 CBS_pair_CA... 341365 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04590 CBS_pair_Co... 341366 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04591 CBS_pair_vo... 341367 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04592 CBS_pair_vo... 341368 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04594 CBS_pair_vo... 341369 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04595 CBS_pair_DH... 341370 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04596 CBS_pair_DR... 341371 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04597 CBS_pair_in... 341372 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04598 CBS_pair_GG... 341373 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04599 CBS_pair_GG... 341374 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04600 CBS_pair_HP... 341375 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04601 CBS_pair_IMPDH 341376 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04603 CBS_pair_Ke... 341377 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04604 CBS_pair_SI... 341378 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04605 CBS_pair_ar... 341379 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04606 CBS_pair_Mg... 341380 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04607 CBS_pair_NT... 341381 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04608 CBS_pair_CBS 341382 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04610 CBS_pair_Pa... 341383 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04611 CBS_pair_GG... 341384 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04613 CBS_pair_vo... 341385 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04614 CBS_pair_ar... 341386 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04617 CBS_pair_CcpN 341387 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04618 CBS_euAMPK_... 341388 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04620 CBS_two-com... 341389 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04622 CBS_pair_HR... 341390 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04623 CBS_pair_ba... 341391 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04629 CBS_pair_bac 341392 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04630 CBS_pair_bac 341393 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04631 CBS_archAMP... 341394 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04632 CBS_pair_ar... 341395 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04638 CBS_pair_ar... 341396 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04639 CBS_pair_pe... 341397 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04640 CBS_pair_pr... 341398 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04641 CBS_euAMPK_... 341399 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04643 CBS_pair_bac 341400 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04645 LbH_gamma_C... 100051 cd00208 cd00208 3 1 1 0 01/17/13 11:35:00 -cd04646 LbH_Dynactin_6 100052 cd00208 cd00208 2 1 1 0 01/17/13 11:35:00 -cd04647 LbH_MAT_like 100053 cd00208 cd00208 3 1 1 0 01/17/13 11:35:00 -cd04649 LbH_THP_suc... 100054 cd00208 cd00208 3 1 1 0 01/17/13 11:35:00 -cd04650 LbH_FBP 100055 cd04645 cd00208 3 1 1 0 01/17/13 11:35:00 -cd04651 LbH_G1P_AT_C 100056 cd03356 cd00208 3 1 1 0 01/17/13 11:35:00 -cd04652 LbH_eIF2B_g... 100057 cd03356 cd00208 2 1 1 0 01/17/13 11:35:00 -cd04657 Piwi_ago-like 240015 cd02826 cd02826 3 1 1 0 01/17/13 11:35:00 -cd04658 Piwi_piwi-l... 240016 cd02826 cd02826 3 1 1 0 01/17/13 11:35:00 -cd04659 Piwi_piwi-l... 240017 cd02826 cd02826 3 1 1 0 01/17/13 11:36:00 -cd04660 nsLTP_like 240018 cd00010 cd00010 2 1 1 0 01/17/13 11:36:00 -cd04661 MRP_L46 240019 cd02883 cd02883 2 1 1 0 01/17/13 11:36:00 -cd04662 Nudix_Hydro... 240020 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04663 Nudix_Hydro... 240021 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04664 Nudix_Hydro... 240022 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04665 Nudix_Hydro... 240023 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04666 Nudix_Hydro... 240024 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04667 Nudix_Hydro... 240025 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04669 Nudix_Hydro... 240026 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04670 Nudix_Hydro... 240027 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04671 Nudix_Hydro... 240028 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04672 Nudix_Hydro... 240029 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04673 Nudix_Hydro... 240030 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04674 Nudix_Hydro... 240031 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04676 Nudix_Hydro... 240032 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04677 Nudix_Hydro... 240033 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04678 Nudix_Hydro... 240034 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04679 Nudix_Hydro... 240035 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04680 Nudix_Hydro... 240036 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04681 Nudix_Hydro... 240037 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04682 Nudix_Hydro... 240038 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04683 Nudix_Hydro... 240039 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04684 Nudix_Hydro... 240040 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04685 Nudix_Hydro... 240041 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04686 Nudix_Hydro... 240042 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04687 Nudix_Hydro... 240043 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04688 Nudix_Hydro... 240044 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04689 Nudix_Hydro... 240045 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04690 Nudix_Hydro... 240046 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04691 Nudix_Hydro... 240047 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04692 Nudix_Hydro... 240048 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04693 Nudix_Hydro... 240049 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04694 Nudix_Hydro... 240050 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04695 Nudix_Hydro... 240051 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04696 Nudix_Hydro... 240052 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04697 Nudix_Hydro... 240053 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04699 Nudix_Hydro... 240054 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04700 DR1025_like 240055 cd02883 cd02883 3 1 1 0 01/17/13 11:36:00 -cd04701 Asparaginase_2 271337 cd04512 cd04512 4 1 1 0 06/11/14 17:07:00 -cd04702 ASRGL1_like 271338 cd04512 cd04512 4 1 1 0 06/11/14 17:07:00 -cd04703 Asparaginas... 271339 cd04512 cd04512 4 1 1 0 06/11/14 17:07:00 -cd04704 PLA2_bee_ve... 153093 cd00618 cd00618 4 1 1 0 01/17/13 11:36:00 -cd04705 PLA2_group_... 153094 cd00618 cd00618 4 1 1 0 01/17/13 11:36:00 -cd04706 PLA2_plant 153095 cd00618 cd00618 4 1 1 0 01/17/13 11:36:00 -cd04707 otoconin_90 153096 cd00618 cd00618 4 1 1 0 01/17/13 11:36:00 -cd04708 BAH_plantDC... 240059 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04709 BAH_MTA 240060 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04710 BAH_fungalPHD 240061 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04711 BAH_Dnmt1_II 240062 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04712 BAH_DCM_I 240063 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04713 BAH_plant_3 240064 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04714 BAH_BAHCC1 240065 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04715 BAH_Orc1p_like 240066 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04716 BAH_plantDCM_I 240067 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04717 BAH_polybromo 240068 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04718 BAH_plant_2 240069 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04719 BAH_Orc1p_a... 240070 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04720 BAH_Orc1p_Y... 240071 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04721 BAH_plant_1 240072 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04722 TIM_phospha... 240073 N/A cd04722 3 1 1 0 01/17/13 11:36:00 -cd04723 HisA_HisF 240074 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04724 Tryptophan_... 240075 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04725 OMP_decarbo... 240076 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04726 KGPDC_HPS 240077 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04727 pdxS 240078 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04728 ThiG 240079 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04729 NanE 240080 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04730 NPD_like 240081 cd04722 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04731 HisF 240082 cd04723 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04732 HisA 240083 cd04723 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04733 OYE_like_2_FMN 240084 cd02803 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04734 OYE_like_3_FMN 240085 cd02803 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04735 OYE_like_4_FMN 240086 cd02803 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04736 MDH_FMN 240087 cd02809 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04737 LOX_like_FMN 240088 cd02809 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04738 DHOD_2_like 240089 cd02810 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04739 DHOD_like 240090 cd02810 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04740 DHOD_1B_like 240091 cd02810 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04741 DHOD_1A_like 240092 cd02810 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04742 NPD_FabD 240093 cd04730 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04743 NPD_PKS 240094 cd04730 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04745 LbH_paaY_like 100058 cd04645 cd00208 3 1 1 0 01/17/13 11:36:00 -cd04747 OYE_like_5_FMN 240095 cd02803 cd04722 3 1 1 0 01/17/13 11:36:00 -cd04748 Commd 240096 N/A cd04748 2 1 1 0 01/17/13 11:36:00 -cd04749 Commd1_MURR1 240097 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04750 Commd2 240098 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04751 Commd3 240099 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04752 Commd4 240100 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04753 Commd5_HCaRG 240101 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04754 Commd6 240102 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04755 Commd7 240103 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04756 Commd8 240104 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04757 Commd9 240105 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04758 Commd10 240106 cd04748 cd04748 2 1 1 0 01/17/13 11:36:00 -cd04759 Rib_hydrolase 212498 N/A cd04759 4 1 1 0 01/17/13 11:36:00 -cd04760 BAH_Dnmt1_I 240107 cd04370 cd04370 2 1 1 0 01/17/13 11:36:00 -cd04761 HTH_MerR-SF 133389 N/A cd04761 4 1 1 0 01/17/13 11:36:00 -cd04762 HTH_MerR-trunc 133390 cd04761 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04763 HTH_MlrA-like 133391 cd04761 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04764 HTH_MlrA-li... 133392 cd04763 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04765 HTH_MlrA-li... 133393 cd04763 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04766 HTH_HspR 133394 cd01279 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04767 HTH_HspR-li... 133395 cd01279 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04768 HTH_BmrR-like 133396 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04769 HTH_MerR2 133397 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04770 HTH_HMRTR 133398 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04772 HTH_TioE_rpt1 133399 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04773 HTH_TioE_rpt2 133400 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04774 HTH_YfmP 133401 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04775 HTH_Cfa-like 133402 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04776 HTH_GnyR 133403 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04777 HTH_MerR-li... 133404 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04778 HTH_MerR-li... 133405 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04779 HTH_MerR-li... 133406 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04780 HTH_MerR-li... 133407 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04781 HTH_MerR-li... 133408 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04782 HTH_BltR 133409 cd04768 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04783 HTH_MerR1 133410 cd04770 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04784 HTH_CadR-PbrR 133411 cd04770 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04785 HTH_CadR-Pb... 133412 cd04770 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04786 HTH_MerR-li... 133413 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04787 HTH_HMRTR_unk 133414 cd04770 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04788 HTH_NolA-AlbR 133415 cd00592 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04789 HTH_Cfa 133416 cd04775 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04790 HTH_Cfa-lik... 133417 cd04775 cd04761 4 1 1 0 01/17/13 11:36:00 -cd04791 LanC_SerThr... 271199 cd04434 cd04434 4 1 1 0 03/02/14 08:59:00 -cd04792 LanM-like 271200 cd04434 cd04434 4 1 1 0 03/02/14 08:59:00 -cd04793 LanC 271201 cd04434 cd04434 4 1 1 0 03/02/14 08:59:00 -cd04794 euk_LANCL 271202 cd04434 cd04434 4 1 1 0 03/02/14 08:59:00 -cd04795 SIS 240112 N/A cd04795 2 1 1 0 01/17/13 11:36:00 -cd04801 CBS_pair_pe... 341401 cd02205 cd02205 3 1 0 0 07/31/17 15:57:00 -cd04813 PA_1 240117 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04814 PA_M28_1 240118 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04815 PA_M28_2 240119 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04816 PA_SaNapH_like 240120 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04817 PA_VapT_like 240121 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04818 PA_subtilis... 240122 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04819 PA_2 240123 cd00538 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04820 PA_M28_1_1 240124 cd04814 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04821 PA_M28_1_2 240125 cd04814 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04822 PA_M28_1_3 240126 cd04814 cd00538 3 1 1 0 01/17/13 11:37:00 -cd04823 ALAD_PBGS_a... 240127 cd00384 cd00384 3 1 1 0 01/17/13 11:37:00 -cd04824 eu_ALAD_PBG... 240128 cd00384 cd00384 3 1 1 0 01/17/13 11:37:00 -cd04842 Peptidases_... 173791 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04843 Peptidases_... 173792 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04847 Peptidases_... 173793 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04848 Peptidases_... 173794 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04852 Peptidases_... 173795 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04857 Peptidases_... 173796 cd00306 cd00306 3 1 1 0 01/17/13 11:37:00 -cd04859 Prim_Pol 240129 cd00525 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04860 AE_Prim_S 240130 cd00525 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04861 LigD_Pol_like 240131 cd00525 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04862 PaeLigD_Pol... 240132 cd04861 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04863 MtLigD_Pol_... 240133 cd04861 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04864 LigD_Pol_li... 240134 cd04861 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04865 LigD_Pol_li... 240135 cd04861 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04866 LigD_Pol_li... 240136 cd04861 cd00525 3 1 1 0 01/17/13 11:37:00 -cd04867 TGS_YchF_OLA1 340516 cd04938 cd00196 4 1 0 0 06/09/17 14:31:00 -cd04868 ACT_AK-like 153140 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04869 ACT_GcvR_2 153141 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04870 ACT_PSP_1 153142 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04871 ACT_PSP_2 153143 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04872 ACT_1ZPV 153144 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04873 ACT_UUR-ACR... 153145 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04874 ACT_Af1403 153146 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04875 ACT_F4HF-DF 153147 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04876 ACT_RelA-SpoT 153148 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04877 ACT_TyrR 153149 cd02116 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04878 ACT_AHAS 153150 cd02116 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04879 ACT_3PGDH-like 153151 cd02116 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04880 ACT_AAAH-PD... 153152 cd02116 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04881 ACT_HSDH-Hom 153153 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04882 ACT_Bt0572_2 153154 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04883 ACT_AcuB 153155 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04884 ACT_CBS 153156 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04885 ACT_ThrD-I 153157 cd02116 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04886 ACT_ThrD-II... 153158 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04887 ACT_MalLac-Enz 153159 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04888 ACT_PheB-BS 153160 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04889 ACT_PDH-BS-... 153161 cd02116 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04890 ACT_AK-like_1 153162 cd04868 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04891 ACT_AK-LysC... 153163 cd04868 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04892 ACT_AK-like_2 153164 cd04868 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04893 ACT_GcvR_1 153165 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04894 ACT_ACR-like_1 153166 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04895 ACT_ACR_1 153167 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04896 ACT_ACR-like_3 153168 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04897 ACT_ACR_3 153169 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04898 ACT_ACR-like_4 153170 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04899 ACT_ACR-UUR... 153171 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04900 ACT_UUR-like_1 153172 cd04873 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04901 ACT_3PGDH 153173 cd04879 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04902 ACT_3PGDH-xct 153174 cd04879 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04903 ACT_LSD 153175 cd04879 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04904 ACT_AAAH 153176 cd04880 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04905 ACT_CM-PDT 153177 cd04880 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04906 ACT_ThrD-I_1 153178 cd04885 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04907 ACT_ThrD-I_2 153179 cd04885 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04908 ACT_Bt0572_1 153180 cd04889 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04909 ACT_PDH-BS 153181 cd04889 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04910 ACT_AK-Ecto... 153182 cd04890 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04911 ACT_AKiii-Y... 153183 cd04890 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04912 ACT_AKiii-L... 153184 cd04890 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04913 ACT_AKii-Ly... 153185 cd04891 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04914 ACT_AKi-Dap... 153186 cd04891 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04915 ACT_AK-Ecto... 153187 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04916 ACT_AKiii-Y... 153188 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04917 ACT_AKiii-L... 153189 cd04892 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04918 ACT_AK1-AT_2 153190 cd04892 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04919 ACT_AK-Hom3_2 153191 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04920 ACT_AKiii-D... 153192 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04921 ACT_AKi-HSD... 153193 cd04892 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04922 ACT_AKi-HSD... 153194 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04923 ACT_AK-LysC... 153195 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04924 ACT_AK-Arch_2 153196 cd04892 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04925 ACT_ACR_2 153197 cd04899 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04926 ACT_ACR_4 153198 cd04899 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04927 ACT_ACR-like_2 153199 cd04899 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04928 ACT_TyrKc 153200 cd04900 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04929 ACT_TPH 153201 cd04904 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04930 ACT_TH 153202 cd04904 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04931 ACT_PAH 153203 cd04904 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04932 ACT_AKiii-L... 153204 cd04912 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04933 ACT_AK1-AT_1 153205 cd04912 cd02116 4 1 1 0 01/17/13 11:37:00 -cd04934 ACT_AK-Hom3_1 153206 cd04912 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04935 ACT_AKiii-D... 153207 cd04912 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04936 ACT_AKii-Ly... 153208 cd04923 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04937 ACT_AKi-Dap... 153209 cd04923 cd02116 3 1 1 0 01/17/13 11:37:00 -cd04938 TGS_Obg 340517 cd01616 cd00196 4 1 0 0 06/09/17 14:31:00 -cd04939 PA2301 240137 cd04332 cd04332 3 1 1 0 01/17/13 11:37:00 -cd04946 GT4_AmsK-like 340854 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd04949 GT4_GtfA-like 340855 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd04950 GT4_TuaH-like 340856 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd04951 GT4_WbdM_like 340857 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd04955 GT4-like 340858 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd04962 GT4_BshA-like 340859 cd01635 cd01635 3 1 0 0 06/09/17 14:32:00 -cd04967 Ig1_Contactin 319276 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04968 Ig3_Contactin 319277 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04969 Ig5_Contactin 319278 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04970 Ig6_Contactin 319279 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd04971 Ig_TrKABC_d5 143172 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd04972 Ig_TrkABC_d4 143173 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd04973 Ig1_FGFR 143174 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd04974 Ig3_FGFR 319280 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04975 Ig4_SCFR_like 319281 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04976 Ig_VEGFR 319282 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04977 Ig1_NCAM-1_... 319283 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04978 Ig4_L1-NrCA... 319284 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd04979 Ig_Semaphor... 319285 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04980 IgV_L_kappa 143181 cd00099 cd00096 4 1 1 0 08/18/16 16:18:00 -cd04981 IgV_H 319286 cd00099 cd00096 5 1 1 0 08/18/16 16:18:00 -cd04982 IgV_TCR_gamma 143183 cd00099 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04983 IgV_TCR_alpha 319287 cd00099 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04984 IgV_L_lambda 143185 cd00099 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04985 IgC_CH1_IgAEGM 319288 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd04986 IgC_CH2_IgA 319289 cd00098 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05005 SIS_PHI 240138 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05006 SIS_GmhA 240139 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05007 SIS_Etherase 240140 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05008 SIS_GlmS_Gl... 240141 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05009 SIS_GlmS_Gl... 240142 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05010 SIS_AgaS_like 240143 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05013 SIS_RpiR 240144 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05014 SIS_Kpsf 240145 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05015 SIS_PGI_1 240146 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05016 SIS_PGI_2 240147 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05017 SIS_PGI_PMI_1 240148 cd04795 cd04795 3 1 1 0 01/17/13 11:37:00 -cd05018 CoxG 176853 cd07812 cd07812 3 1 1 0 01/17/13 11:37:00 -cd05022 S-100A13 240149 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05023 S-100A11 240150 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05024 S-100A10 240151 cd05031 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05025 S-100A1 240152 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05026 S-100Z 240153 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05027 S-100B 240154 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05029 S-100A6 240155 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05030 calgranulins 240156 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05031 S-100A10_like 240157 cd00213 cd00213 3 1 1 0 01/17/13 11:37:00 -cd05032 PTKc_InsR_like 173625 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05033 PTKc_EphR 270629 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05034 PTKc_Src_like 270630 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05035 PTKc_TAM 270631 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05036 PTKc_ALK_LTK 270632 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05037 PTK_Jak_rpt1 270633 cd00180 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05038 PTKc_Jak_rpt2 270634 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05039 PTKc_Csk_like 270635 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05040 PTKc_Ack_like 270636 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05041 PTKc_Fes_like 270637 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05042 PTKc_Aatyk 270638 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05043 PTK_Ryk 270639 cd00192 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05044 PTKc_c-ros 270640 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05045 PTKc_RET 173631 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05046 PTK_CCK4 133178 cd00192 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05047 PTKc_Tie 270641 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05048 PTKc_Ror 270642 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05049 PTKc_Trk 270643 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05050 PTKc_Musk 133181 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05051 PTKc_DDR 270644 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05052 PTKc_Abl 270645 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05053 PTKc_FGFR 270646 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05054 PTKc_VEGFR 270647 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05055 PTKc_PDGFR 133186 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05056 PTKc_FAK 133187 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05057 PTKc_EGFR_like 270648 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05058 PTKc_Met_Ron 270649 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05059 PTKc_Tec_like 173637 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05060 PTKc_Syk_like 270650 cd00192 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05061 PTKc_InsR 133192 cd05032 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05062 PTKc_IGF-1R 133193 cd05032 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05063 PTKc_EphR_A2 133194 cd05033 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05064 PTKc_EphR_A10 133195 cd05033 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05065 PTKc_EphR_B 173638 cd05033 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05066 PTKc_EphR_A 270651 cd05033 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05067 PTKc_Lck_Blk 270652 cd05034 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05068 PTKc_Frk_like 270653 cd05034 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05069 PTKc_Yes 270654 cd14203 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05070 PTKc_Fyn 270655 cd14203 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05071 PTKc_Src 270656 cd14203 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05072 PTKc_Lyn 270657 cd05034 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05073 PTKc_Hck 270658 cd05034 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05074 PTKc_Tyro3 270659 cd05035 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05075 PTKc_Axl 270660 cd05035 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05076 PTK_Tyk2_rpt1 270661 cd05037 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05077 PTK_Jak1_rpt1 270662 cd05037 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05078 PTK_Jak2_rpt1 270663 cd05037 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05079 PTKc_Jak1_rpt2 173644 cd05038 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05080 PTKc_Tyk2_rpt2 270664 cd05038 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05081 PTKc_Jak3_rpt2 270665 cd05038 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05082 PTKc_Csk 133213 cd05039 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05083 PTKc_Chk 270666 cd05039 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05084 PTKc_Fes 270667 cd05041 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05085 PTKc_Fer 270668 cd05041 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05086 PTKc_Aatyk2 270669 cd05042 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05087 PTKc_Aatyk1 270670 cd05042 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05088 PTKc_Tie2 133219 cd05047 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05089 PTKc_Tie1 270671 cd05047 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05090 PTKc_Ror1 270672 cd05048 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05091 PTKc_Ror2 270673 cd05048 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05092 PTKc_TrkA 270674 cd05049 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05093 PTKc_TrkB 270675 cd05049 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05094 PTKc_TrkC 270676 cd05049 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05095 PTKc_DDR2 270677 cd05051 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05096 PTKc_DDR1 133227 cd05051 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05097 PTKc_DDR_like 133228 cd05051 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05098 PTKc_FGFR1 270678 cd05053 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05099 PTKc_FGFR4 133230 cd05053 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05100 PTKc_FGFR3 173652 cd05053 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05101 PTKc_FGFR2 270679 cd05053 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05102 PTKc_VEGFR3 270680 cd05054 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05103 PTKc_VEGFR2 270681 cd05054 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05104 PTKc_Kit 270682 cd05055 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05105 PTKc_PDGFR_... 173653 cd05055 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05106 PTKc_CSF-1R 133237 cd05055 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05107 PTKc_PDGFR_... 133238 cd05055 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05108 PTKc_EGFR 270683 cd05057 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05109 PTKc_HER2 270684 cd05057 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05110 PTKc_HER4 173655 cd05057 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05111 PTK_HER3 173656 cd05057 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05112 PTKc_Itk 133243 cd05059 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05113 PTKc_Btk_Bmx 173657 cd05059 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05114 PTKc_Tec_Rlk 270685 cd05059 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05115 PTKc_Zap-70 270686 cd05060 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05116 PTKc_Syk 133247 cd05060 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05117 STKc_CAMK 270687 cd00180 cd13968 1 1 1 0 03/02/14 08:44:00 -cd05118 STKc_CMGC 270688 cd00180 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05119 RIO 270689 cd13968 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05120 APH_ChoK_like 270690 cd13968 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05121 ABC1_ADCK3-... 270691 cd13968 cd13968 1 1 1 0 03/02/14 08:44:00 -cd05122 PKc_STE 270692 cd00180 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05123 STKc_AGC 270693 cd00180 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05124 AFK 270694 cd13968 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05125 Mth938_2P1-... 240161 cd00248 cd00248 2 1 1 0 01/17/13 11:38:00 -cd05126 Mth938 240162 cd00248 cd00248 2 1 1 0 01/17/13 11:38:00 -cd05127 RasGAP_IQGA... 213329 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05128 RasGAP_GAP1... 213330 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05129 RasGAP_RAP6 213331 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05130 RasGAP_Neur... 213332 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05131 RasGAP_IQGAP2 213333 cd05127 cd04519 3 1 1 0 01/17/13 11:38:00 -cd05132 RasGAP_GAPA 213334 cd04519 cd04519 3 1 1 0 01/17/13 11:38:00 -cd05133 RasGAP_IQGAP1 213335 cd05127 cd04519 3 1 1 0 01/17/13 11:38:00 -cd05134 RasGAP_RASA3 213336 cd05128 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05135 RasGAP_RASAL 213337 cd05128 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05136 RasGAP_DAB2IP 213338 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05137 RasGAP_CLA2... 213339 cd04519 cd04519 4 1 1 0 01/17/13 11:38:00 -cd05140 Barstar_AU1... 240163 cd00489 cd00489 3 1 1 0 01/17/13 11:38:00 -cd05141 Barstar_evA... 240164 cd00489 cd00489 3 1 1 0 01/17/13 11:38:00 -cd05142 Barstar 240165 cd00489 cd00489 3 1 1 0 01/17/13 11:38:00 -cd05143 Barstar_SaI... 240166 cd00489 cd00489 3 1 1 0 01/17/13 11:38:00 -cd05144 RIO2_C 270695 cd05119 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05145 RIO1_like 270696 cd05119 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05146 RIO3_euk 270697 cd05145 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05147 RIO1_euk 270698 cd05145 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05148 PTKc_Srm_Brk 133248 cd05034 cd13968 6 1 1 0 03/02/14 08:44:00 -cd05150 APH 270699 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05151 ChoK-like 270700 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05152 MPH2' 270701 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05153 HomoserineK_II 270702 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05154 ACAD10_11_N... 270703 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05155 APH_ChoK_li... 270704 cd05120 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05156 ChoK_euk 270705 cd14021 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05157 ETNK_euk 270706 cd14021 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05160 DEDDy_DNA_p... 176646 cd06125 cd06125 4 1 1 0 01/17/13 11:38:00 -cd05162 PWWP 99894 N/A cd05162 2 1 1 0 01/17/13 11:38:00 -cd05163 PIKK_TRRAP 270707 cd05164 cd13968 4 1 1 0 03/02/14 08:44:00 -cd05164 PIKKc 270708 cd00142 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05165 PI3Kc_I 270709 cd00891 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05166 PI3Kc_II 270710 cd00891 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05167 PI4Kc_III_a... 270711 cd00893 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05168 PI4Kc_III_beta 270712 cd00893 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05169 PIKKc_TOR 270713 cd05164 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05170 PIKKc_SMG1 270714 cd05164 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05171 PIKKc_ATM 270715 cd05164 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05172 PIKKc_DNA-PK 270716 cd05164 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05173 PI3Kc_IA_beta 270717 cd05165 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05174 PI3Kc_IA_delta 270718 cd05165 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05175 PI3Kc_IA_alpha 270719 cd05165 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05176 PI3Kc_C2_alpha 270720 cd05166 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05177 PI3Kc_C2_gamma 270721 cd05166 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05188 MDR 176178 N/A cd05188 5 1 1 0 01/17/13 11:38:00 -cd05191 NAD_bind_am... 133449 N/A cd05191 3 1 1 0 01/17/13 11:38:00 -cd05193 AR_like_SDR_e 187536 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05195 enoyl_red 176179 cd05188 cd05188 5 1 1 0 01/17/13 11:38:00 -cd05197 GH4_glycosi... 133425 cd00650 cd00650 3 1 1 0 01/17/13 11:38:00 -cd05198 formate_dh_... 240622 cd12154 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05199 SDH_like 240623 cd01620 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05211 NAD_bind_Gl... 133450 cd05191 cd05191 3 1 1 0 01/17/13 11:38:00 -cd05212 NAD_bind_m-... 133451 cd05191 cd05191 3 1 1 0 01/17/13 11:38:00 -cd05213 NAD_bind_Gl... 133452 cd05191 cd05191 3 1 1 0 01/17/13 11:38:00 -cd05226 SDR_e_a 187537 cd02266 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05227 AR_SDR_e 187538 cd05193 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05228 AR_FR_like_... 187539 cd05193 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05229 SDR_a3 187540 cd05226 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05230 UGD_SDR_e 187541 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05231 NmrA_TMR_li... 187542 cd08947 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05232 Stellacyanin 187543 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05233 SDR_c 212491 cd02266 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05234 UDP_G4E_2_S... 187545 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05235 SDR_e1 187546 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05236 FAR-N_SDR_e 187547 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05237 UDP_invert_... 187548 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05238 Gne_like_SDR_e 187549 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05239 GDP_FS_SDR_e 187550 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05240 UDP_G4E_3_S... 187551 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05241 3b-HSD-like... 187552 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05242 SDR_a8 187553 cd05226 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05243 SDR_a5 187554 cd05226 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05244 BVR-B_like_... 187555 cd05226 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05245 SDR_a2 187556 cd05226 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05246 dTDP_GD_SDR_e 187557 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05247 UDP_G4E_1_S... 187558 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05248 ADP_GME_SDR_e 187559 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05250 CC3_like_SDR_a 187560 cd05226 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05251 NmrA_like_S... 187561 cd08947 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05252 CDP_GD_SDR_e 187562 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05253 UDP_GE_SDE_e 187563 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05254 dTDP_HR_lik... 187564 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05255 SQD1_like_S... 187565 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05256 UDP_AE_SDR_e 187566 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05257 Arna_like_S... 187567 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05258 CDP_TE_SDR_e 187568 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05259 PCBER_SDR_a 187569 cd05226 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05260 GDP_MD_SDR_e 187570 cd08946 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05261 CAPF_like_S... 187571 cd08946 cd02266 3 1 1 0 01/17/13 11:38:00 -cd05262 SDR_a7 187572 cd05226 cd02266 2 1 1 0 01/17/13 11:38:00 -cd05263 MupV_like_S... 187573 cd08946 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05264 UDP_G4E_5_S... 187574 cd08946 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05265 SDR_a1 187575 cd05226 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05266 SDR_a4 187576 cd05226 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05267 SDR_a6 187577 cd05226 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05269 TMR_SDR_a 187578 cd08947 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05271 NDUFA9_like... 187579 cd05226 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05272 TDH_SDR_e 187580 cd08946 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05273 GME-like_SDR_e 187581 cd08946 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05274 KR_FAS_SDR_x 187582 cd02266 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05276 p53_inducib... 176180 cd05188 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05278 FDH_like 176181 cd05188 cd05188 4 1 1 0 01/17/13 11:39:00 -cd05279 Zn_ADH1 176182 cd05188 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05280 MDR_yhdh_yhfp 176183 cd05188 cd05188 4 1 1 0 01/17/13 11:39:00 -cd05281 TDH 176184 cd05188 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05282 ETR_like 176645 cd05188 cd05188 5 1 1 0 01/17/13 11:39:00 -cd05283 CAD1 176186 cd08245 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05284 arabinose_D... 176187 cd05188 cd05188 4 1 1 0 01/17/13 11:39:00 -cd05285 sorbitol_DH 176188 cd05188 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05286 QOR2 176189 cd05188 cd05188 4 1 1 0 01/17/13 11:39:00 -cd05288 PGDH 176190 cd05188 cd05188 4 1 1 0 01/17/13 11:39:00 -cd05289 MDR_like_2 176191 cd05188 cd05188 3 1 1 0 01/17/13 11:39:00 -cd05290 LDH_3 133426 cd00300 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05291 HicDH_like 133427 cd00300 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05292 LDH_2 133428 cd00300 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05293 LDH_1 133429 cd00300 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05294 LDH-like_MD... 133430 cd01339 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05295 MDH_like 133431 cd00704 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05296 GH4_P_beta_... 133432 cd05197 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05297 GH4_alpha_g... 133433 cd05197 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05298 GH4_GlvA_pa... 133434 cd05197 cd00650 3 1 1 0 01/17/13 11:39:00 -cd05299 CtBP_dh 240624 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05300 2-Hacid_dh_1 240625 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05301 GDH 240626 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05302 FDH 240627 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05303 PGDH_2 240628 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05304 Rubrum_tdh 240629 cd01620 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05305 L-AlaDH 240630 cd01620 cd12154 1 1 1 0 02/01/13 12:26:00 -cd05311 NAD_bind_2_... 133453 cd00762 cd05191 3 1 1 0 01/17/13 11:39:00 -cd05312 NAD_bind_1_... 133454 cd00762 cd05191 3 1 1 0 01/17/13 11:39:00 -cd05313 NAD_bind_2_... 133455 cd05211 cd05191 3 1 1 0 01/17/13 11:39:00 -cd05322 SDH_SDR_c_like 187583 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05323 ADH_SDR_c_like 187584 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05324 carb_red_PT... 187585 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05325 carb_red_sn... 187586 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05326 secoisolari... 187587 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05327 retinol-DH_... 212492 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05328 3alpha_HSD_... 187589 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05329 TR_SDR_c 187590 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05330 cyclohexano... 187591 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05331 DH-DHB-DH_S... 187592 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05332 11beta-HSD1... 187593 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05333 BKR_SDR_c 187594 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05334 DHPR_SDR_c_... 187595 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05337 BKR_1_SDR_c 187596 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05338 DHRS1_HSDL2... 187597 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05339 17beta-HSDX... 187598 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05340 Ycik_SDR_c 187599 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05341 3beta-17bet... 187600 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05343 Mgc4172-lik... 187601 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05344 BKR_like_SD... 187602 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05345 BKR_3_SDR_c 187603 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05346 SDR_c5 187604 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05347 Ga5DH-like_... 187605 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05348 BphB-like_S... 187606 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05349 BKR_2_SDR_c 187607 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05350 SDR_c6 187608 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05351 XR_like_SDR_c 187609 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05352 MDH-like_SDR_c 187610 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05353 hydroxyacyl... 187611 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05354 SDR_c7 187612 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05355 SDR_c1 187613 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05356 17beta-HSD1... 187614 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05357 PR_SDR_c 187615 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05358 GlcDH_SDR_c 187616 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05359 ChcA_like_S... 187617 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05360 SDR_c3 187618 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05361 haloalcohol... 187619 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05362 THN_reducta... 187620 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05363 SDH_SDR_c 187621 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05364 SDR_c11 187622 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05365 7_alpha_HSD... 187623 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05366 meso-BDH-li... 187624 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05367 SPR-like_SDR_c 187625 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05368 DHRS6_like_... 187626 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05369 TER_DECR_SDR_a 187627 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05370 SDR_c2 187628 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05371 HSD10-like_... 187629 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05372 ENR_SDR 187630 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05373 SDR_c10 187631 cd05233 cd02266 3 1 1 0 01/17/13 11:39:00 -cd05374 17beta-HSD-... 187632 cd05233 cd02266 2 1 1 0 01/17/13 11:39:00 -cd05379 CAP_bacterial 349398 cd00168 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05380 CAP_euk 349399 cd00168 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05381 CAP_PR-1 349400 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05382 CAP_GAPR1-like 349401 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05383 CAP_CRISP 349402 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05384 CAP_PRY1-like 349403 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05385 CAP_GLIPR1-... 349404 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05386 TraL 349771 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05387 BY-kinase 349772 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05388 CobB_N 349773 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05389 CobQ_N 349774 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05390 HypB 349775 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05391 RasGAP_p120GAP 213340 cd04519 cd04519 4 1 1 0 01/17/13 11:39:00 -cd05392 RasGAP_Neur... 213341 cd04519 cd04519 4 1 1 0 01/17/13 11:39:00 -cd05394 RasGAP_RASA2 213342 cd05128 cd04519 4 1 1 0 01/17/13 11:39:00 -cd05395 RasGAP_RASA4 213343 cd05128 cd04519 4 1 1 0 01/17/13 11:39:00 -cd05396 An_peroxida... 188647 N/A cd05396 2 1 1 0 01/17/13 11:39:00 -cd05397 NT_Pol-beta... 143387 N/A cd05397 3 1 1 0 01/17/13 11:39:00 -cd05398 NT_ClassII-... 143388 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05399 NT_Rel-Spo_... 143389 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05400 NT_2-5OAS_C... 143390 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05401 NT_GlnE_Gln... 143391 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05402 NT_PAP_TUTase 143392 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05403 NT_KNTase_like 143393 cd05397 cd05397 3 1 1 0 01/17/13 11:39:00 -cd05466 PBP2_LTTR_s... 176102 N/A cd05466 3 1 1 0 01/17/13 11:39:00 -cd05467 CBM20 119437 N/A cd05467 4 1 1 0 01/17/13 11:39:00 -cd05468 pVHL 176472 N/A cd05468 3 1 1 0 01/17/13 11:39:00 -cd05469 Transthyret... 100112 N/A cd05469 3 1 1 0 01/17/13 11:39:00 -cd05470 pepsin_retr... 133137 N/A cd05470 3 1 1 0 01/17/13 11:39:00 -cd05471 pepsin_like 133138 cd05470 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05472 cnd41_like 133139 cd05476 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05473 beta_secret... 133140 cd05471 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05474 SAP_like 133141 cd05471 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05475 nucellin_like 133142 cd05476 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05476 pepsin_A_li... 133143 cd05471 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05477 gastricsin 133144 cd05471 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05478 pepsin_A 133145 cd05471 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05479 RP_DDI 133146 cd00303 cd05470 3 1 1 0 01/17/13 11:39:00 -cd05480 NRIP_C 133147 cd00303 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05481 retropepsin... 133148 cd00303 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05482 HIV_retrope... 133149 cd00303 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05483 retropepsin... 133150 cd00303 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05484 retropepsin... 133151 cd00303 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05485 Cathepsin_D... 133152 cd05471 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05486 Cathespin_E 133153 cd05471 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05487 renin_like 133154 cd05471 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05488 Proteinase_... 133155 cd05471 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05489 xylanase_in... 133156 cd05471 cd05470 2 1 1 0 01/17/13 11:40:00 -cd05490 Cathepsin_D2 133157 cd05471 cd05470 3 1 1 0 01/17/13 11:40:00 -cd05491 Bromo_TBP7_... 99923 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05492 Bromo_ZMYND11 99924 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05493 Bromo_ALL-1 99925 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05494 Bromodomain_1 99926 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05495 Bromo_cbp_like 99927 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05496 Bromo_WDR9_II 99928 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05497 Bromo_Brdt_... 99929 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05498 Bromo_Brdt_... 99930 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05499 Bromo_BDF1_... 99931 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05500 Bromo_BDF1_2_I 99932 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05501 Bromo_SP100... 99933 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05502 Bromo_tif1_... 99934 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05503 Bromo_BAZ2A... 99935 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05504 Bromo_Acf1_... 99936 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05505 Bromo_WSTF_... 99937 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05506 Bromo_plant1 99938 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05507 Bromo_brd8_... 99939 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05508 Bromo_RACK7 99940 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05509 Bromo_gcn5_... 99941 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05510 Bromo_SPT7_... 99942 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05511 Bromo_TFIID 99943 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05512 Bromo_brd1_... 99944 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05513 Bromo_brd7_... 99945 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05515 Bromo_polyb... 99946 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05516 Bromo_SNF2L2 99947 cd04369 cd04369 2 1 1 0 01/17/13 11:40:00 -cd05517 Bromo_polyb... 99948 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05518 Bromo_polyb... 99949 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05519 Bromo_SNF2 99950 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05520 Bromo_polyb... 99951 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05521 Bromo_Rsc1_2_I 99952 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05522 Bromo_Rsc1_... 99953 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05524 Bromo_polyb... 99954 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05525 Bromo_ASH1 99955 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05526 Bromo_polyb... 99956 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05528 Bromo_AAA 99957 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05529 Bromo_WDR9_... 99958 cd04369 cd04369 3 1 1 0 01/17/13 11:40:00 -cd05530 POLBc_B1 99913 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05531 POLBc_B2 99914 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05532 POLBc_alpha 99915 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05533 POLBc_delta 99916 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05534 POLBc_zeta 99917 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05535 POLBc_epsilon 99918 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05536 POLBc_B3 99919 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05537 POLBc_Pol_II 99920 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05538 POLBc_Pol_II_B 99921 cd00145 cd00145 3 1 1 0 01/17/13 11:40:00 -cd05540 UreG 349776 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd05559 CAP_PI16_Hr... 349405 cd05380 cd00168 3 1 0 0 07/11/18 17:51:00 -cd05560 Xcc1710_like 240187 cd00248 cd00248 2 1 1 0 01/17/13 11:40:00 -cd05561 Peptidases_... 173797 cd00306 cd00306 3 1 1 0 01/17/13 11:40:00 -cd05562 Peptidases_... 173798 cd00306 cd00306 3 1 1 0 01/17/13 11:40:00 -cd05563 PTS_IIB_asc... 99905 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05564 PTS_IIB_chi... 99906 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05565 PTS_IIB_lac... 99907 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05566 PTS_IIB_gal... 99908 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05567 PTS_IIB_man... 99909 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05568 PTS_IIB_bgl... 99910 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05569 PTS_IIB_fru... 99911 cd00133 cd00133 3 1 1 0 01/17/13 11:40:00 -cd05570 STKc_PKC 270722 cd05123 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05571 STKc_PKB 270723 cd05123 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05572 STKc_cGK 270724 cd05123 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05573 STKc_ROCK_N... 270725 cd05123 cd13968 5 1 1 0 03/02/14 08:44:00 -cd05574 STKc_photot... 270726 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05575 STKc_SGK 270727 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05576 STKc_RPK118... 270728 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05577 STKc_GRK 270729 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05578 STKc_Yank1 270730 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05579 STKc_MAST_like 270731 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05580 STKc_PKA_like 270732 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05581 STKc_PDK1 270733 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05582 STKc_RSK_N 270734 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05583 STKc_MSK_N 270735 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05584 STKc_p70S6K 270736 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05585 STKc_YPK1_like 270737 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05586 STKc_Sck1_like 270738 cd05123 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05587 STKc_cPKC 270739 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05588 STKc_aPKC 270740 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05589 STKc_PKN 270741 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05590 STKc_nPKC_eta 270742 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05591 STKc_nPKC_e... 270743 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05592 STKc_nPKC_t... 270744 cd05570 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05593 STKc_PKB_gamma 270745 cd05571 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05594 STKc_PKB_alpha 270746 cd05571 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05595 STKc_PKB_beta 173686 cd05571 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05596 STKc_ROCK 270747 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05597 STKc_DMPK_like 270748 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05598 STKc_LATS 270749 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05599 STKc_NDR_like 270750 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05600 STKc_Sid2p_... 270751 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05601 STKc_CRIK 270752 cd05573 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05602 STKc_SGK1 270753 cd05575 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05603 STKc_SGK2 270754 cd05575 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05604 STKc_SGK3 270755 cd05575 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05605 STKc_GRK4_like 270756 cd05577 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05606 STKc_beta_ARK 270757 cd05577 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05607 STKc_GRK7 270758 cd05577 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05608 STKc_GRK1 270759 cd05577 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05609 STKc_MAST 270760 cd05579 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05610 STKc_MASTL 270761 cd05579 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05611 STKc_Rim15_... 270762 cd05579 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05612 STKc_PRKX_like 270763 cd05580 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05613 STKc_MSK1_N 270764 cd05583 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05614 STKc_MSK2_N 270765 cd05583 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05615 STKc_cPKC_a... 270766 cd05587 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05616 STKc_cPKC_beta 270767 cd05587 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05617 STKc_aPKC_zeta 270768 cd05588 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05618 STKc_aPKC_iota 270769 cd05588 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05619 STKc_nPKC_t... 270770 cd05592 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05620 STKc_nPKC_d... 173710 cd05592 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05621 STKc_ROCK2 270771 cd05596 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05622 STKc_ROCK1 270772 cd05596 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05623 STKc_MRCK_a... 270773 cd05597 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05624 STKc_MRCK_beta 270774 cd05597 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05625 STKc_LATS1 270775 cd05598 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05626 STKc_LATS2 173715 cd05598 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05627 STKc_NDR2 270776 cd05599 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05628 STKc_NDR1 270777 cd05599 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05629 STKc_NDR_li... 270778 cd05599 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05630 STKc_GRK6 270779 cd05605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05631 STKc_GRK4 173720 cd05605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05632 STKc_GRK5 270780 cd05605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05633 STKc_GRK3 270781 cd05606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd05635 LbH_unknown 100059 cd00208 cd00208 2 1 1 0 01/17/13 11:40:00 -cd05636 LbH_G1P_TT_... 100060 cd00208 cd00208 2 1 1 0 01/17/13 11:40:00 -cd05637 SIS_PGI_PMI_2 240188 cd04795 cd04795 3 1 1 0 01/17/13 11:40:00 -cd05638 M42 193517 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05639 M18 349892 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05640 M28_like 349893 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05642 M28_like 349894 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05643 M28_like 349895 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05644 M28_like 349896 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05645 M20_peptida... 349897 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05646 M20_Acylase... 349898 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05647 M20_DapE_ac... 349899 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05649 M20_ArgE_Da... 349900 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05650 M20_ArgE_Da... 349901 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05651 M20_ArgE_Da... 349902 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05652 M20_ArgE_Da... 349903 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05653 M20_ArgE_LysK 349904 cd08659 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05654 M20_ArgE_RocB 349905 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05656 M42_Frv 349906 cd05638 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05657 M42_glucana... 349907 cd05638 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05658 M18_DAP 349908 cd05639 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05659 M18_API 349909 cd05639 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05660 M28_like_PA 349910 cd03877 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05661 M28_like_PA 349911 cd02690 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05662 M28_like 349912 cd03877 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05663 M28_like_PA... 349913 cd03877 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05664 M20_Acy1-like 349914 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05665 M20_Acy1_IA... 349915 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05666 M20_Acy1-like 349916 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05667 M20_Acy1-like 349917 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05668 M20_Acy1-like 349918 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05669 M20_Acy1_Yx... 349919 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05670 M20_Acy1_Yk... 349920 cd03886 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05672 M20_ACY1L2-... 349921 cd03887 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05673 M20_Acy1L2_... 349922 cd03887 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05674 M20_yscS 349923 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05675 M20_yscS_like 349924 cd18669 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05676 M20_dipept_... 349925 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05677 M20_dipept_... 349926 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05678 M20_dipept_... 349927 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05679 M20_dipept_... 349928 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05680 M20_dipept_... 349929 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05681 M20_dipept_... 349930 cd03893 cd03873 3 1 0 0 07/11/18 17:54:00 -cd05682 M20_dipept_... 349931 cd03893 cd03873 3 1 0 0 07/11/18 17:55:00 -cd05683 M20_peptT_like 349932 cd05645 cd03873 3 1 0 0 07/11/18 17:55:00 -cd05684 S1_DHX8_hel... 240189 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05685 S1_Tex 240190 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05686 S1_pNO40 240191 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05687 S1_RPS1_rep... 240192 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05688 S1_RPS1_rep... 240193 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05689 S1_RPS1_rep... 240194 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05690 S1_RPS1_rep... 240195 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05691 S1_RPS1_rep... 240196 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05692 S1_RPS1_rep... 240197 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05693 S1_Rrp5_rep... 240198 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05694 S1_Rrp5_rep... 240199 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05695 S1_Rrp5_rep... 240200 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05696 S1_Rrp5_rep... 240201 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05697 S1_Rrp5_rep... 240202 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05698 S1_Rrp5_rep... 240203 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05699 S1_Rrp5_rep... 240204 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05700 S1_Rrp5_rep... 240205 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05701 S1_Rrp5_rep... 240206 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05702 S1_Rrp5_rep... 240207 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05703 S1_Rrp5_rep... 240208 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05704 S1_Rrp5_rep... 240209 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05705 S1_Rrp5_rep... 240210 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05706 S1_Rrp5_rep... 240211 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05707 S1_Rrp5_rep... 240212 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05708 S1_Rrp5_rep... 240213 cd00164 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05709 S2P-M50 100078 N/A cd05709 3 1 1 0 01/17/13 11:41:00 -cd05710 SIS_1 240214 cd04795 cd04795 3 1 1 0 01/17/13 11:41:00 -cd05711 Ig2_LILR_KI... 319290 cd16843 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05712 Ig_Siglec_N 143189 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05713 Ig_MOG_like 319291 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05714 Ig_CSPGs_LP 319292 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05715 Ig_P0-like 319293 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05716 Ig_pIgR_like 143193 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05717 Ig1_Necl_like 319294 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05718 Ig1_PVR_like 319295 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05719 Ig2_PVR_like 319296 cd00098 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05720 Ig_CD8_alpha 143197 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05721 IgV_CTLA-4 143198 cd00099 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05722 Ig1_Neogenin 143199 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05723 Ig4_Neogenin 212460 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05724 Ig2_Robo 143201 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05725 Ig3_Robo 143202 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05726 Ig4_Robo 143203 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05727 Ig2_Contact... 143204 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05728 Ig4_Contact... 143205 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05729 Ig2_FGFR_like 319297 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05730 Ig3_NCAM-1_... 143207 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05731 Ig3_L1-CAM_... 319298 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05732 Ig_NCAM-1_like 143209 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05733 Ig_L1-CAM_like 319299 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05734 Ig_DSCAM 143211 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05735 Ig_DSCAM 143212 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05736 Ig2_Follist... 143213 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05737 Ig_Myomesin... 319300 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05738 Ig2_RPTP_II... 319301 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05739 Ig3_RPTP_II... 143216 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05740 Ig_CEACAM 143217 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05741 Ig_CEACAM_like 319302 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05742 Ig_VEGFR_like 319303 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05743 Ig_Perlecan... 143220 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05744 Ig_Myotilin... 319304 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05745 Ig3_Peroxid... 143222 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05746 Ig4_Peroxid... 143223 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05747 Ig_Titin_like 143224 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05748 Ig_Titin_like 319305 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05749 Ig2_Axl_Tyr... 143226 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05750 Ig_Pro_neur... 143227 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05751 Ig1_LILR_KI... 319306 cd16843 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05752 Ig1_Fcgamma... 143229 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05753 Ig2_Fcgamma... 319307 cd00096 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05754 Ig_Perlecan... 143231 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05755 Ig2_ICAM-1_... 143232 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05756 Ig1_IL1R_like 319308 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05757 Ig2_IL1R_like 319309 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05758 Ig5_KIRREL3... 319310 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05759 Ig2_KIRREL3... 143236 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05760 Ig2_PTK7 143237 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05761 Ig2_Necl-1-... 319311 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05762 Ig8_hMLCK_like 143239 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05763 Ig_1 143240 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05764 Ig_2 143241 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05765 Ig_3 143242 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05766 IgC_MHC_II_... 143243 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05767 IgC_MHC_II_... 143244 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05768 IgC_CH3_IgA... 319312 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05769 IgC_TCR_beta 143246 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05770 IgC_beta2m 143247 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05771 IgC_Tapasin_R 319313 cd00098 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05772 IgC_SIRP_do... 319314 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05773 Ig_hNephrin... 143250 cd00096 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05774 Ig_CEACAM_D1 319315 cd05741 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05775 Ig_CD2_like_N 319316 cd05741 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05776 DNA_polB_al... 99819 cd05160 cd06125 3 1 1 0 01/17/13 11:41:00 -cd05777 DNA_polB_de... 99820 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05778 DNA_polB_ze... 99821 cd05160 cd06125 3 1 1 0 01/17/13 11:41:00 -cd05779 DNA_polB_ep... 99822 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05780 DNA_polB_Ko... 99823 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05781 DNA_polB_B3... 99824 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05782 DNA_polB_li... 99825 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05783 DNA_polB_B1... 99826 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05784 DNA_polB_II... 99827 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05785 DNA_polB_li... 99828 cd05160 cd06125 4 1 1 0 01/17/13 11:41:00 -cd05787 LbH_eIF2B_e... 100061 cd03356 cd00208 2 1 1 0 01/17/13 11:41:00 -cd05789 S1_Rrp4 240215 cd04454 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05790 S1_Rrp40 240216 cd04454 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05791 S1_CSL4 240217 cd04454 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05792 S1_eIF1AD_like 240218 cd04456 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05793 S1_IF1A 240219 cd04456 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05794 S1_EF-P_rep... 240220 cd04463 cd00164 3 1 1 0 01/17/13 11:41:00 -cd05795 Ribosomal_P... 240221 cd00379 cd00379 3 1 1 0 01/17/13 11:41:00 -cd05796 Ribosomal_P... 240222 cd00379 cd00379 3 1 1 0 01/17/13 11:41:00 -cd05797 Ribosomal_L10 240223 cd00379 cd00379 3 1 1 0 01/17/13 11:41:00 -cd05798 SIS_TAL_PGI 240224 cd05016 cd04795 2 1 1 0 01/17/13 11:41:00 -cd05799 PGM2 100092 cd03084 cd03084 3 1 1 0 01/17/13 11:42:00 -cd05800 PGM_like2 100093 cd03084 cd03084 3 1 1 0 01/17/13 11:42:00 -cd05801 PGM_like3 100094 cd03084 cd03084 3 1 1 0 01/17/13 11:42:00 -cd05802 GlmM 100095 cd03084 cd03084 3 1 1 0 01/17/13 11:42:00 -cd05803 PGM_like4 100096 cd03084 cd03084 3 1 1 0 01/17/13 11:42:00 -cd05804 StaR_like 100115 N/A cd05804 2 1 1 0 01/17/13 11:42:00 -cd05805 MPG1_transf... 100097 cd03084 cd03084 2 1 1 0 01/17/13 11:42:00 -cd05806 CBM20_laforin 99881 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05807 CBM20_CGTase 99882 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05808 CBM20_alpha... 99883 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05809 CBM20_beta_... 99884 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05810 CBM20_alpha... 99885 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05811 CBM20_gluco... 99886 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05813 CBM20_genet... 99887 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05814 CBM20_Prei4 99888 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05815 CBM20_DPE2_... 99889 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05816 CBM20_DPE2_... 99890 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05817 CBM20_DSP 99891 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05818 CBM20_water... 99892 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05819 NHL 271320 N/A cd05819 1 1 1 0 06/11/14 17:06:00 -cd05820 CBM20_novamyl 99893 cd05467 cd05467 3 1 1 0 01/17/13 11:42:00 -cd05821 TLP_Transth... 100113 cd05469 cd05469 3 1 1 0 01/17/13 11:42:00 -cd05822 TLP_HIUase 100114 cd05469 cd05469 3 1 1 0 01/17/13 11:42:00 -cd05824 LbH_M1P_gua... 100062 cd03356 cd00208 2 1 1 0 01/17/13 11:42:00 -cd05825 LbH_wcaF_like 100063 cd04647 cd00208 3 1 1 0 01/17/13 11:42:00 -cd05826 Sortase_B 320675 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd05827 Sortase_C 320676 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd05828 Sortase_D_1 320677 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd05829 Sortase_F 320678 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd05830 Sortase_E 320679 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd05831 Ribosomal_P1 100109 cd04411 cd04411 2 1 1 0 01/17/13 11:42:00 -cd05832 Ribosomal_L12p 100110 cd04411 cd04411 2 1 1 0 01/17/13 11:42:00 -cd05833 Ribosomal_P2 100111 cd04411 cd04411 2 1 1 0 01/17/13 11:42:00 -cd05834 HDGF_related 99895 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05835 Dnmt3b_related 99896 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05836 N_Pac_NP60 99897 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05837 MSH6_like 99898 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05838 WHSC1_related 99899 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05839 BR140_related 99900 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05840 SPBC215_ISW... 99901 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05841 BS69_related 99902 cd05162 cd05162 2 1 1 0 01/17/13 11:42:00 -cd05843 Peptidase_M... 320682 N/A cd05843 1 1 1 0 08/18/16 17:14:00 -cd05844 GT4-like 340860 cd01635 cd01635 4 1 0 0 06/09/17 14:32:00 -cd05845 Ig2_L1-CAM_... 143253 cd00096 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05846 Ig1_MRC-OX-... 319317 cd00096 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05847 IgC_CH2_IgE 143255 cd00098 cd00096 6 1 1 0 08/18/16 16:18:00 -cd05848 Ig1_Contact... 143256 cd04967 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05849 Ig1_Contact... 143257 cd04967 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05850 Ig1_Contact... 143258 cd04967 cd00096 5 1 1 0 08/18/16 16:18:00 -cd05851 Ig3_Contact... 143259 cd04968 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05852 Ig5_Contact... 143260 cd04969 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05853 Ig6_Contact... 143261 cd04970 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05854 Ig6_Contact... 143262 cd04970 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05855 Ig_TrkB_d5 143263 cd04971 cd00096 3 1 1 0 08/18/16 16:18:00 -cd05856 Ig2_FGFRL1-... 143264 cd05729 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05857 Ig2_FGFR 143265 cd05729 cd00096 4 1 1 0 08/18/16 16:18:00 -cd05858 Ig3_FGFR-2 143266 cd04974 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05859 Ig4_PDGFR 143267 cd00096 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05860 Ig4_SCFR 319318 cd04975 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05861 Ig_PDGFR-al... 143269 cd05742 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05862 Ig_VEGFR 143270 cd05742 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05863 Ig_VEGFR-3 143271 cd04976 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05864 Ig_VEGFR-2 143272 cd04976 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05865 Ig1_NCAM-1 143273 cd04977 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05866 Ig1_NCAM-2 143274 cd04977 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05867 Ig4_L1-CAM_... 143275 cd04978 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05868 Ig4_NrCAM 143276 cd04978 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05869 Ig_NCAM-1 143277 cd05732 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05870 Ig_NCAM-2 143278 cd05732 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05871 Ig_Semaphor... 143279 cd04979 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05872 Ig_Sema4B_like 143280 cd04979 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05873 Ig_Sema4D_like 143281 cd04979 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05874 Ig_NrCAM 143282 cd05733 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05875 Ig_hNeurofa... 143283 cd05733 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05876 Ig3_L1-CAM 143284 cd05731 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05877 Ig_LP_like 143285 cd05714 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05878 Ig_Aggrecan... 319319 cd05714 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05879 Ig_P0 143287 cd05715 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05880 Ig_EVA1 143288 cd05715 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05881 Ig1_Necl-2 143289 cd05717 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05882 Ig1_Necl-1 143290 cd05717 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05883 Ig2_Necl-2 143291 cd05761 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05884 Ig2_Necl-3 319320 cd05761 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05885 Ig2_Necl-4 143293 cd05761 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05886 Ig1_Nectin-... 143294 cd05718 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05887 Ig1_Nectin-... 143295 cd05718 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05888 Ig1_Nectin-... 143296 cd00096 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05889 Ig1_DNAM-1_... 143297 cd05718 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05890 Ig2_Nectin-... 143298 cd05719 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05891 Ig_M-protein_C 143299 cd05737 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05892 Ig_Myotilin_C 143300 cd05744 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05893 Ig_Palladin_C 143301 cd05744 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05894 Ig_C5_MyBP-C 143302 cd05748 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05895 Ig_Pro_neur... 143303 cd05750 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05896 Ig1_IL1RAPL... 143304 cd05756 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05897 Ig2_IL1R2_like 143305 cd05757 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05898 Ig5_KIRREL3 143306 cd05758 cd00096 5 1 1 0 08/18/16 16:19:00 -cd05899 IgV_TCR_beta 143307 cd00099 cd00096 6 1 1 0 08/18/16 16:19:00 -cd05900 Ig_Aggrecan 143308 cd05878 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05901 Ig_Versican 143309 cd05878 cd00096 4 1 1 0 08/18/16 16:19:00 -cd05902 Ig_Neurocan 143310 cd05878 cd00096 3 1 1 0 08/18/16 16:19:00 -cd05903 CHC_CoA_lg 341229 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05904 4CL 341230 cd05911 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05905 Dip2 341231 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05906 A_NRPS_TubE... 341232 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05907 VL_LC_FACS_... 341233 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05908 A_NRPS_MycA... 341234 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05909 AAS_C 341235 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05910 FACL_like_1 341236 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05911 Firefly_Luc... 341237 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05912 OSB_CoA_lg 341238 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05913 PaaK 341239 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05914 LC_FACL_like 341240 cd05907 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05915 ttLC_FACS_like 213283 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05917 FACL_like_2 341241 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05918 A_NRPS_SidN... 341242 cd05930 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05919 BCL_like 341243 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05920 23DHB-AMP_lg 341244 cd04433 cd04433 3 1 0 0 07/26/17 17:21:00 -cd05921 FCS 341245 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05922 FACL_like_6 341246 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05923 CBAL 341247 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05924 FACL_like_5 341248 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05926 FACL_fum10p... 341249 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05927 LC-FACS_euk 341250 cd05907 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05928 MACS_euk 341251 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05929 BACL_like 341252 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05930 A_NRPS 341253 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05931 FAAL 341254 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05932 LC_FACS_bac 341255 cd05907 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05933 ACSBG_like 341256 cd05907 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05934 FACL_DitJ_like 341257 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05935 LC_FACS_like 341258 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05936 FC-FACS_Fad... 341259 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05937 FATP_chFAT1... 341260 cd05940 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05938 hsFATP2a_AC... 341261 cd05940 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05939 hsFATP4_like 341262 cd05940 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05940 FATP_FACS 341263 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05941 MCS 341264 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05943 AACS 341265 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05944 FACL_like_4 341266 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05945 DltA 341267 cd05930 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05958 ABCL 341268 cd05919 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05959 BCL_4HBCL 341269 cd05919 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05966 ACS 341270 cd17634 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05967 PrpE 341271 cd17634 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05968 AACS_like 341272 cd17634 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05969 MACS_like_4 341273 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05970 MACS_AAE_MA... 341274 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05971 MACS_like_3 341275 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05972 MACS_like 341276 cd04433 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05973 MACS_like_2 341277 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05974 MACS_like_1 341278 cd05972 cd04433 3 1 0 0 07/26/17 17:22:00 -cd05992 PB1 99716 N/A cd05992 3 1 1 0 01/17/13 11:42:00 -cd06006 R3H_unknown_2 100076 cd02325 cd02325 3 1 1 0 01/17/13 11:42:00 -cd06007 R3H_DEXH_he... 100077 cd02325 cd02325 3 1 1 0 01/17/13 11:42:00 -cd06008 NF-X1-zinc-... 100116 N/A cd06008 2 1 1 0 01/17/13 11:42:00 -cd06059 Tubulin 276963 cd00286 cd00286 4 1 1 0 02/05/15 16:30:00 -cd06060 misato 276964 cd06059 cd00286 4 1 1 0 02/05/15 16:30:00 -cd06061 PurM-like1 100037 cd00396 cd00396 3 1 1 0 01/17/13 11:43:00 -cd06062 H2MP_MemB-H2up 99873 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06063 H2MP_Cyano-... 99874 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06064 H2MP_F420-R... 99875 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06066 H2MP_NAD-li... 99876 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06067 H2MP_MemB-H... 99877 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06068 H2MP_like-1 99878 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06070 H2MP_like-2 99879 cd00518 cd00518 3 1 1 0 01/17/13 11:43:00 -cd06071 Beach 100117 N/A cd06071 2 1 1 0 01/17/13 11:43:00 -cd06080 MUM1_like 99903 cd05162 cd05162 2 1 1 0 01/17/13 11:43:00 -cd06081 KOW_Spt5_1 240505 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06082 KOW_Spt5_2 240506 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06083 KOW_Spt5_3 240507 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06084 KOW_Spt5_4 240508 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06085 KOW_Spt5_5 240509 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06086 KOW_Spt5_6 240510 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06087 KOW_RPS4 240511 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06088 KOW_RPL14 240512 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06089 KOW_RPL26 240513 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06090 KOW_RPL27 240514 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06091 KOW_NusG 240515 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd06093 PX_domain 132768 N/A cd06093 3 1 1 0 01/17/13 11:43:00 -cd06094 RP_Saci_like 133158 cd00303 cd05470 3 1 1 0 01/17/13 11:43:00 -cd06095 RP_RTVL_H_like 133159 cd00303 cd05470 3 1 1 0 01/17/13 11:43:00 -cd06096 Plasmepsin_5 133160 cd05471 cd05470 3 1 1 0 01/17/13 11:43:00 -cd06097 Aspergillop... 133161 cd05471 cd05470 3 1 1 0 01/17/13 11:43:00 -cd06098 phytepsin 133162 cd05471 cd05470 3 1 1 0 01/17/13 11:43:00 -cd06099 CS_ACL-C_CCL 99853 N/A cd06099 3 1 1 0 01/17/13 11:43:00 -cd06100 CCL_ACL-C 99854 cd06099 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06101 citrate_synt 99855 cd06099 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06102 citrate_syn... 99856 cd06101 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06103 ScCS-like 99857 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06105 ScCit1-2_like 99858 cd06103 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06106 ScCit3_like 99859 cd06103 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06107 EcCS_AthCS-... 99860 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06108 Ec2MCS_like 99861 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06109 BsCS-I_like 99862 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06110 BSuCS-II_like 99863 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06111 DsCS_like 99864 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06112 citrate_syn... 99865 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06113 citrate_syn... 99866 cd06118 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06114 EcCS_like 99867 cd06107 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06115 AthCS_per_like 99868 cd06107 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06116 CaCS_like 99869 cd06107 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06117 Ec2MCS_like_1 99870 cd06108 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06118 citrate_syn... 99871 cd06101 cd06099 3 1 1 0 01/17/13 11:43:00 -cd06125 DnaQ_like_exo 176647 N/A cd06125 4 1 1 0 01/17/13 11:43:00 -cd06127 DEDDh 176648 cd06125 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06128 DNA_polA_exo 176649 cd09018 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06129 RNaseD_like 176650 cd09018 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06130 DNA_pol_III... 99834 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06131 DNA_pol_III... 99835 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06133 ERI-1_3'hEx... 99836 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06134 RNaseT 99837 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06135 Orn 99838 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06136 TREX1_2 99839 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06137 DEDDh_RNase 99840 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06138 ExoI_N 99841 cd06127 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06139 DNA_polA_I_... 176651 cd06128 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06140 DNA_polA_I_... 176652 cd06128 cd06125 3 1 1 0 01/17/13 11:43:00 -cd06141 WRN_exo 176653 cd06129 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06142 RNaseD_exo 176654 cd06129 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06143 PAN2_exo 99846 cd06137 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06144 REX4_like 99847 cd06137 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06145 REX1_like 99848 cd06137 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06146 mut-7_like_exo 176655 cd06141 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06147 Rrp6p_like_exo 99850 cd06142 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06148 Egl_like_exo 99851 cd06142 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06149 ISG20 99852 cd06144 cd06125 4 1 1 0 01/17/13 11:43:00 -cd06150 YjgF_YER057... 100007 cd00448 cd00448 3 1 1 0 10/29/18 15:30:00 -cd06151 YjgF_YER057... 100008 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06152 YjgF_YER057... 100009 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06153 YjgF_YER057... 100010 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06154 YjgF_YER057... 100011 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06155 eu_AANH_C_1 100012 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06156 eu_AANH_C_2 100013 cd00448 cd00448 3 1 1 0 01/17/13 11:43:00 -cd06157 NR_LBD 132726 N/A cd06157 3 1 1 0 01/17/13 11:43:00 -cd06158 S2P-M50_like_1 100079 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06159 S2P-M50_PDZ... 100080 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06160 S2P-M50_like_2 100081 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06161 S2P-M50_Spo... 100082 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06162 S2P-M50_PDZ... 100083 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06163 S2P-M50_PDZ... 100084 cd05709 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06164 S2P-M50_Spo... 100085 cd06161 cd05709 3 1 1 0 01/17/13 11:43:00 -cd06165 Sortase_A 320680 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd06166 Sortase_D_2 320681 cd00004 cd00004 4 1 1 0 08/18/16 17:14:00 -cd06167 PIN_LabA-like 350201 cd09852 cd09852 5 1 0 0 07/11/18 17:58:00 -cd06168 LSMD1 212486 cd00600 cd00600 4 1 1 0 01/17/13 11:43:00 -cd06169 BMC 132884 N/A cd06169 3 1 1 0 01/17/13 11:43:00 -cd06170 LuxR_C_like 99777 N/A cd06170 3 1 1 0 01/17/13 11:43:00 -cd06171 Sigma70_r4 100119 N/A cd06171 3 1 1 0 01/17/13 11:43:00 -cd06172 MFS_LacY 340862 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06173 MFS_MefA_like 340863 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06174 MFS 349949 N/A cd06174 4 1 0 0 07/11/18 17:55:00 -cd06175 MFS_POT 340865 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06176 MFS_BCD_Puc... 349950 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06177 MFS_NHS 340866 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06178 MFS_unc93-like 340867 cd17338 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06179 MFS_TRI12_like 340868 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd06180 MFS_YjiJ 340869 cd06174 cd06174 2 1 0 0 07/11/18 17:55:00 -cd06181 BI-1-like 198409 N/A cd06181 3 1 1 0 01/17/13 11:43:00 -cd06182 CYPOR_like 99779 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06183 cyt_b5_redu... 99780 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06184 flavohem_li... 99781 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06185 PDR_like 99782 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06186 NOX_Duox_li... 99783 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06187 O2ase_reduc... 99784 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06188 NADH_quinon... 99785 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06189 flavin_oxio... 99786 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06190 T4MO_e_tran... 99787 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06191 FNR_iron_su... 99788 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06192 DHOD_e_tran... 99789 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06193 siderophore... 99790 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06194 FNR_N-term_... 99791 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06195 FNR1 99792 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06196 FNR_like_1 99793 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06197 FNR_like_2 99794 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06198 FNR_like_3 99795 cd00322 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06199 SiR 99796 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06200 SiR_like1 99797 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06201 SiR_like2 99798 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06202 Nitric_oxid... 99799 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06203 methionine_... 99800 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06204 CYPOR 99801 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06206 bifunctiona... 99802 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06207 CyPoR_like 99803 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06208 CYPOR_like_FNR 99804 cd06182 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06209 BenDO_FAD_NAD 99805 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06210 MMO_FAD_NAD... 99806 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06211 phenol_2-mo... 99807 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06212 monooxygena... 99808 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06213 oxygenase_e... 99809 cd06187 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06214 PA_degradat... 99810 cd06191 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06215 FNR_iron_su... 99811 cd06191 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06216 FNR_iron_su... 99812 cd06191 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06217 FNR_iron_su... 99813 cd06191 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06218 DHOD_e_trans 99814 cd06192 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06219 DHOD_e_tran... 99815 cd06192 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06220 DHOD_e_tran... 99816 cd06192 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06221 sulfite_red... 99817 cd06192 cd00322 3 1 1 0 01/17/13 11:43:00 -cd06222 RNase_H_like 259998 N/A cd06222 4 1 1 0 08/20/13 16:29:00 -cd06223 PRTases_typeI 206754 N/A cd06223 2 1 1 0 01/17/13 11:43:00 -cd06224 REM 100121 N/A cd06224 3 1 1 0 01/17/13 11:43:00 -cd06225 HAMP 100122 N/A cd06225 4 1 1 0 01/17/13 11:43:00 -cd06226 M14_CPT_like 349445 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06227 M14-CPA-like 349446 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06228 M14-like 349447 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06229 M14_Endopep... 349448 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06230 M14_ASTE_AS... 349449 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06231 M14_REP34-like 349450 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06232 M14-like 349451 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06233 M14-like 349452 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06234 M14_PaCCP-like 349453 cd03856 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06235 M14_AGTPBP-... 349454 cd03856 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06236 M14_AGBL5_like 349455 cd06235 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06237 M14_Nna1-like 349456 cd03856 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06238 M14-like 349457 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06239 M14-like 349458 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06240 M14-like 349459 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06241 M14-like 349460 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06242 M14-like 349461 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06243 M14_CP_Csd4... 349462 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06244 M14-like 349463 cd03857 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06245 M14_CPD_III 349464 cd03858 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06246 M14_CPB2 349465 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06247 M14_CPO 349466 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06248 M14_CP_insect 349467 cd03860 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06250 M14_PaAOTO_... 349468 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06251 M14_ASTE_AS... 349469 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06252 M14_ASTE_AS... 349470 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06253 M14_ASTE_AS... 349471 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06254 M14_ASTE_AS... 349472 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06255 M14_ASTE_AS... 349473 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06256 M14_ASTE_AS... 349474 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06257 DnaJ 99751 N/A cd06257 3 1 1 0 01/17/13 11:44:00 -cd06258 M3_like 341049 cd09594 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06259 YdcF-like 99750 N/A cd06259 3 1 1 0 01/17/13 11:44:00 -cd06260 DUF820 99749 N/A cd06260 3 1 1 0 01/17/13 11:44:00 -cd06261 TM_PBP2 119394 N/A cd06261 3 1 1 0 01/17/13 11:44:00 -cd06262 metallo-hyd... 293792 N/A cd06262 1 1 1 0 08/18/16 16:51:00 -cd06263 MAM 99706 N/A N/A 2 1 1 0 01/17/13 11:44:00 -cd06265 RNase_A_can... 119387 cd00163 cd00163 3 1 1 0 01/17/13 11:44:00 -cd06266 RNase_HII 259999 cd06222 cd06222 5 1 1 0 08/20/13 16:29:00 -cd06267 PBP1_LacI_s... 107262 cd01537 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06268 PBP1_ABC_tr... 107263 cd04509 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06269 PBP1_glutam... 153137 cd04509 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06270 PBP1_GalS_like 107265 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06271 PBP1_AglR_R... 107266 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06272 PBP1_hexuro... 107267 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06273 PBP1_GntR_l... 107268 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06274 PBP1_FruR 107269 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06275 PBP1_PurR 107270 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06276 PBP1_FucR_like 107271 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06277 PBP1_LacI_l... 107272 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06278 PBP1_LacI_l... 107273 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06279 PBP1_LacI_l... 107274 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06280 PBP1_LacI_l... 107275 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06281 PBP1_LacI_l... 107276 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06282 PBP1_GntR_l... 107277 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06283 PBP1_RegR_E... 107278 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06284 PBP1_LacI_l... 107279 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06285 PBP1_LacI_l... 107280 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06286 PBP1_CcpB_like 107281 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06287 PBP1_LacI_l... 107282 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06288 PBP1_sucros... 107283 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06289 PBP1_MalI_like 107284 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06290 PBP1_LacI_l... 107285 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06291 PBP1_Qymf_like 107286 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06292 PBP1_LacI_l... 107287 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06293 PBP1_LacI_l... 107288 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06294 PBP1_ycjW_t... 107289 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06295 PBP1_CelR 107290 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06296 PBP1_CatR_like 107291 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06297 PBP1_LacI_l... 107292 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06298 PBP1_CcpA_like 107293 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06299 PBP1_LacI_l... 107294 cd06267 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06300 PBP1_ABC_su... 107295 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06301 PBP1_rhizop... 107296 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06302 PBP1_LsrB_Q... 107297 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06303 PBP1_LuxPQ_... 107298 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06304 PBP1_BmpA_like 107299 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06305 PBP1_methyl... 107300 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06306 PBP1_TorT-like 107301 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06307 PBP1_unchar... 107302 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06308 PBP1_sensor... 107303 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06309 PBP1_YtfQ_like 107304 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06310 PBP1_ABC_su... 107305 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06311 PBP1_ABC_su... 107306 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06312 PBP1_ABC_su... 107307 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06313 PBP1_ABC_su... 107308 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06314 PBP1_tmGBP 107309 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06315 PBP1_ABC_su... 107310 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06316 PBP1_ABC_su... 107311 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06317 PBP1_ABC_su... 107312 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06318 PBP1_ABC_su... 107313 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06319 PBP1_ABC_su... 107314 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06320 PBP1_allose... 107315 cd01536 cd01391 5 1 1 0 01/17/13 11:44:00 -cd06321 PBP1_ABC_su... 107316 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06322 PBP1_ABC_su... 107317 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06323 PBP1_ribose... 107318 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06324 PBP1_ABC_su... 107319 cd01536 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06325 PBP1_ABC_un... 107320 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06326 PBP1_STKc_like 107321 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06327 PBP1_SBP_li... 107322 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06328 PBP1_SBP_li... 107323 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06329 PBP1_SBP_li... 107324 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06330 PBP1_Arseni... 107325 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06331 PBP1_AmiC_like 107326 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06332 PBP1_aromat... 107327 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06333 PBP1_ABC-ty... 107328 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06334 PBP1_ABC_li... 107329 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06335 PBP1_ABC_li... 107330 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06336 PBP1_ABC_li... 107331 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06337 PBP1_ABC_li... 107332 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06338 PBP1_ABC_li... 107333 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06339 PBP1_YraM_L... 107334 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06340 PBP1_ABC_li... 107335 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06341 PBP1_ABC_li... 107336 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06342 PBP1_ABC_LI... 107337 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06343 PBP1_ABC_li... 107338 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06344 PBP1_ABC_li... 107339 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06345 PBP1_ABC_li... 107340 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06346 PBP1_ABC_li... 107341 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06347 PBP1_ABC_li... 107342 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06348 PBP1_ABC_li... 107343 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06349 PBP1_ABC_li... 107344 cd06268 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06350 PBP1_GPCR_f... 153138 cd06269 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06351 PBP1_iGluR_... 107346 cd06269 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06352 PBP1_NPR_GC... 107347 cd06269 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06353 PBP1_BmpA_M... 107348 cd06304 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06354 PBP1_BmpA_P... 107349 cd06304 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06355 PBP1_FmdD_like 107350 cd06331 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06356 PBP1_Amide_... 107351 cd06331 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06357 PBP1_AmiC 107352 cd06331 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06358 PBP1_NHase 107353 cd06331 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06359 PBP1_Nba_like 107354 cd06332 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06360 PBP1_alkylb... 107355 cd06332 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06361 PBP1_GPC6A_... 107356 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06362 PBP1_mGluR 107357 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06363 PBP1_Taste_... 107358 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06364 PBP1_CaSR 107359 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06365 PBP1_Pherom... 107360 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06366 PBP1_GABAb_... 107361 cd06350 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06367 PBP1_iGluR_... 107362 cd06351 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06368 PBP1_iGluR_... 107363 cd06351 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06369 PBP1_GC_C_e... 107364 cd06352 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06370 PBP1_Sperac... 107365 cd06352 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06371 PBP1_sensor... 107366 cd06352 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06372 PBP1_GC_G_like 107367 cd06352 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06373 PBP1_NPR_like 107368 cd06352 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06374 PBP1_mGluR_... 107369 cd06362 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06375 PBP1_mGluR_... 107370 cd06362 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06376 PBP1_mGluR_... 107371 cd06362 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06377 PBP1_iGluR_... 107372 cd06367 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06378 PBP1_iGluR_... 107373 cd06367 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06379 PBP1_iGluR_... 107374 cd06367 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06380 PBP1_iGluR_... 107375 cd06368 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06381 PBP1_iGluR_... 107376 cd06368 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06382 PBP1_iGluR_... 107377 cd06368 cd01391 4 1 1 0 01/17/13 11:44:00 -cd06383 PBP1_iGluR_... 107378 cd06351 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06384 PBP1_NPR_B 107379 cd06373 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06385 PBP1_NPR_A 107380 cd06373 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06386 PBP1_NPR_C_... 107381 cd06373 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06387 PBP1_iGluR_... 107382 cd06380 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06388 PBP1_iGluR_... 107383 cd06380 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06389 PBP1_iGluR_... 107384 cd06380 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06390 PBP1_iGluR_... 107385 cd06380 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06391 PBP1_iGluR_... 107386 cd06381 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06392 PBP1_iGluR_... 107387 cd06381 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06393 PBP1_iGluR_... 107388 cd06382 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06394 PBP1_iGluR_... 107389 cd06382 cd01391 4 1 1 0 01/17/13 11:45:00 -cd06395 PB1_Map2k5 99717 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06396 PB1_NBR1 99718 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06397 PB1_UP1 99719 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06398 PB1_Joka2 99720 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06399 PB1_P40 99721 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06401 PB1_TFG 99722 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06402 PB1_p62 99723 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06403 PB1_Par6 99724 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06404 PB1_aPKC 99725 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06405 PB1_Mekk2_3 99726 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06406 PB1_P67 99727 cd05992 cd05992 3 1 1 0 01/17/13 11:45:00 -cd06407 PB1_NLP 99728 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06408 PB1_NoxR 99729 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06409 PB1_MUG70 99730 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06410 PB1_UP2 99731 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06411 PB1_p51 99732 cd05992 cd05992 2 1 1 0 01/17/13 11:45:00 -cd06412 GH25_CH-type 119374 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06413 GH25_murami... 119375 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06414 GH25_LytC-like 119376 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06415 GH25_Cpl1-like 119377 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06416 GH25_Lys1-like 119378 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06417 GH25_LysA-like 119379 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06418 GH25_BacA-like 119380 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06419 GH25_murami... 119381 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06420 GT2_Chondri... 133042 cd00761 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06421 CESA_CelA_like 133043 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06422 NTP_transfe... 133044 cd04181 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06423 CESA_like 133045 cd00761 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06424 UGGPase 133046 cd04180 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06425 M1P_guanyly... 133047 cd04181 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06426 NTP_transfe... 133048 cd04181 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06427 CESA_like_2 133049 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06428 M1P_guanyly... 133050 cd04181 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06429 GT8_like_1 133051 cd00505 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06430 GT8_like_2 133052 cd00505 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06431 GT8_LARGE_C 133053 cd00505 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06432 GT8_HUGT1_C... 133054 cd00505 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06433 GT_2_WfgS_like 133055 cd00761 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06434 GT2_HAS 133056 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06435 CESA_NdvC_like 133057 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06436 GlcNAc-1-P_... 133058 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06437 CESA_CaSu_A2 133059 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06438 EpsO_like 133060 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06439 CESA_like_1 133061 cd06423 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06442 DPM1_like 133062 cd04179 cd00761 4 1 1 0 01/17/13 11:45:00 -cd06444 DNA_pol_A 176473 N/A cd06444 4 1 1 0 01/17/13 11:45:00 -cd06445 ATase 119438 N/A cd06445 3 1 1 0 01/17/13 11:45:00 -cd06446 Trp-synth_B 107207 cd00640 cd00640 3 1 1 0 01/17/13 11:45:00 -cd06447 D-Ser-dehyd 107208 cd00640 cd00640 3 1 1 0 01/17/13 11:45:00 -cd06448 L-Ser-dehyd 107209 cd00640 cd00640 3 1 1 0 01/17/13 11:45:00 -cd06449 ACCD 107210 cd00640 cd00640 3 1 1 0 01/17/13 11:45:00 -cd06450 DOPA_deC_like 99743 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06451 AGAT_like 99744 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06452 SepCysS 99745 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06453 SufS_like 99746 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06454 KBL_like 99747 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06455 M3A_TOP 341050 cd09605 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06456 M3A_DCP 341051 cd09605 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06457 M3A_MIP 341052 cd09605 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06459 M3B_PepF 341053 cd06258 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06460 M32_Taq 341054 cd06258 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06461 M2_ACE 341055 cd06258 cd09594 6 1 0 0 06/09/17 14:33:00 -cd06462 Peptidase_S... 119396 N/A cd06462 3 1 1 0 01/17/13 11:45:00 -cd06463 p23_like 107220 cd00298 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06464 ACD_sHsps-like 107221 cd00298 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06465 p23_hB-ind1... 107222 cd06463 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06466 p23_CS_SGT1... 107223 cd06463 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06467 p23_NUDC_like 107224 cd06463 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06468 p23_CacyBP 107225 cd06463 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06469 p23_DYX1C1_... 107226 cd06463 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06470 ACD_IbpA-B_... 107227 cd06464 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06471 ACD_LpsHSP_... 107228 cd06464 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06472 ACD_ScHsp26... 107229 cd06464 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06475 ACD_HspB1_like 107230 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06476 ACD_HspB2_like 107231 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06477 ACD_HspB3_Like 107232 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06478 ACD_HspB4-5-6 107233 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06479 ACD_HspB7_like 107234 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06480 ACD_HspB8_like 107235 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06481 ACD_HspB9_like 107236 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06482 ACD_HspB10 107237 cd06526 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06488 p23_melusin... 107238 cd06466 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06489 p23_CS_hSgt... 107239 cd06466 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06490 p23_NCB5OR 107240 cd06466 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06492 p23_mNUDC_like 107241 cd06467 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06493 p23_NUDCD1_... 107242 cd06467 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06494 p23_NUDCD2_... 107243 cd06467 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06495 p23_NUDCD3_... 107244 cd06467 cd00298 2 1 1 0 01/17/13 11:45:00 -cd06497 ACD_alphaA-... 107245 cd06478 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06498 ACD_alphaB-... 107246 cd06478 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06499 GT_MraY-like 133460 N/A cd06499 3 1 1 0 01/17/13 11:45:00 -cd06502 TA_like 99748 cd01494 cd01494 3 1 1 0 01/17/13 11:45:00 -cd06503 ATP-synt_Fo_b 349951 N/A cd06503 1 1 0 0 07/11/18 17:56:00 -cd06522 GH25_AtlA-like 119382 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06523 GH25_PlyB-like 119383 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06524 GH25_YegX-like 119384 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06525 GH25_Lyc-like 119385 cd00599 cd00599 3 1 1 0 01/17/13 11:45:00 -cd06526 metazoan_ACD 107247 cd06464 cd00298 3 1 1 0 01/17/13 11:45:00 -cd06528 RNAP_A'' 132725 cd00630 cd00630 3 1 1 0 01/17/13 11:45:00 -cd06529 S24_LexA-like 119397 cd06462 cd06462 3 1 1 0 01/17/13 11:45:00 -cd06530 S26_SPase_I 119398 cd06462 cd06462 3 1 1 0 01/17/13 11:45:00 -cd06532 Glyco_trans... 133474 N/A cd06532 2 1 1 0 01/17/13 11:45:00 -cd06533 Glyco_trans... 119439 N/A cd06533 2 1 1 0 01/17/13 11:45:00 -cd06534 ALDH-SF 143395 N/A cd06534 4 1 1 0 01/17/13 11:45:00 -cd06535 CIDE_N_CAD 119368 cd01615 cd01615 3 1 1 0 01/17/13 11:45:00 -cd06536 CIDE_N_ICAD 119369 cd01615 cd01615 3 1 1 0 01/17/13 11:45:00 -cd06537 CIDE_N_B 119370 cd01615 cd01615 3 1 1 0 01/17/13 11:45:00 -cd06538 CIDE_N_FSP27 119371 cd01615 cd01615 3 1 1 0 01/17/13 11:45:00 -cd06539 CIDE_N_A 119372 cd01615 cd01615 3 1 1 0 01/17/13 11:45:00 -cd06541 ASCH 119343 N/A cd06541 2 1 1 0 01/17/13 11:45:00 -cd06542 GH18_EndoS-... 119359 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06543 GH18_PF-Chi... 119360 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06544 GH18_narbonin 119361 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06545 GH18_3CO4_c... 119362 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06546 GH18_CTS3_c... 119363 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06547 GH85_ENGase 119364 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06548 GH18_chitinase 119365 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06549 GH18_trifun... 119366 cd00598 cd00598 3 1 1 0 01/17/13 11:45:00 -cd06550 TM_ABC_iron... 119348 N/A cd06550 3 1 1 0 01/17/13 11:45:00 -cd06551 LPLAT 153244 N/A cd06551 2 1 1 0 01/17/13 11:45:00 -cd06552 ASCH_yqfb_like 119344 cd06541 cd06541 2 1 1 0 01/17/13 11:45:00 -cd06553 ASCH_Ef3133... 119345 cd06541 cd06541 2 1 1 0 01/17/13 11:45:00 -cd06554 ASCH_ASC-1_... 119346 cd06541 cd06541 2 1 1 0 01/17/13 11:45:00 -cd06555 ASCH_PF0470... 119347 cd06541 cd06541 2 1 1 0 01/17/13 11:45:00 -cd06556 ICL_KPHMT 119341 N/A cd06556 3 1 1 0 01/17/13 11:45:00 -cd06557 KPHMT-like 119342 cd06556 cd06556 3 1 1 0 01/17/13 11:45:00 -cd06558 crotonase-like 119339 N/A cd06558 3 1 1 0 01/17/13 11:45:00 -cd06559 Endonuclease_V 143472 N/A cd06559 3 1 1 0 01/17/13 11:45:00 -cd06560 PriL 143473 N/A cd06560 3 1 1 0 01/17/13 11:46:00 -cd06561 AlkD_like 132880 N/A cd06561 3 1 1 0 01/17/13 11:46:00 -cd06562 GH20_HexA_H... 119332 cd02742 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06563 GH20_chitob... 119333 cd02742 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06564 GH20_DspB_L... 119334 cd02742 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06565 GH20_GcnA-like 119335 cd02742 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06567 Peptidase_S41 143475 N/A cd06567 3 1 1 0 01/17/13 11:46:00 -cd06568 GH20_SpHex_... 119336 cd06563 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06569 GH20_Sm-chi... 119337 cd06563 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06570 GH20_chitob... 119338 cd06563 cd02742 3 1 1 0 01/17/13 11:46:00 -cd06571 Bac_DnaA_C 119330 N/A cd06571 3 1 1 0 01/17/13 11:46:00 -cd06572 Histidinol_dh 119329 N/A cd06572 3 1 1 0 01/17/13 11:46:00 -cd06573 PASTA 119325 N/A cd06573 2 1 1 0 01/17/13 11:46:00 -cd06574 TM_PBP1_bra... 119320 N/A cd06574 2 1 1 0 01/17/13 11:46:00 -cd06575 PASTA_Pbp2x... 119326 cd06573 cd06573 2 1 1 0 01/17/13 11:46:00 -cd06576 PASTA_Pbp2x... 119327 cd06573 cd06573 2 1 1 0 01/17/13 11:46:00 -cd06577 PASTA_pknB 119328 cd06573 cd06573 2 1 1 0 01/17/13 11:46:00 -cd06578 HemD 119440 N/A cd06578 3 1 1 0 01/17/13 11:46:00 -cd06579 TM_PBP1_tra... 119321 cd06574 cd06574 2 1 1 0 01/17/13 11:46:00 -cd06580 TM_PBP1_tra... 119322 cd06574 cd06574 2 1 1 0 01/17/13 11:46:00 -cd06581 TM_PBP1_Liv... 119323 cd06574 cd06574 2 1 1 0 01/17/13 11:46:00 -cd06582 TM_PBP1_Liv... 119324 cd06574 cd06574 2 1 1 0 01/17/13 11:46:00 -cd06583 PGRP 133475 N/A cd06583 3 1 1 0 01/17/13 11:46:00 -cd06586 TPP_enzyme_PYR 132915 N/A cd06586 3 1 1 0 01/17/13 11:46:00 -cd06587 VOC 319898 N/A cd06587 5 1 1 0 08/18/16 16:43:00 -cd06588 PhnB_like 319899 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd06589 GH31 269876 cd14790 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06590 RNase_HII_b... 260000 cd06266 cd06222 5 1 1 0 08/20/13 16:29:00 -cd06591 GH31_xylosi... 269877 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06592 GH31_NET37 269878 cd14790 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06593 GH31_xylosi... 269879 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06594 GH31_glucos... 269880 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06595 GH31_u1 269881 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06596 GH31_CPE1046 269882 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06597 GH31_transf... 269883 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06598 GH31_transf... 269884 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06599 GH31_glycos... 269885 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06600 GH31_MGAM-like 269886 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06601 GH31_lyase_... 269887 cd06589 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06602 GH31_MGAM_S... 269888 cd06600 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06603 GH31_GANC_G... 269889 cd06600 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06604 GH31_glucos... 269890 cd06600 cd14790 4 1 1 0 03/02/14 08:12:00 -cd06605 PKc_MAPKK 270782 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06606 STKc_MAPKKK 270783 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06607 STKc_TAO 270784 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06608 STKc_myosin... 270785 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06609 STKc_MST3_like 270786 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06610 STKc_OSR1_SPAK 270787 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06611 STKc_SLK_like 132942 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06612 STKc_MST1_2 132943 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06613 STKc_MAP4K3... 270788 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06614 STKc_PAK 270789 cd05122 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06615 PKc_MEK 132946 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06616 PKc_MKK4 270790 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06617 PKc_MKK3_6 173729 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06618 PKc_MKK7 270791 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06619 PKc_MKK5 132950 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06620 PKc_Byr1_like 270792 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06621 PKc_Pek1_like 270793 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06622 PKc_PBS2_like 132953 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06623 PKc_MAPKK_p... 132954 cd06605 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06624 STKc_ASK 270794 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06625 STKc_MEKK3_... 270795 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06626 STKc_MEKK4 270796 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06627 STKc_Cdc7_like 270797 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06628 STKc_Byr2_like 270798 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06629 STKc_Bck1_like 270799 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06630 STKc_MEKK1 270800 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06631 STKc_YSK4 270801 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06632 STKc_MEKK1_... 270802 cd06606 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06633 STKc_TAO3 270803 cd06607 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06634 STKc_TAO2 270804 cd06607 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06635 STKc_TAO1 270805 cd06607 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06636 STKc_MAP4K4... 270806 cd06608 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06637 STKc_TNIK 270807 cd06608 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06638 STKc_myosin... 132969 cd06608 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06639 STKc_myosin... 270808 cd06608 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06640 STKc_MST4 132971 cd06609 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06641 STKc_MST3 270809 cd06609 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06642 STKc_STK25 270810 cd06609 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06643 STKc_SLK 270811 cd06611 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06644 STKc_STK10 132975 cd06611 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06645 STKc_MAP4K3 270812 cd06613 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06646 STKc_MAP4K5 270813 cd06613 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06647 STKc_PAK_I 270814 cd06614 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06648 STKc_PAK_II 270815 cd06614 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06649 PKc_MEK2 132980 cd06615 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06650 PKc_MEK1 270816 cd06615 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06651 STKc_MEKK3 270817 cd06625 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06652 STKc_MEKK2 270818 cd06625 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06653 STKc_MEKK3_... 270819 cd06625 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06654 STKc_PAK1 270820 cd06647 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06655 STKc_PAK2 132986 cd06647 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06656 STKc_PAK3 132987 cd06647 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06657 STKc_PAK4 132988 cd06648 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06658 STKc_PAK5 132989 cd06648 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06659 STKc_PAK6 270821 cd06648 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06660 Aldo_ket_red 119408 N/A cd06660 3 1 1 0 01/17/13 11:46:00 -cd06661 GGCT_like 119400 N/A cd06661 3 1 1 0 01/17/13 11:46:00 -cd06662 SURF1 119401 N/A cd06662 2 1 1 0 01/17/13 11:46:00 -cd06663 Biotinyl_li... 133456 N/A cd06663 3 1 1 0 01/17/13 11:46:00 -cd06664 IscU_like 143480 N/A cd06664 3 1 1 0 01/17/13 11:46:00 -cd06808 PLPDE_III 143484 N/A cd06808 3 1 1 0 01/17/13 11:46:00 -cd06810 PLPDE_III_O... 143485 cd06808 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06811 PLPDE_III_y... 143486 cd06808 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06812 PLPDE_III_D... 143487 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06813 PLPDE_III_D... 143488 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06814 PLPDE_III_D... 143489 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06815 PLPDE_III_A... 143490 cd06808 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06817 PLPDE_III_DSD 143491 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06818 PLPDE_III_c... 143492 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06819 PLPDE_III_L... 143493 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06820 PLPDE_III_L... 143494 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06821 PLPDE_III_D-TA 143495 cd07376 cd06808 3 1 1 0 01/17/13 11:46:00 -cd06822 PLPDE_III_Y... 143496 cd00635 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06824 PLPDE_III_Y... 143497 cd00635 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06825 PLPDE_III_VanT 143498 cd00430 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06826 PLPDE_III_AR2 143499 cd00430 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06827 PLPDE_III_A... 143500 cd00430 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06828 PLPDE_III_D... 143501 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06829 PLPDE_III_C... 143502 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06830 PLPDE_III_ADC 143503 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06831 PLPDE_III_O... 143504 cd00622 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06836 PLPDE_III_O... 143505 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06839 PLPDE_III_B... 143506 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06840 PLPDE_III_B... 143507 cd06828 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06841 PLPDE_III_M... 143508 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06842 PLPDE_III_Y... 143509 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06843 PLPDE_III_P... 143510 cd06810 cd06808 3 1 1 0 01/17/13 11:47:00 -cd06844 STAS 132911 N/A cd06844 2 1 1 0 01/17/13 11:47:00 -cd06845 Bcl-2_like 132900 N/A cd06845 2 1 1 0 01/17/13 11:47:00 -cd06846 Adenylation... 185704 N/A cd06846 4 1 1 0 01/17/13 11:47:00 -cd06848 GCS_H 133457 cd06663 cd06663 3 1 1 0 01/17/13 11:47:00 -cd06849 lipoyl_domain 133458 cd06663 cd06663 3 1 1 0 01/17/13 11:47:00 -cd06850 biotinyl_do... 133459 cd06663 cd06663 3 1 1 0 01/17/13 11:47:00 -cd06851 GT_GPT_like 133461 cd06499 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06852 GT_MraY 133462 cd06499 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06853 GT_WecA_like 133463 cd06499 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06854 GT_WbpL_Wbc... 133464 cd06499 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06855 GT_GPT_euk 133465 cd06851 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06856 GT_GPT_archaea 133466 cd06851 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06857 SLC5-6-like... 271356 N/A cd06857 3 1 1 0 06/11/14 17:11:00 -cd06859 PX_SNX1_2_like 132769 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06860 PX_SNX7_30_... 132770 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06861 PX_Vps5p 132771 cd06859 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06862 PX_SNX9_18_... 132772 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06863 PX_Atg24p 132773 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06864 PX_SNX4 132774 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06865 PX_SNX_like 132775 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06866 PX_SNX8_Mvp... 132776 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06867 PX_SNX41_42 132777 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06868 PX_HS1BP3 132778 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06869 PX_UP2_fungi 132779 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06870 PX_CISK 132780 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06871 PX_MONaKA 132781 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06872 PX_SNX19_li... 132782 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06873 PX_SNX13 132783 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06874 PX_KIF16B_S... 132784 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06875 PX_IRAS 132785 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06876 PX_MDM1p 132786 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06877 PX_SNX14 132787 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06878 PX_SNX25 132788 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06879 PX_UP1_plant 132789 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06880 PX_SNX22 132790 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06881 PX_SNX15_like 132791 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06882 PX_p40phox 132792 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06883 PX_PI3K_C2 132793 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06884 PX_PI3K_C2_68D 132794 cd06883 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06885 PX_SNX17_31 132795 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06886 PX_SNX27 132796 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06887 PX_p47phox 132797 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06888 PX_FISH 132798 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06889 PX_NoxO1 132799 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06890 PX_Bem1p 132800 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06891 PX_Vps17p 132801 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06892 PX_SNX5_like 132802 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06893 PX_SNX19 132803 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06894 PX_SNX3_like 132804 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06895 PX_PLD 132805 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06896 PX_PI3K_C2_... 132806 cd06883 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06897 PX_SNARE 132807 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06898 PX_SNX10 132808 cd06093 cd06093 3 1 1 0 01/17/13 11:47:00 -cd06899 lectin_legu... 173887 cd01951 cd01951 3 1 1 0 01/17/13 11:47:00 -cd06900 lectin_VcfQ 173888 cd01951 cd01951 3 1 1 0 01/17/13 11:47:00 -cd06901 lectin_VIP3... 173889 cd07308 cd01951 3 1 1 0 01/17/13 11:47:00 -cd06902 lectin_ERGI... 173890 cd07308 cd01951 3 1 1 0 01/17/13 11:47:00 -cd06903 lectin_EMP4... 173891 cd07308 cd01951 3 1 1 0 01/17/13 11:47:00 -cd06904 M14_MpaA-like 349475 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06905 M14-like 349476 cd00596 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06906 M14_Nna1 349477 cd06235 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06907 M14_AGBL2-3... 349478 cd06235 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06908 M14_AGBL4_like 349479 cd06235 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06909 M14_ASPA 349480 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06910 M14_ASTE_AS... 349481 cd06230 cd00596 5 1 0 0 07/11/18 17:51:00 -cd06911 VirB9_CagX_... 132874 N/A cd06911 2 1 1 0 01/17/13 11:47:00 -cd06912 GT_MraY_like 133467 cd06499 cd06499 3 1 1 0 01/17/13 11:47:00 -cd06913 beta3GnTL1_... 133063 cd00761 cd00761 3 1 1 0 01/17/13 11:47:00 -cd06914 GT8_GNT1 133064 cd00505 cd00761 4 1 1 0 01/17/13 11:47:00 -cd06915 NTP_transfe... 133065 cd04181 cd00761 4 1 1 0 01/17/13 11:47:00 -cd06916 NR_DBD_like 143512 N/A cd06916 3 1 1 0 01/17/13 11:47:00 -cd06917 STKc_NAK1_like 270822 cd06609 cd13968 5 1 1 0 03/02/14 08:45:00 -cd06919 Asp_decarbox 132994 N/A cd06919 3 1 1 0 01/17/13 11:47:00 -cd06920 NEAT 132993 N/A cd06920 3 1 1 0 01/17/13 11:47:00 -cd06921 ChtBD1_GH19... 211312 cd00035 cd00035 2 1 1 0 01/17/13 11:47:00 -cd06922 ChtBD1_GH18_1 211313 cd00035 cd00035 2 1 1 0 01/17/13 11:47:00 -cd06923 ChtBD1_GH16 211314 cd00035 cd00035 2 1 1 0 01/17/13 11:47:00 -cd06926 RNAP_II_RPB11 132902 cd07027 cd00460 3 1 1 0 01/17/13 11:47:00 -cd06927 RNAP_L 132903 cd07027 cd00460 3 1 1 0 01/17/13 11:47:00 -cd06928 RNAP_alpha_NTD 132904 cd00460 cd00460 3 1 1 0 01/17/13 11:47:00 -cd06929 NR_LBD_F1 132727 cd06157 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06930 NR_LBD_F2 132728 cd06157 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06931 NR_LBD_HNF4... 132729 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06932 NR_LBD_PPAR 132730 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06933 NR_LBD_VDR 132731 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06934 NR_LBD_PXR_... 132732 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06935 NR_LBD_TR 132733 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06936 NR_LBD_Fxr 132734 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06937 NR_LBD_RAR 132735 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06938 NR_LBD_EcR 132736 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06939 NR_LBD_ROR_... 132737 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06940 NR_LBD_REV_ERB 132738 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06941 NR_LBD_DmE7... 132739 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06942 NR_LBD_Sex_... 132740 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06943 NR_LBD_RXR_... 132741 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06944 NR_LBD_Ftz-... 132742 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06945 NR_LBD_Nurr... 132743 cd06157 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06946 NR_LBD_ERR 132744 cd07068 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06947 NR_LBD_GR_Like 132745 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06948 NR_LBD_COUP-TF 132746 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06949 NR_LBD_ER 132747 cd07068 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06950 NR_LBD_Tlx_... 132748 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06951 NR_LBD_Dax1... 132749 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06952 NR_LBD_TR2_... 132750 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06953 NR_LBD_DHR4... 132751 cd06930 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06954 NR_LBD_LXR 132752 cd06929 cd06157 3 1 1 0 01/17/13 11:47:00 -cd06955 NR_DBD_VDR 143513 cd07156 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06956 NR_DBD_RXR 143514 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06957 NR_DBD_PNR_... 143515 cd07154 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06958 NR_DBD_COUP_TF 143516 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06959 NR_DBD_EcR_... 143517 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06960 NR_DBD_HNF4A 143518 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06961 NR_DBD_TR 143519 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06962 NR_DBD_FXR 143520 cd06959 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06963 NR_DBD_GR_like 143521 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06964 NR_DBD_RAR 143522 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06965 NR_DBD_Ppar 143523 cd07158 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06966 NR_DBD_CAR 143524 cd07156 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06967 NR_DBD_TR2_... 143525 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06968 NR_DBD_ROR 143526 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06969 NR_DBD_NGFI-B 143527 cd06916 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06970 NR_DBD_PNR 143528 cd07154 cd06916 3 1 1 0 01/17/13 11:47:00 -cd06971 PgpA 133477 N/A cd06971 3 1 1 0 01/17/13 11:47:00 -cd06974 TerD_like 132992 N/A cd06974 3 1 1 0 01/17/13 11:47:00 -cd07012 PBP2_Bug_TTT 270234 cd00648 cd00648 1 1 1 0 12/15/17 11:12:00 -cd07013 S14_ClpP 132924 cd00394 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07014 S49_SppA 132925 cd00394 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07015 Clp_proteas... 132926 cd00394 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07016 S14_ClpP_1 132927 cd07013 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07017 S14_ClpP_2 132928 cd07013 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07018 S49_SppA_67... 132929 cd07014 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07019 S49_SppA_1 132930 cd07014 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07020 Clp_proteas... 132931 cd07015 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07021 Clp_proteas... 132932 cd07015 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07022 S49_Sppa_36... 132933 cd07019 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07023 S49_Sppa_N_C 132934 cd07019 cd00394 3 1 1 0 01/17/13 11:47:00 -cd07025 Peptidase_S66 132882 N/A cd07025 3 1 1 0 01/17/13 11:47:00 -cd07026 Ribosomal_L20 197305 N/A cd07026 2 1 1 0 01/17/13 11:47:00 -cd07027 RNAP_RPB11_... 132905 cd00460 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07028 RNAP_RPB3_like 132906 cd00460 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07029 RNAP_I_III_... 132907 cd07027 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07030 RNAP_D 132908 cd07028 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07031 RNAP_II_RPB3 132909 cd07028 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07032 RNAP_I_II_AC40 132910 cd07028 cd00460 3 1 1 0 01/17/13 11:47:00 -cd07033 TPP_PYR_DXS... 132916 cd06586 cd06586 3 1 1 0 01/17/13 11:47:00 -cd07034 TPP_PYR_PFO... 132917 cd06586 cd06586 3 1 1 0 01/17/13 11:47:00 -cd07035 TPP_PYR_POX... 132918 cd06586 cd06586 3 1 1 0 01/17/13 11:47:00 -cd07036 TPP_PYR_E1-... 132919 cd07033 cd06586 3 1 1 0 01/17/13 11:47:00 -cd07037 TPP_PYR_MenD 132920 cd07035 cd06586 3 1 1 0 01/17/13 11:48:00 -cd07038 TPP_PYR_PDC... 132921 cd07035 cd06586 3 1 1 0 01/17/13 11:48:00 -cd07039 TPP_PYR_POX 132922 cd07035 cd06586 3 1 1 0 01/17/13 11:48:00 -cd07040 HP 132716 N/A cd07040 3 1 1 0 01/17/13 11:48:00 -cd07041 STAS_RsbR_R... 132912 cd06844 cd06844 2 1 1 0 01/17/13 11:48:00 -cd07042 STAS_SulP_l... 132913 cd06844 cd06844 2 1 1 0 01/17/13 11:48:00 -cd07043 STAS_anti-a... 132914 cd06844 cd06844 3 1 1 0 01/17/13 11:48:00 -cd07044 CofD_YvcK 132871 N/A cd07044 3 1 1 0 01/17/13 11:48:00 -cd07045 BMC_CcmK_like 132885 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07046 BMC_PduU-EutS 132886 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07047 BMC_PduB_re... 132887 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07048 BMC_PduB_re... 132888 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07049 BMC_EutL_re... 132889 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07050 BMC_EutL_re... 132890 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07051 BMC_like_1_... 132891 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07052 BMC_like_1_... 132892 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07053 BMC_PduT_re... 132893 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07054 BMC_PduT_re... 132894 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07055 BMC_like_2 132895 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07056 BMC_PduK 132896 cd06169 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07057 BMC_CcmK 132897 cd07045 cd06169 3 1 1 0 08/15/16 09:42:00 -cd07058 BMC_CsoS1 132898 cd07045 cd06169 3 1 1 0 08/15/16 09:43:00 -cd07059 BMC_PduA 132899 cd07045 cd06169 3 1 1 0 01/17/13 11:48:00 -cd07060 SPOUT_MTase 349952 N/A cd07060 1 1 0 0 07/11/18 17:56:00 -cd07061 HP_HAP_like 132717 cd07040 cd07040 3 1 1 0 01/17/13 11:48:00 -cd07062 Peptidase_S... 132883 cd07025 cd07025 3 1 1 0 01/17/13 11:48:00 -cd07064 AlkD_like_1 132881 cd06561 cd06561 3 1 1 0 01/17/13 11:48:00 -cd07066 CRD_FZ 143549 N/A cd07066 3 1 1 0 01/17/13 11:48:00 -cd07067 HP_PGM_like 132718 cd07040 cd07040 3 1 1 0 01/17/13 11:48:00 -cd07068 NR_LBD_ER_like 132753 cd06930 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07069 NR_LBD_Lrh-1 132754 cd06944 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07070 NR_LBD_SF-1 132755 cd06944 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07071 NR_LBD_Nurr1 132756 cd06945 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07072 NR_LBD_DHR3... 132757 cd06945 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07073 NR_LBD_AR 132758 cd06947 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07074 NR_LBD_PR 132759 cd06947 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07075 NR_LBD_MR 132760 cd06947 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07076 NR_LBD_GR 132761 cd06947 cd06157 3 1 1 0 01/17/13 11:48:00 -cd07077 ALDH-like 143396 cd06534 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07078 ALDH 143397 cd06534 cd06534 4 1 1 0 01/17/13 11:48:00 -cd07079 ALDH_F18-19... 143398 cd07077 cd06534 4 1 1 0 01/17/13 11:48:00 -cd07080 ALDH_Acyl-C... 143399 cd07077 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07081 ALDH_F20_AC... 143400 cd07077 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07082 ALDH_F11_NP... 143401 cd07078 cd06534 4 1 1 0 01/17/13 11:48:00 -cd07083 ALDH_P5CDH 143402 cd07078 cd06534 4 1 1 0 01/17/13 11:48:00 -cd07084 ALDH_KGSADH... 143403 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07085 ALDH_F6_MMSDH 143404 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07086 ALDH_F7_AAS... 143405 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07087 ALDH_F3-13-... 143406 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07088 ALDH_LactAD... 143407 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07089 ALDH_CddD-A... 143408 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07090 ALDH_F9_TMBADH 143409 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07091 ALDH_F1-2_A... 143410 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07092 ALDH_ABALDH... 143411 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07093 ALDH_F8_HMSADH 143412 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07094 ALDH_F21_La... 143413 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07095 ALDH_SGSD_AstD 143414 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07097 ALDH_KGSADH... 143415 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07098 ALDH_F15-22 143416 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07099 ALDH_DDALDH 143417 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07100 ALDH_SSADH1... 143418 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07101 ALDH_SSADH2... 143419 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07102 ALDH_EDX86601 143420 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07103 ALDH_F5_SSA... 143421 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07104 ALDH_BenzAD... 143422 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07105 ALDH_SaliADH 143423 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07106 ALDH_AldA-A... 143424 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07107 ALDH_PhdK-like 143425 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07108 ALDH_MGR_2402 143426 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07109 ALDH_AAS00426 143427 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07110 ALDH_F10_BADH 143428 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07111 ALDH_F16 143429 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07112 ALDH_GABALD... 143430 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07113 ALDH_PADH_NahF 143431 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07114 ALDH_DhaS 143432 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07115 ALDH_HMSADH... 143433 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07116 ALDH_ACDHII... 143434 cd07559 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07117 ALDH_StaphA... 143435 cd07559 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07118 ALDH_SNDH 143436 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07119 ALDH_BADH-GbsA 143437 cd07078 cd06534 4 1 1 0 01/17/13 11:48:00 -cd07120 ALDH_PsfA-A... 143438 cd07078 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07121 ALDH_EutE 143439 cd07081 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07122 ALDH_F20_ACDH 143440 cd07081 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07123 ALDH_F4-17_... 143441 cd07083 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07124 ALDH_PutA-P... 143442 cd07083 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07125 ALDH_PutA-P... 143443 cd07083 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07126 ALDH_F12_P5CDH 143444 cd07084 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07127 ALDH_PAD-PaaZ 143445 cd07084 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07128 ALDH_MaoC-N 143446 cd07084 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07129 ALDH_KGSADH 143447 cd07084 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07130 ALDH_F7_AASADH 143448 cd07086 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07131 ALDH_AldH-C... 143449 cd07086 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07132 ALDH_F3AB 143450 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07133 ALDH_CALDH_... 143451 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07134 ALDH_AlkH-like 143452 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07135 ALDH_F14-YM... 143453 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07136 ALDH_YwdH-P... 143454 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07137 ALDH_F3FHI 143455 cd07087 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07138 ALDH_CddD_S... 143456 cd07089 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07139 ALDH_AldA-R... 143457 cd07089 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07140 ALDH_F1L_FTFDH 143458 cd07091 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07141 ALDH_F1AB_F... 143459 cd07091 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07142 ALDH_F2BC 143460 cd07091 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07143 ALDH_AldA_A... 143461 cd07091 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07144 ALDH_ALD2-Y... 143462 cd07091 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07145 ALDH_LactAD... 143463 cd07094 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07146 ALDH_PhpJ 143464 cd07094 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07147 ALDH_F21_RN... 143465 cd07094 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07148 ALDH_RL0313 143466 cd07094 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07149 ALDH_y4uC 143467 cd07094 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07150 ALDH_VaniDH... 143468 cd07104 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07151 ALDH_HBenzADH 143469 cd07104 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07152 ALDH_BenzADH 143470 cd07104 cd06534 3 1 1 0 01/17/13 11:48:00 -cd07153 Fur_like 133478 N/A cd07153 3 1 1 0 01/17/13 11:48:00 -cd07154 NR_DBD_PNR_... 143529 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07155 NR_DBD_ER_like 143530 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07156 NR_DBD_VDR_... 143531 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07157 2DBD_NR_DBD1 143532 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07158 NR_DBD_Ppar... 143533 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07160 NR_DBD_LXR 143534 cd06959 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07161 NR_DBD_EcR 143535 cd06959 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07162 NR_DBD_PXR 143536 cd07156 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07163 NR_DBD_TLX 143537 cd07154 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07164 NR_DBD_PNR_... 143538 cd07154 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07165 NR_DBD_DmE7... 143539 cd07158 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07166 NR_DBD_REV_ERB 143540 cd07158 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07167 NR_DBD_Lrh-... 143541 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07168 NR_DBD_DHR4... 143542 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07169 NR_DBD_GCNF... 143543 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07170 NR_DBD_ERR 143544 cd07155 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07171 NR_DBD_ER 143545 cd07155 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07172 NR_DBD_GR_PR 143546 cd06963 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07173 NR_DBD_AR 143547 cd06963 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07176 terB 143580 cd07177 cd07177 3 1 1 0 01/17/13 11:48:00 -cd07177 terB_like 143581 N/A cd07177 3 1 1 0 01/17/13 11:48:00 -cd07178 terB_like_YebE 143582 cd07177 cd07177 3 1 1 0 01/17/13 11:48:00 -cd07179 2DBD_NR_DBD2 143548 cd06916 cd06916 3 1 1 0 01/17/13 11:48:00 -cd07180 RNase_HII_a... 260001 cd06266 cd06222 4 1 1 0 08/20/13 16:29:00 -cd07181 RNase_HII_e... 260002 cd06266 cd06222 4 1 1 0 08/20/13 16:29:00 -cd07182 RNase_HII_b... 260003 cd06266 cd06222 4 1 1 0 08/20/13 16:29:00 -cd07184 E_set_Isoam... 199892 cd02688 cd02688 2 1 1 0 01/17/13 11:49:00 -cd07185 OmpA_C-like 143586 N/A cd07185 3 1 1 0 01/17/13 11:49:00 -cd07186 CofD_like 132872 cd07044 cd07044 3 1 1 0 01/17/13 11:49:00 -cd07187 YvcK_like 132873 cd07044 cd07044 3 1 1 0 01/17/13 11:49:00 -cd07197 nitrilase 143587 N/A cd07197 3 1 1 0 01/17/13 11:49:00 -cd07198 Patatin 132837 cd01819 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07199 Pat17_PNPLA... 132838 cd01819 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07200 cPLA2_Grp-IVA 132839 cd00147 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07201 cPLA2_Grp-I... 132840 cd00147 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07202 cPLA2_Grp-IVC 132841 cd00147 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07203 cPLA2_Funga... 132842 cd00147 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07204 Pat_PNPLA_like 132843 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07205 Pat_PNPLA6_... 132844 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07206 Pat_TGL3-4-... 132845 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07207 Pat_ExoU_Vi... 132846 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07208 Pat_hypo_Ec... 132847 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07209 Pat_hypo_Ec... 132848 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07210 Pat_hypo_W_... 132849 cd07198 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07211 Pat_PNPLA8 132850 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07212 Pat_PNPLA9 132851 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07213 Pat17_PNPLA... 132852 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07214 Pat17_isozy... 132853 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07215 Pat17_PNPLA... 132854 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07216 Pat17_PNPLA... 132855 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07217 Pat17_PNPLA... 132856 cd07199 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07218 Pat_iPLA2 132857 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07219 Pat_PNPLA1 132858 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07220 Pat_PNPLA2 132859 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07221 Pat_PNPLA3 132860 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07222 Pat_PNPLA4 132861 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07223 Pat_PNPLA5-... 132862 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07224 Pat_like 132863 cd07204 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07225 Pat_PNPLA6_... 132864 cd07205 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07227 Pat_Fungal_... 132865 cd07205 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07228 Pat_NTE_lik... 132866 cd07205 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07229 Pat_TGL3_like 132867 cd07206 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07230 Pat_TGL4-5_... 132868 cd07206 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07231 Pat_SDP1-like 132869 cd07206 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07232 Pat_PLPL 132870 cd07206 cd01819 3 1 1 0 01/17/13 11:49:00 -cd07233 GlxI_Zn 319900 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07235 MRD 319901 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07237 BphC1-RGP6_... 319902 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07238 VOC_like 319903 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07239 BphC5-RK37_... 319904 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07241 VOC_BsYyaH 319905 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07242 VOC_BsYqjT 319906 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07243 2_3_CTD_C 319907 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07244 FosA 319908 cd08345 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07245 VOC_like 319909 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07246 VOC_like 319910 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07247 SgaA_N_like 319911 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07249 MMCE 319912 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07250 HPPD_C_like 319913 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07251 VOC_like 319914 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07252 BphC1-RGP6_... 319915 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07253 GLOD5 319916 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07254 VOC_like 319917 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07255 VOC_BsCatE_... 319918 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07256 HPCD_C_clas... 319919 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07257 THT_oxygena... 319920 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07258 PpCmtC_C 319921 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07261 EhpR_like 319922 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07262 VOC_like 319923 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07263 VOC_like 319924 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07264 VOC_like 319925 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07265 2_3_CTD_N 319926 cd16360 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07266 HPCD_N_clas... 319927 cd16360 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07267 THT_Oxygena... 319928 cd16360 cd06587 4 1 1 0 08/18/16 16:43:00 -cd07268 VOC_EcYecM_... 319929 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd07276 PX_SNX16 132809 cd06093 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07277 PX_RUN 132810 cd06093 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07278 PX_RICS_like 132811 cd06093 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07279 PX_SNX20_21... 132812 cd06093 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07280 PX_YPT35 132813 cd06093 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07281 PX_SNX1 132814 cd06859 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07282 PX_SNX2 132815 cd06859 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07283 PX_SNX30 132816 cd06860 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07284 PX_SNX7 132817 cd06860 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07285 PX_SNX9 132818 cd06862 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07286 PX_SNX18 132819 cd06862 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07287 PX_RPK118_like 132820 cd06881 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07288 PX_SNX15 132821 cd06881 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07289 PX_PI3K_C2_... 132822 cd06883 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07290 PX_PI3K_C2_... 132823 cd06883 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07291 PX_SNX5 132824 cd06892 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07292 PX_SNX6 132825 cd06892 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07293 PX_SNX3 132826 cd06894 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07294 PX_SNX12 132827 cd06894 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07295 PX_Grd19 132828 cd06894 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07296 PX_PLD1 132829 cd06895 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07297 PX_PLD2 132830 cd06895 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07298 PX_RICS 132831 cd07278 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07299 PX_TCGAP 132832 cd07278 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07300 PX_SNX20 132833 cd07279 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07301 PX_SNX21 132834 cd07279 cd06093 3 1 1 0 01/17/13 11:49:00 -cd07302 CHD 143636 cd07556 cd07556 3 1 1 0 01/17/13 11:49:00 -cd07303 Porin3 132765 N/A cd07303 2 1 1 0 01/17/13 11:49:00 -cd07304 Chorismate_... 143612 N/A cd07304 3 1 1 0 01/17/13 11:49:00 -cd07305 Porin3_Tom40 132766 cd07303 cd07303 2 1 1 0 01/17/13 11:49:00 -cd07306 Porin3_VDAC 132767 cd07303 cd07303 3 1 1 0 01/17/13 11:49:00 -cd07307 BAR 153271 N/A cd07307 3 1 1 0 01/17/13 11:49:00 -cd07308 lectin_leg-... 173892 cd01951 cd01951 3 1 1 0 01/17/13 11:49:00 -cd07309 PHP 213985 N/A cd07309 2 1 1 0 01/17/13 11:49:00 -cd07311 terB_like_1 143583 cd07177 cd07177 3 1 1 0 01/17/13 11:49:00 -cd07313 terB_like_2 143584 cd07177 cd07177 3 1 1 0 01/17/13 11:49:00 -cd07316 terB_like_DjlA 143585 cd07177 cd07177 3 1 1 0 01/17/13 11:49:00 -cd07320 Extradiol_D... 153371 N/A cd07320 3 1 1 0 01/17/13 11:49:00 -cd07321 Extradiol_D... 153390 N/A cd07321 3 1 1 0 01/17/13 11:49:00 -cd07322 PriL_PriS_E... 143474 cd06560 cd06560 3 1 1 0 01/17/13 11:49:00 -cd07323 LAM 153396 N/A cd07323 3 1 1 0 01/17/13 11:49:00 -cd07324 M48C_Oma1-like 320683 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07325 M48_Ste24p_... 320684 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07326 M56_BlaR1_M... 320685 cd07329 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07327 M48B_HtpX_like 320686 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07328 M48_Ste24p_... 320687 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07329 M56_like 320688 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07330 M48A_Ste24p 320689 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07331 M48C_Oma1_like 320690 cd07324 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07332 M48C_Oma1_like 320691 cd07324 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07333 M48C_bepA_like 320692 cd07324 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07334 M48C_loiP_like 320693 cd07324 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07335 M48B_HtpX_like 320694 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07336 M48B_HtpX_like 320695 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07337 M48B_HtpX_like 320696 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07338 M48B_HtpX_like 320697 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07339 M48B_HtpX_like 320698 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07340 M48B_Htpx_like 320699 cd07327 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07341 M56_BlaR1_M... 320700 cd07329 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07342 M48C_Oma1_like 320701 cd07324 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07343 M48A_Zmpste... 320702 cd07330 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07344 M48_yhfN_like 320703 cd05843 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07345 M48A_Ste24p... 320704 cd07330 cd05843 1 1 1 0 08/18/16 17:14:00 -cd07346 ABC_6TM_exp... 349983 N/A cd07346 1 1 0 0 07/11/18 17:56:00 -cd07347 harmonin_N_... 259818 N/A cd07347 3 1 1 0 04/05/13 12:52:00 -cd07348 NR_LBD_NGFI-B 132762 cd06945 cd06157 3 1 1 0 01/17/13 11:49:00 -cd07349 NR_LBD_SHP 132763 cd06951 cd06157 3 1 1 0 01/17/13 11:49:00 -cd07350 NR_LBD_Dax1 132764 cd06951 cd06157 3 1 1 0 01/17/13 11:49:00 -cd07353 harmonin_N 259819 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07354 HN_L-delphi... 259820 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07355 HN_L-delphi... 259821 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07356 HN_L-whirli... 259822 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07357 HN_L-whirli... 259823 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07358 HN_PDZD7_like 259824 cd07347 cd07347 3 1 1 0 04/05/13 12:52:00 -cd07359 PCA_45_Doxa... 153372 cd07320 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07361 MEMO_like 153373 cd07320 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07362 HPCD_like 153374 cd07320 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07363 45_DOPA_Dio... 153375 cd07320 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07364 PCA_45_Diox... 153376 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07365 MhpB_like 153377 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07366 3MGA_Dioxyg... 153378 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07367 CarBb 153379 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07368 PhnC_Bs_like 153380 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07369 PydA_Rs_like 153381 cd07359 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07370 HPCD 153382 cd07362 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07371 2A5CPDO_AB 153383 cd07362 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07372 2A5CPDO_B 153384 cd07371 cd07320 3 1 1 0 01/17/13 11:49:00 -cd07373 2A5CPDO_A 153385 cd07371 cd07320 2 1 1 0 01/17/13 11:49:00 -cd07374 CYTH-like_Pase 143620 N/A cd07374 3 1 1 0 01/17/13 11:49:00 -cd07375 Anticodon_I... 153408 N/A cd07375 3 1 1 0 01/17/13 11:49:00 -cd07376 PLPDE_III_D... 143511 cd06808 cd06808 3 1 1 0 01/17/13 11:49:00 -cd07377 WHTH_GntR 153418 N/A cd07377 3 1 1 0 01/17/13 11:49:00 -cd07378 MPP_ACP5 277324 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07379 MPP_239FB 277325 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07380 MPP_CWF19_N 277326 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07381 MPP_CapA 277327 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07382 MPP_DR1281 277328 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07383 MPP_Dcr2 277329 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07384 MPP_Cdc1_like 277330 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07385 MPP_YkuE_C 277331 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07386 MPP_DNA_pol... 277332 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07387 MPP_PolD2_C 277333 cd00838 cd00838 3 1 1 0 03/27/15 16:17:00 -cd07388 MPP_Tt1561 277334 cd00838 cd00838 3 1 1 0 03/27/15 16:17:00 -cd07389 MPP_PhoD 277335 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07390 MPP_AQ1575 277336 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07391 MPP_PF1019 277337 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07392 MPP_PAE1087 277338 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07393 MPP_DR1119 277339 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07394 MPP_Vps29 163637 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07395 MPP_CSTP1 277340 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07396 MPP_Nbla03831 277341 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07397 MPP_NostocD... 277342 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07398 MPP_YbbF-LpxH 277343 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07399 MPP_YvnB 277344 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07400 MPP_1 277345 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07401 MPP_TMEM62_N 277346 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07402 MPP_GpdQ 277347 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07403 MPP_TTHA0053 277348 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07404 MPP_MS158 277349 cd00838 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07405 MPP_UshA_N 277350 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07406 MPP_CG11883_N 277351 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07407 MPP_YHR202W_N 277352 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07408 MPP_SA0022_N 277353 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07409 MPP_CD73_N 277354 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07410 MPP_CpdB_N 277355 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07411 MPP_SoxB_N 277356 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07412 MPP_YhcR_N 277357 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07413 MPP_PA3087 277358 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07414 MPP_PP1_PPKL 277359 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07415 MPP_PP2A_PP... 277360 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07416 MPP_PP2B 277361 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07417 MPP_PP5_C 277362 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07418 MPP_PP7 163661 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07419 MPP_Bsu1_C 277363 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07420 MPP_RdgC 277364 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07421 MPP_Rhilphs 163664 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07422 MPP_ApaH 277365 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07423 MPP_Prp_like 277366 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07424 MPP_PrpA_PrpB 277367 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07425 MPP_Shelphs 277368 cd00144 cd00838 4 1 1 0 03/27/15 16:17:00 -cd07429 Cby_like 143631 N/A cd07429 2 1 1 0 01/17/13 11:50:00 -cd07430 GH15_N 143632 N/A cd07430 2 1 1 0 01/17/13 11:50:00 -cd07431 PHP_PolIIIA 213986 cd07309 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07432 PHP_HisPPase 213987 cd07309 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07433 PHP_PolIIIA... 213988 cd07431 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07434 PHP_PolIIIA... 213989 cd07431 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07435 PHP_PolIIIA... 213990 cd07431 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07436 PHP_PolX 213991 cd07432 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07437 PHP_HisPPas... 213992 cd07432 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07438 PHP_HisPPas... 213993 cd07432 cd07309 2 1 1 0 01/17/13 11:50:00 -cd07439 FANCE_c-term 143633 N/A cd07439 3 1 1 0 01/17/13 11:50:00 -cd07440 RGS 188659 N/A cd07440 2 1 1 0 01/17/13 11:50:00 -cd07441 CRD_SFRP3 143550 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07442 CRD_SFRP4 143551 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07443 CRD_SFRP1 143552 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07444 CRD_SFRP5 143553 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07445 CRD_corin_1 143554 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07446 CRD_SFRP2 143555 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07447 CRD_Carboxy... 143556 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07448 CRD_FZ4 143557 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07449 CRD_FZ3 143558 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07450 CRD_FZ6 143559 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07451 CRD_SMO 143560 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07452 CRD_sizzled 143561 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07453 CRD_crescent 143562 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07454 CRD_LIN_17 143563 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07455 CRD_Collage... 143564 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07456 CRD_FZ5_like 143565 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07457 CRD_FZ9_like 143566 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07458 CRD_FZ1_like 143567 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07459 CRD_TK_ROR_... 143568 cd07066 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07460 CRD_FZ5 143569 cd07456 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07461 CRD_FZ8 143570 cd07456 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07462 CRD_FZ10 143571 cd07457 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07463 CRD_FZ9 143572 cd07457 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07464 CRD_FZ2 143573 cd07458 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07465 CRD_FZ1 143574 cd07458 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07466 CRD_FZ7 143575 cd07458 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07467 CRD_TK_ROR1 143576 cd07459 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07468 CRD_TK_ROR2 143577 cd07459 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07469 CRD_TK_ROR_... 143578 cd07459 cd07066 3 1 1 0 01/17/13 11:50:00 -cd07470 CYTH-like_m... 143621 cd07374 cd07374 3 1 1 0 01/17/13 11:50:00 -cd07472 HmuY_like 213030 N/A cd07472 3 1 1 0 01/17/13 11:50:00 -cd07473 Peptidases_... 173799 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07474 Peptidases_... 173800 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07475 Peptidases_... 173801 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07476 Peptidases_... 173802 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07477 Peptidases_... 173803 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07478 Peptidases_... 173804 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07479 Peptidases_... 173805 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07480 Peptidases_... 173806 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07481 Peptidases_... 173807 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07482 Peptidases_... 173808 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07483 Peptidases_... 173809 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07484 Peptidases_... 173810 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07485 Peptidases_... 173811 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07487 Peptidases_... 173812 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07488 Peptidases_... 173813 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07489 Peptidases_... 173814 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07490 Peptidases_... 173815 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07491 Peptidases_... 173816 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07492 Peptidases_... 173817 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07493 Peptidases_... 173818 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07494 Peptidases_... 173819 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07496 Peptidases_... 173820 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07497 Peptidases_... 173821 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07498 Peptidases_... 173822 cd00306 cd00306 3 1 1 0 01/17/13 11:50:00 -cd07499 HAD_CBAP 319802 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07500 HAD_PSP 319803 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07501 HAD_MDP-1_like 319804 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07502 HAD_PNKP-C 319805 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07503 HAD_HisB-N 319806 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07504 HAD_5NT 319807 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07505 HAD_BPGM-like 319808 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07506 HAD_like 319809 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07507 HAD_Pase 319810 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07508 HAD_Pase_Um... 319811 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07509 HAD_PPase 319812 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07510 HAD_Pase_Um... 319813 cd07508 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07511 HAD_like 319814 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07512 HAD_PGPase 319815 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07514 HAD_Pase 319816 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07515 HAD-like 319817 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07516 HAD_Pase 319818 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07517 HAD_HPP 319819 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07518 HAD_YbiV-Like 319820 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07519 HAD_PTase 319821 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07520 HAD_like 319822 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07521 HAD_FCP1-like 319823 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07522 HAD_cN-II 319824 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07523 HAD_YsbA-like 319825 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07524 HAD_Pase 319826 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07525 HAD_like 319827 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07526 HAD_BPGM_like 319828 cd07505 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07527 HAD_ScGPP-like 319829 cd07505 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07528 HAD_CbbY-like 319830 cd07505 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07529 HAD_AtGPP-like 319831 cd07505 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07530 HAD_Pase_Um... 319832 cd07508 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07531 HAD_Pase_Um... 319833 cd07508 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07532 HAD_PNPase_... 319834 cd07508 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07533 HAD_like 319835 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07534 HAD_CAP 319836 cd01427 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07535 HAD_VSP 319837 cd01624 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07536 P-type_ATPa... 319838 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07538 P-type_ATPase 319839 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07539 P-type_ATPase 319840 cd01431 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07541 P-type_ATPa... 319841 cd07536 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07542 P-type_ATPa... 319842 cd02082 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07543 P-type_ATPa... 319843 cd02082 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07544 P-type_ATPa... 319844 cd02079 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07545 P-type_ATPa... 319845 cd02079 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07546 P-type_ATPa... 319846 cd02079 cd01427 1 1 1 0 08/18/16 16:37:00 -cd07548 P-type_ATPa... 319847 cd02079 cd01427 1 1 1 0 08/18/16 16:38:00 -cd07550 P-type_ATPa... 319848 cd02079 cd01427 1 1 1 0 08/18/16 16:38:00 -cd07551 P-type_ATPa... 319849 cd02079 cd01427 1 1 1 0 08/18/16 16:38:00 -cd07552 P-type_ATPa... 319850 cd02079 cd01427 1 1 1 0 08/18/16 16:38:00 -cd07553 P-type_ATPa... 319851 cd02079 cd01427 1 1 1 0 08/18/16 16:38:00 -cd07556 Nucleotidyl... 143637 N/A cd07556 3 1 1 0 01/17/13 11:50:00 -cd07557 trimeric_dU... 143638 N/A cd07557 3 1 1 0 01/17/13 11:50:00 -cd07559 ALDH_ACDHII... 143471 cd07078 cd06534 3 1 1 0 01/17/13 11:50:00 -cd07560 Peptidase_S... 143476 cd06567 cd06567 3 1 1 0 01/17/13 11:50:00 -cd07561 Peptidase_S... 143477 cd06567 cd06567 3 1 1 0 01/17/13 11:50:00 -cd07562 Peptidase_S... 143478 cd06567 cd06567 3 1 1 0 01/17/13 11:50:00 -cd07563 Peptidase_S... 143479 cd06567 cd06567 3 1 1 0 01/17/13 11:50:00 -cd07564 nitrilases_CHs 143588 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07565 aliphatic_a... 143589 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07566 ScNTA1_like 143590 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07567 biotinidase... 143591 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07568 ML_beta-AS_... 143592 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07569 DCase 143593 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07570 GAT_Gln-NAD... 143594 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07571 ALP_N-acyl_... 143595 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07572 nit 143596 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07573 CPA 143597 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07574 nitrilase_R... 143598 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07575 Xc-1258_like 143599 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07576 R-amidase_like 143600 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07577 Ph0642_like 143601 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07578 nitrilase_1_R1 143602 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07579 nitrilase_1_R2 143603 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07580 nitrilase_2 143604 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07581 nitrilase_3 143605 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07582 nitrilase_4 143606 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07583 nitrilase_5 143607 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07584 nitrilase_6 143608 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07585 nitrilase_7 143609 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07586 nitrilase_8 143610 cd07197 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07587 ML_beta-AS 143611 cd07568 cd07197 3 1 1 0 01/17/13 11:50:00 -cd07588 BAR_Amphiph... 153272 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07589 BAR_DNMBP 153273 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07590 BAR_Bin3 153274 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07591 BAR_Rvs161p 153275 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07592 BAR_Endophi... 153276 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07593 BAR_MUG137_... 153277 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07594 BAR_Endophi... 153278 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07595 BAR_RhoGAP_... 153279 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07596 BAR_SNX 153280 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07597 BAR_SNX8 153281 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07598 BAR_FAM92 153282 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07599 BAR_Rvs167p 153283 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07600 BAR_Gvp36 153284 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07601 BAR_APPL 153285 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07602 BAR_RhoGAP_... 153286 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07603 BAR_ACAPs 153287 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07604 BAR_ASAPs 153288 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07605 I-BAR_IMD 153289 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07606 BAR_SFC_plant 153290 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07607 BAR_SH3P_plant 153291 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07608 BAR_ArfGAP_... 153292 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07609 BAR_SIP3_fungi 153293 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07610 FCH_F-BAR 153294 cd07307 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07611 BAR_Amphiph... 153295 cd07588 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07612 BAR_Bin2 153296 cd07588 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07613 BAR_Endophi... 153297 cd07592 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07614 BAR_Endophi... 153298 cd07592 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07615 BAR_Endophi... 153299 cd07592 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07616 BAR_Endophi... 153300 cd07594 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07617 BAR_Endophi... 153301 cd07594 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07618 BAR_Rich1 153302 cd07595 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07619 BAR_Rich2 153303 cd07595 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07620 BAR_SH3BP1 153304 cd07595 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07621 BAR_SNX5_6 153305 cd07596 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07622 BAR_SNX4 153306 cd07596 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07623 BAR_SNX1_2 153307 cd07596 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07624 BAR_SNX7_30 153308 cd07596 cd07307 3 1 1 0 01/17/13 11:50:00 -cd07625 BAR_Vps17p 153309 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07626 BAR_SNX9_like 153310 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07627 BAR_Vps5p 153311 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07628 BAR_Atg24p 153312 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07629 BAR_Atg20p 153313 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07630 BAR_SNX_like 153314 cd07596 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07631 BAR_APPL1 153315 cd07601 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07632 BAR_APPL2 153316 cd07601 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07633 BAR_OPHN1 153317 cd07602 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07634 BAR_GAP10-like 153318 cd07602 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07635 BAR_GRAF2 153319 cd07602 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07636 BAR_GRAF 153320 cd07602 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07637 BAR_ACAP3 153321 cd07603 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07638 BAR_ACAP2 153322 cd07603 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07639 BAR_ACAP1 153323 cd07603 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07640 BAR_ASAP3 153324 cd07604 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07641 BAR_ASAP1 153325 cd07604 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07642 BAR_ASAP2 153326 cd07604 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07643 I-BAR_IMD_MIM 153327 cd07605 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07644 I-BAR_IMD_B... 153328 cd07605 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07645 I-BAR_IMD_B... 153329 cd07605 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07646 I-BAR_IMD_I... 153330 cd07605 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07647 F-BAR_PSTPIP 153331 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07648 F-BAR_FCHO 153332 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07649 F-BAR_GAS7 153333 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07650 F-BAR_Syp1p... 153334 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07651 F-BAR_Pombe... 153335 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07652 F-BAR_Rgd1 153336 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07653 F-BAR_CIP4-... 153337 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07654 F-BAR_FCHSD 153338 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07655 F-BAR_PACSIN 153339 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07656 F-BAR_srGAP 153340 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07657 F-BAR_Fes_Fer 153341 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07658 F-BAR_NOSTRIN 153342 cd07610 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07659 BAR_PICK1 153343 cd00011 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07660 BAR_Arfaptin 153344 cd00011 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07661 BAR_ICA69 153345 cd00011 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07662 BAR_SNX6 153346 cd07621 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07663 BAR_SNX5 153347 cd07621 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07664 BAR_SNX2 153348 cd07623 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07665 BAR_SNX1 153349 cd07623 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07666 BAR_SNX7 153350 cd07624 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07667 BAR_SNX30 153351 cd07624 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07668 BAR_SNX9 153352 cd07626 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07669 BAR_SNX33 153353 cd07626 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07670 BAR_SNX18 153354 cd07626 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07671 F-BAR_PSTPIP1 153355 cd07647 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07672 F-BAR_PSTPIP2 153356 cd07647 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07673 F-BAR_FCHO2 153357 cd07648 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07674 F-BAR_FCHO1 153358 cd07648 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07675 F-BAR_FNBP1L 153359 cd07653 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07676 F-BAR_FBP17 153360 cd07653 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07677 F-BAR_FCHSD2 153361 cd07654 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07678 F-BAR_FCHSD1 153362 cd07654 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07679 F-BAR_PACSIN2 153363 cd07655 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07680 F-BAR_PACSIN1 153364 cd07655 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07681 F-BAR_PACSIN3 153365 cd07655 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07682 F-BAR_srGAP2 153366 cd07656 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07683 F-BAR_srGAP1 153367 cd07656 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07684 F-BAR_srGAP3 153368 cd07656 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07685 F-BAR_Fes 153369 cd07657 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07686 F-BAR_Fer 153370 cd07657 cd07307 3 1 1 0 01/17/13 11:51:00 -cd07687 IgC_TCR_delta 319321 cd00096 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07688 IgC_TCR_alpha 319322 cd00096 cd00096 4 1 1 0 08/18/16 16:19:00 -cd07689 Ig_VCAM-1 143313 cd00096 cd00096 4 1 1 0 08/18/16 16:19:00 -cd07690 Ig1_CD4 143314 cd00096 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07691 Ig_CD3_gamm... 143315 cd00096 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07692 Ig_CD3_epsilon 143316 cd00096 cd00096 4 1 1 0 08/18/16 16:19:00 -cd07693 Ig1_Robo 143317 cd00096 cd00096 5 1 1 0 08/18/16 16:19:00 -cd07694 Ig2_CD4 143318 cd00096 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07695 Ig3_CD4 143319 cd00096 cd00096 5 1 1 0 08/18/16 16:19:00 -cd07696 IgC_CH3_IgA... 319323 cd00098 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07697 IgC_TCR_gamma 319324 cd00098 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07698 IgC_MHC_I_a... 143322 cd00098 cd00096 5 1 1 0 08/18/16 16:19:00 -cd07699 IgC_L 319325 cd00098 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07700 IgV_CD8_beta 319326 cd00099 cd00096 5 1 1 0 08/18/16 16:19:00 -cd07701 Ig1_Necl-3 319327 cd05717 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07702 Ig_VEGFR-1 143326 cd04976 cd00096 4 1 1 0 08/18/16 16:19:00 -cd07703 Ig2_Nectin-... 319328 cd05719 cd00096 3 1 1 0 08/18/16 16:19:00 -cd07704 Ig2_Nectin-... 319329 cd05719 cd00096 5 1 1 0 08/18/16 16:19:00 -cd07705 Ig2_Necl-1 143329 cd05761 cd00096 3 1 1 0 08/18/16 16:19:00 -cd07706 IgV_TCR_delta 319330 cd04983 cd00096 6 1 1 0 08/18/16 16:19:00 -cd07707 MBL-B1-B2-like 293793 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07708 MBL-B3-like 293794 cd06262 cd06262 2 1 1 0 08/18/16 16:51:00 -cd07709 flavodiiron... 293795 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07710 arylsulfata... 293796 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07711 MBLAC1-like... 293797 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07712 MBLAC2-like... 293798 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07713 DHPS-like_M... 293799 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07714 RNaseJ_MBL-... 293800 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07715 TaR3-like_M... 293801 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07716 RNaseZ_shor... 293802 cd16272 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07717 RNaseZ_ZiPD... 293803 cd16272 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07718 RNaseZ_ELAC... 293804 cd16272 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07719 arylsulfata... 293805 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07720 OPHC2-like_... 293806 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07721 yflN-like_M... 293807 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07722 LACTB2-like... 293808 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07723 hydroxyacyl... 293809 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07724 POD-like_MB... 293810 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07725 TTHA1429-li... 293811 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07726 ST1585-like... 293812 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07727 YmaE-like_M... 293813 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07728 YtnP-like_M... 293814 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07729 AHL_lactona... 293815 cd06262 cd06262 2 1 1 0 08/18/16 16:51:00 -cd07730 metallo-hyd... 293816 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07731 ComA-like_M... 293817 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07732 metallo-hyd... 293818 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07733 YycJ-like_M... 293819 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07734 Int9-11_CPS... 293820 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07735 class_II_PD... 293821 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07736 PhnP-like_M... 293822 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07737 YcbL-like_M... 293823 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07738 DdPDE5-like... 293824 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07739 metallo-hyd... 293825 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07740 metallo-hyd... 293826 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07741 metallo-hyd... 293827 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07742 metallo-hyd... 293828 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07743 metallo-hyd... 293829 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd07749 NT_Pol-beta... 143394 cd05397 cd05397 3 1 1 0 01/17/13 11:51:00 -cd07750 PolyPPase_V... 143622 cd07374 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07751 PolyPPase_V... 143623 cd07750 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07756 CYTH-like_P... 143624 cd07374 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07758 ThTPase 143625 cd07374 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07761 CYTH-like_C... 143626 cd07374 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07762 CYTH-like_P... 143627 cd07374 cd07374 3 1 1 0 01/17/13 11:51:00 -cd07765 KRAB_A-box 143639 N/A cd07765 2 1 1 0 01/17/13 11:51:00 -cd07766 DHQ_Fe-ADH 341447 N/A cd07766 4 1 0 0 08/11/17 17:39:00 -cd07767 MPN 163686 N/A cd07767 2 1 1 0 01/17/13 11:51:00 -cd07768 FGGY_RBK_like 198346 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07769 FGGY_GK 198347 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07770 FGGY_GntK 212659 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07771 FGGY_RhuK 198349 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07772 FGGY_NaCK_like 198350 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07773 FGGY_FK 198351 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07774 FGGY_1 198352 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07775 FGGY_AI-2K 198353 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07776 FGGY_D-XK_euk 212660 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07777 FGGY_SHK_like 212661 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07778 FGGY_L-RBK_... 198356 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07779 FGGY_ygcE_like 212662 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07781 FGGY_RBK 198358 cd07768 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07782 FGGY_YpCarb... 212663 cd07768 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07783 FGGY_CarbK-... 198360 cd07768 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07786 FGGY_EcGK_like 198361 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07789 FGGY_CsGK_like 198362 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07791 FGGY_GK2_ba... 198363 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07792 FGGY_GK1-3_... 212664 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07793 FGGY_GK5_me... 212665 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07794 FGGY_GK_lik... 198366 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07795 FGGY_ScGut1... 198367 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07796 FGGY_NHO1_p... 198368 cd07769 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07798 FGGY_AI-2K_... 198369 cd07775 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07802 FGGY_L-XK 212666 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07803 FGGY_D-XK 198371 cd00366 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07804 FGGY_XK_like_1 198372 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07805 FGGY_XK_like_2 198373 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07808 FGGY_D-XK_E... 198374 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07809 FGGY_D-XK_1 198375 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07810 FGGY_D-XK_2 198376 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07811 FGGY_D-XK_3 198377 cd07803 cd00012 3 1 1 0 01/17/13 11:51:00 -cd07812 SRPBCC 176854 N/A cd07812 2 1 1 0 01/17/13 11:51:00 -cd07813 COQ10p_like 176855 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07814 SRPBCC_CalC... 176856 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07815 SRPBCC_PITP 176857 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07816 Bet_v1-like 176858 cd07812 cd07812 2 1 1 0 01/17/13 11:51:00 -cd07817 SRPBCC_8 176859 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07818 SRPBCC_1 176860 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07819 SRPBCC_2 176861 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07820 SRPBCC_3 176862 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07821 PYR_PYL_RCA... 176863 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07822 SRPBCC_4 176864 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07823 SRPBCC_5 176865 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07824 SRPBCC_6 176866 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07825 SRPBCC_7 176867 cd07812 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07826 SRPBCC_CalC... 176868 cd07814 cd07812 3 1 1 0 01/17/13 11:51:00 -cd07827 RHD-n 143640 N/A cd07827 3 1 1 0 01/17/13 11:51:00 -cd07828 nitrobindin 143652 N/A cd07828 3 1 1 0 01/17/13 11:51:00 -cd07829 STKc_CDK_like 270823 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07830 STKc_MAK_like 270824 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07831 STKc_MOK 270825 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07832 STKc_CCRK 270826 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07833 STKc_CDKL 270827 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07834 STKc_MAPK 270828 cd05118 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07835 STKc_CDK1_C... 270829 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07836 STKc_Pho85 143341 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07837 STKc_CdkB_p... 270830 cd07835 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07838 STKc_CDK4_6... 270831 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07839 STKc_CDK5 143344 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07840 STKc_CDK9_like 270832 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07841 STKc_CDK7 270833 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07842 STKc_CDK8_like 270834 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07843 STKc_CDC2L1 173741 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07844 STKc_PCTAIR... 270835 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07845 STKc_CDK10 173742 cd07829 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07846 STKc_CDKL2_3 270836 cd07833 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07847 STKc_CDKL1_4 270837 cd07833 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07848 STKc_CDKL5 270838 cd07833 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07849 STKc_ERK1_2... 270839 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07850 STKc_JNK 270840 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07851 STKc_p38 143356 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07852 STKc_MAPK15... 270841 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07853 STKc_NLK 173748 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07854 STKc_MAPK4_6 143359 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07855 STKc_ERK5 270842 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07856 STKc_Sty1_Hog1 270843 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07857 STKc_MPK1 173750 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07858 STKc_TEY_MAPK 143363 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07859 STKc_TDY_MAPK 143364 cd07834 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07860 STKc_CDK2_3 270844 cd07835 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07861 STKc_CDK1_euk 270845 cd07835 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07862 STKc_CDK6 270846 cd07838 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07863 STKc_CDK4 143368 cd07838 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07864 STKc_CDK12 270847 cd07840 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07865 STKc_CDK9 270848 cd07840 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07866 STKc_BUR1 270849 cd07840 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07867 STKc_CDC2L6 270850 cd07842 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07868 STKc_CDK8 270851 cd07842 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07869 STKc_PFTAIRE1 143374 cd07844 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07870 STKc_PFTAIRE2 270852 cd07844 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07871 STKc_PCTAIRE3 270853 cd07844 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07872 STKc_PCTAIRE2 143377 cd07844 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07873 STKc_PCTAIRE1 270854 cd07844 cd13968 5 1 1 0 03/02/14 08:45:00 -cd07874 STKc_JNK3 143379 cd07850 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07875 STKc_JNK1 143380 cd07850 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07876 STKc_JNK2 143381 cd07850 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07877 STKc_p38alpha 143382 cd07851 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07878 STKc_p38beta 143383 cd07851 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07879 STKc_p38delta 143384 cd07851 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07880 STKc_p38gamma 143385 cd07851 cd13968 5 1 1 0 03/02/14 08:46:00 -cd07881 RHD-n_NFAT 143641 cd07927 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07882 RHD-n_TonEBP 143642 cd07927 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07883 RHD-n_NFkB 143643 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07884 RHD-n_Relish 143644 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07885 RHD-n_RelA 143645 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07886 RHD-n_RelB 143646 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07887 RHD-n_Dorsa... 143647 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07888 CRD_corin_2 143579 cd07066 cd07066 3 1 1 0 01/17/13 11:52:00 -cd07890 CYTH-like_A... 143628 cd07374 cd07374 3 1 1 0 01/17/13 11:52:00 -cd07891 CYTH-like_C... 143629 cd07761 cd07374 3 1 1 0 01/17/13 11:52:00 -cd07892 PolyPPase_V... 143630 cd07750 cd07374 3 1 1 0 01/17/13 11:52:00 -cd07893 OBF_DNA_ligase 153435 cd08040 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07894 Adenylation... 185705 cd06846 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07895 Adenylation... 185706 cd06846 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07896 Adenylation... 185707 cd06846 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07897 Adenylation... 185708 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07898 Adenylation... 185709 cd06846 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07900 Adenylation... 185710 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07901 Adenylation... 185711 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07902 Adenylation... 185712 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07903 Adenylation... 185713 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07905 Adenylation... 185714 cd07906 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07906 Adenylation... 185715 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd07908 Mn_catalase... 153117 cd00657 cd00657 3 1 1 0 01/17/13 11:52:00 -cd07909 YciF 153118 cd00657 cd00657 3 1 1 0 01/17/13 11:52:00 -cd07910 MiaE 153119 cd00657 cd00657 3 1 1 0 01/17/13 11:52:00 -cd07911 RNRR2_Rv023... 153120 cd00657 cd00657 4 1 1 0 01/17/13 11:52:00 -cd07912 Tweety_N 143653 N/A cd07912 2 1 1 0 01/17/13 11:52:00 -cd07914 IGPD 153419 N/A cd07914 3 1 1 0 01/17/13 11:52:00 -cd07920 Pumilio 153420 N/A cd07920 3 1 1 0 01/17/13 11:52:00 -cd07921 PCA_45_Doxa... 153391 cd07321 cd07321 3 1 1 0 01/17/13 11:52:00 -cd07922 CarBa 153392 cd07321 cd07321 3 1 1 0 01/17/13 11:52:00 -cd07923 Gallate_dio... 153393 cd07321 cd07321 3 1 1 0 01/17/13 11:52:00 -cd07924 PCA_45_Doxa... 153394 cd07921 cd07321 3 1 1 0 01/17/13 11:52:00 -cd07925 LigA_like_1 153395 cd07921 cd07321 3 1 1 0 01/17/13 11:52:00 -cd07927 RHD-n_NFAT_... 143648 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07930 bacterial_p... 153077 cd00330 cd00330 3 1 1 0 01/17/13 11:52:00 -cd07931 eukaryotic_... 153078 cd00330 cd00330 3 1 1 0 01/17/13 11:52:00 -cd07932 arginine_ki... 153079 cd07931 cd00330 3 1 1 0 01/17/13 11:52:00 -cd07933 RHD-n_c-Rel 143649 cd07827 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07934 RHD-n_NFkB2 143650 cd07883 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07935 RHD-n_NFkB1 143651 cd07883 cd07827 3 1 1 0 01/17/13 11:52:00 -cd07936 SCAN 153421 N/A cd07936 3 1 1 0 01/17/13 11:52:00 -cd07937 DRE_TIM_PC_... 163675 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07938 DRE_TIM_HMGL 163676 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07939 DRE_TIM_NifV 163677 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07940 DRE_TIM_IPMS 163678 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07941 DRE_TIM_LeuA3 163679 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07942 DRE_TIM_LeuA 163680 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07943 DRE_TIM_HOA 163681 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07944 DRE_TIM_HOA... 163682 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07945 DRE_TIM_CMS 163683 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07947 DRE_TIM_Re_CS 163684 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07948 DRE_TIM_HCS 163685 cd03174 cd03174 3 1 1 0 01/17/13 11:52:00 -cd07949 PCA_45_Doxa... 153386 cd07359 cd07320 3 1 1 0 01/17/13 11:52:00 -cd07950 Gallate_Dox... 153387 cd07359 cd07320 3 1 1 0 01/17/13 11:52:00 -cd07951 ED_3B_N_AMM... 153388 cd07320 cd07320 2 1 1 0 01/17/13 11:52:00 -cd07952 ED_3B_like 153389 cd07320 cd07320 3 1 1 0 01/17/13 11:52:00 -cd07954 AP_MHD_Cterm 271157 N/A cd07954 3 1 1 0 03/02/14 08:55:00 -cd07955 Anticodon_I... 153409 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07956 Anticodon_I... 153410 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07957 Anticodon_I... 153411 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07958 Anticodon_I... 153412 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07959 Anticodon_I... 153413 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07960 Anticodon_I... 153414 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07961 Anticodon_I... 153415 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07962 Anticodon_I... 153416 cd07375 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07963 Anticodon_I... 153417 cd07955 cd07375 3 1 1 0 01/17/13 11:52:00 -cd07964 RBP-H 176481 N/A cd07964 3 1 1 0 01/17/13 11:52:00 -cd07967 OBF_DNA_lig... 153436 cd07893 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07968 OBF_DNA_lig... 153437 cd07893 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07969 OBF_DNA_lig... 153438 cd07893 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07970 OBF_DNA_lig... 153439 cd08040 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07971 OBF_DNA_lig... 153440 cd08040 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07972 OBF_DNA_lig... 153441 cd07893 cd08040 3 1 1 0 01/17/13 11:52:00 -cd07973 Spt4 153422 N/A cd07973 3 1 1 0 01/17/13 11:52:00 -cd07976 TFIIA_alpha... 199899 N/A cd07976 2 1 1 0 01/17/13 11:52:00 -cd07977 TFIIE_beta_... 153423 N/A cd07977 2 1 1 0 01/17/13 11:52:00 -cd07978 TAF13 173962 N/A cd07978 2 1 1 0 01/17/13 11:52:00 -cd07979 TAF9 173963 N/A cd07979 2 1 1 0 01/17/13 11:52:00 -cd07980 TFIIF_beta 259828 N/A cd07980 1 1 1 0 04/05/13 12:52:00 -cd07981 TAF12 173964 N/A cd07981 3 1 1 0 01/17/13 11:52:00 -cd07982 TAF10 187739 N/A cd07982 2 1 1 0 01/17/13 11:52:00 -cd07983 LPLAT_DUF37... 153245 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07984 LPLAT_LABLA... 153246 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07985 LPLAT_GPAT 153247 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07986 LPLAT_ACT14... 153248 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07987 LPLAT_MGAT-... 153249 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07988 LPLAT_ABO13... 153250 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07989 LPLAT_AGPAT... 153251 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07990 LPLAT_LCLAT... 153252 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07991 LPLAT_LPCAT... 153253 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07992 LPLAT_AAK14... 153254 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07993 LPLAT_DHAPA... 153255 cd06551 cd06551 2 1 1 0 01/17/13 11:52:00 -cd07994 WGR 153424 N/A cd07994 2 1 1 0 01/17/13 11:52:00 -cd07995 TPK 153431 N/A cd07995 3 1 1 0 01/17/13 11:52:00 -cd07996 WGR_MMR_like 153425 cd07994 cd07994 2 1 1 0 01/17/13 11:52:00 -cd07997 WGR_PARP 153426 cd07994 cd07994 2 1 1 0 01/17/13 11:52:00 -cd07998 WGR_DNA_ligase 153427 cd07994 cd07994 2 1 1 0 01/17/13 11:52:00 -cd07999 GH7_CBH_EG 153432 N/A cd07999 3 1 1 0 01/17/13 11:52:00 -cd08000 NGN 193574 N/A cd08000 2 1 1 0 01/17/13 11:52:00 -cd08001 WGR_PARP1_like 153428 cd07997 cd07994 2 1 1 0 01/17/13 11:52:00 -cd08002 WGR_PARP3_like 153429 cd07997 cd07994 2 1 1 0 01/17/13 11:52:00 -cd08003 WGR_PARP2_like 153430 cd07997 cd07994 2 1 1 0 01/17/13 11:52:00 -cd08010 yceG_like 153433 N/A cd08010 3 1 1 0 01/17/13 11:52:00 -cd08011 M20_ArgE_Da... 349933 cd08659 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08012 M20_ArgE-re... 349934 cd18669 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08013 M20_ArgE_Da... 349935 cd08659 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08014 M20_Acy1-like 349936 cd03886 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08015 M28_like 349937 cd02690 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08017 M20_IAA_Hyd 349938 cd03886 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08018 M20_Acy1_am... 349939 cd03886 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08019 M20_Acy1-like 349940 cd03886 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08021 M20_Acy1_Yh... 349941 cd03886 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08022 M28_PSMA_like 349942 cd03874 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08023 GH16_lamina... 185693 cd00413 cd00413 3 1 1 0 01/17/13 11:52:00 -cd08024 GH16_CCF 185694 cd08023 cd00413 3 1 1 0 01/17/13 11:52:00 -cd08025 RNR_PFL_lik... 153090 cd00576 cd00576 2 1 1 0 01/17/13 11:52:00 -cd08026 DUF326 153434 N/A cd08026 3 1 1 0 01/17/13 11:52:00 -cd08028 LARP_3 153397 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08029 LA_like_fungal 153398 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08030 LA_like_plant 153399 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08031 LARP_4_5_like 153400 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08032 LARP_7 153401 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08033 LARP_6 153402 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08034 LARP_1_2 153403 cd07323 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08035 LARP_4 153404 cd08031 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08036 LARP_5 153405 cd08031 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08037 LARP_1 153406 cd08034 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08038 LARP_2 153407 cd08034 cd07323 3 1 1 0 01/17/13 11:52:00 -cd08039 Adenylation... 185716 cd07898 cd06846 4 1 1 0 01/17/13 11:52:00 -cd08040 OBF_DNA_lig... 153442 N/A cd08040 3 1 1 0 01/17/13 11:52:00 -cd08041 OBF_kDNA_li... 153443 cd08040 cd08040 3 1 1 0 01/17/13 11:52:00 -cd08044 TAF5_NTD2 176269 N/A cd08044 3 1 1 0 01/17/13 11:52:00 -cd08045 TAF4 173965 N/A cd08045 2 1 1 0 01/17/13 11:52:00 -cd08047 TAF7 173966 N/A cd08047 2 1 1 0 01/17/13 11:52:00 -cd08048 TAF11 173967 N/A cd08048 3 1 1 0 01/17/13 11:52:00 -cd08049 TAF8 176263 N/A cd08049 2 1 1 0 01/17/13 11:52:00 -cd08050 TAF6 173968 N/A cd08050 2 1 1 0 01/17/13 11:52:00 -cd08051 gp6_gp15_like 153444 N/A cd08051 2 1 1 0 01/17/13 11:53:00 -cd08053 Yqbg 153445 cd08051 cd08051 2 1 1 0 01/17/13 11:53:00 -cd08054 gp6 153446 cd08051 cd08051 3 1 1 0 01/17/13 11:53:00 -cd08055 gp15 153447 cd08051 cd08051 2 1 1 0 01/17/13 11:53:00 -cd08056 MPN_PRP8 163687 cd07767 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08057 MPN_euk_non_mb 163688 cd07767 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08058 MPN_euk_mb 163689 cd07767 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08059 MPN_prok_mb 163690 cd07767 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08060 MPN_UPF0172 163691 cd07767 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08061 MPN_NPL4 163692 cd07767 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08062 MPN_RPN7_8 163693 cd08057 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08063 MPN_CSN6 163694 cd08057 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08064 MPN_eIF3f 163695 cd08057 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08065 MPN_eIF3h 163696 cd08057 cd07767 2 1 1 0 01/17/13 11:53:00 -cd08066 MPN_AMSH_like 163697 cd08058 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08067 MPN_2A_DUB 163698 cd08058 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08068 MPN_BRCC36 163699 cd08058 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08069 MPN_RPN11_CSN5 163700 cd08058 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08070 MPN_like 163701 cd08059 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08071 MPN_DUF2466 163702 cd08059 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08072 MPN_archaeal 163703 cd08059 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08073 MPN_NLPC_P60 163704 cd08059 cd07767 3 1 1 0 01/17/13 11:53:00 -cd08148 RuBisCO_large 173969 N/A cd08148 3 1 1 0 01/17/13 11:53:00 -cd08150 catalase_like 163706 N/A cd08150 3 1 1 0 01/17/13 11:53:00 -cd08151 AOS 163707 cd08150 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08152 y4iL_like 163708 cd08150 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08153 srpA_like 163709 cd08150 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08154 catalase_cl... 163710 cd00328 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08155 catalase_cl... 163711 cd00328 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08156 catalase_cl... 163712 cd00328 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08157 catalase_fu... 163713 cd00328 cd08150 3 1 1 0 01/17/13 11:53:00 -cd08159 APC10-like 176482 N/A cd08159 3 1 1 0 01/17/13 11:53:00 -cd08162 MPP_PhoA_N 277369 cd00845 cd00838 4 1 1 0 03/27/15 16:17:00 -cd08163 MPP_Cdc1 277370 cd07384 cd00838 4 1 1 0 03/27/15 16:17:00 -cd08164 MPP_Ted1 277371 cd07384 cd00838 4 1 1 0 03/27/15 16:17:00 -cd08165 MPP_MPPE1 277372 cd07384 cd00838 4 1 1 0 03/27/15 16:17:00 -cd08166 MPP_Cdc1_li... 277373 cd07384 cd00838 4 1 1 0 03/27/15 16:17:00 -cd08168 Cytochrom_C3 173979 N/A cd08168 3 1 1 0 01/17/13 11:53:00 -cd08169 DHQ-like 341448 cd07766 cd07766 4 1 0 0 08/11/17 17:39:00 -cd08170 GlyDH 341449 cd08550 cd07766 4 1 0 0 08/11/17 17:39:00 -cd08171 GlyDH-like 341450 cd08550 cd07766 4 1 0 0 08/11/17 17:39:00 -cd08172 GlyDH-like 341451 cd08550 cd07766 4 1 0 0 08/11/17 17:39:00 -cd08173 Gro1PDH 341452 cd08549 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08174 G1PDH-like 341453 cd08549 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08175 G1PDH 341454 cd08549 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08176 LPO 341455 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08177 MAR 341456 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08178 AAD_C 341457 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08179 NADPH_BDH 341458 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08180 PDD 341459 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08181 PPD-like 341460 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08182 HEPD 341461 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08183 Fe-ADH-like 341462 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08184 Fe-ADH_KdnB... 341463 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08185 Fe-ADH-like 341464 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08186 Fe-ADH-like 341465 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08187 BDH 341466 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08188 PDDH 341467 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08189 Fe-ADH-like 341468 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08190 HOT 341469 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08191 Fe-ADH-like 341470 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08192 MAR-like 341471 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08193 HVD 341472 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08194 Fe-ADH-like 341473 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08195 DHQS 341474 cd08169 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08196 Fe-ADH-like 341475 cd08551 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08197 DOIS 341476 cd08195 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08198 DHQS-like 341477 cd08169 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08199 EEVS 341478 cd08169 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08200 catalase_pe... 173828 cd00314 cd00314 2 1 1 0 01/17/13 11:53:00 -cd08201 plant_perox... 173829 cd00314 cd00314 3 1 1 0 01/17/13 11:53:00 -cd08203 SAM_PNT 188876 cd09487 cd09487 3 1 1 0 01/17/13 11:53:00 -cd08204 ArfGap 350058 N/A cd08204 1 1 0 0 07/11/18 17:57:00 -cd08205 RuBisCO_IV_RLP 173970 cd08148 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08206 RuBisCO_lar... 173971 cd08148 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08207 RLP_NonPhot 173972 cd08205 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08208 RLP_Photo 173973 cd08205 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08209 RLP_DK-MTP-... 173974 cd08205 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08210 RLP_RrRLP 173975 cd08205 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08211 RuBisCO_lar... 173976 cd08206 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08212 RuBisCO_lar... 173977 cd08206 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08213 RuBisCO_lar... 173978 cd08206 cd08148 3 1 1 0 01/17/13 11:53:00 -cd08215 STKc_Nek 270855 cd00180 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08216 PK_STRAD 270856 cd00180 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08217 STKc_Nek2 270857 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08218 STKc_Nek1 270858 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08219 STKc_Nek3 173759 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08220 STKc_Nek8 270859 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08221 STKc_Nek9 270860 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08222 STKc_Nek11 270861 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08223 STKc_Nek4 270862 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08224 STKc_Nek6_7 270863 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08225 STKc_Nek5 173765 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08226 PK_STRAD_beta 270864 cd08216 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08227 PK_STRAD_alpha 173767 cd08216 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08228 STKc_Nek6 270865 cd08224 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08229 STKc_Nek7 270866 cd08224 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08230 glucose_DH 176192 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08231 MDR_TM0436_... 176193 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08232 idonate-5-DH 176194 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08233 butanediol_... 176195 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08234 threonine_D... 176196 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08235 iditol_2_DH... 176197 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08236 sugar_DH 176198 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08237 ribitol-5-p... 176199 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08238 sorbose_pho... 176200 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08239 THR_DH_like 176201 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08240 6_hydroxyhe... 176202 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08241 QOR1 176203 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08242 MDR_like 176204 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08243 quinone_oxi... 176205 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08244 MDR_enoyl_red 176206 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08245 CAD 176207 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08246 crotonyl_co... 176208 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08247 AST1_like 176209 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08248 RTN4I1 176210 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08249 enoyl_reduc... 176211 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08250 Mgc45594_like 176212 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08251 polyketide_... 176213 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08252 AL_MDR 176214 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08253 zeta_crysta... 176215 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08254 hydroxyacyl... 176216 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08255 2-desacetyl... 176217 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08256 Zn_ADH2 176218 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08258 Zn_ADH4 176219 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08259 Zn_ADH5 176220 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08260 Zn_ADH6 176221 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08261 Zn_ADH7 176222 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08262 Zn_ADH8 176223 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08263 Zn_ADH10 176224 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08264 Zn_ADH_like2 176225 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08265 Zn_ADH3 176226 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08266 Zn_ADH_like1 176227 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08267 MDR1 176228 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08268 MDR2 176229 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08269 Zn_ADH9 176230 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08270 MDR4 176231 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08271 MDR5 176232 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08272 MDR6 176233 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08273 MDR8 176234 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08274 MDR9 176235 cd05188 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08275 MDR3 176236 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08276 MDR7 176237 cd05188 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08277 liver_alcoh... 176238 cd05279 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08278 benzyl_alco... 176239 cd05279 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08279 Zn_ADH_clas... 176240 cd05279 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08281 liver_ADH_l... 176241 cd05279 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08282 PFDH_like 176242 cd05278 cd05188 3 1 1 0 01/17/13 11:53:00 -cd08283 FDH_like_1 176243 cd05278 cd05188 4 1 1 0 01/17/13 11:53:00 -cd08284 FDH_like_2 176244 cd05278 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08285 NADP_ADH 176245 cd05278 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08286 FDH_like_ADH2 176246 cd05278 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08287 FDH_like_ADH3 176247 cd05278 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08288 MDR_yhdh 176248 cd05280 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08289 MDR_yhfp_like 176249 cd05280 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08290 ETR 176250 cd05282 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08291 ETR_like_1 176251 cd05282 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08292 ETR_like_2 176252 cd05282 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08293 PTGR2 176253 cd05288 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08294 leukotriene... 176254 cd05288 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08295 double_bond... 176255 cd05288 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08296 CAD_like 176256 cd08245 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08297 CAD3 176257 cd08245 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08298 CAD2 176258 cd08245 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08299 alcohol_DH_... 176259 cd08277 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08300 alcohol_DH_... 176260 cd08277 cd05188 3 1 1 0 01/17/13 11:54:00 -cd08301 alcohol_DH_... 176261 cd08277 cd05188 4 1 1 0 01/17/13 11:54:00 -cd08304 DD 176720 N/A cd08304 3 1 1 0 08/20/13 16:29:00 -cd08305 Pyrin 260019 cd08304 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08306 Death_FADD 260020 cd01670 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08307 Death_Pelle 260021 cd08309 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08308 Death_Tube 260022 cd08309 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08309 Death_IRAK 260023 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08310 Death_NFkB-... 260024 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08311 Death_p75NR 260025 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08312 Death_MyD88 260026 cd01670 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08313 Death_TNFR1 176729 cd08784 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08315 Death_TRAIL... 260027 cd08784 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08316 Death_FAS_T... 260028 cd08784 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08317 Death_ank 260029 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08318 Death_NMPP84 260030 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08319 Death_RAIDD 260031 cd01670 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08320 Pyrin_NALPs 260032 cd08305 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08321 Pyrin_ASC-like 260033 cd08305 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08323 CARD_APAF1 260034 cd01671 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08324 CARD_NOD1_C... 260035 cd01671 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08325 CARD_CASP1-... 260036 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08326 CARD_CASP9 176740 cd01671 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08327 CARD_RAIDD 260037 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08329 CARD_BIRC2_... 260038 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08330 CARD_ASC_NALP1 260039 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08332 CARD_CASP2 260040 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08333 DED_Caspase... 260041 cd08792 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08334 DED_Caspase... 260042 cd08775 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08336 DED_FADD 260043 cd00045 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08337 DED_c-FLIP_r1 260044 cd08776 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08338 DED_PEA15 260045 cd00045 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08339 DED_DEDD-like 176750 cd00045 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08340 DED_c-FLIP_r2 260046 cd08775 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08341 DED_Caspase... 260047 cd08792 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08342 HPPD_N_like 319930 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08343 ED_TypeI_cl... 319931 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08344 MhqB_like_N 319932 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd08345 Fosfomycin_RP 319933 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08346 PcpA_N_like 319934 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08347 PcpA_C_like 319935 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08348 BphC2-C3-RG... 319936 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08349 BLMA_like 319937 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08350 BLMT_like 319938 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08351 ChaP_like 319939 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08352 VOC_Bs_YwkD... 319940 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08353 VOC_like 319941 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08354 VOC_like 319942 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08355 TioX_like 319943 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd08356 VOC_CChe_VC... 319944 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd08357 VOC_like 319945 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08358 GLOD4_N 319946 cd06587 cd06587 4 1 1 0 08/18/16 16:43:00 -cd08359 VOC_like 319947 cd06587 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08360 MhqB_like_C 319948 cd08343 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08361 PpCmtC_N 319949 cd16360 cd06587 4 1 1 0 08/18/16 16:43:00 -cd08362 BphC5-RrK37... 319950 cd16360 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08363 FosB 319951 cd08345 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08364 FosX 319952 cd08345 cd06587 5 1 1 0 08/18/16 16:43:00 -cd08365 APC10-like1 176483 cd08159 cd08159 3 1 1 0 01/17/13 11:54:00 -cd08366 APC10 176484 cd08159 cd08159 3 1 1 0 01/17/13 11:54:00 -cd08367 P53 176262 N/A cd08367 3 1 1 0 01/17/13 11:54:00 -cd08368 LIM 259829 N/A cd08368 3 1 1 0 04/05/13 12:53:00 -cd08369 FMT_core 187712 N/A cd08369 2 1 1 0 01/17/13 11:54:00 -cd08370 FMT_C_like 187727 N/A cd08370 2 1 1 0 01/17/13 11:54:00 -cd08371 Lumazine_sy... 187740 N/A cd08371 2 1 1 0 01/17/13 11:54:00 -cd08372 EEP 197306 N/A cd08372 2 1 1 0 01/17/13 11:54:00 -cd08373 C2A_Ferlin 176019 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08374 C2F_Ferlin 176020 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08375 C2_Intersectin 176021 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08376 C2B_MCTP_PRT 176022 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08377 C2C_MCTP_PRT 176023 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08378 C2B_MCTP_PR... 176024 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08379 C2D_MCTP_PR... 176025 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08380 C2_PI3K_like 176026 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08381 C2B_PI3K_cl... 176027 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08382 C2_Smurf-like 176028 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08383 C2A_RasGAP 176029 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08384 C2B_Rabphil... 176030 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08385 C2A_Synapto... 176031 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08386 C2A_Synapto... 176032 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08387 C2A_Synapto... 176033 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08388 C2A_Synapto... 176034 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08389 C2A_Synapto... 176035 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08390 C2A_Synapto... 176036 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08391 C2A_C2C_Syn... 176037 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08392 C2A_SLP-3 176038 cd08521 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08393 C2A_SLP-1_2 176039 cd08521 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08394 C2A_Munc13 176040 cd00030 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08395 C2C_Munc13 176041 cd00030 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08397 C2_PI3K_cla... 176042 cd08380 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08398 C2_PI3K_cla... 176043 cd08380 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08399 C2_PI3K_cla... 176044 cd08380 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08400 C2_Ras_p21A1 176045 cd08383 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08401 C2A_RasA2_R... 176046 cd08383 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08402 C2B_Synapto... 176047 cd00276 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08403 C2B_Synapto... 176048 cd00276 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08404 C2B_Synapto... 176049 cd00276 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08405 C2B_Synapto... 176050 cd00276 cd00030 3 1 1 0 01/17/13 11:54:00 -cd08406 C2B_Synapto... 176051 cd00276 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08407 C2B_Synapto... 176052 cd00276 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08408 C2B_Synapto... 176053 cd00276 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08409 C2B_Synapto... 176054 cd00276 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08410 C2B_Synapto... 176055 cd00276 cd00030 2 1 1 0 01/17/13 11:54:00 -cd08411 PBP2_OxyR 176103 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08412 PBP2_PAO1_like 176104 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08413 PBP2_CysB_like 176105 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08414 PBP2_LTTR_a... 176106 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08415 PBP2_LysR_o... 176107 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08416 PBP2_MdcR 176108 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08417 PBP2_Nitroa... 176109 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08418 PBP2_TdcA 176110 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08419 PBP2_CbbR_R... 176111 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08420 PBP2_CysL_like 176112 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08421 PBP2_LTTR_l... 176113 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08422 PBP2_CrgA_like 176114 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08423 PBP2_LTTR_l... 176115 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08425 PBP2_CynR 176116 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08426 PBP2_LTTR_l... 176117 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08427 PBP2_LTTR_l... 176118 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08428 PBP2_IciA_ArgP 176119 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08429 PBP2_NhaR 176120 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08430 PBP2_IlvY 176121 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08431 PBP2_HupR 176122 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08432 PBP2_GcdR_T... 176123 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08433 PBP2_Nac 176124 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08434 PBP2_GltC_like 176125 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08435 PBP2_GbpR 176126 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08436 PBP2_LTTR_l... 176127 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08437 PBP2_MleR 176128 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08438 PBP2_CidR 176129 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08439 PBP2_LrhA_like 176130 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08440 PBP2_LTTR_l... 176131 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08441 PBP2_MetR 176132 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08442 PBP2_YofA_S... 176133 cd05466 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08443 PBP2_CysB 176134 cd08413 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08444 PBP2_Cbl 176135 cd08413 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08445 PBP2_BenM_C... 176136 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08446 PBP2_Chloro... 176137 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08447 PBP2_LTTR_a... 176138 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08448 PBP2_LTTR_a... 176139 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08449 PBP2_XapR 176140 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08450 PBP2_HcaR 176141 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08451 PBP2_BudR 176142 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08452 PBP2_AlsR 176143 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08453 PBP2_IlvR 176144 cd08414 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08456 PBP2_LysR 176145 cd08415 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08457 PBP2_OccR 176146 cd08415 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08458 PBP2_NocR 176147 cd08415 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08459 PBP2_DntR_N... 176148 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08460 PBP2_DntR_l... 176149 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08461 PBP2_DntR_l... 176150 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08462 PBP2_NodD 176151 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08463 PBP2_DntR_l... 176152 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08464 PBP2_DntR_l... 176153 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08465 PBP2_ToxR 176154 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08466 PBP2_LeuO 176155 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08467 PBP2_SyrM 176156 cd08417 cd05466 3 1 1 0 01/17/13 11:54:00 -cd08468 PBP2_Pa0477 176157 cd08417 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08469 PBP2_PnbR 176158 cd08417 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08470 PBP2_CrgA_l... 176159 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08471 PBP2_CrgA_l... 176160 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08472 PBP2_CrgA_l... 176161 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08473 PBP2_CrgA_l... 176162 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08474 PBP2_CrgA_l... 176163 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08475 PBP2_CrgA_l... 176164 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08476 PBP2_CrgA_l... 176165 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08477 PBP2_CrgA_l... 176166 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08478 PBP2_CrgA 176167 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08479 PBP2_CrgA_l... 176168 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08480 PBP2_CrgA_l... 176169 cd08422 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08481 PBP2_GcdR_like 176170 cd08432 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08482 PBP2_TrpI 176171 cd08432 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08483 PBP2_HvrB 176172 cd08432 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08484 PBP2_LTTR_b... 176173 cd08432 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08485 PBP2_ClcR 176174 cd08446 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08486 PBP2_CbnR 176175 cd08446 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08487 PBP2_BlaA 176176 cd08484 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08488 PBP2_AmpR 176177 cd08484 cd05466 3 1 1 0 01/17/13 11:55:00 -cd08489 PBP2_NikA 173854 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08490 PBP2_NikA_D... 173855 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08491 PBP2_NikA_D... 173856 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08492 PBP2_NikA_D... 173857 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08493 PBP2_DppA_like 173858 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08494 PBP2_NikA_D... 173859 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08495 PBP2_NikA_D... 173860 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08496 PBP2_NikA_D... 173861 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08497 PBP2_NikA_D... 173862 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08498 PBP2_NikA_D... 173863 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08499 PBP2_Ylib_like 173864 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08500 PBP2_NikA_D... 173865 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08501 PBP2_Lpqw 173866 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08502 PBP2_NikA_D... 173867 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08503 PBP2_NikA_D... 173868 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08504 PBP2_OppA 173869 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08505 PBP2_NikA_D... 173870 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08506 PBP2_clavul... 173871 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08507 PBP2_SgrR_like 173872 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08508 PBP2_NikA_D... 173873 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08509 PBP2_TmCBP_... 173874 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08510 PBP2_Lactoc... 173875 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08511 PBP2_NikA_D... 173876 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08512 PBP2_NikA_D... 173877 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08513 PBP2_thermo... 173878 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08514 PBP2_AppA_like 173879 cd00995 cd00995 3 1 1 0 01/17/13 11:55:00 -cd08515 PBP2_NikA_D... 173880 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08516 PBP2_NikA_D... 173881 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08517 PBP2_NikA_D... 173882 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08518 PBP2_NikA_D... 173883 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08519 PBP2_NikA_D... 173884 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08520 PBP2_NikA_D... 173885 cd00995 cd00995 2 1 1 0 01/17/13 11:55:00 -cd08521 C2A_SLP 176056 cd00030 cd00030 2 1 1 0 01/17/13 11:55:00 -cd08523 Reeler_cohe... 260080 N/A cd08523 3 1 1 0 08/20/13 16:30:00 -cd08524 Reelin_subr... 197341 N/A cd08524 2 1 1 0 01/17/13 11:55:00 -cd08525 Reelin_subr... 197342 cd08524 cd08524 2 1 1 0 01/17/13 11:55:00 -cd08526 Reelin_subr... 197343 cd08524 cd08524 2 1 1 0 01/17/13 11:55:00 -cd08528 STKc_Nek10 270867 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08529 STKc_FA2-like 270868 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08530 STKc_CNK2-like 270869 cd08215 cd13968 4 1 1 0 03/02/14 08:46:00 -cd08531 SAM_PNT-ERG... 188877 cd08203 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08532 SAM_PNT-PDE... 188878 cd08203 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08533 SAM_PNT-ETS... 188879 cd08203 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08534 SAM_PNT-GAB... 176084 cd08203 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08535 SAM_PNT-Tel... 176085 cd08203 cd09487 4 1 1 0 01/17/13 11:55:00 -cd08536 SAM_PNT-Mae 176086 cd08203 cd09487 4 1 1 0 01/17/13 11:55:00 -cd08537 SAM_PNT-ESE... 188880 cd08757 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08538 SAM_PNT-ESE... 188881 cd08757 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08539 SAM_PNT-ESE... 188882 cd08757 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08540 SAM_PNT-ERG 176090 cd08531 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08541 SAM_PNT-FLI-1 188883 cd08531 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08542 SAM_PNT-ETS-1 176092 cd08533 cd09487 4 1 1 0 01/17/13 11:55:00 -cd08543 SAM_PNT-ETS-2 188884 cd08533 cd09487 3 1 1 0 01/17/13 11:55:00 -cd08544 Reeler 260081 cd08523 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08545 YcnI_like 260082 cd08523 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08546 cohesin_like 260083 cd08523 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08547 Type_II_coh... 260084 cd08546 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08548 Type_I_cohe... 260085 cd08546 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08549 G1PDH_related 341479 cd07766 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08550 GlyDH-like 341480 cd07766 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08551 Fe-ADH 341481 cd07766 cd07766 4 1 0 0 08/11/17 17:40:00 -cd08553 PIN_Fcf1-like 350202 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd08554 Cyt_b561 176489 N/A cd08554 3 1 1 0 01/17/13 11:55:00 -cd08555 PI-PLCc_GDP... 176498 N/A cd08555 4 1 1 0 08/20/13 16:30:00 -cd08556 GDPD 176499 cd08555 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08557 PI-PLCc_bac... 176500 cd00137 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08558 PI-PLCc_euk... 176501 cd00137 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08559 GDPD_peripl... 176502 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08560 GDPD_EcGlpQ... 176503 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08561 GDPD_cytopl... 176504 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08562 GDPD_EcUgpQ... 176505 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08563 GDPD_TtGDE_... 176506 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08564 GDPD_GsGDE_... 176507 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08565 GDPD_pAtGDE... 176508 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08566 GDPD_AtGDE_... 176509 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08567 GDPD_SpGDE_... 176510 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08568 GDPD_TmGDE_... 176511 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08570 GDPD_YPL206... 176512 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08571 GDPD_SHV3_p... 176513 cd08556 cd08555 3 1 1 0 08/20/13 16:30:00 -cd08572 GDPD_GDE5_like 176514 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08573 GDPD_GDE1 176515 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08574 GDPD_GDE_2_3_6 176516 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08575 GDPD_GDE4_like 176517 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08576 GDPD_like_S... 176518 cd08555 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08577 PI-PLCc_GDP... 176519 cd08555 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08578 GDPD_NUC-2_... 176520 cd08556 cd08555 3 1 1 0 08/20/13 16:30:00 -cd08579 GDPD_memb_like 176521 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08580 GDPD_Rv2277... 176522 cd08575 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08581 GDPD_like_1 176523 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08582 GDPD_like_2 176524 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08583 PI-PLCc_GDP... 176525 cd08555 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08584 PI-PLCc_GDP... 176526 cd08555 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08585 GDPD_like_3 176527 cd08556 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08586 PI-PLCc_BcP... 176528 cd08557 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08587 PI-PLCXDc_like 176529 cd08557 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08588 PI-PLCc_At5... 176530 cd08557 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08589 PI-PLCc_SaP... 176531 cd08557 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08590 PI-PLCc_Rv2... 176532 cd08557 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08591 PI-PLCc_beta 176533 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08592 PI-PLCc_gamma 176534 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08593 PI-PLCc_delta 176535 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08594 PI-PLCc_eta 176536 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08595 PI-PLCc_zeta 176537 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08596 PI-PLCc_eps... 176538 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08597 PI-PLCc_PRI... 176539 cd08558 cd08555 3 1 1 0 08/20/13 16:30:00 -cd08598 PI-PLC1c_yeast 176540 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08599 PI-PLCc_plant 176541 cd08558 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08600 GDPD_EcGlpQ... 176542 cd08559 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08601 GDPD_SaGlpQ... 176543 cd08559 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08602 GDPD_ScGlpQ... 176544 cd08559 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08603 GDPD_SHV3_r... 176545 cd08571 cd08555 3 1 1 0 08/20/13 16:30:00 -cd08604 GDPD_SHV3_r... 176546 cd08571 cd08555 3 1 1 0 08/20/13 16:30:00 -cd08605 GDPD_GDE5_l... 176547 cd08572 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08606 GDPD_YPL110... 176548 cd08572 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08607 GDPD_GDE5 176549 cd08572 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08608 GDPD_GDE2 176550 cd08574 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08609 GDPD_GDE3 176551 cd08574 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08610 GDPD_GDE6 176552 cd08574 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08612 GDPD_GDE4 176553 cd08575 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08613 GDPD_GDE4_l... 176554 cd08575 cd08555 4 1 1 0 08/20/13 16:30:00 -cd08616 PI-PLCXD1c 176555 cd08587 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08619 PI-PLCXDc_p... 176556 cd08587 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08620 PI-PLCXDc_l... 176557 cd08587 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08621 PI-PLCXDc_l... 176558 cd08587 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08622 PI-PLCXDc_C... 176559 cd08587 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08623 PI-PLCc_beta1 176560 cd08591 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08624 PI-PLCc_beta2 176561 cd08591 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08625 PI-PLCc_beta3 176562 cd08591 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08626 PI-PLCc_beta4 176563 cd08591 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08627 PI-PLCc_gamma1 176564 cd08592 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08628 PI-PLCc_gamma2 176565 cd08592 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08629 PI-PLCc_delta1 176566 cd08593 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08630 PI-PLCc_delta3 176567 cd08593 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08631 PI-PLCc_delta4 176568 cd08593 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08632 PI-PLCc_eta1 176569 cd08594 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08633 PI-PLCc_eta2 176570 cd08594 cd08555 4 1 1 0 08/20/13 16:31:00 -cd08637 DNA_pol_A_p... 176474 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08638 DNA_pol_A_t... 176475 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08639 DNA_pol_A_A... 176476 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08640 DNA_pol_A_p... 176477 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08641 DNA_pol_gammaA 176478 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08642 DNA_pol_A_p... 176479 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08643 DNA_pol_A_p... 176480 cd06444 cd06444 3 1 1 0 01/17/13 11:56:00 -cd08644 FMT_core_Ar... 187713 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08645 FMT_core_GART 187714 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08646 FMT_core_Me... 187715 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08647 FMT_core_FDH_N 187716 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08648 FMT_core_Fo... 187717 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08649 FMT_core_NR... 187718 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08650 FMT_core_Hy... 187719 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08651 FMT_core_li... 187720 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08653 FMT_core_li... 187721 cd08369 cd08369 2 1 1 0 01/17/13 11:56:00 -cd08656 M28_like 349943 cd02690 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08659 M20_ArgE_Da... 349944 cd18669 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08660 M20_Acy1-like 349945 cd18669 cd03873 3 1 0 0 07/11/18 17:55:00 -cd08662 M13 341056 cd09594 cd09594 3 1 0 0 06/09/17 14:33:00 -cd08663 DAP_dppA_1 176450 cd00281 cd00281 3 1 1 0 01/17/13 11:56:00 -cd08664 APC10-HERC2 176485 cd08365 cd08159 3 1 1 0 01/17/13 11:56:00 -cd08665 APC10-CUL7 176486 cd08365 cd08159 3 1 1 0 01/17/13 11:56:00 -cd08666 APC10-HECTD3 176487 cd08365 cd08159 3 1 1 0 01/17/13 11:56:00 -cd08667 APC10-ZZEF1 176488 cd08365 cd08159 3 1 1 0 01/17/13 11:56:00 -cd08674 Cdt1_m 176571 N/A cd08674 2 1 1 0 01/17/13 11:56:00 -cd08675 C2B_RasGAP 176057 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08676 C2A_Munc13-... 176058 cd00030 cd00030 3 1 1 0 01/17/13 11:56:00 -cd08677 C2A_Synapto... 176059 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08678 C2_C21orf25... 176060 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08679 C2_DOCK180_... 176061 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08680 C2_Kibra 176062 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08681 C2_fungal_I... 176063 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08682 C2_Rab11-FI... 176064 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08683 C2_C2cd3 176065 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08684 C2A_Tac2-N 176066 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08685 C2_RGS-like 176067 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08686 C2_ABR 176068 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08687 C2_PKN-like 176069 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08688 C2_KIAA0528... 176070 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08689 C2_fungal_P... 176071 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08690 C2_Freud-1 176072 cd00030 cd00030 3 1 1 0 01/17/13 11:56:00 -cd08691 C2_NEDL1-like 176073 cd00030 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08692 C2B_Tac2-N 176074 cd00276 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08693 C2_PI3K_cla... 176075 cd08380 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08694 C2_Dock-A 176076 cd08679 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08695 C2_Dock-B 176077 cd08679 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08696 C2_Dock-C 176078 cd08679 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08697 C2_Dock-D 176079 cd08679 cd00030 2 1 1 0 01/17/13 11:56:00 -cd08700 FMT_C_OzmH_... 187728 cd08370 cd08370 2 1 1 0 01/17/13 11:56:00 -cd08701 FMT_C_HypX 187729 cd08370 cd08370 2 1 1 0 01/17/13 11:56:00 -cd08702 Arna_FMT_C 187730 cd08704 cd08370 2 1 1 0 01/17/13 11:56:00 -cd08703 FDH_Hydrola... 187731 cd08704 cd08370 2 1 1 0 01/17/13 11:56:00 -cd08704 Met_tRNA_FMT_C 187732 cd08370 cd08370 2 1 1 0 01/17/13 11:56:00 -cd08705 RGS_R7-like 188660 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08706 RGS_R12-like 188661 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08707 RGS_Axin 188662 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08708 RGS_FLBA 188663 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08709 RGS_RGS2 188664 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08710 RGS_RGS16 188665 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08711 RGS_RGS8 188666 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08712 RGS_RGS18 188667 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08713 RGS_RGS3 188668 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08714 RGS_RGS4 188669 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08715 RGS_RGS1 188670 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08716 RGS_RGS13 188671 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08717 RGS_RGS5 188672 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08718 RGS_RZ-like 188673 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08719 RGS_SNX13 188674 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08720 RGS_SNX25 188675 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08721 RGS_AKAP2_2 188676 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08722 RGS_SNX14 188677 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08723 RGS_RGS21 188678 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08724 RGS_GRK-like 188679 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08725 RGS_RGS22_4 188680 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08726 RGS_RGS22_3 188681 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08727 RGS_RGS22_2 188682 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08728 RGS-like_2 188683 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08729 RGS_PX 188684 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08730 RGS-like_3 188685 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08731 RGS_RGS22_1 188686 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08732 RGS-like_4 188687 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08734 RGS-like_1 188688 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08735 RGS_AKAP2_1 188689 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08736 RGS_RhoGEF-... 188690 cd07440 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08737 RGS_RGS6 188691 cd08705 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08738 RGS_RGS7 188692 cd08705 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08739 RGS_RGS9 188693 cd08705 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08740 RGS_RGS11 188694 cd08705 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08741 RGS_RGS10 188695 cd08706 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08742 RGS_RGS12 188696 cd08706 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08743 RGS_RGS14 188697 cd08706 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08744 RGS_RGS17 188698 cd08718 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08745 RGS_RGS19 188699 cd08718 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08746 RGS_RGS20 188700 cd08718 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08747 RGS_GRK2_GRK3 188701 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08748 RGS_GRK1 188702 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08749 RGS_GRK7 188703 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08750 RGS_GRK4 188704 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08751 RGS_GRK6 188705 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08752 RGS_GRK5 188706 cd08724 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08753 RGS_PDZRhoGEF 188707 cd08736 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08754 RGS_LARG 188708 cd08736 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08755 RGS_p115RhoGEF 188709 cd08736 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08756 RGS_GEF_like 188710 cd08736 cd07440 2 1 1 0 01/17/13 11:56:00 -cd08757 SAM_PNT_ESE 188885 cd08203 cd09487 3 1 1 0 01/17/13 11:56:00 -cd08759 Type_III_co... 260086 cd08546 cd08523 3 1 1 0 08/20/13 16:30:00 -cd08760 Cyt_b561_FR... 176490 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08761 Cyt_b561_CY... 176491 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08762 Cyt_b561_CY... 176492 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08763 Cyt_b561_CY... 176493 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08764 Cyt_b561_CG... 176494 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08765 Cyt_b561_CY... 176495 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08766 Cyt_b561_AC... 176496 cd08554 cd08554 3 1 1 0 01/17/13 11:56:00 -cd08767 Cdt1_c 176572 N/A cd08767 2 1 1 0 01/17/13 11:56:00 -cd08768 Cdc6_C 176573 N/A cd08768 3 1 1 0 01/17/13 11:56:00 -cd08769 DAP_dppA_2 176451 cd00281 cd00281 3 1 1 0 01/17/13 11:56:00 -cd08770 DAP_dppA_3 176452 cd00281 cd00281 3 1 1 0 01/17/13 11:56:00 -cd08771 DLP_1 206738 cd00882 cd00882 2 1 1 0 01/17/13 11:56:00 -cd08772 GH43_62_32_... 350091 N/A cd08772 4 1 0 0 07/11/18 17:57:00 -cd08773 FpgNei_N 176798 N/A cd08773 3 1 1 0 01/17/13 11:56:00 -cd08774 14-3-3 206755 N/A cd08774 2 1 1 0 01/17/13 11:56:00 -cd08775 DED_Caspase... 176753 cd00045 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08776 DED_Caspase... 176754 cd00045 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08777 Death_RIP1 260048 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08778 Death_TNFRSF21 176756 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08779 Death_PIDD 260049 cd01670 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08780 Death_TRADD 260050 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08781 Death_UNC5-... 260051 cd01670 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08782 Death_DAPK1 260052 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08783 Death_MALT1 260053 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08784 Death_DRs 260054 cd01670 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08785 CARD_CARD9-... 260055 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08786 CARD_RIP2_C... 176764 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08787 CARD_NOD2_1... 176765 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08788 CARD_NOD2_2... 260056 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08789 CARD_IPS-1_... 260057 cd01671 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08790 DED_DEDD 260058 cd08339 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08791 DED_DEDD2 176769 cd08339 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08792 DED_Caspase... 260059 cd08776 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08793 Death_IRAK4 260060 cd08309 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08794 Death_IRAK1 260061 cd08309 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08795 Death_IRAK2 176773 cd08309 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08796 Death_IRAK-M 260062 cd08309 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08797 Death_NFkB1... 260063 cd08310 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08798 Death_NFkB2... 176776 cd08310 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08799 Death_UNC5C 260064 cd08781 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08800 Death_UNC5A 260065 cd08781 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08801 Death_UNC5D 176779 cd08781 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08802 Death_UNC5B 176780 cd08781 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08803 Death_ank3 176781 cd08317 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08804 Death_ank2 260066 cd08317 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08805 Death_ank1 260067 cd08317 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08806 CARD_CARD14... 260068 cd08785 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08807 CARD_CARD10... 260069 cd08785 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08808 CARD_CARD11... 260070 cd08785 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08809 CARD_CARD9 260071 cd08785 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08810 CARD_BCL10 260072 cd08785 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08811 CARD_IPS1 260073 cd08789 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08813 DED_Caspase... 176791 cd08334 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08814 DED_Caspase... 260074 cd08334 cd08304 4 1 1 0 08/20/13 16:30:00 -cd08815 Death_TNFRS... 176793 cd08313 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08816 CARD_RIG-I_r1 260075 cd08789 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08817 CARD_RIG-I_r2 260076 cd08789 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08818 CARD_MDA5_r1 260077 cd08789 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08819 CARD_MDA5_r2 260078 cd08789 cd08304 3 1 1 0 08/20/13 16:30:00 -cd08820 FMT_core_li... 187722 cd08369 cd08369 2 1 1 0 01/17/13 11:57:00 -cd08821 FMT_core_li... 187723 cd08369 cd08369 2 1 1 0 01/17/13 11:57:00 -cd08822 FMT_core_li... 187724 cd08369 cd08369 2 1 1 0 01/17/13 11:57:00 -cd08823 FMT_core_li... 187725 cd08369 cd08369 2 1 1 0 01/17/13 11:57:00 -cd08824 LOTUS 193585 N/A cd08824 2 1 1 0 01/17/13 11:57:00 -cd08825 MVP_shoulder 259807 cd02106 cd02106 1 1 1 0 04/05/13 12:52:00 -cd08826 SPFH_eoslip... 259808 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd08827 SPFH_podocin 259809 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd08828 SPFH_SLP-3 259810 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd08829 SPFH_parasl... 259811 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd08830 ArfGap_ArfGap1 350059 cd08959 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08831 ArfGap_ArfG... 350060 cd08959 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08832 ArfGap_ADAP 350061 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08833 ArfGap_GIT 350062 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08834 ArfGap_ASAP 350063 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08835 ArfGap_ACAP 350064 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08836 ArfGap_AGAP 350065 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08837 ArfGap_ARAP 350066 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08838 ArfGap_AGFG 350067 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08839 ArfGap_SMAP 350068 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08843 ArfGap_ADAP1 350069 cd08832 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08844 ArfGap_ADAP2 350070 cd08832 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08846 ArfGap_GIT1 350071 cd08833 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08847 ArfGap_GIT2 350072 cd08833 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08848 ArfGap_ASAP1 350073 cd08834 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08849 ArfGap_ASAP2 350074 cd08834 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08850 ArfGap_ACAP3 350075 cd08835 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08851 ArfGap_ACAP2 350076 cd08835 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08852 ArfGap_ACAP1 350077 cd08835 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08853 ArfGap_AGAP2 350078 cd08836 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08854 ArfGap_AGAP1 350079 cd08836 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08855 ArfGap_AGAP3 350080 cd08836 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08856 ArfGap_ARAP2 350081 cd08837 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08857 ArfGap_AGFG1 350082 cd08838 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08859 ArfGap_SMAP2 350083 cd08839 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08860 TcmN_ARO-CY... 176869 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08861 OtcD1_ARO-C... 176870 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08862 SRPBCC_Smu4... 176871 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08863 SRPBCC_DUF1857 176872 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08864 SRPBCC_DUF3074 176873 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08865 SRPBCC_10 176874 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08866 SRPBCC_11 176875 cd07812 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08867 START_STARD... 176876 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08868 START_STARD... 176877 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08869 START_RhoGAP 176878 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08870 START_STARD... 176879 cd00177 cd07812 2 1 1 0 01/17/13 11:57:00 -cd08871 START_STARD... 176880 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08872 START_STARD... 176881 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08873 START_STARD... 176882 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08874 START_STARD... 176883 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08875 START_ArGLA... 176884 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08876 START_1 176885 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08877 START_2 176886 cd00177 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08878 RHO_alpha_C... 176887 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08879 RHO_alpha_C... 176888 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08880 RHO_alpha_C... 176889 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08881 RHO_alpha_C... 176890 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08882 RHO_alpha_C... 176891 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08883 RHO_alpha_C... 176892 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08884 RHO_alpha_C... 176893 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08885 RHO_alpha_C_1 176894 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08886 RHO_alpha_C_2 176895 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08887 RHO_alpha_C_3 176896 cd00680 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08888 SRPBCC_PITP... 176897 cd07815 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08889 SRPBCC_PITP... 176898 cd07815 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08890 SRPBCC_PITP... 176899 cd07815 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08891 SRPBCC_CalC 176900 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08892 SRPBCC_Aha1 176901 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08893 SRPBCC_CalC... 176902 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08894 SRPBCC_CalC... 176903 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08895 SRPBCC_CalC... 176904 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08896 SRPBCC_CalC... 176905 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08897 SRPBCC_CalC... 176906 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08898 SRPBCC_CalC... 176907 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08899 SRPBCC_CalC... 176908 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08900 SRPBCC_CalC... 176909 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08901 SRPBCC_CalC... 176910 cd07814 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08902 START_STARD... 176911 cd08867 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08903 START_STARD... 176912 cd08867 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08904 START_STARD... 176913 cd08867 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08905 START_STARD... 176914 cd08868 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08906 START_STARD... 176915 cd08868 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08907 START_STARD... 176916 cd08869 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08908 START_STARD... 176917 cd08869 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08909 START_STARD... 176918 cd08869 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08910 START_STARD... 176919 cd08870 cd07812 2 1 1 0 01/17/13 11:57:00 -cd08911 START_STARD... 176920 cd08870 cd07812 2 1 1 0 01/17/13 11:57:00 -cd08913 START_STARD... 176921 cd08873 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08914 START_STARD... 176922 cd08873 cd07812 3 1 1 0 01/17/13 11:57:00 -cd08915 V_Alix_like 185746 N/A cd08915 3 1 1 0 01/17/13 11:57:00 -cd08916 TrHb3_P 271269 cd14756 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08917 TrHb2_O 271270 cd14756 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08919 PBP_like 271271 cd01067 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08920 Ngb 271272 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08922 FHb-globin 271273 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08923 class1-2_ns... 271274 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08924 Cygb 271275 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08925 Hb-beta_like 271276 cd14765 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08926 Mb 271277 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08927 Hb-alpha_like 271278 cd14765 cd01067 1 1 1 0 06/11/14 17:04:00 -cd08928 KR_fFAS_lik... 187633 cd02266 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08929 SDR_c4 187634 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08930 SDR_c8 187635 cd05233 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08931 SDR_c9 187636 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08932 HetN_like_S... 212493 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08933 RDH_SDR_c 187638 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08934 CAD_SDR_c 187639 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08935 mannonate_r... 187640 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08936 CR_SDR_c 187641 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08937 DHB_DH-like... 187642 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08939 KDSR-like_S... 187643 cd05233 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08940 HBDH_SDR_c 187644 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08941 3KS_SDR_c 187645 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08942 RhlG_SDR_c 187646 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08943 R1PA_ADH_SDR_c 187647 cd05233 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08944 SDR_c12 187648 cd05233 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08945 PKR_SDR_c 187649 cd05233 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08946 SDR_e 212494 cd05226 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08947 NmrA_TMR_li... 187651 cd05226 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08948 5beta-POR_l... 187652 cd05226 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08950 KR_fFAS_SDR... 187653 cd08928 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08951 DR_C-13_KR_... 187654 cd08928 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08952 KR_1_SDR_x 187655 cd05274 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08953 KR_2_SDR_x 187656 cd05274 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08954 KR_1_FAS_SDR_x 187657 cd05274 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08955 KR_2_FAS_SDR_x 187658 cd05274 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08956 KR_3_FAS_SDR_x 187659 cd05274 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08957 WbmH_like_S... 187660 cd08946 cd02266 2 1 1 0 01/17/13 11:57:00 -cd08958 FR_SDR_e 187661 cd05193 cd02266 3 1 1 0 01/17/13 11:57:00 -cd08959 ArfGap_ArfG... 350084 cd08204 cd08204 1 1 0 0 07/11/18 17:57:00 -cd08961 GH64-TLP-SF 185752 N/A cd08961 2 1 1 0 01/17/13 11:57:00 -cd08962 GatD 199206 cd00411 cd00411 2 1 1 0 01/17/13 11:57:00 -cd08963 L-asparagin... 199207 cd00411 cd00411 2 1 1 0 01/17/13 11:57:00 -cd08964 L-asparagin... 199208 cd00411 cd00411 2 1 1 0 01/17/13 11:57:00 -cd08965 EcNei-like_N 176799 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08966 EcFpg-like_N 176800 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08967 MeNeil1_N 176801 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08968 MeNeil2_N 176802 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08969 MeNeil3_N 176803 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08970 AcNei1_N 176804 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08971 AcNei2_N 176805 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08972 PF_Nei_N 176806 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08973 BaFpgNei_N_1 176807 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08974 BaFpgNei_N_2 176808 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08975 BaFpgNei_N_3 176809 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08976 BaFpgNei_N_4 176810 cd08773 cd08773 3 1 1 0 01/17/13 11:57:00 -cd08977 SusD 185760 N/A cd08977 2 1 1 0 01/17/13 11:57:00 -cd08978 GH_F 350092 cd08772 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08979 GH_J 350093 cd08772 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08980 GH43_LbAraf... 350094 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08981 GH43_Bt1873... 350095 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08982 GH43-like 350096 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08983 GH43_Bt3655... 350097 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08984 GH43-like 350098 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08985 GH43_CtGH43... 350099 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08986 GH43-like 350100 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08987 GH62 350101 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08988 GH43_ABN 350102 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08989 GH43_XYL-like 350103 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08990 GH43_AXH_like 350104 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08991 GH43_HoAraf... 350105 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08992 GH117 350106 cd08772 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08993 GH130 350107 cd18607 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08994 GH43_62_32_... 350108 cd08772 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08995 GH32_EcAec4... 350109 cd08979 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08996 GH32_FFase 350110 cd08979 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08997 GH68 350111 cd08979 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08998 GH43_Arb43a... 350112 cd08988 cd08772 4 1 0 0 07/11/18 17:57:00 -cd08999 GH43_ABN-like 350113 cd08988 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09000 GH43_SXA-like 350114 cd08989 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09001 GH43_FsAxh1... 350115 cd08989 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09002 GH43_XYL-like 350116 cd08989 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09003 GH43_XynD-like 350117 cd08990 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09004 GH43_bXyl-like 350118 cd08978 cd08772 4 1 0 0 07/11/18 17:57:00 -cd09005 NP-I 350156 N/A cd09005 1 1 0 0 07/11/18 17:58:00 -cd09006 PNP_EcPNPI-... 350157 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd09007 NP-I_spr0068 350158 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd09008 MTAN 350159 cd17877 cd09005 1 1 0 0 07/11/18 17:58:00 -cd09009 PNP-EcPNPII... 350160 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd09010 MTAP_SsMTAP... 350161 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd09011 VOC_like 319953 cd06587 cd06587 4 1 1 0 08/18/16 16:44:00 -cd09012 VOC_like 319954 cd06587 cd06587 4 1 1 0 08/18/16 16:44:00 -cd09013 BphC-JF8_N_... 319955 cd16360 cd06587 5 1 1 0 08/18/16 16:44:00 -cd09014 BphC-JF8_C_... 319956 cd08343 cd06587 5 1 1 0 08/18/16 16:44:00 -cd09015 Ureohydrolase 212511 cd09987 cd09987 2 1 1 0 01/17/13 11:58:00 -cd09018 DEDDy_polA_... 176656 cd06125 cd06125 3 1 1 0 01/17/13 11:58:00 -cd09019 galactose_m... 185696 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09020 D-hex-6-P-e... 185697 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09021 Aldose_epim... 185698 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09022 Aldose_epim... 185699 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09023 Aldose_epim... 185700 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09024 Aldose_epim... 185701 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09025 Aldose_epim... 185702 cd01081 cd01081 3 1 1 0 01/17/13 11:58:00 -cd09027 PET 193601 N/A cd09027 2 1 1 0 01/17/13 11:58:00 -cd09028 ArfGap_ArfGap3 350085 cd08831 cd08204 1 1 0 0 07/11/18 17:57:00 -cd09029 ArfGap_ArfGap2 350086 cd08831 cd08204 1 1 0 0 07/11/18 17:57:00 -cd09030 DUF1425 176923 N/A cd09030 3 1 1 0 01/17/13 11:58:00 -cd09034 BRO1_Alix_like 185761 N/A cd09034 3 1 1 0 01/17/13 11:58:00 -cd09071 FAR_C 176924 N/A cd09071 2 1 1 0 01/17/13 11:58:00 -cd09073 ExoIII_AP-endo 197307 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09074 INPP5c 197308 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09075 DNase1-like 197309 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09076 L1-EN 197310 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09077 R1-I-EN 197311 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09078 nSMase 197312 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09079 RgfB-like 197313 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09080 TDP2 197314 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09081 CdtB 197315 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09082 Deadenylase 197316 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09083 EEP-1 197317 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09084 EEP-2 197318 cd08372 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09085 Mth212-like... 197319 cd09073 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09086 ExoIII-like... 197320 cd09073 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09087 Ape1-like_A... 197321 cd09073 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09088 Ape2-like_A... 197322 cd09073 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09089 INPP5c_Synj 197323 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09090 INPP5c_ScIn... 197324 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09091 INPP5c_SHIP 197325 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09092 INPP5A 197326 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09093 INPP5c_INPP5B 197327 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09094 INPP5c_INPP... 197328 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09095 INPP5c_INPP... 197329 cd09074 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09096 Deadenylase... 197330 cd09082 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09097 Deadenylase... 197331 cd09082 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09098 INPP5c_Synj1 197332 cd09089 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09099 INPP5c_Synj2 197333 cd09089 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09100 INPP5c_SHIP... 197334 cd09091 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09101 INPP5c_SHIP... 197335 cd09091 cd08372 2 1 1 0 01/17/13 11:58:00 -cd09102 PLDc_CDP-OH... 197201 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09103 PLDc_CDP-OH... 197202 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09104 PLDc_vPLD1_... 197203 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09105 PLDc_vPLD1_... 197204 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09106 PLDc_vPLD3_... 197205 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09107 PLDc_vPLD3_... 197206 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09108 PLDc_PMFPLD... 197207 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09109 PLDc_PMFPLD... 197208 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09110 PLDc_CLS_1 197209 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09111 PLDc_ymdC_l... 197210 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09112 PLDc_CLS_2 197211 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09113 PLDc_ymdC_l... 197212 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09114 PLDc_PPK1_C1 197213 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09115 PLDc_PPK1_C2 197214 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09116 PLDc_Nuc_like 197215 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09117 PLDc_Bfil_D... 197216 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09118 PLDc_yjhR_C... 197217 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09119 PLDc_FAM83_N 197218 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09120 PLDc_DNaseII_1 197219 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09121 PLDc_DNaseII_2 197220 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09122 PLDc_Tdp1_1 197221 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09123 PLDc_Tdp1_2 197222 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09124 PLDc_like_T... 197223 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09126 PLDc_C_DEXD... 197224 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09127 PLDc_unchar1_1 197225 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09128 PLDc_unchar1_2 197226 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09129 PLDc_unchar2_1 197227 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09130 PLDc_unchar2_2 197228 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09131 PLDc_unchar3 197229 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09132 PLDc_unchar4 197230 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09133 PLDc_unchar5 197231 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09134 PLDc_PSS_G_... 197232 cd09102 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09135 PLDc_PGS1_e... 197233 cd09102 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09136 PLDc_PSS_G_... 197234 cd09103 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09137 PLDc_PGS1_e... 197235 cd09103 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09138 PLDc_vPLD1_... 197236 cd09104 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09139 PLDc_pPLD_l... 197237 cd09104 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09140 PLDc_vPLD1_... 197238 cd09104 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09141 PLDc_vPLD1_... 197239 cd09105 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09142 PLDc_pPLD_l... 197240 cd09105 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09143 PLDc_vPLD1_... 197241 cd09105 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09144 PLDc_vPLD3_1 197242 cd09106 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09145 PLDc_vPLD4_1 197243 cd09106 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09146 PLDc_vPLD5_1 197244 cd09106 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09147 PLDc_vPLD3_2 197245 cd09107 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09148 PLDc_vPLD4_2 197246 cd09107 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09149 PLDc_vPLD5_2 197247 cd09107 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09150 PLDc_Ymt_1 197248 cd09108 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09151 PLDc_Ymt_2 197249 cd09109 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09152 PLDc_EcCLS_... 197250 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09154 PLDc_SMU_98... 197251 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09155 PLDc_PaCLS_... 197252 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09156 PLDc_CLS_un... 197253 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09157 PLDc_CLS_un... 197254 cd09110 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09158 PLDc_EcCLS_... 197255 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09159 PLDc_ybhO_l... 197256 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09160 PLDc_SMU_98... 197257 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09161 PLDc_PaCLS_... 197258 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09162 PLDc_CLS_un... 197259 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09163 PLDc_CLS_un... 197260 cd09112 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09164 PLDc_EcPPK1... 197261 cd09114 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09165 PLDc_PaPPK1... 197262 cd09114 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09166 PLDc_PPK1_C... 197263 cd09114 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09167 PLDc_EcPPK1... 197264 cd09115 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09168 PLDc_PaPPK1... 197265 cd09115 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09169 PLDc_PPK1_C... 197266 cd09115 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09170 PLDc_Nuc 197267 cd09116 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09171 PLDc_vPLD6_... 197268 cd09116 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09172 PLDc_Nuc_li... 197269 cd09116 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09173 PLDc_Nuc_li... 197270 cd09116 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09174 PLDc_Nuc_li... 197271 cd09116 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09175 PLDc_Bfil 197272 cd09117 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09176 PLDc_unchar6 197273 cd00138 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09177 PLDc_RE_Ngo... 197274 cd09117 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09178 PLDc_N_Snf2... 197275 cd09117 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09179 PLDc_N_DEXD_a 197276 cd09117 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09180 PLDc_N_DEXD_b 197277 cd09117 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09181 PLDc_FAM83A_N 197278 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09182 PLDc_FAM83B_N 197279 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09183 PLDc_FAM83C_N 197280 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09184 PLDc_FAM83D_N 197281 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09186 PLDc_FAM83F_N 197282 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09187 PLDc_FAM83G_N 197283 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09188 PLDc_FAM83H_N 197284 cd09119 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09189 PLDc_DNaseI... 197285 cd09120 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09190 PLDc_DNaseI... 197286 cd09120 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09191 PLDc_DNaseI... 197287 cd09121 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09192 PLDc_DNaseI... 197288 cd09121 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09193 PLDc_mTdp1_1 197289 cd09122 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09194 PLDc_yTdp1_1 197290 cd09122 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09195 PLDc_mTdp1_2 197291 cd09123 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09196 PLDc_yTdp1_2 197292 cd09123 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09197 PLDc_pPLDal... 197293 cd09139 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09198 PLDc_pPLDbe... 197294 cd09139 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09199 PLDc_pPLDal... 197295 cd09142 cd00138 2 1 1 0 01/17/13 11:58:00 -cd09200 PLDc_pPLDbe... 197296 cd09142 cd00138 2 1 1 0 01/17/13 11:59:00 -cd09203 PLDc_N_DEXD_b1 197297 cd09180 cd00138 2 1 1 0 01/17/13 11:59:00 -cd09204 PLDc_N_DEXD_b2 197298 cd09180 cd00138 2 1 1 0 01/17/13 11:59:00 -cd09205 PLDc_N_DEXD_b3 197299 cd09180 cd00138 2 1 1 0 01/17/13 11:59:00 -cd09208 Lumazine_sy... 187741 cd08371 cd08371 2 1 1 0 01/17/13 11:59:00 -cd09209 Lumazine_sy... 187742 cd08371 cd08371 2 1 1 0 01/17/13 11:59:00 -cd09210 Riboflavin_... 187743 cd08371 cd08371 2 1 1 0 01/17/13 11:59:00 -cd09211 Lumazine_sy... 187744 cd08371 cd08371 2 1 1 0 01/17/13 11:59:00 -cd09212 PUB 198416 N/A cd09212 2 1 1 0 01/17/13 11:59:00 -cd09213 Luminal_IRE... 188873 N/A cd09213 3 1 1 0 01/17/13 11:59:00 -cd09214 GH64-like 185753 cd08961 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09215 Thaumatin-like 185754 cd08961 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09216 GH64-LPHase... 185755 cd09214 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09217 TLP-P 185756 cd09215 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09218 TLP-PA 185757 cd09215 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09219 TLP-F 185758 cd09215 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09220 GH64-GluB-like 185759 cd09216 cd08961 3 1 1 0 01/17/13 11:59:00 -cd09223 Photo_RC 187745 N/A cd09223 2 1 1 0 01/17/13 11:59:00 -cd09224 CytoC_RC 198423 N/A cd09224 2 1 1 0 01/17/13 11:59:00 -cd09232 Snurportin-1_C 185717 cd06846 cd06846 3 1 1 0 01/17/13 11:59:00 -cd09233 ACE1-Sec16-... 187750 N/A cd09233 2 1 1 0 01/17/13 11:59:00 -cd09234 V_HD-PTP_like 185747 cd08915 cd08915 3 1 1 0 01/17/13 11:59:00 -cd09235 V_Alix 185748 cd08915 cd08915 3 1 1 0 01/17/13 11:59:00 -cd09236 V_AnPalA_Um... 185749 cd08915 cd08915 3 1 1 0 01/17/13 11:59:00 -cd09237 V_ScBro1_like 185750 cd08915 cd08915 3 1 1 0 01/17/13 11:59:00 -cd09238 V_Alix_like_1 185751 cd08915 cd08915 3 1 1 0 01/17/13 11:59:00 -cd09239 BRO1_HD-PTP... 185762 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09240 BRO1_Alix 185763 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09241 BRO1_ScRim2... 185764 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09242 BRO1_ScBro1... 185765 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09243 BRO1_Brox_like 185766 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09244 BRO1_Rhophilin 185767 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09245 BRO1_UmRIM2... 185768 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09246 BRO1_Alix_l... 185769 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09247 BRO1_Alix_l... 185770 cd09034 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09248 BRO1_Rhophi... 185771 cd09244 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09249 BRO1_Rhophi... 185772 cd09244 cd09034 3 1 1 0 01/17/13 11:59:00 -cd09250 AP-1_Mu1_Cterm 271158 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09251 AP-2_Mu2_Cterm 271159 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09252 AP-3_Mu3_Cterm 271160 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09253 AP-4_Mu4_Cterm 271161 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09254 AP_delta-CO... 271162 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09255 AP-like_sto... 271163 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09256 AP_MuD_MHD 271164 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09257 AP_muniscin... 271165 cd07954 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09258 AP-1_Mu1A_C... 271166 cd09250 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09259 AP-1_Mu1B_C... 271167 cd09250 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09260 AP-3_Mu3A_C... 211371 cd09252 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09261 AP-3_Mu3B_C... 211372 cd09252 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09262 AP_stonin-1... 271168 cd09255 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09263 AP_stonin-2... 271169 cd09255 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09264 AP_Syp1_MHD 271170 cd09257 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09265 AP_Syp1_lik... 271171 cd09257 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09266 SGIP1_MHD 271172 cd09265 cd07954 3 1 1 0 03/02/14 08:55:00 -cd09267 FCHo2_MHD 211378 cd09265 cd07954 3 1 1 0 03/02/14 08:56:00 -cd09268 FCHo1_MHD 271173 cd09265 cd07954 3 1 1 0 03/02/14 08:56:00 -cd09269 deoxyribose... 185703 cd01081 cd01081 3 1 1 0 01/17/13 11:59:00 -cd09270 RNase_H2-B 187751 N/A cd09270 2 1 1 0 01/17/13 11:59:00 -cd09271 RNase_H2-C 187752 N/A cd09271 2 1 1 0 01/17/13 11:59:00 -cd09272 RNase_HI_RT... 260004 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09273 RNase_HI_RT... 260005 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09274 RNase_HI_RT... 260006 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09275 RNase_HI_RT... 260007 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09276 Rnase_HI_RT... 260008 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09277 RNase_HI_ba... 260009 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09278 RNase_HI_pr... 260010 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09279 RNase_HI_like 260011 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09280 RNase_HI_eu... 260012 cd06222 cd06222 3 1 1 0 08/20/13 16:29:00 -cd09281 UPF0066 187753 N/A cd09281 2 1 1 0 01/17/13 11:59:00 -cd09286 NMNAT_Eukarya 185681 cd02039 cd02156 3 1 1 0 01/17/13 11:59:00 -cd09287 GluRS_non_core 185682 cd00418 cd02156 3 1 1 0 01/17/13 11:59:00 -cd09288 Photosystem... 187746 cd09223 cd09223 2 1 1 0 01/17/13 11:59:00 -cd09289 Photosystem... 187747 cd09223 cd09223 2 1 1 0 01/17/13 11:59:00 -cd09290 Photo-RC_L 187748 cd09223 cd09223 2 1 1 0 01/17/13 11:59:00 -cd09291 Photo-RC_M 187749 cd09223 cd09223 2 1 1 0 01/17/13 11:59:00 -cd09293 AMN1 187754 N/A cd09293 2 1 1 0 01/17/13 11:59:00 -cd09294 SmpB 187755 N/A cd09294 2 1 1 0 01/17/13 11:59:00 -cd09295 Sema 200495 N/A cd09295 2 1 1 0 01/17/13 11:59:00 -cd09299 TDT 187756 N/A cd09299 2 1 1 0 01/17/13 11:59:00 -cd09300 DEAD-like_h... 350171 N/A cd09300 1 1 0 0 07/11/18 17:58:00 -cd09301 HDAC 212512 cd09987 cd09987 2 1 1 0 01/17/13 11:59:00 -cd09302 Jacalin_like 187706 N/A cd09302 2 1 1 0 01/17/13 11:59:00 -cd09317 TDT_Mae1_like 187757 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09318 TDT_SSU1 187758 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09319 TDT_like_1 187759 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09320 TDT_like_2 187760 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09321 TDT_like_3 187761 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09322 TDT_TehA_like 187762 cd09299 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09323 TDT_SLAC1_like 187763 cd09322 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09324 TDT_TehA 187764 cd09322 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09325 TDT_C4-dica... 187765 cd09322 cd09299 2 1 1 0 01/17/13 11:59:00 -cd09326 LIM_CRP_like 188712 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09327 LIM1_abLIM 188713 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09328 LIM2_abLIM 188714 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09329 LIM3_abLIM 188715 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09330 LIM4_abLIM 188716 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09331 LIM1_PINCH 188717 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09332 LIM2_PINCH 188718 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09333 LIM3_PINCH 188719 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09334 LIM4_PINCH 188720 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09335 LIM5_PINCH 188721 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09336 LIM1_Paxill... 259830 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09337 LIM2_Paxill... 188723 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09338 LIM3_Paxill... 188724 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09339 LIM4_Paxill... 188725 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09340 LIM1_Testin... 188726 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09341 LIM2_Testin... 188727 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09342 LIM3_Testin... 188728 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09343 LIM1_FHL 188729 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09344 LIM1_FHL1 188730 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09345 LIM2_FHL 188731 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09346 LIM3_FHL 188732 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09347 LIM4_FHL 188733 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09348 LIM4_FHL1 188734 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09349 LIM1_Zyxin 188735 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09350 LIM1_TRIP6 188736 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09351 LIM1_LPP 188737 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09352 LIM1_Ajuba_... 188738 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09353 LIM2_Zyxin 188739 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09354 LIM2_LPP 188740 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09355 LIM2_Ajuba_... 188741 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09356 LIM2_TRIP6 188742 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09357 LIM3_Zyxin_... 188743 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09358 LIM_Mical_like 188744 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09359 LIM_LASP_like 188745 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09360 LIM_ALP_like 188746 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09361 LIM1_Enigma... 188747 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09362 LIM2_Enigma... 188748 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09363 LIM3_Enigma... 188749 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09364 LIM1_LIMK 188750 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09365 LIM2_LIMK 188751 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09366 LIM1_Isl 188752 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09367 LIM1_Lhx1_Lhx5 188753 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09368 LIM1_Lhx3_Lhx4 188754 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09369 LIM1_Lhx2_Lhx9 188755 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09370 LIM1_Lmx1a 188756 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09371 LIM1_Lmx1b 188757 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09372 LIM2_FBLP-1 188758 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09373 LIM1_AWH 188759 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09374 LIM2_Isl 188760 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09375 LIM2_Lhx1_Lhx5 188761 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09376 LIM2_Lhx3_Lhx4 188762 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09377 LIM2_Lhx2_Lhx9 188763 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09378 LIM2_Lmx1a_... 188764 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09379 LIM2_AWH 188765 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09380 LIM1_Lhx6 188766 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09381 LIM1_Lhx7_Lhx8 188767 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09382 LIM2_Lhx6 188768 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09383 LIM2_Lhx7_Lhx8 188769 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09384 LIM1_LMO2 188770 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09385 LIM2_LMO2 188771 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09386 LIM1_LMO4 188772 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09387 LIM2_LMO4 188773 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09388 LIM1_LMO1_LMO3 188774 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09389 LIM2_LMO1_LMO3 188775 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09390 LIM2_dLMO 188776 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09391 LIM1_Lrg1p_... 188777 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09392 LIM2_Lrg1p_... 188778 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09393 LIM3_Lrg1p_... 188779 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09394 LIM1_Rga 188780 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09395 LIM2_Rga 188781 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09396 LIM_DA1 188782 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09397 LIM1_UF1 188783 cd08368 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09400 LIM_like_1 188784 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09401 LIM_TLP_like 188785 cd08368 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09402 LIM1_CRP 188786 cd09326 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09403 LIM2_CRP 188787 cd09326 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09404 LIM1_MLP84B... 188788 cd09326 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09405 LIM1_Paxillin 188789 cd09336 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09406 LIM1_Leupaxin 188790 cd09336 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09407 LIM2_Paxillin 188791 cd09337 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09408 LIM2_Leupaxin 188792 cd09337 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09409 LIM3_Paxillin 188793 cd09338 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09410 LIM3_Leupaxin 188794 cd09338 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09411 LIM4_Paxillin 188795 cd09339 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09412 LIM4_Leupaxin 188796 cd09339 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09413 LIM1_Testin 188797 cd09340 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09414 LIM1_LIMPETin 188798 cd09340 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09415 LIM1_Prickle 188799 cd09340 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09416 LIM2_Testin 188800 cd09341 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09417 LIM2_LIMPET... 188801 cd09341 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09418 LIM2_Prickle 188802 cd09341 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09419 LIM3_Testin 188803 cd09342 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09420 LIM3_Prickle 188804 cd09342 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09421 LIM3_LIMPETin 188805 cd09343 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09422 LIM1_FHL2 188806 cd09343 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09423 LIM1_FHL3 188807 cd09343 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09424 LIM2_FHL1 188808 cd09345 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09425 LIM4_LIMPETin 188809 cd09345 cd08368 2 1 1 0 04/05/13 12:53:00 -cd09426 LIM2_FHL2 188810 cd09345 cd08368 3 1 1 0 04/05/13 12:53:00 -cd09427 LIM2_FHL3 188811 cd09345 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09428 LIM2_FHL5 188812 cd09345 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09429 LIM3_FHL1 188813 cd09346 cd08368 3 1 1 0 04/05/13 12:54:00 -cd09430 LIM5_LIMPETin 188814 cd09346 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09431 LIM3_Fhl2 188815 cd09346 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09432 LIM6_LIMPETin 188816 cd09347 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09433 LIM4_FHL2 188817 cd09347 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09434 LIM4_FHL3 188818 cd09347 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09435 LIM3_Zyxin 188819 cd09357 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09436 LIM3_TRIP6 188820 cd09357 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09437 LIM3_LPP 188821 cd09357 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09438 LIM3_Ajuba_... 188822 cd09357 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09439 LIM_Mical 188823 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09440 LIM1_SF3 188824 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09441 LIM2_SF3 188825 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09442 LIM_Eplin_like 188826 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09443 LIM_Ltd-1 188827 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09444 LIM_Mical_l... 188828 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09445 LIM_Mical_l... 188829 cd09358 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09446 LIM_N_RAP 188830 cd09359 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09447 LIM_LASP 188831 cd09359 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09448 LIM_CLP36 188832 cd09360 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09449 LIM_Mystique 188833 cd09360 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09450 LIM_ALP 188834 cd09360 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09451 LIM_RIL 188835 cd09360 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09452 LIM1_Enigma 188836 cd09361 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09453 LIM1_ENH 188837 cd09361 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09454 LIM1_ZASP_C... 188838 cd09361 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09455 LIM1_Enigma... 188839 cd09361 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09456 LIM2_Enigma 188840 cd09362 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09457 LIM2_ENH 188841 cd09362 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09458 LIM3_Enigma 188842 cd09363 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09459 LIM3_ENH 188843 cd09363 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09460 LIM3_ZASP_C... 188844 cd09363 cd08368 3 1 1 0 04/05/13 12:54:00 -cd09461 LIM3_Enigma... 188845 cd09363 cd08368 3 1 1 0 04/05/13 12:54:00 -cd09462 LIM1_LIMK1 188846 cd09364 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09463 LIM1_LIMK2 188847 cd09364 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09464 LIM2_LIMK1 188848 cd09365 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09465 LIM2_LIMK2 188849 cd09365 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09466 LIM1_Lhx3a 188850 cd09368 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09467 LIM1_Lhx3b 188851 cd09368 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09468 LIM1_Lhx4 188852 cd09368 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09469 LIM1_Lhx2 188853 cd09369 cd08368 3 1 1 0 04/05/13 12:54:00 -cd09470 LIM1_Lhx9 188854 cd09369 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09471 LIM2_Isl2 188855 cd09374 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09472 LIM2_Lhx3b 188856 cd09376 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09473 LIM2_Lhx4 188857 cd09376 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09474 LIM2_Lhx2 188858 cd09377 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09475 LIM2_Lhx9 188859 cd09377 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09476 LIM1_TLP 188860 cd09401 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09477 LIM2_TLP 188861 cd09401 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09478 LIM_CRIP 188862 cd09401 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09479 LIM1_CRP1 188863 cd09402 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09480 LIM1_CRP2 188864 cd09402 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09481 LIM1_CRP3 188865 cd09402 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09482 LIM2_CRP3 188866 cd09403 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09483 LIM1_Prickle_1 188867 cd09415 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09484 LIM1_Prickle_2 188868 cd09415 cd08368 3 1 1 0 04/05/13 12:54:00 -cd09485 LIM_Eplin_a... 188869 cd09442 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09486 LIM_Eplin_l... 188870 cd09442 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09487 SAM_superfa... 188886 N/A cd09487 2 1 1 0 01/17/13 12:00:00 -cd09488 SAM_EPH-R 188887 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09489 SAM_Smaug-like 188888 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09490 SAM_Arap1,2,3 188889 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09491 SAM_Ship2 188890 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09492 SAM_SASH1_r... 188891 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09493 SAM_SASH-like 188892 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09494 SAM_liprin-... 188893 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09495 SAM_liprin-... 188894 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09496 SAM_liprin-... 188895 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09497 SAM_caskin1... 188896 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09498 SAM_caskin1... 188897 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09499 SAM_AIDA1AB... 188898 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09500 SAM_AIDA1AB... 188899 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09501 SAM_SARM1-l... 188900 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09502 SAM_SARM1-l... 188901 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09503 SAM_tumor-p... 188902 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09504 SAM_STIM-1,... 188903 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09505 SAM_WDSUB1 188904 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09506 SAM_Shank1,2,3 188905 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09507 SAM_DGK-del... 188906 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09508 SAM_HD 188907 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09509 SAM_Polycomb 188908 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09510 SAM_aveugle... 188909 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09511 SAM_CNK1,2,... 188910 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09512 SAM_Neurabi... 188911 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09513 SAM_BAR 188912 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09514 SAM_SGMS1 188913 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09515 SAM_SGMS1-like 188914 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09516 SAM_sec23ip... 188915 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09517 SAM_USH1G_HARP 188916 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09518 SAM_ANKS6 188917 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09519 SAM_ANKS3 188918 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09520 SAM_BICC1 188919 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09521 SAM_ASZ1 188920 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09522 SAM_SLP76 188921 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09523 SAM_TAL 188922 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09524 SAM_tankyra... 188923 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09525 SAM_GAREM 188924 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09526 SAM_Samd3 188925 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09527 SAM_Samd5 188926 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09528 SAM_Samd9_S... 188927 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09529 SAM_MLTK 188928 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09530 SAM_Samd14 188929 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09531 SAM_CS047 188930 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09532 SAM_SLA1_fu... 188931 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09533 SAM_Ste50-l... 188932 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09534 SAM_Ste11_f... 188933 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09535 SAM_BOI-lik... 188934 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09536 SAM_Ste50_f... 188935 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09537 SAM_CP2-like 188936 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09538 SAM_DLC1,2-... 188937 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09539 SAM_TNK-like 188938 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09540 SAM_EPS8-like 188939 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09541 SAM_KIF24-like 188940 cd09487 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09542 SAM_EPH-A1 188941 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09543 SAM_EPH-A2 188942 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09544 SAM_EPH-A3 188943 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09545 SAM_EPH-A4 188944 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09546 SAM_EPH-A5 188945 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09547 SAM_EPH-A6 188946 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09548 SAM_EPH-A7 188947 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09549 SAM_EPH-A10 188948 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09550 SAM_EPH-A8 188949 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09551 SAM_EPH-B1 188950 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09552 SAM_EPH-B2 188951 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09553 SAM_EPH-B3 188952 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09554 SAM_EPH-B4 188953 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09555 SAM_EPH-B6 188954 cd09488 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09556 SAM_VTS1_fu... 188955 cd09489 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09557 SAM_Smaug 188956 cd09489 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09558 SAM_ZCCH14 188957 cd09489 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09559 SAM_SASH1_r... 188958 cd09493 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09560 SAM_SASH3 188959 cd09493 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09561 SAM_SAMSN1 188960 cd09493 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09562 SAM_liprin-... 188961 cd09494 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09563 SAM_liprin-... 188962 cd09494 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09564 SAM_kazrin_... 188963 cd09494 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09565 SAM_liprin-... 188964 cd09495 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09566 SAM_liprin-... 188965 cd09495 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09567 SAM_kazrin_... 188966 cd09495 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09568 SAM_liprin-... 188967 cd09496 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09569 SAM_liprin-... 188968 cd09496 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09570 SAM_kazrin_... 188969 cd09496 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09571 SAM_tumor-p73 188970 cd09503 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09572 SAM_tumor-p63 188971 cd09503 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09573 SAM_STIM1 188972 cd09504 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09574 SAM_STIM2 188973 cd09504 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09575 SAM_DGK-delta 188974 cd09507 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09576 SAM_DGK-eta 188975 cd09507 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09577 SAM_Ph1,2,3 188976 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09578 SAM_Scm 188977 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09579 SAM_Samd7,11 188978 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09580 SAM_Scm-lik... 188979 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09581 SAM_Scm-lik... 188980 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09582 SAM_Scm-lik... 188981 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09583 SAM_Atherin... 188982 cd09509 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09584 SAM_sec23ip 188983 cd09516 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09585 SAM_DDHD2 188984 cd09516 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09586 SAM_USH1G 188985 cd09517 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09587 SAM_HARP 188986 cd09517 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09588 SAM_LBP1 188987 cd09537 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09589 SAM_TFCP2 188988 cd09537 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09590 SAM_LBP9 188989 cd09537 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09591 SAM_DLC1 188990 cd09538 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09592 SAM_DLC2 188991 cd09538 cd09487 2 1 1 0 01/17/13 12:00:00 -cd09593 UDG_like 198424 N/A cd09593 2 1 1 0 01/17/13 12:00:00 -cd09594 GluZincin 341057 N/A cd09594 3 1 0 0 06/09/17 14:33:00 -cd09595 M1 341058 cd09594 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09596 M36 341059 cd02699 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09597 M4_TLP 341060 cd02699 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09598 M4_like 341061 cd02699 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09599 M1_LTA4H 341062 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09600 M1_APN 341063 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09601 M1_APN-Q_like 341064 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09602 M1_APN 341065 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09603 M1_APN_like 341066 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09604 M1_APN_like 341067 cd09595 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09605 M3A 341068 cd06258 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09606 M3B_PepF 341069 cd06459 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09607 M3B_PepF 341070 cd06459 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09608 M3B_PepF 341071 cd06459 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09609 M3B_PepF 341072 cd06459 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09610 M3B_PepF 341073 cd06459 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09611 Jacalin_ZG1... 187707 cd09302 cd09302 2 1 1 0 01/17/13 12:01:00 -cd09612 Jacalin 187708 cd09302 cd09302 2 1 1 0 01/17/13 12:01:00 -cd09613 Jacalin_met... 187709 cd09302 cd09302 2 1 1 0 01/17/13 12:01:00 -cd09614 griffithsin... 187710 cd09302 cd09302 2 1 1 0 01/17/13 12:01:00 -cd09615 Jacalin_EEP 187711 cd09302 cd09302 2 1 1 0 01/17/13 12:01:00 -cd09616 Peptidase_C... 187737 cd02255 cd02255 2 1 1 0 01/17/13 12:01:00 -cd09617 Peptidase_C... 187738 cd02255 cd02255 2 1 1 0 01/17/13 12:01:00 -cd09618 CBM9_like_2 187676 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09619 CBM9_like_4 187677 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09620 CBM9_like_3 187678 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09621 CBM9_like_5 187679 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09622 CBM9_like_H... 187680 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09623 DOMON_EBDH 187681 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09624 DOMON_b558_566 187682 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09625 DOMON_like_... 187683 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09626 DOMON_gluco... 187684 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09627 DOMON_murB_... 187685 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09628 DOMON_SDR_2... 187686 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09629 DOMON_CIL1_... 187687 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09630 CDH_like_cy... 187688 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09631 DOMON_DOH 187689 cd00241 cd00241 2 1 1 0 01/17/13 12:01:00 -cd09632 PliI_like 193606 N/A cd09632 2 1 1 0 01/17/13 12:01:00 -cd09633 Deltex_C 193607 N/A cd09633 2 1 1 0 01/17/13 12:01:00 -cd09634 Cas1_I-II-III 187766 N/A cd09634 3 1 1 0 01/17/13 12:01:00 -cd09636 Cas1_I-II-III 187767 N/A cd09636 3 1 1 0 01/17/13 12:01:00 -cd09637 Cas4_I-A_I-... 187768 N/A cd09637 3 1 1 0 01/17/13 12:01:00 -cd09638 Cas2_I_II_III 187769 N/A cd09638 3 1 1 0 01/17/13 12:01:00 -cd09639 Cas3_I 187770 N/A cd09639 3 1 1 0 01/17/13 12:01:00 -cd09640 Cas7_I-C 187771 N/A cd09640 3 1 1 0 01/17/13 12:01:00 -cd09641 Cas3''_I 193608 N/A cd09641 3 1 1 0 01/17/13 12:01:00 -cd09642 Cas8c_I-C 187773 N/A cd09642 3 1 1 0 01/17/13 12:01:00 -cd09643 Csn1 187774 N/A cd09643 3 1 1 0 01/17/13 12:01:00 -cd09644 Csn2 213407 cd12216 cd12216 4 1 1 0 01/17/13 12:01:00 -cd09645 Cas5_I-E 187776 N/A cd09645 3 1 1 0 01/17/13 12:01:00 -cd09646 Cas7_I-E 187777 N/A cd09646 3 1 1 0 01/17/13 12:01:00 -cd09647 Csm2_III-A 187778 N/A cd09647 3 1 1 0 01/17/13 12:01:00 -cd09648 Cas2_I-E 187779 N/A cd09648 3 1 1 0 01/17/13 12:01:00 -cd09649 Cas5_I-A 187780 N/A cd09649 3 1 1 0 01/17/13 12:01:00 -cd09650 Cas7_I 187781 N/A cd09650 3 1 1 0 01/17/13 12:01:00 -cd09651 Cas5_I-C 187782 N/A cd09651 3 1 1 0 01/17/13 12:01:00 -cd09652 Cas6-I-III 187783 N/A cd09652 3 1 1 0 01/17/13 12:01:00 -cd09653 Csa5_I-A 187784 N/A cd09653 3 1 1 0 01/17/13 12:01:00 -cd09654 Cmr5_III-B 187785 N/A cd09654 3 1 1 0 01/17/13 12:01:00 -cd09655 CasRa_I-A 187786 N/A cd09655 3 1 1 0 01/17/13 12:01:00 -cd09656 Cmr3_III-B 187787 N/A cd09656 3 1 1 0 01/17/13 12:01:00 -cd09657 Cmr1_III-B 187788 N/A cd09657 3 1 1 0 01/17/13 12:01:00 -cd09658 Cas5_I-B 187789 N/A cd09658 3 1 1 0 01/17/13 12:01:00 -cd09659 Cas4_I-A 187790 N/A cd09659 3 1 1 0 01/17/13 12:01:00 -cd09660 Csx1_III-U 187791 N/A cd09660 3 1 1 0 01/17/13 12:01:00 -cd09661 Cmr6_III-B 187792 N/A cd09661 3 1 1 0 01/17/13 12:01:00 -cd09662 Csm5_III-A 187793 N/A cd09662 3 1 1 0 01/17/13 12:01:00 -cd09663 Csm4_III-A 187794 N/A cd09663 3 1 1 0 01/17/13 12:01:00 -cd09664 Cas6_I-E 187795 N/A cd09664 3 1 1 0 01/17/13 12:01:00 -cd09665 Cas8a1_I-A 187796 N/A cd09665 3 1 1 0 01/17/13 12:01:00 -cd09666 Cas8a2_I-A 187797 N/A cd09666 3 1 1 0 01/17/13 12:01:00 -cd09667 Csb2_I-U 187798 N/A cd09667 4 1 1 0 08/18/16 17:14:00 -cd09668 Csx1_III-U 187799 N/A cd09668 3 1 1 0 01/17/13 12:01:00 -cd09669 Cse1_I-E 187800 N/A cd09669 3 1 1 0 01/17/13 12:01:00 -cd09670 Cse2_I-E 187801 N/A cd09670 3 1 1 0 01/17/13 12:01:00 -cd09671 Csx1_III-U 187802 N/A cd09671 3 1 1 0 01/17/13 12:01:00 -cd09672 Cas8a1_I-A 187803 N/A cd09672 3 1 1 0 01/17/13 12:01:00 -cd09673 Cas3_Cas2_I-F 187804 N/A cd09673 3 1 1 0 01/17/13 12:01:00 -cd09674 Cas6_I-F 187805 N/A cd09674 3 1 1 0 01/17/13 12:01:00 -cd09675 Csy1_I-F 187806 N/A cd09675 2 1 1 0 01/17/13 12:01:00 -cd09676 Csy2_I-F 187807 N/A cd09676 3 1 1 0 08/18/16 17:14:00 -cd09677 Csy3_I-F 187808 N/A cd09677 2 1 1 0 01/17/13 12:01:00 -cd09678 Csb1_I-U 187809 N/A cd09678 2 1 1 0 01/17/13 12:01:00 -cd09679 Cas10_III 187810 N/A cd09679 2 1 1 0 01/17/13 12:01:00 -cd09680 Cas10_III 187811 N/A cd09680 2 1 1 0 01/17/13 12:01:00 -cd09681 Csx3_III-U 187812 N/A cd09681 3 1 1 0 01/17/13 12:01:00 -cd09682 Cmr4_III-B 187813 N/A cd09682 3 1 1 0 01/17/13 12:01:00 -cd09683 Csm3_III-A 187814 N/A cd09683 3 1 1 0 01/17/13 12:01:00 -cd09684 Csm3_III-A 187815 N/A cd09684 3 1 1 0 01/17/13 12:01:00 -cd09685 Cas7_I-A 187816 N/A cd09685 3 1 1 0 01/17/13 12:01:00 -cd09686 Csx1_III-U 187817 N/A cd09686 3 1 1 0 01/17/13 12:01:00 -cd09687 Cas7_I-C 187818 N/A cd09687 3 1 1 0 01/17/13 12:01:00 -cd09688 Cas5_I-C 187819 N/A cd09688 3 1 1 0 01/17/13 12:01:00 -cd09689 Cas7_I-C 187820 N/A cd09689 3 1 1 0 01/17/13 12:01:00 -cd09690 Cas7_I-B 187821 N/A cd09690 3 1 1 0 01/17/13 12:01:00 -cd09691 Cas8b_I-B 187822 N/A cd09691 3 1 1 0 01/17/13 12:01:00 -cd09692 Cas5_I-B 187823 N/A cd09692 3 1 1 0 01/17/13 12:01:00 -cd09693 Cas5_I 187824 N/A cd09693 3 1 1 0 01/17/13 12:01:00 -cd09694 Csm6_III-A 187825 N/A cd09694 3 1 1 0 01/17/13 12:01:00 -cd09695 Csx16_III-U 187826 N/A cd09695 2 1 1 0 01/17/13 12:01:00 -cd09696 Cas3_I 187827 N/A cd09696 3 1 1 0 01/17/13 12:01:00 -cd09697 Cas8a1_I-A 187828 N/A cd09697 3 1 1 0 01/17/13 12:01:00 -cd09698 Cas8a2_I-A 187829 N/A cd09698 3 1 1 0 01/17/13 12:01:00 -cd09699 Csm6_III-A 187830 N/A cd09699 3 1 1 0 01/17/13 12:01:00 -cd09700 Csx10 187831 N/A cd09700 3 1 1 0 01/17/13 12:01:00 -cd09701 Cas10_III 187832 N/A cd09701 2 1 1 0 01/17/13 12:01:00 -cd09702 Csx1_III-U 187833 N/A cd09702 3 1 1 0 01/17/13 12:01:00 -cd09703 Cas6-I-III 187834 N/A cd09703 3 1 1 0 01/17/13 12:01:00 -cd09704 Csx12 187835 N/A cd09704 3 1 1 0 01/17/13 12:01:00 -cd09705 Csf1_U 187836 N/A cd09705 3 1 1 0 01/17/13 12:01:00 -cd09706 Csf2_U 187837 N/A cd09706 3 1 1 0 01/17/13 12:01:00 -cd09707 Csf3_U 187838 N/A cd09707 3 1 1 0 01/17/13 12:01:00 -cd09708 Csf4_U 187839 N/A cd09708 3 1 1 0 01/17/13 12:01:00 -cd09709 Csc2_I-D 187840 N/A cd09709 3 1 1 0 01/17/13 12:01:00 -cd09710 Cas3_I-D 187841 N/A cd09710 3 1 1 0 01/17/13 12:01:00 -cd09711 Csc1_I-D 187842 N/A cd09711 3 1 1 0 01/17/13 12:01:00 -cd09712 Cas10d_I-D 187843 N/A cd09712 3 1 1 0 01/17/13 12:01:00 -cd09713 Cas8c_I-C 187844 N/A cd09713 4 1 1 0 03/27/15 16:16:00 -cd09714 Cas8c'_I-D 187845 N/A cd09714 4 1 1 0 03/27/15 16:16:00 -cd09715 Csp2_I-U 187846 N/A cd09715 2 1 1 0 01/17/13 12:01:00 -cd09716 Cas5_I 187847 N/A cd09716 3 1 1 0 01/17/13 12:01:00 -cd09717 Cas7_I 187848 N/A cd09717 3 1 1 0 01/17/13 12:01:00 -cd09718 Cas1_I-F 187849 N/A cd09718 3 1 1 0 01/17/13 12:01:00 -cd09719 Cas1_I-E 187850 N/A cd09719 3 1 1 0 01/17/13 12:01:00 -cd09720 Cas1_II 187851 N/A cd09720 3 1 1 0 01/17/13 12:01:00 -cd09721 Cas1_I-C 187852 N/A cd09721 2 1 1 0 01/17/13 12:01:00 -cd09722 Cas1_I-B 187853 N/A cd09722 3 1 1 0 01/17/13 12:01:00 -cd09723 Csx1_III-U 187854 N/A cd09723 3 1 1 0 01/17/13 12:01:00 -cd09724 CsaX_III-U 187855 N/A cd09724 3 1 1 0 01/17/13 12:01:00 -cd09725 Cas2_I_II_III 187856 N/A cd09725 3 1 1 0 01/17/13 12:01:00 -cd09726 RAMP_I_III 187857 N/A cd09726 3 1 1 0 01/17/13 12:01:00 -cd09727 Cas6_I-E 187858 N/A cd09727 3 1 1 0 01/17/13 12:01:00 -cd09728 Csx1_III-U 187859 N/A cd09728 3 1 1 0 01/17/13 12:01:00 -cd09729 Cse1_I-E 187860 N/A cd09729 3 1 1 0 01/17/13 12:01:00 -cd09730 Cas8a1_I-A 187861 N/A cd09730 3 1 1 0 01/17/13 12:01:00 -cd09731 Cse2_I-E 187862 N/A cd09731 3 1 1 0 01/17/13 12:01:00 -cd09732 Csx1_III-U 187863 N/A cd09732 3 1 1 0 01/17/13 12:01:00 -cd09733 Cas6-I-III 187864 N/A cd09733 3 1 1 0 01/17/13 12:01:00 -cd09734 Csb2_I-U 320705 N/A cd09734 4 1 1 0 08/18/16 17:14:00 -cd09735 Csy1_I-F 187866 N/A cd09735 2 1 1 0 01/17/13 12:01:00 -cd09736 Csy2_I-F 187867 N/A cd09736 3 1 1 0 08/18/16 17:15:00 -cd09737 Csy3_I-F 187868 N/A cd09737 2 1 1 0 01/17/13 12:01:00 -cd09738 Csb1_I-U 187869 N/A cd09738 2 1 1 0 01/17/13 12:01:00 -cd09739 Cas6_I-F 187870 N/A cd09739 3 1 1 0 01/17/13 12:01:00 -cd09740 Csx3_III-U 187871 N/A cd09740 3 1 1 0 01/17/13 12:01:00 -cd09741 Csx1_III-U 187872 N/A cd09741 3 1 1 0 01/17/13 12:01:00 -cd09742 Csm6_III-A 187873 N/A cd09742 3 1 1 0 01/17/13 12:01:00 -cd09743 Csx16_III-U 187874 N/A cd09743 2 1 1 0 01/17/13 12:01:00 -cd09744 Cas8a1_I-A 187875 N/A cd09744 3 1 1 0 01/17/13 12:02:00 -cd09745 Cas8a2_I-A 187876 N/A cd09745 3 1 1 0 01/17/13 12:02:00 -cd09746 Csm6_III-A 187877 N/A cd09746 3 1 1 0 01/17/13 12:02:00 -cd09747 Csx1_III-U 187878 N/A cd09747 3 1 1 0 01/17/13 12:02:00 -cd09748 Cmr3_III-B 187879 N/A cd09748 3 1 1 0 01/17/13 12:02:00 -cd09749 Cmr5_III-B 187880 N/A cd09749 3 1 1 0 01/17/13 12:02:00 -cd09750 Csa5_I-A 187881 N/A cd09750 3 1 1 0 01/17/13 12:02:00 -cd09751 Cas8a2_I-A 187882 N/A cd09751 3 1 1 0 01/17/13 12:02:00 -cd09752 Cas5_I-C 187534 N/A cd09752 3 1 1 0 01/17/13 12:02:00 -cd09753 Cas5_I-A 187883 N/A cd09753 3 1 1 0 01/17/13 12:02:00 -cd09754 Cas8a1_I-A 187884 N/A cd09754 3 1 1 0 01/17/13 12:02:00 -cd09755 Cas2_I-E 187885 N/A cd09755 3 1 1 0 01/17/13 12:02:00 -cd09756 Cas5_I-E 187886 N/A cd09756 3 1 1 0 01/17/13 12:02:00 -cd09757 Cas8c_I-C 187887 N/A cd09757 3 1 1 0 01/17/13 12:02:00 -cd09758 Csn2 213408 cd12216 cd12216 4 1 1 0 01/17/13 12:02:00 -cd09759 Cas6_I-A 187889 N/A cd09759 3 1 1 0 01/17/13 12:02:00 -cd09760 Cas6_III 187890 N/A cd09760 3 1 1 0 01/17/13 12:02:00 -cd09761 A3DFK9-like... 187662 cd05233 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09762 HSDL2_SDR_c 187663 cd05338 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09763 DHRS1-like_... 187664 cd05338 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09764 Csb3_I-U 187733 N/A cd09764 3 1 1 0 01/17/13 12:02:00 -cd09765 Csx14_I-U 187734 N/A cd09765 3 1 1 0 01/17/13 12:02:00 -cd09766 Csx15_I-U 187735 N/A cd09766 3 1 1 0 01/17/13 12:02:00 -cd09767 Csx17_I-U 187705 N/A cd09767 3 1 1 0 01/17/13 12:02:00 -cd09768 Luminal_EIF... 188874 cd09213 cd09213 2 1 1 0 01/17/13 12:02:00 -cd09769 Luminal_IRE1 188875 cd09213 cd09213 3 1 1 0 01/17/13 12:02:00 -cd09803 UBAN 197361 N/A cd09803 2 1 1 0 01/17/13 12:02:00 -cd09804 Dcp1 197362 N/A cd09804 2 1 1 0 01/17/13 12:02:00 -cd09805 type2_17bet... 187665 cd05374 cd02266 2 1 1 0 01/17/13 12:02:00 -cd09806 type1_17bet... 187666 cd05374 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09807 retinol-DH_... 212495 cd05327 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09808 DHRS-12_lik... 187668 cd05327 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09809 human_WWOX_... 187669 cd05327 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09810 LPOR_like_S... 187670 cd05327 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09811 3b-HSD_HSDB... 187671 cd05241 cd02266 2 1 1 0 01/17/13 12:02:00 -cd09812 3b-HSD_like... 187672 cd05241 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09813 3b-HSD-NSDH... 187673 cd05241 cd02266 3 1 1 0 01/17/13 12:02:00 -cd09815 TP_methylase 212499 N/A cd09815 2 1 1 0 01/17/13 12:02:00 -cd09816 prostagland... 188648 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09817 linoleate_d... 188649 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09818 PIOX_like 188650 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09819 An_peroxida... 188651 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09820 dual_peroxi... 188652 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09821 An_peroxida... 188653 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09822 peroxinecti... 188654 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09823 peroxinecti... 188655 cd05396 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09824 myeloperoxi... 188656 cd09823 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09825 thyroid_per... 188657 cd09823 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09826 peroxidasin... 188658 cd09823 cd05396 2 1 1 0 01/17/13 12:02:00 -cd09827 PET_Prickle 193602 cd09027 cd09027 2 1 1 0 01/17/13 12:02:00 -cd09828 PET_OEBT 193603 cd09027 cd09027 2 1 1 0 01/17/13 12:02:00 -cd09829 PET_testin 193604 cd09027 cd09027 2 1 1 0 01/17/13 12:02:00 -cd09830 PET_LIMPETi... 193605 cd09027 cd09027 2 1 1 0 01/17/13 12:02:00 -cd09831 CBS_pair_AB... 341402 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd09833 CBS_pair_GG... 341403 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd09834 CBS_pair_bac 341404 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd09836 CBS_pair_arch 341405 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd09837 CBS_pair_ch... 341406 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd09839 M1_like_TAF2 341074 cd09594 cd09594 3 1 0 0 06/09/17 14:33:00 -cd09840 LIM2_CRP2 188871 cd09403 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09841 LIM1_Prickle_3 188872 cd09415 cd08368 2 1 1 0 04/05/13 12:54:00 -cd09842 PLDc_vPLD1_1 197300 cd09138 cd00138 2 1 1 0 01/17/13 12:02:00 -cd09843 PLDc_vPLD2_1 197301 cd09138 cd00138 2 1 1 0 01/17/13 12:02:00 -cd09844 PLDc_vPLD1_2 197302 cd09141 cd00138 2 1 1 0 01/17/13 12:02:00 -cd09845 PLDc_vPLD2_2 197303 cd09141 cd00138 2 1 1 0 01/17/13 12:02:00 -cd09846 DUF1312 197363 N/A cd09846 2 1 1 0 01/17/13 12:02:00 -cd09848 M28_TfR 349946 cd03874 cd03873 3 1 0 0 07/11/18 17:55:00 -cd09849 M20_Acy1L2-... 349947 cd03887 cd03873 3 1 0 0 07/11/18 17:55:00 -cd09850 Ebola-like_... 197367 cd09948 cd09947 2 1 1 0 01/17/13 12:02:00 -cd09851 HTLV-1-like... 197368 cd09948 cd09947 2 1 1 0 01/17/13 12:02:00 -cd09852 PIN_SF 350203 N/A cd09852 3 1 0 0 07/11/18 17:58:00 -cd09853 PIN_FEN-like 350204 cd09852 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09854 PIN_VapC-like 350205 cd09852 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09856 PIN_FEN1-like 350206 cd00128 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09857 PIN_EXO1 350207 cd00128 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09858 PIN_MKT1 350208 cd00128 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09859 PIN_53EXO 350209 cd00008 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09860 PIN_T4-like 350210 cd00008 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09862 PIN_Rrp44-like 350211 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09864 PIN_Fcf1-like 350212 cd08553 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09865 PIN_ScUtp23... 350213 cd08553 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09866 PIN_Fcf1-Ut... 350214 cd08553 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09867 PIN_FEN1 350215 cd09856 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09868 PIN_XPG_RAD2 350216 cd09856 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09869 PIN_GEN1 350217 cd09856 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09870 PIN_YEN1 350218 cd09856 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09871 PIN_MtVapC2... 350219 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09872 PIN_Sll0205... 350220 cd09875 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09873 PIN_Pae0151... 350221 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09874 PIN_MT3492-... 350222 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09875 PIN_VapC-Fi... 350223 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09876 PIN_Nob1-like 350224 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09877 PIN_YacL-like 350225 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09878 PIN_VapC_Vi... 350226 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09879 PIN_VapC_AF... 350227 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09880 PIN_Smg5-6-... 350228 cd09854 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09881 PIN_VapC4-5... 350229 cd09875 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09882 PIN_MtVapC3... 350230 cd09875 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09883 PIN_VapC_Ph... 350231 cd09880 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09884 PIN_Smg5-like 350232 cd09880 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09885 PIN_Smg6-like 350233 cd09880 cd09852 3 1 0 0 07/11/18 17:58:00 -cd09886 NGN_SP 193575 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09887 NGN_Arch 193576 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09888 NGN_Euk 193577 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09889 NGN_Bact_2 193578 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09890 NGN_plant 193579 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09891 NGN_Bact_1 193580 cd08000 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09892 NGN_SP_RfaH 193581 cd09886 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09893 NGN_SP_TaA 193582 cd09886 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09894 NGN_SP_AnfA1 193583 cd09886 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09895 NGN_SP_UpxY 193584 cd09886 cd08000 2 1 1 0 01/17/13 12:02:00 -cd09897 H3TH_FEN1-X... 188617 cd00080 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09898 H3TH_53EXO 188618 cd00080 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09899 H3TH_T4-like 188619 cd00080 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09900 H3TH_XPG-like 188620 cd09897 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09901 H3TH_FEN1-like 188621 cd09897 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09902 H3TH_MKT1 188622 cd09897 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09903 H3TH_FEN1-Arc 188623 cd09900 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09904 H3TH_XPG 188624 cd09900 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09905 H3TH_GEN1 188625 cd09900 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09906 H3TH_YEN1 188626 cd09900 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09907 H3TH_FEN1-Euk 188627 cd09901 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09908 H3TH_EXO1 188628 cd09901 cd00080 2 1 1 0 01/17/13 12:02:00 -cd09909 HIV-1-like_... 197369 cd09947 cd09947 2 1 1 0 01/17/13 12:02:00 -cd09910 NGN-insert_... 197364 cd09846 cd09846 2 1 1 0 01/17/13 12:02:00 -cd09911 Lin0431_like 197365 cd09846 cd09846 2 1 1 0 01/17/13 12:02:00 -cd09912 DLP_2 206739 cd00882 cd00882 2 1 1 0 01/17/13 12:02:00 -cd09913 EHD 206740 cd00882 cd00882 2 1 1 0 01/17/13 12:02:00 -cd09914 RocCOR 206741 cd00882 cd00882 2 1 1 0 01/17/13 12:02:00 -cd09915 Rag 206742 cd00882 cd00882 2 1 1 0 01/17/13 12:02:00 -cd09916 CpxP_like 197366 N/A cd09916 2 1 1 0 01/17/13 12:02:00 -cd09918 SH2_Nterm_S... 198174 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09919 SH2_STAT_fa... 198175 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09920 SH2_Cbl-b_TKB 198176 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09921 SH2_Jak_family 198177 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09923 SH2_SOCS_fa... 198178 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09925 SH2_SHC 198179 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09926 SH2_CRK_like 198180 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09927 SH2_Tensin_... 198181 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09928 SH2_Cterm_S... 198182 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09929 SH2_BLNK_SL... 198183 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09930 SH2_cSH2_p8... 198184 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09931 SH2_C-SH2_S... 198185 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09932 SH2_C-SH2_P... 198186 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09933 SH2_Src_family 199827 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09934 SH2_Tec_family 198188 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09935 SH2_ABL 198189 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09937 SH2_csk_like 198190 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09938 SH2_N-SH2_Z... 198191 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09939 SH2_STAP_fa... 198192 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09940 SH2_Vav_family 198193 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09941 SH2_Grb2_like 199828 cd00173 cd00173 3 1 1 0 01/17/13 12:02:00 -cd09942 SH2_nSH2_p8... 198195 cd00173 cd00173 3 1 1 0 01/17/13 12:03:00 -cd09943 SH2_Nck_family 198196 cd00173 cd00173 3 1 1 0 01/17/13 12:03:00 -cd09944 SH2_Grb7_fa... 198197 cd00173 cd00173 3 1 1 0 01/17/13 12:03:00 -cd09945 SH2_SHB_SHD... 198198 cd00173 cd00173 3 1 1 0 01/17/13 12:03:00 -cd09946 SH2_HSH2_like 198199 cd00173 cd00173 3 1 1 0 01/17/13 12:03:00 -cd09947 Ebola_HIV-1... 197370 N/A cd09947 2 1 1 0 01/17/13 12:03:00 -cd09948 Ebola_RSV-l... 197371 cd09947 cd09947 2 1 1 0 01/17/13 12:03:00 -cd09949 RSV-like_HR... 197372 cd09948 cd09947 2 1 1 0 01/17/13 12:03:00 -cd09950 ENVV1-like_... 197373 cd09948 cd09947 2 1 1 0 01/17/13 12:03:00 -cd09951 HERV-Rb-lik... 197374 cd09948 cd09947 2 1 1 0 01/17/13 12:03:00 -cd09966 UP_III_II 197375 N/A cd09966 2 1 1 0 01/17/13 12:03:00 -cd09967 UP_II 197376 cd09966 cd09966 2 1 1 0 01/17/13 12:03:00 -cd09968 UP_III 197377 cd09966 cd09966 2 1 1 0 01/17/13 12:03:00 -cd09969 UP_IIIb 197378 cd09968 cd09966 2 1 1 0 01/17/13 12:03:00 -cd09970 UP_IIIa 197379 cd09968 cd09966 2 1 1 0 01/17/13 12:03:00 -cd09971 SdiA-regulated 197380 N/A cd09971 2 1 1 0 01/17/13 12:03:00 -cd09972 LOTUS_TDRD_... 193586 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09973 LOTUS_2_TDRD7 193587 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09974 LOTUS_3_TDRD7 193588 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09975 LOTUS_2_TDRD5 193589 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09976 LOTUS_3_TDRD5 193590 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09977 LOTUS_1_Lim... 193591 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09978 LOTUS_2_Lim... 193592 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09979 LOTUS_3_Lim... 193593 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09980 LOTUS_4_Lim... 193594 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09981 LOTUS_5_Lim... 193595 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09982 LOTUS_6_Lim... 193596 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09983 LOTUS_7_Lim... 193597 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09984 LOTUS_8_Lim... 193598 cd08824 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09985 LOTUS_1_TDRD5 193599 cd09972 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09986 LOTUS_1_TDRD7 193600 cd09972 cd08824 2 1 1 0 01/17/13 12:03:00 -cd09987 Arginase_HDAC 212513 N/A cd09987 2 1 1 0 01/17/13 12:03:00 -cd09988 Formimidoyl... 212514 cd09015 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09989 Arginase 212515 cd11587 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09990 Agmatinase-... 212516 cd09015 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09991 HDAC_classI 212517 cd09301 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09992 HDAC_classII 212518 cd09301 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09993 HDAC_classIV 212519 cd09301 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09994 HDAC_AcuC_like 212520 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09996 HDAC_classII_1 212521 cd09992 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09998 HDAC_Hos3 212522 cd09992 cd09987 2 1 1 0 01/17/13 12:03:00 -cd09999 Arginase-li... 212523 cd11587 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10000 HDAC8 212524 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10001 HDAC_classI... 212525 cd09992 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10002 HDAC10_HDAC... 212526 cd09992 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10003 HDAC6-dom2 212527 cd09992 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10004 RPD3-like 212528 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10005 HDAC3 212529 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10006 HDAC4 212530 cd11681 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10007 HDAC5 212531 cd11681 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10008 HDAC7 212532 cd11681 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10009 HDAC9 212533 cd11681 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10010 HDAC1 212534 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10011 HDAC2 212535 cd09991 cd09987 2 1 1 0 01/17/13 12:03:00 -cd10013 Cas3''_I 193609 N/A cd10013 2 1 1 0 01/17/13 12:03:00 -cd10014 TFIIA_gamma_C 199900 N/A cd10014 2 1 1 0 01/17/13 12:03:00 -cd10015 BfiI_C_EcoR... 197381 N/A cd10015 2 1 1 0 01/17/13 12:03:00 -cd10016 EcoRII_N 197382 cd10015 cd10015 2 1 1 0 01/17/13 12:03:00 -cd10017 B3_DNA 197383 cd10015 cd10015 2 1 1 0 01/17/13 12:03:00 -cd10018 BfiI_C 197384 cd10015 cd10015 2 1 1 0 01/17/13 12:03:00 -cd10019 14-3-3_sigma 206756 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10020 14-3-3_epsilon 206757 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10022 14-3-3_beta... 206758 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10023 14-3-3_theta 206759 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10024 14-3-3_gamma 206760 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10025 14-3-3_eta 206761 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10026 14-3-3_plant 206762 cd08774 cd08774 2 1 1 0 01/17/13 12:03:00 -cd10027 UDG_F1 198425 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10028 UDG_F2_MUG 198426 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10029 UDG_F3_SMUG 198427 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10030 UDG_F4_TTUD... 198428 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10031 UDG_F5_TTUD... 198429 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10032 UDG_MUG_like 198430 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10033 UDG_like_1 198431 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10034 UDG_like_2 198432 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10035 UDG_like_3 198433 cd09593 cd09593 2 1 1 0 01/17/13 12:03:00 -cd10036 Reelin_subr... 197344 cd08524 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10037 Reelin_repe... 197345 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10038 Reelin_repe... 197346 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10039 Reelin_repe... 197347 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10040 Reelin_repe... 197348 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10041 Reelin_repe... 197349 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10042 Reelin_repe... 197350 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10043 Reelin_repe... 197351 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10044 Reelin_repe... 197352 cd08525 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10045 Reelin_repe... 197353 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10046 Reelin_repe... 197354 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10047 Reelin_repe... 197355 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10048 Reelin_repe... 197356 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10049 Reelin_repe... 197357 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10050 Reelin_repe... 197358 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10051 Reelin_repe... 197359 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10052 Reelin_repe... 197360 cd08526 cd08524 2 1 1 0 01/17/13 12:03:00 -cd10145 TFIIA_gamma_N 199901 N/A cd10145 2 1 1 0 01/17/13 12:03:00 -cd10146 LabA_like_C 199214 N/A cd10146 2 1 1 0 01/17/13 12:03:00 -cd10147 Wzt_C-like 199902 N/A cd10147 2 1 1 0 01/17/13 12:03:00 -cd10148 CsoR-like_D... 197385 N/A cd10148 2 1 1 0 01/17/13 12:03:00 -cd10149 ClassIIa_HD... 197397 N/A cd10149 2 1 1 0 01/17/13 12:03:00 -cd10150 CobN_like 199903 N/A cd10150 2 1 1 0 01/17/13 12:03:00 -cd10151 TthCsoR-lik... 197386 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10152 SaCsoR-like... 197387 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10153 RcnR-FrmR-l... 197388 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10154 NreA-like_D... 197389 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10155 BsYrkD-like... 197390 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10156 FpFrmR-Cter... 197391 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10157 BsCsoR-like... 197392 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10158 CsoR-like_D... 197393 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10159 CsoR-like_D... 197394 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10160 CsoR-like_D... 197395 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10161 CsoR-like_D... 197396 cd10148 cd10148 2 1 1 0 01/17/13 12:03:00 -cd10162 ClassIIa_HD... 197398 cd10149 cd10149 2 1 1 0 01/17/13 12:03:00 -cd10163 ClassIIa_HD... 197399 cd10149 cd10149 2 1 1 0 01/17/13 12:03:00 -cd10164 ClassIIa_HD... 197400 cd10149 cd10149 2 1 1 0 01/17/13 12:03:00 -cd10170 HSP70_NBD 212667 cd00012 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10225 MreB_like 212668 cd00012 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10227 ParM_like 212669 cd00012 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10228 HSPA4_like_NDB 212670 cd11732 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10229 HSPA12_like... 212671 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10230 HYOU1-like_NBD 212672 cd11732 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10231 YegD_like 212673 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10232 ScSsz1p_lik... 212674 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10233 HSPA1-2_6-8... 212675 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10234 HSPA9-Ssq1-... 212676 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10235 HscC_like_NBD 212677 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10236 HscA_like_NBD 212678 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10237 HSPA13-like... 212679 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10238 HSPA14-like... 212680 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10241 HSPA5-like_NBD 212681 cd10170 cd00012 2 1 1 0 01/17/13 12:03:00 -cd10276 BamB_YfgL 199834 cd00216 cd00216 2 1 1 0 01/17/13 12:03:00 -cd10277 PQQ_ADH_I 199835 cd00216 cd00216 2 1 1 0 01/17/13 12:03:00 -cd10278 PQQ_MDH 199836 cd00216 cd00216 2 1 1 0 01/17/13 12:03:00 -cd10279 PQQ_ADH_II 199837 cd00216 cd00216 2 1 1 0 01/17/13 12:03:00 -cd10280 PQQ_mGDH 199838 cd00216 cd00216 2 1 1 0 01/17/13 12:03:00 -cd10281 Nape_like_A... 197336 cd09073 cd08372 2 1 1 0 01/17/13 12:03:00 -cd10282 DNase1 197337 cd09075 cd08372 2 1 1 0 01/17/13 12:03:00 -cd10283 MnuA_DNase1... 197338 cd09075 cd08372 2 1 1 0 01/17/13 12:04:00 -cd10284 growth_horm... 198434 N/A cd10284 2 1 1 0 01/17/13 12:04:00 -cd10285 somatotropi... 198435 cd10284 cd10284 2 1 1 0 01/17/13 12:04:00 -cd10286 somatolactin 198436 cd10284 cd10284 2 1 1 0 01/17/13 12:04:00 -cd10287 prolactin_2 198437 cd10284 cd10284 2 1 1 0 01/17/13 12:04:00 -cd10288 prolactin_like 198438 cd10284 cd10284 2 1 1 0 01/17/13 12:04:00 -cd10289 GST_C_AaRS_... 198322 cd00299 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10290 GST_C_MetRS... 198323 cd00299 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10291 GST_C_YfcG_... 198324 cd03178 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10292 GST_C_YghU_... 198325 cd03178 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10293 GST_C_Ure2p 198326 cd03178 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10294 GST_C_ValRS_N 198327 cd03181 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10295 GST_C_Sigma 198328 cd03192 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10296 GST_C_CLIC4 198329 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10297 GST_C_CLIC5 198330 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10298 GST_C_CLIC2 198331 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10299 GST_C_CLIC3 198332 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10300 GST_C_CLIC1 198333 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10301 GST_C_CLIC6 198334 cd03198 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10302 GST_C_GDAP1L1 198335 cd03204 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10303 GST_C_GDAP1 198336 cd03204 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10304 GST_C_Arc1p... 198337 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10305 GST_C_AIMP3 198338 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10306 GST_C_GluRS_N 198339 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10307 GST_C_MetRS_N 198340 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10308 GST_C_eEF1b... 198341 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10309 GST_C_GluPr... 198342 cd10289 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10310 GST_C_CysRS_N 198343 cd10308 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10311 PLDc_N_DEXD_c 197304 cd00138 cd00138 2 1 1 0 01/17/13 12:04:00 -cd10312 Deadenylase... 197339 cd09097 cd08372 2 1 1 0 01/17/13 12:04:00 -cd10313 Deadenylase... 197340 cd09097 cd08372 2 1 1 0 01/17/13 12:04:00 -cd10314 FAM20_C 198457 cd10467 cd10467 2 1 1 0 01/17/13 12:04:00 -cd10315 CBM41_pullu... 199215 N/A cd10315 2 1 1 0 01/17/13 12:04:00 -cd10316 RGL4_M 199904 N/A cd10316 2 1 1 0 01/17/13 12:04:00 -cd10317 RGL4_C 199905 N/A cd10317 2 1 1 0 01/17/13 12:04:00 -cd10318 RGL11 199906 N/A cd10318 2 1 1 0 01/17/13 12:04:00 -cd10319 EphR_LBD 198439 N/A cd10319 2 1 1 0 01/17/13 12:04:00 -cd10320 RGL4_N 199907 N/A cd10320 2 1 1 0 01/17/13 12:04:00 -cd10321 RNase_Ire1_... 199216 N/A cd10321 2 1 1 0 01/17/13 12:04:00 -cd10322 SLC5sbd 271357 cd06857 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10323 SLC-NCS1sbd 271358 cd06857 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10324 SLC6sbd 271359 cd06857 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10325 SLC5sbd_vSGLT 271360 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10326 SLC5sbd_NIS... 271361 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10327 SLC5sbd_PanF 212037 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10328 SLC5sbd_YidK 271362 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10329 SLC5sbd_SGL... 271363 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10332 SLC6sbd-B0A... 271364 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10333 LeuT-like_sbd 271365 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10334 SLC6sbd_u1 271366 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10336 SLC6sbd_Tyt... 271367 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd10337 SH2_BCAR3 198200 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10338 SH2_SHA 198201 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10339 SH2_RIN_family 198202 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10340 SH2_N-SH2_S... 198203 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10341 SH2_N-SH2_P... 199829 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10342 SH2_SAP1 198205 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10343 SH2_SHIP 198206 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10344 SH2_SLAP 198207 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10345 SH2_C-SH2_Z... 198208 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10346 SH2_SH2B_fa... 198209 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10347 SH2_Nterm_s... 198210 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10348 SH2_Cterm_s... 198211 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10349 SH2_SH2D2A_... 199830 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10350 SH2_SH2D4A 198213 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10351 SH2_SH2D4B 198214 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10352 SH2_a2chime... 198215 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10353 SH2_Nterm_R... 198216 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10354 SH2_Cterm_R... 198217 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10355 SH2_DAPP1_B... 198218 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10356 SH2_ShkA_ShkC 198219 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10357 SH2_ShkD_ShkE 198220 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10358 SH2_PTK6_Brk 198221 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10359 SH2_SH3BP2 198222 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10360 SH2_Srm 198223 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10361 SH2_Fps_family 198224 cd00173 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10362 SH2_Src_Lck 198225 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10363 SH2_Src_HCK 198226 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10364 SH2_Src_Lyn 198227 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10365 SH2_Src_Src 198228 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10366 SH2_Src_Yes 198229 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10367 SH2_Src_Fgr 198230 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10368 SH2_Src_Fyn 198231 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10369 SH2_Src_Frk 199831 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10370 SH2_Src_Src42 198233 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10371 SH2_Src_Blk 198234 cd09933 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10372 SH2_STAT1 198235 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10373 SH2_STAT2 198236 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10374 SH2_STAT3 198237 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10375 SH2_STAT4 198238 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10376 SH2_STAT5 198239 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10377 SH2_STAT6 198240 cd09919 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10378 SH2_Jak1 198241 cd09921 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10379 SH2_Jak2 198242 cd09921 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10380 SH2_Jak3 198243 cd09921 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10381 SH2_Jak_Tyk2 198244 cd09921 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10382 SH2_SOCS1 198245 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10383 SH2_SOCS2 198246 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10384 SH2_SOCS3 198247 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10385 SH2_SOCS4 198248 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10386 SH2_SOCS5 198249 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10387 SH2_SOCS6 198250 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10388 SH2_SOCS7 198251 cd09923 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10389 SH2_SHB 198252 cd09945 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10390 SH2_SHD 198253 cd09945 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10391 SH2_SHE 198254 cd09945 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10392 SH2_SHF 198255 cd09945 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10393 SH2_RIN1 198256 cd10339 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10394 SH2_RIN2 198257 cd10339 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10395 SH2_RIN3 198258 cd10339 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10396 SH2_Tec_Itk 198259 cd09934 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10397 SH2_Tec_Btk 198260 cd09934 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10398 SH2_Tec_Txk 198261 cd09934 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10399 SH2_Tec_Bmx 198262 cd09934 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10400 SH2_SAP1a 198263 cd10342 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10401 SH2_C-SH2_S... 198264 cd10345 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10402 SH2_C-SH2_Z... 198265 cd10345 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10403 SH2_STAP1 198266 cd09939 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10404 SH2_STAP2 198267 cd09939 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10405 SH2_Vav1 198268 cd09940 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10406 SH2_Vav2 198269 cd09940 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10407 SH2_Vav3 198270 cd09940 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10408 SH2_Nck1 198271 cd09943 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10409 SH2_Nck2 198272 cd09943 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10410 SH2_SH2B1 198273 cd10346 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10411 SH2_SH2B2 198274 cd10346 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10412 SH2_SH2B3 198275 cd10346 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10413 SH2_Grb7 198276 cd09944 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10414 SH2_Grb14 198277 cd09944 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10415 SH2_Grb10 198278 cd09944 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10416 SH2_SH2D2A 198279 cd10349 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10417 SH2_SH2D7 199832 cd10349 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10418 SH2_Src_Fyn... 198281 cd10368 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10419 SH2_Src_Fyn... 198282 cd10368 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10420 SH2_STAT5b 198283 cd10376 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10421 SH2_STAT5a 198284 cd10376 cd00173 3 1 1 0 01/17/13 12:04:00 -cd10422 RNase_Ire1 199217 cd10321 cd10321 2 1 1 0 01/17/13 12:04:00 -cd10423 RNase_RNase-L 199218 cd10321 cd10321 2 1 1 0 01/17/13 12:04:00 -cd10424 GST_C_9 198344 cd00299 cd00299 2 1 1 0 01/17/13 12:04:00 -cd10425 Ephrin-A_Ec... 259896 cd02675 cd00920 3 1 1 0 08/20/13 16:29:00 -cd10426 Ephrin-B_Ec... 259897 cd02675 cd00920 3 1 1 0 08/20/13 16:29:00 -cd10427 FGGY_GK_1 198378 cd07769 cd00012 3 1 1 0 01/17/13 12:04:00 -cd10428 LFG_like 198410 cd06181 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10429 GAAP_like 198411 cd06181 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10430 BI-1 198412 cd06181 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10431 GHITM 198413 cd06181 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10432 BI-1-like_b... 198414 cd06181 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10433 YccA_like 198415 cd10432 cd06181 2 1 1 0 01/17/13 12:04:00 -cd10434 GIY-YIG_Uvr... 198381 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10435 GIY-YIG_RE_... 198382 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10436 GIY-YIG_End... 198383 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10437 GIY-YIG_HE_... 198384 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10438 GIY-YIG_MSH 198385 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10439 GIY-YIG_COG... 198386 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10440 GIY-YIG_COG... 198387 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10441 GIY-YIG_COG... 198388 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10442 GIY-YIG_PLEs 198389 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10443 GIY-YIG_HE_... 198390 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10444 GIY-YIG_Seg... 198391 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10445 GIY-YIG_bI1... 198392 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10446 GIY-YIG_unc... 198393 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10447 GIY-YIG_unc... 198394 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10448 GIY-YIG_unc... 198395 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10449 GIY-YIG_SLX... 198396 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10450 GIY-YIG_AtG... 198397 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10451 GIY-YIG_Lux... 198398 cd00719 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10452 GIY-YIG_RE_... 198399 cd10435 cd00719 2 1 1 0 01/17/13 12:04:00 -cd10453 GIY-YIG_RE_... 198400 cd10435 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10454 GIY-YIG_COG... 198401 cd10440 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10455 GIY-YIG_SLX1 198402 cd10449 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10456 GIY-YIG_UPF... 198403 cd10449 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10457 GIY-YIG_AtG... 198404 cd10450 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10458 GIY-YIG_NifU 198405 cd10450 cd00719 2 1 1 0 01/17/13 12:05:00 -cd10459 PUB_PNGase 198417 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10460 PUB_UBXD1 198418 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10461 PUB_UBA_plant 198419 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10462 PUB_UBA 198420 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10463 PUB_WLM 198421 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10464 PUB_RNF31 198422 cd09212 cd09212 2 1 1 0 01/17/13 12:05:00 -cd10466 FimH_man-bind 198456 N/A cd10466 2 1 1 0 01/17/13 12:05:00 -cd10467 FAM20_C_like 198458 N/A cd10467 2 1 1 0 01/17/13 12:05:00 -cd10468 Four-jointe... 198459 cd10467 cd10467 2 1 1 0 01/17/13 12:05:00 -cd10469 FAM20A_C 198460 cd10314 cd10467 2 1 1 0 01/17/13 12:05:00 -cd10470 FAM20B_C 198461 cd10314 cd10467 2 1 1 0 01/17/13 12:05:00 -cd10471 FAM20C_C 198462 cd10314 cd10467 2 1 1 0 01/17/13 12:05:00 -cd10472 EphR_LBD_B 198440 cd10319 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10473 EphR_LBD_A 198441 cd10319 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10474 EphR_LBD_B4 198442 cd10319 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10475 EphR_LBD_B6 198443 cd10319 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10476 EphR_LBD_B1 198444 cd10472 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10477 EphR_LBD_B2 198445 cd10472 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10478 EphR_LBD_B3 198446 cd10472 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10479 EphR_LBD_A1 198447 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10480 EphR_LBD_A2 198448 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10481 EphR_LBD_A3 198449 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10482 EphR_LBD_A4 198450 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10483 EphR_LBD_A5 198451 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10484 EphR_LBD_A6 198452 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10485 EphR_LBD_A7 198453 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10486 EphR_LBD_A8 198454 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10487 EphR_LBD_A10 198455 cd10473 cd10319 2 1 1 0 01/17/13 12:05:00 -cd10488 MH1_R-SMAD 199812 cd00049 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10489 MH1_SMAD_6_7 199813 cd00049 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10490 MH1_SMAD_1_5_9 199814 cd10488 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10491 MH1_SMAD_2_3 199815 cd10488 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10492 MH1_SMAD_4 199816 cd00049 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10493 MH1_SMAD_6 199817 cd10489 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10494 MH1_SMAD_7 199818 cd10489 cd00049 2 1 1 0 01/17/13 12:05:00 -cd10495 MH2_R-SMAD 199820 cd00050 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10496 MH2_I-SMAD 199821 cd00050 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10497 MH2_SMAD_1_5_9 199822 cd10495 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10498 MH2_SMAD_4 199823 cd00050 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10499 MH2_SMAD_6 199824 cd10496 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10500 MH2_SMAD_7 199825 cd10496 cd00050 2 1 1 0 01/17/13 12:05:00 -cd10506 RNAP_IV_RPD1_N 259849 cd00399 cd00399 1 1 1 0 08/20/13 16:28:00 -cd10507 Zn-ribbon_R... 259792 cd00656 cd00656 1 1 1 0 04/05/13 12:51:00 -cd10508 Zn-ribbon_RPB9 259793 cd00656 cd00656 1 1 1 0 04/05/13 12:51:00 -cd10509 Zn-ribbon_R... 259794 cd00656 cd00656 1 1 1 0 04/05/13 12:51:00 -cd10511 Zn-ribbon_TFS 259795 cd00656 cd00656 1 1 1 0 04/05/13 12:51:00 -cd10546 VKOR 240598 N/A cd10546 1 1 1 0 02/01/13 12:22:00 -cd10549 MtMvhB_like 319871 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10550 DMSOR_beta_... 319872 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10551 PsrB 319873 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10552 TH_beta_N 319874 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10553 PhsB_like 319875 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10554 HycB_like 319876 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10555 EBDH_beta 319877 cd16365 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10556 SER_beta 319878 cd16365 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10557 NarH_beta-like 319879 cd16365 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10558 FDH-N 319880 cd16366 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10559 W-FDH 319881 cd16366 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10560 FDH-O_like 319882 cd16366 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10561 HybA_like 319883 cd16366 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10562 FDH_b_like 319884 cd16366 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10563 CooF_like 319885 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10564 NapF_like 319886 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd10566 MDM2_like 349488 cd00855 cd00855 1 1 0 0 07/11/18 17:51:00 -cd10567 SWIB-MDM2_like 349489 cd00855 cd00855 1 1 0 0 07/11/18 17:51:00 -cd10568 SWIB_like 349490 cd00855 cd00855 1 1 0 0 07/11/18 17:52:00 -cd10569 FERM_C_Talin 269973 cd00836 cd00900 3 1 1 0 10/22/14 09:41:00 -cd10570 PH-GRAM 275393 cd00900 cd00900 3 1 1 0 10/22/14 09:41:00 -cd10571 PH_beta_spe... 269975 cd00821 cd00900 2 1 1 0 10/22/14 09:41:00 -cd10572 PH_RhoGEF3_... 269976 cd00821 cd00900 3 1 1 0 10/22/14 09:41:00 -cd10573 PH_DAPP1 269977 cd00821 cd00900 2 1 1 0 10/22/14 09:41:00 -cd10574 EVH1_SPRED-... 269978 cd00837 cd00900 2 1 1 0 10/22/14 09:41:00 -cd10575 TNFRSF6B 276901 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10576 TNFRSF1A 276902 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10577 TNFRSF1B 276903 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10578 TNFRSF3 276904 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10579 TNFRSF6 276905 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10580 TNFRSF10 276906 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10581 TNFRSF11B 276907 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10582 TNFRSF14 276908 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10583 TNFRSF21 276909 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd10585 CE4_SF 213020 N/A cd10585 3 1 1 0 01/17/13 12:05:00 -cd10718 SH2_CIS 198285 cd09923 cd00173 3 1 1 0 01/17/13 12:05:00 -cd10719 DnaJ_zf 199908 N/A cd10719 2 1 1 0 01/17/13 12:05:00 -cd10747 DnaJ_C 199909 N/A cd10747 2 1 1 0 01/17/13 12:05:00 -cd10748 anti-TRAP 199910 N/A cd10748 2 1 1 0 01/17/13 12:05:00 -cd10785 GH38-57_N_L... 212097 N/A cd10785 2 1 1 0 01/17/13 12:05:00 -cd10786 GH38N_AMII_... 212098 cd10785 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10787 LamB_YcsF_like 212099 cd10785 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10788 YdjC_like 212100 cd10785 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10789 GH38N_AMII_... 212101 cd10786 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10790 GH38N_AMII_1 212102 cd10786 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10791 GH38N_AMII_... 212103 cd10786 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10792 GH57N_AmyC_... 212104 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10793 GH57N_TLGT_... 212105 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10794 GH57N_PfGal... 212106 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10795 GH57N_MJA1_... 212107 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10796 GH57N_APU 212108 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10797 GH57N_APU_l... 212109 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10798 GH57N_like_1 212110 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10800 LamB_YcsF_Y... 212111 cd10787 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10801 LamB_YcsF_l... 212112 cd10787 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10802 YdjC_TTHB02... 212113 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10803 YdjC_EF3048... 212114 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10804 YdjC_HpnK_like 212115 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10805 YdjC_like_1 212116 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10806 YdjC_like_2 212117 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10807 YdjC_like_3 212118 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10808 YdjC 212119 cd10788 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10809 GH38N_AMII_... 212120 cd00451 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10810 GH38N_AMII_... 212121 cd00451 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10811 GH38N_AMII_... 212122 cd00451 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10812 GH38N_AMII_... 212123 cd10789 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10813 GH38N_AMII_... 212124 cd10789 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10814 GH38N_AMII_... 212125 cd10790 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10815 GH38N_AMII_... 212126 cd10790 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10816 GH57N_BE_TK... 212127 cd01022 cd10785 2 1 1 0 01/17/13 12:05:00 -cd10909 ChtBD1_GH18_2 211315 cd00035 cd00035 2 1 1 0 01/17/13 12:05:00 -cd10910 PIN_limkain... 350234 cd06167 cd09852 3 1 0 0 07/11/18 17:58:00 -cd10911 PIN_LabA 350235 cd06167 cd09852 3 1 0 0 07/11/18 17:58:00 -cd10912 PIN_YacP-like 350236 cd09852 cd09852 1 1 0 0 07/11/18 17:58:00 -cd10913 Peptidase_C... 199211 cd02258 cd02258 3 1 1 0 01/17/13 12:05:00 -cd10914 Peptidase_C... 199212 cd02258 cd02258 2 1 1 0 01/17/13 12:05:00 -cd10915 Peptidase_C... 199213 cd02258 cd02258 3 1 1 0 01/17/13 12:05:00 -cd10916 CE4_PuuE_Hp... 213021 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10917 CE4_NodB_li... 213022 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10918 CE4_NodB_li... 213023 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10919 CE4_CDA_like 200545 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10920 CE4_WbmS 200546 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10921 CE4_MJ0505_... 200547 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10922 CE4_PelA_li... 200548 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10923 CE4_COG5298 200549 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10924 CE4_COG4878 200550 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10925 CE4_u1 200551 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10926 CE4_u2 200552 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10927 CE4_u3 200553 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10928 CE4_u4 200554 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10929 CE4_u5 200555 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10930 CE4_u6 200556 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10931 CE4_u7 200557 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10932 CE4_u8 200558 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10933 CE4_u9 200559 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10934 CE4_cadheri... 200560 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10935 CE4_WalW 200561 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10936 CE4_DAC2 200562 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10938 CE4_HpPgdA_... 200563 cd10916 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10939 CE4_ArnD 200564 cd10585 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10940 CE4_PuuE_Hp... 200565 cd10916 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10941 CE4_PuuE_Hp... 200566 cd10916 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10942 CE4_u11 200567 cd10585 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10943 CE4_NodB 200568 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10944 CE4_SmPgdA_... 200569 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10946 CE4_Mll8295... 200570 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10947 CE4_SpPgdA_... 200571 cd10917 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10948 CE4_BsPdaA_... 200572 cd10917 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10949 CE4_BsPdaB_... 200573 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10950 CE4_BsYlxY_... 200574 cd10917 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10951 CE4_ClCDA_like 200575 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10952 CE4_MrCDA_like 200576 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10953 CE4_SlAXE_like 200577 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10954 CE4_CtAXE_like 200578 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10955 CE4_BH0857_... 200579 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10956 CE4_BH1302_... 200580 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10958 CE4_NodB_li... 200581 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10959 CE4_NodB_li... 200582 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10960 CE4_NodB_li... 200583 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10962 CE4_GT2-like 200584 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10963 CE4_RC0012_... 200585 cd10917 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10964 CE4_PgaB_5s 200586 cd10918 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10965 CE4_IcaB_5s 200587 cd10918 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10966 CE4_yadE_5s 213024 cd10918 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10967 CE4_GLA_lik... 200589 cd10918 cd10585 2 1 1 0 01/17/13 12:05:00 -cd10968 CE4_Mlr8448... 213025 cd10918 cd10585 3 1 1 0 01/17/13 12:05:00 -cd10969 CE4_Ecf1_li... 213026 cd10918 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10970 CE4_DAC_u1_6s 213027 cd10918 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10971 CE4_DAC_u2_5s 200593 cd10918 cd10585 2 1 1 0 01/17/13 12:06:00 -cd10972 CE4_DAC_u3_5s 200594 cd10918 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10973 CE4_DAC_u4_5s 213028 cd10918 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10974 CE4_CDA_like_1 200596 cd10919 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10975 CE4_CDA_like_2 200597 cd10919 cd10585 2 1 1 0 01/17/13 12:06:00 -cd10976 CE4_CDA_like_3 200598 cd10919 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10977 CE4_PuuE_Sp... 200599 cd10916 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10978 CE4_Sll1306... 200600 cd10916 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10979 CE4_PuuE_like 200601 cd10916 cd10585 3 1 1 0 01/17/13 12:06:00 -cd10980 CE4_SpCDA1 200602 cd10977 cd10585 2 1 1 0 01/17/13 12:06:00 -cd10981 ZnPC_S1P1 211380 N/A cd10981 2 1 1 0 01/17/13 12:06:00 -cd10985 MH2_SMAD_2_3 199826 cd10495 cd00050 2 1 1 0 01/17/13 12:06:00 -cd11005 M35_like 199911 N/A cd11005 2 1 1 0 01/17/13 12:06:00 -cd11006 M35_peptidy... 199912 cd11005 cd11005 2 1 1 0 01/17/13 12:06:00 -cd11007 M35_like_1 199913 cd11005 cd11005 2 1 1 0 01/17/13 12:06:00 -cd11008 M35_deutero... 199914 cd11005 cd11005 2 1 1 0 01/17/13 12:06:00 -cd11009 Zn_dep_PLPC 211381 cd10981 cd10981 2 1 1 0 01/17/13 12:06:00 -cd11010 S1-P1_nuclease 211382 cd10981 cd10981 2 1 1 0 01/17/13 12:06:00 -cd11012 CuRO_6_ceru... 259898 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11013 Plantacyanin 259899 cd04216 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11014 Mavicyanin 259900 cd04216 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11015 CuRO_2_FVII... 259901 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11016 CuRO_4_FVII... 259902 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11017 Phytocyanin... 259903 cd04216 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11018 CuRO_6_FVII... 259904 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11019 OsENODL1_like 259905 cd04216 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11020 CuRO_1_CuNIR 259906 cd04201 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11021 CuRO_2_ceru... 259907 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11022 CuRO_4_ceru... 259908 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11023 CuRO_2_ceru... 259909 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11024 CuRO_1_2DMC... 259910 cd04201 cd00920 1 1 1 0 08/20/13 16:29:00 -cd11234 E_set_GDE_N 199893 cd02688 cd02688 2 1 1 0 01/17/13 12:06:00 -cd11235 Sema_semaph... 200496 cd09295 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11236 Sema_plexin... 200497 cd09295 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11237 Sema_1A 200498 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11238 Sema_2A 200499 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11239 Sema_3 200500 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11240 Sema_4 200501 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11241 Sema_5 200502 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11242 Sema_6 200503 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11243 Sema_7A 200504 cd11235 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11244 Sema_plexin_A 200505 cd11236 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11245 Sema_plexin_B 200506 cd11236 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11246 Sema_plexin_C1 200507 cd11236 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11247 Sema_plexin_D1 200508 cd11236 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11248 Sema_MET_like 200509 cd11236 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11249 Sema_3A 200510 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11250 Sema_3B 200511 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11251 Sema_3C 200512 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11252 Sema_3D 200513 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11253 Sema_3E 200514 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11254 Sema_3F 200515 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11255 Sema_3G 200516 cd11239 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11256 Sema_4A 200517 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11257 Sema_4B 200518 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11258 Sema_4C 200519 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11259 Sema_4D 200520 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11260 Sema_4E 200521 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11261 Sema_4F 200522 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11262 Sema_4G 200523 cd11240 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11263 Sema_5A 200524 cd11241 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11264 Sema_5B 200525 cd11241 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11265 Sema_5C 200526 cd11241 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11266 Sema_6A 200527 cd11242 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11267 Sema_6B 200528 cd11242 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11268 Sema_6C 200529 cd11242 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11269 Sema_6D 200530 cd11242 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11270 Sema_6E 200531 cd11242 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11271 Sema_plexin_A1 200532 cd11244 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11272 Sema_plexin_A2 200533 cd11244 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11273 Sema_plexin_A3 200534 cd11244 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11274 Sema_plexin_A4 200535 cd11244 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11275 Sema_plexin_B1 200536 cd11245 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11276 Sema_plexin_B2 200537 cd11245 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11277 Sema_plexin_B3 200538 cd11245 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11278 Sema_MET 200539 cd11248 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11279 Sema_RON 200540 cd11248 cd09295 2 1 1 0 01/17/13 12:06:00 -cd11280 gelsolin_like 200436 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11281 ADF_drebrin... 200437 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11282 ADF_coactos... 200438 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11283 ADF_GMF-bet... 200439 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11284 ADF_Twf-C_like 200440 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11285 ADF_Twf-N_like 200441 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11286 ADF_cofilin... 200442 cd00013 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11287 Sec23_C 200443 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11288 gelsolin_S5... 200444 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11289 gelsolin_S2... 200445 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11290 gelsolin_S1... 200446 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11291 gelsolin_S6... 200447 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11292 gelsolin_S3... 200448 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11293 gelsolin_S4... 200449 cd11280 cd00013 2 1 1 0 01/17/13 12:06:00 -cd11294 E_set_Ester... 199894 cd02688 cd02688 2 1 1 0 01/17/13 12:06:00 -cd11295 Mago_nashi 199917 N/A cd11295 2 1 1 0 01/17/13 12:06:00 -cd11296 O-FucT_like 211383 N/A cd11296 2 1 1 0 01/17/13 12:06:00 -cd11297 PIN_LabA-li... 350237 cd06167 cd09852 3 1 0 0 07/11/18 17:58:00 -cd11298 O-FucT-2 211384 cd11296 cd11296 2 1 1 0 01/17/13 12:06:00 -cd11299 O-FucT_plant 211385 cd11296 cd11296 2 1 1 0 01/17/13 12:06:00 -cd11300 Fut8_like 211386 cd11296 cd11296 2 1 1 0 01/17/13 12:06:00 -cd11301 Fut1_Fut2_like 211387 cd11296 cd11296 2 1 1 0 01/17/13 12:06:00 -cd11302 O-FucT-1 211388 cd11296 cd11296 2 1 1 0 01/17/13 12:06:00 -cd11303 Dystroglyca... 206636 cd00031 cd00031 2 1 1 0 01/17/13 12:06:00 -cd11304 Cadherin_re... 206637 cd00031 cd00031 2 1 1 0 01/17/13 12:06:00 -cd11305 alpha_DG_C 206765 N/A cd11305 2 1 1 0 01/17/13 12:06:00 -cd11306 M35_peptidy... 199915 cd11006 cd11005 2 1 1 0 01/17/13 12:06:00 -cd11307 M35_Asp_f2_... 199916 cd11008 cd11005 2 1 1 0 01/17/13 12:06:00 -cd11308 Peptidase_M... 200604 N/A cd11308 2 1 1 0 01/17/13 12:06:00 -cd11309 14-3-3_fungi 206763 cd08774 cd08774 2 1 1 0 01/17/13 12:06:00 -cd11310 14-3-3_1 206764 cd08774 cd08774 2 1 1 0 01/17/13 12:06:00 -cd11313 AmyAc_arch_... 200452 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11314 AmyAc_arch_... 200453 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11315 AmyAc_bac1_... 200454 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11316 AmyAc_bac2_... 200455 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11317 AmyAc_bac_e... 200456 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11318 AmyAc_bac_f... 200457 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11319 AmyAc_euk_AmyA 200458 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11320 AmyAc_AmyMa... 200459 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11321 AmyAc_bac_e... 200460 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11322 AmyAc_Glg_BE 200461 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11323 AmyAc_AGS 200462 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11324 AmyAc_Amylo... 200463 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11325 AmyAc_GTHase 200464 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11326 AmyAc_Glg_d... 200465 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11327 AmyAc_Glg_d... 200466 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11328 AmyAc_maltase 200467 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11329 AmyAc_malta... 200468 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11330 AmyAc_OligoGlu 200469 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11331 AmyAc_Oligo... 200470 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11332 AmyAc_Oligo... 200471 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11333 AmyAc_SI_Ol... 200472 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11334 AmyAc_TreS 200473 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11335 AmyAc_MTase_N 200474 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11336 AmyAc_MTSase 200475 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11337 AmyAc_CMD_like 200476 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11338 AmyAc_CMD 200477 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11339 AmyAc_bac_C... 200478 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11340 AmyAc_bac_C... 200479 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11341 AmyAc_Pullu... 200480 cd00551 cd00551 2 1 1 0 01/17/13 12:06:00 -cd11343 AmyAc_Sucro... 200481 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11344 AmyAc_GlgE_... 200482 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11345 AmyAc_SLC3A2 200483 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11346 AmyAc_plant... 200484 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11347 AmyAc_1 200485 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11348 AmyAc_2 200486 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11349 AmyAc_3 200487 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11350 AmyAc_4 200488 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11352 AmyAc_5 200489 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11353 AmyAc_euk_b... 200490 cd11337 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11354 AmyAc_bac_C... 200491 cd11337 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11355 AmyAc_Sucro... 200492 cd11343 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11356 AmyAc_Sucro... 200493 cd11343 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11358 RNase_PH 206766 N/A cd11358 2 1 1 0 01/17/13 12:07:00 -cd11359 AmyAc_SLC3A1 200494 cd00551 cd00551 2 1 1 0 01/17/13 12:07:00 -cd11362 RNase_PH_bact 206767 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11363 RNase_PH_PN... 206768 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11364 RNase_PH_PN... 206769 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11365 RNase_PH_ar... 206770 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11366 RNase_PH_ar... 206771 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11367 RNase_PH_RRP42 206772 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11368 RNase_PH_RRP45 206773 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11369 RNase_PH_RRP43 206774 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11370 RNase_PH_RRP41 206775 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11371 RNase_PH_MTR3 206776 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11372 RNase_PH_RRP46 206777 cd11358 cd11358 2 1 1 0 01/17/13 12:07:00 -cd11374 CE4_u10 200603 cd10585 cd10585 2 1 1 0 01/17/13 12:07:00 -cd11375 Peptidase_M54 213029 N/A cd11375 2 1 1 0 01/17/13 12:07:00 -cd11376 Imelysin-like 271138 N/A cd11376 1 1 1 0 03/02/14 08:53:00 -cd11377 Pro-peptida... 206778 N/A cd11377 2 1 1 0 01/17/13 12:07:00 -cd11378 DUF296 211390 N/A cd11378 2 1 1 0 01/17/13 12:07:00 -cd11379 DUF4425 211391 N/A cd11379 2 1 1 0 01/17/13 12:07:00 -cd11380 Ribosomal_S... 211392 N/A cd11380 2 1 1 0 01/17/13 12:07:00 -cd11381 NSA2 211393 cd11380 cd11380 2 1 1 0 01/17/13 12:07:00 -cd11382 Ribosomal_S8e 211394 cd11380 cd11380 2 1 1 0 01/17/13 12:07:00 -cd11383 YfjP 206743 cd00882 cd00882 2 1 1 0 01/17/13 12:07:00 -cd11384 RagA_like 206744 cd09915 cd00882 2 1 1 0 01/17/13 12:07:00 -cd11385 RagC_like 206745 cd09915 cd00882 2 1 1 0 01/17/13 12:07:00 -cd11386 MCP_signal 206779 N/A cd11386 2 1 1 0 01/17/13 12:07:00 -cd11473 W2 211395 N/A cd11473 2 1 1 0 01/17/13 12:07:00 -cd11474 SLC5sbd_CHT 271368 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11475 SLC5sbd_PutP 271369 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11476 SLC5sbd_DUR3 271370 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11477 SLC5sbd_u1 271371 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11478 SLC5sbd_u2 271372 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11479 SLC5sbd_u3 271373 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11480 SLC5sbd_u4 271374 cd10322 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11482 SLC-NCS1sbd... 271375 cd10323 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11483 SLC-NCS1sbd... 271376 cd10323 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11484 SLC-NCS1sbd... 271377 cd10323 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11485 SLC-NCS1sbd... 271378 cd10323 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11486 SLC5sbd_SGLT1 271379 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11487 SLC5sbd_SGLT2 212056 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11488 SLC5sbd_SGLT4 271380 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11489 SLC5sbd_SGLT5 212058 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11490 SLC5sbd_SGLT6 271381 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11491 SLC5sbd_SMIT 271382 cd10329 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11492 SLC5sbd_NIS... 271383 cd10326 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11493 SLC5sbd_NIS... 271384 cd10326 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11494 SLC5sbd_NIS... 271385 cd10326 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11495 SLC5sbd_NIS... 271386 cd10326 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11496 SLC6sbd-Tau... 271387 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11497 SLC6sbd_SER... 271388 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11498 SLC6sbd_GlyT1 212067 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11499 SLC6sbd_GlyT2 271389 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11500 SLC6sbd_PROT 271390 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11501 SLC6sbd_ATB0 271391 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11502 SLC6sbd_NTT5 271392 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11503 SLC5sbd_NIS 271393 cd11492 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11504 SLC5sbd_SMVT 271394 cd11492 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11505 SLC5sbd_SMCT 271395 cd11492 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11506 SLC6sbd_GAT1 212075 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11507 SLC6sbd_GAT2 271396 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11508 SLC6sbd_GAT3 212077 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11509 SLC6sbd_CT1 271397 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11510 SLC6sbd_TauT 271398 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11511 SLC6sbd_BGT1 212080 cd11496 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11512 SLC6sbd_NET 212081 cd11497 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11513 SLC6sbd_SERT 271399 cd11497 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11514 SLC6sbd_DAT1 212083 cd11497 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11515 SLC6sbd_NTT... 271400 cd10332 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11516 SLC6sbd_B0AT1 212085 cd10332 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11517 SLC6sbd_B0AT3 212086 cd10332 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11518 SLC6sbd_SIT1 271401 cd10332 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11519 SLC5sbd_SMCT1 271402 cd11505 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11520 SLC5sbd_SMCT2 212089 cd11505 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11521 SLC6sbd_NTT4 271403 cd11515 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11522 SLC6sbd_SBAT1 212091 cd11515 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11523 NTP-PPase 212133 N/A cd11523 2 1 1 0 01/17/13 12:07:00 -cd11524 SYLF 211400 N/A cd11524 2 1 1 0 01/17/13 12:07:00 -cd11525 SYLF_SH3YL1... 211401 cd11524 cd11524 2 1 1 0 01/17/13 12:07:00 -cd11526 SYLF_FYVE 211402 cd11524 cd11524 2 1 1 0 01/17/13 12:07:00 -cd11527 NTP-PPase_d... 212134 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11528 NTP-PPase_M... 212135 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11529 NTP-PPase_M... 212136 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11530 NTP-PPase_D... 212137 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11531 NTP-PPase_B... 212138 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11532 NTP-PPase_C... 212139 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11533 NTP-PPase_A... 212140 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11534 NTP-PPase_H... 212141 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11535 NTP-PPase_S... 212142 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11536 NTP-PPase_i... 212143 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11537 NTP-PPase_R... 212144 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11538 NTP-PPase_u1 212145 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11539 NTP-PPase_u2 212146 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11540 NTP-PPase_u3 212147 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11541 NTP-PPase_u4 212148 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11542 NTP-PPase_u5 212149 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11543 NTP-PPase_u6 212150 cd11523 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11544 NTP-PPase_D... 212151 cd11530 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11545 NTP-PPase_Y... 212152 cd11530 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11546 NTP-PPase_His4 212153 cd11534 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11547 NTP-PPase_HisE 212154 cd11534 cd11523 2 1 1 0 01/17/13 12:07:00 -cd11548 NodZ_like 211389 cd11296 cd11296 2 1 1 0 01/17/13 12:07:00 -cd11549 Serine_rich... 211403 N/A cd11549 2 1 1 0 01/17/13 12:07:00 -cd11550 Serine_rich... 211404 cd11549 cd11549 2 1 1 0 01/17/13 12:07:00 -cd11551 Serine_rich... 211405 cd11549 cd11549 2 1 1 0 01/17/13 12:07:00 -cd11552 Serine_rich... 211406 cd11549 cd11549 2 1 1 0 01/17/13 12:07:00 -cd11554 SLC6sbd_u2 212092 cd10324 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11555 SLC-NCS1sbd_u1 271404 cd10323 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11556 SLC6sbd_SER... 271405 cd11497 cd06857 3 1 1 0 06/11/14 17:12:00 -cd11557 ST7 211407 N/A cd11557 2 1 1 0 01/17/13 12:07:00 -cd11558 W2_eIF2B_ep... 211396 cd11473 cd11473 2 1 1 0 01/17/13 12:07:00 -cd11559 W2_eIF4G1_like 211397 cd11473 cd11473 2 1 1 0 01/17/13 12:07:00 -cd11560 W2_eIF5C_like 211398 cd11473 cd11473 2 1 1 0 01/17/13 12:07:00 -cd11561 W2_eIF5 211399 cd11473 cd11473 2 1 1 0 01/17/13 12:07:00 -cd11564 FAT-like_CAS_C 211408 N/A cd11564 2 1 1 0 01/17/13 12:07:00 -cd11566 eIF1_SUI1 211318 cd00474 cd00474 2 1 1 0 01/17/13 12:07:00 -cd11567 YciH_like 211319 cd00474 cd00474 2 1 1 0 01/17/13 12:07:00 -cd11568 FAT-like_CA... 211409 cd11564 cd11564 2 1 1 0 01/17/13 12:07:00 -cd11569 FAT-like_BC... 211410 cd11564 cd11564 2 1 1 0 01/17/13 12:07:00 -cd11570 FAT-like_NE... 211411 cd11564 cd11564 2 1 1 0 01/17/13 12:08:00 -cd11571 FAT-like_EFS_C 211412 cd11564 cd11564 2 1 1 0 01/17/13 12:08:00 -cd11572 RlmI_M_like 211413 N/A cd11572 2 1 1 0 01/17/13 12:08:00 -cd11573 GH99_GH71_like 211414 N/A cd11573 2 1 1 0 01/17/13 12:08:00 -cd11574 GH99 211415 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11575 GH99_GH71_l... 211416 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11576 GH99_GH71_l... 211417 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11577 GH71 211418 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11578 GH99_GH71_l... 211419 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11579 Glyco_tran_... 211420 cd11573 cd11573 2 1 1 0 01/17/13 12:08:00 -cd11580 eIF2D_N_like 211421 N/A cd11580 2 1 1 0 01/17/13 12:08:00 -cd11581 GINS_A 212547 N/A cd11581 2 1 1 0 01/17/13 12:08:00 -cd11582 Axin_TNKS_b... 211424 N/A cd11582 2 1 1 0 01/17/13 12:08:00 -cd11583 Orc6_mid 211425 N/A cd11583 2 1 1 0 01/17/13 12:08:00 -cd11585 SATB1_N 211426 N/A cd11585 2 1 1 0 01/17/13 12:08:00 -cd11586 VbhA_like 212155 N/A cd11586 2 1 1 0 01/17/13 12:08:00 -cd11587 Arginase-like 212536 cd09015 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11589 Agmatinase_... 212537 cd09990 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11592 Agmatinase_PAH 212538 cd09990 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11593 Agmatinase-... 212539 cd09990 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11598 HDAC_Hos2 212540 cd09991 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11599 HDAC_classII_2 212541 cd09992 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11600 HDAC_Clr3 212542 cd09992 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11602 Ndc10 211427 N/A cd11602 2 1 1 0 01/17/13 12:08:00 -cd11603 ThermoDBP 211428 N/A cd11603 2 1 1 0 01/17/13 12:08:00 -cd11604 RTT106_N 211429 N/A cd11604 2 1 1 0 01/17/13 12:08:00 -cd11606 COE_DBD 212156 N/A cd11606 2 1 1 0 01/17/13 12:08:00 -cd11607 DENR_C 211320 cd00474 cd00474 2 1 1 0 01/17/13 12:08:00 -cd11608 eIF2D_C 211321 cd00474 cd00474 2 1 1 0 01/17/13 12:08:00 -cd11609 MCT1_N 211422 cd11580 cd11580 2 1 1 0 01/17/13 12:08:00 -cd11610 eIF2D_N 211423 cd11580 cd11580 2 1 1 0 01/17/13 12:08:00 -cd11611 SAF 212157 N/A cd11611 2 1 1 0 01/17/13 12:08:00 -cd11613 SAF_AH_GD 212158 cd11611 cd11611 2 1 1 0 01/17/13 12:08:00 -cd11614 SAF_CpaB_Fl... 212159 cd11611 cd11611 2 1 1 0 01/17/13 12:08:00 -cd11615 SAF_NeuB_like 212160 cd11614 cd11611 2 1 1 0 01/17/13 12:08:00 -cd11616 SAF_DH_OX_like 212161 cd11614 cd11611 2 1 1 0 01/17/13 12:08:00 -cd11617 Antifreeze_III 212162 cd11614 cd11611 2 1 1 0 01/17/13 12:08:00 -cd11618 ChtBD1_1 211316 cd00035 cd00035 2 1 1 0 01/17/13 12:08:00 -cd11619 HR1_CIP4-like 212009 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11620 HR1_PKC-lik... 212010 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11621 HR1_PKC-lik... 212011 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11622 HR1_PKN_1 212012 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11623 HR1_PKN_2 212013 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11624 HR1_Rhophilin 212014 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11625 HR1_PKN_3 212015 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11626 HR1_ROCK 212016 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11627 HR1_Ste20-like 212017 cd00089 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11628 HR1_CIP4_FN... 212018 cd11619 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11629 HR1_FBP17 212019 cd11619 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11630 HR1_PKN1_2 212020 cd11623 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11631 HR1_PKN2_2 212021 cd11623 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11632 HR1_PKN3_2 212022 cd11623 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11633 HR1_Rhophil... 212023 cd11624 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11634 HR1_Rhophil... 212024 cd11624 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11635 HR1_PKN2_3 212025 cd11625 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11636 HR1_PKN1_3 212026 cd11625 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11637 HR1_PKN3_3 212027 cd11625 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11638 HR1_ROCK2 212028 cd11626 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11639 HR1_ROCK1 212029 cd11626 cd00089 2 1 1 0 01/17/13 12:08:00 -cd11640 HutP 212163 N/A cd11640 2 1 1 0 01/17/13 12:08:00 -cd11641 Precorrin-4... 212500 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11642 SUMT 212501 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11643 Precorrin-6... 212502 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11644 Precorrin-6... 212503 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11645 Precorrin_2... 212504 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11646 Precorrin_3... 212505 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11647 Diphthine_s... 212506 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11648 RsmI 212507 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11649 RsmI_like 212508 cd09815 cd09815 2 1 1 0 01/17/13 12:08:00 -cd11650 AT4G37440_like 212164 N/A cd11650 2 1 1 0 01/17/13 12:08:00 -cd11651 YPK1_N_like 212165 N/A cd11651 2 1 1 0 01/17/13 12:08:00 -cd11652 SSH-N 212166 N/A cd11652 2 1 1 0 01/17/13 12:08:00 -cd11653 rap1_RCT 212167 N/A cd11653 2 1 1 0 01/17/13 12:08:00 -cd11654 TRF2_RBM 212553 N/A cd11654 2 1 1 0 01/17/13 12:08:00 -cd11655 rap1_myb-like 212554 N/A cd11655 2 1 1 0 01/17/13 12:08:00 -cd11656 FBX4_GTPase... 212555 N/A cd11656 2 1 1 0 01/17/13 12:08:00 -cd11657 TIN2_N 240667 N/A cd11657 1 1 1 0 02/01/13 12:29:00 -cd11658 SANT_DMAP1_... 212556 N/A cd11658 2 1 1 0 01/17/13 12:08:00 -cd11659 SANT_CDC5_II 212557 N/A cd11659 2 1 1 0 01/17/13 12:08:00 -cd11660 SANT_TRF 212558 N/A cd11660 2 1 1 0 01/17/13 12:08:00 -cd11661 SANT_MTA3_like 212559 N/A cd11661 2 1 1 0 01/17/13 12:08:00 -cd11662 apollo_TRF2... 212560 N/A cd11662 2 1 1 0 01/17/13 12:08:00 -cd11663 GH119_BcIgt... 212128 cd01022 cd10785 2 1 1 0 01/17/13 12:08:00 -cd11664 LamB_YcsF_l... 212129 cd10787 cd10785 2 1 1 0 01/17/13 12:08:00 -cd11665 LamB_like 212130 cd10787 cd10785 2 1 1 0 01/17/13 12:08:00 -cd11666 GH38N_Man2A1 212131 cd10809 cd10785 2 1 1 0 01/17/13 12:08:00 -cd11667 GH38N_Man2A2 212132 cd10809 cd10785 2 1 1 0 01/17/13 12:08:00 -cd11669 TTHB210-like 212168 N/A cd11669 2 1 1 0 01/17/13 12:08:00 -cd11670 Sp_RAP1_RCT 212561 N/A cd11670 2 1 1 0 01/17/13 12:08:00 -cd11671 TAZ1_RBM 212562 N/A cd11671 2 1 1 0 01/17/13 12:08:00 -cd11672 ADDz 277250 cd00065 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11673 hemoglobin_... 212563 N/A cd11673 2 1 1 0 01/17/13 12:08:00 -cd11674 lambda-1 212564 N/A cd11674 2 1 1 0 01/17/13 12:08:00 -cd11675 SCAB1_middle 212565 N/A cd11675 2 1 1 0 01/17/13 12:08:00 -cd11676 Gemin6 212487 cd00600 cd00600 2 1 1 0 01/17/13 12:08:00 -cd11677 Gemin7 212488 cd00600 cd00600 2 1 1 0 01/17/13 12:08:00 -cd11678 archaeal_LSm 212489 cd00600 cd00600 2 1 1 0 01/17/13 12:08:00 -cd11679 archaeal_Sm... 212490 cd00600 cd00600 2 1 1 0 01/17/13 12:08:00 -cd11680 HDAC_Hos1 212543 cd09991 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11681 HDAC_classIIa 212544 cd09992 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11682 HDAC6-dom1 212545 cd10002 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11683 HDAC10 212546 cd10002 cd09987 2 1 1 0 01/17/13 12:08:00 -cd11684 DHR2_DOCK 212566 N/A cd11684 2 1 1 0 01/17/13 12:08:00 -cd11687 PpPFK_gamma 212582 N/A cd11687 2 1 1 0 01/17/13 12:08:00 -cd11688 THUMP 212583 N/A cd11688 2 1 1 0 01/17/13 12:08:00 -cd11689 SidM_DrrA_GEF 212588 N/A cd11689 2 1 1 0 01/17/13 12:08:00 -cd11690 Tsi2_like 212589 N/A cd11690 2 1 1 0 01/17/13 12:08:00 -cd11691 HRI1_like 212590 N/A cd11691 2 1 1 0 01/17/13 12:08:00 -cd11692 HRI1_N_like 212591 cd11691 cd11691 2 1 1 0 01/17/13 12:08:00 -cd11693 HRI1_C_like 212592 cd11691 cd11691 2 1 1 0 01/17/13 12:08:00 -cd11694 DHR2_DOCK_D 212567 cd11684 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11695 DHR2_DOCK_C 212568 cd11684 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11696 DHR2_DOCK_B 212569 cd11684 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11697 DHR2_DOCK_A 212570 cd11684 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11698 DHR2_DOCK9 212571 cd11694 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11699 DHR2_DOCK10 212572 cd11694 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11700 DHR2_DOCK11 212573 cd11694 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11701 DHR2_DOCK8 212574 cd11695 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11702 DHR2_DOCK6 212575 cd11695 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11703 DHR2_DOCK7 212576 cd11695 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11704 DHR2_DOCK3 212577 cd11696 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11705 DHR2_DOCK4 212578 cd11696 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11706 DHR2_DOCK2 212579 cd11697 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11707 DHR2_DOCK1 212580 cd11697 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11708 DHR2_DOCK5 212581 cd11697 cd11684 2 1 1 0 01/17/13 12:08:00 -cd11709 SPRY 293931 N/A cd11709 2 1 1 0 11/06/15 13:19:00 -cd11710 GINS_A_psf1 212548 cd11581 cd11581 2 1 1 0 01/17/13 12:08:00 -cd11711 GINS_A_Sld5 212549 cd11581 cd11581 2 1 1 0 01/17/13 12:08:00 -cd11712 GINS_A_psf2 212550 cd11581 cd11581 2 1 1 0 01/17/13 12:08:00 -cd11713 GINS_A_psf3 212551 cd11581 cd11581 2 1 1 0 01/17/13 12:08:00 -cd11714 GINS_A_archaea 212552 cd11581 cd11581 2 1 1 0 01/17/13 12:08:00 -cd11715 THUMP_AdoMetMT 212584 cd11688 cd11688 2 1 1 0 01/17/13 12:08:00 -cd11716 THUMP_ThiI 212585 cd11688 cd11688 2 1 1 0 01/17/13 12:08:00 -cd11717 THUMP_THUMP... 212586 cd11688 cd11688 2 1 1 0 01/17/13 12:08:00 -cd11718 THUMP_SPOUT 212587 cd11688 cd11688 2 1 1 0 01/17/13 12:08:00 -cd11719 FANC 212593 N/A cd11719 2 1 1 0 01/17/13 12:08:00 -cd11720 FANCI 212594 cd11719 cd11719 2 1 1 0 01/17/13 12:08:00 -cd11721 FANCD2 212595 cd11719 cd11719 2 1 1 0 01/17/13 12:08:00 -cd11722 SOAR 212596 N/A cd11722 2 1 1 0 01/17/13 12:08:00 -cd11723 YabN_N 212509 cd09815 cd09815 2 1 1 0 01/17/13 12:09:00 -cd11724 TP_methylas... 212510 cd09815 cd09815 2 1 1 0 01/17/13 12:09:00 -cd11725 ADDz_Dnmt3 277251 cd11672 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11726 ADDz_ATRX 277252 cd11672 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11727 ADDz_Dnmt3l 277253 cd11725 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11728 ADDz_Dnmt3b 277254 cd11725 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11729 ADDz_Dnmt3a 277255 cd11725 cd00065 3 1 1 0 03/27/15 16:15:00 -cd11730 Tthb094_lik... 212496 cd05233 cd02266 2 1 1 0 01/17/13 12:09:00 -cd11731 Lin1944_lik... 212497 cd05233 cd02266 2 1 1 0 01/17/13 12:09:00 -cd11732 HSP105-110_... 212682 cd10170 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11733 HSPA9-like_NBD 212683 cd10234 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11734 Ssq1_like_NBD 212684 cd10234 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11735 HSPA12A_lik... 212685 cd10229 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11736 HSPA12B_lik... 212686 cd10229 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11737 HSPA4_NBD 212687 cd10228 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11738 HSPA4L_NBD 212688 cd10228 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11739 HSPH1_NBD 212689 cd10228 cd00012 2 1 1 0 01/17/13 12:09:00 -cd11740 YajQ_like 213038 N/A cd11740 2 1 1 0 01/17/13 12:09:00 -cd11741 TIN2_TBM 240666 N/A cd11741 1 1 1 0 02/01/13 12:29:00 -cd11743 Cthe_2751_like 213039 N/A cd11743 2 1 1 0 01/17/13 12:09:00 -cd11744 MIT_CorA-like 213354 N/A cd11744 2 1 1 0 01/17/13 12:09:00 -cd11745 Yos9_DD 213372 N/A cd11745 2 1 1 0 01/17/13 12:09:00 -cd11746 GH94N_like 213062 N/A cd11746 2 1 1 0 01/17/13 12:09:00 -cd11747 GH94N_like_1 213063 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11748 GH94N_NdvB_... 213064 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11749 GH94N_LBP_like 213065 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11750 GH94N_like_3 213066 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11751 GH94N_like_4 213067 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11752 GH94N_CDP_like 213068 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11753 GH94N_ChvB_... 213069 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11754 GH94N_CBP_like 213070 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11755 GH94N_ChBP_... 213071 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11756 GH94N_ChvB_... 213072 cd11746 cd11746 2 1 1 0 01/17/13 12:09:00 -cd11757 SH3_SH3BP4 212691 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11758 SH3_CRK_N 212692 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11759 SH3_CRK_C 212693 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11760 SH3_MIA_like 212694 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11761 SH3_FCHSD_1 212695 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11762 SH3_FCHSD_2 212696 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11763 SH3_SNX9_like 212697 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11764 SH3_Eps8 212698 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11765 SH3_Nck_1 212699 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11766 SH3_Nck_2 212700 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11767 SH3_Nck_3 212701 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11768 SH3_Tec_like 212702 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11769 SH3_CSK 212703 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11770 SH3_Nephroc... 212704 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11771 SH3_Pex13p_... 212705 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11772 SH3_OSTF1 212706 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11773 SH3_Sla1p_1 212707 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11774 SH3_Sla1p_2 212708 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11775 SH3_Sla1p_3 212709 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11776 SH3_PI3K_p85 212710 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11777 SH3_CIP4_Bz... 212711 cd00174 cd00174 3 1 1 0 01/17/13 12:09:00 -cd11778 SH3_Bzz1_2 212712 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11779 SH3_Irsp53_... 212713 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11780 SH3_Sorbs_3 212714 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11781 SH3_Sorbs_1 212715 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11782 SH3_Sorbs_2 212716 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11783 SH3_SH3RF_3 212717 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11784 SH3_SH3RF2_3 212718 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11785 SH3_SH3RF_C 212719 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11786 SH3_SH3RF_1 212720 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11787 SH3_SH3RF_2 212721 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11788 SH3_RasGAP 212722 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11789 SH3_Nebulin... 212723 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11790 SH3_Amphiph... 212724 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11791 SH3_UBASH3 212725 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11792 SH3_Fut8 212726 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11793 SH3_ephexin... 212727 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11794 SH3_DNMBP_N1 212728 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11795 SH3_DNMBP_N2 212729 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11796 SH3_DNMBP_N3 212730 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11797 SH3_DNMBP_N4 212731 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11798 SH3_DNMBP_C1 212732 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11799 SH3_ARHGEF3... 212733 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11800 SH3_DNMBP_C... 212734 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11801 SH3_JIP1_like 212735 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11802 SH3_Endophi... 212736 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11803 SH3_Endophi... 212737 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11804 SH3_GRB2_li... 212738 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11805 SH3_GRB2_li... 212739 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11806 SH3_PRMT2 212740 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11807 SH3_ASPP 212741 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11808 SH3_Alpha_S... 212742 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11809 SH3_srGAP 212743 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11810 SH3_RUSC1_like 212744 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11811 SH3_CHK 212745 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11812 SH3_AHI-1 212746 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11813 SH3_SGSM3 212747 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11814 SH3_Eve1_1 212748 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11815 SH3_Eve1_2 212749 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11816 SH3_Eve1_3 212750 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11817 SH3_Eve1_4 212751 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11818 SH3_Eve1_5 212752 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11819 SH3_Cortact... 212753 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11820 SH3_STAM 212754 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11821 SH3_ASAP 212755 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11822 SH3_SASH_like 212756 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11823 SH3_Nostrin 212757 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11824 SH3_PSTPIP1 212758 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11825 SH3_PLCgamma 212759 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11826 SH3_Abi 212760 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11827 SH3_MyoIe_I... 212761 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11828 SH3_ARHGEF9... 212762 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11829 SH3_GAS7 212763 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11830 SH3_VAV_2 212764 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11831 SH3_VAV_1 212765 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11832 SH3_Shank 212766 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11833 SH3_Stac_1 212767 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11834 SH3_Stac_2 212768 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11835 SH3_ARHGAP3... 212769 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11836 SH3_Interse... 212770 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11837 SH3_Interse... 212771 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11838 SH3_Interse... 212772 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11839 SH3_Interse... 212773 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11840 SH3_Interse... 212774 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11841 SH3_SH3YL1_... 212775 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11842 SH3_Ysc84p_... 212776 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11843 SH3_PACSIN 212777 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11844 SH3_CAS 212778 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11845 SH3_Src_like 212779 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11846 SH3_Srms 212780 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11847 SH3_Brk 212781 cd11845 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11848 SH3_SLAP-like 212782 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11849 SH3_SPIN90 212783 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11850 SH3_Abl 212784 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11851 SH3_RIM-BP 212785 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11852 SH3_Kalirin_1 212786 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11853 SH3_Kalirin_2 212787 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11854 SH3_Fus1p 212788 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11855 SH3_Sho1p 212789 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11856 SH3_p47phox... 212790 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11857 SH3_DBS 212791 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11858 SH3_Myosin-... 212792 cd11856 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11859 SH3_ZO 212793 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11860 SH3_DLG5 212794 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11861 SH3_DLG-like 212795 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11862 SH3_MPP 212796 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11863 SH3_CACNB 212797 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11864 SH3_PEX13_e... 212798 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11865 SH3_Nbp2-like 212799 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11866 SH3_SKAP1-like 212800 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11867 hSH3_ADAP 212801 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11869 SH3_p40phox 212802 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11870 SH3_p67phox... 212803 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11871 SH3_p67phox_N 212804 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11872 SH3_DOCK_AB 212805 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11873 SH3_CD2AP-l... 212806 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11874 SH3_CD2AP-l... 212807 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11875 SH3_CD2AP-l... 212808 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11876 SH3_MLK 212809 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11877 SH3_PIX 212810 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11878 SH3_Bem1p_1 212811 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11879 SH3_Bem1p_2 212812 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11880 SH3_Caskin 212813 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11881 SH3_MYO7A 212814 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11882 SH3_GRAF-like 212815 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11883 SH3_Sdc25 212816 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11884 SH3_MYO15 212817 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11885 SH3_SH3TC 212818 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11886 SH3_BOI 212819 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11887 SH3_Bbc1 212820 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11888 SH3_ARHGAP9... 212821 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11889 SH3_Cyk3p-like 212822 cd00174 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11890 MIA 212823 cd11760 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11891 MIAL 212824 cd11760 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11892 SH3_MIA2 212825 cd11760 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11893 SH3_MIA3 212826 cd11760 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11894 SH3_FCHSD2_2 212827 cd11762 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11895 SH3_FCHSD1_2 212828 cd11762 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11896 SH3_SNX33 212829 cd11763 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11897 SH3_SNX18 212830 cd11763 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11898 SH3_SNX9 212831 cd11763 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11899 SH3_Nck2_1 212832 cd11765 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11900 SH3_Nck1_1 212833 cd11765 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11901 SH3_Nck1_2 212834 cd11766 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11902 SH3_Nck2_2 212835 cd11766 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11903 SH3_Nck2_3 212836 cd11767 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11904 SH3_Nck1_3 212837 cd11767 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11905 SH3_Tec 212838 cd11768 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11906 SH3_BTK 212839 cd11768 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11907 SH3_TXK 212840 cd11768 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11908 SH3_ITK 212841 cd11768 cd00174 2 1 1 0 01/17/13 12:09:00 -cd11909 SH3_PI3K_p8... 212842 cd11776 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11910 SH3_PI3K_p8... 212843 cd11776 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11911 SH3_CIP4-like 212844 cd11777 cd00174 3 1 1 0 01/17/13 12:10:00 -cd11912 SH3_Bzz1_1 212845 cd11777 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11913 SH3_BAIAP2L1 212846 cd11779 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11914 SH3_BAIAP2L2 212847 cd11779 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11915 SH3_Irsp53 212848 cd11779 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11916 SH3_Sorbs1_3 212849 cd11780 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11917 SH3_Sorbs2_3 212850 cd11780 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11918 SH3_Vinexin_3 212851 cd11780 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11919 SH3_Sorbs1_1 212852 cd11781 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11920 SH3_Sorbs2_1 212853 cd11781 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11921 SH3_Vinexin_1 212854 cd11781 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11922 SH3_Sorbs1_2 212855 cd11782 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11923 SH3_Sorbs2_2 212856 cd11782 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11924 SH3_Vinexin_2 212857 cd11782 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11925 SH3_SH3RF3_3 212858 cd11783 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11926 SH3_SH3RF1_3 212859 cd11783 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11927 SH3_SH3RF1_1 212860 cd11786 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11928 SH3_SH3RF3_1 212861 cd11786 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11929 SH3_SH3RF2_1 212862 cd11786 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11930 SH3_SH3RF1_2 212863 cd11787 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11931 SH3_SH3RF3_2 212864 cd11787 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11932 SH3_SH3RF2_2 212865 cd11787 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11933 SH3_Nebulin_C 212866 cd11789 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11934 SH3_Lasp1_C 212867 cd11789 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11935 SH3_Nebulet... 212868 cd11789 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11936 SH3_UBASH3B 212869 cd11791 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11937 SH3_UBASH3A 212870 cd11791 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11938 SH3_ARHGEF1... 212871 cd11793 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11939 SH3_ephexin1 212872 cd11793 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11940 SH3_ARHGEF5_19 212873 cd11793 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11941 SH3_ARHGEF3... 212874 cd11800 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11942 SH3_JIP2 212875 cd11801 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11943 SH3_JIP1 212876 cd11801 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11944 SH3_Endophi... 212877 cd11802 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11945 SH3_Endophi... 212878 cd11802 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11946 SH3_GRB2_N 212879 cd11804 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11947 SH3_GRAP2_N 212880 cd11804 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11948 SH3_GRAP_N 212881 cd11804 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11949 SH3_GRB2_C 212882 cd11805 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11950 SH3_GRAP2_C 212883 cd11805 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11951 SH3_GRAP_C 212884 cd11805 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11952 SH3_iASPP 212885 cd11807 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11953 SH3_ASPP2 212886 cd11807 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11954 SH3_ASPP1 212887 cd11807 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11955 SH3_srGAP1-3 212888 cd11809 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11956 SH3_srGAP4 212889 cd11809 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11957 SH3_RUSC2 212890 cd11810 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11958 SH3_RUSC1 212891 cd11810 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11959 SH3_Cortactin 212892 cd11819 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11960 SH3_Abp1_eu 212893 cd11819 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11961 SH3_Abp1_fu... 212894 cd11819 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11962 SH3_Abp1_fu... 212895 cd11819 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11963 SH3_STAM2 212896 cd11820 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11964 SH3_STAM1 212897 cd11820 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11965 SH3_ASAP1 212898 cd11821 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11966 SH3_ASAP2 212899 cd11821 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11967 SH3_SASH1 212900 cd11822 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11968 SH3_SASH3 212901 cd11822 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11969 SH3_PLCgamma2 212902 cd11825 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11970 SH3_PLCgamma1 212903 cd11825 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11971 SH3_Abi1 212904 cd11826 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11972 SH3_Abi2 212905 cd11826 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11973 SH3_ASEF 212906 cd11828 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11974 SH3_ASEF2 212907 cd11828 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11975 SH3_ARHGEF9 212908 cd11828 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11976 SH3_VAV1_2 212909 cd11830 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11977 SH3_VAV2_2 212910 cd11830 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11978 SH3_VAV3_2 212911 cd11830 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11979 SH3_VAV1_1 212912 cd11831 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11980 SH3_VAV2_1 212913 cd11831 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11981 SH3_VAV3_1 212914 cd11831 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11982 SH3_Shank1 212915 cd11832 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11983 SH3_Shank2 212916 cd11832 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11984 SH3_Shank3 212917 cd11832 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11985 SH3_Stac2_C 212918 cd11833 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11986 SH3_Stac3_1 212919 cd11833 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11987 SH3_Interse... 212920 cd11836 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11988 SH3_Interse... 212921 cd11836 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11989 SH3_Interse... 212922 cd11837 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11990 SH3_Interse... 212923 cd11837 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11991 SH3_Interse... 212924 cd11838 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11992 SH3_Interse... 212925 cd11838 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11993 SH3_Interse... 212926 cd11839 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11994 SH3_Interse... 212927 cd11839 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11995 SH3_Interse... 212928 cd11840 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11996 SH3_Interse... 212929 cd11840 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11997 SH3_PACSIN3 212930 cd11843 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11998 SH3_PACSIN1-2 212931 cd11843 cd00174 2 1 1 0 01/17/13 12:10:00 -cd11999 SH3_PACSIN_... 212932 cd11843 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12000 SH3_CASS4 212933 cd11844 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12001 SH3_BCAR1 212934 cd11844 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12002 SH3_NEDD9 212935 cd11844 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12003 SH3_EFS 212936 cd11844 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12004 SH3_Lyn 212937 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12005 SH3_Lck 212938 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12006 SH3_Fyn_Yrk 212939 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12007 SH3_Yes 212940 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12008 SH3_Src 212941 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12009 SH3_Blk 212942 cd11845 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12010 SH3_SLAP 212943 cd11848 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12011 SH3_SLAP2 212944 cd11848 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12012 SH3_RIM-BP_2 212945 cd11851 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12013 SH3_RIM-BP_3 212946 cd11851 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12014 SH3_RIM-BP_1 212947 cd11851 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12015 SH3_Tks_1 212948 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12016 SH3_Tks_2 212949 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12017 SH3_Tks_3 212950 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12018 SH3_Tks4_4 212951 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12019 SH3_Tks5_4 212952 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12020 SH3_Tks5_5 212953 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12021 SH3_p47phox_1 212954 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12022 SH3_p47phox_2 212955 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12023 SH3_NoxO1_1 212956 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12024 SH3_NoxO1_2 212957 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12025 SH3_Obscuri... 212958 cd11856 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12026 SH3_ZO-1 212959 cd11859 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12027 SH3_ZO-2 212960 cd11859 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12028 SH3_ZO-3 212961 cd11859 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12029 SH3_DLG3 212962 cd11861 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12030 SH3_DLG4 212963 cd11861 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12031 SH3_DLG1 212964 cd11861 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12032 SH3_DLG2 212965 cd11861 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12033 SH3_MPP7 212966 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12034 SH3_MPP4 212967 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12035 SH3_MPP1-like 212968 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12036 SH3_MPP5 212969 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12037 SH3_MPP2 212970 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12038 SH3_MPP6 212971 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12039 SH3_MPP3 212972 cd11862 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12040 SH3_CACNB2 212973 cd11863 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12041 SH3_CACNB1 212974 cd11863 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12042 SH3_CACNB3 212975 cd11863 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12043 SH3_CACNB4 212976 cd11863 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12044 SH3_SKAP1 212977 cd11866 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12045 SH3_SKAP2 212978 cd11866 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12046 SH3_p67phox_C 212979 cd11870 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12047 SH3_Noxa1_C 212980 cd11870 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12048 SH3_DOCK3_B 212981 cd11872 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12049 SH3_DOCK4_B 212982 cd11872 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12050 SH3_DOCK2_A 212983 cd11872 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12051 SH3_DOCK1_5_A 212984 cd11872 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12052 SH3_CIN85_1 212985 cd11873 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12053 SH3_CD2AP_1 212986 cd11873 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12054 SH3_CD2AP_2 212987 cd11874 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12055 SH3_CIN85_2 212988 cd11874 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12056 SH3_CD2AP_3 212989 cd11875 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12057 SH3_CIN85_3 212990 cd11875 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12058 SH3_MLK4 212991 cd11876 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12059 SH3_MLK1-3 212992 cd11876 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12060 SH3_alphaPIX 212993 cd11877 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12061 SH3_betaPIX 212994 cd11877 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12062 SH3_Caskin1 212995 cd11880 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12063 SH3_Caskin2 212996 cd11880 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12064 SH3_GRAF 212997 cd11882 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12065 SH3_GRAF2 212998 cd11882 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12066 SH3_GRAF3 212999 cd11882 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12067 SH3_MYO15A 213000 cd11884 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12068 SH3_MYO15B 213001 cd11884 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12069 SH3_ARHGAP27 213002 cd11888 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12070 SH3_ARHGAP12 213003 cd11888 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12071 SH3_FBP17 213004 cd11911 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12072 SH3_FNBP1L 213005 cd11911 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12073 SH3_HS1 213006 cd11959 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12074 SH3_Tks5_1 213007 cd12015 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12075 SH3_Tks4_1 213008 cd12015 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12076 SH3_Tks4_2 213009 cd12016 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12077 SH3_Tks5_2 213010 cd12016 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12078 SH3_Tks4_3 213011 cd12017 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12079 SH3_Tks5_3 213012 cd12017 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12080 SH3_MPP1 213013 cd12035 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12081 SH3_CASK 213014 cd12035 cd00174 2 1 1 0 01/17/13 12:10:00 -cd12082 MATE_like 240527 N/A cd12082 1 1 1 0 02/01/13 11:45:00 -cd12083 DD_cGKI 213373 N/A cd12083 3 1 1 0 01/17/13 12:10:00 -cd12084 DD_R_PKA 213043 N/A cd12084 2 1 1 0 01/17/13 12:10:00 -cd12085 DD_cGKI-alpha 213374 cd12083 cd12083 3 1 1 0 01/17/13 12:10:00 -cd12086 DD_cGKI-beta 213375 cd12083 cd12083 3 1 1 0 01/17/13 12:10:00 -cd12087 TM_EGFR-like 213052 N/A cd12087 2 1 1 0 01/17/13 12:10:00 -cd12088 helicase_in... 277187 N/A cd12088 3 1 1 0 03/27/15 16:12:00 -cd12089 Hef_ID 277188 cd12088 cd12088 3 1 1 0 03/27/15 16:12:00 -cd12090 MDA5_ID 277189 cd12088 cd12088 3 1 1 0 03/27/15 16:12:00 -cd12091 FANCM_ID 277190 cd12088 cd12088 3 1 1 0 03/27/15 16:12:00 -cd12092 TM_ErbB4 213053 cd12087 cd12087 2 1 1 0 01/17/13 12:10:00 -cd12093 TM_ErbB1 213054 cd12087 cd12087 2 1 1 0 01/17/13 12:10:00 -cd12094 TM_ErbB2 213055 cd12087 cd12087 2 1 1 0 01/17/13 12:10:00 -cd12095 TM_ErbB3 213056 cd12087 cd12087 2 1 1 0 01/17/13 12:10:00 -cd12097 DD_RI_PKA 213044 cd12084 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12098 DD_R_PKA_fungi 213045 cd12084 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12099 DD_RII_PKA 213046 cd12084 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12100 DD_CABYR_SP17 213047 cd12084 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12101 DD_RIalpha_PKA 213048 cd12097 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12102 DD_RIbeta_PKA 213049 cd12097 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12103 DD_RIIalpha... 213050 cd12099 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12104 DD_RIIbeta_PKA 213051 cd12099 cd12084 2 1 1 0 01/17/13 12:10:00 -cd12105 HmuY 213031 cd07472 cd07472 2 1 1 0 01/17/13 12:10:00 -cd12106 PARMER_03128_N 213061 N/A cd12106 2 1 1 0 01/17/13 12:10:00 -cd12107 Hemerythrin 213982 cd00522 cd00522 2 1 1 0 01/17/13 12:10:00 -cd12108 Hr-like 213983 cd00522 cd00522 2 1 1 0 01/17/13 12:10:00 -cd12109 Hr_FBXL5 213984 cd12108 cd00522 2 1 1 0 01/17/13 12:10:00 -cd12110 PHP_HisPPas... 213994 cd07432 cd07309 2 1 1 0 01/17/13 12:11:00 -cd12111 PHP_HisPPas... 213995 cd07432 cd07309 2 1 1 0 01/17/13 12:11:00 -cd12112 PHP_HisPPas... 213996 cd07432 cd07309 2 1 1 0 01/17/13 12:11:00 -cd12113 PHP_PolIIIA... 213997 cd07431 cd07309 2 1 1 0 01/17/13 12:11:00 -cd12114 A_NRPS_TlmI... 341279 cd05930 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12115 A_NRPS_Sfm_... 341280 cd05930 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12116 A_NRPS_Ta1_... 341281 cd05930 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12117 A_NRPS_Srf_... 341282 cd05930 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12118 ttLC_FACS_A... 341283 cd05915 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12119 ttLC_FACS_A... 341284 cd05915 cd04433 3 1 0 0 07/26/17 17:22:00 -cd12120 AMPKA_C_like 213376 N/A cd12120 2 1 1 0 01/17/13 12:11:00 -cd12121 MARK_C_like 213377 cd12120 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12122 AMPKA_C 213378 cd12120 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12124 Pgbs 271279 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12125 APC_alpha 271280 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12126 APC_beta 271281 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12127 PE-PC-PEC_beta 271282 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12128 PBP_PBS-LCM 271283 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12129 PE-PC-PEC_a... 271284 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12130 Apl 271285 cd08919 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12131 HGbI_like 271286 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12137 GbX 271287 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd12139 SH3_Bin1 213015 cd11790 cd00174 2 1 1 0 01/17/13 12:11:00 -cd12140 SH3_Amphiph... 213016 cd11790 cd00174 2 1 1 0 01/17/13 12:11:00 -cd12141 SH3_DNMBP_C2 213017 cd11800 cd00174 2 1 1 0 01/17/13 12:11:00 -cd12142 SH3_D21-like 213018 cd11875 cd00174 2 1 1 0 01/17/13 12:11:00 -cd12143 SH3_ARHGAP9 213019 cd11888 cd00174 2 1 1 0 01/17/13 12:11:00 -cd12144 SDH_N_domain 213387 N/A cd12144 2 1 1 0 01/17/13 12:11:00 -cd12145 Rev1_C 213388 N/A cd12145 2 1 1 0 01/17/13 12:11:00 -cd12146 STING_C 213389 N/A cd12146 2 1 1 0 01/17/13 12:11:00 -cd12147 Cep3_C 213390 cd12148 cd12148 2 1 1 0 01/17/13 12:11:00 -cd12148 fungal_TF_MHR 213391 N/A cd12148 2 1 1 0 01/17/13 12:11:00 -cd12149 Flavi_E_C 213392 N/A cd12149 2 1 1 0 01/17/13 12:11:00 -cd12150 talin-RS 213393 N/A cd12150 2 1 1 0 01/17/13 12:11:00 -cd12151 F1-ATPase_g... 213394 N/A cd12151 2 1 1 0 01/17/13 12:11:00 -cd12152 F1-ATPase_d... 213395 N/A cd12152 2 1 1 0 01/17/13 12:11:00 -cd12153 F1-ATPase_e... 213396 N/A cd12153 2 1 1 0 01/17/13 12:11:00 -cd12154 FDH_GDH_like 240631 N/A cd12154 1 1 1 0 02/01/13 12:26:00 -cd12155 PGDH_1 240632 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12156 HPPR 240633 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12157 PTDH 240634 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12158 ErythrP_dh 240635 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12159 2-Hacid_dh_2 240636 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12160 2-Hacid_dh_3 240637 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12161 GDH_like_1 240638 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12162 2-Hacid_dh_4 240639 cd05198 cd12154 1 1 1 0 07/12/18 09:14:00 -cd12163 2-Hacid_dh_5 240640 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12164 GDH_like_2 240641 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12165 2-Hacid_dh_6 240642 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12166 2-Hacid_dh_7 240643 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12167 2-Hacid_dh_8 240644 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12168 Mand_dh_like 240645 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12169 PGDH_like_1 240646 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12170 2-Hacid_dh_9 240647 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12171 2-Hacid_dh_10 240648 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12172 PGDH_like_2 240649 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12173 PGDH_4 240650 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12174 PGDH_like_3 240651 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12175 2-Hacid_dh_11 240652 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12176 PGDH_3 240653 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12177 2-Hacid_dh_12 240654 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12178 2-Hacid_dh_13 240655 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12179 2-Hacid_dh_14 240656 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12180 2-Hacid_dh_15 240657 cd05198 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12181 ceo_syn 240658 cd01620 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12183 LDH_like_2 240659 cd01619 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12184 HGDH_like 240660 cd01619 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12185 HGDH_LDH_like 240661 cd01619 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12186 LDH 240662 cd01619 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12187 LDH_like_1 240663 cd01619 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12188 SDH 240664 cd05199 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12189 LKR_SDH_like 240665 cd05199 cd12154 1 1 1 0 02/01/13 12:26:00 -cd12190 Bacova_0432... 213397 N/A cd12190 2 1 1 0 01/17/13 12:11:00 -cd12191 gal11_coact 213398 N/A cd12191 2 1 1 0 01/17/13 12:11:00 -cd12192 GCN4_cent 213399 N/A cd12192 2 1 1 0 01/17/13 12:11:00 -cd12193 bZIP_GCN4 269833 cd14686 cd14686 3 1 1 0 03/02/14 08:11:00 -cd12194 Kcc4p_like_C 213379 cd12120 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12195 CIPK_C 213380 cd12120 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12196 MARK1-3_C 213381 cd12121 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12197 MARK4_C 213382 cd12121 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12198 MELK_C 213383 cd12121 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12199 AMPKA1_C 213384 cd12122 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12200 AMPKA2_C 213385 cd12122 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12201 MARK2_C 213386 cd12196 cd12120 2 1 1 0 01/17/13 12:11:00 -cd12202 CASP8AP2 213401 N/A cd12202 2 1 1 0 01/17/13 12:11:00 -cd12203 GT1 213402 N/A cd12203 2 1 1 0 01/17/13 12:11:00 -cd12204 CBD_like 213176 cd00036 cd00036 2 1 1 0 01/17/13 12:11:00 -cd12205 RasGAP_plexin 213344 cd04519 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12206 RasGAP_IQGA... 213345 cd04519 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12207 RasGAP_IQGAP3 213346 cd05127 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12208 septicolysi... 213403 N/A cd12208 2 1 1 0 01/17/13 12:11:00 -cd12211 Bc2l-C_N 213404 N/A cd12211 2 1 1 0 01/17/13 12:11:00 -cd12212 Fis1 276936 N/A cd12212 3 1 1 0 01/26/15 10:00:00 -cd12213 ABD 213406 N/A cd12213 2 1 1 0 01/17/13 12:11:00 -cd12214 ChiA1_BD 213177 cd00036 cd00036 2 1 1 0 01/17/13 12:11:00 -cd12215 ChiC_BD 213178 cd00036 cd00036 2 1 1 0 01/17/13 12:11:00 -cd12216 Csn2_like 213409 N/A cd12216 2 1 1 0 01/17/13 12:11:00 -cd12217 Stu0660_Csn2 213410 cd12216 cd12216 2 1 1 0 01/17/13 12:11:00 -cd12218 Csn2 213411 cd12216 cd12216 2 1 1 0 01/17/13 12:11:00 -cd12219 Ubl_TBK1_like 340518 cd17039 cd00196 2 1 0 0 06/09/17 14:31:00 -cd12220 Pesticin_RB 240617 N/A cd12220 1 1 1 0 02/01/13 12:24:00 -cd12221 Cin1 240616 N/A cd12221 1 1 1 0 02/01/13 12:24:00 -cd12222 Caa3-IV 240615 N/A cd12222 1 1 1 0 02/01/13 12:24:00 -cd12223 RRM_SR140 240669 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12224 RRM_RBM22 240670 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12225 RRM1_2_CID8... 240671 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12226 RRM_NOL8 240672 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12227 RRM_SCAF4_S... 240673 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12228 RRM_ENOX 240674 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12229 RRM_G3BP 240675 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12230 RRM1_U2AF65 240676 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12231 RRM2_U2AF65 240677 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12232 RRM3_U2AF65 240678 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12233 RRM_Srp1p_A... 240679 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12234 RRM1_AtRSp3... 240680 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12235 RRM_PPIL4 240681 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12236 RRM_snRNP70 240682 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12237 RRM_snRNP35 240683 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12238 RRM1_RBM40_... 240684 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12239 RRM2_RBM40_... 240685 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12240 RRM_NCBP2 240686 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12241 RRM_SF3B14 240687 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12242 RRM_SLIRP 240688 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12243 RRM1_MSSP 240689 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12244 RRM2_MSSP 240690 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12245 RRM_scw1_like 240691 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12246 RRM1_U1A_like 240692 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12247 RRM2_U1A_like 240693 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12248 RRM_RBM44 240694 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12249 RRM1_hnRNPR... 240695 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12250 RRM2_hnRNPR... 240696 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12251 RRM3_hnRNPR... 240697 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12252 RRM_DbpA 240698 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12253 RRM_PIN4_like 240699 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12254 RRM_hnRNPH_... 240700 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12255 RRM1_LKAP 240701 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12256 RRM2_LKAP 240702 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12257 RRM1_RBM26_... 240703 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12258 RRM2_RBM26_... 240704 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12259 RRM_SRSF11_... 240705 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12260 RRM2_SREK1 240706 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12261 RRM1_3_MRN1 240707 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12262 RRM2_4_MRN1 240708 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12263 RRM_ABT1_like 240709 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12264 RRM_AKAP17A 240710 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12265 RRM_SLT11 240711 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12266 RRM_like_XS 240712 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12267 RRM_YRA1_MLO3 240713 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12268 RRM_Vip1 240714 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12269 RRM_Vip1_like 240715 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12270 RRM_MTHFSD 240716 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12271 RRM1_PHIP1 240717 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12272 RRM2_PHIP1 240718 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12273 RRM1_NEFsp 240719 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12274 RRM2_NEFsp 240720 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12275 RRM1_MEI2_E... 240721 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12276 RRM2_MEI2_E... 240722 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12277 RRM3_MEI2_E... 240723 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12278 RRM_eIF3B 240724 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12279 RRM_TUT1 240725 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12280 RRM_FET 240726 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12281 RRM1_TatSF1... 240727 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12282 RRM2_TatSF1... 240728 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12283 RRM1_RBM39_... 240729 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12284 RRM2_RBM23_... 240730 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12285 RRM3_RBM39_... 240731 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12286 RRM_Man1 240732 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12287 RRM_U2AF35_... 240733 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12288 RRM_La_like... 240734 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12289 RRM_LARP6 240735 cd00590 cd00590 1 1 1 0 02/01/13 12:33:00 -cd12290 RRM1_LARP7 240736 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12291 RRM1_La 240737 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12292 RRM2_La_like 240738 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12293 RRM_Rrp7p 240739 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12294 RRM_Rrp7A 240740 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12295 RRM_YRA2 240741 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12296 RRM1_Prp24 240742 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12297 RRM2_Prp24 240743 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12298 RRM3_Prp24 240744 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12299 RRM4_Prp24 240745 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12300 RRM1_PAR14 240746 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12301 RRM1_2_PAR1... 240747 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12302 RRM_scSet1p... 240748 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12303 RRM_spSet1p... 240749 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12304 RRM_Set1 240750 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12305 RRM_NELFE 240751 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12306 RRM_II_PABPs 240752 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12307 RRM_NIFK_like 240753 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12308 RRM1_Spen 240754 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12309 RRM2_Spen 240755 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12310 RRM3_Spen 240756 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12311 RRM_SRSF2_S... 240757 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12312 RRM_SRSF10_... 240758 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12313 RRM1_RRM2_R... 240759 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12314 RRM1_RBM6 240760 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12315 RRM1_RBM19_... 240761 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12316 RRM3_RBM19_... 240762 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12317 RRM4_RBM19_... 240763 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12318 RRM5_RBM19_... 240764 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12319 RRM4_MRD1 240765 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12320 RRM6_RBM19_... 240766 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12321 RRM1_TDP43 240767 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12322 RRM2_TDP43 240768 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12323 RRM2_MSI 240769 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12324 RRM_RBM8 240770 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12325 RRM1_hnRNPA... 240771 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12326 RRM1_hnRNPA0 240772 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12327 RRM2_DAZAP1 240773 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12328 RRM2_hnRNPA... 240774 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12329 RRM2_hnRNPD... 240775 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12330 RRM2_Hrp1p 240776 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12331 RRM_NRD1_SE... 240777 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12332 RRM1_p54nrb... 240778 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12333 RRM2_p54nrb... 240779 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12334 RRM1_SF3B4 240780 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12335 RRM2_SF3B4 240781 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12336 RRM_RBM7_like 240782 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12337 RRM1_SRSF4_... 240783 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12338 RRM1_SRSF1_... 240784 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12339 RRM2_SRSF1_... 240785 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12340 RBD_RRM1_NPL3 240786 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12341 RRM_hnRNPC_... 240787 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12342 RRM_Nab3p 240788 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12343 RRM1_2_CoAA... 240789 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12344 RRM1_SECp43... 240790 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12345 RRM2_SECp43... 240791 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12346 RRM3_NGR1_N... 240792 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12347 RRM_PPIE 240793 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12348 RRM1_SHARP 240794 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12349 RRM2_SHARP 240795 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12350 RRM3_SHARP 240796 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12351 RRM4_SHARP 240797 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12352 RRM1_TIA1_like 240798 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12353 RRM2_TIA1_like 240799 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12354 RRM3_TIA1_like 240800 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12355 RRM_RBM18 240801 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12356 RRM_PPARGC1B 240802 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12357 RRM_PPARGC1... 240803 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12358 RRM1_VICKZ 240804 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12359 RRM2_VICKZ 240805 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12360 RRM_cwf2 240806 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12361 RRM1_2_CELF... 240807 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12362 RRM3_CELF1-6 240808 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12363 RRM_TRA2 240809 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12364 RRM_RDM1 240810 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12365 RRM_RNPS1 240811 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12366 RRM1_RBM45 240812 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12367 RRM2_RBM45 240813 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12368 RRM3_RBM45 240814 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12369 RRM4_RBM45 240815 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12370 RRM1_PUF60 240816 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12371 RRM2_PUF60 240817 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12372 RRM_CFIm68_... 240818 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12373 RRM_SRSF3_like 240819 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12374 RRM_UHM_SPF... 240820 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12375 RRM1_Hu_like 240821 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12376 RRM2_Hu_like 240822 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12377 RRM3_Hu 240823 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12378 RRM1_I_PABPs 240824 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12379 RRM2_I_PABPs 240825 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12380 RRM3_I_PABPs 240826 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12381 RRM4_I_PABPs 240827 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12382 RRM_RBMX_like 240828 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12383 RRM_RBM42 240829 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12384 RRM_RBM24_R... 240830 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12385 RRM1_hnRNPM... 240831 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12386 RRM2_hnRNPM... 240832 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12387 RRM3_hnRNPM... 240833 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12388 RRM1_RAVER 240834 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12389 RRM2_RAVER 240835 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12390 RRM3_RAVER 240836 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12391 RRM1_SART3 240837 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12392 RRM2_SART3 240838 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12393 RRM_ZCRB1 240839 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12394 RRM1_RBM34 240840 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12395 RRM2_RBM34 240841 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12396 RRM1_Nop13p... 240842 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12397 RRM2_Nop13p... 240843 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12398 RRM_CSTF2_R... 240844 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12399 RRM_HP0827_... 240845 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12400 RRM_Nop6 240846 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12401 RRM_eIF4H 240847 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12402 RRM_eIF4B 240848 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12403 RRM1_NCL 240849 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12404 RRM2_NCL 240850 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12405 RRM3_NCL 240851 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12406 RRM4_NCL 240852 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12407 RRM_FOX1_like 240853 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12408 RRM_eIF3G_like 240854 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12409 RRM1_RRT5 240855 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12410 RRM2_RRT5 240856 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12411 RRM_ist3_like 240857 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12412 RRM_DAZL_BOULE 240858 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12413 RRM1_RBM28_... 240859 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12414 RRM2_RBM28_... 240860 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12415 RRM3_RBM28_... 240861 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12416 RRM4_RBM28_... 240862 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12417 RRM_SAFB_like 240863 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12418 RRM_Aly_REF... 240864 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12419 RRM_Ssp2_like 240865 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12420 RRM_RBPMS_like 240866 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12421 RRM1_PTBP1_... 240867 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12422 RRM2_PTBP1_... 240868 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12423 RRM3_PTBP1_... 240869 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12424 RRM3_hnRNPL... 240870 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12425 RRM4_PTBP1_... 240871 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12426 RRM4_PTBPH3 240872 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12427 RRM4_hnRNPL... 240873 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12428 RRM_PARN 240874 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12429 RRM_DNAJC17 240875 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12430 RRM_LARP4_5... 240876 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12431 RRM_ALKBH8 240877 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12432 RRM_ACINU 240878 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12433 RRM_Yme2p_like 240879 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12434 RRM_RCAN_like 240880 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12435 RRM_GW182_like 240881 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12436 RRM1_2_MATR... 240882 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12437 RRM_BRAP2_like 240883 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12438 RRM_CNOT4 240884 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12439 RRM_TRMT2A 240885 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12440 RRM_SYNJ 240886 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12441 RRM_Nup53_like 240887 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12442 RRM_RBM48 240888 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12443 RRM_MCM3A_like 240889 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12444 RRM1_CPEBs 240890 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12445 RRM2_CPEBs 240891 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12446 RRM_RBM25 240892 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12447 RRM1_gar2 240893 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12448 RRM2_gar2 240894 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12449 RRM_CIRBP_RBM3 240895 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12450 RRM1_NUCLs 240896 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12451 RRM2_NUCLs 240897 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12452 RRM_ARP_like 240898 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12453 RRM1_RIM4_like 240899 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12454 RRM2_RIM4_like 240900 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12455 RRM_like_Sm... 240901 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12456 RRM_p65 240902 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12457 RRM_XMAS2 240903 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12458 RRM_AtC3H46... 240904 cd00590 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12459 RRM1_CID8_like 240905 cd12225 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12460 RRM2_CID8_like 240906 cd12225 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12461 RRM_SCAF4 240907 cd12227 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12462 RRM_SCAF8 240908 cd12227 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12463 RRM_G3BP1 240909 cd12229 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12464 RRM_G3BP2 240910 cd12229 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12465 RRM_UHMK1 240911 cd12232 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12466 RRM2_AtRSp3... 240912 cd12233 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12467 RRM_Srp1p_like 240913 cd12233 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12470 RRM1_MSSP1 240914 cd12243 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12471 RRM1_MSSP2 240915 cd12243 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12472 RRM1_RBMS3 240916 cd12243 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12473 RRM2_MSSP1 240917 cd12244 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12474 RRM2_MSSP2 240918 cd12244 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12475 RRM2_RBMS3 240919 cd12244 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12476 RRM1_SNF 240920 cd12246 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12477 RRM1_U1A 240921 cd12246 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12478 RRM1_U2B 240922 cd12246 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12479 RRM2_SNF 240923 cd12247 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12480 RRM2_U1A 240924 cd12247 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12481 RRM2_U2B 240925 cd12247 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12482 RRM1_hnRNPR 240926 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12483 RRM1_hnRNPQ 240927 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12484 RRM1_RBM46 240928 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12485 RRM1_RBM47 240929 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12486 RRM1_ACF 240930 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12487 RRM1_DND1 240931 cd12249 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12488 RRM2_hnRNPR 240932 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12489 RRM2_hnRNPQ 240933 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12490 RRM2_ACF 240934 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12491 RRM2_RBM47 240935 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12492 RRM2_RBM46 240936 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12493 RRM2_DND1 240937 cd12250 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12494 RRM3_hnRNPR 240938 cd12251 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12495 RRM3_hnRNPQ 240939 cd12251 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12496 RRM3_RBM46 240940 cd12251 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12497 RRM3_RBM47 240941 cd12251 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12498 RRM3_ACF 240942 cd12251 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12499 RRM_EcCsdA_... 240943 cd12252 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12500 RRM_BsYxiN_... 240944 cd12252 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12501 RRM_EcDbpA_... 240945 cd12252 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12502 RRM2_RMB19 240946 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12503 RRM1_hnRNPH... 240947 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12504 RRM2_hnRNPH... 240948 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12505 RRM2_GRSF1 240949 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12506 RRM3_hnRNPH... 240950 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12507 RRM1_ESRPs_... 240951 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12508 RRM2_ESRPs_... 240952 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12509 RRM3_ESRPs_... 240953 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12510 RRM1_RBM12_... 240954 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12511 RRM2_RBM12_... 240955 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12512 RRM3_RBM12 240956 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12513 RRM3_RBM12B 240957 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12514 RRM4_RBM12_... 240958 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12515 RRM5_RBM12_... 240959 cd12254 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12516 RRM1_RBM26 240960 cd12257 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12517 RRM_RBM27 240961 cd12257 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12518 RRM_SRSF11 240962 cd12259 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12519 RRM1_SREK1 240963 cd12259 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12520 RRM1_MRN1 240964 cd12261 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12521 RRM3_MRN1 240965 cd12261 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12522 RRM4_MRN1 240966 cd12262 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12523 RRM2_MRN1 240967 cd12262 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12524 RRM1_MEI2_like 240968 cd12275 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12525 RRM1_MEI2_f... 240969 cd12275 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12526 RRM1_EAR1_like 240970 cd12275 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12527 RRM2_EAR1_like 240971 cd12276 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12528 RRM2_MEI2_f... 240972 cd12276 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12529 RRM2_MEI2_like 240973 cd12276 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12530 RRM3_EAR1_like 240974 cd12277 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12531 RRM3_MEI2_like 240975 cd12277 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12532 RRM3_MEI2_f... 240976 cd12277 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12533 RRM_EWS 240977 cd12280 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12534 RRM_SARFH 240978 cd12280 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12535 RRM_FUS_TAF15 240979 cd12280 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12536 RRM1_RBM39 240980 cd12283 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12537 RRM1_RBM23 240981 cd12283 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12538 RRM_U2AF35 240982 cd12287 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12539 RRM_U2AF35B 240983 cd12287 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12540 RRM_U2AFBPL 240984 cd12287 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12541 RRM2_La 240985 cd12292 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12542 RRM2_LARP7 240986 cd12292 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12543 RRM2_PAR14 240987 cd12301 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12544 RRM_NMI 240988 cd12301 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12545 RRM_IN35 240989 cd12301 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12546 RRM_RBM43 240990 cd12301 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12547 RRM1_2_PAR10 240991 cd12301 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12548 RRM_Set1A 240992 cd12304 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12549 RRM_Set1B 240993 cd12304 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12550 RRM_II_PABPN1 240994 cd12306 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12551 RRM_II_PABPN1L 240995 cd12306 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12552 RRM_Nop15p 240996 cd12307 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12553 RRM1_RBM15 240997 cd12308 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12554 RRM1_RBM15B 240998 cd12308 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12555 RRM2_RBM15 240999 cd12309 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12556 RRM2_RBM15B 241000 cd12309 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12557 RRM3_RBM15 241001 cd12310 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12558 RRM3_RBM15B 241002 cd12310 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12559 RRM_SRSF10 241003 cd12312 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12560 RRM_SRSF12 241004 cd12312 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12561 RRM1_RBM5_like 241005 cd12313 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12562 RRM2_RBM5_like 241006 cd12313 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12563 RRM2_RBM6 241007 cd12313 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12564 RRM1_RBM19 241008 cd12315 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12565 RRM1_MRD1 241009 cd12315 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12566 RRM2_MRD1 241010 cd12316 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12567 RRM3_RBM19 241011 cd12316 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12568 RRM3_MRD1 241012 cd12317 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12569 RRM4_RBM19 241013 cd12317 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12570 RRM5_MRD1 241014 cd12320 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12571 RRM6_RBM19 241015 cd12320 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12572 RRM2_MSI1 241016 cd12323 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12573 RRM2_MSI2 241017 cd12323 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12574 RRM1_DAZAP1 241018 cd12325 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12575 RRM1_hnRNPD... 241019 cd12325 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12576 RRM1_MSI 241020 cd12325 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12577 RRM1_Hrp1p 241021 cd12325 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12578 RRM1_hnRNPA... 241022 cd12325 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12579 RRM2_hnRNPA0 241023 cd12328 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12580 RRM2_hnRNPA1 241024 cd12328 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12581 RRM2_hnRNPA2B1 241025 cd12328 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12582 RRM2_hnRNPA3 241026 cd12328 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12583 RRM2_hnRNPD 241027 cd12329 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12584 RRM2_hnRNPAB 241028 cd12329 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12585 RRM2_hnRPDL 241029 cd12329 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12586 RRM1_PSP1 241030 cd12332 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12587 RRM1_PSF 241031 cd12332 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12588 RRM1_p54nrb 241032 cd12332 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12589 RRM2_PSP1 241033 cd12333 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12590 RRM2_PSF 241034 cd12333 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12591 RRM2_p54nrb 241035 cd12333 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12592 RRM_RBM7 241036 cd12336 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12593 RRM_RBM11 241037 cd12336 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12594 RRM1_SRSF4 241038 cd12337 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12595 RRM1_SRSF5 241039 cd12337 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12596 RRM1_SRSF6 241040 cd12337 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12597 RRM1_SRSF1 241041 cd12338 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12598 RRM1_SRSF9 241042 cd12338 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12599 RRM1_SF2_pl... 241043 cd12338 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12600 RRM2_SRSF4_... 241044 cd12339 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12601 RRM2_SRSF1_... 241045 cd12339 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12602 RRM2_SF2_pl... 241046 cd12339 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12603 RRM_hnRNPC 241047 cd12341 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12604 RRM_RALY 241048 cd12341 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12605 RRM_RALYL 241049 cd12341 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12606 RRM1_RBM4 241050 cd12343 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12607 RRM2_RBM4 241051 cd12343 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12608 RRM1_CoAA 241052 cd12343 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12609 RRM2_CoAA 241053 cd12343 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12610 RRM1_SECp43 241054 cd12344 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12611 RRM1_NGR1_N... 241055 cd12344 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12612 RRM2_SECp43 241056 cd12345 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12613 RRM2_NGR1_N... 241057 cd12345 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12614 RRM1_PUB1 241058 cd12352 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12615 RRM1_TIA1 241059 cd12352 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12616 RRM1_TIAR 241060 cd12352 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12617 RRM2_TIAR 241061 cd12353 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12618 RRM2_TIA1 241062 cd12353 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12619 RRM2_PUB1 241063 cd12353 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12620 RRM3_TIAR 241064 cd12354 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12621 RRM3_TIA1 241065 cd12354 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12622 RRM3_PUB1 241066 cd12354 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12623 RRM_PPARGC1A 241067 cd12357 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12624 RRM_PRC 241068 cd12357 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12625 RRM1_IGF2BP1 241069 cd12358 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12626 RRM1_IGF2BP2 241070 cd12358 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12627 RRM1_IGF2BP3 241071 cd12358 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12628 RRM2_IGF2BP1 241072 cd12359 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12629 RRM2_IGF2BP2 241073 cd12359 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12630 RRM2_IGF2BP3 241074 cd12359 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12631 RRM1_CELF1_... 241075 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12632 RRM1_CELF3_... 241076 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12633 RRM1_FCA 241077 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12634 RRM2_CELF1_2 241078 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12635 RRM2_CELF3_... 241079 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12636 RRM2_Bruno_... 241080 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12637 RRM2_FCA 241081 cd12361 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12638 RRM3_CELF1_2 241082 cd12362 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12639 RRM3_CELF3_... 241083 cd12362 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12640 RRM3_Bruno_... 241084 cd12362 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12641 RRM_TRA2B 241085 cd12363 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12642 RRM_TRA2A 241086 cd12363 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12643 RRM_CFIm68 241087 cd12372 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12644 RRM_CFIm59 241088 cd12372 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12645 RRM_SRSF3 241089 cd12373 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12646 RRM_SRSF7 241090 cd12373 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12647 RRM_UHM_SPF45 241091 cd12374 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12648 RRM3_UHM_PUF60 241092 cd12374 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12649 RRM1_SXL 241093 cd12375 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12650 RRM1_Hu 241094 cd12375 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12651 RRM2_SXL 241095 cd12376 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12652 RRM2_Hu 241096 cd12376 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12653 RRM3_HuR 241097 cd12377 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12654 RRM3_HuB 241098 cd12377 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12655 RRM3_HuC 241099 cd12377 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12656 RRM3_HuD 241100 cd12377 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12657 RRM1_hnRNPM 241101 cd12385 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12658 RRM1_MYEF2 241102 cd12385 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12659 RRM2_hnRNPM 241103 cd12386 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12660 RRM2_MYEF2 241104 cd12386 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12661 RRM3_hnRNPM 241105 cd12387 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12662 RRM3_MYEF2 241106 cd12387 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12663 RRM1_RAVER1 241107 cd12388 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12664 RRM1_RAVER2 241108 cd12388 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12665 RRM2_RAVER1 241109 cd12389 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12666 RRM2_RAVER2 241110 cd12389 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12667 RRM3_RAVER1 241111 cd12390 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12668 RRM3_RAVER2 241112 cd12390 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12669 RRM1_Nop12p... 241113 cd12394 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12670 RRM2_Nop12p... 241114 cd12395 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12671 RRM_CSTF2_C... 241115 cd12398 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12672 RRM_DAZL 241116 cd12412 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12673 RRM_BOULE 241117 cd12412 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12674 RRM1_Nop4p 241118 cd12413 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12675 RRM2_Nop4p 241119 cd12414 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12676 RRM3_Nop4p 241120 cd12415 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12677 RRM4_Nop4p 241121 cd12416 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12678 RRM_SLTM 241122 cd12417 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12679 RRM_SAFB1_S... 241123 cd12417 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12680 RRM_THOC4 241124 cd12418 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12681 RRM_SKAR 241125 cd12418 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12682 RRM_RBPMS 241126 cd12420 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12683 RRM_RBPMS2 241127 cd12420 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12684 RRM_cpo 241128 cd12420 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12685 RRM_RBM20 241129 cd12421 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12686 RRM1_PTBPH1... 241130 cd12421 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12687 RRM1_PTBPH3 241131 cd12421 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12688 RRM1_PTBP1_... 241132 cd12421 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12689 RRM1_hnRNPL... 241133 cd12421 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12690 RRM3_PTBPH1... 241134 cd12422 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12691 RRM2_PTBPH1... 241135 cd12422 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12692 RRM2_PTBPH3 241136 cd12422 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12693 RRM2_PTBP1_... 241137 cd12422 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12694 RRM2_hnRNPL... 241138 cd12422 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12695 RRM3_PTBP1 241139 cd12423 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12696 RRM3_PTBP2 241140 cd12423 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12697 RRM3_ROD1 241141 cd12423 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12698 RRM3_PTBPH3 241142 cd12424 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12699 RRM3_hnRNPL 241143 cd12424 cd00590 1 1 1 0 02/01/13 12:34:00 -cd12700 RRM3_hnRPLL 241144 cd12424 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12701 RRM4_PTBP1 241145 cd12425 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12702 RRM4_PTBP2 241146 cd12425 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12703 RRM4_ROD1 241147 cd12425 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12704 RRM4_hnRNPL 241148 cd12427 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12705 RRM4_hnRPLL 241149 cd12427 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12706 RRM_LARP5 241150 cd12430 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12707 RRM_LARP4 241151 cd12430 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12708 RRM_RCAN1 241152 cd12434 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12709 RRM_RCAN2 241153 cd12434 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12710 RRM_RCAN3 241154 cd12434 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12711 RRM_TNRC6A 241155 cd12435 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12712 RRM_TNRC6B 241156 cd12435 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12713 RRM_TNRC6C 241157 cd12435 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12714 RRM1_MATR3 241158 cd12436 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12715 RRM2_MATR3 241159 cd12436 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12716 RRM1_2_NP220 241160 cd12436 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12717 RRM_ETP1 241161 cd12437 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12718 RRM_BRAP2 241162 cd12437 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12719 RRM_SYNJ1 241163 cd12440 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12720 RRM_SYNJ2 241164 cd12440 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12721 RRM_Nup53p_... 241165 cd12441 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12722 RRM_Nup53 241166 cd12441 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12723 RRM1_CPEB1 241167 cd12444 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12724 RRM1_CPEB2_... 241168 cd12444 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12725 RRM2_CPEB1 241169 cd12445 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12726 RRM2_CPEB2_... 241170 cd12445 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12727 RRM_like_Sm... 241171 cd12455 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12728 RRM_like_Sm... 241172 cd12455 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12729 RRM1_hnRNPH... 241173 cd12503 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12730 RRM1_GRSF1 241174 cd12503 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12731 RRM2_hnRNPH... 241175 cd12504 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12732 RRM2_hnRNPH3 241176 cd12504 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12733 RRM3_GRSF1 241177 cd12506 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12734 RRM3_hnRNPH... 241178 cd12506 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12735 RRM3_hnRNPH3 241179 cd12506 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12736 RRM1_ESRP1 241180 cd12507 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12737 RRM1_ESRP2 241181 cd12507 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12738 RRM1_Fusilli 241182 cd12507 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12739 RRM2_ESRP1 241183 cd12508 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12740 RRM2_ESRP2 241184 cd12508 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12741 RRM2_Fusilli 241185 cd12508 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12742 RRM3_ESRP1_... 241186 cd12509 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12743 RRM3_Fusilli 241187 cd12509 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12744 RRM1_RBM12B 241188 cd12510 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12745 RRM1_RBM12 241189 cd12510 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12746 RRM2_RBM12B 241190 cd12511 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12747 RRM2_RBM12 241191 cd12511 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12748 RRM4_RBM12B 241192 cd12514 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12749 RRM4_RBM12 241193 cd12514 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12750 RRM5_RBM12B 241194 cd12515 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12751 RRM5_RBM12 241195 cd12515 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12752 RRM1_RBM5 241196 cd12561 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12753 RRM1_RBM10 241197 cd12561 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12754 RRM2_RBM10 241198 cd12562 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12755 RRM2_RBM5 241199 cd12562 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12756 RRM1_hnRNPD 241200 cd12575 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12757 RRM1_hnRNPAB 241201 cd12575 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12758 RRM1_hnRPDL 241202 cd12575 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12759 RRM1_MSI1 241203 cd12576 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12760 RRM1_MSI2 241204 cd12576 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12761 RRM1_hnRNPA1 241205 cd12578 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12762 RRM1_hnRNPA2B1 241206 cd12578 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12763 RRM1_hnRNPA3 241207 cd12578 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12764 RRM2_SRSF4 241208 cd12600 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12765 RRM2_SRSF5 241209 cd12600 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12766 RRM2_SRSF6 241210 cd12600 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12767 RRM2_SRSF1 241211 cd12601 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12768 RRM2_SRSF9 241212 cd12601 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12769 RRM1_HuR 241213 cd12650 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12770 RRM1_HuD 241214 cd12650 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12771 RRM1_HuB 241215 cd12650 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12772 RRM1_HuC 241216 cd12650 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12773 RRM2_HuR 241217 cd12652 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12774 RRM2_HuD 241218 cd12652 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12775 RRM2_HuB 241219 cd12652 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12776 RRM2_HuC 241220 cd12652 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12777 RRM1_PTBP1 241221 cd12688 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12778 RRM1_PTBP2 241222 cd12688 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12779 RRM1_ROD1 241223 cd12688 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12780 RRM1_hnRNPL 241224 cd12689 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12781 RRM1_hnRPLL 241225 cd12689 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12782 RRM2_PTBP1 241226 cd12693 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12783 RRM2_PTBP2 241227 cd12693 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12784 RRM2_ROD1 241228 cd12693 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12785 RRM2_hnRNPL 241229 cd12694 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12786 RRM2_hnRPLL 241230 cd12694 cd00590 1 1 1 0 02/01/13 12:35:00 -cd12787 RasGAP_plex... 213347 cd12205 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12788 RasGAP_plex... 213348 cd12205 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12789 RasGAP_plex... 213349 cd12205 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12790 RasGAP_plex... 213350 cd12205 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12791 RasGAP_plex... 213351 cd12787 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12792 RasGAP_plex... 213352 cd12787 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12793 RasGAP_plex... 213353 cd12787 cd04519 2 1 1 0 01/17/13 12:11:00 -cd12794 Hsm3_like 240614 N/A cd12794 1 1 1 0 02/01/13 12:24:00 -cd12795 FILIA_N_like 240613 N/A cd12795 1 1 1 0 02/01/13 12:23:00 -cd12796 LbR_Ice_bind 240609 cd12813 cd12813 1 1 1 0 02/01/13 12:23:00 -cd12798 Alt_A1 213998 N/A cd12798 2 1 1 0 01/17/13 12:11:00 -cd12799 pesticin_ly... 340366 cd16889 cd00442 1 1 0 0 06/09/17 13:53:00 -cd12800 Sol_i_2 213999 N/A cd12800 2 1 1 0 01/17/13 12:11:00 -cd12801 HopAB_KID 214000 N/A cd12801 2 1 1 0 01/17/13 12:11:00 -cd12802 HopAB_PID 214001 cd12801 cd12801 2 1 1 0 01/17/13 12:11:00 -cd12803 HopAB_BID 214002 cd12801 cd12801 2 1 1 0 01/17/13 12:11:00 -cd12804 AKAP10_AKB 214003 N/A cd12804 2 1 1 0 01/17/13 12:11:00 -cd12805 Allergen_V_VI 214004 N/A cd12805 2 1 1 0 01/17/13 12:11:00 -cd12806 Esterase_71... 214005 N/A cd12806 2 1 1 0 01/17/13 12:11:00 -cd12807 Esterase_713 214006 cd12806 cd12806 2 1 1 0 01/17/13 12:11:00 -cd12808 Esterase_71... 214007 cd12806 cd12806 2 1 1 0 01/17/13 12:11:00 -cd12809 Esterase_71... 214008 cd12806 cd12806 2 1 1 0 01/17/13 12:11:00 -cd12810 Esterase_71... 214009 cd12806 cd12806 2 1 1 0 01/17/13 12:11:00 -cd12812 BPSL1549 214010 N/A cd12812 2 1 1 0 01/17/13 12:11:00 -cd12813 LbR-like 240610 N/A cd12813 1 1 1 0 02/01/13 12:23:00 -cd12819 LbR_vir_like 240611 cd12813 cd12813 1 1 1 0 02/01/13 12:23:00 -cd12820 LbR_YadA-like 240612 cd12813 cd12813 1 1 1 0 02/01/13 12:23:00 -cd12821 EcCorA_ZntB... 213355 cd11744 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12822 TmCorA-like 213356 cd11744 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12823 Mrs2_Mfm1p-... 213357 cd12821 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12824 ZntB-like 213358 cd12821 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12825 EcCorA-like 213359 cd12821 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12826 EcCorA_ZntB... 213360 cd12821 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12827 EcCorA_ZntB... 213361 cd12821 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12828 TmCorA-like_1 213362 cd12822 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12829 Alr1p-like 213363 cd12822 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12830 MtCorA-like 213364 cd12822 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12831 TmCorA-like_u2 213365 cd12822 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12832 TmCorA-like_u3 213366 cd12822 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12833 ZntB-like_1 213367 cd12824 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12834 ZntB_u1 213368 cd12824 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12835 EcCorA-like_1 213369 cd12825 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12836 HpCorA-like 213370 cd12825 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12837 EcCorA-like_u1 213371 cd12825 cd11744 2 1 1 0 01/17/13 12:11:00 -cd12838 Killer_toxi... 214011 N/A cd12838 2 1 1 0 01/17/13 12:11:00 -cd12839 Killer_toxi... 214012 N/A cd12839 2 1 1 0 01/17/13 12:11:00 -cd12840 CarS 214013 N/A cd12840 2 1 1 0 01/17/13 12:11:00 -cd12841 TM_EphA1 214014 N/A cd12841 2 1 1 0 01/17/13 12:11:00 -cd12843 Bvu_2165_C_... 240608 N/A cd12843 1 1 1 0 02/01/13 12:23:00 -cd12869 MqsR 240607 N/A cd12869 1 1 1 0 02/01/13 12:23:00 -cd12870 MqsA 240606 N/A cd12870 1 1 1 0 02/01/13 12:23:00 -cd12871 Bacuni_0132... 214015 N/A cd12871 2 1 1 0 01/17/13 12:11:00 -cd12872 SPRY_Ash2 293932 cd11709 cd11709 2 1 1 0 11/06/15 13:19:00 -cd12873 SPRY_DDX1 293933 cd11709 cd11709 2 1 1 0 11/06/15 13:19:00 -cd12874 SPRY_PRY 293934 cd11709 cd11709 2 1 1 0 11/06/15 13:19:00 -cd12875 SPRY_SOCS_Fbox 293935 cd11709 cd11709 2 1 1 0 11/06/15 13:19:00 -cd12876 SPRY_SOCS3 293936 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12877 SPRY1_RyR 240457 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12878 SPRY2_RyR 240458 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12879 SPRY3_RyR 293937 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12880 SPRYD7 293938 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12881 SPRY_HERC1 293939 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12882 SPRY_RNF123 293940 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12883 SPRY_RING 293941 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12884 SPRY_hnRNP 293942 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12885 SPRY_RanBP_... 293943 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12886 SPRY_like 293944 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12887 SPRY_NHR_like 293945 cd11709 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12888 SPRY_PRY_TR... 293946 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12889 SPRY_PRY_TR... 293947 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12890 SPRY_PRY_TR... 293948 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12891 SPRY_PRY_C-I_2 293949 cd12874 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12892 SPRY_PRY_TR... 240472 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12893 SPRY_PRY_TR... 293950 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12894 SPRY_PRY_TR... 293951 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12895 SPRY_PRY_TR... 293952 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12896 SPRY_PRY_TR... 293953 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12897 SPRY_PRY_TR... 293954 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12898 SPRY_PRY_TR... 293955 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12899 SPRY_PRY_TR... 293956 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12900 SPRY_PRY_TR... 293957 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12901 SPRY_PRY_FSD1 293958 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12902 SPRY_PRY_RN... 293959 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12903 SPRY_PRY_SP... 293960 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12904 SPRY_BSPRY 293961 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12905 SPRY_PRY_A33L 293962 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12906 SPRY_SOCS1-2-4 293963 cd12875 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12907 SPRY_Fbox 293964 cd12875 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12908 SPRYD3 293965 cd12885 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12909 SPRY_RanBP9_10 293966 cd12885 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12910 SPRY_SSH4_like 293967 cd12885 cd11709 2 1 1 0 11/06/15 13:20:00 -cd12911 HK_sensor 350336 N/A cd12911 1 1 0 0 07/11/18 17:59:00 -cd12912 PDC2_MCP_like 350337 cd18774 cd12911 1 1 0 0 07/11/18 17:59:00 -cd12913 PDC1_MCP_like 350338 cd18773 cd12911 1 1 0 0 07/11/18 17:59:00 -cd12914 PDC1_DGC_like 350339 cd18773 cd12911 1 1 0 0 07/11/18 17:59:00 -cd12915 PDC2_DGC_like 350340 cd18774 cd12911 1 1 0 0 07/11/18 17:59:00 -cd12916 VKOR_1 240599 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12917 VKOR_euk 240600 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12918 VKOR_arc 240601 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12919 VKOR_2 240602 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12920 VKOR_3 240603 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12921 VKOR_4 240604 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12922 VKOR_5 240605 cd10546 cd10546 1 1 1 0 02/01/13 12:22:00 -cd12923 iSH2_PI3K_IA_R 214016 N/A cd12923 2 1 1 0 01/17/13 12:11:00 -cd12924 iSH2_PIK3R1 214017 cd12923 cd12923 2 1 1 0 01/17/13 12:11:00 -cd12925 iSH2_PIK3R3 214018 cd12923 cd12923 2 1 1 0 01/17/13 12:11:00 -cd12926 iSH2_PIK3R2 214019 cd12923 cd12923 2 1 1 0 01/17/13 12:11:00 -cd12927 MMP_TTHA022... 240571 N/A cd12927 1 1 1 0 02/01/13 11:58:00 -cd12929 GUCT 240592 N/A cd12929 1 1 1 0 02/01/13 12:21:00 -cd12930 GAT_SF 260087 N/A cd12930 1 1 1 0 08/20/13 16:31:00 -cd12931 eNOPS_SF 240579 N/A cd12931 1 1 1 0 02/01/13 12:20:00 -cd12932 RRP7_like 240576 N/A cd12932 1 1 1 0 02/01/13 11:59:00 -cd12933 eIF3G 240597 N/A cd12933 1 1 1 0 02/01/13 12:22:00 -cd12934 LEM 240585 N/A cd12934 1 1 1 0 02/01/13 12:21:00 -cd12935 LEM_like 240596 N/A cd12935 1 1 1 0 02/01/13 12:21:00 -cd12936 GUCT_RHII_G... 240593 cd12929 cd12929 1 1 1 0 02/01/13 12:21:00 -cd12937 GUCT_RH7_like 240594 cd12929 cd12929 1 1 1 0 02/01/13 12:21:00 -cd12938 GUCT_Hera 240595 cd12929 cd12929 1 1 1 0 02/01/13 12:21:00 -cd12939 LEM_emerin 240586 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12940 LEM_LAP2_LEMD1 240587 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12941 LEM_LEMD2 240588 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12942 LEM_Man1 240589 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12943 LEM_ANKL1 240590 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12944 LEM_ANKL2 240591 cd12934 cd12934 1 1 1 0 02/01/13 12:21:00 -cd12945 NOPS_NONA_like 240580 cd12931 cd12931 1 1 1 0 02/01/13 12:20:00 -cd12946 NOPS_p54nrb... 240581 cd12931 cd12931 1 1 1 0 02/01/13 12:20:00 -cd12947 NOPS_p54nrb 240582 cd12946 cd12931 1 1 1 0 02/01/13 12:20:00 -cd12948 NOPS_PSF 240583 cd12946 cd12931 1 1 1 0 02/01/13 12:20:00 -cd12949 NOPS_PSPC1 240584 cd12946 cd12931 1 1 1 0 02/01/13 12:20:00 -cd12950 RRP7_Rrp7p 240577 cd12932 cd12932 1 1 1 0 02/01/13 11:59:00 -cd12951 RRP7_Rrp7A 240578 cd12932 cd12932 1 1 1 0 02/01/13 11:59:00 -cd12952 MMP_ACEL2062 240572 cd12927 cd12927 1 1 1 0 02/01/13 11:58:00 -cd12953 MMP_TTHA0227 240573 cd12927 cd12927 1 1 1 0 02/01/13 11:58:00 -cd12954 MMP_TTHA022... 240574 cd12927 cd12927 1 1 1 0 02/01/13 11:58:00 -cd12955 SKA2 214020 N/A cd12955 2 1 1 0 01/17/13 12:11:00 -cd12956 CBM_SusE-F_... 240562 N/A cd12956 1 1 1 0 02/01/13 11:53:00 -cd12957 SKA3_N 240570 N/A cd12957 1 1 1 0 02/01/13 11:57:00 -cd12958 SKA1_N 214021 N/A cd12958 2 1 1 0 01/17/13 12:11:00 -cd12959 MMACHC-like 214022 N/A cd12959 2 1 1 0 01/17/13 12:11:00 -cd12960 Spider_toxin 240575 N/A cd12960 1 1 1 0 02/01/13 11:58:00 -cd12961 CBM58_SusG 240569 N/A cd12961 1 1 1 0 02/01/13 11:57:00 -cd12962 X25_BaPul_like 240568 N/A cd12962 1 1 1 0 02/01/13 11:57:00 -cd12963 X45_BaPul_like 240567 N/A cd12963 1 1 1 0 02/01/13 11:57:00 -cd12964 CBM-Fa 240563 cd12956 cd12956 1 1 1 0 02/01/13 11:53:00 -cd12965 CBM-Eb_CBM-Fb 240564 cd12956 cd12956 1 1 1 0 02/01/13 11:53:00 -cd12966 CBM-Ec_CBM-Fc 240565 cd12956 cd12956 1 1 1 0 02/01/13 11:53:00 -cd12967 CBM_SusE-F_... 240566 cd12956 cd12956 1 1 1 0 02/01/13 11:53:00 -cd13112 POLO_box 240556 N/A cd13112 1 1 1 0 02/01/13 11:52:00 -cd13114 POLO_box_Pl... 240557 cd13112 cd13112 1 1 1 0 02/01/13 11:52:00 -cd13115 POLO_box_Pl... 240558 cd13112 cd13112 1 1 1 0 02/01/13 11:52:00 -cd13116 POLO_box_Pl... 240559 cd13112 cd13112 1 1 1 0 02/01/13 11:52:00 -cd13117 POLO_box_2 240560 cd13112 cd13112 1 1 1 0 02/01/13 11:52:00 -cd13118 POLO_box_1 240561 cd13112 cd13112 1 1 1 0 02/01/13 11:52:00 -cd13119 BF2867_like 240524 N/A cd13119 1 1 1 0 02/01/13 11:43:00 -cd13120 BF2867_like_N 240525 cd13119 cd13119 1 1 1 0 02/01/13 11:43:00 -cd13121 BF2867_like_C 240526 cd13119 cd13119 1 1 1 0 02/01/13 11:43:00 -cd13122 MSL2_CXC 240555 N/A cd13122 1 1 1 0 02/01/13 11:49:00 -cd13123 MATE_MurJ_like 240528 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13124 MATE_SpoVB_... 240529 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13125 MATE_like_10 240530 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13126 MATE_like_11 240531 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13127 MATE_tuaB_like 240532 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13128 MATE_Wzx_like 240533 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13129 MATE_epsE_like 240534 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13130 MATE_rft1 240535 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13131 MATE_NorM_like 240536 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13132 MATE_eukary... 240537 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13133 MATE_like_7 240538 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13134 MATE_like_8 240539 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13135 MATE_like_9 240540 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13136 MATE_DinF_like 240541 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13137 MATE_NorM_like 240542 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13138 MATE_yoeA_like 240543 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13139 MATE_like_14 240544 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13140 MATE_like_1 240545 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13141 MATE_like_13 240546 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13142 MATE_like_12 240547 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13143 MATE_MepA_like 240548 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13144 MATE_like_4 240549 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13145 MATE_like_5 240550 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13146 MATE_like_6 240551 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13147 MATE_MJ0709... 240552 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13148 MATE_like_3 240553 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13149 MATE_like_2 240554 cd12082 cd12082 1 1 1 0 02/01/13 11:45:00 -cd13150 DAXX_histon... 240523 N/A cd13150 1 1 1 0 02/01/13 11:38:00 -cd13151 DAXX_helica... 240522 N/A cd13151 1 1 1 0 02/01/13 11:38:00 -cd13152 KOW_GPKOW_A 240516 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd13153 KOW_GPKOW_B 240517 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd13154 KOW_Mtr4 240518 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd13155 KOW_KIN17 240519 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd13156 KOW_RPL6 240520 cd00380 cd00380 1 1 1 0 02/01/13 11:37:00 -cd13157 PTB_tensin-... 269979 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13158 PTB_APPL 269980 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13159 PTB_LDLRAP-... 269981 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13160 PTB_LDLRAP_... 269982 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13161 PTB_TK_HMTK 269983 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13162 PTB_RGS12 269984 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13163 PTB_ICAP1 269985 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13164 PTB_DOK4_DO... 241318 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13165 PTB_DOK7 269986 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13166 PTB_CCM2 269987 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13167 PTB_P-CLI1 269988 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13168 PTB_LOC417372 269989 cd00934 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13169 RanBD_NUP50... 269990 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13170 RanBD_NUP50 269991 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13171 RanBD1_RanB... 269992 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13172 RanBD2_RanB... 269993 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13173 RanBD3_RanB... 269994 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13174 RanBD4_RanB... 269995 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13175 RanBD5_RanB... 269996 cd00835 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13176 RanBD_RanBP... 269997 cd00835 cd00900 3 1 1 0 10/22/14 09:41:00 -cd13177 RanBD2_RanB... 269998 cd13176 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13178 RanBD4_RanB... 269999 cd13176 cd00900 2 1 1 0 10/22/14 09:41:00 -cd13179 RanBD_RanBP1 270000 cd00835 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13180 RanBD_RanBP3 270001 cd00835 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13181 RanBD_NUP2 270002 cd00835 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13182 EVH1-like_Dcp1 270003 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13183 FERM_C_FRMP... 270004 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13184 FERM_C_4_1_... 270005 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13185 FERM_C_FRMD... 270006 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13186 FERM_C_NBL4... 270007 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13187 FERM_C_PTPH13 270008 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13188 FERM_C_PTPN... 270009 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13189 FERM_C_PTPN... 270010 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13190 FERM_C_FAK1 270011 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13191 FERM_C_FRMD... 270012 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13192 FERM_C_FRMD... 270013 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13193 FERM_C_FARP... 270014 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13194 FERM_C_ERM 270015 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13195 FERM_C_MYLI... 270016 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13196 FERM_C_JAK 275394 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13197 FERM_C_CCM1 270018 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13198 FERM_C1_MyoVII 270019 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13199 FERM_C2_MyoVII 270020 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13200 FERM_C_KCBP 270021 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13201 FERM_C_MyoXV 270022 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13202 FERM_C_MyoX 270023 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13203 FERM_C1_myo... 270024 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13204 FERM_C2_myo... 270025 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13205 FERM_C_ferm... 270026 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13206 FERM_C-lobe... 241360 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13207 FERM-like_C... 275395 cd00836 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13208 PH-GRAM_MTM... 275396 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13209 PH-GRAM_MTM... 275397 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13210 PH-GRAM_MTM... 270030 cd10570 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13211 PH-GRAM_MTMR9 275398 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13212 PH-GRAM_MTM... 275399 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13213 PH-GRAM_MTMR14 275400 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13214 PH-GRAM_WBP2 275401 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13215 PH-GRAM1_AGT26 275402 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13216 PH-GRAM2_AGT26 275403 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13217 PH-GRAM1_TC... 275404 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13218 PH-GRAM2_TC... 275405 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13219 PH-GRAM_C2-... 270039 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13220 PH-GRAM_GRAMDC 275406 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13221 PH-GRAM_GRA... 270041 cd10570 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13222 PH-GRAM_GEM 270042 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13223 PH-GRAM_MTM... 275407 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13224 PH_Net1 270044 cd10572 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13225 PH-like_bac... 270045 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13226 PH-GRAM-lik... 275408 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13227 PH-GRAM-lik... 275409 cd10570 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13228 PHear_NECAP 270048 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13229 PH_TFIIH 270049 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13230 PH1_SSRP1-like 270050 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13231 PH2_SSRP1-like 270051 cd00900 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13232 Ig-PH_SCAB1 270052 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13233 PH_ARHGAP9-... 270053 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13234 PHsplit_PLC... 270054 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13235 PH2_FARP1-like 270055 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13236 PH2_FGD1-4 270056 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13237 PH2_FGD5_FGD6 270057 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13238 PH2_FGD4_in... 270058 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13239 PH_Obscurin 270059 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13240 PH1_Kalirin... 270060 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13241 PH2_Kalirin... 270061 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13242 PH_puratrop... 270062 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13243 PH_PLEKHG1_... 270063 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13244 PH_PLEKHG5_G6 270064 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13245 PH_PLEKHG7 270065 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13246 PH_Scd1 270066 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13247 BAR-PH_APPL 270067 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13248 PH_PEPP1_2_3 270068 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13249 PH_rhotekin2 270069 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13250 PH_ACAP 270070 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13251 PH_ASAP 270071 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13252 PH1_ADAP 270072 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13253 PH1_ARAP 270073 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13254 PH2_ARAP 270074 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13255 PH_TAAP2-like 270075 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13256 PH3_ARAP 270076 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13257 PH4_ARAP 270077 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13258 PH_PLEKHJ1 270078 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13259 PH5_ARAP 270079 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13260 PH_RASA1 270080 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13261 PH_RasGRF1_2 270081 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13262 PH_RasSynGA... 270082 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13263 PH_RhoGap25... 270083 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13264 PH_ITSN 270084 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13265 PH_evt 270085 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13266 PH_Skap_family 270086 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13267 PH_DOCK-D 270087 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13268 PH_Brdg1 270088 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13269 PH_alsin 241423 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13270 PH1_TAPP1_2 270089 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13271 PH2_TAPP1_2 270090 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13272 PH_INPP4A_I... 270091 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13273 PH_SWAP-70 270092 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13274 PH_DGK_type2 270093 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13275 PH_M-RIP 270094 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13276 PH_AtPH1 270095 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13277 PH_Bem3 270096 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13278 PH_Bud4 241432 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13279 PH_Cla4_Ste20 270097 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13280 PH_SIP3 270098 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13281 PH_PLEKHD1 270099 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13282 PH1_PLEKHH1... 241436 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13283 PH_GPBP 270100 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13284 PH_OSBP_ORP4 270101 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13285 PH_ORP1 270102 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13286 PH_OPR5_ORP8 270103 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13287 PH_ORP3_ORP... 270104 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13288 PH_Ses 270105 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13289 PH_Osh3p_yeast 241443 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13290 PH_ORP9 241444 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13291 PH_ORP10_ORP11 270106 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13292 PH_Osh1p_Os... 241446 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13293 PH_CpORP2-like 241447 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13294 PH_ORP_plant 241448 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13295 PH_EFA6 270107 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13296 PH2_MyoX 270108 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13297 PH3_MyoX-like 270109 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13298 PH1_PH_fungal 270110 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13299 PH2_PH_fungal 270111 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13300 PH1_TECPR1 270112 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13301 PH1_Pleckst... 270113 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13302 PH2_Pleckst... 270114 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13303 PH1-like_Rt... 241457 cd00900 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13304 PH2-like_Rt... 241458 cd00900 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13305 PH_SHARPIN 270115 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13306 PH1_AFAP 270116 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13307 PH2_AFAP 270117 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13308 PH_3BP2 270118 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13309 PH_SKIP 270119 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13310 PH_RalGPS1_2 270120 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13311 PH_Slm1 270121 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13312 PH_USP37_like 270122 cd00900 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13313 PH_NF1 270123 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13314 PH_Rpn13 270124 cd00900 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13315 PH_Sec3 270125 cd14675 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13316 PH_Boi 270126 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13317 PH_PLEKHO1_... 270127 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13318 PH_IQSEC 270128 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13319 PH_RARhoGAP 270129 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13320 PH_OCRL-like 270130 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13321 PH_PLEKHM1 241475 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13322 PH_PHLPP-like 270131 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13323 PH_PLEKHN1 270132 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13324 PH_Gab-like 270133 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13325 PH_unc89 270134 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13326 PH_CNK_inse... 270135 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13327 PH_PLEKHM3_2 270136 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13328 PH1_FDG_family 275410 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13329 PH_RhoGEF 275411 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13330 PH_CARM1 241484 cd00821 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13331 PH_Avo1 270139 cd00821 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13332 FERM_C_JAK1 275412 cd13196 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13333 FERM_C_JAK2 270141 cd13196 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13334 FERM_C_JAK3 275413 cd13196 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13335 FERM_C_TYK2 275414 cd13196 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13336 FERM-like_C... 275415 cd13207 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13337 FERM-like_C... 270145 cd13207 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13338 FERM-like_C... 270146 cd13207 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13339 PH-GRAM_MTMR13 275416 cd13208 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13340 PH-GRAM_MTMR5 275417 cd13208 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13341 PH-GRAM_MTMR3 270149 cd13209 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13342 PH-GRAM_MTMR4 270150 cd13209 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13343 PH-GRAM_MTMR6 270151 cd13210 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13344 PH-GRAM_MTMR7 270152 cd13210 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13345 PH-GRAM_MTMR8 270153 cd13210 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13346 PH-GRAM_MTMR10 270154 cd13212 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13348 PH-GRAM_MTMR12 275418 cd13212 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13349 PH-GRAM1_TB... 270156 cd13217 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13350 PH-GRAM1_TB... 275419 cd13217 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13351 PH-GRAM1_TC... 275420 cd13217 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13352 PH-GRAM2_TB... 270159 cd13218 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13353 PH-GRAM2_TB... 270160 cd13218 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13354 PH-GRAM2_TC... 270161 cd13218 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13355 PH-GRAM_MTM1 270162 cd13223 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13356 PH-GRAM_MTM... 270163 cd13223 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13357 PH-GRAM_MTM... 270164 cd13223 cd00900 3 1 1 0 10/22/14 09:42:00 -cd13358 PH-GRAM_MTMR1 270165 cd13223 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13359 PH_ELMO1_CE... 270166 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13360 PH_PLC_fungal 241514 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13361 PH_PLC_beta 270167 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13362 PH_PLC_gamma 270168 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13363 PH_PLC_delta 270169 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13364 PH_PLC_eta 270170 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13365 PH_PLC_plan... 270171 cd01248 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13366 PH_ABR 270172 cd01228 cd00900 1 1 1 0 10/22/14 09:42:00 -cd13367 PH_BCR_vert... 270173 cd01228 cd00900 1 1 1 0 10/22/14 09:42:00 -cd13368 PH_BCR_arth... 270174 cd01228 cd00900 1 1 1 0 10/22/14 09:42:00 -cd13369 PH_RASAL1 270175 cd01244 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13370 PH_GAP1m_ma... 241521 cd01244 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13371 PH_GAP1_mam... 241522 cd01244 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13372 PH_CAPRI 241523 cd01244 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13373 PH_nGAP 270176 cd13262 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13374 PH_RASAL3 270177 cd13262 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13375 PH_SynGAP 270178 cd13262 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13376 PH_DAB2IP 270179 cd13262 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13378 PH_RhoGAP2 241529 cd13263 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13379 PH_RhoGap24 241530 cd13263 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13380 PH_Skap1 270180 cd13266 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13381 PH_Skap-hom... 270181 cd13266 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13382 PH_OCRL1 270182 cd13320 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13383 PH_OCRL2 270183 cd13320 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13384 PH_Gab2_2 241535 cd13324 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13385 PH_Gab3 270184 cd13324 cd00900 2 1 1 0 10/22/14 09:42:00 -cd13386 PH1_FGD2 275421 cd13388 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13387 PH1_FGD3 275422 cd13388 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13388 PH1_FGD1-4_... 275423 cd13328 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13389 PH1_FGD5_FGD6 275424 cd13328 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13390 PH_LARG 275425 cd13329 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13391 PH_PRG 275426 cd13329 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13392 PH_AKAP13 275427 cd13329 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13393 PH_ARHGEF2 275428 cd15789 cd00900 3 1 1 0 10/22/14 09:43:00 -cd13394 Syo1_like 240521 N/A cd13394 1 1 1 0 02/01/13 11:38:00 -cd13399 Slt35_like 340367 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13400 LT_IagB_like 340368 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13401 Slt70_like 340369 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13402 LT_TF_like 340370 cd00442 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13403 MLTF_like 340371 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13404 UreI_AmiS_like 259831 N/A cd13404 1 1 1 0 04/05/13 12:54:00 -cd13405 TNFRSF14_te... 276910 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13406 TNFRSF4 276911 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13407 TNFRSF5 276912 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13408 TNFRSF7 276913 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13409 TNFRSF8 276914 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13410 TNFRSF9 276915 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13411 TNFRSF11A 276916 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13412 TNFRSF11B_t... 276917 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13413 TNFRSF12A 276918 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13414 TNFRSF17 276919 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13415 TNFRSF13B 276920 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13416 TNFRSF16 276921 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13417 TNFRSF18 276922 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13418 TNFRSF19 276923 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13419 TNFRSF19L 276924 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13420 TNFRSF25 276925 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13421 TNFRSF_EDAR 276926 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13422 TNFRSF5_tel... 276927 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13423 TNFRSF6_tel... 276928 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13424 TNFRSF9_tel... 276929 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd13425 Peptidase_G... 240448 N/A cd13425 1 1 1 0 02/01/13 11:27:00 -cd13426 Peptidase_G1 240449 cd13425 cd13425 1 1 1 0 02/01/13 11:27:00 -cd13427 YncM_like 240450 cd13425 cd13425 1 1 1 0 02/01/13 11:27:00 -cd13428 UreI_AmiS 259832 cd13404 cd13404 1 1 1 0 04/05/13 12:54:00 -cd13429 UreI_AmiS_l... 259833 cd13404 cd13404 1 1 1 0 04/05/13 12:54:00 -cd13430 LDT_IgD_like 240445 N/A cd13430 1 1 1 0 02/01/13 11:26:00 -cd13431 LDT_IgD_like_1 240446 cd13430 cd13430 1 1 1 0 02/01/13 11:26:00 -cd13432 LDT_IgD_like_2 240447 cd13430 cd13430 1 1 1 0 02/01/13 11:26:00 -cd13433 Na_channel_... 240441 N/A cd13433 1 1 1 0 02/01/13 11:06:00 -cd13434 SPFH_SLPs 259812 cd02106 cd02106 1 1 1 0 04/05/13 12:52:00 -cd13435 SPFH_SLP-4 259813 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd13436 SPFH_SLP-1 259814 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd13437 SPFH_allosl... 259815 cd13434 cd02106 1 1 1 0 07/12/18 09:33:00 -cd13438 SPFH_eoslip... 259816 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd13439 CamS_repeat 240442 N/A cd13439 1 1 1 0 02/01/13 11:12:00 -cd13440 CamS_repeat_2 240443 cd13439 cd13439 1 1 1 0 02/01/13 11:12:00 -cd13441 CamS_repeat_1 240444 cd13439 cd13439 1 1 1 0 02/01/13 11:12:00 -cd13442 CDI_toxin_B... 259835 N/A cd13442 1 1 1 0 04/05/13 12:54:00 -cd13443 CDI_inhibit... 259836 N/A cd13443 1 1 1 0 04/05/13 12:54:00 -cd13444 CDI_toxin_E... 259837 N/A cd13444 1 1 1 0 04/05/13 12:54:00 -cd13445 CDI_inhibit... 259838 N/A cd13445 1 1 1 0 04/05/13 12:54:00 -cd13516 HHD_CCM2 259825 cd07347 cd07347 1 1 1 0 04/05/13 12:52:00 -cd13517 PBP2_ModA3_... 270235 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13518 PBP2_Fe3_th... 270236 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13519 PBP2_PEB3_AcfC 270237 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13520 PBP2_TAXI_TRAP 270238 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13521 PBP2_AlgQ_like 270239 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13522 PBP2_ABC_ol... 270240 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13523 PBP2_polyam... 270241 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13524 PBP2_Thiami... 270242 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13525 PBP2_ATP-Pr... 270243 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13526 PBP2_lipopr... 270244 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13527 PBP2_TRAP 270245 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13528 PBP2_osmopr... 270246 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13529 PBP2_transf... 270247 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13530 PBP2_peptid... 270248 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13531 PBP2_MxaJ 270249 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13532 PBP2_PDT_like 270250 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13533 PBP2_Yhfz 270251 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13534 PBP2_MqnD_like 270252 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13535 PBP2_Osm_BC... 270253 cd00648 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13536 PBP2_EcModA 270254 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13537 PBP2_YvgL_like 270255 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13538 PBP2_ModA_l... 270256 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13539 PBP2_AvModA 270257 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13540 PBP2_ModA_WtpA 270258 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13541 PBP2_ModA_l... 270259 cd00993 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13542 PBP2_FutA1_... 270260 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13543 PBP2_Fbp 270261 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13544 PBP2_Fbp_li... 270262 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13545 PBP2_TbpA 270263 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13546 PBP2_BitB 270264 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13547 PBP2_Fbp_li... 270265 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13548 PBP2_AEPn_like 270266 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13549 PBP2_Fbp_li... 270267 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13550 PBP2_Fbp_li... 270268 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13551 PBP2_Fbp_li... 270269 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13552 PBP2_Fbp_li... 270270 cd13518 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13553 PBP2_NrtA_C... 270271 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13554 PBP2_DszB 270272 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13555 PBP2_sulfat... 270273 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13556 PBP2_SsuA_l... 270274 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13557 PBP2_SsuA 270275 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13558 PBP2_SsuA_l... 270276 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13559 PBP2_SsuA_l... 270277 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13560 PBP2_taurine 270278 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13561 PBP2_SsuA_l... 270279 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13562 PBP2_SsuA_l... 270280 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13563 PBP2_SsuA_l... 270281 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13564 PBP2_ThiY_T... 270282 cd01008 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13565 PBP2_PstS 270283 cd01006 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13566 PBP2_phosphate 270284 cd01006 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13567 PBP2_TtGluBP 270285 cd13520 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13568 PBP2_TAXI_T... 270286 cd13520 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13569 PBP2_TAXI_T... 270287 cd13520 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13570 PBP2_TAXI_T... 270288 cd13520 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13571 PBP2_PnhD_1 270289 cd01071 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13572 PBP2_PnhD_2 270290 cd01071 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13573 PBP2_PnhD_3 270291 cd01071 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13574 PBP2_PnhD_4 270292 cd01071 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13575 PBP2_PnhD 270293 cd01071 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13576 PBP2_BugD_Asp 270294 cd07012 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13577 PBP2_BugE_Glu 270295 cd07012 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13578 PBP2_Bug27 270296 cd07012 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13579 PBP2_Bug_NagM 270297 cd07012 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13580 PBP2_AlgQ_l... 270298 cd13521 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13581 PBP2_AlgQ_l... 270299 cd13521 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13582 PBP2_AlgQ_l... 270300 cd13521 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13583 PBP2_AlgQ_l... 270301 cd13521 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13584 PBP2_AlgQ1_2 270302 cd13521 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13585 PBP2_TMBP_like 270303 cd13522 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13586 PBP2_Maltos... 270304 cd13522 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13587 PBP2_polyam... 270305 cd13523 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13588 PBP2_polyam... 270306 cd13523 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13589 PBP2_polyam... 270307 cd13523 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13590 PBP2_PotD_P... 270308 cd13523 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13591 PBP2_HisGL1 270309 cd13525 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13592 PBP2_HisGL2 270310 cd13525 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13593 PBP2_HisGL3 270311 cd13525 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13594 PBP2_HisGL4 270312 cd13525 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13595 PBP2_HisGs 270313 cd13525 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13596 PBP2_lipopr... 270314 cd13526 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13597 PBP2_lipopr... 270315 cd13526 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13598 PBP2_lipopr... 270316 cd13526 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13599 PBP2_lipopr... 270317 cd13526 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13600 PBP2_lipopr... 270318 cd13526 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13601 PBP2_TRAP_D... 270319 cd13527 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13602 PBP2_TRAP_B... 270320 cd13527 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13603 PBP2_TRAP_S... 270321 cd13527 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13604 PBP2_TRAP_k... 270322 cd13527 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13605 PBP2_TRAP_D... 270323 cd13527 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13606 PBP2_ProX_like 270324 cd13528 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13607 PBP2_AfProX... 270325 cd13528 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13608 PBP2_OpuCC_... 270326 cd13528 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13609 PBP2_Opu_li... 270327 cd13528 cd00648 1 1 1 0 03/02/14 08:24:00 -cd13610 PBP2_ChoS 270328 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13611 PBP2_YehZ 270329 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13612 PBP2_ProWX 270330 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13613 PBP2_Opu_li... 270331 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13614 PBP2_QAT_like 270332 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13615 PBP2_ProWY 270333 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13616 PBP2_OsmF 270334 cd13528 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13617 PBP2_transf... 270335 cd13529 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13618 PBP2_transf... 270336 cd13529 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13619 PBP2_GlnP 270337 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13620 PBP2_GltS 270338 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13621 PBP2_AA_bin... 270339 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13622 PBP2_Arg_3 270340 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13623 PBP2_AA_hyp... 270341 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13624 PBP2_Arg_Ly... 270342 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13625 PBP2_AA_bin... 270343 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13626 PBP2_Cystin... 270344 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13627 PBP2_AA_bin... 270345 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13628 PBP2_Ala 270346 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13629 PBP2_Dsm1740 270347 cd13530 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13630 PBP2_PDT_1 270348 cd13532 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13631 PBP2_Ct-PDT... 270349 cd13532 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13632 PBP2_Aa-PDT... 270350 cd13532 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13633 PBP2_Sa-PDT... 270351 cd13532 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13634 PBP2_Sco4506 270352 cd13534 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13635 PBP2_Ttha15... 270353 cd13534 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13636 PBP2_Af1704 270354 cd13534 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13637 PBP2_Ca3427... 270355 cd13534 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13638 PBP2_EcProx... 270356 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13639 PBP2_OpuAC_... 270357 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13640 PBP2_ChoX 270358 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13641 PBP2_HisX_like 270359 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13642 PBP2_BCP_1 270360 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13643 PBP2_BCP_2 270361 cd13535 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13644 PBP2_HemC_a... 270362 cd00494 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13645 PBP2_HuPBGD... 270363 cd00494 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13646 PBP2_EcHMBS... 270364 cd00494 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13647 PBP2_PBGD_2 270365 cd00494 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13648 PBP2_PBGD_1 270366 cd00494 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13649 PBP2_Cae31940 270367 cd13564 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13650 PBP2_THI5 270368 cd13564 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13651 PBP2_ThiY 270369 cd13564 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13652 PBP2_ThiY_T... 270370 cd13564 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13653 PBP2_phosph... 270371 cd13566 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13654 PBP2_phosph... 270372 cd13566 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13655 PBP2_oligos... 270373 cd13586 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13656 PBP2_MBP 270374 cd13586 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13657 PBP2_Maltod... 270375 cd13586 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13658 PBP2_CMBP 270376 cd13586 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13659 PBP2_PotF 270377 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13660 PBP2_PotD 270378 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13661 PBP2_PotD_P... 270379 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13662 PBP2_TpPotD... 270380 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13663 PBP2_PotD_P... 270381 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13664 PBP2_PotD_P... 270382 cd13590 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13665 PBP2_TRAP_D... 270383 cd13601 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13666 PBP2_TRAP_D... 270384 cd13601 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13667 PBP2_TRAP_D... 270385 cd13601 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13668 PBP2_TRAP_U... 270386 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13669 PBP2_TRAP_T... 270387 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13670 PBP2_TRAP_T... 270388 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13671 PBP2_TRAP_S... 270389 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13672 PBP2_TRAP_Siap 270390 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13673 PBP2_TRAP_S... 270391 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13674 PBP2_TRAP_S... 270392 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13675 PBP2_TRAP_S... 270393 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13676 PBP2_TRAP_D... 270394 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13677 PBP2_TRAP_S... 270395 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13678 PBP2_TRAP_D... 270396 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13679 PBP2_TRAP_Y... 270397 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13680 PBP2_TRAP_S... 270398 cd13603 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13681 PBP2_TRAP_l... 270399 cd13604 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13682 PBP2_TRAP_a... 270400 cd13604 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13683 PBP2_TRAP_D... 270401 cd13604 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13684 PBP2_TRAP_D... 270402 cd13604 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13685 PBP2_iGluR_... 270403 cd00998 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13686 GluR_Plant 270404 cd00998 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13687 PBP2_iGluR_... 270405 cd00998 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13688 PBP2_GltI_DEBP 270406 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13689 PBP2_BsGlnH 270407 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13690 PBP2_GluB 270408 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13691 PBP2_Peb1a_... 270409 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13692 PBP2_BztA 270410 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13693 PBP2_polar_AA 270411 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13694 PBP2_Cysteine 270412 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13695 PBP2_Mlr379... 270413 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13696 PBP2_Atu467... 270414 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13697 PBP2_ArtJ_like 270415 cd01000 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13698 PBP2_HisGlu... 270416 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13699 PBP2_OccT_like 270417 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13700 PBP2_Arg_ST... 270418 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13701 PBP2_ml1520... 270419 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13702 PBP2_mlr565... 270420 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13703 PBP2_HisJ_LAO 270421 cd01001 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13704 PBP2_HisK 270422 cd01007 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13705 PBP2_BvgS_D1 270423 cd01007 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13706 PBP2_HisK_l... 270424 cd01007 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13707 PBP2_BvgS_D2 270425 cd01007 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13708 PBP2_BvgS_l... 270426 cd01007 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13709 PBP2_YxeM 270427 cd13626 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13710 PBP2_TcyK 270428 cd13626 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13711 PBP2_Ngo037... 270429 cd13626 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13712 PBP2_FliY 270430 cd13626 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13713 PBP2_Cystin... 270431 cd13626 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13714 PBP2_iGluR_... 270432 cd13685 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13715 PBP2_iGluR_... 270433 cd13685 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13716 PBP2_iGluR_... 270434 cd13685 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13717 PBP2_iGluR_... 270435 cd13685 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13718 PBP2_iGluR_... 270436 cd13687 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13719 PBP2_iGluR_... 270437 cd13687 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13720 PBP2_iGluR_... 270438 cd13687 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13721 PBP2_iGluR_... 270439 cd13714 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13722 PBP2_iGluR_... 270440 cd13714 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13723 PBP2_iGluR_... 270441 cd13714 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13724 PBP2_iGluR_... 270442 cd13714 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13725 PBP2_iGluR_... 270443 cd13714 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13726 PBP2_iGluR_... 270444 cd13715 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13727 PBP2_iGluR_... 270445 cd13715 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13728 PBP2_iGluR_... 270446 cd13715 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13729 PBP2_iGluR_... 270447 cd13715 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13730 PBP2_iGluR_... 270448 cd13716 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13731 PBP2_iGluR_... 270449 cd13716 cd00648 1 1 1 0 03/02/14 08:25:00 -cd13733 SPRY_PRY_C-I_1 293968 cd12874 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13734 SPRY_PRY_C-II 293969 cd12874 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13735 SPRY_HECT_like 293970 cd12885 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13736 SPRY_PRY_TR... 293971 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13737 SPRY_PRY_TR... 293972 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13738 SPRY_PRY_TR... 293973 cd12891 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13739 SPRY_PRY_TRIM1 293974 cd13734 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13740 SPRY_PRY_TRIM7 293975 cd12888 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13741 SPRY_PRY_TR... 240499 cd12888 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13742 SPRY_PRY_TR... 293976 cd12897 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13743 SPRY_PRY_TR... 293977 cd12897 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13744 SPRY_PRY_TR... 293978 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13745 SPRY_PRY_TR... 293979 cd13733 cd11709 2 1 1 0 11/06/15 13:20:00 -cd13746 Sir4p-SID_like 259839 N/A cd13746 1 1 1 0 04/05/13 12:54:00 -cd13747 UreI_AmiS_l... 259834 cd13404 cd13404 1 1 1 0 04/05/13 12:54:00 -cd13748 CBM29_CBM65 259840 N/A cd13748 1 1 1 0 04/05/13 12:54:00 -cd13749 Zn-ribbon_T... 259796 cd00656 cd00656 1 1 1 0 04/05/13 12:51:00 -cd13768 DSS1_Sem1 259841 N/A cd13768 1 1 1 0 04/05/13 12:54:00 -cd13769 ApoLp-III_like 259842 N/A cd13769 1 1 1 0 04/05/13 12:54:00 -cd13775 SPFH_eoslip... 259817 cd13434 cd02106 1 1 1 0 04/05/13 12:52:00 -cd13777 Aar2_N 260099 N/A cd13777 1 1 1 0 08/20/13 16:31:00 -cd13778 Aar2_C 260100 N/A cd13778 1 1 1 0 08/20/13 16:31:00 -cd13783 SPACA1 260101 N/A cd13783 1 1 1 0 08/20/13 16:31:00 -cd13784 SP_1775_like 260102 N/A cd13784 1 1 1 0 08/20/13 16:31:00 -cd13785 CARD_BinCAR... 260079 cd01671 cd08304 1 1 1 0 08/20/13 16:30:00 -cd13831 HU 259853 cd00591 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13832 IHF 259854 cd00591 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13833 HU_IHF_like 259855 cd00591 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13834 HU_like 259856 cd00591 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13835 IHF_A 259857 cd13832 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13836 IHF_B 259858 cd13832 cd00591 1 1 1 0 08/20/13 16:28:00 -cd13838 RNase_H_lik... 260013 cd06222 cd06222 1 1 1 0 08/20/13 16:29:00 -cd13839 MEF2_binding 260103 N/A cd13839 1 1 1 0 08/20/13 16:31:00 -cd13840 SMBP_like 260104 N/A cd13840 1 1 1 0 08/20/13 16:31:00 -cd13841 ABBA-PTs 260105 N/A cd13841 1 1 1 0 08/20/13 16:31:00 -cd13842 CuRO_HCO_II... 259911 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13843 Azurin_like 259912 cd00920 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13844 CuRO_1_BOD_... 259913 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13845 CuRO_1_AAO 259914 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13846 CuRO_1_AAO_... 259915 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13847 CuRO_1_AAO_... 259916 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13848 CuRO_1_CopA 259917 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13849 CuRO_1_LCC_... 259918 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13850 CuRO_1_Abr2... 259919 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13851 CuRO_1_Fet3p 259920 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13852 CuRO_1_McoP... 259921 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13853 CuRO_1_Tth-... 259922 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13854 CuRO_1_MaLC... 259923 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13855 CuRO_1_McoC... 259924 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13856 CuRO_1_Tv-L... 259925 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13857 CuRO_1_Diph... 259926 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13858 CuRO_1_tcLC... 259927 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13859 CuRO_D1_2dM... 259928 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13860 CuRO_1_2dMco_1 259929 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13861 CuRO_1_CumA... 259930 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13862 CuRO_1_MCO_... 259931 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13864 CuRO_1_MCO_... 259932 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13865 CuRO_1_LCC_... 259933 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13866 CuRO_2_BOD 259934 cd14448 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13867 CuRO_2_CueO... 259935 cd14448 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13868 CuRO_2_CotA... 259936 cd14448 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13869 CuRO_2_PHS 259937 cd14448 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13870 CuRO_2_CopA... 259938 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13871 CuRO_2_AAO 259939 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13872 CuRO_2_AAO_... 259940 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13873 CuRO_2_AAO_... 259941 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13874 CuRO_2_CopA 259942 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13875 CuRO_2_LCC_... 259943 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13876 CuRO_2_Abr2... 259944 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13877 CuRO_2_Fet3... 259945 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13879 CuRO_2_McoP... 259946 cd14448 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13880 CuRO_2_MaLC... 259947 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13881 CuRO_2_McoC... 259948 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13882 CuRO_2_Tv-L... 259949 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13883 CuRO_2_Diph... 259950 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13884 CuRO_2_tcLC... 259951 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13885 CuRO_2_CumA... 259952 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13886 CuRO_2_MCO_... 259953 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13887 CuRO_2_MCO_... 259954 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13888 CuRO_3_McoP... 259955 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13889 CuRO_3_BOD 259956 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13890 CuRO_3_CueO... 259957 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13891 CuRO_3_CotA... 259958 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13892 CuRO_3_PHS 259959 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13893 CuRO_3_AAO 259960 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13894 CuRO_3_AAO_... 259961 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13895 CuRO_3_AAO_... 259962 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13896 CuRO_3_CopA 259963 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13897 CuRO_3_LCC_... 259964 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13898 CuRO_3_Abr2... 259965 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13899 CuRO_3_Fet3p 259966 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13900 CuRO_3_Tth-... 259967 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13901 CuRO_3_MaLC... 259968 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13902 CuRO_3_McoC... 259969 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13903 CuRO_3_Tv-L... 259970 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13904 CuRO_3_Diph... 259971 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13905 CuRO_3_tcLL... 259972 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13906 CuRO_3_CumA... 259973 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13907 CuRO_3_MCO_... 259974 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13908 CuRO_3_MCO_... 259975 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13909 CuRO_3_MCO_... 259976 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13910 CuRO_3_MCO_... 259977 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13911 CuRO_3_MCO_... 259978 cd04207 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13912 CcO_II_C 259979 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13913 ba3_CcO_II_C 259980 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13914 CuRO_HCO_II... 259981 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13915 CuRO_HCO_II... 259982 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13916 CuRO_HCO_II... 259983 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13917 CuRO_HCO_II... 259984 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13918 CuRO_HCO_II... 259985 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13919 CuRO_HCO_II... 259986 cd13842 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13920 Stellacyanin 259987 cd04216 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13921 Amicyanin 259988 cd04204 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13922 Azurin 259989 cd13843 cd00920 1 1 1 0 08/20/13 16:29:00 -cd13925 RPF 340372 cd00442 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13926 N-acetylmur... 340373 cd16889 cd00442 1 1 0 0 06/09/17 13:53:00 -cd13929 PT-DMATS_CymD 260106 cd13841 cd13841 1 1 1 0 08/20/13 16:31:00 -cd13930 PT-Tnase 260107 cd13841 cd13841 1 1 1 0 08/20/13 16:31:00 -cd13931 PT-CloQ_NphB 260108 cd13841 cd13841 1 1 1 0 08/20/13 16:31:00 -cd13932 HN_RTEL1 259826 cd07347 cd07347 1 1 1 0 04/05/13 12:52:00 -cd13933 harmonin_N_... 259827 cd07347 cd07347 1 1 1 0 04/05/13 12:52:00 -cd13934 RNase_H_Dik... 260014 cd06222 cd06222 1 1 1 0 08/20/13 16:29:00 -cd13935 RNase_H_bac... 260015 cd06222 cd06222 1 1 1 0 08/20/13 16:29:00 -cd13936 PANDER_like 260110 N/A cd13936 1 1 1 0 08/20/13 16:31:00 -cd13937 PANDER_GnT-... 260111 cd13936 cd13936 1 1 1 0 08/20/13 16:31:00 -cd13938 PANDER_like... 260112 cd13936 cd13936 1 1 1 0 08/20/13 16:31:00 -cd13939 PANDER_FAM3B 260113 cd13936 cd13936 1 1 1 0 08/20/13 16:31:00 -cd13940 ILEI_FAM3C 260114 cd13936 cd13936 1 1 1 0 08/20/13 16:31:00 -cd13941 PANDER_like... 260115 cd13936 cd13936 1 1 1 0 08/20/13 16:31:00 -cd13944 lytB_ispH 260116 N/A cd13944 1 1 1 0 08/20/13 16:31:00 -cd13945 Chs5_N 260117 N/A cd13945 1 1 1 0 08/20/13 16:31:00 -cd13946 LysW 260118 N/A cd13946 1 1 1 0 08/20/13 16:31:00 -cd13949 7tm_V1R_phe... 320087 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13950 7tm_TAS2R 320088 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13951 7tmF_Frizzl... 320089 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13952 7tm_classB 341314 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13953 7tm_classC_... 320091 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13954 7tmA_OR 320092 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd13956 PT_UbiA 260119 N/A cd13956 1 1 1 0 08/20/13 16:31:00 -cd13957 PT_UbiA_Cox10 260120 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13958 PT_UbiA_chl... 260121 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13959 PT_UbiA_COQ2 260122 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13960 PT_UbiA_HPT1 260123 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13961 PT_UbiA_DGGGPS 260124 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13962 PT_UbiA_UBIAD1 260125 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13963 PT_UbiA_2 260126 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13964 PT_UbiA_1 260127 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13965 PT_UbiA_3 260128 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13966 PT_UbiA_4 260129 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13967 PT_UbiA_5 260130 cd13956 cd13956 1 1 1 0 08/20/13 16:31:00 -cd13968 PKc_like 270870 N/A cd13968 1 1 1 0 03/02/14 08:46:00 -cd13969 ADCK1-like 270871 cd05121 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13970 ABC1_ADCK3 270872 cd05121 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13971 ADCK2-like 270873 cd05121 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13972 UbiB 270874 cd05121 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13973 PK_MviN-like 270875 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13974 STKc_SHIK 270876 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13975 PKc_Dusty 270877 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13976 PK_TRB 270878 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13977 STKc_PDIK1L 270879 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13978 STKc_RIP 270880 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13979 STKc_Mos 270881 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13980 STKc_Vps15 270882 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13981 STKc_Bub1_B... 270883 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13982 STKc_IRE1 270884 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13983 STKc_WNK 270885 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13984 PK_NRBP1_like 270886 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13985 STKc_GAK_like 270887 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13986 STKc_16 270888 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13987 STKc_SBK1 270889 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13988 STKc_TBK1 270890 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13989 STKc_IKK 270891 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13990 STKc_TLK 270892 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13991 STKc_NIK 270893 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13992 PK_GC 270894 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13993 STKc_Pat1_like 270895 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13994 STKc_HAL4_like 270896 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13995 STKc_MAP3K8 270897 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13996 STKc_EIF2AK 270898 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13997 PKc_Wee1_like 270899 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13998 STKc_TGFbR-... 270900 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd13999 STKc_MAP3K-... 270901 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14000 STKc_LRRK 270902 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14001 PKc_TOPK 270903 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14002 STKc_STK36 270904 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14003 STKc_AMPK-like 270905 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14004 STKc_PASK 270906 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14005 STKc_PIM 270907 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14006 STKc_MLCK-like 270908 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14007 STKc_Aurora 270909 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14008 STKc_LKB1_C... 270910 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14009 STKc_ATG1_U... 270911 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14010 STKc_ULK4 270912 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14011 PK_SCY1_like 270913 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14012 PK_eIF2AK_G... 270914 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14013 STKc_SNT7_p... 270915 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14014 STKc_PknB_like 270916 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14015 STKc_VRK 270917 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14016 STKc_CK1 270918 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14017 STKc_TTBK 270919 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14018 STKc_PINK1 270920 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14019 STKc_Cdc7 270921 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14020 STKc_KIS 270922 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14021 ChoK-like_euk 270923 cd05151 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14022 PK_TRB2 270924 cd13976 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14023 PK_TRB1 270925 cd13976 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14024 PK_TRB3 270926 cd13976 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14025 STKc_RIP4_like 270927 cd13978 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14026 STKc_RIP2 270928 cd13978 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14027 STKc_RIP1 270929 cd13978 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14028 STKc_Bub1_vert 270930 cd13981 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14029 STKc_BubR1_... 270931 cd13981 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14030 STKc_WNK1 270932 cd13983 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14031 STKc_WNK3 270933 cd13983 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14032 STKc_WNK2_like 270934 cd13983 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14033 STKc_WNK4 270935 cd13983 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14034 PK_NRBP1 270936 cd13984 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14035 PK_MADML 270937 cd13984 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14036 STKc_GAK 270938 cd13985 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14037 STKc_NAK_like 270939 cd13985 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14038 STKc_IKK_beta 270940 cd13989 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14039 STKc_IKK_alpha 270941 cd13989 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14040 STKc_TLK1 270942 cd13990 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14041 STKc_TLK2 270943 cd13990 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14042 PK_GC-A_B 270944 cd13992 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14043 PK_GC-2D 270945 cd13992 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14044 PK_GC-C 270946 cd13992 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14045 PK_GC_unk 270947 cd13992 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14046 STKc_EIF2AK... 270948 cd13996 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14047 STKc_EIF2AK... 270949 cd13996 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14048 STKc_EIF2AK... 270950 cd13996 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14049 STKc_EIF2AK... 270951 cd13996 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14050 PKc_Myt1 270952 cd13997 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14051 PTKc_Wee1 270953 cd13997 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14052 PTKc_Wee1_f... 270954 cd13997 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14053 STKc_ACVR2 270955 cd13998 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14054 STKc_BMPR2_... 270956 cd13998 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14055 STKc_TGFbR2... 270957 cd13998 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14056 STKc_TGFbR_I 270958 cd13998 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14057 PK_ILK 270959 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14058 STKc_TAK1 270960 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14059 STKc_MAP3K1... 270961 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14060 STKc_MLTK 270962 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14061 STKc_MLK 270963 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14062 STKc_Raf 270964 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14063 PK_KSR 270965 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14064 PKc_TNNI3K 270966 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14065 PKc_LIMK_like 270967 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14066 STKc_IRAK 270968 cd13999 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14067 STKc_LRRK1 270969 cd14000 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14068 STKc_LRRK2 270970 cd14000 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14069 STKc_Chk1 270971 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14070 STKc_HUNK 270972 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14071 STKc_SIK 270973 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14072 STKc_MARK 270974 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14073 STKc_NUAK 270975 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14074 STKc_SNRK 270976 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14075 STKc_NIM1 270977 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14076 STKc_Kin4 270978 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14077 STKc_Kin1_2 270979 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14078 STKc_MELK 270980 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14079 STKc_AMPK_a... 270981 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14080 STKc_TSSK-like 270982 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14081 STKc_BRSK1_2 270983 cd14003 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14082 STKc_PKD 270984 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14083 STKc_CaMKI 270985 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14084 STKc_Chk2 270986 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14085 STKc_CaMKIV 270987 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14086 STKc_CaMKII 270988 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14087 STKc_PSKH1 270989 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14088 STKc_CaMK_like 270990 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14089 STKc_MAPKAPK 270991 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14090 STKc_Mnk 270992 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14091 STKc_RSK_C 270993 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14092 STKc_MSK_C 270994 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14093 STKc_PhKG 270995 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14094 STKc_CASK 270996 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14095 STKc_DCKL 270997 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14096 STKc_RCK1-like 270998 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14097 STKc_STK33 270999 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14098 STKc_Rad53_... 271000 cd05117 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14099 STKc_PLK 271001 cd00180 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14100 STKc_PIM1 271002 cd14005 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14101 STKc_PIM2 271003 cd14005 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14102 STKc_PIM3 271004 cd14005 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14103 STKc_MLCK 271005 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14104 STKc_Titin 271006 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14105 STKc_DAPK 271007 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14106 STKc_DRAK 271008 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14107 STKc_obscur... 271009 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14108 STKc_SPEG_rpt1 271010 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14109 PK_Unc-89_rpt1 271011 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14110 STKc_obscur... 271012 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14111 STKc_SPEG_rpt2 271013 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14112 STKc_Unc-89... 271014 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14113 STKc_Trio_C 271015 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14114 STKc_Twitch... 271016 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14115 STKc_Kalirin_C 271017 cd14006 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14116 STKc_Aurora-A 271018 cd14007 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14117 STKc_Aurora... 271019 cd14007 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14118 STKc_CAMKK 271020 cd14008 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14119 STKc_LKB1 271021 cd14008 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14120 STKc_ULK1_2... 271022 cd14009 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14121 STKc_ULK3 271023 cd14009 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14122 STKc_VRK1 271024 cd14015 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14123 STKc_VRK2 271025 cd14015 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14124 PK_VRK3 271026 cd14015 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14125 STKc_CK1_de... 271027 cd14016 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14126 STKc_CK1_gamma 271028 cd14016 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14127 STKc_CK1_fu... 271029 cd14016 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14128 STKc_CK1_alpha 271030 cd14016 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14129 STKc_TTBK2 271031 cd14017 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14130 STKc_TTBK1 271032 cd14017 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14131 PKc_Mps1 271033 cd05122 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14132 STKc_CK2_alpha 271034 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14133 PKc_DYRK_like 271035 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14134 PKc_CLK 271036 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14135 STKc_PRP4 271037 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14136 STKc_SRPK 271038 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14137 STKc_GSK3 271039 cd05118 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14138 PTKc_Wee1a 271040 cd14051 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14139 PTKc_Wee1b 271041 cd14051 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14140 STKc_ACVR2b 271042 cd14053 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14141 STKc_ACVR2a 271043 cd14053 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14142 STKc_ACVR1_... 271044 cd14056 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14143 STKc_TGFbR1... 271045 cd14056 cd13968 1 1 1 0 03/02/14 08:46:00 -cd14144 STKc_BMPR1 271046 cd14056 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14145 STKc_MLK1 271047 cd14061 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14146 STKc_MLK4 271048 cd14061 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14147 STKc_MLK3 271049 cd14061 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14148 STKc_MLK2 271050 cd14061 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14149 STKc_C-Raf 271051 cd14062 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14150 STKc_A-Raf 271052 cd14062 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14151 STKc_B-Raf 271053 cd14062 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14152 STKc_KSR1 271054 cd14063 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14153 PK_KSR2 271055 cd14063 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14154 STKc_LIMK 271056 cd14065 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14155 PKc_TESK 271057 cd14065 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14156 PKc_LIMK_li... 271058 cd14065 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14157 STKc_IRAK2 271059 cd14066 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14158 STKc_IRAK4 271060 cd14066 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14159 STKc_IRAK1 271061 cd14066 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14160 PK_IRAK3 271062 cd14066 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14161 STKc_NUAK2 271063 cd14073 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14162 STKc_TSSK4-... 271064 cd14080 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14163 STKc_TSSK3-... 271065 cd14080 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14164 STKc_TSSK6-... 271066 cd14080 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14165 STKc_TSSK1_... 271067 cd14080 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14166 STKc_CaMKI_... 271068 cd14083 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14167 STKc_CaMKI_... 271069 cd14083 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14168 STKc_CaMKI_... 271070 cd14083 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14169 STKc_CaMKI_... 271071 cd14083 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14170 STKc_MAPKAPK2 271072 cd14089 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14171 STKc_MAPKAPK5 271073 cd14089 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14172 STKc_MAPKAPK3 271074 cd14089 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14173 STKc_Mnk2 271075 cd14090 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14174 STKc_Mnk1 271076 cd14090 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14175 STKc_RSK1_C 271077 cd14091 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14176 STKc_RSK2_C 271078 cd14091 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14177 STKc_RSK4_C 271079 cd14091 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14178 STKc_RSK3_C 271080 cd14091 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14179 STKc_MSK1_C 271081 cd14092 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14180 STKc_MSK2_C 271082 cd14092 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14181 STKc_PhKG2 271083 cd14093 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14182 STKc_PhKG1 271084 cd14093 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14183 STKc_DCKL1 271085 cd14095 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14184 STKc_DCKL2 271086 cd14095 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14185 STKc_DCKL3 271087 cd14095 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14186 STKc_PLK4 271088 cd14099 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14187 STKc_PLK1 271089 cd14099 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14188 STKc_PLK2 271090 cd14099 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14189 STKc_PLK3 271091 cd14099 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14190 STKc_MLCK2 271092 cd14103 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14191 STKc_MLCK1 271093 cd14103 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14192 STKc_MLCK3 271094 cd14103 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14193 STKc_MLCK4 271095 cd14103 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14194 STKc_DAPK1 271096 cd14105 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14195 STKc_DAPK3 271097 cd14105 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14196 STKc_DAPK2 271098 cd14105 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14197 STKc_DRAK1 271099 cd14106 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14198 STKc_DRAK2 271100 cd14106 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14199 STKc_CaMKK2 271101 cd14118 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14200 STKc_CaMKK1 271102 cd14118 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14201 STKc_ULK2 271103 cd14120 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14202 STKc_ULK1 271104 cd14120 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14203 PTKc_Src_Fy... 271105 cd05034 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14204 PTKc_Mer 271106 cd05035 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14205 PTKc_Jak2_rpt2 271107 cd05038 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14206 PTKc_Aatyk3 271108 cd05042 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14207 PTKc_VEGFR1 271109 cd05054 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14208 PTK_Jak3_rpt1 271110 cd05037 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14209 STKc_PKA 271111 cd05580 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14210 PKc_DYRK 271112 cd14133 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14211 STKc_HIPK 271113 cd14133 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14212 PKc_YAK1 271114 cd14133 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14213 PKc_CLK1_4 271115 cd14134 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14214 PKc_CLK3 271116 cd14134 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14215 PKc_CLK2 271117 cd14134 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14216 STKc_SRPK1 271118 cd14136 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14217 STKc_SRPK2 271119 cd14136 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14218 STKc_SRPK3 271120 cd14136 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14219 STKc_BMPR1b 271121 cd14144 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14220 STKc_BMPR1a 271122 cd14144 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14221 STKc_LIMK1 271123 cd14154 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14222 STKc_LIMK2 271124 cd14154 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14223 STKc_GRK2 271125 cd05606 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14224 PKc_DYRK2_3 271126 cd14210 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14225 PKc_DYRK4 271127 cd14210 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14226 PKc_DYRK1 271128 cd14210 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14227 STKc_HIPK2 271129 cd14211 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14228 STKc_HIPK1 271130 cd14211 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14229 STKc_HIPK3 271131 cd14211 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14230 GAT_GGA 260088 cd12930 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14231 GAT_GGA_lik... 260089 cd12930 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14232 GAT_LSB5 260090 cd12930 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14233 GAT_TOM1_like 260091 cd12930 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14234 GAT_GGA_meta 260092 cd14230 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14235 GAT_GGA_fungi 260093 cd14230 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14236 GAT_TOM1 260094 cd14233 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14237 GAT_TM1L1 260095 cd14233 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14238 GAT_TM1L2 260096 cd14233 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14239 GAT_GGA1_GGA2 260097 cd14234 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14240 GAT_GGA3 260098 cd14234 cd12930 1 1 1 0 08/20/13 16:31:00 -cd14241 PAD 260131 N/A cd14241 1 1 1 0 08/20/13 16:31:00 -cd14243 PT-AcyF_like 260109 cd13841 cd13841 1 1 1 0 08/20/13 16:31:00 -cd14244 GH_101_like 271203 N/A cd14244 1 1 1 0 03/02/14 08:59:00 -cd14245 DMP12 271204 N/A cd14245 1 1 1 0 03/02/14 08:59:00 -cd14246 ADAM17_MPD 271205 N/A cd14246 1 1 1 0 03/02/14 08:59:00 -cd14247 Lmo2686_like 271206 N/A cd14247 1 1 1 0 03/02/14 09:00:00 -cd14248 ESP 271207 N/A cd14248 1 1 1 0 03/02/14 09:00:00 -cd14249 ESP1_like 271208 cd14248 cd14248 1 1 1 0 03/02/14 09:00:00 -cd14250 ESP36_like 271209 cd14248 cd14248 1 1 1 0 03/02/14 09:00:00 -cd14251 PL-6 271210 N/A cd14251 1 1 1 0 03/02/14 09:00:00 -cd14252 Dockerin_like 271211 N/A cd14252 1 1 1 0 03/02/14 09:00:00 -cd14253 Dockerin 271212 cd14252 cd14252 1 1 1 0 03/02/14 09:00:00 -cd14254 Dockerin_II 271213 cd14253 cd14252 1 1 1 0 03/02/14 09:00:00 -cd14255 Dockerin_III 271214 cd14253 cd14252 1 1 1 0 03/02/14 09:00:00 -cd14256 Dockerin_I 271215 cd14253 cd14252 1 1 1 0 03/02/14 09:00:00 -cd14257 CttA_X 271221 N/A cd14257 1 1 1 0 03/02/14 09:02:00 -cd14259 PUFD_like 271222 N/A cd14259 1 1 1 0 03/02/14 09:02:00 -cd14260 PUFD_like_1 271223 cd14259 cd14259 1 1 1 0 03/02/14 09:02:00 -cd14261 PUFD 271224 cd14259 cd14259 1 1 1 0 03/02/14 09:02:00 -cd14262 VirB5_like 271354 N/A cd14262 2 1 1 0 06/11/14 17:10:00 -cd14263 DAGK_IM_like 260132 N/A cd14263 1 1 1 0 08/20/13 16:31:00 -cd14264 DAGK_IM 260133 cd14263 cd14263 1 1 1 0 08/20/13 16:31:00 -cd14265 UDPK_IM_like 260134 cd14263 cd14263 1 1 1 0 08/20/13 16:31:00 -cd14266 UDPK_IM_PAP... 260135 cd14265 cd14263 1 1 1 0 08/20/13 16:31:00 -cd14267 Rif1_CTD_C-... 341312 N/A cd14267 1 1 0 0 07/26/17 17:22:00 -cd14270 UBA 270456 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14271 UBA_YLR419W... 270457 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14272 UBA_AMPK-RKs 270458 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14273 UBA_TAP-C_like 270459 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14274 UBA_ACK1 270460 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14275 UBA_EF-Ts 270461 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14276 UBA_UBP25_like 270462 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14277 UBA_UBP2_like 270463 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14278 UBA_NAC_like 270464 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14279 CUE 270465 cd00194 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14280 UBA1_Rad23_... 270466 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14281 UBA2_Rad23_... 270467 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14282 UBA_TDRD3 270468 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14283 UBA_TNR6C 270469 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14284 UBA_GAWKY 270470 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14285 UBA_scEDE1_... 270471 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14286 UBA_UBP24 270472 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14287 UBA_At3g584... 270473 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14288 UBA_HUWE1 270474 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14289 UBA_RHBD3 270475 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14290 UBA_PUB_plant 270476 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14291 UBA1_NUB1_like 270477 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14292 UBA2_NUB1 270478 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14293 UBA3_NUB1 270479 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14294 UBA1_UBP5_like 270480 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14295 UBA1_atUBP14 270481 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14296 UBA1_scUBP1... 270482 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14297 UBA2_spUBP1... 270483 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14298 UBA2_scUBP1... 270484 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14300 UBA_UBS3A_like 270485 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14301 UBA_UBS3B 270486 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14302 UBA_UBXN1 270487 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14303 UBA1_KPC2 270488 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14304 UBA2_KPC2 270489 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14305 UBA_UBAC2 270490 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14306 UBA_VP13D 270491 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14307 UBA_RUP1p 270492 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14308 UBA_Mud1_like 270493 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14309 UBA_scDdi1_... 270494 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14310 UBA_cnDdi1_... 270495 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14311 UBA_II_E2_UBC1 270496 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14312 UBA_II_E2_U... 270497 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14313 UBA_II_E2_U... 270498 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14314 UBA_II_E2_p... 270499 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14315 UBA1_UBAP1 270500 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14316 UBA2_UBAP1_... 270501 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14317 UBA_DHX57 270502 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14318 UBA_Cbl_like 270503 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14319 UBA_NBR1 270504 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14320 UBA_SQSTM 270505 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14321 UBA_IAPs 270506 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14322 UBA_LATS 270507 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14323 UBA_PLCs_like 270508 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14324 UBA_Dsk2p_like 270509 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14325 UBA_RNF31 270510 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14326 UBA_UBL7 270511 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14327 UBA_atUPL1_... 270512 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14328 UBA_TNK1 270513 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14329 UBA_SWA2p_like 270514 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14330 UBA_atDRM2_... 270515 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14331 UBA_HERC1_2 270516 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14332 UBA_RuvA_C 270517 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14333 UBA_unchar_... 270518 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14334 UBA_SNF1_fungi 270519 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14335 UBA_SnRK1_p... 270520 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14336 UBA_AID_AMP... 270521 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14337 UBA_MARK_Par1 270522 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14338 UBA_SIK 270523 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14339 UBA_SNRK 270524 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14340 UBA_BRSK 270525 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14341 UBA_MELK 270526 cd14272 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14342 UBA_TAP-C 270527 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14343 UBA_F100B_like 270528 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14344 UBA_TYDP2 270529 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14345 UBA_UBXD7 270530 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14346 UBA_Ubx5_like 270531 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14347 UBA_Cezanne... 270532 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14348 UBA_p47 270533 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14349 UBA_CF106 270534 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14350 UBA_DCNL 270535 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14351 UBA_Ubx1_like 270536 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14352 UBA_DCN1 270537 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14353 UBA_FAF 270538 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14354 UBA_UBP25 270539 cd14276 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14355 UBA_UBP28 270540 cd14276 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14358 UBA_NAC_euk 270541 cd14278 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14359 UBA_AeNAC 270542 cd14278 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14360 UBA_NAC_lik... 270543 cd14278 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14361 UBA_HYPK 270544 cd14278 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14362 CUE_TAB2_TAB3 270545 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14363 CUE_TOLIP 270546 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14364 CUE_ASCC2 270547 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14365 CUE_N4BP2 270548 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14366 CUE_CUED1 270549 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14367 CUE_CUED2 270550 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14368 CUE_DEF1_like 270551 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14369 CUE_VPS9_like 270552 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14370 CUE_DMA 270553 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14371 CUE_CID7_like 270554 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14372 CUE_Cue5p_like 270555 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14373 CUE_Cue3p_like 270556 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14374 CUE1_Cue2p_... 270557 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14375 CUE2_Cue2p_... 270558 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14376 CUE_AUP1_AM... 270559 cd14279 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14377 UBA1_Rad23 270560 cd14280 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14378 UBA1_Rhp23p... 270561 cd14280 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14379 UBA1_Rad23_... 270562 cd14280 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14380 UBA2_Rad23 270563 cd14281 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14381 UBA2_Rhp23p... 270564 cd14281 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14382 UBA2_RAD23_... 270565 cd14281 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14383 UBA1_UBP5 270566 cd14294 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14384 UBA1_UBP13 270567 cd14294 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14385 UBA1_spUBP1... 270568 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14386 UBA2_UBP5 270569 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14387 UBA2_UBP13 270570 cd14270 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14388 UBA2_atUBP14 270571 cd14300 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14389 UBA_AAA_plant 270572 cd14300 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14390 UBA_II_E2_U... 270573 cd14313 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14391 UBA_II_E2_U... 270574 cd14313 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14392 UBA_Cbl-b 270575 cd14318 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14393 UBA_c-Cbl 270576 cd14318 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14394 UBA_BIRC2_3 270577 cd14321 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14395 UBA_BIRC4_8 270578 cd14321 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14396 UBA_XtBIRC7... 270579 cd14321 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14397 UBA_LATS1 270580 cd14322 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14398 UBA_LATS2 270581 cd14322 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14399 UBA_PLICs 270582 cd14323 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14400 UBA_Gts1p_like 270583 cd14323 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14401 UBA_HERC1 270584 cd14331 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14402 UBA_HERC2 270585 cd14331 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14403 UBA_AID_AAPK1 270586 cd14336 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14404 UBA_AID_AAPK2 270587 cd14336 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14405 UBA_MARK1 270588 cd14337 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14406 UBA_MARK2 270589 cd14337 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14407 UBA_MARK3_4 270590 cd14337 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14408 UBA_SIK1 270591 cd14338 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14409 UBA_SIK2 270592 cd14338 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14410 UBA_SIK3 270593 cd14338 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14411 UBA_DCNL1 270594 cd14350 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14412 UBA_DCNL2 270595 cd14350 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14413 UBA_FAF1 270596 cd14353 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14414 UBA_FAF2 270597 cd14353 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14415 UBA_NACA_NACP1 270598 cd14358 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14416 UBA_NACAD 270599 cd14358 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14417 CUE_DMA_DMRTA1 270600 cd14370 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14418 CUE_DMA_DMRTA2 270601 cd14370 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14419 CUE_DMA_DMRTA3 270602 cd14370 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14420 CUE_AUP1 270603 cd14376 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14421 CUE_AMFR 270604 cd14376 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14422 CUE_RIN3_plant 270605 cd14376 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14423 CUE_UBR5 270606 cd14376 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14424 CUE_Cue1p_like 270607 cd14376 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14425 UBA1_HR23A 270608 cd14377 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14426 UBA1_HR23B 270609 cd14377 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14427 UBA2_HR23A 270610 cd14380 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14428 UBA2_HR23B 270611 cd14380 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14435 SPO1_TF1_like 259859 cd00591 cd00591 1 1 1 0 08/20/13 16:28:00 -cd14436 LepB 271226 N/A cd14436 1 1 1 0 03/02/14 09:03:00 -cd14437 nt01cx_1156... 271227 N/A cd14437 1 1 1 0 03/02/14 09:03:00 -cd14438 Hip_N 271228 N/A cd14438 1 1 1 0 03/02/14 09:03:00 -cd14439 AlgX_N_like 270205 N/A cd14439 1 1 1 0 03/02/14 08:21:00 -cd14440 AlgX_N_like_3 270206 cd14439 cd14439 1 1 1 0 03/02/14 08:21:00 -cd14441 AlgX_N 270207 cd14439 cd14439 1 1 1 0 03/02/14 08:21:00 -cd14442 AlgJ_like 270208 cd14439 cd14439 1 1 1 0 03/02/14 08:21:00 -cd14443 AlgX_N_like_2 270209 cd14439 cd14439 1 1 1 0 03/02/14 08:21:00 -cd14444 AlgX_N_like_1 270210 cd14439 cd14439 1 1 1 0 03/02/14 08:21:00 -cd14445 RILP-like 271220 N/A cd14445 1 1 1 0 03/02/14 09:02:00 -cd14446 bt3222_like 271219 N/A cd14446 1 1 1 0 03/02/14 09:01:00 -cd14447 SPX 269894 N/A cd14447 1 1 1 0 03/02/14 08:13:00 -cd14448 CuRO_2_BOD_... 259990 cd04205 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14449 CuRO_1_2DMC... 259991 cd04206 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14450 CuRO_3_FV_like 259992 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14451 CuRO_5_FV_like 259993 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14452 CuRO_1_FVII... 259994 cd04199 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14453 CuRO_2_FV_like 259995 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14454 CuRO_4_FV_like 259996 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14455 CuRO_6_FV_like 259997 cd04200 cd00920 1 1 1 0 08/20/13 16:29:00 -cd14456 Menin 271218 N/A cd14456 1 1 1 0 03/02/14 09:01:00 -cd14458 DP_DD 271217 N/A cd14458 1 1 1 0 03/02/14 09:01:00 -cd14472 mltA_B_like 270615 N/A cd14472 1 1 1 0 03/02/14 08:39:00 -cd14473 FERM_B-lobe 271216 N/A cd14473 1 1 1 0 03/02/14 09:01:00 -cd14474 SPX_YDR089W 269895 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14475 SPX_SYG1_like 269896 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14476 SPX_PHO1_like 269897 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14477 SPX_XPR1_like 269898 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14478 SPX_PHO87_P... 269899 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14479 SPX-MFS_plant 269900 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14480 SPX_VTC2_like 269901 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14481 SPX_AtSPX1_... 269902 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14482 SPX_BAH1-like 269903 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14483 SPX_PHO81_N... 269904 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14484 SPX_GDE1_like 269905 cd14447 cd14447 1 1 1 0 03/02/14 08:13:00 -cd14485 mltA_like_LT_A 270618 cd14486 cd14486 1 1 1 0 03/02/14 08:39:00 -cd14486 3D_domain 270619 N/A cd14486 1 1 1 0 03/02/14 08:39:00 -cd14487 AlgX_C 271153 cd02795 cd02795 1 1 1 0 03/02/14 08:55:00 -cd14488 CBM6-CBM35-... 271154 cd02795 cd02795 1 1 1 0 03/02/14 08:55:00 -cd14489 CBM_SBP_bac... 271155 cd02795 cd02795 1 1 1 0 03/02/14 08:55:00 -cd14490 CBM6-CBM35-... 271156 cd02795 cd02795 1 1 1 0 03/02/14 08:55:00 -cd14494 PTP_DSP_cys 350344 N/A cd14494 1 1 0 0 07/11/18 17:59:00 -cd14495 PTPLP-like 350345 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14496 PTP_paladin 350346 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14497 PTP_PTEN-like 350347 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14498 DSP 350348 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14499 CDC14_C 350349 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14500 PTP-IVa 350350 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14501 PFA-DSP 350351 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14502 RNA_5'-trip... 350352 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14503 PTP-bact 350353 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14504 DUSP23 350354 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14505 CDKN3-like 350355 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14506 PTP_PTPDC1 350356 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14507 PTP-MTM-like 350357 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14508 PTP_tensin 350358 cd14497 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14509 PTP_PTEN 350359 cd14497 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14510 PTP_VSP_TPTE 350360 cd14497 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14511 PTP_auxilin... 350361 cd14497 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14512 DSP_MKP 350362 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14513 DSP_slingshot 350363 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14514 DUSP14-like 350364 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14515 DUSP3-like 350365 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14516 DSP_fungal_... 350366 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14517 DSP_STYXL1 350367 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14518 DSP_fungal_... 350368 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14519 DSP_DUSP22_15 350369 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14520 DSP_DUSP12 350370 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14521 DSP_fungal_... 350371 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14522 DSP_STYX 350372 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14523 DSP_DUSP19 350373 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14524 PTPMT1 350374 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14526 DSP_laforin... 350375 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14527 DSP_bac 350376 cd14498 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14528 PFA-DSP_Siw14 350377 cd14501 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14529 TpbA-like 350378 cd14494 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14531 PFA-DSP_Oca1 350379 cd14501 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14532 PTP-MTMR6-like 350380 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14533 PTP-MTMR3-like 350381 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14534 PTP-MTMR5-like 350382 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14535 PTP-MTM1-like 350383 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14536 PTP-MTMR9 350384 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14537 PTP-MTMR10-... 350385 cd14507 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14538 PTPc-N20_13 350386 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14539 PTP-N23 350387 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14540 PTPc-N21_14 350388 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14541 PTPc-N3_4 350389 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14542 PTPc-N22_18_12 350390 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14543 PTPc-N9 350391 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14544 PTPc-N11_6 350392 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14545 PTPc-N1_2 350393 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14546 R-PTP-N-N2 350394 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14547 PTPc-KIM 350395 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14548 R3-PTPc 350396 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14549 R5-PTPc-1 350397 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14550 R5-PTP-2 350398 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14551 R-PTPc-A-E-1 350399 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14552 R-PTPc-A-E-2 350400 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14553 R-PTPc-LAR-1 350401 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14554 R-PTP-LAR-2 350402 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14555 R-PTPc-type... 350403 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14556 R-PTPc-type... 350404 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14557 R-PTPc-C-1 350405 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14558 R-PTP-C-2 350406 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14559 PTP_YopH-like 350407 cd00047 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14560 PTP_tensin-1 350408 cd14508 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14561 PTP_tensin-3 350409 cd14508 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14562 PTP_tensin-2 350410 cd14508 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14563 PTP_auxilin_N 350411 cd14511 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14564 PTP_GAK 350412 cd14511 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14565 DSP_MKP_classI 350413 cd14512 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14566 DSP_MKP_cla... 350414 cd14512 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14567 DSP_DUSP10 350415 cd14568 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14568 DSP_MKP_cla... 350416 cd14512 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14569 DSP_slingsh... 350417 cd14513 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14570 DSP_slingsh... 350418 cd14513 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14571 DSP_slingsh... 350419 cd14513 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14572 DUSP14 350420 cd14514 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14573 DUSP18_21 350421 cd14514 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14574 DUSP28 350422 cd14514 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14575 DUPD1 350423 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14576 DSP_iDUSP27 350424 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14577 DUSP13B 350425 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14578 DUSP26 350426 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14579 DUSP3 350427 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14580 DUSP13A 350428 cd14515 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14581 DUSP22 350429 cd14519 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14582 DSP_DUSP15 350430 cd14519 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14583 PTP-MTMR7 350431 cd14532 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14584 PTP-MTMR8 350432 cd14532 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14585 PTP-MTMR6 350433 cd14532 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14586 PTP-MTMR3 350434 cd14533 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14587 PTP-MTMR4 350435 cd14533 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14588 PTP-MTMR5 350436 cd14534 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14589 PTP-MTMR13 350437 cd14534 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14590 PTP-MTMR2 350438 cd14535 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14591 PTP-MTM1 350439 cd14535 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14592 PTP-MTMR1 350440 cd14535 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14593 PTP-MTMR10 350441 cd14537 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14594 PTP-MTMR12 350442 cd14537 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14595 PTP-MTMR11 350443 cd14537 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14596 PTPc-N20 350444 cd14538 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14597 PTPc-N13 350445 cd14538 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14598 PTPc-N21 350446 cd14540 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14599 PTPc-N14 350447 cd14540 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14600 PTPc-N3 350448 cd14541 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14601 PTPc-N4 350449 cd14541 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14602 PTPc-N22 350450 cd14542 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14603 PTPc-N18 350451 cd14542 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14604 PTPc-N12 350452 cd14542 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14605 PTPc-N11 350453 cd14544 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14606 PTPc-N6 350454 cd14544 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14607 PTPc-N2 350455 cd14545 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14608 PTPc-N1 350456 cd14545 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14609 R-PTP-N 350457 cd14546 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14610 R-PTP-N2 350458 cd14546 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14611 R-PTPc-R 350459 cd14547 cd14494 1 1 0 0 07/11/18 17:59:00 -cd14612 PTPc-N7 350460 cd14547 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14613 PTPc-N5 350461 cd14547 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14614 R-PTPc-O 350462 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14615 R-PTPc-J 350463 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14616 R-PTPc-Q 350464 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14617 R-PTPc-B 350465 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14618 R-PTPc-V 350466 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14619 R-PTPc-H 350467 cd14548 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14620 R-PTPc-E-1 350468 cd14551 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14621 R-PTPc-A-1 350469 cd14551 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14622 R-PTPc-E-2 350470 cd14552 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14623 R-PTPc-A-2 350471 cd14552 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14624 R-PTPc-D-1 350472 cd14553 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14625 R-PTPc-S-1 350473 cd14553 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14626 R-PTPc-F-1 350474 cd14553 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14627 R-PTP-S-2 350475 cd14554 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14628 R-PTP-D-2 350476 cd14554 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14629 R-PTP-F-2 350477 cd14554 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14630 R-PTPc-T-1 350478 cd14555 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14631 R-PTPc-K-1 350479 cd14555 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14632 R-PTPc-U-1 350480 cd14555 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14633 R-PTPc-M-1 350481 cd14555 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14634 R-PTPc-T-2 350482 cd14556 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14635 R-PTPc-M-2 350483 cd14556 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14636 R-PTPc-K-2 350484 cd14556 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14637 R-PTPc-U-2 350485 cd14556 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14638 DSP_DUSP1 350486 cd14565 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14639 DSP_DUSP5 350487 cd14565 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14640 DSP_DUSP4 350488 cd14565 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14641 DSP_DUSP2 350489 cd14565 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14642 DSP_DUSP6 350490 cd14566 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14643 DSP_DUSP7 350491 cd14566 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14644 DSP_DUSP9 350492 cd14566 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14645 DSP_DUSP8 350493 cd14568 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14646 DSP_DUSP16 350494 cd14568 cd14494 1 1 0 0 07/11/18 18:00:00 -cd14651 ZIP_Put3 271236 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14653 ZIP_Gal4p-like 271237 N/A cd14653 1 1 1 0 06/11/14 17:01:00 -cd14654 ZIP_Gal4 271238 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14655 ZIP_Hap1 271239 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14656 Imelysin-li... 271139 cd11376 cd11376 1 1 1 0 03/02/14 08:53:00 -cd14657 Imelysin_Ir... 271140 cd11376 cd11376 1 1 1 0 03/02/14 08:53:00 -cd14658 Imelysin-li... 271141 cd11376 cd11376 1 1 1 0 03/02/14 08:53:00 -cd14659 Imelysin-li... 271142 cd11376 cd11376 1 1 1 0 03/02/14 08:53:00 -cd14660 E2F_DD 271137 N/A cd14660 1 1 1 0 03/02/14 08:53:00 -cd14661 Imelysin_li... 271136 N/A cd14661 1 1 1 0 03/02/14 08:53:00 -cd14662 STKc_SnRK2 271132 cd14003 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14663 STKc_SnRK3 271133 cd14003 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14664 STK_BAK1_like 271134 cd14066 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14665 STKc_SnRK2-3 271135 cd14662 cd13968 1 1 1 0 03/02/14 08:47:00 -cd14667 3D_containi... 270620 cd14486 cd14486 1 1 1 0 03/02/14 08:39:00 -cd14668 mlta_B 270616 cd14472 cd14472 1 1 1 0 03/02/14 08:39:00 -cd14669 mlta_related_B 270617 cd14472 cd14472 1 1 1 0 03/02/14 08:39:00 -cd14670 BslA_like 270614 N/A cd14670 1 1 1 0 03/02/14 08:38:00 -cd14671 PAAR_like 269821 N/A cd14671 1 1 1 0 03/02/14 08:10:00 -cd14672 UBA_ceTYDP2... 270612 cd14273 cd00194 1 1 1 0 03/02/14 08:29:00 -cd14673 PH_PHLDB1_2 270192 cd00821 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14674 PH_PLEKHM3_1 270193 cd00821 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14675 PH-SEC3_like 270194 cd00821 cd00900 2 1 1 0 10/22/14 09:43:00 -cd14676 PH_DOK1,2,3 270195 cd00821 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14677 PH_DOK7 270196 cd00821 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14678 PH_DOK4_DOK... 270197 cd00821 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14679 PH_p115RhoGEF 275429 cd13329 cd00900 2 1 1 0 10/22/14 09:43:00 -cd14680 PH_p190RhoGEF 275430 cd13329 cd00900 2 1 1 0 10/22/14 09:43:00 -cd14681 PH-STXBP6 270200 cd14675 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14682 PH-EXOC1_like 270201 cd14675 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14683 PH-EXOC1 270202 cd14675 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14684 RanBD1_RanB... 270203 cd13176 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14685 RanBD3_RanB... 270204 cd13176 cd00900 1 1 1 0 10/22/14 09:43:00 -cd14686 bZIP 269834 N/A cd14686 1 1 1 0 03/02/14 08:11:00 -cd14687 bZIP_ATF2 269835 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14688 bZIP_YAP 269836 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14689 bZIP_CREB3 269837 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14690 bZIP_CREB1 269838 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14691 bZIP_XBP1 269839 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14692 bZIP_ATF4 269840 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14693 bZIP_CEBP 269841 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14694 bZIP_NFIL3 269842 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14695 bZIP_HLF 269843 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14696 bZIP_Jun 269844 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14697 bZIP_Maf 269845 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14698 bZIP_CNC 269846 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14699 bZIP_Fos_like 269847 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14700 bZIP_ATF6 269848 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14701 bZIP_BATF 269849 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14702 bZIP_plant_... 269850 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14703 bZIP_plant_RF2 269851 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14704 bZIP_HY5-like 269852 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14705 bZIP_Zip1 269853 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14706 bZIP_CREBZF 269854 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14707 bZIP_plant_... 269855 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14708 bZIP_HBP1b-... 269856 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14709 bZIP_CREBL2 269857 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14710 bZIP_HAC1-like 269858 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14711 bZIP_CEBPA 269859 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14712 bZIP_CEBPB 269860 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14713 bZIP_CEBPG 269861 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14714 bZIP_CEBPD 269862 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14715 bZIP_CEBPE 269863 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14716 bZIP_CEBP-l... 269864 cd14693 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14717 bZIP_Maf_small 269865 cd14697 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14718 bZIP_Maf_large 269866 cd14697 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14719 bZIP_BACH 269867 cd14698 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14720 bZIP_NFE2-like 269868 cd14698 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14721 bZIP_Fos 269869 cd14699 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14722 bZIP_ATF3 269870 cd14699 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14723 ZIP_Ppr1 271240 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14724 ZIP_Gal4-li... 271241 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14725 ZIP_Gal4-li... 271242 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd14726 TraB_PrgY-like 350608 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14727 ChanN-like 350609 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14728 Ere-like 350610 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14729 RtxA-like 350611 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14730 LodA_like 269830 N/A cd14730 1 1 1 0 03/02/14 08:10:00 -cd14731 LodA_like_1 269831 cd14730 cd14730 1 1 1 0 03/02/14 08:10:00 -cd14732 LodA 269832 cd14730 cd14730 1 1 1 0 03/02/14 08:10:00 -cd14733 BACK 350515 N/A cd14733 2 1 0 0 07/11/18 18:00:00 -cd14736 BACK_AtBPM-... 350516 cd14733 cd14733 2 1 0 0 07/11/18 18:00:00 -cd14737 PAAR_1 269822 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14738 PAAR_2 269823 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14739 PAAR_3 269824 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14740 PAAR_4 269825 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14741 PAAR_5 269826 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14742 PAAR_RHS 269827 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14743 PAAR_CT_1 269828 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14744 PAAR_CT_2 269829 cd14671 cd14671 1 1 1 0 03/02/14 08:10:00 -cd14745 GH66 270613 N/A cd14745 1 1 1 0 03/02/14 08:38:00 -cd14747 PBP2_MalE 270450 cd13585 cd00648 1 1 1 0 03/02/14 08:25:00 -cd14748 PBP2_UgpB 270451 cd13585 cd00648 1 1 1 0 03/02/14 08:25:00 -cd14749 PBP2_XBP1_like 270452 cd13585 cd00648 1 1 1 0 03/02/14 08:25:00 -cd14750 PBP2_TMBP 270453 cd13585 cd00648 1 1 1 0 03/02/14 08:25:00 -cd14751 PBP2_GacH 270454 cd13585 cd00648 1 1 1 0 03/02/14 08:25:00 -cd14752 GH31_N 270212 N/A cd14752 1 1 1 0 03/02/14 08:22:00 -cd14755 GS_BA2291-H... 271288 cd01067 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14756 TrHb 271289 cd01067 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14757 GS_EcDosC-l... 271290 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14758 GS_GGDEF_1 271291 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14759 GS_GGDEF_2 271292 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14760 GS_PAS-GGDE... 271293 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14761 GS_GsGCS_like 271294 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14762 GS_STAS 271295 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14763 SSDgbs_1 271296 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14764 SSDgbs_2 271297 cd01068 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14765 Hb 271298 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14766 CeGLB25_like 271299 cd01040 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14767 PE_beta_like 271300 cd12127 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14768 PC_PEC_beta 271301 cd12127 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14769 PE_alpha 271302 cd12129 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14770 PC-PEC_alpha 271303 cd12129 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14771 TrHb2_Mt-tr... 271304 cd08917 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14772 TrHb2_Bs-tr... 271305 cd08917 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14773 TrHb2_PhHbO... 271306 cd08917 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14774 TrHb2_O_1 271307 cd08917 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14775 TrHb2_O_2 271308 cd08917 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14776 HmpEc-globi... 271309 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14777 Yhb1-globin... 271310 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14778 VtHb-like_SDgb 271311 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14779 FHP_Ae-glob... 271312 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14780 HmpPa-globi... 271313 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14781 FHb-globin_1 271314 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14782 FHb-globin_2 271315 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14783 FHb-globin_3 271316 cd08922 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14784 class1_nsHb... 271317 cd08923 cd01067 1 1 1 0 06/11/14 17:04:00 -cd14785 V-ATPase_C 270211 N/A cd14785 1 1 1 0 03/02/14 08:21:00 -cd14786 STAT_CCD 341075 N/A cd14786 1 1 0 0 06/09/17 14:33:00 -cd14787 Tiki_TraB-like 350612 N/A cd14787 1 1 0 0 07/11/18 18:00:00 -cd14788 GumN 350613 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14789 Tiki 350614 cd14787 cd14787 1 1 0 0 07/11/18 18:00:00 -cd14790 GH_D 269891 N/A cd14790 1 1 1 0 03/02/14 08:12:00 -cd14791 GH36 269892 cd14790 cd14790 1 1 1 0 03/02/14 08:12:00 -cd14792 GH27 269893 cd14790 cd14790 1 1 1 0 03/02/14 08:12:00 -cd14793 DUF302_like 269816 N/A cd14793 1 1 1 0 03/02/14 08:07:00 -cd14794 RNLA_N_1 269817 cd14793 cd14793 1 1 1 0 03/02/14 08:07:00 -cd14795 RNLA_N_2 269818 cd14793 cd14793 1 1 1 0 03/02/14 08:07:00 -cd14796 RNAse_HIII_N 269819 cd14793 cd14793 1 1 1 0 03/02/14 08:07:00 -cd14797 DUF302 269820 cd14793 cd14793 1 1 1 0 03/02/14 08:07:00 -cd14798 RX-CC_like 271353 N/A cd14798 1 1 1 0 06/11/14 17:10:00 -cd14801 STAT_DBD 341082 N/A cd14801 1 1 0 0 06/09/17 14:33:00 -cd14803 RAP 269812 N/A cd14803 2 1 1 0 06/11/14 17:07:00 -cd14804 Tra_M 271351 N/A cd14804 1 1 1 0 06/11/14 17:09:00 -cd14805 Translin-like 271348 N/A cd14805 1 1 1 0 06/11/14 17:09:00 -cd14806 RAP_D1 269813 cd14803 cd14803 2 1 1 0 06/11/14 17:07:00 -cd14807 RAP_D2 269814 cd14803 cd14803 2 1 1 0 06/11/14 17:07:00 -cd14808 RAP_D3 269815 cd14803 cd14803 2 1 1 0 06/11/14 17:07:00 -cd14809 bZIP_AUREO-... 269871 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14810 bZIP_u1 269872 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14811 bZIP_u2 269873 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14812 bZIP_u3 269874 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14813 bZIP_BmCbz-... 269875 cd14686 cd14686 1 1 1 0 03/02/14 08:11:00 -cd14814 Peptidase_M15 350615 N/A cd14814 1 1 0 0 07/11/18 18:00:00 -cd14815 BA_2398_like 271352 N/A cd14815 1 1 1 0 06/11/14 17:09:00 -cd14817 D-Ala-D-Ala... 350616 cd17880 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14818 longin-like 341426 N/A cd14818 1 1 0 0 08/02/17 13:11:00 -cd14819 Translin 271349 cd14805 cd14805 1 1 1 0 06/11/14 17:09:00 -cd14820 TRAX 271350 cd14805 cd14805 1 1 1 0 06/11/14 17:09:00 -cd14821 BACK_SPOP_like 350517 cd14733 cd14733 2 1 0 0 07/11/18 18:00:00 -cd14822 BACK_BTBD9 350518 cd14733 cd14733 2 1 0 0 07/11/18 18:00:00 -cd14823 AP_longin-like 341427 cd14818 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14824 Longin 341428 cd14818 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14825 TRAPPC2_sedlin 341429 cd14853 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14826 SR_alpha_SRX 341430 cd14818 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14827 AP_sigma 341431 cd14823 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14828 AP_Mu_N 341432 cd14823 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14829 Zeta-COP 341433 cd14823 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14830 Delta_COP_N 341434 cd14823 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14831 AP1_sigma 341435 cd14827 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14832 AP4_sigma 341436 cd14827 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14833 AP2_sigma 341437 cd14827 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14834 AP3_sigma 341438 cd14827 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14835 AP1_Mu_N 341439 cd14828 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14836 AP2_Mu_N 341440 cd14828 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14837 AP3_Mu_N 341441 cd14828 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14838 AP4_Mu_N 341442 cd14828 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14840 D-Ala-D-Ala... 350617 cd17880 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14843 D-Ala-D-Ala... 350618 cd17880 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14844 Zn-DD-carbo... 350619 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14845 L-Ala-D-Glu... 350620 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14846 Peptidase_M... 350621 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14847 DD-carboxyp... 350622 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14849 DD-dipeptid... 350623 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14852 LD-carboxyp... 350624 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd14853 TRAPPC_long... 341443 cd14818 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14854 TRAPPC2L 341444 cd14853 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14855 TRAPPC1_MUM2 341445 cd14853 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14856 TRAPPC4_syn... 341446 cd14853 cd14818 1 1 0 0 08/02/17 13:11:00 -cd14859 PMEI_like 275438 N/A cd14859 1 1 1 0 10/22/14 15:49:00 -cd14860 4HBD_NAD 341482 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14861 Fe-ADH-like 341483 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14862 Fe-ADH-like 341484 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14863 Fe-ADH-like 341485 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14864 Fe-ADH-like 341486 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14865 Fe-ADH-like 341487 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14866 Fe-ADH-like 341488 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd14867 uS7_Eukaryote 271246 cd00323 cd00323 1 1 1 0 06/11/14 17:02:00 -cd14868 uS7_Mitocho... 271247 cd00323 cd00323 1 1 1 0 06/11/14 17:02:00 -cd14869 uS7_Bacteria 271248 cd00323 cd00323 1 1 1 0 06/11/14 17:02:00 -cd14870 uS7_Mitocho... 271249 cd00323 cd00323 1 1 1 0 06/11/14 17:02:00 -cd14871 uS7_Chlorop... 271250 cd14869 cd00323 1 1 1 0 06/11/14 17:02:00 -cd14872 MYSc_Myo4 276839 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14873 MYSc_Myo10 276840 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14874 MYSc_Myo12 276841 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14875 MYSc_Myo13 276842 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14876 MYSc_Myo14 276843 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14878 MYSc_Myo16 276844 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14879 MYSc_Myo17 276845 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14880 MYSc_Myo19 276846 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14881 MYSc_Myo20 276847 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14882 MYSc_Myo21 276848 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14883 MYSc_Myo22 276849 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14884 MYSc_Myo23 276850 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14886 MYSc_Myo25 276851 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14887 MYSc_Myo26 276852 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14888 MYSc_Myo27 276853 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14889 MYSc_Myo28 276854 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14890 MYSc_Myo29 276855 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14891 MYSc_Myo30 276856 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14892 MYSc_Myo31 276857 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14893 MYSc_Myo32 276858 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14894 MYSc_Myo33 276859 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14895 MYSc_Myo34 276860 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14896 MYSc_Myo35 276861 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14897 MYSc_Myo36 276862 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14898 MYSc_Myo37 276863 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14899 MYSc_Myo38 276864 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14900 MYSc_Myo39 276865 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14901 MYSc_Myo40 276866 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14902 MYSc_Myo41 276867 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14903 MYSc_Myo42 276868 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14904 MYSc_Myo43 276869 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14905 MYSc_Myo44 276870 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14906 MYSc_Myo45 276871 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14907 MYSc_Myo46 276872 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14908 MYSc_Myo47 276873 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14909 MYSc_Myh1_i... 276874 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14910 MYSc_Myh1_m... 276875 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14911 MYSc_Myh2_i... 276876 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14912 MYSc_Myh2_m... 276877 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14913 MYSc_Myh3 276878 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14915 MYSc_Myh4 276879 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14916 MYSc_Myh6 276880 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14917 MYSc_Myh7 276881 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14918 MYSc_Myh8 276882 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14919 MYSc_Myh9 276883 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14920 MYSc_Myh10 276952 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14921 MYSc_Myh11 276885 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14923 MYSc_Myh13 276887 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14927 MYSc_Myh7b 276953 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14929 MYSc_Myh15_... 276892 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14930 MYSc_Myh14_... 276893 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14932 MYSc_Myh18 276895 cd01377 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14934 MYSc_Myh16 276896 cd01377 cd01363 2 1 1 0 02/05/15 10:55:00 -cd14937 MYSc_Myo24A 276897 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14938 MYSc_Myo24B 276898 cd00124 cd01363 1 1 1 0 02/05/15 10:55:00 -cd14939 7tmD_STE2 320093 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14940 7tmE_cAMP_R... 320094 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14941 TRAPPC_bet3... 271344 N/A cd14941 1 1 1 0 06/11/14 17:08:00 -cd14942 TRAPPC3_bet3 271345 cd14941 cd14941 1 1 1 0 06/11/14 17:08:00 -cd14943 TRAPPC5_Trs31 271346 cd14941 cd14941 1 1 1 0 06/11/14 17:08:00 -cd14944 TRAPPC6A_Trs33 271347 cd14941 cd14941 1 1 1 0 06/11/14 17:08:00 -cd14945 Myo5-like_CBD 271253 N/A cd14945 1 1 1 0 06/11/14 17:03:00 -cd14947 NBR1_like 271343 N/A cd14947 1 1 1 0 06/11/14 17:08:00 -cd14948 BACON 271342 N/A cd14948 1 1 1 0 06/11/14 17:08:00 -cd14949 Asparaginas... 271340 cd04512 cd04512 1 1 1 0 06/11/14 17:07:00 -cd14950 Asparaginas... 271341 cd04512 cd04512 1 1 1 0 06/11/14 17:07:00 -cd14951 NHL-2_like 271321 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14952 NHL_PKND_like 271322 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14953 NHL_like_1 271323 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14954 NHL_TRIM71_... 271324 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14955 NHL_like_4 271325 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14956 NHL_like_3 271326 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14957 NHL_like_2 271327 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14958 NHL_PAL_like 271328 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14959 NHL_brat_like 271329 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14960 NHL_TRIM2_like 271330 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14961 NHL_TRIM32_... 271331 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14962 NHL_like_6 271332 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14963 NHL_like_5 271333 cd05819 cd05819 1 1 1 0 06/11/14 17:06:00 -cd14964 7tm_GPCRs 341315 N/A cd14964 2 1 0 0 07/26/17 17:22:00 -cd14965 7tm_Opsins_... 320096 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14966 7tmD_STE3 320097 cd14964 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14967 7tmA_amine_... 320098 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14968 7tmA_Adenos... 341316 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14969 7tmA_Opsins... 320100 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14970 7tmA_Opioid... 320101 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14971 7tmA_Galani... 320102 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14972 7tmA_EDG-like 341317 cd00637 cd14964 2 1 0 0 07/26/17 17:22:00 -cd14973 7tmA_Mrgpr 320104 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14974 7tmA_Anaphy... 320105 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14975 7tmA_LTB4R 320106 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14976 7tmA_RNL3R 320107 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14977 7tmA_ET_R-like 320108 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14978 7tmA_FMRFam... 320109 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14979 7tmA_NTSR-like 320110 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14980 7tmA_Glycop... 320111 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14981 7tmA_Prosta... 320112 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14982 7tmA_purino... 341318 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14983 7tmA_FFAR 320114 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14984 7tmA_Chemok... 341319 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14985 7tmA_Angiot... 341320 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14986 7tmA_Vasopr... 320117 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14987 7tmA_ACKR3_... 320118 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14988 7tmA_GPR182 320119 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14989 7tmA_GPER1 320120 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14990 7tmA_GPR146 320121 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14991 7tmA_HCAR-like 320122 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14992 7tmA_TACR_f... 320123 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14993 7tmA_CCKR-like 320124 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14994 7tmA_GPR141 320125 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14995 7tmA_TRH-R 320126 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14996 7tmA_GPR82 320127 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14997 7tmA_ETH-R 320128 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14998 7tmA_GPR153... 320129 cd14964 cd14964 2 1 0 0 07/26/17 17:23:00 -cd14999 7tmA_UII-R 320130 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15000 7tmA_BNGR-A... 320131 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15001 7tmA_GPRnna... 320132 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15002 7tmA_GPR151 320133 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15005 7tmA_SREB-like 320134 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15006 7tmA_GPR176 320135 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15007 7tmA_GPR75 320136 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15008 7tmA_GPR19 320137 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15010 7tmA_ACKR1_... 320138 cd14964 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15011 7tmA_GPR149 320139 cd14964 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15012 7tmA_Trissin_R 320140 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15013 7tm_TAS2R4 320141 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15014 7tm_TAS2R40 320142 cd15908 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15015 7tm_TAS2R39 320143 cd15908 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15016 7tm_TAS2R1 320144 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15017 7tm_TAS2R16 320145 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15018 7tm_TAS2R41... 320146 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15019 7tm_TAS2R14... 320147 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15020 7tm_TAS2R3 320148 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15021 7tm_TAS2R10 320149 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15022 7tm_TAS2R8 320150 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15023 7tm_TAS2R7-... 320151 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15024 7tm_TAS2R42 320152 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15025 7tm_TAS2R38 320153 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15026 7tm_TAS2R13 320154 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15027 7tm_TAS2R43... 320155 cd13950 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15028 7tm_Opsin-1... 320156 cd14965 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15029 7tm_SRI_SRII 320157 cd14965 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15030 7tmF_SMO_ho... 320158 cd13951 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15031 7tmF_FZD3_i... 320159 cd13951 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15032 7tmF_FZD6 320160 cd15910 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15033 7tmF_FZD3 320161 cd15910 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15034 7tmF_FZD1_2... 320162 cd13951 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15035 7tmF_FZD5_F... 320163 cd13951 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15036 7tmF_FZD9 320164 cd15909 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15037 7tmF_FZD10 320165 cd15909 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15038 7tmF_FZD4 320166 cd15909 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15039 7tmB3_Methu... 320167 cd13952 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15040 7tmB2_Adhesion 320168 cd13952 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15041 7tmB1_hormo... 341321 cd13952 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15042 7tmC_Boss 320170 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15043 7tmC_RAIG_G... 320171 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15044 7tmC_V2R_AA... 320172 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15045 7tmC_mGluRs 320173 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15046 7tmC_TAS1R 320174 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15047 7tmC_GABA-B... 320175 cd13953 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15048 7tmA_Histam... 320176 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15049 7tmA_mAChR 341322 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15050 7tmA_Histam... 320178 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15051 7tmA_Histam... 320179 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15052 7tmA_5-HT2 320180 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15053 7tmA_D2-lik... 320181 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15054 7tmA_5-HT6 320182 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15055 7tmA_TAARs 320183 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15056 7tmA_5-HT4 320184 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15057 7tmA_D1-lik... 320185 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15058 7tmA_Beta_AR 320186 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15059 7tmA_alpha2_AR 320187 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15060 7tmA_tyrami... 320188 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15061 7tmA_tyrami... 320189 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15062 7tmA_alpha1_AR 320190 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15063 7tmA_Octopa... 320191 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15064 7tmA_5-HT1_5_7 320192 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15065 7tmA_Ap5-HT... 320193 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15066 7tmA_DmOct-... 320194 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15067 7tmA_Dop1R2... 320195 cd14967 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15068 7tmA_Adenos... 320196 cd14968 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15069 7tmA_Adenos... 320197 cd14968 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15070 7tmA_Adenos... 320198 cd14968 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15071 7tmA_Adenos... 341323 cd14968 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15072 7tmA_Retina... 320200 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15073 7tmA_Peropsin 320201 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15074 7tmA_Opsin5... 320202 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15075 7tmA_Parapi... 320203 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15076 7tmA_SWS1_o... 320204 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15077 7tmA_SWS2_o... 320205 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15078 7tmA_Enceph... 320206 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15079 7tmA_photor... 320207 cd15083 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15080 7tmA_MWS_opsin 341324 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15081 7tmA_LWS_opsin 320209 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15082 7tmA_VA_opsin 320210 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15083 7tmA_Melano... 320211 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15084 7tmA_Pinopsin 320212 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15085 7tmA_Pariet... 320213 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15086 7tmA_tmt_opsin 320214 cd14969 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15087 7tmA_NPBWR 320215 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15088 7tmA_MCHR-like 320216 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15089 7tmA_Delta_... 320217 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15090 7tmA_Mu_opi... 320218 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15091 7tmA_Kappa_... 320219 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15092 7tmA_NOFQ_o... 320220 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15093 7tmA_SSTR 320221 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15094 7tmA_AstC_i... 320222 cd14970 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15095 7tmA_KiSS1R 320223 cd14971 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15096 7tmA_AstA_R... 320224 cd14971 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15097 7tmA_Gal2_G... 320225 cd14971 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15098 7tmA_Gal1_R 320226 cd14971 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15099 7tmA_Cannab... 320227 cd14972 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15100 7tmA_GPR3_G... 320228 cd14972 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15101 7tmA_LPAR 341325 cd14972 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15102 7tmA_S1PR 320230 cd14972 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15103 7tmA_MCR 320231 cd14972 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15104 7tmA_GPR119... 320232 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15105 7tmA_MrgprA 320233 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15106 7tmA_MrgprX... 320234 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15107 7tmA_MrgprB 320235 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15108 7tmA_MrgprD 320236 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15109 7tmA_MrgprF 320237 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15110 7tmA_MrgprH 320238 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15111 7tmA_MrgprG 320239 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15112 7tmA_MrgprE 320240 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15113 7tmA_MAS1L 320241 cd14973 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15114 7tmA_C5aR 320242 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15115 7tmA_C3aR 320243 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15116 7tmA_CMKLR1 320244 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15117 7tmA_FPR-like 320245 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15118 7tmA_PD2R2_... 320246 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15119 7tmA_GPR1 320247 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15120 7tmA_GPR33 320248 cd14974 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15121 7tmA_LTB4R1 320249 cd14975 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15122 7tmA_LTB4R2 320250 cd14975 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15123 7tmA_BRS-3 320251 cd15927 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15124 7tmA_GRPR 320252 cd15927 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15125 7tmA_NMBR 320253 cd15927 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15126 7tmA_ETBR-LP2 320254 cd14977 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15127 7tmA_GPR37 320255 cd14977 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15128 7tmA_ET_R 320256 cd14977 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15129 7tmA_GPR142 320257 cd14978 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15130 7tmA_NTSR 320258 cd14979 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15131 7tmA_GHSR 320259 cd15928 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15132 7tmA_motilin_R 320260 cd15928 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15133 7tmA_NMU-R 320261 cd14979 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15134 7tmA_capaR 320262 cd14979 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15135 7tmA_GPR39 320263 cd14979 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15136 7tmA_Glyco_... 320264 cd14980 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15137 7tmA_Relaxin_R 320265 cd14980 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15138 7tmA_LRR_GPR 320266 cd14980 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15139 7tmA_PGE2_EP2 320267 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15140 7tmA_PGD2 320268 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15141 7tmA_PGI2 320269 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15142 7tmA_PGE2_EP4 320270 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15143 7tmA_TXA2_R 320271 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15144 7tmA_PGE2_EP1 320272 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15145 7tmA_FP 320273 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15146 7tmA_PGE2_EP3 320274 cd14981 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15147 7tmA_PAFR 320275 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15148 7tmA_GPR34-... 320276 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15149 7tmA_P2Y14 320277 cd15924 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15150 7tmA_P2Y12 341326 cd15924 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15151 7tmA_P2Y13 341327 cd15924 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15152 7tmA_GPR174... 320280 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15153 7tmA_P2Y10 320281 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15154 7tmA_LPAR5 320282 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15155 7tmA_LPAR4 320283 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15156 7tmA_LPAR6_... 320284 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15157 7tmA_CysLTR2 320285 cd15921 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15158 7tmA_CysLTR1 320286 cd15921 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15159 7tmA_EBI2 320287 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15160 7tmA_Proton... 320288 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15161 7tmA_GPR17 320289 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15162 7tmA_PAR 341328 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15163 7tmA_GPR20 320291 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15164 7tmA_GPR35-... 320292 cd15923 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15165 7tmA_GPR55-... 320293 cd15923 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15166 7tmA_NAGly_... 320294 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15167 7tmA_GPR171 320295 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15168 7tmA_P2Y1-like 341329 cd14982 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15169 7tmA_FFAR1 320297 cd14983 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15170 7tmA_FFAR2_... 320298 cd14983 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15171 7tmA_CCRL2 320299 cd00637 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15172 7tmA_CCR6 341330 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15173 7tmA_CXCR6 320301 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15174 7tmA_CCR9 320302 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15175 7tmA_CCR7 341331 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15176 7tmA_ACKR4_... 320304 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15177 7tmA_CCR10 341332 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15178 7tmA_CXCR1_2 341333 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15179 7tmA_CXCR4 341334 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15180 7tmA_CXCR3 341335 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15181 7tmA_CXCR5 341336 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15182 7tmA_XCR1 341337 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15183 7tmA_CCR1 320311 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15184 7tmA_CCR5_CCR2 341338 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15185 7tmA_CCR3 341339 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15186 7tmA_CX3CR1 320314 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15187 7tmA_CCR8 320315 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15188 7tmA_ACKR2_D6 320316 cd14984 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15189 7tmA_Bradyk... 320317 cd14985 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15190 7tmA_Apelin_R 341340 cd14985 cd14964 2 1 0 0 07/26/17 17:23:00 -cd15191 7tmA_AT2R 341341 cd14985 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15192 7tmA_AT1R 320320 cd14985 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15193 7tmA_GPR25 320321 cd14985 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15194 7tmA_GPR15 320322 cd14985 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15195 7tmA_GnRHR-... 320323 cd14986 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15196 7tmA_Vasopr... 320324 cd14986 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15197 7tmA_NPSR 320325 cd14986 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15198 7tmA_GPR150 320326 cd14986 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15199 7tmA_GPR31 320327 cd14991 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15200 7tmA_OXER1 320328 cd14991 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15201 7tmA_HCAR1-3 320329 cd14991 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15202 7tmA_TACR-like 320330 cd14992 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15203 7tmA_NPYR-like 320331 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15204 7tmA_prokin... 320332 cd14992 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15205 7tmA_QRFPR 320333 cd14993 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15206 7tmA_CCK_R 320334 cd14993 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15207 7tmA_NPFFR 320335 cd14993 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15208 7tmA_OXR 320336 cd14993 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15209 7tmA_Mel1 320337 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15210 7tmA_GPR84-... 320338 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15211 7tmA_GPR88-... 320339 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15212 7tmA_GPR135 320340 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15213 7tmA_PSP24-... 320341 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15214 7tmA_GPR161 320342 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15215 7tmA_GPR101 320343 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15216 7tmA_SREB1_... 320344 cd15005 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15217 7tmA_SREB3_... 320345 cd15005 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15218 7tmA_SREB2_... 320346 cd15005 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15219 7tmA_GPR26_... 320347 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15220 7tmA_GPR61_... 320348 cd00637 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15221 7tmA_OR52B-... 320349 cd15917 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15222 7tmA_OR51-like 320350 cd15917 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15223 7tmA_OR56-like 320351 cd15917 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15224 7tmA_OR6B-like 320352 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15225 7tmA_OR10A-... 320353 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15226 7tmA_OR4-like 320354 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15227 7tmA_OR14-like 320355 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15228 7tmA_OR10D-... 320356 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15229 7tmA_OR8S1-... 320357 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15230 7tmA_OR5-like 320358 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15231 7tmA_OR5V1-... 320359 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15232 7tmA_OR13-like 320360 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15233 7tmA_OR3A-like 320361 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15234 7tmA_OR7-like 320362 cd15918 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15235 7tmA_OR1A-like 320363 cd15918 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15236 7tmA_OR1E-like 320364 cd15918 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15237 7tmA_OR2-like 320365 cd13954 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15238 7tm_ARII-like 320366 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15239 7tm_YRO2_fu... 320367 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15240 7tm_ASR-like 320368 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15241 7tm_ChRs 320369 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15242 7tm_Proteor... 320370 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15243 7tm_Halorho... 320371 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15244 7tm_bacteri... 320372 cd14965 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15245 7tmF_FZD2 320373 cd15034 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15246 7tmF_FZD7 320374 cd15034 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15247 7tmF_FZD1 320375 cd15034 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15248 7tmF_FZD1_i... 320376 cd15034 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15249 7tmF_FZD5 320377 cd15035 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15250 7tmF_FZD8 320378 cd15035 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15251 7tmB2_BAI_A... 320379 cd15040 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15252 7tmB2_Latro... 320380 cd15040 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15253 7tmB2_GPR113 320381 cd15932 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15254 7tmB2_GPR11... 320382 cd15932 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15255 7tmB2_GPR144 320383 cd15933 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15256 7tmB2_GPR133 320384 cd15933 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15257 7tmB2_GPR128 320385 cd15040 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15258 7tmB2_GPR12... 320386 cd15040 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15259 7tmB2_GPR12... 320387 cd15040 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15260 7tmB1_NPR_B... 320388 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15261 7tmB1_PDFR 320389 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15262 7tmB1_NPR_B... 320390 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15263 7tmB1_DH_R 320391 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15264 7tmB1_CRF-R 320392 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15265 7tmB1_PTHR 320393 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15266 7tmB1_GLP2R 320394 cd15929 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15267 7tmB1_GCGR 320395 cd15929 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15268 7tmB1_GLP1R 341342 cd15929 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15269 7tmB1_VIP-R1 320397 cd15930 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15270 7tmB1_GHRHR 320398 cd15930 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15271 7tmB1_GHRHR2 320399 cd15930 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15272 7tmB1_PTH-R... 320400 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15273 7tmB1_NPR_B... 320401 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15274 7tmB1_calci... 341343 cd15041 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15275 7tmB1_secretin 320403 cd15930 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15277 7tmC_RAIG3_... 320404 cd15043 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15278 7tmC_RAIG2_... 320405 cd15043 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15279 7tmC_RAIG1_... 320406 cd15043 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15280 7tmC_V2R-like 320407 cd15044 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15281 7tmC_GPRC6A 320408 cd15044 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15282 7tmC_CaSR 320409 cd15044 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15283 7tmC_V2R_ph... 320410 cd15044 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15284 7tmC_mGluR_... 320411 cd15934 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15285 7tmC_mGluR_... 320412 cd15045 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15286 7tmC_mGluR_... 320413 cd15934 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15287 7tmC_TAS1R2... 320414 cd15046 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15288 7tmC_TAS1R2 320415 cd15046 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15289 7tmC_TAS1R1 320416 cd15046 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15290 7tmC_TAS1R3 320417 cd13953 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15291 7tmC_GABA-B-R1 320418 cd15047 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15292 7tmC_GPR156 320419 cd15047 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15293 7tmC_GPR158... 320420 cd15047 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15294 7tmC_GABA-B-R2 320421 cd15047 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15295 7tmA_Histam... 320422 cd15048 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15296 7tmA_Histam... 320423 cd15048 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15297 7tmA_mAChR_M2 320424 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15298 7tmA_mAChR_M4 341344 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15299 7tmA_mAChR_M3 320426 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15300 7tmA_mAChR_M5 320427 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15301 7tmA_mAChR_... 320428 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15302 7tmA_mAChR_... 320429 cd15049 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15304 7tmA_5-HT2A 341345 cd15052 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15305 7tmA_5-HT2C 341346 cd15052 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15306 7tmA_5-HT2B 341347 cd15052 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15307 7tmA_5-HT2_... 320433 cd15052 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15308 7tmA_D4_dop... 320434 cd15053 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15309 7tmA_D2_dop... 320435 cd15053 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15310 7tmA_D3_dop... 320436 cd15053 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15312 7tmA_TAAR2_3_4 320437 cd15055 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15314 7tmA_TAAR1 320438 cd15055 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15316 7tmA_TAAR6_8_9 320439 cd15317 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15317 7tmA_TAAR5-... 320440 cd15055 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15318 7tmA_TAAR5 320441 cd15317 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15319 7tmA_D1B_do... 320442 cd15057 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15320 7tmA_D1A_do... 320443 cd15057 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15321 7tmA_alpha2... 320444 cd15059 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15322 7tmA_alpha2... 320445 cd15059 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15323 7tmA_alpha2... 320446 cd15059 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15324 7tmA_alpha-... 320447 cd15059 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15325 7tmA_alpha1... 320448 cd15062 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15326 7tmA_alpha1... 320449 cd15062 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15327 7tmA_alpha1... 320450 cd15062 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15328 7tmA_5-HT5 320451 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15329 7tmA_5-HT7 320452 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15330 7tmA_5-HT1A... 320453 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15331 7tmA_5-HT1A... 320454 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15333 7tmA_5-HT1B_1D 320455 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15334 7tmA_5-HT1F 320456 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15335 7tmA_5-HT1E 320457 cd15064 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15336 7tmA_Melano... 320458 cd15083 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15337 7tmA_Opsin_... 320459 cd15083 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15338 7tmA_MCHR1 320460 cd15088 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15339 7tmA_MCHR2 320461 cd15088 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15340 7tmA_CB1 320462 cd15099 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15341 7tmA_CB2 320463 cd15099 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15342 7tmA_LPAR2_... 320464 cd15101 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15343 7tmA_LPAR3_... 320465 cd15101 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15344 7tmA_LPAR1_... 341348 cd15101 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15345 7tmA_S1PR3_... 320467 cd15102 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15346 7tmA_S1PR1_... 320468 cd15102 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15347 7tmA_S1PR2_... 320469 cd15102 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15348 7tmA_S1PR5_... 320470 cd15102 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15349 7tmA_S1PR4_... 320471 cd15102 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15350 7tmA_MC2R_A... 320472 cd15103 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15351 7tmA_MC1R 320473 cd15103 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15352 7tmA_MC3R 320474 cd15103 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15353 7tmA_MC4R 320475 cd15103 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15354 7tmA_MC5R 320476 cd15103 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15355 7tmA_NTSR1 320477 cd15130 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15356 7tmA_NTSR2 320478 cd15130 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15357 7tmA_NMU-R2 320479 cd15133 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15358 7tmA_NMU-R1 320480 cd15133 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15359 7tmA_LHCGR 320481 cd15136 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15360 7tmA_FSH-R 320482 cd15136 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15361 7tmA_LGR4 320483 cd15138 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15362 7tmA_LGR6 320484 cd15138 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15363 7tmA_LGR5 320485 cd15138 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15364 7tmA_GPR132... 320486 cd15160 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15365 7tmA_GPR65_... 320487 cd15160 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15366 7tmA_GPR4 320488 cd15160 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15367 7tmA_GPR68_... 320489 cd15160 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15368 7tmA_P2Y8 320490 cd15162 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15369 7tmA_PAR1 320491 cd15162 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15370 7tmA_PAR2 341349 cd15162 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15371 7tmA_PAR3 320493 cd15162 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15372 7tmA_PAR4 320494 cd15162 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15373 7tmA_P2Y2 320495 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15374 7tmA_P2Y4 320496 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15375 7tmA_OXGR1 320497 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15376 7tmA_P2Y11 320498 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15377 7tmA_P2Y1 341350 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15378 7tmA_SUCNR1... 320500 cd15168 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15379 7tmA_P2Y6 320501 cd15968 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15380 7tmA_BK-1 320502 cd15189 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15381 7tmA_BK-2 320503 cd15189 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15382 7tmA_AKHR 320504 cd15195 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15383 7tmA_GnRHR_... 320505 cd15195 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15384 7tmA_GnRHR_... 320506 cd15195 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15385 7tmA_V1aR 320507 cd15196 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15386 7tmA_V1bR 320508 cd15196 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15387 7tmA_OT_R 320509 cd15196 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15388 7tmA_V2R 320510 cd15196 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15389 7tmA_GPR83 320511 cd15202 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15390 7tmA_TACR 320512 cd15202 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15391 7tmA_NPR-li... 320513 cd14992 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15392 7tmA_PR4-like 320514 cd15202 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15393 7tmA_leucok... 320515 cd15202 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15394 7tmA_PrRP_R 320516 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15395 7tmA_NPY1R 320517 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15396 7tmA_NPY6R 320518 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15397 7tmA_NPY4R 320519 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15398 7tmA_NPY5R 320520 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15399 7tmA_NPY2R 320521 cd15203 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15400 7tmA_Mel1B 320522 cd15209 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15401 7tmA_Mel1C 320523 cd15209 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15402 7tmA_Mel1A 320524 cd15209 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15403 7tmA_GPR45 320525 cd15213 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15404 7tmA_GPR63 320526 cd15213 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15405 7tmA_OR8B-like 320527 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15406 7tmA_OR8D-like 320528 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15407 7tmA_OR5B-like 320529 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15408 7tmA_OR5AK3... 320530 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15409 7tmA_OR5H-like 320531 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15410 7tmA_OR5D-like 320532 cd15230 cd14964 2 1 0 0 07/26/17 17:24:00 -cd15411 7tmA_OR8H-like 320533 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15412 7tmA_OR5M-like 320534 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15413 7tmA_OR8K-like 320535 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15414 7tmA_OR5G-like 320536 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15415 7tmA_OR5J-like 320537 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15416 7tmA_OR5P-like 320538 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15417 7tmA_OR5A1-... 320539 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15418 7tmA_OR9G-like 320540 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15419 7tmA_OR9K2-... 320541 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15420 7tmA_OR2A-like 320542 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15421 7tmA_OR2T-like 320543 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15424 7tmA_OR2_unk 320544 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15428 7tmA_OR2D-like 320545 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15429 7tmA_OR2F-like 320546 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15430 7tmA_OR13-like 320547 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15431 7tmA_OR13H-... 320548 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15432 7tmA_OR2B2-... 320549 cd15947 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15433 7tmA_OR2Y-like 320550 cd15947 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15434 7tmA_OR2W-like 320551 cd15947 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15436 7tmB2_Latro... 320552 cd15252 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15437 7tmB2_ETL 320553 cd15252 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15438 7tmB2_CD97 320554 cd15931 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15439 7tmB2_EMR 320555 cd15931 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15440 7tmB2_latro... 320556 cd15252 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15441 7tmB2_CELSR... 320557 cd15040 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15442 7tmB2_GPR97 320558 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15443 7tmB2_GPR114 320559 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15444 7tmB2_GPR64 320560 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15445 7tmB1_CRF-R1 320561 cd15264 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15446 7tmB1_CRF-R2 320562 cd15264 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15447 7tmC_mGluR2 320563 cd15284 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15448 7tmC_mGluR3 320564 cd15284 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15449 7tmC_mGluR1 320565 cd15285 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15450 7tmC_mGluR5 320566 cd15285 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15451 7tmC_mGluR7 320567 cd15286 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15452 7tmC_mGluR4 320568 cd15286 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15453 7tmC_mGluR6 320569 cd15286 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15454 7tmC_mGluR8 320570 cd15286 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15457 NADAR 271319 N/A cd15457 1 1 1 0 06/11/14 17:06:00 -cd15464 HN_like 271230 cd00260 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15465 bS6_mito 275386 cd00473 cd00473 1 1 1 0 10/22/14 09:38:00 -cd15466 CLU-central 271318 N/A cd15466 1 1 1 0 06/11/14 17:05:00 -cd15467 MV-h 271231 cd15464 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15468 HeV-G 271232 cd15464 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15469 HN 271233 cd15464 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15470 Myo5_CBD 271254 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15471 Myo5p-like_... 271255 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15472 Myo5p-like_... 271256 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15473 Myo5p-like_... 271257 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15474 Myo5p-like_... 271258 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15475 MyosinXI_CBD 271259 cd14945 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15476 Myo5c_CBD 271260 cd15470 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15477 Myo5b_CBD 271261 cd15470 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15478 Myo5a_CBD 271262 cd15470 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15479 fMyo4p_CBD 271263 cd15474 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15480 fMyo2p_CBD 271264 cd15474 cd14945 1 1 1 0 06/11/14 17:03:00 -cd15481 SRP68-RBD 271252 N/A cd15481 1 1 1 0 06/11/14 17:02:00 -cd15482 Sialidase_n... 271234 cd00260 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15483 Influenza_NA 271235 cd00260 cd00260 1 1 1 0 06/11/14 17:01:00 -cd15484 uS7_plant 271251 cd00323 cd00323 1 1 1 0 06/11/14 17:02:00 -cd15485 ZIP_Cat8 271243 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd15486 ZIP_Sip4 271244 cd14653 cd14653 1 1 1 0 06/11/14 17:01:00 -cd15487 bS6_chloro_... 275387 cd00473 cd00473 1 1 1 0 10/22/14 09:38:00 -cd15488 Tm-1-like 350626 N/A cd15488 1 1 0 0 07/11/18 18:00:00 -cd15489 PHD_SF 276966 N/A cd15489 1 1 1 0 03/27/15 16:09:00 -cd15490 eIF2_gamma_III 294011 cd01513 cd01513 2 1 1 0 11/06/15 13:21:00 -cd15491 selB_III 294012 cd01513 cd01513 2 1 1 0 11/06/15 13:21:00 -cd15492 PHD_BRPF_JA... 276967 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15493 PHD_JMJD2 276968 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15494 PHD_ATX1_2_... 276969 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15495 PHD_ATX3_4_... 276970 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15496 PHD_PHF7_G2... 276971 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15497 PHD1_Snt2p_... 276972 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15498 PHD2_Snt2p_... 276973 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15499 PHD1_MTF2_P... 276974 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15500 PHD1_PHF1 276975 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15501 PHD_Int12 276976 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15502 PHD_Phf1p_P... 276977 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15503 PHD2_MTF2_P... 276978 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15504 PHD_PRHA_like 276979 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15505 PHD_ING 276980 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15506 PHD1_KMT2A_... 276981 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15507 PHD2_KMT2A_... 276982 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15508 PHD3_KMT2A_... 276983 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15509 PHD1_KMT2C_... 276984 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15510 PHD2_KMT2C_... 276985 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15511 PHD3_KMT2C 276986 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15512 PHD4_KMT2C_... 276987 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15513 PHD5_KMT2C_... 276988 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15514 PHD6_KMT2C_... 276989 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15515 PHD1_KDM5A_... 276990 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15516 PHD2_KDM5A_... 276991 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15517 PHD_TCF19_like 276992 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15518 PHD_Ecm5p_L... 276993 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15519 PHD1_Lid2p_... 276994 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15520 PHD3_Lid2p_... 276995 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15521 PHD_VIN3_plant 276996 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15522 PHD_TAF3 276997 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15523 PHD_PHF21A 276998 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15524 PHD_PHF21B 276999 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15525 PHD_UHRF1_2 277000 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15526 PHD1_MOZ_d4 277001 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15527 PHD2_KAT6A_6B 277002 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15528 PHD1_PHF10 277003 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15529 PHD2_PHF10 277004 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15530 PHD2_d4 277005 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15531 PHD1_CHD_II 277006 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15532 PHD2_CHD_II 277007 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15533 PHD1_PHF12 277008 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15534 PHD2_PHF12_... 277009 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15535 PHD1_Rco1 277010 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15536 PHD_PHRF1 277011 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15537 PHD_BS69 277012 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15538 PHD_PRKCBP1 277013 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15539 PHD1_AIRE 277014 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15540 PHD2_AIRE 277015 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15541 PHD_TIF1_like 277016 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15542 PHD_UBR7 277017 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15543 PHD_RSF1 277018 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15544 PHD_BAZ1A_like 277019 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15545 PHD_BAZ2A_like 277020 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15546 PHD_PHF13_like 277021 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15547 PHD_SHPRH 277022 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15548 PHD_ASH1L 277023 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15549 PHD_PHF20_like 277024 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15550 PHD_MLL5 277025 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15551 PHD_PYGO 277026 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15552 PHD_PHF3_like 277027 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15553 PHD_Cfp1 277028 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15554 PHD_PHF2_like 277029 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15555 PHD_KDM2A_2B 277030 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15556 PHD_MMD1_like 277031 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15557 PHD_CBP_p300 277032 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15558 PHD_Hop1p_like 277033 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15559 PHD1_BPTF 277034 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15560 PHD2_3_BPTF 277035 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15561 PHD1_PHF14 277036 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15562 PHD2_PHF14 277037 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15563 PHD3_PHF14 277038 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15564 PHD1_NSD 277039 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15565 PHD2_NSD 277040 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15566 PHD3_NSD 277041 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15567 PHD4_NSD 277042 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15568 PHD5_NSD 277043 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15569 PHD_RAG2 277044 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15570 PHD_Bye1p_S... 277045 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15571 ePHD 277046 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15572 PHD_BRPF 277047 cd15492 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15573 PHD_JADE 277048 cd15492 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15574 PHD_AF10_AF17 277049 cd15492 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15575 PHD_JMJD2A 277050 cd15493 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15576 PHD_JMJD2B 277051 cd15493 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15577 PHD_JMJD2C 277052 cd15493 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15578 PHD1_MTF2 277053 cd15499 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15579 PHD1_PHF19 277054 cd15499 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15580 PHD2_MTF2 277055 cd15503 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15581 PHD2_PHF19 277056 cd15503 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15582 PHD2_PHF1 277057 cd15503 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15583 PHD_ash2p_like 277058 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15584 PHD_ING1_2 277059 cd15505 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15585 PHD_ING3 277060 cd15505 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15586 PHD_ING4_5 277061 cd15505 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15587 PHD_Yng1p_like 277062 cd15505 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15588 PHD1_KMT2A 277063 cd15506 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15589 PHD1_KMT2B 277064 cd15506 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15590 PHD2_KMT2A 277065 cd15507 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15591 PHD2_KMT2B 277066 cd15507 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15592 PHD3_KMT2A 277067 cd15508 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15593 PHD3_KMT2B 277068 cd15508 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15594 PHD2_KMT2C 277069 cd15510 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15595 PHD2_KMT2D 277070 cd15510 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15596 PHD4_KMT2C 277071 cd15512 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15597 PHD3_KMT2D 277072 cd15512 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15600 PHD6_KMT2C 277073 cd15514 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15601 PHD5_KMT2D 277074 cd15514 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15602 PHD1_KDM5A 277075 cd15515 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15603 PHD1_KDM5B 277076 cd15515 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15604 PHD1_KDM5C_5D 277077 cd15515 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15605 PHD1_Lid_like 277078 cd15515 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15606 PHD2_KDM5A 277079 cd15516 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15607 PHD2_KDM5B 277080 cd15516 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15608 PHD2_KDM5C_5D 277081 cd15516 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15609 PHD_TCF19 277082 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15610 PHD3_KDM5A_... 277083 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15612 PHD_OBE1_like 277084 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15613 PHD_AL_plant 277085 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15614 PHD_HAC_like 277086 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15615 PHD_ARID4_like 277087 cd15517 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15616 PHD_UHRF1 277088 cd15525 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15617 PHD_UHRF2 277089 cd15525 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15618 PHD1_MOZ_MORF 277090 cd15526 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15619 PHD1_d4 277091 cd15526 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15622 PHD_TIF1alpha 277092 cd15541 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15623 PHD_TIF1beta 277093 cd15541 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15624 PHD_TIF1gamma 277094 cd15541 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15625 PHD_TIF1delta 277095 cd15541 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15626 PHD_SP110_140 277096 cd15541 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15627 PHD_BAZ1A 277097 cd15544 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15628 PHD_BAZ1B 277098 cd15544 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15629 PHD_BAZ2A 277099 cd15545 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15630 PHD_BAZ2B 277100 cd15545 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15631 PHD_PHF23 277101 cd15546 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15632 PHD_PHF13 277102 cd15546 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15633 PHD_PHF20L1 277103 cd15549 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15634 PHD_PHF20 277104 cd15549 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15635 PHD_PYGO1 277105 cd15551 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15636 PHD_PYGO2 277106 cd15551 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15637 PHD_dPYGO 277107 cd15551 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15638 PHD_PHF3 277108 cd15552 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15639 PHD_DIDO1_like 277109 cd15552 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15640 PHD_KDM7 277110 cd15554 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15641 PHD_PHF2 277111 cd15554 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15642 PHD_PHF8 277112 cd15554 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15643 PHD_KDM2A 277113 cd15555 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15644 PHD_KDM2B 277114 cd15555 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15645 PHD_FXL19 277115 cd15555 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15646 PHD_p300 277116 cd15557 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15647 PHD_CBP 277117 cd15557 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15648 PHD1_NSD1_2 277118 cd15564 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15649 PHD1_NSD3 277119 cd15564 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15650 PHD2_NSD1 277120 cd15565 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15651 PHD2_NSD2 277121 cd15565 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15652 PHD2_NSD3 277122 cd15565 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15653 PHD3_NSD1 277123 cd15566 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15654 PHD3_NSD2 277124 cd15566 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15655 PHD3_NSD3 277125 cd15566 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15656 PHD4_NSD1 277126 cd15567 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15657 PHD4_NSD2 277127 cd15567 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15658 PHD4_NSD3 277128 cd15567 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15659 PHD5_NSD1 277129 cd15568 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15660 PHD5_NSD2 277130 cd15568 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15661 PHD5_NSD3 277131 cd15568 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15662 ePHD_ATX1_2... 277132 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15663 ePHD_ATX3_4... 277133 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15664 ePHD_KMT2A_... 277134 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15665 ePHD1_KMT2C... 277135 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15666 ePHD2_KMT2C... 277136 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15667 ePHD_Snt2p_... 277137 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15668 ePHD_RAI1_like 277138 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15669 ePHD_PHF7_G... 277139 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15670 ePHD_BRPF 277140 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15671 ePHD_JADE 277141 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15672 ePHD_AF10_like 277142 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15673 ePHD_PHF6_like 277143 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15674 ePHD_PHF14 277144 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15675 ePHD_JMJD2 277145 cd15571 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15676 PHD_BRPF1 277146 cd15572 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15677 PHD_BRPF2 277147 cd15572 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15678 PHD_BRPF3 277148 cd15572 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15679 PHD_JADE1 277149 cd15573 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15680 PHD_JADE2 277150 cd15573 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15681 PHD_JADE3 277151 cd15573 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15682 PHD_ING1 277152 cd15584 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15683 PHD_ING2 277153 cd15584 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15684 PHD_ING4 277154 cd15586 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15685 PHD_ING5 277155 cd15586 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15686 PHD3_KDM5A 277156 cd15610 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15687 PHD3_KDM5B 277157 cd15610 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15688 PHD1_MOZ 277158 cd15618 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15689 PHD1_MORF 277159 cd15618 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15690 PHD1_DPF1 277160 cd15619 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15691 PHD1_DPF2_like 277161 cd15619 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15692 PHD1_DPF3 277162 cd15619 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15693 ePHD_KMT2A 277163 cd15664 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15694 ePHD_KMT2B 277164 cd15664 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15695 ePHD1_KMT2D 277165 cd15665 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15696 ePHD1_KMT2C 277166 cd15665 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15697 ePHD2_KMT2C 277167 cd15666 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15698 ePHD2_KMT2D 277168 cd15666 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15699 ePHD_TCF20 277169 cd15668 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15700 ePHD_RAI1 277170 cd15668 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15701 ePHD_BRPF1 277171 cd15670 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15702 ePHD_BRPF2 277172 cd15670 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15703 ePHD_BRPF3 277173 cd15670 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15704 ePHD_JADE1 277174 cd15671 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15705 ePHD_JADE2 277175 cd15671 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15706 ePHD_JADE3 277176 cd15671 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15707 ePHD_RNO 277177 cd15671 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15708 ePHD_AF10 277178 cd15672 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15709 ePHD_AF17 277179 cd15672 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15710 ePHD1_PHF6 277180 cd15673 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15711 ePHD2_PHF6 277181 cd15673 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15712 ePHD_PHF11 277182 cd15673 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15713 ePHD_JMJD2A 277183 cd15675 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15714 ePHD_JMJD2B 277184 cd15675 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15715 ePHD_JMJD2C 277185 cd15675 cd15489 1 1 1 0 03/27/15 16:09:00 -cd15716 FYVE_RBNS5 277256 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15717 FYVE_PKHF 277257 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15718 FYVE_WDFY1_... 277258 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15719 FYVE_WDFY3 277259 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15720 FYVE_Hrs 277260 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15721 FYVE_RUFY1_... 277261 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15723 FYVE_protrudin 277262 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15724 FYVE_ZFY26 277263 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15725 FYVE_PIKfyv... 277264 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15726 FYVE_FYCO1 277265 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15727 FYVE_ZF21 277266 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15728 FYVE_ANFY1 277267 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15729 FYVE_endofin 277268 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15730 FYVE_EEA1 277269 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15731 FYVE_LST2 277270 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15732 FYVE_MTMR3 277271 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15733 FYVE_MTMR4 277272 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15734 FYVE_ZFYV1 277273 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15735 FYVE_spVPS2... 277274 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15736 FYVE_scVPS2... 277275 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15737 FYVE2_Vac1p... 277276 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15738 FYVE_MTMR_u... 277277 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15739 FYVE_RABE_u... 277278 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15740 FYVE_FGD3 277279 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15741 FYVE_FGD1_2_4 277280 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15742 FYVE_FGD5 277281 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15743 FYVE_FGD6 277282 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15744 FYVE_RUFY3 277283 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15745 FYVE_RUFY4 277284 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15746 FYVE_RP3A_like 277285 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15747 FYVE_Slp3_4_5 277286 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15748 FYVE_SPIR 277287 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15749 FYVE_ZFY19 277288 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15750 FYVE_CARP 277289 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15751 FYVE_BSN_PCLO 277290 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15752 FYVE_SlaC2-a 277291 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15753 FYVE_SlaC2-c 277292 cd00065 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15754 FYVE_PKHF1 277293 cd15717 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15755 FYVE_PKHF2 277294 cd15717 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15756 FYVE_WDFY1 277295 cd15718 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15757 FYVE_WDFY2 277296 cd15718 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15758 FYVE_RUFY1 277297 cd15721 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15759 FYVE_RUFY2 277298 cd15721 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15760 FYVE_scVPS2... 277299 cd15736 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15761 FYVE1_Vac1p... 277300 cd15736 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15762 FYVE_RP3A 277301 cd15746 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15763 FYVE_RPH3L 277302 cd15746 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15764 FYVE_Slp4 277303 cd15747 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15765 FYVE_Slp3 277304 cd15747 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15766 FYVE_Slp5 277305 cd15747 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15767 FYVE_SPIR1 277306 cd15748 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15768 FYVE_SPIR2 277307 cd15748 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15769 FYVE_CARP1 277308 cd15750 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15770 FYVE_CARP2 277309 cd15750 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15771 FYVE1_BSN_PCLO 277310 cd15751 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15772 FYVE2_BSN_PCLO 277311 cd15751 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15773 FYVE1_BSN 277312 cd15771 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15774 FYVE1_PCLO 277313 cd15771 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15775 FYVE2_BSN 277314 cd15772 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15776 FYVE2_PCLO 277315 cd15772 cd00065 1 1 1 0 03/27/15 16:15:00 -cd15777 CRBN_C_like 276940 cd15803 cd15803 1 1 1 0 01/26/15 10:01:00 -cd15778 Lreu_0056_like 275446 N/A cd15778 1 1 1 0 10/23/14 14:22:00 -cd15783 SA1633_like 294014 N/A cd15783 1 1 1 0 11/06/15 13:22:00 -cd15784 PH_RUTBC 275431 cd00900 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15785 YycH_N_like 276946 N/A cd15785 1 1 1 0 01/26/15 10:01:00 -cd15786 CPF_1278_like 276947 cd15785 cd15785 1 1 1 0 01/26/15 10:01:00 -cd15787 YycH_N 276948 cd15785 cd15785 1 1 1 0 01/26/15 10:01:00 -cd15788 Clospo_0161... 276949 cd15785 cd15785 1 1 1 0 01/26/15 10:01:00 -cd15789 PH_ARHGEF2_... 275432 cd13329 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15790 PH-GRAM_MTMR11 275433 cd13212 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15791 PH1_FDG4 275434 cd13388 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15792 PH1_FGD5 275435 cd13389 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15793 PH1_FGD6 275436 cd13389 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15794 PH_ARHGEF18 275437 cd15789 cd00900 1 1 1 0 10/22/14 09:43:00 -cd15795 PMEI-Pla_a_... 275439 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15796 CIF_like 275440 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15797 PMEI 275441 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15798 PMEI-like_3 275442 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15799 PMEI-like_4 275443 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15800 PMEI-like_2 275444 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15801 PMEI-like_1 275445 cd14859 cd14859 1 1 1 0 10/22/14 15:49:00 -cd15802 RING_CBP-p300 276805 N/A cd15802 1 1 1 0 01/26/15 09:48:00 -cd15803 RLR_C_like 276941 N/A cd15803 1 1 1 0 01/26/15 10:01:00 -cd15804 RLR_C 276942 cd15803 cd15803 1 1 1 0 01/26/15 10:01:00 -cd15805 RIG-I_C 276943 cd15804 cd15803 1 1 1 0 01/26/15 10:01:00 -cd15806 LGP2_C 276944 cd15804 cd15803 1 1 1 0 01/26/15 10:01:00 -cd15807 MDA5_C 276945 cd15804 cd15803 1 1 1 0 01/26/15 10:01:00 -cd15808 SPRY_PRY_TR... 293980 cd12891 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15809 SPRY_PRY_TRIM4 293981 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15810 SPRY_PRY_TR... 293982 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15811 SPRY_PRY_TR... 293983 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15812 SPRY_PRY_TR... 293984 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15813 SPRY_PRY_TR... 293985 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15814 SPRY_PRY_TR... 293986 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15815 SPRY_PRY_TR... 293987 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15816 SPRY_PRY_TR... 293988 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15817 SPRY_PRY_TR... 293989 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15818 SPRY_PRY_TR... 293990 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15819 SPRY_PRY_BT... 293991 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15820 SPRY_PRY_BTN3 293992 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15821 SPRY_PRY_RFPL 293993 cd13733 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15822 SPRY_PRY_TRIM5 293994 cd15810 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15823 SPRY_PRY_TRIM6 293995 cd15810 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15824 SPRY_PRY_TR... 293996 cd15810 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15825 SPRY_PRY_TR... 293997 cd15810 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15826 SPRY_PRY_TR... 293998 cd12888 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15827 SPRY_PRY_TR... 293999 cd12888 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15828 SPRY_PRY_TR... 294000 cd15817 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15829 SPRY_PRY_TR... 294001 cd15817 cd11709 1 1 1 0 11/06/15 13:20:00 -cd15830 BamD 276939 N/A cd15830 1 1 1 0 01/26/15 10:00:00 -cd15831 BTAD 276938 N/A cd15831 1 1 1 0 01/26/15 10:00:00 -cd15832 SNAP 276937 N/A cd15832 1 1 1 0 01/26/15 10:00:00 -cd15834 TNFRSF1A_te... 276930 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15835 TNFRSF1B_te... 276931 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15836 TNFRSF11A_t... 276932 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15837 TNFRSF26 276933 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15838 TNFRSF27 276934 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15839 TNFRSF_viral 276935 cd00185 cd00185 1 1 1 0 11/06/15 13:17:00 -cd15840 SNARE_Qa 277193 cd00193 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15841 SNARE_Qc 277194 cd00193 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15842 SNARE_Qb 277195 cd00193 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15843 R-SNARE 277196 cd00193 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15844 SNARE_synta... 277197 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15845 SNARE_synta... 277198 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15846 SNARE_synta... 277199 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15847 SNARE_synta... 277200 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15848 SNARE_synta... 277201 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15849 SNARE_Sso1 277202 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15850 SNARE_synta... 277203 cd15840 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15851 SNARE_Synta... 277204 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15852 SNARE_Synta... 277205 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15853 SNARE_Bet1 277206 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15854 SNARE_SNAP47C 277207 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15855 SNARE_SNAP2... 277208 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15856 SNARE_SNAP29C 277209 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15857 SNARE_SEC9C 277210 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15858 SNARE_VAM7 277211 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15859 SNARE_SYN8 277212 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15860 SNARE_USE1 277213 cd15841 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15861 SNARE_SNAP2... 277214 cd15842 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15862 SNARE_Vti1 277215 cd15842 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15863 SNARE_GS27 277216 cd15842 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15864 SNARE_GS28 277217 cd15842 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15865 SNARE_SEC20 277218 cd15842 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15866 R-SNARE_SEC22 277219 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15867 R-SNARE_YKT6 277220 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15868 R-SNARE_VAMP8 277221 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15869 R-SNARE_VAMP4 277222 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15870 R-SNARE_VAMP2 277223 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15871 R-SNARE_VAMP7 277224 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15872 R-SNARE_VAMP5 277225 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15873 R-SNARE_STX... 277226 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15874 R-SNARE_Snc1 277227 cd15843 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15875 SNARE_synta... 277228 cd15847 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15876 SNARE_synta... 277229 cd15847 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15877 SNARE_TSNARE1 277230 cd15847 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15878 SNARE_synta... 277231 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15879 SNARE_synta... 277232 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15880 SNARE_synta... 277233 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15881 SNARE_synta... 277234 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15882 SNARE_synta... 277235 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15883 SNARE_synta... 277236 cd15848 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15884 SNARE_SNAP23C 277237 cd15855 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15885 SNARE_SNAP25C 277238 cd15855 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15886 SNARE_SEC9N 277239 cd15861 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15887 SNARE_SNAP29N 277240 cd15861 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15888 SNARE_SNAP47N 277241 cd15861 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15889 SNARE_SNAP2... 277242 cd15861 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15890 SNARE_Vti1b 277243 cd15862 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15891 SNARE_Vti1a 277244 cd15862 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15892 R-SNARE_STXBP6 277245 cd15873 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15893 R-SNARE_STXBP5 277246 cd15873 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15894 SNARE_SNAP25N 277247 cd15889 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15895 SNARE_SNAP23N 277248 cd15889 cd00193 1 1 1 0 03/27/15 16:13:00 -cd15896 MYSc_Myh19 276899 cd01377 cd01363 1 1 1 0 02/05/15 10:55:00 -cd15897 EFh_PEF 320054 N/A cd15897 1 1 1 0 08/18/16 16:59:00 -cd15898 EFh_PI-PLC 320029 N/A cd15898 1 1 1 0 08/18/16 16:57:00 -cd15899 EFh_CREC 320021 N/A cd15899 1 1 1 0 08/18/16 16:57:00 -cd15900 EFh_MICU 320080 N/A cd15900 1 1 1 0 08/18/16 17:00:00 -cd15901 EFh_DMD_DYT... 319999 N/A cd15901 1 1 1 0 08/18/16 16:54:00 -cd15902 EFh_HEF 320075 N/A cd15902 1 1 1 0 08/18/16 17:00:00 -cd15903 Dicer_PBD 277191 cd12088 cd12088 1 1 1 0 03/27/15 16:12:00 -cd15904 TSPO_MBR 320706 N/A cd15904 1 1 1 0 08/18/16 17:15:00 -cd15905 7tmA_GPBAR1 320571 cd00637 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15906 7tmA_GPR162 320572 cd14998 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15907 7tmA_GPR153 320573 cd14998 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15908 7tm_TAS2R40... 320574 cd13950 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15909 7tmF_FZD4_9... 320575 cd13951 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15910 7tmF_FZD3_F... 320576 cd13951 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15911 7tmA_OR11A-... 320577 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15912 7tmA_OR6C-like 320578 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15913 7tmA_OR11G-... 320579 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15914 7tmA_OR6N-like 320580 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15915 7tmA_OR12D-... 320581 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15916 7tmA_OR10G-... 320582 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15917 7tmA_OR51_5... 341351 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15918 7tmA_OR1_7-... 320584 cd13954 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15919 7tmA_GPR139 320585 cd14978 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15920 7tmA_GPR34-... 320586 cd14982 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15921 7tmA_CysLTR 320587 cd14982 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15922 7tmA_P2Y-like 320588 cd14982 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15923 7tmA_GPR35_... 320589 cd14982 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15924 7tmA_P2Y12-... 341352 cd14982 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15925 7tmA_RNL3R2 320591 cd14976 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15926 7tmA_RNL3R1 320592 cd14976 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15927 7tmA_Bombes... 320593 cd14977 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15928 7tmA_GHSR-like 320594 cd14979 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15929 7tmB1_Gluca... 341353 cd15041 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15930 7tmB1_Secre... 320596 cd15041 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15931 7tmB2_EMR_A... 320597 cd15040 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15932 7tmB2_GPR11... 320598 cd15040 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15933 7tmB2_GPR13... 320599 cd15040 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15934 7tmC_mGluRs... 320600 cd15045 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15935 7tmA_OR4Q3-... 320601 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15936 7tmA_OR4D-like 320602 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15937 7tmA_OR4N-like 320603 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15938 7tmA_OR4Q2-... 320604 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15939 7tmA_OR4A-like 320605 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15940 7tmA_OR4E-like 320606 cd15226 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15941 7tmA_OR10S1... 320607 cd15916 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15942 7tmA_OR10G6... 320608 cd15916 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15943 7tmA_OR5AP2... 320609 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15944 7tmA_OR5AR1... 320610 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15945 7tmA_OR5C1-... 320611 cd15230 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15946 7tmA_OR1330... 320612 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15947 7tmA_OR2B-like 320613 cd15237 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15948 7tmA_OR52K-... 320614 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15949 7tmA_OR52M-... 320615 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15950 7tmA_OR52I-... 320616 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15951 7tmA_OR52R_... 320617 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15952 7tmA_OR52E-... 320618 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15953 7tmA_OR52P-... 341354 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15954 7tmA_OR52N-... 320620 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15955 7tmA_OR52A-... 320621 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15956 7tmA_OR52W-... 320622 cd15917 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15957 7tmA_Beta2_AR 341355 cd15058 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15958 7tmA_Beta1_AR 320624 cd15058 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15959 7tmA_Beta3_AR 320625 cd15058 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15960 7tmA_GPR185... 320626 cd15100 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15961 7tmA_GPR12 320627 cd15100 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15962 7tmA_GPR6 320628 cd15100 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15963 7tmA_GPR3 320629 cd15100 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15964 7tmA_TSH-R 320630 cd15136 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15965 7tmA_RXFP1_... 320631 cd15137 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15966 7tmA_RXFP2_... 320632 cd15137 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15967 7tmA_P2Y1-like 320633 cd15168 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15968 7tmA_P2Y6_P... 320634 cd15168 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15969 7tmA_GPR87 320635 cd15924 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15970 7tmA_SSTR1 320636 cd15093 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15971 7tmA_SSTR2 320637 cd15093 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15972 7tmA_SSTR3 320638 cd15093 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15973 7tmA_SSTR4 320639 cd15093 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15974 7tmA_SSTR5 320640 cd15093 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15975 7tmA_ET-AR 320641 cd15128 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15976 7tmA_ET-BR 320642 cd15128 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15977 7tmA_ET-CR 320643 cd15128 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15978 7tmA_CCK-AR 320644 cd15206 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15979 7tmA_CCK-BR 320645 cd15206 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15980 7tmA_NPFFR2 320646 cd15207 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15981 7tmA_NPFFR1 320647 cd15207 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15982 7tmB1_PTH2R 320648 cd15265 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15983 7tmB1_PTH3R 320649 cd15265 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15984 7tmB1_PTH1R 320650 cd15265 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15985 7tmB1_Gluca... 320651 cd15929 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15986 7tmB1_VIP-R2 320652 cd15930 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15987 7tmB1_PACAP-R1 320653 cd15930 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15988 7tmB2_BAI2 320654 cd15251 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15989 7tmB2_BAI3 320655 cd15251 cd14964 1 1 1 0 07/26/17 17:25:00 -cd15990 7tmB2_BAI1 320656 cd15251 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15991 7tmB2_CELSR1 320657 cd15441 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15992 7tmB2_CELSR2 320658 cd15441 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15993 7tmB2_CELSR3 320659 cd15441 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15994 7tmB2_GPR11... 320660 cd15932 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15995 7tmB2_GPR56 320661 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15996 7tmB2_GPR126 320662 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15997 7tmB2_GPR112 320663 cd15258 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15998 7tmB2_GPR124 320664 cd15259 cd14964 2 1 0 0 07/26/17 17:25:00 -cd15999 7tmB2_GPR125 320665 cd15259 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16000 7tmB2_GPR123 320666 cd15259 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16001 7tmA_P2Y3-like 320667 cd15968 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16002 7tmA_NK1R 320668 cd15390 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16003 7tmA_NKR_NK3R 320669 cd15390 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16004 7tmA_SKR_NK2R 320670 cd15390 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16005 7tmB2_Latro... 320671 cd15436 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16006 7tmB2_Latro... 320672 cd15436 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16007 7tmB2_Latro... 320673 cd15436 cd14964 2 1 0 0 07/26/17 17:25:00 -cd16009 PPM 293733 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16010 iPGM 293734 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16011 iPGM_like 293735 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16012 ALP 293736 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16013 AcpA 293737 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16014 PLC 293738 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16015 LTA_synthase 293739 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16016 AP-SPAP 293740 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16017 LptA 293741 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16018 Enpp 293742 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16019 GPI_EPT 293743 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16020 GPI_EPT_1 293744 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16021 ALP_like 293745 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16022 sulfatase_like 293746 cd00016 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16023 GPI_EPT_3 293747 cd16019 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16024 GPI_EPT_2 293748 cd16019 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16025 PAS_like 293749 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16026 GALNS_like 293750 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16027 SGSH 293751 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16028 PMH 293752 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16029 4-S 293753 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16030 iduronate-2... 293754 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16031 G6S_like 293755 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16032 choline-sul... 293756 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16033 sulfatase_like 293757 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16034 sulfatase_like 293758 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16035 sulfatase_like 293759 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16037 sulfatase_like 293760 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16039 PHD_SPP1 277186 cd15489 cd15489 1 1 1 0 03/27/15 16:09:00 -cd16040 SPRY_PRY_SNTX 294002 cd12891 cd11709 1 1 1 0 11/06/15 13:20:00 -cd16074 OCRE 293880 N/A cd16074 1 1 1 0 11/06/15 13:14:00 -cd16075 ORC6_CTD 293922 N/A cd16075 1 1 1 0 11/06/15 13:16:00 -cd16076 TSPcc 293923 N/A cd16076 1 1 1 0 11/06/15 13:17:00 -cd16077 TSP-5cc 293924 cd16076 cd16076 1 1 1 0 11/06/15 13:17:00 -cd16079 TSP-3cc 293925 cd16076 cd16076 1 1 1 0 11/06/15 13:17:00 -cd16080 TSP-4cc 293926 cd16076 cd16076 1 1 1 0 11/06/15 13:17:00 -cd16081 TSPcc_insect 293927 cd16076 cd16076 1 1 1 0 11/06/15 13:17:00 -cd16082 IgC_CRIg 319331 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16083 IgC_CD80 319332 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16084 IgC_CH2_IgD 319333 cd00098 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16085 IgC_SIRP_do... 319334 cd00098 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16086 IgV_CD80 319335 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16087 IgV_CD86 319336 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16088 IgV_PD1 319337 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16089 IgV_CRIg 319338 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16090 IgV_CD47 319339 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16091 Ig_HHLA2 319340 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16092 IgC_CH1_IgD 319341 cd00098 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16093 IgC_CH2_Mu 319342 cd00098 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16094 IgC_CH3_IgD 319343 cd00098 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16095 IgV_H_TCR_mu 319344 cd00099 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16096 IgV_CD79b_beta 319345 cd00099 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16097 IgV_SIRP 319346 cd00099 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16098 FliS 294015 N/A cd16098 1 1 1 0 11/06/15 13:22:00 -cd16100 ARID 350627 N/A cd16100 1 1 0 0 07/11/18 18:00:00 -cd16101 ING 341089 N/A cd16101 1 1 0 0 06/09/17 14:33:00 -cd16102 RAWUL_PCGF_... 340519 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16103 Ubl2_OASL 340520 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16104 Ubl_USP14_like 340521 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16105 Ubl_ASPSCR1... 340522 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16106 Ubl_Dsk2p_like 340523 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16107 Ubl_AtUPL5_... 340524 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16108 Ubl_ATG8_like 340525 cd01611 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16109 DCX1 340526 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16110 DCX1_RP_like 340527 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16111 DCX_DCLK3 340528 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16112 DCX1_DCX 340529 cd16109 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16113 DCX2_DCDC2_... 340530 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16114 Ubl_SUMO1 340531 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16115 Ubl_SUMO2_3_4 340532 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16116 Ubl_Smt3_like 340533 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16117 UBX_UBXN4 340534 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16118 UBX2_UBXN9 340535 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16119 UBX_UBXN6 340536 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16120 UBX_UBXN3B 340537 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16121 FERM_F1_SNX17 340538 cd17109 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16122 FERM_F1_SNX31 340539 cd17109 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16123 RA_RASSF7_like 340540 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16124 RA_GRB7_10_14 340541 cd17112 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16125 RA_ASPP1_2 340542 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16126 Ubl_HR23B 340543 cd01805 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16127 Ubl_ATG8_GA... 340544 cd16108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16128 Ubl_ATG8 340545 cd16108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16129 Ubl_ATG8_MA... 340546 cd16108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16130 RA_Rin3 340547 cd01776 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16131 RA_Rin2 340548 cd01776 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16132 RA_RASSF10 340549 cd16123 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16133 RA_RASSF9 340550 cd16123 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16134 RA_RASSF8 340551 cd16123 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16135 RA_RASSF7 340552 cd16123 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16136 RA_MRL_Lpd 340553 cd01787 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16137 RA_MRL_RIAM 340554 cd01787 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16138 RA_MRL_MIG10 340555 cd01787 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16139 RA_GRB14 340556 cd16124 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16140 RA_GRB7 340557 cd16124 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16141 RA_GRB10 340558 cd16124 cd00196 1 1 0 0 06/09/17 14:31:00 -cd16142 ARS_like 293761 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16143 ARS_like 293762 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16144 ARS_like 293763 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16145 ARS_like 293764 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16146 ARS_like 293765 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16147 G6S 293766 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16148 sulfatase_like 293767 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16149 sulfatase_like 293768 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16150 sulfatase_like 293769 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16151 sulfatase_like 293770 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16152 sulfatase_like 293771 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16153 sulfatase_like 293772 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16154 sulfatase_like 293773 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16155 sulfatase_like 293774 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16156 sulfatase_like 293775 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16157 GALNS 293776 cd16026 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16158 ARSA 293777 cd16026 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16159 ES 293778 cd16026 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16160 spARS_like 293779 cd16026 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16161 ARSG 293780 cd16026 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16162 OCRE_RBM5_like 293881 cd16074 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16163 OCRE_RBM6 293882 cd16074 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16164 OCRE_VG5Q 293883 cd16074 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16165 OCRE_ZOP1_p... 293884 cd16074 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16166 OCRE_SUA_like 293885 cd16074 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16167 OCRE_RBM10 293886 cd16162 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16168 OCRE_RBM5 293887 cd16162 cd16074 1 1 1 0 11/06/15 13:14:00 -cd16169 Tau138_eWH 320085 N/A cd16169 1 1 1 0 08/18/16 17:01:00 -cd16170 MvaT_DBD 320084 N/A cd16170 1 1 1 0 08/18/16 17:00:00 -cd16171 ARSK 293781 cd16022 cd00016 1 1 1 0 11/06/15 11:54:00 -cd16172 TorS_sensor... 293930 N/A cd16172 1 1 1 0 11/06/15 13:19:00 -cd16173 EFh_MICU1 320081 cd15900 cd15900 1 1 1 0 08/18/16 17:00:00 -cd16174 EFh_MICU2 320082 cd15900 cd15900 1 1 1 0 08/18/16 17:00:00 -cd16175 EFh_MICU3 320083 cd15900 cd15900 1 1 1 0 08/18/16 17:00:00 -cd16176 EFh_HEF_CB 320076 cd15902 cd15902 1 1 1 0 08/18/16 17:00:00 -cd16177 EFh_HEF_CR 320077 cd15902 cd15902 1 1 1 0 08/18/16 17:00:00 -cd16178 EFh_HEF_SCGN 320078 cd15902 cd15902 1 1 1 0 08/18/16 17:00:00 -cd16179 EFh_HEF_CBN 320079 cd15902 cd15902 1 1 1 0 08/18/16 17:00:00 -cd16180 EFh_PEF_Gro... 320055 cd15897 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16181 EFh_PEF_Gro... 320056 cd15897 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16182 EFh_PEF_Gro... 320057 cd15897 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16183 EFh_PEF_ALG-2 320058 cd16180 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16184 EFh_PEF_peflin 320059 cd16180 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16185 EFh_PEF_ALG... 320060 cd16180 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16186 EFh_PEF_gra... 320061 cd16181 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16187 EFh_PEF_sorcin 320062 cd16181 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16188 EFh_PEF_CPN... 320063 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16189 EFh_PEF_CAP... 320064 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16190 EFh_PEF_CAPN3 320065 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16191 EFh_PEF_CAPN8 320066 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16192 EFh_PEF_CAPN9 320067 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16193 EFh_PEF_CAPN11 320068 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16194 EFh_PEF_CAPN12 320069 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16195 EFh_PEF_CAP... 320070 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16196 EFh_PEF_Cal... 320071 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16197 EFh_PEF_CalpC 320072 cd16182 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16198 EFh_PEF_CAPN1 320073 cd16189 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16199 EFh_PEF_CAPN2 320074 cd16189 cd15897 1 1 1 0 08/18/16 16:59:00 -cd16200 EFh_PI-PLCbeta 320030 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16201 EFh_PI-PLCg... 320031 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16202 EFh_PI-PLCd... 320032 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16203 EFh_PI-PLCe... 320033 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16204 EFh_PI-PLCzeta 320034 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16205 EFh_PI-PLCeta 320035 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16206 EFh_PRIP 320036 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16207 EFh_ScPlc1p... 320037 cd15898 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16208 EFh_PI-PLCb... 320038 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16209 EFh_PI-PLCb... 320039 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16210 EFh_PI-PLCb... 320040 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16211 EFh_PI-PLCb... 320041 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16212 EFh_NorpA_like 320042 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16213 EFh_PI-PLC21 320043 cd16200 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16214 EFh_PI-PLCg... 320044 cd16201 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16215 EFh_PI-PLCg... 320045 cd16201 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16216 EFh_PI-PLCg... 320046 cd16201 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16217 EFh_PI-PLCd... 320047 cd16202 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16218 EFh_PI-PLCd... 320048 cd16202 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16219 EFh_PI-PLCd... 320049 cd16202 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16220 EFh_PI-PLCeta1 320050 cd16205 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16221 EFh_PI-PLCeta2 320051 cd16205 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16222 EFh_PRIP1 320052 cd16206 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16223 EFh_PRIP2 320053 cd16206 cd15898 1 1 1 0 08/18/16 16:57:00 -cd16224 EFh_CREC_RCN2 320022 cd15899 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16225 EFh_CREC_cab45 320023 cd15899 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16226 EFh_CREC_Ca... 320024 cd15899 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16227 EFh_CREC_RC... 320025 cd15899 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16228 EFh_CREC_Ca... 320026 cd16226 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16229 EFh_CREC_RCN1 320027 cd16226 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16230 EFh_CREC_RCN3 320028 cd16226 cd15899 1 1 1 0 08/18/16 16:57:00 -cd16231 EFh_SPARC_like 320010 cd00252 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16232 EFh_SPARC_TICN 320011 cd00252 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16233 EFh_SPARC_F... 320012 cd00252 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16234 EFh_SPARC_SMOC 320013 cd00252 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16235 EFh_SPARC_S... 320014 cd16231 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16236 EFh_SPARC_S... 320015 cd16231 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16237 EFh_SPARC_T... 320016 cd16232 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16238 EFh_SPARC_T... 320017 cd16232 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16239 EFh_SPARC_T... 320018 cd16232 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16240 EFh_SPARC_S... 320019 cd16234 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16241 EFh_SPARC_S... 320020 cd16234 cd00252 1 1 1 0 08/18/16 16:55:00 -cd16242 EFh_DMD_like 320000 cd15901 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16243 EFh_DYTN 320001 cd15901 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16244 EFh_DTN 320002 cd15901 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16245 EFh_DAH 320003 cd15901 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16246 EFh_DMD 320004 cd16242 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16247 EFh_UTRO 320005 cd16242 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16248 EFh_DRP-2 320006 cd16242 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16249 EFh_DTNA 320007 cd16244 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16250 EFh_DTNB 320008 cd16244 cd15901 1 1 1 0 08/18/16 16:54:00 -cd16251 EFh_parvalb... 319994 N/A cd16251 1 1 1 0 08/18/16 16:53:00 -cd16252 EFh_calglan... 319995 cd16251 cd16251 1 1 1 0 08/18/16 16:53:00 -cd16253 EFh_parvalb... 319996 cd16251 cd16251 1 1 1 0 08/18/16 16:53:00 -cd16254 EFh_parvalb... 319997 cd16253 cd16251 1 1 1 0 08/18/16 16:53:00 -cd16255 EFh_parvalb... 319998 cd16253 cd16251 1 1 1 0 08/18/16 16:53:00 -cd16256 LumP 293929 cd00402 cd00402 1 1 1 0 11/06/15 13:18:00 -cd16257 EFG_III-like 293914 N/A cd16257 1 1 1 0 11/06/15 13:16:00 -cd16258 Tet_III 293915 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16259 RF3_III 293916 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16260 EF4_III 293917 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16261 EF2_snRNP_III 293918 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16262 EFG_III 293919 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16263 BipA_III 293920 cd16257 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16264 snRNP_III 293921 cd16261 cd16257 1 1 1 0 11/06/15 13:16:00 -cd16265 Translation... 293910 cd01342 cd01342 1 1 1 0 11/06/15 13:15:00 -cd16266 IF2_aeIF5B_IV 293911 cd01342 cd01342 1 1 1 0 11/06/15 13:15:00 -cd16267 HBS1-like_II 293912 cd03698 cd01342 1 1 1 0 11/06/15 13:15:00 -cd16268 EF2_II 293913 cd03700 cd01342 1 1 1 0 11/06/15 13:15:00 -cd16269 GBP_C 293879 N/A cd16269 1 1 1 0 11/06/15 13:14:00 -cd16270 Apc5_N 293878 N/A cd16270 1 1 1 0 11/06/15 13:14:00 -cd16272 RNaseZ_MBL-... 293830 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16273 SNM1A-1C-li... 293831 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16274 PQQB-like_M... 293832 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16275 BaeB-like_M... 293833 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16276 metallo-hyd... 293834 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16277 metallo-hyd... 293835 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16278 metallo-hyd... 293836 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16279 metallo-hyd... 293837 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16280 metallo-hyd... 293838 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16281 metallo-hyd... 293839 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16282 metallo-hyd... 293840 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16283 RomA-like_M... 293841 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16284 UlaG-like_M... 293842 cd06262 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16285 MBL-B1 293843 cd07707 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16286 SPM-1-like_... 293844 cd07707 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16287 CphS_ImiS-l... 293845 cd07707 cd06262 2 1 1 0 08/18/16 16:51:00 -cd16288 BJP-1_FEZ-1... 293846 cd07708 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16289 L1_POM-1-li... 293847 cd07708 cd06262 2 1 1 0 08/18/16 16:51:00 -cd16290 AIM-1_SMB-1... 293848 cd07708 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16291 INTS11-like... 293849 cd07734 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16292 CPSF3-like_... 293850 cd07734 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16293 CPSF2-like_... 293851 cd07734 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16294 Int9-like_M... 293852 cd07734 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16295 TTHA0252-CP... 293853 cd07734 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16296 RNaseZ_ELAC... 293854 cd16272 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16297 artemis-SNM... 293855 cd16273 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16298 SNM1A-like_... 293856 cd16273 cd06262 1 1 1 0 08/18/16 16:51:00 -cd16299 IND_BlaB-li... 293857 cd16285 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16300 NDM_FIM-lik... 293858 cd16285 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16301 IMP_DIM-lik... 293859 cd16285 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16302 CcrA-like_M... 293860 cd16285 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16303 VIM_type_MB... 293861 cd16285 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16304 BcII-like_M... 293862 cd16285 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16305 Sfh-1-like_... 293863 cd16287 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16306 CphA_ImiS-l... 293864 cd16287 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16307 FEZ-1-like_... 293865 cd16288 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16308 GOB1-like_M... 293866 cd16288 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16309 BJP-1-like_... 293867 cd16288 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16310 Mbl1b-like_... 293868 cd16288 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16311 THIN-B2-lik... 293869 cd16290 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16312 THIN-B-like... 293870 cd16290 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16313 SMB-1-like_... 293871 cd16290 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16314 AIM-1-like_... 293872 cd16290 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16315 EVM-1-like_... 293873 cd16290 cd06262 2 1 1 0 08/18/16 16:52:00 -cd16316 BlaB-like_M... 293874 cd16299 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16317 IND_MBL-B1 293875 cd16299 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16318 MUS_TUS_MBL-B1 293876 cd16299 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16319 MraZ 293782 N/A cd16319 1 1 1 0 11/06/15 13:06:00 -cd16320 MraZ_N 293783 cd16319 cd16319 1 1 1 0 11/06/15 13:06:00 -cd16321 MraZ_C 293784 cd16319 cd16319 1 1 1 0 11/06/15 13:06:00 -cd16322 TTHA1623-li... 293877 cd06262 cd06262 1 1 1 0 08/18/16 16:52:00 -cd16323 Syd 319993 N/A cd16323 1 1 1 0 08/18/16 16:49:00 -cd16324 LolA_fold-like 319982 N/A cd16324 1 1 1 0 08/18/16 16:48:00 -cd16325 LolA 319983 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16326 LolB 319984 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16327 RseB 319985 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16328 RseA_N 319992 N/A cd16328 1 1 1 0 08/18/16 16:49:00 -cd16329 LolA_like 319986 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16330 LolA_VioE 319987 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16331 YjgA-like 319991 N/A cd16331 1 1 1 0 08/18/16 16:49:00 -cd16332 YsxB-like 319990 N/A cd16332 1 1 1 0 08/18/16 16:48:00 -cd16333 RELM 319989 N/A cd16333 1 1 1 0 08/18/16 16:48:00 -cd16334 LppX-like 319988 cd16324 cd16324 1 1 1 0 08/18/16 16:48:00 -cd16335 MukF_N 319981 N/A cd16335 1 1 1 0 08/18/16 16:47:00 -cd16336 MukE 319980 N/A cd16336 1 1 1 0 08/18/16 16:47:00 -cd16337 MukF_C 319979 N/A cd16337 1 1 1 0 08/18/16 16:46:00 -cd16338 CpcT 319976 cd16340 cd16340 1 1 1 0 08/18/16 16:46:00 -cd16339 CpcS 319977 cd16340 cd16340 1 1 1 0 08/18/16 16:46:00 -cd16340 CpcS_T 319978 N/A cd16340 1 1 1 0 08/18/16 16:46:00 -cd16341 FdhE 319975 N/A cd16341 1 1 1 0 08/18/16 16:46:00 -cd16342 FusC_FusB 319974 N/A cd16342 1 1 1 0 08/18/16 16:45:00 -cd16343 LMWPTP 319971 cd00115 cd00115 1 1 1 0 08/18/16 16:45:00 -cd16344 LMWPAP 319972 cd00115 cd00115 1 1 1 0 08/18/16 16:45:00 -cd16345 LMWP_ArsC 319973 cd00115 cd00115 1 1 1 0 08/18/16 16:45:00 -cd16347 VOC_like 319957 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16348 VOC_YdcJ_like 319958 cd16347 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16349 VOC_like 319959 cd16347 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16350 VOC_like 319960 cd16347 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16351 CheB_like 319750 N/A cd16351 1 1 1 0 08/18/16 16:33:00 -cd16352 CheD 319352 cd16832 cd16832 1 1 1 0 08/18/16 16:23:00 -cd16354 BAT 319961 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16355 VOC_like 319962 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16356 PsjN_like 319963 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16357 GLOD4_C 319964 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16358 GlxI_Ni 319965 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16359 VOC_BsCatE_... 319966 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16360 ED_TypeI_cl... 319967 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16361 VOC_ShValD_... 319968 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16362 TflA 319969 cd06587 cd06587 1 1 1 0 08/18/16 16:44:00 -cd16363 Col_Im_like 319897 N/A cd16363 1 1 1 0 08/18/16 16:42:00 -cd16364 T3SC_I_like 341100 N/A cd16364 1 1 0 0 06/09/17 14:33:00 -cd16365 NarH_like 319887 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16366 FDH_beta_like 319888 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16367 DMSOR_beta_... 319889 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16368 DMSOR_beta_... 319890 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16369 DMSOR_beta_... 319891 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16370 DMSOR_beta_... 319892 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16371 DMSOR_beta_... 319893 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16372 DMSOR_beta_... 319894 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16373 DMSOR_beta_... 319895 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16374 DMSOR_beta_... 319896 cd04410 cd04410 1 1 1 0 08/18/16 16:42:00 -cd16375 Avd_IVP_like 319867 N/A cd16375 1 1 1 0 08/18/16 16:40:00 -cd16376 Avd_like 319868 cd16375 cd16375 1 1 1 0 08/18/16 16:40:00 -cd16377 23S_rRNA_IV... 319869 cd16375 cd16375 1 1 1 0 08/18/16 16:40:00 -cd16378 CcmH_N 319866 N/A cd16378 1 1 1 0 08/18/16 16:40:00 -cd16379 YitT_C_like 319863 N/A cd16379 1 1 1 0 08/18/16 16:40:00 -cd16380 YitT_C 319864 cd16379 cd16379 1 1 1 0 08/18/16 16:40:00 -cd16381 YitT_C_like_1 319865 cd16379 cd16379 1 1 1 0 08/18/16 16:40:00 -cd16382 XisI-like 341357 N/A cd16382 1 1 0 0 07/26/17 17:25:00 -cd16383 GUN4 319862 N/A cd16383 1 1 1 0 08/18/16 16:39:00 -cd16384 VirB8_like 319760 N/A cd16384 1 1 1 0 08/18/16 16:36:00 -cd16385 IcmL 319861 N/A cd16385 1 1 1 0 08/18/16 16:39:00 -cd16386 TcpC_N 319860 N/A cd16386 1 1 1 0 08/18/16 16:39:00 -cd16387 ParB_N_Srx 319246 N/A cd16387 1 1 1 0 08/18/16 16:11:00 -cd16388 SbnI_like_N 319247 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16389 FIN 319248 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16390 ParB_N_Srx_... 319249 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16392 toxin-ParB 319250 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16393 SPO0J_N 319251 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16394 sopB_N 319252 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16395 Srx 319253 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16396 Noc_N 319254 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16397 IbrB_like 319255 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16398 KorB_N_like 319256 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16400 ParB_Srx_li... 319257 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16401 ParB_N_like_MT 319258 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16402 ParB_N_like_MT 319259 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16403 ParB_N_like_MT 319260 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16404 pNOB8_ParB_... 319261 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16405 RepB_like_N 319262 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16406 ParB_N_like 319263 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16407 ParB_N_like 319264 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16408 ParB_N_like 319265 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16409 ParB_N_like 319266 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16410 ParB_N_like 319267 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16411 ParB_N_like 319268 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16412 dndB 319269 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16413 DGQHR_domain 319270 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16414 dndB_like 319271 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16415 HAD_dREG-2_... 319852 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16416 HAD_BsYqeG-... 319853 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16417 HAD_PGPase 319854 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16418 HAD_Pase 319855 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16419 HAD_SPS 319856 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16421 HAD_PGPase 319857 cd01427 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16422 HAD_Pase_Um... 319858 cd07508 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16423 HAD_BPGM-like 319859 cd07505 cd01427 1 1 1 0 08/18/16 16:38:00 -cd16424 VirB8 319761 cd16384 cd16384 1 1 1 0 08/18/16 16:36:00 -cd16425 TrbF 319762 cd16384 cd16384 1 1 1 0 08/18/16 16:36:00 -cd16426 VirB10_like 319754 N/A cd16426 1 1 1 0 08/18/16 16:34:00 -cd16427 TraM-like 319758 N/A cd16427 1 1 1 0 08/18/16 16:35:00 -cd16428 TcpC_C 319759 N/A cd16428 1 1 1 0 08/18/16 16:35:00 -cd16429 VirB10 319755 cd16426 cd16426 1 1 1 0 08/18/16 16:34:00 -cd16430 TraB 319756 cd16426 cd16426 1 1 1 0 08/18/16 16:34:00 -cd16431 IcmE 319757 cd16426 cd16426 1 1 1 0 08/18/16 16:34:00 -cd16432 CheB_Rec 319751 cd16351 cd16351 1 1 1 0 08/18/16 16:33:00 -cd16433 CheB 319752 cd16351 cd16351 1 1 1 0 08/18/16 16:33:00 -cd16434 CheB-CheR_f... 319753 cd16433 cd16351 1 1 1 0 08/18/16 16:33:00 -cd16435 BPL_LplA_LipB 319740 N/A cd16435 1 1 1 0 08/18/16 16:31:00 -cd16436 beta_Kdo_tr... 319744 N/A cd16436 1 1 1 0 08/18/16 16:32:00 -cd16437 beta_Kdo_tr... 319745 cd16436 cd16436 1 1 1 0 08/18/16 16:32:00 -cd16438 beta_Kdo_tr... 319746 cd16436 cd16436 1 1 1 0 08/18/16 16:32:00 -cd16439 beta_Kdo_tr... 319747 cd16437 cd16436 1 1 1 0 08/18/16 16:32:00 -cd16440 beta_Kdo_tr... 319748 cd16437 cd16436 1 1 1 0 08/18/16 16:32:00 -cd16441 beta_Kdo_tr... 319749 cd16438 cd16436 1 1 1 0 08/18/16 16:32:00 -cd16442 BPL 319741 cd16435 cd16435 1 1 1 0 08/18/16 16:31:00 -cd16443 LplA 319742 cd16435 cd16435 1 1 1 0 08/18/16 16:31:00 -cd16444 LipB 319743 cd16435 cd16435 1 1 1 0 08/18/16 16:31:00 -cd16448 RING-H2 319362 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16449 RING-HC 319363 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16450 mRING-C3HGC... 319364 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16451 mRING_PEX12 319365 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16452 SP-RING_like 319366 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16453 RING-Ubox 319367 cd00162 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16454 RING-H2_PA-... 319368 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16455 RING-H2_AMFR 319369 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16456 RING-H2_APC11 319370 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16457 RING-H2_BRAP2 319371 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16458 RING-H2_Dma... 319372 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16459 RING-H2_DTX... 319373 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16460 RING-H2_DZIP3 319374 cd16454 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16461 RING-H2_EL5... 319375 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16462 RING-H2_Pep... 319376 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16463 RING-H2_PHR 319377 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16464 RING-H2_Pirh2 319378 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16465 RING-H2_PJA1_2 319379 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16466 RING-H2_RBX2 319380 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16467 RING-H2_RNF... 319381 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16468 RING-H2_RNF11 319382 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16469 RING-H2_RNF... 319383 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16470 RING-H2_RNF25 319384 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16471 RING-H2_RNF32 319385 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16472 RING-H2_RNF... 319386 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16473 RING-H2_RNF103 319387 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16474 RING-H2_RNF... 319388 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16475 RING-H2_RNF... 319389 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16476 RING-H2_RNF... 319390 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16477 RING-H2_RNF214 319391 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16478 RING-H2_Rapsyn 319392 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16479 RING-H2_syn... 319393 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16480 RING-H2_TRAIP 319394 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16481 RING-H2_TTC3 319395 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16482 RING-H2_UBR... 319396 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16483 RING-H2_UBR3 319397 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16484 RING-H2_Vps 319398 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16485 mRING-H2-C3... 319399 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16486 mRING-H2-C3... 319400 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16487 mRING-H2-C3... 319401 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16488 mRING-H2-C3... 319402 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16489 mRING-CH-C4... 319403 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16490 RING-CH-C4H... 319404 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16491 RING-CH-C4H... 319405 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16492 RING-CH-C4H... 319406 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16493 RING-CH-C4H... 319407 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16494 RING-CH-C4H... 319408 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16495 RING_CH-C4H... 319409 cd16448 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16496 RING-HC_BARD1 319410 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16497 RING-HC_BAR 319411 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16498 RING-HC_BRCA1 319412 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16499 RING-HC_BRE... 319413 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16500 RING-HC_CARP 319414 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16501 RING-HC_Cbl... 319415 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16502 RING-HC_Cbl... 319416 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16503 RING-HC_CHFR 319417 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16504 RING-HC_COP1 319418 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16505 RING-HC_CYHR1 319419 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16506 RING-HC_DTX... 319420 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16507 RING-HC_GEF... 319421 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16508 RING-HC_HAK... 319422 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16509 RING-HC_HLTF 319423 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16510 RING-HC_IAPs 319424 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16511 vRING-HC_IR... 319425 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16512 RING-HC_LNX... 319426 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16513 RING1-HC_LONFs 319427 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16514 RING2-HC_LONFs 319428 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16515 RING-HC_LRSAM1 319429 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16516 RING-HC_malin 319430 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16517 RING-HC_MAT1 319431 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16518 RING-HC_MEX3 319432 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16519 RING-HC_MIBs 319433 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16520 RING-HC_MIB... 319434 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16521 RING-HC_MKRN 319435 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16522 RING-HC_MSL2 319436 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16523 RING-HC_MYLIP 319437 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16524 RING-HC_NHL... 319438 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16525 RING-HC_PCGF 319439 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16526 RING-HC_PEX2 319440 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16527 RING-HC_PEX10 319441 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16528 RING-HC_pro... 319442 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16529 RING-HC_RAD18 319443 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16530 RING-HC_RAG1 319444 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16531 RING-HC_RIN... 319445 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16532 RING-HC_RNF... 319446 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16533 RING-HC_RNF4 319447 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16534 RING-HC_RNF... 319448 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16535 RING-HC_RNF8 319449 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16536 RING-HC_RNF10 319450 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16537 RING-HC_RNF37 319451 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16538 RING-HC_RNF112 319452 cd16449 cd00162 1 1 1 0 08/18/16 16:27:00 -cd16539 RING-HC_RNF... 319453 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16540 RING-HC_RNF114 319454 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16541 RING-HC_RNF123 319455 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16542 RING-HC_RNF125 319456 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16543 RING-HC_RNF... 319457 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16544 RING-HC_RNF138 319458 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16545 RING-HC_RNF141 319459 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16546 RING-HC_RNF146 319460 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16547 RING-HC_RNF151 319461 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16548 RING-HC_RNF152 319462 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16549 RING-HC_RNF166 319463 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16550 RING-HC_RNF168 319464 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16551 RING-HC_RNF169 319465 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16552 RING-HC_NEURL3 319466 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16553 RING-HC_RNF170 319467 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16554 RING-HC_RNF180 319468 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16555 RING-HC_RNF182 319469 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16556 RING-HC_RNF... 319470 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16557 RING-HC_RNF186 319471 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16558 RING-HC_RNF207 319472 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16559 RING-HC_RNF208 319473 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16560 RING-HC_RNF... 319474 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16561 RING-HC_RNF213 319475 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16562 RING-HC_RNF219 319476 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16563 RING-HC_RNF220 319477 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16564 RING-HC_RNF222 319478 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16565 RING-HC_RNF... 319479 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16566 RING-HC_RSPRY1 319480 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16567 RING-HC_RAD... 319481 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16568 RING-HC_ScP... 319482 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16569 RING-HC_SHPRH 319483 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16570 RING-HC_SH3RFs 319484 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16571 RING-HC_SIAHs 319485 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16572 RING-HC_SpR... 319486 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16573 RING-HC_TFB... 319487 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16574 RING-HC_Topors 319488 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16575 RING-HC_MID... 319489 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16576 RING-HC_TRI... 319490 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16577 RING-HC_MuR... 319491 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16578 RING-HC_TRI... 319492 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16579 RING-HC_PML... 319493 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16580 RING-HC_TRI... 319494 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16581 RING-HC_TRI... 319495 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16582 RING-HC_TRI... 319496 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16583 RING-HC_TRI... 319497 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16584 RING-HC_TRI... 319498 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16585 RING-HC_TIF... 319499 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16586 RING-HC_TRI... 319500 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16587 RING-HC_TRI... 319501 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16588 RING-HC_TRI... 319502 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16589 RING-HC_TRI... 319503 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16590 RING-HC_TRI... 319504 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16591 RING-HC_TRI... 319505 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16592 RING-HC_TRI... 319506 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16593 RING-HC_TRI... 319507 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16594 RING-HC_TRI... 319508 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16595 RING-HC_TRI... 319509 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16596 RING-HC_TRI... 319510 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16597 RING-HC_TRI... 319511 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16598 RING-HC_TRI... 319512 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16599 RING-HC_TRI... 319513 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16600 RING-HC_TRI... 319514 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16601 RING-HC_TRI... 319515 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16602 RING-HC_TRI... 319516 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16603 RING-HC_TRI... 319517 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16604 RING-HC_TRI... 319518 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16605 RING-HC_TRI... 319519 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16606 RING-HC_TRI... 319520 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16607 RING-HC_TRI... 319521 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16608 RING-HC_TRI... 319522 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16609 RING-HC_TRI... 319523 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16610 RING-HC_TRI... 319524 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16611 RING-HC_TRI... 319525 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16612 RING-HC_TRI... 319526 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16613 RING-HC_UHRF 319527 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16614 RING-HC_UNK... 319528 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16615 RING-HC_ZNF598 319529 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16616 mRING-HC-C4... 319530 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16617 mRING-HC-C4... 319531 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16618 mRING-HC-C4... 319532 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16619 mRING-HC-C4... 319533 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16620 vRING-HC-C4... 319534 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16621 vRING-HC-C4... 319535 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16622 vRING-HC-C4... 319536 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16623 RING-HC_RBR... 319537 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16624 RING-HC_RBR... 319538 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16625 RING-HC_RBR... 319539 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16626 RING-HC_RBR... 319540 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16627 RING-HC_RBR... 319541 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16628 RING-HC_RBR... 319542 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16629 RING-HC_RBR... 319543 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16630 RING-HC_RBR... 319544 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16631 mRING-HC-C4... 319545 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16632 mRING-HC-C4... 319546 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16633 mRING-HC-C3... 319547 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16634 mRING-HC-C3... 319548 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16635 mRING-HC-C3... 319549 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16636 mRING-HC-C3... 319550 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16637 mRING-HC-C3... 319551 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16638 mRING-HC-C3... 319552 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16639 RING-HC_TRAF2 319553 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16640 RING-HC_TRAF3 319554 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16641 mRING-HC-C3... 319555 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16642 mRING-HC-C3... 319556 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16643 mRING-HC-C3... 319557 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16644 mRING-HC-C3... 319558 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16645 mRING-HC-C3... 319559 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16646 mRING-HC-C2... 319560 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16647 mRING-HC-C3... 319561 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16648 mRING-HC-C3... 319562 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16649 mRING-HC-C3... 319563 cd16449 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16650 SP-RING_PIA... 319564 cd16452 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16651 SPL-RING_NSE2 319565 cd16452 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16652 dRing_Rmd5p... 319566 cd16452 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16653 RING-like_Rtf2 319567 cd16452 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16654 RING-Ubox_CHIP 319568 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16655 RING-Ubox_W... 319569 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16656 RING-Ubox_P... 319570 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16657 RING-Ubox_U... 319571 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16658 RING-Ubox_U... 319572 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16659 RING-Ubox_Emp 319573 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16660 RING-Ubox_R... 319574 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16661 RING-Ubox1_... 319575 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16662 RING-Ubox2_... 319576 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16663 RING-Ubox_P... 319577 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16664 RING-Ubox_PUB 319578 cd16453 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16665 RING-H2_RNF... 319579 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16666 RING-H2_RNF... 319580 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16667 RING-H2_RNF... 319581 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16668 RING-H2_GRAIL 319582 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16669 RING-H2_RNF181 319583 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16670 RING-H2_RNF215 319584 cd16454 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16671 RING-H2_DTX1_4 319585 cd16459 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16672 RING-H2_DTX2 319586 cd16459 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16673 RING-H2_RNF6 319587 cd16467 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16674 RING-H2_RNF12 319588 cd16467 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16675 RING-H2_RNF24 319589 cd16469 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16676 RING-H2_RNF122 319590 cd16469 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16677 RING1-H2_RNF32 319591 cd16471 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16678 RING2-H2_RNF32 319592 cd16471 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16679 RING-H2_RNF38 319593 cd16472 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16680 RING-H2_RNF44 319594 cd16472 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16681 RING-H2_RNF111 319595 cd16474 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16682 RING-H2_RNF165 319596 cd16474 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16683 RING-H2_RNF139 319597 cd16476 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16684 RING-H2_RNF145 319598 cd16476 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16685 RING-H2_UBR1 319599 cd16482 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16686 RING-H2_UBR2 319600 cd16482 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16687 RING-H2_Vps8 319601 cd16484 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16688 RING-H2_Vps11 319602 cd16484 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16689 RING-H2_Vps18 319603 cd16484 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16690 RING-H2_Vps41 319604 cd16484 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16691 mRING-H2-C3... 319605 cd16488 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16692 mRING-H2-C3... 319606 cd16488 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16693 mRING-H2-C3... 319607 cd16488 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16694 mRING-CH-C4... 319608 cd16489 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16695 mRING-CH-C4... 319609 cd16489 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16696 RING-CH-C4H... 319610 cd16492 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16697 RING-CH-C4H... 319611 cd16492 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16698 RING_CH-C4H... 319612 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16699 RING_CH-C4H... 319613 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16700 RING_CH-C4H... 319614 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16701 RING_CH-C4H... 319615 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16702 RING_CH-C4H... 319616 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16703 RING_CH-C4H... 319617 cd16495 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16704 RING-HC_RNF... 319618 cd16499 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16705 RING-HC_dBr... 319619 cd16499 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16706 RING-HC_CARP1 319620 cd16500 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16707 RING-HC_CARP2 319621 cd16500 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16708 RING-HC_Cbl 319622 cd16502 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16709 RING-HC_Cbl-b 319623 cd16502 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16710 RING-HC_Cbl-c 319624 cd16502 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16711 RING-HC_DTX3 319625 cd16506 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16712 RING-HC_DTX3L 319626 cd16506 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16713 RING-HC_BIR... 319627 cd16510 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16714 RING-HC_BIR... 319628 cd16510 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16715 vRING-HC_IR... 319629 cd16511 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16716 vRING-HC_IR... 319630 cd16511 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16717 vRING-HC_IR... 319631 cd16511 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16718 RING-HC_LNX3 319632 cd16512 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16719 RING-HC_LNX4 319633 cd16512 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16720 RING-HC_MEX3A 319634 cd16518 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16721 RING-HC_MEX3B 319635 cd16518 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16722 RING-HC_MEX3C 319636 cd16518 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16723 RING-HC_MEX3D 319637 cd16518 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16724 RING1-HC_MIB1 319638 cd16519 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16725 RING2-HC_MIB1 319639 cd16519 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16726 RING1-HC_MIB2 319640 cd16519 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16727 RING3-HC_MIB1 319641 cd16520 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16728 RING2-HC_MIB2 319642 cd16520 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16729 RING-HC_RGL... 319643 cd16520 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16730 RING-HC_MKR... 319644 cd16521 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16731 RING-HC_MKRN2 319645 cd16521 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16732 RING-HC_MKRN4 319646 cd16521 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16733 RING-HC_PCGF1 319647 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16734 RING-HC_PCGF2 319648 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16735 RING-HC_PCGF3 319649 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16736 RING-HC_PCGF4 319650 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16737 RING-HC_PCGF5 319651 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16738 RING-HC_PCGF6 319652 cd16525 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16739 RING-HC_RING1 319653 cd16531 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16740 RING-HC_RING2 319654 cd16531 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16741 RING-HC_RNFT1 319655 cd16532 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16742 RING-HC_RNFT2 319656 cd16532 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16743 RING-HC_RNF5 319657 cd16534 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16744 RING-HC_RNF185 319658 cd16534 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16745 RING-HC_AtR... 319659 cd16534 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16746 RING-HC_RNF212 319660 cd16560 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16747 RING-HC_RNF... 319661 cd16560 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16748 RING-HC_SH3RF1 319662 cd16570 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16749 RING-HC_SH3RF2 319663 cd16570 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16750 RING-HC_SH3RF3 319664 cd16570 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16751 RING-HC_SIAH1 319665 cd16571 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16752 RING-HC_SIAH2 319666 cd16571 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16753 RING-HC_MID1 319667 cd16575 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16754 RING-HC_MID2 319668 cd16575 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16755 RING-HC_TRIM9 319669 cd16576 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16756 RING-HC_TRIM36 319670 cd16576 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16757 RING-HC_TRIM46 319671 cd16576 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16758 RING-HC_TRIM67 319672 cd16576 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16759 RING-HC_MuRF1 319673 cd16577 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16760 RING-HC_MuRF2 319674 cd16577 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16761 RING-HC_MuRF3 319675 cd16577 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16762 RING-HC_TRI... 319676 cd16581 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16763 RING-HC_TRI... 319677 cd16581 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16764 RING-HC_TIF... 319678 cd16585 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16765 RING-HC_TIF... 319679 cd16585 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16766 RING-HC_TIF... 319680 cd16585 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16767 RING-HC_TRIM2 319681 cd16586 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16768 RING-HC_TRIM3 319682 cd16586 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16769 RING-HC_UHRF1 319683 cd16613 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16770 RING-HC_UHRF2 319684 cd16613 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16771 RING-HC_UNK 319685 cd16614 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16772 RING-HC_UNKL 319686 cd16614 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16773 RING-HC_RBR... 319687 cd16623 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16774 RING-HC_RBR... 319688 cd16623 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16775 RING-HC_RBR... 319689 cd16629 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16776 RING-HC_RBR... 319690 cd16629 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16777 mRING-HC-C4... 319691 cd16632 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16778 mRING-HC-C4... 319692 cd16632 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16779 mRING-HC-C3... 319693 cd16637 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16780 mRING-HC-C3... 319694 cd16637 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16781 mRING-HC-C3... 319695 cd16638 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16782 mRING-HC-C3... 319696 cd16638 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16783 mRING-HC-C2... 319697 cd16646 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16784 mRING-HC-C2... 319698 cd16646 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16785 mRING-HC-C3... 319699 cd16647 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16786 mRING-HC-C3... 319700 cd16647 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16787 mRING-HC-C3... 319701 cd16649 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16788 mRING-HC-C3... 319702 cd16649 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16789 mRING-HC-C3... 319703 cd16649 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16790 SP-RING_PIAS 319704 cd16650 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16791 SP-RING_ZMIZ 319705 cd16650 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16792 SP-RING_Siz... 319706 cd16650 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16793 SP-RING_ScS... 319707 cd16650 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16794 dRING_RMD5A 319708 cd16652 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16795 dRING_RMD5B 319709 cd16652 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16796 RING-H2_RNF13 319710 cd16665 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16797 RING-H2_RNF167 319711 cd16665 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16798 RING-H2_RNF43 319712 cd16666 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16799 RING-H2_ZNRF3 319713 cd16666 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16800 RING-H2_RNF115 319714 cd16667 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16801 RING-H2_RNF126 319715 cd16667 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16802 RING-H2_RNF... 319716 cd16668 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16803 RING-H2_RNF130 319717 cd16668 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16804 RING-H2_RNF149 319718 cd16668 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16805 RING-H2_RNF150 319719 cd16668 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16806 RING_CH-C4H... 319720 cd16698 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16807 RING_CH-C4H... 319721 cd16698 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16808 RING_CH-C4H... 319722 cd16699 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16809 RING_CH-C4H... 319723 cd16699 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16810 RING_CH-C4H... 319724 cd16700 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16811 RING_CH-C4H... 319725 cd16700 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16812 RING_CH-C4H... 319726 cd16703 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16813 RING_CH-C4H... 319727 cd16703 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16814 RING-HC_RNF20 319728 cd16704 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16815 RING-HC_RNF40 319729 cd16704 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16816 mRING-HC-C3... 319730 cd16789 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16817 mRING-HC-C3... 319731 cd16789 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16818 SP-RING_PIAS1 319732 cd16790 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16819 SP-RING_PIAS2 319733 cd16790 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16820 SP-RING_PIAS3 319734 cd16790 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16821 SP-RING_PIAS4 319735 cd16790 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16822 SP-RING_ZMIZ1 319736 cd16791 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16823 SP-RING_ZMIZ2 319737 cd16791 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16824 RING_CH-C4H... 319738 cd16811 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16825 RING_CH-C4H... 319739 cd16811 cd00162 1 1 1 0 08/18/16 16:28:00 -cd16827 ChuX-like 319356 N/A cd16827 1 1 1 0 08/18/16 16:23:00 -cd16828 HemS-like 319357 cd16827 cd16827 1 1 1 0 08/18/16 16:23:00 -cd16829 ChuX_HutX-like 319358 cd16827 cd16827 1 1 1 0 08/18/16 16:23:00 -cd16830 HemS-like_N 319359 cd16828 cd16827 1 1 1 0 08/18/16 16:23:00 -cd16831 HemS-like_C 319360 cd16828 cd16827 1 1 1 0 08/18/16 16:23:00 -cd16832 CNF1_CheD_Y... 319353 N/A cd16832 1 1 1 0 08/18/16 16:23:00 -cd16833 YfiH 319354 cd16832 cd16832 1 1 1 0 08/18/16 16:23:00 -cd16834 CNF1-like 319355 cd16832 cd16832 1 1 1 0 08/18/16 16:23:00 -cd16837 BldD_C_like 319351 N/A cd16837 1 1 1 0 08/18/16 16:22:00 -cd16839 PCSK9_C-CRD 319350 N/A cd16839 1 1 1 0 08/18/16 16:21:00 -cd16840 toxin_MLD 319349 N/A cd16840 1 1 1 0 08/18/16 16:21:00 -cd16841 RraA_family 319245 N/A cd16841 1 1 1 0 08/18/16 16:09:00 -cd16842 Ig_SLAM-CD8... 319347 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16843 Ig_LILR_KIR... 319348 cd00096 cd00096 1 1 1 0 08/18/16 16:19:00 -cd16844 ParB_N_like_MT 319272 cd16387 cd16387 1 1 1 0 08/18/16 16:11:00 -cd16845 STAT1_DBD 341083 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16846 STAT2_DBD 341084 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16847 STAT3_DBD 341085 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16848 STAT4_DBD 341086 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16849 STAT5_DBD 341087 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16850 STAT6_DBD 341088 cd14801 cd14801 1 1 0 0 06/09/17 14:33:00 -cd16851 STAT1_CCD 341076 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16852 STAT2_CCD 341077 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16853 STAT3_CCD 341078 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16854 STAT4_CCD 341079 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16855 STAT5_CCD 341080 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16856 STAT6_CCD 341081 cd14786 cd14786 1 1 0 0 06/09/17 14:33:00 -cd16857 ING_ING1_2 341090 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16858 ING_ING3_Yng2p 341091 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16859 ING_ING4_5 341092 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16860 ING_ING1 341093 cd16857 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16861 ING_ING2 341094 cd16857 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16862 ING_ING4 341095 cd16859 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16863 ING_ING5 341096 cd16859 cd16101 1 1 0 0 06/09/17 14:33:00 -cd16864 ARID_JARID 350628 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16865 ARID_ARID1A... 350629 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16866 ARID_ARID2 350630 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16867 ARID_ARID3 350631 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16868 ARID_ARID4 350632 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16869 ARID_ARID5 350633 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16870 ARID_JARD2 350634 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16871 ARID_Swi1p-... 350635 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16872 ARID_HMGB9-... 350636 cd16100 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16873 ARID_KDM5A 350637 cd16864 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16874 ARID_KDM5B 350638 cd16864 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16875 ARID_KDM5C_5D 350639 cd16864 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16876 ARID_ARID1A 350640 cd16865 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16877 ARID_ARID1B 350641 cd16865 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16878 ARID_ARID3A 350642 cd16867 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16879 ARID_ARID3B 350643 cd16867 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16880 ARID_ARID3C 350644 cd16867 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16881 ARID_Dri-like 350645 cd16867 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16882 ARID_ARID4A 350646 cd16868 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16883 ARID_ARID4B 350647 cd16868 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16884 ARID_ARID5A 350648 cd16869 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16885 ARID_ARID5B 350649 cd16869 cd16100 1 1 0 0 07/11/18 18:00:00 -cd16887 YEATS 341123 N/A cd16887 1 1 0 0 06/09/17 14:33:00 -cd16888 lyz_G_like1 340374 cd00442 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16889 chitinase_like 340375 cd00442 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16890 lyz_i 340376 cd00442 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16891 CwlT_like 340377 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16892 LT_VirB1_like 340378 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16893 LT_MltC_MltE 340379 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16894 MltD_like 340380 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16895 TraH_like 340381 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16896 LT_Slt70_like 340382 cd00254 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16897 LYZ_C 340383 cd00119 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16898 LYZ_LA 340384 cd00119 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16899 LYZ_C_invert 340385 cd00119 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16900 endolysin_R... 340386 cd00737 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16901 lyz_P1 340387 cd00737 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16902 pesticin_lyz 340388 cd12799 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16903 pesticin_ly... 340389 cd12799 cd00442 1 1 0 0 06/09/17 13:53:00 -cd16904 pesticin_ly... 340390 cd12799 cd00442 1 1 0 0 06/09/17 13:54:00 -cd16905 YEATS_Taf14... 341124 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16906 YEATS_AF-9_... 341125 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16907 YEATS_YEATS... 341126 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16908 YEATS_Yaf9_... 341127 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16909 YEATS_GAS41... 341128 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16910 YEATS_TFIID... 341129 cd16887 cd16887 1 1 0 0 06/09/17 14:33:00 -cd16911 AfaD_SafA-like 350650 N/A cd16911 1 1 0 0 07/11/18 18:00:00 -cd16913 YkuD_like 341130 N/A cd16913 1 1 0 0 06/09/17 14:33:00 -cd16915 HATPase_Dpi... 340392 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16916 HATPase_Che... 340393 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16917 HATPase_Uhp... 340394 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16918 HATPase_Gln... 340395 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16919 HATPase_Cck... 340396 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16920 HATPase_Tmo... 340397 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16921 HATPase_Fil... 340398 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16922 HATPase_Evg... 340399 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16923 HATPase_Van... 340400 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16924 HATPase_Ypd... 340401 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16925 HATPase_Tut... 340402 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16926 HATPase_Mut... 340403 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16927 HATPase_Hsp... 340404 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16928 HATPase_Gyr... 340405 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16929 HATPase_PDK... 340406 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16930 HATPase_Top... 340407 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16931 HATPase_MOR... 340408 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16932 HATPase_Phy... 340409 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16933 HATPase_Top... 340410 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16934 HATPase_Rsb... 340411 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16935 HATPase_Agr... 340412 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16936 HATPase_Rsb... 340413 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16937 HATPase_SMC... 340414 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16938 HATPase_ETR... 340415 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16939 HATPase_Rst... 340416 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16940 HATPase_Bas... 340417 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16942 HATPase_Spo... 340418 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16943 HATPase_Ato... 340419 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16944 HATPase_Ntr... 340420 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16945 HATPase_Cre... 340421 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16946 HATPase_Bae... 340422 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16947 HATPase_Ycb... 340423 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16948 HATPase_Bce... 340424 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16949 HATPase_Cpx... 340425 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16950 HATPase_Env... 340426 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16951 HATPase_EL3... 340427 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16952 HATPase_EcP... 340428 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16953 HATPase_Bvr... 340429 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16954 HATPase_Pho... 340430 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16955 HATPase_Ypd... 340431 cd16924 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16956 HATPase_Yeh... 340432 cd16924 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16957 HATPase_Lyt... 340433 cd16924 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16961 RMtype1_S_T... 341131 N/A cd16961 1 1 0 0 06/09/17 14:33:00 -cd16962 RuvC 340813 cd00529 cd00529 1 1 0 0 06/09/17 14:32:00 -cd16963 CCE1 340814 cd00529 cd00529 1 1 0 0 06/09/17 14:32:00 -cd16964 YqgF 340815 cd00529 cd00529 1 1 0 0 06/09/17 14:32:00 -cd16965 Alpha_kinas... 341215 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16966 Alpha_kinas... 341216 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16967 Alpha_kinas... 341217 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16968 Alpha_kinas... 341218 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16969 Alpha_kinas... 341219 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16970 Alpha_kinas... 341220 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16971 Alpha_kinas... 341221 cd16965 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16972 Alpha_kinas... 341222 cd16965 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16973 Alpha_kinas... 341223 cd16966 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16974 Alpha_kinas... 341224 cd16966 cd04515 1 1 0 0 06/12/17 09:14:00 -cd16975 HATPase_Spa... 340434 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16976 HATPase_Hup... 340435 cd00075 cd00075 1 1 0 0 06/09/17 14:30:00 -cd16977 VHS_GGA 340774 cd03561 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16978 VHS_HSE1 340775 cd03561 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16979 VHS_Vps27 340776 cd03561 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16980 VHS_Lsb5 340777 cd03561 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16981 CID_RPRD_like 340778 cd03562 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16982 CID_Pcf11 340779 cd03562 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16983 CID_SCAF8_like 340780 cd03562 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16984 CID_Nrd1_like 340781 cd03562 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16985 ANTH_N_AP180 340782 cd03564 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16986 ANTH_N_Sla2... 340783 cd03564 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16987 ANTH_N_AP18... 340784 cd03564 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16988 ANTH_N_YAP180 340785 cd03564 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16989 ENTH_EpsinR 340786 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16990 ENTH_Epsin 340787 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16991 ENTH_Ent1_Ent2 340788 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16992 ENTH_Ent3 340789 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16993 ENTH_Ent5 340790 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16994 ENTH_Ent4 340791 cd03571 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16995 VHS_Tom1 340792 cd03565 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16996 VHS_Tom1L2 340793 cd03565 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16997 VHS_Tom1L1 340794 cd03565 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16998 VHS_GGA_fungi 340795 cd16977 cd00197 1 1 0 0 06/09/17 14:32:00 -cd16999 VHS_STAM2 340796 cd03568 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17000 VHS_STAM1 340797 cd03568 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17001 CID_RPRD2 340798 cd16981 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17002 CID_RPRD1 340799 cd16981 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17003 CID_Rtt103 340800 cd16981 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17004 CID_SCAF8 340801 cd16983 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17005 CID_SFRS15_... 340802 cd16983 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17006 ANTH_N_HIP1... 340803 cd16986 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17007 ANTH_N_Sla2p 340804 cd16986 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17008 VHS_GGA3 340805 cd03567 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17009 VHS_GGA1 340806 cd03567 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17010 VHS_GGA2 340807 cd03567 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17011 CID_RPRD1A 340808 cd17002 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17012 CID_RPRD1B 340809 cd17002 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17013 ANTH_N_HIP1 340810 cd17006 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17014 ANTH_N_HIP1R 340811 cd17006 cd00197 1 1 0 0 06/09/17 14:32:00 -cd17015 ING_plant 341097 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd17016 ING_Pho23p_... 341098 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd17017 ING_Yng1p 341099 cd16101 cd16101 1 1 0 0 06/09/17 14:33:00 -cd17018 T3SC_IA_Exs... 341101 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17019 T3SC_IA_Shc... 341102 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17020 T3SC_IA_Shc... 341103 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17021 T3SC_IA_Sic... 341104 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17022 T3SC_IA_Sig... 341105 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17023 T3SC_IA_Ces... 341106 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17024 T3SC_IA_Dsp... 341107 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17025 T3SC_IA_Shc... 341108 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17026 T3SC_IA_Spc... 341109 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17027 T3SC_IA_Ysc... 341110 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17028 T3SC_IA_Syc... 341111 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17029 T3SC_IA_Syc... 341112 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17030 T3SC_IA_Syc... 341113 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17031 T3SC_IA_Syc... 341114 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17032 T3SC_IA_Syc... 341115 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17033 DR1245-like 341116 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17034 T3SC_IA_Shc... 341117 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17035 T3SC_IB_Spa... 341118 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17036 T3SC_YbjN-l... 341119 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17037 T3SC_IA_Shc... 341120 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17038 Flavi_M 341208 N/A cd17038 1 1 0 0 06/09/17 14:34:00 -cd17039 Ubl_ubiquit... 340559 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17040 Ubl_MoaD_like 340560 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17041 Ubl_WDR48 340561 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17042 Ubl_TmoB 340562 cd00196 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17043 RA 340563 cd01768 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17044 Ubl_TBCE 340564 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17045 Ubl_TBCEL 340565 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17046 Ubl_IKKA_like 340566 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17047 Ubl_UBFD1 340567 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17048 Ubl_UBL3 340568 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17049 Ubl_Sacsin 340569 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17050 Ubl1_ANKUB1 340570 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17051 Ubl2_ANKUB1 340571 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17052 Ubl1_FAT10 340572 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17053 Ubl2_FAT10 340573 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17054 Ubl_AtBAG1_... 340574 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17055 Ubl_AtNPL4_... 340575 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17056 Ubl_FAF1 340576 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17057 Ubl_TMUB1_like 340577 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17058 Ubl_SNRNP25 340578 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17059 Ubl_OTU1 340579 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17060 Ubl_RB1CC1 340580 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17061 Ubl_IQUB 340581 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17062 Ubl_NUB1 340582 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17063 Ubl_ANKRD60 340583 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17064 Ubl_TAFs_like 340584 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17065 Ubl_UBP24 340585 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17066 Ubl_KPC2 340586 cd17039 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17067 RBD2_RGS12_... 340587 cd01760 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17068 RBD_PLEKHG5 340588 cd01760 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17069 DCX2 340589 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17070 DCX2_RP_like 340590 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17071 DCX1_DCDC2_... 340591 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17072 DCX_DCDC5_like 340592 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17073 KHA 340593 cd01617 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17074 Ubl_CysO_like 340594 cd17040 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17075 UBX1_UBXN9 340595 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17076 UBX_UBXN10 340596 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17077 UBX_UBXN11 340597 cd01767 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17078 Ubl_SLD1_NF... 340598 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17079 Ubl_SLD2_NF... 340599 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17080 Ubl_SLD2_Es... 340600 cd01763 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17081 RAWUL_PCGF1 340601 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17082 RAWUL_PCGF2... 340602 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17083 RAWUL_PCGF3 340603 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17084 RAWUL_PCGF5 340604 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17085 RAWUL_PCGF6 340605 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17086 RAWUL_RING1... 340606 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17087 RAWUL_DRIP_... 340607 cd16102 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17088 FERM_F1_FRM... 340608 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17089 FERM_F0_TLN 340609 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17090 FERM_F1_TLN 340610 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17091 FERM_F0_SHANK 340611 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17092 FERM1_F1_My... 340612 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17093 FERM2_F1_My... 340613 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17094 FERM_F1_Max... 340614 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17095 FERM_F0_kin... 340615 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17096 FERM_F1_kin... 340616 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17097 FERM_F1_ERM... 340617 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17098 FERM_F1_FAR... 340618 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17099 FERM_F1_PTP... 340619 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17100 FERM_F1_PTP... 340620 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17101 FERM_F1_PTP... 340621 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17102 FERM_F1_FRMD3 340622 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17103 FERM_F1_FRMD4 340623 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17104 FERM_F1_MYLIP 340624 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17105 FERM_F1_EPB41 340625 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17106 FERM_F1_EPB41L 340626 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17107 FERM_F1_EPB... 340627 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17108 FERM_F1_EPB... 340628 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17109 FERM_F1_SNX... 340629 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17110 FERM_F1_Myo... 340630 cd01765 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17111 RA1_DAGK-theta 340631 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17112 RA_MRL_like 340632 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17113 RA_ARAPs 340633 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17114 RA_PLC-epsilon 340634 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17115 RA_RHG20 340635 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17116 RA_Radil_like 340636 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17117 RA_ANKFN1_like 340637 cd17043 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17118 Ubl_HERP1 340638 cd01790 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17119 Ubl_HERP2 340639 cd01790 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17120 Ubl_UBTD1 340640 cd01794 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17121 Ubl_UBTD2 340641 cd01794 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17122 Ubl_UHRF1 340642 cd01797 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17123 Ubl_UHRF2 340643 cd01797 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17124 Ubl_TECR 340644 cd01801 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17125 Ubl_TECRL 340645 cd01801 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17126 Ubl_HR23A 340646 cd01805 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17127 Ubl_TBK1 340647 cd12219 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17128 Ubl_IKKE 340648 cd12219 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17129 Ubl1_FAF1 340649 cd17056 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17130 Ubl2_FAF1 340650 cd17056 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17131 Ubl_TMUB1 340651 cd17057 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17132 Ubl_TMUB2 340652 cd17057 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17133 RBD_ARAF 340653 cd01816 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17134 RBD_BRAF 340654 cd01816 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17135 RBD_CRAF 340655 cd01816 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17136 RBD1_RGS12 340656 cd01817 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17137 RBD1_RGS14 340657 cd01817 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17138 RBD2_RGS12 340658 cd17067 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17139 RBD2_RGS14 340659 cd17067 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17140 DCX1_DCLK1 340660 cd16109 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17141 DCX1_DCLK2 340661 cd16109 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17142 DCX2_DCX 340662 cd17069 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17143 DCX2_DCLK1 340663 cd17069 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17144 DCX2_DCLK2 340664 cd17069 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17145 DCX1_RP1 340665 cd16110 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17146 DCX1_RP1L1 340666 cd16110 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17147 DCX2_RP1 340667 cd17070 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17148 DCX2_RP1L1 340668 cd17070 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17149 DCX1_DCDC2 340669 cd17071 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17150 DCX1_DCDC2B 340670 cd17071 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17151 DCX1_DCDC2C 340671 cd17071 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17152 DCX2_DCDC2 340672 cd16113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17153 DCX2_DCDC2B 340673 cd16113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17154 DCX2_DCDC2C 340674 cd16113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17155 DCX_DCDC1 340675 cd17072 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17156 DCX1_DCDC5 340676 cd17072 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17157 DCX2_DCDC5 340677 cd17072 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17158 DCX3_DCDC5 340678 cd17072 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17159 DCX4_DCDC5 340679 cd17072 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17160 UBX_UBXN2A 340680 cd01770 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17161 UBX_UBXN2B 340681 cd01770 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17162 UBX_UBXN2C 340682 cd01770 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17163 Ubl_ATG8_GA... 340683 cd16108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17164 RAWUL_PCGF2 340684 cd17082 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17165 RAWUL_PCGF4 340685 cd17082 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17166 RAWUL_RING1 340686 cd17086 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17167 RAWUL_RING2 340687 cd17086 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17168 FERM_F1_FRMPD1 340688 cd17088 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17169 FERM_F1_FRMPD3 340689 cd17088 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17170 FERM_F1_FRMPD4 340690 cd17088 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17171 FERM_F0_TLN1 340691 cd17089 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17172 FERM_F0_TLN2 340692 cd17089 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17173 FERM_F1_TLN1 340693 cd17090 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17174 FERM_F1_TLN2 340694 cd17090 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17175 FERM_F0_SHANK1 340695 cd17091 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17176 FERM_F0_SHANK2 340696 cd17091 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17177 FERM_F0_SHANK3 340697 cd17091 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17178 FERM_F1_PLE... 340698 cd17094 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17179 FERM_F1_PLE... 340699 cd17094 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17180 FERM_F0_KIND1 340700 cd17095 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17181 FERM_F0_KIND2 340701 cd17095 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17182 FERM_F0_KIND3 340702 cd17095 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17183 FERM_F1_KIND1 340703 cd17096 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17184 FERM_F1_KIND2 340704 cd17096 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17185 FERM_F1_KIND3 340705 cd17096 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17186 FERM_F1_Merlin 340706 cd17097 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17187 FERM_F1_ERM 340707 cd17097 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17188 FERM_F1_FRMD7 340708 cd17098 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17189 FERM_F1_FARP1 340709 cd17098 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17190 FERM_F1_FARP2 340710 cd17098 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17191 FERM_F1_PTPN14 340711 cd17099 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17192 FERM_F1_PTPN21 340712 cd17099 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17193 FERM_F1_PTPN3 340713 cd17100 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17194 FERM_F1_PTPN4 340714 cd17100 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17195 FERM_F1_PTPN13 340715 cd17101 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17196 FERM_F1_FRMPD2 340716 cd17101 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17197 FERM_F1_FRMD1 340717 cd17101 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17198 FERM_F1_FRMD6 340718 cd17101 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17199 FERM_F1_FRMD4A 340719 cd17103 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17200 FERM_F1_FRMD4B 340720 cd17103 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17201 FERM_F1_EPB... 340721 cd17106 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17202 FERM_F1_EPB... 340722 cd17106 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17203 FERM_F1_EPB... 340723 cd17106 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17204 FERM_F1_EPB... 340724 cd17108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17205 FERM_F1_EPB... 340725 cd17108 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17206 FERM_F1_Myo... 340726 cd17110 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17207 FERM_F1_PLE... 340727 cd17110 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17208 FERM_F1_DdM... 340728 cd17110 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17209 RA_RalGDS 340729 cd00153 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17210 RA_RGL 340730 cd00153 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17211 RA_RGL2 340731 cd00153 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17212 RA_RGL3 340732 cd00153 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17213 RA_PHLPP 340733 cd01775 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17214 RA_CYR1_like 340734 cd01775 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17215 RA_Rin1 340735 cd01776 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17216 RA_Myosin-IXa 340736 cd01779 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17217 RA_Myosin-IXb 340737 cd01779 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17218 RA_RASSF1 340738 cd01778 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17219 RA_RASSF3 340739 cd01778 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17220 RA_RASSF5 340740 cd01778 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17221 RA_RASSF2 340741 cd01784 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17222 RA_RASSF4 340742 cd01784 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17223 RA_RASSF6 340743 cd01784 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17224 RA_ASPP1 340744 cd16125 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17225 RA_ASPP2 340745 cd16125 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17226 RA_ARAP1 340746 cd17113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17227 RA_ARAP2 340747 cd17113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17228 RA_ARAP3 340748 cd17113 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17229 RA1_PLC-eps... 340749 cd17114 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17230 TGS_DRG1 340750 cd01666 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17231 TGS_DRG2 340751 cd01666 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17232 Ubl_ATG8_GA... 340752 cd16127 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17233 Ubl_ATG8_GA... 340753 cd16127 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17234 Ubl_ATG8_MA... 340754 cd16129 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17235 Ubl_ATG8_MA... 340755 cd16129 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17236 Ubl_ATG8_MA... 340756 cd16129 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17237 FERM_F1_Moesin 340757 cd17187 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17238 FERM_F1_Rad... 340758 cd17187 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17239 FERM_F1_Ezrin 340759 cd17187 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17240 RA_PHLPP1 340760 cd17213 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17241 RA_PHLPP2 340761 cd17213 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17243 RMtype1_S_A... 341132 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17244 RMtype1_S_A... 341133 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17245 RMtype1_S_T... 341134 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17246 RMtype1_S_S... 341135 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17247 RMtype1_S_E... 341136 cd17514 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17248 RMtype1_S_A... 341137 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17249 RMtype1_S_E... 341138 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17250 RMtype1_S_E... 341139 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17251 RMtype1_S_H... 341140 cd17516 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17252 RMtype1_S_E... 341141 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17253 RMtype1_S_E... 341142 cd17517 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17254 RMtype1_S_F... 341143 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17255 RMtype1_S_F... 341144 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17256 RMtype1_S_E... 341145 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17257 RMtype1_S_E... 341146 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17258 RMtype1_S_S... 341147 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17259 RMtype1_S_S... 341148 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17260 RMtype1_S_E... 341149 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17261 RMtype1_S_E... 341150 cd17517 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17262 RMtype1_S_A... 341151 cd16961 cd16961 1 1 0 0 06/09/17 14:33:00 -cd17263 RMtype1_S_A... 341152 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17264 RMtype1_S_E... 341153 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17265 RMtype1_S_E... 341154 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17266 RMtype1_S_S... 341155 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17267 RMtype1_S_E... 341156 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17268 RMtype1_S_A... 341157 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17269 RMtype1_S_P... 341158 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17270 RMtype1_S_S... 341159 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17271 RMtype1_S_N... 341160 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17272 RMtype1_S_E... 341161 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17273 RMtype1_S_E... 341162 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17274 RMtype1_S_E... 341163 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17275 RMtype1_S_M... 341164 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17276 RMtype1_S_S... 341165 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17277 RMtype1_M_C... 341166 cd17514 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17278 RMtype1_S_L... 341167 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17279 RMtype1_S_B... 341168 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17280 RMtype1_S_M... 341169 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17281 RMtype1_S_H... 341170 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17282 RMtype1_S_E... 341171 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17283 RMtype1_S_H... 341172 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17284 RMtype1_S_C... 341173 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17285 RMtype1_S_C... 341174 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17286 RMtype1_S_L... 341175 cd17516 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17287 RMtype1_S_E... 341176 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17288 RMtype1_S_L... 341177 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17289 RMtype1_S_B... 341178 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17290 RMtype1_S_A... 341179 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17291 RMtype1_S_M... 341180 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17292 RMtype1_S_L... 341181 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17293 RMtype1_S_P... 341182 cd17516 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17294 RMtype1_S_M... 341183 cd17514 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17296 RMtype1_S_M... 341184 cd17514 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17297 AldB-like 341209 N/A cd17297 1 1 0 0 06/09/17 14:34:00 -cd17298 DUF1907 341210 cd17297 cd17297 1 1 0 0 06/09/17 14:34:00 -cd17299 acetolactat... 341211 cd17297 cd17297 1 1 0 0 06/09/17 14:34:00 -cd17300 PIPKc_PIKfyve 340437 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17301 PIPKc_PIP5KI 340438 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17302 PIPKc_AtPIP... 340439 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17303 PIPKc_PIP5K... 340440 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17304 PIPKc_PIP5KL1 340441 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17305 PIPKc_PIP5KII 340442 cd00139 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17306 PIPKc_PIP5K... 340443 cd17301 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17307 PIPKc_PIP5K1B 340444 cd17301 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17308 PIPKc_PIP5K1C 340445 cd17301 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17309 PIPKc_PIP5K2A 340446 cd17305 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17310 PIPKc_PIP5K2B 340447 cd17305 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17311 PIPKc_PIP5K2C 340448 cd17305 cd00139 1 1 0 0 06/09/17 14:30:00 -cd17312 MFS_OPA_SLC37 340870 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17313 MFS_SLC45_SUC 340871 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17314 MFS_MCT_like 340872 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17315 MFS_GLUT_like 340873 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17316 MFS_SV2_like 340874 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17317 MFS_SLC22 340875 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17318 MFS_SLC17 340876 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17319 MFS_ExuT_Gu... 340877 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17320 MFS_MdfA_MD... 340878 cd06174 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17321 MFS_MMR_MDR... 340879 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17322 MFS_ARN_like 340880 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17323 MFS_Tpo1_MD... 340881 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17324 MFS_NepI_like 340882 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17325 MFS_MdtG_SL... 340883 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17326 MFS_MFSD8 340884 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17327 MFS_FEN2_like 340885 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17328 MFS_spinste... 340886 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17329 MFS_MdtH_MD... 340887 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17330 MFS_SLC46_T... 340888 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17331 MFS_SLC22A18 340889 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17332 MFS_MelB_like 340890 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17333 MFS_FucP_MF... 340891 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17334 MFS_SLC49 340892 cd06174 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17335 MFS_MFSD6 340893 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17336 MFS_SLCO_OATP 340894 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17337 MFS_CsbX 340895 cd06174 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17338 MFS_unc93_like 340896 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17339 MFS_NIMT_Cy... 340897 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17340 MFS_MFSD1 340898 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17341 MFS_NRT2_like 340899 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17342 MFS_SLC37A3 340900 cd17312 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17343 MFS_SLC37A4 340901 cd17312 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17344 MFS_SLC37A1_2 340902 cd17312 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17345 MFS_GlpT 340903 cd17312 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17346 MFS_DtpA_like 340904 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17347 MFS_SLC15A1... 340905 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17348 MFS_SLC15A3_4 340906 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17349 MFS_SLC15A5 340907 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17350 MFS_PTR2 340908 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17351 MFS_NPF 340909 cd06175 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17352 MFS_MCT_SLC16 340910 cd17314 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17353 MFS_OFA_like 340911 cd17314 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17354 MFS_Mch1p_like 340912 cd17314 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17355 MFS_YcxA_like 340913 cd17314 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17356 MFS_HXT 340914 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17357 MFS_GLUT_Cl... 340915 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17358 MFS_GLUT6_8... 340916 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17359 MFS_XylE_like 340917 cd17315 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17360 MFS_HMIT_like 340918 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17361 MFS_STP 340919 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17362 MFS_GLUT10_... 340920 cd17315 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17363 MFS_SV2 340921 cd17316 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17364 MFS_PhT 340922 cd17316 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17365 MFS_PcaK_like 340923 cd17316 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17366 MFS_ProP 340924 cd17316 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17367 MFS_KgtP 340925 cd17316 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17368 MFS_CitA 340926 cd17316 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17369 MFS_ShiA_like 340927 cd17316 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17370 MFS_MJ1317_... 340928 cd06174 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17371 MFS_MucK 340929 cd17316 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17372 MFS_SVOP_like 340930 cd17316 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17373 MFS_SLC22A1... 340931 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17374 MFS_OAT 340932 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17375 MFS_SLC22A1... 340933 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17376 MFS_SLC22A4... 340934 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17377 MFS_SLC22A15 340935 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17378 MFS_OCT_plant 340936 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17379 MFS_SLC22A1... 340937 cd17317 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17380 MFS_SLC17A9... 340938 cd17318 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17381 MFS_SLC17A5 340939 cd17318 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17382 MFS_SLC17A6... 340940 cd17318 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17383 MFS_SLC18A3... 340941 cd17325 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17384 MFS_SLC18A1... 340942 cd17325 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17385 MFS_SLC18B1 340943 cd17325 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17386 MFS_SLC46 340944 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17387 MFS_MFSD14 340945 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17388 MFS_TetA 340946 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17389 MFS_MFSD10 340947 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17390 MFS_MFSD9 340948 cd17330 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17391 MFS_MdtG_MD... 340949 cd17325 cd06174 2 1 0 0 07/11/18 17:55:00 -cd17392 MFS_MFSD2 340950 cd17332 cd06174 1 1 0 0 07/11/18 17:55:00 -cd17393 MFS_MosC_like 340951 cd17333 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17394 MFS_FucP_like 340952 cd17333 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17395 MFS_MFSD4 340953 cd17333 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17396 MFS_YdiM_like 340954 cd17333 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17397 MFS_DIRC2 340955 cd17334 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17398 MFS_FLVCR_like 340956 cd17334 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17399 MFS_MFSD7 340957 cd17334 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17400 MFS_SLCO1_O... 340958 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17401 MFS_SLCO2_O... 340959 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17402 MFS_SLCO3_O... 340960 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17403 MFS_SLCO4_O... 340961 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17404 MFS_SLCO5_O... 340962 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17405 MFS_SLCO6_O... 340963 cd17336 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17406 MFS_unc93A_... 340964 cd17338 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17407 MFS_MFSD11 340965 cd17338 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17408 MFS_unc93B1 340966 cd17338 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17409 MFS_NIMT_like 340967 cd17339 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17410 MFS_CynX_like 340968 cd17339 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17411 MFS_SLC15A2 340969 cd17347 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17412 MFS_SLC15A1 340970 cd17347 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17413 MFS_NPF6 340971 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17414 MFS_NPF4 340972 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17415 MFS_NPF3 340973 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17416 MFS_NPF1_2 340974 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17417 MFS_NPF5 340975 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17418 MFS_NPF8 340976 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17419 MFS_NPF7 340977 cd17351 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17420 MFS_MCT8_10 340978 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17421 MFS_MCT5 340979 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17422 MFS_MCT7 340980 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17423 MFS_MCT11_13 340981 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17424 MFS_MCT12 340982 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17425 MFS_MCT6 340983 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17426 MFS_MCT1 340984 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17427 MFS_MCT2 340985 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17428 MFS_MCT9 340986 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17429 MFS_MCT14 340987 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17430 MFS_MCT3_4 340988 cd17352 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17431 MFS_GLUT_Cl... 340989 cd17357 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17432 MFS_GLUT_Cl... 340990 cd17357 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17433 MFS_GLUT8_C... 340991 cd17358 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17434 MFS_GLUT6_C... 340992 cd17358 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17435 MFS_GLUT12_... 340993 cd17362 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17436 MFS_GLUT10_... 340994 cd17362 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17437 MFS_PLT 340995 cd17362 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17438 MFS_SV2B 340996 cd17363 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17439 MFS_SV2A 340997 cd17363 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17440 MFS_SV2C 340998 cd17363 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17441 MFS_SVOP 340999 cd17372 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17442 MFS_SVOPL 341000 cd17372 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17443 MFS_SLC22A31 341001 cd17373 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17444 MFS_SLC22A23 341002 cd17373 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17445 MFS_SLC22A17 341003 cd17373 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17446 MFS_SLC22A6... 341004 cd17374 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17447 MFS_SLC22A7... 341005 cd17374 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17448 MFS_SLC46A3 341006 cd17386 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17449 MFS_SLC46A1... 341007 cd17386 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17450 MFS_SLC46A2... 341008 cd17386 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17451 MFS_NLS1_MF... 341009 cd17392 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17452 MFS_MFSD2B 341010 cd17392 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17453 MFS_MFSD4A 341011 cd17395 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17454 MFS_NaGLT1_... 341012 cd17395 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17455 MFS_FLVCR1 341013 cd17398 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17456 MFS_FLVCR2 341014 cd17398 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17457 MFS_SLCO1B_... 341015 cd17400 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17458 MFS_SLCO1A_... 341016 cd17400 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17459 MFS_SLCO1C_... 341017 cd17400 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17460 MFS_SLCO2B_... 341018 cd17401 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17461 MFS_SLCO2A_... 341019 cd17401 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17462 MFS_SLCO4A_... 341020 cd17403 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17463 MFS_SLCO4C_... 341021 cd17403 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17464 MFS_MCT10 341022 cd17420 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17465 MFS_MCT8 341023 cd17420 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17466 T3SS_Flik_C... 350654 N/A cd17466 1 1 0 0 07/11/18 18:01:00 -cd17467 T3SS_YscP_C 350655 cd17466 cd17466 1 1 0 0 07/11/18 18:01:00 -cd17468 T3SS_HrpP_C 350656 cd17466 cd17466 1 1 0 0 07/11/18 18:01:00 -cd17470 T3SS_Flik_C 350657 cd17466 cd17466 1 1 0 0 07/11/18 18:01:00 -cd17471 MFS_Set 341024 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17472 MFS_YajR_like 341025 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17473 MFS_arabino... 341026 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17474 MFS_YfmO_like 341027 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17475 MFS_MT3072_... 341028 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17476 MFS_Amf1_MD... 341029 cd17321 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17477 MFS_YcaD_like 341030 cd06174 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17478 MFS_FsR 341031 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17479 MFS_MFSD6L 341032 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17480 MFS_SLC40A1... 341033 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17481 MFS_MFSD13A 341034 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17482 MFS_YxiO_like 341035 cd06174 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17483 MFS_Atg22_like 341036 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17484 MFS_FBT 341037 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17485 MFS_MFSD3 341038 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17486 MFS_AmpG_like 341039 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17487 MFS_MFSD5_like 341040 cd06174 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17488 MFS_UhpC 341041 cd17312 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17489 MFS_YfcJ_like 341042 cd17325 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17490 MFS_YxlH_like 341043 cd17325 cd06174 2 1 0 0 07/11/18 17:56:00 -cd17491 MFS_MFSD12 341044 cd17332 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17492 toxin_CptN 341212 N/A cd17492 1 1 0 0 06/09/17 14:34:00 -cd17493 toxin_TenpN 341213 N/A cd17493 1 1 0 0 06/09/17 14:34:00 -cd17494 RMtype1_S_S... 341185 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17495 RMtype1_S_C... 341186 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17496 RMtype1_S_B... 341187 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17497 RMtype1_S_T... 341188 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17498 RMtype1_S_A... 341189 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17499 RMtype1_S_C... 341190 cd17245 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17500 RMtype1_S_M... 341191 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17501 RMtype1_S_V... 341192 cd17515 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17502 MFS_Azr1_MD... 341045 cd17321 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17503 MFS_LmrB_MD... 341046 cd17321 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17504 MFS_MMR_MDR... 341047 cd17321 cd06174 1 1 0 0 07/11/18 17:56:00 -cd17505 Ubl_SAMP1_like 340762 cd17040 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17506 Ubl_SAMP2_like 340763 cd17040 cd00196 1 1 0 0 06/09/17 14:31:00 -cd17507 GT28_Beta-D... 340861 cd01635 cd01635 1 1 0 0 06/09/17 14:32:00 -cd17508 Alpha_kinase 341225 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd17509 Alpha_kinase 341226 cd04515 cd04515 1 1 0 0 06/12/17 09:14:00 -cd17510 T3SC_YbjN-l... 341121 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17511 YbjN_AmyR-like 341122 cd16364 cd16364 1 1 0 0 06/09/17 14:33:00 -cd17512 RMtype1_S_B... 341193 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17513 RMtype1_S_A... 341194 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17514 RMtype1_S_E... 341195 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17515 RMtype1_S_M... 341196 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17516 RMtype1_S_H... 341197 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17517 RMtype1_S_E... 341198 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17518 RMtype1_S_A... 341199 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17519 RMtype1_S_H... 341200 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17520 RMtype1_S_H... 341201 cd16961 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17521 RMtype1_S_S... 341202 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17522 RMtype1_S_M... 341203 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17523 RMtype1_S_S... 341204 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17524 RMtype1_S_E... 341205 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17525 RMtype1_S_E... 341206 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17526 RMtype1_S_C... 341207 cd17517 cd16961 1 1 0 0 06/09/17 14:34:00 -cd17630 OSB_MenE-like 341285 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17631 FACL_FadD13... 341286 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17632 AFD_CAR-like 341287 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17633 AFD_YhfT-like 341288 cd04433 cd04433 1 1 0 0 08/11/17 14:26:00 -cd17634 ACS-like 341289 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17635 FADD10 341290 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17636 PtmA 341291 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17637 ACLS-CaiC 341292 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17638 FadD3 341293 cd04433 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17639 LC_FACS_euk1 341294 cd05907 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17640 LC_FACS_like 341295 cd05907 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17641 LC_FACS_bac1 341296 cd05907 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17642 Firefly_Luc 341297 cd05911 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17643 A_NRPS_Cytc... 341298 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17644 A_NRPS_ApnA... 341299 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17645 A_NRPS_LgrA... 341300 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17646 A_NRPS_AB34... 341301 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17647 A_NRPS_alphaAR 341302 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17648 A_NRPS_ACVS... 341303 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17649 A_NRPS_PvdJ... 341304 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17650 A_NRPS_PpsD... 341305 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17651 A_NRPS_VisG... 341306 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17652 A_NRPS_CmdD... 341307 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17653 A_NRPS_GliP... 341308 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17654 A_NRPS_acs4 341309 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17655 A_NRPS_Bac 341310 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17656 A_NRPS_ProA 341311 cd05930 cd04433 1 1 0 0 07/26/17 17:22:00 -cd17657 CDC14_N 350495 cd14494 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17658 PTPc_plant_... 350496 cd00047 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17659 PTP_paladin_1 350497 cd14496 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17660 PTP_paladin_2 350498 cd14496 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17661 PFA-DSP_Oca2 350499 cd14501 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17662 PFA-DSP_Oca4 350500 cd14501 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17663 PFA-DSP_Oca6 350501 cd14501 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17664 Mce1_N 350502 cd14502 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17665 DSP_DUSP11 350503 cd14502 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17666 PTP-MTM-lik... 350504 cd14507 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17667 R-PTPc-G-1 350505 cd14549 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17668 R-PTPc-Z-1 350506 cd14549 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17669 R-PTP-Z-2 350507 cd14550 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17670 R-PTP-G-2 350508 cd14550 cd14494 1 1 0 0 07/11/18 18:00:00 -cd17672 MDM2 349491 cd10566 cd00855 1 1 0 0 07/11/18 17:52:00 -cd17673 MDM4 349492 cd10566 cd00855 1 1 0 0 07/11/18 17:52:00 -cd17674 SWIB_BAF60A 349493 cd10568 cd00855 1 1 0 0 07/11/18 17:52:00 -cd17675 SWIB_BAF60B 349494 cd10568 cd00855 1 1 0 0 07/11/18 17:52:00 -cd17676 SWIB_BAF60C 349495 cd10568 cd00855 1 1 0 0 07/11/18 17:52:00 -cd17706 MCM 350658 N/A cd17706 1 1 0 0 07/11/18 18:01:00 -cd17707 BRCT_XRCC1_... 349340 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17709 BRCT_pescad... 349341 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17710 BRCT_PAXIP1... 349342 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17711 BRCT_PAXIP1... 349343 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17712 BRCT_PAXIP1... 349344 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17713 BRCT_polyme... 349345 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17714 BRCT_PAXIP1... 349346 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17715 BRCT_polyme... 349347 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17716 BRCT_microc... 349348 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17717 BRCT_DNA_li... 349349 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17718 BRCT_TopBP1... 349350 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17719 BRCT_Rev1 349351 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17720 BRCT_Bard1_... 349352 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17721 BRCT_BRCA1_... 349353 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17722 BRCT_DNA_li... 349354 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17723 BRCT_Rad4_rpt4 349355 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17724 BRCT_p53bp1... 349356 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17725 BRCT_XRCC1_... 349357 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17726 BRCT_PARP4_... 349358 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17727 BRCT_TopBP1... 349359 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17728 BRCT_TopBP1... 349360 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17729 BRCT_CTDP1 349361 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17730 BRCT_PAXIP1... 349362 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17731 BRCT_TopBP1... 349363 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17732 BRCT_Ect2_rpt2 349364 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17733 BRCT_Ect2_rpt1 349365 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17734 BRCT_Bard1_... 349366 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17735 BRCT_BRCA1_... 349367 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17736 BRCT_microc... 349368 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17737 BRCT_TopBP1... 349369 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17738 BRCT_TopBP1... 349370 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17740 BRCT_Rad4_rpt1 349371 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17741 BRCT_nibrin 349372 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17742 BRCT_CHS5_like 349373 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17743 BRCT_BRC1_l... 349374 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17744 BRCT_MDC1_rpt1 349375 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17745 BRCT_p53bp1... 349376 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17746 BRCT_Rad4_rpt2 349377 cd17731 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17747 BRCT_PARP1 349378 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17748 BRCT_DNA_li... 349379 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17749 BRCT_TopBP1... 349380 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17750 BRCT_SLF1 349381 cd17738 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17751 BRCT_microc... 349382 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17752 BRCT_RFC1 349383 cd17748 cd00027 1 1 0 0 07/11/18 17:50:00 -cd17753 MCM2 350659 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17754 MCM3 350660 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17755 MCM4 350661 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17756 MCM5 350662 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17757 MCM6 350663 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17758 MCM7 350664 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17759 MCM8 350665 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17760 MCM9 350666 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17761 MCM_arch 350667 cd17706 cd17706 1 1 0 0 07/11/18 18:01:00 -cd17762 AMN 350162 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17763 UP_hUPP-like 350163 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17764 MTAP_SsMTAP... 350164 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17765 PNP_ThPNP_like 350165 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17766 futalosine_... 350166 cd17877 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17767 UP_EcUdp-like 350167 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17768 adenosylhop... 350168 cd17877 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17769 NP_TgUP-like 350169 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17771 CBS_pair_CA... 341407 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17772 CBS_pair_DH... 341408 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17773 CBS_pair_NeuB 341409 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17774 CBS_two-com... 341410 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17775 CBS_pair_ba... 341411 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17776 CBS_pair_arch 341412 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17777 CBS_arch_re... 341413 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17778 CBS_arch_re... 341414 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17779 CBS_archAMP... 341415 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17780 CBS_pair_ar... 341416 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17781 CBS_pair_MU... 341417 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17782 CBS_pair_MU... 341418 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17783 CBS_pair_bac 341419 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17784 CBS_pair_Eu... 341420 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17785 CBS_pair_ba... 341421 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17786 CBS_pair_Th... 341422 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17787 CBS_pair_ACT 341423 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17788 CBS_pair_bac 341424 cd02205 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17789 CBS_pair_pl... 341425 cd04586 cd02205 1 1 0 0 07/31/17 15:57:00 -cd17790 7tmA_mAChR_M1 341356 cd15049 cd14964 1 1 0 0 07/26/17 17:25:00 -cd17791 HipA-like 341490 N/A cd17791 1 1 0 0 08/11/17 17:40:00 -cd17792 CtkA 341491 cd17791 cd17791 1 1 0 0 08/11/17 17:40:00 -cd17793 HipA 341492 cd17791 cd17791 1 1 0 0 08/11/17 17:40:00 -cd17808 HipA_Ec_like 341493 cd17793 cd17791 1 1 0 0 08/11/17 17:40:00 -cd17809 HipA_So_like 341494 cd17793 cd17791 1 1 0 0 08/11/17 17:40:00 -cd17814 Fe-ADH-like 341489 cd08551 cd07766 1 1 0 0 08/11/17 17:40:00 -cd17868 GPN 349777 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17869 TadZ-like 349778 cd01983 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17870 GPN1 349779 cd17868 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17871 GPN2 349780 cd17868 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17872 GPN3 349781 cd17868 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17873 FlhF 349782 cd03115 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17874 FtsY 349783 cd03115 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17875 SRP54_G 349784 cd03115 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17876 SRalpha_C 349785 cd03115 cd01983 1 1 0 0 07/11/18 17:53:00 -cd17877 NP_MTAN-like 350170 cd09005 cd09005 1 1 0 0 07/11/18 17:58:00 -cd17880 D-Ala-D-Ala... 350625 cd14814 cd14814 1 1 0 0 07/11/18 18:00:00 -cd17900 ArfGap_ASAP3 350087 cd08834 cd08204 1 1 0 0 07/11/18 17:57:00 -cd17901 ArfGap_ARAP1 350088 cd08837 cd08204 1 1 0 0 07/11/18 17:57:00 -cd17902 ArfGap_ARAP3 350089 cd08837 cd08204 1 1 0 0 07/11/18 17:57:00 -cd17903 ArfGap_AGFG2 350090 cd08838 cd08204 1 1 0 0 07/11/18 17:57:00 -cd17912 DEAD-like_h... 350670 N/A cd17912 1 1 0 0 07/11/18 18:01:00 -cd17913 DEXQc_Suv3 350671 cd17912 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17914 DExxQc_SF1-N 350672 cd17912 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17915 DEAHc_XPD-like 350673 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17916 DEXHc_UvrB 350674 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17917 DEXHc_RHA-like 350675 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17918 DEXHc_RecG 350676 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17919 DEXHc_Snf 350677 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17920 DEXHc_RecQ 350678 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17921 DEXHc_Ski2 350679 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17922 DEXHc_LHR-like 350680 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17923 DEXHc_Hrq1-... 350681 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17924 DDXDc_rever... 350682 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17925 DEXDc_ComFA 350683 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17926 DEXHc_RE 350684 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17927 DEXHc_RIG-I 350685 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17928 DEXDc_SecA 350686 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17929 DEXHc_priA 350687 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17930 DEXHc_cas3 350688 cd00046 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17931 DEXHc_viral... 350689 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17932 DEXQc_UvrD 350690 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17933 DEXSc_RecD-... 350691 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17934 DEXXQc_Upf1... 350692 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17935 EEXXQc_AQR 350693 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17936 EEXXEc_NFX1 350694 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17937 DEXXYc_vira... 350695 cd17914 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17938 DEADc_DDX1 350696 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17939 DEADc_EIF4A 350697 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17940 DEADc_DDX6 350698 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17941 DEADc_DDX10 350699 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17942 DEADc_DDX18 350700 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17943 DEADc_DDX20 350701 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17944 DEADc_DDX21... 350702 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17945 DEADc_DDX23 350703 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17946 DEADc_DDX24 350704 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17947 DEADc_DDX27 350705 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17948 DEADc_DDX28 350706 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17949 DEADc_DDX31 350707 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17950 DEADc_DDX39 350708 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17951 DEADc_DDX41 350709 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17952 DEADc_DDX42 350710 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17953 DEADc_DDX46 350711 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17954 DEADc_DDX47 350712 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17955 DEADc_DDX49 350713 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17956 DEADc_DDX51 350714 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17957 DEADc_DDX52 350715 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17958 DEADc_DDX43... 350716 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17959 DEADc_DDX54 350717 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17960 DEADc_DDX55 350718 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17961 DEADc_DDX56 350719 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17962 DEADc_DDX59 350720 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17963 DEADc_DDX19... 350721 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17964 DEADc_MSS116 350722 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17965 DEADc_MRH4 350723 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17966 DEADc_DDX5_... 350724 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17967 DEADc_DDX3_... 350725 cd00268 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17968 DEAHc_DDX11... 350726 cd17915 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17969 DEAHc_XPD 350727 cd17915 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17970 DEAHc_FancJ 350728 cd17915 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17971 DEXHc_DHX8 350729 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17972 DEXHc_DHX9 350730 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17973 DEXHc_DHX15 350731 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17974 DEXHc_DHX16 350732 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17975 DEXHc_DHX29 350733 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17976 DEXHc_DHX30 350734 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17977 DEXHc_DHX32 350735 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17978 DEXHc_DHX33 350736 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17979 DEXHc_DHX34 350737 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17980 DEXHc_DHX35 350738 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17981 DEXHc_DHX36 350739 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17982 DEXHc_DHX37 350740 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17983 DEXHc_DHX38 350741 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17984 DEXHc_DHX40 350742 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17985 DEXHc_DHX57 350743 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17986 DEXQc_DQX1 350744 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17987 DEXHc_YTHDC2 350745 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17988 DEXHc_TDRD9 350746 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17989 DEXHc_HrpA 350747 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17990 DEXHc_HrpB 350748 cd17917 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17991 DEXHc_TRCF 350749 cd17918 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17992 DEXHc_RecG 350750 cd17918 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17993 DEXHc_CHD1_2 350751 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17994 DEXHc_CHD3_4_5 350752 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17995 DEXHc_CHD6_... 350753 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17996 DEXHc_SMARC... 350754 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17997 DEXHc_SMARC... 350755 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17998 DEXHc_SMARCAD1 350756 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd17999 DEXHc_Mot1 350757 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18000 DEXHc_ERCC6 350758 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18001 DEXHc_ERCC6L 350759 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18002 DEXQc_INO80 350760 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18003 DEXQc_SRCAP 350761 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18004 DEXHc_RAD54 350762 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18005 DEXHc_ERCC6L2 350763 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18006 DEXHc_CHD1L 350764 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18007 DEXHc_ATRX-... 350765 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18008 DEXDc_SHPRH... 350766 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18009 DEXHc_HELLS... 350767 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18010 DEXHc_HARP_... 350768 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18011 DEXDc_RapA 350769 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18012 DEXQc_arch_... 350770 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18013 DEXQc_bact_... 350771 cd17919 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18014 DEXHc_RecQ5 350772 cd17920 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18015 DEXHc_RecQ1 350773 cd17920 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18016 DEXHc_RecQ2... 350774 cd17920 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18017 DEXHc_RecQ3 350775 cd17920 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18018 DEXHc_RecQ4... 350776 cd17920 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18019 DEXHc_Brr2_1 350777 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18020 DEXHc_ASCC3_1 350778 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18021 DEXHc_Brr2_2 350779 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18022 DEXHc_ASCC3_2 350780 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18023 DEXHc_HFM1 350781 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18024 DEXHc_Mtr4-... 350782 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18025 DEXHc_DDX60 350783 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18026 DEXHc_POLQ-... 350784 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18027 DEXHc_SKIV2L 350785 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18028 DEXHc_archSki2 350786 cd17921 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18029 DEXHc_XPB 350787 cd17926 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18030 DEXHc_RE_I_... 350788 cd17926 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18031 DEXHc_UvsW 350789 cd17926 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18032 DEXHc_RE_I_... 350790 cd17926 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18033 DEXDc_FANCM 350791 cd17927 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18034 DEXHc_dicer 350792 cd17927 cd17912 1 1 0 0 07/11/18 18:01:00 -cd18035 DEXHc_Hef 350793 cd17927 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18036 DEXHc_RLR 350794 cd17927 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18037 DEXSc_Pif1_... 350795 cd17933 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18038 DEXXQc_Helz... 350796 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18039 DEXXQc_UPF1 350797 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18040 DEXXc_HELZ2-C 350798 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18041 DEXXQc_DNA2 350799 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18042 DEXXQc_SETX 350800 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18043 DEXXQc_SF1 350801 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18044 DEXXQc_SMUBP2 350802 cd17934 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18045 DEADc_EIF4A... 350803 cd17939 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18046 DEADc_EIF4A... 350804 cd17939 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18047 DEADc_DDX19 350805 cd17963 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18048 DEADc_DDX25 350806 cd17963 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18049 DEADc_DDX5 350807 cd17966 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18050 DEADc_DDX17 350808 cd17966 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18051 DEADc_DDX3 350809 cd17967 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18052 DEADc_DDX4 350810 cd17967 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18053 DEXHc_CHD1 350811 cd17993 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18054 DEXHc_CHD2 350812 cd17993 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18055 DEXHc_CHD3 350813 cd17994 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18056 DEXHc_CHD4 350814 cd17994 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18057 DEXHc_CHD5 350815 cd17994 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18058 DEXHc_CHD6 350816 cd17995 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18059 DEXHc_CHD7 350817 cd17995 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18060 DEXHc_CHD8 350818 cd17995 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18061 DEXHc_CHD9 350819 cd17995 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18062 DEXHc_SMARCA4 350820 cd17996 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18063 DEXHc_SMARCA2 350821 cd17996 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18064 DEXHc_SMARCA5 350822 cd17997 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18065 DEXHc_SMARCA1 350823 cd17997 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18066 DEXHc_RAD54B 350824 cd18004 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18067 DEXHc_RAD54A 350825 cd18004 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18068 DEXHc_ATRX 350826 cd18007 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18069 DEXHc_ARIP4 350827 cd18007 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18070 DEXQc_SHPRH 350828 cd18008 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18071 DEXHc_HLTF1... 350829 cd18008 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18072 DEXHc_TTF2 350830 cd18008 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18073 DEXHc_RIG-I... 350831 cd18036 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18074 DEXHc_RLR-2 350832 cd18036 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18075 DEXHc_RLR-3 350833 cd18036 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18076 DEXXQc_HELZ2-N 350834 cd18038 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18077 DEXXQc_HELZ 350835 cd18038 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18078 DEXXQc_Mov10L1 350836 cd18038 cd17912 1 1 0 0 07/11/18 18:02:00 -cd18079 S-AdoMet_synt 350837 N/A cd18079 1 1 0 0 07/11/18 18:02:00 -cd18080 TrmD-like 349953 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18081 RlmH-like 349954 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18082 SpoU-like_f... 349955 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18083 aTrm56-like 349956 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18084 RsmE-like 349957 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18085 TM1570-like 349958 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18086 HsC9orf114-... 349959 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18087 TrmY-like 349960 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18088 Nep1-like 349961 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18089 SPOUT_Trm10... 349962 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18090 Arginine_MT... 349963 cd07060 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18091 SpoU-like_T... 349964 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18092 SpoU-like_TrmH 349965 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18093 SpoU-like_TrmJ 349966 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18094 SpoU-like_TrmL 349967 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18095 SpoU-like_r... 349968 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18096 SpoU-like 349969 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18097 SpoU-like 349970 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18098 SpoU-like 349971 cd18082 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18099 Trm10arch 349972 cd18089 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18100 Trm10euk_B 349973 cd18089 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18101 Trm10euk_A 349974 cd18089 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18102 Trm10_MRRP1 349975 cd18089 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18103 SpoU-like_RlmB 349976 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18104 SpoU-like_R... 349977 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18105 SpoU-like_MRM1 349978 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18106 SpoU-like_R... 349979 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18107 SpoU-like_A... 349980 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18108 SpoU-like_NHR 349981 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18109 SpoU-like_R... 349982 cd18095 cd07060 1 1 0 0 07/11/18 17:56:00 -cd18110 ATP-synt_F1... 349745 cd01429 cd01429 1 1 0 0 07/11/18 17:53:00 -cd18111 ATP-synt_V_... 349746 cd01429 cd01429 1 1 0 0 07/11/18 17:53:00 -cd18112 ATP-synt_V_... 349747 cd01429 cd01429 1 1 0 0 07/11/18 17:53:00 -cd18113 ATP-synt_F1... 349748 cd01429 cd01429 1 1 0 0 07/11/18 17:53:00 -cd18114 ATP-synt_fl... 349749 cd01429 cd01429 1 1 0 0 07/11/18 17:53:00 -cd18115 ATP-synt_F1... 349739 cd01426 cd01426 1 1 0 0 07/11/18 17:53:00 -cd18116 ATP-synt_F1... 349740 cd01426 cd01426 1 1 0 0 07/11/18 17:53:00 -cd18117 ATP-synt_fl... 349741 cd01426 cd01426 1 1 0 0 07/11/18 17:53:00 -cd18118 ATP-synt_V_... 349742 cd01426 cd01426 1 1 0 0 07/11/18 17:53:00 -cd18119 ATP-synt_V_... 349743 cd01426 cd01426 1 1 0 0 07/11/18 17:53:00 -cd18120 ATP-synt_Vo... 349413 cd00313 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18121 ATP-synt_Fo_c 349414 cd00313 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18133 HLD_clamp 350838 N/A cd18133 1 1 0 0 07/11/18 18:02:00 -cd18137 HLD_clamp_p... 350839 cd18133 cd18133 1 1 0 0 07/11/18 18:02:00 -cd18138 HLD_clamp_p... 350840 cd18133 cd18133 1 1 0 0 07/11/18 18:02:00 -cd18139 HLD_clamp_RarA 350841 cd18133 cd18133 1 1 0 0 07/11/18 18:02:00 -cd18140 HLD_clamp_RFC 350842 cd18133 cd18133 1 1 0 0 07/11/18 18:02:00 -cd18172 M14_CP_plant 349482 cd03858 cd00596 1 1 0 0 07/11/18 17:51:00 -cd18173 M14_CP_bact... 349483 cd03858 cd00596 1 1 0 0 07/11/18 17:51:00 -cd18174 M14_ASTE_AS... 349484 cd06230 cd00596 1 1 0 0 07/11/18 17:51:00 -cd18175 ATP-synt_Vo... 349415 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18176 ATP-synt_Vo... 349416 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18177 ATP-synt_Vo... 349417 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18178 ATP-synt_Vo... 349418 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18179 ATP-synt_Vo... 349419 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18180 ATP-synt_Vo... 349420 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18181 ATP-synt_Vo... 349421 cd18120 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18182 ATP-synt_Fo... 349422 cd18121 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18183 ATP-synt_Fo... 349423 cd18121 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18184 ATP-synt_Fo... 349424 cd18121 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18185 ATP-synt_Fo... 349425 cd18121 cd00313 1 1 0 0 07/11/18 17:51:00 -cd18186 BTB_POZ_ZBT... 349497 cd01165 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18187 BTB_POZ_Kv_... 349498 cd01165 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18190 BTB_POZ_ETO... 349499 cd01165 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18191 BTB_POZ_ARMC5 349500 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18192 BTB_POZ_ZBTB1 349501 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18193 BTB_POZ_ZBTB2 349502 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18194 BTB_POZ_ZBT... 349503 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18195 BTB_POZ_ZBTB4 349504 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18196 BTB_POZ_ZBTB5 349505 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18197 BTB_POZ_ZBTB6 349506 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18198 BTB_POZ_ZBTB7 349507 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18199 BTB_POZ_ZBTB8 349508 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18200 BTB_POZ_ZBTB9 349509 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18201 BTB_POZ_ZBTB10 349510 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18202 BTB_POZ_ZBTB11 349511 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18203 BTB_POZ_ZBTB12 349512 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18204 BTB_POZ_ZBTB14 349513 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18205 BTB_POZ_ZBT... 349514 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18206 BTB_POZ_ZBT... 349515 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18207 BTB_POZ_ZBT... 349516 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18208 BTB_POZ_ZBT... 349517 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18209 BTB_POZ_ZBT... 349518 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18210 BTB_POZ_ZBT... 349519 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18211 BTB_POZ_ZBT... 349520 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18212 BTB_POZ_ZBT... 349521 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18213 BTB_POZ_ZBT... 349522 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18214 BTB_POZ_ZBT... 349523 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18215 BTB_POZ_ZBT... 349524 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18216 BTB_POZ_ZBT... 349525 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18217 BTB_POZ_ZBT... 349526 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18218 BTB_POZ_ZBT... 349527 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18219 BTB_POZ_ZBT... 349528 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18220 BTB_POZ_ZBTB34 349529 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18221 BTB_POZ_ZBT... 349530 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18222 BTB_POZ_ZBTB37 349531 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18223 BTB_POZ_ZBT... 349532 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18224 BTB_POZ_ZBTB39 349533 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18225 BTB_POZ_ZBTB40 349534 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18226 BTB_POZ_ZBTB41 349535 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18227 BTB_POZ_ZBTB43 349536 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18228 BTB_POZ_ZBTB44 349537 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18229 BTB_POZ_ZBTB45 349538 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18230 BTB_POZ_ZBTB46 349539 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18231 BTB_POZ_ZBT... 349540 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18232 BTB_POZ_ZBT... 349541 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18233 BTB_POZ_ZBTB49 349542 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18234 BTB_POZ_KLH... 349543 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18235 BTB_POZ_KLH... 349544 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18236 BTB_POZ_KLHL6 349545 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18237 BTB_POZ_KLHL7 349546 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18238 BTB_POZ_KLHL8 349547 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18239 BTB_POZ_KLH... 349548 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18240 BTB_POZ_KLHL10 349549 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18241 BTB_POZ_KLHL11 349550 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18242 BTB_POZ_KLH... 349551 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18243 BTB_POZ_KLH... 349552 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18244 BTB_POZ_KLHL15 349553 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18245 BTB_POZ_KLH... 349554 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18246 BTB_POZ_KLH... 349555 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18247 BTB_POZ_KLHL18 349556 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18248 BTB_POZ_KLH... 349557 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18249 BTB_POZ_KLH... 349558 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18250 BTB_POZ_KLHL21 349559 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18251 BTB_POZ_KLHL22 349560 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18252 BTB_POZ_KLHL23 349561 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18253 BTB_POZ_KLH... 349562 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18254 BTB_POZ_KLHL25 349563 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18255 BTB_POZ_KLHL26 349564 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18256 BTB_POZ_KLH... 349565 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18257 BTB_POZ_KLH... 349566 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18258 BTB_POZ_KLH... 349567 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18259 BTB_POZ_KLHL30 349568 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18260 BTB_POZ_KLH... 349569 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18261 BTB_POZ_KLHL32 349570 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18262 BTB1_POZ_KL... 349571 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18263 BTB2_POZ_KL... 349572 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18264 BTB_POZ_KLHL34 349573 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18265 BTB_POZ_KLHL35 349574 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18266 BTB_POZ_KLHL36 349575 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18267 BTB_POZ_KLH... 349576 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18268 BTB_POZ_KLHL38 349577 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18269 BTB_POZ_KLH... 349578 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18270 BTB_POZ_KBT... 349579 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18271 BTB_POZ_KBT... 349580 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18272 BTB_POZ_KBTBD4 349581 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18273 BTB_POZ_KBT... 349582 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18274 BTB_POZ_KBTBD8 349583 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18275 BTB_POZ_KBT... 349584 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18276 BTB_POZ_KBT... 349585 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18277 BTB_POZ_BACH1 349586 cd18955 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18278 BTB_POZ_BACH2 349587 cd18955 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18279 BTB_POZ_SPO... 349588 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18280 BTB_POZ_BPM... 349589 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18281 BTB_POZ_BTB... 349590 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18282 BTB_POZ_BTB... 349591 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18283 BTB1_POZ_BTBD7 349592 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18284 BTB2_POZ_BTBD7 349593 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18285 BTB1_POZ_BTBD8 349594 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18286 BTB2_POZ_BTBD8 349595 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18287 BTB_POZ_BTBD9 349596 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18288 BTB_POZ_BTB... 349597 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18289 BTB_POZ_BTB... 349598 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18290 BTB_POZ_BTB... 349599 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18291 BTB_POZ_BTBD16 349600 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18292 BTB_POZ_BTBD17 349601 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18293 BTB_POZ_BTBD18 349602 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18294 BTB_POZ_BTBD19 349603 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18295 BTB1_POZ_AB... 349604 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18296 BTB2_POZ_AB... 349605 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18297 BTB_POZ_ABT... 349606 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18298 BTB_POZ_RCB... 349607 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18299 BTB1_POZ_Rh... 349608 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18300 BTB2_POZ_Rh... 349609 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18301 BTB1_POZ_IBtk 349610 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18302 BTB2_POZ_IBtk 349611 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18303 BTB_POZ_Rank-5 349612 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18304 BTB_POZ_M2BP 349613 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18305 BTB_POZ_GCL 349614 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18306 BTB_POZ_NS1BP 349615 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18307 BTB_POZ_cal... 349616 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18308 BTB1_POZ_LZTR1 349617 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18309 BTB2_POZ_LZTR1 349618 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18310 BTB_POZ_NPR... 349619 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18311 BTB_POZ_CP1... 349620 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18312 BTB_POZ_NPY... 349621 cd01165 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18313 BTB_POZ_BT 349622 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18314 BTB_POZ_tri... 349623 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18315 BTB_POZ_BAB... 349624 cd18186 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18316 BTB_POZ_KCT... 349625 cd18187 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18317 BTB_POZ_Kv 349626 cd18187 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18318 BTB_POZ_KCT... 349627 cd18187 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18319 BTB_POZ_KLHL42 349628 cd01165 cd01165 1 1 0 0 07/11/18 17:52:00 -cd18320 BTB_POZ_KBT... 349629 cd01165 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18321 BTB_POZ_EloC 349630 cd01165 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18322 BTB_POZ_SKP1 349631 cd01165 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18323 BTB_POZ_ZBTB3 349632 cd18194 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18324 BTB_POZ_ZBT... 349633 cd18194 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18325 BTB_POZ_ZBT... 349634 cd18194 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18326 BTB_POZ_ZBTB7A 349635 cd18198 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18327 BTB_POZ_ZBT... 349636 cd18198 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18328 BTB_POZ_ZBT... 349637 cd18198 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18329 BTB_POZ_ZBT... 349638 cd18199 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18330 BTB_POZ_ZBTB8B 349639 cd18199 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18331 BTB_POZ_ZBT... 349640 cd18215 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18332 BTB_POZ_ZBT... 349641 cd18215 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18333 BTB_POZ_ZBT... 349642 cd18216 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18334 BTB_POZ_ZBT... 349643 cd18216 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18335 BTB_POZ_KLHL1 349644 cd18234 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18336 BTB_POZ_KLHL4 349645 cd18234 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18337 BTB_POZ_KLHL5 349646 cd18234 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18338 BTB_POZ_KLH... 349647 cd18235 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18339 BTB_POZ_KLHL3 349648 cd18235 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18340 BTB_POZ_KLH... 349649 cd18269 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18341 BTB_POZ_KLH... 349650 cd18269 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18342 BTB_POZ_SPOP 349651 cd18279 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18343 BTB_POZ_SPOPL 349652 cd18279 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18344 BTB_POZ_TDPOZ 349653 cd18279 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18345 BTB_POZ_roa... 349654 cd18279 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18346 BTB_POZ_BTBD1 349655 cd18281 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18347 BTB_POZ_BTBD2 349656 cd18281 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18348 BTB_POZ_BTBD3 349657 cd18282 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18349 BTB_POZ_BTBD6 349658 cd18282 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18350 BTB_POZ_ABT... 349659 cd18297 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18351 BTB_POZ_BTBD11 349660 cd18297 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18352 BTB_POZ_ARI... 349661 cd18297 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18353 BTB_POZ_RCB... 349662 cd18298 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18354 BTB_POZ_RCB... 349663 cd18298 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18355 BTB1_POZ_RH... 349664 cd18299 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18356 BTB1_POZ_RH... 349665 cd18299 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18357 BTB1_POZ_RH... 349666 cd18299 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18358 BTB2_POZ_RH... 349667 cd18300 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18359 BTB2_POZ_RH... 349668 cd18300 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18360 BTB2_POZ_RH... 349669 cd18300 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18361 BTB_POZ_KCT... 349670 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18362 BTB_POZ_KCT... 349671 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18363 BTB_POZ_KCT... 349672 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18364 BTB_POZ_KCTD4 349673 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18365 BTB_POZ_KCT... 349674 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18366 BTB_POZ_KCTD7 349675 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18367 BTB_POZ_KCT... 349676 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18368 BTB_POZ_KCTD9 349677 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18369 BTB_POZ_KCT... 349678 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18370 BTB_POZ_KCTD11 349679 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18371 BTB_POZ_KCTD14 349680 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18372 BTB_POZ_KCTD18 349681 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18373 BTB1_POZ_KC... 349682 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18374 BTB2_POZ_KC... 349683 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18375 BTB_POZ_KCNRG 349684 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18376 BTB_POZ_FIP... 349685 cd18316 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18377 BTB_POZ_Kv1... 349686 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18378 BTB_POZ_Kv2... 349687 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18379 BTB_POZ_Kv3... 349688 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18380 BTB_POZ_Kv4... 349689 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18381 BTB_POZ_Kv5... 349690 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18382 BTB_POZ_Kv6... 349691 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18384 BTB_POZ_Kv9... 349692 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18385 BTB_POZ_BTB... 349693 cd18318 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18386 BTB_POZ_KCTD20 349694 cd18318 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18387 BTB_POZ_KCTD1 349695 cd18361 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18388 BTB_POZ_KCTD15 349696 cd18361 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18389 BTB_POZ_KCTD2 349697 cd18362 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18390 BTB_POZ_KCTD5 349698 cd18362 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18391 BTB_POZ_KCTD17 349699 cd18362 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18392 BTB_POZ_KCTD3 349700 cd18363 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18393 BTB_POZ_SHKBP1 349701 cd18363 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18394 BTB_POZ_KCTD6 349702 cd18365 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18395 BTB_POZ_KCTD21 349703 cd18365 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18396 BTB_POZ_KCTD8 349704 cd18367 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18397 BTB_POZ_KCT... 349705 cd18367 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18398 BTB_POZ_KCTD16 349706 cd18367 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18399 BTB_POZ_KCT... 349707 cd18369 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18400 BTB_POZ_KCT... 349708 cd18369 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18401 BTB_POZ_TNF... 349709 cd18369 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18402 BTB_POZ_KCNA1 349710 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18403 BTB_POZ_KCN... 349711 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18405 BTB_POZ_KCNA4 349712 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18406 BTB_POZ_KCNA5 349713 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18407 BTB_POZ_KCNA6 349714 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18408 BTB_POZ_KCNA7 349715 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18409 BTB_POZ_KCNA10 349716 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18410 BTB_POZ_Sha... 349717 cd18377 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18411 BTB_POZ_KCNB1 349718 cd18378 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18412 BTB_POZ_KCNB2 349719 cd18378 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18413 BTB_POZ_Sha... 349720 cd18378 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18414 BTB_KCNC1_3 349721 cd18379 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18415 BTB_KCNC2_4 349722 cd18379 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18416 BTB_Shaw-like 349723 cd18379 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18417 BTB_POZ_KCND1 349724 cd18380 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18418 BTB_POZ_KCND2 349725 cd18380 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18419 BTB_POZ_KCND3 349726 cd18380 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18420 BTB_POZ_Sha... 349727 cd18380 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18421 BTB_POZ_KCN... 349728 cd18382 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18422 BTB_POZ_KCNG3 349729 cd18382 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18423 BTB_POZ_KCNG4 349730 cd18382 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18424 BTB_POZ_KCNV1 349731 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18425 BTB_POZ_KCNV2 349732 cd18317 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18426 BTB_POZ_KCNS1 349733 cd18384 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18427 BTB_POZ_KCNS2 349734 cd18384 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18428 BTB_POZ_KCNS3 349735 cd18384 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18429 M14_Nna1-like 349485 cd03856 cd00596 1 1 0 0 07/11/18 17:51:00 -cd18430 M14_ASTE_AS... 349486 cd06230 cd00596 1 1 0 0 07/11/18 17:51:00 -cd18431 BRCT_DNA_li... 349384 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18432 BRCT_PAXIP1... 349385 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18433 BRCT_Rad4_rpt3 349386 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18434 BRCT_TopBP1... 349387 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18435 BRCT_BRC1_l... 349388 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18436 BRCT_BRC1_l... 349389 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18437 BRCT_BRC1_l... 349390 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18438 BRCT_BRC1_l... 349391 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18439 BRCT_BRC1_l... 349392 cd00027 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18440 BRCT_PAXIP1... 349393 cd18432 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18441 BRCT_MDC1_rpt2 349394 cd18432 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18442 BRCT_polyme... 349395 cd17713 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18443 BRCT_DNTT 349396 cd17713 cd00027 1 1 0 0 07/11/18 17:50:00 -cd18444 BACK_KLHL1_... 350519 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18445 BACK_KLHL2_... 350520 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18446 BACK_KLHL6 350521 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18447 BACK_KLHL7 350522 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18448 BACK_KLHL8 350523 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18449 BACK_KLHL9_13 350524 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18450 BACK_KLHL10 350525 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18451 BACK_KLHL11 350526 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18452 BACK_KLHL12 350527 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18453 BACK_KLHL14 350528 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18454 BACK_KLHL15 350529 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18455 BACK_KLHL16... 350530 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18456 BACK_KLHL17 350531 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18457 BACK_KLHL18 350532 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18458 BACK_KLHL19... 350533 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18459 BACK_KLHL20 350534 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18460 BACK_KLHL21 350535 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18461 BACK_KLHL22 350536 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18462 BACK_KLHL23 350537 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18463 BACK_KLHL24 350538 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18464 BACK_KLHL25... 350539 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18465 BACK_KLHL26 350540 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18466 BACK_KLHL27... 350541 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18467 BACK_KLHL28... 350542 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18468 BACK_KLHL29... 350543 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18469 BACK_KLHL30 350544 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18470 BACK_KLHL31... 350545 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18471 BACK_KLHL32... 350546 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18472 BACK_KLHL33 350547 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18473 BACK_KLHL34 350548 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18474 BACK_KLHL35 350549 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18475 BACK_KLHL36 350550 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18476 BACK_KLHL38 350551 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18477 BACK_KLHL40... 350552 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18478 BACK_KLHL42... 350553 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18479 BACK_KBTBD2 350554 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18480 BACK_KBTBD3 350555 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18481 BACK_KBTBD4 350556 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18482 BACK_KBTBD6_7 350557 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18483 BACK_KBTBD8 350558 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18484 BACK_KBTBD1... 350559 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18485 BACK_KBTBD12 350560 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18486 BACK_KBTBD13 350561 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18487 BACK_BTBD1_... 350562 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18488 BACK_BTBD3_... 350563 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18489 BACK_BTBD7 350564 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18490 BACK_BTBD8 350565 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18491 BACK_ABTB2_... 350566 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18492 BACK_BTBD16 350567 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18493 BACK_BTBD17 350568 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18494 BACK_BTBD19 350569 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18495 BACK_GCL 350570 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18496 BACK_LGALS3BP 350571 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18497 BACK_ABTB1_... 350572 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18498 BACK_RCBTB1_2 350573 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18499 BACK_RHOBTB 350574 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18500 BACK_IBtk 350575 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18501 BACK_ANKFY1... 350576 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18502 BACK_NS1BP_... 350577 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18503 BACK_calicin 350578 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18504 BACK_ARIA_like 350579 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18505 BACK1_LZTR1 350580 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18506 BACK2_LZTR1 350581 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18507 BACK_GPRS_like 350582 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18508 BACK_KEL_like 350583 cd14733 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18509 BACK_KLHL1 350584 cd18444 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18510 BACK_KLHL4 350585 cd18444 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18511 BACK_KLHL5 350586 cd18444 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18512 BACK_KLHL2_... 350587 cd18445 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18513 BACK_KLHL3 350588 cd18445 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18514 BACK_KLHL25... 350589 cd18464 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18515 BACK_KLHL37... 350590 cd18464 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18516 BACK_KLHL40... 350591 cd18477 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18517 BACK_KLHL41... 350592 cd18477 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18518 BACK_SPOP 350593 cd14821 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18519 BACK_SPOPL 350594 cd14821 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18520 BACK_roadki... 350595 cd14821 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18521 BACK_Tdpoz 350596 cd14821 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18522 BACK_BTBD1 350597 cd18487 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18523 BACK_BTBD2 350598 cd18487 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18524 BACK_BTBD3 350599 cd18488 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18525 BACK_BTBD6 350600 cd18488 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18526 BACK_ABTB2 350601 cd18491 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18527 BACK_BTBD11 350602 cd18491 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18528 BACK_RCBTB1 350603 cd18498 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18529 BACK_RCBTB2 350604 cd18498 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18530 BACK_RHOBTB1 350605 cd18499 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18531 BACK_RHOBTB2 350606 cd18499 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18532 BACK_RHOBTB3 350607 cd18499 cd14733 1 1 0 0 07/11/18 18:00:00 -cd18533 PTP_fungal 350509 cd00047 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18534 DSP_plant_I... 350510 cd14498 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18535 PTP-IVa3 350511 cd14500 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18536 PTP-IVa2 350512 cd14500 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18537 PTP-IVa1 350513 cd14500 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18538 PFA-DSP_unk 350514 cd14501 cd14494 1 1 0 0 07/11/18 18:00:00 -cd18539 SRP_G 349786 cd03115 cd01983 1 1 0 0 07/11/18 17:53:00 -cd18540 ABC_6TM_exp... 349984 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18541 ABC_6TM_Tmr... 349985 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18542 ABC_6TM_Ykn... 349986 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18543 ABC_6TM_Rv0... 349987 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18544 ABC_6TM_Tmr... 349988 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18545 ABC_6TM_Ykn... 349989 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18546 ABC_6TM_Rv0... 349990 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18547 ABC_6TM_Tm2... 349991 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18548 ABC_6TM_Tm2... 349992 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18549 ABC_6TM_Ywj... 349993 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18550 ABC_6TM_exp... 349994 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18551 ABC_6TM_Lmr... 349995 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18552 ABC_6TM_Msb... 349996 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18553 ABC_6TM_Pgl... 349997 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18554 ABC_6TM_Sav... 349998 cd07346 cd07346 1 1 0 0 07/11/18 17:56:00 -cd18555 ABC_6TM_T1S... 349999 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18556 ABC_6TM_Mcj... 350000 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18557 ABC_6TM_TAP... 350001 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18558 ABC_6TM_Pgp... 350002 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18559 ABC_6TM_ABCC 350003 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18560 ABC_6TM_ATM... 350004 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18561 ABC_6TM_Aar... 350005 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18562 ABC_6TM_Ndv... 350006 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18563 ABC_6TM_exp... 350007 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18564 ABC_6TM_exp... 350008 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18565 ABC_6TM_exp... 350009 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18566 ABC_6TM_Prt... 350010 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18567 ABC_6TM_Cva... 350011 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18568 ABC_6TM_Het... 350012 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18569 ABC_6TM_NHL... 350013 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18570 ABC_6TM_PCA... 350014 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18571 ABC_6TM_pep... 350015 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18572 ABC_6TM_TAP 350016 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18573 ABC_6TM_ABC... 350017 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18574 ABC_6TM_ABC... 350018 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18575 ABC_6TM_bac... 350019 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18576 ABC_6TM_bac... 350020 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18577 ABC_6TM_Pgp... 350021 cd18558 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18578 ABC_6TM_Pgp... 350022 cd18558 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18579 ABC_6TM_ABC... 350023 cd18559 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18580 ABC_6TM_ABC... 350024 cd18559 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18581 ABC_6TM_ABCB6 350025 cd18560 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18582 ABC_6TM_ATM... 350026 cd18560 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18583 ABC_6TM_HMT1 350027 cd18560 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18584 ABC_6TM_Aar... 350028 cd18561 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18585 ABC_6TM_CydC 350029 cd18561 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18586 ABC_6TM_Prt... 350030 cd18566 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18587 ABC_6TM_Lap... 350031 cd18566 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18588 ABC_6TM_Cya... 350032 cd18566 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18589 ABC_6TM_TAP1 350033 cd18572 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18590 ABC_6TM_TAP2 350034 cd18572 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18591 ABC_6TM_SUR... 350035 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18592 ABC_6TM_MRP... 350036 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18593 ABC_6TM_MRP... 350037 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18594 ABC_6TM_CFT... 350038 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18595 ABC_6TM_MRP... 350039 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18596 ABC_6TM_VMR... 350040 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18597 ABC_6TM_YOR... 350041 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18598 ABC_6TM_MRP... 350042 cd18579 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18599 ABC_6TM_MRP... 350043 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18600 ABC_6TM_CFT... 350044 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18601 ABC_6TM_MRP... 350045 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18602 ABC_6TM_SUR... 350046 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18603 ABC_6TM_MRP... 350047 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18604 ABC_6TM_VMR... 350048 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18605 ABC_6TM_MRP... 350049 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18606 ABC_6TM_YOR... 350050 cd18580 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18607 GH130 350119 cd08772 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18608 GH43_F5-8_t... 350120 cd08978 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18609 GH32-like 350121 cd08979 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18610 GH130_BT378... 350122 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18611 GH130 350123 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18612 GH130_Lin08... 350124 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18613 GH130 350125 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18614 GH130 350126 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18615 GH130 350127 cd18607 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18616 GH43_ABN-like 350128 cd08988 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18617 GH43_XynB-like 350129 cd08989 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18618 GH43_Xsa43E... 350130 cd08990 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18619 GH43_CoXyl4... 350131 cd08990 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18620 GH43_XylA-like 350132 cd08990 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18621 GH32_XdINV-... 350133 cd08996 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18622 GH32_Inu-like 350134 cd08996 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18623 GH32_ScrB-like 350135 cd08996 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18624 GH32_Fruct1... 350136 cd08996 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18625 GH32_BfrA-like 350137 cd08996 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18626 CD_eEF3 349276 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18627 CD_polycomb... 349277 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18628 CD3_cpSRP43... 349278 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18629 CD2_cpSRP43... 349279 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18630 CD_Rhino 349280 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18631 CD_HP1_like 349281 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18632 CD_Clr4_like 349282 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18633 CD_MMP8 349283 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18634 CD_CDY 349284 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18635 CD_CMT3_like 349285 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18636 CD_Chp1_like 349286 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18637 CD_Swi6_like 349287 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18638 CD_EhHp1_like 349288 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18639 CD_SUV39H1_... 349289 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18640 CD_Chro-like 349290 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18641 CBD_RBP1_like 350843 cd18643 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18642 CBD_MOF_like 350844 cd18643 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18643 CBD 350845 N/A cd18643 1 1 0 0 07/11/18 18:02:00 -cd18644 CD_polycomb 349291 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18645 CD_Cbx4 349292 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18646 CD_Cbx7 349293 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18647 CD_Cbx2 349294 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18648 CD_Cbx6 349295 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18649 CD_Cbx8 349296 cd18627 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18650 CD_HP1beta_... 349297 cd18631 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18651 CD_HP1alpha... 349298 cd18631 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18652 CD_HP1gamma... 349299 cd18631 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18653 CD_HP1a_insect 349300 cd18631 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18654 CSD_HP1beta... 349301 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18655 CSD_HP1alph... 349302 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18656 CSD_HP1gamm... 349303 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18657 CSD_Swi6 349304 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18658 CSD_HP1a_in... 349305 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18659 CD2_tandem 349306 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18660 CD1_tandem 349307 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18661 CD2_tandem_... 349308 cd18659 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18662 CD2_tandem_... 349309 cd18659 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18663 CD2_tandem_... 349310 cd18659 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18664 CD2_tandem_... 349311 cd18659 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18665 CD1_tandem_... 349312 cd18660 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18666 CD1_tandem_... 349313 cd18660 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18667 CD1_tandem_... 349314 cd18660 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18668 CD1_tandem_... 349315 cd18660 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18669 M20_18_42 349948 cd03873 cd03873 1 1 0 0 07/11/18 17:55:00 -cd18670 PIN_Mut7-C-... 350850 N/A cd18670 1 1 0 0 07/11/18 18:02:00 -cd18671 PIN_PRORP-Z... 350238 cd09852 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18672 PIN_FAM120B... 350239 cd09853 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18673 PIN_XRN1-2-... 350240 cd09853 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18674 PIN_Pox_G5 350241 cd09853 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18675 PIN_SpAst1-... 350242 cd09853 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18676 PIN_asteroi... 350243 cd09853 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18677 PIN_MjVapC2... 350244 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18678 PIN_MtVapC2... 350245 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18679 PIN_VapC-Af... 350246 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18680 PIN_MtVapC2... 350247 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18681 PIN_MtVapC2... 350248 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18682 PIN_VapC-like 350249 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18683 PIN_VapC-like 350250 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18684 PIN_VapC-like 350251 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18685 PIN_VapC-like 350252 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18686 PIN_VapC-like 350253 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18687 PIN_VapC-like 350254 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18688 PIN_VapC-like 350255 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18689 PIN_VapC-like 350256 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18690 PIN_VapC-like 350257 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18691 PIN_VapC-like 350258 cd09854 cd09852 1 1 0 0 07/11/18 17:58:00 -cd18692 PIN_VapC-like 350259 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18693 PIN_VapC-like 350260 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18694 PIN_VapC-like 350261 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18695 PIN_VapC-like 350262 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18696 PIN_MtVapC2... 350263 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18697 PIN_VapC_N-... 350264 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18698 PIN_VapC_C-... 350265 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18699 PIN_VapC_like 350266 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18700 PIN_GNAT-like 350267 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18701 PIN_VapC_like 350268 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18702 PIN_VapC_like 350269 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18703 PIN_VapC-like 350270 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18704 PIN_VapC-like 350271 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18705 PIN_VapC-like 350272 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18706 PIN_STKc_like 350273 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18707 PIN_VapC-like 350274 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18708 PIN_VapC-like 350275 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18709 PIN_VapC-like 350276 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18710 PIN_VapC-like 350277 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18711 PIN_VapC-li... 350278 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18712 PIN_VapC-li... 350279 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18713 PIN_VapC-like 350280 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18714 PIN_VapC-like 350281 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18715 PIN_VapC-like 350282 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18716 PIN_SSO1118... 350283 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18717 PIN_ScNmd4p... 350284 cd09854 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18718 PIN_PRORP 350285 cd18671 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18719 PIN_Zc3h12a... 350286 cd18671 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18720 PIN_YqxD-like 350287 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18721 PIN_ZNF451-... 350288 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18722 PIN_NicB-like 350289 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18723 PIN_LabA-like 350290 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18724 PIN_LabA-like 350291 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18725 PIN_LabA-like 350292 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18726 PIN_LabA-like 350293 cd06167 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18727 PIN_Swt1-like 350294 cd09880 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18728 PIN_N4BP1-like 350295 cd18719 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18729 PIN_Zc3h12-... 350296 cd18719 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18730 PIN_PH0500-... 350297 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18731 PIN_NgFitB-... 350298 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18732 PIN_MtVapC4... 350299 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18733 PIN_RfVapC1... 350300 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18734 PIN_RfVapC2... 350301 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18735 PIN_HiVapC1... 350302 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18736 PIN_CcVapC1... 350303 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18737 PIN_VapC4-5... 350304 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18738 PIN_VapC4-5... 350305 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18739 PIN_VapC4-5... 350306 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18740 PIN_VapC4-5... 350307 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18741 PIN_VapC4-5... 350308 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18742 PIN_VapC4-5... 350309 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18743 PIN_VapC4-5... 350310 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18744 PIN_VapC4-5... 350311 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18745 PIN_VapC4-5... 350312 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18746 PIN_VapC4-5... 350313 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18747 PIN_VapC4-5... 350314 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18748 PIN_VapC4-5... 350315 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18749 PIN_VapC4-5... 350316 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18750 PIN_VapC4-5... 350317 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18751 PIN_VapC4-5... 350318 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18752 PIN_VapC4-5... 350319 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18753 PIN_VapC4-5... 350320 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18754 PIN_VapC4-5... 350321 cd09881 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18755 PIN_MtVapC3... 350322 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18756 PIN_MtVapC1... 350323 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18757 PIN_MtVapC3... 350324 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18758 PIN_MtVapC3... 350325 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18759 PIN_MtVapC3... 350326 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18760 PIN_MtVapC3... 350327 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18761 PIN_MtVapC3... 350328 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18762 PIN_MtVapC3... 350329 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18763 PIN_MtVapC3... 350330 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18764 PIN_MtVapC3... 350331 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18765 PIN_MtVapC3... 350332 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18766 PIN_MtVapC3... 350333 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18767 PIN_MtVapC3... 350334 cd09882 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18768 PIN_MtVapC4... 350335 cd18732 cd09852 1 1 0 0 07/11/18 17:59:00 -cd18769 PIN_Mut7-C-... 350851 cd18670 cd18670 1 1 0 0 07/11/18 18:02:00 -cd18770 PIN_Mut7-C-... 350852 cd18670 cd18670 1 1 0 0 07/11/18 18:02:00 -cd18771 PIN_Mut7-C-... 350853 cd18670 cd18670 1 1 0 0 07/11/18 18:02:00 -cd18772 PIN_Mut7-C-... 350854 cd18670 cd18670 1 1 0 0 07/11/18 18:02:00 -cd18773 PDC1_HK_sensor 350341 cd12911 cd12911 1 1 0 0 07/11/18 17:59:00 -cd18774 PDC2_HK_sensor 350342 cd12911 cd12911 1 1 0 0 07/11/18 17:59:00 -cd18775 SafA-like 350651 cd16911 cd16911 1 1 0 0 07/11/18 18:00:00 -cd18776 AfaD-like 350652 cd16911 cd16911 1 1 0 0 07/11/18 18:00:00 -cd18777 PsaA_MyfA 350653 cd16911 cd16911 1 1 0 0 07/11/18 18:00:00 -cd18778 ABC_6TM_exp... 350051 cd07346 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18779 ABC_6TM_T1S... 350052 cd18555 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18780 ABC_6TM_AtA... 350053 cd18557 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18781 ABC_6TM_Aar... 350054 cd18561 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18782 ABC_6TM_Prt... 350055 cd18566 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18783 ABC_6TM_Prt... 350056 cd18566 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18784 ABC_6TM_ABC... 350057 cd18572 cd07346 1 1 0 0 07/11/18 17:57:00 -cd18785 SF2_C 350172 cd09300 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18786 SF1_C 350173 cd09300 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18787 SF2_C_DEAD 350174 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18788 SF2_C_XPD 350175 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18789 SF2_C_XPB 350176 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18790 SF2_C_UvrB 350177 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18791 SF2_C_RHA 350178 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18792 SF2_C_RecG_... 350179 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18793 SF2_C_SNF 350180 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18794 SF2_C_RecQ 350181 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18795 SF2_C_Ski2 350182 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18796 SF2_C_LHR 350183 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18797 SF2_C_Hrq 350184 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18798 SF2_C_rever... 350185 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18799 SF2_C_EcoAI... 350186 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18800 SF2_C_EcoR1... 350187 cd09300 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18801 SF2_C_FANCM... 350188 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18802 SF2_C_dicer 350189 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18803 SF2_C_secA 350190 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18804 SF2_C_priA 350191 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18805 SF2_C_suv3 350192 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18806 SF2_C_viral 350193 cd18785 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18807 SF1_C_UvrD 350194 cd18786 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18808 SF1_C_Upf1 350195 cd18786 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18809 SF1_C_RecD 350196 cd18786 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18810 SF2_C_TRCF 350197 cd18792 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18811 SF2_C_RecG 350198 cd18792 cd09300 1 1 0 0 07/11/18 17:58:00 -cd18812 CAP_PI15-like 349406 cd05380 cd00168 1 1 0 0 07/11/18 17:51:00 -cd18813 CAP_CRISPLD1 349407 cd18812 cd00168 1 1 0 0 07/11/18 17:51:00 -cd18814 CAP_PI15 349408 cd18812 cd00168 1 1 0 0 07/11/18 17:51:00 -cd18815 CAP_R3HDML 349409 cd18812 cd00168 1 1 0 0 07/11/18 17:51:00 -cd18816 CAP_CRISPLD2 349410 cd18812 cd00168 1 1 0 0 07/11/18 17:51:00 -cd18817 GH43f_LbAra... 350138 cd08980 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18818 GH43_GbtXyl... 350139 cd08980 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18819 GH43_LbAraf... 350140 cd08980 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18820 GH43_LbAraf... 350141 cd08980 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18821 GH43_Pc3Gal... 350142 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18822 GH43_CtGH43... 350143 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18823 GH43_RcAra4... 350144 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18824 GH43_CtGH43... 350145 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18825 GH43_CtGH43... 350146 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18826 GH43_CtGH43... 350147 cd08985 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18827 GH43_XlnD-like 350148 cd09004 cd08772 1 1 0 0 07/11/18 17:57:00 -cd18828 GH43_BT3675... 350149 cd09004 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18829 GH43_BsArb4... 350150 cd08998 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18830 GH43_CjArb4... 350151 cd08998 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18831 GH43_AnAbnA... 350152 cd08998 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18832 GH43_GsAbnA... 350153 cd08998 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18833 GH43_PcXyl-... 350154 cd18617 cd08772 1 1 0 0 07/11/18 17:58:00 -cd18955 BTB_POZ_BACH 349736 cd18186 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18956 BTB_POZ_ZBTB42 349737 cd18194 cd01165 1 1 0 0 07/11/18 17:53:00 -cd18960 CD_HP1_like 349316 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18961 CD_CEC-4_like 349317 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18962 CD_MT_like 349318 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18963 chromodomain 349319 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18964 chromodomain 349320 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18965 chromodomain 349321 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18966 chromodomain 349322 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18967 chromodomain 349323 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18968 chromodomain 349324 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18969 chromodomain 349325 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18970 CD_POL_like 349326 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18971 CD_POL_like 349327 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18972 CD_POL_like 349328 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18973 CD_Tf2-1_PO... 349329 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18974 CD_POL_like 349330 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18975 CD_MarY1_PO... 349331 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18976 CD_POL_like 349332 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18977 CD_POL_like 349333 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18978 CD_DDE_tran... 349334 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18979 CD_POL_like 349335 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18980 CD_NC-like 349336 cd00024 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18981 CSD_HP1e_in... 349337 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18982 CSD 349338 cd00034 cd00024 1 1 0 0 07/11/18 17:50:00 -cd18983 CBD_MSL3_like 350846 cd18643 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18984 CBD_MOF_like 350847 cd18642 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18985 CBD_TIP60_like 350848 cd18642 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18986 CBD_ESA1_like 350849 cd18642 cd18643 1 1 0 0 07/11/18 18:02:00 -cd18987 LGIC_ECD_anion 349788 cd03558 cd03558 1 1 0 0 07/11/18 17:53:00 -cd18988 LGIC_ECD_bact 349789 cd03558 cd03558 1 1 0 0 07/11/18 17:53:00 -cd18989 LGIC_ECD_ca... 349790 cd03558 cd03558 1 1 0 0 07/11/18 17:53:00 -cd18990 LGIC_ECD_GA... 349791 cd18987 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18991 LGIC_ECD_GlyR 349792 cd18987 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18992 LGIC_ECD_HisCl 349793 cd18987 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18993 LGIC_ECD_GluCl 349794 cd18987 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18994 LGIC_ECD_ZAC 349795 cd18989 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18995 LGIC_AChBP 349796 cd18989 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18996 LGIC_ECD_5-HT3 349797 cd18989 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18997 LGIC_ECD_nAChR 349798 cd18989 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18998 LGIC_ECD_GA... 349799 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd18999 LGIC_ECD_GA... 349800 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19000 LGIC_ECD_GA... 349801 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19001 LGIC_ECD_GA... 349802 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19002 LGIC_ECD_GA... 349803 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19003 LGIC_ECD_GA... 349804 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19004 LGIC_ECD_GA... 349805 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19005 LGIC_ECD_GA... 349806 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19006 LGIC_ECD_GA... 349807 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19007 LGIC_ECD_GA... 349808 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19008 LGIC_ECD_GA... 349809 cd18990 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19009 LGIC_ECD_Gl... 349810 cd18991 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19010 LGIC_ECD_Gl... 349811 cd18991 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19011 LGIC_ECD_5-... 349812 cd18996 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19012 LGIC_ECD_5-... 349813 cd18996 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19013 LGIC_ECD_5-... 349814 cd18996 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19014 LGIC_ECD_nA... 349815 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19015 LGIC_ECD_nA... 349816 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19016 LGIC_ECD_nA... 349817 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19017 LGIC_ECD_nA... 349818 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19018 LGIC_ECD_nA... 349819 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19019 LGIC_ECD_nA... 349820 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19020 LGIC_ECD_nA... 349821 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19021 LGIC_ECD_nA... 349822 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19022 LGIC_ECD_nA... 349823 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19023 LGIC_ECD_nA... 349824 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19024 LGIC_ECD_nA... 349825 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19025 LGIC_ECD_nA... 349826 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19026 LGIC_ECD_nA... 349827 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19027 LGIC_ECD_nA... 349828 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19028 LGIC_ECD_nA... 349829 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19029 LGIC_ECD_nA... 349830 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19030 LGIC_ECD_nA... 349831 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19031 LGIC_ECD_nA... 349832 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19032 LGIC_ECD_nA... 349833 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19033 LGIC_ECD_nA... 349834 cd18997 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19034 LGIC_ECD_GA... 349835 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19035 LGIC_ECD_GA... 349836 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19036 LGIC_ECD_GA... 349837 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19037 LGIC_ECD_GA... 349838 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19038 LGIC_ECD_GA... 349839 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19039 LGIC_ECD_GA... 349840 cd18998 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19040 LGIC_ECD_GA... 349841 cd18999 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19041 LGIC_ECD_GA... 349842 cd18999 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19042 LGIC_ECD_GA... 349843 cd18999 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19043 LGIC_ECD_GA... 349844 cd19000 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19044 LGIC_ECD_GA... 349845 cd19000 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19045 LGIC_ECD_GA... 349846 cd19000 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19046 LGIC_ECD_GA... 349847 cd19005 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19047 LGIC_ECD_GA... 349848 cd19005 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19048 LGIC_ECD_GA... 349849 cd19005 cd03558 1 1 0 0 07/11/18 17:54:00 -cd19049 LGIC_TM_anion 349851 cd03559 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19050 LGIC_TM_bact 349852 cd03559 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19051 LGIC_TM_cation 349853 cd03559 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19052 LGIC_TM_GAB... 349854 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19053 LGIC_TM_GAB... 349855 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19054 LGIC_TM_GAB... 349856 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19055 LGIC_TM_GAB... 349857 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19056 LGIC_TM_GAB... 349858 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19057 LGIC_TM_GAB... 349859 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19058 LGIC_TM_GAB... 349860 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19059 LGIC_TM_GAB... 349861 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19060 LGIC_TM_Gly... 349862 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19061 LGIC_TM_Gly... 349863 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19062 LGIC_TM_GluCl 349864 cd19049 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19063 LGIC_TM_5-HT3 349865 cd19051 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19064 LGIC_TM_nAChR 349866 cd19051 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19065 LGIC_TM_ZAC 349867 cd19051 cd03559 1 1 0 0 07/11/18 17:54:00 -cd19165 HemeO 350856 cd00232 cd00232 1 1 0 0 07/12/18 13:34:00 -cd19166 HemeO-bac 350857 cd00232 cd00232 1 1 0 0 07/12/18 13:34:00 - - +cd00199 WAP 238120 N/A cd00199 4 1 1 0 10/02/2020 20:... +cd00958 DhnA 188645 cd00945 cd00945 5 1 1 0 10/02/2020 21:... +cd02947 TRX_family 239245 cd01659 cd01659 3 1 1 0 10/02/2020 21:... +cd02984 TRX_PICOT 239282 cd02947 cd01659 2 1 1 0 10/02/2020 21:... +cd02985 TRX_CDSP32 239283 cd02947 cd01659 3 1 1 0 10/02/2020 21:... +cd04242 AAK_G5K_ProB 239775 cd02115 cd02115 3 1 1 0 10/02/2020 21:... +cd04256 AAK_P5CS_ProBA 239789 cd04242 cd02115 3 1 1 0 10/02/2020 21:... +cd08964 L-asparagin... 199208 cd00411 cd00411 2 1 1 0 10/02/2020 22:... +cd10019 14-3-3_sigma 206756 cd08774 cd08774 2 1 1 0 10/02/2020 22:... +cd19501 RecA-like_FtsH 410909 cd19481 cd01120 1 1 1 0 10/25/2021 10:... +cd21157 PUA_G5K 409299 cd07953 cd07953 1 1 1 0 10/25/2021 10:... diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/family_superfamily_links b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/family_superfamily_links index 4c5760fed7..a5688aab0b 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/family_superfamily_links +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/data/family_superfamily_links @@ -1,52910 +1,8 @@ -pfam04649 68229 pfam04649 68229 -pfam06753 70231 pfam06753 70231 -pfam07038 70500 pfam07038 70500 -pfam08057 71493 pfam08057 71493 -pfam08077 71513 pfam08077 71513 -pfam08095 71530 pfam08095 71530 -pfam08096 71531 pfam08096 71531 -pfam08097 71532 pfam08097 71532 -pfam08104 71539 pfam08104 71539 -pfam08106 71541 pfam08106 71541 -pfam08108 71543 pfam08108 71543 -pfam08109 71544 pfam08109 71544 -pfam08111 71546 pfam08111 71546 -pfam08119 71554 pfam08119 71554 -pfam08120 71555 pfam08120 71555 -pfam08121 71556 pfam08121 71556 -pfam08129 71564 pfam08129 71564 -pfam08187 71621 pfam08187 71621 -pfam08188 71622 pfam08188 71622 -pfam08720 72144 pfam08720 72144 -pfam08723 72147 pfam08723 72147 -pfam09053 72471 pfam09053 72471 -pfam09065 72483 pfam09065 72483 -pfam09083 72501 pfam09083 72501 -pfam09144 72561 pfam09144 72561 -pfam09198 72614 pfam09198 72614 -PRK06548 75628 cl14782 353835 -PRK06731 75717 PRK06731 75717 -PRK06746 75726 PRK06746 75726 -PRK07182 75964 cl30383 357259 -PRK09519 77219 PRK09519 77219 -PRK09702 77355 PRK09702 77355 -PRK09806 77417 cl27886 332707 -PRK09816 77423 PRK09816 77423 -PRK09890 77467 cl09927 353027 -PRK09937 77494 cl09927 353027 -PRK09979 77522 PRK09979 77522 -PRK12559 79035 cl00388 351069 -PRK12580 79055 cl01886 321712 -PRK12581 79056 PRK12581 79056 -PRK12628 79089 PRK12628 79089 -PRK12718 79176 PRK12718 79176 -PRK12456 84141 cl00597 351168 -pfam08261 87473 pfam08261 87473 -cd06263 99706 cl27660 355669 -cd00009 99707 cl21455 354812 -cd05992 99716 cl02720 295447 -cd06395 99717 cl02720 295447 -cd06396 99718 cl02720 295447 -cd06397 99719 cl02720 295447 -cd06398 99720 cl02720 295447 -cd06399 99721 cl02720 295447 -cd06401 99722 cl02720 295447 -cd06402 99723 cl02720 295447 -cd06403 99724 cl02720 295447 -cd06404 99725 cl02720 295447 -cd06405 99726 cl02720 295447 -cd06406 99727 cl02720 295447 -cd06407 99728 cl02720 295447 -cd06408 99729 cl02720 295447 -cd06409 99730 cl02720 295447 -cd06410 99731 cl02720 295447 -cd06411 99732 cl02720 295447 -cd00378 99733 cl29034 355910 -cd00609 99734 cl29034 355910 -cd00610 99735 cl29034 355910 -cd00611 99736 cl29034 355910 -cd00613 99737 cl29034 355910 -cd00614 99738 cl29034 355910 -cd00615 99739 cl29034 355910 -cd00616 99740 cl29034 355910 -cd00617 99741 cl29034 355910 -cd01494 99742 cl29034 355910 -cd06450 99743 cl29034 355910 -cd06451 99744 cl29034 355910 -cd06452 99745 cl29034 355910 -cd06453 99746 cl29034 355910 -cd06454 99747 cl29034 355910 -cd06502 99748 cl29034 355910 -cd06260 99749 cl01898 295083 -cd06259 99750 cl00630 351186 -cd06257 99751 cl02542 351794 -cd06170 99777 cl21459 354815 -cd00322 99778 cl06868 352595 -cd06182 99779 cl06868 352595 -cd06183 99780 cl06868 352595 -cd06184 99781 cl06868 352595 -cd06185 99782 cl06868 352595 -cd06186 99783 cl06868 352595 -cd06187 99784 cl06868 352595 -cd06188 99785 cl06868 352595 -cd06189 99786 cl06868 352595 -cd06190 99787 cl06868 352595 -cd06191 99788 cl06868 352595 -cd06192 99789 cl06868 352595 -cd06193 99790 cl06868 352595 -cd06194 99791 cl06868 352595 -cd06195 99792 cl06868 352595 -cd06196 99793 cl06868 352595 -cd06197 99794 cl06868 352595 -cd06198 99795 cl06868 352595 -cd06199 99796 cl06868 352595 -cd06200 99797 cl06868 352595 -cd06201 99798 cl06868 352595 -cd06202 99799 cl06868 352595 -cd06203 99800 cl06868 352595 -cd06204 99801 cl06868 352595 -cd06206 99802 cl06868 352595 -cd06207 99803 cl06868 352595 -cd06208 99804 cl06868 352595 -cd06209 99805 cl06868 352595 -cd06210 99806 cl06868 352595 -cd06211 99807 cl06868 352595 -cd06212 99808 cl06868 352595 -cd06213 99809 cl06868 352595 -cd06214 99810 cl06868 352595 -cd06215 99811 cl06868 352595 -cd06216 99812 cl06868 352595 -cd06217 99813 cl06868 352595 -cd06218 99814 cl06868 352595 -cd06219 99815 cl06868 352595 -cd06220 99816 cl06868 352595 -cd06221 99817 cl06868 352595 -cd05776 99819 cl10012 353041 -cd05777 99820 cl10012 353041 -cd05778 99821 cl10012 353041 -cd05779 99822 cl10012 353041 -cd05780 99823 cl10012 353041 -cd05781 99824 cl10012 353041 -cd05782 99825 cl10012 353041 -cd05783 99826 cl10012 353041 -cd05784 99827 cl10012 353041 -cd05785 99828 cl10012 353041 -cd06130 99834 cl10012 353041 -cd06131 99835 cl10012 353041 -cd06133 99836 cl10012 353041 -cd06134 99837 cl10012 353041 -cd06135 99838 cl10012 353041 -cd06136 99839 cl10012 353041 -cd06137 99840 cl10012 353041 -cd06138 99841 cl10012 353041 -cd06143 99846 cl10012 353041 -cd06144 99847 cl10012 353041 -cd06145 99848 cl10012 353041 -cd06147 99850 cl10012 353041 -cd06148 99851 cl10012 353041 -cd06149 99852 cl10012 353041 -cd06099 99853 cl00416 351085 -cd06100 99854 cl00416 351085 -cd06101 99855 cl00416 351085 -cd06102 99856 cl00416 351085 -cd06103 99857 cl00416 351085 -cd06105 99858 cl00416 351085 -cd06106 99859 cl00416 351085 -cd06107 99860 cl00416 351085 -cd06108 99861 cl00416 351085 -cd06109 99862 cl00416 351085 -cd06110 99863 cl00416 351085 -cd06111 99864 cl00416 351085 -cd06112 99865 cl00416 351085 -cd06113 99866 cl00416 351085 -cd06114 99867 cl00416 351085 -cd06115 99868 cl00416 351085 -cd06116 99869 cl00416 351085 -cd06117 99870 cl00416 351085 -cd06118 99871 cl00416 351085 -cd00518 99872 cl00477 351109 -cd06062 99873 cl00477 351109 -cd06063 99874 cl00477 351109 -cd06064 99875 cl00477 351109 -cd06066 99876 cl00477 351109 -cd06067 99877 cl00477 351109 -cd06068 99878 cl00477 351109 -cd06070 99879 cl00477 351109 -cd05806 99881 cl15347 326560 -cd05807 99882 cl15347 326560 -cd05808 99883 cl15347 326560 -cd05809 99884 cl15347 326560 -cd05810 99885 cl15347 326560 -cd05811 99886 cl15347 326560 -cd05813 99887 cl15347 326560 -cd05814 99888 cl15347 326560 -cd05815 99889 cl15347 326560 -cd05816 99890 cl15347 326560 -cd05817 99891 cl15347 326560 -cd05818 99892 cl15347 326560 -cd05820 99893 cl15347 326560 -cd05162 99894 cl02554 351800 -cd05834 99895 cl02554 351800 -cd05835 99896 cl02554 351800 -cd05836 99897 cl02554 351800 -cd05837 99898 cl02554 351800 -cd05838 99899 cl02554 351800 -cd05839 99900 cl02554 351800 -cd05840 99901 cl02554 351800 -cd05841 99902 cl02554 351800 -cd06080 99903 cl02554 351800 -cd00133 99904 cl10014 353043 -cd05563 99905 cl10014 353043 -cd05564 99906 cl10014 353043 -cd05565 99907 cl10014 353043 -cd05566 99908 cl10014 353043 -cd05567 99909 cl10014 353043 -cd05568 99910 cl10014 353043 -cd05569 99911 cl10014 353043 -cd00145 99912 cl10023 353046 -cd05530 99913 cl10023 353046 -cd05531 99914 cl10023 353046 -cd05532 99915 cl10023 353046 -cd05533 99916 cl10023 353046 -cd05534 99917 cl10023 353046 -cd05535 99918 cl10023 353046 -cd05536 99919 cl10023 353046 -cd05537 99920 cl10023 353046 -cd05538 99921 cl10023 353046 -cd04369 99922 cl02556 351801 -cd05491 99923 cl02556 351801 -cd05492 99924 cl02556 351801 -cd05493 99925 cl02556 351801 -cd05494 99926 cl02556 351801 -cd05495 99927 cl02556 351801 -cd05496 99928 cl02556 351801 -cd05497 99929 cl02556 351801 -cd05498 99930 cl02556 351801 -cd05499 99931 cl02556 351801 -cd05500 99932 cl02556 351801 -cd05501 99933 cl02556 351801 -cd05502 99934 cl02556 351801 -cd05503 99935 cl02556 351801 -cd05504 99936 cl02556 351801 -cd05505 99937 cl02556 351801 -cd05506 99938 cl02556 351801 -cd05507 99939 cl02556 351801 -cd05508 99940 cl02556 351801 -cd05509 99941 cl02556 351801 -cd05510 99942 cl02556 351801 -cd05511 99943 cl02556 351801 -cd05512 99944 cl02556 351801 -cd05513 99945 cl02556 351801 -cd05515 99946 cl02556 351801 -cd05516 99947 cl02556 351801 -cd05517 99948 cl02556 351801 -cd05518 99949 cl02556 351801 -cd05519 99950 cl02556 351801 -cd05520 99951 cl02556 351801 -cd05521 99952 cl02556 351801 -cd05522 99953 cl02556 351801 -cd05524 99954 cl02556 351801 -cd05525 99955 cl02556 351801 -cd05526 99956 cl02556 351801 -cd05528 99957 cl02556 351801 -cd05529 99958 cl02556 351801 -cd00448 100004 cl10015 299145 -cd02198 100005 cl10015 299145 -cd02199 100006 cl10015 299145 -cd06150 100007 cl10015 299145 -cd06151 100008 cl10015 299145 -cd06152 100009 cl10015 299145 -cd06153 100010 cl10015 299145 -cd06154 100011 cl10015 299145 -cd06155 100012 cl10015 299145 -cd06156 100013 cl10015 299145 -cd00554 100025 cl10030 353048 -cd02185 100026 cl10037 353050 -cd00396 100027 cl10019 353045 -cd02192 100028 cl10019 353045 -cd02193 100029 cl10019 353045 -cd02194 100030 cl10019 353045 -cd02195 100031 cl10019 353045 -cd02196 100032 cl10019 353045 -cd02197 100033 cl10019 353045 -cd02203 100034 cl10019 353045 -cd02204 100035 cl10019 353045 -cd02691 100036 cl10019 353045 -cd06061 100037 cl10019 353045 -cd00208 100038 cl00160 350925 -cd00710 100039 cl00160 350925 -cd03349 100040 cl00160 350925 -cd03350 100041 cl00160 350925 -cd03351 100042 cl00160 350925 -cd03352 100043 cl00160 350925 -cd03353 100044 cl00160 350925 -cd03354 100045 cl00160 350925 -cd03356 100046 cl00160 350925 -cd03357 100047 cl00160 350925 -cd03358 100048 cl00160 350925 -cd03359 100049 cl00160 350925 -cd03360 100050 cl00160 350925 -cd04645 100051 cl00160 350925 -cd04646 100052 cl00160 350925 -cd04647 100053 cl00160 350925 -cd04649 100054 cl00160 350925 -cd04650 100055 cl00160 350925 -cd04651 100056 cl00160 350925 -cd04652 100057 cl00160 350925 -cd04745 100058 cl00160 350925 -cd05635 100059 cl00160 350925 -cd05636 100060 cl00160 350925 -cd05787 100061 cl00160 350925 -cd05824 100062 cl00160 350925 -cd05825 100063 cl00160 350925 -cd02325 100064 cl00297 351008 -cd02636 100065 cl00297 351008 -cd02637 100066 cl00297 351008 -cd02638 100067 cl00297 351008 -cd02639 100068 cl00297 351008 -cd02640 100069 cl00297 351008 -cd02641 100070 cl00297 351008 -cd02642 100071 cl00297 351008 -cd02643 100072 cl00297 351008 -cd02644 100073 cl00297 351008 -cd02645 100074 cl00297 351008 -cd02646 100075 cl00297 351008 -cd06006 100076 cl00297 351008 -cd06007 100077 cl00297 351008 -cd05709 100078 cl10020 324562 -cd06158 100079 cl10020 324562 -cd06159 100080 cl10020 324562 -cd06160 100081 cl10020 324562 -cd06161 100082 cl10020 324562 -cd06162 100083 cl10020 324562 -cd06163 100084 cl10020 324562 -cd06164 100085 cl10020 324562 -cd03084 100086 cl03757 352048 -cd03085 100087 cl03757 352048 -cd03086 100088 cl03757 352048 -cd03087 100089 cl03757 352048 -cd03088 100090 cl03757 352048 -cd03089 100091 cl03757 352048 -cd05799 100092 cl03757 352048 -cd05800 100093 cl03757 352048 -cd05801 100094 cl03757 352048 -cd05802 100095 cl03757 352048 -cd05803 100096 cl03757 352048 -cd05805 100097 cl03757 352048 -cd00355 100098 cl00203 350947 -cd01657 100099 cl00203 350947 -cd01658 100100 cl00203 350947 -cd00349 100101 cl29338 356214 -cd00387 100102 cl29562 356438 -cd00472 100103 cl00909 321242 -cd01335 100105 cl18962 354374 -cd01425 100106 cl00315 351020 -cd02440 100107 cl17173 354317 -cd04411 100108 cl21508 354846 -cd05831 100109 cl21508 354846 -cd05832 100110 cl21508 354846 -cd05833 100111 cl21508 354846 -cd05469 100112 cl21470 354823 -cd05821 100113 cl21470 354823 -cd05822 100114 cl21470 354823 -cd05804 100115 cd05804 100115 -cd06008 100116 cd06008 100116 -cd06071 100117 cl10511 353084 -cd06171 100119 cl22867 354966 -cd06224 100121 cl02520 321967 -cd06225 100122 cl01054 351361 -CHL00089 100206 cl21461 354817 -CHL00114 100224 cl23870 355083 -CHL00170 100270 cl21461 354817 -CHL00171 100271 cl21461 354817 -CHL00173 100273 cl21461 354817 -PRK00561 100598 cl01255 321418 -PRK00573 100605 cl00458 351102 -PRK00611 100616 cl00649 351195 -PRK00647 100624 cl00811 351266 -PRK01156 100796 PRK01156 100796 -PRK01172 100801 PRK01172 100801 -PRK01189 100807 cl00632 351187 -PRK01194 100810 cl23750 355034 -PRK01203 100813 cl09111 352933 -PRK01207 100814 cl00464 320986 -PRK01474 100879 PRK01474 100879 -PRK01492 100883 cl00457 351101 -PRK01546 100891 cl01722 321631 -PRK01844 100947 cl23791 329080 -PRK03002 101162 PRK03002 101162 -PRK04013 101376 cl18945 354370 -PRK05640 101884 cl00676 351209 -PRK05874 102036 cl00214 350956 -PRK05917 102059 PRK05917 102059 -PRK05922 102061 PRK05922 102061 -PRK05937 102071 cl18945 354370 -PRK06145 102207 PRK06145 102207 -PRK06366 102340 PRK06366 102340 -PRK06388 102351 PRK06388 102351 -PRK06392 102354 PRK06392 102354 -PRK06393 102355 cl12033 325166 -PRK06395 102357 PRK06395 102357 -PRK06404 102361 PRK06404 102361 -PRK06423 102368 cl00789 351256 -PRK06424 102369 cl26727 331548 -PRK06425 102370 cl18945 354370 -PRK06432 102372 cl00535 351141 -PRK06434 102374 cl18945 354370 -PRK06438 102377 cl00464 320986 -PRK06439 102378 PRK06439 102378 -PRK06444 102381 cl21454 354811 -PRK06628 102471 cl17185 354319 -PRK06646 102480 cl01106 351382 -PRK06702 102505 cl18945 354370 -PRK06742 102525 PRK06742 102525 -PRK06755 102532 cl00214 350956 -PRK06764 102540 PRK06764 102540 -PRK06772 102546 PRK06772 102546 -PRK09629 104071 PRK09629 104071 -PRK09903 104216 cl22894 328943 -PRK10218 104396 PRK10218 104396 -PRK11383 105206 PRK11383 105206 -PRK11401 105214 cl10015 299145 -PRK12269 105491 PRK12269 105491 -PRK12339 105560 cl21455 354812 -PRK12491 105695 PRK12491 105695 -PRK12514 105710 PRK12514 105710 -PRK12531 105726 PRK12531 105726 -PRK12562 105755 cl30277 357153 -PRK12596 105779 cl00807 351263 -PRK12641 105809 PRK12641 105809 -PRK12687 105853 PRK12687 105853 -PRK12699 105864 cl19182 354388 -PRK12702 105866 cl21460 354816 -PRK12820 105955 PRK12820 105955 -PRK12856 105987 cl00426 351089 -PRK12871 106000 cl00337 351038 -PRK13031 106068 cl00251 350983 -PRK13037 106074 PRK13037 106074 -PRK13040 106077 PRK13040 106077 -PRK13041 106078 PRK13041 106078 -PRK13190 106159 PRK13190 106159 -PRK13202 106171 cl00533 351140 -PRK13205 106174 cl00533 351140 -PRK13213 106181 cl00214 350956 -PRK13225 106187 PRK13225 106187 -PRK13232 106194 cl21455 354812 -PRK13246 106208 cl07930 324183 -PRK13296 106256 PRK13296 106256 -PRK13301 106261 cl27470 355656 -PRK13311 106271 cl17037 354300 -PRK13324 106284 cl17037 354300 -PRK13345 106303 PRK13345 106303 -PRK13346 106304 PRK13346 106304 -PRK13349 106307 cl30066 356942 -PRK13372 106330 PRK13372 106330 -PRK13373 106331 cl00599 351170 -PRK13403 106361 PRK13403 106361 -PRK13452 106409 PRK13452 106409 -PRK13560 106506 PRK13560 106506 -PRK13599 106544 PRK13599 106544 -PRK13611 106556 cl04326 322618 -PRK13617 106562 cl21467 354821 -PRK13622 106567 cl21467 354821 -PRK13644 106587 PRK13644 106587 -PRK13716 106657 PRK13716 106657 -PRK13792 106733 cl01604 351565 -PRK13797 106738 PRK13797 106738 -PRK13799 106740 PRK13799 106740 -PHA00024 106880 PHA00024 106880 -PHA00094 106886 cl10177 353057 -PHA00280 106901 PHA00280 106901 -PHA00542 106954 cl22854 354960 -PHA00626 106959 PHA00626 106959 -PHA00649 106962 PHA00649 106962 -PHA00650 106963 PHA00650 106963 -PHA00652 106964 PHA00652 106964 -PHA00657 106966 PHA00657 106966 -PHA00658 106967 PHA00658 106967 -PHA00661 106970 PHA00661 106970 -PHA00663 106972 PHA00663 106972 -PHA00664 106973 PHA00664 106973 -PHA00665 106974 PHA00665 106974 -PHA00667 106976 PHA00667 106976 -PHA00670 106978 cl19541 327580 -PHA00671 106979 PHA00671 106979 -PHA00673 106981 cl17182 354318 -PHA00675 106982 PHA00675 106982 -PHA00676 106983 cl10256 324578 -PHA00679 106984 PHA00679 106984 -PHA00680 106985 PHA00680 106985 -PHA00687 106987 PHA00687 106987 -PHA00689 106988 PHA00689 106988 -PHA00691 106989 PHA00691 106989 -PHA00692 106990 PHA00692 106990 -PHA00780 107010 cl23871 305028 -PHA01076 107017 cl11625 353298 -PHA01159 107025 cl10291 324579 -PHA01160 107026 PHA01160 107026 -PHA01351 107029 PHA01351 107029 -PHA01365 107030 PHA01365 107030 -PHA01486 107034 PHA01486 107034 -PHA01511 107035 cl22542 354946 -PHA01514 107037 cl23811 329095 -PHA01516 107038 cl10305 353069 -PHA01519 107039 cl11584 325091 -PHA01633 107050 cl10013 353042 -PHA01707 107053 cl00493 351119 -PHA01733 107055 cl17113 271795 -PHA01746 107059 PHA01746 107059 -PHA01750 107063 PHA01750 107063 -PHA01756 107069 PHA01756 107069 -PHA01809 107079 PHA01809 107079 -PHA01813 107083 PHA01813 107083 -PHA01814 107084 PHA01814 107084 -PHA01815 107085 PHA01815 107085 -PHA01816 107086 PHA01816 107086 -PHA01818 107088 PHA01818 107088 -PHA01819 107089 PHA01819 107089 -PHA02086 107108 PHA02086 107108 -PHA02087 107109 PHA02087 107109 -PHA02088 107110 PHA02088 107110 -PHA02095 107115 PHA02095 107115 -PHA02096 107116 PHA02096 107116 -PHA02098 107118 PHA02098 107118 -PHA02099 107119 PHA02099 107119 -PHA02100 107120 PHA02100 107120 -PHA02110 107130 PHA02110 107130 -PHA02114 107131 PHA02114 107131 -PHA02118 107134 cl10031 353049 -PHA02119 107135 PHA02119 107135 -PHA02123 107137 PHA02123 107137 -PHA02127 107140 PHA02127 107140 -PHA02128 107141 PHA02128 107141 -PHA02130 107142 PHA02130 107142 -PHA02131 107143 PHA02131 107143 -PHA02132 107144 PHA02132 107144 -PHA02135 107145 PHA02135 107145 -PHA02145 107148 PHA02145 107148 -PHA02146 107149 PHA02146 107149 -PHA02148 107150 PHA02148 107150 -PHA02152 107153 PHA02152 107153 -PHA02239 107154 PHA02239 107154 -PHA02241 107155 PHA02241 107155 -PHA02243 107156 PHA02243 107156 -PHA02244 107157 PHA02244 107157 -PHA02264 107161 PHA02264 107161 -PHA02275 107163 PHA02275 107163 -PHA02277 107164 PHA02277 107164 -PHA02283 107166 PHA02283 107166 -PHA02284 107167 PHA02284 107167 -PHA02290 107168 PHA02290 107168 -PHA02360 107178 PHA02360 107178 -PHA02414 107179 PHA02414 107179 -PHA02416 107181 PHA02416 107181 -PHA02436 107183 PHA02436 107183 -PHA02448 107186 PHA02448 107186 -PHA02508 107192 PHA02508 107192 -PHA02515 107197 PHA02515 107197 -PHA02519 107201 PHA02519 107201 -cd00640 107202 cl00342 294246 -cd01560 107203 cl00342 294246 -cd01561 107204 cl00342 294246 -cd01562 107205 cl00342 294246 -cd01563 107206 cl00342 294246 -cd06446 107207 cl00342 294246 -cd06447 107208 cl00342 294246 -cd06448 107209 cl00342 294246 -cd06449 107210 cl00342 294246 -cd00237 107218 cl00175 320797 -cd00298 107219 cl00175 320797 -cd06463 107220 cl00175 320797 -cd06464 107221 cl00175 320797 -cd06465 107222 cl00175 320797 -cd06466 107223 cl00175 320797 -cd06467 107224 cl00175 320797 -cd06468 107225 cl00175 320797 -cd06469 107226 cl00175 320797 -cd06470 107227 cl00175 320797 -cd06471 107228 cl00175 320797 -cd06472 107229 cl00175 320797 -cd06475 107230 cl00175 320797 -cd06476 107231 cl00175 320797 -cd06477 107232 cl00175 320797 -cd06478 107233 cl00175 320797 -cd06479 107234 cl00175 320797 -cd06480 107235 cl00175 320797 -cd06481 107236 cl00175 320797 -cd06482 107237 cl00175 320797 -cd06488 107238 cl00175 320797 -cd06489 107239 cl00175 320797 -cd06490 107240 cl00175 320797 -cd06492 107241 cl00175 320797 -cd06493 107242 cl00175 320797 -cd06494 107243 cl00175 320797 -cd06495 107244 cl00175 320797 -cd06497 107245 cl00175 320797 -cd06498 107246 cl00175 320797 -cd06526 107247 cl00175 320797 -cd01391 107248 cl10011 353040 -cd01536 107249 cl10011 353040 -cd01537 107250 cl10011 353040 -cd01538 107251 cl10011 353040 -cd01539 107252 cl10011 353040 -cd01540 107253 cl10011 353040 -cd01541 107254 cl10011 353040 -cd01542 107255 cl10011 353040 -cd01543 107256 cl10011 353040 -cd01544 107257 cl10011 353040 -cd01545 107258 cl10011 353040 -cd01574 107259 cl10011 353040 -cd01575 107260 cl10011 353040 -cd04509 107261 cl10011 353040 -cd06267 107262 cl10011 353040 -cd06268 107263 cl10011 353040 -cd06270 107265 cl10011 353040 -cd06271 107266 cl10011 353040 -cd06272 107267 cl10011 353040 -cd06273 107268 cl10011 353040 -cd06274 107269 cl10011 353040 -cd06275 107270 cl10011 353040 -cd06276 107271 cl10011 353040 -cd06277 107272 cl10011 353040 -cd06278 107273 cl10011 353040 -cd06279 107274 cl10011 353040 -cd06280 107275 cl10011 353040 -cd06281 107276 cl10011 353040 -cd06282 107277 cl10011 353040 -cd06283 107278 cl10011 353040 -cd06284 107279 cl10011 353040 -cd06285 107280 cl10011 353040 -cd06286 107281 cl10011 353040 -cd06287 107282 cl10011 353040 -cd06288 107283 cl10011 353040 -cd06289 107284 cl10011 353040 -cd06290 107285 cl10011 353040 -cd06291 107286 cl10011 353040 -cd06292 107287 cl10011 353040 -cd06293 107288 cl10011 353040 -cd06294 107289 cl10011 353040 -cd06295 107290 cl10011 353040 -cd06296 107291 cl10011 353040 -cd06297 107292 cl10011 353040 -cd06298 107293 cl10011 353040 -cd06299 107294 cl10011 353040 -cd06300 107295 cl10011 353040 -cd06301 107296 cl10011 353040 -cd06302 107297 cl10011 353040 -cd06303 107298 cl10011 353040 -cd06304 107299 cl10011 353040 -cd06305 107300 cl10011 353040 -cd06306 107301 cl10011 353040 -cd06307 107302 cl10011 353040 -cd06308 107303 cl10011 353040 -cd06309 107304 cl10011 353040 -cd06310 107305 cl10011 353040 -cd06311 107306 cl10011 353040 -cd06312 107307 cl10011 353040 -cd06313 107308 cl10011 353040 -cd06314 107309 cl10011 353040 -cd06315 107310 cl10011 353040 -cd06316 107311 cl10011 353040 -cd06317 107312 cl10011 353040 -cd06318 107313 cl10011 353040 -cd06319 107314 cl10011 353040 -cd06320 107315 cl10011 353040 -cd06321 107316 cl10011 353040 -cd06322 107317 cl10011 353040 -cd06323 107318 cl10011 353040 -cd06324 107319 cl10011 353040 -cd06325 107320 cl10011 353040 -cd06326 107321 cl10011 353040 -cd06327 107322 cl10011 353040 -cd06328 107323 cl10011 353040 -cd06329 107324 cl10011 353040 -cd06330 107325 cl10011 353040 -cd06331 107326 cl10011 353040 -cd06332 107327 cl10011 353040 -cd06333 107328 cl10011 353040 -cd06334 107329 cl10011 353040 -cd06335 107330 cl10011 353040 -cd06336 107331 cl10011 353040 -cd06337 107332 cl10011 353040 -cd06338 107333 cl10011 353040 -cd06339 107334 cl10011 353040 -cd06340 107335 cl10011 353040 -cd06341 107336 cl10011 353040 -cd06342 107337 cl10011 353040 -cd06343 107338 cl10011 353040 -cd06344 107339 cl10011 353040 -cd06345 107340 cl10011 353040 -cd06346 107341 cl10011 353040 -cd06347 107342 cl10011 353040 -cd06348 107343 cl10011 353040 -cd06349 107344 cl10011 353040 -cd06351 107346 cl10011 353040 -cd06352 107347 cl10011 353040 -cd06353 107348 cl10011 353040 -cd06354 107349 cl10011 353040 -cd06355 107350 cl10011 353040 -cd06356 107351 cl10011 353040 -cd06357 107352 cl10011 353040 -cd06358 107353 cl10011 353040 -cd06359 107354 cl10011 353040 -cd06360 107355 cl10011 353040 -cd06361 107356 cl10011 353040 -cd06362 107357 cl10011 353040 -cd06363 107358 cl10011 353040 -cd06364 107359 cl10011 353040 -cd06365 107360 cl10011 353040 -cd06366 107361 cl10011 353040 -cd06367 107362 cl10011 353040 -cd06368 107363 cl10011 353040 -cd06369 107364 cl10011 353040 -cd06370 107365 cl10011 353040 -cd06371 107366 cl10011 353040 -cd06372 107367 cl10011 353040 -cd06373 107368 cl10011 353040 -cd06374 107369 cl10011 353040 -cd06375 107370 cl10011 353040 -cd06376 107371 cl10011 353040 -cd06377 107372 cl10011 353040 -cd06378 107373 cl10011 353040 -cd06379 107374 cl10011 353040 -cd06380 107375 cl10011 353040 -cd06381 107376 cl10011 353040 -cd06382 107377 cl10011 353040 -cd06383 107378 cl10011 353040 -cd06384 107379 cl10011 353040 -cd06385 107380 cl10011 353040 -cd06386 107381 cl10011 353040 -cd06387 107382 cl10011 353040 -cd06388 107383 cl10011 353040 -cd06389 107384 cl10011 353040 -cd06390 107385 cl10011 353040 -cd06391 107386 cl10011 353040 -cd06392 107387 cl10011 353040 -cd06393 107388 cl10011 353040 -cd06394 107389 cl10011 353040 -pfam00474 109527 cl00456 320982 -pfam00558 109608 pfam00558 109608 -pfam00706 109750 pfam00706 109750 -pfam00739 109783 pfam00739 109783 -pfam00743 109787 pfam00743 109787 -pfam00819 109859 pfam00819 109859 -pfam00951 109986 pfam00951 109986 -pfam01001 110032 pfam01001 110032 -pfam01306 110319 pfam01306 110319 -pfam01356 110363 cl23872 305029 -pfam01539 110536 pfam01539 110536 -pfam01540 110537 pfam01540 110537 -pfam01560 110557 pfam01560 110557 -pfam01581 110576 pfam01581 110576 -pfam01972 110924 pfam01972 110924 -pfam02052 110996 cl03420 275793 -pfam02077 111019 cl21527 328775 -pfam02087 111029 pfam02087 111029 -pfam02117 111054 pfam02117 111054 -pfam02122 111059 pfam02122 111059 -pfam02154 111086 pfam02154 111086 -pfam02175 111105 cl11607 325099 -pfam02184 111114 pfam02184 111114 -pfam02273 111194 cl21494 354836 -pfam02340 111251 pfam02340 111251 -pfam02370 111279 pfam02370 111279 -pfam02411 111318 cl03578 186578 -pfam02420 111326 pfam02420 111326 -pfam02439 111345 pfam02439 111345 -pfam02454 111360 pfam02454 111360 -pfam02497 111400 pfam02497 111400 -pfam02691 111576 pfam02691 111576 -pfam02694 111577 cl00757 242072 -pfam02819 111689 cl23873 305030 -pfam02907 111760 pfam02907 111760 -pfam02917 111768 cl03779 322415 -pfam02987 111833 pfam02987 111833 -pfam02998 111843 pfam02998 111843 -pfam03162 111998 cl28904 355780 -pfam03183 112017 pfam03183 112017 -pfam03402 112227 pfam03402 112227 -pfam03427 112252 pfam03427 112252 -pfam03488 112313 pfam03488 112313 -pfam03526 112349 pfam03526 112349 -pfam03539 112362 pfam03539 112362 -pfam03627 112444 cl28665 333485 -pfam03668 112483 cl23728 304885 -pfam03670 112485 pfam03670 112485 -pfam03778 112584 pfam03778 112584 -pfam03847 112650 cl22931 304643 -pfam03904 112704 pfam03904 112704 -pfam03908 112708 pfam03908 112708 -pfam03913 112713 cl28664 333484 -pfam03976 112775 cl11971 353332 -pfam03982 112781 cl17185 354319 -pfam03991 112790 pfam03991 112790 -pfam04059 112856 cl17169 354314 -pfam04202 112992 pfam04202 112992 -pfam04223 113013 cl28269 333089 -pfam04301 113085 cl01062 242278 -pfam04334 113117 pfam04334 113117 -pfam04345 113128 cl01230 321402 -pfam04369 113152 pfam04369 113152 -pfam04481 113257 cl21457 354814 -pfam04582 113356 pfam04582 113356 -pfam04623 113396 pfam04623 113396 -pfam04681 113449 pfam04681 113449 -pfam04746 113513 pfam04746 113513 -pfam04808 113574 pfam04808 113574 -pfam04817 113583 pfam04817 113583 -pfam04837 113603 pfam04837 113603 -pfam04899 113664 pfam04899 113664 -pfam04976 113736 cl21513 328765 -pfam05080 113835 pfam05080 113835 -pfam05172 113924 cl17169 354314 -pfam05234 113985 pfam05234 113985 -pfam05244 113995 pfam05244 113995 -pfam05262 114011 pfam05262 114011 -pfam05293 114041 pfam05293 114041 -pfam05298 114046 pfam05298 114046 -pfam05325 114071 pfam05325 114071 -pfam05412 114153 pfam05412 114153 -pfam05483 114219 pfam05483 114219 -pfam05520 114252 pfam05520 114252 -pfam05522 114254 pfam05522 114254 -pfam05533 114264 pfam05533 114264 -pfam05539 114270 pfam05539 114270 -pfam05560 114291 pfam05560 114291 -pfam05568 114299 pfam05568 114299 -pfam05570 114301 pfam05570 114301 -pfam05575 114305 cl17173 354317 -pfam05614 114342 pfam05614 114342 -pfam05684 114410 cl02317 242981 -pfam05722 114448 pfam05722 114448 -pfam05814 114536 pfam05814 114536 -pfam05868 114586 pfam05868 114586 -pfam05887 114603 cl29137 356013 -pfam05906 114618 pfam05906 114618 -pfam05928 114639 pfam05928 114639 -pfam06034 114740 pfam06034 114740 -pfam06076 114778 cl28639 333459 -pfam06143 114838 pfam06143 114838 -pfam06175 114868 cl00264 350992 -pfam06198 114890 pfam06198 114890 -pfam06249 114941 cl21464 354820 -pfam06270 114962 pfam06270 114962 -pfam06275 114966 pfam06275 114966 -pfam06306 114995 pfam06306 114995 -pfam06316 115004 cl21487 354832 -pfam06342 115027 cl21494 354836 -pfam06362 115044 pfam06362 115044 -pfam06379 115061 cl19288 302813 -pfam06390 115071 pfam06390 115071 -pfam06403 115083 pfam06403 115083 -pfam06443 115120 cl05775 186667 -pfam06453 115129 pfam06453 115129 -pfam06457 115133 pfam06457 115133 -pfam06488 115164 pfam06488 115164 -pfam06502 115174 pfam06502 115174 -pfam06513 115185 pfam06513 115185 -pfam06515 115187 pfam06515 115187 -pfam06523 115195 pfam06523 115195 -pfam06590 115260 pfam06590 115260 -pfam06599 115269 pfam06599 115269 -pfam06609 115279 pfam06609 115279 -pfam06615 115285 pfam06615 115285 -pfam06618 115288 pfam06618 115288 -pfam06622 115292 pfam06622 115292 -pfam06633 115303 pfam06633 115303 -pfam06635 115305 cl23770 329064 -pfam06670 115333 pfam06670 115333 -pfam06673 115336 pfam06673 115336 -pfam06688 115351 cl23874 305031 -pfam06692 115355 pfam06692 115355 -pfam06706 115368 pfam06706 115368 -pfam06712 115374 pfam06712 115374 -pfam06739 115400 pfam06739 115400 -pfam06861 115513 pfam06861 115513 -pfam06866 115518 cl04057 322510 -pfam06875 115526 cl21565 328800 -pfam06922 115570 pfam06922 115570 -pfam06933 115579 pfam06933 115579 -pfam06975 115620 pfam06975 115620 -pfam07020 115660 pfam07020 115660 -pfam07042 115680 cl19398 354416 -pfam07048 115686 pfam07048 115686 -pfam07067 115703 pfam07067 115703 -pfam07069 115705 pfam07069 115705 -pfam07082 115718 pfam07082 115718 -pfam07101 115736 pfam07101 115736 -pfam07125 115758 pfam07125 115758 -pfam07158 115789 cl21473 354825 -pfam07184 115814 pfam07184 115814 -pfam07204 115833 pfam07204 115833 -pfam07220 115849 pfam07220 115849 -pfam07232 115861 pfam07232 115861 -pfam07276 115901 pfam07276 115901 -pfam07279 115904 cl17173 354317 -pfam07327 115951 pfam07327 115951 -pfam07339 115962 pfam07339 115962 -pfam07341 115964 pfam07341 115964 -pfam07397 116019 pfam07397 116019 -pfam07401 116023 pfam07401 116023 -pfam07425 116046 pfam07425 116046 -pfam07440 116061 pfam07440 116061 -pfam07442 116063 pfam07442 116063 -pfam07468 116089 cl06484 141938 -pfam07560 116179 pfam07560 116179 -pfam07629 116246 pfam07629 116246 -pfam07709 116323 pfam07709 116323 -pfam07789 116403 pfam07789 116403 -pfam07794 116408 pfam07794 116408 -pfam07806 116420 pfam07806 116420 -pfam07825 116439 pfam07825 116439 -pfam07909 116521 pfam07909 116521 -pfam07945 116555 pfam07945 116555 -pfam08024 116634 pfam08024 116634 -pfam08025 116635 pfam08025 116635 -pfam08048 116658 cl28662 333482 -pfam08055 116663 pfam08055 116663 -pfam08086 116691 pfam08086 116691 -pfam08090 116695 pfam08090 116695 -pfam08093 116698 pfam08093 116698 -pfam08098 116700 pfam08098 116700 -pfam08102 116704 pfam08102 116704 -pfam08103 116705 pfam08103 116705 -pfam08107 116706 pfam08107 116706 -pfam08112 116708 pfam08112 116708 -pfam08130 116721 pfam08130 116721 -pfam08184 116772 pfam08184 116772 -pfam08222 116808 pfam08222 116808 -pfam08225 116811 pfam08225 116811 -pfam08247 116832 pfam08247 116832 -pfam08248 116833 pfam08248 116833 -pfam08249 116834 pfam08249 116834 -pfam08250 116835 pfam08250 116835 -pfam08251 116836 pfam08251 116836 -pfam08256 116841 pfam08256 116841 -pfam08257 116842 pfam08257 116842 -pfam08258 116843 pfam08258 116843 -pfam08260 116845 pfam08260 116845 -pfam08262 116846 pfam08262 116846 -pfam08298 116881 cl21455 354812 -pfam08444 117021 cl17182 354318 -pfam08445 117022 cl17182 354318 -pfam08462 117039 pfam08462 117039 -pfam08635 117208 cl21649 304482 -pfam08826 117396 pfam08826 117396 -pfam08978 117544 cl28628 333448 -pfam08995 117561 pfam08995 117561 -pfam09004 117570 pfam09004 117570 -pfam09017 117583 pfam09017 117583 -pfam09122 117679 pfam09122 117679 -pfam09131 117687 pfam09131 117687 -pfam09136 117692 pfam09136 117692 -pfam09212 117765 pfam09212 117765 -pfam09213 117766 pfam09213 117766 -pfam09274 117819 pfam09274 117819 -pfam09288 117832 cl21463 354819 -pfam09373 117915 pfam09373 117915 -pfam09437 117976 pfam09437 117976 -pfam10284 118808 pfam10284 118808 -pfam10285 118809 pfam10285 118809 -pfam10353 118874 pfam10353 118874 -pfam10480 119000 cl17171 354315 -pfam10532 119052 pfam10532 119052 -pfam10538 119058 pfam10538 119058 -pfam10550 119070 pfam10550 119070 -pfam10683 119203 pfam10683 119203 -pfam10736 119256 pfam10736 119256 -pfam10784 119304 pfam10784 119304 -cd06574 119320 cl00454 351100 -cd06579 119321 cl00454 351100 -cd06580 119322 cl00454 351100 -cd06581 119323 cl00454 351100 -cd06582 119324 cl00454 351100 -cd06573 119325 cl02768 351880 -cd06575 119326 cl02768 351880 -cd06576 119327 cl02768 351880 -cd06577 119328 cl02768 351880 -cd06572 119329 cl10029 353047 -cd06571 119330 cl07055 352649 -cd02742 119331 cl02948 351923 -cd06562 119332 cl02948 351923 -cd06563 119333 cl02948 351923 -cd06564 119334 cl02948 351923 -cd06565 119335 cl02948 351923 -cd06568 119336 cl02948 351923 -cd06569 119337 cl02948 351923 -cd06570 119338 cl02948 351923 -cd06558 119339 cl23717 355015 -cd00377 119340 cl29015 355891 -cd06556 119341 cl29015 355891 -cd06557 119342 cl29015 355891 -cd06541 119343 cl01020 351351 -cd06552 119344 cl01020 351351 -cd06553 119345 cl01020 351351 -cd06554 119346 cl01020 351351 -cd06555 119347 cl01020 351351 -cd06550 119348 cl00454 351100 -cd00598 119349 cl10447 353071 -cd02871 119350 cl10447 353071 -cd02872 119351 cl10447 353071 -cd02873 119352 cl10447 353071 -cd02874 119353 cl10447 353071 -cd02875 119354 cl10447 353071 -cd02876 119355 cl10447 353071 -cd02877 119356 cl10447 353071 -cd02878 119357 cl10447 353071 -cd02879 119358 cl10447 353071 -cd06542 119359 cl10447 353071 -cd06543 119360 cl10447 353071 -cd06544 119361 cl10447 353071 -cd06545 119362 cl10447 353071 -cd06546 119363 cl10447 353071 -cd06547 119364 cl10447 353071 -cd06548 119365 cl10447 353071 -cd06549 119366 cl10447 353071 -cd01615 119367 cl02541 351793 -cd06535 119368 cl02541 351793 -cd06536 119369 cl02541 351793 -cd06537 119370 cl02541 351793 -cd06538 119371 cl02541 351793 -cd06539 119372 cl02541 351793 -cd00599 119373 cl10448 324583 -cd06412 119374 cl10448 324583 -cd06413 119375 cl10448 324583 -cd06414 119376 cl10448 324583 -cd06415 119377 cl10448 324583 -cd06416 119378 cl10448 324583 -cd06417 119379 cl10448 324583 -cd06418 119380 cl10448 324583 -cd06419 119381 cl10448 324583 -cd06522 119382 cl10448 324583 -cd06523 119383 cl10448 324583 -cd06524 119384 cl10448 324583 -cd06525 119385 cl10448 324583 -cd00163 119386 cl00128 350911 -cd06265 119387 cl00128 350911 -cd04508 119391 cl02573 351810 -cd06261 119394 cl00427 351090 -cd06462 119396 cl10465 353074 -cd06529 119397 cl10465 353074 -cd06530 119398 cl10465 353074 -cd00082 119399 cl29579 356455 -cd06661 119400 cl22886 354971 -cd06662 119401 cl01321 351464 -cd00490 119402 cl23788 304945 -cd00251 119403 cl11637 325106 -cd00259 119404 cl27634 332455 -cd00219 119405 cl23876 355084 -cd00225 119406 cl26972 331793 -cd02696 119407 cl02713 351865 -cd06660 119408 cl00470 351106 -cd00039 119409 cl29842 356718 -cd00150 119410 cl28445 355711 -cd00206 119411 cl11586 353293 -cd00205 119412 cl13999 353801 -cd00235 119413 cl26985 331806 -cd00239 119414 cl28665 333485 -cd00243 119415 cl23877 329143 -cd00895 119421 cl21453 354810 -cd05467 119437 cl15347 326560 -cd06445 119438 cl29527 356403 -cd06533 119439 cl04270 352142 -cd06578 119440 cl03649 322377 -smart00002 128322 cl02417 351755 -smart00003 128323 cl02418 321926 -smart00006 128326 smart00006 128326 -smart00019 128335 smart00019 128335 -smart00023 128339 cl29842 356718 -smart00026 128341 cl02428 321931 -smart00030 128345 smart00030 128345 -smart00035 128350 smart00035 128350 -smart00037 128352 smart00037 128352 -smart00039 128354 cl22555 354947 -smart00040 128355 cl23816 304973 -smart00048 128363 cl27713 332534 -smart00051 128366 cl19567 354440 -smart00059 128373 cl09951 324551 -smart00067 128381 cl02448 351763 -smart00070 128384 cl27746 332567 -smart00071 128385 smart00071 128385 -smart00077 128390 smart00077 128390 -smart00087 128398 cl27588 332409 -smart00092 128403 cl00128 350911 -smart00095 128406 cl21470 354823 -smart00096 128407 cl11457 325042 -smart00097 128408 cl19568 354441 -smart00099 128410 cl15439 353945 -smart00101 128412 cl02098 351674 -smart00107 128417 cl02465 351765 -smart00110 128420 cl23878 355085 -smart00111 128421 cl02467 351766 -smart00113 128423 cl27728 355674 -smart00114 128424 cl14633 353817 -smart00125 128430 cl00094 294069 -smart00126 128431 cl02473 351769 -smart00127 128432 cl11602 325097 -smart00140 128445 cl02481 321947 -smart00149 128454 cl29594 356470 -smart00151 128456 cl02489 351774 -smart00152 128457 cl27586 355665 -smart00153 128458 cl02491 351775 -smart00159 128463 cl22861 354964 -smart00162 128465 cl02494 321954 -smart00167 128469 cl19569 354442 -smart00176 128473 smart00176 128473 -smart00177 128474 cl21455 354812 -smart00183 128480 cl27729 355675 -smart00188 128485 cl02501 351777 -smart00189 128486 cl23879 329145 -smart00193 128490 cl02505 321956 -smart00205 128501 cl02511 351780 -smart00206 128502 cl02512 351781 -smart00218 128514 cl02517 351782 -smart00223 128519 cl00112 350905 -smart00224 128520 cl00069 320743 -smart00227 128523 cl27631 355666 -smart00230 128526 cl00051 350877 -smart00243 128539 cl02524 321970 -smart00246 128542 smart00246 128542 -smart00251 128547 cl15755 353976 -smart00253 128549 cl02533 351789 -smart00258 128554 cl02536 351791 -smart00259 128555 cl27506 355658 -smart00265 128561 cl27450 332271 -smart00266 128562 cl02541 351793 -smart00267 128563 cl11967 353330 -smart00274 128570 cl26652 331473 -smart00284 128580 cl02549 351798 -smart00286 128582 cl28445 355711 -smart00294 128590 smart00294 128590 -smart00299 128594 cl26078 330899 -smart00302 128597 cl02558 351803 -smart00319 128614 cl00144 350917 -smart00329 128624 cl00188 320805 -smart00340 128634 cl23880 355086 -smart00341 128635 cl02578 351813 -smart00348 128642 cl00096 320756 -smart00351 128645 cl21459 354815 -smart00391 128673 cl00110 320763 -smart00400 128681 cl21601 354885 -smart00412 128690 cl02598 351817 -smart00417 128694 cl23735 329044 -smart00419 128696 cl21459 354815 -smart00424 128701 cl02602 322009 -smart00426 128703 cl02603 322010 -smart00428 128705 cl23735 329044 -smart00431 128708 cl02605 351821 -smart00438 128715 smart00438 128715 -smart00440 128717 cl02609 351823 -smart00441 128718 cl02610 351824 -smart00455 128731 cl28922 355798 -smart00459 128735 cl02617 322019 -smart00468 128744 cl02622 351831 -smart00469 128745 cl02623 322024 -smart00476 128752 cl00490 351117 -smart00496 128772 smart00496 128772 -smart00500 128776 cl02632 351834 -smart00501 128777 cl02633 351835 -smart00502 128778 smart00502 128778 -smart00504 128780 cl17238 354325 -smart00510 128786 cl02637 351836 -smart00511 128787 cl02638 351837 -smart00513 128789 cl02640 351838 -smart00520 128794 cl11603 325098 -smart00521 128795 cl02165 351693 -smart00528 128801 cl29535 356411 -smart00531 128804 cl30696 357572 -smart00540 128813 cl02649 351842 -smart00541 128814 cl02650 351843 -smart00545 128818 cl15840 353986 -smart00550 128823 cl02659 295419 -smart00555 128828 cl23881 329147 -smart00559 128831 cl02666 351850 -smart00564 128836 cl11493 353278 -smart00567 128837 smart00567 128837 -smart00572 128842 cl02675 295427 -smart00575 128845 smart00575 128845 -smart00576 128846 cl22885 354970 -smart00581 128850 cl02643 351840 -smart00586 128854 cl02684 322049 -smart00588 128856 cl26914 355591 -smart00589 128857 cl02686 351855 -smart00596 128863 cl11655 159607 -smart00603 128866 cl02694 351857 -smart00606 128869 cl14880 353849 -smart00607 128870 cl23730 355025 -smart00612 128874 cl02701 351859 -smart00615 128877 cl02704 351861 -smart00641 128889 cl10448 324583 -smart00650 128898 cl17173 354317 -smart00652 128900 cl09927 353027 -smart00654 128902 cl00241 350978 -smart00657 128904 cl00638 351189 -smart00659 128906 cl00874 351293 -smart00667 128913 cl26729 355562 -smart00668 128914 smart00668 128914 -smart00675 128920 smart00675 128920 -smart00676 128921 cl26962 355597 -smart00678 128922 cl02729 351868 -smart00679 128923 cl21610 354889 -smart00683 128926 smart00683 128926 -smart00684 128927 smart00684 128927 -smart00685 128928 smart00685 128928 -smart00686 128929 cl02735 351870 -smart00688 128930 smart00688 128930 -smart00692 128933 cl02739 351871 -smart00694 128935 smart00694 128935 -smart00696 128937 cl26423 355514 -smart00701 128941 cl02712 351864 -smart00705 128945 smart00705 128945 -smart00707 128947 cl29414 356290 -smart00709 128949 cl19251 354400 -smart00713 128953 cl27371 332192 -smart00715 128955 cl02755 351874 -smart00723 128962 cl02758 351875 -smart00727 128966 smart00727 128966 -smart00732 128971 cl21482 354829 -smart00734 128973 smart00734 128973 -smart00735 128974 smart00735 128974 -smart00739 128978 smart00739 128978 -smart00742 128981 cl00087 350896 -smart00744 128983 cl17238 354325 -smart00747 128986 cl02770 351881 -smart00751 128990 cl02772 351882 -smart00759 128998 cl27878 332699 -smart00764 129003 cl00015 350862 -smart00765 129004 cl06508 352525 -smart00771 129010 cl29321 356197 -smart00778 129016 cl21601 354885 -smart00782 129018 smart00782 129018 -smart00783 129019 cl23872 305029 -smart00785 129021 cl06950 352612 -smart00786 129022 cl07019 352638 -smart00789 129025 cl07218 323810 -smart00790 129026 cl08354 352880 -smart00791 129027 cl06484 141938 -smart00794 129030 cl27940 332761 -smart00795 129031 cl27990 332811 -smart00801 129037 cl04084 352103 -smart00803 129039 cl23774 304931 -smart00810 129046 cl29240 356116 -smart00814 129050 cl03493 351997 -smart00816 129052 cl28664 333484 -smart00837 129070 cl29364 356240 -TIGR00004 129116 cl10015 299145 -TIGR00013 129125 cl00235 350973 -TIGR00017 129128 cl17190 354320 -TIGR00019 129130 TIGR00019 129130 -TIGR00022 129133 cl01047 351355 -TIGR00024 129135 cl13995 353799 -TIGR00030 129141 cl00529 351137 -TIGR00034 129145 cl17225 354324 -TIGR00036 129147 TIGR00036 129147 -TIGR00044 129155 cl00261 350989 -TIGR00051 129161 cl00509 351126 -TIGR00052 129162 TIGR00052 129162 -TIGR00055 129165 cl00230 350969 -TIGR00056 129166 cl00510 351127 -TIGR00058 129168 cl15774 353977 -TIGR00061 129171 cl00382 351065 -TIGR00063 129173 cl00263 350991 -TIGR00066 129176 cl19223 327525 -TIGR00074 129184 cl00394 351074 -TIGR00082 129191 cl00542 351145 -TIGR00084 129193 TIGR00084 129193 -TIGR00086 129194 cl00482 351113 -TIGR00088 129196 cl00407 294285 -TIGR00092 129200 TIGR00092 129200 -TIGR00096 129204 cl00304 351012 -TIGR00101 129208 cl21455 354812 -TIGR00104 129210 cl00749 351236 -TIGR00111 129217 cl30759 357635 -TIGR00117 129223 TIGR00117 129223 -TIGR00124 129230 TIGR00124 129230 -TIGR00127 129233 cl00445 351095 -TIGR00135 129241 cl00495 351121 -TIGR00137 129243 cl21454 354811 -TIGR00139 129245 TIGR00139 129245 -TIGR00140 129246 cl00477 351109 -TIGR00142 129247 cl00477 351109 -TIGR00144 129249 cl28348 333168 -TIGR00148 129252 cl00311 351016 -TIGR00149 129253 cl00439 351094 -TIGR00150 129254 cl21455 354812 -TIGR00151 129255 cl10030 353048 -TIGR00156 129260 cl09930 353029 -TIGR00158 129262 TIGR00158 129262 -TIGR00159 129263 cl27421 355651 -TIGR00161 129265 cl00847 351280 -TIGR00162 129266 cl00847 351280 -TIGR00164 129268 cl03656 322379 -TIGR00166 129270 cl00414 351083 -TIGR00168 129272 TIGR00168 129272 -TIGR00171 129275 cl00215 350957 -TIGR00172 129276 cl00276 350998 -TIGR00178 129282 cl15383 353936 -TIGR00182 129286 cl17212 354323 -TIGR00186 129290 TIGR00186 129290 -TIGR00190 129294 cl08031 352842 -TIGR00191 129295 TIGR00191 129295 -TIGR00192 129296 cl00533 351140 -TIGR00199 129303 cl00666 351203 -TIGR00203 129307 cl12219 353372 -TIGR00204 129308 TIGR00204 129308 -TIGR00206 129310 TIGR00206 129310 -TIGR00209 129313 TIGR00209 129313 -TIGR00210 129314 cl19414 327550 -TIGR00213 129317 TIGR00213 129317 -TIGR00215 129319 cl10013 353042 -TIGR00217 129321 cl00711 351222 -TIGR00219 129323 cl19252 354401 -TIGR00223 129327 cl00540 351143 -TIGR00227 129330 cl17279 354327 -TIGR00228 129331 cl21482 354829 -TIGR00241 129344 cl17037 354300 -TIGR00242 129345 TIGR00242 129345 -TIGR00244 129347 cl27261 355632 -TIGR00246 129349 cl00679 351210 -TIGR00249 129351 cl11399 353243 -TIGR00250 129352 cl21482 354829 -TIGR00251 129353 cl00811 351266 -TIGR00252 129354 cl00516 351129 -TIGR00253 129355 cl00663 351202 -TIGR00255 129357 cl26779 355573 -TIGR00256 129358 cl00253 350984 -TIGR00257 129359 TIGR00257 129359 -TIGR00259 129361 TIGR00259 129361 -TIGR00261 129363 cl12050 353346 -TIGR00267 129368 cl00278 350999 -TIGR00268 129369 TIGR00268 129369 -TIGR00269 129370 cl25646 355430 -TIGR00270 129371 cl26727 331548 -TIGR00271 129372 cl00781 351253 -TIGR00273 129374 TIGR00273 129374 -TIGR00279 129380 cl00353 351049 -TIGR00285 129386 cl00682 351212 -TIGR00289 129390 cl00292 351005 -TIGR00291 129392 TIGR00291 129392 -TIGR00293 129394 cl09111 352933 -TIGR00294 129395 cl00642 351192 -TIGR00295 129396 cl21469 354822 -TIGR00299 129400 cl03398 351986 -TIGR00300 129401 cl19054 354376 -TIGR00302 129402 cl00789 351256 -TIGR00305 129405 cl28905 355781 -TIGR00307 129407 cl00880 294572 -TIGR00309 129409 cl00613 351178 -TIGR00311 129411 cl17014 354297 -TIGR00313 129413 TIGR00313 129413 -TIGR00314 129414 TIGR00314 129414 -TIGR00316 129416 cl11685 353311 -TIGR00324 129424 TIGR00324 129424 -TIGR00328 129428 cl19167 354387 -TIGR00329 129429 TIGR00329 129429 -TIGR00330 129430 cl00289 351004 -TIGR00336 129436 cl00309 351014 -TIGR00340 129440 cl19251 354400 -TIGR00343 129443 cl21457 354814 -TIGR00346 129446 cl00570 351157 -TIGR00347 129447 cl28913 355789 -TIGR00353 129451 TIGR00353 129451 -TIGR00357 129454 cl15841 353987 -TIGR00363 129460 cl21456 354813 -TIGR00364 129461 cl00292 351005 -TIGR00368 129465 TIGR00368 129465 -TIGR00370 129467 cl19310 354409 -TIGR00373 129469 TIGR00373 129469 -TIGR00374 129470 cl04219 322570 -TIGR00385 129481 cl00388 351069 -TIGR00388 129483 cl00268 350993 -TIGR00393 129488 TIGR00393 129488 -TIGR00397 129492 TIGR00397 129492 -TIGR00400 129495 TIGR00400 129495 -TIGR00401 129496 cl00366 351056 -TIGR00403 129498 TIGR00403 129498 -TIGR00405 129499 TIGR00405 129499 -TIGR00411 129505 cl00388 351069 -TIGR00412 129506 cl00388 351069 -TIGR00415 129509 TIGR00415 129509 -TIGR00419 129513 cl28888 355772 -TIGR00421 129515 cl19190 327515 -TIGR00426 129520 cl22429 354935 -TIGR00427 129521 cl21514 354847 -TIGR00430 129522 cl19224 354397 -TIGR00431 129523 TIGR00431 129523 -TIGR00434 129526 cl00292 351005 -TIGR00436 129528 TIGR00436 129528 -TIGR00439 129531 cl26321 331142 -TIGR00441 129533 cl00389 351070 -TIGR00448 129540 TIGR00448 129540 -TIGR00449 129541 cl19224 354397 -TIGR00451 129543 cl00607 294405 -TIGR00455 129547 cl17190 354320 -TIGR00466 129558 cl11394 353239 -TIGR00469 129561 TIGR00469 129561 -TIGR00470 129562 TIGR00470 129562 -TIGR00475 129567 TIGR00475 129567 -TIGR00478 129570 TIGR00478 129570 -TIGR00479 129571 TIGR00479 129571 -TIGR00481 129572 cl00227 350966 -TIGR00483 129574 TIGR00483 129574 -TIGR00484 129575 TIGR00484 129575 -TIGR00485 129576 TIGR00485 129576 -TIGR00489 129580 cl00194 350939 -TIGR00490 129581 TIGR00490 129581 -TIGR00492 129583 cl27635 355667 -TIGR00494 129585 cl09114 352935 -TIGR00496 129587 cl00240 350977 -TIGR00500 129591 cl00279 351000 -TIGR00501 129592 cl00279 351000 -TIGR00502 129593 cl00339 351040 -TIGR00503 129594 TIGR00503 129594 -TIGR00504 129595 cl00237 320846 -TIGR00505 129596 cl00522 351133 -TIGR00514 129605 TIGR00514 129605 -TIGR00515 129606 cl23717 355015 -TIGR00518 129609 TIGR00518 129609 -TIGR00519 129610 cl00216 320827 -TIGR00530 129621 cl17185 354319 -TIGR00532 129623 cl00205 350949 -TIGR00533 129624 cl00205 350949 -TIGR00537 129628 cl17173 354317 -TIGR00538 129629 TIGR00538 129629 -TIGR00539 129630 TIGR00539 129630 -TIGR00541 129632 cl03540 295899 -TIGR00542 129633 TIGR00542 129633 -TIGR00547 129638 cl19192 354390 -TIGR00548 129639 cl19192 354390 -TIGR00550 129641 cl00420 351086 -TIGR00568 129659 cl21496 354838 -TIGR00569 129660 TIGR00569 129660 -TIGR00570 129661 TIGR00570 129661 -TIGR00573 129663 TIGR00573 129663 -TIGR00581 129670 cl00242 350979 -TIGR00591 129679 cl29363 356239 -TIGR00597 129685 cl04283 352146 -TIGR00602 129690 TIGR00602 129690 -TIGR00606 129694 TIGR00606 129694 -TIGR00607 129695 cl01936 321730 -TIGR00614 129701 TIGR00614 129701 -TIGR00616 129703 cl04285 352147 -TIGR00618 129705 TIGR00618 129705 -TIGR00622 129709 cl06838 352591 -TIGR00623 129710 cl01880 351628 -TIGR00624 129711 cl01059 351362 -TIGR00635 129721 TIGR00635 129721 -TIGR00640 129726 cl00293 351006 -TIGR00645 129731 cl01078 351371 -TIGR00646 129732 TIGR00646 129732 -TIGR00648 129734 cl01314 321443 -TIGR00654 129739 cl29427 356303 -TIGR00658 129743 TIGR00658 129743 -TIGR00669 129752 cl00268 350993 -TIGR00672 129755 cl00934 351317 -TIGR00674 129757 cl28986 355862 -TIGR00677 129760 cl00246 294174 -TIGR00681 129764 cl00944 351325 -TIGR00688 129771 cl28581 355713 -TIGR00689 129772 cl00485 351115 -TIGR00692 129775 TIGR00692 129775 -TIGR00695 129778 cl23721 355019 -TIGR00696 129779 cl04270 352142 -TIGR00697 129780 cl00756 351242 -TIGR00698 129781 cl01075 294678 -TIGR00699 129782 cl18945 354370 -TIGR00700 129783 cl18945 354370 -TIGR00703 129786 cl00799 321175 -TIGR00708 129791 TIGR00708 129791 -TIGR00709 129792 cl18945 354370 -TIGR00711 129794 TIGR00711 129794 -TIGR00712 129795 TIGR00712 129795 -TIGR00716 129799 TIGR00716 129799 -TIGR00718 129801 cl27283 355635 -TIGR00719 129802 TIGR00719 129802 -TIGR00721 129804 TIGR00721 129804 -TIGR00723 129806 cl00795 351258 -TIGR00724 129807 cl00865 351288 -TIGR00725 129808 cl22881 354968 -TIGR00727 129810 cl14607 326328 -TIGR00729 129812 cl14782 353835 -TIGR00730 129813 cl22881 354968 -TIGR00736 129819 cl21457 354814 -TIGR00737 129820 TIGR00737 129820 -TIGR00741 129824 cl00250 350982 -TIGR00742 129825 cl21457 354814 -TIGR00749 129832 cl17037 354300 -TIGR00750 129833 cl21455 354812 -TIGR00751 129834 cl00337 351038 -TIGR00753 129836 cl00858 351283 -TIGR00758 129841 cl00483 351114 -TIGR00760 129843 cl00214 350956 -TIGR00771 129854 cl21473 354825 -TIGR00774 129856 cl21473 354825 -TIGR00775 129857 TIGR00775 129857 -TIGR00777 129859 cl28589 333409 -TIGR00779 129861 cl19409 327549 -TIGR00780 129862 cl00275 350997 -TIGR00781 129863 cl21467 354821 -TIGR00782 129864 TIGR00782 129864 -TIGR00783 129865 cl01386 321474 -TIGR00786 129868 cl21473 354825 -TIGR00787 129869 cl21456 354813 -TIGR00789 129871 cl19167 354387 -TIGR00791 129873 cl21473 354825 -TIGR00794 129876 cl15781 326642 -TIGR00798 129880 cl04275 322597 -TIGR00803 129885 cl23754 329058 -TIGR00806 129888 cl27502 332323 -TIGR00807 129889 cl04273 352144 -TIGR00808 129890 cl04274 352145 -TIGR00817 129898 cl26744 331565 -TIGR00821 129901 cl01515 321540 -TIGR00822 129902 cl01506 351528 -TIGR00823 129903 cl00166 350929 -TIGR00824 129904 cl00025 350867 -TIGR00825 129905 cl27251 332072 -TIGR00827 129907 cl04451 352188 -TIGR00828 129908 cl01507 351529 -TIGR00829 129909 cl10014 353043 -TIGR00831 129911 TIGR00831 129911 -TIGR00833 129913 TIGR00833 129913 -TIGR00838 129918 TIGR00838 129918 -TIGR00843 129923 cl23746 355031 -TIGR00847 129927 cl01253 351443 -TIGR00849 129929 cl01516 321541 -TIGR00851 129930 cl21492 328750 -TIGR00854 129933 cl00021 350866 -TIGR00856 129935 cl00281 351001 -TIGR00862 129941 TIGR00862 129941 -TIGR00868 129946 TIGR00868 129946 -TIGR00875 129953 cl28986 355862 -TIGR00876 129954 cl28986 355862 -TIGR00887 129965 TIGR00887 129965 -TIGR00888 129966 TIGR00888 129966 -TIGR00889 129967 cl28910 355786 -TIGR00894 129972 TIGR00894 129972 -TIGR00896 129974 TIGR00896 129974 -TIGR00899 129977 TIGR00899 129977 -TIGR00902 129980 cl28910 355786 -TIGR00903 129981 cl28910 355786 -TIGR00904 129982 TIGR00904 129982 -TIGR00905 129983 TIGR00905 129983 -TIGR00908 129986 TIGR00908 129986 -TIGR00909 129987 TIGR00909 129987 -TIGR00910 129988 TIGR00910 129988 -TIGR00914 129992 TIGR00914 129992 -TIGR00934 130009 TIGR00934 130009 -TIGR00942 130017 cl00807 351263 -TIGR00943 130018 cl00676 351209 -TIGR00944 130019 TIGR00944 130019 -TIGR00948 130023 cl00565 294381 -TIGR00951 130026 TIGR00951 130026 -TIGR00952 130027 cl00349 351045 -TIGR00965 130038 TIGR00965 130038 -TIGR00968 130041 TIGR00968 130041 -TIGR00971 130044 cl21456 354813 -TIGR00973 130046 TIGR00973 130046 -TIGR00977 130050 TIGR00977 130050 -TIGR00979 130052 TIGR00979 130052 -TIGR00980 130053 cl02381 351748 -TIGR00981 130054 cl00312 351017 -TIGR00983 130056 cl02381 351748 -TIGR00984 130057 TIGR00984 130057 -TIGR00987 130060 cl00257 350986 -TIGR00988 130061 cl00257 350986 -TIGR00989 130062 cl03224 351964 -TIGR00991 130064 cl21455 354812 -TIGR00992 130065 TIGR00992 130065 -TIGR00997 130070 cl01098 321339 -TIGR01001 130074 cl00020 350865 -TIGR01006 130079 TIGR01006 130079 -TIGR01009 130082 TIGR01009 130082 -TIGR01010 130083 TIGR01010 130083 -TIGR01011 130084 cl00315 351020 -TIGR01019 130091 TIGR01019 130091 -TIGR01021 130093 TIGR01021 130093 -TIGR01022 130094 cl00380 351063 -TIGR01024 130096 cl00406 351079 -TIGR01030 130102 cl00370 351059 -TIGR01032 130104 cl00393 351073 -TIGR01037 130109 TIGR01037 130109 -TIGR01043 130115 TIGR01043 130115 -TIGR01044 130116 cl00327 351030 -TIGR01049 130121 cl00314 351019 -TIGR01050 130122 cl00350 351046 -TIGR01053 130125 cl26935 355593 -TIGR01055 130127 TIGR01055 130127 -TIGR01058 130130 TIGR01058 130130 -TIGR01062 130134 TIGR01062 130134 -TIGR01069 130141 TIGR01069 130141 -TIGR01074 130146 TIGR01074 130146 -TIGR01075 130147 TIGR01075 130147 -TIGR01076 130148 cl09098 324322 -TIGR01081 130153 TIGR01081 130153 -TIGR01084 130156 TIGR01084 130156 -TIGR01088 130160 cl00505 351123 -TIGR01089 130161 TIGR01089 130161 -TIGR01092 130164 TIGR01092 130164 -TIGR01100 130170 cl00466 351103 -TIGR01101 130171 cl00632 351187 -TIGR01102 130172 cl00593 351166 -TIGR01105 130175 cl11394 353239 -TIGR01109 130179 cl00816 351269 -TIGR01111 130181 TIGR01111 130181 -TIGR01113 130183 cl01675 321616 -TIGR01117 130187 TIGR01117 130187 -TIGR01118 130188 cl00485 351115 -TIGR01119 130189 TIGR01119 130189 -TIGR01120 130190 cl00485 351115 -TIGR01121 130191 cl00224 350964 -TIGR01122 130192 cl00224 350964 -TIGR01124 130194 TIGR01124 130194 -TIGR01127 130197 TIGR01127 130197 -TIGR01138 130208 cl00342 294246 -TIGR01142 130212 TIGR01142 130212 -TIGR01144 130214 TIGR01144 130214 -TIGR01145 130215 cl17210 354322 -TIGR01147 130217 cl03922 322471 -TIGR01148 130218 cl01677 321618 -TIGR01149 130219 TIGR01149 130219 -TIGR01151 130221 cl08220 352857 -TIGR01152 130222 cl08220 352857 -TIGR01156 130224 cl00193 350938 -TIGR01157 130225 cl08220 352857 -TIGR01160 130228 cl00229 350968 -TIGR01166 130234 TIGR01166 130234 -TIGR01178 130246 cl28964 355840 -TIGR01183 130251 cl00427 351090 -TIGR01184 130252 TIGR01184 130252 -TIGR01185 130253 TIGR01185 130253 -TIGR01186 130254 TIGR01186 130254 -TIGR01188 130256 TIGR01188 130256 -TIGR01192 130260 TIGR01192 130260 -TIGR01193 130261 TIGR01193 130261 -TIGR01194 130262 TIGR01194 130262 -TIGR01196 130264 cl00340 351041 -TIGR01202 130269 TIGR01202 130269 -TIGR01204 130271 cl00625 351183 -TIGR01207 130274 TIGR01207 130274 -TIGR01212 130279 TIGR01212 130279 -TIGR01220 130287 TIGR01220 130287 -TIGR01223 130290 cl04466 322676 -TIGR01226 130293 TIGR01226 130293 -TIGR01228 130295 cl19311 354410 -TIGR01232 130299 cl21457 354814 -TIGR01234 130301 TIGR01234 130301 -TIGR01235 130302 TIGR01235 130302 -TIGR01240 130307 cl28577 333397 -TIGR01242 130309 TIGR01242 130309 -TIGR01244 130311 cl28904 355780 -TIGR01247 130314 cl21474 354826 -TIGR01248 130315 cl21474 354826 -TIGR01249 130316 cl21494 354836 -TIGR01253 130320 TIGR01253 130320 -TIGR01254 130321 cl21456 354813 -TIGR01257 130324 TIGR01257 130324 -TIGR01260 130327 cl00466 351103 -TIGR01261 130328 TIGR01261 130328 -TIGR01267 130334 cl01244 351437 -TIGR01268 130335 TIGR01268 130335 -TIGR01269 130336 TIGR01269 130336 -TIGR01270 130337 TIGR01270 130337 -TIGR01274 130341 cl00342 294246 -TIGR01276 130343 cl21456 354813 -TIGR01277 130344 TIGR01277 130344 -TIGR01281 130348 cl21455 354812 -TIGR01286 130353 TIGR01286 130353 -TIGR01288 130355 TIGR01288 130355 -TIGR01291 130358 cl21474 354826 -TIGR01299 130366 TIGR01299 130366 -TIGR01300 130367 cl00583 351161 -TIGR01303 130370 TIGR01303 130370 -TIGR01305 130372 TIGR01305 130372 -TIGR01306 130373 TIGR01306 130373 -TIGR01307 130374 TIGR01307 130374 -TIGR01308 130375 cl00203 350947 -TIGR01309 130376 cl00203 350947 -TIGR01314 130381 TIGR01314 130381 -TIGR01316 130383 TIGR01316 130383 -TIGR01319 130386 cl29100 355976 -TIGR01320 130387 cl21454 354811 -TIGR01321 130388 cl21459 354815 -TIGR01324 130391 cl18945 354370 -TIGR01328 130395 cl18945 354370 -TIGR01331 130398 cl00289 351004 -TIGR01332 130399 TIGR01332 130399 -TIGR01333 130400 cl28158 355706 -TIGR01334 130401 TIGR01334 130401 -TIGR01335 130402 cl08224 324211 -TIGR01336 130403 cl08224 324211 -TIGR01338 130405 cl21461 354817 -TIGR01342 130409 TIGR01342 130409 -TIGR01345 130412 cl21481 354828 -TIGR01358 130425 cl03230 351966 -TIGR01360 130427 TIGR01360 130427 -TIGR01362 130429 cl17225 354324 -TIGR01364 130431 cl18945 354370 -TIGR01365 130432 cl18945 354370 -TIGR01366 130433 cl18945 354370 -TIGR01374 130441 cl01767 351591 -TIGR01377 130444 TIGR01377 130444 -TIGR01380 130447 TIGR01380 130447 -TIGR01384 130451 TIGR01384 130451 -TIGR01387 130454 TIGR01387 130454 -TIGR01388 130455 TIGR01388 130455 -TIGR01390 130457 TIGR01390 130457 -TIGR01393 130460 TIGR01393 130460 -TIGR01395 130462 TIGR01395 130462 -TIGR01397 130464 TIGR01397 130464 -TIGR01400 130467 cl00734 351231 -TIGR01401 130468 cl00734 351231 -TIGR01402 130469 cl00867 351290 -TIGR01403 130470 cl00867 351290 -TIGR01404 130471 cl19167 354387 -TIGR01406 130473 TIGR01406 130473 -TIGR01410 130477 cl00788 294511 -TIGR01428 130495 TIGR01428 130495 -TIGR01436 130503 cl00954 351329 -TIGR01440 130507 cl01860 351620 -TIGR01449 130516 TIGR01449 130516 -TIGR01454 130521 TIGR01454 130521 -TIGR01455 130522 cl03757 352048 -TIGR01457 130524 TIGR01457 130524 -TIGR01459 130526 TIGR01459 130526 -TIGR01461 130528 TIGR01461 130528 -TIGR01470 130536 TIGR01470 130536 -TIGR01474 130539 cl00337 351038 -TIGR01476 130541 cl00337 351038 -TIGR01478 130543 cl14106 353807 -TIGR01481 130546 TIGR01481 130546 -TIGR01485 130549 TIGR01485 130549 -TIGR01486 130550 TIGR01486 130550 -TIGR01492 130556 cl09918 353024 -TIGR01493 130557 cl21460 354816 -TIGR01495 130559 cl09917 324536 -TIGR01497 130561 TIGR01497 130561 -TIGR01501 130565 cl00293 351006 -TIGR01503 130567 cl02025 321775 -TIGR01505 130569 TIGR01505 130569 -TIGR01506 130570 cl00317 351021 -TIGR01508 130572 cl17279 354327 -TIGR01514 130578 TIGR01514 130578 -TIGR01518 130581 cl00015 350862 -TIGR01519 130582 cl09916 324535 -TIGR01520 130583 cl21457 354814 -TIGR01521 130584 cl21457 354814 -TIGR01522 130585 TIGR01522 130585 -TIGR01523 130586 TIGR01523 130586 -TIGR01524 130587 TIGR01524 130587 -TIGR01529 130592 TIGR01529 130592 -TIGR01532 130595 TIGR01532 130595 -TIGR01535 130598 TIGR01535 130598 -TIGR01542 130605 cl19531 327578 -TIGR01545 130608 cl21460 354816 -TIGR01546 130609 TIGR01546 130609 -TIGR01555 130618 cl21602 354886 -TIGR01556 130619 cl11394 353239 -TIGR01557 130620 cl21498 354840 -TIGR01560 130623 cl12049 353345 -TIGR01561 130624 TIGR01561 130624 -TIGR01562 130625 cl19312 354411 -TIGR01565 130628 TIGR01565 130628 -TIGR01566 130629 cl04737 352237 -TIGR01568 130631 cl04796 352254 -TIGR01581 130643 cl00427 351090 -TIGR01583 130645 cl23723 355020 -TIGR01584 130646 cl28269 333089 -TIGR01588 130649 cl21481 354828 -TIGR01589 130650 cl09915 353023 -TIGR01590 130651 cl05524 297068 -TIGR01591 130652 TIGR01591 130652 -TIGR01592 130653 cl23882 329148 -TIGR01597 130658 cl09810 299055 -TIGR01598 130659 cl02344 321896 -TIGR01600 130661 cl01908 295085 -TIGR01602 130663 TIGR01602 130663 -TIGR01604 130665 TIGR01604 130665 -TIGR01605 130666 TIGR01605 130666 -TIGR01608 130669 cl06082 352463 -TIGR01611 130672 cl01390 321477 -TIGR01612 130673 TIGR01612 130673 -TIGR01618 130679 cl21455 354812 -TIGR01619 130680 TIGR01619 130680 -TIGR01620 130681 cl12064 325175 -TIGR01621 130682 cl00130 320773 -TIGR01623 130684 TIGR01623 130684 -TIGR01625 130686 cl01133 351397 -TIGR01626 130687 cl17398 302642 -TIGR01627 130688 cl04661 322751 -TIGR01628 130689 TIGR01628 130689 -TIGR01630 130691 cl02216 351706 -TIGR01634 130695 cl01817 321680 -TIGR01635 130696 cl02089 321796 -TIGR01636 130697 cl23883 305040 -TIGR01638 130699 TIGR01638 130699 -TIGR01639 130700 cl23884 355087 -TIGR01645 130706 TIGR01645 130706 -TIGR01650 130711 TIGR01650 130711 -TIGR01651 130712 TIGR01651 130712 -TIGR01655 130716 cl02185 321840 -TIGR01663 130724 TIGR01663 130724 -TIGR01666 130727 cl26307 355500 -TIGR01667 130728 cl26307 355500 -TIGR01670 130731 cl21460 354816 -TIGR01673 130734 cl09890 324527 -TIGR01676 130737 TIGR01676 130737 -TIGR01679 130740 TIGR01679 130740 -TIGR01680 130741 cl21460 354816 -TIGR01688 130749 cl09936 324546 -TIGR01692 130753 TIGR01692 130753 -TIGR01697 130758 cl00303 351011 -TIGR01698 130759 cl00303 351011 -TIGR01699 130760 cl00303 351011 -TIGR01702 130763 TIGR01702 130763 -TIGR01703 130764 cl23739 355027 -TIGR01704 130765 cl00303 351011 -TIGR01705 130766 cl00303 351011 -TIGR01708 130769 TIGR01708 130769 -TIGR01710 130771 cl29224 356100 -TIGR01711 130772 TIGR01711 130772 -TIGR01714 130775 cl09889 353021 -TIGR01718 130779 cl00303 351011 -TIGR01719 130780 cl00303 351011 -TIGR01721 130782 cl00303 351011 -TIGR01722 130783 cl11961 353326 -TIGR01723 130784 TIGR01723 130784 -TIGR01724 130785 TIGR01724 130785 -TIGR01726 130787 cl00427 351090 -TIGR01728 130789 TIGR01728 130789 -TIGR01729 130790 TIGR01729 130790 -TIGR01741 130802 cl04640 322744 -TIGR01743 130804 TIGR01743 130804 -TIGR01744 130805 cl00309 351014 -TIGR01745 130806 cl29412 356288 -TIGR01747 130808 cl00342 294246 -TIGR01748 130809 cl23721 355019 -TIGR01749 130810 cl00509 351126 -TIGR01750 130811 cl00509 351126 -TIGR01754 130815 cl00438 351093 -TIGR01755 130816 cl00438 351093 -TIGR01756 130817 TIGR01756 130817 -TIGR01757 130818 TIGR01757 130818 -TIGR01758 130819 TIGR01758 130819 -TIGR01759 130820 TIGR01759 130820 -TIGR01762 130823 cl21496 354838 -TIGR01765 130826 TIGR01765 130826 -TIGR01767 130828 cl21453 354810 -TIGR01769 130830 cl21457 354814 -TIGR01772 130833 TIGR01772 130833 -TIGR01788 130848 cl18945 354370 -TIGR01789 130849 cl21454 354811 -TIGR01790 130850 TIGR01790 130850 -TIGR01791 130851 cl00693 351218 -TIGR01793 130853 cl00416 351085 -TIGR01795 130854 cl00693 351218 -TIGR01796 130855 cl10037 353050 -TIGR01797 130856 cl00693 351218 -TIGR01799 130858 cl00693 351218 -TIGR01800 130859 cl00416 351085 -TIGR01801 130860 cl00693 351218 -TIGR01803 130862 cl00693 351218 -TIGR01805 130864 cl00693 351218 -TIGR01806 130865 cl00693 351218 -TIGR01807 130866 cl00693 351218 -TIGR01808 130867 cl00693 351218 -TIGR01811 130870 cl30765 357641 -TIGR01814 130873 TIGR01814 130873 -TIGR01815 130874 TIGR01815 130874 -TIGR01816 130875 TIGR01816 130875 -TIGR01819 130878 cl00425 351088 -TIGR01822 130881 cl18945 354370 -TIGR01824 130883 cl29920 356796 -TIGR01825 130884 cl29034 355910 -TIGR01827 130886 cl00495 351121 -TIGR01836 130895 cl26470 355519 -TIGR01837 130896 cl07863 352825 -TIGR01839 130898 TIGR01839 130898 -TIGR01841 130900 cl11491 353276 -TIGR01843 130902 TIGR01843 130902 -TIGR01847 130906 TIGR01847 130906 -TIGR01848 130907 cl26841 355581 -TIGR01849 130908 cl21494 354836 -TIGR01857 130916 TIGR01857 130916 -TIGR01858 130917 cl21457 354814 -TIGR01859 130918 cl28888 355772 -TIGR01860 130919 TIGR01860 130919 -TIGR01861 130920 TIGR01861 130920 -TIGR01882 130937 cl14876 353847 -TIGR01886 130941 TIGR01886 130941 -TIGR01889 130944 cl21459 354815 -TIGR01892 130947 TIGR01892 130947 -TIGR01902 130957 TIGR01902 130957 -TIGR01917 130972 cl19416 327551 -TIGR01918 130973 cl19416 327551 -TIGR01925 130980 cl00075 350890 -TIGR01926 130981 cl00460 320985 -TIGR01933 130988 cl19107 354381 -TIGR01935 130990 cl00480 351111 -TIGR01937 130992 cl00779 351251 -TIGR01939 130994 cl00597 351168 -TIGR01940 130995 cl00597 351168 -TIGR01941 130996 TIGR01941 130996 -TIGR01942 130997 TIGR01942 130997 -TIGR01943 130998 cl00597 351168 -TIGR01946 131001 cl00779 351251 -TIGR01950 131005 TIGR01950 131005 -TIGR01955 131010 TIGR01955 131010 -TIGR01958 131013 TIGR01958 131013 -TIGR01959 131014 TIGR01959 131014 -TIGR01960 131015 TIGR01960 131015 -TIGR01966 131021 TIGR01966 131021 -TIGR01968 131023 TIGR01968 131023 -TIGR01969 131024 TIGR01969 131024 -TIGR01975 131030 cl00281 351001 -TIGR01977 131032 TIGR01977 131032 -TIGR01979 131034 cl18945 354370 -TIGR01980 131035 TIGR01980 131035 -TIGR01985 131040 cl11491 353276 -TIGR01987 131042 cl23885 355088 -TIGR01996 131051 TIGR01996 131051 -TIGR01997 131052 cl00400 351077 -TIGR02003 131058 TIGR02003 131058 -TIGR02006 131061 cl18945 354370 -TIGR02007 131062 cl00159 350924 -TIGR02014 131069 TIGR02014 131069 -TIGR02015 131070 cl02775 351884 -TIGR02017 131072 cl01522 351535 -TIGR02019 131074 cl15268 326554 -TIGR02020 131075 cl06353 323421 -TIGR02024 131079 cl26845 355584 -TIGR02026 131081 TIGR02026 131081 -TIGR02028 131083 cl21454 354811 -TIGR02029 131084 cl00264 350992 -TIGR02030 131085 TIGR02030 131085 -TIGR02036 131091 TIGR02036 131091 -TIGR02039 131094 cl00292 351005 -TIGR02042 131097 TIGR02042 131097 -TIGR02043 131098 TIGR02043 131098 -TIGR02044 131099 TIGR02044 131099 -TIGR02045 131100 cl00192 350937 -TIGR02046 131101 TIGR02046 131101 -TIGR02047 131102 TIGR02047 131102 -TIGR02048 131103 cl00954 351329 -TIGR02051 131106 TIGR02051 131106 -TIGR02052 131107 cl00207 350951 -TIGR02054 131109 TIGR02054 131109 -TIGR02056 131111 cl00337 351038 -TIGR02057 131112 cl00292 351005 -TIGR02058 131113 cl09807 324491 -TIGR02059 131114 cl23886 329151 -TIGR02060 131115 TIGR02060 131115 -TIGR02062 131117 TIGR02062 131117 -TIGR02065 131120 TIGR02065 131120 -TIGR02066 131121 TIGR02066 131121 -TIGR02069 131124 cl00020 350865 -TIGR02078 131133 TIGR02078 131133 -TIGR02080 131135 cl18945 354370 -TIGR02083 131138 cl00285 351003 -TIGR02084 131139 cl00215 350957 -TIGR02085 131140 TIGR02085 131140 -TIGR02097 131152 cl01548 351550 -TIGR02098 131153 cl11777 325124 -TIGR02100 131155 TIGR02100 131155 -TIGR02105 131160 cl09641 352985 -TIGR02111 131166 cl15243 353926 -TIGR02112 131167 cl11451 353261 -TIGR02113 131168 cl19190 327515 -TIGR02114 131169 cl29327 356203 -TIGR02115 131170 TIGR02115 131170 -TIGR02116 131171 cl21503 354842 -TIGR02118 131173 cl21542 328785 -TIGR02119 131174 cl00456 320982 -TIGR02130 131185 TIGR02130 131185 -TIGR02131 131186 cl09820 299060 -TIGR02132 131187 cl23887 329152 -TIGR02134 131189 cl28986 355862 -TIGR02139 131194 cl00427 351090 -TIGR02142 131197 TIGR02142 131197 -TIGR02143 131198 cl17173 354317 -TIGR02154 131209 TIGR02154 131209 -TIGR02155 131210 TIGR02155 131210 -TIGR02156 131211 cl01346 321456 -TIGR02158 131213 cl01346 321456 -TIGR02159 131214 TIGR02159 131214 -TIGR02160 131215 TIGR02160 131215 -TIGR02161 131216 cl23752 329057 -TIGR02164 131219 TIGR02164 131219 -TIGR02176 131231 TIGR02176 131231 -TIGR02178 131233 TIGR02178 131233 -TIGR02179 131234 TIGR02179 131234 -TIGR02183 131238 cl00388 351069 -TIGR02190 131245 cl00388 351069 -TIGR02192 131247 cl08171 352854 -TIGR02194 131249 cl00388 351069 -TIGR02199 131254 cl00015 350862 -TIGR02200 131255 cl00388 351069 -TIGR02201 131256 cl10013 353042 -TIGR02202 131257 cl26632 331453 -TIGR02203 131258 TIGR02203 131258 -TIGR02204 131259 TIGR02204 131259 -TIGR02206 131261 cl02331 351731 -TIGR02209 131264 cl11433 353251 -TIGR02211 131266 TIGR02211 131266 -TIGR02213 131268 TIGR02213 131268 -TIGR02214 131269 TIGR02214 131269 -TIGR02219 131274 cl21534 354857 -TIGR02222 131277 cl00320 351024 -TIGR02226 131281 cl06567 323517 -TIGR02228 131283 cl10465 353074 -TIGR02229 131284 cl01204 351421 -TIGR02230 131285 cl09754 353007 -TIGR02235 131289 cl00337 351038 -TIGR02236 131290 TIGR02236 131290 -TIGR02238 131292 TIGR02238 131292 -TIGR02240 131294 TIGR02240 131294 -TIGR02245 131299 cl21460 354816 -TIGR02248 131302 cl00516 351129 -TIGR02249 131303 cl00213 350955 -TIGR02250 131304 cl21460 354816 -TIGR02256 131309 cl13996 353800 -TIGR02257 131310 cl29847 356723 -TIGR02259 131312 cl17037 354300 -TIGR02260 131313 TIGR02260 131313 -TIGR02261 131314 cl17037 354300 -TIGR02263 131316 cl21559 354870 -TIGR02264 131317 cl23888 329153 -TIGR02265 131318 cl15288 326557 -TIGR02267 131320 cl26631 331452 -TIGR02268 131321 cl15442 326580 -TIGR02269 131322 cl15289 301597 -TIGR02270 131323 TIGR02270 131323 -TIGR02271 131324 cl01590 321581 -TIGR02272 131325 TIGR02272 131325 -TIGR02278 131331 TIGR02278 131331 -TIGR02281 131334 cl11403 353244 -TIGR02284 131337 cl00264 350992 -TIGR02285 131338 TIGR02285 131338 -TIGR02286 131339 cl00509 351126 -TIGR02287 131340 TIGR02287 131340 -TIGR02288 131341 cl11961 353326 -TIGR02293 131346 cl17718 354339 -TIGR02296 131349 cl00381 351064 -TIGR02297 131350 TIGR02297 131350 -TIGR02298 131351 cl00599 351170 -TIGR02299 131352 cl11961 353326 -TIGR02300 131353 cl19417 354419 -TIGR02301 131354 cl22503 328907 -TIGR02303 131356 TIGR02303 131356 -TIGR02305 131358 cl11421 353248 -TIGR02309 131362 TIGR02309 131362 -TIGR02311 131364 cl21481 354828 -TIGR02312 131365 cl11421 353248 -TIGR02313 131366 cl28986 355862 -TIGR02314 131367 TIGR02314 131367 -TIGR02315 131368 TIGR02315 131368 -TIGR02316 131369 TIGR02316 131369 -TIGR02317 131370 cl21457 354814 -TIGR02318 131371 cl00281 351001 -TIGR02319 131372 cl21457 354814 -TIGR02321 131374 cl21457 354814 -TIGR02324 131377 TIGR02324 131377 -TIGR02325 131378 TIGR02325 131378 -TIGR02326 131379 TIGR02326 131379 -TIGR02327 131380 cl23817 329100 -TIGR02328 131381 cl19573 327589 -TIGR02330 131383 cl00912 351309 -TIGR02331 131384 cl07159 323788 -TIGR02332 131385 TIGR02332 131385 -TIGR02333 131386 TIGR02333 131386 -TIGR02334 131387 cl19418 267771 -TIGR02335 131388 cl23718 355016 -TIGR02338 131391 cl09111 352933 -TIGR02351 131404 TIGR02351 131404 -TIGR02355 131408 TIGR02355 131408 -TIGR02359 131412 cl21488 354833 -TIGR02360 131413 cl21454 354811 -TIGR02364 131417 cl00025 350867 -TIGR02368 131421 cl23889 329154 -TIGR02369 131422 cl15385 326567 -TIGR02370 131423 TIGR02370 131423 -TIGR02371 131424 cl21454 354811 -TIGR02372 131425 TIGR02372 131425 -TIGR02373 131426 cl21578 354879 -TIGR02375 131428 cl19115 354382 -TIGR02376 131429 TIGR02376 131429 -TIGR02377 131430 cl00938 351321 -TIGR02378 131431 cl00938 351321 -TIGR02379 131432 cl18945 354370 -TIGR02380 131433 TIGR02380 131433 -TIGR02381 131434 cl09927 353027 -TIGR02382 131435 cl17182 354318 -TIGR02387 131440 TIGR02387 131440 -TIGR02394 131447 TIGR02394 131447 -TIGR02398 131451 TIGR02398 131451 -TIGR02399 131452 cl19574 327590 -TIGR02405 131458 TIGR02405 131458 -TIGR02406 131459 cl17182 354318 -TIGR02408 131461 cl21496 354838 -TIGR02413 131466 cl23890 329155 -TIGR02415 131468 TIGR02415 131468 -TIGR02416 131469 TIGR02416 131469 -TIGR02417 131470 TIGR02417 131470 -TIGR02418 131471 TIGR02418 131471 -TIGR02422 131475 TIGR02422 131475 -TIGR02425 131478 cl00460 320985 -TIGR02427 131480 TIGR02427 131480 -TIGR02429 131482 cl00339 351040 -TIGR02430 131483 TIGR02430 131483 -TIGR02431 131484 TIGR02431 131484 -TIGR02434 131487 cl00304 351012 -TIGR02437 131490 TIGR02437 131490 -TIGR02440 131493 TIGR02440 131493 -TIGR02441 131494 TIGR02441 131494 -TIGR02443 131496 cl01410 321489 -TIGR02445 131498 TIGR02445 131498 -TIGR02446 131499 TIGR02446 131499 -TIGR02447 131500 cl00509 351126 -TIGR02449 131502 TIGR02449 131502 -TIGR02450 131503 cl09726 324458 -TIGR02451 131504 cl21464 354820 -TIGR02452 131505 cl19419 327553 -TIGR02455 131508 TIGR02455 131508 -TIGR02459 131512 cl09723 324457 -TIGR02461 131514 TIGR02461 131514 -TIGR02463 131516 TIGR02463 131516 -TIGR02465 131518 TIGR02465 131518 -TIGR02471 131524 TIGR02471 131524 -TIGR02472 131525 TIGR02472 131525 -TIGR02473 131526 TIGR02473 131526 -TIGR02477 131530 cl00204 350948 -TIGR02480 131533 cl29525 356401 -TIGR02488 131541 TIGR02488 131541 -TIGR02489 131542 TIGR02489 131542 -TIGR02493 131546 TIGR02493 131546 -TIGR02497 131549 cl28631 333451 -TIGR02498 131550 cl27921 332742 -TIGR02502 131554 cl09710 299011 -TIGR02503 131555 cl08444 352898 -TIGR02507 131559 cl22471 328904 -TIGR02508 131560 cl23891 305048 -TIGR02509 131561 cl07585 298396 -TIGR02511 131563 cl23892 355089 -TIGR02513 131565 cl08444 352898 -TIGR02518 131570 cl11961 353326 -TIGR02521 131573 TIGR02521 131573 -TIGR02523 131575 cl28550 333370 -TIGR02524 131576 cl21455 354812 -TIGR02525 131577 TIGR02525 131577 -TIGR02526 131578 TIGR02526 131578 -TIGR02528 131580 cl28983 355859 -TIGR02533 131585 TIGR02533 131585 -TIGR02540 131592 cl00388 351069 -TIGR02554 131605 cl12363 353387 -TIGR02555 131606 cl09716 353000 -TIGR02558 131609 cl23893 329156 -TIGR02559 131610 TIGR02559 131610 -TIGR02560 131611 cl19575 302930 -TIGR02561 131612 cl19576 327591 -TIGR02567 131618 cl15825 353983 -TIGR02569 131620 TIGR02569 131620 -TIGR02571 131622 cl00269 350994 -TIGR02572 131623 cl09838 299071 -TIGR02573 131624 cl23895 305052 -TIGR02574 131625 cl09921 353026 -TIGR02579 131628 cl09837 324505 -TIGR02586 131635 cl21479 328741 -TIGR02587 131636 cl01935 321729 -TIGR02588 131637 TIGR02588 131637 -TIGR02592 131641 cl21479 328741 -TIGR02594 131643 cl21534 354857 -TIGR02595 131644 cl26875 331696 -TIGR02598 131647 TIGR02598 131647 -TIGR02602 131651 cl15694 353972 -TIGR02610 131659 cl09865 353017 -TIGR02611 131660 cl23896 329157 -TIGR02613 131662 cl00960 351333 -TIGR02615 131664 cl00511 294347 -TIGR02617 131666 cl18945 354370 -TIGR02618 131667 cl18945 354370 -TIGR02623 131672 cl11394 353239 -TIGR02624 131673 cl00214 350956 -TIGR02625 131674 cl01281 351454 -TIGR02628 131676 TIGR02628 131676 -TIGR02629 131677 cl23721 355019 -TIGR02631 131679 cl23721 355019 -TIGR02632 131680 TIGR02632 131680 -TIGR02633 131681 TIGR02633 131681 -TIGR02637 131685 TIGR02637 131685 -TIGR02638 131686 cl02872 351912 -TIGR02640 131688 TIGR02640 131688 -TIGR02643 131691 TIGR02643 131691 -TIGR02646 131694 cl00083 350893 -TIGR02647 131695 TIGR02647 131695 -TIGR02648 131696 cl11502 353279 -TIGR02649 131697 cl23716 355014 -TIGR02652 131700 cl09868 324518 -TIGR02653 131701 TIGR02653 131701 -TIGR02655 131703 TIGR02655 131703 -TIGR02657 131705 cl19115 354382 -TIGR02658 131706 cl27918 332739 -TIGR02659 131707 cl03812 352060 -TIGR02661 131709 cl00388 351069 -TIGR02662 131710 cl00614 351179 -TIGR02663 131711 cl00252 320858 -TIGR02664 131712 cl09869 324519 -TIGR02667 131715 cl00451 320978 -TIGR02671 131719 cl09872 299095 -TIGR02672 131720 cl09873 324520 -TIGR02673 131721 TIGR02673 131721 -TIGR02674 131722 cl21471 354824 -TIGR02675 131723 TIGR02675 131723 -TIGR02677 131724 cl26616 331437 -TIGR02681 131728 cl10713 353101 -TIGR02685 131732 cl21454 354811 -TIGR02688 131735 cl11979 353333 -TIGR02689 131736 cl00105 320761 -TIGR02691 131738 cl00105 320761 -TIGR02692 131739 TIGR02692 131739 -TIGR02694 131741 cl00938 351321 -TIGR02695 131742 cl19115 354382 -TIGR02696 131743 TIGR02696 131743 -TIGR02697 131744 TIGR02697 131744 -TIGR02698 131745 cl21459 354815 -TIGR02699 131746 TIGR02699 131746 -TIGR02700 131747 TIGR02700 131747 -TIGR02702 131749 TIGR02702 131749 -TIGR02703 131750 cl01889 321715 -TIGR02704 131751 cl01889 321715 -TIGR02705 131752 TIGR02705 131752 -TIGR02708 131755 cl21457 354814 -TIGR02709 131756 cl17212 354323 -TIGR02711 131758 cl00456 320982 -TIGR02716 131763 TIGR02716 131763 -TIGR02717 131764 TIGR02717 131764 -TIGR02718 131765 cl28910 355786 -TIGR02719 131766 cl21459 354815 -TIGR02723 131770 cl00311 351016 -TIGR02724 131771 cl00311 351016 -TIGR02725 131772 cl23897 305054 -TIGR02726 131773 cl21460 354816 -TIGR02728 131775 cl09881 353018 -TIGR02730 131777 cl21454 354811 -TIGR02731 131778 TIGR02731 131778 -TIGR02732 131779 cl30686 357562 -TIGR02735 131782 cl00231 350970 -TIGR02736 131783 cl00282 351002 -TIGR02737 131784 cl09173 352944 -TIGR02738 131785 cl00388 351069 -TIGR02741 131788 cl11516 299758 -TIGR02742 131789 cl09883 353019 -TIGR02748 131795 cl00210 350953 -TIGR02749 131796 cl00210 350953 -TIGR02751 131798 cl21521 354850 -TIGR02752 131799 cl17173 354317 -TIGR02753 131800 cl07609 324049 -TIGR02755 131802 cl05434 323055 -TIGR02758 131805 cl11503 299752 -TIGR02759 131806 TIGR02759 131806 -TIGR02763 131810 cl11513 299756 -TIGR02766 131813 cl30787 357663 -TIGR02767 131814 TIGR02767 131814 -TIGR02769 131816 TIGR02769 131816 -TIGR02770 131817 TIGR02770 131817 -TIGR02771 131818 TIGR02771 131818 -TIGR02777 131824 cl11819 325126 -TIGR02780 131827 cl02193 351701 -TIGR02783 131830 cl01503 351527 -TIGR02787 131834 TIGR02787 131834 -TIGR02789 131836 TIGR02789 131836 -TIGR02790 131837 TIGR02790 131837 -TIGR02792 131839 cl06673 352553 -TIGR02793 131840 TIGR02793 131840 -TIGR02796 131843 cl00568 351156 -TIGR02797 131844 cl00568 351156 -TIGR02798 131845 cl00480 351111 -TIGR02803 131850 cl00537 321029 -TIGR02804 131851 cl00537 321029 -TIGR02805 131852 cl00568 351156 -TIGR02806 131853 cl21652 304483 -TIGR02808 131855 cl27856 332677 -TIGR02809 131856 cl11491 353276 -TIGR02815 131862 TIGR02815 131862 -TIGR02816 131863 TIGR02816 131863 -TIGR02818 131865 TIGR02818 131865 -TIGR02820 131867 cl01553 321565 -TIGR02821 131868 cl21494 354836 -TIGR02822 131869 TIGR02822 131869 -TIGR02825 131872 TIGR02825 131872 -TIGR02828 131875 cl11404 353245 -TIGR02831 131878 cl00572 351158 -TIGR02832 131879 cl09783 324481 -TIGR02833 131880 cl08022 324189 -TIGR02835 131882 TIGR02835 131882 -TIGR02836 131883 cl19420 327554 -TIGR02837 131884 cl09775 324477 -TIGR02838 131885 cl04298 352152 -TIGR02839 131886 cl04298 352152 -TIGR02841 131888 cl04057 322510 -TIGR02842 131889 cl00211 294143 -TIGR02843 131890 cl00275 350997 -TIGR02844 131891 cl22854 354960 -TIGR02846 131893 TIGR02846 131893 -TIGR02847 131894 cl01204 351421 -TIGR02848 131895 TIGR02848 131895 -TIGR02849 131896 cl23898 329158 -TIGR02850 131897 TIGR02850 131897 -TIGR02851 131898 TIGR02851 131898 -TIGR02853 131900 TIGR02853 131900 -TIGR02854 131901 cl19579 327592 -TIGR02856 131903 cl06766 352574 -TIGR02859 131906 TIGR02859 131906 -TIGR02863 131910 cl27855 332676 -TIGR02873 131920 TIGR02873 131920 -TIGR02874 131921 cl01596 321583 -TIGR02875 131922 TIGR02875 131922 -TIGR02878 131925 cl23899 329159 -TIGR02882 131928 cl00275 350997 -TIGR02884 131930 TIGR02884 131930 -TIGR02885 131931 TIGR02885 131931 -TIGR02886 131932 cl00604 351173 -TIGR02889 131935 TIGR02889 131935 -TIGR02893 131939 cl09801 324490 -TIGR02895 131941 TIGR02895 131941 -TIGR02896 131942 cl17562 327422 -TIGR02897 131943 cl00211 294143 -TIGR02898 131944 cl26630 331451 -TIGR02899 131945 cl21525 354852 -TIGR02902 131948 TIGR02902 131948 -TIGR02905 131951 cl21453 354810 -TIGR02906 131952 cl21453 354810 -TIGR02908 131954 cl01204 351421 -TIGR02909 131955 cl00133 350912 -TIGR02910 131956 cl25446 355396 -TIGR02911 131957 TIGR02911 131957 -TIGR02912 131958 TIGR02912 131958 -TIGR02913 131959 TIGR02913 131959 -TIGR02918 131964 TIGR02918 131964 -TIGR02920 131966 TIGR02920 131966 -TIGR02921 131967 TIGR02921 131967 -TIGR02922 131968 cl23900 305057 -TIGR02925 131971 TIGR02925 131971 -TIGR02926 131972 cl21478 354827 -TIGR02929 131975 cl03910 322465 -TIGR02930 131976 cl03910 322465 -TIGR02931 131977 cl02775 351884 -TIGR02932 131978 cl02775 351884 -TIGR02933 131979 TIGR02933 131979 -TIGR02935 131981 cl03973 352094 -TIGR02938 131984 TIGR02938 131984 -TIGR02939 131985 TIGR02939 131985 -TIGR02941 131987 TIGR02941 131987 -TIGR02944 131989 TIGR02944 131989 -TIGR02945 131990 cl00941 351322 -TIGR02947 131992 TIGR02947 131992 -TIGR02948 131993 TIGR02948 131993 -TIGR02951 131996 TIGR02951 131996 -TIGR02952 131997 TIGR02952 131997 -TIGR02953 131998 TIGR02953 131998 -TIGR02955 132000 TIGR02955 132000 -TIGR02957 132002 cl30683 357559 -TIGR02959 132004 TIGR02959 132004 -TIGR02960 132005 TIGR02960 132005 -TIGR02967 132012 cl00281 351001 -TIGR02969 132014 TIGR02969 132014 -TIGR02972 132017 cl01848 351616 -TIGR02973 132018 cl01848 351616 -TIGR02975 132020 cl23826 355061 -TIGR02976 132021 cl05946 352438 -TIGR02978 132023 TIGR02978 132023 -TIGR02979 132024 cl26629 355550 -TIGR02981 132026 cl00125 350910 -TIGR02983 132028 TIGR02983 132028 -TIGR02986 132031 cl19566 302924 -TIGR02990 132035 cl00518 351130 -TIGR02991 132036 cl00342 294246 -TIGR02992 132037 TIGR02992 132037 -TIGR02994 132039 TIGR02994 132039 -TIGR02995 132040 TIGR02995 132040 -TIGR02998 132043 cl00480 351111 -TIGR02999 132044 TIGR02999 132044 -TIGR03003 132048 TIGR03003 132048 -TIGR03004 132049 TIGR03004 132049 -TIGR03005 132050 TIGR03005 132050 -TIGR03014 132059 cl21487 354832 -TIGR03015 132060 TIGR03015 132060 -TIGR03017 132062 TIGR03017 132062 -TIGR03019 132064 cl17182 354318 -TIGR03027 132072 cl29428 356304 -TIGR03028 132073 TIGR03028 132073 -TIGR03029 132074 TIGR03029 132074 -TIGR03034 132079 cl11840 353315 -TIGR03035 132080 cl00814 351268 -TIGR03037 132082 cl21464 354820 -TIGR03048 132092 cl19102 354379 -TIGR03051 132095 cl11425 325026 -TIGR03052 132096 cl28141 355705 -TIGR03056 132100 TIGR03056 132100 -TIGR03058 132102 TIGR03058 132102 -TIGR03059 132103 cl28627 333447 -TIGR03065 132109 TIGR03065 132109 -TIGR03066 132110 TIGR03066 132110 -TIGR03068 132112 TIGR03068 132112 -TIGR03069 132113 cl27738 332559 -TIGR03077 132121 cl11404 353245 -TIGR03079 132123 cl19551 354438 -TIGR03080 132124 cl21655 328840 -TIGR03085 132129 TIGR03085 132129 -TIGR03088 132132 TIGR03088 132132 -TIGR03092 132136 cl07940 352840 -TIGR03093 132137 TIGR03093 132137 -TIGR03094 132138 cl19115 354382 -TIGR03095 132139 cl19115 354382 -TIGR03096 132140 cl19115 354382 -TIGR03097 132141 cl04850 352267 -TIGR03099 132143 cl30792 357668 -TIGR03100 132144 cl21494 354836 -TIGR03103 132147 TIGR03103 132147 -TIGR03106 132150 cl14876 353847 -TIGR03107 132151 cl14876 353847 -TIGR03108 132152 TIGR03108 132152 -TIGR03111 132155 TIGR03111 132155 -TIGR03112 132156 cl00263 350991 -TIGR03116 132160 cl11865 187964 -TIGR03118 132162 TIGR03118 132162 -TIGR03119 132163 TIGR03119 132163 -TIGR03125 132169 cl00768 351245 -TIGR03126 132170 cl00774 351248 -TIGR03127 132171 cl00389 351070 -TIGR03128 132172 cl21457 354814 -TIGR03129 132173 TIGR03129 132173 -TIGR03131 132175 cl08282 352868 -TIGR03143 132187 TIGR03143 132187 -TIGR03146 132190 TIGR03146 132190 -TIGR03151 132195 TIGR03151 132195 -TIGR03154 132198 cl14783 353836 -TIGR03164 132208 cl01251 351441 -TIGR03166 132210 TIGR03166 132210 -TIGR03171 132215 TIGR03171 132215 -TIGR03186 132230 TIGR03186 132230 -TIGR03189 132233 cl23717 355015 -TIGR03190 132234 cl21559 354870 -TIGR03191 132235 cl21559 354870 -TIGR03192 132236 cl17037 354300 -TIGR03193 132237 TIGR03193 132237 -TIGR03194 132238 TIGR03194 132238 -TIGR03195 132239 TIGR03195 132239 -TIGR03196 132240 TIGR03196 132240 -TIGR03198 132242 TIGR03198 132242 -TIGR03200 132244 cl23717 355015 -TIGR03201 132245 TIGR03201 132245 -TIGR03202 132246 cl11394 353239 -TIGR03203 132247 TIGR03203 132247 -TIGR03204 132248 TIGR03204 132248 -TIGR03205 132249 TIGR03205 132249 -TIGR03206 132250 cl21454 354811 -TIGR03207 132251 TIGR03207 132251 -TIGR03208 132252 TIGR03208 132252 -TIGR03209 132253 TIGR03209 132253 -TIGR03210 132254 cl23717 355015 -TIGR03213 132257 TIGR03213 132257 -TIGR03215 132259 TIGR03215 132259 -TIGR03216 132260 cl11961 353326 -TIGR03218 132262 cl11421 353248 -TIGR03220 132264 cl11421 353248 -TIGR03224 132268 TIGR03224 132268 -TIGR03227 132271 TIGR03227 132271 -TIGR03228 132272 TIGR03228 132272 -TIGR03229 132273 TIGR03229 132273 -TIGR03230 132274 TIGR03230 132274 -TIGR03231 132275 cl09109 352932 -TIGR03232 132276 cl09109 352932 -TIGR03237 132281 TIGR03237 132281 -TIGR03238 132282 TIGR03238 132282 -TIGR03239 132283 cl21481 354828 -TIGR03241 132285 cl01511 351532 -TIGR03242 132286 cl11393 353238 -TIGR03249 132293 cl28986 355862 -TIGR03250 132294 cl11961 353326 -TIGR03252 132296 cl23768 355038 -TIGR03254 132298 TIGR03254 132298 -TIGR03255 132299 cl00427 351090 -TIGR03256 132300 TIGR03256 132300 -TIGR03257 132301 cl27362 355643 -TIGR03258 132302 TIGR03258 132302 -TIGR03259 132303 cl00247 320853 -TIGR03264 132308 cl01674 321615 -TIGR03266 132310 cl19253 354402 -TIGR03267 132311 TIGR03267 132311 -TIGR03268 132312 cl00197 350942 -TIGR03269 132313 TIGR03269 132313 -TIGR03271 132315 cl01669 321612 -TIGR03274 132317 cl01674 321615 -TIGR03275 132318 cl01645 321603 -TIGR03276 132319 cl21469 354822 -TIGR03277 132320 cl19581 267934 -TIGR03278 132321 TIGR03278 132321 -TIGR03279 132322 TIGR03279 132322 -TIGR03281 132324 cl23818 304975 -TIGR03283 132326 cl19097 354378 -TIGR03286 132329 cl17037 354300 -TIGR03288 132331 TIGR03288 132331 -TIGR03290 132333 TIGR03290 132333 -TIGR03294 132337 TIGR03294 132337 -TIGR03305 132348 TIGR03305 132348 -TIGR03306 132349 cl00413 351082 -TIGR03308 132351 cl00160 350925 -TIGR03309 132352 TIGR03309 132352 -TIGR03311 132354 TIGR03311 132354 -TIGR03312 132355 TIGR03312 132355 -TIGR03313 132356 TIGR03313 132356 -TIGR03314 132357 cl00281 351001 -TIGR03315 132358 TIGR03315 132358 -TIGR03318 132361 cl26057 330878 -TIGR03321 132364 TIGR03321 132364 -TIGR03322 132365 cl00466 351103 -TIGR03324 132367 TIGR03324 132367 -TIGR03325 132368 TIGR03325 132368 -TIGR03332 132375 TIGR03332 132375 -TIGR03335 132378 TIGR03335 132378 -TIGR03337 132380 TIGR03337 132380 -TIGR03338 132381 TIGR03338 132381 -TIGR03339 132382 TIGR03339 132382 -TIGR03341 132384 TIGR03341 132384 -TIGR03343 132386 TIGR03343 132386 -TIGR03358 132401 cl01402 351485 -TIGR03360 132403 cl11879 353318 -TIGR03364 132407 TIGR03364 132407 -TIGR03368 132411 cl11881 325135 -TIGR03370 132413 TIGR03370 132413 -TIGR03372 132415 TIGR03372 132415 -TIGR03373 132416 cl01611 351567 -TIGR03374 132417 cl11961 353326 -TIGR03379 132422 TIGR03379 132422 -TIGR03380 132423 cl19186 354389 -TIGR03384 132427 cl27691 355670 -TIGR03390 132431 TIGR03390 132431 -TIGR03395 132436 cl00490 351117 -TIGR03398 132439 TIGR03398 132439 -TIGR03402 132443 cl18945 354370 -TIGR03403 132444 cl18945 354370 -TIGR03407 132448 cl10011 353040 -TIGR03408 132449 cl00454 351100 -TIGR03412 132453 cl01123 351393 -TIGR03419 132460 cl00528 351136 -TIGR03422 132463 cl00238 350975 -TIGR03424 132465 cl01474 351518 -TIGR03428 132469 TIGR03428 132469 -TIGR03430 132471 cl19121 354383 -TIGR03431 132472 TIGR03431 132472 -TIGR03435 132476 cl11887 325136 -TIGR03442 132483 cl00319 351023 -TIGR03446 132487 cl00929 321254 -TIGR03447 132488 TIGR03447 132488 -TIGR03448 132489 TIGR03448 132489 -TIGR03449 132490 TIGR03449 132490 -TIGR03450 132491 cl00554 351150 -TIGR03451 132492 TIGR03451 132492 -TIGR03452 132493 cl30684 357560 -TIGR03457 132497 TIGR03457 132497 -TIGR03460 132500 cl00991 321290 -TIGR03461 132501 cl00224 350964 -TIGR03471 132511 TIGR03471 132511 -TIGR03472 132512 TIGR03472 132512 -TIGR03473 132513 TIGR03473 132513 -TIGR03474 132514 cl11495 299748 -TIGR03475 132515 cl28662 333482 -TIGR03478 132518 TIGR03478 132518 -TIGR03479 132519 TIGR03479 132519 -TIGR03485 132524 cl11892 187967 -TIGR03486 132525 cl11893 187968 -TIGR03487 132526 cl11894 187969 -TIGR03488 132527 cl11895 187970 -TIGR03489 132528 cl00803 321178 -TIGR03494 132533 TIGR03494 132533 -TIGR03512 132551 TIGR03512 132551 -TIGR03515 132554 TIGR03515 132554 -TIGR03516 132555 TIGR03516 132555 -TIGR03518 132557 cl21474 354826 -TIGR03522 132561 TIGR03522 132561 -TIGR03524 132563 cl30264 357140 -TIGR03526 132565 TIGR03526 132565 -TIGR03530 132569 cl30227 357103 -TIGR03532 132571 TIGR03532 132571 -TIGR03539 132578 TIGR03539 132578 -TIGR03541 132580 TIGR03541 132580 -TIGR03549 132588 TIGR03549 132588 -TIGR03550 132589 TIGR03550 132589 -TIGR03551 132590 TIGR03551 132590 -TIGR03553 132592 cl00514 321015 -TIGR03555 132594 cl19096 327499 -TIGR03563 132602 cl00767 321154 -TIGR03572 132611 cl21457 354814 -TIGR03574 132613 cl17190 354320 -TIGR03577 132616 cl26041 330862 -TIGR03579 132618 cl11918 353322 -TIGR03582 132621 TIGR03582 132621 -TIGR03583 132622 cl00281 351001 -TIGR03587 132626 cl17173 354317 -TIGR03589 132628 TIGR03589 132628 -TIGR03602 132641 TIGR03602 132641 -TIGR03609 132648 cl10013 353042 -TIGR03615 132654 cl00381 351064 -TIGR03616 132655 cl23746 355031 -TIGR03617 132656 cl19096 327499 -TIGR03622 132661 cl00454 351100 -TIGR03627 132666 cl00334 351035 -TIGR03637 132676 cl00656 351200 -TIGR03643 132682 cl11923 353323 -TIGR03645 132684 cl14632 353816 -TIGR03646 132685 TIGR03646 132685 -TIGR03647 132686 cl01781 351597 -TIGR03650 132689 TIGR03650 132689 -TIGR03658 132697 TIGR03658 132697 -TIGR03660 132699 TIGR03660 132699 -TIGR03667 132706 cl00381 351064 -TIGR03668 132707 cl00381 351064 -TIGR03669 132708 cl10011 353040 -cd07040 132716 cl11399 353243 -cd07061 132717 cl11399 353243 -cd07067 132718 cl11399 353243 -cd00630 132719 cl29012 355888 -cd02584 132720 cl29012 355888 -cd02655 132721 cl29012 355888 -cd02735 132722 cl29012 355888 -cd02736 132723 cl29012 355888 -cd02737 132724 cl29012 355888 -cd06528 132725 cl29012 355888 -cd06157 132726 cl11397 353242 -cd06929 132727 cl11397 353242 -cd06930 132728 cl11397 353242 -cd06931 132729 cl11397 353242 -cd06932 132730 cl11397 353242 -cd06933 132731 cl11397 353242 -cd06934 132732 cl11397 353242 -cd06935 132733 cl11397 353242 -cd06936 132734 cl11397 353242 -cd06937 132735 cl11397 353242 -cd06938 132736 cl11397 353242 -cd06939 132737 cl11397 353242 -cd06940 132738 cl11397 353242 -cd06941 132739 cl11397 353242 -cd06942 132740 cl11397 353242 -cd06943 132741 cl11397 353242 -cd06944 132742 cl11397 353242 -cd06945 132743 cl11397 353242 -cd06946 132744 cl11397 353242 -cd06947 132745 cl11397 353242 -cd06948 132746 cl11397 353242 -cd06949 132747 cl11397 353242 -cd06950 132748 cl11397 353242 -cd06951 132749 cl11397 353242 -cd06952 132750 cl11397 353242 -cd06953 132751 cl11397 353242 -cd06954 132752 cl11397 353242 -cd07068 132753 cl11397 353242 -cd07069 132754 cl11397 353242 -cd07070 132755 cl11397 353242 -cd07071 132756 cl11397 353242 -cd07072 132757 cl11397 353242 -cd07073 132758 cl11397 353242 -cd07074 132759 cl11397 353242 -cd07075 132760 cl11397 353242 -cd07076 132761 cl11397 353242 -cd07348 132762 cl11397 353242 -cd07349 132763 cl11397 353242 -cd07350 132764 cl11397 353242 -cd07303 132765 cl03224 351964 -cd07305 132766 cl03224 351964 -cd07306 132767 cl03224 351964 -cd06093 132768 cl02563 321991 -cd06859 132769 cl02563 321991 -cd06860 132770 cl02563 321991 -cd06861 132771 cl02563 321991 -cd06862 132772 cl02563 321991 -cd06863 132773 cl02563 321991 -cd06864 132774 cl02563 321991 -cd06865 132775 cl02563 321991 -cd06866 132776 cl02563 321991 -cd06867 132777 cl02563 321991 -cd06868 132778 cl02563 321991 -cd06869 132779 cl02563 321991 -cd06870 132780 cl02563 321991 -cd06871 132781 cl02563 321991 -cd06872 132782 cl02563 321991 -cd06873 132783 cl02563 321991 -cd06874 132784 cl02563 321991 -cd06875 132785 cl02563 321991 -cd06876 132786 cl02563 321991 -cd06877 132787 cl02563 321991 -cd06878 132788 cl02563 321991 -cd06879 132789 cl02563 321991 -cd06880 132790 cl02563 321991 -cd06881 132791 cl02563 321991 -cd06882 132792 cl02563 321991 -cd06883 132793 cl02563 321991 -cd06884 132794 cl02563 321991 -cd06885 132795 cl02563 321991 -cd06886 132796 cl02563 321991 -cd06887 132797 cl02563 321991 -cd06888 132798 cl02563 321991 -cd06889 132799 cl02563 321991 -cd06890 132800 cl02563 321991 -cd06891 132801 cl02563 321991 -cd06892 132802 cl02563 321991 -cd06893 132803 cl02563 321991 -cd06894 132804 cl02563 321991 -cd06895 132805 cl02563 321991 -cd06896 132806 cl02563 321991 -cd06897 132807 cl02563 321991 -cd06898 132808 cl02563 321991 -cd07276 132809 cl02563 321991 -cd07277 132810 cl02563 321991 -cd07278 132811 cl02563 321991 -cd07279 132812 cl02563 321991 -cd07280 132813 cl02563 321991 -cd07281 132814 cl02563 321991 -cd07282 132815 cl02563 321991 -cd07283 132816 cl02563 321991 -cd07284 132817 cl02563 321991 -cd07285 132818 cl02563 321991 -cd07286 132819 cl02563 321991 -cd07287 132820 cl02563 321991 -cd07288 132821 cl02563 321991 -cd07289 132822 cl02563 321991 -cd07290 132823 cl02563 321991 -cd07291 132824 cl02563 321991 -cd07292 132825 cl02563 321991 -cd07293 132826 cl02563 321991 -cd07294 132827 cl02563 321991 -cd07295 132828 cl02563 321991 -cd07296 132829 cl02563 321991 -cd07297 132830 cl02563 321991 -cd07298 132831 cl02563 321991 -cd07299 132832 cl02563 321991 -cd07300 132833 cl02563 321991 -cd07301 132834 cl02563 321991 -cd00147 132835 cl11396 353241 -cd01819 132836 cl11396 353241 -cd07198 132837 cl11396 353241 -cd07199 132838 cl11396 353241 -cd07200 132839 cl11396 353241 -cd07201 132840 cl11396 353241 -cd07202 132841 cl11396 353241 -cd07203 132842 cl11396 353241 -cd07204 132843 cl11396 353241 -cd07205 132844 cl11396 353241 -cd07206 132845 cl11396 353241 -cd07207 132846 cl11396 353241 -cd07208 132847 cl11396 353241 -cd07209 132848 cl11396 353241 -cd07210 132849 cl11396 353241 -cd07211 132850 cl11396 353241 -cd07212 132851 cl11396 353241 -cd07213 132852 cl11396 353241 -cd07214 132853 cl11396 353241 -cd07215 132854 cl11396 353241 -cd07216 132855 cl11396 353241 -cd07217 132856 cl11396 353241 -cd07218 132857 cl11396 353241 -cd07219 132858 cl11396 353241 -cd07220 132859 cl11396 353241 -cd07221 132860 cl11396 353241 -cd07222 132861 cl11396 353241 -cd07223 132862 cl11396 353241 -cd07224 132863 cl11396 353241 -cd07225 132864 cl11396 353241 -cd07227 132865 cl11396 353241 -cd07228 132866 cl11396 353241 -cd07229 132867 cl11396 353241 -cd07230 132868 cl11396 353241 -cd07231 132869 cl11396 353241 -cd07232 132870 cl11396 353241 -cd07044 132871 cl00425 351088 -cd07186 132872 cl00425 351088 -cd07187 132873 cl00425 351088 -cd06911 132874 cl11423 353249 -cd06561 132880 cl11434 353252 -cd07064 132881 cl11434 353252 -cd07025 132882 cl00700 351220 -cd07062 132883 cl00700 351220 -cd06169 132884 cl01982 351654 -cd07045 132885 cl01982 351654 -cd07046 132886 cl01982 351654 -cd07047 132887 cl01982 351654 -cd07048 132888 cl01982 351654 -cd07049 132889 cl01982 351654 -cd07050 132890 cl01982 351654 -cd07051 132891 cl01982 351654 -cd07052 132892 cl01982 351654 -cd07053 132893 cl01982 351654 -cd07054 132894 cl01982 351654 -cd07055 132895 cl01982 351654 -cd07056 132896 cl01982 351654 -cd07057 132897 cl01982 351654 -cd07058 132898 cl01982 351654 -cd07059 132899 cl01982 351654 -cd06845 132900 cl02575 351812 -cd00460 132901 cl11409 353246 -cd06926 132902 cl11409 353246 -cd06927 132903 cl11409 353246 -cd06928 132904 cl11409 353246 -cd07027 132905 cl11409 353246 -cd07028 132906 cl11409 353246 -cd07029 132907 cl11409 353246 -cd07030 132908 cl11409 353246 -cd07031 132909 cl11409 353246 -cd07032 132910 cl11409 353246 -cd06844 132911 cl00604 351173 -cd07041 132912 cl00604 351173 -cd07042 132913 cl00604 351173 -cd07043 132914 cl00604 351173 -cd06586 132915 cl11410 353247 -cd07033 132916 cl11410 353247 -cd07034 132917 cl11410 353247 -cd07035 132918 cl11410 353247 -cd07036 132919 cl11410 353247 -cd07037 132920 cl11410 353247 -cd07038 132921 cl11410 353247 -cd07039 132922 cl11410 353247 -cd00394 132923 cl23717 355015 -cd07013 132924 cl23717 355015 -cd07014 132925 cl23717 355015 -cd07015 132926 cl23717 355015 -cd07016 132927 cl23717 355015 -cd07017 132928 cl23717 355015 -cd07018 132929 cl23717 355015 -cd07019 132930 cl23717 355015 -cd07020 132931 cl23717 355015 -cd07021 132932 cl23717 355015 -cd07022 132933 cl23717 355015 -cd07023 132934 cl23717 355015 -cd06611 132942 cl21453 354810 -cd06612 132943 cl21453 354810 -cd06615 132946 cl21453 354810 -cd06619 132950 cl21453 354810 -cd06622 132953 cl21453 354810 -cd06623 132954 cl21453 354810 -cd06638 132969 cl21453 354810 -cd06640 132971 cl21453 354810 -cd06644 132975 cl21453 354810 -cd06649 132980 cl21453 354810 -cd06655 132986 cl21453 354810 -cd06656 132987 cl21453 354810 -cd06657 132988 cl21453 354810 -cd06658 132989 cl21453 354810 -cd06974 132992 cl18957 354372 -cd06920 132993 cl02760 351877 -cd06919 132994 cl00540 351143 -cd00218 132995 cl11394 353239 -cd00505 132996 cl11394 353239 -cd00761 132997 cl11394 353239 -cd00897 132998 cl11394 353239 -cd00899 132999 cl11394 353239 -cd02503 133000 cl11394 353239 -cd02507 133001 cl11394 353239 -cd02508 133002 cl11394 353239 -cd02509 133003 cl11394 353239 -cd02510 133004 cl11394 353239 -cd02511 133005 cl11394 353239 -cd02513 133006 cl11394 353239 -cd02514 133007 cl11394 353239 -cd02515 133008 cl11394 353239 -cd02516 133009 cl11394 353239 -cd02517 133010 cl11394 353239 -cd02518 133011 cl11394 353239 -cd02520 133012 cl11394 353239 -cd02522 133013 cl11394 353239 -cd02523 133014 cl11394 353239 -cd02524 133015 cl11394 353239 -cd02525 133016 cl11394 353239 -cd02526 133017 cl11394 353239 -cd02537 133018 cl11394 353239 -cd02538 133019 cl11394 353239 -cd02540 133020 cl11394 353239 -cd02541 133021 cl11394 353239 -cd04179 133022 cl11394 353239 -cd04180 133023 cl11394 353239 -cd04181 133024 cl11394 353239 -cd04182 133025 cl11394 353239 -cd04183 133026 cl11394 353239 -cd04184 133027 cl11394 353239 -cd04185 133028 cl11394 353239 -cd04186 133029 cl11394 353239 -cd04187 133030 cl11394 353239 -cd04188 133031 cl11394 353239 -cd04189 133032 cl11394 353239 -cd04190 133033 cl11394 353239 -cd04191 133034 cl11394 353239 -cd04192 133035 cl11394 353239 -cd04193 133036 cl11394 353239 -cd04194 133037 cl11394 353239 -cd04195 133038 cl11394 353239 -cd04196 133039 cl11394 353239 -cd04197 133040 cl11394 353239 -cd04198 133041 cl11394 353239 -cd06420 133042 cl11394 353239 -cd06421 133043 cl11394 353239 -cd06422 133044 cl11394 353239 -cd06423 133045 cl11394 353239 -cd06424 133046 cl11394 353239 -cd06425 133047 cl11394 353239 -cd06426 133048 cl11394 353239 -cd06427 133049 cl11394 353239 -cd06428 133050 cl11394 353239 -cd06429 133051 cl11394 353239 -cd06430 133052 cl11394 353239 -cd06431 133053 cl11394 353239 -cd06432 133054 cl11394 353239 -cd06433 133055 cl11394 353239 -cd06434 133056 cl11394 353239 -cd06435 133057 cl11394 353239 -cd06436 133058 cl11394 353239 -cd06437 133059 cl11394 353239 -cd06438 133060 cl11394 353239 -cd06439 133061 cl11394 353239 -cd06442 133062 cl11394 353239 -cd06913 133063 cl11394 353239 -cd06914 133064 cl11394 353239 -cd06915 133065 cl11394 353239 -cd00303 133136 cl11403 353244 -cd05470 133137 cl11403 353244 -cd05471 133138 cl11403 353244 -cd05472 133139 cl11403 353244 -cd05473 133140 cl11403 353244 -cd05474 133141 cl11403 353244 -cd05475 133142 cl11403 353244 -cd05476 133143 cl11403 353244 -cd05477 133144 cl11403 353244 -cd05478 133145 cl11403 353244 -cd05479 133146 cl11403 353244 -cd05480 133147 cl11403 353244 -cd05481 133148 cl11403 353244 -cd05482 133149 cl11403 353244 -cd05483 133150 cl11403 353244 -cd05484 133151 cl11403 353244 -cd05485 133152 cl11403 353244 -cd05486 133153 cl11403 353244 -cd05487 133154 cl11403 353244 -cd05488 133155 cl11403 353244 -cd05489 133156 cl11403 353244 -cd05490 133157 cl11403 353244 -cd06094 133158 cl11403 353244 -cd06095 133159 cl11403 353244 -cd06096 133160 cl11403 353244 -cd06097 133161 cl11403 353244 -cd06098 133162 cl11403 353244 -cd05046 133178 cl21453 354810 -cd05050 133181 cl21453 354810 -cd05055 133186 cl21453 354810 -cd05056 133187 cl21453 354810 -cd05061 133192 cl21453 354810 -cd05062 133193 cl21453 354810 -cd05063 133194 cl21453 354810 -cd05064 133195 cl21453 354810 -cd05082 133213 cl21453 354810 -cd05088 133219 cl21453 354810 -cd05096 133227 cl21453 354810 -cd05097 133228 cl21453 354810 -cd05099 133230 cl21453 354810 -cd05106 133237 cl21453 354810 -cd05107 133238 cl21453 354810 -cd05112 133243 cl21453 354810 -cd05116 133247 cl21453 354810 -cd05148 133248 cl21453 354810 -cd01864 133267 cl21455 354812 -cd01873 133275 cl21455 354812 -cd01875 133277 cl21455 354812 -cd04103 133303 cl21455 354812 -cd04106 133306 cl21455 354812 -cd04110 133310 cl21455 354812 -cd04111 133311 cl21455 354812 -cd04114 133314 cl21455 354812 -cd04115 133315 cl21455 354812 -cd04118 133318 cl21455 354812 -cd04119 133319 cl21455 354812 -cd04121 133321 cl21455 354812 -cd04122 133322 cl21455 354812 -cd04123 133323 cl21455 354812 -cd04124 133324 cl21455 354812 -cd04126 133326 cl21455 354812 -cd04130 133330 cl21455 354812 -cd04138 133338 cl21455 354812 -cd04142 133342 cl21455 354812 -cd04143 133343 cl21455 354812 -cd04144 133344 cl21455 354812 -cd04145 133345 cl21455 354812 -cd04153 133353 cl21455 354812 -cd04156 133356 cl21455 354812 -cd04161 133361 cl21455 354812 -cd04162 133362 cl21455 354812 -cd04175 133375 cl21455 354812 -cd04176 133376 cl21455 354812 -cd04177 133377 cl21455 354812 -cd00592 133378 cl02600 351819 -cd01104 133379 cl02600 351819 -cd01105 133380 cl02600 351819 -cd01106 133381 cl02600 351819 -cd01107 133382 cl02600 351819 -cd01108 133383 cl02600 351819 -cd01109 133384 cl02600 351819 -cd01110 133385 cl02600 351819 -cd01111 133386 cl02600 351819 -cd01279 133387 cl02600 351819 -cd01282 133388 cl02600 351819 -cd04761 133389 cl02600 351819 -cd04762 133390 cl02600 351819 -cd04763 133391 cl02600 351819 -cd04764 133392 cl02600 351819 -cd04765 133393 cl02600 351819 -cd04766 133394 cl02600 351819 -cd04767 133395 cl02600 351819 -cd04768 133396 cl02600 351819 -cd04769 133397 cl02600 351819 -cd04770 133398 cl02600 351819 -cd04772 133399 cl02600 351819 -cd04773 133400 cl02600 351819 -cd04774 133401 cl02600 351819 -cd04775 133402 cl02600 351819 -cd04776 133403 cl02600 351819 -cd04777 133404 cl02600 351819 -cd04778 133405 cl02600 351819 -cd04779 133406 cl02600 351819 -cd04780 133407 cl02600 351819 -cd04781 133408 cl02600 351819 -cd04782 133409 cl02600 351819 -cd04783 133410 cl02600 351819 -cd04784 133411 cl02600 351819 -cd04785 133412 cl02600 351819 -cd04786 133413 cl02600 351819 -cd04787 133414 cl02600 351819 -cd04788 133415 cl02600 351819 -cd04789 133416 cl02600 351819 -cd04790 133417 cl02600 351819 -cd00300 133418 cl21454 354811 -cd00650 133419 cl21454 354811 -cd00704 133420 cl21454 354811 -cd01336 133421 cl21454 354811 -cd01337 133422 cl21454 354811 -cd01338 133423 cl21454 354811 -cd01339 133424 cl21454 354811 -cd05197 133425 cl21454 354811 -cd05290 133426 cl21454 354811 -cd05291 133427 cl21454 354811 -cd05292 133428 cl21454 354811 -cd05293 133429 cl21454 354811 -cd05294 133430 cl21454 354811 -cd05295 133431 cl21454 354811 -cd05296 133432 cl21454 354811 -cd05297 133433 cl21454 354811 -cd05298 133434 cl21454 354811 -cd00762 133442 cl21454 354811 -cd01065 133443 cl21454 354811 -cd01075 133444 cl21454 354811 -cd01076 133445 cl21454 354811 -cd01078 133446 cl21454 354811 -cd01079 133447 cl21454 354811 -cd01080 133448 cl21454 354811 -cd05191 133449 cl21454 354811 -cd05211 133450 cl21454 354811 -cd05212 133451 cl21454 354811 -cd05213 133452 cl21454 354811 -cd05311 133453 cl21454 354811 -cd05312 133454 cl21454 354811 -cd05313 133455 cl21454 354811 -cd06663 133456 cl11404 353245 -cd06848 133457 cl11404 353245 -cd06849 133458 cl11404 353245 -cd06850 133459 cl11404 353245 -cd06499 133460 cl10571 353087 -cd06851 133461 cl10571 353087 -cd06852 133462 cl10571 353087 -cd06853 133463 cl10571 353087 -cd06854 133464 cl10571 353087 -cd06855 133465 cl10571 353087 -cd06856 133466 cl10571 353087 -cd06912 133467 cl10571 353087 -cd00476 133468 cl00231 350970 -cd01414 133469 cl00231 350970 -cd01415 133470 cl00231 350970 -cd01416 133471 cl00231 350970 -cd01614 133473 cl01889 321715 -cd06532 133474 cl01298 321436 -cd06583 133475 cl02712 351864 -cd06971 133477 cl00559 321042 -cd07153 133478 cl21459 354815 -CHL00172 133617 cl21461 354817 -CHL00202 133644 cl00452 351098 -MTH00007 133649 cl00275 350997 -MTH00013 133655 cl00492 351118 -MTH00033 133672 MTH00033 133672 -MTH00174 133799 cl00413 351082 -PHA00026 133846 cl28115 332936 -PHA00027 133847 cl27832 332653 -PHA00147 133855 cl11526 175307 -PHA00380 133872 cl19585 327594 -PHA00422 133878 PHA00422 133878 -PHA00438 133887 cl28661 333481 -PHA00440 133889 cl26474 331295 -PHA00448 133894 cl10215 353063 -PHA00455 133900 cl26952 331773 -PHA00489 133905 cl26468 331289 -PHA00490 133906 cl27031 331852 -PHA00510 133907 cl27957 332778 -PHA00515 133909 PHA00515 133909 -PHA00540 133910 PHA00540 133910 -PHA00646 133916 cl27839 332660 -PHA00660 133918 PHA00660 133918 -PHA00672 133920 PHA00672 133920 -PHA00781 133939 PHA00781 133939 -PHA01081 133945 cl10291 324579 -PHA01399 133949 cl28536 333356 -PHA01632 133953 PHA01632 133953 -PHA01634 133954 cl17173 354317 -PHA01740 133956 PHA01740 133956 -PHA01753 133958 cl00516 351129 -PHA01754 133959 PHA01754 133959 -PHA02105 133990 PHA02105 133990 -PHA02125 133998 cl00388 351069 -PHA02142 134000 cl28327 333147 -PHA02150 134001 PHA02150 134001 -PHA02248 134004 PHA02248 134004 -PHA02450 134010 PHA02450 134010 -PHA02516 134016 cl01403 351486 -PRK00014 134031 cl00336 351037 -PRK00020 134035 PRK00020 134035 -PRK00036 134050 cl09930 353029 -PRK00038 134052 cl00457 351101 -PRK00536 134311 cl17173 354317 -PRK00568 134322 cl00670 351206 -PRK00625 134335 cl17190 354320 -PRK00650 134340 PRK00650 134340 -PRK00753 134373 cl27429 332250 -PRK01008 134464 cl19224 354397 -PRK01379 134546 cl00238 350975 -PRK01482 134562 cl09139 352938 -PRK01530 134567 cl00811 351266 -PRK01533 134568 PRK01533 134568 -PRK02529 134722 PRK02529 134722 -PRK04654 135173 PRK04654 135173 -PRK05529 135428 cl29347 356223 -PRK05569 135442 cl00438 351093 -PRK05645 135493 cl17185 354319 -PRK05863 135627 cl28922 355798 -PRK05867 135631 PRK05867 135631 -PRK05876 135637 cl21454 354811 -PRK05884 135642 cl21454 354811 -PRK05898 135648 PRK05898 135648 -PRK05927 135660 PRK05927 135660 -PRK06113 135765 cl21454 354811 -PRK06397 135898 PRK06397 135898 -PRK06437 135906 cl28922 355798 -PRK06642 135984 cl09930 353029 -PRK06673 135998 PRK06673 135998 -PRK06683 136002 cl00600 351171 -PRK06698 136007 PRK06698 136007 -PRK06721 136018 PRK06721 136018 -PRK06728 136022 PRK06728 136022 -PRK06743 136027 cl00568 351156 -PRK06758 136035 cl23901 329160 -PRK06763 136040 PRK06763 136040 -PRK06781 136048 PRK06781 136048 -PRK06823 136070 cl21454 354811 -PRK06863 136097 cl09930 353029 -PRK06904 136106 PRK06904 136106 -PRK07045 136171 PRK07045 136171 -PRK07075 136191 cl00693 351218 -PRK07594 136438 PRK07594 136438 -PRK08181 136670 cl30760 357636 -PRK08745 136958 cl21457 354814 -PRK08787 136970 PRK08787 136970 -PRK09310 137204 PRK09310 137204 -PRK09499 137339 cl11505 187080 -PRK09541 137367 cl23754 329058 -PRK09649 137458 PRK09649 137458 -PRK09677 137467 PRK09677 137467 -PRK09678 137468 cl19592 327595 -PRK09713 137485 cl00927 351313 -PRK09727 137493 PRK09727 137493 -PRK09744 137503 cl22854 354960 -PRK09751 137505 PRK09751 137505 -PRK09810 137533 cl22944 304653 -PRK09859 137559 PRK09859 137559 -PRK09925 137592 PRK09925 137592 -PRK09945 137602 PRK09945 137602 -PRK09978 137624 PRK09978 137624 -PRK09982 137627 cl00292 351005 -PRK10259 137782 cl11507 353281 -PRK10349 137836 cl21494 354836 -PRK10753 138142 cl00257 350986 -PRK11391 138553 cl00105 320761 -PRK11911 138812 cl30617 357493 -PRK12279 138835 PRK12279 138835 -PRK12320 138873 cl21454 354811 -PRK12450 138982 PRK12450 138982 -PRK12474 139002 PRK12474 139002 -PRK12525 139037 PRK12525 139037 -PRK12538 139048 PRK12538 139048 -PRK12546 139055 PRK12546 139055 -PRK12547 139056 PRK12547 139056 -PRK12551 139060 cl23717 355015 -PRK12568 139075 PRK12568 139075 -PRK12624 139107 PRK12624 139107 -PRK12643 139117 PRK12643 139117 -PRK12692 139158 PRK12692 139158 -PRK12700 139164 cl19182 354388 -PRK12708 139168 cl01626 351570 -PRK12710 139170 PRK12710 139170 -PRK12712 139172 PRK12712 139172 -PRK12713 139173 PRK12713 139173 -PRK12759 139206 PRK12759 139206 -PRK12781 139219 cl00867 351290 -PRK12782 139220 PRK12782 139220 -PRK12802 139237 PRK12802 139237 -PRK12812 139245 PRK12812 139245 -PRK12814 139246 PRK12814 139246 -PRK13010 139334 PRK13010 139334 -PRK13150 139376 cl00994 351339 -PRK13242 139420 cl00532 351139 -PRK13248 139425 cl07930 324183 -PRK13249 139426 cl07930 324183 -PRK13250 139427 cl07930 324183 -PRK13297 139469 PRK13297 139469 -PRK13312 139480 cl10022 324563 -PRK13335 139494 PRK13335 139494 -PRK13378 139527 cl06673 352553 -PRK13383 139531 PRK13383 139531 -PRK13390 139538 PRK13390 139538 -PRK13414 139556 cl01247 351439 -PRK13425 139564 cl00365 351055 -PRK13434 139571 cl17210 354322 -PRK13444 139576 PRK13444 139576 -PRK13448 139579 PRK13448 139579 -PRK13460 139585 cl21478 354827 -PRK13462 139587 cl11399 353243 -PRK13484 139605 PRK13484 139605 -PRK13486 139606 PRK13486 139606 -PRK13592 139690 cl00337 351038 -PRK13610 139699 cl04326 322618 -PRK13620 139707 cl21467 354821 -PRK13691 139768 cl00509 351126 -PRK13744 139817 PRK13744 139817 -PRK13814 139876 PRK13814 139876 -PRK13817 139879 cl00542 351145 -PRK13844 139904 PRK13844 139904 -PRK13846 139906 cl17212 354323 -PRK13849 139909 cl21455 354812 -PRK13852 139912 cl01503 351527 -PRK13853 139913 PRK13853 139913 -PRK13854 139914 cl01501 351526 -PRK13869 139929 PRK13869 139929 -PRK13901 139961 PRK13901 139961 -PRK13907 139967 cl14782 353835 -PRK13911 139971 cl00490 351117 -PRK13916 139976 PRK13916 139976 -PRK13938 139997 cl00389 351070 -PRK13944 140001 cl17173 354317 -PRK13949 140006 cl17190 354320 -PRK13957 140013 cl21457 354814 -PRK13966 140022 cl00264 350992 -PRK13967 140023 cl00264 350992 -PTZ00013 140051 PTZ00013 140051 -PTZ00033 140068 cl00909 321242 -PTZ00095 140127 cl00969 321279 -PTZ00147 140176 PTZ00147 140176 -PTZ00176 140204 PTZ00176 140204 -PTZ00179 140206 PTZ00179 140206 -PTZ00181 140208 cl03352 351981 -PTZ00185 140212 PTZ00185 140212 -PTZ00186 140213 PTZ00186 140213 -PTZ00190 140217 cl27501 332322 -PTZ00193 140220 cl00921 321250 -PTZ00195 140222 cl12022 353342 -PTZ00204 140231 cl27913 332734 -PTZ00205 140232 PTZ00205 140232 -PTZ00207 140234 cl28910 355786 -PTZ00209 140236 cl19421 302859 -PTZ00210 140237 cl21608 354888 -PTZ00221 140248 cl00197 350942 -PTZ00222 140249 cl00600 351171 -PTZ00223 140250 PTZ00223 140250 -PTZ00225 140252 cl00322 351025 -PTZ00227 140254 cl23751 329056 -PTZ00229 140256 cl23751 329056 -PTZ00231 140258 cl23751 329056 -PTZ00238 140265 cl03953 296151 -PTZ00240 140267 cl00376 351061 -PTZ00244 140271 cl13995 353799 -PTZ00245 140272 cl22428 304554 -PTZ00249 140276 PTZ00249 140276 -PTZ00250 140277 cl23751 329056 -PTZ00251 140278 cl03120 322203 -PTZ00253 140280 PTZ00253 140280 -PTZ00263 140289 PTZ00263 140289 -PTZ00267 140293 PTZ00267 140293 -PTZ00268 140294 PTZ00268 140294 -PTZ00269 140295 cl26244 331065 -PTZ00271 140297 cl00309 351014 -PTZ00273 140299 PTZ00273 140299 -PTZ00274 140300 PTZ00274 140300 -PTZ00276 140302 PTZ00276 140302 -PTZ00284 140307 PTZ00284 140307 -PTZ00285 140308 cl00339 351040 -PTZ00297 140318 PTZ00297 140318 -PTZ00299 140320 cl30330 357206 -PTZ00300 140321 PTZ00300 140321 -PTZ00301 140322 cl17190 354320 -PTZ00303 140324 PTZ00303 140324 -PTZ00305 140326 PTZ00305 140326 -PTZ00306 140327 PTZ00306 140327 -PTZ00307 140328 cl00453 351099 -PTZ00308 140329 PTZ00308 140329 -PTZ00312 140333 cl00490 351117 -PTZ00313 140334 cl00226 350965 -PTZ00316 140337 cl00123 350909 -PTZ00320 140341 cl00328 351031 -PTZ00322 140343 PTZ00322 140343 -PTZ00328 140349 cl30809 357685 -PTZ00330 140351 cl17182 354318 -cd04971 143172 cl11960 353325 -cd04972 143173 cl11960 353325 -cd04973 143174 cl11960 353325 -cd04980 143181 cl11960 353325 -cd04982 143183 cl11960 353325 -cd04984 143185 cl11960 353325 -cd05712 143189 cl11960 353325 -cd05716 143193 cl11960 353325 -cd05720 143197 cl11960 353325 -cd05721 143198 cl11960 353325 -cd05722 143199 cl11960 353325 -cd05724 143201 cl11960 353325 -cd05725 143202 cl11960 353325 -cd05726 143203 cl11960 353325 -cd05727 143204 cl11960 353325 -cd05728 143205 cl11960 353325 -cd05730 143207 cl11960 353325 -cd05732 143209 cl11960 353325 -cd05734 143211 cl11960 353325 -cd05735 143212 cl11960 353325 -cd05736 143213 cl11960 353325 -cd05739 143216 cl11960 353325 -cd05740 143217 cl11960 353325 -cd05743 143220 cl11960 353325 -cd05745 143222 cl11960 353325 -cd05746 143223 cl11960 353325 -cd05747 143224 cl11960 353325 -cd05749 143226 cl11960 353325 -cd05750 143227 cl11960 353325 -cd05752 143229 cl11960 353325 -cd05754 143231 cl11960 353325 -cd05755 143232 cl11960 353325 -cd05759 143236 cl11960 353325 -cd05760 143237 cl11960 353325 -cd05762 143239 cl11960 353325 -cd05763 143240 cl11960 353325 -cd05764 143241 cl11960 353325 -cd05765 143242 cl11960 353325 -cd05766 143243 cl11960 353325 -cd05767 143244 cl11960 353325 -cd05769 143246 cl11960 353325 -cd05770 143247 cl11960 353325 -cd05773 143250 cl11960 353325 -cd05845 143253 cl11960 353325 -cd05847 143255 cl11960 353325 -cd05848 143256 cl11960 353325 -cd05849 143257 cl11960 353325 -cd05850 143258 cl11960 353325 -cd05851 143259 cl11960 353325 -cd05852 143260 cl11960 353325 -cd05853 143261 cl11960 353325 -cd05854 143262 cl11960 353325 -cd05855 143263 cl11960 353325 -cd05856 143264 cl11960 353325 -cd05857 143265 cl11960 353325 -cd05858 143266 cl11960 353325 -cd05859 143267 cl11960 353325 -cd05861 143269 cl11960 353325 -cd05862 143270 cl11960 353325 -cd05863 143271 cl11960 353325 -cd05864 143272 cl11960 353325 -cd05865 143273 cl11960 353325 -cd05866 143274 cl11960 353325 -cd05867 143275 cl11960 353325 -cd05868 143276 cl11960 353325 -cd05869 143277 cl11960 353325 -cd05870 143278 cl11960 353325 -cd05871 143279 cl11960 353325 -cd05872 143280 cl11960 353325 -cd05873 143281 cl11960 353325 -cd05874 143282 cl11960 353325 -cd05875 143283 cl11960 353325 -cd05876 143284 cl11960 353325 -cd05877 143285 cl11960 353325 -cd05879 143287 cl11960 353325 -cd05880 143288 cl11960 353325 -cd05881 143289 cl11960 353325 -cd05882 143290 cl11960 353325 -cd05883 143291 cl11960 353325 -cd05885 143293 cl11960 353325 -cd05886 143294 cl11960 353325 -cd05887 143295 cl11960 353325 -cd05888 143296 cl11960 353325 -cd05889 143297 cl11960 353325 -cd05890 143298 cl11960 353325 -cd05891 143299 cl11960 353325 -cd05892 143300 cl11960 353325 -cd05893 143301 cl11960 353325 -cd05894 143302 cl11960 353325 -cd05895 143303 cl11960 353325 -cd05896 143304 cl11960 353325 -cd05897 143305 cl11960 353325 -cd05898 143306 cl11960 353325 -cd05899 143307 cl11960 353325 -cd05900 143308 cl11960 353325 -cd05901 143309 cl11960 353325 -cd05902 143310 cl11960 353325 -cd07689 143313 cl11960 353325 -cd07690 143314 cl11960 353325 -cd07691 143315 cl11960 353325 -cd07692 143316 cl11960 353325 -cd07693 143317 cl11960 353325 -cd07694 143318 cl11960 353325 -cd07695 143319 cl11960 353325 -cd07698 143322 cl11960 353325 -cd07702 143326 cl11960 353325 -cd07705 143329 cl11960 353325 -cd01392 143331 cl22854 354960 -cd02439 143332 cl11435 353253 -cd07836 143341 cl21453 354810 -cd07839 143344 cl21453 354810 -cd07851 143356 cl21453 354810 -cd07854 143359 cl21453 354810 -cd07858 143363 cl21453 354810 -cd07859 143364 cl21453 354810 -cd07863 143368 cl21453 354810 -cd07869 143374 cl21453 354810 -cd07872 143377 cl21453 354810 -cd07874 143379 cl21453 354810 -cd07875 143380 cl21453 354810 -cd07876 143381 cl21453 354810 -cd07877 143382 cl21453 354810 -cd07878 143383 cl21453 354810 -cd07879 143384 cl21453 354810 -cd07880 143385 cl21453 354810 -cd00141 143386 cl11966 353329 -cd05397 143387 cl11966 353329 -cd05398 143388 cl11966 353329 -cd05399 143389 cl11966 353329 -cd05400 143390 cl11966 353329 -cd05401 143391 cl11966 353329 -cd05402 143392 cl11966 353329 -cd05403 143393 cl11966 353329 -cd07749 143394 cl11966 353329 -cd06534 143395 cl11961 353326 -cd07077 143396 cl11961 353326 -cd07078 143397 cl11961 353326 -cd07079 143398 cl11961 353326 -cd07080 143399 cl11961 353326 -cd07081 143400 cl11961 353326 -cd07082 143401 cl11961 353326 -cd07083 143402 cl11961 353326 -cd07084 143403 cl11961 353326 -cd07085 143404 cl11961 353326 -cd07086 143405 cl11961 353326 -cd07087 143406 cl11961 353326 -cd07088 143407 cl11961 353326 -cd07089 143408 cl11961 353326 -cd07090 143409 cl11961 353326 -cd07091 143410 cl11961 353326 -cd07092 143411 cl11961 353326 -cd07093 143412 cl11961 353326 -cd07094 143413 cl11961 353326 -cd07095 143414 cl11961 353326 -cd07097 143415 cl11961 353326 -cd07098 143416 cl11961 353326 -cd07099 143417 cl11961 353326 -cd07100 143418 cl11961 353326 -cd07101 143419 cl11961 353326 -cd07102 143420 cl11961 353326 -cd07103 143421 cl11961 353326 -cd07104 143422 cl11961 353326 -cd07105 143423 cl11961 353326 -cd07106 143424 cl11961 353326 -cd07107 143425 cl11961 353326 -cd07108 143426 cl11961 353326 -cd07109 143427 cl11961 353326 -cd07110 143428 cl11961 353326 -cd07111 143429 cl11961 353326 -cd07112 143430 cl11961 353326 -cd07113 143431 cl11961 353326 -cd07114 143432 cl11961 353326 -cd07115 143433 cl11961 353326 -cd07116 143434 cl11961 353326 -cd07117 143435 cl11961 353326 -cd07118 143436 cl11961 353326 -cd07119 143437 cl11961 353326 -cd07120 143438 cl11961 353326 -cd07121 143439 cl11961 353326 -cd07122 143440 cl11961 353326 -cd07123 143441 cl11961 353326 -cd07124 143442 cl11961 353326 -cd07125 143443 cl11961 353326 -cd07126 143444 cl11961 353326 -cd07127 143445 cl11961 353326 -cd07128 143446 cl11961 353326 -cd07129 143447 cl11961 353326 -cd07130 143448 cl11961 353326 -cd07131 143449 cl11961 353326 -cd07132 143450 cl11961 353326 -cd07133 143451 cl11961 353326 -cd07134 143452 cl11961 353326 -cd07135 143453 cl11961 353326 -cd07136 143454 cl11961 353326 -cd07137 143455 cl11961 353326 -cd07138 143456 cl11961 353326 -cd07139 143457 cl11961 353326 -cd07140 143458 cl11961 353326 -cd07141 143459 cl11961 353326 -cd07142 143460 cl11961 353326 -cd07143 143461 cl11961 353326 -cd07144 143462 cl11961 353326 -cd07145 143463 cl11961 353326 -cd07146 143464 cl11961 353326 -cd07147 143465 cl11961 353326 -cd07148 143466 cl11961 353326 -cd07149 143467 cl11961 353326 -cd07150 143468 cl11961 353326 -cd07151 143469 cl11961 353326 -cd07152 143470 cl11961 353326 -cd07559 143471 cl11961 353326 -cd06559 143472 cl00653 351198 -cd06560 143473 cl11970 353331 -cd07322 143474 cl11970 353331 -cd06567 143475 cl02526 351786 -cd07560 143476 cl02526 351786 -cd07561 143477 cl02526 351786 -cd07562 143478 cl02526 351786 -cd07563 143479 cl02526 351786 -cd06664 143480 cl00528 351136 -cd00430 143481 cl00261 350989 -cd00622 143482 cl00261 350989 -cd00635 143483 cl00261 350989 -cd06808 143484 cl00261 350989 -cd06810 143485 cl00261 350989 -cd06811 143486 cl00261 350989 -cd06812 143487 cl00261 350989 -cd06813 143488 cl00261 350989 -cd06814 143489 cl00261 350989 -cd06815 143490 cl00261 350989 -cd06817 143491 cl00261 350989 -cd06818 143492 cl00261 350989 -cd06819 143493 cl00261 350989 -cd06820 143494 cl00261 350989 -cd06821 143495 cl00261 350989 -cd06822 143496 cl00261 350989 -cd06824 143497 cl00261 350989 -cd06825 143498 cl00261 350989 -cd06826 143499 cl00261 350989 -cd06827 143500 cl00261 350989 -cd06828 143501 cl00261 350989 -cd06829 143502 cl00261 350989 -cd06830 143503 cl00261 350989 -cd06831 143504 cl00261 350989 -cd06836 143505 cl00261 350989 -cd06839 143506 cl00261 350989 -cd06840 143507 cl00261 350989 -cd06841 143508 cl00261 350989 -cd06842 143509 cl00261 350989 -cd06843 143510 cl00261 350989 -cd07376 143511 cl00261 350989 -cd06916 143512 cl02596 351816 -cd06955 143513 cl02596 351816 -cd06956 143514 cl02596 351816 -cd06957 143515 cl02596 351816 -cd06958 143516 cl02596 351816 -cd06959 143517 cl02596 351816 -cd06960 143518 cl02596 351816 -cd06961 143519 cl02596 351816 -cd06962 143520 cl02596 351816 -cd06963 143521 cl02596 351816 -cd06964 143522 cl02596 351816 -cd06965 143523 cl02596 351816 -cd06966 143524 cl02596 351816 -cd06967 143525 cl02596 351816 -cd06968 143526 cl02596 351816 -cd06969 143527 cl02596 351816 -cd06970 143528 cl02596 351816 -cd07154 143529 cl02596 351816 -cd07155 143530 cl02596 351816 -cd07156 143531 cl02596 351816 -cd07157 143532 cl02596 351816 -cd07158 143533 cl02596 351816 -cd07160 143534 cl02596 351816 -cd07161 143535 cl02596 351816 -cd07162 143536 cl02596 351816 -cd07163 143537 cl02596 351816 -cd07164 143538 cl02596 351816 -cd07165 143539 cl02596 351816 -cd07166 143540 cl02596 351816 -cd07167 143541 cl02596 351816 -cd07168 143542 cl02596 351816 -cd07169 143543 cl02596 351816 -cd07170 143544 cl02596 351816 -cd07171 143545 cl02596 351816 -cd07172 143546 cl02596 351816 -cd07173 143547 cl02596 351816 -cd07179 143548 cl02596 351816 -cd07066 143549 cl02447 351762 -cd07441 143550 cl02447 351762 -cd07442 143551 cl02447 351762 -cd07443 143552 cl02447 351762 -cd07444 143553 cl02447 351762 -cd07445 143554 cl02447 351762 -cd07446 143555 cl02447 351762 -cd07447 143556 cl02447 351762 -cd07448 143557 cl02447 351762 -cd07449 143558 cl02447 351762 -cd07450 143559 cl02447 351762 -cd07451 143560 cl02447 351762 -cd07452 143561 cl02447 351762 -cd07453 143562 cl02447 351762 -cd07454 143563 cl02447 351762 -cd07455 143564 cl02447 351762 -cd07456 143565 cl02447 351762 -cd07457 143566 cl02447 351762 -cd07458 143567 cl02447 351762 -cd07459 143568 cl02447 351762 -cd07460 143569 cl02447 351762 -cd07461 143570 cl02447 351762 -cd07462 143571 cl02447 351762 -cd07463 143572 cl02447 351762 -cd07464 143573 cl02447 351762 -cd07465 143574 cl02447 351762 -cd07466 143575 cl02447 351762 -cd07467 143576 cl02447 351762 -cd07468 143577 cl02447 351762 -cd07469 143578 cl02447 351762 -cd07888 143579 cl02447 351762 -cd07176 143580 cl11965 353328 -cd07177 143581 cl11965 353328 -cd07178 143582 cl11965 353328 -cd07311 143583 cl11965 353328 -cd07313 143584 cl11965 353328 -cd07316 143585 cl11965 353328 -cd07185 143586 cl30079 356955 -cd07197 143587 cl11424 353250 -cd07564 143588 cl11424 353250 -cd07565 143589 cl11424 353250 -cd07566 143590 cl11424 353250 -cd07567 143591 cl11424 353250 -cd07568 143592 cl11424 353250 -cd07569 143593 cl11424 353250 -cd07570 143594 cl11424 353250 -cd07571 143595 cl11424 353250 -cd07572 143596 cl11424 353250 -cd07573 143597 cl11424 353250 -cd07574 143598 cl11424 353250 -cd07575 143599 cl11424 353250 -cd07576 143600 cl11424 353250 -cd07577 143601 cl11424 353250 -cd07578 143602 cl11424 353250 -cd07579 143603 cl11424 353250 -cd07580 143604 cl11424 353250 -cd07581 143605 cl11424 353250 -cd07582 143606 cl11424 353250 -cd07583 143607 cl11424 353250 -cd07584 143608 cl11424 353250 -cd07585 143609 cl11424 353250 -cd07586 143610 cl11424 353250 -cd07587 143611 cl11424 353250 -cd07304 143612 cl00323 351026 -cd07374 143620 cl11964 353327 -cd07470 143621 cl11964 353327 -cd07750 143622 cl11964 353327 -cd07751 143623 cl11964 353327 -cd07756 143624 cl11964 353327 -cd07758 143625 cl11964 353327 -cd07761 143626 cl11964 353327 -cd07762 143627 cl11964 353327 -cd07890 143628 cl11964 353327 -cd07891 143629 cl11964 353327 -cd07892 143630 cl11964 353327 -cd07429 143631 cl12007 325156 -cd07430 143632 cl07672 352785 -cd07439 143633 cl12008 299861 -cd01949 143635 cl11967 353330 -cd07302 143636 cl11967 353330 -cd07556 143637 cl11967 353330 -cd07557 143638 cl00493 351119 -cd07765 143639 cl02581 351814 -cd07827 143640 cl08275 352867 -cd07881 143641 cl08275 352867 -cd07882 143642 cl08275 352867 -cd07883 143643 cl08275 352867 -cd07884 143644 cl08275 352867 -cd07885 143645 cl08275 352867 -cd07886 143646 cl08275 352867 -cd07887 143647 cl08275 352867 -cd07927 143648 cl08275 352867 -cd07933 143649 cl08275 352867 -cd07934 143650 cl08275 352867 -cd07935 143651 cl08275 352867 -cd07828 143652 cl10502 353081 -cd07912 143653 cl12141 325204 -pfam00568 144235 cl17171 354315 -pfam00802 144411 pfam00802 144411 -pfam00979 144537 pfam00979 144537 -pfam00981 144538 pfam00981 144538 -pfam00985 144541 pfam00985 144541 -pfam01109 144630 cl23816 304973 -pfam01378 144825 pfam01378 144825 -pfam01525 144935 pfam01525 144935 -pfam01543 144947 pfam01543 144947 -pfam02088 145317 pfam02088 145317 -pfam02162 145362 pfam02162 145362 -pfam02323 145463 pfam02323 145463 -pfam02721 145722 pfam02721 145722 -pfam02972 145886 pfam02972 145886 -pfam03025 145918 pfam03025 145918 -pfam03302 146106 pfam03302 146106 -pfam03355 146143 cl28648 333468 -pfam03384 146165 pfam03384 146165 -pfam03643 146336 cl22903 354975 -pfam03688 146364 pfam03688 146364 -pfam03842 146463 cl21656 276368 -pfam03866 146478 pfam03866 146478 -pfam03898 146498 cl27634 332455 -pfam03905 146503 pfam03905 146503 -pfam04693 147046 cl17874 354346 -pfam04807 147122 pfam04807 147122 -pfam05165 147379 cl19424 267777 -pfam05268 147458 pfam05268 147458 -pfam05271 147459 pfam05271 147459 -pfam05352 147504 cl11526 175307 -pfam05356 147508 pfam05356 147508 -pfam05396 147533 cl14192 246618 -pfam05410 147544 pfam05410 147544 -pfam05413 147545 pfam05413 147545 -pfam05452 147565 pfam05452 147565 -pfam05453 147566 pfam05453 147566 -pfam05554 147629 pfam05554 147629 -pfam05585 147642 cl11403 353244 -pfam05663 147685 pfam05663 147685 -pfam05776 147756 pfam05776 147756 -pfam05851 147807 pfam05851 147807 -pfam05858 147812 pfam05858 147812 -pfam05862 147815 pfam05862 147815 -pfam05927 147854 pfam05927 147854 -pfam06019 147919 pfam06019 147919 -pfam06126 147993 pfam06126 147993 -pfam06145 148007 pfam06145 148007 -pfam06235 148066 cl28642 333462 -pfam06309 148114 pfam06309 148114 -pfam06372 148150 cl00259 350988 -pfam06380 148156 pfam06380 148156 -pfam06576 148278 cl29970 356846 -pfam06591 148289 pfam06591 148289 -pfam06607 148298 pfam06607 148298 -pfam06648 148323 pfam06648 148323 -pfam06714 148361 pfam06714 148361 -pfam06767 148397 cl11505 187080 -pfam06820 148432 pfam06820 148432 -pfam07015 148565 cl21455 354812 -pfam07190 148663 cl28658 355716 -pfam07245 148700 pfam07245 148700 -pfam07246 148701 pfam07246 148701 -pfam07272 148716 pfam07272 148716 -pfam07280 148722 pfam07280 148722 -pfam07325 148753 pfam07325 148753 -pfam07530 148888 cl11655 159607 -pfam07551 148905 pfam07551 148905 -pfam07636 148958 pfam07636 148958 -pfam08092 149265 pfam08092 149265 -pfam08110 149268 pfam08110 149268 -pfam08116 149271 pfam08116 149271 -pfam08123 149273 cl17173 354317 -pfam08166 149302 pfam08166 149302 -pfam08301 149382 pfam08301 149382 -pfam08358 149427 pfam08358 149427 -pfam08500 149522 pfam08500 149522 -pfam08579 149581 pfam08579 149581 -pfam09143 149995 pfam09143 149995 -pfam09237 150045 pfam09237 150045 -pfam09590 150302 pfam09590 150302 -pfam09593 150305 pfam09593 150305 -pfam10450 151025 pfam10450 151025 -pfam10623 151143 pfam10623 151143 -pfam10690 151186 pfam10690 151186 -pfam10808 151258 pfam10808 151258 -pfam10891 151339 pfam10891 151339 -pfam10909 151356 pfam10909 151356 -pfam10911 151358 cl28661 333481 -pfam11036 151483 pfam11036 151483 -pfam11087 151532 pfam11087 151532 -pfam11090 151535 cl17113 271795 -pfam11129 151573 pfam11129 151573 -pfam11252 151694 pfam11252 151694 -pfam11291 151732 pfam11291 151732 -pfam11386 151826 pfam11386 151826 -pfam11401 151840 pfam11401 151840 -pfam11406 151845 pfam11406 151845 -pfam11408 151847 cl02578 351813 -pfam11415 151854 pfam11415 151854 -pfam11434 151873 cl28645 333465 -pfam11474 151913 pfam11474 151913 -pfam11476 151915 pfam11476 151915 -pfam11498 151935 pfam11498 151935 -pfam11516 151953 pfam11516 151953 -pfam11529 151966 pfam11529 151966 -pfam11536 151973 pfam11536 151973 -pfam11585 152021 pfam11585 152021 -pfam11591 152027 pfam11591 152027 -pfam11606 152042 pfam11606 152042 -pfam11630 152066 pfam11630 152066 -pfam11641 152077 pfam11641 152077 -pfam11671 152107 pfam11671 152107 -pfam11714 152150 pfam11714 152150 -pfam11757 152193 pfam11757 152193 -pfam11963 152398 pfam11963 152398 -pfam11989 152424 pfam11989 152424 -pfam12033 152468 pfam12033 152468 -pfam12039 152474 pfam12039 152474 -pfam12093 152528 pfam12093 152528 -pfam12107 152542 pfam12107 152542 -pfam12136 152571 pfam12136 152571 -pfam12154 152589 pfam12154 152589 -pfam12155 152590 pfam12155 152590 -pfam12173 152608 pfam12173 152608 -pfam12195 152630 cl28659 333479 -pfam12217 152652 cl28659 333479 -pfam12219 152654 pfam12219 152654 -pfam12264 152699 pfam12264 152699 -pfam12267 152702 pfam12267 152702 -pfam12312 152747 pfam12312 152747 -pfam12342 152777 pfam12342 152777 -pfam12381 152816 pfam12381 152816 -pfam12382 152817 pfam12382 152817 -pfam12384 152819 cl11403 353244 -pfam12386 152821 cl17362 354329 -pfam12393 152828 pfam12393 152828 -pfam12521 152955 pfam12521 152955 -pfam12523 152957 pfam12523 152957 -pfam12591 153025 pfam12591 153025 -cd00033 153056 cl29654 356530 -cd00037 153057 cl02432 351759 -cd03588 153058 cl02432 351759 -cd03589 153059 cl02432 351759 -cd03590 153060 cl02432 351759 -cd03591 153061 cl02432 351759 -cd03592 153062 cl02432 351759 -cd03593 153063 cl02432 351759 -cd03594 153064 cl02432 351759 -cd03595 153065 cl02432 351759 -cd03596 153066 cl02432 351759 -cd03597 153067 cl02432 351759 -cd03598 153068 cl02432 351759 -cd03599 153069 cl02432 351759 -cd03600 153070 cl02432 351759 -cd03601 153071 cl02432 351759 -cd03602 153072 cl02432 351759 -cd03603 153073 cl02432 351759 -cd00242 153074 cl00178 350932 -cd00330 153075 cl02823 351903 -cd00716 153076 cl02823 351903 -cd07930 153077 cl02823 351903 -cd07931 153078 cl02823 351903 -cd07932 153079 cl02823 351903 -cd00365 153080 cl00205 350949 -cd00643 153081 cl00205 350949 -cd00644 153082 cl00205 350949 -cd00576 153083 cl09939 353033 -cd01675 153084 cl09939 353033 -cd01676 153085 cl09939 353033 -cd01677 153086 cl09939 353033 -cd01678 153087 cl09939 353033 -cd01679 153088 cl09939 353033 -cd02888 153089 cl09939 353033 -cd08025 153090 cl09939 353033 -cd00125 153091 cl05417 352356 -cd00618 153092 cl05417 352356 -cd04704 153093 cl05417 352356 -cd04705 153094 cl05417 352356 -cd04706 153095 cl05417 352356 -cd04707 153096 cl05417 352356 -cd00657 153097 cl00264 350992 -cd00904 153098 cl00264 350992 -cd00907 153099 cl00264 350992 -cd01041 153100 cl00264 350992 -cd01042 153101 cl00264 350992 -cd01043 153102 cl00264 350992 -cd01044 153103 cl00264 350992 -cd01045 153104 cl00264 350992 -cd01046 153105 cl00264 350992 -cd01047 153106 cl00264 350992 -cd01048 153107 cl00264 350992 -cd01049 153108 cl00264 350992 -cd01050 153109 cl00264 350992 -cd01051 153110 cl00264 350992 -cd01052 153111 cl00264 350992 -cd01053 153112 cl00264 350992 -cd01055 153113 cl00264 350992 -cd01056 153114 cl00264 350992 -cd01057 153115 cl00264 350992 -cd01058 153116 cl00264 350992 -cd07908 153117 cl00264 350992 -cd07909 153118 cl00264 350992 -cd07910 153119 cl00264 350992 -cd07911 153120 cl00264 350992 -cd01059 153121 cl00278 350999 -cd02431 153122 cl00278 350999 -cd02432 153123 cl00278 350999 -cd02433 153124 cl00278 350999 -cd02434 153125 cl00278 350999 -cd02435 153126 cl00278 350999 -cd02436 153127 cl00278 350999 -cd02437 153128 cl00278 350999 -cd01351 153129 cl00285 351003 -cd01355 153130 cl00285 351003 -cd01581 153131 cl00285 351003 -cd01582 153132 cl00285 351003 -cd01583 153133 cl00285 351003 -cd01584 153134 cl00285 351003 -cd01585 153135 cl00285 351003 -cd01586 153136 cl00285 351003 -cd06269 153137 cl10011 353040 -cd06350 153138 cl10011 353040 -cd02116 153139 cl09141 352939 -cd04868 153140 cl09141 352939 -cd04869 153141 cl09141 352939 -cd04870 153142 cl09141 352939 -cd04871 153143 cl09141 352939 -cd04872 153144 cl09141 352939 -cd04873 153145 cl09141 352939 -cd04874 153146 cl09141 352939 -cd04875 153147 cl09141 352939 -cd04876 153148 cl09141 352939 -cd04877 153149 cl09141 352939 -cd04878 153150 cl09141 352939 -cd04879 153151 cl09141 352939 -cd04880 153152 cl09141 352939 -cd04881 153153 cl09141 352939 -cd04882 153154 cl09141 352939 -cd04883 153155 cl09141 352939 -cd04884 153156 cl09141 352939 -cd04885 153157 cl09141 352939 -cd04886 153158 cl09141 352939 -cd04887 153159 cl09141 352939 -cd04888 153160 cl09141 352939 -cd04889 153161 cl09141 352939 -cd04890 153162 cl09141 352939 -cd04891 153163 cl09141 352939 -cd04892 153164 cl09141 352939 -cd04893 153165 cl09141 352939 -cd04894 153166 cl09141 352939 -cd04895 153167 cl09141 352939 -cd04896 153168 cl09141 352939 -cd04897 153169 cl09141 352939 -cd04898 153170 cl09141 352939 -cd04899 153171 cl09141 352939 -cd04900 153172 cl09141 352939 -cd04901 153173 cl09141 352939 -cd04902 153174 cl09141 352939 -cd04903 153175 cl09141 352939 -cd04904 153176 cl09141 352939 -cd04905 153177 cl09141 352939 -cd04906 153178 cl09141 352939 -cd04907 153179 cl09141 352939 -cd04908 153180 cl09141 352939 -cd04909 153181 cl09141 352939 -cd04910 153182 cl09141 352939 -cd04911 153183 cl09141 352939 -cd04912 153184 cl09141 352939 -cd04913 153185 cl09141 352939 -cd04914 153186 cl09141 352939 -cd04915 153187 cl09141 352939 -cd04916 153188 cl09141 352939 -cd04917 153189 cl09141 352939 -cd04918 153190 cl09141 352939 -cd04919 153191 cl09141 352939 -cd04920 153192 cl09141 352939 -cd04921 153193 cl09141 352939 -cd04922 153194 cl09141 352939 -cd04923 153195 cl09141 352939 -cd04924 153196 cl09141 352939 -cd04925 153197 cl09141 352939 -cd04926 153198 cl09141 352939 -cd04927 153199 cl09141 352939 -cd04928 153200 cl09141 352939 -cd04929 153201 cl09141 352939 -cd04930 153202 cl09141 352939 -cd04931 153203 cl09141 352939 -cd04932 153204 cl09141 352939 -cd04933 153205 cl09141 352939 -cd04934 153206 cl09141 352939 -cd04935 153207 cl09141 352939 -cd04936 153208 cl09141 352939 -cd04937 153209 cl09141 352939 -cd01653 153210 cl00020 350865 -cd01740 153211 cl00020 350865 -cd01741 153212 cl00020 350865 -cd01742 153213 cl00020 350865 -cd01743 153214 cl00020 350865 -cd01744 153215 cl00020 350865 -cd01745 153216 cl00020 350865 -cd01746 153217 cl00020 350865 -cd01747 153218 cl00020 350865 -cd01748 153219 cl00020 350865 -cd01749 153220 cl00020 350865 -cd01750 153221 cl00020 350865 -cd03128 153222 cl00020 350865 -cd03129 153223 cl00020 350865 -cd03130 153224 cl00020 350865 -cd03131 153225 cl00020 350865 -cd03132 153226 cl00020 350865 -cd03133 153227 cl00020 350865 -cd03134 153228 cl00020 350865 -cd03135 153229 cl00020 350865 -cd03136 153230 cl00020 350865 -cd03137 153231 cl00020 350865 -cd03138 153232 cl00020 350865 -cd03139 153233 cl00020 350865 -cd03140 153234 cl00020 350865 -cd03141 153235 cl00020 350865 -cd03142 153236 cl00020 350865 -cd03143 153237 cl00020 350865 -cd03144 153238 cl00020 350865 -cd03145 153239 cl00020 350865 -cd03146 153240 cl00020 350865 -cd03147 153241 cl00020 350865 -cd03148 153242 cl00020 350865 -cd03169 153243 cl00020 350865 -cd06551 153244 cl17185 354319 -cd07983 153245 cl17185 354319 -cd07984 153246 cl17185 354319 -cd07985 153247 cl17185 354319 -cd07986 153248 cl17185 354319 -cd07987 153249 cl17185 354319 -cd07988 153250 cl17185 354319 -cd07989 153251 cl17185 354319 -cd07990 153252 cl17185 354319 -cd07991 153253 cl17185 354319 -cd07992 153254 cl17185 354319 -cd07993 153255 cl17185 354319 -cd00011 153270 cl12013 353336 -cd07307 153271 cl12013 353336 -cd07588 153272 cl12013 353336 -cd07589 153273 cl12013 353336 -cd07590 153274 cl12013 353336 -cd07591 153275 cl12013 353336 -cd07592 153276 cl12013 353336 -cd07593 153277 cl12013 353336 -cd07594 153278 cl12013 353336 -cd07595 153279 cl12013 353336 -cd07596 153280 cl12013 353336 -cd07597 153281 cl12013 353336 -cd07598 153282 cl12013 353336 -cd07599 153283 cl12013 353336 -cd07600 153284 cl12013 353336 -cd07601 153285 cl12013 353336 -cd07602 153286 cl12013 353336 -cd07603 153287 cl12013 353336 -cd07604 153288 cl12013 353336 -cd07605 153289 cl12013 353336 -cd07606 153290 cl12013 353336 -cd07607 153291 cl12013 353336 -cd07608 153292 cl12013 353336 -cd07609 153293 cl12013 353336 -cd07610 153294 cl12013 353336 -cd07611 153295 cl12013 353336 -cd07612 153296 cl12013 353336 -cd07613 153297 cl12013 353336 -cd07614 153298 cl12013 353336 -cd07615 153299 cl12013 353336 -cd07616 153300 cl12013 353336 -cd07617 153301 cl12013 353336 -cd07618 153302 cl12013 353336 -cd07619 153303 cl12013 353336 -cd07620 153304 cl12013 353336 -cd07621 153305 cl12013 353336 -cd07622 153306 cl12013 353336 -cd07623 153307 cl12013 353336 -cd07624 153308 cl12013 353336 -cd07625 153309 cl12013 353336 -cd07626 153310 cl12013 353336 -cd07627 153311 cl12013 353336 -cd07628 153312 cl12013 353336 -cd07629 153313 cl12013 353336 -cd07630 153314 cl12013 353336 -cd07631 153315 cl12013 353336 -cd07632 153316 cl12013 353336 -cd07633 153317 cl12013 353336 -cd07634 153318 cl12013 353336 -cd07635 153319 cl12013 353336 -cd07636 153320 cl12013 353336 -cd07637 153321 cl12013 353336 -cd07638 153322 cl12013 353336 -cd07639 153323 cl12013 353336 -cd07640 153324 cl12013 353336 -cd07641 153325 cl12013 353336 -cd07642 153326 cl12013 353336 -cd07643 153327 cl12013 353336 -cd07644 153328 cl12013 353336 -cd07645 153329 cl12013 353336 -cd07646 153330 cl12013 353336 -cd07647 153331 cl12013 353336 -cd07648 153332 cl12013 353336 -cd07649 153333 cl12013 353336 -cd07650 153334 cl12013 353336 -cd07651 153335 cl12013 353336 -cd07652 153336 cl12013 353336 -cd07653 153337 cl12013 353336 -cd07654 153338 cl12013 353336 -cd07655 153339 cl12013 353336 -cd07656 153340 cl12013 353336 -cd07657 153341 cl12013 353336 -cd07658 153342 cl12013 353336 -cd07659 153343 cl12013 353336 -cd07660 153344 cl12013 353336 -cd07661 153345 cl12013 353336 -cd07662 153346 cl12013 353336 -cd07663 153347 cl12013 353336 -cd07664 153348 cl12013 353336 -cd07665 153349 cl12013 353336 -cd07666 153350 cl12013 353336 -cd07667 153351 cl12013 353336 -cd07668 153352 cl12013 353336 -cd07669 153353 cl12013 353336 -cd07670 153354 cl12013 353336 -cd07671 153355 cl12013 353336 -cd07672 153356 cl12013 353336 -cd07673 153357 cl12013 353336 -cd07674 153358 cl12013 353336 -cd07675 153359 cl12013 353336 -cd07676 153360 cl12013 353336 -cd07677 153361 cl12013 353336 -cd07678 153362 cl12013 353336 -cd07679 153363 cl12013 353336 -cd07680 153364 cl12013 353336 -cd07681 153365 cl12013 353336 -cd07682 153366 cl12013 353336 -cd07683 153367 cl12013 353336 -cd07684 153368 cl12013 353336 -cd07685 153369 cl12013 353336 -cd07686 153370 cl12013 353336 -cd07320 153371 cl00599 351170 -cd07359 153372 cl00599 351170 -cd07361 153373 cl00599 351170 -cd07362 153374 cl00599 351170 -cd07363 153375 cl00599 351170 -cd07364 153376 cl00599 351170 -cd07365 153377 cl00599 351170 -cd07366 153378 cl00599 351170 -cd07367 153379 cl00599 351170 -cd07368 153380 cl00599 351170 -cd07369 153381 cl00599 351170 -cd07370 153382 cl00599 351170 -cd07371 153383 cl00599 351170 -cd07372 153384 cl00599 351170 -cd07373 153385 cl00599 351170 -cd07949 153386 cl00599 351170 -cd07950 153387 cl00599 351170 -cd07951 153388 cl00599 351170 -cd07952 153389 cl00599 351170 -cd07321 153390 cl06673 352553 -cd07921 153391 cl06673 352553 -cd07922 153392 cl06673 352553 -cd07923 153393 cl06673 352553 -cd07924 153394 cl06673 352553 -cd07925 153395 cl06673 352553 -cd07323 153396 cl02755 351874 -cd08028 153397 cl02755 351874 -cd08029 153398 cl02755 351874 -cd08030 153399 cl02755 351874 -cd08031 153400 cl02755 351874 -cd08032 153401 cl02755 351874 -cd08033 153402 cl02755 351874 -cd08034 153403 cl02755 351874 -cd08035 153404 cl02755 351874 -cd08036 153405 cl02755 351874 -cd08037 153406 cl02755 351874 -cd08038 153407 cl02755 351874 -cd07375 153408 cl12020 353341 -cd07955 153409 cl12020 353341 -cd07956 153410 cl12020 353341 -cd07957 153411 cl12020 353341 -cd07958 153412 cl12020 353341 -cd07959 153413 cl12020 353341 -cd07960 153414 cl12020 353341 -cd07961 153415 cl12020 353341 -cd07962 153416 cl12020 353341 -cd07963 153417 cl12020 353341 -cd07377 153418 cl21459 354815 -cd07914 153419 cl00341 351042 -cd07920 153420 cl29546 356422 -cd07936 153421 cl02605 351821 -cd07973 153422 cl12033 325166 -cd07977 153423 cl02153 351687 -cd07994 153424 cl01581 321576 -cd07996 153425 cl01581 321576 -cd07997 153426 cl01581 321576 -cd07998 153427 cl01581 321576 -cd08001 153428 cl01581 321576 -cd08002 153429 cl01581 321576 -cd08003 153430 cl01581 321576 -cd07995 153431 cl21552 354867 -cd07999 153432 cl21662 354899 -cd08010 153433 cl18961 354373 -cd08026 153434 cl13994 276033 -cd07893 153435 cl08424 352894 -cd07967 153436 cl08424 352894 -cd07968 153437 cl08424 352894 -cd07969 153438 cl08424 352894 -cd07970 153439 cl08424 352894 -cd07971 153440 cl08424 352894 -cd07972 153441 cl08424 352894 -cd08040 153442 cl08424 352894 -cd08041 153443 cl08424 352894 -cd08051 153444 cl12049 353345 -cd08053 153445 cl12049 353345 -cd08054 153446 cl12049 353345 -cd08055 153447 cl12049 353345 -TIGR00375 161657 TIGR00375 161657 -TIGR00005 161659 TIGR00005 161659 -TIGR00041 161676 TIGR00041 161676 -TIGR00091 161703 cl17173 354317 -TIGR00120 161718 cl00603 351172 -TIGR00130 161726 TIGR00130 161726 -TIGR00147 161732 TIGR00147 161732 -TIGR00200 161761 TIGR00200 161761 -TIGR00224 161774 cl22860 354963 -TIGR00239 161785 TIGR00239 161785 -TIGR00243 161787 TIGR00243 161787 -TIGR00262 161792 cl28888 355772 -TIGR00282 161802 cl13995 353799 -TIGR00283 161803 cl19212 354394 -TIGR00369 161843 cl00509 351126 -TIGR00407 161862 cl11961 353326 -TIGR00445 161884 cl10571 353087 -TIGR00507 161904 TIGR00507 161904 -TIGR00545 161920 cl14057 353805 -TIGR00639 161973 cl00395 351075 -TIGR00754 162022 cl00264 350992 -TIGR00767 162030 TIGR00767 162030 -TIGR00784 162036 cl21473 354825 -TIGR00795 162041 cl00701 294462 -TIGR00874 162081 cl28986 355862 -TIGR00897 162096 TIGR00897 162096 -TIGR00900 162098 TIGR00900 162098 -TIGR01013 162157 TIGR01013 162157 -TIGR01027 162163 TIGR01027 162163 -TIGR01066 162186 cl00333 351034 -TIGR01072 162190 cl00288 260328 -TIGR01077 162192 cl00333 351034 -TIGR01187 162242 TIGR01187 162242 -TIGR01197 162246 cl00456 320982 -TIGR01229 162262 cl17011 354294 -TIGR01246 162269 TIGR01246 162269 -TIGR01266 162276 TIGR01266 162276 -TIGR01282 162284 cl02775 351884 -TIGR01317 162300 TIGR01317 162300 -TIGR01419 162350 cl00163 350927 -TIGR01458 162372 TIGR01458 162372 -TIGR01580 162434 TIGR01580 162434 -TIGR01607 162444 cl21494 354836 -TIGR01690 162489 cl19622 354447 -TIGR01696 162494 cl23718 355016 -TIGR01883 162579 TIGR01883 162579 -TIGR01908 162595 cl21519 328770 -TIGR01912 162597 cl00521 351132 -TIGR01923 162605 TIGR01923 162605 -TIGR01948 162619 cl00597 351168 -TIGR02012 162659 TIGR02012 162659 -TIGR02109 162708 TIGR02109 162708 -TIGR02129 162719 cl21457 354814 -TIGR02137 162723 cl21460 354816 -TIGR02140 162725 cl00427 351090 -TIGR02146 162728 TIGR02146 162728 -TIGR02148 162730 cl08459 352902 -TIGR02172 162743 cl21453 354810 -TIGR02254 162788 TIGR02254 162788 -TIGR02354 162819 cl22428 304554 -TIGR02374 162827 TIGR02374 162827 -TIGR02391 162834 cl09741 324464 -TIGR02460 162866 cl11394 353239 -TIGR02476 162875 cl00514 321015 -TIGR02534 162905 TIGR02534 162905 -TIGR02683 162974 cl21503 354842 -TIGR02706 162980 cl17212 354323 -TIGR02707 162981 cl17037 354300 -TIGR02761 163004 cl05060 322925 -TIGR02812 163028 TIGR02812 163028 -TIGR02862 163046 cl26894 331715 -TIGR02881 163057 TIGR02881 163057 -TIGR03008 163100 cl00558 351152 -TIGR03039 163117 cl08223 324210 -TIGR03090 163133 cl07951 186720 -TIGR03123 163144 cl00668 321104 -TIGR03124 163145 cl01498 351524 -TIGR03178 163175 cl00281 351001 -TIGR03183 163177 cl00292 351005 -TIGR03233 163189 cl17621 354335 -TIGR03234 163190 TIGR03234 163190 -TIGR03235 163191 cl18945 354370 -TIGR03307 163212 cl23716 355014 -TIGR03385 163244 TIGR03385 163244 -TIGR03425 163257 cl01474 351518 -TIGR03432 163260 cl00340 351041 -TIGR03433 163261 cl21459 354815 -TIGR03441 163267 cl01829 351609 -TIGR03465 163278 cl00210 350953 -TIGR03466 163279 TIGR03466 163279 -TIGR03498 163293 TIGR03498 163293 -TIGR03542 163316 TIGR03542 163316 -TIGR03586 163337 TIGR03586 163337 -TIGR03612 163355 cl19096 327499 -TIGR03614 163356 cl00220 350960 -TIGR03633 163366 TIGR03633 163366 -TIGR03678 163391 TIGR03678 163391 -TIGR03690 163402 TIGR03690 163402 -TIGR03691 163403 TIGR03691 163403 -TIGR03693 163405 cl30250 357126 -TIGR03697 163409 TIGR03697 163409 -TIGR03698 163410 cl11403 353244 -TIGR03701 163413 cl00311 351016 -TIGR03702 163414 TIGR03702 163414 -TIGR03711 163423 cl14014 353802 -TIGR03714 163426 TIGR03714 163426 -TIGR03717 163429 cl10468 324589 -TIGR03728 163440 cl07392 352728 -TIGR03729 163441 cl13995 353799 -TIGR03730 163442 cl21456 354813 -TIGR03733 163445 cl21474 354826 -TIGR03735 163447 TIGR03735 163447 -TIGR03736 163448 cl22428 304554 -TIGR03738 163450 cl14020 326316 -TIGR03740 163452 TIGR03740 163452 -TIGR03746 163458 cl12968 325651 -TIGR03747 163459 cl14023 326317 -TIGR03748 163460 TIGR03748 163460 -TIGR03749 163461 cl05878 323239 -TIGR03757 163469 cl06515 323488 -TIGR03758 163470 cl26453 331274 -TIGR03760 163472 cl26884 355588 -TIGR03763 163475 cl15694 353972 -TIGR03768 163480 cl13995 353799 -TIGR03770 163482 cl00454 351100 -TIGR03771 163483 TIGR03771 163483 -TIGR03772 163484 TIGR03772 163484 -TIGR03774 163486 TIGR03774 163486 -TIGR03775 163487 TIGR03775 163487 -TIGR03776 163488 TIGR03776 163488 -TIGR03780 163492 cl19646 327605 -TIGR03783 163495 TIGR03783 163495 -TIGR03784 163496 cl09098 324322 -TIGR03785 163497 TIGR03785 163497 -TIGR03787 163499 TIGR03787 163499 -TIGR03791 163503 TIGR03791 163503 -TIGR03795 163507 cl22942 304651 -TIGR03801 163513 cl18945 354370 -TIGR03805 163517 TIGR03805 163517 -TIGR03806 163518 TIGR03806 163518 -TIGR03808 163520 TIGR03808 163520 -TIGR03809 163521 TIGR03809 163521 -TIGR03810 163522 TIGR03810 163522 -TIGR03811 163523 cl18945 354370 -TIGR03813 163525 TIGR03813 163525 -TIGR03820 163532 TIGR03820 163532 -TIGR03821 163533 cl23776 355042 -TIGR03822 163534 cl23776 355042 -TIGR03823 163535 cl12235 353373 -TIGR03826 163538 TIGR03826 163538 -TIGR03827 163539 TIGR03827 163539 -TIGR03829 163541 cl15819 326649 -TIGR03832 163544 cl00013 350860 -TIGR03836 163548 TIGR03836 163548 -TIGR03842 163554 cl19096 327499 -TIGR03844 163556 cl00342 294246 -TIGR03845 163557 cl11410 353247 -TIGR03848 163560 cl11399 353243 -TIGR03849 163561 cl00782 321165 -TIGR03852 163564 TIGR03852 163564 -TIGR03853 163565 cl11278 353215 -TIGR03854 163566 cl19096 327499 -TIGR03855 163567 cl27470 355656 -TIGR03861 163573 cl21474 354826 -TIGR03869 163581 cl00454 351100 -TIGR03873 163585 TIGR03873 163585 -TIGR03874 163586 cl21467 354821 -TIGR03875 163587 cl17319 327412 -TIGR03877 163589 cl21455 354812 -TIGR03879 163591 cl28599 333419 -TIGR03880 163592 cl21455 354812 -TIGR03881 163593 cl21455 354812 -TIGR03884 163596 cl13040 325694 -cd07394 163637 cl13995 353799 -cd07418 163661 cl13995 353799 -cd07421 163664 cl13995 353799 -cd03174 163674 cl21457 354814 -cd07937 163675 cl21457 354814 -cd07938 163676 cl21457 354814 -cd07939 163677 cl21457 354814 -cd07940 163678 cl21457 354814 -cd07941 163679 cl21457 354814 -cd07942 163680 cl21457 354814 -cd07943 163681 cl21457 354814 -cd07944 163682 cl21457 354814 -cd07945 163683 cl21457 354814 -cd07947 163684 cl21457 354814 -cd07948 163685 cl21457 354814 -cd07767 163686 cl13996 353800 -cd08056 163687 cl13996 353800 -cd08057 163688 cl13996 353800 -cd08058 163689 cl13996 353800 -cd08059 163690 cl13996 353800 -cd08060 163691 cl13996 353800 -cd08061 163692 cl13996 353800 -cd08062 163693 cl13996 353800 -cd08063 163694 cl13996 353800 -cd08064 163695 cl13996 353800 -cd08065 163696 cl13996 353800 -cd08066 163697 cl13996 353800 -cd08067 163698 cl13996 353800 -cd08068 163699 cl13996 353800 -cd08069 163700 cl13996 353800 -cd08070 163701 cl13996 353800 -cd08071 163702 cl13996 353800 -cd08072 163703 cl13996 353800 -cd08073 163704 cl13996 353800 -cd00328 163705 cl09506 352968 -cd08150 163706 cl09506 352968 -cd08151 163707 cl09506 352968 -cd08152 163708 cl09506 352968 -cd08153 163709 cl09506 352968 -cd08154 163710 cl09506 352968 -cd08155 163711 cl09506 352968 -cd08156 163712 cl09506 352968 -cd08157 163713 cl09506 352968 -CHL00086 164492 cl21461 354817 -CHL00088 164493 cl21461 354817 -CHL00090 164494 cl21461 354817 -CHL00091 164495 CHL00091 164495 -CHL00151 164542 cl00210 350953 -CHL00164 164550 cl11425 325026 -CHL00199 164575 CHL00199 164575 -CHL00201 164576 CHL00201 164576 -CHL00203 164577 CHL00203 164577 -MTH00005 164583 cl00413 351082 -MTH00008 164584 MTH00008 164584 -MTH00010 164586 cl00469 351105 -MTH00011 164587 MTH00011 164587 -MTH00012 164588 cl00535 351141 -MTH00015 164590 cl21484 354830 -MTH00018 164592 cl00535 351141 -MTH00022 164595 MTH00022 164595 -MTH00026 164599 cl00275 350997 -MTH00030 164603 cl00535 351141 -MTH00052 164623 cl00211 294143 -MTH00053 164624 MTH00053 164624 -MTH00072 164642 cl03008 295603 -MTH00076 164646 MTH00076 164646 -MTH00185 164736 MTH00185 164736 -MTH00204 164750 cl30834 357710 -MTH00207 164753 MTH00207 164753 -MTH00216 164761 cl00469 351105 -MTH00222 164765 cl00466 351103 -MTH00224 164767 MTH00224 164767 -MTH00260 164770 MTH00260 164770 -PHA00006 164773 cl28070 332891 -PHA00007 164774 cl28004 332825 -PHA00009 164775 cl15846 326659 -PHA00010 164776 cl11610 299794 -PHA00022 164777 cl27770 332591 -PHA00097 164779 cl27822 332643 -PHA00099 164781 cl11513 299756 -PHA00202 164786 cl27417 355649 -PHA00212 164787 cl11500 299749 -PHA00327 164789 PHA00327 164789 -PHA00369 164794 cl27995 332816 -PHA00370 164795 PHA00370 164795 -PHA00404 164796 cl10198 353058 -PHA00406 164797 PHA00406 164797 -PHA00407 164798 cl10201 353059 -PHA00425 164800 cl23904 305061 -PHA00426 164801 cl27843 332664 -PHA00450 164812 cl26487 331308 -PHA00453 164815 PHA00453 164815 -PHA00456 164817 PHA00456 164817 -PHA00547 164822 PHA00547 164822 -PHA00653 164824 PHA00653 164824 -PHA00771 164842 cl23905 329163 -PHA00821 164843 PHA00821 164843 -PHA01078 164848 cl11526 175307 -PHA01079 164849 PHA01079 164849 -PHA01080 164850 PHA01080 164850 -PHA01083 164851 cl22943 328962 -PHA01346 164853 PHA01346 164853 -PHA01474 164854 PHA01474 164854 -PHA01513 164855 PHA01513 164855 -PHA01622 164858 cl00641 351191 -PHA01625 164860 PHA01625 164860 -PHA01630 164861 cl28080 355702 -PHA01631 164862 PHA01631 164862 -PHA01790 164869 cl00089 350897 -PHA01808 164872 PHA01808 164872 -PHA02067 164889 PHA02067 164889 -PHA02085 164890 PHA02085 164890 -PHA02107 164900 PHA02107 164900 -PHA02115 164902 PHA02115 164902 -PHA02265 164905 PHA02265 164905 -PHA02324 164907 PHA02324 164907 -PHA02334 164909 PHA02334 164909 -PHA02335 164910 PHA02335 164910 -PHA02357 164912 PHA02357 164912 -PHA02417 164914 PHA02417 164914 -PHA02447 164916 PHA02447 164916 -PHA02456 164918 PHA02456 164918 -PHA02458 164919 cl15276 353932 -PHA02523 164924 cl10023 353046 -PHA02524 164925 cl10012 353041 -PHA02538 164934 cl04947 352288 -PHA02560 164955 cl01389 351482 -PHA02568 164963 cl01294 321435 -PHA02590 164985 PHA02590 164985 -PHA02591 164986 PHA02591 164986 -PHA02600 164995 cl01390 321477 -PHA02609 165004 cl23906 305063 -PHA02610 165005 cl27837 332658 -PHA02629 165015 PHA02629 165015 -PHA02633 165016 PHA02633 165016 -PHA02634 165017 cl28009 332830 -PHA02635 165018 PHA02635 165018 -PHA02636 165019 PHA02636 165019 -PHA02638 165021 PHA02638 165021 -PHA02639 165022 PHA02639 165022 -PHA02641 165023 cl28653 333473 -PHA02642 165024 PHA02642 165024 -PHA02643 165025 cl28607 355714 -PHA02644 165026 PHA02644 165026 -PHA02646 165027 PHA02646 165027 -PHA02649 165029 cl30885 357761 -PHA02650 165030 PHA02650 165030 -PHA02651 165031 cl00094 294069 -PHA02652 165032 PHA02652 165032 -PHA02655 165034 PHA02655 165034 -PHA02656 165035 PHA02656 165035 -PHA02657 165036 PHA02657 165036 -PHA02658 165037 PHA02658 165037 -PHA02659 165038 cl27714 355672 -PHA02660 165039 cl00137 350915 -PHA02699 165075 cl30874 357750 -PHA02703 165079 cl00493 351119 -PHA02705 165080 cl27899 332720 -PHA02706 165081 PHA02706 165081 -PHA02707 165082 PHA02707 165082 -PHA02709 165084 PHA02709 165084 -PHA02711 165085 cl28652 333472 -PHA02713 165086 PHA02713 165086 -PHA02714 165087 PHA02714 165087 -PHA02715 165088 cl28658 355716 -PHA02716 165089 PHA02716 165089 -PHA02718 165090 PHA02718 165090 -PHA02723 165092 cl26967 331788 -PHA02724 165093 cl27922 332743 -PHA02725 165094 cl28656 333476 -PHA02726 165095 cl29049 355925 -PHA02728 165096 PHA02728 165096 -PHA02729 165097 PHA02729 165097 -PHA02730 165098 PHA02730 165098 -PHA02732 165099 PHA02732 165099 -PHA02734 165101 PHA02734 165101 -PHA02735 165102 PHA02735 165102 -PHA02736 165103 PHA02736 165103 -PHA02737 165104 PHA02737 165104 -PHA02740 165107 PHA02740 165107 -PHA02741 165108 PHA02741 165108 -PHA02742 165109 PHA02742 165109 -PHA02744 165111 cl30805 357681 -PHA02746 165113 PHA02746 165113 -PHA02747 165114 PHA02747 165114 -PHA02748 165115 cl03000 351931 -PHA02749 165116 PHA02749 165116 -PHA02750 165117 PHA02750 165117 -PHA02751 165118 PHA02751 165118 -PHA02753 165120 PHA02753 165120 -PHA02754 165121 PHA02754 165121 -PHA02755 165122 PHA02755 165122 -PHA02756 165123 PHA02756 165123 -PHA02757 165124 PHA02757 165124 -PHA02758 165125 PHA02758 165125 -PHA02759 165126 PHA02759 165126 -PHA02762 165127 PHA02762 165127 -PHA02764 165129 PHA02764 165129 -PHA02765 165130 PHA02765 165130 -PHA02766 165131 PHA02766 165131 -PHA02767 165132 PHA02767 165132 -PHA02768 165133 PHA02768 165133 -PHA02769 165134 PHA02769 165134 -PHA02770 165135 PHA02770 165135 -PHA02771 165136 PHA02771 165136 -PHA02772 165137 PHA02772 165137 -PHA02773 165138 PHA02773 165138 -PHA02775 165140 cl27673 332494 -PHA02776 165141 cl02891 295537 -PHA02777 165142 cl28153 332973 -PHA02781 165146 PHA02781 165146 -PHA02782 165147 PHA02782 165147 -PHA02783 165148 PHA02783 165148 -PHA02785 165149 PHA02785 165149 -PHA02789 165152 PHA02789 165152 -PHA02790 165153 PHA02790 165153 -PHA02791 165154 PHA02791 165154 -PHA02792 165155 PHA02792 165155 -PHA02793 165156 cl28656 333476 -PHA02795 165157 PHA02795 165157 -PHA02800 165159 PHA02800 165159 -PHA02807 165161 PHA02807 165161 -PHA02811 165163 PHA02811 165163 -PHA02813 165164 PHA02813 165164 -PHA02815 165165 PHA02815 165165 -PHA02817 165167 PHA02817 165167 -PHA02818 165168 cl30885 357761 -PHA02819 165169 PHA02819 165169 -PHA02826 165173 PHA02826 165173 -PHA02828 165175 PHA02828 165175 -PHA02831 165176 PHA02831 165176 -PHA02834 165177 PHA02834 165177 -PHA02835 165178 PHA02835 165178 -PHA02836 165179 cl28653 333473 -PHA02837 165180 cl28652 333472 -PHA02838 165181 PHA02838 165181 -PHA02839 165182 cl02501 351777 -PHA02840 165183 PHA02840 165183 -PHA02841 165184 PHA02841 165184 -PHA02843 165185 PHA02843 165185 -PHA02844 165186 PHA02844 165186 -PHA02845 165187 PHA02845 165187 -PHA02849 165188 cl27838 355682 -PHA02851 165189 PHA02851 165189 -PHA02852 165190 PHA02852 165190 -PHA02854 165191 PHA02854 165191 -PHA02857 165193 cl21494 354836 -PHA02858 165194 cl09927 353027 -PHA02859 165195 PHA02859 165195 -PHA02861 165196 cl30884 357760 -PHA02862 165197 cl17238 354325 -PHA02865 165199 PHA02865 165199 -PHA02866 165200 PHA02866 165200 -PHA02867 165201 PHA02867 165201 -PHA02869 165202 PHA02869 165202 -PHA02871 165203 PHA02871 165203 -PHA02874 165205 PHA02874 165205 -PHA02875 165206 PHA02875 165206 -PHA02876 165207 PHA02876 165207 -PHA02881 165210 PHA02881 165210 -PHA02882 165211 cl21453 354810 -PHA02884 165212 PHA02884 165212 -PHA02885 165213 PHA02885 165213 -PHA02887 165214 PHA02887 165214 -PHA02888 165215 PHA02888 165215 -PHA02889 165216 PHA02889 165216 -PHA02890 165217 cl30883 357759 -PHA02891 165218 PHA02891 165218 -PHA02892 165219 PHA02892 165219 -PHA02893 165220 cl27972 332793 -PHA02894 165221 PHA02894 165221 -PHA02896 165222 cl27929 332750 -PHA02898 165223 PHA02898 165223 -PHA02902 165225 cl28615 333435 -PHA02907 165226 PHA02907 165226 -PHA02909 165227 PHA02909 165227 -PHA02910 165228 PHA02910 165228 -PHA02914 165230 PHA02914 165230 -PHA02917 165231 PHA02917 165231 -PHA02919 165232 PHA02919 165232 -PHA02920 165233 cl28649 333469 -PHA02922 165234 cl30884 357760 -PHA02923 165235 PHA02923 165235 -PHA02926 165237 PHA02926 165237 -PHA02928 165239 PHA02928 165239 -PHA02930 165241 cl27944 332765 -PHA02931 165242 cl27915 332736 -PHA02933 165244 PHA02933 165244 -PHA02934 165245 cl26481 331302 -PHA02937 165247 PHA02937 165247 -PHA02938 165248 PHA02938 165248 -PHA02940 165250 PHA02940 165250 -PHA02942 165252 PHA02942 165252 -PHA02943 165253 PHA02943 165253 -PHA02944 165254 PHA02944 165254 -PHA02945 165255 cl09927 353027 -PHA02946 165256 PHA02946 165256 -PHA02948 165258 cl00137 350915 -PHA02949 165259 cl27941 332762 -PHA02953 165262 cl02432 351759 -PHA02954 165263 PHA02954 165263 -PHA02955 165264 cl28088 355703 -PHA02956 165265 PHA02956 165265 -PHA02957 165266 PHA02957 165266 -PHA02961 165267 cl28640 333460 -PHA02962 165268 cl28006 355694 -PHA02963 165269 PHA02963 165269 -PHA02965 165270 cl29978 356854 -PHA02966 165271 PHA02966 165271 -PHA02967 165272 cl27983 332804 -PHA02968 165273 PHA02968 165273 -PHA02969 165274 PHA02969 165274 -PHA02972 165276 PHA02972 165276 -PHA02973 165277 PHA02973 165277 -PHA02974 165278 PHA02974 165278 -PHA02975 165279 PHA02975 165279 -PHA02976 165280 PHA02976 165280 -PHA02977 165281 PHA02977 165281 -PHA02978 165282 PHA02978 165282 -PHA02979 165283 PHA02979 165283 -PHA02980 165284 PHA02980 165284 -PHA02982 165285 PHA02982 165285 -PHA02984 165287 cl30883 357759 -PHA02985 165288 cl27902 332723 -PHA02987 165290 PHA02987 165290 -PHA02988 165291 PHA02988 165291 -PHA02993 165295 cl28001 332822 -PHA02995 165297 cl27988 332809 -PHA03002 165303 cl28640 333460 -PHA03006 165307 cl27974 332795 -PHA03007 165308 PHA03007 165308 -PHA03008 165309 PHA03008 165309 -PHA03010 165310 PHA03010 165310 -PHA03011 165311 PHA03011 165311 -PHA03012 165312 PHA03012 165312 -PHA03013 165313 PHA03013 165313 -PHA03014 165314 cl22886 354971 -PHA03016 165315 PHA03016 165315 -PHA03017 165316 PHA03017 165316 -PHA03018 165317 PHA03018 165317 -PHA03019 165318 PHA03019 165318 -PHA03020 165319 cl28047 332868 -PHA03022 165320 PHA03022 165320 -PHA03023 165321 PHA03023 165321 -PHA03024 165322 PHA03024 165322 -PHA03025 165323 PHA03025 165323 -PHA03026 165324 PHA03026 165324 -PHA03027 165325 PHA03027 165325 -PHA03028 165326 PHA03028 165326 -PHA03029 165327 PHA03029 165327 -PHA03030 165328 PHA03030 165328 -PHA03031 165329 PHA03031 165329 -PHA03033 165330 cl00019 320715 -PHA03034 165331 PHA03034 165331 -PHA03035 165332 PHA03035 165332 -PHA03043 165336 cl28649 333469 -PHA03044 165337 cl27930 332751 -PHA03046 165339 cl28105 332926 -PHA03047 165340 cl27922 332743 -PHA03048 165341 cl27949 355689 -PHA03049 165342 cl27939 332760 -PHA03050 165343 cl00388 351069 -PHA03051 165344 PHA03051 165344 -PHA03052 165345 PHA03052 165345 -PHA03054 165346 PHA03054 165346 -PHA03055 165347 cl30876 357752 -PHA03056 165348 cl14502 353810 -PHA03066 165355 cl27928 332749 -PHA03069 165358 cl27988 332809 -PHA03071 165360 cl28648 333468 -PHA03074 165363 PHA03074 165363 -PHA03079 165366 PHA03079 165366 -PHA03092 165374 PHA03092 165374 -PHA03094 165376 cl00493 351119 -PHA03099 165381 PHA03099 165381 -PHA03108 165387 cl03179 295716 -PHA03118 165391 cl27025 331846 -PHA03120 165393 cl27109 355616 -PHA03123 165395 PHA03123 165395 -PHA03124 165396 PHA03124 165396 -PHA03126 165398 PHA03126 165398 -PHA03128 165400 cl28612 333432 -PHA03133 165405 PHA03133 165405 -PHA03135 165407 PHA03135 165407 -PHA03138 165410 PHA03138 165410 -PHA03139 165411 PHA03139 165411 -PHA03145 165416 PHA03145 165416 -PHA03147 165418 PHA03147 165418 -PHA03149 165420 cl27841 332662 -PHA03152 165423 cl27833 332654 -PHA03154 165425 cl27986 332807 -PHA03155 165426 cl27945 332766 -PHA03156 165427 cl28037 355695 -PHA03158 165429 cl28136 332957 -PHA03159 165430 PHA03159 165430 -PHA03160 165431 cl25932 330753 -PHA03161 165432 cl27943 332764 -PHA03162 165433 cl27945 332766 -PHA03163 165434 cl28037 355695 -PHA03165 165436 PHA03165 165436 -PHA03170 165441 PHA03170 165441 -PHA03171 165442 cl27896 332717 -PHA03172 165443 cl28017 332838 -PHA03180 165451 PHA03180 165451 -PHA03181 165452 cl28051 355697 -PHA03188 165458 PHA03188 165458 -PHA03190 165460 PHA03190 165460 -PHA03191 165461 PHA03191 165461 -PHA03199 165466 cl00483 351114 -PHA03200 165467 cl00483 351114 -PHA03201 165468 PHA03201 165468 -PHA03202 165469 PHA03202 165469 -PHA03204 165471 cl00483 351114 -PHA03207 165473 PHA03207 165473 -PHA03210 165476 PHA03210 165476 -PHA03212 165478 PHA03212 165478 -PHA03214 165479 PHA03214 165479 -PHA03219 165484 PHA03219 165484 -PHA03222 165485 PHA03222 165485 -PHA03225 165486 cl28035 332856 -PHA03240 165499 PHA03240 165499 -PHA03250 165509 cl27999 355693 -PHA03255 165513 PHA03255 165513 -PHA03256 165514 PHA03256 165514 -PHA03258 165516 cl30050 356926 -PHA03259 165517 cl30050 356926 -PHA03260 165518 PHA03260 165518 -PHA03265 165523 cl27544 355660 -PHA03269 165527 PHA03269 165527 -PHA03270 165528 PHA03270 165528 -PHA03276 165533 PHA03276 165533 -PHA03279 165536 PHA03279 165536 -PHA03281 165538 PHA03281 165538 -PHA03282 165539 PHA03282 165539 -PHA03289 165546 PHA03289 165546 -PHA03290 165547 cl30051 356927 -PHA03296 165553 PHA03296 165553 -PHA03297 165554 cl29975 356851 -PHA03298 165555 PHA03298 165555 -PHA03299 165556 cl29975 356851 -PHA03303 165560 cl27965 355691 -PHA03308 165563 cl29994 356870 -PHA03309 165564 PHA03309 165564 -PHA03324 165570 PHA03324 165570 -PHA03330 165574 PHA03330 165574 -PHA03338 165582 PHA03338 165582 -PHA03342 165586 PHA03342 165586 -PHA03343 165587 cl28637 333457 -PHA03344 165588 PHA03344 165588 -PLN00043 165621 PLN00043 165621 -PLN00044 165622 PLN00044 165622 -PLN00050 165628 PLN00050 165628 -PLN00078 165653 PLN00078 165653 -PLN00081 165655 cl11425 325026 -PLN00090 165663 cl30286 357162 -PLN00095 165668 PLN00095 165668 -PLN00097 165670 cl02879 351914 -PLN00107 165679 cl21623 304471 -PLN00126 165695 PLN00126 165695 -PLN00131 165700 PLN00131 165700 -PLN00138 165706 cl21508 354846 -PLN00139 165707 cl00184 350935 -PLN00140 165708 cl23789 355048 -PLN00143 165711 PLN00143 165711 -PLN00153 165721 PLN00153 165721 -PLN00155 165723 cl30546 357422 -PLN00160 165727 cl23735 329044 -PLN00163 165730 cl23735 329044 -PLN00165 165732 cl13983 353795 -PLN00166 165733 cl00200 350945 -PLN00182 165748 cl00200 350945 -PLN00196 165762 PLN00196 165762 -PLN00209 165774 cl00897 294584 -PLN00213 165778 cl05275 322998 -PLN00215 165780 PLN00215 165780 -PLN00216 165781 PLN00216 165781 -PLN00217 165782 PLN00217 165782 -PLN00218 165783 PLN00218 165783 -PLN00219 165784 PLN00219 165784 -PLN00223 165788 cl21455 354812 -PLN00413 165792 cl21494 354836 -PLN02155 165802 cl19188 327514 -PLN02166 165812 PLN02166 165812 -PLN02183 165828 cl12078 353355 -PLN02203 165847 cl11961 353326 -PLN02213 165857 cl08270 352865 -PLN02219 165863 cl29077 355953 -PLN02223 165867 PLN02223 165867 -PLN02232 165876 cl17173 354317 -PLN02247 165890 cl21606 354887 -PLN02270 165912 PLN02270 165912 -PLN02282 165923 cl00198 350943 -PLN02298 165939 cl21494 354836 -PLN02358 165999 PLN02358 165999 -PLN02359 166000 cl00453 351099 -PLN02360 166001 cl00339 351040 -PLN02364 166005 cl00196 350941 -PLN02377 166018 PLN02377 166018 -PLN02378 166019 PLN02378 166019 -PLN02386 166027 cl00891 351300 -PLN02395 166036 PLN02395 166036 -PLN02412 166053 cl00388 351069 -PLN02419 166060 PLN02419 166060 -PLN02429 166070 cl28888 355772 -PLN02473 166114 PLN02473 166114 -PLN02493 166134 PLN02493 166134 -PLN02514 166155 PLN02514 166155 -PLN02558 166199 cl00453 351099 -PLN02565 166206 PLN02565 166206 -PLN02586 166227 PLN02586 166227 -PLN02589 166230 cl17173 354317 -PLN02614 166255 PLN02614 166255 -PLN02620 166261 cl21606 354887 -PLN02622 166263 PLN02622 166263 -PLN02663 166304 cl23789 355048 -PLN02684 166325 cl29077 355953 -PLN02704 166345 PLN02704 166345 -PLN02722 166363 cl18951 354371 -PLN02756 166397 cl21453 354810 -PLN02780 166421 PLN02780 166421 -PLN02808 166449 cl29077 355953 -PLN02817 166458 PLN02817 166458 -PLN02838 166479 cl02156 351689 -PLN02846 166487 cl10013 353042 -PLN02869 166510 PLN02869 166510 -PLN02971 166612 cl12078 353355 -PLN02975 166616 cl11377 325006 -PLN02979 166620 PLN02979 166620 -PLN02987 166628 cl12078 353355 -PLN02994 166635 cl18945 354370 -PLN03001 166642 PLN03001 166642 -PLN03009 166650 cl02959 351925 -PLN03012 166653 PLN03012 166653 -PLN03019 166660 PLN03019 166660 -PLN03032 166673 cl18945 354370 -PLN03039 166679 cl00453 351099 -PLN03058 166697 cl03131 351951 -PLN03059 166698 PLN03059 166698 -PRK00178 166839 PRK00178 166839 -PRK00183 166842 PRK00183 166842 -PRK00187 166843 PRK00187 166843 -PRK00234 166864 cl00276 350998 -PRK00257 166874 PRK00257 166874 -PRK00294 166894 PRK00294 166894 -PRK00295 166895 cl01090 351375 -PRK00304 166901 cl01180 351413 -PRK00341 166914 cl01102 351379 -PRK00404 166942 PRK00404 166942 -PRK00466 166979 PRK00466 166979 -PRK00560 167003 cl11394 353239 -PRK00624 167014 cl11404 353245 -PRK01021 167141 cl28080 355702 -PRK01066 167150 cl29490 356366 -PRK01177 167170 cl00805 321179 -PRK01295 167205 cl11399 353243 -PRK01310 167208 cl00811 351266 -PRK01356 167217 PRK01356 167217 -PRK01415 167229 PRK01415 167229 -PRK01441 167232 cl00276 350998 -PRK01631 167247 cl01722 321631 -PRK01658 167253 cl00608 351175 -PRK01706 167260 cl00687 351215 -PRK01713 167263 PRK01713 167263 -PRK01792 167278 cl00336 351037 -PRK01833 167284 cl00788 294511 -PRK02166 167325 cl01173 351409 -PRK02231 167337 cl01255 321418 -PRK02269 167353 PRK02269 167353 -PRK02478 167380 cl00276 350998 -PRK02553 167396 cl27409 332230 -PRK02576 167400 cl27507 332328 -PRK03670 167581 cl00451 320978 -PRK03717 167589 cl00605 321066 -PRK03732 167593 cl00426 351089 -PRK03887 167628 PRK03887 167628 -PRK03963 167649 PRK03963 167649 -PRK03967 167650 cl18945 354370 -PRK04021 167678 cl00811 351266 -PRK04128 167709 cl21457 354814 -PRK04308 167786 PRK04308 167786 -PRK04425 167814 cl00276 350998 -PRK05613 168128 cl18945 354370 -PRK05639 168145 cl18945 354370 -PRK05642 168147 PRK05642 168147 -PRK05656 168156 PRK05656 168156 -PRK05659 168159 cl28922 355798 -PRK05665 168162 cl00020 350865 -PRK05671 168165 PRK05671 168165 -PRK05674 168168 cl23717 355015 -PRK05677 168170 PRK05677 168170 -PRK05688 168181 PRK05688 168181 -PRK05693 168186 PRK05693 168186 -PRK05698 168189 PRK05698 168189 -PRK05714 168201 cl21454 354811 -PRK05717 168204 PRK05717 168204 -PRK05723 168208 cl00438 351093 -PRK05772 168237 cl00348 351044 -PRK05864 168278 cl23717 355015 -PRK05906 168292 cl17185 354319 -PRK05910 168293 cl07980 352841 -PRK05926 168296 cl30865 357741 -PRK05934 168300 PRK05934 168300 -PRK05962 168315 cl18951 354371 -PRK05968 168320 cl18945 354370 -PRK05973 168322 cl21455 354812 -PRK05975 168324 cl00013 350860 -PRK06003 168340 PRK06003 168340 -PRK06015 168348 cl21457 354814 -PRK06023 168351 cl23717 355015 -PRK06072 168377 cl23717 355015 -PRK06217 168472 cl21455 354812 -PRK06234 168478 cl18945 354370 -PRK06484 168574 PRK06484 168574 -PRK06488 168577 cl28922 355798 -PRK06495 168580 cl23717 355015 -PRK06568 168615 cl21478 354827 -PRK06588 168619 PRK06588 168619 -PRK06603 168626 cl21454 354811 -PRK06617 168629 cl21454 354811 -PRK06620 168630 cl21455 354812 -PRK06630 168631 cl01534 351543 -PRK06633 168632 PRK06633 168632 -PRK06661 168637 cl00214 350956 -PRK06714 168652 cl00303 351011 -PRK06749 168658 cl28885 355771 -PRK06751 168659 cl09930 353029 -PRK06752 168660 cl09930 353029 -PRK06753 168661 PRK06753 168661 -PRK06756 168663 cl00438 351093 -PRK06813 168683 PRK06813 168683 -PRK06824 168689 cl00229 350968 -PRK06839 168698 PRK06839 168698 -PRK06882 168717 PRK06882 168717 -PRK06893 168719 cl21455 354812 -PRK07034 168775 PRK07034 168775 -PRK07066 168796 PRK07066 168796 -PRK07122 168831 PRK07122 168831 -PRK07248 168880 cl00693 351218 -PRK07374 168927 PRK07374 168927 -PRK07394 168934 PRK07394 168934 -PRK07414 168945 PRK07414 168945 -PRK07473 168961 PRK07473 168961 -PRK07481 168967 cl18945 354370 -PRK07504 168979 cl18945 354370 -PRK07546 169002 cl00224 350964 -PRK07588 169028 cl21454 354811 -PRK07667 169051 cl17190 354320 -PRK07696 169065 cl28922 355798 -PRK07709 169068 cl21457 354814 -PRK07756 169084 cl00535 351141 -PRK07786 169098 PRK07786 169098 -PRK07874 169138 cl00466 351103 -PRK07912 169151 PRK07912 169151 -PRK08005 169179 cl21457 354814 -PRK08044 169193 cl00281 351001 -PRK08045 169194 cl18945 354370 -PRK08091 169215 cl21457 354814 -PRK08182 169261 cl09930 353029 -PRK08192 169269 PRK08192 169269 -PRK08201 169276 PRK08201 169276 -PRK08328 169382 PRK08328 169382 -PRK08330 169384 PRK08330 169384 -PRK08334 169386 cl00348 351044 -PRK08335 169387 cl00348 351044 -PRK08339 169389 cl21454 354811 -PRK08340 169390 cl21454 354811 -PRK08349 169396 cl00292 351005 -PRK08350 169397 PRK08350 169397 -PRK08354 169399 cl18945 354370 -PRK08356 169400 cl17190 354320 -PRK08359 169401 cl22854 354960 -PRK08366 169406 PRK08366 169406 -PRK08374 169409 PRK08374 169409 -PRK08381 169414 cl09154 352941 -PRK08382 169415 cl00807 351263 -PRK08387 169420 cl00676 351209 -PRK08392 169423 PRK08392 169423 -PRK08395 169425 cl00795 351258 -PRK08402 169427 PRK08402 169427 -PRK08404 169428 cl21478 354827 -PRK08463 169452 PRK08463 169452 -PRK08666 169548 cl00303 351011 -PRK08690 169553 cl21454 354811 -PRK08703 169556 cl21454 354811 -PRK08706 169557 cl17185 354319 -PRK08955 169599 PRK08955 169599 -PRK09087 169652 cl21455 354812 -PRK09099 169656 PRK09099 169656 -PRK09112 169667 PRK09112 169667 -PRK09173 169691 cl21478 354827 -PRK09174 169692 cl21478 354827 -PRK09189 169701 cl03649 322377 -PRK09212 169719 PRK09212 169719 -PRK09507 169931 cl09927 353027 -PRK09517 169939 PRK09517 169939 -PRK09577 169981 PRK09577 169981 -PRK09578 169982 PRK09578 169982 -PRK09579 169983 cl30265 357141 -PRK09623 170016 PRK09623 170016 -PRK09624 170017 PRK09624 170017 -PRK09630 170022 PRK09630 170022 -PRK09642 170031 PRK09642 170031 -PRK09644 170033 PRK09644 170033 -PRK09687 170047 PRK09687 170047 -PRK09692 170049 PRK09692 170049 -PRK09732 170072 cl01249 351440 -PRK09754 170080 PRK09754 170080 -PRK09772 170086 PRK09772 170086 -PRK09778 170091 cl09153 352940 -PRK09781 170092 cl28644 333464 -PRK09823 170114 PRK09823 170114 -PRK09891 170147 cl27789 332610 -PRK09965 170182 cl00938 351321 -PRK09973 170188 cl23797 355051 -PRK10039 170217 PRK10039 170217 -PRK10081 170240 cl22944 304653 -PRK10424 170429 PRK10424 170429 -PRK10474 170468 cl10014 353043 -PRK10515 170492 cl08125 352850 -PRK10610 170568 cl19078 354377 -PRK10664 170612 cl00257 350986 -PRK10721 170660 cl01123 351393 -PRK10739 170674 cl21514 354847 -PRK10943 170841 cl09927 353027 -PRK11409 171099 cl09153 352940 -PRK11431 171110 cl23754 329058 -PRK11449 171118 cl28964 355840 -PRK11920 171344 cl21459 354815 -PRK11923 171347 PRK11923 171347 -PRK12363 171438 PRK12363 171438 -PRK12365 171440 PRK12365 171440 -PRK12369 171443 cl00549 321036 -PRK12371 171444 PRK12371 171444 -PRK12388 171459 cl00289 351004 -PRK12392 171463 cl00337 351038 -PRK12400 171470 cl00224 350964 -PRK12403 171472 cl18945 354370 -PRK12423 171489 PRK12423 171489 -PRK12425 171490 PRK12425 171490 -PRK12434 171495 PRK12434 171495 -PRK12436 171497 PRK12436 171497 -PRK12438 171499 PRK12438 171499 -PRK12439 171500 PRK12439 171500 -PRK12445 171504 PRK12445 171504 -PRK12446 171505 PRK12446 171505 -PRK12452 171510 PRK12452 171510 -PRK12463 171518 cl00323 351026 -PRK12468 171522 cl19167 354387 -PRK12470 171524 cl18951 354371 -PRK12476 171527 PRK12476 171527 -PRK12481 171531 cl21454 354811 -PRK12482 171532 cl00568 351156 -PRK12485 171535 PRK12485 171535 -PRK12492 171539 PRK12492 171539 -PRK12512 171551 PRK12512 171551 -PRK12527 171560 PRK12527 171560 -PRK12528 171561 PRK12528 171561 -PRK12532 171564 PRK12532 171564 -PRK12537 171568 PRK12537 171568 -PRK12566 171585 PRK12566 171585 -PRK12575 171592 PRK12575 171592 -PRK12613 171609 cl00485 351115 -PRK12615 171610 cl00485 351115 -PRK12621 171613 PRK12621 171613 -PRK12675 171652 cl00583 351161 -PRK12688 171664 PRK12688 171664 -PRK12717 171679 PRK12717 171679 -PRK12751 171704 cl01482 351521 -PRK12783 171720 cl00593 351166 -PRK12807 171737 PRK12807 171737 -PRK12851 171770 PRK12851 171770 -PRK12855 171774 cl00426 351089 -PRK12865 171782 cl00999 321296 -PRK12873 171787 cl00337 351038 -PRK12880 171793 PRK12880 171793 -PRK12883 171796 cl00337 351038 -PRK12897 171806 cl00279 351000 -PRK12911 171815 cl30878 357754 -PRK12936 171820 PRK12936 171820 -PRK12937 171821 PRK12937 171821 -PRK12938 171822 cl21454 354811 -PRK12996 171824 cl04451 352188 -PRK13023 171842 cl30878 357754 -PRK13032 171848 cl28645 333465 -PRK13033 171849 cl27786 332607 -PRK13035 171851 PRK13035 171851 -PRK13036 171852 PRK13036 171852 -PRK13038 171853 PRK13038 171853 -PRK13039 171854 PRK13039 171854 -PRK13043 171855 PRK13043 171855 -PRK13128 171868 PRK13128 171868 -PRK13142 171871 PRK13142 171871 -PRK13152 171876 cl00020 350865 -PRK13183 171884 cl28086 332907 -PRK13195 171894 cl00237 320846 -PRK13196 171895 cl00237 320846 -PRK13198 171897 cl00533 351140 -PRK13204 171902 cl00533 351140 -PRK13223 171912 PRK13223 171912 -PRK13295 171961 PRK13295 171961 -PRK13350 171995 PRK13350 171995 -PRK13375 172015 cl21590 354882 -PRK13382 172019 PRK13382 172019 -PRK13384 172020 cl00338 351039 -PRK13397 172030 cl17225 354324 -PRK13424 172047 cl00365 351055 -PRK13427 172049 cl00365 351055 -PRK13451 172059 cl29826 356702 -PRK13463 172065 cl11399 353243 -PRK13466 172066 cl00466 351103 -PRK13584 172153 cl21456 354813 -PRK13587 172156 cl21457 354814 -PRK13589 172158 PRK13589 172158 -PRK13595 172161 cl00337 351038 -PRK13603 172166 cl00881 351296 -PRK13619 172177 cl21467 354821 -PRK13652 172200 PRK13652 172200 -PRK13718 172260 cl23903 329162 -PRK13720 172262 cl10143 353055 -PRK13741 172283 PRK13741 172283 -PRK13756 172294 PRK13756 172294 -PRK13757 172295 cl02008 351658 -PRK13758 172296 PRK13758 172296 -PRK13769 172307 cl10029 353047 -PRK13770 172308 cl10029 353047 -PRK13772 172310 cl17011 354294 -PRK13775 172313 cl17011 354294 -PRK13782 172320 cl00206 350950 -PRK13784 172322 cl28913 355789 -PRK13787 172324 cl28913 355789 -PRK13808 172341 PRK13808 172341 -PRK13815 172345 cl00542 351145 -PRK13831 172358 PRK13831 172358 -PRK13833 172360 cl21455 354812 -PRK13834 172361 cl17185 354319 -PRK13835 172362 cl19428 354420 -PRK13836 172363 cl01500 351525 -PRK13838 172365 cl10465 353074 -PRK13842 172369 cl02193 351701 -PRK13845 172371 cl17212 354323 -PRK13847 172372 cl05753 352397 -PRK13848 172373 cl06725 352566 -PRK13851 172375 cl21455 354812 -PRK13855 172376 PRK13855 172376 -PRK13856 172377 PRK13856 172377 -PRK13857 172378 cl01583 321577 -PRK13859 172380 cl12236 353374 -PRK13860 172381 cl02193 351701 -PRK13861 172382 cl11423 353249 -PRK13862 172383 cl22571 304583 -PRK13865 172386 cl01500 351525 -PRK13866 172387 PRK13866 172387 -PRK13867 172388 cl27824 332645 -PRK13870 172390 PRK13870 172390 -PRK13871 172391 cl01583 321577 -PRK13898 172418 cl29711 356587 -PRK13910 172427 PRK13910 172427 -PRK13932 172445 cl00448 351097 -PRK13940 172450 PRK13940 172450 -PRK13951 172457 PRK13951 172457 -PRK13954 172460 cl00860 351284 -PRK13970 172473 PRK13970 172473 -PRK13972 172475 PRK13972 172475 -PRK13974 172477 cl17190 354320 -PRK13982 172484 PRK13982 172484 -PRK13984 172486 PRK13984 172486 -PRK13990 172492 cl00538 351142 -PRK13991 172493 cl00538 351142 -PRK13996 172497 cl00944 351325 -PRK13997 172498 cl00944 351325 -PRK13998 172499 cl00944 351325 -PRK13999 172500 cl00944 351325 -PRK14001 172502 cl00944 351325 -PRK14002 172503 cl00944 351325 -PRK14004 172505 cl00020 350865 -PRK14027 172521 PRK14027 172521 -PRK14028 172522 PRK14028 172522 -PRK14029 172523 cl00546 351146 -PRK14038 172532 cl00192 350937 -PRK14042 172536 PRK14042 172536 -PRK14045 172537 cl00342 294246 -PRK14048 172540 PRK14048 172540 -PRK14049 172541 PRK14049 172541 -PRK14055 172547 cl01244 351437 -PRK14057 172549 cl21457 354814 -PRK14061 172552 PRK14061 172552 -PRK14064 172554 cl00750 351237 -PRK14066 172556 cl00750 351237 -PRK14067 172557 cl00750 351237 -PRK14069 172559 cl00750 351237 -PRK14074 172564 cl00414 351083 -PRK14077 172567 cl01255 321418 -PRK14087 172577 PRK14087 172577 -PRK14088 172578 PRK14088 172578 -PRK14092 172582 cl00233 350972 -PRK14094 172584 PRK14094 172584 -PRK14098 172588 PRK14098 172588 -PRK14104 172594 PRK14104 172594 -PRK14112 172602 PRK14112 172602 -PRK14114 172604 cl21457 354814 -PRK14116 172606 cl11399 353243 -PRK14118 172608 cl11399 353243 -PRK14124 172614 PRK14124 172614 -PRK14126 172616 cl01146 351401 -PRK14137 172626 cl00936 351319 -PRK14138 172627 cl00195 350940 -PRK14141 172630 cl03075 351939 -PRK14146 172635 cl03075 351939 -PRK14148 172637 cl03075 351939 -PRK14151 172640 cl03075 351939 -PRK14158 172646 cl03075 351939 -PRK14159 172647 cl03075 351939 -PRK14166 172654 PRK14166 172654 -PRK14170 172658 PRK14170 172658 -PRK14171 172659 PRK14171 172659 -PRK14172 172660 PRK14172 172660 -PRK14174 172662 PRK14174 172662 -PRK14177 172665 PRK14177 172665 -PRK14178 172666 PRK14178 172666 -PRK14180 172668 PRK14180 172668 -PRK14181 172669 PRK14181 172669 -PRK14182 172670 PRK14182 172670 -PRK14187 172675 PRK14187 172675 -PRK14191 172679 PRK14191 172679 -PRK14194 172682 PRK14194 172682 -PRK14197 172685 cl09114 352935 -PRK14198 172686 cl09114 352935 -PRK14199 172687 cl09114 352935 -PRK14202 172690 cl09114 352935 -PRK14204 172692 cl09114 352935 -PRK14205 172693 cl09114 352935 -PRK14206 172694 cl09114 352935 -PRK14207 172695 cl09114 352935 -PRK14208 172696 cl09114 352935 -PRK14210 172698 cl09114 352935 -PRK14211 172699 cl09114 352935 -PRK14215 172703 cl09114 352935 -PRK14217 172705 cl09114 352935 -PRK14219 172707 cl09114 352935 -PRK14222 172710 cl09114 352935 -PRK14225 172713 cl09114 352935 -PRK14226 172714 cl09114 352935 -PRK14227 172715 cl09114 352935 -PRK14229 172717 cl09114 352935 -PRK14230 172718 cl09114 352935 -PRK14233 172721 cl09114 352935 -PRK14234 172722 cl09114 352935 -PRK14242 172730 PRK14242 172730 -PRK14244 172732 PRK14244 172732 -PRK14245 172733 PRK14245 172733 -PRK14246 172734 PRK14246 172734 -PRK14247 172735 PRK14247 172735 -PRK14251 172739 PRK14251 172739 -PRK14252 172740 PRK14252 172740 -PRK14253 172741 PRK14253 172741 -PRK14255 172743 PRK14255 172743 -PRK14256 172744 PRK14256 172744 -PRK14257 172745 PRK14257 172745 -PRK14259 172747 PRK14259 172747 -PRK14260 172748 PRK14260 172748 -PRK14261 172749 PRK14261 172749 -PRK14262 172750 PRK14262 172750 -PRK14263 172751 PRK14263 172751 -PRK14268 172756 PRK14268 172756 -PRK14269 172757 PRK14269 172757 -PRK14271 172759 PRK14271 172759 -PRK14272 172760 PRK14272 172760 -PRK14273 172761 PRK14273 172761 -PRK14274 172762 PRK14274 172762 -PRK14285 172773 PRK14285 172773 -PRK14286 172774 PRK14286 172774 -PRK14288 172776 PRK14288 172776 -PRK14290 172778 PRK14290 172778 -PRK14300 172788 PRK14300 172788 -PRK14319 172795 PRK14319 172795 -PRK14320 172796 PRK14320 172796 -PRK14321 172797 PRK14321 172797 -PRK14332 172808 PRK14332 172808 -PRK14337 172813 PRK14337 172813 -PRK14347 172823 cl14057 353805 -PRK14348 172824 cl14057 353805 -PRK14349 172825 cl14057 353805 -PRK14350 172826 PRK14350 172826 -PRK14361 172837 cl00276 350998 -PRK14362 172838 cl00276 350998 -PRK14371 172847 cl00506 351124 -PRK14372 172848 cl00506 351124 -PRK14373 172849 cl00506 351124 -PRK14375 172851 cl00506 351124 -PRK14377 172853 cl00506 351124 -PRK14381 172857 cl00506 351124 -PRK14382 172858 cl00506 351124 -PRK14384 172860 cl00506 351124 -PRK14385 172861 cl00506 351124 -PRK14386 172862 cl00506 351124 -PRK14388 172864 cl00506 351124 -PRK14390 172866 cl00506 351124 -PRK14391 172867 cl00506 351124 -PRK14393 172869 cl00410 351080 -PRK14394 172870 cl00410 351080 -PRK14395 172871 cl00410 351080 -PRK14403 172879 cl00410 351080 -PRK14406 172882 cl00410 351080 -PRK14407 172883 cl00410 351080 -PRK14408 172884 cl00410 351080 -PRK14409 172885 cl00410 351080 -PRK14413 172889 cl00410 351080 -PRK14425 172901 cl00551 351148 -PRK14427 172903 cl00551 351148 -PRK14428 172904 cl00551 351148 -PRK14430 172906 cl00551 351148 -PRK14436 172912 cl00551 351148 -PRK14437 172913 cl00551 351148 -PRK14438 172914 cl00551 351148 -PRK14440 172916 cl00551 351148 -PRK14441 172917 cl00551 351148 -PRK14442 172918 cl00551 351148 -PRK14443 172919 cl00551 351148 -PRK14444 172920 cl00551 351148 -PRK14445 172921 cl00551 351148 -PRK14446 172922 cl00551 351148 -PRK14447 172923 cl00551 351148 -PRK14448 172924 cl00551 351148 -PRK14456 172932 cl18962 354374 -PRK14460 172935 cl18962 354374 -PRK14465 172940 cl18962 354374 -PRK14469 172944 cl18962 354374 -PRK14470 172945 cl18962 354374 -PRK14472 172947 cl21478 354827 -PRK14473 172948 cl21478 354827 -PRK14477 172952 PRK14477 172952 -PRK14483 172956 cl10557 353086 -PRK14495 172967 PRK14495 172967 -PRK14497 172968 PRK14497 172968 -PRK14505 172976 PRK14505 172976 -PRK14522 172988 cl00368 351058 -PRK14523 172989 PRK14523 172989 -PRK14524 172990 cl00368 351058 -PRK14525 172991 cl00368 351058 -PRK14526 172992 PRK14526 172992 -PRK14528 172994 PRK14528 172994 -PRK14531 172997 PRK14531 172997 -PRK14534 173000 PRK14534 173000 -PRK14535 173001 PRK14535 173001 -PRK14538 173004 PRK14538 173004 -PRK14541 173007 cl00335 351036 -PRK14542 173008 cl00335 351036 -PRK14544 173010 PRK14544 173010 -PRK14550 173015 cl14782 353835 -PRK14556 173021 cl00452 351098 -PRK14557 173022 cl00452 351098 -PRK14558 173023 cl00452 351098 -PRK14567 173031 cl28888 355772 -PRK14569 173033 PRK14569 173033 -PRK14570 173034 PRK14570 173034 -PRK14572 173036 PRK14572 173036 -PRK14574 173038 PRK14574 173038 -PRK14575 173039 PRK14575 173039 -PRK14576 173040 PRK14576 173040 -PRK14578 173042 PRK14578 173042 -PRK14585 173049 cl14676 353828 -PRK14586 173050 PRK14586 173050 -PRK14587 173051 PRK14587 173051 -PRK14588 173052 PRK14588 173052 -PRK14590 173054 PRK14590 173054 -PRK14591 173055 PRK14591 173055 -PRK14592 173056 PRK14592 173056 -PRK14594 173058 cl29468 356344 -PRK14599 173063 cl00407 294285 -PRK14600 173064 PRK14600 173064 -PRK14601 173065 PRK14601 173065 -PRK14602 173066 PRK14602 173066 -PRK14613 173077 PRK14613 173077 -PRK14614 173078 PRK14614 173078 -PRK14620 173083 PRK14620 173083 -PRK14621 173084 cl00494 351120 -PRK14622 173085 cl00494 351120 -PRK14624 173087 cl00494 351120 -PRK14626 173089 cl00494 351120 -PRK14627 173090 cl00494 351120 -PRK14628 173091 cl00494 351120 -PRK14629 173092 cl00494 351120 -PRK14630 173093 cl00259 350988 -PRK14632 173095 cl00259 350988 -PRK14633 173096 cl00259 350988 -PRK14634 173097 cl00259 350988 -PRK14639 173102 cl00259 350988 -PRK14640 173103 cl00259 350988 -PRK14641 173104 cl00259 350988 -PRK14643 173106 cl00259 350988 -PRK14646 173109 cl00259 350988 -PRK14647 173110 cl00259 350988 -PRK14648 173111 PRK14648 173111 -PRK14649 173112 PRK14649 173112 -PRK14650 173113 PRK14650 173113 -PRK14654 173117 cl10571 353087 -PRK14655 173118 cl10571 353087 -PRK14657 173120 cl00500 351122 -PRK14658 173121 cl00500 351122 -PRK14660 173123 cl00500 351122 -PRK14664 173127 PRK14664 173127 -PRK14665 173128 PRK14665 173128 -PRK14670 173133 PRK14670 173133 -PRK14672 173135 PRK14672 173135 -PRK14675 173138 cl00516 351129 -PRK14676 173139 cl00516 351129 -PRK14678 173141 cl00516 351129 -PRK14679 173142 cl00516 351129 -PRK14680 173143 cl00516 351129 -PRK14682 173145 cl00516 351129 -PRK14683 173146 cl00516 351129 -PRK14684 173147 cl00516 351129 -PRK14685 173148 cl00516 351129 -PRK14689 173152 cl00516 351129 -PRK14691 173154 cl09938 353032 -PRK14692 173155 cl30668 357544 -PRK14693 173156 PRK14693 173156 -PRK14695 173158 cl00573 351159 -PRK14699 173162 PRK14699 173162 -PRK14700 173163 cl26405 355508 -PRK14707 173170 PRK14707 173170 -PRK14708 173171 PRK14708 173171 -PRK14709 173172 PRK14709 173172 -PRK14710 173173 cl28644 333464 -PRK14711 173174 PRK14711 173174 -PRK14718 173181 PRK14718 173181 -PRK14721 173184 PRK14721 173184 -PRK14722 173185 PRK14722 173185 -PRK14729 173191 cl21455 354812 -PRK14731 173193 cl17190 354320 -PRK14733 173195 cl17190 354320 -PRK14735 173197 PRK14735 173197 -PRK14736 173198 PRK14736 173198 -PRK14737 173199 cl17190 354320 -PRK14740 173201 PRK14740 173201 -PRK14741 173202 cl26797 331618 -PRK14742 173203 PRK14742 173203 -PRK14743 173204 PRK14743 173204 -PRK14744 173205 cl27885 332706 -PRK14745 173206 PRK14745 173206 -PRK14746 173207 PRK14746 173207 -PRK14748 173209 PRK14748 173209 -PRK14749 173210 PRK14749 173210 -PRK14750 173211 PRK14750 173211 -PRK14751 173212 cl27884 332705 -PRK14752 173213 cl29973 356849 -PRK14754 173215 PRK14754 173215 -PRK14755 173216 PRK14755 173216 -PRK14757 173218 PRK14757 173218 -PRK14758 173219 PRK14758 173219 -PRK14759 173220 cl29180 356056 -PRK14760 173221 PRK14760 173221 -PRK14761 173222 PRK14761 173222 -PRK14762 173223 PRK14762 173223 -PRK14766 173227 cl00458 351102 -PRK14768 173229 cl00458 351102 -PRK14769 173230 cl00458 351102 -PRK14770 173231 cl00458 351102 -PRK14773 173234 cl00458 351102 -PRK14774 173235 cl00458 351102 -PRK14776 173237 cl00458 351102 -PRK14778 173239 cl00458 351102 -PRK14780 173241 cl00458 351102 -PRK14782 173243 cl00458 351102 -PRK14783 173244 cl00458 351102 -PRK14786 173247 cl00458 351102 -PRK14787 173248 cl00458 351102 -PRK14789 173250 cl00458 351102 -PRK14790 173251 cl00458 351102 -PRK14794 173255 cl00458 351102 -PRK14795 173256 cl00458 351102 -PRK14804 173265 PRK14804 173265 -PRK14808 173269 cl18945 354370 -PRK14810 173271 PRK14810 173271 -PRK14812 173273 cl00215 350957 -PRK14813 173274 cl17194 354321 -PRK14814 173275 cl17194 354321 -PRK14816 173277 cl17194 354321 -PRK14817 173278 cl17194 354321 -PRK14818 173279 cl17194 354321 -PRK14825 173286 cl00276 350998 -PRK14826 173287 cl00276 350998 -PRK14827 173288 cl00230 350969 -PRK14837 173298 cl00230 350969 -PRK14840 173301 cl00230 350969 -PRK14841 173302 cl00230 350969 -PRK14842 173303 cl00230 350969 -PRK14844 173305 PRK14844 173305 -PTZ00005 173310 cl00198 350943 -PTZ00023 173322 PTZ00023 173322 -PTZ00031 173329 PTZ00031 173329 -PTZ00034 173331 cl02102 321803 -PTZ00036 173333 PTZ00036 173333 -PTZ00039 173336 cl00314 351019 -PTZ00051 173347 cl00388 351069 -PTZ00057 173353 PTZ00057 173353 -PTZ00061 173356 PTZ00061 173356 -PTZ00064 173359 PTZ00064 173359 -PTZ00066 173361 PTZ00066 173361 -PTZ00076 173371 PTZ00076 173371 -PTZ00082 173376 PTZ00082 173376 -PTZ00089 173383 PTZ00089 173383 -PTZ00090 173384 cl00332 320911 -PTZ00093 173387 cl00335 351036 -PTZ00098 173391 PTZ00098 173391 -PTZ00111 173403 PTZ00111 173403 -PTZ00116 173408 cl04601 322728 -PTZ00117 173409 PTZ00117 173409 -PTZ00121 173412 PTZ00121 173412 -PTZ00124 173415 cl00281 351001 -PTZ00133 173423 cl21455 354812 -PTZ00137 173427 PTZ00137 173427 -PTZ00140 173430 PTZ00140 173430 -PTZ00151 173440 cl08291 352870 -PTZ00152 173441 cl15697 353973 -PTZ00153 173442 PTZ00153 173442 -PTZ00180 173464 PTZ00180 173464 -PTZ00192 173472 cl01799 351604 -PTZ00198 173474 cl03348 351979 -PTZ00214 173479 PTZ00214 173479 -PTZ00220 173484 cl14643 353818 -PTZ00236 173487 cl02381 351748 -PTZ00239 173488 cl13995 353799 -PTZ00246 173491 PTZ00246 173491 -PTZ00256 173495 cl00388 351069 -PTZ00264 173500 cl05880 352427 -PTZ00266 173502 PTZ00266 173502 -PTZ00281 173506 cl17037 354300 -PTZ00319 173521 PTZ00319 173521 -PTZ00341 173534 PTZ00341 173534 -PTZ00348 173541 PTZ00348 173541 -PTZ00351 173544 cl28913 355789 -PTZ00353 173546 PTZ00353 173546 -PTZ00354 173547 PTZ00354 173547 -PTZ00355 173548 PTZ00355 173548 -PTZ00357 173550 cl17173 354317 -PTZ00359 173552 PTZ00359 173552 -PTZ00368 173561 PTZ00368 173561 -PTZ00378 173571 PTZ00378 173571 -PTZ00380 173572 cl28922 355798 -PTZ00382 173574 PTZ00382 173574 -PTZ00384 173576 PTZ00384 173576 -PTZ00394 173585 PTZ00394 173585 -PTZ00398 173589 cl21521 354850 -PTZ00401 173592 PTZ00401 173592 -PTZ00403 173594 cl03656 322379 -PTZ00404 173595 cl12078 353355 -PTZ00405 173596 cl21467 354821 -PTZ00407 173597 PTZ00407 173597 -PTZ00409 173599 cl00195 350940 -PTZ00414 173604 cl09113 352934 -PTZ00417 173607 PTZ00417 173607 -PTZ00421 173611 PTZ00421 173611 -PTZ00426 173616 PTZ00426 173616 -PTZ00427 173617 PTZ00427 173617 -PTZ00431 173621 PTZ00431 173621 -cd05032 173625 cl21453 354810 -cd05045 173631 cl21453 354810 -cd05059 173637 cl21453 354810 -cd05065 173638 cl21453 354810 -cd05079 173644 cl21453 354810 -cd05100 173652 cl21453 354810 -cd05105 173653 cl21453 354810 -cd05110 173655 cl21453 354810 -cd05111 173656 cl21453 354810 -cd05113 173657 cl21453 354810 -cd05595 173686 cl21453 354810 -cd05620 173710 cl21453 354810 -cd05626 173715 cl21453 354810 -cd05631 173720 cl21453 354810 -cd06617 173729 cl21453 354810 -cd07843 173741 cl21453 354810 -cd07845 173742 cl21453 354810 -cd07853 173748 cl21453 354810 -cd07857 173750 cl21453 354810 -cd08219 173759 cl21453 354810 -cd08225 173765 cl21453 354810 -cd08227 173767 cl21453 354810 -cd00188 173773 cl00718 351226 -cd00223 173774 cl00718 351226 -cd01025 173775 cl00718 351226 -cd01026 173776 cl00718 351226 -cd01027 173777 cl00718 351226 -cd01028 173778 cl00718 351226 -cd01029 173779 cl00718 351226 -cd01030 173780 cl00718 351226 -cd03361 173781 cl00718 351226 -cd03362 173782 cl00718 351226 -cd03363 173783 cl00718 351226 -cd03364 173784 cl00718 351226 -cd03365 173785 cl00718 351226 -cd03366 173786 cl00718 351226 -cd00306 173787 cl10459 353072 -cd04056 173788 cl10459 353072 -cd04059 173789 cl10459 353072 -cd04077 173790 cl10459 353072 -cd04842 173791 cl10459 353072 -cd04843 173792 cl10459 353072 -cd04847 173793 cl10459 353072 -cd04848 173794 cl10459 353072 -cd04852 173795 cl10459 353072 -cd04857 173796 cl10459 353072 -cd05561 173797 cl10459 353072 -cd05562 173798 cl10459 353072 -cd07473 173799 cl10459 353072 -cd07474 173800 cl10459 353072 -cd07475 173801 cl10459 353072 -cd07476 173802 cl10459 353072 -cd07477 173803 cl10459 353072 -cd07478 173804 cl10459 353072 -cd07479 173805 cl10459 353072 -cd07480 173806 cl10459 353072 -cd07481 173807 cl10459 353072 -cd07482 173808 cl10459 353072 -cd07483 173809 cl10459 353072 -cd07484 173810 cl10459 353072 -cd07485 173811 cl10459 353072 -cd07487 173812 cl10459 353072 -cd07488 173813 cl10459 353072 -cd07489 173814 cl10459 353072 -cd07490 173815 cl10459 353072 -cd07491 173816 cl10459 353072 -cd07492 173817 cl10459 353072 -cd07493 173818 cl10459 353072 -cd07494 173819 cl10459 353072 -cd07496 173820 cl10459 353072 -cd07497 173821 cl10459 353072 -cd07498 173822 cl10459 353072 -cd00314 173823 cl00196 350941 -cd00649 173824 cl00196 350941 -cd00691 173825 cl00196 350941 -cd00692 173826 cl00196 350941 -cd00693 173827 cl00196 350941 -cd08200 173828 cl00196 350941 -cd08201 173829 cl00196 350941 -cd00385 173830 cl00210 350953 -cd00683 173831 cl00210 350953 -cd00684 173832 cl00210 350953 -cd00685 173833 cl00210 350953 -cd00686 173834 cl00210 350953 -cd00687 173835 cl00210 350953 -cd00867 173836 cl00210 350953 -cd00868 173837 cl00210 350953 -cd00567 173838 cl09933 353031 -cd01150 173839 cl09933 353031 -cd01151 173840 cl09933 353031 -cd01152 173841 cl09933 353031 -cd01153 173842 cl09933 353031 -cd01154 173843 cl09933 353031 -cd01155 173844 cl09933 353031 -cd01156 173845 cl09933 353031 -cd01157 173846 cl09933 353031 -cd01158 173847 cl09933 353031 -cd01159 173848 cl09933 353031 -cd01160 173849 cl09933 353031 -cd01161 173850 cl09933 353031 -cd01162 173851 cl09933 353031 -cd01163 173852 cl09933 353031 -cd00995 173853 cl01709 351575 -cd08489 173854 cl01709 351575 -cd08490 173855 cl01709 351575 -cd08491 173856 cl01709 351575 -cd08492 173857 cl01709 351575 -cd08493 173858 cl01709 351575 -cd08494 173859 cl01709 351575 -cd08495 173860 cl01709 351575 -cd08496 173861 cl01709 351575 -cd08497 173862 cl01709 351575 -cd08498 173863 cl01709 351575 -cd08499 173864 cl01709 351575 -cd08500 173865 cl01709 351575 -cd08501 173866 cl01709 351575 -cd08502 173867 cl01709 351575 -cd08503 173868 cl01709 351575 -cd08504 173869 cl01709 351575 -cd08505 173870 cl01709 351575 -cd08506 173871 cl01709 351575 -cd08507 173872 cl01709 351575 -cd08508 173873 cl01709 351575 -cd08509 173874 cl01709 351575 -cd08510 173875 cl01709 351575 -cd08511 173876 cl01709 351575 -cd08512 173877 cl01709 351575 -cd08513 173878 cl01709 351575 -cd08514 173879 cl01709 351575 -cd08515 173880 cl01709 351575 -cd08516 173881 cl01709 351575 -cd08517 173882 cl01709 351575 -cd08518 173883 cl01709 351575 -cd08519 173884 cl01709 351575 -cd08520 173885 cl01709 351575 -cd01951 173886 cl14058 353806 -cd06899 173887 cl14058 353806 -cd06900 173888 cl14058 353806 -cd06901 173889 cl14058 353806 -cd06902 173890 cl14058 353806 -cd06903 173891 cl14058 353806 -cd07308 173892 cl14058 353806 -cd00395 173893 cl00015 350862 -cd00517 173895 cl00015 350862 -cd00672 173899 cl00015 350862 -cd00674 173900 cl00015 350862 -cd00802 173901 cl00015 350862 -cd00805 173902 cl00015 350862 -cd00806 173903 cl00015 350862 -cd00808 173905 cl00015 350862 -cd00812 173906 cl00015 350862 -cd00814 173907 cl00015 350862 -cd00818 173909 cl00015 350862 -cd02156 173912 cl00015 350862 -cd02163 173914 cl00015 350862 -cd02164 173915 cl00015 350862 -cd02166 173917 cl00015 350862 -cd02167 173918 cl00015 350862 -cd02168 173919 cl00015 350862 -cd02169 173920 cl00015 350862 -cd02170 173921 cl00015 350862 -cd02171 173922 cl00015 350862 -cd02172 173923 cl00015 350862 -cd02173 173924 cl00015 350862 -cd02174 173925 cl00015 350862 -cd04301 173926 cl17182 354318 -cd07978 173962 cl02174 242920 -cd07979 173963 cl22885 354970 -cd07981 173964 cl22931 304643 -cd08045 173965 cl05005 352303 -cd08047 173966 cl04653 322747 -cd08048 173967 cl02176 351697 -cd08050 173968 cl21736 354922 -cd08148 173969 cl08232 352858 -cd08205 173970 cl08232 352858 -cd08206 173971 cl08232 352858 -cd08207 173972 cl08232 352858 -cd08208 173973 cl08232 352858 -cd08209 173974 cl08232 352858 -cd08210 173975 cl08232 352858 -cd08211 173976 cl08232 352858 -cd08212 173977 cl08232 352858 -cd08213 173978 cl08232 352858 -cd08168 173979 cl23752 329057 -cd00030 175973 cl14603 353812 -cd00275 175974 cl14603 353812 -cd00276 175975 cl14603 353812 -cd04009 175976 cl14603 353812 -cd04010 175977 cl14603 353812 -cd04011 175978 cl14603 353812 -cd04012 175979 cl14603 353812 -cd04013 175980 cl14603 353812 -cd04014 175981 cl14603 353812 -cd04015 175982 cl14603 353812 -cd04016 175983 cl14603 353812 -cd04017 175984 cl14603 353812 -cd04018 175985 cl14603 353812 -cd04019 175986 cl14603 353812 -cd04020 175987 cl14603 353812 -cd04021 175988 cl14603 353812 -cd04022 175989 cl14603 353812 -cd04024 175990 cl14603 353812 -cd04025 175991 cl14603 353812 -cd04026 175992 cl14603 353812 -cd04027 175993 cl14603 353812 -cd04028 175994 cl14603 353812 -cd04029 175995 cl14603 353812 -cd04030 175996 cl14603 353812 -cd04031 175997 cl14603 353812 -cd04032 175998 cl14603 353812 -cd04033 175999 cl14603 353812 -cd04035 176000 cl14603 353812 -cd04036 176001 cl14603 353812 -cd04037 176002 cl14603 353812 -cd04038 176003 cl14603 353812 -cd04039 176004 cl14603 353812 -cd04040 176005 cl14603 353812 -cd04041 176006 cl14603 353812 -cd04042 176007 cl14603 353812 -cd04043 176008 cl14603 353812 -cd04044 176009 cl14603 353812 -cd04045 176010 cl14603 353812 -cd04046 176011 cl14603 353812 -cd04047 176012 cl14603 353812 -cd04048 176013 cl14603 353812 -cd04049 176014 cl14603 353812 -cd04050 176015 cl14603 353812 -cd04051 176016 cl14603 353812 -cd04052 176017 cl14603 353812 -cd04054 176018 cl14603 353812 -cd08373 176019 cl14603 353812 -cd08374 176020 cl14603 353812 -cd08375 176021 cl14603 353812 -cd08376 176022 cl14603 353812 -cd08377 176023 cl14603 353812 -cd08378 176024 cl14603 353812 -cd08379 176025 cl14603 353812 -cd08380 176026 cl14603 353812 -cd08381 176027 cl14603 353812 -cd08382 176028 cl14603 353812 -cd08383 176029 cl14603 353812 -cd08384 176030 cl14603 353812 -cd08385 176031 cl14603 353812 -cd08386 176032 cl14603 353812 -cd08387 176033 cl14603 353812 -cd08388 176034 cl14603 353812 -cd08389 176035 cl14603 353812 -cd08390 176036 cl14603 353812 -cd08391 176037 cl14603 353812 -cd08392 176038 cl14603 353812 -cd08393 176039 cl14603 353812 -cd08394 176040 cl14603 353812 -cd08395 176041 cl14603 353812 -cd08397 176042 cl14603 353812 -cd08398 176043 cl14603 353812 -cd08399 176044 cl14603 353812 -cd08400 176045 cl14603 353812 -cd08401 176046 cl14603 353812 -cd08402 176047 cl14603 353812 -cd08403 176048 cl14603 353812 -cd08404 176049 cl14603 353812 -cd08405 176050 cl14603 353812 -cd08406 176051 cl14603 353812 -cd08407 176052 cl14603 353812 -cd08408 176053 cl14603 353812 -cd08409 176054 cl14603 353812 -cd08410 176055 cl14603 353812 -cd08521 176056 cl14603 353812 -cd08675 176057 cl14603 353812 -cd08676 176058 cl14603 353812 -cd08677 176059 cl14603 353812 -cd08678 176060 cl14603 353812 -cd08679 176061 cl14603 353812 -cd08680 176062 cl14603 353812 -cd08681 176063 cl14603 353812 -cd08682 176064 cl14603 353812 -cd08683 176065 cl14603 353812 -cd08684 176066 cl14603 353812 -cd08685 176067 cl14603 353812 -cd08686 176068 cl14603 353812 -cd08687 176069 cl14603 353812 -cd08688 176070 cl14603 353812 -cd08689 176071 cl14603 353812 -cd08690 176072 cl14603 353812 -cd08691 176073 cl14603 353812 -cd08692 176074 cl14603 353812 -cd08693 176075 cl14603 353812 -cd08694 176076 cl14603 353812 -cd08695 176077 cl14603 353812 -cd08696 176078 cl14603 353812 -cd08697 176079 cl14603 353812 -cd08534 176084 cl15755 353976 -cd08535 176085 cl15755 353976 -cd08536 176086 cl15755 353976 -cd08540 176090 cl15755 353976 -cd08542 176092 cl15755 353976 -cd05466 176102 cl21456 354813 -cd08411 176103 cl21456 354813 -cd08412 176104 cl21456 354813 -cd08413 176105 cl21456 354813 -cd08414 176106 cl21456 354813 -cd08415 176107 cl21456 354813 -cd08416 176108 cl21456 354813 -cd08417 176109 cl21456 354813 -cd08418 176110 cl21456 354813 -cd08419 176111 cl21456 354813 -cd08420 176112 cl21456 354813 -cd08421 176113 cl21456 354813 -cd08422 176114 cl21456 354813 -cd08423 176115 cl21456 354813 -cd08425 176116 cl21456 354813 -cd08426 176117 cl21456 354813 -cd08427 176118 cl21456 354813 -cd08428 176119 cl21456 354813 -cd08429 176120 cl21456 354813 -cd08430 176121 cl21456 354813 -cd08431 176122 cl21456 354813 -cd08432 176123 cl21456 354813 -cd08433 176124 cl21456 354813 -cd08434 176125 cl21456 354813 -cd08435 176126 cl21456 354813 -cd08436 176127 cl21456 354813 -cd08437 176128 cl21456 354813 -cd08438 176129 cl21456 354813 -cd08439 176130 cl21456 354813 -cd08440 176131 cl21456 354813 -cd08441 176132 cl21456 354813 -cd08442 176133 cl21456 354813 -cd08443 176134 cl21456 354813 -cd08444 176135 cl21456 354813 -cd08445 176136 cl21456 354813 -cd08446 176137 cl21456 354813 -cd08447 176138 cl21456 354813 -cd08448 176139 cl21456 354813 -cd08449 176140 cl21456 354813 -cd08450 176141 cl21456 354813 -cd08451 176142 cl21456 354813 -cd08452 176143 cl21456 354813 -cd08453 176144 cl21456 354813 -cd08456 176145 cl21456 354813 -cd08457 176146 cl21456 354813 -cd08458 176147 cl21456 354813 -cd08459 176148 cl21456 354813 -cd08460 176149 cl21456 354813 -cd08461 176150 cl21456 354813 -cd08462 176151 cl21456 354813 -cd08463 176152 cl21456 354813 -cd08464 176153 cl21456 354813 -cd08465 176154 cl21456 354813 -cd08466 176155 cl21456 354813 -cd08467 176156 cl21456 354813 -cd08468 176157 cl21456 354813 -cd08469 176158 cl21456 354813 -cd08470 176159 cl21456 354813 -cd08471 176160 cl21456 354813 -cd08472 176161 cl21456 354813 -cd08473 176162 cl21456 354813 -cd08474 176163 cl21456 354813 -cd08475 176164 cl21456 354813 -cd08476 176165 cl21456 354813 -cd08477 176166 cl21456 354813 -cd08478 176167 cl21456 354813 -cd08479 176168 cl21456 354813 -cd08480 176169 cl21456 354813 -cd08481 176170 cl21456 354813 -cd08482 176171 cl21456 354813 -cd08483 176172 cl21456 354813 -cd08484 176173 cl21456 354813 -cd08485 176174 cl21456 354813 -cd08486 176175 cl21456 354813 -cd08487 176176 cl21456 354813 -cd08488 176177 cl21456 354813 -cd05188 176178 cl16912 354285 -cd05195 176179 cl16912 354285 -cd05276 176180 cl16912 354285 -cd05278 176181 cl16912 354285 -cd05279 176182 cl16912 354285 -cd05280 176183 cl16912 354285 -cd05281 176184 cl16912 354285 -cd05283 176186 cl16912 354285 -cd05284 176187 cl16912 354285 -cd05285 176188 cl16912 354285 -cd05286 176189 cl16912 354285 -cd05288 176190 cl16912 354285 -cd05289 176191 cl16912 354285 -cd08230 176192 cl16912 354285 -cd08231 176193 cl16912 354285 -cd08232 176194 cl16912 354285 -cd08233 176195 cl16912 354285 -cd08234 176196 cl16912 354285 -cd08235 176197 cl16912 354285 -cd08236 176198 cl16912 354285 -cd08237 176199 cl16912 354285 -cd08238 176200 cl16912 354285 -cd08239 176201 cl16912 354285 -cd08240 176202 cl16912 354285 -cd08241 176203 cl16912 354285 -cd08242 176204 cl16912 354285 -cd08243 176205 cl16912 354285 -cd08244 176206 cl16912 354285 -cd08245 176207 cl16912 354285 -cd08246 176208 cl16912 354285 -cd08247 176209 cl16912 354285 -cd08248 176210 cl16912 354285 -cd08249 176211 cl16912 354285 -cd08250 176212 cl16912 354285 -cd08251 176213 cl16912 354285 -cd08252 176214 cl16912 354285 -cd08253 176215 cl16912 354285 -cd08254 176216 cl16912 354285 -cd08255 176217 cl16912 354285 -cd08256 176218 cl16912 354285 -cd08258 176219 cl16912 354285 -cd08259 176220 cl16912 354285 -cd08260 176221 cl16912 354285 -cd08261 176222 cl16912 354285 -cd08262 176223 cl16912 354285 -cd08263 176224 cl16912 354285 -cd08264 176225 cl16912 354285 -cd08265 176226 cl16912 354285 -cd08266 176227 cl16912 354285 -cd08267 176228 cl16912 354285 -cd08268 176229 cl16912 354285 -cd08269 176230 cl16912 354285 -cd08270 176231 cl16912 354285 -cd08271 176232 cl16912 354285 -cd08272 176233 cl16912 354285 -cd08273 176234 cl16912 354285 -cd08274 176235 cl16912 354285 -cd08275 176236 cl16912 354285 -cd08276 176237 cl16912 354285 -cd08277 176238 cl16912 354285 -cd08278 176239 cl16912 354285 -cd08279 176240 cl16912 354285 -cd08281 176241 cl16912 354285 -cd08282 176242 cl16912 354285 -cd08283 176243 cl16912 354285 -cd08284 176244 cl16912 354285 -cd08285 176245 cl16912 354285 -cd08286 176246 cl16912 354285 -cd08287 176247 cl16912 354285 -cd08288 176248 cl16912 354285 -cd08289 176249 cl16912 354285 -cd08290 176250 cl16912 354285 -cd08291 176251 cl16912 354285 -cd08292 176252 cl16912 354285 -cd08293 176253 cl16912 354285 -cd08294 176254 cl16912 354285 -cd08295 176255 cl16912 354285 -cd08296 176256 cl16912 354285 -cd08297 176257 cl16912 354285 -cd08298 176258 cl16912 354285 -cd08299 176259 cl16912 354285 -cd08300 176260 cl16912 354285 -cd08301 176261 cl16912 354285 -cd08367 176262 cl14608 326329 -cd08049 176263 cl11065 353178 -cd03173 176264 cl14605 353813 -cd04263 176265 cl14605 353813 -cd04264 176266 cl14605 353813 -cd04265 176267 cl14605 353813 -cd04266 176268 cl14605 353813 -cd08044 176269 cl08418 352891 -cd00281 176449 cl01007 351346 -cd08663 176450 cl01007 351346 -cd08769 176451 cl01007 351346 -cd08770 176452 cl01007 351346 -cd00424 176453 cl28996 355872 -cd01700 176454 cl28996 355872 -cd01701 176455 cl28996 355872 -cd01702 176456 cl28996 355872 -cd01703 176457 cl28996 355872 -cd03468 176458 cl28996 355872 -cd03586 176459 cl28996 355872 -cd00332 176460 cl00013 350860 -cd01334 176461 cl00013 350860 -cd01357 176462 cl00013 350860 -cd01359 176463 cl00013 350860 -cd01360 176464 cl00013 350860 -cd01362 176465 cl00013 350860 -cd01594 176466 cl00013 350860 -cd01595 176467 cl00013 350860 -cd01596 176468 cl00013 350860 -cd01597 176469 cl00013 350860 -cd01598 176470 cl00013 350860 -cd03302 176471 cl00013 350860 -cd05468 176472 cl03381 322281 -cd06444 176473 cl02626 351832 -cd08637 176474 cl02626 351832 -cd08638 176475 cl02626 351832 -cd08639 176476 cl02626 351832 -cd08640 176477 cl02626 351832 -cd08641 176478 cl02626 351832 -cd08642 176479 cl02626 351832 -cd08643 176480 cl02626 351832 -cd07964 176481 cl23908 305065 -cd08159 176482 cl02148 321823 -cd08365 176483 cl02148 321823 -cd08366 176484 cl02148 321823 -cd08664 176485 cl02148 321823 -cd08665 176486 cl02148 321823 -cd08666 176487 cl02148 321823 -cd08667 176488 cl02148 321823 -cd08554 176489 cl23723 355020 -cd08760 176490 cl23723 355020 -cd08761 176491 cl23723 355020 -cd08762 176492 cl23723 355020 -cd08763 176493 cl23723 355020 -cd08764 176494 cl23723 355020 -cd08765 176495 cl23723 355020 -cd08766 176496 cl23723 355020 -cd00137 176497 cl14615 353814 -cd08555 176498 cl14615 353814 -cd08556 176499 cl14615 353814 -cd08557 176500 cl14615 353814 -cd08558 176501 cl14615 353814 -cd08559 176502 cl14615 353814 -cd08560 176503 cl14615 353814 -cd08561 176504 cl14615 353814 -cd08562 176505 cl14615 353814 -cd08563 176506 cl14615 353814 -cd08564 176507 cl14615 353814 -cd08565 176508 cl14615 353814 -cd08566 176509 cl14615 353814 -cd08567 176510 cl14615 353814 -cd08568 176511 cl14615 353814 -cd08570 176512 cl14615 353814 -cd08571 176513 cl14615 353814 -cd08572 176514 cl14615 353814 -cd08573 176515 cl14615 353814 -cd08574 176516 cl14615 353814 -cd08575 176517 cl14615 353814 -cd08576 176518 cl14615 353814 -cd08577 176519 cl14615 353814 -cd08578 176520 cl14615 353814 -cd08579 176521 cl14615 353814 -cd08580 176522 cl14615 353814 -cd08581 176523 cl14615 353814 -cd08582 176524 cl14615 353814 -cd08583 176525 cl14615 353814 -cd08584 176526 cl14615 353814 -cd08585 176527 cl14615 353814 -cd08586 176528 cl14615 353814 -cd08587 176529 cl14615 353814 -cd08588 176530 cl14615 353814 -cd08589 176531 cl14615 353814 -cd08590 176532 cl14615 353814 -cd08591 176533 cl14615 353814 -cd08592 176534 cl14615 353814 -cd08593 176535 cl14615 353814 -cd08594 176536 cl14615 353814 -cd08595 176537 cl14615 353814 -cd08596 176538 cl14615 353814 -cd08597 176539 cl14615 353814 -cd08598 176540 cl14615 353814 -cd08599 176541 cl14615 353814 -cd08600 176542 cl14615 353814 -cd08601 176543 cl14615 353814 -cd08602 176544 cl14615 353814 -cd08603 176545 cl14615 353814 -cd08604 176546 cl14615 353814 -cd08605 176547 cl14615 353814 -cd08606 176548 cl14615 353814 -cd08607 176549 cl14615 353814 -cd08608 176550 cl14615 353814 -cd08609 176551 cl14615 353814 -cd08610 176552 cl14615 353814 -cd08612 176553 cl14615 353814 -cd08613 176554 cl14615 353814 -cd08616 176555 cl14615 353814 -cd08619 176556 cl14615 353814 -cd08620 176557 cl14615 353814 -cd08621 176558 cl14615 353814 -cd08622 176559 cl14615 353814 -cd08623 176560 cl14615 353814 -cd08624 176561 cl14615 353814 -cd08625 176562 cl14615 353814 -cd08626 176563 cl14615 353814 -cd08627 176564 cl14615 353814 -cd08628 176565 cl14615 353814 -cd08629 176566 cl14615 353814 -cd08630 176567 cl14615 353814 -cd08631 176568 cl14615 353814 -cd08632 176569 cl14615 353814 -cd08633 176570 cl14615 353814 -cd08674 176571 cl07443 323947 -cd08767 176572 cl14631 353815 -cd08768 176573 cl08520 352920 -cd00457 176642 cl00227 350966 -cd00865 176643 cl00227 350966 -cd00866 176644 cl00227 350966 -cd05282 176645 cl16912 354285 -cd05160 176646 cl10012 353041 -cd06125 176647 cl10012 353041 -cd06127 176648 cl10012 353041 -cd06128 176649 cl10012 353041 -cd06129 176650 cl10012 353041 -cd06139 176651 cl10012 353041 -cd06140 176652 cl10012 353041 -cd06141 176653 cl10012 353041 -cd06142 176654 cl10012 353041 -cd06146 176655 cl10012 353041 -cd09018 176656 cl10012 353041 -cd08304 176720 cl14633 353817 -cd08313 176729 cl14633 353817 -cd08326 176740 cl14633 353817 -cd08339 176750 cl14633 353817 -cd08775 176753 cl14633 353817 -cd08776 176754 cl14633 353817 -cd08778 176756 cl14633 353817 -cd08786 176764 cl14633 353817 -cd08787 176765 cl14633 353817 -cd08791 176769 cl14633 353817 -cd08795 176773 cl14633 353817 -cd08798 176776 cl14633 353817 -cd08801 176779 cl14633 353817 -cd08802 176780 cl14633 353817 -cd08803 176781 cl14633 353817 -cd08813 176791 cl14633 353817 -cd08815 176793 cl14633 353817 -cd08773 176798 cl03119 351946 -cd08965 176799 cl03119 351946 -cd08966 176800 cl03119 351946 -cd08967 176801 cl03119 351946 -cd08968 176802 cl03119 351946 -cd08969 176803 cl03119 351946 -cd08970 176804 cl03119 351946 -cd08971 176805 cl03119 351946 -cd08972 176806 cl03119 351946 -cd08973 176807 cl03119 351946 -cd08974 176808 cl03119 351946 -cd08975 176809 cl03119 351946 -cd08976 176810 cl03119 351946 -cd00177 176851 cl14643 353818 -cd00680 176852 cl14643 353818 -cd05018 176853 cl14643 353818 -cd07812 176854 cl14643 353818 -cd07813 176855 cl14643 353818 -cd07814 176856 cl14643 353818 -cd07815 176857 cl14643 353818 -cd07816 176858 cl14643 353818 -cd07817 176859 cl14643 353818 -cd07818 176860 cl14643 353818 -cd07819 176861 cl14643 353818 -cd07820 176862 cl14643 353818 -cd07821 176863 cl14643 353818 -cd07822 176864 cl14643 353818 -cd07823 176865 cl14643 353818 -cd07824 176866 cl14643 353818 -cd07825 176867 cl14643 353818 -cd07826 176868 cl14643 353818 -cd08860 176869 cl14643 353818 -cd08861 176870 cl14643 353818 -cd08862 176871 cl14643 353818 -cd08863 176872 cl14643 353818 -cd08864 176873 cl14643 353818 -cd08865 176874 cl14643 353818 -cd08866 176875 cl14643 353818 -cd08867 176876 cl14643 353818 -cd08868 176877 cl14643 353818 -cd08869 176878 cl14643 353818 -cd08870 176879 cl14643 353818 -cd08871 176880 cl14643 353818 -cd08872 176881 cl14643 353818 -cd08873 176882 cl14643 353818 -cd08874 176883 cl14643 353818 -cd08875 176884 cl14643 353818 -cd08876 176885 cl14643 353818 -cd08877 176886 cl14643 353818 -cd08878 176887 cl14643 353818 -cd08879 176888 cl14643 353818 -cd08880 176889 cl14643 353818 -cd08881 176890 cl14643 353818 -cd08882 176891 cl14643 353818 -cd08883 176892 cl14643 353818 -cd08884 176893 cl14643 353818 -cd08885 176894 cl14643 353818 -cd08886 176895 cl14643 353818 -cd08887 176896 cl14643 353818 -cd08888 176897 cl14643 353818 -cd08889 176898 cl14643 353818 -cd08890 176899 cl14643 353818 -cd08891 176900 cl14643 353818 -cd08892 176901 cl14643 353818 -cd08893 176902 cl14643 353818 -cd08894 176903 cl14643 353818 -cd08895 176904 cl14643 353818 -cd08896 176905 cl14643 353818 -cd08897 176906 cl14643 353818 -cd08898 176907 cl14643 353818 -cd08899 176908 cl14643 353818 -cd08900 176909 cl14643 353818 -cd08901 176910 cl14643 353818 -cd08902 176911 cl14643 353818 -cd08903 176912 cl14643 353818 -cd08904 176913 cl14643 353818 -cd08905 176914 cl14643 353818 -cd08906 176915 cl14643 353818 -cd08907 176916 cl14643 353818 -cd08908 176917 cl14643 353818 -cd08909 176918 cl14643 353818 -cd08910 176919 cl14643 353818 -cd08911 176920 cl14643 353818 -cd08913 176921 cl14643 353818 -cd08914 176922 cl14643 353818 -cd09030 176923 cl12345 353385 -cd09071 176924 cl29370 356246 -CHL00003 176948 cl08220 352857 -CHL00004 176949 cl08220 352857 -CHL00005 176950 cl00368 351058 -CHL00008 176951 cl23824 329105 -CHL00009 176952 cl27240 355629 -CHL00011 176954 CHL00011 176954 -CHL00012 176955 cl19197 354392 -CHL00015 176958 cl00492 351118 -CHL00017 176960 cl21493 354835 -CHL00019 176962 cl21478 354827 -CHL00020 176963 cl28086 332907 -CHL00022 176964 cl00535 351141 -CHL00024 176966 cl27410 332231 -CHL00029 176970 CHL00029 176970 -CHL00030 176971 cl00326 351029 -CHL00031 176972 cl28134 332955 -CHL00033 176974 CHL00033 176974 -CHL00036 176977 cl03567 322352 -CHL00037 176978 cl25616 355425 -CHL00038 176979 cl27429 332250 -CHL00039 176980 cl28158 355706 -CHL00040 176981 CHL00040 176981 -CHL00041 176982 cl00332 320911 -CHL00044 176985 cl00353 351049 -CHL00046 176987 cl00413 351082 -CHL00049 176990 CHL00049 176990 -CHL00050 176991 cl00350 351046 -CHL00051 176992 cl00312 351017 -CHL00052 176993 CHL00052 176993 -CHL00053 176994 cl00313 351018 -CHL00054 176995 cl08224 324211 -CHL00056 176996 cl08224 324211 -CHL00057 176997 cl00328 351031 -CHL00058 176998 cl00193 350938 -CHL00059 176999 CHL00059 176999 -CHL00061 177001 cl00466 351103 -CHL00064 177004 CHL00064 177004 -CHL00065 177005 cl19102 354379 -CHL00066 177006 cl23793 329082 -CHL00067 177007 cl00315 351020 -CHL00070 177009 CHL00070 177009 -CHL00071 177010 CHL00071 177010 -CHL00072 177011 cl21455 354812 -CHL00075 177014 cl00382 351065 -CHL00077 177016 cl00373 351060 -CHL00080 177019 CHL00080 177019 -CHL00081 177020 CHL00081 177020 -CHL00082 177021 cl27507 332328 -CHL00084 177023 cl00406 351079 -CHL00093 177025 cl02777 351886 -CHL00104 177033 cl00383 351066 -CHL00105 177034 cl23820 329101 -CHL00106 177035 CHL00106 177035 -CHL00108 177036 cl27498 332319 -CHL00112 177037 cl00367 351057 -CHL00113 177038 CHL00113 177038 -CHL00115 177039 CHL00115 177039 -CHL00119 177042 cl17210 354322 -CHL00120 177043 cl03651 322378 -CHL00123 177046 cl00414 351083 -CHL00124 177047 cl09936 324546 -CHL00125 177048 cl03585 322357 -CHL00127 177049 CHL00127 177049 -CHL00128 177050 cl04326 322618 -CHL00129 177051 cl00322 351025 -CHL00130 177052 cl01843 351614 -CHL00132 177054 cl03627 322371 -CHL00133 177055 cl21467 354821 -CHL00134 177056 cl00159 350924 -CHL00135 177057 cl00314 351019 -CHL00136 177058 cl00377 351062 -CHL00137 177059 cl00331 351033 -CHL00138 177060 CHL00138 177060 -CHL00140 177062 CHL00140 177062 -CHL00142 177064 cl00351 351047 -CHL00143 177065 cl00324 351027 -CHL00144 177066 CHL00144 177066 -CHL00145 177067 cl03639 322375 -CHL00149 177069 cl01629 351571 -CHL00154 177071 cl09943 353035 -CHL00159 177072 cl00333 351034 -CHL00180 177082 CHL00180 177082 -CHL00181 177083 cl21455 354812 -CHL00182 177084 cl00521 351132 -CHL00183 177085 cl21467 354821 -CHL00184 177086 cl27937 332758 -CHL00185 177087 cl00264 350992 -CHL00186 177088 cl28141 355705 -CHL00189 177089 CHL00189 177089 -CHL00190 177090 CHL00190 177090 -CHL00193 177092 cl06088 323319 -CHL00194 177093 cl21454 354811 -CHL00195 177094 CHL00195 177094 -CHL00196 177095 cl26975 331796 -MTH00001 177099 cl00492 351118 -MTH00009 177101 cl00211 294143 -MTH00016 177102 MTH00016 177102 -MTH00029 177108 cl00469 351105 -MTH00034 177109 MTH00034 177109 -MTH00035 177110 cl00413 351082 -MTH00037 177112 cl00275 350997 -MTH00038 177113 MTH00038 177113 -MTH00039 177114 cl00211 294143 -MTH00041 177116 MTH00041 177116 -MTH00042 177117 cl00535 351141 -MTH00045 177120 cl21484 354830 -MTH00046 177121 MTH00046 177121 -MTH00048 177123 cl00275 350997 -MTH00049 177124 cl00211 294143 -MTH00050 177125 cl00413 351082 -MTH00051 177126 MTH00051 177126 -MTH00054 177127 cl00469 351105 -MTH00055 177128 cl00535 351141 -MTH00057 177129 cl21484 354830 -MTH00058 177130 cl00469 351105 -MTH00059 177131 MTH00059 177131 -MTH00060 177132 cl00535 351141 -MTH00061 177133 cl28642 333462 -MTH00064 177136 MTH00064 177136 -MTH00067 177139 cl00492 351118 -MTH00069 177141 cl00535 351141 -MTH00070 177142 MTH00070 177142 -MTH00073 177144 cl00413 351082 -MTH00074 177145 MTH00074 177145 -MTH00075 177146 cl00211 294143 -MTH00079 177148 cl00275 350997 -MTH00080 177149 MTH00080 177149 -MTH00083 177150 cl00211 294143 -MTH00086 177151 MTH00086 177151 -MTH00087 177152 cl00413 351082 -MTH00090 177153 cl00469 351105 -MTH00091 177154 cl29598 356474 -MTH00092 177155 cl00535 351141 -MTH00093 177156 MTH00093 177156 -MTH00094 177157 MTH00094 177157 -MTH00095 177158 MTH00095 177158 -MTH00097 177159 MTH00097 177159 -MTH00098 177160 MTH00098 177160 -MTH00099 177161 cl00211 294143 -MTH00100 177162 MTH00100 177162 -MTH00101 177163 cl00413 351082 -MTH00103 177165 cl00275 350997 -MTH00104 177166 cl00469 351105 -MTH00105 177167 MTH00105 177167 -MTH00106 177168 cl00535 351141 -MTH00107 177169 cl00492 351118 -MTH00108 177170 MTH00108 177170 -MTH00110 177172 cl30834 357710 -MTH00113 177175 cl00535 351141 -MTH00116 177177 cl00275 350997 -MTH00117 177178 MTH00117 177178 -MTH00118 177179 cl00211 294143 -MTH00120 177181 cl00413 351082 -MTH00125 177184 cl00492 351118 -MTH00126 177185 cl00492 351118 -MTH00127 177186 cl30834 357710 -MTH00129 177187 MTH00129 177187 -MTH00130 177188 cl00211 294143 -MTH00131 177189 MTH00131 177189 -MTH00132 177190 cl00413 351082 -MTH00133 177191 cl03008 295603 -MTH00134 177192 cl00469 351105 -MTH00135 177193 cl29598 356474 -MTH00136 177194 cl00535 351141 -MTH00138 177196 cl21484 354830 -MTH00141 177199 cl00211 294143 -MTH00143 177201 cl00469 351105 -MTH00145 177203 MTH00145 177203 -MTH00147 177204 cl30877 357753 -MTH00153 177210 cl00275 350997 -MTH00158 177215 MTH00158 177215 -MTH00161 177217 cl00535 351141 -MTH00162 177218 cl00492 351118 -MTH00167 177222 cl00275 350997 -MTH00168 177223 MTH00168 177223 -MTH00171 177225 cl03008 295603 -MTH00175 177228 cl00413 351082 -MTH00179 177230 cl00413 351082 -MTH00180 177231 cl00492 351118 -MTH00183 177234 cl00275 350997 -MTH00184 177235 cl00275 350997 -MTH00186 177236 cl30877 357753 -MTH00188 177237 cl00492 351118 -MTH00189 177238 cl00211 294143 -MTH00191 177239 MTH00191 177239 -MTH00192 177240 cl00492 351118 -MTH00193 177241 cl00469 351105 -MTH00197 177244 MTH00197 177244 -MTH00199 177245 MTH00199 177245 -MTH00200 177246 MTH00200 177246 -MTH00208 177251 MTH00208 177251 -MTH00209 177252 MTH00209 177252 -MTH00210 177253 MTH00210 177253 -MTH00213 177256 cl21484 354830 -MTH00223 177260 cl00275 350997 -MTH00261 177263 MTH00261 177263 -PHA00101 177266 PHA00101 177266 -PHA00159 177267 cl11622 325102 -PHA00201 177268 cl21666 272086 -PHA00360 177271 PHA00360 177271 -PHA00432 177277 cl17113 271795 -PHA00446 177281 cl10214 353062 -PHA00447 177282 cl02712 351864 -PHA00451 177283 PHA00451 177283 -PHA00616 177288 PHA00616 177288 -PHA00617 177289 PHA00617 177289 -PHA00619 177290 cl00641 351191 -PHA00725 177293 PHA00725 177293 -PHA00726 177294 PHA00726 177294 -PHA00728 177296 PHA00728 177296 -PHA00729 177297 PHA00729 177297 -PHA00732 177300 PHA00732 177300 -PHA00733 177301 PHA00733 177301 -PHA00734 177302 PHA00734 177302 -PHA00735 177303 PHA00735 177303 -PHA00736 177304 cl10273 353068 -PHA00738 177305 cl21459 354815 -PHA00739 177306 cl11632 271727 -PHA00743 177308 PHA00743 177308 -PHA00979 177310 PHA00979 177310 -PHA01547 177311 PHA01547 177311 -PHA01749 177316 cl27823 332644 -PHA01752 177317 PHA01752 177317 -PHA01782 177318 PHA01782 177318 -PHA01795 177320 cl17486 327418 -PHA01810 177323 PHA01810 177323 -PHA01811 177324 PHA01811 177324 -PHA01812 177325 PHA01812 177325 -PHA01817 177326 cl21534 354857 -PHA01929 177328 PHA01929 177328 -PHA01976 177330 cl22854 354960 -PHA02004 177331 cl21666 272086 -PHA02053 177336 PHA02053 177336 -PHA02054 177337 PHA02054 177337 -PHA02057 177338 PHA02057 177338 -PHA02078 177339 PHA02078 177339 -PHA02090 177340 PHA02090 177340 -PHA02091 177341 PHA02091 177341 -PHA02092 177342 PHA02092 177342 -PHA02094 177343 PHA02094 177343 -PHA02097 177344 PHA02097 177344 -PHA02101 177345 PHA02101 177345 -PHA02104 177347 PHA02104 177347 -PHA02106 177348 PHA02106 177348 -PHA02108 177349 PHA02108 177349 -PHA02117 177351 cl23821 355058 -PHA02122 177352 PHA02122 177352 -PHA02141 177353 PHA02141 177353 -PHA02151 177354 PHA02151 177354 -PHA02246 177355 PHA02246 177355 -PHA02256 177356 PHA02256 177356 -PHA02278 177357 cl00388 351069 -PHA02291 177358 PHA02291 177358 -PHA02310 177359 PHA02310 177359 -PHA02325 177360 PHA02325 177360 -PHA02337 177361 PHA02337 177361 -PHA02415 177362 PHA02415 177362 -PHA02446 177363 PHA02446 177363 -PHA02451 177364 PHA02451 177364 -PHA02503 177365 cl11500 299749 -PHA02513 177367 cl11632 271727 -PHA02528 177369 PHA02528 177369 -PHA02541 177376 cl22495 304570 -PHA02545 177380 PHA02545 177380 -PHA02548 177383 cl22495 304570 -PHA02551 177385 cl28641 333461 -PHA02554 177388 PHA02554 177388 -PHA02565 177395 cl27319 332140 -PHA02569 177398 PHA02569 177398 -PHA02570 177399 cl10012 353041 -PHA02571 177400 cl27840 332661 -PHA02574 177403 PHA02574 177403 -PHA02576 177405 PHA02576 177405 -PHA02578 177407 cl26475 331296 -PHA02579 177408 PHA02579 177408 -PHA02580 177409 cl27861 355685 -PHA02602 177427 cl16941 354290 -PHA02604 177429 PHA02604 177429 -PHA02605 177430 cl28641 333461 -PHA02607 177432 cl28126 332947 -PHA02608 177433 cl14364 353809 -PHA02620 177439 cl28444 333264 -PHA02621 177440 cl28119 332940 -PHA02627 177442 cl28639 333459 -PHA02653 177443 PHA02653 177443 -PHA02661 177444 cl00116 320767 -PHA02662 177445 PHA02662 177445 -PHA02663 177446 PHA02663 177446 -PHA02664 177447 PHA02664 177447 -PHA02665 177448 PHA02665 177448 -PHA02668 177450 cl28616 333436 -PHA02669 177451 PHA02669 177451 -PHA02671 177453 cl27933 332754 -PHA02672 177454 PHA02672 177454 -PHA02673 177455 cl27938 332759 -PHA02674 177456 cl27930 332751 -PHA02675 177457 cl28105 332926 -PHA02676 177458 cl27929 332750 -PHA02678 177460 PHA02678 177460 -PHA02679 177461 cl27922 332743 -PHA02680 177462 cl27949 355689 -PHA02682 177464 PHA02682 177464 -PHA02683 177465 cl27964 332785 -PHA02684 177466 PHA02684 177466 -PHA02685 177467 PHA02685 177467 -PHA02686 177468 cl27987 332808 -PHA02689 177471 cl27983 332804 -PHA02691 177473 cl27928 332749 -PHA02692 177474 PHA02692 177474 -PHA02693 177475 cl28640 333460 -PHA02694 177476 PHA02694 177476 -PHA02695 177477 cl28006 355694 -PHA02698 177480 PHA02698 177480 -PHA02700 177481 cl27988 332809 -PHA02701 177482 PHA02701 177482 -PHA02702 177483 cl30876 357752 -PHA02708 177484 PHA02708 177484 -PHA02731 177485 cl00213 350955 -PHA02752 177486 PHA02752 177486 -PHA02763 177487 PHA02763 177487 -PHA02780 177490 cl28639 333459 -PHA02825 177491 cl17238 354325 -PHA02827 177492 PHA02827 177492 -PHA02911 177496 PHA02911 177496 -PHA02913 177497 cl02510 351779 -PHA02951 177499 cl30874 357750 -PHA02996 177503 PHA02996 177503 -PHA03000 177505 cl27998 332819 -PHA03003 177506 PHA03003 177506 -PHA03004 177507 cl28044 332865 -PHA03045 177510 cl27961 332782 -PHA03061 177511 cl28053 332874 -PHA03062 177512 cl27992 355692 -PHA03068 177515 cl27997 332818 -PHA03070 177516 cl28005 332826 -PHA03073 177518 PHA03073 177518 -PHA03075 177519 PHA03075 177519 -PHA03115 177532 cl27905 332726 -PHA03134 177537 PHA03134 177537 -PHA03136 177538 PHA03136 177538 -PHA03141 177540 cl27948 332769 -PHA03146 177543 PHA03146 177543 -PHA03151 177546 PHA03151 177546 -PHA03164 177547 PHA03164 177547 -PHA03166 177548 cl27932 332753 -PHA03175 177551 cl28637 333457 -PHA03178 177552 cl28609 333429 -PHA03185 177553 PHA03185 177553 -PHA03193 177555 cl28045 355696 -PHA03195 177556 cl28045 355696 -PHA03209 177557 PHA03209 177557 -PHA03216 177558 cl29875 356751 -PHA03234 177562 PHA03234 177562 -PHA03239 177565 cl28128 332949 -PHA03242 177566 cl28128 332949 -PHA03244 177567 PHA03244 177567 -PHA03257 177569 cl30049 356925 -PHA03275 177573 PHA03275 177573 -PHA03278 177574 PHA03278 177574 -PHA03286 177576 PHA03286 177576 -PHA03292 177577 PHA03292 177577 -PHA03312 177582 cl28610 355715 -PHA03347 177588 cl00483 351114 -PHA03348 177589 cl28056 332877 -PHA03349 177590 cl28066 355700 -PHA03351 177591 cl14716 353831 -PHA03354 177593 PHA03354 177593 -PHA03356 177594 cl27834 332655 -PHA03357 177595 PHA03357 177595 -PHA03358 177596 cl27841 332662 -PHA03360 177598 PHA03360 177598 -PHA03365 177602 cl27111 331932 -PHA03370 177607 cl28085 332906 -PHA03371 177608 cl27900 332721 -PHA03372 177609 cl30035 356911 -PHA03376 177613 PHA03376 177613 -PHA03377 177614 PHA03377 177614 -PHA03381 177618 PHA03381 177618 -PHA03383 177619 PHA03383 177619 -PHA03385 177621 cl27512 332333 -PHA03386 177622 PHA03386 177622 -PHA03387 177623 cl29368 356244 -PHA03388 177624 cl27646 332467 -PHA03389 177625 cl27646 332467 -PHA03395 177631 cl29777 356653 -PHA03397 177633 PHA03397 177633 -PHA03405 177637 cl14695 353829 -PHA03411 177639 cl17173 354317 -PHA03412 177640 cl17173 354317 -PHA03413 177641 cl23910 329164 -PHA03414 177642 cl28619 333439 -PHA03415 177643 cl28619 333439 -PHA03416 177644 PHA03416 177644 -PHA03417 177645 cl27389 332210 -PHA03418 177646 PHA03418 177646 -PHA03420 177648 PHA03420 177648 -PLN00009 177649 PLN00009 177649 -PLN00011 177651 cl00342 294246 -PLN00014 177653 PLN00014 177653 -PLN00015 177654 cl21454 354811 -PLN00017 177656 cl03956 322485 -PLN00021 177659 cl21494 354836 -PLN00023 177661 PLN00023 177661 -PLN00026 177663 cl00200 350945 -PLN00027 177664 cl00200 350945 -PLN00028 177665 PLN00028 177665 -PLN00035 177669 PLN00035 177669 -PLN00036 177670 PLN00036 177670 -PLN00037 177671 cl23911 329165 -PLN00039 177673 cl04326 322618 -PLN00042 177676 cl03356 351982 -PLN00045 177677 cl03585 322357 -PLN00047 177679 cl12138 353367 -PLN00048 177680 PLN00048 177680 -PLN00049 177681 PLN00049 177681 -PLN00051 177682 cl09940 353034 -PLN00052 177683 PLN00052 177683 -PLN00055 177686 cl23793 329082 -PLN00056 177687 cl08220 352857 -PLN00057 177688 PLN00057 177688 -PLN00058 177689 PLN00058 177689 -PLN00059 177690 cl03356 351982 -PLN00060 177691 PLN00060 177691 -PLN00062 177693 PLN00062 177693 -PLN00067 177697 cl03356 351982 -PLN00068 177698 cl08223 324210 -PLN00071 177700 cl19102 354379 -PLN00072 177701 PLN00072 177701 -PLN00083 177706 cl04707 322775 -PLN00084 177707 PLN00084 177707 -PLN00085 177708 PLN00085 177708 -PLN00088 177709 PLN00088 177709 -PLN00089 177710 cl02879 351914 -PLN00092 177712 cl06243 323379 -PLN00093 177713 PLN00093 177713 -PLN00096 177715 cl00445 351095 -PLN00098 177716 cl02879 351914 -PLN00099 177717 cl02879 351914 -PLN00103 177720 cl00445 351095 -PLN00108 177724 cl26521 331342 -PLN00110 177725 cl12078 353355 -PLN00115 177729 cl08320 352877 -PLN00116 177730 cl30786 357662 -PLN00119 177732 cl02959 351925 -PLN00121 177733 cl23735 329044 -PLN00124 177736 PLN00124 177736 -PLN00127 177738 cl00881 351296 -PLN00128 177739 PLN00128 177739 -PLN00130 177741 cl00881 351296 -PLN00135 177744 PLN00135 177744 -PLN00144 177748 cl18945 354370 -PLN00149 177753 cl15781 326642 -PLN00152 177755 cl14651 353822 -PLN00154 177756 PLN00154 177756 -PLN00157 177758 PLN00157 177758 -PLN00169 177765 cl00227 350966 -PLN00172 177768 cl00154 350921 -PLN00174 177769 cl04000 322498 -PLN00177 177772 PLN00177 177772 -PLN00178 177773 PLN00178 177773 -PLN00180 177775 PLN00180 177775 -PLN00181 177776 PLN00181 177776 -PLN00184 177778 cl00200 350945 -PLN00185 177779 PLN00185 177779 -PLN00187 177781 cl02879 351914 -PLN00189 177783 PLN00189 177783 -PLN00190 177784 PLN00190 177784 -PLN00200 177791 cl00292 351005 -PLN00202 177792 PLN00202 177792 -PLN00205 177795 cl00333 351034 -PLN00208 177798 cl09927 353027 -PLN00210 177799 cl00334 351035 -PLN00214 177800 cl05275 322998 -PLN00221 177802 PLN00221 177802 -PLN00411 177805 PLN00411 177805 -PLN00414 177807 cl10013 353042 -PLN00415 177808 PLN00415 177808 -PLN00416 177809 cl00391 351071 -PLN00417 177810 PLN00417 177810 -PLN02150 177811 PLN02150 177811 -PLN02151 177812 cl21460 354816 -PLN02152 177813 cl10013 353042 -PLN02153 177814 PLN02153 177814 -PLN02156 177816 PLN02156 177816 -PLN02157 177817 PLN02157 177817 -PLN02159 177818 cl00437 320972 -PLN02160 177819 cl00125 350910 -PLN02161 177820 cl29077 355953 -PLN02162 177821 cl21494 354836 -PLN02164 177822 cl21551 354866 -PLN02165 177823 cl21455 354812 -PLN02169 177826 cl12078 353355 -PLN02173 177830 cl10013 353042 -PLN02174 177831 cl11961 353326 -PLN02175 177832 cl02959 351925 -PLN02178 177834 PLN02178 177834 -PLN02179 177835 PLN02179 177835 -PLN02180 177836 cl19223 327525 -PLN02182 177837 PLN02182 177837 -PLN02184 177838 PLN02184 177838 -PLN02191 177843 PLN02191 177843 -PLN02193 177844 PLN02193 177844 -PLN02194 177845 cl00211 294143 -PLN02196 177847 cl12078 353355 -PLN02197 177848 PLN02197 177848 -PLN02198 177849 cl19223 327525 -PLN02199 177850 PLN02199 177850 -PLN02201 177852 PLN02201 177852 -PLN02202 177853 cl00012 350859 -PLN02205 177855 PLN02205 177855 -PLN02206 177856 PLN02206 177856 -PLN02207 177857 cl10013 353042 -PLN02208 177858 cl10013 353042 -PLN02209 177859 cl08270 352865 -PLN02214 177862 cl21454 354811 -PLN02218 177865 PLN02218 177865 -PLN02220 177866 cl00615 294412 -PLN02221 177867 PLN02221 177867 -PLN02222 177868 PLN02222 177868 -PLN02224 177869 PLN02224 177869 -PLN02225 177870 PLN02225 177870 -PLN02226 177871 PLN02226 177871 -PLN02227 177872 cl28986 355862 -PLN02228 177873 PLN02228 177873 -PLN02229 177874 PLN02229 177874 -PLN02230 177875 PLN02230 177875 -PLN02231 177876 PLN02231 177876 -PLN02233 177877 cl17173 354317 -PLN02234 177878 PLN02234 177878 -PLN02235 177879 cl29684 356560 -PLN02236 177880 PLN02236 177880 -PLN02240 177883 cl21454 354811 -PLN02243 177886 PLN02243 177886 -PLN02249 177891 cl21606 354887 -PLN02253 177895 PLN02253 177895 -PLN02257 177899 PLN02257 177899 -PLN02259 177901 PLN02259 177901 -PLN02263 177904 cl18945 354370 -PLN02268 177909 PLN02268 177909 -PLN02272 177912 PLN02272 177912 -PLN02277 177916 cl11452 353262 -PLN02279 177918 PLN02279 177918 -PLN02281 177920 PLN02281 177920 -PLN02283 177921 cl14561 353811 -PLN02284 177922 PLN02284 177922 -PLN02291 177928 cl03230 351966 -PLN02293 177930 cl00309 351014 -PLN02294 177931 cl00016 350863 -PLN02297 177934 PLN02297 177934 -PLN02306 177941 cl21454 354811 -PLN02307 177942 PLN02307 177942 -PLN02308 177943 cl02959 351925 -PLN02313 177947 PLN02313 177947 -PLN02315 177949 cl11961 353326 -PLN02318 177952 PLN02318 177952 -PLN02319 177953 cl01893 351633 -PLN02320 177954 PLN02320 177954 -PLN02322 177956 cl00509 351126 -PLN02324 177958 PLN02324 177958 -PLN02331 177965 cl00395 351075 -PLN02335 177969 cl00020 350865 -PLN02336 177970 PLN02336 177970 -PLN02338 177972 PLN02338 177972 -PLN02339 177973 PLN02339 177973 -PLN02342 177976 PLN02342 177976 -PLN02343 177977 cl05704 323150 -PLN02344 177978 cl00693 351218 -PLN02345 177979 cl02959 351925 -PLN02353 177986 PLN02353 177986 -PLN02354 177987 PLN02354 177987 -PLN02361 177990 PLN02361 177990 -PLN02365 177993 PLN02365 177993 -PLN02367 177995 PLN02367 177995 -PLN02368 177996 PLN02368 177996 -PLN02373 178001 cl00217 350958 -PLN02375 178003 PLN02375 178003 -PLN02376 178004 PLN02376 178004 -PLN02379 178005 PLN02379 178005 -PLN02380 178006 PLN02380 178006 -PLN02382 178008 PLN02382 178008 -PLN02383 178009 PLN02383 178009 -PLN02390 178014 cl00399 351076 -PLN02392 178015 cl21511 328764 -PLN02396 178018 PLN02396 178018 -PLN02399 178021 cl00388 351069 -PLN02402 178024 PLN02402 178024 -PLN02403 178025 PLN02403 178025 -PLN02404 178026 cl00317 351021 -PLN02407 178029 cl28577 333397 -PLN02409 178031 PLN02409 178031 -PLN02410 178032 cl10013 353042 -PLN02411 178033 cl28888 355772 -PLN02414 178035 PLN02414 178035 -PLN02415 178036 PLN02415 178036 -PLN02416 178037 PLN02416 178037 -PLN02417 178038 cl28986 355862 -PLN02420 178040 PLN02420 178040 -PLN02423 178043 cl21460 354816 -PLN02427 178047 cl21454 354811 -PLN02430 178049 PLN02430 178049 -PLN02431 178050 PLN02431 178050 -PLN02432 178051 PLN02432 178051 -PLN02434 178053 cl01132 321361 -PLN02437 178056 PLN02437 178056 -PLN02438 178057 cl00554 351150 -PLN02442 178061 cl21494 354836 -PLN02443 178062 PLN02443 178062 -PLN02449 178068 PLN02449 178068 -PLN02450 178069 PLN02450 178069 -PLN02452 178071 cl18945 354370 -PLN02453 178072 cl15848 326660 -PLN02455 178074 cl28986 355862 -PLN02463 178082 cl21454 354811 -PLN02468 178087 PLN02468 178087 -PLN02469 178088 PLN02469 178088 -PLN02474 178092 cl11394 353239 -PLN02476 178094 cl17173 354317 -PLN02477 178095 PLN02477 178095 -PLN02479 178097 PLN02479 178097 -PLN02480 178098 cl29893 356769 -PLN02482 178100 cl18945 354370 -PLN02483 178101 cl18945 354370 -PLN02484 178102 PLN02484 178102 -PLN02486 178104 cl00015 350862 -PLN02488 178106 PLN02488 178106 -PLN02494 178111 PLN02494 178111 -PLN02497 178113 cl29893 356769 -PLN02499 178115 PLN02499 178115 -PLN02504 178120 cl11424 353250 -PLN02505 178121 cl00615 294412 -PLN02508 178124 cl00264 350992 -PLN02509 178125 cl18945 354370 -PLN02510 178126 PLN02510 178126 -PLN02512 178128 cl00452 351098 -PLN02513 178129 cl28913 355789 -PLN02515 178130 PLN02515 178130 -PLN02516 178131 PLN02516 178131 -PLN02517 178132 PLN02517 178132 -PLN02520 178135 PLN02520 178135 -PLN02522 178137 PLN02522 178137 -PLN02526 178141 PLN02526 178141 -PLN02527 178142 PLN02527 178142 -PLN02529 178144 PLN02529 178144 -PLN02530 178145 PLN02530 178145 -PLN02536 178151 PLN02536 178151 -PLN02537 178152 cl30792 357668 -PLN02539 178154 PLN02539 178154 -PLN02544 178159 cl00231 350970 -PLN02548 178163 cl00192 350937 -PLN02549 178164 PLN02549 178164 -PLN02550 178165 PLN02550 178165 -PLN02551 178166 PLN02551 178166 -PLN02553 178168 cl00289 351004 -PLN02555 178170 cl10013 353042 -PLN02556 178171 cl00342 294246 -PLN02557 178172 PLN02557 178172 -PLN02559 178173 cl03589 352024 -PLN02560 178174 PLN02560 178174 -PLN02561 178175 cl28888 355772 -PLN02563 178177 PLN02563 178177 -PLN02564 178178 cl00204 350948 -PLN02569 178182 PLN02569 178182 -PLN02577 178189 PLN02577 178189 -PLN02582 178194 PLN02582 178194 -PLN02583 178195 cl21454 354811 -PLN02584 178196 cl00303 351011 -PLN02587 178198 cl00470 351106 -PLN02590 178200 cl18945 354370 -PLN02591 178201 cl28888 355772 -PLN02593 178203 cl00159 350924 -PLN02595 178205 cl00017 320713 -PLN02596 178206 PLN02596 178206 -PLN02597 178207 cl22860 354963 -PLN02599 178209 cl00281 351001 -PLN02600 178210 cl23717 355015 -PLN02601 178211 cl01132 321361 -PLN02602 178212 PLN02602 178212 -PLN02603 178213 PLN02603 178213 -PLN02608 178218 PLN02608 178218 -PLN02611 178221 cl00954 351329 -PLN02615 178224 cl17011 354294 -PLN02617 178226 PLN02617 178226 -PLN02619 178228 PLN02619 178228 -PLN02621 178229 cl00220 350960 -PLN02625 178232 cl00304 351012 -PLN02627 178234 PLN02627 178234 -PLN02630 178237 cl00192 350937 -PLN02631 178238 PLN02631 178238 -PLN02633 178240 PLN02633 178240 -PLN02639 178245 PLN02639 178245 -PLN02642 178248 cl00891 351300 -PLN02645 178251 PLN02645 178251 -PLN02650 178256 PLN02650 178256 -PLN02651 178257 cl18945 354370 -PLN02653 178259 cl21454 354811 -PLN02656 178262 PLN02656 178262 -PLN02657 178263 PLN02657 178263 -PLN02660 178266 cl00015 350862 -PLN02661 178267 PLN02661 178267 -PLN02662 178268 cl21454 354811 -PLN02664 178269 cl23717 355015 -PLN02668 178273 cl04109 352111 -PLN02669 178274 PLN02669 178274 -PLN02670 178275 cl10013 353042 -PLN02671 178276 cl29893 356769 -PLN02674 178279 PLN02674 178279 -PLN02679 178283 PLN02679 178283 -PLN02688 178291 PLN02688 178291 -PLN02690 178293 cl19186 354389 -PLN02692 178295 PLN02692 178295 -PLN02693 178296 PLN02693 178296 -PLN02694 178297 PLN02694 178297 -PLN02695 178298 cl21454 354811 -PLN02698 178301 PLN02698 178301 -PLN02701 178304 PLN02701 178304 -PLN02703 178306 cl17340 327413 -PLN02705 178307 cl29077 355953 -PLN02706 178308 cl17182 354318 -PLN02707 178309 cl00217 350958 -PLN02709 178311 cl00447 351096 -PLN02714 178316 PLN02714 178316 -PLN02715 178317 PLN02715 178317 -PLN02716 178318 PLN02716 178318 -PLN02717 178319 cl00226 350965 -PLN02718 178320 PLN02718 178320 -PLN02719 178321 cl21494 354836 -PLN02720 178322 PLN02720 178322 -PLN02721 178323 cl18945 354370 -PLN02723 178324 PLN02723 178324 -PLN02725 178326 cl21454 354811 -PLN02730 178331 cl21454 354811 -PLN02731 178332 PLN02731 178332 -PLN02734 178335 PLN02734 178335 -PLN02736 178337 PLN02736 178337 -PLN02740 178341 PLN02740 178341 -PLN02741 178342 PLN02741 178342 -PLN02745 178346 PLN02745 178346 -PLN02746 178347 cl21457 354814 -PLN02749 178350 cl19720 327606 -PLN02750 178351 PLN02750 178351 -PLN02753 178354 PLN02753 178354 -PLN02755 178356 cl29766 356642 -PLN02759 178359 PLN02759 178359 -PLN02764 178364 cl10013 353042 -PLN02771 178370 PLN02771 178370 -PLN02773 178372 cl29893 356769 -PLN02774 178373 cl12078 353355 -PLN02775 178374 PLN02775 178374 -PLN02777 178376 cl19721 354449 -PLN02778 178377 cl21454 354811 -PLN02783 178380 cl17185 354319 -PLN02786 178383 PLN02786 178383 -PLN02792 178389 PLN02792 178389 -PLN02794 178391 PLN02794 178391 -PLN02795 178392 PLN02795 178392 -PLN02797 178394 cl21511 328764 -PLN02803 178400 cl29077 355953 -PLN02804 178401 cl03589 352024 -PLN02805 178402 PLN02805 178402 -PLN02806 178403 PLN02806 178403 -PLN02809 178405 cl00337 351038 -PLN02810 178406 cl23723 355020 -PLN02811 178407 cl21460 354816 -PLN02812 178408 cl00360 294257 -PLN02820 178415 PLN02820 178415 -PLN02822 178417 cl18945 354370 -PLN02823 178418 cl17173 354317 -PLN02824 178419 PLN02824 178419 -PLN02826 178421 PLN02826 178421 -PLN02828 178422 PLN02828 178422 -PLN02835 178429 PLN02835 178429 -PLN02839 178432 PLN02839 178432 -PLN02841 178434 cl21590 354882 -PLN02842 178435 PLN02842 178435 -PLN02847 178439 PLN02847 178439 -PLN02848 178440 PLN02848 178440 -PLN02851 178443 cl23717 355015 -PLN02859 178450 PLN02859 178450 -PLN02861 178452 PLN02861 178452 -PLN02862 178453 cl10030 353048 -PLN02864 178455 PLN02864 178455 -PLN02867 178458 PLN02867 178458 -PLN02868 178459 PLN02868 178459 -PLN02874 178462 PLN02874 178462 -PLN02878 178466 cl00337 351038 -PLN02879 178467 cl00196 350941 -PLN02883 178471 PLN02883 178471 -PLN02884 178472 cl00204 350948 -PLN02885 178473 PLN02885 178473 -PLN02890 178478 PLN02890 178478 -PLN02891 178479 PLN02891 178479 -PLN02896 178484 PLN02896 178484 -PLN02897 178485 PLN02897 178485 -PLN02899 178487 PLN02899 178487 -PLN02904 178492 PLN02904 178492 -PLN02905 178493 PLN02905 178493 -PLN02908 178496 PLN02908 178496 -PLN02909 178497 cl02959 351925 -PLN02911 178499 cl00289 351004 -PLN02912 178500 PLN02912 178500 -PLN02913 178501 PLN02913 178501 -PLN02914 178502 PLN02914 178502 -PLN02916 178504 PLN02916 178504 -PLN02921 178509 PLN02921 178509 -PLN02923 178511 cl23721 355019 -PLN02924 178512 cl17190 354320 -PLN02925 178513 cl30731 357607 -PLN02927 178515 PLN02927 178515 -PLN02930 178518 cl03849 352066 -PLN02932 178520 PLN02932 178520 -PLN02933 178521 PLN02933 178521 -PLN02936 178524 cl12078 353355 -PLN02938 178526 PLN02938 178526 -PLN02940 178528 PLN02940 178528 -PLN02942 178530 cl00281 351001 -PLN02945 178531 cl00015 350862 -PLN02946 178532 PLN02946 178532 -PLN02948 178534 PLN02948 178534 -PLN02952 178538 PLN02952 178538 -PLN02953 178539 cl21502 304393 -PLN02955 178541 cl18945 354370 -PLN02961 178546 cl29236 356112 -PLN02962 178547 PLN02962 178547 -PLN02965 178549 cl21494 354836 -PLN02966 178550 cl12078 353355 -PLN02973 178556 cl17340 327413 -PLN02985 178566 cl27553 332374 -PLN02986 178567 cl21454 354811 -PLN02988 178568 cl23717 355015 -PLN02989 178569 cl21454 354811 -PLN02992 178572 cl10013 353042 -PLN02995 178574 PLN02995 178574 -PLN02997 178576 PLN02997 178576 -PLN02999 178577 cl23783 329073 -PLN03000 178578 PLN03000 178578 -PLN03002 178579 PLN03002 178579 -PLN03003 178580 cl19188 327514 -PLN03004 178581 cl10013 353042 -PLN03005 178582 cl17340 327413 -PLN03006 178583 cl00391 351071 -PLN03007 178584 cl10013 353042 -PLN03008 178585 PLN03008 178585 -PLN03013 178587 cl00342 294246 -PLN03014 178588 PLN03014 178588 -PLN03015 178589 cl10013 353042 -PLN03016 178590 cl08270 352865 -PLN03017 178591 cl21460 354816 -PLN03018 178592 cl12078 353355 -PLN03021 178593 cl26832 355577 -PLN03024 178595 cl29364 356240 -PLN03025 178596 PLN03025 178596 -PLN03026 178597 PLN03026 178597 -PLN03033 178601 cl17225 354324 -PLN03034 178602 cl00198 350943 -PLN03036 178603 PLN03036 178603 -PLN03043 178606 PLN03043 178606 -PLN03046 178608 cl17190 354320 -PLN03055 178613 PLN03055 178613 -PLN03065 178617 cl00445 351095 -PLN03070 178619 cl11425 325026 -PLN03071 178620 PLN03071 178620 -PLN03072 178621 PLN03072 178621 -PLN03075 178624 cl17173 354317 -PLN03079 178628 cl05017 352308 -PLN03080 178629 PLN03080 178629 -PLN03084 178633 PLN03084 178633 -PLN03086 178635 PLN03086 178635 -PLN03090 178639 cl23790 355049 -PLN03093 178641 cl06844 352592 -PLN03094 178642 PLN03094 178642 -PLN03097 178645 PLN03097 178645 -PLN03105 178652 cl23822 355059 -PLN03108 178655 PLN03108 178655 -PLN03110 178657 PLN03110 178657 -PLN03114 178661 PLN03114 178661 -PLN03117 178664 PLN03117 178664 -PLN03119 178666 PLN03119 178666 -PLN03122 178669 PLN03122 178669 -PLN03127 178673 PLN03127 178673 -PLN03131 178677 PLN03131 178677 -PLN03132 178678 cl30574 357450 -PLN03134 178680 PLN03134 178680 -PLN03136 178681 PLN03136 178681 -PLN03139 178684 PLN03139 178684 -PLN03144 178689 PLN03144 178689 -PLN03146 178691 PLN03146 178691 -PLN03147 178692 cl00350 351046 -PLN03148 178693 cl19115 354382 -PLN03149 178694 cl00197 350942 -PLN03150 178695 PLN03150 178695 -PLN03152 178697 cl03356 351982 -PLN03155 178700 PLN03155 178700 -PLN03156 178701 cl01053 351360 -PLN03157 178702 cl23789 355048 -PLN03161 178706 PLN03161 178706 -PLN03162 178707 PLN03162 178707 -PLN03165 178709 cl21539 354860 -PLN03166 178710 cl00955 321274 -PLN03168 178712 PLN03168 178712 -PLN03170 178714 PLN03170 178714 -PLN03171 178715 PLN03171 178715 -PLN03172 178716 PLN03172 178716 -PLN03173 178717 PLN03173 178717 -PLN03175 178719 cl03589 352024 -PLN03176 178720 cl21672 354900 -PLN03183 178725 cl27418 355650 -PLN03186 178728 PLN03186 178728 -PLN03193 178735 PLN03193 178735 -PLN03198 178739 PLN03198 178739 -PLN03199 178740 PLN03199 178740 -PLN03205 178744 PLN03205 178744 -PLN03206 178745 PLN03206 178745 -PLN03208 178747 PLN03208 178747 -PLN03209 178748 PLN03209 178748 -PLN03212 178751 PLN03212 178751 -PLN03213 178752 cl17169 354314 -PLN03215 178754 PLN03215 178754 -PLN03216 178755 cl15697 353973 -PLN03217 178756 PLN03217 178756 -PLN03219 178758 cl23790 355049 -PLN03220 178759 cl23790 355049 -PLN03221 178760 cl23823 329104 -PLN03222 178761 cl23823 329104 -PLN03224 178763 PLN03224 178763 -PLN03227 178766 cl18945 354370 -PLN03228 178767 PLN03228 178767 -PLN03229 178768 PLN03229 178768 -PLN03230 178769 PLN03230 178769 -PLN03231 178770 cl29077 355953 -PLN03233 178772 PLN03233 178772 -PLN03234 178773 cl12078 353355 -PLN03236 178774 PLN03236 178774 -PLN03239 178777 cl17182 354318 -PLN03240 178778 cl26832 355577 -PLN03242 178780 cl00738 321138 -PLN03244 178782 PLN03244 178782 -PRK00010 178791 PRK00010 178791 -PRK00024 178801 PRK00024 178801 -PRK00030 178806 PRK00030 178806 -PRK00031 178807 cl19192 354390 -PRK00033 178809 cl00933 351316 -PRK00034 178810 cl00495 351121 -PRK00041 178815 cl00506 351124 -PRK00066 178836 PRK00066 178836 -PRK00083 178850 cl00240 350977 -PRK00084 178851 cl10030 353048 -PRK00106 178867 PRK00106 178867 -PRK00124 178882 cl00727 321131 -PRK00130 178886 PRK00130 178886 -PRK00132 178888 cl00334 351035 -PRK00148 178901 cl00276 350998 -PRK00159 178907 cl11506 353280 -PRK00162 178908 cl00125 350910 -PRK00173 178914 PRK00173 178914 -PRK00194 178923 cl29106 355982 -PRK00199 178925 cl00257 350986 -PRK00203 178927 cl14782 353835 -PRK00207 178928 cl00672 351208 -PRK00211 178930 cl00672 351208 -PRK00227 178937 PRK00227 178937 -PRK00239 178943 cl00384 351067 -PRK00247 178945 PRK00247 178945 -PRK00253 178948 cl09139 352938 -PRK00276 178954 cl09927 353027 -PRK00277 178955 cl23717 355015 -PRK00284 178960 cl26808 355574 -PRK00285 178961 cl00257 350986 -PRK00299 178967 cl00436 320971 -PRK00306 178971 cl09943 353035 -PRK00312 178974 cl17173 354317 -PRK00329 178979 cl15257 353929 -PRK00357 178985 cl00350 351046 -PRK00364 178988 cl09113 352934 -PRK00373 178991 cl00613 351178 -PRK00378 178993 cl15473 353949 -PRK00391 178997 cl00373 351060 -PRK00395 179001 cl00259 350988 -PRK00396 179002 cl00457 351101 -PRK00399 179004 cl00370 351059 -PRK00400 179005 cl16941 354290 -PRK00407 179008 cl00606 351174 -PRK00414 179012 cl00389 351070 -PRK00415 179013 cl00897 294584 -PRK00430 179020 cl22895 304622 -PRK00435 179023 cl00194 350939 -PRK00441 179027 PRK00441 179027 -PRK00443 179028 cl00339 351040 -PRK00453 179034 cl00414 351083 -PRK00465 179039 cl00380 351063 -PRK00468 179040 cl00098 350899 -PRK00474 179041 cl00334 351035 -PRK00513 179052 cl29976 356852 -PRK00522 179055 cl00388 351069 -PRK00523 179056 cl23791 329080 -PRK00528 179057 cl00377 351062 -PRK00539 179059 PRK00539 179059 -PRK00553 179062 PRK00553 179062 -PRK00555 179063 PRK00555 179063 -PRK00564 179066 cl19201 354393 -PRK00588 179073 cl00457 351101 -PRK00595 179075 cl00383 351066 -PRK00596 179076 cl00314 351019 -PRK00642 179080 cl00217 350958 -PRK00665 179084 cl23824 329105 -PRK00668 179085 cl00335 351036 -PRK00683 179086 PRK00683 179086 -PRK00723 179097 cl03656 322379 -PRK00732 179101 cl09139 352938 -PRK00736 179103 cl01090 351375 -PRK00737 179104 cl00259 350988 -PRK00741 179105 PRK00741 179105 -PRK00745 179107 cl00235 350973 -PRK00748 179108 cl21457 354814 -PRK00754 179110 cl00617 321075 -PRK00756 179111 cl17182 354318 -PRK00758 179112 PRK00758 179112 -PRK00762 179113 cl19201 354393 -PRK00767 179115 cl27691 355670 -PRK00770 179117 cl00826 351274 -PRK00771 179118 PRK00771 179118 -PRK00790 179126 cl09139 352938 -PRK00794 179127 cl11455 353264 -PRK00807 179131 cl00909 321242 -PRK00808 179132 cl15774 353977 -PRK00809 179133 cl00728 321132 -PRK00819 179136 cl19470 354421 -PRK00831 179138 cl00380 351063 -PRK00843 179139 cl02872 351912 -PRK00846 179141 cl01090 351375 -PRK00855 179143 PRK00855 179143 -PRK00870 179147 cl21494 354836 -PRK00872 179149 cl07905 352837 -PRK00876 179150 cl00292 351005 -PRK00888 179156 cl11433 353251 -PRK00889 179157 cl21455 354812 -PRK00907 179161 cl01102 351379 -PRK00910 179162 cl00336 351037 -PRK00919 179167 PRK00919 179167 -PRK00924 179169 cl01508 351530 -PRK00939 179173 cl00229 350968 -PRK00941 179174 PRK00941 179174 -PRK00945 179177 cl22435 354938 -PRK00956 179181 cl19097 354378 -PRK00961 179184 PRK00961 179184 -PRK00962 179185 cl01641 321601 -PRK00965 179187 cl01678 321619 -PRK00967 179188 cl00426 351089 -PRK00973 179193 PRK00973 179193 -PRK00977 179195 cl00750 351237 -PRK00982 179197 cl09936 324546 -PRK00989 179199 PRK00989 179199 -PRK01002 179203 PRK01002 179203 -PRK01005 179204 cl23777 304934 -PRK01018 179205 cl00600 351171 -PRK01024 179207 cl00779 351251 -PRK01026 179208 PRK01026 179208 -PRK01060 179214 cl23721 355019 -PRK01064 179216 cl00098 350899 -PRK01076 179217 cl23721 355019 -PRK01099 179220 cl14651 353822 -PRK01119 179228 cl00426 351089 -PRK01151 179234 cl00610 351176 -PRK01153 179235 cl00015 350862 -PRK01178 179239 cl00878 351295 -PRK01185 179241 cl01255 321418 -PRK01211 179247 cl00281 351001 -PRK01215 179250 PRK01215 179250 -PRK01216 179251 PRK01216 179251 -PRK01217 179252 cl00426 351089 -PRK01220 179253 cl06082 352463 -PRK01231 179257 cl01255 321418 -PRK01242 179261 cl00952 321272 -PRK01250 179262 cl00217 350958 -PRK01253 179263 cl09194 352948 -PRK01271 179269 cl00235 350973 -PRK01278 179270 cl18945 354370 -PRK01322 179280 cl00625 351183 -PRK01326 179281 PRK01326 179281 -PRK01368 179286 PRK01368 179286 -PRK01371 179287 cl00788 294511 -PRK01381 179289 cl21459 354815 -PRK01395 179293 cl00632 351187 -PRK01397 179294 cl00377 351062 -PRK01438 179297 PRK01438 179297 -PRK01470 179298 cl00788 294511 -PRK01528 179300 PRK01528 179300 -PRK01558 179302 cl23777 304934 -PRK01574 179304 cl00458 351102 -PRK01622 179310 cl00489 351116 -PRK01625 179311 cl06949 323687 -PRK01636 179312 cl09114 352935 -PRK01637 179313 cl07918 352838 -PRK01641 179314 cl00215 350957 -PRK01655 179316 cl00388 351069 -PRK01699 179322 cl09139 352938 -PRK01710 179323 PRK01710 179323 -PRK01732 179327 cl00457 351101 -PRK01742 179329 cl29726 356602 -PRK01752 179332 PRK01752 179332 -PRK01770 179334 cl00788 294511 -PRK01773 179335 PRK01773 179335 -PRK01810 179337 PRK01810 179337 -PRK01816 179338 cl01183 351414 -PRK01839 179341 cl00276 350998 -PRK01885 179345 cl29089 355965 -PRK01905 179348 cl22895 304622 -PRK01906 179349 cl23778 355043 -PRK01908 179350 cl01081 351373 -PRK01911 179352 cl01255 321418 -PRK01917 179353 cl15774 353977 -PRK01964 179355 cl00235 350973 -PRK02001 179358 cl00259 350988 -PRK02047 179360 cl01102 351379 -PRK02048 179361 cl30731 357607 -PRK02079 179362 cl05126 352319 -PRK02102 179366 PRK02102 179366 -PRK02103 179367 cl06082 352463 -PRK02113 179371 cl23716 355014 -PRK02118 179373 PRK02118 179373 -PRK02155 179379 cl01255 321418 -PRK02193 179381 PRK02193 179381 -PRK02195 179382 cl00613 351178 -PRK02224 179385 PRK02224 179385 -PRK02228 179387 cl00632 351187 -PRK02230 179388 cl00217 350958 -PRK02240 179391 cl19424 267777 -PRK02249 179392 PRK02249 179392 -PRK02250 179393 PRK02250 179393 -PRK02251 179394 cl11506 353280 -PRK02253 179395 cl00493 351119 -PRK02260 179399 cl00802 351261 -PRK02261 179400 cl00293 351006 -PRK02265 179402 cl01919 351639 -PRK02289 179406 cl00235 350973 -PRK02302 179410 cl23792 355050 -PRK02382 179417 cl00281 351001 -PRK02391 179418 cl12018 353340 -PRK02399 179420 cl02262 351713 -PRK02471 179427 PRK02471 179427 -PRK02487 179430 cl01249 351440 -PRK02491 179431 PRK02491 179431 -PRK02496 179433 PRK02496 179433 -PRK02539 179440 cl01722 321631 -PRK02542 179441 cl03567 322352 -PRK02551 179443 cl00438 351093 -PRK02557 179444 PRK02557 179444 -PRK02565 179446 cl27498 332319 -PRK02603 179448 PRK02603 179448 -PRK02624 179451 cl23793 329082 -PRK02645 179455 cl01255 321418 -PRK02649 179456 cl01255 321418 -PRK02651 179457 cl19102 354379 -PRK02655 179459 cl27410 332231 -PRK02693 179460 cl29887 356763 -PRK02749 179468 cl03585 322357 -PRK02755 179469 PRK02755 179469 -PRK02793 179472 cl01090 351375 -PRK02794 179473 PRK02794 179473 -PRK02816 179478 cl07930 324183 -PRK02821 179479 cl00098 350899 -PRK02854 179484 PRK02854 179484 -PRK02862 179486 PRK02862 179486 -PRK02877 179490 cl00426 351089 -PRK02886 179491 cl23792 355050 -PRK02898 179494 cl00842 321203 -PRK02899 179495 cl02022 351660 -PRK02909 179497 cl05012 352305 -PRK02913 179499 cl01983 351655 -PRK02922 179501 cl23912 305069 -PRK02929 179503 cl00947 351326 -PRK02935 179504 cl23913 329166 -PRK02936 179505 cl18945 354370 -PRK02939 179506 cl23914 329167 -PRK02944 179508 cl00489 351116 -PRK02947 179510 cl00389 351070 -PRK02948 179511 cl18945 354370 -PRK02955 179513 cl07940 352840 -PRK02975 179518 cl11643 353302 -PRK02984 179520 cl07943 324185 -PRK02998 179522 PRK02998 179522 -PRK03001 179524 cl12018 353340 -PRK03003 179525 PRK03003 179525 -PRK03057 179529 PRK03057 179529 -PRK03065 179531 cl07944 324186 -PRK03081 179534 cl23915 329168 -PRK03092 179535 PRK03092 179535 -PRK03094 179536 cl04214 322568 -PRK03095 179537 PRK03095 179537 -PRK03100 179538 cl00788 294511 -PRK03113 179540 cl00649 351195 -PRK03114 179541 cl00866 351289 -PRK03137 179543 cl11961 353326 -PRK03140 179544 cl03656 322379 -PRK03147 179545 cl00388 351069 -PRK03174 179548 cl06949 323687 -PRK03195 179552 cl02324 351729 -PRK03204 179554 PRK03204 179554 -PRK03321 179559 PRK03321 179559 -PRK03333 179560 PRK03333 179560 -PRK03352 179564 PRK03352 179564 -PRK03354 179566 PRK03354 179566 -PRK03355 179567 cl17185 354319 -PRK03356 179568 cl00569 321047 -PRK03359 179569 cl00292 351005 -PRK03369 179571 PRK03369 179571 -PRK03371 179572 cl00873 351292 -PRK03379 179575 cl00262 350990 -PRK03437 179579 cl00445 351095 -PRK03449 179580 cl00489 351116 -PRK03482 179583 cl11399 353243 -PRK03501 179584 cl01255 321418 -PRK03511 179585 PRK03511 179585 -PRK03512 179586 cl21457 354814 -PRK03515 179587 PRK03515 179587 -PRK03525 179589 cl19215 327522 -PRK03545 179591 cl28910 355786 -PRK03554 179592 cl00788 294511 -PRK03564 179595 cl19312 354411 -PRK03573 179596 cl21459 354815 -PRK03580 179599 cl23717 355015 -PRK03600 179603 cl00438 351093 -PRK03606 179606 cl01250 321414 -PRK03609 179607 PRK03609 179607 -PRK03625 179612 cl00788 294511 -PRK03633 179614 PRK03633 179614 -PRK03634 179615 cl00214 350956 -PRK03641 179619 cl11437 353255 -PRK03642 179620 cl21491 354834 -PRK03646 179622 cl27635 355667 -PRK03659 179625 PRK03659 179625 -PRK03660 179626 cl00075 350890 -PRK03661 179627 cl00666 351203 -PRK03669 179628 PRK03669 179628 -PRK03673 179629 PRK03673 179629 -PRK03681 179630 cl19201 354393 -PRK03692 179631 cl04270 352142 -PRK03708 179635 cl01255 321418 -PRK03715 179636 cl18945 354370 -PRK03719 179637 cl00178 350932 -PRK03735 179639 PRK03735 179639 -PRK03743 179641 cl00873 351292 -PRK03757 179642 cl01001 351343 -PRK03762 179646 cl00494 351120 -PRK03767 179647 cl00438 351093 -PRK03776 179648 cl23718 355016 -PRK03806 179651 PRK03806 179651 -PRK03818 179654 PRK03818 179654 -PRK03822 179655 cl29153 356029 -PRK03830 179658 cl07951 186720 -PRK03839 179660 cl17190 354320 -PRK03846 179661 cl17190 354320 -PRK03858 179663 PRK03858 179663 -PRK03892 179667 cl23724 355021 -PRK03893 179668 PRK03893 179668 -PRK03902 179669 PRK03902 179669 -PRK03910 179673 cl00342 294246 -PRK03922 179676 cl00818 321190 -PRK03926 179677 PRK03926 179677 -PRK03946 179681 cl00873 351292 -PRK03955 179684 cl00215 350957 -PRK03957 179685 cl00632 351187 -PRK03971 179688 cl00826 351274 -PRK03972 179689 cl00935 351318 -PRK03975 179690 PRK03975 179690 -PRK03992 179699 PRK03992 179699 -PRK04012 179708 cl09927 353027 -PRK04017 179711 cl00718 351226 -PRK04019 179712 cl00376 351061 -PRK04025 179716 cl00687 351215 -PRK04034 179721 cl00330 351032 -PRK04046 179728 cl00241 350978 -PRK04051 179730 PRK04051 179730 -PRK04056 179732 cl00276 350998 -PRK04059 179734 cl00955 321274 -PRK04073 179736 cl18945 354370 -PRK04099 179739 PRK04099 179739 -PRK04101 179740 cl14632 353816 -PRK04135 179745 PRK04135 179745 -PRK04136 179746 cl00671 351207 -PRK04147 179749 cl28986 355862 -PRK04151 179752 cl01330 351466 -PRK04175 179766 cl00600 351171 -PRK04180 179769 cl21457 354814 -PRK04190 179774 cl21464 354820 -PRK04200 179781 PRK04200 179781 -PRK04205 179785 cl00799 321175 -PRK04207 179786 PRK04207 179786 -PRK04208 179787 PRK04208 179787 -PRK04213 179790 PRK04213 179790 -PRK04214 179791 PRK04214 179791 -PRK04220 179793 PRK04220 179793 -PRK04223 179794 cl00327 351030 -PRK04239 179798 cl00928 351314 -PRK04257 179802 cl00661 321099 -PRK04260 179803 PRK04260 179803 -PRK04270 179806 PRK04270 179806 -PRK04280 179807 PRK04280 179807 -PRK04288 179810 cl00596 351167 -PRK04293 179812 cl28913 355789 -PRK04313 179820 PRK04313 179820 -PRK04323 179823 cl00898 351304 -PRK04325 179824 cl01090 351375 -PRK04326 179825 cl00464 320986 -PRK04337 179831 cl01033 321311 -PRK04374 179839 PRK04374 179839 -PRK04387 179841 cl23825 355060 -PRK04390 179843 cl00457 351101 -PRK04424 179847 PRK04424 179847 -PRK04435 179848 cl28492 333312 -PRK04457 179854 cl17173 354317 -PRK04460 179855 PRK04460 179855 -PRK04516 179856 PRK04516 179856 -PRK04539 179862 cl01255 321418 -PRK04542 179863 cl29230 356106 -PRK04561 179864 cl00788 294511 -PRK04598 179867 cl00788 294511 -PRK04612 179868 cl18945 354370 -PRK04635 179869 cl18945 354370 -PRK04642 179870 PRK04642 179870 -PRK04663 179871 PRK04663 179871 -PRK04690 179872 PRK04690 179872 -PRK04694 179873 cl00276 350998 -PRK04758 179875 cl01173 351409 -PRK04761 179876 cl01255 321418 -PRK04778 179877 PRK04778 179877 -PRK04804 179880 PRK04804 179880 -PRK04820 179882 cl00457 351101 -PRK04833 179883 PRK04833 179883 -PRK04860 179886 cl19237 354398 -PRK04870 179888 cl18945 354370 -PRK04922 179892 PRK04922 179892 -PRK04923 179893 PRK04923 179893 -PRK04930 179895 cl00438 351093 -PRK04940 179896 cl21494 354836 -PRK04949 179898 cl01126 351395 -PRK04964 179901 cl23916 329169 -PRK04965 179902 PRK04965 179902 -PRK04966 179903 cl01180 351413 -PRK04972 179905 PRK04972 179905 -PRK04980 179908 cl01020 351351 -PRK04984 179909 PRK04984 179909 -PRK04998 179912 cl01102 351379 -PRK05014 179914 PRK05014 179914 -PRK05054 179920 PRK05054 179920 -PRK05066 179922 PRK05066 179922 -PRK05070 179923 cl00516 351129 -PRK05087 179929 cl09936 324546 -PRK05090 179931 cl00811 351266 -PRK05093 179933 cl18945 354370 -PRK05094 179934 cl11472 353269 -PRK05101 179937 PRK05101 179937 -PRK05114 179941 cl22520 354945 -PRK05166 179950 PRK05166 179950 -PRK05168 179951 cl10012 353041 -PRK05174 179953 cl00509 351126 -PRK05185 179959 cl00393 351073 -PRK05208 179964 cl01078 351371 -PRK05234 179969 cl00245 320852 -PRK05257 179979 cl21454 354811 -PRK05260 179980 cl11468 325046 -PRK05264 179982 cl23788 304945 -PRK05282 179990 cl00020 350865 -PRK05293 179997 PRK05293 179997 -PRK05309 180007 cl00332 320911 -PRK05313 180009 cl09939 353033 -PRK05350 180033 cl09936 324546 -PRK05365 180040 cl00514 321015 -PRK05377 180045 cl28986 355862 -PRK05396 180054 PRK05396 180054 -PRK05398 180055 cl19215 327522 -PRK05408 180059 cl01104 351381 -PRK05412 180061 cl00723 351228 -PRK05423 180070 cl23839 329116 -PRK05424 180071 cl00322 351025 -PRK05445 180087 cl01137 321365 -PRK05449 180090 cl00540 351143 -PRK05461 180098 cl01119 351390 -PRK05463 180100 cl01790 351601 -PRK05470 180105 cl00881 351296 -PRK05473 180108 cl01857 351619 -PRK05483 180117 cl00328 351031 -PRK05500 180119 PRK05500 180119 -PRK05506 180120 PRK05506 180120 -PRK05508 180121 cl15841 353987 -PRK05537 180124 PRK05537 180124 -PRK05564 180132 PRK05564 180132 -PRK05572 180137 PRK05572 180137 -PRK05575 180140 cl00913 351310 -PRK05578 180142 cl00269 350994 -PRK05584 180148 cl00303 351011 -PRK05586 180150 PRK05586 180150 -PRK05609 180161 PRK05609 180161 -PRK05611 180163 cl00203 350947 -PRK05614 180164 PRK05614 180164 -PRK05620 180167 PRK05620 180167 -PRK05625 180169 cl17279 354327 -PRK05626 180170 cl00349 351045 -PRK05628 180172 PRK05628 180172 -PRK05629 180173 cl27925 332746 -PRK05630 180174 cl18945 354370 -PRK05636 180177 PRK05636 180177 -PRK05637 180178 cl00020 350865 -PRK05664 180188 cl18945 354370 -PRK05675 180193 cl30765 357641 -PRK05678 180194 PRK05678 180194 -PRK05680 180196 PRK05680 180196 -PRK05690 180204 PRK05690 180204 -PRK05692 180206 cl21457 354814 -PRK05696 180207 cl00681 351211 -PRK05707 180215 PRK05707 180215 -PRK05715 180218 cl00492 351118 -PRK05742 180230 PRK05742 180230 -PRK05748 180232 PRK05748 180232 -PRK05751 180234 cl00251 350983 -PRK05753 180236 PRK05753 180236 -PRK05759 180240 PRK05759 180240 -PRK05760 180241 cl09170 352943 -PRK05767 180247 cl00706 351221 -PRK05784 180256 PRK05784 180256 -PRK05790 180261 PRK05790 180261 -PRK05799 180263 PRK05799 180263 -PRK05803 180266 PRK05803 180266 -PRK05805 180267 cl17212 354323 -PRK05808 180269 PRK05808 180269 -PRK05809 180270 cl23717 355015 -PRK05819 180275 cl00303 351011 -PRK05820 180276 cl29556 356432 -PRK05828 180278 cl09936 324546 -PRK05834 180279 cl00214 350956 -PRK05835 180280 cl21457 354814 -PRK05839 180281 PRK05839 180281 -PRK05844 180284 cl00546 351146 -PRK05848 180286 PRK05848 180286 -PRK05851 180289 PRK05851 180289 -PRK05857 180293 PRK05857 180293 -PRK05862 180295 cl23717 355015 -PRK05868 180297 cl21454 354811 -PRK05870 180298 cl23717 355015 -PRK05875 180300 cl21454 354811 -PRK05880 180303 cl00466 351103 -PRK05883 180304 cl09936 324546 -PRK05889 180306 cl11404 353245 -PRK05892 180307 PRK05892 180307 -PRK05920 180312 cl19190 327515 -PRK05933 180315 PRK05933 180315 -PRK05942 180317 PRK05942 180317 -PRK05943 180318 cl00787 351255 -PRK05945 180319 PRK05945 180319 -PRK05948 180320 cl00304 351012 -PRK05949 180321 PRK05949 180321 -PRK05951 180323 cl00337 351038 -PRK05953 180325 cl00913 351310 -PRK05954 180326 cl00913 351310 -PRK05963 180328 PRK05963 180328 -PRK05965 180330 cl18945 354370 -PRK05978 180334 cl02211 351704 -PRK05980 180335 cl23717 355015 -PRK05985 180337 cl00281 351001 -PRK05988 180339 cl00388 351069 -PRK05990 180341 cl00304 351012 -PRK05991 180342 cl00304 351012 -PRK05993 180343 cl21454 354811 -PRK05994 180344 cl18945 354370 -PRK06005 180347 cl00555 351151 -PRK06026 180353 cl00303 351011 -PRK06030 180356 cl07055 352649 -PRK06033 180359 cl29525 356401 -PRK06035 180361 PRK06035 180361 -PRK06036 180362 cl00348 351044 -PRK06038 180363 cl00281 351001 -PRK06043 180366 cl00795 351258 -PRK06046 180367 PRK06046 180367 -PRK06048 180368 PRK06048 180368 -PRK06057 180371 PRK06057 180371 -PRK06059 180373 PRK06059 180373 -PRK06060 180374 PRK06060 180374 -PRK06063 180377 PRK06063 180377 -PRK06065 180379 PRK06065 180379 -PRK06066 180380 PRK06066 180380 -PRK06067 180381 cl21455 354812 -PRK06075 180385 cl21493 354835 -PRK06078 180387 PRK06078 180387 -PRK06082 180390 cl18945 354370 -PRK06083 180391 cl28922 355798 -PRK06084 180392 cl18945 354370 -PRK06087 180393 PRK06087 180393 -PRK06090 180394 PRK06090 180394 -PRK06091 180395 PRK06091 180395 -PRK06096 180397 PRK06096 180397 -PRK06100 180398 cl11436 353254 -PRK06101 180399 cl21454 354811 -PRK06105 180401 cl18945 354370 -PRK06106 180402 PRK06106 180402 -PRK06107 180403 PRK06107 180403 -PRK06108 180404 PRK06108 180404 -PRK06111 180406 PRK06111 180406 -PRK06114 180408 PRK06114 180408 -PRK06115 180409 cl30684 357560 -PRK06123 180411 cl21454 354811 -PRK06128 180413 PRK06128 180413 -PRK06134 180419 PRK06134 180419 -PRK06141 180421 PRK06141 180421 -PRK06143 180423 cl23717 355015 -PRK06144 180424 cl23717 355015 -PRK06148 180426 PRK06148 180426 -PRK06151 180428 cl00281 351001 -PRK06157 180433 PRK06157 180433 -PRK06158 180434 PRK06158 180434 -PRK06161 180435 cl09154 352941 -PRK06169 180437 cl18951 354371 -PRK06171 180439 PRK06171 180439 -PRK06172 180440 PRK06172 180440 -PRK06173 180441 PRK06173 180441 -PRK06175 180442 cl21454 354811 -PRK06176 180443 cl18945 354370 -PRK06180 180446 cl21454 354811 -PRK06182 180448 PRK06182 180448 -PRK06186 180452 PRK06186 180452 -PRK06194 180458 PRK06194 180458 -PRK06198 180462 PRK06198 180462 -PRK06201 180465 cl00480 351111 -PRK06202 180466 cl17173 354317 -PRK06209 180471 cl18945 354370 -PRK06210 180472 cl23717 355015 -PRK06223 180477 PRK06223 180477 -PRK06231 180481 cl21478 354827 -PRK06233 180482 cl00464 320986 -PRK06242 180484 cl00438 351093 -PRK06245 180485 PRK06245 180485 -PRK06246 180486 cl00851 351282 -PRK06247 180487 PRK06247 180487 -PRK06249 180488 cl29748 356624 -PRK06271 180501 PRK06271 180501 -PRK06278 180505 PRK06278 180505 -PRK06279 180506 cl00807 351263 -PRK06281 180508 cl00676 351209 -PRK06285 180509 cl00693 351218 -PRK06287 180511 cl07986 324188 -PRK06293 180517 cl09930 353029 -PRK06294 180518 PRK06294 180518 -PRK06298 180519 cl19167 354387 -PRK06305 180523 PRK06305 180523 -PRK06309 180524 PRK06309 180524 -PRK06310 180525 PRK06310 180525 -PRK06315 180526 PRK06315 180526 -PRK06321 180528 PRK06321 180528 -PRK06328 180530 cl30578 357454 -PRK06334 180533 PRK06334 180533 -PRK06342 180535 cl29089 355965 -PRK06347 180536 PRK06347 180536 -PRK06348 180537 PRK06348 180537 -PRK06352 180539 cl00342 294246 -PRK06357 180541 cl00214 350956 -PRK06358 180542 PRK06358 180542 -PRK06361 180543 PRK06361 180543 -PRK06371 180547 cl00348 351044 -PRK06380 180548 cl00281 351001 -PRK06382 180550 PRK06382 180550 -PRK06407 180556 cl21454 354811 -PRK06418 180559 PRK06418 180559 -PRK06427 180561 cl00192 350937 -PRK06433 180562 cl21484 354830 -PRK06445 180563 PRK06445 180563 -PRK06450 180565 PRK06450 180565 -PRK06452 180567 cl30765 357641 -PRK06456 180569 PRK06456 180569 -PRK06457 180570 PRK06457 180570 -PRK06461 180574 cl09930 353029 -PRK06463 180576 PRK06463 180576 -PRK06466 180578 PRK06466 180578 -PRK06467 180579 cl30684 357560 -PRK06475 180582 cl21454 354811 -PRK06481 180584 PRK06481 180584 -PRK06483 180586 cl21454 354811 -PRK06487 180588 cl21454 354811 -PRK06490 180590 cl00020 350865 -PRK06494 180591 cl23717 355015 -PRK06498 180592 cl21457 354814 -PRK06504 180595 PRK06504 180595 -PRK06505 180596 cl21454 354811 -PRK06508 180597 cl09936 324546 -PRK06512 180598 cl21457 354814 -PRK06520 180601 cl00464 320986 -PRK06523 180604 PRK06523 180604 -PRK06524 180605 PRK06524 180605 -PRK06525 180606 PRK06525 180606 -PRK06526 180607 cl30760 357636 -PRK06529 180608 cl18951 354371 -PRK06539 180610 PRK06539 180610 -PRK06543 180612 PRK06543 180612 -PRK06546 180614 PRK06546 180614 -PRK06550 180617 cl21454 354811 -PRK06552 180618 cl21457 354814 -PRK06555 180620 cl00204 350948 -PRK06563 180625 cl23717 355015 -PRK06565 180626 cl18951 354371 -PRK06569 180627 cl21478 354827 -PRK06580 180628 cl00807 351263 -PRK06582 180630 PRK06582 180630 -PRK06602 180638 cl00535 351141 -PRK06645 180643 PRK06645 180643 -PRK06649 180645 PRK06649 180645 -PRK06663 180648 PRK06663 180648 -PRK06665 180650 PRK06665 180650 -PRK06667 180652 PRK06667 180652 -PRK06672 180654 PRK06672 180654 -PRK06680 180656 cl00224 350964 -PRK06687 180657 cl00281 351001 -PRK06690 180659 PRK06690 180659 -PRK06696 180660 cl17190 354320 -PRK06704 180663 PRK06704 180663 -PRK06705 180664 PRK06705 180664 -PRK06710 180666 PRK06710 180666 -PRK06718 180667 cl25954 355468 -PRK06719 180668 cl25954 355468 -PRK06720 180669 cl21454 354811 -PRK06722 180670 PRK06722 180670 -PRK06724 180671 cl14632 353816 -PRK06725 180672 PRK06725 180672 -PRK06733 180674 cl00381 351064 -PRK06737 180675 cl29106 355982 -PRK06739 180676 cl29628 356504 -PRK06740 180677 cl23724 355021 -PRK06748 180678 cl11404 353245 -PRK06754 180679 cl00214 350956 -PRK06760 180681 cl11698 353312 -PRK06761 180682 cl21455 354812 -PRK06767 180685 cl18945 354370 -PRK06769 180686 PRK06769 180686 -PRK06770 180687 PRK06770 180687 -PRK06771 180688 PRK06771 180688 -PRK06774 180689 cl00020 350865 -PRK06777 180690 cl18945 354370 -PRK06788 180693 PRK06788 180693 -PRK06789 180694 cl29525 356401 -PRK06792 180695 PRK06792 180695 -PRK06793 180696 PRK06793 180696 -PRK06797 180697 cl30383 357259 -PRK06798 180698 PRK06798 180698 -PRK06799 180699 PRK06799 180699 -PRK06800 180700 PRK06800 180700 -PRK06801 180701 cl21457 354814 -PRK06802 180702 PRK06802 180702 -PRK06806 180705 cl21457 354814 -PRK06811 180707 PRK06811 180707 -PRK06815 180709 cl00342 294246 -PRK06820 180712 PRK06820 180712 -PRK06827 180714 PRK06827 180714 -PRK06828 180715 cl18951 354371 -PRK06833 180717 cl00214 350956 -PRK06836 180720 PRK06836 180720 -PRK06837 180721 PRK06837 180721 -PRK06841 180723 PRK06841 180723 -PRK06842 180724 cl00795 351258 -PRK06843 180725 PRK06843 180725 -PRK06852 180731 cl21457 354814 -PRK06853 180732 cl00546 351146 -PRK06855 180734 PRK06855 180734 -PRK06856 180735 cl11436 353254 -PRK06871 180738 PRK06871 180738 -PRK06876 180739 cl00466 351103 -PRK06886 180740 cl00281 351001 -PRK06911 180742 cl00355 351051 -PRK06912 180743 cl30684 357560 -PRK06914 180744 cl21454 354811 -PRK06915 180745 cl14876 353847 -PRK06916 180746 cl18945 354370 -PRK06920 180749 PRK06920 180749 -PRK06921 180750 PRK06921 180750 -PRK06922 180751 PRK06922 180751 -PRK06924 180753 cl21454 354811 -PRK06926 180755 cl00568 351156 -PRK06930 180757 PRK06930 180757 -PRK06934 180760 cl00438 351093 -PRK06935 180761 PRK06935 180761 -PRK06936 180762 PRK06936 180762 -PRK06937 180763 cl30578 357454 -PRK06940 180766 cl21454 354811 -PRK06944 180768 cl28922 355798 -PRK06946 180770 cl17185 354319 -PRK06947 180771 cl21454 354811 -PRK06948 180772 PRK06948 180772 -PRK06949 180773 PRK06949 180773 -PRK06953 180774 cl21454 354811 -PRK06954 180775 PRK06954 180775 -PRK06958 180777 cl09930 353029 -PRK06965 180780 PRK06965 180780 -PRK06973 180781 cl00015 350862 -PRK06997 180789 PRK06997 180789 -PRK07006 180792 cl00445 351095 -PRK07018 180794 PRK07018 180794 -PRK07023 180796 cl21454 354811 -PRK07030 180800 cl18945 354370 -PRK07033 180801 PRK07033 180801 -PRK07035 180802 cl21454 354811 -PRK07037 180803 PRK07037 180803 -PRK07049 180809 cl18945 354370 -PRK07050 180810 cl18945 354370 -PRK07051 180811 cl11404 353245 -PRK07057 180814 cl30765 357641 -PRK07060 180817 PRK07060 180817 -PRK07062 180818 PRK07062 180818 -PRK07064 180820 PRK07064 180820 -PRK07069 180822 cl21454 354811 -PRK07074 180823 PRK07074 180823 -PRK07081 180828 cl09936 324546 -PRK07084 180829 cl21457 354814 -PRK07088 180831 PRK07088 180831 -PRK07090 180832 cl00214 350956 -PRK07094 180835 PRK07094 180835 -PRK07102 180838 PRK07102 180838 -PRK07103 180839 cl09938 353032 -PRK07105 180840 cl00192 350937 -PRK07106 180841 cl29462 356338 -PRK07107 180842 PRK07107 180842 -PRK07108 180843 PRK07108 180843 -PRK07116 180850 cl00438 351093 -PRK07117 180851 cl09936 324546 -PRK07121 180854 PRK07121 180854 -PRK07132 180855 PRK07132 180855 -PRK07168 180864 PRK07168 180864 -PRK07178 180865 PRK07178 180865 -PRK07179 180866 cl18945 354370 -PRK07191 180871 PRK07191 180871 -PRK07196 180875 PRK07196 180875 -PRK07206 180883 PRK07206 180883 -PRK07211 180887 PRK07211 180887 -PRK07218 180890 PRK07218 180890 -PRK07220 180892 PRK07220 180892 -PRK07228 180895 cl00281 351001 -PRK07238 180903 PRK07238 180903 -PRK07246 180905 PRK07246 180905 -PRK07247 180906 cl10012 353041 -PRK07251 180907 PRK07251 180907 -PRK07252 180908 PRK07252 180908 -PRK07260 180910 cl23717 355015 -PRK07261 180911 cl21455 354812 -PRK07274 180914 cl09930 353029 -PRK07275 180915 cl09930 353029 -PRK07276 180916 PRK07276 180916 -PRK07279 180917 PRK07279 180917 -PRK07281 180918 cl00279 351000 -PRK07282 180919 PRK07282 180919 -PRK07283 180920 cl00600 351171 -PRK07306 180921 PRK07306 180921 -PRK07308 180922 cl00438 351093 -PRK07315 180926 cl21457 354814 -PRK07322 180928 cl00309 351014 -PRK07329 180933 cl23724 355021 -PRK07333 180935 cl21454 354811 -PRK07337 180937 PRK07337 180937 -PRK07352 180941 PRK07352 180941 -PRK07354 180942 cl00466 351103 -PRK07362 180944 cl00445 351095 -PRK07363 180945 PRK07363 180945 -PRK07366 180947 PRK07366 180947 -PRK07370 180949 PRK07370 180949 -PRK07380 180954 PRK07380 180954 -PRK07396 180958 cl23717 355015 -PRK07400 180960 PRK07400 180960 -PRK07402 180961 cl17173 354317 -PRK07403 180962 PRK07403 180962 -PRK07405 180963 PRK07405 180963 -PRK07408 180965 PRK07408 180965 -PRK07411 180967 PRK07411 180967 -PRK07413 180968 PRK07413 180968 -PRK07415 180969 cl21493 354835 -PRK07417 180970 cl30685 357561 -PRK07429 180975 PRK07429 180975 -PRK07432 180977 cl00303 351011 -PRK07440 180978 cl28922 355798 -PRK07452 180982 PRK07452 180982 -PRK07453 180983 cl21454 354811 -PRK07454 180984 PRK07454 180984 -PRK07455 180985 cl21457 354814 -PRK07459 180986 cl09930 353029 -PRK07468 180987 cl23717 355015 -PRK07470 180988 PRK07470 180988 -PRK07478 180993 cl21454 354811 -PRK07480 180994 cl18945 354370 -PRK07492 181000 PRK07492 181000 -PRK07494 181001 PRK07494 181001 -PRK07503 181005 cl18945 354370 -PRK07505 181006 PRK07505 181006 -PRK07509 181008 cl23717 355015 -PRK07511 181009 cl23717 355015 -PRK07514 181011 PRK07514 181011 -PRK07516 181013 PRK07516 181013 -PRK07530 181018 PRK07530 181018 -PRK07533 181020 cl21454 354811 -PRK07535 181022 cl00219 350959 -PRK07539 181024 cl00388 351069 -PRK07544 181025 cl00224 350964 -PRK07550 181026 PRK07550 181026 -PRK07558 181027 cl00466 351103 -PRK07559 181028 PRK07559 181028 -PRK07567 181035 cl00020 350865 -PRK07568 181036 PRK07568 181036 -PRK07569 181037 PRK07569 181037 -PRK07570 181038 PRK07570 181038 -PRK07572 181039 cl00281 351001 -PRK07574 181041 PRK07574 181041 -PRK07577 181044 PRK07577 181044 -PRK07590 181053 PRK07590 181053 -PRK07608 181057 PRK07608 181057 -PRK07609 181058 PRK07609 181058 -PRK07627 181059 cl00281 351001 -PRK07631 181061 PRK07631 181061 -PRK07634 181063 PRK07634 181063 -PRK07639 181065 cl09936 324546 -PRK07649 181066 cl00020 350865 -PRK07650 181067 cl00224 350964 -PRK07657 181069 cl23717 355015 -PRK07658 181070 cl23717 355015 -PRK07661 181072 PRK07661 181072 -PRK07668 181074 PRK07668 181074 -PRK07670 181075 PRK07670 181075 -PRK07671 181076 cl18945 354370 -PRK07677 181077 PRK07677 181077 -PRK07678 181078 cl18945 354370 -PRK07679 181079 PRK07679 181079 -PRK07680 181080 PRK07680 181080 -PRK07681 181081 PRK07681 181081 -PRK07682 181082 PRK07682 181082 -PRK07688 181084 PRK07688 181084 -PRK07691 181085 PRK07691 181085 -PRK07695 181086 cl28888 355772 -PRK07701 181087 PRK07701 181087 -PRK07708 181088 PRK07708 181088 -PRK07718 181090 cl00681 351211 -PRK07720 181091 cl23733 355026 -PRK07721 181092 PRK07721 181092 -PRK07758 181104 cl22429 354935 -PRK07765 181107 cl00020 350865 -PRK07769 181109 PRK07769 181109 -PRK07775 181113 PRK07775 181113 -PRK07785 181115 cl19197 354392 -PRK07792 181120 PRK07792 181120 -PRK07799 181122 cl23717 355015 -PRK07801 181123 PRK07801 181123 -PRK07806 181126 cl21454 354811 -PRK07807 181127 PRK07807 181127 -PRK07814 181131 PRK07814 181131 -PRK07819 181133 PRK07819 181133 -PRK07825 181136 PRK07825 181136 -PRK07832 181139 cl21454 354811 -PRK07846 181142 cl30684 357560 -PRK07850 181145 PRK07850 181145 -PRK07851 181146 PRK07851 181146 -PRK07855 181147 PRK07855 181147 -PRK07869 181154 cl18951 354371 -PRK07878 181156 PRK07878 181156 -PRK07890 181159 PRK07890 181159 -PRK07904 181162 cl21454 354811 -PRK07906 181163 PRK07906 181163 -PRK07921 181169 PRK07921 181169 -PRK07928 181171 cl00535 351141 -PRK07937 181173 PRK07937 181173 -PRK07938 181174 cl23717 355015 -PRK07942 181176 cl10012 353041 -PRK07948 181179 cl09154 352941 -PRK07952 181180 cl30760 357636 -PRK07960 181182 PRK07960 181182 -PRK07963 181183 PRK07963 181183 -PRK07967 181184 cl09938 353032 -PRK07979 181185 PRK07979 181185 -PRK07983 181186 PRK07983 181186 -PRK07984 181187 cl21454 354811 -PRK07985 181188 PRK07985 181188 -PRK07986 181189 cl18945 354370 -PRK07993 181190 PRK07993 181190 -PRK07998 181192 cl21457 354814 -PRK08006 181193 PRK08006 181193 -PRK08007 181194 cl00020 350865 -PRK08008 181195 PRK08008 181195 -PRK08010 181196 PRK08010 181196 -PRK08017 181198 PRK08017 181198 -PRK08020 181199 cl21454 354811 -PRK08025 181200 cl17185 354319 -PRK08027 181202 PRK08027 181202 -PRK08035 181204 cl30866 357742 -PRK08040 181205 PRK08040 181205 -PRK08042 181206 PRK08042 181206 -PRK08043 181207 PRK08043 181207 -PRK08049 181208 cl09170 352943 -PRK08053 181210 cl28922 355798 -PRK08056 181212 PRK08056 181212 -PRK08058 181214 PRK08058 181214 -PRK08059 181215 PRK08059 181215 -PRK08061 181216 cl00355 351051 -PRK08068 181219 PRK08068 181219 -PRK08072 181221 PRK08072 181221 -PRK08073 181222 PRK08073 181222 -PRK08084 181224 cl21455 354812 -PRK08085 181225 cl21454 354811 -PRK08087 181226 cl00214 350956 -PRK08105 181230 cl00438 351093 -PRK08114 181231 cl18945 354370 -PRK08117 181234 cl18945 354370 -PRK08118 181235 cl21455 354812 -PRK08124 181238 cl00568 351156 -PRK08130 181241 cl00214 350956 -PRK08131 181242 PRK08131 181242 -PRK08133 181244 cl18945 354370 -PRK08139 181249 cl23717 355015 -PRK08150 181254 cl23717 355015 -PRK08153 181255 PRK08153 181255 -PRK08155 181257 PRK08155 181257 -PRK08158 181259 cl30866 357742 -PRK08159 181260 PRK08159 181260 -PRK08163 181262 PRK08163 181262 -PRK08170 181265 PRK08170 181265 -PRK08172 181266 cl09936 324546 -PRK08175 181268 PRK08175 181268 -PRK08176 181269 cl00192 350937 -PRK08179 181271 PRK08179 181271 -PRK08184 181274 PRK08184 181274 -PRK08185 181275 cl21457 354814 -PRK08194 181281 cl00445 351095 -PRK08195 181282 PRK08195 181282 -PRK08197 181283 cl00342 294246 -PRK08199 181285 PRK08199 181285 -PRK08204 181288 cl28964 355840 -PRK08208 181292 PRK08208 181292 -PRK08213 181295 cl21454 354811 -PRK08215 181296 PRK08215 181296 -PRK08217 181297 PRK08217 181297 -PRK08219 181298 PRK08219 181298 -PRK08221 181300 PRK08221 181300 -PRK08222 181301 PRK08222 181301 -PRK08223 181302 PRK08223 181302 -PRK08225 181304 cl11404 353245 -PRK08226 181305 PRK08226 181305 -PRK08227 181306 cl21457 354814 -PRK08230 181309 cl00851 351282 -PRK08233 181310 cl17190 354320 -PRK08235 181311 PRK08235 181311 -PRK08246 181319 cl00342 294246 -PRK08247 181320 cl18945 354370 -PRK08250 181323 PRK08250 181323 -PRK08251 181324 PRK08251 181324 -PRK08252 181325 cl23717 355015 -PRK08256 181327 PRK08256 181327 -PRK08258 181329 cl23717 355015 -PRK08263 181334 PRK08263 181334 -PRK08264 181335 cl21454 354811 -PRK08266 181337 PRK08266 181337 -PRK08269 181340 PRK08269 181340 -PRK08271 181342 PRK08271 181342 -PRK08273 181344 PRK08273 181344 -PRK08275 181346 PRK08275 181346 -PRK08278 181349 cl21454 354811 -PRK08285 181352 cl00913 351310 -PRK08286 181353 cl00913 351310 -PRK08287 181354 cl17173 354317 -PRK08293 181359 PRK08293 181359 -PRK08295 181361 PRK08295 181361 -PRK08296 181362 PRK08296 181362 -PRK08305 181370 cl19190 327515 -PRK08306 181371 PRK08306 181371 -PRK08307 181372 cl08022 324189 -PRK08310 181375 cl18951 354371 -PRK08313 181378 PRK08313 181378 -PRK08316 181381 PRK08316 181381 -PRK08317 181382 PRK08317 181382 -PRK08319 181384 cl21488 354833 -PRK08321 181386 cl23717 355015 -PRK08332 181392 PRK08332 181392 -PRK08333 181393 cl00214 350956 -PRK08338 181394 cl00546 351146 -PRK08341 181395 PRK08341 181395 -PRK08348 181399 PRK08348 181399 -PRK08351 181400 cl12033 325166 -PRK08360 181401 cl18945 354370 -PRK08363 181402 PRK08363 181402 -PRK08367 181403 PRK08367 181403 -PRK08377 181406 PRK08377 181406 -PRK08383 181407 cl00807 351263 -PRK08393 181411 cl28964 355840 -PRK08406 181413 PRK08406 181413 -PRK08410 181414 PRK08410 181414 -PRK08415 181416 cl21454 354811 -PRK08416 181417 cl21454 354811 -PRK08418 181419 cl00281 351001 -PRK08419 181420 cl17185 354319 -PRK08433 181423 cl29525 356401 -PRK08441 181425 cl00546 351146 -PRK08444 181426 PRK08444 181426 -PRK08445 181427 cl30865 357741 -PRK08446 181428 PRK08446 181428 -PRK08453 181432 PRK08453 181432 -PRK08455 181433 cl00681 351211 -PRK08456 181434 cl00568 351156 -PRK08457 181435 PRK08457 181435 -PRK08470 181437 PRK08470 181437 -PRK08472 181439 PRK08472 181439 -PRK08476 181442 cl21478 354827 -PRK08482 181444 cl00466 351103 -PRK08489 181448 cl00535 351141 -PRK08491 181449 cl19197 354392 -PRK08507 181452 cl21454 354811 -PRK08525 181456 PRK08525 181456 -PRK08526 181457 PRK08526 181457 -PRK08527 181458 PRK08527 181458 -PRK08533 181459 cl21455 354812 -PRK08534 181460 cl00546 351146 -PRK08537 181462 cl00546 351146 -PRK08557 181465 PRK08557 181465 -PRK08558 181466 PRK08558 181466 -PRK08559 181467 PRK08559 181467 -PRK08571 181478 cl00328 351031 -PRK08588 181490 PRK08588 181490 -PRK08589 181491 PRK08589 181491 -PRK08593 181493 cl18945 354370 -PRK08596 181495 cl14876 353847 -PRK08600 181497 cl00492 351118 -PRK08605 181499 PRK08605 181499 -PRK08610 181501 cl21457 354814 -PRK08611 181502 PRK08611 181502 -PRK08621 181505 cl00485 351115 -PRK08622 181506 cl00485 351115 -PRK08626 181507 PRK08626 181507 -PRK08628 181508 cl21454 354811 -PRK08629 181509 PRK08629 181509 -PRK08637 181512 cl18945 354370 -PRK08640 181515 PRK08640 181515 -PRK08642 181517 PRK08642 181517 -PRK08643 181518 PRK08643 181518 -PRK08659 181526 PRK08659 181526 -PRK08660 181527 cl00214 350956 -PRK08671 181534 cl00279 351000 -PRK08673 181535 PRK08673 181535 -PRK08674 181536 PRK08674 181536 -PRK08676 181537 PRK08676 181537 -PRK08699 181538 PRK08699 181538 -PRK08722 181539 cl09938 353032 -PRK08727 181541 cl21455 354812 -PRK08733 181542 cl17185 354319 -PRK08734 181543 cl17185 354319 -PRK08737 181544 PRK08737 181544 -PRK08751 181546 PRK08751 181546 -PRK08760 181547 PRK08760 181547 -PRK08763 181549 cl09930 353029 -PRK08764 181550 PRK08764 181550 -PRK08769 181551 PRK08769 181551 -PRK08773 181552 PRK08773 181552 -PRK08775 181553 cl21494 354836 -PRK08776 181554 PRK08776 181554 -PRK08780 181555 PRK08780 181555 -PRK08808 181557 PRK08808 181557 -PRK08811 181558 cl03649 322377 -PRK08818 181561 PRK08818 181561 -PRK08840 181562 PRK08840 181562 -PRK08841 181563 PRK08841 181563 -PRK08849 181564 cl21454 354811 -PRK08857 181566 PRK08857 181566 -PRK08861 181567 cl18945 354370 -PRK08871 181572 PRK08871 181572 -PRK08878 181573 cl00561 351153 -PRK08881 181574 cl00355 351051 -PRK08883 181575 cl21457 354814 -PRK08887 181576 cl00015 350862 -PRK08912 181580 PRK08912 181580 -PRK08931 181584 cl00303 351011 -PRK08936 181585 PRK08936 181585 -PRK08947 181592 PRK08947 181592 -PRK08951 181593 cl21481 354828 -PRK08958 181594 cl30765 357641 -PRK08960 181595 PRK08960 181595 -PRK08963 181597 PRK08963 181597 -PRK08965 181598 cl00807 351263 -PRK08972 181599 PRK08972 181599 -PRK08978 181601 PRK08978 181601 -PRK08979 181602 PRK08979 181602 -PRK08990 181604 cl00568 351156 -PRK08993 181605 cl21454 354811 -PRK08997 181606 cl00445 351095 -PRK09004 181608 cl00438 351093 -PRK09009 181609 cl21454 354811 -PRK09014 181611 PRK09014 181611 -PRK09016 181612 PRK09016 181612 -PRK09019 181613 cl00229 350968 -PRK09027 181614 PRK09027 181614 -PRK09028 181615 PRK09028 181615 -PRK09038 181618 PRK09038 181618 -PRK09039 181619 PRK09039 181619 -PRK09040 181620 PRK09040 181620 -PRK09050 181624 PRK09050 181624 -PRK09051 181625 PRK09051 181625 -PRK09052 181626 PRK09052 181626 -PRK09053 181627 PRK09053 181627 -PRK09054 181628 cl00340 351041 -PRK09057 181629 PRK09057 181629 -PRK09059 181631 cl28964 355840 -PRK09060 181632 PRK09060 181632 -PRK09065 181635 cl00020 350865 -PRK09071 181637 PRK09071 181637 -PRK09082 181642 PRK09082 181642 -PRK09088 181644 PRK09088 181644 -PRK09098 181646 PRK09098 181646 -PRK09101 181647 cl00264 350992 -PRK09103 181649 PRK09103 181649 -PRK09105 181651 PRK09105 181651 -PRK09109 181654 cl00568 351156 -PRK09110 181655 cl00568 351156 -PRK09116 181657 cl09938 353032 -PRK09121 181659 cl00464 320986 -PRK09124 181661 PRK09124 181661 -PRK09125 181662 PRK09125 181662 -PRK09135 181668 cl21454 354811 -PRK09140 181670 cl21457 354814 -PRK09148 181674 PRK09148 181674 -PRK09162 181675 cl00309 351014 -PRK09165 181676 PRK09165 181676 -PRK09183 181681 cl30760 357636 -PRK09184 181682 cl09936 324546 -PRK09195 181690 cl21457 354814 -PRK09196 181691 cl21457 354814 -PRK09206 181699 PRK09206 181699 -PRK09209 181700 PRK09209 181700 -PRK09216 181703 cl00333 351034 -PRK09218 181704 cl00234 320843 -PRK09219 181705 cl00309 351014 -PRK09221 181707 cl18945 354370 -PRK09230 181713 cl00281 351001 -PRK09236 181716 cl28964 355840 -PRK09239 181719 cl00693 351218 -PRK09242 181721 PRK09242 181721 -PRK09245 181723 cl23717 355015 -PRK09256 181730 cl29584 356460 -PRK09257 181731 cl18945 354370 -PRK09258 181732 PRK09258 181732 -PRK09262 181735 cl00480 351111 -PRK09265 181738 PRK09265 181738 -PRK09271 181744 cl00438 351093 -PRK09272 181745 PRK09272 181745 -PRK09273 181746 PRK09273 181746 -PRK09276 181749 PRK09276 181749 -PRK09291 181762 PRK09291 181762 -PRK09294 181765 PRK09294 181765 -PRK09295 181766 cl18945 354370 -PRK09296 181767 cl00951 351328 -PRK09301 181770 cl00388 351069 -PRK09311 181774 PRK09311 181774 -PRK09314 181775 PRK09314 181775 -PRK09326 181779 PRK09326 181779 -PRK09334 181784 cl02050 351666 -PRK09335 181785 cl01993 321763 -PRK09336 181786 cl21569 328804 -PRK09343 181787 cl09111 352933 -PRK09362 181800 cl00231 350970 -PRK09371 181805 cl02954 322141 -PRK09379 181811 cl00581 321052 -PRK09381 181812 cl00388 351069 -PRK09390 181815 PRK09390 181815 -PRK09392 181817 PRK09392 181817 -PRK09393 181818 PRK09393 181818 -PRK09399 181821 cl23918 305075 -PRK09406 181826 cl11961 353326 -PRK09408 181828 cl21487 354832 -PRK09409 181829 PRK09409 181829 -PRK09411 181831 cl00452 351098 -PRK09413 181833 cl21459 354815 -PRK09414 181834 PRK09414 181834 -PRK09415 181835 PRK09415 181835 -PRK09416 181836 cl21459 354815 -PRK09417 181837 cl00451 320978 -PRK09421 181841 cl00427 351090 -PRK09422 181842 PRK09422 181842 -PRK09423 181843 cl02872 351912 -PRK09425 181845 cl00912 351309 -PRK09432 181852 cl00246 294174 -PRK09433 181853 PRK09433 181853 -PRK09436 181856 PRK09436 181856 -PRK09437 181857 cl00388 351069 -PRK09439 181859 cl00162 350926 -PRK09449 181865 cl21460 354816 -PRK09451 181867 PRK09451 181867 -PRK09453 181869 cl13995 353799 -PRK09456 181872 cl21460 354816 -PRK09457 181873 cl11961 353326 -PRK09459 181875 cl23826 355061 -PRK09461 181876 cl00216 320827 -PRK09464 181879 PRK09464 181879 -PRK09468 181883 PRK09468 181883 -PRK09469 181884 PRK09469 181884 -PRK09471 181886 PRK09471 181886 -PRK09472 181887 PRK09472 181887 -PRK09473 181888 PRK09473 181888 -PRK09478 181892 cl00454 351100 -PRK09480 181894 PRK09480 181894 -PRK09482 181896 PRK09482 181896 -PRK09484 181898 cl21460 354816 -PRK09485 181899 cl22882 354969 -PRK09487 181900 cl00881 351296 -PRK09488 181901 cl00881 351296 -PRK09489 181902 PRK09489 181902 -PRK09491 181904 cl17182 354318 -PRK09492 181905 PRK09492 181905 -PRK09493 181906 PRK09493 181906 -PRK09494 181907 PRK09494 181907 -PRK09497 181910 cl00427 351090 -PRK09498 181911 cl11505 187080 -PRK09501 181913 cl21456 354813 -PRK09502 181914 cl00400 351077 -PRK09504 181915 cl00400 351077 -PRK09508 181918 PRK09508 181918 -PRK09509 181919 cl30791 357667 -PRK09511 181921 cl00938 351321 -PRK09512 181922 cl00454 351100 -PRK09513 181923 cl00192 350937 -PRK09514 181924 PRK09514 181924 -PRK09522 181927 PRK09522 181927 -PRK09526 181929 PRK09526 181929 -PRK09527 181930 PRK09527 181930 -PRK09532 181933 PRK09532 181933 -PRK09543 181938 cl00454 351100 -PRK09544 181939 PRK09544 181939 -PRK09546 181941 cl00459 320984 -PRK09547 181942 cl21473 354825 -PRK09553 181947 cl00184 350935 -PRK09555 181949 cl00838 351277 -PRK09561 181955 cl01133 351397 -PRK09564 181958 PRK09564 181958 -PRK09569 181961 cl00416 351085 -PRK09573 181963 cl00337 351038 -PRK09580 181965 PRK09580 181965 -PRK09582 181967 cl01887 351630 -PRK09584 181969 cl28910 355786 -PRK09586 181971 PRK09586 181971 -PRK09588 181972 cl22450 354940 -PRK09589 181973 cl23725 355022 -PRK09590 181974 cl10014 353043 -PRK09591 181975 cl00166 350929 -PRK09592 181976 cl21492 328750 -PRK09597 181978 cl00474 351108 -PRK09603 181983 PRK09603 181983 -PRK09609 181988 PRK09609 181988 -PRK09615 181992 cl19223 327525 -PRK09619 181996 cl29105 355981 -PRK09620 181997 cl29327 356203 -PRK09622 181999 PRK09622 181999 -PRK09627 182002 PRK09627 182002 -PRK09628 182003 PRK09628 182003 -PRK09633 182006 PRK09633 182006 -PRK09634 182007 cl00223 350963 -PRK09635 182008 PRK09635 182008 -PRK09638 182010 PRK09638 182010 -PRK09641 182012 PRK09641 182012 -PRK09646 182015 PRK09646 182015 -PRK09651 182018 PRK09651 182018 -PRK09662 182021 cl14909 301371 -PRK09664 182022 cl00456 320982 -PRK09665 182023 cl00163 350927 -PRK09674 182026 cl23717 355015 -PRK09681 182027 PRK09681 182027 -PRK09689 182029 cl29974 356850 -PRK09694 182031 PRK09694 182031 -PRK09695 182032 cl00701 294462 -PRK09697 182033 PRK09697 182033 -PRK09698 182034 PRK09698 182034 -PRK09699 182035 cl00454 351100 -PRK09700 182036 PRK09700 182036 -PRK09701 182037 cl30862 357738 -PRK09706 182039 PRK09706 182039 -PRK09707 182040 PRK09707 182040 -PRK09710 182042 cl08047 352844 -PRK09716 182043 PRK09716 182043 -PRK09717 182044 PRK09717 182044 -PRK09718 182045 PRK09718 182045 -PRK09719 182046 PRK09719 182046 -PRK09720 182047 cl01546 321561 -PRK09726 182049 cl22854 354960 -PRK09729 182050 PRK09729 182050 -PRK09730 182051 cl21454 354811 -PRK09731 182052 cl01222 351428 -PRK09733 182053 cl01416 351496 -PRK09738 182055 cl27487 332308 -PRK09741 182057 cl21658 328842 -PRK09750 182058 cl23874 305031 -PRK09752 182059 PRK09752 182059 -PRK09755 182060 PRK09755 182060 -PRK09756 182061 cl00021 350866 -PRK09759 182063 cl27487 332308 -PRK09762 182064 cl00339 351040 -PRK09764 182065 PRK09764 182065 -PRK09765 182066 PRK09765 182066 -PRK09767 182067 cl00516 351129 -PRK09776 182070 PRK09776 182070 -PRK09777 182071 cl00454 351100 -PRK09784 182074 PRK09784 182074 -PRK09786 182075 cl01885 351629 -PRK09790 182076 PRK09790 182076 -PRK09791 182077 PRK09791 182077 -PRK09792 182078 cl18945 354370 -PRK09793 182079 PRK09793 182079 -PRK09795 182080 PRK09795 182080 -PRK09796 182081 PRK09796 182081 -PRK09798 182082 cl00877 321225 -PRK09799 182083 PRK09799 182083 -PRK09800 182084 PRK09800 182084 -PRK09801 182085 PRK09801 182085 -PRK09802 182086 PRK09802 182086 -PRK09804 182087 cl21473 354825 -PRK09807 182088 PRK09807 182088 -PRK09812 182089 cl00995 351340 -PRK09813 182090 cl00192 350937 -PRK09818 182092 cl00227 350966 -PRK09819 182093 PRK09819 182093 -PRK09821 182094 cl21473 354825 -PRK09822 182095 cl15945 276137 -PRK09825 182097 cl17190 354320 -PRK09828 182098 PRK09828 182098 -PRK09831 182099 cl17182 354318 -PRK09834 182100 PRK09834 182100 -PRK09835 182101 PRK09835 182101 -PRK09836 182102 PRK09836 182102 -PRK09837 182103 PRK09837 182103 -PRK09838 182104 cl02363 351741 -PRK09840 182105 PRK09840 182105 -PRK09841 182106 PRK09841 182106 -PRK09847 182108 cl11961 353326 -PRK09848 182109 PRK09848 182109 -PRK09850 182111 cl00192 350937 -PRK09852 182112 cl23725 355022 -PRK09854 182114 cl00163 350927 -PRK09855 182115 cl01507 351529 -PRK09856 182116 cl23721 355019 -PRK09857 182117 cl29316 356192 -PRK09860 182118 cl02872 351912 -PRK09861 182119 cl21456 354813 -PRK09862 182120 PRK09862 182120 -PRK09863 182121 PRK09863 182121 -PRK09864 182122 cl14876 353847 -PRK09866 182123 cl21455 354812 -PRK09867 182124 cl01464 351514 -PRK09870 182125 cl00213 350955 -PRK09871 182126 cl00213 350955 -PRK09874 182127 PRK09874 182127 -PRK09875 182128 cl00281 351001 -PRK09877 182129 cl01181 321382 -PRK09880 182130 PRK09880 182130 -PRK09881 182131 PRK09881 182131 -PRK09894 182133 PRK09894 182133 -PRK09897 182134 cl21454 354811 -PRK09898 182135 PRK09898 182135 -PRK09902 182136 cl21453 354810 -PRK09906 182137 PRK09906 182137 -PRK09907 182138 cl00995 351340 -PRK09908 182139 PRK09908 182139 -PRK09912 182140 cl00470 351106 -PRK09913 182141 cl00163 350927 -PRK09915 182142 cl30861 357737 -PRK09917 182143 cl01118 351389 -PRK09920 182146 cl00339 351040 -PRK09921 182147 cl21473 354825 -PRK09922 182148 PRK09922 182148 -PRK09929 182151 cl11507 353281 -PRK09932 182152 cl00841 351278 -PRK09934 182153 cl01416 351496 -PRK09935 182154 PRK09935 182154 -PRK09936 182155 cl29077 355953 -PRK09939 182156 PRK09939 182156 -PRK09940 182157 cl30840 357716 -PRK09943 182158 PRK09943 182158 -PRK09946 182159 PRK09946 182159 -PRK09947 182160 PRK09947 182160 -PRK09951 182162 cl03646 352031 -PRK09952 182163 PRK09952 182163 -PRK09953 182164 cl22681 276635 -PRK09954 182165 PRK09954 182165 -PRK09955 182166 cl00226 350965 -PRK09956 182167 PRK09956 182167 -PRK09958 182168 PRK09958 182168 -PRK09959 182169 PRK09959 182169 -PRK09961 182170 cl14876 353847 -PRK09966 182171 PRK09966 182171 -PRK09967 182172 PRK09967 182172 -PRK09968 182173 cl13995 353799 -PRK09971 182175 PRK09971 182175 -PRK09975 182177 PRK09975 182177 -PRK09977 182178 PRK09977 182178 -PRK09980 182179 cl11629 299801 -PRK09981 182180 cl11449 353259 -PRK09983 182181 PRK09983 182181 -PRK09984 182182 PRK09984 182182 -PRK09986 182183 PRK09986 182183 -PRK09987 182184 cl21454 354811 -PRK09989 182185 PRK09989 182185 -PRK09990 182186 PRK09990 182186 -PRK09993 182187 cl07428 352739 -PRK09997 182188 PRK09997 182188 -PRK10001 182189 PRK10001 182189 -PRK10005 182192 cl29418 356294 -PRK10014 182193 PRK10014 182193 -PRK10015 182194 cl29772 356648 -PRK10016 182195 cl01368 351473 -PRK10017 182196 cl10013 353042 -PRK10018 182197 cl11394 353239 -PRK10022 182199 cl11450 353260 -PRK10026 182200 cl00388 351069 -PRK10027 182201 PRK10027 182201 -PRK10034 182203 cl21473 354825 -PRK10037 182204 cl21455 354812 -PRK10040 182205 PRK10040 182205 -PRK10045 182207 cl01203 351420 -PRK10046 182208 PRK10046 182208 -PRK10050 182210 cl08082 352845 -PRK10051 182211 cl29256 356132 -PRK10053 182212 cl09930 353029 -PRK10054 182213 PRK10054 182213 -PRK10057 182214 cl23919 329170 -PRK10061 182216 cl01217 351425 -PRK10062 182217 cl01002 351344 -PRK10063 182218 PRK10063 182218 -PRK10070 182221 PRK10070 182221 -PRK10072 182222 cl22854 354960 -PRK10073 182223 PRK10073 182223 -PRK10076 182224 cl18962 354374 -PRK10077 182225 PRK10077 182225 -PRK10079 182227 PRK10079 182227 -PRK10082 182228 PRK10082 182228 -PRK10083 182229 PRK10083 182229 -PRK10086 182231 PRK10086 182231 -PRK10089 182232 cl00320 351024 -PRK10090 182233 cl11961 353326 -PRK10091 182234 PRK10091 182234 -PRK10092 182235 PRK10092 182235 -PRK10093 182236 cl11483 353275 -PRK10094 182237 PRK10094 182237 -PRK10096 182239 cl00768 351245 -PRK10098 182240 cl00900 351305 -PRK10100 182241 PRK10100 182241 -PRK10101 182242 PRK10101 182242 -PRK10102 182243 cl23920 329171 -PRK10110 182245 PRK10110 182245 -PRK10113 182246 cl26492 331313 -PRK10115 182247 PRK10115 182247 -PRK10116 182248 cl00292 351005 -PRK10117 182249 PRK10117 182249 -PRK10119 182251 cl21469 354822 -PRK10122 182252 PRK10122 182252 -PRK10123 182253 cl22684 276638 -PRK10124 182254 PRK10124 182254 -PRK10125 182255 PRK10125 182255 -PRK10126 182256 cl00105 320761 -PRK10128 182257 cl21481 354828 -PRK10130 182258 PRK10130 182258 -PRK10132 182259 cl01888 321714 -PRK10133 182260 cl28910 355786 -PRK10139 182262 PRK10139 182262 -PRK10140 182263 cl17182 354318 -PRK10144 182265 cl01179 351412 -PRK10146 182266 cl17182 354318 -PRK10151 182270 cl17182 354318 -PRK10154 182272 cl08090 298624 -PRK10157 182273 cl29772 356648 -PRK10159 182275 cl21487 354832 -PRK10160 182276 cl00427 351090 -PRK10161 182277 PRK10161 182277 -PRK10163 182279 PRK10163 182279 -PRK10167 182280 cl01284 351455 -PRK10170 182281 cl21493 354835 -PRK10171 182282 cl23723 355020 -PRK10172 182283 cl11399 353243 -PRK10173 182284 cl11399 353243 -PRK10174 182285 cl23921 355090 -PRK10175 182286 cl11456 325041 -PRK10179 182289 cl23723 355020 -PRK10183 182290 cl10043 353051 -PRK10187 182291 cl21460 354816 -PRK10188 182292 PRK10188 182292 -PRK10189 182293 cl09326 352957 -PRK10190 182294 PRK10190 182294 -PRK10191 182295 PRK10191 182295 -PRK10194 182296 PRK10194 182296 -PRK10197 182297 PRK10197 182297 -PRK10198 182298 cl08095 324195 -PRK10199 182299 PRK10199 182299 -PRK10200 182300 cl00518 351130 -PRK10201 182301 cl00483 351114 -PRK10202 182302 cl01047 351355 -PRK10203 182303 cl08096 352846 -PRK10204 182304 cl23922 355091 -PRK10206 182305 PRK10206 182305 -PRK10207 182306 cl28910 355786 -PRK10208 182307 cl05752 352396 -PRK10209 182308 cl15828 326653 -PRK10213 182309 PRK10213 182309 -PRK10214 182310 PRK10214 182310 -PRK10216 182312 PRK10216 182312 -PRK10217 182313 PRK10217 182313 -PRK10219 182314 PRK10219 182314 -PRK10220 182315 PRK10220 182315 -PRK10222 182316 cl10014 353043 -PRK10225 182318 PRK10225 182318 -PRK10226 182319 PRK10226 182319 -PRK10227 182320 PRK10227 182320 -PRK10234 182322 cl01890 321716 -PRK10236 182323 PRK10236 182323 -PRK10238 182324 PRK10238 182324 -PRK10239 182325 cl00233 350972 -PRK10240 182326 cl00230 350969 -PRK10241 182327 PRK10241 182327 -PRK10245 182329 PRK10245 182329 -PRK10246 182330 PRK10246 182330 -PRK10247 182331 PRK10247 182331 -PRK10250 182333 cl15265 353930 -PRK10251 182334 cl28580 333400 -PRK10253 182336 PRK10253 182336 -PRK10254 182337 cl00509 351126 -PRK10255 182338 PRK10255 182338 -PRK10257 182339 cl00227 350966 -PRK10258 182340 PRK10258 182340 -PRK10260 182341 PRK10260 182341 -PRK10261 182342 PRK10261 182342 -PRK10262 182343 PRK10262 182343 -PRK10264 182345 cl00477 351109 -PRK10265 182346 cl27802 355681 -PRK10266 182347 PRK10266 182347 -PRK10270 182348 cl18961 354373 -PRK10271 182349 cl21453 354810 -PRK10276 182350 cl10465 353074 -PRK10278 182351 cl01184 351415 -PRK10279 182352 cl11396 353241 -PRK10280 182353 PRK10280 182353 -PRK10281 182354 cl29427 356303 -PRK10286 182355 PRK10286 182355 -PRK10287 182356 cl00125 350910 -PRK10290 182357 cl00891 351300 -PRK10291 182358 cl14632 353816 -PRK10292 182359 cl23924 329174 -PRK10293 182360 cl00509 351126 -PRK10294 182361 cl00192 350937 -PRK10296 182362 PRK10296 182362 -PRK10297 182363 cl21492 328750 -PRK10299 182364 cl26058 355483 -PRK10301 182365 cl01012 351349 -PRK10302 182366 cl00777 351250 -PRK10304 182367 cl00264 350992 -PRK10306 182368 cl01365 351472 -PRK10309 182371 PRK10309 182371 -PRK10310 182372 cl10014 353043 -PRK10314 182373 cl17182 354318 -PRK10316 182374 cl26486 331307 -PRK10319 182376 PRK10319 182376 -PRK10323 182377 cl00565 294381 -PRK10324 182378 cl00250 350982 -PRK10325 182379 cl03075 351939 -PRK10328 182380 PRK10328 182380 -PRK10329 182381 cl00388 351069 -PRK10330 182382 PRK10330 182382 -PRK10331 182383 PRK10331 182383 -PRK10332 182384 cl26348 355503 -PRK10333 182385 cl00360 294257 -PRK10334 182386 PRK10334 182386 -PRK10336 182387 PRK10336 182387 -PRK10337 182388 PRK10337 182388 -PRK10339 182389 PRK10339 182389 -PRK10341 182391 PRK10341 182391 -PRK10342 182392 cl00841 351278 -PRK10343 182393 cl00663 351202 -PRK10344 182394 cl22854 354960 -PRK10345 182395 cl21453 354810 -PRK10347 182396 cl26489 331310 -PRK10348 182397 cl09940 353034 -PRK10350 182398 cl08110 324197 -PRK10351 182399 cl00500 351122 -PRK10352 182400 PRK10352 182400 -PRK10353 182401 cl01059 351362 -PRK10354 182402 cl09927 353027 -PRK10355 182403 cl10011 353040 -PRK10356 182404 cl27488 332309 -PRK10357 182405 PRK10357 182405 -PRK10358 182406 cl21505 354844 -PRK10359 182407 cl21453 354810 -PRK10360 182408 PRK10360 182408 -PRK10361 182409 cl25857 355456 -PRK10363 182410 cl01482 351521 -PRK10365 182412 PRK10365 182412 -PRK10367 182413 PRK10367 182413 -PRK10370 182415 PRK10370 182415 -PRK10371 182416 PRK10371 182416 -PRK10372 182417 cl00163 350927 -PRK10377 182419 cl01516 321541 -PRK10380 182421 cl25664 355434 -PRK10381 182422 PRK10381 182422 -PRK10382 182423 PRK10382 182423 -PRK10391 182426 cl11501 325062 -PRK10397 182428 cl23925 355092 -PRK10403 182431 PRK10403 182431 -PRK10404 182432 cl01888 321714 -PRK10406 182433 PRK10406 182433 -PRK10408 182434 cl00735 321137 -PRK10409 182435 cl00394 351074 -PRK10413 182438 cl00394 351074 -PRK10415 182440 cl21457 354814 -PRK10420 182445 cl00701 294462 -PRK10422 182447 cl10013 353042 -PRK10423 182448 PRK10423 182448 -PRK10425 182449 cl00281 351001 -PRK10427 182451 cl10014 353043 -PRK10428 182452 cl22912 304631 -PRK10429 182453 cl28910 355786 -PRK10430 182454 PRK10430 182454 -PRK10434 182457 PRK10434 182457 -PRK10435 182458 PRK10435 182458 -PRK10437 182460 cl00391 351071 -PRK10438 182461 cl11424 353250 -PRK10440 182463 cl00454 351100 -PRK10441 182464 cl00454 351100 -PRK10443 182465 cl00226 350965 -PRK10444 182466 PRK10444 182466 -PRK10445 182467 PRK10445 182467 -PRK10446 182468 PRK10446 182468 -PRK10447 182469 cl00473 351107 -PRK10449 182470 cl01245 321409 -PRK10452 182471 cl23754 329058 -PRK10454 182472 cl00166 350929 -PRK10455 182473 cl01482 351521 -PRK10456 182474 cl11440 353256 -PRK10457 182475 cl00978 321283 -PRK10461 182478 cl19294 354406 -PRK10463 182479 cl21455 354812 -PRK10465 182480 cl08122 324200 -PRK10466 182481 cl00477 351109 -PRK10467 182482 cl21493 354835 -PRK10468 182483 PRK10468 182483 -PRK10470 182484 cl00250 350982 -PRK10472 182485 cl21473 354825 -PRK10473 182486 PRK10473 182486 -PRK10476 182488 PRK10476 182488 -PRK10477 182489 cl21528 354854 -PRK10478 182490 cl21492 328750 -PRK10481 182491 cl00518 351130 -PRK10483 182492 cl00456 320982 -PRK10486 182494 cl10022 324563 -PRK10497 182498 cl26629 355550 -PRK10499 182499 cl10014 353043 -PRK10503 182501 cl30265 357141 -PRK10504 182502 PRK10504 182502 -PRK10507 182504 PRK10507 182504 -PRK10508 182505 cl19096 327499 -PRK10509 182506 cl01093 351376 -PRK10510 182507 PRK10510 182507 -PRK10512 182508 PRK10512 182508 -PRK10513 182509 PRK10513 182509 -PRK10514 182510 cl17182 354318 -PRK10519 182513 cl21594 328818 -PRK10520 182514 cl00565 294381 -PRK10524 182517 PRK10524 182517 -PRK10525 182518 PRK10525 182518 -PRK10526 182519 PRK10526 182519 -PRK10527 182520 cl01063 351363 -PRK10528 182521 cl01053 351360 -PRK10529 182522 PRK10529 182522 -PRK10530 182523 PRK10530 182523 -PRK10532 182525 PRK10532 182525 -PRK10533 182526 cl21673 328845 -PRK10535 182528 PRK10535 182528 -PRK10536 182529 cl21455 354812 -PRK10538 182531 cl21454 354811 -PRK10540 182532 PRK10540 182532 -PRK10542 182533 PRK10542 182533 -PRK10543 182534 PRK10543 182534 -PRK10545 182535 PRK10545 182535 -PRK10546 182536 cl00447 351096 -PRK10548 182538 cl05125 352318 -PRK10549 182539 PRK10549 182539 -PRK10551 182541 PRK10551 182541 -PRK10553 182542 cl01163 351404 -PRK10554 182543 cl21487 354832 -PRK10555 182544 PRK10555 182544 -PRK10556 182545 cl11580 353292 -PRK10558 182547 cl21481 354828 -PRK10559 182548 PRK10559 182548 -PRK10560 182549 PRK10560 182549 -PRK10561 182550 cl00427 351090 -PRK10563 182552 cl21460 354816 -PRK10565 182554 PRK10565 182554 -PRK10566 182555 cl21494 354836 -PRK10568 182556 PRK10568 182556 -PRK10569 182557 cl00438 351093 -PRK10573 182559 PRK10573 182559 -PRK10575 182561 PRK10575 182561 -PRK10578 182564 cl27268 355634 -PRK10579 182565 cl22913 354976 -PRK10580 182566 PRK10580 182566 -PRK10581 182567 cl00210 350953 -PRK10582 182568 cl01204 351421 -PRK10584 182569 PRK10584 182569 -PRK10586 182570 cl02872 351912 -PRK10591 182573 cl11648 353303 -PRK10592 182574 cl00427 351090 -PRK10593 182575 cl21453 354810 -PRK10595 182577 cl01880 351628 -PRK10597 182578 cl11630 353300 -PRK10598 182579 cl06345 352504 -PRK10599 182580 PRK10599 182580 -PRK10600 182581 PRK10600 182581 -PRK10602 182582 cl11393 353238 -PRK10605 182584 cl28888 355772 -PRK10606 182585 cl00388 351069 -PRK10612 182587 cl00256 294183 -PRK10613 182588 cl23926 355093 -PRK10614 182589 cl30265 357141 -PRK10617 182590 PRK10617 182590 -PRK10619 182592 PRK10619 182592 -PRK10621 182593 cl21514 354847 -PRK10622 182594 PRK10622 182594 -PRK10624 182595 cl02872 351912 -PRK10626 182597 cl19726 354450 -PRK10628 182598 cl00599 351170 -PRK10631 182600 cl19401 354417 -PRK10632 182601 PRK10632 182601 -PRK10633 182602 cl01614 351568 -PRK10634 182603 cl00305 351013 -PRK10635 182604 cl00264 350992 -PRK10637 182606 PRK10637 182606 -PRK10638 182607 cl00388 351069 -PRK10639 182608 cl23723 355020 -PRK10640 182609 PRK10640 182609 -PRK10642 182611 cl28910 355786 -PRK10643 182612 PRK10643 182612 -PRK10644 182613 PRK10644 182613 -PRK10645 182614 cl00584 351162 -PRK10646 182615 cl21455 354812 -PRK10647 182616 cl29263 356139 -PRK10649 182617 PRK10649 182617 -PRK10650 182618 cl23754 329058 -PRK10651 182619 PRK10651 182619 -PRK10653 182620 cl30862 357738 -PRK10654 182621 cl21473 354825 -PRK10655 182622 PRK10655 182622 -PRK10657 182623 cl00281 351001 -PRK10659 182625 cl00685 321115 -PRK10660 182626 cl00292 351005 -PRK10663 182628 cl00211 294143 -PRK10665 182629 cl00412 351081 -PRK10666 182630 cl03012 322161 -PRK10667 182631 cl27842 355683 -PRK10668 182632 PRK10668 182632 -PRK10669 182633 PRK10669 182633 -PRK10670 182634 cl00022 320718 -PRK10671 182635 PRK10671 182635 -PRK10673 182637 PRK10673 182637 -PRK10675 182639 cl21454 354811 -PRK10676 182640 PRK10676 182640 -PRK10677 182641 cl21456 354813 -PRK10678 182642 cl00399 351076 -PRK10680 182643 PRK10680 182643 -PRK10681 182644 PRK10681 182644 -PRK10682 182645 cl21456 354813 -PRK10683 182646 cl00427 351090 -PRK10687 182648 cl00228 350967 -PRK10689 182649 PRK10689 182649 -PRK10691 182650 cl11421 353248 -PRK10692 182651 cl23927 355094 -PRK10693 182652 PRK10693 182652 -PRK10695 182654 cl14674 353827 -PRK10697 182656 cl00864 351287 -PRK10698 182657 PRK10698 182657 -PRK10699 182658 cl00474 351108 -PRK10700 182659 PRK10700 182659 -PRK10702 182661 PRK10702 182661 -PRK10707 182663 cl00447 351096 -PRK10708 182664 cl26491 355520 -PRK10710 182665 PRK10710 182665 -PRK10711 182666 cl00596 351167 -PRK10713 182668 cl00159 350924 -PRK10714 182669 PRK10714 182669 -PRK10715 182670 PRK10715 182670 -PRK10717 182672 cl00342 294246 -PRK10723 182677 cl00650 351196 -PRK10724 182678 cl14643 353818 -PRK10725 182679 cl21460 354816 -PRK10727 182681 PRK10727 182681 -PRK10729 182682 PRK10729 182682 -PRK10733 182683 PRK10733 182683 -PRK10734 182684 PRK10734 182684 -PRK10735 182685 cl19356 354412 -PRK10738 182688 cl00767 321154 -PRK10740 182689 cl00454 351100 -PRK10743 182691 cl00175 320797 -PRK10744 182692 PRK10744 182692 -PRK10745 182693 cl15781 326642 -PRK10746 182694 PRK10746 182694 -PRK10747 182695 PRK10747 182695 -PRK10748 182696 cl21460 354816 -PRK10749 182697 cl21494 354836 -PRK10750 182698 cl17365 302641 -PRK10752 182700 cl21456 354813 -PRK10754 182701 cl16912 354285 -PRK10759 182705 cl11574 325088 -PRK10763 182708 cl00248 350980 -PRK10765 182710 cl00514 321015 -PRK10766 182711 PRK10766 182711 -PRK10768 182713 cl00226 350965 -PRK10769 182714 cl17279 354327 -PRK10771 182716 PRK10771 182716 -PRK10772 182717 cl11433 353251 -PRK10773 182718 PRK10773 182718 -PRK10774 182719 cl00511 294347 -PRK10775 182720 PRK10775 182720 -PRK10776 182721 cl00447 351096 -PRK10778 182722 cl00755 351241 -PRK10779 182723 PRK10779 182723 -PRK10780 182724 PRK10780 182724 -PRK10781 182725 cl08147 352853 -PRK10782 182726 cl00427 351090 -PRK10783 182727 PRK10783 182727 -PRK10786 182729 PRK10786 182729 -PRK10787 182730 PRK10787 182730 -PRK10788 182731 PRK10788 182731 -PRK10789 182732 PRK10789 182732 -PRK10790 182733 PRK10790 182733 -PRK10791 182734 cl00197 350942 -PRK10793 182736 PRK10793 182736 -PRK10794 182737 cl00511 294347 -PRK10799 182741 cl15371 326563 -PRK10800 182742 cl00509 351126 -PRK10801 182743 cl00568 351156 -PRK10802 182744 PRK10802 182744 -PRK10803 182745 PRK10803 182745 -PRK10805 182746 cl00927 351313 -PRK10807 182747 PRK10807 182747 -PRK10809 182749 cl17182 354318 -PRK10814 182753 PRK10814 182753 -PRK10815 182754 PRK10815 182754 -PRK10816 182755 PRK10816 182755 -PRK10818 182756 PRK10818 182756 -PRK10824 182759 cl00388 351069 -PRK10828 182761 cl00514 321015 -PRK10832 182763 cl00453 351099 -PRK10834 182765 cl00630 351186 -PRK10835 182766 cl21495 354837 -PRK10836 182767 PRK10836 182767 -PRK10837 182768 PRK10837 182768 -PRK10840 182771 PRK10840 182771 -PRK10841 182772 PRK10841 182772 -PRK10845 182773 cl00567 351155 -PRK10846 182774 PRK10846 182774 -PRK10847 182775 cl00429 351091 -PRK10848 182776 cl11399 353243 -PRK10850 182777 cl00206 350950 -PRK10851 182778 PRK10851 182778 -PRK10853 182780 cl00388 351069 -PRK10854 182781 cl17037 354300 -PRK10858 182784 cl00412 351081 -PRK10860 182786 cl00269 350994 -PRK10861 182787 PRK10861 182787 -PRK10862 182788 cl01178 351411 -PRK10863 182789 cl25432 355394 -PRK10865 182791 PRK10865 182791 -PRK10866 182792 PRK10866 182792 -PRK10870 182795 cl21459 354815 -PRK10872 182797 PRK10872 182797 -PRK10873 182798 cl01008 351347 -PRK10874 182799 cl18945 354370 -PRK10877 182802 PRK10877 182802 -PRK10878 182803 cl01110 351386 -PRK10879 182804 PRK10879 182804 -PRK10880 182805 PRK10880 182805 -PRK10883 182808 PRK10883 182808 -PRK10884 182809 PRK10884 182809 -PRK10885 182810 PRK10885 182810 -PRK10886 182811 cl00389 351070 -PRK10888 182813 cl00210 350953 -PRK10892 182814 PRK10892 182814 -PRK10894 182816 cl21541 328784 -PRK10895 182817 PRK10895 182817 -PRK10896 182818 cl00163 350927 -PRK10897 182819 cl00206 350950 -PRK10898 182820 PRK10898 182820 -PRK10903 182824 cl00197 350942 -PRK10904 182825 cl23779 329070 -PRK10906 182827 PRK10906 182827 -PRK10907 182828 PRK10907 182828 -PRK10908 182829 PRK10908 182829 -PRK10910 182831 cl11481 353274 -PRK10911 182832 PRK10911 182832 -PRK10913 182833 PRK10913 182833 -PRK10914 182834 cl00427 351090 -PRK10916 182835 cl10013 353042 -PRK10918 182837 cl21456 354813 -PRK10919 182838 PRK10919 182838 -PRK10921 182840 cl00521 351132 -PRK10923 182842 PRK10923 182842 -PRK10925 182843 PRK10925 182843 -PRK10926 182844 PRK10926 182844 -PRK10931 182848 cl00289 351004 -PRK10933 182849 PRK10933 182849 -PRK10938 182852 PRK10938 182852 -PRK10939 182853 PRK10939 182853 -PRK10941 182854 cl26199 355495 -PRK10945 182856 cl11501 325062 -PRK10947 182858 cl29535 356411 -PRK10949 182860 PRK10949 182860 -PRK10953 182862 PRK10953 182862 -PRK10954 182863 cl00388 351069 -PRK10955 182864 PRK10955 182864 -PRK10959 182867 cl21487 354832 -PRK10966 182871 PRK10966 182871 -PRK10969 182872 cl22636 354950 -PRK10971 182873 cl00427 351090 -PRK10972 182874 cl01146 351401 -PRK10973 182875 cl00427 351090 -PRK10974 182876 cl21456 354813 -PRK10975 182877 cl17182 354318 -PRK10976 182878 PRK10976 182878 -PRK10977 182879 cl26132 330953 -PRK10982 182880 PRK10982 182880 -PRK10983 182881 cl00465 294317 -PRK10984 182882 cl11653 353304 -PRK10985 182883 cl21494 354836 -PRK10991 182885 cl26840 355580 -PRK10996 182889 PRK10996 182889 -PRK10998 182891 cl00427 351090 -PRK11000 182893 PRK11000 182893 -PRK11006 182895 PRK11006 182895 -PRK11007 182896 PRK11007 182896 -PRK11010 182898 cl28910 355786 -PRK11019 182903 cl00755 351241 -PRK11020 182904 cl27836 332657 -PRK11022 182906 PRK11022 182906 -PRK11023 182907 PRK11023 182907 -PRK11025 182909 PRK11025 182909 -PRK11026 182910 cl26321 331142 -PRK11028 182912 PRK11028 182912 -PRK11029 182913 PRK11029 182913 -PRK11032 182915 cl19727 354451 -PRK11036 182918 PRK11036 182918 -PRK11037 182919 cl26494 355521 -PRK11038 182920 cl26496 355522 -PRK11039 182921 cl01223 351429 -PRK11040 182922 cl19356 354412 -PRK11041 182923 PRK11041 182923 -PRK11043 182924 PRK11043 182924 -PRK11050 182927 PRK11050 182927 -PRK11053 182929 cl00514 321015 -PRK11054 182930 PRK11054 182930 -PRK11055 182931 cl14648 353820 -PRK11057 182933 PRK11057 182933 -PRK11058 182934 PRK11058 182934 -PRK11060 182936 cl01087 294686 -PRK11061 182937 PRK11061 182937 -PRK11062 182938 PRK11062 182938 -PRK11063 182939 cl21456 354813 -PRK11064 182940 PRK11064 182940 -PRK11068 182942 cl00559 321042 -PRK11070 182944 cl27577 355664 -PRK11071 182945 cl21494 354836 -PRK11073 182947 PRK11073 182947 -PRK11074 182948 PRK11074 182948 -PRK11085 182951 cl00459 320984 -PRK11089 182955 PRK11089 182955 -PRK11096 182958 cl00216 320827 -PRK11098 182960 cl00549 321036 -PRK11102 182964 PRK11102 182964 -PRK11103 182965 cl01507 351529 -PRK11104 182966 cl00438 351093 -PRK11106 182967 cl00292 351005 -PRK11112 182971 cl00130 320773 -PRK11113 182972 cl21491 354834 -PRK11115 182974 PRK11115 182974 -PRK11118 182975 cl07420 352737 -PRK11122 182978 PRK11122 182978 -PRK11123 182979 cl00427 351090 -PRK11124 182980 PRK11124 182980 -PRK11127 182983 cl21517 328769 -PRK11130 182985 cl28922 355798 -PRK11131 182986 PRK11131 182986 -PRK11132 182987 PRK11132 182987 -PRK11133 182988 PRK11133 182988 -PRK11139 182990 PRK11139 182990 -PRK11144 182993 PRK11144 182993 -PRK11145 182994 PRK11145 182994 -PRK11148 182997 cl13995 353799 -PRK11150 182998 cl21454 354811 -PRK11151 182999 PRK11151 182999 -PRK11161 183004 PRK11161 183004 -PRK11169 183009 PRK11169 183009 -PRK11170 183010 cl00281 351001 -PRK11171 183011 cl26460 331281 -PRK11172 183012 cl00470 351106 -PRK11173 183013 PRK11173 183013 -PRK11176 183016 PRK11176 183016 -PRK11177 183017 PRK11177 183017 -PRK11178 183018 cl00303 351011 -PRK11179 183019 PRK11179 183019 -PRK11180 183020 PRK11180 183020 -PRK11181 183021 PRK11181 183021 -PRK11188 183025 cl17173 354317 -PRK11190 183027 PRK11190 183027 -PRK11194 183031 cl18962 354374 -PRK11197 183033 PRK11197 183033 -PRK11199 183035 PRK11199 183035 -PRK11200 183036 cl00388 351069 -PRK11207 183040 PRK11207 183040 -PRK11212 183041 cl00756 351242 -PRK11228 183042 cl00454 351100 -PRK11230 183043 PRK11230 183043 -PRK11231 183044 PRK11231 183044 -PRK11233 183045 PRK11233 183045 -PRK11235 183047 cl01171 351407 -PRK11239 183048 cl01209 351422 -PRK11240 183049 PRK11240 183049 -PRK11241 183050 cl11961 353326 -PRK11242 183051 PRK11242 183051 -PRK11244 183052 cl23716 355014 -PRK11245 183053 cl00263 350991 -PRK11247 183055 PRK11247 183055 -PRK11248 183056 PRK11248 183056 -PRK11251 183058 cl19285 354405 -PRK11253 183059 cl00700 351220 -PRK11260 183061 PRK11260 183061 -PRK11264 183063 PRK11264 183063 -PRK11267 183064 cl00537 321029 -PRK11268 183065 PRK11268 183065 -PRK11269 183066 PRK11269 183066 -PRK11272 183067 PRK11272 183067 -PRK11275 183070 cl00427 351090 -PRK11280 183072 cl10470 353077 -PRK11283 183075 cl00573 351159 -PRK11285 183076 cl00454 351100 -PRK11288 183077 PRK11288 183077 -PRK11300 183080 PRK11300 183080 -PRK11302 183082 PRK11302 183082 -PRK11316 183085 PRK11316 183085 -PRK11320 183086 cl21457 354814 -PRK11325 183087 cl00528 351136 -PRK11331 183088 PRK11331 183088 -PRK11337 183089 PRK11337 183089 -PRK11339 183090 cl21473 354825 -PRK11342 183092 cl11421 353248 -PRK11346 183093 cl08171 352854 -PRK11347 183094 cl00877 321225 -PRK11352 183095 cl00846 351279 -PRK11357 183096 PRK11357 183096 -PRK11359 183097 PRK11359 183097 -PRK11361 183099 PRK11361 183099 -PRK11365 183100 cl00427 351090 -PRK11366 183101 PRK11366 183101 -PRK11367 183102 cl19471 354422 -PRK11370 183103 cl00999 321296 -PRK11371 183104 PRK11371 183104 -PRK11375 183106 cl00456 320982 -PRK11376 183107 cl11627 353299 -PRK11377 183108 PRK11377 183108 -PRK11379 183109 cl21675 354901 -PRK11382 183111 PRK11382 183111 -PRK11385 183112 PRK11385 183112 -PRK11388 183114 PRK11388 183114 -PRK11394 183115 PRK11394 183115 -PRK11397 183117 PRK11397 183117 -PRK11402 183118 PRK11402 183118 -PRK11403 183119 cl27038 355605 -PRK11404 183120 PRK11404 183120 -PRK11411 183123 cl00262 350990 -PRK11412 183124 cl23746 355031 -PRK11413 183125 PRK11413 183125 -PRK11414 183126 PRK11414 183126 -PRK11415 183127 cl01070 351366 -PRK11425 183129 cl00021 350866 -PRK11426 183130 cl01528 321548 -PRK11427 183131 cl26163 330984 -PRK11430 183132 cl19215 327522 -PRK11432 183133 PRK11432 183133 -PRK11436 183135 cl26498 331319 -PRK11440 183137 cl00220 350960 -PRK11443 183138 cl19633 354448 -PRK11445 183139 cl21454 354811 -PRK11447 183140 PRK11447 183140 -PRK11453 183142 PRK11453 183142 -PRK11459 183143 cl30861 357737 -PRK11460 183144 cl21494 354836 -PRK11462 183145 cl28910 355786 -PRK11465 183147 PRK11465 183147 -PRK11467 183149 cl23928 355095 -PRK11468 183150 cl10557 353086 -PRK11469 183151 cl23795 329083 -PRK11470 183152 cl21534 354857 -PRK11476 183154 PRK11476 183154 -PRK11477 183155 PRK11477 183155 -PRK11478 183156 cl14632 353816 -PRK11479 183157 cl21534 354857 -PRK11480 183158 cl21456 354813 -PRK11482 183159 PRK11482 183159 -PRK11486 183160 cl01247 351439 -PRK11505 183165 PRK11505 183165 -PRK11507 183166 cl09940 353034 -PRK11508 183167 cl01101 351378 -PRK11509 183168 cl00388 351069 -PRK11512 183170 cl21459 354815 -PRK11517 183172 PRK11517 183172 -PRK11519 183173 PRK11519 183173 -PRK11521 183174 cl11672 353309 -PRK11522 183175 cl18945 354370 -PRK11523 183176 PRK11523 183176 -PRK11524 183177 cl17173 354317 -PRK11525 183178 PRK11525 183178 -PRK11534 183181 PRK11534 183181 -PRK11536 183182 cl27262 355633 -PRK11537 183183 PRK11537 183183 -PRK11538 183184 cl00519 351131 -PRK11543 183186 PRK11543 183186 -PRK11546 183189 cl01482 351521 -PRK11548 183190 cl19285 354405 -PRK11556 183194 PRK11556 183194 -PRK11557 183195 PRK11557 183195 -PRK11559 183197 cl29088 355964 -PRK11560 183198 PRK11560 183198 -PRK11561 183199 PRK11561 183199 -PRK11562 183200 cl00927 351313 -PRK11565 183203 cl00470 351106 -PRK11566 183204 cl05752 352396 -PRK11568 183205 PRK11568 183205 -PRK11569 183206 PRK11569 183206 -PRK11570 183207 PRK11570 183207 -PRK11572 183208 cl29988 356864 -PRK11574 183210 cl00020 350865 -PRK11578 183211 PRK11578 183211 -PRK11579 183212 PRK11579 183212 -PRK11582 183213 cl12235 353373 -PRK11586 183214 cl01153 321372 -PRK11587 183215 PRK11587 183215 -PRK11590 183218 cl21460 354816 -PRK11593 183219 cl00263 350991 -PRK11594 183220 cl26842 355582 -PRK11595 183221 PRK11595 183221 -PRK11596 183222 cl29561 356437 -PRK11597 183223 cl00175 320797 -PRK11598 183224 PRK11598 183224 -PRK11602 183225 cl00427 351090 -PRK11607 183226 PRK11607 183226 -PRK11609 183228 cl00220 350960 -PRK11611 183229 PRK11611 183229 -PRK11613 183230 cl00219 350959 -PRK11614 183231 PRK11614 183231 -PRK11615 183232 cl03356 351982 -PRK11616 183233 cl11456 325041 -PRK11618 183235 PRK11618 183235 -PRK11619 183236 cl30778 357654 -PRK11622 183238 cl21456 354813 -PRK11624 183240 cl21502 304393 -PRK11625 183241 cl09210 352949 -PRK11627 183242 cl19472 354423 -PRK11628 183243 cl00386 351068 -PRK11629 183244 PRK11629 183244 -PRK11630 183245 cl00305 351013 -PRK11636 183248 PRK11636 183248 -PRK11639 183251 cl21459 354815 -PRK11640 183252 PRK11640 183252 -PRK11646 183255 PRK11646 183255 -PRK11648 183256 cl00868 321220 -PRK11652 183259 cl30458 357334 -PRK11657 183262 PRK11657 183262 -PRK11658 183263 cl18945 354370 -PRK11659 183264 PRK11659 183264 -PRK11660 183265 PRK11660 183265 -PRK11663 183266 PRK11663 183266 -PRK11670 183270 PRK11670 183270 -PRK11671 183271 PRK11671 183271 -PRK11675 183272 PRK11675 183272 -PRK11688 183276 cl00509 351126 -PRK11689 183277 PRK11689 183277 -PRK11701 183280 PRK11701 183280 -PRK11702 183281 cl01237 351435 -PRK11705 183282 PRK11705 183282 -PRK11706 183283 cl18945 354370 -PRK11712 183285 PRK11712 183285 -PRK11728 183292 PRK11728 183292 -PRK11730 183293 PRK11730 183293 -PRK11752 183298 PRK11752 183298 -PRK11762 183303 PRK11762 183303 -PRK11797 183318 cl00809 351264 -PRK11827 183328 cl01066 351364 -PRK11829 183329 PRK11829 183329 -PRK11832 183332 PRK11832 183332 -PRK11835 183333 cl23929 355096 -PRK11836 183334 cl23802 329089 -PRK11837 183335 cl00474 351108 -PRK11858 183341 PRK11858 183341 -PRK11861 183343 PRK11861 183343 -PRK11865 183346 PRK11865 183346 -PRK11866 183347 PRK11866 183347 -PRK11869 183349 PRK11869 183349 -PRK11872 183350 PRK11872 183350 -PRK11874 183352 PRK11874 183352 -PRK11875 183353 PRK11875 183353 -PRK11876 183354 PRK11876 183354 -PRK11877 183355 cl28141 355705 -PRK11878 183356 cl26892 331713 -PRK11889 183360 PRK11889 183360 -PRK11890 183361 cl17212 354323 -PRK11891 183362 PRK11891 183362 -PRK11895 183365 PRK11895 183365 -PRK11902 183369 cl28910 355786 -PRK11906 183373 PRK11906 183373 -PRK11908 183375 cl21454 354811 -PRK11909 183376 cl21488 354833 -PRK11910 183377 PRK11910 183377 -PRK11916 183380 PRK11916 183380 -PRK11917 183381 PRK11917 183381 -PRK11924 183384 PRK11924 183384 -PRK11933 183387 PRK11933 183387 -PRK12271 183392 cl00314 351019 -PRK12275 183395 cl28926 355802 -PRK12277 183397 cl01799 351604 -PRK12281 183399 cl00354 351050 -PRK12282 183400 PRK12282 183400 -PRK12283 183401 cl00015 350862 -PRK12287 183405 cl00465 294317 -PRK12293 183411 cl00268 350993 -PRK12295 183413 cl00268 350993 -PRK12301 183419 cl23930 355097 -PRK12302 183420 cl26490 331311 -PRK12303 183421 cl08212 352856 -PRK12306 183423 PRK12306 183423 -PRK12308 183425 PRK12308 183425 -PRK12309 183426 PRK12309 183426 -PRK12310 183427 cl23739 355027 -PRK12311 183428 PRK12311 183428 -PRK12314 183430 cl00452 351098 -PRK12318 183434 PRK12318 183434 -PRK12319 183435 cl23717 355015 -PRK12322 183437 cl21493 354835 -PRK12330 183445 PRK12330 183445 -PRK12331 183446 PRK12331 183446 -PRK12332 183447 cl29530 356406 -PRK12335 183450 PRK12335 183450 -PRK12336 183451 PRK12336 183451 -PRK12337 183452 PRK12337 183452 -PRK12341 183454 PRK12341 183454 -PRK12342 183455 cl00292 351005 -PRK12346 183458 cl28986 355862 -PRK12347 183459 cl00214 350956 -PRK12348 183460 cl00214 350956 -PRK12351 183463 cl00416 351085 -PRK12352 183464 cl00452 351098 -PRK12354 183466 cl00452 351098 -PRK12358 183470 cl00339 351040 -PRK12359 183471 cl00438 351093 -PRK12361 183473 PRK12361 183473 -PRK12376 183481 cl28986 355862 -PRK12377 183482 cl30760 357636 -PRK12379 183484 cl17037 354300 -PRK12380 183485 cl19201 354393 -PRK12381 183486 cl18945 354370 -PRK12382 183487 PRK12382 183487 -PRK12384 183489 PRK12384 183489 -PRK12385 183490 PRK12385 183490 -PRK12387 183492 PRK12387 183492 -PRK12389 183493 cl18945 354370 -PRK12390 183494 cl00342 294246 -PRK12394 183497 cl28964 355840 -PRK12395 183498 PRK12395 183498 -PRK12396 183499 cl21453 354810 -PRK12397 183500 cl17037 354300 -PRK12399 183502 cl21457 354814 -PRK12404 183504 cl09938 353032 -PRK12406 183506 PRK12406 183506 -PRK12407 183507 cl19182 354388 -PRK12411 183511 cl00269 350994 -PRK12412 183512 cl00192 350937 -PRK12413 183513 cl00192 350937 -PRK12414 183514 PRK12414 183514 -PRK12415 183515 cl00289 351004 -PRK12416 183516 PRK12416 183516 -PRK12418 183518 PRK12418 183518 -PRK12422 183521 PRK12422 183521 -PRK12426 183522 PRK12426 183522 -PRK12427 183523 PRK12427 183523 -PRK12435 183526 PRK12435 183526 -PRK12437 183527 cl00478 351110 -PRK12440 183528 cl17037 354300 -PRK12444 183530 PRK12444 183530 -PRK12449 183533 cl09936 324546 -PRK12451 183534 PRK12451 183534 -PRK12454 183535 cl00452 351098 -PRK12458 183536 cl27316 355640 -PRK12460 183538 cl14653 353823 -PRK12461 183539 PRK12461 183539 -PRK12462 183540 cl18945 354370 -PRK12465 183542 cl23721 355019 -PRK12466 183543 cl00285 351003 -PRK12473 183546 cl11698 353312 -PRK12475 183547 PRK12475 183547 -PRK12478 183548 cl23717 355015 -PRK12479 183549 cl00224 350964 -PRK12480 183550 cl21454 354811 -PRK12487 183553 cl00480 351111 -PRK12494 183557 cl19197 354392 -PRK12495 183558 PRK12495 183558 -PRK12504 183561 cl00676 351209 -PRK12508 183563 cl00676 351209 -PRK12513 183566 PRK12513 183566 -PRK12515 183567 PRK12515 183567 -PRK12516 183568 PRK12516 183568 -PRK12517 183569 PRK12517 183569 -PRK12522 183571 PRK12522 183571 -PRK12523 183572 PRK12523 183572 -PRK12524 183573 PRK12524 183573 -PRK12529 183574 PRK12529 183574 -PRK12534 183576 PRK12534 183576 -PRK12540 183579 PRK12540 183579 -PRK12541 183580 PRK12541 183580 -PRK12542 183581 PRK12542 183581 -PRK12543 183582 PRK12543 183582 -PRK12544 183583 PRK12544 183583 -PRK12545 183584 PRK12545 183584 -PRK12548 183585 PRK12548 183585 -PRK12549 183586 PRK12549 183586 -PRK12550 183587 PRK12550 183587 -PRK12552 183588 cl23717 355015 -PRK12556 183592 cl00015 350862 -PRK12558 183594 PRK12558 183594 -PRK12560 183595 cl00309 351014 -PRK12571 183601 PRK12571 183601 -PRK12573 183602 cl00676 351209 -PRK12574 183603 cl00676 351209 -PRK12577 183605 PRK12577 183605 -PRK12578 183606 PRK12578 183606 -PRK12579 183607 cl00676 351209 -PRK12585 183610 cl00583 351161 -PRK12587 183612 cl00583 351161 -PRK12592 183613 cl00583 351161 -PRK12595 183614 PRK12595 183614 -PRK12597 183615 PRK12597 183615 -PRK12600 183617 cl09154 352941 -PRK12603 183618 cl09154 352941 -PRK12604 183619 cl09154 352941 -PRK12607 183621 cl00231 350970 -PRK12616 183624 cl00192 350937 -PRK12617 183625 cl00555 351151 -PRK12618 183626 cl00555 351151 -PRK12619 183627 cl30383 357259 -PRK12620 183628 PRK12620 183628 -PRK12622 183629 cl30383 357259 -PRK12623 183630 PRK12623 183630 -PRK12625 183631 cl30383 357259 -PRK12626 183632 cl30383 357259 -PRK12629 183634 PRK12629 183634 -PRK12630 183635 PRK12630 183635 -PRK12631 183636 PRK12631 183636 -PRK12632 183637 PRK12632 183637 -PRK12633 183638 cl29105 355981 -PRK12634 183639 cl29105 355981 -PRK12636 183640 PRK12636 183640 -PRK12637 183641 PRK12637 183641 -PRK12640 183642 PRK12640 183642 -PRK12646 183646 PRK12646 183646 -PRK12649 183649 PRK12649 183649 -PRK12653 183653 cl28986 355862 -PRK12655 183655 cl28986 355862 -PRK12656 183656 cl28986 355862 -PRK12657 183657 cl09154 352941 -PRK12658 183658 cl00492 351118 -PRK12659 183659 cl00492 351118 -PRK12660 183660 cl00492 351118 -PRK12662 183662 PRK12662 183662 -PRK12670 183669 cl00583 351161 -PRK12671 183670 cl00583 351161 -PRK12672 183671 cl00583 351161 -PRK12676 183673 cl00289 351004 -PRK12679 183676 PRK12679 183676 -PRK12680 183677 PRK12680 183677 -PRK12681 183678 PRK12681 183678 -PRK12682 183679 PRK12682 183679 -PRK12685 183682 cl30383 357259 -PRK12686 183683 cl00452 351098 -PRK12689 183684 PRK12689 183684 -PRK12690 183685 PRK12690 183685 -PRK12691 183686 PRK12691 183686 -PRK12693 183687 PRK12693 183687 -PRK12694 183688 PRK12694 183688 -PRK12698 183690 cl19182 354388 -PRK12701 183691 cl19182 354388 -PRK12706 183694 cl19280 354403 -PRK12714 183697 PRK12714 183697 -PRK12715 183698 PRK12715 183698 -PRK12720 183699 cl07980 352841 -PRK12721 183700 cl19167 354387 -PRK12723 183702 PRK12723 183702 -PRK12724 183703 PRK12724 183703 -PRK12726 183704 PRK12726 183704 -PRK12729 183707 cl09139 352938 -PRK12735 183708 PRK12735 183708 -PRK12737 183710 cl21457 354814 -PRK12738 183711 cl21457 354814 -PRK12742 183714 PRK12742 183714 -PRK12744 183716 PRK12744 183716 -PRK12746 183718 cl21454 354811 -PRK12747 183719 cl21454 354811 -PRK12749 183721 PRK12749 183721 -PRK12750 183722 cl01482 351521 -PRK12753 183723 PRK12753 183723 -PRK12754 183724 PRK12754 183724 -PRK12756 183726 cl17225 354324 -PRK12766 183731 PRK12766 183731 -PRK12769 183733 PRK12769 183733 -PRK12773 183737 PRK12773 183737 -PRK12775 183738 PRK12775 183738 -PRK12779 183740 PRK12779 183740 -PRK12780 183741 cl00734 351231 -PRK12784 183742 PRK12784 183742 -PRK12785 183743 cl00681 351211 -PRK12787 183745 cl11677 325118 -PRK12789 183746 cl19280 354403 -PRK12799 183756 PRK12799 183756 -PRK12800 183757 PRK12800 183757 -PRK12803 183758 PRK12803 183758 -PRK12804 183759 PRK12804 183759 -PRK12805 183760 PRK12805 183760 -PRK12806 183761 PRK12806 183761 -PRK12809 183762 PRK12809 183762 -PRK12816 183766 PRK12816 183766 -PRK12817 183767 PRK12817 183767 -PRK12818 183768 PRK12818 183768 -PRK12819 183769 PRK12819 183769 -PRK12823 183772 PRK12823 183772 -PRK12824 183773 PRK12824 183773 -PRK12826 183775 PRK12826 183775 -PRK12829 183778 PRK12829 183778 -PRK12830 183779 cl00288 260328 -PRK12831 183780 PRK12831 183780 -PRK12833 183781 PRK12833 183781 -PRK12834 183782 cl21454 354811 -PRK12838 183784 PRK12838 183784 -PRK12844 183787 PRK12844 183787 -PRK12859 183797 cl21454 354811 -PRK12861 183798 PRK12861 183798 -PRK12862 183799 PRK12862 183799 -PRK12863 183800 cl00999 321296 -PRK12864 183801 cl00999 321296 -PRK12878 183808 cl00337 351038 -PRK12882 183811 cl00337 351038 -PRK12884 183812 cl00337 351038 -PRK12887 183813 cl00337 351038 -PRK12888 183814 cl00337 351038 -PRK12892 183817 PRK12892 183817 -PRK12907 183828 PRK12907 183828 -PRK12921 183829 PRK12921 183829 -PRK12933 183831 PRK12933 183831 -PRK12935 183832 cl21454 354811 -PRK12939 183833 PRK12939 183833 -PRK13004 183836 PRK13004 183836 -PRK13019 183845 cl00933 351316 -PRK13020 183846 PRK13020 183846 -PRK13027 183850 cl00573 351159 -PRK13028 183851 cl00342 294246 -PRK13042 183854 PRK13042 183854 -PRK13057 183857 PRK13057 183857 -PRK13059 183858 PRK13059 183858 -PRK13103 183859 PRK13103 183859 -PRK13104 183860 PRK13104 183860 -PRK13105 183861 cl00337 351038 -PRK13107 183863 PRK13107 183863 -PRK13109 183864 cl19167 354387 -PRK13145 183870 cl00214 350956 -PRK13149 183872 cl01285 351456 -PRK13159 183873 cl00994 351339 -PRK13165 183874 cl00994 351339 -PRK13169 183876 cl01853 242748 -PRK13170 183877 cl00020 350865 -PRK13181 183878 cl00020 350865 -PRK13184 183880 PRK13184 183880 -PRK13191 183885 PRK13191 183885 -PRK13192 183886 PRK13192 183886 -PRK13194 183887 cl00237 320846 -PRK13214 183899 cl11425 325026 -PRK13216 183900 cl11425 325026 -PRK13230 183903 cl21455 354812 -PRK13231 183904 cl21455 354812 -PRK13233 183905 cl25403 355390 -PRK13234 183906 cl25403 355390 -PRK13235 183907 cl25403 355390 -PRK13239 183911 PRK13239 183911 -PRK13240 183912 cl26975 331796 -PRK13241 183913 cl00532 351139 -PRK13243 183914 cl21454 354811 -PRK13244 183915 cl11594 353295 -PRK13245 183916 cl23931 305088 -PRK13251 183917 cl27463 355655 -PRK13252 183918 cl11961 353326 -PRK13255 183921 cl17173 354317 -PRK13260 183926 cl00900 351305 -PRK13262 183928 PRK13262 183928 -PRK13264 183930 cl21464 354820 -PRK13265 183931 cl04705 322773 -PRK13270 183934 cl17346 354328 -PRK13272 183936 cl17346 354328 -PRK13275 183939 cl22471 328904 -PRK13276 183940 PRK13276 183940 -PRK13277 183941 PRK13277 183941 -PRK13282 183946 cl00740 351232 -PRK13283 183947 cl00740 351232 -PRK13287 183950 PRK13287 183950 -PRK13290 183953 cl21464 354820 -PRK13291 183954 cl21506 354845 -PRK13292 183955 PRK13292 183955 -PRK13293 183956 cl00644 351193 -PRK13294 183957 PRK13294 183957 -PRK13305 183962 cl21457 354814 -PRK13307 183964 PRK13307 183964 -PRK13308 183965 PRK13308 183965 -PRK13309 183966 PRK13309 183966 -PRK13310 183967 cl17037 354300 -PRK13313 183968 cl10022 324563 -PRK13314 183969 cl10022 324563 -PRK13316 183970 cl10022 324563 -PRK13325 183976 PRK13325 183976 -PRK13327 183977 cl17037 354300 -PRK13329 183979 cl17037 354300 -PRK13333 183981 cl17037 354300 -PRK13337 183982 PRK13337 183982 -PRK13339 183983 cl21454 354811 -PRK13340 183984 cl27635 355667 -PRK13343 183987 PRK13343 183987 -PRK13344 183988 cl00388 351069 -PRK13353 183992 PRK13353 183992 -PRK13358 183997 cl00599 351170 -PRK13359 183998 PRK13359 183998 -PRK13360 183999 cl18945 354370 -PRK13362 184001 cl00337 351038 -PRK13363 184002 cl00599 351170 -PRK13364 184003 cl00599 351170 -PRK13365 184004 cl00599 351170 -PRK13366 184005 cl00599 351170 -PRK13367 184006 PRK13367 184006 -PRK13368 184007 cl11394 353239 -PRK13377 184013 cl06673 352553 -PRK13379 184014 cl06673 352553 -PRK13385 184017 cl11394 353239 -PRK13389 184021 cl11394 353239 -PRK13391 184022 PRK13391 184022 -PRK13392 184023 cl18945 354370 -PRK13393 184024 cl18945 354370 -PRK13394 184025 PRK13394 184025 -PRK13398 184028 cl17225 354324 -PRK13399 184029 cl21457 354814 -PRK13400 184030 cl00373 351060 -PRK13401 184031 cl00373 351060 -PRK13402 184032 PRK13402 184032 -PRK13404 184033 cl28964 355840 -PRK13407 184036 PRK13407 184036 -PRK13409 184037 PRK13409 184037 -PRK13410 184038 PRK13410 184038 -PRK13411 184039 PRK13411 184039 -PRK13413 184041 PRK13413 184041 -PRK13415 184042 cl01247 351439 -PRK13422 184046 cl00365 351055 -PRK13428 184048 PRK13428 184048 -PRK13431 184051 cl17210 354322 -PRK13435 184052 PRK13435 184052 -PRK13436 184053 cl17210 354322 -PRK13441 184054 cl17210 354322 -PRK13442 184055 cl29826 356702 -PRK13446 184056 PRK13446 184056 -PRK13447 184057 PRK13447 184057 -PRK13449 184058 cl29826 356702 -PRK13450 184059 PRK13450 184059 -PRK13453 184060 cl21478 354827 -PRK13454 184061 cl21478 354827 -PRK13455 184062 cl21478 354827 -PRK13461 184064 cl21478 354827 -PRK13464 184065 cl00466 351103 -PRK13468 184067 cl00466 351103 -PRK13469 184068 cl00466 351103 -PRK13471 184069 cl00466 351103 -PRK13475 184072 PRK13475 184072 -PRK13476 184073 cl00193 350938 -PRK13478 184075 PRK13478 184075 -PRK13479 184076 PRK13479 184076 -PRK13481 184078 cl29529 356405 -PRK13483 184080 PRK13483 184080 -PRK13490 184084 cl00810 351265 -PRK13491 184085 cl00810 351265 -PRK13493 184086 cl00810 351265 -PRK13494 184087 cl00810 351265 -PRK13495 184088 cl00810 351265 -PRK13500 184091 PRK13500 184091 -PRK13501 184092 PRK13501 184092 -PRK13502 184093 PRK13502 184093 -PRK13503 184094 PRK13503 184094 -PRK13507 184098 PRK13507 184098 -PRK13509 184100 PRK13509 184100 -PRK13510 184101 cl00672 351208 -PRK13511 184102 cl23725 355022 -PRK13512 184103 PRK13512 184103 -PRK13513 184104 PRK13513 184104 -PRK13518 184108 cl00954 351329 -PRK13523 184110 cl28888 355772 -PRK13526 184113 cl00020 350865 -PRK13531 184118 PRK13531 184118 -PRK13535 184122 PRK13535 184122 -PRK13538 184125 PRK13538 184125 -PRK13540 184127 cl25403 355390 -PRK13541 184128 cl25403 355390 -PRK13543 184129 PRK13543 184129 -PRK13545 184130 PRK13545 184130 -PRK13546 184131 PRK13546 184131 -PRK13547 184132 PRK13547 184132 -PRK13549 184134 PRK13549 184134 -PRK13551 184135 cl19186 354389 -PRK13552 184136 PRK13552 184136 -PRK13555 184139 cl00438 351093 -PRK13556 184140 cl00438 351093 -PRK13561 184143 PRK13561 184143 -PRK13562 184144 cl29106 355982 -PRK13565 184146 PRK13565 184146 -PRK13567 184148 PRK13567 184148 -PRK13569 184150 PRK13569 184150 -PRK13571 184152 PRK13571 184152 -PRK13573 184154 PRK13573 184154 -PRK13574 184155 PRK13574 184155 -PRK13575 184156 cl28986 355862 -PRK13577 184158 PRK13577 184158 -PRK13580 184161 cl18945 354370 -PRK13585 184165 cl21457 354814 -PRK13590 184168 PRK13590 184168 -PRK13591 184169 cl00337 351038 -PRK13598 184171 cl00341 351042 -PRK13600 184172 cl00600 351171 -PRK13601 184173 cl00600 351171 -PRK13602 184174 cl00600 351171 -PRK13604 184175 cl21494 354836 -PRK13608 184179 PRK13608 184179 -PRK13615 184183 PRK13615 184183 -PRK13618 184185 cl21467 354821 -PRK13623 184186 cl00400 351077 -PRK13625 184187 PRK13625 184187 -PRK13626 184188 PRK13626 184188 -PRK13627 184189 PRK13627 184189 -PRK13628 184190 cl00573 351159 -PRK13629 184191 cl00456 320982 -PRK13635 184195 PRK13635 184195 -PRK13636 184196 PRK13636 184196 -PRK13638 184198 PRK13638 184198 -PRK13639 184199 PRK13639 184199 -PRK13640 184200 PRK13640 184200 -PRK13642 184202 PRK13642 184202 -PRK13643 184203 PRK13643 184203 -PRK13645 184204 PRK13645 184204 -PRK13646 184205 PRK13646 184205 -PRK13648 184207 PRK13648 184207 -PRK13649 184208 PRK13649 184208 -PRK13650 184209 PRK13650 184209 -PRK13651 184210 PRK13651 184210 -PRK13657 184214 PRK13657 184214 -PRK13658 184215 PRK13658 184215 -PRK13659 184216 cl23932 355098 -PRK13661 184218 cl21488 354833 -PRK13662 184219 cl00979 321284 -PRK13663 184220 cl19473 327559 -PRK13664 184221 cl23933 355099 -PRK13666 184223 cl26898 331719 -PRK13667 184224 cl11492 353277 -PRK13669 184226 cl11488 325058 -PRK13671 184228 cl00015 350862 -PRK13672 184229 cl11485 325057 -PRK13675 184232 cl00642 351192 -PRK13677 184234 cl10125 353054 -PRK13678 184235 cl01608 321587 -PRK13679 184236 PRK13679 184236 -PRK13680 184237 cl23934 355100 -PRK13681 184238 PRK13681 184238 -PRK13682 184239 cl26923 355592 -PRK13683 184240 PRK13683 184240 -PRK13685 184242 PRK13685 184242 -PRK13687 184244 cl01566 351557 -PRK13693 184249 cl00509 351126 -PRK13697 184253 cl21467 354821 -PRK13698 184254 PRK13698 184254 -PRK13699 184255 cl17173 354317 -PRK13700 184256 PRK13700 184256 -PRK13702 184258 cl27844 332665 -PRK13703 184259 cl00388 351069 -PRK13704 184260 cl23935 329183 -PRK13705 184261 PRK13705 184261 -PRK13706 184262 cl05434 323055 -PRK13707 184263 cl06278 323392 -PRK13708 184264 cl00995 351340 -PRK13710 184266 cl02188 351700 -PRK13711 184267 PRK13711 184267 -PRK13712 184268 PRK13712 184268 -PRK13713 184269 cl23827 329108 -PRK13715 184270 cl00755 351241 -PRK13717 184271 cl11515 353282 -PRK13722 184274 cl00222 350962 -PRK13725 184277 cl28905 355781 -PRK13726 184278 cl05060 322925 -PRK13729 184281 cl28929 355805 -PRK13730 184282 cl09883 353019 -PRK13731 184283 cl19728 354452 -PRK13732 184284 cl09930 353029 -PRK13733 184285 cl19474 354424 -PRK13735 184287 cl26833 355578 -PRK13738 184290 cl10149 353056 -PRK13740 184292 cl27023 355604 -PRK13742 184293 cl19398 354416 -PRK13743 184294 PRK13743 184294 -PRK13746 184296 PRK13746 184296 -PRK13747 184297 cl26467 331288 -PRK13748 184298 cl30684 357560 -PRK13749 184299 PRK13749 184299 -PRK13750 184300 cl11495 299748 -PRK13751 184301 cl03578 186578 -PRK13752 184302 PRK13752 184302 -PRK13753 184303 cl00219 350959 -PRK13754 184304 PRK13754 184304 -PRK13761 184308 cl03400 351987 -PRK13764 184311 PRK13764 184311 -PRK13771 184316 PRK13771 184316 -PRK13774 184317 cl17011 354294 -PRK13778 184320 cl01346 321456 -PRK13786 184325 cl28913 355789 -PRK13788 184326 cl28913 355789 -PRK13789 184327 PRK13789 184327 -PRK13793 184329 cl00015 350862 -PRK13798 184333 cl01251 351441 -PRK13802 184335 PRK13802 184335 -PRK13809 184340 cl00309 351014 -PRK13810 184341 cl00309 351014 -PRK13816 184344 cl00542 351145 -PRK13818 184345 cl00542 351145 -PRK13821 184347 cl19097 354378 -PRK13823 184348 cl01501 351526 -PRK13824 184349 PRK13824 184349 -PRK13828 184351 PRK13828 184351 -PRK13829 184352 PRK13829 184352 -PRK13832 184353 PRK13832 184353 -PRK13872 184356 cl01500 351525 -PRK13874 184358 cl02193 351701 -PRK13877 184361 PRK13877 184361 -PRK13879 184363 cl02193 351701 -PRK13883 184367 cl19428 354420 -PRK13884 184368 cl10465 353074 -PRK13886 184370 cl28913 355789 -PRK13891 184375 PRK13891 184375 -PRK13892 184376 cl01583 321577 -PRK13894 184377 cl25403 355390 -PRK13895 184378 cl11943 353324 -PRK13896 184379 PRK13896 184379 -PRK13900 184381 cl25403 355390 -PRK13904 184384 PRK13904 184384 -PRK13906 184386 PRK13906 184386 -PRK13908 184387 cl21686 328853 -PRK13912 184389 PRK13912 184389 -PRK13913 184390 PRK13913 184390 -PRK13917 184393 cl17037 354300 -PRK13919 184395 PRK13919 184395 -PRK13925 184399 cl14782 353835 -PRK13926 184400 cl14782 353835 -PRK13929 184403 PRK13929 184403 -PRK13931 184405 cl00448 351097 -PRK13933 184406 cl00448 351097 -PRK13937 184408 cl00389 351070 -PRK13942 184409 PRK13942 184409 -PRK13945 184410 PRK13945 184410 -PRK13946 184411 cl17190 354320 -PRK13947 184412 cl17190 354320 -PRK13948 184413 cl17190 354320 -PRK13953 184415 cl00860 351284 -PRK13955 184416 cl00860 351284 -PRK13956 184417 cl00493 351119 -PRK13958 184418 cl21457 354814 -PRK13960 184420 cl00231 350970 -PRK13964 184424 cl00015 350862 -PRK13965 184425 cl00264 350992 -PRK13968 184426 cl11961 353326 -PRK13969 184427 PRK13969 184427 -PRK13971 184428 PRK13971 184428 -PRK13973 184429 cl17190 354320 -PRK13975 184430 cl17190 354320 -PRK13978 184433 cl00339 351040 -PRK13980 184435 cl00292 351005 -PRK13985 184438 PRK13985 184438 -PRK13986 184439 PRK13986 184439 -PRK13988 184441 cl00538 351142 -PRK13989 184442 cl00538 351142 -PRK13995 184445 cl00944 351325 -PRK14000 184446 cl00944 351325 -PRK14003 184447 cl00944 351325 -PRK14010 184448 PRK14010 184448 -PRK14012 184450 cl18945 354370 -PRK14017 184455 PRK14017 184455 -PRK14018 184456 PRK14018 184456 -PRK14021 184458 PRK14021 184458 -PRK14023 184460 cl00215 350957 -PRK14025 184462 cl00445 351095 -PRK14030 184463 PRK14030 184463 -PRK14031 184464 PRK14031 184464 -PRK14032 184465 cl00416 351085 -PRK14034 184467 cl00416 351085 -PRK14035 184468 cl00416 351085 -PRK14037 184470 cl00416 351085 -PRK14039 184471 cl00192 350937 -PRK14047 184475 cl00219 350959 -PRK14051 184476 cl14578 301315 -PRK14052 184477 cl00960 351333 -PRK14059 184482 cl17279 354327 -PRK14063 184483 cl00750 351237 -PRK14065 184484 PRK14065 184484 -PRK14068 184485 cl00750 351237 -PRK14070 184486 cl00750 351237 -PRK14071 184487 cl00204 350948 -PRK14075 184489 cl01255 321418 -PRK14079 184491 PRK14079 184491 -PRK14082 184493 PRK14082 184493 -PRK14084 184495 PRK14084 184495 -PRK14090 184499 PRK14090 184499 -PRK14093 184501 PRK14093 184501 -PRK14097 184504 PRK14097 184504 -PRK14100 184506 cl00895 351303 -PRK14101 184507 PRK14101 184507 -PRK14102 184508 cl03935 322479 -PRK14103 184509 cl17173 354317 -PRK14106 184511 PRK14106 184511 -PRK14110 184514 cl00365 351055 -PRK14111 184515 cl00365 351055 -PRK14115 184516 cl11399 353243 -PRK14117 184517 cl11399 353243 -PRK14119 184518 cl11399 353243 -PRK14120 184519 cl11399 353243 -PRK14122 184521 PRK14122 184521 -PRK14123 184522 PRK14123 184522 -PRK14125 184523 PRK14125 184523 -PRK14128 184525 PRK14128 184525 -PRK14129 184526 cl01548 351550 -PRK14133 184529 PRK14133 184529 -PRK14134 184530 cl00936 351319 -PRK14144 184535 cl03075 351939 -PRK14145 184536 cl03075 351939 -PRK14149 184538 cl03075 351939 -PRK14150 184539 cl03075 351939 -PRK14153 184540 cl03075 351939 -PRK14157 184543 PRK14157 184543 -PRK14163 184546 cl03075 351939 -PRK14165 184548 PRK14165 184548 -PRK14167 184549 PRK14167 184549 -PRK14169 184550 PRK14169 184550 -PRK14173 184551 PRK14173 184551 -PRK14175 184552 PRK14175 184552 -PRK14176 184553 PRK14176 184553 -PRK14183 184555 PRK14183 184555 -PRK14185 184556 PRK14185 184556 -PRK14188 184558 PRK14188 184558 -PRK14189 184559 PRK14189 184559 -PRK14190 184560 PRK14190 184560 -PRK14192 184561 PRK14192 184561 -PRK14195 184563 cl09114 352935 -PRK14196 184564 cl09114 352935 -PRK14201 184566 cl09114 352935 -PRK14212 184569 cl09114 352935 -PRK14213 184570 cl09114 352935 -PRK14214 184571 cl09114 352935 -PRK14216 184572 cl09114 352935 -PRK14218 184573 cl09114 352935 -PRK14221 184575 cl09114 352935 -PRK14223 184576 cl09114 352935 -PRK14231 184579 cl09114 352935 -PRK14236 184582 PRK14236 184582 -PRK14238 184584 PRK14238 184584 -PRK14239 184585 PRK14239 184585 -PRK14240 184586 PRK14240 184586 -PRK14241 184587 PRK14241 184587 -PRK14243 184588 PRK14243 184588 -PRK14249 184590 PRK14249 184590 -PRK14258 184593 PRK14258 184593 -PRK14264 184594 PRK14264 184594 -PRK14267 184596 PRK14267 184596 -PRK14270 184597 PRK14270 184597 -PRK14277 184599 PRK14277 184599 -PRK14282 184603 PRK14282 184603 -PRK14283 184604 PRK14283 184604 -PRK14297 184611 PRK14297 184611 -PRK14298 184612 PRK14298 184612 -PRK14314 184614 PRK14314 184614 -PRK14322 184619 PRK14322 184619 -PRK14323 184620 PRK14323 184620 -PRK14324 184621 PRK14324 184621 -PRK14327 184624 PRK14327 184624 -PRK14330 184627 PRK14330 184627 -PRK14331 184628 PRK14331 184628 -PRK14334 184630 PRK14334 184630 -PRK14336 184632 PRK14336 184632 -PRK14338 184633 PRK14338 184633 -PRK14339 184634 PRK14339 184634 -PRK14345 184638 cl14057 353805 -PRK14351 184640 PRK14351 184640 -PRK14352 184641 PRK14352 184641 -PRK14353 184642 PRK14353 184642 -PRK14354 184643 PRK14354 184643 -PRK14360 184646 PRK14360 184646 -PRK14363 184647 cl00276 350998 -PRK14364 184648 cl00276 350998 -PRK14369 184650 cl00506 351124 -PRK14370 184651 cl00506 351124 -PRK14380 184654 cl00506 351124 -PRK14387 184655 cl00506 351124 -PRK14389 184656 cl00506 351124 -PRK14396 184657 cl00410 351080 -PRK14401 184658 cl00410 351080 -PRK14411 184663 cl00410 351080 -PRK14412 184664 cl00410 351080 -PRK14414 184665 cl00410 351080 -PRK14415 184666 cl00410 351080 -PRK14416 184667 cl00410 351080 -PRK14417 184668 cl00410 351080 -PRK14424 184674 cl00551 351148 -PRK14426 184675 cl00551 351148 -PRK14429 184676 cl00551 351148 -PRK14431 184677 cl00551 351148 -PRK14432 184678 cl00551 351148 -PRK14433 184679 cl00551 351148 -PRK14434 184680 cl00551 351148 -PRK14435 184681 cl00551 351148 -PRK14449 184682 cl00551 351148 -PRK14450 184683 cl00551 351148 -PRK14453 184685 cl18962 354374 -PRK14454 184686 PRK14454 184686 -PRK14457 184688 cl18962 354374 -PRK14459 184689 cl18962 354374 -PRK14464 184691 cl18962 354374 -PRK14467 184693 cl18962 354374 -PRK14468 184694 cl18962 354374 -PRK14471 184695 cl21478 354827 -PRK14474 184696 PRK14474 184696 -PRK14475 184697 cl21478 354827 -PRK14478 184699 PRK14478 184699 -PRK14484 184702 cl00025 350867 -PRK14485 184703 PRK14485 184703 -PRK14486 184704 PRK14486 184704 -PRK14501 184712 PRK14501 184712 -PRK14502 184713 PRK14502 184713 -PRK14506 184716 cl08220 352857 -PRK14514 184722 cl23717 355015 -PRK14520 184724 PRK14520 184724 -PRK14532 184729 PRK14532 184729 -PRK14533 184730 cl09113 352934 -PRK14536 184731 PRK14536 184731 -PRK14539 184732 PRK14539 184732 -PRK14540 184733 cl00335 351036 -PRK14545 184734 cl00335 351036 -PRK14547 184735 PRK14547 184735 -PRK14553 184740 cl01080 351372 -PRK14561 184745 cl00292 351005 -PRK14562 184746 cl00957 351330 -PRK14563 184747 cl23828 355062 -PRK14566 184749 cl28888 355772 -PRK14568 184750 PRK14568 184750 -PRK14571 184751 PRK14571 184751 -PRK14573 184752 PRK14573 184752 -PRK14581 184753 PRK14581 184753 -PRK14582 184754 PRK14582 184754 -PRK14583 184755 PRK14583 184755 -PRK14584 184756 cl14676 353828 -PRK14595 184757 cl00234 320843 -PRK14596 184758 cl00234 320843 -PRK14604 184760 PRK14604 184760 -PRK14605 184761 PRK14605 184761 -PRK14606 184762 PRK14606 184762 -PRK14610 184766 PRK14610 184766 -PRK14611 184767 PRK14611 184767 -PRK14623 184771 cl00494 351120 -PRK14625 184772 cl00494 351120 -PRK14635 184774 cl00259 350988 -PRK14638 184777 cl00259 350988 -PRK14644 184779 cl00259 350988 -PRK14645 184780 cl00259 350988 -PRK14661 184782 cl00500 351122 -PRK14662 184783 cl00500 351122 -PRK14668 184785 PRK14668 184785 -PRK14674 184788 cl00516 351129 -PRK14677 184789 cl00516 351129 -PRK14686 184791 cl00516 351129 -PRK14688 184792 cl00516 351129 -PRK14696 184793 PRK14696 184793 -PRK14697 184794 cl00303 351011 -PRK14698 184795 PRK14698 184795 -PRK14704 184798 PRK14704 184798 -PRK14717 184803 cl04705 322773 -PRK14720 184804 PRK14720 184804 -PRK14730 184807 cl17190 354320 -PRK14747 184810 PRK14747 184810 -PRK14753 184811 PRK14753 184811 -PRK14763 184813 PRK14763 184813 -PRK14771 184816 cl00458 351102 -PRK14779 184818 cl00458 351102 -PRK14784 184819 cl00458 351102 -PRK14785 184820 cl00458 351102 -PRK14793 184823 cl00458 351102 -PRK14796 184824 cl00458 351102 -PRK14797 184825 cl00458 351102 -PRK14799 184826 PRK14799 184826 -PRK14807 184829 PRK14807 184829 -PRK14809 184830 PRK14809 184830 -PRK14811 184831 PRK14811 184831 -PRK14820 184833 cl17194 354321 -PRK14821 184834 cl00276 350998 -PRK14822 184835 cl00276 350998 -PRK14830 184840 cl00230 350969 -PRK14831 184841 cl00230 350969 -PRK14838 184846 cl00230 350969 -PRK14843 184847 PRK14843 184847 -PRK14847 184849 cl21457 354814 -PRK14848 184850 cl23802 329089 -PRK14849 184851 PRK14849 184851 -PRK14851 184853 PRK14851 184853 -PRK14852 184854 PRK14852 184854 -PRK14853 184855 PRK14853 184855 -PRK14854 184856 cl01133 351397 -PRK14856 184858 cl01133 351397 -PRK14857 184859 cl00788 294511 -PRK14858 184860 cl00788 294511 -PRK14859 184861 cl00788 294511 -PRK14860 184862 cl00788 294511 -PRK14863 184865 cl00470 351106 -PRK14864 184866 cl11507 353281 -PRK14872 184872 cl19252 354401 -PRK14875 184875 PRK14875 184875 -PRK14877 184877 cl19475 354425 -PRK14878 184878 PRK14878 184878 -PRK14889 184883 cl01729 351577 -PRK14890 184884 cl19729 354453 -PRK14891 184885 cl00909 321242 -PRK14892 184886 cl02038 351662 -PRK14893 184887 PRK14893 184887 -PRK14895 184889 PRK14895 184889 -PRK14903 184896 PRK14903 184896 -PRK14905 184898 PRK14905 184898 -PRK14906 184899 PRK14906 184899 -PRK14907 184900 PRK14907 184900 -PRK14938 184902 PRK14938 184902 -PRK14940 184904 PRK14940 184904 -PRK14941 184905 PRK14941 184905 -PRK14942 184906 PRK14942 184906 -PRK14943 184907 PRK14943 184907 -PRK14944 184908 PRK14944 184908 -PRK14945 184909 PRK14945 184909 -PRK14946 184910 PRK14946 184910 -PRK14954 184918 PRK14954 184918 -PRK14955 184919 PRK14955 184919 -PRK14956 184920 PRK14956 184920 -PRK14957 184921 PRK14957 184921 -PRK14958 184922 PRK14958 184922 -PRK14959 184923 PRK14959 184923 -PRK14961 184925 PRK14961 184925 -PRK14963 184927 PRK14963 184927 -PRK14966 184930 PRK14966 184930 -PRK14967 184931 PRK14967 184931 -PRK14970 184934 PRK14970 184934 -PRK14973 184936 PRK14973 184936 -PRK14977 184940 PRK14977 184940 -PRK14980 184942 cl02716 351867 -PRK14981 184943 cl00638 351189 -PRK14982 184944 cl28539 355712 -PRK14986 184948 PRK14986 184948 -PRK14987 184949 PRK14987 184949 -PRK14989 184951 PRK14989 184951 -PRK14990 184952 PRK14990 184952 -PRK14992 184954 cl21513 328765 -PRK14993 184955 PRK14993 184955 -PRK14994 184956 cl00304 351012 -PRK14995 184957 PRK14995 184957 -PRK14996 184958 PRK14996 184958 -PRK14997 184959 PRK14997 184959 -PRK14998 184960 cl09927 353027 -PRK14999 184961 PRK14999 184961 -PRK15000 184962 PRK15000 184962 -PRK15001 184963 PRK15001 184963 -PRK15002 184964 PRK15002 184964 -PRK15003 184965 cl12219 353372 -PRK15004 184966 cl11399 353243 -PRK15005 184967 cl00292 351005 -PRK15006 184968 cl23723 355020 -PRK15007 184969 PRK15007 184969 -PRK15008 184970 PRK15008 184970 -PRK15009 184971 cl00447 351096 -PRK15010 184972 PRK15010 184972 -PRK15011 184973 PRK15011 184973 -PRK15012 184974 PRK15012 184974 -PRK15014 184975 cl23725 355022 -PRK15015 184976 cl27408 355647 -PRK15016 184977 PRK15016 184977 -PRK15017 184978 cl00275 350997 -PRK15018 184979 cl17185 354319 -PRK15019 184980 cl00951 351328 -PRK15021 184982 PRK15021 184982 -PRK15022 184983 cl00264 350992 -PRK15023 184984 cl27283 355635 -PRK15025 184985 cl00900 351305 -PRK15026 184986 cl14876 353847 -PRK15027 184987 PRK15027 184987 -PRK15028 184988 cl12219 353372 -PRK15029 184989 PRK15029 184989 -PRK15030 184990 PRK15030 184990 -PRK15031 184991 cl00235 350973 -PRK15032 184992 PRK15032 184992 -PRK15034 184994 cl28910 355786 -PRK15035 184995 cl00562 351154 -PRK15036 184996 cl21470 354823 -PRK15037 184997 cl29756 356632 -PRK15038 184998 cl00454 351100 -PRK15039 184999 cl00846 351279 -PRK15040 185000 cl27283 355635 -PRK15041 185001 PRK15041 185001 -PRK15043 185003 PRK15043 185003 -PRK15044 185004 cl30840 357716 -PRK15045 185005 cl17862 327445 -PRK15047 185007 cl00949 351327 -PRK15048 185008 PRK15048 185008 -PRK15049 185009 PRK15049 185009 -PRK15051 185011 cl23754 329058 -PRK15053 185013 PRK15053 185013 -PRK15054 185014 cl00958 351331 -PRK15056 185016 PRK15056 185016 -PRK15057 185017 PRK15057 185017 -PRK15058 185018 cl01546 321561 -PRK15059 185019 PRK15059 185019 -PRK15060 185020 cl21473 354825 -PRK15069 185029 cl00427 351090 -PRK15074 185033 cl00192 350937 -PRK15076 185035 PRK15076 185035 -PRK15079 185037 PRK15079 185037 -PRK15081 185039 PRK15081 185039 -PRK15082 185040 PRK15082 185040 -PRK15084 185042 cl06472 323466 -PRK15087 185044 cl03831 352063 -PRK15088 185045 PRK15088 185045 -PRK15090 185046 PRK15090 185046 -PRK15091 185047 cl01073 351368 -PRK15093 185049 PRK15093 185049 -PRK15094 185050 PRK15094 185050 -PRK15097 185052 cl00562 351154 -PRK15098 185053 PRK15098 185053 -PRK15099 185054 cl09326 352957 -PRK15100 185055 PRK15100 185055 -PRK15101 185056 PRK15101 185056 -PRK15104 185059 PRK15104 185059 -PRK15105 185060 PRK15105 185060 -PRK15107 185062 PRK15107 185062 -PRK15108 185063 PRK15108 185063 -PRK15109 185064 PRK15109 185064 -PRK15110 185065 cl00427 351090 -PRK15111 185066 PRK15111 185066 -PRK15112 185067 PRK15112 185067 -PRK15113 185068 PRK15113 185068 -PRK15114 185069 PRK15114 185069 -PRK15115 185070 PRK15115 185070 -PRK15116 185071 PRK15116 185071 -PRK15118 185073 cl00292 351005 -PRK15120 185075 cl12074 325180 -PRK15121 185076 PRK15121 185076 -PRK15124 185079 PRK15124 185079 -PRK15126 185080 PRK15126 185080 -PRK15127 185081 cl30265 357141 -PRK15128 185082 PRK15128 185082 -PRK15129 185083 PRK15129 185083 -PRK15131 185085 cl21464 354820 -PRK15132 185086 cl00456 320982 -PRK15133 185087 cl00427 351090 -PRK15135 185089 cl00427 351090 -PRK15136 185090 PRK15136 185090 -PRK15137 185091 cl00083 350893 -PRK15138 185092 cl02872 351912 -PRK15171 185093 PRK15171 185093 -PRK15173 185095 PRK15173 185095 -PRK15174 185096 PRK15174 185096 -PRK15175 185097 PRK15175 185097 -PRK15176 185098 cl21474 354826 -PRK15177 185099 PRK15177 185099 -PRK15178 185100 cl19730 354454 -PRK15179 185101 PRK15179 185101 -PRK15180 185102 PRK15180 185102 -PRK15181 185103 PRK15181 185103 -PRK15182 185104 PRK15182 185104 -PRK15183 185105 PRK15183 185105 -PRK15184 185106 cl21526 354853 -PRK15185 185107 PRK15185 185107 -PRK15186 185108 PRK15186 185108 -PRK15187 185109 cl01416 351496 -PRK15188 185110 PRK15188 185110 -PRK15189 185111 cl01416 351496 -PRK15190 185112 cl01416 351496 -PRK15191 185113 cl01416 351496 -PRK15192 185114 PRK15192 185114 -PRK15195 185117 PRK15195 185117 -PRK15196 185118 PRK15196 185118 -PRK15197 185119 PRK15197 185119 -PRK15198 185120 PRK15198 185120 -PRK15200 185122 cl01416 351496 -PRK15201 185123 PRK15201 185123 -PRK15203 185125 PRK15203 185125 -PRK15204 185126 PRK15204 185126 -PRK15207 185129 PRK15207 185129 -PRK15209 185131 cl01416 351496 -PRK15210 185132 cl01416 351496 -PRK15211 185133 PRK15211 185133 -PRK15212 185134 cl21676 304491 -PRK15214 185136 cl01416 351496 -PRK15215 185137 cl27281 332102 -PRK15216 185138 cl01416 351496 -PRK15217 185139 PRK15217 185139 -PRK15218 185140 PRK15218 185140 -PRK15221 185143 cl09697 299004 -PRK15222 185144 cl05376 296991 -PRK15223 185145 PRK15223 185145 -PRK15224 185146 PRK15224 185146 -PRK15228 185147 cl05775 186667 -PRK15231 185148 cl05376 296991 -PRK15233 185149 PRK15233 185149 -PRK15235 185150 PRK15235 185150 -PRK15239 185152 cl01416 351496 -PRK15240 185153 cl21487 354832 -PRK15241 185154 cl01416 351496 -PRK15243 185155 PRK15243 185155 -PRK15244 185156 PRK15244 185156 -PRK15245 185157 cl04142 296266 -PRK15246 185158 PRK15246 185158 -PRK15247 185159 cl01416 351496 -PRK15248 185160 PRK15248 185160 -PRK15250 185162 cl27954 355690 -PRK15253 185165 PRK15253 185165 -PRK15254 185166 PRK15254 185166 -PRK15255 185167 PRK15255 185167 -PRK15260 185168 cl01416 351496 -PRK15261 185169 cl01416 351496 -PRK15263 185171 cl01416 351496 -PRK15265 185172 cl14664 187418 -PRK15266 185173 cl14664 187418 -PRK15267 185174 cl14664 187418 -PRK15272 185175 cl03779 322415 -PRK15273 185176 PRK15273 185176 -PRK15274 185177 PRK15274 185177 -PRK15275 185178 cl01416 351496 -PRK15276 185179 cl01416 351496 -PRK15278 185180 cl29960 356836 -PRK15279 185181 PRK15279 185181 -PRK15280 185182 PRK15280 185182 -PRK15283 185183 cl01416 351496 -PRK15284 185184 PRK15284 185184 -PRK15285 185185 PRK15285 185185 -PRK15286 185186 cl01416 351496 -PRK15287 185187 cl01416 351496 -PRK15288 185188 cl01416 351496 -PRK15289 185189 cl01416 351496 -PRK15291 185191 cl01416 351496 -PRK15293 185193 cl01416 351496 -PRK15294 185194 PRK15294 185194 -PRK15296 185196 cl01416 351496 -PRK15297 185197 PRK15297 185197 -PRK15298 185198 PRK15298 185198 -PRK15299 185199 PRK15299 185199 -PRK15300 185200 cl01416 351496 -PRK15301 185201 cl23796 304953 -PRK15302 185202 cl23796 304953 -PRK15303 185203 cl23796 304953 -PRK15305 185205 cl01416 351496 -PRK15307 185207 cl01416 351496 -PRK15309 185209 cl04524 352199 -PRK15310 185210 PRK15310 185210 -PRK15311 185211 cl06460 297618 -PRK15312 185212 cl17182 354318 -PRK15314 185214 PRK15314 185214 -PRK15316 185216 PRK15316 185216 -PRK15319 185219 PRK15319 185219 -PRK15320 185220 PRK15320 185220 -PRK15321 185221 PRK15321 185221 -PRK15322 185222 PRK15322 185222 -PRK15323 185223 cl09716 353000 -PRK15324 185224 cl01907 351635 -PRK15325 185225 cl14758 326350 -PRK15326 185226 cl09641 352985 -PRK15328 185228 cl00222 350962 -PRK15330 185230 cl05827 297251 -PRK15331 185231 cl30292 357168 -PRK15332 185232 cl00734 351231 -PRK15333 185233 cl00867 351290 -PRK15334 185234 cl19597 302938 -PRK15335 185235 cl22557 304582 -PRK15336 185236 cl04129 352113 -PRK15340 185240 PRK15340 185240 -PRK15341 185241 cl27989 332810 -PRK15344 185242 cl09641 352985 -PRK15348 185246 cl01907 351635 -PRK15349 185247 cl00734 351231 -PRK15350 185248 cl00867 351290 -PRK15351 185249 PRK15351 185249 -PRK15352 185250 PRK15352 185250 -PRK15353 185251 cl08444 352898 -PRK15354 185252 PRK15354 185252 -PRK15355 185253 cl28631 333451 -PRK15356 185254 cl27921 332742 -PRK15357 185255 cl28630 333450 -PRK15358 185256 cl28630 333450 -PRK15359 185257 cl26860 355586 -PRK15360 185258 PRK15360 185258 -PRK15361 185259 PRK15361 185259 -PRK15363 185261 cl26860 355586 -PRK15364 185262 cl04069 322512 -PRK15365 185263 PRK15365 185263 -PRK15366 185264 cl27870 332691 -PRK15367 185265 cl27782 355678 -PRK15368 185266 PRK15368 185266 -PRK15369 185267 PRK15369 185267 -PRK15370 185268 PRK15370 185268 -PRK15371 185269 cl07849 352820 -PRK15372 185270 cl27796 355680 -PRK15373 185271 cl27854 332675 -PRK15374 185272 PRK15374 185272 -PRK15375 185273 PRK15375 185273 -PRK15376 185274 cl19731 302980 -PRK15377 185275 PRK15377 185275 -PRK15379 185277 cl14701 301338 -PRK15380 185278 cl14701 301338 -PRK15381 185279 cl01053 351360 -PRK15382 185280 cl23829 304986 -PRK15383 185281 cl23829 304986 -PRK15384 185282 cl23829 304986 -PRK15385 185283 PRK15385 185283 -PRK15387 185285 PRK15387 185285 -PRK15388 185286 cl00891 351300 -PRK15390 185288 PRK15390 185288 -PRK15391 185289 PRK15391 185289 -PRK15392 185290 PRK15392 185290 -PRK15393 185291 cl00447 351096 -PRK15394 185292 PRK15394 185292 -PRK15395 185293 cl10011 353040 -PRK15396 185294 cl23797 355051 -PRK15397 185295 cl01256 351444 -PRK15399 185297 PRK15399 185297 -PRK15400 185298 PRK15400 185298 -PRK15402 185300 PRK15402 185300 -PRK15405 185303 PRK15405 185303 -PRK15406 185304 PRK15406 185304 -PRK15409 185307 cl21454 354811 -PRK15410 185308 cl01267 351450 -PRK15411 185309 PRK15411 185309 -PRK15412 185310 cl00388 351069 -PRK15413 185311 PRK15413 185311 -PRK15414 185312 PRK15414 185312 -PRK15415 185313 PRK15415 185313 -PRK15416 185314 cl11399 353243 -PRK15417 185315 cl28330 355709 -PRK15419 185317 cl00456 320982 -PRK15420 185318 cl00809 351264 -PRK15421 185319 PRK15421 185319 -PRK15422 185320 cl11531 353283 -PRK15423 185321 cl00309 351014 -PRK15425 185323 PRK15425 185323 -PRK15427 185325 PRK15427 185325 -PRK15428 185326 cl14772 301342 -PRK15430 185328 cl28581 355713 -PRK15431 185329 cl22948 328963 -PRK15432 185330 cl00454 351100 -PRK15433 185331 cl00547 294369 -PRK15435 185333 PRK15435 185333 -PRK15437 185334 PRK15437 185334 -PRK15438 185335 PRK15438 185335 -PRK15439 185336 PRK15439 185336 -PRK15440 185337 PRK15440 185337 -PRK15441 185338 cl29122 355998 -PRK15442 185339 cl21491 354834 -PRK15443 185340 cl02055 321786 -PRK15444 185341 cl12104 325190 -PRK15445 185342 cl21473 354825 -PRK15448 185345 cl01889 321715 -PRK15449 185346 cl19102 354379 -PRK15450 185347 cl23862 329132 -PRK15451 185348 cl17173 354317 -PRK15454 185351 cl02872 351912 -PRK15455 185352 PRK15455 185352 -PRK15456 185353 cl00292 351005 -PRK15457 185354 cl21464 354820 -PRK15458 185355 cl09211 352950 -PRK15459 185356 cl09176 352945 -PRK15460 185357 cl11394 353239 -PRK15461 185358 cl29088 355964 -PRK15463 185360 cl09927 353027 -PRK15464 185361 cl09927 353027 -PRK15465 185362 PRK15465 185362 -PRK15466 185363 cl01982 351654 -PRK15467 185364 cl28983 355859 -PRK15468 185365 cl01982 351654 -PRK15469 185366 cl21454 354811 -PRK15470 185367 PRK15470 185367 -PRK15471 185368 PRK15471 185368 -PRK15472 185369 cl00447 351096 -PRK15473 185370 cl00304 351012 -PRK15474 185371 cl01982 351654 -PRK15475 185372 cl00816 351269 -PRK15476 185373 cl00816 351269 -PRK15477 185374 cl00816 351269 -PRK15478 185375 cl00304 351012 -PRK15479 185376 PRK15479 185376 -PRK15480 185377 PRK15480 185377 -PRK15481 185378 PRK15481 185378 -PRK15482 185379 PRK15482 185379 -PRK15484 185381 PRK15484 185381 -PRK15485 185382 cl00463 294315 -PRK15486 185383 cl00381 351064 -PRK15487 185384 cl04850 352267 -PRK15490 185387 PRK15490 185387 -PRK15491 185388 PRK15491 185388 -PRK15492 185389 cl28888 355772 -PRK15493 185390 cl28964 355840 -PRK15494 185391 PRK15494 185391 -PTZ00008 185394 cl08298 352871 -PTZ00015 185397 PTZ00015 185397 -PTZ00017 185399 PTZ00017 185399 -PTZ00018 185400 cl23735 329044 -PTZ00026 185402 cl02977 322147 -PTZ00028 185404 cl00931 351315 -PTZ00029 185405 cl00322 351025 -PTZ00030 185406 cl00393 351073 -PTZ00035 185407 PTZ00035 185407 -PTZ00044 185411 cl28922 355798 -PTZ00048 185414 cl21467 354821 -PTZ00052 185416 PTZ00052 185416 -PTZ00054 185418 cl00328 351031 -PTZ00058 185420 PTZ00058 185420 -PTZ00059 185421 cl03131 351951 -PTZ00067 185422 cl00312 351017 -PTZ00072 185427 PTZ00072 185427 -PTZ00074 185429 cl00955 321274 -PTZ00077 185431 PTZ00077 185431 -PTZ00078 185432 PTZ00078 185432 -PTZ00079 185433 PTZ00079 185433 -PTZ00083 185434 cl00897 294584 -PTZ00086 185437 cl00334 351035 -PTZ00087 185438 cl15278 326556 -PTZ00091 185439 cl00313 351018 -PTZ00096 185442 cl00350 351046 -PTZ00097 185443 cl00232 350971 -PTZ00099 185444 PTZ00099 185444 -PTZ00101 185445 cl21536 354858 -PTZ00106 185450 cl00600 351171 -PTZ00114 185455 PTZ00114 185455 -PTZ00120 185458 cl00253 350984 -PTZ00128 185464 cl01240 351436 -PTZ00129 185465 cl00332 320911 -PTZ00130 185466 PTZ00130 185466 -PTZ00131 185467 PTZ00131 185467 -PTZ00134 185469 cl00331 351033 -PTZ00136 185471 cl00241 350978 -PTZ00138 185472 cl00259 350988 -PTZ00141 185474 PTZ00141 185474 -PTZ00155 185484 PTZ00155 185484 -PTZ00156 185485 PTZ00156 185485 -PTZ00158 185487 cl00330 351032 -PTZ00160 185489 cl12022 353342 -PTZ00163 185490 cl09916 324535 -PTZ00167 185493 cl02716 351867 -PTZ00168 185494 PTZ00168 185494 -PTZ00172 185497 cl01993 321763 -PTZ00173 185498 cl00353 351049 -PTZ00175 185500 cl00304 351012 -PTZ00182 185502 PTZ00182 185502 -PTZ00183 185503 PTZ00183 185503 -PTZ00184 185504 PTZ00184 185504 -PTZ00191 185507 PTZ00191 185507 -PTZ00194 185508 cl00354 351050 -PTZ00196 185509 cl02104 351677 -PTZ00197 185510 cl03350 351980 -PTZ00199 185511 cl00082 350892 -PTZ00203 185513 PTZ00203 185513 -PTZ00212 185514 PTZ00212 185514 -PTZ00213 185515 cl00268 350993 -PTZ00215 185516 cl00485 351115 -PTZ00218 185518 cl00355 351051 -PTZ00219 185519 PTZ00219 185519 -PTZ00235 185521 cl13995 353799 -PTZ00242 185524 cl28904 355780 -PTZ00275 185536 PTZ00275 185536 -PTZ00286 185539 cl00204 350948 -PTZ00292 185541 cl00192 350937 -PTZ00293 185542 cl23762 329062 -PTZ00304 185547 cl30574 357450 -PTZ00311 185549 cl22860 354963 -PTZ00318 185553 PTZ00318 185553 -PTZ00323 185554 cl00292 351005 -PTZ00329 185558 cl09927 353027 -PTZ00335 185562 PTZ00335 185562 -PTZ00337 185563 cl19482 302875 -PTZ00349 185571 cl00230 350969 -PTZ00356 185573 cl29122 355998 -PTZ00361 185575 PTZ00361 185575 -PTZ00363 185577 cl21454 354811 -PTZ00373 185582 cl21508 354846 -PTZ00375 185583 cl29418 356294 -PTZ00385 185588 PTZ00385 185588 -PTZ00389 185592 cl03141 351954 -PTZ00395 185594 PTZ00395 185594 -PTZ00410 185600 cl00195 350940 -PTZ00415 185603 PTZ00415 185603 -PTZ00422 185607 PTZ00422 185607 -PTZ00424 185609 PTZ00424 185609 -PTZ00428 185611 PTZ00428 185611 -PTZ00430 185612 PTZ00430 185612 -PTZ00433 185613 PTZ00433 185613 -PTZ00434 185614 PTZ00434 185614 -PTZ00436 185616 PTZ00436 185616 -PTZ00438 185618 cl27860 332681 -PTZ00442 185621 PTZ00442 185621 -PTZ00443 185622 PTZ00443 185622 -PTZ00444 185623 PTZ00444 185623 -PTZ00447 185626 PTZ00447 185626 -PTZ00448 185627 PTZ00448 185627 -PTZ00449 185628 PTZ00449 185628 -PTZ00450 185629 cl00235 350973 -PTZ00451 185630 cl17190 354320 -PTZ00452 185631 cl17037 354300 -PTZ00453 185632 cl03104 351944 -PTZ00456 185635 PTZ00456 185635 -PTZ00457 185636 PTZ00457 185636 -PTZ00458 185637 cl00221 350961 -PTZ00459 185638 PTZ00459 185638 -PTZ00460 185639 PTZ00460 185639 -PTZ00461 185640 PTZ00461 185640 -PTZ00462 185641 PTZ00462 185641 -PTZ00463 185642 cl23830 355063 -PTZ00465 185644 cl28061 355699 -PTZ00467 185646 cl21569 328804 -PTZ00468 185647 PTZ00468 185647 -PTZ00469 185648 cl12022 353342 -PTZ00475 185654 cl14778 353834 -PTZ00478 185656 cl00481 351112 -PTZ00479 185657 cl00516 351129 -PTZ00480 185658 cl13995 353799 -PTZ00481 185659 cl02616 351828 -PTZ00483 185661 PTZ00483 185661 -PTZ00488 185666 PTZ00488 185666 -PTZ00490 185668 cl00159 350924 -PTZ00494 185671 cl23936 305093 -cd00418 185672 cl00015 350862 -cd00560 185673 cl00015 350862 -cd00668 185674 cl00015 350862 -cd00671 185675 cl00015 350862 -cd00807 185676 cl00015 350862 -cd00817 185677 cl00015 350862 -cd02039 185678 cl00015 350862 -cd02064 185679 cl00015 350862 -cd02165 185680 cl00015 350862 -cd09286 185681 cl00015 350862 -cd09287 185682 cl00015 350862 -cd00413 185683 cl22861 354964 -cd02175 185684 cl22861 354964 -cd02176 185685 cl22861 354964 -cd02177 185686 cl22861 354964 -cd02178 185687 cl22861 354964 -cd02179 185688 cl22861 354964 -cd02180 185689 cl22861 354964 -cd02181 185690 cl22861 354964 -cd02182 185691 cl22861 354964 -cd02183 185692 cl22861 354964 -cd08023 185693 cl22861 354964 -cd08024 185694 cl22861 354964 -cd01081 185695 cl14648 353820 -cd09019 185696 cl14648 353820 -cd09020 185697 cl14648 353820 -cd09021 185698 cl14648 353820 -cd09022 185699 cl14648 353820 -cd09023 185700 cl14648 353820 -cd09024 185701 cl14648 353820 -cd09025 185702 cl14648 353820 -cd09269 185703 cl14648 353820 -cd06846 185704 cl12015 353338 -cd07894 185705 cl12015 353338 -cd07895 185706 cl12015 353338 -cd07896 185707 cl12015 353338 -cd07897 185708 cl12015 353338 -cd07898 185709 cl12015 353338 -cd07900 185710 cl12015 353338 -cd07901 185711 cl12015 353338 -cd07902 185712 cl12015 353338 -cd07903 185713 cl12015 353338 -cd07905 185714 cl12015 353338 -cd07906 185715 cl12015 353338 -cd08039 185716 cl12015 353338 -cd09232 185717 cl12015 353338 -cd08915 185746 cl14654 353824 -cd09234 185747 cl14654 353824 -cd09235 185748 cl14654 353824 -cd09236 185749 cl14654 353824 -cd09237 185750 cl14654 353824 -cd09238 185751 cl14654 353824 -cd08961 185752 cl02511 351780 -cd09214 185753 cl02511 351780 -cd09215 185754 cl02511 351780 -cd09216 185755 cl02511 351780 -cd09217 185756 cl02511 351780 -cd09218 185757 cl02511 351780 -cd09219 185758 cl02511 351780 -cd09220 185759 cl02511 351780 -cd08977 185760 cl21747 354926 -cd09034 185761 cl14649 353821 -cd09239 185762 cl14649 353821 -cd09240 185763 cl14649 353821 -cd09241 185764 cl14649 353821 -cd09242 185765 cl14649 353821 -cd09243 185766 cl14649 353821 -cd09244 185767 cl14649 353821 -cd09245 185768 cl14649 353821 -cd09246 185769 cl14649 353821 -cd09247 185770 cl14649 353821 -cd09248 185771 cl14649 353821 -cd09249 185772 cl14649 353821 -cd09752 187534 cl21479 328741 -cd02266 187535 cl25409 355392 -cd05193 187536 cl25409 355392 -cd05226 187537 cl25409 355392 -cd05227 187538 cl25409 355392 -cd05228 187539 cl25409 355392 -cd05229 187540 cl25409 355392 -cd05230 187541 cl25409 355392 -cd05231 187542 cl25409 355392 -cd05232 187543 cl25409 355392 -cd05234 187545 cl25409 355392 -cd05235 187546 cl25409 355392 -cd05236 187547 cl25409 355392 -cd05237 187548 cl25409 355392 -cd05238 187549 cl25409 355392 -cd05239 187550 cl25409 355392 -cd05240 187551 cl25409 355392 -cd05241 187552 cl25409 355392 -cd05242 187553 cl25409 355392 -cd05243 187554 cl25409 355392 -cd05244 187555 cl25409 355392 -cd05245 187556 cl25409 355392 -cd05246 187557 cl25409 355392 -cd05247 187558 cl25409 355392 -cd05248 187559 cl25409 355392 -cd05250 187560 cl25409 355392 -cd05251 187561 cl25409 355392 -cd05252 187562 cl25409 355392 -cd05253 187563 cl25409 355392 -cd05254 187564 cl25409 355392 -cd05255 187565 cl25409 355392 -cd05256 187566 cl25409 355392 -cd05257 187567 cl25409 355392 -cd05258 187568 cl25409 355392 -cd05259 187569 cl25409 355392 -cd05260 187570 cl25409 355392 -cd05261 187571 cl25409 355392 -cd05262 187572 cl25409 355392 -cd05263 187573 cl25409 355392 -cd05264 187574 cl25409 355392 -cd05265 187575 cl25409 355392 -cd05266 187576 cl25409 355392 -cd05267 187577 cl25409 355392 -cd05269 187578 cl25409 355392 -cd05271 187579 cl25409 355392 -cd05272 187580 cl25409 355392 -cd05273 187581 cl25409 355392 -cd05274 187582 cl25409 355392 -cd05322 187583 cl25409 355392 -cd05323 187584 cl25409 355392 -cd05324 187585 cl25409 355392 -cd05325 187586 cl25409 355392 -cd05326 187587 cl25409 355392 -cd05328 187589 cl25409 355392 -cd05329 187590 cl25409 355392 -cd05330 187591 cl25409 355392 -cd05331 187592 cl25409 355392 -cd05332 187593 cl25409 355392 -cd05333 187594 cl25409 355392 -cd05334 187595 cl25409 355392 -cd05337 187596 cl25409 355392 -cd05338 187597 cl25409 355392 -cd05339 187598 cl25409 355392 -cd05340 187599 cl25409 355392 -cd05341 187600 cl25409 355392 -cd05343 187601 cl25409 355392 -cd05344 187602 cl25409 355392 -cd05345 187603 cl25409 355392 -cd05346 187604 cl25409 355392 -cd05347 187605 cl25409 355392 -cd05348 187606 cl25409 355392 -cd05349 187607 cl25409 355392 -cd05350 187608 cl25409 355392 -cd05351 187609 cl25409 355392 -cd05352 187610 cl25409 355392 -cd05353 187611 cl25409 355392 -cd05354 187612 cl25409 355392 -cd05355 187613 cl25409 355392 -cd05356 187614 cl25409 355392 -cd05357 187615 cl25409 355392 -cd05358 187616 cl25409 355392 -cd05359 187617 cl25409 355392 -cd05360 187618 cl25409 355392 -cd05361 187619 cl25409 355392 -cd05362 187620 cl25409 355392 -cd05363 187621 cl25409 355392 -cd05364 187622 cl25409 355392 -cd05365 187623 cl25409 355392 -cd05366 187624 cl25409 355392 -cd05367 187625 cl25409 355392 -cd05368 187626 cl25409 355392 -cd05369 187627 cl25409 355392 -cd05370 187628 cl25409 355392 -cd05371 187629 cl25409 355392 -cd05372 187630 cl25409 355392 -cd05373 187631 cl25409 355392 -cd05374 187632 cl25409 355392 -cd08928 187633 cl25409 355392 -cd08929 187634 cl25409 355392 -cd08930 187635 cl25409 355392 -cd08931 187636 cl25409 355392 -cd08933 187638 cl25409 355392 -cd08934 187639 cl25409 355392 -cd08935 187640 cl25409 355392 -cd08936 187641 cl25409 355392 -cd08937 187642 cl25409 355392 -cd08939 187643 cl25409 355392 -cd08940 187644 cl25409 355392 -cd08941 187645 cl25409 355392 -cd08942 187646 cl25409 355392 -cd08943 187647 cl25409 355392 -cd08944 187648 cl25409 355392 -cd08945 187649 cl25409 355392 -cd08947 187651 cl25409 355392 -cd08948 187652 cl25409 355392 -cd08950 187653 cl25409 355392 -cd08951 187654 cl25409 355392 -cd08952 187655 cl25409 355392 -cd08953 187656 cl25409 355392 -cd08954 187657 cl25409 355392 -cd08955 187658 cl25409 355392 -cd08956 187659 cl25409 355392 -cd08957 187660 cl25409 355392 -cd08958 187661 cl25409 355392 -cd09761 187662 cl25409 355392 -cd09762 187663 cl25409 355392 -cd09763 187664 cl25409 355392 -cd09805 187665 cl25409 355392 -cd09806 187666 cl25409 355392 -cd09808 187668 cl25409 355392 -cd09809 187669 cl25409 355392 -cd09810 187670 cl25409 355392 -cd09811 187671 cl25409 355392 -cd09812 187672 cl25409 355392 -cd09813 187673 cl25409 355392 -cd00005 187674 cl14783 353836 -cd00241 187675 cl14783 353836 -cd09618 187676 cl14783 353836 -cd09619 187677 cl14783 353836 -cd09620 187678 cl14783 353836 -cd09621 187679 cl14783 353836 -cd09622 187680 cl14783 353836 -cd09623 187681 cl14783 353836 -cd09624 187682 cl14783 353836 -cd09625 187683 cl14783 353836 -cd09626 187684 cl14783 353836 -cd09627 187685 cl14783 353836 -cd09628 187686 cl14783 353836 -cd09629 187687 cl14783 353836 -cd09630 187688 cl14783 353836 -cd09631 187689 cl14783 353836 -cd09767 187705 cl18967 276221 -cd09302 187706 cl03205 322229 -cd09611 187707 cl03205 322229 -cd09612 187708 cl03205 322229 -cd09613 187709 cl03205 322229 -cd09614 187710 cl03205 322229 -cd09615 187711 cl03205 322229 -cd08369 187712 cl00395 351075 -cd08644 187713 cl00395 351075 -cd08645 187714 cl00395 351075 -cd08646 187715 cl00395 351075 -cd08647 187716 cl00395 351075 -cd08648 187717 cl00395 351075 -cd08649 187718 cl00395 351075 -cd08650 187719 cl00395 351075 -cd08651 187720 cl00395 351075 -cd08653 187721 cl00395 351075 -cd08820 187722 cl00395 351075 -cd08821 187723 cl00395 351075 -cd08822 187724 cl00395 351075 -cd08823 187725 cl00395 351075 -cd00540 187726 cl14785 353837 -cd08370 187727 cl14785 353837 -cd08700 187728 cl14785 353837 -cd08701 187729 cl14785 353837 -cd08702 187730 cl14785 353837 -cd08703 187731 cl14785 353837 -cd08704 187732 cl14785 353837 -cd09764 187733 cd09764 187733 -cd09765 187734 cl14805 276063 -cd09766 187735 cd09766 187735 -cd02255 187736 cl08306 352874 -cd09616 187737 cl08306 352874 -cd09617 187738 cl08306 352874 -cd07982 187739 cl02150 351686 -cd08371 187740 cl00317 351021 -cd09208 187741 cl00317 351021 -cd09209 187742 cl00317 351021 -cd09210 187743 cl00317 351021 -cd09211 187744 cl00317 351021 -cd09223 187745 cl08220 352857 -cd09288 187746 cl08220 352857 -cd09289 187747 cl08220 352857 -cd09290 187748 cl08220 352857 -cd09291 187749 cl08220 352857 -cd09233 187750 cl14807 353838 -cd09270 187751 cl18968 354375 -cd09271 187752 cl07291 323858 -cd09281 187753 cl00749 351236 -cd09293 187754 cl28166 355707 -cd09294 187755 cl00482 351113 -cd09299 187756 cl04176 352121 -cd09317 187757 cl04176 352121 -cd09318 187758 cl04176 352121 -cd09319 187759 cl04176 352121 -cd09320 187760 cl04176 352121 -cd09321 187761 cl04176 352121 -cd09322 187762 cl04176 352121 -cd09323 187763 cl04176 352121 -cd09324 187764 cl04176 352121 -cd09325 187765 cl04176 352121 -cd09634 187766 cl00656 351200 -cd09636 187767 cl00656 351200 -cd09637 187768 cl00641 351191 -cd09638 187769 cl11442 353257 -cd09639 187770 cl25403 355390 -cd09640 187771 cl01465 351515 -cd09642 187773 cl12004 353334 -cd09643 187774 cl00083 350893 -cd09645 187776 cl21479 328741 -cd09646 187777 cl09608 324397 -cd09647 187778 cl00622 351182 -cd09648 187779 cl08187 324207 -cd09649 187780 cl21479 328741 -cd09650 187781 cl00803 321178 -cd09651 187782 cl21479 328741 -cd09652 187783 cl11443 353258 -cd09653 187784 cl09906 299111 -cd09654 187785 cl01317 321445 -cd09655 187786 cl21459 354815 -cd09656 187787 cl21471 354824 -cd09657 187788 cl21471 354824 -cd09658 187789 cl21479 328741 -cd09659 187790 cl00641 351191 -cd09660 187791 cl21516 354849 -cd09661 187792 cl21471 354824 -cd09662 187793 cl21471 354824 -cd09663 187794 cl23831 304988 -cd09664 187795 cl08497 352913 -cd09665 187796 cl21519 328770 -cd09666 187797 cl09907 299112 -cd09667 187798 cl09827 324500 -cd09668 187799 cl21516 354849 -cd09669 187800 cl08044 352843 -cd09670 187801 cl09719 353001 -cd09671 187802 cl21516 354849 -cd09672 187803 cl21533 328778 -cd09673 187804 cl25403 355390 -cd09674 187805 cl09835 353015 -cd09675 187806 cl09829 353013 -cd09676 187807 cl12127 353364 -cd09677 187808 cl09832 353014 -cd09678 187809 cl09834 324503 -cd09679 187810 cl21742 354924 -cd09680 187811 cl21469 354822 -cd09681 187812 cl09837 324505 -cd09682 187813 cl21471 354824 -cd09683 187814 cl21471 354824 -cd09684 187815 cl21471 354824 -cd09685 187816 cl00803 321178 -cd09686 187817 cl09839 324506 -cd09687 187818 cl00803 321178 -cd09688 187819 cl21479 328741 -cd09689 187820 cl01465 351515 -cd09690 187821 cl01465 351515 -cd09691 187822 cl21533 328778 -cd09692 187823 cl21479 328741 -cd09693 187824 cl21479 328741 -cd09694 187825 cl19028 327494 -cd09695 187826 cl19029 327495 -cd09696 187827 cl25403 355390 -cd09697 187828 cl21519 328770 -cd09698 187829 cl09872 299095 -cd09699 187830 cl09873 324520 -cd09700 187831 cl21471 354824 -cd09701 187832 cl19000 276222 -cd09702 187833 cl21570 328805 -cd09703 187834 cl09782 324480 -cd09704 187835 cl22980 277695 -cd09705 187836 cl19002 276223 -cd09706 187837 cl11864 275987 -cd09707 187838 cl11865 187964 -cd09708 187839 cl30285 357161 -cd09709 187840 cl11869 275990 -cd09710 187841 cl28899 355775 -cd09711 187842 cl19005 276224 -cd09712 187843 cl19006 276225 -cd09713 187844 cl11892 187967 -cd09714 187845 cl11893 187968 -cd09715 187846 cl11894 187969 -cd09716 187847 cl11895 187970 -cd09717 187848 cl00803 321178 -cd09718 187849 cl00656 351200 -cd09719 187850 cl00656 351200 -cd09720 187851 cl00656 351200 -cd09721 187852 cl00656 351200 -cd09722 187853 cl00656 351200 -cd09723 187854 cl09839 324506 -cd09724 187855 cl15465 276111 -cd09725 187856 cl11442 353257 -cd09726 187857 cl21471 354824 -cd09727 187858 cl08497 352913 -cd09728 187859 cl21516 354849 -cd09729 187860 cl08044 352843 -cd09730 187861 cl21533 328778 -cd09731 187862 cl09719 353001 -cd09732 187863 cl21516 354849 -cd09733 187864 cl09782 324480 -cd09735 187866 cl09829 353013 -cd09736 187867 cl12127 353364 -cd09737 187868 cl09832 353014 -cd09738 187869 cl09834 324503 -cd09739 187870 cl09835 353015 -cd09740 187871 cl09837 324505 -cd09741 187872 cl09839 324506 -cd09742 187873 cl19028 327494 -cd09743 187874 cl19029 327495 -cd09744 187875 cl21519 328770 -cd09745 187876 cl09872 299095 -cd09746 187877 cl09873 324520 -cd09747 187878 cl21570 328805 -cd09748 187879 cl21471 354824 -cd09749 187880 cl01317 321445 -cd09750 187881 cl09906 299111 -cd09751 187882 cl09907 299112 -cd09753 187883 cl21479 328741 -cd09754 187884 cl21519 328770 -cd09755 187885 cl08187 324207 -cd09756 187886 cl21479 328741 -cd09757 187887 cl12004 353334 -cd09759 187889 cl11443 353258 -cd09760 187890 cl11443 353258 -TIGR00003 188014 cl00207 350951 -TIGR00008 188015 cl09927 353027 -TIGR00095 188022 cl17173 354317 -TIGR00107 188024 cl00303 351011 -TIGR00154 188029 TIGR00154 188029 -TIGR00208 188033 cl00654 351199 -TIGR00333 188042 cl00438 351093 -TIGR00365 188046 cl00388 351069 -TIGR00417 188048 cl17173 354317 -TIGR00446 188051 TIGR00446 188051 -TIGR00477 188054 cl17173 354317 -TIGR00493 188055 cl23717 355015 -TIGR00511 188057 cl00348 351044 -TIGR00559 188064 cl00541 351144 -TIGR00690 188073 cl14651 353822 -TIGR00694 188074 cl00192 350937 -TIGR00766 188082 cl07918 352838 -TIGR00841 188087 cl19217 354395 -TIGR00864 188093 TIGR00864 188093 -TIGR00931 188097 cl28596 333416 -TIGR00957 188098 TIGR00957 188098 -TIGR01086 188107 cl00214 350956 -TIGR01215 188120 cl00538 351142 -TIGR01250 188121 TIGR01250 188121 -TIGR01265 188123 TIGR01265 188123 -TIGR01283 188126 cl02775 351884 -TIGR01284 188127 cl02775 351884 -TIGR01298 188129 cl10012 353041 -TIGR01323 188130 cl27315 355639 -TIGR01325 188131 cl18945 354370 -TIGR01344 188132 cl21481 354828 -TIGR01422 188140 TIGR01422 188140 -TIGR01559 188157 cl00210 350953 -TIGR01633 188159 cl17486 327418 -TIGR01735 188163 TIGR01735 188163 -TIGR01751 188164 TIGR01751 188164 -TIGR01780 188167 cl11961 353326 -TIGR01832 188170 TIGR01832 188170 -TIGR01852 188173 TIGR01852 188173 -TIGR01911 188182 cl00400 351077 -TIGR01999 188192 cl00528 351136 -TIGR02018 188194 TIGR02018 188194 -TIGR02279 188207 TIGR02279 188207 -TIGR02323 188208 TIGR02323 188208 -TIGR02337 188209 cl21459 354815 -TIGR02367 188213 cl00268 350993 -TIGR02428 188219 cl00339 351040 -TIGR02510 188230 TIGR02510 188230 -TIGR02531 188231 cl21459 354815 -TIGR02591 188234 cl21533 328778 -TIGR02634 188237 TIGR02634 188237 -TIGR02650 188239 cl23716 355014 -TIGR02684 188241 cl22854 354960 -TIGR02795 188247 TIGR02795 188247 -TIGR02845 188254 TIGR02845 188254 -TIGR02852 188255 cl19190 327515 -TIGR02949 188261 cl15806 353980 -TIGR03001 188267 TIGR03001 188267 -TIGR03036 188272 cl03994 296175 -TIGR03050 188274 cl11425 325026 -TIGR03055 188275 cl11843 325130 -TIGR03110 188282 cl23937 305094 -TIGR03130 188283 cl06082 352463 -TIGR03133 188285 cl23717 355015 -TIGR03136 188287 cl00816 351269 -TIGR03180 188295 cl01251 351441 -TIGR03319 188306 TIGR03319 188306 -TIGR03326 188307 TIGR03326 188307 -TIGR03401 188314 cl21469 354822 -TIGR03414 188316 cl21456 354813 -TIGR03415 188317 TIGR03415 188317 -TIGR03416 188318 cl00427 351090 -TIGR03418 188320 TIGR03418 188320 -TIGR03543 188337 TIGR03543 188337 -TIGR03575 188340 cl17190 354320 -TIGR03581 188342 cl06211 352484 -TIGR03605 188352 cl00514 321015 -TIGR03608 188353 TIGR03608 188353 -TIGR03640 188360 cl00656 351200 -TIGR03677 188367 cl00600 351171 -TIGR03679 188368 cl00292 351005 -TIGR03886 188401 cl23832 304989 -TIGR03887 188402 cl27315 355639 -TIGR03889 188404 cl21677 354902 -TIGR03890 188405 cl21464 354820 -TIGR03894 188409 TIGR03894 188409 -TIGR03905 188420 cl14834 353841 -TIGR03909 188424 TIGR03909 188424 -TIGR03910 188425 TIGR03910 188425 -TIGR03911 188426 TIGR03911 188426 -TIGR03912 188427 TIGR03912 188427 -TIGR03913 188428 TIGR03913 188428 -TIGR03916 188431 TIGR03916 188431 -TIGR03922 188437 TIGR03922 188437 -TIGR03926 188441 cl01868 351624 -TIGR03932 188447 TIGR03932 188447 -TIGR03933 188448 cl15692 353970 -TIGR03935 188450 TIGR03935 188450 -TIGR03940 188455 cl14676 353828 -TIGR03942 188457 TIGR03942 188457 -TIGR03946 188461 cl00184 350935 -TIGR03947 188462 cl18945 354370 -TIGR03948 188463 TIGR03948 188463 -TIGR03957 188472 TIGR03957 188472 -TIGR03960 188475 TIGR03960 188475 -TIGR03961 188476 TIGR03961 188476 -TIGR03962 188477 TIGR03962 188477 -TIGR03963 188478 TIGR03963 188478 -TIGR03968 188483 TIGR03968 188483 -TIGR03981 188496 TIGR03981 188496 -TIGR03982 188497 TIGR03982 188497 -TIGR03996 188511 TIGR03996 188511 -TIGR04000 188515 cl00929 321254 -TIGR04002 188517 cl21488 354833 -TIGR04003 188518 TIGR04003 188518 -TIGR04004 188519 cl22684 276638 -TIGR04005 188520 TIGR04005 188520 -TIGR04006 188521 cl10013 353042 -TIGR04007 188522 TIGR04007 188522 -TIGR04008 188523 TIGR04008 188523 -TIGR04009 188524 TIGR04009 188524 -TIGR04010 188525 cl22681 276635 -TIGR04012 188527 TIGR04012 188527 -TIGR04016 188531 TIGR04016 188531 -TIGR04018 188533 TIGR04018 188533 -TIGR04024 188539 cl19096 327499 -TIGR04030 188545 cl00460 320985 -TIGR04031 188546 cl01371 321466 -TIGR04039 188554 TIGR04039 188554 -TIGR04044 188559 cl00672 351208 -TIGR04048 188563 cl11424 353250 -TIGR04049 188564 TIGR04049 188564 -TIGR04051 188566 TIGR04051 188566 -TIGR04052 188567 TIGR04052 188567 -TIGR04058 188573 cl28539 355712 -TIGR04067 188582 TIGR04067 188582 -TIGR04072 188587 cl00293 351006 -TIGR04077 188592 TIGR04077 188592 -TIGR04078 188593 TIGR04078 188593 -TIGR04079 188594 TIGR04079 188594 -TIGR04080 188595 TIGR04080 188595 -TIGR04081 188596 TIGR04081 188596 -TIGR04100 188615 cl18962 354374 -cd00080 188616 cl22433 354936 -cd09897 188617 cl22433 354936 -cd09898 188618 cl22433 354936 -cd09899 188619 cl22433 354936 -cd09900 188620 cl22433 354936 -cd09901 188621 cl22433 354936 -cd09902 188622 cl22433 354936 -cd09903 188623 cl22433 354936 -cd09904 188624 cl22433 354936 -cd09905 188625 cl22433 354936 -cd09906 188626 cl22433 354936 -cd09907 188627 cl22433 354936 -cd09908 188628 cl22433 354936 -cd00344 188629 cl28986 355862 -cd00408 188630 cl28986 355862 -cd00439 188631 cl28986 355862 -cd00452 188632 cl28986 355862 -cd00502 188633 cl28986 355862 -cd00945 188634 cl28986 355862 -cd00948 188635 cl28986 355862 -cd00949 188636 cl28986 355862 -cd00950 188637 cl28986 355862 -cd00951 188638 cl28986 355862 -cd00952 188639 cl28986 355862 -cd00953 188640 cl28986 355862 -cd00954 188641 cl28986 355862 -cd00955 188642 cl28986 355862 -cd00956 188643 cl28986 355862 -cd00957 188644 cl28986 355862 -cd00958 188645 cl28986 355862 -cd00959 188646 cl28986 355862 -cd05396 188647 cl14561 353811 -cd09816 188648 cl14561 353811 -cd09817 188649 cl14561 353811 -cd09818 188650 cl14561 353811 -cd09819 188651 cl14561 353811 -cd09820 188652 cl14561 353811 -cd09821 188653 cl14561 353811 -cd09822 188654 cl14561 353811 -cd09823 188655 cl14561 353811 -cd09824 188656 cl14561 353811 -cd09825 188657 cl14561 353811 -cd09826 188658 cl14561 353811 -cd07440 188659 cl02565 321993 -cd08705 188660 cl02565 321993 -cd08706 188661 cl02565 321993 -cd08707 188662 cl02565 321993 -cd08708 188663 cl02565 321993 -cd08709 188664 cl02565 321993 -cd08710 188665 cl02565 321993 -cd08711 188666 cl02565 321993 -cd08712 188667 cl02565 321993 -cd08713 188668 cl02565 321993 -cd08714 188669 cl02565 321993 -cd08715 188670 cl02565 321993 -cd08716 188671 cl02565 321993 -cd08717 188672 cl02565 321993 -cd08718 188673 cl02565 321993 -cd08719 188674 cl02565 321993 -cd08720 188675 cl02565 321993 -cd08721 188676 cl02565 321993 -cd08722 188677 cl02565 321993 -cd08723 188678 cl02565 321993 -cd08724 188679 cl02565 321993 -cd08725 188680 cl02565 321993 -cd08726 188681 cl02565 321993 -cd08727 188682 cl02565 321993 -cd08728 188683 cl02565 321993 -cd08729 188684 cl02565 321993 -cd08730 188685 cl02565 321993 -cd08731 188686 cl02565 321993 -cd08732 188687 cl02565 321993 -cd08734 188688 cl02565 321993 -cd08735 188689 cl02565 321993 -cd08736 188690 cl02565 321993 -cd08737 188691 cl02565 321993 -cd08738 188692 cl02565 321993 -cd08739 188693 cl02565 321993 -cd08740 188694 cl02565 321993 -cd08741 188695 cl02565 321993 -cd08742 188696 cl02565 321993 -cd08743 188697 cl02565 321993 -cd08744 188698 cl02565 321993 -cd08745 188699 cl02565 321993 -cd08746 188700 cl02565 321993 -cd08747 188701 cl02565 321993 -cd08748 188702 cl02565 321993 -cd08749 188703 cl02565 321993 -cd08750 188704 cl02565 321993 -cd08751 188705 cl02565 321993 -cd08752 188706 cl02565 321993 -cd08753 188707 cl02565 321993 -cd08754 188708 cl02565 321993 -cd08755 188709 cl02565 321993 -cd08756 188710 cl02565 321993 -cd09326 188712 cl02475 351770 -cd09327 188713 cl02475 351770 -cd09328 188714 cl02475 351770 -cd09329 188715 cl02475 351770 -cd09330 188716 cl02475 351770 -cd09331 188717 cl02475 351770 -cd09332 188718 cl02475 351770 -cd09333 188719 cl02475 351770 -cd09334 188720 cl02475 351770 -cd09335 188721 cl02475 351770 -cd09337 188723 cl02475 351770 -cd09338 188724 cl02475 351770 -cd09339 188725 cl02475 351770 -cd09340 188726 cl02475 351770 -cd09341 188727 cl02475 351770 -cd09342 188728 cl02475 351770 -cd09343 188729 cl02475 351770 -cd09344 188730 cl02475 351770 -cd09345 188731 cl02475 351770 -cd09346 188732 cl02475 351770 -cd09347 188733 cl02475 351770 -cd09348 188734 cl02475 351770 -cd09349 188735 cl02475 351770 -cd09350 188736 cl02475 351770 -cd09351 188737 cl02475 351770 -cd09352 188738 cl02475 351770 -cd09353 188739 cl02475 351770 -cd09354 188740 cl02475 351770 -cd09355 188741 cl02475 351770 -cd09356 188742 cl02475 351770 -cd09357 188743 cl02475 351770 -cd09358 188744 cl02475 351770 -cd09359 188745 cl02475 351770 -cd09360 188746 cl02475 351770 -cd09361 188747 cl02475 351770 -cd09362 188748 cl02475 351770 -cd09363 188749 cl02475 351770 -cd09364 188750 cl02475 351770 -cd09365 188751 cl02475 351770 -cd09366 188752 cl02475 351770 -cd09367 188753 cl02475 351770 -cd09368 188754 cl02475 351770 -cd09369 188755 cl02475 351770 -cd09370 188756 cl02475 351770 -cd09371 188757 cl02475 351770 -cd09372 188758 cl02475 351770 -cd09373 188759 cl02475 351770 -cd09374 188760 cl02475 351770 -cd09375 188761 cl02475 351770 -cd09376 188762 cl02475 351770 -cd09377 188763 cl02475 351770 -cd09378 188764 cl02475 351770 -cd09379 188765 cl02475 351770 -cd09380 188766 cl02475 351770 -cd09381 188767 cl02475 351770 -cd09382 188768 cl02475 351770 -cd09383 188769 cl02475 351770 -cd09384 188770 cl02475 351770 -cd09385 188771 cl02475 351770 -cd09386 188772 cl02475 351770 -cd09387 188773 cl02475 351770 -cd09388 188774 cl02475 351770 -cd09389 188775 cl02475 351770 -cd09390 188776 cl02475 351770 -cd09391 188777 cl02475 351770 -cd09392 188778 cl02475 351770 -cd09393 188779 cl02475 351770 -cd09394 188780 cl02475 351770 -cd09395 188781 cl02475 351770 -cd09396 188782 cl02475 351770 -cd09397 188783 cl02475 351770 -cd09400 188784 cl02475 351770 -cd09401 188785 cl02475 351770 -cd09402 188786 cl02475 351770 -cd09403 188787 cl02475 351770 -cd09404 188788 cl02475 351770 -cd09405 188789 cl02475 351770 -cd09406 188790 cl02475 351770 -cd09407 188791 cl02475 351770 -cd09408 188792 cl02475 351770 -cd09409 188793 cl02475 351770 -cd09410 188794 cl02475 351770 -cd09411 188795 cl02475 351770 -cd09412 188796 cl02475 351770 -cd09413 188797 cl02475 351770 -cd09414 188798 cl02475 351770 -cd09415 188799 cl02475 351770 -cd09416 188800 cl02475 351770 -cd09417 188801 cl02475 351770 -cd09418 188802 cl02475 351770 -cd09419 188803 cl02475 351770 -cd09420 188804 cl02475 351770 -cd09421 188805 cl02475 351770 -cd09422 188806 cl02475 351770 -cd09423 188807 cl02475 351770 -cd09424 188808 cl02475 351770 -cd09425 188809 cl02475 351770 -cd09426 188810 cl02475 351770 -cd09427 188811 cl02475 351770 -cd09428 188812 cl02475 351770 -cd09429 188813 cl02475 351770 -cd09430 188814 cl02475 351770 -cd09431 188815 cl02475 351770 -cd09432 188816 cl02475 351770 -cd09433 188817 cl02475 351770 -cd09434 188818 cl02475 351770 -cd09435 188819 cl02475 351770 -cd09436 188820 cl02475 351770 -cd09437 188821 cl02475 351770 -cd09438 188822 cl02475 351770 -cd09439 188823 cl02475 351770 -cd09440 188824 cl02475 351770 -cd09441 188825 cl02475 351770 -cd09442 188826 cl02475 351770 -cd09443 188827 cl02475 351770 -cd09444 188828 cl02475 351770 -cd09445 188829 cl02475 351770 -cd09446 188830 cl02475 351770 -cd09447 188831 cl02475 351770 -cd09448 188832 cl02475 351770 -cd09449 188833 cl02475 351770 -cd09450 188834 cl02475 351770 -cd09451 188835 cl02475 351770 -cd09452 188836 cl02475 351770 -cd09453 188837 cl02475 351770 -cd09454 188838 cl02475 351770 -cd09455 188839 cl02475 351770 -cd09456 188840 cl02475 351770 -cd09457 188841 cl02475 351770 -cd09458 188842 cl02475 351770 -cd09459 188843 cl02475 351770 -cd09460 188844 cl02475 351770 -cd09461 188845 cl02475 351770 -cd09462 188846 cl02475 351770 -cd09463 188847 cl02475 351770 -cd09464 188848 cl02475 351770 -cd09465 188849 cl02475 351770 -cd09466 188850 cl02475 351770 -cd09467 188851 cl02475 351770 -cd09468 188852 cl02475 351770 -cd09469 188853 cl02475 351770 -cd09470 188854 cl02475 351770 -cd09471 188855 cl02475 351770 -cd09472 188856 cl02475 351770 -cd09473 188857 cl02475 351770 -cd09474 188858 cl02475 351770 -cd09475 188859 cl02475 351770 -cd09476 188860 cl02475 351770 -cd09477 188861 cl02475 351770 -cd09478 188862 cl02475 351770 -cd09479 188863 cl02475 351770 -cd09480 188864 cl02475 351770 -cd09481 188865 cl02475 351770 -cd09482 188866 cl02475 351770 -cd09483 188867 cl02475 351770 -cd09484 188868 cl02475 351770 -cd09485 188869 cl02475 351770 -cd09486 188870 cl02475 351770 -cd09840 188871 cl02475 351770 -cd09841 188872 cl02475 351770 -cd09213 188873 cl14874 276097 -cd09768 188874 cl14874 276097 -cd09769 188875 cl14874 276097 -cd08203 188876 cl15755 353976 -cd08531 188877 cl15755 353976 -cd08532 188878 cl15755 353976 -cd08533 188879 cl15755 353976 -cd08537 188880 cl15755 353976 -cd08538 188881 cl15755 353976 -cd08539 188882 cl15755 353976 -cd08541 188883 cl15755 353976 -cd08543 188884 cl15755 353976 -cd08757 188885 cl15755 353976 -cd09487 188886 cl15755 353976 -cd09488 188887 cl15755 353976 -cd09489 188888 cl15755 353976 -cd09490 188889 cl15755 353976 -cd09491 188890 cl15755 353976 -cd09492 188891 cl15755 353976 -cd09493 188892 cl15755 353976 -cd09494 188893 cl15755 353976 -cd09495 188894 cl15755 353976 -cd09496 188895 cl15755 353976 -cd09497 188896 cl15755 353976 -cd09498 188897 cl15755 353976 -cd09499 188898 cl15755 353976 -cd09500 188899 cl15755 353976 -cd09501 188900 cl15755 353976 -cd09502 188901 cl15755 353976 -cd09503 188902 cl15755 353976 -cd09504 188903 cl15755 353976 -cd09505 188904 cl15755 353976 -cd09506 188905 cl15755 353976 -cd09507 188906 cl15755 353976 -cd09508 188907 cl15755 353976 -cd09509 188908 cl15755 353976 -cd09510 188909 cl15755 353976 -cd09511 188910 cl15755 353976 -cd09512 188911 cl15755 353976 -cd09513 188912 cl15755 353976 -cd09514 188913 cl15755 353976 -cd09515 188914 cl15755 353976 -cd09516 188915 cl15755 353976 -cd09517 188916 cl15755 353976 -cd09518 188917 cl15755 353976 -cd09519 188918 cl15755 353976 -cd09520 188919 cl15755 353976 -cd09521 188920 cl15755 353976 -cd09522 188921 cl15755 353976 -cd09523 188922 cl15755 353976 -cd09524 188923 cl15755 353976 -cd09525 188924 cl15755 353976 -cd09526 188925 cl15755 353976 -cd09527 188926 cl15755 353976 -cd09528 188927 cl15755 353976 -cd09529 188928 cl15755 353976 -cd09530 188929 cl15755 353976 -cd09531 188930 cl15755 353976 -cd09532 188931 cl15755 353976 -cd09533 188932 cl15755 353976 -cd09534 188933 cl15755 353976 -cd09535 188934 cl15755 353976 -cd09536 188935 cl15755 353976 -cd09537 188936 cl15755 353976 -cd09538 188937 cl15755 353976 -cd09539 188938 cl15755 353976 -cd09540 188939 cl15755 353976 -cd09541 188940 cl15755 353976 -cd09542 188941 cl15755 353976 -cd09543 188942 cl15755 353976 -cd09544 188943 cl15755 353976 -cd09545 188944 cl15755 353976 -cd09546 188945 cl15755 353976 -cd09547 188946 cl15755 353976 -cd09548 188947 cl15755 353976 -cd09549 188948 cl15755 353976 -cd09550 188949 cl15755 353976 -cd09551 188950 cl15755 353976 -cd09552 188951 cl15755 353976 -cd09553 188952 cl15755 353976 -cd09554 188953 cl15755 353976 -cd09555 188954 cl15755 353976 -cd09556 188955 cl15755 353976 -cd09557 188956 cl15755 353976 -cd09558 188957 cl15755 353976 -cd09559 188958 cl15755 353976 -cd09560 188959 cl15755 353976 -cd09561 188960 cl15755 353976 -cd09562 188961 cl15755 353976 -cd09563 188962 cl15755 353976 -cd09564 188963 cl15755 353976 -cd09565 188964 cl15755 353976 -cd09566 188965 cl15755 353976 -cd09567 188966 cl15755 353976 -cd09568 188967 cl15755 353976 -cd09569 188968 cl15755 353976 -cd09570 188969 cl15755 353976 -cd09571 188970 cl15755 353976 -cd09572 188971 cl15755 353976 -cd09573 188972 cl15755 353976 -cd09574 188973 cl15755 353976 -cd09575 188974 cl15755 353976 -cd09576 188975 cl15755 353976 -cd09577 188976 cl15755 353976 -cd09578 188977 cl15755 353976 -cd09579 188978 cl15755 353976 -cd09580 188979 cl15755 353976 -cd09581 188980 cl15755 353976 -cd09582 188981 cl15755 353976 -cd09583 188982 cl15755 353976 -cd09584 188983 cl15755 353976 -cd09585 188984 cl15755 353976 -cd09586 188985 cl15755 353976 -cd09587 188986 cl15755 353976 -cd09588 188987 cl15755 353976 -cd09589 188988 cl15755 353976 -cd09590 188989 cl15755 353976 -cd09591 188990 cl15755 353976 -cd09592 188991 cl15755 353976 -pfam01391 189968 pfam01391 189968 -pfam02269 190265 cl02174 242920 -pfam02988 190495 cl10471 353078 -pfam03628 190694 pfam03628 190694 -pfam05279 191249 pfam05279 191249 -pfam05310 191255 pfam05310 191255 -pfam05411 191270 pfam05411 191270 -pfam05599 191311 pfam05599 191311 -pfam05725 191356 pfam05725 191356 -pfam05842 191385 pfam05842 191385 -pfam06370 191504 pfam06370 191504 -pfam07365 191732 pfam07365 191732 -pfam07998 191923 cl00064 350885 -pfam07999 191924 cl19421 302859 -pfam08087 191941 pfam08087 191941 -pfam09287 192243 cl14608 326329 -pfam10279 192511 pfam10279 192511 -pfam10392 192566 cl22951 354985 -pfam11427 192757 pfam11427 192757 -pfam12786 193262 pfam12786 193262 -pfam12999 193472 pfam12999 193472 -cd05638 193517 cl14876 353847 -cd08000 193574 cl02766 351879 -cd09886 193575 cl02766 351879 -cd09887 193576 cl02766 351879 -cd09888 193577 cl02766 351879 -cd09889 193578 cl02766 351879 -cd09890 193579 cl02766 351879 -cd09891 193580 cl02766 351879 -cd09892 193581 cl02766 351879 -cd09893 193582 cl02766 351879 -cd09894 193583 cl02766 351879 -cd09895 193584 cl02766 351879 -cd08824 193585 cl14879 353848 -cd09972 193586 cl14879 353848 -cd09973 193587 cl14879 353848 -cd09974 193588 cl14879 353848 -cd09975 193589 cl14879 353848 -cd09976 193590 cl14879 353848 -cd09977 193591 cl14879 353848 -cd09978 193592 cl14879 353848 -cd09979 193593 cl14879 353848 -cd09980 193594 cl14879 353848 -cd09981 193595 cl14879 353848 -cd09982 193596 cl14879 353848 -cd09983 193597 cl14879 353848 -cd09984 193598 cl14879 353848 -cd09985 193599 cl14879 353848 -cd09986 193600 cl14879 353848 -cd09027 193601 cl05674 323139 -cd09827 193602 cl05674 323139 -cd09828 193603 cl05674 323139 -cd09829 193604 cl05674 323139 -cd09830 193605 cl05674 323139 -cd09632 193606 cl15236 326545 -cd09633 193607 cd09633 193607 -cd09641 193608 cl21469 354822 -cd10013 193609 cl21469 354822 -cd00138 197200 cl15239 326546 -cd09102 197201 cl15239 326546 -cd09103 197202 cl15239 326546 -cd09104 197203 cl15239 326546 -cd09105 197204 cl15239 326546 -cd09106 197205 cl15239 326546 -cd09107 197206 cl15239 326546 -cd09108 197207 cl15239 326546 -cd09109 197208 cl15239 326546 -cd09110 197209 cl15239 326546 -cd09111 197210 cl15239 326546 -cd09112 197211 cl15239 326546 -cd09113 197212 cl15239 326546 -cd09114 197213 cl15239 326546 -cd09115 197214 cl15239 326546 -cd09116 197215 cl15239 326546 -cd09117 197216 cl15239 326546 -cd09118 197217 cl15239 326546 -cd09119 197218 cl15239 326546 -cd09120 197219 cl15239 326546 -cd09121 197220 cl15239 326546 -cd09122 197221 cl15239 326546 -cd09123 197222 cl15239 326546 -cd09124 197223 cl15239 326546 -cd09126 197224 cl15239 326546 -cd09127 197225 cl15239 326546 -cd09128 197226 cl15239 326546 -cd09129 197227 cl15239 326546 -cd09130 197228 cl15239 326546 -cd09131 197229 cl15239 326546 -cd09132 197230 cl15239 326546 -cd09133 197231 cl15239 326546 -cd09134 197232 cl15239 326546 -cd09135 197233 cl15239 326546 -cd09136 197234 cl15239 326546 -cd09137 197235 cl15239 326546 -cd09138 197236 cl15239 326546 -cd09139 197237 cl15239 326546 -cd09140 197238 cl15239 326546 -cd09141 197239 cl15239 326546 -cd09142 197240 cl15239 326546 -cd09143 197241 cl15239 326546 -cd09144 197242 cl15239 326546 -cd09145 197243 cl15239 326546 -cd09146 197244 cl15239 326546 -cd09147 197245 cl15239 326546 -cd09148 197246 cl15239 326546 -cd09149 197247 cl15239 326546 -cd09150 197248 cl15239 326546 -cd09151 197249 cl15239 326546 -cd09152 197250 cl15239 326546 -cd09154 197251 cl15239 326546 -cd09155 197252 cl15239 326546 -cd09156 197253 cl15239 326546 -cd09157 197254 cl15239 326546 -cd09158 197255 cl15239 326546 -cd09159 197256 cl15239 326546 -cd09160 197257 cl15239 326546 -cd09161 197258 cl15239 326546 -cd09162 197259 cl15239 326546 -cd09163 197260 cl15239 326546 -cd09164 197261 cl15239 326546 -cd09165 197262 cl15239 326546 -cd09166 197263 cl15239 326546 -cd09167 197264 cl15239 326546 -cd09168 197265 cl15239 326546 -cd09169 197266 cl15239 326546 -cd09170 197267 cl15239 326546 -cd09171 197268 cl15239 326546 -cd09172 197269 cl15239 326546 -cd09173 197270 cl15239 326546 -cd09174 197271 cl15239 326546 -cd09175 197272 cl15239 326546 -cd09176 197273 cl15239 326546 -cd09177 197274 cl15239 326546 -cd09178 197275 cl15239 326546 -cd09179 197276 cl15239 326546 -cd09180 197277 cl15239 326546 -cd09181 197278 cl15239 326546 -cd09182 197279 cl15239 326546 -cd09183 197280 cl15239 326546 -cd09184 197281 cl15239 326546 -cd09186 197282 cl15239 326546 -cd09187 197283 cl15239 326546 -cd09188 197284 cl15239 326546 -cd09189 197285 cl15239 326546 -cd09190 197286 cl15239 326546 -cd09191 197287 cl15239 326546 -cd09192 197288 cl15239 326546 -cd09193 197289 cl15239 326546 -cd09194 197290 cl15239 326546 -cd09195 197291 cl15239 326546 -cd09196 197292 cl15239 326546 -cd09197 197293 cl15239 326546 -cd09198 197294 cl15239 326546 -cd09199 197295 cl15239 326546 -cd09200 197296 cl15239 326546 -cd09203 197297 cl15239 326546 -cd09204 197298 cl15239 326546 -cd09205 197299 cl15239 326546 -cd09842 197300 cl15239 326546 -cd09843 197301 cl15239 326546 -cd09844 197302 cl15239 326546 -cd09845 197303 cl15239 326546 -cd10311 197304 cl15239 326546 -cd07026 197305 cl00393 351073 -cd08372 197306 cl00490 351117 -cd09073 197307 cl00490 351117 -cd09074 197308 cl00490 351117 -cd09075 197309 cl00490 351117 -cd09076 197310 cl00490 351117 -cd09077 197311 cl00490 351117 -cd09078 197312 cl00490 351117 -cd09079 197313 cl00490 351117 -cd09080 197314 cl00490 351117 -cd09081 197315 cl00490 351117 -cd09082 197316 cl00490 351117 -cd09083 197317 cl00490 351117 -cd09084 197318 cl00490 351117 -cd09085 197319 cl00490 351117 -cd09086 197320 cl00490 351117 -cd09087 197321 cl00490 351117 -cd09088 197322 cl00490 351117 -cd09089 197323 cl00490 351117 -cd09090 197324 cl00490 351117 -cd09091 197325 cl00490 351117 -cd09092 197326 cl00490 351117 -cd09093 197327 cl00490 351117 -cd09094 197328 cl00490 351117 -cd09095 197329 cl00490 351117 -cd09096 197330 cl00490 351117 -cd09097 197331 cl00490 351117 -cd09098 197332 cl00490 351117 -cd09099 197333 cl00490 351117 -cd09100 197334 cl00490 351117 -cd09101 197335 cl00490 351117 -cd10281 197336 cl00490 351117 -cd10282 197337 cl00490 351117 -cd10283 197338 cl00490 351117 -cd10312 197339 cl00490 351117 -cd10313 197340 cl00490 351117 -cd08524 197341 cl15240 197448 -cd08525 197342 cl15240 197448 -cd08526 197343 cl15240 197448 -cd10036 197344 cl15240 197448 -cd10037 197345 cl15240 197448 -cd10038 197346 cl15240 197448 -cd10039 197347 cl15240 197448 -cd10040 197348 cl15240 197448 -cd10041 197349 cl15240 197448 -cd10042 197350 cl15240 197448 -cd10043 197351 cl15240 197448 -cd10044 197352 cl15240 197448 -cd10045 197353 cl15240 197448 -cd10046 197354 cl15240 197448 -cd10047 197355 cl15240 197448 -cd10048 197356 cl15240 197448 -cd10049 197357 cl15240 197448 -cd10050 197358 cl15240 197448 -cd10051 197359 cl15240 197448 -cd10052 197360 cl15240 197448 -cd09803 197361 cl15254 353927 -cd09804 197362 cl17171 354315 -cd09846 197363 cl02206 321845 -cd09910 197364 cl02206 321845 -cd09911 197365 cl02206 321845 -cd09916 197366 cl01482 351521 -cd09850 197367 cl02885 351915 -cd09851 197368 cl02885 351915 -cd09909 197369 cl02885 351915 -cd09947 197370 cl02885 351915 -cd09948 197371 cl02885 351915 -cd09949 197372 cl02885 351915 -cd09950 197373 cl02885 351915 -cd09951 197374 cl02885 351915 -cd09966 197375 cl06408 297589 -cd09967 197376 cl06408 297589 -cd09968 197377 cl06408 297589 -cd09969 197378 cl06408 297589 -cd09970 197379 cl06408 297589 -cd09971 197380 cl23729 329040 -cd10015 197381 cl15242 353925 -cd10016 197382 cl15242 353925 -cd10017 197383 cl15242 353925 -cd10018 197384 cl15242 353925 -cd10148 197385 cl00846 351279 -cd10151 197386 cl00846 351279 -cd10152 197387 cl00846 351279 -cd10153 197388 cl00846 351279 -cd10154 197389 cl00846 351279 -cd10155 197390 cl00846 351279 -cd10156 197391 cl00846 351279 -cd10157 197392 cl00846 351279 -cd10158 197393 cl00846 351279 -cd10159 197394 cl00846 351279 -cd10160 197395 cl00846 351279 -cd10161 197396 cl00846 351279 -cd10149 197397 cl25407 355391 -cd10162 197398 cl25407 355391 -cd10163 197399 cl25407 355391 -cd10164 197400 cl25407 355391 -smart00004 197463 cl02419 351756 -smart00010 197466 smart00010 197466 -smart00015 197470 cl29555 356431 -smart00018 197472 cl00103 350902 -smart00021 197474 cl02426 351758 -smart00027 197477 cl27812 332633 -smart00028 197478 cl22897 354972 -smart00038 197483 cl02436 321934 -smart00053 197491 cl25403 355390 -smart00054 197492 smart00054 197492 -smart00073 197502 cl00086 350895 -smart00076 197503 cl00092 320755 -smart00079 197504 cl21456 354813 -smart00080 197505 cl21565 328800 -smart00084 197507 cl27467 332288 -smart00086 197509 smart00086 197509 -smart00100 197516 cl00047 350875 -smart00104 197517 cl00032 320722 -smart00109 197519 cl00040 350872 -smart00121 197525 cl02472 351768 -smart00131 197529 cl00101 350901 -smart00141 197537 cl00116 320767 -smart00143 197539 cl02483 321948 -smart00144 197540 cl02484 321949 -smart00148 197543 cl14615 353814 -smart00150 197544 cl02488 351773 -smart00154 197545 cl01438 351504 -smart00155 197546 cl15239 326546 -smart00156 197547 cl13995 353799 -smart00157 197548 cl27706 355671 -smart00160 197549 cl17171 354315 -smart00165 197551 cl21463 354819 -smart00166 197552 cl28922 355798 -smart00174 197554 smart00174 197554 -smart00175 197555 smart00175 197555 -smart00178 197556 smart00178 197556 -smart00187 197563 cl00057 350880 -smart00190 197564 cl11518 325067 -smart00192 197566 cl00104 350903 -smart00199 197570 cl00134 350913 -smart00201 197571 cl02508 321959 -smart00203 197573 smart00203 197573 -smart00217 197580 cl00156 350922 -smart00219 197581 cl21453 354810 -smart00225 197585 smart00225 197585 -smart00226 197586 cl00105 320761 -smart00236 197593 cl02521 351784 -smart00237 197594 cl02522 351785 -smart00238 197595 cl00035 350870 -smart00248 197603 cl02529 351788 -smart00250 197605 cl27652 332473 -smart00256 197608 cl02535 351790 -smart00257 197609 cl21525 354852 -smart00263 197612 cl00222 350962 -smart00269 197615 cl27727 355673 -smart00271 197617 cl02542 351794 -smart00272 197618 cl27714 355672 -smart00277 197621 cl02546 351796 -smart00278 197622 smart00278 197622 -smart00279 197623 cl22433 354936 -smart00280 197624 cl00097 350898 -smart00285 197628 cl00113 350906 -smart00288 197630 cl02544 351795 -smart00290 197632 cl09957 353037 -smart00291 197633 cl00295 294208 -smart00297 197636 cl02556 351801 -smart00300 197638 cl28914 355790 -smart00303 197639 cl02559 351804 -smart00304 197640 cl01054 351361 -smart00305 197641 smart00305 197641 -smart00306 197642 cl22434 354937 -smart00309 197643 cl00111 320764 -smart00310 197644 cl17171 354315 -smart00316 197648 cl09927 353027 -smart00320 197651 cl29593 356469 -smart00322 197652 cl00098 350899 -smart00333 197660 cl02573 351810 -smart00335 197661 cl02574 351811 -smart00336 197662 cl00034 320724 -smart00338 197664 cl21462 354818 -smart00342 197666 smart00342 197666 -smart00343 197667 smart00343 197667 -smart00345 197669 cl21459 354815 -smart00347 197670 cl21459 354815 -smart00352 197673 cl22952 328965 -smart00353 197674 cl00081 350891 -smart00354 197675 cl22854 354960 -smart00355 197676 smart00355 197676 -smart00365 197684 smart00365 197684 -smart00367 197685 cl28166 355707 -smart00368 197686 smart00368 197686 -smart00369 197687 smart00369 197687 -smart00370 197688 smart00370 197688 -smart00380 197689 cl00033 350869 -smart00384 197691 smart00384 197691 -smart00389 197696 cl00084 350894 -smart00394 197697 cl02594 351815 -smart00396 197698 cl19744 354458 -smart00397 197699 cl22856 354962 -smart00398 197700 cl00082 350892 -smart00399 197701 cl02596 351816 -smart00408 197706 cl11960 353325 -smart00411 197709 cl00257 350986 -smart00413 197710 cl02599 351818 -smart00414 197711 smart00414 197711 -smart00418 197713 cl21459 354815 -smart00420 197714 cl21459 354815 -smart00421 197715 cl21459 354815 -smart00422 197716 cl02600 351819 -smart00427 197718 cl23830 355063 -smart00432 197721 cl00109 350904 -smart00443 197727 cl02611 351825 -smart00446 197729 smart00446 197729 -smart00450 197731 cl00125 350910 -smart00451 197732 cl22907 328948 -smart00453 197734 cl27447 355652 -smart00454 197735 smart00454 197735 -smart00456 197736 cl00157 350923 -smart00464 197740 cl19481 354426 -smart00466 197742 cl02620 351830 -smart00467 197743 cl02621 322022 -smart00472 197746 cl19745 327620 -smart00481 197753 cl23724 355021 -smart00490 197757 cl28899 355775 -smart00495 197760 cl00046 350874 -smart00497 197761 cl11508 299755 -smart00509 197766 cl00146 350918 -smart00517 197769 cl02642 351839 -smart00524 197770 cl00056 350879 -smart00525 197771 smart00525 197771 -smart00526 197772 cl00073 350889 -smart00527 197773 cl12114 325192 -smart00529 197774 cl29416 356292 -smart00530 197775 cl22854 354960 -smart00534 197777 cl25403 355390 -smart00535 197778 cl00258 350987 -smart00536 197779 cl22470 354944 -smart00538 197780 cl00688 351216 -smart00542 197781 cl02651 351844 -smart00547 197784 cl02656 295417 -smart00549 197785 cl02658 351846 -smart00553 197786 cl02662 351849 -smart00562 197791 smart00562 197791 -smart00569 197794 cl02672 351851 -smart00570 197795 smart00570 197795 -smart00580 197798 cl15262 326552 -smart00592 197800 cl02688 351856 -smart00609 197803 cl02699 351858 -smart00648 197818 cl02715 351866 -smart00649 197819 cl29338 356214 -smart00651 197820 cl00259 350988 -smart00658 197821 cl02716 351867 -smart00661 197822 cl02717 295446 -smart00673 197827 cl29757 356633 -smart00674 197828 cl12115 325193 -smart00680 197829 cl02731 351869 -smart00695 197831 cl12116 325194 -smart00698 197832 smart00698 197832 -smart00704 197836 cl02748 351872 -smart00711 197839 smart00711 197839 -smart00712 197840 cl21680 354904 -smart00714 197841 cl02754 351873 -smart00717 197842 cl21498 354840 -smart00719 197843 cl02186 351699 -smart00726 197845 smart00726 197845 -smart00733 197848 smart00733 197848 -smart00738 197850 cl02766 351879 -smart00740 197851 cl02768 351880 -smart00745 197854 cl00299 351009 -smart00749 197856 cl29307 356183 -smart00755 197860 cl03225 351965 -smart00760 197863 cl07055 352649 -smart00766 197866 cl07879 352829 -smart00768 197867 cl06842 323638 -smart00775 197870 cl21460 354816 -smart00780 197872 cl08475 352906 -smart00787 197874 smart00787 197874 -smart00788 197875 cl28913 355789 -smart00792 197876 cl04902 322864 -smart00804 197882 cl21463 354819 -smart00805 197883 cl05741 323170 -smart00808 197885 cl07494 352760 -smart00809 197886 cl03759 352050 -smart00818 197891 smart00818 197891 -smart00834 197903 cl00993 351338 -smart00838 197906 cl02785 351892 -smart00843 197911 cl09645 352986 -smart00844 197912 cl23938 305095 -smart00845 197913 cl21572 354877 -smart00850 197918 cl04498 352191 -smart00863 197931 cl29236 356112 -smart00874 197942 cl29360 356236 -smart00875 197943 cl28903 355779 -smart00877 197945 cl01982 351654 -smart00883 197951 cl09113 352934 -smart00885 197953 cl29746 356622 -smart00890 197958 cl11037 353165 -smart00907 197975 cl19746 354459 -smart00913 197981 cl04271 352143 -smart00914 197982 cl26684 331505 -smart00916 197984 cl04907 352282 -smart00921 197989 cl03042 351932 -smart00923 197991 cl01279 351452 -smart00926 197994 cl19148 354386 -smart00928 197996 cl29146 356022 -smart00930 197998 cl09633 352983 -smart00931 197999 smart00931 197999 -smart00936 198004 cl29237 356113 -smart00938 198006 cl00412 351081 -smart00940 198008 cl07696 352793 -smart00945 198013 cl15270 353931 -smart00946 198014 cl08531 352927 -smart00948 198016 cl29148 356024 -smart00949 198017 cl00301 351010 -smart00959 198027 cl06505 352524 -smart00961 198029 cl01843 351614 -smart00965 198033 cl21681 354905 -smart00966 198034 cl00877 321225 -smart00969 198037 cl02533 351789 -smart00971 198039 cl05762 352403 -smart00972 198040 cl02253 321864 -smart00977 198045 cl21573 354878 -smart00979 198047 cl05618 352384 -smart00982 198050 cl04088 352105 -smart00989 198057 cl15268 326554 -smart00993 198061 cl02154 321826 -smart00994 198062 cl05964 352441 -smart00997 198065 cl21454 354811 -smart00998 198066 cl00013 350860 -smart00999 198067 cl03107 322196 -smart01006 198074 cl26156 355492 -smart01011 198079 cl23800 355054 -smart01012 198080 cl04297 352151 -smart01013 198081 cl08488 352910 -smart01014 198082 cl02633 351835 -smart01018 198086 cl29422 356298 -smart01020 198088 cl07618 352773 -smart01023 198091 cl03803 322424 -smart01028 198096 cl26390 355506 -smart01029 198097 cl19747 354460 -smart01032 198100 cl29165 356041 -smart01033 198101 cl06957 352617 -smart01034 198102 cl04855 352270 -smart01037 198105 cl14643 353818 -smart01039 198107 cl04394 352169 -smart01042 198110 cl12377 353391 -smart01043 198111 smart01043 198111 -smart01046 198114 cl07406 352733 -smart01051 198119 cl07883 352831 -smart01053 198121 cl03763 322411 -smart01056 198124 cl13247 325809 -smart01062 198130 cl26695 355557 -smart01064 198132 cl21682 272102 -smart01066 198134 cl23798 355052 -smart01071 198139 cl03951 322483 -smart01076 198144 cl04295 352150 -smart01077 198145 cl10918 353138 -smart01078 198146 cl02356 351739 -smart01082 198150 cl09864 324516 -smart01083 198151 cl10889 353132 -smart01084 198152 cl03104 351944 -smart01085 198153 cl02099 351675 -smart01086 198154 cl29154 356030 -smart01088 198156 cl27556 355661 -smart01089 198157 smart01089 198157 -smart01093 198161 cl14670 353825 -smart01095 198163 cl07020 352639 -smart01096 198164 cl29395 356271 -smart01097 198165 cl03056 351934 -smart01099 198167 cl09918 353024 -smart01102 198170 cl07396 323919 -smart01103 198171 cl00663 351202 -cd00173 198173 cl15255 353928 -cd09918 198174 cl15255 353928 -cd09919 198175 cl15255 353928 -cd09920 198176 cl15255 353928 -cd09921 198177 cl15255 353928 -cd09923 198178 cl15255 353928 -cd09925 198179 cl15255 353928 -cd09926 198180 cl15255 353928 -cd09927 198181 cl15255 353928 -cd09928 198182 cl15255 353928 -cd09929 198183 cl15255 353928 -cd09930 198184 cl15255 353928 -cd09931 198185 cl15255 353928 -cd09932 198186 cl15255 353928 -cd09934 198188 cl15255 353928 -cd09935 198189 cl15255 353928 -cd09937 198190 cl15255 353928 -cd09938 198191 cl15255 353928 -cd09939 198192 cl15255 353928 -cd09940 198193 cl15255 353928 -cd09942 198195 cl15255 353928 -cd09943 198196 cl15255 353928 -cd09944 198197 cl15255 353928 -cd09945 198198 cl15255 353928 -cd09946 198199 cl15255 353928 -cd10337 198200 cl15255 353928 -cd10338 198201 cl15255 353928 -cd10339 198202 cl15255 353928 -cd10340 198203 cl15255 353928 -cd10342 198205 cl15255 353928 -cd10343 198206 cl15255 353928 -cd10344 198207 cl15255 353928 -cd10345 198208 cl15255 353928 -cd10346 198209 cl15255 353928 -cd10347 198210 cl15255 353928 -cd10348 198211 cl15255 353928 -cd10350 198213 cl15255 353928 -cd10351 198214 cl15255 353928 -cd10352 198215 cl15255 353928 -cd10353 198216 cl15255 353928 -cd10354 198217 cl15255 353928 -cd10355 198218 cl15255 353928 -cd10356 198219 cl15255 353928 -cd10357 198220 cl15255 353928 -cd10358 198221 cl15255 353928 -cd10359 198222 cl15255 353928 -cd10360 198223 cl15255 353928 -cd10361 198224 cl15255 353928 -cd10362 198225 cl15255 353928 -cd10363 198226 cl15255 353928 -cd10364 198227 cl15255 353928 -cd10365 198228 cl15255 353928 -cd10366 198229 cl15255 353928 -cd10367 198230 cl15255 353928 -cd10368 198231 cl15255 353928 -cd10370 198233 cl15255 353928 -cd10371 198234 cl15255 353928 -cd10372 198235 cl15255 353928 -cd10373 198236 cl15255 353928 -cd10374 198237 cl15255 353928 -cd10375 198238 cl15255 353928 -cd10376 198239 cl15255 353928 -cd10377 198240 cl15255 353928 -cd10378 198241 cl15255 353928 -cd10379 198242 cl15255 353928 -cd10380 198243 cl15255 353928 -cd10381 198244 cl15255 353928 -cd10382 198245 cl15255 353928 -cd10383 198246 cl15255 353928 -cd10384 198247 cl15255 353928 -cd10385 198248 cl15255 353928 -cd10386 198249 cl15255 353928 -cd10387 198250 cl15255 353928 -cd10388 198251 cl15255 353928 -cd10389 198252 cl15255 353928 -cd10390 198253 cl15255 353928 -cd10391 198254 cl15255 353928 -cd10392 198255 cl15255 353928 -cd10393 198256 cl15255 353928 -cd10394 198257 cl15255 353928 -cd10395 198258 cl15255 353928 -cd10396 198259 cl15255 353928 -cd10397 198260 cl15255 353928 -cd10398 198261 cl15255 353928 -cd10399 198262 cl15255 353928 -cd10400 198263 cl15255 353928 -cd10401 198264 cl15255 353928 -cd10402 198265 cl15255 353928 -cd10403 198266 cl15255 353928 -cd10404 198267 cl15255 353928 -cd10405 198268 cl15255 353928 -cd10406 198269 cl15255 353928 -cd10407 198270 cl15255 353928 -cd10408 198271 cl15255 353928 -cd10409 198272 cl15255 353928 -cd10410 198273 cl15255 353928 -cd10411 198274 cl15255 353928 -cd10412 198275 cl15255 353928 -cd10413 198276 cl15255 353928 -cd10414 198277 cl15255 353928 -cd10415 198278 cl15255 353928 -cd10416 198279 cl15255 353928 -cd10418 198281 cl15255 353928 -cd10419 198282 cl15255 353928 -cd10420 198283 cl15255 353928 -cd10421 198284 cl15255 353928 -cd10718 198285 cl15255 353928 -cd00299 198286 cl02776 351885 -cd03177 198287 cl02776 351885 -cd03178 198288 cl02776 351885 -cd03180 198289 cl02776 351885 -cd03181 198290 cl02776 351885 -cd03182 198291 cl02776 351885 -cd03183 198292 cl02776 351885 -cd03184 198293 cl02776 351885 -cd03185 198294 cl02776 351885 -cd03186 198295 cl02776 351885 -cd03187 198296 cl02776 351885 -cd03188 198297 cl02776 351885 -cd03189 198298 cl02776 351885 -cd03190 198299 cl02776 351885 -cd03191 198300 cl02776 351885 -cd03192 198301 cl02776 351885 -cd03193 198302 cl02776 351885 -cd03194 198303 cl02776 351885 -cd03195 198304 cl02776 351885 -cd03196 198305 cl02776 351885 -cd03197 198306 cl02776 351885 -cd03198 198307 cl02776 351885 -cd03199 198308 cl02776 351885 -cd03200 198309 cl02776 351885 -cd03201 198310 cl02776 351885 -cd03202 198311 cl02776 351885 -cd03203 198312 cl02776 351885 -cd03204 198313 cl02776 351885 -cd03205 198314 cl02776 351885 -cd03206 198315 cl02776 351885 -cd03207 198316 cl02776 351885 -cd03208 198317 cl02776 351885 -cd03209 198318 cl02776 351885 -cd03210 198319 cl02776 351885 -cd03211 198320 cl02776 351885 -cd03212 198321 cl02776 351885 -cd10289 198322 cl02776 351885 -cd10290 198323 cl02776 351885 -cd10291 198324 cl02776 351885 -cd10292 198325 cl02776 351885 -cd10293 198326 cl02776 351885 -cd10294 198327 cl02776 351885 -cd10295 198328 cl02776 351885 -cd10296 198329 cl02776 351885 -cd10297 198330 cl02776 351885 -cd10298 198331 cl02776 351885 -cd10299 198332 cl02776 351885 -cd10300 198333 cl02776 351885 -cd10301 198334 cl02776 351885 -cd10302 198335 cl02776 351885 -cd10303 198336 cl02776 351885 -cd10304 198337 cl02776 351885 -cd10305 198338 cl02776 351885 -cd10306 198339 cl02776 351885 -cd10307 198340 cl02776 351885 -cd10308 198341 cl02776 351885 -cd10309 198342 cl02776 351885 -cd10310 198343 cl02776 351885 -cd10424 198344 cl02776 351885 -cd07768 198346 cl17037 354300 -cd07769 198347 cl17037 354300 -cd07771 198349 cl17037 354300 -cd07772 198350 cl17037 354300 -cd07773 198351 cl17037 354300 -cd07774 198352 cl17037 354300 -cd07775 198353 cl17037 354300 -cd07778 198356 cl17037 354300 -cd07781 198358 cl17037 354300 -cd07783 198360 cl17037 354300 -cd07786 198361 cl17037 354300 -cd07789 198362 cl17037 354300 -cd07791 198363 cl17037 354300 -cd07794 198366 cl17037 354300 -cd07795 198367 cl17037 354300 -cd07796 198368 cl17037 354300 -cd07798 198369 cl17037 354300 -cd07803 198371 cl17037 354300 -cd07804 198372 cl17037 354300 -cd07805 198373 cl17037 354300 -cd07808 198374 cl17037 354300 -cd07809 198375 cl17037 354300 -cd07810 198376 cl17037 354300 -cd07811 198377 cl17037 354300 -cd10427 198378 cl17037 354300 -cd00495 198379 cl00787 351255 -cd00719 198380 cl15257 353929 -cd10434 198381 cl15257 353929 -cd10435 198382 cl15257 353929 -cd10436 198383 cl15257 353929 -cd10437 198384 cl15257 353929 -cd10438 198385 cl15257 353929 -cd10439 198386 cl15257 353929 -cd10440 198387 cl15257 353929 -cd10441 198388 cl15257 353929 -cd10442 198389 cl15257 353929 -cd10443 198390 cl15257 353929 -cd10444 198391 cl15257 353929 -cd10445 198392 cl15257 353929 -cd10446 198393 cl15257 353929 -cd10447 198394 cl15257 353929 -cd10448 198395 cl15257 353929 -cd10449 198396 cl15257 353929 -cd10450 198397 cl15257 353929 -cd10451 198398 cl15257 353929 -cd10452 198399 cl15257 353929 -cd10453 198400 cl15257 353929 -cd10454 198401 cl15257 353929 -cd10455 198402 cl15257 353929 -cd10456 198403 cl15257 353929 -cd10457 198404 cl15257 353929 -cd10458 198405 cl15257 353929 -cd06181 198409 cl00473 351107 -cd10428 198410 cl00473 351107 -cd10429 198411 cl00473 351107 -cd10430 198412 cl00473 351107 -cd10431 198413 cl00473 351107 -cd10432 198414 cl00473 351107 -cd10433 198415 cl00473 351107 -cd09212 198416 cl15262 326552 -cd10459 198417 cl15262 326552 -cd10460 198418 cl15262 326552 -cd10461 198419 cl15262 326552 -cd10462 198420 cl15262 326552 -cd10463 198421 cl15262 326552 -cd10464 198422 cl15262 326552 -cd09224 198423 cl12263 353376 -cd09593 198424 cl00483 351114 -cd10027 198425 cl00483 351114 -cd10028 198426 cl00483 351114 -cd10029 198427 cl00483 351114 -cd10030 198428 cl00483 351114 -cd10031 198429 cl00483 351114 -cd10032 198430 cl00483 351114 -cd10033 198431 cl00483 351114 -cd10034 198432 cl00483 351114 -cd10035 198433 cl00483 351114 -cd10284 198434 cl07831 324147 -cd10285 198435 cl07831 324147 -cd10286 198436 cl07831 324147 -cd10287 198437 cl07831 324147 -cd10288 198438 cl07831 324147 -cd10319 198439 cl02704 351861 -cd10472 198440 cl02704 351861 -cd10473 198441 cl02704 351861 -cd10474 198442 cl02704 351861 -cd10475 198443 cl02704 351861 -cd10476 198444 cl02704 351861 -cd10477 198445 cl02704 351861 -cd10478 198446 cl02704 351861 -cd10479 198447 cl02704 351861 -cd10480 198448 cl02704 351861 -cd10481 198449 cl02704 351861 -cd10482 198450 cl02704 351861 -cd10483 198451 cl02704 351861 -cd10484 198452 cl02704 351861 -cd10485 198453 cl02704 351861 -cd10486 198454 cl02704 351861 -cd10487 198455 cl02704 351861 -cd10466 198456 cl07688 352789 -cd10314 198457 cl05973 352443 -cd10467 198458 cl05973 352443 -cd10468 198459 cl05973 352443 -cd10469 198460 cl05973 352443 -cd10470 198461 cl05973 352443 -cd10471 198462 cl05973 352443 -cd00411 199205 cl00216 320827 -cd08962 199206 cl00216 320827 -cd08963 199207 cl00216 320827 -cd08964 199208 cl00216 320827 -cd00463 199209 cl00921 321250 -cd02258 199210 cl03181 322224 -cd10913 199211 cl03181 322224 -cd10914 199212 cl03181 322224 -cd10915 199213 cl03181 322224 -cd10146 199214 cl14879 353848 -cd10315 199215 cl04227 352132 -cd10321 199216 cl15368 326562 -cd10422 199217 cl15368 326562 -cd10423 199218 cl15368 326562 -cd00049 199811 cl00055 320734 -cd10488 199812 cl00055 320734 -cd10489 199813 cl00055 320734 -cd10490 199814 cl00055 320734 -cd10491 199815 cl00055 320734 -cd10492 199816 cl00055 320734 -cd10493 199817 cl00055 320734 -cd10494 199818 cl00055 320734 -cd00050 199819 cl00056 350879 -cd10495 199820 cl00056 350879 -cd10496 199821 cl00056 350879 -cd10497 199822 cl00056 350879 -cd10498 199823 cl00056 350879 -cd10499 199824 cl00056 350879 -cd10500 199825 cl00056 350879 -cd10985 199826 cl00056 350879 -cd09933 199827 cl15255 353928 -cd09941 199828 cl15255 353928 -cd10341 199829 cl15255 353928 -cd10349 199830 cl15255 353928 -cd10369 199831 cl15255 353928 -cd10417 199832 cl15255 353928 -cd00216 199833 cl11493 353278 -cd10276 199834 cl11493 353278 -cd10277 199835 cl11493 353278 -cd10278 199836 cl11493 353278 -cd10279 199837 cl11493 353278 -cd10280 199838 cl11493 353278 -cd02688 199878 cl28984 355860 -cd02847 199879 cl28984 355860 -cd02848 199880 cl28984 355860 -cd02850 199881 cl28984 355860 -cd02851 199882 cl28984 355860 -cd02853 199883 cl28984 355860 -cd02854 199884 cl28984 355860 -cd02855 199885 cl28984 355860 -cd02856 199886 cl28984 355860 -cd02857 199887 cl28984 355860 -cd02858 199888 cl28984 355860 -cd02859 199889 cl28984 355860 -cd02860 199890 cl28984 355860 -cd02861 199891 cl28984 355860 -cd07184 199892 cl28984 355860 -cd11234 199893 cl28984 355860 -cd11294 199894 cl28984 355860 -cd07976 199899 cl21683 354906 -cd10014 199900 cl08356 352881 -cd10145 199901 cl03508 352004 -cd10147 199902 cl15685 353968 -cd10150 199903 cl29847 356723 -cd10316 199904 cl21470 354823 -cd10317 199905 cl15687 353969 -cd10318 199906 cd10318 199906 -cd10320 199907 cl15675 353967 -cd10719 199908 cl21539 354860 -cd10747 199909 cl21722 354918 -cd10748 199910 cl15688 326629 -cd11005 199911 cl03449 322303 -cd11006 199912 cl03449 322303 -cd11007 199913 cl03449 322303 -cd11008 199914 cl03449 322303 -cd11306 199915 cl03449 322303 -cd11307 199916 cl03449 322303 -cd11295 199917 cl03715 322393 -TIGR00032 199987 cl00292 351005 -TIGR00319 200008 cl00018 350864 -TIGR00454 200016 cl11394 353239 -TIGR00527 200024 cl11404 353245 -TIGR00586 200031 cl00447 351096 -TIGR00666 200042 cl21491 354834 -TIGR01017 200066 TIGR01017 200066 -TIGR01041 200071 TIGR01041 200071 -TIGR01068 200072 cl00388 351069 -TIGR01172 200082 TIGR01172 200082 -TIGR01190 200083 cl21474 354826 -TIGR01225 200086 cl00013 350860 -TIGR01237 200087 cl11961 353326 -TIGR01289 200089 cl21454 354811 -TIGR01423 200098 TIGR01423 200098 -TIGR01456 200106 TIGR01456 200106 -TIGR01465 200107 cl00304 351012 -TIGR01606 200119 cl27075 331896 -TIGR01764 200128 cl02600 351819 -TIGR01804 200131 cl11961 353326 -TIGR01842 200134 TIGR01842 200134 -TIGR01879 200138 TIGR01879 200138 -TIGR01929 200143 cl23717 355015 -TIGR02077 200156 TIGR02077 200156 -TIGR02232 200169 TIGR02232 200169 -TIGR02620 200203 cl19029 327495 -TIGR02880 200217 TIGR02880 200217 -TIGR02901 200218 cl01204 351421 -TIGR02927 200219 TIGR02927 200219 -TIGR03010 200229 cl00672 351208 -TIGR03033 200235 cl09232 352951 -TIGR03152 200248 cl23833 355064 -TIGR03214 200251 cl26460 331281 -TIGR03225 200253 cl01346 321456 -TIGR03409 200272 cl00454 351100 -TIGR03546 200289 cl01261 351447 -TIGR03603 200298 TIGR03603 200298 -TIGR03621 200301 cl19096 327499 -TIGR03687 200311 cl27011 331832 -TIGR03689 200312 TIGR03689 200312 -TIGR03781 200324 TIGR03781 200324 -TIGR03819 200328 cl25403 355390 -TIGR03892 200334 TIGR03892 200334 -TIGR03927 200340 cl11266 299614 -TIGR04101 200352 TIGR04101 200352 -TIGR04102 200353 cl30705 357581 -TIGR04103 200354 TIGR04103 200354 -TIGR04109 200360 TIGR04109 200360 -TIGR04110 200361 cl00381 351064 -TIGR04115 200366 TIGR04115 200366 -TIGR04118 200369 TIGR04118 200369 -TIGR04119 200370 cl14869 353846 -TIGR04133 200384 TIGR04133 200384 -TIGR04134 200385 cl21470 354823 -TIGR04135 200386 TIGR04135 200386 -TIGR04136 200387 TIGR04136 200387 -TIGR04139 200390 cl15739 326637 -TIGR04142 200393 TIGR04142 200393 -TIGR04143 200394 TIGR04143 200394 -TIGR04144 200395 cl15694 353972 -TIGR04145 200396 TIGR04145 200396 -TIGR04148 200399 TIGR04148 200399 -TIGR04151 200402 cl15694 353972 -TIGR04159 200410 TIGR04159 200410 -TIGR04162 200413 TIGR04162 200413 -TIGR04163 200414 TIGR04163 200414 -TIGR04164 200415 TIGR04164 200415 -TIGR04169 200420 cl00460 320985 -TIGR04173 200424 TIGR04173 200424 -TIGR04175 200426 TIGR04175 200426 -TIGR04177 200428 cl15694 353972 -cd00013 200435 cl15697 353973 -cd11280 200436 cl15697 353973 -cd11281 200437 cl15697 353973 -cd11282 200438 cl15697 353973 -cd11283 200439 cl15697 353973 -cd11284 200440 cl15697 353973 -cd11285 200441 cl15697 353973 -cd11286 200442 cl15697 353973 -cd11287 200443 cl15697 353973 -cd11288 200444 cl15697 353973 -cd11289 200445 cl15697 353973 -cd11290 200446 cl15697 353973 -cd11291 200447 cl15697 353973 -cd11292 200448 cl15697 353973 -cd11293 200449 cl15697 353973 -cd00069 200450 cl21545 354864 -cd00551 200451 cl07893 352836 -cd11313 200452 cl07893 352836 -cd11314 200453 cl07893 352836 -cd11315 200454 cl07893 352836 -cd11316 200455 cl07893 352836 -cd11317 200456 cl07893 352836 -cd11318 200457 cl07893 352836 -cd11319 200458 cl07893 352836 -cd11320 200459 cl07893 352836 -cd11321 200460 cl07893 352836 -cd11322 200461 cl07893 352836 -cd11323 200462 cl07893 352836 -cd11324 200463 cl07893 352836 -cd11325 200464 cl07893 352836 -cd11326 200465 cl07893 352836 -cd11327 200466 cl07893 352836 -cd11328 200467 cl07893 352836 -cd11329 200468 cl07893 352836 -cd11330 200469 cl07893 352836 -cd11331 200470 cl07893 352836 -cd11332 200471 cl07893 352836 -cd11333 200472 cl07893 352836 -cd11334 200473 cl07893 352836 -cd11335 200474 cl07893 352836 -cd11336 200475 cl07893 352836 -cd11337 200476 cl07893 352836 -cd11338 200477 cl07893 352836 -cd11339 200478 cl07893 352836 -cd11340 200479 cl07893 352836 -cd11341 200480 cl07893 352836 -cd11343 200481 cl07893 352836 -cd11344 200482 cl07893 352836 -cd11345 200483 cl07893 352836 -cd11346 200484 cl07893 352836 -cd11347 200485 cl07893 352836 -cd11348 200486 cl07893 352836 -cd11349 200487 cl07893 352836 -cd11350 200488 cl07893 352836 -cd11352 200489 cl07893 352836 -cd11353 200490 cl07893 352836 -cd11354 200491 cl07893 352836 -cd11355 200492 cl07893 352836 -cd11356 200493 cl07893 352836 -cd11359 200494 cl07893 352836 -cd09295 200495 cl15693 353971 -cd11235 200496 cl15693 353971 -cd11236 200497 cl15693 353971 -cd11237 200498 cl15693 353971 -cd11238 200499 cl15693 353971 -cd11239 200500 cl15693 353971 -cd11240 200501 cl15693 353971 -cd11241 200502 cl15693 353971 -cd11242 200503 cl15693 353971 -cd11243 200504 cl15693 353971 -cd11244 200505 cl15693 353971 -cd11245 200506 cl15693 353971 -cd11246 200507 cl15693 353971 -cd11247 200508 cl15693 353971 -cd11248 200509 cl15693 353971 -cd11249 200510 cl15693 353971 -cd11250 200511 cl15693 353971 -cd11251 200512 cl15693 353971 -cd11252 200513 cl15693 353971 -cd11253 200514 cl15693 353971 -cd11254 200515 cl15693 353971 -cd11255 200516 cl15693 353971 -cd11256 200517 cl15693 353971 -cd11257 200518 cl15693 353971 -cd11258 200519 cl15693 353971 -cd11259 200520 cl15693 353971 -cd11260 200521 cl15693 353971 -cd11261 200522 cl15693 353971 -cd11262 200523 cl15693 353971 -cd11263 200524 cl15693 353971 -cd11264 200525 cl15693 353971 -cd11265 200526 cl15693 353971 -cd11266 200527 cl15693 353971 -cd11267 200528 cl15693 353971 -cd11268 200529 cl15693 353971 -cd11269 200530 cl15693 353971 -cd11270 200531 cl15693 353971 -cd11271 200532 cl15693 353971 -cd11272 200533 cl15693 353971 -cd11273 200534 cl15693 353971 -cd11274 200535 cl15693 353971 -cd11275 200536 cl15693 353971 -cd11276 200537 cl15693 353971 -cd11277 200538 cl15693 353971 -cd11278 200539 cl15693 353971 -cd11279 200540 cl15693 353971 -cd10919 200545 cl15692 353970 -cd10920 200546 cl15692 353970 -cd10921 200547 cl15692 353970 -cd10922 200548 cl15692 353970 -cd10923 200549 cl15692 353970 -cd10924 200550 cl15692 353970 -cd10925 200551 cl15692 353970 -cd10926 200552 cl15692 353970 -cd10927 200553 cl15692 353970 -cd10928 200554 cl15692 353970 -cd10929 200555 cl15692 353970 -cd10930 200556 cl15692 353970 -cd10931 200557 cl15692 353970 -cd10932 200558 cl15692 353970 -cd10933 200559 cl15692 353970 -cd10934 200560 cl15692 353970 -cd10935 200561 cl15692 353970 -cd10936 200562 cl15692 353970 -cd10938 200563 cl15692 353970 -cd10939 200564 cl15692 353970 -cd10940 200565 cl15692 353970 -cd10941 200566 cl15692 353970 -cd10942 200567 cl15692 353970 -cd10943 200568 cl15692 353970 -cd10944 200569 cl15692 353970 -cd10946 200570 cl15692 353970 -cd10947 200571 cl15692 353970 -cd10948 200572 cl15692 353970 -cd10949 200573 cl15692 353970 -cd10950 200574 cl15692 353970 -cd10951 200575 cl15692 353970 -cd10952 200576 cl15692 353970 -cd10953 200577 cl15692 353970 -cd10954 200578 cl15692 353970 -cd10955 200579 cl15692 353970 -cd10956 200580 cl15692 353970 -cd10958 200581 cl15692 353970 -cd10959 200582 cl15692 353970 -cd10960 200583 cl15692 353970 -cd10962 200584 cl15692 353970 -cd10963 200585 cl15692 353970 -cd10964 200586 cl15692 353970 -cd10965 200587 cl15692 353970 -cd10967 200589 cl15692 353970 -cd10971 200593 cl15692 353970 -cd10972 200594 cl15692 353970 -cd10974 200596 cl15692 353970 -cd10975 200597 cl15692 353970 -cd10976 200598 cl15692 353970 -cd10977 200599 cl15692 353970 -cd10978 200600 cl15692 353970 -cd10979 200601 cl15692 353970 -cd10980 200602 cl15692 353970 -cd11374 200603 cl15692 353970 -cd11308 200604 cl21470 354823 -pfam01538 201846 pfam01538 201846 -pfam01726 201938 cl21459 354815 -pfam02982 202497 cl09109 352932 -pfam03716 202737 pfam03716 202737 -pfam03784 202766 pfam03784 202766 -pfam04827 203098 cl21562 354873 -pfam05637 203296 cl11394 353239 -pfam05706 203311 cl28904 355780 -pfam07599 203693 pfam07599 203693 -pfam09246 204178 pfam09246 204178 -pfam11632 204695 pfam11632 204695 -pfam12285 204871 pfam12285 204871 -pfam12789 205071 pfam12789 205071 -pfam13015 205196 cl06793 352582 -pfam13647 205824 pfam13647 205824 -pfam13794 205967 cl00264 350992 -pfam13956 206126 pfam13956 206126 -pfam14439 206605 cl00269 350994 -pfam14463 206628 pfam14463 206628 -cd00031 206635 cl28889 355773 -cd11303 206636 cl28889 355773 -cd11304 206637 cl28889 355773 -cd00181 206638 cl00144 350917 -cd00066 206639 cl21455 354812 -cd00154 206640 cl21455 354812 -cd00157 206641 cl21455 354812 -cd00876 206642 cl21455 354812 -cd00877 206643 cl21455 354812 -cd00878 206644 cl21455 354812 -cd00879 206645 cl21455 354812 -cd00880 206646 cl21455 354812 -cd00881 206647 cl21455 354812 -cd00882 206648 cl21455 354812 -cd01850 206649 cl21455 354812 -cd01851 206650 cl21455 354812 -cd01852 206651 cl21455 354812 -cd01853 206652 cl21455 354812 -cd01860 206653 cl21455 354812 -cd01861 206654 cl21455 354812 -cd01862 206655 cl21455 354812 -cd01863 206656 cl21455 354812 -cd01865 206657 cl21455 354812 -cd01866 206658 cl21455 354812 -cd01867 206659 cl21455 354812 -cd01868 206660 cl21455 354812 -cd01869 206661 cl21455 354812 -cd01870 206662 cl21455 354812 -cd01871 206663 cl21455 354812 -cd01874 206664 cl21455 354812 -cd01876 206665 cl21455 354812 -cd01878 206666 cl21455 354812 -cd01879 206667 cl21455 354812 -cd01881 206668 cl21455 354812 -cd01882 206669 cl21455 354812 -cd01883 206670 cl21455 354812 -cd01884 206671 cl21455 354812 -cd01885 206672 cl21455 354812 -cd01886 206673 cl21455 354812 -cd01887 206674 cl21455 354812 -cd01888 206675 cl21455 354812 -cd01889 206676 cl21455 354812 -cd01890 206677 cl21455 354812 -cd01891 206678 cl21455 354812 -cd01892 206679 cl21455 354812 -cd01893 206680 cl21455 354812 -cd01894 206681 cl21455 354812 -cd01895 206682 cl21455 354812 -cd01896 206683 cl21455 354812 -cd01897 206684 cl21455 354812 -cd01898 206685 cl21455 354812 -cd01899 206686 cl21455 354812 -cd01900 206687 cl21455 354812 -cd04101 206688 cl21455 354812 -cd04102 206689 cl21455 354812 -cd04104 206690 cl21455 354812 -cd04105 206691 cl21455 354812 -cd04107 206692 cl21455 354812 -cd04108 206693 cl21455 354812 -cd04109 206694 cl21455 354812 -cd04112 206695 cl21455 354812 -cd04113 206696 cl21455 354812 -cd04116 206697 cl21455 354812 -cd04117 206698 cl21455 354812 -cd04120 206699 cl21455 354812 -cd04127 206700 cl21455 354812 -cd04128 206701 cl21455 354812 -cd04129 206702 cl21455 354812 -cd04131 206703 cl21455 354812 -cd04132 206704 cl21455 354812 -cd04133 206705 cl21455 354812 -cd04134 206706 cl21455 354812 -cd04135 206707 cl21455 354812 -cd04136 206708 cl21455 354812 -cd04137 206709 cl21455 354812 -cd04139 206710 cl21455 354812 -cd04140 206711 cl21455 354812 -cd04141 206712 cl21455 354812 -cd04146 206713 cl21455 354812 -cd04147 206714 cl21455 354812 -cd04148 206715 cl21455 354812 -cd04149 206716 cl21455 354812 -cd04150 206717 cl21455 354812 -cd04151 206718 cl21455 354812 -cd04152 206719 cl21455 354812 -cd04154 206720 cl21455 354812 -cd04155 206721 cl21455 354812 -cd04157 206722 cl21455 354812 -cd04158 206723 cl21455 354812 -cd04159 206724 cl21455 354812 -cd04160 206725 cl21455 354812 -cd04163 206726 cl21455 354812 -cd04164 206727 cl21455 354812 -cd04165 206728 cl21455 354812 -cd04166 206729 cl21455 354812 -cd04167 206730 cl21455 354812 -cd04168 206731 cl21455 354812 -cd04169 206732 cl21455 354812 -cd04170 206733 cl21455 354812 -cd04171 206734 cl21455 354812 -cd04172 206735 cl21455 354812 -cd04173 206736 cl21455 354812 -cd04174 206737 cl21455 354812 -cd08771 206738 cl21455 354812 -cd09912 206739 cl21455 354812 -cd09913 206740 cl21455 354812 -cd09914 206741 cl21455 354812 -cd09915 206742 cl21455 354812 -cd11383 206743 cl21455 354812 -cd11384 206744 cl21455 354812 -cd11385 206745 cl21455 354812 -cd01849 206746 cl21455 354812 -cd01854 206747 cl21455 354812 -cd01855 206748 cl21455 354812 -cd01856 206749 cl21455 354812 -cd01857 206750 cl21455 354812 -cd01858 206751 cl21455 354812 -cd01859 206752 cl21455 354812 -cd04178 206753 cl21455 354812 -cd06223 206754 cl00309 351014 -cd08774 206755 cl02098 351674 -cd10019 206756 cl02098 351674 -cd10020 206757 cl02098 351674 -cd10022 206758 cl02098 351674 -cd10023 206759 cl02098 351674 -cd10024 206760 cl02098 351674 -cd10025 206761 cl02098 351674 -cd10026 206762 cl02098 351674 -cd11309 206763 cl02098 351674 -cd11310 206764 cl02098 351674 -cd11305 206765 cd11305 206765 -cd11358 206766 cl03114 351945 -cd11362 206767 cl03114 351945 -cd11363 206768 cl03114 351945 -cd11364 206769 cl03114 351945 -cd11365 206770 cl03114 351945 -cd11366 206771 cl03114 351945 -cd11367 206772 cl03114 351945 -cd11368 206773 cl03114 351945 -cd11369 206774 cl03114 351945 -cd11370 206775 cl03114 351945 -cd11371 206776 cl03114 351945 -cd11372 206777 cl03114 351945 -cd11377 206778 cl07889 352834 -cd11386 206779 cl30773 357649 -cd00035 211311 cl16916 354287 -cd06921 211312 cl16916 354287 -cd06922 211313 cl16916 354287 -cd06923 211314 cl16916 354287 -cd10909 211315 cl16916 354287 -cd11618 211316 cl16916 354287 -cd00474 211317 cl00229 350968 -cd11566 211318 cl00229 350968 -cd11567 211319 cl00229 350968 -cd11607 211320 cl00229 350968 -cd11608 211321 cl00229 350968 -cd00497 211322 cl00130 320773 -cd00506 211323 cl00130 320773 -cd01291 211324 cl00130 320773 -cd02550 211325 cl00130 320773 -cd02552 211326 cl00130 320773 -cd02553 211327 cl00130 320773 -cd02554 211328 cl00130 320773 -cd02555 211329 cl00130 320773 -cd02556 211330 cl00130 320773 -cd02557 211331 cl00130 320773 -cd02558 211332 cl00130 320773 -cd02563 211333 cl00130 320773 -cd02566 211334 cl00130 320773 -cd02568 211335 cl00130 320773 -cd02569 211336 cl00130 320773 -cd02570 211337 cl00130 320773 -cd02572 211338 cl00130 320773 -cd02573 211339 cl00130 320773 -cd02575 211340 cl00130 320773 -cd02576 211341 cl00130 320773 -cd02577 211342 cl00130 320773 -cd02866 211343 cl00130 320773 -cd02867 211344 cl00130 320773 -cd02868 211345 cl00130 320773 -cd02869 211346 cl00130 320773 -cd02870 211347 cl00130 320773 -cd09260 211371 cl10970 353153 -cd09261 211372 cl10970 353153 -cd09267 211378 cl10970 353153 -cd10981 211380 cl16915 354286 -cd11009 211381 cl16915 354286 -cd11010 211382 cl16915 354286 -cd11296 211383 cl16914 327355 -cd11298 211384 cl16914 327355 -cd11299 211385 cl16914 327355 -cd11300 211386 cl16914 327355 -cd11301 211387 cl16914 327355 -cd11302 211388 cl16914 327355 -cd11548 211389 cl16914 327355 -cd11378 211390 cl00720 351227 -cd11379 211391 cl16901 327351 -cd11380 211392 cl00880 294572 -cd11381 211393 cl00880 294572 -cd11382 211394 cl00880 294572 -cd11473 211395 cl17013 354296 -cd11558 211396 cl17013 354296 -cd11559 211397 cl17013 354296 -cd11560 211398 cl17013 354296 -cd11561 211399 cl17013 354296 -cd11524 211400 cl01109 351385 -cd11525 211401 cl01109 351385 -cd11526 211402 cl01109 351385 -cd11549 211403 cl07433 323939 -cd11550 211404 cl07433 323939 -cd11551 211405 cl07433 323939 -cd11552 211406 cl07433 323939 -cd11557 211407 cl19051 327496 -cd11564 211408 cl13463 353647 -cd11568 211409 cl13463 353647 -cd11569 211410 cl13463 353647 -cd11570 211411 cl13463 353647 -cd11571 211412 cl13463 353647 -cd11572 211413 cd11572 211413 -cd11573 211414 cl01529 351538 -cd11574 211415 cl01529 351538 -cd11575 211416 cl01529 351538 -cd11576 211417 cl01529 351538 -cd11577 211418 cl01529 351538 -cd11578 211419 cl01529 351538 -cd11579 211420 cl01529 351538 -cd11580 211421 cl16921 327359 -cd11609 211422 cl16921 327359 -cd11610 211423 cl16921 327359 -cd11582 211424 cl16934 327360 -cd11583 211425 cl21687 354908 -cd11585 211426 cl16936 354289 -cd11602 211427 cl16937 327362 -cd11603 211428 cd11603 211428 -cd11604 211429 cd11604 211429 -TIGR00026 211538 cl00381 351064 -TIGR00029 211539 cl00384 351067 -TIGR00103 211546 cl00494 351120 -TIGR00114 211550 cl00317 351021 -TIGR00185 211559 cl21505 354844 -TIGR00188 211560 cl00457 351101 -TIGR00286 211565 cl00849 321208 -TIGR00323 211569 cl00241 350978 -TIGR00459 211576 TIGR00459 211576 -TIGR00497 211578 TIGR00497 211578 -TIGR00588 211589 TIGR00588 211589 -TIGR00632 211591 cl00516 351129 -TIGR00714 211601 TIGR00714 211601 -TIGR00882 211613 TIGR00882 211613 -TIGR00885 211614 cl28910 355786 -TIGR01039 211621 cl28885 355771 -TIGR01103 211625 cl00593 351166 -TIGR01169 211630 cl00322 351025 -TIGR01530 211667 TIGR01530 211667 -TIGR01660 211677 TIGR01660 211677 -TIGR01664 211680 TIGR01664 211680 -TIGR01826 211689 cl00425 351088 -TIGR01963 211705 TIGR01963 211705 -TIGR02035 211710 cl00342 294246 -TIGR02106 211715 cl02039 351663 -TIGR02385 211740 cl21503 354842 -TIGR02542 211749 TIGR02542 211749 -TIGR02654 211759 cl00388 351069 -TIGR03064 211782 cl09098 324322 -TIGR03098 211788 TIGR03098 211788 -TIGR03137 211789 TIGR03137 211789 -TIGR03212 211797 TIGR03212 211797 -TIGR03247 211799 TIGR03247 211799 -TIGR03253 211800 cl19215 327522 -TIGR03531 211833 cl18945 354370 -TIGR03536 211834 TIGR03536 211834 -TIGR03566 211840 cl00438 351093 -TIGR03611 211851 TIGR03611 211851 -TIGR03907 211887 TIGR03907 211887 -TIGR04170 211905 TIGR04170 211905 -TIGR04190 211913 TIGR04190 211913 -TIGR04193 211916 TIGR04193 211916 -TIGR04194 211917 TIGR04194 211917 -TIGR04195 211918 TIGR04195 211918 -TIGR04196 211919 TIGR04196 211919 -TIGR04200 211923 TIGR04200 211923 -TIGR04210 211933 TIGR04210 211933 -TIGR04214 211937 cl28221 333041 -TIGR04217 211940 TIGR04217 211940 -TIGR04218 211941 TIGR04218 211941 -TIGR04220 211943 TIGR04220 211943 -TIGR04227 211950 TIGR04227 211950 -TIGR04232 211955 TIGR04232 211955 -TIGR04233 211956 TIGR04233 211956 -TIGR04235 211958 TIGR04235 211958 -TIGR04237 211960 cl28628 333448 -TIGR04241 211964 TIGR04241 211964 -TIGR04243 211966 TIGR04243 211966 -TIGR04245 211968 cl17182 354318 -TIGR04248 211971 cl05126 352319 -TIGR04250 211973 TIGR04250 211973 -TIGR04251 211974 TIGR04251 211974 -TIGR04252 211975 TIGR04252 211975 -TIGR04253 211976 cl19215 327522 -TIGR04261 211984 TIGR04261 211984 -TIGR04265 211988 TIGR04265 211988 -TIGR04266 211989 cl02872 351912 -TIGR04270 211993 TIGR04270 211993 -TIGR04274 211997 cl00483 351114 -TIGR04277 212000 TIGR04277 212000 -TIGR04278 212001 TIGR04278 212001 -cd00089 212008 cl00087 350896 -cd11619 212009 cl00087 350896 -cd11620 212010 cl00087 350896 -cd11621 212011 cl00087 350896 -cd11622 212012 cl00087 350896 -cd11623 212013 cl00087 350896 -cd11624 212014 cl00087 350896 -cd11625 212015 cl00087 350896 -cd11626 212016 cl00087 350896 -cd11627 212017 cl00087 350896 -cd11628 212018 cl00087 350896 -cd11629 212019 cl00087 350896 -cd11630 212020 cl00087 350896 -cd11631 212021 cl00087 350896 -cd11632 212022 cl00087 350896 -cd11633 212023 cl00087 350896 -cd11634 212024 cl00087 350896 -cd11635 212025 cl00087 350896 -cd11636 212026 cl00087 350896 -cd11637 212027 cl00087 350896 -cd11638 212028 cl00087 350896 -cd11639 212029 cl00087 350896 -cd00118 212030 cl21525 354852 -cd10327 212037 cl00456 320982 -cd11487 212056 cl00456 320982 -cd11489 212058 cl00456 320982 -cd11498 212067 cl00456 320982 -cd11506 212075 cl00456 320982 -cd11508 212077 cl00456 320982 -cd11511 212080 cl00456 320982 -cd11512 212081 cl00456 320982 -cd11514 212083 cl00456 320982 -cd11516 212085 cl00456 320982 -cd11517 212086 cl00456 320982 -cd11520 212089 cl00456 320982 -cd11522 212091 cl00456 320982 -cd11554 212092 cl00456 320982 -cd00451 212095 cl15692 353970 -cd01022 212096 cl15692 353970 -cd10785 212097 cl15692 353970 -cd10786 212098 cl15692 353970 -cd10787 212099 cl15692 353970 -cd10788 212100 cl15692 353970 -cd10789 212101 cl15692 353970 -cd10790 212102 cl15692 353970 -cd10791 212103 cl15692 353970 -cd10792 212104 cl15692 353970 -cd10793 212105 cl15692 353970 -cd10794 212106 cl15692 353970 -cd10795 212107 cl15692 353970 -cd10796 212108 cl15692 353970 -cd10797 212109 cl15692 353970 -cd10798 212110 cl15692 353970 -cd10800 212111 cl15692 353970 -cd10801 212112 cl15692 353970 -cd10802 212113 cl15692 353970 -cd10803 212114 cl15692 353970 -cd10804 212115 cl15692 353970 -cd10805 212116 cl15692 353970 -cd10806 212117 cl15692 353970 -cd10807 212118 cl15692 353970 -cd10808 212119 cl15692 353970 -cd10809 212120 cl15692 353970 -cd10810 212121 cl15692 353970 -cd10811 212122 cl15692 353970 -cd10812 212123 cl15692 353970 -cd10813 212124 cl15692 353970 -cd10814 212125 cl15692 353970 -cd10815 212126 cl15692 353970 -cd10816 212127 cl15692 353970 -cd11663 212128 cl15692 353970 -cd11664 212129 cl15692 353970 -cd11665 212130 cl15692 353970 -cd11666 212131 cl15692 353970 -cd11667 212132 cl15692 353970 -cd11523 212133 cl16941 354290 -cd11527 212134 cl16941 354290 -cd11528 212135 cl16941 354290 -cd11529 212136 cl16941 354290 -cd11530 212137 cl16941 354290 -cd11531 212138 cl16941 354290 -cd11532 212139 cl16941 354290 -cd11533 212140 cl16941 354290 -cd11534 212141 cl16941 354290 -cd11535 212142 cl16941 354290 -cd11536 212143 cl16941 354290 -cd11537 212144 cl16941 354290 -cd11538 212145 cl16941 354290 -cd11539 212146 cl16941 354290 -cd11540 212147 cl16941 354290 -cd11541 212148 cl16941 354290 -cd11542 212149 cl16941 354290 -cd11543 212150 cl16941 354290 -cd11544 212151 cl16941 354290 -cd11545 212152 cl16941 354290 -cd11546 212153 cl16941 354290 -cd11547 212154 cl16941 354290 -cd11586 212155 cd11586 212155 -cd11606 212156 cl17007 302586 -cd11611 212157 cl00555 351151 -cd11613 212158 cl00555 351151 -cd11614 212159 cl00555 351151 -cd11615 212160 cl00555 351151 -cd11616 212161 cl00555 351151 -cd11617 212162 cl00555 351151 -cd11640 212163 cl07944 324186 -cd11650 212164 cd11650 212164 -cd11651 212165 cl14603 353812 -cd11652 212166 cd11652 212166 -cd11653 212167 cl13131 353548 -cd11669 212168 cd11669 212168 -cd05723 212460 cl11960 353325 -cd00222 212461 cl15753 326638 -cd00600 212462 cl00259 350988 -cd01716 212463 cl00259 350988 -cd01717 212464 cl00259 350988 -cd01718 212465 cl00259 350988 -cd01719 212466 cl00259 350988 -cd01720 212467 cl00259 350988 -cd01721 212468 cl00259 350988 -cd01722 212469 cl00259 350988 -cd01723 212470 cl00259 350988 -cd01724 212471 cl00259 350988 -cd01725 212472 cl00259 350988 -cd01726 212473 cl00259 350988 -cd01727 212474 cl00259 350988 -cd01728 212475 cl00259 350988 -cd01729 212476 cl00259 350988 -cd01730 212477 cl00259 350988 -cd01731 212478 cl00259 350988 -cd01732 212479 cl00259 350988 -cd01733 212480 cl00259 350988 -cd01734 212481 cl00259 350988 -cd01735 212482 cl00259 350988 -cd01736 212483 cl00259 350988 -cd01737 212484 cl00259 350988 -cd01739 212485 cl00259 350988 -cd06168 212486 cl00259 350988 -cd11676 212487 cl00259 350988 -cd11677 212488 cl00259 350988 -cd11678 212489 cl00259 350988 -cd11679 212490 cl00259 350988 -cd05233 212491 cl25409 355392 -cd05327 212492 cl25409 355392 -cd08932 212493 cl25409 355392 -cd08946 212494 cl25409 355392 -cd09807 212495 cl25409 355392 -cd11730 212496 cl25409 355392 -cd11731 212497 cl25409 355392 -cd04759 212498 cl08346 324243 -cd09815 212499 cl00304 351012 -cd11641 212500 cl00304 351012 -cd11642 212501 cl00304 351012 -cd11643 212502 cl00304 351012 -cd11644 212503 cl00304 351012 -cd11645 212504 cl00304 351012 -cd11646 212505 cl00304 351012 -cd11647 212506 cl00304 351012 -cd11648 212507 cl00304 351012 -cd11649 212508 cl00304 351012 -cd11723 212509 cl00304 351012 -cd11724 212510 cl00304 351012 -cd09015 212511 cl17011 354294 -cd09301 212512 cl17011 354294 -cd09987 212513 cl17011 354294 -cd09988 212514 cl17011 354294 -cd09989 212515 cl17011 354294 -cd09990 212516 cl17011 354294 -cd09991 212517 cl17011 354294 -cd09992 212518 cl17011 354294 -cd09993 212519 cl17011 354294 -cd09994 212520 cl17011 354294 -cd09996 212521 cl17011 354294 -cd09998 212522 cl17011 354294 -cd09999 212523 cl17011 354294 -cd10000 212524 cl17011 354294 -cd10001 212525 cl17011 354294 -cd10002 212526 cl17011 354294 -cd10003 212527 cl17011 354294 -cd10004 212528 cl17011 354294 -cd10005 212529 cl17011 354294 -cd10006 212530 cl17011 354294 -cd10007 212531 cl17011 354294 -cd10008 212532 cl17011 354294 -cd10009 212533 cl17011 354294 -cd10010 212534 cl17011 354294 -cd10011 212535 cl17011 354294 -cd11587 212536 cl17011 354294 -cd11589 212537 cl17011 354294 -cd11592 212538 cl17011 354294 -cd11593 212539 cl17011 354294 -cd11598 212540 cl17011 354294 -cd11599 212541 cl17011 354294 -cd11600 212542 cl17011 354294 -cd11680 212543 cl17011 354294 -cd11681 212544 cl17011 354294 -cd11682 212545 cl17011 354294 -cd11683 212546 cl17011 354294 -cd11581 212547 cl17012 354295 -cd11710 212548 cl17012 354295 -cd11711 212549 cl17012 354295 -cd11712 212550 cl17012 354295 -cd11713 212551 cl17012 354295 -cd11714 212552 cl17012 354295 -cd11654 212553 cl25598 330419 -cd11655 212554 cl21498 354840 -cd11656 212555 cd11656 212555 -cd11658 212556 cl21498 354840 -cd11659 212557 cl21498 354840 -cd11660 212558 cl21498 354840 -cd11661 212559 cl21498 354840 -cd11662 212560 cd11662 212560 -cd11670 212561 cd11670 212561 -cd11671 212562 cd11671 212562 -cd11673 212563 cl17028 327373 -cd11674 212564 cd11674 212564 -cd11675 212565 cd11675 212565 -cd11684 212566 cl06123 352472 -cd11694 212567 cl06123 352472 -cd11695 212568 cl06123 352472 -cd11696 212569 cl06123 352472 -cd11697 212570 cl06123 352472 -cd11698 212571 cl06123 352472 -cd11699 212572 cl06123 352472 -cd11700 212573 cl06123 352472 -cd11701 212574 cl06123 352472 -cd11702 212575 cl06123 352472 -cd11703 212576 cl06123 352472 -cd11704 212577 cl06123 352472 -cd11705 212578 cl06123 352472 -cd11706 212579 cl06123 352472 -cd11707 212580 cl06123 352472 -cd11708 212581 cl06123 352472 -cd11687 212582 cd11687 212582 -cd11688 212583 cl12076 353353 -cd11715 212584 cl12076 353353 -cd11716 212585 cl12076 353353 -cd11717 212586 cl12076 353353 -cd11718 212587 cl12076 353353 -cd11689 212588 cd11689 212588 -cd11690 212589 cd11690 212589 -cd11691 212590 cl17015 354298 -cd11692 212591 cl17015 354298 -cd11693 212592 cl17015 354298 -cd11719 212593 cl17018 327372 -cd11720 212594 cl17018 327372 -cd11721 212595 cl17018 327372 -cd11722 212596 cl17033 327374 -cd00012 212657 cl17037 354300 -cd00366 212658 cl17037 354300 -cd07770 212659 cl17037 354300 -cd07776 212660 cl17037 354300 -cd07777 212661 cl17037 354300 -cd07779 212662 cl17037 354300 -cd07782 212663 cl17037 354300 -cd07792 212664 cl17037 354300 -cd07793 212665 cl17037 354300 -cd07802 212666 cl17037 354300 -cd10170 212667 cl17037 354300 -cd10225 212668 cl17037 354300 -cd10227 212669 cl17037 354300 -cd10228 212670 cl17037 354300 -cd10229 212671 cl17037 354300 -cd10230 212672 cl17037 354300 -cd10231 212673 cl17037 354300 -cd10232 212674 cl17037 354300 -cd10233 212675 cl17037 354300 -cd10234 212676 cl17037 354300 -cd10235 212677 cl17037 354300 -cd10236 212678 cl17037 354300 -cd10237 212679 cl17037 354300 -cd10238 212680 cl17037 354300 -cd10241 212681 cl17037 354300 -cd11732 212682 cl17037 354300 -cd11733 212683 cl17037 354300 -cd11734 212684 cl17037 354300 -cd11735 212685 cl17037 354300 -cd11736 212686 cl17037 354300 -cd11737 212687 cl17037 354300 -cd11738 212688 cl17037 354300 -cd11739 212689 cl17037 354300 -cd00174 212690 cl17036 354299 -cd11757 212691 cl17036 354299 -cd11758 212692 cl17036 354299 -cd11759 212693 cl17036 354299 -cd11760 212694 cl17036 354299 -cd11761 212695 cl17036 354299 -cd11762 212696 cl17036 354299 -cd11763 212697 cl17036 354299 -cd11764 212698 cl17036 354299 -cd11765 212699 cl17036 354299 -cd11766 212700 cl17036 354299 -cd11767 212701 cl17036 354299 -cd11768 212702 cl17036 354299 -cd11769 212703 cl17036 354299 -cd11770 212704 cl17036 354299 -cd11771 212705 cl17036 354299 -cd11772 212706 cl17036 354299 -cd11773 212707 cl17036 354299 -cd11774 212708 cl17036 354299 -cd11775 212709 cl17036 354299 -cd11776 212710 cl17036 354299 -cd11777 212711 cl17036 354299 -cd11778 212712 cl17036 354299 -cd11779 212713 cl17036 354299 -cd11780 212714 cl17036 354299 -cd11781 212715 cl17036 354299 -cd11782 212716 cl17036 354299 -cd11783 212717 cl17036 354299 -cd11784 212718 cl17036 354299 -cd11785 212719 cl17036 354299 -cd11786 212720 cl17036 354299 -cd11787 212721 cl17036 354299 -cd11788 212722 cl17036 354299 -cd11789 212723 cl17036 354299 -cd11790 212724 cl17036 354299 -cd11791 212725 cl17036 354299 -cd11792 212726 cl17036 354299 -cd11793 212727 cl17036 354299 -cd11794 212728 cl17036 354299 -cd11795 212729 cl17036 354299 -cd11796 212730 cl17036 354299 -cd11797 212731 cl17036 354299 -cd11798 212732 cl17036 354299 -cd11799 212733 cl17036 354299 -cd11800 212734 cl17036 354299 -cd11801 212735 cl17036 354299 -cd11802 212736 cl17036 354299 -cd11803 212737 cl17036 354299 -cd11804 212738 cl17036 354299 -cd11805 212739 cl17036 354299 -cd11806 212740 cl17036 354299 -cd11807 212741 cl17036 354299 -cd11808 212742 cl17036 354299 -cd11809 212743 cl17036 354299 -cd11810 212744 cl17036 354299 -cd11811 212745 cl17036 354299 -cd11812 212746 cl17036 354299 -cd11813 212747 cl17036 354299 -cd11814 212748 cl17036 354299 -cd11815 212749 cl17036 354299 -cd11816 212750 cl17036 354299 -cd11817 212751 cl17036 354299 -cd11818 212752 cl17036 354299 -cd11819 212753 cl17036 354299 -cd11820 212754 cl17036 354299 -cd11821 212755 cl17036 354299 -cd11822 212756 cl17036 354299 -cd11823 212757 cl17036 354299 -cd11824 212758 cl17036 354299 -cd11825 212759 cl17036 354299 -cd11826 212760 cl17036 354299 -cd11827 212761 cl17036 354299 -cd11828 212762 cl17036 354299 -cd11829 212763 cl17036 354299 -cd11830 212764 cl17036 354299 -cd11831 212765 cl17036 354299 -cd11832 212766 cl17036 354299 -cd11833 212767 cl17036 354299 -cd11834 212768 cl17036 354299 -cd11835 212769 cl17036 354299 -cd11836 212770 cl17036 354299 -cd11837 212771 cl17036 354299 -cd11838 212772 cl17036 354299 -cd11839 212773 cl17036 354299 -cd11840 212774 cl17036 354299 -cd11841 212775 cl17036 354299 -cd11842 212776 cl17036 354299 -cd11843 212777 cl17036 354299 -cd11844 212778 cl17036 354299 -cd11845 212779 cl17036 354299 -cd11846 212780 cl17036 354299 -cd11847 212781 cl17036 354299 -cd11848 212782 cl17036 354299 -cd11849 212783 cl17036 354299 -cd11850 212784 cl17036 354299 -cd11851 212785 cl17036 354299 -cd11852 212786 cl17036 354299 -cd11853 212787 cl17036 354299 -cd11854 212788 cl17036 354299 -cd11855 212789 cl17036 354299 -cd11856 212790 cl17036 354299 -cd11857 212791 cl17036 354299 -cd11858 212792 cl17036 354299 -cd11859 212793 cl17036 354299 -cd11860 212794 cl17036 354299 -cd11861 212795 cl17036 354299 -cd11862 212796 cl17036 354299 -cd11863 212797 cl17036 354299 -cd11864 212798 cl17036 354299 -cd11865 212799 cl17036 354299 -cd11866 212800 cl17036 354299 -cd11867 212801 cl17036 354299 -cd11869 212802 cl17036 354299 -cd11870 212803 cl17036 354299 -cd11871 212804 cl17036 354299 -cd11872 212805 cl17036 354299 -cd11873 212806 cl17036 354299 -cd11874 212807 cl17036 354299 -cd11875 212808 cl17036 354299 -cd11876 212809 cl17036 354299 -cd11877 212810 cl17036 354299 -cd11878 212811 cl17036 354299 -cd11879 212812 cl17036 354299 -cd11880 212813 cl17036 354299 -cd11881 212814 cl17036 354299 -cd11882 212815 cl17036 354299 -cd11883 212816 cl17036 354299 -cd11884 212817 cl17036 354299 -cd11885 212818 cl17036 354299 -cd11886 212819 cl17036 354299 -cd11887 212820 cl17036 354299 -cd11888 212821 cl17036 354299 -cd11889 212822 cl17036 354299 -cd11890 212823 cl17036 354299 -cd11891 212824 cl17036 354299 -cd11892 212825 cl17036 354299 -cd11893 212826 cl17036 354299 -cd11894 212827 cl17036 354299 -cd11895 212828 cl17036 354299 -cd11896 212829 cl17036 354299 -cd11897 212830 cl17036 354299 -cd11898 212831 cl17036 354299 -cd11899 212832 cl17036 354299 -cd11900 212833 cl17036 354299 -cd11901 212834 cl17036 354299 -cd11902 212835 cl17036 354299 -cd11903 212836 cl17036 354299 -cd11904 212837 cl17036 354299 -cd11905 212838 cl17036 354299 -cd11906 212839 cl17036 354299 -cd11907 212840 cl17036 354299 -cd11908 212841 cl17036 354299 -cd11909 212842 cl17036 354299 -cd11910 212843 cl17036 354299 -cd11911 212844 cl17036 354299 -cd11912 212845 cl17036 354299 -cd11913 212846 cl17036 354299 -cd11914 212847 cl17036 354299 -cd11915 212848 cl17036 354299 -cd11916 212849 cl17036 354299 -cd11917 212850 cl17036 354299 -cd11918 212851 cl17036 354299 -cd11919 212852 cl17036 354299 -cd11920 212853 cl17036 354299 -cd11921 212854 cl17036 354299 -cd11922 212855 cl17036 354299 -cd11923 212856 cl17036 354299 -cd11924 212857 cl17036 354299 -cd11925 212858 cl17036 354299 -cd11926 212859 cl17036 354299 -cd11927 212860 cl17036 354299 -cd11928 212861 cl17036 354299 -cd11929 212862 cl17036 354299 -cd11930 212863 cl17036 354299 -cd11931 212864 cl17036 354299 -cd11932 212865 cl17036 354299 -cd11933 212866 cl17036 354299 -cd11934 212867 cl17036 354299 -cd11935 212868 cl17036 354299 -cd11936 212869 cl17036 354299 -cd11937 212870 cl17036 354299 -cd11938 212871 cl17036 354299 -cd11939 212872 cl17036 354299 -cd11940 212873 cl17036 354299 -cd11941 212874 cl17036 354299 -cd11942 212875 cl17036 354299 -cd11943 212876 cl17036 354299 -cd11944 212877 cl17036 354299 -cd11945 212878 cl17036 354299 -cd11946 212879 cl17036 354299 -cd11947 212880 cl17036 354299 -cd11948 212881 cl17036 354299 -cd11949 212882 cl17036 354299 -cd11950 212883 cl17036 354299 -cd11951 212884 cl17036 354299 -cd11952 212885 cl17036 354299 -cd11953 212886 cl17036 354299 -cd11954 212887 cl17036 354299 -cd11955 212888 cl17036 354299 -cd11956 212889 cl17036 354299 -cd11957 212890 cl17036 354299 -cd11958 212891 cl17036 354299 -cd11959 212892 cl17036 354299 -cd11960 212893 cl17036 354299 -cd11961 212894 cl17036 354299 -cd11962 212895 cl17036 354299 -cd11963 212896 cl17036 354299 -cd11964 212897 cl17036 354299 -cd11965 212898 cl17036 354299 -cd11966 212899 cl17036 354299 -cd11967 212900 cl17036 354299 -cd11968 212901 cl17036 354299 -cd11969 212902 cl17036 354299 -cd11970 212903 cl17036 354299 -cd11971 212904 cl17036 354299 -cd11972 212905 cl17036 354299 -cd11973 212906 cl17036 354299 -cd11974 212907 cl17036 354299 -cd11975 212908 cl17036 354299 -cd11976 212909 cl17036 354299 -cd11977 212910 cl17036 354299 -cd11978 212911 cl17036 354299 -cd11979 212912 cl17036 354299 -cd11980 212913 cl17036 354299 -cd11981 212914 cl17036 354299 -cd11982 212915 cl17036 354299 -cd11983 212916 cl17036 354299 -cd11984 212917 cl17036 354299 -cd11985 212918 cl17036 354299 -cd11986 212919 cl17036 354299 -cd11987 212920 cl17036 354299 -cd11988 212921 cl17036 354299 -cd11989 212922 cl17036 354299 -cd11990 212923 cl17036 354299 -cd11991 212924 cl17036 354299 -cd11992 212925 cl17036 354299 -cd11993 212926 cl17036 354299 -cd11994 212927 cl17036 354299 -cd11995 212928 cl17036 354299 -cd11996 212929 cl17036 354299 -cd11997 212930 cl17036 354299 -cd11998 212931 cl17036 354299 -cd11999 212932 cl17036 354299 -cd12000 212933 cl17036 354299 -cd12001 212934 cl17036 354299 -cd12002 212935 cl17036 354299 -cd12003 212936 cl17036 354299 -cd12004 212937 cl17036 354299 -cd12005 212938 cl17036 354299 -cd12006 212939 cl17036 354299 -cd12007 212940 cl17036 354299 -cd12008 212941 cl17036 354299 -cd12009 212942 cl17036 354299 -cd12010 212943 cl17036 354299 -cd12011 212944 cl17036 354299 -cd12012 212945 cl17036 354299 -cd12013 212946 cl17036 354299 -cd12014 212947 cl17036 354299 -cd12015 212948 cl17036 354299 -cd12016 212949 cl17036 354299 -cd12017 212950 cl17036 354299 -cd12018 212951 cl17036 354299 -cd12019 212952 cl17036 354299 -cd12020 212953 cl17036 354299 -cd12021 212954 cl17036 354299 -cd12022 212955 cl17036 354299 -cd12023 212956 cl17036 354299 -cd12024 212957 cl17036 354299 -cd12025 212958 cl17036 354299 -cd12026 212959 cl17036 354299 -cd12027 212960 cl17036 354299 -cd12028 212961 cl17036 354299 -cd12029 212962 cl17036 354299 -cd12030 212963 cl17036 354299 -cd12031 212964 cl17036 354299 -cd12032 212965 cl17036 354299 -cd12033 212966 cl17036 354299 -cd12034 212967 cl17036 354299 -cd12035 212968 cl17036 354299 -cd12036 212969 cl17036 354299 -cd12037 212970 cl17036 354299 -cd12038 212971 cl17036 354299 -cd12039 212972 cl17036 354299 -cd12040 212973 cl17036 354299 -cd12041 212974 cl17036 354299 -cd12042 212975 cl17036 354299 -cd12043 212976 cl17036 354299 -cd12044 212977 cl17036 354299 -cd12045 212978 cl17036 354299 -cd12046 212979 cl17036 354299 -cd12047 212980 cl17036 354299 -cd12048 212981 cl17036 354299 -cd12049 212982 cl17036 354299 -cd12050 212983 cl17036 354299 -cd12051 212984 cl17036 354299 -cd12052 212985 cl17036 354299 -cd12053 212986 cl17036 354299 -cd12054 212987 cl17036 354299 -cd12055 212988 cl17036 354299 -cd12056 212989 cl17036 354299 -cd12057 212990 cl17036 354299 -cd12058 212991 cl17036 354299 -cd12059 212992 cl17036 354299 -cd12060 212993 cl17036 354299 -cd12061 212994 cl17036 354299 -cd12062 212995 cl17036 354299 -cd12063 212996 cl17036 354299 -cd12064 212997 cl17036 354299 -cd12065 212998 cl17036 354299 -cd12066 212999 cl17036 354299 -cd12067 213000 cl17036 354299 -cd12068 213001 cl17036 354299 -cd12069 213002 cl17036 354299 -cd12070 213003 cl17036 354299 -cd12071 213004 cl17036 354299 -cd12072 213005 cl17036 354299 -cd12073 213006 cl17036 354299 -cd12074 213007 cl17036 354299 -cd12075 213008 cl17036 354299 -cd12076 213009 cl17036 354299 -cd12077 213010 cl17036 354299 -cd12078 213011 cl17036 354299 -cd12079 213012 cl17036 354299 -cd12080 213013 cl17036 354299 -cd12081 213014 cl17036 354299 -cd12139 213015 cl17036 354299 -cd12140 213016 cl17036 354299 -cd12141 213017 cl17036 354299 -cd12142 213018 cl17036 354299 -cd12143 213019 cl17036 354299 -cd10585 213020 cl15692 353970 -cd10916 213021 cl15692 353970 -cd10917 213022 cl15692 353970 -cd10918 213023 cl15692 353970 -cd10966 213024 cl15692 353970 -cd10968 213025 cl15692 353970 -cd10969 213026 cl15692 353970 -cd10970 213027 cl15692 353970 -cd10973 213028 cl15692 353970 -cd11375 213029 cl00064 350885 -cd07472 213030 cl12009 353335 -cd12105 213031 cl12009 353335 -cd11740 213038 cl00723 351228 -cd11743 213039 cl17065 327382 -cd12084 213043 cl02594 351815 -cd12097 213044 cl02594 351815 -cd12098 213045 cl02594 351815 -cd12099 213046 cl02594 351815 -cd12100 213047 cl02594 351815 -cd12101 213048 cl02594 351815 -cd12102 213049 cl02594 351815 -cd12103 213050 cl02594 351815 -cd12104 213051 cl02594 351815 -cd12087 213052 cl17045 277498 -cd12092 213053 cl17045 277498 -cd12093 213054 cl17045 277498 -cd12094 213055 cl17045 277498 -cd12095 213056 cl17045 277498 -cd12106 213061 cd12106 213061 -cd11746 213062 cl17067 354306 -cd11747 213063 cl17067 354306 -cd11748 213064 cl17067 354306 -cd11749 213065 cl17067 354306 -cd11750 213066 cl17067 354306 -cd11751 213067 cl17067 354306 -cd11752 213068 cl17067 354306 -cd11753 213069 cl17067 354306 -cd11754 213070 cl17067 354306 -cd11755 213071 cl17067 354306 -cd11756 213072 cl17067 354306 -cd00036 213175 cl00046 350874 -cd12204 213176 cl00046 350874 -cd12214 213177 cl00046 350874 -cd12215 213178 cl00046 350874 -cd00267 213179 cl25403 355390 -cd03213 213180 cl25403 355390 -cd03214 213181 cl25403 355390 -cd03215 213182 cl25403 355390 -cd03216 213183 cl25403 355390 -cd03217 213184 cl25403 355390 -cd03218 213185 cl25403 355390 -cd03219 213186 cl25403 355390 -cd03220 213187 cl25403 355390 -cd03221 213188 cl25403 355390 -cd03222 213189 cl25403 355390 -cd03223 213190 cl25403 355390 -cd03224 213191 cl25403 355390 -cd03225 213192 cl25403 355390 -cd03226 213193 cl25403 355390 -cd03227 213194 cl25403 355390 -cd03228 213195 cl25403 355390 -cd03229 213196 cl25403 355390 -cd03230 213197 cl25403 355390 -cd03231 213198 cl25403 355390 -cd03232 213199 cl25403 355390 -cd03233 213200 cl25403 355390 -cd03234 213201 cl25403 355390 -cd03235 213202 cl25403 355390 -cd03236 213203 cl25403 355390 -cd03237 213204 cl25403 355390 -cd03238 213205 cl25403 355390 -cd03239 213206 cl25403 355390 -cd03240 213207 cl25403 355390 -cd03241 213208 cl25403 355390 -cd03242 213209 cl25403 355390 -cd03243 213210 cl25403 355390 -cd03244 213211 cl25403 355390 -cd03245 213212 cl25403 355390 -cd03246 213213 cl25403 355390 -cd03247 213214 cl25403 355390 -cd03248 213215 cl25403 355390 -cd03249 213216 cl25403 355390 -cd03250 213217 cl25403 355390 -cd03251 213218 cl25403 355390 -cd03252 213219 cl25403 355390 -cd03253 213220 cl25403 355390 -cd03254 213221 cl25403 355390 -cd03255 213222 cl25403 355390 -cd03256 213223 cl25403 355390 -cd03257 213224 cl25403 355390 -cd03258 213225 cl25403 355390 -cd03259 213226 cl25403 355390 -cd03260 213227 cl25403 355390 -cd03261 213228 cl25403 355390 -cd03262 213229 cl25403 355390 -cd03263 213230 cl25403 355390 -cd03264 213231 cl25403 355390 -cd03265 213232 cl25403 355390 -cd03266 213233 cl25403 355390 -cd03267 213234 cl25403 355390 -cd03268 213235 cl25403 355390 -cd03269 213236 cl25403 355390 -cd03270 213237 cl25403 355390 -cd03271 213238 cl25403 355390 -cd03272 213239 cl25403 355390 -cd03273 213240 cl25403 355390 -cd03274 213241 cl25403 355390 -cd03275 213242 cl25403 355390 -cd03276 213243 cl25403 355390 -cd03277 213244 cl25403 355390 -cd03278 213245 cl25403 355390 -cd03279 213246 cl25403 355390 -cd03280 213247 cl25403 355390 -cd03281 213248 cl25403 355390 -cd03282 213249 cl25403 355390 -cd03283 213250 cl25403 355390 -cd03284 213251 cl25403 355390 -cd03285 213252 cl25403 355390 -cd03286 213253 cl25403 355390 -cd03287 213254 cl25403 355390 -cd03288 213255 cl25403 355390 -cd03289 213256 cl25403 355390 -cd03290 213257 cl25403 355390 -cd03291 213258 cl25403 355390 -cd03292 213259 cl25403 355390 -cd03293 213260 cl25403 355390 -cd03294 213261 cl25403 355390 -cd03295 213262 cl25403 355390 -cd03296 213263 cl25403 355390 -cd03297 213264 cl25403 355390 -cd03298 213265 cl25403 355390 -cd03299 213266 cl25403 355390 -cd03300 213267 cl25403 355390 -cd03301 213268 cl25403 355390 -cd03369 213269 cl25403 355390 -cd05915 213283 cl17068 354307 -cd04519 213328 cl02569 351807 -cd05127 213329 cl02569 351807 -cd05128 213330 cl02569 351807 -cd05129 213331 cl02569 351807 -cd05130 213332 cl02569 351807 -cd05131 213333 cl02569 351807 -cd05132 213334 cl02569 351807 -cd05133 213335 cl02569 351807 -cd05134 213336 cl02569 351807 -cd05135 213337 cl02569 351807 -cd05136 213338 cl02569 351807 -cd05137 213339 cl02569 351807 -cd05391 213340 cl02569 351807 -cd05392 213341 cl02569 351807 -cd05394 213342 cl02569 351807 -cd05395 213343 cl02569 351807 -cd12205 213344 cl02569 351807 -cd12206 213345 cl02569 351807 -cd12207 213346 cl02569 351807 -cd12787 213347 cl02569 351807 -cd12788 213348 cl02569 351807 -cd12789 213349 cl02569 351807 -cd12790 213350 cl02569 351807 -cd12791 213351 cl02569 351807 -cd12792 213352 cl02569 351807 -cd12793 213353 cl02569 351807 -cd11744 213354 cl00459 320984 -cd12821 213355 cl00459 320984 -cd12822 213356 cl00459 320984 -cd12823 213357 cl00459 320984 -cd12824 213358 cl00459 320984 -cd12825 213359 cl00459 320984 -cd12826 213360 cl00459 320984 -cd12827 213361 cl00459 320984 -cd12828 213362 cl00459 320984 -cd12829 213363 cl00459 320984 -cd12830 213364 cl00459 320984 -cd12831 213365 cl00459 320984 -cd12832 213366 cl00459 320984 -cd12833 213367 cl00459 320984 -cd12834 213368 cl00459 320984 -cd12835 213369 cl00459 320984 -cd12836 213370 cl00459 320984 -cd12837 213371 cl00459 320984 -cd11745 213372 cd11745 213372 -cd12083 213373 cl17044 354303 -cd12085 213374 cl17044 354303 -cd12086 213375 cl17044 354303 -cd12120 213376 cl17070 354308 -cd12121 213377 cl17070 354308 -cd12122 213378 cl17070 354308 -cd12194 213379 cl17070 354308 -cd12195 213380 cl17070 354308 -cd12196 213381 cl17070 354308 -cd12197 213382 cl17070 354308 -cd12198 213383 cl17070 354308 -cd12199 213384 cl17070 354308 -cd12200 213385 cl17070 354308 -cd12201 213386 cl17070 354308 -cd12144 213387 cl19054 354376 -cd12145 213388 cl17091 327388 -cd12146 213389 cl17092 327389 -cd12147 213390 cl23766 355037 -cd12148 213391 cl23766 355037 -cd12149 213392 cl28075 332896 -cd12150 213393 cd12150 213393 -cd12151 213394 cl00365 351055 -cd12152 213395 cl29826 356702 -cd12153 213396 cl04635 352224 -cd12190 213397 cl17095 354310 -cd12191 213398 cd12191 213398 -cd12192 213399 cd12192 213399 -cd12202 213401 cd12202 213401 -cd12203 213402 cl23759 355036 -cd12208 213403 cd12208 213403 -cd12211 213404 cd12211 213404 -cd12213 213406 cl21464 354820 -cd09644 213407 cl09913 353022 -cd09758 213408 cl09913 353022 -cd12216 213409 cl09913 353022 -cd12217 213410 cl09913 353022 -cd12218 213411 cl09913 353022 -TIGR00035 213495 cl00518 351130 -TIGR00134 213509 TIGR00134 213509 -TIGR00174 213512 TIGR00174 213512 -TIGR00281 213521 cl00612 351177 -TIGR00297 213522 cl00793 351257 -TIGR00304 213523 cl00892 321234 -TIGR00317 213524 cl00415 351084 -TIGR00447 213531 cl00352 351048 -TIGR00453 213532 cl11394 353239 -TIGR00486 213534 cl15371 326563 -TIGR00517 213536 cl09936 324546 -TIGR00525 213537 cl00263 350991 -TIGR00534 213538 TIGR00534 213538 -TIGR00562 213540 TIGR00562 213540 -TIGR00636 213544 cl00920 351311 -TIGR00673 213549 TIGR00673 213549 -TIGR00691 213552 TIGR00691 213552 -TIGR00809 213561 cl00251 350983 -TIGR00832 213563 cl19217 354395 -TIGR00839 213564 TIGR00839 213564 -TIGR00842 213565 cl00569 321047 -TIGR00935 213571 cl21473 354825 -TIGR00936 213572 TIGR00936 213572 -TIGR01060 213580 TIGR01060 213580 -TIGR01153 213589 cl08223 324210 -TIGR01258 213596 cl11399 353243 -TIGR01259 213597 TIGR01259 213597 -TIGR01293 213602 TIGR01293 213602 -TIGR01383 213612 cl00020 350865 -TIGR01424 213618 cl30684 357560 -TIGR01433 213620 TIGR01433 213620 -TIGR01434 213621 cl00954 351329 -TIGR01443 213622 TIGR01443 213622 -TIGR01489 213629 cl21460 354816 -TIGR01502 213632 TIGR01502 213632 -TIGR01504 213633 TIGR01504 213633 -TIGR01601 213640 cl23940 305097 -TIGR01641 213641 cl10072 324573 -TIGR01727 213647 cl07097 323760 -TIGR01835 213655 TIGR01835 213655 -TIGR01838 213656 cl26470 355519 -TIGR01898 213662 cl21471 354824 -TIGR01905 213663 cl23752 329057 -TIGR01909 213664 cl09920 353025 -TIGR01928 213667 TIGR01928 213667 -TIGR01964 213671 cl23941 329184 -TIGR01990 213672 TIGR01990 213672 -TIGR02009 213673 TIGR02009 213673 -TIGR02011 213674 cl00400 351077 -TIGR02034 213679 TIGR02034 213679 -TIGR02075 213681 cl00452 351098 -TIGR02184 213689 cl26619 355548 -TIGR02276 213697 TIGR02276 213697 -TIGR02295 213698 TIGR02295 213698 -TIGR02308 213699 cl09743 324466 -TIGR02310 213700 cl29812 356688 -TIGR02336 213701 cl00020 350865 -TIGR02362 213706 cl10557 353086 -TIGR02482 213713 cl00204 350948 -TIGR02720 213733 TIGR02720 213733 -TIGR02773 213736 TIGR02773 213736 -TIGR02829 213743 cl09771 324475 -TIGR02869 213747 TIGR02869 213747 -TIGR02891 213748 cl00275 350997 -TIGR02954 213752 TIGR02954 213752 -TIGR02971 213754 TIGR02971 213754 -TIGR03041 213761 cl08223 324210 -TIGR03054 213764 TIGR03054 213764 -TIGR03060 213765 TIGR03060 213765 -TIGR03063 213766 TIGR03063 213766 -TIGR03070 213767 cl22854 354960 -TIGR03072 213768 TIGR03072 213768 -TIGR03076 213771 TIGR03076 213771 -TIGR03081 213772 cl14632 353816 -TIGR03139 213775 cl00263 350991 -TIGR03181 213783 cl01629 351571 -TIGR03221 213786 cl01992 321762 -TIGR03222 213787 TIGR03222 213787 -TIGR03263 213788 cl17190 354320 -TIGR03280 213789 cl21688 328855 -TIGR03284 213790 cl19097 354378 -TIGR03333 213797 cl21460 354816 -TIGR03342 213798 cl01101 351378 -TIGR03344 213799 cl01226 351432 -TIGR03378 213807 cl21454 354811 -TIGR03382 213808 TIGR03382 213808 -TIGR03406 213809 cl00941 351322 -TIGR03427 213811 cl21456 354813 -TIGR03469 213815 TIGR03469 213815 -TIGR03554 213827 cl19096 327499 -TIGR03576 213830 cl18945 354370 -TIGR03578 213831 cl11917 353321 -TIGR03597 213834 TIGR03597 213834 -TIGR03629 213839 cl00331 351033 -TIGR03657 213844 TIGR03657 213844 -TIGR03700 213851 TIGR03700 213851 -TIGR03707 213852 cl11971 353332 -TIGR03764 213858 TIGR03764 213858 -TIGR03767 213859 cl13995 353799 -TIGR03807 213864 TIGR03807 213864 -TIGR03834 213869 cl27781 332602 -TIGR03840 213871 cl17173 354317 -TIGR03847 213872 cl12832 325560 -TIGR03856 213873 cl19096 327499 -TIGR03857 213874 cl19096 327499 -TIGR04029 213885 cl00460 320985 -TIGR04070 213890 cl23832 304989 -TIGR04240 213897 TIGR04240 213897 -TIGR04287 213900 cl15694 353972 -TIGR04288 213901 TIGR04288 213901 -TIGR04293 213906 cl23937 305094 -TIGR04294 213907 cl29959 356835 -TIGR04297 213910 cl15694 353972 -TIGR04298 213911 TIGR04298 213911 -TIGR04299 213912 TIGR04299 213912 -TIGR04300 213913 cl15694 353972 -TIGR04302 213915 cl05126 352319 -TIGR04303 213916 TIGR04303 213916 -TIGR04304 213917 TIGR04304 213917 -TIGR04306 213919 cl15243 353926 -TIGR04307 213920 TIGR04307 213920 -TIGR04309 213922 TIGR04309 213922 -TIGR04310 213923 TIGR04310 213923 -TIGR04314 213927 cl26442 355515 -TIGR04323 213936 TIGR04323 213936 -TIGR04328 213941 cl00641 351191 -TIGR04329 213942 cl00656 351200 -TIGR04333 213946 TIGR04333 213946 -TIGR04334 213947 TIGR04334 213947 -TIGR04339 213952 TIGR04339 213952 -TIGR04340 213953 TIGR04340 213953 -TIGR04341 213954 TIGR04341 213954 -TIGR04351 213964 TIGR04351 213964 -TIGR04356 213969 TIGR04356 213969 -TIGR04365 213978 cl21517 328769 -cd00522 213981 cl15774 353977 -cd12107 213982 cl15774 353977 -cd12108 213983 cl15774 353977 -cd12109 213984 cl15774 353977 -cd07309 213985 cl23724 355021 -cd07431 213986 cl23724 355021 -cd07432 213987 cl23724 355021 -cd07433 213988 cl23724 355021 -cd07434 213989 cl23724 355021 -cd07435 213990 cl23724 355021 -cd07436 213991 cl23724 355021 -cd07437 213992 cl23724 355021 -cd07438 213993 cl23724 355021 -cd12110 213994 cl23724 355021 -cd12111 213995 cl23724 355021 -cd12112 213996 cl23724 355021 -cd12113 213997 cl23724 355021 -cd12798 213998 cl17157 354313 -cd12800 213999 cd12800 213999 -cd12801 214000 cl17109 302613 -cd12802 214001 cl17109 302613 -cd12803 214002 cl17109 302613 -cd12804 214003 cd12804 214003 -cd12805 214004 cl03283 295770 -cd12806 214005 cl21494 354836 -cd12807 214006 cl21494 354836 -cd12808 214007 cl21494 354836 -cd12809 214008 cl21494 354836 -cd12810 214009 cl21494 354836 -cd12812 214010 cd12812 214010 -cd12838 214011 cd12838 214011 -cd12839 214012 cd12839 214012 -cd12840 214013 cd12840 214013 -cd12841 214014 cl25995 355476 -cd12871 214015 cl25912 355462 -cd12923 214016 cl25402 355389 -cd12924 214017 cl25402 355389 -cd12925 214018 cl25402 355389 -cd12926 214019 cl25402 355389 -cd12955 214020 cl17165 327396 -cd12958 214021 cl26917 331738 -cd12959 214022 cl17166 327397 -CHL00001 214330 CHL00001 214330 -CHL00002 214331 cl28114 332935 -CHL00010 214332 cl09927 353027 -CHL00013 214333 CHL00013 214333 -CHL00014 214334 CHL00014 214334 -CHL00016 214335 cl21484 354830 -CHL00018 214336 CHL00018 214336 -CHL00023 214337 cl17194 354321 -CHL00025 214338 CHL00025 214338 -CHL00027 214339 cl00349 351045 -CHL00028 214340 cl23717 355015 -CHL00032 214341 cl00469 351105 -CHL00034 214342 cl00327 351030 -CHL00035 214343 cl08223 324210 -CHL00042 214344 cl00330 351032 -CHL00043 214345 cl03855 322447 -CHL00045 214346 cl00504 321008 -CHL00047 214347 cl27409 332230 -CHL00048 214348 CHL00048 214348 -CHL00060 214349 CHL00060 214349 -CHL00062 214350 cl08223 324210 -CHL00063 214351 CHL00063 214351 -CHL00068 214352 cl00393 351073 -CHL00073 214353 cl02775 351884 -CHL00074 214354 cl00355 351051 -CHL00076 214355 CHL00076 214355 -CHL00078 214356 CHL00078 214356 -CHL00079 214357 cl00334 351035 -CHL00083 214358 CHL00083 214358 -CHL00085 214359 CHL00085 214359 -CHL00094 214360 CHL00094 214360 -CHL00095 214361 CHL00095 214361 -CHL00098 214362 cl29530 356406 -CHL00099 214363 CHL00099 214363 -CHL00100 214364 CHL00100 214364 -CHL00101 214365 cl00020 350865 -CHL00102 214366 cl00384 351067 -CHL00103 214367 cl00392 351072 -CHL00117 214368 CHL00117 214368 -CHL00118 214369 cl21478 354827 -CHL00121 214370 cl00359 351053 -CHL00122 214371 CHL00122 214371 -CHL00131 214372 CHL00131 214372 -CHL00139 214373 cl00379 320941 -CHL00141 214374 cl00354 351050 -CHL00147 214375 cl00325 351028 -CHL00148 214376 CHL00148 214376 -CHL00152 214377 cl09115 324327 -CHL00160 214378 CHL00160 214378 -CHL00161 214379 CHL00161 214379 -CHL00162 214380 cl21457 354814 -CHL00163 214381 cl04793 296659 -CHL00165 214382 cl01977 351651 -CHL00168 214383 cl15243 353926 -CHL00174 214384 cl23717 355015 -CHL00175 214385 CHL00175 214385 -CHL00176 214386 CHL00176 214386 -CHL00177 214387 cl09125 352937 -CHL00187 214388 CHL00187 214388 -CHL00188 214389 cl00020 350865 -CHL00191 214390 cl14651 353822 -CHL00192 214391 CHL00192 214391 -CHL00197 214392 CHL00197 214392 -CHL00198 214393 cl23717 355015 -CHL00200 214394 cl28888 355772 -CHL00204 214395 CHL00204 214395 -CHL00206 214396 CHL00206 214396 -CHL00207 214397 CHL00207 214397 -MTH00004 214398 MTH00004 214398 -MTH00014 214399 cl30834 357710 -MTH00020 214400 MTH00020 214400 -MTH00021 214401 cl21484 354830 -MTH00023 214402 MTH00023 214402 -MTH00024 214403 cl00211 294143 -MTH00025 214404 cl21478 354827 -MTH00027 214405 MTH00027 214405 -MTH00028 214406 cl00211 294143 -MTH00032 214407 MTH00032 214407 -MTH00036 214408 MTH00036 214408 -MTH00040 214409 cl00469 351105 -MTH00043 214410 cl00492 351118 -MTH00044 214411 cl30834 357710 -MTH00047 214412 MTH00047 214412 -MTH00062 214413 MTH00062 214413 -MTH00063 214414 MTH00063 214414 -MTH00065 214415 cl21484 354830 -MTH00066 214416 MTH00066 214416 -MTH00068 214417 cl30834 357710 -MTH00071 214418 cl00469 351105 -MTH00077 214419 cl00275 350997 -MTH00102 214420 cl03008 295603 -MTH00109 214421 cl21484 354830 -MTH00111 214422 cl00469 351105 -MTH00112 214423 MTH00112 214423 -MTH00115 214424 cl21484 354830 -MTH00119 214425 MTH00119 214425 -MTH00123 214426 cl03008 295603 -MTH00124 214427 cl30834 357710 -MTH00137 214428 MTH00137 214428 -MTH00139 214429 MTH00139 214429 -MTH00140 214430 MTH00140 214430 -MTH00142 214431 cl00275 350997 -MTH00144 214432 MTH00144 214432 -MTH00148 214433 cl00535 351141 -MTH00149 214434 cl00492 351118 -MTH00150 214435 cl30834 357710 -MTH00151 214436 MTH00151 214436 -MTH00152 214437 cl21484 354830 -MTH00154 214438 MTH00154 214438 -MTH00155 214439 cl00211 294143 -MTH00156 214440 MTH00156 214440 -MTH00157 214441 cl00413 351082 -MTH00160 214442 cl29598 356474 -MTH00163 214443 MTH00163 214443 -MTH00165 214444 MTH00165 214444 -MTH00166 214445 cl21484 354830 -MTH00169 214446 cl21478 354827 -MTH00172 214447 cl00413 351082 -MTH00173 214448 cl00413 351082 -MTH00176 214449 cl00413 351082 -MTH00181 214450 cl00492 351118 -MTH00182 214451 cl00275 350997 -MTH00195 214452 cl00469 351105 -MTH00196 214453 MTH00196 214453 -MTH00198 214454 MTH00198 214454 -MTH00202 214455 cl00535 351141 -MTH00203 214456 cl00535 351141 -MTH00205 214457 MTH00205 214457 -MTH00206 214458 MTH00206 214458 -MTH00211 214459 MTH00211 214459 -MTH00212 214460 cl21484 354830 -MTH00214 214461 cl21484 354830 -MTH00217 214462 MTH00217 214462 -MTH00218 214463 cl00469 351105 -MTH00219 214464 cl00211 294143 -MTH00225 214465 cl00469 351105 -MTH00226 214466 MTH00226 214466 -smart00005 214467 cl14633 353817 -smart00008 214468 cl02422 351757 -smart00012 214469 cl28904 355780 -smart00013 214470 cl02423 295298 -smart00014 214471 cl00474 351108 -smart00017 214472 cl02425 321929 -smart00020 214473 cl27237 355628 -smart00022 214474 smart00022 214474 -smart00025 214475 smart00025 214475 -smart00029 214476 cl27628 332449 -smart00031 214477 cl14633 353817 -smart00032 214478 cl29654 356530 -smart00033 214479 cl00030 350868 -smart00034 214480 cl02432 351759 -smart00036 214481 cl02434 321933 -smart00041 214482 cl21545 354864 -smart00042 214483 cl00049 294042 -smart00043 214484 cl09238 352952 -smart00044 214485 cl11967 353330 -smart00045 214486 cl02440 321935 -smart00046 214487 cl01255 321418 -smart00047 214488 cl29459 356335 -smart00049 214489 cl02442 351760 -smart00050 214490 cl10507 353083 -smart00052 214491 cl29561 356437 -smart00055 214492 cl12013 353336 -smart00057 214493 smart00057 214493 -smart00058 214494 cl00063 350884 -smart00060 214495 cl21522 354851 -smart00061 214496 cl02446 351761 -smart00062 214497 smart00062 214497 -smart00063 214498 cl02447 351762 -smart00064 214499 cl22851 354958 -smart00065 214500 cl21515 354848 -smart00066 214501 cl00068 350887 -smart00068 214502 cl21545 354864 -smart00069 214503 cl02449 321939 -smart00072 214504 cl17190 354320 -smart00075 214505 cl02451 351764 -smart00078 214506 cl02453 321941 -smart00082 214507 cl15307 326558 -smart00085 214508 cl05417 352356 -smart00088 214509 cl02111 351681 -smart00089 214510 cl30545 357421 -smart00090 214511 cl21453 354810 -smart00091 214512 cl21578 354879 -smart00093 214513 cl00137 350915 -smart00094 214514 smart00094 214514 -smart00098 214515 cl23718 355016 -smart00102 214516 cl15697 353973 -smart00103 214517 cl00031 320721 -smart00105 214518 cl29885 356761 -smart00108 214519 cl24013 355121 -smart00112 214520 cl29226 356102 -smart00115 214521 cl00042 350873 -smart00116 214522 cl15354 353934 -smart00119 214523 cl27008 355602 -smart00120 214524 cl02471 351767 -smart00128 214525 cl00490 351117 -smart00129 214526 smart00129 214526 -smart00130 214527 cl00100 350900 -smart00132 214528 cl02475 351770 -smart00133 214529 cl11395 353240 -smart00134 214530 cl10471 353078 -smart00135 214531 smart00135 214531 -smart00136 214532 cl02806 351900 -smart00137 214533 cl27660 355669 -smart00138 214534 smart00138 214534 -smart00139 214535 cl02480 351771 -smart00142 214536 cl14603 353812 -smart00145 214537 cl00271 350995 -smart00146 214538 cl21453 354810 -smart00147 214539 cl02485 351772 -smart00164 214540 cl02495 351776 -smart00173 214541 smart00173 214541 -smart00179 214542 cl21504 354843 -smart00180 214543 cl21504 354843 -smart00181 214544 cl21504 354843 -smart00182 214545 smart00182 214545 -smart00184 214546 cl17238 354325 -smart00185 214547 cl22454 354942 -smart00186 214548 cl00085 294064 -smart00191 214549 smart00191 214549 -smart00194 214550 smart00194 214550 -smart00195 214551 cl28904 355780 -smart00197 214552 cl02506 321957 -smart00198 214553 cl00133 350912 -smart00200 214554 cl02507 351778 -smart00202 214555 cl02509 321960 -smart00204 214556 cl02510 351779 -smart00207 214557 cl00147 350919 -smart00208 214558 cl22855 354961 -smart00209 214559 cl15278 326556 -smart00210 214560 cl22861 354964 -smart00211 214561 cl00150 350920 -smart00212 214562 cl00154 350921 -smart00213 214563 smart00213 214563 -smart00214 214564 cl17735 327433 -smart00215 214565 cl17735 327433 -smart00216 214566 cl02516 321964 -smart00220 214567 cl21453 354810 -smart00221 214568 smart00221 214568 -smart00222 214569 cl00136 350914 -smart00228 214570 cl00117 350907 -smart00229 214571 cl02520 321967 -smart00231 214572 cl25480 330301 -smart00232 214573 cl13996 353800 -smart00233 214574 cl17171 354315 -smart00234 214575 cl14643 353818 -smart00235 214576 smart00235 214576 -smart00239 214577 cl14603 353812 -smart00240 214578 cl00062 350883 -smart00241 214579 cl27758 355677 -smart00242 214580 smart00242 214580 -smart00244 214581 smart00244 214581 -smart00245 214582 cl02526 351786 -smart00247 214583 cl02528 351787 -smart00249 214584 cl22851 354958 -smart00252 214585 cl15255 353928 -smart00254 214586 cl15839 301728 -smart00255 214587 cl23749 355033 -smart00260 214588 cl00256 294183 -smart00261 214589 cl00066 350886 -smart00262 214590 cl15697 353973 -smart00264 214591 cl02539 351792 -smart00268 214592 smart00268 214592 -smart00270 214593 cl16916 354287 -smart00273 214594 cl02544 351795 -smart00275 214595 smart00275 214595 -smart00276 214596 cl00071 350888 -smart00281 214597 cl02548 351797 -smart00282 214598 cl22861 354964 -smart00283 214599 smart00283 214599 -smart00287 214600 cl17036 354299 -smart00289 214601 smart00289 214601 -smart00292 214602 cl00038 350871 -smart00293 214603 cl02554 351800 -smart00295 214604 smart00295 214604 -smart00298 214605 cl28914 355790 -smart00301 214606 cl02557 351802 -smart00307 214607 cl19756 354463 -smart00308 214608 cl00011 350858 -smart00311 214609 cl02562 351805 -smart00312 214610 cl02563 321991 -smart00313 214611 cl02564 321992 -smart00314 214612 cl28922 355798 -smart00315 214613 cl02565 321993 -smart00317 214614 cl02566 351806 -smart00318 214615 cl29560 356436 -smart00321 214616 cl02568 321995 -smart00323 214617 smart00323 214617 -smart00324 214618 cl02570 351808 -smart00325 214619 cl02571 351809 -smart00326 214620 cl17036 354299 -smart00327 214621 cl00057 350880 -smart00328 214622 cl00188 320805 -smart00330 214623 cl28923 355799 -smart00331 214624 cl00120 350908 -smart00332 214625 cl00120 350908 -smart00337 214626 cl02575 351812 -smart00339 214627 cl00061 350882 -smart00344 214628 cl29894 356770 -smart00346 214629 cl21459 354815 -smart00349 214630 cl02581 351814 -smart00350 214631 smart00350 214631 -smart00356 214632 cl11592 353294 -smart00357 214633 cl09927 353027 -smart00358 214634 cl00054 350878 -smart00359 214635 cl00607 294405 -smart00360 214636 cl17169 354314 -smart00361 214637 cl17169 354314 -smart00363 214638 cl09940 353034 -smart00364 214639 smart00364 214639 -smart00382 214640 cl30760 357636 -smart00385 214641 cl00050 350876 -smart00386 214642 smart00386 214642 -smart00387 214643 cl00075 350890 -smart00388 214644 cl29579 356455 -smart00390 214645 cl27448 355653 -smart00392 214646 cl00123 350909 -smart00393 214647 cl00297 351008 -smart00401 214648 smart00401 214648 -smart00404 214649 cl28904 355780 -smart00406 214650 cl11960 353325 -smart00407 214651 cl11960 353325 -smart00409 214652 smart00409 214652 -smart00410 214653 smart00410 214653 -smart00415 214654 cl12113 353361 -smart00423 214655 cl02601 351820 -smart00425 214656 cl00145 320780 -smart00429 214657 cl15674 353966 -smart00430 214658 cl11397 353242 -smart00433 214659 smart00433 214659 -smart00434 214660 smart00434 214660 -smart00435 214661 cl26030 330851 -smart00436 214662 smart00436 214662 -smart00437 214663 cl30544 357420 -smart00439 214664 cl02608 351822 -smart00442 214665 cl00060 350881 -smart00444 214666 cl00072 320745 -smart00445 214667 cl02612 351826 -smart00448 214668 cl19078 354377 -smart00449 214669 cl02614 351827 -smart00452 214670 cl11466 353266 -smart00457 214671 cl02616 351828 -smart00458 214672 cl26069 355484 -smart00460 214673 cl17362 354329 -smart00461 214674 cl17171 354315 -smart00462 214675 cl17171 354315 -smart00463 214676 cl02619 351829 -smart00465 214677 cl15257 353929 -smart00470 214678 cl02129 351682 -smart00471 214679 cl21469 354822 -smart00473 214680 cl00112 350905 -smart00474 214681 cl10012 353041 -smart00475 214682 smart00475 214682 -smart00477 214683 cl00089 350897 -smart00478 214684 cl23768 355038 -smart00479 214685 cl10012 353041 -smart00480 214686 smart00480 214686 -smart00482 214687 cl02626 351832 -smart00483 214688 cl25961 355469 -smart00484 214689 cl29533 356409 -smart00485 214690 cl02628 351833 -smart00486 214691 smart00486 214691 -smart00487 214692 cl28899 355775 -smart00488 214693 cl28899 355775 -smart00491 214694 cl28899 355775 -smart00493 214695 cl00718 351226 -smart00494 214696 cl02629 322027 -smart00498 214697 cl19758 302999 -smart00499 214698 cl07890 352835 -smart00503 214699 cl29093 355969 -smart00505 214700 cl11589 325093 -smart00506 214701 cl00019 320715 -smart00507 214702 cl00083 350893 -smart00508 214703 smart00508 214703 -smart00512 214704 cl02518 351783 -smart00515 214705 cl17013 354296 -smart00516 214706 cl15787 353978 -smart00518 214707 cl23721 355019 -smart00523 214708 cl00055 320734 -smart00532 214709 cl29874 356750 -smart00533 214710 smart00533 214710 -smart00537 214711 cl28922 355798 -smart00539 214712 cl02648 351841 -smart00543 214713 cl02652 295415 -smart00544 214714 cl02653 351845 -smart00546 214715 cl21463 354819 -smart00548 214716 smart00548 214716 -smart00551 214717 cl02660 351847 -smart00552 214718 cl02661 351848 -smart00554 214719 cl02663 322043 -smart00557 214720 cl27659 332480 -smart00558 214721 cl21464 354820 -smart00560 214722 cl22861 354964 -smart00561 214723 cl17705 354337 -smart00563 214724 cl17185 354319 -smart00568 214725 cl17171 354315 -smart00571 214726 cl02674 351852 -smart00573 214727 cl02676 351853 -smart00574 214728 cl02677 351854 -smart00577 214729 cl21460 354816 -smart00579 214730 cl26765 355569 -smart00582 214731 cl02544 351795 -smart00583 214732 cl11619 325101 -smart00584 214733 cl02144 321822 -smart00587 214734 cl21453 354810 -smart00591 214735 cl02687 322051 -smart00593 214736 cl02689 322053 -smart00594 214737 cl00388 351069 -smart00595 214738 cl23759 355036 -smart00597 214739 smart00597 214739 -smart00602 214740 smart00602 214740 -smart00604 214741 smart00604 214741 -smart00605 214742 cl11660 353307 -smart00608 214743 cl15456 353947 -smart00611 214744 cl22482 328905 -smart00613 214745 cl10509 324599 -smart00614 214746 cl02703 351860 -smart00630 214747 cl15693 353971 -smart00631 214748 cl11393 353238 -smart00632 214749 cl02706 351862 -smart00633 214750 cl23725 355022 -smart00634 214751 cl23771 355039 -smart00635 214752 cl02708 351863 -smart00636 214753 smart00636 214753 -smart00637 214754 cl21579 354880 -smart00638 214755 cl26969 331790 -smart00639 214756 cl23942 305099 -smart00640 214757 smart00640 214757 -smart00642 214758 cl07893 352836 -smart00643 214759 cl02512 351781 -smart00644 214760 cl02712 351864 -smart00645 214761 cl23744 355029 -smart00646 214762 cl02713 351865 -smart00647 214763 cl19760 327627 -smart00653 214764 cl17014 354297 -smart00656 214765 cl19188 327514 -smart00662 214766 smart00662 214766 -smart00663 214767 smart00663 214767 -smart00664 214768 cl14783 353836 -smart00665 214769 cl23723 355020 -smart00666 214770 cl02720 295447 -smart00670 214771 cl28905 355781 -smart00671 214772 cl29229 356105 -smart00672 214773 cl23835 329112 -smart00682 214774 cl00186 320804 -smart00689 214775 cl11650 325110 -smart00690 214776 cl11612 353297 -smart00693 214777 smart00693 214777 -smart00697 214778 cl14905 326373 -smart00700 214779 cl12117 353362 -smart00702 214780 cl21496 354838 -smart00703 214781 smart00703 214781 -smart00706 214782 cl29262 356138 -smart00708 214783 cl11600 353296 -smart00710 214784 smart00710 214784 -smart00718 214785 cl11657 353306 -smart00720 214786 cl00165 350928 -smart00721 214787 cl12013 353336 -smart00722 214788 smart00722 214788 -smart00724 214789 cl02759 351876 -smart00725 214790 cl02760 351877 -smart00728 214791 cl02763 351878 -smart00729 214792 smart00729 214792 -smart00730 214793 cl01342 351467 -smart00731 214794 cl19237 354398 -smart00736 214795 cl29781 356657 -smart00737 214796 cl00274 350996 -smart00741 214797 smart00741 214797 -smart00743 214798 cl22958 354987 -smart00746 214799 cl00909 321242 -smart00748 214800 cl00824 321194 -smart00750 214801 cl21453 354810 -smart00752 214802 cl02773 275778 -smart00753 214803 cl02111 351681 -smart00754 214804 cl06473 352521 -smart00756 214805 cl01729 351577 -smart00757 214806 smart00757 214806 -smart00758 214807 cl08459 352902 -smart00761 214808 cl07053 352648 -smart00762 214809 cl07072 352654 -smart00763 214810 cl21455 354812 -smart00767 214811 cl11171 353199 -smart00769 214812 cl12118 353363 -smart00770 214813 cl16915 354286 -smart00773 214814 cl01581 321576 -smart00774 214815 cl03892 352075 -smart00776 214816 cl07060 323745 -smart00777 214817 cl07066 352650 -smart00784 214818 cl07029 323734 -smart00793 214819 cl01873 321707 -smart00796 214820 cl19310 354409 -smart00797 214821 cl00865 351288 -smart00798 214822 cl29462 356338 -smart00799 214823 cl11519 325068 -smart00800 214824 cl04085 352104 -smart00802 214825 cl06893 352600 -smart00806 214826 smart00806 214826 -smart00807 214827 cl14906 326374 -smart00811 214828 cl03728 352041 -smart00812 214829 cl29077 355953 -smart00813 214830 cl01412 351494 -smart00815 214831 cl19485 327564 -smart00817 214832 cl26730 331551 -smart00822 214833 cl21454 354811 -smart00823 214834 cl09936 324546 -smart00824 214835 cl21494 354836 -smart00825 214836 smart00825 214836 -smart00826 214837 cl00509 351126 -smart00827 214838 cl08282 352868 -smart00828 214839 smart00828 214839 -smart00829 214840 smart00829 214840 -smart00830 214841 cl00693 351218 -smart00831 214842 cl02930 351921 -smart00832 214843 cl07383 352726 -smart00833 214844 cl29241 356117 -smart00835 214845 cl21464 354820 -smart00836 214846 cl12020 353341 -smart00839 214847 cl29306 356182 -smart00840 214848 cl12020 353341 -smart00841 214849 cl09927 353027 -smart00842 214850 cl17037 354300 -smart00846 214851 cl21454 354811 -smart00847 214852 cl29319 356195 -smart00848 214853 cl22448 354939 -smart00849 214854 cl23716 355014 -smart00851 214855 cl00245 320852 -smart00852 214856 cl00451 320978 -smart00853 214857 cl07336 352713 -smart00854 214858 cl13995 353799 -smart00855 214859 cl11399 353243 -smart00856 214860 cl04375 352162 -smart00857 214861 cl02788 351894 -smart00858 214862 cl00555 351151 -smart00859 214863 cl21454 354811 -smart00860 214864 cl01747 351585 -smart00861 214865 cl11410 353247 -smart00862 214866 cl21459 354815 -smart00864 214867 cl10017 353044 -smart00865 214868 cl10017 353044 -smart00866 214869 cl22899 354973 -smart00867 214870 cl01001 351343 -smart00868 214871 cl07874 324168 -smart00869 214872 cl22877 354967 -smart00870 214873 cl00216 320827 -smart00871 214874 cl01368 351473 -smart00872 214875 cl29203 356079 -smart00873 214876 cl21573 354878 -smart00876 214877 cl29260 356136 -smart00878 214878 cl29396 356272 -smart00879 214879 cl00935 351318 -smart00880 214880 cl27047 355607 -smart00881 214881 cl21454 354811 -smart00882 214882 cl00339 351040 -smart00884 214883 cl11186 353203 -smart00886 214884 cl10022 324563 -smart00887 214885 cl14783 353836 -smart00888 214886 cl00194 350939 -smart00889 214887 cl02789 295478 -smart00891 214888 cl29420 356296 -smart00892 214889 cl00089 350897 -smart00893 214890 cl00292 351005 -smart00894 214891 cl05460 352360 -smart00895 214892 cl11656 353305 -smart00896 214893 cl29820 356696 -smart00897 214894 cl10701 353099 -smart00898 214895 cl03119 351946 -smart00899 214896 cl00838 351277 -smart00900 214897 cl01081 351373 -smart00901 214898 cl07460 323959 -smart00902 214899 cl03503 352001 -smart00903 214900 cl00381 351064 -smart00904 214901 cl29474 356350 -smart00905 214902 cl00263 350991 -smart00906 214903 cl23766 355037 -smart00908 214904 cl00071 350888 -smart00909 214905 cl11253 353210 -smart00910 214906 cl07418 352735 -smart00911 214907 cl06527 352529 -smart00912 214908 cl05436 352358 -smart00915 214909 cl03205 322229 -smart00917 214910 cl29215 356091 -smart00918 214911 cl21456 354813 -smart00919 214912 cl21454 354811 -smart00920 214913 cl03058 351935 -smart00922 214914 cl25395 355388 -smart00924 214915 cl23799 355053 -smart00925 214916 cl08398 352886 -smart00927 214917 cl00516 351129 -smart00929 214918 cl29147 356023 -smart00932 214919 cl07364 352721 -smart00933 214920 cl09134 324330 -smart00934 214921 cl21457 354814 -smart00935 214922 smart00935 214922 -smart00937 214923 cl23943 355101 -smart00939 214924 cl29957 356833 -smart00941 214925 cl29239 356115 -smart00942 214926 cl07362 323902 -smart00943 214927 cl01287 321433 -smart00944 214928 cl07889 352834 -smart00947 214929 cl00391 351071 -smart00950 214930 cl00628 351185 -smart00951 214931 cl07469 352749 -smart00952 214932 cl00516 351129 -smart00953 214933 cl02411 351753 -smart00954 214934 cl11966 353329 -smart00955 214935 cl29901 356777 -smart00956 214936 cl29183 356059 -smart00957 214937 smart00957 214937 -smart00958 214938 cl29526 356402 -smart00960 214939 cl00886 321230 -smart00962 214940 cl21455 354812 -smart00963 214941 cl03758 352049 -smart00964 214942 cl03749 352047 -smart00967 214943 cl06870 323649 -smart00968 214944 cl05797 352412 -smart00970 214945 cl29765 356641 -smart00973 214946 cl22482 328905 -smart00974 214947 cl15257 353929 -smart00975 214948 cl13446 353642 -smart00976 214949 cl09930 353029 -smart00978 214950 cl09208 324342 -smart00980 214951 cl02739 351871 -smart00981 214952 cl12076 353353 -smart00983 214953 cl29323 356199 -smart00984 214954 cl21454 354811 -smart00985 214955 cl09615 352977 -smart00986 214956 cl00483 351114 -smart00988 214958 cl29392 356268 -smart00990 214959 cl22959 328968 -smart00991 214960 cl00349 351045 -smart00992 214961 cl01548 351550 -smart00995 214962 cl10767 324667 -smart00996 214963 cl21454 354811 -smart01000 214964 cl07747 352798 -smart01001 214965 cl00310 351015 -smart01002 214966 cl21454 354811 -smart01003 214967 cl29782 356658 -smart01004 214968 cl00338 351039 -smart01005 214969 cl27635 355667 -smart01007 214970 cl00214 350956 -smart01008 214971 cl29417 356293 -smart01009 214972 cl05528 352372 -smart01010 214973 cl08426 324270 -smart01015 214974 cl12013 353336 -smart01016 214975 cl04104 352110 -smart01017 214976 cl02844 322110 -smart01019 214977 cl15242 353925 -smart01021 214978 cl02333 351732 -smart01022 214979 cl01020 351351 -smart01024 214980 cl07381 352725 -smart01025 214981 cl11158 324881 -smart01026 214982 cl10511 353084 -smart01027 214983 cl29139 356015 -smart01030 214984 cl11062 353176 -smart01031 214985 cl11063 353177 -smart01035 214986 cl19763 327628 -smart01036 214987 cl06954 352614 -smart01038 214988 smart01038 214988 -smart01040 214989 cl10591 353090 -smart01041 214990 cl14649 353821 -smart01044 214991 cl09653 324418 -smart01045 214992 cl03923 352086 -smart01047 214993 cl06838 352591 -smart01048 214994 cl07834 324149 -smart01049 214995 cl07034 352643 -smart01050 214996 cl10717 353103 -smart01052 214997 cl08315 352876 -smart01054 214998 cl23944 355102 -smart01055 214999 cl07391 323917 -smart01057 215000 cl00012 350859 -smart01058 215001 cl00588 351164 -smart01059 215002 cl02008 351658 -smart01060 215003 cl09506 352968 -smart01061 215004 cl03904 352079 -smart01063 215005 cl21579 354880 -smart01065 215006 cl15347 326560 -smart01067 215007 cl03026 322166 -smart01068 215008 smart01068 215008 -smart01069 215009 cl07247 323826 -smart01070 215010 cl07248 323827 -smart01072 215011 cl08380 352884 -smart01073 215012 cl21693 354909 -smart01074 215013 cl08520 352920 -smart01075 215014 cl07443 323947 -smart01079 215015 cl01369 351474 -smart01080 215016 cl01732 351578 -smart01081 215017 cl03918 352085 -smart01087 215018 cl19764 327629 -smart01090 215019 cl02598 351817 -smart01091 215020 cl29361 356237 -smart01092 215021 cl29362 356238 -smart01094 215022 cl03191 322227 -smart01098 215023 cl13209 353562 -smart01100 215024 cl16919 354288 -smart01101 215025 cl08497 352913 -smart01104 215026 smart01104 215026 -PLN00010 215027 cl03104 351944 -PLN00012 215028 cl00337 351038 -PLN00016 215029 PLN00016 215029 -PLN00019 215030 cl03627 322371 -PLN00020 215031 cl29659 356535 -PLN00022 215032 PLN00022 215032 -PLN00025 215033 cl02879 351914 -PLN00032 215034 cl00712 351223 -PLN00033 215035 PLN00033 215035 -PLN00034 215036 PLN00034 215036 -PLN00038 215037 cl03651 322378 -PLN00040 215038 cl27104 355615 -PLN00041 215039 cl03639 322375 -PLN00046 215040 cl28627 333447 -PLN00053 215041 cl04707 322775 -PLN00054 215042 cl05182 322964 -PLN00061 215043 cl11841 353316 -PLN00063 215044 PLN00063 215044 -PLN00064 215045 cl11841 353316 -PLN00066 215046 cl03356 351982 -PLN00070 215047 PLN00070 215047 -PLN00074 215048 cl08220 352857 -PLN00075 215049 cl27409 332230 -PLN00077 215050 cl06243 323379 -PLN00082 215051 cl06243 323379 -PLN00091 215052 cl11425 325026 -PLN00094 215053 PLN00094 215053 -PLN00100 215054 PLN00100 215054 -PLN00101 215055 cl02879 351914 -PLN00104 215056 PLN00104 215056 -PLN00105 215057 PLN00105 215057 -PLN00106 215058 PLN00106 215058 -PLN00111 215059 PLN00111 215059 -PLN00112 215060 PLN00112 215060 -PLN00113 215061 PLN00113 215061 -PLN00118 215062 cl00445 351095 -PLN00120 215063 cl02879 351914 -PLN00122 215064 cl27532 355659 -PLN00123 215065 cl00445 351095 -PLN00125 215066 PLN00125 215066 -PLN00129 215067 PLN00129 215067 -PLN00133 215068 PLN00133 215068 -PLN00134 215069 PLN00134 215069 -PLN00136 215070 cl21473 354825 -PLN00137 215071 PLN00137 215071 -PLN00141 215072 cl21454 354811 -PLN00142 215073 PLN00142 215073 -PLN00145 215074 PLN00145 215074 -PLN00146 215075 cl00330 351032 -PLN00147 215076 cl02879 351914 -PLN00148 215077 cl15781 326642 -PLN00150 215078 cl15781 326642 -PLN00151 215079 cl15781 326642 -PLN00156 215080 PLN00156 215080 -PLN00158 215081 cl23830 355063 -PLN00161 215082 cl23735 329044 -PLN00162 215083 PLN00162 215083 -PLN00164 215084 cl10013 353042 -PLN00167 215085 cl00200 350945 -PLN00168 215086 cl12078 353355 -PLN00170 215087 cl02879 351914 -PLN00171 215088 PLN00171 215088 -PLN00175 215089 PLN00175 215089 -PLN00176 215090 cl11394 353239 -PLN00179 215091 cl00264 350992 -PLN00183 215092 cl00200 350945 -PLN00186 215093 cl01993 321763 -PLN00188 215094 PLN00188 215094 -PLN00191 215095 PLN00191 215095 -PLN00192 215096 PLN00192 215096 -PLN00193 215097 PLN00193 215097 -PLN00194 215098 cl14648 353820 -PLN00197 215099 cl29077 355953 -PLN00198 215100 PLN00198 215100 -PLN00203 215101 PLN00203 215101 -PLN00204 215102 cl14670 353825 -PLN00206 215103 PLN00206 215103 -PLN00207 215104 PLN00207 215104 -PLN00211 215105 PLN00211 215105 -PLN00212 215106 cl21464 354820 -PLN00220 215107 PLN00220 215107 -PLN00222 215108 PLN00222 215108 -PLN00410 215109 cl00388 351069 -PLN00412 215110 cl11961 353326 -PLN02154 215111 cl00391 351071 -PLN02167 215112 cl10013 353042 -PLN02168 215113 PLN02168 215113 -PLN02170 215114 PLN02170 215114 -PLN02171 215115 PLN02171 215115 -PLN02172 215116 cl30243 357119 -PLN02176 215117 cl29893 356769 -PLN02177 215118 PLN02177 215118 -PLN02187 215119 PLN02187 215119 -PLN02188 215120 cl19188 327514 -PLN02189 215121 PLN02189 215121 -PLN02190 215122 cl30825 357701 -PLN02192 215123 PLN02192 215123 -PLN02195 215124 PLN02195 215124 -PLN02200 215125 PLN02200 215125 -PLN02204 215126 cl01255 321418 -PLN02210 215127 cl10013 353042 -PLN02211 215128 PLN02211 215128 -PLN02216 215129 PLN02216 215129 -PLN02217 215130 PLN02217 215130 -PLN02237 215131 PLN02237 215131 -PLN02238 215132 cl00309 351014 -PLN02241 215133 PLN02241 215133 -PLN02242 215134 cl18945 354370 -PLN02244 215135 PLN02244 215135 -PLN02245 215136 PLN02245 215136 -PLN02246 215137 PLN02246 215137 -PLN02248 215138 PLN02248 215138 -PLN02250 215139 PLN02250 215139 -PLN02251 215140 cl00204 350948 -PLN02252 215141 PLN02252 215141 -PLN02254 215142 PLN02254 215142 -PLN02255 215143 cl11452 353262 -PLN02256 215144 cl21454 354811 -PLN02258 215145 cl10080 353053 -PLN02260 215146 PLN02260 215146 -PLN02262 215147 cl00289 351004 -PLN02264 215148 PLN02264 215148 -PLN02265 215149 PLN02265 215149 -PLN02266 215150 cl02959 351925 -PLN02267 215151 cl23717 355015 -PLN02269 215152 cl01629 351571 -PLN02271 215153 PLN02271 215153 -PLN02274 215154 PLN02274 215154 -PLN02275 215155 PLN02275 215155 -PLN02276 215156 PLN02276 215156 -PLN02278 215157 cl11961 353326 -PLN02280 215158 cl14876 353847 -PLN02285 215159 PLN02285 215159 -PLN02286 215160 PLN02286 215160 -PLN02287 215161 PLN02287 215161 -PLN02288 215162 cl21464 354820 -PLN02289 215163 cl29940 356816 -PLN02290 215164 cl12078 353355 -PLN02292 215165 PLN02292 215165 -PLN02295 215166 PLN02295 215166 -PLN02296 215167 PLN02296 215167 -PLN02299 215168 PLN02299 215168 -PLN02300 215169 PLN02300 215169 -PLN02301 215170 PLN02301 215170 -PLN02302 215171 cl12078 353355 -PLN02303 215172 PLN02303 215172 -PLN02304 215173 PLN02304 215173 -PLN02305 215174 PLN02305 215174 -PLN02309 215175 PLN02309 215175 -PLN02310 215176 PLN02310 215176 -PLN02311 215177 cl03589 352024 -PLN02312 215178 PLN02312 215178 -PLN02314 215179 PLN02314 215179 -PLN02316 215180 PLN02316 215180 -PLN02317 215181 PLN02317 215181 -PLN02321 215182 PLN02321 215182 -PLN02323 215183 cl00192 350937 -PLN02325 215184 cl00447 351096 -PLN02326 215185 PLN02326 215185 -PLN02327 215186 PLN02327 215186 -PLN02328 215187 PLN02328 215187 -PLN02329 215188 cl00445 351095 -PLN02330 215189 PLN02330 215189 -PLN02332 215190 cl00738 321138 -PLN02333 215191 PLN02333 215191 -PLN02334 215192 cl21457 354814 -PLN02337 215193 PLN02337 215193 -PLN02340 215194 PLN02340 215194 -PLN02341 215195 PLN02341 215195 -PLN02346 215196 PLN02346 215196 -PLN02347 215197 PLN02347 215197 -PLN02348 215198 PLN02348 215198 -PLN02349 215199 PLN02349 215199 -PLN02350 215200 PLN02350 215200 -PLN02351 215201 cl23723 355020 -PLN02352 215202 PLN02352 215202 -PLN02355 215203 cl29077 355953 -PLN02356 215204 cl00342 294246 -PLN02357 215205 PLN02357 215205 -PLN02362 215206 PLN02362 215206 -PLN02363 215207 PLN02363 215207 -PLN02366 215208 cl17173 354317 -PLN02369 215209 PLN02369 215209 -PLN02370 215210 PLN02370 215210 -PLN02371 215211 PLN02371 215211 -PLN02372 215212 cl21528 354854 -PLN02374 215213 PLN02374 215213 -PLN02381 215214 PLN02381 215214 -PLN02384 215215 cl00339 351040 -PLN02385 215216 cl21494 354836 -PLN02387 215217 PLN02387 215217 -PLN02388 215218 cl00015 350862 -PLN02389 215219 PLN02389 215219 -PLN02393 215220 PLN02393 215220 -PLN02394 215221 cl12078 353355 -PLN02397 215222 cl18945 354370 -PLN02398 215223 PLN02398 215223 -PLN02400 215224 PLN02400 215224 -PLN02401 215225 cl00738 321138 -PLN02405 215226 cl29351 356227 -PLN02406 215227 PLN02406 215227 -PLN02408 215228 cl21494 354836 -PLN02413 215229 PLN02413 215229 -PLN02418 215230 PLN02418 215230 -PLN02421 215231 cl21453 354810 -PLN02422 215232 cl17190 354320 -PLN02424 215233 cl21457 354814 -PLN02425 215234 cl21457 354814 -PLN02426 215235 cl12078 353355 -PLN02428 215236 PLN02428 215236 -PLN02433 215237 cl00464 320986 -PLN02435 215238 cl11394 353239 -PLN02436 215239 PLN02436 215239 -PLN02439 215240 cl00261 350989 -PLN02440 215241 PLN02440 215241 -PLN02441 215242 PLN02441 215242 -PLN02444 215243 PLN02444 215243 -PLN02445 215244 PLN02445 215244 -PLN02446 215245 cl21457 354814 -PLN02447 215246 PLN02447 215246 -PLN02448 215247 cl10013 353042 -PLN02451 215248 cl30330 357206 -PLN02454 215249 PLN02454 215249 -PLN02456 215250 PLN02456 215250 -PLN02457 215251 PLN02457 215251 -PLN02458 215252 cl11394 353239 -PLN02459 215253 PLN02459 215253 -PLN02460 215254 cl21457 354814 -PLN02461 215255 PLN02461 215255 -PLN02462 215256 cl00289 351004 -PLN02464 215257 PLN02464 215257 -PLN02465 215258 PLN02465 215258 -PLN02466 215259 PLN02466 215259 -PLN02467 215260 cl11961 353326 -PLN02470 215261 PLN02470 215261 -PLN02471 215262 PLN02471 215262 -PLN02472 215263 PLN02472 215263 -PLN02475 215264 PLN02475 215264 -PLN02478 215265 cl00264 350992 -PLN02481 215266 cl23789 355048 -PLN02485 215267 PLN02485 215267 -PLN02487 215268 cl30686 357562 -PLN02489 215269 cl22882 354969 -PLN02490 215270 PLN02490 215270 -PLN02491 215271 cl10080 353053 -PLN02492 215272 cl00264 350992 -PLN02495 215273 PLN02495 215273 -PLN02496 215274 cl19190 327515 -PLN02498 215275 PLN02498 215275 -PLN02500 215276 cl12078 353355 -PLN02501 215277 PLN02501 215277 -PLN02502 215278 PLN02502 215278 -PLN02503 215279 PLN02503 215279 -PLN02506 215280 PLN02506 215280 -PLN02507 215281 PLN02507 215281 -PLN02511 215282 PLN02511 215282 -PLN02518 215283 PLN02518 215283 -PLN02519 215284 PLN02519 215284 -PLN02521 215285 PLN02521 215285 -PLN02523 215286 PLN02523 215286 -PLN02524 215287 cl03253 322243 -PLN02525 215288 cl00474 351108 -PLN02528 215289 PLN02528 215289 -PLN02531 215290 PLN02531 215290 -PLN02532 215291 PLN02532 215291 -PLN02533 215292 PLN02533 215292 -PLN02534 215293 cl10013 353042 -PLN02535 215294 PLN02535 215294 -PLN02538 215295 PLN02538 215295 -PLN02540 215296 cl00246 294174 -PLN02541 215297 cl00309 351014 -PLN02542 215298 cl00289 351004 -PLN02543 215299 PLN02543 215299 -PLN02545 215300 PLN02545 215300 -PLN02546 215301 PLN02546 215301 -PLN02547 215302 cl00493 351119 -PLN02552 215303 cl00447 351096 -PLN02554 215304 cl10013 353042 -PLN02562 215305 cl10013 353042 -PLN02566 215306 PLN02566 215306 -PLN02567 215307 cl17346 354328 -PLN02568 215308 PLN02568 215308 -PLN02571 215309 PLN02571 215309 -PLN02572 215310 cl21454 354811 -PLN02573 215311 PLN02573 215311 -PLN02574 215312 PLN02574 215312 -PLN02575 215313 PLN02575 215313 -PLN02576 215314 PLN02576 215314 -PLN02578 215315 PLN02578 215315 -PLN02579 215316 PLN02579 215316 -PLN02580 215317 PLN02580 215317 -PLN02581 215318 cl22953 354986 -PLN02585 215319 PLN02585 215319 -PLN02588 215320 PLN02588 215320 -PLN02592 215321 PLN02592 215321 -PLN02594 215322 cl21502 304393 -PLN02598 215323 PLN02598 215323 -PLN02604 215324 PLN02604 215324 -PLN02605 215325 PLN02605 215325 -PLN02606 215326 cl21494 354836 -PLN02607 215327 PLN02607 215327 -PLN02609 215328 PLN02609 215328 -PLN02610 215329 PLN02610 215329 -PLN02612 215330 cl30686 357562 -PLN02613 215331 cl02959 351925 -PLN02616 215332 PLN02616 215332 -PLN02618 215333 cl00342 294246 -PLN02623 215334 PLN02623 215334 -PLN02624 215335 cl18945 354370 -PLN02626 215336 cl21481 354828 -PLN02628 215337 cl00289 351004 -PLN02629 215338 PLN02629 215338 -PLN02632 215339 cl00210 350953 -PLN02634 215340 cl29893 356769 -PLN02635 215341 cl00711 351222 -PLN02636 215342 PLN02636 215342 -PLN02638 215343 PLN02638 215343 -PLN02640 215344 PLN02640 215344 -PLN02641 215345 PLN02641 215345 -PLN02643 215346 PLN02643 215346 -PLN02644 215347 PLN02644 215347 -PLN02646 215348 PLN02646 215348 -PLN02647 215349 PLN02647 215349 -PLN02648 215350 cl12078 353355 -PLN02649 215351 PLN02649 215351 -PLN02652 215352 cl21494 354836 -PLN02654 215353 PLN02654 215353 -PLN02655 215354 cl12078 353355 -PLN02658 215355 cl21464 354820 -PLN02659 215356 PLN02659 215356 -PLN02665 215357 PLN02665 215357 -PLN02666 215358 PLN02666 215358 -PLN02667 215359 cl12283 353378 -PLN02672 215360 PLN02672 215360 -PLN02673 215361 PLN02673 215361 -PLN02676 215362 PLN02676 215362 -PLN02677 215363 PLN02677 215363 -PLN02678 215364 PLN02678 215364 -PLN02680 215365 cl23723 355020 -PLN02681 215366 PLN02681 215366 -PLN02682 215367 cl29893 356769 -PLN02683 215368 PLN02683 215368 -PLN02685 215369 PLN02685 215369 -PLN02686 215370 cl21454 354811 -PLN02687 215371 cl12078 353355 -PLN02689 215372 cl00635 351188 -PLN02691 215373 PLN02691 215373 -PLN02696 215374 PLN02696 215374 -PLN02697 215375 cl21454 354811 -PLN02699 215376 PLN02699 215376 -PLN02700 215377 PLN02700 215377 -PLN02702 215378 PLN02702 215378 -PLN02708 215379 PLN02708 215379 -PLN02710 215380 PLN02710 215380 -PLN02711 215381 cl29077 355953 -PLN02712 215382 PLN02712 215382 -PLN02713 215383 PLN02713 215383 -PLN02724 215384 PLN02724 215384 -PLN02726 215385 PLN02726 215385 -PLN02727 215386 cl28462 333282 -PLN02728 215387 cl11394 353239 -PLN02729 215388 cl23783 329073 -PLN02732 215389 cl01534 351543 -PLN02733 215390 cl21494 354836 -PLN02735 215391 PLN02735 215391 -PLN02737 215392 cl00289 351004 -PLN02738 215393 PLN02738 215393 -PLN02739 215394 PLN02739 215394 -PLN02742 215395 PLN02742 215395 -PLN02743 215396 cl00220 350960 -PLN02744 215397 PLN02744 215397 -PLN02747 215398 cl11424 353250 -PLN02748 215399 PLN02748 215399 -PLN02751 215400 PLN02751 215400 -PLN02752 215401 cl08282 352868 -PLN02754 215402 cl00323 351026 -PLN02757 215403 cl02784 351891 -PLN02758 215404 PLN02758 215404 -PLN02760 215405 cl18945 354370 -PLN02761 215406 cl21494 354836 -PLN02762 215407 PLN02762 215407 -PLN02763 215408 PLN02763 215408 -PLN02765 215409 PLN02765 215409 -PLN02766 215410 cl11961 353326 -PLN02768 215411 PLN02768 215411 -PLN02769 215412 PLN02769 215412 -PLN02770 215413 cl21460 354816 -PLN02772 215414 PLN02772 215414 -PLN02776 215415 cl00337 351038 -PLN02779 215416 cl21460 354816 -PLN02781 215417 cl17173 354317 -PLN02782 215418 PLN02782 215418 -PLN02784 215419 PLN02784 215419 -PLN02785 215420 PLN02785 215420 -PLN02787 215421 cl09938 353032 -PLN02788 215422 PLN02788 215422 -PLN02789 215423 PLN02789 215423 -PLN02790 215424 PLN02790 215424 -PLN02791 215425 PLN02791 215425 -PLN02793 215426 cl19188 327514 -PLN02796 215427 cl17190 354320 -PLN02798 215428 cl11424 353250 -PLN02799 215429 cl28922 355798 -PLN02800 215430 PLN02800 215430 -PLN02801 215431 cl29077 355953 -PLN02802 215432 cl21494 354836 -PLN02807 215433 PLN02807 215433 -PLN02813 215434 PLN02813 215434 -PLN02814 215435 cl23725 355022 -PLN02815 215436 PLN02815 215436 -PLN02816 215437 cl21590 354882 -PLN02818 215438 cl14571 326324 -PLN02819 215439 PLN02819 215439 -PLN02821 215440 cl19123 354385 -PLN02825 215441 PLN02825 215441 -PLN02827 215442 PLN02827 215442 -PLN02829 215443 PLN02829 215443 -PLN02830 215444 cl11394 353239 -PLN02831 215445 PLN02831 215445 -PLN02832 215446 cl00020 350865 -PLN02833 215447 cl17185 354319 -PLN02834 215448 cl02872 351912 -PLN02836 215449 cl09938 353032 -PLN02837 215450 PLN02837 215450 -PLN02840 215451 PLN02840 215451 -PLN02843 215452 PLN02843 215452 -PLN02844 215453 PLN02844 215453 -PLN02845 215454 cl00224 350964 -PLN02849 215455 cl23725 355022 -PLN02850 215456 PLN02850 215456 -PLN02852 215457 cl30539 357415 -PLN02853 215458 PLN02853 215458 -PLN02854 215459 PLN02854 215459 -PLN02855 215460 cl18945 354370 -PLN02856 215461 PLN02856 215461 -PLN02857 215462 cl00210 350953 -PLN02858 215463 PLN02858 215463 -PLN02860 215464 PLN02860 215464 -PLN02863 215465 cl10013 353042 -PLN02865 215466 PLN02865 215466 -PLN02866 215467 PLN02866 215467 -PLN02870 215468 PLN02870 215468 -PLN02871 215469 PLN02871 215469 -PLN02872 215470 PLN02872 215470 -PLN02873 215471 cl19362 354414 -PLN02875 215472 PLN02875 215472 -PLN02876 215473 PLN02876 215473 -PLN02877 215474 PLN02877 215474 -PLN02880 215475 cl18945 354370 -PLN02881 215476 PLN02881 215476 -PLN02882 215477 PLN02882 215477 -PLN02886 215478 cl00015 350862 -PLN02887 215479 PLN02887 215479 -PLN02888 215480 cl23717 355015 -PLN02889 215481 PLN02889 215481 -PLN02892 215482 cl21457 354814 -PLN02893 215483 cl30825 357701 -PLN02894 215484 PLN02894 215484 -PLN02895 215485 PLN02895 215485 -PLN02898 215486 PLN02898 215486 -PLN02900 215487 PLN02900 215487 -PLN02901 215488 cl17185 354319 -PLN02902 215489 PLN02902 215489 -PLN02903 215490 PLN02903 215490 -PLN02906 215491 PLN02906 215491 -PLN02907 215492 PLN02907 215492 -PLN02910 215493 PLN02910 215493 -PLN02915 215494 PLN02915 215494 -PLN02917 215495 cl11394 353239 -PLN02918 215496 cl29141 356017 -PLN02919 215497 PLN02919 215497 -PLN02920 215498 cl17037 354300 -PLN02922 215499 cl00337 351038 -PLN02926 215500 cl10029 353047 -PLN02928 215501 cl21454 354811 -PLN02929 215502 cl01255 321418 -PLN02931 215503 cl00335 351036 -PLN02934 215504 cl21494 354836 -PLN02935 215505 cl01255 321418 -PLN02937 215506 cl00635 351188 -PLN02939 215507 PLN02939 215507 -PLN02941 215508 cl17255 354326 -PLN02943 215509 PLN02943 215509 -PLN02947 215510 PLN02947 215510 -PLN02949 215511 PLN02949 215511 -PLN02950 215512 PLN02950 215512 -PLN02951 215513 PLN02951 215513 -PLN02954 215514 cl21460 354816 -PLN02956 215515 cl23783 329073 -PLN02957 215516 PLN02957 215516 -PLN02958 215517 PLN02958 215517 -PLN02959 215518 PLN02959 215518 -PLN02960 215519 PLN02960 215519 -PLN02964 215520 PLN02964 215520 -PLN02967 215521 PLN02967 215521 -PLN02968 215522 PLN02968 215522 -PLN02969 215523 cl10080 353053 -PLN02970 215524 cl00342 294246 -PLN02972 215525 PLN02972 215525 -PLN02974 215526 PLN02974 215526 -PLN02976 215527 PLN02976 215527 -PLN02977 215528 cl00170 350931 -PLN02978 215529 cl00192 350937 -PLN02980 215530 PLN02980 215530 -PLN02981 215531 PLN02981 215531 -PLN02982 215532 cl29077 355953 -PLN02983 215533 PLN02983 215533 -PLN02984 215534 PLN02984 215534 -PLN02990 215535 PLN02990 215535 -PLN02991 215536 PLN02991 215536 -PLN02993 215537 PLN02993 215537 -PLN02996 215538 PLN02996 215538 -PLN02998 215539 cl23725 355022 -PLN03010 215540 cl19188 327514 -PLN03020 215541 cl26832 355577 -PLN03023 215542 PLN03023 215542 -PLN03028 215543 cl00204 350948 -PLN03029 215544 PLN03029 215544 -PLN03030 215545 PLN03030 215545 -PLN03031 215546 PLN03031 215546 -PLN03037 215547 PLN03037 215547 -PLN03042 215548 cl14632 353816 -PLN03044 215549 cl00263 350991 -PLN03049 215550 PLN03049 215550 -PLN03050 215551 cl00318 351022 -PLN03051 215552 PLN03051 215552 -PLN03052 215553 PLN03052 215553 -PLN03060 215554 cl12138 353367 -PLN03063 215555 PLN03063 215555 -PLN03064 215556 PLN03064 215556 -PLN03069 215557 PLN03069 215557 -PLN03073 215558 PLN03073 215558 -PLN03074 215559 cl00456 320982 -PLN03076 215560 PLN03076 215560 -PLN03077 215561 PLN03077 215561 -PLN03078 215562 PLN03078 215562 -PLN03081 215563 PLN03081 215563 -PLN03082 215564 cl00400 351077 -PLN03083 215565 cl10727 353106 -PLN03085 215566 PLN03085 215566 -PLN03087 215567 PLN03087 215567 -PLN03088 215568 PLN03088 215568 -PLN03089 215569 PLN03089 215569 -PLN03091 215570 PLN03091 215570 -PLN03095 215571 cl01534 351543 -PLN03096 215572 PLN03096 215572 -PLN03098 215573 PLN03098 215573 -PLN03099 215574 cl23945 329187 -PLN03100 215575 cl00510 351127 -PLN03102 215576 PLN03102 215576 -PLN03103 215577 cl14728 353832 -PLN03104 215578 PLN03104 215578 -PLN03106 215579 cl23822 355059 -PLN03107 215580 cl30809 357685 -PLN03109 215581 cl04813 322822 -PLN03111 215582 cl29798 356674 -PLN03112 215583 cl12078 353355 -PLN03113 215584 PLN03113 215584 -PLN03115 215585 PLN03115 215585 -PLN03116 215586 PLN03116 215586 -PLN03118 215587 PLN03118 215587 -PLN03120 215588 PLN03120 215588 -PLN03121 215589 cl17169 354314 -PLN03123 215590 PLN03123 215590 -PLN03124 215591 PLN03124 215591 -PLN03126 215592 PLN03126 215592 -PLN03128 215593 PLN03128 215593 -PLN03129 215594 PLN03129 215594 -PLN03130 215595 PLN03130 215595 -PLN03133 215596 PLN03133 215596 -PLN03137 215597 PLN03137 215597 -PLN03138 215598 PLN03138 215598 -PLN03140 215599 PLN03140 215599 -PLN03141 215600 cl12078 353355 -PLN03142 215601 PLN03142 215601 -PLN03143 215602 cl00447 351096 -PLN03145 215603 cl29762 356638 -PLN03151 215604 PLN03151 215604 -PLN03153 215605 cl21608 354888 -PLN03154 215606 PLN03154 215606 -PLN03158 215607 PLN03158 215607 -PLN03159 215608 PLN03159 215608 -PLN03160 215609 cl12118 353363 -PLN03164 215610 cl21511 328764 -PLN03167 215611 cl02777 351886 -PLN03169 215612 PLN03169 215612 -PLN03174 215613 cl03589 352024 -PLN03178 215614 PLN03178 215614 -PLN03180 215615 cl07847 324153 -PLN03181 215616 cl11394 353239 -PLN03182 215617 cl11394 353239 -PLN03184 215618 PLN03184 215618 -PLN03185 215619 PLN03185 215619 -PLN03187 215620 PLN03187 215620 -PLN03188 215621 PLN03188 215621 -PLN03189 215622 cl23802 329089 -PLN03190 215623 PLN03190 215623 -PLN03191 215624 cl00490 351117 -PLN03192 215625 PLN03192 215625 -PLN03194 215626 cl23749 355033 -PLN03195 215627 cl12078 353355 -PLN03196 215628 cl19765 354464 -PLN03200 215629 PLN03200 215629 -PLN03201 215630 PLN03201 215630 -PLN03202 215631 PLN03202 215631 -PLN03207 215632 cl25585 330406 -PLN03210 215633 PLN03210 215633 -PLN03211 215634 PLN03211 215634 -PLN03214 215635 cl23717 355015 -PLN03218 215636 PLN03218 215636 -PLN03223 215637 PLN03223 215637 -PLN03225 215638 PLN03225 215638 -PLN03226 215639 PLN03226 215639 -PLN03232 215640 PLN03232 215640 -PLN03237 215641 PLN03237 215641 -PLN03238 215642 cl17182 354318 -PLN03241 215643 PLN03241 215643 -PLN03243 215644 PLN03243 215644 -PLN03246 215645 PLN03246 215645 -pfam04303 218016 cl19418 267771 -PHA00002 222768 cl15276 353932 -PHA00003 222769 cl28106 332927 -PHA00008 222770 PHA00008 222770 -PHA00012 222771 PHA00012 222771 -PHA00019 222772 PHA00019 222772 -PHA00025 222773 cl28438 333258 -PHA00028 222774 cl27276 332097 -PHA00080 222775 cl00755 351241 -PHA00098 222776 cl11645 299806 -PHA00144 222777 PHA00144 222777 -PHA00148 222778 cl23946 305103 -PHA00149 222779 cl11625 353298 -PHA00198 222780 PHA00198 222780 -PHA00276 222781 cl22701 304589 -PHA00330 222782 PHA00330 222782 -PHA00350 222783 cl21455 354812 -PHA00363 222784 cl15846 326659 -PHA00368 222785 cl30808 357684 -PHA00371 222786 cl28021 332842 -PHA00405 222787 PHA00405 222787 -PHA00415 222788 cl01403 351486 -PHA00428 222789 cl10205 353060 -PHA00430 222790 PHA00430 222790 -PHA00431 222791 PHA00431 222791 -PHA00435 222792 cl14192 246618 -PHA00437 222793 cl26454 331275 -PHA00439 222794 PHA00439 222794 -PHA00441 222795 cl10212 353061 -PHA00442 222796 PHA00442 222796 -PHA00452 222797 cl25973 355471 -PHA00454 222798 PHA00454 222798 -PHA00457 222799 cl25584 330405 -PHA00458 222800 cl29140 356016 -PHA00476 222801 cl10223 353064 -PHA00497 222802 PHA00497 222802 -PHA00514 222803 cl10228 353065 -PHA00520 222804 cl27829 332650 -PHA00527 222805 PHA00527 222805 -PHA00645 222806 PHA00645 222806 -PHA00662 222807 PHA00662 222807 -PHA00666 222808 PHA00666 222808 -PHA00669 222809 PHA00669 222809 -PHA00684 222810 PHA00684 222810 -PHA00724 222811 cl10264 353066 -PHA00727 222812 cl14340 353808 -PHA00730 222813 PHA00730 222813 -PHA00731 222814 cl10269 353067 -PHA00742 222815 cl27825 332646 -PHA00911 222816 cl11614 299796 -PHA00965 222817 cl19585 327594 -PHA01075 222818 PHA01075 222818 -PHA01077 222819 cl23946 305103 -PHA01082 222820 cl23947 329188 -PHA01327 222821 cl27882 332703 -PHA01366 222822 PHA01366 222822 -PHA01548 222823 cl10308 353070 -PHA01623 222824 PHA01623 222824 -PHA01624 222825 cl29964 356840 -PHA01627 222826 cl07531 324010 -PHA01635 222827 PHA01635 222827 -PHA01732 222828 PHA01732 222828 -PHA01735 222829 PHA01735 222829 -PHA01745 222830 cl19224 354397 -PHA01747 222831 cl11979 353333 -PHA01748 222832 PHA01748 222832 -PHA01751 222833 PHA01751 222833 -PHA01755 222834 cl29739 356615 -PHA01757 222835 PHA01757 222835 -PHA01769 222836 PHA01769 222836 -PHA01794 222837 cl10335 324580 -PHA01806 222838 cl21612 304464 -PHA01807 222839 cl17182 354318 -PHA01886 222840 cl00984 321286 -PHA01971 222841 cl10351 324581 -PHA01972 222842 PHA01972 222842 -PHA02030 222843 PHA02030 222843 -PHA02031 222844 PHA02031 222844 -PHA02046 222845 PHA02046 222845 -PHA02047 222846 PHA02047 222846 -PHA02102 222847 PHA02102 222847 -PHA02103 222848 PHA02103 222848 -PHA02109 222849 PHA02109 222849 -PHA02126 222850 PHA02126 222850 -PHA02358 222851 PHA02358 222851 -PHA02510 222852 cl11585 299787 -PHA02517 222853 PHA02517 222853 -PHA02518 222854 PHA02518 222854 -PHA02529 222855 cl15838 353985 -PHA02530 222856 PHA02530 222856 -PHA02531 222857 cl23948 329189 -PHA02533 222858 PHA02533 222858 -PHA02535 222859 PHA02535 222859 -PHA02536 222860 cl19194 354391 -PHA02537 222861 cl19614 354445 -PHA02539 222862 PHA02539 222862 -PHA02540 222863 PHA02540 222863 -PHA02542 222864 PHA02542 222864 -PHA02543 222865 cl28116 332937 -PHA02544 222866 PHA02544 222866 -PHA02546 222867 PHA02546 222867 -PHA02547 222868 PHA02547 222868 -PHA02550 222869 cl17537 302647 -PHA02552 222870 cl21695 354910 -PHA02553 222871 cl01294 321435 -PHA02555 222872 cl27828 332649 -PHA02556 222873 cl14348 326322 -PHA02557 222874 PHA02557 222874 -PHA02558 222875 PHA02558 222875 -PHA02559 222876 PHA02559 222876 -PHA02561 222877 cl15796 353979 -PHA02562 222878 PHA02562 222878 -PHA02563 222879 cl28058 355698 -PHA02564 222880 cl30808 357684 -PHA02566 222881 PHA02566 222881 -PHA02567 222882 PHA02567 222882 -PHA02572 222883 PHA02572 222883 -PHA02573 222884 cl21532 354856 -PHA02575 222885 cl17190 354320 -PHA02577 222886 PHA02577 222886 -PHA02581 222887 cl22960 354988 -PHA02582 222888 PHA02582 222888 -PHA02583 222889 cl22935 354983 -PHA02584 222890 PHA02584 222890 -PHA02585 222891 cl27835 332656 -PHA02586 222892 PHA02586 222892 -PHA02587 222893 PHA02587 222893 -PHA02588 222894 cl00269 350994 -PHA02589 222895 cl09743 324466 -PHA02592 222896 PHA02592 222896 -PHA02593 222897 cl27778 332599 -PHA02594 222898 PHA02594 222898 -PHA02595 222899 cl00019 320715 -PHA02596 222900 PHA02596 222900 -PHA02597 222901 PHA02597 222901 -PHA02598 222902 cl15257 353929 -PHA02599 222903 cl27831 332652 -PHA02601 222904 cl28330 355709 -PHA02603 222905 cl01417 321494 -PHA02606 222906 PHA02606 222906 -PHA02611 222907 cl27821 332642 -PHA02612 222908 PHA02612 222908 -PHA02613 222909 cl26482 331303 -PHA02614 222910 cl27648 332469 -PHA02616 222911 PHA02616 222911 -PHA02624 222912 PHA02624 222912 -PHA02637 222913 cl22855 354961 -PHA02666 222914 PHA02666 222914 -PHA02670 222915 cl28616 333436 -PHA02677 222916 cl27961 332782 -PHA02681 222917 cl28615 333435 -PHA02687 222918 cl28054 332875 -PHA02688 222919 cl28057 332878 -PHA02690 222920 cl29971 356847 -PHA02696 222921 PHA02696 222921 -PHA02697 222922 PHA02697 222922 -PHA02738 222923 PHA02738 222923 -PHA02739 222924 cl30805 357681 -PHA02743 222925 PHA02743 222925 -PHA02745 222926 cl11158 324881 -PHA02774 222927 PHA02774 222927 -PHA02778 222928 cl23949 355103 -PHA02779 222929 cl27673 332494 -PHA02786 222930 PHA02786 222930 -PHA02798 222931 PHA02798 222931 -PHA02809 222932 PHA02809 222932 -PHA02816 222933 PHA02816 222933 -PHA02820 222934 PHA02820 222934 -PHA02823 222935 cl27443 332264 -PHA02855 222936 PHA02855 222936 -PHA02864 222937 PHA02864 222937 -PHA02872 222938 PHA02872 222938 -PHA02878 222939 PHA02878 222939 -PHA02880 222940 PHA02880 222940 -PHA02901 222941 cl27964 332785 -PHA02924 222942 PHA02924 222942 -PHA02927 222943 PHA02927 222943 -PHA02929 222944 cl29320 356196 -PHA02932 222945 cl27981 332802 -PHA02935 222946 cl28439 333259 -PHA02939 222947 PHA02939 222947 -PHA02941 222948 PHA02941 222948 -PHA02947 222949 cl28088 355703 -PHA02952 222950 cl28048 332869 -PHA02970 222951 PHA02970 222951 -PHA02983 222952 cl27933 332754 -PHA02986 222953 PHA02986 222953 -PHA02989 222954 PHA02989 222954 -PHA02991 222955 PHA02991 222955 -PHA02992 222956 cl28006 355694 -PHA02994 222957 cl27993 332814 -PHA02998 222958 PHA02998 222958 -PHA02999 222959 PHA02999 222959 -PHA03001 222960 cl27927 332748 -PHA03005 222961 cl27985 332806 -PHA03036 222962 PHA03036 222962 -PHA03041 222963 cl27923 332744 -PHA03042 222964 PHA03042 222964 -PHA03057 222965 cl26488 331309 -PHA03058 222966 PHA03058 222966 -PHA03060 222967 PHA03060 222967 -PHA03065 222968 cl28000 332821 -PHA03067 222969 PHA03067 222969 -PHA03072 222970 cl28046 332867 -PHA03078 222971 cl27947 332768 -PHA03080 222972 cl27956 332777 -PHA03081 222973 cl28043 332864 -PHA03082 222974 cl27942 332763 -PHA03083 222975 cl28068 332889 -PHA03087 222976 PHA03087 222976 -PHA03089 222977 cl28054 332875 -PHA03091 222978 cl29769 356645 -PHA03093 222979 cl27938 332759 -PHA03095 222980 PHA03095 222980 -PHA03096 222981 PHA03096 222981 -PHA03097 222982 PHA03097 222982 -PHA03098 222983 PHA03098 222983 -PHA03100 222984 PHA03100 222984 -PHA03101 222985 PHA03101 222985 -PHA03102 222986 cl29860 356736 -PHA03103 222987 PHA03103 222987 -PHA03105 222988 PHA03105 222988 -PHA03111 222989 cl27958 332779 -PHA03112 222990 cl23951 305108 -PHA03119 222991 PHA03119 222991 -PHA03125 222992 cl28612 333432 -PHA03127 222993 PHA03127 222993 -PHA03129 222994 PHA03129 222994 -PHA03130 222995 PHA03130 222995 -PHA03131 222996 PHA03131 222996 -PHA03132 222997 PHA03132 222997 -PHA03140 222998 cl28051 355697 -PHA03142 222999 PHA03142 222999 -PHA03144 223000 cl28051 355697 -PHA03148 223001 cl27996 332817 -PHA03150 223002 cl28610 355715 -PHA03169 223003 PHA03169 223003 -PHA03173 223004 cl28017 332838 -PHA03176 223005 cl28609 333429 -PHA03179 223006 cl27973 332794 -PHA03187 223007 PHA03187 223007 -PHA03189 223008 cl27780 332601 -PHA03211 223009 PHA03211 223009 -PHA03215 223010 PHA03215 223010 -PHA03218 223011 PHA03218 223011 -PHA03229 223012 cl28035 332856 -PHA03230 223013 cl28002 332823 -PHA03231 223014 PHA03231 223014 -PHA03232 223015 cl28122 332943 -PHA03233 223016 cl28122 332943 -PHA03235 223017 PHA03235 223017 -PHA03236 223018 cl28035 332856 -PHA03237 223019 cl28128 332949 -PHA03246 223020 PHA03246 223020 -PHA03247 223021 PHA03247 223021 -PHA03248 223022 cl28129 332950 -PHA03249 223023 cl27999 355693 -PHA03252 223024 cl28129 332950 -PHA03253 223025 PHA03253 223025 -PHA03261 223026 cl28050 332871 -PHA03262 223027 PHA03262 223027 -PHA03263 223028 PHA03263 223028 -PHA03264 223029 PHA03264 223029 -PHA03271 223030 cl30047 356923 -PHA03273 223031 PHA03273 223031 -PHA03283 223032 cl30037 356913 -PHA03291 223033 PHA03291 223033 -PHA03293 223034 cl09232 352951 -PHA03294 223035 cl29046 355922 -PHA03295 223036 PHA03295 223036 -PHA03301 223037 cl29975 356851 -PHA03302 223038 cl28118 332939 -PHA03307 223039 PHA03307 223039 -PHA03311 223040 cl28079 332900 -PHA03321 223041 PHA03321 223041 -PHA03322 223042 cl28045 355696 -PHA03323 223043 cl29790 356666 -PHA03325 223044 PHA03325 223044 -PHA03326 223045 PHA03326 223045 -PHA03328 223046 cl27388 332209 -PHA03332 223047 PHA03332 223047 -PHA03333 223048 PHA03333 223048 -PHA03334 223049 PHA03334 223049 -PHA03335 223050 PHA03335 223050 -PHA03336 223051 PHA03336 223051 -PHA03346 223052 PHA03346 223052 -PHA03352 223053 PHA03352 223053 -PHA03359 223054 cl27132 331953 -PHA03361 223055 cl28121 332942 -PHA03362 223056 cl28142 332963 -PHA03364 223057 cl28065 332886 -PHA03366 223058 PHA03366 223058 -PHA03367 223059 cl28142 332963 -PHA03368 223060 cl30034 356910 -PHA03369 223061 PHA03369 223061 -PHA03373 223062 cl28003 332824 -PHA03374 223063 cl28067 355701 -PHA03375 223064 PHA03375 223064 -PHA03378 223065 PHA03378 223065 -PHA03379 223066 PHA03379 223066 -PHA03380 223067 PHA03380 223067 -PHA03384 223068 PHA03384 223068 -PHA03390 223069 PHA03390 223069 -PHA03391 223070 cl27970 332791 -PHA03392 223071 cl10013 353042 -PHA03393 223072 PHA03393 223072 -PHA03394 223073 cl27979 332800 -PHA03396 223074 cl27971 332792 -PHA03398 223075 cl27967 332788 -PHA03399 223076 cl27976 332797 -PHA03402 223077 cl28607 355714 -PHA03410 223078 cl14695 353829 -PHA03419 223079 PHA03419 223079 -COG0001 223080 COG0001 223080 -COG0002 223081 COG0002 223081 -COG0003 223082 COG0003 223082 -COG0004 223083 cl03012 322161 -COG0005 223084 COG0005 223084 -COG0006 223085 COG0006 223085 -COG0007 223086 cl00304 351012 -COG0008 223087 cl00015 350862 -COG0009 223088 cl00305 351013 -COG0010 223089 cl17011 354294 -COG0011 223090 cl00307 320891 -COG0012 223091 COG0012 223091 -COG0013 223092 COG0013 223092 -COG0014 223093 cl11961 353326 -COG0015 223094 COG0015 223094 -COG0016 223095 COG0016 223095 -COG0017 223096 COG0017 223096 -COG0018 223097 COG0018 223097 -COG0019 223098 cl30792 357668 -COG0020 223099 cl00230 350969 -COG0021 223100 COG0021 223100 -COG0022 223101 COG0022 223101 -COG0023 223102 cl00229 350968 -COG0024 223103 cl00279 351000 -COG0025 223104 cl01133 351397 -COG0026 223105 COG0026 223105 -COG0027 223106 COG0027 223106 -COG0028 223107 COG0028 223107 -COG0029 223108 cl30664 357540 -COG0030 223109 cl17173 354317 -COG0031 223110 cl00342 294246 -COG0033 223111 COG0033 223111 -COG0034 223112 COG0034 223112 -COG0035 223113 cl00309 351014 -COG0036 223114 cl21457 354814 -COG0037 223115 cl00292 351005 -COG0038 223116 cl02915 295552 -COG0039 223117 COG0039 223117 -COG0040 223118 cl21456 354813 -COG0041 223119 cl00310 351015 -COG0042 223120 cl28888 355772 -COG0043 223121 cl00311 351016 -COG0044 223122 cl28964 355840 -COG0045 223123 COG0045 223123 -COG0046 223124 COG0046 223124 -COG0047 223125 cl00020 350865 -COG0048 223126 cl00312 351017 -COG0049 223127 cl00313 351018 -COG0050 223128 COG0050 223128 -COG0051 223129 cl00314 351019 -COG0052 223130 cl00315 351020 -COG0053 223131 cl30791 357667 -COG0054 223132 cl00317 351021 -COG0055 223133 cl28885 355771 -COG0056 223134 cl28885 355771 -COG0057 223135 COG0057 223135 -COG0058 223136 cl28080 355702 -COG0059 223137 COG0059 223137 -COG0060 223138 COG0060 223138 -COG0061 223139 cl01255 321418 -COG0062 223140 cl00318 351022 -COG0063 223141 cl00192 350937 -COG0064 223142 COG0064 223142 -COG0065 223143 cl00285 351003 -COG0066 223144 cl00215 350957 -COG0067 223145 COG0067 223145 -COG0068 223146 COG0068 223146 -COG0069 223147 cl27100 355613 -COG0070 223148 cl00239 350976 -COG0071 223149 COG0071 223149 -COG0072 223150 COG0072 223150 -COG0073 223151 cl00320 351024 -COG0074 223152 COG0074 223152 -COG0075 223153 COG0075 223153 -COG0076 223154 cl18945 354370 -COG0077 223155 COG0077 223155 -COG0078 223156 cl21454 354811 -COG0079 223157 COG0079 223157 -COG0080 223158 cl29338 356214 -COG0081 223159 cl00322 351025 -COG0082 223160 cl00323 351026 -COG0083 223161 COG0083 223161 -COG0084 223162 cl28964 355840 -COG0085 223163 COG0085 223163 -COG0086 223164 COG0086 223164 -COG0087 223165 cl00324 351027 -COG0088 223166 cl00325 351028 -COG0089 223167 cl00326 351029 -COG0090 223168 COG0090 223168 -COG0091 223169 cl00327 351030 -COG0092 223170 COG0092 223170 -COG0093 223171 cl00328 351031 -COG0094 223172 COG0094 223172 -COG0095 223173 cl14057 353805 -COG0096 223174 cl00330 351032 -COG0097 223175 COG0097 223175 -COG0098 223176 COG0098 223176 -COG0099 223177 COG0099 223177 -COG0100 223178 cl00332 320911 -COG0101 223179 COG0101 223179 -COG0102 223180 cl00333 351034 -COG0103 223181 cl00334 351035 -COG0104 223182 cl28913 355789 -COG0105 223183 cl00335 351036 -COG0106 223184 cl21457 354814 -COG0107 223185 cl21457 354814 -COG0108 223186 cl00336 351037 -COG0109 223187 cl00337 351038 -COG0110 223188 COG0110 223188 -COG0111 223189 cl28944 355820 -COG0112 223190 cl18945 354370 -COG0113 223191 cl00338 351039 -COG0114 223192 COG0114 223192 -COG0115 223193 cl00224 350964 -COG0116 223194 cl30459 357335 -COG0117 223195 cl00269 350994 -COG0118 223196 cl00020 350865 -COG0119 223197 COG0119 223197 -COG0120 223198 cl00339 351040 -COG0121 223199 cl00319 351023 -COG0122 223200 COG0122 223200 -COG0123 223201 cl17011 354294 -COG0124 223202 COG0124 223202 -COG0125 223203 COG0125 223203 -COG0126 223204 cl00198 350943 -COG0127 223205 cl00276 350998 -COG0128 223206 COG0128 223206 -COG0129 223207 cl00340 351041 -COG0130 223208 COG0130 223208 -COG0131 223209 cl00341 351042 -COG0132 223210 cl28913 355789 -COG0133 223211 cl00342 294246 -COG0134 223212 cl21457 354814 -COG0135 223213 cl21457 354814 -COG0136 223214 COG0136 223214 -COG0137 223215 cl00292 351005 -COG0138 223216 COG0138 223216 -COG0139 223217 cl00344 351043 -COG0140 223218 cl16941 354290 -COG0141 223219 COG0141 223219 -COG0142 223220 cl00210 350953 -COG0143 223221 COG0143 223221 -COG0144 223222 COG0144 223222 -COG0145 223223 COG0145 223223 -COG0146 223224 cl19816 354465 -COG0147 223225 COG0147 223225 -COG0148 223226 COG0148 223226 -COG0149 223227 cl28888 355772 -COG0150 223228 COG0150 223228 -COG0151 223229 COG0151 223229 -COG0152 223230 cl00231 350970 -COG0153 223231 COG0153 223231 -COG0154 223232 cl18951 354371 -COG0155 223233 COG0155 223233 -COG0156 223234 COG0156 223234 -COG0157 223235 COG0157 223235 -COG0158 223236 cl00289 351004 -COG0159 223237 cl28888 355772 -COG0160 223238 COG0160 223238 -COG0161 223239 cl18945 354370 -COG0162 223240 COG0162 223240 -COG0163 223241 cl19190 327515 -COG0164 223242 cl14782 353835 -COG0165 223243 COG0165 223243 -COG0166 223244 COG0166 223244 -COG0167 223245 cl21457 354814 -COG0168 223246 cl28089 355704 -COG0169 223247 COG0169 223247 -COG0170 223248 cl21502 304393 -COG0171 223249 cl00292 351005 -COG0172 223250 COG0172 223250 -COG0173 223251 COG0173 223251 -COG0174 223252 COG0174 223252 -COG0175 223253 cl28963 355839 -COG0176 223254 COG0176 223254 -COG0177 223255 cl23768 355038 -COG0178 223256 COG0178 223256 -COG0179 223257 COG0179 223257 -COG0180 223258 cl00015 350862 -COG0181 223259 COG0181 223259 -COG0182 223260 cl00348 351044 -COG0183 223261 COG0183 223261 -COG0184 223262 cl00349 351045 -COG0185 223263 cl00350 351046 -COG0186 223264 cl00351 351047 -COG0187 223265 COG0187 223265 -COG0188 223266 COG0188 223266 -COG0189 223267 COG0189 223267 -COG0190 223268 COG0190 223268 -COG0191 223269 cl21457 354814 -COG0192 223270 COG0192 223270 -COG0193 223271 cl00352 351048 -COG0194 223272 COG0194 223272 -COG0195 223273 COG0195 223273 -COG0196 223274 COG0196 223274 -COG0197 223275 cl00353 351049 -COG0198 223276 cl00354 351050 -COG0199 223277 cl00355 351051 -COG0200 223278 cl12022 353342 -COG0201 223279 COG0201 223279 -COG0202 223280 COG0202 223280 -COG0203 223281 cl00356 351052 -COG0204 223282 COG0204 223282 -COG0205 223283 cl00204 350948 -COG0206 223284 cl10017 353044 -COG0207 223285 cl19097 354378 -COG0208 223286 cl00264 350992 -COG0209 223287 COG0209 223287 -COG0210 223288 COG0210 223288 -COG0211 223289 cl00359 351053 -COG0212 223290 cl00360 294257 -COG0213 223291 cl29556 356432 -COG0214 223292 cl21457 354814 -COG0215 223293 COG0215 223293 -COG0216 223294 COG0216 223294 -COG0217 223295 cl00361 351054 -COG0218 223296 cl21455 354812 -COG0219 223297 cl21505 354844 -COG0220 223298 COG0220 223298 -COG0221 223299 cl00217 350958 -COG0222 223300 COG0222 223300 -COG0223 223301 COG0223 223301 -COG0224 223302 cl00365 351055 -COG0225 223303 cl00366 351056 -COG0226 223304 cl21456 354813 -COG0227 223305 cl00367 351057 -COG0228 223306 cl00368 351058 -COG0229 223307 cl15841 353987 -COG0230 223308 cl00370 351059 -COG0231 223309 COG0231 223309 -COG0232 223310 COG0232 223310 -COG0233 223311 cl00240 350977 -COG0234 223312 cl09113 352934 -COG0235 223313 cl00214 350956 -COG0236 223314 cl09936 324546 -COG0237 223315 COG0237 223315 -COG0238 223316 cl00373 351060 -COG0239 223317 cl09114 352935 -COG0240 223318 COG0240 223318 -COG0241 223319 COG0241 223319 -COG0242 223320 cl00234 320843 -COG0243 223321 COG0243 223321 -COG0244 223322 cl00376 351061 -COG0245 223323 cl10030 353048 -COG0246 223324 COG0246 223324 -COG0247 223325 COG0247 223325 -COG0248 223326 COG0248 223326 -COG0249 223327 COG0249 223327 -COG0250 223328 COG0250 223328 -COG0251 223329 cl10015 299145 -COG0252 223330 cl00216 320827 -COG0253 223331 cl29427 356303 -COG0254 223332 cl00377 351062 -COG0255 223333 cl09943 353035 -COG0256 223334 cl00379 320941 -COG0257 223335 cl00380 351063 -COG0258 223336 COG0258 223336 -COG0259 223337 COG0259 223337 -COG0260 223338 COG0260 223338 -COG0261 223339 cl00382 351065 -COG0262 223340 cl17279 354327 -COG0263 223341 COG0263 223341 -COG0264 223342 COG0264 223342 -COG0265 223343 cl21584 354881 -COG0266 223344 COG0266 223344 -COG0267 223345 cl00383 351066 -COG0268 223346 cl00384 351067 -COG0269 223347 cl21457 354814 -COG0270 223348 cl30459 357335 -COG0271 223349 cl00386 351068 -COG0272 223350 COG0272 223350 -COG0274 223351 cl21457 354814 -COG0275 223352 cl17173 354317 -COG0276 223353 COG0276 223353 -COG0277 223354 COG0277 223354 -COG0278 223355 cl00388 351069 -COG0279 223356 cl00389 351070 -COG0280 223357 cl17212 354323 -COG0281 223358 COG0281 223358 -COG0282 223359 cl17037 354300 -COG0283 223360 cl17190 354320 -COG0284 223361 cl21457 354814 -COG0285 223362 COG0285 223362 -COG0286 223363 COG0286 223363 -COG0287 223364 COG0287 223364 -COG0288 223365 cl00391 351071 -COG0289 223366 cl29298 356174 -COG0290 223367 COG0290 223367 -COG0291 223368 cl00392 351072 -COG0292 223369 cl00393 351073 -COG0293 223370 cl17173 354317 -COG0294 223371 cl00219 350959 -COG0295 223372 COG0295 223372 -COG0296 223373 cl30708 357584 -COG0297 223374 COG0297 223374 -COG0298 223375 cl00394 351074 -COG0299 223376 cl00395 351075 -COG0300 223377 cl25409 355392 -COG0301 223378 COG0301 223378 -COG0302 223379 cl00263 350991 -COG0303 223380 COG0303 223380 -COG0304 223381 cl09938 353032 -COG0305 223382 cl28885 355771 -COG0306 223383 cl27575 355663 -COG0307 223384 COG0307 223384 -COG0308 223385 cl14813 353839 -COG0309 223386 COG0309 223386 -COG0310 223387 cl21488 354833 -COG0311 223388 cl00020 350865 -COG0312 223389 cl19356 354412 -COG0313 223390 cl00304 351012 -COG0314 223391 cl00399 351076 -COG0315 223392 cl00242 350979 -COG0316 223393 cl00400 351077 -COG0317 223394 COG0317 223394 -COG0318 223395 cl17068 354307 -COG0319 223396 cl00402 351078 -COG0320 223397 COG0320 223397 -COG0321 223398 cl14057 353805 -COG0322 223399 COG0322 223399 -COG0323 223400 COG0323 223400 -COG0324 223401 cl21455 354812 -COG0325 223402 cl00261 350989 -COG0326 223403 COG0326 223403 -COG0327 223404 cl15371 326563 -COG0328 223405 cl14782 353835 -COG0329 223406 COG0329 223406 -COG0330 223407 COG0330 223407 -COG0331 223408 cl08282 352868 -COG0332 223409 COG0332 223409 -COG0333 223410 cl09115 324327 -COG0334 223411 COG0334 223411 -COG0335 223412 cl00406 351079 -COG0336 223413 cl00407 294285 -COG0337 223414 cl02872 351912 -COG0338 223415 cl23779 329070 -COG0339 223416 COG0339 223416 -COG0340 223417 COG0340 223417 -COG0341 223418 COG0341 223418 -COG0342 223419 COG0342 223419 -COG0343 223420 COG0343 223420 -COG0344 223421 cl00410 351080 -COG0345 223422 COG0345 223422 -COG0346 223423 cl14632 353816 -COG0347 223424 cl00412 351081 -COG0348 223425 COG0348 223425 -COG0349 223426 COG0349 223426 -COG0350 223427 COG0350 223427 -COG0351 223428 cl00192 350937 -COG0352 223429 cl21457 354814 -COG0353 223430 COG0353 223430 -COG0354 223431 COG0354 223431 -COG0355 223432 COG0355 223432 -COG0356 223433 cl00413 351082 -COG0357 223434 cl17173 354317 -COG0358 223435 COG0358 223435 -COG0359 223436 COG0359 223436 -COG0360 223437 cl00414 351083 -COG0361 223438 cl09927 353027 -COG0362 223439 COG0362 223439 -COG0363 223440 cl00339 351040 -COG0364 223441 COG0364 223441 -COG0365 223442 cl17068 354307 -COG0366 223443 COG0366 223443 -COG0367 223444 COG0367 223444 -COG0368 223445 cl00415 351084 -COG0369 223446 COG0369 223446 -COG0370 223447 COG0370 223447 -COG0371 223448 cl02872 351912 -COG0372 223449 COG0372 223449 -COG0373 223450 COG0373 223450 -COG0374 223451 cl21493 354835 -COG0375 223452 cl19201 354393 -COG0376 223453 COG0376 223453 -COG0377 223454 cl17194 354321 -COG0378 223455 cl21455 354812 -COG0379 223456 cl00420 351086 -COG0380 223457 COG0380 223457 -COG0381 223458 COG0381 223458 -COG0382 223459 cl00337 351038 -COG0383 223460 COG0383 223460 -COG0384 223461 cl29427 356303 -COG0385 223462 cl19217 354395 -COG0386 223463 cl00388 351069 -COG0387 223464 COG0387 223464 -COG0388 223465 cl11424 353250 -COG0389 223466 COG0389 223466 -COG0390 223467 cl00424 351087 -COG0391 223468 cl00425 351088 -COG0392 223469 cl04219 322570 -COG0393 223470 cl00426 351089 -COG0394 223471 cl00105 320761 -COG0395 223472 COG0395 223472 -COG0396 223473 COG0396 223473 -COG0397 223474 cl19499 354427 -COG0398 223475 cl00429 351091 -COG0399 223476 cl18945 354370 -COG0400 223477 cl21494 354836 -COG0401 223478 cl00431 351092 -COG0402 223479 cl28964 355840 -COG0403 223480 cl18945 354370 -COG0404 223481 cl30584 357460 -COG0405 223482 cl19223 327525 -COG0406 223483 cl11399 353243 -COG0407 223484 cl00464 320986 -COG0408 223485 cl19362 354414 -COG0409 223486 cl12072 353352 -COG0410 223487 COG0410 223487 -COG0411 223488 COG0411 223488 -COG0412 223489 cl21494 354836 -COG0413 223490 cl21457 354814 -COG0414 223491 cl00015 350862 -COG0415 223492 cl30787 357663 -COG0416 223493 cl17212 354323 -COG0417 223494 COG0417 223494 -COG0418 223495 cl00281 351001 -COG0419 223496 COG0419 223496 -COG0420 223497 COG0420 223497 -COG0421 223498 cl17173 354317 -COG0422 223499 cl08031 352842 -COG0423 223500 COG0423 223500 -COG0424 223501 cl00276 350998 -COG0425 223502 cl00436 320971 -COG0426 223503 COG0426 223503 -COG0427 223504 COG0427 223504 -COG0428 223505 cl00437 320972 -COG0429 223506 cl21494 354836 -COG0430 223507 COG0430 223507 -COG0431 223508 cl00438 351093 -COG0432 223509 cl00439 351094 -COG0433 223510 COG0433 223510 -COG0434 223511 cl21457 354814 -COG0435 223512 COG0435 223512 -COG0436 223513 COG0436 223513 -COG0437 223514 COG0437 223514 -COG0438 223515 cl10013 353042 -COG0439 223516 COG0439 223516 -COG0440 223517 COG0440 223517 -COG0441 223518 COG0441 223518 -COG0442 223519 COG0442 223519 -COG0443 223520 COG0443 223520 -COG0444 223521 COG0444 223521 -COG0445 223522 COG0445 223522 -COG0446 223523 COG0446 223523 -COG0447 223524 cl23717 355015 -COG0448 223525 COG0448 223525 -COG0449 223526 COG0449 223526 -COG0450 223527 COG0450 223527 -COG0451 223528 COG0451 223528 -COG0452 223529 COG0452 223529 -COG0454 223530 cl17182 354318 -COG0455 223531 COG0455 223531 -COG0456 223532 COG0456 223532 -COG0457 223533 COG0457 223533 -COG0458 223534 COG0458 223534 -COG0459 223535 COG0459 223535 -COG0460 223536 COG0460 223536 -COG0461 223537 cl00309 351014 -COG0462 223538 COG0462 223538 -COG0463 223539 COG0463 223539 -COG0464 223540 COG0464 223540 -COG0465 223541 COG0465 223541 -COG0466 223542 COG0466 223542 -COG0467 223543 COG0467 223543 -COG0468 223544 COG0468 223544 -COG0469 223545 COG0469 223545 -COG0470 223546 COG0470 223546 -COG0471 223547 cl21473 354825 -COG0472 223548 cl10571 353087 -COG0473 223549 cl00445 351095 -COG0474 223550 cl21460 354816 -COG0475 223551 cl01133 351397 -COG0476 223552 COG0476 223552 -COG0477 223553 cl28910 355786 -COG0478 223554 COG0478 223554 -COG0479 223555 COG0479 223555 -COG0480 223556 cl30786 357662 -COG0481 223557 COG0481 223557 -COG0482 223558 COG0482 223558 -COG0483 223559 cl00289 351004 -COG0484 223560 COG0484 223560 -COG0486 223561 COG0486 223561 -COG0488 223562 COG0488 223562 -COG0489 223563 COG0489 223563 -COG0490 223564 COG0490 223564 -COG0491 223565 COG0491 223565 -COG0492 223566 COG0492 223566 -COG0493 223567 COG0493 223567 -COG0494 223568 cl00447 351096 -COG0495 223569 COG0495 223569 -COG0496 223570 cl00448 351097 -COG0497 223571 COG0497 223571 -COG0498 223572 COG0498 223572 -COG0499 223573 cl21454 354811 -COG0500 223574 COG0500 223574 -COG0501 223575 COG0501 223575 -COG0502 223576 COG0502 223576 -COG0503 223577 cl00309 351014 -COG0504 223578 COG0504 223578 -COG0505 223579 COG0505 223579 -COG0506 223580 COG0506 223580 -COG0507 223581 COG0507 223581 -COG0508 223582 COG0508 223582 -COG0509 223583 cl11404 353245 -COG0510 223584 cl21453 354810 -COG0511 223585 COG0511 223585 -COG0512 223586 COG0512 223586 -COG0513 223587 COG0513 223587 -COG0514 223588 COG0514 223588 -COG0515 223589 cl21453 354810 -COG0516 223590 COG0516 223590 -COG0517 223591 COG0517 223591 -COG0518 223592 COG0518 223592 -COG0519 223593 COG0519 223593 -COG0520 223594 COG0520 223594 -COG0521 223595 cl00451 320978 -COG0522 223596 COG0522 223596 -COG0523 223597 COG0523 223597 -COG0524 223598 cl00192 350937 -COG0525 223599 cl00015 350862 -COG0526 223600 cl00388 351069 -COG0527 223601 COG0527 223601 -COG0528 223602 cl00452 351098 -COG0529 223603 cl17190 354320 -COG0530 223604 COG0530 223604 -COG0531 223605 COG0531 223605 -COG0532 223606 cl30717 357593 -COG0533 223607 COG0533 223607 -COG0534 223608 cl09326 352957 -COG0535 223609 COG0535 223609 -COG0536 223610 COG0536 223610 -COG0537 223611 cl00228 350967 -COG0538 223612 cl00445 351095 -COG0539 223613 COG0539 223613 -COG0540 223614 COG0540 223614 -COG0541 223615 cl28913 355789 -COG0542 223616 COG0542 223616 -COG0543 223617 COG0543 223617 -COG0544 223618 COG0544 223618 -COG0545 223619 COG0545 223619 -COG0546 223620 cl21460 354816 -COG0547 223621 COG0547 223621 -COG0548 223622 cl00452 351098 -COG0549 223623 cl00452 351098 -COG0550 223624 COG0550 223624 -COG0551 223625 COG0551 223625 -COG0552 223626 COG0552 223626 -COG0553 223627 COG0553 223627 -COG0554 223628 COG0554 223628 -COG0555 223629 COG0555 223629 -COG0556 223630 COG0556 223630 -COG0557 223631 COG0557 223631 -COG0558 223632 cl00453 351099 -COG0559 223633 cl00454 351100 -COG0560 223634 cl21460 354816 -COG0561 223635 cl21460 354816 -COG0562 223636 cl27287 332108 -COG0563 223637 COG0563 223637 -COG0564 223638 COG0564 223638 -COG0565 223639 COG0565 223639 -COG0566 223640 COG0566 223640 -COG0567 223641 COG0567 223641 -COG0568 223642 COG0568 223642 -COG0569 223643 COG0569 223643 -COG0571 223644 COG0571 223644 -COG0572 223645 COG0572 223645 -COG0573 223646 cl00427 351090 -COG0574 223647 COG0574 223647 -COG0575 223648 cl21502 304393 -COG0576 223649 cl03075 351939 -COG0577 223650 COG0577 223650 -COG0578 223651 COG0578 223651 -COG0579 223652 COG0579 223652 -COG0580 223653 cl00200 350945 -COG0581 223654 COG0581 223654 -COG0582 223655 cl28330 355709 -COG0583 223656 COG0583 223656 -COG0584 223657 COG0584 223657 -COG0585 223658 cl00130 320773 -COG0586 223659 COG0586 223659 -COG0587 223660 COG0587 223660 -COG0588 223661 cl11399 353243 -COG0589 223662 cl00292 351005 -COG0590 223663 cl00269 350994 -COG0591 223664 cl00456 320982 -COG0592 223665 COG0592 223665 -COG0593 223666 COG0593 223666 -COG0594 223667 cl00457 351101 -COG0595 223668 COG0595 223668 -COG0596 223669 COG0596 223669 -COG0597 223670 cl00458 351102 -COG0598 223671 cl00459 320984 -COG0599 223672 cl00460 320985 -COG0600 223673 COG0600 223673 -COG0601 223674 COG0601 223674 -COG0602 223675 COG0602 223675 -COG0603 223676 cl00292 351005 -COG0604 223677 COG0604 223677 -COG0605 223678 COG0605 223678 -COG0606 223679 COG0606 223679 -COG0607 223680 cl00125 350910 -COG0608 223681 cl27577 355664 -COG0609 223682 cl00454 351100 -COG0610 223683 COG0610 223683 -COG0611 223684 cl10019 353045 -COG0612 223685 COG0612 223685 -COG0613 223686 COG0613 223686 -COG0614 223687 COG0614 223687 -COG0615 223688 cl00015 350862 -COG0616 223689 COG0616 223689 -COG0617 223690 COG0617 223690 -COG0618 223691 COG0618 223691 -COG0619 223692 cl00463 294315 -COG0620 223693 cl00464 320986 -COG0621 223694 COG0621 223694 -COG0622 223695 cl13995 353799 -COG0623 223696 COG0623 223696 -COG0624 223697 COG0624 223697 -COG0625 223698 COG0625 223698 -COG0626 223699 cl18945 354370 -COG0627 223700 COG0627 223700 -COG0628 223701 cl00465 294317 -COG0629 223702 cl09930 353029 -COG0630 223703 cl21455 354812 -COG0631 223704 cl00120 350908 -COG0632 223705 COG0632 223705 -COG0633 223706 cl00159 350924 -COG0634 223707 cl00309 351014 -COG0635 223708 COG0635 223708 -COG0636 223709 cl00466 351103 -COG0637 223710 cl21460 354816 -COG0638 223711 COG0638 223711 -COG0639 223712 cl13995 353799 -COG0640 223713 cl21459 354815 -COG0641 223714 COG0641 223714 -COG0642 223715 COG0642 223715 -COG0643 223716 COG0643 223716 -COG0644 223717 COG0644 223717 -COG0645 223718 COG0645 223718 -COG0646 223719 cl22882 354969 -COG0647 223720 COG0647 223720 -COG0648 223721 COG0648 223721 -COG0649 223722 cl21493 354835 -COG0650 223723 cl00469 351105 -COG0651 223724 COG0651 223724 -COG0652 223725 cl00197 350942 -COG0653 223726 COG0653 223726 -COG0654 223727 cl30692 357568 -COG0655 223728 cl00438 351093 -COG0656 223729 cl00470 351106 -COG0657 223730 COG0657 223730 -COG0658 223731 COG0658 223731 -COG0659 223732 COG0659 223732 -COG0661 223733 COG0661 223733 -COG0662 223734 cl21464 354820 -COG0663 223735 COG0663 223735 -COG0664 223736 COG0664 223736 -COG0665 223737 cl30730 357606 -COG0666 223738 COG0666 223738 -COG0667 223739 COG0667 223739 -COG0668 223740 COG0668 223740 -COG0669 223741 cl00015 350862 -COG0670 223742 cl00473 351107 -COG0671 223743 cl00474 351108 -COG0672 223744 cl00475 320993 -COG0673 223745 COG0673 223745 -COG0674 223746 COG0674 223746 -COG0675 223747 COG0675 223747 -COG0676 223748 cl14648 353820 -COG0677 223749 COG0677 223749 -COG0678 223750 cl00388 351069 -COG0679 223751 cl22894 328943 -COG0680 223752 cl00477 351109 -COG0681 223753 cl10465 353074 -COG0682 223754 cl00478 351110 -COG0683 223755 cl10011 353040 -COG0684 223756 cl00480 351111 -COG0685 223757 cl00246 294174 -COG0686 223758 cl28944 355820 -COG0687 223759 COG0687 223759 -COG0688 223760 cl03656 322379 -COG0689 223761 COG0689 223761 -COG0690 223762 cl00481 351112 -COG0691 223763 cl00482 351113 -COG0692 223764 cl00483 351114 -COG0693 223765 COG0693 223765 -COG0694 223766 cl29515 356391 -COG0695 223767 cl00388 351069 -COG0696 223768 COG0696 223768 -COG0697 223769 COG0697 223769 -COG0698 223770 cl00485 351115 -COG0699 223771 COG0699 223771 -COG0700 223772 cl21594 328818 -COG0701 223773 cl17795 302666 -COG0702 223774 COG0702 223774 -COG0703 223775 cl17190 354320 -COG0704 223776 COG0704 223776 -COG0705 223777 cl21536 354858 -COG0706 223778 cl00489 351116 -COG0707 223779 COG0707 223779 -COG0708 223780 cl00490 351117 -COG0709 223781 COG0709 223781 -COG0710 223782 COG0710 223782 -COG0711 223783 COG0711 223783 -COG0712 223784 cl17210 354322 -COG0713 223785 cl00492 351118 -COG0714 223786 COG0714 223786 -COG0715 223787 cl21456 354813 -COG0716 223788 cl00438 351093 -COG0717 223789 cl00493 351119 -COG0718 223790 cl00494 351120 -COG0719 223791 COG0719 223791 -COG0720 223792 cl00263 350991 -COG0721 223793 cl00495 351121 -COG0722 223794 cl17225 354324 -COG0723 223795 COG0723 223795 -COG0724 223796 COG0724 223796 -COG0725 223797 COG0725 223797 -COG0726 223798 COG0726 223798 -COG0727 223799 cl00497 321006 -COG0728 223800 cl09326 352957 -COG0729 223801 COG0729 223801 -COG0730 223802 cl21514 354847 -COG0731 223803 COG0731 223803 -COG0732 223804 COG0732 223804 -COG0733 223805 cl11976 325151 -COG0735 223806 cl21459 354815 -COG0736 223807 cl00500 351122 -COG0737 223808 COG0737 223808 -COG0738 223809 cl28910 355786 -COG0739 223810 COG0739 223810 -COG0740 223811 cl23717 355015 -COG0741 223812 cl30778 357654 -COG0742 223813 cl17173 354317 -COG0743 223814 COG0743 223814 -COG0744 223815 COG0744 223815 -COG0745 223816 COG0745 223816 -COG0746 223817 cl11394 353239 -COG0747 223818 COG0747 223818 -COG0748 223819 COG0748 223819 -COG0749 223820 COG0749 223820 -COG0750 223821 COG0750 223821 -COG0751 223822 COG0751 223822 -COG0752 223823 cl00268 350993 -COG0753 223824 COG0753 223824 -COG0754 223825 cl23821 355058 -COG0755 223826 cl00504 321008 -COG0756 223827 cl00493 351119 -COG0757 223828 cl00505 351123 -COG0758 223829 COG0758 223829 -COG0759 223830 cl00506 351124 -COG0760 223831 COG0760 223831 -COG0761 223832 cl19123 354385 -COG0762 223833 cl00508 351125 -COG0763 223834 cl10013 353042 -COG0764 223835 cl00509 351126 -COG0765 223836 COG0765 223836 -COG0766 223837 cl00288 260328 -COG0767 223838 cl00510 351127 -COG0768 223839 COG0768 223839 -COG0769 223840 COG0769 223840 -COG0770 223841 COG0770 223841 -COG0771 223842 COG0771 223842 -COG0772 223843 cl00511 294347 -COG0773 223844 COG0773 223844 -COG0774 223845 cl00512 351128 -COG0775 223846 cl00303 351011 -COG0776 223847 cl00257 350986 -COG0777 223848 cl23717 355015 -COG0778 223849 cl00514 321015 -COG0779 223850 cl00259 350988 -COG0780 223851 cl00263 350991 -COG0781 223852 cl00223 350963 -COG0782 223853 cl29503 356379 -COG0783 223854 cl00264 350992 -COG0784 223855 cl19078 354377 -COG0785 223856 cl21514 354847 -COG0786 223857 cl19414 327550 -COG0787 223858 cl27635 355667 -COG0788 223859 COG0788 223859 -COG0789 223860 COG0789 223860 -COG0790 223861 COG0790 223861 -COG0791 223862 cl21534 354857 -COG0792 223863 cl00516 351129 -COG0793 223864 COG0793 223864 -COG0794 223865 cl00389 351070 -COG0795 223866 cl12074 325180 -COG0796 223867 cl00518 351130 -COG0797 223868 COG0797 223868 -COG0798 223869 COG0798 223869 -COG0799 223870 cl00519 351131 -COG0800 223871 cl21457 354814 -COG0801 223872 cl00233 350972 -COG0802 223873 cl21455 354812 -COG0803 223874 COG0803 223874 -COG0804 223875 COG0804 223875 -COG0805 223876 cl00521 351132 -COG0806 223877 COG0806 223877 -COG0807 223878 cl00522 351133 -COG0809 223879 cl00523 351134 -COG0810 223880 COG0810 223880 -COG0811 223881 cl00568 351156 -COG0812 223882 COG0812 223882 -COG0813 223883 cl00303 351011 -COG0814 223884 COG0814 223884 -COG0815 223885 cl25421 355393 -COG0816 223886 cl21482 354829 -COG0817 223887 cl21482 354829 -COG0818 223888 cl00526 351135 -COG0819 223889 cl15243 353926 -COG0820 223890 COG0820 223890 -COG0821 223891 cl29317 356193 -COG0822 223892 cl00528 351136 -COG0823 223893 cl29726 356602 -COG0824 223894 cl00509 351126 -COG0825 223895 cl23717 355015 -COG0826 223896 cl03113 322198 -COG0827 223897 COG0827 223897 -COG0828 223898 cl00529 351137 -COG0829 223899 cl00530 351138 -COG0830 223900 cl19817 354466 -COG0831 223901 cl00532 351139 -COG0832 223902 cl00533 351140 -COG0833 223903 cl30117 356993 -COG0834 223904 COG0834 223904 -COG0835 223905 cl00256 294183 -COG0836 223906 COG0836 223906 -COG0837 223907 cl17037 354300 -COG0838 223908 cl00535 351141 -COG0839 223909 cl21484 354830 -COG0840 223910 cl30773 357649 -COG0841 223911 COG0841 223911 -COG0842 223912 COG0842 223912 -COG0843 223913 cl00275 350997 -COG0845 223914 COG0845 223914 -COG0846 223915 cl00195 350940 -COG0847 223916 COG0847 223916 -COG0848 223917 cl00537 321029 -COG0849 223918 COG0849 223918 -COG0850 223919 COG0850 223919 -COG0851 223920 cl00538 351142 -COG0852 223921 cl19197 354392 -COG0853 223922 cl00540 351143 -COG0854 223923 cl00541 351144 -COG0855 223924 COG0855 223924 -COG0856 223925 cl00309 351014 -COG0857 223926 COG0857 223926 -COG0858 223927 cl00542 351145 -COG0859 223928 COG0859 223928 -COG0860 223929 COG0860 223929 -COG0861 223930 cl10468 324589 -COG0863 223931 cl17173 354317 -COG0864 223932 COG0864 223932 -COG1001 223933 cl28964 355840 -COG1002 223934 COG1002 223934 -COG1003 223935 cl18945 354370 -COG1004 223936 cl29802 356678 -COG1005 223937 cl00469 351105 -COG1006 223938 cl00492 351118 -COG1007 223939 cl29598 356474 -COG1008 223940 COG1008 223940 -COG1009 223941 cl30665 357541 -COG1010 223942 cl00304 351012 -COG1011 223943 COG1011 223943 -COG1012 223944 cl11961 353326 -COG1013 223945 COG1013 223945 -COG1014 223946 cl00546 351146 -COG1015 223947 cl23718 355016 -COG1017 223948 cl21461 354817 -COG1018 223949 COG1018 223949 -COG1019 223950 cl00015 350862 -COG1020 223951 COG1020 223951 -COG1021 223952 COG1021 223952 -COG1022 223953 cl17068 354307 -COG1023 223954 COG1023 223954 -COG1024 223955 cl23717 355015 -COG1025 223956 COG1025 223956 -COG1026 223957 COG1026 223957 -COG1027 223958 COG1027 223958 -COG1028 223959 COG1028 223959 -COG1029 223960 COG1029 223960 -COG1030 223961 COG1030 223961 -COG1031 223962 COG1031 223962 -COG1032 223963 COG1032 223963 -COG1033 223964 COG1033 223964 -COG1034 223965 COG1034 223965 -COG1035 223966 cl27156 355620 -COG1036 223967 COG1036 223967 -COG1038 223968 COG1038 223968 -COG1039 223969 COG1039 223969 -COG1040 223970 cl00309 351014 -COG1041 223971 COG1041 223971 -COG1042 223972 COG1042 223972 -COG1043 223973 COG1043 223973 -COG1044 223974 COG1044 223974 -COG1045 223975 COG1045 223975 -COG1047 223976 COG1047 223976 -COG1048 223977 COG1048 223977 -COG1049 223978 COG1049 223978 -COG1051 223979 cl00447 351096 -COG1052 223980 cl28944 355820 -COG1053 223981 cl30765 357641 -COG1054 223982 cl00125 350910 -COG1055 223983 COG1055 223983 -COG1056 223984 cl00015 350862 -COG1057 223985 cl00015 350862 -COG1058 223986 COG1058 223986 -COG1059 223987 cl28531 333351 -COG1060 223988 COG1060 223988 -COG1061 223989 COG1061 223989 -COG1062 223990 COG1062 223990 -COG1063 223991 COG1063 223991 -COG1064 223992 COG1064 223992 -COG1066 223993 COG1066 223993 -COG1067 223994 COG1067 223994 -COG1069 223995 COG1069 223995 -COG1070 223996 COG1070 223996 -COG1071 223997 cl01629 351571 -COG1072 223998 cl17190 354320 -COG1073 223999 COG1073 223999 -COG1074 224000 COG1074 224000 -COG1075 224001 cl21494 354836 -COG1076 224002 COG1076 224002 -COG1077 224003 COG1077 224003 -COG1078 224004 COG1078 224004 -COG1079 224005 cl00454 351100 -COG1080 224006 COG1080 224006 -COG1082 224007 cl23721 355019 -COG1083 224008 cl11394 353239 -COG1084 224009 COG1084 224009 -COG1085 224010 COG1085 224010 -COG1086 224011 COG1086 224011 -COG1087 224012 cl21454 354811 -COG1088 224013 COG1088 224013 -COG1089 224014 cl21454 354811 -COG1090 224015 COG1090 224015 -COG1091 224016 COG1091 224016 -COG1092 224017 COG1092 224017 -COG1093 224018 COG1093 224018 -COG1094 224019 COG1094 224019 -COG1095 224020 COG1095 224020 -COG1096 224021 COG1096 224021 -COG1097 224022 COG1097 224022 -COG1098 224023 COG1098 224023 -COG1099 224024 COG1099 224024 -COG1100 224025 COG1100 224025 -COG1101 224026 COG1101 224026 -COG1102 224027 COG1102 224027 -COG1103 224028 cl18945 354370 -COG1104 224029 cl18945 354370 -COG1105 224030 cl00192 350937 -COG1106 224031 COG1106 224031 -COG1107 224032 COG1107 224032 -COG1108 224033 COG1108 224033 -COG1109 224034 COG1109 224034 -COG1110 224035 COG1110 224035 -COG1111 224036 COG1111 224036 -COG1112 224037 COG1112 224037 -COG1113 224038 cl30117 356993 -COG1114 224039 cl00547 294369 -COG1115 224040 cl00548 351147 -COG1116 224041 COG1116 224041 -COG1117 224042 COG1117 224042 -COG1118 224043 COG1118 224043 -COG1119 224044 COG1119 224044 -COG1120 224045 COG1120 224045 -COG1121 224046 COG1121 224046 -COG1122 224047 COG1122 224047 -COG1123 224048 COG1123 224048 -COG1124 224049 COG1124 224049 -COG1125 224050 COG1125 224050 -COG1126 224051 COG1126 224051 -COG1127 224052 COG1127 224052 -COG1129 224053 COG1129 224053 -COG1131 224054 COG1131 224054 -COG1132 224055 COG1132 224055 -COG1133 224056 cl00549 321036 -COG1134 224057 COG1134 224057 -COG1135 224058 COG1135 224058 -COG1136 224059 COG1136 224059 -COG1137 224060 COG1137 224060 -COG1138 224061 cl25673 355436 -COG1139 224062 COG1139 224062 -COG1140 224063 COG1140 224063 -COG1141 224064 cl19102 354379 -COG1142 224065 COG1142 224065 -COG1143 224066 COG1143 224066 -COG1144 224067 COG1144 224067 -COG1145 224068 COG1145 224068 -COG1146 224069 COG1146 224069 -COG1148 224070 COG1148 224070 -COG1149 224071 COG1149 224071 -COG1150 224072 COG1150 224072 -COG1151 224073 cl23739 355027 -COG1152 224074 COG1152 224074 -COG1153 224075 cl09929 324542 -COG1154 224076 COG1154 224076 -COG1155 224077 COG1155 224077 -COG1156 224078 cl28885 355771 -COG1157 224079 COG1157 224079 -COG1158 224080 COG1158 224080 -COG1159 224081 COG1159 224081 -COG1160 224082 COG1160 224082 -COG1161 224083 COG1161 224083 -COG1162 224084 COG1162 224084 -COG1163 224085 COG1163 224085 -COG1164 224086 COG1164 224086 -COG1165 224087 COG1165 224087 -COG1166 224088 COG1166 224088 -COG1167 224089 COG1167 224089 -COG1168 224090 COG1168 224090 -COG1169 224091 COG1169 224091 -COG1171 224092 COG1171 224092 -COG1172 224093 cl00454 351100 -COG1173 224094 COG1173 224094 -COG1174 224095 cl00427 351090 -COG1175 224096 cl00427 351090 -COG1176 224097 cl00427 351090 -COG1177 224098 COG1177 224098 -COG1178 224099 COG1178 224099 -COG1179 224100 COG1179 224100 -COG1180 224101 COG1180 224101 -COG1181 224102 COG1181 224102 -COG1182 224103 cl00438 351093 -COG1183 224104 COG1183 224104 -COG1184 224105 cl00348 351044 -COG1185 224106 COG1185 224106 -COG1186 224107 COG1186 224107 -COG1187 224108 COG1187 224108 -COG1188 224109 cl09940 353034 -COG1189 224110 COG1189 224110 -COG1190 224111 COG1190 224111 -COG1191 224112 COG1191 224112 -COG1192 224113 cl28913 355789 -COG1193 224114 COG1193 224114 -COG1194 224115 COG1194 224115 -COG1195 224116 COG1195 224116 -COG1196 224117 COG1196 224117 -COG1197 224118 COG1197 224118 -COG1198 224119 cl30559 357435 -COG1199 224120 COG1199 224120 -COG1200 224121 COG1200 224121 -COG1201 224122 cl28899 355775 -COG1202 224123 COG1202 224123 -COG1203 224124 COG1203 224124 -COG1204 224125 COG1204 224125 -COG1205 224126 COG1205 224126 -COG1206 224127 cl21454 354811 -COG1207 224128 COG1207 224128 -COG1208 224129 COG1208 224129 -COG1209 224130 COG1209 224130 -COG1210 224131 cl11394 353239 -COG1211 224132 cl11394 353239 -COG1212 224133 cl11394 353239 -COG1213 224134 cl11394 353239 -COG1214 224135 cl22532 304575 -COG1215 224136 COG1215 224136 -COG1216 224137 COG1216 224137 -COG1217 224138 COG1217 224138 -COG1218 224139 cl00289 351004 -COG1219 224140 COG1219 224140 -COG1220 224141 COG1220 224141 -COG1221 224142 COG1221 224142 -COG1222 224143 COG1222 224143 -COG1223 224144 COG1223 224144 -COG1224 224145 COG1224 224145 -COG1225 224146 cl00388 351069 -COG1226 224147 COG1226 224147 -COG1227 224148 COG1227 224148 -COG1228 224149 cl28964 355840 -COG1229 224150 cl00281 351001 -COG1230 224151 cl29883 356759 -COG1231 224152 COG1231 224152 -COG1232 224153 COG1232 224153 -COG1233 224154 COG1233 224154 -COG1234 224155 COG1234 224155 -COG1235 224156 COG1235 224156 -COG1236 224157 COG1236 224157 -COG1237 224158 cl23716 355014 -COG1238 224159 COG1238 224159 -COG1239 224160 COG1239 224160 -COG1240 224161 COG1240 224161 -COG1241 224162 COG1241 224162 -COG1242 224163 COG1242 224163 -COG1243 224164 COG1243 224164 -COG1244 224165 COG1244 224165 -COG1245 224166 COG1245 224166 -COG1246 224167 cl17182 354318 -COG1247 224168 cl29704 356580 -COG1249 224169 cl30699 357575 -COG1250 224170 COG1250 224170 -COG1251 224171 COG1251 224171 -COG1252 224172 cl30284 357160 -COG1253 224173 COG1253 224173 -COG1254 224174 cl00551 351148 -COG1255 224175 cl00552 294373 -COG1256 224176 COG1256 224176 -COG1257 224177 cl00205 350949 -COG1258 224178 cl28383 333203 -COG1259 224179 cl00553 351149 -COG1260 224180 cl00554 351150 -COG1261 224181 cl00555 351151 -COG1262 224182 cl23855 355074 -COG1263 224183 cl21492 328750 -COG1264 224184 cl29595 356471 -COG1266 224185 COG1266 224185 -COG1267 224186 cl00559 321042 -COG1268 224187 cl21488 354833 -COG1269 224188 COG1269 224188 -COG1270 224189 cl00561 351153 -COG1271 224190 cl00562 351154 -COG1272 224191 cl03831 352063 -COG1273 224192 COG1273 224192 -COG1274 224193 cl22860 354963 -COG1275 224194 cl04176 352121 -COG1276 224195 cl21540 354861 -COG1277 224196 cl21474 354826 -COG1278 224197 cl09927 353027 -COG1279 224198 cl00565 294381 -COG1280 224199 cl00565 294381 -COG1281 224200 cl00236 350974 -COG1282 224201 cl22917 354977 -COG1283 224202 COG1283 224202 -COG1284 224203 COG1284 224203 -COG1285 224204 COG1285 224204 -COG1286 224205 cl00567 351155 -COG1287 224206 cl25704 330525 -COG1288 224207 cl21473 354825 -COG1289 224208 COG1289 224208 -COG1290 224209 COG1290 224209 -COG1291 224210 cl00568 351156 -COG1292 224211 cl00569 321047 -COG1293 224212 COG1293 224212 -COG1294 224213 COG1294 224213 -COG1295 224214 cl07918 352838 -COG1296 224215 cl00570 351157 -COG1297 224216 cl14607 326328 -COG1298 224217 cl07980 352841 -COG1299 224218 cl21492 328750 -COG1300 224219 cl00572 351158 -COG1301 224220 cl00573 351159 -COG1302 224221 cl00574 351160 -COG1303 224222 cl21505 354844 -COG1304 224223 COG1304 224223 -COG1305 224224 COG1305 224224 -COG1306 224225 COG1306 224225 -COG1307 224226 cl19360 354413 -COG1308 224227 COG1308 224227 -COG1309 224228 cl27691 355670 -COG1310 224229 cl13996 353800 -COG1311 224230 cl28527 333347 -COG1312 224231 cl23721 355019 -COG1313 224232 COG1313 224232 -COG1314 224233 cl09123 352936 -COG1315 224234 cl19219 354396 -COG1316 224235 cl00581 321052 -COG1317 224236 COG1317 224236 -COG1318 224237 cl28599 333419 -COG1319 224238 COG1319 224238 -COG1320 224239 cl00583 351161 -COG1321 224240 COG1321 224240 -COG1322 224241 COG1322 224241 -COG1323 224242 cl27012 355603 -COG1324 224243 cl00584 351162 -COG1325 224244 cl00585 351163 -COG1326 224245 COG1326 224245 -COG1327 224246 cl27261 355632 -COG1328 224247 COG1328 224247 -COG1329 224248 cl00588 351164 -COG1330 224249 cl28372 355710 -COG1331 224250 COG1331 224250 -COG1332 224251 cl21471 354824 -COG1333 224252 cl09125 352937 -COG1334 224253 cl00591 351165 -COG1335 224254 cl00220 350960 -COG1336 224255 cl21471 354824 -COG1337 224256 cl21471 354824 -COG1338 224257 cl00593 351166 -COG1339 224258 COG1339 224258 -COG1340 224259 COG1340 224259 -COG1341 224260 COG1341 224260 -COG1342 224261 cl22854 354960 -COG1343 224262 cl11442 353257 -COG1344 224263 COG1344 224263 -COG1345 224264 COG1345 224264 -COG1346 224265 cl00596 351167 -COG1347 224266 cl00597 351168 -COG1348 224267 cl21455 354812 -COG1349 224268 COG1349 224268 -COG1350 224269 cl00342 294246 -COG1351 224270 cl27413 355648 -COG1352 224271 COG1352 224271 -COG1353 224272 COG1353 224272 -COG1354 224273 cl00598 351169 -COG1355 224274 cl00599 351170 -COG1356 224275 COG1356 224275 -COG1357 224276 COG1357 224276 -COG1358 224277 cl00600 351171 -COG1359 224278 cl10022 324563 -COG1360 224279 COG1360 224279 -COG1361 224280 COG1361 224280 -COG1362 224281 cl14876 353847 -COG1363 224282 cl14876 353847 -COG1364 224283 cl00603 351172 -COG1365 224284 cl00292 351005 -COG1366 224285 cl00604 351173 -COG1367 224286 cl21471 354824 -COG1368 224287 COG1368 224287 -COG1369 224288 cl00605 321066 -COG1370 224289 COG1370 224289 -COG1371 224290 cl00606 351174 -COG1372 224291 COG1372 224291 -COG1373 224292 COG1373 224292 -COG1374 224293 cl00607 294405 -COG1376 224294 COG1376 224294 -COG1377 224295 cl19167 354387 -COG1378 224296 COG1378 224296 -COG1379 224297 COG1379 224297 -COG1380 224298 cl00608 351175 -COG1381 224299 cl27405 355646 -COG1382 224300 cl09111 352933 -COG1383 224301 cl00610 351176 -COG1384 224302 COG1384 224302 -COG1385 224303 cl00611 321070 -COG1386 224304 cl00612 351177 -COG1387 224305 COG1387 224305 -COG1388 224306 COG1388 224306 -COG1389 224307 COG1389 224307 -COG1390 224308 COG1390 224308 -COG1391 224309 COG1391 224309 -COG1392 224310 cl28112 332933 -COG1393 224311 cl00388 351069 -COG1394 224312 cl00613 351178 -COG1395 224313 COG1395 224313 -COG1396 224314 COG1396 224314 -COG1397 224315 cl00614 351179 -COG1398 224316 cl00615 294412 -COG1399 224317 cl00616 351180 -COG1400 224318 cl00617 321075 -COG1401 224319 COG1401 224319 -COG1402 224320 cl00618 351181 -COG1403 224321 cl00083 350893 -COG1404 224322 COG1404 224322 -COG1405 224323 COG1405 224323 -COG1406 224324 COG1406 224324 -COG1407 224325 cl13995 353799 -COG1408 224326 cl13995 353799 -COG1409 224327 COG1409 224327 -COG1410 224328 COG1410 224328 -COG1411 224329 cl21457 354814 -COG1412 224330 cl28905 355781 -COG1413 224331 COG1413 224331 -COG1414 224332 COG1414 224332 -COG1415 224333 cl00620 321077 -COG1416 224334 cl00672 351208 -COG1417 224335 COG1417 224335 -COG1418 224336 COG1418 224336 -COG1419 224337 COG1419 224337 -COG1420 224338 cl29475 356351 -COG1421 224339 cl00622 351182 -COG1422 224340 cl19818 327633 -COG1423 224341 cl12015 353338 -COG1424 224342 cl00625 351183 -COG1426 224343 COG1426 224343 -COG1427 224344 cl21456 354813 -COG1428 224345 cl17190 354320 -COG1429 224346 COG1429 224346 -COG1430 224347 cl00627 351184 -COG1431 224348 COG1431 224348 -COG1432 224349 COG1432 224349 -COG1433 224350 cl00252 320858 -COG1434 224351 cl00630 351186 -COG1435 224352 cl23762 329062 -COG1436 224353 cl00632 351187 -COG1437 224354 cl11964 353327 -COG1438 224355 COG1438 224355 -COG1439 224356 COG1439 224356 -COG1440 224357 cl10014 353043 -COG1441 224358 COG1441 224358 -COG1442 224359 COG1442 224359 -COG1443 224360 COG1443 224360 -COG1444 224361 COG1444 224361 -COG1445 224362 cl10014 353043 -COG1446 224363 cl00635 351188 -COG1447 224364 cl00166 350929 -COG1448 224365 cl18945 354370 -COG1449 224366 COG1449 224366 -COG1450 224367 COG1450 224367 -COG1451 224368 cl19237 354398 -COG1452 224369 COG1452 224369 -COG1453 224370 COG1453 224370 -COG1454 224371 cl02872 351912 -COG1455 224372 cl21492 328750 -COG1456 224373 COG1456 224373 -COG1457 224374 cl00456 320982 -COG1458 224375 cl17319 327412 -COG1459 224376 COG1459 224376 -COG1460 224377 cl00638 351189 -COG1461 224378 COG1461 224378 -COG1462 224379 cl21526 354853 -COG1463 224380 COG1463 224380 -COG1464 224381 cl21456 354813 -COG1465 224382 cl00640 351190 -COG1466 224383 COG1466 224383 -COG1467 224384 cl01287 321433 -COG1468 224385 cl00641 351191 -COG1469 224386 cl00642 351192 -COG1470 224387 COG1470 224387 -COG1471 224388 COG1471 224388 -COG1472 224389 COG1472 224389 -COG1473 224390 cl14876 353847 -COG1474 224391 COG1474 224391 -COG1475 224392 COG1475 224392 -COG1476 224393 cl22854 354960 -COG1477 224394 cl19294 354406 -COG1478 224395 cl00644 351193 -COG1479 224396 cl23836 329113 -COG1480 224397 COG1480 224397 -COG1481 224398 cl27397 355645 -COG1482 224399 COG1482 224399 -COG1483 224400 cl19819 303008 -COG1484 224401 cl30760 357636 -COG1485 224402 cl29094 355970 -COG1486 224403 COG1486 224403 -COG1487 224404 cl28905 355781 -COG1488 224405 COG1488 224405 -COG1489 224406 cl00647 351194 -COG1490 224407 cl00253 350984 -COG1491 224408 cl27980 332801 -COG1492 224409 COG1492 224409 -COG1493 224410 COG1493 224410 -COG1494 224411 cl00289 351004 -COG1495 224412 cl00649 351195 -COG1496 224413 cl00650 351196 -COG1497 224414 COG1497 224414 -COG1498 224415 COG1498 224415 -COG1499 224416 COG1499 224416 -COG1500 224417 COG1500 224417 -COG1501 224418 cl29077 355953 -COG1502 224419 COG1502 224419 -COG1503 224420 COG1503 224420 -COG1504 224421 cl00182 350934 -COG1505 224422 COG1505 224422 -COG1506 224423 COG1506 224423 -COG1507 224424 cl00652 351197 -COG1508 224425 COG1508 224425 -COG1509 224426 COG1509 224426 -COG1510 224427 cl21459 354815 -COG1511 224428 COG1511 224428 -COG1512 224429 COG1512 224429 -COG1513 224430 COG1513 224430 -COG1514 224431 COG1514 224431 -COG1515 224432 cl00653 351198 -COG1516 224433 cl00654 351199 -COG1517 224434 cl21516 354849 -COG1518 224435 cl00656 351200 -COG1519 224436 COG1519 224436 -COG1520 224437 COG1520 224437 -COG1521 224438 COG1521 224438 -COG1522 224439 COG1522 224439 -COG1523 224440 COG1523 224440 -COG1524 224441 COG1524 224441 -COG1525 224442 cl29560 356436 -COG1526 224443 cl00659 321097 -COG1527 224444 cl00660 351201 -COG1528 224445 cl00264 350992 -COG1529 224446 COG1529 224446 -COG1530 224447 COG1530 224447 -COG1531 224448 cl00661 321099 -COG1532 224449 cl00662 321100 -COG1533 224450 cl26885 331706 -COG1534 224451 cl00663 351202 -COG1535 224452 cl00220 350960 -COG1536 224453 COG1536 224453 -COG1537 224454 cl30759 357635 -COG1538 224455 COG1538 224455 -COG1539 224456 cl00263 350991 -COG1540 224457 cl15692 353970 -COG1541 224458 COG1541 224458 -COG1542 224459 cl19549 327582 -COG1543 224460 COG1543 224460 -COG1544 224461 cl00250 350982 -COG1545 224462 COG1545 224462 -COG1546 224463 cl00666 351203 -COG1547 224464 cl00667 351204 -COG1548 224465 cl00668 321104 -COG1549 224466 COG1549 224466 -COG1550 224467 cl00669 351205 -COG1551 224468 cl00670 351206 -COG1552 224469 cl00671 351207 -COG1553 224470 cl00672 351208 -COG1554 224471 COG1554 224471 -COG1555 224472 COG1555 224472 -COG1556 224473 cl00674 321109 -COG1558 224474 COG1558 224474 -COG1559 224475 cl18961 354373 -COG1560 224476 cl17185 354319 -COG1561 224477 cl26779 355573 -COG1562 224478 cl00210 350953 -COG1563 224479 cl00676 351209 -COG1564 224480 cl21552 354867 -COG1565 224481 cl17173 354317 -COG1566 224482 COG1566 224482 -COG1567 224483 cl23831 304988 -COG1568 224484 COG1568 224484 -COG1569 224485 cl28905 355781 -COG1570 224486 cl25917 355463 -COG1571 224487 COG1571 224487 -COG1572 224488 COG1572 224488 -COG1573 224489 cl00483 351114 -COG1574 224490 COG1574 224490 -COG1575 224491 cl00337 351038 -COG1576 224492 cl00679 351210 -COG1577 224493 COG1577 224493 -COG1578 224494 cl15397 353937 -COG1579 224495 COG1579 224495 -COG1580 224496 cl00681 351211 -COG1581 224497 cl00682 351212 -COG1582 224498 cl00683 351213 -COG1583 224499 cl11443 353258 -COG1584 224500 cl00685 321115 -COG1585 224501 cl00686 351214 -COG1586 224502 cl00687 351215 -COG1587 224503 cl03649 322377 -COG1588 224504 cl00688 351216 -COG1589 224505 COG1589 224505 -COG1590 224506 cl00689 351217 -COG1591 224507 cl00516 351129 -COG1592 224508 COG1592 224508 -COG1593 224509 cl21473 354825 -COG1594 224510 COG1594 224510 -COG1595 224511 COG1595 224511 -COG1596 224512 COG1596 224512 -COG1597 224513 COG1597 224513 -COG1598 224514 cl23837 355065 -COG1599 224515 COG1599 224515 -COG1600 224516 COG1600 224516 -COG1601 224517 cl17014 354297 -COG1602 224518 COG1602 224518 -COG1603 224519 cl23724 355021 -COG1604 224520 cl21471 354824 -COG1605 224521 cl00693 351218 -COG1606 224522 COG1606 224522 -COG1607 224523 cl00509 351126 -COG1608 224524 cl00452 351098 -COG1609 224525 COG1609 224525 -COG1610 224526 cl21572 354877 -COG1611 224527 cl22881 354968 -COG1612 224528 cl19388 327545 -COG1613 224529 cl21456 354813 -COG1614 224530 cl11685 353311 -COG1615 224531 COG1615 224531 -COG1617 224532 cl00698 351219 -COG1618 224533 cl21455 354812 -COG1619 224534 cl00700 351220 -COG1620 224535 cl00701 294462 -COG1621 224536 COG1621 224536 -COG1622 224537 COG1622 224537 -COG1623 224538 COG1623 224538 -COG1624 224539 COG1624 224539 -COG1625 224540 COG1625 224540 -COG1626 224541 COG1626 224541 -COG1627 224542 cl19548 302911 -COG1628 224543 cl00653 351198 -COG1629 224544 COG1629 224544 -COG1630 224545 cl09134 324330 -COG1631 224546 cl00706 351221 -COG1632 224547 cl02977 322147 -COG1633 224548 cl00264 350992 -COG1634 224549 cl21552 354867 -COG1635 224550 cl21454 354811 -COG1636 224551 cl00292 351005 -COG1637 224552 cl00516 351129 -COG1638 224553 cl21456 354813 -COG1639 224554 COG1639 224554 -COG1640 224555 cl00711 351222 -COG1641 224556 cl03398 351986 -COG1643 224557 COG1643 224557 -COG1644 224558 cl00712 351223 -COG1645 224559 cl00713 351224 -COG1646 224560 cl21457 354814 -COG1647 224561 cl21494 354836 -COG1648 224562 COG1648 224562 -COG1649 224563 COG1649 224563 -COG1650 224564 cl00716 351225 -COG1651 224565 COG1651 224565 -COG1652 224566 COG1652 224566 -COG1653 224567 cl21456 354813 -COG1654 224568 cl21459 354815 -COG1655 224569 cl26577 331398 -COG1656 224570 cl19501 354428 -COG1657 224571 COG1657 224571 -COG1658 224572 cl00718 351226 -COG1659 224573 cl21556 354868 -COG1660 224574 cl21455 354812 -COG1661 224575 cl00720 351227 -COG1662 224576 cl00721 294470 -COG1663 224577 cl23778 355043 -COG1664 224578 cl19219 354396 -COG1665 224579 COG1665 224579 -COG1666 224580 cl00723 351228 -COG1667 224581 cl00724 260590 -COG1668 224582 COG1668 224582 -COG1669 224583 cl11966 353329 -COG1670 224584 COG1670 224584 -COG1671 224585 cl00727 321131 -COG1672 224586 COG1672 224586 -COG1673 224587 cl00728 321132 -COG1674 224588 COG1674 224588 -COG1675 224589 cl30696 357572 -COG1676 224590 COG1676 224590 -COG1677 224591 cl09139 352938 -COG1678 224592 cl00731 351229 -COG1679 224593 cl00285 351003 -COG1680 224594 cl21491 354834 -COG1681 224595 cl00732 321134 -COG1682 224596 cl21474 354826 -COG1683 224597 cl00733 351230 -COG1684 224598 cl00734 351231 -COG1685 224599 COG1685 224599 -COG1686 224600 COG1686 224600 -COG1687 224601 cl00735 321137 -COG1688 224602 cl21479 328741 -COG1689 224603 COG1689 224603 -COG1690 224604 cl22450 354940 -COG1691 224605 COG1691 224605 -COG1692 224606 cl13995 353799 -COG1693 224607 COG1693 224607 -COG1694 224608 cl16941 354290 -COG1695 224609 cl21459 354815 -COG1696 224610 cl00738 321138 -COG1697 224611 COG1697 224611 -COG1698 224612 cl00739 321139 -COG1699 224613 cl00740 351232 -COG1700 224614 COG1700 224614 -COG1701 224615 cl03400 351987 -COG1702 224616 COG1702 224616 -COG1703 224617 cl21455 354812 -COG1704 224618 cl00742 351233 -COG1705 224619 cl29459 356335 -COG1706 224620 cl19280 354403 -COG1707 224621 cl29106 355982 -COG1708 224622 cl11966 353329 -COG1709 224623 COG1709 224623 -COG1710 224624 cl22934 328960 -COG1711 224625 cl17012 354295 -COG1712 224626 COG1712 224626 -COG1713 224627 cl21469 354822 -COG1714 224628 cl00746 351234 -COG1715 224629 COG1715 224629 -COG1716 224630 COG1716 224630 -COG1717 224631 cl00748 351235 -COG1718 224632 COG1718 224632 -COG1719 224633 COG1719 224633 -COG1720 224634 cl00749 351236 -COG1721 224635 COG1721 224635 -COG1722 224636 cl00750 351237 -COG1723 224637 cl00751 351238 -COG1724 224638 cl00752 351239 -COG1725 224639 COG1725 224639 -COG1726 224640 COG1726 224640 -COG1727 224641 cl12022 353342 -COG1728 224642 cl00753 351240 -COG1729 224643 COG1729 224643 -COG1730 224644 cl09111 352933 -COG1731 224645 cl00317 351021 -COG1732 224646 cl21456 354813 -COG1733 224647 cl21459 354815 -COG1734 224648 cl00755 351241 -COG1735 224649 cl00281 351001 -COG1736 224650 cl28913 355789 -COG1737 224651 COG1737 224651 -COG1738 224652 cl00756 351242 -COG1739 224653 COG1739 224653 -COG1740 224654 COG1740 224654 -COG1741 224655 COG1741 224655 -COG1742 224656 cl00757 242072 -COG1743 224657 cl26958 331779 -COG1744 224658 COG1744 224658 -COG1745 224659 cl00759 321151 -COG1746 224660 COG1746 224660 -COG1747 224661 COG1747 224661 -COG1748 224662 COG1748 224662 -COG1749 224663 COG1749 224663 -COG1750 224664 COG1750 224664 -COG1751 224665 cl19522 354435 -COG1752 224666 COG1752 224666 -COG1753 224667 cl00762 351243 -COG1754 224668 COG1754 224668 -COG1755 224669 cl21511 328764 -COG1756 224670 cl00764 351244 -COG1757 224671 cl28596 333416 -COG1758 224672 cl14651 353822 -COG1759 224673 cl26941 355595 -COG1760 224674 cl27283 355635 -COG1761 224675 cl11409 353246 -COG1762 224676 cl00163 350927 -COG1763 224677 cl21455 354812 -COG1764 224678 cl00767 321154 -COG1765 224679 cl00767 321154 -COG1766 224680 COG1766 224680 -COG1767 224681 cl00768 351245 -COG1768 224682 cl13995 353799 -COG1769 224683 cl21471 354824 -COG1770 224684 COG1770 224684 -COG1771 224685 cl19820 303009 -COG1772 224686 cl00769 321156 -COG1773 224687 cl00202 350946 -COG1774 224688 cl00770 351246 -COG1775 224689 COG1775 224689 -COG1776 224690 COG1776 224690 -COG1777 224691 COG1777 224691 -COG1778 224692 cl21460 354816 -COG1779 224693 cl19251 354400 -COG1780 224694 cl00438 351093 -COG1781 224695 cl27375 355644 -COG1782 224696 COG1782 224696 -COG1783 224697 cl12054 353348 -COG1784 224698 cl00772 351247 -COG1785 224699 COG1785 224699 -COG1786 224700 cl00215 350957 -COG1787 224701 COG1787 224701 -COG1788 224702 cl00339 351040 -COG1790 224703 cl17805 327436 -COG1791 224704 cl21464 354820 -COG1792 224705 cl19252 354401 -COG1793 224706 COG1793 224706 -COG1794 224707 cl00518 351130 -COG1795 224708 cl00774 351248 -COG1796 224709 cl25961 355469 -COG1797 224710 COG1797 224710 -COG1798 224711 cl00304 351012 -COG1799 224712 cl00775 351249 -COG1800 224713 cl17362 354329 -COG1801 224714 cl00777 351250 -COG1802 224715 COG1802 224715 -COG1803 224716 cl00245 320852 -COG1804 224717 cl19215 327522 -COG1805 224718 cl00779 351251 -COG1806 224719 cl00780 351252 -COG1807 224720 cl21590 354882 -COG1808 224721 cl00781 351253 -COG1809 224722 cl00782 321165 -COG1810 224723 cl19821 327634 -COG1811 224724 cl00784 351254 -COG1812 224725 cl27474 332295 -COG1813 224726 cl26727 331548 -COG1814 224727 cl00278 350999 -COG1815 224728 COG1815 224728 -COG1816 224729 cl00281 351001 -COG1817 224730 COG1817 224730 -COG1818 224731 cl12076 353353 -COG1819 224732 COG1819 224732 -COG1820 224733 cl00281 351001 -COG1821 224734 COG1821 224734 -COG1822 224735 cl00785 321167 -COG1823 224736 cl00573 351159 -COG1824 224737 cl29469 356345 -COG1825 224738 cl00787 351255 -COG1826 224739 cl00788 294511 -COG1827 224740 COG1827 224740 -COG1828 224741 cl00789 351256 -COG1829 224742 COG1829 224742 -COG1830 224743 cl21457 354814 -COG1831 224744 cl00281 351001 -COG1832 224745 cl21454 354811 -COG1833 224746 cl15257 353929 -COG1834 224747 cl19186 354389 -COG1835 224748 cl21495 354837 -COG1836 224749 cl00793 351257 -COG1837 224750 cl00098 350899 -COG1838 224751 cl00795 351258 -COG1839 224752 cl00796 351259 -COG1840 224753 cl21456 354813 -COG1841 224754 cl00203 350947 -COG1842 224755 COG1842 224755 -COG1843 224756 cl29105 355981 -COG1844 224757 cl00797 321173 -COG1845 224758 cl00211 294143 -COG1846 224759 cl29125 356001 -COG1847 224760 COG1847 224760 -COG1848 224761 cl28905 355781 -COG1849 224762 cl00798 321174 -COG1850 224763 COG1850 224763 -COG1851 224764 cl00799 321175 -COG1852 224765 cl00800 351260 -COG1853 224766 cl00381 351064 -COG1854 224767 cl00802 351261 -COG1855 224768 COG1855 224768 -COG1856 224769 COG1856 224769 -COG1857 224770 cl00803 321178 -COG1858 224771 COG1858 224771 -COG1859 224772 cl19470 354421 -COG1860 224773 cl00805 321179 -COG1861 224774 cl11394 353239 -COG1862 224775 cl00806 351262 -COG1863 224776 cl00807 351263 -COG1864 224777 COG1864 224777 -COG1865 224778 cl00808 321182 -COG1866 224779 cl22860 354963 -COG1867 224780 cl17173 354317 -COG1868 224781 COG1868 224781 -COG1869 224782 cl00809 351264 -COG1871 224783 cl00810 351265 -COG1872 224784 cl00811 351266 -COG1873 224785 cl21591 354883 -COG1874 224786 COG1874 224786 -COG1875 224787 COG1875 224787 -COG1876 224788 COG1876 224788 -COG1877 224789 COG1877 224789 -COG1878 224790 cl00814 351268 -COG1879 224791 cl10011 353040 -COG1880 224792 cl22435 354938 -COG1881 224793 cl00227 350966 -COG1882 224794 COG1882 224794 -COG1883 224795 cl00816 351269 -COG1884 224796 cl00817 351270 -COG1885 224797 cl00818 321190 -COG1886 224798 COG1886 224798 -COG1887 224799 cl10013 353042 -COG1888 224800 cl00820 351271 -COG1889 224801 cl17173 354317 -COG1890 224802 cl00821 351272 -COG1891 224803 cl00822 351273 -COG1892 224804 cl21521 354850 -COG1893 224805 COG1893 224805 -COG1894 224806 COG1894 224806 -COG1895 224807 cl00824 321194 -COG1896 224808 cl21469 354822 -COG1897 224809 cl00020 350865 -COG1898 224810 cl21464 354820 -COG1899 224811 cl00826 351274 -COG1900 224812 cl14897 353851 -COG1901 224813 cl00611 321070 -COG1902 224814 cl28888 355772 -COG1903 224815 cl00828 351275 -COG1904 224816 cl00829 351276 -COG1905 224817 COG1905 224817 -COG1906 224818 cl00830 294541 -COG1907 224819 cl28348 333168 -COG1908 224820 cl00831 321198 -COG1909 224821 cl00832 321199 -COG1910 224822 cl21456 354813 -COG1911 224823 cl00600 351171 -COG1912 224824 cl17774 354341 -COG1913 224825 cl00064 350885 -COG1914 224826 cl00456 320982 -COG1915 224827 cl19054 354376 -COG1916 224828 cl12050 353346 -COG1917 224829 cl21464 354820 -COG1918 224830 cl00838 351277 -COG1920 224831 cl11394 353239 -COG1921 224832 cl18945 354370 -COG1922 224833 cl04270 352142 -COG1923 224834 cl00259 350988 -COG1924 224835 cl17037 354300 -COG1925 224836 cl00206 350950 -COG1926 224837 cl00309 351014 -COG1927 224838 cl00840 321201 -COG1928 224839 COG1928 224839 -COG1929 224840 cl00841 351278 -COG1930 224841 cl00842 321203 -COG1931 224842 cl00585 351163 -COG1932 224843 COG1932 224843 -COG1933 224844 COG1933 224844 -COG1934 224845 cl21541 328784 -COG1935 224846 cl00845 321204 -COG1936 224847 cl17190 354320 -COG1937 224848 cl00846 351279 -COG1938 224849 cl00847 351280 -COG1939 224850 cl00258 350987 -COG1940 224851 COG1940 224851 -COG1941 224852 COG1941 224852 -COG1942 224853 cl00235 350973 -COG1943 224854 cl00848 321207 -COG1944 224855 cl19253 354402 -COG1945 224856 cl00849 321208 -COG1946 224857 COG1946 224857 -COG1947 224858 COG1947 224858 -COG1948 224859 COG1948 224859 -COG1949 224860 cl10012 353041 -COG1950 224861 cl00850 351281 -COG1951 224862 cl00851 351282 -COG1952 224863 cl00251 350983 -COG1953 224864 cl00456 320982 -COG1954 224865 cl29015 355891 -COG1955 224866 COG1955 224866 -COG1956 224867 cl21515 354848 -COG1957 224868 cl00226 350965 -COG1958 224869 cl00259 350988 -COG1959 224870 cl29125 356001 -COG1960 224871 cl09933 353031 -COG1961 224872 COG1961 224872 -COG1962 224873 cl00219 350959 -COG1963 224874 cl23953 329190 -COG1964 224875 COG1964 224875 -COG1965 224876 cl00238 350975 -COG1966 224877 COG1966 224877 -COG1967 224878 cl00857 321211 -COG1968 224879 cl00858 351283 -COG1969 224880 cl23723 355020 -COG1970 224881 cl00860 351284 -COG1971 224882 cl23795 329083 -COG1972 224883 cl26873 355587 -COG1973 224884 COG1973 224884 -COG1974 224885 COG1974 224885 -COG1975 224886 COG1975 224886 -COG1976 224887 cl00241 350978 -COG1977 224888 cl28922 355798 -COG1978 224889 cl00861 351285 -COG1979 224890 cl02872 351912 -COG1980 224891 cl00862 351286 -COG1981 224892 cl21540 354861 -COG1982 224893 COG1982 224893 -COG1983 224894 cl00864 351287 -COG1984 224895 cl00865 351288 -COG1985 224896 cl17279 354327 -COG1986 224897 cl00866 351289 -COG1987 224898 cl00867 351290 -COG1988 224899 cl00868 321220 -COG1989 224900 COG1989 224900 -COG1990 224901 cl19212 354394 -COG1991 224902 cl28222 333042 -COG1992 224903 cl00871 321221 -COG1993 224904 cl00872 351291 -COG1994 224905 cl10020 324562 -COG1995 224906 cl00873 351292 -COG1996 224907 cl00874 351293 -COG1997 224908 cl19284 354404 -COG1998 224909 cl00876 351294 -COG1999 224910 cl00388 351069 -COG2000 224911 COG2000 224911 -COG2001 224912 COG2001 224912 -COG2002 224913 cl00877 321225 -COG2003 224914 COG2003 224914 -COG2004 224915 cl00878 351295 -COG2005 224916 cl21459 354815 -COG2006 224917 cl19822 354467 -COG2007 224918 cl00880 294572 -COG2008 224919 cl18945 354370 -COG2009 224920 cl00881 351296 -COG2010 224921 COG2010 224921 -COG2011 224922 cl00427 351090 -COG2012 224923 cl00883 351297 -COG2013 224924 cl00884 351298 -COG2014 224925 COG2014 224925 -COG2015 224926 COG2015 224926 -COG2016 224927 COG2016 224927 -COG2017 224928 cl14648 353820 -COG2018 224929 cl00886 321230 -COG2019 224930 cl17190 354320 -COG2020 224931 cl21511 328764 -COG2021 224932 COG2021 224932 -COG2022 224933 cl21457 354814 -COG2023 224934 cl00887 351299 -COG2024 224935 COG2024 224935 -COG2025 224936 COG2025 224936 -COG2026 224937 cl21503 354842 -COG2027 224938 COG2027 224938 -COG2028 224939 cl01020 351351 -COG2029 224940 cl00890 321232 -COG2030 224941 cl00509 351126 -COG2031 224942 cl21473 354825 -COG2032 224943 cl00891 351300 -COG2033 224944 cl30471 357347 -COG2034 224945 cl00892 321234 -COG2035 224946 cl00893 351301 -COG2036 224947 cl23735 329044 -COG2037 224948 COG2037 224948 -COG2038 224949 cl11435 353253 -COG2039 224950 cl00237 320846 -COG2040 224951 cl22882 354969 -COG2041 224952 COG2041 224952 -COG2042 224953 cl27200 355626 -COG2043 224954 cl00894 351302 -COG2044 224955 cl00672 351208 -COG2045 224956 cl00895 351303 -COG2046 224957 COG2046 224957 -COG2047 224958 cl00847 351280 -COG2048 224959 COG2048 224959 -COG2049 224960 cl19310 354409 -COG2050 224961 cl00509 351126 -COG2051 224962 cl00897 294584 -COG2052 224963 cl00898 351304 -COG2053 224964 cl09927 353027 -COG2054 224965 cl00452 351098 -COG2055 224966 cl00900 351305 -COG2056 224967 COG2056 224967 -COG2057 224968 cl00339 351040 -COG2058 224969 cl21508 354846 -COG2059 224970 cl17781 354342 -COG2060 224971 cl00903 351306 -COG2061 224972 cl29106 355982 -COG2062 224973 cl11399 353243 -COG2063 224974 cl19182 354388 -COG2064 224975 cl19503 354429 -COG2065 224976 cl00309 351014 -COG2066 224977 cl00907 351307 -COG2067 224978 cl21487 354832 -COG2068 224979 cl11394 353239 -COG2069 224980 COG2069 224980 -COG2070 224981 COG2070 224981 -COG2071 224982 COG2071 224982 -COG2072 224983 COG2072 224983 -COG2073 224984 cl26443 355516 -COG2074 224985 COG2074 224985 -COG2075 224986 cl00909 321242 -COG2076 224987 cl23754 329058 -COG2077 224988 cl00388 351069 -COG2078 224989 cl00911 351308 -COG2079 224990 cl00912 351309 -COG2080 224991 COG2080 224991 -COG2081 224992 COG2081 224992 -COG2082 224993 cl00913 351310 -COG2083 224994 cl00914 321246 -COG2084 224995 COG2084 224995 -COG2085 224996 COG2085 224996 -COG2086 224997 cl00292 351005 -COG2087 224998 cl21455 354812 -COG2088 224999 cl00915 321247 -COG2089 225000 COG2089 225000 -COG2090 225001 cl00916 321248 -COG2091 225002 COG2091 225002 -COG2092 225003 cl00194 350939 -COG2093 225004 cl12033 325166 -COG2094 225005 cl14785 353837 -COG2095 225006 cl21514 354847 -COG2096 225007 cl00920 351311 -COG2097 225008 cl00921 321250 -COG2098 225009 cl23954 329191 -COG2099 225010 cl00922 351312 -COG2100 225011 COG2100 225011 -COG2101 225012 COG2101 225012 -COG2102 225013 cl00292 351005 -COG2103 225014 COG2103 225014 -COG2104 225015 cl28922 355798 -COG2105 225016 cl22886 354971 -COG2106 225017 cl12077 353354 -COG2107 225018 cl21456 354813 -COG2108 225019 COG2108 225019 -COG2109 225020 COG2109 225020 -COG2110 225021 COG2110 225021 -COG2111 225022 cl00676 351209 -COG2112 225023 cl21453 354810 -COG2113 225024 COG2113 225024 -COG2114 225025 COG2114 225025 -COG2115 225026 cl23721 355019 -COG2116 225027 cl00927 351313 -COG2117 225028 cl00292 351005 -COG2118 225029 cl00928 351314 -COG2119 225030 COG2119 225030 -COG2120 225031 cl00929 321254 -COG2121 225032 cl17185 354319 -COG2122 225033 cl23955 305112 -COG2123 225034 COG2123 225034 -COG2124 225035 cl12078 353355 -COG2125 225036 cl00931 351315 -COG2126 225037 cl00932 321256 -COG2127 225038 cl00933 351316 -COG2128 225039 cl28589 333409 -COG2129 225040 cl13995 353799 -COG2130 225041 COG2130 225041 -COG2131 225042 cl00269 350994 -COG2132 225043 COG2132 225043 -COG2133 225044 cl26817 355575 -COG2134 225045 cl00934 351317 -COG2135 225046 cl03646 352031 -COG2136 225047 cl00935 351318 -COG2137 225048 cl00936 351319 -COG2138 225049 COG2138 225049 -COG2139 225050 cl00937 351320 -COG2140 225051 cl21464 354820 -COG2141 225052 cl19096 327499 -COG2142 225053 cl00881 351296 -COG2143 225054 cl00388 351069 -COG2144 225055 COG2144 225055 -COG2145 225056 cl00192 350937 -COG2146 225057 cl00938 351321 -COG2147 225058 cl00232 350971 -COG2148 225059 cl29433 356309 -COG2149 225060 cl09954 353036 -COG2150 225061 cl29106 355982 -COG2151 225062 cl00941 351322 -COG2152 225063 cl14647 353819 -COG2153 225064 COG2153 225064 -COG2154 225065 cl00942 351323 -COG2155 225066 cl00943 351324 -COG2156 225067 cl00944 351325 -COG2157 225068 cl00945 321267 -COG2158 225069 cl00946 321268 -COG2159 225070 cl00281 351001 -COG2160 225071 COG2160 225071 -COG2161 225072 cl09153 352940 -COG2162 225073 cl00949 351327 -COG2163 225074 COG2163 225074 -COG2164 225075 cl21567 328802 -COG2165 225076 cl29224 356100 -COG2166 225077 cl00951 351328 -COG2167 225078 cl00952 321272 -COG2168 225079 cl00672 351208 -COG2169 225080 COG2169 225080 -COG2170 225081 cl00954 351329 -COG2171 225082 COG2171 225082 -COG2172 225083 cl00075 350890 -COG2173 225084 cl00813 351267 -COG2174 225085 cl00955 321274 -COG2175 225086 cl00184 350935 -COG2176 225087 COG2176 225087 -COG2177 225088 cl26321 331142 -COG2178 225089 cl00957 351330 -COG2179 225090 COG2179 225090 -COG2180 225091 cl00958 351331 -COG2181 225092 cl00959 351332 -COG2182 225093 COG2182 225093 -COG2183 225094 COG2183 225094 -COG2184 225095 cl26489 331310 -COG2185 225096 cl00293 351006 -COG2186 225097 COG2186 225097 -COG2187 225098 COG2187 225098 -COG2188 225099 COG2188 225099 -COG2189 225100 COG2189 225100 -COG2190 225101 cl00162 350926 -COG2191 225102 COG2191 225102 -COG2192 225103 COG2192 225103 -COG2193 225104 cl00264 350992 -COG2194 225105 COG2194 225105 -COG2195 225106 COG2195 225106 -COG2197 225107 COG2197 225107 -COG2198 225108 cl00086 350895 -COG2199 225109 cl11967 353330 -COG2200 225110 cl29561 356437 -COG2201 225111 COG2201 225111 -COG2202 225112 COG2202 225112 -COG2203 225113 cl21515 354848 -COG2204 225114 COG2204 225114 -COG2205 225115 cl30606 357482 -COG2206 225116 COG2206 225116 -COG2207 225117 COG2207 225117 -COG2208 225118 cl00120 350908 -COG2209 225119 cl00597 351168 -COG2210 225120 cl00672 351208 -COG2211 225121 cl28910 355786 -COG2212 225122 cl09154 352941 -COG2213 225123 COG2213 225123 -COG2214 225124 COG2214 225124 -COG2215 225125 cl21514 354847 -COG2216 225126 COG2216 225126 -COG2217 225127 cl21460 354816 -COG2218 225128 cl00239 350976 -COG2219 225129 COG2219 225129 -COG2220 225130 COG2220 225130 -COG2221 225131 COG2221 225131 -COG2222 225132 COG2222 225132 -COG2223 225133 cl28910 355786 -COG2224 225134 cl21457 354814 -COG2225 225135 cl21481 354828 -COG2226 225136 cl17173 354317 -COG2227 225137 COG2227 225137 -COG2229 225138 cl21455 354812 -COG2230 225139 COG2230 225139 -COG2231 225140 COG2231 225140 -COG2232 225141 COG2232 225141 -COG2233 225142 cl23746 355031 -COG2234 225143 COG2234 225143 -COG2235 225144 cl19186 354389 -COG2236 225145 cl00309 351014 -COG2237 225146 cl12079 325184 -COG2238 225147 cl00969 321279 -COG2239 225148 COG2239 225148 -COG2240 225149 cl00192 350937 -COG2241 225150 cl00304 351012 -COG2242 225151 COG2242 225151 -COG2243 225152 cl00304 351012 -COG2244 225153 cl09326 352957 -COG2245 225154 cl00970 321280 -COG2246 225155 cl19823 327636 -COG2247 225156 COG2247 225156 -COG2248 225157 cl23716 355014 -COG2249 225158 cl00438 351093 -COG2250 225159 cl00824 321194 -COG2251 225160 COG2251 225160 -COG2252 225161 cl23746 355031 -COG2253 225162 cl00973 351334 -COG2254 225163 cl21469 354822 -COG2255 225164 COG2255 225164 -COG2256 225165 COG2256 225165 -COG2257 225166 cl19167 354387 -COG2258 225167 COG2258 225167 -COG2259 225168 cl21527 328775 -COG2260 225169 cl00977 321282 -COG2261 225170 cl00978 321283 -COG2262 225171 COG2262 225171 -COG2263 225172 cl17173 354317 -COG2264 225173 COG2264 225173 -COG2265 225174 COG2265 225174 -COG2266 225175 cl11394 353239 -COG2267 225176 COG2267 225176 -COG2268 225177 COG2268 225177 -COG2269 225178 COG2269 225178 -COG2270 225179 cl28910 355786 -COG2271 225180 COG2271 225180 -COG2272 225181 cl21494 354836 -COG2273 225182 COG2273 225182 -COG2274 225183 COG2274 225183 -COG2301 225184 cl21481 354828 -COG2302 225185 cl27738 332559 -COG2303 225186 COG2303 225186 -COG2304 225187 COG2304 225187 -COG2306 225188 cl00979 321284 -COG2307 225189 cl19824 354468 -COG2308 225190 cl17448 354330 -COG2309 225191 cl19596 354444 -COG2310 225192 cl18957 354372 -COG2311 225193 COG2311 225193 -COG2312 225194 cl17110 354311 -COG2313 225195 cl00983 351335 -COG2314 225196 cl00984 321286 -COG2315 225197 cl15265 353930 -COG2316 225198 cl21469 354822 -COG2317 225199 cl14813 353839 -COG2318 225200 cl21506 354845 -COG2319 225201 COG2319 225201 -COG2320 225202 cl00987 351336 -COG2321 225203 cl19825 303014 -COG2322 225204 cl00989 321288 -COG2323 225205 cl00990 351337 -COG2324 225206 cl00991 321290 -COG2326 225207 cl11971 353332 -COG2327 225208 cl10013 353042 -COG2329 225209 cl10022 324563 -COG2331 225210 cl00993 351338 -COG2332 225211 cl00994 351339 -COG2333 225212 COG2333 225212 -COG2334 225213 COG2334 225213 -COG2335 225214 cl02663 322043 -COG2336 225215 cl00877 321225 -COG2337 225216 cl00995 351340 -COG2339 225217 cl23838 329115 -COG2340 225218 COG2340 225218 -COG2342 225219 cl00997 351341 -COG2343 225220 cl00998 351342 -COG2344 225221 COG2344 225221 -COG2345 225222 cl29789 356665 -COG2346 225223 cl21461 354817 -COG2348 225224 cl17182 354318 -COG2350 225225 cl00999 321296 -COG2351 225226 cl21470 354823 -COG2352 225227 COG2352 225227 -COG2353 225228 cl01001 351343 -COG2354 225229 cl01002 351344 -COG2355 225230 cl00281 351001 -COG2356 225231 cl00083 350893 -COG2357 225232 cl11966 353329 -COG2358 225233 COG2358 225233 -COG2359 225234 cl01005 351345 -COG2360 225235 cl17182 354318 -COG2361 225236 cl01031 321310 -COG2362 225237 cl01007 351346 -COG2363 225238 cl01008 351347 -COG2364 225239 cl23956 355104 -COG2365 225240 COG2365 225240 -COG2366 225241 COG2366 225241 -COG2367 225242 COG2367 225242 -COG2368 225243 cl29135 356011 -COG2369 225244 COG2369 225244 -COG2370 225245 cl01011 351348 -COG2371 225246 COG2371 225246 -COG2372 225247 cl01012 351349 -COG2373 225248 COG2373 225248 -COG2374 225249 COG2374 225249 -COG2375 225250 COG2375 225250 -COG2376 225251 COG2376 225251 -COG2377 225252 cl22918 304634 -COG2378 225253 COG2378 225253 -COG2379 225254 COG2379 225254 -COG2380 225255 cl09134 324330 -COG2382 225256 COG2382 225256 -COG2383 225257 cl01015 351350 -COG2384 225258 cl17173 354317 -COG2385 225259 cl26737 355563 -COG2386 225260 cl21474 354826 -COG2388 225261 cl17182 354318 -COG2389 225262 cl01017 321304 -COG2390 225263 COG2390 225263 -COG2391 225264 cl19477 327562 -COG2401 225265 COG2401 225265 -COG2402 225266 cl28905 355781 -COG2403 225267 COG2403 225267 -COG2404 225268 COG2404 225268 -COG2405 225269 COG2405 225269 -COG2406 225270 cl00264 350992 -COG2407 225271 COG2407 225271 -COG2409 225272 COG2409 225272 -COG2410 225273 cl12046 325169 -COG2411 225274 cl01020 351351 -COG2412 225275 cl01021 321306 -COG2413 225276 cl11966 353329 -COG2414 225277 COG2414 225277 -COG2419 225278 cl00407 294285 -COG2421 225279 cl19826 327638 -COG2423 225280 COG2423 225280 -COG2425 225281 COG2425 225281 -COG2426 225282 cl01024 321307 -COG2427 225283 cl26844 355583 -COG2428 225284 cl22961 328970 -COG2429 225285 cl19424 267777 -COG2430 225286 cl01027 321308 -COG2431 225287 cl23957 355105 -COG2433 225288 cl27170 331991 -COG2440 225289 cl19102 354379 -COG2441 225290 cl17037 354300 -COG2442 225291 cl01030 351352 -COG2443 225292 cl00481 351112 -COG2445 225293 cl01031 321310 -COG2450 225294 cl00775 351249 -COG2451 225295 cl01033 321311 -COG2452 225296 COG2452 225296 -COG2453 225297 COG2453 225297 -COG2454 225298 cl04460 322675 -COG2456 225299 cl01034 351353 -COG2457 225300 cl00381 351064 -COG2461 225301 COG2461 225301 -COG2469 225302 cl27175 331996 -COG2501 225303 cl09940 353034 -COG2502 225304 cl00268 350993 -COG2503 225305 cl21460 354816 -COG2508 225306 COG2508 225306 -COG2509 225307 COG2509 225307 -COG2510 225308 cl23754 329058 -COG2511 225309 COG2511 225309 -COG2512 225310 COG2512 225310 -COG2513 225311 cl21457 354814 -COG2514 225312 COG2514 225312 -COG2515 225313 cl00342 294246 -COG2516 225314 COG2516 225314 -COG2517 225315 COG2517 225315 -COG2518 225316 COG2518 225316 -COG2519 225317 COG2519 225317 -COG2520 225318 COG2520 225318 -COG2521 225319 COG2521 225319 -COG2522 225320 cl22854 354960 -COG2524 225321 COG2524 225321 -COG2602 225322 cl21491 354834 -COG2603 225323 COG2603 225323 -COG2604 225324 COG2604 225324 -COG2605 225325 COG2605 225325 -COG2606 225326 cl00022 320718 -COG2607 225327 cl21455 354812 -COG2608 225328 cl00207 350951 -COG2609 225329 COG2609 225329 -COG2610 225330 COG2610 225330 -COG2703 225331 cl15774 353977 -COG2704 225332 cl21473 354825 -COG2706 225333 COG2706 225333 -COG2707 225334 cl01041 351354 -COG2710 225335 COG2710 225335 -COG2715 225336 cl21594 328818 -COG2716 225337 cl09141 352939 -COG2717 225338 cl23723 355020 -COG2718 225339 cl00057 350880 -COG2719 225340 cl19504 354430 -COG2720 225341 COG2720 225341 -COG2721 225342 cl00555 351151 -COG2723 225343 cl29627 356503 -COG2730 225344 COG2730 225344 -COG2731 225345 cl01047 351355 -COG2732 225346 cl01048 351356 -COG2733 225347 cl30741 357617 -COG2738 225348 cl01049 351357 -COG2739 225349 cl21459 354815 -COG2740 225350 cl00189 350936 -COG2746 225351 cl01051 351358 -COG2747 225352 cl01052 351359 -COG2755 225353 cl01053 351360 -COG2759 225354 COG2759 225354 -COG2761 225355 cl00388 351069 -COG2764 225356 cl14632 353816 -COG2766 225357 COG2766 225357 -COG2768 225358 COG2768 225358 -COG2770 225359 cl01054 351361 -COG2771 225360 cl21459 354815 -COG2801 225361 COG2801 225361 -COG2802 225362 cl19481 354426 -COG2804 225363 COG2804 225363 -COG2805 225364 cl21455 354812 -COG2807 225365 COG2807 225365 -COG2808 225366 cl00381 351064 -COG2810 225367 cl30740 357616 -COG2811 225368 COG2811 225368 -COG2812 225369 COG2812 225369 -COG2813 225370 COG2813 225370 -COG2814 225371 cl28910 355786 -COG2815 225372 COG2815 225372 -COG2816 225373 COG2816 225373 -COG2818 225374 cl01059 351362 -COG2819 225375 cl21494 354836 -COG2820 225376 cl00303 351011 -COG2821 225377 COG2821 225377 -COG2822 225378 COG2822 225378 -COG2823 225379 COG2823 225379 -COG2824 225380 cl29344 356220 -COG2825 225381 COG2825 225381 -COG2826 225382 COG2826 225382 -COG2827 225383 cl15257 353929 -COG2828 225384 cl19418 267771 -COG2829 225385 cl00248 350980 -COG2830 225386 cl01062 242278 -COG2831 225387 COG2831 225387 -COG2832 225388 cl01063 351363 -COG2833 225389 cl00264 350992 -COG2834 225390 cl19192 354390 -COG2835 225391 cl01066 351364 -COG2836 225392 cl21514 354847 -COG2837 225393 cl01067 294672 -COG2838 225394 cl15383 353936 -COG2839 225395 cl01069 351365 -COG2840 225396 COG2840 225396 -COG2841 225397 cl01070 351366 -COG2842 225398 COG2842 225398 -COG2843 225399 cl13995 353799 -COG2844 225400 COG2844 225400 -COG2845 225401 cl01053 351360 -COG2846 225402 COG2846 225402 -COG2847 225403 cl01071 351367 -COG2848 225404 cl09939 353033 -COG2849 225405 COG2849 225405 -COG2850 225406 cl21464 354820 -COG2851 225407 cl21473 354825 -COG2852 225408 cl00516 351129 -COG2853 225409 cl01073 351368 -COG2854 225410 cl01074 351369 -COG2855 225411 cl01075 294678 -COG2856 225412 cl01076 321329 -COG2857 225413 COG2857 225413 -COG2859 225414 cl01077 351370 -COG2860 225415 COG2860 225415 -COG2861 225416 cl17042 354302 -COG2862 225417 cl01078 351371 -COG2863 225418 cl21467 354821 -COG2864 225419 cl23723 355020 -COG2865 225420 COG2865 225420 -COG2866 225421 cl11393 353238 -COG2867 225422 cl14643 353818 -COG2868 225423 cl01080 351372 -COG2869 225424 COG2869 225424 -COG2870 225425 COG2870 225425 -COG2871 225426 COG2871 225426 -COG2872 225427 COG2872 225427 -COG2873 225428 cl18945 354370 -COG2874 225429 cl21455 354812 -COG2875 225430 cl00304 351012 -COG2876 225431 cl17225 354324 -COG2877 225432 cl17225 354324 -COG2878 225433 COG2878 225433 -COG2879 225434 cl01082 351374 -COG2880 225435 cl11530 325070 -COG2881 225436 cl21557 354869 -COG2882 225437 COG2882 225437 -COG2884 225438 COG2884 225438 -COG2885 225439 COG2885 225439 -COG2886 225440 cl01085 321335 -COG2887 225441 cl00641 351191 -COG2888 225442 cl19729 354453 -COG2890 225443 COG2890 225443 -COG2891 225444 cl01087 294686 -COG2892 225445 cl12080 353356 -COG2893 225446 cl00025 350867 -COG2894 225447 COG2894 225447 -COG2895 225448 COG2895 225448 -COG2896 225449 COG2896 225449 -COG2897 225450 COG2897 225450 -COG2898 225451 cl25556 330377 -COG2899 225452 cl10468 324589 -COG2900 225453 cl01090 351375 -COG2901 225454 cl22895 304622 -COG2902 225455 cl29306 356182 -COG2904 225456 cl00263 350991 -COG2905 225457 COG2905 225457 -COG2906 225458 cl01093 351376 -COG2907 225459 COG2907 225459 -COG2908 225460 cl13995 353799 -COG2909 225461 COG2909 225461 -COG2910 225462 cl21454 354811 -COG2911 225463 COG2911 225463 -COG2912 225464 COG2912 225464 -COG2913 225465 cl19285 354405 -COG2914 225466 cl28922 355798 -COG2915 225467 cl01097 351377 -COG2916 225468 cl29534 356410 -COG2917 225469 cl01098 321339 -COG2918 225470 cl00954 351329 -COG2919 225471 cl11433 353251 -COG2920 225472 cl01101 351378 -COG2921 225473 cl01102 351379 -COG2922 225474 cl01103 351380 -COG2923 225475 cl00672 351208 -COG2924 225476 cl01104 351381 -COG2925 225477 COG2925 225477 -COG2926 225478 cl23839 329116 -COG2927 225479 cl01106 351382 -COG2928 225480 cl01107 351383 -COG2929 225481 cl01108 351384 -COG2930 225482 cl01109 351385 -COG2931 225483 COG2931 225483 -COG2932 225484 COG2932 225484 -COG2933 225485 cl28485 333305 -COG2935 225486 cl27166 355622 -COG2936 225487 COG2936 225487 -COG2937 225488 COG2937 225488 -COG2938 225489 cl01110 351386 -COG2939 225490 COG2939 225490 -COG2940 225491 COG2940 225491 -COG2941 225492 cl00264 350992 -COG2942 225493 cl23840 304997 -COG2943 225494 cl11394 353239 -COG2944 225495 COG2944 225495 -COG2945 225496 cl21494 354836 -COG2946 225497 COG2946 225497 -COG2947 225498 cl00728 321132 -COG2948 225499 COG2948 225499 -COG2949 225500 cl00630 351186 -COG2951 225501 COG2951 225501 -COG2952 225502 cl01112 351387 -COG2954 225503 cl11964 353327 -COG2956 225504 COG2956 225504 -COG2957 225505 cl19186 354389 -COG2958 225506 COG2958 225506 -COG2959 225507 cl27167 355623 -COG2960 225508 cl01115 351388 -COG2961 225509 cl17173 354317 -COG2962 225510 COG2962 225510 -COG2963 225511 COG2963 225511 -COG2964 225512 COG2964 225512 -COG2965 225513 cl09930 353029 -COG2966 225514 COG2966 225514 -COG2967 225515 cl01119 351390 -COG2968 225516 cl01077 351370 -COG2969 225517 cl01120 351391 -COG2971 225518 cl17037 354300 -COG2972 225519 COG2972 225519 -COG2973 225520 cl21459 354815 -COG2974 225521 cl01122 351392 -COG2975 225522 cl01123 351393 -COG2976 225523 COG2976 225523 -COG2977 225524 cl28580 333400 -COG2978 225525 cl21473 354825 -COG2979 225526 cl11965 353328 -COG2980 225527 cl01125 351394 -COG2981 225528 cl01126 351395 -COG2982 225529 COG2982 225529 -COG2983 225530 cl00497 321006 -COG2984 225531 cl10011 353040 -COG2985 225532 COG2985 225532 -COG2986 225533 cl00013 350860 -COG2987 225534 cl19311 354410 -COG2988 225535 cl11393 353238 -COG2989 225536 COG2989 225536 -COG2990 225537 cl01128 351396 -COG2991 225538 cl01129 321359 -COG2992 225539 cl27488 332309 -COG2993 225540 cl21467 354821 -COG2994 225541 cl01131 321360 -COG2995 225542 COG2995 225542 -COG2996 225543 COG2996 225543 -COG2998 225544 cl21456 354813 -COG2999 225545 COG2999 225545 -COG3000 225546 COG3000 225546 -COG3001 225547 cl21453 354810 -COG3002 225548 cl19828 354469 -COG3004 225549 cl01133 351397 -COG3005 225550 cl23752 329057 -COG3006 225551 cl11468 325046 -COG3007 225552 COG3007 225552 -COG3008 225553 COG3008 225553 -COG3009 225554 cl01135 321363 -COG3010 225555 cl21457 354814 -COG3011 225556 cl01136 321364 -COG3012 225557 COG3012 225557 -COG3013 225558 cl01137 321365 -COG3014 225559 COG3014 225559 -COG3015 225560 cl19736 354455 -COG3016 225561 cl01139 351398 -COG3017 225562 cl19192 354390 -COG3018 225563 cl15824 353982 -COG3019 225564 cl23841 355066 -COG3021 225565 cl00490 351117 -COG3022 225566 cl01143 351399 -COG3023 225567 cl02712 351864 -COG3024 225568 cl01144 351400 -COG3025 225569 COG3025 225569 -COG3026 225570 cl19192 354390 -COG3027 225571 cl01146 351401 -COG3028 225572 cl01147 351402 -COG3029 225573 cl00881 351296 -COG3030 225574 cl01148 351403 -COG3031 225575 COG3031 225575 -COG3033 225576 COG3033 225576 -COG3034 225577 cl21614 354890 -COG3036 225578 cl27226 332047 -COG3037 225579 cl04451 352188 -COG3038 225580 cl23723 355020 -COG3039 225581 COG3039 225581 -COG3040 225582 cl21528 354854 -COG3041 225583 cl21503 354842 -COG3042 225584 cl19829 354470 -COG3043 225585 cl01153 321372 -COG3044 225586 COG3044 225586 -COG3045 225587 cl19505 354431 -COG3046 225588 COG3046 225588 -COG3047 225589 cl21487 354832 -COG3048 225590 cl00342 294246 -COG3049 225591 cl00467 351104 -COG3050 225592 cl11436 353254 -COG3051 225593 cl28269 333089 -COG3052 225594 cl06082 352463 -COG3053 225595 COG3053 225595 -COG3054 225596 cl17398 302642 -COG3055 225597 COG3055 225597 -COG3056 225598 cl19472 354423 -COG3057 225599 cl11470 353267 -COG3058 225600 cl19312 354411 -COG3059 225601 cl01162 294724 -COG3060 225602 cl23788 304945 -COG3061 225603 COG3061 225603 -COG3062 225604 cl01163 351404 -COG3063 225605 COG3063 225605 -COG3064 225606 COG3064 225606 -COG3065 225607 cl01164 351405 -COG3066 225608 cl00516 351129 -COG3067 225609 cl21473 354825 -COG3068 225610 cl01166 351406 -COG3069 225611 COG3069 225611 -COG3070 225612 cl17592 354334 -COG3071 225613 COG3071 225613 -COG3072 225614 cl27585 332406 -COG3073 225615 cl25432 355394 -COG3074 225616 cl11531 353283 -COG3075 225617 cl21454 354811 -COG3076 225618 cl19506 354432 -COG3077 225619 cl01171 351407 -COG3078 225620 cl01172 351408 -COG3079 225621 cl01173 351409 -COG3080 225622 cl00881 351296 -COG3081 225623 cl15473 353949 -COG3082 225624 cl01175 351410 -COG3083 225625 COG3083 225625 -COG3084 225626 cl23958 355106 -COG3085 225627 cl10479 353079 -COG3086 225628 cl01178 351411 -COG3087 225629 COG3087 225629 -COG3088 225630 cl01179 351412 -COG3089 225631 cl01180 351413 -COG3090 225632 cl01181 321382 -COG3091 225633 cl19237 354398 -COG3092 225634 cl01183 351414 -COG3093 225635 cl22854 354960 -COG3094 225636 cl01184 351415 -COG3095 225637 cl11471 353268 -COG3096 225638 COG3096 225638 -COG3097 225639 cl01020 351351 -COG3098 225640 cl01187 351416 -COG3099 225641 cl11472 353269 -COG3100 225642 cl22628 354949 -COG3101 225643 cl01190 351417 -COG3102 225644 cl14632 353816 -COG3103 225645 COG3103 225645 -COG3104 225646 cl28910 355786 -COG3105 225647 cl11473 325050 -COG3106 225648 cl01193 351418 -COG3107 225649 COG3107 225649 -COG3108 225650 COG3108 225650 -COG3109 225651 COG3109 225651 -COG3110 225652 cl11437 353255 -COG3111 225653 cl09930 353029 -COG3112 225654 cl11474 353270 -COG3113 225655 cl00604 351173 -COG3114 225656 cl11475 353271 -COG3115 225657 COG3115 225657 -COG3116 225658 cl11433 353251 -COG3117 225659 cl21541 328784 -COG3118 225660 COG3118 225660 -COG3119 225661 COG3119 225661 -COG3120 225662 cl23842 355067 -COG3121 225663 COG3121 225663 -COG3122 225664 cl26597 355545 -COG3123 225665 cl22913 354976 -COG3124 225666 cl01203 351420 -COG3125 225667 cl01204 351421 -COG3126 225668 cl15825 353983 -COG3127 225669 COG3127 225669 -COG3128 225670 cl21496 354838 -COG3129 225671 cl17173 354317 -COG3130 225672 cl23828 355062 -COG3131 225673 cl19308 354408 -COG3132 225674 cl01209 351422 -COG3133 225675 cl10470 353077 -COG3134 225676 cl10470 353077 -COG3135 225677 cl23746 355031 -COG3136 225678 cl27901 332722 -COG3137 225679 cl01213 351423 -COG3138 225680 cl11440 353256 -COG3139 225681 cl01215 351424 -COG3140 225682 cl22520 354945 -COG3141 225683 cl01217 351425 -COG3142 225684 cl29988 356864 -COG3143 225685 cl01219 351426 -COG3144 225686 COG3144 225686 -COG3145 225687 cl21496 354838 -COG3146 225688 cl17182 354318 -COG3147 225689 COG3147 225689 -COG3148 225690 cl01221 351427 -COG3149 225691 cl01222 351428 -COG3150 225692 cl21494 354836 -COG3151 225693 cl01223 351429 -COG3152 225694 cl01224 351430 -COG3153 225695 cl17182 354318 -COG3154 225696 cl01225 351431 -COG3155 225697 cl00020 350865 -COG3156 225698 COG3156 225698 -COG3157 225699 cl01226 351432 -COG3158 225700 cl15781 326642 -COG3159 225701 cl21515 354848 -COG3160 225702 cl11478 353272 -COG3161 225703 cl01230 321402 -COG3162 225704 cl01231 351433 -COG3164 225705 COG3164 225705 -COG3165 225706 cl01225 351431 -COG3166 225707 cl19830 354471 -COG3167 225708 cl01234 321404 -COG3168 225709 cl19831 354472 -COG3169 225710 cl01236 351434 -COG3170 225711 COG3170 225711 -COG3171 225712 cl01237 351435 -COG3172 225713 cl21455 354812 -COG3173 225714 cl21453 354810 -COG3174 225715 COG3174 225715 -COG3175 225716 cl01240 351436 -COG3176 225717 cl17185 354319 -COG3177 225718 COG3177 225718 -COG3178 225719 cl21453 354810 -COG3179 225720 cl00222 350962 -COG3180 225721 COG3180 225721 -COG3181 225722 cl21456 354813 -COG3182 225723 cl23780 355044 -COG3183 225724 COG3183 225724 -COG3184 225725 cl26596 331417 -COG3185 225726 cl14632 353816 -COG3186 225727 cl01244 351437 -COG3187 225728 cl01245 321409 -COG3188 225729 COG3188 225729 -COG3189 225730 cl01246 351438 -COG3190 225731 cl01247 351439 -COG3191 225732 cl00603 351172 -COG3192 225733 cl01248 321412 -COG3193 225734 cl01249 351440 -COG3194 225735 cl01250 321414 -COG3195 225736 cl01251 351441 -COG3196 225737 cl01252 351442 -COG3197 225738 cl01253 351443 -COG3198 225739 cl21581 328810 -COG3199 225740 cl01255 321418 -COG3200 225741 cl03230 351966 -COG3201 225742 cl01256 351444 -COG3202 225743 cl28910 355786 -COG3203 225744 cl21487 354832 -COG3204 225745 COG3204 225745 -COG3205 225746 cl01257 321420 -COG3206 225747 COG3206 225747 -COG3207 225748 cl19832 327643 -COG3208 225749 cl21494 354836 -COG3209 225750 COG3209 225750 -COG3210 225751 COG3210 225751 -COG3211 225752 cl23843 305000 -COG3212 225753 COG3212 225753 -COG3213 225754 cl01258 351445 -COG3214 225755 cl19833 354473 -COG3215 225756 cl01260 351446 -COG3216 225757 cl01261 351447 -COG3217 225758 COG3217 225758 -COG3218 225759 cl01135 321363 -COG3219 225760 cl01262 351448 -COG3220 225761 cl23721 355019 -COG3221 225762 COG3221 225762 -COG3222 225763 cl11394 353239 -COG3223 225764 cl01264 351449 -COG3224 225765 cl10022 324563 -COG3225 225766 cl23805 329091 -COG3226 225767 cl29744 356620 -COG3227 225768 COG3227 225768 -COG3228 225769 cl01267 351450 -COG3230 225770 cl15243 353926 -COG3231 225771 cl21453 354810 -COG3232 225772 cl00235 350973 -COG3233 225773 cl15692 353970 -COG3234 225774 cl14898 326371 -COG3235 225775 cl21488 354833 -COG3236 225776 cl21532 354856 -COG3237 225777 cl22912 304631 -COG3238 225778 cl23754 329058 -COG3239 225779 COG3239 225779 -COG3240 225780 COG3240 225780 -COG3241 225781 cl19115 354382 -COG3242 225782 cl01275 351451 -COG3243 225783 cl26470 355519 -COG3245 225784 cl21467 354821 -COG3246 225785 cl15827 353984 -COG3247 225786 cl15828 326653 -COG3248 225787 cl04114 352112 -COG3249 225788 cl19834 354474 -COG3250 225789 cl30613 357489 -COG3251 225790 cl01279 351452 -COG3252 225791 cl00249 350981 -COG3253 225792 cl01280 351453 -COG3254 225793 cl01281 351454 -COG3255 225794 cl01225 351431 -COG3256 225795 cl00275 350997 -COG3257 225796 cl26460 331281 -COG3258 225797 COG3258 225797 -COG3259 225798 cl21493 354835 -COG3260 225799 cl17194 354321 -COG3261 225800 COG3261 225800 -COG3262 225801 cl19197 354392 -COG3263 225802 COG3263 225802 -COG3264 225803 COG3264 225803 -COG3265 225804 cl17190 354320 -COG3266 225805 COG3266 225805 -COG3267 225806 COG3267 225806 -COG3268 225807 COG3268 225807 -COG3269 225808 cl01282 294784 -COG3270 225809 COG3270 225809 -COG3271 225810 cl00296 351007 -COG3272 225811 cl01284 351455 -COG3273 225812 COG3273 225812 -COG3274 225813 cl21495 354837 -COG3275 225814 COG3275 225814 -COG3276 225815 COG3276 225815 -COG3277 225816 cl01285 351456 -COG3278 225817 cl00275 350997 -COG3279 225818 cl04498 352191 -COG3280 225819 COG3280 225819 -COG3281 225820 cl23844 305001 -COG3283 225821 COG3283 225821 -COG3284 225822 COG3284 225822 -COG3285 225823 cl01287 321433 -COG3286 225824 cl01288 321434 -COG3287 225825 COG3287 225825 -COG3288 225826 cl28944 355820 -COG3290 225827 COG3290 225827 -COG3291 225828 COG3291 225828 -COG3292 225829 COG3292 225829 -COG3293 225830 cl26213 355496 -COG3294 225831 cl21469 354822 -COG3295 225832 cl23780 355044 -COG3296 225833 COG3296 225833 -COG3297 225834 COG3297 225834 -COG3298 225835 cl10012 353041 -COG3299 225836 cl01294 321435 -COG3300 225837 COG3300 225837 -COG3301 225838 cl21513 328765 -COG3302 225839 cl21513 328765 -COG3303 225840 cl23833 355064 -COG3304 225841 cl27241 355630 -COG3305 225842 cl01785 321665 -COG3306 225843 cl01298 321436 -COG3307 225844 cl04850 352267 -COG3308 225845 cl01299 351457 -COG3309 225846 cl11442 353257 -COG3310 225847 cl01301 351458 -COG3311 225848 cl02600 351819 -COG3312 225849 cl09170 352943 -COG3313 225850 cl01304 351459 -COG3314 225851 cl21594 328818 -COG3315 225852 cl17173 354317 -COG3316 225853 cl26089 330910 -COG3317 225854 cl19507 354433 -COG3318 225855 COG3318 225855 -COG3319 225856 cl21494 354836 -COG3320 225857 COG3320 225857 -COG3321 225858 cl09938 353032 -COG3322 225859 cl01308 351460 -COG3323 225860 COG3323 225860 -COG3324 225861 cl14632 353816 -COG3325 225862 COG3325 225862 -COG3326 225863 cl01311 351461 -COG3327 225864 cl27888 355687 -COG3328 225865 cl27632 332453 -COG3329 225866 cl01312 351462 -COG3330 225867 cl25682 355437 -COG3331 225868 cl01314 321443 -COG3332 225869 cl01315 351463 -COG3333 225870 cl00772 351247 -COG3334 225871 COG3334 225871 -COG3335 225872 cl21549 354865 -COG3336 225873 cl09173 352944 -COG3337 225874 cl01317 321445 -COG3338 225875 cl00012 350859 -COG3339 225876 cl01318 321446 -COG3340 225877 cl00020 350865 -COG3341 225878 COG3341 225878 -COG3342 225879 COG3342 225879 -COG3343 225880 cl01319 321447 -COG3344 225881 COG3344 225881 -COG3345 225882 COG3345 225882 -COG3346 225883 cl01321 351464 -COG3347 225884 COG3347 225884 -COG3349 225885 COG3349 225885 -COG3350 225886 cl00909 321242 -COG3351 225887 cl27123 331944 -COG3352 225888 cl27037 331858 -COG3353 225889 cl00732 321134 -COG3354 225890 cl00732 321134 -COG3355 225891 COG3355 225891 -COG3356 225892 cl26595 331416 -COG3357 225893 COG3357 225893 -COG3358 225894 cl01327 321449 -COG3359 225895 COG3359 225895 -COG3360 225896 cl01328 351465 -COG3361 225897 cl01329 321451 -COG3363 225898 cl01330 351466 -COG3364 225899 cl19836 327646 -COG3365 225900 cl01332 321453 -COG3366 225901 COG3366 225901 -COG3367 225902 COG3367 225902 -COG3368 225903 cl15401 301612 -COG3369 225904 cl02748 351872 -COG3370 225905 cl00672 351208 -COG3371 225906 cl21592 328817 -COG3372 225907 cl19837 327647 -COG3373 225908 cl23959 305116 -COG3374 225909 cl19838 354475 -COG3375 225910 cl17182 354318 -COG3376 225911 cl21514 354847 -COG3377 225912 cl01339 321454 -COG3378 225913 COG3378 225913 -COG3379 225914 COG3379 225914 -COG3380 225915 COG3380 225915 -COG3381 225916 cl00958 351331 -COG3382 225917 cl21573 354878 -COG3383 225918 COG3383 225918 -COG3384 225919 cl00599 351170 -COG3385 225920 cl17874 354346 -COG3386 225921 COG3386 225921 -COG3387 225922 cl25463 330284 -COG3388 225923 COG3388 225923 -COG3389 225924 cl01342 351467 -COG3390 225925 cl09930 353029 -COG3391 225926 COG3391 225926 -COG3392 225927 cl23779 329070 -COG3393 225928 COG3393 225928 -COG3394 225929 cl15692 353970 -COG3395 225930 COG3395 225930 -COG3396 225931 cl01346 321456 -COG3397 225932 COG3397 225932 -COG3398 225933 COG3398 225933 -COG3399 225934 COG3399 225934 -COG3400 225935 COG3400 225935 -COG3401 225936 COG3401 225936 -COG3402 225937 cl17171 354315 -COG3403 225938 cl01349 351468 -COG3404 225939 cl01350 351469 -COG3405 225940 cl01351 294813 -COG3407 225941 cl28577 333397 -COG3408 225942 COG3408 225942 -COG3409 225943 COG3409 225943 -COG3410 225944 COG3410 225944 -COG3411 225945 cl00388 351069 -COG3412 225946 cl00025 350867 -COG3413 225947 COG3413 225947 -COG3414 225948 cl10014 353043 -COG3415 225949 COG3415 225949 -COG3416 225950 cl26593 355544 -COG3417 225951 cl21526 354853 -COG3418 225952 cl09176 352945 -COG3419 225953 COG3419 225953 -COG3420 225954 COG3420 225954 -COG3421 225955 COG3421 225955 -COG3422 225956 cl01356 351470 -COG3423 225957 cl22854 354960 -COG3424 225958 COG3424 225958 -COG3425 225959 COG3425 225959 -COG3426 225960 cl17037 354300 -COG3427 225961 cl14643 353818 -COG3428 225962 COG3428 225962 -COG3429 225963 cl01359 351471 -COG3430 225964 cl01360 321461 -COG3431 225965 cl01264 351449 -COG3432 225966 COG3432 225966 -COG3433 225967 cl09936 324546 -COG3434 225968 COG3434 225968 -COG3435 225969 COG3435 225969 -COG3436 225970 cl29265 356141 -COG3437 225971 COG3437 225971 -COG3439 225972 cl21600 328821 -COG3440 225973 COG3440 225973 -COG3442 225974 cl00020 350865 -COG3443 225975 cl01365 351472 -COG3444 225976 cl00021 350866 -COG3445 225977 cl21517 328769 -COG3447 225978 cl17823 302671 -COG3448 225979 COG3448 225979 -COG3449 225980 cl01368 351473 -COG3450 225981 cl21464 354820 -COG3451 225982 COG3451 225982 -COG3452 225983 cl01369 351474 -COG3453 225984 cl28904 355780 -COG3454 225985 cl00281 351001 -COG3455 225986 cl01370 351475 -COG3456 225987 COG3456 225987 -COG3457 225988 cl27635 355667 -COG3458 225989 COG3458 225989 -COG3459 225990 COG3459 225990 -COG3460 225991 cl01371 321466 -COG3461 225992 cl00264 350992 -COG3462 225993 cl26592 355543 -COG3463 225994 cl21590 354882 -COG3464 225995 COG3464 225995 -COG3465 225996 COG3465 225996 -COG3466 225997 cl26591 331412 -COG3467 225998 cl00381 351064 -COG3468 225999 COG3468 225999 -COG3469 226000 cl10447 353071 -COG3470 226001 cl01377 351476 -COG3471 226002 cl01077 351370 -COG3472 226003 COG3472 226003 -COG3473 226004 cl00518 351130 -COG3474 226005 cl21467 354821 -COG3475 226006 cl01378 351477 -COG3476 226007 cl01379 351478 -COG3477 226008 cl01380 351479 -COG3478 226009 cl01381 321471 -COG3479 226010 cl01382 321472 -COG3480 226011 COG3480 226011 -COG3481 226012 COG3481 226012 -COG3482 226013 cl19839 354476 -COG3483 226014 cl03994 296175 -COG3484 226015 cl00467 351104 -COG3485 226016 COG3485 226016 -COG3486 226017 cl21454 354811 -COG3487 226018 cl09159 352942 -COG3488 226019 cl21467 354821 -COG3489 226020 cl09159 352942 -COG3490 226021 cl26895 331716 -COG3491 226022 COG3491 226022 -COG3492 226023 cl01385 351480 -COG3493 226024 cl01386 321474 -COG3494 226025 cl09182 352946 -COG3495 226026 cl01387 351481 -COG3496 226027 cl17838 354344 -COG3497 226028 cl01389 351482 -COG3498 226029 cl01390 321477 -COG3499 226030 cl01391 321478 -COG3500 226031 cl15796 353979 -COG3501 226032 COG3501 226032 -COG3502 226033 cl01393 351483 -COG3503 226034 cl21495 354837 -COG3504 226035 cl11423 353249 -COG3505 226036 COG3505 226036 -COG3506 226037 cl01397 351484 -COG3507 226038 COG3507 226038 -COG3508 226039 cl21464 354820 -COG3509 226040 cl21494 354836 -COG3510 226041 cl17173 354317 -COG3511 226042 COG3511 226042 -COG3512 226043 cl11442 353257 -COG3513 226044 COG3513 226044 -COG3514 226045 cl23863 355079 -COG3515 226046 COG3515 226046 -COG3516 226047 cl01402 351485 -COG3517 226048 cl05484 352368 -COG3518 226049 cl01403 351486 -COG3519 226050 cl15462 353948 -COG3520 226051 cl01404 351487 -COG3521 226052 cl01405 351488 -COG3522 226053 cl01406 351489 -COG3523 226054 COG3523 226054 -COG3524 226055 COG3524 226055 -COG3525 226056 COG3525 226056 -COG3526 226057 cl01407 351490 -COG3527 226058 cl01408 351491 -COG3528 226059 cl01409 351492 -COG3529 226060 cl01410 321489 -COG3530 226061 cl01411 351493 -COG3531 226062 cl00388 351069 -COG3533 226063 COG3533 226063 -COG3534 226064 cl01412 351494 -COG3535 226065 cl17829 327438 -COG3536 226066 cl01414 351495 -COG3537 226067 cl26820 355576 -COG3538 226068 cl19841 354477 -COG3539 226069 cl01416 351496 -COG3540 226070 COG3540 226070 -COG3541 226071 cl01417 321494 -COG3542 226072 cl01418 351497 -COG3543 226073 cl01419 321496 -COG3544 226074 cl21583 328811 -COG3545 226075 cl21494 354836 -COG3546 226076 COG3546 226076 -COG3547 226077 COG3547 226077 -COG3548 226078 cl01421 321497 -COG3549 226079 cl21503 354842 -COG3550 226080 COG3550 226080 -COG3551 226081 COG3551 226081 -COG3552 226082 cl28570 333390 -COG3553 226083 cl01424 351498 -COG3554 226084 cl01425 351499 -COG3555 226085 cl21464 354820 -COG3556 226086 cl01427 351500 -COG3557 226087 cl00979 321284 -COG3558 226088 cl09109 352932 -COG3559 226089 cl21474 354826 -COG3560 226090 cl00514 321015 -COG3561 226091 cl01430 351501 -COG3562 226092 cl21625 304472 -COG3563 226093 COG3563 226093 -COG3564 226094 cl01432 351502 -COG3565 226095 cl14632 353816 -COG3566 226096 cl19842 327651 -COG3567 226097 cl21602 354886 -COG3568 226098 cl00490 351117 -COG3569 226099 cl29947 356823 -COG3570 226100 cl21453 354810 -COG3571 226101 cl21494 354836 -COG3572 226102 cl00954 351329 -COG3573 226103 COG3573 226103 -COG3575 226104 cl01435 351503 -COG3576 226105 cl00381 351064 -COG3577 226106 COG3577 226106 -COG3579 226107 cl23744 355029 -COG3580 226108 cl21559 354870 -COG3581 226109 cl21559 354870 -COG3582 226110 COG3582 226110 -COG3583 226111 COG3583 226111 -COG3584 226112 cl01439 321505 -COG3585 226113 cl01440 351505 -COG3586 226114 COG3586 226114 -COG3587 226115 COG3587 226115 -COG3588 226116 COG3588 226116 -COG3589 226117 cl19843 354478 -COG3590 226118 COG3590 226118 -COG3591 226119 cl21584 354881 -COG3592 226120 cl19102 354379 -COG3593 226121 COG3593 226121 -COG3594 226122 cl21495 354837 -COG3595 226123 cl23960 355107 -COG3596 226124 COG3596 226124 -COG3597 226125 cl12064 325175 -COG3598 226126 COG3598 226126 -COG3599 226127 COG3599 226127 -COG3600 226128 cl01445 351506 -COG3601 226129 cl21488 354833 -COG3602 226130 COG3602 226130 -COG3603 226131 cl09141 352939 -COG3604 226132 COG3604 226132 -COG3605 226133 COG3605 226133 -COG3607 226134 cl14632 353816 -COG3608 226135 COG3608 226135 -COG3609 226136 cl22901 304625 -COG3610 226137 cl01118 351389 -COG3611 226138 COG3611 226138 -COG3612 226139 cl01449 321508 -COG3613 226140 cl23749 355033 -COG3614 226141 cl01369 351474 -COG3615 226142 cl21464 354820 -COG3616 226143 COG3616 226143 -COG3617 226144 COG3617 226144 -COG3618 226145 cl00281 351001 -COG3619 226146 cl01453 351507 -COG3620 226147 COG3620 226147 -COG3621 226148 COG3621 226148 -COG3622 226149 COG3622 226149 -COG3623 226150 COG3623 226150 -COG3624 226151 cl01454 351508 -COG3625 226152 cl01455 351509 -COG3626 226153 cl01456 351510 -COG3627 226154 cl01457 321513 -COG3628 226155 cl01403 351486 -COG3629 226156 COG3629 226156 -COG3630 226157 cl01458 351511 -COG3631 226158 cl09109 352932 -COG3633 226159 cl00573 351159 -COG3634 226160 COG3634 226160 -COG3635 226161 COG3635 226161 -COG3636 226162 cl22854 354960 -COG3637 226163 cl21487 354832 -COG3638 226164 COG3638 226164 -COG3639 226165 COG3639 226165 -COG3640 226166 COG3640 226166 -COG3641 226167 COG3641 226167 -COG3642 226168 cl21453 354810 -COG3643 226169 cl29372 356248 -COG3644 226170 cl01461 351512 -COG3645 226171 cl01462 351513 -COG3646 226172 COG3646 226172 -COG3647 226173 cl01464 351514 -COG3648 226174 COG3648 226174 -COG3649 226175 cl01465 351515 -COG3650 226176 COG3650 226176 -COG3651 226177 cl01467 351516 -COG3652 226178 cl21583 328811 -COG3653 226179 cl00281 351001 -COG3654 226180 cl00960 351333 -COG3655 226181 cl22854 354960 -COG3656 226182 cl21544 354863 -COG3657 226183 cl21503 354842 -COG3658 226184 cl23723 355020 -COG3659 226185 cl17816 354343 -COG3660 226186 cl26977 331798 -COG3661 226187 COG3661 226187 -COG3662 226188 cl01472 351517 -COG3663 226189 cl00483 351114 -COG3664 226190 cl23725 355022 -COG3665 226191 cl01474 351518 -COG3666 226192 COG3666 226192 -COG3667 226193 cl27046 355606 -COG3668 226194 cl21503 354842 -COG3669 226195 COG3669 226195 -COG3670 226196 cl10080 353053 -COG3671 226197 cl21616 354891 -COG3672 226198 cl17362 354329 -COG3673 226199 cl01480 351519 -COG3675 226200 COG3675 226200 -COG3676 226201 cl01481 351520 -COG3677 226202 COG3677 226202 -COG3678 226203 cl01482 351521 -COG3679 226204 cl01483 351522 -COG3680 226205 cl15257 353929 -COG3681 226206 cl27283 355635 -COG3682 226207 cl21459 354815 -COG3683 226208 cl01487 351523 -COG3684 226209 cl21457 354814 -COG3685 226210 cl00264 350992 -COG3686 226211 cl09190 352947 -COG3687 226212 cl19844 354479 -COG3688 226213 cl01491 321527 -COG3689 226214 cl01492 321528 -COG3691 226215 cl11449 353259 -COG3692 226216 cl00995 351340 -COG3693 226217 cl23725 355022 -COG3694 226218 cl21474 354826 -COG3695 226219 cl29527 356403 -COG3696 226220 COG3696 226220 -COG3697 226221 cl01498 351524 -COG3698 226222 cl19845 354480 -COG3700 226223 cl21460 354816 -COG3701 226224 cl01500 351525 -COG3702 226225 cl01501 351526 -COG3703 226226 COG3703 226226 -COG3704 226227 cl01503 351527 -COG3705 226228 COG3705 226228 -COG3706 226229 COG3706 226229 -COG3707 226230 COG3707 226230 -COG3708 226231 cl01368 351473 -COG3709 226232 cl17190 354320 -COG3710 226233 cl21459 354815 -COG3711 226234 COG3711 226234 -COG3712 226235 COG3712 226235 -COG3713 226236 COG3713 226236 -COG3714 226237 cl01505 321533 -COG3715 226238 cl01506 351528 -COG3716 226239 cl01507 351529 -COG3717 226240 cl01508 351530 -COG3718 226241 cl01508 351530 -COG3719 226242 cl00208 350952 -COG3720 226243 COG3720 226243 -COG3721 226244 cl01509 351531 -COG3722 226245 cl11450 353260 -COG3723 226246 cl04285 352147 -COG3724 226247 cl01511 351532 -COG3725 226248 cl00561 351153 -COG3726 226249 cl11479 353273 -COG3727 226250 cl00516 351129 -COG3728 226251 cl01513 321539 -COG3729 226252 cl29725 356601 -COG3730 226253 cl01515 321540 -COG3731 226254 cl01516 321541 -COG3732 226255 cl27251 332072 -COG3733 226256 COG3733 226256 -COG3734 226257 cl19846 354481 -COG3735 226258 cl12050 353346 -COG3736 226259 cl01500 351525 -COG3737 226260 cl00182 350934 -COG3738 226261 cl01519 351533 -COG3739 226262 cl01520 351534 -COG3740 226263 cl01521 321544 -COG3741 226264 cl01522 351535 -COG3742 226265 cl28905 355781 -COG3743 226266 cl22429 354935 -COG3744 226267 cl28905 355781 -COG3745 226268 COG3745 226268 -COG3746 226269 cl21487 354832 -COG3747 226270 cl01525 351536 -COG3748 226271 COG3748 226271 -COG3749 226272 cl01526 351537 -COG3750 226273 cl23845 355068 -COG3751 226274 cl21496 354838 -COG3752 226275 cl21511 328764 -COG3753 226276 cl01528 321548 -COG3754 226277 COG3754 226277 -COG3755 226278 cl01530 351539 -COG3756 226279 cl01531 351540 -COG3757 226280 COG3757 226280 -COG3758 226281 cl01532 351541 -COG3759 226282 cl01533 351542 -COG3760 226283 cl00022 320718 -COG3761 226284 cl01534 351543 -COG3762 226285 cl01535 351544 -COG3763 226286 cl23791 329080 -COG3764 226287 cl09098 324322 -COG3765 226288 COG3765 226288 -COG3766 226289 COG3766 226289 -COG3767 226290 COG3767 226290 -COG3768 226291 COG3768 226291 -COG3769 226292 COG3769 226292 -COG3770 226293 cl01538 351545 -COG3771 226294 cl01539 351546 -COG3772 226295 cl00222 350962 -COG3773 226296 COG3773 226296 -COG3774 226297 COG3774 226297 -COG3775 226298 cl04451 352188 -COG3776 226299 cl11481 353274 -COG3777 226300 COG3777 226300 -COG3778 226301 cl01542 321558 -COG3779 226302 cl19625 327602 -COG3780 226303 COG3780 226303 -COG3781 226304 cl01544 351547 -COG3782 226305 cl01545 351548 -COG3783 226306 cl01546 321561 -COG3784 226307 cl01547 351549 -COG3785 226308 cl01548 351550 -COG3786 226309 cl21614 354890 -COG3787 226310 cl00381 351064 -COG3788 226311 cl09190 352947 -COG3789 226312 cl01551 351551 -COG3790 226313 cl11451 353261 -COG3791 226314 cl01553 321565 -COG3792 226315 cl10492 324594 -COG3793 226316 cl11965 353328 -COG3794 226317 COG3794 226317 -COG3795 226318 cl00999 321296 -COG3797 226319 cl01557 351552 -COG3798 226320 cl01558 351553 -COG3799 226321 COG3799 226321 -COG3800 226322 COG3800 226322 -COG3801 226323 cl15265 353930 -COG3802 226324 cl11421 353248 -COG3803 226325 cl01561 351554 -COG3804 226326 COG3804 226326 -COG3805 226327 cl01562 351555 -COG3806 226328 COG3806 226328 -COG3807 226329 COG3807 226329 -COG3808 226330 cl11452 353262 -COG3809 226331 cl01565 351556 -COG3811 226332 cl01566 351557 -COG3812 226333 cl01567 351558 -COG3813 226334 cl19740 354457 -COG3814 226335 cl01120 351391 -COG3815 226336 cl01570 321572 -COG3816 226337 cl19847 354482 -COG3817 226338 cl19737 327615 -COG3818 226339 cl17182 354318 -COG3819 226340 cl01573 321573 -COG3820 226341 cl11533 353284 -COG3821 226342 cl01575 351559 -COG3822 226343 cl21464 354820 -COG3823 226344 cl27076 355610 -COG3824 226345 cl01577 351560 -COG3825 226346 cl28570 333390 -COG3826 226347 cl21496 354838 -COG3827 226348 COG3827 226348 -COG3828 226349 cl00020 350865 -COG3829 226350 COG3829 226350 -COG3830 226351 cl29106 355982 -COG3831 226352 cl01581 321576 -COG3832 226353 cl14643 353818 -COG3833 226354 cl00427 351090 -COG3835 226355 COG3835 226355 -COG3836 226356 cl21481 354828 -COG3837 226357 cl21464 354820 -COG3838 226358 cl01583 321577 -COG3839 226359 COG3839 226359 -COG3840 226360 COG3840 226360 -COG3842 226361 COG3842 226361 -COG3843 226362 cl21589 328814 -COG3844 226363 cl18945 354370 -COG3845 226364 COG3845 226364 -COG3846 226365 cl01503 351527 -COG3847 226366 cl01585 321578 -COG3848 226367 cl00215 350957 -COG3850 226368 COG3850 226368 -COG3851 226369 COG3851 226369 -COG3852 226370 COG3852 226370 -COG3853 226371 cl26996 331817 -COG3854 226372 cl21455 354812 -COG3855 226373 cl19619 354446 -COG3856 226374 cl01587 321579 -COG3857 226375 COG3857 226375 -COG3858 226376 COG3858 226376 -COG3859 226377 cl21488 354833 -COG3860 226378 cl01589 351561 -COG3861 226379 cl01590 321581 -COG3862 226380 COG3862 226380 -COG3863 226381 cl21534 354857 -COG3864 226382 COG3864 226382 -COG3865 226383 cl14632 353816 -COG3866 226384 cl19188 327514 -COG3867 226385 cl23725 355022 -COG3868 226386 cl00997 351341 -COG3869 226387 COG3869 226387 -COG3870 226388 cl00412 351081 -COG3871 226389 cl25687 330508 -COG3872 226390 cl01595 351562 -COG3874 226391 cl01596 321583 -COG3875 226392 cl15406 326569 -COG3876 226393 cl01598 351563 -COG3877 226394 cl22936 354984 -COG3878 226395 cl01600 351564 -COG3879 226396 cl19849 327657 -COG3880 226397 COG3880 226397 -COG3881 226398 COG3881 226398 -COG3882 226399 COG3882 226399 -COG3883 226400 COG3883 226400 -COG3884 226401 COG3884 226401 -COG3885 226402 cl00599 351170 -COG3886 226403 cl15239 326546 -COG3887 226404 COG3887 226404 -COG3888 226405 COG3888 226405 -COG3889 226406 COG3889 226406 -COG3890 226407 COG3890 226407 -COG3892 226408 cl21457 354814 -COG3893 226409 COG3893 226409 -COG3894 226410 COG3894 226410 -COG3895 226411 cl01604 351565 -COG3896 226412 cl21455 354812 -COG3897 226413 cl17173 354317 -COG3898 226414 COG3898 226414 -COG3899 226415 COG3899 226415 -COG3900 226416 cl19192 354390 -COG3901 226417 cl01081 351373 -COG3903 226418 cl21455 354812 -COG3904 226419 cl23717 355015 -COG3905 226420 cl22964 277679 -COG3906 226421 cl01608 321587 -COG3907 226422 cl00474 351108 -COG3908 226423 cl26589 355542 -COG3909 226424 cl01610 351566 -COG3910 226425 COG3910 226425 -COG3911 226426 cl21455 354812 -COG3913 226427 cl01611 351567 -COG3914 226428 COG3914 226428 -COG3915 226429 cl00199 350944 -COG3916 226430 cl17182 354318 -COG3917 226431 cl00388 351069 -COG3918 226432 COG3918 226432 -COG3919 226433 COG3919 226433 -COG3920 226434 COG3920 226434 -COG3921 226435 cl26936 355594 -COG3923 226436 cl11483 353275 -COG3924 226437 cl01614 351568 -COG3925 226438 cl10014 353043 -COG3926 226439 COG3926 226439 -COG3930 226440 cl06858 352594 -COG3931 226441 cl01522 351535 -COG3932 226442 cl01617 351569 -COG3933 226443 COG3933 226443 -COG3934 226444 COG3934 226444 -COG3935 226445 COG3935 226445 -COG3936 226446 cl21495 354837 -COG3937 226447 cl07863 352825 -COG3938 226448 COG3938 226448 -COG3940 226449 cl14647 353819 -COG3941 226450 COG3941 226450 -COG3942 226451 COG3942 226451 -COG3943 226452 cl19850 354483 -COG3944 226453 COG3944 226453 -COG3945 226454 cl15774 353977 -COG3946 226455 COG3946 226455 -COG3947 226456 COG3947 226456 -COG3948 226457 cl01294 321435 -COG3949 226458 cl00456 320982 -COG3950 226459 COG3950 226459 -COG3951 226460 cl01626 351570 -COG3952 226461 cl01627 321593 -COG3953 226462 cl00222 350962 -COG3954 226463 cl17190 354320 -COG3955 226464 cl01628 321594 -COG3956 226465 COG3956 226465 -COG3957 226466 COG3957 226466 -COG3958 226467 COG3958 226467 -COG3959 226468 cl01629 351571 -COG3960 226469 COG3960 226469 -COG3961 226470 COG3961 226470 -COG3962 226471 COG3962 226471 -COG3963 226472 cl17173 354317 -COG3964 226473 cl00281 351001 -COG3965 226474 COG3965 226474 -COG3966 226475 cl27099 355612 -COG3967 226476 cl21454 354811 -COG3968 226477 COG3968 226477 -COG3969 226478 COG3969 226478 -COG3970 226479 COG3970 226479 -COG3971 226480 cl11421 353248 -COG3972 226481 COG3972 226481 -COG3973 226482 COG3973 226482 -COG3975 226483 COG3975 226483 -COG3976 226484 cl01081 351373 -COG3977 226485 COG3977 226485 -COG3978 226486 cl29106 355982 -COG3979 226487 COG3979 226487 -COG3980 226488 cl28257 333077 -COG3981 226489 cl17182 354318 -COG4001 226490 COG4001 226490 -COG4002 226491 cl17212 354323 -COG4003 226492 cl01632 294953 -COG4004 226493 COG4004 226493 -COG4006 226494 cl19028 327494 -COG4007 226495 COG4007 226495 -COG4008 226496 cl19581 267934 -COG4009 226497 cl01636 321596 -COG4010 226498 cl01637 321597 -COG4012 226499 cl01638 351572 -COG4013 226500 cl01639 321599 -COG4014 226501 cl01640 321600 -COG4015 226502 cl22428 304554 -COG4016 226503 cl01641 321601 -COG4017 226504 cl01642 351573 -COG4018 226505 cl19509 327572 -COG4019 226506 cl26461 331282 -COG4020 226507 cl23818 304975 -COG4021 226508 COG4021 226508 -COG4022 226509 cl01645 321603 -COG4023 226510 cl09194 352948 -COG4024 226511 cl17851 327442 -COG4025 226512 cl01648 261026 -COG4026 226513 COG4026 226513 -COG4027 226514 COG4027 226514 -COG4028 226515 COG4028 226515 -COG4029 226516 cl01650 321604 -COG4030 226517 cl21460 354816 -COG4031 226518 cl01651 321605 -COG4032 226519 cl11410 353247 -COG4033 226520 cl01653 321606 -COG4034 226521 cl19851 327659 -COG4035 226522 cl01655 294965 -COG4036 226523 cl01656 321607 -COG4037 226524 cl23961 329196 -COG4038 226525 cl26588 331409 -COG4039 226526 cl01659 321608 -COG4040 226527 cl26587 331408 -COG4041 226528 COG4041 226528 -COG4042 226529 cl01662 351574 -COG4043 226530 cl01020 351351 -COG4044 226531 cl19852 327660 -COG4046 226532 cl01665 321609 -COG4047 226533 cl01666 321610 -COG4048 226534 cl01667 321611 -COG4049 226535 COG4049 226535 -COG4050 226536 cl01669 321612 -COG4051 226537 cl01670 321613 -COG4052 226538 cl01674 321615 -COG4053 226539 COG4053 226539 -COG4054 226540 cl29861 356737 -COG4055 226541 cl01673 321614 -COG4056 226542 cl01674 321615 -COG4057 226543 cl00247 320853 -COG4058 226544 COG4058 226544 -COG4059 226545 cl01675 321616 -COG4060 226546 cl01676 321617 -COG4061 226547 cl01677 321618 -COG4062 226548 cl01678 321619 -COG4063 226549 COG4063 226549 -COG4064 226550 COG4064 226550 -COG4065 226551 cl01680 321620 -COG4066 226552 cl01681 321621 -COG4067 226553 cl11403 353244 -COG4068 226554 cl01683 294981 -COG4069 226555 cl19853 327661 -COG4070 226556 cl00197 350942 -COG4071 226557 cl00644 351193 -COG4072 226558 cl01684 321622 -COG4073 226559 cl01685 321623 -COG4074 226560 COG4074 226560 -COG4075 226561 cl01686 321624 -COG4076 226562 cl17173 354317 -COG4077 226563 cl01687 321625 -COG4078 226564 cl01688 321626 -COG4079 226565 cl17852 327443 -COG4080 226566 cl21505 354844 -COG4081 226567 cl01691 321627 -COG4083 226568 cl15694 353972 -COG4084 226569 cl23962 329197 -COG4085 226570 cl09930 353029 -COG4086 226571 cl19854 354484 -COG4087 226572 cl21460 354816 -COG4088 226573 COG4088 226573 -COG4089 226574 cl15407 353938 -COG4090 226575 cl01695 321628 -COG4091 226576 COG4091 226576 -COG4092 226577 COG4092 226577 -COG4093 226578 cl26586 355541 -COG4094 226579 cl17713 327429 -COG4095 226580 cl21610 354889 -COG4096 226581 COG4096 226581 -COG4097 226582 COG4097 226582 -COG4098 226583 COG4098 226583 -COG4099 226584 COG4099 226584 -COG4100 226585 cl18945 354370 -COG4101 226586 cl21464 354820 -COG4102 226587 cl19855 268208 -COG4103 226588 cl11965 353328 -COG4104 226589 COG4104 226589 -COG4105 226590 COG4105 226590 -COG4106 226591 COG4106 226591 -COG4107 226592 COG4107 226592 -COG4108 226593 COG4108 226593 -COG4109 226594 COG4109 226594 -COG4110 226595 cl18957 354372 -COG4111 226596 cl00447 351096 -COG4112 226597 cl00447 351096 -COG4113 226598 cl28905 355781 -COG4114 226599 cl29263 356139 -COG4115 226600 cl21503 354842 -COG4116 226601 cl11964 353327 -COG4117 226602 COG4117 226602 -COG4118 226603 cl09153 352940 -COG4119 226604 cl00447 351096 -COG4120 226605 cl00454 351100 -COG4121 226606 cl17173 354317 -COG4122 226607 COG4122 226607 -COG4123 226608 cl29228 356104 -COG4124 226609 cl21700 328858 -COG4125 226610 COG4125 226610 -COG4126 226611 cl00518 351130 -COG4127 226612 COG4127 226612 -COG4128 226613 cl21455 354812 -COG4129 226614 COG4129 226614 -COG4130 226615 cl23721 355019 -COG4132 226616 cl00427 351090 -COG4133 226617 COG4133 226617 -COG4134 226618 cl21456 354813 -COG4135 226619 COG4135 226619 -COG4136 226620 COG4136 226620 -COG4137 226621 cl00504 321008 -COG4138 226622 COG4138 226622 -COG4139 226623 cl00454 351100 -COG4143 226624 cl21456 354813 -COG4145 226625 cl00456 320982 -COG4146 226626 cl00456 320982 -COG4147 226627 cl00456 320982 -COG4148 226628 COG4148 226628 -COG4149 226629 cl00427 351090 -COG4150 226630 cl21456 354813 -COG4152 226631 COG4152 226631 -COG4154 226632 cl00809 351264 -COG4158 226633 cl00454 351100 -COG4160 226634 COG4160 226634 -COG4161 226635 COG4161 226635 -COG4166 226636 COG4166 226636 -COG4167 226637 COG4167 226637 -COG4168 226638 COG4168 226638 -COG4170 226639 COG4170 226639 -COG4171 226640 COG4171 226640 -COG4172 226641 COG4172 226641 -COG4174 226642 COG4174 226642 -COG4175 226643 COG4175 226643 -COG4176 226644 cl00427 351090 -COG4177 226645 cl00454 351100 -COG4178 226646 COG4178 226646 -COG4181 226647 COG4181 226647 -COG4185 226648 cl21455 354812 -COG4186 226649 cl13995 353799 -COG4187 226650 cl14876 353847 -COG4188 226651 cl21494 354836 -COG4189 226652 COG4189 226652 -COG4190 226653 COG4190 226653 -COG4191 226654 COG4191 226654 -COG4192 226655 COG4192 226655 -COG4193 226656 COG4193 226656 -COG4194 226657 cl29761 356637 -COG4195 226658 cl01713 321630 -COG4196 226659 cl19857 354485 -COG4197 226660 cl22854 354960 -COG4198 226661 cl19858 354486 -COG4199 226662 cl11538 325073 -COG4200 226663 cl21474 354826 -COG4206 226664 cl21487 354832 -COG4208 226665 cl00427 351090 -COG4209 226666 cl00427 351090 -COG4211 226667 cl00454 351100 -COG4213 226668 COG4213 226668 -COG4214 226669 cl00454 351100 -COG4215 226670 COG4215 226670 -COG4218 226671 cl22471 328904 -COG4219 226672 COG4219 226672 -COG4220 226673 cl01720 351576 -COG4221 226674 COG4221 226674 -COG4222 226675 cl23729 329040 -COG4223 226676 COG4223 226676 -COG4224 226677 cl01722 321631 -COG4225 226678 cl04955 352291 -COG4226 226679 cl23837 355065 -COG4227 226680 cl26762 355568 -COG4228 226681 cl19561 327585 -COG4229 226682 cl21460 354816 -COG4230 226683 COG4230 226683 -COG4231 226684 COG4231 226684 -COG4232 226685 COG4232 226685 -COG4233 226686 cl15830 326654 -COG4235 226687 COG4235 226687 -COG4237 226688 cl17899 248453 -COG4238 226689 cl23797 355051 -COG4239 226690 COG4239 226690 -COG4240 226691 cl17190 354320 -COG4241 226692 cl01728 321632 -COG4242 226693 cl00020 350865 -COG4243 226694 cl01729 351577 -COG4244 226695 cl01730 321634 -COG4245 226696 cl00057 350880 -COG4246 226697 cl23729 329040 -COG4247 226698 cl17685 302653 -COG4248 226699 COG4248 226699 -COG4249 226700 COG4249 226700 -COG4250 226701 cl01731 321635 -COG4251 226702 COG4251 226702 -COG4252 226703 cl01732 351578 -COG4253 226704 cl01733 351579 -COG4254 226705 COG4254 226705 -COG4255 226706 cl23846 355069 -COG4256 226707 cl10043 353051 -COG4257 226708 COG4257 226708 -COG4258 226709 COG4258 226709 -COG4259 226710 cl20183 327771 -COG4260 226711 COG4260 226711 -COG4261 226712 cl17185 354319 -COG4262 226713 COG4262 226713 -COG4263 226714 COG4263 226714 -COG4264 226715 COG4264 226715 -COG4266 226716 cl27253 355631 -COG4267 226717 cl01736 351580 -COG4268 226718 cl01737 321639 -COG4269 226719 cl01738 351581 -COG4270 226720 cl21527 328775 -COG4271 226721 cl26560 355531 -COG4272 226722 cl01741 321641 -COG4273 226723 cl01742 351582 -COG4274 226724 cl01743 351583 -COG4275 226725 cl01744 351584 -COG4276 226726 cl14643 353818 -COG4277 226727 COG4277 226727 -COG4278 226728 COG4278 226728 -COG4279 226729 cl19527 327577 -COG4280 226730 cl25564 330385 -COG4281 226731 cl00221 350961 -COG4282 226732 cl01747 351585 -COG4283 226733 cl21506 354845 -COG4284 226734 cl11394 353239 -COG4285 226735 cl00020 350865 -COG4286 226736 cl01749 351586 -COG4287 226737 cl21494 354836 -COG4288 226738 cl01751 321647 -COG4289 226739 cl01752 321648 -COG4290 226740 cl00212 350954 -COG4291 226741 cl01753 351587 -COG4292 226742 cl01754 351588 -COG4293 226743 cl01755 321651 -COG4294 226744 cl23721 355019 -COG4295 226745 COG4295 226745 -COG4296 226746 cl01757 321652 -COG4297 226747 cl21464 354820 -COG4298 226748 cl01759 351589 -COG4299 226749 cl21495 354837 -COG4300 226750 cl19409 327549 -COG4301 226751 cl26572 355537 -COG4302 226752 cl01762 351590 -COG4303 226753 cl19510 327573 -COG4304 226754 cl01763 321655 -COG4305 226755 COG4305 226755 -COG4306 226756 cl19626 302961 -COG4307 226757 COG4307 226757 -COG4308 226758 cl09109 352932 -COG4309 226759 cl00436 320971 -COG4310 226760 COG4310 226760 -COG4311 226761 cl01767 351591 -COG4312 226762 cl00388 351069 -COG4313 226763 cl01768 351592 -COG4314 226764 cl01769 351593 -COG4315 226765 COG4315 226765 -COG4316 226766 cl01770 351594 -COG4317 226767 cl01771 351595 -COG4318 226768 cl02129 351682 -COG4319 226769 cl09109 352932 -COG4320 226770 cl19860 327665 -COG4321 226771 cl01775 351596 -COG4322 226772 cl21534 354857 -COG4323 226773 cl01879 351627 -COG4324 226774 cl17720 354340 -COG4325 226775 cl26573 355538 -COG4326 226776 cl22933 328959 -COG4327 226777 cl01781 351597 -COG4328 226778 cl12046 325169 -COG4329 226779 cl01783 321663 -COG4330 226780 cl01784 351598 -COG4331 226781 cl01785 321665 -COG4332 226782 cl01786 351599 -COG4333 226783 cl01787 351600 -COG4334 226784 cl01788 321668 -COG4335 226785 cl29010 355886 -COG4336 226786 cl01790 351601 -COG4337 226787 COG4337 226787 -COG4338 226788 cl01792 351602 -COG4339 226789 cl21469 354822 -COG4340 226790 cl01794 351603 -COG4341 226791 cl21469 354822 -COG4342 226792 COG4342 226792 -COG4343 226793 cl00641 351191 -COG4344 226794 COG4344 226794 -COG4345 226795 cl01797 321672 -COG4346 226796 COG4346 226796 -COG4347 226797 cl01798 321673 -COG4352 226798 cl01799 351604 -COG4353 226799 cl01800 321675 -COG4354 226800 COG4354 226800 -COG4357 226801 cl19861 354487 -COG4359 226802 cl21460 354816 -COG4360 226803 COG4360 226803 -COG4362 226804 cl00254 350985 -COG4365 226805 cl19511 327574 -COG4367 226806 cl01805 321676 -COG4370 226807 cl10013 353042 -COG4371 226808 cl01807 295038 -COG4372 226809 COG4372 226809 -COG4373 226810 COG4373 226810 -COG4374 226811 cl28905 355781 -COG4377 226812 cl23964 355108 -COG4378 226813 cl01811 351605 -COG4379 226814 cl15796 353979 -COG4380 226815 cl01813 321678 -COG4381 226816 cl01403 351486 -COG4382 226817 cl01815 321679 -COG4383 226818 cl19863 327667 -COG4384 226819 cl17812 327437 -COG4385 226820 cl01817 321680 -COG4386 226821 COG4386 226821 -COG4387 226822 cl01818 321681 -COG4388 226823 cl19864 327668 -COG4389 226824 cl15411 353939 -COG4390 226825 cl01820 321682 -COG4391 226826 cl01821 351606 -COG4392 226827 cl00735 321137 -COG4393 226828 cl26569 355535 -COG4394 226829 cl01823 351607 -COG4395 226830 cl09208 324342 -COG4396 226831 cl01825 351608 -COG4397 226832 cl01826 321686 -COG4398 226833 COG4398 226833 -COG4399 226834 cl30741 357617 -COG4401 226835 cl10037 353050 -COG4402 226836 cl01827 321687 -COG4403 226837 COG4403 226837 -COG4405 226838 cl01020 351351 -COG4408 226839 cl26564 331385 -COG4409 226840 COG4409 226840 -COG4412 226841 COG4412 226841 -COG4413 226842 cl01829 351609 -COG4416 226843 cl11540 299766 -COG4420 226844 cl01831 351610 -COG4421 226845 cl15705 353974 -COG4422 226846 cl15384 326566 -COG4423 226847 cl01834 351611 -COG4424 226848 cl21551 354866 -COG4425 226849 COG4425 226849 -COG4427 226850 cl01837 321691 -COG4430 226851 COG4430 226851 -COG4443 226852 cl21701 354911 -COG4445 226853 cl00264 350992 -COG4446 226854 cl01841 351612 -COG4447 226855 COG4447 226855 -COG4448 226856 cl01842 351613 -COG4449 226857 cl00558 351152 -COG4451 226858 cl01843 351614 -COG4452 226859 cl01844 351615 -COG4453 226860 cl01845 321696 -COG4454 226861 cl19115 354382 -COG4455 226862 COG4455 226862 -COG4456 226863 cl00877 321225 -COG4457 226864 cl19866 327669 -COG4458 226865 cl19867 327670 -COG4459 226866 cl01848 351616 -COG4460 226867 cl09109 352932 -COG4461 226868 COG4461 226868 -COG4463 226869 cl01850 351617 -COG4464 226870 cl23724 355021 -COG4465 226871 COG4465 226871 -COG4466 226872 cl01852 351618 -COG4467 226873 cl01853 242748 -COG4468 226874 COG4468 226874 -COG4469 226875 cl11541 299767 -COG4470 226876 cl09961 353038 -COG4471 226877 cl23792 355050 -COG4472 226878 cl01857 351619 -COG4473 226879 cl11542 325074 -COG4474 226880 cl22881 354968 -COG4475 226881 cl01860 351620 -COG4476 226882 cl23825 355060 -COG4477 226883 COG4477 226883 -COG4478 226884 cl01862 351621 -COG4479 226885 cl11485 325057 -COG4481 226886 cl01864 351622 -COG4483 226887 cl23965 329199 -COG4485 226888 cl21590 354882 -COG4487 226889 COG4487 226889 -COG4492 226890 cl28492 333312 -COG4493 226891 cl19868 327671 -COG4495 226892 cl01867 351623 -COG4496 226893 cl21459 354815 -COG4499 226894 cl01868 351624 -COG4502 226895 cl21460 354816 -COG4506 226896 cl01870 351625 -COG4508 226897 cl16941 354290 -COG4509 226898 cl09098 324322 -COG4512 226899 cl01873 321707 -COG4517 226900 cl11545 353285 -COG4518 226901 cl23966 355109 -COG4519 226902 cl11547 353286 -COG4520 226903 cl01877 351626 -COG4521 226904 cl21456 354813 -COG4525 226905 COG4525 226905 -COG4529 226906 COG4529 226906 -COG4530 226907 cl19417 354419 -COG4531 226908 cl00262 350990 -COG4533 226909 COG4533 226909 -COG4535 226910 COG4535 226910 -COG4536 226911 COG4536 226911 -COG4537 226912 COG4537 226912 -COG4538 226913 cl09109 352932 -COG4539 226914 cl01879 351627 -COG4540 226915 cl17812 327437 -COG4541 226916 cl00735 321137 -COG4542 226917 COG4542 226917 -COG4544 226918 cl01880 351628 -COG4545 226919 cl00388 351069 -COG4547 226920 COG4547 226920 -COG4548 226921 COG4548 226921 -COG4549 226922 cl14606 326327 -COG4550 226923 cl01483 351522 -COG4551 226924 cl00105 320761 -COG4552 226925 COG4552 226925 -COG4553 226926 cl21494 354836 -COG4555 226927 COG4555 226927 -COG4558 226928 cl00262 350990 -COG4559 226929 COG4559 226929 -COG4564 226930 COG4564 226930 -COG4565 226931 COG4565 226931 -COG4566 226932 COG4566 226932 -COG4567 226933 COG4567 226933 -COG4568 226934 cl09210 352949 -COG4569 226935 cl26651 355555 -COG4570 226936 cl01885 351629 -COG4571 226937 cl01886 321712 -COG4572 226938 cl01887 351630 -COG4573 226939 cl09211 352950 -COG4574 226940 cl00178 350932 -COG4575 226941 cl01888 321714 -COG4576 226942 cl01889 321715 -COG4577 226943 cl01982 351654 -COG4578 226944 cl01890 321716 -COG4579 226945 cl01891 351631 -COG4580 226946 cl21487 354832 -COG4581 226947 COG4581 226947 -COG4582 226948 cl01892 351632 -COG4583 226949 cl01893 351633 -COG4584 226950 COG4584 226950 -COG4585 226951 COG4585 226951 -COG4586 226952 COG4586 226952 -COG4587 226953 cl21474 354826 -COG4588 226954 cl21456 354813 -COG4589 226955 cl21502 304393 -COG4590 226956 COG4590 226956 -COG4591 226957 cl30308 357184 -COG4592 226958 COG4592 226958 -COG4594 226959 COG4594 226959 -COG4597 226960 COG4597 226960 -COG4598 226961 COG4598 226961 -COG4603 226962 cl00454 351100 -COG4604 226963 COG4604 226963 -COG4605 226964 cl00454 351100 -COG4606 226965 cl00454 351100 -COG4607 226966 COG4607 226966 -COG4608 226967 COG4608 226967 -COG4615 226968 COG4615 226968 -COG4618 226969 COG4618 226969 -COG4619 226970 COG4619 226970 -COG4623 226971 COG4623 226971 -COG4624 226972 COG4624 226972 -COG4625 226973 COG4625 226973 -COG4626 226974 cl26981 331802 -COG4627 226975 cl17173 354317 -COG4628 226976 cl01894 351634 -COG4630 226977 COG4630 226977 -COG4631 226978 COG4631 226978 -COG4632 226979 COG4632 226979 -COG4633 226980 COG4633 226980 -COG4634 226981 cl19501 354428 -COG4635 226982 cl00438 351093 -COG4636 226983 cl01898 295083 -COG4637 226984 COG4637 226984 -COG4638 226985 COG4638 226985 -COG4639 226986 cl17190 354320 -COG4640 226987 COG4640 226987 -COG4641 226988 COG4641 226988 -COG4642 226989 COG4642 226989 -COG4643 226990 COG4643 226990 -COG4644 226991 cl14901 353852 -COG4645 226992 cl21495 354837 -COG4646 226993 COG4646 226993 -COG4647 226994 cl19620 327599 -COG4648 226995 COG4648 226995 -COG4649 226996 COG4649 226996 -COG4650 226997 COG4650 226997 -COG4651 226998 cl01133 351397 -COG4652 226999 cl26909 355590 -COG4653 227000 cl27082 355611 -COG4654 227001 cl21467 354821 -COG4655 227002 cl26578 331399 -COG4656 227003 COG4656 227003 -COG4657 227004 cl00597 351168 -COG4658 227005 cl00779 351251 -COG4659 227006 cl01081 351373 -COG4660 227007 cl00597 351168 -COG4662 227008 cl00427 351090 -COG4663 227009 cl21456 354813 -COG4664 227010 cl21473 354825 -COG4665 227011 cl01181 321382 -COG4666 227012 COG4666 227012 -COG4667 227013 COG4667 227013 -COG4668 227014 cl00163 350927 -COG4669 227015 cl01907 351635 -COG4670 227016 COG4670 227016 -COG4671 227017 COG4671 227017 -COG4672 227018 cl01908 295085 -COG4674 227019 COG4674 227019 -COG4675 227020 cl26890 355589 -COG4676 227021 cl19870 327672 -COG4677 227022 COG4677 227022 -COG4678 227023 cl00222 350962 -COG4679 227024 cl21503 354842 -COG4680 227025 cl01912 351636 -COG4681 227026 cl01913 351637 -COG4682 227027 cl27038 355605 -COG4683 227028 cl21503 354842 -COG4684 227029 cl21488 354833 -COG4685 227030 cl01916 321724 -COG4687 227031 cl01917 351638 -COG4688 227032 COG4688 227032 -COG4689 227033 cl01919 351639 -COG4690 227034 cl00467 351104 -COG4691 227035 COG4691 227035 -COG4692 227036 COG4692 227036 -COG4693 227037 cl28196 333016 -COG4694 227038 COG4694 227038 -COG4695 227039 cl19194 354391 -COG4696 227040 cl16941 354290 -COG4697 227041 cl01925 321727 -COG4698 227042 cl11548 353287 -COG4699 227043 cl23967 355110 -COG4700 227044 COG4700 227044 -COG4701 227045 cl02324 351729 -COG4702 227046 cl01249 351440 -COG4703 227047 cl11550 325078 -COG4704 227048 cl01930 351640 -COG4705 227049 COG4705 227049 -COG4706 227050 cl00509 351126 -COG4707 227051 cl09962 299138 -COG4708 227052 cl21488 354833 -COG4709 227053 cl21702 304504 -COG4710 227054 cl22964 277679 -COG4711 227055 cl01935 321729 -COG4712 227056 cl01936 321730 -COG4713 227057 cl21590 354882 -COG4714 227058 cl01938 351641 -COG4715 227059 cl19527 327577 -COG4716 227060 COG4716 227060 -COG4717 227061 COG4717 227061 -COG4718 227062 cl01940 351642 -COG4719 227063 COG4719 227063 -COG4720 227064 cl21488 354833 -COG4721 227065 cl01943 351643 -COG4722 227066 cl17486 327418 -COG4723 227067 cl01945 295099 -COG4724 227068 cl10447 353071 -COG4725 227069 cl01947 321734 -COG4726 227070 COG4726 227070 -COG4727 227071 cl19752 354461 -COG4728 227072 cl01949 351644 -COG4729 227073 cl01950 321736 -COG4731 227074 cl01951 351645 -COG4732 227075 cl21488 354833 -COG4733 227076 COG4733 227076 -COG4734 227077 cl01953 351646 -COG4735 227078 cl12045 325168 -COG4736 227079 cl00282 351002 -COG4737 227080 cl21503 354842 -COG4738 227081 COG4738 227081 -COG4739 227082 cl26584 355540 -COG4740 227083 cl11403 353244 -COG4741 227084 cl01958 321739 -COG4742 227085 COG4742 227085 -COG4743 227086 cl01959 321740 -COG4744 227087 cl01960 321741 -COG4745 227088 cl25705 355439 -COG4746 227089 cl01962 321742 -COG4747 227090 COG4747 227090 -COG4748 227091 cl30740 357616 -COG4749 227092 cl01963 321743 -COG4750 227093 cl11394 353239 -COG4752 227094 cl21505 354844 -COG4753 227095 COG4753 227095 -COG4754 227096 cl15413 353940 -COG4755 227097 cl01966 321744 -COG4756 227098 cl19871 303050 -COG4757 227099 cl21494 354836 -COG4758 227100 cl19753 354462 -COG4759 227101 cl00388 351069 -COG4760 227102 cl00473 351107 -COG4762 227103 cl01969 321745 -COG4763 227104 cl21495 354837 -COG4764 227105 cl00222 350962 -COG4765 227106 cl01970 351647 -COG4766 227107 cl21464 354820 -COG4767 227108 cl01971 321747 -COG4768 227109 cl01972 351648 -COG4769 227110 cl01973 351649 -COG4770 227111 COG4770 227111 -COG4771 227112 COG4771 227112 -COG4772 227113 COG4772 227113 -COG4773 227114 cl30614 357490 -COG4774 227115 COG4774 227115 -COG4775 227116 COG4775 227116 -COG4776 227117 COG4776 227117 -COG4778 227118 COG4778 227118 -COG4779 227119 cl00454 351100 -COG4781 227120 cl01974 351650 -COG4782 227121 cl21494 354836 -COG4783 227122 COG4783 227122 -COG4784 227123 COG4784 227123 -COG4785 227124 COG4785 227124 -COG4786 227125 COG4786 227125 -COG4787 227126 COG4787 227126 -COG4789 227127 cl07980 352841 -COG4790 227128 cl00593 351166 -COG4791 227129 cl00734 351231 -COG4792 227130 cl19167 354387 -COG4794 227131 cl00867 351290 -COG4795 227132 cl26457 355517 -COG4796 227133 COG4796 227133 -COG4797 227134 cl29174 356050 -COG4798 227135 cl17173 354317 -COG4799 227136 COG4799 227136 -COG4800 227137 cl22854 354960 -COG4801 227138 COG4801 227138 -COG4802 227139 cl01977 351651 -COG4803 227140 cl01978 351652 -COG4804 227141 cl19557 354439 -COG4805 227142 cl19872 354488 -COG4806 227143 cl23721 355019 -COG4807 227144 COG4807 227144 -COG4808 227145 cl01981 351653 -COG4809 227146 cl00192 350937 -COG4810 227147 cl01982 351654 -COG4811 227148 cl01983 351655 -COG4812 227149 cl00920 351311 -COG4813 227150 cl00020 350865 -COG4814 227151 cl21494 354836 -COG4815 227152 cl01985 321756 -COG4816 227153 COG4816 227153 -COG4817 227154 cl01986 321757 -COG4818 227155 cl21616 354891 -COG4819 227156 cl26479 331300 -COG4820 227157 COG4820 227157 -COG4821 227158 cl00389 351070 -COG4822 227159 COG4822 227159 -COG4823 227160 cl01988 351656 -COG4824 227161 cl01989 351657 -COG4825 227162 COG4825 227162 -COG4826 227163 cl00137 350915 -COG4827 227164 cl01990 321760 -COG4828 227165 cl01991 321761 -COG4829 227166 cl01992 321762 -COG4830 227167 cl01993 321763 -COG4831 227168 cl01994 321764 -COG4832 227169 cl01368 351473 -COG4833 227170 cl04955 352291 -COG4834 227171 cl21556 354868 -COG4835 227172 cl11551 325079 -COG4836 227173 cl23817 329100 -COG4837 227174 cl11552 325080 -COG4838 227175 cl26898 331719 -COG4839 227176 cl11433 353251 -COG4840 227177 cl23968 329202 -COG4841 227178 cl00400 351077 -COG4842 227179 cl02005 321765 -COG4843 227180 cl19873 354489 -COG4844 227181 cl11488 325058 -COG4845 227182 cl02008 351658 -COG4846 227183 cl02009 321767 -COG4847 227184 cl02010 321768 -COG4848 227185 cl02011 321769 -COG4849 227186 cl00973 351334 -COG4850 227187 cl19874 354490 -COG4851 227188 COG4851 227188 -COG4852 227189 cl02014 351659 -COG4853 227190 cl02015 321771 -COG4854 227191 cl02016 321772 -COG4855 227192 cl02017 295139 -COG4856 227193 COG4856 227193 -COG4857 227194 cl21453 354810 -COG4858 227195 cl11555 353288 -COG4859 227196 cl02019 321773 -COG4860 227197 cl19623 327601 -COG4861 227198 cl19875 303054 -COG4862 227199 cl02022 351660 -COG4863 227200 COG4863 227200 -COG4864 227201 cl12057 353349 -COG4865 227202 cl02025 321775 -COG4866 227203 cl17182 354318 -COG4867 227204 COG4867 227204 -COG4868 227205 cl19473 327559 -COG4869 227206 cl26984 355598 -COG4870 227207 COG4870 227207 -COG4871 227208 cl17515 354332 -COG4872 227209 cl10480 353080 -COG4873 227210 cl23969 329203 -COG4874 227211 cl19186 354389 -COG4875 227212 cl09109 352932 -COG4876 227213 cl23970 329204 -COG4877 227214 COG4877 227214 -COG4878 227215 COG4878 227215 -COG4879 227216 cl19876 327676 -COG4880 227217 cl26599 331420 -COG4881 227218 cl21513 328765 -COG4882 227219 COG4882 227219 -COG4883 227220 cl02034 321776 -COG4884 227221 COG4884 227221 -COG4885 227222 COG4885 227222 -COG4886 227223 COG4886 227223 -COG4887 227224 cl02037 351661 -COG4888 227225 cl02038 351662 -COG4889 227226 COG4889 227226 -COG4890 227227 cl02039 351663 -COG4891 227228 cl14643 353818 -COG4892 227229 cl02041 321780 -COG4893 227230 cl02042 295148 -COG4894 227231 cl02043 321781 -COG4895 227232 cl02044 351664 -COG4896 227233 cl23971 329205 -COG4897 227234 cl23972 329206 -COG4898 227235 cl02047 351665 -COG4899 227236 cl02048 321784 -COG4900 227237 COG4900 227237 -COG4901 227238 cl02050 351666 -COG4902 227239 cl00264 350992 -COG4903 227240 cl11560 325082 -COG4904 227241 cl00958 351331 -COG4905 227242 cl26964 331785 -COG4906 227243 cl26580 331401 -COG4907 227244 cl19878 354491 -COG4908 227245 COG4908 227245 -COG4909 227246 cl12104 325190 -COG4910 227247 cl02055 321786 -COG4911 227248 cl02056 321787 -COG4912 227249 cl11434 353252 -COG4913 227250 COG4913 227250 -COG4914 227251 cl17690 327426 -COG4915 227252 cl02059 321788 -COG4916 227253 COG4916 227253 -COG4917 227254 cl21455 354812 -COG4918 227255 cl00400 351077 -COG4919 227256 cl21569 328804 -COG4920 227257 cl09219 324345 -COG4921 227258 cl02063 321789 -COG4922 227259 cl09109 352932 -COG4923 227260 cl12046 325169 -COG4924 227261 COG4924 227261 -COG4925 227262 cl21567 328802 -COG4926 227263 cl23994 329223 -COG4927 227264 COG4927 227264 -COG4928 227265 cl21455 354812 -COG4929 227266 cl02066 351667 -COG4930 227267 COG4930 227267 -COG4932 227268 COG4932 227268 -COG4933 227269 cl01020 351351 -COG4934 227270 COG4934 227270 -COG4935 227271 cl27557 355662 -COG4936 227272 cl19879 354492 -COG4937 227273 COG4937 227273 -COG4938 227274 COG4938 227274 -COG4939 227275 cl01081 351373 -COG4940 227276 cl25771 355446 -COG4941 227277 COG4941 227277 -COG4942 227278 COG4942 227278 -COG4943 227279 COG4943 227279 -COG4944 227280 cl02071 351668 -COG4945 227281 COG4945 227281 -COG4946 227282 COG4946 227282 -COG4947 227283 cl21494 354836 -COG4948 227284 COG4948 227284 -COG4949 227285 cl02073 351669 -COG4950 227286 cl00460 320985 -COG4951 227287 cl01287 321433 -COG4952 227288 cl23721 355019 -COG4953 227289 COG4953 227289 -COG4954 227290 cl02074 351670 -COG4955 227291 COG4955 227291 -COG4956 227292 COG4956 227292 -COG4957 227293 cl19880 354493 -COG4959 227294 cl10465 353074 -COG4960 227295 cl21703 354912 -COG4961 227296 cl25561 355421 -COG4962 227297 cl21455 354812 -COG4963 227298 COG4963 227298 -COG4964 227299 COG4964 227299 -COG4965 227300 cl19503 354429 -COG4966 227301 COG4966 227301 -COG4967 227302 cl28550 333370 -COG4968 227303 cl29075 355951 -COG4969 227304 cl29653 356529 -COG4970 227305 cl29132 356008 -COG4972 227306 COG4972 227306 -COG4973 227307 cl28330 355709 -COG4974 227308 cl28330 355709 -COG4975 227309 cl26915 331736 -COG4976 227310 COG4976 227310 -COG4977 227311 COG4977 227311 -COG4978 227312 cl01368 351473 -COG4980 227313 cl02079 351671 -COG4981 227314 cl26771 355571 -COG4982 227315 COG4982 227315 -COG4983 227316 COG4983 227316 -COG4984 227317 COG4984 227317 -COG4985 227318 COG4985 227318 -COG4986 227319 COG4986 227319 -COG4987 227320 COG4987 227320 -COG4988 227321 COG4988 227321 -COG4989 227322 cl00470 351106 -COG4990 227323 cl00296 351007 -COG4991 227324 COG4991 227324 -COG4992 227325 cl18945 354370 -COG4993 227326 cl11493 353278 -COG4994 227327 cl09109 352932 -COG4995 227328 cl19248 354399 -COG4996 227329 cl21460 354816 -COG4997 227330 cl16941 354290 -COG4998 227331 cl00516 351129 -COG4999 227332 COG4999 227332 -COG5000 227333 COG5000 227333 -COG5001 227334 COG5001 227334 -COG5002 227335 COG5002 227335 -COG5003 227336 cl02087 321795 -COG5004 227337 cl02088 295164 -COG5005 227338 cl02089 321796 -COG5006 227339 COG5006 227339 -COG5007 227340 cl00386 351068 -COG5008 227341 COG5008 227341 -COG5009 227342 COG5009 227342 -COG5010 227343 COG5010 227343 -COG5011 227344 cl26561 355532 -COG5012 227345 COG5012 227345 -COG5013 227346 COG5013 227346 -COG5014 227347 cl18962 354374 -COG5015 227348 cl00381 351064 -COG5016 227349 COG5016 227349 -COG5017 227350 cl10013 353042 -COG5018 227351 cl10012 353041 -COG5019 227352 COG5019 227352 -COG5020 227353 cl02091 321797 -COG5021 227354 COG5021 227354 -COG5022 227355 COG5022 227355 -COG5023 227356 COG5023 227356 -COG5024 227357 COG5024 227357 -COG5025 227358 COG5025 227358 -COG5026 227359 COG5026 227359 -COG5027 227360 COG5027 227360 -COG5028 227361 COG5028 227361 -COG5029 227362 COG5029 227362 -COG5030 227363 cl02092 261170 -COG5031 227364 cl02093 321798 -COG5032 227365 COG5032 227365 -COG5033 227366 cl19881 354494 -COG5034 227367 COG5034 227367 -COG5035 227368 cl02095 351672 -COG5036 227369 COG5036 227369 -COG5037 227370 cl02096 351673 -COG5038 227371 COG5038 227371 -COG5039 227372 cl10013 353042 -COG5040 227373 cl02098 351674 -COG5041 227374 cl02099 351675 -COG5042 227375 cl00303 351011 -COG5043 227376 COG5043 227376 -COG5044 227377 cl21454 354811 -COG5045 227378 cl02102 321803 -COG5046 227379 cl02103 351676 -COG5047 227380 COG5047 227380 -COG5048 227381 COG5048 227381 -COG5049 227382 COG5049 227382 -COG5050 227383 cl00453 351099 -COG5051 227384 cl02104 351677 -COG5052 227385 cl19882 354495 -COG5053 227386 cl02106 351678 -COG5054 227387 cl02107 351679 -COG5055 227388 cl01936 321730 -COG5056 227389 cl00738 321138 -COG5057 227390 cl03888 352074 -COG5058 227391 COG5058 227391 -COG5059 227392 COG5059 227392 -COG5061 227393 cl19883 354496 -COG5062 227394 cl02109 351680 -COG5063 227395 COG5063 227395 -COG5064 227396 COG5064 227396 -COG5065 227397 cl02110 321809 -COG5066 227398 cl27657 355668 -COG5067 227399 COG5067 227399 -COG5068 227400 COG5068 227400 -COG5069 227401 COG5069 227401 -COG5070 227402 COG5070 227402 -COG5071 227403 COG5071 227403 -COG5072 227404 COG5072 227404 -COG5073 227405 cl02113 321811 -COG5074 227406 COG5074 227406 -COG5075 227407 COG5075 227407 -COG5076 227408 COG5076 227408 -COG5077 227409 COG5077 227409 -COG5078 227410 cl00154 350921 -COG5079 227411 COG5079 227411 -COG5080 227412 cl21557 354869 -COG5081 227413 cl02117 321812 -COG5082 227414 COG5082 227414 -COG5083 227415 COG5083 227415 -COG5084 227416 COG5084 227416 -COG5085 227417 cl12377 353391 -COG5086 227418 COG5086 227418 -COG5087 227419 cl02120 321813 -COG5088 227420 cl02121 321814 -COG5090 227421 cl02122 321815 -COG5091 227422 COG5091 227422 -COG5092 227423 COG5092 227423 -COG5093 227424 cl17012 354295 -COG5094 227425 cl22885 354970 -COG5095 227426 COG5095 227426 -COG5096 227427 COG5096 227427 -COG5097 227428 cl02125 321816 -COG5098 227429 COG5098 227429 -COG5099 227430 COG5099 227430 -COG5100 227431 COG5100 227431 -COG5101 227432 COG5101 227432 -COG5102 227433 cl02130 351683 -COG5103 227434 COG5103 227434 -COG5104 227435 COG5104 227435 -COG5105 227436 COG5105 227436 -COG5106 227437 cl00935 351318 -COG5107 227438 COG5107 227438 -COG5108 227439 COG5108 227439 -COG5109 227440 COG5109 227440 -COG5110 227441 COG5110 227441 -COG5111 227442 cl02127 321817 -COG5112 227443 cl26385 355505 -COG5113 227444 COG5113 227444 -COG5114 227445 COG5114 227445 -COG5116 227446 COG5116 227446 -COG5117 227447 COG5117 227447 -COG5118 227448 COG5118 227448 -COG5119 227449 cl02129 351682 -COG5120 227450 cl02130 351683 -COG5122 227451 cl21566 354875 -COG5123 227452 COG5123 227452 -COG5124 227453 COG5124 227453 -COG5125 227454 COG5125 227454 -COG5126 227455 COG5126 227455 -COG5127 227456 cl15414 326573 -COG5128 227457 COG5128 227457 -COG5129 227458 cl27104 355615 -COG5130 227459 cl02137 351684 -COG5131 227460 cl28922 355798 -COG5132 227461 cl02138 351685 -COG5133 227462 cl00941 351322 -COG5134 227463 cl27149 355619 -COG5135 227464 cl25686 330507 -COG5136 227465 cl22907 328948 -COG5137 227466 cl22451 354941 -COG5138 227467 cl17012 354295 -COG5139 227468 cl00146 350918 -COG5140 227469 cl27293 355637 -COG5141 227470 COG5141 227470 -COG5142 227471 cl02144 321822 -COG5143 227472 COG5143 227472 -COG5144 227473 cl04289 352148 -COG5145 227474 cl27062 331883 -COG5146 227475 COG5146 227475 -COG5147 227476 COG5147 227476 -COG5148 227477 cl00057 350880 -COG5149 227478 cl21683 354906 -COG5150 227479 cl23735 329044 -COG5151 227480 COG5151 227480 -COG5152 227481 COG5152 227481 -COG5153 227482 cl21494 354836 -COG5154 227483 cl00935 351318 -COG5155 227484 cl19248 354399 -COG5156 227485 cl02148 321823 -COG5157 227486 COG5157 227486 -COG5158 227487 cl15415 353941 -COG5159 227488 COG5159 227488 -COG5160 227489 COG5160 227489 -COG5161 227490 COG5161 227490 -COG5162 227491 cl02150 351686 -COG5163 227492 COG5163 227492 -COG5164 227493 COG5164 227493 -COG5165 227494 COG5165 227494 -COG5166 227495 COG5166 227495 -COG5167 227496 cl26718 331539 -COG5169 227497 cl12113 353361 -COG5170 227498 COG5170 227498 -COG5171 227499 COG5171 227499 -COG5173 227500 cl19885 354497 -COG5174 227501 cl02153 351687 -COG5175 227502 COG5175 227502 -COG5176 227503 COG5176 227503 -COG5177 227504 COG5177 227504 -COG5178 227505 COG5178 227505 -COG5179 227506 COG5179 227506 -COG5180 227507 COG5180 227507 -COG5181 227508 COG5181 227508 -COG5182 227509 COG5182 227509 -COG5183 227510 COG5183 227510 -COG5184 227511 COG5184 227511 -COG5185 227512 COG5185 227512 -COG5186 227513 COG5186 227513 -COG5187 227514 COG5187 227514 -COG5188 227515 COG5188 227515 -COG5189 227516 COG5189 227516 -COG5190 227517 COG5190 227517 -COG5191 227518 cl26712 355560 -COG5192 227519 COG5192 227519 -COG5193 227520 COG5193 227520 -COG5194 227521 cl17238 354325 -COG5195 227522 cl02154 321826 -COG5196 227523 cl02155 351688 -COG5197 227524 cl21557 354869 -COG5198 227525 cl02156 351689 -COG5199 227526 COG5199 227526 -COG5200 227527 cl27291 355636 -COG5201 227528 COG5201 227528 -COG5202 227529 cl00738 321138 -COG5204 227530 cl12033 325166 -COG5206 227531 cl00042 350873 -COG5207 227532 COG5207 227532 -COG5208 227533 COG5208 227533 -COG5209 227534 cl02160 351690 -COG5210 227535 COG5210 227535 -COG5211 227536 cl02161 321830 -COG5212 227537 cl23716 355014 -COG5213 227538 cl02162 351691 -COG5214 227539 COG5214 227539 -COG5215 227540 COG5215 227540 -COG5216 227541 cl21704 354913 -COG5217 227542 COG5217 227542 -COG5218 227543 COG5218 227543 -COG5219 227544 COG5219 227544 -COG5220 227545 COG5220 227545 -COG5221 227546 cl04407 352174 -COG5222 227547 COG5222 227547 -COG5223 227548 cl02164 351692 -COG5224 227549 cl02165 351693 -COG5225 227550 cl02166 351694 -COG5226 227551 COG5226 227551 -COG5227 227552 cl28922 355798 -COG5228 227553 cl23804 355055 -COG5229 227554 cl19886 327684 -COG5230 227555 COG5230 227555 -COG5231 227556 cl21727 354920 -COG5232 227557 cl02170 321835 -COG5233 227558 COG5233 227558 -COG5234 227559 cl19887 354498 -COG5235 227560 COG5235 227560 -COG5236 227561 COG5236 227561 -COG5237 227562 cl02172 351695 -COG5238 227563 COG5238 227563 -COG5239 227564 cl00490 351117 -COG5240 227565 COG5240 227565 -COG5241 227566 COG5241 227566 -COG5242 227567 cl22919 328952 -COG5243 227568 COG5243 227568 -COG5244 227569 COG5244 227569 -COG5245 227570 COG5245 227570 -COG5246 227571 COG5246 227571 -COG5247 227572 COG5247 227572 -COG5248 227573 cl02174 242920 -COG5249 227574 cl02175 351696 -COG5250 227575 cl00638 351189 -COG5251 227576 cl02176 351697 -COG5252 227577 COG5252 227577 -COG5253 227578 COG5253 227578 -COG5254 227579 cl21705 354914 -COG5255 227580 cl19888 354499 -COG5256 227581 COG5256 227581 -COG5257 227582 COG5257 227582 -COG5258 227583 COG5258 227583 -COG5259 227584 COG5259 227584 -COG5260 227585 COG5260 227585 -COG5261 227586 COG5261 227586 -COG5262 227587 COG5262 227587 -COG5263 227588 COG5263 227588 -COG5264 227589 cl09954 353036 -COG5265 227590 COG5265 227590 -COG5266 227591 cl26499 355523 -COG5267 227592 cl22733 354951 -COG5268 227593 cl01501 351526 -COG5269 227594 COG5269 227594 -COG5270 227595 COG5270 227595 -COG5271 227596 COG5271 227596 -COG5273 227598 cl19890 354500 -COG5274 227599 COG5274 227599 -COG5275 227600 COG5275 227600 -COG5276 227601 COG5276 227601 -COG5277 227602 cl17037 354300 -COG5278 227603 cl05000 352301 -COG5279 227604 COG5279 227604 -COG5280 227605 COG5280 227605 -COG5281 227606 COG5281 227606 -COG5282 227607 cl02183 351698 -COG5283 227608 COG5283 227608 -COG5285 227609 cl21496 354838 -COG5290 227610 cl27115 331936 -COG5291 227611 cl21536 354858 -COG5293 227612 COG5293 227612 -COG5294 227613 cl02185 321840 -COG5295 227614 COG5295 227614 -COG5296 227615 COG5296 227615 -COG5297 227616 COG5297 227616 -COG5298 227617 cl15692 353970 -COG5301 227618 COG5301 227618 -COG5302 227619 cl02188 351700 -COG5304 227620 cl23863 355079 -COG5305 227621 cl21590 354882 -COG5306 227622 COG5306 227622 -COG5307 227623 COG5307 227623 -COG5308 227624 COG5308 227624 -COG5309 227625 cl23725 355022 -COG5310 227626 COG5310 227626 -COG5314 227627 cl02193 351701 -COG5316 227628 COG5316 227628 -COG5317 227629 cl11562 353289 -COG5319 227630 cl00993 351338 -COG5321 227631 cl02197 351702 -COG5322 227632 COG5322 227632 -COG5323 227633 cl12054 353348 -COG5324 227634 COG5324 227634 -COG5325 227635 COG5325 227635 -COG5328 227636 cl23847 329120 -COG5329 227637 COG5329 227637 -COG5330 227638 cl26565 355533 -COG5331 227639 cl09190 352947 -COG5333 227640 COG5333 227640 -COG5336 227641 cl09754 353007 -COG5337 227642 cl26696 355558 -COG5338 227643 cl21487 354832 -COG5339 227644 cl19471 354422 -COG5340 227645 cl29743 356619 -COG5341 227646 cl02206 321845 -COG5342 227647 cl02207 321846 -COG5343 227648 COG5343 227648 -COG5345 227649 cl11978 325152 -COG5346 227650 cl02210 351703 -COG5347 227651 COG5347 227651 -COG5349 227652 cl02211 351704 -COG5350 227653 cl28904 355780 -COG5351 227654 cl02212 351705 -COG5352 227655 cl11564 264424 -COG5353 227656 cl21622 354894 -COG5354 227657 COG5354 227657 -COG5360 227658 COG5360 227658 -COG5361 227659 COG5361 227659 -COG5362 227660 cl02216 351706 -COG5366 227661 COG5366 227661 -COG5368 227662 cl23973 329207 -COG5369 227663 COG5369 227663 -COG5371 227664 cl17037 354300 -COG5373 227665 COG5373 227665 -COG5374 227666 cl02219 321851 -COG5375 227667 cl21541 328784 -COG5377 227668 cl09232 352951 -COG5378 227669 cl28905 355781 -COG5379 227670 cl15422 326575 -COG5380 227671 COG5380 227671 -COG5381 227672 COG5381 227672 -COG5383 227673 cl02226 351707 -COG5384 227674 cl27202 332023 -COG5385 227675 cl26566 355534 -COG5386 227676 COG5386 227676 -COG5387 227677 cl02228 351708 -COG5388 227678 cl19562 302922 -COG5389 227679 cl02324 351729 -COG5391 227680 COG5391 227680 -COG5393 227681 cl21707 354915 -COG5394 227682 COG5394 227682 -COG5395 227683 cl02232 321854 -COG5397 227684 cl02233 351709 -COG5398 227685 cl15243 353926 -COG5399 227686 cl02234 321856 -COG5400 227687 cl02235 351710 -COG5401 227688 COG5401 227688 -COG5402 227689 cl08447 324279 -COG5403 227690 COG5403 227690 -COG5404 227691 cl01880 351628 -COG5405 227692 cl00467 351104 -COG5406 227693 COG5406 227693 -COG5407 227694 COG5407 227694 -COG5408 227695 COG5408 227695 -COG5409 227696 cl03905 352080 -COG5410 227697 cl29365 356241 -COG5411 227698 COG5411 227698 -COG5412 227699 cl28536 333356 -COG5413 227700 cl02241 321858 -COG5414 227701 cl04653 322747 -COG5415 227702 cl23974 329208 -COG5416 227703 cl01539 351546 -COG5417 227704 cl28922 355798 -COG5418 227705 cl00733 351230 -COG5419 227706 cl02246 321859 -COG5420 227707 cl02247 321860 -COG5421 227708 COG5421 227708 -COG5422 227709 COG5422 227709 -COG5423 227710 cl02248 321861 -COG5424 227711 cl15243 353926 -COG5425 227712 cl26979 331800 -COG5426 227713 COG5426 227713 -COG5427 227714 cl02250 321862 -COG5428 227715 cl02251 351711 -COG5429 227716 cl10501 324595 -COG5430 227717 cl02253 321864 -COG5431 227718 COG5431 227718 -COG5432 227719 COG5432 227719 -COG5433 227720 COG5433 227720 -COG5434 227721 COG5434 227721 -COG5435 227722 cl03356 351982 -COG5436 227723 COG5436 227723 -COG5437 227724 cl11463 325044 -COG5438 227725 cl02259 351712 -COG5439 227726 cl00604 351173 -COG5440 227727 cl02261 321866 -COG5441 227728 cl02262 351713 -COG5442 227729 cl11454 353263 -COG5443 227730 cl11455 353264 -COG5444 227731 COG5444 227731 -COG5445 227732 COG5445 227732 -COG5446 227733 cl02266 351714 -COG5447 227734 cl11568 353290 -COG5448 227735 cl02268 351715 -COG5449 227736 cl26583 355539 -COG5450 227737 cl26582 331403 -COG5451 227738 cl22503 328907 -COG5452 227739 cl12045 325168 -COG5453 227740 cl02273 351716 -COG5454 227741 cl11569 353291 -COG5455 227742 cl02275 351717 -COG5456 227743 cl21581 328810 -COG5457 227744 cl23975 355111 -COG5458 227745 cl11570 325086 -COG5459 227746 cl17173 354317 -COG5460 227747 cl02278 351718 -COG5461 227748 cl19894 354501 -COG5462 227749 COG5462 227749 -COG5463 227750 cl10031 353049 -COG5464 227751 COG5464 227751 -COG5465 227752 cl15834 326655 -COG5466 227753 cl02284 351719 -COG5467 227754 cl11571 325087 -COG5468 227755 cl01125 351394 -COG5469 227756 cl00388 351069 -COG5470 227757 cl22966 328971 -COG5471 227758 cl02289 321874 -COG5472 227759 cl02290 351720 -COG5473 227760 cl02291 351721 -COG5474 227761 cl02292 351722 -COG5475 227762 cl02293 321878 -COG5476 227763 COG5476 227763 -COG5477 227764 cl02294 351723 -COG5478 227765 cl12096 353357 -COG5479 227766 COG5479 227766 -COG5480 227767 cl02296 351724 -COG5481 227768 cl01070 351366 -COG5482 227769 cl02298 321881 -COG5483 227770 cl01246 351438 -COG5484 227771 COG5484 227771 -COG5485 227772 cl09109 352932 -COG5486 227773 cl19895 354502 -COG5487 227774 cl26923 355592 -COG5488 227775 cl02302 351725 -COG5489 227776 cl02303 351726 -COG5490 227777 cl11491 353276 -COG5491 227778 cl21588 328813 -COG5492 227779 COG5492 227779 -COG5493 227780 COG5493 227780 -COG5494 227781 cl00388 351069 -COG5495 227782 COG5495 227782 -COG5496 227783 cl00509 351126 -COG5497 227784 cl02309 295252 -COG5498 227785 cl02310 321884 -COG5499 227786 cl22854 354960 -COG5500 227787 cl12097 353358 -COG5501 227788 cl00014 350861 -COG5502 227789 cl02314 321885 -COG5503 227790 cl11492 353277 -COG5504 227791 cl22923 354979 -COG5505 227792 cl02317 242981 -COG5506 227793 cl02318 351727 -COG5507 227794 cl02319 351728 -COG5508 227795 COG5508 227795 -COG5509 227796 cl26955 355596 -COG5510 227797 cl22944 304653 -COG5511 227798 cl19194 354391 -COG5512 227799 cl02324 351729 -COG5513 227800 cl02325 351730 -COG5514 227801 cl10502 353081 -COG5515 227802 cl10503 353082 -COG5516 227803 COG5516 227803 -COG5517 227804 cl09109 352932 -COG5518 227805 cl19194 354391 -COG5519 227806 cl12098 353359 -COG5520 227807 cl23815 329099 -COG5521 227808 cl23976 329210 -COG5522 227809 cl02331 351731 -COG5523 227810 cl10504 299184 -COG5524 227811 cl02333 351732 -COG5525 227812 cl21617 328828 -COG5526 227813 COG5526 227813 -COG5527 227814 COG5527 227814 -COG5528 227815 cl02335 321892 -COG5529 227816 COG5529 227816 -COG5530 227817 cl02337 351733 -COG5531 227818 COG5531 227818 -COG5532 227819 cl02338 321894 -COG5533 227820 COG5533 227820 -COG5534 227821 cl19398 354416 -COG5535 227822 COG5535 227822 -COG5536 227823 COG5536 227823 -COG5537 227824 cl26728 355561 -COG5538 227825 cl02341 321895 -COG5539 227826 COG5539 227826 -COG5540 227827 COG5540 227827 -COG5541 227828 cl02092 261170 -COG5542 227829 cl21590 354882 -COG5543 227830 cl19897 354503 -COG5544 227831 cl11574 325088 -COG5545 227832 COG5545 227832 -COG5546 227833 cl02344 321896 -COG5547 227834 cl26571 355536 -COG5548 227835 cl02346 351734 -COG5549 227836 cl00064 350885 -COG5550 227837 cl11403 353244 -COG5551 227838 cl11443 353258 -COG5552 227839 cl02349 351735 -COG5553 227840 cl21464 354820 -COG5554 227841 cl02351 351736 -COG5555 227842 cl13995 353799 -COG5556 227843 cl02353 351737 -COG5557 227844 cl21513 328765 -COG5558 227845 COG5558 227845 -COG5559 227846 cl02355 351738 -COG5560 227847 COG5560 227847 -COG5561 227848 cl02356 351739 -COG5562 227849 cl11576 325089 -COG5563 227850 COG5563 227850 -COG5564 227851 cl15424 353942 -COG5565 227852 cl12054 353348 -COG5566 227853 cl02360 351740 -COG5567 227854 cl26118 355487 -COG5568 227855 cl11577 325090 -COG5569 227856 cl02363 351741 -COG5570 227857 cl01070 351366 -COG5571 227858 cl22877 354967 -COG5572 227859 cl02366 321905 -COG5573 227860 cl28905 355781 -COG5574 227861 COG5574 227861 -COG5575 227862 cl27198 355625 -COG5576 227863 COG5576 227863 -COG5577 227864 cl17715 354338 -COG5578 227865 cl02369 351742 -COG5579 227866 cl02370 351743 -COG5580 227867 COG5580 227867 -COG5581 227868 COG5581 227868 -COG5582 227869 COG5582 227869 -COG5583 227870 cl02371 321908 -COG5584 227871 cl21622 354894 -COG5585 227872 COG5585 227872 -COG5586 227873 cl02373 351744 -COG5587 227874 cl02374 351745 -COG5588 227875 cl02375 351746 -COG5589 227876 cl02376 351747 -COG5590 227877 cl21709 354916 -COG5591 227878 cl21622 354894 -COG5592 227879 cl15774 353977 -COG5593 227880 cl27223 355627 -COG5594 227881 COG5594 227881 -COG5595 227882 cl02380 321913 -COG5596 227883 cl02381 351748 -COG5597 227884 cl11394 353239 -COG5598 227885 cl15385 326567 -COG5599 227886 COG5599 227886 -COG5600 227887 cl02111 351681 -COG5601 227888 cl02384 351749 -COG5602 227889 COG5602 227889 -COG5603 227890 cl21566 354875 -COG5604 227891 cl19898 327690 -COG5605 227892 cl01204 351421 -COG5606 227893 cl22854 354960 -COG5607 227894 cl27047 355607 -COG5608 227895 cl12118 353363 -COG5609 227896 cl02390 321916 -COG5610 227897 cl21460 354816 -COG5611 227898 cl28905 355781 -COG5612 227899 cl01482 351521 -COG5613 227900 cl27103 355614 -COG5614 227901 cl11461 353265 -COG5615 227902 cl21540 354861 -COG5616 227903 cl21526 354853 -COG5617 227904 cl21590 354882 -COG5618 227905 cl02395 351750 -COG5619 227906 cl02396 321918 -COG5620 227907 COG5620 227907 -COG5621 227908 cl12101 353360 -COG5622 227909 cl02398 351751 -COG5623 227910 COG5623 227910 -COG5624 227911 cl22931 304643 -COG5625 227912 cl21459 354815 -COG5626 227913 cl02399 351752 -COG5627 227914 cl17238 354325 -COG5628 227915 cl17182 354318 -COG5629 227916 cl19900 327691 -COG5630 227917 COG5630 227917 -COG5631 227918 cl21459 354815 -COG5632 227919 COG5632 227919 -COG5633 227920 cl12345 353385 -COG5634 227921 cl17857 354345 -COG5635 227922 COG5635 227922 -COG5636 227923 COG5636 227923 -COG5637 227924 COG5637 227924 -COG5638 227925 COG5638 227925 -COG5639 227926 cl02406 321921 -COG5640 227927 COG5640 227927 -COG5641 227928 COG5641 227928 -COG5642 227929 cl17718 354339 -COG5643 227930 COG5643 227930 -COG5644 227931 COG5644 227931 -COG5645 227932 cl11456 325041 -COG5646 227933 cl23848 355070 -COG5647 227934 COG5647 227934 -COG5648 227935 COG5648 227935 -COG5649 227936 cl23848 355070 -COG5650 227937 cl21590 354882 -COG5651 227938 COG5651 227938 -COG5652 227939 cl01971 321747 -COG5653 227940 COG5653 227940 -COG5654 227941 cl02411 351753 -COG5655 227942 cl02412 321923 -COG5656 227943 COG5656 227943 -COG5657 227944 COG5657 227944 -COG5658 227945 COG5658 227945 -COG5659 227946 cl17874 354346 -COG5660 227947 COG5660 227947 -COG5661 227948 cl02415 351754 -COG5662 227949 COG5662 227949 -COG5663 227950 cl21460 354816 -COG5664 227951 cl02415 351754 -COG5665 227952 COG5665 227952 -TIGR01123 233278 cl00224 350964 -TIGR01551 233464 cl04947 352288 -TIGR01632 233500 TIGR01632 233500 -TIGR01873 233610 cl08187 324207 -PRK00001 234564 cl00324 351027 -PRK00002 234565 cl02872 351912 -PRK00004 234566 cl00354 351050 -PRK00005 234567 PRK00005 234567 -PRK00006 234568 cl00509 351126 -PRK00007 234569 PRK00007 234569 -PRK00009 234570 cl21521 354850 -PRK00011 234571 cl18945 354370 -PRK00012 234572 cl18951 354371 -PRK00013 234573 cl02777 351886 -PRK00015 234574 cl14782 353835 -PRK00016 234575 cl00402 351078 -PRK00019 234576 cl00377 351062 -PRK00021 234577 PRK00021 234577 -PRK00022 234578 cl19192 354390 -PRK00023 234579 cl17190 354320 -PRK00025 234580 cl28080 355702 -PRK00026 234581 cl00407 294285 -PRK00028 234582 PRK00028 234582 -PRK00029 234583 cl19499 354427 -PRK00032 234584 cl00276 350998 -PRK00035 234585 PRK00035 234585 -PRK00037 234586 PRK00037 234586 -PRK00039 234587 cl21482 354829 -PRK00040 234588 cl00368 351058 -PRK00042 234589 cl21457 354814 -PRK00043 234590 cl21457 354814 -PRK00044 234591 cl03656 322379 -PRK00045 234592 PRK00045 234592 -PRK00046 234593 PRK00046 234593 -PRK00047 234594 PRK00047 234594 -PRK00048 234595 cl29298 356174 -PRK00049 234596 PRK00049 234596 -PRK00050 234597 cl17173 354317 -PRK00051 234598 cl00344 351043 -PRK00052 234599 cl00478 351110 -PRK00053 234600 cl27635 355667 -PRK00054 234601 PRK00054 234601 -PRK00055 234602 cl23716 355014 -PRK00056 234603 cl29529 356405 -PRK00058 234604 cl00366 351056 -PRK00059 234605 PRK00059 234605 -PRK00061 234606 cl00317 351021 -PRK00062 234607 PRK00062 234607 -PRK00064 234608 PRK00064 234608 -PRK00068 234609 PRK00068 234609 -PRK00070 234610 cl00500 351122 -PRK00071 234611 cl00015 350862 -PRK00072 234612 PRK00072 234612 -PRK00073 234613 cl00198 350943 -PRK00074 234614 PRK00074 234614 -PRK00075 234615 cl00828 351275 -PRK00076 234616 PRK00076 234616 -PRK00077 234617 PRK00077 234617 -PRK00078 234618 cl00276 350998 -PRK00080 234619 PRK00080 234619 -PRK00081 234620 cl17190 354320 -PRK00082 234621 PRK00082 234621 -PRK00085 234622 PRK00085 234622 -PRK00087 234623 PRK00087 234623 -PRK00089 234624 PRK00089 234624 -PRK00090 234625 cl28913 355789 -PRK00091 234626 cl21455 354812 -PRK00092 234627 cl00259 350988 -PRK00093 234628 PRK00093 234628 -PRK00094 234629 PRK00094 234629 -PRK00095 234630 PRK00095 234630 -PRK00098 234631 PRK00098 234631 -PRK00099 234632 cl00376 351061 -PRK00102 234633 PRK00102 234633 -PRK00103 234634 cl00679 351210 -PRK00104 234635 cl00598 351169 -PRK00105 234636 cl11435 353253 -PRK00107 234637 cl17173 354317 -PRK00108 234638 cl10571 353087 -PRK00109 234639 cl21482 354829 -PRK00110 234640 cl00361 351054 -PRK00111 234641 cl02324 351729 -PRK00112 234642 cl19224 354397 -PRK00114 234643 PRK00114 234643 -PRK00115 234644 cl00464 320986 -PRK00116 234645 PRK00116 234645 -PRK00117 234646 cl00936 351319 -PRK00118 234647 cl21459 354815 -PRK00120 234648 cl00276 350998 -PRK00121 234649 PRK00121 234649 -PRK00122 234650 PRK00122 234650 -PRK00125 234651 cl21457 354814 -PRK00128 234652 PRK00128 234652 -PRK00129 234653 cl00309 351014 -PRK00131 234654 cl17190 354320 -PRK00133 234655 PRK00133 234655 -PRK00134 234656 cl09114 352935 -PRK00135 234657 cl00612 351177 -PRK00136 234658 cl00330 351032 -PRK00137 234659 PRK00137 234659 -PRK00139 234660 PRK00139 234660 -PRK00140 234661 cl29338 356214 -PRK00141 234662 PRK00141 234662 -PRK00142 234663 cl00125 350910 -PRK00143 234664 cl00292 351005 -PRK00145 234665 cl00489 351116 -PRK00147 234666 cl00523 351134 -PRK00149 234667 PRK00149 234667 -PRK00150 234668 cl00234 320843 -PRK00153 234669 cl00494 351120 -PRK00155 234670 cl11394 353239 -PRK00157 234671 PRK00157 234671 -PRK00164 234672 PRK00164 234672 -PRK00166 234673 PRK00166 234673 -PRK00168 234674 cl00015 350862 -PRK00170 234675 cl00438 351093 -PRK00172 234676 cl00392 351072 -PRK00174 234677 cl17068 354307 -PRK00175 234678 cl21494 354836 -PRK00179 234679 PRK00179 234679 -PRK00180 234680 cl17037 354300 -PRK00182 234681 cl00788 294511 -PRK00188 234682 cl29556 356432 -PRK00191 234683 cl00788 294511 -PRK00192 234684 PRK00192 234684 -PRK00197 234685 cl11961 353326 -PRK00202 234686 cl00223 350963 -PRK00208 234687 cl21457 354814 -PRK00215 234688 PRK00215 234688 -PRK00216 234689 cl17173 354317 -PRK00218 234690 cl01097 351377 -PRK00220 234691 cl00410 351080 -PRK00222 234692 cl15841 353987 -PRK00226 234693 PRK00226 234693 -PRK00228 234694 cl00731 351229 -PRK00230 234695 cl21457 354814 -PRK00232 234696 cl00873 351292 -PRK00235 234697 cl00415 351084 -PRK00236 234698 cl28330 355709 -PRK00241 234699 PRK00241 234699 -PRK00249 234700 cl19182 354388 -PRK00252 234701 PRK00252 234701 -PRK00254 234702 PRK00254 234702 -PRK00258 234703 PRK00258 234703 -PRK00259 234704 cl01098 321339 -PRK00260 234705 PRK00260 234705 -PRK00269 234706 PRK00269 234706 -PRK00270 234707 cl00529 351137 -PRK00274 234708 cl17173 354317 -PRK00275 234709 PRK00275 234709 -PRK00278 234710 cl21457 354814 -PRK00279 234711 PRK00279 234711 -PRK00281 234712 cl00858 351283 -PRK00283 234713 cl28330 355709 -PRK00286 234714 cl25917 355463 -PRK00290 234715 PRK00290 234715 -PRK00292 234716 cl17037 354300 -PRK00293 234717 PRK00293 234717 -PRK00296 234718 cl00538 351142 -PRK00300 234719 cl17190 354320 -PRK00301 234720 cl17182 354318 -PRK00302 234721 cl25421 355393 -PRK00310 234722 PRK00310 234722 -PRK00311 234723 PRK00311 234723 -PRK00315 234724 cl00944 351325 -PRK00317 234725 cl11394 353239 -PRK00321 234726 cl01122 351392 -PRK00325 234727 cl00179 350933 -PRK00326 234728 PRK00326 234728 -PRK00331 234729 PRK00331 234729 -PRK00339 234730 PRK00339 234730 -PRK00343 234731 PRK00343 234731 -PRK00346 234732 cl00448 351097 -PRK00347 234733 cl00647 351194 -PRK00349 234734 PRK00349 234734 -PRK00358 234735 cl00452 351098 -PRK00359 234736 cl00367 351057 -PRK00366 234737 cl29317 356193 -PRK00369 234738 cl00281 351001 -PRK00376 234739 cl00458 351102 -PRK00377 234740 cl17173 354317 -PRK00380 234741 cl00015 350862 -PRK00389 234742 cl29882 356758 -PRK00390 234743 PRK00390 234743 -PRK00392 234744 cl14651 353822 -PRK00393 234745 cl00522 351133 -PRK00394 234746 PRK00394 234746 -PRK00398 234747 cl00874 351293 -PRK00402 234748 cl00285 351003 -PRK00405 234749 PRK00405 234749 -PRK00409 234750 PRK00409 234750 -PRK00411 234751 PRK00411 234751 -PRK00413 234752 PRK00413 234752 -PRK00416 234753 cl00493 351119 -PRK00418 234754 cl01144 351400 -PRK00419 234755 cl01287 321433 -PRK00420 234756 cl00713 351224 -PRK00421 234757 PRK00421 234757 -PRK00423 234758 PRK00423 234758 -PRK00431 234759 cl00019 320715 -PRK00432 234760 cl00876 351294 -PRK00436 234761 PRK00436 234761 -PRK00439 234762 cl00215 350957 -PRK00440 234763 PRK00440 234763 -PRK00442 234764 cl00788 294511 -PRK00446 234765 cl00238 350975 -PRK00447 234766 cl00585 351163 -PRK00448 234767 PRK00448 234767 -PRK00450 234768 PRK00450 234768 -PRK00451 234769 cl18945 354370 -PRK00454 234770 cl21455 354812 -PRK00455 234771 cl00309 351014 -PRK00458 234772 cl00687 351215 -PRK00461 234773 cl09943 353035 -PRK00464 234774 cl27261 355632 -PRK00476 234775 PRK00476 234775 -PRK00478 234776 PRK00478 234776 -PRK00481 234777 cl00195 350940 -PRK00484 234778 PRK00484 234778 -PRK00485 234779 PRK00485 234779 -PRK00488 234780 PRK00488 234780 -PRK00489 234781 PRK00489 234781 -PRK00499 234782 cl00457 351101 -PRK00504 234783 cl00383 351066 -PRK00507 234784 cl21457 354814 -PRK00509 234785 cl00292 351005 -PRK00517 234786 cl29228 356104 -PRK00521 234787 cl00542 351145 -PRK00529 234788 PRK00529 234788 -PRK00549 234789 PRK00549 234789 -PRK00550 234790 PRK00550 234790 -PRK00556 234791 PRK00556 234791 -PRK00558 234792 PRK00558 234792 -PRK00565 234793 cl00327 351030 -PRK00566 234794 PRK00566 234794 -PRK00567 234795 cl00860 351284 -PRK00571 234796 PRK00571 234796 -PRK00575 234797 cl00788 294511 -PRK00576 234798 cl11394 353239 -PRK00578 234799 PRK00578 234799 -PRK00587 234800 cl00494 351120 -PRK00591 234801 PRK00591 234801 -PRK00601 234802 cl00493 351119 -PRK00615 234803 cl18945 354370 -PRK00629 234804 PRK00629 234804 -PRK00630 234805 PRK00630 234805 -PRK00635 234806 PRK00635 234806 -PRK00648 234807 cl00276 350998 -PRK00652 234808 cl23778 355043 -PRK00654 234809 PRK00654 234809 -PRK00676 234810 PRK00676 234810 -PRK00685 234811 cl23716 355014 -PRK00694 234812 cl30731 357607 -PRK00696 234813 cl29683 356559 -PRK00698 234814 PRK00698 234814 -PRK00701 234815 cl00456 320982 -PRK00702 234816 cl00339 351040 -PRK00704 234817 cl03651 322378 -PRK00708 234818 PRK00708 234818 -PRK00711 234819 cl30730 357606 -PRK00714 234820 cl00447 351096 -PRK00719 234821 cl19096 327499 -PRK00720 234822 cl00788 294511 -PRK00724 234823 cl00659 321097 -PRK00725 234824 PRK00725 234824 -PRK00726 234825 PRK00726 234825 -PRK00730 234826 cl00457 351101 -PRK00733 234827 PRK00733 234827 -PRK00742 234828 PRK00742 234828 -PRK00750 234829 cl29864 356740 -PRK00766 234830 cl00653 351198 -PRK00768 234831 cl00292 351005 -PRK00772 234832 cl00445 351095 -PRK00773 234833 cl00945 321267 -PRK00777 234834 cl00015 350862 -PRK00779 234835 PRK00779 234835 -PRK00782 234836 cl00599 351170 -PRK00783 234837 PRK00783 234837 -PRK00784 234838 PRK00784 234838 -PRK00801 234839 cl00911 351308 -PRK00802 234840 cl14785 353837 -PRK00805 234841 cl00826 351274 -PRK00810 234842 cl03935 322479 -PRK00811 234843 cl17173 354317 -PRK00816 234844 cl00779 351251 -PRK00823 234845 cl00942 351323 -PRK00844 234846 PRK00844 234846 -PRK00847 234847 cl27413 355648 -PRK00854 234848 cl18945 354370 -PRK00856 234849 PRK00856 234849 -PRK00861 234850 PRK00861 234850 -PRK00865 234851 cl00518 351130 -PRK00871 234852 cl00438 351093 -PRK00877 234853 cl10029 353047 -PRK00881 234854 PRK00881 234854 -PRK00884 234855 cl00276 350998 -PRK00885 234856 PRK00885 234856 -PRK00886 234857 cl00895 351303 -PRK00892 234858 PRK00892 234858 -PRK00893 234859 cl27375 355644 -PRK00901 234860 PRK00901 234860 -PRK00911 234861 cl00340 351041 -PRK00912 234862 PRK00912 234862 -PRK00913 234863 PRK00913 234863 -PRK00915 234864 PRK00915 234864 -PRK00923 234865 cl02784 351891 -PRK00927 234866 PRK00927 234866 -PRK00933 234867 cl00935 351318 -PRK00934 234868 PRK00934 234868 -PRK00942 234869 cl00452 351098 -PRK00943 234870 PRK00943 234870 -PRK00944 234871 cl07906 324180 -PRK00950 234872 PRK00950 234872 -PRK00951 234873 cl00341 351042 -PRK00955 234874 PRK00955 234874 -PRK00957 234875 cl00464 320986 -PRK00960 234876 PRK00960 234876 -PRK00964 234877 PRK00964 234877 -PRK00968 234878 cl01676 321617 -PRK00969 234879 cl00197 350942 -PRK00971 234880 cl00907 351307 -PRK00972 234881 cl01675 321616 -PRK00976 234882 cl23818 304975 -PRK00979 234883 cl00219 350959 -PRK00984 234884 cl00130 320773 -PRK00994 234885 cl00840 321201 -PRK00996 234886 PRK00996 234886 -PRK01001 234887 PRK01001 234887 -PRK01022 234888 cl01681 321621 -PRK01029 234889 PRK01029 234889 -PRK01030 234890 cl01677 321618 -PRK01033 234891 cl21457 354814 -PRK01037 234892 PRK01037 234892 -PRK01045 234893 cl19123 354385 -PRK01059 234894 PRK01059 234894 -PRK01061 234895 cl00597 351168 -PRK01077 234896 PRK01077 234896 -PRK01096 234897 PRK01096 234897 -PRK01100 234898 cl01873 321707 -PRK01103 234899 PRK01103 234899 -PRK01109 234900 PRK01109 234900 -PRK01110 234901 cl09115 324327 -PRK01112 234902 cl11399 353243 -PRK01115 234903 PRK01115 234903 -PRK01117 234904 cl28913 355789 -PRK01122 234905 PRK01122 234905 -PRK01123 234906 PRK01123 234906 -PRK01130 234907 cl21457 354814 -PRK01143 234908 PRK01143 234908 -PRK01146 234909 cl11409 353246 -PRK01158 234910 PRK01158 234910 -PRK01160 234911 cl00832 321199 -PRK01170 234912 PRK01170 234912 -PRK01175 234913 cl00020 350865 -PRK01184 234914 cl17190 354320 -PRK01191 234915 cl00354 351050 -PRK01192 234916 cl00921 321250 -PRK01198 234917 cl00660 351201 -PRK01202 234918 cl11404 353245 -PRK01209 234919 cl00561 351153 -PRK01212 234920 PRK01212 234920 -PRK01213 234921 PRK01213 234921 -PRK01221 234922 cl00826 351274 -PRK01222 234923 cl21457 354814 -PRK01229 234924 cl28531 333351 -PRK01233 234925 PRK01233 234925 -PRK01236 234926 cl00687 351215 -PRK01237 234927 cl00768 351245 -PRK01254 234928 PRK01254 234928 -PRK01259 234929 PRK01259 234929 -PRK01261 234930 cl21457 354814 -PRK01265 234931 cl12018 353340 -PRK01269 234932 PRK01269 234932 -PRK01285 234933 cl00849 321208 -PRK01286 234934 PRK01286 234934 -PRK01287 234935 cl28330 355709 -PRK01293 234936 cl22902 354974 -PRK01294 234937 PRK01294 234937 -PRK01297 234938 PRK01297 234938 -PRK01305 234939 cl27166 355622 -PRK01313 234940 cl00457 351101 -PRK01315 234941 cl00489 351116 -PRK01318 234942 PRK01318 234942 -PRK01343 234943 cl01144 351400 -PRK01345 234944 cl12018 353340 -PRK01346 234945 PRK01346 234945 -PRK01355 234946 cl00438 351093 -PRK01362 234947 cl21457 354814 -PRK01372 234948 PRK01372 234948 -PRK01388 234949 cl19186 354389 -PRK01390 234950 PRK01390 234950 -PRK01392 234951 cl01498 351524 -PRK01402 234952 cl00236 350974 -PRK01406 234953 PRK01406 234953 -PRK01424 234954 cl00523 351134 -PRK01433 234955 PRK01433 234955 -PRK01490 234956 cl29099 355975 -PRK01526 234957 cl00276 350998 -PRK01544 234958 PRK01544 234958 -PRK01550 234959 PRK01550 234959 -PRK01565 234960 PRK01565 234960 -PRK01581 234961 PRK01581 234961 -PRK01584 234962 PRK01584 234962 -PRK01610 234963 cl02915 295552 -PRK01611 234964 PRK01611 234964 -PRK01614 234965 cl00788 294511 -PRK01617 234966 PRK01617 234966 -PRK01642 234967 PRK01642 234967 -PRK01663 234968 cl00573 351159 -PRK01678 234969 cl00377 351062 -PRK01683 234970 PRK01683 234970 -PRK01686 234971 cl21456 354813 -PRK01688 234972 cl18945 354370 -PRK01712 234973 cl00670 351206 -PRK01722 234974 cl17011 354294 -PRK01723 234975 cl21453 354810 -PRK01736 234976 cl01173 351409 -PRK01741 234977 PRK01741 234977 -PRK01747 234978 PRK01747 234978 -PRK01749 234979 cl00649 351195 -PRK01759 234980 PRK01759 234980 -PRK01766 234981 cl09326 352957 -PRK01777 234982 cl28922 355798 -PRK01821 234983 cl00608 351175 -PRK01827 234984 cl19097 354378 -PRK01842 234985 cl30711 357587 -PRK01851 234986 PRK01851 234986 -PRK01862 234987 PRK01862 234987 -PRK01889 234988 PRK01889 234988 -PRK01903 234989 cl00457 351101 -PRK01904 234990 cl11437 353255 -PRK01909 234991 cl00873 351292 -PRK01919 234992 cl00788 294511 -PRK01966 234993 PRK01966 234993 -PRK01973 234994 PRK01973 234994 -PRK02006 234995 PRK02006 234995 -PRK02083 234996 cl21457 354814 -PRK02090 234997 cl28963 355839 -PRK02098 234998 cl22902 354974 -PRK02101 234999 cl01143 351399 -PRK02106 235000 PRK02106 235000 -PRK02107 235001 cl00954 351329 -PRK02110 235002 cl00649 351195 -PRK02114 235003 PRK02114 235003 -PRK02119 235004 cl01090 351375 -PRK02122 235005 PRK02122 235005 -PRK02126 235006 cl23716 355014 -PRK02134 235007 cl15692 353970 -PRK02135 235008 cl00611 321070 -PRK02141 235009 cl00276 350998 -PRK02186 235010 PRK02186 235010 -PRK02190 235011 cl17011 354294 -PRK02201 235012 cl00489 351116 -PRK02220 235013 cl00235 350973 -PRK02227 235014 cl00822 351273 -PRK02234 235015 cl01314 321443 -PRK02237 235016 cl00757 242072 -PRK02255 235017 PRK02255 235017 -PRK02256 235018 cl14876 353847 -PRK02259 235019 cl11393 353238 -PRK02264 235020 cl00249 350981 -PRK02268 235021 cl00728 321132 -PRK02271 235022 cl19096 327499 -PRK02277 235023 cl00309 351014 -PRK02287 235024 cl27200 355626 -PRK02290 235025 cl00640 351190 -PRK02292 235026 cl23750 355034 -PRK02301 235027 cl00826 351274 -PRK02304 235028 cl00309 351014 -PRK02308 235029 cl23721 355019 -PRK02315 235030 cl02022 351660 -PRK02318 235031 PRK02318 235031 -PRK02362 235032 PRK02362 235032 -PRK02363 235033 cl01319 321447 -PRK02395 235034 PRK02395 235034 -PRK02406 235035 PRK02406 235035 -PRK02412 235036 cl21457 354814 -PRK02427 235037 PRK02427 235037 -PRK02436 235038 cl28330 355709 -PRK02458 235039 PRK02458 235039 -PRK02463 235040 PRK02463 235040 -PRK02472 235041 PRK02472 235041 -PRK02484 235042 PRK02484 235042 -PRK02492 235043 cl00826 351274 -PRK02504 235044 PRK02504 235044 -PRK02506 235045 cl21457 354814 -PRK02507 235046 cl03855 322447 -PRK02509 235047 cl23747 329052 -PRK02515 235048 PRK02515 235048 -PRK02534 235049 PRK02534 235049 -PRK02546 235050 PRK02546 235050 -PRK02561 235051 cl28158 355706 -PRK02597 235052 PRK02597 235052 -PRK02610 235053 PRK02610 235053 -PRK02615 235054 PRK02615 235054 -PRK02625 235055 PRK02625 235055 -PRK02627 235056 cl18945 354370 -PRK02628 235057 PRK02628 235057 -PRK02654 235058 cl00489 351116 -PRK02705 235059 PRK02705 235059 -PRK02710 235060 cl19115 354382 -PRK02714 235061 PRK02714 235061 -PRK02724 235062 cl04793 296659 -PRK02726 235063 cl11394 353239 -PRK02731 235064 PRK02731 235064 -PRK02733 235065 cl23820 329101 -PRK02746 235066 cl00873 351292 -PRK02759 235067 PRK02759 235067 -PRK02769 235068 cl18945 354370 -PRK02770 235069 cl00687 351215 -PRK02797 235070 cl07929 352839 -PRK02801 235071 cl09930 353029 -PRK02812 235072 PRK02812 235072 -PRK02813 235073 cl14876 353847 -PRK02830 235074 cl00597 351168 -PRK02833 235075 cl01264 351449 -PRK02842 235076 cl02775 351884 -PRK02853 235077 cl23847 329120 -PRK02858 235078 cl04057 322510 -PRK02866 235079 PRK02866 235079 -PRK02868 235080 cl23978 305135 -PRK02870 235081 PRK02870 235081 -PRK02888 235082 PRK02888 235082 -PRK02889 235083 cl29726 356602 -PRK02901 235084 PRK02901 235084 -PRK02910 235085 PRK02910 235085 -PRK02919 235086 cl01458 351511 -PRK02925 235087 cl00829 351276 -PRK02943 235088 cl11636 353301 -PRK02946 235089 cl01891 351631 -PRK02951 235090 cl11502 353279 -PRK02958 235091 cl00788 294511 -PRK02963 235092 cl00184 350935 -PRK02967 235093 PRK02967 235093 -PRK02971 235094 cl23754 329058 -PRK02983 235095 PRK02983 235095 -PRK02991 235096 cl00342 294246 -PRK02999 235097 cl21481 354828 -PRK03007 235098 PRK03007 235098 -PRK03011 235099 cl17037 354300 -PRK03031 235100 cl00457 351101 -PRK03059 235101 PRK03059 235101 -PRK03072 235102 cl12018 353340 -PRK03080 235103 cl18945 354370 -PRK03103 235104 PRK03103 235104 -PRK03124 235105 cl00687 351215 -PRK03158 235106 PRK03158 235106 -PRK03170 235107 cl21457 354814 -PRK03180 235108 PRK03180 235108 -PRK03187 235109 PRK03187 235109 -PRK03188 235110 PRK03188 235110 -PRK03202 235111 cl00204 350948 -PRK03244 235112 cl18945 354370 -PRK03287 235113 PRK03287 235113 -PRK03298 235114 cl00516 351129 -PRK03317 235115 PRK03317 235115 -PRK03341 235116 PRK03341 235116 -PRK03343 235117 PRK03343 235117 -PRK03348 235118 PRK03348 235118 -PRK03353 235119 cl00336 351037 -PRK03363 235120 PRK03363 235120 -PRK03372 235121 cl01255 321418 -PRK03378 235122 cl01255 321418 -PRK03381 235123 PRK03381 235123 -PRK03427 235124 PRK03427 235124 -PRK03430 235125 cl01103 351380 -PRK03459 235126 cl00457 351101 -PRK03467 235127 cl00381 351064 -PRK03522 235128 cl17173 354317 -PRK03537 235129 cl21456 354813 -PRK03557 235130 cl29883 356759 -PRK03562 235131 PRK03562 235131 -PRK03577 235132 PRK03577 235132 -PRK03578 235133 PRK03578 235133 -PRK03584 235134 cl17068 354307 -PRK03592 235135 PRK03592 235135 -PRK03598 235136 PRK03598 235136 -PRK03601 235137 PRK03601 235137 -PRK03604 235138 PRK03604 235138 -PRK03612 235139 PRK03612 235139 -PRK03619 235140 cl00020 350865 -PRK03620 235141 PRK03620 235141 -PRK03624 235142 PRK03624 235142 -PRK03629 235143 cl29726 356602 -PRK03635 235144 PRK03635 235144 -PRK03636 235145 PRK03636 235145 -PRK03640 235146 PRK03640 235146 -PRK03643 235147 PRK03643 235147 -PRK03655 235148 cl02915 295552 -PRK03657 235149 cl00666 351203 -PRK03695 235150 PRK03695 235150 -PRK03699 235151 PRK03699 235151 -PRK03705 235152 PRK03705 235152 -PRK03731 235153 cl17190 354320 -PRK03739 235154 PRK03739 235154 -PRK03745 235155 cl00617 321075 -PRK03759 235156 cl00447 351096 -PRK03760 235157 cl00627 351184 -PRK03761 235158 PRK03761 235158 -PRK03784 235159 cl00454 351100 -PRK03803 235160 PRK03803 235160 -PRK03814 235161 cl01458 351511 -PRK03815 235162 PRK03815 235162 -PRK03817 235163 PRK03817 235163 -PRK03824 235164 cl19201 354393 -PRK03826 235165 cl21469 354822 -PRK03837 235166 PRK03837 235166 -PRK03854 235167 cl21495 354837 -PRK03868 235168 PRK03868 235168 -PRK03879 235169 cl00688 351216 -PRK03881 235170 PRK03881 235170 -PRK03903 235171 PRK03903 235171 -PRK03906 235172 cl23721 355019 -PRK03907 235173 cl09139 352938 -PRK03911 235174 PRK03911 235174 -PRK03918 235175 PRK03918 235175 -PRK03932 235176 PRK03932 235176 -PRK03934 235177 cl03656 322379 -PRK03941 235178 cl00866 351289 -PRK03947 235179 cl09111 352933 -PRK03954 235180 cl00887 351299 -PRK03958 235181 cl21505 354844 -PRK03968 235182 PRK03968 235182 -PRK03976 235183 cl19284 354404 -PRK03979 235184 cl00192 350937 -PRK03980 235185 PRK03980 235185 -PRK03982 235186 cl12018 353340 -PRK03983 235187 PRK03983 235187 -PRK03987 235188 PRK03987 235188 -PRK03988 235189 cl17014 354297 -PRK03991 235190 PRK03991 235190 -PRK03995 235191 cl00716 351225 -PRK03996 235192 PRK03996 235192 -PRK03999 235193 PRK03999 235193 -PRK04000 235194 PRK04000 235194 -PRK04004 235195 cl30717 357593 -PRK04005 235196 cl12022 353342 -PRK04007 235197 cl09927 353027 -PRK04011 235198 cl30759 357635 -PRK04015 235199 cl00682 351212 -PRK04016 235200 cl00712 351223 -PRK04020 235201 cl00315 351020 -PRK04023 235202 PRK04023 235202 -PRK04024 235203 PRK04024 235203 -PRK04027 235204 cl00313 351018 -PRK04028 235205 PRK04028 235205 -PRK04031 235206 PRK04031 235206 -PRK04032 235207 cl21502 304393 -PRK04036 235208 cl28527 333347 -PRK04038 235209 cl00350 351046 -PRK04040 235210 cl17190 354320 -PRK04042 235211 cl00325 351028 -PRK04043 235212 PRK04043 235212 -PRK04044 235213 PRK04044 235213 -PRK04049 235214 cl00880 294572 -PRK04053 235215 cl00331 351033 -PRK04057 235216 cl00821 351272 -PRK04069 235217 cl00075 350890 -PRK04081 235218 PRK04081 235218 -PRK04098 235219 cl00788 294511 -PRK04115 235220 cl00914 321246 -PRK04123 235221 PRK04123 235221 -PRK04125 235222 cl00608 351175 -PRK04132 235223 PRK04132 235223 -PRK04140 235224 PRK04140 235224 -PRK04143 235225 cl00019 320715 -PRK04148 235226 cl00552 294373 -PRK04149 235227 PRK04149 235227 -PRK04155 235228 cl00020 350865 -PRK04156 235229 PRK04156 235229 -PRK04158 235230 PRK04158 235230 -PRK04160 235231 cl00304 351012 -PRK04161 235232 cl21457 354814 -PRK04163 235233 PRK04163 235233 -PRK04164 235234 cl19873 354489 -PRK04165 235235 PRK04165 235235 -PRK04168 235236 cl21456 354813 -PRK04169 235237 cl21457 354814 -PRK04171 235238 cl00764 351244 -PRK04172 235239 PRK04172 235239 -PRK04173 235240 PRK04173 235240 -PRK04176 235241 cl21454 354811 -PRK04179 235242 cl00932 321256 -PRK04181 235243 PRK04181 235243 -PRK04182 235244 PRK04182 235244 -PRK04183 235245 cl00216 320827 -PRK04184 235246 PRK04184 235246 -PRK04191 235247 PRK04191 235247 -PRK04192 235248 PRK04192 235248 -PRK04194 235249 cl03398 351986 -PRK04195 235250 PRK04195 235250 -PRK04196 235251 PRK04196 235251 -PRK04199 235252 cl00353 351049 -PRK04201 235253 cl00437 320972 -PRK04203 235254 cl00322 351025 -PRK04204 235255 PRK04204 235255 -PRK04210 235256 cl22860 354963 -PRK04211 235257 cl00312 351017 -PRK04217 235258 cl22854 354960 -PRK04219 235259 PRK04219 235259 -PRK04231 235260 cl00324 351027 -PRK04233 235261 cl30711 357587 -PRK04235 235262 cl00689 351217 -PRK04243 235263 cl02977 322147 -PRK04247 235264 cl00516 351129 -PRK04250 235265 cl00281 351001 -PRK04262 235266 PRK04262 235266 -PRK04266 235267 cl17173 354317 -PRK04282 235268 PRK04282 235268 -PRK04284 235269 PRK04284 235269 -PRK04286 235270 cl23716 355014 -PRK04290 235271 cl00931 351315 -PRK04296 235272 cl23762 329062 -PRK04301 235273 PRK04301 235273 -PRK04302 235274 cl28888 355772 -PRK04306 235275 cl00937 351320 -PRK04307 235276 cl00649 351195 -PRK04309 235277 PRK04309 235277 -PRK04311 235278 PRK04311 235278 -PRK04319 235279 PRK04319 235279 -PRK04322 235280 cl19212 354394 -PRK04328 235281 cl21455 354812 -PRK04330 235282 cl00739 321139 -PRK04333 235283 cl00354 351050 -PRK04334 235284 cl23955 305112 -PRK04335 235285 PRK04335 235285 -PRK04338 235286 cl17173 354317 -PRK04342 235287 PRK04342 235287 -PRK04346 235288 cl00342 294246 -PRK04350 235289 PRK04350 235289 -PRK04351 235290 cl19237 354398 -PRK04358 235291 cl17319 327412 -PRK04366 235292 cl18945 354370 -PRK04375 235293 cl00337 351038 -PRK04388 235294 cl00649 351195 -PRK04405 235295 PRK04405 235295 -PRK04406 235296 cl01090 351375 -PRK04423 235297 cl29318 356194 -PRK04439 235298 cl27474 332295 -PRK04443 235299 PRK04443 235299 -PRK04447 235300 cl11435 353253 -PRK04452 235301 cl00219 350959 -PRK04456 235302 cl11685 353311 -PRK04517 235303 cl11437 353255 -PRK04523 235304 PRK04523 235304 -PRK04527 235305 cl00292 351005 -PRK04531 235306 PRK04531 235306 -PRK04537 235307 PRK04537 235307 -PRK04570 235308 cl29321 356197 -PRK04596 235309 PRK04596 235309 -PRK04750 235310 cl21453 354810 -PRK04781 235311 cl18945 354370 -PRK04792 235312 cl29726 356602 -PRK04813 235313 PRK04813 235313 -PRK04837 235314 PRK04837 235314 -PRK04841 235315 PRK04841 235315 -PRK04863 235316 PRK04863 235316 -PRK04885 235317 cl01255 321418 -PRK04897 235318 cl12018 353340 -PRK04914 235319 PRK04914 235319 -PRK04926 235320 PRK04926 235320 -PRK04946 235321 cl02619 351829 -PRK04950 235322 cl15270 353931 -PRK04960 235323 cl23979 355112 -PRK04968 235324 cl06405 352512 -PRK04974 235325 cl17185 354319 -PRK04976 235326 cl00958 351331 -PRK04987 235327 cl00881 351296 -PRK04989 235328 PRK04989 235328 -PRK05007 235329 PRK05007 235329 -PRK05015 235330 PRK05015 235330 -PRK05022 235331 PRK05022 235331 -PRK05031 235332 PRK05031 235332 -PRK05033 235333 PRK05033 235333 -PRK05035 235334 PRK05035 235334 -PRK05057 235335 cl17190 354320 -PRK05074 235336 cl00866 351289 -PRK05077 235337 cl21494 354836 -PRK05082 235338 PRK05082 235338 -PRK05084 235339 cl28330 355709 -PRK05086 235340 PRK05086 235340 -PRK05089 235341 cl01240 351436 -PRK05092 235342 PRK05092 235342 -PRK05096 235343 PRK05096 235343 -PRK05097 235344 cl23842 355067 -PRK05105 235345 PRK05105 235345 -PRK05111 235346 PRK05111 235346 -PRK05113 235347 PRK05113 235347 -PRK05122 235348 PRK05122 235348 -PRK05124 235349 PRK05124 235349 -PRK05134 235350 cl29228 356104 -PRK05137 235351 PRK05137 235351 -PRK05151 235352 cl00597 351168 -PRK05157 235353 cl15243 353926 -PRK05159 235354 PRK05159 235354 -PRK05163 235355 cl00312 351017 -PRK05170 235356 cl00497 321006 -PRK05177 235357 PRK05177 235357 -PRK05179 235358 cl00331 351033 -PRK05182 235359 PRK05182 235359 -PRK05183 235360 PRK05183 235360 -PRK05184 235361 cl23716 355014 -PRK05192 235362 cl30496 357372 -PRK05198 235363 cl17225 354324 -PRK05201 235364 PRK05201 235364 -PRK05205 235365 cl00309 351014 -PRK05218 235366 PRK05218 235366 -PRK05222 235367 PRK05222 235367 -PRK05225 235368 PRK05225 235368 -PRK05231 235369 cl21453 354810 -PRK05244 235370 cl01172 351408 -PRK05246 235371 cl27316 355640 -PRK05248 235372 cl11474 353270 -PRK05249 235373 cl30684 357560 -PRK05250 235374 PRK05250 235374 -PRK05253 235375 cl00292 351005 -PRK05254 235376 cl00483 351114 -PRK05255 235377 cl01147 351402 -PRK05256 235378 cl11471 353268 -PRK05261 235379 PRK05261 235379 -PRK05265 235380 cl00541 351144 -PRK05269 235381 PRK05269 235381 -PRK05270 235382 PRK05270 235382 -PRK05273 235383 cl00253 350984 -PRK05274 235384 cl14653 353823 -PRK05277 235385 cl02915 295552 -PRK05279 235386 PRK05279 235386 -PRK05283 235387 cl21457 354814 -PRK05286 235388 PRK05286 235388 -PRK05287 235389 cl01892 351632 -PRK05289 235390 PRK05289 235390 -PRK05290 235391 cl23739 355027 -PRK05291 235392 PRK05291 235392 -PRK05294 235393 PRK05294 235393 -PRK05297 235394 PRK05297 235394 -PRK05298 235395 PRK05298 235395 -PRK05299 235396 cl00315 351020 -PRK05301 235397 PRK05301 235397 -PRK05302 235398 cl00313 351018 -PRK05303 235399 cl19280 354403 -PRK05305 235400 cl03656 322379 -PRK05306 235401 cl30717 357593 -PRK05312 235402 cl00873 351292 -PRK05318 235403 PRK05318 235403 -PRK05319 235404 cl00325 351028 -PRK05320 235405 cl00125 350910 -PRK05321 235406 cl21457 354814 -PRK05322 235407 PRK05322 235407 -PRK05324 235408 cl11393 353238 -PRK05325 235409 cl00057 350880 -PRK05326 235410 PRK05326 235410 -PRK05327 235411 PRK05327 235411 -PRK05329 235412 PRK05329 235412 -PRK05330 235413 cl19362 354414 -PRK05331 235414 cl17212 354323 -PRK05333 235415 cl00195 350940 -PRK05335 235416 cl21454 354811 -PRK05337 235417 cl29895 356771 -PRK05338 235418 cl00406 351079 -PRK05339 235419 cl00780 351252 -PRK05340 235420 cl13995 353799 -PRK05341 235421 cl21464 354820 -PRK05342 235422 PRK05342 235422 -PRK05346 235423 cl01081 351373 -PRK05347 235424 PRK05347 235424 -PRK05349 235425 cl00779 351251 -PRK05352 235426 PRK05352 235426 -PRK05354 235427 PRK05354 235427 -PRK05355 235428 cl18945 354370 -PRK05359 235429 cl10012 353041 -PRK05362 235430 cl23718 355016 -PRK05363 235431 cl00199 350944 -PRK05367 235432 PRK05367 235432 -PRK05368 235433 cl00020 350865 -PRK05370 235434 cl00292 351005 -PRK05371 235435 PRK05371 235435 -PRK05379 235436 PRK05379 235436 -PRK05380 235437 PRK05380 235437 -PRK05382 235438 cl00323 351026 -PRK05385 235439 PRK05385 235439 -PRK05387 235440 cl18945 354370 -PRK05388 235441 cl00603 351172 -PRK05389 235442 PRK05389 235442 -PRK05395 235443 cl00505 351123 -PRK05399 235444 PRK05399 235444 -PRK05402 235445 cl30708 357584 -PRK05406 235446 cl15692 353970 -PRK05409 235447 cl23721 355019 -PRK05414 235448 cl19311 354410 -PRK05415 235449 cl12064 325175 -PRK05416 235450 cl23728 304885 -PRK05417 235451 cl01553 321565 -PRK05419 235452 cl23723 355020 -PRK05420 235453 cl00200 350945 -PRK05421 235454 cl00490 351117 -PRK05422 235455 cl00482 351113 -PRK05425 235456 cl00268 350993 -PRK05426 235457 cl00352 351048 -PRK05427 235458 PRK05427 235458 -PRK05428 235459 PRK05428 235459 -PRK05429 235460 PRK05429 235460 -PRK05431 235461 PRK05431 235461 -PRK05433 235462 PRK05433 235462 -PRK05434 235463 PRK05434 235463 -PRK05435 235464 cl00359 351053 -PRK05437 235465 PRK05437 235465 -PRK05439 235466 cl17190 354320 -PRK05441 235467 PRK05441 235467 -PRK05442 235468 PRK05442 235468 -PRK05443 235469 PRK05443 235469 -PRK05444 235470 PRK05444 235470 -PRK05446 235471 PRK05446 235471 -PRK05447 235472 PRK05447 235472 -PRK05450 235473 cl11394 353239 -PRK05451 235474 cl00281 351001 -PRK05452 235475 PRK05452 235475 -PRK05454 235476 cl11394 353239 -PRK05456 235477 cl00467 351104 -PRK05457 235478 cl12018 353340 -PRK05458 235479 PRK05458 235479 -PRK05462 235480 cl00687 351215 -PRK05464 235481 PRK05464 235481 -PRK05465 235482 cl01762 351590 -PRK05467 235483 cl21496 354838 -PRK05469 235484 cl14876 353847 -PRK05471 235485 cl00934 351317 -PRK05472 235486 PRK05472 235486 -PRK05474 235487 cl23721 355019 -PRK05476 235488 PRK05476 235488 -PRK05477 235489 PRK05477 235489 -PRK05478 235490 cl00285 351003 -PRK05479 235491 cl29486 356362 -PRK05480 235492 cl17190 354320 -PRK05481 235493 PRK05481 235493 -PRK05482 235494 cl00903 351306 -PRK05498 235495 PRK05498 235495 -PRK05518 235496 PRK05518 235496 -PRK05528 235497 cl00366 351056 -PRK05541 235498 cl17190 354320 -PRK05550 235499 PRK05550 235499 -PRK05557 235500 PRK05557 235500 -PRK05559 235501 PRK05559 235501 -PRK05560 235502 PRK05560 235502 -PRK05561 235503 PRK05561 235503 -PRK05562 235504 cl25954 355468 -PRK05563 235505 PRK05563 235505 -PRK05565 235506 PRK05565 235506 -PRK05567 235507 PRK05567 235507 -PRK05568 235508 cl00438 351093 -PRK05571 235509 cl00485 351115 -PRK05573 235510 cl00382 351065 -PRK05574 235511 PRK05574 235511 -PRK05576 235512 cl00304 351012 -PRK05579 235513 PRK05579 235513 -PRK05580 235514 PRK05580 235514 -PRK05581 235515 cl21457 354814 -PRK05582 235516 PRK05582 235516 -PRK05583 235517 cl00600 351171 -PRK05585 235518 cl00806 351262 -PRK05588 235519 cl23724 355021 -PRK05589 235520 PRK05589 235520 -PRK05590 235521 cl30705 357581 -PRK05591 235522 cl00356 351052 -PRK05592 235523 cl12022 353342 -PRK05593 235524 cl00379 320941 -PRK05595 235525 PRK05595 235525 -PRK05597 235526 PRK05597 235526 -PRK05599 235527 cl21454 354811 -PRK05600 235528 PRK05600 235528 -PRK05601 235529 PRK05601 235529 -PRK05602 235530 PRK05602 235530 -PRK05605 235531 PRK05605 235531 -PRK05610 235532 cl00351 351047 -PRK05617 235533 PRK05617 235533 -PRK05618 235534 PRK05618 235534 -PRK05621 235535 cl00365 351055 -PRK05627 235536 PRK05627 235536 -PRK05632 235537 PRK05632 235537 -PRK05634 235538 cl00303 351011 -PRK05638 235539 PRK05638 235539 -PRK05641 235540 PRK05641 235540 -PRK05643 235541 PRK05643 235541 -PRK05644 235542 PRK05644 235542 -PRK05646 235543 cl17185 354319 -PRK05647 235544 cl00395 351075 -PRK05650 235545 PRK05650 235545 -PRK05653 235546 cl21454 354811 -PRK05654 235547 cl23717 355015 -PRK05657 235548 PRK05657 235548 -PRK05658 235549 PRK05658 235549 -PRK05660 235550 PRK05660 235550 -PRK05667 235551 PRK05667 235551 -PRK05670 235552 cl00020 350865 -PRK05672 235553 PRK05672 235553 -PRK05673 235554 PRK05673 235554 -PRK05679 235555 PRK05679 235555 -PRK05681 235556 PRK05681 235556 -PRK05682 235557 PRK05682 235557 -PRK05683 235558 PRK05683 235558 -PRK05684 235559 PRK05684 235559 -PRK05685 235560 cl00654 351199 -PRK05686 235561 PRK05686 235561 -PRK05687 235562 PRK05687 235562 -PRK05689 235563 cl23733 355026 -PRK05691 235564 PRK05691 235564 -PRK05697 235565 cl00681 351211 -PRK05699 235566 cl00593 351166 -PRK05700 235567 cl00867 351290 -PRK05701 235568 cl00734 351231 -PRK05702 235569 cl19167 354387 -PRK05703 235570 PRK05703 235570 -PRK05704 235571 PRK05704 235571 -PRK05708 235572 PRK05708 235572 -PRK05710 235573 cl00015 350862 -PRK05711 235574 cl10012 353041 -PRK05713 235575 PRK05713 235575 -PRK05716 235576 cl00279 351000 -PRK05718 235577 cl21457 354814 -PRK05720 235578 cl00348 351044 -PRK05722 235579 PRK05722 235579 -PRK05724 235580 cl23717 355015 -PRK05728 235581 cl01106 351382 -PRK05729 235582 PRK05729 235582 -PRK05731 235583 PRK05731 235583 -PRK05732 235584 cl21454 354811 -PRK05733 235585 cl09930 353029 -PRK05738 235586 cl00326 351029 -PRK05740 235587 cl00481 351112 -PRK05743 235588 PRK05743 235588 -PRK05749 235589 PRK05749 235589 -PRK05752 235590 cl03649 322377 -PRK05755 235591 PRK05755 235591 -PRK05756 235592 cl00192 350937 -PRK05758 235593 cl17210 354322 -PRK05761 235594 PRK05761 235594 -PRK05762 235595 PRK05762 235595 -PRK05764 235596 PRK05764 235596 -PRK05765 235597 cl00304 351012 -PRK05766 235598 cl00355 351051 -PRK05769 235599 cl18945 354370 -PRK05771 235600 PRK05771 235600 -PRK05773 235601 cl00336 351037 -PRK05776 235602 PRK05776 235602 -PRK05777 235603 cl29598 356474 -PRK05778 235604 PRK05778 235604 -PRK05782 235605 PRK05782 235605 -PRK05783 235606 cl00789 351256 -PRK05785 235607 cl17173 354317 -PRK05786 235608 cl21454 354811 -PRK05787 235609 cl00304 351012 -PRK05788 235610 cl26443 355516 -PRK05793 235611 PRK05793 235611 -PRK05800 235612 cl21455 354812 -PRK05802 235613 PRK05802 235613 -PRK05807 235614 PRK05807 235614 -PRK05812 235615 PRK05812 235615 -PRK05813 235616 PRK05813 235616 -PRK05815 235617 cl00413 351082 -PRK05818 235618 PRK05818 235618 -PRK05826 235619 PRK05826 235619 -PRK05841 235620 PRK05841 235620 -PRK05842 235621 PRK05842 235621 -PRK05846 235622 PRK05846 235622 -PRK05849 235623 PRK05849 235623 -PRK05850 235624 PRK05850 235624 -PRK05852 235625 PRK05852 235625 -PRK05853 235626 cl09930 353029 -PRK05854 235627 cl21454 354811 -PRK05855 235628 PRK05855 235628 -PRK05858 235629 PRK05858 235629 -PRK05865 235630 PRK05865 235630 -PRK05866 235631 PRK05866 235631 -PRK05869 235632 cl23717 355015 -PRK05872 235633 PRK05872 235633 -PRK05877 235634 PRK05877 235634 -PRK05878 235635 PRK05878 235635 -PRK05886 235636 cl00806 351262 -PRK05888 235637 PRK05888 235637 -PRK05896 235638 PRK05896 235638 -PRK05899 235639 PRK05899 235639 -PRK05901 235640 PRK05901 235640 -PRK05904 235641 PRK05904 235641 -PRK05905 235642 PRK05905 235642 -PRK05907 235643 cl19912 354508 -PRK05911 235644 PRK05911 235644 -PRK05912 235645 PRK05912 235645 -PRK05925 235646 PRK05925 235646 -PRK05928 235647 cl03649 322377 -PRK05932 235648 PRK05932 235648 -PRK05935 235649 cl14057 353805 -PRK05939 235650 cl18945 354370 -PRK05940 235651 PRK05940 235651 -PRK05950 235652 PRK05950 235652 -PRK05952 235653 cl09938 353032 -PRK05957 235654 PRK05957 235654 -PRK05958 235655 cl18945 354370 -PRK05964 235656 cl18945 354370 -PRK05967 235657 cl18945 354370 -PRK05972 235658 PRK05972 235658 -PRK05974 235659 cl00789 351256 -PRK05976 235660 cl30684 357560 -PRK05981 235661 cl23717 355015 -PRK05986 235662 PRK05986 235662 -PRK05989 235663 PRK05989 235663 -PRK05995 235664 cl23717 355015 -PRK05996 235665 PRK05996 235665 -PRK06002 235666 PRK06002 235666 -PRK06004 235667 cl30383 357259 -PRK06007 235668 PRK06007 235668 -PRK06008 235669 PRK06008 235669 -PRK06009 235670 cl30617 357493 -PRK06010 235671 cl00867 351290 -PRK06012 235672 cl07980 352841 -PRK06018 235673 PRK06018 235673 -PRK06019 235674 PRK06019 235674 -PRK06025 235675 PRK06025 235675 -PRK06027 235676 PRK06027 235676 -PRK06029 235677 cl19190 327515 -PRK06031 235678 cl00309 351014 -PRK06032 235679 cl23770 329064 -PRK06034 235680 PRK06034 235680 -PRK06039 235681 PRK06039 235681 -PRK06041 235682 PRK06041 235682 -PRK06049 235683 cl00203 350947 -PRK06052 235684 cl00464 320986 -PRK06058 235685 cl18945 354370 -PRK06061 235686 cl18951 354371 -PRK06062 235687 cl18945 354370 -PRK06064 235688 PRK06064 235688 -PRK06069 235689 PRK06069 235689 -PRK06073 235690 cl00535 351141 -PRK06074 235691 cl19197 354392 -PRK06076 235692 cl00469 351105 -PRK06077 235693 PRK06077 235693 -PRK06079 235694 cl21454 354811 -PRK06080 235695 cl00337 351038 -PRK06092 235696 cl00224 350964 -PRK06099 235697 cl09170 352943 -PRK06102 235698 cl18951 354371 -PRK06110 235699 PRK06110 235699 -PRK06112 235700 PRK06112 235700 -PRK06116 235701 cl30699 357575 -PRK06124 235702 cl21454 354811 -PRK06125 235703 PRK06125 235703 -PRK06126 235704 PRK06126 235704 -PRK06127 235705 cl23717 355015 -PRK06129 235706 PRK06129 235706 -PRK06130 235707 PRK06130 235707 -PRK06131 235708 cl00340 351041 -PRK06132 235709 PRK06132 235709 -PRK06133 235710 PRK06133 235710 -PRK06136 235711 cl00304 351012 -PRK06138 235712 PRK06138 235712 -PRK06139 235713 PRK06139 235713 -PRK06142 235714 cl23717 355015 -PRK06147 235715 PRK06147 235715 -PRK06149 235716 PRK06149 235716 -PRK06153 235717 PRK06153 235717 -PRK06154 235718 PRK06154 235718 -PRK06155 235719 PRK06155 235719 -PRK06156 235720 PRK06156 235720 -PRK06163 235721 PRK06163 235721 -PRK06164 235722 PRK06164 235722 -PRK06170 235723 cl18951 354371 -PRK06178 235724 PRK06178 235724 -PRK06179 235725 cl21454 354811 -PRK06181 235726 PRK06181 235726 -PRK06183 235727 PRK06183 235727 -PRK06184 235728 PRK06184 235728 -PRK06185 235729 PRK06185 235729 -PRK06187 235730 PRK06187 235730 -PRK06188 235731 PRK06188 235731 -PRK06189 235732 cl00281 351001 -PRK06190 235733 cl23717 355015 -PRK06193 235734 cl11399 353243 -PRK06195 235735 PRK06195 235735 -PRK06196 235736 PRK06196 235736 -PRK06197 235737 PRK06197 235737 -PRK06199 235738 PRK06199 235738 -PRK06200 235739 PRK06200 235739 -PRK06203 235740 cl02872 351912 -PRK06205 235741 PRK06205 235741 -PRK06207 235742 PRK06207 235742 -PRK06208 235743 cl00214 350956 -PRK06213 235744 cl23717 355015 -PRK06214 235745 PRK06214 235745 -PRK06215 235746 cl03302 322257 -PRK06222 235747 PRK06222 235747 -PRK06224 235748 cl00416 351085 -PRK06225 235749 PRK06225 235749 -PRK06228 235750 PRK06228 235750 -PRK06241 235751 PRK06241 235751 -PRK06251 235752 cl00466 351103 -PRK06252 235753 cl00464 320986 -PRK06253 235754 PRK06253 235754 -PRK06256 235755 PRK06256 235755 -PRK06259 235756 PRK06259 235756 -PRK06260 235757 PRK06260 235757 -PRK06263 235758 PRK06263 235758 -PRK06264 235759 cl00913 351310 -PRK06265 235760 cl21488 354833 -PRK06266 235761 PRK06266 235761 -PRK06267 235762 PRK06267 235762 -PRK06270 235763 PRK06270 235763 -PRK06273 235764 PRK06273 235764 -PRK06274 235765 cl00546 351146 -PRK06276 235766 PRK06276 235766 -PRK06277 235767 PRK06277 235767 -PRK06280 235768 cl00676 351209 -PRK06286 235769 cl00583 351161 -PRK06288 235770 PRK06288 235770 -PRK06289 235771 PRK06289 235771 -PRK06290 235772 PRK06290 235772 -PRK06291 235773 PRK06291 235773 -PRK06292 235774 cl30684 357560 -PRK06299 235775 PRK06299 235775 -PRK06300 235776 cl21454 354811 -PRK06302 235777 PRK06302 235777 -PRK06319 235778 PRK06319 235778 -PRK06327 235779 cl30684 357560 -PRK06330 235780 PRK06330 235780 -PRK06333 235781 cl09938 353032 -PRK06341 235782 cl09930 353029 -PRK06349 235783 PRK06349 235783 -PRK06354 235784 PRK06354 235784 -PRK06365 235785 PRK06365 235785 -PRK06369 235786 cl29457 356333 -PRK06370 235787 PRK06370 235787 -PRK06372 235788 cl00348 351044 -PRK06381 235789 cl00342 294246 -PRK06386 235790 PRK06386 235790 -PRK06389 235791 PRK06389 235791 -PRK06390 235792 PRK06390 235792 -PRK06394 235793 cl00333 351034 -PRK06398 235794 PRK06398 235794 -PRK06402 235795 cl21508 354846 -PRK06406 235796 PRK06406 235796 -PRK06411 235797 cl17194 354321 -PRK06416 235798 cl30684 357560 -PRK06419 235799 cl12022 353342 -PRK06436 235800 cl21454 354811 -PRK06443 235801 cl00693 351218 -PRK06446 235802 PRK06446 235802 -PRK06451 235803 cl00445 351095 -PRK06455 235804 cl00317 351021 -PRK06458 235805 PRK06458 235805 -PRK06459 235806 PRK06459 235806 -PRK06460 235807 cl18945 354370 -PRK06462 235808 PRK06462 235808 -PRK06464 235809 PRK06464 235809 -PRK06473 235810 PRK06473 235810 -PRK06474 235811 cl21459 354815 -PRK06476 235812 cl29090 355966 -PRK06482 235813 cl21454 354811 -PRK06486 235814 cl00214 350956 -PRK06489 235815 cl21494 354836 -PRK06500 235816 PRK06500 235816 -PRK06501 235817 cl09938 353032 -PRK06518 235818 cl00140 350916 -PRK06519 235819 PRK06519 235819 -PRK06521 235820 PRK06521 235820 -PRK06522 235821 PRK06522 235821 -PRK06531 235822 cl00806 351262 -PRK06541 235823 cl18945 354370 -PRK06545 235824 PRK06545 235824 -PRK06547 235825 cl17190 354320 -PRK06549 235826 PRK06549 235826 -PRK06553 235827 cl17185 354319 -PRK06556 235828 PRK06556 235828 -PRK06557 235829 cl00214 350956 -PRK06558 235830 PRK06558 235830 -PRK06559 235831 PRK06559 235831 -PRK06567 235832 PRK06567 235832 -PRK06581 235833 PRK06581 235833 -PRK06585 235834 PRK06585 235834 -PRK06589 235835 PRK06589 235835 -PRK06590 235836 PRK06590 235836 -PRK06591 235837 PRK06591 235837 -PRK06596 235838 PRK06596 235838 -PRK06598 235839 cl29412 356288 -PRK06599 235840 PRK06599 235840 -PRK06606 235841 cl00224 350964 -PRK06608 235842 cl00342 294246 -PRK06635 235843 PRK06635 235843 -PRK06638 235844 cl21484 354830 -PRK06647 235845 PRK06647 235845 -PRK06654 235846 cl00681 351211 -PRK06655 235847 cl29105 355981 -PRK06664 235848 PRK06664 235848 -PRK06666 235849 PRK06666 235849 -PRK06669 235850 PRK06669 235850 -PRK06676 235851 PRK06676 235851 -PRK06688 235852 cl23717 355015 -PRK06701 235853 PRK06701 235853 -PRK06703 235854 cl00438 351093 -PRK06707 235855 cl18951 354371 -PRK06732 235856 cl29327 356203 -PRK06759 235857 PRK06759 235857 -PRK06762 235858 cl21455 354812 -PRK06765 235859 cl21494 354836 -PRK06778 235860 PRK06778 235860 -PRK06782 235861 PRK06782 235861 -PRK06803 235862 PRK06803 235862 -PRK06804 235863 cl00555 351151 -PRK06807 235864 PRK06807 235864 -PRK06814 235865 PRK06814 235865 -PRK06816 235866 PRK06816 235866 -PRK06819 235867 PRK06819 235867 -PRK06826 235868 PRK06826 235868 -PRK06830 235869 cl00204 350948 -PRK06834 235870 PRK06834 235870 -PRK06835 235871 PRK06835 235871 -PRK06840 235872 PRK06840 235872 -PRK06846 235873 cl00281 351001 -PRK06847 235874 cl30692 357568 -PRK06848 235875 cl00269 350994 -PRK06849 235876 cl17255 354326 -PRK06850 235877 cl28963 355839 -PRK06851 235878 PRK06851 235878 -PRK06854 235879 PRK06854 235879 -PRK06860 235880 cl17185 354319 -PRK06870 235881 cl09123 352936 -PRK06895 235882 cl00020 350865 -PRK06901 235883 PRK06901 235883 -PRK06917 235884 cl18945 354370 -PRK06918 235885 cl18945 354370 -PRK06923 235886 PRK06923 235886 -PRK06925 235887 PRK06925 235887 -PRK06928 235888 PRK06928 235888 -PRK06931 235889 cl18945 354370 -PRK06932 235890 cl21454 354811 -PRK06933 235891 PRK06933 235891 -PRK06938 235892 cl18945 354370 -PRK06939 235893 PRK06939 235893 -PRK06943 235894 cl18945 354370 -PRK06945 235895 PRK06945 235895 -PRK06955 235896 PRK06955 235896 -PRK06959 235897 cl18945 354370 -PRK06964 235898 PRK06964 235898 -PRK06975 235899 PRK06975 235899 -PRK06978 235900 PRK06978 235900 -PRK06986 235901 PRK06986 235901 -PRK06988 235902 PRK06988 235902 -PRK06991 235903 PRK06991 235903 -PRK06995 235904 PRK06995 235904 -PRK06996 235905 cl21454 354811 -PRK07003 235906 PRK07003 235906 -PRK07004 235907 PRK07004 235907 -PRK07008 235908 PRK07008 235908 -PRK07021 235909 cl00681 351211 -PRK07024 235910 PRK07024 235910 -PRK07027 235911 cl12133 353366 -PRK07028 235912 PRK07028 235912 -PRK07036 235913 cl18945 354370 -PRK07041 235914 PRK07041 235914 -PRK07042 235915 cl18951 354371 -PRK07044 235916 cl00214 350956 -PRK07046 235917 cl18945 354370 -PRK07048 235918 cl00342 294246 -PRK07053 235919 cl00020 350865 -PRK07054 235920 PRK07054 235920 -PRK07056 235921 cl18951 354371 -PRK07058 235922 cl17037 354300 -PRK07059 235923 PRK07059 235923 -PRK07063 235924 PRK07063 235924 -PRK07067 235925 PRK07067 235925 -PRK07077 235926 cl00303 351011 -PRK07078 235927 PRK07078 235927 -PRK07079 235928 PRK07079 235928 -PRK07080 235929 cl00268 350993 -PRK07085 235930 cl00204 350948 -PRK07092 235931 PRK07092 235931 -PRK07093 235932 cl29920 356796 -PRK07097 235933 PRK07097 235933 -PRK07101 235934 cl00224 350964 -PRK07109 235935 PRK07109 235935 -PRK07110 235936 cl23717 355015 -PRK07111 235937 PRK07111 235937 -PRK07112 235938 cl23717 355015 -PRK07114 235939 cl21457 354814 -PRK07115 235940 cl00303 351011 -PRK07118 235941 PRK07118 235941 -PRK07119 235942 PRK07119 235942 -PRK07133 235943 PRK07133 235943 -PRK07135 235944 PRK07135 235944 -PRK07139 235945 cl18951 354371 -PRK07143 235946 PRK07143 235946 -PRK07152 235947 PRK07152 235947 -PRK07157 235948 cl17037 354300 -PRK07159 235949 cl00466 351103 -PRK07164 235950 cl00303 351011 -PRK07165 235951 PRK07165 235951 -PRK07187 235952 PRK07187 235952 -PRK07188 235953 PRK07188 235953 -PRK07189 235954 cl23717 355015 -PRK07190 235955 PRK07190 235955 -PRK07192 235956 PRK07192 235956 -PRK07193 235957 PRK07193 235957 -PRK07194 235958 PRK07194 235958 -PRK07198 235959 PRK07198 235959 -PRK07199 235960 PRK07199 235960 -PRK07200 235961 PRK07200 235961 -PRK07201 235962 PRK07201 235962 -PRK07203 235963 cl00281 351001 -PRK07204 235964 PRK07204 235964 -PRK07205 235965 PRK07205 235965 -PRK07207 235966 PRK07207 235966 -PRK07208 235967 PRK07208 235967 -PRK07209 235968 cl00264 350992 -PRK07213 235969 cl00281 351001 -PRK07217 235970 PRK07217 235970 -PRK07219 235971 PRK07219 235971 -PRK07225 235972 PRK07225 235972 -PRK07226 235973 cl21457 354814 -PRK07229 235974 PRK07229 235974 -PRK07231 235975 PRK07231 235975 -PRK07232 235976 PRK07232 235976 -PRK07233 235977 PRK07233 235977 -PRK07234 235978 PRK07234 235978 -PRK07235 235979 PRK07235 235979 -PRK07236 235980 cl21454 354811 -PRK07239 235981 PRK07239 235981 -PRK07259 235982 cl21457 354814 -PRK07269 235983 cl18945 354370 -PRK07272 235984 PRK07272 235984 -PRK07309 235985 PRK07309 235985 -PRK07313 235986 cl19190 327515 -PRK07314 235987 cl09938 353032 -PRK07318 235988 PRK07318 235988 -PRK07324 235989 cl18945 354370 -PRK07326 235990 PRK07326 235990 -PRK07327 235991 cl23717 355015 -PRK07328 235992 cl23724 355021 -PRK07331 235993 PRK07331 235993 -PRK07334 235994 PRK07334 235994 -PRK07338 235995 PRK07338 235995 -PRK07340 235996 cl21454 354811 -PRK07342 235997 PRK07342 235997 -PRK07349 235998 PRK07349 235998 -PRK07353 235999 PRK07353 235999 -PRK07360 236000 PRK07360 236000 -PRK07364 236001 cl21454 354811 -PRK07369 236002 cl00281 351001 -PRK07373 236003 PRK07373 236003 -PRK07375 236004 cl00492 351118 -PRK07376 236005 PRK07376 236005 -PRK07377 236006 cl00676 351209 -PRK07379 236007 PRK07379 236007 -PRK07390 236008 PRK07390 236008 -PRK07392 236009 PRK07392 236009 -PRK07395 236010 PRK07395 236010 -PRK07399 236011 PRK07399 236011 -PRK07406 236012 PRK07406 236012 -PRK07409 236013 cl00342 294246 -PRK07418 236014 PRK07418 236014 -PRK07419 236015 cl00337 351038 -PRK07424 236016 PRK07424 236016 -PRK07428 236017 PRK07428 236017 -PRK07431 236018 PRK07431 236018 -PRK07445 236019 PRK07445 236019 -PRK07449 236020 PRK07449 236020 -PRK07451 236021 cl00229 350968 -PRK07471 236022 PRK07471 236022 -PRK07474 236023 cl00014 350861 -PRK07475 236024 cl00518 351130 -PRK07476 236025 cl00342 294246 -PRK07482 236026 cl18945 354370 -PRK07483 236027 cl18945 354370 -PRK07486 236028 cl18951 354371 -PRK07487 236029 cl18951 354371 -PRK07488 236030 PRK07488 236030 -PRK07490 236031 cl00214 350956 -PRK07495 236032 cl18945 354370 -PRK07500 236033 PRK07500 236033 -PRK07502 236034 cl30685 357561 -PRK07508 236035 PRK07508 236035 -PRK07512 236036 PRK07512 236036 -PRK07515 236037 PRK07515 236037 -PRK07521 236038 PRK07521 236038 -PRK07522 236039 PRK07522 236039 -PRK07523 236040 cl21454 354811 -PRK07524 236041 PRK07524 236041 -PRK07525 236042 PRK07525 236042 -PRK07529 236043 PRK07529 236043 -PRK07531 236044 PRK07531 236044 -PRK07534 236045 cl22882 354969 -PRK07538 236046 cl21454 354811 -PRK07560 236047 PRK07560 236047 -PRK07561 236048 PRK07561 236048 -PRK07562 236049 PRK07562 236049 -PRK07564 236050 PRK07564 236050 -PRK07565 236051 cl21457 354814 -PRK07566 236052 cl00337 351038 -PRK07571 236053 cl00388 351069 -PRK07573 236054 PRK07573 236054 -PRK07575 236055 cl00281 351001 -PRK07576 236056 PRK07576 236056 -PRK07578 236057 cl21454 354811 -PRK07579 236058 PRK07579 236058 -PRK07580 236059 cl17173 354317 -PRK07581 236060 cl21494 354836 -PRK07582 236061 cl18945 354370 -PRK07583 236062 cl28964 355840 -PRK07586 236063 PRK07586 236063 -PRK07589 236064 cl21454 354811 -PRK07591 236065 cl00342 294246 -PRK07597 236066 cl00481 351112 -PRK07598 236067 PRK07598 236067 -PRK07630 236068 cl00561 351153 -PRK07632 236069 PRK07632 236069 -PRK07636 236070 PRK07636 236070 -PRK07638 236071 PRK07638 236071 -PRK07656 236072 PRK07656 236072 -PRK07659 236073 cl23717 355015 -PRK07666 236074 PRK07666 236074 -PRK07683 236075 PRK07683 236075 -PRK07710 236076 PRK07710 236076 -PRK07714 236077 cl00600 351171 -PRK07726 236078 PRK07726 236078 -PRK07729 236079 PRK07729 236079 -PRK07734 236080 PRK07734 236080 -PRK07735 236081 PRK07735 236081 -PRK07737 236082 PRK07737 236082 -PRK07738 236083 cl00591 351165 -PRK07739 236084 PRK07739 236084 -PRK07740 236085 PRK07740 236085 -PRK07742 236086 cl17212 354323 -PRK07748 236087 cl10012 353041 -PRK07757 236088 cl17182 354318 -PRK07761 236089 PRK07761 236089 -PRK07764 236090 PRK07764 236090 -PRK07768 236091 PRK07768 236091 -PRK07772 236092 cl09930 353029 -PRK07773 236093 PRK07773 236093 -PRK07774 236094 cl21454 354811 -PRK07777 236095 PRK07777 236095 -PRK07787 236096 PRK07787 236096 -PRK07788 236097 PRK07788 236097 -PRK07789 236098 PRK07789 236098 -PRK07791 236099 PRK07791 236099 -PRK07798 236100 PRK07798 236100 -PRK07803 236101 PRK07803 236101 -PRK07804 236102 PRK07804 236102 -PRK07810 236103 cl18945 354370 -PRK07811 236104 cl18945 354370 -PRK07812 236105 cl18945 354370 -PRK07818 236106 cl30684 357560 -PRK07823 236107 cl00303 351011 -PRK07824 236108 PRK07824 236108 -PRK07827 236109 cl23717 355015 -PRK07831 236110 PRK07831 236110 -PRK07843 236111 PRK07843 236111 -PRK07845 236112 cl30684 357560 -PRK07847 236113 PRK07847 236113 -PRK07849 236114 cl00224 350964 -PRK07854 236115 cl23717 355015 -PRK07856 236116 cl21454 354811 -PRK07857 236117 cl00693 351218 -PRK07860 236118 PRK07860 236118 -PRK07865 236119 PRK07865 236119 -PRK07867 236120 PRK07867 236120 -PRK07868 236121 PRK07868 236121 -PRK07877 236122 PRK07877 236122 -PRK07883 236123 PRK07883 236123 -PRK07889 236124 cl21454 354811 -PRK07896 236125 PRK07896 236125 -PRK07899 236126 PRK07899 236126 -PRK07907 236127 PRK07907 236127 -PRK07908 236128 PRK07908 236128 -PRK07910 236129 cl09938 353032 -PRK07914 236130 cl27925 332746 -PRK07920 236131 cl17185 354319 -PRK07922 236132 cl17182 354318 -PRK07933 236133 cl17190 354320 -PRK07940 236134 PRK07940 236134 -PRK07945 236135 PRK07945 236135 -PRK07946 236136 cl00492 351118 -PRK07956 236137 PRK07956 236137 -PRK07994 236138 PRK07994 236138 -PRK08013 236139 cl21454 354811 -PRK08026 236140 PRK08026 236140 -PRK08032 236141 PRK08032 236141 -PRK08051 236142 PRK08051 236142 -PRK08055 236143 cl00693 351218 -PRK08057 236144 cl00922 351312 -PRK08063 236145 PRK08063 236145 -PRK08064 236146 cl18945 354370 -PRK08071 236147 PRK08071 236147 -PRK08074 236148 PRK08074 236148 -PRK08088 236149 cl18945 354370 -PRK08097 236150 PRK08097 236150 -PRK08099 236151 PRK08099 236151 -PRK08115 236152 PRK08115 236152 -PRK08116 236153 cl30760 357636 -PRK08119 236154 PRK08119 236154 -PRK08123 236155 cl23724 355021 -PRK08125 236156 PRK08125 236156 -PRK08126 236157 PRK08126 236157 -PRK08132 236158 PRK08132 236158 -PRK08134 236159 cl18945 354370 -PRK08136 236160 PRK08136 236160 -PRK08137 236161 cl18951 354371 -PRK08138 236162 cl23717 355015 -PRK08140 236163 cl23717 355015 -PRK08142 236164 PRK08142 236164 -PRK08147 236165 PRK08147 236165 -PRK08149 236166 PRK08149 236166 -PRK08154 236167 PRK08154 236167 -PRK08156 236168 cl19167 354387 -PRK08162 236169 PRK08162 236169 -PRK08166 236170 PRK08166 236170 -PRK08168 236171 PRK08168 236171 -PRK08173 236172 PRK08173 236172 -PRK08177 236173 cl21454 354811 -PRK08178 236174 cl29106 355982 -PRK08180 236175 PRK08180 236175 -PRK08183 236176 cl01534 351543 -PRK08186 236177 cl18951 354371 -PRK08187 236178 PRK08187 236178 -PRK08188 236179 PRK08188 236179 -PRK08190 236180 PRK08190 236180 -PRK08193 236181 cl00214 350956 -PRK08198 236182 PRK08198 236182 -PRK08202 236183 cl00303 351011 -PRK08203 236184 cl28964 355840 -PRK08205 236185 PRK08205 236185 -PRK08206 236186 cl00342 294246 -PRK08207 236187 PRK08207 236187 -PRK08210 236188 PRK08210 236188 -PRK08211 236189 cl00340 351041 -PRK08220 236190 PRK08220 236190 -PRK08224 236191 PRK08224 236191 -PRK08228 236192 cl00795 351258 -PRK08229 236193 PRK08229 236193 -PRK08236 236194 cl00303 351011 -PRK08238 236195 PRK08238 236195 -PRK08241 236196 cl30683 357559 -PRK08242 236197 PRK08242 236197 -PRK08243 236198 cl21454 354811 -PRK08244 236199 PRK08244 236199 -PRK08245 236200 cl00480 351111 -PRK08248 236201 cl18945 354370 -PRK08249 236202 cl18945 354370 -PRK08255 236203 PRK08255 236203 -PRK08257 236204 PRK08257 236204 -PRK08259 236205 cl23717 355015 -PRK08260 236206 cl23717 355015 -PRK08261 236207 PRK08261 236207 -PRK08262 236208 PRK08262 236208 -PRK08265 236209 PRK08265 236209 -PRK08267 236210 PRK08267 236210 -PRK08268 236211 PRK08268 236211 -PRK08270 236212 PRK08270 236212 -PRK08272 236213 cl23717 355015 -PRK08274 236214 PRK08274 236214 -PRK08276 236215 PRK08276 236215 -PRK08277 236216 PRK08277 236216 -PRK08279 236217 PRK08279 236217 -PRK08284 236218 cl00304 351012 -PRK08289 236219 PRK08289 236219 -PRK08290 236220 cl23717 355015 -PRK08291 236221 PRK08291 236221 -PRK08292 236222 PRK08292 236222 -PRK08294 236223 PRK08294 236223 -PRK08297 236224 cl18945 354370 -PRK08298 236225 cl00269 350994 -PRK08299 236226 cl00445 351095 -PRK08300 236227 cl26651 355555 -PRK08301 236228 PRK08301 236228 -PRK08303 236229 PRK08303 236229 -PRK08304 236230 cl09938 353032 -PRK08308 236231 PRK08308 236231 -PRK08309 236232 cl21454 354811 -PRK08311 236233 PRK08311 236233 -PRK08312 236234 cl00546 351146 -PRK08314 236235 PRK08314 236235 -PRK08315 236236 PRK08315 236236 -PRK08318 236237 PRK08318 236237 -PRK08320 236238 cl00224 350964 -PRK08322 236239 PRK08322 236239 -PRK08323 236240 cl28964 355840 -PRK08324 236241 PRK08324 236241 -PRK08326 236242 cl00264 350992 -PRK08327 236243 PRK08327 236243 -PRK08329 236244 cl00342 294246 -PRK08343 236245 PRK08343 236245 -PRK08344 236246 PRK08344 236246 -PRK08345 236247 PRK08345 236247 -PRK08361 236248 PRK08361 236248 -PRK08364 236249 cl28922 355798 -PRK08373 236250 PRK08373 236250 -PRK08375 236251 PRK08375 236251 -PRK08376 236252 PRK08376 236252 -PRK08378 236253 cl00676 351209 -PRK08384 236254 PRK08384 236254 -PRK08385 236255 PRK08385 236255 -PRK08386 236256 cl00676 351209 -PRK08388 236257 cl00492 351118 -PRK08389 236258 cl00492 351118 -PRK08401 236259 PRK08401 236259 -PRK08411 236260 PRK08411 236260 -PRK08412 236261 cl30668 357544 -PRK08417 236262 cl28964 355840 -PRK08425 236263 PRK08425 236263 -PRK08432 236264 PRK08432 236264 -PRK08439 236265 cl09938 353032 -PRK08447 236266 PRK08447 236266 -PRK08451 236267 PRK08451 236267 -PRK08452 236268 cl00591 351165 -PRK08462 236269 PRK08462 236269 -PRK08471 236270 PRK08471 236270 -PRK08474 236271 cl17210 354322 -PRK08475 236272 cl21478 354827 -PRK08477 236273 PRK08477 236273 -PRK08485 236274 PRK08485 236274 -PRK08486 236275 PRK08486 236275 -PRK08487 236276 PRK08487 236276 -PRK08493 236277 PRK08493 236277 -PRK08506 236278 PRK08506 236278 -PRK08508 236279 PRK08508 236279 -PRK08515 236280 cl00555 351151 -PRK08517 236281 PRK08517 236281 -PRK08535 236282 cl00348 351044 -PRK08540 236283 PRK08540 236283 -PRK08541 236284 cl00732 321134 -PRK08554 236285 PRK08554 236285 -PRK08560 236286 cl00015 350862 -PRK08561 236287 PRK08561 236287 -PRK08562 236288 cl00748 351235 -PRK08563 236289 PRK08563 236289 -PRK08564 236290 cl00303 351011 -PRK08565 236291 PRK08565 236291 -PRK08566 236292 PRK08566 236292 -PRK08568 236293 PRK08568 236293 -PRK08569 236294 PRK08569 236294 -PRK08570 236295 cl00232 350971 -PRK08572 236296 PRK08572 236296 -PRK08573 236297 PRK08573 236297 -PRK08574 236298 cl18945 354370 -PRK08575 236299 cl00464 320986 -PRK08576 236300 PRK08576 236300 -PRK08577 236301 PRK08577 236301 -PRK08578 236302 PRK08578 236302 -PRK08579 236303 PRK08579 236303 -PRK08581 236304 PRK08581 236304 -PRK08582 236305 PRK08582 236305 -PRK08583 236306 PRK08583 236306 -PRK08591 236307 PRK08591 236307 -PRK08594 236308 cl21454 354811 -PRK08599 236309 PRK08599 236309 -PRK08601 236310 cl30665 357541 -PRK08609 236311 PRK08609 236311 -PRK08617 236312 PRK08617 236312 -PRK08618 236313 PRK08618 236313 -PRK08624 236314 PRK08624 236314 -PRK08633 236315 PRK08633 236315 -PRK08636 236316 PRK08636 236316 -PRK08638 236317 cl00342 294246 -PRK08639 236318 PRK08639 236318 -PRK08641 236319 PRK08641 236319 -PRK08644 236320 cl22428 304554 -PRK08645 236321 PRK08645 236321 -PRK08649 236322 PRK08649 236322 -PRK08651 236323 PRK08651 236323 -PRK08652 236324 PRK08652 236324 -PRK08654 236325 PRK08654 236325 -PRK08655 236326 PRK08655 236326 -PRK08661 236327 PRK08661 236327 -PRK08662 236328 PRK08662 236328 -PRK08664 236329 PRK08664 236329 -PRK08665 236330 PRK08665 236330 -PRK08667 236331 PRK08667 236331 -PRK08668 236332 PRK08668 236332 -PRK08691 236333 PRK08691 236333 -PRK08719 236334 cl14782 353835 -PRK08724 236335 PRK08724 236335 -PRK08742 236336 cl18945 354370 -PRK08762 236337 PRK08762 236337 -PRK08788 236338 cl23717 355015 -PRK08813 236339 PRK08813 236339 -PRK08815 236340 PRK08815 236340 -PRK08850 236341 cl21454 354811 -PRK08862 236342 cl21454 354811 -PRK08868 236343 cl00591 351165 -PRK08869 236344 PRK08869 236344 -PRK08870 236345 PRK08870 236345 -PRK08898 236346 PRK08898 236346 -PRK08903 236347 PRK08903 236347 -PRK08905 236348 cl17185 354319 -PRK08913 236349 PRK08913 236349 -PRK08916 236350 PRK08916 236350 -PRK08927 236351 PRK08927 236351 -PRK08937 236352 cl00013 350860 -PRK08939 236353 PRK08939 236353 -PRK08942 236354 PRK08942 236354 -PRK08943 236355 cl17185 354319 -PRK08944 236356 PRK08944 236356 -PRK08945 236357 cl21454 354811 -PRK08961 236358 PRK08961 236358 -PRK08974 236359 PRK08974 236359 -PRK08983 236360 PRK08983 236360 -PRK08999 236361 PRK08999 236361 -PRK09010 236362 cl09930 353029 -PRK09029 236363 PRK09029 236363 -PRK09034 236364 PRK09034 236364 -PRK09041 236365 PRK09041 236365 -PRK09045 236366 cl28964 355840 -PRK09047 236367 PRK09047 236367 -PRK09058 236368 PRK09058 236368 -PRK09061 236369 cl28964 355840 -PRK09064 236370 cl18945 354370 -PRK09070 236371 PRK09070 236371 -PRK09072 236372 PRK09072 236372 -PRK09076 236373 cl23717 355015 -PRK09077 236374 cl30664 357540 -PRK09078 236375 PRK09078 236375 -PRK09084 236376 PRK09084 236376 -PRK09094 236377 cl00492 351118 -PRK09102 236378 PRK09102 236378 -PRK09104 236379 PRK09104 236379 -PRK09107 236380 PRK09107 236380 -PRK09108 236381 cl19167 354387 -PRK09111 236382 PRK09111 236382 -PRK09120 236383 cl23717 355015 -PRK09123 236384 PRK09123 236384 -PRK09126 236385 PRK09126 236385 -PRK09129 236386 PRK09129 236386 -PRK09130 236387 PRK09130 236387 -PRK09133 236388 PRK09133 236388 -PRK09134 236389 PRK09134 236389 -PRK09136 236390 cl00303 351011 -PRK09145 236391 cl10012 353041 -PRK09146 236392 cl10012 353041 -PRK09147 236393 PRK09147 236393 -PRK09169 236394 PRK09169 236394 -PRK09177 236395 cl00309 351014 -PRK09181 236396 PRK09181 236396 -PRK09182 236397 PRK09182 236397 -PRK09185 236398 cl09938 353032 -PRK09186 236399 PRK09186 236399 -PRK09188 236400 PRK09188 236400 -PRK09190 236401 PRK09190 236401 -PRK09191 236402 PRK09191 236402 -PRK09192 236403 PRK09192 236403 -PRK09193 236404 PRK09193 236404 -PRK09194 236405 PRK09194 236405 -PRK09197 236406 cl21457 354814 -PRK09198 236407 PRK09198 236407 -PRK09200 236408 PRK09200 236408 -PRK09201 236409 cl18951 354371 -PRK09202 236410 PRK09202 236410 -PRK09203 236411 cl00353 351049 -PRK09204 236412 PRK09204 236412 -PRK09210 236413 PRK09210 236413 -PRK09213 236414 PRK09213 236414 -PRK09220 236415 cl00214 350956 -PRK09222 236416 PRK09222 236416 -PRK09224 236417 PRK09224 236417 -PRK09225 236418 PRK09225 236418 -PRK09228 236419 PRK09228 236419 -PRK09229 236420 cl28964 355840 -PRK09231 236421 PRK09231 236421 -PRK09234 236422 PRK09234 236422 -PRK09237 236423 cl00281 351001 -PRK09238 236424 PRK09238 236424 -PRK09240 236425 PRK09240 236425 -PRK09243 236426 PRK09243 236426 -PRK09246 236427 PRK09246 236427 -PRK09247 236428 PRK09247 236428 -PRK09248 236429 PRK09248 236429 -PRK09249 236430 PRK09249 236430 -PRK09250 236431 cl21457 354814 -PRK09255 236432 cl21481 354828 -PRK09259 236433 PRK09259 236433 -PRK09260 236434 PRK09260 236434 -PRK09261 236435 cl17225 354324 -PRK09263 236436 PRK09263 236436 -PRK09264 236437 cl18945 354370 -PRK09266 236438 cl00224 350964 -PRK09267 236439 cl00438 351093 -PRK09268 236440 PRK09268 236440 -PRK09269 236441 cl00693 351218 -PRK09270 236442 cl17190 354320 -PRK09274 236443 PRK09274 236443 -PRK09275 236444 cl18945 354370 -PRK09277 236445 PRK09277 236445 -PRK09279 236446 PRK09279 236446 -PRK09280 236447 cl28885 355771 -PRK09281 236448 PRK09281 236448 -PRK09282 236449 PRK09282 236449 -PRK09283 236450 cl00338 351039 -PRK09284 236451 PRK09284 236451 -PRK09285 236452 PRK09285 236452 -PRK09287 236453 PRK09287 236453 -PRK09288 236454 PRK09288 236454 -PRK09289 236455 PRK09289 236455 -PRK09290 236456 PRK09290 236456 -PRK09292 236457 cl00597 351168 -PRK09293 236458 cl00289 351004 -PRK09297 236459 PRK09297 236459 -PRK09300 236460 PRK09300 236460 -PRK09302 236461 PRK09302 236461 -PRK09303 236462 PRK09303 236462 -PRK09304 236463 cl00565 294381 -PRK09318 236464 PRK09318 236464 -PRK09319 236465 PRK09319 236465 -PRK09325 236466 cl27158 355621 -PRK09328 236467 cl17173 354317 -PRK09330 236468 cl10017 353044 -PRK09331 236469 cl18945 354370 -PRK09333 236470 cl00969 321279 -PRK09344 236471 cl22860 354963 -PRK09347 236472 cl00263 350991 -PRK09348 236473 cl00268 350993 -PRK09350 236474 PRK09350 236474 -PRK09352 236475 PRK09352 236475 -PRK09354 236476 PRK09354 236476 -PRK09355 236477 cl00192 350937 -PRK09356 236478 cl00281 351001 -PRK09357 236479 cl28964 355840 -PRK09358 236480 cl00281 351001 -PRK09360 236481 PRK09360 236481 -PRK09361 236482 PRK09361 236482 -PRK09364 236483 cl00242 350979 -PRK09367 236484 cl00013 350860 -PRK09368 236485 cl02954 322141 -PRK09369 236486 cl00288 260328 -PRK09372 236487 cl00480 351111 -PRK09374 236488 PRK09374 236488 -PRK09375 236489 cl00420 351086 -PRK09376 236490 PRK09376 236490 -PRK09377 236491 PRK09377 236491 -PRK09382 236492 PRK09382 236492 -PRK09389 236493 PRK09389 236493 -PRK09391 236494 PRK09391 236494 -PRK09395 236495 cl00456 320982 -PRK09398 236496 cl27883 332704 -PRK09400 236497 cl00481 351112 -PRK09401 236498 PRK09401 236498 -PRK09404 236499 PRK09404 236499 -PRK09405 236500 PRK09405 236500 -PRK09407 236501 cl11961 353326 -PRK09410 236502 cl04451 352188 -PRK09412 236503 cl21473 354825 -PRK09418 236504 PRK09418 236504 -PRK09419 236505 PRK09419 236505 -PRK09420 236506 PRK09420 236506 -PRK09424 236507 PRK09424 236507 -PRK09426 236508 PRK09426 236508 -PRK09427 236509 PRK09427 236509 -PRK09428 236510 PRK09428 236510 -PRK09429 236511 cl01538 351545 -PRK09430 236512 PRK09430 236512 -PRK09431 236513 PRK09431 236513 -PRK09434 236514 cl00192 350937 -PRK09435 236515 cl21455 354812 -PRK09438 236516 cl00447 351096 -PRK09440 236517 PRK09440 236517 -PRK09441 236518 PRK09441 236518 -PRK09442 236519 cl00456 320982 -PRK09444 236520 cl22917 354977 -PRK09448 236521 cl00264 350992 -PRK09450 236522 cl27585 332406 -PRK09452 236523 PRK09452 236523 -PRK09454 236524 PRK09454 236524 -PRK09455 236525 cl19192 354390 -PRK09458 236526 cl05946 352438 -PRK09462 236527 cl21459 354815 -PRK09463 236528 PRK09463 236528 -PRK09465 236529 cl30340 357216 -PRK09466 236530 PRK09466 236530 -PRK09467 236531 PRK09467 236531 -PRK09470 236532 PRK09470 236532 -PRK09474 236533 PRK09474 236533 -PRK09476 236534 PRK09476 236534 -PRK09477 236535 PRK09477 236535 -PRK09479 236536 cl00289 351004 -PRK09481 236537 PRK09481 236537 -PRK09483 236538 PRK09483 236538 -PRK09490 236539 PRK09490 236539 -PRK09495 236540 PRK09495 236540 -PRK09496 236541 PRK09496 236541 -PRK09500 236542 PRK09500 236542 -PRK09505 236543 PRK09505 236543 -PRK09506 236544 PRK09506 236544 -PRK09510 236545 PRK09510 236545 -PRK09518 236546 PRK09518 236546 -PRK09521 236547 PRK09521 236547 -PRK09525 236548 PRK09525 236548 -PRK09528 236549 PRK09528 236549 -PRK09529 236550 PRK09529 236550 -PRK09533 236551 PRK09533 236551 -PRK09534 236552 PRK09534 236552 -PRK09535 236553 cl00454 351100 -PRK09536 236554 PRK09536 236554 -PRK09537 236555 PRK09537 236555 -PRK09539 236556 cl10045 324571 -PRK09542 236557 PRK09542 236557 -PRK09545 236558 cl00262 350990 -PRK09548 236559 PRK09548 236559 -PRK09549 236560 PRK09549 236560 -PRK09550 236561 cl21453 354810 -PRK09552 236562 cl21460 354816 -PRK09554 236563 PRK09554 236563 -PRK09556 236564 PRK09556 236564 -PRK09557 236565 PRK09557 236565 -PRK09558 236566 PRK09558 236566 -PRK09559 236567 PRK09559 236567 -PRK09560 236568 cl01133 351397 -PRK09562 236569 PRK09562 236569 -PRK09563 236570 PRK09563 236570 -PRK09565 236571 PRK09565 236571 -PRK09566 236572 PRK09566 236572 -PRK09567 236573 PRK09567 236573 -PRK09568 236574 cl11970 353331 -PRK09570 236575 cl00883 351297 -PRK09575 236576 cl09326 352957 -PRK09581 236577 PRK09581 236577 -PRK09583 236578 cl21506 354845 -PRK09585 236579 cl22918 304634 -PRK09593 236580 cl23725 355022 -PRK09598 236581 PRK09598 236581 -PRK09599 236582 PRK09599 236582 -PRK09601 236583 PRK09601 236583 -PRK09602 236584 PRK09602 236584 -PRK09604 236585 PRK09604 236585 -PRK09605 236586 PRK09605 236586 -PRK09606 236587 PRK09606 236587 -PRK09607 236588 cl00332 320911 -PRK09612 236589 PRK09612 236589 -PRK09613 236590 PRK09613 236590 -PRK09614 236591 cl00264 350992 -PRK09616 236592 PRK09616 236592 -PRK09617 236593 cl00593 351166 -PRK09618 236594 cl30617 357493 -PRK09621 236595 PRK09621 236595 -PRK09625 236596 PRK09625 236596 -PRK09626 236597 PRK09626 236597 -PRK09631 236598 PRK09631 236598 -PRK09632 236599 PRK09632 236599 -PRK09636 236600 cl30683 357559 -PRK09637 236601 PRK09637 236601 -PRK09639 236602 PRK09639 236602 -PRK09640 236603 PRK09640 236603 -PRK09643 236604 PRK09643 236604 -PRK09645 236605 PRK09645 236605 -PRK09647 236606 PRK09647 236606 -PRK09648 236607 PRK09648 236607 -PRK09652 236608 PRK09652 236608 -PRK09653 236609 cl17212 354323 -PRK09669 236610 cl28910 355786 -PRK09672 236611 cl19913 303079 -PRK09685 236612 PRK09685 236612 -PRK09693 236613 cl08044 352843 -PRK09705 236614 PRK09705 236614 -PRK09709 236615 PRK09709 236615 -PRK09722 236616 cl21457 354814 -PRK09723 236617 cl01416 351496 -PRK09736 236618 cl01737 321639 -PRK09737 236619 PRK09737 236619 -PRK09739 236620 cl00438 351093 -PRK09757 236621 cl01506 351528 -PRK09774 236622 PRK09774 236622 -PRK09775 236623 PRK09775 236623 -PRK09782 236624 PRK09782 236624 -PRK09783 236625 PRK09783 236625 -PRK09814 236626 PRK09814 236626 -PRK09824 236627 PRK09824 236627 -PRK09846 236628 cl04285 352147 -PRK09849 236629 PRK09849 236629 -PRK09853 236630 PRK09853 236630 -PRK09885 236631 cl08066 324193 -PRK09918 236632 PRK09918 236632 -PRK09919 236633 cl23862 329132 -PRK09926 236634 PRK09926 236634 -PRK09928 236635 cl00569 321047 -PRK09950 236636 cl00569 321047 -PRK09970 236637 PRK09970 236637 -PRK09974 236638 cl00877 321225 -PRK10002 236639 cl21487 354832 -PRK10003 236640 cl30614 357490 -PRK10019 236641 cl21514 354847 -PRK10030 236642 cl21534 354857 -PRK10044 236643 PRK10044 236643 -PRK10049 236644 PRK10049 236644 -PRK10060 236645 PRK10060 236645 -PRK10064 236646 PRK10064 236646 -PRK10069 236647 cl09109 352932 -PRK10078 236648 cl17190 354320 -PRK10084 236649 cl21454 354811 -PRK10095 236650 cl00208 350952 -PRK10106 236651 cl23980 329212 -PRK10118 236652 PRK10118 236652 -PRK10137 236653 cl17346 354328 -PRK10141 236654 cl21459 354815 -PRK10147 236655 cl01455 351509 -PRK10148 236656 cl14632 353816 -PRK10150 236657 cl30613 357489 -PRK10153 236658 PRK10153 236658 -PRK10158 236659 cl00130 320773 -PRK10162 236660 cl21494 354836 -PRK10177 236661 cl26420 355513 -PRK10178 236662 cl00813 351267 -PRK10215 236663 PRK10215 236663 -PRK10224 236664 cl23981 305138 -PRK10229 236665 cl00565 294381 -PRK10244 236666 cl11681 353310 -PRK10249 236667 PRK10249 236667 -PRK10252 236668 PRK10252 236668 -PRK10263 236669 PRK10263 236669 -PRK10307 236670 PRK10307 236670 -PRK10308 236671 PRK10308 236671 -PRK10318 236672 cl08107 352847 -PRK10340 236673 PRK10340 236673 -PRK10364 236674 PRK10364 236674 -PRK10369 236675 cl25673 355436 -PRK10376 236676 cl00470 351106 -PRK10378 236677 PRK10378 236677 -PRK10386 236678 cl08115 352848 -PRK10387 236679 PRK10387 236679 -PRK10396 236680 PRK10396 236680 -PRK10401 236681 PRK10401 236681 -PRK10402 236682 PRK10402 236682 -PRK10410 236683 cl08119 352849 -PRK10411 236684 PRK10411 236684 -PRK10414 236685 cl00568 351156 -PRK10416 236686 PRK10416 236686 -PRK10417 236687 PRK10417 236687 -PRK10418 236688 PRK10418 236688 -PRK10419 236689 PRK10419 236689 -PRK10421 236690 PRK10421 236690 -PRK10426 236691 PRK10426 236691 -PRK10431 236692 PRK10431 236692 -PRK10433 236693 cl21505 354844 -PRK10436 236694 PRK10436 236694 -PRK10439 236695 PRK10439 236695 -PRK10458 236696 PRK10458 236696 -PRK10459 236697 PRK10459 236697 -PRK10475 236698 PRK10475 236698 -PRK10484 236699 cl00456 320982 -PRK10489 236700 PRK10489 236700 -PRK10490 236701 cl30606 357482 -PRK10494 236702 cl00630 351186 -PRK10502 236703 PRK10502 236703 -PRK10506 236704 PRK10506 236704 -PRK10517 236705 PRK10517 236705 -PRK10518 236706 PRK10518 236706 -PRK10522 236707 PRK10522 236707 -PRK10523 236708 cl19736 354455 -PRK10531 236709 PRK10531 236709 -PRK10534 236710 cl18945 354370 -PRK10537 236711 PRK10537 236711 -PRK10547 236712 PRK10547 236712 -PRK10550 236713 cl28888 355772 -PRK10557 236714 PRK10557 236714 -PRK10562 236715 cl17182 354318 -PRK10564 236716 cl11647 325108 -PRK10572 236717 PRK10572 236717 -PRK10574 236718 PRK10574 236718 -PRK10576 236719 cl00262 350990 -PRK10577 236720 PRK10577 236720 -PRK10588 236721 cl11451 353261 -PRK10590 236722 PRK10590 236722 -PRK10594 236723 PRK10594 236723 -PRK10604 236724 PRK10604 236724 -PRK10611 236725 PRK10611 236725 -PRK10618 236726 PRK10618 236726 -PRK10625 236727 cl00470 351106 -PRK10629 236728 cl08136 352851 -PRK10636 236729 PRK10636 236729 -PRK10641 236730 PRK10641 236730 -PRK10658 236731 PRK10658 236731 -PRK10662 236732 cl21491 354834 -PRK10672 236733 PRK10672 236733 -PRK10674 236734 cl30787 357663 -PRK10684 236735 PRK10684 236735 -PRK10694 236736 cl00509 351126 -PRK10696 236737 PRK10696 236737 -PRK10701 236738 PRK10701 236738 -PRK10703 236739 PRK10703 236739 -PRK10712 236740 PRK10712 236740 -PRK10716 236741 cl21487 354832 -PRK10718 236742 cl19739 354456 -PRK10719 236743 cl26479 331300 -PRK10720 236744 cl23746 355031 -PRK10722 236745 cl08141 352852 -PRK10726 236746 cl23982 355113 -PRK10736 236747 PRK10736 236747 -PRK10737 236748 cl19519 354434 -PRK10742 236749 cl17173 354317 -PRK10751 236750 cl28913 355789 -PRK10755 236751 PRK10755 236751 -PRK10756 236752 cl19505 354431 -PRK10757 236753 cl00289 351004 -PRK10760 236754 PRK10760 236754 -PRK10762 236755 PRK10762 236755 -PRK10764 236756 cl04176 352121 -PRK10767 236757 PRK10767 236757 -PRK10770 236758 PRK10770 236758 -PRK10785 236759 PRK10785 236759 -PRK10792 236760 PRK10792 236760 -PRK10795 236761 PRK10795 236761 -PRK10796 236762 cl01125 351394 -PRK10797 236763 PRK10797 236763 -PRK10808 236764 PRK10808 236764 -PRK10810 236765 cl01052 351359 -PRK10811 236766 PRK10811 236766 -PRK10812 236767 cl28964 355840 -PRK10819 236768 PRK10819 236768 -PRK10820 236769 PRK10820 236769 -PRK10826 236770 cl21460 354816 -PRK10829 236771 PRK10829 236771 -PRK10833 236772 PRK10833 236772 -PRK10838 236773 PRK10838 236773 -PRK10839 236774 PRK10839 236774 -PRK10852 236775 cl21456 354813 -PRK10856 236776 PRK10856 236776 -PRK10857 236777 cl21459 354815 -PRK10859 236778 PRK10859 236778 -PRK10864 236779 PRK10864 236779 -PRK10867 236780 cl28913 355789 -PRK10869 236781 PRK10869 236781 -PRK10871 236782 PRK10871 236782 -PRK10875 236783 PRK10875 236783 -PRK10876 236784 PRK10876 236784 -PRK10881 236785 cl21513 328765 -PRK10882 236786 PRK10882 236786 -PRK10887 236787 PRK10887 236787 -PRK10893 236788 cl21541 328784 -PRK10899 236789 PRK10899 236789 -PRK10901 236790 PRK10901 236790 -PRK10902 236791 PRK10902 236791 -PRK10905 236792 PRK10905 236792 -PRK10909 236793 cl17173 354317 -PRK10917 236794 PRK10917 236794 -PRK10920 236795 cl27167 355623 -PRK10922 236796 cl00311 351016 -PRK10927 236797 PRK10927 236797 -PRK10929 236798 PRK10929 236798 -PRK10930 236799 PRK10930 236799 -PRK10935 236800 PRK10935 236800 -PRK10936 236801 PRK10936 236801 -PRK10942 236802 PRK10942 236802 -PRK10946 236803 PRK10946 236803 -PRK10948 236804 cl29482 356358 -PRK10952 236805 cl00427 351090 -PRK10957 236806 PRK10957 236806 -PRK10958 236807 cl00565 294381 -PRK10963 236808 cl21515 354848 -PRK10964 236809 cl10013 353042 -PRK10965 236810 PRK10965 236810 -PRK10987 236811 cl00561 351153 -PRK10992 236812 cl30260 357136 -PRK10993 236813 cl01886 321712 -PRK10995 236814 cl21514 354847 -PRK10997 236815 cl00057 350880 -PRK10999 236816 PRK10999 236816 -PRK11001 236817 cl11450 353260 -PRK11009 236818 cl21460 354816 -PRK11013 236819 PRK11013 236819 -PRK11014 236820 cl21459 354815 -PRK11017 236821 cl00456 320982 -PRK11018 236822 cl00436 320971 -PRK11021 236823 PRK11021 236823 -PRK11024 236824 cl00537 321029 -PRK11027 236825 cl10479 353079 -PRK11031 236826 cl17037 354300 -PRK11033 236827 PRK11033 236827 -PRK11034 236828 PRK11034 236828 -PRK11045 236829 cl06181 352479 -PRK11049 236830 PRK11049 236830 -PRK11052 236831 PRK11052 236831 -PRK11056 236832 cl23983 355114 -PRK11059 236833 PRK11059 236833 -PRK11067 236834 PRK11067 236834 -PRK11069 236835 cl28372 355710 -PRK11072 236836 PRK11072 236836 -PRK11081 236837 cl21505 354844 -PRK11083 236838 PRK11083 236838 -PRK11086 236839 PRK11086 236839 -PRK11087 236840 cl01077 351370 -PRK11088 236841 cl17173 354317 -PRK11091 236842 PRK11091 236842 -PRK11092 236843 PRK11092 236843 -PRK11097 236844 cl01351 294813 -PRK11099 236845 cl19477 327562 -PRK11100 236846 PRK11100 236846 -PRK11101 236847 PRK11101 236847 -PRK11107 236848 PRK11107 236848 -PRK11109 236849 PRK11109 236849 -PRK11111 236850 cl21514 354847 -PRK11114 236851 cl15851 353988 -PRK11119 236852 cl21456 354813 -PRK11121 236853 cl18962 354374 -PRK11125 236854 cl23833 355064 -PRK11126 236855 cl21494 354836 -PRK11128 236856 cl28910 355786 -PRK11138 236857 PRK11138 236857 -PRK11142 236858 cl00192 350937 -PRK11143 236859 PRK11143 236859 -PRK11146 236860 PRK11146 236860 -PRK11147 236861 PRK11147 236861 -PRK11152 236862 cl29106 355982 -PRK11153 236863 PRK11153 236863 -PRK11154 236864 PRK11154 236864 -PRK11160 236865 PRK11160 236865 -PRK11162 236866 PRK11162 236866 -PRK11165 236867 cl30792 357668 -PRK11166 236868 cl01219 351426 -PRK11168 236869 PRK11168 236869 -PRK11174 236870 PRK11174 236870 -PRK11175 236871 PRK11175 236871 -PRK11183 236872 cl26647 355554 -PRK11186 236873 PRK11186 236873 -PRK11187 236874 cl11470 353267 -PRK11189 236875 PRK11189 236875 -PRK11191 236876 cl19506 354432 -PRK11192 236877 PRK11192 236877 -PRK11193 236878 cl00616 351180 -PRK11195 236879 cl28910 355786 -PRK11198 236880 PRK11198 236880 -PRK11202 236881 PRK11202 236881 -PRK11204 236882 PRK11204 236882 -PRK11205 236883 cl21456 354813 -PRK11234 236884 PRK11234 236884 -PRK11246 236885 cl11479 353273 -PRK11249 236886 PRK11249 236886 -PRK11259 236887 PRK11259 236887 -PRK11263 236888 PRK11263 236888 -PRK11273 236889 PRK11273 236889 -PRK11274 236890 PRK11274 236890 -PRK11278 236891 PRK11278 236891 -PRK11281 236892 PRK11281 236892 -PRK11282 236893 PRK11282 236893 -PRK11289 236894 cl21491 354834 -PRK11295 236895 cl00083 350893 -PRK11301 236896 PRK11301 236896 -PRK11303 236897 PRK11303 236897 -PRK11308 236898 PRK11308 236898 -PRK11340 236899 cl13995 353799 -PRK11354 236900 PRK11354 236900 -PRK11360 236901 PRK11360 236901 -PRK11372 236902 cl01604 351565 -PRK11380 236903 cl14673 353826 -PRK11387 236904 PRK11387 236904 -PRK11396 236905 cl01532 351541 -PRK11408 236906 cl08177 324206 -PRK11410 236907 cl01916 321724 -PRK11423 236908 cl23717 355015 -PRK11424 236909 PRK11424 236909 -PRK11433 236910 PRK11433 236910 -PRK11439 236911 cl13995 353799 -PRK11448 236912 PRK11448 236912 -PRK11463 236913 cl01148 351403 -PRK11466 236914 PRK11466 236914 -PRK11475 236915 PRK11475 236915 -PRK11492 236916 cl17899 248453 -PRK11493 236917 PRK11493 236917 -PRK11498 236918 PRK11498 236918 -PRK11504 236919 PRK11504 236919 -PRK11511 236920 PRK11511 236920 -PRK11513 236921 cl23723 355020 -PRK11528 236922 cl04114 352112 -PRK11530 236923 cl08186 298637 -PRK11539 236924 PRK11539 236924 -PRK11544 236925 cl00477 351109 -PRK11545 236926 cl17190 354320 -PRK11551 236927 PRK11551 236927 -PRK11552 236928 PRK11552 236928 -PRK11553 236929 cl21456 354813 -PRK11558 236930 cl08187 324207 -PRK11563 236931 PRK11563 236931 -PRK11564 236932 PRK11564 236932 -PRK11573 236933 PRK11573 236933 -PRK11588 236934 cl21473 354825 -PRK11589 236935 PRK11589 236935 -PRK11608 236936 PRK11608 236936 -PRK11617 236937 cl00653 351198 -PRK11621 236938 cl00958 351331 -PRK11623 236939 PRK11623 236939 -PRK11633 236940 PRK11633 236940 -PRK11634 236941 PRK11634 236941 -PRK11637 236942 PRK11637 236942 -PRK11638 236943 PRK11638 236943 -PRK11642 236944 PRK11642 236944 -PRK11644 236945 PRK11644 236945 -PRK11649 236946 PRK11649 236946 -PRK11650 236947 PRK11650 236947 -PRK11653 236948 cl10031 353049 -PRK11655 236949 cl01230 321402 -PRK11664 236950 PRK11664 236950 -PRK11667 236951 cl08197 352855 -PRK11669 236952 cl21491 354834 -PRK11677 236953 cl11473 325050 -PRK11678 236954 PRK11678 236954 -PRK11679 236955 cl19507 354433 -PRK11697 236956 PRK11697 236956 -PRK11700 236957 cl14632 353816 -PRK11709 236958 cl23716 355014 -PRK11713 236959 cl00611 321070 -PRK11715 236960 cl01844 351615 -PRK11716 236961 PRK11716 236961 -PRK11718 236962 cl11478 353272 -PRK11720 236963 PRK11720 236963 -PRK11727 236964 cl17173 354317 -PRK11742 236965 PRK11742 236965 -PRK11747 236966 PRK11747 236966 -PRK11749 236967 PRK11749 236967 -PRK11750 236968 PRK11750 236968 -PRK11753 236969 PRK11753 236969 -PRK11756 236970 cl00490 351117 -PRK11760 236971 cl28485 333305 -PRK11761 236972 cl00342 294246 -PRK11767 236973 cl19504 354430 -PRK11768 236974 cl21453 354810 -PRK11770 236975 cl27241 355630 -PRK11773 236976 PRK11773 236976 -PRK11776 236977 PRK11776 236977 -PRK11778 236978 PRK11778 236978 -PRK11779 236979 PRK11779 236979 -PRK11780 236980 cl00020 350865 -PRK11783 236981 PRK11783 236981 -PRK11784 236982 PRK11784 236982 -PRK11788 236983 PRK11788 236983 -PRK11789 236984 cl02712 351864 -PRK11790 236985 PRK11790 236985 -PRK11792 236986 PRK11792 236986 -PRK11798 236987 cl01120 351391 -PRK11805 236988 PRK11805 236988 -PRK11809 236989 PRK11809 236989 -PRK11814 236990 PRK11814 236990 -PRK11815 236991 cl21457 354814 -PRK11819 236992 PRK11819 236992 -PRK11820 236993 cl26779 355573 -PRK11823 236994 cl28885 355771 -PRK11824 236995 PRK11824 236995 -PRK11830 236996 PRK11830 236996 -PRK11831 236997 PRK11831 236997 -PRK11840 236998 PRK11840 236998 -PRK11854 236999 PRK11854 236999 -PRK11855 237000 PRK11855 237000 -PRK11856 237001 PRK11856 237001 -PRK11857 237002 PRK11857 237002 -PRK11860 237003 PRK11860 237003 -PRK11863 237004 PRK11863 237004 -PRK11864 237005 PRK11864 237005 -PRK11867 237006 PRK11867 237006 -PRK11873 237007 PRK11873 237007 -PRK11880 237008 PRK11880 237008 -PRK11883 237009 PRK11883 237009 -PRK11886 237010 PRK11886 237010 -PRK11892 237011 PRK11892 237011 -PRK11893 237012 PRK11893 237012 -PRK11898 237013 PRK11898 237013 -PRK11899 237014 PRK11899 237014 -PRK11901 237015 PRK11901 237015 -PRK11903 237016 cl11961 353326 -PRK11904 237017 PRK11904 237017 -PRK11905 237018 PRK11905 237018 -PRK11907 237019 PRK11907 237019 -PRK11913 237020 cl01244 351437 -PRK11914 237021 PRK11914 237021 -PRK11915 237022 cl17185 354319 -PRK11921 237023 PRK11921 237023 -PRK11922 237024 PRK11922 237024 -PRK11929 237025 PRK11929 237025 -PRK11930 237026 cl27635 355667 -PRK12266 237027 PRK12266 237027 -PRK12267 237028 PRK12267 237028 -PRK12268 237029 PRK12268 237029 -PRK12270 237030 PRK12270 237030 -PRK12273 237031 PRK12273 237031 -PRK12274 237032 cl21453 354810 -PRK12276 237033 cl01280 351453 -PRK12278 237034 PRK12278 237034 -PRK12280 237035 cl00326 351029 -PRK12284 237036 PRK12284 237036 -PRK12285 237037 cl00015 350862 -PRK12286 237038 cl09115 324327 -PRK12288 237039 PRK12288 237039 -PRK12289 237040 PRK12289 237040 -PRK12290 237041 PRK12290 237041 -PRK12291 237042 PRK12291 237042 -PRK12292 237043 PRK12292 237043 -PRK12294 237044 cl00268 350993 -PRK12296 237045 PRK12296 237045 -PRK12297 237046 PRK12297 237046 -PRK12298 237047 PRK12298 237047 -PRK12299 237048 PRK12299 237048 -PRK12300 237049 PRK12300 237049 -PRK12305 237050 PRK12305 237050 -PRK12307 237051 PRK12307 237051 -PRK12313 237052 PRK12313 237052 -PRK12315 237053 PRK12315 237053 -PRK12316 237054 PRK12316 237054 -PRK12317 237055 PRK12317 237055 -PRK12321 237056 cl29847 356723 -PRK12323 237057 PRK12323 237057 -PRK12324 237058 cl00337 351038 -PRK12325 237059 PRK12325 237059 -PRK12326 237060 PRK12326 237060 -PRK12327 237061 PRK12327 237061 -PRK12328 237062 PRK12328 237062 -PRK12329 237063 PRK12329 237063 -PRK12333 237064 PRK12333 237064 -PRK12334 237065 PRK12334 237065 -PRK12338 237066 PRK12338 237066 -PRK12343 237067 cl00242 350979 -PRK12344 237068 PRK12344 237068 -PRK12349 237069 cl00416 351085 -PRK12350 237070 cl00416 351085 -PRK12353 237071 cl00452 351098 -PRK12355 237072 PRK12355 237072 -PRK12356 237073 cl00907 351307 -PRK12357 237074 cl00907 351307 -PRK12360 237075 cl19123 354385 -PRK12362 237076 cl04057 322510 -PRK12364 237077 PRK12364 237077 -PRK12366 237078 PRK12366 237078 -PRK12367 237079 cl21454 354811 -PRK12370 237080 PRK12370 237080 -PRK12372 237081 PRK12372 237081 -PRK12373 237082 PRK12373 237082 -PRK12374 237083 PRK12374 237083 -PRK12378 237084 cl00361 351054 -PRK12383 237085 cl23718 355016 -PRK12386 237086 PRK12386 237086 -PRK12391 237087 cl00342 294246 -PRK12393 237088 cl28964 355840 -PRK12398 237089 cl00849 321208 -PRK12402 237090 PRK12402 237090 -PRK12405 237091 cl00597 351168 -PRK12408 237092 cl17037 354300 -PRK12409 237093 PRK12409 237093 -PRK12410 237094 PRK12410 237094 -PRK12417 237095 PRK12417 237095 -PRK12419 237096 cl00317 351021 -PRK12420 237097 PRK12420 237097 -PRK12421 237098 PRK12421 237098 -PRK12428 237099 cl21454 354811 -PRK12429 237100 cl21454 354811 -PRK12430 237101 PRK12430 237101 -PRK12442 237102 cl09927 353027 -PRK12447 237103 cl10029 353047 -PRK12448 237104 cl00340 351041 -PRK12457 237105 cl17225 354324 -PRK12459 237106 PRK12459 237106 -PRK12464 237107 PRK12464 237107 -PRK12467 237108 PRK12467 237108 -PRK12469 237109 PRK12469 237109 -PRK12472 237110 cl29044 355920 -PRK12483 237111 PRK12483 237111 -PRK12484 237112 PRK12484 237112 -PRK12486 237113 cl30584 357460 -PRK12488 237114 cl00456 320982 -PRK12489 237115 cl21473 354825 -PRK12490 237116 PRK12490 237116 -PRK12493 237117 PRK12493 237117 -PRK12496 237118 cl28905 355781 -PRK12497 237119 cl00516 351129 -PRK12505 237120 cl00676 351209 -PRK12507 237121 PRK12507 237121 -PRK12509 237122 cl00676 351209 -PRK12511 237123 PRK12511 237123 -PRK12518 237124 PRK12518 237124 -PRK12519 237125 PRK12519 237125 -PRK12520 237126 PRK12520 237126 -PRK12526 237127 PRK12526 237127 -PRK12530 237128 PRK12530 237128 -PRK12533 237129 PRK12533 237129 -PRK12535 237130 PRK12535 237130 -PRK12536 237131 PRK12536 237131 -PRK12539 237132 PRK12539 237132 -PRK12553 237133 cl23717 355015 -PRK12554 237134 cl00858 351283 -PRK12555 237135 PRK12555 237135 -PRK12557 237136 PRK12557 237136 -PRK12561 237137 PRK12561 237137 -PRK12563 237138 cl00292 351005 -PRK12564 237139 PRK12564 237139 -PRK12567 237140 cl00676 351209 -PRK12569 237141 cl15692 353970 -PRK12570 237142 PRK12570 237142 -PRK12576 237143 PRK12576 237143 -PRK12582 237144 PRK12582 237144 -PRK12583 237145 PRK12583 237145 -PRK12584 237146 PRK12584 237146 -PRK12586 237147 cl00583 351161 -PRK12599 237148 cl09154 352941 -PRK12606 237149 cl00263 350991 -PRK12608 237150 PRK12608 237150 -PRK12612 237151 cl09154 352941 -PRK12627 237152 PRK12627 237152 -PRK12642 237153 PRK12642 237153 -PRK12644 237154 PRK12644 237154 -PRK12645 237155 PRK12645 237155 -PRK12647 237156 PRK12647 237156 -PRK12648 237157 PRK12648 237157 -PRK12650 237158 PRK12650 237158 -PRK12651 237159 cl00807 351263 -PRK12652 237160 cl00807 351263 -PRK12654 237161 cl00807 351263 -PRK12661 237162 cl00492 351118 -PRK12663 237163 PRK12663 237163 -PRK12664 237164 PRK12664 237164 -PRK12665 237165 PRK12665 237165 -PRK12666 237166 PRK12666 237166 -PRK12667 237167 PRK12667 237167 -PRK12668 237168 PRK12668 237168 -PRK12674 237169 cl00583 351161 -PRK12677 237170 cl23721 355019 -PRK12678 237171 PRK12678 237171 -PRK12683 237172 PRK12683 237172 -PRK12684 237173 PRK12684 237173 -PRK12696 237174 cl19182 354388 -PRK12697 237175 cl19182 354388 -PRK12703 237176 PRK12703 237176 -PRK12704 237177 PRK12704 237177 -PRK12705 237178 PRK12705 237178 -PRK12709 237179 PRK12709 237179 -PRK12711 237180 PRK12711 237180 -PRK12722 237181 cl05036 352310 -PRK12727 237182 PRK12727 237182 -PRK12728 237183 cl09139 352938 -PRK12736 237184 PRK12736 237184 -PRK12739 237185 PRK12739 237185 -PRK12740 237186 PRK12740 237186 -PRK12743 237187 PRK12743 237187 -PRK12745 237188 PRK12745 237188 -PRK12748 237189 PRK12748 237189 -PRK12755 237190 cl17225 354324 -PRK12757 237191 PRK12757 237191 -PRK12758 237192 PRK12758 237192 -PRK12764 237193 PRK12764 237193 -PRK12765 237194 PRK12765 237194 -PRK12767 237195 PRK12767 237195 -PRK12768 237196 cl01126 351395 -PRK12770 237197 PRK12770 237197 -PRK12771 237198 PRK12771 237198 -PRK12772 237199 PRK12772 237199 -PRK12778 237200 PRK12778 237200 -PRK12786 237201 cl00555 351151 -PRK12788 237202 cl19182 354388 -PRK12790 237203 cl01626 351570 -PRK12791 237204 cl11455 353264 -PRK12792 237205 cl07980 352841 -PRK12793 237206 cl11454 353263 -PRK12794 237207 cl11454 353263 -PRK12795 237208 PRK12795 237208 -PRK12796 237209 cl00593 351166 -PRK12797 237210 cl00593 351166 -PRK12798 237211 PRK12798 237211 -PRK12808 237212 PRK12808 237212 -PRK12810 237213 PRK12810 237213 -PRK12813 237214 PRK12813 237214 -PRK12815 237215 PRK12815 237215 -PRK12821 237216 PRK12821 237216 -PRK12822 237217 cl17225 354324 -PRK12825 237218 PRK12825 237218 -PRK12827 237219 PRK12827 237219 -PRK12828 237220 PRK12828 237220 -PRK12835 237221 PRK12835 237221 -PRK12837 237222 PRK12837 237222 -PRK12839 237223 PRK12839 237223 -PRK12842 237224 PRK12842 237224 -PRK12843 237225 PRK12843 237225 -PRK12845 237226 PRK12845 237226 -PRK12846 237227 cl00234 320843 -PRK12847 237228 cl00337 351038 -PRK12848 237229 cl00337 351038 -PRK12849 237230 cl02777 351886 -PRK12850 237231 PRK12850 237231 -PRK12852 237232 PRK12852 237232 -PRK12853 237233 PRK12853 237233 -PRK12854 237234 PRK12854 237234 -PRK12857 237235 cl21457 354814 -PRK12858 237236 cl21457 354814 -PRK12860 237237 cl05036 352310 -PRK12866 237238 cl00999 321296 -PRK12869 237239 cl00337 351038 -PRK12870 237240 cl00337 351038 -PRK12872 237241 cl00337 351038 -PRK12874 237242 cl00337 351038 -PRK12875 237243 cl00337 351038 -PRK12876 237244 cl00337 351038 -PRK12879 237245 PRK12879 237245 -PRK12881 237246 PRK12881 237246 -PRK12886 237247 cl00337 351038 -PRK12890 237248 PRK12890 237248 -PRK12891 237249 PRK12891 237249 -PRK12893 237250 PRK12893 237250 -PRK12895 237251 cl00337 351038 -PRK12896 237252 cl00279 351000 -PRK12898 237253 PRK12898 237253 -PRK12899 237254 PRK12899 237254 -PRK12900 237255 PRK12900 237255 -PRK12901 237256 PRK12901 237256 -PRK12902 237257 PRK12902 237257 -PRK12903 237258 PRK12903 237258 -PRK12904 237259 PRK12904 237259 -PRK12906 237260 PRK12906 237260 -PRK12928 237261 PRK12928 237261 -PRK12997 237262 cl04451 352188 -PRK12999 237263 PRK12999 237263 -PRK13007 237264 PRK13007 237264 -PRK13009 237265 PRK13009 237265 -PRK13011 237266 PRK13011 237266 -PRK13012 237267 PRK13012 237267 -PRK13013 237268 PRK13013 237268 -PRK13014 237269 cl00366 351056 -PRK13015 237270 cl00505 351123 -PRK13016 237271 cl00340 351041 -PRK13017 237272 cl00340 351041 -PRK13018 237273 cl10017 353044 -PRK13021 237274 PRK13021 237274 -PRK13022 237275 PRK13022 237275 -PRK13024 237276 PRK13024 237276 -PRK13026 237277 PRK13026 237277 -PRK13029 237278 PRK13029 237278 -PRK13030 237279 PRK13030 237279 -PRK13034 237280 cl18945 354370 -PRK13054 237281 PRK13054 237281 -PRK13055 237282 PRK13055 237282 -PRK13106 237283 cl00337 351038 -PRK13108 237284 PRK13108 237284 -PRK13111 237285 cl28888 355772 -PRK13125 237286 cl28888 355772 -PRK13130 237287 cl00977 321282 -PRK13141 237288 cl00020 350865 -PRK13143 237289 cl00020 350865 -PRK13146 237290 cl00020 350865 -PRK13168 237291 PRK13168 237291 -PRK13182 237292 PRK13182 237292 -PRK13185 237293 cl21455 354812 -PRK13186 237294 cl00512 351128 -PRK13187 237295 cl00512 351128 -PRK13188 237296 PRK13188 237296 -PRK13189 237297 PRK13189 237297 -PRK13193 237298 cl00237 320846 -PRK13197 237299 cl00237 320846 -PRK13199 237300 cl08224 324211 -PRK13200 237301 cl08224 324211 -PRK13201 237302 cl00533 351140 -PRK13203 237303 cl00533 351140 -PRK13206 237304 PRK13206 237304 -PRK13207 237305 PRK13207 237305 -PRK13208 237306 PRK13208 237306 -PRK13209 237307 PRK13209 237307 -PRK13210 237308 PRK13210 237308 -PRK13211 237309 PRK13211 237309 -PRK13222 237310 cl21460 354816 -PRK13226 237311 cl21460 354816 -PRK13236 237312 PRK13236 237312 -PRK13237 237313 cl18945 354370 -PRK13238 237314 cl18945 354370 -PRK13247 237315 cl07930 324183 -PRK13253 237316 cl06082 352463 -PRK13254 237317 cl00994 351339 -PRK13256 237318 cl17173 354317 -PRK13257 237319 cl27253 355631 -PRK13258 237320 cl00263 350991 -PRK13259 237321 cl00915 321247 -PRK13261 237322 PRK13261 237322 -PRK13263 237323 PRK13263 237323 -PRK13266 237324 cl12138 353367 -PRK13267 237325 cl00064 350885 -PRK13271 237326 cl17346 354328 -PRK13273 237327 cl19308 354408 -PRK13274 237328 cl19308 354408 -PRK13278 237329 cl26941 355595 -PRK13279 237330 cl21590 354882 -PRK13280 237331 cl01666 321610 -PRK13281 237332 cl01511 351532 -PRK13284 237333 cl00740 351232 -PRK13285 237334 cl00740 351232 -PRK13286 237335 cl11424 353250 -PRK13288 237336 PRK13288 237336 -PRK13289 237337 PRK13289 237337 -PRK13298 237338 PRK13298 237338 -PRK13299 237339 PRK13299 237339 -PRK13300 237340 PRK13300 237340 -PRK13302 237341 cl27470 355656 -PRK13303 237342 PRK13303 237342 -PRK13304 237343 PRK13304 237343 -PRK13306 237344 cl21457 354814 -PRK13315 237345 cl10022 324563 -PRK13317 237346 PRK13317 237346 -PRK13318 237347 cl17037 354300 -PRK13320 237348 cl17037 354300 -PRK13321 237349 cl17037 354300 -PRK13322 237350 PRK13322 237350 -PRK13326 237351 cl17037 354300 -PRK13328 237352 PRK13328 237352 -PRK13331 237353 cl17037 354300 -PRK13341 237354 PRK13341 237354 -PRK13342 237355 PRK13342 237355 -PRK13347 237356 PRK13347 237356 -PRK13348 237357 PRK13348 237357 -PRK13351 237358 PRK13351 237358 -PRK13352 237359 cl08031 352842 -PRK13354 237360 PRK13354 237360 -PRK13355 237361 PRK13355 237361 -PRK13356 237362 cl00224 350964 -PRK13357 237363 PRK13357 237363 -PRK13361 237364 PRK13361 237364 -PRK13369 237365 PRK13369 237365 -PRK13370 237366 cl00599 351170 -PRK13371 237367 cl19123 354385 -PRK13374 237368 cl00303 351011 -PRK13376 237369 PRK13376 237369 -PRK13380 237370 cl11404 353245 -PRK13381 237371 cl14876 353847 -PRK13386 237372 PRK13386 237372 -PRK13387 237373 cl00337 351038 -PRK13388 237374 PRK13388 237374 -PRK13395 237375 cl01250 321414 -PRK13396 237376 PRK13396 237376 -PRK13405 237377 PRK13405 237377 -PRK13406 237378 PRK13406 237378 -PRK13412 237379 PRK13412 237379 -PRK13417 237380 cl00413 351082 -PRK13419 237381 cl00413 351082 -PRK13420 237382 cl00413 351082 -PRK13421 237383 cl00413 351082 -PRK13423 237384 cl00365 351055 -PRK13426 237385 cl00365 351055 -PRK13429 237386 cl17210 354322 -PRK13430 237387 cl17210 354322 -PRK13443 237388 PRK13443 237388 -PRK13456 237389 cl00264 350992 -PRK13467 237390 cl00466 351103 -PRK13473 237391 cl11961 353326 -PRK13474 237392 PRK13474 237392 -PRK13477 237393 PRK13477 237393 -PRK13480 237394 PRK13480 237394 -PRK13482 237395 cl26502 355524 -PRK13487 237396 cl00810 351265 -PRK13488 237397 cl00810 351265 -PRK13489 237398 cl00810 351265 -PRK13497 237399 cl00810 351265 -PRK13498 237400 cl00810 351265 -PRK13499 237401 cl19288 302813 -PRK13504 237402 PRK13504 237402 -PRK13505 237403 PRK13505 237403 -PRK13506 237404 PRK13506 237404 -PRK13508 237405 cl00192 350937 -PRK13515 237406 cl00954 351329 -PRK13516 237407 cl00954 351329 -PRK13517 237408 cl00954 351329 -PRK13520 237409 cl18945 354370 -PRK13524 237410 PRK13524 237410 -PRK13525 237411 cl00020 350865 -PRK13527 237412 cl00020 350865 -PRK13528 237413 PRK13528 237413 -PRK13529 237414 PRK13529 237414 -PRK13530 237415 cl00105 320761 -PRK13532 237416 PRK13532 237416 -PRK13533 237417 PRK13533 237417 -PRK13534 237418 PRK13534 237418 -PRK13536 237419 PRK13536 237419 -PRK13537 237420 PRK13537 237420 -PRK13539 237421 PRK13539 237421 -PRK13548 237422 PRK13548 237422 -PRK13553 237423 cl00881 351296 -PRK13554 237424 cl00881 351296 -PRK13557 237425 PRK13557 237425 -PRK13558 237426 PRK13558 237426 -PRK13559 237427 PRK13559 237427 -PRK13564 237428 PRK13564 237428 -PRK13566 237429 PRK13566 237429 -PRK13568 237430 PRK13568 237430 -PRK13570 237431 PRK13570 237431 -PRK13572 237432 PRK13572 237432 -PRK13576 237433 PRK13576 237433 -PRK13578 237434 PRK13578 237434 -PRK13579 237435 cl29882 356758 -PRK13581 237436 PRK13581 237436 -PRK13582 237437 cl21460 354816 -PRK13583 237438 cl21456 354813 -PRK13586 237439 cl21457 354814 -PRK13588 237440 PRK13588 237440 -PRK13596 237441 cl30574 357450 -PRK13605 237442 cl07446 352743 -PRK13606 237443 cl00425 351088 -PRK13607 237444 PRK13607 237444 -PRK13609 237445 PRK13609 237445 -PRK13612 237446 cl04326 322618 -PRK13613 237447 PRK13613 237447 -PRK13614 237448 PRK13614 237448 -PRK13616 237449 PRK13616 237449 -PRK13621 237450 cl21467 354821 -PRK13631 237451 PRK13631 237451 -PRK13632 237452 PRK13632 237452 -PRK13633 237453 PRK13633 237453 -PRK13634 237454 PRK13634 237454 -PRK13637 237455 PRK13637 237455 -PRK13641 237456 PRK13641 237456 -PRK13647 237457 PRK13647 237457 -PRK13654 237458 cl00264 350992 -PRK13655 237459 cl21521 354850 -PRK13656 237460 PRK13656 237460 -PRK13660 237461 cl22881 354968 -PRK13665 237462 cl12057 353349 -PRK13668 237463 cl02011 321769 -PRK13670 237464 cl27012 355603 -PRK13673 237465 cl11654 325112 -PRK13674 237466 cl00642 351192 -PRK13676 237467 cl01483 351522 -PRK13684 237468 cl29690 356566 -PRK13686 237469 cl27937 332758 -PRK13688 237470 cl17182 354318 -PRK13689 237471 cl01175 351410 -PRK13690 237472 cl01860 351620 -PRK13692 237473 cl00509 351126 -PRK13694 237474 cl23845 355068 -PRK13695 237475 cl21455 354812 -PRK13696 237476 cl00762 351243 -PRK13701 237477 cl23984 329215 -PRK13709 237478 PRK13709 237478 -PRK13719 237479 PRK13719 237479 -PRK13721 237480 PRK13721 237480 -PRK13723 237481 cl05580 352377 -PRK13724 237482 cl23902 329161 -PRK13727 237483 cl11516 299758 -PRK13728 237484 cl00388 351069 -PRK13734 237485 cl11503 299752 -PRK13736 237486 cl05878 323239 -PRK13737 237487 cl06067 352460 -PRK13739 237488 cl11652 264457 -PRK13745 237489 PRK13745 237489 -PRK13755 237490 cl03934 352089 -PRK13759 237491 PRK13759 237491 -PRK13760 237492 PRK13760 237492 -PRK13762 237493 PRK13762 237493 -PRK13763 237494 PRK13763 237494 -PRK13765 237495 PRK13765 237495 -PRK13766 237496 PRK13766 237496 -PRK13767 237497 cl28899 355775 -PRK13768 237498 cl21455 354812 -PRK13773 237499 cl17011 354294 -PRK13776 237500 cl17011 354294 -PRK13777 237501 cl21459 354815 -PRK13779 237502 PRK13779 237502 -PRK13780 237503 cl00206 350950 -PRK13781 237504 cl01371 321466 -PRK13783 237505 cl28913 355789 -PRK13785 237506 cl28913 355789 -PRK13790 237507 PRK13790 237507 -PRK13791 237508 cl01604 351565 -PRK13794 237509 PRK13794 237509 -PRK13795 237510 PRK13795 237510 -PRK13796 237511 PRK13796 237511 -PRK13800 237512 PRK13800 237512 -PRK13803 237513 PRK13803 237513 -PRK13804 237514 PRK13804 237514 -PRK13805 237515 PRK13805 237515 -PRK13806 237516 PRK13806 237516 -PRK13807 237517 cl27850 355684 -PRK13811 237518 cl00309 351014 -PRK13812 237519 cl00309 351014 -PRK13813 237520 cl21457 354814 -PRK13820 237521 cl00292 351005 -PRK13822 237522 PRK13822 237522 -PRK13825 237523 cl11424 353250 -PRK13826 237524 PRK13826 237524 -PRK13830 237525 PRK13830 237525 -PRK13837 237526 PRK13837 237526 -PRK13839 237527 cl11423 353249 -PRK13840 237528 PRK13840 237528 -PRK13841 237529 cl01503 351527 -PRK13843 237530 cl00222 350962 -PRK13850 237531 PRK13850 237531 -PRK13858 237532 cl27005 331826 -PRK13863 237533 cl21589 328814 -PRK13864 237534 cl00222 350962 -PRK13868 237535 cl09429 352966 -PRK13873 237536 PRK13873 237536 -PRK13875 237537 PRK13875 237537 -PRK13876 237538 PRK13876 237538 -PRK13878 237539 PRK13878 237539 -PRK13880 237540 PRK13880 237540 -PRK13881 237541 PRK13881 237541 -PRK13882 237542 cl05434 323055 -PRK13885 237543 cl11423 353249 -PRK13887 237544 cl01500 351525 -PRK13888 237545 cl00222 350962 -PRK13889 237546 PRK13889 237546 -PRK13890 237547 PRK13890 237547 -PRK13893 237548 cl21715 354917 -PRK13897 237549 PRK13897 237549 -PRK13899 237550 cl01501 351526 -PRK13902 237551 PRK13902 237551 -PRK13903 237552 PRK13903 237552 -PRK13905 237553 PRK13905 237553 -PRK13909 237554 PRK13909 237554 -PRK13914 237555 PRK13914 237555 -PRK13915 237556 cl11394 353239 -PRK13918 237557 PRK13918 237557 -PRK13920 237558 PRK13920 237558 -PRK13921 237559 cl09719 353001 -PRK13922 237560 cl19252 354401 -PRK13923 237561 cl21524 276343 -PRK13927 237562 cl17037 354300 -PRK13928 237563 PRK13928 237563 -PRK13930 237564 PRK13930 237564 -PRK13934 237565 cl00448 351097 -PRK13935 237566 cl00448 351097 -PRK13936 237567 cl00389 351070 -PRK13943 237568 PRK13943 237568 -PRK13952 237569 cl00860 351284 -PRK13959 237570 PRK13959 237570 -PRK13961 237571 cl00231 350970 -PRK13962 237572 PRK13962 237572 -PRK13963 237573 cl00402 351078 -PRK13976 237574 cl17190 354320 -PRK13977 237575 cl21454 354811 -PRK13979 237576 PRK13979 237576 -PRK13981 237577 PRK13981 237577 -PRK13983 237578 PRK13983 237578 -PRK13987 237579 cl00538 351142 -PRK13992 237580 cl29976 356852 -PRK13994 237581 cl00944 351325 -PRK14011 237582 cl09111 352933 -PRK14013 237583 cl10468 324589 -PRK14014 237584 PRK14014 237584 -PRK14015 237585 cl14813 353839 -PRK14016 237586 PRK14016 237586 -PRK14019 237587 PRK14019 237587 -PRK14022 237588 PRK14022 237588 -PRK14024 237589 cl21457 354814 -PRK14033 237590 cl00416 351085 -PRK14036 237591 cl00416 351085 -PRK14040 237592 PRK14040 237592 -PRK14041 237593 PRK14041 237593 -PRK14046 237594 cl29683 356559 -PRK14050 237595 PRK14050 237595 -PRK14053 237596 cl29795 356671 -PRK14054 237597 cl00366 351056 -PRK14056 237598 cl01244 351437 -PRK14058 237599 cl00452 351098 -PRK14072 237600 cl00204 350948 -PRK14076 237601 cl28462 333282 -PRK14081 237602 PRK14081 237602 -PRK14083 237603 PRK14083 237603 -PRK14085 237604 cl00281 351001 -PRK14086 237605 PRK14086 237605 -PRK14089 237606 cl10013 353042 -PRK14091 237607 PRK14091 237607 -PRK14095 237608 PRK14095 237608 -PRK14096 237609 PRK14096 237609 -PRK14099 237610 PRK14099 237610 -PRK14105 237611 PRK14105 237611 -PRK14108 237612 PRK14108 237612 -PRK14109 237613 PRK14109 237613 -PRK14113 237614 PRK14113 237614 -PRK14121 237615 cl17173 354317 -PRK14127 237616 cl30263 357139 -PRK14131 237617 PRK14131 237617 -PRK14132 237618 cl29862 356738 -PRK14135 237619 cl00936 351319 -PRK14136 237620 cl00936 351319 -PRK14139 237621 cl03075 351939 -PRK14140 237622 cl03075 351939 -PRK14142 237623 cl03075 351939 -PRK14143 237624 cl03075 351939 -PRK14147 237625 cl03075 351939 -PRK14154 237626 cl03075 351939 -PRK14155 237627 cl03075 351939 -PRK14156 237628 cl03075 351939 -PRK14160 237629 PRK14160 237629 -PRK14161 237630 cl03075 351939 -PRK14162 237631 cl03075 351939 -PRK14164 237632 cl03075 351939 -PRK14168 237633 PRK14168 237633 -PRK14179 237634 PRK14179 237634 -PRK14184 237635 PRK14184 237635 -PRK14186 237636 PRK14186 237636 -PRK14193 237637 PRK14193 237637 -PRK14200 237638 cl09114 352935 -PRK14203 237639 cl09114 352935 -PRK14209 237640 cl09114 352935 -PRK14220 237641 cl09114 352935 -PRK14224 237642 cl09114 352935 -PRK14228 237643 cl09114 352935 -PRK14232 237644 cl09114 352935 -PRK14235 237645 PRK14235 237645 -PRK14237 237646 PRK14237 237646 -PRK14248 237647 PRK14248 237647 -PRK14250 237648 PRK14250 237648 -PRK14254 237649 PRK14254 237649 -PRK14265 237650 PRK14265 237650 -PRK14266 237651 PRK14266 237651 -PRK14275 237652 PRK14275 237652 -PRK14276 237653 PRK14276 237653 -PRK14278 237654 PRK14278 237654 -PRK14279 237655 PRK14279 237655 -PRK14280 237656 PRK14280 237656 -PRK14281 237657 PRK14281 237657 -PRK14284 237658 PRK14284 237658 -PRK14287 237659 PRK14287 237659 -PRK14289 237660 PRK14289 237660 -PRK14291 237661 PRK14291 237661 -PRK14292 237662 PRK14292 237662 -PRK14293 237663 PRK14293 237663 -PRK14294 237664 PRK14294 237664 -PRK14295 237665 PRK14295 237665 -PRK14296 237666 PRK14296 237666 -PRK14299 237667 PRK14299 237667 -PRK14301 237668 PRK14301 237668 -PRK14315 237669 PRK14315 237669 -PRK14316 237670 PRK14316 237670 -PRK14317 237671 PRK14317 237671 -PRK14318 237672 PRK14318 237672 -PRK14325 237673 PRK14325 237673 -PRK14326 237674 PRK14326 237674 -PRK14328 237675 PRK14328 237675 -PRK14329 237676 PRK14329 237676 -PRK14333 237677 PRK14333 237677 -PRK14335 237678 PRK14335 237678 -PRK14340 237679 PRK14340 237679 -PRK14341 237680 cl14057 353805 -PRK14342 237681 cl14057 353805 -PRK14343 237682 cl14057 353805 -PRK14344 237683 cl14057 353805 -PRK14346 237684 cl14057 353805 -PRK14355 237685 PRK14355 237685 -PRK14356 237686 PRK14356 237686 -PRK14357 237687 PRK14357 237687 -PRK14358 237688 PRK14358 237688 -PRK14359 237689 PRK14359 237689 -PRK14365 237690 cl00276 350998 -PRK14366 237691 cl00276 350998 -PRK14367 237692 cl00276 350998 -PRK14368 237693 cl00276 350998 -PRK14374 237694 cl00506 351124 -PRK14376 237695 cl00506 351124 -PRK14378 237696 cl00506 351124 -PRK14379 237697 cl00506 351124 -PRK14383 237698 cl00506 351124 -PRK14392 237699 cl00410 351080 -PRK14397 237700 cl00410 351080 -PRK14398 237701 cl00410 351080 -PRK14399 237702 cl00410 351080 -PRK14400 237703 cl00410 351080 -PRK14402 237704 cl00410 351080 -PRK14404 237705 cl00410 351080 -PRK14405 237706 cl00410 351080 -PRK14410 237707 cl00410 351080 -PRK14418 237708 cl00410 351080 -PRK14419 237709 cl00410 351080 -PRK14420 237710 cl00551 351148 -PRK14421 237711 cl00551 351148 -PRK14422 237712 cl00551 351148 -PRK14423 237713 cl00551 351148 -PRK14439 237714 cl00551 351148 -PRK14451 237715 cl00551 351148 -PRK14452 237716 cl00551 351148 -PRK14455 237717 cl18962 354374 -PRK14461 237718 cl18962 354374 -PRK14462 237719 cl18962 354374 -PRK14463 237720 cl18962 354374 -PRK14466 237721 cl18962 354374 -PRK14476 237722 cl02775 351884 -PRK14479 237723 cl29418 356294 -PRK14481 237724 cl10557 353086 -PRK14487 237725 cl21467 354821 -PRK14488 237726 cl00275 350997 -PRK14489 237727 PRK14489 237727 -PRK14490 237728 PRK14490 237728 -PRK14491 237729 PRK14491 237729 -PRK14493 237730 PRK14493 237730 -PRK14494 237731 PRK14494 237731 -PRK14498 237732 PRK14498 237732 -PRK14499 237733 PRK14499 237733 -PRK14500 237734 PRK14500 237734 -PRK14503 237735 cl11394 353239 -PRK14504 237736 cl08220 352857 -PRK14507 237737 PRK14507 237737 -PRK14508 237738 cl00711 351222 -PRK14510 237739 PRK14510 237739 -PRK14511 237740 PRK14511 237740 -PRK14512 237741 cl23717 355015 -PRK14513 237742 cl23717 355015 -PRK14515 237743 PRK14515 237743 -PRK14521 237744 PRK14521 237744 -PRK14527 237745 PRK14527 237745 -PRK14529 237746 PRK14529 237746 -PRK14530 237747 PRK14530 237747 -PRK14537 237748 PRK14537 237748 -PRK14543 237749 cl00335 351036 -PRK14548 237750 cl00326 351029 -PRK14549 237751 cl09943 353035 -PRK14551 237752 cl14782 353835 -PRK14552 237753 PRK14552 237753 -PRK14554 237754 cl28383 333203 -PRK14555 237755 cl00585 351163 -PRK14559 237756 PRK14559 237756 -PRK14560 237757 PRK14560 237757 -PRK14565 237758 cl28888 355772 -PRK14589 237759 PRK14589 237759 -PRK14593 237760 PRK14593 237760 -PRK14597 237761 cl00234 320843 -PRK14598 237762 cl00234 320843 -PRK14603 237763 PRK14603 237763 -PRK14607 237764 PRK14607 237764 -PRK14608 237765 PRK14608 237765 -PRK14609 237766 PRK14609 237766 -PRK14612 237767 PRK14612 237767 -PRK14615 237768 PRK14615 237768 -PRK14616 237769 PRK14616 237769 -PRK14618 237770 PRK14618 237770 -PRK14619 237771 PRK14619 237771 -PRK14631 237772 cl00259 350988 -PRK14636 237773 cl00259 350988 -PRK14637 237774 cl00259 350988 -PRK14642 237775 cl00259 350988 -PRK14651 237776 PRK14651 237776 -PRK14652 237777 PRK14652 237777 -PRK14653 237778 PRK14653 237778 -PRK14656 237779 cl00500 351122 -PRK14659 237780 cl00500 351122 -PRK14663 237781 cl00500 351122 -PRK14666 237782 PRK14666 237782 -PRK14667 237783 PRK14667 237783 -PRK14669 237784 PRK14669 237784 -PRK14671 237785 PRK14671 237785 -PRK14673 237786 cl00516 351129 -PRK14681 237787 cl00516 351129 -PRK14687 237788 cl00516 351129 -PRK14690 237789 PRK14690 237789 -PRK14694 237790 PRK14694 237790 -PRK14701 237791 PRK14701 237791 -PRK14702 237792 PRK14702 237792 -PRK14703 237793 PRK14703 237793 -PRK14705 237794 PRK14705 237794 -PRK14706 237795 PRK14706 237795 -PRK14712 237796 PRK14712 237796 -PRK14713 237797 PRK14713 237797 -PRK14714 237798 PRK14714 237798 -PRK14715 237799 PRK14715 237799 -PRK14716 237800 cl11394 353239 -PRK14719 237801 PRK14719 237801 -PRK14723 237802 PRK14723 237802 -PRK14724 237803 PRK14724 237803 -PRK14725 237804 cl29628 356504 -PRK14726 237805 PRK14726 237805 -PRK14727 237806 PRK14727 237806 -PRK14732 237807 cl17190 354320 -PRK14734 237808 cl17190 354320 -PRK14738 237809 cl17190 354320 -PRK14764 237810 cl00458 351102 -PRK14767 237811 cl00458 351102 -PRK14772 237812 cl00458 351102 -PRK14775 237813 cl00458 351102 -PRK14777 237814 cl00458 351102 -PRK14781 237815 cl00458 351102 -PRK14788 237816 cl00458 351102 -PRK14791 237817 cl00458 351102 -PRK14792 237818 cl00458 351102 -PRK14805 237819 PRK14805 237819 -PRK14806 237820 PRK14806 237820 -PRK14815 237821 cl17194 354321 -PRK14819 237822 PRK14819 237822 -PRK14823 237823 cl00276 350998 -PRK14824 237824 cl00276 350998 -PRK14828 237825 cl00230 350969 -PRK14829 237826 cl00230 350969 -PRK14832 237827 cl00230 350969 -PRK14833 237828 cl00230 350969 -PRK14834 237829 cl00230 350969 -PRK14835 237830 cl00230 350969 -PRK14836 237831 cl00230 350969 -PRK14839 237832 cl00230 350969 -PRK14845 237833 PRK14845 237833 -PRK14846 237834 PRK14846 237834 -PRK14850 237835 PRK14850 237835 -PRK14855 237836 cl01133 351397 -PRK14861 237837 cl00788 294511 -PRK14862 237838 PRK14862 237838 -PRK14865 237839 cl00457 351101 -PRK14866 237840 cl00716 351225 -PRK14867 237841 PRK14867 237841 -PRK14868 237842 PRK14868 237842 -PRK14869 237843 PRK14869 237843 -PRK14873 237844 cl30559 357435 -PRK14874 237845 PRK14874 237845 -PRK14876 237846 PRK14876 237846 -PRK14879 237847 cl21453 354810 -PRK14886 237848 cl00698 351219 -PRK14887 237849 cl12080 353356 -PRK14888 237850 cl12080 353356 -PRK14894 237851 PRK14894 237851 -PRK14896 237852 cl17173 354317 -PRK14897 237853 PRK14897 237853 -PRK14898 237854 PRK14898 237854 -PRK14900 237855 PRK14900 237855 -PRK14901 237856 PRK14901 237856 -PRK14902 237857 PRK14902 237857 -PRK14904 237858 PRK14904 237858 -PRK14908 237859 PRK14908 237859 -PRK14939 237860 PRK14939 237860 -PRK14947 237861 PRK14947 237861 -PRK14948 237862 PRK14948 237862 -PRK14949 237863 PRK14949 237863 -PRK14950 237864 PRK14950 237864 -PRK14951 237865 PRK14951 237865 -PRK14952 237866 PRK14952 237866 -PRK14953 237867 PRK14953 237867 -PRK14960 237868 PRK14960 237868 -PRK14962 237869 PRK14962 237869 -PRK14964 237870 PRK14964 237870 -PRK14965 237871 PRK14965 237871 -PRK14968 237872 cl17173 354317 -PRK14969 237873 PRK14969 237873 -PRK14971 237874 PRK14971 237874 -PRK14974 237875 PRK14974 237875 -PRK14975 237876 PRK14975 237876 -PRK14976 237877 PRK14976 237877 -PRK14979 237878 PRK14979 237878 -PRK14983 237879 cl00264 350992 -PRK14984 237880 cl21473 354825 -PRK14985 237881 PRK14985 237881 -PRK14988 237882 cl21460 354816 -PRK14991 237883 PRK14991 237883 -PRK15020 237884 cl00920 351311 -PRK15033 237885 PRK15033 237885 -PRK15042 237886 cl17703 327427 -PRK15046 237887 cl21456 354813 -PRK15050 237888 PRK15050 237888 -PRK15052 237889 cl09211 352950 -PRK15055 237890 cl25446 355396 -PRK15061 237891 PRK15061 237891 -PRK15062 237892 cl12072 353352 -PRK15063 237893 cl21457 354814 -PRK15064 237894 PRK15064 237894 -PRK15065 237895 cl01506 351528 -PRK15066 237896 cl21474 354826 -PRK15067 237897 cl19510 327573 -PRK15068 237898 cl17173 354317 -PRK15070 237899 cl26984 355598 -PRK15071 237900 cl12074 325180 -PRK15072 237901 cl25395 355388 -PRK15075 237902 PRK15075 237902 -PRK15078 237903 PRK15078 237903 -PRK15080 237904 PRK15080 237904 -PRK15083 237905 PRK15083 237905 -PRK15086 237906 cl01248 321412 -PRK15092 237907 PRK15092 237907 -PRK15095 237908 cl19519 354434 -PRK15102 237909 PRK15102 237909 -PRK15103 237910 cl30479 357355 -PRK15106 237911 cl04114 352112 -PRK15117 237912 cl01074 351369 -PRK15119 237913 cl10571 353087 -PRK15122 237914 PRK15122 237914 -PRK15123 237915 cl21453 354810 -PRK15130 237916 cl17182 354318 -PRK15134 237917 PRK15134 237917 -PRK15172 237918 cl14648 353820 -PRK15193 237919 PRK15193 237919 -PRK15194 237920 cl01416 351496 -PRK15199 237921 cl01416 351496 -PRK15202 237922 cl27890 332711 -PRK15205 237923 cl01416 351496 -PRK15206 237924 cl01416 351496 -PRK15208 237925 PRK15208 237925 -PRK15213 237926 PRK15213 237926 -PRK15219 237927 cl00391 351071 -PRK15220 237928 cl01416 351496 -PRK15238 237929 PRK15238 237929 -PRK15249 237930 PRK15249 237930 -PRK15251 237931 cl00490 351117 -PRK15252 237932 cl01416 351496 -PRK15262 237933 cl01416 351496 -PRK15290 237934 PRK15290 237934 -PRK15292 237935 PRK15292 237935 -PRK15295 237936 PRK15295 237936 -PRK15304 237937 PRK15304 237937 -PRK15306 237938 cl01416 351496 -PRK15308 237939 cl21716 328868 -PRK15313 237940 PRK15313 237940 -PRK15315 237941 PRK15315 237941 -PRK15317 237942 PRK15317 237942 -PRK15318 237943 PRK15318 237943 -PRK15327 237944 cl12363 353387 -PRK15329 237945 cl08444 352898 -PRK15337 237946 cl07980 352841 -PRK15338 237947 PRK15338 237947 -PRK15339 237948 PRK15339 237948 -PRK15345 237949 PRK15345 237949 -PRK15346 237950 PRK15346 237950 -PRK15347 237951 PRK15347 237951 -PRK15362 237952 cl27103 355614 -PRK15378 237953 cl19613 302951 -PRK15386 237954 PRK15386 237954 -PRK15389 237955 PRK15389 237955 -PRK15398 237956 cl11961 353326 -PRK15401 237957 cl21496 354838 -PRK15403 237958 PRK15403 237958 -PRK15404 237959 cl10011 353040 -PRK15407 237960 PRK15407 237960 -PRK15408 237961 PRK15408 237961 -PRK15418 237962 PRK15418 237962 -PRK15424 237963 PRK15424 237963 -PRK15426 237964 PRK15426 237964 -PRK15429 237965 PRK15429 237965 -PRK15434 237966 cl00447 351096 -PRK15446 237967 cl00281 351001 -PRK15447 237968 cl03113 322198 -PRK15452 237969 PRK15452 237969 -PRK15453 237970 cl17190 354320 -PRK15462 237971 cl28910 355786 -PRK15483 237972 PRK15483 237972 -PRK15488 237973 PRK15488 237973 -PRK15489 237974 PRK15489 237974 -cd00001 237975 cl00021 350866 -cd00002 237976 cl00022 320718 -cd00003 237977 cl00541 351144 -cd00006 237978 cl00025 350867 -cd00010 237980 cl07890 352835 -cd00014 237981 cl00030 350868 -cd00015 237982 cl00031 320721 -cd00017 237984 cl00032 320722 -cd00018 237985 cl00033 350869 -cd00019 237986 cl23721 355019 -cd00021 237988 cl00034 320724 -cd00022 237989 cl00035 350870 -cd00023 237990 cl27727 355673 -cd00025 237992 cl00188 320805 -cd00026 237993 cl00188 320805 -cd00028 237995 cl24013 355121 -cd00029 237996 cl00040 350872 -cd00032 237997 cl00042 350873 -cd00038 237999 cl00047 350875 -cd00040 238000 cl23816 304973 -cd00041 238001 cl00049 294042 -cd00042 238002 cl09238 352952 -cd00043 238003 cl00050 350876 -cd00044 238004 cl00051 350877 -cd00048 238007 cl00054 350878 -cd00051 238008 cl08302 324233 -cd00052 238009 cl08302 324233 -cd00053 238010 cl21504 354843 -cd00054 238011 cl21504 354843 -cd00055 238012 cl21504 354843 -cd00056 238013 cl23768 355038 -cd00057 238014 cl25480 330301 -cd00058 238015 cl00060 350881 -cd00059 238016 cl00061 350882 -cd00060 238017 cl00062 350883 -cd00061 238018 cl00063 350884 -cd00062 238019 cl09951 324551 -cd00063 238020 cl21522 354851 -cd00064 238021 cl00066 350886 -cd00067 238023 cl00068 350887 -cd00068 238024 cl00069 320743 -cd00070 238025 cl00071 350888 -cd00071 238026 cl17190 354320 -cd00072 238027 cl00072 320745 -cd00073 238028 cl00073 350889 -cd00074 238029 cl30546 357422 -cd00076 238031 cl23735 329044 -cd00077 238032 cl21469 354822 -cd00078 238033 cl27008 355602 -cd00081 238035 cl22434 354937 -cd00083 238036 cl00081 350891 -cd00084 238037 cl00082 350892 -cd00085 238038 cl00083 350893 -cd00086 238039 cl00084 350894 -cd00087 238040 cl00085 294064 -cd00088 238041 cl00086 350895 -cd00090 238042 cl21459 354815 -cd00091 238043 cl00089 350897 -cd00092 238044 cl21459 354815 -cd00093 238045 cl22854 354960 -cd00094 238046 cl02471 351767 -cd00095 238047 cl00092 320755 -cd00100 238048 cl00094 294069 -cd00101 238049 cl02453 321941 -cd00102 238050 cl15674 353966 -cd00103 238051 cl00096 320756 -cd00104 238052 cl00097 350898 -cd00105 238053 cl00098 350899 -cd00107 238055 cl11589 325093 -cd00108 238056 cl00100 350900 -cd00109 238057 cl00101 350901 -cd00110 238058 cl22861 354964 -cd00111 238059 cl00103 350902 -cd00112 238060 cl00104 350903 -cd00113 238061 cl00011 350858 -cd00114 238062 cl29874 356750 -cd00116 238064 cl29113 355989 -cd00117 238065 cl10471 353078 -cd00120 238067 cl00109 350904 -cd00121 238068 cl02446 351761 -cd00122 238069 cl00110 320763 -cd00123 238070 cl00603 351172 -cd00126 238072 cl00111 320764 -cd00129 238074 cl00112 350905 -cd00130 238075 cl21578 354879 -cd00131 238076 cl21459 354815 -cd00132 238077 cl00113 350906 -cd00135 238079 cl00116 320767 -cd00136 238080 cl00117 350907 -cd00140 238082 cl29549 356425 -cd00143 238083 cl00120 350908 -cd00146 238084 cl30545 357421 -cd00148 238085 cl00123 350909 -cd00152 238086 cl22861 354964 -cd00155 238087 cl02485 351772 -cd00156 238088 cl19078 354377 -cd00158 238089 cl00125 350910 -cd00159 238090 cl02570 351808 -cd00160 238091 cl02571 351809 -cd00161 238092 cl23784 329074 -cd00164 238094 cl09927 353027 -cd00165 238095 cl09940 353034 -cd00167 238096 cl21498 354840 -cd00169 238098 cl00134 350913 -cd00170 238099 cl15787 353978 -cd00171 238100 cl00136 350914 -cd00172 238101 cl00137 350915 -cd00175 238102 cl00140 350916 -cd00176 238103 cl02488 351773 -cd00178 238104 cl11466 353266 -cd00179 238105 cl29093 355969 -cd00182 238106 cl00145 320780 -cd00183 238107 cl00146 350918 -cd00184 238108 cl00147 350919 -cd00186 238110 cl30544 357420 -cd00187 238111 cd00187 238111 -cd00190 238113 cl21584 354881 -cd00191 238114 cl00150 350920 -cd00195 238117 cl00154 350921 -cd00198 238119 cl00057 350880 -cd00199 238120 cl00156 350922 -cd00200 238121 cl29593 356469 -cd00201 238122 cl00157 350923 -cd00202 238123 cl29608 356484 -cd00203 238124 cl00064 350885 -cd00207 238126 cl00159 350924 -cd00209 238127 cl17279 354327 -cd00210 238128 cl00162 350926 -cd00211 238129 cl00163 350927 -cd00212 238130 cl29595 356471 -cd00213 238131 cl08302 324233 -cd00214 238132 cl00165 350928 -cd00215 238133 cl00166 350929 -cd00220 238135 cl27236 332057 -cd00221 238136 cl00516 351129 -cd00224 238137 cl00169 350930 -cd00226 238138 cl21591 354883 -cd00227 238139 cl21455 354812 -cd00228 238140 cl00170 350931 -cd00229 238141 cl01053 351360 -cd00231 238142 cl29321 356197 -cd00233 238144 cl00173 320796 -cd00236 238145 cl15270 353931 -cd00238 238146 cl02782 351889 -cd00240 238147 cd00240 238147 -cd00244 238148 cl00179 350933 -cd00245 238149 cl02025 321775 -cd00246 238150 cl00180 320800 -cd00247 238151 cl23985 355115 -cd00248 238152 cl00182 350934 -cd00249 238153 cl23840 304997 -cd00250 238154 cl00184 350935 -cd00253 238156 cl00185 320803 -cd00255 238158 cl00186 320804 -cd00256 238159 cl21727 354920 -cd00257 238160 cl23781 355045 -cd00258 238161 cl00274 350996 -cd00261 238163 cl07890 352835 -cd00264 238164 cl00188 320805 -cd00265 238165 cl00109 350904 -cd00266 238166 cl00109 350904 -cd00270 238168 cl02446 351761 -cd00271 238169 cl00134 350913 -cd00272 238170 cl00134 350913 -cd00273 238171 cl00134 350913 -cd00274 238172 cl00134 350913 -cd00279 238173 cl00189 350936 -cd00280 238174 cl02779 351887 -cd00283 238175 cd00283 238175 -cd00284 238176 cl23723 355020 -cd00287 238177 cl00192 350937 -cd00288 238178 cl29628 356504 -cd00290 238179 cl00193 350938 -cd00291 238180 cl00436 320971 -cd00292 238181 cl00194 350939 -cd00293 238182 cl00292 351005 -cd00295 238183 cl00288 260328 -cd00296 238184 cl00195 350940 -cd00304 238185 cl02808 295487 -cd00305 238186 cl00891 351300 -cd00307 238187 cl01843 351614 -cd00308 238188 cl25395 355388 -cd00309 238189 cl02777 351886 -cd00311 238190 cl28888 355772 -cd00312 238191 cl21494 354836 -cd00315 238192 cl30459 357335 -cd00316 238193 cl02775 351884 -cd00317 238194 cl00197 350942 -cd00318 238195 cl00198 350943 -cd00319 238196 cl00312 351017 -cd00320 238197 cl09113 352934 -cd00321 238198 cl00199 350944 -cd00326 238200 cl00012 350859 -cd00327 238201 cl09938 353032 -cd00329 238202 cl02783 351890 -cd00331 238203 cl28888 355772 -cd00333 238204 cl00200 350945 -cd00336 238205 cl00327 351030 -cd00338 238206 cl02788 351894 -cd00340 238207 cl00388 351069 -cd00342 238208 cl21487 354832 -cd00347 238209 cl19096 327499 -cd00350 238210 cl00202 350946 -cd00351 238211 cl19097 354378 -cd00352 238212 cl00319 351023 -cd00353 238213 cl00349 351045 -cd00354 238214 cl00289 351004 -cd00361 238215 cl01244 351437 -cd00363 238216 cl00204 350948 -cd00367 238217 cl00206 350950 -cd00368 238218 cl09928 353028 -cd00371 238219 cl00207 350951 -cd00374 238220 cl00208 350952 -cd00375 238221 cl00281 351001 -cd00379 238222 cl00376 351061 -cd00381 238223 cl28888 355772 -cd00382 238224 cl00391 351071 -cd00384 238226 cl00338 351039 -cd00386 238227 cl00211 294143 -cd00389 238228 cl00212 350954 -cd00390 238229 cl00532 351139 -cd00392 238230 cl00333 351034 -cd00398 238232 cl00214 350956 -cd00400 238233 cl02915 295552 -cd00403 238235 cl00322 351025 -cd00404 238236 cl00215 350957 -cd00405 238237 cl28888 355772 -cd00407 238238 cl00533 351140 -cd00412 238239 cl00217 350958 -cd00419 238240 cl02784 351891 -cd00421 238241 cl21470 354823 -cd00423 238242 cl00219 350959 -cd00427 238243 cl09943 353035 -cd00429 238244 cl28888 355772 -cd00431 238245 cl00220 350960 -cd00432 238246 cl00379 320941 -cd00433 238247 cl29532 356408 -cd00435 238248 cl00221 350961 -cd00443 238250 cl00281 351001 -cd00445 238251 cl00263 350991 -cd00447 238253 cl00223 350963 -cd00449 238254 cl00224 350964 -cd00453 238255 cl28888 355772 -cd00455 238257 cl00226 350965 -cd00458 238258 cl00339 351040 -cd00462 238259 cl00352 351048 -cd00464 238260 cl17190 354320 -cd00465 238261 cl00464 320986 -cd00466 238262 cl00505 351123 -cd00468 238263 cl00228 350967 -cd00470 238264 cl00263 350991 -cd00480 238267 cl21481 354828 -cd00481 238268 cl00232 350971 -cd00483 238269 cl00233 350972 -cd00484 238270 cl22860 354963 -cd00487 238271 cl00234 320843 -cd00488 238272 cl00942 351323 -cd00489 238273 cl01048 351356 -cd00491 238274 cl00235 350973 -cd00493 238275 cl00509 351126 -cd00496 238277 cl00268 350993 -cd00498 238278 cl00236 350974 -cd00501 238279 cl00237 320846 -cd00503 238280 cl00238 350975 -cd00504 238281 cl00239 350976 -cd00508 238282 cl09929 324542 -cd00512 238283 cl00817 351270 -cd00513 238284 cl00748 351235 -cd00515 238285 cl00276 350998 -cd00516 238286 cl21457 354814 -cd00519 238287 cl21494 354836 -cd00520 238288 cl00240 350977 -cd00523 238289 cl00516 351129 -cd00524 238290 cl00014 350861 -cd00525 238291 cl01287 321433 -cd00527 238292 cl00241 350978 -cd00528 238293 cl00242 350979 -cd00530 238295 cl00281 351001 -cd00531 238296 cl09109 352932 -cd00532 238297 cl00245 320852 -cd00534 238298 cl00263 350991 -cd00537 238299 cl00246 294174 -cd00538 238300 cl28883 333703 -cd00539 238301 cl00247 320853 -cd00541 238302 cl00248 350980 -cd00542 238303 cl00467 351104 -cd00544 238304 cl28885 355771 -cd00545 238305 cl00249 350981 -cd00546 238306 cl00881 351296 -cd00547 238307 cl00881 351296 -cd00552 238308 cl00250 350982 -cd00553 238309 cl00292 351005 -cd00555 238310 cl00276 350998 -cd00556 238311 cl00509 351126 -cd00557 238312 cl00251 350983 -cd00559 238313 cl29429 356305 -cd00561 238314 cl28885 355771 -cd00562 238315 cl00252 320858 -cd00563 238316 cl00253 350984 -cd00564 238317 cl28888 355772 -cd00568 238318 cl01629 351571 -cd00570 238319 cl00388 351069 -cd00571 238320 cl29392 356268 -cd00575 238321 cl00254 350985 -cd00577 238322 cl24017 305174 -cd00578 238323 cl00947 351326 -cd00580 238324 cl00235 350973 -cd00581 238325 cl00881 351296 -cd00583 238326 cl00516 351129 -cd00584 238327 cl09111 352933 -cd00585 238328 cl23744 355029 -cd00586 238329 cl00509 351126 -cd00587 238330 cl23739 355027 -cd00588 238331 cl00256 294183 -cd00593 238333 cl00258 350987 -cd00594 238334 cl02666 351850 -cd00595 238335 cl00335 351036 -cd00602 238336 cl15674 353966 -cd00603 238337 cl15674 353966 -cd00604 238338 cl15674 353966 -cd00606 238339 cl00212 350954 -cd00607 238340 cl00212 350954 -cd00608 238341 cl00228 350967 -cd00619 238342 cl00223 350963 -cd00620 238343 cl00223 350963 -cd00625 238344 cl21473 354825 -cd00632 238345 cl09111 352933 -cd00633 238346 cl11457 325042 -cd00636 238347 cl00262 350990 -cd00641 238348 cl00522 351133 -cd00642 238349 cl00263 350991 -cd00645 238350 cl00268 350993 -cd00651 238351 cl00263 350991 -cd00652 238352 cl08263 352864 -cd00653 238353 cl29917 356793 -cd00655 238354 cl04309 352154 -cd00660 238356 cl02774 351883 -cd00667 238357 cl09109 352932 -cd00669 238358 cl00268 350993 -cd00670 238359 cl00268 350993 -cd00673 238360 cl00268 350993 -cd00677 238361 cl00349 351045 -cd00688 238362 cl08267 324220 -cd00707 238363 cl21494 354836 -cd00712 238364 cl00319 351023 -cd00713 238365 cl00319 351023 -cd00714 238366 cl00319 351023 -cd00715 238367 cl00319 351023 -cd00717 238368 cl00464 320986 -cd00727 238369 cl21481 354828 -cd00728 238370 cl21481 354828 -cd00729 238371 cl00202 350946 -cd00730 238372 cl00202 350946 -cd00731 238373 cl00256 294183 -cd00732 238374 cl00256 294183 -cd00733 238375 cl00268 350993 -cd00738 238379 cl00266 320868 -cd00739 238380 cl00219 350959 -cd00740 238381 cl00219 350959 -cd00741 238382 cl21494 354836 -cd00751 238383 cl09938 353032 -cd00755 238384 cl22428 304554 -cd00756 238385 cl00399 351076 -cd00757 238386 cl22428 304554 -cd00758 238387 cl00451 320978 -cd00763 238388 cl00204 350948 -cd00764 238389 cl00204 350948 -cd00765 238390 cl00204 350948 -cd00768 238391 cl00268 350993 -cd00769 238392 cl00268 350993 -cd00770 238393 cl00268 350993 -cd00771 238394 cl00268 350993 -cd00772 238395 cl00268 350993 -cd00773 238396 cl00268 350993 -cd00774 238397 cl00268 350993 -cd00775 238398 cl00268 350993 -cd00776 238399 cl00268 350993 -cd00777 238400 cl00268 350993 -cd00778 238401 cl00268 350993 -cd00779 238402 cl00268 350993 -cd00780 238403 cl09109 352932 -cd00781 238404 cl09109 352932 -cd00782 238405 cl02783 351890 -cd00786 238406 cl00269 350994 -cd00788 238407 cl02666 351850 -cd00789 238408 cl02666 351850 -cd00794 238409 cl00254 350985 -cd00795 238410 cl00254 350985 -cd00819 238417 cl22860 354963 -cd00820 238418 cl22860 354963 -cd00822 238419 cl02783 351890 -cd00823 238420 cl02783 351890 -cd00825 238421 cl09938 353032 -cd00826 238422 cl09938 353032 -cd00827 238423 cl09938 353032 -cd00828 238424 cl09938 353032 -cd00829 238425 cl09938 353032 -cd00830 238426 cl09938 353032 -cd00831 238427 cl09938 353032 -cd00832 238428 cl09938 353032 -cd00833 238429 cl09938 353032 -cd00834 238430 cl09938 353032 -cd00851 238431 cl00252 320858 -cd00852 238432 cl00252 320858 -cd00853 238433 cl00252 320858 -cd00854 238434 cl00281 351001 -cd00858 238435 cl00266 320868 -cd00859 238436 cl00266 320868 -cd00860 238437 cl00266 320868 -cd00861 238438 cl00266 320868 -cd00862 238439 cl00266 320868 -cd00864 238440 cl00271 350995 -cd00869 238441 cl00271 350995 -cd00870 238442 cl00271 350995 -cd00871 238443 cl00271 350995 -cd00872 238444 cl00271 350995 -cd00873 238445 cl02666 351850 -cd00874 238446 cl00288 260328 -cd00875 238447 cl00288 260328 -cd00883 238448 cl00391 351071 -cd00884 238449 cl00391 351071 -cd00885 238450 cl00451 320978 -cd00886 238451 cl00451 320978 -cd00887 238452 cl00451 320978 -cd00890 238453 cl09111 352933 -cd00912 238454 cl00274 350996 -cd00913 238455 cl00942 351323 -cd00914 238456 cl00942 351323 -cd00915 238457 cl00274 350996 -cd00916 238458 cl00274 350996 -cd00917 238459 cl00274 350996 -cd00918 238460 cl00274 350996 -cd00919 238461 cl00275 350997 -cd00922 238462 cl02792 351895 -cd00923 238463 cl02793 351896 -cd00924 238464 cl00016 350863 -cd00925 238465 cl00017 320713 -cd00926 238466 cl02794 322096 -cd00927 238467 cl02795 351897 -cd00928 238468 cl02796 322098 -cd00929 238469 cl02797 351898 -cd00930 238470 cl27440 332261 -cd00933 238471 cl00212 350954 -cd00935 238472 cl00349 351045 -cd00936 238473 cl00349 351045 -cd00938 238474 cl00349 351045 -cd00939 238475 cl00349 351045 -cd00946 238476 cl28888 355772 -cd00947 238477 cl28888 355772 -cd00974 238478 cl00018 350864 -cd00980 238480 cl00239 350976 -cd00981 238481 cl00239 350976 -cd00982 238482 cl00239 350976 -cd00983 238483 cl28885 355771 -cd00984 238484 cl28885 355771 -cd00985 238485 cl00276 350998 -cd00986 238486 cl00117 350907 -cd00987 238487 cl00117 350907 -cd00988 238488 cl00117 350907 -cd00989 238489 cl00117 350907 -cd00990 238490 cl00117 350907 -cd00991 238491 cl00117 350907 -cd00992 238492 cl00117 350907 -cd01011 238493 cl00220 350960 -cd01012 238494 cl00220 350960 -cd01013 238495 cl00220 350960 -cd01014 238496 cl00220 350960 -cd01015 238497 cl00220 350960 -cd01016 238498 cl00262 350990 -cd01017 238499 cl00262 350990 -cd01018 238500 cl00262 350990 -cd01019 238501 cl00262 350990 -cd01020 238502 cl00262 350990 -cd01031 238504 cl02915 295552 -cd01033 238505 cl02915 295552 -cd01034 238506 cl02915 295552 -cd01036 238507 cl02915 295552 -cd01037 238508 cl00516 351129 -cd01038 238509 cl00516 351129 -cd01060 238511 cl00615 294412 -cd01061 238512 cl00208 350952 -cd01062 238513 cl00208 350952 -cd01066 238514 cl00279 351000 -cd01083 238517 cl21724 354919 -cd01085 238518 cl00279 351000 -cd01086 238519 cl00279 351000 -cd01087 238520 cl00279 351000 -cd01088 238521 cl00279 351000 -cd01089 238522 cl00279 351000 -cd01090 238523 cl00279 351000 -cd01091 238524 cl00279 351000 -cd01092 238525 cl00279 351000 -cd01093 238526 cl00113 350906 -cd01094 238527 cl19096 327499 -cd01095 238528 cl19096 327499 -cd01096 238529 cl19096 327499 -cd01097 238530 cl19096 327499 -cd01098 238531 cl00112 350905 -cd01099 238532 cl00112 350905 -cd01100 238533 cl00112 350905 -cd01102 238534 cl02612 351826 -cd01115 238535 cl21473 354825 -cd01116 238536 cl21473 354825 -cd01117 238537 cl21473 354825 -cd01118 238538 cl21473 354825 -cd01119 238539 cl00134 350913 -cd01120 238540 cl28885 355771 -cd01121 238541 cl28885 355771 -cd01122 238542 cl28885 355771 -cd01123 238543 cl28885 355771 -cd01124 238544 cl28885 355771 -cd01125 238545 cl28885 355771 -cd01126 238546 cl28885 355771 -cd01127 238547 cl28885 355771 -cd01128 238548 cl28885 355771 -cd01129 238549 cl28885 355771 -cd01130 238550 cl28885 355771 -cd01131 238551 cl28885 355771 -cd01132 238552 cl28885 355771 -cd01133 238553 cl28885 355771 -cd01134 238554 cl28885 355771 -cd01135 238555 cl28885 355771 -cd01136 238556 cl28885 355771 -cd01137 238557 cl00262 350990 -cd01138 238558 cl00262 350990 -cd01139 238559 cl00262 350990 -cd01140 238560 cl00262 350990 -cd01141 238561 cl00262 350990 -cd01142 238562 cl00262 350990 -cd01143 238563 cl00262 350990 -cd01144 238564 cl00262 350990 -cd01145 238565 cl00262 350990 -cd01146 238566 cl00262 350990 -cd01147 238567 cl00262 350990 -cd01148 238568 cl00262 350990 -cd01149 238569 cl00262 350990 -cd01164 238570 cl00192 350937 -cd01166 238571 cl00192 350937 -cd01167 238572 cl00192 350937 -cd01168 238573 cl00192 350937 -cd01169 238574 cl00192 350937 -cd01170 238575 cl00192 350937 -cd01171 238576 cl00192 350937 -cd01172 238577 cl00192 350937 -cd01173 238578 cl00192 350937 -cd01174 238579 cl00192 350937 -cd01175 238580 cl15674 353966 -cd01176 238581 cl15674 353966 -cd01177 238582 cl15674 353966 -cd01178 238583 cl15674 353966 -cd01179 238584 cl15674 353966 -cd01180 238585 cl15674 353966 -cd01181 238586 cl15674 353966 -cd01200 238605 cl00349 351045 -cd01275 238606 cl00228 350967 -cd01276 238607 cl00228 350967 -cd01277 238608 cl00228 350967 -cd01278 238609 cl00228 350967 -cd01283 238610 cl00269 350994 -cd01284 238611 cl00269 350994 -cd01285 238612 cl00269 350994 -cd01286 238613 cl00269 350994 -cd01287 238614 cl00509 351126 -cd01288 238615 cl00509 351126 -cd01289 238616 cl00509 351126 -cd01292 238617 cl00281 351001 -cd01293 238618 cl00281 351001 -cd01294 238619 cl00281 351001 -cd01295 238620 cl00281 351001 -cd01296 238621 cl00281 351001 -cd01297 238622 cl00281 351001 -cd01298 238623 cl00281 351001 -cd01299 238624 cl00281 351001 -cd01300 238625 cl00281 351001 -cd01301 238626 cl00281 351001 -cd01302 238627 cl00281 351001 -cd01303 238628 cl00281 351001 -cd01304 238629 cl00281 351001 -cd01305 238630 cl00281 351001 -cd01306 238631 cl00281 351001 -cd01307 238632 cl00281 351001 -cd01308 238633 cl00281 351001 -cd01309 238634 cl00281 351001 -cd01310 238635 cl00281 351001 -cd01311 238636 cl00281 351001 -cd01312 238637 cl00281 351001 -cd01313 238638 cl00281 351001 -cd01314 238639 cl00281 351001 -cd01315 238640 cl00281 351001 -cd01316 238641 cl00281 351001 -cd01317 238642 cl00281 351001 -cd01318 238643 cl00281 351001 -cd01319 238644 cl00281 351001 -cd01320 238645 cl00281 351001 -cd01321 238646 cl00281 351001 -cd01324 238647 cl00282 351002 -cd01327 238648 cl00097 350898 -cd01328 238649 cl00097 350898 -cd01330 238650 cl00097 350898 -cd01341 238651 cl00283 320879 -cd01343 238653 cl00185 320803 -cd01344 238654 cl00185 320803 -cd01345 238655 cl21487 354832 -cd01346 238656 cl21487 354832 -cd01347 238657 cl21487 354832 -cd01356 238658 cl00215 350957 -cd01388 238684 cl00082 350892 -cd01389 238685 cl00082 350892 -cd01390 238686 cl00082 350892 -cd01393 238687 cl28885 355771 -cd01394 238688 cl28885 355771 -cd01395 238689 cl00110 320763 -cd01396 238690 cl00110 320763 -cd01397 238691 cl00110 320763 -cd01398 238692 cl00339 351040 -cd01399 238693 cl00339 351040 -cd01400 238694 cl00339 351040 -cd01401 238695 cl21457 354814 -cd01403 238696 cl22629 328918 -cd01406 238697 cl00195 350940 -cd01407 238698 cl00195 350940 -cd01408 238699 cl00195 350940 -cd01409 238700 cl00195 350940 -cd01410 238701 cl00195 350940 -cd01411 238702 cl00195 350940 -cd01412 238703 cl00195 350940 -cd01413 238704 cl00195 350940 -cd01417 238705 cl00232 350971 -cd01418 238706 cl00232 350971 -cd01419 238707 cl00242 350979 -cd01420 238708 cl00242 350979 -cd01421 238709 cl00245 320852 -cd01422 238710 cl00245 320852 -cd01423 238711 cl00245 320852 -cd01424 238712 cl00245 320852 -cd01428 238713 cl17190 354320 -cd01433 238714 cl00353 351049 -cd01434 238715 cl02789 295478 -cd01436 238716 cl00283 320879 -cd01437 238717 cl00283 320879 -cd01438 238718 cl00283 320879 -cd01439 238719 cl00283 320879 -cd01443 238720 cl00125 350910 -cd01444 238721 cl00125 350910 -cd01445 238722 cl00125 350910 -cd01446 238723 cl00125 350910 -cd01447 238724 cl00125 350910 -cd01448 238725 cl00125 350910 -cd01449 238726 cl00125 350910 -cd01450 238727 cl00057 350880 -cd01451 238728 cl00057 350880 -cd01452 238729 cl00057 350880 -cd01453 238730 cl00057 350880 -cd01454 238731 cl00057 350880 -cd01455 238732 cl00057 350880 -cd01456 238733 cl00057 350880 -cd01457 238734 cl00057 350880 -cd01458 238735 cl00057 350880 -cd01459 238736 cl00057 350880 -cd01460 238737 cl00057 350880 -cd01461 238738 cl00057 350880 -cd01462 238739 cl00057 350880 -cd01463 238740 cl00057 350880 -cd01464 238741 cl00057 350880 -cd01465 238742 cl00057 350880 -cd01466 238743 cl00057 350880 -cd01467 238744 cl00057 350880 -cd01468 238745 cl00057 350880 -cd01469 238746 cl00057 350880 -cd01470 238747 cl00057 350880 -cd01471 238748 cl00057 350880 -cd01472 238749 cl00057 350880 -cd01473 238750 cl00057 350880 -cd01474 238751 cl00057 350880 -cd01475 238752 cl00057 350880 -cd01476 238753 cl00057 350880 -cd01477 238754 cl00057 350880 -cd01478 238755 cl00057 350880 -cd01479 238756 cl00057 350880 -cd01480 238757 cl00057 350880 -cd01481 238758 cl00057 350880 -cd01482 238759 cl00057 350880 -cd01483 238760 cl22428 304554 -cd01484 238761 cl22428 304554 -cd01485 238762 cl22428 304554 -cd01486 238763 cl22428 304554 -cd01487 238764 cl22428 304554 -cd01488 238765 cl22428 304554 -cd01489 238766 cl22428 304554 -cd01490 238767 cl22428 304554 -cd01491 238768 cl22428 304554 -cd01492 238769 cl22428 304554 -cd01493 238770 cl22428 304554 -cd01514 238772 cl02785 351892 -cd01515 238773 cl00289 351004 -cd01516 238774 cl00289 351004 -cd01517 238775 cl00289 351004 -cd01518 238776 cl00125 350910 -cd01519 238777 cl00125 350910 -cd01520 238778 cl00125 350910 -cd01521 238779 cl00125 350910 -cd01522 238780 cl00125 350910 -cd01523 238781 cl00125 350910 -cd01524 238782 cl00125 350910 -cd01525 238783 cl00125 350910 -cd01526 238784 cl00125 350910 -cd01527 238785 cl00125 350910 -cd01528 238786 cl00125 350910 -cd01529 238787 cl00125 350910 -cd01530 238788 cl00125 350910 -cd01531 238789 cl00125 350910 -cd01532 238790 cl00125 350910 -cd01533 238791 cl00125 350910 -cd01534 238792 cl00125 350910 -cd01535 238793 cl00125 350910 -cd01553 238794 cl00288 260328 -cd01554 238795 cl00288 260328 -cd01555 238796 cl00288 260328 -cd01556 238797 cl00288 260328 -cd01557 238798 cl00224 350964 -cd01558 238799 cl00224 350964 -cd01559 238800 cl00224 350964 -cd01567 238801 cl21457 354814 -cd01568 238802 cl21457 354814 -cd01569 238803 cl21457 354814 -cd01570 238804 cl21457 354814 -cd01571 238805 cl21457 354814 -cd01572 238806 cl21457 354814 -cd01573 238807 cl21457 354814 -cd01576 238808 cl00215 350957 -cd01577 238809 cl00215 350957 -cd01578 238810 cl00215 350957 -cd01579 238811 cl00215 350957 -cd01580 238812 cl00215 350957 -cd01610 238813 cl00474 351108 -cd01636 238814 cl00289 351004 -cd01637 238815 cl00289 351004 -cd01638 238816 cl00289 351004 -cd01639 238817 cl00289 351004 -cd01640 238818 cl00289 351004 -cd01641 238819 cl00289 351004 -cd01642 238820 cl00289 351004 -cd01643 238821 cl00289 351004 -cd01644 238822 cl02808 295487 -cd01645 238823 cl02808 295487 -cd01646 238824 cl02808 295487 -cd01647 238825 cl02808 295487 -cd01648 238826 cl02808 295487 -cd01650 238827 cl02808 295487 -cd01651 238828 cl02808 295487 -cd01659 238829 cl00388 351069 -cd01660 238830 cl00275 350997 -cd01661 238831 cl00275 350997 -cd01662 238832 cl00275 350997 -cd01663 238833 cl00275 350997 -cd01665 238834 cl00211 294143 -cd01672 238835 cl17190 354320 -cd01673 238836 cl17190 354320 -cd01674 238837 cl00215 350957 -cd01680 238838 cl02789 295478 -cd01681 238839 cl02789 295478 -cd01683 238840 cl02789 295478 -cd01684 238841 cl02789 295478 -cd01693 238842 cl02789 295478 -cd01699 238843 cl02808 295487 -cd01709 238844 cl02808 295487 -cd01712 238845 cl00292 351005 -cd01713 238846 cl00292 351005 -cd01714 238847 cl00292 351005 -cd01715 238848 cl00292 351005 -cd01751 238849 cl00011 350858 -cd01752 238850 cl00011 350858 -cd01753 238851 cl00011 350858 -cd01754 238852 cl00011 350858 -cd01755 238853 cl00011 350858 -cd01756 238854 cl00011 350858 -cd01757 238855 cl00011 350858 -cd01758 238856 cl00011 350858 -cd01759 238857 cl00011 350858 -cd01820 238858 cl01053 351360 -cd01821 238859 cl01053 351360 -cd01822 238860 cl01053 351360 -cd01823 238861 cl01053 351360 -cd01824 238862 cl01053 351360 -cd01825 238863 cl01053 351360 -cd01826 238864 cl01053 351360 -cd01827 238865 cl01053 351360 -cd01828 238866 cl01053 351360 -cd01829 238867 cl01053 351360 -cd01830 238868 cl01053 351360 -cd01831 238869 cl01053 351360 -cd01832 238870 cl01053 351360 -cd01833 238871 cl01053 351360 -cd01834 238872 cl01053 351360 -cd01835 238873 cl01053 351360 -cd01836 238874 cl01053 351360 -cd01837 238875 cl01053 351360 -cd01838 238876 cl01053 351360 -cd01839 238877 cl01053 351360 -cd01840 238878 cl01053 351360 -cd01841 238879 cl01053 351360 -cd01842 238880 cl01053 351360 -cd01844 238881 cl01053 351360 -cd01846 238882 cl01053 351360 -cd01847 238883 cl01053 351360 -cd01901 238884 cl00467 351104 -cd01902 238885 cl00467 351104 -cd01903 238886 cl00467 351104 -cd01906 238887 cl00467 351104 -cd01907 238888 cl00319 351023 -cd01908 238889 cl00319 351023 -cd01909 238890 cl00319 351023 -cd01910 238891 cl00319 351023 -cd01911 238892 cl00467 351104 -cd01912 238893 cl00467 351104 -cd01913 238894 cl00467 351104 -cd01914 238895 cl23739 355027 -cd01915 238896 cl23739 355027 -cd01916 238897 cl23739 355027 -cd01917 238898 cl23739 355027 -cd01918 238899 cl22860 354963 -cd01919 238900 cl22860 354963 -cd01920 238901 cl00197 350942 -cd01921 238902 cl00197 350942 -cd01922 238903 cl00197 350942 -cd01923 238904 cl00197 350942 -cd01924 238905 cl00197 350942 -cd01925 238906 cl00197 350942 -cd01926 238907 cl00197 350942 -cd01927 238908 cl00197 350942 -cd01928 238909 cl00197 350942 -cd01935 238910 cl00467 351104 -cd01936 238911 cl00467 351104 -cd01937 238912 cl00192 350937 -cd01938 238913 cl00192 350937 -cd01939 238914 cl00192 350937 -cd01940 238915 cl00192 350937 -cd01941 238916 cl00192 350937 -cd01942 238917 cl00192 350937 -cd01943 238918 cl00192 350937 -cd01944 238919 cl00192 350937 -cd01945 238920 cl00192 350937 -cd01946 238921 cl00192 350937 -cd01947 238922 cl00192 350937 -cd01948 238923 cl29561 356437 -cd01958 238924 cl07890 352835 -cd01959 238925 cl07890 352835 -cd01960 238926 cl07890 352835 -cd01965 238927 cl02775 351884 -cd01966 238928 cl02775 351884 -cd01967 238929 cl02775 351884 -cd01968 238930 cl02775 351884 -cd01971 238931 cl02775 351884 -cd01972 238932 cl02775 351884 -cd01973 238933 cl02775 351884 -cd01974 238934 cl02775 351884 -cd01976 238935 cl02775 351884 -cd01977 238936 cl02775 351884 -cd01979 238937 cl02775 351884 -cd01980 238938 cl02775 351884 -cd01981 238939 cl02775 351884 -cd01982 238940 cl02775 351884 -cd01984 238942 cl00292 351005 -cd01985 238943 cl00292 351005 -cd01986 238944 cl00292 351005 -cd01987 238945 cl00292 351005 -cd01988 238946 cl00292 351005 -cd01989 238947 cl00292 351005 -cd01990 238948 cl00292 351005 -cd01991 238949 cl00292 351005 -cd01992 238950 cl00292 351005 -cd01993 238951 cl00292 351005 -cd01994 238952 cl00292 351005 -cd01995 238953 cl00292 351005 -cd01996 238954 cl00292 351005 -cd01997 238955 cl00292 351005 -cd01998 238956 cl00292 351005 -cd01999 238957 cl00292 351005 -cd02000 238958 cl01629 351571 -cd02001 238959 cl01629 351571 -cd02002 238960 cl01629 351571 -cd02003 238961 cl01629 351571 -cd02004 238962 cl01629 351571 -cd02005 238963 cl01629 351571 -cd02006 238964 cl01629 351571 -cd02007 238965 cl01629 351571 -cd02008 238966 cl01629 351571 -cd02009 238967 cl01629 351571 -cd02010 238968 cl01629 351571 -cd02011 238969 cl01629 351571 -cd02012 238970 cl01629 351571 -cd02013 238971 cl01629 351571 -cd02014 238972 cl01629 351571 -cd02015 238973 cl01629 351571 -cd02016 238974 cl01629 351571 -cd02017 238975 cl01629 351571 -cd02018 238976 cl01629 351571 -cd02019 238977 cl17190 354320 -cd02020 238978 cl17190 354320 -cd02021 238979 cl17190 354320 -cd02022 238980 cl17190 354320 -cd02023 238981 cl17190 354320 -cd02024 238982 cl17190 354320 -cd02025 238983 cl17190 354320 -cd02026 238984 cl17190 354320 -cd02027 238985 cl17190 354320 -cd02028 238986 cl17190 354320 -cd02029 238987 cl17190 354320 -cd02030 238988 cl17190 354320 -cd02043 238998 cl00137 350915 -cd02044 238999 cl00137 350915 -cd02045 239000 cl00137 350915 -cd02046 239001 cl00137 350915 -cd02047 239002 cl00137 350915 -cd02048 239003 cl00137 350915 -cd02049 239004 cl00137 350915 -cd02050 239005 cl00137 350915 -cd02051 239006 cl00137 350915 -cd02052 239007 cl00137 350915 -cd02053 239008 cl00137 350915 -cd02054 239009 cl00137 350915 -cd02055 239010 cl00137 350915 -cd02056 239011 cl00137 350915 -cd02057 239012 cl00137 350915 -cd02058 239013 cl00137 350915 -cd02059 239014 cl00137 350915 -cd02062 239015 cl00514 321015 -cd02065 239016 cl00293 351006 -cd02066 239017 cl00388 351069 -cd02067 239018 cl00293 351006 -cd02068 239019 cl00293 351006 -cd02069 239020 cl00293 351006 -cd02070 239021 cl00293 351006 -cd02071 239022 cl00293 351006 -cd02072 239023 cl00293 351006 -cd02107 239025 cl00199 350944 -cd02108 239026 cl00199 350944 -cd02109 239027 cl00199 350944 -cd02110 239028 cl00199 350944 -cd02111 239029 cl00199 350944 -cd02112 239030 cl00199 350944 -cd02113 239031 cl00199 350944 -cd02114 239032 cl00199 350944 -cd02115 239033 cl00452 351098 -cd02120 239035 cl28883 333703 -cd02121 239036 cl28883 333703 -cd02122 239037 cl28883 333703 -cd02123 239038 cl28883 333703 -cd02124 239039 cl28883 333703 -cd02125 239040 cl28883 333703 -cd02126 239041 cl28883 333703 -cd02127 239042 cl28883 333703 -cd02128 239043 cl28883 333703 -cd02129 239044 cl28883 333703 -cd02130 239045 cl28883 333703 -cd02131 239046 cl28883 333703 -cd02132 239047 cl28883 333703 -cd02133 239048 cl28883 333703 -cd02134 239049 cl00098 350899 -cd02135 239050 cl00514 321015 -cd02136 239051 cl00514 321015 -cd02137 239052 cl00514 321015 -cd02138 239053 cl00514 321015 -cd02139 239054 cl00514 321015 -cd02140 239055 cl00514 321015 -cd02142 239056 cl00514 321015 -cd02143 239057 cl00514 321015 -cd02144 239058 cl00514 321015 -cd02145 239059 cl00514 321015 -cd02146 239060 cl00514 321015 -cd02148 239061 cl00514 321015 -cd02149 239062 cl00514 321015 -cd02150 239063 cl00514 321015 -cd02151 239064 cl00514 321015 -cd02152 239065 cl00603 351172 -cd02153 239066 cl00320 351024 -cd02248 239068 cl23744 355029 -cd02249 239069 cl00295 294208 -cd02252 239070 cl00603 351172 -cd02253 239071 cl00603 351172 -cd02257 239072 cl02553 351799 -cd02259 239073 cl00296 351007 -cd02334 239074 cl00295 294208 -cd02335 239075 cl00295 294208 -cd02336 239076 cl00295 294208 -cd02337 239077 cl00295 294208 -cd02338 239078 cl00295 294208 -cd02339 239079 cl00295 294208 -cd02340 239080 cl00295 294208 -cd02341 239081 cl00295 294208 -cd02342 239082 cl00295 294208 -cd02343 239083 cl00295 294208 -cd02344 239084 cl00295 294208 -cd02345 239085 cl00295 294208 -cd02393 239086 cl00098 350899 -cd02394 239087 cl00098 350899 -cd02395 239088 cl00098 350899 -cd02396 239089 cl00098 350899 -cd02406 239090 cl00352 351048 -cd02407 239091 cl19212 354394 -cd02409 239092 cl00098 350899 -cd02410 239093 cl00098 350899 -cd02411 239094 cl00098 350899 -cd02412 239095 cl00098 350899 -cd02413 239096 cl00098 350899 -cd02414 239097 cl00098 350899 -cd02417 239098 cl00296 351007 -cd02418 239099 cl00296 351007 -cd02419 239100 cl00296 351007 -cd02420 239101 cl00296 351007 -cd02421 239102 cl00296 351007 -cd02423 239103 cl00296 351007 -cd02424 239104 cl00296 351007 -cd02425 239105 cl00296 351007 -cd02426 239106 cl00266 320868 -cd02429 239107 cl19212 354394 -cd02430 239108 cl19212 354394 -cd02549 239109 cl00296 351007 -cd02619 239110 cl23744 355029 -cd02620 239111 cl23744 355029 -cd02621 239112 cl23744 355029 -cd02647 239113 cl00226 350965 -cd02648 239114 cl00226 350965 -cd02649 239115 cl00226 350965 -cd02650 239116 cl00226 350965 -cd02651 239117 cl00226 350965 -cd02652 239118 cl00226 350965 -cd02653 239119 cl00226 350965 -cd02654 239120 cl00226 350965 -cd02656 239121 cl00299 351009 -cd02657 239122 cl02553 351799 -cd02658 239123 cl02553 351799 -cd02659 239124 cl02553 351799 -cd02660 239125 cl02553 351799 -cd02661 239126 cl02553 351799 -cd02662 239127 cl02553 351799 -cd02663 239128 cl02553 351799 -cd02664 239129 cl02553 351799 -cd02665 239130 cl02553 351799 -cd02666 239131 cl02553 351799 -cd02667 239132 cl02553 351799 -cd02668 239133 cl02553 351799 -cd02669 239134 cl02553 351799 -cd02670 239135 cl02553 351799 -cd02671 239136 cl02553 351799 -cd02672 239137 cl02553 351799 -cd02673 239138 cl02553 351799 -cd02674 239139 cl02553 351799 -cd02677 239140 cl00299 351009 -cd02678 239141 cl00299 351009 -cd02679 239142 cl00299 351009 -cd02680 239143 cl00299 351009 -cd02681 239144 cl00299 351009 -cd02682 239145 cl00299 351009 -cd02683 239146 cl00299 351009 -cd02684 239147 cl00299 351009 -cd02685 239148 cl02780 322085 -cd02698 239149 cl23744 355029 -cd02749 239150 cl00019 320715 -cd02750 239151 cl09928 353028 -cd02751 239152 cl09928 353028 -cd02752 239153 cl09928 353028 -cd02753 239154 cl09928 353028 -cd02754 239155 cl09928 353028 -cd02755 239156 cl09928 353028 -cd02756 239157 cl09928 353028 -cd02757 239158 cl09928 353028 -cd02758 239159 cl09928 353028 -cd02759 239160 cl09928 353028 -cd02760 239161 cl09928 353028 -cd02761 239162 cl09928 353028 -cd02762 239163 cl09928 353028 -cd02763 239164 cl09928 353028 -cd02764 239165 cl09928 353028 -cd02765 239166 cl09928 353028 -cd02766 239167 cl09928 353028 -cd02767 239168 cl09928 353028 -cd02768 239169 cl09928 353028 -cd02769 239170 cl09928 353028 -cd02770 239171 cl09928 353028 -cd02771 239172 cl09928 353028 -cd02772 239173 cl09928 353028 -cd02773 239174 cl09928 353028 -cd02774 239175 cl09928 353028 -cd02775 239176 cl09929 324542 -cd02776 239177 cl09929 324542 -cd02777 239178 cl09929 324542 -cd02778 239179 cl09929 324542 -cd02779 239180 cl09929 324542 -cd02780 239181 cl09929 324542 -cd02781 239182 cl09929 324542 -cd02782 239183 cl09929 324542 -cd02783 239184 cl09929 324542 -cd02784 239185 cl09929 324542 -cd02785 239186 cl09929 324542 -cd02786 239187 cl09929 324542 -cd02787 239188 cl09929 324542 -cd02788 239189 cl09929 324542 -cd02789 239190 cl09929 324542 -cd02790 239191 cl09929 324542 -cd02791 239192 cl09929 324542 -cd02792 239193 cl09929 324542 -cd02793 239194 cl09929 324542 -cd02794 239195 cl09929 324542 -cd02796 239196 cl00320 351024 -cd02798 239197 cl00320 351024 -cd02799 239198 cl00320 351024 -cd02800 239199 cl00320 351024 -cd02801 239200 cl28888 355772 -cd02803 239201 cl28888 355772 -cd02808 239202 cl28888 355772 -cd02809 239203 cl28888 355772 -cd02810 239204 cl28888 355772 -cd02811 239205 cl28888 355772 -cd02812 239206 cl28888 355772 -cd02825 239207 cl00301 351010 -cd02826 239208 cl00628 351185 -cd02843 239209 cl00301 351010 -cd02844 239210 cl00301 351010 -cd02845 239211 cl00301 351010 -cd02846 239212 cl00301 351010 -cd02862 239213 cl00211 294143 -cd02863 239214 cl00211 294143 -cd02864 239215 cl00211 294143 -cd02865 239216 cl00211 294143 -cd02883 239217 cl00447 351096 -cd02885 239218 cl00447 351096 -cd02889 239219 cl08267 324220 -cd02890 239220 cl08267 324220 -cd02891 239221 cl08267 324220 -cd02892 239222 cl08267 324220 -cd02893 239223 cl08267 324220 -cd02894 239224 cl08267 324220 -cd02895 239225 cl08267 324220 -cd02896 239226 cl08267 324220 -cd02897 239227 cl08267 324220 -cd02899 239228 cl00011 350858 -cd02900 239229 cl00019 320715 -cd02901 239230 cl00019 320715 -cd02903 239231 cl00019 320715 -cd02904 239232 cl00019 320715 -cd02905 239233 cl00019 320715 -cd02906 239234 cl00019 320715 -cd02907 239235 cl00019 320715 -cd02908 239236 cl00019 320715 -cd02911 239237 cl28888 355772 -cd02922 239238 cl28888 355772 -cd02929 239239 cl28888 355772 -cd02930 239240 cl28888 355772 -cd02931 239241 cl28888 355772 -cd02932 239242 cl28888 355772 -cd02933 239243 cl28888 355772 -cd02940 239244 cl28888 355772 -cd02947 239245 cl00388 351069 -cd02948 239246 cl00388 351069 -cd02949 239247 cl00388 351069 -cd02950 239248 cl00388 351069 -cd02951 239249 cl00388 351069 -cd02952 239250 cl00388 351069 -cd02953 239251 cl00388 351069 -cd02954 239252 cl00388 351069 -cd02955 239253 cl00388 351069 -cd02956 239254 cl00388 351069 -cd02957 239255 cl00388 351069 -cd02958 239256 cl00388 351069 -cd02959 239257 cl00388 351069 -cd02960 239258 cl00388 351069 -cd02961 239259 cl00388 351069 -cd02962 239260 cl00388 351069 -cd02963 239261 cl00388 351069 -cd02964 239262 cl00388 351069 -cd02965 239263 cl00388 351069 -cd02966 239264 cl00388 351069 -cd02967 239265 cl00388 351069 -cd02968 239266 cl00388 351069 -cd02969 239267 cl00388 351069 -cd02970 239268 cl00388 351069 -cd02971 239269 cl00388 351069 -cd02972 239270 cl00388 351069 -cd02973 239271 cl00388 351069 -cd02974 239272 cl00388 351069 -cd02975 239273 cl00388 351069 -cd02976 239274 cl00388 351069 -cd02977 239275 cl00388 351069 -cd02978 239276 cl00388 351069 -cd02979 239277 cl00388 351069 -cd02980 239278 cl00388 351069 -cd02981 239279 cl00388 351069 -cd02982 239280 cl00388 351069 -cd02983 239281 cl00388 351069 -cd02984 239282 cl00388 351069 -cd02985 239283 cl00388 351069 -cd02986 239284 cl00388 351069 -cd02987 239285 cl00388 351069 -cd02988 239286 cl00388 351069 -cd02989 239287 cl00388 351069 -cd02990 239288 cl00388 351069 -cd02991 239289 cl00388 351069 -cd02992 239290 cl00388 351069 -cd02993 239291 cl00388 351069 -cd02994 239292 cl00388 351069 -cd02995 239293 cl00388 351069 -cd02996 239294 cl00388 351069 -cd02997 239295 cl00388 351069 -cd02998 239296 cl00388 351069 -cd02999 239297 cl00388 351069 -cd03000 239298 cl00388 351069 -cd03001 239299 cl00388 351069 -cd03002 239300 cl00388 351069 -cd03003 239301 cl00388 351069 -cd03004 239302 cl00388 351069 -cd03005 239303 cl00388 351069 -cd03006 239304 cl00388 351069 -cd03007 239305 cl00388 351069 -cd03008 239306 cl00388 351069 -cd03009 239307 cl00388 351069 -cd03010 239308 cl00388 351069 -cd03011 239309 cl00388 351069 -cd03012 239310 cl00388 351069 -cd03013 239311 cl00388 351069 -cd03014 239312 cl00388 351069 -cd03015 239313 cl00388 351069 -cd03016 239314 cl00388 351069 -cd03017 239315 cl00388 351069 -cd03018 239316 cl00388 351069 -cd03019 239317 cl00388 351069 -cd03020 239318 cl00388 351069 -cd03021 239319 cl00388 351069 -cd03022 239320 cl00388 351069 -cd03023 239321 cl00388 351069 -cd03024 239322 cl00388 351069 -cd03025 239323 cl00388 351069 -cd03026 239324 cl00388 351069 -cd03027 239325 cl00388 351069 -cd03028 239326 cl00388 351069 -cd03029 239327 cl00388 351069 -cd03030 239328 cl00388 351069 -cd03031 239329 cl00388 351069 -cd03032 239330 cl00388 351069 -cd03033 239331 cl00388 351069 -cd03034 239332 cl00388 351069 -cd03035 239333 cl00388 351069 -cd03036 239334 cl00388 351069 -cd03037 239335 cl00388 351069 -cd03038 239336 cl00388 351069 -cd03039 239337 cl00388 351069 -cd03040 239338 cl00388 351069 -cd03041 239339 cl00388 351069 -cd03042 239340 cl00388 351069 -cd03043 239341 cl00388 351069 -cd03044 239342 cl00388 351069 -cd03045 239343 cl00388 351069 -cd03046 239344 cl00388 351069 -cd03047 239345 cl00388 351069 -cd03048 239346 cl00388 351069 -cd03049 239347 cl00388 351069 -cd03050 239348 cl00388 351069 -cd03051 239349 cl00388 351069 -cd03052 239350 cl00388 351069 -cd03053 239351 cl00388 351069 -cd03054 239352 cl00388 351069 -cd03055 239353 cl00388 351069 -cd03056 239354 cl00388 351069 -cd03057 239355 cl00388 351069 -cd03058 239356 cl00388 351069 -cd03059 239357 cl00388 351069 -cd03060 239358 cl00388 351069 -cd03061 239359 cl00388 351069 -cd03062 239360 cl00388 351069 -cd03063 239361 cl00388 351069 -cd03064 239362 cl00388 351069 -cd03065 239363 cl00388 351069 -cd03066 239364 cl00388 351069 -cd03067 239365 cl00388 351069 -cd03068 239366 cl00388 351069 -cd03069 239367 cl00388 351069 -cd03070 239368 cl00388 351069 -cd03071 239369 cl00388 351069 -cd03072 239370 cl00388 351069 -cd03073 239371 cl00388 351069 -cd03074 239372 cl00388 351069 -cd03075 239373 cl00388 351069 -cd03076 239374 cl00388 351069 -cd03077 239375 cl00388 351069 -cd03078 239376 cl00388 351069 -cd03079 239377 cl00388 351069 -cd03080 239378 cl00388 351069 -cd03081 239379 cl00388 351069 -cd03082 239380 cl00388 351069 -cd03083 239381 cl00388 351069 -cd03117 239391 cl00012 350859 -cd03118 239392 cl00012 350859 -cd03119 239393 cl00012 350859 -cd03120 239394 cl00012 350859 -cd03121 239395 cl00012 350859 -cd03122 239396 cl00012 350859 -cd03123 239397 cl00012 350859 -cd03124 239398 cl00012 350859 -cd03125 239399 cl00012 350859 -cd03126 239400 cl00012 350859 -cd03127 239401 cl02781 351888 -cd03149 239402 cl00012 350859 -cd03150 239403 cl00012 350859 -cd03151 239404 cl02781 351888 -cd03152 239405 cl02781 351888 -cd03153 239406 cl02781 351888 -cd03154 239407 cl02781 351888 -cd03155 239408 cl02781 351888 -cd03156 239409 cl02781 351888 -cd03157 239410 cl02781 351888 -cd03158 239411 cl02781 351888 -cd03159 239412 cl02781 351888 -cd03160 239413 cl02781 351888 -cd03161 239414 cl02781 351888 -cd03162 239415 cl02781 351888 -cd03163 239416 cl02781 351888 -cd03164 239417 cl02781 351888 -cd03165 239418 cl02781 351888 -cd03166 239419 cl02781 351888 -cd03167 239420 cl02781 351888 -cd03171 239421 cl00014 350861 -cd03172 239422 cl00014 350861 -cd03307 239423 cl00464 320986 -cd03308 239424 cl00464 320986 -cd03309 239425 cl00464 320986 -cd03310 239426 cl00464 320986 -cd03311 239427 cl00464 320986 -cd03312 239428 cl00464 320986 -cd03313 239429 cl25395 355388 -cd03314 239430 cl25395 355388 -cd03315 239431 cl25395 355388 -cd03316 239432 cl25395 355388 -cd03317 239433 cl25395 355388 -cd03318 239434 cl25395 355388 -cd03319 239435 cl25395 355388 -cd03320 239436 cl25395 355388 -cd03321 239437 cl25395 355388 -cd03322 239438 cl25395 355388 -cd03323 239439 cl25395 355388 -cd03324 239440 cl25395 355388 -cd03325 239441 cl25395 355388 -cd03326 239442 cl25395 355388 -cd03327 239443 cl25395 355388 -cd03328 239444 cl25395 355388 -cd03329 239445 cl25395 355388 -cd03330 239446 cl00019 320715 -cd03331 239447 cl00019 320715 -cd03332 239448 cl28888 355772 -cd03333 239449 cl02777 351886 -cd03334 239450 cl02777 351886 -cd03335 239451 cl02777 351886 -cd03336 239452 cl02777 351886 -cd03337 239453 cl02777 351886 -cd03338 239454 cl02777 351886 -cd03339 239455 cl02777 351886 -cd03340 239456 cl02777 351886 -cd03341 239457 cl02777 351886 -cd03342 239458 cl02777 351886 -cd03343 239459 cl02777 351886 -cd03344 239460 cl02777 351886 -cd03345 239461 cl01244 351437 -cd03346 239462 cl01244 351437 -cd03347 239463 cl01244 351437 -cd03348 239464 cl01244 351437 -cd03367 239465 cl00312 351017 -cd03368 239466 cl00312 351017 -cd03370 239467 cl00514 321015 -cd03371 239468 cl01629 351571 -cd03372 239469 cl01629 351571 -cd03375 239470 cl01629 351571 -cd03376 239471 cl01629 351571 -cd03377 239472 cl01629 351571 -cd03378 239473 cl00391 351071 -cd03379 239474 cl00391 351071 -cd03380 239475 cl00474 351108 -cd03381 239476 cl00474 351108 -cd03382 239477 cl00474 351108 -cd03383 239478 cl00474 351108 -cd03384 239479 cl00474 351108 -cd03385 239480 cl00474 351108 -cd03386 239481 cl00474 351108 -cd03388 239482 cl00474 351108 -cd03389 239483 cl00474 351108 -cd03390 239484 cl00474 351108 -cd03391 239485 cl00474 351108 -cd03392 239486 cl00474 351108 -cd03393 239487 cl00474 351108 -cd03394 239488 cl00474 351108 -cd03395 239489 cl00474 351108 -cd03396 239490 cl00474 351108 -cd03397 239491 cl00474 351108 -cd03398 239492 cl00474 351108 -cd03409 239503 cl02784 351891 -cd03411 239504 cl02784 351891 -cd03412 239505 cl02784 351891 -cd03413 239506 cl02784 351891 -cd03414 239507 cl02784 351891 -cd03415 239508 cl02784 351891 -cd03416 239509 cl02784 351891 -cd03418 239510 cl00388 351069 -cd03419 239511 cl00388 351069 -cd03420 239512 cl00436 320971 -cd03421 239513 cl00436 320971 -cd03422 239514 cl00436 320971 -cd03423 239515 cl00436 320971 -cd03424 239516 cl00447 351096 -cd03425 239517 cl00447 351096 -cd03426 239518 cl00447 351096 -cd03427 239519 cl00447 351096 -cd03428 239520 cl00447 351096 -cd03429 239521 cl00447 351096 -cd03430 239522 cl00447 351096 -cd03431 239523 cl00447 351096 -cd03440 239524 cl00509 351126 -cd03441 239525 cl00509 351126 -cd03442 239526 cl00509 351126 -cd03443 239527 cl00509 351126 -cd03444 239528 cl00509 351126 -cd03445 239529 cl00509 351126 -cd03446 239530 cl00509 351126 -cd03447 239531 cl00509 351126 -cd03448 239532 cl00509 351126 -cd03449 239533 cl00509 351126 -cd03450 239534 cl00509 351126 -cd03451 239535 cl00509 351126 -cd03452 239536 cl00509 351126 -cd03453 239537 cl00509 351126 -cd03454 239538 cl00509 351126 -cd03455 239539 cl00509 351126 -cd03457 239540 cl21470 354823 -cd03458 239541 cl21470 354823 -cd03459 239542 cl21470 354823 -cd03460 239543 cl21470 354823 -cd03461 239544 cl21470 354823 -cd03462 239545 cl21470 354823 -cd03463 239546 cl21470 354823 -cd03464 239547 cl21470 354823 -cd03465 239548 cl00464 320986 -cd03466 239549 cl02775 351884 -cd03467 239550 cl00938 351321 -cd03469 239551 cl00938 351321 -cd03470 239552 cl00938 351321 -cd03471 239553 cl00938 351321 -cd03472 239554 cl00938 351321 -cd03473 239555 cl00938 351321 -cd03474 239556 cl00938 351321 -cd03475 239557 cl00938 351321 -cd03476 239558 cl00938 351321 -cd03477 239559 cl00938 351321 -cd03478 239560 cl00938 351321 -cd03479 239561 cl00938 351321 -cd03480 239562 cl00938 351321 -cd03481 239563 cl02783 351890 -cd03482 239564 cl02783 351890 -cd03483 239565 cl02783 351890 -cd03484 239566 cl02783 351890 -cd03485 239567 cl02783 351890 -cd03486 239568 cl02783 351890 -cd03487 239569 cl02808 295487 -cd03488 239570 cl02774 351883 -cd03489 239571 cl02774 351883 -cd03490 239572 cl02774 351883 -cd03493 239573 cl00881 351296 -cd03494 239574 cl00881 351296 -cd03495 239575 cl00881 351296 -cd03496 239576 cl00881 351296 -cd03497 239577 cl00881 351296 -cd03498 239578 cl00881 351296 -cd03499 239579 cl00881 351296 -cd03500 239580 cl00881 351296 -cd03501 239581 cl00881 351296 -cd03505 239582 cl00615 294412 -cd03506 239583 cl00615 294412 -cd03507 239584 cl00615 294412 -cd03508 239585 cl00615 294412 -cd03509 239586 cl00615 294412 -cd03510 239587 cl00615 294412 -cd03511 239588 cl00615 294412 -cd03512 239589 cl00615 294412 -cd03513 239590 cl00615 294412 -cd03514 239591 cl00615 294412 -cd03515 239592 cl02612 351826 -cd03516 239593 cl02612 351826 -cd03517 239594 cl02612 351826 -cd03518 239595 cl02612 351826 -cd03519 239596 cl02612 351826 -cd03520 239597 cl02612 351826 -cd03521 239598 cl02612 351826 -cd03522 239599 cl00451 320978 -cd03523 239600 cl02512 351781 -cd03524 239601 cl09930 353029 -cd03526 239602 cl00881 351296 -cd03527 239603 cl01843 351614 -cd03528 239604 cl00938 351321 -cd03529 239605 cl00938 351321 -cd03530 239606 cl00938 351321 -cd03531 239607 cl00938 351321 -cd03532 239608 cl00938 351321 -cd03535 239609 cl00938 351321 -cd03536 239610 cl00938 351321 -cd03537 239611 cl00938 351321 -cd03538 239612 cl00938 351321 -cd03539 239613 cl00938 351321 -cd03541 239614 cl00938 351321 -cd03542 239615 cl00938 351321 -cd03545 239616 cl00938 351321 -cd03548 239617 cl00938 351321 -cd03556 239618 cl00947 351326 -cd03557 239619 cl00947 351326 -cd03574 239629 cl02512 351781 -cd03575 239630 cl02512 351781 -cd03576 239631 cl02512 351781 -cd03577 239632 cl02512 351781 -cd03578 239633 cl02512 351781 -cd03579 239634 cl02512 351781 -cd03580 239635 cl02512 351781 -cd03581 239636 cl02512 351781 -cd03582 239637 cl02512 351781 -cd03583 239638 cl02512 351781 -cd03584 239639 cl02512 351781 -cd03585 239640 cl02512 351781 -cd03587 239641 cl02533 351789 -cd03670 239642 cl00447 351096 -cd03671 239643 cl00447 351096 -cd03672 239644 cl00447 351096 -cd03673 239645 cl00447 351096 -cd03674 239646 cl00447 351096 -cd03675 239647 cl00447 351096 -cd03676 239648 cl00447 351096 -cd03677 239649 cl00817 351270 -cd03678 239650 cl00817 351270 -cd03679 239651 cl00817 351270 -cd03680 239652 cl00817 351270 -cd03681 239653 cl00817 351270 -cd03682 239654 cl02915 295552 -cd03683 239655 cl02915 295552 -cd03684 239656 cl02915 295552 -cd03685 239657 cl02915 295552 -cd03687 239658 cl12104 325190 -cd03709 239680 cl02785 351892 -cd03710 239681 cl02785 351892 -cd03711 239682 cl02785 351892 -cd03713 239683 cl02785 351892 -cd03714 239684 cl02808 295487 -cd03715 239685 cl02808 295487 -cd03716 239686 cl02533 351789 -cd03717 239687 cl02533 351789 -cd03718 239688 cl02533 351789 -cd03719 239689 cl02533 351789 -cd03720 239690 cl02533 351789 -cd03721 239691 cl02533 351789 -cd03722 239692 cl02533 351789 -cd03723 239693 cl02533 351789 -cd03724 239694 cl02533 351789 -cd03725 239695 cl02533 351789 -cd03726 239696 cl02533 351789 -cd03727 239697 cl02533 351789 -cd03728 239698 cl02533 351789 -cd03729 239699 cl02533 351789 -cd03730 239700 cl02533 351789 -cd03731 239701 cl02533 351789 -cd03733 239702 cl02533 351789 -cd03734 239703 cl02533 351789 -cd03735 239704 cl02533 351789 -cd03736 239705 cl02533 351789 -cd03737 239706 cl02533 351789 -cd03738 239707 cl02533 351789 -cd03739 239708 cl02533 351789 -cd03740 239709 cl02533 351789 -cd03741 239710 cl02533 351789 -cd03742 239711 cl02533 351789 -cd03743 239712 cl02533 351789 -cd03744 239713 cl02533 351789 -cd03745 239714 cl02533 351789 -cd03746 239715 cl02533 351789 -cd03747 239716 cl00467 351104 -cd03748 239717 cl00467 351104 -cd03749 239718 cl00467 351104 -cd03750 239719 cl00467 351104 -cd03751 239720 cl00467 351104 -cd03752 239721 cl00467 351104 -cd03753 239722 cl00467 351104 -cd03754 239723 cl00467 351104 -cd03755 239724 cl00467 351104 -cd03756 239725 cl00467 351104 -cd03757 239726 cl00467 351104 -cd03758 239727 cl00467 351104 -cd03759 239728 cl00467 351104 -cd03760 239729 cl00467 351104 -cd03761 239730 cl00467 351104 -cd03762 239731 cl00467 351104 -cd03763 239732 cl00467 351104 -cd03764 239733 cl00467 351104 -cd03765 239734 cl00467 351104 -cd03766 239735 cl00319 351023 -cd03767 239736 cl02788 351894 -cd03768 239737 cl02788 351894 -cd03769 239738 cl02788 351894 -cd03770 239739 cl02788 351894 -cd03771 239740 cl02446 351761 -cd03772 239741 cl02446 351761 -cd03773 239742 cl02446 351761 -cd03774 239743 cl02446 351761 -cd03775 239744 cl02446 351761 -cd03776 239745 cl02446 351761 -cd03777 239746 cl02446 351761 -cd03778 239747 cl02446 351761 -cd03779 239748 cl02446 351761 -cd03780 239749 cl02446 351761 -cd03781 239750 cl02446 351761 -cd03782 239751 cl02446 351761 -cd03783 239752 cl02446 351761 -cd03829 239753 cl19105 354380 -cd04087 239754 cl03888 352074 -cd04096 239763 cl02785 351892 -cd04097 239764 cl02785 351892 -cd04098 239765 cl02785 351892 -cd04100 239766 cl09930 353029 -cd04234 239767 cl00452 351098 -cd04235 239768 cl00452 351098 -cd04236 239769 cl00452 351098 -cd04237 239770 cl00452 351098 -cd04238 239771 cl00452 351098 -cd04239 239772 cl00452 351098 -cd04240 239773 cl00452 351098 -cd04241 239774 cl00452 351098 -cd04242 239775 cl00452 351098 -cd04243 239776 cl00452 351098 -cd04244 239777 cl00452 351098 -cd04245 239778 cl00452 351098 -cd04246 239779 cl00452 351098 -cd04247 239780 cl00452 351098 -cd04248 239781 cl00452 351098 -cd04249 239782 cl00452 351098 -cd04250 239783 cl00452 351098 -cd04251 239784 cl00452 351098 -cd04252 239785 cl00452 351098 -cd04253 239786 cl00452 351098 -cd04254 239787 cl00452 351098 -cd04255 239788 cl00452 351098 -cd04256 239789 cl00452 351098 -cd04257 239790 cl00452 351098 -cd04258 239791 cl00452 351098 -cd04259 239792 cl00452 351098 -cd04260 239793 cl00452 351098 -cd04261 239794 cl00452 351098 -cd04267 239795 cl00064 350885 -cd04268 239796 cl00064 350885 -cd04269 239797 cl00064 350885 -cd04270 239798 cl00064 350885 -cd04271 239799 cl00064 350885 -cd04272 239800 cl00064 350885 -cd04273 239801 cl00064 350885 -cd04275 239802 cl00064 350885 -cd04276 239803 cl00064 350885 -cd04277 239804 cl00064 350885 -cd04278 239805 cl00064 350885 -cd04279 239806 cl00064 350885 -cd04280 239807 cl00064 350885 -cd04281 239808 cl00064 350885 -cd04282 239809 cl00064 350885 -cd04283 239810 cl00064 350885 -cd04316 239811 cl09930 353029 -cd04317 239812 cl09930 353029 -cd04318 239813 cl09930 353029 -cd04319 239814 cl09930 353029 -cd04320 239815 cl09930 353029 -cd04321 239816 cl09930 353029 -cd04322 239817 cl09930 353029 -cd04323 239818 cl09930 353029 -cd04327 239819 cl00064 350885 -cd04328 239820 cl04309 352154 -cd04329 239821 cl04309 352154 -cd04330 239822 cl04309 352154 -cd04331 239823 cl04309 352154 -cd04332 239824 cl00022 320718 -cd04333 239825 cl00022 320718 -cd04334 239826 cl00022 320718 -cd04335 239827 cl00022 320718 -cd04336 239828 cl00022 320718 -cd04337 239829 cl00938 351321 -cd04338 239830 cl00938 351321 -cd04365 239831 cl02453 321941 -cd04366 239832 cl02453 321941 -cd04367 239833 cl02453 321941 -cd04368 239834 cl02453 321941 -cd04370 239835 cl02608 351822 -cd04371 239836 cl02442 351760 -cd04372 239837 cl02570 351808 -cd04373 239838 cl02570 351808 -cd04374 239839 cl02570 351808 -cd04375 239840 cl02570 351808 -cd04376 239841 cl02570 351808 -cd04377 239842 cl02570 351808 -cd04378 239843 cl02570 351808 -cd04379 239844 cl02570 351808 -cd04380 239845 cl02570 351808 -cd04381 239846 cl02570 351808 -cd04382 239847 cl02570 351808 -cd04383 239848 cl02570 351808 -cd04384 239849 cl02570 351808 -cd04385 239850 cl02570 351808 -cd04386 239851 cl02570 351808 -cd04387 239852 cl02570 351808 -cd04388 239853 cl02570 351808 -cd04389 239854 cl02570 351808 -cd04390 239855 cl02570 351808 -cd04391 239856 cl02570 351808 -cd04392 239857 cl02570 351808 -cd04393 239858 cl02570 351808 -cd04394 239859 cl02570 351808 -cd04395 239860 cl02570 351808 -cd04396 239861 cl02570 351808 -cd04397 239862 cl02570 351808 -cd04398 239863 cl02570 351808 -cd04399 239864 cl02570 351808 -cd04400 239865 cl02570 351808 -cd04401 239866 cl02570 351808 -cd04402 239867 cl02570 351808 -cd04403 239868 cl02570 351808 -cd04404 239869 cl02570 351808 -cd04405 239870 cl02570 351808 -cd04406 239871 cl02570 351808 -cd04407 239872 cl02570 351808 -cd04408 239873 cl02570 351808 -cd04409 239874 cl02570 351808 -cd04412 239875 cl00335 351036 -cd04413 239876 cl00335 351036 -cd04414 239877 cl00335 351036 -cd04415 239878 cl00335 351036 -cd04416 239879 cl00335 351036 -cd04418 239880 cl00335 351036 -cd04435 239882 cl02442 351760 -cd04436 239883 cl02442 351760 -cd04437 239884 cl02442 351760 -cd04438 239885 cl02442 351760 -cd04439 239886 cl02442 351760 -cd04440 239887 cl02442 351760 -cd04441 239888 cl02442 351760 -cd04442 239889 cl02442 351760 -cd04443 239890 cl02442 351760 -cd04444 239891 cl02442 351760 -cd04445 239892 cl02442 351760 -cd04446 239893 cl02442 351760 -cd04447 239894 cl02442 351760 -cd04448 239895 cl02442 351760 -cd04449 239896 cl02442 351760 -cd04450 239897 cl02442 351760 -cd04451 239898 cl09927 353027 -cd04452 239899 cl09927 353027 -cd04453 239900 cl09927 353027 -cd04454 239901 cl09927 353027 -cd04455 239902 cl09927 353027 -cd04456 239903 cl09927 353027 -cd04457 239904 cl09927 353027 -cd04458 239905 cl09927 353027 -cd04459 239906 cl09927 353027 -cd04460 239907 cl09927 353027 -cd04461 239908 cl09927 353027 -cd04462 239909 cl09927 353027 -cd04463 239910 cl09927 353027 -cd04465 239911 cl09927 353027 -cd04466 239912 cl09927 353027 -cd04467 239913 cl09927 353027 -cd04468 239914 cl09927 353027 -cd04469 239915 cl09927 353027 -cd04470 239916 cl09927 353027 -cd04471 239917 cl09927 353027 -cd04472 239918 cl09927 353027 -cd04473 239919 cl09927 353027 -cd04474 239920 cl09930 353029 -cd04475 239921 cl09930 353029 -cd04476 239922 cl09930 353029 -cd04477 239923 cl09930 353029 -cd04478 239924 cl09930 353029 -cd04479 239925 cl09930 353029 -cd04480 239926 cl09930 353029 -cd04481 239927 cl09930 353029 -cd04482 239928 cl09930 353029 -cd04483 239929 cl09930 353029 -cd04484 239930 cl09930 353029 -cd04485 239931 cl09930 353029 -cd04486 239932 cl09930 353029 -cd04487 239933 cl09930 353029 -cd04488 239934 cl09930 353029 -cd04489 239935 cl09930 353029 -cd04490 239936 cl09930 353029 -cd04491 239937 cl09930 353029 -cd04492 239938 cl09930 353029 -cd04493 239939 cl09930 353029 -cd04494 239940 cl09930 353029 -cd04495 239941 cl09930 353029 -cd04496 239942 cl09930 353029 -cd04497 239943 cl09930 353029 -cd04498 239944 cl09930 353029 -cd04501 239945 cl01053 351360 -cd04502 239946 cl01053 351360 -cd04506 239947 cl01053 351360 -cd04511 239948 cl00447 351096 -cd04516 239952 cl08263 352864 -cd04517 239953 cl08263 352864 -cd04518 239954 cl08263 352864 -cd04657 240015 cl00628 351185 -cd04658 240016 cl00628 351185 -cd04659 240017 cl00628 351185 -cd04660 240018 cl07890 352835 -cd04661 240019 cl00447 351096 -cd04662 240020 cl00447 351096 -cd04663 240021 cl00447 351096 -cd04664 240022 cl00447 351096 -cd04665 240023 cl00447 351096 -cd04666 240024 cl00447 351096 -cd04667 240025 cl00447 351096 -cd04669 240026 cl00447 351096 -cd04670 240027 cl00447 351096 -cd04671 240028 cl00447 351096 -cd04672 240029 cl00447 351096 -cd04673 240030 cl00447 351096 -cd04674 240031 cl00447 351096 -cd04676 240032 cl00447 351096 -cd04677 240033 cl00447 351096 -cd04678 240034 cl00447 351096 -cd04679 240035 cl00447 351096 -cd04680 240036 cl00447 351096 -cd04681 240037 cl00447 351096 -cd04682 240038 cl00447 351096 -cd04683 240039 cl00447 351096 -cd04684 240040 cl00447 351096 -cd04685 240041 cl00447 351096 -cd04686 240042 cl00447 351096 -cd04687 240043 cl00447 351096 -cd04688 240044 cl00447 351096 -cd04689 240045 cl00447 351096 -cd04690 240046 cl00447 351096 -cd04691 240047 cl00447 351096 -cd04692 240048 cl00447 351096 -cd04693 240049 cl00447 351096 -cd04694 240050 cl00447 351096 -cd04695 240051 cl00447 351096 -cd04696 240052 cl00447 351096 -cd04697 240053 cl00447 351096 -cd04699 240054 cl00447 351096 -cd04700 240055 cl00447 351096 -cd04708 240059 cl02608 351822 -cd04709 240060 cl02608 351822 -cd04710 240061 cl02608 351822 -cd04711 240062 cl02608 351822 -cd04712 240063 cl02608 351822 -cd04713 240064 cl02608 351822 -cd04714 240065 cl02608 351822 -cd04715 240066 cl02608 351822 -cd04716 240067 cl02608 351822 -cd04717 240068 cl02608 351822 -cd04718 240069 cl02608 351822 -cd04719 240070 cl02608 351822 -cd04720 240071 cl02608 351822 -cd04721 240072 cl02608 351822 -cd04722 240073 cl28888 355772 -cd04723 240074 cl28888 355772 -cd04724 240075 cl28888 355772 -cd04725 240076 cl28888 355772 -cd04726 240077 cl28888 355772 -cd04727 240078 cl28888 355772 -cd04728 240079 cl28888 355772 -cd04729 240080 cl28888 355772 -cd04730 240081 cl28888 355772 -cd04731 240082 cl28888 355772 -cd04732 240083 cl28888 355772 -cd04733 240084 cl28888 355772 -cd04734 240085 cl28888 355772 -cd04735 240086 cl28888 355772 -cd04736 240087 cl28888 355772 -cd04737 240088 cl28888 355772 -cd04738 240089 cl28888 355772 -cd04739 240090 cl28888 355772 -cd04740 240091 cl28888 355772 -cd04741 240092 cl28888 355772 -cd04742 240093 cl28888 355772 -cd04743 240094 cl28888 355772 -cd04747 240095 cl28888 355772 -cd04748 240096 cl06336 352502 -cd04749 240097 cl06336 352502 -cd04750 240098 cl06336 352502 -cd04751 240099 cl06336 352502 -cd04752 240100 cl06336 352502 -cd04753 240101 cl06336 352502 -cd04754 240102 cl06336 352502 -cd04755 240103 cl06336 352502 -cd04756 240104 cl06336 352502 -cd04757 240105 cl06336 352502 -cd04758 240106 cl06336 352502 -cd04760 240107 cl02608 351822 -cd04795 240112 cl00389 351070 -cd04813 240117 cl28883 333703 -cd04814 240118 cl28883 333703 -cd04815 240119 cl28883 333703 -cd04816 240120 cl28883 333703 -cd04817 240121 cl28883 333703 -cd04818 240122 cl28883 333703 -cd04819 240123 cl28883 333703 -cd04820 240124 cl28883 333703 -cd04821 240125 cl28883 333703 -cd04822 240126 cl28883 333703 -cd04823 240127 cl00338 351039 -cd04824 240128 cl00338 351039 -cd04859 240129 cl01287 321433 -cd04860 240130 cl01287 321433 -cd04861 240131 cl01287 321433 -cd04862 240132 cl01287 321433 -cd04863 240133 cl01287 321433 -cd04864 240134 cl01287 321433 -cd04865 240135 cl01287 321433 -cd04866 240136 cl01287 321433 -cd04939 240137 cl00022 320718 -cd05005 240138 cl00389 351070 -cd05006 240139 cl00389 351070 -cd05007 240140 cl00389 351070 -cd05008 240141 cl00389 351070 -cd05009 240142 cl00389 351070 -cd05010 240143 cl00389 351070 -cd05013 240144 cl00389 351070 -cd05014 240145 cl00389 351070 -cd05015 240146 cl00389 351070 -cd05016 240147 cl00389 351070 -cd05017 240148 cl00389 351070 -cd05022 240149 cl08302 324233 -cd05023 240150 cl08302 324233 -cd05024 240151 cl08302 324233 -cd05025 240152 cl08302 324233 -cd05026 240153 cl08302 324233 -cd05027 240154 cl08302 324233 -cd05029 240155 cl08302 324233 -cd05030 240156 cl08302 324233 -cd05031 240157 cl08302 324233 -cd05125 240161 cl00182 350934 -cd05126 240162 cl00182 350934 -cd05140 240163 cl01048 351356 -cd05141 240164 cl01048 351356 -cd05142 240165 cl01048 351356 -cd05143 240166 cl01048 351356 -cd05560 240187 cl00182 350934 -cd05637 240188 cl00389 351070 -cd05684 240189 cl09927 353027 -cd05685 240190 cl09927 353027 -cd05686 240191 cl09927 353027 -cd05687 240192 cl09927 353027 -cd05688 240193 cl09927 353027 -cd05689 240194 cl09927 353027 -cd05690 240195 cl09927 353027 -cd05691 240196 cl09927 353027 -cd05692 240197 cl09927 353027 -cd05693 240198 cl09927 353027 -cd05694 240199 cl09927 353027 -cd05695 240200 cl09927 353027 -cd05696 240201 cl09927 353027 -cd05697 240202 cl09927 353027 -cd05698 240203 cl09927 353027 -cd05699 240204 cl09927 353027 -cd05700 240205 cl09927 353027 -cd05701 240206 cl09927 353027 -cd05702 240207 cl09927 353027 -cd05703 240208 cl09927 353027 -cd05704 240209 cl09927 353027 -cd05705 240210 cl09927 353027 -cd05706 240211 cl09927 353027 -cd05707 240212 cl09927 353027 -cd05708 240213 cl09927 353027 -cd05710 240214 cl00389 351070 -cd05789 240215 cl09927 353027 -cd05790 240216 cl09927 353027 -cd05791 240217 cl09927 353027 -cd05792 240218 cl09927 353027 -cd05793 240219 cl09927 353027 -cd05794 240220 cl09927 353027 -cd05795 240221 cl00376 351061 -cd05796 240222 cl00376 351061 -cd05797 240223 cl00376 351061 -cd05798 240224 cl00389 351070 -PTZ00004 240225 cl17037 354300 -PTZ00007 240226 cl08298 352871 -PTZ00009 240227 PTZ00009 240227 -PTZ00010 240228 PTZ00010 240228 -PTZ00014 240229 PTZ00014 240229 -PTZ00016 240230 cl00200 350945 -PTZ00019 240231 PTZ00019 240231 -PTZ00021 240232 PTZ00021 240232 -PTZ00024 240233 PTZ00024 240233 -PTZ00027 240234 cl30086 356962 -PTZ00032 240235 cl00379 320941 -PTZ00037 240236 PTZ00037 240236 -PTZ00038 240237 PTZ00038 240237 -PTZ00040 240238 cl02106 351678 -PTZ00041 240239 cl01033 321311 -PTZ00043 240240 PTZ00043 240240 -PTZ00045 240241 cl19485 327564 -PTZ00046 240242 cl14106 353807 -PTZ00047 240243 cl19115 354382 -PTZ00049 240244 PTZ00049 240244 -PTZ00050 240245 PTZ00050 240245 -PTZ00053 240246 PTZ00053 240246 -PTZ00055 240247 cl00170 350931 -PTZ00056 240248 cl00388 351069 -PTZ00060 240249 cl00197 350942 -PTZ00062 240250 PTZ00062 240250 -PTZ00063 240251 PTZ00063 240251 -PTZ00065 240252 cl27476 355657 -PTZ00068 240253 cl00333 351034 -PTZ00069 240254 PTZ00069 240254 -PTZ00070 240255 PTZ00070 240255 -PTZ00071 240256 cl00878 351295 -PTZ00073 240257 cl00932 321256 -PTZ00075 240258 PTZ00075 240258 -PTZ00081 240259 PTZ00081 240259 -PTZ00084 240260 PTZ00084 240260 -PTZ00085 240261 cl09927 353027 -PTZ00088 240262 PTZ00088 240262 -PTZ00092 240263 PTZ00092 240263 -PTZ00094 240264 PTZ00094 240264 -PTZ00100 240265 cl02542 351794 -PTZ00102 240266 PTZ00102 240266 -PTZ00103 240267 PTZ00103 240267 -PTZ00104 240268 PTZ00104 240268 -PTZ00105 240269 PTZ00105 240269 -PTZ00107 240270 PTZ00107 240270 -PTZ00108 240271 PTZ00108 240271 -PTZ00109 240272 PTZ00109 240272 -PTZ00110 240273 PTZ00110 240273 -PTZ00112 240274 PTZ00112 240274 -PTZ00113 240275 PTZ00113 240275 -PTZ00115 240276 cl00312 351017 -PTZ00118 240277 PTZ00118 240277 -PTZ00119 240278 cl00349 351045 -PTZ00122 240279 PTZ00122 240279 -PTZ00123 240280 cl11399 353243 -PTZ00125 240281 cl18945 354370 -PTZ00126 240282 cl00015 350862 -PTZ00127 240283 cl19388 327545 -PTZ00132 240284 PTZ00132 240284 -PTZ00135 240285 PTZ00135 240285 -PTZ00139 240286 PTZ00139 240286 -PTZ00142 240287 PTZ00142 240287 -PTZ00143 240288 cl00493 351119 -PTZ00144 240289 PTZ00144 240289 -PTZ00145 240290 PTZ00145 240290 -PTZ00146 240291 cl17173 354317 -PTZ00148 240292 PTZ00148 240292 -PTZ00149 240293 cl00309 351014 -PTZ00150 240294 PTZ00150 240294 -PTZ00154 240295 cl00610 351176 -PTZ00157 240296 cl00706 351221 -PTZ00159 240297 cl00748 351235 -PTZ00162 240298 PTZ00162 240298 -PTZ00164 240299 PTZ00164 240299 -PTZ00165 240300 PTZ00165 240300 -PTZ00166 240301 PTZ00166 240301 -PTZ00169 240302 PTZ00169 240302 -PTZ00170 240303 cl21457 354814 -PTZ00171 240304 cl09936 324546 -PTZ00174 240305 cl21460 354816 -PTZ00178 240306 cl00327 351030 -PTZ00187 240307 PTZ00187 240307 -PTZ00188 240308 cl30539 357415 -PTZ00189 240309 PTZ00189 240309 -PTZ00200 240310 PTZ00200 240310 -PTZ00201 240311 cl06401 323438 -PTZ00202 240312 cl23936 305093 -PTZ00206 240313 cl00456 320982 -PTZ00208 240314 cl19916 327698 -PTZ00211 240315 cl00264 350992 -PTZ00216 240316 PTZ00216 240316 -PTZ00217 240317 PTZ00217 240317 -PTZ00224 240318 PTZ00224 240318 -PTZ00226 240319 PTZ00226 240319 -PTZ00228 240320 cl23751 329056 -PTZ00230 240321 cl23751 329056 -PTZ00232 240322 cl23751 329056 -PTZ00233 240323 PTZ00233 240323 -PTZ00234 240324 PTZ00234 240324 -PTZ00237 240325 PTZ00237 240325 -PTZ00241 240326 PTZ00241 240326 -PTZ00243 240327 PTZ00243 240327 -PTZ00247 240328 PTZ00247 240328 -PTZ00248 240329 PTZ00248 240329 -PTZ00252 240330 PTZ00252 240330 -PTZ00254 240331 PTZ00254 240331 -PTZ00255 240332 cl19284 354404 -PTZ00257 240333 cl19482 302875 -PTZ00258 240334 PTZ00258 240334 -PTZ00259 240335 PTZ00259 240335 -PTZ00260 240336 PTZ00260 240336 -PTZ00261 240337 cl17185 354319 -PTZ00262 240338 PTZ00262 240338 -PTZ00265 240339 PTZ00265 240339 -PTZ00270 240340 cl23751 329056 -PTZ00272 240341 PTZ00272 240341 -PTZ00278 240342 cl05433 323054 -PTZ00280 240343 PTZ00280 240343 -PTZ00283 240344 PTZ00283 240344 -PTZ00287 240345 PTZ00287 240345 -PTZ00288 240346 cl17037 354300 -PTZ00290 240347 PTZ00290 240347 -PTZ00294 240348 PTZ00294 240348 -PTZ00295 240349 PTZ00295 240349 -PTZ00296 240350 PTZ00296 240350 -PTZ00298 240351 PTZ00298 240351 -PTZ00302 240352 PTZ00302 240352 -PTZ00309 240353 PTZ00309 240353 -PTZ00310 240354 PTZ00310 240354 -PTZ00314 240355 PTZ00314 240355 -PTZ00315 240356 PTZ00315 240356 -PTZ00317 240357 PTZ00317 240357 -PTZ00321 240358 PTZ00321 240358 -PTZ00324 240359 cl29306 356182 -PTZ00325 240360 PTZ00325 240360 -PTZ00326 240361 PTZ00326 240361 -PTZ00327 240362 PTZ00327 240362 -PTZ00331 240363 cl00220 350960 -PTZ00332 240364 PTZ00332 240364 -PTZ00333 240365 PTZ00333 240365 -PTZ00334 240366 PTZ00334 240366 -PTZ00338 240367 cl17173 354317 -PTZ00339 240368 cl11394 353239 -PTZ00340 240369 PTZ00340 240369 -PTZ00342 240370 PTZ00342 240370 -PTZ00343 240371 cl26744 331565 -PTZ00344 240372 cl00192 350937 -PTZ00345 240373 PTZ00345 240373 -PTZ00346 240374 cl17011 354294 -PTZ00347 240375 PTZ00347 240375 -PTZ00350 240376 cl28913 355789 -PTZ00352 240377 cl01799 351604 -PTZ00358 240378 PTZ00358 240378 -PTZ00360 240379 PTZ00360 240379 -PTZ00362 240380 cl17012 354295 -PTZ00364 240381 PTZ00364 240381 -PTZ00365 240382 PTZ00365 240382 -PTZ00366 240383 PTZ00366 240383 -PTZ00367 240384 cl27553 332374 -PTZ00369 240385 PTZ00369 240385 -PTZ00370 240386 cl14106 353807 -PTZ00371 240387 cl14876 353847 -PTZ00372 240388 PTZ00372 240388 -PTZ00374 240389 PTZ00374 240389 -PTZ00376 240390 cl18945 354370 -PTZ00377 240391 PTZ00377 240391 -PTZ00381 240392 cl11961 353326 -PTZ00383 240393 cl21454 354811 -PTZ00386 240394 PTZ00386 240394 -PTZ00387 240395 PTZ00387 240395 -PTZ00388 240396 cl00880 294572 -PTZ00390 240397 cl00154 350921 -PTZ00391 240398 cl21538 354859 -PTZ00393 240399 PTZ00393 240399 -PTZ00396 240400 cl02099 351675 -PTZ00397 240401 cl00235 350973 -PTZ00399 240402 PTZ00399 240402 -PTZ00400 240403 PTZ00400 240403 -PTZ00402 240404 PTZ00402 240404 -PTZ00408 240405 cl00195 350940 -PTZ00411 240406 PTZ00411 240406 -PTZ00412 240407 cl29532 356408 -PTZ00413 240408 PTZ00413 240408 -PTZ00416 240409 cl30786 357662 -PTZ00418 240410 PTZ00418 240410 -PTZ00419 240411 PTZ00419 240411 -PTZ00420 240412 PTZ00420 240412 -PTZ00423 240413 PTZ00423 240413 -PTZ00425 240414 PTZ00425 240414 -PTZ00429 240415 PTZ00429 240415 -PTZ00432 240416 PTZ00432 240416 -PTZ00435 240417 cl00445 351095 -PTZ00437 240418 PTZ00437 240418 -PTZ00440 240419 PTZ00440 240419 -PTZ00441 240420 PTZ00441 240420 -PTZ00445 240421 PTZ00445 240421 -PTZ00446 240422 cl21588 328813 -PTZ00454 240423 PTZ00454 240423 -PTZ00455 240424 PTZ00455 240424 -PTZ00464 240425 cl21588 328813 -PTZ00466 240426 cl17037 354300 -PTZ00470 240427 cl04955 352291 -PTZ00471 240428 cl00354 351050 -PTZ00472 240429 cl08270 352865 -PTZ00473 240430 PTZ00473 240430 -PTZ00474 240431 cl13718 353714 -PTZ00477 240432 PTZ00477 240432 -PTZ00482 240433 PTZ00482 240433 -PTZ00484 240434 cl00263 350991 -PTZ00485 240435 cl14648 353820 -PTZ00486 240436 cl05556 352374 -PTZ00487 240437 PTZ00487 240437 -PTZ00489 240438 cl00452 351098 -PTZ00491 240439 PTZ00491 240439 -PTZ00493 240440 cl00192 350937 -cd13433 240441 cd13433 240441 -cd13439 240442 cl17505 354331 -cd13440 240443 cl17505 354331 -cd13441 240444 cl17505 354331 -cd13430 240445 cl17506 248060 -cd13431 240446 cl17506 248060 -cd13432 240447 cl17506 248060 -cd13425 240448 cl03371 351983 -cd13426 240449 cl03371 351983 -cd13427 240450 cl03371 351983 -cd12877 240457 cl02614 351827 -cd12878 240458 cl02614 351827 -cd12892 240472 cl02614 351827 -cd13741 240499 cl02614 351827 -cd00380 240504 cl00354 351050 -cd06081 240505 cl00354 351050 -cd06082 240506 cl00354 351050 -cd06083 240507 cl00354 351050 -cd06084 240508 cl00354 351050 -cd06085 240509 cl00354 351050 -cd06086 240510 cl00354 351050 -cd06087 240511 cl00354 351050 -cd06088 240512 cl00354 351050 -cd06089 240513 cl00354 351050 -cd06090 240514 cl00354 351050 -cd06091 240515 cl00354 351050 -cd13152 240516 cl00354 351050 -cd13153 240517 cl00354 351050 -cd13154 240518 cl00354 351050 -cd13155 240519 cl00354 351050 -cd13156 240520 cl00354 351050 -cd13394 240521 cd13394 240521 -cd13151 240522 cl23986 329217 -cd13150 240523 cd13150 240523 -cd13119 240524 cl17916 302680 -cd13120 240525 cl17916 302680 -cd13121 240526 cl17916 302680 -cd12082 240527 cl09326 352957 -cd13123 240528 cl09326 352957 -cd13124 240529 cl09326 352957 -cd13125 240530 cl09326 352957 -cd13126 240531 cl09326 352957 -cd13127 240532 cl09326 352957 -cd13128 240533 cl09326 352957 -cd13129 240534 cl09326 352957 -cd13130 240535 cl09326 352957 -cd13131 240536 cl09326 352957 -cd13132 240537 cl09326 352957 -cd13133 240538 cl09326 352957 -cd13134 240539 cl09326 352957 -cd13135 240540 cl09326 352957 -cd13136 240541 cl09326 352957 -cd13137 240542 cl09326 352957 -cd13138 240543 cl09326 352957 -cd13139 240544 cl09326 352957 -cd13140 240545 cl09326 352957 -cd13141 240546 cl09326 352957 -cd13142 240547 cl09326 352957 -cd13143 240548 cl09326 352957 -cd13144 240549 cl09326 352957 -cd13145 240550 cl09326 352957 -cd13146 240551 cl09326 352957 -cd13147 240552 cl09326 352957 -cd13148 240553 cl09326 352957 -cd13149 240554 cl09326 352957 -cd13122 240555 cl25608 330429 -cd13112 240556 cl02916 322131 -cd13114 240557 cl02916 322131 -cd13115 240558 cl02916 322131 -cd13116 240559 cl02916 322131 -cd13117 240560 cl02916 322131 -cd13118 240561 cl02916 322131 -cd12956 240562 cl28889 355773 -cd12964 240563 cl28889 355773 -cd12965 240564 cl28889 355773 -cd12966 240565 cl28889 355773 -cd12967 240566 cl28889 355773 -cd12963 240567 cd12963 240567 -cd12962 240568 cd12962 240568 -cd12961 240569 cd12961 240569 -cd12957 240570 cd12957 240570 -cd12927 240571 cl01577 351560 -cd12952 240572 cl01577 351560 -cd12953 240573 cl01577 351560 -cd12954 240574 cl01577 351560 -cd12960 240575 cl23873 305030 -cd12932 240576 cl15166 353906 -cd12950 240577 cl15166 353906 -cd12951 240578 cl15166 353906 -cd12931 240579 cl06904 352604 -cd12945 240580 cl06904 352604 -cd12946 240581 cl06904 352604 -cd12947 240582 cl06904 352604 -cd12948 240583 cl06904 352604 -cd12949 240584 cl06904 352604 -cd12934 240585 cl02649 351842 -cd12939 240586 cl02649 351842 -cd12940 240587 cl02649 351842 -cd12941 240588 cl02649 351842 -cd12942 240589 cl02649 351842 -cd12943 240590 cl02649 351842 -cd12944 240591 cl02649 351842 -cd12929 240592 cl06960 352620 -cd12936 240593 cl06960 352620 -cd12937 240594 cl06960 352620 -cd12938 240595 cl06960 352620 -cd12935 240596 cl06998 323717 -cd12933 240597 cl13749 353724 -cd10546 240598 cl01729 351577 -cd12916 240599 cl01729 351577 -cd12917 240600 cl01729 351577 -cd12918 240601 cl01729 351577 -cd12919 240602 cl01729 351577 -cd12920 240603 cl01729 351577 -cd12921 240604 cl01729 351577 -cd12922 240605 cl01729 351577 -cd12870 240606 cl15819 326649 -cd12869 240607 cl18942 354369 -cd12843 240608 cl18921 327485 -cd12796 240609 cl17507 248061 -cd12813 240610 cl17507 248061 -cd12819 240611 cl17507 248061 -cd12820 240612 cl17507 248061 -cd12795 240613 cl00098 350899 -cd12794 240614 cd12794 240614 -cd12222 240615 cd12222 240615 -cd12221 240616 cd12221 240616 -cd12220 240617 cd12220 240617 -cd00401 240619 cl21454 354811 -cd01619 240620 cl21454 354811 -cd01620 240621 cl21454 354811 -cd05198 240622 cl21454 354811 -cd05199 240623 cl21454 354811 -cd05299 240624 cl21454 354811 -cd05300 240625 cl21454 354811 -cd05301 240626 cl21454 354811 -cd05302 240627 cl21454 354811 -cd05303 240628 cl21454 354811 -cd05304 240629 cl21454 354811 -cd05305 240630 cl21454 354811 -cd12154 240631 cl21454 354811 -cd12155 240632 cl21454 354811 -cd12156 240633 cl21454 354811 -cd12157 240634 cl21454 354811 -cd12158 240635 cl21454 354811 -cd12159 240636 cl21454 354811 -cd12160 240637 cl21454 354811 -cd12161 240638 cl21454 354811 -cd12162 240639 cl21454 354811 -cd12163 240640 cl21454 354811 -cd12164 240641 cl21454 354811 -cd12165 240642 cl21454 354811 -cd12166 240643 cl21454 354811 -cd12167 240644 cl21454 354811 -cd12168 240645 cl21454 354811 -cd12169 240646 cl21454 354811 -cd12170 240647 cl21454 354811 -cd12171 240648 cl21454 354811 -cd12172 240649 cl21454 354811 -cd12173 240650 cl21454 354811 -cd12174 240651 cl21454 354811 -cd12175 240652 cl21454 354811 -cd12176 240653 cl21454 354811 -cd12177 240654 cl21454 354811 -cd12178 240655 cl21454 354811 -cd12179 240656 cl21454 354811 -cd12180 240657 cl21454 354811 -cd12181 240658 cl21454 354811 -cd12183 240659 cl21454 354811 -cd12184 240660 cl21454 354811 -cd12185 240661 cl21454 354811 -cd12186 240662 cl21454 354811 -cd12187 240663 cl21454 354811 -cd12188 240664 cl21454 354811 -cd12189 240665 cl21454 354811 -cd11741 240666 cd11741 240666 -cd11657 240667 cl18929 327486 -cd00590 240668 cl17169 354314 -cd12223 240669 cl17169 354314 -cd12224 240670 cl17169 354314 -cd12225 240671 cl17169 354314 -cd12226 240672 cl17169 354314 -cd12227 240673 cl17169 354314 -cd12228 240674 cl17169 354314 -cd12229 240675 cl17169 354314 -cd12230 240676 cl17169 354314 -cd12231 240677 cl17169 354314 -cd12232 240678 cl17169 354314 -cd12233 240679 cl17169 354314 -cd12234 240680 cl17169 354314 -cd12235 240681 cl17169 354314 -cd12236 240682 cl17169 354314 -cd12237 240683 cl17169 354314 -cd12238 240684 cl17169 354314 -cd12239 240685 cl17169 354314 -cd12240 240686 cl17169 354314 -cd12241 240687 cl17169 354314 -cd12242 240688 cl17169 354314 -cd12243 240689 cl17169 354314 -cd12244 240690 cl17169 354314 -cd12245 240691 cl17169 354314 -cd12246 240692 cl17169 354314 -cd12247 240693 cl17169 354314 -cd12248 240694 cl17169 354314 -cd12249 240695 cl17169 354314 -cd12250 240696 cl17169 354314 -cd12251 240697 cl17169 354314 -cd12252 240698 cl17169 354314 -cd12253 240699 cl17169 354314 -cd12254 240700 cl17169 354314 -cd12255 240701 cl17169 354314 -cd12256 240702 cl17169 354314 -cd12257 240703 cl17169 354314 -cd12258 240704 cl17169 354314 -cd12259 240705 cl17169 354314 -cd12260 240706 cl17169 354314 -cd12261 240707 cl17169 354314 -cd12262 240708 cl17169 354314 -cd12263 240709 cl17169 354314 -cd12264 240710 cl17169 354314 -cd12265 240711 cl17169 354314 -cd12266 240712 cl17169 354314 -cd12267 240713 cl17169 354314 -cd12268 240714 cl17169 354314 -cd12269 240715 cl17169 354314 -cd12270 240716 cl17169 354314 -cd12271 240717 cl17169 354314 -cd12272 240718 cl17169 354314 -cd12273 240719 cl17169 354314 -cd12274 240720 cl17169 354314 -cd12275 240721 cl17169 354314 -cd12276 240722 cl17169 354314 -cd12277 240723 cl17169 354314 -cd12278 240724 cl17169 354314 -cd12279 240725 cl17169 354314 -cd12280 240726 cl17169 354314 -cd12281 240727 cl17169 354314 -cd12282 240728 cl17169 354314 -cd12283 240729 cl17169 354314 -cd12284 240730 cl17169 354314 -cd12285 240731 cl17169 354314 -cd12286 240732 cl17169 354314 -cd12287 240733 cl17169 354314 -cd12288 240734 cl17169 354314 -cd12289 240735 cl17169 354314 -cd12290 240736 cl17169 354314 -cd12291 240737 cl17169 354314 -cd12292 240738 cl17169 354314 -cd12293 240739 cl17169 354314 -cd12294 240740 cl17169 354314 -cd12295 240741 cl17169 354314 -cd12296 240742 cl17169 354314 -cd12297 240743 cl17169 354314 -cd12298 240744 cl17169 354314 -cd12299 240745 cl17169 354314 -cd12300 240746 cl17169 354314 -cd12301 240747 cl17169 354314 -cd12302 240748 cl17169 354314 -cd12303 240749 cl17169 354314 -cd12304 240750 cl17169 354314 -cd12305 240751 cl17169 354314 -cd12306 240752 cl17169 354314 -cd12307 240753 cl17169 354314 -cd12308 240754 cl17169 354314 -cd12309 240755 cl17169 354314 -cd12310 240756 cl17169 354314 -cd12311 240757 cl17169 354314 -cd12312 240758 cl17169 354314 -cd12313 240759 cl17169 354314 -cd12314 240760 cl17169 354314 -cd12315 240761 cl17169 354314 -cd12316 240762 cl17169 354314 -cd12317 240763 cl17169 354314 -cd12318 240764 cl17169 354314 -cd12319 240765 cl17169 354314 -cd12320 240766 cl17169 354314 -cd12321 240767 cl17169 354314 -cd12322 240768 cl17169 354314 -cd12323 240769 cl17169 354314 -cd12324 240770 cl17169 354314 -cd12325 240771 cl17169 354314 -cd12326 240772 cl17169 354314 -cd12327 240773 cl17169 354314 -cd12328 240774 cl17169 354314 -cd12329 240775 cl17169 354314 -cd12330 240776 cl17169 354314 -cd12331 240777 cl17169 354314 -cd12332 240778 cl17169 354314 -cd12333 240779 cl17169 354314 -cd12334 240780 cl17169 354314 -cd12335 240781 cl17169 354314 -cd12336 240782 cl17169 354314 -cd12337 240783 cl17169 354314 -cd12338 240784 cl17169 354314 -cd12339 240785 cl17169 354314 -cd12340 240786 cl17169 354314 -cd12341 240787 cl17169 354314 -cd12342 240788 cl17169 354314 -cd12343 240789 cl17169 354314 -cd12344 240790 cl17169 354314 -cd12345 240791 cl17169 354314 -cd12346 240792 cl17169 354314 -cd12347 240793 cl17169 354314 -cd12348 240794 cl17169 354314 -cd12349 240795 cl17169 354314 -cd12350 240796 cl17169 354314 -cd12351 240797 cl17169 354314 -cd12352 240798 cl17169 354314 -cd12353 240799 cl17169 354314 -cd12354 240800 cl17169 354314 -cd12355 240801 cl17169 354314 -cd12356 240802 cl17169 354314 -cd12357 240803 cl17169 354314 -cd12358 240804 cl17169 354314 -cd12359 240805 cl17169 354314 -cd12360 240806 cl17169 354314 -cd12361 240807 cl17169 354314 -cd12362 240808 cl17169 354314 -cd12363 240809 cl17169 354314 -cd12364 240810 cl17169 354314 -cd12365 240811 cl17169 354314 -cd12366 240812 cl17169 354314 -cd12367 240813 cl17169 354314 -cd12368 240814 cl17169 354314 -cd12369 240815 cl17169 354314 -cd12370 240816 cl17169 354314 -cd12371 240817 cl17169 354314 -cd12372 240818 cl17169 354314 -cd12373 240819 cl17169 354314 -cd12374 240820 cl17169 354314 -cd12375 240821 cl17169 354314 -cd12376 240822 cl17169 354314 -cd12377 240823 cl17169 354314 -cd12378 240824 cl17169 354314 -cd12379 240825 cl17169 354314 -cd12380 240826 cl17169 354314 -cd12381 240827 cl17169 354314 -cd12382 240828 cl17169 354314 -cd12383 240829 cl17169 354314 -cd12384 240830 cl17169 354314 -cd12385 240831 cl17169 354314 -cd12386 240832 cl17169 354314 -cd12387 240833 cl17169 354314 -cd12388 240834 cl17169 354314 -cd12389 240835 cl17169 354314 -cd12390 240836 cl17169 354314 -cd12391 240837 cl17169 354314 -cd12392 240838 cl17169 354314 -cd12393 240839 cl17169 354314 -cd12394 240840 cl17169 354314 -cd12395 240841 cl17169 354314 -cd12396 240842 cl17169 354314 -cd12397 240843 cl17169 354314 -cd12398 240844 cl17169 354314 -cd12399 240845 cl17169 354314 -cd12400 240846 cl17169 354314 -cd12401 240847 cl17169 354314 -cd12402 240848 cl17169 354314 -cd12403 240849 cl17169 354314 -cd12404 240850 cl17169 354314 -cd12405 240851 cl17169 354314 -cd12406 240852 cl17169 354314 -cd12407 240853 cl17169 354314 -cd12408 240854 cl17169 354314 -cd12409 240855 cl17169 354314 -cd12410 240856 cl17169 354314 -cd12411 240857 cl17169 354314 -cd12412 240858 cl17169 354314 -cd12413 240859 cl17169 354314 -cd12414 240860 cl17169 354314 -cd12415 240861 cl17169 354314 -cd12416 240862 cl17169 354314 -cd12417 240863 cl17169 354314 -cd12418 240864 cl17169 354314 -cd12419 240865 cl17169 354314 -cd12420 240866 cl17169 354314 -cd12421 240867 cl17169 354314 -cd12422 240868 cl17169 354314 -cd12423 240869 cl17169 354314 -cd12424 240870 cl17169 354314 -cd12425 240871 cl17169 354314 -cd12426 240872 cl17169 354314 -cd12427 240873 cl17169 354314 -cd12428 240874 cl17169 354314 -cd12429 240875 cl17169 354314 -cd12430 240876 cl17169 354314 -cd12431 240877 cl17169 354314 -cd12432 240878 cl17169 354314 -cd12433 240879 cl17169 354314 -cd12434 240880 cl17169 354314 -cd12435 240881 cl17169 354314 -cd12436 240882 cl17169 354314 -cd12437 240883 cl17169 354314 -cd12438 240884 cl17169 354314 -cd12439 240885 cl17169 354314 -cd12440 240886 cl17169 354314 -cd12441 240887 cl17169 354314 -cd12442 240888 cl17169 354314 -cd12443 240889 cl17169 354314 -cd12444 240890 cl17169 354314 -cd12445 240891 cl17169 354314 -cd12446 240892 cl17169 354314 -cd12447 240893 cl17169 354314 -cd12448 240894 cl17169 354314 -cd12449 240895 cl17169 354314 -cd12450 240896 cl17169 354314 -cd12451 240897 cl17169 354314 -cd12452 240898 cl17169 354314 -cd12453 240899 cl17169 354314 -cd12454 240900 cl17169 354314 -cd12455 240901 cl17169 354314 -cd12456 240902 cl17169 354314 -cd12457 240903 cl17169 354314 -cd12458 240904 cl17169 354314 -cd12459 240905 cl17169 354314 -cd12460 240906 cl17169 354314 -cd12461 240907 cl17169 354314 -cd12462 240908 cl17169 354314 -cd12463 240909 cl17169 354314 -cd12464 240910 cl17169 354314 -cd12465 240911 cl17169 354314 -cd12466 240912 cl17169 354314 -cd12467 240913 cl17169 354314 -cd12470 240914 cl17169 354314 -cd12471 240915 cl17169 354314 -cd12472 240916 cl17169 354314 -cd12473 240917 cl17169 354314 -cd12474 240918 cl17169 354314 -cd12475 240919 cl17169 354314 -cd12476 240920 cl17169 354314 -cd12477 240921 cl17169 354314 -cd12478 240922 cl17169 354314 -cd12479 240923 cl17169 354314 -cd12480 240924 cl17169 354314 -cd12481 240925 cl17169 354314 -cd12482 240926 cl17169 354314 -cd12483 240927 cl17169 354314 -cd12484 240928 cl17169 354314 -cd12485 240929 cl17169 354314 -cd12486 240930 cl17169 354314 -cd12487 240931 cl17169 354314 -cd12488 240932 cl17169 354314 -cd12489 240933 cl17169 354314 -cd12490 240934 cl17169 354314 -cd12491 240935 cl17169 354314 -cd12492 240936 cl17169 354314 -cd12493 240937 cl17169 354314 -cd12494 240938 cl17169 354314 -cd12495 240939 cl17169 354314 -cd12496 240940 cl17169 354314 -cd12497 240941 cl17169 354314 -cd12498 240942 cl17169 354314 -cd12499 240943 cl17169 354314 -cd12500 240944 cl17169 354314 -cd12501 240945 cl17169 354314 -cd12502 240946 cl17169 354314 -cd12503 240947 cl17169 354314 -cd12504 240948 cl17169 354314 -cd12505 240949 cl17169 354314 -cd12506 240950 cl17169 354314 -cd12507 240951 cl17169 354314 -cd12508 240952 cl17169 354314 -cd12509 240953 cl17169 354314 -cd12510 240954 cl17169 354314 -cd12511 240955 cl17169 354314 -cd12512 240956 cl17169 354314 -cd12513 240957 cl17169 354314 -cd12514 240958 cl17169 354314 -cd12515 240959 cl17169 354314 -cd12516 240960 cl17169 354314 -cd12517 240961 cl17169 354314 -cd12518 240962 cl17169 354314 -cd12519 240963 cl17169 354314 -cd12520 240964 cl17169 354314 -cd12521 240965 cl17169 354314 -cd12522 240966 cl17169 354314 -cd12523 240967 cl17169 354314 -cd12524 240968 cl17169 354314 -cd12525 240969 cl17169 354314 -cd12526 240970 cl17169 354314 -cd12527 240971 cl17169 354314 -cd12528 240972 cl17169 354314 -cd12529 240973 cl17169 354314 -cd12530 240974 cl17169 354314 -cd12531 240975 cl17169 354314 -cd12532 240976 cl17169 354314 -cd12533 240977 cl17169 354314 -cd12534 240978 cl17169 354314 -cd12535 240979 cl17169 354314 -cd12536 240980 cl17169 354314 -cd12537 240981 cl17169 354314 -cd12538 240982 cl17169 354314 -cd12539 240983 cl17169 354314 -cd12540 240984 cl17169 354314 -cd12541 240985 cl17169 354314 -cd12542 240986 cl17169 354314 -cd12543 240987 cl17169 354314 -cd12544 240988 cl17169 354314 -cd12545 240989 cl17169 354314 -cd12546 240990 cl17169 354314 -cd12547 240991 cl17169 354314 -cd12548 240992 cl17169 354314 -cd12549 240993 cl17169 354314 -cd12550 240994 cl17169 354314 -cd12551 240995 cl17169 354314 -cd12552 240996 cl17169 354314 -cd12553 240997 cl17169 354314 -cd12554 240998 cl17169 354314 -cd12555 240999 cl17169 354314 -cd12556 241000 cl17169 354314 -cd12557 241001 cl17169 354314 -cd12558 241002 cl17169 354314 -cd12559 241003 cl17169 354314 -cd12560 241004 cl17169 354314 -cd12561 241005 cl17169 354314 -cd12562 241006 cl17169 354314 -cd12563 241007 cl17169 354314 -cd12564 241008 cl17169 354314 -cd12565 241009 cl17169 354314 -cd12566 241010 cl17169 354314 -cd12567 241011 cl17169 354314 -cd12568 241012 cl17169 354314 -cd12569 241013 cl17169 354314 -cd12570 241014 cl17169 354314 -cd12571 241015 cl17169 354314 -cd12572 241016 cl17169 354314 -cd12573 241017 cl17169 354314 -cd12574 241018 cl17169 354314 -cd12575 241019 cl17169 354314 -cd12576 241020 cl17169 354314 -cd12577 241021 cl17169 354314 -cd12578 241022 cl17169 354314 -cd12579 241023 cl17169 354314 -cd12580 241024 cl17169 354314 -cd12581 241025 cl17169 354314 -cd12582 241026 cl17169 354314 -cd12583 241027 cl17169 354314 -cd12584 241028 cl17169 354314 -cd12585 241029 cl17169 354314 -cd12586 241030 cl17169 354314 -cd12587 241031 cl17169 354314 -cd12588 241032 cl17169 354314 -cd12589 241033 cl17169 354314 -cd12590 241034 cl17169 354314 -cd12591 241035 cl17169 354314 -cd12592 241036 cl17169 354314 -cd12593 241037 cl17169 354314 -cd12594 241038 cl17169 354314 -cd12595 241039 cl17169 354314 -cd12596 241040 cl17169 354314 -cd12597 241041 cl17169 354314 -cd12598 241042 cl17169 354314 -cd12599 241043 cl17169 354314 -cd12600 241044 cl17169 354314 -cd12601 241045 cl17169 354314 -cd12602 241046 cl17169 354314 -cd12603 241047 cl17169 354314 -cd12604 241048 cl17169 354314 -cd12605 241049 cl17169 354314 -cd12606 241050 cl17169 354314 -cd12607 241051 cl17169 354314 -cd12608 241052 cl17169 354314 -cd12609 241053 cl17169 354314 -cd12610 241054 cl17169 354314 -cd12611 241055 cl17169 354314 -cd12612 241056 cl17169 354314 -cd12613 241057 cl17169 354314 -cd12614 241058 cl17169 354314 -cd12615 241059 cl17169 354314 -cd12616 241060 cl17169 354314 -cd12617 241061 cl17169 354314 -cd12618 241062 cl17169 354314 -cd12619 241063 cl17169 354314 -cd12620 241064 cl17169 354314 -cd12621 241065 cl17169 354314 -cd12622 241066 cl17169 354314 -cd12623 241067 cl17169 354314 -cd12624 241068 cl17169 354314 -cd12625 241069 cl17169 354314 -cd12626 241070 cl17169 354314 -cd12627 241071 cl17169 354314 -cd12628 241072 cl17169 354314 -cd12629 241073 cl17169 354314 -cd12630 241074 cl17169 354314 -cd12631 241075 cl17169 354314 -cd12632 241076 cl17169 354314 -cd12633 241077 cl17169 354314 -cd12634 241078 cl17169 354314 -cd12635 241079 cl17169 354314 -cd12636 241080 cl17169 354314 -cd12637 241081 cl17169 354314 -cd12638 241082 cl17169 354314 -cd12639 241083 cl17169 354314 -cd12640 241084 cl17169 354314 -cd12641 241085 cl17169 354314 -cd12642 241086 cl17169 354314 -cd12643 241087 cl17169 354314 -cd12644 241088 cl17169 354314 -cd12645 241089 cl17169 354314 -cd12646 241090 cl17169 354314 -cd12647 241091 cl17169 354314 -cd12648 241092 cl17169 354314 -cd12649 241093 cl17169 354314 -cd12650 241094 cl17169 354314 -cd12651 241095 cl17169 354314 -cd12652 241096 cl17169 354314 -cd12653 241097 cl17169 354314 -cd12654 241098 cl17169 354314 -cd12655 241099 cl17169 354314 -cd12656 241100 cl17169 354314 -cd12657 241101 cl17169 354314 -cd12658 241102 cl17169 354314 -cd12659 241103 cl17169 354314 -cd12660 241104 cl17169 354314 -cd12661 241105 cl17169 354314 -cd12662 241106 cl17169 354314 -cd12663 241107 cl17169 354314 -cd12664 241108 cl17169 354314 -cd12665 241109 cl17169 354314 -cd12666 241110 cl17169 354314 -cd12667 241111 cl17169 354314 -cd12668 241112 cl17169 354314 -cd12669 241113 cl17169 354314 -cd12670 241114 cl17169 354314 -cd12671 241115 cl17169 354314 -cd12672 241116 cl17169 354314 -cd12673 241117 cl17169 354314 -cd12674 241118 cl17169 354314 -cd12675 241119 cl17169 354314 -cd12676 241120 cl17169 354314 -cd12677 241121 cl17169 354314 -cd12678 241122 cl17169 354314 -cd12679 241123 cl17169 354314 -cd12680 241124 cl17169 354314 -cd12681 241125 cl17169 354314 -cd12682 241126 cl17169 354314 -cd12683 241127 cl17169 354314 -cd12684 241128 cl17169 354314 -cd12685 241129 cl17169 354314 -cd12686 241130 cl17169 354314 -cd12687 241131 cl17169 354314 -cd12688 241132 cl17169 354314 -cd12689 241133 cl17169 354314 -cd12690 241134 cl17169 354314 -cd12691 241135 cl17169 354314 -cd12692 241136 cl17169 354314 -cd12693 241137 cl17169 354314 -cd12694 241138 cl17169 354314 -cd12695 241139 cl17169 354314 -cd12696 241140 cl17169 354314 -cd12697 241141 cl17169 354314 -cd12698 241142 cl17169 354314 -cd12699 241143 cl17169 354314 -cd12700 241144 cl17169 354314 -cd12701 241145 cl17169 354314 -cd12702 241146 cl17169 354314 -cd12703 241147 cl17169 354314 -cd12704 241148 cl17169 354314 -cd12705 241149 cl17169 354314 -cd12706 241150 cl17169 354314 -cd12707 241151 cl17169 354314 -cd12708 241152 cl17169 354314 -cd12709 241153 cl17169 354314 -cd12710 241154 cl17169 354314 -cd12711 241155 cl17169 354314 -cd12712 241156 cl17169 354314 -cd12713 241157 cl17169 354314 -cd12714 241158 cl17169 354314 -cd12715 241159 cl17169 354314 -cd12716 241160 cl17169 354314 -cd12717 241161 cl17169 354314 -cd12718 241162 cl17169 354314 -cd12719 241163 cl17169 354314 -cd12720 241164 cl17169 354314 -cd12721 241165 cl17169 354314 -cd12722 241166 cl17169 354314 -cd12723 241167 cl17169 354314 -cd12724 241168 cl17169 354314 -cd12725 241169 cl17169 354314 -cd12726 241170 cl17169 354314 -cd12727 241171 cl17169 354314 -cd12728 241172 cl17169 354314 -cd12729 241173 cl17169 354314 -cd12730 241174 cl17169 354314 -cd12731 241175 cl17169 354314 -cd12732 241176 cl17169 354314 -cd12733 241177 cl17169 354314 -cd12734 241178 cl17169 354314 -cd12735 241179 cl17169 354314 -cd12736 241180 cl17169 354314 -cd12737 241181 cl17169 354314 -cd12738 241182 cl17169 354314 -cd12739 241183 cl17169 354314 -cd12740 241184 cl17169 354314 -cd12741 241185 cl17169 354314 -cd12742 241186 cl17169 354314 -cd12743 241187 cl17169 354314 -cd12744 241188 cl17169 354314 -cd12745 241189 cl17169 354314 -cd12746 241190 cl17169 354314 -cd12747 241191 cl17169 354314 -cd12748 241192 cl17169 354314 -cd12749 241193 cl17169 354314 -cd12750 241194 cl17169 354314 -cd12751 241195 cl17169 354314 -cd12752 241196 cl17169 354314 -cd12753 241197 cl17169 354314 -cd12754 241198 cl17169 354314 -cd12755 241199 cl17169 354314 -cd12756 241200 cl17169 354314 -cd12757 241201 cl17169 354314 -cd12758 241202 cl17169 354314 -cd12759 241203 cl17169 354314 -cd12760 241204 cl17169 354314 -cd12761 241205 cl17169 354314 -cd12762 241206 cl17169 354314 -cd12763 241207 cl17169 354314 -cd12764 241208 cl17169 354314 -cd12765 241209 cl17169 354314 -cd12766 241210 cl17169 354314 -cd12767 241211 cl17169 354314 -cd12768 241212 cl17169 354314 -cd12769 241213 cl17169 354314 -cd12770 241214 cl17169 354314 -cd12771 241215 cl17169 354314 -cd12772 241216 cl17169 354314 -cd12773 241217 cl17169 354314 -cd12774 241218 cl17169 354314 -cd12775 241219 cl17169 354314 -cd12776 241220 cl17169 354314 -cd12777 241221 cl17169 354314 -cd12778 241222 cl17169 354314 -cd12779 241223 cl17169 354314 -cd12780 241224 cl17169 354314 -cd12781 241225 cl17169 354314 -cd12782 241226 cl17169 354314 -cd12783 241227 cl17169 354314 -cd12784 241228 cl17169 354314 -cd12785 241229 cl17169 354314 -cd12786 241230 cl17169 354314 -cd01217 241252 cl17171 354315 -cd01250 241281 cl17171 354315 -cd01251 241282 cl17171 354315 -cd01262 241293 cl17171 354315 -cd01266 241297 cl17171 354315 -cd01268 241298 cl17171 354315 -cd13164 241318 cl17171 354315 -cd13206 241360 cl17171 354315 -cd13269 241423 cl17171 354315 -cd13278 241432 cl17171 354315 -cd13282 241436 cl17171 354315 -cd13289 241443 cl17171 354315 -cd13290 241444 cl17171 354315 -cd13292 241446 cl17171 354315 -cd13293 241447 cl17171 354315 -cd13294 241448 cl17171 354315 -cd13303 241457 cl17171 354315 -cd13304 241458 cl17171 354315 -cd13321 241475 cl17171 354315 -cd13330 241484 cl17171 354315 -cd13360 241514 cl17171 354315 -cd13370 241521 cl17171 354315 -cd13371 241522 cl17171 354315 -cd13372 241523 cl17171 354315 -cd13378 241529 cl17171 354315 -cd13379 241530 cl17171 354315 -cd13384 241535 cl17171 354315 -pfam00540 249943 pfam00540 249943 -pfam00761 250114 cl28444 333264 -pfam00971 250265 pfam00971 250265 -pfam00978 250270 pfam00978 250270 -pfam01134 250388 cl30496 357372 -pfam01135 250389 pfam01135 250389 -pfam01187 250427 cl00235 350973 -pfam01217 250451 cl02092 261170 -pfam01222 250456 cl21511 328764 -pfam01234 250464 cl17173 354317 -pfam01238 250467 cl21464 354820 -pfam01291 250510 cl21565 328800 -pfam01456 250634 pfam01456 250634 -pfam01518 250679 pfam01518 250679 -pfam01531 250689 cl16914 327355 -pfam01577 250716 cl29696 356572 -pfam01606 250739 pfam01606 250739 -pfam01623 250753 pfam01623 250753 -pfam01733 250824 cl15430 353943 -pfam01762 250845 cl21608 354888 -pfam01785 250863 pfam01785 250863 -pfam01816 250888 pfam01816 250888 -pfam01983 251014 cl11394 353239 -pfam02008 251032 pfam02008 251032 -pfam02013 251036 cl21682 272102 -pfam02053 251060 pfam02053 251060 -pfam02084 251078 pfam02084 251078 -pfam02102 251087 cl03449 322303 -pfam02114 251094 pfam02114 251094 -pfam02133 251109 cl00456 320982 -pfam02248 251180 pfam02248 251180 -pfam02544 251363 cl21511 328764 -pfam02550 251367 cl00339 351040 -pfam02552 251369 cl22435 354938 -pfam02630 251433 cl00388 351069 -pfam02638 251441 cl29077 355953 -pfam02914 251616 cl21549 354865 -pfam02949 251636 pfam02949 251636 -pfam02957 251643 pfam02957 251643 -pfam02977 251652 pfam02977 251652 -pfam03053 251695 pfam03053 251695 -pfam03058 251699 pfam03058 251699 -pfam03078 251715 pfam03078 251715 -pfam03125 251743 pfam03125 251743 -pfam03215 251803 pfam03215 251803 -pfam03225 251809 pfam03225 251809 -pfam03229 251813 pfam03229 251813 -pfam03231 251815 pfam03231 251815 -pfam03233 251817 pfam03233 251817 -pfam03239 251822 cl00475 320993 -pfam03310 251863 pfam03310 251863 -pfam03383 251914 pfam03383 251914 -pfam03391 251920 pfam03391 251920 -pfam03470 251981 pfam03470 251981 -pfam03599 252048 cl00219 350959 -pfam03656 252088 cl02542 351794 -pfam03803 252175 cl02043 321781 -pfam03851 252205 cl23721 355019 -pfam03921 252248 pfam03921 252248 -pfam03973 252288 cl21528 354854 -pfam04110 252381 cl28922 355798 -pfam04124 252394 cl19297 354407 -pfam04385 252557 pfam04385 252557 -pfam04554 252669 pfam04554 252669 -pfam04564 252675 cl17238 354325 -pfam04595 252691 cl28439 333259 -pfam04662 252728 pfam04662 252728 -pfam04672 252734 cl17173 354317 -pfam04702 252749 pfam04702 252749 -pfam04733 252768 pfam04733 252768 -pfam04764 252787 pfam04764 252787 -pfam04841 252829 pfam04841 252829 -pfam04864 252841 cl18945 354370 -pfam04908 252868 cl00388 351069 -pfam05007 252941 cl21590 354882 -pfam05029 252956 pfam05029 252956 -pfam05055 252976 cl21731 304525 -pfam05067 252986 cl00264 350992 -pfam05079 252995 pfam05079 252995 -pfam05086 252996 pfam05086 252996 -pfam05097 253004 pfam05097 253004 -pfam05148 253044 cl17173 354317 -pfam05163 253054 cl21506 354845 -pfam05215 253093 pfam05215 253093 -pfam05219 253097 cl17173 354317 -pfam05278 253129 pfam05278 253129 -pfam05294 253137 pfam05294 253137 -pfam05295 253138 pfam05295 253138 -pfam05311 253146 pfam05311 253146 -pfam05318 253150 pfam05318 253150 -pfam05371 253168 cl28438 333258 -pfam05375 253170 pfam05375 253170 -pfam05403 253181 cl05127 352320 -pfam05416 253185 cl28040 332861 -pfam05463 253205 cl21545 354864 -pfam05518 253234 pfam05518 253234 -pfam05541 253243 pfam05541 253243 -pfam05549 253247 pfam05549 253247 -pfam05579 253263 pfam05579 253263 -pfam05642 253298 pfam05642 253298 -pfam05677 253315 cl21494 354836 -pfam05732 253356 cl21459 354815 -pfam05770 253378 cl17255 354326 -pfam05787 253386 cl23843 305000 -pfam05804 253396 pfam05804 253396 -pfam05919 253459 pfam05919 253459 -pfam06040 253527 pfam06040 253527 -pfam06053 253538 pfam06053 253538 -pfam06080 253548 cl17173 354317 -pfam06182 253605 cl21474 354826 -pfam06281 253656 cl11632 271727 -pfam06286 253659 pfam06286 253659 -pfam06307 253668 pfam06307 253668 -pfam06357 253691 pfam06357 253691 -pfam06456 253740 cl12013 353336 -pfam06495 253769 pfam06495 253769 -pfam06501 253772 pfam06501 253772 -pfam06598 253815 pfam06598 253815 -pfam06636 253836 pfam06636 253836 -pfam06990 254007 cl22970 354989 -pfam07021 254024 cl17173 354317 -pfam07112 254061 pfam07112 254061 -pfam07116 254062 pfam07116 254062 -pfam07134 254068 pfam07134 254068 -pfam07146 254076 pfam07146 254076 -pfam07172 254089 pfam07172 254089 -pfam07224 254111 cl21494 354836 -pfam07247 254122 cl23853 355073 -pfam07253 254125 pfam07253 254125 -pfam07296 254144 cl11652 264457 -pfam07368 254173 cl11961 353326 -pfam07387 254182 pfam07387 254182 -pfam07394 254185 cl19855 268208 -pfam07404 254188 pfam07404 254188 -pfam07490 254231 pfam07490 254231 -pfam07638 254323 pfam07638 254323 -pfam07666 254342 pfam07666 254342 -pfam07692 254362 pfam07692 254362 -pfam07734 254394 cl23987 329218 -pfam07750 254404 cl11564 264424 -pfam07757 254409 pfam07757 254409 -pfam07832 254458 pfam07832 254458 -pfam07921 254516 cl28126 332947 -pfam07936 254527 pfam07936 254527 -pfam07961 254545 cl09208 324342 -pfam08023 254589 pfam08023 254589 -pfam08050 254601 pfam08050 254601 -pfam08088 254615 pfam08088 254615 -pfam08131 254625 pfam08131 254625 -pfam08228 254674 pfam08228 254674 -pfam08259 254691 pfam08259 254691 -pfam08357 254756 cl23749 355033 -pfam08396 254775 pfam08396 254775 -pfam08488 254827 pfam08488 254827 -pfam08538 254864 cl21494 354836 -pfam08605 254915 pfam08605 254915 -pfam08762 255023 pfam08762 255023 -pfam08823 255058 pfam08823 255058 -pfam08933 255115 cl21721 328869 -pfam09067 255160 cl21522 354851 -pfam09105 255184 pfam09105 255184 -pfam09125 255195 pfam09125 255195 -pfam09628 255461 pfam09628 255461 -pfam09635 255464 cl02776 351885 -pfam09636 255465 pfam09636 255465 -pfam09874 255617 cl01648 261026 -pfam09987 255677 cl00724 260590 -pfam10274 255872 pfam10274 255872 -pfam10320 255903 cl21561 354872 -pfam10422 255978 pfam10422 255978 -pfam10455 256002 cl12013 353336 -pfam10789 256166 pfam10789 256166 -pfam11133 256308 pfam11133 256308 -pfam11472 256473 pfam11472 256473 -pfam11912 256719 pfam11912 256719 -pfam12596 257152 pfam12596 257152 -pfam12731 257256 pfam12731 257256 -pfam14519 258659 cl00019 320715 -pfam14588 258726 cl10015 299145 -pfam14639 258777 cl21482 354829 -pfam14651 258789 cl21528 354854 -pfam14756 258893 pfam14756 258893 -pfam14855 258992 pfam14855 258992 -pfam14859 258996 pfam14859 258996 -pfam14866 259003 pfam14866 259003 -pfam15196 259330 pfam15196 259330 -pfam15222 259356 pfam15222 259356 -pfam15269 259402 pfam15269 259402 -pfam15270 259403 pfam15270 259403 -pfam15278 259411 pfam15278 259411 -pfam15354 259486 pfam15354 259486 -pfam15457 259588 pfam15457 259588 -pfam15500 259631 pfam15500 259631 -pfam15522 259653 pfam15522 259653 -pfam15564 259695 pfam15564 259695 -pfam15568 259699 pfam15568 259699 -pfam15638 259768 pfam15638 259768 -cd00656 259791 cl02609 351823 -cd10507 259792 cl02609 351823 -cd10508 259793 cl02609 351823 -cd10509 259794 cl02609 351823 -cd10511 259795 cl02609 351823 -cd13749 259796 cl02609 351823 -cd02106 259797 cl19107 354381 -cd03399 259798 cl19107 354381 -cd03401 259799 cl19107 354381 -cd03402 259800 cl19107 354381 -cd03403 259801 cl19107 354381 -cd03404 259802 cl19107 354381 -cd03405 259803 cl19107 354381 -cd03406 259804 cl19107 354381 -cd03407 259805 cl19107 354381 -cd03408 259806 cl19107 354381 -cd08825 259807 cl19107 354381 -cd08826 259808 cl19107 354381 -cd08827 259809 cl19107 354381 -cd08828 259810 cl19107 354381 -cd08829 259811 cl19107 354381 -cd13434 259812 cl19107 354381 -cd13435 259813 cl19107 354381 -cd13436 259814 cl19107 354381 -cd13437 259815 cl19107 354381 -cd13438 259816 cl19107 354381 -cd13775 259817 cl19107 354381 -cd07347 259818 cl11968 325148 -cd07353 259819 cl11968 325148 -cd07354 259820 cl11968 325148 -cd07355 259821 cl11968 325148 -cd07356 259822 cl11968 325148 -cd07357 259823 cl11968 325148 -cd07358 259824 cl11968 325148 -cd13516 259825 cl11968 325148 -cd13932 259826 cl11968 325148 -cd13933 259827 cl11968 325148 -cd07980 259828 cl02122 321815 -cd08368 259829 cl02475 351770 -cd09336 259830 cl02475 351770 -cd13404 259831 cl03519 352008 -cd13428 259832 cl03519 352008 -cd13429 259833 cl03519 352008 -cd13747 259834 cl03519 352008 -cd13442 259835 cd13442 259835 -cd13443 259836 cd13443 259836 -cd13444 259837 cd13444 259837 -cd13445 259838 cl06338 352503 -cd13746 259839 cl19111 302764 -cd13748 259840 cd13748 259840 -cd13768 259841 cl04961 352293 -cd13769 259842 cl21509 328763 -cd00399 259843 cl19114 327504 -cd01435 259844 cl19114 327504 -cd01609 259845 cl19114 327504 -cd02582 259846 cl19114 327504 -cd02583 259847 cl19114 327504 -cd02733 259848 cl19114 327504 -cd10506 259849 cl19114 327504 -cd00475 259850 cl00230 350969 -cd00569 259851 cl21459 354815 -cd00591 259852 cl00257 350986 -cd13831 259853 cl00257 350986 -cd13832 259854 cl00257 350986 -cd13833 259855 cl00257 350986 -cd13834 259856 cl00257 350986 -cd13835 259857 cl00257 350986 -cd13836 259858 cl00257 350986 -cd14435 259859 cl00257 350986 -cd00920 259860 cl19115 354382 -cd02675 259861 cl19115 354382 -cd04199 259862 cl19115 354382 -cd04200 259863 cl19115 354382 -cd04201 259864 cl19115 354382 -cd04202 259865 cl19115 354382 -cd04203 259866 cl19115 354382 -cd04204 259867 cl19115 354382 -cd04205 259868 cl19115 354382 -cd04206 259869 cl19115 354382 -cd04207 259870 cl19115 354382 -cd04208 259871 cl19115 354382 -cd04210 259872 cl19115 354382 -cd04211 259873 cl19115 354382 -cd04212 259874 cl19115 354382 -cd04213 259875 cl19115 354382 -cd04214 259876 cl19115 354382 -cd04215 259877 cl19115 354382 -cd04216 259878 cl19115 354382 -cd04217 259879 cl19115 354382 -cd04218 259880 cl19115 354382 -cd04219 259881 cl19115 354382 -cd04220 259882 cl19115 354382 -cd04221 259883 cl19115 354382 -cd04222 259884 cl19115 354382 -cd04223 259885 cl19115 354382 -cd04224 259886 cl19115 354382 -cd04225 259887 cl19115 354382 -cd04226 259888 cl19115 354382 -cd04227 259889 cl19115 354382 -cd04228 259890 cl19115 354382 -cd04229 259891 cl19115 354382 -cd04230 259892 cl19115 354382 -cd04231 259893 cl19115 354382 -cd04232 259894 cl19115 354382 -cd04233 259895 cl19115 354382 -cd10425 259896 cl19115 354382 -cd10426 259897 cl19115 354382 -cd11012 259898 cl19115 354382 -cd11013 259899 cl19115 354382 -cd11014 259900 cl19115 354382 -cd11015 259901 cl19115 354382 -cd11016 259902 cl19115 354382 -cd11017 259903 cl19115 354382 -cd11018 259904 cl19115 354382 -cd11019 259905 cl19115 354382 -cd11020 259906 cl19115 354382 -cd11021 259907 cl19115 354382 -cd11022 259908 cl19115 354382 -cd11023 259909 cl19115 354382 -cd11024 259910 cl19115 354382 -cd13842 259911 cl19115 354382 -cd13843 259912 cl19115 354382 -cd13844 259913 cl19115 354382 -cd13845 259914 cl19115 354382 -cd13846 259915 cl19115 354382 -cd13847 259916 cl19115 354382 -cd13848 259917 cl19115 354382 -cd13849 259918 cl19115 354382 -cd13850 259919 cl19115 354382 -cd13851 259920 cl19115 354382 -cd13852 259921 cl19115 354382 -cd13853 259922 cl19115 354382 -cd13854 259923 cl19115 354382 -cd13855 259924 cl19115 354382 -cd13856 259925 cl19115 354382 -cd13857 259926 cl19115 354382 -cd13858 259927 cl19115 354382 -cd13859 259928 cl19115 354382 -cd13860 259929 cl19115 354382 -cd13861 259930 cl19115 354382 -cd13862 259931 cl19115 354382 -cd13864 259932 cl19115 354382 -cd13865 259933 cl19115 354382 -cd13866 259934 cl19115 354382 -cd13867 259935 cl19115 354382 -cd13868 259936 cl19115 354382 -cd13869 259937 cl19115 354382 -cd13870 259938 cl19115 354382 -cd13871 259939 cl19115 354382 -cd13872 259940 cl19115 354382 -cd13873 259941 cl19115 354382 -cd13874 259942 cl19115 354382 -cd13875 259943 cl19115 354382 -cd13876 259944 cl19115 354382 -cd13877 259945 cl19115 354382 -cd13879 259946 cl19115 354382 -cd13880 259947 cl19115 354382 -cd13881 259948 cl19115 354382 -cd13882 259949 cl19115 354382 -cd13883 259950 cl19115 354382 -cd13884 259951 cl19115 354382 -cd13885 259952 cl19115 354382 -cd13886 259953 cl19115 354382 -cd13887 259954 cl19115 354382 -cd13888 259955 cl19115 354382 -cd13889 259956 cl19115 354382 -cd13890 259957 cl19115 354382 -cd13891 259958 cl19115 354382 -cd13892 259959 cl19115 354382 -cd13893 259960 cl19115 354382 -cd13894 259961 cl19115 354382 -cd13895 259962 cl19115 354382 -cd13896 259963 cl19115 354382 -cd13897 259964 cl19115 354382 -cd13898 259965 cl19115 354382 -cd13899 259966 cl19115 354382 -cd13900 259967 cl19115 354382 -cd13901 259968 cl19115 354382 -cd13902 259969 cl19115 354382 -cd13903 259970 cl19115 354382 -cd13904 259971 cl19115 354382 -cd13905 259972 cl19115 354382 -cd13906 259973 cl19115 354382 -cd13907 259974 cl19115 354382 -cd13908 259975 cl19115 354382 -cd13909 259976 cl19115 354382 -cd13910 259977 cl19115 354382 -cd13911 259978 cl19115 354382 -cd13912 259979 cl19115 354382 -cd13913 259980 cl19115 354382 -cd13914 259981 cl19115 354382 -cd13915 259982 cl19115 354382 -cd13916 259983 cl19115 354382 -cd13917 259984 cl19115 354382 -cd13918 259985 cl19115 354382 -cd13919 259986 cl19115 354382 -cd13920 259987 cl19115 354382 -cd13921 259988 cl19115 354382 -cd13922 259989 cl19115 354382 -cd14448 259990 cl19115 354382 -cd14449 259991 cl19115 354382 -cd14450 259992 cl19115 354382 -cd14451 259993 cl19115 354382 -cd14452 259994 cl19115 354382 -cd14453 259995 cl19115 354382 -cd14454 259996 cl19115 354382 -cd14455 259997 cl19115 354382 -cd06222 259998 cl14782 353835 -cd06266 259999 cl14782 353835 -cd06590 260000 cl14782 353835 -cd07180 260001 cl14782 353835 -cd07181 260002 cl14782 353835 -cd07182 260003 cl14782 353835 -cd09272 260004 cl14782 353835 -cd09273 260005 cl14782 353835 -cd09274 260006 cl14782 353835 -cd09275 260007 cl14782 353835 -cd09276 260008 cl14782 353835 -cd09277 260009 cl14782 353835 -cd09278 260010 cl14782 353835 -cd09279 260011 cl14782 353835 -cd09280 260012 cl14782 353835 -cd13838 260013 cl14782 353835 -cd13934 260014 cl14782 353835 -cd13935 260015 cl14782 353835 -cd00045 260016 cl14633 353817 -cd01670 260017 cl14633 353817 -cd01671 260018 cl14633 353817 -cd08305 260019 cl14633 353817 -cd08306 260020 cl14633 353817 -cd08307 260021 cl14633 353817 -cd08308 260022 cl14633 353817 -cd08309 260023 cl14633 353817 -cd08310 260024 cl14633 353817 -cd08311 260025 cl14633 353817 -cd08312 260026 cl14633 353817 -cd08315 260027 cl14633 353817 -cd08316 260028 cl14633 353817 -cd08317 260029 cl14633 353817 -cd08318 260030 cl14633 353817 -cd08319 260031 cl14633 353817 -cd08320 260032 cl14633 353817 -cd08321 260033 cl14633 353817 -cd08323 260034 cl14633 353817 -cd08324 260035 cl14633 353817 -cd08325 260036 cl14633 353817 -cd08327 260037 cl14633 353817 -cd08329 260038 cl14633 353817 -cd08330 260039 cl14633 353817 -cd08332 260040 cl14633 353817 -cd08333 260041 cl14633 353817 -cd08334 260042 cl14633 353817 -cd08336 260043 cl14633 353817 -cd08337 260044 cl14633 353817 -cd08338 260045 cl14633 353817 -cd08340 260046 cl14633 353817 -cd08341 260047 cl14633 353817 -cd08777 260048 cl14633 353817 -cd08779 260049 cl14633 353817 -cd08780 260050 cl14633 353817 -cd08781 260051 cl14633 353817 -cd08782 260052 cl14633 353817 -cd08783 260053 cl14633 353817 -cd08784 260054 cl14633 353817 -cd08785 260055 cl14633 353817 -cd08788 260056 cl14633 353817 -cd08789 260057 cl14633 353817 -cd08790 260058 cl14633 353817 -cd08792 260059 cl14633 353817 -cd08793 260060 cl14633 353817 -cd08794 260061 cl14633 353817 -cd08796 260062 cl14633 353817 -cd08797 260063 cl14633 353817 -cd08799 260064 cl14633 353817 -cd08800 260065 cl14633 353817 -cd08804 260066 cl14633 353817 -cd08805 260067 cl14633 353817 -cd08806 260068 cl14633 353817 -cd08807 260069 cl14633 353817 -cd08808 260070 cl14633 353817 -cd08809 260071 cl14633 353817 -cd08810 260072 cl14633 353817 -cd08811 260073 cl14633 353817 -cd08814 260074 cl14633 353817 -cd08816 260075 cl14633 353817 -cd08817 260076 cl14633 353817 -cd08818 260077 cl14633 353817 -cd08819 260078 cl14633 353817 -cd13785 260079 cl14633 353817 -cd08523 260080 cl14606 326327 -cd08544 260081 cl14606 326327 -cd08545 260082 cl14606 326327 -cd08546 260083 cl14606 326327 -cd08547 260084 cl14606 326327 -cd08548 260085 cl14606 326327 -cd08759 260086 cl14606 326327 -cd12930 260087 cl03906 352081 -cd14230 260088 cl03906 352081 -cd14231 260089 cl03906 352081 -cd14232 260090 cl03906 352081 -cd14233 260091 cl03906 352081 -cd14234 260092 cl03906 352081 -cd14235 260093 cl03906 352081 -cd14236 260094 cl03906 352081 -cd14237 260095 cl03906 352081 -cd14238 260096 cl03906 352081 -cd14239 260097 cl03906 352081 -cd14240 260098 cl03906 352081 -cd13777 260099 cd13777 260099 -cd13778 260100 cd13778 260100 -cd13783 260101 cd13783 260101 -cd13784 260102 cl22765 354955 -cd13839 260103 cd13839 260103 -cd13840 260104 cl19120 327506 -cd13841 260105 cl19121 354383 -cd13929 260106 cl19121 354383 -cd13930 260107 cl19121 354383 -cd13931 260108 cl19121 354383 -cd14243 260109 cl19121 354383 -cd13936 260110 cl19122 354384 -cd13937 260111 cl19122 354384 -cd13938 260112 cl19122 354384 -cd13939 260113 cl19122 354384 -cd13940 260114 cl19122 354384 -cd13941 260115 cl19122 354384 -cd13944 260116 cl19123 354385 -cd13945 260117 cl12761 325507 -cd13946 260118 cl11748 275955 -cd13956 260119 cl00337 351038 -cd13957 260120 cl00337 351038 -cd13958 260121 cl00337 351038 -cd13959 260122 cl00337 351038 -cd13960 260123 cl00337 351038 -cd13961 260124 cl00337 351038 -cd13962 260125 cl00337 351038 -cd13963 260126 cl00337 351038 -cd13964 260127 cl00337 351038 -cd13965 260128 cl00337 351038 -cd13966 260129 cl00337 351038 -cd13967 260130 cl00337 351038 -cd14241 260131 cl01382 321472 -cd14263 260132 cl00526 351135 -cd14264 260133 cl00526 351135 -cd14265 260134 cl00526 351135 -cd14266 260135 cl00526 351135 -cd14803 269812 cl05743 323172 -cd14806 269813 cl05743 323172 -cd14807 269814 cl05743 323172 -cd14808 269815 cl05743 323172 -cd14793 269816 cl21600 328821 -cd14794 269817 cl21600 328821 -cd14795 269818 cl21600 328821 -cd14796 269819 cl21600 328821 -cd14797 269820 cl21600 328821 -cd14671 269821 cl21497 354839 -cd14737 269822 cl21497 354839 -cd14738 269823 cl21497 354839 -cd14739 269824 cl21497 354839 -cd14740 269825 cl21497 354839 -cd14741 269826 cl21497 354839 -cd14742 269827 cl21497 354839 -cd14743 269828 cl21497 354839 -cd14744 269829 cl21497 354839 -cd14730 269830 cl21638 272058 -cd14731 269831 cl21638 272058 -cd14732 269832 cl21638 272058 -cd12193 269833 cl21462 354818 -cd14686 269834 cl21462 354818 -cd14687 269835 cl21462 354818 -cd14688 269836 cl21462 354818 -cd14689 269837 cl21462 354818 -cd14690 269838 cl21462 354818 -cd14691 269839 cl21462 354818 -cd14692 269840 cl21462 354818 -cd14693 269841 cl21462 354818 -cd14694 269842 cl21462 354818 -cd14695 269843 cl21462 354818 -cd14696 269844 cl21462 354818 -cd14697 269845 cl21462 354818 -cd14698 269846 cl21462 354818 -cd14699 269847 cl21462 354818 -cd14700 269848 cl21462 354818 -cd14701 269849 cl21462 354818 -cd14702 269850 cl21462 354818 -cd14703 269851 cl21462 354818 -cd14704 269852 cl21462 354818 -cd14705 269853 cl21462 354818 -cd14706 269854 cl21462 354818 -cd14707 269855 cl21462 354818 -cd14708 269856 cl21462 354818 -cd14709 269857 cl21462 354818 -cd14710 269858 cl21462 354818 -cd14711 269859 cl21462 354818 -cd14712 269860 cl21462 354818 -cd14713 269861 cl21462 354818 -cd14714 269862 cl21462 354818 -cd14715 269863 cl21462 354818 -cd14716 269864 cl21462 354818 -cd14717 269865 cl21462 354818 -cd14718 269866 cl21462 354818 -cd14719 269867 cl21462 354818 -cd14720 269868 cl21462 354818 -cd14721 269869 cl21462 354818 -cd14722 269870 cl21462 354818 -cd14809 269871 cl21462 354818 -cd14810 269872 cl21462 354818 -cd14811 269873 cl21462 354818 -cd14812 269874 cl21462 354818 -cd14813 269875 cl21462 354818 -cd06589 269876 cl29077 355953 -cd06591 269877 cl29077 355953 -cd06592 269878 cl29077 355953 -cd06593 269879 cl29077 355953 -cd06594 269880 cl29077 355953 -cd06595 269881 cl29077 355953 -cd06596 269882 cl29077 355953 -cd06597 269883 cl29077 355953 -cd06598 269884 cl29077 355953 -cd06599 269885 cl29077 355953 -cd06600 269886 cl29077 355953 -cd06601 269887 cl29077 355953 -cd06602 269888 cl29077 355953 -cd06603 269889 cl29077 355953 -cd06604 269890 cl29077 355953 -cd14790 269891 cl29077 355953 -cd14791 269892 cl29077 355953 -cd14792 269893 cl29077 355953 -cd14447 269894 cl21499 354841 -cd14474 269895 cl21499 354841 -cd14475 269896 cl21499 354841 -cd14476 269897 cl21499 354841 -cd14477 269898 cl21499 354841 -cd14478 269899 cl21499 354841 -cd14479 269900 cl21499 354841 -cd14480 269901 cl21499 354841 -cd14481 269902 cl21499 354841 -cd14482 269903 cl21499 354841 -cd14483 269904 cl21499 354841 -cd14484 269905 cl21499 354841 -cd00835 269907 cl17171 354315 -cd00837 269909 cl17171 354315 -cd00934 269911 cl17171 354315 -cd01202 269913 cl17171 354315 -cd01203 269914 cl17171 354315 -cd01204 269915 cl17171 354315 -cd01205 269916 cl17171 354315 -cd01206 269917 cl17171 354315 -cd01207 269918 cl17171 354315 -cd01208 269919 cl17171 354315 -cd01209 269920 cl17171 354315 -cd01210 269921 cl17171 354315 -cd01211 269922 cl17171 354315 -cd01212 269923 cl17171 354315 -cd01213 269924 cl17171 354315 -cd01214 269925 cl17171 354315 -cd01215 269926 cl17171 354315 -cd01218 269927 cl17171 354315 -cd01220 269928 cl17171 354315 -cd01221 269929 cl17171 354315 -cd01223 269930 cl17171 354315 -cd01224 269931 cl17171 354315 -cd01225 269932 cl17171 354315 -cd01226 269933 cl17171 354315 -cd01227 269934 cl17171 354315 -cd01228 269935 cl17171 354315 -cd01229 269936 cl17171 354315 -cd01230 269937 cl17171 354315 -cd01231 269938 cl17171 354315 -cd01233 269939 cl17171 354315 -cd01234 269940 cl17171 354315 -cd01235 269941 cl17171 354315 -cd01236 269942 cl17171 354315 -cd01237 269943 cl17171 354315 -cd01238 269944 cl17171 354315 -cd01239 269945 cl17171 354315 -cd01240 269946 cl17171 354315 -cd01241 269947 cl17171 354315 -cd01242 269948 cl17171 354315 -cd01243 269949 cl17171 354315 -cd01244 269950 cl17171 354315 -cd01247 269951 cl17171 354315 -cd01248 269952 cl17171 354315 -cd01249 269953 cl17171 354315 -cd01252 269954 cl17171 354315 -cd01253 269955 cl17171 354315 -cd01254 269956 cl17171 354315 -cd01255 269957 cl17171 354315 -cd01256 269958 cl17171 354315 -cd01257 269959 cl17171 354315 -cd01258 269960 cl17171 354315 -cd01259 269961 cl17171 354315 -cd01260 269962 cl17171 354315 -cd01261 269963 cl17171 354315 -cd01263 269964 cl17171 354315 -cd01264 269965 cl17171 354315 -cd01265 269966 cl17171 354315 -cd01269 269967 cl17171 354315 -cd01270 269968 cl17171 354315 -cd01271 269969 cl17171 354315 -cd01272 269970 cl17171 354315 -cd01273 269971 cl17171 354315 -cd01274 269972 cl17171 354315 -cd10569 269973 cl17171 354315 -cd10571 269975 cl17171 354315 -cd10572 269976 cl17171 354315 -cd10573 269977 cl17171 354315 -cd10574 269978 cl17171 354315 -cd13157 269979 cl17171 354315 -cd13158 269980 cl17171 354315 -cd13159 269981 cl17171 354315 -cd13160 269982 cl17171 354315 -cd13161 269983 cl17171 354315 -cd13162 269984 cl17171 354315 -cd13163 269985 cl17171 354315 -cd13165 269986 cl17171 354315 -cd13166 269987 cl17171 354315 -cd13167 269988 cl17171 354315 -cd13168 269989 cl17171 354315 -cd13169 269990 cl17171 354315 -cd13170 269991 cl17171 354315 -cd13171 269992 cl17171 354315 -cd13172 269993 cl17171 354315 -cd13173 269994 cl17171 354315 -cd13174 269995 cl17171 354315 -cd13175 269996 cl17171 354315 -cd13176 269997 cl17171 354315 -cd13177 269998 cl17171 354315 -cd13178 269999 cl17171 354315 -cd13179 270000 cl17171 354315 -cd13180 270001 cl17171 354315 -cd13181 270002 cl17171 354315 -cd13182 270003 cl17171 354315 -cd13183 270004 cl17171 354315 -cd13184 270005 cl17171 354315 -cd13185 270006 cl17171 354315 -cd13186 270007 cl17171 354315 -cd13187 270008 cl17171 354315 -cd13188 270009 cl17171 354315 -cd13189 270010 cl17171 354315 -cd13190 270011 cl17171 354315 -cd13191 270012 cl17171 354315 -cd13192 270013 cl17171 354315 -cd13193 270014 cl17171 354315 -cd13194 270015 cl17171 354315 -cd13195 270016 cl17171 354315 -cd13197 270018 cl17171 354315 -cd13198 270019 cl17171 354315 -cd13199 270020 cl17171 354315 -cd13200 270021 cl17171 354315 -cd13201 270022 cl17171 354315 -cd13202 270023 cl17171 354315 -cd13203 270024 cl17171 354315 -cd13204 270025 cl17171 354315 -cd13205 270026 cl17171 354315 -cd13210 270030 cl17171 354315 -cd13219 270039 cl17171 354315 -cd13221 270041 cl17171 354315 -cd13222 270042 cl17171 354315 -cd13224 270044 cl17171 354315 -cd13225 270045 cl17171 354315 -cd13228 270048 cl17171 354315 -cd13229 270049 cl17171 354315 -cd13230 270050 cl17171 354315 -cd13231 270051 cl17171 354315 -cd13232 270052 cl17171 354315 -cd13233 270053 cl17171 354315 -cd13234 270054 cl17171 354315 -cd13235 270055 cl17171 354315 -cd13236 270056 cl17171 354315 -cd13237 270057 cl17171 354315 -cd13238 270058 cl17171 354315 -cd13239 270059 cl17171 354315 -cd13240 270060 cl17171 354315 -cd13241 270061 cl17171 354315 -cd13242 270062 cl17171 354315 -cd13243 270063 cl17171 354315 -cd13244 270064 cl17171 354315 -cd13245 270065 cl17171 354315 -cd13246 270066 cl17171 354315 -cd13247 270067 cl17171 354315 -cd13248 270068 cl17171 354315 -cd13249 270069 cl17171 354315 -cd13250 270070 cl17171 354315 -cd13251 270071 cl17171 354315 -cd13252 270072 cl17171 354315 -cd13253 270073 cl17171 354315 -cd13254 270074 cl17171 354315 -cd13255 270075 cl17171 354315 -cd13256 270076 cl17171 354315 -cd13257 270077 cl17171 354315 -cd13258 270078 cl17171 354315 -cd13259 270079 cl17171 354315 -cd13260 270080 cl17171 354315 -cd13261 270081 cl17171 354315 -cd13262 270082 cl17171 354315 -cd13263 270083 cl17171 354315 -cd13264 270084 cl17171 354315 -cd13265 270085 cl17171 354315 -cd13266 270086 cl17171 354315 -cd13267 270087 cl17171 354315 -cd13268 270088 cl17171 354315 -cd13270 270089 cl17171 354315 -cd13271 270090 cl17171 354315 -cd13272 270091 cl17171 354315 -cd13273 270092 cl17171 354315 -cd13274 270093 cl17171 354315 -cd13275 270094 cl17171 354315 -cd13276 270095 cl17171 354315 -cd13277 270096 cl17171 354315 -cd13279 270097 cl17171 354315 -cd13280 270098 cl17171 354315 -cd13281 270099 cl17171 354315 -cd13283 270100 cl17171 354315 -cd13284 270101 cl17171 354315 -cd13285 270102 cl17171 354315 -cd13286 270103 cl17171 354315 -cd13287 270104 cl17171 354315 -cd13288 270105 cl17171 354315 -cd13291 270106 cl17171 354315 -cd13295 270107 cl17171 354315 -cd13296 270108 cl17171 354315 -cd13297 270109 cl17171 354315 -cd13298 270110 cl17171 354315 -cd13299 270111 cl17171 354315 -cd13300 270112 cl17171 354315 -cd13301 270113 cl17171 354315 -cd13302 270114 cl17171 354315 -cd13305 270115 cl17171 354315 -cd13306 270116 cl17171 354315 -cd13307 270117 cl17171 354315 -cd13308 270118 cl17171 354315 -cd13309 270119 cl17171 354315 -cd13310 270120 cl17171 354315 -cd13311 270121 cl17171 354315 -cd13312 270122 cl17171 354315 -cd13313 270123 cl17171 354315 -cd13314 270124 cl17171 354315 -cd13315 270125 cl17171 354315 -cd13316 270126 cl17171 354315 -cd13317 270127 cl17171 354315 -cd13318 270128 cl17171 354315 -cd13319 270129 cl17171 354315 -cd13320 270130 cl17171 354315 -cd13322 270131 cl17171 354315 -cd13323 270132 cl17171 354315 -cd13324 270133 cl17171 354315 -cd13325 270134 cl17171 354315 -cd13326 270135 cl17171 354315 -cd13327 270136 cl17171 354315 -cd13331 270139 cl17171 354315 -cd13333 270141 cl17171 354315 -cd13337 270145 cl17171 354315 -cd13338 270146 cl17171 354315 -cd13341 270149 cl17171 354315 -cd13342 270150 cl17171 354315 -cd13343 270151 cl17171 354315 -cd13344 270152 cl17171 354315 -cd13345 270153 cl17171 354315 -cd13346 270154 cl17171 354315 -cd13349 270156 cl17171 354315 -cd13352 270159 cl17171 354315 -cd13353 270160 cl17171 354315 -cd13354 270161 cl17171 354315 -cd13355 270162 cl17171 354315 -cd13356 270163 cl17171 354315 -cd13357 270164 cl17171 354315 -cd13358 270165 cl17171 354315 -cd13359 270166 cl17171 354315 -cd13361 270167 cl17171 354315 -cd13362 270168 cl17171 354315 -cd13363 270169 cl17171 354315 -cd13364 270170 cl17171 354315 -cd13365 270171 cl17171 354315 -cd13366 270172 cl17171 354315 -cd13367 270173 cl17171 354315 -cd13368 270174 cl17171 354315 -cd13369 270175 cl17171 354315 -cd13373 270176 cl17171 354315 -cd13374 270177 cl17171 354315 -cd13375 270178 cl17171 354315 -cd13376 270179 cl17171 354315 -cd13380 270180 cl17171 354315 -cd13381 270181 cl17171 354315 -cd13382 270182 cl17171 354315 -cd13383 270183 cl17171 354315 -cd13385 270184 cl17171 354315 -cd14673 270192 cl17171 354315 -cd14674 270193 cl17171 354315 -cd14675 270194 cl17171 354315 -cd14676 270195 cl17171 354315 -cd14677 270196 cl17171 354315 -cd14678 270197 cl17171 354315 -cd14681 270200 cl17171 354315 -cd14682 270201 cl17171 354315 -cd14683 270202 cl17171 354315 -cd14684 270203 cl17171 354315 -cd14685 270204 cl17171 354315 -cd14439 270205 cl16774 327252 -cd14440 270206 cl16774 327252 -cd14441 270207 cl16774 327252 -cd14442 270208 cl16774 327252 -cd14443 270209 cl16774 327252 -cd14444 270210 cl16774 327252 -cd14785 270211 cl15414 326573 -cd14752 270212 cl16409 354105 -cd00494 270213 cl21456 354813 -cd00648 270214 cl21456 354813 -cd00993 270215 cl21456 354813 -cd00994 270216 cl21456 354813 -cd00996 270217 cl21456 354813 -cd00997 270218 cl21456 354813 -cd00998 270219 cl21456 354813 -cd00999 270220 cl21456 354813 -cd01000 270221 cl21456 354813 -cd01001 270222 cl21456 354813 -cd01002 270223 cl21456 354813 -cd01003 270224 cl21456 354813 -cd01004 270225 cl21456 354813 -cd01005 270226 cl21456 354813 -cd01006 270227 cl21456 354813 -cd01007 270228 cl21456 354813 -cd01008 270229 cl21456 354813 -cd01009 270230 cl21456 354813 -cd01069 270231 cl21456 354813 -cd01071 270232 cl21456 354813 -cd01072 270233 cl21456 354813 -cd07012 270234 cl21456 354813 -cd13517 270235 cl21456 354813 -cd13518 270236 cl21456 354813 -cd13519 270237 cl21456 354813 -cd13520 270238 cl21456 354813 -cd13521 270239 cl21456 354813 -cd13522 270240 cl21456 354813 -cd13523 270241 cl21456 354813 -cd13524 270242 cl21456 354813 -cd13525 270243 cl21456 354813 -cd13526 270244 cl21456 354813 -cd13527 270245 cl21456 354813 -cd13528 270246 cl21456 354813 -cd13529 270247 cl21456 354813 -cd13530 270248 cl21456 354813 -cd13531 270249 cl21456 354813 -cd13532 270250 cl21456 354813 -cd13533 270251 cl21456 354813 -cd13534 270252 cl21456 354813 -cd13535 270253 cl21456 354813 -cd13536 270254 cl21456 354813 -cd13537 270255 cl21456 354813 -cd13538 270256 cl21456 354813 -cd13539 270257 cl21456 354813 -cd13540 270258 cl21456 354813 -cd13541 270259 cl21456 354813 -cd13542 270260 cl21456 354813 -cd13543 270261 cl21456 354813 -cd13544 270262 cl21456 354813 -cd13545 270263 cl21456 354813 -cd13546 270264 cl21456 354813 -cd13547 270265 cl21456 354813 -cd13548 270266 cl21456 354813 -cd13549 270267 cl21456 354813 -cd13550 270268 cl21456 354813 -cd13551 270269 cl21456 354813 -cd13552 270270 cl21456 354813 -cd13553 270271 cl21456 354813 -cd13554 270272 cl21456 354813 -cd13555 270273 cl21456 354813 -cd13556 270274 cl21456 354813 -cd13557 270275 cl21456 354813 -cd13558 270276 cl21456 354813 -cd13559 270277 cl21456 354813 -cd13560 270278 cl21456 354813 -cd13561 270279 cl21456 354813 -cd13562 270280 cl21456 354813 -cd13563 270281 cl21456 354813 -cd13564 270282 cl21456 354813 -cd13565 270283 cl21456 354813 -cd13566 270284 cl21456 354813 -cd13567 270285 cl21456 354813 -cd13568 270286 cl21456 354813 -cd13569 270287 cl21456 354813 -cd13570 270288 cl21456 354813 -cd13571 270289 cl21456 354813 -cd13572 270290 cl21456 354813 -cd13573 270291 cl21456 354813 -cd13574 270292 cl21456 354813 -cd13575 270293 cl21456 354813 -cd13576 270294 cl21456 354813 -cd13577 270295 cl21456 354813 -cd13578 270296 cl21456 354813 -cd13579 270297 cl21456 354813 -cd13580 270298 cl21456 354813 -cd13581 270299 cl21456 354813 -cd13582 270300 cl21456 354813 -cd13583 270301 cl21456 354813 -cd13584 270302 cl21456 354813 -cd13585 270303 cl21456 354813 -cd13586 270304 cl21456 354813 -cd13587 270305 cl21456 354813 -cd13588 270306 cl21456 354813 -cd13589 270307 cl21456 354813 -cd13590 270308 cl21456 354813 -cd13591 270309 cl21456 354813 -cd13592 270310 cl21456 354813 -cd13593 270311 cl21456 354813 -cd13594 270312 cl21456 354813 -cd13595 270313 cl21456 354813 -cd13596 270314 cl21456 354813 -cd13597 270315 cl21456 354813 -cd13598 270316 cl21456 354813 -cd13599 270317 cl21456 354813 -cd13600 270318 cl21456 354813 -cd13601 270319 cl21456 354813 -cd13602 270320 cl21456 354813 -cd13603 270321 cl21456 354813 -cd13604 270322 cl21456 354813 -cd13605 270323 cl21456 354813 -cd13606 270324 cl21456 354813 -cd13607 270325 cl21456 354813 -cd13608 270326 cl21456 354813 -cd13609 270327 cl21456 354813 -cd13610 270328 cl21456 354813 -cd13611 270329 cl21456 354813 -cd13612 270330 cl21456 354813 -cd13613 270331 cl21456 354813 -cd13614 270332 cl21456 354813 -cd13615 270333 cl21456 354813 -cd13616 270334 cl21456 354813 -cd13617 270335 cl21456 354813 -cd13618 270336 cl21456 354813 -cd13619 270337 cl21456 354813 -cd13620 270338 cl21456 354813 -cd13621 270339 cl21456 354813 -cd13622 270340 cl21456 354813 -cd13623 270341 cl21456 354813 -cd13624 270342 cl21456 354813 -cd13625 270343 cl21456 354813 -cd13626 270344 cl21456 354813 -cd13627 270345 cl21456 354813 -cd13628 270346 cl21456 354813 -cd13629 270347 cl21456 354813 -cd13630 270348 cl21456 354813 -cd13631 270349 cl21456 354813 -cd13632 270350 cl21456 354813 -cd13633 270351 cl21456 354813 -cd13634 270352 cl21456 354813 -cd13635 270353 cl21456 354813 -cd13636 270354 cl21456 354813 -cd13637 270355 cl21456 354813 -cd13638 270356 cl21456 354813 -cd13639 270357 cl21456 354813 -cd13640 270358 cl21456 354813 -cd13641 270359 cl21456 354813 -cd13642 270360 cl21456 354813 -cd13643 270361 cl21456 354813 -cd13644 270362 cl21456 354813 -cd13645 270363 cl21456 354813 -cd13646 270364 cl21456 354813 -cd13647 270365 cl21456 354813 -cd13648 270366 cl21456 354813 -cd13649 270367 cl21456 354813 -cd13650 270368 cl21456 354813 -cd13651 270369 cl21456 354813 -cd13652 270370 cl21456 354813 -cd13653 270371 cl21456 354813 -cd13654 270372 cl21456 354813 -cd13655 270373 cl21456 354813 -cd13656 270374 cl21456 354813 -cd13657 270375 cl21456 354813 -cd13658 270376 cl21456 354813 -cd13659 270377 cl21456 354813 -cd13660 270378 cl21456 354813 -cd13661 270379 cl21456 354813 -cd13662 270380 cl21456 354813 -cd13663 270381 cl21456 354813 -cd13664 270382 cl21456 354813 -cd13665 270383 cl21456 354813 -cd13666 270384 cl21456 354813 -cd13667 270385 cl21456 354813 -cd13668 270386 cl21456 354813 -cd13669 270387 cl21456 354813 -cd13670 270388 cl21456 354813 -cd13671 270389 cl21456 354813 -cd13672 270390 cl21456 354813 -cd13673 270391 cl21456 354813 -cd13674 270392 cl21456 354813 -cd13675 270393 cl21456 354813 -cd13676 270394 cl21456 354813 -cd13677 270395 cl21456 354813 -cd13678 270396 cl21456 354813 -cd13679 270397 cl21456 354813 -cd13680 270398 cl21456 354813 -cd13681 270399 cl21456 354813 -cd13682 270400 cl21456 354813 -cd13683 270401 cl21456 354813 -cd13684 270402 cl21456 354813 -cd13685 270403 cl21456 354813 -cd13686 270404 cl21456 354813 -cd13687 270405 cl21456 354813 -cd13688 270406 cl21456 354813 -cd13689 270407 cl21456 354813 -cd13690 270408 cl21456 354813 -cd13691 270409 cl21456 354813 -cd13692 270410 cl21456 354813 -cd13693 270411 cl21456 354813 -cd13694 270412 cl21456 354813 -cd13695 270413 cl21456 354813 -cd13696 270414 cl21456 354813 -cd13697 270415 cl21456 354813 -cd13698 270416 cl21456 354813 -cd13699 270417 cl21456 354813 -cd13700 270418 cl21456 354813 -cd13701 270419 cl21456 354813 -cd13702 270420 cl21456 354813 -cd13703 270421 cl21456 354813 -cd13704 270422 cl21456 354813 -cd13705 270423 cl21456 354813 -cd13706 270424 cl21456 354813 -cd13707 270425 cl21456 354813 -cd13708 270426 cl21456 354813 -cd13709 270427 cl21456 354813 -cd13710 270428 cl21456 354813 -cd13711 270429 cl21456 354813 -cd13712 270430 cl21456 354813 -cd13713 270431 cl21456 354813 -cd13714 270432 cl21456 354813 -cd13715 270433 cl21456 354813 -cd13716 270434 cl21456 354813 -cd13717 270435 cl21456 354813 -cd13718 270436 cl21456 354813 -cd13719 270437 cl21456 354813 -cd13720 270438 cl21456 354813 -cd13721 270439 cl21456 354813 -cd13722 270440 cl21456 354813 -cd13723 270441 cl21456 354813 -cd13724 270442 cl21456 354813 -cd13725 270443 cl21456 354813 -cd13726 270444 cl21456 354813 -cd13727 270445 cl21456 354813 -cd13728 270446 cl21456 354813 -cd13729 270447 cl21456 354813 -cd13730 270448 cl21456 354813 -cd13731 270449 cl21456 354813 -cd14747 270450 cl21456 354813 -cd14748 270451 cl21456 354813 -cd14749 270452 cl21456 354813 -cd14750 270453 cl21456 354813 -cd14751 270454 cl21456 354813 -cd00194 270455 cl21463 354819 -cd14270 270456 cl21463 354819 -cd14271 270457 cl21463 354819 -cd14272 270458 cl21463 354819 -cd14273 270459 cl21463 354819 -cd14274 270460 cl21463 354819 -cd14275 270461 cl21463 354819 -cd14276 270462 cl21463 354819 -cd14277 270463 cl21463 354819 -cd14278 270464 cl21463 354819 -cd14279 270465 cl21463 354819 -cd14280 270466 cl21463 354819 -cd14281 270467 cl21463 354819 -cd14282 270468 cl21463 354819 -cd14283 270469 cl21463 354819 -cd14284 270470 cl21463 354819 -cd14285 270471 cl21463 354819 -cd14286 270472 cl21463 354819 -cd14287 270473 cl21463 354819 -cd14288 270474 cl21463 354819 -cd14289 270475 cl21463 354819 -cd14290 270476 cl21463 354819 -cd14291 270477 cl21463 354819 -cd14292 270478 cl21463 354819 -cd14293 270479 cl21463 354819 -cd14294 270480 cl21463 354819 -cd14295 270481 cl21463 354819 -cd14296 270482 cl21463 354819 -cd14297 270483 cl21463 354819 -cd14298 270484 cl21463 354819 -cd14300 270485 cl21463 354819 -cd14301 270486 cl21463 354819 -cd14302 270487 cl21463 354819 -cd14303 270488 cl21463 354819 -cd14304 270489 cl21463 354819 -cd14305 270490 cl21463 354819 -cd14306 270491 cl21463 354819 -cd14307 270492 cl21463 354819 -cd14308 270493 cl21463 354819 -cd14309 270494 cl21463 354819 -cd14310 270495 cl21463 354819 -cd14311 270496 cl21463 354819 -cd14312 270497 cl21463 354819 -cd14313 270498 cl21463 354819 -cd14314 270499 cl21463 354819 -cd14315 270500 cl21463 354819 -cd14316 270501 cl21463 354819 -cd14317 270502 cl21463 354819 -cd14318 270503 cl21463 354819 -cd14319 270504 cl21463 354819 -cd14320 270505 cl21463 354819 -cd14321 270506 cl21463 354819 -cd14322 270507 cl21463 354819 -cd14323 270508 cl21463 354819 -cd14324 270509 cl21463 354819 -cd14325 270510 cl21463 354819 -cd14326 270511 cl21463 354819 -cd14327 270512 cl21463 354819 -cd14328 270513 cl21463 354819 -cd14329 270514 cl21463 354819 -cd14330 270515 cl21463 354819 -cd14331 270516 cl21463 354819 -cd14332 270517 cl21463 354819 -cd14333 270518 cl21463 354819 -cd14334 270519 cl21463 354819 -cd14335 270520 cl21463 354819 -cd14336 270521 cl21463 354819 -cd14337 270522 cl21463 354819 -cd14338 270523 cl21463 354819 -cd14339 270524 cl21463 354819 -cd14340 270525 cl21463 354819 -cd14341 270526 cl21463 354819 -cd14342 270527 cl21463 354819 -cd14343 270528 cl21463 354819 -cd14344 270529 cl21463 354819 -cd14345 270530 cl21463 354819 -cd14346 270531 cl21463 354819 -cd14347 270532 cl21463 354819 -cd14348 270533 cl21463 354819 -cd14349 270534 cl21463 354819 -cd14350 270535 cl21463 354819 -cd14351 270536 cl21463 354819 -cd14352 270537 cl21463 354819 -cd14353 270538 cl21463 354819 -cd14354 270539 cl21463 354819 -cd14355 270540 cl21463 354819 -cd14358 270541 cl21463 354819 -cd14359 270542 cl21463 354819 -cd14360 270543 cl21463 354819 -cd14361 270544 cl21463 354819 -cd14362 270545 cl21463 354819 -cd14363 270546 cl21463 354819 -cd14364 270547 cl21463 354819 -cd14365 270548 cl21463 354819 -cd14366 270549 cl21463 354819 -cd14367 270550 cl21463 354819 -cd14368 270551 cl21463 354819 -cd14369 270552 cl21463 354819 -cd14370 270553 cl21463 354819 -cd14371 270554 cl21463 354819 -cd14372 270555 cl21463 354819 -cd14373 270556 cl21463 354819 -cd14374 270557 cl21463 354819 -cd14375 270558 cl21463 354819 -cd14376 270559 cl21463 354819 -cd14377 270560 cl21463 354819 -cd14378 270561 cl21463 354819 -cd14379 270562 cl21463 354819 -cd14380 270563 cl21463 354819 -cd14381 270564 cl21463 354819 -cd14382 270565 cl21463 354819 -cd14383 270566 cl21463 354819 -cd14384 270567 cl21463 354819 -cd14385 270568 cl21463 354819 -cd14386 270569 cl21463 354819 -cd14387 270570 cl21463 354819 -cd14388 270571 cl21463 354819 -cd14389 270572 cl21463 354819 -cd14390 270573 cl21463 354819 -cd14391 270574 cl21463 354819 -cd14392 270575 cl21463 354819 -cd14393 270576 cl21463 354819 -cd14394 270577 cl21463 354819 -cd14395 270578 cl21463 354819 -cd14396 270579 cl21463 354819 -cd14397 270580 cl21463 354819 -cd14398 270581 cl21463 354819 -cd14399 270582 cl21463 354819 -cd14400 270583 cl21463 354819 -cd14401 270584 cl21463 354819 -cd14402 270585 cl21463 354819 -cd14403 270586 cl21463 354819 -cd14404 270587 cl21463 354819 -cd14405 270588 cl21463 354819 -cd14406 270589 cl21463 354819 -cd14407 270590 cl21463 354819 -cd14408 270591 cl21463 354819 -cd14409 270592 cl21463 354819 -cd14410 270593 cl21463 354819 -cd14411 270594 cl21463 354819 -cd14412 270595 cl21463 354819 -cd14413 270596 cl21463 354819 -cd14414 270597 cl21463 354819 -cd14415 270598 cl21463 354819 -cd14416 270599 cl21463 354819 -cd14417 270600 cl21463 354819 -cd14418 270601 cl21463 354819 -cd14419 270602 cl21463 354819 -cd14420 270603 cl21463 354819 -cd14421 270604 cl21463 354819 -cd14422 270605 cl21463 354819 -cd14423 270606 cl21463 354819 -cd14424 270607 cl21463 354819 -cd14425 270608 cl21463 354819 -cd14426 270609 cl21463 354819 -cd14427 270610 cl21463 354819 -cd14428 270611 cl21463 354819 -cd14672 270612 cl21463 354819 -cd14745 270613 cl29077 355953 -cd14670 270614 cd14670 270614 -cd14472 270615 cl08398 352886 -cd14668 270616 cl08398 352886 -cd14669 270617 cl08398 352886 -cd14485 270618 cl01439 321505 -cd14486 270619 cl01439 321505 -cd14667 270620 cl01439 321505 -cd00142 270621 cl21453 354810 -cd00180 270622 cl21453 354810 -cd00192 270623 cl21453 354810 -cd00891 270624 cl21453 354810 -cd00892 270625 cl21453 354810 -cd00893 270626 cl21453 354810 -cd00894 270627 cl21453 354810 -cd00896 270628 cl21453 354810 -cd05033 270629 cl21453 354810 -cd05034 270630 cl21453 354810 -cd05035 270631 cl21453 354810 -cd05036 270632 cl21453 354810 -cd05037 270633 cl21453 354810 -cd05038 270634 cl21453 354810 -cd05039 270635 cl21453 354810 -cd05040 270636 cl21453 354810 -cd05041 270637 cl21453 354810 -cd05042 270638 cl21453 354810 -cd05043 270639 cl21453 354810 -cd05044 270640 cl21453 354810 -cd05047 270641 cl21453 354810 -cd05048 270642 cl21453 354810 -cd05049 270643 cl21453 354810 -cd05051 270644 cl21453 354810 -cd05052 270645 cl21453 354810 -cd05053 270646 cl21453 354810 -cd05054 270647 cl21453 354810 -cd05057 270648 cl21453 354810 -cd05058 270649 cl21453 354810 -cd05060 270650 cl21453 354810 -cd05066 270651 cl21453 354810 -cd05067 270652 cl21453 354810 -cd05068 270653 cl21453 354810 -cd05069 270654 cl21453 354810 -cd05070 270655 cl21453 354810 -cd05071 270656 cl21453 354810 -cd05072 270657 cl21453 354810 -cd05073 270658 cl21453 354810 -cd05074 270659 cl21453 354810 -cd05075 270660 cl21453 354810 -cd05076 270661 cl21453 354810 -cd05077 270662 cl21453 354810 -cd05078 270663 cl21453 354810 -cd05080 270664 cl21453 354810 -cd05081 270665 cl21453 354810 -cd05083 270666 cl21453 354810 -cd05084 270667 cl21453 354810 -cd05085 270668 cl21453 354810 -cd05086 270669 cl21453 354810 -cd05087 270670 cl21453 354810 -cd05089 270671 cl21453 354810 -cd05090 270672 cl21453 354810 -cd05091 270673 cl21453 354810 -cd05092 270674 cl21453 354810 -cd05093 270675 cl21453 354810 -cd05094 270676 cl21453 354810 -cd05095 270677 cl21453 354810 -cd05098 270678 cl21453 354810 -cd05101 270679 cl21453 354810 -cd05102 270680 cl21453 354810 -cd05103 270681 cl21453 354810 -cd05104 270682 cl21453 354810 -cd05108 270683 cl21453 354810 -cd05109 270684 cl21453 354810 -cd05114 270685 cl21453 354810 -cd05115 270686 cl21453 354810 -cd05117 270687 cl21453 354810 -cd05118 270688 cl21453 354810 -cd05119 270689 cl21453 354810 -cd05120 270690 cl21453 354810 -cd05121 270691 cl21453 354810 -cd05122 270692 cl21453 354810 -cd05123 270693 cl21453 354810 -cd05124 270694 cl21453 354810 -cd05144 270695 cl21453 354810 -cd05145 270696 cl21453 354810 -cd05146 270697 cl21453 354810 -cd05147 270698 cl21453 354810 -cd05150 270699 cl21453 354810 -cd05151 270700 cl21453 354810 -cd05152 270701 cl21453 354810 -cd05153 270702 cl21453 354810 -cd05154 270703 cl21453 354810 -cd05155 270704 cl21453 354810 -cd05156 270705 cl21453 354810 -cd05157 270706 cl21453 354810 -cd05163 270707 cl21453 354810 -cd05164 270708 cl21453 354810 -cd05165 270709 cl21453 354810 -cd05166 270710 cl21453 354810 -cd05167 270711 cl21453 354810 -cd05168 270712 cl21453 354810 -cd05169 270713 cl21453 354810 -cd05170 270714 cl21453 354810 -cd05171 270715 cl21453 354810 -cd05172 270716 cl21453 354810 -cd05173 270717 cl21453 354810 -cd05174 270718 cl21453 354810 -cd05175 270719 cl21453 354810 -cd05176 270720 cl21453 354810 -cd05177 270721 cl21453 354810 -cd05570 270722 cl21453 354810 -cd05571 270723 cl21453 354810 -cd05572 270724 cl21453 354810 -cd05573 270725 cl21453 354810 -cd05574 270726 cl21453 354810 -cd05575 270727 cl21453 354810 -cd05576 270728 cl21453 354810 -cd05577 270729 cl21453 354810 -cd05578 270730 cl21453 354810 -cd05579 270731 cl21453 354810 -cd05580 270732 cl21453 354810 -cd05581 270733 cl21453 354810 -cd05582 270734 cl21453 354810 -cd05583 270735 cl21453 354810 -cd05584 270736 cl21453 354810 -cd05585 270737 cl21453 354810 -cd05586 270738 cl21453 354810 -cd05587 270739 cl21453 354810 -cd05588 270740 cl21453 354810 -cd05589 270741 cl21453 354810 -cd05590 270742 cl21453 354810 -cd05591 270743 cl21453 354810 -cd05592 270744 cl21453 354810 -cd05593 270745 cl21453 354810 -cd05594 270746 cl21453 354810 -cd05596 270747 cl21453 354810 -cd05597 270748 cl21453 354810 -cd05598 270749 cl21453 354810 -cd05599 270750 cl21453 354810 -cd05600 270751 cl21453 354810 -cd05601 270752 cl21453 354810 -cd05602 270753 cl21453 354810 -cd05603 270754 cl21453 354810 -cd05604 270755 cl21453 354810 -cd05605 270756 cl21453 354810 -cd05606 270757 cl21453 354810 -cd05607 270758 cl21453 354810 -cd05608 270759 cl21453 354810 -cd05609 270760 cl21453 354810 -cd05610 270761 cl21453 354810 -cd05611 270762 cl21453 354810 -cd05612 270763 cl21453 354810 -cd05613 270764 cl21453 354810 -cd05614 270765 cl21453 354810 -cd05615 270766 cl21453 354810 -cd05616 270767 cl21453 354810 -cd05617 270768 cl21453 354810 -cd05618 270769 cl21453 354810 -cd05619 270770 cl21453 354810 -cd05621 270771 cl21453 354810 -cd05622 270772 cl21453 354810 -cd05623 270773 cl21453 354810 -cd05624 270774 cl21453 354810 -cd05625 270775 cl21453 354810 -cd05627 270776 cl21453 354810 -cd05628 270777 cl21453 354810 -cd05629 270778 cl21453 354810 -cd05630 270779 cl21453 354810 -cd05632 270780 cl21453 354810 -cd05633 270781 cl21453 354810 -cd06605 270782 cl21453 354810 -cd06606 270783 cl21453 354810 -cd06607 270784 cl21453 354810 -cd06608 270785 cl21453 354810 -cd06609 270786 cl21453 354810 -cd06610 270787 cl21453 354810 -cd06613 270788 cl21453 354810 -cd06614 270789 cl21453 354810 -cd06616 270790 cl21453 354810 -cd06618 270791 cl21453 354810 -cd06620 270792 cl21453 354810 -cd06621 270793 cl21453 354810 -cd06624 270794 cl21453 354810 -cd06625 270795 cl21453 354810 -cd06626 270796 cl21453 354810 -cd06627 270797 cl21453 354810 -cd06628 270798 cl21453 354810 -cd06629 270799 cl21453 354810 -cd06630 270800 cl21453 354810 -cd06631 270801 cl21453 354810 -cd06632 270802 cl21453 354810 -cd06633 270803 cl21453 354810 -cd06634 270804 cl21453 354810 -cd06635 270805 cl21453 354810 -cd06636 270806 cl21453 354810 -cd06637 270807 cl21453 354810 -cd06639 270808 cl21453 354810 -cd06641 270809 cl21453 354810 -cd06642 270810 cl21453 354810 -cd06643 270811 cl21453 354810 -cd06645 270812 cl21453 354810 -cd06646 270813 cl21453 354810 -cd06647 270814 cl21453 354810 -cd06648 270815 cl21453 354810 -cd06650 270816 cl21453 354810 -cd06651 270817 cl21453 354810 -cd06652 270818 cl21453 354810 -cd06653 270819 cl21453 354810 -cd06654 270820 cl21453 354810 -cd06659 270821 cl21453 354810 -cd06917 270822 cl21453 354810 -cd07829 270823 cl21453 354810 -cd07830 270824 cl21453 354810 -cd07831 270825 cl21453 354810 -cd07832 270826 cl21453 354810 -cd07833 270827 cl21453 354810 -cd07834 270828 cl21453 354810 -cd07835 270829 cl21453 354810 -cd07837 270830 cl21453 354810 -cd07838 270831 cl21453 354810 -cd07840 270832 cl21453 354810 -cd07841 270833 cl21453 354810 -cd07842 270834 cl21453 354810 -cd07844 270835 cl21453 354810 -cd07846 270836 cl21453 354810 -cd07847 270837 cl21453 354810 -cd07848 270838 cl21453 354810 -cd07849 270839 cl21453 354810 -cd07850 270840 cl21453 354810 -cd07852 270841 cl21453 354810 -cd07855 270842 cl21453 354810 -cd07856 270843 cl21453 354810 -cd07860 270844 cl21453 354810 -cd07861 270845 cl21453 354810 -cd07862 270846 cl21453 354810 -cd07864 270847 cl21453 354810 -cd07865 270848 cl21453 354810 -cd07866 270849 cl21453 354810 -cd07867 270850 cl21453 354810 -cd07868 270851 cl21453 354810 -cd07870 270852 cl21453 354810 -cd07871 270853 cl21453 354810 -cd07873 270854 cl21453 354810 -cd08215 270855 cl21453 354810 -cd08216 270856 cl21453 354810 -cd08217 270857 cl21453 354810 -cd08218 270858 cl21453 354810 -cd08220 270859 cl21453 354810 -cd08221 270860 cl21453 354810 -cd08222 270861 cl21453 354810 -cd08223 270862 cl21453 354810 -cd08224 270863 cl21453 354810 -cd08226 270864 cl21453 354810 -cd08228 270865 cl21453 354810 -cd08229 270866 cl21453 354810 -cd08528 270867 cl21453 354810 -cd08529 270868 cl21453 354810 -cd08530 270869 cl21453 354810 -cd13968 270870 cl21453 354810 -cd13969 270871 cl21453 354810 -cd13970 270872 cl21453 354810 -cd13971 270873 cl21453 354810 -cd13972 270874 cl21453 354810 -cd13973 270875 cl21453 354810 -cd13974 270876 cl21453 354810 -cd13975 270877 cl21453 354810 -cd13976 270878 cl21453 354810 -cd13977 270879 cl21453 354810 -cd13978 270880 cl21453 354810 -cd13979 270881 cl21453 354810 -cd13980 270882 cl21453 354810 -cd13981 270883 cl21453 354810 -cd13982 270884 cl21453 354810 -cd13983 270885 cl21453 354810 -cd13984 270886 cl21453 354810 -cd13985 270887 cl21453 354810 -cd13986 270888 cl21453 354810 -cd13987 270889 cl21453 354810 -cd13988 270890 cl21453 354810 -cd13989 270891 cl21453 354810 -cd13990 270892 cl21453 354810 -cd13991 270893 cl21453 354810 -cd13992 270894 cl21453 354810 -cd13993 270895 cl21453 354810 -cd13994 270896 cl21453 354810 -cd13995 270897 cl21453 354810 -cd13996 270898 cl21453 354810 -cd13997 270899 cl21453 354810 -cd13998 270900 cl21453 354810 -cd13999 270901 cl21453 354810 -cd14000 270902 cl21453 354810 -cd14001 270903 cl21453 354810 -cd14002 270904 cl21453 354810 -cd14003 270905 cl21453 354810 -cd14004 270906 cl21453 354810 -cd14005 270907 cl21453 354810 -cd14006 270908 cl21453 354810 -cd14007 270909 cl21453 354810 -cd14008 270910 cl21453 354810 -cd14009 270911 cl21453 354810 -cd14010 270912 cl21453 354810 -cd14011 270913 cl21453 354810 -cd14012 270914 cl21453 354810 -cd14013 270915 cl21453 354810 -cd14014 270916 cl21453 354810 -cd14015 270917 cl21453 354810 -cd14016 270918 cl21453 354810 -cd14017 270919 cl21453 354810 -cd14018 270920 cl21453 354810 -cd14019 270921 cl21453 354810 -cd14020 270922 cl21453 354810 -cd14021 270923 cl21453 354810 -cd14022 270924 cl21453 354810 -cd14023 270925 cl21453 354810 -cd14024 270926 cl21453 354810 -cd14025 270927 cl21453 354810 -cd14026 270928 cl21453 354810 -cd14027 270929 cl21453 354810 -cd14028 270930 cl21453 354810 -cd14029 270931 cl21453 354810 -cd14030 270932 cl21453 354810 -cd14031 270933 cl21453 354810 -cd14032 270934 cl21453 354810 -cd14033 270935 cl21453 354810 -cd14034 270936 cl21453 354810 -cd14035 270937 cl21453 354810 -cd14036 270938 cl21453 354810 -cd14037 270939 cl21453 354810 -cd14038 270940 cl21453 354810 -cd14039 270941 cl21453 354810 -cd14040 270942 cl21453 354810 -cd14041 270943 cl21453 354810 -cd14042 270944 cl21453 354810 -cd14043 270945 cl21453 354810 -cd14044 270946 cl21453 354810 -cd14045 270947 cl21453 354810 -cd14046 270948 cl21453 354810 -cd14047 270949 cl21453 354810 -cd14048 270950 cl21453 354810 -cd14049 270951 cl21453 354810 -cd14050 270952 cl21453 354810 -cd14051 270953 cl21453 354810 -cd14052 270954 cl21453 354810 -cd14053 270955 cl21453 354810 -cd14054 270956 cl21453 354810 -cd14055 270957 cl21453 354810 -cd14056 270958 cl21453 354810 -cd14057 270959 cl21453 354810 -cd14058 270960 cl21453 354810 -cd14059 270961 cl21453 354810 -cd14060 270962 cl21453 354810 -cd14061 270963 cl21453 354810 -cd14062 270964 cl21453 354810 -cd14063 270965 cl21453 354810 -cd14064 270966 cl21453 354810 -cd14065 270967 cl21453 354810 -cd14066 270968 cl21453 354810 -cd14067 270969 cl21453 354810 -cd14068 270970 cl21453 354810 -cd14069 270971 cl21453 354810 -cd14070 270972 cl21453 354810 -cd14071 270973 cl21453 354810 -cd14072 270974 cl21453 354810 -cd14073 270975 cl21453 354810 -cd14074 270976 cl21453 354810 -cd14075 270977 cl21453 354810 -cd14076 270978 cl21453 354810 -cd14077 270979 cl21453 354810 -cd14078 270980 cl21453 354810 -cd14079 270981 cl21453 354810 -cd14080 270982 cl21453 354810 -cd14081 270983 cl21453 354810 -cd14082 270984 cl21453 354810 -cd14083 270985 cl21453 354810 -cd14084 270986 cl21453 354810 -cd14085 270987 cl21453 354810 -cd14086 270988 cl21453 354810 -cd14087 270989 cl21453 354810 -cd14088 270990 cl21453 354810 -cd14089 270991 cl21453 354810 -cd14090 270992 cl21453 354810 -cd14091 270993 cl21453 354810 -cd14092 270994 cl21453 354810 -cd14093 270995 cl21453 354810 -cd14094 270996 cl21453 354810 -cd14095 270997 cl21453 354810 -cd14096 270998 cl21453 354810 -cd14097 270999 cl21453 354810 -cd14098 271000 cl21453 354810 -cd14099 271001 cl21453 354810 -cd14100 271002 cl21453 354810 -cd14101 271003 cl21453 354810 -cd14102 271004 cl21453 354810 -cd14103 271005 cl21453 354810 -cd14104 271006 cl21453 354810 -cd14105 271007 cl21453 354810 -cd14106 271008 cl21453 354810 -cd14107 271009 cl21453 354810 -cd14108 271010 cl21453 354810 -cd14109 271011 cl21453 354810 -cd14110 271012 cl21453 354810 -cd14111 271013 cl21453 354810 -cd14112 271014 cl21453 354810 -cd14113 271015 cl21453 354810 -cd14114 271016 cl21453 354810 -cd14115 271017 cl21453 354810 -cd14116 271018 cl21453 354810 -cd14117 271019 cl21453 354810 -cd14118 271020 cl21453 354810 -cd14119 271021 cl21453 354810 -cd14120 271022 cl21453 354810 -cd14121 271023 cl21453 354810 -cd14122 271024 cl21453 354810 -cd14123 271025 cl21453 354810 -cd14124 271026 cl21453 354810 -cd14125 271027 cl21453 354810 -cd14126 271028 cl21453 354810 -cd14127 271029 cl21453 354810 -cd14128 271030 cl21453 354810 -cd14129 271031 cl21453 354810 -cd14130 271032 cl21453 354810 -cd14131 271033 cl21453 354810 -cd14132 271034 cl21453 354810 -cd14133 271035 cl21453 354810 -cd14134 271036 cl21453 354810 -cd14135 271037 cl21453 354810 -cd14136 271038 cl21453 354810 -cd14137 271039 cl21453 354810 -cd14138 271040 cl21453 354810 -cd14139 271041 cl21453 354810 -cd14140 271042 cl21453 354810 -cd14141 271043 cl21453 354810 -cd14142 271044 cl21453 354810 -cd14143 271045 cl21453 354810 -cd14144 271046 cl21453 354810 -cd14145 271047 cl21453 354810 -cd14146 271048 cl21453 354810 -cd14147 271049 cl21453 354810 -cd14148 271050 cl21453 354810 -cd14149 271051 cl21453 354810 -cd14150 271052 cl21453 354810 -cd14151 271053 cl21453 354810 -cd14152 271054 cl21453 354810 -cd14153 271055 cl21453 354810 -cd14154 271056 cl21453 354810 -cd14155 271057 cl21453 354810 -cd14156 271058 cl21453 354810 -cd14157 271059 cl21453 354810 -cd14158 271060 cl21453 354810 -cd14159 271061 cl21453 354810 -cd14160 271062 cl21453 354810 -cd14161 271063 cl21453 354810 -cd14162 271064 cl21453 354810 -cd14163 271065 cl21453 354810 -cd14164 271066 cl21453 354810 -cd14165 271067 cl21453 354810 -cd14166 271068 cl21453 354810 -cd14167 271069 cl21453 354810 -cd14168 271070 cl21453 354810 -cd14169 271071 cl21453 354810 -cd14170 271072 cl21453 354810 -cd14171 271073 cl21453 354810 -cd14172 271074 cl21453 354810 -cd14173 271075 cl21453 354810 -cd14174 271076 cl21453 354810 -cd14175 271077 cl21453 354810 -cd14176 271078 cl21453 354810 -cd14177 271079 cl21453 354810 -cd14178 271080 cl21453 354810 -cd14179 271081 cl21453 354810 -cd14180 271082 cl21453 354810 -cd14181 271083 cl21453 354810 -cd14182 271084 cl21453 354810 -cd14183 271085 cl21453 354810 -cd14184 271086 cl21453 354810 -cd14185 271087 cl21453 354810 -cd14186 271088 cl21453 354810 -cd14187 271089 cl21453 354810 -cd14188 271090 cl21453 354810 -cd14189 271091 cl21453 354810 -cd14190 271092 cl21453 354810 -cd14191 271093 cl21453 354810 -cd14192 271094 cl21453 354810 -cd14193 271095 cl21453 354810 -cd14194 271096 cl21453 354810 -cd14195 271097 cl21453 354810 -cd14196 271098 cl21453 354810 -cd14197 271099 cl21453 354810 -cd14198 271100 cl21453 354810 -cd14199 271101 cl21453 354810 -cd14200 271102 cl21453 354810 -cd14201 271103 cl21453 354810 -cd14202 271104 cl21453 354810 -cd14203 271105 cl21453 354810 -cd14204 271106 cl21453 354810 -cd14205 271107 cl21453 354810 -cd14206 271108 cl21453 354810 -cd14207 271109 cl21453 354810 -cd14208 271110 cl21453 354810 -cd14209 271111 cl21453 354810 -cd14210 271112 cl21453 354810 -cd14211 271113 cl21453 354810 -cd14212 271114 cl21453 354810 -cd14213 271115 cl21453 354810 -cd14214 271116 cl21453 354810 -cd14215 271117 cl21453 354810 -cd14216 271118 cl21453 354810 -cd14217 271119 cl21453 354810 -cd14218 271120 cl21453 354810 -cd14219 271121 cl21453 354810 -cd14220 271122 cl21453 354810 -cd14221 271123 cl21453 354810 -cd14222 271124 cl21453 354810 -cd14223 271125 cl21453 354810 -cd14224 271126 cl21453 354810 -cd14225 271127 cl21453 354810 -cd14226 271128 cl21453 354810 -cd14227 271129 cl21453 354810 -cd14228 271130 cl21453 354810 -cd14229 271131 cl21453 354810 -cd14662 271132 cl21453 354810 -cd14663 271133 cl21453 354810 -cd14664 271134 cl21453 354810 -cd14665 271135 cl21453 354810 -cd14661 271136 cl09159 352942 -cd14660 271137 cl22411 354931 -cd11376 271138 cl09159 352942 -cd14656 271139 cl09159 352942 -cd14657 271140 cl09159 352942 -cd14658 271141 cl09159 352942 -cd14659 271142 cl09159 352942 -cd02795 271143 cl14880 353849 -cd04078 271144 cl14880 353849 -cd04079 271145 cl14880 353849 -cd04080 271146 cl14880 353849 -cd04081 271147 cl14880 353849 -cd04082 271148 cl14880 353849 -cd04083 271149 cl14880 353849 -cd04084 271150 cl14880 353849 -cd04085 271151 cl14880 353849 -cd04086 271152 cl14880 353849 -cd14487 271153 cl14880 353849 -cd14488 271154 cl14880 353849 -cd14489 271155 cl14880 353849 -cd14490 271156 cl14880 353849 -cd07954 271157 cl10970 353153 -cd09250 271158 cl10970 353153 -cd09251 271159 cl10970 353153 -cd09252 271160 cl10970 353153 -cd09253 271161 cl10970 353153 -cd09254 271162 cl10970 353153 -cd09255 271163 cl10970 353153 -cd09256 271164 cl10970 353153 -cd09257 271165 cl10970 353153 -cd09258 271166 cl10970 353153 -cd09259 271167 cl10970 353153 -cd09262 271168 cl10970 353153 -cd09263 271169 cl10970 353153 -cd09264 271170 cl10970 353153 -cd09265 271171 cl10970 353153 -cd09266 271172 cl10970 353153 -cd09268 271173 cl10970 353153 -cd00217 271174 cl00213 350955 -cd00397 271175 cl00213 350955 -cd00659 271176 cl00213 350955 -cd00796 271177 cl00213 350955 -cd00797 271178 cl00213 350955 -cd00798 271179 cl00213 350955 -cd00799 271180 cl00213 350955 -cd00800 271181 cl00213 350955 -cd00801 271182 cl00213 350955 -cd01182 271183 cl00213 350955 -cd01184 271184 cl00213 350955 -cd01185 271185 cl00213 350955 -cd01186 271186 cl00213 350955 -cd01187 271187 cl00213 350955 -cd01188 271188 cl00213 350955 -cd01189 271189 cl00213 350955 -cd01190 271190 cl00213 350955 -cd01191 271191 cl00213 350955 -cd01192 271192 cl00213 350955 -cd01193 271193 cl00213 350955 -cd01194 271194 cl00213 350955 -cd01195 271195 cl00213 350955 -cd01196 271196 cl00213 350955 -cd01197 271197 cl00213 350955 -cd04434 271198 cl04955 352291 -cd04791 271199 cl04955 352291 -cd04792 271200 cl04955 352291 -cd04793 271201 cl04955 352291 -cd04794 271202 cl04955 352291 -cd14244 271203 cl21639 354897 -cd14245 271204 cl27779 332600 -cd14246 271205 cl22413 354932 -cd14247 271206 cd14247 271206 -cd14248 271207 cl22415 328890 -cd14249 271208 cl22415 328890 -cd14250 271209 cl22415 328890 -cd14251 271210 cl19188 327514 -cd14252 271211 cl21530 277547 -cd14253 271212 cl21530 277547 -cd14254 271213 cl21530 277547 -cd14255 271214 cl21530 277547 -cd14256 271215 cl21530 277547 -cd14473 271216 cl09511 352969 -cd14458 271217 cl07405 352732 -cd14456 271218 cl27083 331904 -cd14446 271219 cl22417 354933 -cd14445 271220 cl23720 355018 -cd14257 271221 cd14257 271221 -cd14259 271222 cl21640 328837 -cd14260 271223 cl21640 328837 -cd14261 271224 cl21640 328837 -cd14436 271226 cd14436 271226 -cd14437 271227 cl21329 328640 -cd14438 271228 cd14438 271228 -cd00260 271229 cl21531 354855 -cd15464 271230 cl21531 354855 -cd15467 271231 cl21531 354855 -cd15468 271232 cl21531 354855 -cd15469 271233 cl21531 354855 -cd15482 271234 cl21531 354855 -cd15483 271235 cl21531 354855 -cd14651 271236 cl22421 277561 -cd14653 271237 cl22421 277561 -cd14654 271238 cl22421 277561 -cd14655 271239 cl22421 277561 -cd14723 271240 cl22421 277561 -cd14724 271241 cl22421 277561 -cd14725 271242 cl22421 277561 -cd15485 271243 cl22421 277561 -cd15486 271244 cl22421 277561 -cd00323 271245 cl00313 351018 -cd14867 271246 cl00313 351018 -cd14868 271247 cl00313 351018 -cd14869 271248 cl00313 351018 -cd14870 271249 cl00313 351018 -cd14871 271250 cl00313 351018 -cd15484 271251 cl00313 351018 -cd15481 271252 cl22422 328892 -cd14945 271253 cl03379 351985 -cd15470 271254 cl03379 351985 -cd15471 271255 cl03379 351985 -cd15472 271256 cl03379 351985 -cd15473 271257 cl03379 351985 -cd15474 271258 cl03379 351985 -cd15475 271259 cl03379 351985 -cd15476 271260 cl03379 351985 -cd15477 271261 cl03379 351985 -cd15478 271262 cl03379 351985 -cd15479 271263 cl03379 351985 -cd15480 271264 cl03379 351985 -cd00454 271265 cl21461 354817 -cd01040 271266 cl21461 354817 -cd01067 271267 cl21461 354817 -cd01068 271268 cl21461 354817 -cd08916 271269 cl21461 354817 -cd08917 271270 cl21461 354817 -cd08919 271271 cl21461 354817 -cd08920 271272 cl21461 354817 -cd08922 271273 cl21461 354817 -cd08923 271274 cl21461 354817 -cd08924 271275 cl21461 354817 -cd08925 271276 cl21461 354817 -cd08926 271277 cl21461 354817 -cd08927 271278 cl21461 354817 -cd12124 271279 cl21461 354817 -cd12125 271280 cl21461 354817 -cd12126 271281 cl21461 354817 -cd12127 271282 cl21461 354817 -cd12128 271283 cl21461 354817 -cd12129 271284 cl21461 354817 -cd12130 271285 cl21461 354817 -cd12131 271286 cl21461 354817 -cd12137 271287 cl21461 354817 -cd14755 271288 cl21461 354817 -cd14756 271289 cl21461 354817 -cd14757 271290 cl21461 354817 -cd14758 271291 cl21461 354817 -cd14759 271292 cl21461 354817 -cd14760 271293 cl21461 354817 -cd14761 271294 cl21461 354817 -cd14762 271295 cl21461 354817 -cd14763 271296 cl21461 354817 -cd14764 271297 cl21461 354817 -cd14765 271298 cl21461 354817 -cd14766 271299 cl21461 354817 -cd14767 271300 cl21461 354817 -cd14768 271301 cl21461 354817 -cd14769 271302 cl21461 354817 -cd14770 271303 cl21461 354817 -cd14771 271304 cl21461 354817 -cd14772 271305 cl21461 354817 -cd14773 271306 cl21461 354817 -cd14774 271307 cl21461 354817 -cd14775 271308 cl21461 354817 -cd14776 271309 cl21461 354817 -cd14777 271310 cl21461 354817 -cd14778 271311 cl21461 354817 -cd14779 271312 cl21461 354817 -cd14780 271313 cl21461 354817 -cd14781 271314 cl21461 354817 -cd14782 271315 cl21461 354817 -cd14783 271316 cl21461 354817 -cd14784 271317 cl21461 354817 -cd15466 271318 cl15102 353887 -cd15457 271319 cl21532 354856 -cd05819 271320 cl18310 302697 -cd14951 271321 cl18310 302697 -cd14952 271322 cl18310 302697 -cd14953 271323 cl18310 302697 -cd14954 271324 cl18310 302697 -cd14955 271325 cl18310 302697 -cd14956 271326 cl18310 302697 -cd14957 271327 cl18310 302697 -cd14958 271328 cl18310 302697 -cd14959 271329 cl18310 302697 -cd14960 271330 cl18310 302697 -cd14961 271331 cl18310 302697 -cd14962 271332 cl18310 302697 -cd14963 271333 cl18310 302697 -cd04512 271334 cl00635 351188 -cd04513 271335 cl00635 351188 -cd04514 271336 cl00635 351188 -cd04701 271337 cl00635 351188 -cd04702 271338 cl00635 351188 -cd04703 271339 cl00635 351188 -cd14949 271340 cl00635 351188 -cd14950 271341 cl00635 351188 -cd14948 271342 cl15232 353922 -cd14947 271343 cl22423 354934 -cd14941 271344 cl21538 354859 -cd14942 271345 cl21538 354859 -cd14943 271346 cl21538 354859 -cd14944 271347 cl21538 354859 -cd14805 271348 cl00957 351330 -cd14819 271349 cl00957 351330 -cd14820 271350 cl00957 351330 -cd14804 271351 cl23827 329108 -cd14815 271352 cd14815 271352 -cd14798 271353 cd14798 271353 -cd14262 271354 cl02193 351701 -cd00446 271355 cl03075 351939 -cd06857 271356 cl00456 320982 -cd10322 271357 cl00456 320982 -cd10323 271358 cl00456 320982 -cd10324 271359 cl00456 320982 -cd10325 271360 cl00456 320982 -cd10326 271361 cl00456 320982 -cd10328 271362 cl00456 320982 -cd10329 271363 cl00456 320982 -cd10332 271364 cl00456 320982 -cd10333 271365 cl00456 320982 -cd10334 271366 cl00456 320982 -cd10336 271367 cl00456 320982 -cd11474 271368 cl00456 320982 -cd11475 271369 cl00456 320982 -cd11476 271370 cl00456 320982 -cd11477 271371 cl00456 320982 -cd11478 271372 cl00456 320982 -cd11479 271373 cl00456 320982 -cd11480 271374 cl00456 320982 -cd11482 271375 cl00456 320982 -cd11483 271376 cl00456 320982 -cd11484 271377 cl00456 320982 -cd11485 271378 cl00456 320982 -cd11486 271379 cl00456 320982 -cd11488 271380 cl00456 320982 -cd11490 271381 cl00456 320982 -cd11491 271382 cl00456 320982 -cd11492 271383 cl00456 320982 -cd11493 271384 cl00456 320982 -cd11494 271385 cl00456 320982 -cd11495 271386 cl00456 320982 -cd11496 271387 cl00456 320982 -cd11497 271388 cl00456 320982 -cd11499 271389 cl00456 320982 -cd11500 271390 cl00456 320982 -cd11501 271391 cl00456 320982 -cd11502 271392 cl00456 320982 -cd11503 271393 cl00456 320982 -cd11504 271394 cl00456 320982 -cd11505 271395 cl00456 320982 -cd11507 271396 cl00456 320982 -cd11509 271397 cl00456 320982 -cd11510 271398 cl00456 320982 -cd11513 271399 cl00456 320982 -cd11515 271400 cl00456 320982 -cd11518 271401 cl00456 320982 -cd11519 271402 cl00456 320982 -cd11521 271403 cl00456 320982 -cd11555 271404 cl00456 320982 -cd11556 271405 cl00456 320982 -TIGR00001 272847 cl00392 351072 -TIGR00002 272848 cl00368 351058 -TIGR00006 272849 cl17173 354317 -TIGR00007 272850 cl21457 354814 -TIGR00009 272851 cl00367 351057 -TIGR00010 272852 TIGR00010 272852 -TIGR00011 272853 cl00022 320718 -TIGR00012 272854 cl09943 353035 -TIGR00014 272855 cl00388 351069 -TIGR00016 272856 cl17037 354300 -TIGR00018 272857 cl00015 350862 -TIGR00020 272858 TIGR00020 272858 -TIGR00021 272859 cl00339 351040 -TIGR00023 272860 cl00410 351080 -TIGR00025 272861 cl21474 354826 -TIGR00027 272862 cl17173 354317 -TIGR00028 272863 cl28905 355781 -TIGR00031 272864 cl27287 332108 -TIGR00033 272865 cl00323 351026 -TIGR00037 272866 TIGR00037 272866 -TIGR00038 272867 TIGR00038 272867 -TIGR00039 272868 cl00263 350991 -TIGR00040 272869 cl13995 353799 -TIGR00042 272870 cl00276 350998 -TIGR00043 272871 cl00402 351078 -TIGR00045 272872 cl00841 351278 -TIGR00046 272873 cl00611 321070 -TIGR00048 272874 TIGR00048 272874 -TIGR00049 272875 cl00400 351077 -TIGR00050 272876 TIGR00050 272876 -TIGR00053 272877 cl21503 354842 -TIGR00054 272878 TIGR00054 272878 -TIGR00057 272879 cl00305 351013 -TIGR00059 272880 cl00356 351052 -TIGR00060 272881 cl00379 320941 -TIGR00062 272882 cl00359 351053 -TIGR00064 272883 TIGR00064 272883 -TIGR00065 272884 TIGR00065 272884 -TIGR00067 272885 cl00518 351130 -TIGR00068 272886 cl14632 353816 -TIGR00069 272887 TIGR00069 272887 -TIGR00070 272888 cl21456 354813 -TIGR00071 272889 TIGR00071 272889 -TIGR00072 272890 cl00477 351109 -TIGR00073 272891 cl21455 354812 -TIGR00075 272892 cl12072 353352 -TIGR00077 272893 cl00458 351102 -TIGR00078 272894 TIGR00078 272894 -TIGR00079 272895 cl00234 320843 -TIGR00080 272896 TIGR00080 272896 -TIGR00081 272897 cl00231 350970 -TIGR00083 272898 TIGR00083 272898 -TIGR00087 272899 cl00448 351097 -TIGR00089 272900 TIGR00089 272900 -TIGR00090 272901 cl00519 351131 -TIGR00093 272902 cl00130 320773 -TIGR00094 272903 cl00130 320773 -TIGR00097 272904 cl00192 350937 -TIGR00099 272905 TIGR00099 272905 -TIGR00100 272906 cl19201 354393 -TIGR00105 272907 cl00377 351062 -TIGR00106 272908 cl00307 320891 -TIGR00109 272909 TIGR00109 272909 -TIGR00110 272910 cl00340 351041 -TIGR00112 272911 TIGR00112 272911 -TIGR00113 272912 cl00523 351134 -TIGR00115 272913 cl29099 355975 -TIGR00116 272914 TIGR00116 272914 -TIGR00118 272915 TIGR00118 272915 -TIGR00119 272916 TIGR00119 272916 -TIGR00121 272917 TIGR00121 272917 -TIGR00122 272918 cl21459 354815 -TIGR00123 272919 cl21488 354833 -TIGR00125 272920 cl00015 350862 -TIGR00126 272921 cl21457 354814 -TIGR00128 272922 cl08282 352868 -TIGR00129 272923 cl00659 321097 -TIGR00131 272924 TIGR00131 272924 -TIGR00132 272925 cl18951 354371 -TIGR00133 272926 TIGR00133 272926 -TIGR00136 272927 cl30496 357372 -TIGR00138 272928 cl17173 354317 -TIGR00143 272929 TIGR00143 272929 -TIGR00145 272930 cl00475 320993 -TIGR00152 272931 cl17190 354320 -TIGR00153 272932 cl28112 332933 -TIGR00155 272933 cl30479 357355 -TIGR00157 272934 TIGR00157 272934 -TIGR00160 272935 cl00245 320852 -TIGR00163 272936 cl03656 322379 -TIGR00165 272937 cl00373 351060 -TIGR00167 272938 cl21457 354814 -TIGR00169 272939 cl00445 351095 -TIGR00170 272940 cl00285 351003 -TIGR00173 272941 TIGR00173 272941 -TIGR00175 272942 cl00445 351095 -TIGR00176 272943 cl28913 355789 -TIGR00177 272944 cl00451 320978 -TIGR00179 272945 TIGR00179 272945 -TIGR00180 272946 TIGR00180 272946 -TIGR00181 272947 TIGR00181 272947 -TIGR00183 272948 cl00445 351095 -TIGR00184 272949 cl28913 355789 -TIGR00187 272950 TIGR00187 272950 -TIGR00189 272951 TIGR00189 272951 -TIGR00193 272952 cl00532 351139 -TIGR00194 272953 TIGR00194 272953 -TIGR00195 272954 cl00490 351117 -TIGR00196 272955 cl00192 350937 -TIGR00197 272956 cl00318 351022 -TIGR00198 272957 TIGR00198 272957 -TIGR00201 272958 cl00309 351014 -TIGR00202 272959 cl00670 351206 -TIGR00205 272960 cl09139 352938 -TIGR00207 272961 TIGR00207 272961 -TIGR00211 272962 TIGR00211 272962 -TIGR00212 272963 TIGR00212 272963 -TIGR00214 272964 cl14057 353805 -TIGR00216 272965 cl19123 354385 -TIGR00218 272966 cl21464 354820 -TIGR00220 272967 cl00860 351284 -TIGR00221 272968 cl00281 351001 -TIGR00222 272969 cl21457 354814 -TIGR00225 272970 TIGR00225 272970 -TIGR00229 272971 TIGR00229 272971 -TIGR00230 272972 cl00647 351194 -TIGR00231 272973 TIGR00231 272973 -TIGR00232 272974 TIGR00232 272974 -TIGR00233 272975 TIGR00233 272975 -TIGR00234 272976 TIGR00234 272976 -TIGR00235 272977 cl17190 354320 -TIGR00236 272978 TIGR00236 272978 -TIGR00237 272979 cl25917 355463 -TIGR00238 272980 TIGR00238 272980 -TIGR00240 272981 TIGR00240 272981 -TIGR00245 272982 cl00424 351087 -TIGR00247 272983 cl18961 354373 -TIGR00254 272984 cl11967 353330 -TIGR00258 272985 cl00866 351289 -TIGR00260 272986 cl00342 294246 -TIGR00263 272987 cl00342 294246 -TIGR00264 272988 TIGR00264 272988 -TIGR00266 272989 cl00884 351298 -TIGR00272 272990 cl19374 354415 -TIGR00274 272991 TIGR00274 272991 -TIGR00275 272992 TIGR00275 272992 -TIGR00276 272993 TIGR00276 272993 -TIGR00277 272994 cl21469 354822 -TIGR00278 272995 cl00506 351124 -TIGR00280 272996 cl19284 354404 -TIGR00284 272997 TIGR00284 272997 -TIGR00287 272998 cl00656 351200 -TIGR00288 272999 cl28905 355781 -TIGR00290 273000 cl00292 351005 -TIGR00292 273001 TIGR00292 273001 -TIGR00296 273002 cl00911 351308 -TIGR00298 273003 cl00895 351303 -TIGR00303 273004 cl11435 353253 -TIGR00306 273005 TIGR00306 273005 -TIGR00308 273006 cl17173 354317 -TIGR00310 273007 cl19251 354400 -TIGR00312 273008 cl00828 351275 -TIGR00315 273009 cl22435 354938 -TIGR00318 273010 cl11964 353327 -TIGR00320 273011 cl30471 357347 -TIGR00321 273012 cl00826 351274 -TIGR00322 273013 cl19374 354415 -TIGR00325 273014 cl00512 351128 -TIGR00326 273015 TIGR00326 273015 -TIGR00327 273016 cl00481 351112 -TIGR00331 273017 TIGR00331 273017 -TIGR00332 273018 cl00014 350861 -TIGR00334 273019 TIGR00334 273019 -TIGR00335 273020 cl01287 321433 -TIGR00337 273021 TIGR00337 273021 -TIGR00338 273022 cl21460 354816 -TIGR00339 273023 TIGR00339 273023 -TIGR00341 273024 cl00781 351253 -TIGR00342 273025 TIGR00342 273025 -TIGR00344 273026 TIGR00344 273026 -TIGR00345 273027 cl21455 354812 -TIGR00348 273028 TIGR00348 273028 -TIGR00350 273029 cl00581 321052 -TIGR00351 273030 cl00959 351332 -TIGR00354 273031 TIGR00354 273031 -TIGR00355 273032 TIGR00355 273032 -TIGR00358 273033 TIGR00358 273033 -TIGR00359 273034 cl21492 328750 -TIGR00360 273035 cl29801 356677 -TIGR00361 273036 TIGR00361 273036 -TIGR00362 273037 TIGR00362 273037 -TIGR00366 273038 cl21473 354825 -TIGR00367 273039 TIGR00367 273039 -TIGR00372 273040 cl00641 351191 -TIGR00376 273041 TIGR00376 273041 -TIGR00377 273042 cl00604 351173 -TIGR00378 273043 cl30426 357302 -TIGR00379 273044 TIGR00379 273044 -TIGR00380 273045 cl00561 351153 -TIGR00381 273046 TIGR00381 273046 -TIGR00382 273047 TIGR00382 273047 -TIGR00383 273048 cl00459 320984 -TIGR00384 273049 TIGR00384 273049 -TIGR00387 273050 TIGR00387 273050 -TIGR00389 273051 TIGR00389 273051 -TIGR00390 273052 TIGR00390 273052 -TIGR00391 273053 TIGR00391 273053 -TIGR00392 273054 TIGR00392 273054 -TIGR00394 273055 cl21492 328750 -TIGR00395 273056 TIGR00395 273056 -TIGR00396 273057 TIGR00396 273057 -TIGR00398 273058 TIGR00398 273058 -TIGR00399 273059 TIGR00399 273059 -TIGR00402 273060 cl19102 354379 -TIGR00406 273061 TIGR00406 273061 -TIGR00408 273062 TIGR00408 273062 -TIGR00409 273063 TIGR00409 273063 -TIGR00410 273064 cl21492 328750 -TIGR00413 273065 TIGR00413 273065 -TIGR00414 273066 TIGR00414 273066 -TIGR00416 273067 TIGR00416 273067 -TIGR00418 273068 TIGR00418 273068 -TIGR00420 273069 TIGR00420 273069 -TIGR00422 273070 TIGR00422 273070 -TIGR00423 273071 TIGR00423 273071 -TIGR00424 273072 TIGR00424 273072 -TIGR00425 273073 TIGR00425 273073 -TIGR00432 273074 TIGR00432 273074 -TIGR00433 273075 TIGR00433 273075 -TIGR00435 273076 TIGR00435 273076 -TIGR00437 273077 TIGR00437 273077 -TIGR00438 273078 cl17173 354317 -TIGR00440 273079 TIGR00440 273079 -TIGR00442 273080 TIGR00442 273080 -TIGR00443 273081 cl00268 350993 -TIGR00444 273082 TIGR00444 273082 -TIGR00450 273083 TIGR00450 273083 -TIGR00452 273084 cl17173 354317 -TIGR00456 273085 TIGR00456 273085 -TIGR00457 273086 TIGR00457 273086 -TIGR00458 273087 TIGR00458 273087 -TIGR00460 273088 TIGR00460 273088 -TIGR00461 273089 TIGR00461 273089 -TIGR00462 273090 TIGR00462 273090 -TIGR00463 273091 TIGR00463 273091 -TIGR00464 273092 TIGR00464 273092 -TIGR00465 273093 TIGR00465 273093 -TIGR00467 273094 TIGR00467 273094 -TIGR00468 273095 TIGR00468 273095 -TIGR00471 273096 TIGR00471 273096 -TIGR00472 273097 TIGR00472 273097 -TIGR00473 273098 cl00453 351099 -TIGR00474 273099 TIGR00474 273099 -TIGR00476 273100 TIGR00476 273100 -TIGR00482 273101 cl00015 350862 -TIGR00487 273102 TIGR00487 273102 -TIGR00488 273103 cl21469 354822 -TIGR00491 273104 TIGR00491 273104 -TIGR00495 273105 cl00279 351000 -TIGR00498 273106 TIGR00498 273106 -TIGR00499 273107 TIGR00499 273107 -TIGR00506 273108 cl00336 351037 -TIGR00508 273109 cl18945 354370 -TIGR00509 273110 TIGR00509 273110 -TIGR00510 273111 TIGR00510 273111 -TIGR00512 273112 cl00348 351044 -TIGR00513 273113 cl23717 355015 -TIGR00516 273114 cl00500 351122 -TIGR00520 273115 cl00216 320827 -TIGR00521 273116 TIGR00521 273116 -TIGR00522 273117 cl00304 351012 -TIGR00523 273118 cl09927 353027 -TIGR00524 273119 cl00348 351044 -TIGR00526 273120 cl00263 350991 -TIGR00528 273121 cl29882 356758 -TIGR00529 273122 cl00830 294541 -TIGR00531 273123 TIGR00531 273123 -TIGR00535 273124 cl03253 322243 -TIGR00536 273125 TIGR00536 273125 -TIGR00540 273126 TIGR00540 273126 -TIGR00543 273127 cl29920 356796 -TIGR00544 273128 cl00478 351110 -TIGR00546 273129 cl11424 353250 -TIGR00549 273130 TIGR00549 273130 -TIGR00551 273131 cl30664 357540 -TIGR00552 273132 cl00292 351005 -TIGR00553 273133 cl29920 356796 -TIGR00554 273134 cl17190 354320 -TIGR00555 273135 TIGR00555 273135 -TIGR00556 273136 cl00500 351122 -TIGR00557 273137 cl00873 351292 -TIGR00558 273138 cl29141 356017 -TIGR00560 273139 cl00453 351099 -TIGR00561 273140 TIGR00561 273140 -TIGR00563 273141 TIGR00563 273141 -TIGR00564 273142 TIGR00564 273142 -TIGR00565 273143 TIGR00565 273143 -TIGR00566 273144 cl00020 350865 -TIGR00567 273145 cl14785 353837 -TIGR00571 273146 cl23779 329070 -TIGR00574 273147 TIGR00574 273147 -TIGR00575 273148 TIGR00575 273148 -TIGR00576 273149 cl00493 351119 -TIGR00577 273150 TIGR00577 273150 -TIGR00578 273151 TIGR00578 273151 -TIGR00580 273152 TIGR00580 273152 -TIGR00583 273153 cl27188 355624 -TIGR00584 273154 cl00483 351114 -TIGR00585 273155 TIGR00585 273155 -TIGR00587 273156 cl23721 355019 -TIGR00589 273157 cl29527 356403 -TIGR00590 273158 TIGR00590 273158 -TIGR00592 273159 TIGR00592 273159 -TIGR00593 273160 TIGR00593 273160 -TIGR00594 273161 TIGR00594 273161 -TIGR00595 273162 TIGR00595 273162 -TIGR00596 273163 TIGR00596 273163 -TIGR00598 273164 cl27062 331883 -TIGR00599 273165 TIGR00599 273165 -TIGR00600 273166 TIGR00600 273166 -TIGR00601 273167 TIGR00601 273167 -TIGR00603 273168 TIGR00603 273168 -TIGR00604 273169 TIGR00604 273169 -TIGR00605 273170 TIGR00605 273170 -TIGR00608 273171 TIGR00608 273171 -TIGR00609 273172 TIGR00609 273172 -TIGR00611 273173 TIGR00611 273173 -TIGR00612 273174 TIGR00612 273174 -TIGR00613 273175 cl27405 355646 -TIGR00615 273176 TIGR00615 273176 -TIGR00617 273177 TIGR00617 273177 -TIGR00619 273178 cl13995 353799 -TIGR00621 273179 cl09930 353029 -TIGR00625 273180 cl04289 352148 -TIGR00627 273181 cl22919 328952 -TIGR00628 273182 cl00483 351114 -TIGR00629 273183 cl23721 355019 -TIGR00630 273184 TIGR00630 273184 -TIGR00631 273185 TIGR00631 273185 -TIGR00633 273186 cl00490 351117 -TIGR00634 273187 TIGR00634 273187 -TIGR00637 273188 cl21459 354815 -TIGR00638 273189 cl01440 351505 -TIGR00641 273190 cl00817 351270 -TIGR00642 273191 TIGR00642 273191 -TIGR00643 273192 TIGR00643 273192 -TIGR00644 273193 cl27577 355664 -TIGR00647 273194 cl27397 355645 -TIGR00649 273195 TIGR00649 273195 -TIGR00651 273196 cl17212 354323 -TIGR00652 273197 TIGR00652 273197 -TIGR00653 273198 TIGR00653 273198 -TIGR00655 273199 TIGR00655 273199 -TIGR00656 273200 TIGR00656 273200 -TIGR00657 273201 TIGR00657 273201 -TIGR00659 273202 cl00596 351167 -TIGR00661 273203 cl26153 330974 -TIGR00663 273204 TIGR00663 273204 -TIGR00664 273205 cl11436 353254 -TIGR00665 273206 TIGR00665 273206 -TIGR00667 273207 cl17182 354318 -TIGR00668 273208 TIGR00668 273208 -TIGR00670 273209 TIGR00670 273209 -TIGR00671 273210 cl17037 354300 -TIGR00675 273211 cl30459 357335 -TIGR00676 273212 cl00246 294174 -TIGR00678 273213 TIGR00678 273213 -TIGR00679 273214 TIGR00679 273214 -TIGR00680 273215 cl00903 351306 -TIGR00682 273216 cl23778 355043 -TIGR00683 273217 TIGR00683 273217 -TIGR00684 273218 cl00958 351331 -TIGR00685 273219 cl21460 354816 -TIGR00686 273220 TIGR00686 273220 -TIGR00687 273221 cl00192 350937 -TIGR00693 273222 TIGR00693 273222 -TIGR00701 273223 cl21540 354861 -TIGR00702 273224 cl19253 354402 -TIGR00704 273225 TIGR00704 273225 -TIGR00705 273226 TIGR00705 273226 -TIGR00706 273227 cl23717 355015 -TIGR00707 273228 TIGR00707 273228 -TIGR00710 273229 cl30458 357334 -TIGR00713 273230 cl18945 354370 -TIGR00715 273231 cl00922 351312 -TIGR00717 273232 TIGR00717 273232 -TIGR00720 273233 cl27283 355635 -TIGR00722 273234 cl00851 351282 -TIGR00726 273235 cl00650 351196 -TIGR00728 273236 cl14607 326328 -TIGR00731 273237 TIGR00731 273237 -TIGR00732 273238 cl22881 354968 -TIGR00733 273239 cl14607 326328 -TIGR00734 273240 cl21457 354814 -TIGR00735 273241 cl21457 354814 -TIGR00738 273242 TIGR00738 273242 -TIGR00739 273243 cl00806 351262 -TIGR00740 273244 cl17173 354317 -TIGR00743 273245 cl11449 353259 -TIGR00744 273246 TIGR00744 273246 -TIGR00745 273247 TIGR00745 273247 -TIGR00746 273248 cl00452 351098 -TIGR00747 273249 TIGR00747 273249 -TIGR00748 273250 TIGR00748 273250 -TIGR00752 273251 cl01164 351405 -TIGR00755 273252 cl17173 354317 -TIGR00756 273253 cl29710 356586 -TIGR00757 273254 cl29166 356042 -TIGR00759 273255 TIGR00759 273255 -TIGR00761 273256 cl00452 351098 -TIGR00762 273257 cl19360 354413 -TIGR00763 273258 TIGR00763 273258 -TIGR00764 273259 TIGR00764 273259 -TIGR00765 273260 cl07918 352838 -TIGR00768 273261 TIGR00768 273261 -TIGR00769 273262 cl28910 355786 -TIGR00770 273263 cl21473 354825 -TIGR00773 273264 cl01133 351397 -TIGR00776 273265 cl19288 302813 -TIGR00778 273266 cl00460 320985 -TIGR00785 273267 TIGR00785 273267 -TIGR00788 273268 cl28910 355786 -TIGR00790 273269 cl00927 351313 -TIGR00792 273270 TIGR00792 273270 -TIGR00793 273271 cl14653 353823 -TIGR00796 273272 cl00547 294369 -TIGR00797 273273 TIGR00797 273273 -TIGR00799 273274 cl04276 322598 -TIGR00800 273275 cl00456 320982 -TIGR00801 273276 cl23746 355031 -TIGR00802 273277 cl21514 354847 -TIGR00804 273278 cl26873 355587 -TIGR00805 273279 TIGR00805 273279 -TIGR00810 273280 cl09123 352936 -TIGR00811 273281 cl21656 276368 -TIGR00813 273282 cl00456 320982 -TIGR00814 273283 cl00456 320982 -TIGR00815 273284 TIGR00815 273284 -TIGR00816 273285 cl04176 352121 -TIGR00819 273286 cl21473 354825 -TIGR00820 273287 cl00437 320972 -TIGR00826 273288 TIGR00826 273288 -TIGR00830 273289 cl00162 350926 -TIGR00834 273290 cl26877 331698 -TIGR00835 273291 cl00548 351147 -TIGR00836 273292 cl03012 322161 -TIGR00837 273293 cl00456 320982 -TIGR00840 273294 TIGR00840 273294 -TIGR00844 273295 TIGR00844 273295 -TIGR00845 273296 TIGR00845 273296 -TIGR00846 273297 cl30426 357302 -TIGR00848 273298 cl00163 350927 -TIGR00852 273299 cl21492 328750 -TIGR00853 273300 cl10014 353043 -TIGR00855 273301 TIGR00855 273301 -TIGR00857 273302 TIGR00857 273302 -TIGR00858 273303 TIGR00858 273303 -TIGR00859 273304 cl02990 351928 -TIGR00860 273305 TIGR00860 273305 -TIGR00861 273306 cl00200 350945 -TIGR00863 273307 cl02993 322156 -TIGR00865 273308 TIGR00865 273308 -TIGR00867 273309 TIGR00867 273309 -TIGR00869 273310 cl02170 321835 -TIGR00870 273311 TIGR00870 273311 -TIGR00871 273312 TIGR00871 273312 -TIGR00872 273313 TIGR00872 273313 -TIGR00873 273314 TIGR00873 273314 -TIGR00877 273315 TIGR00877 273315 -TIGR00878 273316 TIGR00878 273316 -TIGR00879 273317 cl28910 355786 -TIGR00880 273318 cl28910 355786 -TIGR00881 273319 TIGR00881 273319 -TIGR00883 273320 TIGR00883 273320 -TIGR00884 273321 TIGR00884 273321 -TIGR00886 273322 TIGR00886 273322 -TIGR00890 273323 TIGR00890 273323 -TIGR00891 273324 TIGR00891 273324 -TIGR00892 273325 TIGR00892 273325 -TIGR00893 273326 TIGR00893 273326 -TIGR00895 273327 TIGR00895 273327 -TIGR00898 273328 TIGR00898 273328 -TIGR00901 273329 cl28910 355786 -TIGR00906 273330 TIGR00906 273330 -TIGR00907 273331 TIGR00907 273331 -TIGR00911 273332 TIGR00911 273332 -TIGR00912 273333 cl00456 320982 -TIGR00913 273334 TIGR00913 273334 -TIGR00915 273335 TIGR00915 273335 -TIGR00916 273336 cl21543 354862 -TIGR00917 273337 TIGR00917 273337 -TIGR00918 273338 cl25655 355433 -TIGR00920 273339 TIGR00920 273339 -TIGR00921 273340 TIGR00921 273340 -TIGR00922 273341 TIGR00922 273341 -TIGR00924 273342 cl28910 355786 -TIGR00926 273343 TIGR00926 273343 -TIGR00927 273344 TIGR00927 273344 -TIGR00928 273345 TIGR00928 273345 -TIGR00929 273346 TIGR00929 273346 -TIGR00930 273347 TIGR00930 273347 -TIGR00932 273348 cl01133 351397 -TIGR00933 273349 cl28089 355704 -TIGR00937 273350 TIGR00937 273350 -TIGR00938 273351 cl21453 354810 -TIGR00939 273352 cl15430 353943 -TIGR00940 273353 TIGR00940 273353 -TIGR00941 273354 cl00492 351118 -TIGR00945 273355 cl00521 351132 -TIGR00946 273356 cl22894 328943 -TIGR00947 273357 cl04850 352267 -TIGR00949 273358 cl00565 294381 -TIGR00950 273359 TIGR00950 273359 -TIGR00954 273360 TIGR00954 273360 -TIGR00955 273361 TIGR00955 273361 -TIGR00956 273362 TIGR00956 273362 -TIGR00958 273363 TIGR00958 273363 -TIGR00959 273364 TIGR00959 273364 -TIGR00962 273365 TIGR00962 273365 -TIGR00963 273366 TIGR00963 273366 -TIGR00964 273367 cl00481 351112 -TIGR00966 273368 TIGR00966 273368 -TIGR00967 273369 TIGR00967 273369 -TIGR00969 273370 cl00427 351090 -TIGR00970 273371 TIGR00970 273371 -TIGR00972 273372 TIGR00972 273372 -TIGR00974 273373 TIGR00974 273373 -TIGR00975 273374 cl21456 354813 -TIGR00976 273375 TIGR00976 273375 -TIGR00978 273376 TIGR00978 273376 -TIGR00982 273377 cl00312 351017 -TIGR00985 273378 cl03428 322297 -TIGR00986 273379 cl11522 325069 -TIGR00990 273380 TIGR00990 273380 -TIGR00993 273381 TIGR00993 273381 -TIGR00994 273382 cl15935 326668 -TIGR00995 273383 cl04468 322678 -TIGR00996 273384 TIGR00996 273384 -TIGR00998 273385 TIGR00998 273385 -TIGR00999 273386 TIGR00999 273386 -TIGR01000 273387 TIGR01000 273387 -TIGR01002 273388 cl08468 352904 -TIGR01003 273389 cl00206 350950 -TIGR01004 273390 cl22759 354953 -TIGR01005 273391 TIGR01005 273391 -TIGR01007 273392 cl28913 355789 -TIGR01008 273393 TIGR01008 273393 -TIGR01012 273394 cl00315 351020 -TIGR01015 273395 cl21464 354820 -TIGR01016 273396 TIGR01016 273396 -TIGR01018 273397 TIGR01018 273397 -TIGR01020 273398 TIGR01020 273398 -TIGR01023 273399 cl00383 351066 -TIGR01025 273400 cl00350 351046 -TIGR01026 273401 TIGR01026 273401 -TIGR01028 273402 cl00313 351018 -TIGR01029 273403 cl00313 351018 -TIGR01031 273404 cl09115 324327 -TIGR01033 273405 cl00361 351054 -TIGR01034 273406 TIGR01034 273406 -TIGR01035 273407 TIGR01035 273407 -TIGR01036 273408 TIGR01036 273408 -TIGR01038 273409 cl00327 351030 -TIGR01040 273410 TIGR01040 273410 -TIGR01042 273411 TIGR01042 273411 -TIGR01045 273412 TIGR01045 273412 -TIGR01046 273413 cl00314 351019 -TIGR01047 273414 TIGR01047 273414 -TIGR01048 273415 TIGR01048 273415 -TIGR01051 273416 TIGR01051 273416 -TIGR01052 273417 TIGR01052 273417 -TIGR01054 273418 TIGR01054 273418 -TIGR01056 273419 TIGR01056 273419 -TIGR01057 273420 TIGR01057 273420 -TIGR01059 273421 TIGR01059 273421 -TIGR01061 273422 TIGR01061 273422 -TIGR01063 273423 TIGR01063 273423 -TIGR01064 273424 TIGR01064 273424 -TIGR01065 273425 cl03831 352063 -TIGR01067 273426 cl00328 351031 -TIGR01070 273427 TIGR01070 273427 -TIGR01071 273428 cl12022 353342 -TIGR01073 273429 TIGR01073 273429 -TIGR01078 273430 cl19186 354389 -TIGR01079 273431 cl00354 351050 -TIGR01080 273432 cl00354 351050 -TIGR01082 273433 TIGR01082 273433 -TIGR01083 273434 cl23768 355038 -TIGR01085 273435 TIGR01085 273435 -TIGR01087 273436 TIGR01087 273436 -TIGR01090 273437 cl00309 351014 -TIGR01091 273438 cl00309 351014 -TIGR01093 273439 TIGR01093 273439 -TIGR01096 273440 TIGR01096 273440 -TIGR01097 273441 TIGR01097 273441 -TIGR01098 273442 TIGR01098 273442 -TIGR01099 273443 cl11394 353239 -TIGR01104 273444 cl11452 353262 -TIGR01106 273445 TIGR01106 273445 -TIGR01107 273446 cl08255 352861 -TIGR01108 273447 TIGR01108 273447 -TIGR01110 273448 cl25563 355422 -TIGR01112 273449 cl01676 321617 -TIGR01114 273450 cl00219 350959 -TIGR01115 273451 cl08220 352857 -TIGR01116 273452 TIGR01116 273452 -TIGR01125 273453 TIGR01125 273453 -TIGR01126 273454 cl00388 351069 -TIGR01128 273455 TIGR01128 273455 -TIGR01129 273456 TIGR01129 273456 -TIGR01130 273457 TIGR01130 273457 -TIGR01131 273458 cl00413 351082 -TIGR01132 273459 TIGR01132 273459 -TIGR01133 273460 TIGR01133 273460 -TIGR01134 273461 TIGR01134 273461 -TIGR01135 273462 TIGR01135 273462 -TIGR01136 273463 cl00342 294246 -TIGR01137 273464 TIGR01137 273464 -TIGR01139 273465 cl00342 294246 -TIGR01140 273466 TIGR01140 273466 -TIGR01141 273467 TIGR01141 273467 -TIGR01143 273468 TIGR01143 273468 -TIGR01146 273469 cl00365 351055 -TIGR01150 273470 cl27208 332029 -TIGR01158 273471 cl00229 350968 -TIGR01159 273472 cl00229 350968 -TIGR01161 273473 TIGR01161 273473 -TIGR01162 273474 cl00310 351015 -TIGR01163 273475 cl21457 354814 -TIGR01164 273476 cl00353 351049 -TIGR01165 273477 cl00842 321203 -TIGR01167 273478 cl23989 355116 -TIGR01168 273479 cl22626 354948 -TIGR01170 273480 cl00322 351025 -TIGR01171 273481 TIGR01171 273481 -TIGR01173 273482 TIGR01173 273482 -TIGR01174 273483 TIGR01174 273483 -TIGR01175 273484 TIGR01175 273484 -TIGR01176 273485 TIGR01176 273485 -TIGR01177 273486 TIGR01177 273486 -TIGR01179 273487 TIGR01179 273487 -TIGR01180 273488 cl26820 355576 -TIGR01181 273489 TIGR01181 273489 -TIGR01182 273490 TIGR01182 273490 -TIGR01189 273491 TIGR01189 273491 -TIGR01191 273492 cl00504 321008 -TIGR01195 273493 cl01458 351511 -TIGR01198 273494 cl00339 351040 -TIGR01200 273495 cl09903 324531 -TIGR01201 273496 cl00257 350986 -TIGR01203 273497 cl00309 351014 -TIGR01205 273498 TIGR01205 273498 -TIGR01206 273499 cl11748 275955 -TIGR01208 273500 TIGR01208 273500 -TIGR01209 273501 cl12015 353338 -TIGR01210 273502 TIGR01210 273502 -TIGR01211 273503 TIGR01211 273503 -TIGR01213 273504 cl28383 333203 -TIGR01214 273505 TIGR01214 273505 -TIGR01216 273506 TIGR01216 273506 -TIGR01217 273507 TIGR01217 273507 -TIGR01218 273508 cl04467 352189 -TIGR01219 273509 TIGR01219 273509 -TIGR01221 273510 cl21464 354820 -TIGR01222 273511 TIGR01222 273511 -TIGR01224 273512 cl00281 351001 -TIGR01227 273513 cl17011 354294 -TIGR01230 273514 cl17011 354294 -TIGR01231 273515 cl00192 350937 -TIGR01233 273516 cl23725 355022 -TIGR01236 273517 cl11961 353326 -TIGR01238 273518 cl11961 353326 -TIGR01239 273519 TIGR01239 273519 -TIGR01241 273520 TIGR01241 273520 -TIGR01243 273521 TIGR01243 273521 -TIGR01245 273522 TIGR01245 273522 -TIGR01251 273523 TIGR01251 273523 -TIGR01252 273524 cl01408 351491 -TIGR01255 273525 TIGR01255 273525 -TIGR01256 273526 cl21456 354813 -TIGR01262 273527 TIGR01262 273527 -TIGR01263 273528 TIGR01263 273528 -TIGR01264 273529 TIGR01264 273529 -TIGR01271 273530 TIGR01271 273530 -TIGR01272 273531 cl28910 355786 -TIGR01273 273532 TIGR01273 273532 -TIGR01275 273533 cl00342 294246 -TIGR01278 273534 TIGR01278 273534 -TIGR01279 273535 cl02775 351884 -TIGR01280 273536 cl00750 351237 -TIGR01285 273537 cl02775 351884 -TIGR01287 273538 cl21455 354812 -TIGR01290 273539 TIGR01290 273539 -TIGR01292 273540 TIGR01292 273540 -TIGR01294 273541 cl27177 331998 -TIGR01295 273542 cl00388 351069 -TIGR01296 273543 TIGR01296 273543 -TIGR01297 273544 TIGR01297 273544 -TIGR01301 273545 TIGR01301 273545 -TIGR01302 273546 TIGR01302 273546 -TIGR01304 273547 TIGR01304 273547 -TIGR01310 273548 TIGR01310 273548 -TIGR01311 273549 TIGR01311 273549 -TIGR01312 273550 TIGR01312 273550 -TIGR01313 273551 cl17190 354320 -TIGR01315 273552 TIGR01315 273552 -TIGR01318 273553 TIGR01318 273553 -TIGR01322 273554 TIGR01322 273554 -TIGR01326 273555 cl18945 354370 -TIGR01327 273556 TIGR01327 273556 -TIGR01329 273557 cl18945 354370 -TIGR01330 273558 cl00289 351004 -TIGR01337 273559 cl21461 354817 -TIGR01339 273560 cl21461 354817 -TIGR01340 273561 TIGR01340 273561 -TIGR01341 273562 TIGR01341 273562 -TIGR01343 273563 cl00285 351003 -TIGR01346 273564 cl21457 354814 -TIGR01347 273565 TIGR01347 273565 -TIGR01348 273566 TIGR01348 273566 -TIGR01349 273567 TIGR01349 273567 -TIGR01350 273568 TIGR01350 273568 -TIGR01351 273569 TIGR01351 273569 -TIGR01352 273570 cl10048 353052 -TIGR01353 273571 TIGR01353 273571 -TIGR01354 273572 TIGR01354 273572 -TIGR01355 273573 TIGR01355 273573 -TIGR01356 273574 TIGR01356 273574 -TIGR01357 273575 cl02872 351912 -TIGR01359 273576 TIGR01359 273576 -TIGR01361 273577 cl17225 354324 -TIGR01363 273578 TIGR01363 273578 -TIGR01367 273579 cl00309 351014 -TIGR01368 273580 TIGR01368 273580 -TIGR01369 273581 TIGR01369 273581 -TIGR01370 273582 cl00997 351341 -TIGR01371 273583 TIGR01371 273583 -TIGR01372 273584 TIGR01372 273584 -TIGR01373 273585 TIGR01373 273585 -TIGR01375 273586 cl01893 351633 -TIGR01376 273587 TIGR01376 273587 -TIGR01378 273588 TIGR01378 273588 -TIGR01379 273589 TIGR01379 273589 -TIGR01381 273590 TIGR01381 273590 -TIGR01382 273591 cl00020 350865 -TIGR01385 273592 TIGR01385 273592 -TIGR01386 273593 TIGR01386 273593 -TIGR01389 273594 TIGR01389 273594 -TIGR01391 273595 TIGR01391 273595 -TIGR01392 273596 TIGR01392 273596 -TIGR01394 273597 TIGR01394 273597 -TIGR01396 273598 TIGR01396 273598 -TIGR01398 273599 cl07980 352841 -TIGR01399 273600 cl07980 352841 -TIGR01405 273601 TIGR01405 273601 -TIGR01407 273602 TIGR01407 273602 -TIGR01408 273603 TIGR01408 273603 -TIGR01409 273604 TIGR01409 273604 -TIGR01411 273605 cl00788 294511 -TIGR01412 273606 cl01067 294672 -TIGR01413 273607 cl01067 294672 -TIGR01414 273608 TIGR01414 273608 -TIGR01415 273609 cl00342 294246 -TIGR01416 273610 TIGR01416 273610 -TIGR01417 273611 TIGR01417 273611 -TIGR01418 273612 TIGR01418 273612 -TIGR01420 273613 cl21455 354812 -TIGR01421 273614 cl30699 357575 -TIGR01425 273615 TIGR01425 273615 -TIGR01426 273616 TIGR01426 273616 -TIGR01427 273617 cl21492 328750 -TIGR01429 273618 cl00281 351001 -TIGR01430 273619 cl00281 351001 -TIGR01431 273620 TIGR01431 273620 -TIGR01432 273621 TIGR01432 273621 -TIGR01435 273622 TIGR01435 273622 -TIGR01437 273623 cl18945 354370 -TIGR01438 273624 TIGR01438 273624 -TIGR01439 273625 cl00877 321225 -TIGR01441 273626 cl04057 322510 -TIGR01442 273627 cl21710 328865 -TIGR01444 273628 cl17173 354317 -TIGR01445 273629 cl22434 354937 -TIGR01446 273630 cl29255 356131 -TIGR01447 273631 TIGR01447 273631 -TIGR01448 273632 TIGR01448 273632 -TIGR01450 273633 cl28372 355710 -TIGR01451 273634 cl29886 356762 -TIGR01452 273635 TIGR01452 273635 -TIGR01453 273636 TIGR01453 273636 -TIGR01460 273637 TIGR01460 273637 -TIGR01462 273638 TIGR01462 273638 -TIGR01463 273639 cl00464 320986 -TIGR01464 273640 cl00464 320986 -TIGR01466 273641 cl00304 351012 -TIGR01467 273642 cl00304 351012 -TIGR01469 273643 cl00304 351012 -TIGR01472 273644 cl21454 354811 -TIGR01473 273645 cl00337 351038 -TIGR01475 273646 cl00337 351038 -TIGR01477 273647 cl14106 353807 -TIGR01479 273648 TIGR01479 273648 -TIGR01480 273649 TIGR01480 273649 -TIGR01482 273650 TIGR01482 273650 -TIGR01484 273651 TIGR01484 273651 -TIGR01487 273652 TIGR01487 273652 -TIGR01488 273653 cl21460 354816 -TIGR01490 273654 cl21460 354816 -TIGR01491 273655 cl21460 354816 -TIGR01494 273656 TIGR01494 273656 -TIGR01496 273657 cl00219 350959 -TIGR01498 273658 cl00233 350972 -TIGR01499 273659 TIGR01499 273659 -TIGR01500 273660 cl21454 354811 -TIGR01507 273661 TIGR01507 273661 -TIGR01509 273662 TIGR01509 273662 -TIGR01510 273663 cl00015 350862 -TIGR01511 273664 TIGR01511 273664 -TIGR01512 273665 TIGR01512 273665 -TIGR01513 273666 TIGR01513 273666 -TIGR01515 273667 cl30708 357584 -TIGR01517 273668 TIGR01517 273668 -TIGR01525 273669 TIGR01525 273669 -TIGR01526 273670 TIGR01526 273670 -TIGR01527 273671 cl00015 350862 -TIGR01528 273672 cl01256 351444 -TIGR01531 273673 TIGR01531 273673 -TIGR01533 273674 cl21460 354816 -TIGR01534 273675 TIGR01534 273675 -TIGR01536 273676 TIGR01536 273676 -TIGR01537 273677 cl19194 354391 -TIGR01538 273678 cl19531 327578 -TIGR01539 273679 cl19194 354391 -TIGR01540 273680 cl19194 354391 -TIGR01541 273681 TIGR01541 273681 -TIGR01543 273682 cl01521 321544 -TIGR01544 273683 cl21460 354816 -TIGR01547 273684 cl12054 353348 -TIGR01548 273685 cl21460 354816 -TIGR01549 273686 cl21460 354816 -TIGR01550 273687 cl00960 351333 -TIGR01552 273688 cl09153 352940 -TIGR01553 273689 TIGR01553 273689 -TIGR01554 273690 cl27082 355611 -TIGR01558 273691 cl01525 351536 -TIGR01563 273692 cl11461 353265 -TIGR01564 273693 TIGR01564 273693 -TIGR01567 273694 cl23990 329220 -TIGR01569 273695 cl04571 352205 -TIGR01570 273696 cl04729 352235 -TIGR01571 273697 cl04722 352234 -TIGR01572 273698 cl19902 327692 -TIGR01573 273699 cl11442 353257 -TIGR01574 273700 TIGR01574 273700 -TIGR01575 273701 TIGR01575 273701 -TIGR01577 273702 cl25463 330284 -TIGR01578 273703 TIGR01578 273703 -TIGR01579 273704 TIGR01579 273704 -TIGR01582 273705 TIGR01582 273705 -TIGR01586 273706 cl04145 322548 -TIGR01587 273707 TIGR01587 273707 -TIGR01593 273708 cl01989 351657 -TIGR01594 273709 cl23991 355117 -TIGR01595 273710 cl01465 351515 -TIGR01596 273711 cl21469 354822 -TIGR01599 273712 TIGR01599 273712 -TIGR01603 273713 cl21657 328841 -TIGR01609 273714 cl23992 329222 -TIGR01610 273715 cl04545 352201 -TIGR01613 273716 TIGR01613 273716 -TIGR01614 273717 cl04375 352162 -TIGR01615 273718 cl04704 352232 -TIGR01616 273719 cl00388 351069 -TIGR01617 273720 cl00388 351069 -TIGR01622 273721 TIGR01622 273721 -TIGR01624 273722 TIGR01624 273722 -TIGR01629 273723 TIGR01629 273723 -TIGR01631 273724 cl19421 302859 -TIGR01637 273725 TIGR01637 273725 -TIGR01640 273726 cl23987 329218 -TIGR01642 273727 TIGR01642 273727 -TIGR01643 273728 cl11982 325154 -TIGR01644 273729 cl17812 327437 -TIGR01646 273730 TIGR01646 273730 -TIGR01647 273731 TIGR01647 273731 -TIGR01648 273732 TIGR01648 273732 -TIGR01649 273733 TIGR01649 273733 -TIGR01652 273734 TIGR01652 273734 -TIGR01653 273735 cl09891 324528 -TIGR01654 273736 cl26909 355590 -TIGR01656 273737 TIGR01656 273737 -TIGR01657 273738 TIGR01657 273738 -TIGR01658 273739 TIGR01658 273739 -TIGR01659 273740 TIGR01659 273740 -TIGR01661 273741 TIGR01661 273741 -TIGR01662 273742 TIGR01662 273742 -TIGR01665 273743 cl23994 329223 -TIGR01668 273744 TIGR01668 273744 -TIGR01669 273745 cl23995 305152 -TIGR01671 273746 cl09859 324514 -TIGR01672 273747 cl21460 354816 -TIGR01674 273748 cl06106 297413 -TIGR01675 273749 cl21460 354816 -TIGR01677 273750 TIGR01677 273750 -TIGR01678 273751 TIGR01678 273751 -TIGR01681 273752 cl21460 354816 -TIGR01682 273753 cl28922 355798 -TIGR01683 273754 cl28922 355798 -TIGR01684 273755 cl27967 332788 -TIGR01685 273756 cl21460 354816 -TIGR01686 273757 TIGR01686 273757 -TIGR01687 273758 cl28922 355798 -TIGR01689 273759 cl21460 354816 -TIGR01691 273760 cl21460 354816 -TIGR01693 273761 TIGR01693 273761 -TIGR01694 273762 cl00303 351011 -TIGR01695 273763 TIGR01695 273763 -TIGR01700 273764 cl00303 351011 -TIGR01701 273765 TIGR01701 273765 -TIGR01706 273766 TIGR01706 273766 -TIGR01707 273767 TIGR01707 273767 -TIGR01709 273768 TIGR01709 273768 -TIGR01712 273769 cl05442 323057 -TIGR01713 273770 TIGR01713 273770 -TIGR01715 273771 cl05636 297128 -TIGR01716 273772 TIGR01716 273772 -TIGR01717 273773 TIGR01717 273773 -TIGR01720 273774 TIGR01720 273774 -TIGR01725 273775 cl12124 325198 -TIGR01730 273776 TIGR01730 273776 -TIGR01731 273777 TIGR01731 273777 -TIGR01732 273778 cl29742 356618 -TIGR01733 273779 TIGR01733 273779 -TIGR01734 273780 TIGR01734 273780 -TIGR01736 273781 TIGR01736 273781 -TIGR01737 273782 cl00020 350865 -TIGR01738 273783 TIGR01738 273783 -TIGR01739 273784 TIGR01739 273784 -TIGR01740 273785 cl21457 354814 -TIGR01742 273786 cl23996 305153 -TIGR01746 273787 TIGR01746 273787 -TIGR01752 273788 cl00438 351093 -TIGR01753 273789 cl00438 351093 -TIGR01760 273790 cl29167 356043 -TIGR01761 273791 cl28196 333016 -TIGR01763 273792 TIGR01763 273792 -TIGR01766 273793 TIGR01766 273793 -TIGR01768 273794 cl21457 354814 -TIGR01770 273795 cl29598 356474 -TIGR01771 273796 TIGR01771 273796 -TIGR01773 273797 TIGR01773 273797 -TIGR01774 273798 TIGR01774 273798 -TIGR01776 273799 TIGR01776 273799 -TIGR01777 273800 TIGR01777 273800 -TIGR01778 273801 TIGR01778 273801 -TIGR01779 273802 TIGR01779 273802 -TIGR01781 273803 cl09912 299113 -TIGR01782 273804 TIGR01782 273804 -TIGR01783 273805 cl30614 357490 -TIGR01784 273806 cl29714 356590 -TIGR01785 273807 TIGR01785 273807 -TIGR01786 273808 TIGR01786 273808 -TIGR01787 273809 TIGR01787 273809 -TIGR01792 273810 TIGR01792 273810 -TIGR01798 273811 cl00416 351085 -TIGR01802 273812 cl00693 351218 -TIGR01809 273813 TIGR01809 273813 -TIGR01810 273814 TIGR01810 273814 -TIGR01812 273815 TIGR01812 273815 -TIGR01813 273816 TIGR01813 273816 -TIGR01817 273817 TIGR01817 273817 -TIGR01818 273818 TIGR01818 273818 -TIGR01820 273819 TIGR01820 273819 -TIGR01821 273820 cl18945 354370 -TIGR01823 273821 TIGR01823 273821 -TIGR01828 273822 TIGR01828 273822 -TIGR01829 273823 TIGR01829 273823 -TIGR01830 273824 TIGR01830 273824 -TIGR01831 273825 TIGR01831 273825 -TIGR01833 273826 TIGR01833 273826 -TIGR01834 273827 cl09914 324533 -TIGR01840 273828 cl21494 354836 -TIGR01844 273829 cl30340 357216 -TIGR01845 273830 TIGR01845 273830 -TIGR01846 273831 TIGR01846 273831 -TIGR01850 273832 TIGR01850 273832 -TIGR01851 273833 TIGR01851 273833 -TIGR01853 273834 TIGR01853 273834 -TIGR01854 273835 cl13995 353799 -TIGR01855 273836 TIGR01855 273836 -TIGR01856 273837 cl23724 355021 -TIGR01862 273838 cl02775 351884 -TIGR01863 273839 cl12004 353334 -TIGR01865 273840 cl27783 355679 -TIGR01866 273841 cl09913 353022 -TIGR01868 273842 cl21479 328741 -TIGR01869 273843 cl09608 324397 -TIGR01870 273844 cl00622 351182 -TIGR01874 273845 cl21479 328741 -TIGR01875 273846 cl00803 321178 -TIGR01876 273847 cl21479 328741 -TIGR01877 273848 cl11443 353258 -TIGR01878 273849 cl09906 299111 -TIGR01880 273850 TIGR01880 273850 -TIGR01881 273851 cl01317 321445 -TIGR01884 273852 TIGR01884 273852 -TIGR01885 273853 cl18945 354370 -TIGR01887 273854 TIGR01887 273854 -TIGR01888 273855 cl21471 354824 -TIGR01890 273856 TIGR01890 273856 -TIGR01891 273857 TIGR01891 273857 -TIGR01893 273858 TIGR01893 273858 -TIGR01894 273859 cl21471 354824 -TIGR01895 273860 cl21479 328741 -TIGR01896 273861 cl00641 351191 -TIGR01897 273862 cl21516 354849 -TIGR01899 273863 cl21471 354824 -TIGR01900 273864 TIGR01900 273864 -TIGR01901 273865 cl05436 352358 -TIGR01903 273866 cl23831 304988 -TIGR01904 273867 cl27853 332674 -TIGR01906 273868 cl01862 351621 -TIGR01907 273869 cl08497 352913 -TIGR01910 273870 TIGR01910 273870 -TIGR01913 273871 cl04285 352147 -TIGR01914 273872 cl09907 299112 -TIGR01915 273873 cl21454 354811 -TIGR01916 273874 cl00644 351193 -TIGR01919 273875 cl21457 354814 -TIGR01920 273876 TIGR01920 273876 -TIGR01921 273877 TIGR01921 273877 -TIGR01922 273878 cl01330 351466 -TIGR01924 273879 cl00075 350890 -TIGR01927 273880 TIGR01927 273880 -TIGR01930 273881 TIGR01930 273881 -TIGR01931 273882 TIGR01931 273882 -TIGR01932 273883 TIGR01932 273883 -TIGR01934 273884 cl17173 354317 -TIGR01936 273885 TIGR01936 273885 -TIGR01938 273886 cl01081 351373 -TIGR01944 273887 TIGR01944 273887 -TIGR01945 273888 TIGR01945 273888 -TIGR01947 273889 TIGR01947 273889 -TIGR01949 273890 cl21457 354814 -TIGR01951 273891 cl00223 350963 -TIGR01952 273892 TIGR01952 273892 -TIGR01953 273893 TIGR01953 273893 -TIGR01954 273894 cl22429 354935 -TIGR01956 273895 TIGR01956 273895 -TIGR01957 273896 cl17194 354321 -TIGR01961 273897 cl19197 354392 -TIGR01962 273898 TIGR01962 273898 -TIGR01965 273899 TIGR01965 273899 -TIGR01967 273900 TIGR01967 273900 -TIGR01970 273901 TIGR01970 273901 -TIGR01971 273902 TIGR01971 273902 -TIGR01972 273903 TIGR01972 273903 -TIGR01973 273904 TIGR01973 273904 -TIGR01974 273905 TIGR01974 273905 -TIGR01976 273906 cl18945 354370 -TIGR01978 273907 TIGR01978 273907 -TIGR01981 273908 cl29482 356358 -TIGR01982 273909 TIGR01982 273909 -TIGR01983 273910 TIGR01983 273910 -TIGR01984 273911 cl21454 354811 -TIGR01986 273912 cl00170 350931 -TIGR01988 273913 TIGR01988 273913 -TIGR01989 273914 cl21454 354811 -TIGR01991 273915 TIGR01991 273915 -TIGR01992 273916 TIGR01992 273916 -TIGR01993 273917 cl21460 354816 -TIGR01994 273918 cl00528 351136 -TIGR01995 273919 TIGR01995 273919 -TIGR01998 273920 TIGR01998 273920 -TIGR02000 273921 TIGR02000 273921 -TIGR02001 273922 cl09901 299108 -TIGR02002 273923 TIGR02002 273923 -TIGR02004 273924 TIGR02004 273924 -TIGR02005 273925 TIGR02005 273925 -TIGR02008 273926 cl00159 350924 -TIGR02010 273927 cl21459 354815 -TIGR02013 273928 TIGR02013 273928 -TIGR02016 273929 TIGR02016 273929 -TIGR02021 273930 TIGR02021 273930 -TIGR02022 273931 cl00281 351001 -TIGR02023 273932 cl21454 354811 -TIGR02025 273933 TIGR02025 273933 -TIGR02027 273934 TIGR02027 273934 -TIGR02031 273935 TIGR02031 273935 -TIGR02032 273936 TIGR02032 273936 -TIGR02033 273937 TIGR02033 273937 -TIGR02037 273938 TIGR02037 273938 -TIGR02038 273939 TIGR02038 273939 -TIGR02040 273940 TIGR02040 273940 -TIGR02041 273941 TIGR02041 273941 -TIGR02049 273942 cl26682 355556 -TIGR02050 273943 cl00954 351329 -TIGR02053 273944 TIGR02053 273944 -TIGR02055 273945 cl00292 351005 -TIGR02061 273946 TIGR02061 273946 -TIGR02063 273947 TIGR02063 273947 -TIGR02064 273948 TIGR02064 273948 -TIGR02067 273949 cl00289 351004 -TIGR02068 273950 TIGR02068 273950 -TIGR02070 273951 cl29529 356405 -TIGR02071 273952 TIGR02071 273952 -TIGR02072 273953 TIGR02072 273953 -TIGR02073 273954 TIGR02073 273954 -TIGR02074 273955 TIGR02074 273955 -TIGR02076 273956 cl00452 351098 -TIGR02079 273957 TIGR02079 273957 -TIGR02081 273958 cl17173 354317 -TIGR02082 273959 TIGR02082 273959 -TIGR02086 273960 cl00285 351003 -TIGR02087 273961 cl00215 350957 -TIGR02088 273962 cl00445 351095 -TIGR02089 273963 cl00445 351095 -TIGR02090 273964 TIGR02090 273964 -TIGR02091 273965 TIGR02091 273965 -TIGR02092 273966 TIGR02092 273966 -TIGR02093 273967 TIGR02093 273967 -TIGR02094 273968 TIGR02094 273968 -TIGR02095 273969 TIGR02095 273969 -TIGR02096 273970 cl09109 352932 -TIGR02099 273971 TIGR02099 273971 -TIGR02101 273972 cl27854 332675 -TIGR02102 273973 TIGR02102 273973 -TIGR02103 273974 TIGR02103 273974 -TIGR02104 273975 TIGR02104 273975 -TIGR02107 273976 cl26808 355574 -TIGR02108 273977 cl23716 355014 -TIGR02110 273978 TIGR02110 273978 -TIGR02117 273979 cl09819 353009 -TIGR02120 273980 TIGR02120 273980 -TIGR02121 273981 cl00456 320982 -TIGR02122 273982 TIGR02122 273982 -TIGR02123 273983 TIGR02123 273983 -TIGR02124 273984 TIGR02124 273984 -TIGR02125 273985 cl23723 355020 -TIGR02126 273986 cl11463 325044 -TIGR02127 273987 cl21457 354814 -TIGR02128 273988 TIGR02128 273988 -TIGR02133 273989 cl00485 351115 -TIGR02135 273990 TIGR02135 273990 -TIGR02136 273991 cl21456 354813 -TIGR02138 273992 cl00427 351090 -TIGR02141 273993 cl00427 351090 -TIGR02144 273994 TIGR02144 273994 -TIGR02145 273995 cl09821 353010 -TIGR02147 273996 TIGR02147 273996 -TIGR02149 273997 TIGR02149 273997 -TIGR02150 273998 cl00447 351096 -TIGR02151 273999 TIGR02151 273999 -TIGR02152 274000 cl00192 350937 -TIGR02153 274001 cl00216 320827 -TIGR02157 274002 cl01371 321466 -TIGR02162 274003 TIGR02162 274003 -TIGR02163 274004 TIGR02163 274004 -TIGR02165 274005 cl09827 324500 -TIGR02166 274006 TIGR02166 274006 -TIGR02167 274007 TIGR02167 274007 -TIGR02168 274008 TIGR02168 274008 -TIGR02169 274009 TIGR02169 274009 -TIGR02170 274010 cl27413 355648 -TIGR02171 274011 cl30227 357103 -TIGR02173 274012 TIGR02173 274012 -TIGR02174 274013 cl01407 351490 -TIGR02175 274014 cl00546 351146 -TIGR02177 274015 TIGR02177 274015 -TIGR02180 274016 cl00388 351069 -TIGR02181 274017 cl00388 351069 -TIGR02182 274018 TIGR02182 274018 -TIGR02185 274019 cl09823 353011 -TIGR02186 274020 cl09826 353012 -TIGR02187 274021 TIGR02187 274021 -TIGR02188 274022 cl17068 354307 -TIGR02189 274023 cl00388 351069 -TIGR02191 274024 TIGR02191 274024 -TIGR02193 274025 cl10013 353042 -TIGR02195 274026 cl10013 353042 -TIGR02196 274027 cl00388 351069 -TIGR02197 274028 TIGR02197 274028 -TIGR02198 274029 cl00192 350937 -TIGR02205 274030 TIGR02205 274030 -TIGR02207 274031 cl17185 354319 -TIGR02208 274032 cl17185 354319 -TIGR02210 274033 cl00511 294347 -TIGR02212 274034 cl30308 357184 -TIGR02215 274035 cl12049 353345 -TIGR02216 274036 cl23997 329224 -TIGR02217 274037 cl02268 351715 -TIGR02218 274038 TIGR02218 274038 -TIGR02220 274039 cl09752 324472 -TIGR02221 274040 cl21516 354849 -TIGR02223 274041 TIGR02223 274041 -TIGR02224 274042 cl28330 355709 -TIGR02225 274043 cl28330 355709 -TIGR02227 274044 TIGR02227 274044 -TIGR02231 274045 TIGR02231 274045 -TIGR02234 274046 cl17850 327441 -TIGR02237 274047 TIGR02237 274047 -TIGR02239 274048 TIGR02239 274048 -TIGR02241 274049 cl23998 329225 -TIGR02242 274050 cl01817 321680 -TIGR02243 274051 cl01294 321435 -TIGR02244 274052 cl17687 354336 -TIGR02246 274053 cl09109 352932 -TIGR02247 274054 TIGR02247 274054 -TIGR02251 274055 cl21460 354816 -TIGR02252 274056 TIGR02252 274056 -TIGR02253 274057 TIGR02253 274057 -TIGR02258 274058 TIGR02258 274058 -TIGR02262 274059 TIGR02262 274059 -TIGR02266 274060 cl01260 351446 -TIGR02273 274061 TIGR02273 274061 -TIGR02274 274062 cl00493 351119 -TIGR02275 274063 TIGR02275 274063 -TIGR02277 274064 cl27888 355687 -TIGR02280 274065 cl23717 355015 -TIGR02282 274066 cl00222 350962 -TIGR02283 274067 TIGR02283 274067 -TIGR02289 274068 TIGR02289 274068 -TIGR02290 274069 TIGR02290 274069 -TIGR02291 274070 cl17255 354326 -TIGR02292 274071 cl01173 351409 -TIGR02294 274072 cl01709 351575 -TIGR02302 274073 TIGR02302 274073 -TIGR02304 274074 TIGR02304 274074 -TIGR02306 274075 cl28327 333147 -TIGR02307 274076 cl12015 353338 -TIGR02320 274077 cl21457 354814 -TIGR02322 274078 cl17190 354320 -TIGR02329 274079 TIGR02329 274079 -TIGR02339 274080 TIGR02339 274080 -TIGR02340 274081 TIGR02340 274081 -TIGR02341 274082 TIGR02341 274082 -TIGR02342 274083 cl02777 351886 -TIGR02343 274084 cl02777 351886 -TIGR02344 274085 TIGR02344 274085 -TIGR02345 274086 TIGR02345 274086 -TIGR02346 274087 cl02777 351886 -TIGR02347 274088 TIGR02347 274088 -TIGR02348 274089 cl02777 351886 -TIGR02349 274090 TIGR02349 274090 -TIGR02350 274091 TIGR02350 274091 -TIGR02352 274092 TIGR02352 274092 -TIGR02353 274093 TIGR02353 274093 -TIGR02356 274094 cl22428 304554 -TIGR02357 274095 cl21488 354833 -TIGR02358 274096 cl00456 320982 -TIGR02361 274097 cl29418 356294 -TIGR02363 274098 cl10557 353086 -TIGR02365 274099 cl29418 356294 -TIGR02366 274100 TIGR02366 274100 -TIGR02383 274101 cl00259 350988 -TIGR02384 274102 cl01171 351407 -TIGR02386 274103 TIGR02386 274103 -TIGR02388 274104 TIGR02388 274104 -TIGR02389 274105 TIGR02389 274105 -TIGR02390 274106 TIGR02390 274106 -TIGR02392 274107 TIGR02392 274107 -TIGR02393 274108 TIGR02393 274108 -TIGR02395 274109 TIGR02395 274109 -TIGR02396 274110 cl21709 354916 -TIGR02397 274111 TIGR02397 274111 -TIGR02400 274112 TIGR02400 274112 -TIGR02401 274113 TIGR02401 274113 -TIGR02402 274114 TIGR02402 274114 -TIGR02403 274115 TIGR02403 274115 -TIGR02404 274116 TIGR02404 274116 -TIGR02407 274117 cl18945 354370 -TIGR02409 274118 TIGR02409 274118 -TIGR02410 274119 TIGR02410 274119 -TIGR02411 274120 TIGR02411 274120 -TIGR02412 274121 TIGR02412 274121 -TIGR02414 274122 TIGR02414 274122 -TIGR02419 274123 cl00755 351241 -TIGR02420 274124 cl00755 351241 -TIGR02421 274125 cl06858 352594 -TIGR02423 274126 cl21470 354823 -TIGR02424 274127 TIGR02424 274127 -TIGR02426 274128 cl00013 350860 -TIGR02432 274129 cl00292 351005 -TIGR02433 274130 cl21573 354878 -TIGR02435 274131 TIGR02435 274131 -TIGR02436 274132 cl28926 355802 -TIGR02438 274133 TIGR02438 274133 -TIGR02439 274134 TIGR02439 274134 -TIGR02442 274135 TIGR02442 274135 -TIGR02444 274136 cl02376 351747 -TIGR02448 274137 cl23999 355118 -TIGR02453 274138 cl02374 351745 -TIGR02454 274139 cl00463 294315 -TIGR02456 274140 TIGR02456 274140 -TIGR02457 274141 cl23844 305001 -TIGR02458 274142 cl02266 351714 -TIGR02462 274143 TIGR02462 274143 -TIGR02464 274144 cl21532 354856 -TIGR02466 274145 cl21496 354838 -TIGR02467 274146 cl00304 351012 -TIGR02468 274147 TIGR02468 274147 -TIGR02469 274148 cl17173 354317 -TIGR02470 274149 TIGR02470 274149 -TIGR02474 274150 cl24000 329227 -TIGR02475 274151 TIGR02475 274151 -TIGR02478 274152 TIGR02478 274152 -TIGR02479 274153 TIGR02479 274153 -TIGR02481 274154 cl15774 353977 -TIGR02483 274155 cl00204 350948 -TIGR02484 274156 TIGR02484 274156 -TIGR02485 274157 cl21454 354811 -TIGR02486 274158 cl26168 330989 -TIGR02487 274159 TIGR02487 274159 -TIGR02490 274160 cl15855 353989 -TIGR02491 274161 TIGR02491 274161 -TIGR02492 274162 TIGR02492 274162 -TIGR02494 274163 TIGR02494 274163 -TIGR02495 274164 TIGR02495 274164 -TIGR02499 274165 TIGR02499 274165 -TIGR02500 274166 TIGR02500 274166 -TIGR02501 274167 cl27870 332691 -TIGR02504 274168 TIGR02504 274168 -TIGR02505 274169 TIGR02505 274169 -TIGR02506 274170 TIGR02506 274170 -TIGR02512 274171 TIGR02512 274171 -TIGR02514 274172 cl24001 355119 -TIGR02515 274173 TIGR02515 274173 -TIGR02516 274174 TIGR02516 274174 -TIGR02517 274175 TIGR02517 274175 -TIGR02519 274176 TIGR02519 274176 -TIGR02520 274177 TIGR02520 274177 -TIGR02522 274178 cl19894 354501 -TIGR02527 274179 cl24002 305159 -TIGR02529 274180 TIGR02529 274180 -TIGR02530 274181 cl11797 325125 -TIGR02532 274182 TIGR02532 274182 -TIGR02535 274183 TIGR02535 274183 -TIGR02536 274184 TIGR02536 274184 -TIGR02537 274185 TIGR02537 274185 -TIGR02538 274186 TIGR02538 274186 -TIGR02539 274187 cl18945 354370 -TIGR02541 274188 TIGR02541 274188 -TIGR02543 274189 cl09714 352999 -TIGR02544 274190 cl01907 351635 -TIGR02546 274191 TIGR02546 274191 -TIGR02547 274192 cl08044 352843 -TIGR02548 274193 cl09719 353001 -TIGR02549 274194 TIGR02549 274194 -TIGR02550 274195 TIGR02550 274195 -TIGR02551 274196 TIGR02551 274196 -TIGR02552 274197 cl30292 357168 -TIGR02553 274198 cl05827 297251 -TIGR02556 274199 cl21533 328778 -TIGR02557 274200 cl22974 328973 -TIGR02562 274201 TIGR02562 274201 -TIGR02563 274202 cl09835 353015 -TIGR02564 274203 cl09829 353013 -TIGR02565 274204 cl12127 353364 -TIGR02566 274205 cl09832 353014 -TIGR02568 274206 cl15454 353946 -TIGR02570 274207 cl09834 324503 -TIGR02577 274208 TIGR02577 274208 -TIGR02578 274209 TIGR02578 274209 -TIGR02580 274210 cl21471 354824 -TIGR02581 274211 cl21471 354824 -TIGR02582 274212 cl21471 354824 -TIGR02583 274213 cl00803 321178 -TIGR02584 274214 cl09839 324506 -TIGR02585 274215 cl00803 321178 -TIGR02589 274216 cl01465 351515 -TIGR02590 274217 cl01465 351515 -TIGR02593 274218 cl21479 328741 -TIGR02596 274219 TIGR02596 274219 -TIGR02597 274220 TIGR02597 274220 -TIGR02599 274221 TIGR02599 274221 -TIGR02600 274222 TIGR02600 274222 -TIGR02601 274223 cl15373 353935 -TIGR02603 274224 TIGR02603 274224 -TIGR02604 274225 TIGR02604 274225 -TIGR02605 274226 cl00993 351338 -TIGR02606 274227 cl22901 304625 -TIGR02607 274228 cl22854 354960 -TIGR02608 274229 cl18310 302697 -TIGR02609 274230 cl00877 321225 -TIGR02612 274231 cl22854 354960 -TIGR02614 274232 cl00511 294347 -TIGR02616 274233 TIGR02616 274233 -TIGR02619 274234 cl19028 327494 -TIGR02621 274235 TIGR02621 274235 -TIGR02622 274236 TIGR02622 274236 -TIGR02627 274237 TIGR02627 274237 -TIGR02630 274238 cl23721 355019 -TIGR02635 274239 cl23721 355019 -TIGR02636 274240 cl14648 353820 -TIGR02639 274241 TIGR02639 274241 -TIGR02641 274242 TIGR02641 274242 -TIGR02642 274243 TIGR02642 274243 -TIGR02644 274244 TIGR02644 274244 -TIGR02645 274245 TIGR02645 274245 -TIGR02651 274246 cl23716 355014 -TIGR02656 274247 cl19115 354382 -TIGR02660 274248 TIGR02660 274248 -TIGR02665 274249 cl11394 353239 -TIGR02666 274250 TIGR02666 274250 -TIGR02668 274251 TIGR02668 274251 -TIGR02669 274252 cl26737 355563 -TIGR02670 274253 cl21519 328770 -TIGR02678 274254 cl09875 324521 -TIGR02679 274255 TIGR02679 274255 -TIGR02680 274256 TIGR02680 274256 -TIGR02682 274257 cl19000 276222 -TIGR02686 274258 cl19905 354504 -TIGR02687 274259 TIGR02687 274259 -TIGR02690 274260 cl00438 351093 -TIGR02693 274261 TIGR02693 274261 -TIGR02701 274262 cl07510 323996 -TIGR02710 274263 cl21570 328805 -TIGR02712 274264 TIGR02712 274264 -TIGR02713 274265 TIGR02713 274265 -TIGR02714 274266 cl17559 354333 -TIGR02715 274267 cl18951 354371 -TIGR02721 274268 cl21453 354810 -TIGR02722 274269 cl21526 354853 -TIGR02727 274270 cl00360 294257 -TIGR02729 274271 TIGR02729 274271 -TIGR02733 274272 cl21454 354811 -TIGR02734 274273 TIGR02734 274273 -TIGR02739 274274 cl00388 351069 -TIGR02740 274275 cl00388 351069 -TIGR02743 274276 cl10149 353056 -TIGR02744 274277 cl11515 353282 -TIGR02745 274278 TIGR02745 274278 -TIGR02746 274279 TIGR02746 274279 -TIGR02747 274280 cl19474 354424 -TIGR02750 274281 cl19475 354425 -TIGR02754 274282 cl10465 353074 -TIGR02756 274283 cl05878 323239 -TIGR02757 274284 cl09884 353020 -TIGR02760 274285 TIGR02760 274285 -TIGR02762 274286 cl06278 323392 -TIGR02764 274287 cl15692 353970 -TIGR02765 274288 TIGR02765 274288 -TIGR02768 274289 TIGR02768 274289 -TIGR02772 274290 TIGR02772 274290 -TIGR02774 274291 TIGR02774 274291 -TIGR02775 274292 cl11423 353249 -TIGR02776 274293 TIGR02776 274293 -TIGR02778 274294 cl01287 321433 -TIGR02779 274295 TIGR02779 274295 -TIGR02781 274296 cl11423 353249 -TIGR02782 274297 cl21455 354812 -TIGR02784 274298 TIGR02784 274298 -TIGR02785 274299 TIGR02785 274299 -TIGR02786 274300 TIGR02786 274300 -TIGR02788 274301 cl21455 354812 -TIGR02791 274302 cl02193 351701 -TIGR02794 274303 TIGR02794 274303 -TIGR02799 274304 cl00509 351126 -TIGR02800 274305 TIGR02800 274305 -TIGR02801 274306 cl00537 321029 -TIGR02802 274307 cl30079 356955 -TIGR02807 274308 cl09782 324480 -TIGR02810 274309 cl09211 352950 -TIGR02811 274310 TIGR02811 274310 -TIGR02813 274311 TIGR02813 274311 -TIGR02814 274312 cl21457 354814 -TIGR02817 274313 TIGR02817 274313 -TIGR02819 274314 TIGR02819 274314 -TIGR02823 274315 TIGR02823 274315 -TIGR02824 274316 TIGR02824 274316 -TIGR02826 274317 cl18962 354374 -TIGR02827 274318 cl21517 328769 -TIGR02830 274319 TIGR02830 274319 -TIGR02834 274320 cl08500 324299 -TIGR02840 274321 cl23795 329083 -TIGR02855 274322 cl05250 322989 -TIGR02857 274323 TIGR02857 274323 -TIGR02858 274324 TIGR02858 274324 -TIGR02860 274325 TIGR02860 274325 -TIGR02861 274326 cl06949 323687 -TIGR02864 274327 cl07943 324185 -TIGR02865 274328 TIGR02865 274328 -TIGR02866 274329 TIGR02866 274329 -TIGR02867 274330 cl02713 351865 -TIGR02868 274331 TIGR02868 274331 -TIGR02870 274332 cl26737 355563 -TIGR02871 274333 cl21594 328818 -TIGR02872 274334 cl00465 294317 -TIGR02876 274335 cl26937 331758 -TIGR02877 274336 cl00057 350880 -TIGR02883 274337 cl02713 351865 -TIGR02887 274338 cl19906 354505 -TIGR02888 274339 cl21591 354883 -TIGR02890 274340 cl00755 351241 -TIGR02892 274341 cl06766 352574 -TIGR02894 274342 cl21524 276343 -TIGR02900 274343 TIGR02900 274343 -TIGR02903 274344 TIGR02903 274344 -TIGR02904 274345 cl21453 354810 -TIGR02907 274346 TIGR02907 274346 -TIGR02914 274347 cl11827 353314 -TIGR02915 274348 TIGR02915 274348 -TIGR02916 274349 TIGR02916 274349 -TIGR02917 274350 TIGR02917 274350 -TIGR02919 274351 cl10013 353042 -TIGR02923 274352 cl00660 351201 -TIGR02924 274353 TIGR02924 274353 -TIGR02928 274354 TIGR02928 274354 -TIGR02934 274355 cl02351 351736 -TIGR02936 274356 cl19102 354379 -TIGR02937 274357 TIGR02937 274357 -TIGR02940 274358 cl17112 327392 -TIGR02943 274359 TIGR02943 274359 -TIGR02946 274360 TIGR02946 274360 -TIGR02950 274361 TIGR02950 274361 -TIGR02956 274362 TIGR02956 274362 -TIGR02961 274363 cl27253 355631 -TIGR02962 274364 cl21470 354823 -TIGR02963 274365 TIGR02963 274365 -TIGR02964 274366 TIGR02964 274366 -TIGR02965 274367 TIGR02965 274367 -TIGR02966 274368 TIGR02966 274368 -TIGR02968 274369 cl00881 351296 -TIGR02970 274370 cl00881 351296 -TIGR02974 274371 TIGR02974 274371 -TIGR02977 274372 TIGR02977 274372 -TIGR02980 274373 TIGR02980 274373 -TIGR02982 274374 TIGR02982 274374 -TIGR02984 274375 TIGR02984 274375 -TIGR02985 274376 TIGR02985 274376 -TIGR02987 274377 TIGR02987 274377 -TIGR02988 274378 cl09940 353034 -TIGR02989 274379 TIGR02989 274379 -TIGR02993 274380 TIGR02993 274380 -TIGR02996 274381 TIGR02996 274381 -TIGR02997 274382 TIGR02997 274382 -TIGR03000 274383 TIGR03000 274383 -TIGR03002 274384 TIGR03002 274384 -TIGR03006 274385 TIGR03006 274385 -TIGR03007 274386 TIGR03007 274386 -TIGR03009 274387 TIGR03009 274387 -TIGR03011 274388 cl00672 351208 -TIGR03012 274389 cl00672 351208 -TIGR03013 274390 TIGR03013 274390 -TIGR03016 274391 cl21487 354832 -TIGR03018 274392 cl28913 355789 -TIGR03020 274393 TIGR03020 274393 -TIGR03021 274394 cl21712 328866 -TIGR03022 274395 TIGR03022 274395 -TIGR03023 274396 TIGR03023 274396 -TIGR03024 274397 TIGR03024 274397 -TIGR03025 274398 TIGR03025 274398 -TIGR03026 274399 cl29802 356678 -TIGR03030 274400 TIGR03030 274400 -TIGR03031 274401 cl22980 277695 -TIGR03032 274402 cl20192 327772 -TIGR03038 274403 cl30286 357162 -TIGR03042 274404 cl23783 329073 -TIGR03043 274405 cl27507 332328 -TIGR03044 274406 cl11841 353316 -TIGR03045 274407 cl21467 354821 -TIGR03046 274408 cl21467 354821 -TIGR03047 274409 cl04326 322618 -TIGR03049 274410 cl11425 325026 -TIGR03053 274411 cl26892 331713 -TIGR03057 274412 TIGR03057 274412 -TIGR03061 274413 cl19580 354443 -TIGR03062 274414 cl21474 354826 -TIGR03067 274415 TIGR03067 274415 -TIGR03071 274416 cl11853 353317 -TIGR03073 274417 cl22450 354940 -TIGR03074 274418 TIGR03074 274418 -TIGR03075 274419 TIGR03075 274419 -TIGR03078 274420 cl04829 322828 -TIGR03082 274421 cl27068 355609 -TIGR03083 274422 TIGR03083 274422 -TIGR03084 274423 TIGR03084 274423 -TIGR03086 274424 cl21506 354845 -TIGR03087 274425 TIGR03087 274425 -TIGR03089 274426 TIGR03089 274426 -TIGR03091 274427 cl23915 329168 -TIGR03101 274428 cl21494 354836 -TIGR03102 274429 cl19115 354382 -TIGR03104 274430 TIGR03104 274430 -TIGR03105 274431 TIGR03105 274431 -TIGR03109 274432 cl15694 353972 -TIGR03113 274433 cl15694 353972 -TIGR03114 274434 cl19002 276223 -TIGR03115 274435 cl11864 275987 -TIGR03117 274436 cl30285 357161 -TIGR03120 274437 cl00249 350981 -TIGR03121 274438 cl00281 351001 -TIGR03122 274439 cl00239 350976 -TIGR03132 274440 cl00768 351245 -TIGR03134 274441 cl23717 355015 -TIGR03135 274442 cl22902 354974 -TIGR03138 274443 TIGR03138 274443 -TIGR03140 274444 TIGR03140 274444 -TIGR03141 274445 cl11475 353271 -TIGR03142 274446 TIGR03142 274446 -TIGR03144 274447 cl00504 321008 -TIGR03145 274448 cl25673 355436 -TIGR03147 274449 cl01179 351412 -TIGR03148 274450 cl21513 328765 -TIGR03149 274451 TIGR03149 274451 -TIGR03150 274452 TIGR03150 274452 -TIGR03153 274453 TIGR03153 274453 -TIGR03155 274454 TIGR03155 274454 -TIGR03156 274455 TIGR03156 274455 -TIGR03157 274456 cl11869 275990 -TIGR03158 274457 TIGR03158 274457 -TIGR03159 274458 cl19005 276224 -TIGR03160 274459 cl11435 353253 -TIGR03161 274460 cl00559 321042 -TIGR03162 274461 cl11399 353243 -TIGR03165 274462 cl11871 325132 -TIGR03167 274463 TIGR03167 274463 -TIGR03168 274464 cl00192 350937 -TIGR03169 274465 cl30284 357160 -TIGR03170 274466 TIGR03170 274466 -TIGR03172 274467 TIGR03172 274467 -TIGR03173 274468 cl23746 355031 -TIGR03174 274469 cl19006 276225 -TIGR03175 274470 cl00900 351305 -TIGR03176 274471 TIGR03176 274471 -TIGR03177 274472 TIGR03177 274472 -TIGR03182 274473 cl01629 351571 -TIGR03184 274474 cl07463 352747 -TIGR03185 274475 TIGR03185 274475 -TIGR03187 274476 cl17621 354335 -TIGR03188 274477 cl16941 354290 -TIGR03197 274478 TIGR03197 274478 -TIGR03199 274479 TIGR03199 274479 -TIGR03211 274480 TIGR03211 274480 -TIGR03217 274481 TIGR03217 274481 -TIGR03219 274482 cl21454 354811 -TIGR03223 274483 cl15435 353944 -TIGR03226 274484 cl00427 351090 -TIGR03236 274485 TIGR03236 274485 -TIGR03240 274486 cl11961 353326 -TIGR03243 274487 cl11440 353256 -TIGR03244 274488 cl11440 353256 -TIGR03245 274489 cl11440 353256 -TIGR03246 274490 cl18945 354370 -TIGR03248 274491 TIGR03248 274491 -TIGR03251 274492 cl18945 354370 -TIGR03260 274493 cl01673 321614 -TIGR03261 274494 cl21456 354813 -TIGR03262 274495 TIGR03262 274495 -TIGR03265 274496 TIGR03265 274496 -TIGR03270 274497 cl17212 354323 -TIGR03272 274498 cl01650 321604 -TIGR03282 274499 cl02775 351884 -TIGR03285 274500 cl01680 321620 -TIGR03287 274501 TIGR03287 274501 -TIGR03289 274502 cl27158 355621 -TIGR03291 274503 cl01670 321613 -TIGR03292 274504 cl01455 351509 -TIGR03293 274505 cl01454 351508 -TIGR03295 274506 cl21493 354835 -TIGR03296 274507 cl21618 354892 -TIGR03297 274508 TIGR03297 274508 -TIGR03298 274509 TIGR03298 274509 -TIGR03299 274510 cl12129 353365 -TIGR03300 274511 TIGR03300 274511 -TIGR03301 274512 TIGR03301 274512 -TIGR03302 274513 TIGR03302 274513 -TIGR03303 274514 TIGR03303 274514 -TIGR03304 274515 TIGR03304 274515 -TIGR03310 274516 cl11394 353239 -TIGR03316 274517 cl30277 357153 -TIGR03317 274518 TIGR03317 274518 -TIGR03323 274519 cl00365 351055 -TIGR03327 274520 TIGR03327 274520 -TIGR03328 274521 cl00214 350956 -TIGR03329 274522 TIGR03329 274522 -TIGR03330 274523 cl00687 351215 -TIGR03331 274524 cl00687 351215 -TIGR03334 274525 cl00546 351146 -TIGR03336 274526 TIGR03336 274526 -TIGR03340 274527 TIGR03340 274527 -TIGR03345 274528 TIGR03345 274528 -TIGR03346 274529 TIGR03346 274529 -TIGR03347 274530 cl01404 351487 -TIGR03348 274531 TIGR03348 274531 -TIGR03349 274532 cl01370 351475 -TIGR03350 274533 TIGR03350 274533 -TIGR03351 274534 TIGR03351 274534 -TIGR03352 274535 cl01405 351488 -TIGR03353 274536 cl01406 351489 -TIGR03354 274537 TIGR03354 274537 -TIGR03355 274538 cl05484 352368 -TIGR03356 274539 cl29627 356503 -TIGR03357 274540 cl01403 351486 -TIGR03359 274541 cl15462 353948 -TIGR03361 274542 TIGR03361 274542 -TIGR03362 274543 cl11880 353319 -TIGR03363 274544 cl19907 354506 -TIGR03365 274545 TIGR03365 274545 -TIGR03366 274546 TIGR03366 274546 -TIGR03367 274547 cl00263 350991 -TIGR03369 274548 cl17862 327445 -TIGR03371 274549 TIGR03371 274549 -TIGR03375 274550 TIGR03375 274550 -TIGR03376 274551 TIGR03376 274551 -TIGR03377 274552 TIGR03377 274552 -TIGR03381 274553 cl11424 353250 -TIGR03383 274554 TIGR03383 274554 -TIGR03388 274555 TIGR03388 274555 -TIGR03389 274556 TIGR03389 274556 -TIGR03391 274557 cl00951 351328 -TIGR03392 274558 cl18945 354370 -TIGR03393 274559 TIGR03393 274559 -TIGR03394 274560 TIGR03394 274560 -TIGR03396 274561 TIGR03396 274561 -TIGR03397 274562 cl23718 355016 -TIGR03399 274563 TIGR03399 274563 -TIGR03400 274564 TIGR03400 274564 -TIGR03404 274565 TIGR03404 274565 -TIGR03405 274566 cl02872 351912 -TIGR03410 274567 TIGR03410 274567 -TIGR03411 274568 TIGR03411 274568 -TIGR03413 274569 TIGR03413 274569 -TIGR03417 274570 TIGR03417 274570 -TIGR03420 274571 TIGR03420 274571 -TIGR03421 274572 cl00238 350975 -TIGR03423 274573 TIGR03423 274573 -TIGR03426 274574 cl01087 294686 -TIGR03429 274575 cl19121 354383 -TIGR03434 274576 TIGR03434 274576 -TIGR03436 274577 TIGR03436 274577 -TIGR03437 274578 TIGR03437 274578 -TIGR03438 274579 cl26572 355537 -TIGR03439 274580 cl26572 355537 -TIGR03440 274581 TIGR03440 274581 -TIGR03443 274582 TIGR03443 274582 -TIGR03444 274583 cl00954 351329 -TIGR03445 274584 cl00929 321254 -TIGR03453 274585 TIGR03453 274585 -TIGR03454 274586 TIGR03454 274586 -TIGR03455 274587 cl29235 356111 -TIGR03458 274588 TIGR03458 274588 -TIGR03459 274589 TIGR03459 274589 -TIGR03462 274590 TIGR03462 274590 -TIGR03463 274591 TIGR03463 274591 -TIGR03464 274592 cl00210 350953 -TIGR03467 274593 TIGR03467 274593 -TIGR03468 274594 cl00303 351011 -TIGR03470 274595 TIGR03470 274595 -TIGR03476 274596 cl04219 322570 -TIGR03477 274597 cl14783 353836 -TIGR03480 274598 TIGR03480 274598 -TIGR03481 274599 cl01074 351369 -TIGR03482 274600 cl00958 351331 -TIGR03483 274601 TIGR03483 274601 -TIGR03490 274602 TIGR03490 274602 -TIGR03491 274603 TIGR03491 274603 -TIGR03492 274604 cl10013 353042 -TIGR03493 274605 cl24004 329229 -TIGR03495 274606 cl24005 329230 -TIGR03496 274607 TIGR03496 274607 -TIGR03497 274608 TIGR03497 274608 -TIGR03499 274609 TIGR03499 274609 -TIGR03500 274610 cl01247 351439 -TIGR03501 274611 TIGR03501 274611 -TIGR03502 274612 TIGR03502 274612 -TIGR03503 274613 TIGR03503 274613 -TIGR03504 274614 TIGR03504 274614 -TIGR03505 274615 cl21525 354852 -TIGR03506 274616 TIGR03506 274616 -TIGR03507 274617 TIGR03507 274617 -TIGR03508 274618 TIGR03508 274618 -TIGR03509 274619 cl21487 354832 -TIGR03510 274620 cl01771 351595 -TIGR03511 274621 cl11905 353320 -TIGR03513 274622 TIGR03513 274622 -TIGR03514 274623 TIGR03514 274623 -TIGR03517 274624 TIGR03517 274624 -TIGR03519 274625 cl14675 326346 -TIGR03520 274626 TIGR03520 274626 -TIGR03521 274627 cl23805 329091 -TIGR03523 274628 TIGR03523 274628 -TIGR03525 274629 cl30264 357140 -TIGR03527 274630 TIGR03527 274630 -TIGR03528 274631 cl00342 294246 -TIGR03529 274632 TIGR03529 274632 -TIGR03533 274633 TIGR03533 274633 -TIGR03534 274634 TIGR03534 274634 -TIGR03535 274635 TIGR03535 274635 -TIGR03537 274636 cl18945 354370 -TIGR03538 274637 TIGR03538 274637 -TIGR03540 274638 TIGR03540 274638 -TIGR03544 274639 cl30263 357139 -TIGR03545 274640 TIGR03545 274640 -TIGR03547 274641 TIGR03547 274641 -TIGR03548 274642 TIGR03548 274642 -TIGR03552 274643 cl11394 353239 -TIGR03556 274644 TIGR03556 274644 -TIGR03557 274645 cl19096 327499 -TIGR03558 274646 cl19096 327499 -TIGR03559 274647 cl19096 327499 -TIGR03560 274648 cl19096 327499 -TIGR03561 274649 cl00767 321154 -TIGR03562 274650 cl00767 321154 -TIGR03564 274651 cl19096 327499 -TIGR03565 274652 cl19096 327499 -TIGR03567 274653 cl00438 351093 -TIGR03568 274654 TIGR03568 274654 -TIGR03569 274655 TIGR03569 274655 -TIGR03570 274656 TIGR03570 274656 -TIGR03571 274657 cl19096 327499 -TIGR03573 274658 cl00292 351005 -TIGR03580 274659 cl11919 325139 -TIGR03584 274660 cl11394 353239 -TIGR03585 274661 TIGR03585 274661 -TIGR03588 274662 cl18945 354370 -TIGR03590 274663 cl28257 333077 -TIGR03591 274664 TIGR03591 274664 -TIGR03592 274665 cl00489 351116 -TIGR03593 274666 cl24006 355120 -TIGR03594 274667 TIGR03594 274667 -TIGR03595 274668 cl07779 352802 -TIGR03596 274669 TIGR03596 274669 -TIGR03598 274670 TIGR03598 274670 -TIGR03599 274671 TIGR03599 274671 -TIGR03600 274672 TIGR03600 274672 -TIGR03601 274673 TIGR03601 274673 -TIGR03604 274674 cl19253 354402 -TIGR03606 274675 cl26817 355575 -TIGR03607 274676 TIGR03607 274676 -TIGR03610 274677 cl10015 299145 -TIGR03613 274678 TIGR03613 274678 -TIGR03618 274679 TIGR03618 274679 -TIGR03619 274680 cl19096 327499 -TIGR03620 274681 cl19096 327499 -TIGR03623 274682 TIGR03623 274682 -TIGR03624 274683 cl02183 351698 -TIGR03625 274684 cl00324 351027 -TIGR03626 274685 cl00324 351027 -TIGR03628 274686 cl00332 320911 -TIGR03630 274687 TIGR03630 274687 -TIGR03631 274688 cl00331 351033 -TIGR03632 274689 cl00332 320911 -TIGR03634 274690 cl00467 351104 -TIGR03635 274691 cl00351 351047 -TIGR03636 274692 cl00326 351029 -TIGR03638 274693 cl00656 351200 -TIGR03639 274694 cl00656 351200 -TIGR03641 274695 cl00656 351200 -TIGR03642 274696 cl09839 324506 -TIGR03644 274697 cl03012 322161 -TIGR03648 274698 cl00456 320982 -TIGR03649 274699 cl21454 354811 -TIGR03651 274700 cl12130 325201 -TIGR03652 274701 cl30260 357136 -TIGR03653 274702 TIGR03653 274702 -TIGR03654 274703 TIGR03654 274703 -TIGR03655 274704 cl08047 352844 -TIGR03656 274705 TIGR03656 274705 -TIGR03659 274706 TIGR03659 274706 -TIGR03661 274707 cl23859 355076 -TIGR03662 274708 cl02250 321862 -TIGR03663 274709 cl25705 355439 -TIGR03664 274710 cl00303 351011 -TIGR03665 274711 TIGR03665 274711 -TIGR03666 274712 cl00381 351064 -TIGR03670 274713 TIGR03670 274713 -TIGR03671 274714 TIGR03671 274714 -TIGR03672 274715 cl00325 351028 -TIGR03673 274716 cl00328 351031 -TIGR03674 274717 TIGR03674 274717 -TIGR03675 274718 TIGR03675 274718 -TIGR03676 274719 TIGR03676 274719 -TIGR03680 274720 TIGR03680 274720 -TIGR03682 274721 cl19374 354415 -TIGR03683 274722 TIGR03683 274722 -TIGR03684 274723 TIGR03684 274723 -TIGR03685 274724 cl21508 354846 -TIGR03686 274725 cl15463 326584 -TIGR03688 274726 cl15463 326584 -TIGR03692 274727 cl00467 351104 -TIGR03694 274728 cl17185 354319 -TIGR03695 274729 TIGR03695 274729 -TIGR03696 274730 TIGR03696 274730 -TIGR03699 274731 TIGR03699 274731 -TIGR03703 274732 cl17185 354319 -TIGR03704 274733 cl17173 354317 -TIGR03705 274734 TIGR03705 274734 -TIGR03706 274735 TIGR03706 274735 -TIGR03708 274736 TIGR03708 274736 -TIGR03709 274737 cl11971 353332 -TIGR03710 274738 TIGR03710 274738 -TIGR03712 274739 cl14015 353803 -TIGR03713 274740 cl10013 353042 -TIGR03715 274741 TIGR03715 274741 -TIGR03716 274742 cl10468 324589 -TIGR03718 274743 cl10468 324589 -TIGR03719 274744 TIGR03719 274744 -TIGR03720 274745 TIGR03720 274745 -TIGR03721 274746 TIGR03721 274746 -TIGR03722 274747 TIGR03722 274747 -TIGR03723 274748 TIGR03723 274748 -TIGR03724 274749 cl21453 354810 -TIGR03725 274750 cl22532 304575 -TIGR03726 274751 TIGR03726 274751 -TIGR03727 274752 cl00454 351100 -TIGR03731 274753 cl03420 275793 -TIGR03732 274754 cl21474 354826 -TIGR03734 274755 TIGR03734 274755 -TIGR03737 274756 cl14019 326315 -TIGR03739 274757 cl17037 354300 -TIGR03741 274758 TIGR03741 274758 -TIGR03742 274759 cl19908 327696 -TIGR03743 274760 cl21455 354812 -TIGR03744 274761 TIGR03744 274761 -TIGR03745 274762 cl24007 329232 -TIGR03750 274763 cl13432 325929 -TIGR03751 274764 TIGR03751 274764 -TIGR03752 274765 TIGR03752 274765 -TIGR03753 274766 cl14026 353804 -TIGR03754 274767 cl21455 354812 -TIGR03755 274768 TIGR03755 274768 -TIGR03756 274769 cl06067 352460 -TIGR03759 274770 TIGR03759 274770 -TIGR03761 274771 cl07481 323977 -TIGR03762 274772 cl15694 353972 -TIGR03765 274773 cl12633 325416 -TIGR03766 274774 cl21590 354882 -TIGR03769 274775 TIGR03769 274775 -TIGR03773 274776 TIGR03773 274776 -TIGR03777 274777 TIGR03777 274777 -TIGR03778 274778 TIGR03778 274778 -TIGR03779 274779 cl23849 355071 -TIGR03782 274780 cl24008 329233 -TIGR03786 274781 cl16948 354291 -TIGR03788 274782 TIGR03788 274782 -TIGR03789 274783 TIGR03789 274783 -TIGR03790 274784 TIGR03790 274784 -TIGR03792 274785 TIGR03792 274785 -TIGR03793 274786 cl22942 304651 -TIGR03794 274787 TIGR03794 274787 -TIGR03796 274788 TIGR03796 274788 -TIGR03797 274789 TIGR03797 274789 -TIGR03798 274790 cl06756 352573 -TIGR03799 274791 cl18945 354370 -TIGR03800 274792 cl00020 350865 -TIGR03802 274793 TIGR03802 274793 -TIGR03803 274794 TIGR03803 274794 -TIGR03804 274795 cl23857 305014 -TIGR03812 274796 cl18945 354370 -TIGR03814 274797 cl00907 351307 -TIGR03815 274798 TIGR03815 274798 -TIGR03816 274799 cl29703 356579 -TIGR03817 274800 TIGR03817 274800 -TIGR03818 274801 cl00568 351156 -TIGR03824 274802 cl01052 351359 -TIGR03825 274803 TIGR03825 274803 -TIGR03828 274804 cl00192 350937 -TIGR03830 274805 TIGR03830 274805 -TIGR03831 274806 cl15819 326649 -TIGR03833 274807 cl02044 351664 -TIGR03835 274808 TIGR03835 274808 -TIGR03837 274809 cl01823 351607 -TIGR03838 274810 cl00015 350862 -TIGR03839 274811 TIGR03839 274811 -TIGR03841 274812 cl19096 327499 -TIGR03843 274813 cl21453 354810 -TIGR03846 274814 cl01629 351571 -TIGR03850 274815 cl21456 354813 -TIGR03851 274816 cl21456 354813 -TIGR03858 274817 cl19096 327499 -TIGR03859 274818 cl05126 352319 -TIGR03860 274819 cl19096 327499 -TIGR03862 274820 cl21454 354811 -TIGR03863 274821 cl10011 353040 -TIGR03864 274822 TIGR03864 274822 -TIGR03865 274823 cl00125 350910 -TIGR03866 274824 TIGR03866 274824 -TIGR03867 274825 TIGR03867 274825 -TIGR03868 274826 cl00262 350990 -TIGR03870 274827 TIGR03870 274827 -TIGR03871 274828 TIGR03871 274828 -TIGR03872 274829 cl21467 354821 -TIGR03876 274830 cl15465 276111 -TIGR03878 274831 cl21455 354812 -TIGR03882 274832 cl30250 357126 -TIGR03883 274833 cl02183 351698 -TIGR03885 274834 cl19096 327499 -TIGR03888 274835 cl21677 354902 -TIGR03891 274836 cl14828 326359 -TIGR03893 274837 cl14830 301355 -TIGR03895 274838 TIGR03895 274838 -TIGR03896 274839 TIGR03896 274839 -TIGR03897 274840 TIGR03897 274840 -TIGR03898 274841 cl22942 304651 -TIGR03899 274842 cl12560 353413 -TIGR03900 274843 TIGR03900 274843 -TIGR03901 274844 TIGR03901 274844 -TIGR03902 274845 cl21536 354858 -TIGR03903 274846 TIGR03903 274846 -TIGR03904 274847 TIGR03904 274847 -TIGR03906 274848 TIGR03906 274848 -TIGR03908 274849 TIGR03908 274849 -TIGR03914 274850 cl00483 351114 -TIGR03915 274851 cl14836 353842 -TIGR03917 274852 TIGR03917 274852 -TIGR03918 274853 TIGR03918 274853 -TIGR03919 274854 cl27073 331894 -TIGR03920 274855 cl28922 355798 -TIGR03921 274856 TIGR03921 274856 -TIGR03923 274857 cl12752 325500 -TIGR03924 274858 TIGR03924 274858 -TIGR03925 274859 TIGR03925 274859 -TIGR03928 274860 TIGR03928 274860 -TIGR03929 274861 cl19580 354443 -TIGR03930 274862 cl02005 321765 -TIGR03931 274863 TIGR03931 274863 -TIGR03934 274864 cl26778 355572 -TIGR03936 274865 cl26561 355532 -TIGR03937 274866 TIGR03937 274866 -TIGR03938 274867 TIGR03938 274867 -TIGR03939 274868 TIGR03939 274868 -TIGR03941 274869 TIGR03941 274869 -TIGR03943 274870 cl01492 321528 -TIGR03944 274871 TIGR03944 274871 -TIGR03945 274872 cl00342 294246 -TIGR03949 274873 TIGR03949 274873 -TIGR03950 274874 cl30249 357125 -TIGR03951 274875 cl30249 357125 -TIGR03952 274876 TIGR03952 274876 -TIGR03953 274877 cl00325 351028 -TIGR03954 274878 cl14844 353843 -TIGR03955 274879 TIGR03955 274879 -TIGR03956 274880 TIGR03956 274880 -TIGR03958 274881 cl19509 327572 -TIGR03959 274882 cl29206 356082 -TIGR03964 274883 cl00618 351181 -TIGR03965 274884 TIGR03965 274884 -TIGR03966 274885 cl21457 354814 -TIGR03967 274886 TIGR03967 274886 -TIGR03969 274887 TIGR03969 274887 -TIGR03970 274888 TIGR03970 274888 -TIGR03971 274889 cl21454 354811 -TIGR03972 274890 TIGR03972 274890 -TIGR03973 274891 cl26253 355498 -TIGR03974 274892 TIGR03974 274892 -TIGR03975 274893 TIGR03975 274893 -TIGR03976 274894 TIGR03976 274894 -TIGR03977 274895 TIGR03977 274895 -TIGR03978 274896 TIGR03978 274896 -TIGR03979 274897 TIGR03979 274897 -TIGR03980 274898 cl14817 353840 -TIGR03983 274899 cl00656 351200 -TIGR03984 274900 TIGR03984 274900 -TIGR03985 274901 cl14852 353844 -TIGR03986 274902 cl21471 354824 -TIGR03987 274903 TIGR03987 274903 -TIGR03988 274904 cl15806 353980 -TIGR03989 274905 TIGR03989 274905 -TIGR03990 274906 TIGR03990 274906 -TIGR03991 274907 TIGR03991 274907 -TIGR03992 274908 TIGR03992 274908 -TIGR03993 274909 cl08122 324200 -TIGR03994 274910 TIGR03994 274910 -TIGR03995 274911 TIGR03995 274911 -TIGR03997 274912 TIGR03997 274912 -TIGR03998 274913 cl19511 327574 -TIGR03999 274914 TIGR03999 274914 -TIGR04001 274915 cl00929 321254 -TIGR04011 274916 cl14855 326364 -TIGR04013 274917 TIGR04013 274917 -TIGR04014 274918 TIGR04014 274918 -TIGR04015 274919 TIGR04015 274919 -TIGR04017 274920 TIGR04017 274920 -TIGR04019 274921 cl00388 351069 -TIGR04020 274922 cl19096 327499 -TIGR04021 274923 cl19096 327499 -TIGR04022 274924 TIGR04022 274924 -TIGR04023 274925 cl00381 351064 -TIGR04025 274926 cl00381 351064 -TIGR04026 274927 cl25686 330507 -TIGR04027 274928 cl19096 327499 -TIGR04028 274929 cl01709 351575 -TIGR04032 274930 TIGR04032 274930 -TIGR04033 274931 cl02773 275778 -TIGR04034 274932 cl14857 353845 -TIGR04035 274933 TIGR04035 274933 -TIGR04036 274934 cl19096 327499 -TIGR04037 274935 cl00438 351093 -TIGR04038 274936 TIGR04038 274936 -TIGR04040 274937 cl26132 330953 -TIGR04041 274938 TIGR04041 274938 -TIGR04042 274939 TIGR04042 274939 -TIGR04043 274940 TIGR04043 274940 -TIGR04045 274941 cl17185 354319 -TIGR04046 274942 cl30243 357119 -TIGR04047 274943 TIGR04047 274943 -TIGR04050 274944 TIGR04050 274944 -TIGR04053 274945 TIGR04053 274945 -TIGR04054 274946 TIGR04054 274946 -TIGR04055 274947 TIGR04055 274947 -TIGR04056 274948 TIGR04056 274948 -TIGR04057 274949 cl23850 355072 -TIGR04059 274950 cl00264 350992 -TIGR04060 274951 cl00927 351313 -TIGR04061 274952 cl14861 276089 -TIGR04062 274953 TIGR04062 274953 -TIGR04063 274954 TIGR04063 274954 -TIGR04064 274955 TIGR04064 274955 -TIGR04065 274956 TIGR04065 274956 -TIGR04066 274957 cl29050 355926 -TIGR04068 274958 TIGR04068 274958 -TIGR04069 274959 TIGR04069 274959 -TIGR04071 274960 TIGR04071 274960 -TIGR04073 274961 TIGR04073 274961 -TIGR04074 274962 TIGR04074 274962 -TIGR04075 274963 TIGR04075 274963 -TIGR04076 274964 TIGR04076 274964 -TIGR04082 274965 TIGR04082 274965 -TIGR04083 274966 TIGR04083 274966 -TIGR04084 274967 TIGR04084 274967 -TIGR04085 274968 cl14869 353846 -TIGR04086 274969 cl22548 328914 -TIGR04087 274970 TIGR04087 274970 -TIGR04088 274971 cl26362 331183 -TIGR04089 274972 TIGR04089 274972 -TIGR04090 274973 TIGR04090 274973 -TIGR04091 274974 cl00738 321138 -TIGR04092 274975 cl27099 355612 -TIGR04093 274976 cl00656 351200 -TIGR04094 274977 TIGR04094 274977 -TIGR04095 274978 TIGR04095 274978 -TIGR04096 274979 cl17173 354317 -TIGR04098 274980 cl00509 351126 -TIGR04099 274981 cl00509 351126 -TIGR04104 274982 TIGR04104 274982 -TIGR04105 274983 TIGR04105 274983 -TIGR04106 274984 cl14805 276063 -TIGR04107 274985 TIGR04107 274985 -TIGR04108 274986 cl01509 351531 -TIGR04111 274987 cl22854 354960 -TIGR04112 274988 cl19477 327562 -TIGR04113 274989 cl18967 276221 -TIGR04114 274990 TIGR04114 274990 -TIGR04116 274991 TIGR04116 274991 -TIGR04117 274992 TIGR04117 274992 -TIGR04120 274993 TIGR04120 274993 -TIGR04121 274994 cl28899 355775 -TIGR04122 274995 TIGR04122 274995 -TIGR04123 274996 cl13995 353799 -TIGR04124 274997 cl15694 353972 -TIGR04125 274998 cl15694 353972 -TIGR04126 274999 TIGR04126 274999 -TIGR04127 275000 TIGR04127 275000 -TIGR04128 275001 cl15694 353972 -TIGR04129 275002 cl15733 326636 -TIGR04130 275003 TIGR04130 275003 -TIGR04131 275004 cl21544 354863 -TIGR04132 275005 cl00644 351193 -TIGR04137 275006 TIGR04137 275006 -TIGR04138 275007 TIGR04138 275007 -TIGR04140 275008 TIGR04140 275008 -TIGR04141 275009 TIGR04141 275009 -TIGR04146 275010 cl21457 354814 -TIGR04147 275011 cl21457 354814 -TIGR04149 275012 TIGR04149 275012 -TIGR04150 275013 TIGR04150 275013 -TIGR04152 275014 TIGR04152 275014 -TIGR04153 275015 TIGR04153 275015 -TIGR04154 275016 cl25704 330525 -TIGR04155 275017 TIGR04155 275017 -TIGR04156 275018 cl15694 353972 -TIGR04157 275019 TIGR04157 275019 -TIGR04158 275020 TIGR04158 275020 -TIGR04160 275021 cl14861 276089 -TIGR04161 275022 TIGR04161 275022 -TIGR04165 275023 TIGR04165 275023 -TIGR04166 275024 cl01678 321619 -TIGR04167 275025 TIGR04167 275025 -TIGR04168 275026 cl13995 353799 -TIGR04171 275027 cl00264 350992 -TIGR04172 275028 cl17621 354335 -TIGR04174 275029 TIGR04174 275029 -TIGR04176 275030 cl21459 354815 -TIGR04178 275031 cl15694 353972 -TIGR04179 275032 TIGR04179 275032 -TIGR04180 275033 cl21454 354811 -TIGR04181 275034 cl18945 354370 -TIGR04182 275035 TIGR04182 275035 -TIGR04183 275036 TIGR04183 275036 -TIGR04184 275037 cl17255 354326 -TIGR04185 275038 TIGR04185 275038 -TIGR04186 275039 cl16946 327364 -TIGR04187 275040 TIGR04187 275040 -TIGR04188 275041 TIGR04188 275041 -TIGR04189 275042 TIGR04189 275042 -TIGR04191 275043 cl05813 323210 -TIGR04192 275044 cl17255 354326 -TIGR04197 275045 cl27830 332651 -TIGR04198 275046 cl27811 332632 -TIGR04199 275047 TIGR04199 275047 -TIGR04201 275048 TIGR04201 275048 -TIGR04202 275049 cl29053 355929 -TIGR04203 275050 TIGR04203 275050 -TIGR04204 275051 cl16949 276145 -TIGR04205 275052 cl28222 333042 -TIGR04206 275053 TIGR04206 275053 -TIGR04207 275054 TIGR04207 275054 -TIGR04209 275055 cl16949 276145 -TIGR04211 275056 TIGR04211 275056 -TIGR04212 275057 cl28221 333041 -TIGR04213 275058 TIGR04213 275058 -TIGR04215 275059 TIGR04215 275059 -TIGR04216 275060 TIGR04216 275060 -TIGR04219 275061 cl21487 354832 -TIGR04221 275062 TIGR04221 275062 -TIGR04222 275063 cl19878 354491 -TIGR04223 275064 cl27940 332761 -TIGR04224 275065 TIGR04224 275065 -TIGR04225 275066 cl16980 354292 -TIGR04226 275067 TIGR04226 275067 -TIGR04228 275068 cl16982 354293 -TIGR04229 275069 TIGR04229 275069 -TIGR04230 275070 TIGR04230 275070 -TIGR04231 275071 TIGR04231 275071 -TIGR04234 275072 TIGR04234 275072 -TIGR04236 275073 TIGR04236 275073 -TIGR04238 275074 TIGR04238 275074 -TIGR04239 275075 TIGR04239 275075 -TIGR04242 275076 TIGR04242 275076 -TIGR04244 275077 TIGR04244 275077 -TIGR04246 275078 TIGR04246 275078 -TIGR04247 275079 TIGR04247 275079 -TIGR04249 275080 cl30228 357104 -TIGR04254 275081 TIGR04254 275081 -TIGR04255 275082 TIGR04255 275082 -TIGR04256 275083 cl16254 354043 -TIGR04257 275084 cl23752 329057 -TIGR04258 275085 TIGR04258 275085 -TIGR04259 275086 TIGR04259 275086 -TIGR04260 275087 TIGR04260 275087 -TIGR04262 275088 TIGR04262 275088 -TIGR04263 275089 TIGR04263 275089 -TIGR04264 275090 TIGR04264 275090 -TIGR04267 275091 TIGR04267 275091 -TIGR04268 275092 TIGR04268 275092 -TIGR04269 275093 TIGR04269 275093 -TIGR04271 275094 cl00125 350910 -TIGR04272 275095 TIGR04272 275095 -TIGR04273 275096 cl21487 354832 -TIGR04275 275097 TIGR04275 275097 -TIGR04276 275098 TIGR04276 275098 -TIGR04279 275099 TIGR04279 275099 -TIGR04280 275100 TIGR04280 275100 -TIGR04281 275101 TIGR04281 275101 -TIGR04282 275102 cl11394 353239 -TIGR04283 275103 TIGR04283 275103 -TIGR04284 275104 cl11961 353326 -TIGR04285 275105 TIGR04285 275105 -TIGR04286 275106 cl28191 355708 -TIGR04289 275107 cl19755 276272 -TIGR04290 275108 cl17173 354317 -TIGR04291 275109 TIGR04291 275109 -TIGR04292 275110 cl19755 276272 -TIGR04295 275111 TIGR04295 275111 -TIGR04296 275112 TIGR04296 275112 -TIGR04301 275113 TIGR04301 275113 -TIGR04305 275114 cl15243 353926 -TIGR04308 275115 TIGR04308 275115 -TIGR04311 275116 TIGR04311 275116 -TIGR04312 275117 TIGR04312 275117 -TIGR04313 275118 TIGR04313 275118 -TIGR04315 275119 TIGR04315 275119 -TIGR04316 275120 cl21454 354811 -TIGR04317 275121 TIGR04317 275121 -TIGR04318 275122 TIGR04318 275122 -TIGR04319 275123 TIGR04319 275123 -TIGR04320 275124 TIGR04320 275124 -TIGR04321 275125 TIGR04321 275125 -TIGR04322 275126 cl18962 354374 -TIGR04324 275127 cl21496 354838 -TIGR04325 275128 cl17173 354317 -TIGR04326 275129 TIGR04326 275129 -TIGR04327 275130 TIGR04327 275130 -TIGR04330 275131 TIGR04330 275131 -TIGR04331 275132 TIGR04331 275132 -TIGR04332 275133 TIGR04332 275133 -TIGR04335 275134 cl00911 351308 -TIGR04336 275135 cl00599 351170 -TIGR04337 275136 TIGR04337 275136 -TIGR04338 275137 TIGR04338 275137 -TIGR04342 275138 TIGR04342 275138 -TIGR04343 275139 cl18945 354370 -TIGR04344 275140 TIGR04344 275140 -TIGR04345 275141 cl17173 354317 -TIGR04346 275142 cl29942 356818 -TIGR04347 275143 TIGR04347 275143 -TIGR04348 275144 TIGR04348 275144 -TIGR04349 275145 TIGR04349 275145 -TIGR04350 275146 TIGR04350 275146 -TIGR04352 275147 cl30228 357104 -TIGR04353 275148 cl05126 352319 -TIGR04354 275149 TIGR04354 275149 -TIGR04355 275150 TIGR04355 275150 -TIGR04357 275151 cl00425 351088 -TIGR04358 275152 TIGR04358 275152 -TIGR04359 275153 TIGR04359 275153 -TIGR04360 275154 TIGR04360 275154 -TIGR04361 275155 cl02193 351701 -TIGR04362 275156 cl19911 354507 -TIGR04363 275157 TIGR04363 275157 -TIGR04364 275158 cl17173 354317 -TIGR04366 275159 cl21464 354820 -TIGR04367 275160 TIGR04367 275160 -TIGR04368 275161 cl23776 355042 -TIGR04369 275162 TIGR04369 275162 -TIGR04370 275163 TIGR04370 275163 -TIGR04371 275164 cl17173 354317 -TIGR04372 275165 TIGR04372 275165 -TIGR04373 275166 cl23855 355074 -TIGR04374 275167 TIGR04374 275167 -TIGR04375 275168 TIGR04375 275168 -TIGR04376 275169 TIGR04376 275169 -TIGR04377 275170 TIGR04377 275170 -TIGR04378 275171 cl01508 351530 -TIGR04379 275172 TIGR04379 275172 -TIGR04380 275173 TIGR04380 275173 -TIGR04381 275174 TIGR04381 275174 -TIGR04382 275175 cl00192 350937 -TIGR04383 275176 TIGR04383 275176 -TIGR04384 275177 TIGR04384 275177 -TIGR04385 275178 TIGR04385 275178 -TIGR04386 275179 cl08031 352842 -TIGR04387 275180 cl22542 354946 -TIGR04388 275181 TIGR04388 275181 -TIGR04389 275182 TIGR04389 275182 -TIGR04390 275183 TIGR04390 275183 -TIGR04391 275184 TIGR04391 275184 -TIGR04392 275185 TIGR04392 275185 -TIGR04393 275186 TIGR04393 275186 -TIGR04394 275187 TIGR04394 275187 -TIGR04395 275188 TIGR04395 275188 -TIGR04396 275189 cl10013 353042 -TIGR04397 275190 TIGR04397 275190 -TIGR04398 275191 TIGR04398 275191 -TIGR04399 275192 TIGR04399 275192 -TIGR04400 275193 TIGR04400 275193 -TIGR04401 275194 cl13994 276033 -TIGR04402 275195 TIGR04402 275195 -TIGR04403 275196 TIGR04403 275196 -TIGR04404 275197 TIGR04404 275197 -TIGR04405 275198 TIGR04405 275198 -TIGR04406 275199 TIGR04406 275199 -TIGR04407 275200 cl12074 325180 -TIGR04408 275201 cl12074 325180 -TIGR04409 275202 cl21541 328784 -TIGR04410 275203 TIGR04410 275203 -TIGR04411 275204 cl03129 351949 -TIGR04412 275205 TIGR04412 275205 -TIGR04413 275206 TIGR04413 275206 -TIGR04414 275207 cl10013 353042 -TIGR04415 275208 TIGR04415 275208 -TIGR04416 275209 TIGR04416 275209 -TIGR04417 275210 TIGR04417 275210 -TIGR04418 275211 cl09930 353029 -TIGR04419 275212 TIGR04419 275212 -TIGR04420 275213 TIGR04420 275213 -TIGR04421 275214 TIGR04421 275214 -TIGR04422 275215 cl18945 354370 -TIGR04423 275216 TIGR04423 275216 -TIGR04424 275217 TIGR04424 275217 -TIGR04425 275218 cl02872 351912 -TIGR04426 275219 TIGR04426 275219 -TIGR04427 275220 cl18945 354370 -TIGR04428 275221 TIGR04428 275221 -TIGR04429 275222 TIGR04429 275222 -TIGR04430 275223 cl29848 356724 -TIGR04431 275224 TIGR04431 275224 -TIGR04432 275225 cl18962 354374 -TIGR04433 275226 TIGR04433 275226 -TIGR04434 275227 TIGR04434 275227 -TIGR04435 275228 TIGR04435 275228 -TIGR04436 275229 cl21496 354838 -TIGR04437 275230 cl15945 276137 -TIGR04438 275231 TIGR04438 275231 -TIGR04439 275232 cl21454 354811 -TIGR04440 275233 cl11394 353239 -TIGR04441 275234 TIGR04441 275234 -TIGR04442 275235 TIGR04442 275235 -TIGR04443 275236 TIGR04443 275236 -TIGR04444 275237 TIGR04444 275237 -TIGR04445 275238 cl19121 354383 -TIGR04446 275239 TIGR04446 275239 -TIGR04447 275240 TIGR04447 275240 -TIGR04448 275241 cl00618 351181 -TIGR04449 275242 TIGR04449 275242 -TIGR04450 275243 TIGR04450 275243 -TIGR04451 275244 TIGR04451 275244 -TIGR04452 275245 TIGR04452 275245 -TIGR04453 275246 TIGR04453 275246 -TIGR04454 275247 TIGR04454 275247 -TIGR04455 275248 TIGR04455 275248 -TIGR04456 275249 cl22817 354956 -TIGR04457 275250 TIGR04457 275250 -TIGR04458 275251 cl12078 353355 -TIGR04459 275252 TIGR04459 275252 -TIGR04460 275253 cl01919 351639 -TIGR04461 275254 TIGR04461 275254 -TIGR04462 275255 cl18945 354370 -TIGR04463 275256 TIGR04463 275256 -TIGR04464 275257 TIGR04464 275257 -TIGR04465 275258 cl19096 327499 -TIGR04466 275259 TIGR04466 275259 -TIGR04467 275260 TIGR04467 275260 -TIGR04468 275261 cl23776 355042 -TIGR04469 275262 TIGR04469 275262 -TIGR04470 275263 cl26885 331706 -TIGR04471 275264 cl15384 326566 -TIGR04472 275265 cl21459 354815 -TIGR04473 275266 TIGR04473 275266 -TIGR04474 275267 cl17173 354317 -TIGR04475 275268 cl00013 350860 -TIGR04476 275269 TIGR04476 275269 -TIGR04477 275270 cl28191 355708 -TIGR04478 275271 TIGR04478 275271 -TIGR04479 275272 TIGR04479 275272 -TIGR04480 275273 cl09607 324396 -TIGR04481 275274 TIGR04481 275274 -TIGR04482 275275 cl09607 324396 -TIGR04483 275276 cl19416 327551 -TIGR04484 275277 TIGR04484 275277 -TIGR04485 275278 cl21467 354821 -TIGR04486 275279 TIGR04486 275279 -TIGR04487 275280 cl00014 350861 -TIGR04488 275281 cl00014 350861 -TIGR04489 275282 TIGR04489 275282 -TIGR04490 275283 cl07397 352730 -TIGR04491 275284 cl26685 331506 -TIGR04492 275285 cl00264 350992 -TIGR04493 275286 cl14772 301342 -TIGR04494 275287 cl21467 354821 -TIGR04495 275288 TIGR04495 275288 -TIGR04496 275289 TIGR04496 275289 -TIGR04497 275290 TIGR04497 275290 -TIGR04498 275291 TIGR04498 275291 -TIGR04499 275292 TIGR04499 275292 -TIGR04500 275293 TIGR04500 275293 -TIGR04501 275294 TIGR04501 275294 -TIGR04502 275295 TIGR04502 275295 -TIGR04503 275296 cl00292 351005 -TIGR04504 275297 TIGR04504 275297 -TIGR04505 275298 cl21456 354813 -TIGR04506 275299 TIGR04506 275299 -TIGR04507 275300 cl17774 354341 -TIGR04508 275301 cl18962 354374 -TIGR04509 275302 TIGR04509 275302 -TIGR04510 275303 TIGR04510 275303 -TIGR04511 275304 cl00514 321015 -TIGR04512 275305 cl28172 332992 -TIGR04513 275306 TIGR04513 275306 -TIGR04514 275307 TIGR04514 275307 -TIGR04515 275308 cl12078 353355 -TIGR04516 275309 cl10013 353042 -TIGR04517 275310 TIGR04517 275310 -TIGR04518 275311 cl21488 354833 -TIGR04519 275312 TIGR04519 275312 -TIGR04520 275313 TIGR04520 275313 -TIGR04521 275314 TIGR04521 275314 -TIGR04522 275315 cl21488 354833 -TIGR04523 275316 TIGR04523 275316 -TIGR04524 275317 cl22766 276720 -TIGR04525 275318 cl22766 276720 -TIGR04526 275319 TIGR04526 275319 -TIGR04527 275320 TIGR04527 275320 -TIGR04528 275321 TIGR04528 275321 -TIGR04529 275322 cl23851 329124 -TIGR04530 275323 cl23851 329124 -TIGR04531 275324 TIGR04531 275324 -TIGR04532 275325 cl00509 351126 -TIGR04533 275326 TIGR04533 275326 -TIGR04534 275327 TIGR04534 275327 -TIGR04535 275328 cl00264 350992 -TIGR04536 275329 TIGR04536 275329 -TIGR04537 275330 TIGR04537 275330 -TIGR04538 275331 cl12078 353355 -TIGR04539 275332 cl22834 328927 -TIGR04540 275333 TIGR04540 275333 -TIGR04541 275334 cl21456 354813 -TIGR04542 275335 TIGR04542 275335 -TIGR04543 275336 TIGR04543 275336 -TIGR04544 275337 TIGR04544 275337 -TIGR04545 275338 TIGR04545 275338 -TIGR04546 275339 TIGR04546 275339 -TIGR04547 275340 cl28172 332992 -TIGR04548 275341 TIGR04548 275341 -TIGR04549 275342 cl22837 354957 -TIGR04550 275343 TIGR04550 275343 -TIGR04551 275344 TIGR04551 275344 -TIGR04552 275345 cl22768 276722 -TIGR04553 275346 TIGR04553 275346 -TIGR04554 275347 TIGR04554 275347 -TIGR04555 275348 TIGR04555 275348 -TIGR04556 275349 TIGR04556 275349 -TIGR04557 275350 TIGR04557 275350 -TIGR04558 275351 TIGR04558 275351 -TIGR04559 275352 TIGR04559 275352 -TIGR04560 275353 cl27771 332592 -TIGR04561 275354 TIGR04561 275354 -TIGR04562 275355 cl22768 276722 -TIGR04563 275356 TIGR04563 275356 -TIGR04564 275357 TIGR04564 275357 -TIGR04565 275358 cl21487 354832 -TIGR04566 275359 TIGR04566 275359 -TIGR04567 275360 cl01319 321447 -TIGR04568 275361 TIGR04568 275361 -TIGR04569 275362 TIGR04569 275362 -TIGR04570 275363 TIGR04570 275363 -TIGR04571 275364 cl21511 328764 -sd00001 275365 sd00001 275365 -sd00002 275366 sd00002 275366 -sd00003 275367 sd00003 275367 -sd00017 275368 sd00017 275368 -sd00018 275369 sd00018 275369 -sd00019 275370 sd00019 275370 -sd00020 275371 sd00020 275371 -sd00025 275375 sd00025 275375 -sd00029 275376 sd00029 275376 -sd00030 275377 sd00030 275377 -sd00031 275378 sd00031 275378 -sd00032 275379 cl26855 355585 -sd00033 275380 sd00033 275380 -sd00034 275381 sd00034 275381 -sd00035 275382 sd00035 275382 -sd00036 275383 sd00036 275383 -sd00037 275384 sd00037 275384 -cd00473 275385 cl00414 351083 -cd15465 275386 cl00414 351083 -cd15487 275387 cl00414 351083 -cd00821 275388 cl17171 354315 -cd00836 275389 cl17171 354315 -cd00900 275390 cl17171 354315 -cd01201 275391 cl17171 354315 -cd01219 275392 cl17171 354315 -cd10570 275393 cl17171 354315 -cd13196 275394 cl17171 354315 -cd13207 275395 cl17171 354315 -cd13208 275396 cl17171 354315 -cd13209 275397 cl17171 354315 -cd13211 275398 cl17171 354315 -cd13212 275399 cl17171 354315 -cd13213 275400 cl17171 354315 -cd13214 275401 cl17171 354315 -cd13215 275402 cl17171 354315 -cd13216 275403 cl17171 354315 -cd13217 275404 cl17171 354315 -cd13218 275405 cl17171 354315 -cd13220 275406 cl17171 354315 -cd13223 275407 cl17171 354315 -cd13226 275408 cl17171 354315 -cd13227 275409 cl17171 354315 -cd13328 275410 cl17171 354315 -cd13329 275411 cl17171 354315 -cd13332 275412 cl17171 354315 -cd13334 275413 cl17171 354315 -cd13335 275414 cl17171 354315 -cd13336 275415 cl17171 354315 -cd13339 275416 cl17171 354315 -cd13340 275417 cl17171 354315 -cd13348 275418 cl17171 354315 -cd13350 275419 cl17171 354315 -cd13351 275420 cl17171 354315 -cd13386 275421 cl17171 354315 -cd13387 275422 cl17171 354315 -cd13388 275423 cl17171 354315 -cd13389 275424 cl17171 354315 -cd13390 275425 cl17171 354315 -cd13391 275426 cl17171 354315 -cd13392 275427 cl17171 354315 -cd13393 275428 cl17171 354315 -cd14679 275429 cl17171 354315 -cd14680 275430 cl17171 354315 -cd15784 275431 cl17171 354315 -cd15789 275432 cl17171 354315 -cd15790 275433 cl17171 354315 -cd15791 275434 cl17171 354315 -cd15792 275435 cl17171 354315 -cd15793 275436 cl17171 354315 -cd15794 275437 cl17171 354315 -cd14859 275438 cl04375 352162 -cd15795 275439 cl04375 352162 -cd15796 275440 cl04375 352162 -cd15797 275441 cl04375 352162 -cd15798 275442 cl04375 352162 -cd15799 275443 cl04375 352162 -cd15800 275444 cl04375 352162 -cd15801 275445 cl04375 352162 -cd15778 275446 cd15778 275446 -cd01513 275447 cl02786 322091 -cd15802 276805 cl27931 355688 -sd00016 276806 cl20473 327937 -sd00010 276807 sd00010 276807 -sd00008 276808 sd00008 276808 -sd00006 276809 sd00006 276809 -sd00005 276810 sd00005 276810 -sd00004 276811 sd00004 276811 -cd00106 276812 cl22853 354959 -cd01363 276814 cl22853 354959 -cd01364 276815 cl22853 354959 -cd01365 276816 cl22853 354959 -cd01366 276817 cl22853 354959 -cd01367 276818 cl22853 354959 -cd01368 276819 cl22853 354959 -cd01369 276820 cl22853 354959 -cd01370 276821 cl22853 354959 -cd01371 276822 cl22853 354959 -cd01372 276823 cl22853 354959 -cd01373 276824 cl22853 354959 -cd01374 276825 cl22853 354959 -cd01375 276826 cl22853 354959 -cd01376 276827 cl22853 354959 -cd01378 276829 cl22853 354959 -cd01379 276830 cl22853 354959 -cd01380 276831 cl22853 354959 -cd01381 276832 cl22853 354959 -cd01382 276833 cl22853 354959 -cd01383 276834 cl22853 354959 -cd01384 276835 cl22853 354959 -cd01385 276836 cl22853 354959 -cd01386 276837 cl22853 354959 -cd01387 276838 cl22853 354959 -cd14872 276839 cl22853 354959 -cd14873 276840 cl22853 354959 -cd14874 276841 cl22853 354959 -cd14875 276842 cl22853 354959 -cd14876 276843 cl22853 354959 -cd14878 276844 cl22853 354959 -cd14879 276845 cl22853 354959 -cd14880 276846 cl22853 354959 -cd14881 276847 cl22853 354959 -cd14882 276848 cl22853 354959 -cd14883 276849 cl22853 354959 -cd14884 276850 cl22853 354959 -cd14886 276851 cl22853 354959 -cd14887 276852 cl22853 354959 -cd14888 276853 cl22853 354959 -cd14889 276854 cl22853 354959 -cd14890 276855 cl22853 354959 -cd14891 276856 cl22853 354959 -cd14892 276857 cl22853 354959 -cd14893 276858 cl22853 354959 -cd14894 276859 cl22853 354959 -cd14895 276860 cl22853 354959 -cd14896 276861 cl22853 354959 -cd14897 276862 cl22853 354959 -cd14898 276863 cl22853 354959 -cd14899 276864 cl22853 354959 -cd14900 276865 cl22853 354959 -cd14901 276866 cl22853 354959 -cd14902 276867 cl22853 354959 -cd14903 276868 cl22853 354959 -cd14904 276869 cl22853 354959 -cd14905 276870 cl22853 354959 -cd14906 276871 cl22853 354959 -cd14907 276872 cl22853 354959 -cd14908 276873 cl22853 354959 -cd14909 276874 cl22853 354959 -cd14910 276875 cl22853 354959 -cd14911 276876 cl22853 354959 -cd14912 276877 cl22853 354959 -cd14913 276878 cl22853 354959 -cd14915 276879 cl22853 354959 -cd14916 276880 cl22853 354959 -cd14917 276881 cl22853 354959 -cd14918 276882 cl22853 354959 -cd14919 276883 cl22853 354959 -cd14921 276885 cl22853 354959 -cd14923 276887 cl22853 354959 -cd14929 276892 cl22853 354959 -cd14930 276893 cl22853 354959 -cd14932 276895 cl22853 354959 -cd14934 276896 cl22853 354959 -cd14937 276897 cl22853 354959 -cd14938 276898 cl22853 354959 -cd15896 276899 cl22853 354959 -cd00185 276900 cl22855 354961 -cd10575 276901 cl22855 354961 -cd10576 276902 cl22855 354961 -cd10577 276903 cl22855 354961 -cd10578 276904 cl22855 354961 -cd10579 276905 cl22855 354961 -cd10580 276906 cl22855 354961 -cd10581 276907 cl22855 354961 -cd10582 276908 cl22855 354961 -cd10583 276909 cl22855 354961 -cd13405 276910 cl22855 354961 -cd13406 276911 cl22855 354961 -cd13407 276912 cl22855 354961 -cd13408 276913 cl22855 354961 -cd13409 276914 cl22855 354961 -cd13410 276915 cl22855 354961 -cd13411 276916 cl22855 354961 -cd13412 276917 cl22855 354961 -cd13413 276918 cl22855 354961 -cd13414 276919 cl22855 354961 -cd13415 276920 cl22855 354961 -cd13416 276921 cl22855 354961 -cd13417 276922 cl22855 354961 -cd13418 276923 cl22855 354961 -cd13419 276924 cl22855 354961 -cd13420 276925 cl22855 354961 -cd13421 276926 cl22855 354961 -cd13422 276927 cl22855 354961 -cd13423 276928 cl22855 354961 -cd13424 276929 cl22855 354961 -cd15834 276930 cl22855 354961 -cd15835 276931 cl22855 354961 -cd15836 276932 cl22855 354961 -cd15837 276933 cl22855 354961 -cd15838 276934 cl22855 354961 -cd15839 276935 cl22855 354961 -cd12212 276936 cl21750 328882 -cd15832 276937 cl24038 329252 -cd15831 276938 cl29992 356868 -cd15830 276939 cl29114 355990 -cd15777 276940 cl13152 353550 -cd15803 276941 cl13152 353550 -cd15804 276942 cl13152 353550 -cd15805 276943 cl13152 353550 -cd15806 276944 cl13152 353550 -cd15807 276945 cl13152 353550 -cd15785 276946 cl06461 323460 -cd15786 276947 cl06461 323460 -cd15787 276948 cl06461 323460 -cd15788 276949 cl06461 323460 -cd00124 276950 cl22853 354959 -cd01377 276951 cl22853 354959 -cd14920 276952 cl22853 354959 -cd14927 276953 cl22853 354959 -cd00286 276954 cl10017 353044 -cd02186 276955 cl10017 353044 -cd02187 276956 cl10017 353044 -cd02188 276957 cl10017 353044 -cd02189 276958 cl10017 353044 -cd02190 276959 cl10017 353044 -cd02191 276960 cl10017 353044 -cd02201 276961 cl10017 353044 -cd02202 276962 cl10017 353044 -cd06059 276963 cl10017 353044 -cd06060 276964 cl10017 353044 -sd00038 276965 sd00038 276965 -cd15489 276966 cl22851 354958 -cd15492 276967 cl22851 354958 -cd15493 276968 cl22851 354958 -cd15494 276969 cl22851 354958 -cd15495 276970 cl22851 354958 -cd15496 276971 cl22851 354958 -cd15497 276972 cl22851 354958 -cd15498 276973 cl22851 354958 -cd15499 276974 cl22851 354958 -cd15500 276975 cl22851 354958 -cd15501 276976 cl22851 354958 -cd15502 276977 cl22851 354958 -cd15503 276978 cl22851 354958 -cd15504 276979 cl22851 354958 -cd15505 276980 cl22851 354958 -cd15506 276981 cl22851 354958 -cd15507 276982 cl22851 354958 -cd15508 276983 cl22851 354958 -cd15509 276984 cl22851 354958 -cd15510 276985 cl22851 354958 -cd15511 276986 cl22851 354958 -cd15512 276987 cl22851 354958 -cd15513 276988 cl22851 354958 -cd15514 276989 cl22851 354958 -cd15515 276990 cl22851 354958 -cd15516 276991 cl22851 354958 -cd15517 276992 cl22851 354958 -cd15518 276993 cl22851 354958 -cd15519 276994 cl22851 354958 -cd15520 276995 cl22851 354958 -cd15521 276996 cl22851 354958 -cd15522 276997 cl22851 354958 -cd15523 276998 cl22851 354958 -cd15524 276999 cl22851 354958 -cd15525 277000 cl22851 354958 -cd15526 277001 cl22851 354958 -cd15527 277002 cl22851 354958 -cd15528 277003 cl22851 354958 -cd15529 277004 cl22851 354958 -cd15530 277005 cl22851 354958 -cd15531 277006 cl22851 354958 -cd15532 277007 cl22851 354958 -cd15533 277008 cl22851 354958 -cd15534 277009 cl22851 354958 -cd15535 277010 cl22851 354958 -cd15536 277011 cl22851 354958 -cd15537 277012 cl22851 354958 -cd15538 277013 cl22851 354958 -cd15539 277014 cl22851 354958 -cd15540 277015 cl22851 354958 -cd15541 277016 cl22851 354958 -cd15542 277017 cl22851 354958 -cd15543 277018 cl22851 354958 -cd15544 277019 cl22851 354958 -cd15545 277020 cl22851 354958 -cd15546 277021 cl22851 354958 -cd15547 277022 cl22851 354958 -cd15548 277023 cl22851 354958 -cd15549 277024 cl22851 354958 -cd15550 277025 cl22851 354958 -cd15551 277026 cl22851 354958 -cd15552 277027 cl22851 354958 -cd15553 277028 cl22851 354958 -cd15554 277029 cl22851 354958 -cd15555 277030 cl22851 354958 -cd15556 277031 cl22851 354958 -cd15557 277032 cl22851 354958 -cd15558 277033 cl22851 354958 -cd15559 277034 cl22851 354958 -cd15560 277035 cl22851 354958 -cd15561 277036 cl22851 354958 -cd15562 277037 cl22851 354958 -cd15563 277038 cl22851 354958 -cd15564 277039 cl22851 354958 -cd15565 277040 cl22851 354958 -cd15566 277041 cl22851 354958 -cd15567 277042 cl22851 354958 -cd15568 277043 cl22851 354958 -cd15569 277044 cl22851 354958 -cd15570 277045 cl22851 354958 -cd15571 277046 cl22851 354958 -cd15572 277047 cl22851 354958 -cd15573 277048 cl22851 354958 -cd15574 277049 cl22851 354958 -cd15575 277050 cl22851 354958 -cd15576 277051 cl22851 354958 -cd15577 277052 cl22851 354958 -cd15578 277053 cl22851 354958 -cd15579 277054 cl22851 354958 -cd15580 277055 cl22851 354958 -cd15581 277056 cl22851 354958 -cd15582 277057 cl22851 354958 -cd15583 277058 cl22851 354958 -cd15584 277059 cl22851 354958 -cd15585 277060 cl22851 354958 -cd15586 277061 cl22851 354958 -cd15587 277062 cl22851 354958 -cd15588 277063 cl22851 354958 -cd15589 277064 cl22851 354958 -cd15590 277065 cl22851 354958 -cd15591 277066 cl22851 354958 -cd15592 277067 cl22851 354958 -cd15593 277068 cl22851 354958 -cd15594 277069 cl22851 354958 -cd15595 277070 cl22851 354958 -cd15596 277071 cl22851 354958 -cd15597 277072 cl22851 354958 -cd15600 277073 cl22851 354958 -cd15601 277074 cl22851 354958 -cd15602 277075 cl22851 354958 -cd15603 277076 cl22851 354958 -cd15604 277077 cl22851 354958 -cd15605 277078 cl22851 354958 -cd15606 277079 cl22851 354958 -cd15607 277080 cl22851 354958 -cd15608 277081 cl22851 354958 -cd15609 277082 cl22851 354958 -cd15610 277083 cl22851 354958 -cd15612 277084 cl22851 354958 -cd15613 277085 cl22851 354958 -cd15614 277086 cl22851 354958 -cd15615 277087 cl22851 354958 -cd15616 277088 cl22851 354958 -cd15617 277089 cl22851 354958 -cd15618 277090 cl22851 354958 -cd15619 277091 cl22851 354958 -cd15622 277092 cl22851 354958 -cd15623 277093 cl22851 354958 -cd15624 277094 cl22851 354958 -cd15625 277095 cl22851 354958 -cd15626 277096 cl22851 354958 -cd15627 277097 cl22851 354958 -cd15628 277098 cl22851 354958 -cd15629 277099 cl22851 354958 -cd15630 277100 cl22851 354958 -cd15631 277101 cl22851 354958 -cd15632 277102 cl22851 354958 -cd15633 277103 cl22851 354958 -cd15634 277104 cl22851 354958 -cd15635 277105 cl22851 354958 -cd15636 277106 cl22851 354958 -cd15637 277107 cl22851 354958 -cd15638 277108 cl22851 354958 -cd15639 277109 cl22851 354958 -cd15640 277110 cl22851 354958 -cd15641 277111 cl22851 354958 -cd15642 277112 cl22851 354958 -cd15643 277113 cl22851 354958 -cd15644 277114 cl22851 354958 -cd15645 277115 cl22851 354958 -cd15646 277116 cl22851 354958 -cd15647 277117 cl22851 354958 -cd15648 277118 cl22851 354958 -cd15649 277119 cl22851 354958 -cd15650 277120 cl22851 354958 -cd15651 277121 cl22851 354958 -cd15652 277122 cl22851 354958 -cd15653 277123 cl22851 354958 -cd15654 277124 cl22851 354958 -cd15655 277125 cl22851 354958 -cd15656 277126 cl22851 354958 -cd15657 277127 cl22851 354958 -cd15658 277128 cl22851 354958 -cd15659 277129 cl22851 354958 -cd15660 277130 cl22851 354958 -cd15661 277131 cl22851 354958 -cd15662 277132 cl22851 354958 -cd15663 277133 cl22851 354958 -cd15664 277134 cl22851 354958 -cd15665 277135 cl22851 354958 -cd15666 277136 cl22851 354958 -cd15667 277137 cl22851 354958 -cd15668 277138 cl22851 354958 -cd15669 277139 cl22851 354958 -cd15670 277140 cl22851 354958 -cd15671 277141 cl22851 354958 -cd15672 277142 cl22851 354958 -cd15673 277143 cl22851 354958 -cd15674 277144 cl22851 354958 -cd15675 277145 cl22851 354958 -cd15676 277146 cl22851 354958 -cd15677 277147 cl22851 354958 -cd15678 277148 cl22851 354958 -cd15679 277149 cl22851 354958 -cd15680 277150 cl22851 354958 -cd15681 277151 cl22851 354958 -cd15682 277152 cl22851 354958 -cd15683 277153 cl22851 354958 -cd15684 277154 cl22851 354958 -cd15685 277155 cl22851 354958 -cd15686 277156 cl22851 354958 -cd15687 277157 cl22851 354958 -cd15688 277158 cl22851 354958 -cd15689 277159 cl22851 354958 -cd15690 277160 cl22851 354958 -cd15691 277161 cl22851 354958 -cd15692 277162 cl22851 354958 -cd15693 277163 cl22851 354958 -cd15694 277164 cl22851 354958 -cd15695 277165 cl22851 354958 -cd15696 277166 cl22851 354958 -cd15697 277167 cl22851 354958 -cd15698 277168 cl22851 354958 -cd15699 277169 cl22851 354958 -cd15700 277170 cl22851 354958 -cd15701 277171 cl22851 354958 -cd15702 277172 cl22851 354958 -cd15703 277173 cl22851 354958 -cd15704 277174 cl22851 354958 -cd15705 277175 cl22851 354958 -cd15706 277176 cl22851 354958 -cd15707 277177 cl22851 354958 -cd15708 277178 cl22851 354958 -cd15709 277179 cl22851 354958 -cd15710 277180 cl22851 354958 -cd15711 277181 cl22851 354958 -cd15712 277182 cl22851 354958 -cd15713 277183 cl22851 354958 -cd15714 277184 cl22851 354958 -cd15715 277185 cl22851 354958 -cd16039 277186 cl22851 354958 -cd12088 277187 cl17041 354301 -cd12089 277188 cl17041 354301 -cd12090 277189 cl17041 354301 -cd12091 277190 cl17041 354301 -cd15903 277191 cl17041 354301 -cd00193 277192 cl22856 354962 -cd15840 277193 cl22856 354962 -cd15841 277194 cl22856 354962 -cd15842 277195 cl22856 354962 -cd15843 277196 cl22856 354962 -cd15844 277197 cl22856 354962 -cd15845 277198 cl22856 354962 -cd15846 277199 cl22856 354962 -cd15847 277200 cl22856 354962 -cd15848 277201 cl22856 354962 -cd15849 277202 cl22856 354962 -cd15850 277203 cl22856 354962 -cd15851 277204 cl22856 354962 -cd15852 277205 cl22856 354962 -cd15853 277206 cl22856 354962 -cd15854 277207 cl22856 354962 -cd15855 277208 cl22856 354962 -cd15856 277209 cl22856 354962 -cd15857 277210 cl22856 354962 -cd15858 277211 cl22856 354962 -cd15859 277212 cl22856 354962 -cd15860 277213 cl22856 354962 -cd15861 277214 cl22856 354962 -cd15862 277215 cl22856 354962 -cd15863 277216 cl22856 354962 -cd15864 277217 cl22856 354962 -cd15865 277218 cl22856 354962 -cd15866 277219 cl22856 354962 -cd15867 277220 cl22856 354962 -cd15868 277221 cl22856 354962 -cd15869 277222 cl22856 354962 -cd15870 277223 cl22856 354962 -cd15871 277224 cl22856 354962 -cd15872 277225 cl22856 354962 -cd15873 277226 cl22856 354962 -cd15874 277227 cl22856 354962 -cd15875 277228 cl22856 354962 -cd15876 277229 cl22856 354962 -cd15877 277230 cl22856 354962 -cd15878 277231 cl22856 354962 -cd15879 277232 cl22856 354962 -cd15880 277233 cl22856 354962 -cd15881 277234 cl22856 354962 -cd15882 277235 cl22856 354962 -cd15883 277236 cl22856 354962 -cd15884 277237 cl22856 354962 -cd15885 277238 cl22856 354962 -cd15886 277239 cl22856 354962 -cd15887 277240 cl22856 354962 -cd15888 277241 cl22856 354962 -cd15889 277242 cl22856 354962 -cd15890 277243 cl22856 354962 -cd15891 277244 cl22856 354962 -cd15892 277245 cl22856 354962 -cd15893 277246 cl22856 354962 -cd15894 277247 cl22856 354962 -cd15895 277248 cl22856 354962 -cd00065 277249 cl28890 333710 -cd11672 277250 cl28890 333710 -cd11725 277251 cl28890 333710 -cd11726 277252 cl28890 333710 -cd11727 277253 cl28890 333710 -cd11728 277254 cl28890 333710 -cd11729 277255 cl28890 333710 -cd15716 277256 cl28890 333710 -cd15717 277257 cl28890 333710 -cd15718 277258 cl28890 333710 -cd15719 277259 cl28890 333710 -cd15720 277260 cl28890 333710 -cd15721 277261 cl28890 333710 -cd15723 277262 cl28890 333710 -cd15724 277263 cl28890 333710 -cd15725 277264 cl28890 333710 -cd15726 277265 cl28890 333710 -cd15727 277266 cl28890 333710 -cd15728 277267 cl28890 333710 -cd15729 277268 cl28890 333710 -cd15730 277269 cl28890 333710 -cd15731 277270 cl28890 333710 -cd15732 277271 cl28890 333710 -cd15733 277272 cl28890 333710 -cd15734 277273 cl28890 333710 -cd15735 277274 cl28890 333710 -cd15736 277275 cl28890 333710 -cd15737 277276 cl28890 333710 -cd15738 277277 cl28890 333710 -cd15739 277278 cl28890 333710 -cd15740 277279 cl28890 333710 -cd15741 277280 cl28890 333710 -cd15742 277281 cl28890 333710 -cd15743 277282 cl28890 333710 -cd15744 277283 cl28890 333710 -cd15745 277284 cl28890 333710 -cd15746 277285 cl28890 333710 -cd15747 277286 cl28890 333710 -cd15748 277287 cl28890 333710 -cd15749 277288 cl28890 333710 -cd15750 277289 cl28890 333710 -cd15751 277290 cl28890 333710 -cd15752 277291 cl28890 333710 -cd15753 277292 cl28890 333710 -cd15754 277293 cl28890 333710 -cd15755 277294 cl28890 333710 -cd15756 277295 cl28890 333710 -cd15757 277296 cl28890 333710 -cd15758 277297 cl28890 333710 -cd15759 277298 cl28890 333710 -cd15760 277299 cl28890 333710 -cd15761 277300 cl28890 333710 -cd15762 277301 cl28890 333710 -cd15763 277302 cl28890 333710 -cd15764 277303 cl28890 333710 -cd15765 277304 cl28890 333710 -cd15766 277305 cl28890 333710 -cd15767 277306 cl28890 333710 -cd15768 277307 cl28890 333710 -cd15769 277308 cl28890 333710 -cd15770 277309 cl28890 333710 -cd15771 277310 cl28890 333710 -cd15772 277311 cl28890 333710 -cd15773 277312 cl28890 333710 -cd15774 277313 cl28890 333710 -cd15775 277314 cl28890 333710 -cd15776 277315 cl28890 333710 -cd00144 277316 cl13995 353799 -cd00838 277317 cl13995 353799 -cd00839 277318 cl13995 353799 -cd00840 277319 cl13995 353799 -cd00841 277320 cl13995 353799 -cd00842 277321 cl13995 353799 -cd00844 277322 cl13995 353799 -cd00845 277323 cl13995 353799 -cd07378 277324 cl13995 353799 -cd07379 277325 cl13995 353799 -cd07380 277326 cl13995 353799 -cd07381 277327 cl13995 353799 -cd07382 277328 cl13995 353799 -cd07383 277329 cl13995 353799 -cd07384 277330 cl13995 353799 -cd07385 277331 cl13995 353799 -cd07386 277332 cl13995 353799 -cd07387 277333 cl13995 353799 -cd07388 277334 cl13995 353799 -cd07389 277335 cl13995 353799 -cd07390 277336 cl13995 353799 -cd07391 277337 cl13995 353799 -cd07392 277338 cl13995 353799 -cd07393 277339 cl13995 353799 -cd07395 277340 cl13995 353799 -cd07396 277341 cl13995 353799 -cd07397 277342 cl13995 353799 -cd07398 277343 cl13995 353799 -cd07399 277344 cl13995 353799 -cd07400 277345 cl13995 353799 -cd07401 277346 cl13995 353799 -cd07402 277347 cl13995 353799 -cd07403 277348 cl13995 353799 -cd07404 277349 cl13995 353799 -cd07405 277350 cl13995 353799 -cd07406 277351 cl13995 353799 -cd07407 277352 cl13995 353799 -cd07408 277353 cl13995 353799 -cd07409 277354 cl13995 353799 -cd07410 277355 cl13995 353799 -cd07411 277356 cl13995 353799 -cd07412 277357 cl13995 353799 -cd07413 277358 cl13995 353799 -cd07414 277359 cl13995 353799 -cd07415 277360 cl13995 353799 -cd07416 277361 cl13995 353799 -cd07417 277362 cl13995 353799 -cd07419 277363 cl13995 353799 -cd07420 277364 cl13995 353799 -cd07422 277365 cl13995 353799 -cd07423 277366 cl13995 353799 -cd07424 277367 cl13995 353799 -cd07425 277368 cl13995 353799 -cd08162 277369 cl13995 353799 -cd08163 277370 cl13995 353799 -cd08164 277371 cl13995 353799 -cd08165 277372 cl13995 353799 -cd08166 277373 cl13995 353799 -pfam00011 278440 cl00175 320797 -pfam00058 278487 pfam00058 278487 -pfam00064 278493 pfam00064 278493 -pfam00093 278520 cl17735 327433 -pfam00116 278542 cl19115 354382 -pfam00147 278572 cl00085 294064 -pfam00201 278624 pfam00201 278624 -pfam00220 278642 pfam00220 278642 -pfam00242 278663 pfam00242 278663 -pfam00248 278668 cl00470 351106 -pfam00260 278678 pfam00260 278678 -pfam00284 278701 pfam00284 278701 -pfam00286 278703 pfam00286 278703 -pfam00304 278720 cl11589 325093 -pfam00308 278724 cl21455 354812 -pfam00313 278729 cl09927 353027 -pfam00324 278739 cl30117 356993 -pfam00325 278740 cl21459 354815 -pfam00326 278741 cl21494 354836 -pfam00336 278751 pfam00336 278751 -pfam00340 278755 cl00094 294069 -pfam00342 278757 pfam00342 278757 -pfam00347 278762 cl30086 356962 -pfam00354 278768 cl22861 354964 -pfam00382 278794 cl00050 350876 -pfam00383 278795 cl00269 350994 -pfam00405 278817 pfam00405 278817 -pfam00407 278819 cl14643 353818 -pfam00414 278825 pfam00414 278825 -pfam00423 278832 cl21531 354855 -pfam00424 278833 pfam00424 278833 -pfam00430 278838 cl21478 354827 -pfam00431 278839 cl00049 294042 -pfam00434 278842 pfam00434 278842 -pfam00446 278853 pfam00446 278853 -pfam00451 278858 pfam00451 278858 -pfam00455 278862 cl00339 351040 -pfam00460 278867 pfam00460 278867 -pfam00463 278869 cl21457 354814 -pfam00464 278870 cl18945 354370 -pfam00480 278883 pfam00480 278883 -pfam00485 278888 cl17190 354320 -pfam00506 278907 pfam00506 278907 -pfam00508 278909 pfam00508 278909 -pfam00509 278910 pfam00509 278910 -pfam00510 278911 cl00211 294143 -pfam00511 278912 pfam00511 278912 -pfam00513 278914 cl28153 332973 -pfam00516 278917 pfam00516 278917 -pfam00519 278920 cl24009 329234 -pfam00522 278923 pfam00522 278923 -pfam00524 278925 pfam00524 278925 -pfam00527 278928 cl02891 295537 -pfam00543 278943 cl00412 351081 -pfam00548 278947 pfam00548 278947 -pfam00551 278950 cl00395 351075 -pfam00559 278957 pfam00559 278957 -pfam00564 278962 cl02720 295447 -pfam00569 278966 cl00295 294208 -pfam00585 278982 cl29106 355982 -pfam00587 278984 cl00268 350993 -pfam00598 278993 pfam00598 278993 -pfam00599 278994 pfam00599 278994 -pfam00600 278995 pfam00600 278995 -pfam00601 278996 pfam00601 278996 -pfam00602 278997 pfam00602 278997 -pfam00603 278998 pfam00603 278998 -pfam00604 278999 pfam00604 278999 -pfam00607 279002 pfam00607 279002 -pfam00614 279008 pfam00614 279008 -pfam00625 279019 pfam00625 279019 -pfam00641 279035 cl02656 295417 -pfam00642 279036 cl11592 353294 -pfam00661 279054 pfam00661 279054 -pfam00669 279061 pfam00669 279061 -pfam00670 279062 cl21454 354811 -pfam00680 279070 cl02808 295487 -pfam00682 279072 pfam00682 279072 -pfam00691 279081 cl30079 356955 -pfam00693 279083 pfam00693 279083 -pfam00695 279085 pfam00695 279085 -pfam00698 279088 cl08282 352868 -pfam00700 279090 pfam00700 279090 -pfam00701 279091 pfam00701 279091 -pfam00705 279095 pfam00705 279095 -pfam00716 279105 cl25932 330753 -pfam00729 279118 cl29941 356817 -pfam00730 279119 cl23768 355038 -pfam00740 279128 pfam00740 279128 -pfam00747 279133 cl28142 332963 -pfam00749 279135 cl00015 350862 -pfam00750 279136 pfam00750 279136 -pfam00760 279145 pfam00760 279145 -pfam00764 279148 cl00292 351005 -pfam00767 279151 pfam00767 279151 -pfam00770 279154 pfam00770 279154 -pfam00789 279169 cl28922 355798 -pfam00793 279172 cl17225 354324 -pfam00796 279175 pfam00796 279175 -pfam00798 279177 pfam00798 279177 -pfam00799 279178 pfam00799 279178 -pfam00803 279181 pfam00803 279181 -pfam00808 279185 cl23735 329044 -pfam00834 279207 cl21457 354814 -pfam00837 279210 cl00388 351069 -pfam00841 279214 pfam00841 279214 -pfam00846 279218 pfam00846 279218 -pfam00851 279223 pfam00851 279223 -pfam00854 279226 cl28910 355786 -pfam00860 279232 pfam00860 279232 -pfam00863 279235 pfam00863 279235 -pfam00871 279243 cl17037 354300 -pfam00874 279246 pfam00874 279246 -pfam00893 279265 cl23754 329058 -pfam00894 279266 pfam00894 279266 -pfam00895 279267 cl03008 295603 -pfam00897 279268 pfam00897 279268 -pfam00899 279270 pfam00899 279270 -pfam00901 279272 pfam00901 279272 -pfam00906 279277 pfam00906 279277 -pfam00910 279280 cl21455 354812 -pfam00916 279284 pfam00916 279284 -pfam00922 279290 pfam00922 279290 -pfam00929 279297 cl10012 353041 -pfam00937 279305 pfam00937 279305 -pfam00938 279306 pfam00938 279306 -pfam00939 279307 cl21473 354825 -pfam00943 279311 pfam00943 279311 -pfam00944 279312 pfam00944 279312 -pfam00945 279313 pfam00945 279313 -pfam00947 279315 pfam00947 279315 -pfam00948 279316 pfam00948 279316 -pfam00952 279319 pfam00952 279319 -pfam00962 279329 cl00281 351001 -pfam00972 279336 pfam00972 279336 -pfam00974 279337 pfam00974 279337 -pfam00977 279340 cl21457 354814 -pfam00980 279341 pfam00980 279341 -pfam00982 279342 pfam00982 279342 -pfam00983 279343 pfam00983 279343 -pfam00999 279355 cl01133 351397 -pfam01002 279357 pfam01002 279357 -pfam01005 279359 pfam01005 279359 -pfam01010 279363 pfam01010 279363 -pfam01021 279373 pfam01021 279373 -pfam01022 279374 cl21459 354815 -pfam01042 279393 cl10015 299145 -pfam01044 279395 pfam01044 279395 -pfam01054 279403 cl28136 332957 -pfam01059 279408 pfam01059 279408 -pfam01068 279417 cl12015 353338 -pfam01073 279420 pfam01073 279420 -pfam01097 279443 pfam01097 279443 -pfam01098 279444 cl00511 294347 -pfam01104 279449 pfam01104 279449 -pfam01107 279452 pfam01107 279452 -pfam01114 279458 pfam01114 279458 -pfam01121 279465 cl17190 354320 -pfam01123 279467 cl30066 356942 -pfam01129 279473 cl00173 320796 -pfam01141 279483 pfam01141 279483 -pfam01148 279489 cl21502 304393 -pfam01170 279509 cl17173 354317 -pfam01171 279510 cl00292 351005 -pfam01183 279518 pfam01183 279518 -pfam01189 279522 cl17173 354317 -pfam01202 279535 cl17190 354320 -pfam01229 279558 cl23725 355022 -pfam01244 279569 cl00281 351001 -pfam01254 279579 pfam01254 279579 -pfam01256 279581 cl00192 350937 -pfam01262 279586 cl21454 354811 -pfam01270 279594 cl01351 294813 -pfam01271 279595 pfam01271 279595 -pfam01304 279626 pfam01304 279626 -pfam01307 279627 pfam01307 279627 -pfam01308 279628 pfam01308 279628 -pfam01309 279629 pfam01309 279629 -pfam01310 279630 pfam01310 279630 -pfam01318 279637 pfam01318 279637 -pfam01324 279642 pfam01324 279642 -pfam01325 279643 cl21459 354815 -pfam01328 279646 pfam01328 279646 -pfam01331 279649 cl12015 353338 -pfam01340 279656 cl23788 304945 -pfam01347 279663 cl26969 331790 -pfam01348 279664 pfam01348 279664 -pfam01349 279665 pfam01349 279665 -pfam01350 279666 pfam01350 279666 -pfam01351 279667 cl14782 353835 -pfam01358 279672 cl03179 295716 -pfam01361 279673 cl00235 350973 -pfam01366 279677 pfam01366 279677 -pfam01372 279683 pfam01372 279683 -pfam01376 279687 pfam01376 279687 -pfam01394 279702 pfam01394 279702 -pfam01398 279706 cl13996 353800 -pfam01400 279708 pfam01400 279708 -pfam01402 279710 cl22901 304625 -pfam01405 279713 cl28134 332955 -pfam01406 279714 pfam01406 279714 -pfam01407 279715 pfam01407 279715 -pfam01408 279716 cl21454 354811 -pfam01411 279719 pfam01411 279719 -pfam01420 279728 pfam01420 279728 -pfam01425 279733 cl18951 354371 -pfam01427 279735 cl00813 351267 -pfam01431 279739 cl14813 353839 -pfam01436 279744 pfam01436 279744 -pfam01440 279747 pfam01440 279747 -pfam01445 279751 pfam01445 279751 -pfam01452 279757 pfam01452 279757 -pfam01457 279761 cl19482 302875 -pfam01462 279764 cl02423 295298 -pfam01463 279765 pfam01463 279765 -pfam01464 279766 cl00222 350962 -pfam01468 279770 cl23938 305095 -pfam01469 279771 pfam01469 279771 -pfam01470 279772 cl00237 320846 -pfam01472 279774 cl00607 294405 -pfam01475 279776 cl21459 354815 -pfam01490 279788 cl00456 320982 -pfam01492 279790 pfam01492 279790 -pfam01499 279796 cl28129 332950 -pfam01500 279797 pfam01500 279797 -pfam01501 279798 cl11394 353239 -pfam01508 279805 cl23942 305099 -pfam01513 279809 cl01255 321418 -pfam01515 279811 cl17212 354323 -pfam01516 279812 pfam01516 279812 -pfam01517 279813 pfam01517 279813 -pfam01519 279814 pfam01519 279814 -pfam01524 279819 pfam01524 279819 -pfam01528 279822 cl28128 332949 -pfam01533 279826 pfam01533 279826 -pfam01542 279832 pfam01542 279832 -pfam01549 279838 cl15839 301728 -pfam01552 279840 pfam01552 279840 -pfam01553 279841 cl17185 354319 -pfam01567 279853 pfam01567 279853 -pfam01573 279858 pfam01573 279858 -pfam01580 279863 pfam01580 279863 -pfam01584 279866 cl00256 294183 -pfam01588 279869 cl00320 351024 -pfam01589 279870 pfam01589 279870 -pfam01594 279875 cl00465 294317 -pfam01600 279880 pfam01600 279880 -pfam01601 279881 pfam01601 279881 -pfam01611 279888 pfam01611 279888 -pfam01616 279892 pfam01616 279892 -pfam01620 279896 cl03283 295770 -pfam01621 279897 pfam01621 279897 -pfam01635 279907 pfam01635 279907 -pfam01636 279908 pfam01636 279908 -pfam01639 279910 pfam01639 279910 -pfam01645 279916 cl27100 355613 -pfam01659 279928 pfam01659 279928 -pfam01665 279933 pfam01665 279933 -pfam01667 279935 cl00897 294584 -pfam01671 279939 pfam01671 279939 -pfam01673 279941 cl28122 332943 -pfam01677 279943 cl28121 332942 -pfam01686 279951 pfam01686 279951 -pfam01688 279953 cl30051 356927 -pfam01690 279954 pfam01690 279954 -pfam01691 279955 pfam01691 279955 -pfam01692 279956 pfam01692 279956 -pfam01700 279964 pfam01700 279964 -pfam01707 279970 pfam01707 279970 -pfam01710 279973 pfam01710 279973 -pfam01712 279974 cl17190 354320 -pfam01717 279978 cl00464 320986 -pfam01718 279979 pfam01718 279979 -pfam01721 279981 pfam01721 279981 -pfam01723 279983 pfam01723 279983 -pfam01736 279993 cl28119 332940 -pfam01743 280000 cl21612 304464 -pfam01745 280002 cl21455 354812 -pfam01746 280003 cl00407 294285 -pfam01750 280006 cl00477 351109 -pfam01761 280016 cl02872 351912 -pfam01763 280017 pfam01763 280017 -pfam01766 280020 pfam01766 280020 -pfam01767 280021 pfam01767 280021 -pfam01768 280022 pfam01768 280022 -pfam01771 280025 cl09232 352951 -pfam01791 280041 cl21457 354814 -pfam01801 280049 cl28118 332939 -pfam01802 280050 cl30049 356925 -pfam01806 280054 pfam01806 280054 -pfam01807 280055 cl21601 354885 -pfam01810 280058 cl00565 294381 -pfam01812 280059 cl00360 294257 -pfam01818 280064 cl28116 332937 -pfam01819 280065 cl28115 332936 -pfam01824 280070 cl28114 332935 -pfam01830 280076 pfam01830 280076 -pfam01831 280077 pfam01831 280077 -pfam01844 280088 cl00083 350893 -pfam01852 280096 cl14643 353818 -pfam01856 280099 cl21487 354832 -pfam01861 280102 cl17173 354317 -pfam01864 280105 cl21502 304393 -pfam01865 280106 cl28112 332933 -pfam01869 280110 cl17037 354300 -pfam01875 280116 cl00599 351170 -pfam01884 280124 cl21457 354814 -pfam01902 280139 cl00292 351005 -pfam01914 280149 cl21514 354847 -pfam01938 280171 cl01282 294784 -pfam01939 280172 cl00516 351129 -pfam01943 280175 cl09326 352957 -pfam01957 280186 cl00686 351214 -pfam01991 280215 cl23750 355034 -pfam02001 280223 cl22854 354960 -pfam02002 280224 cl21459 354815 -pfam02005 280225 cl17173 354317 -pfam02007 280227 cl00219 350959 -pfam02015 280233 pfam02015 280233 -pfam02031 280248 cl00064 350885 -pfam02041 280254 cl21464 354820 -pfam02044 280257 pfam02044 280257 -pfam02056 280263 cl21454 354811 -pfam02061 280268 pfam02061 280268 -pfam02066 280272 pfam02066 280272 -pfam02067 280273 pfam02067 280273 -pfam02074 280280 cl14813 353839 -pfam02079 280284 pfam02079 280284 -pfam02083 280288 pfam02083 280288 -pfam02090 280292 cl22557 304582 -pfam02097 280298 pfam02097 280298 -pfam02110 280307 cl00192 350937 -pfam02112 280308 cl23716 355014 -pfam02123 280316 cl02808 295487 -pfam02124 280317 cl30047 356923 -pfam02126 280318 cl00281 351001 -pfam02127 280319 cl14876 353847 -pfam02150 280336 cl02717 295446 -pfam02153 280339 pfam02153 280339 -pfam02157 280342 pfam02157 280342 -pfam02160 280345 pfam02160 280345 -pfam02172 280354 pfam02172 280354 -pfam02176 280357 pfam02176 280357 -pfam02181 280362 cl19758 302999 -pfam02202 280381 pfam02202 280381 -pfam02217 280395 pfam02217 280395 -pfam02219 280397 cl00246 294174 -pfam02222 280399 cl17255 354326 -pfam02223 280400 pfam02223 280400 -pfam02224 280401 cl17190 354320 -pfam02228 280404 pfam02228 280404 -pfam02232 280407 cl03493 351997 -pfam02236 280410 pfam02236 280410 -pfam02258 280428 pfam02258 280428 -pfam02281 280446 pfam02281 280446 -pfam02282 280447 pfam02282 280447 -pfam02294 280458 pfam02294 280458 -pfam02295 280459 cl02659 295419 -pfam02298 280462 cl19115 354382 -pfam02304 280467 cl28106 332927 -pfam02306 280468 cl11610 299794 -pfam02329 280487 cl03540 295899 -pfam02331 280489 pfam02331 280489 -pfam02333 280491 cl17685 302653 -pfam02334 280492 cl21459 354815 -pfam02336 280494 pfam02336 280494 -pfam02341 280497 pfam02341 280497 -pfam02346 280501 cl28105 332926 -pfam02347 280502 cl18945 354370 -pfam02353 280508 pfam02353 280508 -pfam02355 280510 cl21543 354862 -pfam02358 280512 cl21460 354816 -pfam02361 280514 cl00463 294315 -pfam02366 280519 cl21590 354882 -pfam02369 280522 cl23771 355039 -pfam02374 280525 cl21455 354812 -pfam02381 280530 cl03563 352023 -pfam02384 280533 pfam02384 280533 -pfam02386 280534 cl17365 302641 -pfam02387 280535 cl11495 299748 -pfam02389 280537 pfam02389 280537 -pfam02395 280543 pfam02395 280543 -pfam02398 280545 pfam02398 280545 -pfam02399 280546 pfam02399 280546 -pfam02407 280553 pfam02407 280553 -pfam02408 280554 cl00049 294042 -pfam02416 280560 cl00788 294511 -pfam02425 280567 pfam02425 280567 -pfam02442 280581 cl28088 355703 -pfam02444 280583 pfam02444 280583 -pfam02456 280594 pfam02456 280594 -pfam02458 280596 pfam02458 280596 -pfam02459 280597 pfam02459 280597 -pfam02468 280606 cl28086 332907 -pfam02471 280609 pfam02471 280609 -pfam02474 280611 cl17182 354318 -pfam02475 280612 pfam02475 280612 -pfam02476 280613 cl28085 332906 -pfam02477 280614 pfam02477 280614 -pfam02478 280615 pfam02478 280615 -pfam02479 280616 pfam02479 280616 -pfam02480 280617 cl30037 356913 -pfam02484 280620 pfam02484 280620 -pfam02488 280624 pfam02488 280624 -pfam02492 280627 cl21455 354812 -pfam02494 280629 cl03620 352028 -pfam02499 280633 cl30035 356911 -pfam02500 280634 cl30034 356910 -pfam02509 280642 pfam02509 280642 -pfam02510 280643 cl19597 302938 -pfam02512 280645 pfam02512 280645 -pfam02516 280649 cl21590 354882 -pfam02524 280656 pfam02524 280656 -pfam02526 280658 pfam02526 280658 -pfam02527 280659 cl17173 354317 -pfam02540 280670 cl00292 351005 -pfam02541 280671 pfam02541 280671 -pfam02543 280673 cl22532 304575 -pfam02568 280691 cl00292 351005 -pfam02581 280703 pfam02581 280703 -pfam02616 280735 cl00598 351169 -pfam02652 280762 cl00701 294462 -pfam02653 280763 cl00454 351100 -pfam02655 280765 cl17255 354326 -pfam02667 280776 cl21473 354825 -pfam02683 280792 cl21514 354847 -pfam02684 280793 cl28080 355702 -pfam02685 280794 cl17037 354300 -pfam02689 280797 cl28079 332900 -pfam02707 280810 pfam02707 280810 -pfam02710 280812 cl28016 332837 -pfam02722 280819 pfam02722 280819 -pfam02723 280820 pfam02723 280820 -pfam02725 280822 pfam02725 280822 -pfam02744 280840 cl00228 350967 -pfam02747 280843 cl24017 305174 -pfam02763 280859 cl00283 320879 -pfam02764 280860 pfam02764 280860 -pfam02768 280863 pfam02768 280863 -pfam02786 280881 cl17255 354326 -pfam02790 280885 pfam02790 280885 -pfam02803 280896 cl21486 354831 -pfam02813 280904 pfam02813 280904 -pfam02831 280921 pfam02831 280921 -pfam02832 280922 cl28075 332896 -pfam02836 280925 cl23725 355022 -pfam02854 280935 cl02652 295415 -pfam02866 280941 pfam02866 280941 -pfam02876 280949 pfam02876 280949 -pfam02886 280959 cl00188 320805 -pfam02894 280967 cl21649 304482 -pfam02913 280983 pfam02913 280983 -pfam02918 280986 pfam02918 280986 -pfam02923 280991 pfam02923 280991 -pfam02925 280993 cl28070 332891 -pfam02938 281005 pfam02938 281005 -pfam02940 281007 cl11964 353327 -pfam02942 281009 pfam02942 281009 -pfam02947 281014 pfam02947 281014 -pfam02954 281020 cl22895 304622 -pfam02956 281022 pfam02956 281022 -pfam02959 281024 pfam02959 281024 -pfam02960 281025 pfam02960 281025 -pfam02962 281027 pfam02962 281027 -pfam02964 281029 pfam02964 281029 -pfam02969 281032 cl23774 304931 -pfam02973 281035 cl22861 354964 -pfam02981 281042 pfam02981 281042 -pfam02989 281047 pfam02989 281047 -pfam02991 281049 cl28922 355798 -pfam02993 281051 pfam02993 281051 -pfam02996 281054 cl09111 352933 -pfam03003 281058 cl28068 332889 -pfam03007 281060 cl23853 355073 -pfam03010 281063 pfam03010 281063 -pfam03011 281064 pfam03011 281064 -pfam03014 281067 cl30022 356898 -pfam03021 281073 pfam03021 281073 -pfam03023 281075 cl09326 352957 -pfam03026 281077 pfam03026 281077 -pfam03032 281082 pfam03032 281082 -pfam03033 281083 cl10013 353042 -pfam03037 281087 pfam03037 281087 -pfam03038 281088 pfam03038 281088 -pfam03041 281091 pfam03041 281091 -pfam03042 281092 pfam03042 281092 -pfam03043 281093 cl28067 355701 -pfam03044 281094 cl28066 355700 -pfam03048 281097 pfam03048 281097 -pfam03049 281098 cl28065 332886 -pfam03051 281100 cl23744 355029 -pfam03054 281101 pfam03054 281101 -pfam03062 281107 cl00738 321138 -pfam03064 281109 pfam03064 281109 -pfam03071 281116 cl11394 353239 -pfam03072 281117 pfam03072 281117 -pfam03076 281120 pfam03076 281120 -pfam03077 281121 pfam03077 281121 -pfam03079 281122 cl21464 354820 -pfam03082 281125 pfam03082 281125 -pfam03083 281126 cl21610 354889 -pfam03085 281128 cl28061 355699 -pfam03086 281129 pfam03086 281129 -pfam03088 281131 cl22863 354965 -pfam03109 281150 cl21453 354810 -pfam03112 281152 pfam03112 281152 -pfam03113 281153 pfam03113 281153 -pfam03114 281154 cl12013 353336 -pfam03115 281155 cl30022 356898 -pfam03117 281157 pfam03117 281157 -pfam03121 281161 pfam03121 281161 -pfam03122 281162 pfam03122 281162 -pfam03129 281168 cl00266 320868 -pfam03133 281171 cl17255 354326 -pfam03157 281191 pfam03157 281191 -pfam03158 281192 pfam03158 281192 -pfam03175 281206 cl28058 355698 -pfam03180 281211 cl21456 354813 -pfam03187 281216 pfam03187 281216 -pfam03196 281224 pfam03196 281224 -pfam03197 281225 pfam03197 281225 -pfam03210 281237 pfam03210 281237 -pfam03213 281240 cl28057 332878 -pfam03216 281242 pfam03216 281242 -pfam03220 281245 pfam03220 281245 -pfam03228 281252 pfam03228 281252 -pfam03238 281258 cl03953 296151 -pfam03245 281263 cl22701 304589 -pfam03249 281267 pfam03249 281267 -pfam03251 281269 pfam03251 281269 -pfam03252 281270 cl28056 332877 -pfam03257 281275 pfam03257 281275 -pfam03258 281276 pfam03258 281276 -pfam03262 281280 pfam03262 281280 -pfam03263 281281 pfam03263 281281 -pfam03273 281290 pfam03273 281290 -pfam03274 281291 pfam03274 281291 -pfam03276 281293 pfam03276 281293 -pfam03277 281294 pfam03277 281294 -pfam03278 281295 pfam03278 281295 -pfam03279 281296 cl17185 354319 -pfam03286 281302 cl28054 332875 -pfam03289 281305 cl28053 332874 -pfam03290 281306 pfam03290 281306 -pfam03291 281307 cl17173 354317 -pfam03292 281308 pfam03292 281308 -pfam03293 281309 pfam03293 281309 -pfam03294 281310 pfam03294 281310 -pfam03295 281311 pfam03295 281311 -pfam03296 281312 pfam03296 281312 -pfam03300 281316 pfam03300 281316 -pfam03301 281317 cl03994 296175 -pfam03303 281318 pfam03303 281318 -pfam03307 281322 pfam03307 281322 -pfam03308 281323 cl21455 354812 -pfam03324 281336 cl28610 355715 -pfam03325 281337 pfam03325 281337 -pfam03327 281339 cl28050 332871 -pfam03332 281343 cl21460 354816 -pfam03336 281347 pfam03336 281347 -pfam03337 281348 cl28048 332869 -pfam03338 281349 pfam03338 281349 -pfam03339 281350 cl28047 332868 -pfam03340 281351 pfam03340 281351 -pfam03341 281352 pfam03341 281352 -pfam03342 281353 pfam03342 281353 -pfam03347 281357 pfam03347 281357 -pfam03353 281363 pfam03353 281363 -pfam03354 281364 cl26981 331802 -pfam03356 281365 cl28046 332867 -pfam03361 281370 pfam03361 281370 -pfam03362 281371 pfam03362 281371 -pfam03363 281372 pfam03363 281372 -pfam03369 281377 pfam03369 281377 -pfam03373 281381 pfam03373 281381 -pfam03376 281383 pfam03376 281383 -pfam03379 281385 cl21474 354826 -pfam03387 281391 cl28045 355696 -pfam03394 281397 cl28044 332865 -pfam03395 281398 pfam03395 281398 -pfam03396 281399 pfam03396 281399 -pfam03397 281400 pfam03397 281400 -pfam03400 281403 cl00721 294470 -pfam03401 281404 cl21456 354813 -pfam03408 281409 pfam03408 281409 -pfam03410 281411 cl28043 332864 -pfam03415 281416 cl21652 304483 -pfam03417 281418 cl00467 351104 -pfam03420 281421 cl11614 299796 -pfam03423 281424 cl23798 355052 -pfam03426 281427 pfam03426 281427 -pfam03430 281430 pfam03430 281430 -pfam03437 281436 cl21457 354814 -pfam03438 281437 pfam03438 281437 -pfam03444 281443 cl21459 354815 -pfam03447 281446 cl21454 354811 -pfam03459 281458 cl01440 351505 -pfam03476 281474 pfam03476 281474 -pfam03482 281480 pfam03482 281480 -pfam03486 281484 pfam03486 281484 -pfam03491 281488 pfam03491 281488 -pfam03497 281494 pfam03497 281494 -pfam03500 281496 pfam03500 281496 -pfam03504 281500 pfam03504 281500 -pfam03506 281501 pfam03506 281501 -pfam03507 281502 pfam03507 281502 -pfam03510 281505 cl28040 332861 -pfam03513 281508 pfam03513 281508 -pfam03525 281518 pfam03525 281518 -pfam03532 281524 pfam03532 281524 -pfam03536 281528 cl04142 296266 -pfam03538 281530 cl21676 304491 -pfam03544 281534 cl10048 353052 -pfam03545 281535 cl23876 355084 -pfam03552 281541 pfam03552 281541 -pfam03553 281542 cl21473 354825 -pfam03554 281543 cl29774 356650 -pfam03555 281544 pfam03555 281544 -pfam03557 281546 pfam03557 281546 -pfam03558 281547 pfam03558 281547 -pfam03563 281551 pfam03563 281551 -pfam03564 281552 pfam03564 281552 -pfam03566 281553 pfam03566 281553 -pfam03569 281556 pfam03569 281556 -pfam03574 281560 cl23931 305088 -pfam03575 281561 cl00020 350865 -pfam03579 281565 pfam03579 281565 -pfam03580 281566 pfam03580 281566 -pfam03581 281567 cl28035 332856 -pfam03583 281568 cl21494 354836 -pfam03584 281569 pfam03584 281569 -pfam03585 281570 cl29994 356870 -pfam03586 281571 pfam03586 281571 -pfam03594 281578 cl23746 355031 -pfam03596 281580 cl19409 327549 -pfam03601 281584 cl01075 294678 -pfam03602 281585 cl17173 354317 -pfam03606 281589 cl21473 354825 -pfam03614 281597 pfam03614 281597 -pfam03615 281598 pfam03615 281598 -pfam03617 281600 pfam03617 281600 -pfam03620 281603 pfam03620 281603 -pfam03622 281605 pfam03622 281605 -pfam03632 281612 cl27850 355684 -pfam03641 281621 cl22881 354968 -pfam03642 281622 pfam03642 281622 -pfam03648 281627 cl03741 352043 -pfam03657 281632 cl00607 294405 -pfam03664 281639 cl14647 353819 -pfam03677 281647 pfam03677 281647 -pfam03686 281653 cl00552 294373 -pfam03687 281654 pfam03687 281654 -pfam03693 281658 cl22901 304625 -pfam03702 281665 cl22918 304634 -pfam03704 281667 cl29992 356868 -pfam03708 281671 pfam03708 281671 -pfam03710 281673 pfam03710 281673 -pfam03728 281690 pfam03728 281690 -pfam03753 281713 pfam03753 281713 -pfam03754 281714 pfam03754 281714 -pfam03764 281721 cl02789 295478 -pfam03773 281730 cl17795 302666 -pfam03785 281739 pfam03785 281739 -pfam03786 281740 cl23721 355019 -pfam03804 281756 pfam03804 281756 -pfam03806 281758 cl21473 354825 -pfam03807 281759 cl21454 354811 -pfam03811 281762 pfam03811 281762 -pfam03819 281770 cl16941 354290 -pfam03825 281776 pfam03825 281776 -pfam03835 281786 pfam03835 281786 -pfam03845 281794 cl00456 320982 -pfam03848 281796 cl17173 354317 -pfam03852 281799 cl00516 351129 -pfam03853 281800 cl00318 351022 -pfam03854 281801 pfam03854 281801 -pfam03855 281802 pfam03855 281802 -pfam03863 281809 cl28021 332842 -pfam03869 281814 pfam03869 281814 -pfam03875 281820 pfam03875 281820 -pfam03900 281841 pfam03900 281841 -pfam03901 281842 cl21590 354882 -pfam03902 281843 pfam03902 281843 -pfam03903 281844 pfam03903 281844 -pfam03906 281845 pfam03906 281845 -pfam03930 281864 pfam03930 281864 -pfam03931 281865 cl02518 351783 -pfam03932 281866 cl29988 356864 -pfam03940 281873 pfam03940 281873 -pfam03945 281878 pfam03945 281878 -pfam03955 281888 cl27512 332333 -pfam03964 281897 pfam03964 281897 -pfam03968 281901 cl21541 328784 -pfam03969 281902 cl29094 355970 -pfam03970 281903 cl28017 332838 -pfam03996 281925 cl28016 332837 -pfam04007 281936 cl10013 353042 -pfam04012 281941 pfam04012 281941 -pfam04013 281942 cl00611 321070 -pfam04022 281951 pfam04022 281951 -pfam04030 281959 cl21623 304471 -pfam04048 281972 pfam04048 281972 -pfam04057 281980 cl09930 353029 -pfam04075 281995 cl00381 351064 -pfam04076 281996 cl09930 353029 -pfam04093 282013 cl01087 294686 -pfam04094 282014 pfam04094 282014 -pfam04099 282019 cl21566 354875 -pfam04100 282020 pfam04100 282020 -pfam04101 282021 cl10013 353042 -pfam04104 282024 cl11970 353331 -pfam04107 282026 cl00954 351329 -pfam04129 282044 cl19950 327707 -pfam04142 282054 pfam04142 282054 -pfam04159 282069 pfam04159 282069 -pfam04160 282070 pfam04160 282070 -pfam04162 282072 pfam04162 282072 -pfam04163 282073 pfam04163 282073 -pfam04165 282074 cl00830 294541 -pfam04173 282080 cl21527 328775 -pfam04188 282094 cl21590 354882 -pfam04196 282102 pfam04196 282102 -pfam04197 282103 pfam04197 282103 -pfam04209 282114 cl21464 354820 -pfam04218 282122 cl21459 354815 -pfam04224 282127 cl01162 294724 -pfam04225 282128 cl21525 354852 -pfam04228 282131 cl19825 303014 -pfam04231 282134 cl00083 350893 -pfam04258 282158 cl01342 351467 -pfam04261 282161 cl01067 294672 -pfam04268 282168 cl01893 351633 -pfam04273 282172 cl28904 355780 -pfam04297 282193 cl21459 354815 -pfam04310 282203 pfam04310 282203 -pfam04318 282211 pfam04318 282211 -pfam04340 282228 cl21515 354848 -pfam04348 282235 pfam04348 282235 -pfam04370 282256 pfam04370 282256 -pfam04378 282261 cl17173 354317 -pfam04392 282274 cl10011 353040 -pfam04394 282276 pfam04394 282276 -pfam04395 282277 cl28009 332830 -pfam04409 282289 cl19820 303009 -pfam04415 282295 cl19548 302911 -pfam04428 282307 pfam04428 282307 -pfam04441 282317 pfam04441 282317 -pfam04443 282319 pfam04443 282319 -pfam04451 282327 pfam04451 282327 -pfam04464 282338 pfam04464 282338 -pfam04465 282339 cl19819 303008 -pfam04473 282345 cl17362 354329 -pfam04478 282349 pfam04478 282349 -pfam04480 282351 cl00516 351129 -pfam04489 282358 pfam04489 282358 -pfam04490 282359 pfam04490 282359 -pfam04491 282360 pfam04491 282360 -pfam04496 282365 pfam04496 282365 -pfam04497 282366 pfam04497 282366 -pfam04498 282367 cl28005 332826 -pfam04501 282370 pfam04501 282370 -pfam04507 282376 cl23996 305153 -pfam04508 282377 pfam04508 282377 -pfam04512 282381 pfam04512 282381 -pfam04514 282383 pfam04514 282383 -pfam04517 282386 cl28004 332825 -pfam04521 282390 pfam04521 282390 -pfam04522 282391 pfam04522 282391 -pfam04523 282392 pfam04523 282392 -pfam04528 282396 pfam04528 282396 -pfam04530 282398 pfam04530 282398 -pfam04532 282400 pfam04532 282400 -pfam04533 282401 cl28003 332824 -pfam04534 282402 pfam04534 282402 -pfam04537 282405 cl28002 332823 -pfam04540 282408 pfam04540 282408 -pfam04544 282411 pfam04544 282411 -pfam04580 282445 pfam04580 282445 -pfam04584 282447 pfam04584 282447 -pfam04596 282455 cl28001 332822 -pfam04599 282458 cl28000 332821 -pfam04601 282459 cl23781 355045 -pfam04611 282467 pfam04611 282467 -pfam04625 282479 pfam04625 282479 -pfam04626 282480 pfam04626 282480 -pfam04631 282484 pfam04631 282484 -pfam04633 282486 pfam04633 282486 -pfam04637 282489 cl27999 355693 -pfam04639 282490 pfam04639 282490 -pfam04642 282493 pfam04642 282493 -pfam04645 282496 pfam04645 282496 -pfam04651 282501 pfam04651 282501 -pfam04656 282505 cl27998 332819 -pfam04660 282509 pfam04660 282509 -pfam04661 282510 cl27997 332818 -pfam04665 282513 pfam04665 282513 -pfam04680 282527 pfam04680 282527 -pfam04682 282528 cl27996 332817 -pfam04684 282530 pfam04684 282530 -pfam04687 282533 cl27995 332816 -pfam04689 282535 pfam04689 282535 -pfam04694 282539 pfam04694 282539 -pfam04700 282545 pfam04700 282545 -pfam04701 282546 pfam04701 282546 -pfam04708 282551 cl27993 332814 -pfam04713 282556 cl27992 355692 -pfam04726 282569 pfam04726 282569 -pfam04730 282573 cl27990 332811 -pfam04735 282577 pfam04735 282577 -pfam04736 282578 pfam04736 282578 -pfam04741 282582 cl27989 332810 -pfam04745 282584 pfam04745 282584 -pfam04747 282585 pfam04747 282585 -pfam04753 282591 pfam04753 282591 -pfam04761 282599 cl11500 299749 -pfam04767 282602 cl27988 332809 -pfam04771 282606 pfam04771 282606 -pfam04772 282607 pfam04772 282607 -pfam04785 282619 pfam04785 282619 -pfam04786 282620 pfam04786 282620 -pfam04787 282621 cl27987 332808 -pfam04792 282626 pfam04792 282626 -pfam04793 282627 cl27986 332807 -pfam04798 282632 pfam04798 282632 -pfam04805 282638 cl27985 332806 -pfam04813 282644 pfam04813 282644 -pfam04816 282647 cl17173 354317 -pfam04835 282664 pfam04835 282664 -pfam04838 282666 pfam04838 282666 -pfam04839 282667 cl04793 296659 -pfam04840 282668 pfam04840 282668 -pfam04845 282672 pfam04845 282672 -pfam04846 282673 pfam04846 282673 -pfam04847 282674 cl17169 354314 -pfam04848 282675 pfam04848 282675 -pfam04850 282677 pfam04850 282677 -pfam04856 282682 pfam04856 282682 -pfam04866 282690 pfam04866 282690 -pfam04867 282691 pfam04867 282691 -pfam04872 282696 cl27983 332804 -pfam04875 282699 pfam04875 282699 -pfam04876 282700 pfam04876 282700 -pfam04878 282702 pfam04878 282702 -pfam04881 282705 pfam04881 282705 -pfam04886 282710 pfam04886 282710 -pfam04887 282711 cl27981 332802 -pfam04904 282724 pfam04904 282724 -pfam04913 282731 pfam04913 282731 -pfam04919 282736 cl27980 332801 -pfam04920 282737 pfam04920 282737 -pfam04924 282741 pfam04924 282741 -pfam04929 282746 pfam04929 282746 -pfam04936 282752 pfam04936 282752 -pfam04941 282757 cl27979 332800 -pfam04942 282758 pfam04942 282758 -pfam04943 282759 cl29978 356854 -pfam04947 282761 pfam04947 282761 -pfam04948 282762 pfam04948 282762 -pfam04967 282780 cl21459 354815 -pfam04971 282784 cl04868 352271 -pfam05006 282815 cl27976 332797 -pfam05009 282817 pfam05009 282817 -pfam05015 282822 cl21503 354842 -pfam05043 282847 cl21459 354815 -pfam05054 282858 pfam05054 282858 -pfam05058 282861 pfam05058 282861 -pfam05059 282862 pfam05059 282862 -pfam05061 282864 cl27974 332795 -pfam05072 282873 cl27973 332794 -pfam05077 282877 cl27972 332793 -pfam05081 282879 pfam05081 282879 -pfam05085 282883 pfam05085 282883 -pfam05087 282884 pfam05087 282884 -pfam05092 282889 pfam05092 282889 -pfam05094 282891 cl27971 332792 -pfam05098 282893 pfam05098 282893 -pfam05100 282895 cl01908 295085 -pfam05109 282904 pfam05109 282904 -pfam05111 282906 cl26730 331551 -pfam05112 282907 cl27970 332791 -pfam05115 282910 pfam05115 282910 -pfam05134 282928 pfam05134 282928 -pfam05150 282941 pfam05150 282941 -pfam05152 282943 cl27967 332788 -pfam05155 282946 cl11585 299787 -pfam05159 282949 cl21625 304472 -pfam05170 282957 pfam05170 282957 -pfam05174 282960 pfam05174 282960 -pfam05175 282961 cl17173 354317 -pfam05202 282986 pfam05202 282986 -pfam05209 282993 pfam05209 282993 -pfam05213 282997 pfam05213 282997 -pfam05214 282998 pfam05214 282998 -pfam05220 283002 pfam05220 283002 -pfam05225 283007 pfam05225 283007 -pfam05231 283013 cl17823 302671 -pfam05246 283023 pfam05246 283023 -pfam05259 283034 cl27965 355691 -pfam05263 283036 cl23883 305040 -pfam05265 283037 pfam05265 283037 -pfam05272 283041 pfam05272 283041 -pfam05273 283042 pfam05273 283042 -pfam05274 283043 pfam05274 283043 -pfam05277 283046 cl21494 354836 -pfam05287 283053 pfam05287 283053 -pfam05288 283054 cl27964 332785 -pfam05289 283055 pfam05289 283055 -pfam05296 283059 pfam05296 283059 -pfam05297 283060 pfam05297 283060 -pfam05304 283066 pfam05304 283066 -pfam05313 283071 pfam05313 283071 -pfam05314 283072 pfam05314 283072 -pfam05315 283073 pfam05315 283073 -pfam05316 283074 pfam05316 283074 -pfam05320 283076 pfam05320 283076 -pfam05322 283078 cl29974 356850 -pfam05323 283079 cl27961 332782 -pfam05331 283084 cl21459 354815 -pfam05332 283085 pfam05332 283085 -pfam05338 283089 pfam05338 283089 -pfam05339 283090 cl22854 354960 -pfam05341 283092 pfam05341 283092 -pfam05342 283093 pfam05342 283093 -pfam05344 283095 pfam05344 283095 -pfam05354 283102 cl05094 322935 -pfam05357 283104 pfam05357 283104 -pfam05358 283105 pfam05358 283105 -pfam05361 283108 pfam05361 283108 -pfam05363 283110 pfam05363 283110 -pfam05364 283111 pfam05364 283111 -pfam05372 283118 cl29973 356849 -pfam05373 283119 pfam05373 283119 -pfam05379 283122 pfam05379 283122 -pfam05381 283124 pfam05381 283124 -pfam05382 283125 cl21534 354857 -pfam05385 283128 pfam05385 283128 -pfam05393 283135 pfam05393 283135 -pfam05401 283141 cl17173 354317 -pfam05407 283146 pfam05407 283146 -pfam05408 283147 pfam05408 283147 -pfam05409 283148 pfam05409 283148 -pfam05414 283149 pfam05414 283149 -pfam05415 283150 pfam05415 283150 -pfam05417 283151 pfam05417 283151 -pfam05418 283152 pfam05418 283152 -pfam05423 283157 pfam05423 283157 -pfam05430 283163 cl17173 354317 -pfam05445 283176 cl27958 332779 -pfam05451 283180 pfam05451 283180 -pfam05458 283184 pfam05458 283184 -pfam05462 283188 pfam05462 283188 -pfam05464 283189 cl27957 332778 -pfam05467 283192 pfam05467 283192 -pfam05470 283193 pfam05470 283193 -pfam05474 283196 pfam05474 283196 -pfam05476 283198 pfam05476 283198 -pfam05489 283209 cl02088 295164 -pfam05503 283219 cl27956 332777 -pfam05505 283221 pfam05505 283221 -pfam05513 283228 cl11503 299752 -pfam05514 283229 pfam05514 283229 -pfam05515 283230 pfam05515 283230 -pfam05525 283235 cl00547 294369 -pfam05528 283238 pfam05528 283238 -pfam05532 283241 cl22912 304631 -pfam05537 283245 pfam05537 283245 -pfam05543 283249 pfam05543 283249 -pfam05550 283255 pfam05550 283255 -pfam05551 283256 cl00083 350893 -pfam05555 283259 pfam05555 283259 -pfam05566 283269 cl23951 305108 -pfam05567 283270 pfam05567 283270 -pfam05576 283275 cl21494 354836 -pfam05578 283276 pfam05578 283276 -pfam05584 283279 pfam05584 283279 -pfam05588 283282 cl23784 329074 -pfam05589 283283 pfam05589 283283 -pfam05590 283284 pfam05590 283284 -pfam05595 283289 cl09962 299138 -pfam05596 283290 pfam05596 283290 -pfam05611 283302 pfam05611 283302 -pfam05613 283304 pfam05613 283304 -pfam05616 283306 pfam05616 283306 -pfam05618 283308 cl11403 353244 -pfam05629 283319 pfam05629 283319 -pfam05631 283321 cl28910 355786 -pfam05633 283323 cl21731 304525 -pfam05653 283340 cl23754 329058 -pfam05655 283341 pfam05655 283341 -pfam05657 283343 pfam05657 283343 -pfam05660 283346 pfam05660 283346 -pfam05674 283357 pfam05674 283357 -pfam05685 283365 cl01898 295083 -pfam05688 283368 pfam05688 283368 -pfam05691 283371 cl29077 355953 -pfam05693 283373 pfam05693 283373 -pfam05695 283375 pfam05695 283375 -pfam05696 283376 pfam05696 283376 -pfam05707 283385 cl21455 354812 -pfam05710 283388 pfam05710 283388 -pfam05718 283396 pfam05718 283396 -pfam05720 283398 pfam05720 283398 -pfam05727 283402 pfam05727 283402 -pfam05728 283403 cl21494 354836 -pfam05734 283407 pfam05734 283407 -pfam05737 283410 pfam05737 283410 -pfam05744 283416 pfam05744 283416 -pfam05748 283418 pfam05748 283418 -pfam05749 283419 pfam05749 283419 -pfam05750 283420 pfam05750 283420 -pfam05752 283422 pfam05752 283422 -pfam05756 283426 pfam05756 283426 -pfam05758 283428 pfam05758 283428 -pfam05762 283431 cl00057 350880 -pfam05766 283434 pfam05766 283434 -pfam05767 283435 cl27949 355689 -pfam05768 283436 cl00388 351069 -pfam05771 283438 pfam05771 283438 -pfam05774 283441 cl27948 332769 -pfam05775 283442 cl05376 296991 -pfam05777 283443 pfam05777 283443 -pfam05784 283448 pfam05784 283448 -pfam05785 283449 pfam05785 283449 -pfam05788 283451 pfam05788 283451 -pfam05789 283452 pfam05789 283452 -pfam05790 283453 cl11960 353325 -pfam05796 283458 cl27947 332768 -pfam05797 283459 pfam05797 283459 -pfam05798 283460 pfam05798 283460 -pfam05801 283462 pfam05801 283462 -pfam05803 283464 cl29971 356847 -pfam05810 283468 pfam05810 283468 -pfam05812 283470 cl27945 332766 -pfam05813 283471 cl27944 332765 -pfam05815 283472 pfam05815 283472 -pfam05819 283476 pfam05819 283476 -pfam05825 283482 pfam05825 283482 -pfam05830 283486 cl16914 327355 -pfam05836 283492 pfam05836 283492 -pfam05844 283498 pfam05844 283498 -pfam05846 283500 pfam05846 283500 -pfam05847 283501 pfam05847 283501 -pfam05849 283503 pfam05849 283503 -pfam05852 283504 cl27943 332764 -pfam05864 283512 cl27942 332763 -pfam05872 283518 pfam05872 283518 -pfam05874 283520 pfam05874 283520 -pfam05878 283523 pfam05878 283523 -pfam05880 283524 pfam05880 283524 -pfam05883 283526 pfam05883 283526 -pfam05886 283528 cl27941 332762 -pfam05891 283530 cl17173 354317 -pfam05892 283531 pfam05892 283531 -pfam05917 283549 pfam05917 283549 -pfam05925 283555 cl19613 302951 -pfam05930 283558 cl02600 351819 -pfam05931 283559 cl27940 332761 -pfam05933 283561 pfam05933 283561 -pfam05941 283569 pfam05941 283569 -pfam05946 283573 pfam05946 283573 -pfam05950 283576 pfam05950 283576 -pfam05951 283577 cl01194 351419 -pfam05952 283578 pfam05952 283578 -pfam05953 283579 pfam05953 283579 -pfam05959 283584 pfam05959 283584 -pfam05961 283586 cl27939 332760 -pfam05963 283588 pfam05963 283588 -pfam05966 283591 cl27938 332759 -pfam05969 283593 cl27937 332758 -pfam05971 283594 cl17173 354317 -pfam05972 283595 pfam05972 283595 -pfam05977 283599 cl28910 355786 -pfam05984 283605 pfam05984 283605 -pfam05989 283610 cl27933 332754 -pfam05992 283613 cl00549 321036 -pfam05993 283614 pfam05993 283614 -pfam05995 283616 cl21464 354820 -pfam05999 283619 cl27932 332753 -pfam06009 283628 pfam06009 283628 -pfam06015 283633 cl27930 332751 -pfam06016 283634 pfam06016 283634 -pfam06018 283636 cl21515 354848 -pfam06022 283639 cl05524 297068 -pfam06023 283640 cl00641 351191 -pfam06027 283644 pfam06027 283644 -pfam06028 283645 cl21494 354836 -pfam06033 283650 pfam06033 283650 -pfam06043 283656 pfam06043 283656 -pfam06044 283657 pfam06044 283657 -pfam06045 283658 cl15675 353967 -pfam06052 283665 cl21464 354820 -pfam06054 283666 cl11541 299767 -pfam06064 283675 pfam06064 283675 -pfam06068 283678 pfam06068 283678 -pfam06070 283680 pfam06070 283680 -pfam06072 283682 pfam06072 283682 -pfam06081 283688 cl19401 354417 -pfam06084 283691 pfam06084 283691 -pfam06086 283693 cl27929 332750 -pfam06096 283700 pfam06096 283700 -pfam06106 283709 pfam06106 283709 -pfam06110 283713 cl00388 351069 -pfam06116 283718 pfam06116 283718 -pfam06117 283719 pfam06117 283719 -pfam06120 283721 pfam06120 283721 -pfam06128 283728 pfam06128 283728 -pfam06129 283729 cl27928 332749 -pfam06131 283731 pfam06131 283731 -pfam06134 283733 cl23721 355019 -pfam06138 283736 cl27927 332748 -pfam06139 283737 pfam06139 283737 -pfam06153 283747 cl00412 351081 -pfam06157 283751 pfam06157 283751 -pfam06161 283754 cl10504 299184 -pfam06176 283765 cl21453 354810 -pfam06178 283767 cl11629 299801 -pfam06180 283769 pfam06180 283769 -pfam06188 283775 cl23770 329064 -pfam06193 283778 cl27923 332744 -pfam06194 283779 pfam06194 283779 -pfam06202 283786 cl29051 355927 -pfam06208 283790 pfam06208 283790 -pfam06211 283793 pfam06211 283793 -pfam06215 283797 pfam06215 283797 -pfam06216 283798 pfam06216 283798 -pfam06223 283804 cl05636 297128 -pfam06229 283809 cl23781 355045 -pfam06231 283811 pfam06231 283811 -pfam06238 283817 pfam06238 283817 -pfam06240 283819 cl14643 353818 -pfam06251 283829 pfam06251 283829 -pfam06255 283833 pfam06255 283833 -pfam06256 283834 pfam06256 283834 -pfam06259 283837 pfam06259 283837 -pfam06260 283838 pfam06260 283838 -pfam06269 283844 cl27922 332743 -pfam06284 283854 pfam06284 283854 -pfam06287 283855 cl27921 332742 -pfam06293 283861 cl21453 354810 -pfam06300 283868 pfam06300 283868 -pfam06308 283873 pfam06308 283873 -pfam06322 283883 pfam06322 283883 -pfam06324 283885 pfam06324 283885 -pfam06325 283886 cl29228 356104 -pfam06326 283887 pfam06326 283887 -pfam06334 283893 pfam06334 283893 -pfam06336 283895 pfam06336 283895 -pfam06340 283899 pfam06340 283899 -pfam06341 283900 pfam06341 283900 -pfam06344 283901 pfam06344 283901 -pfam06345 283902 pfam06345 283902 -pfam06346 283903 pfam06346 283903 -pfam06356 283910 pfam06356 283910 -pfam06358 283911 pfam06358 283911 -pfam06361 283912 pfam06361 283912 -pfam06363 283913 pfam06363 283913 -pfam06382 283927 pfam06382 283927 -pfam06384 283928 pfam06384 283928 -pfam06385 283929 pfam06385 283929 -pfam06389 283933 pfam06389 283933 -pfam06397 283940 cl00018 350864 -pfam06407 283948 pfam06407 283948 -pfam06431 283968 pfam06431 283968 -pfam06433 283970 cl27918 332739 -pfam06435 283972 pfam06435 283972 -pfam06436 283973 pfam06436 283973 -pfam06444 283979 pfam06444 283979 -pfam06449 283983 pfam06449 283983 -pfam06450 283984 cl21473 354825 -pfam06451 283985 pfam06451 283985 -pfam06460 283991 pfam06460 283991 -pfam06464 283995 pfam06464 283995 -pfam06471 284002 pfam06471 284002 -pfam06472 284003 cl00549 321036 -pfam06474 284005 pfam06474 284005 -pfam06478 284009 pfam06478 284009 -pfam06493 284022 pfam06493 284022 -pfam06497 284024 pfam06497 284024 -pfam06500 284025 cl21494 354836 -pfam06503 284026 pfam06503 284026 -pfam06504 284027 pfam06504 284027 -pfam06508 284031 cl00292 351005 -pfam06511 284033 cl05827 297251 -pfam06514 284035 cl22429 354935 -pfam06517 284037 pfam06517 284037 -pfam06530 284048 cl29970 356846 -pfam06531 284049 pfam06531 284049 -pfam06543 284059 pfam06543 284059 -pfam06550 284066 cl01342 351467 -pfam06551 284067 cl23796 304953 -pfam06552 284068 pfam06552 284068 -pfam06556 284071 pfam06556 284071 -pfam06560 284075 cl21464 354820 -pfam06563 284076 pfam06563 284076 -pfam06567 284080 pfam06567 284080 -pfam06575 284087 pfam06575 284087 -pfam06578 284089 pfam06578 284089 -pfam06588 284099 pfam06588 284099 -pfam06593 284102 pfam06593 284102 -pfam06595 284104 pfam06595 284104 -pfam06600 284107 pfam06600 284107 -pfam06601 284108 cl27915 332736 -pfam06608 284112 pfam06608 284112 -pfam06630 284130 pfam06630 284130 -pfam06646 284141 pfam06646 284141 -pfam06651 284144 pfam06651 284144 -pfam06653 284146 pfam06653 284146 -pfam06656 284147 pfam06656 284147 -pfam06661 284150 pfam06661 284150 -pfam06662 284151 pfam06662 284151 -pfam06680 284166 cl27913 332734 -pfam06681 284167 pfam06681 284167 -pfam06705 284187 pfam06705 284187 -pfam06709 284189 pfam06709 284189 -pfam06716 284193 pfam06716 284193 -pfam06717 284194 pfam06717 284194 -pfam06721 284198 pfam06721 284198 -pfam06722 284199 cl10013 353042 -pfam06730 284207 cl12013 353336 -pfam06734 284210 pfam06734 284210 -pfam06745 284219 cl21455 354812 -pfam06755 284228 pfam06755 284228 -pfam06763 284235 pfam06763 284235 -pfam06769 284238 cl21503 354842 -pfam06770 284239 pfam06770 284239 -pfam06771 284240 pfam06771 284240 -pfam06773 284242 pfam06773 284242 -pfam06779 284247 pfam06779 284247 -pfam06782 284250 pfam06782 284250 -pfam06790 284258 cl23978 305135 -pfam06795 284263 pfam06795 284263 -pfam06797 284265 pfam06797 284265 -pfam06800 284268 cl26915 331736 -pfam06802 284269 cl27905 332726 -pfam06805 284272 cl01945 295099 -pfam06806 284273 pfam06806 284273 -pfam06808 284275 pfam06808 284275 -pfam06809 284276 pfam06809 284276 -pfam06813 284279 cl28910 355786 -pfam06815 284281 pfam06815 284281 -pfam06821 284286 cl21494 354836 -pfam06822 284287 cl27902 332723 -pfam06826 284291 cl01133 351397 -pfam06832 284295 pfam06832 284295 -pfam06833 284296 cl23717 355015 -pfam06837 284300 pfam06837 284300 -pfam06839 284302 pfam06839 284302 -pfam06851 284311 pfam06851 284311 -pfam06869 284323 cl29371 356247 -pfam06871 284325 cl00222 350962 -pfam06873 284327 pfam06873 284327 -pfam06878 284331 pfam06878 284331 -pfam06888 284339 cl21460 354816 -pfam06894 284344 cl06106 297413 -pfam06900 284349 pfam06900 284349 -pfam06901 284350 pfam06901 284350 -pfam06902 284351 cl19102 354379 -pfam06903 284352 pfam06903 284352 -pfam06910 284358 pfam06910 284358 -pfam06919 284364 pfam06919 284364 -pfam06925 284368 cl10013 353042 -pfam06926 284369 pfam06926 284369 -pfam06929 284370 pfam06929 284370 -pfam06931 284372 pfam06931 284372 -pfam06934 284374 pfam06934 284374 -pfam06937 284377 pfam06937 284377 -pfam06941 284381 cl21460 354816 -pfam06942 284382 cl27901 332722 -pfam06950 284388 cl11645 299806 -pfam06966 284403 cl21511 328764 -pfam06970 284407 cl21459 354815 -pfam06983 284416 cl14632 353816 -pfam06992 284423 pfam06992 284423 -pfam07002 284432 cl00057 350880 -pfam07013 284441 cl27900 332721 -pfam07016 284443 pfam07016 284443 -pfam07026 284449 pfam07026 284449 -pfam07028 284451 pfam07028 284451 -pfam07033 284455 cl27899 332720 -pfam07056 284470 pfam07056 284470 -pfam07066 284478 pfam07066 284478 -pfam07068 284479 cl22495 304570 -pfam07079 284489 pfam07079 284489 -pfam07090 284498 pfam07090 284498 -pfam07094 284502 pfam07094 284502 -pfam07096 284504 pfam07096 284504 -pfam07097 284505 pfam07097 284505 -pfam07106 284512 pfam07106 284512 -pfam07107 284513 pfam07107 284513 -pfam07108 284514 pfam07108 284514 -pfam07111 284517 pfam07111 284517 -pfam07118 284521 cl29964 356840 -pfam07122 284524 pfam07122 284524 -pfam07124 284526 pfam07124 284526 -pfam07131 284532 pfam07131 284532 -pfam07133 284533 pfam07133 284533 -pfam07140 284538 pfam07140 284538 -pfam07141 284539 pfam07141 284539 -pfam07149 284545 pfam07149 284545 -pfam07150 284546 pfam07150 284546 -pfam07151 284547 pfam07151 284547 -pfam07153 284549 pfam07153 284549 -pfam07154 284550 pfam07154 284550 -pfam07181 284572 cl22571 304583 -pfam07188 284577 pfam07188 284577 -pfam07192 284580 pfam07192 284580 -pfam07193 284581 pfam07193 284581 -pfam07206 284592 pfam07206 284592 -pfam07212 284597 pfam07212 284597 -pfam07213 284598 pfam07213 284598 -pfam07216 284601 cl23895 305052 -pfam07218 284603 pfam07218 284603 -pfam07221 284605 cl23840 304997 -pfam07228 284611 cl00120 350908 -pfam07231 284614 pfam07231 284614 -pfam07234 284616 pfam07234 284616 -pfam07236 284618 pfam07236 284618 -pfam07239 284621 pfam07239 284621 -pfam07249 284626 pfam07249 284626 -pfam07252 284628 pfam07252 284628 -pfam07255 284630 pfam07255 284630 -pfam07268 284641 pfam07268 284641 -pfam07270 284642 pfam07270 284642 -pfam07271 284643 pfam07271 284643 -pfam07282 284650 pfam07282 284650 -pfam07291 284659 cl21527 328775 -pfam07294 284662 pfam07294 284662 -pfam07306 284672 pfam07306 284672 -pfam07310 284676 cl19562 302922 -pfam07321 284686 pfam07321 284686 -pfam07322 284687 pfam07322 284687 -pfam07328 284691 cl27005 331826 -pfam07333 284695 pfam07333 284695 -pfam07334 284696 pfam07334 284696 -pfam07337 284699 pfam07337 284699 -pfam07340 284701 pfam07340 284701 -pfam07342 284702 pfam07342 284702 -pfam07349 284709 pfam07349 284709 -pfam07353 284713 cl06408 297589 -pfam07358 284717 pfam07358 284717 -pfam07359 284718 pfam07359 284718 -pfam07363 284721 pfam07363 284721 -pfam07373 284729 pfam07373 284729 -pfam07376 284730 pfam07376 284730 -pfam07379 284733 pfam07379 284733 -pfam07380 284734 pfam07380 284734 -pfam07381 284735 cl23959 305116 -pfam07384 284738 pfam07384 284738 -pfam07389 284742 pfam07389 284742 -pfam07395 284747 cl17182 354318 -pfam07400 284751 pfam07400 284751 -pfam07402 284752 pfam07402 284752 -pfam07405 284754 pfam07405 284754 -pfam07407 284756 pfam07407 284756 -pfam07413 284761 cl27896 332717 -pfam07415 284762 pfam07415 284762 -pfam07416 284763 pfam07416 284763 -pfam07418 284765 pfam07418 284765 -pfam07420 284767 pfam07420 284767 -pfam07434 284778 cl06460 297618 -pfam07435 284779 cl06461 323460 -pfam07436 284780 pfam07436 284780 -pfam07437 284781 pfam07437 284781 -pfam07453 284793 cl11508 299755 -pfam07459 284799 pfam07459 284799 -pfam07461 284801 pfam07461 284801 -pfam07462 284802 pfam07462 284802 -pfam07466 284806 cl01807 295038 -pfam07470 284809 cl04955 352291 -pfam07472 284811 pfam07472 284811 -pfam07476 284814 pfam07476 284814 -pfam07482 284819 pfam07482 284819 -pfam07487 284824 cl29960 356836 -pfam07495 284830 pfam07495 284830 -pfam07519 284851 cl21494 354836 -pfam07523 284855 pfam07523 284855 -pfam07528 284860 cl02675 295427 -pfam07552 284881 pfam07552 284881 -pfam07568 284894 cl06527 352529 -pfam07577 284902 pfam07577 284902 -pfam07585 284909 pfam07585 284909 -pfam07588 284912 pfam07588 284912 -pfam07590 284914 pfam07590 284914 -pfam07591 284915 pfam07591 284915 -pfam07595 284918 pfam07595 284918 -pfam07596 284919 cl29959 356835 -pfam07597 284920 pfam07597 284920 -pfam07598 284921 pfam07598 284921 -pfam07600 284922 pfam07600 284922 -pfam07602 284923 cl23857 305014 -pfam07607 284926 pfam07607 284926 -pfam07615 284933 cl00307 320891 -pfam07618 284935 pfam07618 284935 -pfam07619 284936 pfam07619 284936 -pfam07621 284937 pfam07621 284937 -pfam07622 284938 pfam07622 284938 -pfam07623 284939 pfam07623 284939 -pfam07625 284941 pfam07625 284941 -pfam07628 284944 pfam07628 284944 -pfam07639 284950 pfam07639 284950 -pfam07643 284953 pfam07643 284953 -pfam07652 284962 cl21455 354812 -pfam07663 284971 pfam07663 284971 -pfam07667 284973 pfam07667 284973 -pfam07668 284974 pfam07668 284974 -pfam07669 284975 cl17173 354317 -pfam07672 284977 pfam07672 284977 -pfam07675 284979 pfam07675 284979 -pfam07676 284980 pfam07676 284980 -pfam07689 284992 cl00388 351069 -pfam07693 284995 cl21455 354812 -pfam07705 285007 cl22904 304628 -pfam07708 285010 pfam07708 285010 -pfam07725 285026 pfam07725 285026 -pfam07726 285027 pfam07726 285027 -pfam07737 285037 pfam07737 285037 -pfam07753 285051 pfam07753 285051 -pfam07754 285052 pfam07754 285052 -pfam07761 285058 pfam07761 285058 -pfam07768 285065 pfam07768 285065 -pfam07775 285070 pfam07775 285070 -pfam07781 285076 pfam07781 285076 -pfam07785 285079 pfam07785 285079 -pfam07788 285082 pfam07788 285082 -pfam07813 285104 cl01482 351521 -pfam07824 285114 cl27890 332711 -pfam07827 285116 pfam07827 285116 -pfam07846 285130 pfam07846 285130 -pfam07848 285132 cl27888 355687 -pfam07854 285138 cl19871 303050 -pfam07857 285141 cl19288 302813 -pfam07858 285142 cl09109 352932 -pfam07860 285144 pfam07860 285144 -pfam07868 285151 pfam07868 285151 -pfam07871 285154 pfam07871 285154 -pfam07874 285157 pfam07874 285157 -pfam07877 285160 pfam07877 285160 -pfam07880 285163 cl22960 354988 -pfam07900 285183 pfam07900 285183 -pfam07901 285184 pfam07901 285184 -pfam07903 285186 pfam07903 285186 -pfam07906 285189 pfam07906 285189 -pfam07913 285193 pfam07913 285193 -pfam07925 285203 pfam07925 285203 -pfam07937 285213 pfam07937 285213 -pfam07942 285218 cl17173 354317 -pfam07944 285220 cl04955 352291 -pfam07948 285223 pfam07948 285223 -pfam07951 285226 pfam07951 285226 -pfam07954 285229 pfam07954 285229 -pfam07974 285248 cl21504 354843 -pfam07981 285255 pfam07981 285255 -pfam07982 285256 pfam07982 285256 -pfam07991 285265 cl21454 354811 -pfam08001 285273 pfam08001 285273 -pfam08003 285275 cl17173 354317 -pfam08006 285278 cl21702 304504 -pfam08008 285280 pfam08008 285280 -pfam08010 285282 cl21532 354856 -pfam08015 285287 pfam08015 285287 -pfam08016 285288 pfam08016 285288 -pfam08018 285289 pfam08018 285289 -pfam08022 285293 cl06868 352595 -pfam08026 285294 pfam08026 285294 -pfam08027 285295 pfam08027 285295 -pfam08036 285304 pfam08036 285304 -pfam08039 285306 pfam08039 285306 -pfam08041 285308 pfam08041 285308 -pfam08046 285313 pfam08046 285313 -pfam08047 285314 pfam08047 285314 -pfam08051 285316 pfam08051 285316 -pfam08052 285317 cl23981 305138 -pfam08053 285318 cl27886 332707 -pfam08054 285319 cl27885 332706 -pfam08056 285320 pfam08056 285320 -pfam08061 285323 pfam08061 285323 -pfam08062 285324 pfam08062 285324 -pfam08076 285338 cl27884 332705 -pfam08078 285339 pfam08078 285339 -pfam08083 285343 pfam08083 285343 -pfam08089 285346 pfam08089 285346 -pfam08113 285350 pfam08113 285350 -pfam08114 285351 pfam08114 285351 -pfam08115 285352 pfam08115 285352 -pfam08126 285357 pfam08126 285357 -pfam08133 285360 pfam08133 285360 -pfam08135 285362 pfam08135 285362 -pfam08138 285365 pfam08138 285365 -pfam08139 285366 pfam08139 285366 -pfam08168 285391 pfam08168 285391 -pfam08176 285399 cl23915 329168 -pfam08177 285400 cl27883 332704 -pfam08178 285401 pfam08178 285401 -pfam08179 285402 cl23918 305075 -pfam08181 285404 pfam08181 285404 -pfam08182 285405 pfam08182 285405 -pfam08189 285408 pfam08189 285408 -pfam08191 285410 pfam08191 285410 -pfam08196 285414 pfam08196 285414 -pfam08197 285415 pfam08197 285415 -pfam08199 285417 pfam08199 285417 -pfam08200 285418 cl27882 332703 -pfam08206 285424 cl09927 353027 -pfam08209 285427 pfam08209 285427 -pfam08218 285434 cl00015 350862 -pfam08220 285436 cl21459 354815 -pfam08240 285452 cl17172 354316 -pfam08245 285457 pfam08245 285457 -pfam08252 285459 pfam08252 285459 -pfam08253 285460 pfam08253 285460 -pfam08254 285461 pfam08254 285461 -pfam08255 285462 pfam08255 285462 -pfam08268 285468 cl23987 329218 -pfam08270 285470 pfam08270 285470 -pfam08279 285479 cl21459 354815 -pfam08283 285483 pfam08283 285483 -pfam08289 285488 cl27878 332699 -pfam08290 285489 pfam08290 285489 -pfam08303 285499 cl17190 354320 -pfam08307 285502 pfam08307 285502 -pfam08308 285503 cl21470 354823 -pfam08309 285504 pfam08309 285504 -pfam08332 285524 cl09109 352932 -pfam08359 285548 cl23808 355056 -pfam08360 285549 pfam08360 285549 -pfam08361 285550 cl23808 355056 -pfam08365 285554 pfam08365 285554 -pfam08394 285580 cl00909 321242 -pfam08395 285581 cl19976 354517 -pfam08397 285582 cl12013 353336 -pfam08398 285583 pfam08398 285583 -pfam08400 285585 cl21470 354823 -pfam08404 285589 pfam08404 285589 -pfam08405 285590 pfam08405 285590 -pfam08440 285618 pfam08440 285618 -pfam08442 285620 cl17255 354326 -pfam08452 285628 pfam08452 285628 -pfam08456 285632 pfam08456 285632 -pfam08460 285636 cl17036 354299 -pfam08461 285637 pfam08461 285637 -pfam08465 285639 pfam08465 285639 -pfam08467 285641 pfam08467 285641 -pfam08469 285643 pfam08469 285643 -pfam08475 285649 pfam08475 285649 -pfam08476 285650 pfam08476 285650 -pfam08480 285654 pfam08480 285654 -pfam08491 285664 cl21454 354811 -pfam08493 285666 pfam08493 285666 -pfam08530 285702 cl29957 356833 -pfam08532 285704 cl00020 350865 -pfam08534 285706 cl00388 351069 -pfam08537 285709 pfam08537 285709 -pfam08548 285719 cl23859 355076 -pfam08551 285722 cl21536 354858 -pfam08613 285777 cl00050 350876 -pfam08629 285793 pfam08629 285793 -pfam08662 285825 pfam08662 285825 -pfam08667 285830 cl22854 354960 -pfam08668 285831 pfam08668 285831 -pfam08674 285837 pfam08674 285837 -pfam08675 285838 cl17169 354314 -pfam08682 285845 pfam08682 285845 -pfam08710 285872 pfam08710 285872 -pfam08716 285878 pfam08716 285878 -pfam08717 285879 pfam08717 285879 -pfam08731 285890 pfam08731 285890 -pfam08744 285901 pfam08744 285901 -pfam08778 285931 pfam08778 285931 -pfam08779 285932 pfam08779 285932 -pfam08784 285937 pfam08784 285937 -pfam08789 285942 pfam08789 285942 -pfam08792 285944 pfam08792 285944 -pfam08793 285945 pfam08793 285945 -pfam08794 285946 pfam08794 285946 -pfam08804 285956 cl17537 302647 -pfam08805 285957 cl27040 331861 -pfam08844 285990 pfam08844 285990 -pfam08855 286000 pfam08855 286000 -pfam08875 286019 pfam08875 286019 -pfam08914 286058 cl21498 354840 -pfam08930 286073 pfam08930 286073 -pfam08931 286074 cl23908 305065 -pfam08935 286076 pfam08935 286076 -pfam08948 286089 pfam08948 286089 -pfam08952 286093 cl17169 354314 -pfam08954 286095 pfam08954 286095 -pfam08958 286098 pfam08958 286098 -pfam08965 286104 pfam08965 286104 -pfam08967 286106 pfam08967 286106 -pfam08971 286110 cl23912 305069 -pfam08977 286116 pfam08977 286116 -pfam08988 286125 cl27870 332691 -pfam08993 286130 pfam08993 286130 -pfam08994 286131 pfam08994 286131 -pfam08999 286135 pfam08999 286135 -pfam09006 286141 pfam09006 286141 -pfam09010 286145 pfam09010 286145 -pfam09013 286148 pfam09013 286148 -pfam09015 286150 pfam09015 286150 -pfam09019 286153 pfam09019 286153 -pfam09020 286154 pfam09020 286154 -pfam09022 286156 pfam09022 286156 -pfam09023 286157 pfam09023 286157 -pfam09025 286158 cl07585 298396 -pfam09026 286159 pfam09026 286159 -pfam09028 286161 pfam09028 286161 -pfam09035 286167 cl02600 351819 -pfam09037 286169 cl21551 354866 -pfam09039 286171 pfam09039 286171 -pfam09046 286177 pfam09046 286177 -pfam09048 286179 pfam09048 286179 -pfam09051 286182 pfam09051 286182 -pfam09052 286183 cl19731 302980 -pfam09061 286190 pfam09061 286190 -pfam09062 286191 pfam09062 286191 -pfam09071 286197 pfam09071 286197 -pfam09074 286200 pfam09074 286200 -pfam09075 286201 pfam09075 286201 -pfam09080 286206 pfam09080 286206 -pfam09081 286207 pfam09081 286207 -pfam09088 286213 pfam09088 286213 -pfam09096 286219 pfam09096 286219 -pfam09097 286220 pfam09097 286220 -pfam09099 286222 pfam09099 286222 -pfam09101 286224 pfam09101 286224 -pfam09108 286230 pfam09108 286230 -pfam09109 286231 pfam09109 286231 -pfam09116 286237 pfam09116 286237 -pfam09119 286240 pfam09119 286240 -pfam09128 286245 cl02565 321993 -pfam09129 286246 cl21623 304471 -pfam09142 286255 cl21633 328834 -pfam09145 286256 pfam09145 286256 -pfam09147 286257 cl00319 351023 -pfam09151 286261 pfam09151 286261 -pfam09152 286262 cl23749 355033 -pfam09153 286263 pfam09153 286263 -pfam09154 286264 pfam09154 286264 -pfam09156 286266 cl00173 320796 -pfam09158 286268 pfam09158 286268 -pfam09178 286287 pfam09178 286287 -pfam09181 286290 pfam09181 286290 -pfam09185 286294 cl00223 350963 -pfam09187 286296 pfam09187 286296 -pfam09188 286297 pfam09188 286297 -pfam09189 286298 pfam09189 286298 -pfam09190 286299 cl12020 353341 -pfam09196 286305 pfam09196 286305 -pfam09199 286307 pfam09199 286307 -pfam09204 286312 pfam09204 286312 -pfam09208 286315 pfam09208 286315 -pfam09214 286319 pfam09214 286319 -pfam09216 286321 cl27860 332681 -pfam09217 286322 cl15242 353925 -pfam09220 286324 pfam09220 286324 -pfam09225 286328 pfam09225 286328 -pfam09227 286330 pfam09227 286330 -pfam09231 286334 pfam09231 286334 -pfam09232 286335 pfam09232 286335 -pfam09241 286342 pfam09241 286342 -pfam09243 286344 cl17173 354317 -pfam09254 286354 pfam09254 286354 -pfam09255 286355 pfam09255 286355 -pfam09264 286363 pfam09264 286363 -pfam09266 286365 cl29947 356823 -pfam09275 286372 pfam09275 286372 -pfam09276 286373 pfam09276 286373 -pfam09293 286386 pfam09293 286386 -pfam09295 286388 pfam09295 286388 -pfam09300 286393 pfam09300 286393 -pfam09301 286394 pfam09301 286394 -pfam09303 286396 pfam09303 286396 -pfam09306 286399 pfam09306 286399 -pfam09308 286401 pfam09308 286401 -pfam09318 286410 pfam09318 286410 -pfam09339 286429 cl21459 354815 -pfam09342 286432 cl21584 354881 -pfam09355 286444 pfam09355 286444 -pfam09364 286453 cl01629 351571 -pfam09372 286461 pfam09372 286461 -pfam09374 286462 pfam09374 286462 -pfam09379 286467 pfam09379 286467 -pfam09381 286469 pfam09381 286469 -pfam09385 286473 cl21461 354817 -pfam09386 286474 pfam09386 286474 -pfam09399 286484 pfam09399 286484 -pfam09401 286486 pfam09401 286486 -pfam09403 286488 pfam09403 286488 -pfam09404 286489 pfam09404 286489 -pfam09419 286502 cl21460 354816 -pfam09424 286507 cl21572 354877 -pfam09432 286515 pfam09432 286515 -pfam09452 286530 pfam09452 286530 -pfam09460 286537 cl09697 299004 -pfam09467 286543 pfam09467 286543 -pfam09474 286549 cl09710 299011 -pfam09475 286550 cl24002 305159 -pfam09477 286552 cl23891 305048 -pfam09478 286553 cl21579 354880 -pfam09486 286561 pfam09486 286561 -pfam09499 286574 pfam09499 286574 -pfam09502 286577 cl19575 302930 -pfam09518 286590 pfam09518 286590 -pfam09533 286602 cl15289 301597 -pfam09545 286611 pfam09545 286611 -pfam09552 286618 pfam09552 286618 -pfam09554 286620 pfam09554 286620 -pfam09558 286623 cl23900 305057 -pfam09564 286628 pfam09564 286628 -pfam09571 286631 pfam09571 286631 -pfam09573 286633 pfam09573 286633 -pfam09574 286634 cl27856 332677 -pfam09575 286635 cl27855 332676 -pfam09591 286649 pfam09591 286649 -pfam09592 286650 cl09810 299055 -pfam09599 286655 cl27854 332675 -pfam09602 286658 cl09820 299060 -pfam09607 286662 pfam09607 286662 -pfam09621 286674 cl09838 299071 -pfam09627 286680 pfam09627 286680 -pfam09629 286681 pfam09629 286681 -pfam09632 286684 pfam09632 286684 -pfam09638 286688 pfam09638 286688 -pfam09639 286689 pfam09639 286689 -pfam09641 286691 pfam09641 286691 -pfam09642 286692 pfam09642 286692 -pfam09644 286694 pfam09644 286694 -pfam09645 286695 pfam09645 286695 -pfam09652 286701 cl19029 327495 -pfam09657 286705 cl21519 328770 -pfam09658 286706 cl09872 299095 -pfam09662 286710 cl23897 305054 -pfam09665 286713 cl19566 302924 -pfam09675 286721 cl11513 299756 -pfam09679 286725 cl11516 299758 -pfam09689 286735 pfam09689 286735 -pfam09690 286736 cl23940 305097 -pfam09693 286739 cl23995 305152 -pfam09694 286740 cl09901 299108 -pfam09695 286741 cl17398 302642 -pfam09698 286744 cl27853 332674 -pfam09702 286748 cl09906 299111 -pfam09703 286749 cl09907 299112 -pfam09710 286754 cl09912 299113 -pfam09752 286795 cl21494 354836 -pfam09782 286822 pfam09782 286822 -pfam09809 286847 pfam09809 286847 -pfam09813 286851 pfam09813 286851 -pfam09823 286861 pfam09823 286861 -pfam09847 286883 cl15401 301612 -pfam09868 286903 cl01632 294953 -pfam09877 286911 cl01655 294965 -pfam09889 286923 cl01683 294981 -pfam09947 286972 cl02017 295139 -pfam09952 286977 cl19875 303054 -pfam09961 286986 cl02042 295148 -pfam09967 286992 cl00057 350880 -pfam10007 287028 pfam10007 287028 -pfam10016 287036 cl02309 295252 -pfam10018 287038 pfam10018 287038 -pfam10039 287057 pfam10039 287057 -pfam10083 287097 cl19626 302961 -pfam10108 287120 pfam10108 287120 -pfam10122 287133 cl11540 299766 -pfam10130 287141 cl28905 355781 -pfam10131 287142 cl21590 354882 -pfam10148 287158 pfam10148 287158 -pfam10158 287167 pfam10158 287167 -pfam10200 287207 pfam10200 287207 -pfam10213 287217 pfam10213 287217 -pfam10222 287225 pfam10222 287225 -pfam10242 287244 cl21598 354884 -pfam10278 287279 pfam10278 287279 -pfam10297 287292 pfam10297 287292 -pfam10300 287294 pfam10300 287294 -pfam10333 287322 pfam10333 287322 -pfam10339 287328 pfam10339 287328 -pfam10356 287343 cl00516 351129 -pfam10364 287350 pfam10364 287350 -pfam10365 287351 pfam10365 287351 -pfam10379 287365 pfam10379 287365 -pfam10386 287372 pfam10386 287372 -pfam10426 287407 pfam10426 287407 -pfam10429 287410 cl09109 352932 -pfam10462 287440 pfam10462 287440 -pfam10463 287441 cl19913 303079 -pfam10464 287442 pfam10464 287442 -pfam10465 287443 pfam10465 287443 -pfam10466 287444 pfam10466 287444 -pfam10511 287482 pfam10511 287482 -pfam10516 287487 pfam10516 287487 -pfam10530 287498 pfam10530 287498 -pfam10548 287513 pfam10548 287513 -pfam10549 287514 pfam10549 287514 -pfam10553 287517 pfam10553 287517 -pfam10570 287532 pfam10570 287532 -pfam10573 287535 pfam10573 287535 -pfam10578 287539 pfam10578 287539 -pfam10595 287553 pfam10595 287553 -pfam10598 287556 pfam10598 287556 -pfam10621 287577 pfam10621 287577 -pfam10624 287579 pfam10624 287579 -pfam10633 287588 cl22904 304628 -pfam10640 287595 pfam10640 287595 -pfam10653 287607 pfam10653 287607 -pfam10654 287608 pfam10654 287608 -pfam10656 287609 pfam10656 287609 -pfam10657 287610 pfam10657 287610 -pfam10658 287611 pfam10658 287611 -pfam10659 287612 pfam10659 287612 -pfam10661 287614 cl11266 299614 -pfam10662 287615 pfam10662 287615 -pfam10669 287621 pfam10669 287621 -pfam10672 287624 pfam10672 287624 -pfam10682 287634 pfam10682 287634 -pfam10706 287651 pfam10706 287651 -pfam10709 287654 pfam10709 287654 -pfam10712 287657 pfam10712 287657 -pfam10717 287662 pfam10717 287662 -pfam10721 287666 pfam10721 287666 -pfam10723 287668 cl27844 332665 -pfam10727 287672 cl21454 354811 -pfam10731 287676 pfam10731 287676 -pfam10732 287677 pfam10732 287677 -pfam10735 287680 pfam10735 287680 -pfam10741 287685 cl01234 321404 -pfam10746 287690 cl27843 332664 -pfam10774 287715 pfam10774 287715 -pfam10790 287728 pfam10790 287728 -pfam10793 287731 pfam10793 287731 -pfam10794 287732 pfam10794 287732 -pfam10795 287733 pfam10795 287733 -pfam10804 287742 pfam10804 287742 -pfam10807 287745 cl08090 298624 -pfam10810 287747 pfam10810 287747 -pfam10811 287748 pfam10811 287748 -pfam10812 287749 pfam10812 287749 -pfam10813 287750 cl27841 332662 -pfam10817 287754 pfam10817 287754 -pfam10819 287756 pfam10819 287756 -pfam10827 287763 pfam10827 287763 -pfam10833 287769 pfam10833 287769 -pfam10834 287770 cl23871 305028 -pfam10836 287772 pfam10836 287772 -pfam10837 287773 pfam10837 287773 -pfam10839 287774 pfam10839 287774 -pfam10841 287776 pfam10841 287776 -pfam10847 287781 pfam10847 287781 -pfam10848 287782 pfam10848 287782 -pfam10849 287783 cl27840 332661 -pfam10854 287788 cl27839 332660 -pfam10855 287789 pfam10855 287789 -pfam10856 287790 pfam10856 287790 -pfam10857 287791 cl27838 355682 -pfam10860 287794 pfam10860 287794 -pfam10867 287800 pfam10867 287800 -pfam10870 287802 pfam10870 287802 -pfam10872 287804 pfam10872 287804 -pfam10875 287807 pfam10875 287807 -pfam10879 287811 pfam10879 287811 -pfam10884 287815 pfam10884 287815 -pfam10885 287816 pfam10885 287816 -pfam10886 287817 cl27837 332658 -pfam10887 287818 pfam10887 287818 -pfam10888 287819 pfam10888 287819 -pfam10892 287821 pfam10892 287821 -pfam10904 287827 pfam10904 287827 -pfam10910 287830 pfam10910 287830 -pfam10917 287835 pfam10917 287835 -pfam10920 287836 pfam10920 287836 -pfam10921 287837 pfam10921 287837 -pfam10924 287839 pfam10924 287839 -pfam10927 287842 pfam10927 287842 -pfam10928 287843 cl27836 332657 -pfam10930 287845 pfam10930 287845 -pfam10940 287855 pfam10940 287855 -pfam10943 287858 pfam10943 287858 -pfam10945 287860 pfam10945 287860 -pfam10952 287867 pfam10952 287867 -pfam10964 287878 pfam10964 287878 -pfam10970 287884 pfam10970 287884 -pfam10971 287885 pfam10971 287885 -pfam11030 287944 pfam11030 287944 -pfam11031 287945 pfam11031 287945 -pfam11038 287951 pfam11038 287951 -pfam11043 287956 pfam11043 287956 -pfam11044 287957 pfam11044 287957 -pfam11047 287960 cl14701 301338 -pfam11049 287961 pfam11049 287961 -pfam11050 287962 pfam11050 287962 -pfam11053 287965 cl27835 332656 -pfam11054 287966 pfam11054 287966 -pfam11058 287970 pfam11058 287970 -pfam11082 287992 pfam11082 287992 -pfam11088 287997 pfam11088 287997 -pfam11094 288002 cl27834 332655 -pfam11097 288004 pfam11097 288004 -pfam11098 288005 pfam11098 288005 -pfam11108 288014 cl27833 332654 -pfam11113 288018 pfam11113 288018 -pfam11115 288020 pfam11115 288020 -pfam11119 288024 pfam11119 288024 -pfam11121 288026 pfam11121 288026 -pfam11123 288028 cl23904 305061 -pfam11125 288030 cl27832 332653 -pfam11126 288031 cl27831 332652 -pfam11128 288033 pfam11128 288033 -pfam11131 288035 pfam11131 288035 -pfam11134 288037 pfam11134 288037 -pfam11135 288038 pfam11135 288038 -pfam11166 288067 pfam11166 288067 -pfam11186 288086 pfam11186 288086 -pfam11192 288092 pfam11192 288092 -pfam11200 288099 pfam11200 288099 -pfam11212 288110 pfam11212 288110 -pfam11216 288114 pfam11216 288114 -pfam11224 288122 pfam11224 288122 -pfam11226 288124 pfam11226 288124 -pfam11242 288139 pfam11242 288139 -pfam11243 288140 pfam11243 288140 -pfam11245 288142 pfam11245 288142 -pfam11266 288160 cl00264 350992 -pfam11270 288164 pfam11270 288164 -pfam11289 288183 pfam11289 288183 -pfam11302 288195 pfam11302 288195 -pfam11310 288203 pfam11310 288203 -pfam11313 288206 pfam11313 288206 -pfam11314 288207 pfam11314 288207 -pfam11328 288220 cl27830 332651 -pfam11330 288222 pfam11330 288222 -pfam11334 288226 pfam11334 288226 -pfam11336 288228 cl21487 354832 -pfam11343 288235 pfam11343 288235 -pfam11345 288237 pfam11345 288237 -pfam11359 288251 pfam11359 288251 -pfam11383 288272 pfam11383 288272 -pfam11388 288276 cl29942 356818 -pfam11394 288282 pfam11394 288282 -pfam11395 288283 pfam11395 288283 -pfam11407 288291 pfam11407 288291 -pfam11417 288299 pfam11417 288299 -pfam11420 288302 pfam11420 288302 -pfam11422 288304 pfam11422 288304 -pfam11423 288305 pfam11423 288305 -pfam11424 288306 pfam11424 288306 -pfam11428 288308 pfam11428 288308 -pfam11430 288310 pfam11430 288310 -pfam11432 288312 pfam11432 288312 -pfam11436 288315 cl12049 353345 -pfam11437 288316 pfam11437 288316 -pfam11438 288317 pfam11438 288317 -pfam11440 288318 pfam11440 288318 -pfam11441 288319 pfam11441 288319 -pfam11442 288320 pfam11442 288320 -pfam11447 288325 pfam11447 288325 -pfam11458 288335 pfam11458 288335 -pfam11465 288342 cl11960 353325 -pfam11466 288343 pfam11466 288343 -pfam11469 288346 pfam11469 288346 -pfam11475 288349 pfam11475 288349 -pfam11477 288350 pfam11477 288350 -pfam11479 288351 pfam11479 288351 -pfam11480 288352 pfam11480 288352 -pfam11485 288355 pfam11485 288355 -pfam11486 288356 pfam11486 288356 -pfam11487 288357 pfam11487 288357 -pfam11491 288361 pfam11491 288361 -pfam11492 288362 pfam11492 288362 -pfam11494 288364 pfam11494 288364 -pfam11501 288369 pfam11501 288369 -pfam11505 288373 pfam11505 288373 -pfam11506 288374 pfam11506 288374 -pfam11508 288376 pfam11508 288376 -pfam11510 288377 cl12008 299861 -pfam11518 288383 pfam11518 288383 -pfam11519 288384 pfam11519 288384 -pfam11530 288394 pfam11530 288394 -pfam11537 288400 pfam11537 288400 -pfam11542 288404 pfam11542 288404 -pfam11544 288406 pfam11544 288406 -pfam11545 288407 cl02760 351877 -pfam11546 288408 pfam11546 288408 -pfam11547 288409 cl21463 354819 -pfam11550 288412 pfam11550 288412 -pfam11556 288415 pfam11556 288415 -pfam11565 288422 pfam11565 288422 -pfam11569 288426 pfam11569 288426 -pfam11572 288429 pfam11572 288429 -pfam11584 288441 pfam11584 288441 -pfam11586 288442 pfam11586 288442 -pfam11587 288443 pfam11587 288443 -pfam11592 288446 pfam11592 288446 -pfam11596 288450 pfam11596 288450 -pfam11598 288452 cl13107 300590 -pfam11601 288455 pfam11601 288455 -pfam11602 288456 cl27829 332650 -pfam11607 288460 pfam11607 288460 -pfam11608 288461 cl17169 354314 -pfam11609 288462 pfam11609 288462 -pfam11610 288463 pfam11610 288463 -pfam11615 288467 pfam11615 288467 -pfam11621 288473 pfam11621 288473 -pfam11622 288474 cl08186 298637 -pfam11631 288482 pfam11631 288482 -pfam11634 288483 pfam11634 288483 -pfam11637 288485 cl23906 305063 -pfam11639 288487 pfam11639 288487 -pfam11642 288489 pfam11642 288489 -pfam11645 288491 pfam11645 288491 -pfam11647 288492 pfam11647 288492 -pfam11649 288494 cl27828 332649 -pfam11665 288509 pfam11665 288509 -pfam11668 288512 pfam11668 288512 -pfam11673 288515 pfam11673 288515 -pfam11675 288517 pfam11675 288517 -pfam11678 288520 pfam11678 288520 -pfam11682 288524 pfam11682 288524 -pfam11686 288527 cl22636 354950 -pfam11713 288550 pfam11713 288550 -pfam11720 288556 pfam11720 288556 -pfam11729 288565 cl29941 356817 -pfam11763 288596 pfam11763 288596 -pfam11775 288608 cl00057 350880 -pfam11782 288615 pfam11782 288615 -pfam11792 288625 pfam11792 288625 -pfam11798 288631 pfam11798 288631 -pfam11809 288642 pfam11809 288642 -pfam11811 288644 pfam11811 288644 -pfam11826 288659 pfam11826 288659 -pfam11840 288673 pfam11840 288673 -pfam11889 288721 pfam11889 288721 -pfam11914 288743 pfam11914 288743 -pfam11921 288750 pfam11921 288750 -pfam11970 288797 pfam11970 288797 -pfam11972 288799 pfam11972 288799 -pfam11973 288800 cl22925 354981 -pfam11986 288812 pfam11986 288812 -pfam12011 288834 pfam12011 288834 -pfam12015 288838 pfam12015 288838 -pfam12017 288840 pfam12017 288840 -pfam12025 288848 pfam12025 288848 -pfam12085 288903 pfam12085 288903 -pfam12086 288904 pfam12086 288904 -pfam12097 288914 pfam12097 288914 -pfam12104 288921 pfam12104 288921 -pfam12113 288929 pfam12113 288929 -pfam12117 288933 pfam12117 288933 -pfam12118 288934 pfam12118 288934 -pfam12120 288936 pfam12120 288936 -pfam12124 288939 pfam12124 288939 -pfam12133 288948 pfam12133 288948 -pfam12135 288950 pfam12135 288950 -pfam12147 288961 cl17173 354317 -pfam12149 288963 pfam12149 288963 -pfam12153 288967 pfam12153 288967 -pfam12175 288986 pfam12175 288986 -pfam12181 288992 pfam12181 288992 -pfam12187 288997 cl27825 332646 -pfam12189 288999 cl27824 332645 -pfam12193 289003 cl27823 332644 -pfam12198 289006 pfam12198 289006 -pfam12199 289007 pfam12199 289007 -pfam12206 289014 pfam12206 289014 -pfam12207 289015 pfam12207 289015 -pfam12233 289037 pfam12233 289037 -pfam12238 289042 pfam12238 289042 -pfam12252 289056 pfam12252 289056 -pfam12266 289069 pfam12266 289069 -pfam12268 289070 pfam12268 289070 -pfam12283 289084 cl27822 332643 -pfam12289 289089 pfam12289 289089 -pfam12302 289102 pfam12302 289102 -pfam12322 289120 cl27821 332642 -pfam12334 289131 pfam12334 289131 -pfam12337 289134 pfam12337 289134 -pfam12338 289135 cl29940 356816 -pfam12352 289148 pfam12352 289148 -pfam12354 289150 pfam12354 289150 -pfam12360 289156 pfam12360 289156 -pfam12361 289157 pfam12361 289157 -pfam12376 289169 pfam12376 289169 -pfam12379 289172 pfam12379 289172 -pfam12380 289173 pfam12380 289173 -pfam12383 289174 pfam12383 289174 -pfam12387 289175 pfam12387 289175 -pfam12406 289191 pfam12406 289191 -pfam12407 289192 pfam12407 289192 -pfam12410 289195 pfam12410 289195 -pfam12415 289200 pfam12415 289200 -pfam12421 289206 pfam12421 289206 -pfam12426 289211 pfam12426 289211 -pfam12427 289212 pfam12427 289212 -pfam12434 289219 pfam12434 289219 -pfam12446 289231 pfam12446 289231 -pfam12467 289250 pfam12467 289250 -pfam12475 289258 pfam12475 289258 -pfam12477 289260 pfam12477 289260 -pfam12479 289262 pfam12479 289262 -pfam12488 289271 pfam12488 289271 -pfam12493 289275 pfam12493 289275 -pfam12503 289285 pfam12503 289285 -pfam12506 289287 pfam12506 289287 -pfam12518 289298 pfam12518 289298 -pfam12561 289338 pfam12561 289338 -pfam12562 289339 pfam12562 289339 -pfam12563 289340 pfam12563 289340 -pfam12575 289352 pfam12575 289352 -pfam12593 289369 pfam12593 289369 -pfam12594 289370 pfam12594 289370 -pfam12601 289375 pfam12601 289375 -pfam12603 289377 pfam12603 289377 -pfam12608 289381 pfam12608 289381 -pfam12613 289386 pfam12613 289386 -pfam12628 289400 pfam12628 289400 -pfam12629 289401 pfam12629 289401 -pfam12630 289402 pfam12630 289402 -pfam12651 289422 pfam12651 289422 -pfam12659 289430 pfam12659 289430 -pfam12677 289447 pfam12677 289447 -pfam12682 289452 cl00438 351093 -pfam12692 289462 cl17173 354317 -pfam12693 289463 cl14909 301371 -pfam12699 289469 pfam12699 289469 -pfam12700 289470 cl11404 353245 -pfam12703 289473 pfam12703 289473 -pfam12707 289477 pfam12707 289477 -pfam12742 289511 cl29758 356634 -pfam12753 289519 pfam12753 289519 -pfam12759 289525 pfam12759 289525 -pfam12763 289529 cl27812 332633 -pfam12771 289537 pfam12771 289537 -pfam12774 289540 pfam12774 289540 -pfam12775 289541 cl21455 354812 -pfam12777 289543 pfam12777 289543 -pfam12780 289546 cl21455 354812 -pfam12803 289567 cl27811 332632 -pfam12818 289579 pfam12818 289579 -pfam12861 289620 cl17238 354325 -pfam12876 289633 pfam12876 289633 -pfam12897 289652 cl18945 354370 -pfam12906 289661 cl17238 354325 -pfam12907 289662 pfam12907 289662 -pfam12941 289693 pfam12941 289693 -pfam12942 289694 pfam12942 289694 -pfam12944 289696 pfam12944 289696 -pfam12946 289698 pfam12946 289698 -pfam12956 289708 pfam12956 289708 -pfam12962 289714 pfam12962 289714 -pfam12967 289719 pfam12967 289719 -pfam12968 289720 pfam12968 289720 -pfam12970 289722 pfam12970 289722 -pfam12978 289729 cl19285 354405 -pfam12980 289731 pfam12980 289731 -pfam12981 289732 pfam12981 289732 -pfam12991 289742 pfam12991 289742 -pfam12994 289745 pfam12994 289745 -pfam12995 289746 pfam12995 289746 -pfam13008 289756 pfam13008 289756 -pfam13010 289758 pfam13010 289758 -pfam13011 289759 cl21459 354815 -pfam13013 289761 pfam13013 289761 -pfam13029 289775 pfam13029 289775 -pfam13033 289778 pfam13033 289778 -pfam13042 289787 pfam13042 289787 -pfam13044 289789 pfam13044 289789 -pfam13046 289791 pfam13046 289791 -pfam13053 289798 pfam13053 289798 -pfam13056 289801 pfam13056 289801 -pfam13058 289803 pfam13058 289803 -pfam13060 289805 pfam13060 289805 -pfam13061 289806 pfam13061 289806 -pfam13062 289807 pfam13062 289807 -pfam13070 289815 pfam13070 289815 -pfam13072 289817 pfam13072 289817 -pfam13075 289820 pfam13075 289820 -pfam13078 289823 pfam13078 289823 -pfam13081 289826 pfam13081 289826 -pfam13082 289827 pfam13082 289827 -pfam13096 289841 pfam13096 289841 -pfam13099 289844 pfam13099 289844 -pfam13104 289849 pfam13104 289849 -pfam13107 289852 pfam13107 289852 -pfam13111 289856 pfam13111 289856 -pfam13112 289857 pfam13112 289857 -pfam13113 289858 pfam13113 289858 -pfam13122 289867 pfam13122 289867 -pfam13123 289868 pfam13123 289868 -pfam13124 289869 pfam13124 289869 -pfam13132 289877 pfam13132 289877 -pfam13135 289880 pfam13135 289880 -pfam13137 289882 pfam13137 289882 -pfam13139 289884 pfam13139 289884 -pfam13140 289885 pfam13140 289885 -pfam13142 289887 pfam13142 289887 -pfam13152 289896 pfam13152 289896 -pfam13153 289897 pfam13153 289897 -pfam13168 289912 pfam13168 289912 -pfam13169 289913 pfam13169 289913 -pfam13203 289946 pfam13203 289946 -pfam13209 289952 pfam13209 289952 -pfam13213 289956 pfam13213 289956 -pfam13214 289957 pfam13214 289957 -pfam13220 289962 pfam13220 289962 -pfam13221 289963 pfam13221 289963 -pfam13222 289964 pfam13222 289964 -pfam13258 289998 pfam13258 289998 -pfam13285 290024 pfam13285 290024 -pfam13294 290033 pfam13294 290033 -pfam13295 290034 pfam13295 290034 -pfam13314 290053 pfam13314 290053 -pfam13315 290054 pfam13315 290054 -pfam13317 290056 pfam13317 290056 -pfam13319 290058 pfam13319 290058 -pfam13321 290060 pfam13321 290060 -pfam13322 290061 pfam13322 290061 -pfam13352 290090 pfam13352 290090 -pfam13390 290126 pfam13390 290126 -pfam13447 290183 cl29116 355992 -pfam13485 290220 cl14813 353839 -pfam13496 290231 pfam13496 290231 -pfam13573 290306 pfam13573 290306 -pfam13586 290319 cl21562 354873 -pfam13608 290339 pfam13608 290339 -pfam13737 290455 pfam13737 290455 -pfam13804 290518 pfam13804 290518 -pfam13815 290529 pfam13815 290529 -pfam13825 290537 pfam13825 290537 -pfam13853 290564 cl21561 354872 -pfam13940 290651 pfam13940 290651 -pfam13948 290659 pfam13948 290659 -pfam13978 290685 pfam13978 290685 -pfam13979 290686 pfam13979 290686 -pfam13981 290688 pfam13981 290688 -pfam14000 290707 pfam14000 290707 -pfam14083 290790 pfam14083 290790 -pfam14118 290824 pfam14118 290824 -pfam14140 290845 pfam14140 290845 -pfam14142 290847 pfam14142 290847 -pfam14147 290852 pfam14147 290852 -pfam14148 290853 pfam14148 290853 -pfam14152 290857 pfam14152 290857 -pfam14157 290862 pfam14157 290862 -pfam14178 290882 pfam14178 290882 -pfam14185 290888 pfam14185 290888 -pfam14210 290912 pfam14210 290912 -pfam14245 290944 pfam14245 290944 -pfam14286 290984 pfam14286 290984 -pfam14305 291003 cl17255 354326 -pfam14320 291018 pfam14320 291018 -pfam14409 291106 pfam14409 291106 -pfam14424 291120 pfam14424 291120 -pfam14442 291134 pfam14442 291134 -pfam14448 291139 pfam14448 291139 -pfam14451 291142 cl28922 355798 -pfam14455 291146 pfam14455 291146 -pfam14459 291149 pfam14459 291149 -pfam14461 291151 cl00154 350921 -pfam14468 291157 pfam14468 291157 -pfam14502 291188 cl21459 354815 -pfam14506 291192 cl14632 353816 -pfam14514 291200 pfam14514 291200 -pfam14527 291211 cl08299 352872 -pfam14544 291228 pfam14544 291228 -pfam14549 291231 cl22854 354960 -pfam14556 291237 pfam14556 291237 -pfam14563 291243 pfam14563 291243 -pfam14565 291245 cl02501 351777 -pfam14572 291252 cl00309 351014 -pfam14583 291262 pfam14583 291262 -pfam14585 291264 pfam14585 291264 -pfam14586 291265 cl08246 352859 -pfam14596 291272 pfam14596 291272 -pfam14604 291278 cl17036 354299 -pfam14609 291283 pfam14609 291283 -pfam14614 291288 cl17067 354306 -pfam14617 291291 cl28899 355775 -pfam14627 291301 pfam14627 291301 -pfam14635 291309 cl22429 354935 -pfam14669 291341 pfam14669 291341 -pfam14729 291399 pfam14729 291399 -pfam14731 291401 pfam14731 291401 -pfam14754 291424 pfam14754 291424 -pfam14809 291475 pfam14809 291475 -pfam14820 291486 pfam14820 291486 -pfam14835 291501 cl17238 354325 -pfam14840 291506 pfam14840 291506 -pfam14860 291524 pfam14860 291524 -pfam14867 291529 pfam14867 291529 -pfam14876 291538 pfam14876 291538 -pfam14877 291539 pfam14877 291539 -pfam14884 291546 pfam14884 291546 -pfam14928 291589 pfam14928 291589 -pfam14982 291643 pfam14982 291643 -pfam14983 291644 pfam14983 291644 -pfam14988 291649 pfam14988 291649 -pfam15022 291682 pfam15022 291682 -pfam15034 291693 pfam15034 291693 -pfam15040 291699 pfam15040 291699 -pfam15058 291717 pfam15058 291717 -pfam15075 291734 pfam15075 291734 -pfam15080 291739 pfam15080 291739 -pfam15088 291747 pfam15088 291747 -pfam15108 291767 pfam15108 291767 -pfam15111 291770 pfam15111 291770 -pfam15116 291775 pfam15116 291775 -pfam15130 291788 pfam15130 291788 -pfam15131 291789 pfam15131 291789 -pfam15143 291801 pfam15143 291801 -pfam15167 291823 pfam15167 291823 -pfam15174 291830 pfam15174 291830 -pfam15178 291834 pfam15178 291834 -pfam15184 291840 pfam15184 291840 -pfam15185 291841 pfam15185 291841 -pfam15190 291846 pfam15190 291846 -pfam15194 291850 pfam15194 291850 -pfam15198 291852 pfam15198 291852 -pfam15199 291853 pfam15199 291853 -pfam15201 291855 pfam15201 291855 -pfam15210 291864 pfam15210 291864 -pfam15212 291866 pfam15212 291866 -pfam15215 291869 pfam15215 291869 -pfam15217 291871 pfam15217 291871 -pfam15220 291874 pfam15220 291874 -pfam15225 291878 pfam15225 291878 -pfam15231 291884 pfam15231 291884 -pfam15240 291893 pfam15240 291893 -pfam15271 291920 pfam15271 291920 -pfam15272 291921 pfam15272 291921 -pfam15285 291932 pfam15285 291932 -pfam15291 291937 pfam15291 291937 -pfam15340 291985 pfam15340 291985 -pfam15349 291994 pfam15349 291994 -pfam15356 292000 pfam15356 292000 -pfam15357 292001 pfam15357 292001 -pfam15399 292042 pfam15399 292042 -pfam15410 292052 cl17171 354315 -pfam15414 292056 pfam15414 292056 -pfam15415 292057 cl17916 302680 -pfam15417 292059 pfam15417 292059 -pfam15421 292063 cl15692 353970 -pfam15431 292071 pfam15431 292071 -pfam15437 292077 pfam15437 292077 -pfam15438 292078 pfam15438 292078 -pfam15448 292088 pfam15448 292088 -pfam15468 292107 pfam15468 292107 -pfam15506 292144 pfam15506 292144 -pfam15514 292152 pfam15514 292152 -pfam15516 292154 pfam15516 292154 -pfam15517 292155 pfam15517 292155 -pfam15520 292158 pfam15520 292158 -pfam15527 292164 pfam15527 292164 -pfam15533 292170 pfam15533 292170 -pfam15536 292173 pfam15536 292173 -pfam15537 292174 pfam15537 292174 -pfam15540 292177 pfam15540 292177 -pfam15541 292178 pfam15541 292178 -pfam15543 292180 pfam15543 292180 -pfam15544 292181 pfam15544 292181 -pfam15545 292182 pfam15545 292182 -pfam15560 292197 pfam15560 292197 -pfam15563 292200 pfam15563 292200 -pfam15565 292201 pfam15565 292201 -pfam15566 292202 pfam15566 292202 -pfam15569 292204 pfam15569 292204 -pfam15570 292205 pfam15570 292205 -pfam15571 292206 pfam15571 292206 -pfam15581 292215 pfam15581 292215 -pfam15582 292216 pfam15582 292216 -pfam15584 292218 pfam15584 292218 -pfam15587 292221 pfam15587 292221 -pfam15591 292225 pfam15591 292225 -pfam15596 292230 pfam15596 292230 -pfam15600 292234 pfam15600 292234 -pfam15603 292237 pfam15603 292237 -pfam15606 292240 pfam15606 292240 -pfam15633 292266 pfam15633 292266 -pfam15634 292267 pfam15634 292267 -pfam15639 292270 pfam15639 292270 -pfam15642 292272 pfam15642 292272 -pfam15651 292281 pfam15651 292281 -pfam15654 292283 pfam15654 292283 -pfam15695 292323 pfam15695 292323 -pfam15701 292329 pfam15701 292329 -pfam15721 292349 pfam15721 292349 -pfam15725 292353 pfam15725 292353 -pfam15726 292354 pfam15726 292354 -pfam15731 292359 pfam15731 292359 -pfam15752 292380 pfam15752 292380 -pfam15758 292386 pfam15758 292386 -pfam15789 292417 pfam15789 292417 -pfam15820 292448 pfam15820 292448 -pfam15824 292452 pfam15824 292452 -pfam15841 292469 pfam15841 292469 -pfam15842 292470 pfam15842 292470 -pfam15843 292471 pfam15843 292471 -pfam15845 292473 pfam15845 292473 -pfam15847 292475 pfam15847 292475 -pfam15849 292477 pfam15849 292477 -pfam15859 292484 pfam15859 292484 -pfam15873 292498 pfam15873 292498 -pfam15876 292501 pfam15876 292501 -pfam15894 292518 pfam15894 292518 -pfam15895 292519 pfam15895 292519 -pfam15897 292520 pfam15897 292520 -pfam15899 292522 pfam15899 292522 -pfam15922 292544 pfam15922 292544 -pfam15931 292553 pfam15931 292553 -pfam15935 292557 cl21600 328821 -pfam15939 292561 cl27789 332610 -pfam15942 292564 pfam15942 292564 -pfam15948 292570 pfam15948 292570 -pfam15953 292575 cl14772 301342 -pfam15968 292590 pfam15968 292590 -pfam15969 292591 pfam15969 292591 -pfam15970 292592 cl23837 355065 -pfam15978 292600 pfam15978 292600 -pfam15981 292603 pfam15981 292603 -pfam16024 292643 pfam16024 292643 -pfam16047 292666 pfam16047 292666 -pfam16048 292667 pfam16048 292667 -pfam16049 292668 pfam16049 292668 -pfam16059 292677 pfam16059 292677 -pfam16067 292685 pfam16067 292685 -pfam16081 292699 pfam16081 292699 -pfam16084 292702 pfam16084 292702 -pfam16104 292722 cl27786 332607 -pfam16142 292760 pfam16142 292760 -pfam16144 292762 pfam16144 292762 -pfam16164 292782 pfam16164 292782 -pfam16167 292785 pfam16167 292785 -pfam16175 292793 pfam16175 292793 -pfam16181 292799 pfam16181 292799 -pfam16226 292843 pfam16226 292843 -pfam16229 292846 cl24066 305223 -pfam16230 292847 pfam16230 292847 -pfam16239 292856 pfam16239 292856 -pfam16241 292858 pfam16241 292858 -pfam16245 292862 pfam16245 292862 -pfam16247 292864 cl09109 352932 -pfam16248 292865 pfam16248 292865 -pfam16251 292868 pfam16251 292868 -pfam16253 292870 pfam16253 292870 -pfam16280 292897 pfam16280 292897 -pfam16283 292899 pfam16283 292899 -pfam16284 292900 pfam16284 292900 -pfam16287 292903 pfam16287 292903 -pfam16289 292905 pfam16289 292905 -pfam16290 292906 pfam16290 292906 -pfam16292 292908 pfam16292 292908 -pfam16293 292909 pfam16293 292909 -pfam16295 292911 cl23808 355056 -pfam16298 292914 pfam16298 292914 -pfam16299 292915 pfam16299 292915 -pfam16302 292918 pfam16302 292918 -pfam16303 292919 pfam16303 292919 -pfam16307 292923 pfam16307 292923 -pfam16308 292924 pfam16308 292924 -pfam16310 292926 pfam16310 292926 -pfam16311 292927 pfam16311 292927 -pfam16317 292933 cl01529 351538 -pfam16328 292944 pfam16328 292944 -pfam16342 292954 pfam16342 292954 -pfam16348 292959 pfam16348 292959 -pfam16365 292975 pfam16365 292975 -pfam16374 292984 pfam16374 292984 -pfam16376 292986 pfam16376 292986 -pfam16377 292987 pfam16377 292987 -pfam16396 293005 cl16414 354107 -pfam16401 293010 cl21495 354837 -pfam16404 293013 pfam16404 293013 -pfam16406 293015 pfam16406 293015 -pfam16410 293019 cl25670 330491 -pfam16416 293025 pfam16416 293025 -pfam16422 293031 cl17007 302586 -pfam16425 293034 pfam16425 293034 -pfam16429 293038 pfam16429 293038 -pfam16431 293040 pfam16431 293040 -pfam16432 293041 pfam16432 293041 -pfam16433 293042 pfam16433 293042 -pfam16434 293043 pfam16434 293043 -pfam16435 293044 pfam16435 293044 -pfam16437 293046 pfam16437 293046 -pfam16439 293048 pfam16439 293048 -pfam16440 293049 pfam16440 293049 -pfam16441 293050 pfam16441 293050 -pfam16443 293052 pfam16443 293052 -pfam16445 293054 pfam16445 293054 -pfam16446 293055 pfam16446 293055 -pfam16456 293065 pfam16456 293065 -pfam16460 293069 pfam16460 293069 -pfam16465 293074 pfam16465 293074 -pfam16466 293075 pfam16466 293075 -pfam16467 293076 pfam16467 293076 -pfam16480 293089 pfam16480 293089 -pfam16504 293113 pfam16504 293113 -pfam16505 293114 pfam16505 293114 -pfam16510 293119 pfam16510 293119 -pfam16518 293126 cl14578 301315 -pfam16520 293128 pfam16520 293128 -pfam16530 293138 pfam16530 293138 -pfam16535 293143 pfam16535 293143 -pfam16549 293157 pfam16549 293157 -pfam16551 293159 pfam16551 293159 -pfam16567 293175 pfam16567 293175 -pfam16580 293188 pfam16580 293188 -pfam16583 293191 pfam16583 293191 -pfam16584 293192 cl19192 354390 -pfam16593 293201 pfam16593 293201 -pfam16650 293256 pfam16650 293256 -pfam16668 293273 pfam16668 293273 -pfam16671 293276 pfam16671 293276 -pfam16684 293289 pfam16684 293289 -pfam16688 293293 pfam16688 293293 -pfam16689 293294 pfam16689 293294 -pfam16693 293298 cl27782 355678 -pfam16701 293306 pfam16701 293306 -pfam16704 293309 pfam16704 293309 -pfam16707 293312 pfam16707 293312 -pfam16710 293315 pfam16710 293315 -pfam16713 293318 cl27781 332602 -pfam16720 293325 pfam16720 293325 -pfam16721 293326 cl07828 352815 -pfam16728 293333 pfam16728 293333 -pfam16733 293338 cl29718 356594 -pfam16744 293349 pfam16744 293349 -pfam16750 293355 pfam16750 293355 -pfam16751 293356 pfam16751 293356 -pfam16755 293360 pfam16755 293360 -pfam16758 293363 cl27780 332601 -pfam16765 293370 pfam16765 293370 -pfam16774 293379 pfam16774 293379 -pfam16775 293380 pfam16775 293380 -pfam16779 293384 cl27779 332600 -pfam16784 293389 pfam16784 293389 -pfam16786 293391 cl23554 328993 -pfam16790 293395 cl27778 332599 -pfam16801 293406 pfam16801 293406 -pfam16806 293411 pfam16806 293411 -pfam16807 293412 cl12902 325614 -pfam16809 293414 pfam16809 293414 -pfam16814 293419 pfam16814 293419 -pfam16817 293422 pfam16817 293422 -pfam16821 293426 pfam16821 293426 -pfam16829 293434 pfam16829 293434 -pfam16840 293445 pfam16840 293445 -pfam16847 293452 cl17109 302613 -pfam16849 293454 pfam16849 293454 -pfam16852 293457 pfam16852 293457 -pfam16855 293460 pfam16855 293460 -pfam16856 293461 pfam16856 293461 -pfam16865 293470 cl02776 351885 -pfam16882 293487 pfam16882 293487 -pfam16883 293488 pfam16883 293488 -pfam16903 293508 pfam16903 293508 -pfam16904 293509 pfam16904 293509 -pfam16913 293518 pfam16913 293518 -pfam16914 293519 pfam16914 293519 -pfam16925 293530 pfam16925 293530 -pfam16926 293531 pfam16926 293531 -pfam16928 293533 pfam16928 293533 -pfam16934 293539 cl14830 301355 -pfam16936 293541 pfam16936 293541 -pfam16938 293543 pfam16938 293543 -pfam16939 293544 pfam16939 293544 -pfam16941 293546 pfam16941 293546 -pfam16942 293547 pfam16942 293547 -pfam16943 293548 pfam16943 293548 -pfam16945 293550 pfam16945 293550 -pfam16951 293556 pfam16951 293556 -pfam16952 293557 cl08409 352888 -pfam16963 293568 pfam16963 293568 -pfam16968 293573 cl19078 354377 -pfam16971 293576 pfam16971 293576 -pfam16981 293586 pfam16981 293586 -pfam16985 293590 pfam16985 293590 -pfam16990 293595 cl14880 353849 -pfam16991 293596 cl19111 302764 -pfam16993 293598 cl10013 353042 -pfam16997 293602 pfam16997 293602 -pfam17034 293639 cl24077 305234 -pfam17038 293643 pfam17038 293643 -pfam17041 293646 pfam17041 293646 -pfam17047 293652 pfam17047 293652 -pfam17049 293654 pfam17049 293654 -pfam17051 293656 pfam17051 293656 -pfam17054 293659 pfam17054 293659 -pfam17055 293660 pfam17055 293660 -pfam17057 293662 pfam17057 293662 -pfam17058 293663 pfam17058 293663 -pfam17059 293664 pfam17059 293664 -pfam17060 293665 pfam17060 293665 -pfam17063 293668 pfam17063 293668 -pfam17064 293669 pfam17064 293669 -pfam17065 293670 pfam17065 293670 -pfam17067 293672 cl27771 332592 -pfam17068 293673 pfam17068 293673 -pfam17069 293674 pfam17069 293674 -pfam17071 293676 pfam17071 293676 -pfam17072 293677 pfam17072 293677 -pfam17074 293679 pfam17074 293679 -pfam17075 293680 pfam17075 293680 -pfam17076 293681 pfam17076 293681 -pfam17077 293682 pfam17077 293682 -pfam17078 293683 pfam17078 293683 -pfam17079 293684 pfam17079 293684 -pfam17080 293685 pfam17080 293685 -pfam17081 293686 pfam17081 293686 -pfam17082 293687 pfam17082 293687 -pfam17083 293688 pfam17083 293688 -pfam17084 293689 pfam17084 293689 -pfam17085 293690 pfam17085 293690 -pfam17086 293691 pfam17086 293691 -pfam17087 293692 pfam17087 293692 -pfam17089 293694 pfam17089 293694 -pfam17090 293695 pfam17090 293695 -pfam17091 293696 cl27770 332591 -pfam17093 293698 pfam17093 293698 -pfam17094 293699 pfam17094 293699 -pfam17097 293702 pfam17097 293702 -pfam17099 293704 pfam17099 293704 -pfam17118 293723 pfam17118 293723 -pfam17120 293725 cl24077 305234 -pfam17122 293727 cl17238 354325 -cd00016 293732 cl23718 355016 -cd16009 293733 cl23718 355016 -cd16010 293734 cl23718 355016 -cd16011 293735 cl23718 355016 -cd16012 293736 cl23718 355016 -cd16013 293737 cl23718 355016 -cd16014 293738 cl23718 355016 -cd16015 293739 cl23718 355016 -cd16016 293740 cl23718 355016 -cd16017 293741 cl23718 355016 -cd16018 293742 cl23718 355016 -cd16019 293743 cl23718 355016 -cd16020 293744 cl23718 355016 -cd16021 293745 cl23718 355016 -cd16022 293746 cl23718 355016 -cd16023 293747 cl23718 355016 -cd16024 293748 cl23718 355016 -cd16025 293749 cl23718 355016 -cd16026 293750 cl23718 355016 -cd16027 293751 cl23718 355016 -cd16028 293752 cl23718 355016 -cd16029 293753 cl23718 355016 -cd16030 293754 cl23718 355016 -cd16031 293755 cl23718 355016 -cd16032 293756 cl23718 355016 -cd16033 293757 cl23718 355016 -cd16034 293758 cl23718 355016 -cd16035 293759 cl23718 355016 -cd16037 293760 cl23718 355016 -cd16142 293761 cl23718 355016 -cd16143 293762 cl23718 355016 -cd16144 293763 cl23718 355016 -cd16145 293764 cl23718 355016 -cd16146 293765 cl23718 355016 -cd16147 293766 cl23718 355016 -cd16148 293767 cl23718 355016 -cd16149 293768 cl23718 355016 -cd16150 293769 cl23718 355016 -cd16151 293770 cl23718 355016 -cd16152 293771 cl23718 355016 -cd16153 293772 cl23718 355016 -cd16154 293773 cl23718 355016 -cd16155 293774 cl23718 355016 -cd16156 293775 cl23718 355016 -cd16157 293776 cl23718 355016 -cd16158 293777 cl23718 355016 -cd16159 293778 cl23718 355016 -cd16160 293779 cl23718 355016 -cd16161 293780 cl23718 355016 -cd16171 293781 cl23718 355016 -cd16319 293782 cl03563 352023 -cd16320 293783 cl03563 352023 -cd16321 293784 cl03563 352023 -sd00046 293785 sd00046 293785 -sd00045 293786 sd00045 293786 -sd00044 293787 sd00044 293787 -sd00043 293788 sd00043 293788 -sd00042 293789 sd00042 293789 -sd00041 293790 sd00041 293790 -sd00039 293791 sd00039 293791 -cd06262 293792 cl23716 355014 -cd07707 293793 cl23716 355014 -cd07708 293794 cl23716 355014 -cd07709 293795 cl23716 355014 -cd07710 293796 cl23716 355014 -cd07711 293797 cl23716 355014 -cd07712 293798 cl23716 355014 -cd07713 293799 cl23716 355014 -cd07714 293800 cl23716 355014 -cd07715 293801 cl23716 355014 -cd07716 293802 cl23716 355014 -cd07717 293803 cl23716 355014 -cd07718 293804 cl23716 355014 -cd07719 293805 cl23716 355014 -cd07720 293806 cl23716 355014 -cd07721 293807 cl23716 355014 -cd07722 293808 cl23716 355014 -cd07723 293809 cl23716 355014 -cd07724 293810 cl23716 355014 -cd07725 293811 cl23716 355014 -cd07726 293812 cl23716 355014 -cd07727 293813 cl23716 355014 -cd07728 293814 cl23716 355014 -cd07729 293815 cl23716 355014 -cd07730 293816 cl23716 355014 -cd07731 293817 cl23716 355014 -cd07732 293818 cl23716 355014 -cd07733 293819 cl23716 355014 -cd07734 293820 cl23716 355014 -cd07735 293821 cl23716 355014 -cd07736 293822 cl23716 355014 -cd07737 293823 cl23716 355014 -cd07738 293824 cl23716 355014 -cd07739 293825 cl23716 355014 -cd07740 293826 cl23716 355014 -cd07741 293827 cl23716 355014 -cd07742 293828 cl23716 355014 -cd07743 293829 cl23716 355014 -cd16272 293830 cl23716 355014 -cd16273 293831 cl23716 355014 -cd16274 293832 cl23716 355014 -cd16275 293833 cl23716 355014 -cd16276 293834 cl23716 355014 -cd16277 293835 cl23716 355014 -cd16278 293836 cl23716 355014 -cd16279 293837 cl23716 355014 -cd16280 293838 cl23716 355014 -cd16281 293839 cl23716 355014 -cd16282 293840 cl23716 355014 -cd16283 293841 cl23716 355014 -cd16284 293842 cl23716 355014 -cd16285 293843 cl23716 355014 -cd16286 293844 cl23716 355014 -cd16287 293845 cl23716 355014 -cd16288 293846 cl23716 355014 -cd16289 293847 cl23716 355014 -cd16290 293848 cl23716 355014 -cd16291 293849 cl23716 355014 -cd16292 293850 cl23716 355014 -cd16293 293851 cl23716 355014 -cd16294 293852 cl23716 355014 -cd16295 293853 cl23716 355014 -cd16296 293854 cl23716 355014 -cd16297 293855 cl23716 355014 -cd16298 293856 cl23716 355014 -cd16299 293857 cl23716 355014 -cd16300 293858 cl23716 355014 -cd16301 293859 cl23716 355014 -cd16302 293860 cl23716 355014 -cd16303 293861 cl23716 355014 -cd16304 293862 cl23716 355014 -cd16305 293863 cl23716 355014 -cd16306 293864 cl23716 355014 -cd16307 293865 cl23716 355014 -cd16308 293866 cl23716 355014 -cd16309 293867 cl23716 355014 -cd16310 293868 cl23716 355014 -cd16311 293869 cl23716 355014 -cd16312 293870 cl23716 355014 -cd16313 293871 cl23716 355014 -cd16314 293872 cl23716 355014 -cd16315 293873 cl23716 355014 -cd16316 293874 cl23716 355014 -cd16317 293875 cl23716 355014 -cd16318 293876 cl23716 355014 -cd16322 293877 cl23716 355014 -cd16270 293878 cd16270 293878 -cd16269 293879 cl20817 354737 -cd16074 293880 cl23757 304914 -cd16162 293881 cl23757 304914 -cd16163 293882 cl23757 304914 -cd16164 293883 cl23757 304914 -cd16165 293884 cl23757 304914 -cd16166 293885 cl23757 304914 -cd16167 293886 cl23757 304914 -cd16168 293887 cl23757 304914 -cd01342 293888 cl02787 351893 -cd03688 293889 cl02787 351893 -cd03689 293890 cl02787 351893 -cd03690 293891 cl02787 351893 -cd03691 293892 cl02787 351893 -cd03692 293893 cl02787 351893 -cd03693 293894 cl02787 351893 -cd03694 293895 cl02787 351893 -cd03695 293896 cl02787 351893 -cd03696 293897 cl02787 351893 -cd03697 293898 cl02787 351893 -cd03698 293899 cl02787 351893 -cd03699 293900 cl02787 351893 -cd03700 293901 cl02787 351893 -cd03701 293902 cl02787 351893 -cd03702 293903 cl02787 351893 -cd03703 293904 cl02787 351893 -cd04088 293905 cl02787 351893 -cd04089 293906 cl02787 351893 -cd04090 293907 cl02787 351893 -cd04091 293908 cl02787 351893 -cd04092 293909 cl02787 351893 -cd16265 293910 cl02787 351893 -cd16266 293911 cl02787 351893 -cd16267 293912 cl02787 351893 -cd16268 293913 cl02787 351893 -cd16257 293914 cl20541 354640 -cd16258 293915 cl20541 354640 -cd16259 293916 cl20541 354640 -cd16260 293917 cl20541 354640 -cd16261 293918 cl20541 354640 -cd16262 293919 cl20541 354640 -cd16263 293920 cl20541 354640 -cd16264 293921 cl20541 354640 -cd16075 293922 cd16075 293922 -cd16076 293923 cl13107 300590 -cd16077 293924 cl13107 300590 -cd16079 293925 cl13107 300590 -cd16080 293926 cl13107 300590 -cd16081 293927 cl13107 300590 -cd00402 293928 cl28933 355809 -cd16256 293929 cl28933 355809 -cd16172 293930 cd16172 293930 -cd11709 293931 cl02614 351827 -cd12872 293932 cl02614 351827 -cd12873 293933 cl02614 351827 -cd12874 293934 cl02614 351827 -cd12875 293935 cl02614 351827 -cd12876 293936 cl02614 351827 -cd12879 293937 cl02614 351827 -cd12880 293938 cl02614 351827 -cd12881 293939 cl02614 351827 -cd12882 293940 cl02614 351827 -cd12883 293941 cl02614 351827 -cd12884 293942 cl02614 351827 -cd12885 293943 cl02614 351827 -cd12886 293944 cl02614 351827 -cd12887 293945 cl02614 351827 -cd12888 293946 cl02614 351827 -cd12889 293947 cl02614 351827 -cd12890 293948 cl02614 351827 -cd12891 293949 cl02614 351827 -cd12893 293950 cl02614 351827 -cd12894 293951 cl02614 351827 -cd12895 293952 cl02614 351827 -cd12896 293953 cl02614 351827 -cd12897 293954 cl02614 351827 -cd12898 293955 cl02614 351827 -cd12899 293956 cl02614 351827 -cd12900 293957 cl02614 351827 -cd12901 293958 cl02614 351827 -cd12902 293959 cl02614 351827 -cd12903 293960 cl02614 351827 -cd12904 293961 cl02614 351827 -cd12905 293962 cl02614 351827 -cd12906 293963 cl02614 351827 -cd12907 293964 cl02614 351827 -cd12908 293965 cl02614 351827 -cd12909 293966 cl02614 351827 -cd12910 293967 cl02614 351827 -cd13733 293968 cl02614 351827 -cd13734 293969 cl02614 351827 -cd13735 293970 cl02614 351827 -cd13736 293971 cl02614 351827 -cd13737 293972 cl02614 351827 -cd13738 293973 cl02614 351827 -cd13739 293974 cl02614 351827 -cd13740 293975 cl02614 351827 -cd13742 293976 cl02614 351827 -cd13743 293977 cl02614 351827 -cd13744 293978 cl02614 351827 -cd13745 293979 cl02614 351827 -cd15808 293980 cl02614 351827 -cd15809 293981 cl02614 351827 -cd15810 293982 cl02614 351827 -cd15811 293983 cl02614 351827 -cd15812 293984 cl02614 351827 -cd15813 293985 cl02614 351827 -cd15814 293986 cl02614 351827 -cd15815 293987 cl02614 351827 -cd15816 293988 cl02614 351827 -cd15817 293989 cl02614 351827 -cd15818 293990 cl02614 351827 -cd15819 293991 cl02614 351827 -cd15820 293992 cl02614 351827 -cd15821 293993 cl02614 351827 -cd15822 293994 cl02614 351827 -cd15823 293995 cl02614 351827 -cd15824 293996 cl02614 351827 -cd15825 293997 cl02614 351827 -cd15826 293998 cl02614 351827 -cd15827 293999 cl02614 351827 -cd15828 294000 cl02614 351827 -cd15829 294001 cl02614 351827 -cd16040 294002 cl02614 351827 -cd03704 294003 cl02786 322091 -cd03705 294004 cl02786 322091 -cd03706 294005 cl02786 322091 -cd03707 294006 cl02786 322091 -cd03708 294007 cl02786 322091 -cd04093 294008 cl02786 322091 -cd04094 294009 cl02786 322091 -cd04095 294010 cl02786 322091 -cd15490 294011 cl02786 322091 -cd15491 294012 cl02786 322091 -cd00383 294013 cl21459 354815 -cd15783 294014 cl24066 305223 -cd16098 294015 cl00654 351199 -pfam00022 306521 pfam00022 306521 -pfam00033 306530 cl23723 355020 -pfam00040 306537 cl09951 324551 -pfam00049 306545 cl02453 321941 -pfam00060 306551 pfam00060 306551 -pfam00063 306553 pfam00063 306553 -pfam00077 306563 cl11403 353244 -pfam00090 306574 cl15278 326556 -pfam00094 306577 cl02516 321964 -pfam00098 306581 pfam00098 306581 -pfam00103 306585 cl07831 324147 -pfam00123 306603 cl27746 332567 -pfam00133 306611 pfam00133 306611 -pfam00142 306619 cl21455 354812 -pfam00143 306620 cl00092 320755 -pfam00157 306631 cl22952 328965 -pfam00159 306633 cl00111 320764 -pfam00173 306642 cl02041 321780 -pfam00176 306645 pfam00176 306645 -pfam00181 306650 pfam00181 306650 -pfam00182 306651 pfam00182 306651 -pfam00184 306653 cl02418 321926 -pfam00195 306663 cl09938 353032 -pfam00196 306664 cl21459 354815 -pfam00209 306675 cl11976 325151 -pfam00211 306677 cl11967 353330 -pfam00223 306687 cl08224 324211 -pfam00243 306704 cl02481 321947 -pfam00246 306707 cl11393 353238 -pfam00257 306715 pfam00257 306715 -pfam00261 306717 pfam00261 306717 -pfam00262 306718 pfam00262 306718 -pfam00265 306721 cl23762 329062 -pfam00267 306722 cl21487 354832 -pfam00269 306724 pfam00269 306724 -pfam00273 306728 cl00031 320721 -pfam00274 306729 pfam00274 306729 -pfam00277 306732 cl02506 321957 -pfam00292 306741 cl21459 354815 -pfam00295 306744 pfam00295 306744 -pfam00296 306745 cl19096 327499 -pfam00310 306755 cl00319 351023 -pfam00323 306766 cl27713 332534 -pfam00341 306779 cl00116 320767 -pfam00345 306782 cl21716 328868 -pfam00351 306787 cl01244 351437 -pfam00356 306791 cl22854 354960 -pfam00360 306794 cl21515 354848 -pfam00373 306805 cl09511 352969 -pfam00379 306811 pfam00379 306811 -pfam00390 306820 pfam00390 306820 -pfam00392 306822 cl21459 354815 -pfam00395 306825 pfam00395 306825 -pfam00398 306828 cl17173 354317 -pfam00399 306829 pfam00399 306829 -pfam00404 306834 pfam00404 306834 -pfam00406 306835 pfam00406 306835 -pfam00411 306838 cl00332 320911 -pfam00415 306840 pfam00415 306840 -pfam00416 306841 cl00331 351033 -pfam00418 306842 pfam00418 306842 -pfam00421 306845 cl08223 324210 -pfam00425 306846 cl29920 356796 -pfam00427 306848 pfam00427 306848 -pfam00429 306850 pfam00429 306850 -pfam00432 306851 cl08267 324220 -pfam00437 306855 cl21455 354812 -pfam00439 306857 cl02556 351801 -pfam00454 306869 cl21453 354810 -pfam00469 306876 pfam00469 306876 -pfam00477 306882 pfam00477 306882 -pfam00481 306885 cl00120 350908 -pfam00483 306887 cl11394 353239 -pfam00493 306894 pfam00493 306894 -pfam00494 306895 cl00210 350953 -pfam00502 306900 cl21461 354817 -pfam00503 306901 pfam00503 306901 -pfam00518 306907 cl27673 332494 -pfam00526 306912 pfam00526 306912 -pfam00529 306914 pfam00529 306914 -pfam00530 306915 pfam00530 306915 -pfam00531 306916 cl14633 353817 -pfam00539 306921 pfam00539 306921 -pfam00541 306922 pfam00541 306922 -pfam00544 306924 cl19188 327514 -pfam00550 306928 cl09936 324546 -pfam00552 306929 pfam00552 306929 -pfam00556 306932 pfam00556 306932 -pfam00562 306936 cl29917 356793 -pfam00573 306944 cl00325 351028 -pfam00577 306948 pfam00577 306948 -pfam00579 306950 cl00015 350862 -pfam00582 306953 cl00292 351005 -pfam00594 306960 cl02449 321939 -pfam00605 306962 cl00096 320756 -pfam00608 306963 pfam00608 306963 -pfam00609 306964 cl02440 321935 -pfam00615 306968 cl02565 321993 -pfam00616 306969 cl02569 351807 -pfam00618 306971 cl02520 321967 -pfam00621 306973 cl02571 351809 -pfam00623 306975 pfam00623 306975 -pfam00624 306976 pfam00624 306976 -pfam00630 306978 cl27659 332480 -pfam00631 306979 cl00069 320743 -pfam00632 306980 cl27008 355602 -pfam00634 306982 pfam00634 306982 -pfam00637 306985 cl26078 330899 -pfam00640 306988 cl17171 354315 -pfam00643 306989 cl00034 320724 -pfam00654 307000 pfam00654 307000 -pfam00657 307002 cl01053 351360 -pfam00659 307004 cl02916 322131 -pfam00660 307005 pfam00660 307005 -pfam00664 307007 cl00549 321036 -pfam00666 307009 cl29764 356640 -pfam00674 307014 pfam00674 307014 -pfam00676 307016 cl01629 351571 -pfam00681 307019 cl27652 332473 -pfam00686 307023 cl15347 326560 -pfam00688 307025 pfam00688 307025 -pfam00689 307026 cl02929 351920 -pfam00694 307028 cl00215 350957 -pfam00697 307030 cl21457 354814 -pfam00703 307033 pfam00703 307033 -pfam00710 307038 cl00216 320827 -pfam00713 307040 pfam00713 307040 -pfam00714 307041 pfam00714 307041 -pfam00715 307042 cl23879 329145 -pfam00718 307044 cl27648 332469 -pfam00721 307047 pfam00721 307047 -pfam00723 307049 cl25463 330284 -pfam00725 307050 pfam00725 307050 -pfam00727 307051 cl11518 325067 -pfam00728 307052 cl02948 351923 -pfam00732 307054 cl21454 354811 -pfam00733 307055 cl00292 351005 -pfam00735 307057 cl21455 354812 -pfam00737 307059 cl23793 329082 -pfam00738 307060 cl27646 332467 -pfam00741 307061 cl02954 322141 -pfam00748 307065 pfam00748 307065 -pfam00757 307072 pfam00757 307072 -pfam00758 307073 pfam00758 307073 -pfam00765 307077 cl17182 354318 -pfam00773 307082 cl29901 356777 -pfam00775 307083 cl21470 354823 -pfam00777 307084 pfam00777 307084 -pfam00780 307087 cl02434 321933 -pfam00781 307088 cl01255 321418 -pfam00787 307092 cl02563 321991 -pfam00788 307093 cl28922 355798 -pfam00794 307097 cl02484 321949 -pfam00807 307103 pfam00807 307103 -pfam00809 307104 cl00219 350959 -pfam00811 307106 cl02428 321931 -pfam00812 307107 cl19115 354382 -pfam00818 307113 pfam00818 307113 -pfam00820 307114 pfam00820 307114 -pfam00823 307116 pfam00823 307116 -pfam00827 307117 cl02977 322147 -pfam00832 307122 cl00952 321272 -pfam00836 307125 pfam00836 307125 -pfam00839 307127 pfam00839 307127 -pfam00844 307130 pfam00844 307130 -pfam00845 307131 pfam00845 307131 -pfam00849 307134 cl00130 320773 -pfam00852 307136 pfam00852 307136 -pfam00853 307137 pfam00853 307137 -pfam00859 307142 pfam00859 307142 -pfam00861 307143 cl00379 320941 -pfam00862 307144 cl10013 353042 -pfam00864 307145 cl02993 322156 -pfam00865 307146 cl02425 321929 -pfam00870 307150 cl14608 326329 -pfam00872 307151 cl27632 332453 -pfam00878 307156 cl29181 356057 -pfam00879 307157 pfam00879 307157 -pfam00881 307159 cl00514 321015 -pfam00890 307168 pfam00890 307168 -pfam00891 307169 cl17173 354317 -pfam00892 307170 cl23754 329058 -pfam00898 307171 pfam00898 307171 -pfam00900 307172 pfam00900 307172 -pfam00904 307175 pfam00904 307175 -pfam00907 307177 cl00145 320780 -pfam00909 307179 cl03012 322161 -pfam00913 307181 pfam00913 307181 -pfam00915 307182 pfam00915 307182 -pfam00918 307183 cl27628 332449 -pfam00921 307186 pfam00921 307186 -pfam00924 307188 pfam00924 307188 -pfam00927 307191 pfam00927 307191 -pfam00930 307193 pfam00930 307193 -pfam00931 307194 pfam00931 307194 -pfam00933 307196 cl29895 356771 -pfam00934 307197 pfam00934 307197 -pfam00936 307199 cl01982 351654 -pfam00942 307202 cl03026 322166 -pfam00946 307203 pfam00946 307203 -pfam00949 307204 cl29867 356743 -pfam00954 307206 pfam00954 307206 -pfam00960 307212 pfam00960 307212 -pfam00963 307214 cl14606 326327 -pfam00964 307215 pfam00964 307215 -pfam00965 307216 cl02512 351781 -pfam00967 307217 pfam00967 307217 -pfam00973 307220 pfam00973 307220 -pfam00976 307222 pfam00976 307222 -pfam00990 307227 cl11967 353330 -pfam00992 307228 pfam00992 307228 -pfam00994 307230 cl00451 320978 -pfam00996 307232 cl21454 354811 -pfam00997 307233 pfam00997 307233 -pfam01000 307235 pfam01000 307235 -pfam01003 307236 pfam01003 307236 -pfam01004 307237 cl03065 351936 -pfam01006 307238 pfam01006 307238 -pfam01007 307239 cl21560 354871 -pfam01011 307240 pfam01011 307240 -pfam01012 307241 cl00292 351005 -pfam01019 307247 cl19223 327525 -pfam01023 307249 pfam01023 307249 -pfam01026 307252 pfam01026 307252 -pfam01033 307259 cl02508 321959 -pfam01034 307260 pfam01034 307260 -pfam01037 307263 cl29894 356770 -pfam01039 307264 pfam01039 307264 -pfam01041 307266 cl18945 354370 -pfam01049 307269 pfam01049 307269 -pfam01050 307270 cl21464 354820 -pfam01053 307273 cl18945 354370 -pfam01056 307275 pfam01056 307275 -pfam01057 307276 cl24009 329234 -pfam01060 307278 pfam01060 307278 -pfam01064 307282 cl10471 353078 -pfam01071 307287 cl17255 354326 -pfam01075 307289 cl10013 353042 -pfam01076 307290 pfam01076 307290 -pfam01078 307292 cl21455 354812 -pfam01083 307296 cl21494 354836 -pfam01085 307298 pfam01085 307298 -pfam01087 307300 cl00228 350967 -pfam01090 307302 cl00969 321279 -pfam01091 307303 pfam01091 307303 -pfam01093 307305 pfam01093 307305 -pfam01095 307307 cl29893 356769 -pfam01099 307309 cl11457 325042 -pfam01101 307310 cl12114 325192 -pfam01102 307311 pfam01102 307311 -pfam01103 307312 pfam01103 307312 -pfam01108 307315 cl21522 354851 -pfam01110 307316 cl21565 328800 -pfam01115 307320 pfam01115 307320 -pfam01117 307322 cl03107 322196 -pfam01118 307323 cl21454 354811 -pfam01119 307324 cl02783 351890 -pfam01126 307329 cl15243 353926 -pfam01127 307330 cl00881 351296 -pfam01133 307334 pfam01133 307334 -pfam01136 307335 cl03113 322198 -pfam01140 307339 pfam01140 307339 -pfam01142 307340 cl00130 320773 -pfam01145 307341 cl19107 354381 -pfam01146 307342 pfam01146 307342 -pfam01147 307343 pfam01147 307343 -pfam01151 307345 cl03120 322203 -pfam01152 307346 cl21461 354817 -pfam01153 307347 pfam01153 307347 -pfam01154 307348 cl09938 353032 -pfam01157 307351 cl00937 351320 -pfam01159 307353 cl00354 351050 -pfam01160 307354 pfam01160 307354 -pfam01163 307356 cl21453 354810 -pfam01172 307362 pfam01172 307362 -pfam01184 307369 cl00685 321115 -pfam01198 307380 cl00921 321250 -pfam01199 307381 cl00955 321274 -pfam01200 307382 cl09927 353027 -pfam01206 307387 cl00436 320971 -pfam01207 307388 pfam01207 307388 -pfam01208 307389 cl00464 320986 -pfam01210 307390 cl21454 354811 -pfam01215 307394 cl00016 350863 -pfam01216 307395 pfam01216 307395 -pfam01225 307401 cl21454 354811 -pfam01227 307403 cl00263 350991 -pfam01228 307404 cl21517 328769 -pfam01231 307406 cl21721 328869 -pfam01232 307407 cl21454 354811 -pfam01241 307412 cl11425 325026 -pfam01242 307413 cl00263 350991 -pfam01246 307416 cl00909 321242 -pfam01247 307417 cl01033 321311 -pfam01249 307419 pfam01249 307419 -pfam01257 307425 cl00388 351069 -pfam01261 307428 cl23721 355019 -pfam01265 307431 pfam01265 307431 -pfam01267 307433 pfam01267 307433 -pfam01269 307435 cl17173 354317 -pfam01273 307437 cl00188 320805 -pfam01278 307442 cl01886 321712 -pfam01279 307443 cl27588 332409 -pfam01280 307444 cl00232 350971 -pfam01283 307447 cl01993 321763 -pfam01285 307449 cl02603 322010 -pfam01286 307450 pfam01286 307450 -pfam01292 307455 cl23723 355020 -pfam01293 307456 cl22860 354963 -pfam01295 307458 cl27585 332406 -pfam01296 307459 pfam01296 307459 -pfam01301 307464 cl29077 355953 -pfam01303 307466 cl23877 329143 -pfam01327 307477 cl00234 320843 -pfam01333 307480 cl29887 356763 -pfam01338 307484 pfam01338 307484 -pfam01345 307488 cl29886 356762 -pfam01353 307491 pfam01353 307491 -pfam01364 307496 cl03181 322224 -pfam01365 307497 pfam01365 307497 -pfam01371 307502 cl21459 354815 -pfam01373 307503 cl29077 355953 -pfam01374 307504 cl00222 350962 -pfam01375 307505 cl03779 322415 -pfam01382 307508 pfam01382 307508 -pfam01383 307509 cl03191 322227 -pfam01385 307511 pfam01385 307511 -pfam01387 307513 pfam01387 307513 -pfam01389 307515 cl21487 354832 -pfam01396 307520 pfam01396 307520 -pfam01401 307523 cl14813 353839 -pfam01409 307526 cl00268 350993 -pfam01410 307527 cl02436 321934 -pfam01412 307528 cl29885 356761 -pfam01415 307531 cl11602 325097 -pfam01419 307534 cl03205 322229 -pfam01421 307535 pfam01421 307535 -pfam01429 307541 cl00110 320763 -pfam01432 307543 cl14813 353839 -pfam01434 307544 pfam01434 307544 -pfam01435 307545 cl12018 353340 -pfam01441 307548 pfam01441 307548 -pfam01442 307549 pfam01442 307549 -pfam01443 307550 pfam01443 307550 -pfam01446 307551 cl02412 321923 -pfam01451 307555 cl00105 320761 -pfam01473 307565 pfam01473 307565 -pfam01481 307571 pfam01481 307571 -pfam01485 307574 cl19760 327627 -pfam01488 307577 cl21454 354811 -pfam01494 307580 pfam01494 307580 -pfam01498 307583 pfam01498 307583 -pfam01506 307588 pfam01506 307588 -pfam01507 307589 cl00292 351005 -pfam01527 307599 cl21459 354815 -pfam01532 307602 cl04955 352291 -pfam01534 307603 cl21561 354872 -pfam01535 307604 cl29710 356586 -pfam01536 307605 cl03253 322243 -pfam01537 307606 cl27544 355660 -pfam01544 307607 cl00459 320984 -pfam01545 307608 cl29883 356759 -pfam01561 307617 pfam01561 307617 -pfam01563 307619 pfam01563 307619 -pfam01568 307622 cl09929 324542 -pfam01570 307624 pfam01570 307624 -pfam01571 307625 cl01893 351633 -pfam01576 307627 pfam01576 307627 -pfam01578 307628 cl00504 321008 -pfam01582 307630 pfam01582 307630 -pfam01583 307631 cl17190 354320 -pfam01586 307633 cl11603 325098 -pfam01595 307637 pfam01595 307637 -pfam01596 307638 cl17173 354317 -pfam01597 307639 cl11404 353245 -pfam01602 307641 pfam01602 307641 -pfam01607 307643 cl02629 322027 -pfam01613 307648 cl00381 351064 -pfam01617 307650 cl21487 354832 -pfam01624 307653 pfam01624 307653 -pfam01629 307657 pfam01629 307657 -pfam01630 307658 pfam01630 307658 -pfam01633 307660 pfam01633 307660 -pfam01637 307662 cl21455 354812 -pfam01643 307666 pfam01643 307666 -pfam01646 307668 cl29875 356751 -pfam01650 307671 cl00042 350873 -pfam01653 307673 cl29874 356750 -pfam01660 307679 pfam01660 307679 -pfam01661 307680 cl00019 320715 -pfam01664 307682 pfam01664 307682 -pfam01666 307683 pfam01666 307683 -pfam01669 307685 pfam01669 307685 -pfam01670 307686 cl03302 322257 -pfam01672 307687 pfam01672 307687 -pfam01676 307688 pfam01676 307688 -pfam01678 307689 cl29427 356303 -pfam01680 307691 cl21457 354814 -pfam01681 307692 cl07834 324149 -pfam01684 307695 pfam01684 307695 -pfam01696 307700 pfam01696 307700 -pfam01697 307701 cl11394 353239 -pfam01701 307704 cl23820 329101 -pfam01704 307706 cl11394 353239 -pfam01705 307707 pfam01705 307707 -pfam01708 307709 pfam01708 307709 -pfam01716 307713 cl23911 329165 -pfam01732 307720 cl29867 356743 -pfam01735 307722 pfam01735 307722 -pfam01737 307723 cl27507 332328 -pfam01742 307728 pfam01742 307728 -pfam01744 307729 pfam01744 307729 -pfam01752 307733 pfam01752 307733 -pfam01755 307736 cl01298 321436 -pfam01758 307739 cl19217 354395 -pfam01770 307744 cl27502 332323 -pfam01775 307747 cl00945 321267 -pfam01779 307751 cl27501 332322 -pfam01783 307755 cl09115 324327 -pfam01784 307756 cl15371 326563 -pfam01787 307758 pfam01787 307758 -pfam01788 307759 cl27498 332319 -pfam01793 307762 cl02091 321797 -pfam01795 307764 cl17173 354317 -pfam01796 307765 pfam01796 307765 -pfam01797 307766 cl00848 321207 -pfam01803 307769 pfam01803 307769 -pfam01815 307776 pfam01815 307776 -pfam01821 307779 cl00032 320722 -pfam01822 307780 cl02568 321995 -pfam01829 307786 pfam01829 307786 -pfam01833 307788 cl15674 353966 -pfam01835 307790 cl19929 354512 -pfam01840 307793 pfam01840 307793 -pfam01847 307799 cl03381 322281 -pfam01848 307800 cl27487 332308 -pfam01858 307805 pfam01858 307805 -pfam01862 307806 cl00849 321208 -pfam01863 307807 cl19237 354398 -pfam01870 307811 cl00516 351129 -pfam01878 307818 cl00728 321132 -pfam01882 307821 pfam01882 307821 -pfam01886 307824 cl00914 321246 -pfam01889 307827 cl00857 321211 -pfam01891 307829 cl21488 354833 -pfam01893 307830 cl00759 321151 -pfam01896 307833 cl01287 321433 -pfam01900 307835 cl00605 321066 -pfam01901 307836 cl00785 321167 -pfam01903 307837 cl02784 351891 -pfam01905 307839 cl00803 321178 -pfam01907 307841 cl00932 321256 -pfam01909 307842 cl11966 353329 -pfam01910 307843 cl00307 320891 -pfam01917 307848 cl00732 321134 -pfam01921 307851 cl29864 356740 -pfam01922 307852 cl00617 321075 -pfam01925 307855 cl21514 354847 -pfam01928 307858 cl11964 353327 -pfam01929 307859 cl27476 355657 -pfam01934 307863 cl01031 321310 -pfam01936 307865 cl28905 355781 -pfam01941 307868 cl27474 332295 -pfam01947 307870 cl01230 321402 -pfam01949 307872 cl00653 351198 -pfam01954 307875 cl11530 325070 -pfam01955 307876 cl00808 321182 -pfam01956 307877 cl19818 327633 -pfam01964 307882 cl08031 352842 -pfam01968 307885 cl00668 321104 -pfam01974 307889 cl10045 324571 -pfam01982 307897 cl29862 356738 -pfam01993 307906 cl00840 321201 -pfam01994 307907 cl21505 354844 -pfam01995 307908 pfam01995 307908 -pfam01996 307909 cl00644 351193 -pfam01998 307911 cl00892 321234 -pfam02010 307914 pfam02010 307914 -pfam02011 307915 pfam02011 307915 -pfam02014 307916 cl14606 326327 -pfam02019 307920 cl02623 322024 -pfam02022 307923 pfam02022 307923 -pfam02024 307925 pfam02024 307925 -pfam02027 307928 pfam02027 307928 -pfam02028 307929 cl00569 321047 -pfam02029 307930 pfam02029 307930 -pfam02030 307931 cl21456 354813 -pfam02035 307933 cl29083 355959 -pfam02038 307936 pfam02038 307936 -pfam02040 307937 cl21473 354825 -pfam02043 307939 pfam02043 307939 -pfam02046 307941 cl00017 320713 -pfam02048 307942 pfam02048 307942 -pfam02050 307944 cl23733 355026 -pfam02055 307945 cl23815 329099 -pfam02058 307947 pfam02058 307947 -pfam02059 307948 pfam02059 307948 -pfam02060 307949 pfam02060 307949 -pfam02063 307950 pfam02063 307950 -pfam02064 307951 cl03428 322297 -pfam02065 307952 cl29077 355953 -pfam02068 307953 pfam02068 307953 -pfam02069 307954 pfam02069 307954 -pfam02070 307955 cl27467 332288 -pfam02071 307956 pfam02071 307956 -pfam02072 307957 pfam02072 307957 -pfam02078 307960 pfam02078 307960 -pfam02080 307961 pfam02080 307961 -pfam02085 307964 cl23752 329057 -pfam02086 307965 cl23779 329070 -pfam02089 307966 cl21494 354836 -pfam02093 307969 pfam02093 307969 -pfam02095 307970 pfam02095 307970 -pfam02101 307974 pfam02101 307974 -pfam02106 307976 pfam02106 307976 -pfam02108 307978 cl23770 329064 -pfam02115 307981 pfam02115 307981 -pfam02118 307983 cl21561 354872 -pfam02121 307986 cl14643 353818 -pfam02136 307991 cl09109 352932 -pfam02140 307994 pfam02140 307994 -pfam02141 307995 cl11519 325068 -pfam02142 307996 cl00245 320852 -pfam02149 308000 cl17070 354308 -pfam02151 308001 pfam02151 308001 -pfam02155 308003 pfam02155 308003 -pfam02156 308004 cl21700 328858 -pfam02158 308005 pfam02158 308005 -pfam02159 308006 pfam02159 308006 -pfam02161 308007 pfam02161 308007 -pfam02163 308008 cl10020 324562 -pfam02165 308009 pfam02165 308009 -pfam02166 308010 pfam02166 308010 -pfam02167 308011 cl21467 354821 -pfam02171 308014 cl00628 351185 -pfam02173 308015 pfam02173 308015 -pfam02174 308016 cl17171 354315 -pfam02178 308018 pfam02178 308018 -pfam02180 308020 cl27450 332271 -pfam02187 308025 cl02524 321970 -pfam02189 308027 pfam02189 308027 -pfam02190 308028 pfam02190 308028 -pfam02192 308030 cl02483 321948 -pfam02194 308031 cl02564 321992 -pfam02198 308034 cl15755 353976 -pfam02199 308035 cl02494 321954 -pfam02200 308036 cl02602 322009 -pfam02205 308040 pfam02205 308040 -pfam02208 308043 cl02617 322019 -pfam02210 308045 cl22861 354964 -pfam02213 308048 cl00072 320745 -pfam02214 308049 cl02518 351783 -pfam02218 308050 pfam02218 308050 -pfam02221 308051 cl00274 350996 -pfam02226 308053 pfam02226 308053 -pfam02234 308056 pfam02234 308056 -pfam02238 308057 cl02796 322098 -pfam02239 308058 pfam02239 308058 -pfam02240 308059 cl00247 320853 -pfam02241 308060 cl29861 356737 -pfam02246 308063 pfam02246 308063 -pfam02247 308064 pfam02247 308064 -pfam02249 308065 pfam02249 308065 -pfam02250 308066 cl27443 332264 -pfam02254 308070 cl21454 354811 -pfam02259 308074 pfam02259 308074 -pfam02262 308077 pfam02262 308077 -pfam02263 308078 cl21455 354812 -pfam02267 308081 cl08346 324243 -pfam02268 308082 cl03508 352004 -pfam02270 308083 cl02122 321815 -pfam02275 308087 cl00467 351104 -pfam02283 308091 cl21455 354812 -pfam02285 308093 cl27440 332261 -pfam02286 308094 cl12104 325190 -pfam02287 308095 cl02055 321786 -pfam02288 308096 cl17703 327427 -pfam02296 308101 pfam02296 308101 -pfam02297 308102 cl02794 322096 -pfam02305 308107 cl15846 326659 -pfam02313 308113 cl00881 351296 -pfam02316 308115 cl02600 351819 -pfam02318 308117 pfam02318 308117 -pfam02321 308120 pfam02321 308120 -pfam02326 308123 cl21478 354827 -pfam02327 308124 pfam02327 308124 -pfam02335 308127 pfam02335 308127 -pfam02343 308130 pfam02343 308130 -pfam02344 308131 pfam02344 308131 -pfam02348 308132 cl11394 353239 -pfam02363 308140 pfam02363 308140 -pfam02364 308141 pfam02364 308141 -pfam02368 308144 cl02708 351863 -pfam02372 308146 pfam02372 308146 -pfam02376 308148 pfam02376 308148 -pfam02377 308149 pfam02377 308149 -pfam02378 308150 cl21492 328750 -pfam02380 308151 cl29860 356736 -pfam02382 308152 pfam02382 308152 -pfam02392 308156 cl03567 322352 -pfam02393 308157 pfam02393 308157 -pfam02394 308158 pfam02394 308158 -pfam02402 308161 pfam02402 308161 -pfam02404 308163 pfam02404 308163 -pfam02406 308165 pfam02406 308165 -pfam02412 308167 pfam02412 308167 -pfam02414 308168 pfam02414 308168 -pfam02415 308169 pfam02415 308169 -pfam02419 308171 cl27429 332250 -pfam02422 308173 pfam02422 308173 -pfam02423 308174 pfam02423 308174 -pfam02426 308176 cl01992 321762 -pfam02427 308177 cl03585 322357 -pfam02428 308178 pfam02428 308178 -pfam02429 308179 pfam02429 308179 -pfam02430 308180 cl19485 327564 -pfam02431 308181 cl03589 352024 -pfam02435 308185 cl14647 353819 -pfam02438 308188 pfam02438 308188 -pfam02440 308189 pfam02440 308189 -pfam02441 308190 cl19190 327515 -pfam02443 308191 pfam02443 308191 -pfam02447 308194 pfam02447 308194 -pfam02448 308195 pfam02448 308195 -pfam02449 308196 cl29077 355953 -pfam02450 308197 cl21494 354836 -pfam02451 308198 pfam02451 308198 -pfam02455 308201 pfam02455 308201 -pfam02460 308203 cl25655 355433 -pfam02461 308204 cl21655 328840 -pfam02462 308205 cl21487 354832 -pfam02463 308206 pfam02463 308206 -pfam02467 308210 pfam02467 308210 -pfam02469 308211 cl02663 322043 -pfam02470 308212 cl29848 356724 -pfam02472 308213 cl00537 321029 -pfam02481 308214 cl22881 354968 -pfam02493 308220 pfam02493 308220 -pfam02495 308221 pfam02495 308221 -pfam02496 308222 pfam02496 308222 -pfam02504 308227 cl17212 354323 -pfam02505 308228 cl01673 321614 -pfam02507 308229 cl03627 322371 -pfam02514 308233 cl29847 356723 -pfam02515 308234 cl19215 327522 -pfam02520 308238 pfam02520 308238 -pfam02529 308242 cl23824 329105 -pfam02530 308243 cl21487 354832 -pfam02531 308244 cl03639 322375 -pfam02532 308245 cl27410 332231 -pfam02533 308246 cl27409 332230 -pfam02534 308247 pfam02534 308247 -pfam02535 308248 cl00437 320972 -pfam02551 308256 pfam02551 308256 -pfam02553 308257 cl00842 321203 -pfam02554 308258 cl27408 355647 -pfam02557 308260 cl00813 351267 -pfam02558 308261 cl21454 354811 -pfam02565 308267 cl27405 355646 -pfam02566 308268 cl00767 321154 -pfam02579 308277 cl00252 320858 -pfam02585 308281 cl00929 321254 -pfam02589 308284 cl00674 321109 -pfam02593 308288 cl19821 327634 -pfam02602 308297 cl03649 322377 -pfam02604 308299 cl09153 352940 -pfam02605 308300 cl03651 322378 -pfam02610 308304 pfam02610 308304 -pfam02621 308312 cl21456 354813 -pfam02627 308318 cl00460 320985 -pfam02628 308319 cl19388 327545 -pfam02629 308320 cl21454 354811 -pfam02634 308324 cl00659 321097 -pfam02636 308326 cl17173 354317 -pfam02639 308328 cl00727 321131 -pfam02645 308331 cl19360 354413 -pfam02659 308338 cl23795 329083 -pfam02662 308341 cl00831 321198 -pfam02666 308345 cl03656 322379 -pfam02679 308356 cl00782 321165 -pfam02681 308358 cl23953 329190 -pfam02701 308368 pfam02701 308368 -pfam02703 308370 pfam02703 308370 -pfam02705 308372 cl15781 326642 -pfam02711 308375 cl27389 332210 -pfam02713 308376 pfam02713 308376 -pfam02714 308377 pfam02714 308377 -pfam02718 308378 cl27388 332209 -pfam02719 308379 cl21454 354811 -pfam02720 308380 pfam02720 308380 -pfam02728 308383 pfam02728 308383 -pfam02737 308392 cl17173 354317 -pfam02740 308395 cl29842 356718 -pfam02741 308396 pfam02741 308396 -pfam02743 308398 pfam02743 308398 -pfam02745 308399 pfam02745 308399 -pfam02746 308400 pfam02746 308400 -pfam02750 308403 cl17255 354326 -pfam02752 308405 cl02844 322110 -pfam02754 308407 pfam02754 308407 -pfam02756 308409 cl27371 332192 -pfam02757 308410 pfam02757 308410 -pfam02759 308412 cl02689 322053 -pfam02765 308416 cl09930 353029 -pfam02767 308417 cl29549 356425 -pfam02769 308418 cl10019 353045 -pfam02770 308419 pfam02770 308419 -pfam02776 308425 cl11410 353247 -pfam02778 308427 pfam02778 308427 -pfam02782 308430 pfam02782 308430 -pfam02783 308431 cl27362 355643 -pfam02788 308435 pfam02788 308435 -pfam02789 308436 cl00019 320715 -pfam02792 308438 cl03715 322393 -pfam02794 308440 cl01131 321360 -pfam02797 308442 cl21486 354831 -pfam02800 308445 cl19935 354514 -pfam02801 308446 cl21486 354831 -pfam02821 308460 pfam02821 308460 -pfam02823 308462 cl29826 356702 -pfam02827 308466 pfam02827 308466 -pfam02830 308469 cl15268 326554 -pfam02837 308472 pfam02837 308472 -pfam02841 308475 pfam02841 308475 -pfam02864 308483 pfam02864 308483 -pfam02868 308486 pfam02868 308486 -pfam02870 308487 pfam02870 308487 -pfam02872 308488 pfam02872 308488 -pfam02875 308491 pfam02875 308491 -pfam02878 308493 pfam02878 308493 -pfam02882 308497 cl21454 354811 -pfam02888 308502 cl03763 322411 -pfam02889 308503 cl22482 328905 -pfam02890 308504 pfam02890 308504 -pfam02891 308505 cl17238 354325 -pfam02893 308507 cl17171 354315 -pfam02895 308508 pfam02895 308508 -pfam02897 308509 pfam02897 308509 -pfam02899 308511 cl12235 353373 -pfam02902 308514 cl23802 329089 -pfam02905 308516 pfam02905 308516 -pfam02906 308517 pfam02906 308517 -pfam02915 308522 cl00264 350992 -pfam02920 308524 pfam02920 308524 -pfam02922 308526 cl28889 355773 -pfam02924 308527 pfam02924 308527 -pfam02927 308529 pfam02927 308529 -pfam02932 308533 pfam02932 308533 -pfam02941 308540 pfam02941 308540 -pfam02944 308542 pfam02944 308542 -pfam02945 308543 cl27319 332140 -pfam02946 308544 pfam02946 308544 -pfam02948 308545 pfam02948 308545 -pfam02950 308546 pfam02950 308546 -pfam02955 308550 cl17255 354326 -pfam02958 308551 cl21453 354810 -pfam02961 308552 cl03803 322424 -pfam02966 308554 cl00388 351069 -pfam02980 308562 pfam02980 308562 -pfam02983 308563 pfam02983 308563 -pfam02986 308566 pfam02986 308566 -pfam02995 308570 pfam02995 308570 -pfam02999 308571 pfam02999 308571 -pfam03002 308573 pfam03002 308573 -pfam03004 308574 pfam03004 308574 -pfam03012 308578 pfam03012 308578 -pfam03013 308579 cl19573 327589 -pfam03022 308585 pfam03022 308585 -pfam03024 308586 pfam03024 308586 -pfam03029 308588 cl21455 354812 -pfam03031 308590 cl21460 354816 -pfam03035 308592 pfam03035 308592 -pfam03036 308593 pfam03036 308593 -pfam03039 308594 pfam03039 308594 -pfam03040 308595 cl03855 322447 -pfam03052 308597 pfam03052 308597 -pfam03057 308599 pfam03057 308599 -pfam03059 308600 cl17173 354317 -pfam03060 308601 pfam03060 308601 -pfam03065 308604 pfam03065 308604 -pfam03066 308605 pfam03066 308605 -pfam03069 308608 cl19826 327638 -pfam03089 308614 pfam03089 308614 -pfam03092 308617 pfam03092 308617 -pfam03094 308618 pfam03094 308618 -pfam03099 308622 cl14057 353805 -pfam03110 308631 pfam03110 308631 -pfam03128 308640 pfam03128 308640 -pfam03130 308641 pfam03130 308641 -pfam03135 308644 pfam03135 308644 -pfam03136 308645 cl15463 326584 -pfam03139 308647 cl03910 322465 -pfam03142 308649 pfam03142 308649 -pfam03143 308650 cl02786 322091 -pfam03146 308653 pfam03146 308653 -pfam03147 308654 cl29820 356696 -pfam03151 308657 cl26744 331565 -pfam03153 308659 pfam03153 308659 -pfam03155 308661 cl21590 354882 -pfam03160 308663 cl02522 351785 -pfam03164 308665 pfam03164 308665 -pfam03165 308666 cl00055 320734 -pfam03169 308670 cl14607 326328 -pfam03171 308672 cl21496 354838 -pfam03174 308675 pfam03174 308675 -pfam03176 308676 cl21543 354862 -pfam03177 308677 pfam03177 308677 -pfam03179 308679 cl03922 322471 -pfam03184 308681 cl21549 354865 -pfam03185 308682 pfam03185 308682 -pfam03190 308686 cl00388 351069 -pfam03192 308687 pfam03192 308687 -pfam03200 308692 cl17346 354328 -pfam03201 308693 pfam03201 308693 -pfam03202 308694 pfam03202 308694 -pfam03206 308697 cl03935 322479 -pfam03207 308698 pfam03207 308698 -pfam03209 308700 pfam03209 308700 -pfam03212 308702 cl00185 320803 -pfam03214 308703 cl07847 324153 -pfam03219 308704 cl28910 355786 -pfam03221 308705 cl12115 325193 -pfam03222 308706 cl00456 320982 -pfam03223 308707 cl15414 326573 -pfam03224 308708 cl21727 354920 -pfam03234 308713 cl03951 322483 -pfam03235 308714 cl23836 329113 -pfam03241 308716 cl29812 356688 -pfam03244 308719 cl03956 322485 -pfam03246 308720 pfam03246 308720 -pfam03247 308721 pfam03247 308721 -pfam03254 308725 cl16914 327355 -pfam03256 308727 cl02148 321823 -pfam03259 308728 cl00886 321230 -pfam03260 308729 pfam03260 308729 -pfam03261 308730 pfam03261 308730 -pfam03264 308731 pfam03264 308731 -pfam03265 308732 pfam03265 308732 -pfam03266 308733 cl21455 354812 -pfam03268 308734 pfam03268 308734 -pfam03269 308735 cl17173 354317 -pfam03272 308738 pfam03272 308738 -pfam03275 308739 cl27287 332108 -pfam03281 308741 pfam03281 308741 -pfam03284 308743 cl09109 352932 -pfam03285 308744 pfam03285 308744 -pfam03287 308745 pfam03287 308745 -pfam03298 308748 pfam03298 308748 -pfam03299 308749 pfam03299 308749 -pfam03304 308750 pfam03304 308750 -pfam03305 308751 pfam03305 308751 -pfam03311 308754 cl04000 322498 -pfam03312 308755 pfam03312 308755 -pfam03314 308757 pfam03314 308757 -pfam03318 308759 cl03107 322196 -pfam03319 308760 cl01889 321715 -pfam03326 308764 pfam03326 308764 -pfam03333 308768 cl27281 332102 -pfam03343 308770 pfam03343 308770 -pfam03344 308771 cl23986 329217 -pfam03348 308773 pfam03348 308773 -pfam03349 308774 cl21487 354832 -pfam03351 308776 cl14783 353836 -pfam03357 308778 cl21588 328813 -pfam03359 308780 pfam03359 308780 -pfam03364 308782 cl14643 353818 -pfam03370 308786 cl23798 355052 -pfam03377 308790 pfam03377 308790 -pfam03378 308791 pfam03378 308791 -pfam03380 308792 pfam03380 308792 -pfam03382 308794 pfam03382 308794 -pfam03385 308795 pfam03385 308795 -pfam03386 308796 pfam03386 308796 -pfam03389 308797 pfam03389 308797 -pfam03390 308798 cl01386 321474 -pfam03393 308800 pfam03393 308800 -pfam03405 308804 cl00264 350992 -pfam03406 308805 pfam03406 308805 -pfam03409 308807 pfam03409 308807 -pfam03412 308809 cl00296 351007 -pfam03414 308811 cl11394 353239 -pfam03418 308813 cl04057 322510 -pfam03419 308814 cl19579 327592 -pfam03422 308816 cl14880 353849 -pfam03425 308818 cl21728 328873 -pfam03429 308820 pfam03429 308820 -pfam03431 308821 cl27276 332097 -pfam03432 308822 cl21589 328814 -pfam03433 308823 cl04069 322512 -pfam03434 308824 pfam03434 308824 -pfam03435 308825 cl21454 354811 -pfam03436 308826 pfam03436 308826 -pfam03440 308828 pfam03440 308828 -pfam03442 308830 pfam03442 308830 -pfam03445 308832 cl11966 353329 -pfam03451 308837 pfam03451 308837 -pfam03454 308840 pfam03454 308840 -pfam03457 308843 pfam03457 308843 -pfam03464 308849 pfam03464 308849 -pfam03487 308867 cl11518 325067 -pfam03494 308871 pfam03494 308871 -pfam03496 308872 cl00173 320796 -pfam03498 308873 cl23784 329074 -pfam03501 308874 cl02102 321803 -pfam03502 308875 cl04114 352112 -pfam03503 308876 pfam03503 308876 -pfam03505 308877 pfam03505 308877 -pfam03508 308878 pfam03508 308878 -pfam03509 308879 pfam03509 308879 -pfam03511 308880 pfam03511 308880 -pfam03512 308881 pfam03512 308881 -pfam03516 308883 pfam03516 308883 -pfam03520 308886 pfam03520 308886 -pfam03521 308887 pfam03521 308887 -pfam03523 308889 pfam03523 308889 -pfam03528 308892 pfam03528 308892 -pfam03529 308893 pfam03529 308893 -pfam03533 308896 pfam03533 308896 -pfam03534 308897 pfam03534 308897 -pfam03535 308898 pfam03535 308898 -pfam03543 308902 cl04145 322548 -pfam03547 308904 cl22894 328943 -pfam03548 308905 cl19192 354390 -pfam03549 308906 pfam03549 308906 -pfam03551 308908 cl21459 354815 -pfam03561 308911 pfam03561 308911 -pfam03572 308916 cl02526 351786 -pfam03592 308924 cl01513 321539 -pfam03598 308927 cl11685 353311 -pfam03608 308932 cl01515 321540 -pfam03612 308936 cl27251 332072 -pfam03616 308938 cl19414 327550 -pfam03623 308942 pfam03623 308942 -pfam03625 308943 cl21600 328821 -pfam03639 308954 cl02310 321884 -pfam03650 308961 pfam03650 308961 -pfam03653 308963 cl21540 354861 -pfam03659 308965 pfam03659 308965 -pfam03660 308966 pfam03660 308966 -pfam03662 308968 pfam03662 308968 -pfam03663 308969 cl04955 352291 -pfam03671 308973 cl28922 355798 -pfam03672 308974 cl23791 329080 -pfam03673 308975 cl00799 321175 -pfam03678 308977 pfam03678 308977 -pfam03682 308978 pfam03682 308978 -pfam03683 308979 cl01085 321335 -pfam03684 308980 cl00805 321179 -pfam03685 308981 cl00739 321139 -pfam03689 308982 pfam03689 308982 -pfam03692 308985 cl00497 321006 -pfam03698 308988 cl04214 322568 -pfam03699 308989 cl23747 329052 -pfam03700 308990 pfam03700 308990 -pfam03706 308994 cl04219 322570 -pfam03713 308999 cl21583 328811 -pfam03715 309001 cl19898 327690 -pfam03720 309004 cl21454 354811 -pfam03721 309005 cl29802 356678 -pfam03724 309008 cl01245 321409 -pfam03725 309009 pfam03725 309009 -pfam03729 309011 cl15828 326653 -pfam03730 309012 pfam03730 309012 -pfam03731 309013 cl00057 350880 -pfam03732 309014 cl29674 356550 -pfam03736 309018 pfam03736 309018 -pfam03739 309021 cl12074 325180 -pfam03741 309023 cl10468 324589 -pfam03742 309024 cl27240 355629 -pfam03752 309033 pfam03752 309033 -pfam03756 309035 cl00509 351126 -pfam03759 309036 pfam03759 309036 -pfam03761 309038 pfam03761 309038 -pfam03762 309039 cl27236 332057 -pfam03766 309042 pfam03766 309042 -pfam03767 309043 cl21460 354816 -pfam03768 309044 pfam03768 309044 -pfam03769 309045 pfam03769 309045 -pfam03771 309047 pfam03771 309047 -pfam03772 309048 cl29801 356677 -pfam03777 309051 pfam03777 309051 -pfam03792 309062 pfam03792 309062 -pfam03795 309064 cl00999 321296 -pfam03805 309072 pfam03805 309072 -pfam03815 309078 cl02694 351857 -pfam03816 309079 cl00581 321052 -pfam03820 309082 cl04275 322597 -pfam03821 309083 cl04276 322598 -pfam03823 309085 pfam03823 309085 -pfam03824 309086 cl21514 354847 -pfam03826 309087 pfam03826 309087 -pfam03827 309088 pfam03827 309088 -pfam03829 309090 cl01516 321541 -pfam03832 309093 pfam03832 309093 -pfam03833 309094 pfam03833 309094 -pfam03834 309095 cl04283 352146 -pfam03838 309098 cl01314 321443 -pfam03839 309099 cl02170 321835 -pfam03841 309101 cl18945 354370 -pfam03850 309105 cl22919 328952 -pfam03857 309107 pfam03857 309107 -pfam03858 309108 pfam03858 309108 -pfam03864 309113 pfam03864 309113 -pfam03867 309114 pfam03867 309114 -pfam03871 309117 cl29798 356674 -pfam03879 309123 pfam03879 309123 -pfam03882 309126 cl11468 325046 -pfam03886 309130 cl01135 321363 -pfam03887 309131 cl01137 321365 -pfam03889 309133 cl27226 332047 -pfam03892 309135 cl01153 321372 -pfam03893 309136 pfam03893 309136 -pfam03896 309139 pfam03896 309139 -pfam03907 309141 pfam03907 309141 -pfam03910 309143 pfam03910 309143 -pfam03912 309145 cl04326 322618 -pfam03916 309148 cl21513 328765 -pfam03917 309149 cl00170 350931 -pfam03920 309152 pfam03920 309152 -pfam03935 309161 pfam03935 309161 -pfam03949 309173 cl21454 354811 -pfam03953 309177 cl10017 353044 -pfam03954 309178 pfam03954 309178 -pfam03957 309180 pfam03957 309180 -pfam03959 309182 cl21494 354836 -pfam03960 309183 cl00388 351069 -pfam03963 309186 pfam03963 309186 -pfam03967 309189 cl27208 332029 -pfam03978 309195 pfam03978 309195 -pfam03981 309198 cl12045 325168 -pfam03983 309199 pfam03983 309199 -pfam03984 309200 pfam03984 309200 -pfam03985 309201 pfam03985 309201 -pfam03988 309204 pfam03988 309204 -pfam03989 309205 pfam03989 309205 -pfam03990 309206 pfam03990 309206 -pfam03992 309207 cl10022 324563 -pfam03995 309210 pfam03995 309210 -pfam03997 309211 pfam03997 309211 -pfam03999 309213 pfam03999 309213 -pfam04001 309215 pfam04001 309215 -pfam04005 309219 pfam04005 309219 -pfam04006 309220 cl27202 332023 -pfam04009 309222 cl00797 321173 -pfam04010 309223 cl00798 321174 -pfam04014 309225 cl00877 321225 -pfam04017 309228 cl00890 321232 -pfam04019 309230 cl00832 321199 -pfam04021 309232 pfam04021 309232 -pfam04026 309236 cl00915 321247 -pfam04027 309237 cl00916 321248 -pfam04031 309240 pfam04031 309240 -pfam04033 309242 cl01020 351351 -pfam04037 309244 pfam04037 309244 -pfam04038 309245 cl23954 329191 -pfam04042 309247 cl13995 353799 -pfam04045 309249 pfam04045 309249 -pfam04049 309251 pfam04049 309251 -pfam04052 309254 cl21526 354853 -pfam04053 309255 pfam04053 309255 -pfam04056 309257 cl00057 350880 -pfam04061 309259 cl02117 321812 -pfam04071 309268 cl00946 321268 -pfam04073 309270 cl00022 320718 -pfam04081 309276 pfam04081 309276 -pfam04082 309277 cl23766 355037 -pfam04083 309278 cl21494 354836 -pfam04088 309283 pfam04088 309283 -pfam04091 309285 pfam04091 309285 -pfam04098 309289 cl01936 321730 -pfam04103 309291 pfam04103 309291 -pfam04106 309292 pfam04106 309292 -pfam04108 309293 pfam04108 309293 -pfam04113 309297 pfam04113 309297 -pfam04115 309299 cl01250 321414 -pfam04116 309300 cl01132 321361 -pfam04119 309303 pfam04119 309303 -pfam04122 309306 pfam04122 309306 -pfam04123 309307 cl12079 325184 -pfam04126 309308 cl21567 328802 -pfam04133 309311 pfam04133 309311 -pfam04134 309312 cl01136 321364 -pfam04135 309313 cl00977 321282 -pfam04138 309316 cl19823 327636 -pfam04139 309317 pfam04139 309317 -pfam04140 309318 cl21511 328764 -pfam04143 309319 cl19477 327562 -pfam04147 309323 pfam04147 309323 -pfam04148 309324 pfam04148 309324 -pfam04149 309325 pfam04149 309325 -pfam04151 309326 pfam04151 309326 -pfam04156 309330 pfam04156 309330 -pfam04167 309335 cl00979 321284 -pfam04174 309339 cl17448 354330 -pfam04182 309347 cl21459 354815 -pfam04184 309349 cl19051 327496 -pfam04185 309350 cl23718 355016 -pfam04191 309355 cl21511 328764 -pfam04193 309357 cl21610 354889 -pfam04198 309359 cl00339 351040 -pfam04200 309361 pfam04200 309361 -pfam04201 309362 pfam04201 309362 -pfam04203 309363 cl09098 324322 -pfam04206 309366 cl01675 321616 -pfam04207 309367 cl01676 321617 -pfam04208 309368 cl29795 356671 -pfam04210 309369 pfam04210 309369 -pfam04211 309370 cl01677 321618 -pfam04213 309372 pfam04213 309372 -pfam04226 309379 cl00978 321283 -pfam04233 309383 cl10072 324573 -pfam04236 309386 pfam04236 309386 -pfam04238 309388 cl00989 321288 -pfam04240 309390 cl00991 321290 -pfam04242 309392 cl01021 321306 -pfam04250 309398 cl12046 325169 -pfam04252 309399 cl22961 328970 -pfam04254 309401 cl01027 321308 -pfam04256 309403 cl04460 322675 -pfam04259 309405 cl21710 328865 -pfam04272 309415 cl27177 331998 -pfam04275 309416 cl04466 322676 -pfam04278 309419 cl04468 322678 -pfam04279 309420 cl01098 321339 -pfam04280 309421 cl09208 324342 -pfam04281 309422 cl11522 325069 -pfam04282 309423 pfam04282 309423 -pfam04283 309424 cl27175 331996 -pfam04286 309427 pfam04286 309427 -pfam04289 309430 cl00381 351064 -pfam04290 309431 cl01181 321382 -pfam04294 309433 pfam04294 309433 -pfam04300 309438 pfam04300 309438 -pfam04307 309442 cl00868 321220 -pfam04312 309445 cl27170 331991 -pfam04321 309453 pfam04321 309453 -pfam04322 309454 cl00845 321204 -pfam04326 309457 pfam04326 309457 -pfam04332 309460 cl10468 324589 -pfam04335 309462 cl01500 351525 -pfam04339 309466 cl17182 354318 -pfam04346 309471 cl01248 321412 -pfam04350 309474 cl01234 321404 -pfam04357 309481 pfam04357 309481 -pfam04360 309484 pfam04360 309484 -pfam04363 309487 cl23839 329116 -pfam04382 309500 pfam04382 309500 -pfam04388 309505 pfam04388 309505 -pfam04400 309512 cl01129 321359 -pfam04404 309515 pfam04404 309515 -pfam04407 309518 cl00769 321156 -pfam04411 309521 pfam04411 309521 -pfam04418 309526 pfam04418 309526 -pfam04419 309527 pfam04419 309527 -pfam04420 309528 pfam04420 309528 -pfam04421 309529 cl00180 320800 -pfam04423 309531 pfam04423 309531 -pfam04425 309533 pfam04425 309533 -pfam04426 309534 pfam04426 309534 -pfam04434 309540 cl19527 327577 -pfam04435 309541 cl11619 325101 -pfam04437 309542 pfam04437 309542 -pfam04440 309545 pfam04440 309545 -pfam04445 309548 cl17173 354317 -pfam04446 309549 pfam04446 309549 -pfam04452 309554 cl00611 321070 -pfam04457 309559 cl00661 321099 -pfam04458 309560 cl19549 327582 -pfam04459 309561 pfam04459 309561 -pfam04467 309564 cl17805 327436 -pfam04475 309569 cl00818 321190 -pfam04483 309572 pfam04483 309572 -pfam04485 309574 pfam04485 309574 -pfam04486 309575 cl24023 329242 -pfam04487 309576 pfam04487 309576 -pfam04488 309577 cl19952 354516 -pfam04495 309581 cl00117 350907 -pfam04499 309582 pfam04499 309582 -pfam04500 309583 pfam04500 309583 -pfam04505 309587 pfam04505 309587 -pfam04506 309588 cl09326 352957 -pfam04509 309589 cl15816 353981 -pfam04510 309590 pfam04510 309590 -pfam04513 309591 pfam04513 309591 -pfam04516 309593 pfam04516 309593 -pfam04518 309594 pfam04518 309594 -pfam04525 309597 cl02043 321781 -pfam04527 309599 pfam04527 309599 -pfam04529 309600 pfam04529 309600 -pfam04531 309601 cl02344 321896 -pfam04535 309602 cl04571 352205 -pfam04538 309604 pfam04538 309604 -pfam04541 309606 cl29790 356666 -pfam04549 309612 pfam04549 309612 -pfam04552 309615 pfam04552 309615 -pfam04555 309617 pfam04555 309617 -pfam04557 309619 pfam04557 309619 -pfam04559 309621 cl27132 331953 -pfam04561 309623 pfam04561 309623 -pfam04562 309624 pfam04562 309624 -pfam04568 309628 pfam04568 309628 -pfam04573 309632 cl04601 322728 -pfam04574 309633 pfam04574 309633 -pfam04575 309634 cl21487 354832 -pfam04579 309638 pfam04579 309638 -pfam04583 309639 pfam04583 309639 -pfam04586 309640 cl01521 321544 -pfam04587 309641 cl00192 350937 -pfam04589 309643 pfam04589 309643 -pfam04591 309644 cl10492 324594 -pfam04598 309647 pfam04598 309647 -pfam04604 309650 pfam04604 309650 -pfam04606 309651 cl19592 327595 -pfam04608 309653 cl00559 321042 -pfam04609 309654 cl01674 321615 -pfam04614 309658 pfam04614 309658 -pfam04615 309659 pfam04615 309659 -pfam04617 309661 pfam04617 309661 -pfam04619 309663 pfam04619 309663 -pfam04620 309664 pfam04620 309664 -pfam04621 309665 pfam04621 309665 -pfam04624 309667 pfam04624 309667 -pfam04629 309670 pfam04629 309670 -pfam04630 309671 cl21657 328841 -pfam04632 309672 cl26163 330984 -pfam04634 309673 cl04640 322744 -pfam04636 309674 cl00460 320985 -pfam04641 309676 cl17238 354325 -pfam04643 309677 pfam04643 309677 -pfam04644 309678 pfam04644 309678 -pfam04647 309680 cl01873 321707 -pfam04648 309681 pfam04648 309681 -pfam04652 309683 pfam04652 309683 -pfam04655 309685 cl21453 354810 -pfam04657 309686 cl23754 329058 -pfam04658 309687 cl04653 322747 -pfam04659 309688 cl27123 331944 -pfam04663 309689 pfam04663 309689 -pfam04664 309690 pfam04664 309690 -pfam04666 309691 pfam04666 309691 -pfam04667 309692 pfam04667 309692 -pfam04668 309693 pfam04668 309693 -pfam04669 309694 cl04661 322751 -pfam04670 309695 cl21455 354812 -pfam04671 309696 pfam04671 309696 -pfam04673 309697 cl24023 329242 -pfam04677 309701 cl00228 350967 -pfam04679 309703 cl08424 352894 -pfam04685 309705 pfam04685 309705 -pfam04686 309706 pfam04686 309706 -pfam04688 309707 cl23882 329148 -pfam04690 309708 pfam04690 309708 -pfam04691 309709 pfam04691 309709 -pfam04692 309710 pfam04692 309710 -pfam04696 309712 cl23720 355018 -pfam04697 309713 pfam04697 309713 -pfam04698 309714 pfam04698 309714 -pfam04703 309716 cl29789 356665 -pfam04704 309717 pfam04704 309717 -pfam04705 309718 cl06870 323649 -pfam04706 309719 pfam04706 309719 -pfam04707 309720 pfam04707 309720 -pfam04709 309721 pfam04709 309721 -pfam04711 309723 pfam04711 309723 -pfam04712 309724 pfam04712 309724 -pfam04714 309725 pfam04714 309725 -pfam04715 309726 pfam04715 309726 -pfam04717 309728 cl17812 327437 -pfam04721 309732 cl10509 324599 -pfam04722 309733 cl02161 321830 -pfam04723 309734 cl04705 322773 -pfam04724 309735 pfam04724 309735 -pfam04725 309736 cl04707 322775 -pfam04731 309740 pfam04731 309740 -pfam04732 309741 pfam04732 309741 -pfam04738 309743 pfam04738 309743 -pfam04739 309744 cl08426 324270 -pfam04740 309745 pfam04740 309745 -pfam04750 309749 pfam04750 309749 -pfam04755 309752 pfam04755 309752 -pfam04756 309753 pfam04756 309753 -pfam04757 309754 pfam04757 309754 -pfam04758 309755 cl21569 328804 -pfam04762 309758 cl27115 331936 -pfam04763 309759 pfam04763 309759 -pfam04765 309760 pfam04765 309760 -pfam04766 309761 pfam04766 309761 -pfam04768 309762 cl14605 353813 -pfam04776 309768 cl19902 327692 -pfam04778 309770 pfam04778 309770 -pfam04780 309771 pfam04780 309771 -pfam04781 309772 pfam04781 309772 -pfam04789 309777 pfam04789 309777 -pfam04795 309781 pfam04795 309781 -pfam04796 309782 cl19398 354416 -pfam04797 309783 cl27111 331932 -pfam04799 309784 pfam04799 309784 -pfam04801 309786 pfam04801 309786 -pfam04803 309788 pfam04803 309788 -pfam04806 309789 pfam04806 309789 -pfam04819 309796 pfam04819 309796 -pfam04822 309799 pfam04822 309799 -pfam04823 309800 cl27109 355616 -pfam04826 309802 pfam04826 309802 -pfam04828 309803 cl01553 321565 -pfam04829 309804 pfam04829 309804 -pfam04830 309805 pfam04830 309805 -pfam04832 309807 pfam04832 309807 -pfam04834 309809 pfam04834 309809 -pfam04836 309810 pfam04836 309810 -pfam04842 309811 pfam04842 309811 -pfam04843 309812 pfam04843 309812 -pfam04851 309815 cl28899 355775 -pfam04855 309818 pfam04855 309818 -pfam04858 309820 pfam04858 309820 -pfam04863 309824 pfam04863 309824 -pfam04865 309825 cl01294 321435 -pfam04868 309826 pfam04868 309826 -pfam04870 309828 pfam04870 309828 -pfam04873 309830 cl04813 322822 -pfam04877 309832 pfam04877 309832 -pfam04880 309833 pfam04880 309833 -pfam04883 309835 cl12124 325198 -pfam04885 309837 pfam04885 309837 -pfam04889 309839 pfam04889 309839 -pfam04890 309840 pfam04890 309840 -pfam04891 309841 pfam04891 309841 -pfam04892 309842 cl01971 321747 -pfam04893 309843 cl21557 354869 -pfam04894 309844 pfam04894 309844 -pfam04895 309845 pfam04895 309845 -pfam04896 309846 cl04829 322828 -pfam04901 309849 pfam04901 309849 -pfam04902 309850 pfam04902 309850 -pfam04906 309852 cl12141 325204 -pfam04909 309853 cl00281 351001 -pfam04911 309855 pfam04911 309855 -pfam04916 309859 pfam04916 309859 -pfam04917 309860 pfam04917 309860 -pfam04926 309866 pfam04926 309866 -pfam04934 309872 cl02125 321816 -pfam04945 309878 cl00909 321242 -pfam04949 309879 pfam04949 309879 -pfam04955 309884 cl01011 351348 -pfam04956 309885 cl01583 321577 -pfam04959 309888 pfam04959 309888 -pfam04964 309893 cl01585 321578 -pfam04968 309895 pfam04968 309895 -pfam04969 309896 cl00175 320797 -pfam04970 309897 cl21534 354857 -pfam04977 309900 cl11433 353251 -pfam04978 309901 cl21506 354845 -pfam04983 309905 cl19114 327504 -pfam04985 309907 cl01390 321477 -pfam04988 309910 pfam04988 309910 -pfam04989 309911 cl17173 354317 -pfam04994 309916 cl22429 354935 -pfam04997 309919 pfam04997 309919 -pfam04998 309920 pfam04998 309920 -pfam05000 309922 pfam05000 309922 -pfam05001 309923 pfam05001 309923 -pfam05004 309926 pfam05004 309926 -pfam05005 309927 pfam05005 309927 -pfam05008 309928 pfam05008 309928 -pfam05010 309929 pfam05010 309929 -pfam05014 309932 cl23749 355033 -pfam05018 309935 pfam05018 309935 -pfam05019 309936 cl02093 321798 -pfam05021 309938 cl13996 353800 -pfam05022 309939 pfam05022 309939 -pfam05024 309941 pfam05024 309941 -pfam05028 309944 pfam05028 309944 -pfam05034 309949 pfam05034 309949 -pfam05037 309952 pfam05037 309952 -pfam05038 309953 pfam05038 309953 -pfam05039 309954 cl04902 322864 -pfam05044 309957 pfam05044 309957 -pfam05048 309961 pfam05048 309961 -pfam05049 309962 pfam05049 309962 -pfam05051 309964 pfam05051 309964 -pfam05052 309965 cl26467 331288 -pfam05053 309966 cl27083 331904 -pfam05057 309968 cl21494 354836 -pfam05060 309969 pfam05060 309969 -pfam05062 309970 pfam05062 309970 -pfam05063 309971 cl01947 321734 -pfam05064 309972 pfam05064 309972 -pfam05066 309974 cl01319 321447 -pfam05069 309976 cl02089 321796 -pfam05073 309978 pfam05073 309978 -pfam05075 309979 pfam05075 309979 -pfam05082 309982 cl02247 321860 -pfam05083 309983 pfam05083 309983 -pfam05090 309986 pfam05090 309986 -pfam05093 309988 pfam05093 309988 -pfam05095 309989 pfam05095 309989 -pfam05099 309991 cl11965 353328 -pfam05102 309993 cl27075 331896 -pfam05103 309994 pfam05103 309994 -pfam05104 309995 pfam05104 309995 -pfam05108 309999 cl27073 331894 -pfam05110 310000 pfam05110 310000 -pfam05113 310001 pfam05113 310001 -pfam05116 310003 pfam05116 310003 -pfam05120 310007 pfam05120 310007 -pfam05121 310008 pfam05121 310008 -pfam05122 310009 pfam05122 310009 -pfam05123 310010 pfam05123 310010 -pfam05124 310011 pfam05124 310011 -pfam05127 310013 pfam05127 310013 -pfam05128 310014 cl12064 325175 -pfam05133 310019 cl19531 327578 -pfam05136 310021 cl19194 354391 -pfam05138 310023 cl01346 321456 -pfam05141 310026 cl19832 327643 -pfam05144 310028 pfam05144 310028 -pfam05154 310034 cl00984 321286 -pfam05158 310036 cl02127 321817 -pfam05162 310039 pfam05162 310039 -pfam05167 310042 cl09939 353033 -pfam05168 310043 cl00824 321194 -pfam05171 310044 cl01509 351531 -pfam05176 310046 pfam05176 310046 -pfam05177 310047 pfam05177 310047 -pfam05178 310048 pfam05178 310048 -pfam05181 310051 cl27062 331883 -pfam05186 310056 pfam05186 310056 -pfam05187 310057 cl19102 354379 -pfam05196 310066 cl02505 321956 -pfam05199 310069 pfam05199 310069 -pfam05204 310072 cl08299 352872 -pfam05205 310073 pfam05205 310073 -pfam05208 310076 pfam05208 310076 -pfam05217 310081 pfam05217 310081 -pfam05218 310082 pfam05218 310082 -pfam05222 310084 cl29782 356658 -pfam05223 310085 pfam05223 310085 -pfam05224 310086 pfam05224 310086 -pfam05229 310090 cl02253 321864 -pfam05230 310091 pfam05230 310091 -pfam05240 310098 pfam05240 310098 -pfam05242 310100 pfam05242 310100 -pfam05248 310102 pfam05248 310102 -pfam05250 310103 pfam05250 310103 -pfam05255 310107 pfam05255 310107 -pfam05261 310111 cl23827 329108 -pfam05264 310112 pfam05264 310112 -pfam05267 310114 pfam05267 310114 -pfam05281 310120 pfam05281 310120 -pfam05282 310121 pfam05282 310121 -pfam05283 310122 pfam05283 310122 -pfam05290 310125 cl17238 354325 -pfam05300 310129 pfam05300 310129 -pfam05302 310131 pfam05302 310131 -pfam05303 310132 pfam05303 310132 -pfam05305 310133 pfam05305 310133 -pfam05306 310134 pfam05306 310134 -pfam05307 310135 cl27040 331861 -pfam05308 310136 pfam05308 310136 -pfam05309 310137 cl05060 322925 -pfam05317 310138 pfam05317 310138 -pfam05321 310139 cl11501 325062 -pfam05324 310140 pfam05324 310140 -pfam05326 310141 pfam05326 310141 -pfam05328 310143 cl00881 351296 -pfam05334 310144 pfam05334 310144 -pfam05337 310147 pfam05337 310147 -pfam05345 310150 cl29781 356657 -pfam05346 310151 pfam05346 310151 -pfam05348 310153 pfam05348 310153 -pfam05349 310154 pfam05349 310154 -pfam05350 310155 pfam05350 310155 -pfam05351 310156 pfam05351 310156 -pfam05353 310157 pfam05353 310157 -pfam05355 310158 pfam05355 310158 -pfam05366 310163 pfam05366 310163 -pfam05367 310164 cl11622 325102 -pfam05368 310165 cl21454 354811 -pfam05369 310166 pfam05369 310166 -pfam05370 310167 cl01636 321596 -pfam05374 310168 pfam05374 310168 -pfam05377 310169 cl27037 331858 -pfam05378 310170 pfam05378 310170 -pfam05384 310173 pfam05384 310173 -pfam05386 310174 pfam05386 310174 -pfam05387 310175 pfam05387 310175 -pfam05388 310176 pfam05388 310176 -pfam05390 310178 pfam05390 310178 -pfam05391 310179 pfam05391 310179 -pfam05392 310180 cl22629 328918 -pfam05394 310181 pfam05394 310181 -pfam05395 310182 pfam05395 310182 -pfam05398 310184 pfam05398 310184 -pfam05399 310185 pfam05399 310185 -pfam05404 310188 pfam05404 310188 -pfam05406 310189 cl01581 321576 -pfam05419 310190 cl05142 322951 -pfam05421 310192 pfam05421 310192 -pfam05422 310193 pfam05422 310193 -pfam05426 310196 cl00179 350933 -pfam05427 310197 pfam05427 310197 -pfam05428 310198 pfam05428 310198 -pfam05431 310199 pfam05431 310199 -pfam05432 310200 pfam05432 310200 -pfam05434 310202 pfam05434 310202 -pfam05435 310203 cl27031 331852 -pfam05436 310204 pfam05436 310204 -pfam05437 310205 cl00735 321137 -pfam05438 310206 pfam05438 310206 -pfam05439 310207 pfam05439 310207 -pfam05440 310208 cl01678 321619 -pfam05444 310210 pfam05444 310210 -pfam05450 310213 cl14876 353847 -pfam05454 310214 pfam05454 310214 -pfam05455 310215 cl00175 320797 -pfam05456 310216 pfam05456 310216 -pfam05459 310217 cl27025 331846 -pfam05461 310219 pfam05461 310219 -pfam05465 310220 pfam05465 310220 -pfam05466 310221 pfam05466 310221 -pfam05473 310223 pfam05473 310223 -pfam05475 310224 pfam05475 310224 -pfam05477 310225 pfam05477 310225 -pfam05478 310226 pfam05478 310226 -pfam05479 310227 cl05182 322964 -pfam05480 310228 pfam05480 310228 -pfam05482 310230 pfam05482 310230 -pfam05484 310231 pfam05484 310231 -pfam05496 310239 pfam05496 310239 -pfam05498 310241 cl23823 329104 -pfam05501 310243 pfam05501 310243 -pfam05502 310244 pfam05502 310244 -pfam05508 310248 pfam05508 310248 -pfam05510 310250 pfam05510 310250 -pfam05512 310252 pfam05512 310252 -pfam05517 310253 pfam05517 310253 -pfam05523 310255 cl21464 354820 -pfam05526 310257 pfam05526 310257 -pfam05529 310259 cl02219 321851 -pfam05531 310260 cl29777 356653 -pfam05534 310261 cl23837 355065 -pfam05535 310262 pfam05535 310262 -pfam05538 310263 cl21675 354901 -pfam05540 310264 pfam05540 310264 -pfam05547 310269 pfam05547 310269 -pfam05553 310271 pfam05553 310271 -pfam05556 310272 pfam05556 310272 -pfam05557 310273 pfam05557 310273 -pfam05558 310274 pfam05558 310274 -pfam05559 310275 cl00620 321077 -pfam05561 310276 pfam05561 310276 -pfam05562 310277 pfam05562 310277 -pfam05565 310279 pfam05565 310279 -pfam05569 310280 pfam05569 310280 -pfam05571 310281 pfam05571 310281 -pfam05572 310282 cl00064 350885 -pfam05577 310284 cl21494 354836 -pfam05580 310285 pfam05580 310285 -pfam05582 310286 cl05250 322989 -pfam05586 310287 pfam05586 310287 -pfam05587 310288 pfam05587 310288 -pfam05593 310291 cl11982 325154 -pfam05594 310292 pfam05594 310292 -pfam05600 310295 pfam05600 310295 -pfam05603 310297 pfam05603 310297 -pfam05604 310298 pfam05604 310298 -pfam05606 310300 pfam05606 310300 -pfam05608 310301 pfam05608 310301 -pfam05609 310302 pfam05609 310302 -pfam05617 310306 cl05275 322998 -pfam05619 310307 pfam05619 310307 -pfam05624 310312 pfam05624 310312 -pfam05625 310313 pfam05625 310313 -pfam05626 310314 cl19837 327647 -pfam05628 310316 pfam05628 310316 -pfam05632 310318 pfam05632 310318 -pfam05634 310319 pfam05634 310319 -pfam05639 310323 cl27011 331832 -pfam05643 310326 cl01813 321678 -pfam05644 310327 pfam05644 310327 -pfam05647 310328 pfam05647 310328 -pfam05648 310329 pfam05648 310329 -pfam05651 310332 pfam05651 310332 -pfam05659 310336 pfam05659 310336 -pfam05666 310340 pfam05666 310340 -pfam05669 310342 cl02121 321814 -pfam05671 310344 pfam05671 310344 -pfam05673 310346 cl21455 354812 -pfam05680 310351 pfam05680 310351 -pfam05686 310354 cl23835 329112 -pfam05687 310355 pfam05687 310355 -pfam05689 310356 pfam05689 310356 -pfam05694 310358 pfam05694 310358 -pfam05698 310360 cl21568 354876 -pfam05700 310362 pfam05700 310362 -pfam05702 310364 cl29774 356650 -pfam05704 310366 pfam05704 310366 -pfam05705 310367 pfam05705 310367 -pfam05708 310368 cl21534 354857 -pfam05709 310369 cl17486 327418 -pfam05711 310370 cl17173 354317 -pfam05712 310371 pfam05712 310371 -pfam05714 310373 pfam05714 310373 -pfam05716 310375 cl14906 326374 -pfam05719 310377 pfam05719 310377 -pfam05724 310379 cl17173 354317 -pfam05729 310381 cl21455 354812 -pfam05731 310383 pfam05731 310383 -pfam05733 310384 pfam05733 310384 -pfam05736 310386 cl21487 354832 -pfam05743 310391 cl00154 350921 -pfam05751 310393 cl21581 328810 -pfam05753 310394 pfam05753 310394 -pfam05755 310395 pfam05755 310395 -pfam05757 310396 cl23783 329073 -pfam05760 310397 pfam05760 310397 -pfam05763 310399 pfam05763 310399 -pfam05772 310402 cl21658 328842 -pfam05773 310403 cl02687 322051 -pfam05778 310404 pfam05778 310404 -pfam05781 310405 pfam05781 310405 -pfam05782 310406 pfam05782 310406 -pfam05783 310407 pfam05783 310407 -pfam05786 310408 cl19886 327684 -pfam05793 310411 pfam05793 310411 -pfam05795 310413 cl23751 329056 -pfam05800 310414 pfam05800 310414 -pfam05802 310415 pfam05802 310415 -pfam05805 310416 pfam05805 310416 -pfam05806 310417 pfam05806 310417 -pfam05808 310418 pfam05808 310418 -pfam05811 310419 pfam05811 310419 -pfam05816 310420 cl26996 331817 -pfam05817 310421 pfam05817 310421 -pfam05821 310423 pfam05821 310423 -pfam05822 310424 cl21460 354816 -pfam05823 310425 pfam05823 310425 -pfam05824 310426 pfam05824 310426 -pfam05829 310429 pfam05829 310429 -pfam05831 310430 pfam05831 310430 -pfam05834 310433 pfam05834 310433 -pfam05835 310434 pfam05835 310434 -pfam05839 310437 pfam05839 310437 -pfam05841 310438 pfam05841 310438 -pfam05843 310439 pfam05843 310439 -pfam05854 310443 pfam05854 310443 -pfam05856 310444 cl05433 323054 -pfam05857 310445 cl05434 323055 -pfam05865 310449 pfam05865 310449 -pfam05867 310451 pfam05867 310451 -pfam05869 310452 cl05442 323057 -pfam05870 310453 cl01382 321472 -pfam05871 310454 pfam05871 310454 -pfam05873 310455 pfam05873 310455 -pfam05876 310457 cl21617 328828 -pfam05879 310458 cl21455 354812 -pfam05881 310459 pfam05881 310459 -pfam05884 310460 pfam05884 310460 -pfam05893 310462 cl11961 353326 -pfam05895 310464 pfam05895 310464 -pfam05896 310465 pfam05896 310465 -pfam05908 310471 cl01713 321630 -pfam05910 310472 pfam05910 310472 -pfam05912 310474 pfam05912 310474 -pfam05915 310477 pfam05915 310477 -pfam05918 310479 pfam05918 310479 -pfam05920 310480 cl00084 350894 -pfam05934 310487 pfam05934 310487 -pfam05942 310494 pfam05942 310494 -pfam05949 310498 cl19849 327657 -pfam05955 310500 pfam05955 310500 -pfam05956 310501 pfam05956 310501 -pfam05957 310502 cl01888 321714 -pfam05958 310503 cl17173 354317 -pfam05968 310508 pfam05968 310508 -pfam05970 310509 cl28899 355775 -pfam05973 310510 cl21503 354842 -pfam05974 310511 cl00264 350992 -pfam05975 310512 cl11542 325074 -pfam05978 310513 cl28910 355786 -pfam05979 310514 cl01722 321631 -pfam05980 310515 pfam05980 310515 -pfam05986 310520 pfam05986 310520 -pfam05988 310522 cl00388 351069 -pfam05990 310523 cl21494 354836 -pfam05991 310524 cl01491 321527 -pfam05994 310525 cl23945 329187 -pfam05996 310526 cl07930 324183 -pfam06002 310528 pfam06002 310528 -pfam06003 310529 pfam06003 310529 -pfam06006 310532 pfam06006 310532 -pfam06007 310533 cl01457 321513 -pfam06008 310534 pfam06008 310534 -pfam06013 310537 cl02005 321765 -pfam06014 310538 cl23965 329199 -pfam06020 310540 pfam06020 310540 -pfam06021 310541 pfam06021 310541 -pfam06024 310542 pfam06024 310542 -pfam06029 310545 cl05528 352372 -pfam06030 310546 pfam06030 310546 -pfam06031 310547 pfam06031 310547 -pfam06032 310548 cl17829 327438 -pfam06047 310555 pfam06047 310555 -pfam06049 310557 pfam06049 310557 -pfam06051 310559 pfam06051 310559 -pfam06056 310561 cl21459 354815 -pfam06057 310562 cl21494 354836 -pfam06060 310565 pfam06060 310565 -pfam06061 310566 pfam06061 310566 -pfam06066 310568 pfam06066 310568 -pfam06069 310570 pfam06069 310570 -pfam06074 310573 cl19863 327667 -pfam06078 310575 cl01528 321548 -pfam06083 310578 pfam06083 310578 -pfam06085 310579 pfam06085 310579 -pfam06088 310581 cl26985 331806 -pfam06090 310583 pfam06090 310583 -pfam06093 310585 cl12033 325166 -pfam06099 310589 pfam06099 310589 -pfam06100 310590 cl21454 354811 -pfam06105 310594 pfam06105 310594 -pfam06112 310597 pfam06112 310597 -pfam06113 310598 pfam06113 310598 -pfam06114 310599 cl01076 321329 -pfam06121 310602 pfam06121 310602 -pfam06125 310606 pfam06125 310606 -pfam06136 310611 pfam06136 310611 -pfam06140 310612 pfam06140 310612 -pfam06141 310613 pfam06141 310613 -pfam06147 310615 cl23554 328993 -pfam06148 310616 cl19297 354407 -pfam06149 310617 cl01573 321573 -pfam06152 310619 cl10072 324573 -pfam06154 310620 pfam06154 310620 -pfam06162 310625 cl00237 320846 -pfam06163 310626 pfam06163 310626 -pfam06166 310628 cl19737 327615 -pfam06168 310630 cl19838 354475 -pfam06179 310637 pfam06179 310637 -pfam06184 310640 pfam06184 310640 -pfam06195 310646 cl00970 321280 -pfam06197 310648 cl21592 328817 -pfam06199 310649 cl11463 325044 -pfam06206 310653 pfam06206 310653 -pfam06209 310655 pfam06209 310655 -pfam06214 310659 pfam06214 310659 -pfam06217 310660 pfam06217 310660 -pfam06218 310661 cl24021 355126 -pfam06219 310662 pfam06219 310662 -pfam06220 310663 cl22907 328948 -pfam06221 310664 pfam06221 310664 -pfam06222 310665 pfam06222 310665 -pfam06227 310668 cl29769 356645 -pfam06232 310671 cl00011 350858 -pfam06233 310672 cl26979 331800 -pfam06234 310673 pfam06234 310673 -pfam06236 310674 pfam06236 310674 -pfam06237 310675 pfam06237 310675 -pfam06239 310676 pfam06239 310676 -pfam06241 310677 cl29357 356233 -pfam06243 310679 cl01371 321466 -pfam06246 310682 pfam06246 310682 -pfam06247 310683 pfam06247 310683 -pfam06248 310684 pfam06248 310684 -pfam06252 310686 cl01815 321679 -pfam06253 310687 cl15385 326567 -pfam06254 310688 pfam06254 310688 -pfam06258 310690 cl26977 331798 -pfam06261 310691 pfam06261 310691 -pfam06268 310696 cl23781 355045 -pfam06273 310698 pfam06273 310698 -pfam06277 310700 cl26479 331300 -pfam06278 310701 pfam06278 310701 -pfam06290 310708 cl23984 329215 -pfam06292 310709 pfam06292 310709 -pfam06295 310711 cl11473 325050 -pfam06296 310712 cl21503 354842 -pfam06297 310713 cl05674 323139 -pfam06298 310714 cl26975 331796 -pfam06301 310716 pfam06301 310716 -pfam06304 310717 cl01986 321757 -pfam06312 310720 pfam06312 310720 -pfam06313 310721 pfam06313 310721 -pfam06323 310727 pfam06323 310727 -pfam06327 310728 pfam06327 310728 -pfam06328 310729 pfam06328 310729 -pfam06330 310730 cl00210 350953 -pfam06331 310731 pfam06331 310731 -pfam06335 310733 cl19868 327671 -pfam06337 310734 cl12116 325194 -pfam06338 310735 cl11560 325082 -pfam06347 310737 cl17036 354299 -pfam06350 310739 pfam06350 310739 -pfam06351 310740 cl05704 323150 -pfam06355 310742 pfam06355 310742 -pfam06360 310743 pfam06360 310743 -pfam06364 310744 pfam06364 310744 -pfam06365 310745 pfam06365 310745 -pfam06368 310748 cl02025 321775 -pfam06369 310749 pfam06369 310749 -pfam06371 310750 pfam06371 310750 -pfam06373 310751 pfam06373 310751 -pfam06375 310753 pfam06375 310753 -pfam06376 310754 pfam06376 310754 -pfam06377 310755 pfam06377 310755 -pfam06378 310756 pfam06378 310756 -pfam06386 310758 pfam06386 310758 -pfam06387 310759 pfam06387 310759 -pfam06388 310760 pfam06388 310760 -pfam06392 310762 pfam06392 310762 -pfam06393 310763 pfam06393 310763 -pfam06394 310764 cl26972 331793 -pfam06395 310765 pfam06395 310765 -pfam06396 310766 cl05741 323170 -pfam06398 310767 pfam06398 310767 -pfam06399 310768 pfam06399 310768 -pfam06400 310769 cl05743 323172 -pfam06401 310770 pfam06401 310770 -pfam06404 310771 pfam06404 310771 -pfam06406 310773 cl17037 354300 -pfam06409 310774 pfam06409 310774 -pfam06413 310777 pfam06413 310777 -pfam06416 310780 pfam06416 310780 -pfam06419 310783 cl19764 327629 -pfam06432 310793 pfam06432 310793 -pfam06437 310795 pfam06437 310795 -pfam06439 310797 cl22861 354964 -pfam06442 310800 pfam06442 310800 -pfam06446 310802 pfam06446 310802 -pfam06454 310805 pfam06454 310805 -pfam06455 310806 pfam06455 310806 -pfam06461 310809 pfam06461 310809 -pfam06463 310811 pfam06463 310811 -pfam06467 310814 cl00909 321242 -pfam06468 310815 pfam06468 310815 -pfam06469 310816 pfam06469 310816 -pfam06473 310818 pfam06473 310818 -pfam06477 310821 cl14905 326373 -pfam06479 310822 cl15368 326562 -pfam06483 310826 pfam06483 310826 -pfam06484 310827 pfam06484 310827 -pfam06485 310828 pfam06485 310828 -pfam06486 310829 cl02185 321840 -pfam06489 310831 cl26967 331788 -pfam06491 310833 cl05813 323210 -pfam06510 310838 pfam06510 310838 -pfam06519 310841 cl10048 353052 -pfam06521 310842 pfam06521 310842 -pfam06524 310844 pfam06524 310844 -pfam06525 310845 cl19115 354382 -pfam06526 310846 pfam06526 310846 -pfam06527 310847 pfam06527 310847 -pfam06528 310848 pfam06528 310848 -pfam06529 310849 pfam06529 310849 -pfam06533 310851 pfam06533 310851 -pfam06534 310852 pfam06534 310852 -pfam06535 310853 pfam06535 310853 -pfam06536 310854 pfam06536 310854 -pfam06537 310855 cl29367 356243 -pfam06540 310856 pfam06540 310856 -pfam06541 310857 cl26964 331785 -pfam06542 310858 pfam06542 310858 -pfam06546 310861 pfam06546 310861 -pfam06547 310862 pfam06547 310862 -pfam06549 310863 pfam06549 310863 -pfam06554 310865 pfam06554 310865 -pfam06557 310866 cl01800 321675 -pfam06564 310869 cl21455 354812 -pfam06566 310871 pfam06566 310871 -pfam06569 310873 cl23968 329202 -pfam06573 310876 pfam06573 310876 -pfam06574 310877 cl00015 350862 -pfam06579 310879 pfam06579 310879 -pfam06583 310883 pfam06583 310883 -pfam06584 310884 pfam06584 310884 -pfam06586 310886 cl05878 323239 -pfam06587 310887 pfam06587 310887 -pfam06605 310893 cl23994 329223 -pfam06610 310894 pfam06610 310894 -pfam06612 310896 cl23817 329100 -pfam06613 310897 pfam06613 310897 -pfam06614 310898 pfam06614 310898 -pfam06616 310899 pfam06616 310899 -pfam06617 310900 pfam06617 310900 -pfam06619 310901 cl11551 325079 -pfam06620 310902 cl11577 325090 -pfam06621 310903 pfam06621 310903 -pfam06623 310904 pfam06623 310904 -pfam06624 310905 pfam06624 310905 -pfam06626 310907 cl19851 327659 -pfam06627 310908 pfam06627 310908 -pfam06632 310912 pfam06632 310912 -pfam06634 310913 cl26958 331779 -pfam06637 310914 pfam06637 310914 -pfam06638 310915 pfam06638 310915 -pfam06639 310916 pfam06639 310916 -pfam06650 310922 pfam06650 310922 -pfam06652 310923 cl11637 325106 -pfam06657 310924 pfam06657 310924 -pfam06663 310926 pfam06663 310926 -pfam06664 310927 pfam06664 310927 -pfam06668 310930 pfam06668 310930 -pfam06671 310931 pfam06671 310931 -pfam06672 310932 cl14898 326371 -pfam06674 310933 pfam06674 310933 -pfam06677 310936 cl00713 351224 -pfam06678 310937 pfam06678 310937 -pfam06679 310938 pfam06679 310938 -pfam06682 310939 pfam06682 310939 -pfam06683 310940 pfam06683 310940 -pfam06685 310942 pfam06685 310942 -pfam06686 310943 cl23898 329158 -pfam06691 310947 cl23976 329210 -pfam06694 310949 pfam06694 310949 -pfam06695 310950 cl01024 321307 -pfam06697 310952 pfam06697 310952 -pfam06699 310954 pfam06699 310954 -pfam06701 310955 pfam06701 310955 -pfam06703 310957 pfam06703 310957 -pfam06707 310958 cl00057 350880 -pfam06711 310960 pfam06711 310960 -pfam06713 310961 cl19751 327623 -pfam06715 310962 pfam06715 310962 -pfam06725 310967 cl01439 321505 -pfam06726 310968 cl26952 331773 -pfam06727 310969 pfam06727 310969 -pfam06729 310971 pfam06729 310971 -pfam06732 310972 pfam06732 310972 -pfam06736 310974 cl01421 321497 -pfam06740 310977 pfam06740 310977 -pfam06742 310979 cl08447 324279 -pfam06746 310982 pfam06746 310982 -pfam06751 310987 cl19510 327573 -pfam06752 310988 pfam06752 310988 -pfam06756 310990 pfam06756 310990 -pfam06758 310992 pfam06758 310992 -pfam06764 310996 cl10501 324595 -pfam06775 310999 pfam06775 310999 -pfam06776 311000 cl02207 321846 -pfam06780 311003 pfam06780 311003 -pfam06783 311005 pfam06783 311005 -pfam06785 311007 pfam06785 311007 -pfam06786 311008 cl23916 329169 -pfam06787 311009 cl01641 321601 -pfam06788 311010 cl23914 329167 -pfam06789 311011 pfam06789 311011 -pfam06793 311014 cl23847 329120 -pfam06798 311017 pfam06798 311017 -pfam06803 311019 cl01318 321446 -pfam06810 311022 pfam06810 311022 -pfam06816 311024 pfam06816 311024 -pfam06817 311025 pfam06817 311025 -pfam06819 311027 pfam06819 311027 -pfam06823 311028 pfam06823 311028 -pfam06825 311030 pfam06825 311030 -pfam06827 311031 pfam06827 311031 -pfam06835 311035 cl21541 328784 -pfam06838 311036 cl18945 354370 -pfam06840 311037 pfam06840 311037 -pfam06841 311038 cl23998 329225 -pfam06847 311041 pfam06847 311041 -pfam06848 311042 pfam06848 311042 -pfam06849 311043 cl26941 355595 -pfam06850 311044 cl21494 354836 -pfam06852 311045 pfam06852 311045 -pfam06854 311047 pfam06854 311047 -pfam06855 311048 cl11485 325057 -pfam06856 311049 pfam06856 311049 -pfam06858 311051 cl21455 354812 -pfam06862 311053 pfam06862 311053 -pfam06868 311057 cl06088 323319 -pfam06870 311058 pfam06870 311058 -pfam06876 311061 pfam06876 311061 -pfam06887 311068 pfam06887 311068 -pfam06890 311070 cl17812 327437 -pfam06891 311071 pfam06891 311071 -pfam06892 311072 pfam06892 311072 -pfam06896 311073 pfam06896 311073 -pfam06898 311075 cl26937 331758 -pfam06905 311078 pfam06905 311078 -pfam06907 311080 pfam06907 311080 -pfam06917 311085 pfam06917 311085 -pfam06918 311086 pfam06918 311086 -pfam06923 311088 cl01890 321716 -pfam06924 311089 pfam06924 311089 -pfam06935 311092 cl01419 321496 -pfam06936 311093 pfam06936 311093 -pfam06939 311095 pfam06939 311095 -pfam06946 311099 pfam06946 311099 -pfam06947 311100 cl01587 321579 -pfam06949 311101 cl01608 321587 -pfam06951 311102 cl29745 356621 -pfam06952 311103 cl23935 329183 -pfam06954 311105 cl06143 323340 -pfam06957 311108 pfam06957 311108 -pfam06958 311109 cl24020 355125 -pfam06959 311110 pfam06959 311110 -pfam06963 311113 pfam06963 311113 -pfam06967 311116 pfam06967 311116 -pfam06969 311118 pfam06969 311118 -pfam06973 311121 cl17255 354326 -pfam06977 311123 cl23729 329040 -pfam06978 311124 pfam06978 311124 -pfam06984 311127 cl09943 353035 -pfam06989 311131 pfam06989 311131 -pfam06994 311134 pfam06994 311134 -pfam06995 311135 cl01391 321478 -pfam06999 311138 cl00388 351069 -pfam07001 311140 pfam07001 311140 -pfam07004 311141 pfam07004 311141 -pfam07006 311143 pfam07006 311143 -pfam07009 311145 cl02206 321845 -pfam07010 311146 pfam07010 311146 -pfam07011 311147 pfam07011 311147 -pfam07022 311152 cl22854 354960 -pfam07029 311156 pfam07029 311156 -pfam07030 311157 cl01818 321681 -pfam07032 311158 pfam07032 311158 -pfam07034 311159 pfam07034 311159 -pfam07037 311161 cl02600 351819 -pfam07039 311162 pfam07039 311162 -pfam07041 311164 pfam07041 311164 -pfam07045 311167 cl22966 328971 -pfam07051 311170 pfam07051 311170 -pfam07052 311171 pfam07052 311171 -pfam07054 311172 pfam07054 311172 -pfam07057 311174 pfam07057 311174 -pfam07058 311175 pfam07058 311175 -pfam07061 311177 pfam07061 311177 -pfam07062 311178 pfam07062 311178 -pfam07065 311181 pfam07065 311181 -pfam07070 311182 cl22933 328959 -pfam07074 311185 pfam07074 311185 -pfam07078 311188 pfam07078 311188 -pfam07083 311191 pfam07083 311191 -pfam07084 311192 pfam07084 311192 -pfam07087 311195 pfam07087 311195 -pfam07088 311196 pfam07088 311196 -pfam07092 311198 pfam07092 311198 -pfam07093 311199 pfam07093 311199 -pfam07100 311203 cl01751 321647 -pfam07109 311207 cl17173 354317 -pfam07110 311208 cl21542 328785 -pfam07114 311209 pfam07114 311209 -pfam07117 311210 pfam07117 311210 -pfam07119 311211 cl11456 325041 -pfam07123 311213 cl06243 323379 -pfam07127 311215 pfam07127 311215 -pfam07128 311216 pfam07128 311216 -pfam07129 311217 pfam07129 311217 -pfam07138 311220 pfam07138 311220 -pfam07139 311221 pfam07139 311221 -pfam07142 311222 pfam07142 311222 -pfam07147 311224 pfam07147 311224 -pfam07148 311225 cl11647 325108 -pfam07157 311229 cl19561 327585 -pfam07159 311230 pfam07159 311230 -pfam07160 311231 cl26917 331738 -pfam07163 311234 pfam07163 311234 -pfam07166 311236 cl11576 325089 -pfam07167 311237 pfam07167 311237 -pfam07168 311238 pfam07168 311238 -pfam07173 311240 pfam07173 311240 -pfam07174 311241 pfam07174 311241 -pfam07175 311242 pfam07175 311242 -pfam07176 311243 pfam07176 311243 -pfam07178 311245 cl06278 323392 -pfam07180 311247 pfam07180 311247 -pfam07183 311249 pfam07183 311249 -pfam07185 311250 pfam07185 311250 -pfam07187 311251 cl01798 321673 -pfam07191 311253 pfam07191 311253 -pfam07195 311255 pfam07195 311255 -pfam07196 311256 pfam07196 311256 -pfam07198 311257 pfam07198 311257 -pfam07199 311258 pfam07199 311258 -pfam07201 311260 cl15454 353946 -pfam07202 311261 pfam07202 311261 -pfam07203 311262 pfam07203 311262 -pfam07205 311263 pfam07205 311263 -pfam07207 311264 pfam07207 311264 -pfam07210 311267 cl21470 354823 -pfam07215 311269 pfam07215 311269 -pfam07217 311270 pfam07217 311270 -pfam07222 311272 pfam07222 311272 -pfam07225 311274 cl29766 356642 -pfam07230 311277 cl23948 329189 -pfam07240 311282 pfam07240 311282 -pfam07243 311284 pfam07243 311284 -pfam07244 311285 cl21628 328832 -pfam07248 311286 cl11650 325110 -pfam07254 311288 pfam07254 311288 -pfam07259 311291 pfam07259 311291 -pfam07260 311292 pfam07260 311292 -pfam07263 311295 pfam07263 311295 -pfam07265 311297 pfam07265 311297 -pfam07267 311298 pfam07267 311298 -pfam07278 311303 pfam07278 311303 -pfam07284 311306 cl06353 323421 -pfam07285 311307 cl02011 321769 -pfam07289 311311 pfam07289 311311 -pfam07292 311313 pfam07292 311313 -pfam07293 311314 cl11488 325058 -pfam07297 311316 pfam07297 311316 -pfam07298 311317 cl17713 327429 -pfam07299 311318 pfam07299 311318 -pfam07301 311319 cl02009 321767 -pfam07304 311322 pfam07304 311322 -pfam07307 311324 pfam07307 311324 -pfam07312 311328 pfam07312 311328 -pfam07313 311329 pfam07313 311329 -pfam07315 311331 cl11552 325080 -pfam07316 311332 pfam07316 311332 -pfam07318 311334 cl17037 354300 -pfam07324 311337 pfam07324 311337 -pfam07326 311338 pfam07326 311338 -pfam07335 311342 pfam07335 311342 -pfam07343 311345 pfam07343 311345 -pfam07344 311346 cl06401 323438 -pfam07345 311347 cl11571 325087 -pfam07346 311348 pfam07346 311348 -pfam07350 311351 pfam07350 311351 -pfam07355 311354 cl19416 327551 -pfam07357 311356 pfam07357 311356 -pfam07361 311357 cl01546 321561 -pfam07367 311361 pfam07367 311361 -pfam07370 311363 cl11570 325086 -pfam07371 311364 pfam07371 311364 -pfam07374 311366 pfam07374 311366 -pfam07377 311367 pfam07377 311367 -pfam07383 311370 pfam07383 311370 -pfam07388 311373 pfam07388 311373 -pfam07390 311374 pfam07390 311374 -pfam07391 311375 pfam07391 311375 -pfam07392 311376 pfam07392 311376 -pfam07393 311377 pfam07393 311377 -pfam07396 311378 cl21487 354832 -pfam07398 311379 pfam07398 311379 -pfam07408 311383 cl26898 331719 -pfam07409 311384 cl01403 351486 -pfam07410 311385 pfam07410 311385 -pfam07419 311389 pfam07419 311389 -pfam07421 311390 pfam07421 311390 -pfam07422 311391 cl29765 356641 -pfam07423 311392 pfam07423 311392 -pfam07426 311394 pfam07426 311394 -pfam07428 311395 pfam07428 311395 -pfam07430 311397 pfam07430 311397 -pfam07431 311398 cl01665 321609 -pfam07432 311399 pfam07432 311399 -pfam07433 311400 cl26895 331716 -pfam07438 311401 pfam07438 311401 -pfam07441 311402 cl26894 331715 -pfam07443 311403 pfam07443 311403 -pfam07444 311404 pfam07444 311404 -pfam07447 311406 pfam07447 311406 -pfam07448 311407 cl29764 356640 -pfam07449 311408 cl00388 351069 -pfam07450 311409 cl06472 323466 -pfam07451 311410 cl09938 353032 -pfam07454 311412 cl02713 351865 -pfam07455 311413 pfam07455 311413 -pfam07457 311415 cl11654 325112 -pfam07458 311416 pfam07458 311416 -pfam07460 311417 pfam07460 311417 -pfam07463 311418 pfam07463 311418 -pfam07464 311419 cl21509 328763 -pfam07465 311420 cl26892 331713 -pfam07467 311421 pfam07467 311421 -pfam07469 311422 pfam07469 311422 -pfam07473 311423 pfam07473 311423 -pfam07474 311424 cl00186 320804 -pfam07475 311425 cl22860 354963 -pfam07478 311427 cl17255 354326 -pfam07481 311429 pfam07481 311429 -pfam07483 311430 pfam07483 311430 -pfam07485 311432 pfam07485 311432 -pfam07488 311434 pfam07488 311434 -pfam07489 311435 pfam07489 311435 -pfam07491 311436 pfam07491 311436 -pfam07492 311437 pfam07492 311437 -pfam07494 311438 pfam07494 311438 -pfam07499 311442 cl21463 354819 -pfam07505 311448 cl15384 326566 -pfam07506 311449 pfam07506 311449 -pfam07507 311450 pfam07507 311450 -pfam07508 311451 pfam07508 311451 -pfam07509 311452 pfam07509 311452 -pfam07510 311453 cl00083 350893 -pfam07511 311454 cl06515 323488 -pfam07515 311456 pfam07515 311456 -pfam07520 311459 cl19866 327669 -pfam07524 311462 cl22885 354970 -pfam07534 311470 cl02144 321822 -pfam07535 311471 cl02684 322049 -pfam07537 311473 cl17505 354331 -pfam07538 311474 cl02763 351878 -pfam07539 311475 pfam07539 311475 -pfam07543 311479 pfam07543 311479 -pfam07546 311482 pfam07546 311482 -pfam07547 311483 pfam07547 311483 -pfam07548 311484 pfam07548 311484 -pfam07550 311486 pfam07550 311486 -pfam07553 311487 pfam07553 311487 -pfam07556 311490 pfam07556 311490 -pfam07558 311492 pfam07558 311492 -pfam07563 311496 pfam07563 311496 -pfam07565 311498 cl26877 331698 -pfam07571 311500 cl21736 354922 -pfam07572 311501 pfam07572 311501 -pfam07573 311502 pfam07573 311502 -pfam07574 311503 pfam07574 311503 -pfam07575 311504 pfam07575 311504 -pfam07578 311506 cl01627 321593 -pfam07579 311507 pfam07579 311507 -pfam07581 311509 pfam07581 311509 -pfam07583 311511 pfam07583 311511 -pfam07584 311512 cl06567 323517 -pfam07586 311513 pfam07586 311513 -pfam07587 311514 pfam07587 311514 -pfam07589 311515 cl26875 331696 -pfam07592 311516 cl21549 354865 -pfam07593 311517 pfam07593 311517 -pfam07606 311519 cl21506 354845 -pfam07608 311520 cl19192 354390 -pfam07609 311521 cl21506 354845 -pfam07611 311523 pfam07611 311523 -pfam07613 311524 pfam07613 311524 -pfam07614 311525 pfam07614 311525 -pfam07626 311528 pfam07626 311528 -pfam07627 311529 pfam07627 311529 -pfam07631 311530 pfam07631 311530 -pfam07632 311531 cl00226 350965 -pfam07634 311532 pfam07634 311532 -pfam07635 311533 cl23858 355075 -pfam07637 311534 pfam07637 311534 -pfam07642 311535 cl21487 354832 -pfam07645 311536 cl21504 354843 -pfam07646 311537 cl02701 351859 -pfam07655 311544 pfam07655 311544 -pfam07659 311546 pfam07659 311546 -pfam07661 311548 pfam07661 311548 -pfam07670 311551 cl21594 328818 -pfam07671 311552 pfam07671 311552 -pfam07678 311554 pfam07678 311554 -pfam07680 311555 pfam07680 311555 -pfam07681 311556 cl21527 328775 -pfam07682 311557 pfam07682 311557 -pfam07684 311559 pfam07684 311559 -pfam07685 311560 cl00020 350865 -pfam07688 311563 pfam07688 311563 -pfam07691 311565 cl08459 352902 -pfam07694 311566 pfam07694 311566 -pfam07695 311567 pfam07695 311567 -pfam07699 311571 pfam07699 311571 -pfam07706 311577 pfam07706 311577 -pfam07707 311578 cl28903 355779 -pfam07710 311579 pfam07710 311579 -pfam07711 311580 pfam07711 311580 -pfam07712 311581 pfam07712 311581 -pfam07716 311585 cl21462 354818 -pfam07718 311587 pfam07718 311587 -pfam07719 311588 cl22897 354972 -pfam07720 311589 pfam07720 311589 -pfam07721 311590 pfam07721 311590 -pfam07733 311600 pfam07733 311600 -pfam07739 311604 pfam07739 311604 -pfam07745 311610 cl23725 355022 -pfam07746 311611 cl06673 352553 -pfam07747 311612 cl01962 321742 -pfam07752 311616 cl23990 329220 -pfam07759 311619 pfam07759 311619 -pfam07760 311620 cl01959 321740 -pfam07763 311622 pfam07763 311622 -pfam07764 311623 pfam07764 311623 -pfam07765 311624 pfam07765 311624 -pfam07771 311628 pfam07771 311628 -pfam07773 311629 pfam07773 311629 -pfam07776 311631 cl07874 324168 -pfam07777 311632 pfam07777 311632 -pfam07778 311633 pfam07778 311633 -pfam07779 311634 pfam07779 311634 -pfam07780 311635 pfam07780 311635 -pfam07784 311637 cl01991 321761 -pfam07786 311638 cl21495 354837 -pfam07790 311640 cl01360 321461 -pfam07791 311641 pfam07791 311641 -pfam07792 311642 pfam07792 311642 -pfam07795 311644 pfam07795 311644 -pfam07796 311645 pfam07796 311645 -pfam07798 311647 pfam07798 311647 -pfam07801 311650 pfam07801 311650 -pfam07803 311652 pfam07803 311652 -pfam07807 311655 pfam07807 311655 -pfam07815 311662 pfam07815 311662 -pfam07816 311663 pfam07816 311663 -pfam07819 311666 cl21494 354836 -pfam07822 311668 pfam07822 311668 -pfam07823 311669 cl29111 355987 -pfam07829 311671 pfam07829 311671 -pfam07830 311672 cl29762 356638 -pfam07833 311673 pfam07833 311673 -pfam07842 311681 pfam07842 311681 -pfam07843 311682 cl01741 321641 -pfam07845 311683 cl00388 351069 -pfam07850 311686 pfam07850 311686 -pfam07851 311687 pfam07851 311687 -pfam07852 311688 pfam07852 311688 -pfam07853 311689 cl29761 356637 -pfam07856 311691 pfam07856 311691 -pfam07861 311693 pfam07861 311693 -pfam07863 311695 cl24008 329233 -pfam07864 311696 pfam07864 311696 -pfam07865 311697 pfam07865 311697 -pfam07867 311699 pfam07867 311699 -pfam07870 311701 pfam07870 311701 -pfam07872 311702 pfam07872 311702 -pfam07876 311705 cl10022 324563 -pfam07878 311706 pfam07878 311706 -pfam07879 311707 cl26841 355581 -pfam07882 311709 cl26840 355580 -pfam07888 311715 pfam07888 311715 -pfam07891 311718 pfam07891 311718 -pfam07894 311721 cl15239 326546 -pfam07895 311722 pfam07895 311722 -pfam07896 311723 pfam07896 311723 -pfam07897 311724 pfam07897 311724 -pfam07905 311729 pfam07905 311729 -pfam07910 311731 pfam07910 311731 -pfam07914 311733 cl21453 354810 -pfam07918 311736 pfam07918 311736 -pfam07919 311737 cl29758 356634 -pfam07920 311738 cl01327 321449 -pfam07922 311739 pfam07922 311739 -pfam07924 311741 pfam07924 311741 -pfam07931 311747 cl21455 354812 -pfam07935 311750 pfam07935 311750 -pfam07939 311751 pfam07939 311751 -pfam07941 311753 pfam07941 311753 -pfam07947 311756 cl01505 321533 -pfam07950 311758 pfam07950 311758 -pfam07952 311759 pfam07952 311759 -pfam07953 311760 cl22861 354964 -pfam07955 311761 pfam07955 311761 -pfam07956 311762 pfam07956 311762 -pfam07957 311763 pfam07957 311763 -pfam07959 311765 pfam07959 311765 -pfam07960 311766 pfam07960 311766 -pfam07964 311769 pfam07964 311769 -pfam07967 311772 pfam07967 311772 -pfam07969 311774 pfam07969 311774 -pfam07970 311775 pfam07970 311775 -pfam07978 311781 pfam07978 311781 -pfam07979 311782 pfam07979 311782 -pfam07983 311784 cl06842 323638 -pfam07984 311785 pfam07984 311785 -pfam07986 311787 cl29757 356633 -pfam07987 311788 cl14606 326327 -pfam07988 311789 pfam07988 311789 -pfam07989 311790 pfam07989 311790 -pfam07992 311792 cl30284 357160 -pfam07994 311794 cl00554 351150 -pfam08004 311800 cl22934 328960 -pfam08009 311803 pfam08009 311803 -pfam08011 311804 pfam08011 311804 -pfam08012 311805 pfam08012 311805 -pfam08017 311808 pfam08017 311808 -pfam08021 311811 cl06868 352595 -pfam08028 311812 cl09933 353031 -pfam08032 311816 cl06870 323649 -pfam08034 311818 pfam08034 311818 -pfam08035 311819 pfam08035 311819 -pfam08037 311820 pfam08037 311820 -pfam08040 311822 pfam08040 311822 -pfam08043 311824 pfam08043 311824 -pfam08044 311825 pfam08044 311825 -pfam08049 311827 pfam08049 311827 -pfam08058 311828 pfam08058 311828 -pfam08065 311832 pfam08065 311832 -pfam08067 311834 pfam08067 311834 -pfam08069 311836 pfam08069 311836 -pfam08070 311837 pfam08070 311837 -pfam08071 311838 pfam08071 311838 -pfam08072 311839 pfam08072 311839 -pfam08074 311841 pfam08074 311841 -pfam08080 311844 pfam08080 311844 -pfam08091 311849 pfam08091 311849 -pfam08094 311850 pfam08094 311850 -pfam08099 311851 pfam08099 311851 -pfam08100 311852 cl06920 352608 -pfam08101 311853 pfam08101 311853 -pfam08105 311854 pfam08105 311854 -pfam08117 311855 pfam08117 311855 -pfam08118 311856 pfam08118 311856 -pfam08124 311858 pfam08124 311858 -pfam08125 311859 cl29756 356632 -pfam08132 311861 pfam08132 311861 -pfam08134 311862 pfam08134 311862 -pfam08136 311863 cl23919 329170 -pfam08140 311865 pfam08140 311865 -pfam08141 311866 cl06949 323687 -pfam08143 311868 pfam08143 311868 -pfam08145 311870 cl19763 327628 -pfam08157 311882 pfam08157 311882 -pfam08165 311888 pfam08165 311888 -pfam08171 311892 pfam08171 311892 -pfam08175 311896 cl07943 324185 -pfam08180 311897 pfam08180 311897 -pfam08183 311898 cl26797 331618 -pfam08186 311899 pfam08186 311899 -pfam08190 311900 cl00175 320797 -pfam08192 311901 pfam08192 311901 -pfam08194 311903 pfam08194 311903 -pfam08198 311905 cl06998 323717 -pfam08201 311906 pfam08201 311906 -pfam08203 311908 pfam08203 311908 -pfam08204 311909 cl11960 353325 -pfam08205 311910 cl11960 353325 -pfam08214 311917 cl02120 321813 -pfam08217 311919 pfam08217 311919 -pfam08221 311921 pfam08221 311921 -pfam08223 311922 cl27888 355687 -pfam08227 311925 pfam08227 311925 -pfam08236 311932 pfam08236 311932 -pfam08237 311933 cl21494 354836 -pfam08239 311934 cl17036 354299 -pfam08242 311936 cl17173 354317 -pfam08243 311937 cl07029 323734 -pfam08265 311942 cl02154 321826 -pfam08267 311944 cl00464 320986 -pfam08274 311948 pfam08274 311948 -pfam08275 311949 pfam08275 311949 -pfam08280 311953 cl21459 354815 -pfam08281 311954 cl22867 354966 -pfam08282 311955 pfam08282 311955 -pfam08288 311959 cl10013 353042 -pfam08291 311960 cl01194 351419 -pfam08292 311961 cl09927 353027 -pfam08294 311963 cl21648 328839 -pfam08297 311965 pfam08297 311965 -pfam08300 311967 pfam08300 311967 -pfam08305 311969 cl07060 323745 -pfam08306 311970 pfam08306 311970 -pfam08310 311971 pfam08310 311971 -pfam08316 311977 pfam08316 311977 -pfam08321 311981 pfam08321 311981 -pfam08325 311984 cl19237 354398 -pfam08333 311990 pfam08333 311990 -pfam08335 311992 cl19627 327603 -pfam08336 311993 pfam08336 311993 -pfam08339 311996 pfam08339 311996 -pfam08347 312003 pfam08347 312003 -pfam08350 312006 pfam08350 312006 -pfam08351 312007 pfam08351 312007 -pfam08352 312008 cl07097 323760 -pfam08362 312013 pfam08362 312013 -pfam08369 312019 pfam08369 312019 -pfam08373 312021 cl00516 351129 -pfam08374 312022 pfam08374 312022 -pfam08375 312023 pfam08375 312023 -pfam08377 312025 pfam08377 312025 -pfam08383 312029 pfam08383 312029 -pfam08384 312030 pfam08384 312030 -pfam08386 312032 cl21494 354836 -pfam08389 312035 pfam08389 312035 -pfam08391 312037 pfam08391 312037 -pfam08399 312040 pfam08399 312040 -pfam08402 312042 cl01440 351505 -pfam08403 312043 pfam08403 312043 -pfam08408 312046 pfam08408 312046 -pfam08416 312052 cl17171 354315 -pfam08418 312054 pfam08418 312054 -pfam08423 312056 pfam08423 312056 -pfam08426 312058 pfam08426 312058 -pfam08428 312060 cl07159 323788 -pfam08430 312062 pfam08430 312062 -pfam08433 312064 pfam08433 312064 -pfam08435 312066 pfam08435 312066 -pfam08438 312069 pfam08438 312069 -pfam08443 312072 cl17255 354326 -pfam08446 312073 pfam08446 312073 -pfam08448 312075 pfam08448 312075 -pfam08449 312076 pfam08449 312076 -pfam08450 312077 pfam08450 312077 -pfam08451 312078 pfam08451 312078 -pfam08453 312079 pfam08453 312079 -pfam08454 312080 pfam08454 312080 -pfam08457 312082 pfam08457 312082 -pfam08464 312086 pfam08464 312086 -pfam08466 312087 pfam08466 312087 -pfam08470 312089 pfam08470 312089 -pfam08471 312090 pfam08471 312090 -pfam08473 312092 pfam08473 312092 -pfam08474 312093 pfam08474 312093 -pfam08477 312094 pfam08477 312094 -pfam08478 312095 cl21628 328832 -pfam08479 312096 cl21628 328832 -pfam08489 312104 cl21688 328855 -pfam08492 312106 pfam08492 312106 -pfam08499 312112 pfam08499 312112 -pfam08501 312113 pfam08501 312113 -pfam08504 312115 pfam08504 312115 -pfam08505 312116 pfam08505 312116 -pfam08507 312117 pfam08507 312117 -pfam08508 312118 pfam08508 312118 -pfam08509 312119 cl07218 323810 -pfam08515 312125 cl02621 322022 -pfam08518 312128 cl23881 329147 -pfam08520 312130 pfam08520 312130 -pfam08527 312137 pfam08527 312137 -pfam08531 312140 pfam08531 312140 -pfam08533 312141 pfam08533 312141 -pfam08536 312143 pfam08536 312143 -pfam08539 312144 pfam08539 312144 -pfam08543 312147 cl00192 350937 -pfam08544 312148 pfam08544 312148 -pfam08546 312150 cl29748 356624 -pfam08547 312151 cl21728 328873 -pfam08553 312155 cl26718 331539 -pfam08555 312156 pfam08555 312156 -pfam08557 312157 pfam08557 312157 -pfam08560 312160 pfam08560 312160 -pfam08561 312161 pfam08561 312161 -pfam08563 312163 pfam08563 312163 -pfam08564 312164 cl07247 323826 -pfam08565 312165 cl07248 323827 -pfam08574 312174 pfam08574 312174 -pfam08577 312176 pfam08577 312176 -pfam08578 312177 pfam08578 312177 -pfam08580 312178 pfam08580 312178 -pfam08584 312181 pfam08584 312181 -pfam08585 312182 pfam08585 312182 -pfam08586 312183 pfam08586 312183 -pfam08587 312184 cl21463 354819 -pfam08589 312186 pfam08589 312186 -pfam08593 312190 pfam08593 312190 -pfam08594 312191 pfam08594 312191 -pfam08595 312192 pfam08595 312192 -pfam08596 312193 pfam08596 312193 -pfam08597 312194 pfam08597 312194 -pfam08598 312195 pfam08598 312195 -pfam08599 312196 pfam08599 312196 -pfam08600 312197 pfam08600 312197 -pfam08601 312198 pfam08601 312198 -pfam08602 312199 pfam08602 312199 -pfam08604 312201 pfam08604 312201 -pfam08608 312203 pfam08608 312203 -pfam08610 312205 pfam08610 312205 -pfam08611 312206 pfam08611 312206 -pfam08615 312209 cl07291 323858 -pfam08616 312210 pfam08616 312210 -pfam08618 312212 pfam08618 312212 -pfam08619 312213 pfam08619 312213 -pfam08624 312218 pfam08624 312218 -pfam08626 312220 pfam08626 312220 -pfam08627 312221 cl23754 329058 -pfam08632 312225 pfam08632 312225 -pfam08634 312227 pfam08634 312227 -pfam08636 312228 pfam08636 312228 -pfam08639 312231 pfam08639 312231 -pfam08643 312235 cl21454 354811 -pfam08646 312238 cl09930 353029 -pfam08648 312240 pfam08648 312240 -pfam08650 312242 pfam08650 312242 -pfam08651 312243 pfam08651 312243 -pfam08652 312244 pfam08652 312244 -pfam08654 312246 pfam08654 312246 -pfam08655 312247 pfam08655 312247 -pfam08656 312248 pfam08656 312248 -pfam08657 312249 pfam08657 312249 -pfam08658 312250 pfam08658 312250 -pfam08659 312251 cl21454 354811 -pfam08660 312252 cl10013 353042 -pfam08661 312253 cl09930 353029 -pfam08663 312254 pfam08663 312254 -pfam08664 312255 pfam08664 312255 -pfam08665 312256 cl23718 355016 -pfam08671 312260 pfam08671 312260 -pfam08673 312262 pfam08673 312262 -pfam08678 312264 cl21461 354817 -pfam08680 312266 pfam08680 312266 -pfam08681 312267 cl01845 321696 -pfam08684 312269 pfam08684 312269 -pfam08688 312273 pfam08688 312273 -pfam08689 312274 pfam08689 312274 -pfam08690 312275 pfam08690 312275 -pfam08691 312276 pfam08691 312276 -pfam08692 312277 pfam08692 312277 -pfam08693 312278 pfam08693 312278 -pfam08694 312279 pfam08694 312279 -pfam08695 312280 cl21648 328839 -pfam08702 312286 pfam08702 312286 -pfam08703 312287 pfam08703 312287 -pfam08704 312288 cl17173 354317 -pfam08705 312289 pfam08705 312289 -pfam08706 312290 cl29746 356622 -pfam08707 312291 pfam08707 312291 -pfam08708 312292 cl07362 323902 -pfam08709 312293 cl19745 327620 -pfam08714 312297 cl00774 351248 -pfam08715 312298 pfam08715 312298 -pfam08721 312301 pfam08721 312301 -pfam08724 312303 pfam08724 312303 -pfam08726 312305 pfam08726 312305 -pfam08727 312306 pfam08727 312306 -pfam08730 312309 pfam08730 312309 -pfam08732 312310 cl21454 354811 -pfam08733 312311 pfam08733 312311 -pfam08738 312316 pfam08738 312316 -pfam08741 312318 pfam08741 312318 -pfam08745 312321 cl17319 327412 -pfam08748 312324 pfam08748 312324 -pfam08752 312327 pfam08752 312327 -pfam08756 312330 pfam08756 312330 -pfam08758 312332 cl07391 323917 -pfam08764 312335 pfam08764 312335 -pfam08767 312338 cl07396 323919 -pfam08769 312340 pfam08769 312340 -pfam08772 312343 pfam08772 312343 -pfam08773 312344 pfam08773 312344 -pfam08774 312345 cl22959 328968 -pfam08788 312356 pfam08788 312356 -pfam08790 312357 pfam08790 312357 -pfam08795 312358 pfam08795 312358 -pfam08796 312359 cl11550 325078 -pfam08802 312365 pfam08802 312365 -pfam08806 312367 pfam08806 312367 -pfam08807 312368 pfam08807 312368 -pfam08810 312371 pfam08810 312371 -pfam08812 312373 cl08500 324299 -pfam08813 312374 pfam08813 312374 -pfam08814 312375 pfam08814 312375 -pfam08815 312376 pfam08815 312376 -pfam08817 312378 cl28922 355798 -pfam08819 312380 cl01755 321651 -pfam08822 312382 pfam08822 312382 -pfam08824 312383 cl07433 323939 -pfam08827 312385 cl01339 321454 -pfam08830 312388 pfam08830 312388 -pfam08831 312389 pfam08831 312389 -pfam08832 312390 pfam08832 312390 -pfam08833 312391 pfam08833 312391 -pfam08838 312393 pfam08838 312393 -pfam08839 312394 cl07443 323947 -pfam08840 312395 cl21494 354836 -pfam08841 312396 cl26685 331506 -pfam08846 312400 pfam08846 312400 -pfam08848 312402 pfam08848 312402 -pfam08852 312405 pfam08852 312405 -pfam08853 312406 pfam08853 312406 -pfam08854 312407 pfam08854 312407 -pfam08856 312408 pfam08856 312408 -pfam08858 312410 cl26684 331505 -pfam08860 312412 pfam08860 312412 -pfam08861 312413 pfam08861 312413 -pfam08862 312414 pfam08862 312414 -pfam08863 312415 pfam08863 312415 -pfam08864 312416 pfam08864 312416 -pfam08865 312417 pfam08865 312417 -pfam08867 312419 cl07460 323959 -pfam08868 312420 pfam08868 312420 -pfam08869 312421 cl07462 352746 -pfam08872 312423 pfam08872 312423 -pfam08873 312424 cl02087 321795 -pfam08874 312425 pfam08874 312425 -pfam08877 312427 cl01985 321756 -pfam08882 312432 cl19620 327599 -pfam08884 312434 pfam08884 312434 -pfam08887 312437 pfam08887 312437 -pfam08890 312440 pfam08890 312440 -pfam08894 312444 pfam08894 312444 -pfam08896 312446 pfam08896 312446 -pfam08898 312448 pfam08898 312448 -pfam08900 312450 cl07481 323977 -pfam08903 312453 cl19473 327559 -pfam08904 312454 pfam08904 312454 -pfam08905 312455 cl01950 321736 -pfam08906 312456 pfam08906 312456 -pfam08910 312460 pfam08910 312460 -pfam08913 312463 pfam08913 312463 -pfam08915 312464 pfam08915 312464 -pfam08917 312466 pfam08917 312466 -pfam08921 312470 pfam08921 312470 -pfam08922 312471 pfam08922 312471 -pfam08923 312472 pfam08923 312472 -pfam08924 312473 cl10448 324583 -pfam08926 312475 pfam08926 312475 -pfam08928 312476 pfam08928 312476 -pfam08929 312477 pfam08929 312477 -pfam08934 312478 pfam08934 312478 -pfam08936 312479 cl07510 323996 -pfam08937 312480 cl23749 355033 -pfam08938 312481 pfam08938 312481 -pfam08940 312483 pfam08940 312483 -pfam08941 312484 pfam08941 312484 -pfam08942 312485 cl01628 321594 -pfam08943 312486 cl00184 350935 -pfam08944 312487 pfam08944 312487 -pfam08945 312488 pfam08945 312488 -pfam08947 312490 pfam08947 312490 -pfam08949 312491 pfam08949 312491 -pfam08950 312492 pfam08950 312492 -pfam08953 312494 pfam08953 312494 -pfam08955 312495 pfam08955 312495 -pfam08956 312496 pfam08956 312496 -pfam08960 312497 cl07531 324010 -pfam08961 312498 pfam08961 312498 -pfam08962 312499 pfam08962 312499 -pfam08963 312500 pfam08963 312500 -pfam08964 312501 pfam08964 312501 -pfam08968 312503 pfam08968 312503 -pfam08969 312504 pfam08969 312504 -pfam08970 312505 pfam08970 312505 -pfam08972 312506 pfam08972 312506 -pfam08974 312508 pfam08974 312508 -pfam08976 312509 pfam08976 312509 -pfam08979 312510 cl01653 321606 -pfam08980 312511 pfam08980 312511 -pfam08983 312513 pfam08983 312513 -pfam08987 312517 pfam08987 312517 -pfam08991 312519 pfam08991 312519 -pfam08992 312520 pfam08992 312520 -pfam08997 312522 cl24032 329247 -pfam08998 312523 pfam08998 312523 -pfam09000 312524 pfam09000 312524 -pfam09001 312525 cl01691 321627 -pfam09002 312526 pfam09002 312526 -pfam09005 312528 pfam09005 312528 -pfam09007 312529 pfam09007 312529 -pfam09008 312530 pfam09008 312530 -pfam09009 312531 cl00283 320879 -pfam09012 312532 cl22948 328963 -pfam09014 312533 pfam09014 312533 -pfam09016 312534 pfam09016 312534 -pfam09018 312535 pfam09018 312535 -pfam09021 312536 cl07944 324186 -pfam09027 312537 pfam09027 312537 -pfam09030 312539 pfam09030 312539 -pfam09032 312540 pfam09032 312540 -pfam09033 312541 pfam09033 312541 -pfam09034 312542 pfam09034 312542 -pfam09036 312543 pfam09036 312543 -pfam09040 312544 pfam09040 312544 -pfam09041 312545 pfam09041 312545 -pfam09042 312546 pfam09042 312546 -pfam09045 312549 pfam09045 312549 -pfam09047 312550 pfam09047 312550 -pfam09049 312551 pfam09049 312551 -pfam09050 312552 pfam09050 312552 -pfam09055 312553 cl07609 324049 -pfam09056 312554 cl29745 356621 -pfam09057 312555 pfam09057 312555 -pfam09058 312556 cl02672 351851 -pfam09060 312557 pfam09060 312557 -pfam09063 312558 pfam09063 312558 -pfam09064 312559 pfam09064 312559 -pfam09069 312562 pfam09069 312562 -pfam09072 312564 pfam09072 312564 -pfam09073 312565 pfam09073 312565 -pfam09076 312566 pfam09076 312566 -pfam09077 312567 pfam09077 312567 -pfam09082 312570 pfam09082 312570 -pfam09092 312576 pfam09092 312576 -pfam09094 312578 pfam09094 312578 -pfam09095 312579 pfam09095 312579 -pfam09098 312580 pfam09098 312580 -pfam09100 312581 pfam09100 312581 -pfam09102 312582 pfam09102 312582 -pfam09104 312584 cl09930 353029 -pfam09110 312587 pfam09110 312587 -pfam09111 312588 cl21498 354840 -pfam09114 312591 pfam09114 312591 -pfam09121 312595 pfam09121 312595 -pfam09123 312596 pfam09123 312596 -pfam09126 312598 pfam09126 312598 -pfam09132 312601 pfam09132 312601 -pfam09134 312603 cl23771 355039 -pfam09138 312605 cl28922 355798 -pfam09140 312607 cl21455 354812 -pfam09155 312612 pfam09155 312612 -pfam09157 312613 cl21633 328834 -pfam09164 312618 pfam09164 312618 -pfam09166 312620 pfam09166 312620 -pfam09167 312621 pfam09167 312621 -pfam09169 312623 pfam09169 312623 -pfam09170 312624 pfam09170 312624 -pfam09171 312625 cl01666 321610 -pfam09173 312627 cl02786 322091 -pfam09175 312629 pfam09175 312629 -pfam09182 312634 cl21459 354815 -pfam09183 312635 cl16921 327359 -pfam09184 312636 pfam09184 312636 -pfam09186 312637 pfam09186 312637 -pfam09191 312638 cl11960 353325 -pfam09192 312639 cl21453 354810 -pfam09193 312640 pfam09193 312640 -pfam09194 312641 pfam09194 312641 -pfam09197 312643 cl21498 354840 -pfam09200 312644 pfam09200 312644 -pfam09201 312645 pfam09201 312645 -pfam09202 312646 pfam09202 312646 -pfam09203 312647 pfam09203 312647 -pfam09205 312648 pfam09205 312648 -pfam09206 312649 pfam09206 312649 -pfam09207 312650 pfam09207 312650 -pfam09209 312651 cl29744 356620 -pfam09218 312654 cl23962 329197 -pfam09221 312655 cl12130 325201 -pfam09222 312656 pfam09222 312656 -pfam09224 312658 pfam09224 312658 -pfam09226 312659 pfam09226 312659 -pfam09228 312660 pfam09228 312660 -pfam09230 312662 pfam09230 312662 -pfam09233 312663 pfam09233 312663 -pfam09236 312665 pfam09236 312665 -pfam09238 312666 pfam09238 312666 -pfam09239 312667 cl02783 351890 -pfam09240 312668 cl21522 354851 -pfam09244 312670 pfam09244 312670 -pfam09245 312671 pfam09245 312671 -pfam09247 312672 pfam09247 312672 -pfam09248 312673 pfam09248 312673 -pfam09249 312674 pfam09249 312674 -pfam09250 312675 cl01287 321433 -pfam09251 312676 pfam09251 312676 -pfam09252 312677 pfam09252 312677 -pfam09253 312678 pfam09253 312678 -pfam09256 312679 pfam09256 312679 -pfam09257 312680 pfam09257 312680 -pfam09260 312682 pfam09260 312682 -pfam09263 312685 pfam09263 312685 -pfam09267 312687 pfam09267 312687 -pfam09270 312690 pfam09270 312690 -pfam09271 312691 pfam09271 312691 -pfam09272 312692 cl02509 321960 -pfam09279 312695 pfam09279 312695 -pfam09281 312697 cl10012 353041 -pfam09286 312701 cl07889 352834 -pfam09289 312702 cl26652 331473 -pfam09291 312704 cl11960 353325 -pfam09292 312705 pfam09292 312705 -pfam09294 312706 cl21522 354851 -pfam09296 312707 pfam09296 312707 -pfam09297 312708 cl24033 355129 -pfam09304 312712 pfam09304 312712 -pfam09305 312713 pfam09305 312713 -pfam09307 312714 pfam09307 312714 -pfam09309 312715 pfam09309 312715 -pfam09310 312716 pfam09310 312716 -pfam09311 312717 pfam09311 312717 -pfam09312 312718 cl21568 354876 -pfam09316 312720 pfam09316 312720 -pfam09321 312723 pfam09321 312723 -pfam09323 312725 cl01492 321528 -pfam09331 312733 cl29151 356027 -pfam09338 312739 cl09607 324396 -pfam09344 312743 cl09608 324397 -pfam09348 312747 cl01969 321745 -pfam09353 312751 pfam09353 312751 -pfam09354 312752 pfam09354 312752 -pfam09357 312754 pfam09357 312754 -pfam09367 312763 pfam09367 312763 -pfam09376 312769 cl09134 324330 -pfam09378 312771 pfam09378 312771 -pfam09384 312775 pfam09384 312775 -pfam09387 312776 pfam09387 312776 -pfam09390 312778 pfam09390 312778 -pfam09393 312781 pfam09393 312781 -pfam09396 312783 pfam09396 312783 -pfam09398 312785 cl29685 356561 -pfam09405 312787 cl09653 324418 -pfam09406 312788 pfam09406 312788 -pfam09407 312789 cl29743 356619 -pfam09408 312790 pfam09408 312790 -pfam09409 312791 cl15262 326552 -pfam09415 312796 pfam09415 312796 -pfam09418 312798 pfam09418 312798 -pfam09426 312804 pfam09426 312804 -pfam09428 312806 pfam09428 312806 -pfam09430 312808 cl21470 354823 -pfam09431 312809 pfam09431 312809 -pfam09435 312810 pfam09435 312810 -pfam09436 312811 pfam09436 312811 -pfam09438 312812 pfam09438 312812 -pfam09439 312813 pfam09439 312813 -pfam09441 312815 pfam09441 312815 -pfam09443 312817 pfam09443 312817 -pfam09444 312818 pfam09444 312818 -pfam09447 312821 pfam09447 312821 -pfam09448 312822 cl21542 328785 -pfam09450 312824 pfam09450 312824 -pfam09453 312826 pfam09453 312826 -pfam09454 312827 pfam09454 312827 -pfam09457 312830 pfam09457 312830 -pfam09459 312832 cl14783 353836 -pfam09461 312833 pfam09461 312833 -pfam09462 312834 pfam09462 312834 -pfam09463 312835 pfam09463 312835 -pfam09465 312836 cl02573 351810 -pfam09466 312837 pfam09466 312837 -pfam09469 312839 pfam09469 312839 -pfam09470 312840 pfam09470 312840 -pfam09471 312841 pfam09471 312841 -pfam09472 312842 cl22471 328904 -pfam09483 312848 cl22974 328973 -pfam09484 312849 cl21533 328778 -pfam09487 312851 cl23893 329156 -pfam09488 312852 cl11394 353239 -pfam09489 312853 cl09723 324457 -pfam09491 312855 pfam09491 312855 -pfam09492 312856 cl24000 329227 -pfam09493 312857 cl09726 324458 -pfam09501 312864 cl23890 329155 -pfam09504 312865 pfam09504 312865 -pfam09505 312866 cl23889 329154 -pfam09506 312867 cl19574 327590 -pfam09507 312868 pfam09507 312868 -pfam09509 312870 cl09741 324464 -pfam09510 312871 pfam09510 312871 -pfam09511 312872 cl09743 324466 -pfam09512 312873 cl21488 354833 -pfam09514 312874 pfam09514 312874 -pfam09515 312875 cl21488 354833 -pfam09516 312876 pfam09516 312876 -pfam09517 312877 cl15257 353929 -pfam09519 312878 pfam09519 312878 -pfam09520 312879 pfam09520 312879 -pfam09521 312880 pfam09521 312880 -pfam09524 312882 cl09752 324472 -pfam09526 312883 cl01410 321489 -pfam09528 312885 cl26632 331453 -pfam09532 312888 pfam09532 312888 -pfam09534 312889 cl17850 327441 -pfam09535 312890 cl23888 329153 -pfam09536 312891 cl15288 326557 -pfam09537 312892 cl00264 350992 -pfam09539 312894 cl22503 328907 -pfam09543 312895 cl26631 331452 -pfam09544 312896 cl15442 326580 -pfam09546 312897 cl09771 324475 -pfam09547 312898 cl19420 327554 -pfam09548 312899 cl08022 324189 -pfam09549 312900 pfam09549 312900 -pfam09550 312901 cl23997 329224 -pfam09551 312902 cl09775 324477 -pfam09553 312903 pfam09553 312903 -pfam09556 312904 pfam09556 312904 -pfam09557 312905 cl01590 321581 -pfam09559 312906 cl09782 324480 -pfam09560 312907 cl09783 324481 -pfam09561 312908 pfam09561 312908 -pfam09562 312909 cl23875 329141 -pfam09563 312910 pfam09563 312910 -pfam09565 312911 cl15239 326546 -pfam09566 312912 pfam09566 312912 -pfam09567 312913 pfam09567 312913 -pfam09568 312914 pfam09568 312914 -pfam09569 312915 pfam09569 312915 -pfam09570 312916 pfam09570 312916 -pfam09572 312917 pfam09572 312917 -pfam09577 312918 cl23899 329159 -pfam09578 312919 cl09801 324490 -pfam09579 312920 cl01596 321583 -pfam09580 312921 cl26630 331451 -pfam09581 312922 cl17562 327422 -pfam09582 312923 cl17112 327392 -pfam09585 312926 cl09807 324491 -pfam09589 312930 pfam09589 312930 -pfam09595 312932 pfam09595 312932 -pfam09596 312933 pfam09596 312933 -pfam09598 312935 pfam09598 312935 -pfam09606 312941 pfam09606 312941 -pfam09609 312943 cl09827 324500 -pfam09610 312944 cl26619 355548 -pfam09613 312947 cl19576 327591 -pfam09617 312950 cl09834 324503 -pfam09620 312953 cl09837 324505 -pfam09622 312954 cl01935 321729 -pfam09623 312955 cl09839 324506 -pfam09625 312957 pfam09625 312957 -pfam09626 312958 pfam09626 312958 -pfam09630 312959 pfam09630 312959 -pfam09633 312961 pfam09633 312961 -pfam09634 312962 pfam09634 312962 -pfam09640 312964 pfam09640 312964 -pfam09643 312965 cl09859 324514 -pfam09646 312966 pfam09646 312966 -pfam09648 312967 cl02015 321771 -pfam09649 312968 cl09864 324516 -pfam09651 312970 cl19028 327494 -pfam09654 312971 cl09868 324518 -pfam09655 312972 cl09869 324519 -pfam09656 312973 cl23896 329157 -pfam09659 312974 cl09873 324520 -pfam09660 312975 cl26616 331437 -pfam09661 312976 cl09875 324521 -pfam09664 312978 cl00718 351226 -pfam09666 312979 pfam09666 312979 -pfam09667 312980 pfam09667 312980 -pfam09668 312981 cl11403 353244 -pfam09669 312982 cl10713 353101 -pfam09670 312983 cl21570 328805 -pfam09680 312989 cl29742 356618 -pfam09682 312991 cl09890 324527 -pfam09683 312992 cl09891 324528 -pfam09684 312993 cl01817 321680 -pfam09688 312997 cl23992 329222 -pfam09692 312998 pfam09692 312998 -pfam09696 312999 pfam09696 312999 -pfam09697 313000 cl09903 324531 -pfam09699 313001 cl23752 329057 -pfam09700 313002 cl21471 354824 -pfam09701 313003 cl01317 321445 -pfam09704 313004 cl21479 328741 -pfam09706 313005 cl21519 328770 -pfam09707 313006 cl08187 324207 -pfam09711 313008 cl09913 353022 -pfam09712 313009 cl09914 324533 -pfam09715 313011 cl09916 324535 -pfam09716 313012 cl09917 324536 -pfam09726 313022 pfam09726 313022 -pfam09730 313026 pfam09730 313026 -pfam09733 313029 pfam09733 313029 -pfam09735 313031 pfam09735 313031 -pfam09736 313032 pfam09736 313032 -pfam09737 313033 pfam09737 313033 -pfam09741 313037 pfam09741 313037 -pfam09742 313038 cl15483 326586 -pfam09746 313042 pfam09746 313042 -pfam09747 313043 pfam09747 313043 -pfam09750 313046 pfam09750 313046 -pfam09751 313047 pfam09751 313047 -pfam09753 313048 cl22856 354962 -pfam09755 313050 pfam09755 313050 -pfam09756 313051 pfam09756 313051 -pfam09758 313053 pfam09758 313053 -pfam09759 313054 pfam09759 313054 -pfam09763 313056 cl19950 327707 -pfam09764 313057 pfam09764 313057 -pfam09765 313058 pfam09765 313058 -pfam09767 313060 pfam09767 313060 -pfam09770 313063 pfam09770 313063 -pfam09771 313064 pfam09771 313064 -pfam09772 313065 pfam09772 313065 -pfam09773 313066 pfam09773 313066 -pfam09775 313068 pfam09775 313068 -pfam09776 313069 pfam09776 313069 -pfam09777 313070 pfam09777 313070 -pfam09779 313072 pfam09779 313072 -pfam09781 313073 pfam09781 313073 -pfam09783 313074 cl02113 321811 -pfam09786 313077 pfam09786 313077 -pfam09787 313078 pfam09787 313078 -pfam09788 313079 pfam09788 313079 -pfam09789 313080 pfam09789 313080 -pfam09790 313081 pfam09790 313081 -pfam09793 313084 cl10767 324667 -pfam09794 313085 pfam09794 313085 -pfam09795 313086 pfam09795 313086 -pfam09796 313087 cl24032 329247 -pfam09797 313088 pfam09797 313088 -pfam09798 313089 pfam09798 313089 -pfam09799 313090 pfam09799 313090 -pfam09802 313092 cl02341 321895 -pfam09805 313095 pfam09805 313095 -pfam09806 313096 pfam09806 313096 -pfam09807 313097 pfam09807 313097 -pfam09808 313098 pfam09808 313098 -pfam09810 313099 pfam09810 313099 -pfam09811 313100 pfam09811 313100 -pfam09812 313101 pfam09812 313101 -pfam09814 313102 cl19900 327691 -pfam09815 313103 pfam09815 313103 -pfam09816 313104 pfam09816 313104 -pfam09817 313105 pfam09817 313105 -pfam09818 313106 pfam09818 313106 -pfam09820 313108 cl21455 354812 -pfam09822 313110 cl23805 329091 -pfam09824 313111 cl19623 327601 -pfam09825 313112 cl00020 350865 -pfam09826 313113 cl26599 331420 -pfam09832 313119 cl26596 331417 -pfam09834 313120 cl01257 321420 -pfam09837 313123 cl11394 353239 -pfam09840 313126 cl01288 321434 -pfam09843 313128 cl26595 331416 -pfam09844 313129 cl01329 321451 -pfam09845 313130 cl19836 327646 -pfam09846 313131 cl01332 321453 -pfam09848 313132 pfam09848 313132 -pfam09852 313136 cl21590 354882 -pfam09853 313137 cl26591 331412 -pfam09855 313138 cl01381 321471 -pfam09858 313140 cl01570 321572 -pfam09861 313143 cl15406 326569 -pfam09863 313145 pfam09863 313145 -pfam09869 313150 cl01637 321597 -pfam09870 313151 cl01639 321599 -pfam09871 313152 cl01640 321600 -pfam09872 313153 cl01645 321603 -pfam09873 313154 cl17851 327442 -pfam09875 313155 cl01650 321604 -pfam09876 313156 cl01651 321605 -pfam09878 313157 cl01656 321607 -pfam09879 313158 cl23961 329196 -pfam09880 313159 cl26588 331409 -pfam09881 313160 cl01659 321608 -pfam09882 313161 cl26587 331408 -pfam09883 313162 cl19852 327660 -pfam09884 313163 cl01667 321611 -pfam09885 313164 cl01669 321612 -pfam09886 313165 cl01670 321613 -pfam09887 313166 cl01680 321620 -pfam09888 313167 cl01681 321621 -pfam09890 313168 cl19853 327661 -pfam09891 313169 cl01684 321622 -pfam09892 313170 cl01685 321623 -pfam09893 313171 cl01687 321625 -pfam09894 313172 cl17852 327443 -pfam09895 313173 cl21505 354844 -pfam09897 313174 cl01695 321628 -pfam09900 313177 cl01785 321665 -pfam09906 313182 cl19870 327672 -pfam09909 313184 cl01916 321724 -pfam09910 313185 cl01925 321727 -pfam09919 313192 cl01960 321741 -pfam09920 313193 cl01963 321743 -pfam09921 313194 cl01966 321744 -pfam09924 313197 cl17182 354318 -pfam09926 313199 cl02293 321878 -pfam09929 313201 cl02298 321881 -pfam09930 313202 cl01990 321760 -pfam09940 313211 cl25683 355438 -pfam09941 313212 cl01994 321764 -pfam09943 313213 cl02010 321768 -pfam09946 313215 cl02016 321772 -pfam09951 313219 cl02019 321773 -pfam09953 313220 cl23969 329203 -pfam09954 313221 cl23970 329204 -pfam09956 313223 cl02289 321874 -pfam09957 313224 cl26582 331403 -pfam09958 313225 cl19876 327676 -pfam09959 313226 cl02034 321776 -pfam09960 313227 pfam09960 313227 -pfam09963 313229 cl23971 329205 -pfam09964 313230 cl23972 329206 -pfam09965 313231 cl02048 321784 -pfam09968 313233 cl00264 350992 -pfam09969 313234 cl02056 321787 -pfam09970 313235 cl17690 327426 -pfam09971 313236 cl26580 331401 -pfam09973 313238 cl09219 324345 -pfam09974 313239 cl02063 321789 -pfam09977 313241 cl26578 331399 -pfam09979 313242 cl19842 327651 -pfam09983 313246 pfam09983 313246 -pfam09985 313248 cl14783 353836 -pfam09986 313249 cl26577 331398 -pfam09988 313250 cl01017 321304 -pfam09990 313252 cl01730 321634 -pfam09991 313253 cl01728 321632 -pfam09999 313260 cl01449 321508 -pfam10002 313262 cl01783 321663 -pfam10004 313264 cl01763 321655 -pfam10005 313265 pfam10005 313265 -pfam10006 313266 cl00436 320971 -pfam10009 313268 cl19860 327665 -pfam10012 313270 cl01788 321668 -pfam10015 313273 cl01797 321672 -pfam10020 313275 cl01757 321652 -pfam10021 313276 cl19419 327553 -pfam10022 313277 cl01752 321648 -pfam10025 313279 cl02314 321885 -pfam10027 313281 cl02335 321892 -pfam10029 313283 cl21544 354863 -pfam10030 313284 cl21534 354857 -pfam10032 313286 cl02110 321809 -pfam10037 313291 pfam10037 313291 -pfam10038 313292 cl02406 321921 -pfam10043 313296 cl11574 325088 -pfam10044 313297 pfam10044 313297 -pfam10046 313299 pfam10046 313299 -pfam10048 313301 cl02366 321905 -pfam10050 313303 cl02248 321861 -pfam10051 313304 cl02234 321856 -pfam10053 313306 cl02396 321918 -pfam10055 313308 cl02371 321908 -pfam10057 313310 cl02390 321916 -pfam10058 313311 cl23974 329208 -pfam10060 313312 cl02250 321862 -pfam10061 313313 cl02261 321866 -pfam10062 313314 pfam10062 313314 -pfam10063 313315 cl02241 321858 -pfam10065 313316 cl02338 321894 -pfam10067 313318 cl02232 321854 -pfam10069 313319 cl01731 321635 -pfam10071 313321 cl02380 321913 -pfam10074 313323 cl02246 321859 -pfam10075 313324 cl24019 355124 -pfam10076 313325 cl01542 321558 -pfam10077 313326 cl19625 327602 -pfam10078 313327 cl01805 321676 -pfam10079 313328 cl19511 327574 -pfam10082 313331 cl21487 354832 -pfam10084 313332 cl01820 321682 -pfam10091 313337 cl23973 329207 -pfam10092 313338 cl01827 321687 -pfam10094 313340 cl01837 321691 -pfam10095 313341 cl11978 325152 -pfam10096 313342 cl15692 353970 -pfam10100 313346 cl26564 331385 -pfam10102 313348 cl29739 356615 -pfam10107 313353 cl01958 321739 -pfam10111 313356 pfam10111 313356 -pfam10112 313357 cl02059 321788 -pfam10113 313358 cl19509 327572 -pfam10117 313362 cl01737 321639 -pfam10120 313365 cl00871 321221 -pfam10123 313366 cl19864 327668 -pfam10124 313367 cl01826 321686 -pfam10125 313368 cl01688 321626 -pfam10126 313369 cl01686 321624 -pfam10127 313370 cl01417 321494 -pfam10128 313371 cl01359 351471 -pfam10129 313372 cl21495 354837 -pfam10133 313373 cl00662 321100 -pfam10134 313374 cl19398 354416 -pfam10139 313379 cl19867 327670 -pfam10141 313381 cl11538 325073 -pfam10147 313387 pfam10147 313387 -pfam10149 313388 pfam10149 313388 -pfam10151 313390 pfam10151 313390 -pfam10154 313393 pfam10154 313393 -pfam10157 313396 pfam10157 313396 -pfam10160 313398 pfam10160 313398 -pfam10161 313399 pfam10161 313399 -pfam10162 313400 pfam10162 313400 -pfam10164 313402 pfam10164 313402 -pfam10168 313406 pfam10168 313406 -pfam10169 313407 pfam10169 313407 -pfam10170 313408 pfam10170 313408 -pfam10171 313409 pfam10171 313409 -pfam10172 313410 pfam10172 313410 -pfam10173 313411 pfam10173 313411 -pfam10174 313412 pfam10174 313412 -pfam10175 313413 pfam10175 313413 -pfam10176 313414 pfam10176 313414 -pfam10177 313415 pfam10177 313415 -pfam10182 313420 pfam10182 313420 -pfam10183 313421 cl15848 326660 -pfam10184 313422 cl09109 352932 -pfam10185 313423 pfam10185 313423 -pfam10187 313425 pfam10187 313425 -pfam10188 313426 pfam10188 313426 -pfam10189 313427 pfam10189 313427 -pfam10190 313428 pfam10190 313428 -pfam10192 313429 cl21735 354921 -pfam10193 313430 pfam10193 313430 -pfam10195 313431 pfam10195 313431 -pfam10199 313434 pfam10199 313434 -pfam10203 313435 pfam10203 313435 -pfam10205 313437 pfam10205 313437 -pfam10206 313438 pfam10206 313438 -pfam10208 313439 pfam10208 313439 -pfam10209 313440 pfam10209 313440 -pfam10212 313443 pfam10212 313443 -pfam10216 313446 cl23941 329184 -pfam10217 313447 pfam10217 313447 -pfam10218 313448 pfam10218 313448 -pfam10220 313449 pfam10220 313449 -pfam10221 313450 pfam10221 313450 -pfam10224 313452 pfam10224 313452 -pfam10225 313453 pfam10225 313453 -pfam10226 313454 pfam10226 313454 -pfam10229 313456 pfam10229 313456 -pfam10230 313457 cl21494 354836 -pfam10231 313458 pfam10231 313458 -pfam10234 313461 pfam10234 313461 -pfam10235 313462 pfam10235 313462 -pfam10238 313465 pfam10238 313465 -pfam10239 313466 pfam10239 313466 -pfam10241 313468 pfam10241 313468 -pfam10243 313469 pfam10243 313469 -pfam10244 313470 pfam10244 313470 -pfam10245 313471 pfam10245 313471 -pfam10246 313472 pfam10246 313472 -pfam10247 313473 pfam10247 313473 -pfam10248 313474 pfam10248 313474 -pfam10252 313478 pfam10252 313478 -pfam10253 313479 pfam10253 313479 -pfam10254 313480 pfam10254 313480 -pfam10255 313481 pfam10255 313481 -pfam10257 313483 pfam10257 313483 -pfam10258 313484 pfam10258 313484 -pfam10259 313485 pfam10259 313485 -pfam10261 313487 pfam10261 313487 -pfam10265 313491 pfam10265 313491 -pfam10267 313493 pfam10267 313493 -pfam10268 313494 pfam10268 313494 -pfam10269 313495 pfam10269 313495 -pfam10270 313496 pfam10270 313496 -pfam10271 313497 pfam10271 313497 -pfam10272 313498 pfam10272 313498 -pfam10275 313500 cl19932 354513 -pfam10277 313502 pfam10277 313502 -pfam10291 313510 cl10970 353153 -pfam10292 313511 cl11607 325099 -pfam10294 313513 cl17173 354317 -pfam10296 313515 pfam10296 313515 -pfam10298 313516 cl27397 355645 -pfam10302 313517 cl28922 355798 -pfam10303 313518 pfam10303 313518 -pfam10304 313519 pfam10304 313519 -pfam10306 313521 pfam10306 313521 -pfam10307 313522 pfam10307 313522 -pfam10309 313523 pfam10309 313523 -pfam10311 313525 pfam10311 313525 -pfam10313 313527 pfam10313 313527 -pfam10315 313528 pfam10315 313528 -pfam10316 313529 pfam10316 313529 -pfam10319 313532 cl22924 354980 -pfam10322 313534 pfam10322 313534 -pfam10323 313535 cl21561 354872 -pfam10325 313537 pfam10325 313537 -pfam10327 313539 cl11665 353308 -pfam10329 313541 pfam10329 313541 -pfam10330 313542 pfam10330 313542 -pfam10332 313543 pfam10332 313543 -pfam10334 313544 pfam10334 313544 -pfam10335 313545 cl19627 327603 -pfam10336 313546 pfam10336 313546 -pfam10337 313547 pfam10337 313547 -pfam10338 313548 pfam10338 313548 -pfam10340 313549 cl21494 354836 -pfam10341 313550 pfam10341 313550 -pfam10342 313551 pfam10342 313551 -pfam10343 313552 pfam10343 313552 -pfam10344 313553 pfam10344 313553 -pfam10345 313554 pfam10345 313554 -pfam10348 313557 cl23723 355020 -pfam10355 313561 pfam10355 313561 -pfam10360 313565 pfam10360 313565 -pfam10361 313566 pfam10361 313566 -pfam10366 313568 pfam10366 313568 -pfam10367 313569 pfam10367 313569 -pfam10368 313570 pfam10368 313570 -pfam10371 313573 cl11037 353165 -pfam10372 313574 pfam10372 313574 -pfam10375 313577 pfam10375 313577 -pfam10376 313578 pfam10376 313578 -pfam10378 313580 pfam10378 313580 -pfam10380 313581 pfam10380 313581 -pfam10388 313588 pfam10388 313588 -pfam10389 313589 pfam10389 313589 -pfam10393 313592 pfam10393 313592 -pfam10395 313594 pfam10395 313594 -pfam10398 313597 pfam10398 313597 -pfam10399 313598 pfam10399 313598 -pfam10400 313599 pfam10400 313599 -pfam10407 313605 pfam10407 313605 -pfam10408 313606 pfam10408 313606 -pfam10412 313610 pfam10412 313610 -pfam10413 313611 pfam10413 313611 -pfam10416 313614 pfam10416 313614 -pfam10420 313618 pfam10420 313618 -pfam10421 313619 pfam10421 313619 -pfam10425 313621 pfam10425 313621 -pfam10427 313622 pfam10427 313622 -pfam10430 313624 pfam10430 313624 -pfam10432 313626 cl00389 351070 -pfam10433 313627 pfam10433 313627 -pfam10434 313628 pfam10434 313628 -pfam10439 313633 pfam10439 313633 -pfam10443 313637 pfam10443 313637 -pfam10445 313639 pfam10445 313639 -pfam10451 313642 pfam10451 313642 -pfam10452 313643 pfam10452 313643 -pfam10453 313644 cl11101 353187 -pfam10454 313645 pfam10454 313645 -pfam10456 313646 cl12013 353336 -pfam10458 313648 pfam10458 313648 -pfam10460 313650 pfam10460 313650 -pfam10461 313651 pfam10461 313651 -pfam10467 313652 pfam10467 313652 -pfam10468 313653 pfam10468 313653 -pfam10469 313654 cl26521 331342 -pfam10470 313655 pfam10470 313655 -pfam10472 313657 pfam10472 313657 -pfam10473 313658 pfam10473 313658 -pfam10475 313660 cl19297 354407 -pfam10476 313661 pfam10476 313661 -pfam10477 313662 pfam10477 313662 -pfam10479 313663 pfam10479 313663 -pfam10481 313664 pfam10481 313664 -pfam10482 313665 pfam10482 313665 -pfam10483 313666 pfam10483 313666 -pfam10486 313668 pfam10486 313668 -pfam10487 313669 cl29134 356010 -pfam10488 313670 pfam10488 313670 -pfam10490 313671 pfam10490 313671 -pfam10491 313672 pfam10491 313672 -pfam10492 313673 pfam10492 313673 -pfam10493 313674 pfam10493 313674 -pfam10494 313675 pfam10494 313675 -pfam10495 313676 pfam10495 313676 -pfam10497 313678 pfam10497 313678 -pfam10500 313680 pfam10500 313680 -pfam10501 313681 pfam10501 313681 -pfam10502 313682 pfam10502 313682 -pfam10503 313683 cl21494 354836 -pfam10504 313684 pfam10504 313684 -pfam10505 313685 pfam10505 313685 -pfam10508 313688 pfam10508 313688 -pfam10510 313690 pfam10510 313690 -pfam10514 313693 pfam10514 313693 -pfam10515 313694 pfam10515 313694 -pfam10523 313700 cl11158 324881 -pfam10524 313701 pfam10524 313701 -pfam10525 313702 pfam10525 313702 -pfam10529 313703 pfam10529 313703 -pfam10534 313706 pfam10534 313706 -pfam10540 313710 pfam10540 313710 -pfam10542 313712 pfam10542 313712 -pfam10545 313715 cl23759 355036 -pfam10546 313716 pfam10546 313716 -pfam10547 313717 pfam10547 313717 -pfam10552 313719 pfam10552 313719 -pfam10555 313721 pfam10555 313721 -pfam10561 313725 pfam10561 313725 -pfam10562 313726 pfam10562 313726 -pfam10563 313727 pfam10563 313727 -pfam10565 313729 pfam10565 313729 -pfam10567 313731 pfam10567 313731 -pfam10571 313734 pfam10571 313734 -pfam10572 313735 pfam10572 313735 -pfam10574 313736 pfam10574 313736 -pfam10577 313738 pfam10577 313738 -pfam10579 313739 cl24038 329252 -pfam10580 313740 pfam10580 313740 -pfam10581 313741 pfam10581 313741 -pfam10583 313742 pfam10583 313742 -pfam10587 313745 pfam10587 313745 -pfam10591 313749 pfam10591 313749 -pfam10592 313750 pfam10592 313750 -pfam10593 313751 pfam10593 313751 -pfam10596 313752 pfam10596 313752 -pfam10597 313753 pfam10597 313753 -pfam10599 313754 pfam10599 313754 -pfam10600 313755 pfam10600 313755 -pfam10602 313757 pfam10602 313757 -pfam10604 313758 cl14643 353818 -pfam10605 313759 pfam10605 313759 -pfam10606 313760 pfam10606 313760 -pfam10610 313764 cl23920 329171 -pfam10611 313765 pfam10611 313765 -pfam10612 313766 pfam10612 313766 -pfam10616 313770 pfam10616 313770 -pfam10618 313772 pfam10618 313772 -pfam10622 313774 pfam10622 313774 -pfam10628 313778 pfam10628 313778 -pfam10629 313779 pfam10629 313779 -pfam10630 313780 pfam10630 313780 -pfam10631 313781 pfam10631 313781 -pfam10632 313782 pfam10632 313782 -pfam10637 313786 cl21496 354838 -pfam10638 313787 pfam10638 313787 -pfam10639 313788 pfam10639 313788 -pfam10642 313789 pfam10642 313789 -pfam10643 313790 pfam10643 313790 -pfam10644 313791 pfam10644 313791 -pfam10645 313792 pfam10645 313792 -pfam10646 313793 cl11253 353210 -pfam10647 313794 pfam10647 313794 -pfam10648 313795 pfam10648 313795 -pfam10649 313796 cl21455 354812 -pfam10651 313798 pfam10651 313798 -pfam10652 313799 pfam10652 313799 -pfam10655 313800 pfam10655 313800 -pfam10660 313801 pfam10660 313801 -pfam10664 313802 pfam10664 313802 -pfam10665 313803 pfam10665 313803 -pfam10666 313804 pfam10666 313804 -pfam10667 313805 pfam10667 313805 -pfam10668 313806 pfam10668 313806 -pfam10673 313809 pfam10673 313809 -pfam10676 313812 pfam10676 313812 -pfam10677 313813 cl21487 354832 -pfam10681 313817 pfam10681 313817 -pfam10684 313818 cl26498 331319 -pfam10685 313819 cl29725 356601 -pfam10693 313825 pfam10693 313825 -pfam10697 313828 pfam10697 313828 -pfam10698 313829 cl14643 353818 -pfam10702 313831 pfam10702 313831 -pfam10704 313833 pfam10704 313833 -pfam10705 313834 pfam10705 313834 -pfam10707 313835 cl21453 354810 -pfam10708 313836 pfam10708 313836 -pfam10710 313837 pfam10710 313837 -pfam10711 313838 pfam10711 313838 -pfam10716 313841 pfam10716 313841 -pfam10718 313842 pfam10718 313842 -pfam10720 313844 pfam10720 313844 -pfam10722 313845 cl15834 326655 -pfam10724 313846 pfam10724 313846 -pfam10726 313848 pfam10726 313848 -pfam10729 313850 cl26492 331313 -pfam10730 313851 pfam10730 313851 -pfam10733 313852 pfam10733 313852 -pfam10734 313853 cl10291 324579 -pfam10738 313855 pfam10738 313855 -pfam10739 313856 pfam10739 313856 -pfam10740 313857 cl00389 351070 -pfam10742 313858 pfam10742 313858 -pfam10743 313859 pfam10743 313859 -pfam10745 313861 pfam10745 313861 -pfam10747 313862 pfam10747 313862 -pfam10748 313863 pfam10748 313863 -pfam10749 313864 pfam10749 313864 -pfam10751 313866 pfam10751 313866 -pfam10752 313867 pfam10752 313867 -pfam10755 313870 cl07906 324180 -pfam10756 313871 pfam10756 313871 -pfam10758 313872 pfam10758 313872 -pfam10759 313873 pfam10759 313873 -pfam10761 313874 pfam10761 313874 -pfam10763 313875 pfam10763 313875 -pfam10764 313876 pfam10764 313876 -pfam10765 313877 cl11584 325091 -pfam10768 313880 cl11677 325118 -pfam10771 313882 pfam10771 313882 -pfam10772 313883 pfam10772 313883 -pfam10775 313884 pfam10775 313884 -pfam10776 313885 pfam10776 313885 -pfam10778 313887 pfam10778 313887 -pfam10779 313888 pfam10779 313888 -pfam10783 313892 pfam10783 313892 -pfam10785 313893 cl11377 325006 -pfam10787 313895 pfam10787 313895 -pfam10791 313897 pfam10791 313897 -pfam10792 313898 pfam10792 313898 -pfam10797 313900 pfam10797 313900 -pfam10799 313902 cl26490 331311 -pfam10800 313903 pfam10800 313903 -pfam10801 313904 pfam10801 313904 -pfam10802 313905 pfam10802 313905 -pfam10803 313906 pfam10803 313906 -pfam10805 313907 pfam10805 313907 -pfam10806 313908 pfam10806 313908 -pfam10809 313909 pfam10809 313909 -pfam10814 313910 pfam10814 313910 -pfam10815 313911 pfam10815 313911 -pfam10816 313912 pfam10816 313912 -pfam10818 313913 pfam10818 313913 -pfam10820 313914 pfam10820 313914 -pfam10821 313915 pfam10821 313915 -pfam10823 313916 pfam10823 313916 -pfam10824 313917 cl02005 321765 -pfam10825 313918 pfam10825 313918 -pfam10826 313919 pfam10826 313919 -pfam10828 313920 cl24005 329230 -pfam10829 313921 pfam10829 313921 -pfam10830 313922 pfam10830 313922 -pfam10831 313923 pfam10831 313923 -pfam10835 313925 pfam10835 313925 -pfam10838 313926 pfam10838 313926 -pfam10842 313928 pfam10842 313928 -pfam10843 313929 pfam10843 313929 -pfam10844 313930 pfam10844 313930 -pfam10845 313931 pfam10845 313931 -pfam10846 313932 pfam10846 313932 -pfam10850 313933 pfam10850 313933 -pfam10851 313934 pfam10851 313934 -pfam10852 313935 pfam10852 313935 -pfam10853 313936 pfam10853 313936 -pfam10858 313937 pfam10858 313937 -pfam10859 313938 pfam10859 313938 -pfam10862 313940 pfam10862 313940 -pfam10863 313941 pfam10863 313941 -pfam10864 313942 pfam10864 313942 -pfam10865 313943 pfam10865 313943 -pfam10866 313944 pfam10866 313944 -pfam10869 313946 pfam10869 313946 -pfam10871 313947 pfam10871 313947 -pfam10873 313948 pfam10873 313948 -pfam10874 313949 pfam10874 313949 -pfam10877 313951 pfam10877 313951 -pfam10878 313952 pfam10878 313952 -pfam10880 313953 pfam10880 313953 -pfam10882 313955 cl19751 327623 -pfam10883 313956 pfam10883 313956 -pfam10890 313957 pfam10890 313957 -pfam10894 313958 cl23902 329161 -pfam10896 313959 pfam10896 313959 -pfam10897 313960 pfam10897 313960 -pfam10898 313961 pfam10898 313961 -pfam10899 313962 pfam10899 313962 -pfam10901 313963 pfam10901 313963 -pfam10903 313965 pfam10903 313965 -pfam10905 313966 pfam10905 313966 -pfam10906 313967 pfam10906 313967 -pfam10912 313970 pfam10912 313970 -pfam10913 313971 pfam10913 313971 -pfam10914 313972 pfam10914 313972 -pfam10915 313973 pfam10915 313973 -pfam10916 313974 pfam10916 313974 -pfam10918 313975 cl26488 331309 -pfam10922 313976 cl26487 331308 -pfam10923 313977 pfam10923 313977 -pfam10925 313978 pfam10925 313978 -pfam10926 313979 cl00641 351191 -pfam10929 313980 pfam10929 313980 -pfam10931 313981 pfam10931 313981 -pfam10933 313983 pfam10933 313983 -pfam10934 313984 cl01403 351486 -pfam10935 313985 pfam10935 313985 -pfam10936 313986 pfam10936 313986 -pfam10937 313987 pfam10937 313987 -pfam10938 313988 cl26486 331307 -pfam10939 313989 pfam10939 313989 -pfam10941 313990 pfam10941 313990 -pfam10942 313991 pfam10942 313991 -pfam10944 313992 pfam10944 313992 -pfam10946 313993 cl08177 324206 -pfam10947 313994 pfam10947 313994 -pfam10948 313995 pfam10948 313995 -pfam10949 313996 pfam10949 313996 -pfam10950 313997 pfam10950 313997 -pfam10953 313999 pfam10953 313999 -pfam10954 314000 pfam10954 314000 -pfam10956 314002 cl08110 324197 -pfam10958 314004 pfam10958 314004 -pfam10960 314005 pfam10960 314005 -pfam10961 314006 pfam10961 314006 -pfam10962 314007 pfam10962 314007 -pfam10963 314008 pfam10963 314008 -pfam10965 314009 cl23924 329174 -pfam10966 314010 pfam10966 314010 -pfam10967 314011 pfam10967 314011 -pfam10968 314012 pfam10968 314012 -pfam10969 314013 pfam10969 314013 -pfam10974 314016 pfam10974 314016 -pfam10976 314018 pfam10976 314018 -pfam10979 314021 pfam10979 314021 -pfam10983 314025 pfam10983 314025 -pfam10984 314026 pfam10984 314026 -pfam10986 314028 pfam10986 314028 -pfam10988 314030 cl23960 355107 -pfam10989 314031 pfam10989 314031 -pfam10990 314032 pfam10990 314032 -pfam10992 314034 pfam10992 314034 -pfam10995 314037 cl17862 327445 -pfam10998 314040 pfam10998 314040 -pfam10999 314041 pfam10999 314041 -pfam11001 314043 pfam11001 314043 -pfam11002 314044 pfam11002 314044 -pfam11003 314045 pfam11003 314045 -pfam11005 314047 pfam11005 314047 -pfam11006 314048 pfam11006 314048 -pfam11007 314049 pfam11007 314049 -pfam11008 314050 pfam11008 314050 -pfam11009 314051 cl00388 351069 -pfam11010 314052 cl11421 353248 -pfam11011 314053 pfam11011 314053 -pfam11012 314054 pfam11012 314054 -pfam11014 314056 pfam11014 314056 -pfam11015 314057 pfam11015 314057 -pfam11016 314058 pfam11016 314058 -pfam11018 314060 pfam11018 314060 -pfam11019 314061 pfam11019 314061 -pfam11020 314062 pfam11020 314062 -pfam11021 314063 pfam11021 314063 -pfam11022 314064 pfam11022 314064 -pfam11023 314065 cl23913 329166 -pfam11025 314067 pfam11025 314067 -pfam11027 314069 pfam11027 314069 -pfam11029 314071 pfam11029 314071 -pfam11032 314072 cl21528 354854 -pfam11033 314073 pfam11033 314073 -pfam11034 314074 pfam11034 314074 -pfam11035 314075 pfam11035 314075 -pfam11037 314076 pfam11037 314076 -pfam11039 314077 cl23905 329163 -pfam11045 314080 pfam11045 314080 -pfam11046 314081 cl08095 324195 -pfam11051 314082 pfam11051 314082 -pfam11055 314084 pfam11055 314084 -pfam11056 314085 pfam11056 314085 -pfam11057 314086 pfam11057 314086 -pfam11059 314087 cl21487 354832 -pfam11060 314088 pfam11060 314088 -pfam11065 314092 pfam11065 314092 -pfam11068 314095 pfam11068 314095 -pfam11070 314097 pfam11070 314097 -pfam11071 314098 cl23749 355033 -pfam11072 314099 cl12633 325416 -pfam11073 314100 pfam11073 314100 -pfam11076 314103 pfam11076 314103 -pfam11077 314104 pfam11077 314104 -pfam11079 314106 pfam11079 314106 -pfam11081 314108 pfam11081 314108 -pfam11083 314109 pfam11083 314109 -pfam11084 314110 pfam11084 314110 -pfam11085 314111 pfam11085 314111 -pfam11091 314113 cl26482 331303 -pfam11092 314114 pfam11092 314114 -pfam11093 314115 pfam11093 314115 -pfam11095 314116 cl00259 350988 -pfam11099 314117 cl26481 331302 -pfam11100 314118 cl23903 329162 -pfam11103 314121 pfam11103 314121 -pfam11104 314122 pfam11104 314122 -pfam11105 314123 pfam11105 314123 -pfam11106 314124 pfam11106 314124 -pfam11109 314126 pfam11109 314126 -pfam11110 314127 pfam11110 314127 -pfam11111 314128 pfam11111 314128 -pfam11112 314129 pfam11112 314129 -pfam11114 314130 pfam11114 314130 -pfam11116 314131 pfam11116 314131 -pfam11120 314134 cl24004 329229 -pfam11122 314135 pfam11122 314135 -pfam11124 314136 pfam11124 314136 -pfam11127 314137 pfam11127 314137 -pfam11138 314142 pfam11138 314142 -pfam11139 314143 cl21514 354847 -pfam11140 314144 pfam11140 314144 -pfam11141 314145 pfam11141 314145 -pfam11144 314148 pfam11144 314148 -pfam11149 314152 pfam11149 314152 -pfam11150 314153 pfam11150 314153 -pfam11151 314154 pfam11151 314154 -pfam11153 314156 pfam11153 314156 -pfam11155 314158 pfam11155 314158 -pfam11159 314161 pfam11159 314161 -pfam11160 314162 pfam11160 314162 -pfam11163 314165 pfam11163 314165 -pfam11165 314167 pfam11165 314167 -pfam11167 314168 pfam11167 314168 -pfam11169 314170 pfam11169 314170 -pfam11170 314171 pfam11170 314171 -pfam11177 314178 pfam11177 314178 -pfam11178 314179 pfam11178 314179 -pfam11179 314180 pfam11179 314180 -pfam11181 314182 pfam11181 314182 -pfam11182 314183 cl21684 354907 -pfam11183 314184 cl23862 329132 -pfam11189 314189 pfam11189 314189 -pfam11190 314190 cl24007 329232 -pfam11191 314191 pfam11191 314191 -pfam11193 314192 pfam11193 314192 -pfam11195 314193 pfam11195 314193 -pfam11196 314194 pfam11196 314194 -pfam11198 314196 pfam11198 314196 -pfam11199 314197 pfam11199 314197 -pfam11203 314200 cl12752 325500 -pfam11204 314201 pfam11204 314201 -pfam11209 314205 pfam11209 314205 -pfam11210 314206 pfam11210 314206 -pfam11211 314207 pfam11211 314207 -pfam11213 314208 cl12761 325507 -pfam11214 314209 pfam11214 314209 -pfam11218 314212 pfam11218 314212 -pfam11220 314214 pfam11220 314214 -pfam11222 314216 pfam11222 314216 -pfam11223 314217 pfam11223 314217 -pfam11228 314220 pfam11228 314220 -pfam11229 314221 pfam11229 314221 -pfam11230 314222 cl26132 330953 -pfam11232 314224 pfam11232 314224 -pfam11235 314226 pfam11235 314226 -pfam11236 314227 pfam11236 314227 -pfam11237 314228 pfam11237 314228 -pfam11238 314229 pfam11238 314229 -pfam11239 314230 pfam11239 314230 -pfam11240 314231 pfam11240 314231 -pfam11241 314232 pfam11241 314232 -pfam11244 314233 pfam11244 314233 -pfam11246 314234 cl26475 331296 -pfam11247 314235 cl26474 331295 -pfam11248 314236 pfam11248 314236 -pfam11253 314240 pfam11253 314240 -pfam11255 314242 pfam11255 314242 -pfam11256 314243 pfam11256 314243 -pfam11259 314245 pfam11259 314245 -pfam11260 314246 pfam11260 314246 -pfam11261 314247 pfam11261 314247 -pfam11263 314249 pfam11263 314249 -pfam11264 314250 cl12138 353367 -pfam11265 314251 cl00057 350880 -pfam11267 314252 pfam11267 314252 -pfam11268 314253 pfam11268 314253 -pfam11269 314254 pfam11269 314254 -pfam11271 314255 pfam11271 314255 -pfam11272 314256 pfam11272 314256 -pfam11273 314257 pfam11273 314257 -pfam11275 314259 pfam11275 314259 -pfam11277 314261 pfam11277 314261 -pfam11281 314264 pfam11281 314264 -pfam11282 314265 pfam11282 314265 -pfam11283 314266 pfam11283 314266 -pfam11284 314267 pfam11284 314267 -pfam11285 314268 pfam11285 314268 -pfam11286 314269 pfam11286 314269 -pfam11288 314271 pfam11288 314271 -pfam11290 314272 cl12832 325560 -pfam11292 314273 pfam11292 314273 -pfam11293 314274 pfam11293 314274 -pfam11295 314276 pfam11295 314276 -pfam11296 314277 pfam11296 314277 -pfam11298 314279 pfam11298 314279 -pfam11300 314281 pfam11300 314281 -pfam11301 314282 pfam11301 314282 -pfam11305 314285 pfam11305 314285 -pfam11308 314288 cl21639 354897 -pfam11309 314289 pfam11309 314289 -pfam11315 314292 pfam11315 314292 -pfam11316 314293 pfam11316 314293 -pfam11317 314294 pfam11317 314294 -pfam11318 314295 pfam11318 314295 -pfam11320 314297 pfam11320 314297 -pfam11329 314305 pfam11329 314305 -pfam11332 314307 pfam11332 314307 -pfam11333 314308 pfam11333 314308 -pfam11337 314310 pfam11337 314310 -pfam11338 314311 pfam11338 314311 -pfam11339 314312 pfam11339 314312 -pfam11341 314314 pfam11341 314314 -pfam11342 314315 pfam11342 314315 -pfam11344 314316 pfam11344 314316 -pfam11346 314317 pfam11346 314317 -pfam11348 314319 pfam11348 314319 -pfam11349 314320 pfam11349 314320 -pfam11350 314321 cl00064 350885 -pfam11351 314322 pfam11351 314322 -pfam11352 314323 pfam11352 314323 -pfam11355 314326 pfam11355 314326 -pfam11356 314327 cl21712 328866 -pfam11357 314328 pfam11357 314328 -pfam11358 314329 pfam11358 314329 -pfam11360 314330 pfam11360 314330 -pfam11361 314331 pfam11361 314331 -pfam11362 314332 pfam11362 314332 -pfam11363 314333 pfam11363 314333 -pfam11365 314335 pfam11365 314335 -pfam11367 314336 cl12902 325614 -pfam11371 314339 pfam11371 314339 -pfam11372 314340 pfam11372 314340 -pfam11375 314343 pfam11375 314343 -pfam11376 314344 pfam11376 314344 -pfam11377 314345 pfam11377 314345 -pfam11378 314346 pfam11378 314346 -pfam11382 314350 pfam11382 314350 -pfam11384 314351 pfam11384 314351 -pfam11385 314352 pfam11385 314352 -pfam11387 314353 pfam11387 314353 -pfam11393 314357 cl12928 325632 -pfam11396 314358 pfam11396 314358 -pfam11397 314359 pfam11397 314359 -pfam11398 314360 pfam11398 314360 -pfam11404 314363 pfam11404 314363 -pfam11405 314364 pfam11405 314364 -pfam11409 314365 pfam11409 314365 -pfam11410 314366 pfam11410 314366 -pfam11412 314368 cl15830 326654 -pfam11413 314369 pfam11413 314369 -pfam11414 314370 pfam11414 314370 -pfam11416 314371 pfam11416 314371 -pfam11418 314372 cl26468 331289 -pfam11419 314373 pfam11419 314373 -pfam11421 314374 pfam11421 314374 -pfam11426 314375 pfam11426 314375 -pfam11429 314376 pfam11429 314376 -pfam11431 314377 pfam11431 314377 -pfam11433 314378 pfam11433 314378 -pfam11435 314379 pfam11435 314379 -pfam11439 314380 pfam11439 314380 -pfam11444 314382 cl12968 325651 -pfam11446 314384 pfam11446 314384 -pfam11448 314385 pfam11448 314385 -pfam11449 314386 pfam11449 314386 -pfam11450 314387 pfam11450 314387 -pfam11452 314388 pfam11452 314388 -pfam11456 314392 pfam11456 314392 -pfam11460 314395 pfam11460 314395 -pfam11461 314396 pfam11461 314396 -pfam11462 314397 pfam11462 314397 -pfam11463 314398 pfam11463 314398 -pfam11468 314401 cl19121 354383 -pfam11473 314404 pfam11473 314404 -pfam11478 314405 pfam11478 314405 -pfam11482 314406 pfam11482 314406 -pfam11483 314407 pfam11483 314407 -pfam11489 314409 pfam11489 314409 -pfam11495 314412 cl15239 326546 -pfam11497 314414 pfam11497 314414 -pfam11502 314416 pfam11502 314416 -pfam11503 314417 pfam11503 314417 -pfam11504 314418 pfam11504 314418 -pfam11507 314419 pfam11507 314419 -pfam11511 314420 pfam11511 314420 -pfam11512 314421 pfam11512 314421 -pfam11513 314422 pfam11513 314422 -pfam11514 314423 pfam11514 314423 -pfam11517 314425 pfam11517 314425 -pfam11520 314426 pfam11520 314426 -pfam11521 314427 pfam11521 314427 -pfam11522 314428 pfam11522 314428 -pfam11524 314430 cl13040 325694 -pfam11525 314431 pfam11525 314431 -pfam11531 314435 cl17171 354315 -pfam11532 314436 pfam11532 314436 -pfam11533 314437 cl09109 352932 -pfam11535 314439 pfam11535 314439 -pfam11538 314440 pfam11538 314440 -pfam11549 314445 pfam11549 314445 -pfam11551 314446 pfam11551 314446 -pfam11553 314447 pfam11553 314447 -pfam11554 314448 pfam11554 314448 -pfam11555 314449 pfam11555 314449 -pfam11557 314450 pfam11557 314450 -pfam11558 314451 pfam11558 314451 -pfam11559 314452 cl23720 355018 -pfam11560 314453 pfam11560 314453 -pfam11561 314454 pfam11561 314454 -pfam11564 314456 pfam11564 314456 -pfam11570 314459 pfam11570 314459 -pfam11573 314461 pfam11573 314461 -pfam11574 314462 pfam11574 314462 -pfam11576 314464 cl26461 331282 -pfam11577 314465 pfam11577 314465 -pfam11579 314467 pfam11579 314467 -pfam11580 314468 pfam11580 314468 -pfam11581 314469 pfam11581 314469 -pfam11589 314472 pfam11589 314472 -pfam11590 314473 pfam11590 314473 -pfam11593 314474 pfam11593 314474 -pfam11594 314475 pfam11594 314475 -pfam11595 314476 pfam11595 314476 -pfam11597 314477 pfam11597 314477 -pfam11599 314478 pfam11599 314478 -pfam11600 314479 pfam11600 314479 -pfam11603 314480 pfam11603 314480 -pfam11605 314482 cl17171 354315 -pfam11616 314486 pfam11616 314486 -pfam11618 314488 cl14603 353812 -pfam11619 314489 pfam11619 314489 -pfam11624 314492 pfam11624 314492 -pfam11625 314493 pfam11625 314493 -pfam11627 314495 pfam11627 314495 -pfam11628 314496 pfam11628 314496 -pfam11629 314497 pfam11629 314497 -pfam11633 314498 pfam11633 314498 -pfam11635 314499 pfam11635 314499 -pfam11636 314500 pfam11636 314500 -pfam11638 314501 pfam11638 314501 -pfam11640 314502 pfam11640 314502 -pfam11646 314504 pfam11646 314504 -pfam11650 314506 pfam11650 314506 -pfam11651 314507 cl22542 354946 -pfam11652 314508 pfam11652 314508 -pfam11653 314509 cl26454 331275 -pfam11654 314510 pfam11654 314510 -pfam11655 314511 pfam11655 314511 -pfam11658 314514 cl11881 325135 -pfam11660 314516 cl26453 331274 -pfam11661 314517 pfam11661 314517 -pfam11662 314518 pfam11662 314518 -pfam11669 314522 pfam11669 314522 -pfam11670 314523 pfam11670 314523 -pfam11672 314524 pfam11672 314524 -pfam11676 314526 pfam11676 314526 -pfam11677 314527 pfam11677 314527 -pfam11679 314528 pfam11679 314528 -pfam11681 314530 pfam11681 314530 -pfam11683 314531 pfam11683 314531 -pfam11684 314532 pfam11684 314532 -pfam11685 314533 pfam11685 314533 -pfam11687 314534 cl14643 353818 -pfam11688 314535 pfam11688 314535 -pfam11690 314536 pfam11690 314536 -pfam11691 314537 pfam11691 314537 -pfam11693 314539 pfam11693 314539 -pfam11695 314541 pfam11695 314541 -pfam11696 314542 pfam11696 314542 -pfam11700 314545 pfam11700 314545 -pfam11703 314548 pfam11703 314548 -pfam11709 314554 pfam11709 314554 -pfam11710 314555 cl21561 354872 -pfam11712 314557 pfam11712 314557 -pfam11715 314558 pfam11715 314558 -pfam11716 314559 cl21506 354845 -pfam11719 314562 pfam11719 314562 -pfam11722 314564 pfam11722 314564 -pfam11723 314565 cl14643 353818 -pfam11724 314566 pfam11724 314566 -pfam11727 314569 cl19916 327698 -pfam11728 314570 pfam11728 314570 -pfam11730 314571 pfam11730 314571 -pfam11733 314574 pfam11733 314574 -pfam11734 314575 cl21573 354878 -pfam11741 314582 pfam11741 314582 -pfam11742 314583 pfam11742 314583 -pfam11744 314585 pfam11744 314585 -pfam11745 314586 pfam11745 314586 -pfam11746 314587 pfam11746 314587 -pfam11747 314588 pfam11747 314588 -pfam11748 314589 pfam11748 314589 -pfam11751 314592 cl14675 326346 -pfam11755 314596 pfam11755 314596 -pfam11758 314598 pfam11758 314598 -pfam11759 314599 pfam11759 314599 -pfam11766 314605 cl13247 325809 -pfam11768 314607 pfam11768 314607 -pfam11770 314609 pfam11770 314609 -pfam11771 314610 pfam11771 314610 -pfam11774 314613 pfam11774 314613 -pfam11778 314616 pfam11778 314616 -pfam11780 314618 pfam11780 314618 -pfam11781 314619 pfam11781 314619 -pfam11785 314622 pfam11785 314622 -pfam11786 314623 pfam11786 314623 -pfam11787 314624 pfam11787 314624 -pfam11788 314625 pfam11788 314625 -pfam11789 314626 cl17238 354325 -pfam11790 314627 cl23725 355022 -pfam11793 314629 cl17238 354325 -pfam11795 314631 pfam11795 314631 -pfam11796 314632 pfam11796 314632 -pfam11797 314633 pfam11797 314633 -pfam11802 314637 pfam11802 314637 -pfam11803 314638 pfam11803 314638 -pfam11805 314640 pfam11805 314640 -pfam11806 314641 pfam11806 314641 -pfam11807 314642 pfam11807 314642 -pfam11810 314644 pfam11810 314644 -pfam11813 314646 cl15816 353981 -pfam11817 314650 pfam11817 314650 -pfam11819 314652 pfam11819 314652 -pfam11820 314653 pfam11820 314653 -pfam11821 314654 pfam11821 314654 -pfam11822 314655 pfam11822 314655 -pfam11823 314656 pfam11823 314656 -pfam11824 314657 pfam11824 314657 -pfam11825 314658 pfam11825 314658 -pfam11827 314659 pfam11827 314659 -pfam11829 314661 pfam11829 314661 -pfam11830 314662 pfam11830 314662 -pfam11831 314663 pfam11831 314663 -pfam11832 314664 pfam11832 314664 -pfam11833 314665 pfam11833 314665 -pfam11837 314668 pfam11837 314668 -pfam11843 314673 pfam11843 314673 -pfam11846 314676 pfam11846 314676 -pfam11847 314677 pfam11847 314677 -pfam11850 314680 pfam11850 314680 -pfam11851 314681 pfam11851 314681 -pfam11854 314684 cl21487 354832 -pfam11855 314685 pfam11855 314685 -pfam11856 314686 pfam11856 314686 -pfam11857 314687 pfam11857 314687 -pfam11858 314688 cl21600 328821 -pfam11866 314696 pfam11866 314696 -pfam11868 314698 pfam11868 314698 -pfam11869 314699 pfam11869 314699 -pfam11872 314702 pfam11872 314702 -pfam11879 314709 pfam11879 314709 -pfam11881 314711 pfam11881 314711 -pfam11883 314713 pfam11883 314713 -pfam11884 314714 pfam11884 314714 -pfam11887 314717 pfam11887 314717 -pfam11895 314724 pfam11895 314724 -pfam11899 314728 cl15422 326575 -pfam11900 314729 pfam11900 314729 -pfam11903 314732 pfam11903 314732 -pfam11907 314736 pfam11907 314736 -pfam11909 314737 pfam11909 314737 -pfam11910 314738 pfam11910 314738 -pfam11913 314740 pfam11913 314740 -pfam11916 314742 pfam11916 314742 -pfam11917 314743 pfam11917 314743 -pfam11918 314744 pfam11918 314744 -pfam11920 314746 cl05878 323239 -pfam11925 314750 pfam11925 314750 -pfam11929 314754 pfam11929 314754 -pfam11931 314755 pfam11931 314755 -pfam11936 314760 pfam11936 314760 -pfam11937 314761 pfam11937 314761 -pfam11939 314763 cl08122 324200 -pfam11945 314769 pfam11945 314769 -pfam11946 314770 pfam11946 314770 -pfam11948 314772 pfam11948 314772 -pfam11950 314774 pfam11950 314774 -pfam11951 314775 cl23766 355037 -pfam11952 314776 pfam11952 314776 -pfam11956 314780 pfam11956 314780 -pfam11957 314781 pfam11957 314781 -pfam11958 314782 pfam11958 314782 -pfam11960 314784 pfam11960 314784 -pfam11962 314786 pfam11962 314786 -pfam11965 314788 pfam11965 314788 -pfam11967 314789 cl21686 328853 -pfam11968 314790 cl17173 354317 -pfam11971 314792 cl00030 350868 -pfam11974 314793 pfam11974 314793 -pfam11976 314795 cl28922 355798 -pfam11977 314796 cl20439 354605 -pfam11979 314798 pfam11979 314798 -pfam11980 314799 pfam11980 314799 -pfam11982 314801 pfam11982 314801 -pfam11984 314803 cl11827 353314 -pfam11985 314804 pfam11985 314804 -pfam11988 314806 pfam11988 314806 -pfam11990 314807 cl13432 325929 -pfam11994 314811 pfam11994 314811 -pfam11996 314813 pfam11996 314813 -pfam11998 314815 pfam11998 314815 -pfam11999 314816 pfam11999 314816 -pfam12001 314818 pfam12001 314818 -pfam12005 314821 pfam12005 314821 -pfam12007 314823 pfam12007 314823 -pfam12010 314826 pfam12010 314826 -pfam12012 314827 cl00213 350955 -pfam12013 314828 pfam12013 314828 -pfam12016 314830 pfam12016 314830 -pfam12020 314833 pfam12020 314833 -pfam12023 314836 pfam12023 314836 -pfam12024 314837 pfam12024 314837 -pfam12027 314839 pfam12027 314839 -pfam12028 314840 pfam12028 314840 -pfam12029 314841 pfam12029 314841 -pfam12030 314842 pfam12030 314842 -pfam12037 314848 pfam12037 314848 -pfam12041 314851 pfam12041 314851 -pfam12042 314852 pfam12042 314852 -pfam12044 314854 pfam12044 314854 -pfam12046 314856 pfam12046 314856 -pfam12048 314858 cl21494 354836 -pfam12049 314859 pfam12049 314859 -pfam12051 314860 pfam12051 314860 -pfam12054 314863 pfam12054 314863 -pfam12055 314864 pfam12055 314864 -pfam12058 314867 pfam12058 314867 -pfam12060 314869 pfam12060 314869 -pfam12061 314870 pfam12061 314870 -pfam12062 314871 pfam12062 314871 -pfam12063 314872 pfam12063 314872 -pfam12064 314873 pfam12064 314873 -pfam12065 314874 pfam12065 314874 -pfam12066 314875 pfam12066 314875 -pfam12067 314876 pfam12067 314876 -pfam12071 314880 pfam12071 314880 -pfam12072 314881 pfam12072 314881 -pfam12073 314882 pfam12073 314882 -pfam12076 314885 pfam12076 314885 -pfam12077 314886 pfam12077 314886 -pfam12078 314887 pfam12078 314887 -pfam12079 314888 pfam12079 314888 -pfam12087 314893 pfam12087 314893 -pfam12088 314894 pfam12088 314894 -pfam12089 314895 pfam12089 314895 -pfam12090 314896 pfam12090 314896 -pfam12092 314898 pfam12092 314898 -pfam12095 314900 pfam12095 314900 -pfam12100 314904 pfam12100 314904 -pfam12102 314906 pfam12102 314906 -pfam12103 314907 pfam12103 314907 -pfam12106 314909 pfam12106 314909 -pfam12108 314910 pfam12108 314910 -pfam12109 314911 pfam12109 314911 -pfam12111 314913 pfam12111 314913 -pfam12114 314915 pfam12114 314915 -pfam12115 314916 pfam12115 314916 -pfam12116 314917 cl22854 354960 -pfam12121 314919 pfam12121 314919 -pfam12122 314920 cl29718 356594 -pfam12126 314922 pfam12126 314922 -pfam12127 314923 cl12057 353349 -pfam12128 314924 pfam12128 314924 -pfam12129 314925 pfam12129 314925 -pfam12132 314928 pfam12132 314928 -pfam12134 314929 cl14782 353835 -pfam12138 314931 pfam12138 314931 -pfam12139 314932 pfam12139 314932 -pfam12140 314933 pfam12140 314933 -pfam12141 314934 pfam12141 314934 -pfam12143 314936 pfam12143 314936 -pfam12144 314937 pfam12144 314937 -pfam12148 314940 pfam12148 314940 -pfam12150 314941 pfam12150 314941 -pfam12151 314942 pfam12151 314942 -pfam12152 314943 pfam12152 314943 -pfam12157 314945 pfam12157 314945 -pfam12158 314946 pfam12158 314946 -pfam12159 314947 pfam12159 314947 -pfam12160 314948 pfam12160 314948 -pfam12162 314950 pfam12162 314950 -pfam12164 314952 pfam12164 314952 -pfam12167 314955 pfam12167 314955 -pfam12169 314957 pfam12169 314957 -pfam12172 314960 pfam12172 314960 -pfam12176 314962 pfam12176 314962 -pfam12177 314963 pfam12177 314963 -pfam12179 314965 pfam12179 314965 -pfam12180 314966 pfam12180 314966 -pfam12183 314968 pfam12183 314968 -pfam12188 314971 pfam12188 314971 -pfam12190 314972 pfam12190 314972 -pfam12191 314973 cl22855 354961 -pfam12192 314974 pfam12192 314974 -pfam12194 314975 pfam12194 314975 -pfam12196 314976 pfam12196 314976 -pfam12197 314977 pfam12197 314977 -pfam12201 314979 pfam12201 314979 -pfam12204 314982 pfam12204 314982 -pfam12205 314983 pfam12205 314983 -pfam12208 314984 pfam12208 314984 -pfam12209 314985 pfam12209 314985 -pfam12211 314987 pfam12211 314987 -pfam12212 314988 pfam12212 314988 -pfam12213 314989 pfam12213 314989 -pfam12216 314992 pfam12216 314992 -pfam12218 314993 pfam12218 314993 -pfam12220 314994 pfam12220 314994 -pfam12223 314997 pfam12223 314997 -pfam12224 314998 pfam12224 314998 -pfam12225 314999 pfam12225 314999 -pfam12226 315000 pfam12226 315000 -pfam12227 315001 pfam12227 315001 -pfam12228 315002 cl23724 355021 -pfam12229 315003 pfam12229 315003 -pfam12230 315004 pfam12230 315004 -pfam12231 315005 pfam12231 315005 -pfam12232 315006 pfam12232 315006 -pfam12235 315008 pfam12235 315008 -pfam12236 315009 cl19541 327580 -pfam12237 315010 pfam12237 315010 -pfam12243 315015 cl02544 351795 -pfam12246 315018 pfam12246 315018 -pfam12249 315021 pfam12249 315021 -pfam12250 315022 pfam12250 315022 -pfam12255 315026 pfam12255 315026 -pfam12256 315027 pfam12256 315027 -pfam12258 315029 pfam12258 315029 -pfam12259 315030 pfam12259 315030 -pfam12260 315031 cl21453 354810 -pfam12263 315034 pfam12263 315034 -pfam12269 315036 pfam12269 315036 -pfam12270 315037 pfam12270 315037 -pfam12271 315038 pfam12271 315038 -pfam12273 315039 pfam12273 315039 -pfam12275 315041 pfam12275 315041 -pfam12276 315042 pfam12276 315042 -pfam12280 315046 pfam12280 315046 -pfam12282 315048 pfam12282 315048 -pfam12284 315049 pfam12284 315049 -pfam12286 315050 pfam12286 315050 -pfam12287 315051 pfam12287 315051 -pfam12288 315052 pfam12288 315052 -pfam12290 315053 pfam12290 315053 -pfam12291 315054 cl11843 325130 -pfam12292 315055 pfam12292 315055 -pfam12294 315057 pfam12294 315057 -pfam12297 315060 pfam12297 315060 -pfam12298 315061 pfam12298 315061 -pfam12299 315062 pfam12299 315062 -pfam12300 315063 pfam12300 315063 -pfam12301 315064 pfam12301 315064 -pfam12304 315065 pfam12304 315065 -pfam12305 315066 pfam12305 315066 -pfam12306 315067 pfam12306 315067 -pfam12307 315068 pfam12307 315068 -pfam12308 315069 pfam12308 315069 -pfam12310 315071 pfam12310 315071 -pfam12314 315074 pfam12314 315074 -pfam12316 315076 pfam12316 315076 -pfam12318 315078 pfam12318 315078 -pfam12321 315081 pfam12321 315081 -pfam12325 315083 pfam12325 315083 -pfam12326 315084 pfam12326 315084 -pfam12327 315085 cl10017 353044 -pfam12328 315086 cl00682 351212 -pfam12336 315092 pfam12336 315092 -pfam12343 315096 pfam12343 315096 -pfam12345 315098 pfam12345 315098 -pfam12346 315099 pfam12346 315099 -pfam12347 315100 pfam12347 315100 -pfam12350 315103 pfam12350 315103 -pfam12351 315104 cl24030 355128 -pfam12355 315106 pfam12355 315106 -pfam12356 315107 pfam12356 315107 -pfam12362 315111 pfam12362 315111 -pfam12363 315112 cl10335 324580 -pfam12364 315113 pfam12364 315113 -pfam12366 315115 pfam12366 315115 -pfam12368 315117 pfam12368 315117 -pfam12369 315118 pfam12369 315118 -pfam12372 315120 pfam12372 315120 -pfam12373 315121 pfam12373 315121 -pfam12374 315122 pfam12374 315122 -pfam12375 315123 cl23947 329188 -pfam12377 315124 pfam12377 315124 -pfam12378 315125 pfam12378 315125 -pfam12385 315126 pfam12385 315126 -pfam12388 315127 cl00064 350885 -pfam12389 315128 cl26362 331183 -pfam12394 315132 pfam12394 315132 -pfam12395 315133 pfam12395 315133 -pfam12398 315136 pfam12398 315136 -pfam12400 315138 pfam12400 315138 -pfam12401 315139 pfam12401 315139 -pfam12403 315141 pfam12403 315141 -pfam12408 315143 pfam12408 315143 -pfam12411 315145 pfam12411 315145 -pfam12413 315147 pfam12413 315147 -pfam12414 315148 pfam12414 315148 -pfam12416 315149 pfam12416 315149 -pfam12417 315150 pfam12417 315150 -pfam12419 315152 pfam12419 315152 -pfam12420 315153 pfam12420 315153 -pfam12432 315161 pfam12432 315161 -pfam12433 315162 pfam12433 315162 -pfam12438 315165 pfam12438 315165 -pfam12439 315166 pfam12439 315166 -pfam12440 315167 pfam12440 315167 -pfam12441 315168 cl23863 355079 -pfam12443 315170 pfam12443 315170 -pfam12444 315171 pfam12444 315171 -pfam12445 315172 pfam12445 315172 -pfam12448 315174 pfam12448 315174 -pfam12452 315178 pfam12452 315178 -pfam12453 315179 pfam12453 315179 -pfam12454 315180 pfam12454 315180 -pfam12457 315183 pfam12457 315183 -pfam12461 315187 pfam12461 315187 -pfam12463 315189 pfam12463 315189 -pfam12466 315192 pfam12466 315192 -pfam12468 315193 pfam12468 315193 -pfam12469 315194 cl21742 354924 -pfam12472 315197 cl22943 328962 -pfam12476 315200 pfam12476 315200 -pfam12478 315201 pfam12478 315201 -pfam12480 315202 pfam12480 315202 -pfam12483 315205 pfam12483 315205 -pfam12484 315206 pfam12484 315206 -pfam12485 315207 pfam12485 315207 -pfam12489 315210 pfam12489 315210 -pfam12490 315211 pfam12490 315211 -pfam12491 315212 pfam12491 315212 -pfam12494 315213 pfam12494 315213 -pfam12495 315214 pfam12495 315214 -pfam12496 315215 pfam12496 315215 -pfam12497 315216 pfam12497 315216 -pfam12498 315217 pfam12498 315217 -pfam12502 315221 pfam12502 315221 -pfam12507 315223 pfam12507 315223 -pfam12509 315225 pfam12509 315225 -pfam12519 315234 cl03224 351964 -pfam12520 315235 pfam12520 315235 -pfam12522 315236 pfam12522 315236 -pfam12524 315237 pfam12524 315237 -pfam12526 315239 pfam12526 315239 -pfam12527 315240 pfam12527 315240 -pfam12529 315242 pfam12529 315242 -pfam12530 315243 pfam12530 315243 -pfam12531 315244 pfam12531 315244 -pfam12532 315245 pfam12532 315245 -pfam12534 315247 pfam12534 315247 -pfam12540 315253 pfam12540 315253 -pfam12543 315256 cl11887 325136 -pfam12545 315258 pfam12545 315258 -pfam12546 315259 pfam12546 315259 -pfam12547 315260 pfam12547 315260 -pfam12548 315261 pfam12548 315261 -pfam12549 315262 pfam12549 315262 -pfam12550 315263 pfam12550 315263 -pfam12551 315264 pfam12551 315264 -pfam12555 315268 pfam12555 315268 -pfam12559 315272 pfam12559 315272 -pfam12560 315273 pfam12560 315273 -pfam12565 315275 pfam12565 315275 -pfam12567 315277 pfam12567 315277 -pfam12570 315279 pfam12570 315279 -pfam12571 315280 pfam12571 315280 -pfam12572 315281 pfam12572 315281 -pfam12574 315283 pfam12574 315283 -pfam12577 315285 pfam12577 315285 -pfam12578 315286 pfam12578 315286 -pfam12581 315289 pfam12581 315289 -pfam12582 315290 pfam12582 315290 -pfam12584 315292 pfam12584 315292 -pfam12585 315293 pfam12585 315293 -pfam12586 315294 pfam12586 315294 -pfam12587 315295 pfam12587 315295 -pfam12588 315296 pfam12588 315296 -pfam12589 315297 pfam12589 315297 -pfam12590 315298 pfam12590 315298 -pfam12595 315299 pfam12595 315299 -pfam12598 315301 pfam12598 315301 -pfam12599 315302 pfam12599 315302 -pfam12600 315303 pfam12600 315303 -pfam12602 315304 pfam12602 315304 -pfam12604 315305 pfam12604 315305 -pfam12605 315306 pfam12605 315306 -pfam12606 315307 pfam12606 315307 -pfam12610 315310 pfam12610 315310 -pfam12611 315311 cl11797 325125 -pfam12614 315313 pfam12614 315313 -pfam12616 315315 pfam12616 315315 -pfam12617 315316 pfam12617 315316 -pfam12618 315317 pfam12618 315317 -pfam12622 315321 pfam12622 315321 -pfam12623 315322 pfam12623 315322 -pfam12635 315331 pfam12635 315331 -pfam12636 315332 pfam12636 315332 -pfam12638 315334 pfam12638 315334 -pfam12639 315335 cl00083 350893 -pfam12640 315336 pfam12640 315336 -pfam12641 315337 cl00438 351093 -pfam12644 315340 pfam12644 315340 -pfam12645 315341 pfam12645 315341 -pfam12647 315343 pfam12647 315343 -pfam12648 315344 pfam12648 315344 -pfam12652 315346 pfam12652 315346 -pfam12653 315347 pfam12653 315347 -pfam12654 315348 pfam12654 315348 -pfam12655 315349 pfam12655 315349 -pfam12656 315350 cl02611 351825 -pfam12658 315352 pfam12658 315352 -pfam12663 315356 pfam12663 315356 -pfam12664 315357 pfam12664 315357 -pfam12666 315358 pfam12666 315358 -pfam12669 315361 pfam12669 315361 -pfam12670 315362 cl22548 328914 -pfam12671 315363 pfam12671 315363 -pfam12672 315364 pfam12672 315364 -pfam12673 315365 pfam12673 315365 -pfam12676 315368 pfam12676 315368 -pfam12678 315369 pfam12678 315369 -pfam12679 315370 cl21474 354826 -pfam12681 315372 cl14632 353816 -pfam12683 315373 pfam12683 315373 -pfam12684 315374 cl00641 351191 -pfam12687 315377 pfam12687 315377 -pfam12688 315378 pfam12688 315378 -pfam12689 315379 cl21460 354816 -pfam12691 315381 pfam12691 315381 -pfam12694 315382 pfam12694 315382 -pfam12695 315383 cl21494 354836 -pfam12696 315384 cl21455 354812 -pfam12709 315393 pfam12709 315393 -pfam12710 315394 cl21460 354816 -pfam12712 315395 pfam12712 315395 -pfam12714 315397 cl17735 327433 -pfam12716 315399 pfam12716 315399 -pfam12721 315404 pfam12721 315404 -pfam12722 315405 cl15483 326586 -pfam12723 315406 pfam12723 315406 -pfam12729 315412 cl00144 350917 -pfam12730 315413 cl21474 354826 -pfam12733 315415 pfam12733 315415 -pfam12735 315417 pfam12735 315417 -pfam12736 315418 pfam12736 315418 -pfam12737 315419 pfam12737 315419 -pfam12738 315420 cl00038 350871 -pfam12741 315423 cl21747 354926 -pfam12743 315424 pfam12743 315424 -pfam12744 315425 pfam12744 315425 -pfam12745 315426 cl00266 320868 -pfam12747 315428 pfam12747 315428 -pfam12749 315429 cl19543 354437 -pfam12750 315430 pfam12750 315430 -pfam12754 315433 cl28922 355798 -pfam12755 315434 pfam12755 315434 -pfam12758 315437 pfam12758 315437 -pfam12761 315439 pfam12761 315439 -pfam12764 315441 pfam12764 315441 -pfam12770 315447 cl19248 354399 -pfam12772 315448 pfam12772 315448 -pfam12773 315449 pfam12773 315449 -pfam12778 315451 pfam12778 315451 -pfam12782 315454 pfam12782 315454 -pfam12784 315456 cl29714 356590 -pfam12785 315457 pfam12785 315457 -pfam12787 315458 pfam12787 315458 -pfam12788 315459 pfam12788 315459 -pfam12791 315461 pfam12791 315461 -pfam12800 315470 pfam12800 315470 -pfam12808 315477 pfam12808 315477 -pfam12809 315478 pfam12809 315478 -pfam12810 315479 pfam12810 315479 -pfam12811 315480 cl00473 351107 -pfam12813 315482 pfam12813 315482 -pfam12814 315483 cl17171 354315 -pfam12815 315484 pfam12815 315484 -pfam12820 315487 pfam12820 315487 -pfam12824 315491 pfam12824 315491 -pfam12825 315492 pfam12825 315492 -pfam12826 315493 cl22429 354935 -pfam12827 315494 pfam12827 315494 -pfam12829 315496 pfam12829 315496 -pfam12831 315498 pfam12831 315498 -pfam12832 315499 cl28910 355786 -pfam12834 315501 pfam12834 315501 -pfam12835 315502 cl00213 350955 -pfam12841 315507 pfam12841 315507 -pfam12845 315511 pfam12845 315511 -pfam12846 315512 cl29711 356587 -pfam12849 315515 cl21456 354813 -pfam12851 315517 pfam12851 315517 -pfam12853 315519 pfam12853 315519 -pfam12854 315520 cl29710 356586 -pfam12855 315521 pfam12855 315521 -pfam12856 315522 pfam12856 315522 -pfam12862 315526 cl20473 327937 -pfam12863 315527 pfam12863 315527 -pfam12866 315529 pfam12866 315529 -pfam12870 315533 cl09109 352932 -pfam12871 315534 pfam12871 315534 -pfam12873 315536 pfam12873 315536 -pfam12875 315538 pfam12875 315538 -pfam12877 315539 pfam12877 315539 -pfam12878 315540 pfam12878 315540 -pfam12879 315541 pfam12879 315541 -pfam12881 315542 pfam12881 315542 -pfam12883 315543 cl21673 328845 -pfam12887 315547 pfam12887 315547 -pfam12890 315550 cl00281 351001 -pfam12891 315551 cl23725 355022 -pfam12894 315554 pfam12894 315554 -pfam12899 315558 cl17340 327413 -pfam12901 315560 pfam12901 315560 -pfam12902 315561 cl00264 350992 -pfam12903 315562 cl21567 328802 -pfam12904 315563 pfam12904 315563 -pfam12910 315565 pfam12910 315565 -pfam12916 315571 cl21456 354813 -pfam12917 315572 cl21469 354822 -pfam12921 315576 pfam12921 315576 -pfam12924 315579 pfam12924 315579 -pfam12926 315581 pfam12926 315581 -pfam12933 315588 pfam12933 315588 -pfam12934 315589 pfam12934 315589 -pfam12935 315590 pfam12935 315590 -pfam12936 315591 pfam12936 315591 -pfam12938 315593 pfam12938 315593 -pfam12939 315594 pfam12939 315594 -pfam12940 315595 pfam12940 315595 -pfam12943 315596 pfam12943 315596 -pfam12947 315598 cl21504 354843 -pfam12950 315601 pfam12950 315601 -pfam12952 315603 pfam12952 315603 -pfam12953 315604 pfam12953 315604 -pfam12954 315605 pfam12954 315605 -pfam12957 315607 pfam12957 315607 -pfam12958 315608 pfam12958 315608 -pfam12959 315609 pfam12959 315609 -pfam12960 315610 pfam12960 315610 -pfam12961 315611 cl01020 351351 -pfam12963 315612 pfam12963 315612 -pfam12964 315613 pfam12964 315613 -pfam12965 315614 cl00718 351226 -pfam12966 315615 cl11871 325132 -pfam12973 315619 cl21464 354820 -pfam12976 315622 pfam12976 315622 -pfam12977 315623 pfam12977 315623 -pfam12979 315624 pfam12979 315624 -pfam12982 315625 pfam12982 315625 -pfam12983 315626 pfam12983 315626 -pfam12985 315628 cl21470 354823 -pfam12986 315629 pfam12986 315629 -pfam12987 315630 pfam12987 315630 -pfam12992 315633 pfam12992 315633 -pfam12993 315634 pfam12993 315634 -pfam12997 315636 pfam12997 315636 -pfam13000 315638 cl28910 355786 -pfam13002 315640 pfam13002 315640 -pfam13009 315645 pfam13009 315645 -pfam13016 315647 pfam13016 315647 -pfam13017 315648 pfam13017 315648 -pfam13021 315652 pfam13021 315652 -pfam13022 315653 pfam13022 315653 -pfam13025 315655 pfam13025 315655 -pfam13026 315656 pfam13026 315656 -pfam13027 315657 pfam13027 315657 -pfam13028 315658 pfam13028 315658 -pfam13030 315659 pfam13030 315659 -pfam13031 315660 pfam13031 315660 -pfam13032 315661 pfam13032 315661 -pfam13034 315662 pfam13034 315662 -pfam13035 315663 pfam13035 315663 -pfam13037 315665 pfam13037 315665 -pfam13038 315666 pfam13038 315666 -pfam13039 315667 pfam13039 315667 -pfam13040 315668 pfam13040 315668 -pfam13043 315670 pfam13043 315670 -pfam13045 315671 pfam13045 315671 -pfam13047 315672 pfam13047 315672 -pfam13048 315673 pfam13048 315673 -pfam13049 315674 pfam13049 315674 -pfam13050 315675 pfam13050 315675 -pfam13051 315676 pfam13051 315676 -pfam13052 315677 pfam13052 315677 -pfam13054 315678 pfam13054 315678 -pfam13055 315679 pfam13055 315679 -pfam13057 315680 pfam13057 315680 -pfam13059 315681 pfam13059 315681 -pfam13063 315682 pfam13063 315682 -pfam13064 315683 pfam13064 315683 -pfam13065 315684 pfam13065 315684 -pfam13066 315685 pfam13066 315685 -pfam13067 315686 pfam13067 315686 -pfam13068 315687 pfam13068 315687 -pfam13069 315688 pfam13069 315688 -pfam13071 315689 pfam13071 315689 -pfam13073 315690 pfam13073 315690 -pfam13074 315691 cl23901 329160 -pfam13076 315692 pfam13076 315692 -pfam13077 315693 pfam13077 315693 -pfam13079 315694 pfam13079 315694 -pfam13080 315695 pfam13080 315695 -pfam13084 315697 pfam13084 315697 -pfam13088 315701 cl21531 354855 -pfam13091 315704 pfam13091 315704 -pfam13094 315707 pfam13094 315707 -pfam13097 315709 pfam13097 315709 -pfam13098 315710 cl00388 351069 -pfam13100 315711 cl21541 328784 -pfam13101 315712 pfam13101 315712 -pfam13105 315715 pfam13105 315715 -pfam13106 315716 pfam13106 315716 -pfam13108 315717 pfam13108 315717 -pfam13109 315718 cl21636 354896 -pfam13110 315719 pfam13110 315719 -pfam13114 315720 cl21686 328853 -pfam13115 315721 cl21581 328810 -pfam13117 315723 pfam13117 315723 -pfam13118 315724 pfam13118 315724 -pfam13119 315725 pfam13119 315725 -pfam13120 315726 pfam13120 315726 -pfam13121 315727 pfam13121 315727 -pfam13125 315728 pfam13125 315728 -pfam13126 315729 pfam13126 315729 -pfam13128 315731 pfam13128 315731 -pfam13129 315732 pfam13129 315732 -pfam13130 315733 pfam13130 315733 -pfam13131 315734 pfam13131 315734 -pfam13133 315735 pfam13133 315735 -pfam13134 315736 pfam13134 315736 -pfam13136 315737 pfam13136 315737 -pfam13138 315738 pfam13138 315738 -pfam13141 315739 pfam13141 315739 -pfam13143 315740 pfam13143 315740 -pfam13146 315743 pfam13146 315743 -pfam13150 315746 pfam13150 315746 -pfam13154 315748 pfam13154 315748 -pfam13156 315750 cl00516 351129 -pfam13157 315751 pfam13157 315751 -pfam13158 315752 pfam13158 315752 -pfam13159 315753 pfam13159 315753 -pfam13160 315754 pfam13160 315754 -pfam13161 315755 pfam13161 315755 -pfam13162 315756 pfam13162 315756 -pfam13164 315758 pfam13164 315758 -pfam13170 315762 pfam13170 315762 -pfam13171 315763 pfam13171 315763 -pfam13173 315764 cl21455 354812 -pfam13178 315769 pfam13178 315769 -pfam13180 315771 cl00117 350907 -pfam13183 315774 cl19102 354379 -pfam13184 315775 cl00098 350899 -pfam13187 315778 cl19102 354379 -pfam13190 315781 cl07986 324188 -pfam13195 315786 pfam13195 315786 -pfam13196 315787 pfam13196 315787 -pfam13197 315788 pfam13197 315788 -pfam13199 315789 cl29077 355953 -pfam13200 315790 cl29077 355953 -pfam13204 315793 cl23725 355022 -pfam13206 315795 cl26244 331065 -pfam13208 315797 pfam13208 315797 -pfam13210 315798 pfam13210 315798 -pfam13212 315800 pfam13212 315800 -pfam13215 315801 pfam13215 315801 -pfam13216 315802 pfam13216 315802 -pfam13217 315803 pfam13217 315803 -pfam13219 315805 pfam13219 315805 -pfam13224 315807 pfam13224 315807 -pfam13225 315808 pfam13225 315808 -pfam13227 315810 pfam13227 315810 -pfam13228 315811 pfam13228 315811 -pfam13229 315812 pfam13229 315812 -pfam13230 315813 cl00319 351023 -pfam13232 315815 cl05087 352314 -pfam13236 315818 pfam13236 315818 -pfam13238 315820 cl21455 354812 -pfam13240 315822 cl11198 324906 -pfam13243 315825 pfam13243 315825 -pfam13245 315827 pfam13245 315827 -pfam13248 315830 cl11198 324906 -pfam13249 315831 pfam13249 315831 -pfam13255 315837 pfam13255 315837 -pfam13256 315838 pfam13256 315838 -pfam13257 315839 pfam13257 315839 -pfam13260 315841 pfam13260 315841 -pfam13261 315842 pfam13261 315842 -pfam13262 315843 pfam13262 315843 -pfam13263 315844 pfam13263 315844 -pfam13266 315847 pfam13266 315847 -pfam13267 315848 pfam13267 315848 -pfam13269 315850 pfam13269 315850 -pfam13270 315851 pfam13270 315851 -pfam13272 315853 pfam13272 315853 -pfam13279 315859 cl00509 351126 -pfam13283 315863 pfam13283 315863 -pfam13287 315865 cl29705 356581 -pfam13289 315867 cl00195 350940 -pfam13290 315868 cl29705 356581 -pfam13293 315871 pfam13293 315871 -pfam13297 315873 pfam13297 315873 -pfam13298 315874 cl11819 325126 -pfam13300 315876 pfam13300 315876 -pfam13301 315877 pfam13301 315877 -pfam13302 315878 cl29704 356580 -pfam13303 315879 cl21492 328750 -pfam13304 315880 pfam13304 315880 -pfam13306 315882 pfam13306 315882 -pfam13308 315884 pfam13308 315884 -pfam13311 315887 pfam13311 315887 -pfam13312 315888 pfam13312 315888 -pfam13316 315890 pfam13316 315890 -pfam13318 315891 pfam13318 315891 -pfam13323 315893 pfam13323 315893 -pfam13324 315894 pfam13324 315894 -pfam13325 315895 pfam13325 315895 -pfam13327 315897 pfam13327 315897 -pfam13328 315898 cl21469 354822 -pfam13329 315899 pfam13329 315899 -pfam13330 315900 pfam13330 315900 -pfam13338 315907 cl24040 355131 -pfam13341 315910 cl22851 354958 -pfam13346 315914 cl21474 354826 -pfam13347 315915 pfam13347 315915 -pfam13355 315921 pfam13355 315921 -pfam13358 315923 cl21549 354865 -pfam13361 315926 pfam13361 315926 -pfam13362 315927 cl00718 351226 -pfam13364 315929 pfam13364 315929 -pfam13367 315932 cl23838 329115 -pfam13372 315937 pfam13372 315937 -pfam13373 315938 pfam13373 315938 -pfam13374 315939 cl22897 354972 -pfam13377 315942 cl10011 353040 -pfam13383 315947 cl17173 354317 -pfam13388 315952 pfam13388 315952 -pfam13389 315953 pfam13389 315953 -pfam13392 315955 cl00083 350893 -pfam13394 315957 cl18962 354374 -pfam13397 315960 pfam13397 315960 -pfam13398 315961 cl10020 324562 -pfam13399 315962 pfam13399 315962 -pfam13400 315963 cl29703 356579 -pfam13401 315964 pfam13401 315964 -pfam13403 315966 cl22434 354937 -pfam13406 315969 cl00222 350962 -pfam13407 315970 cl10011 353040 -pfam13408 315971 cl19592 327595 -pfam13414 315977 pfam13414 315977 -pfam13419 315982 pfam13419 315982 -pfam13420 315983 cl17182 354318 -pfam13421 315984 cl19107 354381 -pfam13422 315985 pfam13422 315985 -pfam13423 315986 pfam13423 315986 -pfam13424 315987 pfam13424 315987 -pfam13425 315988 cl04850 352267 -pfam13429 315992 pfam13429 315992 -pfam13433 315996 cl10011 353040 -pfam13436 315999 cl10470 353077 -pfam13440 316003 cl09326 352957 -pfam13443 316006 cl22854 354960 -pfam13446 316009 pfam13446 316009 -pfam13450 316012 cl21454 354811 -pfam13457 316019 pfam13457 316019 -pfam13459 316021 cl19102 354379 -pfam13462 316023 cl00388 351069 -pfam13463 316024 cl21459 354815 -pfam13466 316027 cl00604 351173 -pfam13471 316032 pfam13471 316032 -pfam13473 316034 cl19115 354382 -pfam13475 316036 pfam13475 316036 -pfam13477 316038 cl10013 353042 -pfam13479 316040 cl21455 354812 -pfam13480 316041 cl17182 354318 -pfam13481 316042 cl21455 354812 -pfam13482 316043 cl10012 353041 -pfam13483 316044 cl23716 355014 -pfam13486 316046 cl26168 330989 -pfam13494 316054 pfam13494 316054 -pfam13498 316057 pfam13498 316057 -pfam13500 316059 cl21455 354812 -pfam13509 316067 cl09927 353027 -pfam13510 316068 cl00159 350924 -pfam13520 316078 pfam13520 316078 -pfam13521 316079 cl21455 354812 -pfam13522 316080 cl00319 351023 -pfam13526 316084 pfam13526 316084 -pfam13527 316085 cl17182 354318 -pfam13528 316086 cl26153 330974 -pfam13529 316087 cl00296 351007 -pfam13530 316088 pfam13530 316088 -pfam13535 316093 cl17255 354326 -pfam13543 316101 pfam13543 316101 -pfam13547 316104 pfam13547 316104 -pfam13553 316110 pfam13553 316110 -pfam13554 316111 pfam13554 316111 -pfam13556 316113 pfam13556 316113 -pfam13559 316116 pfam13559 316116 -pfam13560 316117 cl22854 354960 -pfam13562 316119 pfam13562 316119 -pfam13564 316121 cl21527 328775 -pfam13574 316130 pfam13574 316130 -pfam13575 316131 pfam13575 316131 -pfam13577 316133 cl09109 352932 -pfam13579 316135 cl10013 353042 -pfam13580 316136 cl00389 351070 -pfam13582 316138 cl00064 350885 -pfam13583 316139 cl00064 350885 -pfam13585 316141 cl21544 354863 -pfam13589 316143 cl00075 350890 -pfam13595 316147 cl19646 327605 -pfam13599 316151 pfam13599 316151 -pfam13601 316153 cl21459 354815 -pfam13610 316161 cl26089 330910 -pfam13611 316162 cl29696 356572 -pfam13614 316165 cl28913 355789 -pfam13616 316166 cl29122 355998 -pfam13621 316171 cl21464 354820 -pfam13625 316175 pfam13625 316175 -pfam13628 316177 cl21583 328811 -pfam13631 316180 cl23723 355020 -pfam13635 316183 cl24018 355123 -pfam13637 316185 pfam13637 316185 -pfam13642 316190 pfam13642 316190 -pfam13645 316193 pfam13645 316193 -pfam13651 316198 pfam13651 316198 -pfam13661 316206 cl21496 354838 -pfam13662 316207 cl00718 351226 -pfam13670 316214 cl21622 354894 -pfam13676 316219 cl23749 355033 -pfam13678 316221 pfam13678 316221 -pfam13679 316222 cl17173 354317 -pfam13686 316228 cl00672 351208 -pfam13687 316229 cl24047 329257 -pfam13694 316236 pfam13694 316236 -pfam13699 316240 pfam13699 316240 -pfam13701 316242 pfam13701 316242 -pfam13702 316243 cl00222 350962 -pfam13704 316244 cl11394 353239 -pfam13708 316247 pfam13708 316247 -pfam13712 316251 cl11394 353239 -pfam13714 316253 cl21457 354814 -pfam13717 316256 cl11777 325124 -pfam13718 316257 cl17182 354318 -pfam13719 316258 cl11777 325124 -pfam13724 316263 pfam13724 316263 -pfam13726 316265 cl21473 354825 -pfam13727 316266 cl21454 354811 -pfam13730 316269 cl21459 354815 -pfam13731 316270 pfam13731 316270 -pfam13732 316271 pfam13732 316271 -pfam13733 316272 pfam13733 316272 -pfam13735 316274 cl21469 354822 -pfam13738 316275 cl21454 354811 -pfam13741 316278 cl24037 355130 -pfam13743 316280 cl00388 351069 -pfam13744 316281 cl22854 354960 -pfam13746 316282 cl19102 354379 -pfam13747 316283 pfam13747 316283 -pfam13748 316284 cl00549 321036 -pfam13750 316286 cl23771 355039 -pfam13753 316288 cl23886 329151 -pfam13754 316289 cl23771 355039 -pfam13756 316291 pfam13756 316291 -pfam13757 316292 cl02699 351858 -pfam13758 316293 cl09111 352933 -pfam13761 316295 pfam13761 316295 -pfam13762 316296 pfam13762 316296 -pfam13764 316298 pfam13764 316298 -pfam13769 316302 pfam13769 316302 -pfam13772 316305 cl22886 354971 -pfam13775 316308 pfam13775 316308 -pfam13777 316310 cl24047 329257 -pfam13782 316315 pfam13782 316315 -pfam13783 316316 pfam13783 316316 -pfam13786 316319 pfam13786 316319 -pfam13788 316321 pfam13788 316321 -pfam13789 316322 pfam13789 316322 -pfam13790 316323 pfam13790 316323 -pfam13796 316327 pfam13796 316327 -pfam13797 316328 pfam13797 316328 -pfam13798 316329 pfam13798 316329 -pfam13799 316330 pfam13799 316330 -pfam13800 316331 pfam13800 316331 -pfam13806 316336 cl00938 351321 -pfam13809 316339 pfam13809 316339 -pfam13811 316341 pfam13811 316341 -pfam13812 316342 pfam13812 316342 -pfam13813 316343 cl00738 321138 -pfam13814 316344 cl23910 329164 -pfam13820 316347 pfam13820 316347 -pfam13822 316349 pfam13822 316349 -pfam13823 316350 pfam13823 316350 -pfam13824 316351 pfam13824 316351 -pfam13826 316352 cl21745 354925 -pfam13829 316355 pfam13829 316355 -pfam13830 316356 pfam13830 316356 -pfam13833 316358 cl08302 324233 -pfam13834 316359 pfam13834 316359 -pfam13836 316361 pfam13836 316361 -pfam13838 316363 pfam13838 316363 -pfam13841 316366 cl29693 356569 -pfam13842 316367 pfam13842 316367 -pfam13843 316368 pfam13843 316368 -pfam13844 316369 cl10013 353042 -pfam13845 316370 pfam13845 316370 -pfam13846 316371 pfam13846 316371 -pfam13847 316372 cl17173 354317 -pfam13848 316373 pfam13848 316373 -pfam13851 316375 pfam13851 316375 -pfam13856 316379 cl05094 322935 -pfam13857 316380 pfam13857 316380 -pfam13859 316382 pfam13859 316382 -pfam13865 316388 pfam13865 316388 -pfam13866 316389 pfam13866 316389 -pfam13870 316393 pfam13870 316393 -pfam13871 316394 pfam13871 316394 -pfam13872 316395 pfam13872 316395 -pfam13873 316396 cl23759 355036 -pfam13876 316399 cl10351 324581 -pfam13877 316400 pfam13877 316400 -pfam13881 316404 cl28922 355798 -pfam13882 316405 pfam13882 316405 -pfam13883 316406 cl00381 351064 -pfam13885 316408 pfam13885 316408 -pfam13887 316410 pfam13887 316410 -pfam13888 316411 pfam13888 316411 -pfam13890 316413 pfam13890 316413 -pfam13895 316418 cl11960 353325 -pfam13897 316420 pfam13897 316420 -pfam13898 316421 pfam13898 316421 -pfam13899 316422 cl00388 351069 -pfam13902 316424 pfam13902 316424 -pfam13903 316425 cl21598 354884 -pfam13904 316426 pfam13904 316426 -pfam13908 316430 pfam13908 316430 -pfam13909 316431 pfam13909 316431 -pfam13910 316432 pfam13910 316432 -pfam13911 316433 cl00388 351069 -pfam13913 316435 pfam13913 316435 -pfam13914 316436 pfam13914 316436 -pfam13915 316437 pfam13915 316437 -pfam13916 316438 pfam13916 316438 -pfam13917 316439 pfam13917 316439 -pfam13918 316440 cl15239 326546 -pfam13922 316444 pfam13922 316444 -pfam13923 316445 cl17238 354325 -pfam13926 316448 pfam13926 316448 -pfam13928 316450 pfam13928 316450 -pfam13929 316451 pfam13929 316451 -pfam13930 316452 cl00089 350897 -pfam13931 316453 pfam13931 316453 -pfam13933 316455 cl03449 322303 -pfam13934 316456 pfam13934 316456 -pfam13939 316461 pfam13939 316461 -pfam13943 316464 pfam13943 316464 -pfam13945 316466 pfam13945 316466 -pfam13957 316474 cl08066 324193 -pfam13958 316475 pfam13958 316475 -pfam13964 316481 cl02701 351859 -pfam13967 316484 pfam13967 316484 -pfam13969 316486 pfam13969 316486 -pfam13970 316487 pfam13970 316487 -pfam13971 316488 pfam13971 316488 -pfam13973 316490 pfam13973 316490 -pfam13982 316496 pfam13982 316496 -pfam13983 316497 pfam13983 316497 -pfam13985 316499 pfam13985 316499 -pfam13990 316504 pfam13990 316504 -pfam13992 316506 cl10256 324578 -pfam13999 316513 cl23980 329212 -pfam14001 316514 cl26057 330878 -pfam14003 316516 pfam14003 316516 -pfam14005 316518 pfam14005 316518 -pfam14006 316519 pfam14006 316519 -pfam14007 316520 pfam14007 316520 -pfam14011 316524 pfam14011 316524 -pfam14012 316525 pfam14012 316525 -pfam14013 316526 pfam14013 316526 -pfam14015 316528 pfam14015 316528 -pfam14016 316529 pfam14016 316529 -pfam14017 316530 pfam14017 316530 -pfam14018 316531 pfam14018 316531 -pfam14019 316532 pfam14019 316532 -pfam14020 316533 pfam14020 316533 -pfam14024 316537 pfam14024 316537 -pfam14025 316538 pfam14025 316538 -pfam14028 316541 cl14828 326359 -pfam14029 316542 pfam14029 316542 -pfam14030 316543 pfam14030 316543 -pfam14032 316545 pfam14032 316545 -pfam14034 316547 pfam14034 316547 -pfam14035 316548 pfam14035 316548 -pfam14037 316550 pfam14037 316550 -pfam14038 316551 pfam14038 316551 -pfam14040 316553 pfam14040 316553 -pfam14041 316554 pfam14041 316554 -pfam14042 316555 pfam14042 316555 -pfam14043 316556 pfam14043 316556 -pfam14044 316557 pfam14044 316557 -pfam14045 316558 pfam14045 316558 -pfam14047 316560 pfam14047 316560 -pfam14049 316562 pfam14049 316562 -pfam14050 316563 pfam14050 316563 -pfam14054 316567 pfam14054 316567 -pfam14055 316568 pfam14055 316568 -pfam14057 316570 pfam14057 316570 -pfam14058 316571 pfam14058 316571 -pfam14062 316575 pfam14062 316575 -pfam14065 316578 pfam14065 316578 -pfam14068 316581 pfam14068 316581 -pfam14071 316584 pfam14071 316584 -pfam14073 316586 pfam14073 316586 -pfam14074 316587 pfam14074 316587 -pfam14076 316589 pfam14076 316589 -pfam14077 316590 pfam14077 316590 -pfam14078 316591 pfam14078 316591 -pfam14080 316593 pfam14080 316593 -pfam14082 316595 pfam14082 316595 -pfam14084 316596 pfam14084 316596 -pfam14085 316597 pfam14085 316597 -pfam14089 316601 pfam14089 316601 -pfam14091 316603 pfam14091 316603 -pfam14094 316606 pfam14094 316606 -pfam14097 316608 pfam14097 316608 -pfam14099 316610 cl21738 354923 -pfam14100 316611 pfam14100 316611 -pfam14101 316612 pfam14101 316612 -pfam14102 316613 cl14855 326364 -pfam14105 316616 pfam14105 316616 -pfam14107 316618 pfam14107 316618 -pfam14108 316619 pfam14108 316619 -pfam14112 316623 pfam14112 316623 -pfam14114 316625 pfam14114 316625 -pfam14115 316626 pfam14115 316626 -pfam14116 316627 cl15733 326636 -pfam14117 316628 pfam14117 316628 -pfam14119 316629 pfam14119 316629 -pfam14120 316630 pfam14120 316630 -pfam14122 316632 cl15819 326649 -pfam14125 316635 pfam14125 316635 -pfam14130 316640 pfam14130 316640 -pfam14131 316641 pfam14131 316641 -pfam14137 316647 pfam14137 316647 -pfam14139 316649 pfam14139 316649 -pfam14143 316651 pfam14143 316651 -pfam14145 316653 pfam14145 316653 -pfam14146 316654 pfam14146 316654 -pfam14149 316655 pfam14149 316655 -pfam14151 316657 pfam14151 316657 -pfam14153 316658 pfam14153 316658 -pfam14154 316659 pfam14154 316659 -pfam14155 316660 pfam14155 316660 -pfam14156 316661 pfam14156 316661 -pfam14158 316662 pfam14158 316662 -pfam14162 316666 pfam14162 316666 -pfam14163 316667 pfam14163 316667 -pfam14164 316668 pfam14164 316668 -pfam14165 316669 pfam14165 316669 -pfam14166 316670 pfam14166 316670 -pfam14167 316671 pfam14167 316671 -pfam14168 316672 pfam14168 316672 -pfam14169 316673 pfam14169 316673 -pfam14171 316674 pfam14171 316674 -pfam14172 316675 pfam14172 316675 -pfam14173 316676 pfam14173 316676 -pfam14174 316677 pfam14174 316677 -pfam14175 316678 pfam14175 316678 -pfam14176 316679 pfam14176 316679 -pfam14177 316680 pfam14177 316680 -pfam14179 316681 pfam14179 316681 -pfam14181 316682 pfam14181 316682 -pfam14182 316683 pfam14182 316683 -pfam14183 316684 pfam14183 316684 -pfam14184 316685 pfam14184 316685 -pfam14186 316686 pfam14186 316686 -pfam14188 316687 cl11919 325139 -pfam14190 316689 pfam14190 316689 -pfam14191 316690 pfam14191 316690 -pfam14192 316691 pfam14192 316691 -pfam14193 316692 pfam14193 316692 -pfam14194 316693 pfam14194 316693 -pfam14195 316694 pfam14195 316694 -pfam14197 316696 pfam14197 316696 -pfam14198 316697 pfam14198 316697 -pfam14199 316698 pfam14199 316698 -pfam14200 316699 cl23784 329074 -pfam14201 316700 pfam14201 316700 -pfam14202 316701 pfam14202 316701 -pfam14203 316702 pfam14203 316702 -pfam14205 316704 pfam14205 316704 -pfam14206 316705 pfam14206 316705 -pfam14207 316706 pfam14207 316706 -pfam14208 316707 pfam14208 316707 -pfam14209 316708 pfam14209 316708 -pfam14216 316712 pfam14216 316712 -pfam14217 316713 pfam14217 316713 -pfam14218 316714 pfam14218 316714 -pfam14219 316715 pfam14219 316715 -pfam14220 316716 pfam14220 316716 -pfam14221 316717 pfam14221 316717 -pfam14228 316723 pfam14228 316723 -pfam14229 316724 cl22429 354935 -pfam14230 316725 pfam14230 316725 -pfam14233 316728 pfam14233 316728 -pfam14234 316729 pfam14234 316729 -pfam14236 316731 pfam14236 316731 -pfam14238 316733 pfam14238 316733 -pfam14240 316735 pfam14240 316735 -pfam14242 316736 pfam14242 316736 -pfam14243 316737 pfam14243 316737 -pfam14244 316738 pfam14244 316738 -pfam14246 316739 cl23808 355056 -pfam14247 316740 pfam14247 316740 -pfam14249 316742 cl14571 326324 -pfam14250 316743 pfam14250 316743 -pfam14251 316744 pfam14251 316744 -pfam14253 316746 pfam14253 316746 -pfam14256 316749 pfam14256 316749 -pfam14257 316750 cl23887 329152 -pfam14258 316751 pfam14258 316751 -pfam14261 316753 pfam14261 316753 -pfam14264 316756 cl23811 329095 -pfam14265 316757 pfam14265 316757 -pfam14266 316758 pfam14266 316758 -pfam14267 316759 pfam14267 316759 -pfam14268 316760 pfam14268 316760 -pfam14269 316761 cl26042 355480 -pfam14270 316762 pfam14270 316762 -pfam14272 316764 cl26041 330862 -pfam14273 316765 pfam14273 316765 -pfam14274 316766 pfam14274 316766 -pfam14275 316767 pfam14275 316767 -pfam14276 316768 pfam14276 316768 -pfam14277 316769 cl21459 354815 -pfam14278 316770 pfam14278 316770 -pfam14282 316774 pfam14282 316774 -pfam14285 316777 pfam14285 316777 -pfam14287 316778 pfam14287 316778 -pfam14290 316781 cl19720 327606 -pfam14295 316786 cl00112 350905 -pfam14296 316787 cl23809 355057 -pfam14304 316795 pfam14304 316795 -pfam14312 316802 pfam14312 316802 -pfam14313 316803 pfam14313 316803 -pfam14314 316804 pfam14314 316804 -pfam14315 316805 pfam14315 316805 -pfam14318 316808 pfam14318 316808 -pfam14323 316812 pfam14323 316812 -pfam14325 316814 pfam14325 316814 -pfam14329 316818 pfam14329 316818 -pfam14332 316821 pfam14332 316821 -pfam14333 316822 pfam14333 316822 -pfam14336 316825 pfam14336 316825 -pfam14339 316828 pfam14339 316828 -pfam14346 316835 pfam14346 316835 -pfam14347 316836 pfam14347 316836 -pfam14348 316837 cl14023 326317 -pfam14350 316839 pfam14350 316839 -pfam14352 316841 pfam14352 316841 -pfam14353 316842 pfam14353 316842 -pfam14356 316845 pfam14356 316845 -pfam14362 316850 pfam14362 316850 -pfam14366 316854 cl29136 356012 -pfam14367 316855 cl28905 355781 -pfam14370 316858 cl26030 330851 -pfam14371 316859 pfam14371 316859 -pfam14373 316861 pfam14373 316861 -pfam14378 316866 cl00474 351108 -pfam14383 316871 pfam14383 316871 -pfam14386 316874 pfam14386 316874 -pfam14387 316875 pfam14387 316875 -pfam14390 316878 pfam14390 316878 -pfam14394 316882 pfam14394 316882 -pfam14395 316883 pfam14395 316883 -pfam14396 316884 pfam14396 316884 -pfam14397 316885 cl17255 354326 -pfam14398 316886 cl17255 354326 -pfam14400 316888 pfam14400 316888 -pfam14404 316892 cl16946 327364 -pfam14406 316893 cl15739 326637 -pfam14407 316894 pfam14407 316894 -pfam14408 316895 cl16946 327364 -pfam14410 316896 pfam14410 316896 -pfam14411 316897 pfam14411 316897 -pfam14413 316899 pfam14413 316899 -pfam14414 316900 cl00083 350893 -pfam14415 316901 pfam14415 316901 -pfam14418 316904 pfam14418 316904 -pfam14419 316905 pfam14419 316905 -pfam14421 316907 cl00269 350994 -pfam14423 316908 pfam14423 316908 -pfam14425 316909 pfam14425 316909 -pfam14427 316911 pfam14427 316911 -pfam14428 316912 pfam14428 316912 -pfam14430 316914 pfam14430 316914 -pfam14431 316915 pfam14431 316915 -pfam14432 316916 pfam14432 316916 -pfam14433 316917 pfam14433 316917 -pfam14434 316918 pfam14434 316918 -pfam14435 316919 pfam14435 316919 -pfam14437 316921 pfam14437 316921 -pfam14440 316923 pfam14440 316923 -pfam14445 316927 pfam14445 316927 -pfam14446 316928 pfam14446 316928 -pfam14447 316929 cl17238 354325 -pfam14453 316933 pfam14453 316933 -pfam14454 316934 cl14020 326316 -pfam14456 316935 cl19908 327696 -pfam14457 316936 pfam14457 316936 -pfam14460 316937 cl14019 326315 -pfam14464 316939 cl13996 353800 -pfam14465 316940 pfam14465 316940 -pfam14466 316941 cl16901 327351 -pfam14469 316943 pfam14469 316943 -pfam14470 316944 cl17171 354315 -pfam14472 316946 pfam14472 316946 -pfam14473 316947 pfam14473 316947 -pfam14475 316949 pfam14475 316949 -pfam14476 316950 pfam14476 316950 -pfam14477 316951 pfam14477 316951 -pfam14481 316955 pfam14481 316955 -pfam14484 316956 pfam14484 316956 -pfam14485 316957 pfam14485 316957 -pfam14486 316958 cl14648 353820 -pfam14487 316959 pfam14487 316959 -pfam14489 316961 cl00263 350991 -pfam14494 316966 pfam14494 316966 -pfam14495 316967 cl21467 354821 -pfam14498 316970 pfam14498 316970 -pfam14499 316971 pfam14499 316971 -pfam14503 316974 cl21456 354813 -pfam14504 316975 pfam14504 316975 -pfam14511 316981 pfam14511 316981 -pfam14512 316982 pfam14512 316982 -pfam14513 316983 pfam14513 316983 -pfam14516 316984 cl21455 354812 -pfam14517 316985 pfam14517 316985 -pfam14521 316988 cl03449 322303 -pfam14522 316989 cl23752 329057 -pfam14526 316993 cl01368 351473 -pfam14530 316996 cl00264 350992 -pfam14532 316998 pfam14532 316998 -pfam14536 317002 pfam14536 317002 -pfam14537 317003 cl23752 329057 -pfam14540 317006 pfam14540 317006 -pfam14550 317012 pfam14550 317012 -pfam14553 317015 pfam14553 317015 -pfam14554 317016 pfam14554 317016 -pfam14557 317018 pfam14557 317018 -pfam14562 317023 pfam14562 317023 -pfam14564 317024 pfam14564 317024 -pfam14568 317027 cl01747 351585 -pfam14569 317028 cl17238 354325 -pfam14573 317031 cl09936 324546 -pfam14576 317034 pfam14576 317034 -pfam14577 317035 pfam14577 317035 -pfam14582 317040 cl13995 353799 -pfam14584 317041 pfam14584 317041 -pfam14587 317042 cl23815 329099 -pfam14589 317043 cl21513 328765 -pfam14590 317044 cl22854 354960 -pfam14592 317046 cl19188 327514 -pfam14593 317047 cl17171 354315 -pfam14594 317048 pfam14594 317048 -pfam14595 317049 cl00388 351069 -pfam14597 317050 cl23716 355014 -pfam14598 317051 pfam14598 317051 -pfam14600 317053 cl00046 350874 -pfam14601 317054 pfam14601 317054 -pfam14602 317055 cl00160 350925 -pfam14603 317056 cl17036 354299 -pfam14605 317057 cl17169 354314 -pfam14606 317058 cl01053 351360 -pfam14608 317060 pfam14608 317060 -pfam14612 317063 pfam14612 317063 -pfam14615 317065 pfam14615 317065 -pfam14616 317066 pfam14616 317066 -pfam14620 317069 pfam14620 317069 -pfam14621 317070 pfam14621 317070 -pfam14622 317071 cl00258 350987 -pfam14626 317075 pfam14626 317075 -pfam14628 317076 pfam14628 317076 -pfam14631 317079 cl17018 327372 -pfam14632 317080 pfam14632 317080 -pfam14637 317084 pfam14637 317084 -pfam14638 317085 pfam14638 317085 -pfam14640 317086 pfam14640 317086 -pfam14641 317087 pfam14641 317087 -pfam14642 317088 pfam14642 317088 -pfam14643 317089 pfam14643 317089 -pfam14644 317090 pfam14644 317090 -pfam14645 317091 cl12007 325156 -pfam14648 317094 pfam14648 317094 -pfam14650 317096 pfam14650 317096 -pfam14652 317097 pfam14652 317097 -pfam14653 317098 pfam14653 317098 -pfam14654 317099 pfam14654 317099 -pfam14655 317100 pfam14655 317100 -pfam14658 317103 pfam14658 317103 -pfam14659 317104 cl29123 355999 -pfam14661 317106 pfam14661 317106 -pfam14662 317107 pfam14662 317107 -pfam14665 317110 pfam14665 317110 -pfam14666 317111 pfam14666 317111 -pfam14668 317113 pfam14668 317113 -pfam14672 317116 pfam14672 317116 -pfam14673 317117 pfam14673 317117 -pfam14681 317125 cl00309 351014 -pfam14682 317126 pfam14682 317126 -pfam14687 317131 pfam14687 317131 -pfam14689 317133 pfam14689 317133 -pfam14692 317136 pfam14692 317136 -pfam14694 317138 pfam14694 317138 -pfam14695 317139 pfam14695 317139 -pfam14696 317140 cl14632 353816 -pfam14703 317147 pfam14703 317147 -pfam14704 317148 pfam14704 317148 -pfam14706 317150 pfam14706 317150 -pfam14707 317151 cl20644 354678 -pfam14709 317152 cl00054 350878 -pfam14717 317160 pfam14717 317160 -pfam14719 317162 cl17171 354315 -pfam14722 317165 pfam14722 317165 -pfam14723 317166 pfam14723 317166 -pfam14724 317167 pfam14724 317167 -pfam14725 317168 pfam14725 317168 -pfam14728 317171 pfam14728 317171 -pfam14733 317174 pfam14733 317174 -pfam14734 317175 cl18921 327485 -pfam14735 317176 pfam14735 317176 -pfam14736 317177 pfam14736 317177 -pfam14739 317180 pfam14739 317180 -pfam14741 317182 pfam14741 317182 -pfam14747 317188 pfam14747 317188 -pfam14750 317191 pfam14750 317191 -pfam14751 317192 pfam14751 317192 -pfam14753 317194 pfam14753 317194 -pfam14755 317195 pfam14755 317195 -pfam14757 317196 pfam14757 317196 -pfam14758 317197 pfam14758 317197 -pfam14761 317200 pfam14761 317200 -pfam14762 317201 pfam14762 317201 -pfam14763 317202 pfam14763 317202 -pfam14765 317204 cl00509 351126 -pfam14766 317205 pfam14766 317205 -pfam14767 317206 pfam14767 317206 -pfam14770 317209 pfam14770 317209 -pfam14771 317210 pfam14771 317210 -pfam14772 317211 pfam14772 317211 -pfam14774 317213 pfam14774 317213 -pfam14776 317215 pfam14776 317215 -pfam14777 317216 pfam14777 317216 -pfam14778 317217 pfam14778 317217 -pfam14779 317218 pfam14779 317218 -pfam14780 317219 pfam14780 317219 -pfam14784 317222 pfam14784 317222 -pfam14785 317223 pfam14785 317223 -pfam14786 317224 cl14633 353817 -pfam14788 317225 pfam14788 317225 -pfam14795 317232 pfam14795 317232 -pfam14797 317234 pfam14797 317234 -pfam14798 317235 pfam14798 317235 -pfam14799 317236 pfam14799 317236 -pfam14800 317237 pfam14800 317237 -pfam14801 317238 pfam14801 317238 -pfam14806 317243 pfam14806 317243 -pfam14807 317244 pfam14807 317244 -pfam14808 317245 pfam14808 317245 -pfam14810 317246 pfam14810 317246 -pfam14811 317247 pfam14811 317247 -pfam14816 317252 pfam14816 317252 -pfam14817 317253 pfam14817 317253 -pfam14818 317254 pfam14818 317254 -pfam14822 317257 pfam14822 317257 -pfam14824 317259 pfam14824 317259 -pfam14829 317264 pfam14829 317264 -pfam14830 317265 pfam14830 317265 -pfam14832 317267 pfam14832 317267 -pfam14834 317269 cl02776 351885 -pfam14836 317270 pfam14836 317270 -pfam14839 317273 pfam14839 317273 -pfam14843 317276 pfam14843 317276 -pfam14844 317277 cl17171 354315 -pfam14846 317279 pfam14846 317279 -pfam14847 317280 cl28922 355798 -pfam14848 317281 cl00257 350986 -pfam14851 317284 pfam14851 317284 -pfam14853 317286 cl21750 328882 -pfam14854 317287 pfam14854 317287 -pfam14857 317289 pfam14857 317289 -pfam14858 317290 pfam14858 317290 -pfam14861 317291 pfam14861 317291 -pfam14862 317292 cl29693 356569 -pfam14864 317294 cl01225 351431 -pfam14865 317295 pfam14865 317295 -pfam14869 317297 pfam14869 317297 -pfam14870 317298 cl29690 356566 -pfam14871 317299 cl29077 355953 -pfam14872 317300 pfam14872 317300 -pfam14874 317302 pfam14874 317302 -pfam14875 317303 pfam14875 317303 -pfam14879 317305 pfam14879 317305 -pfam14880 317306 pfam14880 317306 -pfam14881 317307 pfam14881 317307 -pfam14882 317308 pfam14882 317308 -pfam14885 317310 cl29077 355953 -pfam14887 317312 cl00082 350892 -pfam14888 317313 pfam14888 317313 -pfam14889 317314 pfam14889 317314 -pfam14891 317316 pfam14891 317316 -pfam14892 317317 pfam14892 317317 -pfam14893 317318 pfam14893 317318 -pfam14894 317319 pfam14894 317319 -pfam14895 317320 pfam14895 317320 -pfam14896 317321 pfam14896 317321 -pfam14897 317322 pfam14897 317322 -pfam14904 317329 pfam14904 317329 -pfam14906 317331 pfam14906 317331 -pfam14908 317333 pfam14908 317333 -pfam14910 317335 pfam14910 317335 -pfam14914 317339 pfam14914 317339 -pfam14915 317340 pfam14915 317340 -pfam14916 317341 pfam14916 317341 -pfam14917 317342 pfam14917 317342 -pfam14918 317343 pfam14918 317343 -pfam14919 317344 pfam14919 317344 -pfam14920 317345 pfam14920 317345 -pfam14921 317346 pfam14921 317346 -pfam14922 317347 pfam14922 317347 -pfam14923 317348 pfam14923 317348 -pfam14925 317350 pfam14925 317350 -pfam14926 317351 pfam14926 317351 -pfam14927 317352 pfam14927 317352 -pfam14929 317353 pfam14929 317353 -pfam14930 317354 pfam14930 317354 -pfam14932 317356 pfam14932 317356 -pfam14933 317357 pfam14933 317357 -pfam14936 317360 pfam14936 317360 -pfam14937 317361 pfam14937 317361 -pfam14938 317362 pfam14938 317362 -pfam14939 317363 pfam14939 317363 -pfam14940 317364 pfam14940 317364 -pfam14941 317365 pfam14941 317365 -pfam14942 317366 pfam14942 317366 -pfam14943 317367 pfam14943 317367 -pfam14944 317368 pfam14944 317368 -pfam14945 317369 pfam14945 317369 -pfam14946 317370 pfam14946 317370 -pfam14948 317372 pfam14948 317372 -pfam14950 317374 pfam14950 317374 -pfam14951 317375 pfam14951 317375 -pfam14954 317378 pfam14954 317378 -pfam14955 317379 pfam14955 317379 -pfam14957 317381 pfam14957 317381 -pfam14958 317382 pfam14958 317382 -pfam14959 317383 pfam14959 317383 -pfam14961 317385 pfam14961 317385 -pfam14962 317386 pfam14962 317386 -pfam14963 317387 pfam14963 317387 -pfam14965 317389 pfam14965 317389 -pfam14966 317390 pfam14966 317390 -pfam14967 317391 pfam14967 317391 -pfam14969 317393 pfam14969 317393 -pfam14970 317394 pfam14970 317394 -pfam14971 317395 pfam14971 317395 -pfam14972 317396 pfam14972 317396 -pfam14973 317397 cl18929 327486 -pfam14975 317398 pfam14975 317398 -pfam14976 317399 pfam14976 317399 -pfam14977 317400 pfam14977 317400 -pfam14978 317401 pfam14978 317401 -pfam14979 317402 pfam14979 317402 -pfam14980 317403 pfam14980 317403 -pfam14981 317404 pfam14981 317404 -pfam14984 317405 pfam14984 317405 -pfam14985 317406 pfam14985 317406 -pfam14986 317407 pfam14986 317407 -pfam14987 317408 pfam14987 317408 -pfam14989 317409 pfam14989 317409 -pfam14990 317410 pfam14990 317410 -pfam14991 317411 pfam14991 317411 -pfam14992 317412 pfam14992 317412 -pfam14993 317413 pfam14993 317413 -pfam14994 317414 pfam14994 317414 -pfam14995 317415 pfam14995 317415 -pfam14996 317416 pfam14996 317416 -pfam14997 317417 pfam14997 317417 -pfam14998 317418 pfam14998 317418 -pfam14999 317419 pfam14999 317419 -pfam15000 317420 pfam15000 317420 -pfam15001 317421 pfam15001 317421 -pfam15002 317422 pfam15002 317422 -pfam15003 317423 pfam15003 317423 -pfam15004 317424 pfam15004 317424 -pfam15006 317426 pfam15006 317426 -pfam15007 317427 pfam15007 317427 -pfam15009 317429 cl17092 327389 -pfam15010 317430 pfam15010 317430 -pfam15014 317434 pfam15014 317434 -pfam15015 317435 pfam15015 317435 -pfam15016 317436 pfam15016 317436 -pfam15017 317437 pfam15017 317437 -pfam15019 317439 pfam15019 317439 -pfam15020 317440 pfam15020 317440 -pfam15021 317441 pfam15021 317441 -pfam15023 317442 pfam15023 317442 -pfam15024 317443 pfam15024 317443 -pfam15025 317444 pfam15025 317444 -pfam15027 317445 pfam15027 317445 -pfam15028 317446 cl11960 353325 -pfam15029 317447 pfam15029 317447 -pfam15030 317448 pfam15030 317448 -pfam15031 317449 pfam15031 317449 -pfam15032 317450 pfam15032 317450 -pfam15033 317451 pfam15033 317451 -pfam15036 317453 pfam15036 317453 -pfam15037 317454 pfam15037 317454 -pfam15038 317455 pfam15038 317455 -pfam15039 317456 pfam15039 317456 -pfam15041 317457 pfam15041 317457 -pfam15042 317458 pfam15042 317458 -pfam15043 317459 pfam15043 317459 -pfam15044 317460 pfam15044 317460 -pfam15046 317462 pfam15046 317462 -pfam15047 317463 pfam15047 317463 -pfam15048 317464 pfam15048 317464 -pfam15049 317465 pfam15049 317465 -pfam15050 317466 pfam15050 317466 -pfam15051 317467 pfam15051 317467 -pfam15052 317468 pfam15052 317468 -pfam15053 317469 pfam15053 317469 -pfam15055 317471 pfam15055 317471 -pfam15056 317472 pfam15056 317472 -pfam15057 317473 cl02573 351810 -pfam15059 317474 pfam15059 317474 -pfam15060 317475 pfam15060 317475 -pfam15061 317476 pfam15061 317476 -pfam15062 317477 pfam15062 317477 -pfam15063 317478 pfam15063 317478 -pfam15064 317479 pfam15064 317479 -pfam15065 317480 pfam15065 317480 -pfam15066 317481 pfam15066 317481 -pfam15067 317482 pfam15067 317482 -pfam15068 317483 pfam15068 317483 -pfam15069 317484 pfam15069 317484 -pfam15070 317485 pfam15070 317485 -pfam15071 317486 pfam15071 317486 -pfam15073 317488 pfam15073 317488 -pfam15076 317490 pfam15076 317490 -pfam15077 317491 pfam15077 317491 -pfam15078 317492 pfam15078 317492 -pfam15079 317493 pfam15079 317493 -pfam15081 317494 pfam15081 317494 -pfam15082 317495 pfam15082 317495 -pfam15083 317496 cl29842 356718 -pfam15085 317498 pfam15085 317498 -pfam15086 317499 pfam15086 317499 -pfam15087 317500 pfam15087 317500 -pfam15089 317501 pfam15089 317501 -pfam15090 317502 pfam15090 317502 -pfam15091 317503 pfam15091 317503 -pfam15092 317504 pfam15092 317504 -pfam15093 317505 pfam15093 317505 -pfam15094 317506 pfam15094 317506 -pfam15095 317507 pfam15095 317507 -pfam15096 317508 pfam15096 317508 -pfam15097 317509 pfam15097 317509 -pfam15098 317510 pfam15098 317510 -pfam15099 317511 pfam15099 317511 -pfam15100 317512 pfam15100 317512 -pfam15101 317513 pfam15101 317513 -pfam15102 317514 pfam15102 317514 -pfam15103 317515 pfam15103 317515 -pfam15104 317516 pfam15104 317516 -pfam15105 317517 pfam15105 317517 -pfam15106 317518 pfam15106 317518 -pfam15107 317519 pfam15107 317519 -pfam15109 317520 pfam15109 317520 -pfam15110 317521 pfam15110 317521 -pfam15112 317522 pfam15112 317522 -pfam15113 317523 pfam15113 317523 -pfam15115 317525 pfam15115 317525 -pfam15117 317526 pfam15117 317526 -pfam15118 317527 pfam15118 317527 -pfam15119 317528 pfam15119 317528 -pfam15121 317530 pfam15121 317530 -pfam15122 317531 pfam15122 317531 -pfam15123 317532 pfam15123 317532 -pfam15124 317533 pfam15124 317533 -pfam15125 317534 pfam15125 317534 -pfam15127 317535 pfam15127 317535 -pfam15128 317536 pfam15128 317536 -pfam15129 317537 pfam15129 317537 -pfam15132 317538 pfam15132 317538 -pfam15133 317539 pfam15133 317539 -pfam15134 317540 pfam15134 317540 -pfam15135 317541 pfam15135 317541 -pfam15136 317542 pfam15136 317542 -pfam15137 317543 pfam15137 317543 -pfam15138 317544 pfam15138 317544 -pfam15139 317545 pfam15139 317545 -pfam15140 317546 pfam15140 317546 -pfam15141 317547 pfam15141 317547 -pfam15142 317548 pfam15142 317548 -pfam15144 317549 pfam15144 317549 -pfam15145 317550 pfam15145 317550 -pfam15146 317551 pfam15146 317551 -pfam15147 317552 pfam15147 317552 -pfam15148 317553 pfam15148 317553 -pfam15149 317554 pfam15149 317554 -pfam15150 317555 pfam15150 317555 -pfam15151 317556 pfam15151 317556 -pfam15152 317557 pfam15152 317557 -pfam15153 317558 pfam15153 317558 -pfam15155 317559 pfam15155 317559 -pfam15156 317560 pfam15156 317560 -pfam15157 317561 pfam15157 317561 -pfam15158 317562 pfam15158 317562 -pfam15159 317563 pfam15159 317563 -pfam15160 317564 pfam15160 317564 -pfam15161 317565 pfam15161 317565 -pfam15162 317566 pfam15162 317566 -pfam15163 317567 pfam15163 317567 -pfam15164 317568 pfam15164 317568 -pfam15165 317569 pfam15165 317569 -pfam15168 317570 pfam15168 317570 -pfam15169 317571 pfam15169 317571 -pfam15170 317572 pfam15170 317572 -pfam15171 317573 pfam15171 317573 -pfam15172 317574 pfam15172 317574 -pfam15173 317575 pfam15173 317575 -pfam15175 317576 pfam15175 317576 -pfam15176 317577 pfam15176 317577 -pfam15177 317578 pfam15177 317578 -pfam15179 317579 pfam15179 317579 -pfam15180 317580 pfam15180 317580 -pfam15181 317581 pfam15181 317581 -pfam15182 317582 pfam15182 317582 -pfam15183 317583 pfam15183 317583 -pfam15186 317584 pfam15186 317584 -pfam15187 317585 pfam15187 317585 -pfam15188 317586 pfam15188 317586 -pfam15189 317587 pfam15189 317587 -pfam15191 317588 pfam15191 317588 -pfam15192 317589 pfam15192 317589 -pfam15193 317590 pfam15193 317590 -pfam15195 317591 pfam15195 317591 -pfam15200 317592 pfam15200 317592 -pfam15202 317593 pfam15202 317593 -pfam15203 317594 pfam15203 317594 -pfam15204 317595 pfam15204 317595 -pfam15205 317596 pfam15205 317596 -pfam15206 317597 pfam15206 317597 -pfam15207 317598 pfam15207 317598 -pfam15208 317599 pfam15208 317599 -pfam15209 317600 pfam15209 317600 -pfam15211 317601 pfam15211 317601 -pfam15213 317602 pfam15213 317602 -pfam15214 317603 pfam15214 317603 -pfam15216 317604 pfam15216 317604 -pfam15218 317605 pfam15218 317605 -pfam15219 317606 pfam15219 317606 -pfam15221 317607 pfam15221 317607 -pfam15223 317608 pfam15223 317608 -pfam15224 317609 pfam15224 317609 -pfam15226 317610 pfam15226 317610 -pfam15227 317611 cl17238 354325 -pfam15229 317613 pfam15229 317613 -pfam15230 317614 pfam15230 317614 -pfam15232 317615 pfam15232 317615 -pfam15233 317616 pfam15233 317616 -pfam15234 317617 pfam15234 317617 -pfam15235 317618 pfam15235 317618 -pfam15236 317619 pfam15236 317619 -pfam15237 317620 pfam15237 317620 -pfam15238 317621 pfam15238 317621 -pfam15239 317622 pfam15239 317622 -pfam15241 317623 pfam15241 317623 -pfam15242 317624 pfam15242 317624 -pfam15244 317626 pfam15244 317626 -pfam15245 317627 pfam15245 317627 -pfam15246 317628 pfam15246 317628 -pfam15248 317630 pfam15248 317630 -pfam15250 317632 pfam15250 317632 -pfam15251 317633 pfam15251 317633 -pfam15252 317634 pfam15252 317634 -pfam15253 317635 pfam15253 317635 -pfam15254 317636 pfam15254 317636 -pfam15255 317637 pfam15255 317637 -pfam15256 317638 pfam15256 317638 -pfam15257 317639 pfam15257 317639 -pfam15258 317640 pfam15258 317640 -pfam15259 317641 pfam15259 317641 -pfam15260 317642 pfam15260 317642 -pfam15261 317643 pfam15261 317643 -pfam15262 317644 pfam15262 317644 -pfam15264 317645 pfam15264 317645 -pfam15265 317646 pfam15265 317646 -pfam15266 317647 pfam15266 317647 -pfam15268 317648 pfam15268 317648 -pfam15273 317649 pfam15273 317649 -pfam15274 317650 pfam15274 317650 -pfam15275 317651 pfam15275 317651 -pfam15276 317652 pfam15276 317652 -pfam15279 317654 pfam15279 317654 -pfam15280 317655 pfam15280 317655 -pfam15281 317656 cl20010 327725 -pfam15282 317657 pfam15282 317657 -pfam15284 317659 pfam15284 317659 -pfam15286 317660 pfam15286 317660 -pfam15287 317661 pfam15287 317661 -pfam15288 317662 pfam15288 317662 -pfam15289 317663 pfam15289 317663 -pfam15290 317664 pfam15290 317664 -pfam15292 317665 pfam15292 317665 -pfam15293 317666 pfam15293 317666 -pfam15294 317667 pfam15294 317667 -pfam15295 317668 cl23720 355018 -pfam15296 317669 pfam15296 317669 -pfam15297 317670 pfam15297 317670 -pfam15298 317671 pfam15298 317671 -pfam15299 317672 pfam15299 317672 -pfam15301 317674 pfam15301 317674 -pfam15302 317675 pfam15302 317675 -pfam15303 317676 pfam15303 317676 -pfam15304 317677 pfam15304 317677 -pfam15305 317678 pfam15305 317678 -pfam15306 317679 pfam15306 317679 -pfam15308 317681 pfam15308 317681 -pfam15309 317682 pfam15309 317682 -pfam15310 317683 pfam15310 317683 -pfam15311 317684 pfam15311 317684 -pfam15312 317685 pfam15312 317685 -pfam15313 317686 pfam15313 317686 -pfam15314 317687 pfam15314 317687 -pfam15315 317688 pfam15315 317688 -pfam15316 317689 pfam15316 317689 -pfam15317 317690 pfam15317 317690 -pfam15318 317691 pfam15318 317691 -pfam15319 317692 pfam15319 317692 -pfam15320 317693 pfam15320 317693 -pfam15321 317694 pfam15321 317694 -pfam15322 317695 pfam15322 317695 -pfam15323 317696 pfam15323 317696 -pfam15324 317697 pfam15324 317697 -pfam15325 317698 pfam15325 317698 -pfam15326 317699 pfam15326 317699 -pfam15327 317700 pfam15327 317700 -pfam15328 317701 pfam15328 317701 -pfam15330 317702 pfam15330 317702 -pfam15331 317703 pfam15331 317703 -pfam15332 317704 pfam15332 317704 -pfam15333 317705 pfam15333 317705 -pfam15334 317706 pfam15334 317706 -pfam15336 317708 pfam15336 317708 -pfam15337 317709 pfam15337 317709 -pfam15338 317710 pfam15338 317710 -pfam15339 317711 pfam15339 317711 -pfam15342 317713 pfam15342 317713 -pfam15343 317714 pfam15343 317714 -pfam15344 317715 pfam15344 317715 -pfam15345 317716 pfam15345 317716 -pfam15347 317718 pfam15347 317718 -pfam15348 317719 pfam15348 317719 -pfam15350 317720 cl24283 355175 -pfam15351 317721 pfam15351 317721 -pfam15352 317722 pfam15352 317722 -pfam15353 317723 pfam15353 317723 -pfam15355 317724 pfam15355 317724 -pfam15358 317725 pfam15358 317725 -pfam15360 317727 pfam15360 317727 -pfam15362 317729 pfam15362 317729 -pfam15363 317730 pfam15363 317730 -pfam15364 317731 pfam15364 317731 -pfam15366 317733 pfam15366 317733 -pfam15367 317734 pfam15367 317734 -pfam15368 317735 pfam15368 317735 -pfam15369 317736 pfam15369 317736 -pfam15370 317737 pfam15370 317737 -pfam15371 317738 pfam15371 317738 -pfam15372 317739 pfam15372 317739 -pfam15373 317740 pfam15373 317740 -pfam15374 317741 pfam15374 317741 -pfam15375 317742 pfam15375 317742 -pfam15376 317743 pfam15376 317743 -pfam15378 317745 pfam15378 317745 -pfam15379 317746 pfam15379 317746 -pfam15380 317747 pfam15380 317747 -pfam15382 317748 pfam15382 317748 -pfam15384 317750 pfam15384 317750 -pfam15385 317751 pfam15385 317751 -pfam15386 317752 pfam15386 317752 -pfam15387 317753 pfam15387 317753 -pfam15388 317754 pfam15388 317754 -pfam15389 317755 pfam15389 317755 -pfam15391 317757 pfam15391 317757 -pfam15392 317758 pfam15392 317758 -pfam15394 317760 pfam15394 317760 -pfam15395 317761 pfam15395 317761 -pfam15396 317762 pfam15396 317762 -pfam15397 317763 pfam15397 317763 -pfam15398 317764 pfam15398 317764 -pfam15400 317765 pfam15400 317765 -pfam15401 317766 pfam15401 317766 -pfam15402 317767 pfam15402 317767 -pfam15403 317768 pfam15403 317768 -pfam15404 317769 pfam15404 317769 -pfam15405 317770 cl17171 354315 -pfam15407 317772 pfam15407 317772 -pfam15409 317773 cl17171 354315 -pfam15413 317776 cl17171 354315 -pfam15416 317777 pfam15416 317777 -pfam15419 317779 pfam15419 317779 -pfam15423 317781 pfam15423 317781 -pfam15424 317782 pfam15424 317782 -pfam15427 317784 pfam15427 317784 -pfam15429 317786 pfam15429 317786 -pfam15430 317787 pfam15430 317787 -pfam15433 317789 pfam15433 317789 -pfam15434 317790 pfam15434 317790 -pfam15435 317791 pfam15435 317791 -pfam15439 317793 pfam15439 317793 -pfam15440 317794 pfam15440 317794 -pfam15441 317795 pfam15441 317795 -pfam15442 317796 pfam15442 317796 -pfam15443 317797 pfam15443 317797 -pfam15444 317798 pfam15444 317798 -pfam15445 317799 pfam15445 317799 -pfam15446 317800 pfam15446 317800 -pfam15447 317801 pfam15447 317801 -pfam15449 317802 pfam15449 317802 -pfam15450 317803 pfam15450 317803 -pfam15451 317804 pfam15451 317804 -pfam15452 317805 pfam15452 317805 -pfam15453 317806 pfam15453 317806 -pfam15454 317807 pfam15454 317807 -pfam15455 317808 pfam15455 317808 -pfam15458 317810 pfam15458 317810 -pfam15459 317811 pfam15459 317811 -pfam15462 317814 pfam15462 317814 -pfam15464 317816 pfam15464 317816 -pfam15465 317817 pfam15465 317817 -pfam15466 317818 pfam15466 317818 -pfam15467 317819 pfam15467 317819 -pfam15470 317821 pfam15470 317821 -pfam15471 317822 pfam15471 317822 -pfam15472 317823 pfam15472 317823 -pfam15473 317824 pfam15473 317824 -pfam15475 317826 pfam15475 317826 -pfam15476 317827 pfam15476 317827 -pfam15478 317829 pfam15478 317829 -pfam15479 317830 pfam15479 317830 -pfam15480 317831 pfam15480 317831 -pfam15481 317832 pfam15481 317832 -pfam15482 317833 pfam15482 317833 -pfam15483 317834 pfam15483 317834 -pfam15484 317835 pfam15484 317835 -pfam15485 317836 pfam15485 317836 -pfam15486 317837 pfam15486 317837 -pfam15487 317838 pfam15487 317838 -pfam15488 317839 pfam15488 317839 -pfam15489 317840 cl24054 355137 -pfam15490 317841 pfam15490 317841 -pfam15492 317843 pfam15492 317843 -pfam15494 317845 cl02509 321960 -pfam15496 317847 pfam15496 317847 -pfam15497 317848 pfam15497 317848 -pfam15498 317849 pfam15498 317849 -pfam15499 317850 pfam15499 317850 -pfam15502 317852 pfam15502 317852 -pfam15503 317853 pfam15503 317853 -pfam15504 317854 pfam15504 317854 -pfam15505 317855 cl17036 354299 -pfam15509 317858 pfam15509 317858 -pfam15510 317859 pfam15510 317859 -pfam15511 317860 cl23735 329044 -pfam15512 317861 pfam15512 317861 -pfam15515 317863 cl23875 329141 -pfam15518 317864 pfam15518 317864 -pfam15519 317865 pfam15519 317865 -pfam15521 317866 pfam15521 317866 -pfam15523 317867 pfam15523 317867 -pfam15524 317868 pfam15524 317868 -pfam15525 317869 cl21329 328640 -pfam15526 317870 pfam15526 317870 -pfam15528 317871 pfam15528 317871 -pfam15529 317872 pfam15529 317872 -pfam15530 317873 pfam15530 317873 -pfam15531 317874 pfam15531 317874 -pfam15532 317875 pfam15532 317875 -pfam15534 317876 pfam15534 317876 -pfam15535 317877 pfam15535 317877 -pfam15539 317878 pfam15539 317878 -pfam15542 317879 pfam15542 317879 -pfam15546 317880 pfam15546 317880 -pfam15547 317881 pfam15547 317881 -pfam15548 317882 pfam15548 317882 -pfam15549 317883 pfam15549 317883 -pfam15550 317884 pfam15550 317884 -pfam15551 317885 pfam15551 317885 -pfam15552 317886 pfam15552 317886 -pfam15553 317887 pfam15553 317887 -pfam15554 317888 pfam15554 317888 -pfam15555 317889 cl20010 327725 -pfam15556 317890 pfam15556 317890 -pfam15557 317891 pfam15557 317891 -pfam15558 317892 pfam15558 317892 -pfam15559 317893 pfam15559 317893 -pfam15561 317894 pfam15561 317894 -pfam15567 317896 pfam15567 317896 -pfam15573 317898 pfam15573 317898 -pfam15574 317899 pfam15574 317899 -pfam15575 317900 pfam15575 317900 -pfam15576 317901 pfam15576 317901 -pfam15578 317903 pfam15578 317903 -pfam15580 317905 pfam15580 317905 -pfam15583 317906 pfam15583 317906 -pfam15585 317907 pfam15585 317907 -pfam15586 317908 pfam15586 317908 -pfam15588 317909 pfam15588 317909 -pfam15589 317910 pfam15589 317910 -pfam15590 317911 pfam15590 317911 -pfam15592 317912 pfam15592 317912 -pfam15595 317915 pfam15595 317915 -pfam15598 317916 pfam15598 317916 -pfam15599 317917 pfam15599 317917 -pfam15601 317918 pfam15601 317918 -pfam15604 317920 pfam15604 317920 -pfam15605 317921 pfam15605 317921 -pfam15607 317922 pfam15607 317922 -pfam15608 317923 cl00600 351171 -pfam15610 317925 pfam15610 317925 -pfam15613 317927 pfam15613 317927 -pfam15615 317928 pfam15615 317928 -pfam15617 317930 cl21481 354828 -pfam15620 317932 pfam15620 317932 -pfam15621 317933 pfam15621 317933 -pfam15622 317934 pfam15622 317934 -pfam15623 317935 pfam15623 317935 -pfam15624 317936 pfam15624 317936 -pfam15626 317938 pfam15626 317938 -pfam15630 317942 pfam15630 317942 -pfam15631 317943 pfam15631 317943 -pfam15637 317946 pfam15637 317946 -pfam15640 317947 pfam15640 317947 -pfam15641 317948 pfam15641 317948 -pfam15643 317949 pfam15643 317949 -pfam15644 317950 pfam15644 317950 -pfam15646 317951 pfam15646 317951 -pfam15647 317952 pfam15647 317952 -pfam15649 317954 pfam15649 317954 -pfam15650 317955 pfam15650 317955 -pfam15652 317956 pfam15652 317956 -pfam15653 317957 pfam15653 317957 -pfam15655 317958 pfam15655 317958 -pfam15656 317959 pfam15656 317959 -pfam15657 317960 pfam15657 317960 -pfam15658 317961 pfam15658 317961 -pfam15660 317963 pfam15660 317963 -pfam15661 317964 pfam15661 317964 -pfam15662 317965 pfam15662 317965 -pfam15663 317966 pfam15663 317966 -pfam15664 317967 pfam15664 317967 -pfam15665 317968 pfam15665 317968 -pfam15666 317969 pfam15666 317969 -pfam15667 317970 pfam15667 317970 -pfam15668 317971 pfam15668 317971 -pfam15669 317972 pfam15669 317972 -pfam15670 317973 pfam15670 317973 -pfam15671 317974 pfam15671 317974 -pfam15672 317975 pfam15672 317975 -pfam15673 317976 pfam15673 317976 -pfam15674 317977 pfam15674 317977 -pfam15675 317978 pfam15675 317978 -pfam15676 317979 pfam15676 317979 -pfam15677 317980 pfam15677 317980 -pfam15678 317981 pfam15678 317981 -pfam15680 317983 pfam15680 317983 -pfam15681 317984 pfam15681 317984 -pfam15682 317985 pfam15682 317985 -pfam15683 317986 pfam15683 317986 -pfam15684 317987 pfam15684 317987 -pfam15685 317988 pfam15685 317988 -pfam15686 317989 pfam15686 317989 -pfam15687 317990 pfam15687 317990 -pfam15688 317991 pfam15688 317991 -pfam15689 317992 pfam15689 317992 -pfam15690 317993 pfam15690 317993 -pfam15691 317994 pfam15691 317994 -pfam15694 317997 pfam15694 317997 -pfam15696 317998 pfam15696 317998 -pfam15697 317999 pfam15697 317999 -pfam15698 318000 pfam15698 318000 -pfam15699 318001 pfam15699 318001 -pfam15700 318002 pfam15700 318002 -pfam15702 318003 pfam15702 318003 -pfam15703 318004 pfam15703 318004 -pfam15704 318005 pfam15704 318005 -pfam15705 318006 pfam15705 318006 -pfam15706 318007 pfam15706 318007 -pfam15707 318008 pfam15707 318008 -pfam15708 318009 pfam15708 318009 -pfam15709 318010 pfam15709 318010 -pfam15710 318011 pfam15710 318011 -pfam15713 318014 pfam15713 318014 -pfam15715 318016 pfam15715 318016 -pfam15716 318017 pfam15716 318017 -pfam15718 318019 pfam15718 318019 -pfam15719 318020 pfam15719 318020 -pfam15720 318021 pfam15720 318021 -pfam15722 318022 pfam15722 318022 -pfam15724 318024 pfam15724 318024 -pfam15727 318025 pfam15727 318025 -pfam15728 318026 pfam15728 318026 -pfam15729 318027 pfam15729 318027 -pfam15730 318028 pfam15730 318028 -pfam15732 318029 pfam15732 318029 -pfam15734 318031 pfam15734 318031 -pfam15735 318032 pfam15735 318032 -pfam15736 318033 pfam15736 318033 -pfam15737 318034 pfam15737 318034 -pfam15738 318035 cl21503 354842 -pfam15740 318037 pfam15740 318037 -pfam15741 318038 pfam15741 318038 -pfam15742 318039 pfam15742 318039 -pfam15743 318040 pfam15743 318040 -pfam15744 318041 pfam15744 318041 -pfam15745 318042 pfam15745 318042 -pfam15746 318043 pfam15746 318043 -pfam15747 318044 pfam15747 318044 -pfam15748 318045 pfam15748 318045 -pfam15750 318047 pfam15750 318047 -pfam15751 318048 pfam15751 318048 -pfam15753 318049 pfam15753 318049 -pfam15754 318050 pfam15754 318050 -pfam15755 318051 pfam15755 318051 -pfam15756 318052 pfam15756 318052 -pfam15757 318053 pfam15757 318053 -pfam15759 318054 pfam15759 318054 -pfam15760 318055 pfam15760 318055 -pfam15761 318056 pfam15761 318056 -pfam15762 318057 pfam15762 318057 -pfam15763 318058 pfam15763 318058 -pfam15764 318059 pfam15764 318059 -pfam15765 318060 pfam15765 318060 -pfam15766 318061 pfam15766 318061 -pfam15767 318062 pfam15767 318062 -pfam15768 318063 pfam15768 318063 -pfam15769 318064 pfam15769 318064 -pfam15770 318065 pfam15770 318065 -pfam15771 318066 pfam15771 318066 -pfam15772 318067 pfam15772 318067 -pfam15773 318068 pfam15773 318068 -pfam15774 318069 pfam15774 318069 -pfam15775 318070 pfam15775 318070 -pfam15776 318071 pfam15776 318071 -pfam15777 318072 cl15688 326629 -pfam15778 318073 pfam15778 318073 -pfam15779 318074 pfam15779 318074 -pfam15781 318076 cl21503 354842 -pfam15782 318077 pfam15782 318077 -pfam15783 318078 pfam15783 318078 -pfam15784 318079 pfam15784 318079 -pfam15785 318080 pfam15785 318080 -pfam15788 318083 pfam15788 318083 -pfam15790 318084 pfam15790 318084 -pfam15791 318085 pfam15791 318085 -pfam15792 318086 pfam15792 318086 -pfam15793 318087 pfam15793 318087 -pfam15794 318088 pfam15794 318088 -pfam15796 318090 pfam15796 318090 -pfam15797 318091 pfam15797 318091 -pfam15798 318092 pfam15798 318092 -pfam15799 318093 pfam15799 318093 -pfam15800 318094 pfam15800 318094 -pfam15802 318096 pfam15802 318096 -pfam15803 318097 pfam15803 318097 -pfam15804 318098 pfam15804 318098 -pfam15805 318099 pfam15805 318099 -pfam15806 318100 pfam15806 318100 -pfam15807 318101 pfam15807 318101 -pfam15808 318102 pfam15808 318102 -pfam15809 318103 pfam15809 318103 -pfam15810 318104 pfam15810 318104 -pfam15811 318105 pfam15811 318105 -pfam15812 318106 pfam15812 318106 -pfam15813 318107 pfam15813 318107 -pfam15814 318108 pfam15814 318108 -pfam15815 318109 pfam15815 318109 -pfam15816 318110 pfam15816 318110 -pfam15817 318111 pfam15817 318111 -pfam15818 318112 pfam15818 318112 -pfam15819 318113 pfam15819 318113 -pfam15822 318115 pfam15822 318115 -pfam15823 318116 pfam15823 318116 -pfam15825 318117 pfam15825 318117 -pfam15826 318118 pfam15826 318118 -pfam15827 318119 pfam15827 318119 -pfam15828 318120 pfam15828 318120 -pfam15829 318121 pfam15829 318121 -pfam15830 318122 pfam15830 318122 -pfam15831 318123 pfam15831 318123 -pfam15832 318124 pfam15832 318124 -pfam15833 318125 pfam15833 318125 -pfam15834 318126 pfam15834 318126 -pfam15835 318127 pfam15835 318127 -pfam15836 318128 pfam15836 318128 -pfam15837 318129 pfam15837 318129 -pfam15838 318130 pfam15838 318130 -pfam15839 318131 pfam15839 318131 -pfam15840 318132 pfam15840 318132 -pfam15844 318133 pfam15844 318133 -pfam15846 318134 pfam15846 318134 -pfam15848 318135 pfam15848 318135 -pfam15851 318136 pfam15851 318136 -pfam15852 318137 pfam15852 318137 -pfam15854 318138 pfam15854 318138 -pfam15855 318139 pfam15855 318139 -pfam15856 318140 pfam15856 318140 -pfam15858 318141 pfam15858 318141 -pfam15860 318142 pfam15860 318142 -pfam15861 318143 pfam15861 318143 -pfam15862 318144 pfam15862 318144 -pfam15863 318145 pfam15863 318145 -pfam15866 318147 pfam15866 318147 -pfam15867 318148 pfam15867 318148 -pfam15869 318150 pfam15869 318150 -pfam15870 318151 pfam15870 318151 -pfam15871 318152 pfam15871 318152 -pfam15872 318153 pfam15872 318153 -pfam15874 318154 pfam15874 318154 -pfam15875 318155 pfam15875 318155 -pfam15877 318156 pfam15877 318156 -pfam15878 318157 pfam15878 318157 -pfam15880 318159 pfam15880 318159 -pfam15881 318160 pfam15881 318160 -pfam15882 318161 pfam15882 318161 -pfam15883 318162 pfam15883 318162 -pfam15884 318163 pfam15884 318163 -pfam15888 318166 pfam15888 318166 -pfam15891 318169 cl23749 355033 -pfam15892 318170 pfam15892 318170 -pfam15893 318171 pfam15893 318171 -pfam15903 318175 pfam15903 318175 -pfam15904 318176 pfam15904 318176 -pfam15905 318177 pfam15905 318177 -pfam15906 318178 pfam15906 318178 -pfam15907 318179 cl24051 355136 -pfam15908 318180 pfam15908 318180 -pfam15909 318181 pfam15909 318181 -pfam15910 318182 cl11960 353325 -pfam15912 318184 pfam15912 318184 -pfam15913 318185 pfam15913 318185 -pfam15914 318186 pfam15914 318186 -pfam15915 318187 pfam15915 318187 -pfam15917 318189 pfam15917 318189 -pfam15918 318190 pfam15918 318190 -pfam15919 318191 cl23837 355065 -pfam15920 318192 pfam15920 318192 -pfam15921 318193 pfam15921 318193 -pfam15923 318194 pfam15923 318194 -pfam15925 318196 pfam15925 318196 -pfam15926 318197 pfam15926 318197 -pfam15928 318199 pfam15928 318199 -pfam15929 318200 pfam15929 318200 -pfam15930 318201 pfam15930 318201 -pfam15932 318202 pfam15932 318202 -pfam15933 318203 pfam15933 318203 -pfam15934 318204 pfam15934 318204 -pfam15937 318206 cl00877 321225 -pfam15938 318207 pfam15938 318207 -pfam15940 318208 pfam15940 318208 -pfam15945 318212 pfam15945 318212 -pfam15946 318213 pfam15946 318213 -pfam15947 318214 pfam15947 318214 -pfam15951 318217 pfam15951 318217 -pfam15952 318218 pfam15952 318218 -pfam15955 318220 pfam15955 318220 -pfam15956 318221 pfam15956 318221 -pfam15957 318222 pfam15957 318222 -pfam15958 318223 pfam15958 318223 -pfam15960 318225 pfam15960 318225 -pfam15961 318226 pfam15961 318226 -pfam15962 318227 pfam15962 318227 -pfam15964 318229 pfam15964 318229 -pfam15965 318230 pfam15965 318230 -pfam15966 318231 cl02535 351790 -pfam15967 318232 pfam15967 318232 -pfam15971 318233 pfam15971 318233 -pfam15972 318234 pfam15972 318234 -pfam15973 318235 pfam15973 318235 -pfam15974 318236 pfam15974 318236 -pfam15977 318239 pfam15977 318239 -pfam15982 318242 pfam15982 318242 -pfam15983 318243 pfam15983 318243 -pfam15984 318244 pfam15984 318244 -pfam15989 318246 pfam15989 318246 -pfam15990 318247 pfam15990 318247 -pfam15991 318248 pfam15991 318248 -pfam15992 318249 pfam15992 318249 -pfam15994 318251 pfam15994 318251 -pfam15995 318252 pfam15995 318252 -pfam16000 318257 pfam16000 318257 -pfam16001 318258 pfam16001 318258 -pfam16002 318259 pfam16002 318259 -pfam16003 318260 pfam16003 318260 -pfam16005 318262 cl00098 350899 -pfam16006 318263 pfam16006 318263 -pfam16007 318264 pfam16007 318264 -pfam16008 318265 pfam16008 318265 -pfam16012 318269 pfam16012 318269 -pfam16014 318271 pfam16014 318271 -pfam16017 318274 pfam16017 318274 -pfam16018 318275 pfam16018 318275 -pfam16023 318280 pfam16023 318280 -pfam16025 318281 pfam16025 318281 -pfam16027 318283 pfam16027 318283 -pfam16029 318285 pfam16029 318285 -pfam16032 318288 pfam16032 318288 -pfam16034 318290 pfam16034 318290 -pfam16035 318291 cl03589 352024 -pfam16037 318293 pfam16037 318293 -pfam16038 318294 pfam16038 318294 -pfam16039 318295 pfam16039 318295 -pfam16042 318298 pfam16042 318298 -pfam16043 318299 pfam16043 318299 -pfam16045 318301 cl29685 356561 -pfam16046 318302 pfam16046 318302 -pfam16050 318303 pfam16050 318303 -pfam16051 318304 pfam16051 318304 -pfam16054 318306 pfam16054 318306 -pfam16055 318307 pfam16055 318307 -pfam16056 318308 pfam16056 318308 -pfam16057 318309 pfam16057 318309 -pfam16058 318310 pfam16058 318310 -pfam16060 318311 pfam16060 318311 -pfam16062 318313 pfam16062 318313 -pfam16064 318315 pfam16064 318315 -pfam16068 318318 cl20183 327771 -pfam16069 318319 pfam16069 318319 -pfam16072 318322 pfam16072 318322 -pfam16075 318325 pfam16075 318325 -pfam16076 318326 pfam16076 318326 -pfam16079 318329 pfam16079 318329 -pfam16080 318330 cl04868 352271 -pfam16085 318333 cl24062 355139 -pfam16087 318335 pfam16087 318335 -pfam16091 318339 pfam16091 318339 -pfam16094 318342 pfam16094 318342 -pfam16095 318343 pfam16095 318343 -pfam16096 318344 pfam16096 318344 -pfam16097 318345 pfam16097 318345 -pfam16098 318346 pfam16098 318346 -pfam16101 318349 pfam16101 318349 -pfam16102 318350 pfam16102 318350 -pfam16103 318351 pfam16103 318351 -pfam16106 318353 pfam16106 318353 -pfam16107 318354 pfam16107 318354 -pfam16110 318357 pfam16110 318357 -pfam16111 318358 pfam16111 318358 -pfam16112 318359 pfam16112 318359 -pfam16114 318361 cl29684 356560 -pfam16117 318364 pfam16117 318364 -pfam16119 318366 pfam16119 318366 -pfam16122 318369 pfam16122 318369 -pfam16127 318374 pfam16127 318374 -pfam16129 318376 pfam16129 318376 -pfam16132 318379 pfam16132 318379 -pfam16133 318380 pfam16133 318380 -pfam16136 318383 pfam16136 318383 -pfam16143 318389 pfam16143 318389 -pfam16145 318390 pfam16145 318390 -pfam16146 318391 pfam16146 318391 -pfam16147 318392 pfam16147 318392 -pfam16148 318393 pfam16148 318393 -pfam16151 318396 pfam16151 318396 -pfam16152 318397 pfam16152 318397 -pfam16154 318399 pfam16154 318399 -pfam16156 318401 pfam16156 318401 -pfam16159 318404 pfam16159 318404 -pfam16160 318405 pfam16160 318405 -pfam16161 318406 pfam16161 318406 -pfam16162 318407 pfam16162 318407 -pfam16163 318408 pfam16163 318408 -pfam16165 318409 pfam16165 318409 -pfam16166 318410 cl15935 326668 -pfam16168 318411 pfam16168 318411 -pfam16170 318413 pfam16170 318413 -pfam16171 318414 pfam16171 318414 -pfam16174 318417 pfam16174 318417 -pfam16176 318418 pfam16176 318418 -pfam16180 318422 pfam16180 318422 -pfam16182 318423 pfam16182 318423 -pfam16183 318424 pfam16183 318424 -pfam16195 318435 pfam16195 318435 -pfam16202 318442 pfam16202 318442 -pfam16203 318443 cl21455 354812 -pfam16204 318444 pfam16204 318444 -pfam16206 318446 pfam16206 318446 -pfam16207 318447 pfam16207 318447 -pfam16208 318448 pfam16208 318448 -pfam16210 318450 pfam16210 318450 -pfam16211 318451 pfam16211 318451 -pfam16214 318454 pfam16214 318454 -pfam16215 318455 cl20210 354543 -pfam16216 318456 pfam16216 318456 -pfam16218 318458 pfam16218 318458 -pfam16219 318459 pfam16219 318459 -pfam16221 318461 pfam16221 318461 -pfam16223 318462 pfam16223 318462 -pfam16224 318463 cl06461 323460 -pfam16225 318464 pfam16225 318464 -pfam16228 318466 pfam16228 318466 -pfam16231 318467 pfam16231 318467 -pfam16232 318468 pfam16232 318468 -pfam16233 318469 pfam16233 318469 -pfam16234 318470 pfam16234 318470 -pfam16235 318471 pfam16235 318471 -pfam16242 318476 cl25687 330508 -pfam16243 318477 pfam16243 318477 -pfam16244 318478 pfam16244 318478 -pfam16246 318479 pfam16246 318479 -pfam16250 318481 pfam16250 318481 -pfam16252 318482 pfam16252 318482 -pfam16254 318483 cl25683 355438 -pfam16255 318484 cl01053 351360 -pfam16257 318486 pfam16257 318486 -pfam16259 318488 pfam16259 318488 -pfam16260 318489 pfam16260 318489 -pfam16261 318490 cl20192 327772 -pfam16262 318491 cl00447 351096 -pfam16263 318492 pfam16263 318492 -pfam16265 318494 cl00483 351114 -pfam16266 318495 pfam16266 318495 -pfam16267 318496 pfam16267 318496 -pfam16268 318497 pfam16268 318497 -pfam16272 318501 pfam16272 318501 -pfam16274 318503 pfam16274 318503 -pfam16275 318504 pfam16275 318504 -pfam16276 318505 pfam16276 318505 -pfam16277 318506 pfam16277 318506 -pfam16279 318508 pfam16279 318508 -pfam16285 318510 pfam16285 318510 -pfam16286 318511 pfam16286 318511 -pfam16288 318512 cl24758 329773 -pfam16291 318513 pfam16291 318513 -pfam16294 318514 pfam16294 318514 -pfam16296 318515 pfam16296 318515 -pfam16297 318516 cl29674 356550 -pfam16304 318518 pfam16304 318518 -pfam16314 318523 pfam16314 318523 -pfam16316 318525 cl15893 353991 -pfam16318 318526 pfam16318 318526 -pfam16322 318529 pfam16322 318529 -pfam16323 318530 pfam16323 318530 -pfam16329 318535 pfam16329 318535 -pfam16334 318539 pfam16334 318539 -pfam16338 318541 pfam16338 318541 -pfam16339 318542 pfam16339 318542 -pfam16341 318543 cl25670 330491 -pfam16343 318544 cl25669 355435 -pfam16349 318548 pfam16349 318548 -pfam16356 318554 pfam16356 318554 -pfam16357 318555 cl23780 355044 -pfam16366 318563 pfam16366 318563 -pfam16367 318564 cl17169 354314 -pfam16368 318565 pfam16368 318565 -pfam16369 318566 pfam16369 318566 -pfam16375 318571 pfam16375 318571 -pfam16381 318574 pfam16381 318574 -pfam16383 318575 pfam16383 318575 -pfam16384 318576 pfam16384 318576 -pfam16389 318580 pfam16389 318580 -pfam16391 318581 cl23730 355025 -pfam16394 318582 pfam16394 318582 -pfam16395 318583 pfam16395 318583 -pfam16397 318584 pfam16397 318584 -pfam16398 318585 pfam16398 318585 -pfam16400 318587 pfam16400 318587 -pfam16402 318588 pfam16402 318588 -pfam16405 318590 pfam16405 318590 -pfam16407 318591 cl29671 356547 -pfam16408 318592 pfam16408 318592 -pfam16409 318593 pfam16409 318593 -pfam16415 318598 pfam16415 318598 -pfam16417 318599 pfam16417 318599 -pfam16419 318601 pfam16419 318601 -pfam16423 318604 pfam16423 318604 -pfam16424 318605 pfam16424 318605 -pfam16426 318606 pfam16426 318606 -pfam16427 318607 pfam16427 318607 -pfam16428 318608 pfam16428 318608 -pfam16430 318609 pfam16430 318609 -pfam16436 318610 pfam16436 318610 -pfam16438 318611 pfam16438 318611 -pfam16444 318613 pfam16444 318613 -pfam16447 318614 pfam16447 318614 -pfam16449 318616 pfam16449 318616 -pfam16450 318617 pfam16450 318617 -pfam16451 318618 pfam16451 318618 -pfam16453 318620 cl17171 354315 -pfam16455 318622 pfam16455 318622 -pfam16458 318624 cl03205 322229 -pfam16461 318626 cl11463 325044 -pfam16462 318627 pfam16462 318627 -pfam16463 318628 pfam16463 318628 -pfam16464 318629 pfam16464 318629 -pfam16468 318630 pfam16468 318630 -pfam16469 318631 pfam16469 318631 -pfam16471 318633 pfam16471 318633 -pfam16472 318634 pfam16472 318634 -pfam16474 318636 cl21453 354810 -pfam16475 318637 pfam16475 318637 -pfam16476 318638 pfam16476 318638 -pfam16477 318639 cl20343 354573 -pfam16478 318640 pfam16478 318640 -pfam16481 318641 pfam16481 318641 -pfam16483 318643 cl02511 351780 -pfam16484 318644 pfam16484 318644 -pfam16485 318645 pfam16485 318645 -pfam16487 318647 pfam16487 318647 -pfam16490 318650 pfam16490 318650 -pfam16493 318653 pfam16493 318653 -pfam16494 318654 pfam16494 318654 -pfam16496 318656 pfam16496 318656 -pfam16497 318657 cl08246 352859 -pfam16498 318658 pfam16498 318658 -pfam16500 318660 pfam16500 318660 -pfam16502 318661 pfam16502 318661 -pfam16506 318663 pfam16506 318663 -pfam16509 318666 pfam16509 318666 -pfam16515 318670 pfam16515 318670 -pfam16517 318672 pfam16517 318672 -pfam16519 318673 pfam16519 318673 -pfam16523 318676 pfam16523 318676 -pfam16525 318678 cl23851 329124 -pfam16527 318680 pfam16527 318680 -pfam16528 318681 pfam16528 318681 -pfam16532 318684 pfam16532 318684 -pfam16533 318685 cl17033 327374 -pfam16536 318687 pfam16536 318687 -pfam16540 318691 pfam16540 318691 -pfam16542 318693 cl12015 353338 -pfam16543 318694 pfam16543 318694 -pfam16545 318696 cl11968 325148 -pfam16547 318698 pfam16547 318698 -pfam16548 318699 pfam16548 318699 -pfam16553 318702 cl21640 328837 -pfam16555 318704 pfam16555 318704 -pfam16556 318705 pfam16556 318705 -pfam16557 318706 pfam16557 318706 -pfam16558 318707 pfam16558 318707 -pfam16559 318708 pfam16559 318708 -pfam16560 318709 pfam16560 318709 -pfam16562 318711 pfam16562 318711 -pfam16564 318713 cl00110 320763 -pfam16565 318714 cl02780 322085 -pfam16566 318715 pfam16566 318715 -pfam16568 318716 pfam16568 318716 -pfam16569 318717 pfam16569 318717 -pfam16570 318718 cl15753 326638 -pfam16571 318719 cl29666 356542 -pfam16572 318720 cl11404 353245 -pfam16574 318722 cl23720 355018 -pfam16575 318723 cl21455 354812 -pfam16577 318725 cl21463 354819 -pfam16578 318726 pfam16578 318726 -pfam16579 318727 cl17070 354308 -pfam16581 318728 cl00015 350862 -pfam16587 318732 cl01877 351626 -pfam16588 318733 pfam16588 318733 -pfam16589 318734 cl00038 350871 -pfam16590 318735 cl22415 328890 -pfam16591 318736 pfam16591 318736 -pfam16594 318737 pfam16594 318737 -pfam16596 318739 pfam16596 318739 -pfam16597 318740 pfam16597 318740 -pfam16598 318741 pfam16598 318741 -pfam16599 318742 pfam16599 318742 -pfam16600 318743 pfam16600 318743 -pfam16601 318744 pfam16601 318744 -pfam16602 318745 pfam16602 318745 -pfam16605 318746 pfam16605 318746 -pfam16606 318747 pfam16606 318747 -pfam16607 318748 pfam16607 318748 -pfam16608 318749 pfam16608 318749 -pfam16609 318750 pfam16609 318750 -pfam16610 318751 pfam16610 318751 -pfam16611 318752 pfam16611 318752 -pfam16612 318753 pfam16612 318753 -pfam16613 318754 pfam16613 318754 -pfam16614 318755 pfam16614 318755 -pfam16615 318756 pfam16615 318756 -pfam16616 318757 pfam16616 318757 -pfam16617 318758 pfam16617 318758 -pfam16618 318759 pfam16618 318759 -pfam16619 318760 pfam16619 318760 -pfam16620 318761 pfam16620 318761 -pfam16621 318762 pfam16621 318762 -pfam16622 318763 pfam16622 318763 -pfam16623 318764 pfam16623 318764 -pfam16624 318765 pfam16624 318765 -pfam16625 318766 pfam16625 318766 -pfam16626 318767 pfam16626 318767 -pfam16628 318769 pfam16628 318769 -pfam16629 318770 pfam16629 318770 -pfam16630 318771 pfam16630 318771 -pfam16631 318772 pfam16631 318772 -pfam16632 318773 pfam16632 318773 -pfam16633 318774 pfam16633 318774 -pfam16634 318775 pfam16634 318775 -pfam16635 318776 pfam16635 318776 -pfam16636 318777 pfam16636 318777 -pfam16637 318778 pfam16637 318778 -pfam16638 318779 pfam16638 318779 -pfam16639 318780 cl25616 355425 -pfam16642 318783 pfam16642 318783 -pfam16643 318784 pfam16643 318784 -pfam16644 318785 pfam16644 318785 -pfam16645 318786 pfam16645 318786 -pfam16646 318787 cl16934 327360 -pfam16648 318788 pfam16648 318788 -pfam16649 318789 pfam16649 318789 -pfam16652 318790 cl17171 354315 -pfam16654 318792 pfam16654 318792 -pfam16655 318793 cl21522 354851 -pfam16656 318794 cl21522 354851 -pfam16660 318797 pfam16660 318797 -pfam16661 318798 cl23716 355014 -pfam16662 318799 pfam16662 318799 -pfam16663 318800 pfam16663 318800 -pfam16664 318801 pfam16664 318801 -pfam16665 318802 pfam16665 318802 -pfam16666 318803 pfam16666 318803 -pfam16667 318804 pfam16667 318804 -pfam16669 318805 pfam16669 318805 -pfam16670 318806 cl14615 353814 -pfam16672 318807 pfam16672 318807 -pfam16673 318808 pfam16673 318808 -pfam16674 318809 cl17171 354315 -pfam16675 318810 pfam16675 318810 -pfam16676 318811 pfam16676 318811 -pfam16681 318816 cl11960 353325 -pfam16682 318817 cl25608 330429 -pfam16683 318818 pfam16683 318818 -pfam16685 318819 cl17238 354325 -pfam16686 318820 cl09930 353029 -pfam16687 318821 pfam16687 318821 -pfam16690 318822 cl17166 327397 -pfam16691 318823 pfam16691 318823 -pfam16692 318824 pfam16692 318824 -pfam16696 318827 pfam16696 318827 -pfam16697 318828 cl00062 350883 -pfam16700 318831 pfam16700 318831 -pfam16702 318832 pfam16702 318832 -pfam16703 318833 pfam16703 318833 -pfam16705 318834 pfam16705 318834 -pfam16706 318835 pfam16706 318835 -pfam16708 318836 pfam16708 318836 -pfam16709 318837 pfam16709 318837 -pfam16714 318840 cl09940 353034 -pfam16715 318841 cl22834 328927 -pfam16716 318842 pfam16716 318842 -pfam16718 318844 pfam16718 318844 -pfam16722 318846 pfam16722 318846 -pfam16723 318847 pfam16723 318847 -pfam16724 318848 cl14348 326322 -pfam16726 318850 cl17171 354315 -pfam16727 318851 cl17091 327388 -pfam16729 318852 cl13117 353544 -pfam16731 318854 pfam16731 318854 -pfam16734 318856 pfam16734 318856 -pfam16736 318858 pfam16736 318858 -pfam16737 318859 pfam16737 318859 -pfam16740 318862 cl17165 327396 -pfam16741 318863 pfam16741 318863 -pfam16742 318864 pfam16742 318864 -pfam16743 318865 cl15236 326545 -pfam16745 318866 cl09927 353027 -pfam16746 318867 cl12013 353336 -pfam16747 318868 pfam16747 318868 -pfam16748 318869 pfam16748 318869 -pfam16749 318870 pfam16749 318870 -pfam16752 318871 pfam16752 318871 -pfam16754 318872 pfam16754 318872 -pfam16756 318873 pfam16756 318873 -pfam16762 318878 pfam16762 318878 -pfam16763 318879 pfam16763 318879 -pfam16766 318881 pfam16766 318881 -pfam16767 318882 pfam16767 318882 -pfam16768 318883 pfam16768 318883 -pfam16769 318884 pfam16769 318884 -pfam16771 318886 pfam16771 318886 -pfam16772 318887 cl25598 330419 -pfam16773 318888 pfam16773 318888 -pfam16777 318890 pfam16777 318890 -pfam16778 318891 cl17077 354309 -pfam16780 318892 pfam16780 318892 -pfam16781 318893 pfam16781 318893 -pfam16782 318894 pfam16782 318894 -pfam16783 318895 pfam16783 318895 -pfam16785 318896 cl19120 327506 -pfam16787 318897 cl16937 327362 -pfam16788 318898 pfam16788 318898 -pfam16789 318899 pfam16789 318899 -pfam16791 318900 pfam16791 318900 -pfam16792 318901 pfam16792 318901 -pfam16793 318902 pfam16793 318902 -pfam16795 318904 cl00213 350955 -pfam16796 318905 pfam16796 318905 -pfam16798 318907 pfam16798 318907 -pfam16799 318908 pfam16799 318908 -pfam16800 318909 pfam16800 318909 -pfam16802 318910 pfam16802 318910 -pfam16803 318911 pfam16803 318911 -pfam16804 318912 cl17065 327382 -pfam16805 318913 pfam16805 318913 -pfam16810 318914 pfam16810 318914 -pfam16811 318915 pfam16811 318915 -pfam16812 318916 pfam16812 318916 -pfam16818 318919 pfam16818 318919 -pfam16819 318920 pfam16819 318920 -pfam16820 318921 cl29671 356547 -pfam16822 318922 cl16774 327252 -pfam16823 318923 pfam16823 318923 -pfam16824 318924 cl14880 353849 -pfam16825 318925 pfam16825 318925 -pfam16826 318926 pfam16826 318926 -pfam16827 318927 pfam16827 318927 -pfam16830 318929 pfam16830 318929 -pfam16831 318930 pfam16831 318930 -pfam16832 318931 pfam16832 318931 -pfam16833 318932 pfam16833 318932 -pfam16834 318933 pfam16834 318933 -pfam16835 318934 cl10717 353103 -pfam16836 318935 pfam16836 318935 -pfam16838 318937 cl19585 327594 -pfam16839 318938 pfam16839 318938 -pfam16841 318939 pfam16841 318939 -pfam16842 318940 cl17169 354314 -pfam16843 318941 pfam16843 318941 -pfam16844 318942 pfam16844 318942 -pfam16848 318945 pfam16848 318945 -pfam16850 318946 cl23784 329074 -pfam16851 318947 cl25585 330406 -pfam16854 318949 pfam16854 318949 -pfam16857 318950 cl25584 330405 -pfam16858 318951 pfam16858 318951 -pfam16860 318953 pfam16860 318953 -pfam16862 318955 pfam16862 318955 -pfam16868 318960 cl21456 354813 -pfam16869 318961 pfam16869 318961 -pfam16871 318963 pfam16871 318963 -pfam16872 318964 pfam16872 318964 -pfam16873 318965 pfam16873 318965 -pfam16877 318969 pfam16877 318969 -pfam16880 318972 pfam16880 318972 -pfam16881 318973 pfam16881 318973 -pfam16885 318975 pfam16885 318975 -pfam16887 318977 pfam16887 318977 -pfam16890 318980 pfam16890 318980 -pfam16892 318982 cl12761 325507 -pfam16894 318984 pfam16894 318984 -pfam16895 318985 pfam16895 318985 -pfam16896 318986 pfam16896 318986 -pfam16902 318992 pfam16902 318992 -pfam16907 318995 pfam16907 318995 -pfam16909 318997 pfam16909 318997 -pfam16911 318999 pfam16911 318999 -pfam16912 319000 cl16912 354285 -pfam16915 319001 cl17028 327373 -pfam16917 319003 cl14057 353805 -pfam16918 319004 cl29092 355968 -pfam16919 319005 pfam16919 319005 -pfam16920 319006 cl15307 326558 -pfam16923 319009 pfam16923 319009 -pfam16927 319011 pfam16927 319011 -pfam16930 319013 pfam16930 319013 -pfam16935 319017 pfam16935 319017 -pfam16937 319018 pfam16937 319018 -pfam16940 319019 pfam16940 319019 -pfam16944 319020 pfam16944 319020 -pfam16946 319021 pfam16946 319021 -pfam16947 319022 pfam16947 319022 -pfam16949 319024 pfam16949 319024 -pfam16954 319027 pfam16954 319027 -pfam16955 319028 cl25564 330385 -pfam16957 319030 cl25563 355422 -pfam16958 319031 pfam16958 319031 -pfam16959 319032 pfam16959 319032 -pfam16960 319033 cl03152 351957 -pfam16961 319034 pfam16961 319034 -pfam16962 319035 pfam16962 319035 -pfam16964 319036 pfam16964 319036 -pfam16965 319037 cl23754 329058 -pfam16969 319040 cl22422 328892 -pfam16972 319041 pfam16972 319041 -pfam16975 319044 cl10471 353078 -pfam16977 319046 pfam16977 319046 -pfam16978 319047 pfam16978 319047 -pfam16979 319048 cl17171 354315 -pfam16980 319049 cl21473 354825 -pfam16982 319050 pfam16982 319050 -pfam16984 319052 pfam16984 319052 -pfam16986 319053 pfam16986 319053 -pfam16987 319054 pfam16987 319054 -pfam16992 319057 cl02716 351867 -pfam16994 319058 pfam16994 319058 -pfam16995 319059 cl25556 330377 -pfam16996 319060 pfam16996 319060 -pfam17001 319064 cl14758 326350 -pfam17002 319065 pfam17002 319065 -pfam17003 319066 pfam17003 319066 -pfam17004 319067 pfam17004 319067 -pfam17005 319068 pfam17005 319068 -pfam17006 319069 pfam17006 319069 -pfam17007 319070 pfam17007 319070 -pfam17008 319071 pfam17008 319071 -pfam17009 319072 pfam17009 319072 -pfam17010 319073 pfam17010 319073 -pfam17011 319074 pfam17011 319074 -pfam17012 319075 pfam17012 319075 -pfam17013 319076 cl17182 354318 -pfam17014 319077 pfam17014 319077 -pfam17015 319078 pfam17015 319078 -pfam17016 319079 pfam17016 319079 -pfam17017 319080 pfam17017 319080 -pfam17018 319081 pfam17018 319081 -pfam17019 319082 pfam17019 319082 -pfam17020 319083 pfam17020 319083 -pfam17021 319084 pfam17021 319084 -pfam17022 319085 pfam17022 319085 -pfam17023 319086 pfam17023 319086 -pfam17024 319087 pfam17024 319087 -pfam17025 319088 pfam17025 319088 -pfam17026 319089 pfam17026 319089 -pfam17027 319090 pfam17027 319090 -pfam17028 319091 pfam17028 319091 -pfam17029 319092 pfam17029 319092 -pfam17030 319093 cl23716 355014 -pfam17031 319094 pfam17031 319094 -pfam17032 319095 pfam17032 319095 -pfam17033 319096 cl11393 353238 -pfam17036 319098 pfam17036 319098 -pfam17037 319099 pfam17037 319099 -pfam17039 319100 pfam17039 319100 -pfam17040 319101 pfam17040 319101 -pfam17044 319104 pfam17044 319104 -pfam17045 319105 pfam17045 319105 -pfam17046 319106 pfam17046 319106 -pfam17050 319108 pfam17050 319108 -pfam17052 319109 pfam17052 319109 -pfam17053 319110 pfam17053 319110 -pfam17056 319111 pfam17056 319111 -pfam17061 319112 pfam17061 319112 -pfam17062 319113 pfam17062 319113 -pfam17066 319114 pfam17066 319114 -pfam17070 319115 pfam17070 319115 -pfam17073 319116 pfam17073 319116 -pfam17088 319117 pfam17088 319117 -pfam17096 319120 pfam17096 319120 -pfam17098 319121 pfam17098 319121 -pfam17100 319122 pfam17100 319122 -pfam17105 319127 pfam17105 319127 -pfam17109 319131 pfam17109 319131 -pfam17110 319132 pfam17110 319132 -pfam17111 319133 cl24079 355143 -pfam17112 319134 pfam17112 319134 -pfam17114 319136 pfam17114 319136 -pfam17115 319137 pfam17115 319137 -pfam17117 319139 pfam17117 319139 -pfam17119 319140 pfam17119 319140 -pfam17121 319141 cl17238 354325 -pfam17124 319143 cl00020 350865 -pfam17126 319145 pfam17126 319145 -pfam17128 319147 pfam17128 319147 -pfam17129 319148 pfam17129 319148 -pfam17130 319149 pfam17130 319149 -pfam17132 319151 pfam17132 319151 -pfam17133 319152 pfam17133 319152 -pfam17134 319153 pfam17134 319153 -pfam17142 319161 pfam17142 319161 -pfam17144 319162 pfam17144 319162 -pfam17148 319166 pfam17148 319166 -pfam17149 319167 pfam17149 319167 -pfam17151 319169 pfam17151 319169 -pfam17153 319171 pfam17153 319171 -pfam17155 319173 pfam17155 319173 -pfam17156 319174 pfam17156 319174 -pfam17160 319178 pfam17160 319178 -pfam17162 319180 pfam17162 319180 -pfam17163 319181 pfam17163 319181 -pfam17164 319182 pfam17164 319182 -pfam17165 319183 pfam17165 319183 -pfam17166 319184 pfam17166 319184 -pfam17167 319185 pfam17167 319185 -pfam17168 319186 pfam17168 319186 -pfam17169 319187 pfam17169 319187 -pfam17170 319188 cl24758 329773 -pfam17173 319191 pfam17173 319191 -pfam17174 319192 pfam17174 319192 -pfam17178 319196 pfam17178 319196 -pfam17180 319198 cl16352 354079 -pfam17181 319199 pfam17181 319199 -pfam17182 319200 pfam17182 319200 -pfam17183 319201 pfam17183 319201 -pfam17190 319208 pfam17190 319208 -pfam17191 319209 pfam17191 319209 -pfam17192 319210 pfam17192 319210 -pfam17193 319211 cl25434 330255 -pfam17195 319213 pfam17195 319213 -pfam17196 319214 pfam17196 319214 -pfam17198 319216 pfam17198 319216 -pfam17203 319221 pfam17203 319221 -pfam17204 319222 pfam17204 319222 -pfam17206 319224 pfam17206 319224 -pfam17209 319227 pfam17209 319227 -pfam17210 319228 pfam17210 319228 -pfam17211 319229 pfam17211 319229 -pfam17213 319231 pfam17213 319231 -pfam17215 319233 pfam17215 319233 -pfam17216 319234 pfam17216 319234 -pfam17217 319235 pfam17217 319235 -pfam17218 319236 pfam17218 319236 -pfam17219 319237 pfam17219 319237 -pfam17220 319238 pfam17220 319238 -pfam17222 319240 pfam17222 319240 -pfam17223 319241 pfam17223 319241 -COG5272 319244 cl28922 355798 -cd16841 319245 cd16841 319245 -cd16387 319246 cl28891 333711 -cd16388 319247 cl28891 333711 -cd16389 319248 cl28891 333711 -cd16390 319249 cl28891 333711 -cd16392 319250 cl28891 333711 -cd16393 319251 cl28891 333711 -cd16394 319252 cl28891 333711 -cd16395 319253 cl28891 333711 -cd16396 319254 cl28891 333711 -cd16397 319255 cl28891 333711 -cd16398 319256 cl28891 333711 -cd16400 319257 cl28891 333711 -cd16401 319258 cl28891 333711 -cd16402 319259 cl28891 333711 -cd16403 319260 cl28891 333711 -cd16404 319261 cl28891 333711 -cd16405 319262 cl28891 333711 -cd16406 319263 cl28891 333711 -cd16407 319264 cl28891 333711 -cd16408 319265 cl28891 333711 -cd16409 319266 cl28891 333711 -cd16410 319267 cl28891 333711 -cd16411 319268 cl28891 333711 -cd16412 319269 cl28891 333711 -cd16413 319270 cl28891 333711 -cd16414 319271 cl28891 333711 -cd16844 319272 cl28891 333711 -cd00096 319273 cl11960 353325 -cd00098 319274 cl11960 353325 -cd00099 319275 cl11960 353325 -cd04967 319276 cl11960 353325 -cd04968 319277 cl11960 353325 -cd04969 319278 cl11960 353325 -cd04970 319279 cl11960 353325 -cd04974 319280 cl11960 353325 -cd04975 319281 cl11960 353325 -cd04976 319282 cl11960 353325 -cd04977 319283 cl11960 353325 -cd04978 319284 cl11960 353325 -cd04979 319285 cl11960 353325 -cd04981 319286 cl11960 353325 -cd04983 319287 cl11960 353325 -cd04985 319288 cl11960 353325 -cd04986 319289 cl11960 353325 -cd05711 319290 cl11960 353325 -cd05713 319291 cl11960 353325 -cd05714 319292 cl11960 353325 -cd05715 319293 cl11960 353325 -cd05717 319294 cl11960 353325 -cd05718 319295 cl11960 353325 -cd05719 319296 cl11960 353325 -cd05729 319297 cl11960 353325 -cd05731 319298 cl11960 353325 -cd05733 319299 cl11960 353325 -cd05737 319300 cl11960 353325 -cd05738 319301 cl11960 353325 -cd05741 319302 cl11960 353325 -cd05742 319303 cl11960 353325 -cd05744 319304 cl11960 353325 -cd05748 319305 cl11960 353325 -cd05751 319306 cl11960 353325 -cd05753 319307 cl11960 353325 -cd05756 319308 cl11960 353325 -cd05757 319309 cl11960 353325 -cd05758 319310 cl11960 353325 -cd05761 319311 cl11960 353325 -cd05768 319312 cl11960 353325 -cd05771 319313 cl11960 353325 -cd05772 319314 cl11960 353325 -cd05774 319315 cl11960 353325 -cd05775 319316 cl11960 353325 -cd05846 319317 cl11960 353325 -cd05860 319318 cl11960 353325 -cd05878 319319 cl11960 353325 -cd05884 319320 cl11960 353325 -cd07687 319321 cl11960 353325 -cd07688 319322 cl11960 353325 -cd07696 319323 cl11960 353325 -cd07697 319324 cl11960 353325 -cd07699 319325 cl11960 353325 -cd07700 319326 cl11960 353325 -cd07701 319327 cl11960 353325 -cd07703 319328 cl11960 353325 -cd07704 319329 cl11960 353325 -cd07706 319330 cl11960 353325 -cd16082 319331 cl11960 353325 -cd16083 319332 cl11960 353325 -cd16084 319333 cl11960 353325 -cd16085 319334 cl11960 353325 -cd16086 319335 cl11960 353325 -cd16087 319336 cl11960 353325 -cd16088 319337 cl11960 353325 -cd16089 319338 cl11960 353325 -cd16090 319339 cl11960 353325 -cd16091 319340 cl11960 353325 -cd16092 319341 cl11960 353325 -cd16093 319342 cl11960 353325 -cd16094 319343 cl11960 353325 -cd16095 319344 cl11960 353325 -cd16096 319345 cl11960 353325 -cd16097 319346 cl11960 353325 -cd16842 319347 cl11960 353325 -cd16843 319348 cl11960 353325 -cd16840 319349 cl29124 356000 -cd16839 319350 cd16839 319350 -cd16837 319351 cd16837 319351 -cd16352 319352 cl28892 333712 -cd16832 319353 cl28892 333712 -cd16833 319354 cl28892 333712 -cd16834 319355 cl28892 333712 -cd16827 319356 cl25366 355386 -cd16828 319357 cl25366 355386 -cd16829 319358 cl25366 355386 -cd16830 319359 cl25366 355386 -cd16831 319360 cl25366 355386 -cd00162 319361 cl17238 354325 -cd16448 319362 cl17238 354325 -cd16449 319363 cl17238 354325 -cd16450 319364 cl17238 354325 -cd16451 319365 cl17238 354325 -cd16452 319366 cl17238 354325 -cd16453 319367 cl17238 354325 -cd16454 319368 cl17238 354325 -cd16455 319369 cl17238 354325 -cd16456 319370 cl17238 354325 -cd16457 319371 cl17238 354325 -cd16458 319372 cl17238 354325 -cd16459 319373 cl17238 354325 -cd16460 319374 cl17238 354325 -cd16461 319375 cl17238 354325 -cd16462 319376 cl17238 354325 -cd16463 319377 cl17238 354325 -cd16464 319378 cl17238 354325 -cd16465 319379 cl17238 354325 -cd16466 319380 cl17238 354325 -cd16467 319381 cl17238 354325 -cd16468 319382 cl17238 354325 -cd16469 319383 cl17238 354325 -cd16470 319384 cl17238 354325 -cd16471 319385 cl17238 354325 -cd16472 319386 cl17238 354325 -cd16473 319387 cl17238 354325 -cd16474 319388 cl17238 354325 -cd16475 319389 cl17238 354325 -cd16476 319390 cl17238 354325 -cd16477 319391 cl17238 354325 -cd16478 319392 cl17238 354325 -cd16479 319393 cl17238 354325 -cd16480 319394 cl17238 354325 -cd16481 319395 cl17238 354325 -cd16482 319396 cl17238 354325 -cd16483 319397 cl17238 354325 -cd16484 319398 cl17238 354325 -cd16485 319399 cl17238 354325 -cd16486 319400 cl17238 354325 -cd16487 319401 cl17238 354325 -cd16488 319402 cl17238 354325 -cd16489 319403 cl17238 354325 -cd16490 319404 cl17238 354325 -cd16491 319405 cl17238 354325 -cd16492 319406 cl17238 354325 -cd16493 319407 cl17238 354325 -cd16494 319408 cl17238 354325 -cd16495 319409 cl17238 354325 -cd16496 319410 cl17238 354325 -cd16497 319411 cl17238 354325 -cd16498 319412 cl17238 354325 -cd16499 319413 cl17238 354325 -cd16500 319414 cl17238 354325 -cd16501 319415 cl17238 354325 -cd16502 319416 cl17238 354325 -cd16503 319417 cl17238 354325 -cd16504 319418 cl17238 354325 -cd16505 319419 cl17238 354325 -cd16506 319420 cl17238 354325 -cd16507 319421 cl17238 354325 -cd16508 319422 cl17238 354325 -cd16509 319423 cl17238 354325 -cd16510 319424 cl17238 354325 -cd16511 319425 cl17238 354325 -cd16512 319426 cl17238 354325 -cd16513 319427 cl17238 354325 -cd16514 319428 cl17238 354325 -cd16515 319429 cl17238 354325 -cd16516 319430 cl17238 354325 -cd16517 319431 cl17238 354325 -cd16518 319432 cl17238 354325 -cd16519 319433 cl17238 354325 -cd16520 319434 cl17238 354325 -cd16521 319435 cl17238 354325 -cd16522 319436 cl17238 354325 -cd16523 319437 cl17238 354325 -cd16524 319438 cl17238 354325 -cd16525 319439 cl17238 354325 -cd16526 319440 cl17238 354325 -cd16527 319441 cl17238 354325 -cd16528 319442 cl17238 354325 -cd16529 319443 cl17238 354325 -cd16530 319444 cl17238 354325 -cd16531 319445 cl17238 354325 -cd16532 319446 cl17238 354325 -cd16533 319447 cl17238 354325 -cd16534 319448 cl17238 354325 -cd16535 319449 cl17238 354325 -cd16536 319450 cl17238 354325 -cd16537 319451 cl17238 354325 -cd16538 319452 cl17238 354325 -cd16539 319453 cl17238 354325 -cd16540 319454 cl17238 354325 -cd16541 319455 cl17238 354325 -cd16542 319456 cl17238 354325 -cd16543 319457 cl17238 354325 -cd16544 319458 cl17238 354325 -cd16545 319459 cl17238 354325 -cd16546 319460 cl17238 354325 -cd16547 319461 cl17238 354325 -cd16548 319462 cl17238 354325 -cd16549 319463 cl17238 354325 -cd16550 319464 cl17238 354325 -cd16551 319465 cl17238 354325 -cd16552 319466 cl17238 354325 -cd16553 319467 cl17238 354325 -cd16554 319468 cl17238 354325 -cd16555 319469 cl17238 354325 -cd16556 319470 cl17238 354325 -cd16557 319471 cl17238 354325 -cd16558 319472 cl17238 354325 -cd16559 319473 cl17238 354325 -cd16560 319474 cl17238 354325 -cd16561 319475 cl17238 354325 -cd16562 319476 cl17238 354325 -cd16563 319477 cl17238 354325 -cd16564 319478 cl17238 354325 -cd16565 319479 cl17238 354325 -cd16566 319480 cl17238 354325 -cd16567 319481 cl17238 354325 -cd16568 319482 cl17238 354325 -cd16569 319483 cl17238 354325 -cd16570 319484 cl17238 354325 -cd16571 319485 cl17238 354325 -cd16572 319486 cl17238 354325 -cd16573 319487 cl17238 354325 -cd16574 319488 cl17238 354325 -cd16575 319489 cl17238 354325 -cd16576 319490 cl17238 354325 -cd16577 319491 cl17238 354325 -cd16578 319492 cl17238 354325 -cd16579 319493 cl17238 354325 -cd16580 319494 cl17238 354325 -cd16581 319495 cl17238 354325 -cd16582 319496 cl17238 354325 -cd16583 319497 cl17238 354325 -cd16584 319498 cl17238 354325 -cd16585 319499 cl17238 354325 -cd16586 319500 cl17238 354325 -cd16587 319501 cl17238 354325 -cd16588 319502 cl17238 354325 -cd16589 319503 cl17238 354325 -cd16590 319504 cl17238 354325 -cd16591 319505 cl17238 354325 -cd16592 319506 cl17238 354325 -cd16593 319507 cl17238 354325 -cd16594 319508 cl17238 354325 -cd16595 319509 cl17238 354325 -cd16596 319510 cl17238 354325 -cd16597 319511 cl17238 354325 -cd16598 319512 cl17238 354325 -cd16599 319513 cl17238 354325 -cd16600 319514 cl17238 354325 -cd16601 319515 cl17238 354325 -cd16602 319516 cl17238 354325 -cd16603 319517 cl17238 354325 -cd16604 319518 cl17238 354325 -cd16605 319519 cl17238 354325 -cd16606 319520 cl17238 354325 -cd16607 319521 cl17238 354325 -cd16608 319522 cl17238 354325 -cd16609 319523 cl17238 354325 -cd16610 319524 cl17238 354325 -cd16611 319525 cl17238 354325 -cd16612 319526 cl17238 354325 -cd16613 319527 cl17238 354325 -cd16614 319528 cl17238 354325 -cd16615 319529 cl17238 354325 -cd16616 319530 cl17238 354325 -cd16617 319531 cl17238 354325 -cd16618 319532 cl17238 354325 -cd16619 319533 cl17238 354325 -cd16620 319534 cl17238 354325 -cd16621 319535 cl17238 354325 -cd16622 319536 cl17238 354325 -cd16623 319537 cl17238 354325 -cd16624 319538 cl17238 354325 -cd16625 319539 cl17238 354325 -cd16626 319540 cl17238 354325 -cd16627 319541 cl17238 354325 -cd16628 319542 cl17238 354325 -cd16629 319543 cl17238 354325 -cd16630 319544 cl17238 354325 -cd16631 319545 cl17238 354325 -cd16632 319546 cl17238 354325 -cd16633 319547 cl17238 354325 -cd16634 319548 cl17238 354325 -cd16635 319549 cl17238 354325 -cd16636 319550 cl17238 354325 -cd16637 319551 cl17238 354325 -cd16638 319552 cl17238 354325 -cd16639 319553 cl17238 354325 -cd16640 319554 cl17238 354325 -cd16641 319555 cl17238 354325 -cd16642 319556 cl17238 354325 -cd16643 319557 cl17238 354325 -cd16644 319558 cl17238 354325 -cd16645 319559 cl17238 354325 -cd16646 319560 cl17238 354325 -cd16647 319561 cl17238 354325 -cd16648 319562 cl17238 354325 -cd16649 319563 cl17238 354325 -cd16650 319564 cl17238 354325 -cd16651 319565 cl17238 354325 -cd16652 319566 cl17238 354325 -cd16653 319567 cl17238 354325 -cd16654 319568 cl17238 354325 -cd16655 319569 cl17238 354325 -cd16656 319570 cl17238 354325 -cd16657 319571 cl17238 354325 -cd16658 319572 cl17238 354325 -cd16659 319573 cl17238 354325 -cd16660 319574 cl17238 354325 -cd16661 319575 cl17238 354325 -cd16662 319576 cl17238 354325 -cd16663 319577 cl17238 354325 -cd16664 319578 cl17238 354325 -cd16665 319579 cl17238 354325 -cd16666 319580 cl17238 354325 -cd16667 319581 cl17238 354325 -cd16668 319582 cl17238 354325 -cd16669 319583 cl17238 354325 -cd16670 319584 cl17238 354325 -cd16671 319585 cl17238 354325 -cd16672 319586 cl17238 354325 -cd16673 319587 cl17238 354325 -cd16674 319588 cl17238 354325 -cd16675 319589 cl17238 354325 -cd16676 319590 cl17238 354325 -cd16677 319591 cl17238 354325 -cd16678 319592 cl17238 354325 -cd16679 319593 cl17238 354325 -cd16680 319594 cl17238 354325 -cd16681 319595 cl17238 354325 -cd16682 319596 cl17238 354325 -cd16683 319597 cl17238 354325 -cd16684 319598 cl17238 354325 -cd16685 319599 cl17238 354325 -cd16686 319600 cl17238 354325 -cd16687 319601 cl17238 354325 -cd16688 319602 cl17238 354325 -cd16689 319603 cl17238 354325 -cd16690 319604 cl17238 354325 -cd16691 319605 cl17238 354325 -cd16692 319606 cl17238 354325 -cd16693 319607 cl17238 354325 -cd16694 319608 cl17238 354325 -cd16695 319609 cl17238 354325 -cd16696 319610 cl17238 354325 -cd16697 319611 cl17238 354325 -cd16698 319612 cl17238 354325 -cd16699 319613 cl17238 354325 -cd16700 319614 cl17238 354325 -cd16701 319615 cl17238 354325 -cd16702 319616 cl17238 354325 -cd16703 319617 cl17238 354325 -cd16704 319618 cl17238 354325 -cd16705 319619 cl17238 354325 -cd16706 319620 cl17238 354325 -cd16707 319621 cl17238 354325 -cd16708 319622 cl17238 354325 -cd16709 319623 cl17238 354325 -cd16710 319624 cl17238 354325 -cd16711 319625 cl17238 354325 -cd16712 319626 cl17238 354325 -cd16713 319627 cl17238 354325 -cd16714 319628 cl17238 354325 -cd16715 319629 cl17238 354325 -cd16716 319630 cl17238 354325 -cd16717 319631 cl17238 354325 -cd16718 319632 cl17238 354325 -cd16719 319633 cl17238 354325 -cd16720 319634 cl17238 354325 -cd16721 319635 cl17238 354325 -cd16722 319636 cl17238 354325 -cd16723 319637 cl17238 354325 -cd16724 319638 cl17238 354325 -cd16725 319639 cl17238 354325 -cd16726 319640 cl17238 354325 -cd16727 319641 cl17238 354325 -cd16728 319642 cl17238 354325 -cd16729 319643 cl17238 354325 -cd16730 319644 cl17238 354325 -cd16731 319645 cl17238 354325 -cd16732 319646 cl17238 354325 -cd16733 319647 cl17238 354325 -cd16734 319648 cl17238 354325 -cd16735 319649 cl17238 354325 -cd16736 319650 cl17238 354325 -cd16737 319651 cl17238 354325 -cd16738 319652 cl17238 354325 -cd16739 319653 cl17238 354325 -cd16740 319654 cl17238 354325 -cd16741 319655 cl17238 354325 -cd16742 319656 cl17238 354325 -cd16743 319657 cl17238 354325 -cd16744 319658 cl17238 354325 -cd16745 319659 cl17238 354325 -cd16746 319660 cl17238 354325 -cd16747 319661 cl17238 354325 -cd16748 319662 cl17238 354325 -cd16749 319663 cl17238 354325 -cd16750 319664 cl17238 354325 -cd16751 319665 cl17238 354325 -cd16752 319666 cl17238 354325 -cd16753 319667 cl17238 354325 -cd16754 319668 cl17238 354325 -cd16755 319669 cl17238 354325 -cd16756 319670 cl17238 354325 -cd16757 319671 cl17238 354325 -cd16758 319672 cl17238 354325 -cd16759 319673 cl17238 354325 -cd16760 319674 cl17238 354325 -cd16761 319675 cl17238 354325 -cd16762 319676 cl17238 354325 -cd16763 319677 cl17238 354325 -cd16764 319678 cl17238 354325 -cd16765 319679 cl17238 354325 -cd16766 319680 cl17238 354325 -cd16767 319681 cl17238 354325 -cd16768 319682 cl17238 354325 -cd16769 319683 cl17238 354325 -cd16770 319684 cl17238 354325 -cd16771 319685 cl17238 354325 -cd16772 319686 cl17238 354325 -cd16773 319687 cl17238 354325 -cd16774 319688 cl17238 354325 -cd16775 319689 cl17238 354325 -cd16776 319690 cl17238 354325 -cd16777 319691 cl17238 354325 -cd16778 319692 cl17238 354325 -cd16779 319693 cl17238 354325 -cd16780 319694 cl17238 354325 -cd16781 319695 cl17238 354325 -cd16782 319696 cl17238 354325 -cd16783 319697 cl17238 354325 -cd16784 319698 cl17238 354325 -cd16785 319699 cl17238 354325 -cd16786 319700 cl17238 354325 -cd16787 319701 cl17238 354325 -cd16788 319702 cl17238 354325 -cd16789 319703 cl17238 354325 -cd16790 319704 cl17238 354325 -cd16791 319705 cl17238 354325 -cd16792 319706 cl17238 354325 -cd16793 319707 cl17238 354325 -cd16794 319708 cl17238 354325 -cd16795 319709 cl17238 354325 -cd16796 319710 cl17238 354325 -cd16797 319711 cl17238 354325 -cd16798 319712 cl17238 354325 -cd16799 319713 cl17238 354325 -cd16800 319714 cl17238 354325 -cd16801 319715 cl17238 354325 -cd16802 319716 cl17238 354325 -cd16803 319717 cl17238 354325 -cd16804 319718 cl17238 354325 -cd16805 319719 cl17238 354325 -cd16806 319720 cl17238 354325 -cd16807 319721 cl17238 354325 -cd16808 319722 cl17238 354325 -cd16809 319723 cl17238 354325 -cd16810 319724 cl17238 354325 -cd16811 319725 cl17238 354325 -cd16812 319726 cl17238 354325 -cd16813 319727 cl17238 354325 -cd16814 319728 cl17238 354325 -cd16815 319729 cl17238 354325 -cd16816 319730 cl17238 354325 -cd16817 319731 cl17238 354325 -cd16818 319732 cl17238 354325 -cd16819 319733 cl17238 354325 -cd16820 319734 cl17238 354325 -cd16821 319735 cl17238 354325 -cd16822 319736 cl17238 354325 -cd16823 319737 cl17238 354325 -cd16824 319738 cl17238 354325 -cd16825 319739 cl17238 354325 -cd16435 319740 cl14057 353805 -cd16442 319741 cl14057 353805 -cd16443 319742 cl14057 353805 -cd16444 319743 cl14057 353805 -cd16436 319744 cl25364 355385 -cd16437 319745 cl25364 355385 -cd16438 319746 cl25364 355385 -cd16439 319747 cl25364 355385 -cd16440 319748 cl25364 355385 -cd16441 319749 cl25364 355385 -cd16351 319750 cl03170 351959 -cd16432 319751 cl03170 351959 -cd16433 319752 cl03170 351959 -cd16434 319753 cl03170 351959 -cd16426 319754 cl28929 355805 -cd16429 319755 cl28929 355805 -cd16430 319756 cl28929 355805 -cd16431 319757 cl28929 355805 -cd16427 319758 cd16427 319758 -cd16428 319759 cl15003 353861 -cd16384 319760 cl28928 355804 -cd16424 319761 cl28928 355804 -cd16425 319762 cl28928 355804 -cd01427 319763 cl21460 354816 -cd01431 319764 cl21460 354816 -cd01624 319765 cl21460 354816 -cd01625 319766 cl21460 354816 -cd01627 319767 cl21460 354816 -cd01629 319768 cl21460 354816 -cd01630 319769 cl21460 354816 -cd02073 319770 cl21460 354816 -cd02076 319771 cl21460 354816 -cd02077 319772 cl21460 354816 -cd02078 319773 cl21460 354816 -cd02079 319774 cl21460 354816 -cd02080 319775 cl21460 354816 -cd02081 319776 cl21460 354816 -cd02082 319777 cl21460 354816 -cd02083 319778 cl21460 354816 -cd02085 319779 cl21460 354816 -cd02086 319780 cl21460 354816 -cd02089 319781 cl21460 354816 -cd02092 319782 cl21460 354816 -cd02094 319783 cl21460 354816 -cd02585 319784 cl21460 354816 -cd02586 319785 cl21460 354816 -cd02587 319786 cl21460 354816 -cd02588 319787 cl21460 354816 -cd02598 319788 cl21460 354816 -cd02601 319789 cl21460 354816 -cd02603 319790 cl21460 354816 -cd02604 319791 cl21460 354816 -cd02605 319792 cl21460 354816 -cd02607 319793 cl21460 354816 -cd02608 319794 cl21460 354816 -cd02609 319795 cl21460 354816 -cd02612 319796 cl21460 354816 -cd02616 319797 cl21460 354816 -cd04302 319798 cl21460 354816 -cd04303 319799 cl21460 354816 -cd04305 319800 cl21460 354816 -cd04309 319801 cl21460 354816 -cd07499 319802 cl21460 354816 -cd07500 319803 cl21460 354816 -cd07501 319804 cl21460 354816 -cd07502 319805 cl21460 354816 -cd07503 319806 cl21460 354816 -cd07504 319807 cl21460 354816 -cd07505 319808 cl21460 354816 -cd07506 319809 cl21460 354816 -cd07507 319810 cl21460 354816 -cd07508 319811 cl21460 354816 -cd07509 319812 cl21460 354816 -cd07510 319813 cl21460 354816 -cd07511 319814 cl21460 354816 -cd07512 319815 cl21460 354816 -cd07514 319816 cl21460 354816 -cd07515 319817 cl21460 354816 -cd07516 319818 cl21460 354816 -cd07517 319819 cl21460 354816 -cd07518 319820 cl21460 354816 -cd07519 319821 cl21460 354816 -cd07520 319822 cl21460 354816 -cd07521 319823 cl21460 354816 -cd07522 319824 cl21460 354816 -cd07523 319825 cl21460 354816 -cd07524 319826 cl21460 354816 -cd07525 319827 cl21460 354816 -cd07526 319828 cl21460 354816 -cd07527 319829 cl21460 354816 -cd07528 319830 cl21460 354816 -cd07529 319831 cl21460 354816 -cd07530 319832 cl21460 354816 -cd07531 319833 cl21460 354816 -cd07532 319834 cl21460 354816 -cd07533 319835 cl21460 354816 -cd07534 319836 cl21460 354816 -cd07535 319837 cl21460 354816 -cd07536 319838 cl21460 354816 -cd07538 319839 cl21460 354816 -cd07539 319840 cl21460 354816 -cd07541 319841 cl21460 354816 -cd07542 319842 cl21460 354816 -cd07543 319843 cl21460 354816 -cd07544 319844 cl21460 354816 -cd07545 319845 cl21460 354816 -cd07546 319846 cl21460 354816 -cd07548 319847 cl21460 354816 -cd07550 319848 cl21460 354816 -cd07551 319849 cl21460 354816 -cd07552 319850 cl21460 354816 -cd07553 319851 cl21460 354816 -cd16415 319852 cl21460 354816 -cd16416 319853 cl21460 354816 -cd16417 319854 cl21460 354816 -cd16418 319855 cl21460 354816 -cd16419 319856 cl21460 354816 -cd16421 319857 cl21460 354816 -cd16422 319858 cl21460 354816 -cd16423 319859 cl21460 354816 -cd16386 319860 cd16386 319860 -cd16385 319861 cl12928 325632 -cd16383 319862 cl05142 322951 -cd16379 319863 cl25362 355384 -cd16380 319864 cl25362 355384 -cd16381 319865 cl25362 355384 -cd16378 319866 cd16378 319866 -cd16375 319867 cl28927 355803 -cd16376 319868 cl28927 355803 -cd16377 319869 cl28927 355803 -cd04410 319870 cl25360 355383 -cd10549 319871 cl25360 355383 -cd10550 319872 cl25360 355383 -cd10551 319873 cl25360 355383 -cd10552 319874 cl25360 355383 -cd10553 319875 cl25360 355383 -cd10554 319876 cl25360 355383 -cd10555 319877 cl25360 355383 -cd10556 319878 cl25360 355383 -cd10557 319879 cl25360 355383 -cd10558 319880 cl25360 355383 -cd10559 319881 cl25360 355383 -cd10560 319882 cl25360 355383 -cd10561 319883 cl25360 355383 -cd10562 319884 cl25360 355383 -cd10563 319885 cl25360 355383 -cd10564 319886 cl25360 355383 -cd16365 319887 cl25360 355383 -cd16366 319888 cl25360 355383 -cd16367 319889 cl25360 355383 -cd16368 319890 cl25360 355383 -cd16369 319891 cl25360 355383 -cd16370 319892 cl25360 355383 -cd16371 319893 cl25360 355383 -cd16372 319894 cl25360 355383 -cd16373 319895 cl25360 355383 -cd16374 319896 cl25360 355383 -cd16363 319897 cl03164 351958 -cd06587 319898 cl14632 353816 -cd06588 319899 cl14632 353816 -cd07233 319900 cl14632 353816 -cd07235 319901 cl14632 353816 -cd07237 319902 cl14632 353816 -cd07238 319903 cl14632 353816 -cd07239 319904 cl14632 353816 -cd07241 319905 cl14632 353816 -cd07242 319906 cl14632 353816 -cd07243 319907 cl14632 353816 -cd07244 319908 cl14632 353816 -cd07245 319909 cl14632 353816 -cd07246 319910 cl14632 353816 -cd07247 319911 cl14632 353816 -cd07249 319912 cl14632 353816 -cd07250 319913 cl14632 353816 -cd07251 319914 cl14632 353816 -cd07252 319915 cl14632 353816 -cd07253 319916 cl14632 353816 -cd07254 319917 cl14632 353816 -cd07255 319918 cl14632 353816 -cd07256 319919 cl14632 353816 -cd07257 319920 cl14632 353816 -cd07258 319921 cl14632 353816 -cd07261 319922 cl14632 353816 -cd07262 319923 cl14632 353816 -cd07263 319924 cl14632 353816 -cd07264 319925 cl14632 353816 -cd07265 319926 cl14632 353816 -cd07266 319927 cl14632 353816 -cd07267 319928 cl14632 353816 -cd07268 319929 cl14632 353816 -cd08342 319930 cl14632 353816 -cd08343 319931 cl14632 353816 -cd08344 319932 cl14632 353816 -cd08345 319933 cl14632 353816 -cd08346 319934 cl14632 353816 -cd08347 319935 cl14632 353816 -cd08348 319936 cl14632 353816 -cd08349 319937 cl14632 353816 -cd08350 319938 cl14632 353816 -cd08351 319939 cl14632 353816 -cd08352 319940 cl14632 353816 -cd08353 319941 cl14632 353816 -cd08354 319942 cl14632 353816 -cd08355 319943 cl14632 353816 -cd08356 319944 cl14632 353816 -cd08357 319945 cl14632 353816 -cd08358 319946 cl14632 353816 -cd08359 319947 cl14632 353816 -cd08360 319948 cl14632 353816 -cd08361 319949 cl14632 353816 -cd08362 319950 cl14632 353816 -cd08363 319951 cl14632 353816 -cd08364 319952 cl14632 353816 -cd09011 319953 cl14632 353816 -cd09012 319954 cl14632 353816 -cd09013 319955 cl14632 353816 -cd09014 319956 cl14632 353816 -cd16347 319957 cl14632 353816 -cd16348 319958 cl14632 353816 -cd16349 319959 cl14632 353816 -cd16350 319960 cl14632 353816 -cd16354 319961 cl14632 353816 -cd16355 319962 cl14632 353816 -cd16356 319963 cl14632 353816 -cd16357 319964 cl14632 353816 -cd16358 319965 cl14632 353816 -cd16359 319966 cl14632 353816 -cd16360 319967 cl14632 353816 -cd16361 319968 cl14632 353816 -cd16362 319969 cl14632 353816 -cd00115 319970 cl00105 320761 -cd16343 319971 cl00105 320761 -cd16344 319972 cl00105 320761 -cd16345 319973 cl00105 320761 -cd16342 319974 cl29666 356542 -cd16341 319975 cd16341 319975 -cd16338 319976 cl28893 333713 -cd16339 319977 cl28893 333713 -cd16340 319978 cl28893 333713 -cd16337 319979 cl25434 330255 -cd16336 319980 cl11471 353268 -cd16335 319981 cd16335 319981 -cd16324 319982 cl19192 354390 -cd16325 319983 cl19192 354390 -cd16326 319984 cl19192 354390 -cd16327 319985 cl19192 354390 -cd16329 319986 cl19192 354390 -cd16330 319987 cl19192 354390 -cd16334 319988 cl19192 354390 -cd16333 319989 cl06143 323340 -cd16332 319990 cl01080 351372 -cd16331 319991 cl01147 351402 -cd16328 319992 cl25432 355394 -cd16323 319993 cl06405 352512 -cd16251 319994 cl25356 330177 -cd16252 319995 cl25356 330177 -cd16253 319996 cl25356 330177 -cd16254 319997 cl25356 330177 -cd16255 319998 cl25356 330177 -cd15901 319999 cl07621 352774 -cd16242 320000 cl07621 352774 -cd16243 320001 cl07621 352774 -cd16244 320002 cl07621 352774 -cd16245 320003 cl07621 352774 -cd16246 320004 cl07621 352774 -cd16247 320005 cl07621 352774 -cd16248 320006 cl07621 352774 -cd16249 320007 cl07621 352774 -cd16250 320008 cl07621 352774 -cd00252 320009 cl25349 330171 -cd16231 320010 cl25349 330171 -cd16232 320011 cl25349 330171 -cd16233 320012 cl25349 330171 -cd16234 320013 cl25349 330171 -cd16235 320014 cl25349 330171 -cd16236 320015 cl25349 330171 -cd16237 320016 cl25349 330171 -cd16238 320017 cl25349 330171 -cd16239 320018 cl25349 330171 -cd16240 320019 cl25349 330171 -cd16241 320020 cl25349 330171 -cd15899 320021 cl25354 330175 -cd16224 320022 cl25354 330175 -cd16225 320023 cl25354 330175 -cd16226 320024 cl25354 330175 -cd16227 320025 cl25354 330175 -cd16228 320026 cl25354 330175 -cd16229 320027 cl25354 330175 -cd16230 320028 cl25354 330175 -cd15898 320029 cl28895 333715 -cd16200 320030 cl28895 333715 -cd16201 320031 cl28895 333715 -cd16202 320032 cl28895 333715 -cd16203 320033 cl28895 333715 -cd16204 320034 cl28895 333715 -cd16205 320035 cl28895 333715 -cd16206 320036 cl28895 333715 -cd16207 320037 cl28895 333715 -cd16208 320038 cl28895 333715 -cd16209 320039 cl28895 333715 -cd16210 320040 cl28895 333715 -cd16211 320041 cl28895 333715 -cd16212 320042 cl28895 333715 -cd16213 320043 cl28895 333715 -cd16214 320044 cl28895 333715 -cd16215 320045 cl28895 333715 -cd16216 320046 cl28895 333715 -cd16217 320047 cl28895 333715 -cd16218 320048 cl28895 333715 -cd16219 320049 cl28895 333715 -cd16220 320050 cl28895 333715 -cd16221 320051 cl28895 333715 -cd16222 320052 cl28895 333715 -cd16223 320053 cl28895 333715 -cd15897 320054 cl25352 355382 -cd16180 320055 cl25352 355382 -cd16181 320056 cl25352 355382 -cd16182 320057 cl25352 355382 -cd16183 320058 cl25352 355382 -cd16184 320059 cl25352 355382 -cd16185 320060 cl25352 355382 -cd16186 320061 cl25352 355382 -cd16187 320062 cl25352 355382 -cd16188 320063 cl25352 355382 -cd16189 320064 cl25352 355382 -cd16190 320065 cl25352 355382 -cd16191 320066 cl25352 355382 -cd16192 320067 cl25352 355382 -cd16193 320068 cl25352 355382 -cd16194 320069 cl25352 355382 -cd16195 320070 cl25352 355382 -cd16196 320071 cl25352 355382 -cd16197 320072 cl25352 355382 -cd16198 320073 cl25352 355382 -cd16199 320074 cl25352 355382 -cd15902 320075 cl23634 355006 -cd16176 320076 cl23634 355006 -cd16177 320077 cl23634 355006 -cd16178 320078 cl23634 355006 -cd16179 320079 cl23634 355006 -cd15900 320080 cl28896 333716 -cd16173 320081 cl28896 333716 -cd16174 320082 cl28896 333716 -cd16175 320083 cl28896 333716 -cd16170 320084 cd16170 320084 -cd16169 320085 cd16169 320085 -cd13949 320087 cl28897 355774 -cd13950 320088 cl28897 355774 -cd13951 320089 cl28897 355774 -cd13953 320091 cl28897 355774 -cd13954 320092 cl28897 355774 -cd14939 320093 cl28897 355774 -cd14940 320094 cl28897 355774 -cd14965 320096 cl28897 355774 -cd14966 320097 cl28897 355774 -cd14967 320098 cl28897 355774 -cd14969 320100 cl28897 355774 -cd14970 320101 cl28897 355774 -cd14971 320102 cl28897 355774 -cd14973 320104 cl28897 355774 -cd14974 320105 cl28897 355774 -cd14975 320106 cl28897 355774 -cd14976 320107 cl28897 355774 -cd14977 320108 cl28897 355774 -cd14978 320109 cl28897 355774 -cd14979 320110 cl28897 355774 -cd14980 320111 cl28897 355774 -cd14981 320112 cl28897 355774 -cd14983 320114 cl28897 355774 -cd14986 320117 cl28897 355774 -cd14987 320118 cl28897 355774 -cd14988 320119 cl28897 355774 -cd14989 320120 cl28897 355774 -cd14990 320121 cl28897 355774 -cd14991 320122 cl28897 355774 -cd14992 320123 cl28897 355774 -cd14993 320124 cl28897 355774 -cd14994 320125 cl28897 355774 -cd14995 320126 cl28897 355774 -cd14996 320127 cl28897 355774 -cd14997 320128 cl28897 355774 -cd14998 320129 cl28897 355774 -cd14999 320130 cl28897 355774 -cd15000 320131 cl28897 355774 -cd15001 320132 cl28897 355774 -cd15002 320133 cl28897 355774 -cd15005 320134 cl28897 355774 -cd15006 320135 cl28897 355774 -cd15007 320136 cl28897 355774 -cd15008 320137 cl28897 355774 -cd15010 320138 cl28897 355774 -cd15011 320139 cl28897 355774 -cd15012 320140 cl28897 355774 -cd15013 320141 cl28897 355774 -cd15014 320142 cl28897 355774 -cd15015 320143 cl28897 355774 -cd15016 320144 cl28897 355774 -cd15017 320145 cl28897 355774 -cd15018 320146 cl28897 355774 -cd15019 320147 cl28897 355774 -cd15020 320148 cl28897 355774 -cd15021 320149 cl28897 355774 -cd15022 320150 cl28897 355774 -cd15023 320151 cl28897 355774 -cd15024 320152 cl28897 355774 -cd15025 320153 cl28897 355774 -cd15026 320154 cl28897 355774 -cd15027 320155 cl28897 355774 -cd15028 320156 cl28897 355774 -cd15029 320157 cl28897 355774 -cd15030 320158 cl28897 355774 -cd15031 320159 cl28897 355774 -cd15032 320160 cl28897 355774 -cd15033 320161 cl28897 355774 -cd15034 320162 cl28897 355774 -cd15035 320163 cl28897 355774 -cd15036 320164 cl28897 355774 -cd15037 320165 cl28897 355774 -cd15038 320166 cl28897 355774 -cd15039 320167 cl28897 355774 -cd15040 320168 cl28897 355774 -cd15042 320170 cl28897 355774 -cd15043 320171 cl28897 355774 -cd15044 320172 cl28897 355774 -cd15045 320173 cl28897 355774 -cd15046 320174 cl28897 355774 -cd15047 320175 cl28897 355774 -cd15048 320176 cl28897 355774 -cd15050 320178 cl28897 355774 -cd15051 320179 cl28897 355774 -cd15052 320180 cl28897 355774 -cd15053 320181 cl28897 355774 -cd15054 320182 cl28897 355774 -cd15055 320183 cl28897 355774 -cd15056 320184 cl28897 355774 -cd15057 320185 cl28897 355774 -cd15058 320186 cl28897 355774 -cd15059 320187 cl28897 355774 -cd15060 320188 cl28897 355774 -cd15061 320189 cl28897 355774 -cd15062 320190 cl28897 355774 -cd15063 320191 cl28897 355774 -cd15064 320192 cl28897 355774 -cd15065 320193 cl28897 355774 -cd15066 320194 cl28897 355774 -cd15067 320195 cl28897 355774 -cd15068 320196 cl28897 355774 -cd15069 320197 cl28897 355774 -cd15070 320198 cl28897 355774 -cd15072 320200 cl28897 355774 -cd15073 320201 cl28897 355774 -cd15074 320202 cl28897 355774 -cd15075 320203 cl28897 355774 -cd15076 320204 cl28897 355774 -cd15077 320205 cl28897 355774 -cd15078 320206 cl28897 355774 -cd15079 320207 cl28897 355774 -cd15081 320209 cl28897 355774 -cd15082 320210 cl28897 355774 -cd15083 320211 cl28897 355774 -cd15084 320212 cl28897 355774 -cd15085 320213 cl28897 355774 -cd15086 320214 cl28897 355774 -cd15087 320215 cl28897 355774 -cd15088 320216 cl28897 355774 -cd15089 320217 cl28897 355774 -cd15090 320218 cl28897 355774 -cd15091 320219 cl28897 355774 -cd15092 320220 cl28897 355774 -cd15093 320221 cl28897 355774 -cd15094 320222 cl28897 355774 -cd15095 320223 cl28897 355774 -cd15096 320224 cl28897 355774 -cd15097 320225 cl28897 355774 -cd15098 320226 cl28897 355774 -cd15099 320227 cl28897 355774 -cd15100 320228 cl28897 355774 -cd15102 320230 cl28897 355774 -cd15103 320231 cl28897 355774 -cd15104 320232 cl28897 355774 -cd15105 320233 cl28897 355774 -cd15106 320234 cl28897 355774 -cd15107 320235 cl28897 355774 -cd15108 320236 cl28897 355774 -cd15109 320237 cl28897 355774 -cd15110 320238 cl28897 355774 -cd15111 320239 cl28897 355774 -cd15112 320240 cl28897 355774 -cd15113 320241 cl28897 355774 -cd15114 320242 cl28897 355774 -cd15115 320243 cl28897 355774 -cd15116 320244 cl28897 355774 -cd15117 320245 cl28897 355774 -cd15118 320246 cl28897 355774 -cd15119 320247 cl28897 355774 -cd15120 320248 cl28897 355774 -cd15121 320249 cl28897 355774 -cd15122 320250 cl28897 355774 -cd15123 320251 cl28897 355774 -cd15124 320252 cl28897 355774 -cd15125 320253 cl28897 355774 -cd15126 320254 cl28897 355774 -cd15127 320255 cl28897 355774 -cd15128 320256 cl28897 355774 -cd15129 320257 cl28897 355774 -cd15130 320258 cl28897 355774 -cd15131 320259 cl28897 355774 -cd15132 320260 cl28897 355774 -cd15133 320261 cl28897 355774 -cd15134 320262 cl28897 355774 -cd15135 320263 cl28897 355774 -cd15136 320264 cl28897 355774 -cd15137 320265 cl28897 355774 -cd15138 320266 cl28897 355774 -cd15139 320267 cl28897 355774 -cd15140 320268 cl28897 355774 -cd15141 320269 cl28897 355774 -cd15142 320270 cl28897 355774 -cd15143 320271 cl28897 355774 -cd15144 320272 cl28897 355774 -cd15145 320273 cl28897 355774 -cd15146 320274 cl28897 355774 -cd15147 320275 cl28897 355774 -cd15148 320276 cl28897 355774 -cd15149 320277 cl28897 355774 -cd15152 320280 cl28897 355774 -cd15153 320281 cl28897 355774 -cd15154 320282 cl28897 355774 -cd15155 320283 cl28897 355774 -cd15156 320284 cl28897 355774 -cd15157 320285 cl28897 355774 -cd15158 320286 cl28897 355774 -cd15159 320287 cl28897 355774 -cd15160 320288 cl28897 355774 -cd15161 320289 cl28897 355774 -cd15163 320291 cl28897 355774 -cd15164 320292 cl28897 355774 -cd15165 320293 cl28897 355774 -cd15166 320294 cl28897 355774 -cd15167 320295 cl28897 355774 -cd15169 320297 cl28897 355774 -cd15170 320298 cl28897 355774 -cd15171 320299 cl28897 355774 -cd15173 320301 cl28897 355774 -cd15174 320302 cl28897 355774 -cd15176 320304 cl28897 355774 -cd15183 320311 cl28897 355774 -cd15186 320314 cl28897 355774 -cd15187 320315 cl28897 355774 -cd15188 320316 cl28897 355774 -cd15189 320317 cl28897 355774 -cd15192 320320 cl28897 355774 -cd15193 320321 cl28897 355774 -cd15194 320322 cl28897 355774 -cd15195 320323 cl28897 355774 -cd15196 320324 cl28897 355774 -cd15197 320325 cl28897 355774 -cd15198 320326 cl28897 355774 -cd15199 320327 cl28897 355774 -cd15200 320328 cl28897 355774 -cd15201 320329 cl28897 355774 -cd15202 320330 cl28897 355774 -cd15203 320331 cl28897 355774 -cd15204 320332 cl28897 355774 -cd15205 320333 cl28897 355774 -cd15206 320334 cl28897 355774 -cd15207 320335 cl28897 355774 -cd15208 320336 cl28897 355774 -cd15209 320337 cl28897 355774 -cd15210 320338 cl28897 355774 -cd15211 320339 cl28897 355774 -cd15212 320340 cl28897 355774 -cd15213 320341 cl28897 355774 -cd15214 320342 cl28897 355774 -cd15215 320343 cl28897 355774 -cd15216 320344 cl28897 355774 -cd15217 320345 cl28897 355774 -cd15218 320346 cl28897 355774 -cd15219 320347 cl28897 355774 -cd15220 320348 cl28897 355774 -cd15221 320349 cl28897 355774 -cd15222 320350 cl28897 355774 -cd15223 320351 cl28897 355774 -cd15224 320352 cl28897 355774 -cd15225 320353 cl28897 355774 -cd15226 320354 cl28897 355774 -cd15227 320355 cl28897 355774 -cd15228 320356 cl28897 355774 -cd15229 320357 cl28897 355774 -cd15230 320358 cl28897 355774 -cd15231 320359 cl28897 355774 -cd15232 320360 cl28897 355774 -cd15233 320361 cl28897 355774 -cd15234 320362 cl28897 355774 -cd15235 320363 cl28897 355774 -cd15236 320364 cl28897 355774 -cd15237 320365 cl28897 355774 -cd15238 320366 cl28897 355774 -cd15239 320367 cl28897 355774 -cd15240 320368 cl28897 355774 -cd15241 320369 cl28897 355774 -cd15242 320370 cl28897 355774 -cd15243 320371 cl28897 355774 -cd15244 320372 cl28897 355774 -cd15245 320373 cl28897 355774 -cd15246 320374 cl28897 355774 -cd15247 320375 cl28897 355774 -cd15248 320376 cl28897 355774 -cd15249 320377 cl28897 355774 -cd15250 320378 cl28897 355774 -cd15251 320379 cl28897 355774 -cd15252 320380 cl28897 355774 -cd15253 320381 cl28897 355774 -cd15254 320382 cl28897 355774 -cd15255 320383 cl28897 355774 -cd15256 320384 cl28897 355774 -cd15257 320385 cl28897 355774 -cd15258 320386 cl28897 355774 -cd15259 320387 cl28897 355774 -cd15260 320388 cl28897 355774 -cd15261 320389 cl28897 355774 -cd15262 320390 cl28897 355774 -cd15263 320391 cl28897 355774 -cd15264 320392 cl28897 355774 -cd15265 320393 cl28897 355774 -cd15266 320394 cl28897 355774 -cd15267 320395 cl28897 355774 -cd15269 320397 cl28897 355774 -cd15270 320398 cl28897 355774 -cd15271 320399 cl28897 355774 -cd15272 320400 cl28897 355774 -cd15273 320401 cl28897 355774 -cd15275 320403 cl28897 355774 -cd15277 320404 cl28897 355774 -cd15278 320405 cl28897 355774 -cd15279 320406 cl28897 355774 -cd15280 320407 cl28897 355774 -cd15281 320408 cl28897 355774 -cd15282 320409 cl28897 355774 -cd15283 320410 cl28897 355774 -cd15284 320411 cl28897 355774 -cd15285 320412 cl28897 355774 -cd15286 320413 cl28897 355774 -cd15287 320414 cl28897 355774 -cd15288 320415 cl28897 355774 -cd15289 320416 cl28897 355774 -cd15290 320417 cl28897 355774 -cd15291 320418 cl28897 355774 -cd15292 320419 cl28897 355774 -cd15293 320420 cl28897 355774 -cd15294 320421 cl28897 355774 -cd15295 320422 cl28897 355774 -cd15296 320423 cl28897 355774 -cd15297 320424 cl28897 355774 -cd15299 320426 cl28897 355774 -cd15300 320427 cl28897 355774 -cd15301 320428 cl28897 355774 -cd15302 320429 cl28897 355774 -cd15307 320433 cl28897 355774 -cd15308 320434 cl28897 355774 -cd15309 320435 cl28897 355774 -cd15310 320436 cl28897 355774 -cd15312 320437 cl28897 355774 -cd15314 320438 cl28897 355774 -cd15316 320439 cl28897 355774 -cd15317 320440 cl28897 355774 -cd15318 320441 cl28897 355774 -cd15319 320442 cl28897 355774 -cd15320 320443 cl28897 355774 -cd15321 320444 cl28897 355774 -cd15322 320445 cl28897 355774 -cd15323 320446 cl28897 355774 -cd15324 320447 cl28897 355774 -cd15325 320448 cl28897 355774 -cd15326 320449 cl28897 355774 -cd15327 320450 cl28897 355774 -cd15328 320451 cl28897 355774 -cd15329 320452 cl28897 355774 -cd15330 320453 cl28897 355774 -cd15331 320454 cl28897 355774 -cd15333 320455 cl28897 355774 -cd15334 320456 cl28897 355774 -cd15335 320457 cl28897 355774 -cd15336 320458 cl28897 355774 -cd15337 320459 cl28897 355774 -cd15338 320460 cl28897 355774 -cd15339 320461 cl28897 355774 -cd15340 320462 cl28897 355774 -cd15341 320463 cl28897 355774 -cd15342 320464 cl28897 355774 -cd15343 320465 cl28897 355774 -cd15345 320467 cl28897 355774 -cd15346 320468 cl28897 355774 -cd15347 320469 cl28897 355774 -cd15348 320470 cl28897 355774 -cd15349 320471 cl28897 355774 -cd15350 320472 cl28897 355774 -cd15351 320473 cl28897 355774 -cd15352 320474 cl28897 355774 -cd15353 320475 cl28897 355774 -cd15354 320476 cl28897 355774 -cd15355 320477 cl28897 355774 -cd15356 320478 cl28897 355774 -cd15357 320479 cl28897 355774 -cd15358 320480 cl28897 355774 -cd15359 320481 cl28897 355774 -cd15360 320482 cl28897 355774 -cd15361 320483 cl28897 355774 -cd15362 320484 cl28897 355774 -cd15363 320485 cl28897 355774 -cd15364 320486 cl28897 355774 -cd15365 320487 cl28897 355774 -cd15366 320488 cl28897 355774 -cd15367 320489 cl28897 355774 -cd15368 320490 cl28897 355774 -cd15369 320491 cl28897 355774 -cd15371 320493 cl28897 355774 -cd15372 320494 cl28897 355774 -cd15373 320495 cl28897 355774 -cd15374 320496 cl28897 355774 -cd15375 320497 cl28897 355774 -cd15376 320498 cl28897 355774 -cd15378 320500 cl28897 355774 -cd15379 320501 cl28897 355774 -cd15380 320502 cl28897 355774 -cd15381 320503 cl28897 355774 -cd15382 320504 cl28897 355774 -cd15383 320505 cl28897 355774 -cd15384 320506 cl28897 355774 -cd15385 320507 cl28897 355774 -cd15386 320508 cl28897 355774 -cd15387 320509 cl28897 355774 -cd15388 320510 cl28897 355774 -cd15389 320511 cl28897 355774 -cd15390 320512 cl28897 355774 -cd15391 320513 cl28897 355774 -cd15392 320514 cl28897 355774 -cd15393 320515 cl28897 355774 -cd15394 320516 cl28897 355774 -cd15395 320517 cl28897 355774 -cd15396 320518 cl28897 355774 -cd15397 320519 cl28897 355774 -cd15398 320520 cl28897 355774 -cd15399 320521 cl28897 355774 -cd15400 320522 cl28897 355774 -cd15401 320523 cl28897 355774 -cd15402 320524 cl28897 355774 -cd15403 320525 cl28897 355774 -cd15404 320526 cl28897 355774 -cd15405 320527 cl28897 355774 -cd15406 320528 cl28897 355774 -cd15407 320529 cl28897 355774 -cd15408 320530 cl28897 355774 -cd15409 320531 cl28897 355774 -cd15410 320532 cl28897 355774 -cd15411 320533 cl28897 355774 -cd15412 320534 cl28897 355774 -cd15413 320535 cl28897 355774 -cd15414 320536 cl28897 355774 -cd15415 320537 cl28897 355774 -cd15416 320538 cl28897 355774 -cd15417 320539 cl28897 355774 -cd15418 320540 cl28897 355774 -cd15419 320541 cl28897 355774 -cd15420 320542 cl28897 355774 -cd15421 320543 cl28897 355774 -cd15424 320544 cl28897 355774 -cd15428 320545 cl28897 355774 -cd15429 320546 cl28897 355774 -cd15430 320547 cl28897 355774 -cd15431 320548 cl28897 355774 -cd15432 320549 cl28897 355774 -cd15433 320550 cl28897 355774 -cd15434 320551 cl28897 355774 -cd15436 320552 cl28897 355774 -cd15437 320553 cl28897 355774 -cd15438 320554 cl28897 355774 -cd15439 320555 cl28897 355774 -cd15440 320556 cl28897 355774 -cd15441 320557 cl28897 355774 -cd15442 320558 cl28897 355774 -cd15443 320559 cl28897 355774 -cd15444 320560 cl28897 355774 -cd15445 320561 cl28897 355774 -cd15446 320562 cl28897 355774 -cd15447 320563 cl28897 355774 -cd15448 320564 cl28897 355774 -cd15449 320565 cl28897 355774 -cd15450 320566 cl28897 355774 -cd15451 320567 cl28897 355774 -cd15452 320568 cl28897 355774 -cd15453 320569 cl28897 355774 -cd15454 320570 cl28897 355774 -cd15905 320571 cl28897 355774 -cd15906 320572 cl28897 355774 -cd15907 320573 cl28897 355774 -cd15908 320574 cl28897 355774 -cd15909 320575 cl28897 355774 -cd15910 320576 cl28897 355774 -cd15911 320577 cl28897 355774 -cd15912 320578 cl28897 355774 -cd15913 320579 cl28897 355774 -cd15914 320580 cl28897 355774 -cd15915 320581 cl28897 355774 -cd15916 320582 cl28897 355774 -cd15918 320584 cl28897 355774 -cd15919 320585 cl28897 355774 -cd15920 320586 cl28897 355774 -cd15921 320587 cl28897 355774 -cd15922 320588 cl28897 355774 -cd15923 320589 cl28897 355774 -cd15925 320591 cl28897 355774 -cd15926 320592 cl28897 355774 -cd15927 320593 cl28897 355774 -cd15928 320594 cl28897 355774 -cd15930 320596 cl28897 355774 -cd15931 320597 cl28897 355774 -cd15932 320598 cl28897 355774 -cd15933 320599 cl28897 355774 -cd15934 320600 cl28897 355774 -cd15935 320601 cl28897 355774 -cd15936 320602 cl28897 355774 -cd15937 320603 cl28897 355774 -cd15938 320604 cl28897 355774 -cd15939 320605 cl28897 355774 -cd15940 320606 cl28897 355774 -cd15941 320607 cl28897 355774 -cd15942 320608 cl28897 355774 -cd15943 320609 cl28897 355774 -cd15944 320610 cl28897 355774 -cd15945 320611 cl28897 355774 -cd15946 320612 cl28897 355774 -cd15947 320613 cl28897 355774 -cd15948 320614 cl28897 355774 -cd15949 320615 cl28897 355774 -cd15950 320616 cl28897 355774 -cd15951 320617 cl28897 355774 -cd15952 320618 cl28897 355774 -cd15954 320620 cl28897 355774 -cd15955 320621 cl28897 355774 -cd15956 320622 cl28897 355774 -cd15958 320624 cl28897 355774 -cd15959 320625 cl28897 355774 -cd15960 320626 cl28897 355774 -cd15961 320627 cl28897 355774 -cd15962 320628 cl28897 355774 -cd15963 320629 cl28897 355774 -cd15964 320630 cl28897 355774 -cd15965 320631 cl28897 355774 -cd15966 320632 cl28897 355774 -cd15967 320633 cl28897 355774 -cd15968 320634 cl28897 355774 -cd15969 320635 cl28897 355774 -cd15970 320636 cl28897 355774 -cd15971 320637 cl28897 355774 -cd15972 320638 cl28897 355774 -cd15973 320639 cl28897 355774 -cd15974 320640 cl28897 355774 -cd15975 320641 cl28897 355774 -cd15976 320642 cl28897 355774 -cd15977 320643 cl28897 355774 -cd15978 320644 cl28897 355774 -cd15979 320645 cl28897 355774 -cd15980 320646 cl28897 355774 -cd15981 320647 cl28897 355774 -cd15982 320648 cl28897 355774 -cd15983 320649 cl28897 355774 -cd15984 320650 cl28897 355774 -cd15985 320651 cl28897 355774 -cd15986 320652 cl28897 355774 -cd15987 320653 cl28897 355774 -cd15988 320654 cl28897 355774 -cd15989 320655 cl28897 355774 -cd15990 320656 cl28897 355774 -cd15991 320657 cl28897 355774 -cd15992 320658 cl28897 355774 -cd15993 320659 cl28897 355774 -cd15994 320660 cl28897 355774 -cd15995 320661 cl28897 355774 -cd15996 320662 cl28897 355774 -cd15997 320663 cl28897 355774 -cd15998 320664 cl28897 355774 -cd15999 320665 cl28897 355774 -cd16000 320666 cl28897 355774 -cd16001 320667 cl28897 355774 -cd16002 320668 cl28897 355774 -cd16003 320669 cl28897 355774 -cd16004 320670 cl28897 355774 -cd16005 320671 cl28897 355774 -cd16006 320672 cl28897 355774 -cd16007 320673 cl28897 355774 -cd00004 320674 cl09098 324322 -cd05826 320675 cl09098 324322 -cd05827 320676 cl09098 324322 -cd05828 320677 cl09098 324322 -cd05829 320678 cl09098 324322 -cd05830 320679 cl09098 324322 -cd06165 320680 cl09098 324322 -cd06166 320681 cl09098 324322 -cd05843 320682 cl28898 333718 -cd07324 320683 cl28898 333718 -cd07325 320684 cl28898 333718 -cd07326 320685 cl28898 333718 -cd07327 320686 cl28898 333718 -cd07328 320687 cl28898 333718 -cd07329 320688 cl28898 333718 -cd07330 320689 cl28898 333718 -cd07331 320690 cl28898 333718 -cd07332 320691 cl28898 333718 -cd07333 320692 cl28898 333718 -cd07334 320693 cl28898 333718 -cd07335 320694 cl28898 333718 -cd07336 320695 cl28898 333718 -cd07337 320696 cl28898 333718 -cd07338 320697 cl28898 333718 -cd07339 320698 cl28898 333718 -cd07340 320699 cl28898 333718 -cd07341 320700 cl28898 333718 -cd07342 320701 cl28898 333718 -cd07343 320702 cl28898 333718 -cd07344 320703 cl28898 333718 -cd07345 320704 cl28898 333718 -cd09734 320705 cl09827 324500 -cd15904 320706 cl01379 351478 -NF000535 333719 NF000535 333719 -NF000536 333720 NF000536 333720 -NF000537 333721 NF000537 333721 -NF000539 333722 NF000539 333722 -NF000540 333723 NF000540 333723 -NF012136 333724 NF012136 333724 -NF012138 333725 cl29663 356539 -NF012139 333726 cl29663 356539 -NF012162 333727 NF012162 333727 -NF012164 333728 NF012164 333728 -NF012179 333729 NF012179 333729 -NF012181 333730 NF012181 333730 -NF012182 333731 NF012182 333731 -NF012196 333732 cl29660 356536 -NF012197 333733 NF012197 333733 -NF012200 333734 cl06591 352541 -NF012201 333735 NF012201 333735 -NF012204 333736 NF012204 333736 -NF012206 333737 NF012206 333737 -NF012209 333738 NF012209 333738 -NF012210 333739 NF012210 333739 -NF012211 333740 cl16980 354292 -NF012221 333741 NF012221 333741 -NF012230 333742 NF012230 333742 -NF028536 333743 NF028536 333743 -NF028538 333744 NF028538 333744 -NF032891 333745 cl29660 356536 -NF032893 333746 NF032893 333746 -NF033069 333747 NF033069 333747 -NF033070 333748 NF033070 333748 -NF033071 333749 NF033071 333749 -NF033072 333750 NF033072 333750 -NF033073 333751 NF033073 333751 -NF033092 333752 NF033092 333752 -NF033093 333753 NF033093 333753 -pfam00001 333754 pfam00001 333754 -pfam00002 333755 cl21561 354872 -pfam00003 333756 pfam00003 333756 -pfam00004 333757 cl29659 356535 -pfam00005 333758 cl21455 354812 -pfam00006 333759 cl21455 354812 -pfam00007 333760 cl21545 354864 -pfam00008 333761 cl21504 354843 -pfam00009 333762 pfam00009 333762 -pfam00010 333763 cl00081 350891 -pfam00012 333764 pfam00012 333764 -pfam00013 333765 cl00098 350899 -pfam00014 333766 cl00101 350901 -pfam00015 333767 pfam00015 333767 -pfam00016 333768 cl08232 352858 -pfam00017 333769 cl15255 353928 -pfam00018 333770 cl17036 354299 -pfam00019 333771 cl02510 351779 -pfam00020 333772 cl22855 354961 -pfam00021 333773 cl10471 353078 -pfam00023 333774 cl02529 351788 -pfam00024 333775 cl00112 350905 -pfam00025 333776 pfam00025 333776 -pfam00026 333777 pfam00026 333777 -pfam00027 333778 cl00047 350875 -pfam00028 333779 cl29226 356102 -pfam00029 333780 pfam00029 333780 -pfam00030 333781 cl02528 351787 -pfam00031 333782 cl09238 352952 -pfam00032 333783 cl00193 350938 -pfam00034 333784 cl21467 354821 -pfam00035 333785 cl00054 350878 -pfam00036 333786 pfam00036 333786 -pfam00037 333787 pfam00037 333787 -pfam00038 333788 pfam00038 333788 -pfam00039 333789 cl00063 350884 -pfam00041 333790 cl21522 354851 -pfam00042 333791 cl21461 354817 -pfam00043 333792 cl02776 351885 -pfam00044 333793 pfam00044 333793 -pfam00045 333794 cl02471 351767 -pfam00046 333795 cl00084 350894 -pfam00047 333796 cl11960 353325 -pfam00048 333797 cl00134 350913 -pfam00050 333798 cl00097 350898 -pfam00051 333799 cl00100 350900 -pfam00052 333800 cl02548 351797 -pfam00053 333801 cl21504 354843 -pfam00054 333802 cl22861 354964 -pfam00055 333803 cl02806 351900 -pfam00056 333804 cl21454 354811 -pfam00057 333805 cl00104 350903 -pfam00059 333806 cl02432 351759 -pfam00061 333807 cl21528 354854 -pfam00062 333808 cl00222 350962 -pfam00066 333809 cl02419 351756 -pfam00067 333810 cl12078 353355 -pfam00068 333811 cl05417 352356 -pfam00069 333812 pfam00069 333812 -pfam00070 333813 cl21454 354811 -pfam00071 333814 pfam00071 333814 -pfam00072 333815 cl19078 354377 -pfam00073 333816 cl13999 353801 -pfam00074 333817 cl00128 350911 -pfam00075 333818 cl14782 353835 -pfam00076 333819 cl17169 354314 -pfam00078 333820 pfam00078 333820 -pfam00079 333821 pfam00079 333821 -pfam00080 333822 cl00891 351300 -pfam00081 333823 pfam00081 333823 -pfam00082 333824 pfam00082 333824 -pfam00083 333825 cl28910 355786 -pfam00084 333826 cl29654 356530 -pfam00085 333827 cl00388 351069 -pfam00086 333828 cl00150 350920 -pfam00087 333829 cl11586 353293 -pfam00088 333830 cl00103 350902 -pfam00089 333831 cl27237 355628 -pfam00091 333832 cl10017 353044 -pfam00092 333833 cl00057 350880 -pfam00095 333834 cl00156 350922 -pfam00096 333835 pfam00096 333835 -pfam00097 333836 cl17238 354325 -pfam00100 333837 cl27758 355677 -pfam00101 333838 cl01843 351614 -pfam00102 333839 cl28904 355780 -pfam00104 333840 cl11397 353242 -pfam00105 333841 cl02596 351816 -pfam00106 333842 pfam00106 333842 -pfam00107 333843 cl16912 354285 -pfam00108 333844 pfam00108 333844 -pfam00109 333845 cl09938 353032 -pfam00110 333846 cl19568 354441 -pfam00111 333847 cl00159 350924 -pfam00112 333848 cl23744 355029 -pfam00113 333849 pfam00113 333849 -pfam00114 333850 cl29653 356529 -pfam00115 333851 pfam00115 333851 -pfam00117 333852 pfam00117 333852 -pfam00118 333853 pfam00118 333853 -pfam00119 333854 cl00413 351082 -pfam00120 333855 pfam00120 333855 -pfam00121 333856 pfam00121 333856 -pfam00122 333857 pfam00122 333857 -pfam00124 333858 cl08220 352857 -pfam00125 333859 pfam00125 333859 -pfam00126 333860 cl21459 354815 -pfam00127 333861 cl19115 354382 -pfam00128 333862 pfam00128 333862 -pfam00129 333863 cl08246 352859 -pfam00130 333864 cl00040 350872 -pfam00131 333865 cl19543 354437 -pfam00132 333866 cl00160 350925 -pfam00134 333867 cl00050 350876 -pfam00135 333868 cl21494 354836 -pfam00136 333869 pfam00136 333869 -pfam00137 333870 cl00466 351103 -pfam00139 333871 cl14058 353806 -pfam00140 333872 pfam00140 333872 -pfam00141 333873 cl00196 350941 -pfam00144 333874 cl21491 354834 -pfam00145 333875 cl17173 354317 -pfam00146 333876 cl00469 351105 -pfam00148 333877 cl02775 351884 -pfam00149 333878 pfam00149 333878 -pfam00150 333879 cl23725 355022 -pfam00151 333880 pfam00151 333880 -pfam00152 333881 pfam00152 333881 -pfam00153 333882 pfam00153 333882 -pfam00154 333883 cl21455 354812 -pfam00155 333884 pfam00155 333884 -pfam00156 333885 cl00309 351014 -pfam00158 333886 pfam00158 333886 -pfam00160 333887 cl00197 350942 -pfam00161 333888 pfam00161 333888 -pfam00162 333889 cl00198 350943 -pfam00163 333890 pfam00163 333890 -pfam00164 333891 cl00312 351017 -pfam00165 333892 pfam00165 333892 -pfam00166 333893 cl09113 352934 -pfam00167 333894 cl00060 350881 -pfam00168 333895 cl14603 353812 -pfam00169 333896 pfam00169 333896 -pfam00170 333897 cl21462 354818 -pfam00171 333898 cl11961 353326 -pfam00172 333899 cl00068 350887 -pfam00174 333900 cl00199 350944 -pfam00175 333901 cl23719 355017 -pfam00177 333902 cl00313 351018 -pfam00178 333903 cl02599 351818 -pfam00179 333904 cl00154 350921 -pfam00180 333905 cl00445 351095 -pfam00183 333906 pfam00183 333906 -pfam00185 333907 cl21454 354811 -pfam00186 333908 cl17279 354327 -pfam00187 333909 cl16916 354287 -pfam00188 333910 cl00133 350912 -pfam00189 333911 pfam00189 333911 -pfam00190 333912 cl21464 354820 -pfam00191 333913 cl02574 351811 -pfam00193 333914 cl02612 351826 -pfam00194 333915 cl00012 350859 -pfam00197 333916 cl11466 353266 -pfam00198 333917 cl02008 351658 -pfam00199 333918 cl09506 352968 -pfam00200 333919 cl10507 353083 -pfam00202 333920 cl18945 354370 -pfam00203 333921 cl00350 351046 -pfam00204 333922 cl02783 351890 -pfam00205 333923 cl22435 354938 -pfam00206 333924 cl00013 350860 -pfam00207 333925 pfam00207 333925 -pfam00208 333926 pfam00208 333926 -pfam00210 333927 pfam00210 333927 -pfam00212 333928 cl27729 355675 -pfam00213 333929 cl17210 354322 -pfam00214 333930 cl27728 355674 -pfam00215 333931 cl21457 354814 -pfam00216 333932 cl00257 350986 -pfam00217 333933 cl02823 351903 -pfam00218 333934 cl21457 354814 -pfam00219 333935 cl02472 351768 -pfam00221 333936 cl00013 350860 -pfam00224 333937 cl29628 356504 -pfam00225 333938 pfam00225 333938 -pfam00226 333939 cl02542 351794 -pfam00227 333940 cl00467 351104 -pfam00228 333941 pfam00228 333941 -pfam00229 333942 cl00147 350919 -pfam00230 333943 cl00200 350945 -pfam00231 333944 cl00365 351055 -pfam00232 333945 cl23725 355022 -pfam00233 333946 cl21469 354822 -pfam00234 333947 cl07890 352835 -pfam00235 333948 cl00123 350909 -pfam00236 333949 cl02448 351763 -pfam00237 333950 cl00327 351030 -pfam00238 333951 cl00328 351031 -pfam00239 333952 cl02788 351894 -pfam00240 333953 cl28922 355798 -pfam00241 333954 cl15697 353973 -pfam00244 333955 cl02098 351674 -pfam00245 333956 cl23718 355016 -pfam00249 333957 cl21498 354840 -pfam00250 333958 cl00061 350882 -pfam00251 333959 cl14647 353819 -pfam00252 333960 cl00353 351049 -pfam00253 333961 cl00355 351051 -pfam00254 333962 cl19519 354434 -pfam00255 333963 cl00388 351069 -pfam00258 333964 cl00438 351093 -pfam00263 333965 pfam00263 333965 -pfam00264 333966 pfam00264 333966 -pfam00266 333967 cl29034 355910 -pfam00268 333968 cl00264 350992 -pfam00270 333969 cl28899 355775 -pfam00271 333970 cl28899 355775 -pfam00272 333971 pfam00272 333971 -pfam00275 333972 pfam00275 333972 -pfam00276 333973 cl00326 351029 -pfam00278 333974 pfam00278 333974 -pfam00280 333975 pfam00280 333975 -pfam00281 333976 pfam00281 333976 -pfam00282 333977 cl18945 354370 -pfam00283 333978 pfam00283 333978 -pfam00285 333979 cl00416 351085 -pfam00287 333980 cl08255 352861 -pfam00288 333981 pfam00288 333981 -pfam00289 333982 pfam00289 333982 -pfam00290 333983 pfam00290 333983 -pfam00291 333984 pfam00291 333984 -pfam00293 333985 cl00447 351096 -pfam00294 333986 cl00192 350937 -pfam00297 333987 pfam00297 333987 -pfam00298 333988 pfam00298 333988 -pfam00299 333989 cl28445 355711 -pfam00300 333990 cl11399 353243 -pfam00301 333991 cl00202 350946 -pfam00302 333992 cl02008 351658 -pfam00303 333993 cl19097 354378 -pfam00305 333994 pfam00305 333994 -pfam00306 333995 pfam00306 333995 -pfam00307 333996 cl00030 350868 -pfam00309 333997 pfam00309 333997 -pfam00311 333998 cl21521 354850 -pfam00312 333999 cl00349 351045 -pfam00314 334000 cl02511 351780 -pfam00316 334001 cl00289 351004 -pfam00317 334002 pfam00317 334002 -pfam00318 334003 cl00315 351020 -pfam00319 334004 cl00109 350904 -pfam00320 334005 cl29608 356484 -pfam00321 334006 pfam00321 334006 -pfam00322 334007 cl27714 355672 -pfam00327 334008 cl00203 350947 -pfam00328 334009 cl11399 353243 -pfam00329 334010 cl19197 354392 -pfam00330 334011 cl00285 351003 -pfam00331 334012 cl23725 355022 -pfam00332 334013 cl23725 355022 -pfam00333 334014 pfam00333 334014 -pfam00334 334015 pfam00334 334015 -pfam00335 334016 pfam00335 334016 -pfam00337 334017 cl00071 350888 -pfam00338 334018 cl00314 351019 -pfam00339 334019 cl22903 354975 -pfam00343 334020 cl10013 353042 -pfam00344 334021 pfam00344 334021 -pfam00346 334022 cl21493 354835 -pfam00348 334023 cl00210 350953 -pfam00349 334024 cl17037 354300 -pfam00350 334025 cl21455 354812 -pfam00352 334026 cl08263 352864 -pfam00353 334027 pfam00353 334027 -pfam00355 334028 cl00938 351321 -pfam00357 334029 pfam00357 334029 -pfam00358 334030 cl00162 350926 -pfam00359 334031 cl00163 350927 -pfam00361 334032 cl29598 356474 -pfam00362 334033 cl00057 350880 -pfam00363 334034 pfam00363 334034 -pfam00364 334035 cl11404 353245 -pfam00365 334036 cl00204 350948 -pfam00366 334037 cl00351 351047 -pfam00367 334038 cl29595 356471 -pfam00368 334039 cl00205 350949 -pfam00370 334040 pfam00370 334040 -pfam00372 334041 pfam00372 334041 -pfam00374 334042 cl21493 354835 -pfam00375 334043 cl00573 351159 -pfam00376 334044 cl02600 351819 -pfam00377 334045 cl27706 355671 -pfam00378 334046 cl23717 355015 -pfam00380 334047 cl00334 351035 -pfam00381 334048 cl00206 350950 -pfam00384 334049 cl09928 353028 -pfam00385 334050 cl28914 355790 -pfam00386 334051 cl23878 355085 -pfam00387 334052 cl29594 356470 -pfam00388 334053 cl14615 353814 -pfam00389 334054 cl21454 354811 -pfam00391 334055 cl00215 350957 -pfam00393 334056 pfam00393 334056 -pfam00394 334057 cl19115 354382 -pfam00396 334058 cl02546 351796 -pfam00397 334059 cl00157 350923 -pfam00400 334060 cl29593 356469 -pfam00401 334061 pfam00401 334061 -pfam00402 334062 pfam00402 334062 -pfam00403 334063 cl00207 350951 -pfam00408 334064 pfam00408 334064 -pfam00410 334065 cl00330 351032 -pfam00412 334066 cl02475 351770 -pfam00413 334067 pfam00413 334067 -pfam00419 334068 cl01416 351496 -pfam00420 334069 cl00492 351118 -pfam00426 334070 pfam00426 334070 -pfam00428 334071 cl21508 354846 -pfam00433 334072 cl11395 353240 -pfam00435 334073 cl02488 351773 -pfam00436 334074 cl09930 353029 -pfam00438 334075 pfam00438 334075 -pfam00440 334076 pfam00440 334076 -pfam00441 334077 cl09933 353031 -pfam00443 334078 pfam00443 334078 -pfam00444 334079 cl00380 351063 -pfam00445 334080 cl00208 350952 -pfam00447 334081 cl12113 353361 -pfam00448 334082 cl21455 354812 -pfam00449 334083 pfam00449 334083 -pfam00450 334084 cl08270 352865 -pfam00452 334085 cl02575 351812 -pfam00453 334086 cl00393 351073 -pfam00456 334087 cl01629 351571 -pfam00457 334088 pfam00457 334088 -pfam00458 334089 cl00349 351045 -pfam00459 334090 cl00289 351004 -pfam00462 334091 cl00388 351069 -pfam00465 334092 cl02872 351912 -pfam00466 334093 cl00376 351061 -pfam00467 334094 cl00354 351050 -pfam00468 334095 cl00370 351059 -pfam00471 334096 cl00383 351066 -pfam00472 334097 cl29584 356460 -pfam00473 334098 cl22555 354947 -pfam00475 334099 cl00341 351042 -pfam00476 334100 cl02626 351832 -pfam00478 334101 pfam00478 334101 -pfam00479 334102 pfam00479 334102 -pfam00482 334103 pfam00482 334103 -pfam00484 334104 cl00391 351071 -pfam00486 334105 cl21459 354815 -pfam00487 334106 pfam00487 334106 -pfam00488 334107 cl21455 354812 -pfam00489 334108 cl02473 351769 -pfam00490 334109 cl00338 351039 -pfam00491 334110 cl17011 354294 -pfam00496 334111 cl01709 351575 -pfam00497 334112 pfam00497 334112 -pfam00498 334113 cl00062 350883 -pfam00499 334114 cl21484 354830 -pfam00500 334115 cl23949 355103 -pfam00501 334116 pfam00501 334116 -pfam00504 334117 cl02879 351914 -pfam00505 334118 cl00082 350892 -pfam00507 334119 cl00535 351141 -pfam00512 334120 cl29579 356455 -pfam00514 334121 cl22454 354942 -pfam00515 334122 cl22897 354972 -pfam00517 334123 cl02885 351915 -pfam00520 334124 pfam00520 334124 -pfam00521 334125 pfam00521 334125 -pfam00523 334126 pfam00523 334126 -pfam00525 334127 pfam00525 334127 -pfam00528 334128 cl00427 351090 -pfam00532 334129 pfam00532 334129 -pfam00533 334130 cl00038 350871 -pfam00534 334131 cl10013 353042 -pfam00535 334132 cl11394 353239 -pfam00536 334133 cl15755 353976 -pfam00537 334134 pfam00537 334134 -pfam00538 334135 cl00073 350889 -pfam00542 334136 cl29562 356438 -pfam00545 334137 cl00212 350954 -pfam00547 334138 cl00532 351139 -pfam00549 334139 cl29107 355983 -pfam00553 334140 cl21579 354880 -pfam00554 334141 cl08275 352867 -pfam00555 334142 pfam00555 334142 -pfam00557 334143 cl00279 351000 -pfam00560 334144 pfam00560 334144 -pfam00561 334145 pfam00561 334145 -pfam00563 334146 cl29561 356437 -pfam00565 334147 cl00140 350916 -pfam00566 334148 cl02495 351776 -pfam00567 334149 pfam00567 334149 -pfam00570 334150 cl02578 351813 -pfam00571 334151 cl15354 353934 -pfam00572 334152 cl00333 351034 -pfam00574 334153 cl23717 355015 -pfam00575 334154 cl09927 353027 -pfam00576 334155 cl21470 354823 -pfam00578 334156 pfam00578 334156 -pfam00580 334157 cl21455 354812 -pfam00581 334158 cl00125 350910 -pfam00583 334159 cl17182 354318 -pfam00584 334160 cl00481 351112 -pfam00586 334161 pfam00586 334161 -pfam00588 334162 cl21505 354844 -pfam00589 334163 cl00213 350955 -pfam00590 334164 cl00304 351012 -pfam00591 334165 cl29556 356432 -pfam00593 334166 cl21487 354832 -pfam00595 334167 cl00117 350907 -pfam00596 334168 cl00214 350956 -pfam00606 334169 pfam00606 334169 -pfam00610 334170 cl02442 351760 -pfam00611 334171 cl12013 353336 -pfam00612 334172 cl29555 356431 -pfam00613 334173 cl00271 350995 -pfam00617 334174 cl02485 351772 -pfam00619 334175 cl14633 353817 -pfam00620 334176 cl02570 351808 -pfam00622 334177 cl02614 351827 -pfam00626 334178 cl15697 353973 -pfam00627 334179 cl21463 354819 -pfam00628 334180 cl22851 354958 -pfam00629 334181 cl27660 355669 -pfam00633 334182 pfam00633 334182 -pfam00635 334183 cl27657 355668 -pfam00636 334184 cl00258 350987 -pfam00638 334185 cl17171 354315 -pfam00639 334186 cl29122 355998 -pfam00644 334187 pfam00644 334187 -pfam00645 334188 pfam00645 334188 -pfam00646 334189 cl02535 351790 -pfam00647 334190 pfam00647 334190 -pfam00648 334191 cl00051 350877 -pfam00649 334192 cl02598 351817 -pfam00650 334193 cl15787 353978 -pfam00651 334194 cl02518 351783 -pfam00652 334195 cl26069 355484 -pfam00653 334196 cl00035 350870 -pfam00656 334197 cl00042 350873 -pfam00658 334198 cl02642 351839 -pfam00662 334199 pfam00662 334199 -pfam00665 334200 cl21549 354865 -pfam00667 334201 pfam00667 334201 -pfam00668 334202 cl23853 355073 -pfam00672 334203 cl01054 351361 -pfam00673 334204 pfam00673 334204 -pfam00675 334205 pfam00675 334205 -pfam00677 334206 cl28933 355809 -pfam00679 334207 cl02785 351892 -pfam00683 334208 pfam00683 334208 -pfam00684 334209 cl21539 354860 -pfam00685 334210 cl21551 354866 -pfam00687 334211 cl00322 351025 -pfam00690 334212 cl02930 351921 -pfam00692 334213 cl00493 351119 -pfam00696 334214 cl00452 351098 -pfam00699 334215 cl00533 351140 -pfam00702 334216 pfam00702 334216 -pfam00704 334217 pfam00704 334217 -pfam00707 334218 pfam00707 334218 -pfam00708 334219 cl00551 351148 -pfam00709 334220 cl28913 355789 -pfam00711 334221 pfam00711 334221 -pfam00712 334222 cl29549 356425 -pfam00717 334223 cl10465 353074 -pfam00719 334224 cl00217 350958 -pfam00720 334225 cl11594 353295 -pfam00722 334226 cl22861 354964 -pfam00724 334227 pfam00724 334227 -pfam00726 334228 cl02501 351777 -pfam00731 334229 cl00310 351015 -pfam00734 334230 cl02521 351784 -pfam00736 334231 cl00194 350939 -pfam00742 334232 pfam00742 334232 -pfam00745 334233 pfam00745 334233 -pfam00746 334234 cl23989 355116 -pfam00751 334235 cl02557 351802 -pfam00752 334236 cl02628 351833 -pfam00753 334237 cl23716 355014 -pfam00754 334238 cl23730 355025 -pfam00755 334239 pfam00755 334239 -pfam00756 334240 cl21494 354836 -pfam00759 334241 cl02959 351925 -pfam00762 334242 pfam00762 334242 -pfam00763 334243 pfam00763 334243 -pfam00766 334244 pfam00766 334244 -pfam00768 334245 cl21491 354834 -pfam00769 334246 pfam00769 334246 -pfam00771 334247 cl07980 352841 -pfam00772 334248 pfam00772 334248 -pfam00778 334249 cl02426 351758 -pfam00779 334250 cl02465 351765 -pfam00782 334251 cl28904 355780 -pfam00784 334252 cl02480 351771 -pfam00786 334253 cl00113 350906 -pfam00790 334254 cl02544 351795 -pfam00791 334255 cl02517 351782 -pfam00792 334256 cl14603 353812 -pfam00795 334257 cl11424 353250 -pfam00797 334258 cl00949 351327 -pfam00800 334259 cl21456 354813 -pfam00801 334260 cl30545 357421 -pfam00804 334261 pfam00804 334261 -pfam00805 334262 cl21642 354898 -pfam00806 334263 cl29546 356422 -pfam00810 334264 cl02155 351688 -pfam00813 334265 cl00593 351166 -pfam00814 334266 pfam00814 334266 -pfam00815 334267 cl10029 353047 -pfam00816 334268 cl29534 356410 -pfam00817 334269 cl28996 355872 -pfam00821 334270 cl22860 354963 -pfam00822 334271 cl21598 354884 -pfam00825 334272 cl00457 351101 -pfam00828 334273 cl12022 353342 -pfam00829 334274 cl00382 351065 -pfam00830 334275 cl00367 351057 -pfam00831 334276 cl09943 353035 -pfam00833 334277 cl00610 351176 -pfam00835 334278 pfam00835 334278 -pfam00838 334279 cl08291 352870 -pfam00840 334280 cl21662 354899 -pfam00842 334281 cl27635 355667 -pfam00843 334282 pfam00843 334282 -pfam00847 334283 cl00033 350869 -pfam00848 334284 cl14643 353818 -pfam00850 334285 cl17011 354294 -pfam00855 334286 cl02554 351800 -pfam00856 334287 cl02566 351806 -pfam00857 334288 cl00220 350960 -pfam00858 334289 cl02990 351928 -pfam00866 334290 cl09109 352932 -pfam00867 334291 cl29533 356409 -pfam00868 334292 pfam00868 334292 -pfam00869 334293 pfam00869 334293 -pfam00873 334294 pfam00873 334294 -pfam00875 334295 pfam00875 334295 -pfam00876 334296 cl03000 351931 -pfam00877 334297 cl21534 354857 -pfam00880 334298 cl27631 355666 -pfam00882 334299 cl16915 354286 -pfam00883 334300 cl29532 356408 -pfam00884 334301 pfam00884 334301 -pfam00885 334302 cl00317 351021 -pfam00886 334303 cl00368 351058 -pfam00887 334304 cl00221 350961 -pfam00888 334305 pfam00888 334305 -pfam00889 334306 cl29530 356406 -pfam00902 334307 cl00521 351132 -pfam00903 334308 cl14632 353816 -pfam00905 334309 cl21491 354834 -pfam00908 334310 cl21464 354820 -pfam00912 334311 cl29529 356405 -pfam00917 334312 cl02446 351761 -pfam00919 334313 pfam00919 334313 -pfam00920 334314 cl00340 351041 -pfam00923 334315 pfam00923 334315 -pfam00925 334316 cl00522 351133 -pfam00926 334317 cl00336 351037 -pfam00928 334318 cl10970 353153 -pfam00932 334319 cl20210 354543 -pfam00935 334320 cl00706 351221 -pfam00940 334321 cl25973 355471 -pfam00941 334322 cl19922 354509 -pfam00950 334323 cl00454 351100 -pfam00953 334324 cl10571 353087 -pfam00955 334325 cl23746 355031 -pfam00956 334326 cl08298 352871 -pfam00957 334327 pfam00957 334327 -pfam00958 334328 pfam00958 334328 -pfam00959 334329 cl00222 350962 -pfam00961 334330 pfam00961 334330 -pfam00969 334331 cl03042 351932 -pfam00970 334332 cl06868 352595 -pfam00975 334333 cl21494 354836 -pfam00984 334334 pfam00984 334334 -pfam00986 334335 cl03055 351933 -pfam00988 334336 cl03056 351934 -pfam00989 334337 pfam00989 334337 -pfam00993 334338 cl03058 351935 -pfam00995 334339 cl15415 353941 -pfam00998 334340 pfam00998 334340 -pfam01008 334341 pfam01008 334341 -pfam01014 334342 cl00263 350991 -pfam01015 334343 cl00821 351272 -pfam01016 334344 cl00359 351053 -pfam01017 334345 pfam01017 334345 -pfam01018 334346 pfam01018 334346 -pfam01020 334347 cl00671 351207 -pfam01024 334348 pfam01024 334348 -pfam01025 334349 cl03075 351939 -pfam01027 334350 cl00473 351107 -pfam01028 334351 cl00213 350955 -pfam01029 334352 cl00223 350963 -pfam01030 334353 pfam01030 334353 -pfam01031 334354 pfam01031 334354 -pfam01032 334355 cl00454 351100 -pfam01035 334356 cl29527 356403 -pfam01036 334357 cl02333 351732 -pfam01040 334358 cl00337 351038 -pfam01043 334359 cl29526 356402 -pfam01047 334360 cl21459 354815 -pfam01048 334361 cl00303 351011 -pfam01051 334362 cl19398 354416 -pfam01052 334363 cl29525 356401 -pfam01055 334364 pfam01055 334364 -pfam01058 334365 cl17194 354321 -pfam01061 334366 cl21474 354826 -pfam01062 334367 cl01544 351547 -pfam01063 334368 cl00224 350964 -pfam01065 334369 pfam01065 334369 -pfam01066 334370 cl00453 351099 -pfam01067 334371 cl00165 350928 -pfam01070 334372 pfam01070 334372 -pfam01074 334373 cl15692 353970 -pfam01077 334374 pfam01077 334374 -pfam01079 334375 pfam01079 334375 -pfam01080 334376 cl01342 351467 -pfam01081 334377 cl21457 354814 -pfam01082 334378 pfam01082 334378 -pfam01084 334379 cl00373 351060 -pfam01086 334380 pfam01086 334380 -pfam01088 334381 cl08306 352874 -pfam01092 334382 cl00931 351315 -pfam01094 334383 cl10011 353040 -pfam01096 334384 cl02609 351823 -pfam01105 334385 pfam01105 334385 -pfam01106 334386 cl29515 356391 -pfam01111 334387 cl03104 351944 -pfam01112 334388 cl00635 351188 -pfam01113 334389 cl21454 354811 -pfam01116 334390 cl21457 354814 -pfam01120 334391 cl29077 355953 -pfam01122 334392 pfam01122 334392 -pfam01124 334393 cl09190 352947 -pfam01125 334394 cl02138 351685 -pfam01128 334395 cl11394 353239 -pfam01130 334396 pfam01130 334396 -pfam01131 334397 pfam01131 334397 -pfam01132 334398 cl09927 353027 -pfam01137 334399 pfam01137 334399 -pfam01138 334400 cl03114 351945 -pfam01139 334401 cl22450 354940 -pfam01144 334402 cl00339 351040 -pfam01149 334403 cl03119 351946 -pfam01150 334404 cl17037 354300 -pfam01155 334405 cl19201 354393 -pfam01156 334406 cl00226 350965 -pfam01158 334407 cl02104 351677 -pfam01161 334408 cl00227 350966 -pfam01165 334409 cl00529 351137 -pfam01166 334410 pfam01166 334410 -pfam01167 334411 pfam01167 334411 -pfam01168 334412 cl27635 355667 -pfam01169 334413 pfam01169 334413 -pfam01174 334414 cl00020 350865 -pfam01175 334415 cl19311 354410 -pfam01176 334416 cl09927 353027 -pfam01177 334417 cl00518 351130 -pfam01179 334418 pfam01179 334418 -pfam01180 334419 cl21457 354814 -pfam01182 334420 cl00339 351040 -pfam01185 334421 cl02451 351764 -pfam01186 334422 pfam01186 334422 -pfam01190 334423 pfam01190 334423 -pfam01191 334424 cl00883 351297 -pfam01192 334425 cl14651 353822 -pfam01193 334426 pfam01193 334426 -pfam01194 334427 cl00712 351223 -pfam01195 334428 cl00352 351048 -pfam01196 334429 cl00356 351052 -pfam01197 334430 cl00377 351062 -pfam01201 334431 pfam01201 334431 -pfam01203 334432 cl03129 351949 -pfam01204 334433 cl17346 354328 -pfam01205 334434 pfam01205 334434 -pfam01209 334435 cl17173 354317 -pfam01212 334436 cl18945 354370 -pfam01213 334437 pfam01213 334437 -pfam01214 334438 cl02099 351675 -pfam01218 334439 cl19362 354414 -pfam01219 334440 cl00526 351135 -pfam01220 334441 cl00505 351123 -pfam01221 334442 cl03131 351951 -pfam01223 334443 cl00089 350897 -pfam01226 334444 cl00927 351313 -pfam01230 334445 cl00228 350967 -pfam01233 334446 pfam01233 334446 -pfam01235 334447 cl00548 351147 -pfam01237 334448 pfam01237 334448 -pfam01239 334449 pfam01239 334449 -pfam01243 334450 cl00381 351064 -pfam01245 334451 cl00406 351079 -pfam01248 334452 cl00600 351171 -pfam01250 334453 cl00414 351083 -pfam01251 334454 cl03141 351954 -pfam01252 334455 cl00458 351102 -pfam01253 334456 cl00229 350968 -pfam01255 334457 cl00230 350969 -pfam01258 334458 cl00755 351241 -pfam01259 334459 cl00231 350970 -pfam01263 334460 cl14648 353820 -pfam01264 334461 cl00323 351026 -pfam01266 334462 cl30730 357606 -pfam01268 334463 pfam01268 334463 -pfam01272 334464 cl29503 356379 -pfam01274 334465 cl21481 354828 -pfam01275 334466 cl02417 351755 -pfam01276 334467 cl18945 354370 -pfam01277 334468 pfam01277 334468 -pfam01281 334469 pfam01281 334469 -pfam01282 334470 cl00878 351295 -pfam01284 334471 cl04571 352205 -pfam01287 334472 cl09927 353027 -pfam01288 334473 cl00233 350972 -pfam01289 334474 pfam01289 334474 -pfam01290 334475 cl27586 355665 -pfam01294 334476 cl01799 351604 -pfam01297 334477 cl00262 350990 -pfam01298 334478 cl03152 351957 -pfam01299 334479 pfam01299 334479 -pfam01300 334480 cl00305 351013 -pfam01302 334481 cl08315 352876 -pfam01311 334482 cl00734 351231 -pfam01312 334483 cl19167 354387 -pfam01313 334484 cl00867 351290 -pfam01314 334485 pfam01314 334485 -pfam01315 334486 cl29417 356293 -pfam01316 334487 pfam01316 334487 -pfam01320 334488 cl03164 351958 -pfam01321 334489 cl23800 355054 -pfam01322 334490 cl01610 351566 -pfam01323 334491 cl00388 351069 -pfam01326 334492 pfam01326 334492 -pfam01329 334493 cl00942 351323 -pfam01330 334494 pfam01330 334494 -pfam01335 334495 cl14633 353817 -pfam01336 334496 cl09930 353029 -pfam01337 334497 cl01048 351356 -pfam01339 334498 pfam01339 334498 -pfam01341 334499 pfam01341 334499 -pfam01342 334500 cl02536 351791 -pfam01343 334501 cl23717 355015 -pfam01344 334502 cl02701 351859 -pfam01346 334503 pfam01346 334503 -pfam01352 334504 cl02581 351814 -pfam01355 334505 pfam01355 334505 -pfam01357 334506 cl08320 352877 -pfam01359 334507 cl21549 354865 -pfam01363 334508 cl22851 354958 -pfam01367 334509 cl22433 354936 -pfam01368 334510 pfam01368 334510 -pfam01369 334511 cl00136 350914 -pfam01370 334512 pfam01370 334512 -pfam01379 334513 cl29490 356366 -pfam01380 334514 cl00389 351070 -pfam01381 334515 cl22854 354960 -pfam01384 334516 cl27575 355663 -pfam01386 334517 cl00787 351255 -pfam01388 334518 cl02633 351835 -pfam01390 334519 cl02507 351778 -pfam01392 334520 cl02447 351762 -pfam01393 334521 cl28914 355790 -pfam01395 334522 cl11600 353296 -pfam01397 334523 pfam01397 334523 -pfam01399 334524 cl02111 351681 -pfam01403 334525 cl15693 353971 -pfam01404 334526 cl02704 351861 -pfam01413 334527 cl02467 351766 -pfam01414 334528 cl19567 354440 -pfam01416 334529 pfam01416 334529 -pfam01417 334530 cl02544 351795 -pfam01418 334531 pfam01418 334531 -pfam01422 334532 pfam01422 334532 -pfam01423 334533 cl00259 350988 -pfam01424 334534 cl00297 351008 -pfam01426 334535 cl02608 351822 -pfam01428 334536 cl01438 351504 -pfam01430 334537 cl00236 350974 -pfam01433 334538 pfam01433 334538 -pfam01437 334539 cl02601 351820 -pfam01439 334540 pfam01439 334540 -pfam01447 334541 cl14813 353839 -pfam01448 334542 pfam01448 334542 -pfam01450 334543 cl29486 356362 -pfam01453 334544 cl24013 355121 -pfam01454 334545 pfam01454 334545 -pfam01455 334546 cl00394 351074 -pfam01458 334547 cl29482 356358 -pfam01459 334548 cl03224 351964 -pfam01465 334549 cl03225 351965 -pfam01466 334550 pfam01466 334550 -pfam01467 334551 cl00015 350862 -pfam01471 334552 pfam01471 334552 -pfam01474 334553 cl03230 351966 -pfam01476 334554 cl21525 354852 -pfam01477 334555 cl00011 350858 -pfam01478 334556 cl21703 354912 -pfam01479 334557 cl09940 353034 -pfam01480 334558 cl02562 351805 -pfam01483 334559 cl27557 355662 -pfam01484 334560 cl27556 355661 -pfam01486 334561 pfam01486 334561 -pfam01487 334562 pfam01487 334562 -pfam01491 334563 cl00238 350975 -pfam01493 334564 cl00239 350976 -pfam01496 334565 pfam01496 334565 -pfam01497 334566 cl00262 350990 -pfam01502 334567 cl00344 351043 -pfam01503 334568 cl16941 354290 -pfam01504 334569 cl28923 355799 -pfam01505 334570 pfam01505 334570 -pfam01509 334571 pfam01509 334571 -pfam01510 334572 cl02712 351864 -pfam01512 334573 pfam01512 334573 -pfam01514 334574 cl01907 351635 -pfam01520 334575 cl02713 351865 -pfam01521 334576 cl00400 351077 -pfam01522 334577 cl15692 353970 -pfam01523 334578 cl19356 354412 -pfam01526 334579 cl14901 353852 -pfam01529 334580 cl19890 354500 -pfam01530 334581 pfam01530 334581 -pfam01541 334582 cl15257 353929 -pfam01546 334583 pfam01546 334583 -pfam01547 334584 cl21456 354813 -pfam01548 334585 pfam01548 334585 -pfam01551 334586 pfam01551 334586 -pfam01554 334587 cl09326 352957 -pfam01555 334588 cl17173 354317 -pfam01556 334589 cl21722 354918 -pfam01557 334590 cl11421 353248 -pfam01558 334591 cl00546 351146 -pfam01559 334592 pfam01559 334592 -pfam01562 334593 pfam01562 334593 -pfam01564 334594 cl17173 354317 -pfam01565 334595 cl19922 354509 -pfam01566 334596 pfam01566 334596 -pfam01569 334597 cl00474 351108 -pfam01575 334598 cl00509 351126 -pfam01579 334599 pfam01579 334599 -pfam01585 334600 cl02611 351825 -pfam01590 334601 cl21515 354848 -pfam01591 334602 cl17190 354320 -pfam01592 334603 cl00528 351136 -pfam01593 334604 pfam01593 334604 -pfam01599 334605 cl00876 351294 -pfam01603 334606 cl27532 355659 -pfam01608 334607 cl19756 354463 -pfam01609 334608 pfam01609 334608 -pfam01610 334609 cl24015 355122 -pfam01612 334610 cl10012 353041 -pfam01614 334611 pfam01614 334611 -pfam01618 334612 cl00568 351156 -pfam01619 334613 pfam01619 334613 -pfam01625 334614 cl00366 351056 -pfam01627 334615 cl00086 350895 -pfam01628 334616 cl29475 356351 -pfam01632 334617 cl00392 351072 -pfam01634 334618 cl21456 354813 -pfam01638 334619 cl21459 354815 -pfam01640 334620 cl00296 351007 -pfam01641 334621 cl15841 353987 -pfam01642 334622 cl00817 351270 -pfam01644 334623 cl11394 353239 -pfam01648 334624 cl00500 351122 -pfam01649 334625 cl00384 351067 -pfam01652 334626 cl02106 351678 -pfam01654 334627 cl00562 351154 -pfam01655 334628 cl00748 351235 -pfam01656 334629 pfam01656 334629 -pfam01657 334630 pfam01657 334630 -pfam01658 334631 cl00554 351150 -pfam01663 334632 pfam01663 334632 -pfam01668 334633 cl00482 351113 -pfam01674 334634 cl21494 354836 -pfam01679 334635 cl00431 351092 -pfam01682 334636 pfam01682 334636 -pfam01683 334637 pfam01683 334637 -pfam01687 334638 cl29474 356350 -pfam01693 334639 pfam01693 334639 -pfam01694 334640 cl21536 354858 -pfam01695 334641 cl21455 354812 -pfam01698 334642 pfam01698 334642 -pfam01699 334643 pfam01699 334643 -pfam01702 334644 cl19224 354397 -pfam01706 334645 pfam01706 334645 -pfam01709 334646 cl00361 351054 -pfam01713 334647 cl02619 351829 -pfam01715 334648 pfam01715 334648 -pfam01719 334649 pfam01719 334649 -pfam01722 334650 cl00386 351068 -pfam01724 334651 pfam01724 334651 -pfam01725 334652 cl00276 350998 -pfam01728 334653 cl17173 354317 -pfam01729 334654 cl21457 354814 -pfam01730 334655 cl19817 354466 -pfam01731 334656 cl22863 354965 -pfam01734 334657 cl11396 353241 -pfam01738 334658 cl21494 354836 -pfam01739 334659 cl17173 354317 -pfam01740 334660 cl00604 351173 -pfam01741 334661 cl00860 351284 -pfam01747 334662 cl00015 350862 -pfam01749 334663 pfam01749 334663 -pfam01751 334664 cl00718 351226 -pfam01753 334665 cl20224 354545 -pfam01754 334666 cl27506 355658 -pfam01756 334667 pfam01756 334667 -pfam01757 334668 cl21495 354837 -pfam01759 334669 cl02512 351781 -pfam01764 334670 cl21494 354836 -pfam01765 334671 cl00240 350977 -pfam01769 334672 cl29469 356345 -pfam01773 334673 pfam01773 334673 -pfam01774 334674 cl00530 351138 -pfam01776 334675 cl03348 351979 -pfam01777 334676 cl00354 351050 -pfam01778 334677 cl03350 351980 -pfam01780 334678 cl19284 354404 -pfam01781 334679 cl03352 351981 -pfam01782 334680 cl29468 356344 -pfam01786 334681 cl00264 350992 -pfam01789 334682 cl03356 351982 -pfam01790 334683 cl00478 351110 -pfam01794 334684 cl23723 355020 -pfam01798 334685 pfam01798 334685 -pfam01799 334686 pfam01799 334686 -pfam01804 334687 pfam01804 334687 -pfam01805 334688 cl02715 351866 -pfam01808 334689 cl29462 356338 -pfam01809 334690 cl00506 351124 -pfam01813 334691 cl00613 351178 -pfam01814 334692 cl15774 353977 -pfam01817 334693 cl00693 351218 -pfam01820 334694 pfam01820 334694 -pfam01823 334695 cl02616 351828 -pfam01825 334696 cl02559 351804 -pfam01826 334697 pfam01826 334697 -pfam01827 334698 pfam01827 334698 -pfam01828 334699 cl03371 351983 -pfam01832 334700 cl29459 356335 -pfam01834 334701 pfam01834 334701 -pfam01837 334702 cl14897 353851 -pfam01839 334703 pfam01839 334703 -pfam01841 334704 cl17362 354329 -pfam01842 334705 cl29106 355982 -pfam01843 334706 cl03379 351985 -pfam01845 334707 cl00995 351340 -pfam01846 334708 cl02610 351824 -pfam01849 334709 cl29457 356333 -pfam01850 334710 cl28905 355781 -pfam01851 334711 pfam01851 334711 -pfam01853 334712 pfam01853 334712 -pfam01855 334713 cl11410 353247 -pfam01857 334714 cl00050 350876 -pfam01866 334715 cl19374 354415 -pfam01867 334716 cl00656 351200 -pfam01868 334717 cl00688 351216 -pfam01871 334718 cl00911 351308 -pfam01872 334719 cl17279 354327 -pfam01873 334720 cl17014 354297 -pfam01874 334721 cl00768 351245 -pfam01876 334722 cl23724 355021 -pfam01877 334723 cl00585 351163 -pfam01880 334724 cl00014 350861 -pfam01881 334725 cl11443 353258 -pfam01883 334726 cl00941 351322 -pfam01885 334727 cl19470 354421 -pfam01887 334728 cl17774 354341 -pfam01888 334729 cl00828 351275 -pfam01890 334730 cl12133 353366 -pfam01894 334731 cl00439 351094 -pfam01895 334732 pfam01895 334732 -pfam01899 334733 cl00807 351263 -pfam01904 334734 cl00777 351250 -pfam01906 334735 cl00426 351089 -pfam01912 334736 cl00241 350978 -pfam01913 334737 pfam01913 334737 -pfam01915 334738 pfam01915 334738 -pfam01916 334739 cl00826 351274 -pfam01918 334740 cl00682 351212 -pfam01920 334741 cl09111 352933 -pfam01923 334742 cl00920 351311 -pfam01924 334743 cl12072 353352 -pfam01926 334744 pfam01926 334744 -pfam01927 334745 cl19501 354428 -pfam01930 334746 cl00641 351191 -pfam01931 334747 cl00866 351289 -pfam01933 334748 cl00425 351088 -pfam01935 334749 cl21455 354812 -pfam01937 334750 cl15397 353937 -pfam01940 334751 cl00793 351257 -pfam01944 334752 cl00572 351158 -pfam01946 334753 cl21454 354811 -pfam01948 334754 pfam01948 334754 -pfam01950 334755 cl00862 351286 -pfam01951 334756 cl00606 351174 -pfam01958 334757 cl27470 355656 -pfam01959 334758 cl00640 351190 -pfam01960 334759 cl00603 351172 -pfam01963 334760 cl12050 353346 -pfam01965 334761 cl00020 350865 -pfam01966 334762 cl21469 354822 -pfam01967 334763 cl00242 350979 -pfam01969 334764 cl03398 351986 -pfam01970 334765 cl00772 351247 -pfam01973 334766 cl21552 354867 -pfam01975 334767 cl00448 351097 -pfam01976 334768 cl00800 351260 -pfam01977 334769 cl00311 351016 -pfam01978 334770 cl21459 354815 -pfam01979 334771 cl00281 351001 -pfam01980 334772 cl00749 351236 -pfam01981 334773 cl19212 354394 -pfam01984 334774 cl00928 351314 -pfam01985 334775 cl00663 351202 -pfam01986 334776 cl15257 353929 -pfam01987 334777 cl00884 351298 -pfam01988 334778 cl00278 350999 -pfam01989 334779 cl00215 350957 -pfam01990 334780 cl00632 351187 -pfam01992 334781 cl00660 351201 -pfam01997 334782 cl00957 351330 -pfam02006 334783 cl03400 351987 -pfam02009 334784 cl14106 353807 -pfam02012 334785 pfam02012 334785 -pfam02016 334786 cl00700 351220 -pfam02017 334787 cl02541 351793 -pfam02018 334788 cl19911 354507 -pfam02020 334789 cl17013 354296 -pfam02021 334790 cl00516 351129 -pfam02023 334791 cl02605 351821 -pfam02025 334792 pfam02025 334792 -pfam02026 334793 pfam02026 334793 -pfam02033 334794 cl00542 351145 -pfam02036 334795 cl01225 351431 -pfam02037 334796 cl02640 351838 -pfam02042 334797 pfam02042 334797 -pfam02045 334798 cl02165 351693 -pfam02049 334799 cl09139 352938 -pfam02057 334800 pfam02057 334800 -pfam02073 334801 cl19596 354444 -pfam02075 334802 cl21482 354829 -pfam02076 334803 pfam02076 334803 -pfam02081 334804 cl27463 355655 -pfam02082 334805 cl29125 356001 -pfam02091 334806 cl00268 350993 -pfam02092 334807 cl21469 354822 -pfam02096 334808 cl00489 351116 -pfam02098 334809 pfam02098 334809 -pfam02099 334810 pfam02099 334810 -pfam02100 334811 pfam02100 334811 -pfam02104 334812 cl01321 351464 -pfam02107 334813 cl19182 354388 -pfam02109 334814 pfam02109 334814 -pfam02113 334815 cl21491 354834 -pfam02116 334816 pfam02116 334816 -pfam02119 334817 cl19280 354403 -pfam02120 334818 cl24001 355119 -pfam02128 334819 pfam02128 334819 -pfam02129 334820 cl21494 354836 -pfam02130 334821 cl00402 351078 -pfam02132 334822 pfam02132 334822 -pfam02135 334823 cl02660 351847 -pfam02137 334824 cl02661 351848 -pfam02138 334825 cl10511 353084 -pfam02144 334826 pfam02144 334826 -pfam02145 334827 pfam02145 334827 -pfam02146 334828 cl00195 350940 -pfam02148 334829 cl09957 353037 -pfam02152 334830 cl00263 350991 -pfam02169 334831 cl15824 353982 -pfam02170 334832 cl00301 351010 -pfam02177 334833 pfam02177 334833 -pfam02179 334834 cl02539 351792 -pfam02182 334835 cl02620 351830 -pfam02183 334836 cl23880 355086 -pfam02185 334837 cl00087 350896 -pfam02186 334838 cl02153 351687 -pfam02188 334839 cl27448 355653 -pfam02191 334840 cl02549 351798 -pfam02195 334841 cl02129 351682 -pfam02196 334842 cl28922 355798 -pfam02197 334843 cl02594 351815 -pfam02201 334844 cl02489 351774 -pfam02203 334845 cl00144 350917 -pfam02204 334846 cl19569 354442 -pfam02206 334847 cl27447 355652 -pfam02207 334848 cl19744 354458 -pfam02209 334849 cl02491 351775 -pfam02211 334850 cl21677 354902 -pfam02212 334851 cl02558 351803 -pfam02216 334852 pfam02216 334852 -pfam02225 334853 pfam02225 334853 -pfam02229 334854 cl21701 354911 -pfam02230 334855 cl21494 354836 -pfam02233 334856 cl22917 354977 -pfam02237 334857 pfam02237 334857 -pfam02244 334858 pfam02244 334858 -pfam02245 334859 cl14785 353837 -pfam02251 334860 pfam02251 334860 -pfam02252 334861 pfam02252 334861 -pfam02253 334862 cl00248 350980 -pfam02255 334863 cl00166 350929 -pfam02256 334864 cl03503 352001 -pfam02257 334865 pfam02257 334865 -pfam02260 334866 pfam02260 334866 -pfam02261 334867 cl00540 351143 -pfam02264 334868 cl21487 354832 -pfam02265 334869 cl16915 354286 -pfam02271 334870 pfam02271 334870 -pfam02272 334871 pfam02272 334871 -pfam02274 334872 cl19186 354389 -pfam02276 334873 cl12263 353376 -pfam02277 334874 cl11435 353253 -pfam02278 334875 cl21724 354919 -pfam02284 334876 cl02793 351896 -pfam02289 334877 cl00249 350981 -pfam02290 334878 pfam02290 334878 -pfam02291 334879 cl22885 354970 -pfam02293 334880 cl03519 352008 -pfam02300 334881 cl00881 351296 -pfam02301 334882 pfam02301 334882 -pfam02302 334883 cl10014 353043 -pfam02303 334884 pfam02303 334884 -pfam02308 334885 cl15893 353991 -pfam02309 334886 pfam02309 334886 -pfam02310 334887 cl00293 351006 -pfam02311 334888 cl21464 354820 -pfam02312 334889 pfam02312 334889 -pfam02315 334890 pfam02315 334890 -pfam02317 334891 pfam02317 334891 -pfam02319 334892 pfam02319 334892 -pfam02320 334893 pfam02320 334893 -pfam02322 334894 pfam02322 334894 -pfam02324 334895 pfam02324 334895 -pfam02325 334896 cl00508 351125 -pfam02330 334897 pfam02330 334897 -pfam02332 334898 cl00264 350992 -pfam02337 334899 pfam02337 334899 -pfam02338 334900 cl19932 354513 -pfam02342 334901 cl18957 354372 -pfam02349 334902 pfam02349 334902 -pfam02350 334903 pfam02350 334903 -pfam02351 334904 cl19746 354459 -pfam02352 334905 pfam02352 334905 -pfam02354 334906 pfam02354 334906 -pfam02357 334907 cl02766 351879 -pfam02359 334908 cl21693 354909 -pfam02362 334909 cl15242 353925 -pfam02365 334910 pfam02365 334910 -pfam02367 334911 cl21455 354812 -pfam02371 334912 pfam02371 334912 -pfam02373 334913 cl21464 354820 -pfam02375 334914 cl15840 353986 -pfam02383 334915 pfam02383 334915 -pfam02388 334916 cl17182 354318 -pfam02390 334917 cl17173 354317 -pfam02391 334918 cl00399 351076 -pfam02397 334919 cl29433 356309 -pfam02401 334920 cl19123 354385 -pfam02403 334921 pfam02403 334921 -pfam02405 334922 cl00510 351127 -pfam02410 334923 cl00519 351131 -pfam02413 334924 cl17077 354309 -pfam02417 334925 cl17781 354342 -pfam02421 334926 pfam02421 334926 -pfam02424 334927 cl19294 354406 -pfam02432 334928 pfam02432 334928 -pfam02433 334929 cl21467 354821 -pfam02434 334930 cl21608 354888 -pfam02436 334931 pfam02436 334931 -pfam02437 334932 pfam02437 334932 -pfam02445 334933 cl00420 351086 -pfam02446 334934 cl00711 351222 -pfam02452 334935 cl00995 351340 -pfam02453 334936 pfam02453 334936 -pfam02457 334937 cl27421 355651 -pfam02464 334938 cl00666 351203 -pfam02465 334939 pfam02465 334939 -pfam02466 334940 cl02381 351748 -pfam02482 334941 cl00250 350982 -pfam02485 334942 cl27418 355650 -pfam02486 334943 cl27417 355649 -pfam02487 334944 cl15430 353943 -pfam02489 334945 pfam02489 334945 -pfam02491 334946 cl17037 354300 -pfam02498 334947 cl10591 353090 -pfam02501 334948 pfam02501 334948 -pfam02502 334949 cl00485 351115 -pfam02503 334950 pfam02503 334950 -pfam02508 334951 cl00597 351168 -pfam02511 334952 cl27413 355648 -pfam02513 334953 pfam02513 334953 -pfam02517 334954 cl00558 351152 -pfam02518 334955 cl00075 350890 -pfam02519 334956 cl23790 355049 -pfam02521 334957 pfam02521 334957 -pfam02522 334958 cl01051 351358 -pfam02525 334959 cl00438 351093 -pfam02536 334960 cl19765 354464 -pfam02537 334961 cl09114 352935 -pfam02538 334962 cl19816 354465 -pfam02542 334963 cl10030 353048 -pfam02545 334964 cl00276 350998 -pfam02547 334965 cl00523 351134 -pfam02548 334966 cl21457 354814 -pfam02556 334967 cl00251 350983 -pfam02559 334968 cl00588 351164 -pfam02560 334969 cl29429 356305 -pfam02561 334970 cl00654 351199 -pfam02562 334971 cl21455 354812 -pfam02563 334972 cl29428 356304 -pfam02567 334973 cl29427 356303 -pfam02569 334974 cl00015 350862 -pfam02570 334975 cl00913 351310 -pfam02571 334976 cl00922 351312 -pfam02572 334977 pfam02572 334977 -pfam02574 334978 cl22882 354969 -pfam02575 334979 cl00494 351120 -pfam02576 334980 cl00259 350988 -pfam02577 334981 cl00553 351149 -pfam02578 334982 cl00650 351196 -pfam02580 334983 cl00253 350984 -pfam02582 334984 cl00751 351238 -pfam02583 334985 cl00846 351279 -pfam02586 334986 cl03646 352031 -pfam02588 334987 cl23956 355104 -pfam02590 334988 cl00679 351210 -pfam02591 334989 pfam02591 334989 -pfam02592 334990 cl00756 351242 -pfam02594 334991 cl00811 351266 -pfam02595 334992 cl00841 351278 -pfam02596 334993 cl00894 351302 -pfam02597 334994 cl28922 355798 -pfam02598 334995 cl12077 353354 -pfam02599 334996 cl00670 351206 -pfam02600 334997 cl00649 351195 -pfam02601 334998 pfam02601 334998 -pfam02603 334999 cl21627 354895 -pfam02606 335000 cl23778 355043 -pfam02607 335001 cl29422 356298 -pfam02608 335002 cl10011 353040 -pfam02609 335003 cl00750 351237 -pfam02611 335004 cl00934 351317 -pfam02613 335005 cl00958 351331 -pfam02614 335006 cl00829 351276 -pfam02615 335007 cl00900 351305 -pfam02617 335008 cl00933 351316 -pfam02618 335009 cl18961 354373 -pfam02620 335010 cl00616 351180 -pfam02622 335011 cl00731 351229 -pfam02623 335012 cl00740 351232 -pfam02624 335013 cl19253 354402 -pfam02625 335014 pfam02625 335014 -pfam02626 335015 cl00865 351288 -pfam02631 335016 cl00936 351319 -pfam02632 335017 cl21488 354833 -pfam02633 335018 cl00618 351181 -pfam02635 335019 cl00672 351208 -pfam02637 335020 cl21572 354877 -pfam02641 335021 cl00872 351291 -pfam02643 335022 cl00627 351184 -pfam02646 335023 cl25857 355456 -pfam02649 335024 cl00642 351192 -pfam02650 335025 pfam02650 335025 -pfam02654 335026 cl00415 351084 -pfam02656 335027 cl09954 353036 -pfam02657 335028 cl00951 351328 -pfam02660 335029 cl00410 351080 -pfam02661 335030 cl00960 351333 -pfam02663 335031 pfam02663 335031 -pfam02664 335032 cl00802 351261 -pfam02665 335033 cl00959 351332 -pfam02668 335034 cl00184 350935 -pfam02669 335035 cl00944 351325 -pfam02670 335036 cl21454 354811 -pfam02671 335037 pfam02671 335037 -pfam02672 335038 cl14670 353825 -pfam02673 335039 cl00858 351283 -pfam02674 335040 cl00567 351155 -pfam02675 335041 cl00687 351215 -pfam02676 335042 cl00689 351217 -pfam02677 335043 cl00292 351005 -pfam02678 335044 cl21464 354820 -pfam02680 335045 cl00820 351271 -pfam02682 335046 cl19310 354409 -pfam02686 335047 cl00495 351121 -pfam02687 335048 pfam02687 335048 -pfam02690 335049 pfam02690 335049 -pfam02696 335050 cl19499 354427 -pfam02697 335051 cl00762 351243 -pfam02698 335052 cl00630 351186 -pfam02699 335053 cl00806 351262 -pfam02700 335054 cl00789 351256 -pfam02702 335055 pfam02702 335055 -pfam02704 335056 pfam02704 335056 -pfam02706 335057 cl19730 354454 -pfam02709 335058 cl11394 353239 -pfam02724 335059 pfam02724 335059 -pfam02727 335060 pfam02727 335060 -pfam02729 335061 pfam02729 335061 -pfam02730 335062 cl08354 352880 -pfam02731 335063 pfam02731 335063 -pfam02732 335064 cl29420 356296 -pfam02733 335065 cl10557 353086 -pfam02734 335066 cl29418 356294 -pfam02735 335067 cl02666 351850 -pfam02736 335068 pfam02736 335068 -pfam02738 335069 cl29417 356293 -pfam02739 335070 pfam02739 335070 -pfam02742 335071 cl29416 356292 -pfam02748 335072 pfam02748 335072 -pfam02749 335073 pfam02749 335073 -pfam02751 335074 cl08356 352881 -pfam02753 335075 pfam02753 335075 -pfam02755 335076 cl29414 356290 -pfam02758 335077 cl14633 353817 -pfam02760 335078 pfam02760 335078 -pfam02761 335079 pfam02761 335079 -pfam02762 335080 cl15255 353928 -pfam02771 335081 cl09932 353030 -pfam02772 335082 pfam02772 335082 -pfam02773 335083 pfam02773 335083 -pfam02774 335084 cl19935 354514 -pfam02775 335085 cl01629 351571 -pfam02777 335086 pfam02777 335086 -pfam02779 335087 cl11410 353247 -pfam02780 335088 pfam02780 335088 -pfam02781 335089 pfam02781 335089 -pfam02784 335090 cl00261 350989 -pfam02785 335091 cl29396 356272 -pfam02787 335092 cl29395 356271 -pfam02791 335093 cl02674 351852 -pfam02793 335094 cl02422 351757 -pfam02796 335095 cl21459 354815 -pfam02798 335096 cl00388 351069 -pfam02799 335097 pfam02799 335097 -pfam02805 335098 pfam02805 335098 -pfam02806 335099 cl02706 351862 -pfam02807 335100 pfam02807 335100 -pfam02809 335101 pfam02809 335101 -pfam02810 335102 pfam02810 335102 -pfam02811 335103 pfam02811 335103 -pfam02812 335104 pfam02812 335104 -pfam02814 335105 cl29392 356268 -pfam02815 335106 pfam02815 335106 -pfam02816 335107 cl03728 352041 -pfam02817 335108 pfam02817 335108 -pfam02818 335109 pfam02818 335109 -pfam02820 335110 cl17705 354337 -pfam02822 335111 pfam02822 335111 -pfam02824 335112 cl28922 355798 -pfam02825 335113 cl02729 351868 -pfam02826 335114 cl21454 354811 -pfam02828 335115 cl02672 351851 -pfam02829 335116 pfam02829 335116 -pfam02833 335117 pfam02833 335117 -pfam02834 335118 pfam02834 335118 -pfam02838 335119 cl03741 352043 -pfam02839 335120 cl00046 350874 -pfam02840 335121 pfam02840 335121 -pfam02843 335122 pfam02843 335122 -pfam02844 335123 cl21454 354811 -pfam02845 335124 cl21463 354819 -pfam02847 335125 cl02653 351845 -pfam02852 335126 pfam02852 335126 -pfam02861 335127 pfam02861 335127 -pfam02862 335128 pfam02862 335128 -pfam02863 335129 pfam02863 335129 -pfam02865 335130 cl03749 352047 -pfam02867 335131 pfam02867 335131 -pfam02873 335132 pfam02873 335132 -pfam02874 335133 pfam02874 335133 -pfam02877 335134 pfam02877 335134 -pfam02879 335135 pfam02879 335135 -pfam02880 335136 cl03757 352048 -pfam02881 335137 cl03758 352049 -pfam02883 335138 cl03759 352050 -pfam02884 335139 pfam02884 335139 -pfam02885 335140 pfam02885 335140 -pfam02887 335141 cl19522 354435 -pfam02892 335142 cl02703 351860 -pfam02896 335143 cl21481 354828 -pfam02898 335144 cl00254 350985 -pfam02900 335145 cl00599 351170 -pfam02901 335146 cl09939 353033 -pfam02903 335147 pfam02903 335147 -pfam02909 335148 pfam02909 335148 -pfam02910 335149 pfam02910 335149 -pfam02911 335150 cl14785 353837 -pfam02912 335151 pfam02912 335151 -pfam02916 335152 pfam02916 335152 -pfam02919 335153 cl02774 351883 -pfam02921 335154 pfam02921 335154 -pfam02926 335155 cl12076 353353 -pfam02928 335156 pfam02928 335156 -pfam02929 335157 pfam02929 335157 -pfam02931 335158 pfam02931 335158 -pfam02933 335159 cl08380 352884 -pfam02934 335160 pfam02934 335160 -pfam02935 335161 cl02797 351898 -pfam02936 335162 cl02792 351895 -pfam02937 335163 cl02795 351897 -pfam02939 335164 pfam02939 335164 -pfam02943 335165 cl01977 351651 -pfam02951 335166 cl27316 355640 -pfam02952 335167 cl00947 351326 -pfam02953 335168 pfam02953 335168 -pfam02963 335169 pfam02963 335169 -pfam02965 335170 pfam02965 335170 -pfam02970 335171 pfam02970 335171 -pfam02971 335172 cl29372 356248 -pfam02974 335173 pfam02974 335173 -pfam02975 335174 cl03812 352060 -pfam02976 335175 cl00516 351129 -pfam02978 335176 pfam02978 335176 -pfam02979 335177 cl27315 355639 -pfam02984 335178 cl00050 350876 -pfam02985 335179 pfam02985 335179 -pfam02990 335180 pfam02990 335180 -pfam02992 335181 cl29371 356247 -pfam02994 335182 pfam02994 335182 -pfam03000 335183 pfam03000 335183 -pfam03006 335184 cl03831 352063 -pfam03008 335185 cl24018 355123 -pfam03009 335186 pfam03009 335186 -pfam03015 335187 cl29370 356246 -pfam03016 335188 pfam03016 335188 -pfam03017 335189 pfam03017 335189 -pfam03018 335190 pfam03018 335190 -pfam03020 335191 cl02649 351842 -pfam03028 335192 pfam03028 335192 -pfam03030 335193 cl11452 353262 -pfam03034 335194 cl03849 352066 -pfam03045 335195 cl21545 354864 -pfam03047 335196 pfam03047 335196 -pfam03050 335197 pfam03050 335197 -pfam03055 335198 cl10080 353053 -pfam03061 335199 cl00509 351126 -pfam03063 335200 cl23739 355027 -pfam03067 335201 cl29368 356244 -pfam03068 335202 pfam03068 335202 -pfam03070 335203 cl15243 353926 -pfam03073 335204 cl01379 351478 -pfam03074 335205 pfam03074 335205 -pfam03080 335206 pfam03080 335206 -pfam03081 335207 pfam03081 335207 -pfam03084 335208 pfam03084 335208 -pfam03087 335209 pfam03087 335209 -pfam03090 335210 pfam03090 335210 -pfam03091 335211 cl00584 351162 -pfam03095 335212 cl03888 352074 -pfam03096 335213 cl21494 354836 -pfam03097 335214 cl14649 353821 -pfam03098 335215 pfam03098 335215 -pfam03100 335216 cl00994 351339 -pfam03101 335217 pfam03101 335217 -pfam03102 335218 cl17225 354324 -pfam03103 335219 cl11612 353297 -pfam03104 335220 pfam03104 335220 -pfam03105 335221 pfam03105 335221 -pfam03106 335222 cl03892 352075 -pfam03107 335223 pfam03107 335223 -pfam03108 335224 pfam03108 335224 -pfam03116 335225 cl00779 351251 -pfam03118 335226 pfam03118 335226 -pfam03119 335227 pfam03119 335227 -pfam03120 335228 pfam03120 335228 -pfam03123 335229 cl03904 352079 -pfam03124 335230 cl03905 352080 -pfam03126 335231 cl02186 351699 -pfam03127 335232 cl03906 352081 -pfam03131 335233 cl21462 354818 -pfam03134 335234 cl19882 354495 -pfam03137 335235 pfam03137 335235 -pfam03140 335236 pfam03140 335236 -pfam03141 335237 pfam03141 335237 -pfam03144 335238 cl02787 351893 -pfam03145 335239 cl19105 354380 -pfam03148 335240 pfam03148 335240 -pfam03150 335241 cl29367 356243 -pfam03152 335242 cl27293 355637 -pfam03154 335243 pfam03154 335243 -pfam03159 335244 pfam03159 335244 -pfam03161 335245 pfam03161 335245 -pfam03166 335246 cl00056 350879 -pfam03167 335247 cl00483 351114 -pfam03168 335248 cl12118 353363 -pfam03170 335249 cl15851 353988 -pfam03172 335250 pfam03172 335250 -pfam03173 335251 cl03918 352085 -pfam03178 335252 pfam03178 335252 -pfam03181 335253 cl03923 352086 -pfam03186 335254 cl00561 351153 -pfam03188 335255 cl23723 355020 -pfam03189 335256 pfam03189 335256 -pfam03193 335257 pfam03193 335257 -pfam03194 335258 cl27291 355636 -pfam03195 335259 pfam03195 335259 -pfam03198 335260 cl23725 355022 -pfam03199 335261 cl00170 350931 -pfam03203 335262 cl03934 352089 -pfam03205 335263 cl21455 354812 -pfam03208 335264 cl02137 351684 -pfam03211 335265 pfam03211 335265 -pfam03217 335266 pfam03217 335266 -pfam03226 335267 cl13152 353550 -pfam03227 335268 pfam03227 335268 -pfam03230 335269 pfam03230 335269 -pfam03232 335270 cl00264 350992 -pfam03237 335271 cl29365 356241 -pfam03242 335272 pfam03242 335272 -pfam03243 335273 pfam03243 335273 -pfam03248 335274 cl02175 351696 -pfam03250 335275 pfam03250 335275 -pfam03253 335276 cl01829 351609 -pfam03255 335277 cl23717 355015 -pfam03270 335278 cl03973 352094 -pfam03271 335279 pfam03271 335279 -pfam03280 335280 pfam03280 335280 -pfam03283 335281 pfam03283 335281 -pfam03288 335282 pfam03288 335282 -pfam03297 335283 cl02050 351666 -pfam03306 335284 cl01408 351491 -pfam03309 335285 cl17037 354300 -pfam03313 335286 cl27283 355635 -pfam03315 335287 pfam03315 335287 -pfam03317 335288 pfam03317 335288 -pfam03320 335289 cl00289 351004 -pfam03321 335290 cl21606 354887 -pfam03323 335291 pfam03323 335291 -pfam03328 335292 cl21481 354828 -pfam03330 335293 cl29364 356240 -pfam03331 335294 cl00512 351128 -pfam03334 335295 cl00583 351161 -pfam03335 335296 pfam03335 335296 -pfam03345 335297 pfam03345 335297 -pfam03350 335298 cl01078 351371 -pfam03352 335299 cl01059 351362 -pfam03358 335300 cl00438 351093 -pfam03360 335301 cl11394 353239 -pfam03366 335302 cl19881 354494 -pfam03367 335303 cl19251 354400 -pfam03368 335304 pfam03368 335304 -pfam03371 335305 pfam03371 335305 -pfam03372 335306 cl00490 351117 -pfam03374 335307 cl01462 351513 -pfam03381 335308 cl02095 351672 -pfam03388 335309 cl14058 353806 -pfam03392 335310 pfam03392 335310 -pfam03398 335311 pfam03398 335311 -pfam03399 335312 cl24019 355124 -pfam03403 335313 cl21494 354836 -pfam03404 335314 pfam03404 335314 -pfam03407 335315 cl11394 353239 -pfam03411 335316 cl01538 351545 -pfam03413 335317 cl21622 354894 -pfam03416 335318 pfam03416 335318 -pfam03421 335319 cl07849 352820 -pfam03424 335320 pfam03424 335320 -pfam03428 335321 cl21459 354815 -pfam03439 335322 cl02766 351879 -pfam03441 335323 cl29363 356239 -pfam03443 335324 pfam03443 335324 -pfam03446 335325 cl21454 354811 -pfam03448 335326 cl23799 355053 -pfam03449 335327 pfam03449 335327 -pfam03450 335328 cl29362 356238 -pfam03452 335329 cl11394 353239 -pfam03453 335330 pfam03453 335330 -pfam03455 335331 cl04084 352103 -pfam03456 335332 cl04085 352104 -pfam03458 335333 cl27268 355634 -pfam03460 335334 pfam03460 335334 -pfam03461 335335 cl04088 352105 -pfam03462 335336 cl23943 355101 -pfam03463 335337 pfam03463 335337 -pfam03465 335338 pfam03465 335338 -pfam03466 335339 cl21456 354813 -pfam03467 335340 cl17169 354314 -pfam03468 335341 cl17169 354314 -pfam03469 335342 pfam03469 335342 -pfam03471 335343 cl29361 356237 -pfam03472 335344 pfam03472 335344 -pfam03473 335345 cl27262 355633 -pfam03474 335346 cl21463 354819 -pfam03475 335347 pfam03475 335347 -pfam03477 335348 pfam03477 335348 -pfam03478 335349 pfam03478 335349 -pfam03479 335350 cl00720 351227 -pfam03480 335351 cl21456 354813 -pfam03481 335352 pfam03481 335352 -pfam03483 335353 cl21573 354878 -pfam03484 335354 cl29360 356236 -pfam03485 335355 cl04104 352110 -pfam03489 335356 pfam03489 335356 -pfam03490 335357 pfam03490 335357 -pfam03492 335358 cl04109 352111 -pfam03493 335359 cl29357 356233 -pfam03495 335360 pfam03495 335360 -pfam03514 335361 pfam03514 335361 -pfam03515 335362 cl24020 355125 -pfam03517 335363 cl17171 354315 -pfam03519 335364 cl04129 352113 -pfam03522 335365 pfam03522 335365 -pfam03524 335366 cl11423 353249 -pfam03527 335367 pfam03527 335367 -pfam03530 335368 pfam03530 335368 -pfam03531 335369 cl17171 354315 -pfam03537 335370 cl00997 351341 -pfam03540 335371 cl02150 351686 -pfam03542 335372 pfam03542 335372 -pfam03546 335373 pfam03546 335373 -pfam03550 335374 cl19192 354390 -pfam03556 335375 pfam03556 335375 -pfam03559 335376 pfam03559 335376 -pfam03562 335377 cl08398 352886 -pfam03567 335378 cl22970 354989 -pfam03568 335379 cl19248 354399 -pfam03571 335380 pfam03571 335380 -pfam03573 335381 cl21675 354901 -pfam03576 335382 cl00603 351172 -pfam03577 335383 cl00467 351104 -pfam03578 335384 pfam03578 335384 -pfam03587 335385 cl00764 351244 -pfam03588 335386 cl17182 354318 -pfam03589 335387 pfam03589 335387 -pfam03590 335388 cl00268 350993 -pfam03591 335389 cl00570 351157 -pfam03595 335390 cl04176 352121 -pfam03597 335391 cl01253 351443 -pfam03600 335392 cl21473 354825 -pfam03603 335393 cl11436 353254 -pfam03604 335394 cl00874 351293 -pfam03605 335395 cl21473 354825 -pfam03607 335396 cl28922 355798 -pfam03609 335397 cl01506 351528 -pfam03610 335398 cl00025 350867 -pfam03611 335399 cl04451 352188 -pfam03613 335400 cl01507 351529 -pfam03618 335401 cl00780 351252 -pfam03619 335402 pfam03619 335402 -pfam03621 335403 cl01279 351452 -pfam03626 335404 cl01204 351421 -pfam03629 335405 pfam03629 335405 -pfam03630 335406 pfam03630 335406 -pfam03631 335407 cl07918 352838 -pfam03633 335408 pfam03633 335408 -pfam03634 335409 cl23822 355059 -pfam03635 335410 pfam03635 335410 -pfam03636 335411 pfam03636 335411 -pfam03637 335412 pfam03637 335412 -pfam03638 335413 pfam03638 335413 -pfam03640 335414 pfam03640 335414 -pfam03644 335415 cl10447 353071 -pfam03645 335416 pfam03645 335416 -pfam03646 335417 cl00591 351165 -pfam03647 335418 cl02346 351734 -pfam03649 335419 cl00424 351087 -pfam03652 335420 cl21482 354829 -pfam03658 335421 cl28922 355798 -pfam03661 335422 pfam03661 335422 -pfam03665 335423 cl13996 353800 -pfam03666 335424 cl24021 355126 -pfam03669 335425 pfam03669 335425 -pfam03676 335426 pfam03676 335426 -pfam03690 335427 cl01749 351586 -pfam03691 335428 cl01252 351442 -pfam03694 335429 pfam03694 335429 -pfam03695 335430 cl01173 351409 -pfam03701 335431 cl22520 354945 -pfam03703 335432 cl17171 354315 -pfam03705 335433 pfam03705 335433 -pfam03707 335434 pfam03707 335434 -pfam03709 335435 cl19078 354377 -pfam03711 335436 pfam03711 335436 -pfam03712 335437 pfam03712 335437 -pfam03714 335438 cl04227 352132 -pfam03717 335439 pfam03717 335439 -pfam03718 335440 pfam03718 335440 -pfam03719 335441 pfam03719 335441 -pfam03722 335442 pfam03722 335442 -pfam03723 335443 pfam03723 335443 -pfam03726 335444 pfam03726 335444 -pfam03727 335445 cl29351 356227 -pfam03733 335446 cl27241 355630 -pfam03734 335447 cl21614 354890 -pfam03735 335448 pfam03735 335448 -pfam03737 335449 cl00480 351111 -pfam03738 335450 cl23821 355058 -pfam03740 335451 cl00541 351144 -pfam03743 335452 cl23849 355071 -pfam03744 335453 cl00625 351183 -pfam03745 335454 cl00667 351204 -pfam03746 335455 cl15692 353970 -pfam03747 335456 cl00614 351179 -pfam03748 335457 cl00681 351211 -pfam03749 335458 cl00647 351194 -pfam03750 335459 cl00622 351182 -pfam03755 335460 cl26779 355573 -pfam03760 335461 pfam03760 335461 -pfam03763 335462 pfam03763 335462 -pfam03765 335463 cl16919 354288 -pfam03770 335464 cl12283 353378 -pfam03775 335465 cl19219 354396 -pfam03776 335466 cl00538 351142 -pfam03779 335467 pfam03779 335467 -pfam03780 335468 cl00574 351160 -pfam03781 335469 cl23855 355074 -pfam03782 335470 cl02758 351875 -pfam03783 335471 cl21526 354853 -pfam03787 335472 cl21471 354824 -pfam03788 335473 cl00608 351175 -pfam03789 335474 pfam03789 335474 -pfam03790 335475 pfam03790 335475 -pfam03791 335476 pfam03791 335476 -pfam03793 335477 cl02768 351880 -pfam03796 335478 pfam03796 335478 -pfam03797 335479 cl22877 354967 -pfam03798 335480 cl02759 351876 -pfam03799 335481 cl29347 356223 -pfam03800 335482 pfam03800 335482 -pfam03801 335483 pfam03801 335483 -pfam03802 335484 cl01498 351524 -pfam03808 335485 cl04270 352142 -pfam03810 335486 cl04271 352143 -pfam03812 335487 cl14653 353823 -pfam03813 335488 pfam03813 335488 -pfam03814 335489 cl00903 351306 -pfam03817 335490 cl04273 352144 -pfam03818 335491 cl04274 352145 -pfam03822 335492 cl17070 354308 -pfam03828 335493 pfam03828 335493 -pfam03830 335494 cl00021 350866 -pfam03831 335495 cl29344 356220 -pfam03836 335496 pfam03836 335496 -pfam03837 335497 cl04285 352147 -pfam03840 335498 cl09123 352936 -pfam03843 335499 cl01164 351405 -pfam03846 335500 cl01880 351628 -pfam03849 335501 cl04289 352148 -pfam03856 335502 pfam03856 335502 -pfam03859 335503 cl04295 352150 -pfam03860 335504 pfam03860 335504 -pfam03861 335505 cl04297 352151 -pfam03862 335506 cl04298 352152 -pfam03865 335507 pfam03865 335507 -pfam03868 335508 pfam03868 335508 -pfam03870 335509 cl02716 351867 -pfam03872 335510 cl25432 355394 -pfam03873 335511 cl25432 355394 -pfam03874 335512 cl00638 351189 -pfam03876 335513 cl04309 352154 -pfam03878 335514 cl21557 354869 -pfam03880 335515 cl17169 354314 -pfam03881 335516 cl21453 354810 -pfam03883 335517 cl01143 351399 -pfam03884 335518 cl01144 351400 -pfam03885 335519 cl00753 351240 -pfam03888 335520 pfam03888 335520 -pfam03891 335521 cl19829 354470 -pfam03894 335522 cl11410 353247 -pfam03895 335523 pfam03895 335523 -pfam03899 335524 cl09170 352943 -pfam03909 335525 cl02772 351882 -pfam03911 335526 cl09194 352948 -pfam03914 335527 cl27223 355627 -pfam03915 335528 pfam03915 335528 -pfam03918 335529 cl01179 351412 -pfam03919 335530 pfam03919 335530 -pfam03922 335531 cl21487 354832 -pfam03923 335532 cl19472 354423 -pfam03924 335533 cl01369 351474 -pfam03925 335534 cl11470 353267 -pfam03927 335535 cl01163 351404 -pfam03928 335536 cl01249 351440 -pfam03929 335537 cl23780 355044 -pfam03934 335538 pfam03934 335538 -pfam03936 335539 cl00210 350953 -pfam03937 335540 cl01110 351386 -pfam03938 335541 pfam03938 335541 -pfam03939 335542 pfam03939 335542 -pfam03941 335543 pfam03941 335543 -pfam03942 335544 cl01221 351427 -pfam03943 335545 cl21463 354819 -pfam03944 335546 cl14880 353849 -pfam03946 335547 cl29338 356214 -pfam03947 335548 pfam03947 335548 -pfam03948 335549 pfam03948 335549 -pfam03950 335550 pfam03950 335550 -pfam03951 335551 cl08409 352888 -pfam03952 335552 pfam03952 335552 -pfam03956 335553 cl23957 355105 -pfam03958 335554 pfam03958 335554 -pfam03961 335555 cl19219 354396 -pfam03962 335556 pfam03962 335556 -pfam03965 335557 pfam03965 335557 -pfam03966 335558 cl01066 351364 -pfam03971 335559 cl15383 353936 -pfam03972 335560 cl00912 351309 -pfam03974 335561 cl00178 350932 -pfam03975 335562 cl00810 351265 -pfam03977 335563 cl00816 351269 -pfam03979 335564 pfam03979 335564 -pfam03980 335565 pfam03980 335565 -pfam03986 335566 pfam03986 335566 -pfam03987 335567 pfam03987 335567 -pfam03993 335568 pfam03993 335568 -pfam03994 335569 pfam03994 335569 -pfam03998 335570 cl02164 351692 -pfam04000 335571 pfam04000 335571 -pfam04002 335572 cl13996 353800 -pfam04003 335573 pfam04003 335573 -pfam04004 335574 pfam04004 335574 -pfam04008 335575 cl00796 351259 -pfam04011 335576 cl00742 351233 -pfam04015 335577 cl19822 354467 -pfam04016 335578 pfam04016 335578 -pfam04018 335579 cl00893 351301 -pfam04020 335580 cl00850 351281 -pfam04023 335581 cl00838 351277 -pfam04024 335582 cl00864 351287 -pfam04025 335583 cl00898 351304 -pfam04028 335584 cl17185 354319 -pfam04029 335585 cl00895 351303 -pfam04032 335586 cl00887 351299 -pfam04034 335587 cl27200 355626 -pfam04039 335588 cl00676 351209 -pfam04041 335589 cl14647 353819 -pfam04043 335590 cl04375 352162 -pfam04046 335591 cl02643 351840 -pfam04050 335592 pfam04050 335592 -pfam04051 335593 cl21538 354859 -pfam04054 335594 pfam04054 335594 -pfam04055 335595 cl18962 354374 -pfam04060 335596 cl17515 354332 -pfam04062 335597 pfam04062 335597 -pfam04063 335598 pfam04063 335598 -pfam04064 335599 pfam04064 335599 -pfam04065 335600 pfam04065 335600 -pfam04066 335601 cl09154 352941 -pfam04068 335602 pfam04068 335602 -pfam04069 335603 cl21456 354813 -pfam04070 335604 cl00943 351324 -pfam04072 335605 cl17173 354317 -pfam04074 335606 cl01047 351355 -pfam04077 335607 cl00672 351208 -pfam04078 335608 cl02160 351690 -pfam04079 335609 cl00612 351177 -pfam04080 335610 cl02172 351695 -pfam04084 335611 cl27198 355625 -pfam04085 335612 cl19252 354401 -pfam04086 335613 pfam04086 335613 -pfam04087 335614 cl00781 351253 -pfam04089 335615 cl04394 352169 -pfam04090 335616 pfam04090 335616 -pfam04092 335617 pfam04092 335617 -pfam04095 335618 cl21457 354814 -pfam04096 335619 pfam04096 335619 -pfam04097 335620 pfam04097 335620 -pfam04102 335621 cl01090 351375 -pfam04109 335622 pfam04109 335622 -pfam04111 335623 pfam04111 335623 -pfam04112 335624 pfam04112 335624 -pfam04114 335625 cl14876 353847 -pfam04117 335626 pfam04117 335626 -pfam04118 335627 cl04407 352174 -pfam04120 335628 cl12096 353357 -pfam04121 335629 pfam04121 335629 -pfam04127 335630 cl29327 356203 -pfam04130 335631 pfam04130 335631 -pfam04131 335632 cl21457 354814 -pfam04136 335633 pfam04136 335633 -pfam04137 335634 cl19883 354496 -pfam04144 335635 pfam04144 335635 -pfam04145 335636 pfam04145 335636 -pfam04146 335637 pfam04146 335637 -pfam04152 335638 cl27188 355624 -pfam04153 335639 cl02384 351749 -pfam04155 335640 pfam04155 335640 -pfam04157 335641 pfam04157 335641 -pfam04158 335642 pfam04158 335642 -pfam04161 335643 cl21705 354914 -pfam04166 335644 cl00873 351292 -pfam04168 335645 cl19824 354468 -pfam04170 335646 cl19736 354455 -pfam04172 335647 cl00596 351167 -pfam04175 335648 cl11449 353259 -pfam04176 335649 pfam04176 335649 -pfam04177 335650 pfam04177 335650 -pfam04178 335651 cl02130 351683 -pfam04179 335652 cl28904 355780 -pfam04180 335653 pfam04180 335653 -pfam04181 335654 pfam04181 335654 -pfam04183 335655 pfam04183 335655 -pfam04186 335656 cl01148 351403 -pfam04187 335657 cl01139 351398 -pfam04189 335658 pfam04189 335658 -pfam04190 335659 pfam04190 335659 -pfam04192 335660 pfam04192 335660 -pfam04194 335661 pfam04194 335661 -pfam04195 335662 pfam04195 335662 -pfam04199 335663 cl00814 351268 -pfam04204 335664 cl00020 350865 -pfam04205 335665 cl01081 351373 -pfam04212 335666 cl00299 351009 -pfam04214 335667 cl23841 355066 -pfam04216 335668 cl19312 354411 -pfam04217 335669 cl01183 351414 -pfam04219 335670 cl10479 353079 -pfam04220 335671 cl01172 351408 -pfam04221 335672 cl01171 351407 -pfam04222 335673 cl01166 351406 -pfam04227 335674 cl00983 351335 -pfam04229 335675 cl00987 351336 -pfam04230 335676 cl10013 353042 -pfam04232 335677 cl01005 351345 -pfam04234 335678 cl01012 351349 -pfam04235 335679 cl21495 354837 -pfam04237 335680 cl15265 353930 -pfam04239 335681 cl00990 351337 -pfam04241 335682 cl01008 351347 -pfam04244 335683 pfam04244 335683 -pfam04245 335684 cl15473 353949 -pfam04246 335685 cl01178 351411 -pfam04247 335686 cl01184 351415 -pfam04248 335687 cl00998 351342 -pfam04253 335688 pfam04253 335688 -pfam04255 335689 cl01030 351352 -pfam04257 335690 cl28372 355710 -pfam04260 335691 cl01860 351620 -pfam04262 335692 cl00954 351329 -pfam04263 335693 cl21552 354867 -pfam04264 335694 cl01001 351343 -pfam04265 335695 cl29323 356199 -pfam04266 335696 cl01020 351351 -pfam04267 335697 cl01767 351591 -pfam04269 335698 cl11472 353269 -pfam04270 335699 pfam04270 335699 -pfam04276 335700 cl04467 352189 -pfam04277 335701 cl01458 351511 -pfam04284 335702 cl01041 351354 -pfam04285 335703 cl00057 350880 -pfam04287 335704 cl01187 351416 -pfam04288 335705 cl11471 353268 -pfam04293 335706 cl19504 354430 -pfam04295 335707 pfam04295 335707 -pfam04296 335708 cl00189 350936 -pfam04298 335709 cl01049 351357 -pfam04299 335710 cl00381 351064 -pfam04304 335711 cl01063 351363 -pfam04305 335712 cl00264 350992 -pfam04306 335713 cl01069 351365 -pfam04308 335714 cl00861 351285 -pfam04309 335715 cl29015 355891 -pfam04311 335716 cl01053 351360 -pfam04313 335717 cl29110 355986 -pfam04314 335718 cl01071 351367 -pfam04315 335719 cl01190 351417 -pfam04316 335720 cl01052 351359 -pfam04317 335721 cl01193 351418 -pfam04319 335722 pfam04319 335722 -pfam04320 335723 cl01237 351435 -pfam04324 335724 cl01093 351376 -pfam04325 335725 cl01070 351366 -pfam04327 335726 cl01080 351372 -pfam04328 335727 cl01082 351374 -pfam04333 335728 cl01073 351368 -pfam04336 335729 cl01203 351420 -pfam04337 335730 cl01209 351422 -pfam04338 335731 cl01213 351423 -pfam04341 335732 cl01231 351433 -pfam04342 335733 cl01236 351434 -pfam04343 335734 cl01246 351438 -pfam04344 335735 cl01219 351426 -pfam04347 335736 cl01247 351439 -pfam04349 335737 cl19308 354408 -pfam04351 335738 cl19831 354472 -pfam04352 335739 cl15270 353931 -pfam04353 335740 cl11478 353272 -pfam04354 335741 cl29321 356197 -pfam04355 335742 cl19285 354405 -pfam04356 335743 cl01097 351377 -pfam04358 335744 cl01101 351378 -pfam04359 335745 cl01102 351379 -pfam04361 335746 cl01103 351380 -pfam04362 335747 cl01104 351381 -pfam04364 335748 cl01106 351382 -pfam04365 335749 cl01108 351384 -pfam04366 335750 cl01109 351385 -pfam04367 335751 cl01107 351383 -pfam04368 335752 cl01112 351387 -pfam04371 335753 cl19186 354389 -pfam04375 335754 cl27167 355623 -pfam04376 335755 cl27166 355622 -pfam04377 335756 cl17182 354318 -pfam04379 335757 cl01119 351390 -pfam04380 335758 cl01115 351388 -pfam04381 335759 cl01122 351392 -pfam04383 335760 cl29320 356196 -pfam04384 335761 cl01123 351393 -pfam04386 335762 cl01120 351391 -pfam04387 335763 cl02156 351689 -pfam04389 335764 cl14876 353847 -pfam04390 335765 cl01125 351394 -pfam04391 335766 cl11965 353328 -pfam04393 335767 cl01128 351396 -pfam04397 335768 cl04498 352191 -pfam04398 335769 pfam04398 335769 -pfam04399 335770 cl02776 351885 -pfam04402 335771 cl01077 351370 -pfam04403 335772 pfam04403 335772 -pfam04405 335773 pfam04405 335773 -pfam04406 335774 pfam04406 335774 -pfam04408 335775 cl29319 356195 -pfam04410 335776 cl01285 351456 -pfam04412 335777 cl00285 351003 -pfam04413 335778 cl10013 353042 -pfam04414 335779 cl00716 351225 -pfam04417 335780 cl00652 351197 -pfam04422 335781 cl27158 355621 -pfam04424 335782 pfam04424 335782 -pfam04427 335783 cl00935 351318 -pfam04430 335784 cl00182 350934 -pfam04431 335785 pfam04431 335785 -pfam04432 335786 cl27156 355620 -pfam04433 335787 pfam04433 335787 -pfam04438 335788 pfam04438 335788 -pfam04439 335789 pfam04439 335789 -pfam04442 335790 cl01240 351436 -pfam04444 335791 pfam04444 335791 -pfam04447 335792 pfam04447 335792 -pfam04448 335793 pfam04448 335793 -pfam04449 335794 cl04524 352199 -pfam04450 335795 pfam04450 335795 -pfam04453 335796 cl29318 356194 -pfam04454 335797 cl21556 354868 -pfam04455 335798 cl19054 354376 -pfam04456 335799 cl00669 351205 -pfam04461 335800 cl00723 351228 -pfam04463 335801 cl00733 351230 -pfam04466 335802 cl12054 353348 -pfam04468 335803 cl00770 351246 -pfam04471 335804 cl00516 351129 -pfam04472 335805 cl00775 351249 -pfam04474 335806 cl00784 351254 -pfam04476 335807 cl00822 351273 -pfam04479 335808 pfam04479 335808 -pfam04484 335809 pfam04484 335809 -pfam04492 335810 cl04545 352201 -pfam04493 335811 cl00653 351198 -pfam04494 335812 cl08418 352891 -pfam04502 335813 cl27149 355619 -pfam04503 335814 pfam04503 335814 -pfam04504 335815 pfam04504 335815 -pfam04511 335816 cl21536 354858 -pfam04515 335817 pfam04515 335817 -pfam04519 335818 cl19219 354396 -pfam04520 335819 pfam04520 335819 -pfam04526 335820 cl14783 353836 -pfam04536 335821 cl01535 351544 -pfam04539 335822 pfam04539 335822 -pfam04542 335823 pfam04542 335823 -pfam04545 335824 cl22867 354966 -pfam04546 335825 pfam04546 335825 -pfam04547 335826 pfam04547 335826 -pfam04548 335827 cl21455 354812 -pfam04550 335828 pfam04550 335828 -pfam04551 335829 cl29317 356193 -pfam04553 335830 pfam04553 335830 -pfam04556 335831 pfam04556 335831 -pfam04558 335832 pfam04558 335832 -pfam04560 335833 pfam04560 335833 -pfam04563 335834 pfam04563 335834 -pfam04565 335835 pfam04565 335835 -pfam04566 335836 pfam04566 335836 -pfam04567 335837 pfam04567 335837 -pfam04569 335838 pfam04569 335838 -pfam04570 335839 pfam04570 335839 -pfam04571 335840 pfam04571 335840 -pfam04572 335841 pfam04572 335841 -pfam04576 335842 pfam04576 335842 -pfam04577 335843 cl15705 353974 -pfam04578 335844 pfam04578 335844 -pfam04588 335845 pfam04588 335845 -pfam04592 335846 pfam04592 335846 -pfam04593 335847 pfam04593 335847 -pfam04597 335848 pfam04597 335848 -pfam04602 335849 pfam04602 335849 -pfam04603 335850 cl00169 350930 -pfam04607 335851 cl11966 353329 -pfam04610 335852 cl01503 351527 -pfam04612 335853 cl01222 351428 -pfam04613 335854 pfam04613 335854 -pfam04616 335855 cl14647 353819 -pfam04618 335856 pfam04618 335856 -pfam04622 335857 pfam04622 335857 -pfam04627 335858 cl04635 352224 -pfam04628 335859 cl21566 354875 -pfam04640 335860 pfam04640 335860 -pfam04646 335861 cl21608 354888 -pfam04650 335862 cl22626 354948 -pfam04654 335863 cl01575 351559 -pfam04674 335864 pfam04674 335864 -pfam04675 335865 pfam04675 335865 -pfam04676 335866 pfam04676 335866 -pfam04678 335867 pfam04678 335867 -pfam04683 335868 cl17171 354315 -pfam04695 335869 pfam04695 335869 -pfam04699 335870 pfam04699 335870 -pfam04710 335871 pfam04710 335871 -pfam04716 335872 pfam04716 335872 -pfam04718 335873 pfam04718 335873 -pfam04719 335874 cl02176 351697 -pfam04720 335875 cl04704 352232 -pfam04727 335876 pfam04727 335876 -pfam04728 335877 cl23797 355051 -pfam04729 335878 cl22451 354941 -pfam04734 335879 pfam04734 335879 -pfam04744 335880 cl19551 354438 -pfam04748 335881 cl17042 354302 -pfam04749 335882 cl04722 352234 -pfam04751 335883 cl01147 351402 -pfam04752 335884 cl22886 354971 -pfam04754 335885 cl29316 356192 -pfam04759 335886 cl04729 352235 -pfam04760 335887 pfam04760 335887 -pfam04769 335888 pfam04769 335888 -pfam04770 335889 cl04737 352237 -pfam04773 335890 pfam04773 335890 -pfam04774 335891 pfam04774 335891 -pfam04775 335892 pfam04775 335892 -pfam04777 335893 cl02107 351679 -pfam04782 335894 pfam04782 335894 -pfam04783 335895 pfam04783 335895 -pfam04784 335896 pfam04784 335896 -pfam04788 335897 pfam04788 335897 -pfam04790 335898 pfam04790 335898 -pfam04791 335899 pfam04791 335899 -pfam04794 335900 cl15692 353970 -pfam04800 335901 pfam04800 335901 -pfam04802 335902 pfam04802 335902 -pfam04809 335903 pfam04809 335903 -pfam04810 335904 pfam04810 335904 -pfam04811 335905 cl00057 350880 -pfam04812 335906 pfam04812 335906 -pfam04814 335907 pfam04814 335907 -pfam04815 335908 pfam04815 335908 -pfam04818 335909 cl02544 351795 -pfam04820 335910 cl21454 354811 -pfam04821 335911 pfam04821 335911 -pfam04824 335912 pfam04824 335912 -pfam04825 335913 pfam04825 335913 -pfam04831 335914 pfam04831 335914 -pfam04833 335915 pfam04833 335915 -pfam04844 335916 cl04796 352254 -pfam04849 335917 pfam04849 335917 -pfam04852 335918 pfam04852 335918 -pfam04854 335919 cl02369 351742 -pfam04857 335920 cl23804 355055 -pfam04859 335921 pfam04859 335921 -pfam04860 335922 cl19194 354391 -pfam04862 335923 cl19911 354507 -pfam04869 335924 pfam04869 335924 -pfam04871 335925 pfam04871 335925 -pfam04874 335926 cl27104 355615 -pfam04879 335927 cl19148 354386 -pfam04882 335928 pfam04882 335928 -pfam04884 335929 pfam04884 335929 -pfam04888 335930 cl27103 355614 -pfam04898 335931 pfam04898 335931 -pfam04900 335932 cl28905 355781 -pfam04905 335933 pfam04905 335933 -pfam04910 335934 pfam04910 335934 -pfam04912 335935 pfam04912 335935 -pfam04914 335936 cl27099 355612 -pfam04921 335937 pfam04921 335937 -pfam04922 335938 pfam04922 335938 -pfam04923 335939 pfam04923 335939 -pfam04925 335940 pfam04925 335940 -pfam04927 335941 pfam04927 335941 -pfam04928 335942 cl11966 353329 -pfam04930 335943 cl01015 351350 -pfam04931 335944 pfam04931 335944 -pfam04932 335945 cl04850 352267 -pfam04935 335946 pfam04935 335946 -pfam04937 335947 pfam04937 335947 -pfam04938 335948 pfam04938 335948 -pfam04939 335949 cl02166 351694 -pfam04940 335950 cl04855 352270 -pfam04950 335951 pfam04950 335951 -pfam04951 335952 cl01007 351346 -pfam04952 335953 pfam04952 335953 -pfam04954 335954 pfam04954 335954 -pfam04957 335955 cl23828 355062 -pfam04958 335956 cl11440 353256 -pfam04960 335957 cl00907 351307 -pfam04961 335958 cl01350 351469 -pfam04962 335959 cl01508 351530 -pfam04963 335960 pfam04963 335960 -pfam04965 335961 cl01403 351486 -pfam04966 335962 cl17816 354343 -pfam04972 335963 cl29307 356183 -pfam04973 335964 cl01256 351444 -pfam04979 335965 pfam04979 335965 -pfam04981 335966 pfam04981 335966 -pfam04982 335967 pfam04982 335967 -pfam04984 335968 cl01389 351482 -pfam04986 335969 pfam04986 335969 -pfam04987 335970 pfam04987 335970 -pfam04990 335971 pfam04990 335971 -pfam04991 335972 cl01378 351477 -pfam04992 335973 pfam04992 335973 -pfam04993 335974 cl17592 354334 -pfam04995 335975 cl11475 353271 -pfam04996 335976 cl01511 351532 -pfam04999 335977 cl11433 353251 -pfam05002 335978 pfam05002 335978 -pfam05003 335979 pfam05003 335979 -pfam05011 335980 pfam05011 335980 -pfam05013 335981 cl01522 351535 -pfam05016 335982 cl21503 354842 -pfam05017 335983 pfam05017 335983 -pfam05020 335984 pfam05020 335984 -pfam05023 335985 cl00296 351007 -pfam05025 335986 cl00809 351264 -pfam05026 335987 pfam05026 335987 -pfam05030 335988 pfam05030 335988 -pfam05031 335989 cl02760 351877 -pfam05032 335990 pfam05032 335990 -pfam05033 335991 cl02622 351831 -pfam05035 335992 cl19846 354481 -pfam05036 335993 pfam05036 335993 -pfam05041 335994 pfam05041 335994 -pfam05042 335995 pfam05042 335995 -pfam05045 335996 pfam05045 335996 -pfam05046 335997 pfam05046 335997 -pfam05047 335998 cl04907 352282 -pfam05050 335999 cl17173 354317 -pfam05056 336000 pfam05056 336000 -pfam05065 336001 cl27082 355611 -pfam05068 336002 cl11450 353260 -pfam05071 336003 cl01534 351543 -pfam05076 336004 pfam05076 336004 -pfam05078 336005 pfam05078 336005 -pfam05084 336006 pfam05084 336006 -pfam05088 336007 cl29306 356182 -pfam05089 336008 pfam05089 336008 -pfam05091 336009 pfam05091 336009 -pfam05096 336010 cl27076 355610 -pfam05101 336011 cl01501 351526 -pfam05105 336012 cl01989 351657 -pfam05106 336013 cl23991 355117 -pfam05107 336014 cl01465 351515 -pfam05114 336015 cl23721 355019 -pfam05117 336016 pfam05117 336016 -pfam05118 336017 cl21464 354820 -pfam05119 336018 cl01525 351536 -pfam05125 336019 cl04947 352288 -pfam05129 336020 cl02038 351662 -pfam05130 336021 cl09176 352945 -pfam05131 336022 pfam05131 336022 -pfam05132 336023 pfam05132 336023 -pfam05135 336024 cl12049 353345 -pfam05137 336025 cl19830 354471 -pfam05139 336026 cl17110 354311 -pfam05140 336027 cl09125 352937 -pfam05142 336028 pfam05142 336028 -pfam05145 336029 cl27068 355609 -pfam05147 336030 cl04955 352291 -pfam05149 336031 pfam05149 336031 -pfam05151 336032 pfam05151 336032 -pfam05153 336033 pfam05153 336033 -pfam05157 336034 pfam05157 336034 -pfam05160 336035 cl04961 352293 -pfam05161 336036 pfam05161 336036 -pfam05164 336037 cl01146 351401 -pfam05166 336038 cl22628 354949 -pfam05173 336039 cl29298 356174 -pfam05179 336040 pfam05179 336040 -pfam05180 336041 pfam05180 336041 -pfam05182 336042 cl02162 351691 -pfam05183 336043 pfam05183 336043 -pfam05184 336044 pfam05184 336044 -pfam05185 336045 pfam05185 336045 -pfam05188 336046 pfam05188 336046 -pfam05189 336047 pfam05189 336047 -pfam05190 336048 cl29279 356155 -pfam05191 336049 pfam05191 336049 -pfam05192 336050 cl29279 356155 -pfam05193 336051 pfam05193 336051 -pfam05194 336052 pfam05194 336052 -pfam05195 336053 cl23800 355054 -pfam05197 336054 pfam05197 336054 -pfam05198 336055 pfam05198 336055 -pfam05201 336056 pfam05201 336056 -pfam05203 336057 pfam05203 336057 -pfam05206 336058 cl17173 354317 -pfam05207 336059 cl21704 354913 -pfam05210 336060 pfam05210 336060 -pfam05211 336061 pfam05211 336061 -pfam05212 336062 pfam05212 336062 -pfam05216 336063 pfam05216 336063 -pfam05221 336064 cl21454 354811 -pfam05226 336065 cl01732 351578 -pfam05227 336066 cl05000 352301 -pfam05228 336067 cl01308 351460 -pfam05232 336068 pfam05232 336068 -pfam05233 336069 pfam05233 336069 -pfam05235 336070 cl27047 355607 -pfam05236 336071 cl05005 352303 -pfam05238 336072 pfam05238 336072 -pfam05239 336073 cl21591 354883 -pfam05241 336074 pfam05241 336074 -pfam05247 336075 cl05012 352305 -pfam05251 336076 pfam05251 336076 -pfam05253 336077 pfam05253 336077 -pfam05254 336078 cl05017 352308 -pfam05256 336079 cl23825 355060 -pfam05257 336080 cl21534 354857 -pfam05258 336081 cl02324 351729 -pfam05266 336082 pfam05266 336082 -pfam05269 336083 pfam05269 336083 -pfam05270 336084 cl23781 355045 -pfam05275 336085 cl27046 355606 -pfam05276 336086 pfam05276 336086 -pfam05280 336087 cl05036 352310 -pfam05284 336088 cl02303 351726 -pfam05285 336089 pfam05285 336089 -pfam05291 336090 pfam05291 336090 -pfam05292 336091 pfam05292 336091 -pfam05299 336092 cl14813 353839 -pfam05301 336093 pfam05301 336093 -pfam05327 336094 pfam05327 336094 -pfam05335 336095 pfam05335 336095 -pfam05336 336096 cl01281 351454 -pfam05340 336097 pfam05340 336097 -pfam05343 336098 cl14876 353847 -pfam05347 336099 cl05087 352314 -pfam05359 336100 pfam05359 336100 -pfam05360 336101 cl01759 351589 -pfam05362 336102 cl21678 354903 -pfam05365 336103 pfam05365 336103 -pfam05380 336104 pfam05380 336104 -pfam05383 336105 cl02755 351874 -pfam05389 336106 cl02022 351660 -pfam05397 336107 pfam05397 336107 -pfam05400 336108 cl05125 352318 -pfam05402 336109 cl05126 352319 -pfam05405 336110 cl21478 354827 -pfam05420 336111 pfam05420 336111 -pfam05424 336112 pfam05424 336112 -pfam05425 336113 cl21540 354861 -pfam05433 336114 cl10470 353077 -pfam05443 336115 cl19880 354493 -pfam05448 336116 pfam05448 336116 -pfam05449 336117 pfam05449 336117 -pfam05460 336118 cl21687 354908 -pfam05472 336119 cl11502 353279 -pfam05481 336120 pfam05481 336120 -pfam05485 336121 cl02739 351871 -pfam05486 336122 pfam05486 336122 -pfam05488 336123 cl21497 354839 -pfam05491 336124 pfam05491 336124 -pfam05493 336125 pfam05493 336125 -pfam05494 336126 cl01074 351369 -pfam05495 336127 cl19861 354487 -pfam05497 336128 pfam05497 336128 -pfam05499 336129 pfam05499 336129 -pfam05504 336130 cl19906 354505 -pfam05506 336131 pfam05506 336131 -pfam05507 336132 pfam05507 336132 -pfam05509 336133 cl27023 355604 -pfam05511 336134 pfam05511 336134 -pfam05521 336135 cl11461 353265 -pfam05524 336136 pfam05524 336136 -pfam05527 336137 pfam05527 336137 -pfam05536 336138 pfam05536 336138 -pfam05542 336139 pfam05542 336139 -pfam05544 336140 pfam05544 336140 -pfam05545 336141 cl00282 351002 -pfam05546 336142 pfam05546 336142 -pfam05548 336143 cl21618 354892 -pfam05552 336144 pfam05552 336144 -pfam05563 336145 cl27954 355690 -pfam05564 336146 pfam05564 336146 -pfam05573 336147 cl01769 351593 -pfam05591 336148 cl01402 351485 -pfam05592 336149 pfam05592 336149 -pfam05597 336150 cl07863 352825 -pfam05598 336151 pfam05598 336151 -pfam05602 336152 pfam05602 336152 -pfam05605 336153 pfam05605 336153 -pfam05610 336154 cl01432 351502 -pfam05612 336155 pfam05612 336155 -pfam05615 336156 pfam05615 336156 -pfam05620 336157 pfam05620 336157 -pfam05621 336158 cl25403 355390 -pfam05622 336159 pfam05622 336159 -pfam05623 336160 pfam05623 336160 -pfam05627 336161 pfam05627 336161 -pfam05630 336162 pfam05630 336162 -pfam05635 336163 cl28926 355802 -pfam05636 336164 cl27012 355603 -pfam05638 336165 cl01226 351432 -pfam05640 336166 pfam05640 336166 -pfam05641 336167 cl22958 354987 -pfam05645 336168 pfam05645 336168 -pfam05649 336169 pfam05649 336169 -pfam05650 336170 pfam05650 336170 -pfam05652 336171 pfam05652 336171 -pfam05656 336172 cl01224 351430 -pfam05658 336173 pfam05658 336173 -pfam05661 336174 cl01002 351344 -pfam05662 336175 pfam05662 336175 -pfam05664 336176 pfam05664 336176 -pfam05667 336177 pfam05667 336177 -pfam05670 336178 pfam05670 336178 -pfam05672 336179 pfam05672 336179 -pfam05675 336180 cl01520 351534 -pfam05676 336181 pfam05676 336181 -pfam05678 336182 pfam05678 336182 -pfam05679 336183 cl11394 353239 -pfam05681 336184 cl00851 351282 -pfam05683 336185 cl00795 351258 -pfam05690 336186 cl21457 354814 -pfam05692 336187 pfam05692 336187 -pfam05697 336188 pfam05697 336188 -pfam05699 336189 pfam05699 336189 -pfam05701 336190 pfam05701 336190 -pfam05703 336191 pfam05703 336191 -pfam05713 336192 pfam05713 336192 -pfam05715 336193 cl22851 354958 -pfam05717 336194 cl29265 356141 -pfam05721 336195 cl21496 354838 -pfam05726 336196 pfam05726 336196 -pfam05730 336197 cl02770 351881 -pfam05735 336198 pfam05735 336198 -pfam05738 336199 cl21470 354823 -pfam05739 336200 cl22856 354962 -pfam05741 336201 pfam05741 336201 -pfam05742 336202 cl01315 351463 -pfam05745 336203 pfam05745 336203 -pfam05746 336204 cl12020 353341 -pfam05754 336205 pfam05754 336205 -pfam05761 336206 cl17687 354336 -pfam05764 336207 pfam05764 336207 -pfam05769 336208 cl23748 355032 -pfam05791 336209 pfam05791 336209 -pfam05792 336210 pfam05792 336210 -pfam05794 336211 pfam05794 336211 -pfam05818 336212 cl19728 354452 -pfam05820 336213 pfam05820 336213 -pfam05826 336214 cl05417 352356 -pfam05827 336215 pfam05827 336215 -pfam05832 336216 pfam05832 336216 -pfam05833 336217 pfam05833 336217 -pfam05837 336218 pfam05837 336218 -pfam05838 336219 pfam05838 336219 -pfam05840 336220 cl15276 353932 -pfam05845 336221 cl01455 351509 -pfam05848 336222 cl01850 351617 -pfam05853 336223 cl15827 353984 -pfam05859 336224 pfam05859 336224 -pfam05860 336225 cl05436 352358 -pfam05861 336226 cl01456 351510 -pfam05866 336227 cl01885 351629 -pfam05875 336228 pfam05875 336228 -pfam05889 336229 cl18945 354370 -pfam05890 336230 pfam05890 336230 -pfam05894 336231 cl11625 353298 -pfam05899 336232 cl21464 354820 -pfam05901 336233 cl05460 352360 -pfam05902 336234 pfam05902 336234 -pfam05903 336235 pfam05903 336235 -pfam05904 336236 pfam05904 336236 -pfam05907 336237 pfam05907 336237 -pfam05911 336238 pfam05911 336238 -pfam05913 336239 cl19843 354478 -pfam05914 336240 pfam05914 336240 -pfam05916 336241 cl17012 354295 -pfam05922 336242 pfam05922 336242 -pfam05923 336243 pfam05923 336243 -pfam05924 336244 pfam05924 336244 -pfam05926 336245 pfam05926 336245 -pfam05929 336246 cl15838 353985 -pfam05932 336247 cl08444 352898 -pfam05935 336248 cl26042 355480 -pfam05936 336249 cl01406 351489 -pfam05937 336250 pfam05937 336250 -pfam05938 336251 pfam05938 336251 -pfam05939 336252 cl01940 351642 -pfam05940 336253 cl01258 351445 -pfam05943 336254 cl05484 352368 -pfam05944 336255 cl19614 354445 -pfam05947 336256 cl15462 353948 -pfam05954 336257 cl15796 353979 -pfam05960 336258 cl19872 354488 -pfam05962 336259 cl01532 351541 -pfam05964 336260 cl02650 351843 -pfam05965 336261 cl02651 351844 -pfam05981 336262 cl19505 354431 -pfam05982 336263 cl01312 351462 -pfam05983 336264 pfam05983 336264 -pfam05985 336265 cl01762 351590 -pfam05987 336266 cl01738 351581 -pfam05997 336267 pfam05997 336267 -pfam06001 336268 cl27931 355688 -pfam06004 336269 pfam06004 336269 -pfam06005 336270 cl11531 353283 -pfam06011 336271 pfam06011 336271 -pfam06012 336272 pfam06012 336272 -pfam06017 336273 pfam06017 336273 -pfam06025 336274 pfam06025 336274 -pfam06026 336275 cl00339 351040 -pfam06035 336276 cl17362 354329 -pfam06037 336277 cl02415 351754 -pfam06039 336278 cl21454 354811 -pfam06041 336279 cl01561 351554 -pfam06042 336280 cl01435 351503 -pfam06046 336281 cl19885 354497 -pfam06048 336282 cl12098 353359 -pfam06050 336283 cl21559 354870 -pfam06055 336284 cl01617 351569 -pfam06058 336285 cl17171 354315 -pfam06059 336286 pfam06059 336286 -pfam06062 336287 cl11474 353270 -pfam06067 336288 cl12129 353365 -pfam06071 336289 cl28922 355798 -pfam06073 336290 cl01526 351537 -pfam06075 336291 pfam06075 336291 -pfam06079 336292 cl05556 352374 -pfam06082 336293 pfam06082 336293 -pfam06087 336294 pfam06087 336294 -pfam06089 336295 cl01842 351613 -pfam06092 336296 pfam06092 336296 -pfam06094 336297 cl22886 354971 -pfam06097 336298 cl19471 354422 -pfam06098 336299 pfam06098 336299 -pfam06101 336300 pfam06101 336300 -pfam06102 336301 pfam06102 336301 -pfam06103 336302 cl01972 351648 -pfam06107 336303 cl01864 351622 -pfam06108 336304 cl01393 351483 -pfam06109 336305 cl11627 353299 -pfam06115 336306 cl01917 351638 -pfam06119 336307 cl02648 351841 -pfam06122 336308 cl05580 352377 -pfam06123 336309 cl01844 351615 -pfam06124 336310 pfam06124 336310 -pfam06127 336311 cl01879 351627 -pfam06130 336312 cl26984 355598 -pfam06133 336313 cl01483 351522 -pfam06135 336314 cl01857 351619 -pfam06144 336315 cl19912 354508 -pfam06146 336316 cl01264 351449 -pfam06150 336317 cl01887 351630 -pfam06151 336318 cl19976 354517 -pfam06155 336319 cl01414 351495 -pfam06156 336320 pfam06156 336320 -pfam06159 336321 pfam06159 336321 -pfam06160 336322 pfam06160 336322 -pfam06165 336323 cl17067 354306 -pfam06167 336324 cl01267 351450 -pfam06169 336325 pfam06169 336325 -pfam06170 336326 cl02211 351704 -pfam06172 336327 cl01418 351497 -pfam06173 336328 cl01983 351655 -pfam06174 336329 pfam06174 336329 -pfam06177 336330 cl21488 354833 -pfam06181 336331 pfam06181 336331 -pfam06183 336332 cl11630 353300 -pfam06185 336333 cl14632 353816 -pfam06186 336334 pfam06186 336334 -pfam06187 336335 pfam06187 336335 -pfam06189 336336 pfam06189 336336 -pfam06191 336337 pfam06191 336337 -pfam06196 336338 cl01614 351568 -pfam06200 336339 cl05618 352384 -pfam06201 336340 pfam06201 336340 -pfam06203 336341 cl29182 356058 -pfam06207 336342 cl19854 354484 -pfam06210 336343 cl01831 351610 -pfam06212 336344 pfam06212 336344 -pfam06213 336345 pfam06213 336345 -pfam06224 336346 cl19833 354473 -pfam06226 336347 cl01487 351523 -pfam06228 336348 cl01509 351531 -pfam06230 336349 cl09182 352946 -pfam06242 336350 cl11533 353284 -pfam06244 336351 pfam06244 336351 -pfam06245 336352 cl19858 354486 -pfam06250 336353 cl19557 354439 -pfam06257 336354 cl01852 351618 -pfam06262 336355 cl01577 351560 -pfam06265 336356 cl09961 353038 -pfam06266 336357 pfam06266 336357 -pfam06267 336358 pfam06267 336358 -pfam06271 336359 cl00746 351234 -pfam06276 336360 pfam06276 336360 -pfam06279 336361 cl23967 355110 -pfam06280 336362 pfam06280 336362 -pfam06282 336363 cl02296 351724 -pfam06283 336364 cl00020 350865 -pfam06288 336365 cl23958 355106 -pfam06289 336366 cl00683 351213 -pfam06291 336367 pfam06291 336367 -pfam06294 336368 cl00030 350868 -pfam06299 336369 cl15435 353944 -pfam06303 336370 cl23842 355067 -pfam06305 336371 cl01539 351546 -pfam06311 336372 pfam06311 336372 -pfam06314 336373 cl01919 351639 -pfam06315 336374 cl01891 351631 -pfam06317 336375 pfam06317 336375 -pfam06319 336376 cl02197 351702 -pfam06320 336377 pfam06320 336377 -pfam06321 336378 cl05686 352392 -pfam06333 336379 pfam06333 336379 -pfam06339 336380 cl21464 354820 -pfam06348 336381 cl02284 351719 -pfam06353 336382 cl01786 351599 -pfam06366 336383 pfam06366 336383 -pfam06367 336384 pfam06367 336384 -pfam06374 336385 pfam06374 336385 -pfam06381 336386 cl21602 354886 -pfam06391 336387 pfam06391 336387 -pfam06405 336388 cl22953 354986 -pfam06411 336389 cl05752 352396 -pfam06412 336390 cl05753 352397 -pfam06414 336391 cl21455 354812 -pfam06415 336392 cl23718 355016 -pfam06417 336393 pfam06417 336393 -pfam06418 336394 pfam06418 336394 -pfam06420 336395 pfam06420 336395 -pfam06421 336396 pfam06421 336396 -pfam06422 336397 pfam06422 336397 -pfam06423 336398 cl02109 351680 -pfam06424 336399 pfam06424 336399 -pfam06426 336400 cl05762 352403 -pfam06427 336401 pfam06427 336401 -pfam06428 336402 pfam06428 336402 -pfam06429 336403 cl15855 353989 -pfam06430 336404 pfam06430 336404 -pfam06434 336405 cl00215 350957 -pfam06438 336406 pfam06438 336406 -pfam06440 336407 cl22636 354950 -pfam06441 336408 pfam06441 336408 -pfam06445 336409 cl01368 351473 -pfam06448 336410 pfam06448 336410 -pfam06452 336411 cl14783 353836 -pfam06458 336412 pfam06458 336412 -pfam06459 336413 pfam06459 336413 -pfam06462 336414 cl29262 356138 -pfam06465 336415 pfam06465 336415 -pfam06466 336416 pfam06466 336416 -pfam06470 336417 cl05797 352412 -pfam06475 336418 cl01425 351499 -pfam06476 336419 pfam06476 336419 -pfam06480 336420 pfam06480 336420 -pfam06481 336421 pfam06481 336421 -pfam06482 336422 cl23985 355115 -pfam06487 336423 pfam06487 336423 -pfam06490 336424 cl19078 354377 -pfam06496 336425 pfam06496 336425 -pfam06505 336426 pfam06505 336426 -pfam06506 336427 pfam06506 336427 -pfam06507 336428 pfam06507 336428 -pfam06512 336429 pfam06512 336429 -pfam06516 336430 cl00303 351011 -pfam06518 336431 pfam06518 336431 -pfam06522 336432 pfam06522 336432 -pfam06532 336433 cl02071 351668 -pfam06544 336434 pfam06544 336434 -pfam06545 336435 pfam06545 336435 -pfam06553 336436 pfam06553 336436 -pfam06558 336437 cl11636 353301 -pfam06559 336438 pfam06559 336438 -pfam06565 336439 cl26962 355597 -pfam06568 336440 cl23975 355111 -pfam06570 336441 cl11555 353288 -pfam06572 336442 cl19739 354456 -pfam06577 336443 cl02235 351710 -pfam06580 336444 pfam06580 336444 -pfam06581 336445 pfam06581 336445 -pfam06582 336446 pfam06582 336446 -pfam06585 336447 cl12117 353362 -pfam06589 336448 cl05880 352427 -pfam06592 336449 pfam06592 336449 -pfam06594 336450 cl23859 355076 -pfam06596 336451 cl23870 355083 -pfam06597 336452 pfam06597 336452 -pfam06602 336453 cl28904 355780 -pfam06603 336454 pfam06603 336454 -pfam06611 336455 cl11481 353274 -pfam06625 336456 pfam06625 336456 -pfam06628 336457 pfam06628 336457 -pfam06629 336458 cl21487 354832 -pfam06631 336459 pfam06631 336459 -pfam06640 336460 pfam06640 336460 -pfam06643 336461 pfam06643 336461 -pfam06644 336462 pfam06644 336462 -pfam06645 336463 pfam06645 336463 -pfam06649 336464 pfam06649 336464 -pfam06658 336465 pfam06658 336465 -pfam06666 336466 pfam06666 336466 -pfam06667 336467 cl05946 352438 -pfam06675 336468 pfam06675 336468 -pfam06676 336469 cl00993 351338 -pfam06684 336470 pfam06684 336470 -pfam06687 336471 cl24030 355128 -pfam06689 336472 cl05964 352441 -pfam06690 336473 cl01642 351573 -pfam06693 336474 cl10031 353049 -pfam06696 336475 pfam06696 336475 -pfam06698 336476 cl26955 355596 -pfam06702 336477 cl05973 352443 -pfam06708 336478 pfam06708 336478 -pfam06718 336479 pfam06718 336479 -pfam06719 336480 pfam06719 336480 -pfam06720 336481 pfam06720 336481 -pfam06723 336482 pfam06723 336482 -pfam06724 336483 pfam06724 336483 -pfam06728 336484 cl21590 354882 -pfam06733 336485 cl28899 355775 -pfam06737 336486 cl00222 350962 -pfam06738 336487 cl01118 351389 -pfam06741 336488 pfam06741 336488 -pfam06743 336489 pfam06743 336489 -pfam06744 336490 pfam06744 336490 -pfam06747 336491 pfam06747 336491 -pfam06748 336492 pfam06748 336492 -pfam06749 336493 pfam06749 336493 -pfam06750 336494 pfam06750 336494 -pfam06754 336495 cl01454 351508 -pfam06757 336496 pfam06757 336496 -pfam06760 336497 pfam06760 336497 -pfam06761 336498 pfam06761 336498 -pfam06762 336499 pfam06762 336499 -pfam06766 336500 pfam06766 336500 -pfam06772 336501 cl01754 351588 -pfam06777 336502 pfam06777 336502 -pfam06778 336503 cl01280 351453 -pfam06781 336504 cl11506 353280 -pfam06784 336505 pfam06784 336505 -pfam06791 336506 pfam06791 336506 -pfam06792 336507 cl02262 351713 -pfam06794 336508 cl01180 351413 -pfam06796 336509 cl01848 351616 -pfam06799 336510 pfam06799 336510 -pfam06804 336511 cl19507 354433 -pfam06807 336512 pfam06807 336512 -pfam06812 336513 cl19907 354506 -pfam06814 336514 cl21735 354921 -pfam06818 336515 pfam06818 336515 -pfam06824 336516 cl19841 354477 -pfam06830 336517 pfam06830 336517 -pfam06831 336518 pfam06831 336518 -pfam06834 336519 cl06067 352460 -pfam06836 336520 pfam06836 336520 -pfam06842 336521 pfam06842 336521 -pfam06844 336522 cl01385 351480 -pfam06853 336523 cl01223 351429 -pfam06857 336524 cl06082 352463 -pfam06859 336525 cl17173 354317 -pfam06863 336526 pfam06863 336526 -pfam06864 336527 pfam06864 336527 -pfam06865 336528 cl22913 354976 -pfam06872 336529 pfam06872 336529 -pfam06874 336530 cl19619 354446 -pfam06877 336531 cl19506 354432 -pfam06880 336532 pfam06880 336532 -pfam06881 336533 pfam06881 336533 -pfam06882 336534 pfam06882 336534 -pfam06883 336535 pfam06883 336535 -pfam06884 336536 pfam06884 336536 -pfam06886 336537 pfam06886 336537 -pfam06889 336538 cl14673 353826 -pfam06897 336539 cl01978 351652 -pfam06899 336540 cl11643 353302 -pfam06904 336541 cl26936 355594 -pfam06906 336542 cl19740 354457 -pfam06908 336543 cl22881 354968 -pfam06911 336544 pfam06911 336544 -pfam06912 336545 cl01453 351507 -pfam06916 336546 pfam06916 336546 -pfam06920 336547 cl06123 352472 -pfam06930 336548 cl21557 354869 -pfam06932 336549 cl23932 355098 -pfam06938 336550 cl19847 354482 -pfam06940 336551 cl01519 351533 -pfam06943 336552 cl26935 355593 -pfam06945 336553 cl01304 351459 -pfam06953 336554 pfam06953 336554 -pfam06955 336555 pfam06955 336555 -pfam06956 336556 pfam06956 336556 -pfam06961 336557 cl01311 351461 -pfam06962 336558 cl17173 354317 -pfam06964 336559 cl01412 351494 -pfam06965 336560 cl01133 351397 -pfam06968 336561 cl29260 356136 -pfam06971 336562 pfam06971 336562 -pfam06972 336563 pfam06972 336563 -pfam06974 336564 pfam06974 336564 -pfam06979 336565 pfam06979 336565 -pfam06980 336566 pfam06980 336566 -pfam06985 336567 pfam06985 336567 -pfam06986 336568 cl19475 354425 -pfam06988 336569 cl02351 351736 -pfam06991 336570 pfam06991 336570 -pfam06993 336571 cl01533 351542 -pfam06996 336572 cl01404 351487 -pfam06998 336573 cl01981 351653 -pfam07000 336574 pfam07000 336574 -pfam07005 336575 pfam07005 336575 -pfam07007 336576 cl01530 351539 -pfam07012 336577 cl29256 356132 -pfam07014 336578 pfam07014 336578 -pfam07017 336579 cl06181 352479 -pfam07019 336580 pfam07019 336580 -pfam07023 336581 cl01215 351424 -pfam07024 336582 pfam07024 336582 -pfam07027 336583 cl01547 351549 -pfam07035 336584 pfam07035 336584 -pfam07040 336585 cl02375 351746 -pfam07043 336586 cl26923 355592 -pfam07044 336587 cl19192 354390 -pfam07046 336588 pfam07046 336588 -pfam07047 336589 pfam07047 336589 -pfam07055 336590 pfam07055 336590 -pfam07059 336591 pfam07059 336591 -pfam07063 336592 cl02226 351707 -pfam07064 336593 pfam07064 336593 -pfam07071 336594 cl06211 352484 -pfam07072 336595 cl01892 351632 -pfam07073 336596 cl09210 352949 -pfam07075 336597 cl01598 351563 -pfam07076 336598 pfam07076 336598 -pfam07077 336599 cl01753 351587 -pfam07080 336600 cl09109 352932 -pfam07081 336601 cl01397 351484 -pfam07085 336602 cl21627 354895 -pfam07086 336603 pfam07086 336603 -pfam07091 336604 cl17173 354317 -pfam07095 336605 pfam07095 336605 -pfam07098 336606 pfam07098 336606 -pfam07099 336607 cl01784 351598 -pfam07102 336608 pfam07102 336608 -pfam07103 336609 cl17838 354344 -pfam07104 336610 pfam07104 336610 -pfam07105 336611 pfam07105 336611 -pfam07120 336612 cl01531 351540 -pfam07126 336613 pfam07126 336613 -pfam07130 336614 cl01217 351425 -pfam07136 336615 cl01595 351562 -pfam07137 336616 cl21528 354854 -pfam07143 336617 cl12101 353360 -pfam07145 336618 pfam07145 336618 -pfam07152 336619 cl01913 351637 -pfam07155 336620 cl21488 354833 -pfam07156 336621 pfam07156 336621 -pfam07161 336622 pfam07161 336622 -pfam07162 336623 pfam07162 336623 -pfam07165 336624 pfam07165 336624 -pfam07171 336625 pfam07171 336625 -pfam07177 336626 cl26914 355591 -pfam07179 336627 pfam07179 336627 -pfam07182 336628 pfam07182 336628 -pfam07189 336629 pfam07189 336629 -pfam07194 336630 pfam07194 336630 -pfam07197 336631 pfam07197 336631 -pfam07200 336632 pfam07200 336632 -pfam07208 336633 cl01175 351410 -pfam07209 336634 cl01301 351458 -pfam07214 336635 cl11648 353303 -pfam07219 336636 pfam07219 336636 -pfam07223 336637 pfam07223 336637 -pfam07226 336638 cl23983 355114 -pfam07227 336639 cl22851 354958 -pfam07229 336640 cl09429 352966 -pfam07233 336641 cl12345 353385 -pfam07235 336642 cl01771 351595 -pfam07237 336643 cl02319 351728 -pfam07238 336644 cl01260 351446 -pfam07242 336645 pfam07242 336645 -pfam07250 336646 pfam07250 336646 -pfam07256 336647 pfam07256 336647 -pfam07258 336648 cl06336 352502 -pfam07261 336649 cl29255 356131 -pfam07262 336650 cl06338 352503 -pfam07264 336651 cl01126 351395 -pfam07273 336652 cl06345 352504 -pfam07274 336653 cl01380 351479 -pfam07275 336654 cl01953 351646 -pfam07277 336655 pfam07277 336655 -pfam07281 336656 pfam07281 336656 -pfam07283 336657 cl19428 354420 -pfam07286 336658 cl01790 351601 -pfam07287 336659 pfam07287 336659 -pfam07288 336660 cl11492 353277 -pfam07290 336661 pfam07290 336661 -pfam07295 336662 cl19727 354451 -pfam07302 336663 cl00518 351130 -pfam07303 336664 pfam07303 336664 -pfam07305 336665 pfam07305 336665 -pfam07308 336666 pfam07308 336666 -pfam07309 336667 cl11454 353263 -pfam07311 336668 cl01328 351465 -pfam07314 336669 cl01862 351621 -pfam07317 336670 pfam07317 336670 -pfam07319 336671 pfam07319 336671 -pfam07323 336672 cl11562 353289 -pfam07330 336673 cl11569 353291 -pfam07331 336674 pfam07331 336674 -pfam07332 336675 cl21707 354915 -pfam07336 336676 pfam07336 336676 -pfam07338 336677 cl11507 353281 -pfam07347 336678 pfam07347 336678 -pfam07348 336679 cl06405 352512 -pfam07351 336680 pfam07351 336680 -pfam07352 336681 cl01825 351608 -pfam07354 336682 pfam07354 336682 -pfam07356 336683 pfam07356 336683 -pfam07362 336684 cl02188 351700 -pfam07364 336685 pfam07364 336685 -pfam07366 336686 cl09109 352932 -pfam07369 336687 pfam07369 336687 -pfam07372 336688 cl11568 353290 -pfam07378 336689 cl11455 353264 -pfam07382 336690 pfam07382 336690 -pfam07385 336691 cl21464 354820 -pfam07386 336692 cl01841 351612 -pfam07399 336693 pfam07399 336693 -pfam07403 336694 pfam07403 336694 -pfam07406 336695 pfam07406 336695 -pfam07411 336696 cl01356 351470 -pfam07412 336697 pfam07412 336697 -pfam07417 336698 cl11653 353304 -pfam07424 336699 cl21715 354917 -pfam07429 336700 cl07929 352839 -pfam07439 336701 pfam07439 336701 -pfam07445 336702 cl11483 353275 -pfam07452 336703 cl06473 352521 -pfam07456 336704 cl01973 351649 -pfam07471 336705 cl01720 351576 -pfam07477 336706 pfam07477 336706 -pfam07479 336707 pfam07479 336707 -pfam07484 336708 cl26890 355589 -pfam07486 336709 pfam07486 336709 -pfam07496 336710 pfam07496 336710 -pfam07497 336711 cl09927 353027 -pfam07498 336712 cl06505 352524 -pfam07500 336713 cl02637 351836 -pfam07501 336714 pfam07501 336714 -pfam07502 336715 cl06508 352525 -pfam07503 336716 pfam07503 336716 -pfam07504 336717 pfam07504 336717 -pfam07514 336718 cl26884 355588 -pfam07516 336719 pfam07516 336719 -pfam07517 336720 pfam07517 336720 -pfam07521 336721 pfam07521 336721 -pfam07522 336722 pfam07522 336722 -pfam07525 336723 cl02533 351789 -pfam07526 336724 cl02677 351854 -pfam07527 336725 cl02638 351837 -pfam07529 336726 cl02676 351853 -pfam07531 336727 cl02658 351846 -pfam07532 336728 pfam07532 336728 -pfam07533 336729 cl02688 351856 -pfam07536 336730 cl06527 352529 -pfam07540 336731 pfam07540 336731 -pfam07541 336732 pfam07541 336732 -pfam07542 336733 cl02228 351708 -pfam07544 336734 pfam07544 336734 -pfam07545 336735 pfam07545 336735 -pfam07549 336736 pfam07549 336736 -pfam07554 336737 pfam07554 336737 -pfam07555 336738 pfam07555 336738 -pfam07557 336739 pfam07557 336739 -pfam07559 336740 pfam07559 336740 -pfam07561 336741 pfam07561 336741 -pfam07562 336742 pfam07562 336742 -pfam07564 336743 pfam07564 336743 -pfam07566 336744 pfam07566 336744 -pfam07569 336745 pfam07569 336745 -pfam07576 336746 cl17169 354314 -pfam07580 336747 pfam07580 336747 -pfam07582 336748 pfam07582 336748 -pfam07603 336749 pfam07603 336749 -pfam07610 336750 cl06591 352541 -pfam07617 336751 pfam07617 336751 -pfam07624 336752 pfam07624 336752 -pfam07647 336753 cl15755 353976 -pfam07648 336754 cl00097 350898 -pfam07650 336755 cl00098 350899 -pfam07651 336756 cl02544 351795 -pfam07653 336757 cl17036 354299 -pfam07654 336758 cl11960 353325 -pfam07657 336759 pfam07657 336759 -pfam07660 336760 cl21681 354905 -pfam07662 336761 cl26873 355587 -pfam07664 336762 pfam07664 336762 -pfam07677 336763 pfam07677 336763 -pfam07679 336764 pfam07679 336764 -pfam07683 336765 cl29241 356117 -pfam07686 336766 cl11960 353325 -pfam07687 336767 cl14876 353847 -pfam07690 336768 cl30458 357334 -pfam07696 336769 pfam07696 336769 -pfam07697 336770 pfam07697 336770 -pfam07698 336771 pfam07698 336771 -pfam07700 336772 pfam07700 336772 -pfam07701 336773 pfam07701 336773 -pfam07702 336774 cl22899 354973 -pfam07703 336775 cl19929 354512 -pfam07704 336776 cl01834 351611 -pfam07713 336777 pfam07713 336777 -pfam07714 336778 pfam07714 336778 -pfam07715 336779 cl23850 355072 -pfam07717 336780 pfam07717 336780 -pfam07722 336781 pfam07722 336781 -pfam07723 336782 cl26855 355585 -pfam07724 336783 pfam07724 336783 -pfam07727 336784 pfam07727 336784 -pfam07728 336785 pfam07728 336785 -pfam07729 336786 cl11656 353305 -pfam07730 336787 pfam07730 336787 -pfam07731 336788 cl19115 354382 -pfam07732 336789 cl19115 354382 -pfam07735 336790 pfam07735 336790 -pfam07736 336791 cl10037 353050 -pfam07738 336792 cl23730 355025 -pfam07740 336793 pfam07740 336793 -pfam07741 336794 pfam07741 336794 -pfam07742 336795 cl15439 353945 -pfam07743 336796 pfam07743 336796 -pfam07744 336797 pfam07744 336797 -pfam07748 336798 cl20343 354573 -pfam07749 336799 cl02782 351889 -pfam07751 336800 cl01988 351656 -pfam07755 336801 pfam07755 336801 -pfam07756 336802 pfam07756 336802 -pfam07758 336803 cl15407 353938 -pfam07762 336804 pfam07762 336804 -pfam07766 336805 pfam07766 336805 -pfam07767 336806 pfam07767 336806 -pfam07769 336807 pfam07769 336807 -pfam07774 336808 pfam07774 336808 -pfam07782 336809 pfam07782 336809 -pfam07787 336810 pfam07787 336810 -pfam07793 336811 pfam07793 336811 -pfam07797 336812 pfam07797 336812 -pfam07799 336813 cl01787 351600 -pfam07800 336814 pfam07800 336814 -pfam07802 336815 pfam07802 336815 -pfam07804 336816 pfam07804 336816 -pfam07808 336817 pfam07808 336817 -pfam07809 336818 pfam07809 336818 -pfam07810 336819 pfam07810 336819 -pfam07811 336820 cl25561 355421 -pfam07812 336821 cl19839 354476 -pfam07814 336822 pfam07814 336822 -pfam07817 336823 pfam07817 336823 -pfam07818 336824 pfam07818 336824 -pfam07820 336825 cl06725 352566 -pfam07821 336826 cl29240 356116 -pfam07826 336827 cl01330 351466 -pfam07828 336828 pfam07828 336828 -pfam07831 336829 cl29239 356115 -pfam07834 336830 pfam07834 336830 -pfam07835 336831 pfam07835 336831 -pfam07836 336832 pfam07836 336832 -pfam07837 336833 cl26845 355584 -pfam07839 336834 cl23944 355102 -pfam07840 336835 cl11656 353305 -pfam07841 336836 cl11657 353306 -pfam07847 336837 pfam07847 336837 -pfam07849 336838 cl26844 355583 -pfam07855 336839 pfam07855 336839 -pfam07859 336840 cl21494 354836 -pfam07862 336841 cl06756 352573 -pfam07866 336842 cl01949 351644 -pfam07869 336843 cl26842 355582 -pfam07873 336844 cl06766 352574 -pfam07875 336845 cl17715 354338 -pfam07881 336846 pfam07881 336846 -pfam07883 336847 cl21464 354820 -pfam07884 336848 cl01729 351577 -pfam07885 336849 cl21560 354871 -pfam07886 336850 pfam07886 336850 -pfam07887 336851 pfam07887 336851 -pfam07889 336852 pfam07889 336852 -pfam07890 336853 pfam07890 336853 -pfam07892 336854 pfam07892 336854 -pfam07893 336855 pfam07893 336855 -pfam07898 336856 pfam07898 336856 -pfam07899 336857 pfam07899 336857 -pfam07902 336858 pfam07902 336858 -pfam07904 336859 pfam07904 336859 -pfam07907 336860 cl02259 351712 -pfam07911 336861 pfam07911 336861 -pfam07912 336862 cl00388 351069 -pfam07915 336863 cl06793 352582 -pfam07916 336864 cl26833 355578 -pfam07923 336865 pfam07923 336865 -pfam07926 336866 pfam07926 336866 -pfam07927 336867 cl00752 351239 -pfam07928 336868 pfam07928 336868 -pfam07929 336869 pfam07929 336869 -pfam07930 336870 pfam07930 336870 -pfam07933 336871 cl17171 354315 -pfam07934 336872 cl05528 352372 -pfam07938 336873 pfam07938 336873 -pfam07940 336874 pfam07940 336874 -pfam07943 336875 cl29237 356113 -pfam07946 336876 pfam07946 336876 -pfam07949 336877 pfam07949 336877 -pfam07958 336878 pfam07958 336878 -pfam07962 336879 pfam07962 336879 -pfam07963 336880 pfam07963 336880 -pfam07965 336881 pfam07965 336881 -pfam07966 336882 pfam07966 336882 -pfam07968 336883 cl08468 352904 -pfam07971 336884 cl26820 355576 -pfam07972 336885 cl00438 351093 -pfam07973 336886 cl29236 356112 -pfam07975 336887 cl06838 352591 -pfam07976 336888 cl00388 351069 -pfam07977 336889 cl00509 351126 -pfam07980 336890 pfam07980 336890 -pfam07985 336891 cl06844 352592 -pfam07990 336892 pfam07990 336892 -pfam07993 336893 cl21454 354811 -pfam07995 336894 cl26817 355575 -pfam07996 336895 cl02193 351701 -pfam07997 336896 cl02318 351727 -pfam08000 336897 cl17171 354315 -pfam08002 336898 cl01557 351552 -pfam08005 336899 pfam08005 336899 -pfam08007 336900 cl21464 354820 -pfam08013 336901 cl09211 352950 -pfam08014 336902 cl06858 352594 -pfam08019 336903 pfam08019 336903 -pfam08020 336904 cl21506 354845 -pfam08029 336905 cl29235 356111 -pfam08030 336906 cl23719 355017 -pfam08031 336907 pfam08031 336907 -pfam08033 336908 pfam08033 336908 -pfam08038 336909 pfam08038 336909 -pfam08042 336910 cl26808 355574 -pfam08045 336911 pfam08045 336911 -pfam08059 336912 cl02662 351849 -pfam08063 336913 pfam08063 336913 -pfam08064 336914 cl06893 352600 -pfam08066 336915 pfam08066 336915 -pfam08068 336916 pfam08068 336916 -pfam08073 336917 pfam08073 336917 -pfam08075 336918 cl06904 352604 -pfam08079 336919 pfam08079 336919 -pfam08081 336920 pfam08081 336920 -pfam08082 336921 pfam08082 336921 -pfam08084 336922 pfam08084 336922 -pfam08085 336923 pfam08085 336923 -pfam08122 336924 pfam08122 336924 -pfam08127 336925 pfam08127 336925 -pfam08137 336926 pfam08137 336926 -pfam08142 336927 cl06950 352612 -pfam08144 336928 pfam08144 336928 -pfam08146 336929 cl06954 352614 -pfam08147 336930 pfam08147 336930 -pfam08148 336931 pfam08148 336931 -pfam08149 336932 cl06957 352617 -pfam08150 336933 pfam08150 336933 -pfam08151 336934 pfam08151 336934 -pfam08152 336935 cl06960 352620 -pfam08153 336936 pfam08153 336936 -pfam08154 336937 pfam08154 336937 -pfam08155 336938 pfam08155 336938 -pfam08156 336939 pfam08156 336939 -pfam08158 336940 pfam08158 336940 -pfam08159 336941 pfam08159 336941 -pfam08161 336942 pfam08161 336942 -pfam08163 336943 pfam08163 336943 -pfam08164 336944 pfam08164 336944 -pfam08167 336945 pfam08167 336945 -pfam08169 336946 pfam08169 336946 -pfam08170 336947 pfam08170 336947 -pfam08172 336948 pfam08172 336948 -pfam08173 336949 cl02039 351663 -pfam08174 336950 pfam08174 336950 -pfam08193 336951 pfam08193 336951 -pfam08195 336952 pfam08195 336952 -pfam08202 336953 pfam08202 336953 -pfam08207 336954 cl29230 356106 -pfam08208 336955 pfam08208 336955 -pfam08210 336956 pfam08210 336956 -pfam08211 336957 cl00269 350994 -pfam08212 336958 cl21528 354854 -pfam08213 336959 pfam08213 336959 -pfam08216 336960 pfam08216 336960 -pfam08219 336961 pfam08219 336961 -pfam08224 336962 pfam08224 336962 -pfam08226 336963 pfam08226 336963 -pfam08229 336964 cl07019 352638 -pfam08230 336965 cl07020 352639 -pfam08231 336966 pfam08231 336966 -pfam08232 336967 pfam08232 336967 -pfam08234 336968 pfam08234 336968 -pfam08235 336969 cl21460 354816 -pfam08238 336970 cl29229 356105 -pfam08241 336971 cl17173 354317 -pfam08244 336972 cl29080 355956 -pfam08246 336973 cl22448 354939 -pfam08263 336974 pfam08263 336974 -pfam08264 336975 cl12020 353341 -pfam08266 336976 pfam08266 336976 -pfam08269 336977 cl07034 352643 -pfam08271 336978 pfam08271 336978 -pfam08272 336979 pfam08272 336979 -pfam08273 336980 cl21601 354885 -pfam08276 336981 cl00112 350905 -pfam08277 336982 cl11660 353307 -pfam08278 336983 cl07879 352829 -pfam08284 336984 cl11403 353244 -pfam08285 336985 pfam08285 336985 -pfam08286 336986 pfam08286 336986 -pfam08287 336987 pfam08287 336987 -pfam08293 336988 pfam08293 336988 -pfam08295 336989 cl07053 352648 -pfam08299 336990 cl07055 352649 -pfam08302 336991 pfam08302 336991 -pfam08311 336992 cl07066 352650 -pfam08312 336993 pfam08312 336993 -pfam08313 336994 pfam08313 336994 -pfam08314 336995 pfam08314 336995 -pfam08315 336996 pfam08315 336996 -pfam08317 336997 pfam08317 336997 -pfam08318 336998 cl07072 352654 -pfam08320 336999 cl08475 352906 -pfam08323 337000 cl10013 353042 -pfam08324 337001 pfam08324 337001 -pfam08326 337002 pfam08326 337002 -pfam08327 337003 cl14643 353818 -pfam08328 337004 cl00013 350860 -pfam08329 337005 cl28984 355860 -pfam08331 337006 pfam08331 337006 -pfam08334 337007 pfam08334 337007 -pfam08337 337008 cl02569 351807 -pfam08338 337009 pfam08338 337009 -pfam08340 337010 pfam08340 337010 -pfam08341 337011 cl26778 355572 -pfam08343 337012 pfam08343 337012 -pfam08344 337013 pfam08344 337013 -pfam08345 337014 pfam08345 337014 -pfam08346 337015 cl01430 351501 -pfam08348 337016 pfam08348 337016 -pfam08349 337017 cl01284 351455 -pfam08353 337018 pfam08353 337018 -pfam08354 337019 cl26771 355571 -pfam08355 337020 pfam08355 337020 -pfam08356 337021 pfam08356 337021 -pfam08363 337022 pfam08363 337022 -pfam08364 337023 pfam08364 337023 -pfam08366 337024 pfam08366 337024 -pfam08367 337025 pfam08367 337025 -pfam08368 337026 pfam08368 337026 -pfam08370 337027 pfam08370 337027 -pfam08372 337028 pfam08372 337028 -pfam08376 337029 pfam08376 337029 -pfam08378 337030 cl00516 351129 -pfam08379 337031 pfam08379 337031 -pfam08381 337032 pfam08381 337032 -pfam08385 337033 pfam08385 337033 -pfam08387 337034 cl26765 355569 -pfam08388 337035 pfam08388 337035 -pfam08390 337036 pfam08390 337036 -pfam08392 337037 cl09938 353032 -pfam08393 337038 pfam08393 337038 -pfam08401 337039 cl26762 355568 -pfam08406 337040 pfam08406 337040 -pfam08407 337041 pfam08407 337041 -pfam08409 337042 pfam08409 337042 -pfam08410 337043 cl10503 353082 -pfam08411 337044 pfam08411 337044 -pfam08412 337045 pfam08412 337045 -pfam08414 337046 pfam08414 337046 -pfam08417 337047 cl14643 353818 -pfam08421 337048 pfam08421 337048 -pfam08424 337049 pfam08424 337049 -pfam08427 337050 pfam08427 337050 -pfam08429 337051 pfam08429 337051 -pfam08432 337052 pfam08432 337052 -pfam08434 337053 pfam08434 337053 -pfam08436 337054 pfam08436 337054 -pfam08437 337055 pfam08437 337055 -pfam08439 337056 pfam08439 337056 -pfam08441 337057 pfam08441 337057 -pfam08447 337058 pfam08447 337058 -pfam08455 337059 pfam08455 337059 -pfam08458 337060 pfam08458 337060 -pfam08459 337061 cl00653 351198 -pfam08463 337062 pfam08463 337062 -pfam08468 337063 pfam08468 337063 -pfam08472 337064 pfam08472 337064 -pfam08481 337065 pfam08481 337065 -pfam08482 337066 pfam08482 337066 -pfam08483 337067 pfam08483 337067 -pfam08484 337068 cl21454 354811 -pfam08485 337069 pfam08485 337069 -pfam08486 337070 pfam08486 337070 -pfam08487 337071 cl02699 351858 -pfam08490 337072 pfam08490 337072 -pfam08494 337073 pfam08494 337073 -pfam08495 337074 cl10701 353099 -pfam08496 337075 pfam08496 337075 -pfam08497 337076 cl00293 351006 -pfam08498 337077 pfam08498 337077 -pfam08502 337078 cl29215 356091 -pfam08503 337079 pfam08503 337079 -pfam08506 337080 pfam08506 337080 -pfam08510 337081 pfam08510 337081 -pfam08511 337082 cl21709 354916 -pfam08512 337083 cl17171 354315 -pfam08513 337084 cl26729 355562 -pfam08514 337085 cl26728 355561 -pfam08516 337086 cl15456 353947 -pfam08517 337087 cl22470 354944 -pfam08519 337088 pfam08519 337088 -pfam08521 337089 pfam08521 337089 -pfam08522 337090 cl25669 355435 -pfam08523 337091 pfam08523 337091 -pfam08524 337092 pfam08524 337092 -pfam08525 337093 pfam08525 337093 -pfam08526 337094 cl19115 354382 -pfam08528 337095 pfam08528 337095 -pfam08529 337096 pfam08529 337096 -pfam08535 337097 pfam08535 337097 -pfam08540 337098 pfam08540 337098 -pfam08541 337099 cl21486 354831 -pfam08542 337100 pfam08542 337100 -pfam08545 337101 cl09938 353032 -pfam08549 337102 pfam08549 337102 -pfam08550 337103 pfam08550 337103 -pfam08552 337104 pfam08552 337104 -pfam08558 337105 cl02779 351887 -pfam08559 337106 pfam08559 337106 -pfam08562 337107 pfam08562 337107 -pfam08566 337108 pfam08566 337108 -pfam08567 337109 cl17171 354315 -pfam08568 337110 pfam08568 337110 -pfam08569 337111 pfam08569 337111 -pfam08570 337112 pfam08570 337112 -pfam08571 337113 pfam08571 337113 -pfam08572 337114 pfam08572 337114 -pfam08573 337115 pfam08573 337115 -pfam08576 337116 pfam08576 337116 -pfam08581 337117 pfam08581 337117 -pfam08583 337118 pfam08583 337118 -pfam08588 337119 pfam08588 337119 -pfam08590 337120 pfam08590 337120 -pfam08591 337121 pfam08591 337121 -pfam08592 337122 cl12097 353358 -pfam08603 337123 pfam08603 337123 -pfam08606 337124 pfam08606 337124 -pfam08609 337125 pfam08609 337125 -pfam08612 337126 pfam08612 337126 -pfam08614 337127 pfam08614 337127 -pfam08617 337128 cl00698 351219 -pfam08620 337129 pfam08620 337129 -pfam08621 337130 pfam08621 337130 -pfam08622 337131 pfam08622 337131 -pfam08623 337132 pfam08623 337132 -pfam08625 337133 pfam08625 337133 -pfam08628 337134 pfam08628 337134 -pfam08630 337135 pfam08630 337135 -pfam08631 337136 pfam08631 337136 -pfam08633 337137 pfam08633 337137 -pfam08637 337138 pfam08637 337138 -pfam08638 337139 pfam08638 337139 -pfam08640 337140 cl26712 355560 -pfam08641 337141 pfam08641 337141 -pfam08642 337142 cl02694 351857 -pfam08644 337143 pfam08644 337143 -pfam08645 337144 pfam08645 337144 -pfam08647 337145 pfam08647 337145 -pfam08649 337146 pfam08649 337146 -pfam08653 337147 pfam08653 337147 -pfam08666 337148 cl00555 351151 -pfam08669 337149 cl30584 357460 -pfam08670 337150 cl21578 354879 -pfam08672 337151 cl08488 352910 -pfam08676 337152 cl07336 352713 -pfam08677 337153 cl22935 354983 -pfam08679 337154 pfam08679 337154 -pfam08683 337155 cl07883 352831 -pfam08685 337156 pfam08685 337156 -pfam08686 337157 pfam08686 337157 -pfam08687 337158 pfam08687 337158 -pfam08696 337159 cl00641 351191 -pfam08698 337160 pfam08698 337160 -pfam08699 337161 pfam08699 337161 -pfam08700 337162 cl22951 354985 -pfam08701 337163 pfam08701 337163 -pfam08711 337164 cl00146 350918 -pfam08712 337165 cl07364 352721 -pfam08713 337166 cl29010 355886 -pfam08718 337167 pfam08718 337167 -pfam08719 337168 cl21532 354856 -pfam08722 337169 cl21695 354910 -pfam08725 337170 pfam08725 337170 -pfam08728 337171 pfam08728 337171 -pfam08729 337172 pfam08729 337172 -pfam08734 337173 cl01743 351583 -pfam08735 337174 cl01638 351572 -pfam08736 337175 pfam08736 337175 -pfam08737 337176 pfam08737 337176 -pfam08740 337177 cl07381 352725 -pfam08742 337178 cl07383 352726 -pfam08743 337179 pfam08743 337179 -pfam08746 337180 cl17238 354325 -pfam08747 337181 pfam08747 337181 -pfam08750 337182 pfam08750 337182 -pfam08751 337183 cl19905 354504 -pfam08753 337184 cl29206 356082 -pfam08755 337185 cl01548 351550 -pfam08757 337186 cl26696 355558 -pfam08759 337187 cl07392 352728 -pfam08760 337188 pfam08760 337188 -pfam08761 337189 cl16941 354290 -pfam08763 337190 cl26695 355557 -pfam08765 337191 cl02360 351740 -pfam08766 337192 pfam08766 337192 -pfam08768 337193 cl10502 353081 -pfam08770 337194 cl07397 352730 -pfam08771 337195 pfam08771 337195 -pfam08775 337196 pfam08775 337196 -pfam08776 337197 pfam08776 337197 -pfam08777 337198 cl17169 354314 -pfam08780 337199 cl23885 355088 -pfam08781 337200 cl07405 352732 -pfam08782 337201 cl07406 352733 -pfam08783 337202 pfam08783 337202 -pfam08785 337203 pfam08785 337203 -pfam08786 337204 cl03356 351982 -pfam08787 337205 cl21738 354923 -pfam08797 337206 cl07418 352735 -pfam08798 337207 cl08497 352913 -pfam08799 337208 cl02632 351834 -pfam08800 337209 pfam08800 337209 -pfam08801 337210 pfam08801 337210 -pfam08803 337211 cl07420 352737 -pfam08808 337212 cl02411 351753 -pfam08809 337213 pfam08809 337213 -pfam08811 337214 cl22733 354951 -pfam08816 337215 cl07428 352739 -pfam08818 337216 cl23848 355070 -pfam08820 337217 pfam08820 337217 -pfam08821 337218 cl02356 351739 -pfam08825 337219 pfam08825 337219 -pfam08828 337220 pfam08828 337220 -pfam08829 337221 pfam08829 337221 -pfam08837 337222 cl02370 351743 -pfam08842 337223 cl29070 355946 -pfam08843 337224 cl00973 351334 -pfam08845 337225 cl07446 352743 -pfam08847 337226 cl02292 351722 -pfam08849 337227 pfam08849 337227 -pfam08850 337228 cl11545 353285 -pfam08857 337229 cl02129 351682 -pfam08859 337230 cl01742 351582 -pfam08866 337231 pfam08866 337231 -pfam08870 337232 cl07463 352747 -pfam08876 337233 cl02600 351819 -pfam08878 337234 pfam08878 337234 -pfam08879 337235 pfam08879 337235 -pfam08880 337236 cl07469 352749 -pfam08881 337237 pfam08881 337237 -pfam08883 337238 cl01562 351555 -pfam08885 337239 cl01053 351360 -pfam08886 337240 cl26682 355556 -pfam08888 337241 pfam08888 337241 -pfam08889 337242 pfam08889 337242 -pfam08891 337243 pfam08891 337243 -pfam08892 337244 cl01349 351468 -pfam08893 337245 pfam08893 337245 -pfam08895 337246 pfam08895 337246 -pfam08897 337247 pfam08897 337247 -pfam08899 337248 pfam08899 337248 -pfam08901 337249 cl02037 351661 -pfam08902 337250 pfam08902 337250 -pfam08907 337251 cl01545 351548 -pfam08908 337252 pfam08908 337252 -pfam08909 337253 pfam08909 337253 -pfam08911 337254 pfam08911 337254 -pfam08912 337255 pfam08912 337255 -pfam08916 337256 pfam08916 337256 -pfam08918 337257 pfam08918 337257 -pfam08919 337258 cl07494 352760 -pfam08920 337259 pfam08920 337259 -pfam08925 337260 pfam08925 337260 -pfam08939 337261 pfam08939 337261 -pfam08946 337262 pfam08946 337262 -pfam08951 337263 pfam08951 337263 -pfam08966 337264 pfam08966 337264 -pfam08973 337265 pfam08973 337265 -pfam08975 337266 cl19888 354499 -pfam08982 337267 cl14643 353818 -pfam08984 337268 cl14817 353840 -pfam08985 337269 pfam08985 337269 -pfam08986 337270 pfam08986 337270 -pfam08989 337271 pfam08989 337271 -pfam08990 337272 pfam08990 337272 -pfam08996 337273 pfam08996 337273 -pfam09003 337274 pfam09003 337274 -pfam09011 337275 cl00082 350892 -pfam09029 337276 pfam09029 337276 -pfam09038 337277 cl02573 351810 -pfam09043 337278 cl29076 355952 -pfam09044 337279 pfam09044 337279 -pfam09059 337280 cl23892 355089 -pfam09066 337281 cl07618 352773 -pfam09068 337282 pfam09068 337282 -pfam09070 337283 pfam09070 337283 -pfam09078 337284 pfam09078 337284 -pfam09079 337285 cl08520 352920 -pfam09084 337286 pfam09084 337286 -pfam09085 337287 pfam09085 337287 -pfam09086 337288 pfam09086 337288 -pfam09087 337289 pfam09087 337289 -pfam09089 337290 pfam09089 337290 -pfam09090 337291 pfam09090 337291 -pfam09093 337292 pfam09093 337292 -pfam09103 337293 cl09930 353029 -pfam09106 337294 pfam09106 337294 -pfam09107 337295 pfam09107 337295 -pfam09112 337296 pfam09112 337296 -pfam09113 337297 pfam09113 337297 -pfam09115 337298 pfam09115 337298 -pfam09117 337299 pfam09117 337299 -pfam09118 337300 pfam09118 337300 -pfam09124 337301 pfam09124 337301 -pfam09127 337302 pfam09127 337302 -pfam09130 337303 pfam09130 337303 -pfam09133 337304 pfam09133 337304 -pfam09135 337305 pfam09135 337305 -pfam09137 337306 cl07672 352785 -pfam09139 337307 pfam09139 337307 -pfam09141 337308 pfam09141 337308 -pfam09148 337309 cl01870 351625 -pfam09149 337310 pfam09149 337310 -pfam09150 337311 pfam09150 337311 -pfam09159 337312 cl21482 354829 -pfam09160 337313 cl07688 352789 -pfam09162 337314 pfam09162 337314 -pfam09163 337315 pfam09163 337315 -pfam09165 337316 pfam09165 337316 -pfam09168 337317 cl07696 352793 -pfam09172 337318 pfam09172 337318 -pfam09174 337319 cl02103 351676 -pfam09176 337320 pfam09176 337320 -pfam09177 337321 pfam09177 337321 -pfam09179 337322 pfam09179 337322 -pfam09180 337323 cl08531 352927 -pfam09195 337324 pfam09195 337324 -pfam09210 337325 pfam09210 337325 -pfam09211 337326 pfam09211 337326 -pfam09215 337327 cl27861 355685 -pfam09223 337328 cl01365 351472 -pfam09229 337329 cl07747 352798 -pfam09234 337330 cl01600 351564 -pfam09235 337331 cl15755 353976 -pfam09242 337332 pfam09242 337332 -pfam09258 337333 pfam09258 337333 -pfam09259 337334 pfam09259 337334 -pfam09261 337335 cl29203 356079 -pfam09262 337336 pfam09262 337336 -pfam09265 337337 pfam09265 337337 -pfam09268 337338 pfam09268 337338 -pfam09269 337339 cl07779 352802 -pfam09273 337340 pfam09273 337340 -pfam09277 337341 pfam09277 337341 -pfam09278 337342 pfam09278 337342 -pfam09280 337343 pfam09280 337343 -pfam09282 337344 pfam09282 337344 -pfam09284 337345 cl15675 353967 -pfam09285 337346 cl09927 353027 -pfam09290 337347 cl26651 355555 -pfam09298 337348 pfam09298 337348 -pfam09299 337349 pfam09299 337349 -pfam09302 337350 pfam09302 337350 -pfam09313 337351 cl21464 354820 -pfam09314 337352 cl10013 353042 -pfam09317 337353 pfam09317 337353 -pfam09320 337354 pfam09320 337354 -pfam09322 337355 pfam09322 337355 -pfam09324 337356 pfam09324 337356 -pfam09325 337357 cl12013 353336 -pfam09326 337358 pfam09326 337358 -pfam09327 337359 pfam09327 337359 -pfam09328 337360 pfam09328 337360 -pfam09329 337361 pfam09329 337361 -pfam09330 337362 cl26647 355554 -pfam09332 337363 pfam09332 337363 -pfam09333 337364 pfam09333 337364 -pfam09334 337365 pfam09334 337365 -pfam09335 337366 cl00429 351091 -pfam09336 337367 pfam09336 337367 -pfam09337 337368 cl07828 352815 -pfam09340 337369 pfam09340 337369 -pfam09341 337370 cl12080 353356 -pfam09343 337371 cl02268 351715 -pfam09345 337372 pfam09345 337372 -pfam09346 337373 cl01747 351585 -pfam09347 337374 cl01474 351518 -pfam09349 337375 cl01251 351441 -pfam09350 337376 cl08096 352846 -pfam09351 337377 cl01567 351558 -pfam09356 337378 pfam09356 337378 -pfam09358 337379 cl09615 352977 -pfam09359 337380 cl11964 353327 -pfam09360 337381 cl02748 351872 -pfam09361 337382 cl11491 353276 -pfam09362 337383 pfam09362 337383 -pfam09363 337384 pfam09363 337384 -pfam09365 337385 cl02374 351745 -pfam09366 337386 pfam09366 337386 -pfam09368 337387 pfam09368 337387 -pfam09369 337388 pfam09369 337388 -pfam09370 337389 cl15424 353942 -pfam09371 337390 pfam09371 337390 -pfam09375 337391 cl09159 352942 -pfam09377 337392 pfam09377 337392 -pfam09380 337393 cl17171 354315 -pfam09382 337394 cl29183 356059 -pfam09383 337395 cl09633 352983 -pfam09388 337396 pfam09388 337396 -pfam09391 337397 cl02074 351670 -pfam09392 337398 cl09641 352985 -pfam09394 337399 cl02325 351730 -pfam09397 337400 cl09645 352986 -pfam09400 337401 cl11580 353292 -pfam09402 337402 pfam09402 337402 -pfam09411 337403 cl21487 354832 -pfam09412 337404 pfam09412 337404 -pfam09413 337405 pfam09413 337405 -pfam09414 337406 cl12015 353338 -pfam09416 337407 pfam09416 337407 -pfam09420 337408 pfam09420 337408 -pfam09421 337409 pfam09421 337409 -pfam09422 337410 pfam09422 337410 -pfam09423 337411 cl13995 353799 -pfam09425 337412 cl29182 356058 -pfam09427 337413 pfam09427 337413 -pfam09429 337414 pfam09429 337414 -pfam09440 337415 pfam09440 337415 -pfam09442 337416 pfam09442 337416 -pfam09445 337417 cl17173 354317 -pfam09446 337418 pfam09446 337418 -pfam09449 337419 pfam09449 337419 -pfam09451 337420 cl29181 356057 -pfam09455 337421 cl21516 354849 -pfam09456 337422 pfam09456 337422 -pfam09458 337423 pfam09458 337423 -pfam09468 337424 cl18968 354375 -pfam09476 337425 cl19894 354501 -pfam09479 337426 cl09714 352999 -pfam09480 337427 cl12363 353387 -pfam09481 337428 cl08044 352843 -pfam09482 337429 cl09716 353000 -pfam09485 337430 cl09719 353001 -pfam09490 337431 cl02266 351714 -pfam09494 337432 pfam09494 337432 -pfam09495 337433 pfam09495 337433 -pfam09496 337434 pfam09496 337434 -pfam09497 337435 pfam09497 337435 -pfam09498 337436 cl23999 355118 -pfam09500 337437 cl00509 351126 -pfam09508 337438 pfam09508 337438 -pfam09522 337439 pfam09522 337439 -pfam09523 337440 cl02376 351747 -pfam09527 337441 cl09754 353007 -pfam09529 337442 cl02331 351731 -pfam09531 337443 pfam09531 337443 -pfam09538 337444 cl19417 354419 -pfam09583 337445 cl23826 355061 -pfam09584 337446 cl26629 355550 -pfam09586 337447 pfam09586 337447 -pfam09587 337448 cl13995 353799 -pfam09588 337449 cl09232 352951 -pfam09594 337450 cl21590 354882 -pfam09597 337451 pfam09597 337451 -pfam09600 337452 cl11451 353261 -pfam09601 337453 cl09819 353009 -pfam09603 337454 cl09821 353010 -pfam09604 337455 cl29180 356056 -pfam09605 337456 cl09823 353011 -pfam09608 337457 cl09826 353012 -pfam09611 337458 cl09829 353013 -pfam09612 337459 cl08171 352854 -pfam09614 337460 cl12127 353364 -pfam09615 337461 cl09832 353014 -pfam09618 337462 cl09835 353015 -pfam09619 337463 cl15825 353983 -pfam09624 337464 pfam09624 337464 -pfam09631 337465 pfam09631 337465 -pfam09637 337466 pfam09637 337466 -pfam09650 337467 cl09865 353017 -pfam09663 337468 cl17559 354333 -pfam09671 337469 cl09881 353018 -pfam09673 337470 cl09883 353019 -pfam09674 337471 cl09884 353020 -pfam09676 337472 cl19474 354424 -pfam09677 337473 cl11515 353282 -pfam09678 337474 cl09173 352944 -pfam09681 337475 cl09889 353021 -pfam09685 337476 cl21616 354891 -pfam09686 337477 cl19622 354447 -pfam09687 337478 cl23884 355087 -pfam09691 337479 cl22759 354953 -pfam09709 337480 cl12004 353334 -pfam09713 337481 cl09915 353023 -pfam09717 337482 cl09918 353024 -pfam09718 337483 pfam09718 337483 -pfam09719 337484 cl09920 353025 -pfam09720 337485 cl09921 353026 -pfam09721 337486 cl15694 353972 -pfam09722 337487 cl17718 354339 -pfam09723 337488 cl00993 351338 -pfam09724 337489 pfam09724 337489 -pfam09725 337490 pfam09725 337490 -pfam09727 337491 pfam09727 337491 -pfam09728 337492 pfam09728 337492 -pfam09729 337493 cl02096 351673 -pfam09731 337494 pfam09731 337494 -pfam09732 337495 cl10717 353103 -pfam09734 337496 pfam09734 337496 -pfam09738 337497 pfam09738 337497 -pfam09739 337498 pfam09739 337498 -pfam09740 337499 pfam09740 337499 -pfam09743 337500 cl10727 353106 -pfam09744 337501 cl23720 355018 -pfam09745 337502 pfam09745 337502 -pfam09748 337503 pfam09748 337503 -pfam09749 337504 pfam09749 337504 -pfam09754 337505 cl00847 351280 -pfam09757 337506 pfam09757 337506 -pfam09762 337507 pfam09762 337507 -pfam09766 337508 pfam09766 337508 -pfam09768 337509 pfam09768 337509 -pfam09769 337510 pfam09769 337510 -pfam09774 337511 pfam09774 337511 -pfam09778 337512 cl00296 351007 -pfam09784 337513 pfam09784 337513 -pfam09785 337514 pfam09785 337514 -pfam09791 337515 pfam09791 337515 -pfam09792 337516 pfam09792 337516 -pfam09801 337517 pfam09801 337517 -pfam09803 337518 pfam09803 337518 -pfam09804 337519 pfam09804 337519 -pfam09819 337520 cl01943 351643 -pfam09821 337521 cl15413 353940 -pfam09827 337522 cl11442 353257 -pfam09828 337523 cl01744 351584 -pfam09829 337524 cl11437 353255 -pfam09830 337525 pfam09830 337525 -pfam09831 337526 cl26597 355545 -pfam09835 337527 cl01261 351447 -pfam09836 337528 cl01262 351448 -pfam09838 337529 cl01275 351451 -pfam09839 337530 cl19834 354474 -pfam09842 337531 cl01299 351457 -pfam09849 337532 cl26593 355544 -pfam09850 337533 cl01370 351475 -pfam09851 337534 cl26592 355543 -pfam09856 337535 pfam09856 337535 -pfam09857 337536 cl01566 351557 -pfam09859 337537 cl21496 354838 -pfam09860 337538 cl01589 351561 -pfam09862 337539 cl22936 354984 -pfam09864 337540 cl01604 351565 -pfam09865 337541 cl19192 354390 -pfam09866 337542 cl26589 355542 -pfam09867 337543 cl01611 351567 -pfam09898 337544 cl26586 355541 -pfam09899 337545 cl19857 354485 -pfam09902 337546 cl23792 355050 -pfam09903 337547 pfam09903 337547 -pfam09904 337548 cl11547 353286 -pfam09905 337549 cl01894 351634 -pfam09907 337550 cl01912 351636 -pfam09911 337551 cl11548 353287 -pfam09912 337552 cl01930 351640 -pfam09913 337553 cl21590 354882 -pfam09916 337554 cl19752 354461 -pfam09917 337555 cl01951 351645 -pfam09918 337556 cl26584 355540 -pfam09922 337557 cl19753 354462 -pfam09923 337558 cl01970 351647 -pfam09925 337559 cl10480 353080 -pfam09928 337560 cl02294 351723 -pfam09931 337561 cl26583 355539 -pfam09932 337562 cl02278 351718 -pfam09933 337563 cl02290 351720 -pfam09935 337564 cl01938 351641 -pfam09936 337565 cl21505 354844 -pfam09937 337566 cl02212 351705 -pfam09938 337567 cl01551 351551 -pfam09939 337568 cl01558 351553 -pfam09945 337569 cl02014 351659 -pfam09948 337570 cl19895 354502 -pfam09949 337571 cl19874 354490 -pfam09950 337572 cl21556 354868 -pfam09955 337573 cl02291 351721 -pfam09962 337574 cl02044 351664 -pfam09966 337575 cl02047 351665 -pfam09972 337576 cl19878 354491 -pfam09976 337577 pfam09976 337577 -pfam09980 337578 cl01427 351500 -pfam09981 337579 cl01424 351498 -pfam09982 337580 cl01409 351492 -pfam09984 337581 pfam09984 337581 -pfam09989 337582 cl21559 354870 -pfam09992 337583 cl19845 354480 -pfam09994 337584 cl01480 351519 -pfam09995 337585 cl01472 351517 -pfam09996 337586 cl01467 351516 -pfam09997 337587 cl01464 351514 -pfam09998 337588 cl01461 351512 -pfam10000 337589 pfam10000 337589 -pfam10001 337590 pfam10001 337590 -pfam10003 337591 cl02302 351725 -pfam10008 337592 cl01770 351594 -pfam10011 337593 cl26573 355538 -pfam10013 337594 cl01792 351602 -pfam10014 337595 cl01794 351603 -pfam10017 337596 cl26572 355537 -pfam10023 337597 cl17720 354340 -pfam10026 337598 cl22923 354979 -pfam10028 337599 cl02337 351733 -pfam10031 337600 cl26571 355536 -pfam10033 337601 pfam10033 337601 -pfam10034 337602 pfam10034 337602 -pfam10035 337603 cl19873 354489 -pfam10036 337604 pfam10036 337604 -pfam10040 337605 cl11443 353258 -pfam10041 337606 cl02349 351735 -pfam10042 337607 cl17857 354345 -pfam10045 337608 cl02353 351737 -pfam10047 337609 cl02355 351738 -pfam10049 337610 cl02251 351711 -pfam10052 337611 cl02399 351752 -pfam10054 337612 cl02395 351750 -pfam10056 337613 cl02373 351744 -pfam10066 337614 cl01034 351353 -pfam10070 337615 cl19828 354469 -pfam10073 337616 cl23845 355068 -pfam10080 337617 cl26569 355535 -pfam10081 337618 pfam10081 337618 -pfam10086 337619 cl23964 355108 -pfam10087 337620 cl01811 351605 -pfam10088 337621 pfam10088 337621 -pfam10090 337622 cl26566 355534 -pfam10093 337623 cl01823 351607 -pfam10097 337624 cl02210 351703 -pfam10098 337625 cl26565 355533 -pfam10099 337626 pfam10099 337626 -pfam10101 337627 pfam10101 337627 -pfam10103 337628 cl02183 351698 -pfam10104 337629 cl12377 353391 -pfam10105 337630 cl26561 355532 -pfam10106 337631 cl01733 351579 -pfam10109 337632 cl23966 355109 -pfam10110 337633 cl01974 351650 -pfam10114 337634 cl19879 354492 -pfam10115 337635 cl02273 351716 -pfam10116 337636 cl02398 351751 -pfam10118 337637 cl19844 354479 -pfam10119 337638 cl29174 356050 -pfam10135 337639 cl01626 351570 -pfam10136 337640 cl15411 353939 -pfam10137 337641 cl26560 355531 -pfam10138 337642 cl00057 350880 -pfam10140 337643 cl01868 351624 -pfam10142 337644 cl21494 354836 -pfam10143 337645 cl23846 355069 -pfam10144 337646 cl11479 353273 -pfam10145 337647 cl29167 356043 -pfam10146 337648 pfam10146 337648 -pfam10150 337649 cl29166 356042 -pfam10152 337650 pfam10152 337650 -pfam10153 337651 pfam10153 337651 -pfam10155 337652 pfam10155 337652 -pfam10156 337653 pfam10156 337653 -pfam10159 337654 pfam10159 337654 -pfam10163 337655 pfam10163 337655 -pfam10165 337656 pfam10165 337656 -pfam10166 337657 pfam10166 337657 -pfam10167 337658 pfam10167 337658 -pfam10178 337659 pfam10178 337659 -pfam10179 337660 pfam10179 337660 -pfam10180 337661 pfam10180 337661 -pfam10181 337662 pfam10181 337662 -pfam10186 337663 pfam10186 337663 -pfam10191 337664 pfam10191 337664 -pfam10197 337665 cl10889 353132 -pfam10198 337666 pfam10198 337666 -pfam10204 337667 pfam10204 337667 -pfam10210 337668 pfam10210 337668 -pfam10211 337669 pfam10211 337669 -pfam10214 337670 pfam10214 337670 -pfam10215 337671 pfam10215 337671 -pfam10223 337672 pfam10223 337672 -pfam10228 337673 pfam10228 337673 -pfam10232 337674 pfam10232 337674 -pfam10233 337675 cl10918 353138 -pfam10236 337676 pfam10236 337676 -pfam10237 337677 pfam10237 337677 -pfam10240 337678 pfam10240 337678 -pfam10249 337679 pfam10249 337679 -pfam10250 337680 pfam10250 337680 -pfam10251 337681 pfam10251 337681 -pfam10256 337682 pfam10256 337682 -pfam10260 337683 pfam10260 337683 -pfam10262 337684 cl01407 351490 -pfam10263 337685 cl19237 354398 -pfam10264 337686 pfam10264 337686 -pfam10266 337687 pfam10266 337687 -pfam10273 337688 pfam10273 337688 -pfam10276 337689 cl01821 351606 -pfam10280 337690 pfam10280 337690 -pfam10281 337691 pfam10281 337691 -pfam10282 337692 pfam10282 337692 -pfam10283 337693 pfam10283 337693 -pfam10287 337694 pfam10287 337694 -pfam10288 337695 pfam10288 337695 -pfam10290 337696 pfam10290 337696 -pfam10293 337697 pfam10293 337697 -pfam10295 337698 pfam10295 337698 -pfam10305 337699 pfam10305 337699 -pfam10310 337700 pfam10310 337700 -pfam10312 337701 pfam10312 337701 -pfam10317 337702 cl22924 354980 -pfam10318 337703 cl11665 353308 -pfam10321 337704 pfam10321 337704 -pfam10324 337705 cl21561 354872 -pfam10326 337706 cl22924 354980 -pfam10328 337707 cl21561 354872 -pfam10346 337708 pfam10346 337708 -pfam10347 337709 pfam10347 337709 -pfam10350 337710 cl19897 354503 -pfam10351 337711 pfam10351 337711 -pfam10354 337712 cl17173 354317 -pfam10357 337713 pfam10357 337713 -pfam10358 337714 pfam10358 337714 -pfam10359 337715 pfam10359 337715 -pfam10363 337716 pfam10363 337716 -pfam10369 337717 pfam10369 337717 -pfam10370 337718 pfam10370 337718 -pfam10373 337719 pfam10373 337719 -pfam10374 337720 pfam10374 337720 -pfam10377 337721 pfam10377 337721 -pfam10381 337722 pfam10381 337722 -pfam10382 337723 pfam10382 337723 -pfam10383 337724 pfam10383 337724 -pfam10384 337725 pfam10384 337725 -pfam10385 337726 pfam10385 337726 -pfam10387 337727 pfam10387 337727 -pfam10390 337728 pfam10390 337728 -pfam10391 337729 pfam10391 337729 -pfam10394 337730 pfam10394 337730 -pfam10396 337731 pfam10396 337731 -pfam10397 337732 cl00013 350860 -pfam10401 337733 pfam10401 337733 -pfam10403 337734 cl11062 353176 -pfam10404 337735 cl11063 353177 -pfam10405 337736 cl29165 356041 -pfam10406 337737 cl11065 353178 -pfam10409 337738 pfam10409 337738 -pfam10410 337739 pfam10410 337739 -pfam10411 337740 pfam10411 337740 -pfam10414 337741 pfam10414 337741 -pfam10415 337742 cl00013 350860 -pfam10417 337743 pfam10417 337743 -pfam10418 337744 pfam10418 337744 -pfam10419 337745 pfam10419 337745 -pfam10423 337746 pfam10423 337746 -pfam10428 337747 pfam10428 337747 -pfam10431 337748 cl29154 356030 -pfam10435 337749 cl19747 354460 -pfam10436 337750 pfam10436 337750 -pfam10437 337751 cl29153 356029 -pfam10438 337752 cl02706 351862 -pfam10440 337753 pfam10440 337753 -pfam10441 337754 pfam10441 337754 -pfam10442 337755 pfam10442 337755 -pfam10444 337756 pfam10444 337756 -pfam10446 337757 pfam10446 337757 -pfam10447 337758 cl09927 353027 -pfam10448 337759 pfam10448 337759 -pfam10457 337760 pfam10457 337760 -pfam10459 337761 pfam10459 337761 -pfam10471 337762 pfam10471 337762 -pfam10474 337763 pfam10474 337763 -pfam10484 337764 cl24037 355130 -pfam10496 337765 pfam10496 337765 -pfam10498 337766 pfam10498 337766 -pfam10506 337767 pfam10506 337767 -pfam10507 337768 pfam10507 337768 -pfam10509 337769 pfam10509 337769 -pfam10512 337770 pfam10512 337770 -pfam10513 337771 pfam10513 337771 -pfam10517 337772 cl02735 351870 -pfam10518 337773 pfam10518 337773 -pfam10520 337774 pfam10520 337774 -pfam10521 337775 pfam10521 337775 -pfam10522 337776 pfam10522 337776 -pfam10528 337777 cl08459 352902 -pfam10531 337778 cl22925 354981 -pfam10533 337779 pfam10533 337779 -pfam10536 337780 cl29151 356027 -pfam10537 337781 pfam10537 337781 -pfam10539 337782 cl11171 353199 -pfam10541 337783 pfam10541 337783 -pfam10543 337784 pfam10543 337784 -pfam10544 337785 cl15257 353929 -pfam10551 337786 cl24015 355122 -pfam10554 337787 pfam10554 337787 -pfam10557 337788 cl11186 353203 -pfam10558 337789 pfam10558 337789 -pfam10559 337790 pfam10559 337790 -pfam10564 337791 pfam10564 337791 -pfam10566 337792 pfam10566 337792 -pfam10568 337793 cl00388 351069 -pfam10569 337794 pfam10569 337794 -pfam10576 337795 pfam10576 337795 -pfam10584 337796 cl29148 356024 -pfam10585 337797 pfam10585 337797 -pfam10588 337798 cl29147 356023 -pfam10589 337799 cl29146 356022 -pfam10590 337800 pfam10590 337800 -pfam10601 337801 cl02754 351873 -pfam10607 337802 pfam10607 337802 -pfam10608 337803 pfam10608 337803 -pfam10609 337804 cl25403 355390 -pfam10613 337805 cl21456 354813 -pfam10614 337806 cl08082 352845 -pfam10615 337807 pfam10615 337807 -pfam10617 337808 pfam10617 337808 -pfam10620 337809 cl22902 354974 -pfam10625 337810 cl23979 355112 -pfam10626 337811 pfam10626 337811 -pfam10627 337812 cl08115 352848 -pfam10634 337813 cl01377 351476 -pfam10635 337814 cl26502 355524 -pfam10636 337815 cl10043 353051 -pfam10650 337816 pfam10650 337816 -pfam10670 337817 cl26499 355523 -pfam10671 337818 pfam10671 337818 -pfam10674 337819 pfam10674 337819 -pfam10675 337820 pfam10675 337820 -pfam10678 337821 cl11278 353215 -pfam10679 337822 pfam10679 337822 -pfam10680 337823 pfam10680 337823 -pfam10686 337824 pfam10686 337824 -pfam10688 337825 pfam10688 337825 -pfam10689 337826 cl26496 355522 -pfam10691 337827 pfam10691 337827 -pfam10692 337828 cl26494 355521 -pfam10694 337829 pfam10694 337829 -pfam10696 337830 cl08197 352855 -pfam10699 337831 pfam10699 337831 -pfam10703 337832 pfam10703 337832 -pfam10713 337833 cl11672 353309 -pfam10714 337834 pfam10714 337834 -pfam10715 337835 pfam10715 337835 -pfam10719 337836 pfam10719 337836 -pfam10725 337837 pfam10725 337837 -pfam10728 337838 pfam10728 337838 -pfam10737 337839 pfam10737 337839 -pfam10744 337840 pfam10744 337840 -pfam10750 337841 pfam10750 337841 -pfam10753 337842 pfam10753 337842 -pfam10754 337843 pfam10754 337843 -pfam10757 337844 cl27842 355683 -pfam10762 337845 cl23927 355094 -pfam10766 337846 pfam10766 337846 -pfam10767 337847 pfam10767 337847 -pfam10769 337848 cl23926 355093 -pfam10777 337849 pfam10777 337849 -pfam10780 337850 pfam10780 337850 -pfam10781 337851 cl26491 355520 -pfam10782 337852 pfam10782 337852 -pfam10786 337853 pfam10786 337853 -pfam10788 337854 pfam10788 337854 -pfam10796 337855 cl11681 353310 -pfam10798 337856 pfam10798 337856 -pfam10832 337857 cl23922 355091 -pfam10840 337858 pfam10840 337858 -pfam10861 337859 pfam10861 337859 -pfam10868 337860 pfam10868 337860 -pfam10876 337861 pfam10876 337861 -pfam10881 337862 cl00516 351129 -pfam10893 337863 pfam10893 337863 -pfam10895 337864 pfam10895 337864 -pfam10902 337865 pfam10902 337865 -pfam10907 337866 cl02193 351701 -pfam10908 337867 pfam10908 337867 -pfam10932 337868 pfam10932 337868 -pfam10951 337869 pfam10951 337869 -pfam10955 337870 pfam10955 337870 -pfam10957 337871 pfam10957 337871 -pfam10959 337872 pfam10959 337872 -pfam10972 337873 pfam10972 337873 -pfam10973 337874 cl19633 354448 -pfam10975 337875 pfam10975 337875 -pfam10977 337876 pfam10977 337876 -pfam10978 337877 pfam10978 337877 -pfam10980 337878 pfam10980 337878 -pfam10981 337879 pfam10981 337879 -pfam10982 337880 pfam10982 337880 -pfam10985 337881 cl11923 353323 -pfam10987 337882 cl12560 353413 -pfam10991 337883 cl29140 356016 -pfam10993 337884 pfam10993 337884 -pfam10994 337885 cl11393 353238 -pfam10996 337886 cl29139 356015 -pfam10997 337887 pfam10997 337887 -pfam11000 337888 pfam11000 337888 -pfam11004 337889 pfam11004 337889 -pfam11013 337890 pfam11013 337890 -pfam11017 337891 pfam11017 337891 -pfam11024 337892 pfam11024 337892 -pfam11026 337893 pfam11026 337893 -pfam11028 337894 cl21590 354882 -pfam11040 337895 pfam11040 337895 -pfam11041 337896 pfam11041 337896 -pfam11042 337897 pfam11042 337897 -pfam11052 337898 pfam11052 337898 -pfam11061 337899 pfam11061 337899 -pfam11062 337900 pfam11062 337900 -pfam11064 337901 pfam11064 337901 -pfam11066 337902 pfam11066 337902 -pfam11067 337903 pfam11067 337903 -pfam11069 337904 pfam11069 337904 -pfam11074 337905 pfam11074 337905 -pfam11075 337906 pfam11075 337906 -pfam11078 337907 pfam11078 337907 -pfam11080 337908 pfam11080 337908 -pfam11086 337909 pfam11086 337909 -pfam11089 337910 pfam11089 337910 -pfam11101 337911 cl19726 354450 -pfam11102 337912 pfam11102 337912 -pfam11107 337913 pfam11107 337913 -pfam11117 337914 pfam11117 337914 -pfam11118 337915 pfam11118 337915 -pfam11130 337916 pfam11130 337916 -pfam11132 337917 pfam11132 337917 -pfam11136 337918 pfam11136 337918 -pfam11137 337919 pfam11137 337919 -pfam11142 337920 pfam11142 337920 -pfam11143 337921 pfam11143 337921 -pfam11145 337922 pfam11145 337922 -pfam11146 337923 pfam11146 337923 -pfam11148 337924 pfam11148 337924 -pfam11152 337925 pfam11152 337925 -pfam11154 337926 pfam11154 337926 -pfam11157 337927 pfam11157 337927 -pfam11158 337928 pfam11158 337928 -pfam11161 337929 pfam11161 337929 -pfam11162 337930 pfam11162 337930 -pfam11164 337931 pfam11164 337931 -pfam11168 337932 pfam11168 337932 -pfam11171 337933 pfam11171 337933 -pfam11172 337934 pfam11172 337934 -pfam11173 337935 pfam11173 337935 -pfam11174 337936 pfam11174 337936 -pfam11175 337937 pfam11175 337937 -pfam11176 337938 pfam11176 337938 -pfam11180 337939 pfam11180 337939 -pfam11184 337940 pfam11184 337940 -pfam11185 337941 pfam11185 337941 -pfam11187 337942 cl21494 354836 -pfam11188 337943 pfam11188 337943 -pfam11197 337944 pfam11197 337944 -pfam11201 337945 pfam11201 337945 -pfam11202 337946 pfam11202 337946 -pfam11205 337947 pfam11205 337947 -pfam11207 337948 pfam11207 337948 -pfam11208 337949 pfam11208 337949 -pfam11215 337950 pfam11215 337950 -pfam11217 337951 pfam11217 337951 -pfam11219 337952 pfam11219 337952 -pfam11221 337953 pfam11221 337953 -pfam11225 337954 pfam11225 337954 -pfam11227 337955 pfam11227 337955 -pfam11231 337956 pfam11231 337956 -pfam11233 337957 pfam11233 337957 -pfam11249 337958 pfam11249 337958 -pfam11250 337959 pfam11250 337959 -pfam11251 337960 cl15243 353926 -pfam11254 337961 pfam11254 337961 -pfam11258 337962 pfam11258 337962 -pfam11262 337963 pfam11262 337963 -pfam11274 337964 cl14643 353818 -pfam11276 337965 pfam11276 337965 -pfam11278 337966 pfam11278 337966 -pfam11279 337967 pfam11279 337967 -pfam11280 337968 pfam11280 337968 -pfam11287 337969 pfam11287 337969 -pfam11294 337970 pfam11294 337970 -pfam11297 337971 pfam11297 337971 -pfam11299 337972 pfam11299 337972 -pfam11303 337973 pfam11303 337973 -pfam11304 337974 pfam11304 337974 -pfam11306 337975 pfam11306 337975 -pfam11307 337976 pfam11307 337976 -pfam11311 337977 pfam11311 337977 -pfam11312 337978 pfam11312 337978 -pfam11319 337979 cl11879 353318 -pfam11321 337980 pfam11321 337980 -pfam11322 337981 pfam11322 337981 -pfam11324 337982 pfam11324 337982 -pfam11325 337983 pfam11325 337983 -pfam11326 337984 pfam11326 337984 -pfam11327 337985 pfam11327 337985 -pfam11331 337986 pfam11331 337986 -pfam11335 337987 pfam11335 337987 -pfam11340 337988 pfam11340 337988 -pfam11347 337989 pfam11347 337989 -pfam11353 337990 pfam11353 337990 -pfam11354 337991 pfam11354 337991 -pfam11364 337992 pfam11364 337992 -pfam11368 337993 pfam11368 337993 -pfam11369 337994 pfam11369 337994 -pfam11373 337995 pfam11373 337995 -pfam11374 337996 pfam11374 337996 -pfam11379 337997 pfam11379 337997 -pfam11380 337998 pfam11380 337998 -pfam11381 337999 pfam11381 337999 -pfam11389 338000 pfam11389 338000 -pfam11390 338001 pfam11390 338001 -pfam11391 338002 pfam11391 338002 -pfam11392 338003 pfam11392 338003 -pfam11399 338004 pfam11399 338004 -pfam11402 338005 pfam11402 338005 -pfam11403 338006 pfam11403 338006 -pfam11411 338007 pfam11411 338007 -pfam11443 338008 cl00057 350880 -pfam11445 338009 pfam11445 338009 -pfam11453 338010 pfam11453 338010 -pfam11454 338011 pfam11454 338011 -pfam11455 338012 pfam11455 338012 -pfam11457 338013 pfam11457 338013 -pfam11459 338014 cl24040 355131 -pfam11464 338015 pfam11464 338015 -pfam11467 338016 pfam11467 338016 -pfam11470 338017 pfam11470 338017 -pfam11471 338018 pfam11471 338018 -pfam11488 338019 pfam11488 338019 -pfam11490 338020 pfam11490 338020 -pfam11493 338021 pfam11493 338021 -pfam11496 338022 pfam11496 338022 -pfam11500 338023 pfam11500 338023 -pfam11515 338024 pfam11515 338024 -pfam11523 338025 pfam11523 338025 -pfam11526 338026 pfam11526 338026 -pfam11527 338027 pfam11527 338027 -pfam11528 338028 pfam11528 338028 -pfam11534 338029 pfam11534 338029 -pfam11539 338030 pfam11539 338030 -pfam11540 338031 pfam11540 338031 -pfam11543 338032 cl28922 355798 -pfam11548 338033 pfam11548 338033 -pfam11563 338034 cl21461 354817 -pfam11566 338035 pfam11566 338035 -pfam11567 338036 pfam11567 338036 -pfam11568 338037 pfam11568 338037 -pfam11571 338038 pfam11571 338038 -pfam11575 338039 pfam11575 338039 -pfam11578 338040 cl07905 352837 -pfam11582 338041 cl00412 351081 -pfam11583 338042 cl00264 350992 -pfam11588 338043 pfam11588 338043 -pfam11604 338044 cl02363 351741 -pfam11611 338045 cl13117 353544 -pfam11612 338046 cl26457 355517 -pfam11614 338047 pfam11614 338047 -pfam11617 338048 pfam11617 338048 -pfam11620 338049 pfam11620 338049 -pfam11623 338050 pfam11623 338050 -pfam11626 338051 cl13131 353548 -pfam11644 338052 pfam11644 338052 -pfam11648 338053 cl13152 353550 -pfam11656 338054 cl08125 352850 -pfam11657 338055 cl11943 353324 -pfam11659 338056 pfam11659 338056 -pfam11663 338057 pfam11663 338057 -pfam11666 338058 pfam11666 338058 -pfam11667 338059 pfam11667 338059 -pfam11674 338060 pfam11674 338060 -pfam11680 338061 cl21680 354904 -pfam11692 338062 cl11840 353315 -pfam11694 338063 pfam11694 338063 -pfam11697 338064 pfam11697 338064 -pfam11698 338065 pfam11698 338065 -pfam11699 338066 cl21464 354820 -pfam11701 338067 pfam11701 338067 -pfam11702 338068 pfam11702 338068 -pfam11704 338069 pfam11704 338069 -pfam11705 338070 pfam11705 338070 -pfam11706 338071 pfam11706 338071 -pfam11707 338072 pfam11707 338072 -pfam11708 338073 pfam11708 338073 -pfam11711 338074 cl29137 356013 -pfam11717 338075 cl28914 355790 -pfam11718 338076 cl13209 353562 -pfam11721 338077 pfam11721 338077 -pfam11725 338078 pfam11725 338078 -pfam11726 338079 pfam11726 338079 -pfam11731 338080 cl22429 354935 -pfam11732 338081 pfam11732 338081 -pfam11735 338082 pfam11735 338082 -pfam11736 338083 cl01387 351481 -pfam11737 338084 pfam11737 338084 -pfam11738 338085 pfam11738 338085 -pfam11739 338086 cl14674 353827 -pfam11740 338087 pfam11740 338087 -pfam11743 338088 pfam11743 338088 -pfam11749 338089 pfam11749 338089 -pfam11750 338090 pfam11750 338090 -pfam11752 338091 pfam11752 338091 -pfam11753 338092 pfam11753 338092 -pfam11754 338093 pfam11754 338093 -pfam11756 338094 cl08119 352849 -pfam11760 338095 cl26443 355516 -pfam11761 338096 pfam11761 338096 -pfam11762 338097 pfam11762 338097 -pfam11764 338098 pfam11764 338098 -pfam11765 338099 pfam11765 338099 -pfam11767 338100 pfam11767 338100 -pfam11769 338101 cl29136 356012 -pfam11772 338102 pfam11772 338102 -pfam11773 338103 pfam11773 338103 -pfam11776 338104 cl02275 351717 -pfam11777 338105 pfam11777 338105 -pfam11779 338106 pfam11779 338106 -pfam11783 338107 cl26442 355515 -pfam11784 338108 pfam11784 338108 -pfam11791 338109 pfam11791 338109 -pfam11794 338110 cl29135 356011 -pfam11799 338111 pfam11799 338111 -pfam11800 338112 pfam11800 338112 -pfam11801 338113 cl02776 351885 -pfam11804 338114 pfam11804 338114 -pfam11808 338115 pfam11808 338115 -pfam11812 338116 pfam11812 338116 -pfam11814 338117 cl00296 351007 -pfam11815 338118 pfam11815 338118 -pfam11816 338119 pfam11816 338119 -pfam11818 338120 pfam11818 338120 -pfam11828 338121 pfam11828 338121 -pfam11834 338122 pfam11834 338122 -pfam11835 338123 pfam11835 338123 -pfam11836 338124 pfam11836 338124 -pfam11838 338125 pfam11838 338125 -pfam11839 338126 pfam11839 338126 -pfam11841 338127 pfam11841 338127 -pfam11842 338128 pfam11842 338128 -pfam11844 338129 pfam11844 338129 -pfam11845 338130 pfam11845 338130 -pfam11848 338131 pfam11848 338131 -pfam11849 338132 cl21515 354848 -pfam11852 338133 pfam11852 338133 -pfam11853 338134 pfam11853 338134 -pfam11859 338135 pfam11859 338135 -pfam11860 338136 pfam11860 338136 -pfam11861 338137 pfam11861 338137 -pfam11862 338138 pfam11862 338138 -pfam11863 338139 pfam11863 338139 -pfam11864 338140 pfam11864 338140 -pfam11865 338141 pfam11865 338141 -pfam11867 338142 pfam11867 338142 -pfam11870 338143 pfam11870 338143 -pfam11871 338144 pfam11871 338144 -pfam11873 338145 pfam11873 338145 -pfam11874 338146 pfam11874 338146 -pfam11875 338147 pfam11875 338147 -pfam11876 338148 pfam11876 338148 -pfam11877 338149 pfam11877 338149 -pfam11878 338150 pfam11878 338150 -pfam11880 338151 pfam11880 338151 -pfam11882 338152 pfam11882 338152 -pfam11885 338153 pfam11885 338153 -pfam11886 338154 pfam11886 338154 -pfam11888 338155 pfam11888 338155 -pfam11890 338156 pfam11890 338156 -pfam11891 338157 pfam11891 338157 -pfam11892 338158 pfam11892 338158 -pfam11893 338159 pfam11893 338159 -pfam11894 338160 cl29134 356010 -pfam11896 338161 pfam11896 338161 -pfam11897 338162 pfam11897 338162 -pfam11898 338163 pfam11898 338163 -pfam11901 338164 cl26423 355514 -pfam11902 338165 cl02073 351669 -pfam11904 338166 pfam11904 338166 -pfam11905 338167 pfam11905 338167 -pfam11906 338168 pfam11906 338168 -pfam11911 338169 pfam11911 338169 -pfam11915 338170 pfam11915 338170 -pfam11919 338171 pfam11919 338171 -pfam11922 338172 pfam11922 338172 -pfam11923 338173 pfam11923 338173 -pfam11924 338174 cl26420 355513 -pfam11926 338175 pfam11926 338175 -pfam11927 338176 pfam11927 338176 -pfam11928 338177 pfam11928 338177 -pfam11932 338178 pfam11932 338178 -pfam11933 338179 pfam11933 338179 -pfam11934 338180 pfam11934 338180 -pfam11935 338181 pfam11935 338181 -pfam11938 338182 pfam11938 338182 -pfam11940 338183 pfam11940 338183 -pfam11941 338184 cl02706 351862 -pfam11942 338185 pfam11942 338185 -pfam11943 338186 pfam11943 338186 -pfam11944 338187 cl10125 353054 -pfam11947 338188 pfam11947 338188 -pfam11949 338189 pfam11949 338189 -pfam11953 338190 pfam11953 338190 -pfam11954 338191 pfam11954 338191 -pfam11955 338192 pfam11955 338192 -pfam11959 338193 pfam11959 338193 -pfam11961 338194 pfam11961 338194 -pfam11964 338195 pfam11964 338195 -pfam11966 338196 pfam11966 338196 -pfam11969 338197 cl00228 350967 -pfam11975 338198 pfam11975 338198 -pfam11978 338199 cl19107 354381 -pfam11981 338200 pfam11981 338200 -pfam11983 338201 pfam11983 338201 -pfam11987 338202 pfam11987 338202 -pfam11991 338203 cl19121 354383 -pfam11992 338204 pfam11992 338204 -pfam11993 338205 pfam11993 338205 -pfam11995 338206 pfam11995 338206 -pfam11997 338207 cl10013 353042 -pfam12000 338208 pfam12000 338208 -pfam12002 338209 cl26405 355508 -pfam12004 338210 pfam12004 338210 -pfam12006 338211 pfam12006 338211 -pfam12008 338212 pfam12008 338212 -pfam12009 338213 cl13446 353642 -pfam12014 338214 pfam12014 338214 -pfam12018 338215 pfam12018 338215 -pfam12019 338216 cl29132 356008 -pfam12021 338217 pfam12021 338217 -pfam12022 338218 pfam12022 338218 -pfam12026 338219 cl13463 353647 -pfam12031 338220 pfam12031 338220 -pfam12032 338221 cl02731 351869 -pfam12034 338222 pfam12034 338222 -pfam12036 338223 pfam12036 338223 -pfam12038 338224 pfam12038 338224 -pfam12040 338225 pfam12040 338225 -pfam12043 338226 pfam12043 338226 -pfam12045 338227 pfam12045 338227 -pfam12047 338228 pfam12047 338228 -pfam12052 338229 pfam12052 338229 -pfam12053 338230 pfam12053 338230 -pfam12056 338231 pfam12056 338231 -pfam12057 338232 pfam12057 338232 -pfam12059 338233 pfam12059 338233 -pfam12068 338234 pfam12068 338234 -pfam12069 338235 pfam12069 338235 -pfam12070 338236 pfam12070 338236 -pfam12074 338237 pfam12074 338237 -pfam12075 338238 pfam12075 338238 -pfam12080 338239 pfam12080 338239 -pfam12081 338240 pfam12081 338240 -pfam12083 338241 pfam12083 338241 -pfam12084 338242 cl23982 355113 -pfam12091 338243 pfam12091 338243 -pfam12094 338244 pfam12094 338244 -pfam12096 338245 pfam12096 338245 -pfam12098 338246 pfam12098 338246 -pfam12099 338247 pfam12099 338247 -pfam12101 338248 pfam12101 338248 -pfam12105 338249 pfam12105 338249 -pfam12110 338250 pfam12110 338250 -pfam12112 338251 pfam12112 338251 -pfam12119 338252 pfam12119 338252 -pfam12123 338253 pfam12123 338253 -pfam12125 338254 cl26390 355506 -pfam12130 338255 cl23748 355032 -pfam12131 338256 pfam12131 338256 -pfam12137 338257 pfam12137 338257 -pfam12142 338258 pfam12142 338258 -pfam12145 338259 pfam12145 338259 -pfam12146 338260 pfam12146 338260 -pfam12156 338261 pfam12156 338261 -pfam12161 338262 pfam12161 338262 -pfam12163 338263 pfam12163 338263 -pfam12165 338264 pfam12165 338264 -pfam12166 338265 pfam12166 338265 -pfam12168 338266 pfam12168 338266 -pfam12170 338267 pfam12170 338267 -pfam12171 338268 cl26385 355505 -pfam12174 338269 pfam12174 338269 -pfam12178 338270 pfam12178 338270 -pfam12182 338271 pfam12182 338271 -pfam12185 338272 pfam12185 338272 -pfam12186 338273 pfam12186 338273 -pfam12200 338274 pfam12200 338274 -pfam12202 338275 pfam12202 338275 -pfam12203 338276 cl25407 355391 -pfam12210 338277 pfam12210 338277 -pfam12214 338278 pfam12214 338278 -pfam12215 338279 pfam12215 338279 -pfam12221 338280 pfam12221 338280 -pfam12222 338281 pfam12222 338281 -pfam12234 338282 pfam12234 338282 -pfam12239 338283 pfam12239 338283 -pfam12240 338284 pfam12240 338284 -pfam12241 338285 cl21454 354811 -pfam12242 338286 pfam12242 338286 -pfam12244 338287 pfam12244 338287 -pfam12245 338288 cl23771 355039 -pfam12247 338289 pfam12247 338289 -pfam12248 338290 pfam12248 338290 -pfam12251 338291 pfam12251 338291 -pfam12253 338292 pfam12253 338292 -pfam12254 338293 pfam12254 338293 -pfam12257 338294 pfam12257 338294 -pfam12261 338295 pfam12261 338295 -pfam12262 338296 pfam12262 338296 -pfam12265 338297 pfam12265 338297 -pfam12274 338298 pfam12274 338298 -pfam12277 338299 pfam12277 338299 -pfam12278 338300 pfam12278 338300 -pfam12279 338301 pfam12279 338301 -pfam12281 338302 cl02233 351709 -pfam12293 338303 pfam12293 338303 -pfam12295 338304 pfam12295 338304 -pfam12296 338305 pfam12296 338305 -pfam12309 338306 pfam12309 338306 -pfam12311 338307 pfam12311 338307 -pfam12313 338308 pfam12313 338308 -pfam12315 338309 pfam12315 338309 -pfam12317 338310 pfam12317 338310 -pfam12319 338311 cl13718 353714 -pfam12320 338312 pfam12320 338312 -pfam12323 338313 pfam12323 338313 -pfam12324 338314 pfam12324 338314 -pfam12329 338315 pfam12329 338315 -pfam12330 338316 pfam12330 338316 -pfam12331 338317 pfam12331 338317 -pfam12333 338318 pfam12333 338318 -pfam12335 338319 pfam12335 338319 -pfam12339 338320 pfam12339 338320 -pfam12340 338321 pfam12340 338321 -pfam12341 338322 pfam12341 338322 -pfam12344 338323 pfam12344 338323 -pfam12348 338324 pfam12348 338324 -pfam12349 338325 cl21543 354862 -pfam12353 338326 cl13749 353724 -pfam12357 338327 pfam12357 338327 -pfam12358 338328 pfam12358 338328 -pfam12359 338329 pfam12359 338329 -pfam12365 338330 pfam12365 338330 -pfam12367 338331 pfam12367 338331 -pfam12371 338332 cl13764 353729 -pfam12390 338333 pfam12390 338333 -pfam12391 338334 pfam12391 338334 -pfam12392 338335 pfam12392 338335 -pfam12396 338336 pfam12396 338336 -pfam12397 338337 pfam12397 338337 -pfam12399 338338 pfam12399 338338 -pfam12402 338339 pfam12402 338339 -pfam12404 338340 pfam12404 338340 -pfam12409 338341 pfam12409 338341 -pfam12412 338342 pfam12412 338342 -pfam12418 338343 pfam12418 338343 -pfam12422 338344 pfam12422 338344 -pfam12423 338345 pfam12423 338345 -pfam12424 338346 pfam12424 338346 -pfam12425 338347 pfam12425 338347 -pfam12428 338348 pfam12428 338348 -pfam12429 338349 pfam12429 338349 -pfam12430 338350 pfam12430 338350 -pfam12431 338351 pfam12431 338351 -pfam12435 338352 pfam12435 338352 -pfam12436 338353 pfam12436 338353 -pfam12437 338354 pfam12437 338354 -pfam12442 338355 pfam12442 338355 -pfam12447 338356 pfam12447 338356 -pfam12449 338357 pfam12449 338357 -pfam12450 338358 pfam12450 338358 -pfam12451 338359 pfam12451 338359 -pfam12455 338360 pfam12455 338360 -pfam12456 338361 pfam12456 338361 -pfam12458 338362 pfam12458 338362 -pfam12459 338363 pfam12459 338363 -pfam12460 338364 pfam12460 338364 -pfam12462 338365 pfam12462 338365 -pfam12464 338366 pfam12464 338366 -pfam12465 338367 pfam12465 338367 -pfam12470 338368 pfam12470 338368 -pfam12471 338369 pfam12471 338369 -pfam12473 338370 pfam12473 338370 -pfam12474 338371 pfam12474 338371 -pfam12481 338372 cl00319 351023 -pfam12482 338373 pfam12482 338373 -pfam12486 338374 pfam12486 338374 -pfam12487 338375 pfam12487 338375 -pfam12499 338376 pfam12499 338376 -pfam12500 338377 pfam12500 338377 -pfam12501 338378 pfam12501 338378 -pfam12505 338379 pfam12505 338379 -pfam12508 338380 cl23849 355071 -pfam12510 338381 pfam12510 338381 -pfam12511 338382 pfam12511 338382 -pfam12512 338383 pfam12512 338383 -pfam12513 338384 pfam12513 338384 -pfam12514 338385 pfam12514 338385 -pfam12515 338386 pfam12515 338386 -pfam12516 338387 pfam12516 338387 -pfam12517 338388 pfam12517 338388 -pfam12525 338389 pfam12525 338389 -pfam12528 338390 cl26348 355503 -pfam12533 338391 pfam12533 338391 -pfam12535 338392 pfam12535 338392 -pfam12536 338393 pfam12536 338393 -pfam12537 338394 pfam12537 338394 -pfam12538 338395 pfam12538 338395 -pfam12539 338396 pfam12539 338396 -pfam12541 338397 cl29128 356004 -pfam12542 338398 pfam12542 338398 -pfam12544 338399 pfam12544 338399 -pfam12552 338400 pfam12552 338400 -pfam12553 338401 pfam12553 338401 -pfam12554 338402 pfam12554 338402 -pfam12556 338403 pfam12556 338403 -pfam12557 338404 pfam12557 338404 -pfam12558 338405 pfam12558 338405 -pfam12564 338406 pfam12564 338406 -pfam12566 338407 pfam12566 338407 -pfam12568 338408 cl17182 354318 -pfam12569 338409 pfam12569 338409 -pfam12573 338410 pfam12573 338410 -pfam12576 338411 pfam12576 338411 -pfam12579 338412 pfam12579 338412 -pfam12580 338413 pfam12580 338413 -pfam12583 338414 pfam12583 338414 -pfam12592 338415 pfam12592 338415 -pfam12597 338416 pfam12597 338416 -pfam12607 338417 pfam12607 338417 -pfam12609 338418 cl13983 353795 -pfam12612 338419 cl19887 354498 -pfam12615 338420 pfam12615 338420 -pfam12619 338421 pfam12619 338421 -pfam12620 338422 pfam12620 338422 -pfam12621 338423 pfam12621 338423 -pfam12624 338424 pfam12624 338424 -pfam12625 338425 pfam12625 338425 -pfam12626 338426 pfam12626 338426 -pfam12627 338427 pfam12627 338427 -pfam12631 338428 pfam12631 338428 -pfam12632 338429 pfam12632 338429 -pfam12633 338430 pfam12633 338430 -pfam12634 338431 pfam12634 338431 -pfam12637 338432 cl14834 353841 -pfam12642 338433 cl15003 353861 -pfam12643 338434 cl16941 354290 -pfam12646 338435 pfam12646 338435 -pfam12650 338436 pfam12650 338436 -pfam12657 338437 pfam12657 338437 -pfam12660 338438 pfam12660 338438 -pfam12661 338439 pfam12661 338439 -pfam12662 338440 cl21504 354843 -pfam12667 338441 pfam12667 338441 -pfam12668 338442 pfam12668 338442 -pfam12674 338443 pfam12674 338443 -pfam12675 338444 pfam12675 338444 -pfam12680 338445 cl09109 352932 -pfam12685 338446 pfam12685 338446 -pfam12686 338447 pfam12686 338447 -pfam12690 338448 pfam12690 338448 -pfam12697 338449 pfam12697 338449 -pfam12698 338450 pfam12698 338450 -pfam12701 338451 cl00259 350988 -pfam12702 338452 pfam12702 338452 -pfam12704 338453 pfam12704 338453 -pfam12705 338454 cl00641 351191 -pfam12706 338455 cl23716 355014 -pfam12708 338456 cl29128 356004 -pfam12713 338457 pfam12713 338457 -pfam12715 338458 cl21494 354836 -pfam12717 338459 pfam12717 338459 -pfam12718 338460 pfam12718 338460 -pfam12719 338461 pfam12719 338461 -pfam12720 338462 pfam12720 338462 -pfam12724 338463 cl00438 351093 -pfam12725 338464 pfam12725 338464 -pfam12726 338465 pfam12726 338465 -pfam12727 338466 cl21456 354813 -pfam12728 338467 cl02600 351819 -pfam12732 338468 cl02079 351671 -pfam12734 338469 pfam12734 338469 -pfam12739 338470 pfam12739 338470 -pfam12740 338471 cl21494 354836 -pfam12746 338472 cl17182 354318 -pfam12751 338473 pfam12751 338473 -pfam12752 338474 pfam12752 338474 -pfam12756 338475 pfam12756 338475 -pfam12757 338476 pfam12757 338476 -pfam12760 338477 pfam12760 338477 -pfam12762 338478 cl01481 351520 -pfam12765 338479 pfam12765 338479 -pfam12766 338480 cl00381 351064 -pfam12767 338481 pfam12767 338481 -pfam12768 338482 pfam12768 338482 -pfam12769 338483 pfam12769 338483 -pfam12776 338484 cl23759 355036 -pfam12779 338485 pfam12779 338485 -pfam12781 338486 pfam12781 338486 -pfam12783 338487 pfam12783 338487 -pfam12790 338488 cl01405 351488 -pfam12792 338489 pfam12792 338489 -pfam12793 338490 pfam12793 338490 -pfam12794 338491 pfam12794 338491 -pfam12795 338492 pfam12795 338492 -pfam12796 338493 pfam12796 338493 -pfam12797 338494 pfam12797 338494 -pfam12798 338495 pfam12798 338495 -pfam12799 338496 pfam12799 338496 -pfam12801 338497 pfam12801 338497 -pfam12802 338498 cl29125 356001 -pfam12804 338499 cl11394 353239 -pfam12805 338500 cl26307 355500 -pfam12806 338501 pfam12806 338501 -pfam12807 338502 cl15102 353887 -pfam12812 338503 cl00117 350907 -pfam12816 338504 pfam12816 338504 -pfam12819 338505 pfam12819 338505 -pfam12821 338506 cl01118 351389 -pfam12822 338507 cl21488 354833 -pfam12823 338508 cl14844 353843 -pfam12828 338509 pfam12828 338509 -pfam12830 338510 pfam12830 338510 -pfam12833 338511 pfam12833 338511 -pfam12836 338512 cl22429 354935 -pfam12837 338513 pfam12837 338513 -pfam12838 338514 pfam12838 338514 -pfam12840 338515 cl21459 354815 -pfam12842 338516 pfam12842 338516 -pfam12843 338517 cl01411 351493 -pfam12844 338518 cl22854 354960 -pfam12847 338519 cl17173 354317 -pfam12848 338520 pfam12848 338520 -pfam12850 338521 cl13995 353799 -pfam12852 338522 cl21464 354820 -pfam12857 338523 cl01440 351505 -pfam12859 338524 pfam12859 338524 -pfam12860 338525 pfam12860 338525 -pfam12864 338526 pfam12864 338526 -pfam12867 338527 cl21506 354845 -pfam12868 338528 pfam12868 338528 -pfam12869 338529 pfam12869 338529 -pfam12872 338530 cl14879 353848 -pfam12874 338531 pfam12874 338531 -pfam12884 338532 pfam12884 338532 -pfam12885 338533 pfam12885 338533 -pfam12886 338534 pfam12886 338534 -pfam12888 338535 pfam12888 338535 -pfam12889 338536 pfam12889 338536 -pfam12892 338537 cl16948 354291 -pfam12893 338538 cl09109 352932 -pfam12895 338539 pfam12895 338539 -pfam12896 338540 pfam12896 338540 -pfam12898 338541 pfam12898 338541 -pfam12900 338542 cl00381 351064 -pfam12905 338543 cl21639 354897 -pfam12911 338544 pfam12911 338544 -pfam12912 338545 pfam12912 338545 -pfam12913 338546 pfam12913 338546 -pfam12914 338547 pfam12914 338547 -pfam12915 338548 pfam12915 338548 -pfam12918 338549 cl29124 356000 -pfam12919 338550 cl19952 354516 -pfam12920 338551 pfam12920 338551 -pfam12922 338552 pfam12922 338552 -pfam12923 338553 cl15166 353906 -pfam12925 338554 pfam12925 338554 -pfam12927 338555 pfam12927 338555 -pfam12928 338556 pfam12928 338556 -pfam12929 338557 pfam12929 338557 -pfam12930 338558 pfam12930 338558 -pfam12931 338559 cl14807 353838 -pfam12932 338560 pfam12932 338560 -pfam12937 338561 cl02535 351790 -pfam12945 338562 pfam12945 338562 -pfam12948 338563 pfam12948 338563 -pfam12949 338564 pfam12949 338564 -pfam12951 338565 cl15373 353935 -pfam12955 338566 pfam12955 338566 -pfam12969 338567 pfam12969 338567 -pfam12971 338568 pfam12971 338568 -pfam12972 338569 pfam12972 338569 -pfam12974 338570 pfam12974 338570 -pfam12975 338571 pfam12975 338571 -pfam12984 338572 pfam12984 338572 -pfam12988 338573 pfam12988 338573 -pfam12989 338574 pfam12989 338574 -pfam12990 338575 pfam12990 338575 -pfam12996 338576 pfam12996 338576 -pfam12998 338577 pfam12998 338577 -pfam13001 338578 pfam13001 338578 -pfam13004 338579 cl15232 353922 -pfam13005 338580 pfam13005 338580 -pfam13006 338581 pfam13006 338581 -pfam13007 338582 pfam13007 338582 -pfam13012 338583 pfam13012 338583 -pfam13018 338584 pfam13018 338584 -pfam13019 338585 cl28922 355798 -pfam13020 338586 pfam13020 338586 -pfam13023 338587 cl21469 354822 -pfam13024 338588 pfam13024 338588 -pfam13036 338589 cl21526 354853 -pfam13041 338590 pfam13041 338590 -pfam13083 338591 cl00098 350899 -pfam13085 338592 cl00159 350924 -pfam13086 338593 pfam13086 338593 -pfam13087 338594 pfam13087 338594 -pfam13089 338595 pfam13089 338595 -pfam13090 338596 pfam13090 338596 -pfam13092 338597 pfam13092 338597 -pfam13093 338598 pfam13093 338598 -pfam13095 338599 pfam13095 338599 -pfam13102 338600 cl29123 355999 -pfam13103 338601 cl10048 353052 -pfam13116 338602 pfam13116 338602 -pfam13127 338603 pfam13127 338603 -pfam13144 338604 cl00555 351151 -pfam13145 338605 cl29122 355998 -pfam13148 338606 pfam13148 338606 -pfam13149 338607 pfam13149 338607 -pfam13151 338608 pfam13151 338608 -pfam13155 338609 cl00718 351226 -pfam13163 338610 pfam13163 338610 -pfam13165 338611 cl26253 355498 -pfam13166 338612 pfam13166 338612 -pfam13167 338613 pfam13167 338613 -pfam13174 338614 pfam13174 338614 -pfam13175 338615 pfam13175 338615 -pfam13176 338616 cl22897 354972 -pfam13177 338617 pfam13177 338617 -pfam13179 338618 pfam13179 338618 -pfam13181 338619 pfam13181 338619 -pfam13182 338620 pfam13182 338620 -pfam13185 338621 cl21515 354848 -pfam13186 338622 cl14869 353846 -pfam13188 338623 cl21578 354879 -pfam13189 338624 cl17190 354320 -pfam13191 338625 pfam13191 338625 -pfam13192 338626 cl00388 351069 -pfam13193 338627 cl17068 354307 -pfam13194 338628 pfam13194 338628 -pfam13198 338629 pfam13198 338629 -pfam13201 338630 pfam13201 338630 -pfam13202 338631 pfam13202 338631 -pfam13205 338632 cl01012 351349 -pfam13207 338633 cl21455 354812 -pfam13211 338634 pfam13211 338634 -pfam13218 338635 pfam13218 338635 -pfam13223 338636 pfam13223 338636 -pfam13226 338637 pfam13226 338637 -pfam13231 338638 cl21590 354882 -pfam13233 338639 cl05087 352314 -pfam13234 338640 cl00354 351050 -pfam13237 338641 pfam13237 338641 -pfam13239 338642 pfam13239 338642 -pfam13241 338643 cl21454 354811 -pfam13242 338644 cl21460 354816 -pfam13244 338645 cl00676 351209 -pfam13246 338646 pfam13246 338646 -pfam13247 338647 cl19102 354379 -pfam13250 338648 pfam13250 338648 -pfam13251 338649 pfam13251 338649 -pfam13252 338650 cl22542 354946 -pfam13253 338651 pfam13253 338651 -pfam13254 338652 pfam13254 338652 -pfam13259 338653 pfam13259 338653 -pfam13264 338654 pfam13264 338654 -pfam13265 338655 pfam13265 338655 -pfam13268 338656 pfam13268 338656 -pfam13271 338657 pfam13271 338657 -pfam13273 338658 pfam13273 338658 -pfam13274 338659 cl01445 351506 -pfam13275 338660 cl09940 353034 -pfam13276 338661 pfam13276 338661 -pfam13277 338662 cl13995 353799 -pfam13280 338663 cl14852 353844 -pfam13281 338664 pfam13281 338664 -pfam13282 338665 pfam13282 338665 -pfam13284 338666 pfam13284 338666 -pfam13286 338667 pfam13286 338667 -pfam13288 338668 pfam13288 338668 -pfam13291 338669 cl29106 355982 -pfam13292 338670 cl01629 351571 -pfam13296 338671 pfam13296 338671 -pfam13299 338672 pfam13299 338672 -pfam13305 338673 pfam13305 338673 -pfam13307 338674 cl28899 355775 -pfam13309 338675 cl21459 354815 -pfam13310 338676 cl19850 354483 -pfam13313 338677 pfam13313 338677 -pfam13320 338678 pfam13320 338678 -pfam13326 338679 cl11841 353316 -pfam13331 338680 pfam13331 338680 -pfam13332 338681 pfam13332 338681 -pfam13333 338682 cl22978 354992 -pfam13334 338683 pfam13334 338683 -pfam13335 338684 pfam13335 338684 -pfam13336 338685 cl00339 351040 -pfam13337 338686 cl11979 353333 -pfam13339 338687 pfam13339 338687 -pfam13340 338688 cl26213 355496 -pfam13342 338689 pfam13342 338689 -pfam13343 338690 cl21456 354813 -pfam13344 338691 cl21460 354816 -pfam13349 338692 cl23960 355107 -pfam13350 338693 cl28904 355780 -pfam13351 338694 pfam13351 338694 -pfam13353 338695 pfam13353 338695 -pfam13354 338696 cl21491 354834 -pfam13356 338697 pfam13356 338697 -pfam13359 338698 cl21562 354873 -pfam13360 338699 pfam13360 338699 -pfam13363 338700 pfam13363 338700 -pfam13365 338701 cl21584 354881 -pfam13366 338702 cl16254 354043 -pfam13368 338703 pfam13368 338703 -pfam13369 338704 cl26199 355495 -pfam13370 338705 cl19102 354379 -pfam13371 338706 pfam13371 338706 -pfam13375 338707 pfam13375 338707 -pfam13376 338708 pfam13376 338708 -pfam13378 338709 pfam13378 338709 -pfam13379 338710 cl21456 354813 -pfam13380 338711 cl21454 354811 -pfam13382 338712 pfam13382 338712 -pfam13384 338713 cl21459 354815 -pfam13385 338714 cl22861 354964 -pfam13386 338715 cl21514 354847 -pfam13387 338716 pfam13387 338716 -pfam13391 338717 cl00083 350893 -pfam13393 338718 cl00268 350993 -pfam13395 338719 cl00083 350893 -pfam13396 338720 pfam13396 338720 -pfam13402 338721 pfam13402 338721 -pfam13404 338722 cl21459 354815 -pfam13405 338723 pfam13405 338723 -pfam13409 338724 cl00388 351069 -pfam13410 338725 cl02776 351885 -pfam13411 338726 cl02600 351819 -pfam13412 338727 cl21459 354815 -pfam13413 338728 cl22854 354960 -pfam13415 338729 cl02701 351859 -pfam13416 338730 cl21456 354813 -pfam13417 338731 cl00388 351069 -pfam13418 338732 cl02701 351859 -pfam13426 338733 pfam13426 338733 -pfam13427 338734 pfam13427 338734 -pfam13428 338735 pfam13428 338735 -pfam13430 338736 pfam13430 338736 -pfam13431 338737 pfam13431 338737 -pfam13432 338738 pfam13432 338738 -pfam13434 338739 pfam13434 338739 -pfam13435 338740 cl29116 355992 -pfam13437 338741 cl11404 353245 -pfam13438 338742 pfam13438 338742 -pfam13439 338743 cl10013 353042 -pfam13441 338744 cl10470 353077 -pfam13442 338745 cl21467 354821 -pfam13444 338746 cl17185 354319 -pfam13445 338747 cl17238 354325 -pfam13448 338748 pfam13448 338748 -pfam13449 338749 pfam13449 338749 -pfam13451 338750 pfam13451 338750 -pfam13452 338751 cl00509 351126 -pfam13453 338752 cl01565 351556 -pfam13454 338753 cl21454 354811 -pfam13455 338754 cl15257 353929 -pfam13456 338755 cl14782 353835 -pfam13458 338756 cl10011 353040 -pfam13460 338757 cl21454 354811 -pfam13464 338758 pfam13464 338758 -pfam13465 338759 pfam13465 338759 -pfam13467 338760 cl01775 351596 -pfam13468 338761 cl14632 353816 -pfam13469 338762 cl21551 354866 -pfam13470 338763 cl28905 355781 -pfam13472 338764 cl01053 351360 -pfam13474 338765 cl09109 352932 -pfam13476 338766 cl25403 355390 -pfam13478 338767 cl21454 354811 -pfam13484 338768 cl19102 354379 -pfam13487 338769 cl21469 354822 -pfam13488 338770 cl10470 353077 -pfam13489 338771 cl17173 354317 -pfam13490 338772 cl15806 353980 -pfam13491 338773 pfam13491 338773 -pfam13492 338774 cl21515 354848 -pfam13493 338775 pfam13493 338775 -pfam13495 338776 cl12235 353373 -pfam13497 338777 pfam13497 338777 -pfam13499 338778 pfam13499 338778 -pfam13501 338779 cl00014 350861 -pfam13502 338780 cl21636 354896 -pfam13503 338781 pfam13503 338781 -pfam13505 338782 cl21487 354832 -pfam13506 338783 cl11394 353239 -pfam13507 338784 cl00020 350865 -pfam13508 338785 cl17182 354318 -pfam13511 338786 pfam13511 338786 -pfam13512 338787 cl29114 355990 -pfam13513 338788 cl22454 354942 -pfam13514 338789 pfam13514 338789 -pfam13515 338790 cl19401 354417 -pfam13516 338791 cl29113 355989 -pfam13517 338792 pfam13517 338792 -pfam13518 338793 cl21459 354815 -pfam13519 338794 cl00057 350880 -pfam13523 338795 cl26156 355492 -pfam13524 338796 cl10013 353042 -pfam13525 338797 pfam13525 338797 -pfam13531 338798 pfam13531 338798 -pfam13532 338799 cl21496 354838 -pfam13533 338800 cl11404 353245 -pfam13534 338801 cl19102 354379 -pfam13536 338802 pfam13536 338802 -pfam13537 338803 cl00319 351023 -pfam13538 338804 pfam13538 338804 -pfam13539 338805 cl00813 351267 -pfam13540 338806 pfam13540 338806 -pfam13541 338807 cl21678 354903 -pfam13542 338808 pfam13542 338808 -pfam13545 338809 cl21459 354815 -pfam13546 338810 cl17874 354346 -pfam13548 338811 pfam13548 338811 -pfam13549 338812 cl17255 354326 -pfam13550 338813 pfam13550 338813 -pfam13551 338814 cl21459 354815 -pfam13552 338815 pfam13552 338815 -pfam13555 338816 pfam13555 338816 -pfam13557 338817 cl01768 351592 -pfam13558 338818 cl21455 354812 -pfam13561 338819 cl21454 354811 -pfam13563 338820 cl29111 355987 -pfam13565 338821 cl21459 354815 -pfam13566 338822 cl14836 353842 -pfam13567 338823 pfam13567 338823 -pfam13568 338824 cl21487 354832 -pfam13569 338825 pfam13569 338825 -pfam13570 338826 cl11493 353278 -pfam13571 338827 pfam13571 338827 -pfam13572 338828 pfam13572 338828 -pfam13576 338829 cl21642 354898 -pfam13578 338830 cl17173 354317 -pfam13581 338831 cl00075 350890 -pfam13584 338832 pfam13584 338832 -pfam13588 338833 cl29110 355986 -pfam13590 338834 pfam13590 338834 -pfam13591 338835 cl27802 355681 -pfam13592 338836 pfam13592 338836 -pfam13593 338837 cl19217 354395 -pfam13596 338838 pfam13596 338838 -pfam13597 338839 pfam13597 338839 -pfam13598 338840 pfam13598 338840 -pfam13600 338841 pfam13600 338841 -pfam13602 338842 cl16912 354285 -pfam13603 338843 pfam13603 338843 -pfam13604 338844 pfam13604 338844 -pfam13605 338845 cl02193 351701 -pfam13606 338846 cl02529 351788 -pfam13607 338847 cl29107 355983 -pfam13609 338848 pfam13609 338848 -pfam13612 338849 cl21562 354873 -pfam13613 338850 pfam13613 338850 -pfam13617 338851 pfam13617 338851 -pfam13618 338852 pfam13618 338852 -pfam13619 338853 pfam13619 338853 -pfam13620 338854 cl21470 354823 -pfam13622 338855 pfam13622 338855 -pfam13623 338856 cl21568 354876 -pfam13624 338857 cl21568 354876 -pfam13627 338858 cl26118 355487 -pfam13629 338859 cl02708 351863 -pfam13630 338860 pfam13630 338860 -pfam13632 338861 cl11394 353239 -pfam13634 338862 pfam13634 338862 -pfam13636 338863 pfam13636 338863 -pfam13638 338864 cl28905 355781 -pfam13639 338865 cl17238 354325 -pfam13640 338866 cl21496 354838 -pfam13641 338867 pfam13641 338867 -pfam13643 338868 pfam13643 338868 -pfam13644 338869 pfam13644 338869 -pfam13646 338870 pfam13646 338870 -pfam13648 338871 pfam13648 338871 -pfam13649 338872 cl17173 354317 -pfam13650 338873 cl11403 353244 -pfam13652 338874 pfam13652 338874 -pfam13653 338875 pfam13653 338875 -pfam13654 338876 pfam13654 338876 -pfam13655 338877 pfam13655 338877 -pfam13656 338878 cl11409 353246 -pfam13657 338879 cl11853 353317 -pfam13660 338880 pfam13660 338880 -pfam13663 338881 pfam13663 338881 -pfam13664 338882 pfam13664 338882 -pfam13665 338883 cl21497 354839 -pfam13667 338884 pfam13667 338884 -pfam13668 338885 cl00264 350992 -pfam13669 338886 cl14632 353816 -pfam13671 338887 pfam13671 338887 -pfam13672 338888 cl00120 350908 -pfam13673 338889 pfam13673 338889 -pfam13675 338890 pfam13675 338890 -pfam13677 338891 pfam13677 338891 -pfam13680 338892 pfam13680 338892 -pfam13681 338893 pfam13681 338893 -pfam13682 338894 pfam13682 338894 -pfam13683 338895 cl22978 354992 -pfam13684 338896 cl19360 354413 -pfam13685 338897 cl02872 351912 -pfam13688 338898 cl00064 350885 -pfam13689 338899 pfam13689 338899 -pfam13690 338900 cl15816 353981 -pfam13691 338901 cl23716 355014 -pfam13692 338902 cl10013 353042 -pfam13693 338903 cl22854 354960 -pfam13695 338904 cl16352 354079 -pfam13696 338905 pfam13696 338905 -pfam13698 338906 pfam13698 338906 -pfam13700 338907 pfam13700 338907 -pfam13705 338908 pfam13705 338908 -pfam13707 338909 pfam13707 338909 -pfam13709 338910 pfam13709 338910 -pfam13710 338911 cl29106 355982 -pfam13711 338912 pfam13711 338912 -pfam13713 338913 pfam13713 338913 -pfam13715 338914 cl21470 354823 -pfam13716 338915 cl15787 353978 -pfam13720 338916 pfam13720 338916 -pfam13721 338917 cl08136 352851 -pfam13722 338918 pfam13722 338918 -pfam13723 338919 pfam13723 338919 -pfam13725 338920 pfam13725 338920 -pfam13728 338921 cl00388 351069 -pfam13729 338922 pfam13729 338922 -pfam13734 338923 pfam13734 338923 -pfam13739 338924 pfam13739 338924 -pfam13740 338925 cl29106 355982 -pfam13742 338926 cl09930 353029 -pfam13749 338927 pfam13749 338927 -pfam13751 338928 pfam13751 338928 -pfam13752 338929 pfam13752 338929 -pfam13755 338930 pfam13755 338930 -pfam13759 338931 cl21496 354838 -pfam13763 338932 pfam13763 338932 -pfam13765 338933 cl02686 351855 -pfam13767 338934 pfam13767 338934 -pfam13768 338935 cl00057 350880 -pfam13770 338936 pfam13770 338936 -pfam13771 338937 cl22851 354958 -pfam13773 338938 pfam13773 338938 -pfam13774 338939 pfam13774 338939 -pfam13776 338940 pfam13776 338940 -pfam13778 338941 pfam13778 338941 -pfam13779 338942 pfam13779 338942 -pfam13780 338943 cl01867 351623 -pfam13781 338944 pfam13781 338944 -pfam13784 338945 pfam13784 338945 -pfam13785 338946 pfam13785 338946 -pfam13787 338947 pfam13787 338947 -pfam13791 338948 pfam13791 338948 -pfam13793 338949 pfam13793 338949 -pfam13795 338950 cl01011 351348 -pfam13801 338951 cl01482 351521 -pfam13802 338952 cl16409 354105 -pfam13803 338953 cl16915 354286 -pfam13805 338954 pfam13805 338954 -pfam13807 338955 pfam13807 338955 -pfam13808 338956 pfam13808 338956 -pfam13810 338957 cl16414 354107 -pfam13816 338958 cl21745 354925 -pfam13817 338959 pfam13817 338959 -pfam13821 338960 pfam13821 338960 -pfam13827 338961 pfam13827 338961 -pfam13828 338962 cl19838 354475 -pfam13831 338963 cl22851 354958 -pfam13832 338964 cl22851 354958 -pfam13835 338965 pfam13835 338965 -pfam13837 338966 cl23759 355036 -pfam13839 338967 cl01053 351360 -pfam13840 338968 cl09141 352939 -pfam13850 338969 pfam13850 338969 -pfam13852 338970 pfam13852 338970 -pfam13854 338971 cl02701 351859 -pfam13855 338972 pfam13855 338972 -pfam13858 338973 pfam13858 338973 -pfam13860 338974 cl21544 354863 -pfam13861 338975 cl29105 355981 -pfam13862 338976 pfam13862 338976 -pfam13863 338977 pfam13863 338977 -pfam13864 338978 pfam13864 338978 -pfam13867 338979 pfam13867 338979 -pfam13868 338980 pfam13868 338980 -pfam13869 338981 cl00447 351096 -pfam13874 338982 pfam13874 338982 -pfam13875 338983 pfam13875 338983 -pfam13878 338984 pfam13878 338984 -pfam13879 338985 pfam13879 338985 -pfam13880 338986 cl17182 354318 -pfam13884 338987 pfam13884 338987 -pfam13886 338988 cl21474 354826 -pfam13889 338989 pfam13889 338989 -pfam13891 338990 pfam13891 338990 -pfam13892 338991 pfam13892 338991 -pfam13893 338992 cl17169 354314 -pfam13894 338993 pfam13894 338993 -pfam13896 338994 pfam13896 338994 -pfam13901 338995 pfam13901 338995 -pfam13905 338996 cl00388 351069 -pfam13906 338997 pfam13906 338997 -pfam13907 338998 pfam13907 338998 -pfam13912 338999 pfam13912 338999 -pfam13919 339000 pfam13919 339000 -pfam13920 339001 cl17238 354325 -pfam13921 339002 cl21498 354840 -pfam13924 339003 pfam13924 339003 -pfam13925 339004 pfam13925 339004 -pfam13927 339005 cl11960 353325 -pfam13932 339006 pfam13932 339006 -pfam13935 339007 pfam13935 339007 -pfam13936 339008 cl21459 354815 -pfam13937 339009 cl01781 351597 -pfam13938 339010 pfam13938 339010 -pfam13941 339011 cl29100 355976 -pfam13942 339012 cl08141 352852 -pfam13944 339013 pfam13944 339013 -pfam13946 339014 pfam13946 339014 -pfam13947 339015 pfam13947 339015 -pfam13949 339016 pfam13949 339016 -pfam13952 339017 pfam13952 339017 -pfam13953 339018 pfam13953 339018 -pfam13954 339019 pfam13954 339019 -pfam13955 339020 pfam13955 339020 -pfam13959 339021 pfam13959 339021 -pfam13960 339022 pfam13960 339022 -pfam13961 339023 pfam13961 339023 -pfam13962 339024 pfam13962 339024 -pfam13963 339025 pfam13963 339025 -pfam13965 339026 pfam13965 339026 -pfam13966 339027 pfam13966 339027 -pfam13968 339028 pfam13968 339028 -pfam13972 339029 pfam13972 339029 -pfam13974 339030 pfam13974 339030 -pfam13975 339031 cl11403 353244 -pfam13976 339032 pfam13976 339032 -pfam13977 339033 cl23808 355056 -pfam13980 339034 cl23933 355099 -pfam13984 339035 cl23928 355095 -pfam13986 339036 pfam13986 339036 -pfam13987 339037 cl23925 355092 -pfam13988 339038 pfam13988 339038 -pfam13989 339039 cl23929 355096 -pfam13991 339040 cl23930 355097 -pfam13993 339041 cl23921 355090 -pfam13994 339042 cl14676 353828 -pfam13995 339043 cl23934 355100 -pfam13996 339044 pfam13996 339044 -pfam13997 339045 pfam13997 339045 -pfam13998 339046 cl26058 355483 -pfam14002 339047 pfam14002 339047 -pfam14004 339048 pfam14004 339048 -pfam14008 339049 pfam14008 339049 -pfam14009 339050 pfam14009 339050 -pfam14010 339051 cl21521 354850 -pfam14014 339052 pfam14014 339052 -pfam14021 339053 pfam14021 339053 -pfam14022 339054 pfam14022 339054 -pfam14023 339055 pfam14023 339055 -pfam14026 339056 pfam14026 339056 -pfam14027 339057 pfam14027 339057 -pfam14031 339058 pfam14031 339058 -pfam14033 339059 pfam14033 339059 -pfam14036 339060 pfam14036 339060 -pfam14039 339061 pfam14039 339061 -pfam14046 339062 pfam14046 339062 -pfam14048 339063 pfam14048 339063 -pfam14051 339064 pfam14051 339064 -pfam14052 339065 pfam14052 339065 -pfam14053 339066 pfam14053 339066 -pfam14056 339067 pfam14056 339067 -pfam14059 339068 pfam14059 339068 -pfam14060 339069 pfam14060 339069 -pfam14061 339070 pfam14061 339070 -pfam14063 339071 pfam14063 339071 -pfam14064 339072 cl12009 353335 -pfam14066 339073 pfam14066 339073 -pfam14067 339074 pfam14067 339074 -pfam14069 339075 pfam14069 339075 -pfam14070 339076 pfam14070 339076 -pfam14072 339077 cl17621 354335 -pfam14075 339078 pfam14075 339078 -pfam14079 339079 pfam14079 339079 -pfam14081 339080 pfam14081 339080 -pfam14086 339081 pfam14086 339081 -pfam14087 339082 pfam14087 339082 -pfam14088 339083 pfam14088 339083 -pfam14090 339084 pfam14090 339084 -pfam14092 339085 pfam14092 339085 -pfam14093 339086 cl23809 355057 -pfam14096 339087 pfam14096 339087 -pfam14098 339088 cl07940 352840 -pfam14103 339089 pfam14103 339089 -pfam14104 339090 pfam14104 339090 -pfam14106 339091 pfam14106 339091 -pfam14109 339092 cl11905 353320 -pfam14110 339093 pfam14110 339093 -pfam14111 339094 pfam14111 339094 -pfam14113 339095 pfam14113 339095 -pfam14121 339096 pfam14121 339096 -pfam14123 339097 pfam14123 339097 -pfam14124 339098 pfam14124 339098 -pfam14126 339099 pfam14126 339099 -pfam14127 339100 pfam14127 339100 -pfam14128 339101 pfam14128 339101 -pfam14129 339102 pfam14129 339102 -pfam14132 339103 pfam14132 339103 -pfam14133 339104 pfam14133 339104 -pfam14134 339105 pfam14134 339105 -pfam14135 339106 pfam14135 339106 -pfam14136 339107 pfam14136 339107 -pfam14138 339108 pfam14138 339108 -pfam14141 339109 pfam14141 339109 -pfam14144 339110 pfam14144 339110 -pfam14150 339111 pfam14150 339111 -pfam14159 339112 cl19721 354449 -pfam14160 339113 pfam14160 339113 -pfam14161 339114 pfam14161 339114 -pfam14187 339115 cl11918 353322 -pfam14189 339116 cl11917 353321 -pfam14196 339117 pfam14196 339117 -pfam14204 339118 pfam14204 339118 -pfam14213 339119 pfam14213 339119 -pfam14214 339120 pfam14214 339120 -pfam14215 339121 pfam14215 339121 -pfam14222 339122 pfam14222 339122 -pfam14223 339123 pfam14223 339123 -pfam14224 339124 pfam14224 339124 -pfam14225 339125 pfam14225 339125 -pfam14226 339126 cl21672 354900 -pfam14231 339127 pfam14231 339127 -pfam14232 339128 pfam14232 339128 -pfam14235 339129 pfam14235 339129 -pfam14237 339130 pfam14237 339130 -pfam14239 339131 pfam14239 339131 -pfam14248 339132 pfam14248 339132 -pfam14252 339133 pfam14252 339133 -pfam14254 339134 pfam14254 339134 -pfam14255 339135 pfam14255 339135 -pfam14260 339136 pfam14260 339136 -pfam14262 339137 pfam14262 339137 -pfam14263 339138 pfam14263 339138 -pfam14271 339139 pfam14271 339139 -pfam14279 339140 pfam14279 339140 -pfam14280 339141 pfam14280 339141 -pfam14281 339142 pfam14281 339142 -pfam14283 339143 pfam14283 339143 -pfam14284 339144 pfam14284 339144 -pfam14288 339145 pfam14288 339145 -pfam14289 339146 pfam14289 339146 -pfam14291 339147 pfam14291 339147 -pfam14292 339148 pfam14292 339148 -pfam14293 339149 pfam14293 339149 -pfam14294 339150 pfam14294 339150 -pfam14297 339151 pfam14297 339151 -pfam14298 339152 pfam14298 339152 -pfam14299 339153 pfam14299 339153 -pfam14300 339154 pfam14300 339154 -pfam14301 339155 pfam14301 339155 -pfam14302 339156 pfam14302 339156 -pfam14303 339157 pfam14303 339157 -pfam14306 339158 pfam14306 339158 -pfam14307 339159 cl01529 351538 -pfam14308 339160 cl14778 353834 -pfam14309 339161 pfam14309 339161 -pfam14310 339162 pfam14310 339162 -pfam14311 339163 pfam14311 339163 -pfam14316 339164 pfam14316 339164 -pfam14317 339165 pfam14317 339165 -pfam14319 339166 pfam14319 339166 -pfam14321 339167 pfam14321 339167 -pfam14322 339168 cl21747 354926 -pfam14324 339169 pfam14324 339169 -pfam14326 339170 pfam14326 339170 -pfam14327 339171 pfam14327 339171 -pfam14328 339172 pfam14328 339172 -pfam14330 339173 pfam14330 339173 -pfam14331 339174 pfam14331 339174 -pfam14334 339175 pfam14334 339175 -pfam14335 339176 pfam14335 339176 -pfam14337 339177 pfam14337 339177 -pfam14338 339178 pfam14338 339178 -pfam14340 339179 pfam14340 339179 -pfam14341 339180 pfam14341 339180 -pfam14342 339181 pfam14342 339181 -pfam14343 339182 pfam14343 339182 -pfam14344 339183 cl21684 354907 -pfam14345 339184 cl02066 351667 -pfam14349 339185 pfam14349 339185 -pfam14351 339186 pfam14351 339186 -pfam14354 339187 cl08047 352844 -pfam14355 339188 pfam14355 339188 -pfam14357 339189 pfam14357 339189 -pfam14358 339190 cl23723 355020 -pfam14359 339191 cl23749 355033 -pfam14360 339192 cl00474 351108 -pfam14361 339193 pfam14361 339193 -pfam14363 339194 pfam14363 339194 -pfam14364 339195 pfam14364 339195 -pfam14365 339196 pfam14365 339196 -pfam14368 339197 cl07890 352835 -pfam14369 339198 pfam14369 339198 -pfam14372 339199 pfam14372 339199 -pfam14374 339200 pfam14374 339200 -pfam14375 339201 pfam14375 339201 -pfam14376 339202 cl23858 355075 -pfam14377 339203 pfam14377 339203 -pfam14379 339204 pfam14379 339204 -pfam14380 339205 pfam14380 339205 -pfam14381 339206 pfam14381 339206 -pfam14382 339207 pfam14382 339207 -pfam14384 339208 cl23863 355079 -pfam14385 339209 pfam14385 339209 -pfam14388 339210 pfam14388 339210 -pfam14389 339211 pfam14389 339211 -pfam14391 339212 pfam14391 339212 -pfam14392 339213 pfam14392 339213 -pfam14393 339214 pfam14393 339214 -pfam14399 339215 cl00296 351007 -pfam14401 339216 pfam14401 339216 -pfam14402 339217 pfam14402 339217 -pfam14403 339218 cl17448 354330 -pfam14412 339219 pfam14412 339219 -pfam14416 339220 pfam14416 339220 -pfam14417 339221 cl25403 355390 -pfam14420 339222 pfam14420 339222 -pfam14426 339223 pfam14426 339223 -pfam14429 339224 cl14603 353812 -pfam14436 339225 pfam14436 339225 -pfam14438 339226 cl00259 350988 -pfam14441 339227 pfam14441 339227 -pfam14443 339228 pfam14443 339228 -pfam14444 339229 pfam14444 339229 -pfam14449 339230 pfam14449 339230 -pfam14450 339231 pfam14450 339231 -pfam14452 339232 pfam14452 339232 -pfam14462 339233 pfam14462 339233 -pfam14467 339234 pfam14467 339234 -pfam14471 339235 pfam14471 339235 -pfam14474 339236 pfam14474 339236 -pfam14478 339237 pfam14478 339237 -pfam14479 339238 pfam14479 339238 -pfam14480 339239 pfam14480 339239 -pfam14488 339240 cl29077 355953 -pfam14490 339241 pfam14490 339241 -pfam14491 339242 pfam14491 339242 -pfam14492 339243 cl20541 354640 -pfam14493 339244 pfam14493 339244 -pfam14496 339245 pfam14496 339245 -pfam14497 339246 cl02776 351885 -pfam14500 339247 pfam14500 339247 -pfam14501 339248 cl00075 350890 -pfam14505 339249 pfam14505 339249 -pfam14507 339250 pfam14507 339250 -pfam14508 339251 pfam14508 339251 -pfam14509 339252 pfam14509 339252 -pfam14510 339253 pfam14510 339253 -pfam14515 339254 pfam14515 339254 -pfam14518 339255 cl15243 353926 -pfam14520 339256 cl22429 354935 -pfam14523 339257 cl29093 355969 -pfam14524 339258 cl15685 353968 -pfam14525 339259 cl21464 354820 -pfam14528 339260 cl08299 352872 -pfam14529 339261 cl00490 351117 -pfam14531 339262 pfam14531 339262 -pfam14533 339263 pfam14533 339263 -pfam14534 339264 cl09109 352932 -pfam14535 339265 cl17068 354307 -pfam14538 339266 pfam14538 339266 -pfam14539 339267 cl00509 351126 -pfam14541 339268 pfam14541 339268 -pfam14542 339269 cl17182 354318 -pfam14543 339270 cl11403 353244 -pfam14545 339271 pfam14545 339271 -pfam14547 339272 cl07890 352835 -pfam14551 339273 pfam14551 339273 -pfam14552 339274 cl00235 350973 -pfam14555 339275 cl21463 354819 -pfam14558 339276 cl00274 350996 -pfam14559 339277 pfam14559 339277 -pfam14560 339278 cl28922 355798 -pfam14561 339279 cl29092 355968 -pfam14566 339280 pfam14566 339280 -pfam14567 339281 cl01747 351585 -pfam14570 339282 cl17238 354325 -pfam14571 339283 pfam14571 339283 -pfam14574 339284 pfam14574 339284 -pfam14575 339285 cl25995 355476 -pfam14578 339286 cl02787 351893 -pfam14579 339287 cl22429 354935 -pfam14580 339288 pfam14580 339288 -pfam14581 339289 pfam14581 339289 -pfam14591 339290 pfam14591 339290 -pfam14599 339291 pfam14599 339291 -pfam14607 339292 pfam14607 339292 -pfam14610 339293 pfam14610 339293 -pfam14611 339294 pfam14611 339294 -pfam14613 339295 pfam14613 339295 -pfam14618 339296 pfam14618 339296 -pfam14619 339297 pfam14619 339297 -pfam14623 339298 cl22434 354937 -pfam14624 339299 pfam14624 339299 -pfam14625 339300 pfam14625 339300 -pfam14629 339301 pfam14629 339301 -pfam14630 339302 pfam14630 339302 -pfam14633 339303 pfam14633 339303 -pfam14634 339304 cl17238 354325 -pfam14636 339305 pfam14636 339305 -pfam14646 339306 pfam14646 339306 -pfam14647 339307 pfam14647 339307 -pfam14649 339308 pfam14649 339308 -pfam14656 339309 pfam14656 339309 -pfam14657 339310 pfam14657 339310 -pfam14660 339311 pfam14660 339311 -pfam14663 339312 pfam14663 339312 -pfam14664 339313 pfam14664 339313 -pfam14667 339314 pfam14667 339314 -pfam14670 339315 cl21504 354843 -pfam14671 339316 pfam14671 339316 -pfam14674 339317 pfam14674 339317 -pfam14675 339318 pfam14675 339318 -pfam14676 339319 pfam14676 339319 -pfam14677 339320 pfam14677 339320 -pfam14678 339321 pfam14678 339321 -pfam14679 339322 pfam14679 339322 -pfam14680 339323 pfam14680 339323 -pfam14683 339324 cl15687 353969 -pfam14684 339325 pfam14684 339325 -pfam14685 339326 cl00117 350907 -pfam14686 339327 cl21470 354823 -pfam14688 339328 pfam14688 339328 -pfam14690 339329 pfam14690 339329 -pfam14691 339330 cl19102 354379 -pfam14693 339331 pfam14693 339331 -pfam14697 339332 pfam14697 339332 -pfam14698 339333 cl00013 350860 -pfam14699 339334 pfam14699 339334 -pfam14700 339335 pfam14700 339335 -pfam14701 339336 cl29077 355953 -pfam14702 339337 pfam14702 339337 -pfam14705 339338 pfam14705 339338 -pfam14710 339339 pfam14710 339339 -pfam14711 339340 pfam14711 339340 -pfam14712 339341 pfam14712 339341 -pfam14713 339342 pfam14713 339342 -pfam14714 339343 pfam14714 339343 -pfam14715 339344 pfam14715 339344 -pfam14716 339345 pfam14716 339345 -pfam14718 339346 pfam14718 339346 -pfam14720 339347 pfam14720 339347 -pfam14721 339348 pfam14721 339348 -pfam14726 339349 pfam14726 339349 -pfam14727 339350 pfam14727 339350 -pfam14730 339351 cl17095 354310 -pfam14732 339352 pfam14732 339352 -pfam14737 339353 pfam14737 339353 -pfam14738 339354 pfam14738 339354 -pfam14740 339355 pfam14740 339355 -pfam14742 339356 pfam14742 339356 -pfam14743 339357 cl08424 352894 -pfam14744 339358 pfam14744 339358 -pfam14745 339359 pfam14745 339359 -pfam14746 339360 pfam14746 339360 -pfam14748 339361 cl29090 355966 -pfam14749 339362 cl09932 353030 -pfam14752 339363 pfam14752 339363 -pfam14759 339364 pfam14759 339364 -pfam14760 339365 pfam14760 339365 -pfam14764 339366 pfam14764 339366 -pfam14768 339367 pfam14768 339367 -pfam14769 339368 pfam14769 339368 -pfam14773 339369 pfam14773 339369 -pfam14775 339370 pfam14775 339370 -pfam14781 339371 pfam14781 339371 -pfam14782 339372 pfam14782 339372 -pfam14783 339373 cl24051 355136 -pfam14787 339374 pfam14787 339374 -pfam14789 339375 pfam14789 339375 -pfam14790 339376 pfam14790 339376 -pfam14791 339377 pfam14791 339377 -pfam14792 339378 cl11966 353329 -pfam14793 339379 pfam14793 339379 -pfam14794 339380 pfam14794 339380 -pfam14796 339381 pfam14796 339381 -pfam14802 339382 pfam14802 339382 -pfam14803 339383 cl24033 355129 -pfam14804 339384 pfam14804 339384 -pfam14805 339385 pfam14805 339385 -pfam14812 339386 pfam14812 339386 -pfam14813 339387 pfam14813 339387 -pfam14814 339388 pfam14814 339388 -pfam14815 339389 cl00447 351096 -pfam14819 339390 cl00263 350991 -pfam14821 339391 pfam14821 339391 -pfam14823 339392 pfam14823 339392 -pfam14825 339393 pfam14825 339393 -pfam14826 339394 pfam14826 339394 -pfam14827 339395 pfam14827 339395 -pfam14828 339396 pfam14828 339396 -pfam14831 339397 pfam14831 339397 -pfam14833 339398 cl29088 355964 -pfam14837 339399 pfam14837 339399 -pfam14838 339400 pfam14838 339400 -pfam14841 339401 cl23799 355053 -pfam14842 339402 cl23799 355053 -pfam14845 339403 cl03741 352043 -pfam14849 339404 cl24006 355120 -pfam14850 339405 pfam14850 339405 -pfam14852 339406 pfam14852 339406 -pfam14856 339407 pfam14856 339407 -pfam14863 339408 pfam14863 339408 -pfam14868 339409 pfam14868 339409 -pfam14873 339410 pfam14873 339410 -pfam14878 339411 pfam14878 339411 -pfam14883 339412 pfam14883 339412 -pfam14886 339413 pfam14886 339413 -pfam14890 339414 pfam14890 339414 -pfam14898 339415 pfam14898 339415 -pfam14899 339416 pfam14899 339416 -pfam14900 339417 pfam14900 339417 -pfam14901 339418 pfam14901 339418 -pfam14902 339419 pfam14902 339419 -pfam14903 339420 pfam14903 339420 -pfam14905 339421 cl21487 354832 -pfam14907 339422 cl11966 353329 -pfam14909 339423 pfam14909 339423 -pfam14911 339424 pfam14911 339424 -pfam14912 339425 pfam14912 339425 -pfam14913 339426 pfam14913 339426 -pfam14924 339427 pfam14924 339427 -pfam14931 339428 cl20817 354737 -pfam14934 339429 pfam14934 339429 -pfam14935 339430 pfam14935 339430 -pfam14947 339431 cl21459 354815 -pfam14949 339432 pfam14949 339432 -pfam14952 339433 pfam14952 339433 -pfam14953 339434 pfam14953 339434 -pfam14956 339435 pfam14956 339435 -pfam14960 339436 pfam14960 339436 -pfam14964 339437 pfam14964 339437 -pfam14968 339438 pfam14968 339438 -pfam14974 339439 pfam14974 339439 -pfam15005 339440 pfam15005 339440 -pfam15008 339441 pfam15008 339441 -pfam15011 339442 pfam15011 339442 -pfam15012 339443 pfam15012 339443 -pfam15013 339444 pfam15013 339444 -pfam15018 339445 pfam15018 339445 -pfam15035 339446 pfam15035 339446 -pfam15045 339447 pfam15045 339447 -pfam15054 339448 pfam15054 339448 -pfam15072 339449 pfam15072 339449 -pfam15074 339450 pfam15074 339450 -pfam15084 339451 pfam15084 339451 -pfam15114 339452 pfam15114 339452 -pfam15120 339453 pfam15120 339453 -pfam15228 339454 pfam15228 339454 -pfam15243 339455 pfam15243 339455 -pfam15247 339456 pfam15247 339456 -pfam15249 339457 pfam15249 339457 -pfam15277 339458 cl17171 354315 -pfam15283 339459 cl25912 355462 -pfam15300 339460 pfam15300 339460 -pfam15307 339461 pfam15307 339461 -pfam15335 339462 pfam15335 339462 -pfam15341 339463 pfam15341 339463 -pfam15346 339464 pfam15346 339464 -pfam15359 339465 pfam15359 339465 -pfam15361 339466 pfam15361 339466 -pfam15365 339467 pfam15365 339467 -pfam15377 339468 pfam15377 339468 -pfam15383 339469 pfam15383 339469 -pfam15390 339470 pfam15390 339470 -pfam15393 339471 pfam15393 339471 -pfam15406 339472 cl17171 354315 -pfam15411 339473 cl17171 354315 -pfam15412 339474 pfam15412 339474 -pfam15418 339475 pfam15418 339475 -pfam15420 339476 pfam15420 339476 -pfam15425 339477 pfam15425 339477 -pfam15428 339478 pfam15428 339478 -pfam15432 339479 cl14014 353802 -pfam15436 339480 pfam15436 339480 -pfam15456 339481 pfam15456 339481 -pfam15460 339482 pfam15460 339482 -pfam15461 339483 cl14026 353804 -pfam15463 339484 pfam15463 339484 -pfam15469 339485 cl19297 354407 -pfam15474 339486 pfam15474 339486 -pfam15477 339487 pfam15477 339487 -pfam15491 339488 cl24054 355137 -pfam15493 339489 cl03371 351983 -pfam15495 339490 pfam15495 339490 -pfam15501 339491 pfam15501 339491 -pfam15507 339492 cl22765 354955 -pfam15508 339493 pfam15508 339493 -pfam15513 339494 pfam15513 339494 -pfam15538 339495 pfam15538 339495 -pfam15562 339496 pfam15562 339496 -pfam15572 339497 pfam15572 339497 -pfam15577 339498 pfam15577 339498 -pfam15579 339499 pfam15579 339499 -pfam15593 339500 pfam15593 339500 -pfam15594 339501 pfam15594 339501 -pfam15597 339502 pfam15597 339502 -pfam15602 339503 pfam15602 339503 -pfam15609 339504 cl00309 351014 -pfam15611 339505 pfam15611 339505 -pfam15612 339506 pfam15612 339506 -pfam15616 339507 pfam15616 339507 -pfam15619 339508 pfam15619 339508 -pfam15625 339509 pfam15625 339509 -pfam15627 339510 pfam15627 339510 -pfam15628 339511 pfam15628 339511 -pfam15629 339512 pfam15629 339512 -pfam15632 339513 pfam15632 339513 -pfam15635 339514 pfam15635 339514 -pfam15636 339515 pfam15636 339515 -pfam15645 339516 cl27796 355680 -pfam15648 339517 pfam15648 339517 -pfam15659 339518 pfam15659 339518 -pfam15679 339519 pfam15679 339519 -pfam15692 339520 pfam15692 339520 -pfam15693 339521 pfam15693 339521 -pfam15711 339522 cl19122 354384 -pfam15712 339523 pfam15712 339523 -pfam15714 339524 cl21515 354848 -pfam15717 339525 pfam15717 339525 -pfam15723 339526 cl18942 354369 -pfam15733 339527 pfam15733 339527 -pfam15739 339528 pfam15739 339528 -pfam15749 339529 pfam15749 339529 -pfam15780 339530 cl13764 353729 -pfam15786 339531 pfam15786 339531 -pfam15787 339532 pfam15787 339532 -pfam15795 339533 pfam15795 339533 -pfam15801 339534 cl20224 354545 -pfam15821 339535 pfam15821 339535 -pfam15864 339536 pfam15864 339536 -pfam15865 339537 pfam15865 339537 -pfam15868 339538 pfam15868 339538 -pfam15879 339539 pfam15879 339539 -pfam15886 339540 pfam15886 339540 -pfam15887 339541 pfam15887 339541 -pfam15889 339542 pfam15889 339542 -pfam15890 339543 cl22837 354957 -pfam15898 339544 pfam15898 339544 -pfam15901 339545 pfam15901 339545 -pfam15902 339546 pfam15902 339546 -pfam15911 339547 pfam15911 339547 -pfam15916 339548 pfam15916 339548 -pfam15924 339549 pfam15924 339549 -pfam15927 339550 pfam15927 339550 -pfam15936 339551 pfam15936 339551 -pfam15941 339552 pfam15941 339552 -pfam15943 339553 cl22854 354960 -pfam15944 339554 pfam15944 339554 -pfam15949 339555 pfam15949 339555 -pfam15950 339556 pfam15950 339556 -pfam15959 339557 pfam15959 339557 -pfam15963 339558 cl21498 354840 -pfam15975 339559 pfam15975 339559 -pfam15976 339560 pfam15976 339560 -pfam15979 339561 pfam15979 339561 -pfam15980 339562 cl25771 355446 -pfam15985 339563 cl00098 350899 -pfam15993 339564 pfam15993 339564 -pfam15996 339565 pfam15996 339565 -pfam15997 339566 pfam15997 339566 -pfam15998 339567 pfam15998 339567 -pfam15999 339568 pfam15999 339568 -pfam16004 339569 pfam16004 339569 -pfam16009 339570 cl05127 352320 -pfam16010 339571 cl14783 353836 -pfam16011 339572 cl14783 353836 -pfam16013 339573 pfam16013 339573 -pfam16015 339574 pfam16015 339574 -pfam16016 339575 pfam16016 339575 -pfam16019 339576 pfam16019 339576 -pfam16020 339577 pfam16020 339577 -pfam16021 339578 pfam16021 339578 -pfam16022 339579 pfam16022 339579 -pfam16026 339580 pfam16026 339580 -pfam16028 339581 pfam16028 339581 -pfam16030 339582 pfam16030 339582 -pfam16031 339583 pfam16031 339583 -pfam16033 339584 pfam16033 339584 -pfam16036 339585 cl03589 352024 -pfam16040 339586 pfam16040 339586 -pfam16041 339587 pfam16041 339587 -pfam16044 339588 pfam16044 339588 -pfam16053 339589 pfam16053 339589 -pfam16061 339590 pfam16061 339590 -pfam16063 339591 pfam16063 339591 -pfam16065 339592 pfam16065 339592 -pfam16066 339593 pfam16066 339593 -pfam16070 339594 pfam16070 339594 -pfam16071 339595 pfam16071 339595 -pfam16073 339596 cl08282 352868 -pfam16074 339597 pfam16074 339597 -pfam16077 339598 cl29083 355959 -pfam16078 339599 pfam16078 339599 -pfam16082 339600 cl04868 352271 -pfam16083 339601 cl24062 355139 -pfam16086 339602 pfam16086 339602 -pfam16088 339603 pfam16088 339603 -pfam16089 339604 pfam16089 339604 -pfam16090 339605 pfam16090 339605 -pfam16092 339606 pfam16092 339606 -pfam16093 339607 pfam16093 339607 -pfam16099 339608 pfam16099 339608 -pfam16100 339609 pfam16100 339609 -pfam16105 339610 pfam16105 339610 -pfam16108 339611 pfam16108 339611 -pfam16109 339612 cl19519 354434 -pfam16113 339613 cl23717 355015 -pfam16115 339614 pfam16115 339614 -pfam16116 339615 pfam16116 339615 -pfam16118 339616 pfam16118 339616 -pfam16120 339617 pfam16120 339617 -pfam16121 339618 pfam16121 339618 -pfam16123 339619 pfam16123 339619 -pfam16124 339620 pfam16124 339620 -pfam16125 339621 pfam16125 339621 -pfam16126 339622 cl02948 351923 -pfam16128 339623 pfam16128 339623 -pfam16130 339624 cl22817 354956 -pfam16131 339625 pfam16131 339625 -pfam16134 339626 pfam16134 339626 -pfam16135 339627 pfam16135 339627 -pfam16137 339628 pfam16137 339628 -pfam16138 339629 pfam16138 339629 -pfam16139 339630 pfam16139 339630 -pfam16140 339631 cl22417 354933 -pfam16141 339632 cl10447 353071 -pfam16149 339633 pfam16149 339633 -pfam16150 339634 pfam16150 339634 -pfam16153 339635 pfam16153 339635 -pfam16155 339636 pfam16155 339636 -pfam16157 339637 pfam16157 339637 -pfam16158 339638 cl22423 354934 -pfam16169 339639 pfam16169 339639 -pfam16172 339640 pfam16172 339640 -pfam16173 339641 pfam16173 339641 -pfam16177 339642 pfam16177 339642 -pfam16178 339643 pfam16178 339643 -pfam16179 339644 cl15674 353966 -pfam16184 339645 pfam16184 339645 -pfam16185 339646 pfam16185 339646 -pfam16186 339647 pfam16186 339647 -pfam16187 339648 pfam16187 339648 -pfam16188 339649 pfam16188 339649 -pfam16189 339650 cl23800 355054 -pfam16190 339651 pfam16190 339651 -pfam16191 339652 pfam16191 339652 -pfam16192 339653 pfam16192 339653 -pfam16193 339654 pfam16193 339654 -pfam16197 339655 pfam16197 339655 -pfam16198 339656 pfam16198 339656 -pfam16199 339657 pfam16199 339657 -pfam16200 339658 pfam16200 339658 -pfam16201 339659 pfam16201 339659 -pfam16205 339660 pfam16205 339660 -pfam16209 339661 pfam16209 339661 -pfam16212 339662 cl02929 351920 -pfam16213 339663 pfam16213 339663 -pfam16217 339664 pfam16217 339664 -pfam16220 339665 pfam16220 339665 -pfam16222 339666 pfam16222 339666 -pfam16227 339667 cl01053 351360 -pfam16236 339668 pfam16236 339668 -pfam16237 339669 pfam16237 339669 -pfam16238 339670 pfam16238 339670 -pfam16240 339671 pfam16240 339671 -pfam16249 339672 cl05686 352392 -pfam16256 339673 pfam16256 339673 -pfam16258 339674 cl25682 355437 -pfam16264 339675 pfam16264 339675 -pfam16269 339676 cl14728 353832 -pfam16270 339677 pfam16270 339677 -pfam16271 339678 pfam16271 339678 -pfam16273 339679 pfam16273 339679 -pfam16278 339680 pfam16278 339680 -pfam16282 339681 cl21498 354840 -pfam16300 339682 pfam16300 339682 -pfam16301 339683 pfam16301 339683 -pfam16305 339684 pfam16305 339684 -pfam16306 339685 pfam16306 339685 -pfam16309 339686 pfam16309 339686 -pfam16312 339687 pfam16312 339687 -pfam16313 339688 cl00064 350885 -pfam16315 339689 pfam16315 339689 -pfam16319 339690 pfam16319 339690 -pfam16320 339691 pfam16320 339691 -pfam16321 339692 pfam16321 339692 -pfam16324 339693 pfam16324 339693 -pfam16325 339694 pfam16325 339694 -pfam16326 339695 cl21462 354818 -pfam16327 339696 cl25673 355436 -pfam16330 339697 pfam16330 339697 -pfam16331 339698 pfam16331 339698 -pfam16332 339699 pfam16332 339699 -pfam16335 339700 pfam16335 339700 -pfam16344 339701 pfam16344 339701 -pfam16346 339702 cl29080 355956 -pfam16347 339703 cl20644 354678 -pfam16350 339704 pfam16350 339704 -pfam16351 339705 pfam16351 339705 -pfam16352 339706 pfam16352 339706 -pfam16353 339707 pfam16353 339707 -pfam16355 339708 pfam16355 339708 -pfam16358 339709 cl08147 352853 -pfam16359 339710 pfam16359 339710 -pfam16360 339711 pfam16360 339711 -pfam16361 339712 pfam16361 339712 -pfam16362 339713 cl25664 355434 -pfam16363 339714 pfam16363 339714 -pfam16364 339715 cl16982 354293 -pfam16370 339716 pfam16370 339716 -pfam16371 339717 cl21470 354823 -pfam16372 339718 pfam16372 339718 -pfam16373 339719 cl29077 355953 -pfam16378 339720 pfam16378 339720 -pfam16379 339721 pfam16379 339721 -pfam16380 339722 pfam16380 339722 -pfam16385 339723 cl20644 354678 -pfam16386 339724 pfam16386 339724 -pfam16387 339725 pfam16387 339725 -pfam16390 339726 pfam16390 339726 -pfam16392 339727 pfam16392 339727 -pfam16399 339728 pfam16399 339728 -pfam16403 339729 cl03620 352028 -pfam16411 339730 pfam16411 339730 -pfam16412 339731 cl04114 352112 -pfam16413 339732 pfam16413 339732 -pfam16414 339733 pfam16414 339733 -pfam16418 339734 pfam16418 339734 -pfam16420 339735 pfam16420 339735 -pfam16421 339736 cl22411 354931 -pfam16442 339737 pfam16442 339737 -pfam16448 339738 pfam16448 339738 -pfam16452 339739 cl10465 353074 -pfam16454 339740 pfam16454 339740 -pfam16457 339741 cl17171 354315 -pfam16459 339742 pfam16459 339742 -pfam16470 339743 pfam16470 339743 -pfam16473 339744 cl10012 353041 -pfam16479 339745 pfam16479 339745 -pfam16482 339746 pfam16482 339746 -pfam16486 339747 pfam16486 339747 -pfam16488 339748 pfam16488 339748 -pfam16489 339749 pfam16489 339749 -pfam16491 339750 pfam16491 339750 -pfam16492 339751 pfam16492 339751 -pfam16495 339752 pfam16495 339752 -pfam16499 339753 cl29077 355953 -pfam16501 339754 pfam16501 339754 -pfam16503 339755 cl25646 355430 -pfam16507 339756 pfam16507 339756 -pfam16508 339757 pfam16508 339757 -pfam16511 339758 pfam16511 339758 -pfam16512 339759 cl02610 351824 -pfam16514 339760 pfam16514 339760 -pfam16516 339761 cl15254 353927 -pfam16521 339762 pfam16521 339762 -pfam16522 339763 pfam16522 339763 -pfam16524 339764 pfam16524 339764 -pfam16526 339765 pfam16526 339765 -pfam16529 339766 pfam16529 339766 -pfam16531 339767 pfam16531 339767 -pfam16534 339768 cl16936 354289 -pfam16537 339769 pfam16537 339769 -pfam16538 339770 pfam16538 339770 -pfam16539 339771 pfam16539 339771 -pfam16541 339772 cl17157 354313 -pfam16544 339773 pfam16544 339773 -pfam16546 339774 pfam16546 339774 -pfam16550 339775 pfam16550 339775 -pfam16552 339776 cl29076 355952 -pfam16554 339777 pfam16554 339777 -pfam16561 339778 pfam16561 339778 -pfam16563 339779 pfam16563 339779 -pfam16573 339780 pfam16573 339780 -pfam16576 339781 pfam16576 339781 -pfam16582 339782 cl22435 354938 -pfam16585 339783 pfam16585 339783 -pfam16586 339784 pfam16586 339784 -pfam16592 339785 cl27783 355679 -pfam16595 339786 pfam16595 339786 -pfam16627 339787 pfam16627 339787 -pfam16640 339788 cl23771 355039 -pfam16641 339789 pfam16641 339789 -pfam16647 339790 cl02473 351769 -pfam16653 339791 pfam16653 339791 -pfam16657 339792 cl02706 351862 -pfam16658 339793 cl20541 354640 -pfam16677 339794 pfam16677 339794 -pfam16678 339795 pfam16678 339795 -pfam16679 339796 cl14631 353815 -pfam16680 339797 cl11960 353325 -pfam16694 339798 pfam16694 339798 -pfam16695 339799 pfam16695 339799 -pfam16698 339800 cl22413 354932 -pfam16699 339801 pfam16699 339801 -pfam16711 339802 pfam16711 339802 -pfam16712 339803 pfam16712 339803 -pfam16717 339804 pfam16717 339804 -pfam16719 339805 pfam16719 339805 -pfam16725 339806 pfam16725 339806 -pfam16730 339807 pfam16730 339807 -pfam16732 339808 cl29075 355951 -pfam16735 339809 pfam16735 339809 -pfam16738 339810 cl23798 355052 -pfam16739 339811 cl14633 353817 -pfam16753 339812 cl08212 352856 -pfam16757 339813 pfam16757 339813 -pfam16759 339814 cl00038 350871 -pfam16760 339815 cl23798 355052 -pfam16761 339816 pfam16761 339816 -pfam16764 339817 cl17171 354315 -pfam16770 339818 cl00038 350871 -pfam16776 339819 cl17171 354315 -pfam16794 339820 cl21522 354851 -pfam16797 339821 cl17070 354308 -pfam16808 339822 cl17044 354303 -pfam16813 339823 cl09913 353022 -pfam16815 339824 pfam16815 339824 -pfam16816 339825 pfam16816 339825 -pfam16828 339826 pfam16828 339826 -pfam16837 339827 pfam16837 339827 -pfam16845 339828 cl09238 352952 -pfam16846 339829 cl23766 355037 -pfam16853 339830 pfam16853 339830 -pfam16859 339831 cl23808 355056 -pfam16861 339832 cl00305 351013 -pfam16863 339833 pfam16863 339833 -pfam16864 339834 cl06920 352608 -pfam16866 339835 cl22851 354958 -pfam16867 339836 cl21464 354820 -pfam16870 339837 pfam16870 339837 -pfam16874 339838 pfam16874 339838 -pfam16875 339839 pfam16875 339839 -pfam16876 339840 pfam16876 339840 -pfam16878 339841 pfam16878 339841 -pfam16879 339842 pfam16879 339842 -pfam16884 339843 cl17172 354316 -pfam16886 339844 pfam16886 339844 -pfam16888 339845 pfam16888 339845 -pfam16889 339846 cl00179 350933 -pfam16891 339847 pfam16891 339847 -pfam16893 339848 cl21522 354851 -pfam16897 339849 pfam16897 339849 -pfam16898 339850 cl03055 351933 -pfam16899 339851 cl00050 350876 -pfam16900 339852 cl09930 353029 -pfam16901 339853 pfam16901 339853 -pfam16905 339854 pfam16905 339854 -pfam16906 339855 cl00354 351050 -pfam16908 339856 pfam16908 339856 -pfam16910 339857 pfam16910 339857 -pfam16916 339858 pfam16916 339858 -pfam16921 339859 cl21482 354829 -pfam16922 339860 pfam16922 339860 -pfam16924 339861 cl21454 354811 -pfam16929 339862 cl14015 353803 -pfam16931 339863 pfam16931 339863 -pfam16932 339864 pfam16932 339864 -pfam16933 339865 cl01736 351580 -pfam16953 339866 cl20439 354605 -pfam16956 339867 pfam16956 339867 -pfam16966 339868 pfam16966 339868 -pfam16967 339869 pfam16967 339869 -pfam16970 339870 cl01416 351496 -pfam16973 339871 pfam16973 339871 -pfam16974 339872 pfam16974 339872 -pfam16976 339873 pfam16976 339873 -pfam16983 339874 cl23746 355031 -pfam16988 339875 pfam16988 339875 -pfam16989 339876 cl11880 353319 -pfam16998 339877 cl01877 351626 -pfam16999 339878 pfam16999 339878 -pfam17000 339879 pfam17000 339879 -pfam17035 339880 pfam17035 339880 -pfam17042 339881 pfam17042 339881 -pfam17043 339882 pfam17043 339882 -pfam17048 339883 pfam17048 339883 -pfam17092 339884 pfam17092 339884 -pfam17095 339885 pfam17095 339885 -pfam17101 339886 pfam17101 339886 -pfam17102 339887 pfam17102 339887 -pfam17103 339888 pfam17103 339888 -pfam17104 339889 pfam17104 339889 -pfam17106 339890 pfam17106 339890 -pfam17107 339891 cl24079 355143 -pfam17108 339892 pfam17108 339892 -pfam17113 339893 cl00561 351153 -pfam17116 339894 pfam17116 339894 -pfam17123 339895 cl17238 354325 -pfam17125 339896 pfam17125 339896 -pfam17127 339897 pfam17127 339897 -pfam17131 339898 pfam17131 339898 -pfam17135 339899 pfam17135 339899 -pfam17136 339900 pfam17136 339900 -pfam17137 339901 pfam17137 339901 -pfam17138 339902 pfam17138 339902 -pfam17139 339903 pfam17139 339903 -pfam17140 339904 pfam17140 339904 -pfam17141 339905 pfam17141 339905 -pfam17145 339906 cl29070 355946 -pfam17146 339907 pfam17146 339907 -pfam17147 339908 pfam17147 339908 -pfam17150 339909 pfam17150 339909 -pfam17152 339910 pfam17152 339910 -pfam17154 339911 pfam17154 339911 -pfam17157 339912 pfam17157 339912 -pfam17158 339913 cl29069 355945 -pfam17159 339914 cl29069 355945 -pfam17161 339915 pfam17161 339915 -pfam17171 339916 pfam17171 339916 -pfam17172 339917 pfam17172 339917 -pfam17175 339918 pfam17175 339918 -pfam17176 339919 pfam17176 339919 -pfam17177 339920 pfam17177 339920 -pfam17179 339921 pfam17179 339921 -pfam17184 339922 pfam17184 339922 -pfam17185 339923 pfam17185 339923 -pfam17186 339924 pfam17186 339924 -pfam17187 339925 pfam17187 339925 -pfam17188 339926 pfam17188 339926 -pfam17189 339927 pfam17189 339927 -pfam17194 339928 pfam17194 339928 -pfam17197 339929 pfam17197 339929 -pfam17199 339930 pfam17199 339930 -pfam17200 339931 pfam17200 339931 -pfam17201 339932 cl25445 355395 -pfam17202 339933 cl25445 355395 -pfam17205 339934 pfam17205 339934 -pfam17207 339935 pfam17207 339935 -pfam17208 339936 pfam17208 339936 -pfam17212 339937 cl10205 353060 -pfam17214 339938 pfam17214 339938 -pfam17221 339939 pfam17221 339939 -pfam17224 339940 pfam17224 339940 -pfam17225 339941 pfam17225 339941 -pfam17226 339942 pfam17226 339942 -pfam17227 339943 pfam17227 339943 -pfam17228 339944 pfam17228 339944 -pfam17229 339945 pfam17229 339945 -pfam17230 339946 pfam17230 339946 -pfam17231 339947 pfam17231 339947 -pfam17232 339948 pfam17232 339948 -pfam17233 339949 pfam17233 339949 -pfam17234 339950 pfam17234 339950 -pfam17235 339951 pfam17235 339951 -pfam17236 339952 pfam17236 339952 -pfam17237 339953 pfam17237 339953 -pfam17238 339954 pfam17238 339954 -pfam17239 339955 pfam17239 339955 -pfam17240 339956 pfam17240 339956 -pfam17241 339957 pfam17241 339957 -pfam17242 339958 pfam17242 339958 -pfam17243 339959 pfam17243 339959 -pfam17244 339960 pfam17244 339960 -pfam17245 339961 pfam17245 339961 -pfam17246 339962 pfam17246 339962 -pfam17247 339963 pfam17247 339963 -pfam17248 339964 pfam17248 339964 -pfam17249 339965 pfam17249 339965 -pfam17250 339966 pfam17250 339966 -pfam17251 339967 pfam17251 339967 -pfam17252 339968 pfam17252 339968 -pfam17253 339969 pfam17253 339969 -pfam17254 339970 pfam17254 339970 -pfam17255 339971 pfam17255 339971 -pfam17256 339972 pfam17256 339972 -pfam17257 339973 pfam17257 339973 -pfam17258 339974 pfam17258 339974 -pfam17259 339975 pfam17259 339975 -pfam17260 339976 pfam17260 339976 -pfam17261 339977 pfam17261 339977 -pfam17262 339978 pfam17262 339978 -pfam17263 339979 cl08107 352847 -pfam17264 339980 pfam17264 339980 -pfam17265 339981 pfam17265 339981 -pfam17266 339982 pfam17266 339982 -pfam17267 339983 pfam17267 339983 -pfam17268 339984 pfam17268 339984 -pfam17269 339985 pfam17269 339985 -pfam17270 339986 pfam17270 339986 -pfam17271 339987 pfam17271 339987 -pfam17272 339988 pfam17272 339988 -pfam17273 339989 pfam17273 339989 -pfam17274 339990 pfam17274 339990 -pfam17275 339991 pfam17275 339991 -pfam17276 339992 pfam17276 339992 -pfam17277 339993 pfam17277 339993 -pfam17278 339994 pfam17278 339994 -pfam17279 339995 pfam17279 339995 -pfam17280 339996 pfam17280 339996 -pfam17281 339997 pfam17281 339997 -pfam17282 339998 pfam17282 339998 -pfam17283 339999 pfam17283 339999 -pfam17284 340000 pfam17284 340000 -pfam17285 340001 pfam17285 340001 -pfam17286 340002 pfam17286 340002 -pfam17287 340003 pfam17287 340003 -pfam17288 340004 pfam17288 340004 -pfam17289 340005 cl02216 351706 -pfam17290 340006 pfam17290 340006 -pfam17291 340007 pfam17291 340007 -pfam17292 340008 pfam17292 340008 -pfam17293 340009 pfam17293 340009 -pfam17294 340010 cl11698 353312 -pfam17295 340011 pfam17295 340011 -pfam17296 340012 cl29053 355929 -pfam17297 340013 pfam17297 340013 -pfam17298 340014 cl24283 355175 -pfam17299 340015 pfam17299 340015 -pfam17300 340016 pfam17300 340016 -pfam17301 340017 pfam17301 340017 -pfam17302 340018 pfam17302 340018 -pfam17303 340019 pfam17303 340019 -pfam17304 340020 pfam17304 340020 -pfam17305 340021 pfam17305 340021 -pfam17306 340022 pfam17306 340022 -pfam17307 340023 pfam17307 340023 -pfam17308 340024 pfam17308 340024 -pfam17309 340025 pfam17309 340025 -pfam17310 340026 pfam17310 340026 -pfam17311 340027 pfam17311 340027 -pfam17312 340028 pfam17312 340028 -pfam17313 340029 pfam17313 340029 -pfam17314 340030 pfam17314 340030 -pfam17315 340031 pfam17315 340031 -pfam17316 340032 pfam17316 340032 -pfam17317 340033 pfam17317 340033 -pfam17318 340034 pfam17318 340034 -pfam17319 340035 pfam17319 340035 -pfam17320 340036 pfam17320 340036 -pfam17321 340037 pfam17321 340037 -pfam17322 340038 pfam17322 340038 -pfam17323 340039 pfam17323 340039 -pfam17324 340040 pfam17324 340040 -pfam17325 340041 pfam17325 340041 -pfam17326 340042 pfam17326 340042 -pfam17327 340043 pfam17327 340043 -pfam17328 340044 pfam17328 340044 -pfam17329 340045 pfam17329 340045 -pfam17330 340046 pfam17330 340046 -pfam17331 340047 pfam17331 340047 -pfam17332 340048 pfam17332 340048 -pfam17333 340049 pfam17333 340049 -pfam17334 340050 pfam17334 340050 -pfam17335 340051 pfam17335 340051 -pfam17336 340052 pfam17336 340052 -pfam17337 340053 pfam17337 340053 -pfam17338 340054 pfam17338 340054 -pfam17339 340055 pfam17339 340055 -pfam17340 340056 pfam17340 340056 -pfam17341 340057 pfam17341 340057 -pfam17342 340058 pfam17342 340058 -pfam17343 340059 pfam17343 340059 -pfam17344 340060 pfam17344 340060 -pfam17345 340061 pfam17345 340061 -pfam17346 340062 pfam17346 340062 -pfam17347 340063 pfam17347 340063 -pfam17349 340064 pfam17349 340064 -pfam17350 340065 pfam17350 340065 -pfam17351 340066 pfam17351 340066 -pfam17352 340067 pfam17352 340067 -pfam17353 340068 pfam17353 340068 -pfam17354 340069 pfam17354 340069 -pfam17355 340070 pfam17355 340070 -pfam17356 340071 pfam17356 340071 -pfam17357 340072 pfam17357 340072 -pfam17358 340073 pfam17358 340073 -pfam17359 340074 pfam17359 340074 -pfam17360 340075 pfam17360 340075 -pfam17361 340076 pfam17361 340076 -pfam17362 340077 pfam17362 340077 -pfam17363 340078 pfam17363 340078 -pfam17364 340079 pfam17364 340079 -pfam17365 340080 pfam17365 340080 -pfam17366 340081 pfam17366 340081 -pfam17367 340082 cl01662 351574 -pfam17368 340083 pfam17368 340083 -pfam17369 340084 pfam17369 340084 -pfam17370 340085 pfam17370 340085 -pfam17371 340086 pfam17371 340086 -pfam17372 340087 pfam17372 340087 -pfam17373 340088 pfam17373 340088 -pfam17374 340089 pfam17374 340089 -pfam17375 340090 pfam17375 340090 -pfam17376 340091 pfam17376 340091 -pfam17377 340092 pfam17377 340092 -pfam17378 340093 pfam17378 340093 -pfam17379 340094 pfam17379 340094 -pfam17380 340095 pfam17380 340095 -pfam17381 340096 pfam17381 340096 -pfam17382 340097 pfam17382 340097 -pfam17383 340098 pfam17383 340098 -pfam17384 340099 pfam17384 340099 -pfam17385 340100 pfam17385 340100 -pfam17386 340101 pfam17386 340101 -pfam17387 340102 pfam17387 340102 -pfam17388 340103 pfam17388 340103 -pfam17389 340104 cl29051 355927 -pfam17390 340105 pfam17390 340105 -pfam17391 340106 pfam17391 340106 -pfam17392 340107 pfam17392 340107 -pfam17393 340108 pfam17393 340108 -pfam17394 340109 pfam17394 340109 -pfam17395 340110 pfam17395 340110 -pfam17396 340111 cl29050 355926 -pfam17397 340112 pfam17397 340112 -pfam17398 340113 pfam17398 340113 -pfam17399 340114 pfam17399 340114 -pfam17400 340115 pfam17400 340115 -pfam17401 340116 pfam17401 340116 -pfam17402 340117 pfam17402 340117 -pfam17403 340118 pfam17403 340118 -pfam17404 340119 pfam17404 340119 -pfam17405 340120 pfam17405 340120 -pfam17406 340121 pfam17406 340121 -pfam17407 340122 pfam17407 340122 -pfam17408 340123 pfam17408 340123 -pfam17409 340124 pfam17409 340124 -pfam17410 340125 pfam17410 340125 -pfam17411 340126 pfam17411 340126 -pfam17412 340127 pfam17412 340127 -pfam17413 340128 cl12236 353374 -pfam17414 340129 pfam17414 340129 -pfam17415 340130 pfam17415 340130 -pfam17416 340131 pfam17416 340131 -pfam17417 340132 pfam17417 340132 -pfam17418 340133 cl14857 353845 -pfam17419 340134 pfam17419 340134 -pfam17420 340135 cl10305 353069 -pfam17421 340136 cl29049 355925 -pfam17422 340137 pfam17422 340137 -pfam17423 340138 pfam17423 340138 -pfam17424 340139 pfam17424 340139 -pfam17425 340140 pfam17425 340140 -pfam17426 340141 pfam17426 340141 -pfam17427 340142 cl10308 353070 -pfam17428 340143 pfam17428 340143 -pfam17429 340144 pfam17429 340144 -pfam17430 340145 pfam17430 340145 -pfam17431 340146 pfam17431 340146 -pfam17432 340147 pfam17432 340147 -pfam17433 340148 pfam17433 340148 -pfam17434 340149 pfam17434 340149 -pfam17435 340150 pfam17435 340150 -pfam17436 340151 pfam17436 340151 -pfam17437 340152 pfam17437 340152 -pfam17438 340153 pfam17438 340153 -pfam17439 340154 pfam17439 340154 -pfam17440 340155 pfam17440 340155 -pfam17441 340156 pfam17441 340156 -pfam17442 340157 pfam17442 340157 -pfam17443 340158 pfam17443 340158 -pfam17444 340159 pfam17444 340159 -pfam17445 340160 pfam17445 340160 -pfam17446 340161 pfam17446 340161 -pfam17447 340162 pfam17447 340162 -pfam17448 340163 pfam17448 340163 -pfam17449 340164 pfam17449 340164 -pfam17450 340165 pfam17450 340165 -pfam17451 340166 pfam17451 340166 -pfam17452 340167 pfam17452 340167 -pfam17453 340168 pfam17453 340168 -pfam17454 340169 pfam17454 340169 -pfam17455 340170 pfam17455 340170 -pfam17456 340171 pfam17456 340171 -pfam17457 340172 pfam17457 340172 -pfam17458 340173 pfam17458 340173 -pfam17459 340174 pfam17459 340174 -pfam17460 340175 pfam17460 340175 -pfam17461 340176 pfam17461 340176 -pfam17462 340177 pfam17462 340177 -pfam17463 340178 pfam17463 340178 -pfam17464 340179 pfam17464 340179 -pfam17465 340180 pfam17465 340180 -pfam17466 340181 pfam17466 340181 -pfam17467 340182 cl14502 353810 -pfam17468 340183 pfam17468 340183 -pfam17469 340184 pfam17469 340184 -pfam17470 340185 pfam17470 340185 -pfam17471 340186 pfam17471 340186 -pfam17472 340187 pfam17472 340187 -pfam17473 340188 pfam17473 340188 -pfam17474 340189 pfam17474 340189 -pfam17475 340190 pfam17475 340190 -pfam17476 340191 pfam17476 340191 -pfam17477 340192 pfam17477 340192 -pfam17478 340193 pfam17478 340193 -pfam17479 340194 pfam17479 340194 -pfam17480 340195 pfam17480 340195 -pfam17481 340196 pfam17481 340196 -pfam17482 340197 pfam17482 340197 -pfam17483 340198 pfam17483 340198 -pfam17484 340199 pfam17484 340199 -pfam17485 340200 pfam17485 340200 -pfam17486 340201 pfam17486 340201 -pfam17487 340202 pfam17487 340202 -pfam17488 340203 cl29046 355922 -pfam17489 340204 pfam17489 340204 -pfam17490 340205 pfam17490 340205 -pfam17491 340206 pfam17491 340206 -pfam17492 340207 pfam17492 340207 -pfam17493 340208 pfam17493 340208 -pfam17494 340209 pfam17494 340209 -pfam17495 340210 pfam17495 340210 -pfam17496 340211 cl10143 353055 -pfam17497 340212 pfam17497 340212 -pfam17498 340213 pfam17498 340213 -pfam17499 340214 pfam17499 340214 -pfam17500 340215 pfam17500 340215 -pfam17501 340216 pfam17501 340216 -pfam17502 340217 pfam17502 340217 -pfam17503 340218 pfam17503 340218 -pfam17504 340219 pfam17504 340219 -pfam17505 340220 pfam17505 340220 -pfam17506 340221 pfam17506 340221 -pfam17507 340222 pfam17507 340222 -pfam17508 340223 pfam17508 340223 -pfam17509 340224 pfam17509 340224 -pfam17510 340225 pfam17510 340225 -pfam17511 340226 pfam17511 340226 -pfam17512 340227 pfam17512 340227 -pfam17513 340228 pfam17513 340228 -pfam17514 340229 pfam17514 340229 -pfam17515 340230 pfam17515 340230 -pfam17516 340231 pfam17516 340231 -pfam17517 340232 pfam17517 340232 -pfam17518 340233 pfam17518 340233 -pfam17519 340234 pfam17519 340234 -pfam17520 340235 pfam17520 340235 -pfam17521 340236 pfam17521 340236 -pfam17522 340237 pfam17522 340237 -pfam17523 340238 pfam17523 340238 -pfam17524 340239 pfam17524 340239 -pfam17525 340240 pfam17525 340240 -pfam17526 340241 pfam17526 340241 -pfam17527 340242 pfam17527 340242 -pfam17528 340243 pfam17528 340243 -pfam17529 340244 pfam17529 340244 -pfam17530 340245 pfam17530 340245 -pfam17531 340246 cl10201 353059 -pfam17532 340247 pfam17532 340247 -pfam17533 340248 pfam17533 340248 -pfam17534 340249 pfam17534 340249 -pfam17535 340250 pfam17535 340250 -pfam17536 340251 pfam17536 340251 -pfam17537 340252 cl10177 353057 -pfam17538 340253 pfam17538 340253 -pfam17539 340254 pfam17539 340254 -pfam17540 340255 pfam17540 340255 -pfam17541 340256 pfam17541 340256 -pfam17542 340257 pfam17542 340257 -pfam17543 340258 pfam17543 340258 -pfam17544 340259 pfam17544 340259 -pfam17545 340260 pfam17545 340260 -pfam17546 340261 pfam17546 340261 -pfam17547 340262 pfam17547 340262 -pfam17548 340263 cl10228 353065 -pfam17549 340264 pfam17549 340264 -pfam17550 340265 pfam17550 340265 -pfam17551 340266 pfam17551 340266 -pfam17552 340267 pfam17552 340267 -pfam17553 340268 pfam17553 340268 -pfam17554 340269 cl10198 353058 -pfam17555 340270 pfam17555 340270 -pfam17556 340271 pfam17556 340271 -pfam17557 340272 pfam17557 340272 -pfam17558 340273 pfam17558 340273 -pfam17559 340274 pfam17559 340274 -pfam17560 340275 pfam17560 340275 -pfam17561 340276 pfam17561 340276 -pfam17562 340277 pfam17562 340277 -pfam17563 340278 pfam17563 340278 -pfam17564 340279 pfam17564 340279 -pfam17565 340280 cl10215 353063 -pfam17566 340281 pfam17566 340281 -pfam17567 340282 pfam17567 340282 -pfam17568 340283 pfam17568 340283 -pfam17569 340284 pfam17569 340284 -pfam17570 340285 cl10212 353061 -pfam17571 340286 pfam17571 340286 -pfam17572 340287 pfam17572 340287 -pfam17573 340288 pfam17573 340288 -pfam17574 340289 cl10214 353062 -pfam17575 340290 pfam17575 340290 -pfam17576 340291 cl10223 353064 -pfam17577 340292 pfam17577 340292 -pfam17578 340293 pfam17578 340293 -pfam17579 340294 pfam17579 340294 -pfam17580 340295 pfam17580 340295 -pfam17581 340296 pfam17581 340296 -pfam17582 340297 pfam17582 340297 -pfam17583 340298 pfam17583 340298 -pfam17584 340299 pfam17584 340299 -pfam17585 340300 pfam17585 340300 -pfam17586 340301 pfam17586 340301 -pfam17587 340302 pfam17587 340302 -pfam17588 340303 pfam17588 340303 -pfam17589 340304 pfam17589 340304 -pfam17590 340305 pfam17590 340305 -pfam17591 340306 pfam17591 340306 -pfam17592 340307 cl10273 353068 -pfam17593 340308 pfam17593 340308 -pfam17594 340309 pfam17594 340309 -pfam17595 340310 pfam17595 340310 -pfam17596 340311 pfam17596 340311 -pfam17597 340312 cl10264 353066 -pfam17598 340313 pfam17598 340313 -pfam17599 340314 pfam17599 340314 -pfam17600 340315 pfam17600 340315 -pfam17601 340316 pfam17601 340316 -pfam17602 340317 pfam17602 340317 -pfam17603 340318 pfam17603 340318 -pfam17604 340319 pfam17604 340319 -pfam17605 340320 pfam17605 340320 -pfam17606 340321 pfam17606 340321 -pfam17607 340322 pfam17607 340322 -pfam17608 340323 pfam17608 340323 -pfam17609 340324 pfam17609 340324 -pfam17610 340325 pfam17610 340325 -pfam17611 340326 pfam17611 340326 -pfam17612 340327 pfam17612 340327 -pfam17613 340328 pfam17613 340328 -pfam17614 340329 pfam17614 340329 -pfam17615 340330 cl14695 353829 -pfam17616 340331 pfam17616 340331 -pfam17617 340332 pfam17617 340332 -pfam17618 340333 pfam17618 340333 -pfam17619 340334 pfam17619 340334 -pfam17620 340335 pfam17620 340335 -pfam17621 340336 pfam17621 340336 -pfam17622 340337 cl14716 353831 -pfam17623 340338 cl14340 353808 -pfam17624 340339 pfam17624 340339 -pfam17625 340340 pfam17625 340340 -pfam17626 340341 pfam17626 340341 -pfam17627 340342 pfam17627 340342 -pfam17628 340343 pfam17628 340343 -pfam17629 340344 pfam17629 340344 -pfam17630 340345 pfam17630 340345 -pfam17631 340346 pfam17631 340346 -pfam17632 340347 pfam17632 340347 -pfam17633 340348 pfam17633 340348 -pfam17634 340349 cl14364 353809 -pfam17635 340350 pfam17635 340350 -pfam17636 340351 pfam17636 340351 -pfam17637 340352 pfam17637 340352 -pfam17638 340353 pfam17638 340353 -pfam17639 340354 cl10269 353067 -pfam17640 340355 pfam17640 340355 -pfam17641 340356 pfam17641 340356 -cd00119 340357 cl00222 350962 -cd00254 340358 cl00222 350962 -cd00325 340359 cl00222 350962 -cd00442 340360 cl00222 350962 -cd00735 340361 cl00222 350962 -cd00736 340362 cl00222 350962 -cd00737 340363 cl00222 350962 -cd00978 340364 cl00222 350962 -cd01021 340365 cl00222 350962 -cd12799 340366 cl00222 350962 -cd13399 340367 cl00222 350962 -cd13400 340368 cl00222 350962 -cd13401 340369 cl00222 350962 -cd13402 340370 cl00222 350962 -cd13403 340371 cl00222 350962 -cd13925 340372 cl00222 350962 -cd13926 340373 cl00222 350962 -cd16888 340374 cl00222 350962 -cd16889 340375 cl00222 350962 -cd16890 340376 cl00222 350962 -cd16891 340377 cl00222 350962 -cd16892 340378 cl00222 350962 -cd16893 340379 cl00222 350962 -cd16894 340380 cl00222 350962 -cd16895 340381 cl00222 350962 -cd16896 340382 cl00222 350962 -cd16897 340383 cl00222 350962 -cd16898 340384 cl00222 350962 -cd16899 340385 cl00222 350962 -cd16900 340386 cl00222 350962 -cd16901 340387 cl00222 350962 -cd16902 340388 cl00222 350962 -cd16903 340389 cl00222 350962 -cd16904 340390 cl00222 350962 -cd00075 340391 cl00075 350890 -cd16915 340392 cl00075 350890 -cd16916 340393 cl00075 350890 -cd16917 340394 cl00075 350890 -cd16918 340395 cl00075 350890 -cd16919 340396 cl00075 350890 -cd16920 340397 cl00075 350890 -cd16921 340398 cl00075 350890 -cd16922 340399 cl00075 350890 -cd16923 340400 cl00075 350890 -cd16924 340401 cl00075 350890 -cd16925 340402 cl00075 350890 -cd16926 340403 cl00075 350890 -cd16927 340404 cl00075 350890 -cd16928 340405 cl00075 350890 -cd16929 340406 cl00075 350890 -cd16930 340407 cl00075 350890 -cd16931 340408 cl00075 350890 -cd16932 340409 cl00075 350890 -cd16933 340410 cl00075 350890 -cd16934 340411 cl00075 350890 -cd16935 340412 cl00075 350890 -cd16936 340413 cl00075 350890 -cd16937 340414 cl00075 350890 -cd16938 340415 cl00075 350890 -cd16939 340416 cl00075 350890 -cd16940 340417 cl00075 350890 -cd16942 340418 cl00075 350890 -cd16943 340419 cl00075 350890 -cd16944 340420 cl00075 350890 -cd16945 340421 cl00075 350890 -cd16946 340422 cl00075 350890 -cd16947 340423 cl00075 350890 -cd16948 340424 cl00075 350890 -cd16949 340425 cl00075 350890 -cd16950 340426 cl00075 350890 -cd16951 340427 cl00075 350890 -cd16952 340428 cl00075 350890 -cd16953 340429 cl00075 350890 -cd16954 340430 cl00075 350890 -cd16955 340431 cl00075 350890 -cd16956 340432 cl00075 350890 -cd16957 340433 cl00075 350890 -cd16975 340434 cl00075 350890 -cd16976 340435 cl00075 350890 -cd00139 340436 cl28923 355799 -cd17300 340437 cl28923 355799 -cd17301 340438 cl28923 355799 -cd17302 340439 cl28923 355799 -cd17303 340440 cl28923 355799 -cd17304 340441 cl28923 355799 -cd17305 340442 cl28923 355799 -cd17306 340443 cl28923 355799 -cd17307 340444 cl28923 355799 -cd17308 340445 cl28923 355799 -cd17309 340446 cl28923 355799 -cd17310 340447 cl28923 355799 -cd17311 340448 cl28923 355799 -cd00153 340449 cl28922 355798 -cd00196 340450 cl28922 355798 -cd00565 340451 cl28922 355798 -cd00754 340452 cl28922 355798 -cd01611 340453 cl28922 355798 -cd01612 340454 cl28922 355798 -cd01616 340455 cl28922 355798 -cd01617 340456 cl28922 355798 -cd01666 340457 cl28922 355798 -cd01667 340458 cl28922 355798 -cd01668 340459 cl28922 355798 -cd01669 340460 cl28922 355798 -cd01760 340461 cl28922 355798 -cd01763 340462 cl28922 355798 -cd01764 340463 cl28922 355798 -cd01765 340464 cl28922 355798 -cd01766 340465 cl28922 355798 -cd01767 340466 cl28922 355798 -cd01768 340467 cl28922 355798 -cd01770 340468 cl28922 355798 -cd01771 340469 cl28922 355798 -cd01772 340470 cl28922 355798 -cd01773 340471 cl28922 355798 -cd01774 340472 cl28922 355798 -cd01775 340473 cl28922 355798 -cd01776 340474 cl28922 355798 -cd01777 340475 cl28922 355798 -cd01778 340476 cl28922 355798 -cd01779 340477 cl28922 355798 -cd01780 340478 cl28922 355798 -cd01781 340479 cl28922 355798 -cd01782 340480 cl28922 355798 -cd01783 340481 cl28922 355798 -cd01784 340482 cl28922 355798 -cd01785 340483 cl28922 355798 -cd01786 340484 cl28922 355798 -cd01787 340485 cl28922 355798 -cd01788 340486 cl28922 355798 -cd01789 340487 cl28922 355798 -cd01790 340488 cl28922 355798 -cd01791 340489 cl28922 355798 -cd01792 340490 cl28922 355798 -cd01793 340491 cl28922 355798 -cd01794 340492 cl28922 355798 -cd01795 340493 cl28922 355798 -cd01796 340494 cl28922 355798 -cd01797 340495 cl28922 355798 -cd01798 340496 cl28922 355798 -cd01799 340497 cl28922 355798 -cd01800 340498 cl28922 355798 -cd01801 340499 cl28922 355798 -cd01802 340500 cl28922 355798 -cd01803 340501 cl28922 355798 -cd01804 340502 cl28922 355798 -cd01805 340503 cl28922 355798 -cd01806 340504 cl28922 355798 -cd01807 340505 cl28922 355798 -cd01808 340506 cl28922 355798 -cd01809 340507 cl28922 355798 -cd01810 340508 cl28922 355798 -cd01811 340509 cl28922 355798 -cd01812 340510 cl28922 355798 -cd01813 340511 cl28922 355798 -cd01814 340512 cl28922 355798 -cd01815 340513 cl28922 355798 -cd01816 340514 cl28922 355798 -cd01817 340515 cl28922 355798 -cd04867 340516 cl28922 355798 -cd04938 340517 cl28922 355798 -cd12219 340518 cl28922 355798 -cd16102 340519 cl28922 355798 -cd16103 340520 cl28922 355798 -cd16104 340521 cl28922 355798 -cd16105 340522 cl28922 355798 -cd16106 340523 cl28922 355798 -cd16107 340524 cl28922 355798 -cd16108 340525 cl28922 355798 -cd16109 340526 cl28922 355798 -cd16110 340527 cl28922 355798 -cd16111 340528 cl28922 355798 -cd16112 340529 cl28922 355798 -cd16113 340530 cl28922 355798 -cd16114 340531 cl28922 355798 -cd16115 340532 cl28922 355798 -cd16116 340533 cl28922 355798 -cd16117 340534 cl28922 355798 -cd16118 340535 cl28922 355798 -cd16119 340536 cl28922 355798 -cd16120 340537 cl28922 355798 -cd16121 340538 cl28922 355798 -cd16122 340539 cl28922 355798 -cd16123 340540 cl28922 355798 -cd16124 340541 cl28922 355798 -cd16125 340542 cl28922 355798 -cd16126 340543 cl28922 355798 -cd16127 340544 cl28922 355798 -cd16128 340545 cl28922 355798 -cd16129 340546 cl28922 355798 -cd16130 340547 cl28922 355798 -cd16131 340548 cl28922 355798 -cd16132 340549 cl28922 355798 -cd16133 340550 cl28922 355798 -cd16134 340551 cl28922 355798 -cd16135 340552 cl28922 355798 -cd16136 340553 cl28922 355798 -cd16137 340554 cl28922 355798 -cd16138 340555 cl28922 355798 -cd16139 340556 cl28922 355798 -cd16140 340557 cl28922 355798 -cd16141 340558 cl28922 355798 -cd17039 340559 cl28922 355798 -cd17040 340560 cl28922 355798 -cd17041 340561 cl28922 355798 -cd17042 340562 cl28922 355798 -cd17043 340563 cl28922 355798 -cd17044 340564 cl28922 355798 -cd17045 340565 cl28922 355798 -cd17046 340566 cl28922 355798 -cd17047 340567 cl28922 355798 -cd17048 340568 cl28922 355798 -cd17049 340569 cl28922 355798 -cd17050 340570 cl28922 355798 -cd17051 340571 cl28922 355798 -cd17052 340572 cl28922 355798 -cd17053 340573 cl28922 355798 -cd17054 340574 cl28922 355798 -cd17055 340575 cl28922 355798 -cd17056 340576 cl28922 355798 -cd17057 340577 cl28922 355798 -cd17058 340578 cl28922 355798 -cd17059 340579 cl28922 355798 -cd17060 340580 cl28922 355798 -cd17061 340581 cl28922 355798 -cd17062 340582 cl28922 355798 -cd17063 340583 cl28922 355798 -cd17064 340584 cl28922 355798 -cd17065 340585 cl28922 355798 -cd17066 340586 cl28922 355798 -cd17067 340587 cl28922 355798 -cd17068 340588 cl28922 355798 -cd17069 340589 cl28922 355798 -cd17070 340590 cl28922 355798 -cd17071 340591 cl28922 355798 -cd17072 340592 cl28922 355798 -cd17073 340593 cl28922 355798 -cd17074 340594 cl28922 355798 -cd17075 340595 cl28922 355798 -cd17076 340596 cl28922 355798 -cd17077 340597 cl28922 355798 -cd17078 340598 cl28922 355798 -cd17079 340599 cl28922 355798 -cd17080 340600 cl28922 355798 -cd17081 340601 cl28922 355798 -cd17082 340602 cl28922 355798 -cd17083 340603 cl28922 355798 -cd17084 340604 cl28922 355798 -cd17085 340605 cl28922 355798 -cd17086 340606 cl28922 355798 -cd17087 340607 cl28922 355798 -cd17088 340608 cl28922 355798 -cd17089 340609 cl28922 355798 -cd17090 340610 cl28922 355798 -cd17091 340611 cl28922 355798 -cd17092 340612 cl28922 355798 -cd17093 340613 cl28922 355798 -cd17094 340614 cl28922 355798 -cd17095 340615 cl28922 355798 -cd17096 340616 cl28922 355798 -cd17097 340617 cl28922 355798 -cd17098 340618 cl28922 355798 -cd17099 340619 cl28922 355798 -cd17100 340620 cl28922 355798 -cd17101 340621 cl28922 355798 -cd17102 340622 cl28922 355798 -cd17103 340623 cl28922 355798 -cd17104 340624 cl28922 355798 -cd17105 340625 cl28922 355798 -cd17106 340626 cl28922 355798 -cd17107 340627 cl28922 355798 -cd17108 340628 cl28922 355798 -cd17109 340629 cl28922 355798 -cd17110 340630 cl28922 355798 -cd17111 340631 cl28922 355798 -cd17112 340632 cl28922 355798 -cd17113 340633 cl28922 355798 -cd17114 340634 cl28922 355798 -cd17115 340635 cl28922 355798 -cd17116 340636 cl28922 355798 -cd17117 340637 cl28922 355798 -cd17118 340638 cl28922 355798 -cd17119 340639 cl28922 355798 -cd17120 340640 cl28922 355798 -cd17121 340641 cl28922 355798 -cd17122 340642 cl28922 355798 -cd17123 340643 cl28922 355798 -cd17124 340644 cl28922 355798 -cd17125 340645 cl28922 355798 -cd17126 340646 cl28922 355798 -cd17127 340647 cl28922 355798 -cd17128 340648 cl28922 355798 -cd17129 340649 cl28922 355798 -cd17130 340650 cl28922 355798 -cd17131 340651 cl28922 355798 -cd17132 340652 cl28922 355798 -cd17133 340653 cl28922 355798 -cd17134 340654 cl28922 355798 -cd17135 340655 cl28922 355798 -cd17136 340656 cl28922 355798 -cd17137 340657 cl28922 355798 -cd17138 340658 cl28922 355798 -cd17139 340659 cl28922 355798 -cd17140 340660 cl28922 355798 -cd17141 340661 cl28922 355798 -cd17142 340662 cl28922 355798 -cd17143 340663 cl28922 355798 -cd17144 340664 cl28922 355798 -cd17145 340665 cl28922 355798 -cd17146 340666 cl28922 355798 -cd17147 340667 cl28922 355798 -cd17148 340668 cl28922 355798 -cd17149 340669 cl28922 355798 -cd17150 340670 cl28922 355798 -cd17151 340671 cl28922 355798 -cd17152 340672 cl28922 355798 -cd17153 340673 cl28922 355798 -cd17154 340674 cl28922 355798 -cd17155 340675 cl28922 355798 -cd17156 340676 cl28922 355798 -cd17157 340677 cl28922 355798 -cd17158 340678 cl28922 355798 -cd17159 340679 cl28922 355798 -cd17160 340680 cl28922 355798 -cd17161 340681 cl28922 355798 -cd17162 340682 cl28922 355798 -cd17163 340683 cl28922 355798 -cd17164 340684 cl28922 355798 -cd17165 340685 cl28922 355798 -cd17166 340686 cl28922 355798 -cd17167 340687 cl28922 355798 -cd17168 340688 cl28922 355798 -cd17169 340689 cl28922 355798 -cd17170 340690 cl28922 355798 -cd17171 340691 cl28922 355798 -cd17172 340692 cl28922 355798 -cd17173 340693 cl28922 355798 -cd17174 340694 cl28922 355798 -cd17175 340695 cl28922 355798 -cd17176 340696 cl28922 355798 -cd17177 340697 cl28922 355798 -cd17178 340698 cl28922 355798 -cd17179 340699 cl28922 355798 -cd17180 340700 cl28922 355798 -cd17181 340701 cl28922 355798 -cd17182 340702 cl28922 355798 -cd17183 340703 cl28922 355798 -cd17184 340704 cl28922 355798 -cd17185 340705 cl28922 355798 -cd17186 340706 cl28922 355798 -cd17187 340707 cl28922 355798 -cd17188 340708 cl28922 355798 -cd17189 340709 cl28922 355798 -cd17190 340710 cl28922 355798 -cd17191 340711 cl28922 355798 -cd17192 340712 cl28922 355798 -cd17193 340713 cl28922 355798 -cd17194 340714 cl28922 355798 -cd17195 340715 cl28922 355798 -cd17196 340716 cl28922 355798 -cd17197 340717 cl28922 355798 -cd17198 340718 cl28922 355798 -cd17199 340719 cl28922 355798 -cd17200 340720 cl28922 355798 -cd17201 340721 cl28922 355798 -cd17202 340722 cl28922 355798 -cd17203 340723 cl28922 355798 -cd17204 340724 cl28922 355798 -cd17205 340725 cl28922 355798 -cd17206 340726 cl28922 355798 -cd17207 340727 cl28922 355798 -cd17208 340728 cl28922 355798 -cd17209 340729 cl28922 355798 -cd17210 340730 cl28922 355798 -cd17211 340731 cl28922 355798 -cd17212 340732 cl28922 355798 -cd17213 340733 cl28922 355798 -cd17214 340734 cl28922 355798 -cd17215 340735 cl28922 355798 -cd17216 340736 cl28922 355798 -cd17217 340737 cl28922 355798 -cd17218 340738 cl28922 355798 -cd17219 340739 cl28922 355798 -cd17220 340740 cl28922 355798 -cd17221 340741 cl28922 355798 -cd17222 340742 cl28922 355798 -cd17223 340743 cl28922 355798 -cd17224 340744 cl28922 355798 -cd17225 340745 cl28922 355798 -cd17226 340746 cl28922 355798 -cd17227 340747 cl28922 355798 -cd17228 340748 cl28922 355798 -cd17229 340749 cl28922 355798 -cd17230 340750 cl28922 355798 -cd17231 340751 cl28922 355798 -cd17232 340752 cl28922 355798 -cd17233 340753 cl28922 355798 -cd17234 340754 cl28922 355798 -cd17235 340755 cl28922 355798 -cd17236 340756 cl28922 355798 -cd17237 340757 cl28922 355798 -cd17238 340758 cl28922 355798 -cd17239 340759 cl28922 355798 -cd17240 340760 cl28922 355798 -cd17241 340761 cl28922 355798 -cd17505 340762 cl28922 355798 -cd17506 340763 cl28922 355798 -cd00197 340764 cl02544 351795 -cd03561 340765 cl02544 351795 -cd03562 340766 cl02544 351795 -cd03564 340767 cl02544 351795 -cd03565 340768 cl02544 351795 -cd03567 340769 cl02544 351795 -cd03568 340770 cl02544 351795 -cd03569 340771 cl02544 351795 -cd03571 340772 cl02544 351795 -cd03572 340773 cl02544 351795 -cd16977 340774 cl02544 351795 -cd16978 340775 cl02544 351795 -cd16979 340776 cl02544 351795 -cd16980 340777 cl02544 351795 -cd16981 340778 cl02544 351795 -cd16982 340779 cl02544 351795 -cd16983 340780 cl02544 351795 -cd16984 340781 cl02544 351795 -cd16985 340782 cl02544 351795 -cd16986 340783 cl02544 351795 -cd16987 340784 cl02544 351795 -cd16988 340785 cl02544 351795 -cd16989 340786 cl02544 351795 -cd16990 340787 cl02544 351795 -cd16991 340788 cl02544 351795 -cd16992 340789 cl02544 351795 -cd16993 340790 cl02544 351795 -cd16994 340791 cl02544 351795 -cd16995 340792 cl02544 351795 -cd16996 340793 cl02544 351795 -cd16997 340794 cl02544 351795 -cd16998 340795 cl02544 351795 -cd16999 340796 cl02544 351795 -cd17000 340797 cl02544 351795 -cd17001 340798 cl02544 351795 -cd17002 340799 cl02544 351795 -cd17003 340800 cl02544 351795 -cd17004 340801 cl02544 351795 -cd17005 340802 cl02544 351795 -cd17006 340803 cl02544 351795 -cd17007 340804 cl02544 351795 -cd17008 340805 cl02544 351795 -cd17009 340806 cl02544 351795 -cd17010 340807 cl02544 351795 -cd17011 340808 cl02544 351795 -cd17012 340809 cl02544 351795 -cd17013 340810 cl02544 351795 -cd17014 340811 cl02544 351795 -cd00529 340812 cl21482 354829 -cd16962 340813 cl21482 354829 -cd16963 340814 cl21482 354829 -cd16964 340815 cl21482 354829 -cd01635 340816 cl10013 353042 -cd03784 340817 cl10013 353042 -cd03785 340818 cl10013 353042 -cd03786 340819 cl10013 353042 -cd03788 340820 cl10013 353042 -cd03789 340821 cl10013 353042 -cd03791 340822 cl10013 353042 -cd03792 340823 cl10013 353042 -cd03793 340824 cl10013 353042 -cd03794 340825 cl10013 353042 -cd03795 340826 cl10013 353042 -cd03796 340827 cl10013 353042 -cd03798 340828 cl10013 353042 -cd03799 340829 cl10013 353042 -cd03800 340830 cl10013 353042 -cd03801 340831 cl10013 353042 -cd03802 340832 cl10013 353042 -cd03804 340833 cl10013 353042 -cd03805 340834 cl10013 353042 -cd03806 340835 cl10013 353042 -cd03807 340836 cl10013 353042 -cd03808 340837 cl10013 353042 -cd03809 340838 cl10013 353042 -cd03811 340839 cl10013 353042 -cd03812 340840 cl10013 353042 -cd03813 340841 cl10013 353042 -cd03814 340842 cl10013 353042 -cd03816 340843 cl10013 353042 -cd03817 340844 cl10013 353042 -cd03818 340845 cl10013 353042 -cd03819 340846 cl10013 353042 -cd03820 340847 cl10013 353042 -cd03821 340848 cl10013 353042 -cd03822 340849 cl10013 353042 -cd03823 340850 cl10013 353042 -cd03825 340851 cl10013 353042 -cd04299 340852 cl10013 353042 -cd04300 340853 cl10013 353042 -cd04946 340854 cl10013 353042 -cd04949 340855 cl10013 353042 -cd04950 340856 cl10013 353042 -cd04951 340857 cl10013 353042 -cd04955 340858 cl10013 353042 -cd04962 340859 cl10013 353042 -cd05844 340860 cl10013 353042 -cd17507 340861 cl10013 353042 -cd06172 340862 cl28910 355786 -cd06173 340863 cl28910 355786 -cd06175 340865 cl28910 355786 -cd06177 340866 cl28910 355786 -cd06178 340867 cl28910 355786 -cd06179 340868 cl28910 355786 -cd06180 340869 cl28910 355786 -cd17312 340870 cl28910 355786 -cd17313 340871 cl28910 355786 -cd17314 340872 cl28910 355786 -cd17315 340873 cl28910 355786 -cd17316 340874 cl28910 355786 -cd17317 340875 cl28910 355786 -cd17318 340876 cl28910 355786 -cd17319 340877 cl28910 355786 -cd17320 340878 cl28910 355786 -cd17321 340879 cl28910 355786 -cd17322 340880 cl28910 355786 -cd17323 340881 cl28910 355786 -cd17324 340882 cl28910 355786 -cd17325 340883 cl28910 355786 -cd17326 340884 cl28910 355786 -cd17327 340885 cl28910 355786 -cd17328 340886 cl28910 355786 -cd17329 340887 cl28910 355786 -cd17330 340888 cl28910 355786 -cd17331 340889 cl28910 355786 -cd17332 340890 cl28910 355786 -cd17333 340891 cl28910 355786 -cd17334 340892 cl28910 355786 -cd17335 340893 cl28910 355786 -cd17336 340894 cl28910 355786 -cd17337 340895 cl28910 355786 -cd17338 340896 cl28910 355786 -cd17339 340897 cl28910 355786 -cd17340 340898 cl28910 355786 -cd17341 340899 cl28910 355786 -cd17342 340900 cl28910 355786 -cd17343 340901 cl28910 355786 -cd17344 340902 cl28910 355786 -cd17345 340903 cl28910 355786 -cd17346 340904 cl28910 355786 -cd17347 340905 cl28910 355786 -cd17348 340906 cl28910 355786 -cd17349 340907 cl28910 355786 -cd17350 340908 cl28910 355786 -cd17351 340909 cl28910 355786 -cd17352 340910 cl28910 355786 -cd17353 340911 cl28910 355786 -cd17354 340912 cl28910 355786 -cd17355 340913 cl28910 355786 -cd17356 340914 cl28910 355786 -cd17357 340915 cl28910 355786 -cd17358 340916 cl28910 355786 -cd17359 340917 cl28910 355786 -cd17360 340918 cl28910 355786 -cd17361 340919 cl28910 355786 -cd17362 340920 cl28910 355786 -cd17363 340921 cl28910 355786 -cd17364 340922 cl28910 355786 -cd17365 340923 cl28910 355786 -cd17366 340924 cl28910 355786 -cd17367 340925 cl28910 355786 -cd17368 340926 cl28910 355786 -cd17369 340927 cl28910 355786 -cd17370 340928 cl28910 355786 -cd17371 340929 cl28910 355786 -cd17372 340930 cl28910 355786 -cd17373 340931 cl28910 355786 -cd17374 340932 cl28910 355786 -cd17375 340933 cl28910 355786 -cd17376 340934 cl28910 355786 -cd17377 340935 cl28910 355786 -cd17378 340936 cl28910 355786 -cd17379 340937 cl28910 355786 -cd17380 340938 cl28910 355786 -cd17381 340939 cl28910 355786 -cd17382 340940 cl28910 355786 -cd17383 340941 cl28910 355786 -cd17384 340942 cl28910 355786 -cd17385 340943 cl28910 355786 -cd17386 340944 cl28910 355786 -cd17387 340945 cl28910 355786 -cd17388 340946 cl28910 355786 -cd17389 340947 cl28910 355786 -cd17390 340948 cl28910 355786 -cd17391 340949 cl28910 355786 -cd17392 340950 cl28910 355786 -cd17393 340951 cl28910 355786 -cd17394 340952 cl28910 355786 -cd17395 340953 cl28910 355786 -cd17396 340954 cl28910 355786 -cd17397 340955 cl28910 355786 -cd17398 340956 cl28910 355786 -cd17399 340957 cl28910 355786 -cd17400 340958 cl28910 355786 -cd17401 340959 cl28910 355786 -cd17402 340960 cl28910 355786 -cd17403 340961 cl28910 355786 -cd17404 340962 cl28910 355786 -cd17405 340963 cl28910 355786 -cd17406 340964 cl28910 355786 -cd17407 340965 cl28910 355786 -cd17408 340966 cl28910 355786 -cd17409 340967 cl28910 355786 -cd17410 340968 cl28910 355786 -cd17411 340969 cl28910 355786 -cd17412 340970 cl28910 355786 -cd17413 340971 cl28910 355786 -cd17414 340972 cl28910 355786 -cd17415 340973 cl28910 355786 -cd17416 340974 cl28910 355786 -cd17417 340975 cl28910 355786 -cd17418 340976 cl28910 355786 -cd17419 340977 cl28910 355786 -cd17420 340978 cl28910 355786 -cd17421 340979 cl28910 355786 -cd17422 340980 cl28910 355786 -cd17423 340981 cl28910 355786 -cd17424 340982 cl28910 355786 -cd17425 340983 cl28910 355786 -cd17426 340984 cl28910 355786 -cd17427 340985 cl28910 355786 -cd17428 340986 cl28910 355786 -cd17429 340987 cl28910 355786 -cd17430 340988 cl28910 355786 -cd17431 340989 cl28910 355786 -cd17432 340990 cl28910 355786 -cd17433 340991 cl28910 355786 -cd17434 340992 cl28910 355786 -cd17435 340993 cl28910 355786 -cd17436 340994 cl28910 355786 -cd17437 340995 cl28910 355786 -cd17438 340996 cl28910 355786 -cd17439 340997 cl28910 355786 -cd17440 340998 cl28910 355786 -cd17441 340999 cl28910 355786 -cd17442 341000 cl28910 355786 -cd17443 341001 cl28910 355786 -cd17444 341002 cl28910 355786 -cd17445 341003 cl28910 355786 -cd17446 341004 cl28910 355786 -cd17447 341005 cl28910 355786 -cd17448 341006 cl28910 355786 -cd17449 341007 cl28910 355786 -cd17450 341008 cl28910 355786 -cd17451 341009 cl28910 355786 -cd17452 341010 cl28910 355786 -cd17453 341011 cl28910 355786 -cd17454 341012 cl28910 355786 -cd17455 341013 cl28910 355786 -cd17456 341014 cl28910 355786 -cd17457 341015 cl28910 355786 -cd17458 341016 cl28910 355786 -cd17459 341017 cl28910 355786 -cd17460 341018 cl28910 355786 -cd17461 341019 cl28910 355786 -cd17462 341020 cl28910 355786 -cd17463 341021 cl28910 355786 -cd17464 341022 cl28910 355786 -cd17465 341023 cl28910 355786 -cd17471 341024 cl28910 355786 -cd17472 341025 cl28910 355786 -cd17473 341026 cl28910 355786 -cd17474 341027 cl28910 355786 -cd17475 341028 cl28910 355786 -cd17476 341029 cl28910 355786 -cd17477 341030 cl28910 355786 -cd17478 341031 cl28910 355786 -cd17479 341032 cl28910 355786 -cd17480 341033 cl28910 355786 -cd17481 341034 cl28910 355786 -cd17482 341035 cl28910 355786 -cd17483 341036 cl28910 355786 -cd17484 341037 cl28910 355786 -cd17485 341038 cl28910 355786 -cd17486 341039 cl28910 355786 -cd17487 341040 cl28910 355786 -cd17488 341041 cl28910 355786 -cd17489 341042 cl28910 355786 -cd17490 341043 cl28910 355786 -cd17491 341044 cl28910 355786 -cd17502 341045 cl28910 355786 -cd17503 341046 cl28910 355786 -cd17504 341047 cl28910 355786 -cd02699 341048 cl14813 353839 -cd06258 341049 cl14813 353839 -cd06455 341050 cl14813 353839 -cd06456 341051 cl14813 353839 -cd06457 341052 cl14813 353839 -cd06459 341053 cl14813 353839 -cd06460 341054 cl14813 353839 -cd06461 341055 cl14813 353839 -cd08662 341056 cl14813 353839 -cd09594 341057 cl14813 353839 -cd09595 341058 cl14813 353839 -cd09596 341059 cl14813 353839 -cd09597 341060 cl14813 353839 -cd09598 341061 cl14813 353839 -cd09599 341062 cl14813 353839 -cd09600 341063 cl14813 353839 -cd09601 341064 cl14813 353839 -cd09602 341065 cl14813 353839 -cd09603 341066 cl14813 353839 -cd09604 341067 cl14813 353839 -cd09605 341068 cl14813 353839 -cd09606 341069 cl14813 353839 -cd09607 341070 cl14813 353839 -cd09608 341071 cl14813 353839 -cd09609 341072 cl14813 353839 -cd09610 341073 cl14813 353839 -cd09839 341074 cl14813 353839 -cd14786 341075 cl28921 355797 -cd16851 341076 cl28921 355797 -cd16852 341077 cl28921 355797 -cd16853 341078 cl28921 355797 -cd16854 341079 cl28921 355797 -cd16855 341080 cl28921 355797 -cd16856 341081 cl28921 355797 -cd14801 341082 cl28920 355796 -cd16845 341083 cl28920 355796 -cd16846 341084 cl28920 355796 -cd16847 341085 cl28920 355796 -cd16848 341086 cl28920 355796 -cd16849 341087 cl28920 355796 -cd16850 341088 cl28920 355796 -cd16101 341089 cl28919 355795 -cd16857 341090 cl28919 355795 -cd16858 341091 cl28919 355795 -cd16859 341092 cl28919 355795 -cd16860 341093 cl28919 355795 -cd16861 341094 cl28919 355795 -cd16862 341095 cl28919 355795 -cd16863 341096 cl28919 355795 -cd17015 341097 cl28919 355795 -cd17016 341098 cl28919 355795 -cd17017 341099 cl28919 355795 -cd16364 341100 cl38901 365777 -cd17018 341101 cl38901 365777 -cd17019 341102 cl38901 365777 -cd17020 341103 cl38901 365777 -cd17021 341104 cl38901 365777 -cd17022 341105 cl38901 365777 -cd17023 341106 cl38901 365777 -cd17024 341107 cl38901 365777 -cd17025 341108 cl38901 365777 -cd17026 341109 cl38901 365777 -cd17027 341110 cl38901 365777 -cd17028 341111 cl38901 365777 -cd17029 341112 cl38901 365777 -cd17030 341113 cl38901 365777 -cd17031 341114 cl38901 365777 -cd17032 341115 cl38901 365777 -cd17033 341116 cl38901 365777 -cd17034 341117 cl38901 365777 -cd17035 341118 cl38901 365777 -cd17036 341119 cl38901 365777 -cd17037 341120 cl38901 365777 -cd17510 341121 cl38901 365777 -cd17511 341122 cl38901 365777 -cd16887 341123 cl38902 365778 -cd16905 341124 cl38902 365778 -cd16906 341125 cl38902 365778 -cd16907 341126 cl38902 365778 -cd16908 341127 cl38902 365778 -cd16909 341128 cl38902 365778 -cd16910 341129 cl38902 365778 -cd16913 341130 cl29044 355920 -cd16961 341131 cl38903 365779 -cd17243 341132 cl38903 365779 -cd17244 341133 cl38903 365779 -cd17245 341134 cl38903 365779 -cd17246 341135 cl38903 365779 -cd17247 341136 cl38903 365779 -cd17248 341137 cl38903 365779 -cd17249 341138 cl38903 365779 -cd17250 341139 cl38903 365779 -cd17251 341140 cl38903 365779 -cd17252 341141 cl38903 365779 -cd17253 341142 cl38903 365779 -cd17254 341143 cl38903 365779 -cd17255 341144 cl38903 365779 -cd17256 341145 cl38903 365779 -cd17257 341146 cl38903 365779 -cd17258 341147 cl38903 365779 -cd17259 341148 cl38903 365779 -cd17260 341149 cl38903 365779 -cd17261 341150 cl38903 365779 -cd17262 341151 cl38903 365779 -cd17263 341152 cl38903 365779 -cd17264 341153 cl38903 365779 -cd17265 341154 cl38903 365779 -cd17266 341155 cl38903 365779 -cd17267 341156 cl38903 365779 -cd17268 341157 cl38903 365779 -cd17269 341158 cl38903 365779 -cd17270 341159 cl38903 365779 -cd17271 341160 cl38903 365779 -cd17272 341161 cl38903 365779 -cd17273 341162 cl38903 365779 -cd17274 341163 cl38903 365779 -cd17275 341164 cl38903 365779 -cd17276 341165 cl38903 365779 -cd17277 341166 cl38903 365779 -cd17278 341167 cl38903 365779 -cd17279 341168 cl38903 365779 -cd17280 341169 cl38903 365779 -cd17281 341170 cl38903 365779 -cd17282 341171 cl38903 365779 -cd17283 341172 cl38903 365779 -cd17284 341173 cl38903 365779 -cd17285 341174 cl38903 365779 -cd17286 341175 cl38903 365779 -cd17287 341176 cl38903 365779 -cd17288 341177 cl38903 365779 -cd17289 341178 cl38903 365779 -cd17290 341179 cl38903 365779 -cd17291 341180 cl38903 365779 -cd17292 341181 cl38903 365779 -cd17293 341182 cl38903 365779 -cd17294 341183 cl38903 365779 -cd17296 341184 cl38903 365779 -cd17494 341185 cl38903 365779 -cd17495 341186 cl38903 365779 -cd17496 341187 cl38903 365779 -cd17497 341188 cl38903 365779 -cd17498 341189 cl38903 365779 -cd17499 341190 cl38903 365779 -cd17500 341191 cl38903 365779 -cd17501 341192 cl38903 365779 -cd17512 341193 cl38903 365779 -cd17513 341194 cl38903 365779 -cd17514 341195 cl38903 365779 -cd17515 341196 cl38903 365779 -cd17516 341197 cl38903 365779 -cd17517 341198 cl38903 365779 -cd17518 341199 cl38903 365779 -cd17519 341200 cl38903 365779 -cd17520 341201 cl38903 365779 -cd17521 341202 cl38903 365779 -cd17522 341203 cl38903 365779 -cd17523 341204 cl38903 365779 -cd17524 341205 cl38903 365779 -cd17525 341206 cl38903 365779 -cd17526 341207 cl38903 365779 -cd17038 341208 cl03065 351936 -cd17297 341209 cl38904 365780 -cd17298 341210 cl38904 365780 -cd17299 341211 cl38904 365780 -cd17492 341212 cd17492 341212 -cd17493 341213 cd17493 341213 -cd04515 341214 cl28917 355793 -cd16965 341215 cl28917 355793 -cd16966 341216 cl28917 355793 -cd16967 341217 cl28917 355793 -cd16968 341218 cl28917 355793 -cd16969 341219 cl28917 355793 -cd16970 341220 cl28917 355793 -cd16971 341221 cl28917 355793 -cd16972 341222 cl28917 355793 -cd16973 341223 cl28917 355793 -cd16974 341224 cl28917 355793 -cd17508 341225 cl28917 355793 -cd17509 341226 cl28917 355793 -PRK14756 341227 PRK14756 341227 -cd04433 341228 cl17068 354307 -cd05903 341229 cl17068 354307 -cd05904 341230 cl17068 354307 -cd05905 341231 cl17068 354307 -cd05906 341232 cl17068 354307 -cd05907 341233 cl17068 354307 -cd05908 341234 cl17068 354307 -cd05909 341235 cl17068 354307 -cd05910 341236 cl17068 354307 -cd05911 341237 cl17068 354307 -cd05912 341238 cl17068 354307 -cd05913 341239 cl17068 354307 -cd05914 341240 cl17068 354307 -cd05917 341241 cl17068 354307 -cd05918 341242 cl17068 354307 -cd05919 341243 cl17068 354307 -cd05920 341244 cl17068 354307 -cd05921 341245 cl17068 354307 -cd05922 341246 cl17068 354307 -cd05923 341247 cl17068 354307 -cd05924 341248 cl17068 354307 -cd05926 341249 cl17068 354307 -cd05927 341250 cl17068 354307 -cd05928 341251 cl17068 354307 -cd05929 341252 cl17068 354307 -cd05930 341253 cl17068 354307 -cd05931 341254 cl17068 354307 -cd05932 341255 cl17068 354307 -cd05933 341256 cl17068 354307 -cd05934 341257 cl17068 354307 -cd05935 341258 cl17068 354307 -cd05936 341259 cl17068 354307 -cd05937 341260 cl17068 354307 -cd05938 341261 cl17068 354307 -cd05939 341262 cl17068 354307 -cd05940 341263 cl17068 354307 -cd05941 341264 cl17068 354307 -cd05943 341265 cl17068 354307 -cd05944 341266 cl17068 354307 -cd05945 341267 cl17068 354307 -cd05958 341268 cl17068 354307 -cd05959 341269 cl17068 354307 -cd05966 341270 cl17068 354307 -cd05967 341271 cl17068 354307 -cd05968 341272 cl17068 354307 -cd05969 341273 cl17068 354307 -cd05970 341274 cl17068 354307 -cd05971 341275 cl17068 354307 -cd05972 341276 cl17068 354307 -cd05973 341277 cl17068 354307 -cd05974 341278 cl17068 354307 -cd12114 341279 cl17068 354307 -cd12115 341280 cl17068 354307 -cd12116 341281 cl17068 354307 -cd12117 341282 cl17068 354307 -cd12118 341283 cl17068 354307 -cd12119 341284 cl17068 354307 -cd17630 341285 cl17068 354307 -cd17631 341286 cl17068 354307 -cd17632 341287 cl17068 354307 -cd17633 341288 cl17068 354307 -cd17634 341289 cl17068 354307 -cd17635 341290 cl17068 354307 -cd17636 341291 cl17068 354307 -cd17637 341292 cl17068 354307 -cd17638 341293 cl17068 354307 -cd17639 341294 cl17068 354307 -cd17640 341295 cl17068 354307 -cd17641 341296 cl17068 354307 -cd17642 341297 cl17068 354307 -cd17643 341298 cl17068 354307 -cd17644 341299 cl17068 354307 -cd17645 341300 cl17068 354307 -cd17646 341301 cl17068 354307 -cd17647 341302 cl17068 354307 -cd17648 341303 cl17068 354307 -cd17649 341304 cl17068 354307 -cd17650 341305 cl17068 354307 -cd17651 341306 cl17068 354307 -cd17652 341307 cl17068 354307 -cd17653 341308 cl17068 354307 -cd17654 341309 cl17068 354307 -cd17655 341310 cl17068 354307 -cd17656 341311 cl17068 354307 -cd14267 341312 cd14267 341312 -cd00637 341313 cl28897 355774 -cd13952 341314 cl28897 355774 -cd14964 341315 cl28897 355774 -cd14968 341316 cl28897 355774 -cd14972 341317 cl28897 355774 -cd14982 341318 cl28897 355774 -cd14984 341319 cl28897 355774 -cd14985 341320 cl28897 355774 -cd15041 341321 cl28897 355774 -cd15049 341322 cl28897 355774 -cd15071 341323 cl28897 355774 -cd15080 341324 cl28897 355774 -cd15101 341325 cl28897 355774 -cd15150 341326 cl28897 355774 -cd15151 341327 cl28897 355774 -cd15162 341328 cl28897 355774 -cd15168 341329 cl28897 355774 -cd15172 341330 cl28897 355774 -cd15175 341331 cl28897 355774 -cd15177 341332 cl28897 355774 -cd15178 341333 cl28897 355774 -cd15179 341334 cl28897 355774 -cd15180 341335 cl28897 355774 -cd15181 341336 cl28897 355774 -cd15182 341337 cl28897 355774 -cd15184 341338 cl28897 355774 -cd15185 341339 cl28897 355774 -cd15190 341340 cl28897 355774 -cd15191 341341 cl28897 355774 -cd15268 341342 cl28897 355774 -cd15274 341343 cl28897 355774 -cd15298 341344 cl28897 355774 -cd15304 341345 cl28897 355774 -cd15305 341346 cl28897 355774 -cd15306 341347 cl28897 355774 -cd15344 341348 cl28897 355774 -cd15370 341349 cl28897 355774 -cd15377 341350 cl28897 355774 -cd15917 341351 cl28897 355774 -cd15924 341352 cl28897 355774 -cd15929 341353 cl28897 355774 -cd15953 341354 cl28897 355774 -cd15957 341355 cl28897 355774 -cd17790 341356 cl28897 355774 -cd16382 341357 cl07462 352746 -cd02205 341358 cl15354 353934 -cd04582 341359 cl15354 353934 -cd04583 341360 cl15354 353934 -cd04584 341361 cl15354 353934 -cd04586 341362 cl15354 353934 -cd04587 341363 cl15354 353934 -cd04588 341364 cl15354 353934 -cd04589 341365 cl15354 353934 -cd04590 341366 cl15354 353934 -cd04591 341367 cl15354 353934 -cd04592 341368 cl15354 353934 -cd04594 341369 cl15354 353934 -cd04595 341370 cl15354 353934 -cd04596 341371 cl15354 353934 -cd04597 341372 cl15354 353934 -cd04598 341373 cl15354 353934 -cd04599 341374 cl15354 353934 -cd04600 341375 cl15354 353934 -cd04601 341376 cl15354 353934 -cd04603 341377 cl15354 353934 -cd04604 341378 cl15354 353934 -cd04605 341379 cl15354 353934 -cd04606 341380 cl15354 353934 -cd04607 341381 cl15354 353934 -cd04608 341382 cl15354 353934 -cd04610 341383 cl15354 353934 -cd04611 341384 cl15354 353934 -cd04613 341385 cl15354 353934 -cd04614 341386 cl15354 353934 -cd04617 341387 cl15354 353934 -cd04618 341388 cl15354 353934 -cd04620 341389 cl15354 353934 -cd04622 341390 cl15354 353934 -cd04623 341391 cl15354 353934 -cd04629 341392 cl15354 353934 -cd04630 341393 cl15354 353934 -cd04631 341394 cl15354 353934 -cd04632 341395 cl15354 353934 -cd04638 341396 cl15354 353934 -cd04639 341397 cl15354 353934 -cd04640 341398 cl15354 353934 -cd04641 341399 cl15354 353934 -cd04643 341400 cl15354 353934 -cd04801 341401 cl15354 353934 -cd09831 341402 cl15354 353934 -cd09833 341403 cl15354 353934 -cd09834 341404 cl15354 353934 -cd09836 341405 cl15354 353934 -cd09837 341406 cl15354 353934 -cd17771 341407 cl15354 353934 -cd17772 341408 cl15354 353934 -cd17773 341409 cl15354 353934 -cd17774 341410 cl15354 353934 -cd17775 341411 cl15354 353934 -cd17776 341412 cl15354 353934 -cd17777 341413 cl15354 353934 -cd17778 341414 cl15354 353934 -cd17779 341415 cl15354 353934 -cd17780 341416 cl15354 353934 -cd17781 341417 cl15354 353934 -cd17782 341418 cl15354 353934 -cd17783 341419 cl15354 353934 -cd17784 341420 cl15354 353934 -cd17785 341421 cl15354 353934 -cd17786 341422 cl15354 353934 -cd17787 341423 cl15354 353934 -cd17788 341424 cl15354 353934 -cd17789 341425 cl15354 353934 -cd14818 341426 cl38905 365781 -cd14823 341427 cl38905 365781 -cd14824 341428 cl38905 365781 -cd14825 341429 cl38905 365781 -cd14826 341430 cl38905 365781 -cd14827 341431 cl38905 365781 -cd14828 341432 cl38905 365781 -cd14829 341433 cl38905 365781 -cd14830 341434 cl38905 365781 -cd14831 341435 cl38905 365781 -cd14832 341436 cl38905 365781 -cd14833 341437 cl38905 365781 -cd14834 341438 cl38905 365781 -cd14835 341439 cl38905 365781 -cd14836 341440 cl38905 365781 -cd14837 341441 cl38905 365781 -cd14838 341442 cl38905 365781 -cd14853 341443 cl38905 365781 -cd14854 341444 cl38905 365781 -cd14855 341445 cl38905 365781 -cd14856 341446 cl38905 365781 -cd07766 341447 cl02872 351912 -cd08169 341448 cl02872 351912 -cd08170 341449 cl02872 351912 -cd08171 341450 cl02872 351912 -cd08172 341451 cl02872 351912 -cd08173 341452 cl02872 351912 -cd08174 341453 cl02872 351912 -cd08175 341454 cl02872 351912 -cd08176 341455 cl02872 351912 -cd08177 341456 cl02872 351912 -cd08178 341457 cl02872 351912 -cd08179 341458 cl02872 351912 -cd08180 341459 cl02872 351912 -cd08181 341460 cl02872 351912 -cd08182 341461 cl02872 351912 -cd08183 341462 cl02872 351912 -cd08184 341463 cl02872 351912 -cd08185 341464 cl02872 351912 -cd08186 341465 cl02872 351912 -cd08187 341466 cl02872 351912 -cd08188 341467 cl02872 351912 -cd08189 341468 cl02872 351912 -cd08190 341469 cl02872 351912 -cd08191 341470 cl02872 351912 -cd08192 341471 cl02872 351912 -cd08193 341472 cl02872 351912 -cd08194 341473 cl02872 351912 -cd08195 341474 cl02872 351912 -cd08196 341475 cl02872 351912 -cd08197 341476 cl02872 351912 -cd08198 341477 cl02872 351912 -cd08199 341478 cl02872 351912 -cd08549 341479 cl02872 351912 -cd08550 341480 cl02872 351912 -cd08551 341481 cl02872 351912 -cd14860 341482 cl02872 351912 -cd14861 341483 cl02872 351912 -cd14862 341484 cl02872 351912 -cd14863 341485 cl02872 351912 -cd14864 341486 cl02872 351912 -cd14865 341487 cl02872 351912 -cd14866 341488 cl02872 351912 -cd17814 341489 cl02872 351912 -cd17791 341490 cl28916 355792 -cd17792 341491 cl28916 355792 -cd17793 341492 cl28916 355792 -cd17808 341493 cl28916 355792 -cd17809 341494 cl28916 355792 -cd00024 349274 cl28914 355790 -cd00034 349275 cl28914 355790 -cd18626 349276 cl28914 355790 -cd18627 349277 cl28914 355790 -cd18628 349278 cl28914 355790 -cd18629 349279 cl28914 355790 -cd18630 349280 cl28914 355790 -cd18631 349281 cl28914 355790 -cd18632 349282 cl28914 355790 -cd18633 349283 cl28914 355790 -cd18634 349284 cl28914 355790 -cd18635 349285 cl28914 355790 -cd18636 349286 cl28914 355790 -cd18637 349287 cl28914 355790 -cd18638 349288 cl28914 355790 -cd18639 349289 cl28914 355790 -cd18640 349290 cl28914 355790 -cd18644 349291 cl28914 355790 -cd18645 349292 cl28914 355790 -cd18646 349293 cl28914 355790 -cd18647 349294 cl28914 355790 -cd18648 349295 cl28914 355790 -cd18649 349296 cl28914 355790 -cd18650 349297 cl28914 355790 -cd18651 349298 cl28914 355790 -cd18652 349299 cl28914 355790 -cd18653 349300 cl28914 355790 -cd18654 349301 cl28914 355790 -cd18655 349302 cl28914 355790 -cd18656 349303 cl28914 355790 -cd18657 349304 cl28914 355790 -cd18658 349305 cl28914 355790 -cd18659 349306 cl28914 355790 -cd18660 349307 cl28914 355790 -cd18661 349308 cl28914 355790 -cd18662 349309 cl28914 355790 -cd18663 349310 cl28914 355790 -cd18664 349311 cl28914 355790 -cd18665 349312 cl28914 355790 -cd18666 349313 cl28914 355790 -cd18667 349314 cl28914 355790 -cd18668 349315 cl28914 355790 -cd18960 349316 cl28914 355790 -cd18961 349317 cl28914 355790 -cd18962 349318 cl28914 355790 -cd18963 349319 cl28914 355790 -cd18964 349320 cl28914 355790 -cd18965 349321 cl28914 355790 -cd18966 349322 cl28914 355790 -cd18967 349323 cl28914 355790 -cd18968 349324 cl28914 355790 -cd18969 349325 cl28914 355790 -cd18970 349326 cl28914 355790 -cd18971 349327 cl28914 355790 -cd18972 349328 cl28914 355790 -cd18973 349329 cl28914 355790 -cd18974 349330 cl28914 355790 -cd18975 349331 cl28914 355790 -cd18976 349332 cl28914 355790 -cd18977 349333 cl28914 355790 -cd18978 349334 cl28914 355790 -cd18979 349335 cl28914 355790 -cd18980 349336 cl28914 355790 -cd18981 349337 cl28914 355790 -cd18982 349338 cl28914 355790 -cd00027 349339 cl00038 350871 -cd17707 349340 cl00038 350871 -cd17709 349341 cl00038 350871 -cd17710 349342 cl00038 350871 -cd17711 349343 cl00038 350871 -cd17712 349344 cl00038 350871 -cd17713 349345 cl00038 350871 -cd17714 349346 cl00038 350871 -cd17715 349347 cl00038 350871 -cd17716 349348 cl00038 350871 -cd17717 349349 cl00038 350871 -cd17718 349350 cl00038 350871 -cd17719 349351 cl00038 350871 -cd17720 349352 cl00038 350871 -cd17721 349353 cl00038 350871 -cd17722 349354 cl00038 350871 -cd17723 349355 cl00038 350871 -cd17724 349356 cl00038 350871 -cd17725 349357 cl00038 350871 -cd17726 349358 cl00038 350871 -cd17727 349359 cl00038 350871 -cd17728 349360 cl00038 350871 -cd17729 349361 cl00038 350871 -cd17730 349362 cl00038 350871 -cd17731 349363 cl00038 350871 -cd17732 349364 cl00038 350871 -cd17733 349365 cl00038 350871 -cd17734 349366 cl00038 350871 -cd17735 349367 cl00038 350871 -cd17736 349368 cl00038 350871 -cd17737 349369 cl00038 350871 -cd17738 349370 cl00038 350871 -cd17740 349371 cl00038 350871 -cd17741 349372 cl00038 350871 -cd17742 349373 cl00038 350871 -cd17743 349374 cl00038 350871 -cd17744 349375 cl00038 350871 -cd17745 349376 cl00038 350871 -cd17746 349377 cl00038 350871 -cd17747 349378 cl00038 350871 -cd17748 349379 cl00038 350871 -cd17749 349380 cl00038 350871 -cd17750 349381 cl00038 350871 -cd17751 349382 cl00038 350871 -cd17752 349383 cl00038 350871 -cd18431 349384 cl00038 350871 -cd18432 349385 cl00038 350871 -cd18433 349386 cl00038 350871 -cd18434 349387 cl00038 350871 -cd18435 349388 cl00038 350871 -cd18436 349389 cl00038 350871 -cd18437 349390 cl00038 350871 -cd18438 349391 cl00038 350871 -cd18439 349392 cl00038 350871 -cd18440 349393 cl00038 350871 -cd18441 349394 cl00038 350871 -cd18442 349395 cl00038 350871 -cd18443 349396 cl00038 350871 -cd00168 349397 cl00133 350912 -cd05379 349398 cl00133 350912 -cd05380 349399 cl00133 350912 -cd05381 349400 cl00133 350912 -cd05382 349401 cl00133 350912 -cd05383 349402 cl00133 350912 -cd05384 349403 cl00133 350912 -cd05385 349404 cl00133 350912 -cd05559 349405 cl00133 350912 -cd18812 349406 cl00133 350912 -cd18813 349407 cl00133 350912 -cd18814 349408 cl00133 350912 -cd18815 349409 cl00133 350912 -cd18816 349410 cl00133 350912 -cd00310 349411 cd00310 349411 -cd00313 349412 cl38906 365782 -cd18120 349413 cl38906 365782 -cd18121 349414 cl38906 365782 -cd18175 349415 cl38906 365782 -cd18176 349416 cl38906 365782 -cd18177 349417 cl38906 365782 -cd18178 349418 cl38906 365782 -cd18179 349419 cl38906 365782 -cd18180 349420 cl38906 365782 -cd18181 349421 cl38906 365782 -cd18182 349422 cl38906 365782 -cd18183 349423 cl38906 365782 -cd18184 349424 cl38906 365782 -cd18185 349425 cl38906 365782 -cd00548 349426 cd00548 349426 -cd00596 349427 cl11393 353238 -cd03855 349428 cl11393 353238 -cd03856 349429 cl11393 353238 -cd03857 349430 cl11393 353238 -cd03858 349431 cl11393 353238 -cd03859 349432 cl11393 353238 -cd03860 349433 cl11393 353238 -cd03862 349434 cl11393 353238 -cd03863 349435 cl11393 353238 -cd03864 349436 cl11393 353238 -cd03865 349437 cl11393 353238 -cd03866 349438 cl11393 353238 -cd03867 349439 cl11393 353238 -cd03868 349440 cl11393 353238 -cd03869 349441 cl11393 353238 -cd03870 349442 cl11393 353238 -cd03871 349443 cl11393 353238 -cd03872 349444 cl11393 353238 -cd06226 349445 cl11393 353238 -cd06227 349446 cl11393 353238 -cd06228 349447 cl11393 353238 -cd06229 349448 cl11393 353238 -cd06230 349449 cl11393 353238 -cd06231 349450 cl11393 353238 -cd06232 349451 cl11393 353238 -cd06233 349452 cl11393 353238 -cd06234 349453 cl11393 353238 -cd06235 349454 cl11393 353238 -cd06236 349455 cl11393 353238 -cd06237 349456 cl11393 353238 -cd06238 349457 cl11393 353238 -cd06239 349458 cl11393 353238 -cd06240 349459 cl11393 353238 -cd06241 349460 cl11393 353238 -cd06242 349461 cl11393 353238 -cd06243 349462 cl11393 353238 -cd06244 349463 cl11393 353238 -cd06245 349464 cl11393 353238 -cd06246 349465 cl11393 353238 -cd06247 349466 cl11393 353238 -cd06248 349467 cl11393 353238 -cd06250 349468 cl11393 353238 -cd06251 349469 cl11393 353238 -cd06252 349470 cl11393 353238 -cd06253 349471 cl11393 353238 -cd06254 349472 cl11393 353238 -cd06255 349473 cl11393 353238 -cd06256 349474 cl11393 353238 -cd06904 349475 cl11393 353238 -cd06905 349476 cl11393 353238 -cd06906 349477 cl11393 353238 -cd06907 349478 cl11393 353238 -cd06908 349479 cl11393 353238 -cd06909 349480 cl11393 353238 -cd06910 349481 cl11393 353238 -cd18172 349482 cl11393 353238 -cd18173 349483 cl11393 353238 -cd18174 349484 cl11393 353238 -cd18429 349485 cl11393 353238 -cd18430 349486 cl11393 353238 -cd00855 349487 cl38907 365783 -cd10566 349488 cl38907 365783 -cd10567 349489 cl38907 365783 -cd10568 349490 cl38907 365783 -cd17672 349491 cl38907 365783 -cd17673 349492 cl38907 365783 -cd17674 349493 cl38907 365783 -cd17675 349494 cl38907 365783 -cd17676 349495 cl38907 365783 -cd01165 349496 cl38908 365784 -cd18186 349497 cl38908 365784 -cd18187 349498 cl38908 365784 -cd18190 349499 cl38908 365784 -cd18191 349500 cl38908 365784 -cd18192 349501 cl38908 365784 -cd18193 349502 cl38908 365784 -cd18194 349503 cl38908 365784 -cd18195 349504 cl38908 365784 -cd18196 349505 cl38908 365784 -cd18197 349506 cl38908 365784 -cd18198 349507 cl38908 365784 -cd18199 349508 cl38908 365784 -cd18200 349509 cl38908 365784 -cd18201 349510 cl38908 365784 -cd18202 349511 cl38908 365784 -cd18203 349512 cl38908 365784 -cd18204 349513 cl38908 365784 -cd18205 349514 cl38908 365784 -cd18206 349515 cl38908 365784 -cd18207 349516 cl38908 365784 -cd18208 349517 cl38908 365784 -cd18209 349518 cl38908 365784 -cd18210 349519 cl38908 365784 -cd18211 349520 cl38908 365784 -cd18212 349521 cl38908 365784 -cd18213 349522 cl38908 365784 -cd18214 349523 cl38908 365784 -cd18215 349524 cl38908 365784 -cd18216 349525 cl38908 365784 -cd18217 349526 cl38908 365784 -cd18218 349527 cl38908 365784 -cd18219 349528 cl38908 365784 -cd18220 349529 cl38908 365784 -cd18221 349530 cl38908 365784 -cd18222 349531 cl38908 365784 -cd18223 349532 cl38908 365784 -cd18224 349533 cl38908 365784 -cd18225 349534 cl38908 365784 -cd18226 349535 cl38908 365784 -cd18227 349536 cl38908 365784 -cd18228 349537 cl38908 365784 -cd18229 349538 cl38908 365784 -cd18230 349539 cl38908 365784 -cd18231 349540 cl38908 365784 -cd18232 349541 cl38908 365784 -cd18233 349542 cl38908 365784 -cd18234 349543 cl38908 365784 -cd18235 349544 cl38908 365784 -cd18236 349545 cl38908 365784 -cd18237 349546 cl38908 365784 -cd18238 349547 cl38908 365784 -cd18239 349548 cl38908 365784 -cd18240 349549 cl38908 365784 -cd18241 349550 cl38908 365784 -cd18242 349551 cl38908 365784 -cd18243 349552 cl38908 365784 -cd18244 349553 cl38908 365784 -cd18245 349554 cl38908 365784 -cd18246 349555 cl38908 365784 -cd18247 349556 cl38908 365784 -cd18248 349557 cl38908 365784 -cd18249 349558 cl38908 365784 -cd18250 349559 cl38908 365784 -cd18251 349560 cl38908 365784 -cd18252 349561 cl38908 365784 -cd18253 349562 cl38908 365784 -cd18254 349563 cl38908 365784 -cd18255 349564 cl38908 365784 -cd18256 349565 cl38908 365784 -cd18257 349566 cl38908 365784 -cd18258 349567 cl38908 365784 -cd18259 349568 cl38908 365784 -cd18260 349569 cl38908 365784 -cd18261 349570 cl38908 365784 -cd18262 349571 cl38908 365784 -cd18263 349572 cl38908 365784 -cd18264 349573 cl38908 365784 -cd18265 349574 cl38908 365784 -cd18266 349575 cl38908 365784 -cd18267 349576 cl38908 365784 -cd18268 349577 cl38908 365784 -cd18269 349578 cl38908 365784 -cd18270 349579 cl38908 365784 -cd18271 349580 cl38908 365784 -cd18272 349581 cl38908 365784 -cd18273 349582 cl38908 365784 -cd18274 349583 cl38908 365784 -cd18275 349584 cl38908 365784 -cd18276 349585 cl38908 365784 -cd18277 349586 cl38908 365784 -cd18278 349587 cl38908 365784 -cd18279 349588 cl38908 365784 -cd18280 349589 cl38908 365784 -cd18281 349590 cl38908 365784 -cd18282 349591 cl38908 365784 -cd18283 349592 cl38908 365784 -cd18284 349593 cl38908 365784 -cd18285 349594 cl38908 365784 -cd18286 349595 cl38908 365784 -cd18287 349596 cl38908 365784 -cd18288 349597 cl38908 365784 -cd18289 349598 cl38908 365784 -cd18290 349599 cl38908 365784 -cd18291 349600 cl38908 365784 -cd18292 349601 cl38908 365784 -cd18293 349602 cl38908 365784 -cd18294 349603 cl38908 365784 -cd18295 349604 cl38908 365784 -cd18296 349605 cl38908 365784 -cd18297 349606 cl38908 365784 -cd18298 349607 cl38908 365784 -cd18299 349608 cl38908 365784 -cd18300 349609 cl38908 365784 -cd18301 349610 cl38908 365784 -cd18302 349611 cl38908 365784 -cd18303 349612 cl38908 365784 -cd18304 349613 cl38908 365784 -cd18305 349614 cl38908 365784 -cd18306 349615 cl38908 365784 -cd18307 349616 cl38908 365784 -cd18308 349617 cl38908 365784 -cd18309 349618 cl38908 365784 -cd18310 349619 cl38908 365784 -cd18311 349620 cl38908 365784 -cd18312 349621 cl38908 365784 -cd18313 349622 cl38908 365784 -cd18314 349623 cl38908 365784 -cd18315 349624 cl38908 365784 -cd18316 349625 cl38908 365784 -cd18317 349626 cl38908 365784 -cd18318 349627 cl38908 365784 -cd18319 349628 cl38908 365784 -cd18320 349629 cl38908 365784 -cd18321 349630 cl38908 365784 -cd18322 349631 cl38908 365784 -cd18323 349632 cl38908 365784 -cd18324 349633 cl38908 365784 -cd18325 349634 cl38908 365784 -cd18326 349635 cl38908 365784 -cd18327 349636 cl38908 365784 -cd18328 349637 cl38908 365784 -cd18329 349638 cl38908 365784 -cd18330 349639 cl38908 365784 -cd18331 349640 cl38908 365784 -cd18332 349641 cl38908 365784 -cd18333 349642 cl38908 365784 -cd18334 349643 cl38908 365784 -cd18335 349644 cl38908 365784 -cd18336 349645 cl38908 365784 -cd18337 349646 cl38908 365784 -cd18338 349647 cl38908 365784 -cd18339 349648 cl38908 365784 -cd18340 349649 cl38908 365784 -cd18341 349650 cl38908 365784 -cd18342 349651 cl38908 365784 -cd18343 349652 cl38908 365784 -cd18344 349653 cl38908 365784 -cd18345 349654 cl38908 365784 -cd18346 349655 cl38908 365784 -cd18347 349656 cl38908 365784 -cd18348 349657 cl38908 365784 -cd18349 349658 cl38908 365784 -cd18350 349659 cl38908 365784 -cd18351 349660 cl38908 365784 -cd18352 349661 cl38908 365784 -cd18353 349662 cl38908 365784 -cd18354 349663 cl38908 365784 -cd18355 349664 cl38908 365784 -cd18356 349665 cl38908 365784 -cd18357 349666 cl38908 365784 -cd18358 349667 cl38908 365784 -cd18359 349668 cl38908 365784 -cd18360 349669 cl38908 365784 -cd18361 349670 cl38908 365784 -cd18362 349671 cl38908 365784 -cd18363 349672 cl38908 365784 -cd18364 349673 cl38908 365784 -cd18365 349674 cl38908 365784 -cd18366 349675 cl38908 365784 -cd18367 349676 cl38908 365784 -cd18368 349677 cl38908 365784 -cd18369 349678 cl38908 365784 -cd18370 349679 cl38908 365784 -cd18371 349680 cl38908 365784 -cd18372 349681 cl38908 365784 -cd18373 349682 cl38908 365784 -cd18374 349683 cl38908 365784 -cd18375 349684 cl38908 365784 -cd18376 349685 cl38908 365784 -cd18377 349686 cl38908 365784 -cd18378 349687 cl38908 365784 -cd18379 349688 cl38908 365784 -cd18380 349689 cl38908 365784 -cd18381 349690 cl38908 365784 -cd18382 349691 cl38908 365784 -cd18384 349692 cl38908 365784 -cd18385 349693 cl38908 365784 -cd18386 349694 cl38908 365784 -cd18387 349695 cl38908 365784 -cd18388 349696 cl38908 365784 -cd18389 349697 cl38908 365784 -cd18390 349698 cl38908 365784 -cd18391 349699 cl38908 365784 -cd18392 349700 cl38908 365784 -cd18393 349701 cl38908 365784 -cd18394 349702 cl38908 365784 -cd18395 349703 cl38908 365784 -cd18396 349704 cl38908 365784 -cd18397 349705 cl38908 365784 -cd18398 349706 cl38908 365784 -cd18399 349707 cl38908 365784 -cd18400 349708 cl38908 365784 -cd18401 349709 cl38908 365784 -cd18402 349710 cl38908 365784 -cd18403 349711 cl38908 365784 -cd18405 349712 cl38908 365784 -cd18406 349713 cl38908 365784 -cd18407 349714 cl38908 365784 -cd18408 349715 cl38908 365784 -cd18409 349716 cl38908 365784 -cd18410 349717 cl38908 365784 -cd18411 349718 cl38908 365784 -cd18412 349719 cl38908 365784 -cd18413 349720 cl38908 365784 -cd18414 349721 cl38908 365784 -cd18415 349722 cl38908 365784 -cd18416 349723 cl38908 365784 -cd18417 349724 cl38908 365784 -cd18418 349725 cl38908 365784 -cd18419 349726 cl38908 365784 -cd18420 349727 cl38908 365784 -cd18421 349728 cl38908 365784 -cd18422 349729 cl38908 365784 -cd18423 349730 cl38908 365784 -cd18424 349731 cl38908 365784 -cd18425 349732 cl38908 365784 -cd18426 349733 cl38908 365784 -cd18427 349734 cl38908 365784 -cd18428 349735 cl38908 365784 -cd18955 349736 cl38908 365784 -cd18956 349737 cl38908 365784 -cd01426 349738 cl38909 365785 -cd18115 349739 cl38909 365785 -cd18116 349740 cl38909 365785 -cd18117 349741 cl38909 365785 -cd18118 349742 cl38909 365785 -cd18119 349743 cl38909 365785 -cd01429 349744 cl38910 365786 -cd18110 349745 cl38910 365786 -cd18111 349746 cl38910 365786 -cd18112 349747 cl38910 365786 -cd18113 349748 cl38910 365786 -cd18114 349749 cl38910 365786 -cd00477 349750 cl28913 355789 -cd01983 349751 cl28913 355789 -cd02032 349752 cl28913 355789 -cd02033 349753 cl28913 355789 -cd02034 349754 cl28913 355789 -cd02035 349755 cl28913 355789 -cd02036 349756 cl28913 355789 -cd02037 349757 cl28913 355789 -cd02038 349758 cl28913 355789 -cd02040 349759 cl28913 355789 -cd02042 349760 cl28913 355789 -cd02117 349761 cl28913 355789 -cd03108 349762 cl28913 355789 -cd03109 349763 cl28913 355789 -cd03110 349764 cl28913 355789 -cd03111 349765 cl28913 355789 -cd03112 349766 cl28913 355789 -cd03113 349767 cl28913 355789 -cd03114 349768 cl28913 355789 -cd03115 349769 cl28913 355789 -cd03116 349770 cl28913 355789 -cd05386 349771 cl28913 355789 -cd05387 349772 cl28913 355789 -cd05388 349773 cl28913 355789 -cd05389 349774 cl28913 355789 -cd05390 349775 cl28913 355789 -cd05540 349776 cl28913 355789 -cd17868 349777 cl28913 355789 -cd17869 349778 cl28913 355789 -cd17870 349779 cl28913 355789 -cd17871 349780 cl28913 355789 -cd17872 349781 cl28913 355789 -cd17873 349782 cl28913 355789 -cd17874 349783 cl28913 355789 -cd17875 349784 cl28913 355789 -cd17876 349785 cl28913 355789 -cd18539 349786 cl28913 355789 -cd03558 349787 cl28912 355788 -cd18987 349788 cl28912 355788 -cd18988 349789 cl28912 355788 -cd18989 349790 cl28912 355788 -cd18990 349791 cl28912 355788 -cd18991 349792 cl28912 355788 -cd18992 349793 cl28912 355788 -cd18993 349794 cl28912 355788 -cd18994 349795 cl28912 355788 -cd18995 349796 cl28912 355788 -cd18996 349797 cl28912 355788 -cd18997 349798 cl28912 355788 -cd18998 349799 cl28912 355788 -cd18999 349800 cl28912 355788 -cd19000 349801 cl28912 355788 -cd19001 349802 cl28912 355788 -cd19002 349803 cl28912 355788 -cd19003 349804 cl28912 355788 -cd19004 349805 cl28912 355788 -cd19005 349806 cl28912 355788 -cd19006 349807 cl28912 355788 -cd19007 349808 cl28912 355788 -cd19008 349809 cl28912 355788 -cd19009 349810 cl28912 355788 -cd19010 349811 cl28912 355788 -cd19011 349812 cl28912 355788 -cd19012 349813 cl28912 355788 -cd19013 349814 cl28912 355788 -cd19014 349815 cl28912 355788 -cd19015 349816 cl28912 355788 -cd19016 349817 cl28912 355788 -cd19017 349818 cl28912 355788 -cd19018 349819 cl28912 355788 -cd19019 349820 cl28912 355788 -cd19020 349821 cl28912 355788 -cd19021 349822 cl28912 355788 -cd19022 349823 cl28912 355788 -cd19023 349824 cl28912 355788 -cd19024 349825 cl28912 355788 -cd19025 349826 cl28912 355788 -cd19026 349827 cl28912 355788 -cd19027 349828 cl28912 355788 -cd19028 349829 cl28912 355788 -cd19029 349830 cl28912 355788 -cd19030 349831 cl28912 355788 -cd19031 349832 cl28912 355788 -cd19032 349833 cl28912 355788 -cd19033 349834 cl28912 355788 -cd19034 349835 cl28912 355788 -cd19035 349836 cl28912 355788 -cd19036 349837 cl28912 355788 -cd19037 349838 cl28912 355788 -cd19038 349839 cl28912 355788 -cd19039 349840 cl28912 355788 -cd19040 349841 cl28912 355788 -cd19041 349842 cl28912 355788 -cd19042 349843 cl28912 355788 -cd19043 349844 cl28912 355788 -cd19044 349845 cl28912 355788 -cd19045 349846 cl28912 355788 -cd19046 349847 cl28912 355788 -cd19047 349848 cl28912 355788 -cd19048 349849 cl28912 355788 -cd03559 349850 cl38911 365787 -cd19049 349851 cl38911 365787 -cd19050 349852 cl38911 365787 -cd19051 349853 cl38911 365787 -cd19052 349854 cl38911 365787 -cd19053 349855 cl38911 365787 -cd19054 349856 cl38911 365787 -cd19055 349857 cl38911 365787 -cd19056 349858 cl38911 365787 -cd19057 349859 cl38911 365787 -cd19058 349860 cl38911 365787 -cd19059 349861 cl38911 365787 -cd19060 349862 cl38911 365787 -cd19061 349863 cl38911 365787 -cd19062 349864 cl38911 365787 -cd19063 349865 cl38911 365787 -cd19064 349866 cl38911 365787 -cd19065 349867 cl38911 365787 -cd02690 349868 cl14876 353847 -cd02697 349869 cl14876 353847 -cd03873 349870 cl14876 353847 -cd03874 349871 cl14876 353847 -cd03875 349872 cl14876 353847 -cd03876 349873 cl14876 353847 -cd03877 349874 cl14876 353847 -cd03879 349875 cl14876 353847 -cd03880 349876 cl14876 353847 -cd03881 349877 cl14876 353847 -cd03882 349878 cl14876 353847 -cd03883 349879 cl14876 353847 -cd03884 349880 cl14876 353847 -cd03885 349881 cl14876 353847 -cd03886 349882 cl14876 353847 -cd03887 349883 cl14876 353847 -cd03888 349884 cl14876 353847 -cd03890 349885 cl14876 353847 -cd03891 349886 cl14876 353847 -cd03892 349887 cl14876 353847 -cd03893 349888 cl14876 353847 -cd03894 349889 cl14876 353847 -cd03895 349890 cl14876 353847 -cd03896 349891 cl14876 353847 -cd05639 349892 cl14876 353847 -cd05640 349893 cl14876 353847 -cd05642 349894 cl14876 353847 -cd05643 349895 cl14876 353847 -cd05644 349896 cl14876 353847 -cd05645 349897 cl14876 353847 -cd05646 349898 cl14876 353847 -cd05647 349899 cl14876 353847 -cd05649 349900 cl14876 353847 -cd05650 349901 cl14876 353847 -cd05651 349902 cl14876 353847 -cd05652 349903 cl14876 353847 -cd05653 349904 cl14876 353847 -cd05654 349905 cl14876 353847 -cd05656 349906 cl14876 353847 -cd05657 349907 cl14876 353847 -cd05658 349908 cl14876 353847 -cd05659 349909 cl14876 353847 -cd05660 349910 cl14876 353847 -cd05661 349911 cl14876 353847 -cd05662 349912 cl14876 353847 -cd05663 349913 cl14876 353847 -cd05664 349914 cl14876 353847 -cd05665 349915 cl14876 353847 -cd05666 349916 cl14876 353847 -cd05667 349917 cl14876 353847 -cd05668 349918 cl14876 353847 -cd05669 349919 cl14876 353847 -cd05670 349920 cl14876 353847 -cd05672 349921 cl14876 353847 -cd05673 349922 cl14876 353847 -cd05674 349923 cl14876 353847 -cd05675 349924 cl14876 353847 -cd05676 349925 cl14876 353847 -cd05677 349926 cl14876 353847 -cd05678 349927 cl14876 353847 -cd05679 349928 cl14876 353847 -cd05680 349929 cl14876 353847 -cd05681 349930 cl14876 353847 -cd05682 349931 cl14876 353847 -cd05683 349932 cl14876 353847 -cd08011 349933 cl14876 353847 -cd08012 349934 cl14876 353847 -cd08013 349935 cl14876 353847 -cd08014 349936 cl14876 353847 -cd08015 349937 cl14876 353847 -cd08017 349938 cl14876 353847 -cd08018 349939 cl14876 353847 -cd08019 349940 cl14876 353847 -cd08021 349941 cl14876 353847 -cd08022 349942 cl14876 353847 -cd08656 349943 cl14876 353847 -cd08659 349944 cl14876 353847 -cd08660 349945 cl14876 353847 -cd09848 349946 cl14876 353847 -cd09849 349947 cl14876 353847 -cd18669 349948 cl14876 353847 -cd06174 349949 cl28910 355786 -cd06176 349950 cl28910 355786 -cd06503 349951 cl11101 353187 -cd07060 349952 cl38912 365788 -cd18080 349953 cl38912 365788 -cd18081 349954 cl38912 365788 -cd18082 349955 cl38912 365788 -cd18083 349956 cl38912 365788 -cd18084 349957 cl38912 365788 -cd18085 349958 cl38912 365788 -cd18086 349959 cl38912 365788 -cd18087 349960 cl38912 365788 -cd18088 349961 cl38912 365788 -cd18089 349962 cl38912 365788 -cd18090 349963 cl38912 365788 -cd18091 349964 cl38912 365788 -cd18092 349965 cl38912 365788 -cd18093 349966 cl38912 365788 -cd18094 349967 cl38912 365788 -cd18095 349968 cl38912 365788 -cd18096 349969 cl38912 365788 -cd18097 349970 cl38912 365788 -cd18098 349971 cl38912 365788 -cd18099 349972 cl38912 365788 -cd18100 349973 cl38912 365788 -cd18101 349974 cl38912 365788 -cd18102 349975 cl38912 365788 -cd18103 349976 cl38912 365788 -cd18104 349977 cl38912 365788 -cd18105 349978 cl38912 365788 -cd18106 349979 cl38912 365788 -cd18107 349980 cl38912 365788 -cd18108 349981 cl38912 365788 -cd18109 349982 cl38912 365788 -cd07346 349983 cl38913 365789 -cd18540 349984 cl38913 365789 -cd18541 349985 cl38913 365789 -cd18542 349986 cl38913 365789 -cd18543 349987 cl38913 365789 -cd18544 349988 cl38913 365789 -cd18545 349989 cl38913 365789 -cd18546 349990 cl38913 365789 -cd18547 349991 cl38913 365789 -cd18548 349992 cl38913 365789 -cd18549 349993 cl38913 365789 -cd18550 349994 cl38913 365789 -cd18551 349995 cl38913 365789 -cd18552 349996 cl38913 365789 -cd18553 349997 cl38913 365789 -cd18554 349998 cl38913 365789 -cd18555 349999 cl38913 365789 -cd18556 350000 cl38913 365789 -cd18557 350001 cl38913 365789 -cd18558 350002 cl38913 365789 -cd18559 350003 cl38913 365789 -cd18560 350004 cl38913 365789 -cd18561 350005 cl38913 365789 -cd18562 350006 cl38913 365789 -cd18563 350007 cl38913 365789 -cd18564 350008 cl38913 365789 -cd18565 350009 cl38913 365789 -cd18566 350010 cl38913 365789 -cd18567 350011 cl38913 365789 -cd18568 350012 cl38913 365789 -cd18569 350013 cl38913 365789 -cd18570 350014 cl38913 365789 -cd18571 350015 cl38913 365789 -cd18572 350016 cl38913 365789 -cd18573 350017 cl38913 365789 -cd18574 350018 cl38913 365789 -cd18575 350019 cl38913 365789 -cd18576 350020 cl38913 365789 -cd18577 350021 cl38913 365789 -cd18578 350022 cl38913 365789 -cd18579 350023 cl38913 365789 -cd18580 350024 cl38913 365789 -cd18581 350025 cl38913 365789 -cd18582 350026 cl38913 365789 -cd18583 350027 cl38913 365789 -cd18584 350028 cl38913 365789 -cd18585 350029 cl38913 365789 -cd18586 350030 cl38913 365789 -cd18587 350031 cl38913 365789 -cd18588 350032 cl38913 365789 -cd18589 350033 cl38913 365789 -cd18590 350034 cl38913 365789 -cd18591 350035 cl38913 365789 -cd18592 350036 cl38913 365789 -cd18593 350037 cl38913 365789 -cd18594 350038 cl38913 365789 -cd18595 350039 cl38913 365789 -cd18596 350040 cl38913 365789 -cd18597 350041 cl38913 365789 -cd18598 350042 cl38913 365789 -cd18599 350043 cl38913 365789 -cd18600 350044 cl38913 365789 -cd18601 350045 cl38913 365789 -cd18602 350046 cl38913 365789 -cd18603 350047 cl38913 365789 -cd18604 350048 cl38913 365789 -cd18605 350049 cl38913 365789 -cd18606 350050 cl38913 365789 -cd18778 350051 cl38913 365789 -cd18779 350052 cl38913 365789 -cd18780 350053 cl38913 365789 -cd18781 350054 cl38913 365789 -cd18782 350055 cl38913 365789 -cd18783 350056 cl38913 365789 -cd18784 350057 cl38913 365789 -cd08204 350058 cl28907 355783 -cd08830 350059 cl28907 355783 -cd08831 350060 cl28907 355783 -cd08832 350061 cl28907 355783 -cd08833 350062 cl28907 355783 -cd08834 350063 cl28907 355783 -cd08835 350064 cl28907 355783 -cd08836 350065 cl28907 355783 -cd08837 350066 cl28907 355783 -cd08838 350067 cl28907 355783 -cd08839 350068 cl28907 355783 -cd08843 350069 cl28907 355783 -cd08844 350070 cl28907 355783 -cd08846 350071 cl28907 355783 -cd08847 350072 cl28907 355783 -cd08848 350073 cl28907 355783 -cd08849 350074 cl28907 355783 -cd08850 350075 cl28907 355783 -cd08851 350076 cl28907 355783 -cd08852 350077 cl28907 355783 -cd08853 350078 cl28907 355783 -cd08854 350079 cl28907 355783 -cd08855 350080 cl28907 355783 -cd08856 350081 cl28907 355783 -cd08857 350082 cl28907 355783 -cd08859 350083 cl28907 355783 -cd08959 350084 cl28907 355783 -cd09028 350085 cl28907 355783 -cd09029 350086 cl28907 355783 -cd17900 350087 cl28907 355783 -cd17901 350088 cl28907 355783 -cd17902 350089 cl28907 355783 -cd17903 350090 cl28907 355783 -cd08772 350091 cl14647 353819 -cd08978 350092 cl14647 353819 -cd08979 350093 cl14647 353819 -cd08980 350094 cl14647 353819 -cd08981 350095 cl14647 353819 -cd08982 350096 cl14647 353819 -cd08983 350097 cl14647 353819 -cd08984 350098 cl14647 353819 -cd08985 350099 cl14647 353819 -cd08986 350100 cl14647 353819 -cd08987 350101 cl14647 353819 -cd08988 350102 cl14647 353819 -cd08989 350103 cl14647 353819 -cd08990 350104 cl14647 353819 -cd08991 350105 cl14647 353819 -cd08992 350106 cl14647 353819 -cd08993 350107 cl14647 353819 -cd08994 350108 cl14647 353819 -cd08995 350109 cl14647 353819 -cd08996 350110 cl14647 353819 -cd08997 350111 cl14647 353819 -cd08998 350112 cl14647 353819 -cd08999 350113 cl14647 353819 -cd09000 350114 cl14647 353819 -cd09001 350115 cl14647 353819 -cd09002 350116 cl14647 353819 -cd09003 350117 cl14647 353819 -cd09004 350118 cl14647 353819 -cd18607 350119 cl14647 353819 -cd18608 350120 cl14647 353819 -cd18609 350121 cl14647 353819 -cd18610 350122 cl14647 353819 -cd18611 350123 cl14647 353819 -cd18612 350124 cl14647 353819 -cd18613 350125 cl14647 353819 -cd18614 350126 cl14647 353819 -cd18615 350127 cl14647 353819 -cd18616 350128 cl14647 353819 -cd18617 350129 cl14647 353819 -cd18618 350130 cl14647 353819 -cd18619 350131 cl14647 353819 -cd18620 350132 cl14647 353819 -cd18621 350133 cl14647 353819 -cd18622 350134 cl14647 353819 -cd18623 350135 cl14647 353819 -cd18624 350136 cl14647 353819 -cd18625 350137 cl14647 353819 -cd18817 350138 cl14647 353819 -cd18818 350139 cl14647 353819 -cd18819 350140 cl14647 353819 -cd18820 350141 cl14647 353819 -cd18821 350142 cl14647 353819 -cd18822 350143 cl14647 353819 -cd18823 350144 cl14647 353819 -cd18824 350145 cl14647 353819 -cd18825 350146 cl14647 353819 -cd18826 350147 cl14647 353819 -cd18827 350148 cl14647 353819 -cd18828 350149 cl14647 353819 -cd18829 350150 cl14647 353819 -cd18830 350151 cl14647 353819 -cd18831 350152 cl14647 353819 -cd18832 350153 cl14647 353819 -cd18833 350154 cl14647 353819 -cd00436 350155 cl38914 365790 -cd09005 350156 cl38914 365790 -cd09006 350157 cl38914 365790 -cd09007 350158 cl38914 365790 -cd09008 350159 cl38914 365790 -cd09009 350160 cl38914 365790 -cd09010 350161 cl38914 365790 -cd17762 350162 cl38914 365790 -cd17763 350163 cl38914 365790 -cd17764 350164 cl38914 365790 -cd17765 350165 cl38914 365790 -cd17766 350166 cl38914 365790 -cd17767 350167 cl38914 365790 -cd17768 350168 cl38914 365790 -cd17769 350169 cl38914 365790 -cd17877 350170 cl38914 365790 -cd09300 350171 cl38915 365791 -cd18785 350172 cl38915 365791 -cd18786 350173 cl38915 365791 -cd18787 350174 cl38915 365791 -cd18788 350175 cl38915 365791 -cd18789 350176 cl38915 365791 -cd18790 350177 cl38915 365791 -cd18791 350178 cl38915 365791 -cd18792 350179 cl38915 365791 -cd18793 350180 cl38915 365791 -cd18794 350181 cl38915 365791 -cd18795 350182 cl38915 365791 -cd18796 350183 cl38915 365791 -cd18797 350184 cl38915 365791 -cd18798 350185 cl38915 365791 -cd18799 350186 cl38915 365791 -cd18800 350187 cl38915 365791 -cd18801 350188 cl38915 365791 -cd18802 350189 cl38915 365791 -cd18803 350190 cl38915 365791 -cd18804 350191 cl38915 365791 -cd18805 350192 cl38915 365791 -cd18806 350193 cl38915 365791 -cd18807 350194 cl38915 365791 -cd18808 350195 cl38915 365791 -cd18809 350196 cl38915 365791 -cd18810 350197 cl38915 365791 -cd18811 350198 cl38915 365791 -cd00008 350199 cl28905 355781 -cd00128 350200 cl28905 355781 -cd06167 350201 cl28905 355781 -cd08553 350202 cl28905 355781 -cd09852 350203 cl28905 355781 -cd09853 350204 cl28905 355781 -cd09854 350205 cl28905 355781 -cd09856 350206 cl28905 355781 -cd09857 350207 cl28905 355781 -cd09858 350208 cl28905 355781 -cd09859 350209 cl28905 355781 -cd09860 350210 cl28905 355781 -cd09862 350211 cl28905 355781 -cd09864 350212 cl28905 355781 -cd09865 350213 cl28905 355781 -cd09866 350214 cl28905 355781 -cd09867 350215 cl28905 355781 -cd09868 350216 cl28905 355781 -cd09869 350217 cl28905 355781 -cd09870 350218 cl28905 355781 -cd09871 350219 cl28905 355781 -cd09872 350220 cl28905 355781 -cd09873 350221 cl28905 355781 -cd09874 350222 cl28905 355781 -cd09875 350223 cl28905 355781 -cd09876 350224 cl28905 355781 -cd09877 350225 cl28905 355781 -cd09878 350226 cl28905 355781 -cd09879 350227 cl28905 355781 -cd09880 350228 cl28905 355781 -cd09881 350229 cl28905 355781 -cd09882 350230 cl28905 355781 -cd09883 350231 cl28905 355781 -cd09884 350232 cl28905 355781 -cd09885 350233 cl28905 355781 -cd10910 350234 cl28905 355781 -cd10911 350235 cl28905 355781 -cd10912 350236 cl28905 355781 -cd11297 350237 cl28905 355781 -cd18671 350238 cl28905 355781 -cd18672 350239 cl28905 355781 -cd18673 350240 cl28905 355781 -cd18674 350241 cl28905 355781 -cd18675 350242 cl28905 355781 -cd18676 350243 cl28905 355781 -cd18677 350244 cl28905 355781 -cd18678 350245 cl28905 355781 -cd18679 350246 cl28905 355781 -cd18680 350247 cl28905 355781 -cd18681 350248 cl28905 355781 -cd18682 350249 cl28905 355781 -cd18683 350250 cl28905 355781 -cd18684 350251 cl28905 355781 -cd18685 350252 cl28905 355781 -cd18686 350253 cl28905 355781 -cd18687 350254 cl28905 355781 -cd18688 350255 cl28905 355781 -cd18689 350256 cl28905 355781 -cd18690 350257 cl28905 355781 -cd18691 350258 cl28905 355781 -cd18692 350259 cl28905 355781 -cd18693 350260 cl28905 355781 -cd18694 350261 cl28905 355781 -cd18695 350262 cl28905 355781 -cd18696 350263 cl28905 355781 -cd18697 350264 cl28905 355781 -cd18698 350265 cl28905 355781 -cd18699 350266 cl28905 355781 -cd18700 350267 cl28905 355781 -cd18701 350268 cl28905 355781 -cd18702 350269 cl28905 355781 -cd18703 350270 cl28905 355781 -cd18704 350271 cl28905 355781 -cd18705 350272 cl28905 355781 -cd18706 350273 cl28905 355781 -cd18707 350274 cl28905 355781 -cd18708 350275 cl28905 355781 -cd18709 350276 cl28905 355781 -cd18710 350277 cl28905 355781 -cd18711 350278 cl28905 355781 -cd18712 350279 cl28905 355781 -cd18713 350280 cl28905 355781 -cd18714 350281 cl28905 355781 -cd18715 350282 cl28905 355781 -cd18716 350283 cl28905 355781 -cd18717 350284 cl28905 355781 -cd18718 350285 cl28905 355781 -cd18719 350286 cl28905 355781 -cd18720 350287 cl28905 355781 -cd18721 350288 cl28905 355781 -cd18722 350289 cl28905 355781 -cd18723 350290 cl28905 355781 -cd18724 350291 cl28905 355781 -cd18725 350292 cl28905 355781 -cd18726 350293 cl28905 355781 -cd18727 350294 cl28905 355781 -cd18728 350295 cl28905 355781 -cd18729 350296 cl28905 355781 -cd18730 350297 cl28905 355781 -cd18731 350298 cl28905 355781 -cd18732 350299 cl28905 355781 -cd18733 350300 cl28905 355781 -cd18734 350301 cl28905 355781 -cd18735 350302 cl28905 355781 -cd18736 350303 cl28905 355781 -cd18737 350304 cl28905 355781 -cd18738 350305 cl28905 355781 -cd18739 350306 cl28905 355781 -cd18740 350307 cl28905 355781 -cd18741 350308 cl28905 355781 -cd18742 350309 cl28905 355781 -cd18743 350310 cl28905 355781 -cd18744 350311 cl28905 355781 -cd18745 350312 cl28905 355781 -cd18746 350313 cl28905 355781 -cd18747 350314 cl28905 355781 -cd18748 350315 cl28905 355781 -cd18749 350316 cl28905 355781 -cd18750 350317 cl28905 355781 -cd18751 350318 cl28905 355781 -cd18752 350319 cl28905 355781 -cd18753 350320 cl28905 355781 -cd18754 350321 cl28905 355781 -cd18755 350322 cl28905 355781 -cd18756 350323 cl28905 355781 -cd18757 350324 cl28905 355781 -cd18758 350325 cl28905 355781 -cd18759 350326 cl28905 355781 -cd18760 350327 cl28905 355781 -cd18761 350328 cl28905 355781 -cd18762 350329 cl28905 355781 -cd18763 350330 cl28905 355781 -cd18764 350331 cl28905 355781 -cd18765 350332 cl28905 355781 -cd18766 350333 cl28905 355781 -cd18767 350334 cl28905 355781 -cd18768 350335 cl28905 355781 -cd12911 350336 cl38916 365792 -cd12912 350337 cl38916 365792 -cd12913 350338 cl38916 365792 -cd12914 350339 cl38916 365792 -cd12915 350340 cl38916 365792 -cd18773 350341 cl38916 365792 -cd18774 350342 cl38916 365792 -cd00047 350343 cl28904 355780 -cd14494 350344 cl28904 355780 -cd14495 350345 cl28904 355780 -cd14496 350346 cl28904 355780 -cd14497 350347 cl28904 355780 -cd14498 350348 cl28904 355780 -cd14499 350349 cl28904 355780 -cd14500 350350 cl28904 355780 -cd14501 350351 cl28904 355780 -cd14502 350352 cl28904 355780 -cd14503 350353 cl28904 355780 -cd14504 350354 cl28904 355780 -cd14505 350355 cl28904 355780 -cd14506 350356 cl28904 355780 -cd14507 350357 cl28904 355780 -cd14508 350358 cl28904 355780 -cd14509 350359 cl28904 355780 -cd14510 350360 cl28904 355780 -cd14511 350361 cl28904 355780 -cd14512 350362 cl28904 355780 -cd14513 350363 cl28904 355780 -cd14514 350364 cl28904 355780 -cd14515 350365 cl28904 355780 -cd14516 350366 cl28904 355780 -cd14517 350367 cl28904 355780 -cd14518 350368 cl28904 355780 -cd14519 350369 cl28904 355780 -cd14520 350370 cl28904 355780 -cd14521 350371 cl28904 355780 -cd14522 350372 cl28904 355780 -cd14523 350373 cl28904 355780 -cd14524 350374 cl28904 355780 -cd14526 350375 cl28904 355780 -cd14527 350376 cl28904 355780 -cd14528 350377 cl28904 355780 -cd14529 350378 cl28904 355780 -cd14531 350379 cl28904 355780 -cd14532 350380 cl28904 355780 -cd14533 350381 cl28904 355780 -cd14534 350382 cl28904 355780 -cd14535 350383 cl28904 355780 -cd14536 350384 cl28904 355780 -cd14537 350385 cl28904 355780 -cd14538 350386 cl28904 355780 -cd14539 350387 cl28904 355780 -cd14540 350388 cl28904 355780 -cd14541 350389 cl28904 355780 -cd14542 350390 cl28904 355780 -cd14543 350391 cl28904 355780 -cd14544 350392 cl28904 355780 -cd14545 350393 cl28904 355780 -cd14546 350394 cl28904 355780 -cd14547 350395 cl28904 355780 -cd14548 350396 cl28904 355780 -cd14549 350397 cl28904 355780 -cd14550 350398 cl28904 355780 -cd14551 350399 cl28904 355780 -cd14552 350400 cl28904 355780 -cd14553 350401 cl28904 355780 -cd14554 350402 cl28904 355780 -cd14555 350403 cl28904 355780 -cd14556 350404 cl28904 355780 -cd14557 350405 cl28904 355780 -cd14558 350406 cl28904 355780 -cd14559 350407 cl28904 355780 -cd14560 350408 cl28904 355780 -cd14561 350409 cl28904 355780 -cd14562 350410 cl28904 355780 -cd14563 350411 cl28904 355780 -cd14564 350412 cl28904 355780 -cd14565 350413 cl28904 355780 -cd14566 350414 cl28904 355780 -cd14567 350415 cl28904 355780 -cd14568 350416 cl28904 355780 -cd14569 350417 cl28904 355780 -cd14570 350418 cl28904 355780 -cd14571 350419 cl28904 355780 -cd14572 350420 cl28904 355780 -cd14573 350421 cl28904 355780 -cd14574 350422 cl28904 355780 -cd14575 350423 cl28904 355780 -cd14576 350424 cl28904 355780 -cd14577 350425 cl28904 355780 -cd14578 350426 cl28904 355780 -cd14579 350427 cl28904 355780 -cd14580 350428 cl28904 355780 -cd14581 350429 cl28904 355780 -cd14582 350430 cl28904 355780 -cd14583 350431 cl28904 355780 -cd14584 350432 cl28904 355780 -cd14585 350433 cl28904 355780 -cd14586 350434 cl28904 355780 -cd14587 350435 cl28904 355780 -cd14588 350436 cl28904 355780 -cd14589 350437 cl28904 355780 -cd14590 350438 cl28904 355780 -cd14591 350439 cl28904 355780 -cd14592 350440 cl28904 355780 -cd14593 350441 cl28904 355780 -cd14594 350442 cl28904 355780 -cd14595 350443 cl28904 355780 -cd14596 350444 cl28904 355780 -cd14597 350445 cl28904 355780 -cd14598 350446 cl28904 355780 -cd14599 350447 cl28904 355780 -cd14600 350448 cl28904 355780 -cd14601 350449 cl28904 355780 -cd14602 350450 cl28904 355780 -cd14603 350451 cl28904 355780 -cd14604 350452 cl28904 355780 -cd14605 350453 cl28904 355780 -cd14606 350454 cl28904 355780 -cd14607 350455 cl28904 355780 -cd14608 350456 cl28904 355780 -cd14609 350457 cl28904 355780 -cd14610 350458 cl28904 355780 -cd14611 350459 cl28904 355780 -cd14612 350460 cl28904 355780 -cd14613 350461 cl28904 355780 -cd14614 350462 cl28904 355780 -cd14615 350463 cl28904 355780 -cd14616 350464 cl28904 355780 -cd14617 350465 cl28904 355780 -cd14618 350466 cl28904 355780 -cd14619 350467 cl28904 355780 -cd14620 350468 cl28904 355780 -cd14621 350469 cl28904 355780 -cd14622 350470 cl28904 355780 -cd14623 350471 cl28904 355780 -cd14624 350472 cl28904 355780 -cd14625 350473 cl28904 355780 -cd14626 350474 cl28904 355780 -cd14627 350475 cl28904 355780 -cd14628 350476 cl28904 355780 -cd14629 350477 cl28904 355780 -cd14630 350478 cl28904 355780 -cd14631 350479 cl28904 355780 -cd14632 350480 cl28904 355780 -cd14633 350481 cl28904 355780 -cd14634 350482 cl28904 355780 -cd14635 350483 cl28904 355780 -cd14636 350484 cl28904 355780 -cd14637 350485 cl28904 355780 -cd14638 350486 cl28904 355780 -cd14639 350487 cl28904 355780 -cd14640 350488 cl28904 355780 -cd14641 350489 cl28904 355780 -cd14642 350490 cl28904 355780 -cd14643 350491 cl28904 355780 -cd14644 350492 cl28904 355780 -cd14645 350493 cl28904 355780 -cd14646 350494 cl28904 355780 -cd17657 350495 cl28904 355780 -cd17658 350496 cl28904 355780 -cd17659 350497 cl28904 355780 -cd17660 350498 cl28904 355780 -cd17661 350499 cl28904 355780 -cd17662 350500 cl28904 355780 -cd17663 350501 cl28904 355780 -cd17664 350502 cl28904 355780 -cd17665 350503 cl28904 355780 -cd17666 350504 cl28904 355780 -cd17667 350505 cl28904 355780 -cd17668 350506 cl28904 355780 -cd17669 350507 cl28904 355780 -cd17670 350508 cl28904 355780 -cd18533 350509 cl28904 355780 -cd18534 350510 cl28904 355780 -cd18535 350511 cl28904 355780 -cd18536 350512 cl28904 355780 -cd18537 350513 cl28904 355780 -cd18538 350514 cl28904 355780 -cd14733 350515 cl28903 355779 -cd14736 350516 cl28903 355779 -cd14821 350517 cl28903 355779 -cd14822 350518 cl28903 355779 -cd18444 350519 cl28903 355779 -cd18445 350520 cl28903 355779 -cd18446 350521 cl28903 355779 -cd18447 350522 cl28903 355779 -cd18448 350523 cl28903 355779 -cd18449 350524 cl28903 355779 -cd18450 350525 cl28903 355779 -cd18451 350526 cl28903 355779 -cd18452 350527 cl28903 355779 -cd18453 350528 cl28903 355779 -cd18454 350529 cl28903 355779 -cd18455 350530 cl28903 355779 -cd18456 350531 cl28903 355779 -cd18457 350532 cl28903 355779 -cd18458 350533 cl28903 355779 -cd18459 350534 cl28903 355779 -cd18460 350535 cl28903 355779 -cd18461 350536 cl28903 355779 -cd18462 350537 cl28903 355779 -cd18463 350538 cl28903 355779 -cd18464 350539 cl28903 355779 -cd18465 350540 cl28903 355779 -cd18466 350541 cl28903 355779 -cd18467 350542 cl28903 355779 -cd18468 350543 cl28903 355779 -cd18469 350544 cl28903 355779 -cd18470 350545 cl28903 355779 -cd18471 350546 cl28903 355779 -cd18472 350547 cl28903 355779 -cd18473 350548 cl28903 355779 -cd18474 350549 cl28903 355779 -cd18475 350550 cl28903 355779 -cd18476 350551 cl28903 355779 -cd18477 350552 cl28903 355779 -cd18478 350553 cl28903 355779 -cd18479 350554 cl28903 355779 -cd18480 350555 cl28903 355779 -cd18481 350556 cl28903 355779 -cd18482 350557 cl28903 355779 -cd18483 350558 cl28903 355779 -cd18484 350559 cl28903 355779 -cd18485 350560 cl28903 355779 -cd18486 350561 cl28903 355779 -cd18487 350562 cl28903 355779 -cd18488 350563 cl28903 355779 -cd18489 350564 cl28903 355779 -cd18490 350565 cl28903 355779 -cd18491 350566 cl28903 355779 -cd18492 350567 cl28903 355779 -cd18493 350568 cl28903 355779 -cd18494 350569 cl28903 355779 -cd18495 350570 cl28903 355779 -cd18496 350571 cl28903 355779 -cd18497 350572 cl28903 355779 -cd18498 350573 cl28903 355779 -cd18499 350574 cl28903 355779 -cd18500 350575 cl28903 355779 -cd18501 350576 cl28903 355779 -cd18502 350577 cl28903 355779 -cd18503 350578 cl28903 355779 -cd18504 350579 cl28903 355779 -cd18505 350580 cl28903 355779 -cd18506 350581 cl28903 355779 -cd18507 350582 cl28903 355779 -cd18508 350583 cl28903 355779 -cd18509 350584 cl28903 355779 -cd18510 350585 cl28903 355779 -cd18511 350586 cl28903 355779 -cd18512 350587 cl28903 355779 -cd18513 350588 cl28903 355779 -cd18514 350589 cl28903 355779 -cd18515 350590 cl28903 355779 -cd18516 350591 cl28903 355779 -cd18517 350592 cl28903 355779 -cd18518 350593 cl28903 355779 -cd18519 350594 cl28903 355779 -cd18520 350595 cl28903 355779 -cd18521 350596 cl28903 355779 -cd18522 350597 cl28903 355779 -cd18523 350598 cl28903 355779 -cd18524 350599 cl28903 355779 -cd18525 350600 cl28903 355779 -cd18526 350601 cl28903 355779 -cd18527 350602 cl28903 355779 -cd18528 350603 cl28903 355779 -cd18529 350604 cl28903 355779 -cd18530 350605 cl28903 355779 -cd18531 350606 cl28903 355779 -cd18532 350607 cl28903 355779 -cd14726 350608 cl38917 365793 -cd14727 350609 cl38917 365793 -cd14728 350610 cl38917 365793 -cd14729 350611 cl38917 365793 -cd14787 350612 cl38917 365793 -cd14788 350613 cl38917 365793 -cd14789 350614 cl38917 365793 -cd14814 350615 cl38918 365794 -cd14817 350616 cl38918 365794 -cd14840 350617 cl38918 365794 -cd14843 350618 cl38918 365794 -cd14844 350619 cl38918 365794 -cd14845 350620 cl38918 365794 -cd14846 350621 cl38918 365794 -cd14847 350622 cl38918 365794 -cd14849 350623 cl38918 365794 -cd14852 350624 cl38918 365794 -cd17880 350625 cl38918 365794 -cd15488 350626 cl02262 351713 -cd16100 350627 cl28902 355778 -cd16864 350628 cl28902 355778 -cd16865 350629 cl28902 355778 -cd16866 350630 cl28902 355778 -cd16867 350631 cl28902 355778 -cd16868 350632 cl28902 355778 -cd16869 350633 cl28902 355778 -cd16870 350634 cl28902 355778 -cd16871 350635 cl28902 355778 -cd16872 350636 cl28902 355778 -cd16873 350637 cl28902 355778 -cd16874 350638 cl28902 355778 -cd16875 350639 cl28902 355778 -cd16876 350640 cl28902 355778 -cd16877 350641 cl28902 355778 -cd16878 350642 cl28902 355778 -cd16879 350643 cl28902 355778 -cd16880 350644 cl28902 355778 -cd16881 350645 cl28902 355778 -cd16882 350646 cl28902 355778 -cd16883 350647 cl28902 355778 -cd16884 350648 cl28902 355778 -cd16885 350649 cl28902 355778 -cd16911 350650 cl38919 365795 -cd18775 350651 cl38919 365795 -cd18776 350652 cl38919 365795 -cd18777 350653 cl38919 365795 -cd17466 350654 cl38920 365796 -cd17467 350655 cl38920 365796 -cd17468 350656 cl38920 365796 -cd17470 350657 cl38920 365796 -cd17706 350658 cl28901 355777 -cd17753 350659 cl28901 355777 -cd17754 350660 cl28901 355777 -cd17755 350661 cl28901 355777 -cd17756 350662 cl28901 355777 -cd17757 350663 cl28901 355777 -cd17758 350664 cl28901 355777 -cd17759 350665 cl28901 355777 -cd17760 350666 cl28901 355777 -cd17761 350667 cl28901 355777 -cd00046 350668 cl28899 355775 -cd00268 350669 cl28899 355775 -cd17912 350670 cl28899 355775 -cd17913 350671 cl28899 355775 -cd17914 350672 cl28899 355775 -cd17915 350673 cl28899 355775 -cd17916 350674 cl28899 355775 -cd17917 350675 cl28899 355775 -cd17918 350676 cl28899 355775 -cd17919 350677 cl28899 355775 -cd17920 350678 cl28899 355775 -cd17921 350679 cl28899 355775 -cd17922 350680 cl28899 355775 -cd17923 350681 cl28899 355775 -cd17924 350682 cl28899 355775 -cd17925 350683 cl28899 355775 -cd17926 350684 cl28899 355775 -cd17927 350685 cl28899 355775 -cd17928 350686 cl28899 355775 -cd17929 350687 cl28899 355775 -cd17930 350688 cl28899 355775 -cd17931 350689 cl28899 355775 -cd17932 350690 cl28899 355775 -cd17933 350691 cl28899 355775 -cd17934 350692 cl28899 355775 -cd17935 350693 cl28899 355775 -cd17936 350694 cl28899 355775 -cd17937 350695 cl28899 355775 -cd17938 350696 cl28899 355775 -cd17939 350697 cl28899 355775 -cd17940 350698 cl28899 355775 -cd17941 350699 cl28899 355775 -cd17942 350700 cl28899 355775 -cd17943 350701 cl28899 355775 -cd17944 350702 cl28899 355775 -cd17945 350703 cl28899 355775 -cd17946 350704 cl28899 355775 -cd17947 350705 cl28899 355775 -cd17948 350706 cl28899 355775 -cd17949 350707 cl28899 355775 -cd17950 350708 cl28899 355775 -cd17951 350709 cl28899 355775 -cd17952 350710 cl28899 355775 -cd17953 350711 cl28899 355775 -cd17954 350712 cl28899 355775 -cd17955 350713 cl28899 355775 -cd17956 350714 cl28899 355775 -cd17957 350715 cl28899 355775 -cd17958 350716 cl28899 355775 -cd17959 350717 cl28899 355775 -cd17960 350718 cl28899 355775 -cd17961 350719 cl28899 355775 -cd17962 350720 cl28899 355775 -cd17963 350721 cl28899 355775 -cd17964 350722 cl28899 355775 -cd17965 350723 cl28899 355775 -cd17966 350724 cl28899 355775 -cd17967 350725 cl28899 355775 -cd17968 350726 cl28899 355775 -cd17969 350727 cl28899 355775 -cd17970 350728 cl28899 355775 -cd17971 350729 cl28899 355775 -cd17972 350730 cl28899 355775 -cd17973 350731 cl28899 355775 -cd17974 350732 cl28899 355775 -cd17975 350733 cl28899 355775 -cd17976 350734 cl28899 355775 -cd17977 350735 cl28899 355775 -cd17978 350736 cl28899 355775 -cd17979 350737 cl28899 355775 -cd17980 350738 cl28899 355775 -cd17981 350739 cl28899 355775 -cd17982 350740 cl28899 355775 -cd17983 350741 cl28899 355775 -cd17984 350742 cl28899 355775 -cd17985 350743 cl28899 355775 -cd17986 350744 cl28899 355775 -cd17987 350745 cl28899 355775 -cd17988 350746 cl28899 355775 -cd17989 350747 cl28899 355775 -cd17990 350748 cl28899 355775 -cd17991 350749 cl28899 355775 -cd17992 350750 cl28899 355775 -cd17993 350751 cl28899 355775 -cd17994 350752 cl28899 355775 -cd17995 350753 cl28899 355775 -cd17996 350754 cl28899 355775 -cd17997 350755 cl28899 355775 -cd17998 350756 cl28899 355775 -cd17999 350757 cl28899 355775 -cd18000 350758 cl28899 355775 -cd18001 350759 cl28899 355775 -cd18002 350760 cl28899 355775 -cd18003 350761 cl28899 355775 -cd18004 350762 cl28899 355775 -cd18005 350763 cl28899 355775 -cd18006 350764 cl28899 355775 -cd18007 350765 cl28899 355775 -cd18008 350766 cl28899 355775 -cd18009 350767 cl28899 355775 -cd18010 350768 cl28899 355775 -cd18011 350769 cl28899 355775 -cd18012 350770 cl28899 355775 -cd18013 350771 cl28899 355775 -cd18014 350772 cl28899 355775 -cd18015 350773 cl28899 355775 -cd18016 350774 cl28899 355775 -cd18017 350775 cl28899 355775 -cd18018 350776 cl28899 355775 -cd18019 350777 cl28899 355775 -cd18020 350778 cl28899 355775 -cd18021 350779 cl28899 355775 -cd18022 350780 cl28899 355775 -cd18023 350781 cl28899 355775 -cd18024 350782 cl28899 355775 -cd18025 350783 cl28899 355775 -cd18026 350784 cl28899 355775 -cd18027 350785 cl28899 355775 -cd18028 350786 cl28899 355775 -cd18029 350787 cl28899 355775 -cd18030 350788 cl28899 355775 -cd18031 350789 cl28899 355775 -cd18032 350790 cl28899 355775 -cd18033 350791 cl28899 355775 -cd18034 350792 cl28899 355775 -cd18035 350793 cl28899 355775 -cd18036 350794 cl28899 355775 -cd18037 350795 cl28899 355775 -cd18038 350796 cl28899 355775 -cd18039 350797 cl28899 355775 -cd18040 350798 cl28899 355775 -cd18041 350799 cl28899 355775 -cd18042 350800 cl28899 355775 -cd18043 350801 cl28899 355775 -cd18044 350802 cl28899 355775 -cd18045 350803 cl28899 355775 -cd18046 350804 cl28899 355775 -cd18047 350805 cl28899 355775 -cd18048 350806 cl28899 355775 -cd18049 350807 cl28899 355775 -cd18050 350808 cl28899 355775 -cd18051 350809 cl28899 355775 -cd18052 350810 cl28899 355775 -cd18053 350811 cl28899 355775 -cd18054 350812 cl28899 355775 -cd18055 350813 cl28899 355775 -cd18056 350814 cl28899 355775 -cd18057 350815 cl28899 355775 -cd18058 350816 cl28899 355775 -cd18059 350817 cl28899 355775 -cd18060 350818 cl28899 355775 -cd18061 350819 cl28899 355775 -cd18062 350820 cl28899 355775 -cd18063 350821 cl28899 355775 -cd18064 350822 cl28899 355775 -cd18065 350823 cl28899 355775 -cd18066 350824 cl28899 355775 -cd18067 350825 cl28899 355775 -cd18068 350826 cl28899 355775 -cd18069 350827 cl28899 355775 -cd18070 350828 cl28899 355775 -cd18071 350829 cl28899 355775 -cd18072 350830 cl28899 355775 -cd18073 350831 cl28899 355775 -cd18074 350832 cl28899 355775 -cd18075 350833 cl28899 355775 -cd18076 350834 cl28899 355775 -cd18077 350835 cl28899 355775 -cd18078 350836 cl28899 355775 -cd18079 350837 cd18079 350837 -cd18133 350838 cl38921 365797 -cd18137 350839 cl38921 365797 -cd18138 350840 cl38921 365797 -cd18139 350841 cl38921 365797 -cd18140 350842 cl38921 365797 -cd18641 350843 cl38922 365798 -cd18642 350844 cl38922 365798 -cd18643 350845 cl38922 365798 -cd18983 350846 cl38922 365798 -cd18984 350847 cl38922 365798 -cd18985 350848 cl38922 365798 -cd18986 350849 cl38922 365798 -cd18670 350850 cl38923 365799 -cd18769 350851 cl38923 365799 -cd18770 350852 cl38923 365799 -cd18771 350853 cl38923 365799 -cd18772 350854 cl38923 365799 -cd00232 350855 cl15243 353926 -cd19165 350856 cl15243 353926 -cd19166 350857 cl15243 353926 +cd00958 188645 cl21457 473867 +cd08964 199208 cl00216 469665 +cd10019 206756 cl02098 470464 +cd00199 238120 cl00156 469631 +cd02947 239245 cl00388 469754 +cd04242 239775 cl00452 444912 +cd21157 409299 cl41741 425372 +cd19501 410909 cl38936 476819 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.aux b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.aux index 6c21ddbe12..ea15a7398a 100644 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.aux +++ b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.aux @@ -6,9 +6,19 @@ BLOSUM62 0 0 100.000000 -151 -5.214183e-02 -251 -7.238069e-02 +60 +5.516135e-02 235 6.522661e-02 +93 +6.683938e-02 +251 +7.238069e-02 +319 +6.907768e-02 +242 +4.567523e-02 +171 +6.414308e-02 +104 +7.121721e-02 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.freq b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.freq index 69935c32a047d9281ead093a5435167d82b1ce2f..d6bc9898bf478a68a048db2d08db08b728506119 100644 GIT binary patch delta 91397 zcmcGVg;!MH*T(n0_s$Fq-5^MJNH+p1pb{nsf~0_eAO>Ne2x3qY79dI(7$8VvA_g`p z`n6CjLeJNv%wWAalZ{WeA{|3Q#%RD z;vE79-49XRz!W8j9jwl31|4{I=xQeik)+n?8eUI^rqfPECr@vhFM1jv$up!$S zFSy4+^1w>`G${yMZ(kFbqP7nXoDmVM6S@K}_rHSqoe0)s?ikK^K92=AUDz!dI{#3x zVbSJ)Y(HxGd7^vrgt@TG>m+akrLk%136_}dA86HH3WW&U=@mW0U0XAQ*rFn39-zg%0h~o+6`#5_|C*sUQ zqRgK42_RxT&fee_0iWc0plXXf6LvfRM`lDqK#4x>XLE*CDk_C%?_OitJ-TRPxeo%x zZU-sFM(uxWFnqC!2v1KMCG5dJ&SJqOFX0}BqrOi$98FP0{eW1|xN{$TF7FWDwJQPr zvz9{lj!}5@-~kl;r;Ng*hiK8VBh3DZtJxh!wpfkkge{`?og%^$_hb>r?OohqcGq8M z56Hj|JCk5MdL}9#4~5>tU2s#wiP63GlkUrohlv;ZAwkVYcJUJxIw=CysV^_JQvuPYJ(TZ?G>h#Mz(p(M9$< z{a7aj7TkCbKU=$C^7$@+GC?{tT!P6CLFR6r3HxsI6XN*e@!Wr=_}=}J&kK40i!X8X zfrAEkXmJd4YZ6U&yARRNU0f-T`#n_J_5DnNZ9bZpuY%Hj`gl8N5V%SD7&c3T{=#}D zcHw6ij!(QnbsO`eaDRO*VgIhA$-V4@)@rs&Z3XqCd*NVLCOF1_fi0?zP~R(r26=~J zyWlsvYThcS^4bZ5+xCLlvoz2N&VZqb|Ir=K7ohFjRrsRL@SjY0q8>-s=D#h7?wto` z!X^s|ytSWZCLdc4<$_z;5!${mV$noBbKnkonDYYaoRc$0*-LeKrsbFI^*f&C#HCxp`UT50w z{6}9MokWdk?t<7U3+b@#m!R$EfME_RMdeo&F%Ddsy}zfwC_@* za<5x4BSxE8PHvB(WY<@g&7}=2H|GLeG3O3aUBRpb3pJL0)^35x&qD~itA#-xT;BJ+ z)=dI$*Uf}e{VtSM$4*hZU?t>a*-+(qmq9=D6lTTvQ9}ntnRB|GQ1840FaIqT5MCt1 z*w22B6P_KT9Oh1-YV&q5tTMjvT$kTG_Jjp}7m44RpQeD5FB_X?JVi%|ZSb~M9xr~2 zh1~p2tfe#W%Qek@fQ=?wA@sZu?vwopi&t$#^&lgbg4TVs`#Qixo*8FUHMNLtHRmnF z6P4DV#BZHd?x2tuMwg_1XT|n)!M$-)G`+e89F(_F57R@iNvDMEB$PlYo__?JHy`F2 zpUP$J&0^ufqc?H2ggZVeT8BD`)`TsxtB+r;+RRxb2+_+GxT8UmF^px{OW?B-O$$AgDKBCQEcy(BOuI~r{s@RLViEQJV< zxi?J8Z1ZtvK&pr4ZoGv5ZNI=YhwI|?lq|SM>9yndz=NcBAiyC3?Pb!;6}K4sxbr&-Wq{}z5FtK#bK2bhIMx%B?J3K*ITDodtO^q569+@9W*yiGaq{@!S&4K`{4)~+MD{D2MK>VW-=7lYW z>U4cPletBJb*!1?`sOR=YQ!bTJAN5{_?XcOx98(zll^pO!c6SRi^juV`-T3&we}4W zwgPjRcq035KCF#ruq##>J3qF7>`P&s^ezOJKI@_bE*qhW-)*Lvpcz!GRKO+n71 z3zUv|7DVYB#M-n`;Bpp%@%fozUlTh7jhwXElY^(AN`MhZd+9Ee3b_sq^ZA}6p3C^h z_A@?OL)sO`o;|Q=RU2Mo>r)q$7SlCm4XpPGC*W_<1^QR^ZpKVxC2LvVJ?J^R2^YV= z#X;3{UZ!2b32yhPj#~@ap3}mqw+d0j?+$H6e%8khEhX?H3$j33Opp1#_#kzmUjV=9 z1yi*)9bhwK1&Ye8q4L%iQzzS+pfYYhsy^rzU1z1q{(Jf;Tgdbx6&)x`MeiL(k8i;Q zeo*im5k8HcO#)?QOEqW)j^Rbs4C;_YFbX`+tW(?9fIWsJ?}r$yJo`*IHQn zCIgF#t5K@S7h}Gp;hN+tl#R0hC7;5kI;+D8JgSO>p`Wqd8p3|-wij6UZ{oKs0oK|P zXLO$HLfucUhO;(X*^9G(VMNzH&SlGf_-{A~#mDP7wd`z6+6bg}|)kZm2Zt9BY<^H)nKiE-ZEb1RwNgiHpxQWv%~hgsp8J^ocxQluxAD zC+jr{dy(H7!XAvsChRsddvFil!~U(|AvlhDAA)gZjkZipI(?=Y>s85miphMxMWgq`HkaOrLJ!|Id0 zGwL7L!?YwTyzTTA-j;ZB#B*ISvicEsZObrgNxvapdTdKrPZu8|x|dbnCEss8oC`K( z(m0_Z5}Px&gOYtGTkvr_yjVDaj^1cTn?JaOHC;$Wg#D%MR`tLnjw+TOxG!KmGnA|0 zYENr7N3izj^4AZ88R>*w9AHoUP8TtN-#1kB>8aB6qOCq~OD6!88ka%7cN(xYXW_BV z^Dw2#7W`dURG(5m_+MAVwuw)GmGcVk%NXJC&2oT#S>ku)+Ij!je##fFl9D3(ZXR4a zxr%0;+>Jx^m*D-~sRGVR)8UaoAbsQRTD%an6jNlELCYZ*tlmBV_B%uA-dXANuKp77 zr4K{sgAZMC?mipBZdj4c@Zj>kQr7&{pwJ0RSa%&ngp@9E>*hzpj1d=PUtP+aew_(1 zy05YJFomy1LqJL?8>4@Jg^Na7!U=0*u<%iY1nDYM_DAU%6 zlFn^FVk+2C4)o8O9(sLzEO@xP;ab^f5PEeCCWuh%r`PJJ#bBCFj&HtXm9C z?eVZOa}I39#m0@H=N1xDhAFzV$lRM_H z-(5Zb(@x-9drW~VXoK@{F%=yf1}*MW(O)tZw5|5QEYa=SfAW=asc00ucxHnKj)~#4 zra|;@lci1EhA_Rv7lrhnKwAu7_{fh9|L=kF{}_aR&r7<9C&B^KpzqQQ{JF?QV8!W& z0`I%@F`_OVCT|{ryX*fj6Rig5!5It{e?5wRTz-f(@0|rs5SoNJ{!IcYT?x1?QxBcT zrjfx+oT|_7!`JmFkSNq&?glS6H!(9OY{I)M;$hL~BN26%%}{-|0rC~SF~^>Tsu>Hw z@=T0aaMA<#HkZM2CB*yLEba}{<9Kwg6#a8RjUOpR%SfdBJpY#n|NM6vgh{NX7iX&C zM=dsE{iswrtu+e5KbKP*3MZj#qz_#w6-l$J1n@o63WeMUpizB}erapR+Mr{DouL-! zHpiZ@?bB}m|M%fRfp(mKcPmVo3HRgPLyyxS1STZIlSmu&M?wvC~r>jr@J+i-vkcxMgoBF{R0*f|$}&<^pz)pTN=S z+c19iFz8ME3-|&BY$9T?GEr3I*QfndmRkik(e4+Rk6wijg+3^+dlV_TRCIjfiZ=GV zwyw>Vu&WHO@<%fvB%BEM&j|n8Z8~|nf2%oLDfP49k`rxg^Ye-vW;Va3oU-FD2jiE$Bf^u){jTrV2~->MQYcdf(OBauKK*aAJmg^;v;4Q#1Qfwj*zU`~QP9y%U@ zlBf9-L{32v5$;!e@DPDdDDei#8#S<=F-A+56Vzn&ZZJ3;3f()EsIwMZAK8ML2OWqjgB86bRQyU3e-OArju)uh4&$tE zDr4?5#W48T1lM*igSykQSZ^1EoTnSG_h~%bcw~aAZM$VidP!e?9IBk+_iop{?4W2iZw=^afqj;Xpd;olXs`DG(I>aS^_2#8#_FQ^ z)VUBm;Q(BuY$xd+y#fQPnqW)pR!lOoz`~+3Iwwtuz^BXc%lHMM!~8xadoE0#E{do2 zcCt21Jq|;yf~dD89Ofr4V}D(&$WiFcq!g?CsAu1QQ@wBpMfWVrU0r>swtT`1N4oFWYl}lp@Z@)Hmlo}O4>9IHtA%?4K8>& zkh1IQx|1{(0kYz7xv`Ohh3aAV4thYnK7u2 zZmaa!LPb`nzr29;E!ToI;bJ%3uH&=stY{#~B*pb5)k{cJ3QT4=!n@KvP%;0p!ok8s z;68ALs%Iyu6}3k2uw;tJ&)l`}rbPwXB16IMy#}o4@_|O?YAg_=={A& zmEW{Hf0jwySGEv?2l<}_f;eTup{AY?rSFBN^6QX(+X}`v=d!jI=1@l#E`%VFRm|sx zQaH_#U@K_@)16*Tc|_<@dFN^%B4R5U*#a(EdHRlUd=sBuXuO@esQ^k zt(rtu6Mj7agl&4#8*X2mMIB~Yu$xO%=%30p(9y-)BzE7)q=$F0=3KGo1~%;hmpeH) zG}QuLzF1E!xcUKSd{V+(!Bf=7sa4G9LRG>RrC;!uL4F!7#Bo?C2mPzHaZ>jxc>Q)d z9&sCm(RN-3q_b9({lb!(FPR{8$IpjK9=Ae~=W8Iue=gQ$dBb}bOS~u}NUwM860u%N zb`fB<>s%5k(vkLL{g%=m4SA9SjAg$CdvIF@#Fb{#N3wrHQ(hFcOU966IMIsT3JD-# zBtTo_p8gY2rIR{ER|jh)&5GlgAA*k)%22>Zzn8+dMB%$gB3i{o-^ zHGHZGVYGPKzos4s1qFts$1OqK|El3l{~vnxvWw6X53Is8O)5irl3?@x19Ys*DHK>J zMof7woK2$e*v1i(J$WDMVd;aZ%tg;Zdh)U^p!9jWDX+g_w&yaOlNn3ve+#0ELu;z4S1LOyPtF$LRq_y|-|4E@n|5*l3Kr)floG~e)KyZ5Ac^*?rl)S04m#lv)F zJz9gp$2P%+FSB9ih%$aI`z~BQkVKn>6+%w&02W@lP7R-2LC;?Dof(#TO&#^BrzF+u zDU%73M7U0h88Kxu#*o3(SyKYWs;4lccOD+g7=@xAq8PR|1I*vP#j8$gbaU=!VWnsW zor>zweG4TKX|n`8j-12B`R){}Y7y16+LD#H`4V9-*mjMW@_6_u$(~zsSy1R=1pD9# zjAV&XJ3W3u+%*xrnx4yizh{m2Cu+0D51)s>`Rm~RL=(8O=_1?+Z3gNEmwqS_&CEIJ zpg<4u17$;rBi|Go{~BV-Zf7_6=&cU*!zS<{tc05VF%}XJiNohQb%E|MQ#j6v5r3>& zf=V(zzGF!0vOvL=)PVxa+0bpE4!7o* zLThR}b}Tjpg$^;0is}_SA8HEg4yX$CD|W*V0Tmb&*N6L0wIF=29$cC331>!o;o_cr zrJ7D>!lu@h5>qCO-y`3(FYkq?ukB_1MMYU{ZSu^``kBzK9ZP?BcM5{Ap6)zZgGcr4 z@x;eMsyNjg?89yF&N^NLV)7PV>SsXK!S%S1SI7Q+QhitgJh;3cD``KuFxb8tY<#?6 z>t#K#m%OT5+?fD#2Ngi~n;Wy$S{GVX3h0^pt0C%?GDLh)2JX;A*dnJ5%7y-reAodV zL@uY7G-eT2xVj&I4*mV$8F9RDG#!q)nnA|K(?D&BX9jAoa@y3IX}_pb@WxUMv*u=i zmXispWR-)5nIX(+v;y3G0es$kVzqp-V7+~J2GC}n$Upi9_g=w&%6*3lzpDSc(4C|R z*@lyWePRO?NMu06^Z@F@aRqQOje$~uqc|sH5PqnagBdFi3Nu~6d$ksRRa2r@?$>9# z4&G;$n^nQViW&baU{|F)oQcoC9GW8{CRB=7rEWm?2y%i-1qFW=df?VJlIO5^Oo_1V=mv7HkpKyJ z@G2jrJj!81m@TUBno0Y&Tn32-BT&`9566=d@o+^s9GIs-iLTdza>ZTHq}K;|3--{4 znWc0_T`ZKS2d88rUSQUsKT;RRVetny_lw1?WENh*Q#{G3IC??0&f#JP(h-Y%6_Xt!t%NGaAgR4S`fl z^ayyolH*5O6qh(ecgdF?T5b#C?kBW>@g+28Uvw1JX zCqD<-w{mbw@(LW#uU7dkIf+^&e;Q1+6{t0rwQ0@g9J+dxU&LE9mht=B7{N4RcvjG5 zi=yY@P$!}VR%NPSY32aC)5Rb{#SuPs>A-sVrSPjv0lH;0VWz1z^!!$au<0tWWG9yz zzB(U7RQw?-h;K^Z#-+rRt@2q!_xll(*3Gs!`>QdGAyRLWz{fgq%&9kqf66^7MgIZXd3d{1wP zm!jr&C({T0Lx=~HJWi8h=(nS^mW-xDyDZcQWI~R66I@Z~WXdjBLSmIP80#()o8D*( z*`5cvpTo1bQA;YJjja#DrBCtMD-&>ZxB>Z_jB%T1EZcRJD1lEq#^J+FvS*SjXN#rb zTit$2`|N)#s&@qXZ>!OPZ{99rVnDORzTa8C0~|z|UW#>4Cl}e9I?T&Lpm|KTL*` z%5Hd5!GS6>_NEsZ--R#Z3ixK(J%OKUF|4Gck<70nDfHl86S(lU9ws&jqy9BzifKBA zQ+~VAI-gmh{xy?`@O8Q!d{>H07m*8@@2$YzLj`(E452{g9yjx=KE$t=2CGw!g7aH> zliu43*`yy))Jm6$P%EklljAjkGSP>&H;&N%A_oo~R}knt<3d=uzMuH6vhSztwfh|fe5%Ux6~y8|s> zTGDGSNzxv-2JoQ)KRcx!tB@e~yTKxD(A36xaEaAN&uSSLlR6a+8jqr}>ES-Otze8# zR1XR+7cRwDvv!YP5Xs>#46i*3_s1EIK5odNRVgyWfR>u z?wZ0j0T;-+z8EUT*E3;`R?w@f2YIKv*;CEt!gBYYazjeTsh6GV@MS~~A!H^qEo{ckr`w<%e0s6!wPq zBzB4xOTg*MGxU`81>D;5g>c1UIsGRv11t{|K)~lv!O@kEU{-W8oGwsfSV33ehS>^c z!O2Q$+$ovPkDkwjaR0;l$9%(I7xI^ItMcPW7=Dx##Snpgtc!ueVt>s%K`81o%r-a! zVwa!8_o~T)<-uwc?wf#@96hjiEDy|nFJrxCcT(IJuc?{rD|D^rJy3i_rcKBy9Uz8# z?)gIoGhb#2XbCD&9p4r*gQME40>=aeWMGiW~ei|I=a;7*H6H$(3JI4VjUI^ z$5V07C8@T)MEcbGG%U7_#}R`m|Llc|2;g@UtLq)f{Igv{91>fuvmm~Ljc zj6a%cnfytj`l%=cCtnh9y<1P4{j~$9SBL1N-<7CT69>m4j|*zedJJcdB|%8_7`xHM z7X>TIS=04H**lHO=m7QvO6g!4Zd~m|lyBO5gSc`?x08(Kk(N#njw^?EbU1JaWto}H z=OE@WuP-zDDBy2V0#4Tt32rYF#R5+kIH(f@r)+1zk7Yg(^uhzh;zpqNnv~?Lm;7ep zkn(-L@JGIBWH@*6)&)sdqUj&SKj}1^3J^{=#IrBOu|e0JZgSNTOz)gXrx;d&6}5;; zY>=X*+&ZbqNt>9N8Uj?lwj@VLBbS|*%6H{h`%5Bx(xD3SL*l#UV}GK(Xb*Qdrx$`E zb>UWS93(cbh0R+I!|CQTU^3SpXAEl!xj*wHLS1U|`LVJrYzn#CY10JI9Qle}M!@WO zU5X7#r@>h&1&5-u!P?tap*;HuW=wtp%S#(D;=Vn2EghuJH?L-vg=EtkZ}s3hzgWEI zkV@c_qLuk`{=*gP2z;v8PI#584sSI~Aht*ivpgq(bwDskW}X#uzH9<-brl2x=FX#L zD0+j+h%WTs(}LxqdXS&99L%~(q2|kW>p@1h&nyVR_q1Xl)6>&whT81Ct=y zn18OR$HR#X=ev?Z_CL7w>tiry14S**a)m?beb5?QfyUYM0mA1BR;b+rQ&utkW3w-B z9tnk!-e7P|EQU`Gwp6!bGOZZ3mSwc$gJe!)BGGxDV)5f}&Bq_)!nGP<(8_!^@#)KM zq5g-ia51@y+N8M#ZoFCvE51tMvN|<1`6~rmqaM>@>UI$P#txq}Rf5Rb26Q|%3bnTk zQTzKj!m2mtFT**+bXUI}Jv{dZk*PIL^EOo_vZb}vCK)(Pd3+}Qg9He*+G z7|>%tFA6b6XOnSyO2ig)T9!l!G0Ui5?#nShOPH`t(np9Xvn95Z{7DN{r)JGPMa8OG zvz}SqrL23bsQO?#`fRlgKJ+ev5s!FQUQP@AN%0q6`}YN;#hcNqc)zE-ax-({DNw&< z^XWN>D+#-?_zd5a00VPUvZkCB1G!V)I9>Q9?V%Ej?fwt3M6L=3eIjumYXVzYOoZC5 zor-}s74Vo(g?PYG70xTY{Vd}pE%ZETE2{DI5lD;TCns}m2Z@x%Hwt7lvwg+jiQ@w< z>+Up(?*%!~L)p+D+iPKJQXFLaYg2DlZ-uS9N@2oqBV~QE5p$QGq4zjWq4I?z=#x91 z;pP{gL9NxB2wxVKN7&5+ONlA;WjWYr9t}z6mS8Eho7pnB50;Ecz@+-Kf?9p?Fd;2n z3cXh1krx`!$UAnDH@*ZMdASz-un@Wgzc4|Tm$)*i+X(xT3R!XbPMo}2@!th)2~WDf zWgWD4WP_1kJ(jBMrTglvptx}ZhGvVRxnv5ZB+vyHXGTHSrz5zV3J0^>GZ7n+ou({E zbyS$s&Tio(6PF&=Cb~E5xkfxuUM~S>VlUFuOkZ<66|6zjqLLX{_!L~*HBd|D1?%F$ zz4(&5A4|5ZrjB+M!JC8YS%S_XY!1`U8oMq)dEGjQ78!iMrIqiIKnaLHM%aH6ec-j? z8T$22JHfrIrI5-yUb0JUFN$3`3gaP4f>8$)5e!W zk8zB^CYfQpZ2cW~TkAmP`*5uDwu1CYtuXnc3!H1{0_(B6#FR%7%f)%h<$X6Oq>~F5 zE{lTB@HFP$yDBD7vlLnupOsj?Vlti;(S)vu)vOgOoNdc4OJGy|lYb z6SqaLoN@Zknsw%R7px89FC)H7^N-hs|Ft89cX(zBQjLPcrWY>dxnn(qu^xVRLoENjf_mISm~XgOru~jWs}6O;mhKW^V5Ek z9{&`APnbOPsp>$ntTlY}6h{A}$q+No58{kR#rlnHV5dzCJMBXWJ8-=={CsBsyEx~- zIWii8s}{oMI~>l7z)G>SGd{$GC;HLdLV9d@q_obZSdQ~5wPby+hd}C!BbwJP7CRvrDZxu-nk6>5}ZJpHxVlQ z2!mt8ova)w1x@?fd-(ST-xO6Heu(>uRR$2@srk!zXR{Z>mx*R@HK{_XHO?5gI=t@c z^+ncrjtR6XO_X>)It{n5)xob)6JD)T#cp|5`1{BJkFK0SnNBZeUuoV%SnflE#FVQQ z8YF$>aRZbV1%jH-a%gkDMQQI^22VzFaGR!&aJtPH)nM>Q#I#`pebgcq3h(Jd@}45B z7}7!Cfip0>?>PvZOb}M+w zO`~i#tvV2smJmHm&qIY4HE@a52D>ZT5Or@G&U%~=p_(f}n|@^qBKal$&h`mYdAxxDX(U)xFO{FX}r_N$9jo~kqB|92D??%NFK zvbykzn-c!|lpwch@DJQfOoe`LG0Fq%K|${>H6hoDTf1#LI&Jv`X_r<}qAU0n>zC3v zaXcn$197})g(&1)@)uoiElD>GCBTbWi#d~q-+@Y%CTPxD$7FkzLJC&~c61*TpW|2# z0uE|a^T&x4H$09y=lK(UFWCym7w|W+2FzUuTmD)oVXx>BgX@ov;BB8x_;ubi-l^1e z`lC*%P`dvq+#LIf6NV~b#HN(Dzfyp^ey)JnvU^YwVt_x!FXFb&8t|1ghrd32-9e@D zg#FEcen!Zv zGabASt5NcvD%92lFZ_P~1r95j$OsE-kU$wW;%|(bJD8I?AebNy)t8%v6?^WpmIsPb zU#^*RO1d9Wp7c#9cq+j9uPzP;okPGn$cMToVGB>K{jrNFqwe0UqrZRs4hs8T!`>z# z5_1zCNbzf-N-_Vez{{JWVDw50*UY%cTPt`%2fjhp99L94_XtK)o!RCCAE2e<4Jq{Zf61Ui#w}HZ0)}=5md~f2R1c!oA4N5?kzHW$zq_QwpO6 z#I|v|^S**u{{<={=`^R%hj-q$vs1A3+jeUGy+r8uHvl89+@rP?f7$zR z`z2io>sIEYU64l*&%~ z1K)=cwSP3Wexwx=Zk={S@iaqVq80M!;fJKqTRJ(r|KEC;c zIv=+Tl-}y0ZK@ZYA=(Opdt{ND%w>MnN8pIL7<06WKW#SroWtLBk6p~4lNEMM0TJ=N zoX5S5cwu4`1|{#I9z^Y?s?|;~6I4D@=W=edWY_A`4u==B1NxQm>KP?kD0MPzILn&R zTM&zBcJmm$|7`;QsT1S7vS8yAVmY%s20FZXkG`I?Q$G7cpvC___7~Pdj+QE(9lJ&M zzRsY2EcJtTJrUHg+Ua7Vv3=O6BS9DBrLipp7xnQipZ|fp9N{On_cvjG z_7I1iMmw07kKPFDu2~B^n>wg79mgTA{5{0{*T|l~VLMK^F$O2b8eq}2yO1PjD8R0Y zrkfP@QB5LRl-14xO40HV5x!8)oFC*vs`=zX_7zz;(yI!W>W$#69G6)arw^XjC7?w) zR`_XN8;E+QE2r6ihJchyFg{reln-b@kG&zp9CC!lAupJxO|f^qA-+p&)7dA5zSbz&aln=6NP+~v5a*%R#A6X>01 zBn3vU9>FzYUDWgkQy6b=eg?tywS4$AV*^sO!gq?pK%ox1L!)0fe}W36Sq0PF7wzy! z!XF$%x3TBG7zh0l1!zfLO_!xO!rbSItck*}sAr}f%*g5abXC|AaQI&a-Cd-|hbL}` zBJkb2rQpQtd8ktL3Dt6{1>D$mK#NJCfVd$2^x`@8O4~w?$iNn=N^%~alrRP3Ym(H& zVw!$bB}nP+QKYU%oT4Tf6%iL!FJ4ICz5_Y@s%2^A0PMYL;3+u?Op9}9*CazYGb9dz z=D)?$mm9-}+UwFiM)UDhQUpXcX+y}}$>7zc2Rjesg2|LIaQU%>n{{qF8NcBW($@N_ zwiJ*>%27i*2+wWjc%J+#Sb9(eim&9MIq%@qxtATFJea|WNAst3PD4)8x;U0{MMG^K}lPq2a@y}vGdje5ng;@G0TmP&flsVZYFGSq`qL?UvsWVSvl^R!}hRPltBM(oOraSDPzY-=M$%C4uMz}O%KQ4Rvg4(M21F0Pc zxvs_;piz_xYtD~>Sdw6V^&G^TT_=K+p)9iyYt@#};;*I)mTB2q^8_ z3fB)@mU?d`L0GCk9f{%BzrQB)Udt2SzTHbxsGZ;fKDBQsuIX%i+aM2J4e!NutK4AB zxK*ZZML5{3GX#;{cAy$<1=@y=VB;SS9`942+wha%)oEnnfiN5;?DmokwFyqZvxY?f#QzzbnJJ0Ij(zrkGUAKiG-Vw{5 za>P>L(r_1^YUJw<8Ja@aqA3GpuK3dU8}4d_LB)*q5P8cU=A69)fwt;UD3t=a=hwpW zQ*x{?&v?%eG#Ow%t#1~F2)q=h8X_ms;D)25)7Z{PnP@g{&{#&8|yrh76)ou`$KNW(6d*Dt>Gn`w+ zJ0(9f86JH8U!bU}684H6?+9C#ciMTpcOkOPc)xX~77VngTZW6OKm)H)e9AjvFG|mZ zzeWo1^L0EN|LX>;wWmVQpDExi)dIHv=EQT8;pRO)``}ytvy{sN{K+|2hqu{yAQpsL zgYm!h7Eo=#djs{H1}rU#hlf8mL8@RCG;5gg4#%ayBd18H%s&h2Ug02h`4*}w?lqa} zRtJT%`JQz6@;z}rpF?zO*Jyx+w>hYKIe`D%QxLV$4sHm_Kv{X+q`+HKVBKSVW|eao z3iBQ+Nqn#YOMBi%=mtwLSmqDIyEek?=e#4BydC_1pXPb?#1p%5b*+Ejm4q|lglr%j zn79RudELv4-81N;4>UnXaS=?hN`(v!L+qPv1b;JYLGHj?h@TkCpL%1c+ljW>Wg zuyPINo#A`pVPf`=?KiS>5s8!Sxw-V7ZT_(NXgtK3Z2>uh2(c5zTJVDsz&pt+p#1Sk zj6TE?e)>Bc26X2_=;%Q>d!rh(*De=v?=_|#_41y^-{&{wyIgemiJ38MLdvaU^eR{` z7K-}o`|$KVOPKTMAS#Etq5knq>Zef)TfpucHvCP7)Q|CC_I(kYajc{spQ>fsN7f1m z4Zab=yV{JyQoit`{gy9^Sd)zMzs;iyFoZO%AeZx9h z;@BuwRq8|4{wiq8ctNXud4;vv^Ozel8(1}QzZgl?WtjDpZ@B1TE57haDuYCLe@rMS z>@*i!=Qe?<+iD7mNnG|5;Y0A?&RJA6aHnn?&d0Ecx-jbSgiijLiWhkAi%fWujY=JQ zoB@j|bZMP7W!=J`_nm5tiSSuj-$}z_{Zk!w=erBWre_IMMLR>wjeT_O#yC_xyAZxf zo1*_J9h|#A3Va@vQ*sv)*)278IODVl^|*fp>CUt;+c#r(DtU%1$X)nu`_ z@PHmHJ~GH2D@dRge9nWmQ8mGcRbQdFG8%^DIQXC88Z6BU0n0Z&6w`2rQEwZ=zPBS( zbxtQY@p%SSQSlN7w#)sCI*@;GiG<

wQFcqUTL$J-QS3YZ zigKKHV?W*V3h77D#qju-2EOT&!sFH3;lyYwdVFEAWFj&JLUyZAA-kdp`&KspshiHB z9@0@f3M_}#=br54KH|*HE5+cbhys6J*MgbRb5Ic~ribVLr1k_yKu6wc`r?#fXyYB0 z+Ljqc9oihqw*G*Ohl4z=Kih(^ACL0S!KO>zCn0_=ek(j*FHD`+Nv00TEJOoOW$ssx zCMdX*h$(Z9VnxhR=GE;g*csr3yN;z`w~sSEKlKg|e~qE~^bDwOJq_yhrsag)Tl70{AUNNeXee`34`RtQ<+5|4-SIK{{?7-baVkdu5JnYYxz>#1HJW#+iGHtk{5wnat>UBM5!iWq(_`hEDb1}(Fn_i(wnfjQe=KaLcbTxLpu=}LFOm)l{7P zlj^-<2#0PR6WZLT3tqR=peX%6lpWwr2<#dNFek?+toEMOJ*be32-4(Y9S`1dc=QxEoZbHNkZ(KTm z8Psp`1~;wkcqZg3+-H3R1tyAG6DLDG-fbqpJiDLL5kC13b; zd4t%5Odas}5=(h6ya)HLI6&CvB>K;pB{1f!4#wGLEdT8;=%~1sKC^8-7EC)peW|~R zR~~UWO3)NLE5YhDYhBPAz*WB0w=cZf-v#JD|Tf@OC z4%#p^Y7fSJd`Yc1A;=0{wF^i3ESal$=Jfh`_PDr*&rS%QM05v+%^}TIoQFEh^tOP~ z{>Qxcty^Hi!z#$Sy8zZHT;OEwn+3nL$~D8Rj!^%3Oah13ZFq2xH9D0{hrO>B!}(XI zK~H`REAK2L@y(vQp0NE#|M&90oF-iUu?DW~dke#YJ+M666ErjZz?+#ZNFAF8$r6Kd zhd%yBySZzj-@p-nh{)lX*L3(qt-`K^Wb|awLMqMtIPniiC+vr3D#(QKcv?8P(L<~w z2~Pw}7n?wgX(bgRW(;n#-9gXCk&4&9$U8zVhTRU?l+KS>jE=ZSpR!y_Tj%PrFMRgL zr*{+J?i~KS_G?`wVb8o3O>TB4J{Yb#&8N2i4#Ss{F8JO)hFZD#E!^Vd!lu%B=ycne zj;FY|A|sYM=G2KMcRJ`STNB#PqMmd8pbN7tO94ZF@?PrXeGC;Q6ZQ>hLlWQLQ+MOv zBnM!ESortVThO`o5FCRhfOldgci_oR_^s0~_^x^YoNdZLT3{NKo%;h?lqm9U-a`0Kb1cX{~Ot4Z(M<${ArQJ_p$vJ!F^K)m4;ko|^~;@wzC zDGUMbR$r*mzNWIAzQcP$>_^3oeW9M*`pR2&@tzb5|3}91OtT(g3rCj`-TQSE;3a6W zPW|^xpo+T%%zt%oZEvgL*{C{{iMj)=+mz_`DUz5J*-w3L(_(e!jj`r-vylD%K7B^c z4tM^L$2p4pxqdL=^FOwqbc8WsA9hrQq9r4gU;GbT;`bjay&pyIvxgx3`V&s+5jNhF z-6%bMX*j-Qw!pMbHvL^V0xJjWaBqt)C0rnlDn{Gr+EY?Qw}f{fe>%=~=pcOrJKqmf z?)0-38%$(XXrDvMe?F7(Hx=r?b-=lRcxL>JAj@sU8U+umppJfAi(=`@)Q+VEOqOOL zt93Av-ka)7Ph9Iu;C?Sth$)SEorLXNt^>#F6$CnDf3o+!+5tg*D_AK*!6+kXi#Dq# zF@`1#V|sQQ>=ZL$Si3h<;SolZj;TMh_4-8m2j>;;)ZBv8KgtvKarG0#l+TU)cMFST zL!eV3iAvjjiE3>eK*p<-cD%F_10xhUWn53HL&1~X*cFe}50+rVJ2&dP(p%W>r%Y=_ zO`$%vOEc)7iwg<^$V0*&4K zSWmY+0oSwXbZz-Pu-D!Pu}9`(Z~6l?)o+A*-j>uW|7^69xWRh5QlG#pLK2B7JGJkU zwRe!M9C&YV5K2^g!)2bW1fA?U43*17i;!j*(5s;C$q1ovZ4&tNUeG=J=m=gs7Rz{F zy-q(Zt)wy?%$c+tQyf0RuU7fOri7hY$UoR!o;(l#%9}yv9as2s<{PF2x`NzdImob! z7yHYa4%O@^k*fXx*n7_q-upPf`eG|M-t7R@UD2>w_bE8+myt3Z$sm<)p)LPuwbm6A z@_k)Q0z_pe(Vrrp2)}xi2i{7C$TBUbJ}Xt=o%!ALwpdMEFKGy>*BUXi{v@ouy$4%0 ztppa?MX-%GuV>HerdUUKPrUzq8XXUl!JKn=Bbkkhj5Q!8Y&NX>GzGV*NK-NCnUX&g}2bd{mgBw-P!?b7}NWbVzm56B2)w$u~LD{LOb88K=>%#_W!^vG>GtQrn zxfEIW_*y!?BJ7OKXP~CY8oU&|px3cn=vm4v@R~mnLOLIDW^+B@=ceC+?Y)J(_X=*n z*WWBkq4gL%-{uUaW-rk3!6{I4JTLkq*PTS&IMYTPS39Fm_MG?ESI{}S4p=G2M(>$V zSYB~LbQEun+%mNSH#?pM?OAE8lT|~s{QCv)y>AYD;rhX$OKa)N#;*k4Hp;HAC0en-!evw6$@9V56Vv19+8g%$h2lrhi zC^~Ne95!~tD@T-Jn$lUW$e$+m(wcK3?na0we>p>9UMmcbAEeIP`eJMOO;{@)M5Sh# zi758*NAtvsSdu;y;-3!k)v9+`wcRwY8u&md^< zQi4HSH%h8~n{?4$UpTnP3koaVqjXObbU*Zl@hkl8PPf16g#GP?BhjrQrUR9F+hAM# zK~Qcr2G-SR=Jxk8(EsfS{?zak>a;kaWWD7waJin60v+ylN#7e z9b}fM&%{Pc6G)vA&obYk2P!WX!fMHA97(r8MIi%trEr7wwk`;!DeML7lx_HbEM0e8 zP46FnKj++g+k;AbXe&+HLwgTN6P1)wBxDp?N@Yh$lwC%H63X_igff!7%E(rB$oL)S z{O*75>*aGly`Rr|KI`!jUmzGPi%~w@@c~n>ageX*VXw$x$BHG`xaI6MWn}wqrVj~h z=`~5a1{OGoq;Q_Zu2NcnI$ zJ?Y>RdhdOX_K)s-)~1;DOo(h+y;6-1&n&{$?c!ghz^)!atO zXU7+bj#jb2rNy?;6X&27X_u2J0eDslMeTWmep1R>r$3)ex@W zCSpl4+|E%;UE6h(K=1dtzS!GhD)vu^{-Dy;g zlQgB*JBAhs*~o(6;uOOfEEDIi>ql@_{M+Ro_Qwu| zF2YBc;8(OOQrZ@v#?cXBn)0aH|5Wrsx(6hd4n<;qE=o4JpyOIB{c9kQkUy!^gI{;3 zg=@p<(SnVbtWycI@sU`w;TEpEJI^QLvjk7=eJEMKXZ(VTT(oREqMrk0gJ_w^KhDk0 zhC|KnJKdV;A~fOrSj3n;CaN1!sp7v2u-c?dxOx5pvisW@B>0KYZ&h~Sx%qYevWpvq zcP@QIqI)W+u`v(vn`z4Z_tEs{toXx+yI9&~S51hT_j%&6LV=cC8%P>=YLLl$ONe$# zG1ay06a7o|Jb(C98uSdOVZ(=ss8}6LJBYlJ6#O9M_n<6&sN!&>ocZ<1Ll3`t9crNkQE+4x{V%qdeexTTSw2cl`4 zPhU{2FhDPGT0p-aF&4XNagphdL-6-&BER#9sqok&5#CVoRI2LM5CmN21Y_4&v9$e^ zxpvxxIf|HCk;s2NRZdE7ydh?sNg&(qWs{+HSVXv{_ z^3_qS^62EB#SN`9Xq%Kx&RmM61Gi0qNwyjaKRMGK`zvwdriNmF8zEe|l}x)4i(9)osh>?LyePx7w8HK^B-4L9F>T@w^Rp9| zlW0&dV-Iu9WHUUhnkqdeYXN^lz%-0%H>T4rEyK9Z|B!Y29A)439LeEXn6~f>eOYS{ zx@G3`@?y3MdNf@Hk56qSH!t+z$~AQsl-K*i*uzX&{FJ5r?~Z&VCPKKut4$Diy&31_ zqUjxr(^0nX7y6>>s9kC&$?1>t5nz6UQhB~sO6`INN#CeQefwQSFAL^TR^eX6%FBtR z{k3NoOWSrEcOSG+RYKL+^^aEYL_c9XyABoR8+xw4p_}N_UI=F&nx^uqT;mF@mB-AXV zbJrh1pUFvx9LW$_s1b&{KMOJeitQf$1HY};kpB~d0bZ=zit@|_}F&1!)l& z6ReAO`{KpacO$upnJ zIr?zZPQsg^JQNpN;K{)ZLV|AE^Mwa2;Dd3@+9Kr%i*cIwg&gzdyu%^E1Xc!@?hj`9_U|5nb>1mdfya0g z)pa_^%bSg+Gd6hZX^FJ1F5Dc7L-QXE#4!W@^x`<&9)AypcUQuwK%G=?$b|oc7kHq+ z>5lXwBbK&Z?JkyYwKge~-(1Pt@xsGYg=w?yo|J%E$__{KO|fD2b!=P`1+jc)3{*G+ zV`^sLoJk7FmMy{-k#q36kb%4ce;m8drD^tWwpjdYLi7_#fk0R*h&n90KpaJe=(v2al>{q~U@V&U;5;SSAy$BHm<7voY2(^Zp~| z&4Km(DbU#)0XZFE-u1r|$cRTnkh{pq_v{8Xy%eq^{U3|Tw4ISyz|MRD1 zWpn>Ey(xqbjZC_>gOfuVB|mX^t_GK3Kmh z72Y1c7*bNiQj-zXrC2{S&%dE(Hvc({!R9N+KST`VV&uCynN%2c&i0W zxxo|Ji+o_ArcKwJn26*IQ3HMfhzbyJ*AgK(_h=tk>{K}F>F_(@vDzH%$r@k(@g1%g(8u!qHm!nm%+Vmp2io!4^%puX zZAHnU6#mS;K7zE_k(fUyB$0k(4Sd=HNWYsC!t6H?(ZGF}GoHD~oXDpQNA3{w)yZYO zue%MGkqG#HgJoPzx{3uwF;hTE{N2L8a>j_X z8~nxgSu#R8=1C;Z%ZPN;ogkmhi|E`PW6?Qw2RZhYX)qi!9WO*Sl6u?g;-eOu3;&co zMkdemVAaL8r;tlX=uXvU|B~{1#ZZjmOI1xU5J}1(gN`T9spK!3WZ4@>JdD(!e(!vX z6S62lbEkh7PQ?=;j&ZAr+@9C(Gp@3?pmtgT7W@Qk ziIXRJs}@3L(pEC+fe}_L8$;(7A64>~JWcNKDv%pd2Z^zvWEwA*PRQLUq+HyH7bd3E z;m2;gG(S%7$F;3trSMZcHzKmpSPqk1rXb^OI?}$YV|?RNoMSdUMD4Z4-hnho>&4(n ziZZrbae|zayyg8v0obA5jCHHF;fdG+G*6j?^*wCf5g)6#*y_fa<19!u_Il{ZGRN-* zPdt>jASrDw@Trl*1=V&j+2fuFUCkGg+8GXaEh9LOcSK8sCHf@nalUI7Dt@yah4}MO61_xJx=u6Q*UV6P9eA3f{?$- z1UZkKP?uwcwFdT>cW?o!@7a^^+NXN8jhug2Vavr+p9gk7agcqIh2PEy1c=EI-#J>k{&xz*if?h4L_OpDgH-Sn))MOMoCEcb(a2(KdGRh?W`DvT z)0%K~7=IdzKCu~anKlvEm6Z{9G8vL?K3Me16|X)qyF^uEh}gvhJo5BJ@Bl~qL@{@k zA?Y2!vCH`l*(q$;jgF=I*+2auN&j1m4%FvU!t zY?mH{^#@twp9sVVuwNBS&1cgj3A|)N7XSK zecUDU@G~tJhsGt4SH_yi3N_+uO7^RqnK2bE$3BuXGYf=;I^U6*uG8Vv%PGC6iCV6 z#rwODa6?{6v|D960+8ZNwRT8HZBBtkA;-CaS~@G@ z)hmWroKz=kpmH&ol|qk2JKk8}&Dwp`J<+H9oVpD-RxM2iCY2NE^9K0CyM#wAF)-A; zLN+$dMx#tM|Av(w`Q*?<-R$N>W$K*UENwFt!Xm!?k2=)14kM_bk69A`1VwTJ;__Vu zzm6vhH4M%`)?GJ=O@sQB&e|ND5B(&0b?z3ZJ~bmHn+_8}pBlYt$s2x|N)#&^y<;p{ z+UE?pI&a!GHAv4H$y0vxp0c=P0N%`6ncdN>>B(E%Z<~aA;yH~pY^E`)l*^K zDngdjc0%hhEqhLfkUa4+6ddMEiXfW3!iI+q1+j-|zn58@GdUK8zL%M1%`~!n#CA&Q z+dRDg8H|};nb>++ourI5L@;w7SFH)*dsbCo&+Mrfd38&kZ`ohFjtXM`N^xd{4Z(2B~souq2Ai~ROeO5D%AJT-Hh7khix#EQ5GCJ|8BhEV#qA&(O{jJb%ZUg$7E1EC`t*=wCy-1x}!7N4j_u0Lgn*$H; zPxNL_^Y0}!5M2+vTvQEG;?LV+I~|voEg~%DGLS2Tb?>xdWoPORB}8{hh)3iG@fXd?!w20G z;*q?8noFE9l)MA?r-+k@#=7{TeM)#*(p0pkOcClaP$Y*^-T5vrGTL#>n09-4yY z&?u}NGYBfOhQIY)4HBNXkb65hn=@TpCZl|JQ{*^1+b1 zCq-*J^Cc4vo2iwL3;2uIwo`kvyjj3~PW^vYVZtVP7VtG^_0a#r8SA%1A!F$j(jFI& zS{oIJX3yunoH7+#{SS($Fq{8I);Qy@wI8f~*Wl zXwMx-l|7dvdoIb#`PZ9LQmd<>sm}@FT)!d~liRw7SwY!i|A1+|*ue9bo*@{JDTdVd z1@wnV0r4Gk09h?fJj28@q*b96FMNl|=s_P@pQY!iXTj0b_D$+kX*e_7E?)}YNs8=Y z!p@7OU2s;PJu9FGC$~9q=ek%*iw6liQG|ydi1zgP|inZa>N0$;6uRlzKVlrj^Xd%h+Iz>J{+D3l1B#=*Qw+Ji?)=@N6 z$sf;b5~*E74xY^=O_4ifuH~*HLFHZ~$m0?<)s}nsr1+9L8v=zTe#&Bl<=^4^aq3fn zpyb;K+I)WiR?j)5yz#Ci@ePhc;`0DXkkW{O3z?`M8R&Z?aR9A~$cS zl0$O~p&O*aGOpXOkp)~+bp^|~quO-5Zi&FH_(~|=D#A)LdFpW45t0y61(`>ug^6B= z$hD3<5=**K8S#bpbCG~|F;-Th{&or3HEI{7;m;>qlsK(_ZhD@jou9gawc$lO<#8-b zk*qsCi)@P1Mc~wUlluoXaL#fp^RUM()b8Gc3Nd9whPQ#YU<$D_^2UVgfABh2k{Y;m z7KKa#+o6^d@b2xLLvHa8WE1V`4avCh-UVWn)0o6IGfP@iK~AVE!9QgY(-{(psKRB$ z!E7@s`Ol#sUPax1;EGnJv~GBpS;!{2o<9`QIy!eFC*auwY?&&&aAqOPx4q*$SXYk6 zz?2}IuC=gVFV8l!c<(ST17iB(37dwczI@^=eck`lP$ct zd4P_OY{2IjOWdt@#kk4#SXVXyu^!oQ?_|pD0($g{uN>q3$y`?X>Yyp>MSmQO;hBS0C;Q4Qir7;6U)OJsL!(X zbW)_QLe6RqaFxGYSorWlH!FmzJVZ!noduT9_eGdq=*az<>h!iVqp|4E9O{m90M6YX zE3TRROzhJ_OUzt11bH)OtZi^d-pI>H_S7fKHx4jQMsTI1dizXPP&%eZu>RP`MF}-2 z?*-nn`>?3xA)5Gq`8oBMp?}32GOb0-^EmM|u;Ye<_w^Bh4{6=fVD`n>VcE(efixo&sOdbQFjkc(dK99pO zkyM(m8dB#sP{neS5ptv(vzeOerMTtPg^(^RblU}mD3127VC{dj!%cFzBwWOabOa9k zAw_FcBs1Q;K*qxH)F;WexHEeswWqm`GSN9n&FFR~yS4!aCZo|FWj*%lAh7Cc4WB844%vft`c~qfXmNbUB!i*DkJ1DyL>SWea2G)raE;Y z>^Qh?c@*(Ee;)Qfb%S-rn{e}KhAqgw%I7upEce0YfR?_Ol8 zUIi^A`e5X&SMAupE+2Nor%95^vfQGw0X*&RbfP(y~z4&gE27 zYgaC(_wr(KY^+>u@DS?v1~6;WYV5s}iJadtWVe$(M)0O%&Y5=*DY78%9vLB3z$_W` zV4f`Lj)jS19FEzA2xo{@Do)XmBX<8+A0tJ!A0RwGTa5+fv*&9l=p|rI+et`|f5Ovz zzm|mC?TLCfnVym6Rvv8DgL^2vSxjt$e-#uQTN>WM62m7 zE745?!e^!M&na0}3b9260>?H0;Cc9^Jl>0xiT zr?BU&DKO6IBQw1h@KgV*6<*-$Pdkt8fyo5Uv;C!6#=|B*d&QnWudNnR9_{T8f5U6-%#pGe zykZ&W`Et{x^BuYAp;y8s7`G{Wl=i_!{*qkAzI-sEv^qkl9PKOk^=C77`1WEbMiZxh zwa}N2Oo4{LivMtpA(1m0;8jMi!jtLs%&K*D6;*Bw3M|xa4Eh z%W=rLq)c{unLv_>CLZ0@C7%=qa8B2({J(^EEZ{&{d8&|A&2`1&K|gjP-uvfL z+rG}F(&zoT1L+d{;ITNZ)SZ=Zw*%cH9mk&p&UZ{_<>Tk3B!h;c<6Z;*wTntW7DmyTjhtBAJBg zhUiATbyp&`SJFi~TAk?~Av37yzs1Sw!`USIYZDd!w+UCOb%>uyJvkn?o$g7P%J-5h z;Thh!PMJ(^&J|w*IDc9VEFk+DWz1Stk3kfqAJknzH--2G0ik@a;2qnqh}^SjG!Jy=T?_ zTV*C`^4LwzFVG=}6YoR$784ZZEG8+kO{C(e5_v|ql1myrSf{8*g?yPmisVLOs{0M9 zz0`qL`__(;jndTCCtUYm`a5xsaWCOvmT|KXW?Q4~9>$ybLd;u*&ih4^RsSiX{b!uW z(~srM7nE03g8TUOwW-U!lG zl1s<|M>^c79h)up(^aN(@Tqx__`G~h!fvggK6=#9tEXj9iyuo0{(CAeY;c)#Z3*r} ztp0?%`K)7=b7GAZ#?@5_JLb!XoZL7MMqxxWd5RwC{=ErlTX)gwvCB!ePbCs(Z5FJ| z9Hyf5+sSKlLZ_BXP{v=}NQ=f0vMqX9#NRtBa>{w7`z}jdtk47Z++@V$x0~?np4gJ5 zLBFJ`T7Tf6F|!)v4)dt#geAn%q5@YE7W3Ir5M*lZuB8e*w$ zbC{`rl@*nqU#eWhwbvQbjl5~&Y*F6hw})_`U^oAOeF{-&O(i!!$q8jL8zaP%_QJbp z5eZJ2NmkU|;mt7*6O4*KO3yp^k`DF0!XG7R$TDtjx{#%PY1VC4RD60mkXBQHx1}LO zQhyRDdOnWy?U|3Np%kHhg%hy9{ewS$n;U-D&BfW%uSJ)A+X|j6^Nhh(Jz{FPh~AuD zJ#zjmP7DvJu@}PdZf02i-;XI(FJ#^dRHN>9C(_@BocR~DE}`Id6YsC+Q|fZR2st5c z$6q!5DqJETlS_Rz#9&kyWir$$k{9Gay_sN7mEX1GMXY+CM>+EOK;rej<{1fR7P+H zUWoQm>9|HYh_%Y0kun!Dp!R*h~N3`JB4!=giyMypOz|evfSUTf@Adk-(xL+`CwuC9ZP( z7kiv9$0=c;WD@!KvXsnyoldfSCs7f4@2GRz0$>=IMw1O)E}V*a*{ zla;lRNi5?Z4l3jI$S4?}A|%Pu3}K5uq9JoRj%qjH)Ojz$J2Hx|b|nTTA>+v^%iroP zqMMlpt_b3Vzyv}@;e2tV*;tb=}z6Gsfx15TbEzG+Ua_FBZ+j@#S{R0$sijUL@Ii8>VXoLc%(}I_vjC>h8C%lu7DgSW|q;+s%fzS!6ei|EN$gk7KE! zibQdTZ729kO>MhObig$p>KbJe3ym$|7H`MB|iqqL7{? zkM92STEwvH24Xwy$dobPdErwhAz$+xRg`p%vRJf|u66aHXWu-`5>Fd(hf8BwMa8pH zF2vkVYn=LowmApz+>hmAZTm8s-tnD08o8OWSh=3muD`a?xzO7OS1YoB7?1NhOau3&!Tev`co7_H!YNN}t4`f2KUVZj%&Cdqd_~$k%EJO6E#ai!Kq- zbw-ZV<(YTLkrVrfrMf7u8mE0y}y?&HMXeBXnyGJ^|MDUL8+Dbq9RYvb= zb7DbhU&HygaO&!MmiRe-AHv$pgyfgRPz5StRG!5y>Zrp<+-|!|FCTAD6$m}$@#p~r zHSVLjde_p1inEC7>QBUa>LfwPOhx)hh%s;F#yKo;+Qy1QMZbO-OFV1ka+Ds`7iv#x z;N{!6QHvf&@vNT>pkUCQTAg~8CoR=W?aVC4j3tRwgijD%_~iDair0mUa zN{gmeXV$Q&q`$xa50x<8h1{-bOnx;DcF zF~}R+&Kv5h;CVc7pbj>qQOP+|p>QUcxW64Hf6cS=*C>To#o0mAUK* zto=R@m`kpZ)Qj4Kae&**GKN}@i0;fz=gX($Vl~Ja`|$I zaZBLUM*6`xb0WDZ`X4d^O_ApI1d?4gXy!ShXU<|M6%FC~pEM)$aPA^*o55ucT~(K` z*$K<+#SlDemXhqP5gC!s6uVQF^Q;!V!0~x@2d@g5lEi9V|%IN{`j#9(>Q zg3SsS3w_bs{8h5~Ac#0WUj5s94b~A-P znCi&V-oO6>cvgp?a@8NLkCmzLRj*L+ObH%s&&3lY{UPC#ElI*7@Eyshw{U{nCtLh_ z>ICaQAdBwJA`d3blm4)Q^Z6?j53r1f|J)VI61Qtez_Qh4I6k|Unk)#R)Lw*>6D6m~ z{lW+cjs75fYo`S@?@t%RsR%p_c|`r*38Lk1MTwPbP$4h(@T)`5V9Dq_7M10R*&~_b zR0!MkteEGj%lPQ!hLQq75FxhTE?& zk3Re0zfMU_*Q4_g))b9A$ts*o8HCPZQzS%vr5iV8VSPk2x$}gXP)xl-w#4tng;}|X z^x!hsW}+@E?Q?6>SitRqJ5f3$!&|RvLq=Avq<$Xz!BY#-#*Q*()mOtjOxiVvR*_2; zefHFubTZoyw$5w8dW}}*)g}Y})5D%5wek{u`wrJ#bNm9=R2Re)9RKm%8XAJbr`uF^ zMW<7x_jIwlq?GTRGac^H^RaC4Ib3iof}2tp+&5}dmnAmy68O)sLRFIp@jLj^ug}qI zjDsM%mrbLf*FS{i`xIZCE&nK=Q^wl6MBt>dlqV=M!K-_dBzwI-;EUH>ys5kZg_Vb> zYqmPjw%d);UwmzNJlS})kRa15C32-05#X+v0&akw1>~v!F{>Wcdyv!=* z=id6uKU}LrnsUa{#uIm7VoWD2g!QPLKWaSD9eP9~r~&Se!?E~T6nSQ7C%nl=j=$hx zjiB_-Wa>~G7Y5}#8T>~({PZk4Hu4OWHJ{ECg{Z? zH!xY&Hh3D@Z#7Qv)p%@69s^G+NSkteHXCy>aaM*JCLLjJ)EGu0WKY8oR)%-I>_+#t)lTFl!=iA15khDxmHTi5;8okB|MUWdaYxP{L2!kiM-LDk>Y0DDH~t zmGdzCbUB<&E{nX}FZYiW)0M+MBBU64cnj+wF0{yFqj#V9E0Jj7S*@n9>X#;A+Z@OO zUpbOo;>?#4>7c54X-LTFp#%|zL}95uT`S)q$aq{zeK@H`cYaPlR|#imzn#3tf^w$U zoLvXuC;J8TBObMS>J_Yi7{SZ(ETenRt)R6HB1nRQFzIr5NxirnM0Ph>ki&EGF>~cP z?Ajb;h!M?~-}J8QKLIuI%wPPufK9nVSq_voe?mZ{7GASxaZo9d0n4QuJ>-qlF@V=EYK(8&_7pf0nL zV(+wq70Y5~3Uid#V|-Gyqzsw2j}{vI#Kidv5&3qN(1!>Ya&QF^ey7ugMORyi;MFGb z(sm+LPJAQ#%WTP5jXlguQusktb>TR@CsGvIx?gG^t_C!Zzy z;dQx#xSZ1@QBSv#Q+JM1y7|wkql!gBxi(ymY)Vrndz%ffy3cKPO|4puvJ*RmFZ{hl zIXdSu4a_;@=fx!Q>-r&F7#0(goyJ_)@4^r00e=@^G zxx{5A*EGRj8p4U8_f8uYmT#XF5MdL8Tb_{!s@8>d;eN9>e(IRbJO=gTRxHHaC!$qW znR!uoHg4bX#?K?JsOWS>Lr*e!!c6J-|5^wCHyq@9myBkQ^Q_u#*3ho7(8i))R;Y3H zfdAlOq}97&6O#t@lnofgALWgct+z&;%$`O9t>2Qw96P+5Z;fR_6VM%+0PWSe5ZicH zHZY2EK#}=8T-Z;@=a1(MWdFat*kza#@n=zcSlT~MYaxHpzX>0Ily`X& zD~W1yAngUYRUb5B1G6UMh24Is38@FLOL890-*ABXx|wKP<${}39ChoGJJFcFTYS>b z=`5|AL7glnlU|0fZP*U!n#inLL{vTYNWXP8g&{L9D;+l$H-3u{NLL`_o*aoxJB$0% zTM%3|6Pe61bUU}hNR(oh#ONB3>Xc#PUvHZLvf>VYK#+h56^-5>vy=cQxl%*GjTvT1Rin!fpYN&|Dhh`b*zL=_-`+y#5obK zx7BCW$9>Wu8_@Rmg(C=Vpe|0sDYYC?jm{`M%F{$i;ULcBPs1^OwCDk=3Bt4YtU|u= z2ztU}A5<~HuYt@xO8h{E=%w}b{P8VZ$5HbPV@?Q-RbR8j^F$QTb~hTfA8_akmIGyc z4>xw^etS9#%1hr`rZY#6RvojB^xPT`^E}X*d*>3R;S%(Gl_z%&cvG{P<&b9cRD`Tj zh3GqF1;jn3imzxFAiO+c8!^|;C1v2!9%jK@F37Lt9?SPBDW8oBR_?1kXypYirX!NNw^CC8+r~0d6MQs2M z4PK^NdzVq(`{oL5N*1AhUEe{BeK}07F&!t&X)1)DE#zMDEeyR2FV6``cZ!6QkP=15 z+7O{0HH`hDELd6_j+XKH!fOo%sPRi_;%TW)s?u5^9OQ)qCzlZL-%#I7=8o`8)9{EPSr)})*~riud(%gIFV^^mJ(USXQtMU_S`pp@m^QLVHRk)ysqcrnvb-hYfv zJo<8^^RFhP{<=(#N#%(b#{~*@8Yg0nHpjV<>Hi;4E!jY`$?*ZFskruhfG+qv#2X<~ z#7tOjr%oHahoTfyKX&V+pLP`Bv$;NQwyYw?<3eS-rLu{HW#uVR8$w?@ z$`Nn*!nueHhuLiD&~QOMF0YEBOZx@FEA2CgTWc0SZj}Wox7r8VJ)6E7+(^?Im>D6ED=#0OE%u9XmS=$%)#+j4x4+a%%pz>TLiL_a}V&9fC z)N1mOh{K4Q`(G*2va5NOxs;WVnl2jV1eI zP1l_nAAxEuH}8+QCL+|T+qTbh0MR0~th1IT?zXoF0eOC+6ygk@6K&%LK+WG$s!Q(Nh_$Ca$UAjp&hyy@I=HtKw& zdJUlko3MO_KbB2i4^bsQtazh)m)(D)dbEUW3xg*-i z^!t38D^6#XJ*6^RI4hq1=Od?^mQh>T=;FW?LXSwCfG(3*9Qb}6L7%emNZg)O7irUu zyP3h`p=l#3i?i`v#U5vs1DQ(VW~_R!2j(A+V&S0~WbV4tyc55;Vd1HRY8>J<>Gtg9 zCwxK?vA(kbGf!@T^QqT3!mPTxux2eby-OFef8BwbUN=Q+Z$H4c_vhi1vjNt@Bgy%t zGih5PCt6z9jh6PU5DT{E#PGUh9xI01tMpjfQ&utVQ&*bDPdO-JXf_rT8seyLvfrTV zvLU;dc;lG*KOm0>sK2e_Q9q&-3OWT+S|B}fZw=!NrO)dHPU_R+Ta|ave8?#clU1*r4 zZNKXY`|r4$Qg`}a!Ac{Od3LM^uM*uMr}$9A^v?*YTXz~s{!~G#mK>or7OdvKHsaLYF_jxZ z2{1p+@*VbyS&J&L#LiFW5hr0t{a}U(Y8a_6y8c_p+{qWg34ZjQ%pm;yVv0YnCtyLH z4IHc-5zs#$q3W$fe2cM8yfT+u_E^O|l@nI;M2=N^T~~cbiCHndI)O;e3xf2HMCxMA zC>&~e!Mi))kFLt4RKPhoqT@6U=N%b)%)DqbhY30-o8HEb&&;gLq}TfYHFJV8C!cM^ z3jc9*2}^tM74v|AwmW)*Q!z)3*-n2x9I7EHXe*QzDj5?*YUAgNgecvj_GJ^|^vw-^ za&e^UsIbJA38h5#V+5%k(V`IsXw_rwhHR{!vJdHnrf|(o0{;;+z~d8z!ootbQ_@E2+oo)B5^zCq?mFk$JW>kT z)BM_YlVyDO;Z9`QWFWkCE9xg^z$^J9%mSC9_5CDljjbm44e~KiXMo-RwITR0_cX?+RL&v3NAc4o7*4^2~KJ)K#Q3_RX5?aOx$U{9P0K0ca(=nFS+ zcuq2O)@BmnllGLyxIElk&+IN+;*G2M`Gkt782h|On68&hhhAhDO!ofYBPT6qY5R9M zuqBRT!mC7sZtTYci8wr8ZI7Y0z2wkk6{NiHC-YauqN)BaR3)sj&vpX@P0z`-N6gkP zaviGg{dg-r$BQZNJS2TAfTJz(jVl2 zQfEXK@ZwAWUeWCtD5r=oBAa|c9s=Qnw8F3Q9e{9Kc!()upcS8Cghl)%o7k0|! zd}1Y~HJ}vk2A4@pO&6W{Y$LUJ;&N(E&K7Ydf;@3M~e46IWK6A}{TB^Wy ztd7RbU}7L$`f&4^IurQ1!5Q2mZQw>^6$;N%0FjO$j$Nh`?CP$j>{J%PgImV%uB!mr z-p>c)fjHRv*bNO1FA#Vr_-Sm@e-lks?+yQniqmoZKnB~KUXCx7^BL6+PUW;G71C=& z>!{9*H*oU6GTif{83JW;1v5&L&?eRZi>JDCPTOwB>gG%mqGiOh4D8^9Z0VsyE>|-K zYVr>b+fd%Oxt_6xl}lE`{jwphLslWR)^`=oT2#xef4Z9t)<$8$&f{Pzau%DOY0&Q! zJkUe`f>?%cIcfd7khjm+k&GAwab%V?!2JInAjs!<2K$xw16)Xs3_oeHo_Yy}AY?7mT;~s%MC^+o{`EXi~p?vC9SrLZv_2xGiA+NPv z0}0!f@=T*ldD=5}lK!D}f@8;=gJlXLIN^sDHFNkBHA;U6kPRmE4)K28p`cIn9nQme zWtJ$3)v-XiweQHQFAEv)yecKmKXAw8(>oZptn!YAUyBk^YvThvE-i*P&LPk0{6aqv~-i?|& z+lvZWsKL1wm%uq%)WWe!HNcMbT{xn82`ysM$(5d$L?p|Rd+PTv&iLBK(fsMnAd3iY zW%b@ja|QD;m7nc{fsalS!y5|F+a^+Sxl_6IKb<&#U?nIY zGsMNOMw8OM0t!}MroB0qN0zawJ;rRu58U@N=5{fF(OU$>QEc-pLqu*o=#2aBEy zalA93FXt>(<+K|@$8Lht7e5FJ*v-R14;C%`a-Q`Yf)`Szz-~tjW@EYEC#8ZnKzi>aF z-pENm=0gsgnub}`O?aU87S~|>cFJke8~WX>6Y2M4t2HHV8LTlBUg^oWpKpc=5WicC zO!1?u%3|xl|EPlY*-NP~mA>QoxSW3OB323&+v%ab8OG$r@lCj8a63f0$>S|I0V03> zAv_k;LA!@*8Ln)6IK*%~``uh74h?G9MV#mb1_yS#f=O&OuTEtfZM0Ni>VsEg|M*of zq94U+$UFoQs=MLyI~y=nYXAOdM8^My1(vF zhvr0mIOAXr%6idwa}WKjR9*pA{1%eC@Wm1WCcF~;v`&loNe4k4ee-knQbU->GlmnB zH$i*28*Xu5ESl}=#Lzvwjix@H`B%T zbsJ&7(mZae(NxMyER?j5WbwZLv<2nbgRpbgO2Fo|mj}b#B(zBo8(xAE;3|^owjz?L6bj4`uW12DK8YzL+ z9dFz!shYs0~tL7;!r8l_fSfP9q;oV?`=-!z|-6=rPwHr=S6O=XiO zYcaoV?4<2*n$%F@q6N@5Z4&H19zqJr?C=KUz!2{Z%zEVotsdjS_+qn||F9W%w*;c( z`Er5Dv-U|SKb%Gx(EG2SYP0E&yE|K^J#VAJ{70moG8~i5f!hVaP&`=^^rD;vlg5k# zrN5>SYP1b@b@+jarYg)?yaX~vB$Sml+W{8Zz?xQX%GuT&&0J)0eRK-L1oxS2nbz>Y zHpclhN-Bcw^$I9{$fI@z|Aw@^>$xtEHlRoVy_RwP7IJ0#Mo#-GJs9P65>BkF<$aL1 z5>LF5NqWu2sjn(3Xtpbk-2BVBV4j>TYsR0xW;a-p$?C6rPhYv&LBrIVm2btlwZryH9myu=pRj^O+qo3TDG63%b22lcV693H;JMnPTQ zM0NiCCE=bOu%y`uMCQ-Hl^66t(pU&r+p5Dm-!;Ik2!o*NN$9+T&dt5;;LkQ6(3rIb zd@5GLX3^Q)-8!eCMv`7y@!tx@Wi4!epIoHMDE_ut4!~`2f>Ccy!}E4+Sh~v%K7FAd ztQ#1@_m}I){fbBMy+D&*TQXNNybXk28f!Q?`MjNFnsBafUIE zqTtJSW0XBSUiePT3*|foeQN%d`QYGb0h4I=rn8qr_P?EqGTOJ{KQPaLR4xuwoP+#eW`p(ZqAU8h^crkfg znGY(UR`d}fJvV`c$VH*#iS&u^#};trhBIgrk_RQ%R{|9WzR~;OXKG&x2}HkIE$EFm zgr^gYpmVM{B#v@{<=FwSP)?Fe_F!sw;5nP+ch1Qo<_}S<>4fzAUABX)8@#djucV!)TuO5#xI&^uFhEqs6ePEz^M?IyT zxf(PMY~j0xW;%W4;^7lqmG(Cj+myWhSa~etE4jxYVGzD`$S@BMlWe5!DYLdS{ z%*fi|WhBn-CtT4c+#=C*PW9y|uIATPszPKJ^X*PV1+a#2QI`QDlsej@A$jT{86oct zRF;hvG|bsd^n(X6C44{q2lGtqY49W&vD#cA8~Ug&c<;13Nd}!N-*!XAm`qW zWb~9_pDS$@WNPA$d*qfgA^uoBfACW5g@A@#SSi~N&32EepZlTYGa2L_rOKgeAkN}>tQUG}=QCYY0B~Uf>i=^(=(>Sw+UNiGH5@4wjOgkEg zM^;d1Yixr&n=b;>->^lAg-1dd>^7r)48L83M?-z&Wz>lH&avq9q5eKHLl^Uzpu5l( zygLtaZ3C1DXV+Bl5fmj}RTU6X?Jr)Udso;=@C|;d(Iq^OEF`a3Y%^%2v6)ktPJ^Fk zFuCTch`A+#2(OtzAtdHfCfhV5W@TRH+jVde#9f|CcLelMxqw` zV9kgZr6;Z;*RV;6dZ<62cD5mIBuid{BdCPt%>l5Te z>ZqU(&lBg)zfHF1IuiZP25_CME}~x2O=op#Wa&f=GG|o?*JQpqB}Z)_vCB*u!dFcC z#1Q^2g;o7=+ftwk_MWy|*#=i414Pwi9St zb{Xr;e!}u9VJd2dG1Y9lShUxt9ThGWV=uJ_-3mg5q`Pa0>Ya8nal$52ZDU5gr_TcY z`-$E^jg6OOszMp?;p^AvQw)Mw9lZ))+I6FsvK7`|+63aVmBQCGH=wHFWq~o{>#%O9 zkM7CM!b9T)QL<7M#Wsr&r)%#?f^f8G(HCn5yi|s5vOCQ(SMD6ZSttz__|B4(t;k%hbZF+S$5RH4ln&hVNy)X8@_#BlWm z47%>dfd4-9U+d@Fh5!b<@$WhqG}=J+wVdVL^r-_y_h9n-@-O&4Neh2$pCfIdt4FHB zZh>Ks2NCQaMTp~dszgzW*Ri#UGBnR6;a7_>A(gGDa1Jp8l8#^dMi}=tHtP!remsTe zRuz&;S1zht+rn8NdjaN6?LrCn1LRMC~q-J20Zjy-6BT?Z9Vzg`nVz1+~$qy~#tPbVgG?s42FvX)#f!i-fQelmrMw`M-( zxcN(=NkEgkCwPI}sV|q{RX&%HyLxEZ`UCRMSa4h&-e7%BF5H@CPe$fby!z?%B}Orh0IQjI#+|@QgPIyQ?J1C*Ie|tE`tZ&h2Y)BEF9OgfEbS(z`cLGh?iOl z6ZjZc7BV$pM?Q**V`Rf-hVTXH_E0-xo`Q(F7|&j=5RB%ZCY<<3U^i(P)|JGQrTshb z^J0Jae&i=5r*|ETFX@m)g~j;Op@MpPVF@wi%)#}9$u417{sbe2eD%uw6vOIv1IBTl zRXz!Q(t%>GS66a)RS!TXB9=NQ-VDt;-dHIZOY)5@NoRj4xL&R%-V>0-jwNK8PZfT( ze89;Ux=Bo{9Z2a5V@5ZNOz$#GF%pwv7#=qx1diT&4L|5-mG$lh@G#YG}*@L1{^ z;f^1Nc1u2R4R%=K`{q~BF3|<h&r4n{uX+{sDR1~VNB8pMMjHDboD$N%3`O0xV znsLX&w$4n1zW;UwEF-PxE;5b0^?wd!*?*;o?P=IC#U72Uj7UMJIa&Mm0yzBY!iy^H z_^vzw^H#>Z_U z_TOuz&N3|~1zI}cKD?hSfCtVUK#_qH*x|DYZ*_P>Ww5Nk-<7-3Z_ZWTlwtbzINj*& zRb7gKdTLmwJ{yCtFCvRKnNoKyPm^?}Q|Es_vktS*=J=`jP7ag)GIF?!KC!X#hY>OR zEyJK+^LQ~sxU`KLo4ZZARL*eaPV=wJhU154H3HDbU(5TyMq3$tI(hhUVedQ0v?p&vAN{i_9p67 z!g^9lPtp(HoXrp}8Nj>>=PSec8L2p_n;v3%_#*S~KwCfyIcM%k{aW<{ZVcR{9?W#4zQ(H@imC zvGv3pCR9nZH5V<8=pd8*CXmk~J@D{YIT5%w1c&?lu%~VexjQj{ERHV&yY835nyHIX zqP7q(Bvhc|{$Xl(QxB=qlO)0M<_vi5)rU-M$WPzKM{NEkZi~Y*7!g-3@Po;wS2$yR z%&4HLO<+oLsJzzwnELn|Y#J*=eLA0vMN`w@M_`le{skc@CPQCNP})nPLx(w18s^mN zBP(%yj{(DQ`&WI8|KY0`@)ew)GVa7zJI=>gg};#}KV3dQg`A&XlfRqv0!Nw6qP$12fb2O$ya0R6qC4+=@iOt>4o=GXOnYwf|S#mVfeaY zEJxX`4b~ba;s`zOf4Di17>w(Li;I?%PZ@Ja!A5x^^_3#;zblC5doSbEsnwAUSJ*&k z{0DYMfS+X*r+&dMCi)Mx*$uV(&VxyeBPyKdP?8DPu-+{W)*PZsAgPnF`PUobl-vaI zRp)_oy91hw=b*!mi5N3X57~ep#-DP2 zOg0c}>rUR;N_I3TU2FzhJmjkn;w!jq;~gfZDE7Pv`_zSSaP<_dt&$;sZ%xEA8J^%? z>LPylyEV4!RS5Dd`*75u2Vj18Jm$!J09R`v%#pZ->&G1@D^~Uh4p}W>lz;s3iEN>a zpOMy&SXr*0qLN=dFVCW47OacRIRhVa;1?7B)vJ~}ujoqBdyvN`q+wIf`((?r@gzu1jd)lnk&}t*Ma_AlqB^_> zBuJg*xSzZb%kjefUm329`|1k8d0#k7wl;`LCR~N1_U)wo_GdcV?3rc4aHZP0pYJhwvib;BKpgzOkXhTH9X}uQNVq{3G`DX>ngIbS=&xla4+iGON6ij0NdM^yS~Gh+DYTuab0~ zH>Rx8`ylW}Fgew>k7!F!B=@TUS==ShF}H3aLvfpkuTC7plbH`qSj`_dmfgTHJL)Y2 zh6+A33)JDI(-~4*XL>MR=CmaD&i0vij&!(fqAqoNXly zMC(8R8W_)KMEsu3SAN?RzNSEYjXn8UZ{n+KVncoW*aXG%IC$fe3QBwR z!3)7xpph_4-kjM^Vmq#pI}6x7>7P^BAtBG4NXFEb)6;a{sz=0+HWzX{axcP_oC(zZ z(y923`b|ICZX>F;(YVB9AAG0Qir&7QjjQ?>6E8P;GSADIv*SYxk+Zf&(=F2&IXpE| z&zRcz&vr9(w_nYI`^){P=Rx0z9KMC^LW0yqb7kB%KMP+U>mW(I-K2KI9cU`d6UqHp zkK#NXlDE^CeEHePecCl5ythA?WL-34uygHyG9eZ}8P4BcJ|7D!d?lQ(;QVa=I>y`| zX39+)vyQ{shsh)(T9o5P-;4FnSEB}geg>lpvvF(iNnwLzJ)$?R8T>4-lTlGx#NSSW zTID&B^E3fP4)p@(S@TnzuEhpIzd}YBIjp_7gVCSY^}e9HKOXBhrxUvyb(CmfBkqVF z5YEl=z;ZHyc-z;JRnF}oRH;j%=FdejAuV#KS%W;il|`Ne_M(p4eYDE{!N~ZT=fBvO zOMJDpe9go88IKSBUc;D`02O+tTh4WgIuR^(`D_h@N12e_*W@rOR1$4v7KpUhiIZB% zN+8jz36&&DJ~~Y2*xd2s^l{rLhn2D9c1sq@jkaJ|p2SX*Ir6dL?l^HclbJo-m30DU znyn`5;RwCru^aYJFOsTOy9UQ+is7V=P%>Mx10Nnb0cPt;$g8||oRHj(nMzIQ{PeT1 z=IcDlJEs6S|GiyWv*SKvYWX=maa4LL)3$D_?uGhOFR<9JkX#roj4$5!QOEKtz+$r$ zsk#(T6u!=-EX97p6jws#tsGB`jeF52>Nys4&gY4J9}zBfjHHAoFJt(9^7wx(J${BN z{48TR?r&#bp1*Zo1rm+YWa@G$&Y7B<5LB*9WO^mA`iKJdzl;$5HO-D3k+=m3i*3mD zlsa5H={U7TcC@(7M}KPn+yD}oorXS2Rt#58k7bPtU!5CY=RWv3e#Bn~#7B$8->G0e z67I;yScRV+pTCJXnzL)zj~(0z^72DalNEv+8y1P#Rnu=auSBC&r!86d))%Ktt>p+v zjm9y((y09QJN-sr0)`r|!QBm9a!;oYuXQJo`gS{}b@DR*3A-tsukDWiUG3y!qf z5B|1j`N$Oh_6+_<%?dwF7GL9udFLgVh>7=sY z1e0AI{*wSFDiZrFjhC-f2( zH(gOj@nYfb&O6lo!rLfT#6DxllwiX{r+RXnq5ODG1B9C;q4nTfykvd^+kJ0hb!jX( zYcCW0Lq22FLQ$T#|5jX~SAu(IB%>p}V?auJFYc+I#1ZT)6s~MB;>Gx|^LxTNifj#= zuNe?OyB&N?X!$xQpfyi~`I`D?*T9-D#&j!6mHTC&8HCTukbwEN=o>AI#s>$v0$csb zB(*PKHhC@C@bVN+G|v$B(NPxbb&sHG;{8dRZ#KG?vxTe)SyF6yFUjjIBZs5v4uj3y zUzEby4pF7D}Gv9zB*-oPQ&oiaq?9R`8u4=&rF=328+LwyZlU2_=(NW z@&sSSkdKXJ#|zU|GG_cx^d^v;e;+M9{77C}4h#k(d7Y6A{_f*2&1*3^DlmX0IR_zA z%7VUgQ>OXtY#eSMUMhvj-4UcVU6_dfdW-d)zj00AAzta>OVWx) zDU{NYEDPw8VyEy-W;so)i8*{(vJ ztoFbo6CMzYTO}m(-VoV!vkM7}(b_a@zm^C}O%g?};pRuPCKg}&a16xOaswZEk z)A<-t@KsVWH`+6i(B(iEnAG-}I{W8<_;B}Skd06$PbN5^-BuASxLC@0My3$w@lT<` z!=IdZ`V}v1nJHp5u#MUg@|-$U5<|37PNHC`0~4)C6jN-p!cQ;3PZ8&9Ch|^V25sGjitZz8`*Ww&7zPfuALKzQ%C;oX+6qbQ3?Z|2H#QX78?}gzgch5I0Qi zg|f5?SkN^D`FGWb^va)*+qDRS6gq|e`2U7kWEIEZ84nk9=7YqhM^M47f}_PPa6vU4 z&EvAD+sP;70!s9lLR_Q;J6oTUb&DyIC*RxzI&q$uS1LkY$fU#c&KzP(-$V2aQN+LZ zF7d8Bx`9#LBXDO_Cbs^Vi}O;_@b9)Efiu1VLR{%+iLjkx$>_)I6R9w-e5T#GO?L$| z|9N@kQfRD9f=!k6(6WN3DxUHRHV5v7M^8HNasMS4TfUC#QQi&7w-aCy6$`0T_QSIB zi*WIZ8a`Yuj4={-Q0v)AhVH|0N=yOXG2-0<<}S$Nxw4e_jtuIlhzp5584G(%e&OE5 zad3XoTj==kSlprN7>4bNfaN`Elt!E-PQ85|=j^j4HV)O?)Q&4u?>%~{@*-UZTzVvx znTTnamc$Ug`o#=5=iH#$qv^yI_~i|M3oc@JVG`WgmIIA_=P^q08-zw%(+AdKIJ4Zw zVS?CBG|(N7_NtqS&-O@E-_i>BL7Bn6I-l9*?HFOlzNzt}j|;Ua7Q&~ZL6El}gJFeF z;k=kRJe`s*wEy@=pf0Cy-j7tFb8<3thuj4{iwmHzqY?Zsc;K<@A&lH7r|5KV3WFWs z)xglL1WTCf8WQFQq0Cqk+jB~gY(58fDpI+{_w(`Fp1Z_R^$5OinMNWn=75U{g@&o- zXm@l6`C_AiLrL?gy<ML#IhanbcfBu34+%G1 z)C#F_hbLYUFm1(bjN0}A?)oi*(;A*=*xnCm{vBWv@&NpM9f+*oY^*$c1FnqKXXqZ8 z>B(SwWC=5mN5pG42y1E&Kz^J9V$vJ1T{Ra|o_oUQ==YpzG8c{dECqT;{lQZ|3rLFa zQ;_UY<@n|k+@AFoL+k7C`P6p7`y*`6U1DxAgDr980rM@VZZd#Px28xRUu!NSYqTBi zrw3zM8i(vj$p)<(v&gw5CFH(Y4I&qRV0!U%^nACLx_f*NF70+Ff4w5{^rBZ#o;Z=A zyT9xRgZ;HZo8gIBts%tbC{fKD8pi4M1%v8Ee`2+tJ`<~b8YBkjYp#FI@Sy8vP+hnS z&krs{XZnDZ)2GX*v@?!09@|ab(2~L1k60P>j7(y%NBkt14gPbv@$l&seH7RJ2&b^O z2sSr|6XhjAa6aE3SM4vrcM)TWrDg`q&KrWWQ(SP2gBA8SX=C>BuawnZNz(shfRi3P zouNC>=_G?)B*D_1_0$4n)7;Qw`$_WrN;>cax8k?*csQH)go-&VqO>lxl1OG|!P#I} ze7koJTIZ{fftFR&v)Y*?Ug0cq5?hG-NgW3JP$Y}}cZDLulig2Dz*=t^@i=TPQ}sC! z7S3KuIpz?us&WE3+V+7ep7n<0_QZqfH-8jdu8q%MdkdCV4^o$F?8%OYi-^cRdyF~8 z%AmsRQkExKY7BPiS_4>L9>CeKw^j9yMi6jjIH19ws}LNP1t%64ktaqoapQ%JVALIr zDqKsHe*cIJ%huuFd8X7vflS==190;hmhN`TLB)_Xm`l`_9fG}9mtn}~66^@=fV>$q(9Qb@9{M^;Sfhts z`#h%c`#)?aL+R;^0ryj127Tt+QSf&;Pv>DX{Qb5BBPZm;#-pj&8jvY?E%64`ICO*J zjGK$m#d0`1I9~9wN(q;;Rwd!4WjJ>HE3Sk;yG-$>-#WIFBECwNVanlU`tbQhK4*-u z^0)})?ev)eJM8Feg#F*Lpb;v`mB&VCy2l%c$w55jwh)EGj{Zyzre7LZ{!M0}SC|Bilf8S0QMsyaujlfWWM$-(cQH2UuP+DCAi529)MYitOwf zhmis)zS*FOc5_dg*miE1e7 zxdvX|+fDI&^l*p249P#Z8@tL*Q#Zv<66)kvXuYMuV22OHFkka){}u+@F>M({E2O~d zw|Bv!@1)YN->+d@Y8rf9+>f;-O^{oElB%)14OgO5VR2Iu%o#|6L*ZB9puu$9qosls z+MlQ!=0yy4T|+sK1|RKcn^wVqKcNqU@}9=QLDeqUR+E8Og&W{+%VM~6MvH1ndjS${ zRpXzRXWiW5B7U@zy**Hnya4`u zazp<)rKB+{5iX7d;NPEnaM$lXun&rrFYVh$U0HP$zQcBmlGDSZE$xIeX|>R&Dr<6J zX&R~DtdA2)Sl5#v#;B&#?_Iwcx?LnKU~k59!N(GwoO|D<;cTaec-QAPsPvaZX0JxICCL#tz}ph15CqDai7oGk*_sy_(+7yGHy zwcbQbQ4W3O)ftYb-SlUe(l+`NgB=#T5Poh5=DKMv5dTzl0Q$NgP&f9M!kxe_n8GRM ztyVfmWOVk!4w8h$ng-aqda=Nc#7)#SwR+CQnU^uN6OFP36J>pt8PT>>ZCuE3vtBhpQ!5op{K4Y!B(VacuO__%uq_o={Xk@*Iq z+&g;p7&A)_LmF5cZu9OOBZWGBVGP5|58DCfbvDGF{{-TXe5CKbe+%Pwz6X!Tg?Q@3 zYw+t-qJs1*L1%jjXh&qjX@ko!QR@jj;n`qd{bYRpa|boF>K4P3-R*f&j1)%n4lxdS z`roy1FKatC6=hTOoeGF;JdS2Q%TS@sirjsrN}U<7r1pgtKwkB3>i2gwl(X*O^(^xf zd_L8X*<%QnyZsN~0)m z=-z)$fZ@rIsu3JYjlhgxRj$~sFgRf0g9#-?@N9YoTrB=2E8DUKGiUDsE2|KU)73?T z!qr6R&=v85E2bp5^cddXC5TJJSpP8jayElqSS-q5r}4HxKvN@V*ZqNe+7r?9=^Get zzZmWn1WIjs30V1ej^NqCEbJD^1B=rm0vxXzh_7pcQ_*q6(z%j;`7kWdxP%pO?NN+? zI|eLOVz8rX%wdnHDh7q`Mf0X$aI`eR>0z#rnf(OhZup|W9~){MZ49zXZbFiA<>ZDb zzu}wBOImLF@hk*lait~}|74XuD=~nfd*cgn2D^RH9N0BuBNl01C9QMAfFlxw{ih4y z?B`=AZ!7n7o(1$F~c=e9}YT=_^P_`&Kc%I~K(HXc~r|6Gq?jY#?!LY7XD! z#DJT?T&9spjD)1-i*Qpw6kC>DAR|wwpmyaF&`X~#C`M<1;|#}eIud@v%Ds6|C*KbP z>l;A-+g+Fua1A3xzoD|c$*3vxx$1vEgDajebmwYbVhl>fp8!zVmH;OV9|6}miGI`D z2yID=;hK^TFW2fNc$}zIIoLj%emfHZYnv)yPhB-kc6$Qd(JJ`J$`6C>S5gYPW(;=9 zhg%GGz>JFww(E;UnBx%-PwcxOcC0Za)pi3+U)w=Klptjx^%A^RE*tk{W;hAk5d}q_ z3Kki2KXl{lj*8Yaq(RDBs3}g2y%biing6c|Pwe zt}a!<7dL#tW87zIubn1x=XLQ6B7=N>!w3$*9w( ztp5GT$?j&eOnxf8pWa|8yy^C z@iAZ({Q(T7v+o@%8lo#LJ+qDm` zI{qaeEJGmWTq16mlm$~gYv5k*9My_19yrBuFD!bwAG@vW(e3p{qWtm+^)Azsgl{Ot zxP?;qY1L$g-}gnc7`p$G76vW1WlfAs**(>NtXZCLk}orgndt2g!74|= z^=dzq3LQhY^qa8WiGzZ>WvPKVgU}|>Gw$>Cqg2_fI52m*01K3F!-Cy!A;v-zf23_f z`&bUO&YTT5$BI2*=x&v)X0X531wfU4B1q4942edGC`FoJ!R#fV7=D+_TlyNZUJI+N znmvPBsIdpaLb*Tas}&!8z}JdRfI$B80#)YA-BF;yK~8SGO>X{D_8}AW8(Lng^J{b=k&%(_K-*C6VF|e(t54+}hWBd^v+z~wiy#+RMdM%Vm zJa;k~+Q>Rg-381+4M(|StW$feF$dD<6GhEas!4oU7@XG)#PNoOFir3xIQ9IL*PXeQ zp8VennZmo!qjMTkq7I~3T}Hg8WFg5|m5P?;!g%W@>l`%fS?4f+Y%4=|NGE-@zE7Hd zQg9BNyz{~C*gbM>8*ps8z*4UTW3zm86|Si zb22&a#nL@}9!qy!pE2hjPi&6LVCCvsNUQ|(HyDjaH_-=%?pnhv&SbHhTps6B^kOaEmA>!tvr5u zaRJdFAEbGAiRZmQuyoQ!&0RS-+3GVs$vg`0Ism7h@$DY#p2A_iZU;x=<9kh&oa za?FmUo4bmod!cI+Bj3L3mV)Ymy;yj6F&aJ#gM`@UDtezoAk!xcZnmwZFLX(vm*Hx7 zQ@er}fB7?Xd;SJn?l5eZ&m*(vr*qCZet{!dEZt`y@E_eyxnCq1Y+ju{sJ|UY38-^2IJ^D7NrR0OzvK(^oj3wT9y$PZ%{Ly)e396LbBNjHbn4r9YNPdjLAR!^t zn`QKmy)bT59-+ZUJIZ;aGV6RBjZ@&Lt^(G|pU3`l`5=30rnq*pOquzcReH5&3t`=+SG=aU zsU)mJChM4H5!o9!BoZic_SkSi~Vno~plQ$FOO#eWAIWmcisoh6rx$i?4 zy=O3gFDrynneoiWJjC^9qWkCL_Jd35If!+YMj!DJ2t6Q+3oUKHuwWeL)1Vx-=m~O! zE&ss2ntVtb=>w^IHzDwLHforc;(?ozq;F1=($-csBE0(dUc6xB#3O=!Mon*s)Tzj(xA;)|@D4_}GAue-WNuY@*(- zY=b3LiJ&`l5U#I?gbh2+LzD7&tO?>`!cYx9>p8`IOoL)0#?w1_Tnu8YRq|CQDAr2> zH|q{4e3ULbS@bFJG*V!u!w$}kq(iq)S9OhPrz zE)+uOKyUFby7FtFj~QK)asDnx&^p{H`q)$+Q;U^_W>|`I=dHd72ZDQH)A}BedeaA$ z;bD|>XcubiEEUwyGGxG8Os+7Wb7Xjy;J^RK8i<1A#C*KdCP6$?GU+2M8>n>S!w}~C z0;ZSuVD;-TlzO@c2)*9Nw89fF@A1a33)Wy&oc$QXbZ3r_Y!IgIWRtborEI0p_{CyI z49_ai8SG0#?5R=5DNehAJz>kz4}YNPG%j zhx*aQYbTD?+ygtpd+_iKAAE6pD+-CZW7=7F<-2|+)XWurxO*H+_eEi*t>Ktm#$iO< zi9Ty`Fzlst_sAhBbIEOx;;l@9XfEx0PQb$gWwJ0|9w#WR1WTn6%riB>r4z-7Ov(oI z_#4dGW0s3Dm)^jMNDYSH(X+z%F5-?7i>@#ZBI;uZERn9JmUpF-_jE7GcB?AhX>tH* z#~a+rR&^W~^pT4qU!nT@Bk;KS4%XHUzzKK(k{#{1t~#6&t#y^{EMV(D3r{ke=^cOl z5@DFKvq~R?-yG+JRgN0xa&9}ATCc-n1J@uPGvSYT4k>&z4ObU>fNR(vYDLsMwC!&q zQASr#G%1`I>ZGCYuRn00f(?LvY)oK;P(eVM!JahTA093)0y{}XRCwfq<`!HW^~(p= z0CJw18sSZk8@wYi>*Q^Gs=*Um;laL{xc&Jk%$^v5L*<6}(_jAE+mf>=dkTbO$o(EDG7%PG)A^D_0U=ehv z6mrsj55uCUH9Tb>9_B~nL37h%cyOGq5=P#E@r|h%xpfEy(lr#vm9bK2$Hvi6rn*HD4myrf?JbQtBu>cjt#~kwIGb~x=B$W2J3lBCNgJa!y;Lb=j zILqG#>rfBWfA9qlZssVOyk*mRiQwzZ$K)s7{jo2YX4{jUi4gvBEIv@K#DG0H5TIN} zjKcz9qMZtTGCT(}Rz5@No$=7In}?#ub2(-$y6C7l0e|0p$UU`Oorolh5Pe~mZso>I zhVFfR@}mD#wR3GKoGy&R32WR*XYg^zdcK03J)8nZ=DdR39WI>FUy`uB=@2w;%R%2q z>(O#a8TUc@Sya(EE4@ACEcx|wFP_}PV(0#1ElS@;Hd3}Sn+caLE8~#lbRz2;4TYil zXtJ>iaw1Q`uVeO{l`~>dzd0Nh33}jz`vVXyu0xt`T^N5q?GNg|@Ix8@KM>Tx%1N0f zi(R=sn)#MJ`H}Rs@B&!+>@!>yABFG4d!d6)cc<-}BKSoABaA5Qnch+upMU zdKR9<0z3hm{uIFUFfO&iLlLuNEV{eO;y|)6l>ouH=7AcXfRS~etq!0^Nmcg4P*P+PCP|(%Z6R~Lr zJUl1L%jQi-?w4~Ut*n8k_hBPtCfdjO{&*T{HM3Th+L*#H#d@AAQ%8xX+ZwK0&ftmm z<=hJg65-U^X!M`ujXiDO;at6qz}EGhsQdIe-jLIwPATc5PTgBkiN_Y4ZJXQ3_lP-y z+H$`5Ih(C5DQsnHd0j5&RR8@YX~$CF`zHF#yk9B)&d-CbtMVzr+Xitt+Q@B9!1 z_|y6*)K>j~o;zMRQA!&ZZB)Yp%GW8y^HOBXPffBbjE$6?KC?AQ!If++udrecJdfXs zqbjsH`$fZnI_HOf+KS*rRt2~Wm&@G$uobyC_dx88P+a>`3%6$3k&#PQl7%b35}Qkz zsJB4~{r(#SSbdO9*DjsvWI`1401Gf{li=JH`6TEn7!Eb!Cve4+LQoLB3XekWh4#X&+%6Qv2w_8P922(%mBcB8tKEl}6~bsGN#}pN)6lePB^0=6;r(Nx zDDh?p$F7Tjh4H=6x@8cuEpLIu>=sDcXvaHp>lJFm+`t!YY^`HbL=1!7_5CiRnf7Xd za6CF6^b(rjy1o+%Pq_-F{bs-$by;!i#ZEAB@DfzLbrUn%4#2Ct%b+zs8;&cML*s8v z%s77%J(Q;KN^h|7rb>S;gIzdoGGk>g{S1Ydoq2$*Phe^LEF87+E*zw-?8lHPk~)oj zFzob0U=dEjxZ1;TMd3Q!@jDGq=>qEh21~S_au0t^Hh~+Jp}!;!3?A3u(ef%-BUed@_1p&g&qv{LPz)F~M#G^8m5?}3 z1E=l~z}n|kIOagfKd}HIyKoK-KH5>x@je5-)IAX51W$oBeXn`nwWa7zu7VYsLD0U5 z%3D((f|18Q?xx!vD0TB77zI^9mPZD>(kp@H1Z~XNR)mimVtAbIEa9pqH4IZma}F`s zd)^y>k?;8l-fOxkQMJtw+F6blPalL+BRQaa=md()8ie&TEn)8a{p8XvRg4Q>k18{y zu-0!C@faVBf}3x^uQSXv1Sl`v$Y8q^DliPM)6j$6j#kun*VgeLBDce@4_3HwY9mw) zX29H)m&t)BL%J*F30}h?xZKkcuP1&YU%uWzxqI8lldTE3?keCyQ&uyh*0Q4)30s>O zx=*BRgRaqeFerKr5~bGQ@SYkFUqN3)H_2C|R35;zLQ&zfqs-7aXFq(QF2QqJ!NL!h zL2lc4T%MVM+vCi*i+8X>xLbn_+x*98GT4T32H-9?T2=J?c)`1c-Z0d354mg?F_3tD-zgykP^<% zm;_c-*#VpiW}x%x$+$f+3^rB0QdcVWfHSejA*#?EAFY$XqP~^jHt3AOZa=_T{TaB) zK7(JrkwiD&0izYZLxwPmJ-FVFq5DwD4aQgv*_**WoB4R>nKntE8wI0!9R<&Gb6~=U zGf>jGRJcsW2alHQ1lKp|hEc(a;vEWa$x%?iI%QTiDR5ql)#I5+_eF zbibUu9Iky#MMA7OQwEbjuc8rC+%>sluQx*1*Ly-4b9Q1;Z#0A*0cw4Q0ou1n3rH%f z^Og$F<2{yq@_)5m=|fFl7k<_`_ufV&8Z<~sr6eVysAx1aqoP4kNNF&nQk0OPG?-Fm zqNJ1|q$owkgb*TAnPrGf<-N{%|ApWE*8T9@)w9>$`&nzRwKuI=A}$D+>KB%O_9& zOKFuQ`HJIYlYTJj)&w()O;%I2slWI!BC7%4#LrxnINw3Uh81*PZYli z&i)4l4YU70#}l8^!5J=4OThe*ne_E!J?-;)i^4xS$|rtj!L6u{xt2ejO?bbU`BYv* zYj3AhgX1h_tC=fB%PyrW`Ii{$8Y98y5fZG@W_J!e^G6-$DE`H|9QJbKP?%;7q^=)Z znfo@WticlVLjE9Rh?VHPY99GLn#dH)v*NIOq^@w-Rmb@kr{;;=p}19v zeR@2WHoLUa`$O+E6r&a*BK9zbNygEwd^0+4H5*TIme8j5E+&3aBmKx9!Bo0=2u6zU zyrHh2SpJHaZBBFam_#G2OE+dAK`Rz4~rBfb_ zeCp23Je*2;r^hhcOZk+t*~2%SZu7}~)50-6*?j_-bFJ*Tgd8?{M;$I$29cKfNxWYy zK|0^Z2zvHiB9}KCkp9b$9^3rI%SV&h_VDRS31)`O2-OVw6taN5y>l#Q_}P)ic~(w1 z58~V~FU1mHgMUlx9Y0Xb^-3(37R8eEz6#Xb-vkn4niq@q@cDCwd46p52(ix#5D+_Z;@kOb0~HYNg=)H(8nO%Mh2GN1wx9 zV_tMQa<|E{6H=E`Me+eaNn7N-Z3ww<$WhG+=_7D;oWj2AxJcER%9MG`g2Uc?n=d{6 zFAu<8Y&^;B$4|tk-tOXrqrAccELxLGhP4+^?e2mm`{{yJPha56ok;EDeZ(R(HyJn1 z97p83v(R1CihCv+q%b;^4oeJUzxz3Gb|*;l^;T`=hdJza11EH4ir7wdCFWk|a@c6P zGYzMI!tlfnl$3lUpB9!%-ps=H8;`X0Dn4UCVj9KSZl}%`V-_QonF%jj;5$v5!xq`{ zQ?usq1uin_STz|R#QMwLLsp>uIRV#nw^QZUr;wRhhfzX#HsNX>ooFt_`48#TYxr0y z3!l@!eD5M=;EDrGweuNL?ldR0B7RAU^*X_McvOB7XZPCi5g4kQh3^s%@Luwm@TbvL z{Jb^|3lrC|hXy}~?Di3wj_h2<@aJm0op%&}LMmXD{TO#PX_2gU0DWh_iR;BYIlJo? zsq>M^e_7ymLghP0%5kk#_`d5e1R{H4CEKv=+7xOpn2Er#p6oJJ3o=byz;?`ef(d)P z+3sE4_|pCkiHTicw5Ko%ziK2B6!evx%=rZ8pM$442mdbx=kfi-O&-Z!5tz>u;#{mc zeaMQS+b6|`6&4GzxwC-@uNz0Zs|QJcDY8~A3aWyz;R^O7+R>=L11Lm)IqiF!PYc?A zFT>%;ovalMCXUFz1*jmUM4H>yJw~IjUT<{qZY&R7isA;3#JD zmufh)KNL|FzY?}KyyP6k z^z9UsiOeKUSgew=8nX&%@|IFzDO-?Tcoo;$Qw1M%eQ9&dLMYAt$*|(`(AQBCtlQXh z@_%D57@mAWxTahD*o7}2J)HQ>hnc&N2srF3>lWZq5A}xm<#!SfCONVr8n;7b>ow+b?R0wo;V!gqRtpq|E}-1Kf z7T#k6pF2?Gr*bxKYzj?0{{r!Mcurpb+`>6{-fl0Blhvz|uy%L><~?hJHyCwsk2!zRJf0n;XbG??&&%71hPl>=B>2Ugc@lL#S6Cm0ZqPP{@JxFuzcR z8H4x2$3t9KCp4uY@nu9OH%Q%(fYCaP5ejd)*9gvlb4fR!UnJq!>v1;Tr=qvm+ zoiVgVR?_l{kjzzHNwm!AO9f9(p}_PBq7^S8D&#&2JI>J$D`!#pZ)ZjKN?u$^$^PGN zg=WrfL)%3tt=)^QA0J}TQd7n=zX3*P-4I#2rMKp)_rTLXy)tVz3(tpTVRzP9=y=p1 zytx56GNWku<{TP&q(yjQIbR1EeyNG$d&`IrF157pZZg)E^e1)qWZDv)1Dk!rI%-q2l%2=T4aL+Il4QQShf zHiP$*Pfk0zCMv^V@yUF)Bb8ngm&tkVMoIT>s%=<+8DUPeWsE*^|4flUQDPG!D_jmv08Kae6q^Dbk0wvIqu^eMVw7ge7#qP~3s8H+awWPJD*QeF8> z$6|>H4ts6<6mISmS;wPEa2o+mV@bnCg)GEbljTv~_z`?h)_K)nifb?uEsU3=lO=U1 z8`g@QRsGpshM%x_KqYfzi@KmQqFjDTCqH*)Zsb#W7IBw2yIX=6BNw<0v}2u4x53aQY~ZfU&Gb$s1*fSTJ$EZXc#4Dt+O*te5v{*8T{uF<~;!bChd!Eabgo)T+n;kh$Qsels{4X;!b}RY2#AW>*;ZbTp zuD%=T=(Tw;iS?v+CP6UPJB!2TV<{(jEOqyv0f(ep*xF~DanGE;FrOf9R2xss_a*W4 zcbx(ixae?pE9moc=RXu}-v1#dK8Y)NL72Z{DwKrcZqn3?s5?Hs|1|R#c(0Ry?0r3y zC^`?t=RzqB^RMtdk%`^Avv9c}9VQnlasSOg+7+loy`O)h(pB3zP7XHQ*SebJ%{k(pegC)m!N3KJ$!Xd7L+BIl6!C}j5M6Zo7xLVsR@|R zdwMjt#I(_N-w3+r>dJ%}+i*gvWi_AuSr;bBEregM+hdf*7CQb{QSiZV8+>*Lk;l>+ zk>%xL8hdj&oBjGA(c64j9@NOj&&_V|`x>`042?Af|LqVWgk2rt2h8_Z=b zxk52`KkxOWzMSC;I+AdD-ywXw{R&GMU3z)A8BxXd=>7Votg-qVxORC7gHlw<^yMZP zCR|78yb?UVcn*$}X3(PVAE+hnqjJbVKIgl^;({2P@5c^G^^*Jdi>q25!clFK;DYNl zvbGq7<#$#Ib~fHYUS~P>COs2KeAz=K8jr+1)XDai&r-NixISV4@nux3twFD83 zvzQvKah&n53Py3H8~r-V*`8I@4>KP}VBdi^kW{q98~2;ca`n5os?mUiog%48$L5gJ zb8R{!RZeXIGms@b$K10mRtqt5W%bogQG3RGSXmZxj`zrm&nXYJdC2{iJ1 zrx%+d?zNg?n~dQ%WtmH+U05qReUmuWe+Zkr zJ`P@@7?dBHfh6-g(yG}zq|bj?!+JNVQ_aLyTzoj4<3PW*fy){AXbdXjeoXe08qSVh z4&^gyRMPwi8;0c}Na-a^Qzgi9UIYTn55aDLF@#esVCOLkWwAqrUrJ)4O$@^1mMw4KRY8 zU>YQUC8F(O4&1U6S(Ph!sE++99NPaKD$akGu5emPrGD$MEGr1#CSQZp-LZ^%g(vgz z>=L%csDh+7_x%TjtBLdfVf%DCIj)=Y z!)pf9pqtdhByO2180YW@9$ocxtz#Bx-d#tf5nhr`otY$g_%J44Iz@WB$4Nf9V#(A>|atP85v6#em7QVA2Y- zpDt%kj9Y^hYi!scy(j2f{1S7AmMF@pg}|+H6zvZbistM%$L2peB>b>fp2NQ0WX9R8 zY59)J8th*22zC$VQRJx|!pGtR?5x0hkUhAI5uZ|Frl?&;N=uV*dlrIa^E!~DU4)qE z&%$Wg{!-E#J_uJnW0_mNaZIrhZ};;CYYzM9pE}ON|JtjebX_=Xd(Fb3p@vAgHe|$* zDs5bJFh=*waHJoeg8C{AR6UJ{^2R0%mYReMc9SrB)=eB0XEPj^IAP#39(#!KAP##) zq8i7E)voC{czqkQ^v6|+M5P=+eips@_6kcMtR&OYJ5ry-1@F&ciU#9%Q28E)W0nI2 z#itetn~Jq0bG?2D?T77V)(#OL1&BXuUytFizZp;G>{bmm5I4e%!b(GDqz@=V;^+zJ zAF7JIDkgnCFLFc1*B^>!mgm!mxh7aO+!k$rt?=ZU1EQ`kz~uv3cyU!v_K>n7hkgFL z{Xc9U#i_C!cFF>lCQErjKVOaUoLwULu_6Gcr?;~$d8U$U=2ufrQLP|kV=O*y@x<9f z&Nw1Bo|@QY%uhK5(v!a;s;ZtPyYneu`$%6}`HEaxERF=kpX72wJj)t|fI=56Pm4zL zrU`Ic+Yc5I3*2`b9%aP!+(#I3f+{;DXP?8-$#=Qbth>OP#| z18&-Jq`ViWjQ)L!7)4Zdc^g%n7$ZKD(#N+yv&i6E6B=8NqU6F2YLxT^b4?u~$H%i8 z2WG)oH4%QziWG5hHXVEHPJeV<5PO1){*ZH3pTo9Ps^d1c8*u|*c_c`tX<3N0qRBAy zzpQmt5%NTy)2_L1;&&+hOs`~dy>KKehW+bH6O~&R|%Tep- zfXZ#E==XT9>_hSXX}|J$|ADD)G+$yEc5D}y@*THEN2e18mCeKD2OFRkuO|IogWn!D zDm!p?&ws4Pt>8>u9sT&438S~hf?IB`xU;bmw?FfCxP9TUubiHawvcc^aD=gx(xZ)7 zAX>wknRPRjt0rRLHi2;8Y6(wAUf17izPs5;NMsV)3Lbm@n zlx=m!Ao*FC%O;|ILWh;xy{|d@c~Jo#U3bUiPmP*Y zTYSX=&I^yj^##ZJ;NL%LafF|rBu8?mERgEqjK6b2(Kme}=3P>O z!0vRv$>O#josd6l!@+IP>Ngx}N9_@{!V;RJ#^JlxVz@=`gn>5$7)MiL0A=DSsJ0dU?HP9H549`I@n)*QrSwYBccoG-pm*+bqbZ|CCY~4p*$%A zv;`dFPmhbYg4(InYvx?Yd@>N1TpTpBj?zJN(NIjE^8wZyJQ10qfn#!auzR>Wl=?ek zi<1j_&1^ux@&#CO!U4)>dBZ2@@`CfHSg8G*JpsD&V6#3>cH%)bsb5=PV9`Avs!i}E zmt_wyX7dI1$dnJ*E?b6zeeVQOhxVeUt%6DT8_8}zS}JsV6DN3XUc)-o@fyXX+Lt4R z5ev6}pD1Z{WDhWd+fY0BEpRoJx$BN?i;OX&BL}Y!+u&r86D=}yLjT6$DEl@H_Nm4= zbl)0Aql0ni$8vt8QxQNj9tWe z%6peQZVi9vtO?t`r%282Eu)Vg$h#kLGGtM`{&YBEPTC-?W)ygj<|jld(%N^hI?Z1N*>!JWC(}- z!>BLE$*Mj5(6{`#+9%IO=}NJqJf7B!%Hi{HO~)EVCyqh3VIF2BXk&b}Kh2O2L+;2x zL9cpAiqUQsUb$F{l2N`$S;`fjVd}o29QMAtIb4+4;w+<9WM(f903L z#Nkfd;9Be%iYL!4V68Y6gF0p+tI8Dz{**+PLN@m2S1keF1)~3ZGX+h^-~1{&{;TGP^76Q(e12AGbf27!`5n~ zEzzd3#(n~aEe346ff=$3x-d)q1zI~<)_IV+%;$aeQo$<^3H%FO>9kfXH+DXQ`AG2l z>EqnrqKQ+5(Iw{am6(X`(h5uv+m?2yAEKw2_37*5i~+Gpz5nzIgL91ulvBqef14$q zd>oIHkj$aCckMhf`lJ*L2VrHNJDx4BlhPkJ7n4~+7%<6uDsI8s@ z)+S4!zfyypaobATAuE*09afJQnUirXWfW~Q+$C&}%E5%$xfFGMnoPtx{{72k5Aygu zv;T}hPDp%}kEdM^cPk${n?>r6zhdMnOJUfUdi>l!ml9T=6u;8O($Hvq?6v}2|0XoKgIhDxOF zj-V8~Zb3)MMrN1wKH=})xs2TQX2jR?LgH_SH;3&lOy``iaD+OdE^0G@zMTZ|DkTc> z8)Q2(ggo4u;g(`fbG2ni+eI504MpstHt_-PmK#_VT1$4Va)R-#E|lTsh5Es~-Q&&} zaoEGnwK=<||5b;lP>wEc)R$NoT!$Nx>C6x5LMGX5F*V)@l5lu(jpq1`z|RrS*jw^} z2>aL|I5EFW`sR_*%&jLe0tvGW!H#ksdq`I@hb@(-z&Xl|pfmX7SIUeQT~PImOT>|q zNGuWeynDy(WNtQm$Fr>)1TV#5zw?J&yz%p3J0JDXi7^4}qXk##z+UkKzk2V4h1LAz zvHigF-DNR=+gJ0Fn~^$P4gA`oNErS+NV3Vm9HzC7u)c z<0c$-mc=`6Vrm72Qr|JUxJ$w zUTDKss$02cppj)6vc>l&^f4p0{wR;#P*u%goBWpIQZy&4<>>C_P?WibU|gsXem1W$ zKHR1at@_dUni2u8&Oq$AH9(wxU4nDRry#6tGDZrVF|EJ&A{ehFm=*XP#cz1*jwoKY zZEwE9*=@N{7Y%iGXmg!Rod$X|Bfu5s;4Y=-}OKQEzWtTDk;ZdnTdQWhI{F zYr(zv3Hu^H3azevY26}6%oV4ge(770FkvcoxOidghd{}JCpSo*Q+lFww2AirIg)Glzwj}f-X%URlj=}Ua_(n7_ZMuL4~1Ib4%04w(MDk8k1=O5obE>dY6CuXcC)0Aq78w&$4vrAucyXh1p z4-3YcL`C}hNP~P^hqKE*&t<~pZIL^6EOxZJVr-eX`&=dwGm96XB`_CD(k5|OW&6MA zh{5}LZ!hP&hSX)IBfP#-qGS+5tBXg#bFUX0SvwL><~Rd1nh6eAf%r!T$Q@HJ{CKQ^ zZf-q?<9h~(Um(^}jl1I@(2H7vRgOF<<9*CIM=8@=$Zeq-Vh7$`d6~SH8qu(8%P^vk zkY;;)LO-1>({ZINk6WzX*ec_i#a`)jllhvPXAZ@w zbt!1<7>mKf>@mx7EeCRRPU?9*n2i{9xMH z@@cC~Nqep#iH0T7acdiNWlYD1v;D-QzhUxDn+kUvaU=RnFW4kN!UJSUqC z`GxRD$B!NGCExCQ%5 zF+b^z|4iXHxjNm0a%#kis%{i*QFDi19Ya;AOL1zZ~05%U6QIElSCEb`;fB+ z`y=H=5@X!$$|Rbc#mIAJbb8forkvpw%81YWq(6Gem;0?qcU8R6en5u3L&&S$5O1=c z=(ltY#)gVz*l}koyCEe2qg}Khy+&L}z1@KFzb>H&sROKivJKsRegj>jT_NMl`*+dk z!Q5E(EdaNmOniQVoFBQ9!d*l9u*wnEwGFTeR+g}--i0eluVm6+mP@|*%hK2pChUvE zO}MUI#3qZTOE#K4CD-{HOq1UZCeD}VyRb2d!(QL-0B856VzJ7UI)}MeuG2DoGfb#G zM)!kaq}~a~W6h&^GR0?>VfUXQDC}9p>b0qhRyvIpee;|t*|6}oVA7!u@$FnWxV(q= zlU>O!|FEa6yMCIp+a-HA{P*SK>Gz{_`I0lv=r&H#uh^_w6V+U~^k&@@viK>YS<#+DJaaJe(2DZS=zf zA|Or-h>mU=C#iky9_k7cSV`wn6dLPNP4ol71_Mi`HN}j^=5#WT%WqR=WIfwHYaCnd z&{tGbI-XVje29W>ui#iYQpor69cV4&SeYp&zUo=67dh^&VsGvoLz2}`NINYIk_Y_c zYFZQpfo_a+f>$1*hCYSW!$4YP97TU)cF~TItJK)`ixED%Br)#HI1c;%K>iY{TgziO z|1MeXgZx!5#8n!Ts8@9lt?Db!ByILX$>O8T+spdQGr8VcpGFyyzETz5z7ThC%&bM; zm-RHTyNH>5GlbHYXE6TueA5G2H*=nn_|1~DTUZ^9)u^CT5AtbB{3=ANRA~inJqy8_ zO?2;pIvty3!K~P}L|pykNL4Qam?y##Bs4DLtO) zCUn$UOYi0TO9r-%fuC&>h4n3B%~o!s!ho-2;yT z{P{|sh?i2z)uwy{{DVAI4*c!=emE4*y2TA^e|~LEqnZj`P6fm z4vf%;#;A|hS^?8EU8)+jnm!*b#+}yzG;*;i=7&4cYo#*+iM|J6pd5#w@2gniKJUqYc#m*kNwRM`SGY zq_;8N3MuY9_Jd0|I3IVD*~$&?6+`6UDbYo(wQCERHCS?~Z| zEps8VIzo~wMq*;B0i_-ArlR?Ua1Zih;(apUcW5XMrBXcbIji{8rO}# z(Pq^dXzkE|-enC*-5a{JyLl~UIYz^_k1kW1n1MMd&iK8S%kiSm7H+fmQB+^ZZ$Hx( zz=2W`L|SWcWadkRoEpnkiA9b}{9YV79F0|Zy7=-qw4cYJ>6rRbpHUwA43oa8 zFyW?W>21SjQaCFX?Bb7m>ja*ZY^gl%i_SH=$WpVw)6YKSYuZjV-p-JJs0o=TjS?nL zeK4};wVKNI^-`PmnxT2K4cuB?@czJY{G1hzt80?b>!1fyc`$?X3}aazZZuz)pXAil z5M6tQd2WaDU9-jYAOX0z@Fg}LSqOae5x!X(h>@dX*cA;&P8rCccRH-^BMm=*d6#P&QP=G^^R7I&lXkt`A~{&+0?{>*rv3 z+Xj)0MGj@pVEe6Y6EF#DTE&dkBHUy$c7?tJsm3u$`sySc-z??wk&gvm7)=&q|0}za F{vWqOmIVL+ delta 14027 zcmcJV_am3x|HohFoa;TTB6~&|nb|8V6xlNpB0>vAG!zZ(g_JTHW*H?($|wyp8k9;4 zC8@OB5$db!`uq#u`Vf%asULF|1zfjIfej|F!Qs)%SP(o z|3%GD0f~!*1nr-P5ANKBj}7LtE3X#9_LCy)0f#0k-*P`vJj{m__ow3V;UxCVOAA4} z zz@KZ%;Ie2l$`d?|qUTuj&y_k2*P-c@?{EZbARO zIgZyF^U>_c02P}3_gxR|Q}jAvcvHY3X79AQi_OfC`!pfSLCAxw>UG2u>DrX#)!)?o zc5O7nxR+SwWgygXg&?jn=fkz%mWB&v&2E3 zx!i6)E0h@a4z;DrLP_UyR?36rAb#7AldvHheQkaWlY1;-d&qGd8uJ)k7se>x{~~Vg zZ{s+h5ukO~t?&8A_6@&3O#8j^k2pNPF%Q;?yn)QesYur~5b+K_MSEAx6_l5IP z1dimLAP?*&IVOf`kh%FS)-Ex{8`IAsU;DW%x5bj=^n7)6{&X_AzQh(L`VGmu3_s2W z7kjGX&?{2=SO$wNU`(maZl;A__%*@vk3INX43f9U;Z9=?N7FbAzxWma`z>a{Na-!? zdEJmwT9`!{40c20MyrKm@v`^fDZVs!Ate9RFoeDC{b zbf%1B46b#l z<45<)P}5d_w8~C^XO`gfe>$Nwqly;3yibBQCBPyMwB5^5xkv!MZla0I=9;0>`w6gi z+>NzH;2B4)_ZBDZNDLe*2t=W^mJqk}KDlbOggfD|p1KnI85z~tk*fPlG_`fj7~wm+ z%II(kdy2sET_NPbO+}9W@C53Ybzm*LCy0vo8R3OGZ>aN^B8Z`eGzyq&P3>~`LuRJu z*t=C+$*S@(>MZvudV6vNyVf&~Zz<5Ag$pgKqa9D&A_Z{W3te{ihV}+2Ty`W8-QAuC zBF%=BqVO%Gr9GEN@wGO3yX`L62|a)mzxgoxvMBXqYdWqur$o8TIm{7#bz-V<0o>Yr zfJv3zJQlz`Vt&YX+Z=@57ojCu$H7m%o?~$TEVe87%-gZC1{GQ@KvJjA z!F7kH;Qgr&vlW(-MN&Oz{qlL-E-A*9WoI;L;c*2Wba->V$zanEAxigq1gD^;3;F)% zkNSr%LHgR+IBcN-+t_)6T9&DqA7&jZwy6`KaUWnJzmHq_X>_RU5YJ2MtBs5A|cA_ zER}T59E#ujlh+@AvUR=|vW`3@%e- z?&>{9!=FdB(XPneQ>2AY>(quVPFXlEBZ=@7KZaYk+;P(EIP_~;B9`5Aj9fB1hF%QD z!@L!Kxa{O5?wH|wQoHgBDe&;+Du#Jef1jz7IWF=v`%A4Brd@e9J&U$UPFe)YPpXls z;thzuatB7&gIH-9#_0MIb97^2AKU)&0#?C59V8JI{P%edH!3g*3p|}iIY+4y_o}sM z2S*Qwn&r{Ca;DgqhWj)g%VS(w9R#!HMj%b2tGFS;1~uLPOO1-iqsCRmaOQ75XVtJI zWq5ctlx%Y1+}M&wd3(P`=Dm@un8TM@=Dwp)H7QA6Eo74XoK5*ZSA43EiqNhUz55S+ zjFU%wAHu<_q6}Px61cAgK62FxS!D82Ahh%bqGoS7kPXk{z2RZYUGU8jF1lTW6*op% z&*#PBAEXwVESNPSI9iu>+{^Dx?IPLg(gie0;Al3?_-e#LaF2^~!mm zyEaU4dE9-xEK3QNe%2!`C$->xlP=gT^8xYZ1IREoiqE=Bkaj$+WZXYEY{wjAj zG7M9Kz)C|nQ{}|g{bB$!oGPF+U?C?_#~894xXb^CI8TV zod4YzPG-9x-AjC=`}-m=oZf%~J%3WSw(LV&ckE_$mcED1i=~je&=78JK7d^3yn*hU zHYBL)3e~NX%_&gZNwd$qG!gihhdyucRr-VC3n6$j!x7LkYdAD618-B78o3RLL!I7C z2tVflB00uzFI5cZPkx*$Jt2;7PsAhd5TaDtdrxm71Yr%I2lJ?;2y zP7xTVp2uvVNsfQ19Guqb#e0@7L2&*U8281XMaPT5X4ZPpUmSpzZcdkrIsFYJ$Lt_| z*IS(0TZ$vj*@5>s-TmN}Pc+RAO;@K)S*supbHiOAe#<*h5vm6KI1v86mx2!!Cg?)o zHneTuD&RdV2XlE}L+5Ts>46(15Oki4YF2ymJQJJ6~z^&c{@@I(v?|c_Dz1RqfwH|}LlM&P( zkVN8X&QM#f4J(`&Pd=@Yq}kP7opi0%yc3h6>x4NRjIe~aBg(wC|H%t}cPg4@WY4g}ywqs+|7R@a_9fGv zICf5h(EI+tx>gBA3uM9J`7(Igq6BwGHQ=VauYs+pH|+i{2j%<$@U+zpWXw~6%QFOq z5vlM_I}Ch!tzhq7#_#moO0@1Sn~OAiU7;+jd9RJ6qMj3JXBAiwTn!6%$%3_vD{QvL zNYG#-L|ssX>{Fp|_^c}=zV(FfLGEB6JCoD&L|jevTmo#hWjuNJfF3)2>)bBTt+2dB z3jAFhps8vd$%|Z%lg9iY_T_7~tmF#d`{)Nb8|rvu1Mj0h{m$@IZa(bX=nTJ-9U%A5 zF?Q3lo6`?7(8SB{U~l zf8N&~hWd39O77G)) zH;S9MBb&FMVC$_|az%AFDrsIuZT2uhTJOE^t<9BascjUMBeEZ!WLTr(hYO&jD+>wQ zeWNyNOHvhaZP=o}4GH~kdV8yf7{d=F#L^w*Yselb2vvbbWC$kT&fvwb3}EN78IaJ= zFC6~f2#zJroDp+xDRNbq4I#B!5GtV#4vV$nd5j16?$$=V^~ro`CCuhWt&86L_%0i* zl>TRUn@tfq;A{zZvhM)~JWkTv|_4jgo~0xh0}kgRJ9 zAAj0FT+byWv{naI*0|xSOvdoCo3m-*z9!qOXvckfUtSPP>r-;IVmS7WM}SzI;jr!%?ho zDFmIAfkU>_*@1~==%VJNuyNcU_+*%lq{OTNPB*{-`C{1M9LN20^*ENU3nER?TWI*q zjwU)+VqH||;>?;DgS5*((JhfL#Q#q)6>YkaTG!i(1mfpY(Mf}3N7P=bsN^ZQd{4!B z_&J*g>_(286GWuj?yYV z;Il(I?0TC#oauOyCGqqYOJOs@iMGvXz@U8Oz&6lj#rPbu%FJ!6#~9M-;Vc z@C1rC(B==^ngr`rjj{2jb!zDmu}Y8_G`&wa4z0 z!JV1ptq>p5u`NY%PR{7|jBF&ZqlbE~0_b6eGa8@OO8Gdx4pPU{y|2BC4z6^$4%Q?BK^B_)m zfWwxmBF--kqk{hZ5Y~|d&3E-+jP)4~6`3OEm4p2JqGB}5youRI_!<~h(UzZf;Kjc* z%isqYg2hFdoXRy8AeOQQI7<)kw$JTAIPEjvyYL72c}f7vJgE(3L*mHBZ4cyoTtgWu z?;!kJHBXSKFb$uuX=RdS&DumdS)O;)!CRpSlxVP;lXd+x()#)iC4CBk)IHin-2Fb@ z(7qGr$!$gz(rL*3)d2izE=HF`MX3*2eQdt00(@LajD#kO((oA8T^`zVQ`4iga;*qy zFx1zCi#vxv*W)dod)x$gw2DFXYJ$N18uzgxXv=>g8RE5o(>OmvzJb3qRg#*oO zlD#YcWKFP-KQmEvG|-i6?sN3g5tQ{e07{4pldFF7-sCIbvCcgM;}g2%g#t!nnF+`saUCdZvWehf6Tsy=BY63iH*v1d1|%3pd(;^N*v;yg~`*j9=^j}} zm*-I68F=(&HFiO&Wc9c@o`3EFQg~4b-KZUR+wDb5EN*f9tAa?tu6i6Z-il*ASm>sX zH!Du+C6v0&;Rwr=ux|A;+p8nG-IB}5_Z*zTJ|5IfeGXZH*Zg2yDc4A*GiCj9 z2YP{%$rgd%ksj3c!Vgq?tty1Zd3i&ACD8=wxwxecQ2)^ihtC z%S@QI<~aM(uU|;ZAdFg^y#*bP`h~O~T!5TPXRwJ#!~HJ;(UbK~NG3d#J71Q8FTN4a zD3`VwqBmS$L>Hs2e?zDdw@LO6p-Zq+_8sZ2B53s=9h~#F2M^BmAop`-L;Jlo=w^2# zeDu7Gjz^lX{nE{OJT`BDl^F{7ejd}xbrrcxb($+H)5_iai$E{u1(uNa;r>_GjGL)c z?w6!7IP#f~ii~u?8^aY?)wf+y4H?Atx0Ug)U7=`*>rQqbG~qZ*PeA`&cnU89nB8*n zEfczea%MTv)meoDke#(1>tJL!r_p;m4oIrOu9F0d2(Ki;_1{>JCoQu95eztXA%{cJYt+Jj@1|DPD{ z{4FY2HMAPK{-m(dctuF!1s96v$69pIzZyAcokzPz-SC;~qr|456ALFGG;A)wDl?Fw z;iUf$o#ZF~c+kmXzGg1G+pvQeo@-!lEqV`mCm!-`+I$I(@Gn8NV}4Yk$PW?{-3BWJ zKU3H9kAPNm5joc@%HI7t5`Eicg`@Z@Q9nLIvmb3{4zX>%^wYX8dTs(K#}4H5fW?}_ zJ3zF{H{%5p0<1HVD)`g^Y20+zkp1Oe06NjL6vqn#mf6&bV!pScgg$$gb6yK+JiL@T z*RYsoA4&^j^3ZuhJPj|pB#3ea5V_!xPAOhtQ}ZP{$z1(>1alvf!bKz4zu_@%Go_GK zjygGb{3;Q;^ayz_b0r7spHZqMLFDPrZqjgjl!l9JTh8R+ExlN}Jd3{UgKcgyWGL8! zvW|AdR@3^4d|&|DVe3d1sUT80$l|oRn4y*j(<$H8>v2VJCH|#8fmgmOBBeTx_@GV# zUbZrbhP%#}W8fu6J!$2orza@<>YDQxA*>J646Msm2NB%eXUUcq6A-5-9k=odyZ=c4w667QYb02lG4jrP95sq z%6ozAk5q%Or(24j~Rsmk0 zHNt$(8f=ug9$!mU!R3RNC{*Yamh`Y>IqbCI%?M&q2LMik)#^6@n;i` zu5~2^OMYTI31-mB|7kOX^ z>*`UmO_v{;?>di_I*pJpdly+Ky@vH`p&p6HebmIETc}usseGGR88mx$OaYxLR#hS} zk>HCbGy-{s6O^cFcR#aBO-CU|-4BP1xU<}pGO6;ZjaedR4vNdN0*4L`@rg>N!qd|6 z#p^NXT9y`0P!6X(NlBo09nT>wd1hFt^xeS()233H?zQ== z7enPp7fP?)jz#Z8;*uZ1xNXNw_!_*Nybk)qe%&&`_Q~3Zo`r9ryZlIoo2&3Pj{MdhKK9Y}LgN&w)vMl({QOT34K(e=mj#%C;dy{sqBb@8KP#%c$`CYB1OE zJ!`0-6(f%DtXhh>V%AakFR8GjEPzzI*tJHVaONW=F@@_iXdxBYk zypM@6mN&)?(#m@t?F60;omhIV2J3B#BIGCdkmquj(fxHQgDUscbJJ{W5sdW@>;c3^w2C6Ck(Ql$D#E1)UC+y z4z!&&n8(^D9m&jc0uyCOysI>I*UAm(`b#}OgZ_d=c+qLAq$UabYYX3WD>PlfQIQqFj++J@m zN)Ti7Med~8uEH~!Oj+4COn=yOJqefPDTC7%J>Y~rWF4M50AI`%fl`%e5^j}m;1Bop zbl!$TxZ&t5kQ-D7NqaRoRj3W26^@YV9smljqsUnfbN@T-MK^8Arjvm*`}SLYsNSWo zpZa?crJRt2qKt4TysZE{tCgW)#tN{HHv!j3ArKe3gG|rcLfpzJdskV5fAvw2-r@(X z8rpDlh^}+!`N15%H!3C2Y#TuVcydpl=f|-593gR8*qG=I>&v=f`qU=e`;s0$F5m=h zX^o(7o`HVlIzohKHbgCt08V{53NH%=$y_sVS;idL>P??b>t=n}MenY}e@|T$w5Y@N z!g=r}#sM20vxafIHsI6eO5V*dgRAA|x%@|_PD7@S>JkL>U{qBLEHCK5!NCa-tbGKv z>W{hcvvO#iino|!xEjioUVWCn5QFATkA)tuSS#60; z>@A*|)a`dW(YInv8h-H4V`iF|Wv4;+6zkE&;GXviBsSzDkH~4n@Te{d-u(mYALw$0 z3&z3M4`vK}DPhastbuicDR|Ddo1m`n8g#UtqxAw3DE;gVD$IKx4Zr({#kAUtm{J;^ zdSoNGt&k>XU$4QYkK?f*9E)8!wx1BD| zpp^5p@Pt1zp(3=Dst%mN9&+l2Y(oVefl^cSyP+Mt_FItITT7@{J;JE8m5p=CjB%Mk z6v>-i%Kn^QMgCfKprzOuW$AY@>|hI~ICn>=~^$DMi&4W!tw23@%; z13nkyagNp&*3Rqo+%39M*k}o$t6MHWzs^}0`s{}Ox?doF9u`uso^jdl%$a5R=Qw>C z=~I?qMkiuGkOqet@#!dQ9+u+a! z6Kd85W%wA&gXXPxLJdB94<#})VeGCKd)|IMN?>g!wfx2~Hdwxbr4h26Y%Y#Pn?5B zonZ1n-Ub@^d#Qzr8mz7TJ25{0loAe`hpjUh;Z~oRvyaA~GwGo=8X!eeINqWc;%W;-Nc z1rsgQYGDFWv7#({^;)uPXd7~<3PsA%HPr9V%zpOnB|oNq?ygx*yJWw423&64M&@*^ z<|uDCf~2h-@O%4}Xe>n*y;ydUw0$)o$@=lA=g$z8E6K&BoPP#J0d?9&=vL zS#Pk^OGWJd&=|O07s-bItfA)IPq5OxOGztu@Sb|jD8HRuO7~jF-Qjc^3fdk6g}X(t z$GsH>Mff>sY3864C;>-``#Hbsj=|HUn_?pFCpdM#uR{FkxgcoY3HdYcLB0yY+P`_w zqY)Y0S;kDv-&AhWwW+}oqib`3BMe>+$JkE;EqGZw1kl;mW$4+06V#j~i@8-39D;U2>G^1pW+E4s6f9OMTW0N=Xg`dnZMnr@JT8T zzOa;Y>tQ%GCzq+sdiDSlP8Xgg+7)lfaCq;~0Gl^n$61o4JpG}A6uz&F)+a9^_vWb( z55r@865$o-$38iM7>ltB`U*Bj=!*hF7 zVMCECJ|KOS`s&3)oC|LvBLR6dboVJ0Y9UMf<-<7lXY}LsNsri`y#|;^`4GzfY=$pd zn6r}qc4C==E)s^BUH&(1RYrLg>nojzLyA9PW6T(PU@)I`%VI5g?mvu+AA3!`jk|_l zhFFprsWDXSFE^Clqf0EVYLZ0Pt@zv@39{St30d_jeUu#| zM829oqhbzLQAV@v$Y7~0?SiBB6Gr){8}sr|zIX@p1l>k5QVl41ODE#E-J%w13!`$^ zD5_v=8`hTF#(tz9gkzHaLmtCZyJW8roY@=6o_ST8B&XL+T9cQNOv?~%a`=t)bc?Wf*ANjF8>X`M%^*>^@|0!_vv_){g)_>_ z68h+X?l~fermHI;%B~q-km@11DZjAu$kh8RdHCXP=%sc%1&i zQh8{ETTOUTGaoPI>(hjfT{nX1+RC^+qyzEFRN_dZdg`fu9#wnF6x*F%PxU*kqv6HK zh*s`%e6<4|;jVO1cu?WSMkO~`x~DbZ=$v3yMNm0D8+r}Y?${E&ccRp0v0SLMj^Hia zS4Ea(e?W~}Hna2>BI0k|fe+bNLX8#E6L+5oqubUD(G1#^tvZcZM`ku!GOZ6}>bEou{J`;SJq6WER}H)S&| z@z#?rnys6?gJzrEt%Vz+`LOSAGz`qRfNuu5KvYrrzZ*ErVz(!(EU?mwfAI78NL6lNZ6>Z8%gCUxIai0Rs{#vmOYp%QsWa=HjWeFXY z$2AKGbQg!GdLz8ka-2Y>Et~UbU>+RaqYd+BPoQ@N$BE`WGhBXm67}XSCY92Q1&>ZL zUF%aLeKhHF$*F{9*S76PD_5&P=Py0D*cMHizUaZ`sbfq|0FQJ`f)T_F3-h{tKZ57o zn*~2kXhPG3Dm*`R5Zdmzz({l`1a;K$xTi7f;0Qxn_xYj>dJ@vBKS}KKKEdbgUtpPf zi$uGb@hu7#2hGE2lzT)I2?a8aKaR7L?s`JjMh@rDpLnz= z@deCkv4z%t3z+rH5|V2?ScjHGbB<{kP)6&SJQ=t`PeMLgW}oTN^ZCR>*0XFU@cFh3 z&TUeIH%(>aSC}+h*xd|Ia1bnItK*=l=U%TK2%r;&_8{oF5YA0K@Y9ZSW)JJ!v~^s89u`-S5zgN9(Y1wJ``p--A8%V^F;; z9TfMi6W*}S1}x6EkqgmFpqAH(J5-;^GwyvGs+?PC_RADsrtAlKE+78^2xfRR)xCGzBtC6J8UlM<*{*Kv|gKnePp7kzgK<7}lif zC2FYLOh1x!xd2Ch@ucB?H|8+SFtlblZOi_8P0*Y!$=N3TirW4BE?URlh__pYBfc^g zwPb@gdzZWd`<3D}^k?&XSmdHgMz!^+{N)R%tUbx3J>?6TTXY;fE})<8z=`{d=>obF z5l0t(p6+ZgdXkBb@%^BV#XRF_BFj;qXagi{Tg0v|9-~grKgahd(iMe_r^8qA5LVQ$ zR`{s13{et%Snxm)7Fi&RF9=H0!uMTUO0)I+nf=wkZAnlS`@nT?JAf10gVBh<0^HoI zg^EASMSUi$^QHZg_oU(IZR z3QsMfJvlKX4AHq^xc@{1dr9&dl(0G#$1j=%cLw=Le$rZMrNT@0WQQ`oucAY_Iu>#k zY}$zS@s4QTR43hvQ&eNNwGw3MySn zBq=rv%9GUby_uc(&UqE`Bk&wp+Q_itT(dYq>;2F>&u1jjA(6-ds!zf3Cj+89bCaON`&Iv4o-%U4|*$eR`_qE6?oo#3So`0 zs3x%l=KML!dUun9ZI({QyVi~q=l#cM!)Kp(NDJTbl{v!RdRr87!|iY$*NBsRuOsg+ihFzc5A-C-0K9y)sr(vS6fGwUwxoiH zFZV(#E7u{1(P}F6*%F=-K0%ytcoJL*bD|n&GC-fG`pkZCm4*u~)74yT*c`X+I# zIc&yWzo-cg?6AdXQ7i61=ejPS?haPJ9bMW#elPT z^Zq8V9Xdri0xHRTX%1&FLYdO*nYw1SW!5%Bl`C|nyqWBv|Bk;OM4-+33|eXK&-zg( zj(ltzz(lT*44rZ3X0EBGq?Xl@IhXt3qu6seP}PT5w7Vjs)J?p*1!GC$+6r7Zc9DAY zm+`xw|9?;6g!wPf!o5=qp{Y_4&6~awxfE2hyJKuo%i(NrP}Q8436)5qT$}e>um(!Q zX`sDA7mQr8AhuNz1vp6J+KO&S_>#lN{lnD#j)j)Aa0de>3%~Vf;#X2PNMq3wN`dzd zSz-}SKD~K^d>as^PEO)owX-R|sn;^m3S8=!<|xX_YDGB;lT@+~FG=qyAdjx-uof(4 zvhc0*LZ*xFhz+J!<;xC(kTc$m)?TVaaw`RSHicb9wuVyR>YKnbqn<)D`I>o>KVHMq zC+9+oxfbz@Zb4b^&riMDY=P?o9Z+m}k-hkGJ?-#N$3>>_>%80O^(VJh7&sr~DBZ^u zl!jkASRF0nX8yVdK?jUc;PiYfB$kGfo?HW!wTYzR=stdhYBrgr=|L=-(ib!FXavV_`Df}OBzwd>Ye0{uM}Sr zc%i$o6n1|Z#$Ax}8jtq%<5_!RDecz-pz%NwUweFpPD8^ldjD!OF)dn(r^2e(Dzf5@ Ilv()y0UP5qCIA2c diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.loo b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.loo index 7f9c4d90be70d0cecfa3047e4e2ee38d37e07994..8596055ae87ffdddb28595dc5e515a600e914b35 100644 GIT binary patch literal 534788 zcmeF)3%qYtRVe(cd1@SPi4c(V{~Gez(f5qT zzi;$y0>4$z5;VUn%HKqx1OHzKeHWDgCwgA=vomz2A5Gi)f?x9;gMa&t;%8G^RcDZx>~UDEdu(KWO&B&3}Cif#zy|&x3B>Z!I8=M@89p#35-hJ`Qel z{(r-vfp|VS@VB=7-8}HWk8(t#r~F9`C%V4Xo%B!tX^;T)ch71Y59BY7a(ZjiAN_Y$ z36P2%qke8E`b03(cSw}8q5%4m7fww6zl|^eJwN^W`#>oEUKIM@6Xo0}ptlFEzx^<7 z1;C$oMiE~iKA8)+__+2zEs8OK{~l5Q@reKA4~mk2&HO&UHB^0{3}*V!-$F0|9e$JO z>%mc$1M+_yvY#Uu0B7qZ4X5`0Bevp4Kd8`E<^SVRhJgOZhS1Xqt^u$`Twhde^n*GdSL%|x{})6Mk8imndRmbe->ahhd*eq+ zU7Dz6?_~@LK;OC5XARu}X{TUf>ytt`{l6V$+tw$2=}T0v1=xPE`GTmrcQjU;v?u8A z@r}N>&Q>`{!|z7fp~a&&*Z6p9lsy`qO9w=GV8i+Q;t0w+g7B|VW_ZxvALYbA@c&zs z^@ac3s6Rhw=SAn}w+{SqjqXG?LA=qkjlJ+A8jllQ3GjUzO&j^o1@0aIz;7G%)CYfD z9R8gl0od4`z<>QctH|5`Z!LQO{+s(bAJgwVCw;%-|MP;F*J#aICxhSh@B`dy=ZEIQYGmqv@~3{TyOpHgzAKlaiw1WbKq(9Uagr^<^?{{@ZC9`@mRMG!Uj z{jo2v0r)fjLu)|#N5(iPg+!G z`q?5L+R4L{hkVZeb4tHt0eLGy+1N=Vs-83 zw!QK9oB#gf@av;&-*Bg6q9ncQ7iai^q4af8$Ae$r$q!F^qB`rp?*Gx{-yQ(K^_Mo% zuU_@j2M1D$|85O;(m&gPlXX9HubZ?DeXRk1j*4>1z*rvgg}>XiSfGoi^?KWAv;RkT z|DS->{C{?nLGt`%QNVvwoh%64I3!B$|9Y{$fA~D#(LMJ`fSdngfb=IO)fxe5c|;h! z(}>OJ_Wnud-=~Xj@RybNq`s?L8+zuR7+ik|Qu~-F--)8Vr!Rt&Ptd>If3@`A+jn8` zR2x#(nLYB0etZ=8x1*$e^rPqAFRDv)^>~n1HSov%*rypj0O<1nf9BB5e|su`-~3O0 z&E|iC>i;e{e)oOJ52x$xZO%KP?HUAoHuS`!IvX!_|EH~juF^K`^uev!w-_1o_!7vc zZQAtT=f9`h|5YE!tybWV{lC5W5TKj;Nf(b@TW;{9i)XgMPY!&8N`UMCN22W8aBUUb zAAUZ{5shxz(sx3^(NAf(6WxDa#)oHD#=s|vUBNa3{N(>Q=m1W?dy7Q?8~Ilf4A6!A zvtieP{xr$|ccTo^=~zn;Zmhe-3Jk{o^};WH=KmQjeuXrv;{R)h2C7dgysEE@##bzu zFY?r0r(zB z=Kq`~gMLgDIiQEU=W7YrHT=VLdIO1=O4?P!xf>$T7SFKO~zm-_^t|B%1D(ea-d<(h`m zum8J*%ts@Sn(5BZ|KaG?0Fe0ZrH_r2jYsBe=+LG-{aWoXJhE^jgtK6S&!;0Kl=9>;4>mQ zJ)Jy$G{DTXS6knI(v1Of=sUGKdAR(i4auKAC64~q7_5oA|JTO8v?Z!DeQ6K8w_n?8 z2KMH6dls=1{{f3IHXiYI{r@b%0nlv!zome_dF%gm?T0_}=Kpooe?!aj$NgWOv(<*A z=k*^h|K;6|MPQ1+6oDxMYcvAZch~<3 zrU*JAdPb=jgRkWD|@j5Ds-|83w_Ms<;hu_cLqs805 z<%d78#M}S>PQdnGq8!xdPV1xW8$78a&`r?m-$ZB?sx$YR@YC~&^7{aE`wg()k2d|| zKeX6a`=xIlPVA^CegotKly%U{vj;yL)&elI#&bEF`Ny|^YVm}tUpNpOy0FRrFGYEE zTQBCt2EXydCVJWTcTp1b2Tz;fbY~9nSN-(i{o|$&Km3OX13*4?A;WX-!6%9MZaTdgrC&*TBUhY75x_q9e(L1>b2*a{8<01OktnpztV)&e3Xyco-*RUUlhOJ z4fLP6n>DQPz`p-E(ic_qS3B?`mZ|EmZ5Xs-w@CB z*{1*fR?vZXJSd8L|3!fQI{$ka`j(sjzh3%UE?&k1`}kDHL7)o({p1ti{rtXNwB_%= zCtsfNua&vaX7(;RR+GQRN83E0zvdra^U~)ZU3|v?KYH2>H~(}0pZV8^-+`kqd84{4 z;IIC{YyRQ$>|3^jRmR|Yc~q2-3)}#RFM9r_J^ypBg?$K5UUX{7`we(<@Kd75Pp;R; zP|~2+m+g5bFQ3+b{bc^rCUm;(|DGBBq2sS~&;G3c*?-cadB*>P!XMRj)jm8G(5pPW z`d@ihV_m$A=e+0XZ8SdY|2~T`z$tl;3}@l4?_v%YZ}(SlK;Cb_Ue@F_CoQToI{vE~ z-BJ(#Uc>22`=UD256|m=@^7P~fL?#fXP?y8`#)mv9h!XNyEZ)a@7Zwr_>*e@eQBRQ z`u>7E7kYc=GG7lw{hJ?)0{{4#GQy(1Pm52lug81&Av%3y`!n+Bng7Id4$_yoj_PcD z;{W5OQ@-|yl6{a*JgV!+qa~~qr$6Jf$U4yL&wg*HGykva{=eS;_Wl?av*-V9eCRLZ z!$)}D`zK!Y_4Ho<5MJ|7KJ%aYGxzWz`I>+EWS=!p`y%}5-&)E4QO&nFEen~yd#Ee` zK8ut8LtFmEujXd~6-!w9_%mbP^Z(3$e*T~H-*3NLW6;h2w^--{=+CtTj_$J``CkOC ztAC61u_bx>c=o!{`{zINa*zMl1g!x)zx$yHo}azKmxEqk<}=rS^qMbt9bfP|pULZA z{uhBh|GhoEj^*e*|Ba3J@mbCu@$mdF@BhiazRjH>S^R$xCC32#%qW>7c)kB$&K_yI zUzDdusd)`_2264Pc3fF+Dxdz~X>*V3zux~Pz1{-`%P8RITkUg{c@+@&`(TF=KzisL z`iR)3W}?>DF+hLDobl7k_4<0e=kIa(Vb71-{O{%AZ*60T>=1n=_R_JMfqyF*tN3&7 z^6R?F(@|kLeLWq%lJ$Q`zWR?|{WD&2@5fH`y!V6muomb4hkGY(L|lBI;Lt#|+6V9R zRX@KMfBZFvfo?X?Xa84in5V3_cOLIVn<6kpV2Z#LfyE=xum8Oy`j%Szd)*U0MPQ1+ z6oDxMQv{|6Oc9tOFhyXBz!ZTg0#gLmY6LvrJTeZ4jC=;;e)?O*Ic%Sf^1}8RiH}j9 z6ig2e9ruei^ruC6Wuf0P=*I;81wqvOTT#wv^lcme*$vkpT?t9Qu+g39zpUX{j|idr zHW~8&QRI7lJs#{!0Db!+@4H@4i*i-zkNsos{}aXkdyPM;6HF0UwGlAh|7^}!Mfd)H zg7N*XDCRtH+P~Fj4c!6%UQr&_c&r!X$($bjYW|(F_TayJqsM6-{1@VIZ6}Y__n4F8sSk@s20x^=)ijJ4g1vZjQP9_4&Uw7Qp3xCzSxF zCkOst+ZYo6uSdB@w0$!Q`iXJ2_JgQy(gnwl?~XzLt0?$y9lBB<932h7FAbrJ*Y%&i zL!#UvWPAr)f2k{~Gx={vV{Ox(kp10KC4jvC6X<_Wl#c{GZAh9ku@j=KmGxiRHq?@w_+%A2Kr}T?VtX02K3>n`r*F6%D(d(KmGbjNdMRa zGM*PV{*A5U$6nt!=k-J3?;IL7 z|H#1K8NAj2{O1;a`d!<<*Z6yV`a@^mLxU&r!x}Dr_4-f#;3#rdV{^a$)*O&e0`nS=G@nbJP&UyV%g!!^4 zw;37V?Azebz>t>vT^c|9&?tL0oc}up|E&-Lh(3Q-+jxN6_a~@YU-ud5KkYlH(aEzn zL4Vexd#VKV{cUXh$r0PJ!SuFb--coj`42W-q;&iHQ4THr*YzKNZ_iz#vGN4Vss*mz zCj6iG{3quYC-_^}TW#|o_2>Q%PG7!H*UQrX*pd(Y_J8gHhamN(P2|5>cvZdo|CE;R zAss7equ>5-4D`phwXpZ&1AjI+i~xVE{mBD2-*UeLH~$m2K3*2|uLr>zfd2X@)_;J0 zPLsC|pqu}74h6aif_2?pFg1XG!J&cb+bCTSsLK9{z}cQU=wo|=VZ*-T+Wbc{x5wW9 zPkp)mrJmJ#=IX z(NAykQJo9)ogd{Gf(t-Y^Nd%r)4z}ch04~&w}fbiF~U%rwzs@DSY*8b#yZ(H<}cRfiP3`={zb4tFF7NnWK zp8q7MR(iJQnf^P6FZu^?{?+{_`NZj4$=bhM|N6W>K|IaJUBZx|Jph00`*&*dU0Cs- z-{LDQ@QX{l>;DoZkA6Rufb7p6Qk&*Sg#P1Od{f`0MIYM|@WaUf`sjI36wjp4^_P3j z><`apLwVxaKQ(DvRIdfx{!WxDn>{^4_BT&QFSD9(_8%B!-ZS88ulO17_S^Xku+meX zIRfz0|F*#M{@;AfH9)>k4g7m0-}n>Aqgw;)1L*hsug*96#sDe*_tOv$dhHK>-=7`g z9BvzuU&;I**1CFH`PZ-i_J4obVkAGF|Nd*V*<<5B*`Yz^U+!NQ1&%KN_~jFR2ZR9Q zfv(v<*@#o}%fI`A%zyR)xA*@>lZSsSJWz1_I1DEO7M!8SR2Qm2iG9G+hn)g8BVSFU0 zX707cC17@c{kW3fLpuJ)VHyGU)1S}(;PU_d5r3%m{4YVZfBv_dLD_&=?*BIw|Mm`{ z^l7O7weO=7y3qJMjsG7F=h5K_;-NjCf5ScdxrvH%l=>`=zSE-d4N=JT zAdToRZ1L~u^rdbz_!TM*;I%(^zWa{_zMTITmGQ?!`F}=h>*e9;dsLT&UVd4D8L$`S6-XD%X*V@GU^*=xRL%*)TU-soSK>zZ; zwE$O6oZ}3-`~L)0`A<+iJCQiU>-aZ+<^Qy@exm0Xz;AsW1M=?sPH*zFe8hnc_kiS& zc4%O{ToL7Qr7daBns=hK0UUqA5MJ%mzx-$aDVOJ5A8HJeHl3#kOc9tOu$CfVJ*@j9 zxNHAUEAW47y8i#P=5g|Siog_sDFRajrU*;3;RK(Fur zW8EVT-!0EjtE}d)M>(@SuZ4U6=bVPq=l$OVbnnx@yU;&cbbH>4?j5j~#Pi=KmfI$N$*CQ=jHX2Y#PImzx{| znthk>;6|qp|8WhE>Ly)Lo#pc>8b<&rbB_fs-w8dQ{hieMGi>CaO}`$c=SN55qwj&P zcCcRh{?4h*zusOh)X#r}3V*&&KZN^yc<&HGjAxn4qV+D(Cbfs z(nj>GM|C#d^>6NjULO8khcyD$=YzxEZ?|~$W^-jj@rT=o2focMHgdvW9{3Io7r$L1 z$Tw~A5pTc${L&!&QM4ufy^RikN63G);Pm}GLO@j4{Y9fCp0vc-lc4$~gP;L59|lb$`3WnE?dU1h`&v_$J*mUbxxFL zmH56saMysF4Cs#`GUI>Y$b2C}UtUk(Y{~xt(f1Fp`5(gbS`e(u0{`{DO(=4mqAzVB z%pQ215BOaJDqoOFuyS4H7wl$~P5<+*|NPxA znDYJqUJ>~t9U7?SyZPBR@7(kEcrUvgz2{#kPX9B?dat@mG@doGKCM*$YUAgh{GYp- z{uv)yuGD@BO8??!nzpCoVqx|9FcJ zdGGxvz-w&8%e(Y{R(O(kku&*Egb{fUkoo_ZjsoE9%Q2uCz9`_Y@A}in{-M1;o$3E) zN5%)9)dc(-+V`c6==J&!pLe|zAJ6~H5nz0H{%8Mp%hndvO`z$x(ysb|GXFO*whDdt zpAtN;p2OG6CBB^gT*@9vFy74y=-K?%KRH6z|i)*?Hi3B?*0F3 z8jh{r_s}o@+xSpE!1#E6FzpwLXU_=(uh0L;qbKP9CV}GtPFYX9KL69UCE;eF%=5n; zn*I8(_HD_&ZVX-gsq1@hgZO{2@Zk5nCjs5uuWd{K+Ml+fSNSHk)tq|&;PbBk z=y~lI1o%qUe=-x?a1oH76X$e??*2c)_;>x!_v_(jN6Gn*wZ8jq{ipwKZT*buT%hmh zP-1QZ`h4y`2I%+`$X^kq+E?}U`cp2?RFU6YAYc98Ts@QA6oDxMQv{|6Oc9tOFhyXB zz!ZTg0#gL02uu-}A}~c@iog_sDFRaju4@E5TK!y<2aY_S^*pn_|L^mYeWLMp@gVj6 zAq>A~;QxTp!`=?iua5Gfpq~?n=dXVqWoP^Yfd2_i-&q6ti0wZhmrdlo|HHC{0`dt5A z`+-!k@4S+Kc;-L-&piM!@kpSbeQ%GlNQ{V{+;IRdT(f}P{Ckc=1Mz!g z;Mqo>_amPj*{SK{U;0b` z0fAG?-b>2(fQt$KI4#i+ukU~MbmI;E@)7@nysAJvem4q#p9krHe|7&4xA)&%AfI!e z4qckB$3-#E(Cf7y{=O&)`0;9cf8(!qr@s3}9vo{|^nnxR!OI z(Y$2+*H!_&#smI=a($@0tFbO#{IzB+vcBQZwU*!FWj)O`6W#US{HGKC$S9Ww{>5O9 z(~|WO{S8s%9zT86mc)Oh#T0%)9Pj{m+5@NGbw2?c`?k5|#ujSew`q9Vmob26{dLX$ zYF}@^{*ynd*YZ!>Y6kIP|E?__y{-KH6;3t~Ki{|Av&8SeV+z79QLyeCMgDAdeh!TwWDLZ^{7eu}{H_7o;fKZ9{C{=B z(eD}cDi=+IAoX}pY5hla)83DO^`5?0clMrD?A1^1|HxG6?W3Q*1bDU6_*@@B%JnJv zwwAMa-!z;)x5N{EL5Zi_+xr10^FBd*@PADu06oVFT)xmRYWl<<{qDhUABaES{f_Ev z{rG+~rao;IvcFsdj9>aMYx?P%x9>%-_QB`9`;T7tFM+OV5FhLRqg56F{?+vs{$)vO z0I%`N_OWx%FF)dURmo4)hyUm?Wzo(J`^nq`;IH;E)%ve(k^K(&+JB&P0smTh{v%%Z z45N*KML_(lcfSyo`uu;}Q1q%u9yQOE#0GG@3GllAhgr8W)&c%_{*(Dn z`fXwjx_=b(y!Vgl%--6cu7BXrK(*SJ?PF*BTkG0CpfQs~K-=bk^?SL@mQFdxl1&m@2VBm+)SKs?KlQDZJ)n5l z&n~+Dn_Bq4SN3Oc<7elVf4(P(PtA+?;Fn{3=yiQfd#X&Zi~@eV)_&l0SlMr;z3aB0 zk!RyI`!@#gkL~?QpbyzseZ-f*p0$#DHp_?H-!UpVC$x`&c>YW9Z{OmX`Kq6>S6T6^ z&;Kh;UH{^HQYijG8xLc;@Y9Dc0nVNT)qM7^4PN!-_|wMU^xqiB&wuJ%;9uHD-*TY8 zwRHVwZ}oRM|HR9>e~&2kf8;&;Nr1cmPmrpwMA^BGmu$~7R?pWG#M@_)^?v{)ZA+Z> zSI4>j_@8S4dW}bK-Y8z{Kqo@`9CYlzKvfz>;19# z+b{gBN&tD!|M0j^!(aCkaL?ir@E;zHv+G6Jfc~#Zj5ECU*W-nCuuA^}La5p}$k-aW zAwIRwdHgpvO+4y&@9jZN@OdE64p6i!Fn0(C_y3hZ#`OF?} z?%4xg9;N4xrX`>4Cx7akM^F99YaHOO`@deF%M^Q#ZsRxCmy;Tv{CvyL|Lb=T*zfb7 zTu)N|)FRIwV_?ykhRO-12uu-}B5;F8zXGO9v-f3!enzAF{BJ{)a~q!W7d71T(f7luJzqUD%9oI72+R&@l7 zXYc1fLuCNW-&;gEtBr5-cS96&;=@6Nn=e0z3Owguo&WTo+vH6R^Z)!ZU;c!W2CDnV zBw`Pp%K?@RQIem%=Kn>dKl&~y_M>Z~pS>HRWM652#>0H(>(&bV-7A9j+aqh1c-}V3 zl`VewcZ|bh5CX*i&mu@)i;6b*Hv``<>c)Whoush=`SnrI0sN#WWBsH5e%X83J_w z|2_SO%kz1S->`XJ(7#>gbI$!CeSMpFlD|V#PHg#vzof;~362J$I>Tp39ME@&#>@eF z%HrwydmPU^Nc;3J2IQCf{`XqSKYt$9VmlNE@iqVRHvr)FVku)7JR-`vTRCjZ$9;k+ z#{kujjLMfswnipPi}SB0s7HWKl^g;7u8w(E8g3K{~C-9dV1uk-xWlz`~9cPzx<+aAM`zA zFrdTl*~T1P|JHM$8GYZTUp$i*)!BG?U!3jPwU6ne1F%>9aZMk7vX>$Rq`Wr3-j_uo z^P54`%)T*5`Lq##_B|%En%dd>**OLY)7_#RQS$w~!2c`+?-j{He{+=MO1?7p(L9S^ zz5a_YS^59-HU{t|pual`o*{bjz}@DZoQGCrxSg7$sfA)|0;q3PWJz|Y4Wqiav)Ft zS_Q5f-@AaNuNrKE}k$+8Pn)CJ;aLn*Wb&qHdI@ zpQ62@h+oY={gqDNOdcU1=^LW1J#k~;s{{6+Ul=9*g{#lTcp&r;LH zlm6u#AwM(1c?|&jKOIK@&CKv?8!UwOf2WVEf8uBVGq(Suw(8bjz5dfr{>&2Jx}Qq= zIgOtE(fNO(&}aT|7_^$hH@qu4h@^fANd~%Q~-TnkCJ-;{OAuX{Q9cT|K1yT=2w6Ct;zo_l+lOwiWXD2 z>;Lyu0-W9)CGAf<*Z#zlpG*b)k=2(mAPoKWzuJdh*Z-gen}gm6HET2vzpLcmIEC!|}t=sQFO4}BY= zB(Tr@*p;O}{0Y5&INy_p{p`D@$=@RC`rqc~;;;bF=l+j#^di?orJ`uRj{}bTs83Xir&whISV|vEg$>+QOV?0|^JAZTU$1kaH z{m*LvdcVKUwLeI+{8|6Ufc$Ib(0e(o{q^7eD?k5dpZR}Hl-vVEbzxwS&;2$R$gid6 ze_Z`+lnX4h1Av};KV-Q3{^TcSz2Bp)kLaHNCS5$T9@W`+sO!IcdA|C9sNjR!`&m=q ztFt}4NljSEbIZx$q&)lHU>ldYbpO@eogID1f~c~5wO11>;G~Q!C$Zc z%ki(2PJe#aW~H(d{}h2K0#gL02uu-}A}~c@iog_sDFRajrU*~|;(q@ zhA2lj``PEGeeWJczde7Co3D6NXU_k`dw%%tQ4)seA4=i^=U#pRkuA!i|4+@)h+d!n ziqGw%@f!#MiQl`ew{ZElMgnXnHeR^=tdD|DkNjCLPZ$}0L{nE(uLbnc=7EdSh|5?!noSxI_vxe?~M1E1AKkXv} zr~d#0IiS}!gtIS!y#9}E>s`;U8UHIs*0a>JTF$xto-tx?($8*m{>kro4Hpmil@cA` z#D8s92u=t1&yDt^-7IkY7dCzRdv4G#DgB{e-tg4_zG$OE7te2fM|GB8ec!jW=?`Dp zhd=v{>P-Gim>Q(N-){ZgJlggD?+qspPaq0U9f{XIl6UBw{3$=gbA7hy|8r6D{;Kbb zzxz2f5LWa5UNI1I|7Y$eU={xa`VWk9dC`%yMb5;=Y$K1(j?D%3(f`h-gTAcO2|rAw z0e<&(Isdag&q-e^zX8MEOQKxK(E&hr|BnYqwfpTIejavhz%T!AY^2mb_8Wl4llWd1 z<$0J_2;|wLzr(`^Zaj1adhnA^fPb*atEPQ;;MV`K`+N4V#XZ0nPmtCu`$r|W+LyzZaG6Tdz75G1|IR6g|YMW<;Ce6Q%_n<@eN`;@~7u=nQSi+4ZF zdtxtZZA8+ayazyM%e?u|pD}xbw5mX8a&9kT82`y&n)i`PavX2J(R4 z``q^`*N|u$1uE+M|Mchl|NemfQALeFq|Sf#nEzi_32@`JbNw;m3QwAeDuO@`0M_!*ROy5)iF@@_4cLxWBWh)*V6jH-kQ(qyE=N!zcicg`*ibv z=OEA{KJxFKd4S*iKdAA;#plq5V@uws&ibqN^mO{=KV{G>Kl;a_G2422ke2{{xljHj z#6ZyXWsHKfe?zgq%32@!_pC-IGY^)tZ=URypy_{X?WZ5T&%gEil;)rKc>ez`jtAiH z=YPHTM<<`4>V7E!p1QQbe@oCuK>zfm4F0*!)kqwQ}a) zO7hQt&;N4FldqruNR|A*vdoYFmrw)zcWrCECV0&+{7Hph)w}k|GsIu@1^bF%$eyZC z|DOM3|4hF$gxFO1veV`0$+ue0{Bv(U_WVzL>ip;5;nC>+-xxrDZIlFb`F9VTpa0Nr z4H)V}|KE+0&;IE1`^k%f{__5xUG$wCjo+WMW>np}s`vkurcRCg|4v!&_6{LqU{&!d z<)N>B7T4QnJh=WF14Dqm*5-fC-64OtSwH_XHC+GCD(hjL|M+YE@!S8OTlk+H_*kF# zt^enj{loW4tW~Qle)0Zz;ji=|e)>M!_|50E|4-X|uJS=%0>QG5{g;jOM_=ZDo}ML2 zCuEAi6oDxMYajyF(|OnbHQ>Tr6Zu!K|8toq;uL`?0#gL02uu-}A}~c@iog_sDFRaj zrU*{tu1v=|~Qo{O6-QB$(-2A0>fm{7*y(fIm6vhe~XK z=A_LUx8ee#Q2f%y!@wZ7=RA>3D{Mo-fAi%%hthVt0 z&%U)JfBugFxcvX3jsx)jYtseS{P<{O-}9oN*YAG7tN!F?xL)>vew&EX!=j+aY03Pj|BKOhT#5Jb!I!$ozc|VpqU8KaS~Sh#jXnnQ zQTgeU|FoAq=4bN2^V%QPnZ3yiw?4`HNzGok{$Du~pT2+kz5Ad21v(dc`MJ#315tkV zi*n|Of8yzW{O;k{uS9`AFpT#7U-tm)&$U0Qv;DxnaXzQ%!*Bh6Q55$8`g8w(VWY!e z6|{>Bj(%y8-#75{f`<+G&A%%P-P&&rI6L&mY39#1DgzK|X8jM4W=+KS`FBk|RIYnK z2z|TtN50N~cwT#=I{^8#*iur$<$=iXh=ud#V z|4&eb=N^zg^Pi3EK-d4!yZ_NVqucu(MsN)Pf4(23&Vg!nxU%H;_Tc&K2Os>8B)x%< z&*p#0zx6-Y0CfBRqZ_@6Z91_h^RE$}xljD)sC*C-fS&7r;(q@t*MQWQHnO+oADwME z2GFw})tP^Fe4^L&A5R7JweW+$X(nvn4Z$owdZYzil4EsNdVhlVtl*3Pn;u+Ah zqu_@p5XJvQgaOce(=wOf$Cdtik?ddopBepQW#9b=)`DIZPM$44h(eBhwNL->1bFoy z|K(BsWWoM|^+pBuAMY>%{IUN}9{6LURQ#f#+y4XO$^F`?Z9GwpKLMVy+Qb|FvmyV= zK+yl5k_PDX{Y4Z!Nc%^5^~iW7e{7KtbP4qOnXUi7PzfNauQQtdTSQ%dXOHxk@@xZX z@8waiexj{LVDBE`|L$S`qWeGmV}Rt@UxI4x{j>>_^*^7-X{&($(~KGc^m+52esh0p z43Mw)X7I6VUy!Z^^jrV8miK>+_w6DGA0HXt;!__DbP1rJTh>nU_W$<$&kB9$>Iw3}o@)>SGXIAa9UCbdkG+0)&3}(q*+uI5 z=ige``!C{;cw9ASKK45B%X@;V{9o3_i};xTm#Pc^`J;+F{MS1?KdUE>?!G?(o_jxS z@O<_M?|~We|1OL_g~09qS>m@`2*m5RL+HSkKPUCnF*N_}|G(3C(B=QG(Ka*&(7pe^ zdsI?qG;IR**7YAhd-C}YT>jbgp(yxkKk$EYXn;TSPY2Sg;+z2YTykp#uI?A*j>YHd zt7iA&-)oIR;r{=sGM~Q@ZTSq)ehK}WMmKfkf9D;e5+ zkUzZP@`c}b03H#_;CcTy^!zVGm)!5+r~g$^d40&Eztf=sf8qK3&+}jR|0lHmvDW)P zIQtUVZ)~5|__KYrp2fqx^iE;3&jET65A^&W09d|Q_|VDLwrJV}SkcEI`}YogKL4M` zPgUOg)7kgm)BFDQN55x){ttkB(RX?oUvRPTe*nnW`44An0(_pm$+xwh`CspU;SX|X zpxW>M>)MZ=_fACMUshQV@Ym;m@Ou5v@!>N-;8gejv&M2jKfdvn=1ofD>msA48qt1OQJRdOzJO@R${wENV{}-5e0dV~J`9Iuq-}?DH zIva<8>Y@Je8wcohe$r2Oj)7htp1wtOc74hIbA5u30r|_vh*SF%fhhu01f~c~5tt${ zMPQ1+6oDxMQv{|6Oc9tOFhyXBz!ZTg0#gKTzzBF=d8CJ;BY^&`Lc{u{D0_^^;J?hF z0k&HPeqw8bzbnd}+p}hmfp-hqndS4f|5ctt<41o<`^<%!^-Wh)XU})*|L;cnx%O-s zy$AI3ivFJ7<5c~AlyjPW?Dd>HVGXDFQVD=F7cHgYmy1%Hd@W7V@>K*dA7R zRn7kd_|DzusrwiHIBbzbnmuZ+XKA@f@ee{RsUoiLz-e(V1eR05pN zZMxvb$8k|EZ{tIn==)y5(bw(duu&fVz8QAyLx?Wf|Ff4q_XOiXZ)sXQ>sE-ijNo%}=E z*yw3+^m`f<3j+T9?bjg@^g95iqs)R6e zHuuMjL%&xc^8f!vsr$dD&zYa(`~Ck8k>_LDSVQlx=k$-k5I=nh=pS=vz}`;ula}9>sz2(708c$|4svQeaKPqc!Wa()x+n=n(Efq z(_6muNB-kYhts#Z@mBQ*c?n>({~wzBOBfqMf4=*#3I2?3{b8Rz*@5o)&(;E5aqqV% zV71pyfYiIc-3%`q57<^yJUye?5PXhxigeuk&{aaRAYu z=YG|`Do06P!VV*vj@cKNNiDVFva2b*KhuN6bc|3>Mr zkY?58^1ssld;K>w&L8)_S2BD6(9Qq+4v^4@_nB?K26yjuPQ&rn=YR6!-tUkgcm}AO znt%8^92#Uk4~e#V-=1`=b^XWh{+&(iu#9;A_wHs7{;CImKL5Mroa;=m&A{gqp5=YK z^DnOf{M9cX0h}$5Z@9MA49pz5?@yc27hU^Prk=&y=YKbez!(Gc)%=UsY0+5UsgI^j z(9_9}@e)G6LS+Qdz4t!``Xle%e*pK~H~WOkeZ|EmaWY#I@YnZSatw%HK5JRTPx7w+ zIX}qP{4b)T@{q6df2H=|U&-~q_N`7n=YCIHi})-*VYtr#hk(EJb3gp@e>6gX)8EdS zPo|Oie`#AkqdFJpOWhdt=kvb<+k8at^I!Ryaz&KK1*3f+dG!3uA056^(6mK$$$EkR ziYUq7)8SiF{==OKrU*;D2lnpma?Oc9tOFhyXBz!ZTg0#gL02uu-} zA}~c@)kWauVbK?&T)E)$+1>#kp*<#UivPWQ-d2D2-t*KK#o>hZjM)8irT6+g=B01@ zoi|d5y(bRui*iB`;rmDNKX~sLd~p2v|KI6PX+ovzE?Wc||z&lm&gl_RCF%pF$=7bo}oi zicifyT>caA9|VcEq2B<*n)=~xcC3ZAVg;V?9H(?0KVV$yHPf@ z`1dCB2mKm>3E=weG>!mz{oQ-4{}$!dO@^8e2b1^j@d=an>rWc#AN_q%PA%gDKby4o zp#QIw*uy{P&_MsU4Se_L`>ZI;dQ+6wG#+&ILxbRd0Kkt4{H9UAZ6Mg#KL+^G?;n*K zhcW&eyPYfld5%9TwU4TP{r{pMH$Xo=;=U+|r{Dh*Q~Ln&v+I9T0Dr5)2TJ8gcJXmipe^@#B4CqyKI2URdbQ4BYR3 zKQu~I*P$m2;qNT;5Lx$Ifx89(_Eh^c&-?u!^5Qdg{R{G{0`{8!WBWh;_V54uz0J=^ zOaQvQUxIj<|A$8L8<05qHb3HZ(bhcun=-k!SuBmb$QTQzNu z>a_sn>zbMS?C1XnqI|FUr>z2i{2pEceBOF0zUIF%kn_Ltqx=0uZ67P+ zBAR9}q~G)31l1QtVUuw%#BcpikS~4xQOj52au0g>r04pNUi*jF^}m;A--n{;b1m%u z?EgKB+2$AGFaZ2RPk{eI$p^gt{-5~C|8rZsv6A-;VAp8t^`Sp88tt*KM(hAxyS?8{ z1EHV3Azq?XoJ*(y{Qd*utkQe`s_y0NOFenkU;3VHtNF~{{A^>$PW1g88Z5^zKl?|y zdSrb}J$c54f9E#-$p3vbrcJ5uFPeb<@s9z1`5*iJck~OR{Bj#3PREB*&j9s_t}kuC z(AhuA9?d?@-v1l}B>Zay`0M@kvHjn2e(?9N=H#0Gocqh^8luzRufO&Fub06;miwM} zb8!A#Ku~2X0B+3N|MxD6?;n?Z!|VPZ?z*1<|41SWobjJKXT3IGezS?m1-eDPkt`g)1`0r8pReiqxJ0m`$&#wOj z1DxvhcGg%9==3cLOk)ol&u;6t`@gyeSX9>#A5*^F`M)m; z4505_<}2L2e?szqMUjNL*@7W)K?-mDhe-WUc ztqJ5k|4aW9&-=e^gRZ|*n|FSa_~ z9uLx{cjwWU!&5)q-l6aL=}#JcJ%8UnoIm;gK7P;t(`Iz<|5rNxO0V+E+0)Z|JXEi0 zVDG%^e{VegT>E?4YQWi7pZ~4YCh|G=S1S9{z;D_0`Tv<^Jv4WGUJk_XK@JU6t@{aZ z>;D)~^Ms)L{AUO>XJ6>%clN(cAml$BCC3099SxALx|5zdd;K$^azOv14o}(AJXNO% zOc9tOFhyXBz!ZTg0#gL02uu-}A}~c@iog_sDFRajrU*6C4iXU|GuF0=drB+um5*Zjt?Ge z$4B`_)9-mJT7qVuzg^Vik#;R~`aJ*j9RS}0Li$>vlc)cZ^8A`@Pb~KRMbIxV`r!%m z>;Gp%=g|KEpvLz<#bAOd0&6`2hOv*<^M3%q%{TA=15*n=2Ik9NQSdx03VHK?Os3Zd z_qqQV&`%e8^7}vk5^eedL;A-0-Y7BuNT0bs2K+Ps=kbim-WcuDct(_OwDqpHfveX4 z1pfK{_mKi0fc}dmKk)kbAGXhj5Ptsy0DXOw1oS&c;}fIg{{TpuGyd8>gy;Vjz|S9R z|21X(uKkgJfkOk;Di6398~_Z{%$T?^+(%ewudY;*g?tQDXBefhUW+arUJ@9TR%KHq;7YWNNjxSwhH zhkK{KzW;xl)<1i$in2??$=erR+2liXrYBA_fam`n(2)Mzt;vVjI`;Vv5HM`udlfo= zatz>CXDb-$ufG4^)6-x6uZ8~s;QM#prC;CT!RHF%iGD~KGy#EjAzjffp75%p@bn@sQZf)><|6hC3pBI(qM}gb_e>949K!4u<&;HQq z$FB|jH4TsIOy0Zy#z4ORub*S0+%($aG@Ji;hk!n|u7&S@vS0jP9Oa~u{PPFBz5^8K zD2UIog-ZUBQNE}WfL_;g`Ji8$dEU#T)0aGHPt_6RO~4=gr;hlO`pADg@~^*~`;-`# z?)P5Zy|JO#Y z+HV|CgO+20zI~%yRP4?B|7gAz7(Z`}a!KRA7Q-rQ;IH?8{y`uHK>X_a|8VcyFACJs zZU6TU!Rdgi7k6zH?dkA*_a7g;+M_?~{?*~wBJY8b&s;}!mj8b!ZS=8E+hLfuGLVw} zqFgyLUb*~UK^TFYFXldQ%DrFWuUBb6)iF_W{*m|of6o8ZXKn&`|Ng)Em+$jqOWvq% zn*ZNx{-7^6|8F0i{Ff-k0sHXxxc>oQPskqqkG=no?*6~VAkb9{?6r3Ptw1dR_{BS~ z8OzCAKWF*B!$#%SfBE0O;Tv0jauk2phwOv?eWQpefct)a_K!b#`G9WzKePFxfBo&+ z`s?}O>3`-QzqYzAMAHoDuj{{V(iRNpY^`nDS1X8*{r#RJ`RMKDZ+-utzuU$k+u+{Q z&v)R(_t}kJ@BdGUcKarD&sUC#Quk5OJOlc)(+Q$F$TuU#fj{#9z~&GB`u_iN^4Z@H zFa}in?Ekkm;F7)V@y*}fKmObMqwf^!AGR@GviMWq(EkAF<>l)!QP#J7vFD}1jLp!pvFL-S8O z>;8YGhLgAVOAw#+QL-<%`dKC4?%xu6dXFbxp7}%G8Za~tQa+ynvahc5NzXR)v@NQ$ z@n-!W1N_zgF}~H(9#eXj|071$fAO&Y&oRKi`u=~QO8~vT|1Tdt|Fs`C4l=%Q;ADTD z<3U@6o=$(|rQiPlnkaM{MsokGIsTBZ{mXUY^r6?bXc~oJ-6V^N{L`cHyQL59s}8(Hccvuwo|M~v~z8tt1%Mtmc zMRk_1`h5WQ<2$?P+b`Oz0eKHdE&;#if9DnceE(nG^#{)}z`pwjUj484e?eXXmXS9` zxnLxoOPE&y!r!rX|CxvGemj5vU0a0+&FuZ!+P0Fq_|h-O-v94`{*N-E0UUn<(ifvK z-{((zq=KjpDz9Sb_#vmbyyWao@H9j+At@yhQ;Ai~$HG=R(fmIA4j zd;7Ve{lETv{+FPdb6p!#+`H8_?Fsmo+yAeXwVzM?@p(n#^nY_`;Q8wBMR`)R?GbWF>Iptyds>u>+vi_!pZ{Ola9!;f{HZhf zuPk)52RECXb_@K6tq-SdTRp0?{%_HE;i@kUr8}0-YqBqNqAS7q`?M%*xLF`@_Fo!h z=>7ln=i6)K^S^Lsf++%{5ino!-G5BxSI&Pp`ahZ!BY>Xo;t#Q)=iEkz@9)r{r)T@v znSJ`R27n=bz5YKP_}qD;^hSB}e`^Ktx@8=8Rv7?c+%3w#xAjas>v}KsWN#mpdq*6p z`DQSsKKv&-G*DfiNSxvNPk^VaHaL9=SkeEg<&1sS|7~~K$bn8@=AV79jFL8@XFaMj zd#nHW6X#QJANqTuqz&00960S5M(xM21)!H-KxB)u@b5cwY(?L#^a$^-xBnDD*{UK90dDRVWrwo9J~xC?Mrz=D6gt{N%XoNc0fj5 z(}RBRLRUR34z+*$_i6p(uk#L1L$Ml)ls=9)-?3I|3}w#^#^~_*TVYGhk3xi-R3Z$AL%dx zNY5CdZHZ?3>)aRry`s@I;4zUe^iMf#A&`Ijzp?qhg}S-H)QFe&-;Gt{y9fTtf6|1q z&bJ|c<3GnfdGCLp)fnMur?>f)cW*0P@!V)F0@ohTgy4SpL}iXAJP~Q^pDUp;2yu5C9jSn>HTJ@;?UR zc}|pPhM+$1-*b$4fp+@NkK!6&{qKQ&Y|ZP7{&Me+7yW~A$o#|8wxsiKDEH{}t)=Tf zd#`p_5X57Te58-wFpXDpomU<6R^{uq7zdN_J zifrHiO7*Qae(~BRoEp1^bA7ic8`^%)`&;(%&uX}7ZvLOzaPc|5#7h1Dr&|9)-! zIL+SWZ!)IrOG63zXQQpx*Ym^iK1d~iJpJ=}%jtI-CFS^npI{NgLtb z{loKTf#|mK2f9^(`0Q3Zg4eM!gg>BMAJE_CFak)Gzh~>|LwG;`bMM#dS_G&6zMcKm zKJ>cx8?t95&;J&&>H6ehzkTu;7~k@r&;Rh({h#?@Jp5~vAwA^n|HsAveV>n#fS<0T zn@w=^A>CxqcL@F*1Mr%E`sqvP@oXPEbo%a6<`ensi%$KgJ#d!|_kQP;{by-ys{pZ3w8`RDTxXs+wu5YK9AV{hKu581`vhXzyfz<fFcwx6b?_Y58_Wzd`nLtN@ z{xd>8^^Y<(g8nNn`727>5PhejpMCiAI{-uS=ws09hgbi{6&@5tt${MPQ1+6oDxMQv{|6Oc9tOFhyXBz!ZV4GXn0Pf6-wCkm`FM@M}CI z9RZ|+g6UV9PWW@;x$*yqG6c!L^9bGZ+0=LF01x?_1k-WtnX_*HwR8mkTC+tn{yPQ# z69;smW3B$d@88M4IOK=k{U<-c6oIuA0rSE8@bl)M_y3c}ROsKIuQ+|?e(Fp8Isbck z^P7CiEJsg$z5bm4^!?W;)&P2Yeaqo#kKg{)N8;7K-9vZ6m_2D<@{OH)d&c;#uXgqy z6=iRg0nqI8|9TCmZ0!HF@_C=?#Zk_0-@kzWZZLhkeE)WRv^_owungn>Z27*%=ZZe@ ze_Z2vYUt5leg6-hxsU2>eV6+?AOx`A`+wC&?Frb%e8=PWvDtTdvrpSRNPABRCUUDC z#E1X4V)y{``4_JmOLV!+Hn{7xT!Ez915~{7<9!6i0A_qLaCGCK*EeG-2mJas2FU0( zbB~RD>KelFr!DC4v>ncD_%&sGy8e$r`YZoi1MsKLfAKkBj$=ZT`?Y^-`S{2j{$N>m za+Ga_xe3f-l=+pkl&|{aufP81ULyIe|IaNpYF`wH>HiTD9{{K8zpE?&?5p-H zAabL!u=i$jd_%8$KllN2EEcxR7rpS8#`%6xu?FbM{`{e>PwT7o{5~!JNzXN!{CA_! zNuTk8f8WAi@Bi`V{$C&LON17q|e%)_Wp#jI&0jX_xz7PHUIbznBxk5 zzULkQzqvmK;%k3(%1C_adw-OSCmg>vK!0BQ6R-1ATLt`eJ*c#ydhY*TS?2#ajNVE> zJeJGxf1RJ?bM24n zwdmUB0ev;^`lH_-@R?g+o>IZSv&;Oi_6K zPm7Z8+edXS%=8CG>WAAO=R5cEr~d@qpq*FZ{emRMx#yQ}^2UHZ&})8re*M$`_pMKO z^}pw*-~RJ{L8x{{(+tRqPx?oGYq|I1AphpgfBx3}6}--W@|Q)d^ZqZ;xq#ojf9}ub zG6zwAb^iDKsV{BBzo>4y$eaI%7zhgh{abVX#p5GU>Uy7b;o*P1UYln2{};CTER5!V z>Y$H&-e33n@zZxnl-f@;&j3Aj*#p2m|NmI2=Ylh8y%JpBK_`lqG zYrfVoP@R<;wA5jKxtF_iWPa&C@Bhe=ho}BN|8Up;{0>OpAN%Y6e~^x;f&Ga7t}OeJ z>>JBWU*Yd@Jo8|s{PT2e4vqir|E?@PR6XeSH~*p%fbD=;ZTKKxzAuww0A8Q}ksW+oR#ks`DRS^G~J%d+0X?UcbN|oqh6upVnX1rLMnx zJ_+Yvz5Z!i&A{Hgw;!@|IeIUHe6ntNe;O+YDy@=lV~ay$7g_0REi&Sn!X1_J^MQ z`3xO@|9zsWk4y#fb^ce{P+fj!-#3cf=4W<8eAz}n+j9NO_O0bC-Y3p+hW{(czxZap ztOMlj|1a0k0HEjdzX9^5@lmh2m5*BaPoVF^QLe~_WzOU)?-0(u38n~45tt(I(-wh# z{a?<1>*v^7y`1bspCT|tV2Z#Lfhhu01f~c~5tt${MPQ1+6oDxMQv|M`2zYe*xhNOM zjr);q_B(JtkCuS{OHqCy+V%*3BI=)S&tRSKUlzsxe~;6;TRMz@-;?>RD2KMs*RcM4 z`CN{E`d-r7=-)Q*^--!_(L95+=iw9$0Qt`c?YyYyC;3wsv8)r1N7ys_jw_!x`v30v z{(sL8N1tGdz}64}L)rWPn+xP0R_23h{d}+2Yd+q+@ZkS?k?;9?-2C1l3LX0G`y0}a zcTu2k_eGhv0zUrM_rI2NNqp}SLf<49ARm7J?Os91?|-kKQ8pg%-#O^su^s}=l?K0* z(gx&rjKkR$>HzdZX0+#AvRLAdK{sjH)9r&>Ww%|#6l}XvvcxLbR;m^q<{`5A>$G$QDelz%gD++o0=@+X6 z2-U-9wT%b-^y7JF$YDFT;W*&wnMRL z|7w44&vJP7_s%x{@!w_6_(F1j=lX9A==IZw{#}GM0PH<5Z2glFdo@=Y{==j3PAy*I z@zy9WkGA)=wm?UL{4OE%)W!?HEXq4t|L|j@{`N-KT=)My9sb5BYywVx|0@BVeV=MM zb)uiW)&;E9zd)A&e)i#EBYyc!P_6diXAhqAF?md%s(i`7QsKCPR0|f7duXL?xitCk^J;dF}dv{so5ysxL`o zfiwPU?*bxASeR*UpEKwBRM&?k!mAMB&w=63qg(uY6UFOJ4h>ZIDf1P6i$X^_C&~pS zUp4nw>we7m!|!=+{=WeBBqTle|L_k+!C%Kgp$Azu{em&5MMM8!shTFTjqT)KZMu! z`uTf&Fl8J2?-%$ZqI@fefQC8w(u-|CF-cN^9WB>n&zjs@Kb@bKef8^ih zFar3kmuHXgB>mJzce3`60aCv|owxrR(=*mi|GfPl`l8Q1$NIP-+u8en4e|v+KE(Gg z+a7>?jW;^~^Z6e(^Z(+uABgG_AU|*akN!c25zyb&arj2_!HGQ|i=w>;s;a%ok9Q~z z__u4m(nY2GkNy6yrDx{5{|!y&Pkldjx&Ecj`tQ3Rivaz5mH7ql^WW1ezDOTil81ltKeoST z{}^pc+Oef{v3Di+{rC@eXrTJqL+P$8kk8ogdw!Q7A8(A3 zHo@KdeZTDivF5YCsBT=p|Nr*R1KzHx%Krfq2t@@61OXul2slzydXZ*m>dYY0K?MJl z(2=3*XmC)ZNO8b{8O0zdsEASpq=cfQ;EbsBqLJb-4v0c1I*R|__htXWdOPRbcVF7P z`&{djea~KdmA&?Fm$T2gZ{Mge#z1)+;pTsoo(|8mqeA_)o#W|+cYnlAQ`+uj$Y~GH z+g=0EUn8`?<|Xb&*k7l#0GS42nZWbOZczP|5LvSIp_XO zP4UG0e=WCNx7Rtf@3x*^)dL^T{a$TDFUJl3JpY@>el6UunVI9R zm-}J-?-%M5+mWareaD394#A#m^anpS#0qa)Wd|hmng4Bsd|I0@%M*b_AQ4Ce5`jb@ z5l93QfkYq?NCXmrL?97J1QLNnAQ7042=M-tbN_#8`M#F-nZFJ3p!SRkIs5;24evqG z_jmu8@v8MaGAr>hJ~16H_6i9jO)jAzdO|4WBC6AhU*Y=k2j$eC#RSKH&Kh-{=4FAOHRv`9!6t&)rSQrk-tm6V|~Aqljm_HqCNkrw%7;ytpCG|@=?iFb1hdw>Y@cBR!c(3^e(fcCKeKY)zL z`dg?kIR9_{Naf+d1AitJ_3=|m|0BPgk3tLUI!Wm}Mb7g8_CE~ch2I8X?+;NQ`t1KH zbN$CC!+J!R*sp^?WI3^+uYY~@KU(}-?)c$%l9Nv;fyrp`)b~u$SGFIyKF0^o{Euzy zXE4MVy5gP=F(HqC|5K|X=kI^o2oZn(H%*HB15QQAx&Jf2_NH?NAnIfNZzGnD+m%L- zYt|qH)_*?(;_s?ZFLKWRZ(G^~A7i8VK^gh{zu10++|Pe6;CzS^O}|%Z%(&)2X%F&! z1q9CkG-<|06|EE8he`8c1I`GubJ^fqa(YLL#vk>xl|HuAC z72=QeANlRUig-BxWuLD9t0R2loG)j&n)>E2iH6MZf*Eh7Jcl z%+KY>G!RWkZbFUu7WX`saYeuB{oi)ukj{|b67a;|ed2xozfUQAAb(YI=05~a|6>C= z9>xH~<>9i{^c7Se$UXNF*}kp)$h|(HPZ-Q^&i@~v@lzB2du{%6-k$ZniD*x!^Z&IC z&|jvs)3_ND@M8Z@pZgv#L-Lv&ed?fJsc*B;fA+V}xYzWp%NRf(|0bH@^Zzc3SM+25 zM_E(e^&dK}Njhs8_0yhS83VL$X@PS5IAt1$_8|8=afbZuN+*xghX_33P4MWO$j0>_ zf4uwmy94`ww#@I^AI11vP#JV;edI4n?)Nvehj`8%rwQZZGS9w^ZAAYd5#_!0%24@v<7q`TUw_e?0#WzRO8}%D5St*zcrtj|99E zLLXl*p(vt#(JylBx4}>Z@3Zyr=o62riAUc=7Jnw(QvX)Ua38=w{=QY}L$&sgzNwZ2 z$@5B=kDH-^D)0VmgMQsU`rq;yRzvrb_HcjaHvqaJ^m+fs^K>_4|BJQw#|`V{P2*;G zLoL3WgZH~XH0VaZ|BL0wAoOqV%Qb%xPkjDs)_Sd!Va)yi$Kz&{VNd@z-TToXKJWi} z;r$;m4~A$z{r~-z{zuOK-_O3vj#xG5f)DsJ|Jfg-KT$k;e+Yg*<-K>to_BvH`s@CWbz$FW{$o%7 z_X-j3B4w`3i>HARR_5P{u|39MCC3RCD{Xe_p{%_mgJJv()|F4W| zu7&m@_xJw{mEF|Hos>CR^Ab7v)5{!%r@#IFk7AzBMvm8q2z+?=XF|^VwJ}AGJ__N<$y@DUl{+y?uL}ye4)SCso z$;Nj-;Q5dW+r9(9zt8`F5ao*SN8N2y%bR%W@0L)F=l^Rv3W4$ieS0C9fCo{%&8{zUL?WQHD;Fob}%}j_1hY zA0Lref1*FfJGtoNpL)Jl)*!j=_q>5Ub@4Yq{QZIB_x``umwHknkO(9Ki9jNd2qXfD zKq8O`Bm#**B9I6q0*OE(kO(9KJ&6GCKRNsVXEGw*e}28ZJB6p1zyE!_$SI42{ue_5 z{0c3)sMYeC53c&M$T#Jq5ZR{!PgT^n5-)Z|h|Ui3zQXW<+DD4cPo#%E@BjZ??1O4w zmiNni|9i&xT9SMs(0d4IDEFQJcjWN@9mYQM0Y0t)*5!)ox=JrAZ7yT%2Rh#$<>+sy zWU6_W`^r+p`Tz6B&nO{2{5fXqqyHIN-G5@=Hut;t(mR^0XR9k+R`8_#v9IZ0&i_+( zjS@Wn{|D#)UzIWXuhI#H;3t~V711L~YXqGj?z8uA2~duG{r~?i6Ku&YFD3r}HwgXc z8=mw3ZPcV6?QzTc&-p*7Nqgk4A{)Yh3gI7r{tW>51thl)Jo!hdxPfrR-+!4L z-&mCqBcj;enzx;=$Xz#O)W5L`+y4Jobb5*CkB5}*8Q&Z=@^zG^6*+i5q4a)r?B@_x z1YRfdQHcKM-v7H|kLdCs2hRiaaY}JZJw+@Q;V_2mez(3SqjG_`{12 zOs^HcgZMuMJL@BVqvVbeSMmN2kNt2Z+P}IIYrvLDG1BJ1)fBq}MBDwAX+8OU&^6 z{jZ7k^8bI0EbWC~M)G3{kLo=^U+ka=(|_vFU&v!T@NxYgs512b82SqS^L(@r^MUrU z1~lCRFs1+hT8O5``47J%gP==7f6t%~|Ba=@H&6YaT(j}}7oi-I*OWO@JBY0je8E#dE+;E($56M-#<3Y z=kKY|-~S+gy+Hp&!J78h=kuQo{eT>M6It{RZn3wXueE=d`-=RDP#^v|`|tRy*XM>W3xYpbWN z9Q(Nb*Luj;32OsAyGX!|wpV=MX8aq0DF1r^t8K$LVB5 z*rVS@$m98c{L%OP2EZ2^#t8cF3*#5Q)AJwly8l0^vTljchtvI^_PkynzX#|B0%ae@e@$fZZ-S3YM|olJ`>|D(@$fA-nrKeiuvJpVt_amgUBPp9v%kk3i`u%DmzN9v3HFLtgH z<7qgp{{w*oo;?4X$j1A>%Y8-uM410%Ie$N`_~63%|29JZ1uYuqmwOKS@%z8p4mti! zWN$U2EB^M7FZ+WZ8+i16_FvgqsP;FDLKY+fi9jNd2qXfDKq8O`Bm#**B9I6q0*OE( zkO(9Ki9jMSL=oV9=-&ERwB`H1I&Ad+M=wRc8Q#x2k1p>^+s^)5{u45@Nwt6YbqJ~u ze5dpO$bI(THu2hIe_Hr{nP&6;fAoZC^;(`#XkRA`UenH8BJh8U0OOr=`E7(~?I46- zxy*fv8SmKpd_856SXQ1>LgyhVW8dlg{Xp{Qn>_V1{~Z(c@qe(mPRHju2kXDqhxgz9 zD?79O_D@+a5$$;tkXi_N{QehyPd*BPH~bRvv5gX)`{%b$TeGPt$i+ z&|@Yv2MXTIf6l;jCLf-2^lK_}s(9?-#}#|z_(PvD0A2?wjUgjKAK4l~fAdmyuyl}f zK7Yd^$ISke?VHcon~?vncw%WHiuwDWiNzoB;U6Eg0asj2HDA{cAJ6}zALEJb-?$|v z*EJNb#LM}A&g{QH<0_(v{(q%l#N`R4r6u4u0BQn{c>W*zUG#AVnJx(X|7!5tW{O+l z@iPGS@%%sXpQ_Nm0fwCO|0dfvwH+N)P!*dUS z5XH40*IO%Xuf+bZCW^kK#2J9uA=mFVP(SzmHbNfH|2Ns&7e3G@J`;Rg`{84|@OOYx zx99(BdzsExqJO@p#NPm)MeqX<`mDDf6vjvE{tJIrDdQX{{Dn%Kk@x!lAUef27wr9i zfWfnVvi3KTME%y+nsn&xGkT0bV`X0ib`+pnN{%gHj-o(dPkUv}M#uxlx&i|vo3WKT; zu4upS0f?q4c@NkW5At3i;*aOw>$s7}^&dQ#Pt1MDyw8BcGhf{Q@bo`x0A#u6BzU6# zC9NmFX;`-{e^olj&EFUJ7nS$?SGM2Z|H8X2W&6fM_KL}?PQ8ZbpX>6eC`dRxS z>Ytl`|BZk8-?2HKwlP5cwEKUt|;Vm$HNj~gnn4{Y)m{nvi6=lnnKf7l0NALBzlS!tS5d=DhHk7(*NrHDbF zV2FOuzJvK_A==B||D)sI0EnuX#FP6&UOc5r~a z)AL^k)2>8}2k-rw45+_X=6+NBbs6nt{r8!8+83YyYaac+|1}RmK_prt|;k*Ux{Q=0E!N`R`8W{~6C`mil!W;q`y732?I#{(I@Wf8yo+ zM;jsU)c>^|u2}y)2C((JvlxB)-{k#Y+dTk% zx7{{F`AUC1si51&0PTq~+Rytw&fN1306Dw~e?0%jJ%D9g(ccoKLd++g|0YeCQPAX% z=P$n>L>`~VU7w%-;D4{wHU_XiuRJR%+ZRu4AM(i4Ue5nhC*{aHt^de->G_{{JI(J} z4!#em@W083ki(nEw)MSr;uSaO`%FFdKC6#j?GK*w|0e8--!UMMeGkv~e!F*O2Y` z)&mB0|Fa%4*Vtd5s(FCibC2f0$MFvzpa0Q`gxqU8^`NVCv?{$p6@s0qY&>q|5p6IrHuE(J1Kv?(pWM0e@W@&;ve}>lva}A z9TM_t_6^FPTja`)*hRL;A>4i!qe7hR-AZXn&`0-UQX2ApU{WvNB`fHx+U~`>F>W6R=oQvJvpJdh2XQh8pRp@FO>EA zY?b|~=wlB*dS!ix(5L^o2i&c30*~#_mClg8E`8_!_mmuBJaGPhT(L)vjP)6^KVsNf z4DxvP+xq?u0Q5how4)qfpoIU4O7AHCk>d;hoC7p}gB%?bcw%_Fgve=6tlzvu{p8qi zznP}A#mf5V0V3W575DpF;+3ec-`y1OroUtV!S7b=jhFi$|IaE-DsuRVN=FwSfAlM3 z3&I|M?^VT*i$VT?lI7ULPcHV#_9Mr~9soige`geZiaoZJ?OQ)+zlrP$7!|@Feee2_ zbN_E6*U#AR1)@EiukV&i`Eh>0+h_l&gY|;-|B@od{&4B@ zHvr4a9{>0{T?v9GK6D^1&YNErCxwu2X+~G<`THMyLiX=5KylswzelMM!;-)Mx~asA zi1Yt#XZvYC@*fxd;%3NR7FA?lPUZCavcca?GZvfE#rSs_;~)G{XFOY|5Vyb z{TCIRGgS`Hbtf6J4?v&xEU}6{L=ttJ|Jb8X`;39ILzaklWwrAy%EWW=4jBA6|I;Kx z2RVQLy%iY|{+R!)|IAa0Isd`EA5u|2U&v2X@)>)0e7QdKk#|ejAFgD3c;>%(;zREH zKmKXEi7frj*{^dn4&fai=akStAdE+N`&PDZ{i7|bl<`8@P^Qre?t4n_Xo(m6rYjvn zMg$(L|NQMQ&+ioXt^Wu__}fD1{l%Xk>^u88Dexz#?C8P+CH^N@^0R|{3(3D2_~XT2 zUU=|dxWuMxUp)N%r_cXW772aoH^Il}pONA@|9eyM&-~v)>4%}dPWON8+5bOU^pzdb zM7+OHdb-Pa!HfNrspc65p8wa&IbFm3HO_yp{rCW1=GXL=`aS=4#fK97in^M|{|}Uo zR2js@dp~&OwC}DU_q`uE#r6FkeUtGS{ni;J=ufjyS9szwQ6KG_=7J%9C0^$C5oP|? z;nFnbrwKfm|6>Xs*vI+r{y$7QUjJ8<(Tz-W5&g~l8&~Yn$3J_lrN!WH7v;VGLm%0? zp+59E{||AA`#Q9rfEk4@~l`HLu=ke>fz%!ozul3}DzW#5;PF3+Oal=wy2mTS?*P>CVK!CCb->ep-v2?^-=IVpb@0Ao zE2VoweDQZ5>h=&i@jg@Zl^xPVd+$~wnExlz8FNU$xRLzv{0DLI-p@SizX`eDtx<;k z$_nak0&5`j2lKn1=wHl73nB8_-=fm5nD|)#<1=7Xz+bP-ec}dY+JCw-P5n=M>i)S{ zgM9HaR=|UGKl1cFdw&T3w<%Ev;{bng{|_Ji!_)sJ-0*zxN|{g8cdio801*6bO0N{2 z3+Mh#$mxH_humvFI>_DrHh#3?ag5lv^}X$f+xdUDo%Rhx;K}&fZ=lPE@ z@Uj^6dHy;y=;Qz6g2v>sr#|>6i@(Lh<9~YLCF=M7pZbW8XMPBOs};T%-T@HyCM9;_uZi~EtmHFbs4mn& z9})Y%HbQi4*&Co^|2|KTJf6=-ClYevX(Qyk-#5XJ<)aY&h%c(47+_Kk=5 zJdB+AZ6eG5zm1Uh()}NNnE$&mF&YRt&;ORwzIRes2;T4hD8dczM;HUFf5^G-n~<|U zvIg+|QPk&e0C2sF=M`}n@ae%h|sqkn5rfM@>uHvr)A9lx_Hs(lygi|w<&T@i@P zPwV4m{h&R_Xn)(^2+V4gC5b>HkO=fX0xXjQ?f+Q!lM;bMAQ4Ce5`jb@5l93QfkYq? zNCXmrL}30Q!28Ng_0awey^o#L#dA5&_vo9N_=AEU-j|~9^S|)RinmUaeeK`6)QSE_ za8jtYuj{Mj1M#+Z9p?W6Pz_Z3L!ZC@j4?Nu%`B?zX9_Zt2+Rir7}kte<|k`FO%ySm zS1;e!F z(*B2~{|teP;MY{1GKfoj|BIZl@G2P*@`-)9<`3ld)ue%(^Pk;PQ+(0?K=on2pgz3* zqaXkNw~hmOFa7=h?Dqcy<$hS>TjNpl;KTjjMAq0+1|R!}vPj4;jRgbb>-cK_1M%2j zAtlF%{&4Dl+INyZ+U7p(Mczh(mDl=n%D2Vk^4h=K`<`;ItL5GB8>3XH*2h2dKk8U_ zC|;SytZ&_}|8v>~@VQ9IYXJ4Lp6@RpiK8a)jqAPbV_CF8&hx`MWqpb=^7!Lyzsdew zR?8VC)U|GhzgLQ};19l6?g7L*zxrNP%|g`A+PZgmW}HPS6rj)ge-oK`K=eOn|4n3l z|L-P7!lLhwE9;B>4Am=Pep-#*qGf#7aihPR^xt3fX)pE{0-OlEXg}`~cm_6qg5;E; zZ<(@v^D(}6us@d>&&V^sB2WG1@foT1N0?D}uzd7QzP5LJsiT{B0JVMXe_r$S=eHH~ zZe8|2@m?^9v5o$>g@uX!VC~<(lp*)t$~y5{%duzv+XkMq|I-0pgns@0$aPsBdCDTy z_0@dTZOWtHD{DXTgI~Ar{?G?z=G#*;Wgy&el>kq2YvjT zYWteU{zVmjv-H31d_|5wVuQGlkM%i^y!MY<;$ys_hdiGBul4ay|3?hO4q2jo#5Q)I#yJ-uZj2ExBhT?{{sxn zNA`f7#sO__BHQy0c+W2Oh2YyX|G}8&t6B~p@u&aT|9K5)(vRyu`qbw&ph-W*Q_E=| z>yzUX+mC8}>SO*#pZyGm7(=|Yt*!5AU&J3gz?ZV`tG^<@tok2+#}&Df)K}a4-h{tezvjV%{-?f)UCsx`hX46Z z#NXEU#DaVgGKJvl`33L!Wj$ZP^KqqkPqvIJ{$l&#qc8Y)KZW<)S9TV1|GB=}Uu|H0 zV}O3$zB5%8W2}8dzK%D_hGL$0-S(#VYI%)U%{S>k9_m1!`uu!U>(41)#{Hso-Zr&;EwA||{ZEA$n&h1O?^GYZ2Vi+q zeewK%Er+N7ZLe%cs^jaZJP(A#+iCvSRT6K!Ki2Y^N8k5iWbkosO#R$j+wiLKfgjBM zU+RM*{KxjecYE)rBJ_J{{uA#|x>peo>;K#$T-EzYfA`-_9oP@&{_h5Z)JX&qf#Hb& z>s#BscW$&8|MC7mH+**TF~94pW1;?Dy8qYlC!Yu;0*OE(kO(9Ki9jNd2qXfDKq4?a z5#V`sZ(hQ8NvJ-ow8|iCx^&%@8u3o=P&e{UzyIG=B^{Kgn&1EZbBFH`JD8^^5$Gud zm``hmh~Zb}OXDsH{rLWm`E#|>RtQ8~mJNRw0B;%cfe8H=57Tmt(sN4GTl=edsU>wl z0KEA9?>0ij|Nmy9e>wmEY$>BZKC1j$67U-U6i>9WuJDfpey~~UTSgy0C}Rko|Nm`W zGNQV^8Kv!?m@TG{M~gj|-Q{GB!sD;g-~YCI9-b2L_+`O{7Q(-sj}}4{|NpNRwbo*) z;{X5i{{e=-MMC|phI2_keSgjUPy6=_>vat)^7#Lrz>f+2Lv~{o#{UB(`as{m{U6I` zH;+Gl|9@_g<8S*vz_>NizR$M&J=NTbV{ZAOD<4uix662ea_P{Y1I2;r%SyYn*x>J! zFrMI#;-iId!{7hx+TxGmSCqCWKDhAzf0)QF6?m8XO8@a&0GD)$hwXgD_4h)1T;8i! z+SBR&U$+Z=?*AtGV{4^{TKda+^Xp1zZU6U2H!)z}Huted-YaMSiFdF>`}q6cHbS&a z2RXxl|Nq7R2LP%Ig|R{QF{N(*4nf&3j| zJ*wrs&eOE_C~exZ$D#cTw#aBZ^85LiO~Q0y2YceXUWt1^6H)x)JnSF*59h!C0=h-@ zF}7exdq;P`6FKjH+6d9o9pr6xZRLc*yPt!~J4#%y-(ft~e$fBJ9K?g^R|ipFUH?$y z!IS;}*e=^d`(G;9(-!QX6u(=GJ^G_inoEQ$p8cK(F+|tMrz)-2QYZ1m-#b9R~S)1+b zlvCdrJ_?cDbsp7475MMe|Hxkm@nAEYh^D>0W$kQgC;HdS0UnrsY99Az{QrNO+7Qc# zXE?3@v29Ixx|;L9eg{bVAL-El$PeM85ZRrBKKz3fe`dw+5qSF* z@qO-wYCrD)_n1&l*?sz)cL?774@BiRA|KCQ)Ise~A z)X)9D+xpx5WO*Xc3kWbDeD5b-_;-f+O<5%5@%z6hBafW*zl{*h$@l++cB|5_+A65Z zsqbrHe+l2IeU*8#i9jNd2qXfDKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2n<;Sc;ETc z4$;+e`1<#8BVW7XtCpjb9#`5^jCsxg@80k|Oq2g7JG^g3MEv|8U{Gy8qx7{;^oeI` zDIx^yX~U&@4{U#JZNh)2v;WxBuA9RvD%l_FFaN*N zuar)ZGvxTUTx>s*sNe6u!^iVK*mM5>E+q*6)MuZLcUp-Txn->X_=|PJ6JHxO>G#sw zPyDpMjS$iQCT?pxDm@eW|GiTBQ{k=GcBOxq|6eT%?*A*~gZ`(!7!UdnC?SJtej$|+ z&*&H=iiMi|QMc=;&e;|3*JNa>rNuw_V#6efvVE_Fwy}`GM-M^=rN@uAx#+ zyeIO}C4t8Wq~G=%0LbyjdJb`6zimPeZ#na8lG27{JlMbGtPjXJ^G{jLtGFK_KU`@Y zWgai6aN3Nfe1XNbWlQme2~L$+98fwpLi}* zA|}QF{nP3EKlW3Vx}~~4c;CyKd^nyd1L!r`4#hIsyH*H{u3^6IRTc&Flj0%~^s%q^ z=kU`3N<@EoZo$|3@W@Ry@A{8!sUQE;=idOpzK(}j;yu81ajoNvGV)FS_sNKbN;% ziD#-3b;NyPn|@u+cwqi_`VD~EW+?OEH<IU>=ioc7|HRMv|6X|qMAz`XW0W#&YoJtS68hlD-tPj< zA@GR!&QvTJXnzk|VkK`Lz_M6BnmDXin@^Zv&KALFZe*XOn)kLUm4 z+xDieqnEF=Z)%4IAm5UYLg2;o-$rCa;6GLAaju#twLg~eDN2*e{TVZ!|E4NI=x-bR zM}O2)6ZTV;Yy(f-O}Z-X8&6Y%-1gSDee8eynXK>n2q~Wbv^?6_wim9%zpNU?{BI)K z8@E>UC-d!$QivJzi~svQJ_p(t_Hq4peb$9%e#Q5D#ACVrv|Xt`&i`5u|HNm1P4#!G z5C7hu@{UsfTA%%>8+kYX?>oA^NZbm+`}{DUW8c^92k+a84ejm2Ut`4>!5d%X*yFET z@_4)~4$@$Ze~(X!;kQ($x{iVBtK)+w_O|DL%X?-2PrTe~z5a>qNX!S{`>_GPcz>;p z@&CAz@8|T_c1qWj{=z=qU(v^(^~H81^nLF~5r6T!`#L`OsY)jJ*mij0HR1nEr5K}S zT$}8BW$#D)w69bD)4tdjHIF@bMIEs-sg}dj|M52fW-2Sg__Duleh0w*83PbJ{qJW0 zisSf1K2^!_#`-*-so#V>{oh8&?F$|FUYYxjcSS(yl2GMco8JM@-m^N`GT)~tO%3xs zejkAS?c7uf!TZ_IW$}tUzAvQz;`=}3?)zxxJo2e#8m`DE;It6@27DAEyK&%M?yKXO zqJmyn2WU#C^Z&@>*?;)MmAWOy%M_)y-vGehfuaA!_9N_h|6`qQ^oj3R{k*)!&_Bre z4FKN%;4ikH`mk;L4FK%v|F+)%z~2<5q!|df{~vDw1iaertt}?~im~_F-%rrOpg%Rp z;N$&2i2Aa1eDIy-e{Db1dD;`l|3L9F{&!U3jQp*dx7Z)gB0rnN`1rDt-|@rO-~TiJ zH|eqt;`x=534h%G{jQhzrz&j`=6|gZ@81AGpZF*vM#tMW2Bb19zV}r#k`jSLAQ2c= z2(Ug+9ab&M#v}rXKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#**B9I6q z0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#** zB9I6q0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2qXfDKq8O` zBm#**B9I6q0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2qXfD zKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd2qXfDKq8O`Bm#**B9I6q0*OE(kO(9Ki9jNd z2+Ror3&?owIdFje=6rNXsBSd~{n~9^U+u5vYy0Hq3<2=nh>sRRG_gfCJH_~0X2IF9 zoIM-rdv}NS&7Rk^nq36wibdvQ|IcomX*WC&V7zUd^Z);>Gl72BLCkmbf13R@+x-P} zTh0M~bk){M4-KNvW;@s}3~9=pqqmon zKE{^)9QX6lLu79^uiE_A?3ezXll_0MVMlup=A(rW<@>)DaQ+I4>Hh=r`DMuTH2pEA z!+aewfo33yKq4@Lsrq0K?-z+b@BcZFhYJFX=S@1?KM`%#K|ZHA;QGM%xSyiFS6?^# zQP1yqXFt-kOau~vL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce z5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNn zAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J z1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmr zL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq? zNCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93Q zfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@ z5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce z5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNn zAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J z1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmr zL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq? zNCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93Q zfkYq?NCXmrL?97J1QLNnAQ4Ce5`jb@5l93QfkYq?NCXmr8x|Nb;vS{Xj2bcGC%Ue% z;D`|)R+_Hl{7SDIF=7$PUlv@OOUE`BsqB1}J)-nh>0hPmmXeddeB_7`Z&!XJrDsdo zBl7dA%8~zE=~bmeRA&2q#FM|Y=$|Fsk1M~f$`_a3yG!|PMGyUNCU?fyH^SO=}PDvCjKEM;@n#L-&G?1=OllF zuEb6meKbKj;4xDAmnyBS{KE44ag~F`L$djn@?ZfE9v3N(zX_6|=f1-i^&xwobU!Eg zzp9XTXPgp!xvKo0qr})aPBP-SQss^feksZJQ`%H{ z%hAO@x{FFi{b2Jx)xp>Vhn>ZrUdkAE#B01>uX3;ew>K((f^1GNcIdc0v>Sh`sSLe4 zl>eFhV2jOpN-rqChy0wcw5Vk7P})NJ)cGD=S5f(Iq{DTp(gm{FS2D&lWfvD6%73SF z#s~I{DXxr@E2Ou-@{9?_0eZ+NqmDny|D7torqp?r^2m`LCtLCdDKQqtmvZXH4|8y= z^#4Zrzb}3%f4=0G))krS99Q^v>WW|FmianK^+X@=U_hK;@RDqZ?FiM2ANXs;(}%Qm zOYy%~a@>1Jwu)qHDy^gRdCC4u=~0!hA)i+(zlQA2Rzh}x(gevCm+nH6k5@e(Q?hIU z$ySwYZ6(XF8LjfiihuZMf3EB)+p745-%I(^Rp)I=OUiCrrR7!MijuL`T&r|j(VHw? zbl$A=>!7ob%73eLmh@;R`M<~?{Kkc+UGR^pe#%ZRI&0_(kBs&_D!)ILuFLHgJKDUn zlKnfsmGoJ&Hj|9?3rtvdz;!e6BsdYsY@RXLdcu$29m#A%+ zCDxt0WwW008!6qR^sn+m*;7jQ6!|~O2AvhSDs8KTze{v=pZ>jcKcq6&qZd?upW4E> zqpf3QOWPSU#KkzGjy7CaZ;Z*eOI?x25A`#CVmm)7pVujIkD~AB?|+vL_chOl#gyM) z_Af}rSUE{o#{Y`SzgOiS5`Tu$+vMjtCGOK;HbMzM&nhjiWDF_$CnfHsS4nNMY#H;` zf1hOkujnkQ^2L;{R61H^la)L-E>sMj7uX>CbCEMAzAqc((^Suc;ulaJAC!Z``<35E ziShnrCB{BDjFJ8al_+Ce)8-$^hIw?N^4w1u%Zn*bY*#65ukgWfn#veU;Pr&`b`TF1 zj2-GaQM&m3rV`_rzCK22CFM6&VtkXg{3OZVq%wH=l{~Q!({j3U&jl;S&d>0DUuiW0Fs zrbPbmBHuX3ZdBP$(s#`GKtDS-)Xgg3s_^HivRd-0TkYaPpfs4kb0Cr)A{ zk5Br@b-FIv_I4%884v8Wo>yYMLq^?qNk)Cf06la@s_aQ!Hjcy^(j{=HgxWb7Yk^JLkO zr(R^(+*9n>$5IbDNlc(v+t^iPgA{QQqw$2HHkkN2tzK zl&5{pv)_To79HfZF1QgB^?yaNGY^<=e-<8Zkj)2_r#|Xpt)T6U%}*+SrqUxy+sej$ z%$&vtnEp&M#xC=gzM~!R+>aO|lzAM)afyGhjs45K{)NgtM(Fo3rHt{w+=yf4Md@Ns z9mroOF?qaT>oG&m<4($}>0jWS%LWRO0^lG3mgg zf3)&71xM_ROOLR3CGXdH1BsJ|`ROzAM@O(!<|^ zlA%ZbNXeLwJ4lWWWrv9Wg!0_`9#(3yT}r-L@43I>f1>i^rMs5uUQYSFmDqD5`;mN6 zMt)VLbCk$a#-4;cn1BcO1oGaWOq4&`f3?cdTTS)yeDZmf(;pj1wuS0>NY~?4hK~0h z@Z8U)7a8T&8!H+27<8_cpN%DR3|~|JdL{NPd&~Dnl(v^&_K;^Qf28WaS$4lu`nJk> z2K|ZBp^_aWo_p24N>h}-N#!dlj}M-Ou}AM?vb{ud^o}jME352$l~KOC%Jx)RS-NW} zjZ@h%q5Lg{M`yI;k$3)vV0U2gwY|zdRLa>aVgD(mB~;rh56ZqI`zK_(xn%!P^j=gM`>s=!c9QHcCFTeFtL3CapAaY4JCweo z{IdaVCvltjP2Tk(BBGUfw)h<>aa zY^eV}l|QXS9gcG;<B{2eH!EjLZL3*)htqcXK-;o?t?(zf&4pu)y|Z<(UV>y`j?K z;)$QRiOv1erz~R5907Cs0xa-pogc{-JMgzHebwh%W%R=)x;~`zb;Zis^IKhc&Si~t zp7nEG`TdDxUNd=4X0Edqd`@YMt3gN zKB_XFcX*Cuuf3OiE-zodl#F}I!^)#aowq144$!$q`XiO+y(#T@x5^GuGJmwn;AzK( z$mECiY+H2c+uf9>-*%EO*USAe*3G?aJ?X5kgwIozzO4if#0?IAt1Igf>)!I>S^GXM zKa_n%=^pvtR({|=t?M&NlyhYsv#zm*v3{|xcpVy{@ i4xCS?CIaA{OY>0ZY;0- zeZq!ygL+vn7FHSet6P=0UvXVs<%cUV-|rXCIQAT3{!lhSWt%B6{*IR(a_U)F2^q2d zMP)pr{Ed8({~P6>Q`=6KY&GSlseB{lUC*_W{g2AH*D{A*Qo3Aa>r00@$6Ny^&p-3O zkskB@X(gVQz=!(doFZ< zM}5f1e_3{p`6cnU$R9B?Zy6uVTgC_1gO$84yG`Im!e&?bC3gFujuj;%zER2(18c6w z4(kAU#+c=NPvLfY{ai+RFDtQ+Vo$TbY_3p!tet;UVvmZ>gG%VFqqrB7&az5emnnJ5 zKdeOmv7bC#=|rXFWY6;*{4vUNrReMyz1LSI=nZ%UTI6^*VC2nBX*KM_K)!F zA$d=0{u9c>A1IwEO6ZWjCI6J;>p12AQF+$956jOXO3y02D%oe`|KF7O{%}W?A^&^v z&L1V6pDKM&J}75zNq#B$x=s9zvfEBJFNUdN>j!+%MNIdwVZr6z}dE4XnxKa=I2-l6x6-o!n-y=$g%inF%v;Xy_Yv063+}INn zdD;vg>vCHtr(WXaeV=1N-j*kB`?M{1zEw6qR${#QJ#{SOKDDH5d3VhBDU-#oC_CN> zU#`6G&wii#W|d7-;vW2}t`|vfL)md(<-Wh5@_dhg-Zzz2Ri0-N#<`z2sFVBRxhm&= z?fc`s$}gsJ<_i8MDS4m4z5t$kDrNZd^WAyHZgZ8LrMSk3cYb-5d4J+}=(P0``FNME zKTsl`E0o5|7TNu}?y2ipO2p><%gd!6_943{M&da@*SN1CPUdCAjXw6|ou zgC`HB@bvpzbtS$d6&w8!#{=u_B8rK<6|oy{`jYqOjxs=s7=D^{gQI<4U_L&v<&9lHd7lCOg*B%O&If>v+k3Pc}TC zF?JT04)@_}m5vkdbsT%f4RU0RCFU1#J)}JKGPW<1pF>r)rt&u^|G&zgT6~jtJyB;3 zm7AX?pNtFqaE(6MTimXgu2(sG(Urt6s(QG_XYW(Q@2v7KNOwQ^<5_!2>9457^U1!t zK2_}hO)~twK{og~O*U7nY%7(qXXPHgyYhR&OTL!U+vOuZbCXAYtkM#aPnDhbxErYq zd&hIOd|MYg%kP#A{@J^psPgy920i;bL3!%t8F)MS@H01U@*etP<*$~`3i8FiWn*2r z|F9Q0LMc9r(=P5$zn4CH9`UyWre@f2&+0W%i2+QqM&i6|j$`^R-q~!fO&wuQNX+O`Cw4e5%OB*)O zm1jl9#x~;PbGv14lMFwMgXv0)1#F1n0VOb?-1=8ahA-*>59&EkSN9Fi`NX)Z(iuvO zv&e6+GC%V>R`&aheSA^((@Mm3wc7Mcl~XtMQcgTes~nuD7kt3QnC!1|_L}&{-_6Ps zKkJ$CJ4!woQ{etll{0n@Qv$zZrAxf*GkI@7pN*1?G0MJ^{b+n&@LS0!pQdu#oU8ny zvZd|x4etotH@^{2dx;GUk5TfwgY#6zy9LU@iTCz?E^`#r@rr%sQ{l*>$ zzr<@C7EugqD{+tCUx|C@U!-%P^4}14ljQf)%ER-H1)0k)l^yR|DWknydGsE0gtxE$NZ fmG+b#`qm+j4f@|#?6#qdSZF`(#+LCrQu+T6bU1Mm literal 561360 zcmeF)54>GhRUrN#X`7ZJ5kg68fLEHfK`I7FA!>l2g$Y_TIt2oxQf8uNXweL2phBpb z`E-6}v}H1UGFl-@X2?$}X884|1&aoW5HLTjOqDQGrAmegwJ?DRPINj_@VCDAtrhk= zz308x+CT5rvp#R#v)5jK_gZJ~v(LHrzWb!7ESMHn1oyU`i>8$sm_r7J3=A0g?QFl1oJ zz>t9<149Oe3=A0g?QFl1oJz>t9<0}p)$P7jyoPviE~;9V0qkuv^+#Kn(VuwYfvr^Inf z(Cd?abR54F`0dg6f^S-|;IYyEgTN~S0e{N_cOn8723`<&6C!{9p;tiu=D=gwf#!cC7zh6TBJi_;e6nY}OBf13|9;>^(&WDo zD8?s*AM}x==@44f8D&Hsyf&cT`=-yY|>d4>M1kUgWJwTsV8 zcmA3Gm!y6E%-0P`J3KS=3pCA#vN4WN{w=9f^S|a0`O;;R7=I;S>(w@b0i}Ok(k0*8 zn3NpON`e>XaO>+ing%iq@m4S>9CL9nDRkR3&dJ~(+WQbO!1x{ zxVa}@eD&X&e6)OSPuk%xW4vk)plMZ)UqG_?-~E=zrU_y5-Xw}rg% z{zl-+#(rCW@`nQdTOj+w!e5v2(VWvD{__Lvf3J@CyP)fX!8?5nkF4&e2g)yCZ+Xbu zW7#9=z9x=8+VIVNe0wDI*51(MzjS{n`0{W6xheVbtNz=PX4d@Y3-EtgARF$<(BiWP z_)H*w#(Q1rQ+r+NMsrlZi8$WS_;W7Y*!bhC_ILbOywM!#^LIzm6Uzvl%W>WNpr zoc~9XFQ4y>@tZ@hiovVLnbAI$eDd~x_atrou>V`cQ2_Z11D7X_{~rTaCC&ba0$cm| z>yz(*e?`*#of`hHPCA-X=0869Ym+Z5^v zwCN2kQcA`*mHi^|38uN90&DN-(d3UNEx*qS{_&)_Y3=Zj|6Gg!2Xp~Gdv*UO|Mq_`4SZi9 zQTzh@?SYR9hG$Utu1^K*oe}h>o4(?WJ9hQi=g&3nd5q0*5dS}#CQhuqAyhKxr^SnB zcYywcmjumc6%j}ISQaS9Zx2Mv4IMVnXGNQjm!{3=ItjY){wQ!96u;s@t3RD_fd7)< zJxOB>P^+dr6n_C$4m=DoYx z16F?UfocDNz$NKlcRj0%<|sb_iUa@~kBVThrx)-po{$*eN#8>-2eB&*CG^YUn z>=#(C&>Pbqd)6ZBzdc}Ao_+qD1G9my{%mv}NE!K;kIgy0u5IJRe|w;N0Qr#1Yf~PL zzccAmqD^*p(&~l3ui>K)cKC;r=1*>21C|EX{^VHlov)t^T#OOGzxppvn*QNH^|k(s z=jnkflV9ii+D2YHYSQAYAdiEF15$)Muf%EI*f!8+qGdJwfTz}Q)KL+keK6_VsNni^9 zS=om^(xE;7t2Ka_`Cp*v*9s_XpBpkL}V&7cZKle4}s6{Hh=QJCbIH2nH3PjrvY2mAl&?*FaFb^Vur^S|8#MAu1B zZ}!!{jpL+1r@`KlK<5B(_`;|){)IgLe0l#@{>|rAng3``0sIffpw}kf_{i5efbV?2 zbQ=Ay1b;*F$y+-&C9NKE`^mr)fnC5?e==u<^YU*!2Sr!?$&*_h==p!~e?lVw|N6jM z!g?QFl1m(X2AMofB#?s`~U61GCtTH zGB9Ld$iR?+Ap=7Oh71fD7&0(qV93CbfguA!28Ij_85lA!WMIg^kbxlsLk5Nn3>g?Q zFl1oJz>t9<149Oe3=A0g?QFl1oJz>t9<149Oe3=A0<|`i&m6cKr`v_CDk#0sr!#U#1b@ z;I~!lfA6w?LE!GRPql1EbM*gJ{r}ej{GayH16cn5Yk{WUtEk@qK(k-|(Z*Lf@c&=Y zd>E7e=XxaY#wNZeP)gvhbgOST4jGs)88H8xzqj=KzhdWi`+G>;apBk8@AAgcrcOKm z>A!NEVD^#6uiw}vU+ol`av<;jKG*;MpTZ1+e$9P6bUT01?RdL1oktR=|Ed_|!Jhid zr{8|_`=G%3_?kd#s&y0}U28Tmyn@ks8l7dM|LTlz14Yj3*spP38O7N45! z|9)q$V#Pp%JWZ9Dufh!6jcY4T(IWn(6LUHcC=ZG7@`SI_vm@r}#pxiRRrUTyum z`dym6r-gpaY56N#WbsG;|6L=%!L_-SKZjBekZh}WF z|0lA>T#p-PbdP|T_)2Cb`BXc3puaS5zWn}!-%qjrFZkxbG2s0F!@#AhQSAU$$gV`q^7Y1I{Gd}s) z7U-UM9N_!??@{97VEp#$8v^N-{!&0k#u{N5M&t9$&r|2`}5y5x(O{O+W=Ug{-* zf9t>B0CEi&vC?PEbp97F?n1q4V*9Qzj*EKXEXP6h*J*oHJkH%iqbTM zc-X6W*f;+R(Cz%M{=Or7=Kp6>fc~elJ?=oBeb)d`bX^Z7dmlNkHUDqynSat?Z`KD` zqxqi#@@4MV`HwdD>-k@bojjOd> zh_trYN8+2Nd16|C7Iu2i~3e zqvrZwV16A5w4a;J{G!^{A6>CT^Ijl6^{nTA=(YGZ4Z=p{E0Z)Qv-*c*)F=C{h;OZtAUF%pPuh{p0g}z_UJ!X zBY;2r$3&lg-D=bNh^|?K{qFX_i_%}1TJT@IB((K6X7Ta2wvlgrQ*G&P{AG8p9*ys> z1J~#Hx^Wthx%rhQN3D$RcJ7l`uMH_ApX}3j9^iZSca27X^MU*oJ^tyt|0nZ%fz-s) z_x=xip8Z|bV=q`I=YBLt=W9DQ_MPuy1ae)xzKVRF%Q@?F*4Cu?V zc4$q%h28e)FX+lw|NT97RN_IF785lA!WMIg^kbxlsLk5Nn3>g?QFl1oJz>t9<149Oe3=A0t{>GASn4eh|o19zmn_fszp{Tq{J?@NLElRiy5@YaT=e>CYu(SCC1 z-;=cGt>SrF_iaOvWB2_TPNm$a}h3HdWJKJWjbH#L0mu?fmPc|LR(51$$F zRG;ypx1>GtU+|J(y!bnl&;Ht=KNQ%?mHcoVGBB4i;Cz2xV9lSIVspN)h;w^SGr#Dr zVJN_%&VRJ|$o@?!U-bTlHh&H!O{WF(>Dz+;yg+u@H@7NYbUXja^QX`M0qDX=KRQc4 z#76QZhyJ%-62vRM!#(kpTpihO$6x((^=SRx7H~7B-$9Sn+P@_~+})7@YBmhYldGy{*SSnYjd&&%0tgZJjGd<7=<~uD`z; zxFg4Byz0NVq2=SICSUu5R{wtz#_D|ApZu!tZApjNf~RttQ0K>yj{Mz?eew7o0L}sW zZ*26@U-yzAUf=&(^!UjRqT;5vjgn`H$Jhcc*-iQ-FQrEnxq{ zfs39{J<}h%`qN84@Lc1!Hn(eL>qUI{1@fW(OLBbb@w;cPOt>NbPR|1!(e3vg@ z*3Z?AJ+{=74gA*zUefTkB{T} zeM6x7lfOCn)^qfsM&D<9k0h-g=Y{?YBqo49{ymMp^?31;cnRQ-J@U5(itqNo70G9> z_|Y86)92&YQ{MPjr@Zs$<8Tee~NfX8`s}cLvc1 zg)PJ*5yV{rnFZARzq-js-TRGGXMcZS%^&%3{kLY@KgqZGwIl6Ca|)0*-|HTbJ+!$G z9M~$rN7s6WRp0$5ga4^OW1bCEe7lemP;TI`_mbLJB#>F#UESALA==L47Z$anQ0Zo2Zd zF>>+7%wZdo@!9virpbqVt;q4wM_Ws+1IDlZtCKH(YI8}_%%~4}fN%a^*6{yX@QTl# zxxcC5-x+vwJkpU zg2zPTR|5~Hy#3!d1^=ENef3xtxYU=p0-O)*U6geBU(@i}TbH!+<=UXl=bwt?qUpQ$ zMDs764Jpr`{r}dE{T&_qyBhoKvCn4N|GuEvulc{XBk%d2^Pu9tIr*WoK<)8o1H{_= z&PL~flrg?L0uN;TGub9@zTDP~_p3p-^S}0bY{}35z#}Pdy!L+u?3w?^8h)#<9v=v_ z2Drwej|F}`+SUNH{T>}TkH0CoN4NVwbi4OMxBj|(@$-LA6JNWp>*}k&@y&Mrhv>r! z;y2&=zN53|3bRB>Ms)Q8u{IubTYvV@bwAiORD5&){y^8?{ju@)(UH#&2CmP1c5R8TTYvZe8&lr= zl)tS_J?#H0U-;^?qv6y4;mlV(U)$aA$={iL^?zmHfrjtiulE1M$QKyT?J(uL{4TA2 z;x8L$vDdRZ`(6HzHvWCCXCuLYu03?=js#|S>FUoQ{(!Ujf1{UKg8A)Q{uhCd%^Xap zTJoDxo=WM{L%%<;YzYOwfIfch|4P38Cqdb3^;hdmV5;8x(=|@Mbn(e|_3POVeizuo zZ*6pC9!a$I+}ekg1mwN{ zx2~zLwWC1&Hw3+*C%^2yHn8Sk(O++Dlr2a0UK+ej)7ZN{Wb6TfLp$HuxBgcjdp>Wr zrN>^d2N*IiWMIg^KZp!iAFcnjU!G~u*4OE-|M;%2eZXH`|NCSf%zp8;_k$0nufg_^ zfguA!28Ij_85lA!WMIg^kbxlsLk5Nn3>kQ^GT`~_PsUB|ww~vk?!Vjb|9L;p`*+u+ zyyv6nJxO~W?EPQwk$DfG|4e_w!&k4etttMM0qzI+C>jeltW!^(iu zcsBE(veK3B(&mTxU*EkqAKnx~Xy5~zBndxz$yXAHLjibx=ID1|HT^aUT zee{8@&@?pp`84mXZ{Ht5pPB1hcWA~_pZ&u_`}}u-e0tx{dJ5FL-v51NF!A3T_<`g* zyer$$9Q{8TpZ{6fs@S4Aim%@P(~p0bmxPLc zS@iiHnEZ%uLu0Q#`$wg#k8b&7<}w(c&(m(|$-nxw*MIp@|9b*`<`ZB2>+_#z*L}4I z2 zaM8EMOMrT#Cz7U5o)19(!+~tNW)%Ou4PWgy2i9kd=oOH6D%Cvzdp`gDxj-?xK3M-R zO8?Bh&PxLQ9}T*`|Bv;AhF@}hN8=O!nzY|1H&^=QM^5&{7$*$A1BQ-QK-PR(m*b<4 zZw;vHX)AC2^!c9+DPQ_q8~O)A_u9su`N;-*>_07iSd-&#N<8w-{;tNJ@Bi#c+K|dt zG)L#3{lQJi@7gPQzCeu+{r*6F_jfhMuD*Ei_ow}6&S@||FAO}?6R+|3{_m0GtKY?e z$CAc(KHSsr(TkSFOF-3oX@_2swDaRY;OeC1Q~e9*9|*iG`KLzP`oAe@{>5{3((1#1 zeg3=RySCx8|Elz%zG!>BM~8CB?@W35G5+0+KlX2K?4c{>8t;MR2Wwgo2K|Q%_;2^W z-8k^u{lENL|7)$lueF~px?Pva?+>*10}h`FtUZ$aUlvL}19*KPef$FQpA7tFi~zLt z-?N`_pxgI<+WUjn9)I?K`W~JB+VwxWrvSI&D$uOhtFJxs@B2T~$+YqhciZ`XUf^v# z=c{}<|DE4&ioqG5^R?<L z`!Dh0pZVl?2|%0wOOw{uLe1yp$?w`nKO=0L`yiSpeWU3c|H{+8ZT%YJXYETdywUa4w(SKk4ne5NR zmk-x}-*q1c;(K|+kbmP{@|4L=^W$FyJ&|-HI%+a&X@5II0S@E~YW}b6(I?u*)}`5J zZ*ST}+yDCx0B~scC-}Z^-}aH~1M;r_Z47;~`uUqr&wriYcLaI{IBp+kJRb-wK)2_+ z{IKy=i~w!6tclhD=ga=UOR~Pi+VB69XWuin_BnrajllWk`QQ5Hd?SCwH0Mk0{TSe{ z-T&#kFF?OL{^|C1#$$X7d&YBLd_NSj>Zk7Q9>4XA|MtM**Zkj-`Nubx>iI7|`EALs z`tL}(%?~~Lp8t6U0MPdDH9yJYe=^WLK+(Sc;~s$8m6Q@nzs>=)`jo1?`Kau%&XzMS(KM{Ca=2t${-?QA>f7iJZ-J|+iUmp|v_Xm=%`jbQBslWTb zI83{L5B3xw-})0T`)%J8g$}|0lSBT80>u}9Q||vd;-h$LeV9-CfbKYoHr}@W>U(+M z9a-O^?@F5d*8>ae@6`W9^5viY4-*Wq9;^SNr=sp%U-l0KE=|6Axc}4VGeGEz1Is4+ zY_HP@D1WsFK&yZG9|<)trT;ytFTMkT%hP`&I%*omfu^(c@5}!HXw)C_rg+~NgQ)M* zcLTup{G<3)?^R8`rkhLZ^Z2m8DbRQ1(Q2iS9(%6uYttTo#f#=h9^dmH_kj55il^l3 z`}ZMsk{8X9JU{jRU&W)34t>Y6*VSiZIvD4Fx_nG$>*3%T@3?(`#e(0?|EiyBz{Qvy zkdM0lW1+44_57EL`WK)N6cIPFb;IL*MD@)ee&q(?2~DM{DHRP5!RN^ zLovv{bHMm(?{Dbp@BOyg1K_*<7ih9qV1ARov{^6O=P2wQ2=x5F?T@Zm0axr7@aNut zL(h6`y!L;d0Re~AIukU-QGICF{`(VK*&L2T28Ij_8F(aQzg?QFl1oJz>t9<149Oe3=A2VKN;}6^s|ARdY+ehK6_2zig*y}eE{;W4&0LRo{#>| zz_l6yMgLMhBOrfv;I@?ae%kWD9Uc9Wr^a3Zx_J8NKqN7Q=@IX2a@0Q&pv;AJRywZxAF2P-U~Da7&0)&GvNF+w`U8^fAjx> zP&8lYKc`Vf|Du-!P4mBit9M7|n|pkcZ+Ym}UfHQ5Gd~kpI^^rU|B`8sILU{_&Si#7jW&1>TNxl6&vh z5L@sqUJ^9LQ!rvR{OX^pNBLY8@z(XR8>gYP@BhoMT&N7#U!1;1^;O2?R z9`^Wg4FLH3Z=Hyj0QM@DSB3C6|KuwsX2=(y|9ug0Z0-3BP&eLjbd61%?2XGyxe#B) zs}Jp`V#GKfzNrF;w1q6SAhp6;w3;l^lzVtmw@tr*Tje%tsnR&l4f5#WuJfX@O^eL+524JqI2WL zG0^8fmL`q=?!Z+^^M}5qp?&{%&T9U~BWMDKGobZyM+1e`mtxU-};*UQ6lQz)* zGTI++XxII+S^n|$kr#y60R9^ST?6##ZhfQa^+8v@Pj0UCn|~JuZaH^+MCOO}Y)A6V z59|L8N#k4V_9iWV8v?fl+P9Ne|C<{=dp{VwYa);Q(?5`Wsa+K>)_&l8^ZQ%3C%^n1 zYwU^V)UdZSkbnETCq|o(F5vS=Mjg39`wcXJcK^REb@?-vd(MrQF+hy}0`_bDpAYu{ z;;sFb`8X5Ehw+~Iv`I-SrLU*x<(WT+wT)f+yB{x1g>R6I`(omQ{-W&hP_v*gvE zPVue90RJUF#2CK{wuReC*r*Rcu}PvNKr!#K!AfO<(-qo%ZC(mZ<_g;!~q(l6^|KA5#-TOcFzvO9?8pb=y zUmTqSmB(sLa%)W zKyQG_49JhVe_!A@z<*Yt_dtMrYg_-nGnl&DypumGI!hjZz0L&9UkGgZ)h?O#NS}Nk z;6JIc-zQi77D;I2wP;Gd`Wp0sY>1^E}o_wv1m&#YyhWOszbjqh9>==_z{{sNu{NI&)`s^3rTmSbYzxwOgtq)cH z{|7?>4%J3iJp0lfefM_GLFWPeTJNJdlE=R#<%>Tu9R1yR(QgSX7{_nNS90^^SmW;- zgYmZezq)@rnE9)E{httIgS>nfuy6jqOe3K552rr)_W8eh(m$H~XikBy{qoPTb$}cC zwFfM^#>c+rf5+2)@!R@)me&VZWs3~DJ6@ghVePN@zjvDP$`5{>12y07$^5Y~9jK4` zv*G%W{%T-d1Gu)f7F0dSUm1wyyZ?Pa{%0^lM*WGl@BgCP`jmY!@KNKd_k78F{!@T% z<3sQC@(2O>_+a37#F);Pj1K5>KUVc8@BUAs?E&zoyVu26fBQe+;JIG`dv6VVSDH0KAt z`WMi5?_cYG_1BRp>$NptHZT$kd)9v7VD1-`y^4{4_R-_^yi}*V{+HdpBmGCx{O^v_ z{>}Qo=)6ge{C+XeX930mzWR^eql=^b9}HQ!cOAgD|Ep^(GwpNJ;-8ZC9oqdOd-eXG z81T=c)C2hTe+BgEne*O5rdl+a^54cM{sPT*?C3{w{cGIAamc`sfq!@zupV0f?fvf$ zP#bsMy+5`Fogo8528Ij_85lA!WMIg^kbxlsLk5Nn3>g?QFl1nM8Sr_`-w#}x&vUz4 zp7(k`^rGaWFOHk|HA(yY{_h4}nzZKw{_p)JjetdgPYK+VeD5D`5B=?pKL6Jx&Hkmq z-`mLJ-`w!g2a*>5g&}`i!~fRkJKFHcpGca2^rGeQ5^!3e@hwSOyrc0ZUHMs;bhsLQ z?>`PBSQxMDZA`vleMxA8_--HLU!3^-9ZkOZjy|3=f8zUc`itfi;LrFLoh{OJF~z%~!jJ%Z?- zVlTUAefaz8&)QLsV5DrpbrFPo&IZ)a^?PrVU-V5)eqY(xB7a5j_a`5VeEEy!$bTG0 zAm8|6@;PwwpAURy+GJ1t52Zcx^_-v&H}=(!K5(cuy8Krkx|Qc2JrPKTKDrOO_WR`K zYQKD1@9xU{b>lR?U-6Pq^|97k1LR-di6;NnztVAi_=CVj7sN}zDS`Y=BrX4+4EYyo z1XMgLlh3u^{VAyWuStH%uWRf*F64hOb@(&?FH62y`QM&Cix#gKTH5uAfARGJR>e++ zTjQrYA3%LR5x6Py(~VhvU4OSF|I}!E?{7!a_}0zc4Q+nj*vLO6WNuDcem)#n^|9Z! z{vT@epBnVhq{YYo@rKX-q6?!lKz*&C=K1-@{;52yTT!BGDrjlTHI`NxDa z_Ru~9h~}UCp0w%EuJ>sE3(#LEB93VG3cCF2pQ}gnPpaF`m|{KeDBpst0!MOlV+d2-3?#;_a$BN+|tPZ zame4=@YUyzq}BVMg?`;X@TYw|`QkC&dy+mq+TvUC^mqxN@BjY2K_ftZ=*!K4K=C?1 zR;7G2=QJ4qMBpVo@y3uwb3YCvFusYv^(kNaSM=zY{8h=X^;TjPXz8wdGVOP2a+!Tw>JFI`Owhx?@F3|wDscC;e&s)*v5hG ziH3o0f8VxYjcs=I#|k}&o$_O>CvyBHjKP^t z=Ksn@pTBiUBj5)w_d(UBfxw!#=BCU zK6>FZ;w3;^KInK3e0tF8zcl$(-_=R8_w0~e*Wqt!?6GwqP(Arm|Ek(V|zHjFr4?Z1^JT0 zyK}t8k6v_9yo>?$QU4{$=W0oy+=H%v{C^Ui?RUUOg89Oix$jww-~SYk{r`%zk5>QH zJ@Eu<3h-zDUpYXZ5wx`*p!q8PsPhr@qJHwVt|wp8us3sI*z)V%|FTZLHzh4!>^&7wS_(`sh1S zKe|RdvY=#tEC%|c!7SPyiB0;y7I;^a@81pjL__nn;M=`So=@mAlP-JK0MCD`e#;tp zGAojn?~%PYf-X&VB9M&u(ABOnMb}B_8?W)T`+}1SokrJxhy9?F@^x$A>da5qq4D|t zz1#xxQ%){PdFwm+vZTk!v%fj{<|}(wC(RyuXG5$1o`%N1DQW)D2a>M%4>$6MgMXx< z**o6IqZd5W%jEhlz8asgOaxXRdV3VGAFwwYxjy~B zZ@>KS2|P3NF_S&{mXBpAPhUP)ByBwQeFcw+#!~`UCtrT{1iHqvL-h9p>-x&x714i1 z%H#XKwf`>w=-2h%Gd$_lJl4}4jXr+qiywVMhc6z$|22Vo8@~8HpL~b*``_(& z_~`OOd|DvCXIhB|ms#;!pAQJ81G?m+K>oAzP?f-6Vry= zApWM*pMB@|mXvqCTKDP92FT0jY~^QT^S;Qa&!NC=8Gl#T_&wYDO5nFgu;gDL-juKU z@9m7A4v>-vIbulCU5as9r%i3i{Or^5`ofWH1Z=lD0j zk2n5}qvE6A&i`@tjGxW`Lk5Nn3>kPNWx%pl&u(WkF6--40^Q?05WtM}zkvO^_Ul7i z|L^bnDNIiU7NFbffA#kr$kQ2 zWx(_D^8)Y5=bhcrd4Bunfh*$1`lkcEANIAtGoKYN0q%GGKY#+yPcI0ZNWS~=4+Q@i z8UgH)KQrj32lCJ6MUA~hjXgZ})+C?)YXe^sGUDNnz4eX$x#=rdBY(dWM>fe}Y4Z&n z{v>GQ0}h{V=<>g@8P69&M*P5m-O@K6{4FUT%>jlC%-IY$fB!nL&fjjJacWQDnSb8@ zt2u-Jn~f6sKX^&dWWNA?M$R35?3v%M2z+bceT8m3GwE|J-kSeief)O*qs3PF5x@D} z2jubR%kO_!KYh1ld(V1hyr&yf0(tBIbFGm% z0sgY+mlH9wC%)y4y>|UCy*k$VzdGfsf361#fKz_~-+UI|MH!%LD*i&Dry*2Y2%_)HI^Ivx)pT7F{0sg;lnCR~Bf3)Li zL`O~Wx|B|HXpA)zu zY4e4>wGAy7mp1z3Hze)zf#&~J4gbSI??_tx+1uTr_cb*8`;+FM{ace(5Bg-Blj3Fn z_J;qX(O-PyBY!;kMK8=BonWtI&GQ=X(&U%@zn$U-^Mp?oo654=l|ye7~gq;SM;2(wf=5N zKKk;&?MWN&55`#U%<-zH^?GN+xBsvEfAaL{0P~;x-jp}L@cy5`Wg%>S;U7qT(YH48 z?+gB)guL~(;^|v^*?0e6KB76&jl&4&zdUW}us`Mh_Qqe;-~Rxh-}7cipeKg4VA6qV>}JUYhdkm25Oe^~YbC zeD=|68ruGEUDD#aEbwrkJv@Kr|7QY0(S75^r}t@r1UR3~|I5-ozWP^;#Ht<5(S8A6 zPTPLGxd`%kUf|{&UpK~@Z(E!3n``P1jKB7JX!$o^^qCjt!+#Fk-spcQ`{HnN{_pJZ zU-rcKys%gC>`Qqx`?nzN_|^B>sneCO_-^kRPx+ZE zM`bj=jZF@wi>*7}u569}XpUd~)aUV`XdUQ6t(V7p@+Cg!)8D0T(RZdHwEEQ=OzggV z_KSR5|1^8@AihzppF7!QJXQa3^V|6G7pMHB*4%xSKkMUZncr@ty6yi9jPGlK%W{0^ zrw6V`nrOQo1UUuxv%h|dMu6)-dR3z@o`RCUHe--~^7en<987%cf34T}p8wbb*6%;F zM+e}e?E&iqxA)UzCfg5!A}`f58%JN;n@%UYTy-_ z5BaelxVFiUM{{)!;QRjnuH?)AOG5r%1=<5}t+o{d`A-M#ZRF2tWXS(?N1nZ#8~>je z!#|jO_Q@Yk+WCtlW+fjLEyDXi|3m{jw~qt?#BLWqyOfl z**i644<@Z%_WsTRHmd%&HS*T}BT0wov|#@yzGIDj@wewdYk+?|_y08qTK-&XN0?LI zpPMPZs{ex3laj`3zPtX`dS1`RNT{dv|Ko@Nw7k^%p+53^X4(_am0l9qS8rq+3{E~= z8($GPku_*l)$=C;SLFDKsDIg~zb*Uj6GkmgFB3^fzZ8TK)0ACG_Jk zvKNP0fq2UII0g2)^|$uZ@yxI4dudO7i@%|VKhEdF*{5FT1#aqzSH8{)tmk*?b#dfj zYs#y~ZwCHw^xYYVCT|Y@b<%3TDcWqXNA_SKsOM`t(jI<2`@=7L_K4pX%%au4X!7pi z_=~@j_k#4hfKR@FKk?BABRbmk{MY{EK;XWNuj+d!X=?lyRD9New!ipu?I`pw-iM&N z^78fc#s-lOvnJ>-(*MIpzpOW>#Z`Xf(@Bh^~ zQ2N$?IV^el%crsDnomZ4wU1?f%O0NfmcO&&Wwl0tLmOY04wWhMzqQ8(dA98VK-Kr| z^xw5t{DnTWG{BI7Ap=7O{sCpcGTH9`W*R#Ay0*?FI~VxY`{}O##)Ch=kbxlsLk5Nn z3>g?QFl1oJz>t9<149Oe3=A2VOBwM0`Bwxk?s;D6{lRMjS0~@|P4D-uOWNl%=wFsJ z`TsBQs-(||_Su2klICxD;GU$}dt2b4q`lvUe>iFO@Q)|`xa2SRu4n|{^S?T2_up^x zlE6QE>ym$Z(pM$z{Y>_+OS3wY>%ngY0`H&f3S1tFzZgjW?7#x^jqI}2XYWaYD;wJU zTGP<@>l%ON>rXKpz#jR_T7K|ek}*5rixKdry*cG;{9BVY-`T&m!{6Q5Z|8rAP67UW z{56oENLSP!2YxG%@o4NpDsUl=*PB~boe6L@RNFG~9Mq{;tCp!%N|d5~Z9iR7yn z{e^4dB_PBWJX_KdH1X*G{!qJ8$;=aYN}u;N|S=(D#r>Ef?X zntyzsF$U=M(KZ&K`&*KSF8_4Ozc%^jr4G41U`qTC7dYQ<3f!3EpD7OYBfmA}U0=n& zqsgDzzdCb7US9SkU%uWI^t<&1O3|vo`p!LC{z^YYMzV1j0ekX)AnmCiTZfaLl={Xi zzIcx$pFQ>q(D()7du(*7xpM&R{r{Hc|4|WW?Ey;Hkv!QNU(1_|ZTYm`9qY-Tdb}#| z9Wf?g{#pMQJm1S?{Z0!ZpRED-*6YQ|mw)U3MAGzHpZ6)*5FMRw#!`Ls`P-8E=(h!KYiQ%&ku?8oSM9s;pqB=LCK(>5~7WkfDSA@i^Wc z_yZv+u+Nz%@D z^2?KU{)uOG(pCS<8hQS&NSZDBRe$pD4&2)48~gU8gEgn2#(!N;yz=XMdm`|UV_a3g z8&lr(<3|E-PMSQr_JHzl{@>cj%ikSIhWZafCzDP z{T~tWB3|}ZrF_+YZPMh~FTh7%mVElgzPXWSub``6=OY`g19KhR?_Lw`&G{f{&>-Q!7rbILDR8;t<@-yOJWZM+1W8F*IU zy0!5VVE&6|>)Ln;VE^L48`j240Q!kx|Hieb$@S;9pzC^q|F46-Wi9Tc{Kw*WXf0}z zHs5bwi;B;l2W|+wYi+y)gzCw;j~4H?z{M{@O`dPo|K&-KI;VMIPd*+l5dSX+uI!0d zz1#V3n*C+OTk{S7?4X_N_C)yX*#iRe$NazKMX1So*c;KmAW%KXuTMU;vK`Hn{40|0 zd?ddmY5q?SB{^*MqI(4Rp9$paV!?GF)TZ={*I0JEXi~8J?Mj+G`#p1CTT{O3e|yqp?`YEI zGx-w@pY5gJ6P*F_kH4ZruT5IM)!y}A4E&k@8ydcTYk)nU^WFU4l>F#g@ZCXI{P^;5 zb@FRHyRMP9{4zfgTx!T5~#=8V4^jQoCA}W$FKTd z5&WwEk>pqXk0q_11Hhi_+ zp7f(bc6lHl;-$~t&g579_cZeO9}TSMSylV!8eI?AD&XJV|K`-M{<(Ur=RXH};*AuI z*8flC7)SMt_K_w(?*H90yAC`$+O_v{pG4mE<5e_~K)q&5D;jZDVvkpjW2;!lc(GEk3c<+8)g*{?WyY=8VwQpHblf z7BHT(B8bHrV?ek4?@tRfK>q$TaDC9f8i-$XG)MJf@6sk;FHBkdR^R^sFyGkUkn+(r zW#5ed3xQW9Uwzo$-Xl++d_gxpwAi1dF$NY!ANxDgzV%0ZyBmM){AY$dn?QX0-;(nB zrUPp9A1*LH^WjiWyh1Y{3Tpn?>sg=C=FYi+wf|$U_J1RO(9Qw!3!{yHw8`gNgD#Ly ze6oOl_nigoITzJ{46)OL=6g246#E5Ty2khVVDN+fNMOwYZun}?fwJY;wb%0IV%zn2 zRRn!}n)?3_gG!JO`?IRQdOG(Py?9ape^;RT(?e@7jhwwKQ2ss|wEZzKU)~b9B=vQ( zU-f7I^MT77`|85>zesy+{iA#I{r@|@czTXPGB*)i{QNGN7wFBxwenZNa{-&h6`M`JocXjelN&V{@ z`Bl+ZQ1*8xzxwN_K2`sP5fl1n0_z@t|5tcPz!&f50{GUGnta(?oc7S-n@BoDrmeqx@zv%a$TR;<0 z`|7_h?T_Y5$lj7P{;L8HB~9PDyh)K!ZcK)l+=K@{()tfx~ zuh$50cz2*@fPj3_b^SL#e>w1@fyBypH17rY^WnN*fy=-1_3$j~e_F_@|B;k8-u8T# zzb6H{2l$&{R{ig8k1i$9Sx`}T`u*hgzS2fin1Yd@a<1E9Y6 z?fkd@tG?2wdv{>Tqe1yAdllcxPP}WHc&`h+bxDtm3@<|lh71fDcm!s^df8t8Et_@i zA2(e5cKt`6m1`||&ARrZX9E7)>wi}s|8s%0{&)E^(c<}NBZQvr`rn8S%^?Fr28Ij_ z85lA!WMIg^kbxlsLk5Nn3>g?QFlRF0dFG!7Zs>VlS^Q1S^Ube?{FWYh&r81)=(q8H zI?(%VzY@4T<=sD@5&Z?^F9`fXFvz1XjrNs+&kdS?{9UP!|5L&9*$?vZH~Qb*WbY4z zsgwWvn?5sVL?<7>^Jo6|H1Qi-A7FhfbnkCGeRhZbAp;La2At;g+YGa@Z~pyODE&#G zc})KeUV4DM`On9(kTXA?7g%cm`W1n14FogUo0R&-EB%T`Fa4M3oF!B|#seI@?^mEH zz5?{dY3$=KZ1hWSt{$z=-yiYb)U%!&O8xeaF<6hS{|8fEDm?#vO6J7j>w&NA$&vHn z+(6#}r(=EnuYtGq_-6+Hy#fg+`h7_|T$pWq?@zus=p#M$h8QB8)gxQc;KV4p8gLee^Inw8F-@MpNALd9-2LT zG@IhpUi^L02*5|%zn47QwXK0Nu*V|KULUKmGWh2`r%6?*FR4j$M1??f+{2!lB=PJnmGh$HdGXLE;jpsK4YY!;De$Tz;i+t3%AI;JEZ~p5u2dw|j@5|CYdmjp9 z1DIdW4%w@k^8tT*Lq9I~*EKZ$4GqoK-lW-A|JuKmzlu@(NPXC4v5ng0=?C2Qa>k5%2ySUpHoaYr~-?zwZpX=3M2gX!%tCw}i~!1y=nJ zH~FjD^JV>4|6`4P`7e9?TOSsEKk3PO-5JN%gk$HV>kE5Jk}n?hf1E}@s7^UQb(7}< zpw*o{Ab!4E`|`6q?T>_}c@eL|@l z&GG94<8Mkl%9DM(ypleUP?Ekkl^`~D@_FmH1D4t{S+x1^uJ079+moNLjT|MKI zCj0{VG5_oOhBlXrF1b45+y9jfwEa=dfAjSNfqR7EOh;i6?zamtN#0Y#wUMo53Kh9#H;>& zVEp7=16&8`?+>hN0KWCVa-{wj1RhHN?7My!h>yM7lTY9M02${1`71d|(8RO<9|!o4 z4qo5>93QW)cj$KiU*jV)?mhs&#x@_G0T|!8fj=4J83(%C=YHt6{-ysRla62mV*dw-{ZJ+fC~1eE=f(S7cSGyVnN-0uVSt`Dqu%YK)x`giTj7so}HMk9cK&wlXOh{H+W_+7fa zuVNx!d-rILt{-^y9$;47*IYu+1myoDjMQ4o-gMXhne5R&cP61}_~M!E+CPn%hm2)? zePaxIPp)rW$IgHE?)LxQualqd`)TI?S24zb=LPD&ugCrvl__1!p3-BRU^gD|zBD?| zidfCrE+1|GR}dnj@$}7q^2IBi_Ba#2l^xnc28Ij_8Tf~k0qdjnzW{x15yNrFz>t9< z149Oe3=A0lci88AQI7Pvdl=b1uvO20brH&f75tF|uZKiV4bi-Gv&e?iUHea-yx{rc}D7{EUL zH|N}8?@599>~(>?p9#FBCw?m3_{`VxL0|h|GoSx9X#WrV-v-iezyBZP6zJNo`2GIJ zd;s`L74ocfi%}g(38FfozoivD7F3v(f+T z%vUt0*rWgJfwu+v-Ay!q+OH0svUhh=Kkxs&FYw&plPBx{4Uk7)ANZfLKe|tjEt;cx zKUQZC2(xsF5N*e=Z$5$i`TeJbKQOzf$s6?Il$THWdQ>Fl6-~a)f9HUFng8k!=&Q%F z9)HAMowDTVlYgd0K)@(Cave^4}$1B2l%7Ew#Ofn;+-!b zKVJ@fN5uT!$HZ;CO9L;>@mepe{~MAn{l%fn2HJW}=T(99)qis%k4N_1fj%EVerv=3 za?oXuKK_p6quJfnk^i2srJha`w*3YGsQC2x3=ls1XuuwNPujD;72m$bevO3=wKh-e zi>GYL5BYTplI>hp(zN0Tpq7liy8i3mWS6KH(~X!0%n<01P47y@EJmcnKhno=934?S5Z9#j`s3+_L|NccJ3l*Vu3UcjfuNI9^)+;pz-)0eSV;H=AcbUH!82P#qVABkTLV9Bq0;YVv74_dLe)AoX=UKRk{9Uk^SVcFD7MH0AkIf3^VH{;%pk zj&J|}Rl)%kZ|RGdpA${I=qCjJO`v?#^$6Y7N8`_z^*@HNV6mWQ3FQB@k)?`Wj}d_W zrD&H;`9k~s&+i=LN50RZds$!rkv|En@9cN&5oK?-K(vh){iG%ibj8YMm$n|c_Me&Y z;k*AUFh23unDOsRd}Zh1I+{z^8?rQjE77MRsW4CU-_-)zw-C`z&Z!eYQIz?p!7F4`s9B$Wd1m? z?AcqYf%6l8YswdWZPI0LSJK=Z4*b*52l$T(+|$Tg|MxZW&bN=IJbiT4Up)L<|BVS< z>%TEmBVWKD{w-<0`seCVyxzM$*b}dO)b-yOjDN324BQ^T_!kmN(3B_N{Rir0{@>Q* z-?jHhk3aV6yZ_O=*Zk+-{CBO)TjT~PLGezNEN-xX=E&QCh@$ydD5JbC^Wzm+#0@%sG7>a^GO-=(|yEj^p-K-Zoa zA4;(Q|INTldg>t`9}B!9`SShhz^j^k(|5oAoIvB>5U9^NKwtg0r96Mj19v3tdE2W3 z_a^Op^!)E&()96fPn!Sl47*1g{@&<2ku?AH``^|9^%slS0Q>ycoBHhIFL{N|$@B9) zahz!AcLu#OY4*&Ax(7tdkC*`3{a-t0^v_k0uP+AH{e3si8gKi3d-9b}{FWZ4ul{}V z^wqcQOCx)IQ2t83=(2A-p8KmknHnE{z5mBP8BqFNdqoqgHhFX#Usu2U@joBV0r9$i zc?RtLtC@hj`ERZCo-38t1e*WAq1JvhzWUexAMM$Q`+vZm`mYYU=8*mZVr@VDI|FO| zFS*$s*=w&S=#MqZ?Eh_`v5fG_}WIG_8*+Z~_v_qxEf&3f4C8^7lw z1=d&fU!U@5@*5j^RnVJz?1|6wKQh4iQvRF+E&XfZmwjW|n)X`0`H!~$D;sFzDY}~v zG~YF*vUf0i=tCP{>9_V~^9(3V%sTfWI>3;DAp=7O9;C{l28Ij_85lA!WMIg^kbxlsLk5Nn3>g?QFl6A7lmYL@dH;WVJ}>Q#&GS_6hwe_k z`{T=-=LMd3{%PRvMW1KlSYHY(@VuD(jj8YbzU6_pB#nPT;O$BChksYn?B5mmQ(?pB zw8V=(k$lf*(QnoW;NSm#Ezo4|Z?c0vdhshKJG>ugd>3`-wMmPI{mYVO&p7Khz$-pu ze0^ZiKKofRp)$abfjOB0=fBT?Uyr~Sd-(c^DAdwhiIXf24t2*~^VNBPI+w*Xx{eO>z{S4Z>RJl@sJcjKwKOuwD~ zUHiuWoWS`q|Bcu8zxPa2kLQNW>oTX-Yw!2&Yx0Ax_jBdL_x}sn_x=C-hqU$8+ZsR9kHVCn=*3SNt_kE#tDewC5q`(bHQUcD%ekbK>Ch&;KE1C(Yke1Ie)IeBl3hBaa?^ zXebWc{8;+dP5zv~rLRIw)|>qmNgMC=fvXz&-9fMG&>NFx&-%Y5=^9_11I8ye+mnwL z`*lf2b54VNoF8~YPrT~k{P^P-qu>8PuMV_k>o;EQeNBG!e^_Ax76qOicuVrjo@<_U zQhww4l9pZnti<0E=S%AYpBl-LKlR_9{4=6`dEl;wR@z${+UI}oNZRuP>wo=|CH8#})BM{U$p6KG6E)56 zUf)~>`7_q5d*U^;I=9D-1Ana~B%s^Rf1-cROM+&*-!5)^% z0QTi;bIR+R%OL-63*6chukp2?f3Nzhp?spXeWtte`=w}KoA%@rZ)ei3H{|y={I`UY z{YlFo`P-6azn&+tFJAlqI~sZRjwP)=>fP@D+0$3?j_h}6bJ+UNzxvs`if29Qm`KA_LlZP77i3#lsih{~euW1N}RJCF6Xw{;yAe z_;|I3cq>J`+zQV{X0L!dv)q}<>wkL{`ULt-T35ZZwU3t;Qwi3qiYX;Szvwl zAHTi+tLItKSw7I84pcuryZ-TiI(Wa-!;kKhwU6fL{Ago$zP&DRM{~ZleEysZ)kj`@ zyBc}(zkt7z)kj|JduCbxu09(NB`gYOcLeV1iPuogkM-4=10$KME`x_@56v((vh54Jy9c19trvzvAbgeKz>OSMTDNe60uUku5-% zZ+%_)8Xw!P33DAzivZ6LJl0eH8jn49<)|H#A+C*=;>l0D|F<5><-#AC)KX9RT#|Iz zx3-SE&meC-o#@EdJwWNJ|CJF3|Azw$#K&L7$DZ~7qK>^f2TH!`U-m0L{M!3R^Ir9@ z@vTn#WTpf0mapmL9xPssx9>Xu;(HmP1kKffYcOU3@^N{{UXuB!{H#y9{MR#GX1m}2 z@6Nw2J=<7>TlL@A_&*r^RRibiHG!LxFP_$)c+LNI|KIZKe5w6mh|g)LdR(33?FMW7 z@=<`EF5mdIcGHnB^{?x{{gr%OoBpc)Z>1O@p05Vpko?N$HwVA9OBT@YzW>|GF>CK% zz`pf=Z`#MI+LOUI-kXxIuLb_P_3!G7e}9jDYilmFt^eNv-UIUd-}s*s zZTC7rzR*WfKboWGes}=i^S@)s=a2l|4gJ>WTm0I13GjSwci@Vo>Ax~?UD6d#Jp;sF z8ul)0`1SpN_kiU28=V6|o8O*CT+!J7SoCd4T71_8Zfodw1-&b2!*1)(zWg}{oWtz9 z|J#@H(VWu|Ay2u#?*`lD8?W!W%IW2i4EZR!tBa;jwxCPXm$&vAL&-XlueAYP{z|^+ z@`1){@Bb@4@BgufE-3x7SL0L9>MPmV9J}^sqw{dem_OFz{rB^HHQrHC9LIqCTK{Vg zA;0{+EBdS<_~@!Jd$qPib5t+u5z#PDYKn$RdT8iBOrlbMW`pZNE>vhNSP#@-}gD|I<9^5JbUlM>)yw8ea`jV>sr^#y4G*K+%L~_?-R$6_+ssT zd_F>TeX`&2GjZ16+20;$`G{Y0kHxe-{S)u7E1_A?tb%}ueZgxIy z*^}$se^+!!`~A6oDo=Bw@Avw-chL^WER;!k%wFKJt;rZ#68vx}(FMpMEKPOw;>5?YqM#Hkm*9 z)FylWD*hQwu6SZy87}=fO)ozC3!7Z}OPUP5$OqP$B+RMLLdFGrC z`O{r-{MH)wUu<sm#{i`|WArn~u*%sMmijHsakJ-t~pFTjlrU zxUrMP+po#?bM^-}xsT_aeKLLJKt8RL`IC=q{v{vVWOXE(ig zAF1FuvcD;n#$F%k`}XO{^woz{Eu^XcLc=>qq5b~-^_7}o-(Jm}YpVZ`3%dq{4?Mm5 zf8GmIm_sp{*?(N%ki(NyHWF`-u$afDo?f|#JjMUC)cyPLVa?v}eu@+g@l?|tF?gy}B~U()oTaozmp*2k%A|2-nQE1Er-|CS~j zPx6Pt;<&zkVEBfn*WSa!yPlAbkoe-UMdXt@xz-zfo&WcY&H0g^5o7k+EB|Vr>^DGU z=lk+EUtb*EUMHjwlK;0wKB&nlZrj`F$rXE^tZprn{Oj6hUY_v#V2sL!y?wk$@xvwL z2v4^5KI_Ez+W!yl@S`hYZ~WgEpGT#>{6E`bFr}wM+9MaKw*D(W{!fei$|znHrk9_1 z$f0kao^R<(E}Ln7{N3Lbk*jTW=8ycIbpmPalm6Z#ANwoJA=UQZ+ArZ@|M$Ac6VrM6 z-^%g$=1*Vtwg11B{)8w();HfxP2M?W_NO*k7;WvP5Mob%PSaO>@BWJ)(_8HSuKlkF zKOp-2o5ic~vN= zpo8C$N!qnvzYkPy)Bdox{@H#wOz+yLi0rvi5&1_uS@Gjx*MG=?TtsjE%LzH0HY;uY zAb)xyZ)vt&^|qpTdxz_Km}zfMU)O#q-h$Zo{kw(18mrKsM@|C~RK|K%rawP4z>7yG64{h3Z*ZSg4m7n)u^?60K^iPvBMk*)h8avzV1 zd=*7VzWV=tVHl`ZE~3}}$ED6WNf^u*N49zuJ-DjN*0d}IaDrW`u_Y+7Qf~| z#jAX^S8c27^U3dw#Pw{&Mc;ajIry{OJ#S(N=k_f5OMR?X};nlrQ^-#Qq>a z%^}r2F6=%3@%(Qd)%DU*4KHSOu4WH^*Hd!*AK_kpL4vdI*FXJf;ip95I*`7PNA@hM zXsVZwww~4U>DzN3pg;2H`&hBo+iG=`upr=L+5(!*Tb)D_SQH5Gn<^^ z5^P-m?-f3;>EX-%;!ZZcmo-^Fp9+7n$@fUv`aeBBuTC;#{(GiO7GFMFI{VWi+gtu7 zTlHF20Wer&yC{O!}QmOi^v}+Va}1huKlRxE7wKO|Jd}zzrX(DZ-3uHF^5$5dm*{E z<-gMPU*EquO{}RZ{W&dcP0SF_EYfAQX}(1?G1_pgdfZ@-;K^!@eUJe$6bz4ia57SExs zHQAA;>;IZ&OV7Xde)5!<_Whgc*PEF=A$!od1_SokHWv;R+t zp1tdT_g75%_UPZ;Y@7!w{$DW+k&S=Js;f*-?&Hmqd;7}A98m9iM1Ci=`Acto*BlU! zzDPdweO>A19jE^DZ0^W9`Tlcw(epp~_4w((-@2Fs*M{jGi#DX-dhL{k7uooq-pS&f z)#Up$`*WKtANqR!=lW8-OFKRJWnrZ0{`#MPJ^w3xpFe#)|C^^5ueUe;mxizG+Bd#6 zzf)X78zRwP-RzercK`uC{W>Ol-?a$7zm&?t2Y%lg`T7NT@PA)9=SZI3uTAy+d->WE zzvck{{`)(6@#;H3`g-=0;%xt*FQ2JDo1VnuU;XQK%KX3TW1Wyx`}5sOY3slBU;F>m zUc4R~_OAa6lc}EE@0H|!{ms+&_wV8x`@Sw!+h`ik{v|&9r-teK{)^M8Aj<8S@fH2^&O@rU<6gkAq@hyF4jjTArL$yHxR@$L8bTwtTR);=Hm z@4*T$_OUYY@B2QLwePoIWkc@Ae`-&rA2bjc2n+m*-+ygvb=uoK{N5P;N!at+2j#eHdtS@zufu)Jh}($% zTk`Rm7H^xP6~y=M&##4#icJnXeWf!ZFN)2KUjK^3`(i4!+4rmT<2Vpl&j?sXwf^Vz z!+Lm5r(kdG|1L$y!CG5HRN@!$ueGU;EWSMetrTyo)#A@-{Kb~@HI>iXx_tWn-`4!* zw|dvr`hMQtzj49$W%_$@!$Owq?T-gFd-5ZqKdh6#Cv`_P+5YMG-(q+lkNkrvza#7% z;P)NyJ+|39AK3plP2!!>?R_S7zUSxqmhe4NM*Q{X z!e(FcMV&0aOPieH5)w~)`?j3;zbEn)3+$ITuK@u*@;4UCofj)r{bPGohmY~Uy2&Zd z{{Pe7-ueIfPS3ySo+<1T`KG3qkMXa3w0BK-*O%lY1mHF_>?KiJ`Q+wlU z{107#AAH3>a)I7>()*2oYp|&t)e_QveOFIGuHXKUx0fovV;1B$jW_N8RKM0_{d;Km zxCQ+)pXtB1tr7See|wxd@(-r`rY7gG?YFfl&h~fv|4A*r_V}LK$>N{UWbv$5@w^9m zuaxP}ZhEp*E^M+guKbi;|Cg*ib(b`I@$LWO|5Oy>iGO+1`@J&xGo3xzIp8DlnUX5{ zBJuU_W8oX;*q2=$r~XxcXB}Z<{OpyhA?um_4IMuAe|7e~{9AIL1YhI7;V1JEs`hG+ zH9ijvZ*2M+fAKyW)*k(SO)q}!{V8snfA)Ma#aFKWRC{8f8h_^iZA|qg*Y%(LwSQ=9 zKgA^^tT;vd;fq)jdX<+?HF4vwXz=g|PVS9){J!m-{*v{?DXQ%+yB`sTTdm^+XL$SAl{bduRZVn+|cDy@lrjDXYH%IM{8es z=acdg(q7qDd(TPTET7m@FKu!{ z&0^;;m$WaQYrek?i?4h|^QW)e>KZUr+o<#~kU!b_FCVh|e=%!5v(pxGAQvg>|9T zec1E#-&(2nKYCl`!l(9U{q5(Ac*fr|J!_0?{fp_G#QvIa5&32xx02-J`tKeKV$j$6 z*95uNKY1k*c0H|s>lxO2we>UYpZ<9NzKA`14r=!0e`u49AA9!z;@0{6%z zF547m6{q--%jQ{sE>>O%*Qk*^CbANSi7tie(xvi zPtjC{kG0?DP_~Zj`+O?j^)d&Hr}2Mp!#~9(q(AQ6>lz3i@Us4|4bwZ;{iAs9mo9Gc z+%Fja%bLvJ_}d??(VZi+|4h@1r@rDjf9w&yvFR)Ru0NH^P{PdYXF@*s_w%dj>&U)h zS6zSPuYc9wy8qkQ+UsqV^~d}*2l$BJ&wn;M62ZsV*EO*I_WSd+ukblBMqdrzui;a^ zZ23E%7m@q>w5eYE>~~j~L+lUhbc*6F`VO%4X#=l5$x$zg@ z`gbjb*!S1}*0c3<@PhTlzSd%jGyi_SRo7GPFLnO!b*m{$)AxDRC-y5)%3bp7|||EaI>n7;qtuYd8}`+25^9QyM=fA@d%a-=WY6mLP| zv8(kwHQ?|1uZX?xY0I9z%52O}=l`P@jQ`Z0yjm>9A2bjc2n+<)3j+4H{`|jE-t3+K z7ZJVl|5~NBp5I!`vSe{|wkywac9 z^p)>JrOWpKN$8KfLi0*6W{!;wZ)HIYoBaA)1ROaD%tu++J8g%((uGKBX?s)sT9b9f_rG6|_$r9mzjk)y z4V^6B&Ee-Zj2!I$PipbW?BCI3u3iGtSk}Lrd^A#oXAx+u|LOSG`Y-&&@P91( ze*ID5s}_t`>A$c*ul+r{d?GGO@{@1%K|b0i`#S(al`h4Z{1JslQ+?Ifk$$=PQFc4Z zQGaKfdg~Cm-~VCl`~Mpkj9=~l_JF6)f~C-rs($Y$*Z=*}nJp|DZ~4{le`Zb0Di^wZ zQz=~E{&9H20#HHqq3}~0X2y$rb@<@4HY5Wb* zu|1~KpOkigCH#@uU`E-I_;JNUHbu+t?I|AG+M_qV?g9Ki z2ioUf=P3D+k7@QPE=!sz-(?N&Af@)L|J4%vT04BE@-z;-E(w1)hPA%>{~r~8_Ranp zyN@A$zy8I0L93hhHz38kGF&+Oz&ENA}BI-)Ud}ma~a^&5-%} zJK^IN%vb%VH>dw5JSBL{7C}>xt^XqH-}~PuwfOYESIQinkFO1%+Ufgv^3(2_O%Gr8 zwPwV#{)-gr|9)4;em4FJA^p*Qt$(t-6^_sXQp`cijB-*WUm@4*mKkzqaY<3opJ8i!)jKcTahfU=ynN z^hl@|%(0s(^RXf9`tPuAyna7*aztF;5-wR?PvZCeC4ZZbMvBYr?JMak&RRLjcM%qH zgx9mfwfDo9{gEBM%V&br@FuXgRf^lawwk^x6w-a zZHBENet$hj?yvvm>3jQWJo80L%;rKmEFfm`p$Gs6yfXs z=bVP`G%5Y3uj@bk^S*yktBl2YclC-y6d3U(mk&!}Gr@ znqEBje_OhE?%NmLZ)>I>?|E{6{}=NmRQJc%b?q7d`VD~oTpHG2BtPxlw4gt1dXi81 z_VssGS^lp|63e|$zep!X`TxB_Bl0i#Xe9o(M)vOiJThOL-`(HMYp3+zofvF{VPCeI z62C~Xbn3|U-5+^M^Xz;7sr`;7>wm57d3~Ge$;+Kz>A%zkBD?l0Qta1b)h{|4fBEsT zPWWFNUPSaO<+nZUPumfHx&7b#q+d_>f0ygjDv7D@(~9(Ww*D37(1z5p-}&Wpl&KQW z`~O9X_v~b0jeB2LwvP1Tm!90e|6lry>klX2vm5^U*i%$H z?E-{Gwf`R##m}Uk-m!?@`}+O{`g2oH^`7vP7>10u{r9}qp5K4?{m=WCX}^E}UznR) ztQ2S8=Xw9X^0`;){QmojZa($OTsuauAJ^m02b?EimcZ~V@0YLqz2EX+g*jwAJ`_H@_22lB?E!qay}9!*J)J$k z_`&9=4sZT-y+MCK__#^@iYfj_;{OtbkoYG>t~%A)>h<;hzxvAml`X#cX#YR8$qBWj z@8*m3e|FRJhtCB~)}HmR4`}L7Pv;!49!Q!8N_qiJ^|hYg-{JA$_`(`Fxc(`5m&n%3 z<;~vs*^BMb|2Yir2Zq1U>Hj?Pr@~^0N8hh+a$N(6C%)hCh-p5NZ|w53|JQGP*o!X* zdFJ0XU5c~$Ro8yulg{@2fg`?|&4*=lbwt8b0RJzm3shP3HfpaQTxz z9@49~xRsW7}?Ju%h zEA`f&^|)z4zWVb!;nSPG*8f>e21UQV;6?sY`11klK21Ka^S2f+YqIv8|F3Lv`FltI z6JhOJ@7Fbb$u~B+_WKR5j!~%m?IHdSK;>6|bD;DUzvM^9{=bLwZ+r z;v3&0u5v4?@xQRySN&Q&%GZ8)(Sm%z;CiU`UwGL6FKzba|H)3a|9_^F-xK>UG+Dge z!+kv0S2r}h@s^MMpAGrmiRayqUUvOQ&cE6He;@BD(QP<6iqJHk{KenB)9c@~z3Q|6 zX@9?FpW?RMQ=GM5wq))7QH)?vIjLVn(|C*Q?x=e0_v>w?cC6Q54)PE|&oBhv6;W=c*-_+tQvbX;2SyTN~mWKFGYx$(O zgr@f7>iZJIH7dZ*^`Cpdx`ypj)$I?2OGmEjKX&?C*J>qC_ruxyzim9U=lT!+b-(t8 z$ftMX@BXY}R{Ir`zx`iM_5k|+`fr*Kd+Ytv&A#Ni2Tb)6;%_|{nV;G^r<+f^YP1nk z_!XId`gdWoullum)D`D<*SGUX^;^UB9RU1{|K3qpZ}fMMf8C$cvv>Y?4@__T>u91~j{;vP8Z!-O??boCb(%zL}&wr8q%J}cv^yIgM_ii$? zx)w-r<}dG>1J(Ya&7Lg(Bbv;oC;7QPIC_D;w_OWm{a@}pMPJYUNo_os_Tvvv z>s!40hxyz8D?Yi#KgC;|kJRXCpW$PwS7g)Pd>(1 z{{994xBmGZdAa!!^_n92E?WB%o$B@fZDH^HdZ!;uC8xMeuD=0bebZmP%=p6ZeS90{ zDQ+X}(b)s&%~$db-FQ^{-x?eFl8gF${T+Z_o|iv=eJf%wKNz`2n#M1?I!^toeytus zu5WdHzfzw1=ls7~GG4R&|F!cy#Ou$kF?-KJeXj!T9JueSJr$f7Zu8gv|qba*Yvus+{8N`kU>> z7Qf=v{y()}Nv`&_;r_2=ZKxB!fB%1~*I(Cvk7@bL)9cS+UB1S@`Xqks|0&MqOXdS~=ad&`~wr#Y~<{|_1n3%W=Z>Vu}<6s|phEPkIu#DyeZ_C?eDtA0m4+FzfLPM^{Cw`o7&QNR78 zgRk%X{)HlBJfE8~`Pos@e^0pH*=P2ia1r?(J{tLb0Nb+{v`;VI1x?RYzD0@$b~5|B zMZT!n%ZGiRFa0CK@|_YqM(=T^EDZy}ox-v7F~YhT~^&m-+s|K{n}S{*#T9DaBD^Q4B^ayjZY z`yz7hC!XJPxd!wbAmhjW`i37peC+@HG|9eVklB|k{;^$NWVse8mTlGb$Lb#&zyF!W zpUUFZwO=1+QF+=vS^w4xncuGeH~j4UjE&zz!@D)T{(Udd8o`(Uo1%DgSUl@vzh=*$ z{@^Ba{ZO;XVP-G>k)8d+BOlYr^d~mi{x04ro!+_sj84C2^yfCY^80-1z7poI{r7hM z;$PBa@B5NJ*~KGY*W@%c>t7BtBFm?!`q%F%rJHx0`p>huBkSaQWs<1h_e|TO|6ufN zki(z0a>?gSWaD21PruE%so_`kbu>N?4DSPjB59DLVga1Ciz5$CxSF2fg;IPh|IhC8xNA^rwFRRc$OWSYrab_6;B2 z@S3Ivrr+r*_5X>ftb2a_-8=I0S{>Qm{~sfJKi+rwANwr%xnaMtJw5W2 z`0o)ucA5Mh-#LkQRrrC4<#)i_OZsBSs`1yic~ts;z7=iHi+5Mo>Bgq6 zFN$@qH7_^)-!DeBKG=V>Go*KZEInELMc3En=f&X@yZQ6+=3@^Kzt2ZJ@BjP=MabdP zv(nZNvg^Mh@(Y`-I{tfyKh^4tzg#Ovdh)IcA!a>3s@K!?pY^qG_~d2QSHJ#ax-98` zUHdUKexD0(UJzgV?+%}}jNbY`x9Q=1ZMcZsuYc`d6<+iXIQy%7G^+Le=+vpFvfhj2 zFTV?0`{LW*`xp_ok$Cjq-{NgktkHu09_M2LQPsQfOvrEV?BU^DaJ)iD|Be6aQ)j<) z{{CF};sxW&jjj7Xl;V=>d9pY~ihVv+Uq@k<8-IHD0+nz1EjsGYW7BBmsD0zRh{UIV zpu##JX}W&BcZczEX~Sc4_#v@BD9r7_ov&i;?J3UYgZxX>E-T`n9C|Q2`m48e6x7F(#pYYrq{uhQj zAi?8@(l_7#c;6D<&y9Rl!+VMkJoXCzdc%YK)RgO8P4V`Kd_nkWl-o(d@+}g=`2TfR zS31XP|3Ry4OMX8XTe-bDENnl&#q3Gg^>qH%pZ@*zzAv{&86MvMwg({X_0LD(`+@LR z!*vcwaU0QJ9KI&ZMm)#5|4VUM(q4c4x2*9TC4cR$mZtq%t>0R;)1S9?$&qiG$llj4 za=pa<>b4&kKjZ(B*lf(;k?HFmpzLqx_K!ZE=LhUJye=P(Ve;NhHXn9L?3XEo98L?n z2S8-wUoo|B?YYRCHQ>A+qApLj!2b(7* zc*S@AM-Dx1?B5lBci1_W{RuhNJAlTU{_uu>R7<{ZCm-o!0a1DGS46IJzdG%`EBwM1 zqvX2(bNxzxRM&o=f7!$E){tgzt?#XA@3#8LckhOkSW~&i|GrVciL8It|4RcFy!h8M zcJjN!?2$u_J^7yDeZt3e>z(aiHGBTP|1DW{l~cS$e(HLf+Rux3O>2vv{?yt(tE;b= zs_54X>96N=51Z4Md414-Uz?i`~UKh-xV#NMSlaJ_m_6xcmC(MI&+l%-Qgnga^uUNp6`zE3=qDa z|Lm?Xhv3n_>q@S7|Ct+a@8w^xVEov>kKqEE>ZQTH@}U=h5mEKe|H=Kco2fjFGu2P! zmF%bbwI=J&?RD;-*Ei#3|Nq=PW$Lu=ykDf~`@bUcyGytWj??_^f)wu1CXJ8xw-2c75J3lOU@5jG?|6hLn`lomO zSMeh*A@+wcYD5;Vh%Em_#MJ)Z`z*2@^#g%{z(C-xM8H;dN1p%1Ur+b9cjZ`&wg&$~>Ie-InQ{$1hvO^bNshe!YFaDD%LQ|Isb?zeHAL;UFvi2l15*vxSoRRe*$1c6NP zo&I?{T4ry36)8TVlTCTw|JM8WR8{6fuK)X&d|OF-e*aN9k+oOrf2H{Hx!Omgir42{ zI!C7d?*Ag9UoXG?)(88W?_YO)J!xfP|7+pBn!Wv%{Fo-&|NQ>L9C%!CD*a(i51;A# z|JpyY)B8Pfk$B$~na#e52YTiD4v=2^2d2&(sP>-K;+1{1DgVvkwf@!hL@(d+F<<)k|LNuO1ci|Jl^a?0N5Vf!5t{0^)_&uYe!Yyn zto3i-@Rtd5NPqrA>pL}jw!5}EvT}W&ZazFNd`6oO*4zHkpWWoCJ^eo63!2{eRD3bX z^xANZSpJn0`4vr{!!4-n>o));SH9Es(!{pD-6GhWim5%hpZ{}Q)>M`8^8MdM4gYC! z^xl8JwCTwQq?1>4sFQ2Qs_@9qlzX2})pHc`_|E_QL;>qX5iTAcJvp&CwONd^++DGEa z^`;hYR=LavxAI-a><&}a`f~qsO2cHi#_IgJvlq5QWMjXv$raBU_)wVM?|%+z`V^NC zy!Htn*7We;SLFAj^hY+m6v?%pGp&2K6ld=n%IDb5p1!V8wYNFEX`(-`wdo*!QRR0^ zXYc;*e>D5br*hC=`qP_z#aXMzU6RijCOon;7~h{`uiqBRSB&Jxup=aprG)>-WvV@GW9bFPHUjAD}J>LTqLR5YHS!MSD&yP17*HyiIbDYWYxmU{K zmaNQPGoNlYIn3nQ^&cTb&;Nz7M-F{H^W^^eZmJhg-+CKy7tz#zk=-3t@Bg>kH@vZp z*R&n|@%!((rYXE?&da~bd~5w5+~QeJp9mk(Wd7D?`FOu;pYYL5KaE%W|4B_>@~KTW z-o{=$Yp&v3|Hz@*nkTcTe{{1KPd?|j`pWODE`RI0_J8)}4tdF|of+ zNf+u`n~wcWVSRpkn5=C5I|mql&wtOh*M{XawNDeX*!A}xruvm+{^IKsk}vsjkzXHHU1Oi(Er>n4^|Jq4pPR#58ontm zA^rWXuEuz64qw;o%YUbz+iIl$^ya@ku=Kk&y?FFR#&>gg;{tufdsl4c;a>V*i{3s^ z?H#m2Joa~sz46{079UkSvcCb)%bxSFmq+dIDK62P z5!u-Pd6SLrUg1OAc%-<5*zXbBdiS4O#bT&EvEa#u{p(V$_-uOO|1=*9i0VOtEFgOE zi?mO!zX8BiE;asTS4Zu&e*DEV{zZzHlrZN=-@ji^ z?(hGmF7&SZ7SYsSey;z@hrBtwTpLl}YBFCoBnj~s&5>Ij{0?w5UybK63+5|4-`cgS zfA&s3uCe)(k8A$cJNuKG%$}`lfO`L*{F=zFla0sw!v6Lj(jI-0_^$s?>Ee;u7*p*j zpWgKBPYa*j$;SV@CToVhF+$V!=E;>?*<1fbQ~T<#`0HW(<^R#@%qouhw>b<$z;~v+waUe*1*q+r~$z{{3(M^zRDuqbC<>umAq9>g&k9p8csKZ&ql; z|6SqBn%uYNHvs07_Acr2>+>)F!jMeA9>!jmtACfb{;6AzYW(+3AM5^Kx#mE{yK+H1 z_!uufsO+~i`-*Q4*h5QyU8gr5{sw^aa>d&$Scv`R@Qn-FulQe!jre5wJS^qEYVpKZ zhpPPzZ`>-!WH!EArCZL&iZ6CQPs)C+9j(88!@ITqP4j~w{@4A&=fa0~_Qw90CfEJnah?CUvG;t={iODdhv$E2UOw7?W#{kS(*6Iu-vID` zW_0!ZPgwmcl0TV^dpL4E|Ev4I{`-HfQ-6Nee{Wau*V_?Z#DX znfkNWUg@iSb3ps-`~FSkYOlA6%R-v^FEqS^6x#3S?@G-vY@_ka7R&iK<`mg5^0LN&hj_jzlk&JP#1`N2*5H^(0J z`M}+LlFudGe5$p~p8s3IRafz9P77PQ6ld|}bxjyf?B!qmW8dd(f8u|6Yd^(71A&3S zK;WAKf$4rocJ3cE5Euvy1O@^Ffq}q4U?4CM7zhjm1_A?tfxumdzT#@-C703m@HN@%{d5Q)f?qdXxSBR=l%2 zfAae~`-38XvdNy$`riJj3L){u+tT!&50h_fvV1QKZ`hoVkoI(SE9WrGdHIY;{TjkY3m33bHhK|)~~~VjL~D8%)ZJg&f;6jWlvvi z(N9U3qw`VrzCXGwe03bv+pp{&=WI?PRPu$JXX1(<;(ccrX6xboAN!l%cVE0YA9F~5 z=%1ASTpT7pKm4!Zzl#hX@|BzO5lYqUz5khz597`E>dh&HO1^&cOuU7?_&*W;f8rxP z`-{UjZO%u?e3j46r;)af|ADd72IBvlDf4|q#*=(e_#Lf|?EAmFMdm{`{>t?Zc*KPi zvu)q~F*2X{ijTyrw(2{=nPQE8IRC+C@6%S7pz&aTXtUQ}>%Ybe4D>}c-bZxyY+>}y zaQ@w5Jy$F-#5exegspqy?{{BEpO!+1p1oMcJpX1#I%Iyz=fu-UTgPh}-}tLD{`~v= zjqgXoM=FFIz9mL={%5btXzj&o3wclTWK2EIsP)^O_Bf{@MS(9`^k|z4E;q zKH@znyt&0=@4J8adH=_Fc>m|jrnmpFKex%k*#GPIIu-BYPA{L|PfWz#yPsvRy$41< zC;XK#z40tPS$|7Tah87$GosfoHb}fb43ouE?YM}j?EmY9T#q~dUv}F3jO`B(4PV{# z@Hrrztats%dxk$BM#jta@Qux${1dU?@bf8z#ACl(li}-q{(p>(_dCpwhllrT`iggG zlg*cy?Q}$wmGO=7N8*Wpe&mma$@HHOeU@0$#;*A zf31Id`Ci!c;?ZByt8f%b%eeB{tM0C`25fCO$+?lyZ+nx-{d27 z_prUTe*Z)7|9{=9>5bPx&8B{zdrf3H+z_U>{~KF%;+1`hGnpSfGM@AYxA^iUAJJs~ zmxbkoD!;ciS$?k%AKmO#^DioUxgq&&NLdb5H&d+9kNYOCQ^Uu%{!P<_7yTI>UOyK3 z2Xs6HU;EwJO>aN3pI^}A^1rOf?Ct-bZ1T4>`z@W`{=fI>`3T)VEZ)IQ7GFLmHdz|> z{~vDo+#|C6{~2NDfc%@CPjZ-%^(p@8&3{A6A5_<5HF(CZuI3t*00_sRSQWx{&yAKGY#(>e&qsu=*{oVO|O5}zcq}= z%KuJBLhP;AvzonX@BbIUll^&3ziZ0u-`iyK!TS7U9G{oqJ2(ARO;5HSZ|LmBt35zI zb^Vv(Y&^v&(*7?b_HO_0)*7nw!{68Przh{#^!5Yo9n{%>KDM<7@c+Z`{|O_q^}k-O z0rl_a!iTs1rMQIPVf>G2`g^8q{Eut0@q+(<4JOB@^ZE}j&ukF+NAls?A6dWbH#L8< z@jtzbSL1(ZeD2ls=Qe%q|LZE&c@sL7s>CE$mWy$$jYAeRKD&d$jE`r2kGx0 zhCkWbQ(a@9;w=bX#(qn)zlFgXtAMBd{kjGD!h`-V8y@=i;FNd$w<&~5-q>Vj{rwUA z`0qEdKXie;_QbF2v1vTxC!TA-{}rZZUqtWyZ_j}0{_pdtD;x1W`zcxemxYgL`SADN zKmF^%?8R|!f=aIaJ*sW7=*gucuS8S-mF(|oy?p!U9q@Dge{_f6A(8)6485ZdPtV85 zzaE|v|2)!rFh zd;Rz_lV7!|Kl*y^g8o!HYvm~4&x9{rWxo1r{NK>Z|AC zuZU9ha`#F6uL;-nr};PZ%UKmKI#i}<_$s~oA8+yBdNy&U1W zfB3Qm<8Qq5AO7}R^97z)HhcPd{_7qDzgXJ8J^3Bf+N=6SNA0=)ul_Bv zTPyYO*Z;#7^iO}BZ#|zwW8lh0}P=9hTagyqP-U;pIZpFO(= zrX&4%BGq$g>Oa@$4y@F^ci|Tiz40&7zYD^~|2biJ?VaO=4X?7RBmcVgS7-dScX2m< z@U8uILv*hHujt0Bbg7=rKjVLriPGdZHCaB!Up}7yReqmL zSsyC?WzAlH{wRD^7w`PYS9kI|BHz&Dgjurw`O|Os#e9UscmKCrlhv(dGQQsJ|8a#m zq`&pen)lw{r(@-5)ywk=lvy4ccCEP0~?mBNdq2#AAVNDqt=gW_Sz4=l5$~SKeYcJ z-{IG)d~9z~bMZ|LxD8 z4}WDrF!q-%(2eSWz(8OiFc26B3`xW2w zUPOLz%Hpqvn8B`SDp&nD4g}UB0^2)ZO?BV@TSJI{l}lc3JxtpZ?>XV#N1UR0_WgcP zc8iYl@|)&cYhMich+lQn{HFP=BrnRV>Zkrye`g)-r}jtR|E^~LFZ+Lu&mYGJKKzwe zL+t(jv-V%{zAdu7T>BO8vn`%Ozt8)=PJ8Ed-`9~3jN!ceD_`;G#baMIuf1Mh`CYRh z{xlwW(Oj-J*U}N5j|#uH;W^Dsf9Q(}FXNA<{oh*qjnApR{A>Kl;(w&MOzo%b*LeE- z@8(6x_li7k{HwkG@5TRR+A_v+sP=2j=e1wCwG@{e=Gm{O@t6NE`&d9zJ=y+WG*92h zTS*W9=Y`8>CHw8wi!b)e6+%=0(%(oiM?baSYW0oJslMW^b`DJazY+P)DfxYc{rBPp z>%aEDpN)<6Cf@^mEFk@_{hSHY!j>$a>wk6D-@N#)zl%!$p48QPKdJdwK7D-q*`DFc zTYu#9`7m1~p7?$PRO_EyF{(Xv)t>(J{jXT!X^;NO)?VScWdWXidW!3|-1_=EtE~Oi z{`PBLPW)@{T%`B^e-yE=yxP{{M!s-_cIv zmAy5`p1xmyQ~Riw&{RK_6LMRA980b~YhPa4esXJHxv1=`ZYr1ET0O$!j$HrKe#2+? zaP0xw@7Mp-ekvOe?;+J5z~8msBBJW|C;qPgwnR}mEb>(^U-_|L4Kb^^up0Zj+Q#{7 z-|&VvuPzgKEVusk|F90LS`XGgqU!gHsr_p7*Ulns{iygg2l!8)|Ml&$zfZX8%m?L1 z$FXvZxQ(XyZBr~LuwPH(U-&J`dD@@C%bMadm8bU8_+`)6`kQB8u|Yi5PvvQRvhlC} zRC^VZzRKdSq@T98y|OlzqiMY5Z0`u2^$(BT-aJ3L{QCF53crU?gi7`fz-ownzyFi% zuXRqZcy+xdZ0W=|Uh=K|zw8&S|I$~yl56i5U%aBy`x^krVY&0u)Sp~)kN;Yy?ai0{ zANyzoFY@;&gr@O~7d=eMW@fnHW2JcF_w!+Duf6{e*5+R`o>198NMR0f>GLG_*(mG$rXZ?9$6f2|dXgUx!Wx~UAG(xo_?58ES8RQ*~#8h`yidcpWl^PY##6u*AIgh#*km%M0wOyjdR_7#)9=7QX&_GI`M z&C^fw?Pcwe>lq~Zngr?Fud+7EzUs*9Y5d_+x$DnLG{v*}U+2teJbLka{i3ng_Db=@ zpN@aU=0BxrzAMS|+Bg1-h^ohLDlhU|EA{gIj%E6{Ql4C=-=}+CRz$zt_}Gu@*`McY zQ{vypo9d@B`+oh;)A#vK^;20&+Mk!()RwIMem=~z*^%n>x8FZ+Yv07Hd$oD7=wGWf%je9mc`z~?^r}3vY^u~V?)%x@PKbppy%FN_n z-~Uea$^OpP%Wv%ccQ)#y zy@9|$U?4CM7zhjm1_A?tfxtjuATSVE2?5`ad^Y@;+_=8N&Fh3b&-|P4Q`+-X_K%O< zm&1poj?1?5op(R|*^=YyaDu z%wG8gQM@Ls`sbQ1#aj?n|F{3d6TANY`_zH`!@GF$m*0t9{$Gr|=x+dXr5`j9SPux8 zuYbE8iCRB?|Npz)8d=Vr{lmgfRS0pj{%HvT^u{nJzTqA=4Bg^TFD zTmLKJkA&$TUdkNFNBC$Y-#-gqxFBEg_6(mNpJ${!seC?M_W)%6^?!h{e`olGvG*Gg z@%8tj7Qf_67ql1CB_!3pe@m2WP=JTue{IkI0n&E^ejg4y2i#Y%3Bk|rf38@7AG~hx z(MYk6L-v0Uu9mdt{C`zzk88jFR~x77_)qg&?*0x0^c%J#=W6S&I9lHahOb^QKGU3x zxBdUe!%v*kNB#Hz|NL~D3&!JD!#A|}s`HYnIH-vXO)5q5J>hJ#_+WG%M;FDV zam|zd?Hm5vuy^36r0RFNO7e2of8tsHbqz@VMEJTmen-Ra_aYa8+20HJxWIGB`t$!k z9p0_~>HGiQ|N8IEUwhX7IpGJiG3>)Ko3^jt-$xPRe}4F1!s>+h!>}9?xz_)zV)DU% zW3yQg*Mai=yYO-8-%DE`BW@#AukCPDH2!aIwhqU4dh+!7udzS6jUQ9(`TrOZ`SmG( zy~z%J9^}%cI2#}1?;QYn(Ti6^?#I2_tC&-Ho`2bj37^NtNS!=aA|~tU`42qqoupU$ z4gmXy#Qva$g~NkeImKHL)f+p#;$KeWO@iJ|RM&sUE;#>c`fgqO(`Kpa-T$d>H8TJ8 zwEwTBPrZ$y`k{1kpEhRt`&&L15Y=9tj{MZlUYI>1Kdr^H-agfAj%jrfw~?yX#r{9F z7!DV-G9&tjgxv$oBYN#G_x}HGUAyv;pSsF%UfinF?0Oo1`F^I7zXOi&yCnSohtEx8 z+IvNZui^*7Uk%SA_PtI#vDA4EI3-o|MdbeakKDIEwJ*Oq%Fpw^K8MnMGaTXb)~=)E zn>u+~gctj|2VlRk8}F$-{iBxASG-3t3_0}UPQObkz59>oubh>(evtd|?^Jh4QG4s< z-X8$+eTv|B*ks%Gk`oI;>Z6h3ygXK` zFT1sJbiI6e_{0U*%hNpJ^~8YC-~V0P;WM@Oe9!p5vc)%^&y4*)g*^jwfB%N?>D~R| zxsmJnpZ5MBd}DYXX?ouCzoR&=g82VYXE&AMH2?gY~I_}Kl}RbC&iinS6VFcl&J2xg1&EGe%}2*Od-UzU;kvk z|0$aGhpcbCf1e-!UamNGq+d_>|CRSR4g>}Q1A&3SKwuy+5Euvy1O@^Ffq}q4U?4CM z7zhjm1_C=C0-jeM)Si{j>z(g!{v<{hx97LMultS2mvzr`|JOXnR>%LfvA?p}Yf8L& z2blcD$fvd(9K>TYk9>dl{OEo^>^EHGd!@`?KXTaVqdpob_W8-j^WQC9{(b+&dv%;D z9$9{DLmn=HLJQf9uElzt)!+ z^v{_(bu#^9HQHz@i)a1&dj$PDEc@w^fB)N0a_=`!UM|0R@z>MuzwPJt$LrdDIPDMU ze;}aj(#8PZ?EkgZlb_$}*fBdKd~+Dlt2f@}f&KR%!#B0|v`^l-eJNM*`Fys;qpx`U zwZF01SN{7oS^K{kzeluuOMhr*uXto2kZ86+X{ucua%qpZ?eQ7yc(s@Vi^Xd+J~IuWa^y4+P&+JAd(OjZg7}Pw7&e{a%Ru zSQDbZ{xt8Y-g@xc z3oxOw-!k#PuF3WT=hqvX4F8H}&XC3XNXqw5aO<6Z*Y=}y?UC7{@;^Va`+#bHuV#Pm z*l6mYiNE-$;vdoUmESQ<-fH!Y&x(Iy7f-%&T@7hg{&y8=zrX%jDG&G_5GQL5zWn?B zb?Q%lu8&5FHCC#?^uAQqJN9I8o%`pJYWgDi)Y`9nrh55RO!mf~++PQ#YDPl$c$g3N z|5vv0rC;v;ZY6!(*A$t*-;ty@FPPu@bE=O<@U!3kSlBhU@p@j4*ESon-@exVM^>(T zfbutHwZ6Y6WpluL{p`g*R3VhACGY#IW>@P={_M}}#>e}=MT+!Al~0ZRJU#pBGyBR- z4D$WMH3#@tUsIgzH}?N?7U0QdJ(K=h`=8eF5ZU@VLLsEu^?#9S<6PrUuCZsszQ3+E zKg4rQ{G%;q#BHQX{f{*rfAJQPc%Kf7$&PIO8~@5V;x-bhZ&x$cf1l$v;~k&?kA1`T zfSU8mb&I|AVg17sUe@Oo$1zQDA%7r)kjinq}7H~yag_UDU!4EPm^-{)8HYy7ABsXWU+m2!MO=M{(v z+x7AcNdF4&pP17>Ro@k^Ia2rA7qs(R`9C;)X2ah8U%!zitFQf^zyJUFqUKNUdb#W? z9-q&K^KaX|MT)cYt9&o({K+-`>^=V}s(9KEPy6=&Pfq-+fASIUJ}m~>{$Kg2u5yaE znE&e56X~C|P~)>w?(qAefUu>*ulI+y@weZrXTMkY`esjW-Iq_<@6qa}`H;PP&mK95 zU$XeKv42|%A@S&(1N4b~wMD;@?0QmryR~>^?d{d%q`9r_6z9gPzSFNn(|9Y{-`;w7 zneWzq|6cr}cFNv0VBK%=Uqt%X&n#KajdZn{0f%Svf{96AdJMFdfiv)zolExfAzP=r{=@mqc|eQ z?5&r!+-LjaMwN|>2iSS9jyz|9yaIe(c@~C*gWM5&Xpx-~HN@grTeV^~uJo-T^LsJp-zEV!b@ddE?Kw>@`{C6leYE zWpzEV@5g^C_qJ=XEZ^n!pQ)aFfR9FsHTG54AK@)NjB0;)N6K{#z`xGT{ET1i$K)x| zd;U}BfBtpt&z9VOpGNNUv%k3iKcejyE49bJzy6E3Ly`V1H@~Nyg`f3ubcY|gFczycRr}x_|*8H+}X>2bCYYo@EZWQu$SMN zUA(@3^6Bv-uZQQpNpsLZU?4CMxI+=JANJQrw|8UW_vinW;N)<|*E{t&_grj@=%i1_HMW0@lxc?!fgU{!{P3__qrP zJ5UgKKfmh_`R0lIB$bU6-!YLNcN@k_r~@bQp3=$H?rM)*_v-u=pU}yxjWg_4hX81g zTb=1#EBgSz>lcFw}kzjtSUN9WfyHHxc1z<6A{3cFitBL2VJTIcxj|9&4kDCyeUZ$tmM{@opjjrb2( z=KMqd(%X>#N~sI|z-8KB$$zcub?qVPG!xD@fPYK%d}^zJvBxTx*g}-GR>`d6}&!kCuXU=S9I8uzj`OOzr9VZ z_58NCKRcSe@p)M{pYH1Z$!CL)9h7wK@a^ay(~quUEaZ3D8qROMrv~4bZ0CG=*>>39 z+4xB9tTmk9osGx#wgezoSzU*Hceq;Cp;eQA}GP4m^X0Fe51sf`{^8hM9IkPAT=d_ypziNd5AUC8Hv8tt z{)yoyMF;na^@Nm<4gXB|H^buJGj`>p4Lb2|PCg}M1FJl?cqNS|76%YczW}b&mob^?@^J(`cPt3JpO#yoz!gQaQ|j|e#+W>Mr1zb zFCT6ER9Fr#3|F4y7l*a^w(zII{I-NEj~{HY$(5`24-K0i`hQATyRaiaGX8Anj}QMt zU8(dJ>%tk-Y2(zhv7&rFzrHx_n`BgspPOiRId;Fi=e6{uck^ebdZEs5XXTq@lc>1Gl z>$d9uqRDK2G&a_4t!sFwHzyyTGJWr>&e*ZB$9#AAz{th`{>Dmv<_B5djmOD3+S8vG z*2ZCx<^B2aCt~-xus!0s@IQnL_f4t)z3?Te(?9VZ7v?VqxPLsX4fFH?DOa1-p;OoIy>clZ^V8gi z&ul(McK%>f*nDg1rr5wi3^=?#Tv&WP<$K0g4&sSZ^Rx1j>m_0OI_i^n}xCeb7GikQ@&R>j&LmhK-@QqWs8|t6RUVD#rjQJmi#WN0K%3J-PhUIPltZ}#~<^57$u`h{SdxZXN zjD7Wwjo9km7dvg2U*)gfUTQs>r@akd`IL`-kgZFYiTkp!oIV|vGreQ^h#_}%V)Mh* ze(ksFTyGjX`)KWXKauil!}_LQFAZ;r9eX&!)Ovnc%JxF@hrcl+AKvOd7aOr&67FNM zF|W*nH-_(+&gK^Z)J5mW_3LZIjukD?IIGZw*(>!c;Eb8J5pw;eQIt z+1i84yOXcn`g4jL^xt03U#@j-(I%|)fnBY0HhipOvGs*-^_8u9b#fugMcZu6q1T5i zuJeudKNo$~P0u@jADwo!33sybvUgRzI(pX&<`aBglyc$r#>jGcdg=-@>;7j_XAWw6 zj~varUD^@$;(jeU<@>ezm*%KXY++mTto-@t1KD|u?+=E5B)lcM-;2(@$LqpXrvK;Y zYW>vFUh-$L(;s;%YmdGCk{z3m#JB3zeW}^Fc7y{Pdt}xBWXiChbDb$ywvR~pys$Oz z`st&s{O5^Z>h*!o*W!P2%B5E~wJ~qyX^t3& zH^is+#_yhL3D@t`!dnA09qBb-&fst2-jHIU&yMT%F^& z;SYqJr}gcGuz390X-i!9$GyKizO&W8F310pydRpnM}@yT%+|GIwa5P0&R+cIPxN&U zPG{a+5f+Es$IdSjY{^9T!!n?%hRbg23dv5qy zk*!(BXNPZ2OjtfQ%;p_o*O(tjJ>5Q$j}2Q})|k4&Nc~g7PYeHM_;146yIYQr3|D-( z%I9NYHsV)KKNR^l!Z(GD({sY|WHuzMWOH;RdwfTU^m0#uG$E|x| z^F|zNvh+`mueRZ2uEQC|FG!v>XZdYuKJLQ{J8kuN)Et9>y`b#msc+S0KhMk`w(iUH zft?)nvE=eA`NHTA3Ks_QeSKv2IQ9x-ESDOK(!uWeVQsJ_zcfes(uw=G;hJaUnrq6& zM?T8^-eOL{Nj<$jeDHNs(<1=CtUa_JHMEJFUb*B#@e28-yADPbByd< zQg!CF_0-$BzLUEc)=#xtdzW_TYmZW|?!+8xPqUV^e`);fUD`W6te>?upB%k?q(A?% zIU_8m%E7f(AIEtNF7sklu17`>AMI9q%KTvYoh|;~rd;O41y9Oj{-?bn4Ut68~fAhc`u-BXrR@N6j=J#7t{+(85PjgLW%-F!i z^{|*nhs9N|Pw=dKT>JFbI=>k`-Q82~ny2)A{d8~Q&xdUv_dloZrm!_s>+xBUtx37l zYlok;E%$xG^i@xOe)#6FYpZ*N#jIL_N89GK^O9#1RX?>e=4|xWeEZ?Bc`i?~`KB#%&AhTkYfWtux78T~ z_O))!F}CK|59Rpt;eAs6tsK7=Hs73^L~l*ix|OH0Hmy}{iZk#0 zDn{*XwWjrzeLXi+{%GQr9W1rU-k8vv$M?+<_U8IC!_F~|=8UqjHNQ_x*}SN6)i2{} z9^XG@viWOYd0$w)IVM+anMZdII~p_fm$!Py+VlT++H${tP;8WUO8J2BFNXgl{3ESi z`GAyP5r)~T!~ZG#`{DAd7)LZa^)GI=SLaB7XpTP+zBv4d$km>@it~NLm&SoR7I(sr3@|RQf%aOkteqPF+i;&L`e<^%p*!QSE z+hprW`_=A;QWhUZYzwDvOPP;29|_+-e!e>`U)a$7WBf~hQmZ42#fLqcYR`9}>dId~ z?D_h_rs`+8G+DfALk@-eM^pc&VKKfl)t+&=uQ@e!p9t@t`o8Ya$iE$Z`TtmoktMBmZuz|Mtjz*|plQHr@ZpkzO5N&y|l)-Alqx zjeJb2e{qhU4L>qRw!5dSP5WfE>H19_efhEb_Anbq^SOK~r)nEk4+v}bsPHqwUr9c$ z|N0!s@(}a9==(U;?#EL9so2R!-o3w^ey`~&_sW}mO4G?hJzwR%9r6`vgKgE99SrHz zv+Lu@kKFgOk5lo=PYnIghiRMSi&OuCIR5>fm)^%3@aCY<@OdSh3^hs88ju4fPi^omgf6^5|ZWdUMqJ zG5=l^HYa|zt1~9{$eJ_kY8@%V+mWAm$A_QZ>csnvv}t~7r;p2?U(I3PdsZ&?{fgO_ z&5f#uo%YNj=MjB)aPzZ{#46htrhH>3)4eU+$D5bqOA@cn5&C@J$j17@luI@?=Z4Q~ zbu*09zA^RO4|e?Y)7;@F_rHja-u%-C?U-*bZL%@EH2i@7+qa!Z{Z*Cs0vBYsfCOX= zgCKJ>l*9xiC={un0s;yZnH431j20Rw1fhDJs`rLoysHAii-1Z21uF_DAbEq-ftsL* zm7)bw8LUze86BYCPuBT%o%Jqy|M;%+%=_8Te)c~5citqj>49^Oo%QHikd5u-wMW1g zeNyxfWDLEtARzxuAf6s-uHxzoV>vIx)HB96hPzeAF%N&|sU4f@#5X7L_{;UFkxYF1 zs^gCR__8;i7-OB>Dj$z4-abKdGD{SFMu)3fWIZC%`Lqx{OrlK1{--AU+qbxhV)LXkSNhJEOr7O{ZZFGi<;a@f*v@>9i=Iq=emD62SQ|0Acbl^{ z?ik}aHAcr#gUaM!o|E&a|0dB*3tEF$r9SFl>?`uLw&w)$HDB}8ciuT+}Wa=H=CXnX#2hQKD>B6AIcjG{hmA*1$w}~81EB0c68?Sxx~3W=-rmS zJ;O%6<~sHxlUrr_iEYP5x2I}DW-NT|$LEur{x-12?3#~U+PC!1BxgF>9Ia`6n-`zT ze-c_=c(gsHj@Ft?ocg;r^Ce?@PHf~-J9(4KfxNc#-wfpAeW~VTl_%ryZTP0tDK)0a^Y|Mr-JrJ^>iIeUT89O$7@XQMKZqh?8GGJ zXI(oV^RQO-7JIdJu3R5_yFA%>5Agf@fN$@>_A#0GYseb}jk@87=R`5kan zaCBhoe+>R2^z*}5#%Alc#=?Q#EHpoMzFBM;`JV@3UlsKC#jNP%$>xg4#o21$**zb) z_r4|1j=OhgI(*~&amb~-n8s>MxriZud0ZLD?d16R8{2pe?Bua|z=mG_zOnH=BoLci zUFq1@PR<(#;_$EU9-;e9iNEjB?@El7L!TdztvfvBqqlr_vOaWU*|y;;du8;k^SP0K zYNWe6G+AxM_SW-ZHa7v3H_JF@BV`E=;7j`*uWzazTt z8$DxQVj1V8_*mEVLc8C5B%rgt&YG>FBg3QRg}x}Xaq8E2biU*Am5aNhaqPv;vHjM$ z>HF?q?^eSWW1I%~-K<--) ze*L!#t3<{}?qabuZf(tLk3qk6o@)9+!0xPpR*NxxczE&H_3sPQLYvb~iD!P!9{r*= z`bh0N*AoXFULNM}?08e2&V~;M*4f$8eRW!V$jOX@uf4jEE0|qUTb>mE=ROp;%ooU2;Kg_HgxyvUMZhIZ8$lb;z}7~B--G4nBwIr~j?Tre+~8l9Z@7{i#I z_p;EwjnUJI(fQV9a&Bx|^Tsr$^>Cl2Gr!}5<|+1hfn4dD`{SXTbLZEX_|{*1JRSP2 zLGu$E)LX6n?LwXPshs|Az*kM_$X*xQ&jja&UM){G5`&&?>DLePU*u^__GI!fAM%|d z_bz=RwA}DVh5t&hV`RGr`tru$vA`Kde{krBgW7HsdW+y~L3Mn;7Vy0*U`w_zFkiB( zBeVYQi-(71qrPMvhrPcOvRxsx7#$Za&%*+F8gI|UlIKeXxqG5qSBT8K)(kz)_n`1! z8rg_tk9;v`JUPi(Ue?_A6mj{9%ZJ`L|B*4y&+~#{)#y$R{w(yz0zUXdV&m_V*7xbi zwh8P*I=*6|^+IjOJ;8>b82SNk-5cLJKO2aFHa>cB?CX0;X#K8!j|NW!eDuN0Ko0os zDK%df93LIOI|DubzVP~zjNbi`oUi>hB@pw1@a~M{;@iv10(;mPjn9X@al~z&=BID@ z)04Yrk{Mh6&0S8*BC9_s$-^tnI#nk)l zCF|C4#D8+ItBv>%j{MlL*Jo(`B`$mGHXh^lLDu+kWM{6P9narp)o(^*dc^*4Kei6* zB<423TLX5V4%pB;YxWHe2z}kazcGCKkiB;d`;P|BA~L=U0)0F?PyTlXlY6*%ogbft z!9=il@E6P2&i`u%fB6_+oDF05&S0Di|K{F&*cxZ7yD9OO2KH~qm>OQLddqlnc7CbR z7Xq^JdyTz$vRAuvGRAEInX!%OH^KjJUcODNA6v1Sw>i#^pL>kl^``Z*md<4Tspk64 z`KEvI)qiE6olorBN97NTY+m5KM#rWx^i1u^+b4e$xjH zO${&Ji{;b!><Y}3z3Pd z7Wj!kt;Nx=&QWVE z48&PG<8F|r{w2fjJxNx(_IQ2Ek7F38`o?N(aduAZpQXlqZ|IGgk-2N=3G3{)mi47u z9GDw@-!ESY@4m2V;QaIc?>?rppZU;{8^1EY5ytg5=B|+)9H2MKb9@K$9v!bm_o+P9 zy}fus=pAD_j;A;5r_U!3XO8`i{(WFPdU4uU=IlJN9!~~r#Jw{Ro3GxiFMjjzJ&*XB zt2N+1BWMphgZsYn9?)~nTygciSiMghgFQQUVKMM*$<*7vSKGc*oY@P)|0Xa`^OE;( zgVxA?ogefZn+R=e^A^AJY|Nf7?DRc5NQ~ z8G~Qzf>&2#8FM079H{X=i6O4~8B+|owXZISZ1-T?E5>gf#QSVuoev9q^VT>2D>A=z z-7~KYjvVCfNl%AY*BwKvKYsa`gUxb!kc)?Bqek|en0Pv4c#^a8oBx#PRtpV#1-_yA zZGJ=Wn$QOZH^=Vu@Lvyp9r)e*^T-|u&Hk5pJ|6558vjUW@wNz#3hd#ZMRri0zG2)E znr>FWXYcSI3Y=f;=uQosW19y2{yF3EW8e7bql3qzdrNeih4#(**6>?~KV-01$8AC% z6Ucwf*yu;H{R4OUV*~S}+dp`(IN_({`M%(m*q@b`ufDu@aNn=$(RI;l*2TM#{KVkyp|LHgHHu(eFdwb~GI1lyPcOz2^ zH5%_Va(lu1<-TD1@Fxe(9OtWVjoS};?;GD7b`7o!ynp*%x+f|;|09D>2K$Ad7P))d z%<#^B=j_Y#JUkHJeT1L0&>g&G_8N z*z_!y$FqYSUC(xY7Mv8Cy}QH@!#^4D zy(Pf2Zy)$(ho`%J(1{~Af3I`z()%;Q>x;94rGZ+nld=1K!kV$QUTo;~zIC4+91x6Y z>+b&5wf;=>{Mm}Rb!g+(_s+=AiM;*dOflB{K+o`(mz>7q@DtA+s=mgV82n!seSMq1 zIO=R4%VBDGc^J<=8|QUxc=5^1(Z2J&!Eajkx8DW)=vuprB3nGjJGQlRftF z_*pZ*`G1vX_uaj*CBttO+IYq?_Zfk;`kUZ_Kuy$nPH5{gu02`(oOkN(ce7l?lD8U; zeY}sK3;3Fw`Y#=9j5F4$Z+SNA>K!h&^XmP>IOyhKpLaf`7Y}jS7+0*?iFvfxP*V^~`Pz zW0H#_H)ER@d-E}0JiG3H^Svu@wy<#?_+4);$(;ji*A1Qy(9Qxny|a3r_B;NPrMBLq`Gfd1c743d#dObVo_y(RD|a&Efw;!y<9t`kjxPq;n}YoVvE^UA zIOatESf1Ta?sDe)aBxs`>QO!UZjrHdN9dhyUg)m{%ez!+hPxUJ}{vfxA~}^O+Uan$M41|1BBxn-2DDs-NsDc4PT{QGVUf=B78C zN$(4e9e8zgu5=!r>~9_PY^_Ia#2~|u?{`xoBfmU){kc(KtYxutkJk&m>**DDIx;zm z`E1bKmg~Zw7u-F_*|_V~rcW{C@}21PhWyRd8R_?r^Yos`$UhgEr+ucEx;HKkU7fn~ zT|0jLdlnh}EhC*c_k}+>cI|z7a&zL3cCS>=#w2qFvz70RJlUTbToCAYJ$7X5W`{o@ zu;!ljjrG;<)|cKq76f!X1KHXK&cWJ?(KB%(V&_nMtoJImemiztF&jhwxfdE+tam1c zIPNUsjANMB)X2nnDq#O&F;|Ja@g~Puo=4*I7mpp8caB=Bk+ntdl;_#Ox`VF#^ziDd zu4@OapL`BU>_>w+k^eeyHj;lMvT^Om*tAymvsOu_lU^x`ow!&-SOt&X&&xpa$?`PGzNL+!qa#QG~ zfxPJ(r!nO&?pZ;{XVWqC_^SMao;zKy@qMc{CuWT9p%vm|Z`jx3tR8wzeBdk~qwju4 z+iM#JpC4#g1p$|RnycQrN} zhv&a%Aa4ET@_2AsY}gs6`MfIhzQH4b`_!g+l9@wk`N+9Ez5ew5zp~xJ-x17;OdjOh z1#Evl@aVk;{?ypvy=!+1eMI8BU;TM-NI>_8U_1u;n8>~rJQFyF&JC^)%=e5D?Ve0` z>7e`5@aA!B_^%H#G2D|5&e&qTArOO~JI~)oj{a28_;~c#RxR1@o1(rQ&)gyfDc0!aAYNt?|b;_T;M3nS*!0>Up+L)Wm!@j$A*! zDYRbua8TWrgRXM+yH2vNZF^ztFQ&1@UolU-7*u6S& z&|*Iyc#3;M<|af_U(DHNAv&AKtG)4>moaNkjoQ&MaE?(4&UZUw&lQ!^)In|X?Sw;AKM)h zS^LnvVZ-oC0<{~{a(p&;d*sLFdBwoJMxS2H1_v{SB7_vv2%uzt2bU<^@4oxR|INC|?#pWk= z>yJmbce+2xoSXI*-`bnc%OfAJ^SD-Y>Ze}vX?^j&J=&AE2eYig~6w5gXib(S?F;r;~8hNpZTmblDqGXd+qAzoEKY0?p*nBP#GTW zcfFqcSs?e@^OXB|U#t)-eP@JbXRQ~6UX-Ugx#M(>9|>*k=*DX&4jKC~ZGP;# zPDg~cF5eCGoIde;!oE~f{Ck40Ck{V%-0s;EA~Pm_yjSrTMSffS_Xy3eKISZL_tL?! z)05`~*2KN%oxxGTTf#34+%Nwk_;~0$1{?dHoqVkCha$KCHwrC={c=-ct`M2?R{j4N z)L&lw`K}g}XKUP!Y2H0gRvg(G*Lsod5Qw$$;44?>XJd-@oj^?A&7D8``TW55-Iens z!>g%U_$|V=zwMpz>Sm2vFS*rMKk(;6wtMUv3;&5hKbF;&-^oL6Z1MaX8!snoy3L?J zBhTvtz0&hh?YpkdIySck&PVlH7JoduTSEJ$q~7NaGUw#n(7ms*8^=%!Yp9-d?r+Y< zo-cA!r=Fv&*S7IdpDzdU*eg%{B1X?v-?-ba=6P*k|D77F5G2BCO5XY)*k=RNY=5%S|v8}l9Sy2DOfAH7z-~i zcJ$^n9}yQ1`FhVS3%y66 zFU&)Ix^{gB>HpH#4)NsQylXFy@w=t(q58_d<4?9zM`vTdHLM<5{Wr;TTA+{d8;$Ak zJs<6d+N>Jd-gIv9=~|(knfBxg(OXk8W3fly9i6%L9p{|;?`ZSYzrJJhwdbx5{v~Kl z-V=GxSMzgTvhBMPuRiS~Hjig~xse%vLHKKemBSnJ<3Z!-Px>W;o*%pRs+yk=8*%Q9 z&5Gg2Hfm9s@%YN^wmgl|yTQvs%Zm-2UK!U>Pnzc%k(=MxuKPhR>&0zib4;)xXq}wd z-S^@w3SR7tsNB1!dsrWerw6<{e9zU#?mmrg9mu{Lcpu4u{kI2M{aPD!&=+%J`zLw6 zH*h!qequim@Fgd6KHL}?{*ci3hpxTvwDkMt`BwC#-Bd6Od7~j7( z9pt~u)9OzTLSB}U3AXK?*^Mi_CTI` zR!x2LxGeZgczbWZJdJ%~aCvxs(?d6hpN7_pbbb>o3HTe|nO&b9LbI(OpSc;&n9Waa zS4aL(uxn`VWBYCEKn~}JUw&Rh_v!#`uJSYus3JxBEOYGZxH&v(5Hm(3^+0NA1IXgL%P?!4}c~A$qa+i`TgCh;H}r_QE;A z$AdcpKKAThp{)h}e<#Klf)&E^6Xy?s9!HZM99W~5h5tW+`P!e~3Z4mOMK?cBy1xsI z+x==E*&pJ`ldiNmqK$v~AU}F!^HgXyI}bLUuRCRFIocO^bL~En&y#^(ptmP}82s}f zW8Z$HyFDN)U0?4;@|B{elZ$=j_wP@Gr-IEQKRZ|_x^05iN&Y8=*GuZ;x37Ibe_+s_ z+Ay?y)lLk0^wIz=zE~#)YAgr))A-d-kDPDU$)03OZk>#MNbJdH1@`cG&9)k1)lZ$s z9vaEzMCR_*{k}M~c*c^;)`7bbo*d2Zg+PAdi(P)z(0cl>qSFUzy-9d?ruK$AlisG+ zKh~MwZh=_d*L3Y``Y#6N{Y>zKfStM-OHUZjSmL(7t+D*&PREC>JIHFmo`JiFvD~5A z!1IIMrJ?0yzI@9+7+T%hD{F-BIA}G}Z)j%`Ut{Pu-wEl(V59FEM?L>EGQD(d;5>Qd zz@yn6lV|%+@39@9XJU_gZ)*6)({s+=_6geEM19;%%vDd)uRJ{IoPBC-f0ZT|ul)BC z$NA{2J2^NdxG8ud*gn2{25g*vWBGoO-xIlY<9l7OZe-{S1OCp8dBG<`i^IqLY1%N} zC6V75^vr!#boQdL#4#VS9uJNi{4S2~4TFE}*vL(Pb<8tESN^NeV#rS%IjL{`KNwn0 zUkjE6_t^`aT=zbMHwy@5$=O@%oDGv4g#PCHb;I4q{lp z%JjkU1MlA|@^5TD?z4QR#KyeI_}m`wljpYsKJ6*?6=#}w1UW_M$SI1r+_EOjLIUmjv#8(yp(LmSV%w0+r}#E@6xG(U0VFcF{5 z@21!p!N;1F-E$lE(==HAtD)U)f+H8?c6{4O@Hk4~+O zxp?sD7)L~|Ui{6)I-$M0<>3F;TonG@q2~t=hj*@YPR^G0hup21z1IGlh`pT2JBGZ~ z9Ixi`?s&$ptvJoW`WkE1$TkYP&Nqg>E8u6HHwo=tXx+NU(Ypud1kMKb_WZ(u7OyeJ zJ{Ly5c4As{w6m)GnV~DApBIc}wc{iAo@r{Wj^=LO?X}KFJKb~{AUKOm%13oxujm!o~-L`Ec@8}#aI^f zjbY5-GlK3xXQ!C@ z;K0byddE3gT6{X=-5GQahsI`pz;*&1onCGan;&228^4~TWcAVG{PeDI=_V4(Ixh{Z zb@LEU9^zG2UVLXKxq5n<(`}*Elbx6o;TI1w=^flravVxHXhBUG+Q~6qZ{+|(EVL-e|*0Y z{_$Yn;KtyQ;IZJUz;}{UgGWQVue~>L=Q<<&^}$}@-K}m7%y)cWk_)@{MSgLfp9|Iu z?YGef@)Xw{#5cNABQy60LNCbknP9zO!(f-d8qALUv(e-A<>Juv30?Vyq2Cx8KlQe*_=N%cuEVUzeRF;yW09%%DtT@fu;)it-}@rd z8!HU@j`N4`#$xa9C0B+g8HO3i{iJ>0b z=Gl3Zsm1<-eaGV4-nlh;^CTPh*|P9t^nEt2@sA&T=0?xPSpQwzj^U1cP3#^Fo(#?o zmIm7-mU>JL^w%$A=P7sf+ayo#X7w{hYu7QmR+HD_hS=X5$XCrbh?`-#N PMs3G+st>uIV2A!sg=XJx?|JcU=VAsoWmP#Y4t zf$lK-*o8tc!5EVN6wJ=snPu~%dONd&h?dO!;C=i#+S8D&&tA{x&8$eK7N3caTxV^k zT{HUBs7QR|PVGlM4x?JfrJ^lsNJ2;bAEWbJ(u5DdDFNyKJes{3x zc%5#S#f8GV$jQ`9$^NY&1px#QKmY**5I_I{1Q0*~ft?j_EBsyRU+;8oZ|Yaqiw6Po z{C{R<;D%w66XJ>(lj6D z&5X>8c{Wd`YnrSE&>xB#0R#|0009ILKmY**5I_Kdgn*k_KbCri=a{|*|+gmqJFVt_vl-WRtvs;aIhTp%9T>t&gUol7J|U{sy4C|tyas$ zlHE)||98*M|L0_4ChY$gs!$L>009ILKmY**5I_I{1Q6J+z+cb*XXm$@3A1}wbOS+c Fe*@U$P455z literal 0 HcmV?d00001 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.phr b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.phr index eba9c6fc1f3572aa8c529b4dd49448b75fab3292..6d19cd301c5cbf400a0e352722aa6642415f1756 100644 GIT binary patch literal 8526 zcmcJUPmdhQam81ptb?FWV8B4$b_VM1<&d29QUnCd4wvL$NqWHL%Ig!6U7g)sJ5`mf z`a`mL5uv+3gJr=m1br0yX!!1nul85)??qNs*O1HA$$}(KcV}frM!b0OBI?$=Tkrnx z?yrA;W09?H-8#8~iK_Z^PdCEMMiB+tslRc{OkMyWrNbtLLk{>56r}3NDLv zaI0AQylNKiX(*SWZd_cucFS5{=EdISRaSJY{eeAaE);&9SMG>^o7OjB-t0n_uQ@ia zw)rw|V|_exnJ?NJ6N>yQ4EDGqukW+GD_vXrs@cW5ojm1ywQ>(34_87~yE0^sXc__F#H2JCv z%{tbl9x_Mmw(`_6R;y;_w*D1=hfp~-DtY$PyUCqtmHheXc>cm&%J&mX^H{l+TzT&zSwie z@jgRD%`up>_~es+204FD=(&0R;DNsQ!@C>GFC)^(S)5e%HnKA$i1X19&}&tvk@!!Iw7oiA3ArC|h^uZc|Rovk56-Zdpu!SXCuO!{q-eMA#>5>?h=72h}*5U}g2o(PVM z6JXLZV%y})f>m$wl^=57SCI7~!?9|c$7055q0y;e)w}cWzB_kiZ1Xigcz8n;hL4hi zahFc$?fX>Vs@JgF!ft|nU6vp$|0ZIy3efW!2X#d&&a<-)6+*u|HqTp}aj|*U;J9D-btS>2Yih*`uSzb>Ak&sx24OOG%?sCt%tGGi1U_^;qk#kM!?%aAm zVl&so(n6U4Do_nHAmmuV%IbV)5ya2bIcm@av|KdN?FzrgU6sp$f8BaQSVw}6Z)L?Q ztOL~V{6=-R9k3vRZwZ9ehE-mNtR=vsi?;h!9U%s{3$@V0^GbPq&MvO@)OrqwWB3+- zQ(9ihFJ2(-9giJ^qu=1*#y)h1K z?(3`2UHN)X`NJeGO{DN)5h+gT5ji5;w-H}Ko90x$DNzjB7R=STU%1ElM!{!^aM4$D z4r8Ze;L#Yv+qVp1_y@ZWReBX#+;}*V-}}Ix)qa_;;!Z>l+Z4I4JW@q202?XnN9h!x zQm$MHhkkg4#)A{_4H;PiU%MjV4urO~)w*|h9hc*|9>9bKcHEv`eZ9!O&`knY7m5(I`g4J4?v?UT*$0-yEyuCsuI zQSa1Bl{0QOgk{+1z@`JemwvAe^pA{%un+-6DV2J=&s7y)A4vM+b?N56{^MV)OMmr0 z)TO((@7|udv$L;XK05vST= zjjllrT@lfOREAMU0k7f-olscp7~(kY3*nLac~-|U_07zbuPR^ZnUB$-s0lsXl+nso zW<>e%Yh1g9l^g^oRWNZH=>}DB_gEp%$a^@FKE!G)bWZ+BJ?QEsaW~%HVt{FRPZ}$$J)2^m5mJ-W$Nk2M`mJykilwll zGt#js?6nFlHHP9Ef_u6#-&vj`DuEA$9vBDCCe$+ZUYWQ<|G&-nwKi?D9D0^*Pv;GGsXYdb;IJjNds zN!a@I>zV%VmmoTYMIRoWUOxYkV)3Vc`isTlr=L?SzPR`K-I;qb_Y4GTzp-NQ@`9G) zg=Quf7o;iKKwKNx4mKrW_)KK4KSIlTHrb(plS?Fq2{+5snfq#SzHoOIr;C%tNzxO8 zthA12C_RSe^xVGhL`U1uJ`q)CEkH(%&U*+a<}(iu2AUWFck-l|$@)V)EAe~XGTH=n zq$NF80S5ZU11jhpaQ&hbmn4u{x=Wd}gf!s<5^J3QC_N@N3w~06h4lkToSTX|G^#yX$Mn}Y6{uxO@7(cvJM~@`;rR0#P6ctek<>e&YnCW zWu%>?MKm;t{M`ha7Y$gD)nUB`g4D?u9jTAPE(*@x?dZ>SSF^x7+KtT?Q!!#7Jt_<| z6W&Or$F3RBp{_7NmW4&IE{ogKtsHw8iMsP)?DTVbgBeObT zvkVguO}E>zfr46fj4~qgFd80%@SFWSjphvEzHKQ8Nh=A2X|zUl^%VwuB(nxd&&Xr& zs?s#IKu_k0%Jg}XGi;T=qQAEWgpA?J1eRGDsyR>x`j`xj9;VZVC|N3iLC8oedGf#r zpAE;ry+1-aKYxFM_Tl8@r~jF)PBgEbxs$u|JM%j)n|xFH;S(^lPjGqOL{(V@Dy>wF zQwtB*T>m0HG&~@3MVlvC%{^!=(L5T}g6O1gOefY%5O!*@>3<3odVK{djvhb#>e!uV z+Sv;v>+i;v6d`yeOpwHuAuE!nh&z>HqaWK}-G!+MCKQmkk`);#fPC}tnW-mK8HL)K zTYXQ&%A{Klr!#IDyb8Yd6kx#2ypH2*NV@NRc{ zXQES(dI&je>6U5ErbLhqlxESX^K1{Gfd(hTOKHyX==Nt%>GDE$wTnz)7w+5LydO1~ z)PSj0Xv*n#hY(tLHMx;rv^k~A2U;tu7lcpTWxF*Z%8jfhvyN3;ys>5T(YQn;`EE_8Y*O$Qf4{wD2%^~OC;slrK|GpNPu zdCqa(b;}$b-zrDa%olL=@T1|R^Rm%9lUGJ#;j@vvnaW$S8AyaSV3>tViwz?i#Yja@ zIMZNOh%m)xEnOSm#xycdohE~mz9xPAt-`1O@}3a;;H|>Ve}@w9o!)|Vo`>wr<_s?% zw#{SO_7|6ve0_^e!Yl@-woyu03t>e4qviTac+fo=duoLIquZGF)^@IbdnUhi>Qw2Bt}`(9*Y3 zirmOB@whc_ux?TRtic1$8{Nv)FJ>is*S%{@!N>0imb_hv#jV*!m@%Anpx zT=Ve6Liw8$_xR|S$LT;)=RxJav>$5TjY>_Z#%6$wa5U~U`K5mkf=6~-TR+K0C@b+M;>Z-*Uy>wWSSFd6rF-R32 z`T{+b{{9UbI;&B)^uiw{f}ef$H}4U_hvMkQdA7QJa&pRRC3-!L@9dAEN5tc4bT;;{ zX?QoAa9MH{D!-SLDe%dm407BfjmY}x9u4rd>7UXC5pVDOCS)vT5C*1`G$qE9IUdwx zjG?#c@Gv^m+R=qdph=J2t6^S;4fDkmM{>J=2{ZmcbAEV@Dj{OUN(zW!S%Ci~x|!ce zBc9IV8&RUHNgLXP>Cz@l-@Z3svUr~z=1a-g$yjNaDox&*fLC1e9B{ms1popW#gLa< z9{_Wo3GZw5RjTmK_y&Z4ik#Jb(fTkpZDU*+>6B_i`jS5`rzO=39MvHC)B;L#D0{;)a%)3PZ delta 699 zcmYk4&u-H|5XPGbC=yq=AP#eEgk1vS!hwTR%B?7(5u7Kx<9O8duC;%Hq8=Po;tBc! zh*#h}co3d~S=TA7EbZ9q`DVV~?C-^&XZ?IX-~ZS@znNYuJ(u;afU2qrST&S`mvB<8 zmKZ2N6@pWYku-ec*Z|6=3AX5&;tpI5ii}AHJya_4mLpS`K}a3>8e29y@YHzpGj4v;VUZO3;Pdm$9TzR zHHK0hEocTv zvMiXyMdw|ltX=#oQ-GkbNf}~QqGByDxE1z!I%BobXP)68!8U+$HX>UHv?VVHb906z<|*nLNnzsFtC&|FmUrSFbG;PFo>>aV30b*z#w;q jfkDv^s0L)O9gxxj;tmD|rWOVU<|9Bo+kwtX2I4aSvac5B literal 96 zcmZQzU|?ZjU|ut29r+$Up~(4b2r4jI4}}6asvK5XPD0K5nRFcTX1dUoZq(^TANtbiZtb)^ e)TF0I)N*iz{pp^o0w$3UQvIksiwXpp0s}tcE)(Ve literal 0 HcmV?d00001 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pot b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.pot new file mode 100644 index 0000000000000000000000000000000000000000..9415eb297b5efcc02cf62a29f65d96579319a386 GIT binary patch literal 104 qcmd;JfB;4)%><>Hp)?DWW`)vhP?{Y|b3kdHdIpB~j7%sPSquPyI0o+k literal 0 HcmV?d00001 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psd b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psd deleted file mode 100644 index dd894a3a54..0000000000 --- a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psd +++ /dev/null @@ -1,3 +0,0 @@ -gnl|cdd|1886452 -gnl|cdd|2397751 -gnl|cdd|997070 diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psi b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psi deleted file mode 100644 index 69584d91778693f803621679abe4455c2ed5264e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 69 zcmZQzU|?imU|<4bBOqo5Vi4bffk6OBp#YG)2@t!c=jGHSr=-*vT3DEwm@*kL003Y1 B1`PlJ diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psq b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.psq index b06a189773864bad8f08d424bbeaa8885db64fa4..2cdf6cecfbf8873fd7322a4a59faf19528cdf689 100644 GIT binary patch literal 1484 zcmW-hfsVs42t$hsp@D{yFy;S0^_-I?ZCVow_A{4`@h%IUcVv{{SKjf~h?uTDV&pw1 zPrgIh?7n5_tu}98QI}VDDt@%fqfKLkx^RfBGA9yMVk+`w+9_#k$|mI=-f>{)T+?S5 z^I$74nk6`&{(ntt)h?YPlJdHUQx=NSV_O|1==bhO4JsRA9E`sO`3M@3a9)iC2zy1BiznO-3!(xTEFy?q%RMXx9INmb8;%c34>}D=wB1=o$ZMA_zXBP395JtxGsZi*Q1+a(UWs4u+3$zLeg?J&H*Tcm~=5b5L}KP--ejtTr&ygSuSH*0TUA zQ^S#ix$DMT)GFIf)XI3^z?8-;9$6r7V*og;bgKW`MaaM*uPN!M2&jvWCGikX&{@uz zrO>E6YU|dM9`J)Yy&*M7%4ZN1_Wq9yM3A)pT`!7E?|6vN$w!h~_$6wuffTW$;T%X2 zMx9052I$i-iGFz3oLxRU&rj4$VJT9YVkJxb)4Bl$K!bn}@JBl*Pg!jvIi|cffFc1q z%GeOuJ5S0<`vVf(rO5RqA zFk+%)Z;;PyP~5#*2LeC?&?Y={`0+4S(YJh{E!<>nGRH!KU@WbHol!6ao+s95Boi~AWU~`kuo+tuPoBlLEX5WCJ-o|%^RBm3+olRvu>O>pIfLY3 znYL`MMHC#N9F>L~JQ&!8RAV>(Z|A`-awwq_Gp#vX)Me*hhAlu=Qx`*6E~U}cZn&(d UBuyv<9#Rx9Z%@7+_&%?nA20(8(*OVf diff --git a/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.ptf b/core/jms-implementation/support-mini-x86-32/data/cdd/3.21/db/Cdd_NCBI.ptf new file mode 100644 index 0000000000000000000000000000000000000000..6cd9ba419bdf961bef256627883a1eb7b72e7ea8 GIT binary patch literal 16384 zcmeI&Jr05}6u|KZIxvt_4F@rvz^j-jiIam2ZXU*K5aThJOxR60g4&Ol;=)2q82%mF z*Orvm-`0YNmdpjuM|V$j$hNn3>ADM%Z0n-I>K)49L%m6T{^y;&c|rsbKmY**5I_I{ z1Q0*~0R#{jFA&e&|2Y50)nnvy)_xkcFbl1YkKY+9Aba{ZA1a$yA@M7E zjC{s=-q-K#+S-*0Y0S$s+yHngY6K8K009ILKmY**5I_I{1ST)w|K^`dm)IKuUvweIsT6?d1?|bjH*WUN%anfc-&o@MWR|30fvjkYF1~FzD8;t^eM-CEbEeHbnQ|x^=4rG%4ln=<j&_<-|1A2&(EiXZU>f=- zC@+Q|hRssY5|l)?0oir%1DFYN0sVaj4f(4_J$3bI!{=R!ZO;g^psA^U3_150iO=jM9}fj;ZVoF0(?!V@1-#OI`9YlXy_5z z&xN12p;x2+l|UErcPY|6$y~CJzB9+eIWZl)45rXtTj;xBHE08FfgR)mAkiY%d zsvC$+3-B6f1wN%uHK4v5=i4mW{wCrZLw&dW_ts_bBuz{L6R2bV`l1N=yN+I+^K&D1 zPgAchIE4HY=y|B?q#ru_b_2WtT&J${>C}4~UO$f`mpbMlf7c>iDdNC3#$zKWhAa#C z4c@-}4Yhv@;GM&Ffh1rr@?*%qhyM=b1p3Pj4f#8cUR`x;=7H2a^EKM(2W?1sCh&Qk z3%$W?(1Z849_k$GikufR73&%^ft|A2Iq^;aB( z{I!U5DWDU<$2@x`=o6q3cma$6XFxrmtSmO~(!PDPUoC-aKLb>M`9a9vu4t_DK;Hv7 zuq_OI0XSEd(M}8Ihx62TdjPxzUc&AJbXVa!LTiEZ(R_IYS;*f`?9|o5=3!Xl<_dUY zn(KQ5?Vf;^MZOwLh95%z{(^TtUk00jb3{M(?Xj97P!EjKUvN2^DI13s9 z_dfThR?wrAuT!rVRDW+G3;FvU8+C1oFCQ}g?*gAY8Tbi)3iNxZv3v-)34ak7n-_vL z$lMF|H)bMX(Mm0Y1wP{Od0@ ze8^wRsPFnJ1&rB_Su5Ze?gm-#lM=gpjNj{&eRq{9Ux)6b{moGO_dL&`Ki7T8pY5r0 z?5Bb^fn!$&^Z^xV*XN%F%}YCV@O=-Mhs^&h1C`L#LiT6Wzpm&){O_808I?^T^FPT(?BLr47390 zqyD+(dsA)>aszWm{pA87fA2;*GVXLkNHpXV3)!elj^cJ)eXbSry^dqQa^$0$E7WX6f4E;_74T1iQ?;(E` zXh+?*%md$-d*8#r9MIUE4Y*gy`+i;oWk6BjnW8VyuQrbY{oQFjJRSM7zWsAm_G^Xv+2*aLj8;F{UuqeBmQL%qVB)U>)i0>EUxuE5K0jd$b-h!H4{9i*!#z-RmBp?Mm>*8rS;;FdKObVEkSN zlH%_e<$dsrv6q_LpNafEPdVi8!$_ADdXhSxRno&7GmF7H_go)EDI0_8J8W?|;1?CG!F4pJUV-b{=rAHDw=9j+WAuf3`hJC)VO((HhiCh;LU|Q!#n8J@RbgngYSUcy;y(lZ6SZn zBAt8t#UAJ+=x#6%eSgZ%5ufoc%0B02bajCKv}H z2h_doTlgQLnW5L9j&U4FgZ*G=BjkC&C-m=cWX^N_>n}O7kiRY1s55t5hMn)_XL#rI z0QjTu=Gm8_uOTyj+IRPeWbkj$^v{%&gG<=xZzO!k-~W1k`rdt(CwV4bUxK9I0?*l( z@M#%8FPkIxKFR(4Ipo`;{^f%Y_0RoOoiXz}>@v{CPWTbDX}&Za z-gEk=&@_~rpsxaT9`8qP>=_Gx0DVHJ|S6Da4vPh z)_ywYTr(Yj{u*K%^5=7^Gl#a0`}KG5#%9k>H{h@OzTlmA_n}_|bshS?jW_NOxxwM6 ze+}S6{{GkV^MCEn7-HWGLQjCJjM0a@o96K9#)DqSd@qBcFMw6RIO8~;fd36T0?Y^6 zO-B|Q&m`#8mBqFXW+$Oncn{{#N8x>r{lGhzn$VoQ%hu52z!;tkyY#fN0{Gtb=Q%Ls z@9#)g80y`IXJyy-DcW&Q+C}{((Du-r$jo=Noej!jR}Q!?j12>T{$58G^7p@feb0?_8v-Mi88jz5D!7WcLBbYclXW z_%77Bln}Uo`~lVi`)7<>54r;Tw;10cf7+_+4b1>10ncdeujUPJQ-2y|&$Z2gu{a;_ z4&D4|Do76h06L#je*-Cp{9VRIo%w?2lKDY-r1|NYez#P9cc#%Lo3hExR7JLrO;igbe ze~wMapO2!>=eIxRfsSJdFbsHxKLtFy8V7O!pCJ|W4`h4bUBjd3W9)lCAIksD-(C3m zU&3cN$#Y7*gG(B(`&Ad}Inej(+A9cLtNFnR^vRfXrfpzuiy2u97 z1LNBLpbRkPOr_6#p^oW8wEqRvcrlxL`tx2ZMz-{hfx|hdof^ z_Yw5I+sBbP&iSFnUf*p8sQ#v68}jG#s(Y2XrC7(~uKi z7U25-4%j#EO|t?0X&3U>5Lap{xj$cpg^Q|UpGH8pE3v6Uu+KAZfw29{Kw8m#j#zB z?K-d$zBwqu`zuCyJA4V++yu6QMwHD-_dq?1eggH}(E_SJ@4jN~-|lY;dUf@o_O&3U z^`K4ZXDetk&>K`i{u=Zx&YjxbrLOO(2y^8J%AJAw zj=+04{TRF2W8<^w!@EdjKHF%ZKXbK^zl71deUh6 zT;$&9nydkAI}SP!YOK(oxp>Imy|ke&33X~?>t5@3q)gC9fc59qqcpU)HWR|h+F8)(b<==*p7HtzWTd(i(+kX1#0p7K)4-k%MJH$KBA$Oar2 z^ELZdL^*AW+viKy$e;24GQ4LS_Z#Pf_r~r|`;l#?jf%ir^l@nXT{t#_K>=_L`E=+K@HX(9PCKan4#J20#m3rwz%!9+bu_&5aSd>9 zc@NnHsBv^P&r%BcK$`p#n19cu`~^DqEdBYdF657)jMtfunEw<5j_GOYcpv8PihQQJ zv|S$F_q>khay;(_-GFm-Anh2-_4gpR>~tmEy^)}WhsaJeT|(u`|=R=AI3*N?90L*f;XPk1Xq!D0iLO!fL=j1 z1Q@f8G5dl0wEgq@M9AMB^y-|axq)+W9B^;-F3w!mv0F{VK198F;1+gQu+d*( zXvp8lNN3w?;3olNisQJmGn{ zj(gAdB7Ab-dg?=Y6!;ZfqPzin_d;WX-wWSI=3U4by~_MyJ8+Knq#f6g{i{Ja(B?|`m#AZ`Gf$ihJqLB} zx-U7Vt{orsFZiX%t3VfEqd%WBSklJ3EM+Z=eqa&p3U3B{{q^8DWD@V&rhd- z^I{fdzmdI1xh2rwXlTfv=LB`mZ~N35WCYEKS&8sD3%U1!3!(QQw=ZAQrt8Sqy$iGe zN6@E(>hH~{P22T7#e7Sji2B!-_I=;x@e`=i2snl}s9O-3abX|yEGs?sNDrpp&7_&BgetMA`k(eRu}-JmbWl zFVO4HzJ~mj!iPG?&UohBa{cT;>~p>bjHkx5KEQLS>(bo4DA-KfA9utq1j-dlrALcYSsOuKRw-(03(pCh+=b3*8C6fxi#<4*gx@ zWa`&}pAH}EpLZr9f4w7r&QJU3I4%G`!uvkP@T{$%#thfaBk<-)Nhyz~u4f|m4$s8S zH~VM23Hh5E^?e*R-g7v=-9IaVvy=;?e+IrJv^;IOFFRkHR}X{b5f0(gd{KXOk%jzy ziC*0vY%z;Jx46Duq5doczQ@G)%7e~%dK}sxqgTWy9oygpON9B>0={oT)d4*B~Gl{)8J1K@LZ2YV6wdp-N+ z8KM9(W9g^Bd9oP&+wjYv%b>@QxeoQ`{v7gWoKWZfmJ9oJ*spIYULTL|reAKNJm z-x7>~{}cKra{cYN!~64|MStnAGY@(Sm}B@mFMsQk4R|i}O!fqD9b`hEADR*T0-goG zf`9OGuAu#zvj-qYKze*}2gef5~}H$Fnc;3{dwOb2i&N2fq^j6x8Q)EgApR z8FNGaV)q668T&u*aRK`e;HO0Ow!)jwZ-C~Yop)&4y}uxw$ ziXZ!Ao5s-9wBh%#3YeAyr5R_}LsRr$K&L~E1Lhj~GfxZoYlNLT_nbGeGmbXL*Kp|b z$js&cf$_fNkDq=E;gQDmcr|=Hg+L@u2psR%{u|l{k!11LEi@h>5J!o z&j)9L`<(lT`LVf`G0m9cy@q>-{#sKG`SWf}U0-bGWAE9|J=OVPPWd|Rq@sKhvm5Z9 z?L9Z;M`rHp+%exVmvYYN&$$rt_iCh@hV5YZtk}B;WrrV4-;5dF6}ta7M&>%G0KE6y zgpV)b2LSi>*zaGAry+mUqW*cNbUfYHk792O{T39bP512sP|uzp!#i%qBKuPwIvH$3 z_Yll%JIIm)*ZS|YR|ei{uRyjrd)5_f?B8$H3HiG((v_ypT5JbG9jD>Q9lsS3(o=2+Qi7bw z=796?KM3lLgkA>vn*t5_b8e{1Nd3|9r7#@}y#$Oi#_T-E%)?4U9fO1P;~I1fW%mu= zow55>pg(^%8S>W&y*hJ)M=&!VD*(K=t_yt%dN=he!`BBTD7$xLfl@90JvW8l3ttfE zuN(;ZOMR1Y|vkPJfKb6y?s42L$BO3 zrte)J?@>QBSP1VK)?Dx<;2E|*zPf@L$hRXi-gx&_igHTi`b!QC_0QZ&oojp+cJ(Ol z0)?pWS!^0rUDHQ^xq~q_C3Ge5PNpar2k(8Bxt{)VP$%SXC3k0|nrh zW8+#icABGBM)n$b0p7nI)SvoL|FlL~YpZNc92rQ`o9s6ja$bSFpx8UWY8x4?H<0=kg42LSgkV}}0bpbPcS*r?8N zF<*6mbsoC6nD=@g>)b6)JH{>N#6I|kk(moOgYE}|*#p;6)}MJ*$Y0+`*8|(}wB3$+ zBjF!Mz8bs-zZE~`iq3b}oa@o}bB^+lU<~*k{Y0QY=UK>Kdi3hN8*GTL5%~0e!aIS_ zf#+WLkWZn;(5&$0tY^VUc;nkJpugDnqhrWJ{(9m=-BRjg2E9OTun*YBan!ZF0np`8 z=SUx5u2B(ujr=sU0nK>dVE>GPA%Dg%b*?|hV>ft#x>KN6(5<7t7vTRw=Ki!4-hJQ} zFbB>`J@08g!>%0A-%lXqFD>n;J4D?Luo-~k`7w3eM?I5WMCP0^j&ug*C%Mt5WNh54 zj6KGQ*m!1w5BZyfy}B_FpFJbCJ>iYt&Wi@%X=HPGcH8%?<$C`Lxv`-Gm?))=dxZV_ z2paNd>{93Xax8XFfm!fNXxsg@D|~b4Yf#7F9{jq_UIb~uNzfX2uf7xL&whsdRgLD0 zd7Wd@2IL3MclYUG(AS|$pyq)^;f*)W8RN{C$Xye2p|S5r1u2L8oy1OEW7_JA?`xDj z@7cHNU>@cB(UpO32s~3)fUW{QTPw;Pf$O7J)IYx?h5WUS`Zp1K*Fk%b5PTPv%@+qz zZUBY=$FUnQwmR=i<7+$g2k=wm?@se&A@)AYTiAOBJPJO6H=elGD>2SDp~i3TnVnPa z9rt46+_B#~K?k0DA7$TPTgsvSeM=ka&On-AS0A`9`Mae&@QbK#e@a1}i_U%5gS_v# z5O#~v`MzWQON>0^?_TWHZGw1*W*qiRVywvl+91yb^`7h|)MrTnHTD=!7lW$UY^083 zZvWhSL;n13sLr|Oyj}@>U&aW36Xrd_0`L-WU)>LNzuE;q6>9(YFfWp7*MM)7G!h_B8Q4vgPo;C)d2+U$bFrTu;QaIVSourwjS3ij6w! zPl9g@^5Ww$Xc_9-FW;4G!M^%8Ti+pn1K#(ouX}0!Wn_;6{cXo4YjtT-x}ln zMwOL%`{Cb)cMpD@CUPM2Jf9ia-%$0BQg0OKjBFgxpZi6~->FFF+YYoM*J} ztpYd#d5BCns9J3(uyLFDtGt0-SZ ze;DY`95&<+RlF`8jAONdvhOSv{54Pr-gAX_2)^SFp~a9Ng3m%f`oVh!sg2xkO#0*T zgZ>6Yx-WUQ%G7&GG9`ZMnrfDP|f$Y2>KXwGBW#H4Y-H+o%kAZeYs}7r=I@Qhx|3ePMveh9CHY5ICq>Q>!CN0 z*G6s*T8eT3^v0prkog_!Ec{GR6TToi{XK~;(ox|jm| zuITT#jB}nP_E1lM8PSFOtw*oU^RsjG5=f1`d*?=A{GN}j1oTPTHlFw#r=fo1m`;6j z*r$=XkLd3~bRmDU!yqoq44G z8c+`TJ4PGo)vou0eCrUX;7QyLG<=O-s2vy!Twr(|X8a@#QUKA%C7-)!kw& zisH-faE{fpUe+2wx1|JIvVcvl>Qi+V1W9Ls=gf`Df6F zsaq3xHhLYg@6d651(X5KU;FMjw*uyi1@QAN)IIq~^!`%7hx+HbRp%X~d!KjyuJ^yd z_dG*dsQZ-XhV1CN0Q;Yuvh&uyx&Bf^y-V=@ZKE9W*B-q(@2eXzmj3%~u6y%Q_qAp4 z?;&$-Jwy3VVE@cD9zbpmGL^Dp@(s{m)2L0`y?s25L&{xe=AJpBOKIyQ@}Fq$Gs=D7 ze?)cyK7MXu=Xm;#D}c(N88&ybf9Nm%Z!u`|zxg|jt#a?hQqiXS#OFRIW9hiPL4ETg z&o1U1#xrva^Wh)B+n^0)&oG|r_2>B5=700o4O`{Spu?~;FHB@R(1gfx(ns6(JJC*_ zVL5WY2N+|F4XMC*FqUU657plZ5b`$xJ9XAA0A2>h4~g8 zI?v-tDeG?#G~{ngq;qXerG4*0cEdZ5d=Gy2GmkaSo(Ja9&ehb|n44yTegsCNbFb8& zeGmEj0y}l~FC&;VVH8gRj6Nl-)1&=X?$MYZ&Q# zFOK_U>YbyGXD#2K^U-};rOv&}HR1U9Ud{oZ!B}XYUczhvGyzyl zKdVE{1*ZVlgZrO3zy2r&`xlF6OR;qyUkNT?@4f0`c-O}?c%Q>_vhOVs$b;-p{7!@K z1?o`t-d=y^&7uBnk93~Nk6=5MvS-Wcv}GP|-fMn225R3P=Y2Xy(<2)TJqgBB&)y^y~#=+$`_vWzxdXYWIQLf)6Qjv_ZVGXC5DH;|ve<~OMO$Gzy{p!PX-J~B3j z{O!kHT|R95re|*DT<8S-6u4jYfbN3+3S9w8qyLNY2T8~Yib_K?d z?9dOuaCq;I+Ctw4zN<69_-tO53wj259%z23{;U)7cOAXDq1ZI1U48b1KLvh*ckkO0 z(a+(RVB~VV2p9y>u(P<h8kEHP(Z&xrxv1oqIoI|5ElHxequOKZAE280)@< z9!Bq((`VM7_91`UB3%+}y?d=oc>(ib6!jcSb97^XxsCD1P}K@*OgGNfpqv|Ig*QLY zpZjLWU+nkn#-}2{JkPlQGxQ1CF?Z@sc_5ess(=ghYd(7O8*?c0Ti?4mkp6apkU!6_ z>Skiwnf{%kp1G0!6VtBuA)fozK)o|}-Kon6or>JGGJ&%3sXx$PX38Od*CL(IZG1M) zyQVi$w>IVR@UG=H_^t@8MA`9bitahk2Jqkb-|)W-qrWrQg#5+smmD*HBjtAp?^N8I z%)`9byw?W#PjTS6+I?J^etSTTQ7d^K4;%V(ZG`;!n{jon=SpBYFwPq@Yr)qAo8Zm$ zJTni5y8mtj3n_n0``^HS0gc@kICnz+oNMZg$GPBVfuppO6TCy;oP(~#DwNkk-vyVj z&B=3)gxCLCd^Lfd1@^Bz^+Nt?Mmo>&>9M!{jNo_bnZr6Zj;z&j>>?~R=w?i8h5^3~i6C`LMoU#-Hn_4A7^)Lyzr$u{mM8jzz4m(tX%Tt3XSj zs|4KZ{S9>%c)#VegSzJ#e+B^iXjNy=+!x9o-{(m4f)H8 zTAlmLB&SUnu--j@j& z!zzN&;CKA!ujn1lx3T=?ZR~x2o-yr*>(0EvJ>9(8`Q$#Z4g5vBUqap6&*J+e<<8It zDeJExG}J%Osp?$Qcf&tTJ>O*-=9~L=PtX^cYwSZ%4t_J#nED&k@t=dtxn+K#KVx~w z-ye~#ICU=ZoPS_H8LS14n{(3lGKa5;Tz?xVr>2|&z5{#}pugCh*JoE`G2c>i zR_R+1bpx>f8@L`kXP$>24V_5&JLm_%d(Zk%*TG@nH!J(-cP9P4iY(^ic7L81)Va>w zla2uQhBpvTrJmobjm_Q}7N9&E+8F8?a3R$ESUcaH=MMc{hlc#U8u_b(eKUB^LGCvh z@%u6|&>^kURb zdfL2?wwEJ+8<}=rH7-bC*$m8hD?mzvtjX{%T{dP9HO18`6e*ukWQTW%tmz(D}4sj%4hA5!^)9 z726~5W3f#SorO$)RpCSaj7{p^!N!>8dpCbi1$I!Lh~7NP^QSS(xSfG=PT;(l1Ko@K zUe>Gi^;ZvB$lr(P)pf@v32={}1k7O`26gf0na?%mn!5yiCg(>P;M`oqBl}yiOOd}c zltca&M>_M&Z{huo+&-x5{C)5Qco3QA-W15q`D-A{1Z_^)wYq?^W0(%uzpp{apYKau zGi*D9rzq-s67pv#j|Oi6eV7A|gZloAU&e&I$SMNwX7@+^b6i6H{GG45YODdr$rxQ7 zxJOIPQQBkT{hxl#k$ev0rq6d8dKh?i$_4D-FziGAy!%pj9oh~!|Hokd49`)N`sVR% zkvTWa9fkn^z3mauqmg|(>>r`*UZp?ZZOGrK=vlmr`w3gmNXF)j;9lVPHbQPrdm+-f z=XC{@(TzjydH)xlFLob!r}a05dOnM`9pDE6b65AEYrs4OQG9Nx{{qOoXLW3if$oXD zK{7BT>R%%GQ2#!UbnZ1Xus2S*&y9k*-+Mpk_v-Tac@Dpyz{CFkzbA5xw}4JOgZZQ5 z=@^Cly@+02Uu?{C-6wX!Pk=50vELh1!>_s12guwr5@T}?YA&`E+(iEeW&O3M9P&3b z(oMzQSXz)W)#86!X&hODJU?_NGVgUK;qwFregjW~+`Z{j;5X*0k-yg{hx{dB9Mrj< z8Up9F>((){E!W33;JwEKm>N&|fEA!S<<|Hy?tDf$cHS%kAM)1+TXp{3Qcdg<0`ux! zJV#Ra-tc9igP=cwMexoCW2$-g4ydtZ1-!A{@%$JX@^=YabgX>Ed=KO= zL!Cd4?4`MBNRwCGuk3B5oY?A@!KE4KR#W%H=~*wuj2Wc^M}#`zfgX@tJnQzXJTd#UmgO{N~7?;~w%? zJ?fwFzbWkw52n zN9v8mUry||AorcU06hni!kbU;0nLH?*EDRKLfx;7VgE+{>cfZpy^O6obGa?l_m1T~ z_$O%pBkK817GdN1NSEsw;cb(&<4zZ_fIhz zb$Vz+sB^||rjCU%?=CPGWI^{nm;$fA*dAcJx37mR=wtqd(vEj^rKvj>YTLQsecmT| zhAG(EPoL`n+P1%Lj&Ff4v8xBwpLIh0^L?vZO&c4vqrb+`yr2R_<3?v>1);`$=dSre zCS(P`F8J}toV%xKLx1L@A%CSKU0UoL)BbA8dq4)@S;jMT9QXmfam@K?JV=2r&sIaQ zdmq{zdJl5_xtE6geTc2P$EfdJo%^S8%=LJl@?FSF!25lwKgb224O9TBKz3yMTYz0G zzPQhX{MjdUzK@r|K#J~tukf77X~XyJePb19KQI)S15ZbwQe9Z zOsCHKiQd>+c)#(u2R{h?l=9>7<{$dIQ#|utQ-6c0 z(+0$W;=p~pC1{0O*`Ktt4|;-f9q1>}j?in!k3ju)5X-O2P!9Fac&n}?Hs!qLo>|@d5cj{#(4*9w05xts3i{DTR;V#@ zBzPUDe-qjQdJsAWm?!GbXASxLC(?Px>3P{PnF{|a&+#C9J$UCwbEt7;HT>P+abWz} z4lN6eow5AP{5<5(|KCk@qp0ILa}JmnnO7S#?4N7Ec-aVa0p2chvmhkca%m_Kwcj7@wW@GpTDX zk{{l0d&YwO_)E>)at_@G-0QM|!r1z~s33M#DBHg_ltcdh*YB?u&*Zc8p+AnpQLqZ$ zwY3Z0{Kfsycjg>k1ze-`k(J|)!C2M}xPD{#pzk}>Ki`KsV{Kj9I7Zp?%|hryls#V_ zV|a`KuEA{h$P2v--5=1y&wqLD+nYy}7k}xO=a0)W7dcPT4t8 zfwq1?mVmNz$^4-svbFFJ@%}tx>Cbl?@@HLj-pzW?xEG|R4@;o!X~VsAC;S2EI^f-C zUtoUhGr4a%f0}{QJe&T!0}J_^k6ztI>iL`#DaXOT3B3obhj(t8%YKZ01-$F40MC?z zX3xO8UK0cT>hD=-$lssQcsk}?z&YUl)&c6@vY3;&w(Li9WQRa?;9Z()+-MH}v^_IbJf&UunGcgqLzr&ddeGl8ask0fmIqDRkKkrXM z{+t8q%;$fiu6M!Co3^y!zbB)ghiG>#bTGDl+i_iIhBpWFeo*Rr^*%*^uA7j*MATQ8 z8Jpt3G4q|7pEw88LHj|CJ7qu-;NPwq&#r-;U_9`?()X@E<7mj=7TQziUBPs0JrgKg6D&Lr-qS!*lsz%AVENKpWD&{*4!&gWa=Ug)acT4_kke?0lIB z?g7iO)n5bnkiVAnOWinZN`iSnAJeH<6W+V3Pciu&It;V{gTMyh^ZEOP-SA7mzR2Gb z@F9Qh=jygn_f70S1IFf8p`Hi)4rtz0pT0bUd=mUO;0!RHB%=OQPy~GnsQok73;FYW zr|uYbeX;WlG6HH2mXJ2OQFc%E-k=oa@1f>_-V0u~F4S{{vA{a|i@%ViP225?EaqDp z%U>Qx-hsO2?%w-(pX{7sEiR(~!Rzk*+=TbL`ETybGBD zwI6;za^8Ec$pqYEe+CaBGv{zFzKp%!k9-gMTTh*kzdGpES=aY67wkjkJ=PTVIGTyy z=Ndun$9CY}bQEeVdmS_at*BE9s=u|^{x^UB%m42jefbQYC8hQ&8{;q=IRF2m{5sF- z+=$M_z(HJ8u@#P`W3Ms0QyninB~2cbI2SeHFnO| z_ui6=QwolpLpdF)rHEir(dh{WGgRxcTyfz22y%xayb12kz^AXqv5}WKV$w$a6zWK;8ETpc@TM4H_eB68W10 zAM*DCw(5*0i($PJGcV)6@q3`T$m__4K)thae4mBi2lej9Jt7%M1iv@(_bU33KV!c- z@0nhT>VAd2d*C4883~f06Z8q-T)zN)8JvmydS-RcbDwrRtAdcfv(dAZh5mtEaoS5m zz3Wh8ziW3c@1_U3Kj9}skAmjtr-EVdp8@-NPvoxSf5LqiQ2($(( zK{e{Wj=w39KWWI{QJz;_QQB%nou;(=CHR1L{5IsA@ys$FdK#NQ!EAKtq2_OCk^7C{ z2dJ_*aHsu!Xyng#oE|;9K?aL z)Cu+P7=F}w-!Ptf<_i7}%fEZ@H_*nCF(3=_gV+>-?~dJ{pfY@W?2G}%i{3n^{``%9 z$e;gak2=@fceL>a)VW!LdOuJeNjVd|zgFe0KD4$cI8h{ua=V zI&HFIYYtfqYOHPu1|u&=Tb>(SqwYOEPkze%!8Xbd;PZLveVOP#DY z6m=e=t@fZ7a6SAC%7H^*52!&~FG5|LX~8+l8L0OmFb9gGy$;Zjzj=|rpRhN6Imaqt zUy%1&3;t(hwpj+fv2Gpk?}Qvr_k_yeWn}k5pNstEqa5<*xj>!IREBYJUYP&a0-jf% zg1SaM6Rp6eH|0Y-%XhSIOnL-*4157ziTr&i1>Kp-0DEFWp?|HYt`@5y_l_z;9M~*N1bz9T*6_CpwSL{4@?=_cQINI|$iIJ#*|#Qjm;#J;6-y5pa#z z{@eIB2Xp`R99SLO8t}en{drCb`TL0W)tTQFfOYJ=(^^73W0~``G_vJT$7=*Ow(nVK zw{3$;@adqj{lSJdG_a*lIvCBvCU%+;ez$$VSgYmjS)H&OF;n%>JSr`!?YD$9tgc$bFvqz+7x8?HSkVQuds?7r1A>6!q_K${~Nw zcXf5J^*uSqpTx&T=(Dsv5&k*kuIVM%8e{Cw4RmM0PV8EMpO8%e_U}A2%zK;C;j$O!~^IY9`*m^Eb3EIJ% zW354#ma=y|-V>V52lGvfp>qN zH$DF~2cDyxPYtl^O*xLbkAslEP1vZ*4BbQ>&&~RsP8;RHD3A=l4qPtN>SE{J+eYf`r=H{UJZQ?hC=DHqt`>AEZFvV(4Boca z0^j%F*g1!ldHx9bOGQ0(kKku5&+a$d7PM#VT7%9$OoXNeZ(#E(ZJU1@M^hj(&b0?` z1M>>~ZJ|!cpZ8PhDq{Z=tofhuY&zvPsB6x(26=aAFW~*xZs-`Od%ArZ3$`J9hv(3r z`+vyaf=IW4`o^Yq(6Ye!;~lFxlylzrT@u*|WbPT2DKCRMpUo@If~r7&$3e(nsz~Q~ z!QA|Q>c4{QBK)J!q`>&*edwdmvrxY^RKo9C%I2W15x*TZqz(Of{~YpHk2>nyn+MUx zap1XU2K5R7`8vhOIb2F@SP_g#?N-yyUW2PWUaUp~f0f9AEHQ1^Y{bFTv%;j=); zQ2#+_3t+Bcf4pr*z)m>=lx7|#*vUoULb4acSs>@UE(iWE@eF+P}jcG%F@*#iSuvga?n*y-TNx$tqO}Q-PEKu*z{zTRhzB=vw zM7v3mIVMkIR7_=cfwj<0yMBjJ1EeKj(tFRM`8iWH7d?k$Hw_1A6nU)1b!BNyzhpcd+v} z1kTUx;0Amh>_))HVduBRkiTCd-C}Hw|66$G65u)7s7bj6dhe{wMa@HhgXRUUfww7V zgbo5}v0EMaD}X-a&pRx2A7Eo%(1&_cpx$>Hhi%7PY9G}3ItC0uZ;b2>{4J|caCMikEf4wuV_0e0^bFy5%bCcE(x!V(5BRRyp&O2kIfuE%3UqU!an!vF zdB|V7NLQA6JAn6$r*HgcJr02{1O5etfU(7QIga!638?RD9)8t#0!OJAhrj&rA%9;* zefMthGIbxqzx!oo_=C{*py`o$o-k+Z4ZKr(3fcpCOX?kG3{qojj-fx}ZOGq`(X(u) z{>#)iZqKE@ImHZQn`qCN+KKUUeRx+_1SEh@guU;$FZ=@RUWdkk^dRIfmYW)b>QcWk zFxSipEev%XdOmmpnopm|+vy+KPU^TfR)zYziuaJ~?{~@}f77C8*@~?>Q)AGS{<)u> zLzj?t?xDWEP~Ccg|9KV|Zx3SA8k_{K71v!HHWY*YjJ-aK^B^^70{mN`&!7j;{Y)Q? zSxup%Kn>)Nftj@J9cwS(^Q^+hRuBj7^zX5JgsuMETlQd^n>O7y&6(Q5uZ6e2ey837 z|0y=k;h zd(j&=M*+|6#z=E~bL2S6#?p|#*t5KXt#RlCb)7d`Y1jGC1=L2~9GP*T0WcRf&YP#1 z^ZY~E_u$=y{@hza{$hLM7u4}CqBnhu~{q}y@J$Ny& zUL4fDB;?O^sxCD)W2w8HcAkTF0G=s((&jPnJaB(^el4YrdE9a6FO+@9t0^ai*PnOH zA%EK$M&WnBM)?;hT^UmD8pc8WQkNVizKliSXzx~*$t4$kU z!>^!Df1dLS{1xiiAIIuPWbV0BDKE#?XYl{4?_*?-!9NUbfLwof+HakI`nwOBi#Cs9 z-;;i3rEISDDEtoiuic6A%8#cT>DAw8+wd--YuR) zUKAP!y$(`Q#q-%p;60OPz=x4-i2S*3LjGd;Qf}(_H%0eS-+P0Gz_A<#oQIwr{0*}A zk87|kOWAh;8~^_o;JMH}K92IUAmlF@cIsTSo*`#oyNR(eP8EVT9%o0M0=^#nVdxcn z&V^Ep|NpHnkKSjDi~Joz5%Omqq^F|HkXZQTp^2nD!>p=TM%@JL@ zp6lb_AHPHYV)visDCUtv@%J$Hov7#D;oAKkxq0b(lwX220bQ}Pe=j2w#)36Ke;q-n zf5v@v2l4j+@H?B&e)YzG&O6I#*PJ&8>th1#^nx#m%>ZD2+aDyL4bL;N{>`|9zlo8~ zwdyn4KXchrw2_>pEJ6EIZ{_X(JBa93a%c;n=D3S$D$f zuO+tWid07lSm5~zEIe`9B^ z@iA@b`y>9RigKvuwE=3Sn5%+ddi_$1JY_-PLHUCzZeJG}X+ zcc7KPJdhCG6`spy)t~oIA%FKo{(i>hI(^Co{hT@{;q~`C?NovC-}o45&Q}W9=Yqgo z$1$xN+3D{LvXH+-kw4opPxt*KhWB^KN#F}W%isMUpX=buAv+Cq@37CMq4$HP$Q}mz z8v_mbn~beG+qglW@%ENQlfOckF=hN2x@MVEt9Th2n=jT4`Fo2x>KqI2st?lMD0p*<6QH(rv2nln5WXTdNs(Vgb`UxXS`FG8 zop&kr&;2aq?>u^Sj*VxdytJ1G-u0FiT|0R9`qTJxt`0=r0Gocu8o;LmOW@64jko%9 zO@;hTMz7Ae`6=xzr+#|)=1@@>z7aGx)cMm48_z}V{l@wt=vTk+kpXQzT-Up+%?P~B-fqA?0$vdkR-~iZ+%y;k-(BJ1#o3`s2HRfAd2)%R> zb?U+Y0Gt!)=*JCY3n|ZodR|`|>8GKuPT4VEhAcaD8#33q{@l-EK5q9{CDQp#YAd|! z?FHakcmDUm?^m?-4Ae7{b95u{Owt{E1zfXx2+T{Ps+bC)Kpmiym&pU?3SN)aNfHuYLy2atkqxa4(Y%7(^mN~Y+cU}QExwOjDha~Edi#14#@ump3mM! z_Y?FWeRk|zQ?AA8%xV4IX}!OIz5a}&_2JEhoI|H>{^zXlC~Y)B=5I{Rd5x+0KrL*Q zySDw-;~lMIp+954ZT`3ZxxSV6#>P0Gk~SAm$MatwU>tJ{JA#YwPas>0Z8oU$C=2v$ z=n-_yB7d&SkUwLfy7Ab~hg}7pgSXBoc)vA3;_nK#!~c!EKbVOO692oK4Defh7WDS- zPW$b0+r!@|?9MWVPf@mihu~Y%&OrKW{+E|=_0B8>d^XSncrG;;I0$B;Gd}2#s=@xn z(VqUyi`>(EHsf+i>R3(&b^Kh9d*LU-dq49P7zAwFcz2q1eE0hM02&(4thiHWF77uk z*YjW0NdeY_IruTwm^-}$odTA?pT>4Dw!0`N#bzY3*!vrfEab04`{2{36^4SY;c{}zdw+L{9TQ7&9MI)XW6M!2ATP%@2V^9 zx;MBlj>jemym?qdP#TzDdv^5BM4A4!K|}sxzg6+xXcKlDsq5XhXQLd{?Es98JCXeZ z9)vef>;c`3jeqm#{Z?;K6S@9g1tEXmVW-Y{R*t$=fot(HZM~%meiO78bQ0|}0&C$* zA+x{5DVGMu2iXspB%Yt6rPE78>-hAZ~WcNW`>-Qpm8tUJ%9!BnY*SYmM^a0B5 zPv|&)&1gE@D8#>l)Jz?7k`GTcONshc(-P* zqrYAtOTa{4$gq<$fqMa0)HO-jo)No3I3cbSCLf)-H|!p^yhpH`KuG@j1Aqe zok#gD_yfGJ$#qq|UONy_f!o^!v2_dcQsym_+gq!`d&I%vq>%*fwP><)nulpmu% zo<04yVLn6V+2M2A*pJM98^h~kC8ymm_`>j=pq0T~aF{k`(|~Kq{v`t;e|JUxPGEaCcoO76=H7Had}rFJ1+9uNV{K~q zGN2Lgoj1Yuec*3?%2C#z`(((UW1}v19?L@69B>!@92)W$yMJ-sCjgG8and>Jd-R-Sp0bEOxCS%8J8q7#{dpf4b9^C>!0XRv z5BW1rs;h@xHh9m|j#Vn?VW_cNnfsqHdocWEXi?~2&}sPjf-yJ<|1{9w3~0!o-!Ro# z*ET8w-DN3?FM}pc)l!7`7`K)z&jQFC4+|ieZ%vq%St`-UEia5L3Qex$9x6u zK{pS28f*df(Y~#QFGlr7@cBV$%K94*4f*>KJ9VyyRKPiRKeB)5k890;C(n83{?U%M zTrZAAM)>Jq8oYNgU9fu!UVlDQ$e-W0)wze+KXZW=U@CLK=QL+J1#Lr{&I#v`HU~f) zFrH3Fw;GgJM%lR)^7k|Cs!Iela*2>CCsMW8+=) zYsmEXJ2d3ay^g97e-w-X8^B_0zM*~By6=4)L_O}6hkNn|(*xIEmc8z6drVn@HL9z8LCV;4G-; zs6Oz6fqBh0Q2mXiPRL&@*LNN61|DXOSDw52!ylopcOk|B+x!|7LjDn`0iFUok*x%I zsHZ<;Ldc)zEp_H{JHSiW_k+%d4h8nl_qZAUFtEKvpce4=6UKGV4#wB&)KlLSg#4M~ zsWZm&M~sZ=7pFy+YV|FXMRbyMw=pk!~-xuAj4%OM`pi%K>Ai`^FUL zo1iRwRWJ^lZcxY0xmy;U>r;Qek5KX2kPX5T>iaYo_imm>7Lnl(#b5AjN--qiV3$!j64vZstk(sXyhfYVf1b9#C zdv|}bf6nDl|5`-4=dnEv-sCwOK^@mb!1&?6VV9UT8)KUT*)ZVv`THN^bV|y;>yp^& zZzeS4?^>iw4Sk$C$*@lZKi)F!<%E`lwu5FwUmI+M??L{S4!QZG`II?`d$s;HKtujk z@$BldP-i%H<`F}H>&~37Iraa9R)V@teD>YYi%`dPDg1L_B>D=J^*0q7^4EfKQ8y3j z+#3WgQYQ}D7GyvzKLY(H@Uv*!`T8*!4E&u+CSZPJUHu(_hWssy`e)3Vg`ItIY#Pw+ z2hgv9xu$!z`t3SU3h5U_<{AIx2ara#7Ji87x*EL3^fS(RM z2L1-uL2_i9o=2VQ;bH750pFARUmB2{=P^%MiatAiF(%Xn z?ZLC43$_oVtA|}If7y&YsWKf{$Z8tcI@)%>O$ebN=}L?i62)&-(iXJNxIpG!Pi)ra+scJ`D96&n)=W z*p)=5%y}#SG_sNCo>B&H{m^*&{YIVZxedJgb{(jD!atxZy!(LnYo+k%zG|-eG36ro zT1)vK&>b7cM1Qe9*lt&JG2hZ<(X;rD{r%3P(1F-^e)oB=!h8Ol&wO}<_Wd1SR?2-q z7f=)I1NMI|RDZ{zF(0@4dkeif{W&Llfb!IJuDK`1uXCt5=`P-xYegT&v2ndtf^GyS z(7O)wcK{mlXRf90O>EXtuQ)~LMkng|?-SUb_Z6;n*IO!NUqQVqd;m z9HVnL|8w>+uS`$baheD13VcULK~>;-nGc*du7Po2p*-Vl|K5X!{Pl{Sr4IIv)eO)b z-gV`k?sJ$Uwt#xxa?f7_?_JZAU^VcpIux0EuKsdR4*BzrQ(bfHhhb)Wp3%)qGoz~y ze+s!V+V^w>n5Rz0ZVvK=pfWH<7X0ZP3&`oTiT^awxP|wNT(PxM5q1|2}8N6q; z$D!^Aj`LVxZZHDq&ofiVpKDm1v1taZ_wh@p=l2qGl4rrE@S~y5#RIgp6BwG2_cU_-O@@a2osFKQ0X7@q{T|mG_>x2L7t}c5{il0_cY5X$Wuf0tCn5AEWpn?};PrQm zdLe%q(W_fe9rKfCD8C2akUE|nM#68W9p}<+Fdv(%P{*?{`p2Nt(0_`|Ii|nW(2&2_ z?-`6&yTB>xnlH_SA46MyvrP;2J=FuhBRAF-K<-_S@6GdAZukqx^;a4`ZV|_ z65BkKKLDG7|CYgv$lRCAnKOe+;BMsR-c*bKUC~kaE+Cc&Ku+Yaqv9o zOMTlkPW=ts@74mx({sFIXYSUI>h52E!IuI0GtUnBi{&rruyIewioL&kn?QLe<;S2$ zp&g;l)w;l(V!=J~e`z48~S<6hw>Y~_a|e-JoU zjCoh_e+Tq4^xL67fWyEwWf8j0*!f)b7vD4gH-GW5>p02IeW`){N7P?P*)in!zXG-Y zwpj-KOlUUb#yrnijq#K5yY%{h{FOtlum9$+0Jh3!VBzZr--UK0ko>i%HuI8pq_j6O>&8ydsElS zL|+{FJCqNC#9#pB=E(JD9uV^PD>mv%La*Y>^>hbq?x8%GYGt5Xk*RN@4x8lAvY<11 z*RW#nX{n=){u&?)`SYwr-F?`4jqbx6P}ljJ5jf{NA*&0W50sfVPRG{YO?ORqF4X~! zTm8KXLjK;5bhhU=8%Kb3J?Baa@1E#++Aj?CY<32?6Rbn`DDsD)ZGrP89dp%Zaq@9Pa|(1Kn!)Y4GMS&XX~q8FKw?gogZ?C#fq6ErqS?*$VIgaKGg| z^d1|hoip{g_5o1yq{ooYq0S4?T*%z-=+9UY@^?GWAVEi+me?%=&eu~=pNYAG`#$$4 z=4Kzle-6x1#z9MBn*sR(5MTea5BW=ky*l@Hju-b2e;_*x-2?p$+(tj2gT4zofRC^{ zgS~6f){4*LS<`%coU;;4r-L*uNpIpbnZ1+zy`+_^fJxMxYMY;68F6y#8FvLjE#GI@cTb z;l4}x8`(hG_?hw;=w8a^7+ZknJFffP(fKS&gGUy#j)cdu|S^ae0CZbIG>nQ**xr_S%ta*@Aj&`|%pkLqS(@87Hyq}-i$_rX62 zKLq)!&MPz7sdB1^ghp8@biJ^NtMvKrcMXu zIL;5(uX)@9{h3dN{JH;9cMxh^m<&xt{W{bwPWcD!Yj)`GP-FP(_%x0>r&}Q(j=lHu z0gw~uuNE}q&$AVEu93O1YYvQQ&MWV+-$mJeR`f%WKMU_TQRZ0r1DK1J;rh%Y^;Z;x z{AsVwYxLc47U(my>-Pk%4Si_G`R=-J4xJd@F=g9NfiA%O@hI2zJiPw4Lqq;bM%PjZ z8{__Aum@j0&o;pM@gsNyR0Vy2za#9J=>+b=R|n7p-rr`?pW`j$&v>cs5cFT{?}fTn z``v{7y-xp1BFl^VE98mbotH&`_rh!PJ{oXRo7+GxFqAr;<0gS0 zfIr7$7Gz7XO$lEb7@PBfcR_CC#j$hF=@qM2-no(u=&uJf&wTfPcmGC4*J7-0M&GV-z5C(aUm7>;Ycgc+wUfeo zcCZNQ*}`d&~92$~ZZQ^rI(%UxsRCLT+BG=z|Xvm*2 zQQb)FTENf5_7|w*tr6HqJIkTZqi=-#A?S0FY%p@;y#J2f0sI!HtiLtTkiSXj)wO_D zqRw34JsVFuYv8X#kD>FvCx`9;=I*XXwV@TEJE23VlPU7I;THblxsCHWM%@iut8;BJ z?LP&s!h5DL2!1wnA=KyNTA!G5Ny?Wgd!}W)v45lBL;XvNUfp(Vecp9JdSs5BqtJ@@ zA3%M_aVmV&L+<|1d+EB=48A^c_Ytir>(8|&|=p=Lx!vBiyTi`v(20hET z=nI_$-G;0ZcJ}WJ_)z~AM>@xf`HnHdaTY({^{lTVGS5EDVd8r>W4PZFC{fV$^2X3gL}ECA*;&NIK?aDVX{_08?Rg`P*IKfgr{`ST1{oo5g3vl@as z;Ily=0V}EM{4NW1{?~wS2KoZyp5x84^5NXq_f_g6ETH(GYem}ieA%DfNRW}?P*A@HO0eD`~lKbM>N-22Pyp*)L z8GaIW$EB3hK>beAbGrt}y`Pyu$e(AM>RiJIfR+?%Veh(-AL@JCf$)BpwiJ|wZ-reu zboRe4<<~)7>rmF8XUidf$0FS;wEF<|&b2}C`JqpPKk(54dL6r7$c@ESfU&zW_!VEC zv+l$0U7)`#$U^?=MY@Nnn-u%3AT#`S+V=bE+u%U@Eh&lO&jiE z9Mk%<-ywfHqw$iBI+MX)*g9VBqMpwwVXPr{Ed2%+1ILSb#uBgzookry2})Ad->v3* zVQjq?|1Kp5v7chX-~K6gpJd$s9^T(6Dgr+cSsTiQ=$mous5)qA=;zqzuMp)>{~XKe z3S!riI;DU)*bBhx{1mzd*+uT-3{2Z0bB;a=Z)`Y$t}Hf7q5ej#{vL|jv|ab2ao+dq>fdAN)h(kf&m_!?+z)u( zVjp}y`s;_^b;!L3UXy-WfeyeiJO;Z}Q2p(O5BZxA=`LcM7T%o1IIN$Y&{-fiyzAfr z&>h|wnjh-8ti^TsTL*u@8w>O|0UGkRG}0MB@-iQe(~kFY6x8{a4ETKPyU+6gef%71 zuD=Yrl=j!c-wQthn;2ztgpj{N=+&LUCJ$&25>r17)aT^ykr-Eer|91Ed3baB&D6_B zc_Vx#uHi-Oo`Bb%>qf}m7t~RAm1|2%|9p1-ZQL~E#t_G&dzCZD3c*i6|08AhZ{48I zqbtbMgGJcHC_AS@{svQDooA_Qu^S2=1Z%n8d#IZTz8&o*f%;rs$NNLQr|#9J0{1#E z0mqmA>}SZI`H4F3i@zI{9l8SF-^15|_kFE7n7p(N3-v{rRkpA9<5BWRPz&ONsMTYC$CUC`_AQ*4$}*Br)}njg9E(LF;q=XHPWIjrl} zF>H%cE)Jg+x)+Sq9=ZOG-ojs2+KBrbi?8I=HJ>vt*-Cjibv;*d{QU_0_aF{q(-WC{ zm&w>Vh8(ZQ(d#dM25-AJuYV`dEB774A^6I)su1^o^kok?4){h zK3Dx6frk8zz=t~XE7zdHU?KKhp{_^zCMCLDxu*F-1KNrK z&*)x*x|eZ%{~R0RfP0fCpu>=71&;uqd$Gu$d*6`1@3B*7Y&K_YM_Zn2*r$uoJ^+)1 zXJ%}e2Sy@DhL3OIN5k)jPeHwBDBC~#8uDkHRCk*8&5cq~wx8xtXvcA2 z9IXIcZ_6nM=4$?(ct3dkRlJ42hLOLD*e=Gd3hh@z)`)tu;LT6wfF9`6KzCqcOfZjo z7rI^@v@_K4roU>GL;c%`UR`JEyO#Rhb4Pf6=zkFOAhZP3vD^mU7+wPEbIk$PqT38w zBG=ytXvp8dNH?Bq^BiLg_I-ihLJXy?Y}}_B*zBR~Gs^{TP&OAH2&yBWOxgWuQ+WN| zYQD$)&7iL9kN4$W_!6|?SxGb6F`njwzl_{_nGjDYAEJDevU>~1o$*0`f5M0Q*8zKV z=5xNcPY=v{SAxQ*oL~H(@Y~FbVR9pDg3Sh~-`RM5LulW1ASHVJIc`G!rl40>1RKAp z-VJ6`cM@{fv|jMzY1{W`hk*NRucaiiA@G;Mm&p5rzLCEZ=tBNnXVmS&)?7LV<%em* z{j+1R1kbN7a_7EhBkAD1Hgk>Y;BDX@&AiJvYX4j(L;fbBSJwcWduh*o<27U@!4%4O zgH`Ysf!}>KfI5C(g#QWN_kZr6%^B~6>hBq7$X`d=R~N%y6WE2=kA`~I;x}csy$604 z`Y$Ov-;8Z*ko^HwW`5Qa+7=uA-D-cEf_nNJ2q}cE=ez}geY`>akB}Ruq(iy4#x(Qx z!cb$*)4=C^44jDkVH)h;`KW*9Kkj=@Q_s2Y{%02W4creVA^RLGho1-?4>jlL1WifZ z1)vdS`{$Y&x}WA<>egYy{|WiYXE4XOj+T_2clE$xWbQ3*2lnk%V87;4y)-cHEx|^A zo?C|eeHG~{V7r@o_9qYgUi_IuxaJ$vj0?sY_ifI(vS2sm@|3+dpTZXa`YQzu`7{2i zvyC5sYl(Y?5zqtBtkiYf-3?8HegU*6Wyg}|7?ruMu9TfuPe;#h1ANGz-^r+Z6WjBk z4Yp;Vr)lQ^I`b7{xG{1m^80DqXW)995$M}7IusN{Z~xwahWzzGukKrHyyld^bMAU@hgVl+Cg9H|7@pwqU0}=d*EY1?6q@At(G9+WLt4U6B0_ zpA96UJdU#ajY;s$;oZ}Xpw4!nzrR7Ke_uqpCe(L~4Trk_JH~x7HXghFpMLpX#XKS} zHpc(CpgnNwybtR2`P}uF85;6ek^1WPV`CnkjPiOg2YwYWHyS}3+GT(`Z+0Nh2i=FS z=3qD1=Dc)G)8FUNkiVwXQ&$$7>+rpxw}Hf5xMOxL{aOh1eUi_|x!DeC?(Vwb^Yz;N zp20TscNg^k6@PW2{;lDfT>p&m)sf|bjs}?-1D`=%;~r z`*#u=>R&tVzdG|syWn6z{sQ(6oxo#r({Gb^y ze{rlX#J(K*F7WnmFErG@bLiDI#wI7tJx)F2`#8$(UtdG^3NmA|dv)`HMd-ePjsty> zC*iBC&UB{;W+=n`je0TFZa(#GBSHMz`3w0^*G&@Fbpe8m0qz2I@=`t!O&{@lx|voEc{ zHO?HcU*LYG7LK%LWr!7zC5vF{wrS(ED@cunRZ`kMxg`?%SkYn-|(wCj3c{xFR? z6QN&FJ`ZpHYCLJhH5qT_BR79&g1idl*~m*%?tol>eUXR!dG4(4I5sO`6Mi?5dbd%} zy!mx_zw6lyZ?3Z*-s^H-^#p!m(1OTwqBpMU&pa{Y&v%&W94lwBzeqjrkLOe`qH_lR8TzwAyyJRJidj_kG zdkf>pCF*?)EeZ9R8v~yK`b!TD`TI5UmxA^iU^j{KF=%n>yC=w(2@!a}8VbK(BKYZEdIg8vICPEuix#PlrEB+xFAF zg!!6t#rc#2=8sa17p zmi8PA>%hnMgG(F$Z>-t}b$xW-ycvECFuu5+^hfUBVH81Em9qY(LPP#4qgTiO|7N9* z^WNBb8u~6}$By&d`8*1KF#UC`WI^Vd=(%e@znTMt$E4&7|y_m=q+V z4^Kl2A~*KC9u1=Gx28QQHv~8E=bW;C&w-G?1(D8}@7(%Mzz;xPm-hV6b7j}>Y{1{8 zH@0U$b_5t_tAQEd)5zbg=7aliuf=t2BK60DJ@D>b-BWg_ZTAMdfoECf50$vrA41*R z&j%N<(cZaX|C}qK{<%J@GcU0}TWHgmy&w5_%C1kwZs)u?%ge}8AoE+4)}SUZ?j1m< zjsD_i0=9ee`e$3p-E*9RpHEv}UoNP5kZZPa(=)EJl$X(dA!PmF&1arM?*7TYCy&SL z(v(B}yBz6u;%_kZi$Z-*mJ0efD8jv~4V^=Kqp*Ddz659nDuZFbez%}bf2jSt0uA{y zMynfvjdR!M(15zeOXmk}65c-?gr-CGBiCe|L%_e|+z2&ya-2I)^k*Co`STg5djZ=a z)c0H~6MRX_`4ePL7xWbuOBqz@3Y9?L2UH%JlKb< z9Q0Y>_u#FeX=%F_ZJ9rr$D3yuJJ*Bc$o`zK^cOm~Woyx_1)ZnCu$mJDnV~Sr1e~{}D3BbY}Qs(4E+&1tYO5gie39 z74p{)y*l^)E3tD;KS6!}{l-nSmzc8qiKL(o$c(Nt)b*+@c!m0#p=W?|RDb4+A%E_j z)m@6}T!Y%Lg}}Vv25|fsYm!2p1IOW0Lq~&OX#a7}hRVYmGxRqd8uDkpqRx0$5PU_w zL-flvzAp4h@F#8f@7Nj7TOcn2`e4@xoqo;RwDlVq{W(uV{>&NF)xpkx+dKC`Fo!B)VZFS%X;QHm3mX43%Jg< z$oIgHfI4?PdoKh13pm#&Lp?)y2Q;L<{{F${zxn&W@$bit<9fUn<47m2Z#h^Ae;B!a z^}hNpdNNb3a|vYHZ4LwgL*OeRPg_;f66?+lKQ<@NqF~Ug@Nn6W8_b$ z=LL5nGnQ6^F9q#Mc?SyFNfNSDjWWSH88eRXd@$8&wxp#`z`-?{%B_`CA%mEBt>Lp}?ce|vm8 zcK%JGbH&(@7(4$SGKNhL${~NoOLc9q8HW8@;2ar%-0z><-}-%@`#a~j_tWo`E`lFG z8tOU!{B|P`G={&NAmr~i?9};=suuPQpyrhQzzxusx{l2gz+B1s=Na}$%CCU_*!W)i ze(W5}`g%tduKfa@0LB=v|5x;md(Z2=7h`~XBG04zEqCqRKkCoi zC*<$nNOu(5M)1xZpQFDaVeG04Ume;4>c6?R9^SR05a@`n@1W0tvFPIC(|H*3XZ%;^ z_sHhU4^fW6r^cVpMt_x{&7eL{=gD2bd*I)k?SSfU47_c`=%3FxEaPyEF-RL6EVvcr)-pKZvW@k5<4`9jzj>|>N#ToFnSC#T3 zpbd8IX~XxQjxYPyC~DJoJ0Oqymez^p!$IWcNRMKhntFc!b_L$OocWn&=u3d(r9SZ9 z+P4#606smt*cX_v3U;a8JO#_?`Eoj zj$jLN&t~jj2N3e-`(bs{vHywd%t+C3-VBe}{4_&Fdm-{S z1iS1Y2QZd;CjADq2r$N0geC@;XloJ34ql}E6gt1rDG%=))Zaz?hWvT|)s@9=FRc5K zI<#fK-BWaizX#s-`oUL+e;eu^?Q>*rK_3UJ;9o|rzt+%@KgYGYRM>R^y?{B)om_KC z=z|~=*bTgAnL#?>SZWKZfHuJWqGv1m8^=5i`7^InmzZn12V0Bj;OoM>M|Ur0j(rK5 z3wS;589j%p5A55+!1oX4R{C>nhy3|BTk1T=oe8>vJzxp-wgc~@bAJIi1=@lg$i4*2 zz}r-R6!f8;sgb`^w|IV)u+?9CY&`ojHdcl=7kruao~7Ifs?Qj5_v;n7U+%9R$1S1e zk;Q1HC_4MMgL0^Ub0dGADc%X+C$irOeS`Ww%M0K>@HsZWfV9~4h-}wEorA`WYuEqd z?-^`D{yNi+I@fUT&thy>K}Uh1@W*Ka_!h;924m?S?*1J3Hac3!6YQqj&BV0FEp3mKeP2S*U+8>Zx;YJOW=sfopd` z%Em!shW@S~bAMi+_RazGd-HJA3GZ;n!kAy^FFkf4f5u>SuA%Nv@=_iSW>c;O^?oLY zuge_RkB`r=F_t_8?8m*}0qpWoHYVz?I^~eR7U~ucc>3-fWLIezlS>J zJu7it{tMg9JBAy#xD4E=-7oaN#TEiEEI%Zr~ z^yfMf^5?mYI`gcLuy+se9d+DSt^ohgzP}%y1?u-1?#qMI7Hd!^DxvL(S5Y}$D{DBjZb6S58X!K8H&HVr9Wdv$e+(g zoo6B0!7OZzk?#50!ykaJfxIqsJQ#<}HQIL#S->P@c_{lH;XFG1T>v3}Uty!}I@e}S zwx4F{hgbTzsAwEyi470z+PZH!CfNP9mmg3WS$>ZfIf!(Q0O7>F}Q+n*IJ+H zCTwEVDGVR-hdM#Gm^w4ze*u0!Q5|Y5K26;%&|J`gP;;_MTufuAYlP=e4UxP5_z0Q) z)`5_}agpu@*XDS396EL`Q2z_AJ>g6f-u+)Gyseb9Q)I~a)0=^davGUbnfr)l5)c4-g;<*6U{ zakIaVBmbUVzlYhUls$JZ3;#MY<>!zYqr1R+M$;5pf^sg}HkQ86eK5uwqx6>peaN5j zL7n3~2X&31mFdfHdCD8P&i2$ZcQBXCfZTTr?&}{%rfv+fkAZRfB<0(vzXqEad{*p2{fp<`&ec@h z7jt;;O)_vF(m>BZsnyt>~AHzNwG&M5e zbsmB`ul-%x_wauh8_&(F(C!>`MZgI7Uih1YQ~kjP$IBu0_$xx2x6|fW>d(R4c=0^4 zp78as>5a~q+!Fm|-vGt{{e1#L{c}F4b8OFq-3u<^%eChL>SY3s+gG5j zfk&a{77ye926FYaq2_eHFVml~Cgkr#q&rC)y|G^f62W(b8Z+Hr8`J#vFkh#w;qYGp z z{-77SccH#B(;p<*zf;)h?>*|5gWUl%5C9|pLfD1M&|y~HOY0# zI36FLj=j+RJWYLd$sx~D&pGSZGY>M4HCE?^rUmY~Kcp?6kNMw4{JB><_1^`Ru`@2|&*vZVca(bS z9A};_FQERBNRHg|tzyXa_aX@O&+qWmJp=K3vX;;!)HA=R zPd%^Sy_aVI<`)ftG2XSQD>y(o4H$u)XM6fHHirBiL$B^TZ2T>H+gJrZ7Wo$1cmb?} z--gVx@$_z}&-4%Ay>L%a0NHYE^mh^(@@MX#ZUXlC=-+aRuKDw+w+=cEEP|KL2JRQG zVdvWJ+U5FO6L?=o0sXm84*5HVUR_eI>37YwpeT~6#)@ccSMokw@jR$^3N(uR9q*MQRKeuA3MWJC7_d?Dy8 zI{d%*mhTE*71|4Gj=ci@eqauLo$?W=@xDQVxHg!Mne359+lUyIiyHB6o?u4{+TI`Fol+)V+m` z{(N>`?*ORZp0wk-9k1qK?*C@OJFh(h-U%{cy8*cVo14e5nG>~XyEl(dYNYngNYyoa7^3Y5HKG&7u3~_uH#d9`{{Sfe=;^JAUF5X zUn%4ve}6|hW7b>P?*mEU2SZ(RhtQu?*!a6^SAp}-eV+F_JxC4S1D<2Y*IUP3$e(9X z>W0w99QaJ!(+TkIRlWzy;0xp5Sgy?Z@CI=G*#~U^9SimOEypHC8^*hkzrm5NCAOZ; z`J0aB?2b)i&yb0puZnUq!khwuim<#r?nY;2~tYY0o&d3z~?rXq%Hj zM(P&BlsyJN%Hf0_F8p`Nq6t)B85Tth$jjQBK`Iv4DpF~~E7 z#?*J;9fR)x4f!iieRZp8<1^Y!M?Kdh&kSDUdW{=jQ{S^7bAU$3j4#?5A38%9Lp?hi z1Y-D00Yd)1i~PC2b>5u^|5AS(G$*p8wC6nVtYA8-(eUmM9gj`G4dB=|j^;%dgBn*u z{`#O-w-1^fyP9AMK3oTmAajq<4BoSr9q@0$KLK3t%R~3$&);(Nz0aeR^=IxC@@K!) zwV}Ob@aE3$Pli!-6c=QqW?nPJQ+x0_#Dd0o?%+=K`qKVC$y3w6xXlK}Uz#xL)czac%I zvipLnP~T&|hCC~NohzQ-Wut7Y&|f$7A%Dg(bz*e1Y8efblg{ku%)EGLGKA2BCc52c7YKaM|R zOpJESMMC|HuYX0cbAMwU_YCIR?){F@ud~pF_&oqW58k}}I`I9G>x0kMzuoq}#%Ra& zGvu!%dUZpg)v-6$=8NF7>P6jmpq~GD-@N~gz`MXT**)OzTwfjh#qXziR>)s`KW&cO z06WLEdxXDe;{o_y@LorM=t-~w{z2fn@Gs>F)T;--8U8qkA^rjy@;8=t)fwaUHx(FD z2Gfq~Ulm~A%=-sGUE4nfvw>^>tMqFDx>fLwAN?6$L;f0KtIk-P2bd#`1$QF%tYZ+= zbASfm2=kylI%AN(<7I9z95`OiL*w~icleM$*H3j*xwa><^VdXM8v5ov za8G=ga(QTO%04&!^#&n-KXCumd7rvr=l!{ks1f`ge9QsLHbMJC(<1lmY&vCgn|rB$ z9Jw~0ZR+m|2>Dw<9d)kF{(B>(uszImehNK`&iS3wd4KDBbLB5!?|UY{XGjfi96td6GyF%??+<)VeW0zOAES4VQ-?b4ZHH5i z=bzUphx+Gvl)4Jk_4&Dv-UU1>yutPQe*9&08KI+T`x5-G@YjO;mx~RLOq`;4K=Pcr@rq)y|=H+-ASFg;9=l-)M>_Q z2KX`X#<>{O_8qI4KsnHkvhO|27Z-qd{Pf<3{GH}{)Lp^mEOoC@uLm+?vd^mte0$`R zp!LAx$UJZHKBS`TTGR-bC#<547&3FLkUw)kb+u?GC3cR{H>lGG+<^D|&pFTtx)od3 zQlG(t=$$*yAvYf|h8ctPmmXQjpYv4RUaqYZ?T!WR(H-yR^RDLyuyOxzFLV@rdkFdq zSPAlBvmRKlDK;_u-Ge;j?*;7CIX*gI?>!m7<#mA`2A=1hf%-eWuh7;9@GF2Z+x71f z=m>8Ntpklg%@soa8b*CDhV3=#?uUMb%(l?yPySdZchg8$?D?kZ}=(j2P1z4D2M#@;d;~= zpDF_PJ_n)3dUM_7^uxL7I^emuF-sfohvUil7=u2`b$c!w!^T`FP|ssV5fa~ z+9(Mo!uJQ;K??N8p>JbT6kSou#=65c$WDEW%s_B;F}?{kG@Bq0;=!~JP%n2 z@7aKH+x5XXqrd6UkiXBUr|vQ~D`9=Ve;(fVefI$0iM2-VI$^AIAC(%IUqBN6PCF~q z*!yGT?^gTwzp1CcrjT^hYehX{eGjPX(+c34{uMIMagM+{_S--!gSyl=p8X2%n6-c9 zp`rf$j9#7l<6+pj7Ig%N;Y%aa$G6Z2pqs%9paiG~{I~NqVz&txKR?8`{%V7eKkKTi z20cN$>!I&)U&_(eYIyeoZ$llIU(>GnwEOtf(BCK*2d+iVnUO$$#)Oc+%jnfj!=@tk zn}KVe{qfr!^C!OnS_PjQ7&AvejVW7@Z=vk_IQKp7gY|a^KIG5wpzcR(7s5Ngr^EkD z|IB5&!M_G=0^I*~LvKD?jq*fjM%s4_yLX7k>sy@{4B`ePp5jU5@Ujan!ZknAH$G0*qzNsqY@QI&>!Re!GS^ zj$Z@D0oMiBzxaN-D*BK=&)?J?hk8z6&g$RfI){zh#=B%tzgPJb`6=}7m&_lMf?t7q z!Q9v_f{#I8rX2FuB>Y((zo2 z{#@5W{`N)J;K9pE~V2mB6}(Qaw*HGchDo1WNy3V$BzGuGc~5b}2b zJ9U3TeFyM0=nY>V*oXCW$n~%vZ8o6nS(fwi58%Ami|=l<-xA;E#WDES$U^?&&-OBQ zHEAyk_>;OrD3>R9-v)L6lMH|7(EUN#cHK`mq1+r8b1s38u+!frY(xHB)79MvF%IUU z-WSx%PPsB=$D#SBXRz0RamL)E7Sx=x9rYVi?u(6k5dFQ2JmfF_x1{5+H>ZCK7Sdz6EY#T`knO_8=X)n~ zFZ6f)z#qV|dDLiRe<8aJwSSLOKjiNmcIrF}In2G80rmQ)f^yWohc@irVyOK|i@X%P zX9bS6cGwtWZv*~Th5kN@o{{a|96#gF*0s|3=iY5NxDNjvaPRN@Edh1CbzG*U>^*Z& zW-jJ_r6<1P_tTgf>Yw9Go%62)b{QxeGj_uBf5N`b`RClv3oVP?TIdygl%*d_;P1iL zW0bj+g!|bU+mOFL*r;>unu?vdl53~yx?{*QV}B3mD7?9h=Mv@?t_dr_33%5upY;-K zW7ynky!;gTn@^qQ)Uj`_sjl^|E1m(ZgZ4w-7v5+39A)z>_ln7Z5BzP&hd_T{Qa98; z=d(K3*~4Sy zwBh`9&(s6?7-a4j)&Sd2hVE~8$Cm4LWBP2Kl^@>z`5jxxUwr@fFl`pcY#jAG*RKjc z2zZ~aLqA4d7rq&7)rL-{-6hCRfZyOVqF)u=&u7qw{GG*4o%hbMmmZu!)(dKUtVeq_ z;9tj2Wq8-XTF^>R_bh(b&=%_N(KsjUUpI6if97)P9>vbTO&LIO4cGZ_bp3T`Zy)tH z0>_Et<5lQM=q_~L!zGlDgHNLVWq=R)yTEm+GiK$X{s&O+O*zCR;q7+}*q=IF!z^@X zp`TFp{+d^0;yTyBAB+6uhY$JN7U_K7)r7XzQ~r#3FbitDX^(6bG!=9oa15@3dM0Zw z>iX9h7y~^Mjp6?Q2>EkgtInKfHSASv^TY3i+K=>LCvw+8*P|_zUxxmG?4IbEJ_v8F zVZ7C!b0_34b#y;H%WyAI4f`v!=W{d;8mqqqL(z2vY0x`X8$#zo^K&mfBTNS$pMU0& zA%AnIr|t)ATwmU#>{{OhB&B>Dc+Tp4b1k|6Erk#FXkKbIXhX0L9HtHXXO0~5*D2C< zqs`N{2Rb4<1C8(TT*LncAA)2!S&z;*c!je0viH3J@H+K31bN6`1#Hxfz|Op&FIYpH zQz-j9Kc)N+$W7Tjh52JC=!!LsOxf;*zR0oXh#?<7r z?YB19(O;x&oY&u0XvklDd@iNV``8`>xJvj9h$HZ4;a@~|2tFHpUFdzZ-5dG`&yH4ejc-xz1aB_7o_2ntz5AhkKwfko0iSJo z%0;+H`>nqd$U^;lhc?u?W>ux_BiKKRy?K~aY{vPr%&~Z@rwV3}~1f6?#*U)po zF|I%N8Xk*({(Kht^ZB?gti;x~?au<> zcT2XDjrQ(@eud3oWVY#jbp7N1gm3TT>q9+kLjC(5V|C`WeW`a6__sbMsWTkvdhk9r zSD=l7-&q`{?A&jU{%L4ekcs+_0PkmEj}oT?;hTO?@iU@P`?e? z0?i1Lz?=J;6IX*e1}1>_@uNTYSs{O0(W^7Q6r`_MZdC$_9MQhV}>UGlyc+3*Nm<9#9%Tb&$=3uA=NX z_C7ocZ~vTIA%Et^>eAt(HZVu?ou1EW8+aUi1AfJ>Gc*bGDEG_tp&Dq4uR_Sy0pBO< z&v+E_w-9@EZQA`%b{?Zzc%&8x`pq za!teG8-a@OFGF+E#xi{DgPKQ}k9tqd4`Kh!PCsWsM}y7iQ$qDu41LI7(n$C3_5bY0 zZpZ#!8cPlBiS7{XjD{Mg&AmrZ-pz9>f$S4#59E)5uYl{b{$2qgf5t#{?oEuB_t1{{ z_;`5#J%q~e#_f-QvCaEY0Y4vLHwS(o@IE?rJpmcOsUh1ie!>5Os4P`>;Jqf83|fr#<6~>y!Ok zhpZ(u75Etb4eXA=_W_A1?|?dn^w*1W$X~NaR|7lOwmg*0x0X_V3w|5ab?69iei>uR zU{@BMbHuf7G58SFMW(;&*o6FDMz8Ku=s(!GUfe}J*O-JjMcL=}9OcYV_Yt4KKLY;~ zxC(y|`0UMV^yi!j`7^Go+m3A~*z>@@!*u;NSO1OneQqBB$Ktn?mtr#m-u3bi=os)C zymLr@tFQ_AOOKs8+cNicTzrSW$DwT~mxMkE{TOQ8cK%HP9YGVI&lJGE4uk5?dmQrj z3^wZKV&mS-b`F6C;1l5f!fQDR>@zMCzE7(F?F3w}4ns3QmjnITM#!JnuFmsDbL8^i zI`+0Z64)2}Sqz#O90Tsl?C&MOB_{0oTfuJw`nw&3{F$eyGoSRF&wbcN__frj0*o;` zq0Z-tAURlp%(CYZu2s%^$p4qW{7n6jzmgi_&-mh;Ed#DlzanUZ>?&}b8cj#sdmaX^ zQK!K&Y}^<6zGEHyAZ+ZP^CaXiUF6RI>@(>Gc5*`x(uV86PN;L^6ZD7CdG_van;Q!p zm#(vp@xJggsHZ>A@k9Q!SGOM97pPYb_#SE)^?m{7Ywl?aLe0D8qBj;ecOJoSad`8z z+F%+o{h14d{3SxK&i&j}{P;H^@^hfRceGvm{v2&o#@4f-F7WP^et>@g+K#e+AGelr z44an7LjI219{zkDzISl0pTYi4#LhMM9_|I*-+u(Wj|b2-g*L{{yh{0aY)?V;=XHhr z(R_kG*d4PxnDHraPNKvSqznXt&qPT zqHB2vnt^(rnVyDs-|Bl5-)Y`KefKi2B6Gdh#=X4n3yUJNUw*rl6Z7vmNDxO4k7b96@OF6b2MY!aqu}9iB5l>F^2kQJW;2u-fZRpQuwuCzF zX^o3zY0q_fIaL4Vgw7B1|LsuM$-hA}g(+@htQ~;9kZvN@KSF>F*r+Q2#PT{yxN}IjDpEPtaUo3CMun`K;dt z=z0U=aeI7ph4w&a3|NR=Td4k8pbPnn$CpR2@oz)?I~(VbxtG4}%Oa@va2I@g{Cdx; zK(iu$2-+L!7+yv_{bhg;`5Q|6>b{|k_#VJ9Z@k|D%uSwxjsSTuJq%VNGv4XzL+~3q z&q{Yh{+_;tKhKKvXD(O>xZZj$?E7u!)DG&-M3$NM9)N!u+1-?lH_4EhbH5DrJ-OeH z#wdGzq5hqT`j-?N?~(Vg8b}6=OSbFUF%5n${7h(d=pCRi=nNd&d#G!S)!#n&kUxE> zGj3 z;CD>dxS!s?{_xc!>brtf@M(c_#0hC`TL<2CIjF(-A8X1=d4pI1ieO#`{n8{cB6Y%An%TcjHXjbU$YIT?NwbSlV7JH}DR zgy#t6q~_p>v9Uizpw2=6{>wAW82;KI3;7!w>C78eVec8r^VHc!8(nEX8||2XR>kkb z$hW{B!Dc1Y>v$2_25h^b&j23-#*2_Y&!p5fpnh^}_fpTlFLZr)8<{cs1k|zb9_=+~ zZ_1nD^T2!N>zFm3@1mam9z`GW7tcSP?^S^7pRuGf*YOzCZx}m6zX$ojY)}Tgja_c2 zvCZ?0Z{ZzJ`ty22{$59~ZXoqthjLKwD1G#sqNm_LK<>Ks9c}tIYIjklm~eLKd^1<| zn_6=k^J4wAjM}u_o7bauk4L;L2Lj?X8tzlyFASWkI3NCoeFPXUbq zpGnAHbM)%$pYz@RO@U7q^{*|w*WU%|_d;vn?*aDD?=ts89ZR3V$KP+xgAe%|gS|S( zbsFl`1_?2S@(%iPgSzIE_ai@r%=dzhKl{FxvggCKpueN{J!B025D593g}u5-+F`FR z+ig#M`|4iSarqJSGWZVpI$#X)`7VNfjs0P+?OXKvgCw+RyEl)Q_AoE?H>!Q!RCVo~TD~T??{=KPBeEm0n{jgQ;UZ)IfZBQ7#K6PAU zE7DF@WX?5XLJee9@#nrMH%Ni55p)rV|2=}SJml{wu1{Su>{G-33d~E&Lw|&($9GbA zZmIV`Gw~<0oygeSm`=90J-tR>+svg z+u@A`8_^km+`CPLzkz-S{f@!!L>BUQ1Uq%LuyKv`U5)#MLBM%l1GTZyxiepfG9DYhW9dja z6Yv`ABX7>sqe$q`QSO}I_k&2k2KbW{LRE(oxyq= zY&zOV$TMm80OG7r{rTLw(2lXi{K>p-2)6qA9?SrK+i3qhFADkFLmhSbq0U#YZ3S&Q zUhSjj;g#Uc30;%TEnN4Wgg2%-Cyzm$PYZzl9J?WZSFll64|0sUtAY108`KzVfAd4l z3A*(tly}hJ#X@RDRZzjU?;N6!0~15yN$+=$m4G_jM%k!}{Y_Q#m!b8$Sh$B)m|Iq4kR3mO3Pz=r55 zkrR)G4yNog_WRQq(8{24dZE$2G#!Os1o`xNizb?Q3@s!?{|uo*mn{551%;GHL~ z1zqXiw;-PH-s(JLC3W@Zc>II<=C0-#o^Q!7MCRVy``!o`vqzzGuka_jp3uC&d)^K^ z`}cX&2ixs{O}wvC^JeKu?Dm6^6w^SBrRGfgX=5OCH1+gX3t!ifK@z+cf~_i?j7_p9nobMHKJHP@L0pMq!Oy4wuCCbT_t5BL(^SXLO6q^@!AMc})%_uoDv;35YpwEKrUU+jQ`AZt<91re?u3+yPUK8Fm zH3$4bu4M#zpQHEAoaa7tC&6=+D?<~bkFW2~-lBg#C$Hr^_CBlJz&&RkXgACO8u*nQR z3zP#_DW8K5!Or-Q8tCsQZ!T?$o9Dyt=#{?>wSV42K;n#rU5#5AcTlg%{ zroi}P^Vg9Lz+QiiyeR>HccE8jF5d;Sp44-VeE_)cIZWC3Y%cRMD1eRmpMJe|W9wz$ z{jLtxU+!Dh}pILH88N9I63gX-@$ z^r8NxjCA*4mkneAJ}=+p{|0>?tOUl_`$0aCg*uK~ThKS2KhH^6pK8~r|L67H{kajx6$BfvbV zB-B_@3c3fXzhlslzkRf!&RDz)*7d>rHU>Nc@7d-6u$po`Y@9#ufKJGaeP{;m#fZXp3o`N3+N+CZ8s$-jw)4_K|UL5qrR)5CW zkU#TFb>@OguyZ^(N2);QLi^KBDri>V8TCoz-nU`UEy&hE>rytS=^Xjnj6CGeb6s`U zum9&hd3LgedYgG(sc2&j@~)KM0Onx!+wtVuw+dV5PFd(+;5e~=`9a8EEb8ASF3Ftw zG1{q)Y#Q~=`+lXa`YfC?U7nO##MsrQBh5GO;$$gpc@s83)d-Q)pW7O>kLjKl9_qr_g-ovgQbUJmL zB0odfXVnPVRrq_6pM!dq)(V+tluy8SN0tIQ5vo7e=8(U1T)#Twz5Da`K|1U`Td4qF z5qJjdxz6igCh&}IByhd=Z~x|?&JN=Hhg`@*{*3wRx#V*N9LKm z`^Zwrx>D{99)&*!T|`~?X`X?{DErJq{xU|oO39 z1bj|-R0-#yp1Zg&_dSIEmQoJ+dl@@*=5Rf^zWu=Wnw_D4f_td%xynfTYYs35-aN*& z?;faocE_4=)#nj|o(3U*wx{kS*IW=kp2a&xUqtSsy&HKWZ~&P(bz+1wksn6(F#Y)i z*#3j);`{eoJ-_nU>(6|Alq0YNHU>!a?L7fY$G1*AHj$jsi z4EP*F{kw=>o%_8+T-)b-w;qU~Ry-I4tOoDV6G^+0bdnML_J`glI?Tn_p397A1< zy3b+fwcY_O0<~-$p8~Q{b|2dWd;}%|?`;{XUxrRb@A;zbxVH%Tdlox&=7F|<0(?!q z+o9ip4e;g|tKjvu78qA+VBeI5|97ZoZTkNv^7k}+$X@|$)fqcJ!G1N+XAa~Iz!duL z``T2DD|6C0@ZLAyRUHP-iRr*^vOPipWcr$6IwH+=X$-1Crkq2AXI;awk=;?ErO zV|dSz+z0A6CHMlHb-=TR7&eY8+x&0+^WUsdz8U++vAYWTgItu$QujA7S{-KR@Yw>L z?}y%`o_j#&x^ZU?Hf^!dpU)=bFKy&+4|YqrZs*|@>L!NvhW>#(JN%#69f0?YB?;w1 z;C|rzNrK#S=ZusS`iCs!&v$F;+F<_=_Rg>R*n9qNecu;*ugy2N({3^N8lVj*2+Z?S zVKWu#d5ZqZAP@O-%~baqv^&?n5m^6qsArF!XFDbaa$Onl>30t6!QI&V{4T-wgqFZh zUT6$zJP7&QM0@HcW0#3`pMWO9ehFgd+a1W3LpMO117n()Sqi>0?RvkDqFVv&2_3>UJ6Byhy`MSZL;kLyS2r6< zcuIKJ*9!aglotW>H*>0XU=(o7Ob71w-G6&l;F%bglJH%D{$8RS@>e^$7SEB3(kJtY zRq*AYJ*l>jhFp&ZL9+tSdA|nkYx9A<@cF<`v@?);`ZE@U{5^)PI`h8Pz+CbGaPPPg zxIX3w?oZZ2Ju8^U{WEWx4fZ2j2Ye2tfc}2QCgg7;b<~-^W~ZG7;CHUinDHbq9?!wV z=U4@#f}e=o+^j$FntX;?z_O@+4`UbdH<3E(Jo8Hny99r>ZLD0tbtX{c?px9#b6ql@ zS&u9aaEv-H-B)}G?BCd1^e-`b{SC)vDQy|AaGCJ$jd)&Lg=gyAZiVnU!P#&3 zCnc!oSncKUNIDn)&B&px0#b-t#}JRo7;KzR)OJZ$p8Kg@MF5ALMg z4!G{Re~H06H~!oGybVA9C*d`iD@dL9#*~au$E4%c9JDokZ47k}X$(yXe-7PO&_bZ`wu@hzIxbbu%NDch&e&98Y0gjOuur=Sz3)Oco z;5F*c^NWzbx{=P9W&Cm;88fc~=iukiJ+x`R?9T?^HPl7cg#J!~H!pNA8uwR%a>$?i zE_JVABfAvpoY$}Utogn^5&`esGK`u)w}KJCb@Bq#_&1Mw6QGZPkiRRD&Uxn8I|ZHw z13(Y1e;aK$uMR=0LfvC{PyCKzHPq+fUh^OH?m;FXi=T<>^XBJgY*3yBYJ2A5qoK#C zI~58^*w6ioyb*Yva#k=3KgXb6*HG{+Cp!_GBh0(@%_^5^_iw+dUI*Z=D7OrU6_ z*ZZu0>;L`lefB=r*=O8mpL1Qm+uM{m1>U+Ah1YlVhh`z|JT!jl3htt>oihjFXMyyf zD9~PVPqo~$`_n#CZoO@*K5Hg?Q}}7XyJgRO`h3^n9$;Ts2j}fhc>J@4XS~ytPi=i;ef9abx*rd3UoNH}^l2mDjolqjeZY_Ky`c5b-2hF1At2Pgxck%bvM#o5 z9Ch@bd@_7ih}T5u${)J3HW><)V{da!+&~zx`yoQxb~yu z+BE){1sv7hZ?^Hu5K+yO?vK`4ad1)Q4G@ z$Efol>gAdk1m6jHf8f2ce%1A2e52oV-_^IO*Lni?Wc~RGpzkvVasN+1o!=pQagSfz`=9R= zZM*xQF@*DUJAL#fa@YBv@B^WaNloZz&>Gwi)L+iy)1i)^F>eBT3L5Iql99cIOi%(oP5dsPu~`@7q>rqB&y4N>N*zQ_&Ptd67V-xZzK2q(|F!~ zz8HNI=&jK1U>UsY(KD6z3<>xm$V2Tj?o)S=yq(DFT5|2(gRMO99pIfu#!rsV2k?%e z@$ebaUqTxI`~MI~z`M7E>^U#h83*sB9TUMQ_?pNU1J|`xN`Za{d>_^Yc}wUN=uYqq zFb*FI67beNWH0XVyMy{zm$>3j<8kec$F6&s@ty0?aZ%>nx6fQBt~>kFwQ~^IpYAWi zk-09`lP3YK2}1ojCerO-e(Zp^OwTBufxN@J6m$cbK^3r&@~zK6_(s69!~38XFwRIo z(}Iw_36U#=j*Ki#BU)=F$+~<|Jdk|F=;I#;)xJf2zq z?fb~M_alFUXZz;SHe-twz`im@?+%PJ-vcFp{pNl(2^d50Sn6;1ZgAg%|BB}l&}%@b zKjZdi-jQ0DGf?jrJac$XHC8q@^WA{=wl`2`-=Darb^}G>jkk@-egZ!CARjv>kb4gk zYG2&rx10J{m$>$$Hj%yiq0i7K{x-}h)D^k_v?uX3v@SFS`E&3e0{d_uaLql-vkTGX zf+m3TD%78G@9%Nj>ln4&wdP$}3h>UwbKi@=-(efydvET$K;y$tfPT-o(K$Sg{O6O; zxtxI4=Y{$+?)dtls4j0&H{Tz&qYa*G^(RB|;kKa&GJW(YWPVdv6S{!*6oy{~-xqj? z;+ZA^{5B`lzPRHF-{)DE=c(5lU}S`A_bmF#s$eL{PIl-2$H4YBq@9DoRQO%A z(e`;347IO!qDbVR1_Hjnk$ir)E^fX@v= z_Tru|8=|`COA1rh&eY#;^ZX6?Xmms1_d#vvZ{Sn-`oOc(lh7SNf8zS^jFo`b*N577 zAZ$M}f%aTiA$y+t)b*tg;<)dL+g{x3J?{Hm z=a}QSn(=!PzBXg;-9Qoe#lU%<2br<2eg6`;4ZrGo`5NA}u5a=#IC;OTUkJ??=cT&R z&|iW7evC1od&>h*W2f~{zg>`a0kuF$8Pg{deIXg!(Q;zu6P&nV>o{pC3i-s{wU?^EYY6JvHI=8x27*WH&@c{ zybSNU7zEt|{JSKMk2=50bkAB2osX^&NWgys4cSY^imoru32#9i`)8q_0oSE{kOOp* z$KGwwFTfPgmS;L3>j!UtXs;Xy+1nlI;u^oW*B{d)HSlqM*k4(}zxn<)?)JrP&vUYK z$+Z{9_e8D%?N!0m!pHal^SxEN)R|DVUde(G(x;FJK_XB-Ke&AU$0jSW)#$9zFO=hCLu@ZObM=S5J@7G`e) zoe1s%#mSci*%|cS*_qdGox)DExjWLu6;Gs#>{&l!u*u-x{5~@7^LyO; zL)`v)R5X4qp>cdK9C!QTjz8n}*Kx0hLeYFV$~qqp_JYfZue?k1eC>XqFW3fM4U7+8 z1nwajfN|NCU>KN8{sgq)IpVXp@6Y1y&$#`I_qFaFo?)Gr$Dt*G zbsq_S;91X*l_<~qIe#;3?EPSrN55wN-@#qv@$Xr>S0zX%eeyrGPyeXAJ2Z~-`+bo; z{c0TVr{liwiQ9h;iu%(#3C~sS823f+t`GlP0Y3{_W_aiC4p0j$WsbZD+&6vB?~0tm z3HU}JG(WRZmOAgUZh##?8GbXTA6N-Kh4=4Lcpp-owD;BCDOj%$pqG>1xtkB(d-Mdf zEC|_)yFZhAe_ZcV-PdjVa{A&6__yhsDex8Hi^BW9-`@>nA#ML11zo{^_xJB{$1ib@ z-zfUV{?r%8asI0s*^BEwD{g-s_x)1b=jpiZ#l8OGUJprs7T5PnlcM$KUeXNS_^v0s z{?aqL-_8z)u7Y}hTL3;EhX8$OR$zSx1NXmfAOY{4erP}Ptf=mJ=uqHzT8^=2O)w42 z0=>X&VE(~CnK7fk{qx_1`2pTI4}i7s zXTVl?-*InZj55LB1J(e?_rLr1iITCmaj)+L{_XEW;y&NT-M+ZviMZPr_j*sqywvx^ z^}ZwScw%?dKK;DkZ~9)}bCCQra6adeG^GEh{(eE+{plU2;H;g-eiFg`Wa`L+^cJ0=@9J`!nwSHg5kC z_j-uCKjS|C#T`%lr;p!%x_^oL{1Es4?md=gwdI`MzJUL?-xtTdKg4Y>?)L$4`CtI8t`xaJ*&9;Gw$=4@8RsvxV}I0&Qp7F{r%Rs`!nwM zjd92GanF~y`!jBPagSe|>mkm6OG;b%mAR3BNdqmx-p~eo7xAUx{daU9fv!Mi-n#Hz zK|gRO@S9}+z2htSCgpZ`wu$1Fg%Xy#%@ywB`A{P>N0c zcW(>8?;~FhXm!vY3TINRQ-NLM9#U*bEe+B|7fo=l+ zedh0>PoSR;{Ec{SV86OwYi|NHWY51Xq0WCZ&VMJh2haWlzfC#M+Rl#|2-)+STy<%omfaZShra-78UFn>`}%Waw_)pY_}0LFY6AR5 z{1$XAsp~cH+S>yS*~>{jb@sn=Lc32x8zHU_d>`fe=!3{|K|hCn2TsEKEwOX90q}eJ zMEMVs{~cg|JOsu8zr%kI>bw{TVE^jH|GflnU#2Hr8eB-fcOtF5 zx1gc+?TU2YQU9XYJRf90HWNHWnOUIyC?gxx_Dq4dAMQd|1m14|oG*^uU(tMd96n?( zE7{bYA@3>pnb@;GZ-#FO3d7HVUJD%`$qzyO%|m14{{DidrT&|sm5|%M5zvsmN|djz zF!{bDUrmyaLY?RKt@Ee=*a@Er>UV!|IQL$KW<}nV<`y zS4J{_tL?jEztNX>{apfDAu9{C=Q;}6(-*3t8OL+IFcWKX5cgztx3d&zg~+B|!`>%WxikNfb zQYTvby?mTEt^6UHa!e0c<2mC#gedxaTF0>r7d%z&j6}Z;Cb7)P!TnDc`>mF*~ zkC84T^irPr%JSit1OM)8L8xmj5A=TE+1I-azZoe6HiDU;A+l49iT3)!hwP1sbiJU? zPuF1{;)xtk=lOlWeS0`m-{rbEO1=uvo54dM1!Rc&TYDp@bI9HYXY*WEs_jAvZ)+WQ3>vUdS`b&kt#z<9d}RDY&lvD`M; z8i@Q1yz!g;Sp?lZwBvfx(}2F*b*a5&(2%|3k**HZcaP2szv($bx--)MR}3 zL!Si)czzV<4R4&NJ;xzr@4?8P^`A+#UZu{};I|;Roju?;AlHxVg!et~SI|b}D~4P@ zS{#|asTOkWJr51pbFHbo~;Gk5A|C$fn#(r&`-M-o&k>MUUWQ``fuGV zm7&akvghBjRc`EK-1jSRy{-m6W_$O8j-W7by<7jPwC#Fu5Sf3|Wgt}lX8U|LWN$!Z z?+NlS4bs#BwqYwM!n5{mMap}f^l8up{YI$&u55a61?eZq^CNH$Xipy(vS+>3Ip2)0 z^w*tWFMzuL`M0GWg!=EZ4hQ++Zvtb1W8)mv4;{g-y!H-4L-zWhSJ#X@&V#`qJNUQa z-CWVw8duE1&R*~^C_`Ibfx5ozN5|wSuuccSPhcK+6a96dHn@$n?HdIRweL)%bN}&t z(4KxV=1hQcq_2inr%oN9>%mRPHb4(Uf1*zAXRf__k(C45vz{S)e?>aWaJ{w$uI-%A zil8XA>|eWx#- z0CgVMVjFck-baEqn}KWE(CS{mxR~1-A5bkuP;D-WUdv* zbp!2m>@tJS$jSokO@)T+#XUbgS6P>I)T<2j(mz*1)DdbtQkgawtIbBA0CnI80A=lf zed)O-FMVLz_E}b_eQU|1ZX0wz{eLBNB>COzE5Yx?wtKkuE3d%+hP*uKfuJ{N3l0PK zlbKNMS%;9lk0Mwb9u4fwj~AgM7!MeKcm{7(e-gL6ecYd`D-^T}u3wdeUi zWN$#Eb1mDKZApI$n!&#Y^ym72&+`+IkB5H@ya)7O)sXw&Y5ILGY3(gnK%WVHUXqu_ zJzu<^((X;v!#K!wW;`(#{yE^B$&So;!Z~jnu4et6g7!eZ0l0?k8^^%*RfkWu>Fo9; z&tuLF{lfQP7tc8#`T^J9ufTca{`NGu3wzEl$I$1GKpn@ek-f{|L-ykC&(_q>y3A#W zcT%roz!<^3VlucH{YBt+_|j1QwQ-Cx+qe%pg}Hkp&)-Gb{#*k6-_kz!AnTHkI^}_1 z3Ua}(0GGn+Pd=vpEukBL@rC1g1loW$c{VBlx+5zFY@d5ssC{kGtJ4R$2Bpq}rNFtU zP0MrNkhTTR57)GQ<#*^>>T@@=HEHcFhKB5|i*)YW?kDbnPxH({czp)TIL&>?s!^tQ zq}k!G1}}goK^NeDzlgkVLbZ1W8nX9sq;u>KV8gOT@Ql9gTKIL?(+`)#UJi}JR{;8J z{h9l|Yshn;en@-g@}J!)$GZ3)-Z|;o)ek=mwO=*@`_#4R{`fv{%^8y!Uu5L*4)Be^ zt)#W59}KncuSk~#YClXSe_`k}a5=ntbqDI?dUn5ceQbh$3;mk*)_}U-c0#64(B8TB z+a7;wpZm$#?fVj0vVDKTC)<~Wa&4dI+W(jKeZzCM{RgN%vOUNh@z&Sh9Sni`-vV$a zd@rEvZtxxOZv%R#UJu^(+5S*}c8S_og?#hKXKZJT)EoL1)IQX{`;Yx?n;gGv;4^sl zqb~67@wbrvzm4DBMD_MKKb>-y`k3I^{@rlpUxBKvh&A2&k8<=zl_JP1b<%-&h3!Bdw5RWb>un9b1g_0 zgkMF!c~^cOynmB41N2eg`-qpJBan?JZyVscyb6>7w$Hf~vR8rU)Hw%=lkXAm8@LIS z2W?Ql1f7olWl$GhzcLZWDrC>GQs=tUUta`mMtRwxyTR?0lM6Z)>ez?lWwyE&S&GQBr1lEw(d6Nd+1EjV0 z6*OcoSr^B=0=N;}Oa3>YC!m(;9bFITr@+0@v1$N3`_-rK>rs~t=&Y~y^!p)urK9%U zPagNWr$Ih2hjKe55Y@$7!a!TG1}C(y*uGU_TpZD>7xGpg*xfmyvsZZe+O{9K0-DF zS_nD;opbdG@GfvJnU`)!lZpSU4sZMH+fe)djCAfty?D;|9r~E@pe4`ByC0Q;4hMtC z^9|JZe~zJfG6UyI37|de6SC*rR=1fvxq!Z@6|&0EslfZdmC*Xoq4+uHjef;@(|4fD zfxclW`bF^CI}Q!m8y4vvf_m zd(I8})c$mD__yu{^~KsV25}8)*Em_DzO{ z+ULLJq|W`QAbB4G`Xis$wy}?QFUArF!M(`b7ydw259*zrdx`NyL!iC6(2%{4Bi%9P zxNY#ArfbhO)`u?y^&HzD>RfbhbWVK^y@2&-oPC(I<6awR?_B=cdtmG0UVRDqjmdMu zr-PdIzOD=OBV(6!I9CH1=4w@r>h;gX|uf09c|1Is?9@QlSbPRP|Mc!3q<#%Jrnzm9$TE**85 zgN-ckRe}42bEqfy6Ip~xr%v^18V!6gIB;0fw~u53GZD( z8R$*Gx(o+t(d`71<@828)FG_s3IT+UW zoF5~*7ido(k+gBPz2yCb>uNgrT+7=25V{b$0T`dW2R#F%?jQOB>0?-`wKQ+K~@UcML?PTppU){XzzUxvUf3Ms?&#UBENf|ZPB)C zegQZJKMi^q`~gPth~+w-`{5sfF9hn6R-S-{?7fX%ow2|wV0rrPXQ8&^dQgizb)db$ zERdh|X{`G$whBN`L^{9G(cTTDL-tnkjJnS#!+pqpb?lwf($9gm*McvBbHTB4owNYP zhc{ruIinxf-XqYEy={?BpPmWmS6cAQX6kwg{0#cLKJ;12Z38ZXH?F-Ilm}gbV=)2U zUGUm-eTMA0f2li8o{Ydf6|0_Yi-o0Z?i+KgY#9N`V6!^CO8QttsNMwxb;KP5poV5~g@oqkYzo1r0l&U1C{Kj~?g<$6!yGv5R2kcTpS zUzQvG2>cqTXWqq7{moHm7BG=K+B09sp8cS12YI#iKJ9T%3AB#-t= z!-v{e92@GcB%f>fBp3_aUmRP<$304UVd#fYzaQEf>U)Au;qL|RiCw@9 za2Gn)?9X5&C_?)-AahPn1-8$9Gt|C2=@)f(ldmaouPzR9A@$~5ADzJi;6d;t zaPPwfrg7iR3<@LD-t{14Z+)cug*p|2zZC3&KcDvf4*i<+Y2bc-2W1*(cyCZ1yC%^ikT|3k}&DhF;yfBCoz}I>^qmhv;X0=5X}-ly>mbfqVI5q+N3{9mr$9E0Y$YAFd;xzNP`t-Y{s$-ouf-mgKnwzB=f`^Qrq2lkaBa zg^;y}I{yz)zWsJDGGo=UWO?}C#Z~K7fzJopl^gC_A z6!>}23&>+!y@j;*T+X3K;gk2Rcfg12dCpPiKDrJ532g3#8dEm_j>%Z4<2w^nfOoy~ zztrD)IG%r!xC81uvVE8jwl7Phv)^jKYi9<$KKFWfZQOwTHRwU$J~;_`8?yG)&9wXD zF5tLn&vRm^ea>Zd7n0YpZ$}yK>DqL!%?_OkEd_l77`M2d{qF}*gme+8eOLf!Z!k1u z&$vKc4e}WOIKMB2e;+(cx(akBv^&)O$=|7b2EUnlwIuJG$jSoumxqD&RzO4c+M-wI z9(I&`QtP)A%mwJ%A+7=vv&ksEe{T;d%+jm2qquN^x4cYr3(rtt8VK2WDI+|y; z!B>RuP8*C9ZlX;6xmI95a6Z2Q)t-At$X>GT#w|z4YkXM{z6$hJkPhB> z+wZ)!QIa+JG}QH18B7OlfpNe_@@Q`;e8`@2Po3jkiM)A8=7nDkhLUa!-34{-xfYs( zJ@DsY_Z|3dpcr@onf^z6`rDAbWc${WXD{`$KmARB?+2Q}`!2Wzv>^TYwsnIq3Hk!( z$UR^O&<}hI)t)g>$ll+_FOKi$n^{bmE>p{GC}kQcRk<3s5C0pGn%B>f(+ z4?WwSL6(R1yLN2fr_fOQod4?LIf-oi14Dpwz`D)_-@?20eUCJeIr0F!dtC|S z&WpD}F8KLT+V-797HZ$LNEg@nuMhRHF3!cxK;NRz{I}kBB-dsyYR zoBEW1=BGc6{|dt&CZGPhHZYEV4wNC^0$_g{Z-x5PyLWYu@QfRm|Ng4J;yd{B5xMs6 zgueyqp5cD51zHuV4W?z9NnkRvtAO_UK|}WRC+a>X&t&pGK+-u;3hMrz9_ra-5&Thb z7yNLb+1QiL1cpen)2I1wuf3hn zkiEl^?f^6+$PbJ|^>5mHjB*-5{Wq}pBfl8lIyC_9$2~zo>%YuUAT z0&E2CVVS@>c;nG_@U_9Mq_y`lG-R(WdUcke|BzZg%byGWr{lq7{1R7u_Aza+ec7RN zKvUYc6tsh{0UZD>O`p91uP-om?~klGvW<*|{qLAMU-fx+Hw%5C=_K%Zmm ztG+C}_0-WBj6d!A9%=?j~KSAlcna%fAi8vFKh8QQ%Bc|Z7G zpcd(8p?#3~dyr-1YeHIkTcII)?&0cO_uji-4IRNVyW#a$zE|`dQj@k@u70%w>4Ctt z-X2)jw&-RSgYwmOERvF}kp9Nh7Z3cFc#lCtzk`JJ*=JVWO ztl_z00=o3T_Sxo8`+D=Nx@zRJt*-apP{-v>sB$k zc|+3sz$9eu zd)l*{kUjTGbtlN11yltmk$Jz93*PT+?t<T~lBKrZE_J04HjkE1}*Py*G zv1h!pllR~MR9+*$Qqm-e&zt7LJ?YVBX_ZInw z@mz7JXXH%KNt8DNdJ(iG`If=^8^-2fEwZP;hsa+sWcaVJA8_YBFDCY-I z4B0yo?{}+HN#9T13xhSt4}!|%&j-qa>A-k@19?-R`hCm%r}p_hlJeQ)sS1VweTVl- zmw=6^+mrqpdKpNkZSuG$B+%>cU{lX=g^_E|H5#(_4SIDI$UD?$p?)h~hq67pf6lWf zk-1j#qkkPfCwK>WUDADh9)7CN!E4WP57{db>0aTPS9nHWI1v;>uJ6>(tVZX%kDsB% zDax_jNZL8sj&yzCK64Fn?fnWu_O_8%ontf-%mAW`jR(f&%Y6+&Y0cx=Xg5jTo;a=by!HcJ=C#!9a(ewc?q)J@V*bp4Sesv zEwWbwUC5q(LftgVa*r5H@)Gj)&;~18S_Z7+eN2BJ*8(SMs<|8Rwmh?Dac` zy)SrHdl|^{1h^Wk=DCc-Os?Z$@DD;qL-n!7rp8G6(EPx;>v(;HE-f?#yPv>^+UGf3 zopWUcc@L0ue;W^;A?;q!h<4m!S-?5@4D==PEdlGnEbtWhoTJ*i4}Hj<^F-YXzwBI056XiNK{xdJwiN75fQIZPWAAO`bDnq}|C(~` zyB3t;_t(aj&YQQXM=M{M^B&={FMs3-aSI~dw??uG0*_Uc^g3$SqrxW-?Bt^>wF zw$HhdLSDz#d7m5Ed7vur-Cbe&Av-h$dt;#?d-@7>3n`-pbHsH&7v6o({kAl;3Uns2 z!=NTrcm8;eUy4q@^cmQLu02R0?|0CUJ^Ni+v+3V1YNPG6G1$`3K zfqxd=Xn5z@pCE@AG?^KWKN90cf`?E9jLS)*roRB^Jin{U8 zSE=9Ez%}_CbPHHP8!kpyfO`E#S&NamE?o23fYkB5ihR|eDdb6(X}J$lR?@a~IC|+* z^oj4^i$dL(J_DW$$o|(lunGApsAJm#opH5$g!|AkpdZeMTzg~wX5(yo>(Oh^`%>Qp z<)aK^?01lRH=3I=`XWCCeGHUA=3Mn0a36B_Gso~fp81J(YtK2HY}48HrbKnoCwLF$ z*>5*|W6JxDvW&a?!0S)Tl6M@kEzliMxaMRIqkVuhU|?(uZ}FK_Z%l++z)K0_VpR3K^CB&wm+%@ z<5c61FR6?E{9e-TE!xvhh3q{N=|)0Fk$)$sNjXnJ^@DY(zp=)flzRyIG-Uc^_g34U z5xBpuL+7}qVDDvU$ew;f-2n3Fn|}dou;E&C?{?2C0UeD!_ni-ryGE-c`;N4BJyYKX z+(T2a_YlvA?A2n9scS{v&OQr_d$RDHaosM;nGU_1wCBpU@b;l=x*^a9Y=^o}t)(8? zGu8;%^Y{Ad=92GCu$a91Fyqa;;ai}t2;BeHARma_m}fcZw9rgEe;YF6?<0{t>m9O} zJo~02509sQ2W_7nq7B|HkAZj3e*yYCa6VlF+;gOJ(8+%u=~H;d^&7J1o~h1t^)C6o z5j^j_SP8~r*R?zqeHvg);-o$TNa;$lk=r-Wu{XCZFf(62Nuv z7}USH=zU*a;C|=+*97z<|K+4hL8p+%@1~0&*WLgSvX_&5>Z+1=JnTWBZ#xC`-JTcN z#=srXyU!MY*PoB2%-i4_0`EZ@A=^)0?bU-1*=rlsB_q#mAiwK+E!Yb0nV}c;xtw$x z@?8jwb!~e&;M()Pv^sLvXYzdHc!%s|jqEulWw7br<(f}^V;9@1Kh6yuLwX?a9knsd z2=jtbz?i}_SbF3s@b0}KdqtwUoJZat;Oju&!?wSLaQzK|*C&jG+O|>fwoPARyPdDb zg3c|=NWs>*&MVG&>#~e;JR{@=o8g}U_VN8t?+Lb2miyHz_>9Odg_Z!G>zjhp=yqaL zdq0ym)V^Yo&e*^;<~_&_mAQ5 zu8}{Xo|zqk(d3y%dLz%DitMQi+3QMvbxX*zg8Z(b4}kO3b{3_ayrhd^&%Czt64Hf$ zw_=YUq^(O#c(*qa;azTvq!)NeC*foETVdJgp7Jq>xCV2lI z^(l1PYll2!ZxVWS`XqnT;rZZuV1Knnml61G$@iakfX}!Cuz@n z@Q}SF=+)`}j9)z0m4u!IuEiU`yYROIW2xFu_bBh{t^rwrekM2az}G z>%)#lvIXRM7~b{27CMr)Rzlwd-tl%G+rGOgCuHwD^y+#*KQ=FOCLj4r^K4qu-Ualu z9?^Ux}?ceVgm=XP|xkNM2+ev1E_nQy!t)ky|iE(&o_r&3ub}};9>A8&|js1)*u7r z?}g3=j-mGKn~=Tpqq@|_tb5$Wr1L}Fe`oRRPtd!u?YZw=u$gpSa6h`E)Ky>We0D7* z$8UR7rZ&$$Pa8ujKS=%oJXZsFhCWDH)!>codqa)A-DkD{^Vqhc;6lnC3T+I%0BZZr z70+)VkM{aP9j^sE=XzfXUj*3}+E$D7cIZ1)?IL9M_m{|cU6f`cymO`)ynU~|6lkbF zhmcR*eUx`S`MLpZ-vx>R-(`3nNk^H+wvWN@fqMVb0Bk|;orb^5w7%N&92~M&6TP}# zlu-@7AaG2)3wsFuWq9LX=dttY56boZAYTgkCJ|4D?EM_os z$g?T%&eaiMIs81R^&1NMWAAOzvZNQv5&mRr3?YG8HlYchIjO5t_A0o zcOh3{V?596$F%n(G-PjLWY4{zD7^jYy?|?YGBRl!P*=u!Lu(A-f!Grd(r&n?W1WIlve2%aP|Kud(1O;9{P! zeSOYh?-%sidzw78Q$}N_T0BZ_VioooEy!^ zyNm-pSQK{ug@p{U<>t^UvK7-#prC8_Ux08J^M$U`>1X4j%6_XG4KuPhM*&| zy1+SD2wDUfM|r2$f;xG&*iL@OUwgBmA$x_WpE~zX|4vVDk_9L?6Z9mq&v@2*`}I)I zOnu#NHLu*S+-z;I=XYY9H2tUIPw*JHQTP z&e7I@$5Z3$kx=bbMjx_w0eW>0kjHb5zTGpRvL0X`mHg&l*TQ0=*YgzUM#)ome9P53{cWk6rbH@+wjCX+r4 z^3#Ugq}|usk#_E=zY6&m@cLZsT?Gx>?s|QuS1AaD0Z69?F*=vVN-Ef|H4%T}r>+gJd5ljNEkK>e85t;?;MyAia7v446 z95`3sVx4Qxz6jZKUaNE78#{F&T^HVS=XKzBc<<1EqpbVU)j)PDuuXNrP4HbocX;DA z?R~`@3)y=Yy}HWeb)Gx-Nv8JcK4gX9JzoyN<|EKHq`lkv7Q8^(zPCMPNV_(*=Y4(1 zo@J|ZZ~u;b`hESjb1@x{xsS__L1tVs5xyRI^atC4e&#Ze6TSCC+Is{(WUn!0sw+=f zcarxS#<~*uZzH{hw6R56)4;Pt9@5Su)9yj`V^-4hK^fB88wVeCNfLJ=NdL{JRh1F+J-XH^H@Qs^UgjU z4qhYeS||*Pu=w<0BS1rtJWp3d7qmw{b>6joL*G4#jk)l>c;4ND(LUfZrIw0{99nmsDE}1 zxK7&hjKBFzfqp|eWbfsuE}r`x^Qz?aTx|<4!ssxF7PO} zK80%UO%SqYpQu|%xxPR5t{@})jmW*Q_S_f`V^2n+*=33IH@YEUBJy|C`4xFK_ynv3ooM3>P#$?M zd?L7=m|6Hfh;9-6u)j^v1;Z1utd~$U!D$MZfjkq(76d;T?8R{}<*#KBq0(yf$Afz* zUjl}LKE*+I76mWf6Hm;f_zUVkacd0!0L~%&3vg3(mN$U=kqyxgJ|4UJ-XH?T6oqq7 zh{QWpNAH-9LpK(br`!zwi*A*rJ0D|i2j2)c0#Bj;j`qtT=i+xI<+<=?%5#gmSvD1v zZx_$sO>rfthsy|D#=v*rHi0JW&eO;v8cipWFDdS3@$?^A z1|`d(hkiW55@MW#xCgKt>Zb-!@g)ikVb|V&;kBR>auLq0;Zq6hI<5g)VjEQyGFR1`m`BcGs(4B6osECyZpl-q!{;4SP0`1`C+fp^gT2>*cYRJb$c z!N8%OLU}6sE5Ksf_5t2NU()G+Kfn&`+P+{89PcflmrZR(FgvY>p8)S6PbR4IyaDGf za2Xo79(K~c#8x#GjLwdSg9^xOe>0*LusQFy6~}UUzK-9;u-h|^{1kG6I9I~Tv(Rq^ z*8rEP5AZX7;nyu9vFwkCx&+Nn;9ay1Nt{~hY$+ezo51welBkcPGqUrU36@)r7)Gr{ zIjDMREa!C|2VH6%6|18(BkZEQowAGI0J1xz5Hu&~LHK6$&%@3^JNP@w2DNVKScg4V zM5^RJhs$B$@U{ds@o*E@Kz9h)TwkB|-6c-pvy`2(Zs2Zw7EvBW7Y)CJa%uQ~$m-T% zmuFIMA-0ypeDp9wv>HX%bP^B_D%)c$2fs#xmw|4`wa}RR4U^C*gvBhX2?2l)=ZQkA-Vdw+EOQ zNvoGu17SE=K!YP;8@!Z2S0VQTc49o32F|0h2lQ#dC+}v21&K&B{{XIUVRB`=D?EO8 z!QK(d;_BUGD4dPmrN;J3c@Hsd-GFT!=!cvHJ!ragc>dM@SBm@p6fr6y+h&`hRO{54 zoF+>t91H#ir-A{X4^9iwaU z$or`N8+|gY2j@lT*U;aU$d%9yqwF(z0JkX$Hw{jY2ZQEE^S4kw3wvYy#(_U5dopZ6 zHl2Tq9K~+hnnS!B;Mrh5ZF*=|guCFAB(`&2+Fg7~WO*(zWFM_M@@H^c$LB=G$3g|r zno8B+q2Me67Q$1|y$g3XAQiKaUF%8g-Qbc&^1@#mv0gjSC+{QaxK;o^fF+b~p`WK% zrkY!(EaAM6c>ntmKAC#kz>A<{KOaJ08s6sVe+iB<-}(Rl=KEg_UPni5+%@rEWGDPO zWY<(XAwK6Wk1L-j$Ty zkm?7a_a52|JP$4c13&{X9sf$q-vh{_!p6PQGr~IeMxt3KQ9coPxSxX055zo<#bZ5_ zsb^#^=z#n)wi{s=#YlATGXayRr<{aWr-EVq;)xoVd*f>A+Jm|;8~{_~Cvb%D^Qkfx zc{11ldeC)`=DX3425XDLlg^98gEh^fS;tUzkD6~z183pqCCe1)es}?X6KpQ_iKBC! zJV4v`f!nb?OF4=BSCRMIgtw&TxSatPVsdNkqI+WrZ8wj@)pY71x(AzY0lUH1*dIan zA$7Saois6?^$}_(=0fNp%sVmX1OIut8sc2A9C+tD1$M%`jG5W~fD6IN;MJn=aQR3) zylQSFnt1{WZ*&iU3vg@!-wm2Fd{f{@Xt*5u9AtOlEZ~Cr63nHc>#?s0=ZuMD^sGx2 z`*pfY-2@SFwTwG96s>XnAaULwnXVwXRM zTYzQM;Zl(ADV^fwHqC{+4}+_3Il7A||3+|EmKTzZAPdyQ=H<}_U3n#q{QGj(zu2|_ zc4e8JdQ;~$*iG%_GUj!4GCi4&p)0V#p)?Q&>v2%;b?T;6&}4eNV+@t;`F46UIEms% zz$xto%z{q)N7(KGKF?<0C3p)s6D`8D<5&$7N(X%o`|qhR=h&8efZiJNy_- z7D%fM8UbhV4sbage-?fYJOS2*qxu%7i0qM+w}Yv`Y3d9vr>?7da53B4YTz4i0(ckn z0N&>-fM1dAVJ$dpa7%hD-z7Ypl6TorSX>~V({mHb2k7oV_B1ow=b<|vT~E*vgxD5= zlEe3JKX)*@*&Q68SGx54fUy5!{dL%6WoH_F@;Z4Oa!u$ur@h36XR1vDiEmV3#jO9)s;KY+uvB4!9%m&CH|O1|PsLY|xh%j0Y)sS$As$ z$or9p02jwn%9X&`$T{#p^bf;bDUS!UkPAVR;;0@N;r`AysVy%vx%~)K8E~IhDo>snij|RTv_;lvQs_4g4ehJyr%l9n5 zUOY_Hu~TBtqj)!zPtLO;~8eYagtUbmjS-4SkKcp zSouyYVPyp5!LL$ zAY8nct*1&M`r|FN3ATgwlpTit#Oj0`915E}m>$nR51o(y9_^lq{w?4FuTR`; zWRr6ncq)FmUGH%MxE-!*M7-rJw z82A?8N2_CiNyP{8bjSgj=p4kF;17a?c_&3;VF6$F^MAzrGjLpdbNC9`^lcTBT|MBT zaXIA%U_7$(X3G5w8A`hf_zc!5>G!|ydAAhXPR7s8=PAIyW@)ZNbF&DhV9Hi;J}>*Z18MsL916{IemC2qq^C0K`&&TUG#ZCZbkV>!y;TVz=fJh- z9LQ$K4}cpPC{xiM@K!jdMiZvezC8j{8vf27;agy8vAbhrmqAHd+Ii_MR>Z-@Ss@_k!x=a&zT3 zz#e)eIdLArkks@`TF z#>M`*$>Qj4gFPDdVp|BCaXaAC0C^ZXk1sb%C(229HGH%|@dZ-bR$}l%cXe8MDl7w) zP`DyK1lLo45spq-3O3)`fgh1w`t49Z3#QU(8~pij@aE(3d?(E}42R?y)N63R5BY4; z)k4@5{yzGN$d6$wgq8hg86hPh_;R;{3i5Y;P;rt1ZW4lTW8_?B>W3K-9QBg zA(!$vPyoEs`^jny_I|10-8J$2C^3DAKTtKrd<*bCTL&Hih7-O6J{{4Sl{%pFZR2_1 zAifR!PP37w_8})>=i_JtvmGC8HQ{^8khU+v|6B@{2;$Fot&zLHRpHLy5#zy+q1z7+ zgS{tSi@cuMPh#(ce6$9=uW54@+VT)T@jz{nzXJXIo!rXz6U3+L1a}91Vsx3?*k-sD z>^H=J}{^M*TGKpVw&f>C?2~7ke}0C14=(vtThug3Afn5cre%tEq5G zG7|4um3qe9fZbm%W>L=tz6joj-#YZK(w_DV_<8gmYyOIAH~)itC)kU9A+eHRWN}R6 z=7pE?kt{ooOD(D%2l@e@+ywI;`VV36hbD7hv+IKwkXDHRem%WPs|0iKAhlc@E3oc_Jx01A z+mh+M5X=N2xB>g0U>$N@FdM%Ll!N(?$HMvj)1#TLdT(_Xp`8RA`h)0d`fAFp zDBJln;nBoMBKxNG{~o{Hu~qWDe%yt}2=F?!_u=Jl2tJnjPm%r5UxBDT`a3|MYhkC_ z_i8T|M)yiv8XbL!EHA)E{(|=Q;^zr{ffuPq5KjA_E!7q_ub8o24}aqP3H$=+hW=K# zBkaEAYeZ16G@9s2xdU*PFUIaZ{ssHF$lfvg(s4)B!>16vCyA@bVS7Lw<=0c;=z;uf zkk>MrvjHDtO+#N7JV*Hi%58x2pHDpBqD_|OWmjBNu#oZ=&>VR)`Xs)tz>-183kP>j zuaYwXQ*~U{f?=5d1F9gqkL6s-&e#$#0C^2OmL|Q`Yy^FQT{3)QP#Qj1TBSY3+S!j-~NCq^>5xMd7E9k=bY<}dEYp&M&e zWPhcphTe_t*}4_>Uf@*TOL-mg9PlkzL5w82;n@5ug2Z|hj{SI04tN{*49r6&?vcBs zd)PU*QEy=0D|>;TkS_$w`E8~{JgifTUA%xs8UY(w?lWTd0i3*@u*28}?4aFiD6hhI zB0L8E7>v>$9J(_j>~UdwG%<-jX!bVR8F)Iapqj$rYklzBPsjGk+h|V5)TQ)QJl5#By2kiH-+>?AUiy&qK z)6-j^DsJz=zC%uiy@kF3rXri(euj6!Q{bL(43tfUn{w0R;ocUJXscxyd=#_KWx(Cg z5Ils;H7)HsDY$C!{7&j@#a$YWAM|+&e`>p ze}HZ04A?e$V|Nf8nQ&zVzTo=9u4m4dU<`6D`~r9xPlw@ByjP%iTXzPhq8kb9^?j6U z!>-Y=PTxpuY)&+>ibZP%dJKGtYy#T`8W8X|9A|+l;AQ61F?$ht0Xz;~1a{Nd3q`?M zz2n*QsN!lo4cB*&y&rvm>u}g_9qujL?hluT-Qbn6*~E3o7r^b|JE-r^yy2Rz>9JtV zplD`4EM9YSY0M{h3+qDI6*3+i12*B~uKW|sqUY!T$`&+~|bPrPYUTwTPkj=l3V*fOpd=t6$W89n;^Gs*p5B4rfce!V98SH1G z>wuf*%|!HGT>KUOC)hmoOR;ShTl)aspe{HET*p>>; z>KqTU%SW?XP+W=0+tsb00p)3+Dfot_#-f{vJP5uB3`5QXo*vJ^cD5q2o&6~l-h5>w zp8YW0G6m&;P3QyQ{lGkJ{TTWoz{I>5E`)aj2dgSP5I8W#90wmcWj&6~d0(S!1kVQF zBAZCe_9k6(o-4v*>;%d;f;iYm*>T#%3&YHK+uDc@=mMVaAZC-mJakS_W#o=vDR3LV ziEbuMmq(rgZUgV5I}i2~%ADZh%^AU(_oJCN5v?Yc&RAA4@V=#VpuCOp{lGKUgV6V> zxyS)rma-?@aL^JA3r5|UF}7MXGo4`mXzFnF0Cm6?a4fnRum^WNf;j74;YVSwP-dUM z3ETp#4ez=%l0nkVdZp-puVpjvyd4kMgnwC#(~(a+ZP7miMuF-?vD;Y^vBq%;pbV|3fXgXFz^T1{Nj+01RXEQ z$nS*p0vf9Y-2b&<@A&6Y+us4k!@p7MX=F2FF1!RkS4>xMJn|ISPVU22x^4a;tNRMO zY|3|`nBdRxL(2dhT>>t}lTo@IhJ$*PeN0!HOCp!@1h5PEUTuR<)45`c}ST%Z13g2@HvdXZEW|7bT>jS zMib8x-~yQlyj+=ROfWpnk)Oa8p?@7vJknt0e>9T!57~xp(+_rWw!^;;n1y@>ekQX+ zpu8XAeYzDG4gxQ-cBnC!3hDzdtlT=L3?##MjwY5c02iXl!*m+FjtBBfQA5xh-Dq?) zn;K6jSBblK2)4!WeBeTuT6E-3r-B~WMUVX9Wg))a-d#NXVFzm)^11Mb_^*SjqfgRy zQ`mveK<7^HhTj%mo}P&ZOL|6gR^jfWy0RyMH*o6%yHeJIxxn=~7+oLO{OqCcFjatW z0DjGNK4&01gn}2z8T{3hImZlfESOKr>*&EI+!u^SaPQNdOJ2;2nrM&VadXUxl9RWJhm zcQkw_L2S^xRnkaaF!=Z?*>|Fy4os&;El0HFpd+%~-vKBd+09O{ng18cj#L*6&5;)X UqyL5OwS}`*-u>E^YFFO!e{yMuYXATM